TIMING DIAGRAM

- Timing Diagram is a graphical representation.
- It represents the execution time taken by each instruction in a graphical format.
- The execution time is represented in T-states.

CONTROL SIGNALS

IO/M (Active Low)	S1	S2	Data Bus Status(Output)
0	0	0	Halt
0	0	1	Memory WRITE
0	1	0	Memory READ
1	0	1	IO WRITE
1	1	0	IO READ
0 &	1	1	Opcode fetch
1	1	1	Interrupt acknowledge

MACHINE CYCLE

 The time required to access the memory or input/output devices is called machine cycle.

T-STATE

- The machine cycle and instruction cycle takes multiple clock periods.
- A portion of an operation carried out in one system clock period is called as T-

Note: Time period, T = 1/f; where $f = Internal \ clock \ frequency$

MACHINE CYCLES OF 8085

The 8085 microprocessor has 5 basic machine cycles.

They are

- Opcode fetch cycle (4T)
- 2. Memory read cycle (3 T)
- Memory write cycle (3 T)
- 4. I/O read cycle (3 T)
- 5. I/O write cycle (3 T)

MACHINE CYCLES OF 8085

- The processor takes a definite time to execute the machine cycles. The time taken by the processor to execute a machine cycle is expressed in T-states.
- One T-state is equal to the time period of the internal clock signal of the processor.
- The T-state starts at the falling edge of a clock.

OPCODE FETCH MACHINE CYCLE OF 8085

MEMORY READ MACHINE CYCLE OF 8085

SIGNAL T,		T ₂	T ₃
CLOCK			
A ₁₅ -A ₈	HIGHER	ORDER MEMORY	ADDRESS
AD ₇ -AD ₀	LOWER-ORDER MEMORY ADDR	DATA	(D ₇ -D ₀)
ALE			\`
IO/M,S _{1,} S ₀	X	$IO/\overline{M} = 0$, $S_1 = 1$	S ₀ = 0
RD			

I/O READ CYCLE OF 8085

EXAMPLE INSTRUCTION: MVI B, 43

EXAMPLE INSTRUCTION: MVI B, 43

EXAMPLE INSTRUCTION: STA 526A

EXAMPLE INSTRUCTION: STA 526A Memory read Opcode fetch Memory read CLK-GOH . 6AH Y FFH 01_H 32_H A8-A15 41_H 42_H 42_H ALE RD WR $IO/\overline{M}, S_0, \overline{S}_1$ 0,0,1 0, 0, 1 0, 1, 1

EXAMPLE INSTRUCTION: STA 526A

Timing Diagram of 'OUT' instruction

OUT 12_H

Memory	Code	
4150H	D3H	
4151H	12H	

IN TIMING DIAGRAM

