Definition 0.1. A statement (or proposition) is a sentence which is either true or false, but not both.

Definition 0.2. The *truth value* of a given statement is true if that sentence is itself true, otherwise the truth value of that statement is false.

Definition 0.3. Let p be a statement. The *negation* of p, written $\neg p$, is the statement with the oposite truth value.

Definition 0.4. Let p and q be statements. The disjunction of p and q, written $p \lor q$, is the statement which is true when either p or q is true and false precisely when p and q are both false.

Definition 0.5. Let p and q be statements. The *conjunction* of p and q, written $p \wedge q$, is the statement which is true precisely when both p and q are true and is otherwise false.

Definition 0.6. A statement form (or proposition form) is an expression made up of statement variables and logical connections (such as \neg , \lor , or \land) which when substituting statements for statement variables becomes a statement.

Definition 0.7. A *truth table* for a statement form displays the truth values corresponding to every possible combination of truths values for its component statement variables.

Example 0.1. Truth tables for logical connectivesL: \neg (not), \lor (or), and \land (and).

Example 0.2. Truth tables for $(p \lor q) \land \neg (p \land q)$

$$\begin{array}{c|c|c} p & q & (p \lor q) \land \neg (p \land q) \\ \hline T & T & F \\ T & F & T \\ F & T & T \\ F & F & F \\ \end{array}$$

Example 0.3. Truth tables for $(p \land q) \lor \neg r$

p	q	$\mid r \mid$	$(p \land q) \lor \neg r$
T	T	T	T
T	T	F	T
T	F	T	F
T	F	F	T
F	T	T	F
F	T	F	T
F	F	T	F
F	F	$\mid F \mid$	T