

Question: How shall we select the turing parameter ??

Model Selection (Fach Tindexa model).

Basic Method: (Data Splitting)

We split the data $D = \{X_1, ..., X_n\}$ into two subsets D_1 and D_2 , such that $D_1 \cup D_2 = D$ with sizes $n_1 + n_2 = n$.

(For example, n=n=n2=n).

Consider a pool of tuning parameters.

Λ= {λ,, -..., λκ},

Let β^{λ_1} ,, β^{λ_K} be the ridge regression estimators
on the subset Di. We define the clota splitting score.
corresponding to like as
$DS(k) = \frac{1}{h_2.i6D_2} \left(Y_i - X_i^T \beta^{3k} \right)^2$
We then pick the model with the smallest DS score.
Theory: Goditioning on Di, it is easy to see that DSCk).
is an unbiased estimator of R(B). 17
Pro and Cons of data splitting:
Pro: Theoretically and Computationally simple.
Con: "Waste" of training data.
Solution: Cross-validation. (CV)
Def. (J-fold Cross-Validation): We split the data D'into.
Jequal sized parts Di, , DJ. This forms J
binary splits.
(DSI) D, vs. D/D1

We then pick the model with the smallest CV score.

Note: After picking 2, we use the chosen 2 to fit on the entire dataset.

Extension from the ridge regression to bridge regression. Let $X \in \mathbb{R}^n$, $\|X\|_p = (|X||^p + \cdots + |X||^p)^{\frac{1}{p}}$. For $|X| \in \mathbb{R}^n$, $\|X\|_p$ is a norm. For 0 is not a norm.