

Contexte

- Data Analyst dans une entreprise spécialisée dans la data
- Prestation en régie au sein de l'ONCFM
- Identification des contrefaçons des billets en euros
- Lecture cahier des charge + post-it

Lors de ma précédente mission, je me enis retrouvé ance un jeu de données comportant plein de valeurs manquantes, une vraiz galère! Mais j'ai eu de très bons résultats en utilisant un refyression tinédire pour combler ces dernières. Ça te servin peut-être pour ta prochaine mission, qui sait?

Déroulement du projet

- 1 Exploration et nettoyage des données
- 2 Enrichissement des données
 - Régression linéaire multiple
- 3 Analyse descriptive des données
 - ACP
- 4 Classification supervisée
 - K-Means
 - Régression logistique
- 5 Programme de détection des faux billets

Outils

Langage de programmation :

Logiciel:

Exploration et nettoyage des données

Exploration et nettoyage des données

Data

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
0	True	171.81	104.86	104.95	4.52	2.89	112.83
1	True	171.46	103.36	103.66	3.77	2.99	113.09
2	True	172.69	104.48	103.50	4.40	2.94	113.16
3	True	171.36	103.91	103.94	3.62	3.01	113.51
4	True	171.73	104.28	103.46	4.04	3.48	112.54
			Carrie Carrie	1444	Carrie Carrie		
1495	False	171.75	104.38	104.17	4.42	3.09	111.28
1496	False	172.19	104.63	104.44	5.27	3.37	110.97
1497	False	171.80	104.01	104.12	5.51	3.36	111.95
1498	False	172.06	104.28	104.06	5.17	3.46	112.25
1499	False	171.47	104.15	103.82	4.63	3.37	112.07

Data.drop_dublicates()

Nombre de doublons supprimer : 0

- 1500 billets

- 1 variable qualitative

- 6 variables quantitatives

- Pas de valeur aberrante!

- Pas de doublons!

- 37 valeurs null (margin_low)

Data.info()

RangeIndex: 1500 entries, 0 to 1499 Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	is_genuine	1500 non-null	bool
1	diagonal	1500 non-null	float64
2	height_left	1500 non-null	float64
3	height_right	1500 non-null	float64
4	margin_low	1463 non-null	float64
5	margin_up	1500 non-null	float64
6	length	1500 non-null	float64
dtyp	es: bool(1), f	loat64(6)	

Data.describe()

	diagonal	height_left	height_right	margin_low	margin_up	length
count	1500.000000	1500.000000	1500.000000	1463.000000	1500.000000	1500.00000
mean	171.958440	104.029533	103.920307	4.485967	3.151473	112.67850
std	0.305195	0.299462	0.325627	0.663813	0.231813	0.87273
min	171.040000	103.140000	102.820000	2.980000	2.270000	109.49000
25%	171.750000	103.820000	103.710000	4.015000	2.990000	112.03000
50%	171.960000	104.040000	103.920000	4.310000	3.140000	112.96000
75%	172.170000	104.230000	104.150000	4.870000	3.310000	113.34000
max	173.010000	104.880000	104.950000	6.900000	3.910000	114.44000

Suppression des doublons
print('Nombre de doublons supprimer :',len(df) - len(df.drop_duplicates()))

Régression linéaire multiple (Définition)

La régression linéaire multiple est une méthode d'analyse statistique utilisée pour prédire une variable dépendante continue à partir de deux ou plusieurs variables indépendantes!

Lors de ma précédente mission, je me suis retrouvé avec un jeu de données comportant plein de valeurs manquantes, une vraie galère! Mais j'ai eu de très bons résultats en utilisant une régression linéaire pour combler ces dernières. Ça te servira peut-être pour ta prochaine mission, qui sait?

Régression linéaire multiple (Cheminement)

Régression linéaire multiple (Evaluation / Visualisation)

- Coefficient de détermination (R²): 0,47
- Test de normalité des résidus : p-value < 0,05
- Test d'homoscédasticité : p-value < 0,05
- Erreur quadratique moyenne (RMSE): 0,47
- Coefficients de corrélation (r) :
 - diagonal: -0,11
 - height_left: 0,18
 - margin_up : 0,25
 - height_right : 0,25
 - length: -0,40

- 1500 billets
- 500 faux billets
- 1000 vrais billets

- Variables corrélées à 'is_genuine':

length: 0,85

margin low: 0,78

margin_up: 0,61

 Variable à forte corrélation avec les autres : length

 Variable à faible corrélation : diagonal

Vrais billets / Faux billets

- Variables distinguant le mieux les 2 groupes : length margin low
- Variable distinguant le moins les 2 groupes : : diagonal

 Variables distinguant le mieux les 2 groupes : length margin low

Analyse en Composantes Principales

Normalisation des données

Variance expliquée : 60,2%

Analyse en Composantes Principales

K-Means (Définition)

Méthode de clustering, qui permet de regrouper des données similaires en groupe grâce aux centroïdes!

K-Means

- Cassure au niveau de 2 clusters

- Meilleur score au niveau de 2 clusters

K-Means (Cheminement)

K-Means (Visualisation / Evaluation)

Précision: 0,98 Sensibilité: 0,98

Régression Logistique (Définition)

Méthode d'analyse statistique utilisée pour prédire une variable binaire à partir d'une ou plusieurs variables indépendantes!

Régression Logistique (Cheminement)

Régression Logistique

	False	True
0	0.996883	0.003117
1	0.053609	0.946391
2	0.993031	0.006969
3	0.999834	0.000166
4	0.104806	0.895194
5	0.002506	0.997494
6	0.006800	0.993200
7	0.001976	0.998024
8	0.000158	0.999842
9	0.000528	0.999472

- Coefficient de corrélation à la variable dépendante :

diagonal: 0,17

height_left:-0,44

height_right: -0,67

margin_up:-1,60

margin_low: -2,61

length: 3,32

Régression Logistique (Evaluation)

Précision : 0,99 proche de 1 Sensibilité : 0,99 proche de 1

Programme de détection de faux billets

Programme de détection

Prérequis

Enregistrer les modèles d'entraînement dans un fichier!

Modèle de Standardisation des données Modèle de Régression Logistique

Programme de détection

Fonctionnement

