TECHNICAL MEMORANDUM

Lafayette College

Department of Electrical and Computer Engineering

Title: RF Link Test

Authors: Zainab Hussein and Kemal Dilsiz

Date: November 12, 2016

Abstract

This lab is a RF Link testing communication to and from our station to the instructor and other student stations in class. This is through transmitting and receiving from our inherited lab 5 structure, i.e. Mx_test to Manchester transmitter to Manchester receiver to Fifo buffer to asynchronous transmitter outputted to Realterm computer simulation. The Murata TRC8000 916.5 MHz transceiver is the link that connects to out Nexys 4DDR board to facilitate this communication.

1. Introduction

The design for this lab is simply addition of transmitter test and receiver test logic to lab 5 provided in the Wimp Fi Radio Data Sheet provided by the instructor. The transmit and ASK receive modes of the transceiver are the ones used, such that as long as we are not transmitting, we should receive data from other stations.

2. The Design

The design of this lab is the same as that of lab 5, with the added logic to facilitate integration of the transceiver for the transmitter and receiver test.

3. Design Verification

This design follows this checklist from lab 5, along with some additional observations.

Description	Test Method	Detailed Results
1. Module Interface	Code Inspection	We added few extra inputs and outputs
		compared to the Lab design, i.e.
		1. Check for error in PREAMBLE-SFD, bit
		and EOF via correlator use
		2. Added Transmitter from Lab3 for
		switching in between RealTerm data input
		and user given switches data input
2 . Module function: accepts rxd input and	Demonstration in oscilloscope and test	OSCILLOSCOPE & FPGA HARDWARE
receives data bits one by one, err output	bench simulation and Nexys4DDR board:	1. Proper display of cardet output on
for when there is a frame error and	TEST BENCH	oscilloscope
indicates readiness for the next receiving	1. Display of data received	2. Proper display of reset on seven segment
with cardet output	2. Display of PREAMBLE-SFD transition	display on Nexys board
	3. Display of RECEIVE-EOF transition	3. Proper display of manchester receiver
	4. Proper display of reset	data on seven segment display
	5. Proper display of the BaudRate	4. Proper display of full, empty and ready
		on LEDs on Nexys board

	6. Proper display of correlator csum output	5. Proper display of received data on the
	relation to state transitions and proper	oscilloscope
	detection of 1 and 0 Manchester bits.	6. Proper display of data transmission to
		other stations on realterm
		7. Proper receival of data from other
		stations on our realterm*
3. Uses Nexys4 board 100Mhz clock; all flip-	Code inspection	Provided the clock report from vivado
flop clock inputs tied directly to this signal	(all the instances of the clk use in the	
	modules are provided)	
4. Contains no latches	Inspection of Synthesis Report	Provided the section in vivado synthesis
		report
5. Test circuit – show test that test circuit	Demonstration in hardware	Demonstration to Professor Nadovich
functions properly to exercises circuit.	1. Proper display of cardet output on	
	oscilloscope	
	2. Proper display of reset on seven segment	
	display on Nexys board	
	3. Proper display of manchester receiver	
	data on seven segment display	
	4. Proper display of full, empty and ready	
	on LEDs on Nexys board	
	5. Proper display of received data on the	
	oscilloscope	
	6. Demostrated the transition from	
	asynchronous transmitter to RealTerm	
	input	
	6. Proper display of data transmission to	
	other stations on realterm	
	7. Proper receival of data from other	
	stations on our realterm*	
	•	

In submitting this checklist as part of our report, I/We certify that the tests described above were conducted and that the results of these tests are accurately described and represented. I/We understand that any misrepresentation of the tests or the results constitutes a violation of the College policy on academic dishonesty.

Name(s): Kemal Dilsiz & Zainab Hussein Date: 11/10/2016

Verification for this lab is not yet sufficient as have only been able to demonstrate transmission to the instructor and one other group (Rachel and Craig). The receival was not yet demonstrated as there is currently still unsatisfactory amount of noise present as we receive during the becon mode or when another student transmits to our station. We are working on making out noise tolerance efficient in the PREAMBLE state, where it seemed to show "synchronize" even without meeting the set threshold in the design.

4. Conclusion

We were able to transmit data to other stations, but the setbacks in our receival suggests rethinking our receiver synchronization procedure before having a realistic chance at proper functionality for the project.

Lessons learnt:

Confidence in use of Realterm computer simulation in various data types

^{*}Demonstration was not satisfactory

- > Debugging and more debugging
- > Proper time management

References

- ➤ WimpFi Wireless Basics Presentation Slides
- ➤ Wimp Fi Radio Data Sheet and Schematic