5/5/01

ALBERT A. BENNETT CALCULUS PRIZE EXAM

Name:	Soc.Sec.No.:	_
Present Calculus Course:	Instructor:	
Permanent Mailing Address:		_
School (Natural Sciences, Engineer	ering, etc.)	
Show your work!		

- 1. Let $f(x) = x^{50}e^{2x}$. Find $f^{(100)}(0)$. (Hint: Consider the Taylor Series. Recall that $f^{(n)}(x)$ means the n^{th} derivative of f(x).)
- 2. A bicyclist is at the perpendicular intersection of 2 straight roads on a perfectly flat plain. The cyclist can travel along the roads at 20 miles per hour, and he can travel cross-country at 10 miles per hour. He wants to go to a farmhouse which lies 10 miles from each of the roads. What is the least time required for the cyclist to reach the farmhouse?
- 3. Compute the indefinite integral

$$\int e^x \cos(2x) \sin(3x) \, dx \ .$$

- 4. The two parallel planes x + 2y + 3z = 1 and x + 2y + 3z = 4 intersect the plane x + y + z = 5 in lines L_1 and L_2 , respectively. Find the distance between the two lines.
- 5. A 3-dimensional region Ω is obtained by rotating the inside of the ellipse $x^2 + 4y^2 = 25$ about the x-axis. The cylinder C is all points in 3-dimensional space whose distance from the x-axis is no greater than 2. Find the volume of the 3-dimensional region that is inside Ω but outside C.