ARMA Models (Chapter 3)

Motivation: For 'most' time series $\{X_t\}$,

Wold Decomposition $\{X_t\}$ is a linear TS

$$X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}, \quad \{Z_t\} \sim \text{WN}(0, \sigma^2),$$

= \psi(\text{B}) Z_t,

where

$$\psi(B) = 1 + \psi_1 B + \psi_2 B^2 + \dots$$

We approximate $\psi(B)$ using a ratio of polynomials which leads us to the class of ARMA models.

3.1 ARMA(p,q) Processes

DEFINITION: $\{X_t\}$ is an **ARMA**(**p**,**q**) **process** if $\{X_t\}$ is <u>stationary</u> and if for every t,

$$X_{t} - \phi_{1} X_{t-1} - \cdots - \phi_{p} X_{t-p} = Z_{t} + \theta_{1} Z_{t-1} + \cdots + \theta_{q} Z_{t-q}$$

where $\{Z_{t}\} \sim WN(0, \sigma^{2})$.

Write ARMA equations as:

$$\phi(B) X_t = \theta(B) Z_t$$

where $\phi(z)$ and $\theta(z)$ are the polynomials

$$\phi(z) = 1 - \phi_1 z - \cdots - \phi_p z^p, \ \theta(z) = 1 + \theta_1 z + \cdots + \theta_q z^q.$$

Existence and Uniqueness: The ARMA eqns

 $\phi(B) X_t = \theta(B) Z_t$ have a stationary solution (which is unique) if and only if

$$\phi(z) \neq 0$$
 for $|z| = 1$

Causality: Solution $\{X_t\}$ is causal if we can write

$$X_{t} = \sum_{j=0}^{\infty} \psi_{j} Z_{t-j}$$
, with $\sum_{j=0}^{\infty} |\psi_{j}| < \infty$.

$$\{X_t\}$$
 causal $\phi(z) \neq 0$ for $|z| \leq 1$

$$\psi(B) = \frac{\theta(B)}{\phi(B)}$$
 (see p.85)

3

Invertibility: Solution $\{X_t\}$ is **invertible** if we can write

$$Z_{\mathrm{t}} = \sum_{j=0}^{\infty} \pi_{\mathrm{j}} X_{t-j}$$
, with $\sum_{j=0}^{\infty} |\pi_{\mathrm{j}}| < \infty$.

$$\{X_t\}$$
 invertible $\theta(z) \neq 0$ for $|z| \leq 1$

$$\pi(B) = \frac{\phi(B)}{\theta(B)}$$
 (see p.86)

Ex 3.1.1 (An ARMA(1,1) process).

$$X_{t} - .5 X_{t-1} = Z_{t} + .4 Z_{t-1}, \{Z_{t}\} \sim WN(0, \sigma^{2}),$$

AR polynomial: $\phi(z)=1-.5z$ (zero at z=2, so process is causal).

MA polynomial: $\theta(z)=1+.4z$ (zero at z=-2.5, so process is invertible).

MA(
$$\infty$$
) Coefficients ψ_j : $\psi_0 = 1$
$$\psi_1 = .4 + .5 \ \psi_0 = .4 + .5$$

$$\psi_2 = 0 + .5 \ \psi_1 = .5 (.4 + .5),$$

$$\psi_i = .5^{j-1} (.4 + .5), \quad j > 0.$$

5

Ex 3.1.2 (An AR(2) process).

$$X_{t} - .7 X_{t-1} + .1 X_{t-2} = Z_{t}, \{Z_{t}\} \sim WN(0,\sigma^{2}),$$

AR polynomial: $\phi(z)=1-.7z+.1z^2=(1-.5z)(1-.2z)$

(Zeros at z=2 and z=5, so process is causal).

MA(∞) Coefficients ψ_i :

$$\psi_0 = 1$$
 $\psi_1 = .7 \ \psi_0 = .7$

$$\psi_2 = .7\psi_1 - .1 \ \psi_0 = .39$$

$$\psi_j = .7\psi_{j-1} - .1 \ \psi_{j-2}, \ j > 1.$$

(Coefficients are computed in ITSM.)

3.2 ACF and PACF of ARMA Processes

Moving average processes:

$$X_{t} = Z_{t} + \theta_{1} Z_{t-1} + \dots + \theta_{q} Z_{t-q}, \{Z_{t}\} \sim WN(0, \sigma^{2})$$

This is a special case of a linear process so that

$$\gamma(h) = \begin{cases} \sigma^2 & \sum_{j=0}^{q-|h|} \theta_j \theta_{j+|h|}, & \text{if } |h| \leq q, \\ 0, & \text{if } |h| > q. \end{cases}$$

Remark: ACVF is 0 for all lags $|\mathbf{h}| > \mathbf{q}$. Converse is also true. If the ACVF of a stationary process $\{X_t\}$ is 0 beyond some lag q, then $\{X_t\}$ is a MA(q) process.

7

ARMA processes: Suppose $\{X_t\}$ is a causal ARMA

$$X_{t} - \phi_{1} X_{t-1} - \cdots - \phi_{p} X_{t-p} = Z_{t} + \theta_{1} Z_{t-1} + \cdots + \theta_{q} Z_{t-q}$$

Take expectations of both sides with X_{t-k} ,

(1)
$$\gamma(k) - \phi_1 \gamma(k-1) - \dots - \phi_p \gamma(k-p) = \sigma^2 \sum_{j=0}^m \theta_{k+j} \psi_j$$
, $0 \le k \le m$

$$(2) \quad \gamma(k) - \varphi_1 \gamma(k-1) - \cdots - \varphi_p \, \gamma(k-p) = 0, \ k \geq m,$$

where m=max(p,q+1). Solve (1) for $\gamma(0), \ldots, \gamma(p)$, and then use the recursion in (2) to solve for $\gamma(p+1), \ldots$

This is the method used in ITSM (Method 3 in text).

Method 2: Difference equation approach:

The general solution to the difference equation (2) is given by

$$\gamma(h) = \sum_{i=1}^{k} \sum_{j=0}^{r_i-1} A_{i,j} h^j \xi_i^{-h}, \quad h \geq m-p,$$

 $\gamma(h) = \sum_{i=1}^{k} \sum_{j=0}^{r_i-1} A_{i,j} h^j \xi_i^{-h}, \quad h \ge m - p,$ where the p constants $A_{i,j}$ and $\gamma(h)$, h < m-p are found by the boundary conditions (1). (The ξ_i are the distinct zeros of the AR polynomial, and the r_i is its multiplicity.)

Example:
$$X_{t-1} + 1/4 X_{t-2} = Z_{t} + Z_{t-1}$$

$$\phi(z) = (1-z+.25z^2)=(1-.5z)^2, \ \theta(z) = (1+z).$$

Here

$$m=max(p,q+1)=2.$$

$$\gamma(k) - \gamma(k-1) + .25\gamma(k-2) = 0, \ k \ge 2.$$

General solution

$$\gamma(k) = (A+Bk) \ 2^{-k}, \quad k \ge 0.$$

The boundary conditions (1) are

$$\gamma(0) - \gamma(1) + .25 \ \gamma(2) = \sigma^2(\psi_0 + \theta_1 \psi_1) = \sigma^2(1 + \theta_1 + \phi_1) = 3\sigma^2$$

$$\gamma(1) - \gamma(0) + .25\gamma(-1) = \sigma^2 \psi_0 = \sigma^2$$

Replacing $\gamma(0)$, $\gamma(1)$, $\gamma(2)$ with the general solution

$$\gamma(k) = (A+Bk) 2^{-k}$$
, we obtain

$$3A - 2B = 16\sigma^2$$

$$-3A + 5B = 8\sigma^2$$

Solving, we get

$$A = 32\sigma^2/3, B = 8\sigma^2$$

and hence

$$\gamma(k) = (32/3 + 8k) \ 2^{-k}, \quad k \ge 0.$$

Complex zeros: For complex valued zeros of the AR polynomial, the solution to the difference equations includes a sinusoidal component. Consider an AR(2) process

$$X_{t} - \phi_1 X_{t-1} - \phi_2 X_{t-2} = Z_{t}$$

where $\phi(z) = 1 - \phi_1 z - \phi_2 z^2$ has complex valued zeros ξ_1 , ξ_2 . In this case, we can write

$$\xi_1 = re^{i\theta}$$
 and $\xi_2 = re^{-i\theta}$ (complex conjugates).

Solution is given by

$$\gamma(k) = A \ r^{-k} e^{i\theta k} + B \ r^{-k} e^{-i\theta k} \qquad k \ge 0.$$

where A and B are complex conjugates (see Example 3.2.4 for more details.)

11

Fig 3.1. AR(2): $(1-.5B)(1-.2B)X_t = Z_t$

3.2.3 The Partial Autocorrelation Function

DEFINITION: The partial autocorrelation function

(PACF) of a stationary process $\{X_t\}$ is the function α

given by $\alpha(0) = 1$

$$\alpha(h) = \phi_{hh}$$
, $h > 0$

where ϕ_{hh} is the coefficient of X_1 for predicting X_{h+1} in terms of X_1, \ldots, X_h , i.e.

$$P_h X_{h+1} = \phi_{h1} X_h + \cdots + \phi_{hh} X_1$$

15

Interpretation of the PACF:

$$\alpha(h) = \text{correlation between } X_1 \text{-} P(X_1 | X_2, \dots, X_h)$$
and $X_{h+1} \text{-} P(X_{h+1} | X_2, \dots, X_h)$.

Ex 3.2.6 (An AR(p) process).

$$X_{t} = \phi_{1} X_{t-1} + \cdots + \phi_{p} X_{t-p} + Z_{t}$$

Now for h = p, p+1, p+2, ...,

$$P_h X_{h+1} = \phi_1 X_h + \cdots + \phi_p X_{h+1-p}$$
,

so that $\alpha(p) = \phi_p$

and $\alpha(h)=0, h > p.$

Summary of ACF and PACF:

AR(p) processes:

 $\begin{cases} \rho(h) \text{ decreases geometrically as } h \longrightarrow \infty \\ \alpha(h) \text{ is } 0 \text{ for } h > p. \end{cases}$

MA(q) processes:

```
\begin{cases} \rho(h) & \text{is } 0 \text{ for } h > q \\ \alpha(h) & \text{decreases geometrically as } h \longrightarrow \infty \end{cases}
```

17

3.2.4 Examples

Ex 3.2.8 (Overshorts; OSHORTS.TSM)

 y_t = measured amount of fuel in storage tank at the end of day t.

 a_t = measured amount sold – amount delivered

$$x_t = y_t - y_{t-1} + a_t$$
 (overshorts)

ACF

19

ACF plot suggests MA(1) model

$$X_{t} = \mu + Z_{t} + \theta Z_{t-1}, \{Z_{t}\} \sim WN(0,\sigma^{2})$$

Estimation of parameters:

mean:
$$\bar{x}_{57} = -4.035$$

(Use method of moments for estimating θ and σ^2 .)

$$(1+\theta^2)\sigma^2 = \hat{\gamma}(0) = 3415.72$$

 $\theta \sigma^2 = \hat{\gamma}(1) = -1719.95$

Using the approximate solution $\theta = -1$ and $\sigma^2 = 1708$,

$$X_{t} = -4.035 + Z_{t} - Z_{t-1}, \{Z_{t}\} \sim WN(0,1708)$$

A Structural Model Derivation

$$Y_{t} = y_{t}^{*} + U_{t}$$
 $\{U_{t}\} \sim \text{WN}(0,\sigma_{u}^{2})$
$$\begin{cases} y_{t}^{*} = \text{true amount of fuel in tank} \\ U_{t} = \text{measurement error} \end{cases}$$

$$A_{t} = a_{t}^{*} + V_{t} \qquad \{V_{t}\} \sim \text{WN}(0,\sigma_{v}^{2})$$

$$\begin{cases} a_{t}^{*} = \text{true amount of fuel sold - delivered} \\ V_{t} = \text{measurement error} \end{cases}$$

$$y_t^* = \mu + y_{t-1}^* - a_t^*, \ \mu = \text{leakage term (<0)}$$

$$X_{t} = Y_{t} - Y_{t-1} + A_{t} = \mu + U_{t} - U_{t-1} + V_{t}$$

21

The series of overshorts is then given by

$$X_{t} = Y_{t} - Y_{t-1} + A_{t} = \mu + U_{t} - U_{t-1} + V_{t}$$

with

$$E(X_t) = \mu$$
,

$$\gamma(h) = \begin{cases} 2 \, \sigma_u^{\, 2} + \sigma_v^{\, 2} \,, & \text{if } h = 0 \,, \\ - \, \sigma_u^{\, 2} \,, & \text{if } |h| = 1 \,, \\ 0, & \text{if } |h| > 1 \,. \end{cases}$$

It follows that $\{X_t\}$ is an MA(1) process with

$$\rho(1) = \theta/(1+\theta^2) = -\sigma_u^2/(2\sigma_u^2 + \sigma_v^2)$$

and $\theta = -1$ if and only if $\sigma_v^2 = 0$. (If so then the model is noninvertible.)

$$X_{t} = Y_{t} - Y_{t-1} + A_{t} = \mu + U_{t} - U_{t-1} + V_{t}$$

with

$$E(X_t) = \mu$$
,

$$\gamma(h) = \; \left\{ \begin{array}{l} 2 \; {\sigma_u}^2 + {\sigma_v}^2 \,, \; \mbox{if} \; \; h = 0 \;, \\ - \, {\sigma_u}^2 \,, \qquad \mbox{if} \; \; |h| = 1 \;, \\ 0, \qquad \mbox{if} \; \; |h| > 1 \;. \end{array} \right. \label{eq:gamma_decomposition}$$

It follows that $\{X_t\}$ is an MA(1) process with

$$\rho(1) = \theta/(1+\theta^2) = -\sigma_u^2/(2\sigma_u^2 + \sigma_v^2)$$

and $\theta = -1$ if and only if $\sigma_v^2 = 0$.

22

Ex 3.2.9. (Sunspot Numbers; SUNSPOTS.TSM)

Figure 3.7. PACF of sunpsots

Plot suggests AR(2) model. Using method of moments,

$$X_{t-1.318} X_{t-1} + .634 X_{t-2} = Z_{t}, \quad \{Z_{t}\} \sim WN(0.232.9)$$

3.3 Forecasting ARMA Processes

Suppose $\{X_t\}$ is a stationary TS with mean zero.

Durbin-Levinson:

$$P_n X_{n+1} = \phi_{n1} X_n + \dots + \phi_{n,n} X_1, \quad n \ge 1$$

Innovations algorithm:

$$P_n X_{n+1} = \theta_{n1} (X_n - \overset{\wedge}{X_n}) + \cdots + \theta_{nn} (X_1 - \overset{\wedge}{X_1}),$$

25

AR(p) Processes:

$$P_n X_{n+1} = \phi_1 X_n + \cdots + \phi_p X_{n+1-p} , \quad n \ge p$$

MA(q) Processes:

$$P_n X_{n+1} = \theta_{n1} (X_n - \overset{\wedge}{X_n}) + \cdots + \theta_{nq} (X_{n+1-q} - \overset{\wedge}{X_{n+1-q}}),$$

where $\theta_{n1}, \dots, \theta_{nq}$ are computed recursively from the innovations algorithm.

ARMA(p,q) Processes:

$$P_{n} X_{n+1} = \phi_{1} X_{n} + \cdots + \phi_{p} X_{n+1-p} \\ + \theta_{n1} (X_{n} - X_{n}) + \cdots + \theta_{nq} (X_{n+1-q} - X_{n+1-q})$$

We could apply the innovations algorithm directly to predict causal ARMA processes. However, there is a drastic simplification if we apply the IA to a transformed process.

Suppose $\{X_t\}$ satisfies the causal ARMA equations,

$$\phi(\mathbf{B})X_t = \theta(\mathbf{B})Z_t \qquad \{Z_t\} \sim \mathbf{WN}(0, \, \sigma^2).$$

Now consider the transformed process $\{W_t\}$ defined by

$$\begin{cases} W_t = \sigma^{-1} X_{t,} & t = 1,...,m = \max(p,q) \\ W_t = \sigma^{-1} \phi(B) X_{t,} & t > m \end{cases}$$

Note for t > m, W_t is the MA(q) process,

$$W_{t} = \sigma^{-1}\phi(B)X_{t} = \sigma^{-1}\theta(B)Z_{t}$$

27

The ACVF for $\{W_t\}$ can be computed by the simple (but tedious) formula

$$\kappa(i,j) = \begin{cases}
\sigma^{-2}\gamma(i-j), & 1 \le i, j \le m, \\
\sigma^{-2}(\gamma(i-j) - \sum_{r=1}^{p} \phi_r \gamma(r-|i-j|)), & \min(i,j) \le m < \max(i,j) \le 2m, \\
\sum_{r=0}^{q} \theta_r \theta_{r+|i-j|}, & \min(i,j) > m, \\
0, & \text{otherwise}
\end{cases}$$

From the definition of W_t , we have

$$H_n = sp\{X_1, X_2, ..., X_n\} = sp\{W_1, W_2, ..., W_n\}$$

and
$$\begin{cases} \hat{W}_{n+1} = \sum_{j=1}^{n} \theta_{nj} (W_{n+1-j} - \hat{W}_{n+1-j}), & 1 \le n < m, \\ \hat{W}_{n+1} = \sum_{j=1}^{q} \theta_{nj} (W_{n+1-j} - \hat{W}_{n+1-j}), & n \ge m, \end{cases}$$
The coefficients θ and r are computed from the

The coefficients θ_{nj} and r_n are computed from the IA applied to W_t .

Now the predictor of the X_t process can be computed from W_t process via

$$\begin{cases} \hat{W}_{t} = \sigma^{-1} \hat{X}_{t}, & t = 1, ..., m, \\ \hat{W}_{t} = \sigma^{-1} (\hat{X}_{t} - \phi_{1} X_{t-1} - \dots - \phi_{p} X_{t-p}), & t > m, \end{cases}$$

and

$$X_t - \hat{X}_t = \sigma(W_t - \hat{W}_t)$$
 for all $t \ge 1$

It follows that

$$\begin{cases} \hat{X}_{n+1} = \sum_{j=1}^{n} \theta_{nj} (X_{n+1-j} - \hat{X}_{n+1-j}), & 1 \le n < m, \\ \hat{X}_{n+1} = \phi_{1} X_{n} + \dots + \phi_{p} X_{n+1-p} + \sum_{j=1}^{q} \theta_{nj} (X_{n+1-j} - \hat{X}_{n+1-j}), & n \ge m, \end{cases}$$

and

$$E(X_{n+1} - \hat{X}_{n+1})^2 = \sigma^2 E(W_{n+1} - \hat{W}_{n+1})^2 = \sigma^2 r_n$$
.

20

Remarks:

1. The representation for the predictor

$$\hat{X}_{n+1} = \phi_1 X_n + \dots + \phi_p X_{n+1-p} + \sum_{i=1}^q \theta_{nj} (X_{n+1-j} - \hat{X}_{n+1-j})$$

only requires storage of the p previous observations and q previous innovations.

- 2. If $\{X_t\}$ is invertible, then $\theta_{nj} \to \theta_j$ and $r_n \to 1$ geometrically as $n \to \infty$.
- 3. Innovations representation of $\{X_t\}$:

$$X_{n+1} = \phi_1 X_n + \dots + \phi_p X_{n+1-p} + X_{n+1} - \hat{X}_{n+1} + \sum_{j=1}^q \theta_{nj} (X_{n+1-j} - \hat{X}_{n+1-j})$$

Example 3.3.3 (ARMA(1,1):

$$X_{t} - \phi X_{t-1} = Z_{t} + \theta Z_{t-1}$$
 $\{Z_{t}\} \sim WN(0,\sigma^{2})$

Then for $n \ge 1$

$$\hat{X}_{n+1} = \phi_1 X_n + \theta_{n1} (X_n - \hat{X}_n)$$

To compute θ_{n1} , we have $\gamma(0) = \sigma^2(1+2\theta\phi+\theta^2)/(1-\phi^2)$ and hence with $W_1 = \sigma^{-1} X_1$, $W_t = \sigma^{-1}(X_t - \phi X_{t-1}) = \sigma^{-1}(Z_t + \theta Z_{t-1})$, t > 1,

$$\kappa(i, j) = \begin{cases} (1 + 2\phi\theta + \theta^2)/(1 - \phi^2), & i = j = 1, \\ 1 + \theta^2, & i = j \ge 2, \\ \theta, & |i - j| = 1, i \ge 1, \\ 0, & \text{otherwise} \end{cases}$$

31

We obtain the recursions

$$\begin{cases} r_0 = (1 + 2\theta\phi + \theta^2)/(1 - \phi^2) \\ \theta_{n1} = \theta/r_n \\ r_n = 1 + \theta^2 - \theta^2/r_{n-1} \end{cases}$$

These recursions are demonstrated in the table below with

$$\phi = 0.2 \text{ and } \theta = 0.4.$$
 $\hat{X}_{n+1} = \phi_1 X_n + \theta_{n1} (X_n - \hat{X}_n)$

n	X_{n+1}	r_n	θ_{n1}	\hat{X}_{n+1}
0	-1.100	1.3750		0
1	0.514	1.0436	0.2909	- 0.5340
2	0.116	1.0067	0.3833	0.5068
3	-0.845	1.0011	0.3973	- 0.1321
4	0.872	1.0002	0.3996	- 0.4539
5	-0.467	1.0000	0.3999	0.7046
6	-0.977	1.0000	0.4000	- 0.5620
7	-1.699	1.0000	0.4000	- 0.3614
8	-1.228	1.0000	0.4000	- 0.8748
9	-1.093	1.0000	0.4000	- 0.3869
10		1 0000	0.4000	- 0.5010

h-step prediction

From the representation (see Remark 3)

$$X_{n+h} = \phi_1 X_{n+h-1} + \dots + \phi_p X_{n+h-p} + X_{n+h} - \hat{X}_{n+h} + \sum_{j=1}^q \theta_{n+h-1,j} (X_{n+h-j} - \hat{X}_{n+h-j})$$
we have, by applying the operator P_n = projection onto
$$\operatorname{sp}\{X_1, \dots, X_n\},$$

$$P_{n}X_{n+h} = \phi_{1}P_{n}X_{n+h-1} + \dots + \phi_{p}P_{n}X_{n+h-p} + \sum_{j=h}^{q} \theta_{n+h-1,j}(X_{n+h-j} - \hat{X}_{n+h-j}),$$

for $h > \max(p,q) - n$, where $P_n X_t = X_t$ for $t \le n$.

Note: The h-step prediction errors are a bit more complicated to compute.

33

Prediction Bounds for Stationary Gaussian Processes

Recall that for a Gaussian time series,

$$P_{n} X_{n+h} = E(X_{n+h} | X_{1}, ..., X_{n})$$

and

$$X_{n+h}$$
- $P_n X_{n+h} \sim N(0, \sigma_n^2(h)),$

where

$$\sigma_{\rm n}^2(h) = E(X_{n+h} - P_{\rm n} X_{n+h})^2.$$

So,

$$P_{\rm n} X_{n+h} \pm 1.96 \sigma_{\rm n}(h)$$

is a 95% *prediction interval* for X_{n+h} .

2.4