Métodos Numéricos Computacionais - Segunda Prova - 08/09/2020

Instruções:

- A duração da prova é de 2 horas. Fazer upload <u>até</u> as 19hrs. Prova não será aceita após esse horário.
- Nomear o arquivo com a resolução como: C-NomeAluno
- A limpeza e o encadeamento lógico adequado são requisitos essenciais para que a questão seja considerada. Questões sem esses requisitos mínimos serão simplesmente desconsideradas (valor zero).
- Apresentar o resultado ao final de cada questão.
- Utilize como critério de parada $\frac{\left|\left|x^{(k+1)}-x^{(k)}\right|\right|_{\infty}}{\left|\left|x^{(k+1)}\right|\right|_{\infty}} < \varepsilon.$
- Considere todos os dígitos nos cálculos, mas apresente os valores com 4 casas decimais, sempre que possível.
- Confira se está resolvendo o tipo de prova correto!!
- Prova individual, sem consulta ao amigo/colega.
 - 1. (3,0) Escreva o polinômio interpolador utilizando a fórmula de Newton-Gregory, considerando todos os pontos, e calcule f(0,8), considerando a tabela a seguir:

x_i	0,1	0,4	0,7	1,0	1,3
$f(x_i)$	1,2500	1,5678	3,6789	8,8900	10,5699

2. (3,0) Considere a função f(x) dada por:

x_i	0	1	2	3	4	5	6
$f(x_i)$	0,21	0,32	0,42	0,51	0,82	0,91	1,12

Calcule $\int_0^6 f(x) dx$ usando:

- a) Regra dos trapézios generalizada;
- b) Regra 1/3 de Simpson generalizada;
- c) Regra 3/8 de Simpson generalizada.
- 3. (2,0) Resolva, pelo método de Newton, o seguinte sistema, sendo $(x_0, y_0) = (2, -3)$ e $\varepsilon = 0.01$.

$$\begin{cases} 3x^2 + y^2 = 7 \\ x^2 - y = 3 \end{cases}$$

4. (2,0) Considere os seguintes dados

Ī	x_i		-6	•	-2	0	2	4
Ī	$f(x_i)$	30,1	10,1	8,9	5,9	5,0	3,9	4,01

- a) Determine a exponencial $g(x) = a(b)^x$ que melhor se ajusta aos dados.
- b) Calcule $\sum_{i=1}^{7} e(x_i)^2$.