Zusammenfassung

 ${\it Maschinelles Lernen} \\ {\it WS 19/20}$

December 4, 2019

Grundlagen

1.1 Lineare Algebra

1.1.1 Skalarprodukt

- Vektoren $x, y \in \mathbb{R}^n$: $x \circ y = \sum_{i=1}^n x_i \cdot y_i = x^T y$ $-\begin{bmatrix} 1\\2 \end{bmatrix} \circ \begin{bmatrix} 3\\4 \end{bmatrix} = 1 \cdot 3 + 2 \cdot 4 = 11$

1.1.2 Vektornorm

 $f: \mathbb{R}^n \to \mathbb{R}$ mit

- $f(x) = 0 \Rightarrow x = 0$
- $f(x+y) \le f(x) + f(y)$ (Dreiecksgleichung)
- $f(\alpha x) = |\alpha| f(x)$

- L_1 -Norm: $||x||_1 = \sum_i |x_i|$ - L_2 -Norm: $||x||_2 = \sqrt{\sum_i x_i^2}$ (euklidische Norm)

Matrizen 1.1.3

-
$$m$$
 Zeilen und n $Spalten$ $\mathbf{A} = \begin{bmatrix} A_{11} & \dots & A_{1n} \\ A_{m1} & \dots & A_{mn} \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$

$$- \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \cdot \begin{bmatrix} g & h \\ i & j \\ k & l \end{bmatrix} = \begin{bmatrix} ag + bi + ck & ah + bj + cl \\ dg + ei + fk & dh + ej + fl \end{bmatrix}, I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- $A^{-1}A = I$ (Matrizen mit linear abhängigen Zeilen oder Spalten (niedriger Rang) sind nicht invertierbar)

Hyperebene

- $\mathbf{x} \in \mathbb{R}^d$ erfüllen Gleichung $w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d = 0 \ (w_0 + w^T x_d = 0)$

- d = 1: Skalar $(w_0 + w_1x_1)$, d = 2: Gerade $(w_0 + w_1x_1 + w_2x_2)$, d = 3: Ebene

- Für einen Punkt x entscheidet das Vorzeichen $sgn(w_0 + w^T x) \in \{-1, 0, 1\}$ auf welcher Seite der Hyperebene er liegt (bzw. ob er auf ihr liegt)

2

1.2 Statistik

• Durchschnittswert: (Summe über alle Zeilen) / (Anzahl an Zeilen)

• Standardabweichung: Wurzel ver Varianz

• 25%-Quantile: 25% aller Werte sind kleiner als dieser Wert

• 50%-Quantile: 50% aller Werte sind kleiner als dieser Wert (= Median)

• 75%-Quantile: 75% aller Werte sind kleiner als dieser Wert

1.3 Analysis

1.3.1 Kettenregel

- Wenn
$$z$$
 von y und y von x abhängt, dann gilt: $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$ - $f(x) = g(h(x)) = \frac{1}{2} \cdot (x_1 - x_2)^2 \rightarrow g(x) = \frac{1}{2} x^2$ und $h(x) = x_1 - x_2$ - $\frac{df}{dx_2} = \frac{dg}{dh} \frac{dh}{dx^2} = h(x)(-1) = -(x_1 - x_2) = x_2 - x_1$

1.3.2 Partielle Ableitung

$$f(x) = 2x_1^3 - 5x_2^2 + 3, \ \frac{df}{dx_1} = 6x_1^2, \ \frac{df}{dx_2} = -10x_2$$

1.3.3 Gradient

$$\nabla f = \begin{bmatrix} \frac{df}{dx_1} \\ \vdots \\ \frac{df}{dx_n} \end{bmatrix}, f(x) = 2x_1^3 - 5x_2^2 + 3, \nabla f = \begin{bmatrix} 6x_1^2 \\ -10x_2 \end{bmatrix}$$

Was ist maschinelles Lernen 1.4

1.4.1 Paradigmenwechsel

Es ist schwierig, den entsprechenden Programmcode manuell zu schreiben, daher wird ein anderes Paradigma verwendet:

Traditionelle Programmierung:

Drei verschiedene Lernmethoden

- Überwachtes Lernen (Supervised Learning)
- Unüberwachtes Lernen (Unsupervised Learning)
- Bestärkendes Lernen (Reinforcement Learning)

1.5 Überwachtes Lernen

- Ziel: finden einer Funktion $f:X\to Y$ wobei X auch Features / Prädiktoren und Y auch Responses genannt werden
- $X = \mathbb{R}^d$ (d-dimensionaler Vektorraum) mit $d \in \mathbb{N}$
- Eine perfekte Abbildung ist nicht möglich, es treten reduzierbare Fehler (z.B. durch eine bessere Funktion f) und nicht reduzierbare Fehler (z.B. Messfehler in Eingabedaten) auf
 - Vorhersage: y = f(x) optimieren wobei f auch Blackbox sein kann
 - Inferenz: Interpretierbarkeit von f steht im Vordergrund (Welche Prädiktoren sind für welche Response verwantwortlich)
 - Parametrische Methoden: Annahme einer parametrisierten Struktur von f dessen Parameter mit Hilfe von Daten bestimmt werden
 - Nicht-parametrische Methoden: Keine Annahme einer Struktur von f sondern möglichst direkte Definition mit Hilfe von Daten
- Menge X und Y bekannt, genaue Abbildung f kann aber nur anhand von Beispielen $D=\{(x^i,y^i)|x^i\in X,y^i\in Y,1\leq i\leq n\}$ (Trainingsdatensatz bzw. gelabelte Daten) erahnt werden

1.5.1 Beispiel Klassifikation

- Wenn Y diskrete Menge $\{C_1,...,C_k\}$ für $k\in\mathbb{N}$ dann handelt es sich um ein Klassifikationsproblem, $C_1,...,C_k$ sind dann Klassen / Kategorien

- |Y|=2 (Binäre Klassifikation) mit $f:\mathbb{R}\to\{$ angenehm, unangenehm $\}$ (Temperaturklassifikation)
- |Y|=5 (Mehrklassen-Klassifikation) mit $f:\mathbb{R}\to\{\text{frostig, kalt, angenehm, warm, heiß}\}$

1.5.2 Beispiel Regression

- Wenn Ykontinuierliche Menge, d.h. $Y\subseteq \mathbb{R},$ dann handelt es sich um ein Regressionsproblem
- Interesse an quantitativen Aussagen

- Ausgabemenge Ykann auch mehrdimensional sein (z.B. {gut, schlecht} \times {günstig, normal, teuer})

1.6 Unüberwachtes Lernen

- Mehrwert erhalten ohne Zuhilfenahme von gelabelten Daten
- Man geht von Menge an Daten $D=\{x^i|x^i\in X, 1\leq i\leq n\}$ aus und versucht mehr über Beschaffenheit von X herauszufinden
- z.B. Verteilung von X bei Sprachmodellen, Dimensions reduktion zur Verbesserung von überwachten Lernverfahren

1.7 Datenvisualisierung

Abbildung 6: Beispiel eines Liniendiagramms.

Abbildung 7: Beispiel eines Balkendiagramms.

Abbildung 8: Beispiel eines Histogramms – eines speziellen Balkendiagramms.

Abbildung 9: Beispiel eines Streudiagramms.

1.7.1 Boxplot

- Zwischen dem linken waagerechten Strich (Minimum) und dem rechten waagerechten Strich (Maximum) liegen 99.3%aller Daten
- Die Outliersan den beiden Enden sind die letzten 0.7%
- Der Abstandsfaktor (hier 1.5) ist frei wählbar
- Sollte der Punkt $Q1-1.5\cdot IQR$ bzw. $Q3+1.5\cdot IQR$ nicht existieren wird der Strich auf den nächst-näheren Punkt gesetzt

1.8 Datenvorverarbeitung

Bevor ein Modell erstellt und trainiert werden kann, müssen Daten durch

- Auswahl: Nur für den Anwendungsfall relevante Daten verwenden
- Aufbereitung

Dateiformat (Tabellen, BigData)

Bereinigung von unvollständigen oder ungültigen Daten

Repräsentative Auswahl bei langer Laufzeit / großem Speicheraufwand

 $\bullet \quad Transformation$

Features in geeigneten Wertebereich bringen ([0, 1])

Zerlegen in sinnvolle Features

Aggregation mehrerer Features

Lineare Regression

Lineare Regression im Eindimensionalen 2.1

- $f: \mathbb{R} \to \mathbb{R}$ mit $f_w(x) = w_1 x + w_0$ - $w = (w_0, w_1)^T \in \mathbb{R}^2$ sind die Parameter des Modells

- Wie mit Daten $D = \{(x^i, y^i) \in \mathbb{R}^2 | 1 \le i \le n\}$ die besten Parameter von fbestimmen?

2.1.1 Lösungsverfahren

- Quadratischen Fehler (Residual Sum of Squares) mit $RSS(w) = \sum_{i=1}^{n} (y^i - f_w(x^i))^2$ bestimmen

- Zur besseren Vergleichbarkeit verwendet man oft die normalisierte Variante
- Mean Squared Error: $MSE(w) = \frac{1}{n} \cdot RSS(w)$ (n = Anzahl Trainingsdaten) Die beste Funktion durch Minimierung des Fehlers finden $\Rightarrow w^* = \arg\min E(w) = \arg\min \frac{1}{2} \cdot \sum_{i=1}^{n} (y^i f_w(x^i))^2$
 - \bullet Ableitung von E(w) gleich Null setzen und Gleichungssystem lösen

•
$$\nabla E(w) = \begin{bmatrix} \frac{dE(w)}{dw_0} \\ \frac{dE(w)}{dw_1} \end{bmatrix} = 0$$

$$\frac{dE(w)}{dw_0} = -\sum_{i=1}^n y^i + w_1 \cdot \sum_{i=1}^n x^i + n \cdot w_0$$

$$\frac{dE(w)}{dw_1} = -\sum_{i=1}^n x^i y^i + w_1 \cdot \sum_{i=1}^n x^i x^i + w_0 \cdot \sum_{i=1}^n x^i$$

• Gleichungssystem mit zwei Gleichungen und zwei Unbekannten lösbar, aber numerisch ungenau bei großen Matrizen

8

2.1.2 Gradientenabstiegsverfahren

Abbildung 5: Gradientenabstiegsverfahren auf f(x) = x(x-2)

- Iterativ einem Bruchteil der negativen Ableitung: $-\eta f'(x) = \eta \cdot (2-2x)$ folgen
- Lernrate η hat direkten Einfluss auf Konvergenz (zu klein \Rightarrow viele Schritte, zu groß \Rightarrow Oszillation)

$$\begin{array}{lll} w0 = 0\,, & w1 = 0 \\ for & (x\,,\,\,y) & in \,\,D \\ dw0 += -y\,+\,w1*x\,+\,w0 \\ dw1 += -xy\,+\,w1*x*x\,+\,w0*x \\ end & for \\ w0 += -eta*dw0 \\ w1 += -eta*dw1 \end{array}$$

2.2 Mehrdimensionale Lineare Regression

- $X = \mathbb{R}^d$ und $f : \mathbb{R}^d \to \mathbb{R}$ sowie $f_w(x) = \sum_{i=1}^d w_i x_i + w_0$ mit Parametern $w = (w_0, w_1, ..., w_d)^T \in \mathbb{R}^{d+1}$ - Kompaktere Schreibweise mit $x_0 = 1$: $f_w(x) = \sum_{i=1}^d w_i x_i + w_0 = w^T x$

- Im Mehrdimensionalen wird eine Hyperebene, im dreidimensionalen eine Ebene, im Raum so positioniert, dass der Abstand zu den Datenpunkten minimiert wird

- Angepasste Fehlermetrik
$$E(w) = \frac{1}{2} \cdot \sum_{i=1}^{n} (y^i - f(x^i))^2$$
 mit $\nabla E(w) = \begin{bmatrix} \frac{dE(w)}{dw_0} \\ \frac{dE(w)}{dw_1} \\ \dots \\ \frac{dE(w)}{dw_d} \end{bmatrix}$

$$\begin{array}{l} dw \, = \, 0 \\ for \, (x , \, y) \ in \, D \\ dw \, + = \, - (y \, - \, f \, (x) \, * \, gradF \, (x)) \\ end \, for \\ w \, + = \, -et \, a \, * dw \end{array}$$

wobei grad
F(x) =
$$\nabla f(x) = \begin{bmatrix} 1 \\ x_1 \\ \dots \\ x_d \end{bmatrix}$$

Abbildung 9: Gradientenabstiegsverfahren im mehrdimensionalen Raum bei der Funktion $f(\mathbf{x}) = \mathbf{x}_1^2 + \mathbf{x}_2^2$.

2.3 Genauigkeit

- Wie gut ist das durch das Gradientenabstiegsverfahren gefundene Modell?
- \Rightarrow Quadratischer Fehler RSS oder mittlerer quadratischer Fehler MSE
- Letzterer ist unabhängig von der Anzahl an Trainingsdaten allerdings gibt es keine allgemein gültige Skala da diese vom Wertebereich der y-Werte abhängt

2.3.1 R^2 Statistik

- Definiert über den quadratischen Gesamtfehler $TSS = \sum_{i=1}^n (y^i \bar{y})^2$ $\bar{y} = \frac{1}{n} \cdot \sum_{i=1}^n y^i \Rightarrow R^2(w) = \frac{TSS RSS(w)}{TSS} = 1 \frac{RSS(w)}{TSS}$ TSS misst die komplette Varianz in den Ausgabedaten y^i
- TSS-RSS(w) misst die durch das Modell mit Parametern w erklärte Varianz
- R^2 misst die komplette Varianz des Modells und ist $\in [0,1]$
 - \bullet R^2 nahe 1 zeugt von einem passenden Model das die Daten gut erklärt (viele Datenpunkte liegen auf der Geraden bzw. Hyperebene)

- R^2 nahe 0 bedeutet, dass das Modell die Daten schlecht erklärt (umso weiter entfernt die Datenpunkte von der Hyperebene sind umso näher ist R^2 bei 0)
- R^2 ist unabhängig von Anzahl an Trainingsdaten UND dem Wertebereich
- Allgemeine Aussage ab welchem R^2 -Wert das Modell gut ist, ist nicht möglich. Hängt vom Anwendungsfall (Medizin / Physik) ab

2.4 Interpretierbarkeit

- Die Parameter w von Linearen Regressionsmodellen sind interpretierbar:
 - $w_i > 0$: positiver Zusammenhang, steigt x_i um m so steigt y um $m \cdot |w_i|$
 - $w_i nahe0$: kein linearer Zusammenhang zwischen x_i und y
 - $w_i < 0$ negativer Zusammenhang, steigt x_i um m so sinkt y um $m \cdot |w_i|$

2.5 Nichtlineare Zusammenhänge

- Mit der mehrdimensionalen linearen Regressions lassen sich auch nichtlineare Zusammehänge lernen
- Mit Funktion $\Phi: \mathbb{R} \to \mathbb{R}^d$ wird ein Basiswechsel vollzogen
 - Die Konkatenation von $\Phi: \mathbb{R} \to \mathbb{R}^d$, $\Phi(x) = (x, x^2)^T$ und $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x) = w_2 x_w + w_1 x_1 + w_0$ durch $f \circ \Phi$ erlaubt Darstellung der quadratischen Funktion $(f \circ \Phi)(x) = f(\Phi(x)) = w_2 x^2 + w_1 x + w_0$
 - $\Phi: \mathbb{R}^2 \to \mathbb{R}^5, \Phi(x) = (x_2, x_1, x_1 x_2, x_2^2, x_1^2)^T$ und $f: \mathbb{R}^5 \to \mathbb{R}, f(x) = \sum_{i=1}^5 w_i x_i + w_0 \text{ ergibt } (f \circ \Phi)(x) = f(\Phi(x)) = w_5 x_1^2 + w_4 x_2^2 + w_3 x_1 x_2 + w_2 x_1 + w_1 x_2 + w_0$

2.5.1 Beispiel

- Annahme eines quadratischen Zusammenhangs $f(x) = w_2 \cdot x^2 + w_1 \cdot x + w_0$

2.5.2 Richtiger Grad

- Mit der mehrdimensionalen Regression, dem Basiswechsel und Gradientenabstiegsverfahren ist es möglich, ein Polyon n-ten Grades an n Datenpunkte zu fitten

Abbildung 12: Lineare Regression eines Polynoms 3-ten Grades an die Eisverkaufdaten durch Basiserweiterung. Gewichte $\mathbf{w} \approx (-1853, 307, -14.6, 0.247)^T$

Abbildung 13: Lineare Regression eines Polynoms 12-ten Grades an die Eisverkaufdaten durch Basiserweiterung. Gewichte $\mathbf{w}=(0,-0.0000457,-0.0000496,-0.0000570,-0.000489,-0.00297,-0.00977,0.00256,-0.000271,0.000152,-0.000000471,0.000000000777,-0.0000000000530)^T$

- Mit höherer Modellkomplexität (Grad und Koeffizienten des Polynoms) kommt es zu
 - Numerischen Problemen
 - Overfitting: Das Modell passt sich zu sehr an die Daten an und ist nicht mehr in der Lage zu generalisieren → Schlechte Leistung in der Praxis

2.6 Trainings- und Testdaten

- Datensatz D wird in zwei disjunkte Teile T und V aufgeteilt
- Trainingsdatensatz T wird für das Lernen verwendet
- Testdatensatz V enthält ungesehene Daten zur Validierung der Praxistauglichkeit
 - \bullet Ein hoher Fehler auf T lässt auf Unteranpassung schließen (zu geringe Modellkomplexität, zu wenig Daten)
 - $\bullet\,$ Ein geringer Fehler auf Taber hoher Fehler auf V bedeutet Überanpassung \to Komplexität verringern

2.7 Optimierung von Hyperparametern

- Lineare Regression auf Polynomen mit Gradientenabstiegsverfahren besitzt
 - Lernrate η : Einfluss auf Modellkomplexität
 - Anzahl Lernschritte: Je geringer desto unwahrscheinlicher ist Überanpassung, allerdings Unteranpassung wiederum möglich
- \bullet Polynomgrad Zu Hoch \to Überanpassung, zu niedrig \to Unteranpassung als Hpyerparameter

2.7.1 Rastersuche

- Durchsuchen des Hyperparameterraums entweder
 - Entlang eines gleichmäßigen Rasters mit linearer oder logarithmischer Skala
 - Entlang eines zufälligen Rasters mit uniformer oder logarithmischer Skala
- Verfeinern der Suche durch Rekursion

2.7.2 Validierungsdaten

- Sollen die Hyperparameter des Modells optimiert werden, werden die verfügbaren Daten D in Trainingsdaten, Validierungsdaten und Testdaten aufgeteilt.
- Die Hyperparameter werden mit dem Validierungsdatensatz optimiert Endgültige Performance des Modells wird auf den Testdaten bestimmt

2.7.3 Kreuzvalidierung

- Zerteilen des Datensatzes in k Partitionen, ws wird nun k-mal trainiert
- Mit jeder Iteration i wird eine andere Partition i getestet
- Die Restlichen Partitionen dienen als Trainingsdaten
- Final wird die ausgewählte Leistungsmetrik über k Iterationen gemittelt

2.7.4 Ridge Regression

- Verhindern von Überanpassung durch Bestrafung von w für exzessive Werte mit angepasster Fehlerfunktion $E(w) = \frac{1}{2} \cdot \sum_{i=1}^n (y^i f_w(x^i))^2 + \alpha ||w||^2$
- Hyperparamter $\alpha \in \mathbb{R} \geq 0$ ist ein weiterer Freiheitsgrad mit dem sich der Polynomgrad stufenlos einstellen lässt

Abbildung 16: Ridge Regression eines Polynoms 5-ten Grades an die Eisverkaufdaten durch Basiserweiterung, $\alpha = 10$.

Abbildung 17: Ridge Regression eines Polynoms 5-ten Grades an die Eisverkaufdaten durch Basiserweiterung, $\alpha=10^{10}$.

- $\alpha = 0$: klassische Regression
- \bullet $\alpha>0$: Normaler Wirkungsbereich, mit wachsendem α werden wimmer weiter eingeschränkt und der effektive Polynomgrad sinkt
- $\bullet \ \lim \, \alpha \to \infty \colon \, f(x) = 0$ da Parameter $\lim \, w \to 0$

Logistische Regression

3.1 Klassifikation

3.1.1 Lineare Regression

- Lineare Regression als Klassifikator zu verwenden: $f:\mathbb{R}\to\mathbb{R}$ mit $f(x)=w_1x+w_0$

Abbildung 2: Lineares Regressionsmodell zur Bestimmung der Kreditwürdigkeit.

- Im Beispiel: x= Monatseinkommen, f(x)= Kunde kreditwürdig ja / nein, ABER:

- \bullet Diskrete Ausgabewerte (Klasse 0 / 1) wird nicht eingehalten, Ausgabe nimmt alle Werte in [-0.0014, 1.4] an
- Interpretation von f(x) als Wahrscheinlichkeit auch nicht möglich da f(0) = -0.0014 < 0 und f(8000) = 1.4 > 1

3.1.2 Logistische Regression

- Idee: Wahrscheinlichkeit der Klassenzugehörigkeit aufgreifen aber Wertebereich von f mit Hilfe der logistischen Funktion

$$logistic(x) = \frac{e^x}{1 + e^x}$$

unter Kontrolle bekommen

Abbildung 3: Logistische Funktion.

- Kombination der Linearen Regression $f(x) = w_1 x + w_0$ mit der logistischen Funktion

$$p(x) = logistic(f(x)) = \frac{e^{w_1 x + w_0}}{1 + e^{w_1 x + w_0}}$$

15

$$p(x) \in (0,1) \forall x \in \mathbb{R}$$

- p(x) ist die Wahrscheinlichkeit, dass x zur Klasse 1 gehört:

$$p(x) = Pr(y = 1|X = x)$$

- x gehört zur Klasse 0 mit Wahrscheinlichkeit 1 - p(x):

$$Pr(y = 0|X = x) = 1 - Pr(y = 1|X = x) = 1 - p(x)$$

3.2 Maximum Likelihood

Parameter der Modells werden so bestimmt, dass die Wahrscheinlichkeit, dass das Modell die Daten generiert, maximiert wird

3.2.1 Beispiel Münzwurf

- Eine Münze zeigt mit unbekannter Wahrscheinlichkeit $w \in [0,1]$ Kopf und mit Wahrscheinlichkeit (1-w) Zahl
- Münze wird n-mal geworfen, die Wahrscheinlichkeit, k-mal Kopf zu erhalten ist

$$L(w) = w^k (1 - w)^{n-k}$$

- L(w) wird Likelihood genannt, man sucht: $arg\ max\ L(w)$ Maximum finden durch Ableiten
 - $\frac{dL(w)}{dw} = kw^{k-1} \cdot (1-w)^{n-k} + w^k(n-k)(1-w)^{n-k-1} \cdot (-1)$ $= w^{k-1} \cdot (1-w)^{n-k-1} \cdot [k(1-w) (n-k) \cdot w]$

anschließend gleich Null setzen

- $\frac{dL(w)}{dw} = 0 \Leftrightarrow w = 0 \lor w = 1 \lor w = \frac{k}{n}$
- $\bullet \ k(1-w)-w\cdot (n-k)=0 \Leftrightarrow k-wk-wn+wk=0 \Leftrightarrow k-wn=0 \Leftrightarrow w=\tfrac{k}{n}$

und Überprüfen von

- $w = 0 : L(0) = 0^k (1 0)^{n-k} = 0$
- $w = 1: L(1) = 1^k (1-1)^{n-k} = 0$
- $w = \frac{k}{n} : L(\frac{k}{n}) = (\frac{k}{n})^k \cdot (1 \frac{k}{n})^{n-k} > 0$ für k > 0 und $k \neq n$

Die Maximum Likelihood Schätzung ist demnach $w = \frac{k}{n}$

3.2.2 Beispiel Logistische Regression

Die Likelihood ist wie folgt definiert

$$L(w) = \prod_{i=1}^{n} \begin{cases} p(x^{i}) & \text{falls } y^{i} = 1\\ 1 - p(x^{i}) & \text{falls } y^{i} = 0 \end{cases} = \prod_{i|y^{i}=1} p(x^{i}) \cdot \prod_{i|y^{i}=0} (1 - p(x^{i}))$$

Anstatt das Maximum mit Hilfe der Ableitung zu finden, kann auch das Minimum des negativen Logarithmus gesucht werden

$$-log(L(w)) = -\sum_{i|y^i=1} log(p(x^i)) - \sum_{i|y^i=0} log(1 - p(x^i))$$

und Ableiten

$$\frac{d(-log(L_w))}{dw_j} = -\sum_{i|y^i=1} \frac{\frac{dp(x^i)}{dw_j}}{p(x^i)} + \sum_{i|y^i=0} \frac{\frac{dp(x^i)}{dw_j}}{1 - p(x^i)}$$

$$\frac{dp(x)}{dw_j} = \frac{d}{dw_j} \cdot \frac{e^{w_1 x + w_0}}{1 + e^{w_1 x + w_0}} = \frac{e^{w_1 x + w_0}}{(1 + e^{w_1 x + w_0})^2} \begin{cases} 1 & \text{falls } j = 0 \\ \mathbf{x} & \text{falls } j = 1 \end{cases}$$

$$1 - p(x) = \frac{1}{1 + e^{w_1 x + w_0}}$$

$$\frac{dp(x)}{dw_j} = \frac{1}{p(x)} \cdot \frac{dp(x)}{dw_j} = \frac{1 + e^{w_1 x + w_0}}{e^{w_1 x + w_0}} \cdot \frac{e^{w_1 x + w_0}}{(1 + e^{w_1 x + w_0})^2} = (1 - p(x)) \begin{cases} 1 & \text{falls } j = 0 \\ \mathbf{x} & \text{falls } j = 1 \end{cases}$$

$$\frac{\frac{dp(x)}{dw_j}}{1 - p(x)} = \frac{1}{1 - p(x)} \cdot \frac{dp(x)}{dw_j} = (1 + e^{w_1 x + w_0}) \cdot \frac{e^{w_1 x + w_0}}{(1 + e^{w_1 x + w_0})^2} = p(x) \begin{cases} 1 & \text{falls } j = 0 \\ x & \text{falls } j = 1 \end{cases}$$

Zusammenfassend

$$\frac{d(-log(L(w)))}{dw_0} = -\sum_{i|y^i=1} (1 - p(x^i)) + \sum_{i|y^i=0} p(x^i)$$

$$\frac{d(-log(L(w)))}{dw_1} = -\sum_{i|y^i=1} (1 - p(x^i)) \cdot x^i + \sum_{i|y^i=0} p(x^i) \cdot x^i$$

 Mit dem Gradientenabstiegsverfahren erhält man für das Beispiel der Kreditvergabe

 $\mathbf{w}_0 = -1.25238942, \mathbf{w}_1 = 0.000542.$

Abbildung 4: Kreditbeispiel: Wahrscheinlichkeit für die Rückzahlung (orange) p(x) bzw. Nicht-Rückzahlung (blau) 1-p(x).

3.3 Bayes Klassifikator

- Der Kredit wird also genau dann ausgegeben, wenn die Wahrscheinlichkeit, dass er zurück gezahlt wird größer ist, als dass er es nicht wird
- Der Bayes Klassifikator weißt jeder Beobachtung $x \in X$ die wahrscheinlichste Klasse zu: $f(x) = arg\ max\ Pr(y=y*|X=x)$
- Im Beispiel liegt die Entscheidungsgrenze bei 2300EUR

Abbildung 5: Kreditbeispiel: In Rot ist nun die Entscheidungsgrenze zwischen den beiden Klassen eingezeichnet.

3.4 Mehrdimensionale Logistische Regression

- Für $x \in \mathbb{R}^d$ wird das Modell beschrieben durch $p(x) = \frac{e^{w^T x}}{1 + e^{w^T x}}$
- Der Gradient aus der negativen, logarithmierten Likelihood ergibt sich durch

$$\frac{d(-log(L(w)))}{dw_j} = -\sum_{i|y^i=1} (1 - p(x_j^i)) \cdot x_j^i + \sum_{i|y^i=0} p(x_j^i) \cdot x_j^i$$

3.5 Nichtlineare Logistische Regression

- Mit der Basiserweiterung $\Phi: \mathbb{R}^d \to \mathbb{R}^{'}$ und der mehrdimensionalen Logistischen Regression können auch nichtlineare Klassifikatoren gelernt werden

Abbildung 6: Zweidimensionaler Datensatz mit zwei Klassen, die nicht linear trennbar sind.

- Mit der Basiserweiterung $\Phi(x)=(x_1^2,x_2^2)$ kann ein Logistisches Regressionsmodell gelernt werden, das die beiden Klassen trennt

Abbildung 7: Zweidimensionaler Datensatz mit zwei Klassen, die nichtlinear (Kreis) trennbar sind.

3.6 Leistungsmetriken

Für die Binäre Klassifikation ist kein R^2 -Wert möglich \Rightarrow Wahrheitsmatrix:

		prediction		
		+	-	
truth	+	true ✓ positive tp	false × negative fn	
	-	false × positive fp	true √ negative tn	

Abbildung 8: Wahrheitsmatrix der binären Klassifikation.

 \bullet Genauigkeit (accuracy) $\frac{tp+tn}{tp+tn+fp+fn}$: Ist der Anteil der korrekt klassifizierten Daten am Gesamtdatensatz. Es wird versucht, die Genauigkeit zu maximieren

- Fehlerrate $\frac{fp+fn}{tp+tn+fp+fn}=1$ Genauigkeit: Gegenteil der Genauigkeit. Wird minimiert.
- Präzision (precision) $\frac{tp}{tp+fp}$: Anteil der korrekt positiv vorhergesagten Datensätze an der Gesamtheit der als positiv vorhergesagten Datensätze
- Trefferquote (recall) $\frac{tp}{tp+fn}$: Anteil der korrekt positiv vorhergesagten Datensätze an der Gesamtheit der echt positiven Datensätze

Präzision und Trefferquote werden maximiert, allerdings muss üblicherweise ein Kompromiss getroffen werden.

Es kommt außerdem auf den Anwendungsfall an, welche Leistungsmetrik verwendet werden sollte:

- Medizinische Tests: Positiv bedeutet *krank* (z.B. HIV positiv), dann sollte ein Test einen hohen Recall haben
- Spam-Erkennung: Positiv bedeutet gewollte E-Mail, dann sollte ein Spam-Erkenner eine hohe Precision haben

3.6.1 Recall-Precision-Kurve

3.6.2 Beispiel steigende Kurse an der Börse

Man setzt auf steigende Kurse immer dann wenn das Modell *up* vorhersagt. Es ist wichtig zu wissen, wie oft das Modell relativ gesehen richtig liegt.

- Die Präzision bezieht sich auf den Anteil der korrekt vorhergesagten positiven Renditen. Auf diesen Wert sollte man achten.
- $\bullet\,$ Die Genauigkeit besagt in diesem Fall lediglich, welcher Anteil der Vorhersagen richtig war, unabhängig ob up oder down
- Die Trefferquote besagt, welcher Anteil der positiven Renditen tatsächlich auch korrekt vorhergesagt wurde

Perzeptron und Adaline

4.1 Perzeptron

4.1.1 Biologischer Hintergrund

In einem biologischen neuronalen Netz finden Berechnungen statt, indem elektrische Ladungen zwischen Nervenzellen ausgetauscht werden

- Ein Neuron kann viele Synapsen haben und somit mit hunderten weiteren Neuronen verknüpft sein
- Ein Neuron kann auch viele Dendriten besitzen und somit Input von vielen Neuronen empfangen
- Verbindungen können *verstärkend* oder *hemmend* wirken, je nach der Chemie innerhalb des synaptischen Spalts

	Computer	Biologische neuronale Netze	
Einheiten	Prozessoren	Neuronen	
Geschwindigkeit	GHz	100 Hz	
Signal/Rauschen	≫1	~ 1	
Signalgeschw.	$\sim 10^{8} m/s$	$\sim 1 m/s$	
Berechnung	sequenziell	parallel	
Konfiguration	Programm und Daten	Verbindungen und Chemie (Synap-	
		sen)	
Programmierung	statisch	adaptiv	
Robustheit	gering	hoch	
Anwendbarkeit	nur bekannte Daten	chaotische, unvorhergesehene, inkon- sistente Daten	

Tabelle 1: Vergleich der Berechnungsmodelle adaptiert von [Theory of Neural Information Processing Systems, A. Coolean et al., 2005]

4.1.2 Einführung

Ein Perzeptron ist ein binärer Klassifikator $f: \mathbb{R}^d \to \{0,1\}$ definiert als

$$f(x) = \alpha \cdot (w \circ x + w_0)$$

Alternativ wird das Perzeptron in der Literatur auch definiert als

$$f(x) = \alpha \cdot (w \circ x)$$

Hier ist $x=(1,x_1,...,x_n)^T$ und $w=(w_0,w_1,...,w_n)^T$, d.h. $x_0=1$ und w_0 sind in x und w enthalten

Abbildung 4: Grafische Darstellung eines Perzeptrons

Abbildung 7: Alternative grafische Darstellung eines Perzeptron

Die Heaviside Aktivierungsfunktion ist definiert als

$$\alpha(x) = \begin{cases} 1 & \text{falls } x > 0 \\ 0 & \text{andernfalls} \end{cases}$$

Abbildung 5: Die Heaviside Aktivierungsfunktion, wie sie im Perzeptron

Die Klassifizierung lässt sich umdrehen, indem man alle Gewichte mit $\cdot (-1)$ multipliziert

4.1.3 Lernalgorithmus

- $\bullet\,$ Beginne mit einer zufälligen oder festen Wahl für w,z.B. w=0
- Bestimme die falsch klassifzierten Datenpunkte
- Versuche iterativ die einzelnen Parameter so zu verändern, dass die Anzahl der falsch klassifzierten Daten sinkt
- Höre auf sobald keine Verbesserung mehr eintritt

Abbildung 8: Schema des Perzeptron Lernalgorithmus

Abbildung 9: Die vier möglichen Fälle, die bei binärer Klassifikation auftreten können.

 \bullet x wurde als Klasse 1 eingestuft, ist aber Klasse 0

$$f_w(x) = \alpha \cdot (w \circ x) = 1 \Rightarrow w \circ x > 0$$

$$w' = w - x$$

$$w' \circ x = (w - x) \circ x = w \circ x - x \circ x$$

$$f_{w'}(x) = \alpha \cdot (w \circ x - x \circ x) = 0$$

• x wurde als Klasse 0 eingestuft, ist aber Klasse 1

$$f_w(x) = \alpha \cdot (w \circ x) = 0 \Rightarrow w \circ x \le 0$$

$$w' = w + x$$

$$w' \circ x = (w + x) \circ x = w \circ x + x \circ x$$

$$f_{w'}(x) = \alpha(w \circ x + x \circ x) = 1$$

Die Gewichte eines Perzeptrons können auch einfacher berechnet werden, wenn z.B. bekannt ist, dass

- \bullet die Punke (3,0) und (0,3) auf der Entscheidungsgrenze (bzw. Entscheidungsoberfläche) liegen
- der Ursprung (0,0) negativ klassifiziert wird

```
f(x_1,x_2) = w_0 + w_1x_1 + w_2x_2
f(3,0) = w_0 + 3x_1 = 0 \Rightarrow w_0 = -3x_1
f(0,3) = w_0 + 3x_2 = 0 \Rightarrow w_0 = -3x_2
f(0,0) < 0 \Rightarrow x_1 = x_2 = 1 \Rightarrow w_0 = -3
eine Mögliche Lösung ist dann: f(x_1,x_2) = -3 + x_1 + x_2
```

Beispiel Lernalgorithmus

- $(x^1, y^1) = ([1, 1], 0)$ bzw. ([1, 1, 1], 0)
- $(x^2, y^2) = ([1, 2], 1)$ bzw. ([1, 1, 2], 0)
- $(x^3, y^3) = ([2, 2], 0)$ bzw. ([1, 2, 2], 0)

w_0	w_1	w_2	([1,1],0)	([1, 2], 1)	([2,2],0)
0	0	0	0	0^x	0~
+1	+1	+2			
1	1	2	1^x	1	1^x
-1	-1	-1			
-1	-2	-2			
-1	-2	-1	0	0^x	0
+1	+ 1	+ 2			
0	-1	1	0	1	0

4.1.4 Grenzen des Perzeptron

Probleme wie das Exklusiv-Oder (XOR), welche nicht *linear trennbar* sind, können von einem Perzeptron nicht gelernt werden.

Auch wenn ein Problem linear trennbar ist, erhält man mit dem Perzeptron Lernalgorithmus kein eindeutiges Modell

Abbildung 10: Ein Perzeptron kann das Exclusiv-Oder nicht lernen, da es keine Gerade gibt, die die beiden Klassen trennt.

Abbildung 11: In diesem Beispiel gibt es unendlich viele Geraden, welche die Klassen trennen und der Perzeptron Lernalgorithmus gibt nur eine der Lösungen zurück.

4.2 Adaline

Das Adaline ähnelt im Aufbau dem Perzeptron besitzt jedoch eine andere Aktivierungsfunktion und einen unterschiedlichen Lernalgorithmus genannt Deltaregel

Abbildung 12: Grafische Darstellung eines Adalines.

Das Adaline ist ein Binärklassifikator $f: \mathbb{R}^d \to -1, 0, 1$ definiert als

$$f(x) = \alpha \cdot (w \circ x + w_0)$$

wobei α die Signum Aktivierungsfunktion ist.

Auch hier nehmen wir implizit an, dass $x_0=1$ und w den Parameter w_0 beinhaltet

4.2.1 Einführung

Die Signum Aktivierungsfunktion ist definiert als

$$\alpha(x) = \begin{cases} 1 & \text{falls } x > 0 \\ 0 & \text{falls } x = 0 \\ -1 & \text{andernfalls} \end{cases}$$

Abbildung 13: Plot der Signum Aktivierungsfunktion

4.2.2 Lernalgorithmus

Wie bei der Linearen Regression verwenden wir beim Adaline ein bekanntes Fehlermaß inspiriert durch die RSS/MSE in Verbindung mit dem *Gradienten-abstiegsverfahren*, um den negativen Gradienten des Fehlermaßes zum Minimum zu folgen:

$$E(w)^{i} = \frac{1}{2} \cdot (y^{i} - f(x^{i}))^{2} = \frac{1}{2} \cdot (y^{i} - w \circ x^{i})^{2}$$

$$\frac{dE(w^{i})}{dw_{j}} = (y^{i} - w \circ x^{i}) \cdot \frac{d}{dw_{j}} (y^{i} - w \circ x^{i}) = -(y^{i} - w \circ x^{i})$$

$$\nabla_{w} E(w)^{i} = \begin{bmatrix} \frac{dE(w)^{i}}{dw_{0}} \\ \dots \\ \frac{dE(w)^{i}}{dw} \end{bmatrix} = -(y^{i} - w \circ x^{i}) \cdot x^{i}$$

- \bullet Bei hoher Lernrate η beginnt der Algorithmus zu oszillieren und konvergiert nicht
- Aufgrund seiner linearen Natur kann auch das Adaline die XOR-Funktion nicht direkt lernen
- Je nach Datensatz und Initialisierung ist der Klassifikator eindeutig

K-Nearest Neighbors

5.1 Einführung

Ausgehend vom optimalen Bayes-Klassifikator mit Klassen $C_1, ..., C_m, x \in X$

$$f(x) = \arg \max Pr(y = C_i | X = x)$$

Bei der KNN-Klassifikation gibt es keine direkte Formel für $Pr(y=C_j|X=x)$. KNN kommt ohne Parameter aus und ist somit eine *nicht-parametrische* Methode.

Man merkt sich direkt alle Punkte x^i zusammen mit ihrer Klasse y^i , welche im Datensatz

$$T = \{(x^i, y^i) | 1 \le i \le n\}$$

enthalten sind. Es gibt somit keine Trainingsphase. Man nimmt stattdessen an, dass ein zu klassifizierender Datenpunkt x die gleiche Klasse hat, wie die Trainingsdaten in seiner Nähe

Abbildung 1: KNN-Klassifikation: Punkt 1 gehört wohl wahrscheinlich zur roten Klasse, Punkt 2 zur blauen Klasse und bei Punkt 3 ist die Klasse nicht deutlich erkennbar.

Wobei mit Nähe der euklidische Abstand

$$dist(x, x') = ||x - x'||_2 = \sqrt{\sum_{i=1}^{d} (x_i - x_i')^2}$$

für $x, x' \in \mathbb{R}^d$ gemeint ist.

Für eine Menge an Trainingsdaten $T=\{(x^i,y^i)|1\leq i\leq n\}$ und einen Punkt x definiert man mit $N^k(x)\subseteq T$ die Menge der k Trainingspunkte mit der geringsten Distanz dist(x,x') zum Punkt x, die sogenannte k-Nachbarschaft. Die Anzahl der Elemente in N ist definiert als $|N^k(x)|=k$.

Die Wahrscheinlichkeit der Klassenzugehörigkeit zur Klasse C_i ist definiert als

$$Pr(y = C_j | X = x) = \frac{|\{(x^i, y^i) \in N^k(x) | y^i = C_j\}}{k}$$

Abbildung 2: Beispiel KNN-Klassifikation mit zwei Klassen und k=3. Abbildung 3: Beispiel KNN-Klassifikation mit zwei Klassen und k=1.

Abbildung 4: Beispiel KNN-Klassifikation mit drei Klassen und k = 6.

5.1.1 Auswirkungen von K

KNN-Methoden besitzen einen einzigen $Hyperparameter\ k\in\mathbb{N}$ welcher maßgeblich die Leistung beeinflusst. Ziel ist daher, k zu optimieren um

- \bullet die Fehlerrate auf dem Testdatensatz zu minimieren
- die Genauigkeit zu maximieren

Abbildung 6: Auswirkungen der Wahl des Hyperparameters k in KNN. Ist k zu gering, werden die Trainingsdaten zu stark auswendig gelernt und es kommt zur Überanpassung. Ist k zu hoch, ist das Model nicht flexibel genug und es kommt zur Unteranpassung. Abbildung entnommen aus [JWHT14].

Allgemein kann man sagen, dass ein kleines k zu einer rauen Trennkurve zwischen den Klassen führt und größeres k zu einer glatten Trennkurve. Die Entscheidungsgrenze nähert sich mit steigendem k immer mehr einer Geraden an.

Wenn die Entscheidungsgrenze des optimalen Bayes-Klassifikators sehr stark nichtlineare wäre führt demnach ein kleines k zu besseren Ergebnissen. Zu kleines k birgt jedoch die Gefahr der Überanpassung, zu großes k wiederum kann Unteranpassung zur Folge haben.

5.1.2 Laufzeit und Beschleunigungsstrukturen

Ein naiver Ansatz ist bei jedem zu klassifizierenden Datenpunkt die Abstände zu allen n Trainingsdaten zu berechnen, aufsteigend zu sortieren und die k-ersten Punkte auszuwählen. Ein solcher Algorithmus hat die Laufzeitkomplexität von

$$\mathcal{O}(n^2 \cdot log(n))$$

Reduzieren der Laufzeit gelingt z.B. mit speziellen Datenstrukturen wie dem $\mathit{KD-Baum}$:

Gruppieren der Datenpunkte nach Abstand in einem immer feiner werdenden Netz

Support Vector Machines

6.1 Maximal Margin Klassifikator

6.1.1 Einführung

Maximal Margin Klassifikatoren betrachten die binäre Klassifikation von Punkten $x^i \in \mathbb{R}^d$ mit $y^i \in \{-1,1\}$ und nehmen an, dass eine separierende Hyperebene im \mathbb{R}^d existiert, die beide Klassen perfekt voneinander trennt.

Abbildung 1: Scatterplot eines Datensatzes, welcher nicht durch eine Hyperebene trennbar ist.

Abbildung 2: Binärer Klassifikator mit Hilfe einer separierenden Hyperebene, welche die beiden Klassen perfekt trennt.

6.1.2 Separierende Hyperebene

Eine Hyperebene mit Parametern w_0, w welche die Eigenschaft besitzt, dass für alle Datenpunkte $(x^i, y^i) \in T \subseteq \mathbb{R}^d \times \{-1, 1\}$ gilt, dass

$$w_0 + w^T x^i > 0$$
 falls $y^i = 1 \wedge w_0 + w^T x^i < 0$ falls $y^i = -1$

 $\Rightarrow y^i \cdot (w_0 + w^T x^i) > 0$ wird als separierende Hyperebene bezeichnet.

6.1.3 Maximal Margin

Mit $f(x) = w_0 + w^T x$ wird der binäre Klassifikator definiert als sgn(f(x)). An f(x) kann man ablesen, wie sicher sich der Klassifikator ist:

- Für $|f(x)| \approx 0$ befindet sich der Punkt x sehr nahe an der Hyperebene $w_0 + w^T x = 0$ und ist daher eher ein Wackelkandidat
- Für f(x) >> 0 befindet sich der Punkt (sehr) weit entfernt von der Hyperebene im positiven oder negativen Bereich und die Klassifikation ist sicher

Die Maximal Margin Hyperebene ist die separierende Hyperebene aus unendlich vielen potentiell separierenden Hyperebenen, die am weitesten von den Datenpunkten entfernt ist (= Unsicherheit minimeren).

Abbildung 3: Scatterplot eines Datensatzes, welcher durch unendlich viele Geraden trennbar ist. Es sind nur drei Möglichkeiten exemplarisch dargestellt, andere Geraden erhält man durch Rotation und Verschiebung.

Abbildung 4: Maximum Margin Hyperebene (durchgezogene Gerade) mit dem maximalen Abstand (Margin) von den Datenpunkten (Pfeile).

Die vier Datenpunkte, die der Maximal Margin Hyperebene am nächsten liegen, nennt man Support Vektoren, da sie die Hyperebene stützen. Falls sie verschoben werden, ändert sich auch die Hyperebene. Wichtig ist, dass die Maximal Margin Hyperebene nur von einer kleinen Anzahl Support Vektoren gestützt wird.

6.1.4 Optimierungsproblem

Um die Maximal Hyperebene zu berechnen, muss das Optimierungsproblem

$$arg \min \frac{1}{2} \cdot ||w||_2^2$$

unter den Nebenbedingungen

$$y^i \cdot (w_0 + w^T x^i) \ge 1 \ \forall \ 1 \le i \le n$$

gelöst werden. Hier wird der Abstand der Support Vektoren zur Maximal Margin Hyperebene auf 1 normiert, d.h. kein Punkt hat einen Abstand < 1.

6.1.5 Karush-Kuhn-Tucker Theoreom

Das Optimierungsproblem löst man mit dem Karush-Kuhn-Tucker Theorem (KKT). Für die Maxima einer Funktion $f(x): \mathbb{R}^d \to R$ mit n Nebenbedingungen $(1 \le i \le n)$ der Form $g_i(x) \le 0$ gelten bezüglich der Lagrange-Funktion $L(x) = f(x) - \sum_{i=1}^m \lambda_i \cdot g_i(x)$ die notwendigen Bedingungen:

- $\lambda_i \in \mathbb{R} \text{ und } \lambda_i \geq 0 \text{ (Lagrange Multiplikatoren)}$
- $\nabla_x L(x) = 0$
- $\lambda_i \cdot g_i(x) = 0 \ \forall \ i \in \{1, ..., n\}$

Angewandt auf das Maximal Margin Problem wird nun $-\frac{1}{2}||w||_2^2$ maximiert anstatt $\frac{1}{2}||w||_2^2$ zu minimieren. Die *Primale* Lagrange-Funktion:

$$L_p(w_0, w) = -\frac{1}{2}||w||_2^2 - \sum_{i=1}^n \lambda_i (1 - y^i \cdot (w_0 + w^T x^i))$$

$$\text{Da } -\frac{1}{2}||w||_2^2 = -\frac{1}{2}w^Tw = -\frac{1}{2}(w_1^2 + w_2^2 + \dots + w_d^2) \text{ und } \nabla - \frac{1}{2}||w||_2^2 = -\begin{bmatrix} w_1 \\ w_2 \\ \dots \\ w_d \end{bmatrix}$$

gilt

$$\nabla_x L_p(w_0, w) = -w + \sum_{i=1}^n \lambda_i y^i x^i = 0$$

wodurch $w=\sum_{i=1}^n \lambda_i y^i x^i$ und $\frac{dL_p(w_0,w)}{dw_0}=\sum_{i=1}^n \lambda_i y^i=0$. Nach Einsetzen erhält man die Duale Lagrange-Funktion:

$$L_d(\lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j y^i y^j x^{i^T} x^j$$

die nun für $\lambda_i \geq 0$ und $i \in \{1,...,n\}$ optimiert wird.

6.1.6 Beispiel mit zwei Datenpunkten

$$x^1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, x^2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 und $y^1 = 1, y^2 = -1$

Abbildung 5: Scatterplot des Datensatzes des ersten Beispiels.

Nach Einsetzen in $L_D(\lambda_1, \lambda_2)$:

$$\begin{split} \lambda_1 + \lambda_2 - \frac{1}{2} \cdot \lambda_1^2 \cdot 1^2 \cdot (1^2 + 2^2) - \frac{1}{2} \cdot \lambda_2^2 \cdot (-1)^2 \cdot (2^2 + 1^2) - \frac{1}{2} \cdot \lambda_1 \lambda_2 \cdot (-1) \cdot (2 + 2) - \frac{1}{2} \cdot \lambda_2 \lambda_1 \cdot (-1) \cdot 1 \cdot (2 + 2) \\ \Leftrightarrow -\frac{5}{2} \cdot \lambda_1^2 - \frac{5}{2} \cdot \lambda_2^2 + 4\lambda_1 \lambda_2 + \lambda_1 + \lambda_2 \end{split}$$

Dies muss nun unter der Nebenbedingung $g(\lambda_1,\lambda_2)=\lambda_1-\lambda_2=0$ optimiert werden. Aus dieser folgt, dass $\lambda_1=\lambda_2=\lambda$ und damit $L_D(\lambda,\lambda)=-\lambda^2+2\lambda$ mit globalem Maximum bei $\lambda=1$

Abbildung 6: Plot der Funktion $f(x) = -x^2 + 2x$

Abbildung 7: Der finale Maximal Margin Klassifikator $f(\mathbf{x}) = \operatorname{sgn}(\mathbf{x}_2 - \mathbf{x}_1)$ mit der Entscheidungsgrenze $\mathbf{x}_2 - \mathbf{x}_1 = 0$.

$$w = \sum_{i=1}^{n} \lambda_i y^i x^i = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

 w_0 lässt sich mit den ursprünglichen Nebenbedingungen $y^i \cdot (w_0 + w^T x^i) \ge 1$ $\forall \ 1 \le i \le n$ bestimmen:

•
$$1 \cdot (w_0 + \begin{bmatrix} -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix}) \ge 1 \Rightarrow w_0 + 1 \ge 1$$

•
$$-1 \cdot (w_0 + \begin{bmatrix} -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix}) \ge 1 \Rightarrow -w_0 + 1 \ge 1$$

Damit ist $w_0 = 0$ und $f(x) = w_0 + w^T x = x_2 - x_1$

6.1.7 Beispiel mit drei Datenpunkten

$$x^1=\begin{bmatrix}1\\2\end{bmatrix}, x^2=\begin{bmatrix}2\\4\end{bmatrix}, x^3=\begin{bmatrix}2\\1\end{bmatrix} \text{ und } y^1=1, y^2=1, y^3=-1$$

Abbildung 8: Scatterplot des Datensatzes des zweiten Beispiels

Anschließendes Einsetzen ergibt das Duale Problem der Maximierung von

$$h(\lambda_1, \lambda_2, \lambda_3) = \lambda_1 + \lambda_2 + \lambda_3 - \frac{5}{2}\lambda_1^2 - 10\lambda_2^2 - \frac{5}{2}\lambda_3^2 - 10\lambda_1\lambda_2 + 4\lambda_1\lambda_3 + 8\lambda_2\lambda_3$$

mit der Nebenbedingung $g(\lambda_1, \lambda_2, \lambda_3) = \lambda_1 + \lambda_2 - \lambda_3 = 0.$

Nach erneutem Einsetzen erhält man $z(\lambda_1,\lambda_2,\lambda_3,\lambda^*)=h(\lambda_1,\lambda_2,\lambda_3)+\lambda^*g(\lambda_1,\lambda_2,\lambda_3)$ und das LGS:

$$\nabla_{\lambda_1, \lambda_2, \lambda_3} z(\lambda_1, \lambda_2, \lambda_3, \lambda^*) = \begin{bmatrix} 1 & -5\lambda_1 & -10\lambda_2 & 4\lambda_3 & \lambda^* \\ 1 & -20\lambda_2 & -10\lambda_1 & 8\lambda_3 & \lambda^* \\ 1 & -5\lambda_3 & 4\lambda_1 & 8\lambda_2 & -\lambda^* \end{bmatrix} = 0$$

Nun erhält man $\lambda_1=\frac{4}{3}, \lambda_2=-\frac{2}{9}, \lambda_3=\frac{10}{9}$ und $\lambda^*=-1$. Da aber $\lambda_2<0$ ist dies keine gültige Lösung. Es wird nun an den Grenzen $(\lambda_i=0)$ weitergesucht:

Abbildung 9: Plots der beiden zu optimierenden Funktionen.

Da $g(\lambda_1,\lambda_2,\lambda_3)=\lambda_1+\lambda_2-\lambda_3=0$, darf λ_3 nicht 0 sein, da sonst $\lambda_1=\lambda_2=\lambda_3=0$, gültige Lösungen sind daher:

- $\lambda_1=0\Rightarrow\lambda_2=\lambda_3$: $h(\lambda_1,\lambda_2,\lambda_3)=-\frac{9}{2}\lambda_3^2+2\lambda_3$ mit dem Maximum bei $\lambda_2=\lambda_3=\frac{2}{9}$
- $\lambda_2=0\Rightarrow\lambda_1=\lambda_3$: $h(\lambda_1,\lambda_2,\lambda_3)=-\lambda_3^2+2\lambda_3$ mit dem Maximum bei $\lambda_1=\lambda_3=1$

Abbildung 10: Der finale Maximal Margin Klassifikator $f(\mathbf{x}) = \operatorname{sgn}(\mathbf{x}_2 - \mathbf{x}_1)$ mit der Entscheidungsgrenze $\mathbf{x}_2 - \mathbf{x}_1 = 0$.

Man erhält mit $\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = 1$ den selben Klassifikator wie im ersten Beispiel, diesmal ist der zweite Datenpunkt x^2 nicht mehr beteiligt. Man erkennt an den Lagrange-Multiplikatoren, welche Datenpunkte Support Vektoren sind und welche nicht ($\lambda = 0$).

6.2 Support Vector Klassifikation

Die Einschränkung der Maximum Margin Klassifikation, dass Klassen perfekt separierbar sein müssen, wird nun fallen gelassen. Es ist erlaubt, dass Datenpunkte

- innerhalb des Margins
- oder sogar auf der falschen Seite der Hyperebene liegen (Grundvoraussetzung für eine trennende Hyperebene)

Abbildung 11: Maximum Margin Klassifikation ist nicht sehr robust z.B bei Hinzunahme von Datenpunkten.

Abbildung 12: Support Vector Klassifikatoren erlauben es manchen Datenpunkten innerhalb des Margins zu sein (1) oder sogar auf der falschen Seite der Hyperebene (2).

6.2.1 Optimierungsproblem

Die Support Vector Klassifizierung liefert das Optimierungsproblem

arg max M

unter den Bedingungen

$$\sum_{j=1}^{d} w_j^2 = 1$$

 $y^i \cdot (w_0 + w^T x^i) \ge M \cdot (1 - \epsilon_i), \epsilon \ge 0, \forall \ 1 \ge i \ge n$

$$\sum_{i=1}^{n} \epsilon_i \ge C$$

wobei $C\in\mathbb{R}$ und $C\geq 0$ ein Hyperparameter ist. Die Schlupfvariable ϵ_i gibt Auskunft über die Position des i-ten Datenpunkts:

- $\epsilon_i = 0$: x^i befindet sich auf der richtigen Seite der Hyperebene
- \bullet $\epsilon \in \{0,1\}$: x^i verletzt den Mindestabstand zur Hyperebene (Margin), befindet sich jedoch auf der richtigen Seite
- $\epsilon_i > 1$: x^i befindet sich auf der falschen Seite der Hyperebene

C begrenzt den Grad der *Verletzung*. Ist C=0 und damit $\epsilon_1=\ldots=\epsilon_n=0$ handelt es sich um einen Maximum Margin Klassifikator. Generell dürfen nicht mehr als C Datenpunkte auf der falschen Seite liegen.

Abbildung 13: SVK mit großem *C*. Der Klassifikator zeigt eine große Toleranz gegenüber Falsch-Klassifikationen. Auch der Margin ist relativ groß. Abbildung entnommen aus [JWHT14].

Abbildung 14: Die folgenden Abbildungen zeigen immer kleinere Werte für C. Abbildung entnommen aus [JWHT14].

Abbildung 15: Die Anzahl der Falsch-Klassifikationen sinkt mit wachsendem \mathcal{C} . Abbildung entnommen aus [JWHT14].

Abbildung 16: Auch der Margin wird immer kleiner. Abbildung entnommen aus [JWHT14].

6.2.2 Lösen des Optimierungsproblems

Anwenden des KKT, so reduziert sich das Optimierungsproblem auf das duale Problem

$$\arg \max L_D(\lambda)$$

mit

$$L_D(\lambda) = \sum_{i=1}^n \lambda_i - \frac{1}{2} \cdot \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y^i y^j x^{i^T} x^j$$

mit Nebenbedingung

- $\sum_{i=1}^{n} \lambda_i y^i =$
- $0 \ge \lambda_i \ge C$ für alle $i \in \{1, ..., n\}$

Die Hyperebene wird nur von Datenpunkten innerhalb des Margins bzw. auf der falschen Seite bestimmt. Sie werden $Support\ Vektoren$ genannt.

Abbildung 17: SVM mit seinen Support Vektoren (grün).

6.3 Support Vector Regression