Aalto University School of Science Master's Programme in Computer, Communication and Information Sciences

Ananth Mahadevan

Inferring Voting Networks in Online Elections

Master's Thesis Espoo, March 14, 2020

DRAFT! — April 12, 2020 — DRAFT!

Supervisor: Professor Aristides Gionis Advisor: Blank M.Sc. (Tech.)

Aalto University School of Science

Master's Programme in Computer, Communication and ABSTRACT OF Information Sciences MASTER'S THESIS

Author:	Ananth Mahadevan									
Title:										
Inferring Voting Networks in Online Elections										
Date:	March 14, 2020	Pages:	21							
Major:	Computer Science	Code:	SCI3042							
Supervisor:	Professor Aristides Gionis									
Advisor:	Blank M.Sc. (Tech.)									
abstract										
Keywords:	signed networks, balance, status, elections, Wikipedia, voting, graphs									
Language:	English									

Aalto-yliopisto

Perustieteiden korkeakoulu

DIPLOMITYÖN TIIVISTELMÄ

Tieto-, tietoliikenne- ja informaatiotekniikan maisteriohjelma

Tekijä:	Ananth Mahadevan							
Työn nimi:								
Äänestysverkkojen päätelmät online-vaaleissa								
Päiväys:	20. maaliskuuta 2020	Sivumäärä:	21					
Pääaine:	Tietotekniikka	Koodi:	SCI3042					
Valvoja:	Professori Aristides Gionis							
Ohjaaja:	Diplomi-insinööri Blank							
Finnish Abstract								
Asiasanat:	Finnish Keywords							
Kieli:	Englanti							

Aalto-universitetet

Högskolan för teknikvetenskaper

Magisterprogrammet i data-, kommunikations- och infor- SAMMANDRAG AV mationsteknik DIPLOMARBETET

Utfört av:	Ananth Mahadevan									
Arbetets namn:										
Avsluta omröstningsnätverk i onlineval										
Datum:	Den 20 mars 2020	Sidantal:	21							
Huvudämne:	Datateknik	Kod:	SCI3042							
Övervakare:	Professor Aristides Gionis									
Handledare:	Diplomingenjör Blank									
Swedish abstract										
Nyckelord:	Swedish Keywords									
Språk:	Engelska									

Acknowledgements

Espoo, March 14, 2020

Ananth Mahadevan

Contents

1	Int r 1.1		8											
	1.2		9											
2	Gra	ph Theory 10	0											
	2.1	Signed Graphs, Balance and Status	0											
		2.1.1 Graphs and Signed Graphs	0											
		2.1.2 Balance Theory	0											
		2.1.3 Status Theory	1											
3	Vot	e Prediction	2											
	3.1	Election versus Vote Prediction	2											
	3.2	Signed Edge Prediction	3											
	3.3	Linear Combination of Graphs	3											
	3.4	Local Signed Network	3											
4	Wikipedia 14													
	4.1	Structure and hierarchy in Wikipedia	4											
	4.2	Elections in Wikipedia	4											
5	Exp	periments 15	5											
	5.1	Datasets	5											
	5.2	Graphs	5											
	5.3	Models	6											
		5.3.1 Linear Combination of Graphs	6											
		5.3.1.1 Iterative Mode	6											
	5.4	Evaluation	6											
6	Res	ults and Discussion 1'	7											
	6.1	Linear Combination of Graphs	7											
	6.2	Local Signed Network	7											

	6.3	Comparison						 					•	•	18
7	Con	clusions and	d Fu	$ ext{ture}$	W	orl	ζ.								19

Introduction

In recent years, researchers have become increasingly interested in understanding the behaviour of voters in social networks. Knowledge of the factors that motivate voters is of great importance in selecting successful policies or candidates. This is a classic problem and has been studied in the fields of game theory and political science [7, 12, 13]. More recently, there is a focus on using information from the network of voters to model their behaviour. This provides an insight into the interactions and effect of influence on voters in a community. For example, voting for bills in the United States Congress [6] or electing administrators in Wikipedia [2, 5, 8].

Votes can be represented as a *signed* network with positive or negative links. Finding groups using clustering techniques [1, 3, 11] and predicting signed links [4, 9, 10] in these networks is well researched. These approaches provide an ability to understand the group dynamics at play and predict votes and in such a network. However, they do not consider the iterative and chronological nature of the voting that takes place in these networks.

Step1: Counter claiming

How link prediction doesn't account for the differences in voting patters.

Step2: Indicating a Gap

How the voter behaviour cannot be directly analyzed using graph theory concepts.

Model interpretation is weaker.

1.1 Thesis Contribution

The Local Signed network model that utilizes interaction between voters to predict their votes.

1.2 Thesis Outline

Graph Theory

Will provide background and concepts related to graph theory. Then we will focus on the task of predicting the vote of an individual user given their voting history and current state of the election. Next, we briefly explain the Wikipedia hierarchy and election process in Wikipedia. We then present the local signed network based model that accurately predicts a user's vote in a Wikipedia election.

2.1 Signed Graphs, Balance and Status

2.1.1 Graphs and Signed Graphs

- Discuss basic terms related to graph theory
- Define terms such as Nodes, Edges, direction, edge weight,
- successor, predecessor and neighbors
- Signed graphs and restrictions
- Explain relevance in real world settings

2.1.2 Balance Theory

- Explain balance theory origin and significance.
- Illustrate with traids and examples
- Define mathematical background to measure balance through the Eigendecomposition of the graph Laplacian

2.1.3 Status Theory

- Describe the nature of the directed setting
- Illustrate the differences to Balance theory
- Mention existing ways to measure violation to status in a network

Vote Prediction

In this section we first provide the motivation of choosing independent vote prediction as our target and the differences from predicting the result of an election. Next we describe the available techniques and methods to predict individual votes or signed edges in a network and how it relates to the problem at hand. We then provide two novel methods of using user information long with past election results to predict votes.

3.1 Election versus Vote Prediction

- Discuss existing election result predictions schemes
- Discuss the limitations in understanding election dynamics through just predicting election results
- Describe the process as an information cascade, discuss the potential Game Theory settings
- Show the two parts of the problem from an information cascading perspective
 - Who is going to vote next
 - How they are going to vote
- Discuss the assumptions in usual Independent Cascade (IC) models
- Explain the difficulty of both aspects in the domain of an election
- Motivate the selection of the problem as an **Independent Vote Prediction**

3.2 Signed Edge Prediction

- Discuss the existing edge predictions work
- Directly using signed traids as features
- Using triads along with network features
- Using user information and interaction data for predicting votes and/or elections
- The main drawbacks in these methods when considering an election setting

3.3 Linear Combination of Graphs

- Describe the linear combination of graphs derived from user and election data
- Explain topic similarity, follows network, interaction networks and other features
- How it can also incorporate signed features as additional features in prediction

3.4 Local Signed Network

- Explain the concept of the local signed network for a particular user
- Motivate the definition with respect to elections and influence
- Describe how to use balance and status theory to predict the vote
- Clarify the differences to signed edge prediction efforts
- Mention Agony as a way to measure status compliance here?

Wikipedia

In this section we provide an overview of how Wikipedia is structured, the hierarchy that exists withing editors. We then explain the election process of getting administrator rights in Wikipedia.

4.1 Structure and hierarchy in Wikipedia

4.2 Elections in Wikipedia

- Explain Editors and Administrators in Wikipedia
- Describe the Request for Administrator(RfA) process
- Discuss general trends and patters
- Mention research interest and possible current works?

Experiments

In this section we first describe the datasets that will be used in building our vote prediction models. Then we discuss the various linear and graphical models that we consider and their implementations details. Lastly we define the metrics and other means of evaluating the models and the results.

5.1 Datasets

- Maybe a short description of existing SNAP datasets and their limitations
- The details of the Wiki-RfA data and the User-Contribution datasets

5.2 Graphs

- Discuss the process of extraction of the various graphs discussed in the previous sections
- Agree Graphs and Follows Graph, where we measure the degree to which one user agrees and follows another user in previous elections
- **Topic similarity** from the top 100 articles edited for each user and the pairwise Jaccard similarity
- Talk and Interaction graphs, measures communication between users on their respective user talk pages
- Signed Graphs, triad encoding and extracting the triad counts for each voter

5.3 Models

5.3.1 Linear Combination of Graphs

- Discuss the various linear models considered for Graph Combinations
 - Linear Regression
 - Support Vector Classifier
 - Extreme Gradient Boosting (XGBOOOST)
- Discuss how each graph contributes features and the problem is a linear classification problem

5.3.1.1 Iterative Mode

- Discuss the motivation behind an iterative model versus a static prediction model
- Describe how balance is derived from the Agree Graph in a local signed network
- Discuss how the Agree graph is updated in terms of Balance
- Describe how status is derived from the Follows graph in a local signed network
- Discuss how the Follows graph is updated after every election
- Describe how to make the predictions
 - Deterministic : just decide based on eigen value or agony as support or oppose
 - Probabilistic : provide a probability for predicting a support vote

5.4 Evaluation

- Discuss the issues with the imbalance in the datasets
- Illustrate the issues with pure measures of accuracy
- Define Precision, Recall and Macro F1 score
- Discuss ROC AUC and Precision Recall curves for probability based predictions

Results and Discussion

In this section we will present the results of the models and discuss their implications.

6.1 Linear Combination of Graphs

- Present results for each linear classifier
- Discuss the different splits of the dataset to check for robustness and chronological consistency
- Show the feature importances and discuss their relevance
- Compare the raw accuracy versus the macro f1 scores
- Highlight the difficulty of predicting negative votes

6.2 Local Signed Network

- Present the Iterative Balance model results
- Discuss quality of predictions using evaluation metrics
- Mention the difference between deterministic and probabilistic prediction accuracies
- Explain the Iterative Status model results
- Discuss the issues with local model of status and the potential reasons for lower score and quality

6.3 Comparison

- Compare results from signed edge prediction and Iterative signed models
- Discuss Static Linear combination predictions versus Iterative signed predictions
- Discuss the assumptions used in the models and limitations

Conclusions and Future Work

- Explain the quality of results with the election perspective
- Future work is to extend this to other election settings and investigate generality of this approach
- Possible future work in congressional voting data
- Can also tackle the other problem in information cascade theory of how to predict who is most likely to vote next
- This can lead to a complete model of election dynamics and could incorporate elements of game theory and network inference

Bibliography

- [1] Brito, A. C. M., Silva, F. N., and Amancio, D. R. A complex network approach to political analysis: Application to the brazilian chamber of deputies. *PLOS ONE 15*, 3 (2020).
- [2] Cabunducan, G., Castillo, R., and Lee, J. B. Voting behavior analysis in the election of wikipedia admins. In 2011 International Conference on Advances in Social Networks Analysis and Mining (2011), pp. 545–547.
- [3] Chiang, K.-Y., Hsieh, C.-J., Natarajan, N., Dhillon, I. S., and Tewari, A. Prediction and clustering in signed networks: a local to global perspective. *Journal of Machine Learning Research* 15, 1 (2014), 1177–1213.
- [4] Chiang, K.-Y., Natarajan, N., Tewari, A., and Dhillon, I. S. Exploiting longer cycles for link prediction in signed networks. In *Proceedings of the 20th ACM international conference on Information and knowledge management* (2011), pp. 1157–1162.
- [5] Jankowski-Lorek, M., Ostrowski, L., Turek, P., and Wierzbicki, A. Modeling wikipedia admin elections using multidimensional behavioral social networks. *Social Network Analysis and Mining* 3, 4 (2013), 787–801.
- [6] Karimi, H., Derr, T., Brookhouse, A., and Tang, J. Multifactor congressional vote prediction. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (2019), pp. 266–273.
- [7] Kearns, M. J., Judd, J. S., Tan, J., and Wortman, J. Behavioral experiments on biased voting in networks. *Proceedings of the National Academy of Sciences of the United States of America* 106, 5 (2009), 1347–1352.

BIBLIOGRAPHY 21

[8] Lee, J. B., Cabunducan, G., Cabarle, F. G., Castillo, R., and Malinao, J. A. Uncovering the social dynamics of online elections. Journal of Universal Computer Science 18 (2012), 487–505.

- [9] Leskovec, J., Huttenlocher, D., and Kleinberg, J. Predicting positive and negative links in online social networks. In *Proceedings of the 19th international conference on World wide web* (2010), pp. 641–650.
- [10] Leskovec, J., Huttenlocher, D., and Kleinberg, J. Signed networks in social media. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems* (2010), pp. 1361–1370.
- [11] LEVORATO, M., AND FROTA, Y. Brazilian congress structural balance analysis. *Journal of Interdisciplinary Methodologies and Issues in Sciences* (2016).
- [12] Tal, M., Meir, R., and Gal, Y. K. A study of human behavior in online voting. adaptive agents and multi-agents systems (2015), 665–673.
- [13] ZOU, J., MEIR, R., AND PARKES, D. Strategic voting behavior in doodle polls. In *Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing* (2015), pp. 464–472.