ii.	How is routing loop prevented in RIP and BGP?	5	2	3	7
b.i.	(OR) What is subnetting? If the host IP address is 135.54.65.42 and subnet mask is 255.255.240.0, find the first and last address of this subnet.	5	3	3	3
ii.	Draw the IPv6 datagram format. Also list the drawback of IPv4.	5	2	3	7.
29. a.i.	From the UDP header content sequence CB84000D00ICFFFF, find: Source and destination port numbers Length of data and total length of UDP datagram 	5	4	4	7
ii.	Differentiate the closed loop congestion control techniques.	5	4	4	7
b.i.	(OR) Draw the TCP segment format with appropriate field markings. How is transmission window size is adjusted in connection with congestion control?	5	2	4	7
ii.	Draw and explain the leaky bucket implementation with FIFO queuing.	5	2	4	7
30. a.i.	Classify compression techniques and give examples. Also write short note on JPEG compression process.	5	2	5	5
ii.	List various network management functions and briefly explain the concept of SNMP.	5	2	5	12
	(OR)			_	_
b.i.	List the SIP messages and illustrate their purpose with a sample session.	5	2	5	5
ii.	Draw an email handing scenario to show the email agents and protocols involved and briefly mention their scope.	5	2	5	12

* * * * *

Page 4 of 4 30NA6-18ECC303J

	 	 		-				
Dog No								
Reg. No.					- 5			

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth Semester

18ECC303J - COMPUTER COMMUNICATION NETWORKS

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:

(i) (ii)		Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet over to hall invigilator at the end of 40 th minute. Part - B should be answered in answer booklet.							et shou	ld be	han	ded	
Time	: 2!	⁄₂ Ho	urs			9				Max	Ma	rks:	75
				PAR	Γ – A (25	×1 = 25	Marks)			Marks	BL	со	PO
						LL Questi							
	1.			is the max	imum nu	mber of sy	mbols tha	at can be re	presented by	1	1	1	7
28		Uni	code.										
		(A)	2^{16}				2^{32}						
		(C)	2^{64}			(D)	2^{128}						
	2.	Nan	ne of th	e data pack	et in data	link layer	is			1	1	1	7
			Datag				Segment						
		(C)	Frame	2		(D)	Format						
	3.			topolog	v uses mi	ıltipoint co	onnection.			1	2	1	12
	٥.	(A)	Bus	topolog	, 4555 1110		Star						
		(C)	Ring			` ′	Mesh		÷				
	4.	In a	six nod	le topology,	how man	ny ports ar	e needed i	for each de	vice?	1	2	1	7
		(A)		1 00		(B)							
		(C)	6			(D)	15						
	5.	10	base	5 etherner meters.	t LAN	has a	maximum	segment	length of	1	2	1	12
		(A)	5.			(B)	10				3		
		(C)	50			(D)	500						
	6.	How	w many	errors can b	e correct	ed by a sc	heme with	$d_{\min} = 4?$		1	3	2	3
		(A)	1			(B)	2						
		(C)	3			(D)	4						
	7.		-	bytes of peives a 42 b			dded in E	thernet da	ta link layer	1	2	2	3
		(A)	4			(B)	6						
		(C)	22		·	(D)	58						
	8.	Calc	ulate th	ne checksun	n for the	data seque	nce 1000 1	1010 0100	0011	1	2	2	3
			0011				1010						
		(C)	0101				1100						
Page 1	of 4	` ′								30N	A6-18	ECC3	03J

9.	is not a random acce	ss mechanism.	1	1	2	7		21.	is SIP message for session termination.	1	5	,
	(A) CDMA	(B) CSMA/CD							(A) Cancel (B) Notify			
	(C) CSMA/CA	(D) Slotted Aloha							(C) Bye (D) Finish			
10.	is IEEE standard for to	oken bus	1	1	2	7		22.	application uses peer-to-peer paradigm.	1	5	
	(A) 802.3	(B) 802.4							(A) FTP (B) Email	_		
	(C) 802.5	(D) 802.11										
	(0) 002.3	(D) 002.11							(C) IP telephony (D) WWW	-		
11.	is a loop address.		1	1	3	7		22	Find the plain text (D) of sixon sinh artest C-12 using demonstration 1 - 1 7 1	2	5	
	(A) 0.0.0.0	(B) 127.0.0.0							Find the plain text (P) of given ciphertext C=13 using decryption key d=7.		,	
	(C) 172.16.0.0	(D) 255.255.0.0							(Assume that prime numbers used are 3 and 11)			
	(C) 172.10.0.0	(D) 255.255.0.0							(A) 1 (B) 3			
12	Which of the following is not a BGI	D magaaga?	1	1	6	7			(C) 7 (D) 11			
14.	(A) Hello		•	•	J	,		64	37/1 1 C 4 C 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	,
	31	(B) Update							Which of the following is present in both HTTP request line and status	1	3	3
	(C) Keep alive	(D) Notification							line?			
10	T1. (C d 1 1 1 1 1 1		1	•	1	_			(A) Version (B) URL			
13.	Identify the private address	(T) 177 000	1	2	3	ь			(C) Status code (D) Method			
	(A) 100.0.0.0	(B) 172.0.0.0										
	(C) 192.168.0.0	(D) 255.255.255							Identify the protocol used in pulling email message from server by client	1	5	3
									(A) Simple mail transfer protocol (B) Post office protocol			
14.		n a block 130.56.0.0/16, how many	1	3	3	3			(C) File transfer protocol (D) Simple network management			
	addresses will be there in each subn	et?							protocol			
	(A) 2^{16}	(B) 2^{10}							*			
	(C) 2^6	(D) 2^4										
									$PART - B (5 \times 10 = 50 \text{ Marks})$ Marks	s BL	CO	P
15.	Which of the following is not suppo	rtive protocol in network layer?	1	1	3	7			Answer ALL Questions			
	(A) ARP	(B) RSVP					•					
	(C) RARP	(D) ICMP						26. a.i.	Tabulate the layers of OSI reference model and mention their functions.	2	1	1:
	iii	()							•			
16.	What is the size of TCP sending wir	ndow in 'shunt down' state?	1	2	4	7		ii.	State the merits and demerits of datagram type of packet switching.	2	1	7
	(A) 0	(B) 1							y For Proceedings			
	` /	(D) No change in window size							(OR)			
	(1) 01-p-01-p-01-p-01-p-01-p-01-p-01-	(2) The change in window size						b.i.	What are synchronous and asynchronous data transfer modes? List their 5	2	1	-7
17.	If the TCP flag field value is 000010), then it is segment.	1	1	4	7			pros and cons.			
- / /	(A) ACK	(B) FIN							prob with control			
	(C) EYN	(D) RST						ii	Classify network topologies and highlight their applications. 5	2	1	13
	(c) Lin	(D) R51					-	11.	classify network topologies and inglinght their applications.			
18	Which of the following protocol doe	es not use LIDD?	1-	2	4	7		27 a i	Analyze the error detecting capabilities of cyclic code using polynomials. 5	4	2	3
10.	(A) RIP	(B) FTP		_		•		21. a.i.	Thiatyze the error detecting capabilities of cyclic code using polynomials.			
	(C) SNMP	(D) RTP						ii	Draw and interpret the format of HDLC control field.	2	2	3
	(C) SINM	(D) KIF						11.	Draw and interpret the format of TIDEA control field.	_	_	
10	What is the maximum number of d	ato termos that can be an ensured at all in	1	2	4	7			(OD)			
17.		ata types that can be encapsulated in a	٠,	2	7	,		h;	(OR)	4	2	3
	UDP datagram?	(D) 16 276							Justify the maximum limit on sending window size setting of selective 5	7	_	
	(A) 16,384	(B) 16,376							repeat protocol with relevant diagrams.			
	(C) 65,535	(D) 65,527						;;	Chary have a madium access and in the days in the	2	-	3
20	Which of the felless:		1	1	А	7			Show how a medium access control is done in token ring using suitable	2	2	3
∠U.		n control techniques uses a separate	1	1	4	,			sketches.			
	notification packet?	(D) E 1111 11						20 - :	Circum the ID = 11 == 210.776.124.60.6° 1.4. 1.6. 19. 1.4. 1.6. 19.	1	2	,
	(A) Implicit signaling	(B) Explicit signaling							Given the IP address 218.76.134.68 find the default mask, network address	3	3	3
	(C) Back pressure	(D) Choke packet							and range of block. Also, mention the advantages of classless addressing.			

Page 2 of 4

30NA6-18ECC303J

Page 3 of 4