List of Phas	List of Phase Models' Parameters							
Parameter of the phase Model	Value	Parameter of the 4rd Gen Prototype	Value	Comment				
ω_k	$2\pi \cdot 60 \cdot 10^9 \text{radHz}$	$f_k = \omega_k/2\pi$	$60 \cdot 10^9 \mathrm{Hz}$	intrinsic SLL frequency				
$K_k^{ ext{ iny CO}}$	$2\pi(\cdot 100500)$ rad MHz/V	$K_k^{ m \scriptscriptstyle VCO, \; fine}$	100500 MHz/V	sensitivity of the VCO at f_{VCO}^{out}				
$ au^{ m cc,\ tune}$	0 30 ns	$ au^{\text{cc}}$, tune	0 30 ns	cross-coupling time-delay				
$G_k^{ ext{PD}}$	3.24	$G_k^{ m PD}$	3.24	The gain of the PD				
$G_k^{ m VGA}$	0.52	$G_k^{ m VGA}$	0.52	The variable gain of the VGA				
G_k^{LF}	1	$G_k^{ m LF}$	0 dB	loop filter gain				
ω^c	100 800 MHz	ω^c	100 800 MHz	range of cut off frequency				
v_k	128 1024	v_k	128 1024	division of the VCO's frequency				
K_k	$2\pi(8.1 \dots 162)10^7 \text{radHz/V}$	$K_k = K_k^{ ext{ iny CO}} G_k^{ ext{ iny PD}} G^{ ext{ iny VGA}} G_k^{ ext{ iny LF}} / 2 ext{ iny VGA}$		coupling strength				

For distance=423m, where K_k^{\min} , $\omega^c = 800 \, \mathrm{MHz}$, v = 8

$G_L(0)$	$-4.3050 \cdot 10^6 \mathrm{Hz}$	$G_L(0) = \frac{K_k h'(-\Omega(\tau - \tau^f) + \beta_{kl})}{2v}$	$-4.3050 \cdot 10^6 \mathrm{Hz}$	steady-state loop gain
$G_L(i\gamma)$	$-4.3050 \cdot 10^6 \frac{p(i\gamma)}{i\gamma}$	$G_L(i\gamma) = \frac{K_k h'(\Omega(\tau - \tau^f) + \beta_{kl})}{2v} \frac{p(i\gamma)}{i\gamma}$	$-4.3050 \cdot 10^6 \frac{p(i\gamma)}{i\gamma}$	loop gain

For distance=212m, where $K_k^{ ext{max}},\,\omega^c=100MHz$ and v=4

$G_L(0)$	$-9.24095 \cdot 10^8 Hz$	$G_L(0) = \frac{K_k h' - (\Omega(\tau - \tau^f) + \beta_{kl})}{2v}$	$-9.24095 \cdot 10^{8}$	steady-state loop
				gain
$G_L(i\gamma)$	$-9.24095 \cdot 10^8 \frac{p(i\gamma)}{i\gamma}$	$G_L(i\gamma) = \frac{K_k h'(\Omega(\tau - \tau^f) + \beta_{kl})}{2v} \frac{p(i\gamma)}{i\gamma}$	$-9.24095 \cdot 10^8 \frac{p(i\gamma)}{i\gamma}$	loop gain

Open questions, need for discussion

- divider open questions: high vs. low division, cannot have both since the resulting frequency ranges in which all components need to operate need to be designed for specific frequency regimes; arguments for high division factors easy to be exchanged, less damping in case of wireless transmission (range, power consumption), arguments for low division factors integrated antennas might be possible (packaging)
- τ^{cc} , tune denotes the tunable part of the cross-coupling delay realized either within every input individually (hence each unidirectional connection can be controlled independently), in the output of the VCO's cross-coupling path, or...
- when asking how large the delay can be for a certain setup so that we can still synchronize robustly, we should consider to use the gain-margin measure and provide the maximum time-delays that would guarantee a phase-margin of $\{30^{\circ}, 40^{\circ}, 50^{\circ}, 60^{\circ}, \ldots\}$; is it feasible to plot phase and gain margin as a function of the delay or other parameters