Overview

This project uses several sources related to movie releases and performance to define and analyze what makes a successful movie. It will display results that can be used in decision making for a movie studio creation venture for Microsoft.

Data Sets and Parameters

For this analysis, I've chosen to use the 'The Numbers' data set to analyze budgets since it includes a fuller picture than some of the other options. For a qualitative look, I'll use IMDB to look at user reviews and Rotten Tomatoes to look at critic reviews.

These data sets use very different categorization & scoring methods, and have different data points. Therefore my methodology to analyze each will be unique, and I will treat them as separate sources.

A quick note on some parameters:

- 1. I will be looking at US data only to get a consistent picture of Microsoft's home market as a starting off point
- 2. I'll be cleaning out older movies since the movie industry & video consumption is changing so rapidly, I want to examine only the most recent data

```
In [1]: # First I am going to import all necessary libraries and data files
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

```
In [2]: #import budgets data
    df_budgets = pd.read_csv('zippedData/tn.movie_budgets.csv.gz', compression='gz
    ip')

#import imdb data
    df_imdb_basics = pd.read_csv('zippedData/imdb.title.basics.csv.gz', compressio
        n='gzip')
    df_imdb_ratings = pd.read_csv('zippedData/imdb.title.ratings.csv.gz', compress
    ion='gzip')
    df_imdb_akas = pd.read_csv('zippedData/imdb.title.akas.csv.gz', compression='g
    zip')

#import rotten tomatoes data
    df_rt_info = pd.read_csv('zippedData/rt.movie_info.tsv.gz', sep='\t', compress
    ion='gzip')
    df_rt_rev = pd.read_csv('zippedData/rt.reviews.tsv.gz', sep='\t', compression=
    'gzip', encoding='iso-8859-1')
```

Measures of Success

So before I dive in, I'll outline my metrics for a successful movie:

- 1. Positive return on investment: Because ultimately, a successful business venture makes money.
- 2. **High user ratings:** We want people to like the movie! This will (hopefully) help generate word-of-mouth promotion and social media chat to spread positive opinion.
- 3. High critical ratings: Strong critical reviews mean positive press, which will capture media attention. Having clout in the industry as well can mean getting put up for awards, which can be a great set up to draw in better talent to future films, and better funding from potential investors

First, I'll be looking at the movie budgets data. I want to see if I can get a sense of movies with highest return on investment.

To do this, I need to convert the budget columns into integers and then add a column calculating return on investment. I am also going to clean out older movies, and add year and month columns so I can further analyze the data.

```
In [3]: #convert to date time and add columns for month and year

df_budgets['release_date'] = pd.to_datetime(df_budgets['release_date'])

df_budgets['release_year'] = df_budgets['release_date'].dt.year

df_budgets['release_month'] = df_budgets['release_date'].dt.month

#clean out old movies

df_budgets = df_budgets[(df_budgets['release_year'] >= 2014)]
```

```
In [4]: #make $$ columns into integers

df_budgets['production_budget'] = df_budgets['production_budget'].map(lambda p
    rice: int(price.replace("$", "").replace(",", "")))

df_budgets['domestic_gross'] = df_budgets['domestic_gross'].map(lambda price:
    int(price.replace("$", "").replace(",", "")))

df_budgets['worldwide_gross'] = df_budgets['worldwide_gross'].map(lambda price:
    int(price.replace("$", "").replace(",", "")))

#calculate ROI column

df_budgets['domestic_roi'] = df_budgets['domestic_gross'] / df_budgets['production_budget']
```

I'm going to examine ROI using the variables I have in this data set, which are release date-related. I'll create dataframes to look at ROI by month and year and plot the results.

```
In [5]: df_budgets.sort_values(['domestic_roi'], ascending = False)
    df_roi = df_budgets.groupby(['release_year'])['domestic_roi'].mean()
    df_roi = df_roi.reset_index()
    # 2020 has no financial data in this set
    df_roi = df_roi.drop(index = 6)
    df_roi
```

Out[5]:

	release_year	domestic_roi
0	2014	1.432386
1	2015	1.653406
2	2016	1.599537
3	2017	1.980350
4	2018	2.077434
5	2019	1.224815

```
In [6]: #creating a separate table for months
    df_roi_mo = df_budgets.groupby(['release_month'])['domestic_roi'].mean()
    df_roi_mo = df_roi_mo.reset_index()
```

Out[7]:

	release_month	domestic_roi
0	Jan	1.620346
1	Feb	1.628038
2	Mar	1.932508
3	Apr	1.876318
4	May	1.389633
5	Jun	1.424333
6	Jul	4.815236
7	Aug	1.648232
8	Sep	1.030946
9	Oct	1.628045
10	Nov	1.230309
11	Dec	0.749591

rologge month domostic roi

```
In [8]:
        import matplotlib.ticker as ticker
        plt.figure(figsize=(20, 10))
        ax1 = plt.subplot(1, 2, 1)
        df roi.plot(x='release year', y='domestic roi', ax=ax1, kind = 'bar', legend =
        False, color = '#AD7EF2')
        ax1.set title('ROI by Year')
        ax1.set xlabel('Release Year')
        ax1.set ylabel('ROI ($)')
        ax2 = plt.subplot(1,2,2)
        df_roi_mo.plot(x='release_month', y='domestic_roi', ax=ax2, kind = 'bar', lege
        nd = False, color = '#E17EF2')
        ax2.set title('ROI by Month (all years)')
        ax2.set xlabel('Release Month')
        ax2.set_ylabel('ROI ($)')
        ax1.yaxis.set major formatter(ticker.StrMethodFormatter('${x:,.2f}'))
        ax2.yaxis.set_major_formatter(ticker.StrMethodFormatter('${x:,.2f}'))
        print(ax1)
        plt.savefig('Images/ROI_bars')
```

AxesSubplot(0.125,0.125;0.352273x0.755)

So it looks like July is a definite winner - likely because there are often big summer releases, but also because more people are off work/school. Let's aim for our first movie to come out in July.

More nuanced is that 2017 and 2018 were good years for the industry. Let's take a look at some July movies first to see if we get a sense of any trends, then some top 2017-2018 releases.

```
In [9]: df_july_movies = df_budgets[df_budgets['release_month'] == 7].sort_values(['do mestic_roi'], ascending = False)
# the highest movie on this list, 'The Gallows', is a major outlier with a low production budget and a ~$500 ROI so I am dropping it df_july_movies = df_july_movies.drop([5679])
```

July Movies: ROI vs Budget

Production Budget

```
In [11]: #save image with plotly
fig.write_image("Images/July_scatter.png")
```

The good news is, the majority of these movies have budgets on the lower end of this spread. To not get too risky, we can aim to start with a budget of ~50MM. These titles are diverse and contain horror, action, comedy and drama which gives us lots of options!

In [12]: df_july_movies[df_july_movies['production_budget'] < 50000000].head(10)
Out[12]:</pre>

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross	releas
5685	86	2017-07-07	A Ghost Story	100000	1594798	2769782	
4254	55	2016-07-22	Lights Out	5000000	67268835	148806510	
5228	29	2018-07-20	Unfriended: Dark Web	1000000	8866745	16434588	
3770	71	2014-07-18	The Purge: Anarchy	9000000	71562550	111534881	
3541	42	2016-07-01	The Purge: Election Year	10000000	79042440	118514727	
4894	95	2018-07-13	Eighth Grade	2000000	13539710	14341016	
4484	85	2014-07-11	Boyhood	4000000	25379975	57273049	
2498	99	2016-07-29	Bad Moms	20000000	113257297	180998716	
4653	54	2018-07-06	Sorry to Bother You	3200000	17493096	18285560	
3248	49	2018-07-04	The First Purge	13000000	69488745	136617305	
4							

```
In [44]: df_good_years = df_budgets[(df_budgets['release_year'] == 2017) | (df_budgets[
    'release_year'] == 2018)]
    fig2 = px.scatter(df_good_years, x='production_budget', y='domestic_roi', hove
    r_data=['movie'], width=800, height=600)
    fig2.update_layout(xaxis_title='Production Budget', yaxis_title='ROI ($)', tit
    le = '2017-2018 Budget by ROI')
    fig2.update_yaxes(tickprefix="$")
    fig2.update_xaxes(tickprefix="$")
```

2017-2018 Budget by ROI

So, similarly we get a diverse range of titles with most production budgets falling below \$50k. Interestingly, there are a lot of horror movies in the top 10.

```
In [14]: fig2.write_image("Images/year_scatter.png")
```

In [15]: df_good_years[df_good_years['production_budget'] < 50000000].sort_values('dome
 stic_roi').tail(10)</pre>

Out[15]:

		id	release_date	movie	production_budget	domestic_gross	worldwide_gross	release
1	623	24	2017-09-08	It	35000000	327481748	697457969	
2	865	66	2018-04-06	A Quiet Place	17000000	188024361	334522294	
4	257	58	2017-10-13	Happy Death Day	5000000	55683845	125010260	
4	590	91	2018-04-13	Truth or Dare	3500000	41411015	95127344	
3	989	90	2018-03-16	I Can Only Imagine	7000000	83482352	85604221	
5	571	72	2017-04-28	Sleight	250000	3930990	3934450	
3	535	36	2018-10-19	Halloween	10000000	159342015	254900667	
5	685	86	2017-07-07	A Ghost Story	100000	1594798	2769782	
4	249	50	2017-01-20	Split	5000000	138141585	278964806	
4	248	49	2017-02-24	Get Out	5000000	176040665	255367951	
4								•

What if we took a different angle and didn't worry about budgets, but instead looked at what movies grosed the highest?

In [16]: df_budgets.sort_values(['domestic_gross'], ascending = False).head(10)

Α.		L 1	Г 4	-	п	
U	un	ΕI	IJ	Lb	-1	

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross	release_
5	6	2015-12-18	Star Wars Ep. VII: The Force Awakens	306000000	936662225	2053311220	
41	42	2018-02-16	Black Panther	200000000	700059566	1348258224	
6	7	2018-04-27	Avengers: Infinity War	300000000	678815482	2048134200	
33	34	2015-06-12	Jurassic World	215000000	652270625	1648854864	
4	5	2017-12-15	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747	
43	44	2018-06-15	Incredibles 2	200000000	608581744	1242520711	
44	45	2016-12-16	Rogue One: A Star Wars Story	200000000	532177324	1049102856	
134	35	2017-03-17	Beauty and the Beast	160000000	504014165	1259199706	
45	46	2016-06-17	Finding Dory	200000000	486295561	1021215193	
3	4	2015-05-01	Avengers: Age of Ultron	330600000	459005868	1403013963	
4							•

These movies all are all pretty major franchises, and in many cases, remakes or sequels. Unless we want to purchase or start a major movie franchise on our first try, let's use 'July Movies' as our goal.

So to recap the recommendations from this data analysis, which answers success metric #1:

- 1. Release a movie in July for the biggest return on investment
- 2. Start with a budget below \$50MM since most July movies with high returns fell at or below this.

Now I'll move on to #2 and #3, and start working on the ratings data. First, I'm going to clean up and examine the IMDB data.

```
In [17]: #remove older years
    df_filtered = df_imdb_basics[(df_imdb_basics['start_year'] <= 2020) & (df_imdb_basics['start_year'] >= 2014)]
    #drop null values
    df_filtered = df_filtered.dropna(subset=['genres'])
    #drop titles with a low number of votes since there isn't statistical signific ance
    df_imdb_ratings = df_imdb_ratings[(df_imdb_ratings['numvotes'] > 100)]
```

Now I am going to split out the genres into multiple columns.

```
In [18]: df_filtered = df_filtered.dropna(subset=['genres'])
    genres = df_filtered['genres'].str.split(",", n = 1, expand = True)
    df_filtered['genre1']= genres[0]
    df_filtered['genre2']= genres[1]
    genres2 = df_filtered['genre2'].str.split(",", n = 1, expand = True)
    df_filtered['genre2']= genres2[0]
    df_filtered['genre3']= genres2[1]
    df_filtered.head()
```

Out[18]:

	tconst	primary_title	original_title	start_year	runtime_minutes	genres	g
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography,Drama	Biog
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama	[
3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	NaN	Comedy,Drama	Сс
4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy,Drama,Fantasy	Cc
5	tt0111414	A Thin Life	A Thin Life	2018	75.0	Comedy	Cc
4							•

I am choosing to use pandasql to join all the dataframes and make some queries about the data. First I'm joining the basics data with ratings, then I am joining the 'akas' data. Since I want to focus on US only data for this analysis this will help me filter out non-US market data.

	tconst	primary_title	original_title	start_year	runtime_minutes	genres	ger
0	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama	Dra
1	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy,Drama,Fantasy	Com

In [20]:

```
q = '''SELECT *
    FROM imdb_joined_df
    JOIN df_imdb_akas
    ON df_imdb_akas.title_id = imdb_joined_df.tconst
    ;'''
imdb_all = pysqldf(q)
imdb_all.head(2)
```

Out[20]:

	tconst	primary_title	original_title	start_year	runtime_minutes	genres	genre1	genre2	g
0	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama	Drama	None	
1	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama	Drama	None	

```
In [21]: #filter to US only
imdb_all = imdb_all[imdb_all['region'] == 'US']
#there are duplicates coming up so I'll drop those
imdb_all = imdb_all.drop_duplicates(subset = 'tconst')
```

Next I'm working through my rating-by-genre calculation. I'll need a list of all the genres.

First, I have a function that loops through all three genre columns, and creates a list of ratings for a given genre. It then outputs the average rating.

```
In [22]: #get a list of all the genres
         genres_list = list(imdb_all['genre1'].unique())
In [42]: def avg_rating_by_genre(genre):
              .. .. ..
             Loops through each row in the IMDB data frame
             and appends all ratings of a given genre to a list,
             then takes the average of the list
             Parameters:
             genre: genre in genres list
             Returns:
             average rating of all ratings of given genre
             averagerating list = []
             for row in imdb all.index:
                  if (imdb all['genre1'][row] == genre) | (imdb all['genre2'][row] == ge
         nre) | (imdb all['genre2'][row] == genre):
                      averagerating list.append(imdb all['averagerating'][row])
             return np.mean(averagerating list)
```

I want to see the averages for all in one place, so I will use the unique genres list to format that into a dictionary. To make it easier to plot, I'm going to convert this into a dataframe and order it.

```
In [24]: # link average rating to each genre in my list using a dictionary
genre_dict = {}
for genre in genres_list:
    value = avg_rating_by_genre(genre)
    key = genre
    genre_dict[key] = value
In [25]: genre_df = pd.DataFrame(list(genre_dict.items()),columns = ['Genre','Average R
    ating'])
genre_df = genre_df.sort_values('Average Rating', ascending = False)
```

```
In [26]: plt.figure (figsize=(10,6))
    ax = sns.barplot(x=genre_df['Genre'], y=genre_df['Average Rating'], palette='v
    iridis')

plt.title('Genres by Average Rating (IMDB)')
    plt.xlabel('Genres')
    plt.ylabel('Average Rating')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.ylim(0, 10)
    plt.savefig('Images/IMDB_Ratings')
```


Interestingly, non-fiction genres like Biography, Documentary, History & Sport look to have highest ratings. Another contender is music/musical.

So in response to question #2: We should consider a non-fiction subject, maybe a profile of a musician or athlete that is relevant right now.

Note: I also took a look at the relationship between runtime and ratings, and didn't find any conclusive results. My recommendation would be to aim for a close to average runtime when working on movie parameters. The mean runtime looks to be 97 minutes with a standard deviation on the lower end, so between 1.5 and 2 hours is a good range to keep in mind.

```
In [27]: print(imdb_all['runtime_minutes'].mean())
    print(imdb_all['runtime_minutes'].std())

97.15842894969109
    18.71284901507976
```

Finally, to get a complete picture, I'll look at the Rotten Tomatoes data sets.

I want to join review data to the movie data, but this would be a many-to-one join that would be very large difficult to work with. Therefore, I am creating an indicator of average review positivity for each movie so I can add columns to the rt_info dataframe. After previewing the 'rating' column, I can see that the scale of ratings is different in many instances, and some are numerical while some are not. Since it would be pretty messy to try and make this column workable, I am instead going to use the 'fresh' column to get a percentage of overall positive reviews.

Out[45]:

	id	review	rating	fresh	critic	top_critic	publisher	date	fresh_ind
0	3	A distinctly gallows take on contemporary fina	3/5	fresh	PJ Nabarro	0	Patrick Nabarro	November 10, 2018	1
1	3	It's an allegory in search of a meaning that n	NaN	rotten	Annalee Newitz	0	io9.com	May 23, 2018	0
2	3	life lived in a bubble in financial dealin	NaN	fresh	Sean Axmaker	0	Stream on Demand	January 4, 2018	1
3	3	Continuing along a line introduced in last yea	NaN	fresh	Daniel Kasman	0	MUBI	November 16, 2017	1
4	3	a perverse twist on neorealism	NaN	fresh	NaN	0	Cinema Scope	October 12, 2017	1

Out[29]:

	count	sum	fresh_pct
id			
3	163	103	0.631902
5	23	18	0.782609

```
In [30]: # now I can merge the dataframes using the movie ID
rt_all = pd.merge(df_rt_info, df_grouped, how='inner', on='id')
```

My dataframes are merged with a 'ratings' indicator, so now I am going to clean up the data. I'll then split the genres into separate columns similar to what I did for the IMDB data, then write a similar loop function to get an average by genre.

```
In [31]: #create a column for release year by changing the current dates to datetime an
          d separating
          rt all['theater date'] = pd.to datetime(rt all['theater date'])
          rt_all['release_year'] = rt_all['theater_date'].dt.year
          #fill nas so I can work with the data
          rt all['release year'] = rt all['release year'].fillna(0)
          #dates are coming up as floats so I am changing them to integers
          rt all = rt all.astype({'release year': 'int64'})
In [32]:
         # filter out older movies
          rt filtered = rt all[(rt all['release year'] >= 2010)]
         genres = rt_filtered['genre'].str.split("|", n = 1, expand = True)
In [33]:
          rt filtered['genre1']= genres[0]
          rt filtered['genre2']= genres[1]
          genres2 = rt_filtered['genre2'].str.split("|", n = 1, expand = True)
          rt filtered['genre2']= genres2[0]
          rt_filtered['genre3']= genres2[1]
          rt_filtered.head(2)
Out[33]:
                                                                 writer theater_date dvd_date cui
              id
                  synopsis rating
                                                 director
                                        genre
                  New York
                   City, not-
                                 Drama|Science
                                                                 David
                      too-
                                                   David
                                                                                      Jan 1,
                              R
                                     Fiction and
                                                         Cronenberg|Don
                                                                         2012-08-17
                    distant-
                                               Cronenberg
                                                                                       2013
                                       Fantasy
                                                                 DeLillo
                 future: Eric
                      Pa...
                     "Love
                  Ranch" is
                                                   Taylor
                                                                                      Nov 9.
            14
                              R
                                        Drama
                                                          Mark Jacobson
                                                                         2010-06-30
                 bittersweet
                                                 Hackford
                                                                                       2010
                  love story
                    that ...
          #get a list of all genres - the first 2 columns cover them all
In [34]:
          genrelist1 = list(rt_filtered['genre1'].unique())
          genrelist2 = list(rt filtered['genre2'].unique())
          genrelist all = set(genrelist1 + genrelist2)
```

```
In [43]: | def avg_rating_by_genre_rt(genre):
              .. .. ..
             Loops through each row in the RT data frame
             and appends the count and sum columns for a given genre to corresponding l
         ists
             the uses the sum of each of those lists to calculate a mean
             for the genre overall
             Parameters:
             genre: genre in genrelist all
             Returns:
             average 'fresh %' of all ratings of given genre in data frame
             genre_counts = []
             genre sums = []
             for row in rt filtered.index:
                  if (rt_filtered['genre1'][row] == genre) | (rt_filtered['genre2'][row]
         == genre) | (rt filtered['genre2'][row] == genre):
                      genre counts.append(rt filtered['count'][row])
                      genre sums.append(rt filtered['sum'][row])
             genreavg = (sum(genre sums) / sum(genre counts))
             return genreavg
In [36]: | genre dict rt = {}
         for genre in genrelist all:
             value = avg_rating_by_genre_rt(genre)
             kev = genre
             genre dict rt[key] = value
         genre_dict_rt
Out[36]: {'Drama': 0.6926089084679393,
           'Special Interest': 0.4,
          'Animation': 0.6402366863905326,
          'Western': 0.3275862068965517,
          'Mystery and Suspense': 0.6157007809288944,
          'Romance': 0.7539556962025317,
           'Art House and International': 0.7368421052631579,
          'Action and Adventure': 0.5514285714285714,
          'Horror': 0.5098039215686274,
          'Sports and Fitness': 0.688,
          'Science Fiction and Fantasy': 0.47297297297297,
          'Musical and Performing Arts': 0.39672131147540984,
          None: 0.6606098909780376,
          'Documentary': 0.9076923076923077,
          'Comedy': 0.6409075961854653,
          'Kids and Family': 0.539568345323741}
```

```
In [37]: # I'm making this into a dataframe and cleaning it up
    genre_df_rt = pd.DataFrame(list(genre_dict_rt.items()),columns = ['Genre','Ave
    rage Fresh Score'])
    genre_df_rt = genre_df_rt.sort_values('Average Fresh Score', ascending = False
)
    genre_df_rt = genre_df_rt.reset_index()
```

In [38]: # I am getting a 'none' genre so I need to remove that
genre_df_rt = genre_df_rt.dropna()

Out[38]:

	index	Genre	Average Fresh Score
0	13	Documentary	0.907692
1	5	Romance	0.753956
2	6	Art House and International	0.736842
3	0	Drama	0.692609
4	9	Sports and Fitness	0.688000
6	14	Comedy	0.640908
7	2	Animation	0.640237
8	4	Mystery and Suspense	0.615701
9	7	Action and Adventure	0.551429
10	15	Kids and Family	0.539568
11	8	Horror	0.509804
12	10	Science Fiction and Fantasy	0.472973
13	1	Special Interest	0.400000
14	11	Musical and Performing Arts	0.396721
15	3	Western	0.327586

```
In [39]: import matplotlib.ticker as mtick
  plt.figure (figsize=(10,6))
  ax = sns.barplot(x=genre_df_rt['Genre'], y=(genre_df_rt['Average Fresh Score']
  *100), palette='magma')
  plt.title('Genres by Percent Positive Ratings (Rotten Tomatoes)')
  plt.xlabel('Genres')
  plt.ylabel('% Positive Rating')
  plt.xticks(rotation = 45, horizontalalignment="right")
  ax.yaxis.set_major_formatter(mtick.PercentFormatter())
  plt.savefig('Images/RT_Ratings')
```


While the methodology is pretty different here, it looks like documentaries are still the top rated genre. However, music looks like it's on the lower end compared to IMDB rankings.

Looking at the second, third, and fourth result: While Romance and Drama weren't in the top categories in the IMDB data, they were still above average. Art House and International is a pretty vague category, but may recall some of our top revenue-driving movies with lower budgets from the budgets data.

These are critical ratings, so we have to keep in mind a possible bias towards more 'serious' genres, but this doesn't look too conflicting with the IMDB data.

It's important to note that this data set is notably much smaller than our IMDB one, due to this data primarily consisting of older movies.

There are only a few movies in the top categories, for example! However, they all have a lot of reviews, by critics, which can carry lots of weight as they get published.

Due to this, I'm still considering the results relevant but we should keep in mind the small sample size of actual films.

So my answer to #3 is:

- · Documentaries are still a strong contender
- If there is opportunity to do a romance film, the top titles below indicate the need for premium talent involvement
- Although horror films appear to make money from the budgets data, they are low ranking in both IMDB and Rotten Tomatoes

Out[46]:

	id	synopsis	rating	genre	director	writer	theater_date	d
381	685	Adapted from Bob Glaudini's play of the same n	R	Comedy Romance	Philip Seymour Hoffman	Bob Glaudini	2010-09-17	
1117	1975	The year is 1953. A visiting archaeologist cal	NR	Drama Romance	Vikramaditya Motwane	Vikramaditya Motwane Bhavani Iyer Anurag Kashyap	2013-07-03	
258	458	This is a romantic comedy set in Paris about a	PG- 13	Comedy Romance	Woody Allen	Woody Allen	2011-06-10	
138	251	In this adaptation of the novel "The Price of 	R	Drama Romance	Todd Haynes	Phyllis Nagy	2015-11-20	
599	1067	CALL ME BY YOUR NAME, the new film by Luca Gua	R	Drama Romance	Luca Guadagnino	James Ivory	2018-01-19	
4							>	

Conclusions

- Positive return on investment: Summer releases, namely July ones, make the most money in terms of return on investment. It's not necessary to release a big budget franchise film to make money aroud this time.
- 2. **High user ratings:** People have high opinions of non-fiction genres like Biography, Documentary, History & Sport. Non-fiction genres do seem to be having a moment on streaming services this year, and the prevalence of the true-crime genre may have renewed the appetite for real-life stories
- 3. **High critical ratings:** Documentary, Romance, Art House/International, and Drama all had 'passing' scores from critics. These genres may not be as clearly linked, but thinking about what they are not (Comedy, Action, Sci Fi/Fantasy, Horror) will help us understand what to steer away from!