INTRODUCTION TO COMPLEX SIGNALS IN MATLAB

LAB # 05

Spring 2023
CSE301L Signals & Systems Lab

Submitted by: Ali Asghar

Registration No.: 21PWCSE2059

Class Section: C

"On my honor, as student of University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

Submitted to:

Engr. Sumayyea Salahuddin

Date:

April 3, 2023

Department of Computer Systems Engineering
University of Engineering and Technology, Peshawar

Lab Objective(s):

Objectives of this Lab are;

- Gain familiarity with Complex Numbers and plot them
- Complex exponential signals
- Real exponential signals

Task # 01:

Write matlab function zprint, which takes a complex number and returns it real part, imaginary part, magnitude, phase in radians, and phase in degrees.

A sample run of program is:

```
>> zprint(z)
```

```
Z = X + jY Magnitude Phase Ph(deg)
3 4 5 0.927 53.13
```

Problem Analysis:

For complex calculations, extensive analysis is required. Here, a complicated number is examined.

- Define the function.
- Find the real part and store it in X variable.
- Find the imaginary part and store it in Y variable.
- Find the absolute and store it in Magnitude variable.
- Find the phase in degrees and radians and then store it in their respective variables.
- Display data using disp
- Define a complex number z = 4+6i
- Print it using zprint

Discussion and Conclusion:

Complex numbers can be analysed with MATLAB.

Task # 02:

Compute the conjugate \dot{z} (i.e. z_conj [give variable name]) and the inverse 1/z (i.e. z_inv [give variable name]) for any complex number z. Display the results numerically with zprint.

Problem Analysis:

For complex calculations, extensive analysis is required. Here, a complicated number is examined.

- Prompt the user to input a complex number and store it in the variable "z".
- Compute the complex conjugate of "z" using the "conj()" function, and store it in the variable "z conj".
- Compute the inverse of "z" by dividing 1 by "z", and store it in the variable "z_inv".
- Display the results numerically using the "zprint()" function for each complex number: "z", "z_conj", and "z_inv".
- Print using zprint

Command Window							
	Enter a complex number: 3+3i						
	z =						
	х	:	Y	Magnitude	Phase_rad	Phase_deg	
	-	•	_				
	3		3	4.2426	0.7854	45	
	z_con						
	Х		Y	Magnitude	Phase_rad	Phase_deg	
	-	-	_				
	3		-3	4.2426	-0.7854	-45	
	1/z =						
	x			Y	Magnitude	Phase_rad	Phase_deg
fx			667	-0.16667	0.2357	-0.7854	- 45

Discussion and Conclusion:

Complex numbers can be analysed with MATLAB.

Task # 03:

Take two complex number and compute z1 +z2 and display the results numerically using zprint.

Problem Analysis:

Complex calculations require complex operations.

- Prompt the user to input two complex numbers and store them in the variables "z1" and "z2".
- Compute the sum of "z1" and "z2" by adding them together and storing the result in the variable "z sum".
- Display the numerical result of the sum of "z1" and "z2" using the "zprint()" function.

Discussion and Conclusion:

Complex numbers can be computed in MATLAB as well as analysed.

Task # 04:

Take two complex numbers and compute z1z2 and z1/z2. Use zprint to display the results numerically.

Problem Analysis:

For Complex Analysis, complex operations are required.

- Prompt the user to input two complex numbers and store them in the variables "z1" and "z2".
- Compute the product of "z1" and "z2" by multiplying them together and storing the result in the variable "z product".
- Compute the quotient of "z1" and "z2" by dividing "z1" by "z2" and storing the result in the variable "z_quotient".
- Display the numerical result of the product of "z1" and "z2" using the "zprint()" function.
- Display the numerical result of the quotient of "z1" and "z2" using the "zprint()" function.

Discussion and Conclusion:

with addition to analysis, complex numbers can be computed with MATLAB.

Task # 05:

Determine the complex conjugate of the exponential signal given in above example and plot its real and imaginary portions.

Problem Analysis:

In MATLAB, complex numbers may be computed and studied.

- Define a discrete time range from 0 to 10 with a step size of 1/10, and store it in the variable "n".
- Set the values of amplitude "k" and phase angle "a" for the exponential function.
- Compute the complex exponential function using "k", "a", and "n", and store it in the variable "x".
- Compute the complex conjugate of "x" using the "conj()" function, and store it in the variable "x conj".
- Plot the real and imaginary parts of "x_conj" using the "stem()" function, with "n" on the x-axis and the real and imaginary parts of "x_conj" on the y-axis. Add appropriate titles, x-labels, y-labels, and grids to the plots.

Discussion and Conclusion:

Complex numbers can be computed in MATLAB as well as analysed.

Task # 06:

Generate the complex valued signal and plot its magnitude, phase, the real part, and the imaginary part in separate subplots.

$$y(n) = \exp(-0.2 + j0.5n), -10 \le n \le 10$$

Problem Analysis:

Complex Analysis requires complex operation as well as complex visualization.

- Define a discrete time range from -10 to 10 with a step size of 1/10, and store it in the variable "n".
- Compute the complex exponential function using the values of amplitude (-0.2) and phase angle (0.5i), and the values of "n", and store it in the variable "x".
- Plot the real, imaginary, absolute, and phase angle of "x" using the "stem()" function, with "n" on the x-axis and the corresponding values on the y-axis. Add titles, x-labels, y-labels, and grids to each plot using the "title()", "xlabel()", "ylabel()", and "grid()" functions.

Discussion and Conclusion:

MATLAB can analyze as well visualize a complex number.

Task # 07:

- a) Generate a real-exponential x=a * exp (n) for a=0.7 and n ranging from 0-10. Find the discrete time as well as the continuous time version of this signal. Plot the two signals on same graph (holding both the graphs).
- b) Repeat the same program with value of a=1.3.

Problem Analysis:

Different signal systems employ exponential signals. In MATLAB, we work with exponential signals.

- Enter a exponential signal
- Plot its discrete as well as its continuous function

a)

Discussion and Conclusion:

MATLAB can analyze as well visualize a complex number.

Task # 08:

Multiply the two discrete signals $x1=5 \exp(i*n*pi/4)$ and $x2=a*\exp(n)$ (use point-by-point multiplication of the two signals). Plot the real as well as the exponential parts for 0 < a < 1 and a > 1.

Problem Analysis:

Signal and systems computations for exponential signals are necessary. Here, we do that using MATLAB.

- Enter two exponential signals
- Multiply them

Discussion and Conclusion:

MATLAB can analyze as well visualize a complex number.

Task # 09:

Plot the discrete signal $x=a^{\mid}|n|$ for n ranging from -10 to 10. Draw two subplots for $0 \le a \le 1$ and $a \ge 1$.

Problem Analysis:

We usually desire to plot discrete signals. That is accomplished in MATLAB.

- Enter the discrete signal.
- Plot it.

Discussion and Conclusion:

MATLAB can analyze as well visualize a complex number.

Task # 10:

- a) Generate the signal $x(t) = Ae(j\omega t + \pi)$ for A = 3, $\pi = -0.4$, and $\omega = 2\pi(1250)$. Take a range for t that will cover 2 or 3 periods.
- b) Plot the real part versus t and the imaginary part versus t. Use subplot(2,1,i) to put both plots in the same window.
- c) Verify that the real and imaginary parts are sinusoids and that they have the correct frequency, phase, and amplitude.

Problem Analysis:

In addition to other signals, the complex signal can also be plotted. (real and imaginary plot)

- Enter/generate the complex signal
- Plot its real and imaginary parts

Discussion and Conclusion:

MATLAB can analyze as well visualize a complex number.