Chi Square (X2) Test Basics, formula & conditions

· Various significance tests buch as 7-test, t-test on F-test were based on the assumption that the samples where drawn from the normally distributed population.

Parametric Tests: - Testing procedure trequires the assumption about type or parameters of the population.

e.g. Z-test, t-test, F-test etc.

Non-parametric Tests:- It is applied, when no exact information is available about the population; whether population distribution is binomial, poission or normal.

It is also considered as "distribution free testing"

- X2 test is commonly used non-parametric test.

X2-Test.

- The quantity X' describes the magnitude of the descripancy between theoretical & observed values.

FORMULA :-

$$\chi^2 = \sum (O - E)^2$$
 : $O = Observed$ frequency.
 $E = Expected$ ".

$$E = RT \times CT$$

$$: RT = She row total for RII hows$$

$$CT = She column total$$

$$N = Total no. of observations.$$

Choosing teste

V= (7-1)(c-1)

v= degree of Freedom V= Rows & C = No. of colu

Conditions for applying x2 test:

- Each cell Should contain at least 5 observations (Generally preffered to Observations), because it it is less than 5 then χ^2 will be overestimated which leads to the Rejection of Null hypothesis (Ho)
 - All individual observations should be independent & completely handom.
 - The total Sample fine should be at least 50 Observations i.e., N>,50
 - The data should be expressed in original Units. It should not be expressed in % age of ratio.

APPLICATIONS

1: Test for independence of Attributes:

- with the help of x2 test, we can find out whether two or more attributes are associated or not.

2: X2 test as goodness of fit:

- On Various Ocassions, The decision maker needs to understand nihether an actual sample distribution matches or coincides with a known probability distribution such as poisson, binomial or normal.

- The χ^2 test for goodness of fit enable us to determine the extent to which the theoretical probability distributions coincides with empirical Sample distribution.
- (3) X2 test for Yate's correction for continuity:
 - The distribution of χ^2 test statistics is continuous but the data under the test is categorical which is discrete.
 - It causes error due to the discrete data & if it is a 2x2 contingency table then we can apply yate's correction for continuity.
- 4 x2 test for population variance:
 - This is considered as a parametric test.
 - The assumption underlying the X2 test is that the population from which the samples are drawn in normally distributed.

$$\chi^2 = \frac{\xi^2}{\xi_{p^2}} \times (n-1)$$

$$V= n-1.$$

Es = Variance of the Sample. Sp = Variance of the normally distributed population. M = Sample Size.

- (5) Test for homogeneity:
 - This is useful in a case when we intend to Verify whether several populations are homogenous with Respect to some characteristics of interest.

PUESTION NO:01

Sol: 16: Quinine = Not expertise in testing for malaria.
Ha: " 1 ...

Given dain

2

Treatment	Fever	Expected Value	No fever Experience	st Total
Quinine	20	30	480 410	500
No Quinine	100	90	1400 1410	1500
Total	120		1880	2000

$$\chi^2 = \frac{\sum (O-E)^2}{E}; \quad E = \frac{RT \times CT}{N}; \quad N = 2000$$

$$E_{11} = \frac{560 \times 120}{200} = 30$$
 ; $E_{12} = \frac{1500 \times 120}{200} = 90$

$$E_1 = \frac{500 \times 1880}{200} = 470$$
; $E_2 = \frac{1500 \times 1880}{2000} = 1410$

· Calculation of X2

0	E	(OE)	(0-E)2	(0-E)
20	30	-10	100	3.33
100	90	10	100	
480	470	10	100	0.21
1400	1410	-10	100	0.07
				Σ(0-E) = 4.7

$$X^2 = 4.72$$
 Calculated.

$$V = (\gamma - 1)(C - 1)$$

 $V = (2 - 1)(2 - 1) = 1$ (Degsee of Freedom)

Level of significance =
$$5\%$$

 χ^2
 $0.05 = 3.84$

Its is failed & rejected, Hence, Quinine is useful in testing for malaria.

DUESTION NO. 02

QUESTION NO: 02

SX:

40: Drug = Placebo

Ha: Drug & Placebo

Treatment Helped E₁ Reaction E₂ Notified E₃ Total Drug_x 150 140 30 35 70 75 250 Placebo 130 140 40 35 80 75 250 Total 280 70 150 500
$$\chi^2 = \frac{\sum (O-E)^2}{E}$$
; $E = \frac{RT \times CT}{N}$

$$E_{11} = \frac{250 \times 280}{500} = 140 \; ; \quad E_{21} = \frac{250 \times 70}{500} = 35$$

$$E_{31} = \frac{250 \times 150}{500} = 75$$

and the same		~	1
Ca	laulation	0	\mathcal{X}
			1

0	E	(O-E)	(0-E)2	(0-E)
150	140	40	100	0.714
130	140	-10	100 25	0.714
30	35	-5	25	0.714
_	35 15	5	25	0.333
	75	5	25	0.333
			5	= 3.522

$$\chi^2 = \frac{\sum (0-E)^2}{E} = 3.522$$

$$\mathcal{Y} = (\gamma - 1)(c - 1) = (2 - 1)(3 - 1) = 2$$

$$\chi_{0.05}^{2} = 5.99$$

Ho is passed and accepted. Hence, no significant difference in The effect of drug X & Placeto.

X-TEST,

KEY POINTS

- 1. Chi Square test is a Statistical test used to determine if There is a Significant difference between the expected frequencies of The categories.
- 2. It is commonly used for categorical data Such as comparing the distribution of a certain tract within a population to a known distribution.
- 3. It is a non-parametric test.
- 4. It is used to test hypotheses about independence homogeneity, and goodness of fit.
- 5. The p-value is used to determine the level of Significance, which tells us the probability of observing the test statistic by chance if the null hypothesis is true.
- 6. Lower p-value implies stronger evidence against the null hypothesis.
- 7. The test is sensitive to the sample size, the larger the sample size, the smaller the p-value.