Replicating Amazon Networks

E. Mallick Hossain
06 April, 2017

1 Table 1: Expansion of fulfillment center network

There has been a flurry of activity around Amazon and state sales taxes. The number of states in which Amazon collect sales tax is up to 45, so at least the '# States with Sales Tax Liability' needs to be updated. The MWPVL information might also need to be updated since Amazon has gone on a building spree. I have the following tally from my calculations

Year	Mallick	Tally
1995		1
1996		1
1997		1
1998		1
1999		2
2000		2
2001		2
2002		2
2003		2
2004		3
2005		4
2006		4
2007		4
2008		5
2009		5
2010		5
2011		5
2012		8
2013		16
2014		23
2015		26
2016		30
2017		45

2 Table 2: comScore Sample

I got some slightly different numbers for the comScore sample table. Generally the differences are minor. I used comScore's 'Demographics' databases to count users. The table from the paper is reproduced below:

Year	Households	States (%)	Counties (%)
2006	87,054	49 (100)	2,875 (92)
2007	89,952	49 (100)	2,871 (92)
2008	57,031	49 (100)	2,728 (87)
2009	55,937	49(100)	2,664 (85)
2010	54,129	49(100)	2,628 (84)
2011	$63,\!363$	49(100)	2,705 (87)
2012	55,186	49(100)	2,627 (84)
2013	46,548	49 (100)	2,436 (78)

2.1 Getting Demographic Data

First, below is the code used to pull all Demographic data from the comScore database for reference

```
# Vector of years to loop over
years <- c(2002, 2004, 2006:2016)
demographics <- NULL
sampleSize <- -1
# Pulling and appending all demographic data, after adding a year column
for (i in years) {
 res <- dbSendQuery(wrds, paste0('select * from COMSCORE.DEMOGRAPHICS', i))</pre>
 data <- setDT(fetch(res, n = sampleSize))</pre>
  data <- cbind(data, year = i)</pre>
  # Renaming column because it is named differently in earlier years
  if ('child_present' %in% colnames(data)) {
    setnames(data, 'child_present', 'children')
  }
 demographics <- rbind(demographics, data)</pre>
 rm(data)
}
# Saving
save(demographics, file = '/home/upenn/hossaine/NewComScore/Data/Demographics.rda',
     compress = TRUE)
```

2.2 Making Table 2

Below is the R code that generates the corresponding table as a check.

```
# Fixing data
zipCounty <- zipCounty[-1] # Removing first row, which is just subheadings
zipCounty$zcta5 <- as.numeric(zipCounty$zcta5) # Converting ZIPs to numerics</pre>
zipCounty <- zipCounty[zcta5 != 99999] # Removing 99999 ZIPs which are not valid
names(zipCounty) <- c('zip_code', 'state', 'county')</pre>
# Removing cases where the ZIP matches two different counties
zipCounty <- zipCounty[!duplicated(zip_code)]</pre>
# Merging demographic data with the ZIP-to-state data (2014 ZIP codes)
setkey(demographics, zip_code)
setkey(zipCounty, zip code)
tableData <- merge(demographics, zipCounty, all.x = TRUE)
\# Getting number of states (excluding AK and HI) and counties from ZIP data
stateCount <- length(unique(zipCounty[state != 'HI' & state != 'AK']$state))</pre>
countyCount <- length(unique(zipCounty[state != 'HI' & state != 'AK']$county))</pre>
# Excluding Hawaii and Alaska and counting households, states, and counties by year
table1 <- tableData[state != 'HI' & state != 'AK',
                    .(Households = length(unique(machine_id)),
                      States = length(unique(state)),
                      StatePercent = length(unique(state)) / stateCount * 100,
                      Counties = length(unique(county)),
                      CountyPercent = length(unique(county)) / countyCount * 100),
                    keyby = .(Year = year)]
knitr::kable(table1, digits = 0, col.names = c('Year', 'Households', 'States', '%', 'Counties'
      caption = 'comScore Sample', format.args = list(big.mark = ','))
```

Table 3: comScore Sample

Year	Households	States	%	Counties	%
2,002	92,062	49	100	2,829	93
2,004	49,873	49	100	2,629	87
2,006	86,479	49	100	2,727	90
2,007	89,583	49	100	2,708	89
2,008	$56,\!856$	49	100	2,569	85
2,009	55,725	49	100	2,507	83
2,010	53,900	49	100	2,477	82
2,011	63,011	49	100	$2,\!534$	84
2,012	54,935	49	100	2,461	81
2,013	$46,\!280$	49	100	2,328	77
2,014	$45,\!801$	49	100	2,300	76
2,015	$53,\!597$	49	100	2,476	82
2,016	79,720	49	100	2,638	87

3 Table 3: Household Purchasing

Once again, I try to recreate the table from the comScore sample. Below is Table 3 from the paper.

Year	Online Expenditure	Online Transactions	% Zero Expenditure	Adjusted Expenditure	Adjusted Transactions
2006	\$239	2.4	51.8	\$240	2.3
2007	\$254	2.5	52.0%	\$239	2.3
2008	\$196	2.0	60.0%	\$257	2.6
2009	\$141	1.4	67.9%	\$267	2.7
2010	\$125	1.4	68.6%	\$274	2.9
2011	\$131	1.4	69.7%	\$327	3.4
2012	\$151	1.8	64.0%	\$313	3.6
2013	\$120	1.7	65.2%	\$293	4.0

3.1 Getting comScore Transaction Data

Below is the R code used to download the full comScore transaction data.

```
# Vector of years to loop over
years \leftarrow c(2002, 2004, 2006:2016)
transactions <- NULL
sampleSize <- -1
# Pulling and appending all domain names to the transaction data
for (i in years) {
 print(i)
  if (i == 2002) {
    # Querying data (2002 has two data sets)
    res1 <- dbSendQuery(wrds, 'select machine_id, session_id, domain_name,
                                prod_category_id, prod_totprice, prod_name,
                                basket_tot, date_id from COMSCORE.PTRANS2002')
    data1 <- setDT(fetch(res1, n = sampleSize))</pre>
    res2 <- dbSendQuery(wrds, 'select machine_id, session_id, domain_name,
                                prod_category_id, prod_totprice, prod_name,
                                basket_tot, date_id from COMSCORE.PTRANS2_DOMAINS2')
    data2 <- setDT(fetch(res2, n = sampleSize))</pre>
    # Combining data
    data <- rbind(data1, data2)</pre>
    rm(data1, data2)
    data <- unique(data)
    setnames(data, 'date_id', 'event_date')
    setnames(data, 'session_id', 'site_session_id')
    setkey(data, domain_name)
    # Querying database to match domain_id with domain_names
    res <- dbSendQuery(wrds, paste0('select domain id, domain name from COMSCORE.DOMAINS', i))
```

```
domains <- setDT(fetch(res, n = sampleSize))</pre>
    setkey(domains, domain_name)
    fullData <- merge(domains, data)</pre>
  } else {
    # Querying data
    res <- dbSendQuery(wrds, paste0('select machine_id, site_session_id, domain_id,</pre>
                                       prod_category_id, prod_totprice, prod_name,
                                       basket tot, event date from COMSCORE.PTRANS', i))
    data <- setDT(fetch(res, n = sampleSize))</pre>
    data$domain_id <- as.numeric(data$domain_id)</pre>
    setkey(data, domain_id)
    # Matching domain_id with domain_names
    res <- dbSendQuery(wrds, paste0('select domain_id, domain_name from COMSCORE.DOMAINS', i))</pre>
    domains <- setDT(fetch(res, n = sampleSize))</pre>
    domains$domain_id <- as.numeric(domains$domain_id)</pre>
    setkey(domains, domain_id)
    fullData <- merge(domains, data)</pre>
 }
  # Combining all transaction data across all years
 transactions <- rbind(transactions, fullData)</pre>
 rm(data, res, domains, fullData)
# Doing some housekeeping on variable types and saving the full transaction file
 transactions$domain_name <- trimws(transactions$domain_name)</pre>
 transactions$prod_name <- iconv(enc2utf8(transactions$prod_name), sub = 'byte')</pre>
 transactions$prod_name <- trimws(transactions$prod_name)</pre>
 transactions$event_date <- as.Date(transactions$event_date)</pre>
 transactions[, c('year', 'month') := .(year(event_date), month(event_date))]
  save(transactions, file = '/home/upenn/hossaine/NewComScore/Data/Transactions.rda',
       compress = TRUE)
```

To get the 'adjusted' transactions and expenditures for the table, I have to get the number of weeks that each panelist was in the sample

```
print(i)
    if (i %in% 31:36) {
      res <- dbSendQuery(wrds, paste0("select machine_id, date_id from
                                        COMSCORE.SS", i, "M"))
      data <- setDT(fetch(res, n = sampleSize))</pre>
      setnames(data, "date_id", "event_date")
    } else {
      res <- dbSendQuery(wrds, paste0("select machine_id, event_date from
                                        COMSCORE.SS", i, "M"))
      data <- setDT(fetch(res, n = sampleSize))</pre>
    data[, c("week", "year", 'event_date') :=
           .(week(event_date), year(event_date), NULL)]
    data <- unique(data)</pre>
    tenure <- rbind(tenure, data)</pre>
    rm(data, res)
  }
  # Counting the number of weeks each machine_id was observed for
  tenure <- tenure[, .(weeks = .N), keyby = machine_id]</pre>
  save(tenure, file = paste0('/home/upenn/hossaine/NewComScore/Data/PanelistTenure',
                              names(months)[i], '.rda'), compress = TRUE)
}
```

After I have the tenure of each panelist, I can generate the above table by combining that with the transaction data.

year	Online Expenditure	Online Transactions	% Zero Expenditure	Adjusted Expenditure	Adjusted Tran
2006	423.63	13.07	50.59	399.27	
2007	449.07	13.56	50.26	432.38	
2008	394.27	12.03	57.62	402.60	
2009	319.61	9.69	65.10	338.27	
2010	287.00	9.57	65.44	307.72	
2011	271.52	8.75	66.05	328.94	
2012	304.76	10.09	59.99	322.46	
2013	259.22	8.46	61.26	269.64	
2014	317.69	10.37	68.95	347.15	
2015	375.37	11.80	64.36	394.03	
2016	442.14	12.89	63.91	464.64	

4 Figure 1: HHI Chart

From the transaction file, I can recreate the Herfindahl-Hirshman Index chart. Below is the chart from the paper.

```
# Loading data and restricting the sample to 2006-2015 and only choosing product # categories for which at least one transaction on Amazon was recorded
```


Figure 1: HHI from Houde, Newberry, and Seim $\left(2016\right)$

```
load('/home/mallick/Desktop/comScore/Transactions.rda')
transactions <- transactions[year >= 2006]
amazonCategories \leftarrow c(1:40, 54:56)
transactions <- transactions[prod_category_id %in% amazonCategories]</pre>
# Removing products with negative or NA prices
transactions <- transactions[!is.na(prod_totprice) & prod_totprice >= 0]
# Top and bottom coding unreasonably large purchases
winsors <- quantile(transactions$prod totprice, probs = c(0.001, 0.999))
transactions$prod_totprice <- ifelse(transactions$prod_totprice <= winsors[1],</pre>
                                   winsors[1], transactions$prod_totprice)
transactions$prod_totprice <- ifelse(transactions$prod_totprice >= winsors[2],
                                   winsors[2], transactions$prod_totprice)
# Getting total spending and number of transactions by year and by domain
shares <- transactions[, .(spending = sum(prod_totprice), count = .N),</pre>
                       by = .(year, domain_name)]
# Getting total yearly spending and total yearly transactions
shares[, c('totalSpending', 'totalTrans') :=
         .(sum(spending), sum(count)), by = year]
# Getting expenditure shares and transaction shares by year and by domain
shares[, c('spendingShares', 'transShares') :=
         .(spending / totalSpending, count / totalTrans)]
# Squaring and summing shares to get HHI
shares[, c('spendingShares2', 'transShares2') :=
         .(spendingShares ^ 2, transShares ^ 2)]
hhIndex <- shares[, .(spending = sum(spendingShares2), trans = sum(transShares2)), by = year]
# Plotting HHI
plot_ly(data = hhIndex, x = ~year) %>%
  add_trace(y = ~spending, type = 'scatter', mode = 'lines',
            name = 'Expenditure HHI', colors = 'blue') %>%
  add_trace(y = ~trans, type = 'scatter', mode = 'lines',
            name = 'Transaction HHI', colors = 'red') %>%
  layout(title = 'Hirshman-Herfindahl Indices in Online Retail, 2006-2015',
         yaxis = list(title = '\frac{1}{1}', range = c(0, 0.3), dtick = 0.05,
                      titlefont = list(size = 18)),
         xaxis = list(title = 'Year', dtick = 2, titlefont = list(size = 18)),
         titlefont = list(size = 22),
         margin = list(t = 50))
export(file = './HHI.png')
```

Herfindahl Indices in Online Retail,

Figure 2: Hirshman-Herfindahl Indices in Online Retail, 2006-2015

Figure 3: