Einführung in die Quantenkommunikation

Irene Diener, Toni Roob, Jarod A. M. Békési

30. September 2025

30. September 2025

Figure 1: Particle-free interaction

- Was sind Quanten?
- Was ist Quantenmechanik?
- Was ist Quantenkommunikation?
 - Polarisation
- Quantenteleportation
- Quantennetzwerke
- 6 Quellenverzeichnis

Ursprung des Begriffs

- Quant = lat. "quantum" \rightarrow "wie groß" / "wie viel"
- Bedeutet messbares, quantifizierbares
- Demokrit: Materie nicht unendlich teilbar \rightarrow Atome

Der Photoeffekt

Thomas Young:
Doppelspaltversuch (1801 bis 1803)

→ Licht = Welle mit typischen
Überlagerungsmuster (Interferenz)

Figure 3: Doppelspalt

5/34

Natur des Lichts

- Licht löst Elektronen aus Metalloberflächen
- Stromfluss abhängig von der Farbe (Frequenz), nicht Helligkeit (Erwartung)
- Albert Einstein (Idee von Max Planck):
 - Licht tritt in Energiepaketen
 (Photonen) →
 Teilcheneigenschaft
- → Wellen-Teilchen Dualismus

Figure 4: Photoelektrischer Effekt

6/34

Beispiele für Quantenobjekte

Elektronen & Quarks

Photonen & Gluonen

Gitterschwingungen in Kristallen

- Was sind Quanten?
- Was ist Quantenmechanik?
- Was ist Quantenkommunikation?
 - Polarisation
- Quantenteleportation
- Quantennetzwerke
- 6 Quellenverzeichnis

Ein Bereich der Physik, welcher die Eigenschaften und Wechselwirkungen von Materie und Energie auf der Skala von Atomen und subatomaren Partikeln beschreibt.

Mathematische Grundlagen

Schrödinger-Gleichung

Eine der grundlegenden Gleichungen der Quantenmechanik, die die zeitliche Veränderung der Quantenzustände eines Systems beschreibt.

Mathematische Formulierung

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H} \Psi(x,t)$$

i: Imaginäre Einheit; Ψ: Wellenfunktion des Teilchens

 \hbar . Reduzierte Planck-Konstante; \hat{H} : Hamiltonoperato

30. September 2025

Mathematische Grundlagen

Schrödinger-Gleichung

Eine der grundlegenden Gleichungen der Quantenmechanik, die die zeitliche Veränderung der Quantenzustände eines Systems beschreibt.

Mathematische Formulierung

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H} \Psi(x,t)$$

i: Imaginäre Einheit; Ψ : Wellenfunktion des Teilchens

 \hbar . Reduzierte Planck-Konstante; \hat{H} : Hamiltonoperator

10 / 34

Superposition & Qubits

Klassisches Bit: klar definierter

Zustand \rightarrow 0 oder 1

Qubit: kann in Superposition existieren (Schrödingers Katze)

 $|0\rangle \& |1\rangle$

Mehrere Qubits: 2ⁿ Zustände

gleichzeitig

Superposition zerfällt: Qubit fällt

auf $|0\rangle$ oder $|1\rangle$

Figure 5: Visualisierung von Schrödingers Katze

Bloch-Kugel

Grafische Darstellung eines Qubit Zustandes

Jeder Punkt auf der Kugel = möglicher Qubit-Zustand

$$|\Psi\rangle=lpha|0
angle+eta|1
angle$$
 mit

$$|\alpha^2|+|\beta^2|=1\&\alpha, \beta\in\mathbb{C}$$

Wahrscheinlichkeit:

$$|{\it 0}\rangle$$
 zu messen = α^2

$$|1\rangle$$
 zu messen $=\beta^2$

Figure 6: Bloch-Kugel

Quantenkommunikation

Verschränkung

Zwei oder mehr Teilchen sind so miteinander verbunden (Quantensystem), dass die Messung des Zustands eines Teilchens den Zustand der anderen sofort beeinflusst, unabhängig von der Entfernung Bell'sche

Ungleichung:

$$S = |E(a, b) - (a, b') + E(a', b) + (a', b')| \le 2$$

 $S > 2$, dann Verschränkung

Figure 7: Veranschaulichung von Quantenverschränkung

- Was sind Quanten?
- Was ist Quantenmechanik?
- Was ist Quantenkommunikation?
 - Polarisation
- Quantenteleportation
- Quantennetzwerke
- 6 Quellenverzeichnis

Quantenkommunikation ist die Nutzung der "Prinzipien der Quantenmechanik wie Quantenverschränkung und Quantensuperposition, um Informationen nahezu abhörsicher zu übertragen". [Fra25]

- Nutzung von Quantenzuständen (erzeugt durch Polarisation) zur abhörsicheren Nachrichtenübertragung
- Nutzt Superposition und Verschränkung
- Quantenschlüsselverteilung zur Erstellung eines gemeinsamen Schlüssels (siehe Protokolle der Kryptographie)
- Besondere Eigenschaft: Abhören verändert automatisch den Quantenzustand \rightarrow erkennbar

Quantenkommunikation ist die Nutzung der "Prinzipien der Quantenmechanik wie Quantenverschränkung und Quantensuperposition, um Informationen nahezu abhörsicher zu übertragen". [Fra25]

- Nutzung von Quantenzuständen (erzeugt durch Polarisation) zur abhörsicheren Nachrichtenübertragung
- Nutzt Superposition und Verschränkung
- Quantenschlüsselverteilung zur Erstellung eines gemeinsamen Schlüssels (siehe Protokolle der Kryptographie)
- Besondere Eigenschaft: Abhören verändert automatisch den Quantenzustand \rightarrow erkennbar

Licht besteht aus elektromagnetischen Wellen. Das elektrische Feld schwingt immer senkrecht zur Ausbreitungsrichtung. Die Richtung dieser Schwingung nennt man **Polarisation**.

16 / 34

Polarisationsrichtungen¹ I H, V, D, A

Basen (Photonenzustände):

Orthogonal: H/V - Z-Basis

H. 0° : horizontal \rightarrow

V, 90° : vertikal \uparrow

Schräg: D/A – X-Basis

D, 45° : diagonal \nearrow

A, 135° : antidiagonal \nwarrow

Diener, Roob, Békési Quantenkommunikation 30. September 2025 17 / 34

Polarisationsrichtungen ¹ II

Jones-Vektoren

$$|H\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |V\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

$$|D\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad |A\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Quantenkommunikation

Zustände werden als $|0\rangle$ oder $|1\rangle$ festgelegt

z. B: H/V – Basis
$$ightarrow$$
 $|H
angle=0$, $|V
angle=1$

18 / 34

¹ lineare Polarisation

Wie funktioniert sie?

- Erfordert Basiselemente des Quantencomputers
- Polarisation der Schwingungsrichtungen der Photonen mittels Polarisationsfilter \rightarrow Erzeugung von Qubits

- Begrenzung: Photonenabsorption in Glasfasern ightarrow ca. 100 km Reichweite
- Lösung: Quantenrepeater zur Reichweitenerhöhung \rightarrow zentrales Forschungsthema

Malus' Gesetz

Definition

$$P(Durchgang) = \cos^2(\phi - \theta)$$

 ϕ : Polarisationswinkel; θ : Ausrichtung des Polarisators

- Klassisch: Dieses Gesetz beschreibt die Intensiät des Lichtstrahls nach. einem Polarisator.
- Quantenmechanisch: Es ist die Wahrscheinlichkeit, dass ein einzelnes Photon durchkommt.

20 / 34

Übung I

Ein horizontal polarisiertes Photon ($\phi=0^\circ$) trifft auf einen Polarisator, dessen Transmissionsrichtung bei $\theta=45^\circ$ liegt.

Wie groß ist die Wahrscheinlichkeit, dass das Photon den Polarisator passiert?

Lösung I

Photon horizontal

$$\phi = 0^{\circ}$$
; $\theta = 45^{\circ}$

$$P = \cos^2(-45^\circ) = 0.5$$

 \Rightarrow Jedes Photon hat also eine 50% Chance, durchzukommen.

Diener, Roob, Békési Quantenkommunikation 30. September 2025 22/34

Übung II

Ein Laserstrahl mit einer Intensität von $I_0=10\,\mathrm{mW}$ ist bei 30° polarisiert. Er trifft auf einen Polarisator, dessen Transmissionsrichtung bei 0° liegt. Welche Intensität I hat der Laserstrahl nach dem Durchgang durch den Polarisator?

Lösung II

Laserlicht

$$I_0=10 \, \mathrm{mW}$$
; Polarisation bei 30° ; Treffen des Polarisators bei 0°

$$I = I_0 \cos^2(30^\circ) = 7.5 \,\mathrm{mW}$$

Übung III

Zwei Polarisatoren sind gekreuzt (0° und 90°). Es fällt kein Licht durch. Was passiert jedoch, wenn ein dritter Polarisator mit 45° zwischen die beiden eingefügt wird? Wie groß ist dann die Intensität des durchgelassenen Lichts in Abhängigkeit von I_0 ?

Lösung III

Drei-Polarisatoren-Experiment

- Zwei gekreuzte Polarisatoren (0° und 90°) $\Rightarrow I = 0$
- Hinzufügen eines dritten Polarisator bei 45°:

$$I = I_0 \cdot \cos^2(45^\circ) \cdot \cos^2(45^\circ) = \frac{1}{4}I_0$$

 $\Rightarrow 25\%$ des Lichts passiert den Aufbau.

26 / 34

Diener, Roob, Békési Quantenkommunikation 30. September 2025

Bedeutung in der Quantenkommunikation

- Polarisationszustände sind **Träger von Information** (Qubits).
- Eine Messung verändert den Zustand und kann nicht rückgängig gemacht werden.
- Unbekannte Zustände lassen sich nicht perfekt kopieren (No-Cloning-Theorem).
- Grundlage für sichere Quantenkryptographie (z. B. im BB84-Protokoll).

Diener, Roob, Békési Quantenkommunikation 30. September 2025 27 / 34

- Was sind Quanten?
- Was ist Quantenmechanik?
- 3 Was ist Quantenkommunikation?
 - Polarisation
- Quantenteleportation
- Quantennetzwerke
- 6 Quellenverzeichnis

- Was sind Quanten?
- Was ist Quantenmechanik?
- Was ist Quantenkommunikation?
 - Polarisation
- Quantenteleportation
- Quantennetzwerke
- 6 Quellenverzeichnis

- Was sind Quanten?
- Was ist Quantenmechanik?
- Was ist Quantenkommunikation?
 - Polarisation
- Quantenteleportation
- Quantennetzwerke
- 6 Quellenverzeichnis

30. September 2025

Quellenverzeichnis I

FRAUNHOFER GESELLSCHAFT:

Quantenkommunikation.

(2025).

https://www.fraunhofer.de/de/forschung/artikel-2025/quantenforschung/quantenkommunikation.html, Abruf: 17 09 2025

Abbildungsverzeichnis I

