3.7 Autômato com Pilha

Classe das LLC

- pode ser associada a um formalismo do tipo
- denominado Autômato com Pilha

Autômato com Pilha (AP)

- análogo ao Autômato Finito incluindo
 - * não-determinismo
 - * estrutura de pilha
- não-determinismo × AP
 - * importante e necessária
 - * aumenta o poder computacional
 - * exemplo: o reconhecimento da linguagem

{ww^r | w é palavra sobre {a, b}} só é possível por um AP não-determinístico

• pilha

- * memória auxiliar
- * independente da fita de entrada
- * não possui limite máximo de tamanho ("infinita")
- estrutura de uma pilha:
 - * último símbolo gravado é o primeiro a ser lido
 - * base: é fixa e define o seu início
 - * topo: é variável e define a posição do último símbolo gravado

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 3

• muito superior ao do Autômato Finito

♦ Poder computacional do AP

- mas ainda é restrito
- exemplo: não reconhece

{ww | w é palavra sobre {a, b}} $\{a^nb^nc^n \mid n \ge 0\}$

♦ AP × Número de estados

- qq LLC pode ser reconhecida por um AP com somente
 - * um estado ou
 - * três estados
 - * dependendo da definição
- a pilha é suficiente como única memória
 - * os estados não são necessários para "memorizar" informações passadas
 - * poderiam ser excluídos sem reduzir o poder computacional

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 4

Definição do Autômato com Pilha

♦ AP

- duas definições universalmente aceitas
- diferem no critério de parada do autômato

Estados Finais

- valor inicial da pilha é vazio
- AP pára aceitando ao atingir um estado final

♦ Pilha Vazia

- pilha contém, inicialmente, um símbolo especial denominado símbolo inicial da pilha
- não existem estados finais
- AP pára aceitando quando a pilha estiver vazia

♦ As duas definições são equivalentes

- possuem o mesmo poder computacional
- é fácil modificar um AP para satisfazer a outra definição
- adotamos o modelo com estados finais

• Eita

- Pilha
- Unidade de controle
 - * Cabeça de fita
 - * Cabeça da pilha
- Programa ou Função de Transição

♦ Fita

• Análoga à do Autômato Finito

• Pilha

- memória auxiliar
- pode ser usada livremente para leitura e gravação
- dividida em células
- cada cédula
 - * um símbolo de um alfabeto auxiliar
 - * pode ser igual ao alfabeto de entrada
- leitura ou gravação
 - * sempre na mesma extremidade
 - * topo
- não possui tamanho fixo e nem máximo
- tamanho corrrente
 - * tamanho da palavra armazenada
- valor inicial: vazio

♦ Unidade de Controle

- reflete o estado corrente da máquina
- possui
 - * cabeça de fita
 - * cabeça de pilha

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 7

♦ Cabeça de Fita

- unidade de leitura
- acessa uma célula da fita de cada vez
- movimenta-se exclusivamente para a direita
- pode-se testar se leu toda a entrada

♦ Cabeça da Pilha

- unidade de *leitura* e *gravação*
- leitura
 - * move para a direita ("para baixo")
 - * acessa um símbolo de cada vez: topo
 - * exclui o símbolo lido
 - * é possível testar se a pilha está vazia

• gravação

- * move para a esquerda ("para cima")
- * é possível armazenar uma palavra composta por mais de um símbolo
- neste caso, o símbolo do topo é o mais à esquerda da palavra gravada

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 8

♦ Programa ou Função de Transição

- programa
 - * comanda a leitura da fita
 - * comanda a leitura e gravação da pilha
 - * define o estado da máquina
- dependendo
 - * estado corrente
 - * símbolo lido da fita
 - * símbolo lido da pilha

determina

- * novo estado
- * palavra a ser gravada

movimento vazio

- * análogamente ao Autômato Finito
- * pode mudar de estado sem ler da fita ou da pilha

♦ Definição: Autômato com Pilha

- Autômato com Pilha Não-Determinístico (APN) ou simplesmente Autômato com Pilha (AP)
- $M = (\sum, Q, \delta, q_0, F, V)$
 - * Σ alfabeto de *símbolos de entrada*
 - * Q conjunto finito de estados
 - * δ função programa ou função de transição $\delta: Q \times (\Sigma \cup \{\epsilon, ?\}) \times (V \cup \{\epsilon, ?\}) \rightarrow 2^{Q \times V^*}$ função parcial
 - * q_0 estado inicial do autômato $tq q_0 \in Q$
 - * F conjunto de *estados finais* tq $F \subseteq Q$
 - * V alfabeto auxiliar ou alfabeto da pilha

♦ Características da Função Programa

- a função pode não ser total
- "?" indica teste de
 - * toda palavra de entrada lida
 - * pilha vazia
- "e"
 - * leitura: movimento vazio da fita ou da pilha
 - * gravação: nenhuma gravação é realizada na pilha
- Exemplo: $\delta(p, ?, \varepsilon) = \{(q, \varepsilon)\}$
 - * no estado p
 - * se a entrada foi completamente lida
 - * não lê da pilha
 - * assume o estado q
 - * não grava na pilha

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 11

• representação como um grafo direto

♦ Processamento de um AP, para uma palavra de entrada

- sucessiva aplicação da função programa até ocorrer uma condição de parada
- é possível que um AP nunca atinja uma condição de parada
 - * ciclo ou "loop" infinito
 - * exemplo: empilha e desempilha um mesmo símbolo indefinidamente, sem ler da fita

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 12

Parada de um AP

- pára aceitando
 - * um dos caminhos alternativos assume um estado final
- pára rejeitando
 - * todos os caminhos alternativos rejeitam
- loop infinito
 - pelo menos um caminho alternativo está em "loop"
 - * os demais rejeitam ou também estão em "loop" infinito

♦ Notações

- ACEITA(M) ou L(M)
 - \ast conj das palavras de Σ^{\ast} aceitas por M
- REJEITA(M)
 - * conj das palavras de Σ^* rejeitadas por M
- LOOP(M)
 - * conj das palavras de Σ^* para as quais M fica processando indefinidamente

♦ As seguintes afirmações são verdadeiras

- $ACEITA(M) \cap REJEITA(M) \cap LOOP(M) = \emptyset$
- ACEITA(M) \cup REJEITA(M) \cup LOOP(M) = Σ^*
- o complemento de ACEITA(M) € REJEITA(M) ∪ LOOP(M) REJEITA(M) € ACEITA(M) ∪ LOOP(M) LOOP(M) € ACEITA(M) ∪ REJEITA(M)

♦ Exemplo: $\{a^nb^n \mid n \ge 0\}$

- um AP determinístico
- $M_1 = (\{a, b\}, \{q_0, q_1, q_f\}, \delta_1, q_0, \{q_f\}, \{B\})$
 - * δ_1 (q₀, a, ϵ) = {(q₀, B)}
 - * δ_1 (q₀, b, B) = {(q₁, ε)}
 - * δ_1 (q₀, ?, ?) = {(q_f, ϵ)}
 - * δ_1 (q₁, b, B) = {(q₁, ϵ)}
 - * δ_1 (q₁, ?, ?) = {(q_f, ϵ)}

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 15

• Exemplo: $\{ww^r \mid w \in \{a, b\}^*\}$

• um AP não-determinístico

• Exemplo: $\{a^nb^ma^{n+m} \mid n \ge 0, m \ge 0\}$

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 16

$AP \times LLC$

- ♦ A classe das linguagens reconhecidas pelos AP é igual à classe das LLC
- **♦ Outras conclusões**
 - para qualquer GLC, existe um AP que reconhece a linguagem gerada e sempre pára
 - construção de um AP a partir de uma GLC
 simples e imediata
 - qualquer LLC pode ser reconhecida por um AP com somente um estado de controle lógico
 - * a facilidade de memorização de informações através de estados (como nos autômatos finitos) não aumenta o poder computacional

♦ Teorema. Se L é uma LLC, então existe M, AP tq ACEITA(M) = L

♦ Prova

- suponha que a palavra vazia não pertence à L
- AP a partir de uma gramática na FNG
 - * produções da forma A → aα, α palavra de variáveis
 - * o AP simula a derivação mais à esquerda lê o símbolo a da fita
 lê o símbolo A da pilha empilha a palavra de variáveis α

- AP M a partir da gramática G = (V, T, P, S)
 - * G' = (V', T', P',S), é G na FNG
 - $$\begin{split} * & \ M = (T', \{q_0, \, q_1, \, q_f\}, \, \delta, \, q_0, \, \{q_f\}, \, V') \\ & \ \delta(q_0, \, \epsilon, \, \epsilon) = \{(q_1, \, S)\} \\ & \ \{(q_1, \, \alpha) \mid \ A \rightarrow a\alpha \in \, P'\} \end{split}$$

 $\delta(q_1, ?, ?) = \{(q_f, \epsilon)\}$

- demonstração de ACEITA(M) = GERA(G')
 - indução no número de movimentos de M (ou derivações de G¹)
 - * sugerida como exercício
 - * como o autômato pode ser modificado para tratar a palavra vazia?

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 19

- ♦ Exemplo L = $\{a^nb^n \mid n \ge 1\}$
- FNG

G = ({S, B}, {a, b}, P, S), onde P = {S \rightarrow aB | aSB, B \rightarrow b}

AP

 $M = (\{a, b\}, \{q_0, q, q_f\}, \delta, q_0, \{q_f\}, \{S, B\})$

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 20

- ♦ os 2 teoremas que seguem são corolários do anterior
- ♦ Teorema. Se L é uma LLC, então:
 - a) existe M, AP que aceita por estado final, com somente 3 estados tq ACEITA(M) = L
 - b) existe M, AP que aceita por pilha vazia, com somente um estado tq ACEITA(M) = L
- ♦ Portanto
 - o uso dos estados como "memória" não aumenta o poder de reconhecimento dos AP relativamente às LLC

◆ Teorema. Se L é uma LLC, então existe M, AP tal que

- ACEITA(M) = L
- REJEITA(M) = Σ^* L
- LOOP(M) = \emptyset .

♦ Ou seja

• para qualquer LLC existe um AP que sempre pára para qualquer entrada (por que?)

◆ Teorema. Se L é aceita por um AP, então L é LLC

• não será demonstrado

de Pilhas × Poder Computacional

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 23

de Pilhas × Poder Computacional

Autômato com Pilha

- modelo adequado para estudos
 - * aplicados
 - * formais
- estrutura de pilha
 - * adequada para implementação em computadores
- poucas modificações sobre a definição do AP
 - determinam significativas alterações no seu poder computacional
- assim, os principais estudos de linguagens e computabilidade
 - * podem ser desenvolvidos usando exclusivamente o AP
 - * variando o número de pilhas
 - * com ou sem a facilidade de não-determinismo

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 24

♦ Principais variações

- Autômato com Pilha, sem usar a estrutura de pilha
- Autômato com Pilha Determinístico
- Autômato com Pilha Não-Determinístico
- Autômato com Duas Pilhas
- Autômato com Mais de Duas Pilhas

♦ Autômato com Pilha, sem usar a estrutura de pilha

- estados
 - * única forma de memorizar informações passadas
- AP sem usar a pilha
 - * muito semelhante ao Autômato Finito
- Classe das Linguagens aceitas por AP sem pilha
 - * com ou sem não-determinismo
 - * é igual a Classe das Linguagens Regulares
 - * exercício

♦ AP Determinístico - APD

- aceita um subconjunto próprio das LLC
 - * Linguagens Livres do Contexto Determinísticas - LLCD
- LLCD inclui muitas das linguagens aplicadas em informática, com destaque para as de programação
- a implementação de um APD
 - * simples e eficiente
 - * facilita o desenvolvimento de processadores de linguagens
- é possível definir um tipo de gramática que gera exatamente a Classe das LLCD
 - não são restrições simples sobre a definição geral de gramática
- é fechada para a operação de complemento
- não é fechada para as operações de
 - * união
 - * intersecção
 - * concatenação

♦ AP (Não-Determinístico)

 a classe das linguagens reconhecida pelo AP é exatamente a Livre do Contexto

♦ Autômato com Duas Pilhas - A2P

- é equivalente, em termos de poder computacional,
 à Máquina de Turing
- assim, se existe um algoritmo para resolver um problema (por exemplo, reconhecer uma determinada linguagem), então este algoritmo pode ser expresso como um A2P
- a facilidade de não-determinismo não aumenta o poder computacional do A2P

♦ Aut. com Mais de Duas Pilhas - AnP

- o poder computacional é equivalente ao do
- ou seja
 - * se um problema é solucionado por um AnP
 - então o mesmo problema pode ser solucionado por um A2P

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 27

3.8 Propriedades das LLC

♦ As LLC são mais gerais que as LR

- mas ainda são relativamente restritas
- é fácil definir linguagens que não são LLC
 - * {ww | w pertence a {a, b}*}
 - * $\{a^nb^nc^n \mid n \ge 0\}.$

♦ Assim

- como determinar se uma linguagem é LLC?
- a Classe das LLC é fechada para operações como
 - * união?
 - * intersecção?
 - * concatenação?
 - * complemento?
- como verificar se uma LLC é
 - * infinita?
 - * finita (ou até mesmo vazia)?

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 28

Investigação se é LLC

♦ Prova de que uma linguagem é LLC

- é suficiente expressá-la usando os formalismos
 - * Gramática Livre do Contexto
 - * Autômato com Pilha

♦ Prova de que uma linguagem não é LLC

- necessita ser realizada caso a caso
- "lema do bombeamento" para as LLC

♦ Lema, Bombeamento das LLC

- Se L é uma LLC, então:
 - * existe uma constante n tal que,
 - * para qq $w \in L$ onde $|w| \ge n$,
 - * w pode ser definida como w = uxvyz onde $|xvy| \le n$, $|xy| \ge 1$ e,
 - * para todo $i \ge 0$, $ux^i vy^i z \in L$.

♦ Para w = uxvyz, tem-se que

- ou x ou y pode ser a palavra vazia
- mas não ambas

♦ Prova

- uma forma de demonstrar o lema é usando gramáticas na Forma Normal de Chomsky
 - * se a gramática possui \$ variáveis
 - * pode-se assumir que n = 2^s
- o lema não será demonstrado

♦ Exemplo. L = $\{a^nb^nc^n \mid n \ge 0\}$

- prova
 - * usa o bombeamento
 - * é por absurdo
- Suponha que L é LLC
 - * então existe uma GLC na FNC com \$ variáveis que gera L
 - * sejam $r = 2^s e w = a^r b^r c^r$
- pelo bombeamento
 - * w pode ser definida como w = uxvyz
 - * | xvy | ≤ r
 - * |xy| ≥ 1
 - * para qq $i \ge 0$, $ux^i vy^i z \in L$
- absurdo!!!, pois como |xvy| ≤ r
 - * xy não possui símbolos a e c
 - * qq ocorrências de a e c estão separadas por, pelo menos, r ocorrências de b
 - * aplicação do bombeamento: desbalanceamento!

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 31

Operações sobre LLC

♦ Teorema: As LLC são fechadas p/

- união
- concatenação

♦ Prova: União

- demonstração é baseada em AP (GLC: exercício)
- suponha L₁ e L₂, LLC. Então, existem

$$\begin{aligned} &M_1 = (\sum_1,\,Q_1,\,\delta_1,\,q_{0_1},\,F_1,\,V_1)\;e\\ &M_2 = (\sum_2,\,Q_2,\,\delta_2,\,q_{0_2},\,F_2,\,V_2) \end{aligned}$$

 $tq ACEITA(M_1) = L_1 e ACEITA(M_2) = L_2$

• seja

 $M_3 = (\sum_1 \cup \sum_2, Q_1 \cup Q_2 \cup \{q_0\}, \delta_3, q_0, F_1 \cup F_2, V_1 \cup V_2)$

• claramente, M₃ reconhece L₁ ∪ L₂

♦ Prova: Concatenação

• demonstração é baseada em GLC (AP: exercício)

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 32

• suponha L₁ e L₂, LLC. Então, existem G₁ = (V₁, T₁, P₁, S₁) e

$$G_2 = (V_2, T_2, P_2, S_2)$$

 $G = (V_2, T_2, P_2, S_2)$
 $G = (V_2, T_2, P_2, S_2)$

• seia

 $G_3 = (V_1 \cup V_2 \cup \{S\}, \, T_1 \cup T_2, \, P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\}, \, S)$

- a única produção de $S \in S \rightarrow S_1S_2$
- qq palavra terá, como
 - * prefixo, uma palavra de L₁
 - * sufixo, uma palavra de L2

♦ O próximo teorema mostra que a Classe das LLC não é fechada para

- intersecção
- complemento

♦ Aparentemente, é uma contradição

- já foi verificado que
 - * se L é LLC, então existe M, AP tal que ACEITA(M) = L e REJEITA(M) = L'
 - * ou seja, M é capaz de *rejeitar* qualquer palavra que não pertença à L
- o próximo teorema mostra que
 - * se L é LLC, não implica que L' também é LLC
 - * ou seja, *não* se pode afirmar que existe um AP que *aceite* L'

♦ Assim

- é perfeitamente possível *rejeitar* o complemento de uma LLC
- embora nem sempre seja possível aceitar o complemento

♦ Uma explicação intuitiva

- um AP não-determinista
 - * aceita se pelo menos um dos caminhos alternativos aceita

- inverção de aceita por rejeita e vice-versa
 - * a condição continua sendo de aceitação

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 35

♦ Portanto

- considerando a facilidade de não-determinismo
 - * o fato de existir um AP capaz de rejeitar o complemento de uma linguagem
 - * não implica que existe um AP capaz de aceitar o mesmo complemento

◆ Teorema: A Classe das LLC não é fechada para as operações

- intersecção
- complemento

♦ Prova: Intersecção

- contra- exemplo
- sejam
 - * $L_1 = \{a^n b^n c^m \mid n \ge 0 \text{ e } m \ge 0\} e$
 - * $L_2 = \{a^m b^n c^n \mid n \ge 0 \text{ e } m \ge 0\}$
- é fácil mostrar que L₁ e L₂ são LLC
- entretanto
 - * $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$
 - * não é LLC

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 36

♦ Prova: Complemento

- considerando que
 - * não é fechada para a intersecção
 - intersecção pode ser representada em termos de união e complemento
 - * é fechada para a união
- não pode-se afirmar que é fechada para o complemento

Investigação se uma LLC é Vazia, Finita ou Infinita

◆ Teorema. Se L é LLC, então é possível determinar se L é

- vazia
- finita
- infinita

♦ Prova: Vazia

- seja G = (V, T, P, S), GLC tq GERA(G) = L
- seja G'= (V', T', P', S) equivalente a G, eliminando os símbolos inúteis
- se P' for vazio, então L é vazia

♦ Prova: Finita e Infinita

- seja G = (V, T, P, S) uma GLC tq GERA(G) = L
- seja G' = (V', T', P', S) equivalente a G
 - * Forma Normal de Chomsky
 - * (A \rightarrow a ou A \rightarrow BC)
- considere somente as produções da forma A → BC
- se existe A tq
 - * $A \rightarrow BC$ (A no lado esquerdo)
 - * $X \rightarrow YA$ ou $X \rightarrow AY$ (A no lado direito)
 - e se existe um ciclo em A do tipo $A \Rightarrow^+ \alpha A\beta$ então
 - * A é capaz de gerar palavras de qq tamanho
 - * a linguagem é infinita
 - caso não exista tal A, então a linguagem e finita

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 39

3.9 Algoritmos de Reconhecimento

• Uma palavra pertence ou não a uma linguagem?

 uma das principais questões relacionadas com o estudo de Linguagens Formais

♦ "Dispositivo" de reconhecimento

- pode ser especificado como um
 - * modelo de autômato ou
 - * algoritmo implementável em computador
- em qualquer caso, é importante determinar
 - * "quantidade de recursos" necessários
 - * por exemplo: tempo e espaço
- objetivo
 - gerar dispositivos de reconhecimento válidos para qualquer linguagem dentro de uma classe
 - * algoritmos apresentados: específicos para LLC

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 40

♦ Algoritmos de reconhecimento

- construídos a partir de uma GLC
- reconhecedores que usam Autômato com Pilha
 - * muito simples
 - * em geral, ineficientes
 - * tempo de processamento é proporcional a k | w |
 (W entrada; k depende do autômato)
 - * não são recomendáveis para entradas de tamanhos consideráveis
- existe uma série de algoritmos bem mais eficientes
 - * tempo de processamento proporcional a | w | 3
 - * ou até um pouco menos
 - * não é provado se o tempo proporcional a |w|3 é efetivamente necessário para que um algoritmo genérico reconheça LLC

♦ Tipos de reconhecedores

- Top-Down ou Preditivo
- Bottom-Up

♦ Top-Down ou Preditivo

- constrói uma árvore de derivação para a entrada
 - * a partir da raiz (símbolo inicial da gramática)
 - gera os ramos em direção às folhas (símbolos terminais que compõem a palavra

♦ Bottom-Up

- basicamente, o oposto do Top-Down
- parte das folhas e constrói a árvore de derivação em direção à raiz

AP como Reconhecedor

♦ Construção de reconhecedores usando A P

- relativamente simples e imediata
- existe uma relação quase direta entre
 - * produções da gramática
 - * transições do AP
- algoritmos
 - * tipo Top-Down
 - * simulam a derivação mais à esquerda da palavra a ser reconhecida
- não-determinismo
 - * testa as diversas produções alternativas da gramática para gerar os símbolos terminais

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 43

AP a Partir de uma GLC na FNG

♦ Foi visto que

- qualquer LLC pode ser especificada como um AP
- existe um algoritmo que define um AP a partir de uma Gramática na FNG

◆ Cada produção na FNG gera exatamente um terminal

- w é gerada em | w | etapas de derivação
- entretanto
 - * cada variável pode ter mais de uma produção
 - * é necessário testar as diversas alternativas
- número de passos para reconhecer W
 - * proporcional a k | w | onde k depende do AP
 - * aproximação para k: metade do número médio de produções associadas às diversas variáveis
- portanto
 - * tempo: proporcional ao expoente em |w|
 - * pode ser muito ineficiente para entradas longas

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 44

AP Descendente

◆ Forma alternativa de construir um AP a partir de uma GLC

- algoritmo igualmente simples
- mesmo nível de eficiência
- construção:
 - * gramática sem recursão à esquerda
 - * simula a derivação mais à esquerda

♦ Algoritmo

- inicialmente, empilha o símbolo inicial
- sempre que existir uma variável no topo da pilha, substitui (de forma não-determinística) por todas as produções da variável
- se o topo da pilha for um terminal, verifica se é igual ao próximo símbolo da entrada

♦ Construção de um Autômato com Pilha Descendente

- seja G =(V, T, P, S)
 - * GLC
 - * sem recursão à esquerda
- $M = (T, \{q_0, q_1, q_f\}, \delta, q_0, \{q_f\}, V \cup T)$, onde
 - * $\delta(q_0, \epsilon, \epsilon) = \{(q_1, S)\}$
 - * $\delta(q_1, \varepsilon, A) = \{(q_1, \alpha) \mid A \rightarrow \alpha \in P\}$
 - * $\delta(q_1, a, a) = \{(q_1, \epsilon)\}$
 - * $\delta(q_1, ?, ?) = \{(q_f, \varepsilon)\}$

♦ Exemplo. L = $\{a^nb^n \mid n \ge 1\}$

- G = ({S}, {a, b}, P, S), onde
 P = {S → aSb | ab} (sem recursão à esquerda)
- $M = (\{a, b\}, \{q_0, q_1, q_f\}, \delta, q_0, \{q_f\}, \{S\})$

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 47

Algoritmo de Cocke-Younger-Kasami

♦ Cocke-Younger-Kasami (CYK)

- desenvolvido independentemente por
 - * Cocke, Younger e Kasami
 - * em 1965
- construído sobre uma gramática na FNC
- tipo *bottom-up*
- gera todas as árvores de derivação da entrada
- tempo de processamento proporcional a | w | 3

Algoritmo

- construção de uma tabela triangular de derivação
- cada célula representa o conjunto de raízes que pode gerar a correspondente sub-árvore

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 48

♦ Algoritmo de CYK

- G = (V, T, P, S) na FNC onde T = {a₁, a₂, ..., a_t}
- V_{r_s} representa as células da tabela triangular de derivação (suponha w = a₁a₂...a_n)

a) Variáveis q. geram terminais diretamente $A \rightarrow a$

para r variando de 1 até n faça $V_{r_1} = \{A \mid A \rightarrow a_r \in P\}$

b)*Produção que gera duas variáveis* A → BC

- Note-se que:
 - limite de iteração para r é n S + 1, pois a tabela de derivação é triangular
 - * os vértices V_{r_k} e $V_{(r+k)_{(r-k)}}$ são as raízes das subárvores de V_{r_s}
 - se uma célula for vazia, significa que esta célula não gera qualquer sub-árvore

c) Condição de aceitação da entrada

 se o símbolo inicial pertence ao vértice V_{1n} (raiz da árvore de derivação de toda palavra), então a entrada é aceita

♦ Exemplo.

- G = ({S, A}, {a, b}, P, S), onde
 P = {S → AA | AS | b, A → SA | AS | a}
- tabela triangular de derivação para abaab

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 51

Algoritmo de Early

◆ Early

- desenvolvido em 1968
- considerado o mais rápido algoritmo de reconhecimento conhecido para GLC
- tempo de processamento
 - * proporcional a |w|3
 - * para gramáticas não-ambíguas, pode ser proporcional a | w | 2
 - para muitas gramáticas de interesse prático, o tempo é proporcional a | w |

♦ Algoritmo

- tipo top-down
- a partir de uma GLC qualquer
- executa sempre a derivação mais à esquerda
- cada ciclo gera um terminal
 - * comparado com o símbolo da entrada
- comparação com sucesso
 - construção de um conjunto de produções que pode gerar o próximo símbolo

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 52

♦ Algoritmo de Early

- G = (V, T, P, S) uma GLC qualquer
- w = a₁a₂...a_n palavra a ser reconhecida
- símbolo "."
 - * é usado como um marcador
 - em cada produção antecede a posição que será analisada na tentativa de gerar o próximo terminal
- sufixo "/u"
 - * adicionado a cada produção
 - indica o U-ésimo ciclo em que esta produção passou a ser considerada

a) Construção do primeiro conjunto de produções

- produções que partem de S
- produções que podem ser aplicadas em sucessivas derivações mais à esquerda a partir de S

- (1) produções que partem de S
- (2) as produções que podem ser aplicadas em derivação mais à esquerda a partir de S

b) Construção dos demais conjuntos de produção

- n = |w| conjuntos de produção a partir de D₀
- ao gerar o símbolo a_Γ de w constrói D_Γ : produções que podem gerar o símbolo $a_{\Gamma+1}$

```
para r variando de 1 até n
                                                                 (1)
faça D_r = \emptyset;
          para toda A \rightarrow \alpha .a_r \beta/s \in D_{r-1}
                                                                 (2)
          faça D_r = D_r \cup \{A \rightarrow \alpha a_r \cdot \beta/s\};
          repita
                   para toda A \rightarrow \alpha .B\beta/s \in D_r (3)
                    faça para toda B \rightarrow \phi \in P
                              faça D_r = D_r \cup \{B \rightarrow .\phi/r\}
          para toda A \rightarrow \alpha./s de D_r
                                                                 (4)
          faça para toda B \rightarrow \beta .A\phi/k \in D_S
                    faça D_r = D_r \cup \{B \rightarrow \beta A.\phi/k\}
                                    ocorrerem
          até
                                                               mais
inclusões
```

- (1) cada ciclo gera um conjunto de produções D_r
- (2) gera o símbolo ar
- (3) produções que podem derivar o próximo símbolo
- (4) uma subpalavra de w foi reduzida à variável A
 - * inclui em D_r produções de que referenciaram .A

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 55

c) Condição de aceitação da entrada

- se uma produção S → α./0 pertence a Dn, então a palavra W de entrada foi aceita
- S $\rightarrow \alpha$./0 é uma produção que
 - * parte do símbolo inicial \$
 - * foi incluída em D₀ ("/0")
 - * todo o lado direito da produção foi analisado com sucesso ("." está no final de α)

♦ Otimização das etapas a) e b)

- ciclos repita-até
 - st restritos exclusivamente às produções recentemente incluídas em D_r ou em D_0 ainda não-analisadas

Linguagens Formais e Autômatos - Capítulo 3 - P. Blauth Menezes 56

♦ Exemplo. Gramática análoga à definição de "expressão simples" do PASCAL

G = ({E, T, F}, {+, *, [,], x}, P, E), onde
P = {E
$$\rightarrow$$
 T | E+T, T \rightarrow F | T*F, F \rightarrow (E) | x}
reconhecimento da palavra x*x

Do:

$E \to .T/0$	produções que partem
$E \rightarrow .E+T/0$	do símbolo inicial
$T \rightarrow .F/0$	produções que podem ser aplicadas
$T \rightarrow .T*F/0$	em derivação mais à esquerda
$F \to {}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(E)/0$	a partir do símbolo inicial
$F \rightarrow x/0$	

D_1 : reconhecimento de "x" em $\underline{x}*x$

$F \rightarrow x./0$	x foi reduzido à F
$T \rightarrow F./0$	inclui as produções de D_0 (F $\rightarrow x$./0)
$T \rightarrow T.*F/0$	que referenciaram .F direta ou
$E \rightarrow T_{\bullet}/0$	indiretamente, movendo "."
$E \rightarrow E_{\bullet} + T/0$	um símbolo para a direita

D_2 : reconhecimento de "*" em $X \underline{*} X$

$T \rightarrow T*.F/0$	gerou *; o próximo será gerado por F
$F \rightarrow .(E)/2$	inclui as produções de P que podem
$F \rightarrow .x/2$	gerar o próximo terminal a partir de F

D_3 : reconhecimento de "x" em $x*\underline{x}$

$F \rightarrow x./2$	x foi reduzido à F
$T \rightarrow T*F./0$	incluído de $D_2 (F \rightarrow x./2)$;
	a entrada foi reduzida à T;
$E \rightarrow T$./0	incluído de $D_0 (T \rightarrow T*F_{\bullet}/0)$;
	a entrada foi reduzida à E;
$T \rightarrow T_{\bullet}*F/0$	incluído de $D_0 (T \rightarrow T*F_{\bullet}/0)$;
$E \rightarrow E_{\bullet} + T/0$	incluído de D_0 (E \rightarrow T./0).

w = x*x foi reduzida ao símbolo inicial E

- $E \rightarrow T./0$ pertence a D_3
- a entrada foi aceita