Control Systems

G V V Sharma*

Contents				1 Mason's Gain Formula	
1	Mason'	s Gain Formula	1	2 Bode Plot 2.1 Introduction	
2	Bode P	lot	1	2.2 Example	
	2.1	Introduction	1	3 Second order System	
	2.2	Example	1	3.1 Damping	
3	Second order System		1	3.2 Example	
	3.1	Damping	1	4 Routh Hurwitz Criterion	
	3.2	Example	1	4.1 Routh Array	
4	Routh Hurwitz Criterion		1	4.2 Marginal Stability	
	4.1		1	4.3 Stability	
	4.2	Marginal Stability	1	5 STATE-SPACE MODEL	
	4.3	Stability	1	5.1 Controllability and Observability	
5	State-Space Model 5.1 Controllability and Observability		1	5.2 Second Order System	
			1	6 Nyquist Plot	
	5.2	Second Order System	1	7 Compensators	
		,		8 Routh Hurwitz Criterion	
6	Nyquist	Plot	1	8.1 Stability	
7	Compensators		1	8.1. For a unity feedback system shown in Fig.	
8	Routh Hurwitz Criterion		1	$G(s) = \frac{K}{s(s+2)(s+4)(s+6)} $ (8.1.	

Abstract-This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

Stability

8.1

svn co https://github.com/gadepall/school/trunk/ control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

$$G(s) = \frac{K}{s(s+2)(s+4)(s+6)}$$
 (8.1.1)

Design a lead compensator to yield a $K_{\nu} = 2$ and a phase margin of 30.

Fig. 8.1

Solution: For unity feedback we have Velocity error constant (K_{ν})

$$K_{v} = \lim_{s \to 0} sG(s)$$
 (8.1.2)

$$\lim_{s \to 0} \left(\frac{K}{(2+s)(4+s)(6+s)} \right) = 2 \qquad (8.1.3)$$

$$\implies K = 96 \qquad (8.1.4)$$

Check the phase margin and gain crossover frequency by running the following code

codes/ee18btech11036 1.py

- The Phase margin: 19.76°
- Gain Crossover Frequency:1.469 rad/sec The Bode plot of system is as shown,

Fig. 8.1

Therefor amount of phase to be added: 30-19.76=10.24

8.2. The circuit of lead compensator is given by

Transfer function:

$$C(s) = \beta \left(\frac{1 + j\tau\omega}{1 + j\beta\tau\omega} \right)$$
 (8.2.1)

$$\beta = \left(\frac{R_2}{R_1 + R_2}\right) \tag{8.2.2}$$

$$\tau = R_1 C \tag{8.2.3}$$

Find the values of β and τ

Solution: The maximum phase lead compensated by a lead compensator is given by

$$\phi = \sin^{-1} \frac{1 - \beta}{1 + \beta} \tag{8.2.4}$$

at

$$\omega = \frac{1}{\sqrt{\beta}\tau} \tag{8.2.5}$$

Now we know that from Gain crossover frequency

$$\omega = 1.469 rad/sec \tag{8.2.6}$$

and the phase margin to be added:

$$\phi = 10.24^{\circ} \tag{8.2.7}$$

But to compensate for the added magnitude of lead compensator, a correction factor of 10° – 20° is added.Hence

$$\phi = 30.24^{\circ} \implies \beta = 0.33$$
 (8.2.8)

From the bode plot ω is chosen at which gain of original system is

$$-20\log(1/\sqrt{\beta}) = -4.81 \tag{8.2.9}$$

Find the plot using the following code

codes/ee18btech11036 4.py

From plot ω =2.009 rad/sec Solving equations 8.2.4 and 8.2.5:

$$\tau = 0.828 \tag{8.2.10}$$

$$\beta = 0.33 \tag{8.2.11}$$

(8.2.12)

Fig. 8.2

New Transfer Function:

New Transfer Function:

$$G(s) = \frac{96(1 + 0.828s)}{(s)(2 + s)(4 + s)(6 + s)(1 + 0.273s)}$$
(8.2.13)

Fig. 8.2

8.3. Verify your results from the following code:

- The Phase margin: 29.269°
- The Gain Crossover Frequency: 2.02 rad/sec The Bode plot is as shown,

Fig. 8.3