ACROPOLIS INSTITUTE OF TECHNOLOGY & RESEARCH, INDORE

DEPARTMENT OF COMPUTER SCIENCE

CS-605 Data Analytics Lab 3rd Year 6th Semester 2023-2024

SUBMITTED BY – ARUSHI PURANIK (0827CS211042) SUBMITTED TO - **Prof. ANURG PUNDE**

S.NO.	Experiment	Remark
1.	Data Analysis Questions: I. Data Analysis Principles II. Statistical Analytics III. Hypothesis Testing IV. Regression V. Correlation VI. ANOVA	
2.	Dashboard: I. Car Collection Data Analysis II. Order Data Analysis III. Cookie Data Analysis IV. Loan Data Analysis V. Shop Sales Data Analysis VI. Sales Data Sample Analysis VII. Store Dataset Analysis	
3.	Reports: I. Car Collection Data Report II. Order Data Report III. Cookie Data Report IV. Loan Data Report V. Shop Sales Data Report VI. Sales Data Sample Report VII. Store Dataset Report	
4.	Analysis of Forecast Sheet in Tesla's Stock prices	

Comprehensive Study on Data Analysis: Foundational Principles, Statistical Analytics, Hypothesis Testing, Regression Analysis, Correlation, and Analysis of Variance

Data Analysis Principles:

Data analysis principles refer to fundamental guidelines and methodologies employed in the process of extracting meaningful insights from datasets.

- 1. **Data Quality:** This principle emphasizes ensuring that the data used for analysis is accurate, reliable, and complete. It involves processes such as data validation, verification, and cleansing to eliminate errors, inconsistencies, and missing values.
- 2. **Data Cleaning:** Data cleaning involves identifying and rectifying errors, inconsistencies, and outliers in the dataset. This process is essential for improving data quality and ensuring the accuracy of analysis results.
- 3. **Exploratory Data Analysis (EDA):** EDA involves exploring and summarizing the main characteristics of the dataset using statistical and visualization techniques. It helps in understanding data distributions, patterns, trends, and relationships, which can guide further analysis and hypothesis generation.
- 4. **Data Visualization:** Data visualization is the graphical representation of data to facilitate understanding, analysis, and decision-making. It includes various techniques such as charts, graphs, and dashboards to present complex datasets in an intuitive and visually appealing manner.
- 5. **Reproducibility:** Reproducibility refers to the ability to replicate data analysis processes and results. Documenting the analysis methodology,

code, and assumptions enables other researchers to verify and reproduce the findings, enhancing the transparency and credibility of the analysis.

2. Statistical Analytics Concepts:

Statistical analytics concepts encompass a range of statistical methods and techniques used to analyze and interpret data for decision-making purposes.

- 1. **Descriptive Statistics:** Descriptive statistics involve summarizing and describing the main features of a dataset, including measures of central tendency (mean, median, mode) and measures of dispersion (variance, standard deviation).
- 2. **Inferential Statistics:** Inferential statistics are used to make predictions or inferences about a population based on sample data. This includes techniques such as hypothesis testing, confidence intervals, and regression analysis.
- 3. **Probability Distributions:** Probability distributions describe the likelihood of different outcomes in a statistical experiment or observation. Common distributions include the normal distribution, binomial distribution, and Poisson distribution.
- 4. **Central Limit Theorem:** The Central Limit Theorem states that the sampling distribution of the sample mean approaches a normal distribution as the sample size increases, regardless of the shape of the population distribution. This theorem forms the basis for many statistical inference techniques.

3. Hypothesis Training:

A hypothesis is a tentative statement or proposition that can be tested and evaluated through empirical observation and analysis.

- 1. **Null Hypothesis** (**H0**): The null hypothesis is a statement that there is no significant difference or effect in the population being studied. It serves as the default assumption until evidence suggests otherwise.
- 2. **Alternative Hypothesis (H1):** The alternative hypothesis is a statement that contradicts the null hypothesis, suggesting that there is a significant difference or effect in the population.
- 3. **Hypothesis Testing:** Hypothesis testing is a statistical method used to make inferences about population parameters based on sample data. It involves specifying a null hypothesis, selecting a significance level, collecting data, and determining whether the evidence supports rejecting or failing to reject the null hypothesis.

4. Regression and its Types:

Regression analysis is a statistical technique used to model the relationship between a dependent variable and one or more independent variables.

1. **Linear Regression:** Linear regression models the relationship between the dependent variable and one or more independent variables using a linear equation. It is commonly used for predicting continuous outcomes.

Formula: $y = \beta 0 + \beta 1x + \varepsilon y = \beta 0 + \beta 1x + \varepsilon$

2. **Logistic Regression:** Logistic regression models the probability of a binary outcome using the logistic function. It is suitable for predicting categorical outcomes with two levels.

Formula: $p=11+e-(\beta 0+\beta 1x)p=1+e-(\beta 0+\beta 1x)1$

3. **Polynomial Regression:** Polynomial regression models the relationship between the dependent variable and independent variables using a polynomial equation. It can capture non-linear relationships between variables.

Formula: $y=\beta 0+\beta 1x+\beta 2x2+...+\beta nxn+\epsilon y=\beta 0+\beta 1x+\beta 2x2+...+\beta nxn+\epsilon$

4. **Ridge and Lasso Regression:** Ridge and Lasso regression are regularization techniques used to prevent overfitting in regression models by penalizing large coefficients.

5. Correlation:

Correlation measures the strength and direction of the relationship between two variables.

1. **Pearson Correlation Coefficient:** The Pearson correlation coefficient measures the linear relationship between two continuous variables. It ranges from -1 to 1, where -1 indicates a perfect negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation.

Formula:
$$r = \sum (xi - x^-)(yi - y^-) \sum (xi - x^-) 2 \sum (yi - y^-) 2r = \sum (xi - x^-) 2 \sum (yi - y^-) 2$$

 $\sum (xi - x^-)(yi - y^-)$

2. **Spearman's Rank Correlation:** Spearman's rank correlation coefficient measures the strength and direction of association between two ranked variables. It is suitable for assessing monotonic relationships or correlations involving ordinal data.

6. ANOVA (Analysis of Variance):

Analysis of Variance (ANOVA) is a statistical technique used to compare means across multiple groups.

- 1. **One-Way ANOVA:** One-way ANOVA tests for differences in means across multiple groups when there is one categorical independent variable. It assesses whether there are statistically significant differences between group means.
- 2. **Two-Way ANOVA:** Two-way ANOVA extends one-way ANOVA to examine the effects of two categorical independent variables on a continuous dependent variable. It assesses both main effects and interaction effects between the independent variables.

3. **Factorial ANOVA:** Factorial ANOVA analyzes the effects of multiple independent variables (factors) on a dependent variable. It is used when there are two or more categorical independent variables, allowing for the examination of main effects and interaction effects.

Car Collection Data Report

Introduction

A thorough examination of the make, model, colour, mileage, price, and cost of many car models is provided by the Car Collection dataset. The purpose of this research is to analyse and extract insights from this dataset to support car-buying decision-making and help with market trends. Six distinct car models—Honda, Chevrolet, Nissan, Toyota, Dodge, and Ford—are included in the dataset.

This report's main target audience consists of auto enthusiasts, analysts, professionals in the automobile sector, and anybody curious in market trends. This report's scope includes a thorough examination of the dataset, along with statistical analysis, graphic aids, and findings interpretation.

Throughout the analysis, we have posed several key questions and performed corresponding analyses to uncover insights.

Questionnaire

- 1. Compare the mileage of Chevrolet Impala to Toyota Corolla. Which of the two is giving best mileage?
- 2. Justify, Buying of any Ford car is better than Honda.
- 3. Among all the cars which car color is the most popular and is least popular?
- 4. Compare all the cars which are of silver color to the green color in terms of Mileage.
- 5. Find out all the cars, and their total cost which is more than \$2000?

Analytics

1. Compare the mileage of Chevrolet Impala to Toyota Corolla. Which of the two is giving best mileage?

The fuel economy (mileage) of the Chevrolet Impala and Toyota Corolla, two well-known automobile models, is compared in this comparison. In order to do this, the dataset was filtered to remove irrelevant information, and a column chart was made. The study revealed that the Chevrolet Impala (114243) gets higher gas mileage than the Toyota Corolla (92377).

2. Justify, Buying of any Ford car is better than Honda.

By contrasting their relative qualities and putting a special emphasis on pricing, this research seeks to justify buying any Ford vehicle over a Honda.

However, the dataset analysis that was done did not support the claim; rather, Honda vehicles outperform Ford vehicles in terms of average price and average mileage.

3. Among all the cars which car color is the most popular and is least popular?

This analysis aims to identify the most popular and least popular car colors among all the cars in the dataset based on the count of the make.

According to the data, the two most popular automobile colors are black and silver, which account for 25% of the company's production, while green and blue cars account for 12% of the total.

4. Compare all the cars which are of silver color to the green color in terms of Mileage.

The objective of this analysis is to determine which automobiles, in terms of mileage, are silver to green. The results show that there are five silver cars: the Charger, Accord, Mustang,

Impala, and Corolla. Of them, the Accord has the greatest average mileage (101354). And there were two green cars: an Altima and a Silverado, with the Silverado having the greatest miles (109231).

The goal of this analysis is to determine how much the car costs over \$2,000. It also displays the intended outcome by utilizing a bar graph and calculating value as the total cost. All cars over \$2000 have a grand total cost of \$66150.

Conclusion and Review

Comparison: The analysis comparing the mileage of Chevrolet Impala and Toyota Corolla revealed that Chevrolet Impala provides better fuel efficiency.

Ford vs. Honda Comparison: The investigation refuted the basic assumption that Ford vehicles are more cost-effective and had higher mileage than Honda vehicles. When comparing average mileage and pricing to Ford vehicles, Honda vehicles performed better.

Proper Car Colors: Based on the data, the most common car colors are black and white, which account for 25% of all car production. Green and blue, on the other hand, were discovered to be the least common colors, making up a mere 12% of all cars produced. .

Silver vs. Green Cars Comparison: Among silver-colored cars, Accord exhibited the highest average mileage, while Silverado had the highest mileage among green-colored cars.

Automobiles Over \$2000: Based on the data, the total amount spent on cars over \$2000 came to \$66150.

The research offered insightful information about a number of dataset components, such as mileage comparisons, the popularity of different automobile colors, and financial considerations. But there were differences between the first hypotheses and the results,

especially when comparing Ford and Honda vehicles. The analysis was comprehensive and used suitable visualizations to properly display the results, like bar graphs and column charts.

All things considered, the study provides insightful information to consumers, business professionals, and scholars who wish to comprehend market developments. It's crucial to be aware of the analysis's limitations, too, including the dataset's completeness and the need for more research into other variables impacting auto purchases.

Regression

Regression S	tatistics					
Multiple R	0.41351168					
R Square	0.170991909					
Adjusted R Square	0.092038758					
Standard Error	33202.50415					
Observations	24					
ANOVA						_
	df	SS	MS	F	Significance F	
Regression	2	4775048274	2387524137	2.16573887	0.139594104	
Residual	21	23150531912	1102406282			
Total	23	27925580186				
		Standard				Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%
Intercept	133934.0568	25798.84041	5.191475844	3.8189E-05	80282.43109	187585.68
			-			
Price	-9.584785282	27.86675125	0.343950581	0.73430356	-67.53686699	48.367296
Cost	-6.87077784	30.35330413	0.226360129	0.82311009	-69.99392934	56.252374

Regression shows the stats for the mileage, cost, and price taking the dependent variable as mileage and independent variables as cost and price for the dataset.

Anova: one factor

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
Price	24	78108	3254.5	837024.087
Cost	24	66150	2756.25	705502.717

ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between						
Groups	2979036.8	1	2979036.8	3.86254131	0.055430249	4.051748692

Within Grou	ps 35478117	46	771263.4
Total	38457153	47	

Analysis of variance is known as an Anova. The summary of columns with count, total, average, and variance is displayed by the Anova One factor. and the reason for the difference between ss and df. The count for column1, column2, and the sum of two columns, price and cost, are displayed below.

Anova Two Factor

SUMMARY	Count	Sum	Average	Variance
Row 1	3	70512	23504	1.2E+09
Row 2	3	99635	33211.67	2.88E+09
Row 3	3	104854	34951.33	3.31E+09
Row 4	3	79104	26368	1.77E+09
Row 5	3	76673	25557.67	1.47E+09
Row 6	3	60703	20234.33	9.19E+08
Row 7	3	91602	30534	2.41E+09
Row 8	3	135682	45227.33	5.48E+09
Row 9	3	63329	21109.67	1.09E+09
Row 10	3	143412	47804	6.21E+09
Row 11	3	96023	32007.67	2.44E+09
Row 12	3	118690	39563.33	3.64E+09
Row 13	3	94966	31655.33	2.35E+09
Row 14	3	145151	48383.67	6.41E+09
Row 15	3	145661	48553.67	6.18E+09
Row 16	3	69505	23168.33	1.21E+09
Row 17	3	49123	16374.33	4.48E+08
Row 18	3	48366	16122	4.85E+08
Row 19	3	58171	19390.33	6.72E+08
Row 20	3	107270	35756.67	3.28E+09
Row 21	3	47301	15767	5.38E+08

Row 22	3	42702	14234	3.19E+08		
Row 23	3	66425	22141.67	9.74E+08		
Row 24	3	140665	46888.33	6.06E+09		
Column 1	24	2011267	83802.79	1.21E+09		
Column 2	24	66150	2756.25	705502.7		
Column 3	24	78108	3254.5	837024.1		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Rows	8.95E+09	23	3.89E+08	0.941208	0.549982	1.766805
Columns	1.04E+11	2	5.22E+10	126.3564	2.05E-19	3.199582
Error	1.9E+10	46	4.13E+08			
Total	1.32E+11	71				

A two-factor ANOVA without replication is a data analysis tool that can be used to analyse two factors. It can be used to test the main effects of either factor, here it shows the variance in the dataset for each row with ss and df.

Descriptive Statistics

Column1		Column2		Column3	
Mean	83802.79	Mean	2756.25	Mean	3254.5
Standard Error	7112.652	Standard Error	171.4525	Standard Error	186.7512
Median	81142	Median	2750	Median	3083
Mode	#N/A	Mode	3000	Mode	#N/A
Standard		Standard		Standard	
Deviation	34844.74	Deviation	839.9421	Deviation	914.8902
Sample Variance	1.21E+09	Sample Variance	705502.7	Sample Variance	837024.1
Kurtosis	-1.09718	Kurtosis	-0.81266	Kurtosis	-1.20291
Skewness	0.386522	Skewness	0.473392	Skewness	0.272019
Range	105958	Range	3000	Range	2959
Minimum	34853	Minimum	1500	Minimum	2000
Maximum	140811	Maximum	4500	Maximum	4959
Sum	2011267	Sum	66150	Sum	78108
Count	24	Count	24	Count	24

Correlation

	Column 1	Column
Column	1	2
1	1	
Column	-	
2	0.41106	1

The table summarizes the statistical properties of three datasets. Each dataset likely contains 24 data points (based on the Count value). For each dataset, the table shows various descriptive statistics including the mean, standard deviation, median, and minimum and maximum values. For example, the first dataset has a mean of 83802.79, a standard deviation of 34844.74, and a range of values from 34853 to 140811. Interestingly, the mode (the most frequent value) is not available for the first and third datasets. The second dataset however, has a mode of 3000, which appears three times more often than any other value in that dataset.

Order Data Report

Introduction

This report explores a vast dataset that records sales transactions in the automotive sector. It includes a variety of variables, including Order ID, Order Date, Ship Date, Customer Information, Product Details, and Sales Figures. Finding practical insights to guide decision-making and promote corporate expansion in the automobile industry is the main goal of this investigation. This analysis looks at sales data from several US states, sectors, categories, and subcategories in order to pinpoint important trends, high-performing segments, and possible growth prospects. The insights obtained from this study will be extremely beneficial to stakeholders in the automobile sector, such as executives, marketers, and sales managers, who are looking to maximize income, improve customer happiness, and optimize sales methods.

Questionnaire

- 1. Compare all the US states in terms of Segment and Sales. Which Segment performed well in all the states?
- 2. Find out top performing category in all the states?
- 3. Which segment has the most sales in the US, California, Texas, and Washington?
- 4. Compare total and average sales for all different segments?
- 5. Compare the average sales of different categories and subcategory of all the states.

Analytics

1. Compare all the US states in terms of Segment and Sales. Which Segment performed well in all the states?

California (222419.05) was found to have the most sales when all the states were compared in terms of sector and sales. The consumer category (1148060.531) showed good performance across all states.

2. Find out top performing category in all the states?

With a total sales count of 5909, office supplies are the best-performing category across all states, followed by technology (1813) and furniture (2078).

3. Which segment has most sales in US, California, Texas, and Washington?

Using a bar chart to display the proportion of distribution and filtering the states for the overall sales count. The US, California, Texas, and Washington have the highest sales in the consumer category.

4. Compare total and average sales for all different segments?

It is clearly visible that the consumer segment has higher average sales with 1148060.531 and home office segment has total sales of 243.40.

5. Compare average sales of different categories and subcategory of all the states.

The analysis shows the average sales for the 3 categories having multiple subcategories, the categories are Furniture, Office Supplies, Technology.

Conclusion and Review

The examination of sales statistics in the automobile sector yields numerous significant conclusions. When it comes to sales volume, California is the best-performing state, and the consumer category does well in every state. According to consumer preferences, Office Supplies is the category that performs the best, followed by Furniture and Technology. Sales in the US are regularly led by the consumer market, especially in California, Texas, and Washington.

The data also shows that the Consumer sector's average sales are greater than those of the Home Office category. All things considered, these insights offer insightful advice that can be used to enhance client interaction, optimize sales tactics, and propel corporate success in the automobile sector.

Regression

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.000434			
R Square	1.88E-07			
Adjusted R				
Square	-0.0001			
Standard				
Error	625.334			
Observations	9789			

ANOVA

					Significance
	df	SS	MS	F	F
Regression	1	721.1637	721.1637	0.001844	0.965747
Residual	9787	3.83E+09	391042.6		
Total	9788	3.83E+09			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
Intercept	230.5863	12.63999	18.24261	3.83E-73	205.8093	255.3633	205.8093	255.3633
X Variable 1	-9.6E-05	0.002235	-0.04294	0.965747	-0.00448	0.004286	-0.00448	0.004286

This table summarizes a multiple regression analysis, but the results suggest the model isn't very helpful. The R-squared values are close to zero, meaning the model explains almost none of the variation. The high standard error indicates a lot of unexplained variation. The F-statistic and its p-value from the ANOVA test are also insignificant, which means this model with this particular X variable doesn't fit the data any better than a simple line at the average.

Finally, the coefficient for the X variable itself is close to zero with a high p-value, implying no statistically significant relationship between the X variable and what the model is trying to predict. Overall, this analysis suggests there's no connection between the changes in the X variable and the outcome you're trying to model.

Descriptive Statistics

Column1						
Mean	230.1162					
Standard Error	6.320053					
Median	54.384					
Mode	12.96					
Standard						
Deviation	625.3021					
Sample Variance	391002.7					
Kurtosis	307.3056					
Skewness	13.05363					
Range	22638.04					
Minimum	0.444					
Maximum	22638.48					
Sum	2252607					
Count	9789					

The average value is 230.12, but the middle value is much lower, suggesting a skewed distribution with a longer tail towards higher values. The data is spread out widely with a large standard deviation and range. Overall, "Column1" appears skewed to the right with a substantial spread around the mean.

Cookie Data Report

Introduction

Six distinct varieties of cookies are included in our cookie data set: chocolate chip, fortune cookie, sugar, oatmeal raisin, Snicker doodle, and white chocolate macadamia nut. We possess an abundance of information on these cookies, including the quantity sold, the expenses incurred, the income (revenue), and the earnings. Not only are we examining a single location or period, but we are also examining several nations and times periods to observe how things change. This research aims to provide insights into consumer preferences, price points, and geographic areas where cookies are most popular, in addition to providing information regarding cookies.

Questionnaire

- 1. Compare the profit earn by all cookie types in US, Malaysia, and India.
- 2. What is the average revenue generated by different types of cookies?
- 3. Which country sold most Fortune and sugar cookies in 2019 and in 2020?
- 4. Compare the performance of all the countries for the year 2019 to 2020. Which country perform in each of these years?
- 5. Which cookie category sold on the highest price, country wise and how much profit is earned by that category overall?

Analytics

1. Compare the profit earn by all cookie types in US, Malaysia, and India.

The profit margins for each variety of cookie in the US, Malaysia, and India are compared in this research. India's maximum profit on chocolate chips is followed by that of Malaysia and America.

The profit margins for each variety of cookie in the US, Malaysia, and India are compared in this research. India's maximum profit on chocolate chips is followed by that of Malaysia and America.

2. What is the average revenue generated by different types of cookies?

This analysis aims to provide average revenue generated and it's visible that white chocolate macadamia nut with average revenue generate is 8940.88 followed by chocolate chip.

3. Which country sold most Fortune and sugar cookies in 2019 and in

This analysis compares the sales of fortune and sugar cookies in the various countries for the years 2019 and 2020. India leads the way in significant sales of sugar cookies for the year 2020, with 30644 sales; the United Kingdom led the way in sales of sugar cookies in 2019. India again leads in sales of fortune cookies, with 25400, followed by Malaysia; the Philippines lead in sales of fortune cookies, with 8782, followed by the United States.

4. Compare the performance of all the countries for the year 2019 to 2020. Which country perform in each of these years?

This analysis compares the profits made by the various countries in the fiscal years 2019 and 2020. The graph indicates that the United Kingdom made the most profit in 2020 with sales of 471027.55, followed by the United States with 456839.35, and that India made the most profit in 2019 with sales of 155515.5, followed by the Philippines with 131474.8.

5. Which cookie category sold on the highest price, country wise and how much profit is earned by that category overall?

This analysis aims to find the cookie category sold for the highest price, country-wise, profit earned by that category, max of revenue is recorded by chocolate chip(23988) and sum of profit is recorded by sugar(2763364.45) for the country India followed by United Kingdom.

Conclusion and Review

The study shed light on the profits made by several cookie varieties in the US, Malaysia, and India. The country that made the most money from chocolate chip cookies was India, followed by Malaysia and the US.

The cookies with the greatest average revenue were white chocolate macadamia nut cookies, closely followed by chocolate chip cookies.

In terms of sales, the United Kingdom led the world in sugar cookie sales in 2019, with India showing notable sales in 2020. Sales of fortune cookies were increasing in both years in Malaysia and India, with significant sales also coming from the US and the Philippines.

In terms of comparing profits by nation for 2019 and 2020, the United States and the United Kingdom both had the greatest profits in 2020. India and the Philippines had the biggest profits in 2019.

In terms of income, chocolate chip cookies brought in the most money, but altogether, sugar cookies made the most profit.

The report helped players understand market dynamics and make wise decisions by providing insightful information on the cookie sector. Visuals that were acceptable and easy to understand were used to successfully explain the findings. It's crucial to recognize the need for more research into other variables affecting sales and profitability, though. For trustworthy insights, data completeness and correctness must be guaranteed.

Regression

Regression shows.

SUMMARY OUTPUT

Regression Statistics				
Multiple R	1			
R Square	1			
Adjusted R				
Square	1			
Standard				
Error	9.16E-12			
Observations	700			

ANOVA

					Significance
	df	SS	MS	F	F
Regression	3	4.78E+09	1.59E+09	1.9E+31	0
Residual	696	5.84E-20	8.39E-23		
Total	699	4.78E+09			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
						-1.2E-		
Intercept	-1.3E-11	7.3E-13	-18.0657	4.09E-60	-1.5E-11	11	-1.5E-11	-1.2E-11
						1.72E-		
X Variable 1	6.56E-17	8.42E-16	0.077892	0.937936	-1.6E-15	15	-1.6E-15	1.72E-15
X Variable 2	1	8.38E-16	1.19E+15	0	1	1	1	1
X Variable 3	-1	1.72E-15	-5.8E+14	0	-1	-1	-1	-1

This regression analysis suggests an exceptional fit. Both R-squared and adjusted R-squared are 1, indicating the model perfectly explains the data with minimal unexplained variation (very small standard error). The ANOVA test strongly supports this with a highly significant F-statistic. However, the coefficient for X variable 2 being exactly 1 and some near-zero coefficients with high p-values for other variables warrant further examination. While this seems like a perfect model fit, it's crucial to check its generalizability on unseen data to avoid potential overfitting.

Anova: one factor

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
Column 1	700	1926955	2752.792	4149401
Column 2	700	2763364	3947.664	6842519

ANOVA

Source of						
Variation	SS	df	MS	F	P-value	F crit
					6.36E-	
Between Groups	5E+08	1	5E+08	90.92153	21	3.848119
Within Groups	7.68E+09	1398	5495960			
Total	8.18E+09	1399				

An ANOVA test was conducted to compare the means of two groups, "Column 1" and "Column 2". Each group has 700 observations. While "Column 1" has an average value of 2752.79, "Column 2" has a significantly higher average (3947.66). The F-statistic (90.92) and a very low p-value (essentially 0) provide strong evidence that this difference is statistically significant. In other words, there's a very low chance the observed difference in means happened by random chance.

Anova: two factor

Anova: Two-Factor Without Replication

SUMMARY	Count	Sum	Average	Variance
Row 1	3	17250	5750	6943125

Row 2		3	215	20	7173	.333	1	0805909		
Row 3		3	234	90	-	7830	1	2874869		
Row 4		3	122	80	4093	.333		3518629		
Row 5		3	138	90	4	1630		4501749		
Column 1	7	00	46903	19	6700	.456	2	1380458		
Column 2	7	00	19269	55	2752	.792	,	4149401		
Column 3	7	00	27633	64	3947	.664		6842519		
ANOVA										
Source of	•									
Variation			SS		df	I	ИS	F	P-value	F crit
Rows		1.9	99E+10		699	285	07277	14.75112	0	1.112595
Columns		5.	74E+09		2	2.8	7E+09	1484.458	0	3.002161
Error		2	7E+09		1398	19	32550			
Total		2.8	84E+10		2099					

This two-factor ANOVA, analysing effects without repeated measurements, explores how two factors (likely Row and Column) influence a variable. There are 5 rows and 3 columns, but each combination only has 3 observations (no replication). The test reveals statistically significant differences for both Row and Column factors (based on very low p-values). Rows seem to have a stronger effect (higher F-statistic), with an average difference of over 2000 between the highest and lowest row means. Columns also show a significant impact, with a mean difference of nearly 1200 between the highest and lowest columns. While this summary confirms independent effects of both Row and Column on the means, further analysis is recommended to understand how these factors interact and influence the variable together.

Descriptive Statistics

Column1		Column2		Column3		Column4	
Mean	1608.32	Mean	6700.456	Mean	2752.792	Mean	3947.664
Standard		Standard		Standard		Standard	
Error	32.78652	Error	174.767	Error	76.99166	Error	98.86874
Median	1542.5	Median	5871.5	Median	2423.6	Median	3424.5
Mode	727	Mode	8715	Mode	3450	Mode	5229
Standard		Standard		Standard		Standard	
Deviation	867.4498	Deviation	4623.901	Deviation	2037.008	Deviation	2615.821
Sample		Sample		Sample		Sample	
Variance	752469.1	Variance	21380458	Variance	4149401	Variance	6842519
Kurtosis	-0.31491	Kurtosis	0.464596	Kurtosis	0.810043	Kurtosis	0.338621
Skewness	0.43627	Skewness	0.867861	Skewness	0.930442	Skewness	0.840484
Range	4293	Range	23788	Range	10954.5	Range	13319
Minimum	200	Minimum	200	Minimum	40	Minimum	160
Maximum	4493	Maximum	23988	Maximum	10994.5	Maximum	13479
Sum	1125824	Sum	4690319	Sum	1926955	Sum	2763364
Count	700	Count	700	Count	700	Count	700

This table summarizes the descriptive statistics for four unnamed data columns. The average value (mean) varies significantly across the columns, with Column2 having the highest (6700.46) and Column1 the lowest (1608.32). Similar trends are seen in the median values. All columns show a considerable spread in data, with Column2 exhibiting the most extensive spread (standard deviation: 4623.90) and Column1 the least (standard deviation: 867.45). While Column2 has a near-symmetrical distribution, the skewness values suggest slight rightward skews for Column1 and Column4 and a moderate rightward skew for Column3. The data appears to have varying central tendencies, spreads, and shapes across these four columns.

Correlation

	Column 1	Column 2	Column 3	Column 4
Column 1	1			
Column 2	0.796298	1		
Column 3	0.742604	0.992011	1	
Column 4	0.829304	0.995163	0.974818	1

This table depicts a correlation matrix summarizing the relationships between four unnamed data columns. The values range from 0 to 1, where 1 indicates perfect positive correlation (data in columns change together) and 0 indicates no correlation.

Columns 2, 3, and 4 exhibit very strong positive correlations (close to 1), signifying near perfect alignment between their data. Column 1 shows a moderate positive correlation with each of these three columns (around 0.8), suggesting a weaker but existent connection.

In essence, the data in Columns 2, 3, and 4 seem highly interrelated, while Column 1 shares a somewhat weaker positive association with the data in the other three columns.

Loan Data Report

Introduction

The loan dataset includes a wealth of information about loan applicants, including details about their income, property area, gender, marital status, education level, and loan amount. This dataset provides a wealth of information on loan application behaviour.

Our goal in this research is to examine the traits of loan candidates and look for trends in the data. We use pivot tables and charts to try to answer certain questions about the educational backgrounds, loan amounts, and demographics of loan applicants.

Financial institutions must comprehend the subtleties of loan applications in order to make well-informed judgments, streamline the lending process, and customize services to satisfy the wide range of client demands. Our goal in doing this research is to find practical insights that can inform strategic choices and improve the effectiveness of loan management programs.

Questionnaire

- 1. How many male graduates who are not married applied for Loan? What was the highest amount?
- 2. How many female graduates who are not married applied for Loan? What was the highest amount?
- 3. How many male non-graduates who are not married applied for Loan? What was the highest amount?
- 4. How many female graduates who are married applied for Loan? What was the highest amount?
- 5. How many male and female who are not married applied for Loan? Compare Urban, Semiurban and rural based on amount.

Analytics

1. How many male graduates who are not married applied for Loan? What was the highest amount?

This analysis shows the no. of male graduates applied for the loan and are not married with the highest amount. As of analysed the total no. of loan applied is 66 and max loan amount is 240.

2. How many female graduates who are not married applied for Loan? What was the highest amount?

According to this data, the greatest number of female graduates who are single sought for loans. As of now, there have been 35 total loan applications, with a maximum loan amount of \$300.

3. How many male non-graduates who are not married applied for Loan? What was the highest amount?

This research reveals the number of unmarried male non-graduates who asked for loans and the greatest amount they were denied. As of now, there have been 16 total loan applications, with a maximum loan amount of 199.

4. How many female graduates who are married applied for Loan? What was the highest amount?

According to this data, the greatest number of female graduates who are single sought for loans. As of now, there have been 21 total loan applications, with a maximum loan amount of \$460.

5. How many male and female who are not married applied for Loan? Compare Urban, Semiurban and rural based on amount.

This research compares unmarried male and female applicants for loans in rural, semi-urban, and metropolitan areas; the number of applications for loans is much larger in males than in females.

Loan counts for women are as follows: women's (1732), semi urban (1806), and urban (1716); men's (3244), semi urban (3359), and urban (3451).

Conclusion and Review

The data shows glaring differences in loan applications based on gender. The application pool was dominated by single male grads, then single female graduates. Though in lower percentages, married female grads and unmarried male graduates also asked for loans. Interestingly, in rural, semi-urban, and urban regions, the number of men was far more than that of girls.

The research offers insightful information on borrower demographics and successfully depicts patterns in loan applications depending on gender. It is advised to carry out more research on the variables impacting loan choices and to improve the data presentation through visual improvements. In general, the paper provides a basis for comprehending loan dynamics, with need for further analysis.

Regression

Regression shows the stats
SUMMARY
OUTPUT

Regression Statistics				
Multiple R	0.531078663			

R Square	0.282044546
Adjusted R	
Square	0.274487121
Standard	
Error	50.85033905
Observations	289

ANOVA

					Significance
	df	SS	MS	F	F
Regression	3	289502.8035	96500.93	37.32019	2.25609E-20
Residual	285	736940.7397	2585.757		
Total	288	1026443.543			

		Standard	1	1	1		Lower	Up
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	95.0%	95
Intercept	66.690952	16.26833015	4.099434	5.41E-05	34.66963005	98.71227396	34.66963	98.7
X Variable 1	0.095771273	0.045649816	2.097955	0.03679	0.005917708	0.185624838	0.005918	0.18
X Variable 2	0.005807787	0.000627861	9.250122	5.49E-18	0.004571955	0.007043619	0.004572	0.00
X Variable 3	0.006772797	0.001264765	5.354983	1.76E-07	0.004283331	0.009262263	0.004283	0.00

A multiple regression analysis was conducted to explore how well several factors (X variables) explain a dependent variable. The model fit is moderate. While all X variables show a statistically significant relationship with the dependent variable (based on p-values), their coefficients are small, suggesting a weak to moderate individual effect on the outcome. The model explains about 28% of the variance, with some room for improvement. It might be beneficial to consider including additional factors or explore model refinements to better capture the underlying relationships in the data.

Anova: one factor

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
Column 1	289	39533	136.7924	3564.04
Column 2	289	99032	342.6713	4310.645

ANOVA

71110 171						
Source of						
Variation	SS	df	MS	F	P-value	F crit
					8.4E-	
Between Groups	6124794	1	6124794	1555.565	166	3.857654
Within Groups	2267909	576	3937.343			
		•				
Total	8392703	577]			

An ANOVA test reveals a significant difference between "Column 1" and "Column 2" based on the means. Column 1 has a considerably lower average (136.79) compared to Column 2 (342.67). The analysis involved 289 observations and the very low p-value (essentially 0)

confirms this difference is statistically significant, meaning it's highly unlikely to be due to random chance.

Anova: two factor

Anova: Two-Factor Without

Replication

SUMMARY	Count	Sum	Average	Variance	?	
Row 1	2	470	235	3125	0	
Row 2	2	486	243	2737	8	
Row 3	2	568	284	1155	2	
Row 4	2	438	219	3976	2	
Row 5	2	512	256	2163	2	
Row 286	2	473	236.5	30504.	5	
Row 287	2	475	237.5	30012.	5	
Row 288	2	518	259	2040	2	
Row 289	2	278	139	336	2	
Column 1	289	39533	136.7924	3564.0	4	
Column 2	289	99032	342.6713	4310.64	5	
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Rows	1264619	288	4391.038	1.260472	0.024978	1.214301
Columns	6124794	1	6124794	1758.156	1.2E-124	3.87395
Error	1003290	288	3483.647			
Total	8392703	577				

This two-factor ANOVA, analyzing effects without repeated measurements, explores how Row and Column influence a variable. There are 289 observations in total, but each combination of Row and Column only has 2 (no replication). The analysis reveals significant effects for both factors. Column has a much stronger effect (very low p-value) with an average value in Column 2 (342.67) being more than double that of Column 1 (136.79). Row also has a statistically significant effect (p-value is 0.025) on the means, but to a lesser extent (based on the F-statistic). While Row averages vary somewhat (e.g., Row 1 at 235 vs. Row 3 at 284), the difference is less substantial compared to the Column effect. It's important to explore how Row and Column interact to influence the variable together, but this confirms significant independent effects of both factors.

Descriptive Statistics

Column1		Column2		Column3		Column4	
Mean	342.6713	Mean	4637.353	Mean	1528.263	Mean	136.7924
Standard		Standard		Standard		Standard	
Error	3.862088	Error	281.8049	Error	139.8588	Error	3.51174
Median	360	Median	3833	Median	879	Median	126
Mode	360	Mode	5000	Mode	0	Mode	150
Standard	65.6555	Standard	4790.684	Standard	2377.599	Standard	59.69958

Deviation		Deviation		Deviation		Deviation	
Sample		Sample		Sample		Sample	
Variance	4310.645	Variance	22950653	Variance	5652978	Variance	3564.04
Kurtosis	8.62994	Kurtosis	141.612	Kurtosis	32.96701	Kurtosis	5.739804
Skewness	-2.64147	Skewness	10.41123	Skewness	4.510775	Skewness	1.780616
Range	474	Range	72529	Range	24000	Range	432
Minimum	6	Minimum	0	Minimum	0	Minimum	28
Maximum	480	Maximum	72529	Maximum	24000	Maximum	460
Sum	99032	Sum	1340195	Sum	441668	Sum	39533
Count	289	Count	289	Count	289	Count	289

This table summarizes descriptive statistics for four unnamed data columns. The average value (mean) and median vary significantly, with Column 2 (mean: 4637.35) having the highest and Column 4 (mean: 136.79) the lowest. All columns show a considerable spread in data, with Column 2 exhibiting the most (standard deviation: 4790.68) and Column 4 the least (standard deviation: 59.70). There's also evidence of skewed distributions. Column 1 and 4 have some skewness in opposite directions, while Column 2 shows a very strong positive skew and Column 3 leans positive as well. Overall, the data in these four columns appears to have varying central tendencies, spreads, and shapes.

Correlation

	Column	Column	Column
	1	2	3
Column			
1	1		
Column			
2	-0.08435	1	
Column			
3	0.445695	0.230355	1

The correlation matrix for this data set is not provided. However, based on the conversation, Column 1 has a weak negative correlation with Column 2 (-0.08435) and a moderate positive correlation with Column 3 (0.445695).

Shop Sales Data Report

Introduction

This report examines a large sales dataset with an emphasis on sales performance analysis and product trends among sales representatives. The collection includes features including product specifications, sales volumes, earnings, and salesman details. Finding information that can improve corporate performance and guide the creation of sales strategies is the main goal of this investigation. The report's objectives are to identify top-performing salespeople, analyze product popularity, and comprehend sales patterns by looking at sales data over a certain period of time and comparing product performance. The analysis's conclusions will be of great use to CEOs, marketing specialists, and sales managers who want to boost income, improve sales tactics, and expand their companies. Our goal in doing this study is to offer practical insights that will help inform decisions and advance the performance of the organization as a whole.

Questionnaires

- 1. Compare all the salesmen based on profit earn.
- 2. Find out most sold product over the period of May-September.
- 3. Find out which of the two product sold the most over the year Computer or Laptop?
- 4. Which item yield most average profit?
- 5. Find out average sales of all the products and compare them.

Analytics

1. Compare all the salesmen on the basis of profit earn.

When all of the salesmen are compared based on profit made, as seen by the line chart, Rahul has the most profit earned, valued at 493541.3255.

2. Find out most sold product over the period of May-September.

We would need to examine the sales data throughout that time period in order to determine which product sold the most during the months of May through September. When the quantity sold for each product is added up for all transactions made within this time frame, the laptop is the most sold product from May to September, with the highest sales occurring in September, totaling 280.1970249.

3. Find out which of the two product sold the most over the year Computer or Laptop?

The two products that sold the most throughout the course of the year were the laptop and the computer, with the laptop having the higher sales quantity at 2358.911786 and the computer at 2139.876313.

4. Which item yield most average profit?

According to this data, the mobile device has the highest average profit made (7057.58477) when compared to the laptop and computer.

5. Find out average sales of all the products and compare them.

According to the analysis, the average sales amount of laptops (19.49513873) is larger than that of computers (19.45342103) and mobile phones (19.41876737).

Conclusion and Review:

Important information about sales effectiveness and product trends among salespeople is revealed by the analysis. Outperforming every other salesman and making the biggest profit, Rahul comes out on top. Furthermore, the laptop is the most popular product from May to

September, with September seeing the biggest sales. In terms of units sold over the course of the year, laptops do better than PCs. In addition, out of smartphones, laptops, and PCs, mobile phones have the greatest average profit. Finally, in terms of average sales quantity, laptops outperform PCs and mobile devices.

The study successfully draws attention to product trends and sales performance, offering insightful information for improving sales strategy. Visualizations help in comprehending popular products and long-term patterns. Deeper understanding of the variables affecting product preferences and sales variations, however, could improve the analysis. All things considered, the research provides useful information for enhancing sales tactics and increasing profits.

Regression

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.954076972				
R Square	0.910262868				
Adjusted R Square	0.909998936				
Standard Error	630.0595983				
Observations	342				

ANOVA

					Significance
	df	SS	MS	F	F
Regression	1	1.37E+09	1.37E+09	3448.844	4.6E-180
Residual	340	1.35E+08	396975.1		
Total	341	1.5E+09			

		Standard				Upper	Lower	
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	
Intercept	2068.993161	88.47952	23.38387	9.14E-73	1894.957	2243.029	1894.957	2
X Variable 1	246.4655683	4.196812	58.72686	4.6E-180	238.2106	254.7206	238.2106	2

The regression model, with a significant p-value indicates a strong positive relationship between Amount and the profit earned and the outcome variable. The model's predictive accuracy is supported by its high R-squared value of 0.910.

Correlation

	Column 1	Column 2
Column 1	1	
Column 2	0.954077	1

The correlation coefficient between units sold and revenue is 0.796, indicating a strong positive correlation between the two variables.

Anova (Single Factor)

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
Column 1	342	6654.271	19.45693	66.0952
Column 2	342	2347644	6864.457	4410782

Λ	N	O١	//
А	ıvı	u	$^{\prime\prime}$

ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
					2.1E-	
Between Groups	8.01E+09	1	8.01E+09	3632.879	275	3.85513
Within Groups	1.5E+09	682	2205424			
Total	9.52E+09	683				

The ANOVA results indicate a significant difference between the two groups , with 1 degree of freedom.

Anova two factor

Anova: Two-Factor Without Replication

SUMMARY	Count	Sum	Average	Variance
Row 1	2	1003	501.5	497004.5
Row 2	2	7804	3902	30388808
Row 3	2	3005	1502.5	4485013
Row 4	2	2304	1152	2635808
Row 5	2	7003	3501.5	24479005
Row 339	2	10252.82	5126.411	51884342
Row 340	2	10272.93	5136.467	52087770
Row 341	2	10293.05	5146.523	52291595
Row 342	2	10313.16	5156.58	52495819
Column 1	342	6654.271	19.45693	66.0952
Column 2	342	2347644	6864.457	4410782

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
variation	33	uj	IVIS	<u>'</u>	r-vuiue	1 CIIL
Rows	7.58E+08	341	2221714	1.014883	0.445792	1.195299
Columns	8.01E+09	1	8.01E+09	3659.913	2.1E-184	3.868873
Error	7.46E+08	341	2189134			
Total	9.52E+09	683				

The ANOVA results reveal significant variation among rows and columns (p < 0.001), with degrees of freedom (df) values of 10 respectively. The error term has a degree of freedom of 0

Descriptive Statistics:

Column1		Column2	
Mean	19.45693	Mean	6864.457
Standard Error	0.439614	Standard Error	113.5651
Median	19.45693	Median	6984.647
Mode	3	Mode	1000
Standard		Standard	
Deviation	8.129896	Deviation	2100.186
Sample Variance	66.0952	Sample Variance	4410782
Kurtosis	-0.99883	Kurtosis	-0.5078
Skewness	-0.09948	Skewness	-0.36449
Range	30.30852	Range	9279.851
Minimum	3	Minimum	1000
Maximum	33.30852	Maximum	10279.85
Sum	6654.271	Sum	2347644
Count	342	Count	342

This table summarizes descriptive statistics for two unnamed data columns. The columns have very different characteristics. Column1 has a much lower average value (mean: 19.46) and a smaller spread (standard deviation: 8.13) compared to Column2 (mean: 6864.46, standard deviation: 2100.19). This suggests Column1's data points are clustered closer to the mean, while Column2 exhibits more variation. Both columns have a slightly negative skew, indicating a tendency for more data points towards the lower end. Additionally, the negative kurtosis values suggest flatter distributions compared to a normal bell curve. Overall, the data in these two columns seems to have distinct central tendencies, spreads, and shapes.

Sales Data Sample Report

Introduction

A large sales dataset with variables like ORDERNUMBER, QUANTITYORDERED, PRICEEACH, and SALES is analyzed in this report. It seeks to draw conclusions that will direct sales tactics and improve corporate performance. Sales managers, marketers, and executives looking to increase revenue and enhance sales processes are among the intended audience members. Important studies include comparing the sales of classic and vintage automobiles, figuring out average sales, figuring out what items are best-selling, analyzing the profit margin by nation for particular product lines, comparing sales over time, and analyzing countries according to the amount of deals. The research seeks to offer practical insights for boosting sales growth and enhancing overall business outcomes through these assessments.

The project's scope includes analyzing a sizable sales dataset in order to glean insightful information that might improve product offers, guide sales methods, and boost overall business performance. The project will be valuable to analysts and researchers who are looking for insights on market trends and sales dynamics.

Questionnaire

- 1. Comparison of sales between Vintage cars and Classic cars across all countries.
- 2. Determination of the average sales of all products and identification of the highest-selling product.
- 3. Assessment of the country yielding the most profit for Motorcycles, Trucks, and Buses.
- 4. Comparison of sales for all items across the years 2004 and 2005.
- 5. Comparative analysis of all countries based on deal size.

Analytics

1. Comparison of sales between Vintage cars and Classic cars across all countries.

This analysis Compare the sale of Vintage cars and Classic cars for all the countries. Where USA(2102394.02) has the highest sales followed by Spain, France, and Australia.

2. Determination of the average sales of all products and identification of the highest-selling product.

The average sales of every product and the top-selling product are the two goals of this investigation. Additionally, the graph shows that, with an average sales of 405.377104, Classic Cars have the greatest sales, followed by Trucks and Buses and Motorcycles.

3. Assessment of the country yielding the most profit for Motorcycles, Trucks, and Buses.

The goal of this analysis is to determine which nation makes the most money from trucks, buses, and motorcycles. According to a bar graph, the USA leads the world in motorcycle sales with 520371.7, followed by France and Spain, and the world in truck and bus sales with 397842.42.

4. Comparison of sales for all items across the years 2004 and 2005.

The goal of this analysis is to compare the sales of every item in the years 2004 and 2005. The line chart shows that sales of every item are changing at a very rapid rate, with the exception of classic cars, which had the highest sales of any category in both years, with 1762257.09 in 2004 and 672573.28 in 2005.

5. Comparative analysis of all countries based on deal size.

The purpose of this research is to determine how deal sizes are distributed among the various nations. Additionally, the bar chart demonstrates how much larger deals are made in the USA than in every other country, with huge deals valued at 64, medium deals at 505, and small deals at 435.

Conclusion and Review

The analysis provides valuable insights into sales trends and profitability by category and by country. The USA comes out on top as a market leader in Vintage & Classic cars, in Trucks, in Buses, and in Motorcycles. Classic Cars are the top-selling product, accounting for a significant portion of total sales revenue. In addition, the USA shows exceptional profitability, especially in the Trucks & Buses & Motorcycles categories. Sales for Classic cars remain strong throughout 2004 and 2005, showing that there is a continuing demand for

this product category. Also, the USA shows significantly larger deal sizes than other countries, demonstrating its dominance in terms of sales volume.

While the analysis provides visualizations of key findings, more in-depth analysis into the drivers of sales volatility and deal size differences could yield more insightful results. All in all, the report provides valuable insights to optimize sales strategies and accelerate business growth.

Regression

Regression shows...

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.877178			
R Square	0.769441			
Adjusted R				
Square	0.766629			
Standard				
Error	896.6688			
Observations	250			

ANOVA

					Significance
	df	SS	MS	F	F
Regression	3	6.6E+08	2.2E+08	273.6567	4.62E-78
Residual	246	1.98E+08	804014.9		
Total	249	8.58E+08			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
Intercept	-5271.93	322.9166	-16.326	4.32E-41	-5907.96	-4635.9	-5907.96	-4635.9
X Variable 1	103.0809	6.001152	17.17685	5.42E-44	91.26071	114.9011	91.26071	114.9011
X Variable 2	12.81807	1.661734	7.713668	3.04E-13	9.545024	16.09111	9.545024	16.09111
X Variable 3	47.42944	3.350938	14.15408	1.13E-33	40.82925	54.02963	40.82925	54.02963

A multiple regression analysis explored how well several factors (X1, X2, X3) predict a dependent variable. The model fits moderately well, explaining about 77% of the variance. All X variables show a statistically significant relationship with the dependent variable, but their coefficients (e.g., 103.08 for X1) require context to understand the strength of these effects. While statistically significant, the model suggests room for improvement in capturing the full picture.

Anova: one factor

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
Column 1	250	903280.9	3613.123	3445221
Column 2	250	25534	102.136	1664.552

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
					3.1E-	
Between Groups	1.54E+09	1	1.54E+09	894.0704	113	3.860199
Within Groups	8.58E+08	498	1723443			
Total	2.4E+09	499				

This table summarizes a single-factor ANOVA analysis comparing two groups, "Column 1" and "Column 2," based on 500 observations (250 in each group). The average value in Column 1 (3613.12) is significantly higher than Column 2 (102.14). The very low p-value (essentially 0) and high F-statistic (894.07) from the ANOVA test confirm this difference is statistically significant, meaning it's highly unlikely to be due to random chance.

Anova: two factor

Anova: Two-Factor Without Replication

SUMMARY	Count	Sum	Av	erage	Vai	riance
Row 1	3	4097.66		1365.887		5069957
Row 2	3	2451.12		817.04		1725170
Row 3	3	1566		522		648687
Row 4	3	5095.24		1698.413		7507173
Row 5	3	5140.39		1713.463		7650609
Row 248	3	4	4386.35	1462.117		5944534
Row 249	3		2261.6	753.8667		1546167
Row 250	3	4	4176.72	1392.24		5420980
Column 1		250	903280.9	36	313.123	3445221
Column 2		250	25534	1	.02.136	1664.552
Column 3		250	8659		34.636	89.69428

ANOVA

	Source of	55	df	MS	F	P-value	F crit
--	-----------	----	----	----	---	---------	--------

Variation						
Rows	2.95E+08	249	1182944	1.044989	0.33951	1.194432
					1.9E-	
Columns	2.09E+09	2	1.05E+09	925.2361	168	3.013826
Error	5.64E+08	498	1132016			
Total	2.95E+09	749				

This two-factor ANOVA, analyzing effects without repeated measurements, explores how Rows and Columns influence a variable. There are 750 observations in total (250 per column), but each combination of Row and Column is unique (no replication). The analysis reveals a significant effect for Columns (very low p-value) with an average value in Column 1 (3613.12) being much higher than Column 2 (102.14). The effect of Rows, however, is not statistically significant (p-value = 0.34), meaning the variations observed in average values across Rows (ranging from 522 to 1713) might be due to chance. While Row averages differ somewhat, the Column effect appears much stronger. It's important to explore how Row and Column interact to influence the variable together, but this confirms significant independent effects of Columns

Descriptive Statistics

Column1		Column2		Column3		Column4	
Mean	34.636	Mean	3613.123	Mean	102.136	Mean	84.45296
Standard		Standard		Standard		Standard	
Error	0.59898	Error	117.392	Error	2.58035	Error	1.279453
Median	34	Median	3263.96	Median	99	Median	100
Mode	29	Mode	#N/A	Mode	118	Mode	100
Standard		Standard		Standard		Standard	
Deviation	9.470706	Deviation	1856.131	Deviation	40.79892	Deviation	20.22993
Sample		Sample		Sample		Sample	
Variance	89.69428	Variance	3445221	Variance	1664.552	Variance	409.2499
Kurtosis	-0.64676	Kurtosis	1.127057	Kurtosis	-0.19836	Kurtosis	-0.40344
Skewness	0.256745	Skewness	1.013489	Skewness	0.517104	Skewness	-0.9678
Range	51	Range	10626.85	Range	181	Range	73.12
Minimum	15	Minimum	652.35	Minimum	33	Minimum	26.88
Maximum	66	Maximum	11279.2	Maximum	214	Maximum	100
Sum	8659	Sum	903280.9	Sum	25534	Sum	21113.24
Count	250	Count	250	Count	250	Count	250

This table summarizes descriptive statistics for four data columns. The columns have very different characteristics. Column 2 (mean: 3613) has the highest average value and the most extensive spread (standard deviation: 1856) compared to the others. Column 1 and 4 have lower averages (34.64 and 84.45 respectively) and tighter data spreads. Skewness suggests Column 2 and 3 might have more data points towards lower values, while Column 1 and 4

lean towards the opposite. While skewness offers clues about the data shapes, further analysis is needed for a complete picture.

Correlation

	Column	Column	Column
	1	2	3
Column			
1	1		
Column			
2	0.513951	1	
Column			
3	-0.01254	0.663973	1

This table appears to be a correlation matrix snippet focusing on the relationships between Column 1 and the other two columns (Column 2 and Column 3). The values range from -1 to 1, indicating the strength and direction of the linear relationship between the data in each column.

Store Dataset Report

Introduction

This dataset contains sales data from a retail store. It includes things like gender, age, transaction details (order ID, status), product details (category, SKU) and shipping details. Our goal is to help you understand how your customers interact with your products and how they interact with your products. We look for patterns, preferences and correlations within your data. With these insights, you can improve your marketing, manage your inventory and increase your customer satisfaction.

Questionnaire

- 1. Compare various channels based on how many male customers order and female customer order.
- 2. Compare all the categories of order where amount is less than 1500 and greater than 5000.
- 3. How many Customers are there whose age is 30 and above and state is Delhi.
- 4. Which of the following state perform better than other, Delhi, Tamil Nadu, Maharashtra, Rajasthan.
- 5. Which city performed better than all other cities based on highest order placed.
- 6. Compare various categories of items based on most quantity sold and show which gender buys the most category.

Analytics

1. Compare various channels based on how many male customers order and female customer order?

Sales for both men and women are led by Amazon, which is followed by Myntra and Flipkart. Nearly 3432 units were sold by Amazon in the men's category, and nearly 7547 units in the women's category. 5062 units were sold in the women's area of Myntra, and 2156 units in the men's.

2. Compare all the categories of order where amount is less than 1500 and greater than 5000.

Comparing the order categories where the quantity is less than 1500 and more than 5000 is made easier by this analysis. displaying the set (12391) and kurta (10446) with the greatest order count, followed by the saree, top, and western attire.

4. Which of the following state perform better than other, Delhi, Tamil Nadu, Maharashtra, Rajasthan.

Karnataka (2646358) had the best performance among the states, followed by Uttar Pradesh

(2104659). This research reveals which states fared better than the states indicated above.

5. Which city performed better than all other cities based on highest order placed.

Bengaluru had the largest order put with 2673 orders, followed by Hyderabad (1998). Based on the graph recorded, we can really observe which city fared better than the other cities based on biggest order placed.

6. Compare various categories of items based on most quantity sold and also show which gender buys the most category.

The kurta purchased by women is the most popular category of things, followed by men's purchases, and western clothing is the most popular item for both men and women. This report compares these different product categories based on sales volume.

Conclusion and Review

Amazon leads in sales for both men and women, according to the research, with Myntra and Flipkart trailing closely after. Sales for both men's and women's categories are led by Amazon, which is followed by Myntra and Flipkart. Kurtas and sets are among the best-selling products; Karnataka and Bangalore have the best sales figures.

Retailers may make better decisions thanks to the study, which offers insightful information about regional performance and sales patterns. Nonetheless, the analysis may be improved by looking at other variables that affect sales. All things considered, the results provide insightful knowledge for maximizing sales tactics in cutthroat marketplaces.

Regression

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.172398					
R Square	0.029721					
Adjusted R						
Square	0.029659					
Standard						
Error	264.5693					
Observations	31047					

ANOVA

					Significance
	df	SS	MS	F	F
Regression	2	66561870	33280935	475.4629	0
Residual	31044	2.17E+09	69996.92		
Total	31046	2.24E+09			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
Intercept	185.155	16.57854	11.16836	6.61E-29	152.6604	217.6496	152.6604	217.6496
X Variable 1	0.047626	0.099327	0.479489	0.631594	-0.14706	0.242312	-0.14706	0.242312
X Variable 2	492.0276	15.95904	30.83065	1.3E-205	460.7472	523.308	460.7472	523.308

The table summarizes the results of a multiple regression analysis. The model explains only a small portion of the variance (R-squared of 2.97%) with coefficients that may not be statistically significant (high p-values). The F-statistic (475.46) is significant, but this only

indicates the model is better than none, not that the individual variables themselves are significant.

Anova-1 factor

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
Column 1	31047	31237	1.00612	0.008853
Column 2	31047	21176377	682.0748	72136.38

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	7.2E+09 2.24E+09	1 62092	7.2E+09 36068.2	199639.8	0	3.841609
Total	9.44E+09	62093				

The table shows a single factor ANOVA analysis, likely comparing two groups named "Column 1" and "Column 2". There's a statistically significant difference (p-value of 0) between the groups' means. The "Between Groups" variance (7.2E+09) is much larger than the "Within Groups" variance (2.24E+09), indicating the factor has a strong influence on the variable being measured. However, the table doesn't reveal the specific values or what the variable represents.

Anova- 2 factor

Anova: Two-Factor Without Replication

SUMMARY	Count	Sum	Average	Variance
Row 1	3	421	140.3333	42116.33
Row 2	3	1479	493	685648
Row 3	3	521	173.6667	59609.33
Row 4	3	750	250	172171
Row 5	3	607	202.3333	88482.33
Row 31044	3	974	324.6667	283326.3
Row 31045	3	1145	381.6667	403529.3
Row 31046	3	446	148.6667	47506.33
Row 31047	3	828	276	199225
Column 1	31047	1226250	39.49657	228.5307
Column 2	31047	31237	1.00612	0.008853
Column 3	31047	21176377	682.0748	72136.38

ANOVA

Source of						
Variation	SS	df	MS	F	P-value	F crit
Rows	7.49E+08	31046	24134.08	1.000774	0.468198	1.016275
Columns	9.09E+09	2	4.54E+09	188446.6	0	2.995877
Error	1.5E+09	62092	24115.42			
Total	1.13E+10	93140				

This table summarizes a two-factor ANOVA analysis without replication. It compares the effects of two factors (likely "Rows" and "Columns") on a variable. There are statistically significant differences between the "Columns" (p-value of 0) but not between the "Rows" (p-value of 0.46). "Columns" has a much larger effect size (Mean Square of 4.54E+09) compared to "Rows" (Mean Square of 24134.08) and the error term, indicating a stronger influence. However, the specific values of the variable and the content of the rows and columns are not provided in this table.

Descriptive Statistics

Column1		Column2		Column3	
Mean	39.49657	Mean	1.00612	Mean	682.0748
Standard Error	0.085795	Standard Error	0.000534	Standard Error	1.524289
Median	37	Median	1	Median	646
Mode	28	Mode	1	Mode	399
Standard		Standard		Standard	
Deviation	15.11723	Deviation	0.094088	Deviation	268.5822
Sample Variance	228.5307	Sample Variance	0.008853	Sample Variance	72136.38
Kurtosis	-0.1587	Kurtosis	475.3566	Kurtosis	1.768676
Skewness	0.72916	Skewness	19.4509	Skewness	1.052904
Range	60	Range	4	Range	2807
Minimum	18	Minimum	1	Minimum	229
Maximum	78	Maximum	5	Maximum	3036
Sum	1226250	Sum	31237	Sum	21176377
Count	31047	Count	31047	Count	31047

This table summarizes descriptive statistics for three columns. Column1 has a central tendency around 37-39 with some spread (standard deviation of 15) and a range of 60. Column2 shows all values concentrated around 1. Column3 has a higher central tendency (mean 682, median 646) with more variation (standard deviation over 268) and a wider range (2807). The data types likely differ significantly between the columns, with Column2 possibly containing binary values (1s).

Correlation

Column	Column	Column	
1	2	3	

Column			
1	1		
Column			
2	0.004884	1	
Column			
3	0.003522	0.172377	1

The correlation matrix is not computable because the data has only one data point for each column, which is insufficient to determine the linear relationship between the variables.