

DEPARTMENT OF COMPUTER APPLICATIONS

CADX116 - MACHINE LEARNING ALGORITHMS LABORATORY

LAB RECORD

NAME	:	
RRN	:	
LAB	:	CADX116 - MACHINE LEARNING ALGORITHMS LABORATORY

DEPARTMENT OF COMPUTER APPLICATIONS

ACADEMIC YEAR (JULY 2024 - DECEMBER 2024)

COURSE CODE : CADX116

COURSE NAME : MACHINE LEARNING ALGORITHMS

LABORATORY

PROGRAMME : BCA (DATA SCIENCE)

SEMESTER : V

BONAFIDE CERTIFICATE

This is a Certified Record Book of	
RRN:	submitted for the Semester End
Practical Examination held on	, for the <u>CADX116</u> -
MACHINE LEARNING ALGORITHMS	<u>LABORATORY</u> during <u>2024 - 2025</u> .
	Signature of Faculty

INDEX

Ex.No.	Date	List of Experiments	Page No	Signature
1.		Implement Naive Bayes Classifier		
2.		Implement Linear Regression		
3.		Implement Support Vector Machine (SVM) Algorithm		
4.		Implement Decision Tree Classifier		
5.		Implement Random Forest Algorithm		
6.		Implement K-Means Clustering Algorithm		
7.		Implement Principal Component Analysis (PCA)		
8.		Implement K-Nearest Neighbors (KNN) Algorithm		
9.		Demonstrate Weka Tool		
10.		Build An Unsupervised Models Using [Scikit-Learn And Pytorch]		
11.		Implement Logistic Regression		
12.		Implement Neural Network Model		

K.NO : ATE : IMPLEMENT NAÏVE BAYES CLASSIFIER								
URCE C	ODE :							
Step 1:								
	[] import pandas as pd from sklearn import tree from sklearn.preprocessing import LabelEncoder from sklearn.naive_bayes import GaussianNB							
Step 2:			\wedge	\forall		1		
[] data=pd.read_csv("Naive_Bayes_PlayTennis.csv") print("the First 5 values of data is :\n") data.head()								
Output: the First 5 values of data is:								
		Outlook	Temperature	Humidity	Windy	Play Tennis		
O Sunny Hot High False No								
1 Sunny Hot High True No								
2 Overcast Hot High False Yes								
3 Rainy Mild High False Yes								
4 Rainy Cool Normal False Yes								

 $print("the\ First\ 5\ values\ of\ data\ is\ :\n")$

X.head()

Output:

the First 5 values of data is:

	Outlook	Temperature	Humidity	Windy
0	Sunny	Hot	High	False
1	Sunny	Hot	High	True
2	Overcast	Hot	High	False
3	Rainy	Mild	High	False
4	Rainy	Cool	Normal	False

Step 4:

```
[] y=data.iloc[:,-1]

print("the First 5 values of data is :\n")

y.head()
```

Output:

the First 5 values of data is:

- 0 No
- 1 No
- 2 Yes
- 3 Yes
- 4 Yes

Name: PlayTennis, dtype: object

Step 5:

```
[] for column in X.columns:

X[column]=LabelEncoder().fit_transform(X[column])

X.head()
```

	Outlook	Temperature	Humidity	Windy
0	2	1	0	0
1	2	1	0	1
2	0	1	0	0
3	1	2	0	0
4	1	0	1	0

	y=LabelEncoder().fit_transform(y)
	print(y)
Output:	
	[0 0 1 1 1 0 1 0 1 1 1 1 1 0]
Step 7:	
	from sklearn.model_selection import train_test_split
Step 8:	
	X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.20)
Step 9:	
	from sklearn.naive_bayes import GaussianNB
	classifier = GaussianNB()
	classifier.fit(X_train,y_train)
Output:	
	▼ GaussianNB
	GaussianNB()
Step 10:	
	from sklearn.metrics import accuracy_score
Step 11:	
	<pre>print("Accuracy is:",accuracy_score(classifier.predict(X_test),(y_test)))</pre>
Output:	
	Accuracy is: 0.666666666666666666666666666666666666

EX.NO : DATE :	
	IMPLEMENT LINEAR REGRESSION
SOURCE	CODE:
Step 1	:
	import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score
Step 2	
	data=pd.read_csv("Linear_Regression_Advertising.csv") print("the First 5 values of data is :\n") data.head()

the First 5 values of data is ?

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

Step 3:

```
[] X = data[['TV', 'Radio', 'Newspaper']]

y = data['Sales']

X.head()
```

Output:

	TV	Radio	Newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4

Step 4:

[] y.head()

Output:

0 22.1

1 10.4

2 9.3

3 18.5

4 12.9

Name: Sales, dtype: float64

Step 5:

[] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = LinearRegression()

model.fit(X_train, y_train)

Output:

LinearRegression
LinearRegression()

Step 6:

 $[] y_pred = model.predict(X_test)$

Step 7:

```
[] mse = mean_squared_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse}')

print(f'R^2 Score: {r2}')
```

Output:

Mean Squared Error: 13.201451790963432

R^2 Score: -0.6838586468065599

Step 8:

Step 9:

```
[] plt.figure(figsize=(8,6))

plt.scatter(y_test,y_pred,color='green')

plt.title('PredictedvsActual')

plt.xlabel('ActualValues')

plt.ylabel('PredictedValues')

plt.plot([min(y_test),max(y_test)], [min(y_test),max(y_test)],color='red',

linestyle='--')

plt.show()
```


DATE : IMPLEMENT SUPPORT VECTOR MACHINE (SVM) ALGORITHM		
SOURCE CODE: Step 1: [] import pandas as pd import numpy as np from sklearn.model_selection import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC	EX.NO:	
SOURCE CODE: Step 1: [] import pandas as pd import numpy as np from sklearn.model_selection import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC	DATE :	
SOURCE CODE: Step 1: [] import pandas as pd import numpy as np from sklearn.model_selection import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC		IMPLEMENT SUPPORT VECTOR MACHINE
Source code: Step 1: [] import pandas as pd import numpy as np from sklearn.model_selection import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC		
[] import pandas as pd import numpy as np from sklearn.model_selection import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC		(SVM) ALGORITHM
[] import pandas as pd import numpy as np from sklearn.model_selection import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC		
Step 1: [] import pandas as pd import numpy as np from sklearn.model_selection import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC		
[] import pandas as pd import numpy as np from sklearn.model_selection import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC	SOURCE COL	
[] import pandas as pd import numpy as np from sklearn.model_selection import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC	SOURCE COL	DE:
[] import pandas as pd import numpy as np from sklearn.model_selection import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC	Step 1:	
import numpy as np from sklearn.model_selection import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC		
from sklearn.model_selection import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC	[]	import pandas as pd
from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC		import numpy as np
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, fl_score from sklearn.svm import SVC		from sklearn.model_selection import train_test_split,cross_val_score
recall_score, f1_score from sklearn.svm import SVC		from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.svm import SVC		from sklearn.metrics import confusion_matrix, accuracy_score, precision_score,
		recall_score, f1_score
		from sklearn.svm import SVC
Step 2:		
Step 2:		
	Step 2:	

[] data=pd.read_csv("SVM_PurchasePrediction.csv")

print("the First 5 values of data is :\n")

data.head()

Output:

the First 5 values of data is:

	Age	Income	Gender	Purchase
0	25	50000	Male	0
1	45	64000	Female	1
2	35	58000	Female	0
3	50	72000	Male	1
4	23	48000	Male	0

```
Step 3:
     le=LabelEncoder()
             data['Gender']=le.fit transform(data['Gender'])
Step 4:
             data.fillna(method='ffill',inplace=True)
Step 5:
             X = data.drop('Purchase',axis=1)
     y = data['Purchase']
Step 6:
             sc=StandardScaler()
      X \ scaled = sc.fit \ transform(X)
Step 7:
     classifiers={
               'Linear SVM': SVC(kernel='linear',random state=0),
               'Polynomial SVM': SVC(kernel='poly',degree=3,random state=0),
               'RBF SVM': SVC(kernel='rbf',random state=0)
Step 8:
           for clf name, clf in classifiers.items():
               scores=cross val score(clf,X scaled,y,cv=5,scoring='accuracy')
               print(f"{clf name} Cross-validation Accuracy: {scores.mean():.2f}(+/-
             {scores.std()*2:.2f})")
Output:
         Linear SVM Cross-validation Accuracy : 0.80(+/-0.33)
         Polynomial SVM Cross-validation Accuracy: 0.80(+/-0.53)
         RBF SVM Cross-validation Accuracy: 0.80(+/-0.53)
Step 9:
              X_{train}, X_{test}, y_{train}, y_{test} = train_{test_{split}}(X, y, test_{size}=0.25, random_{state}=0)
     Г٦
              classifier=SVC(kernel='linear',random state=0)
              classifier.fit(X train, y train)
```

```
Output:
                               SVC
            SVC(kernel='linear', random_state=0)
Step 10:
     y_pred=classifier.predict(X_test)
Step 11:
            cm=confusion_matrix(y_test,y_pred)
      accuracy=accuracy_score(y_test,y_pred)
            precision=precision_score(y_test,y_pred)
            recall=recall_score(y_test,y_pred)
            fl=fl_score(y_test, y_pred)
Step 12:
     print(f"Confusion Matrix :\n",cm)
            print(f"Accuracy:{accuracy:.2f}")
            print(f"Precision : {precision:.2f}")
            print(f"Recall :{recall:.2f}")
            print(f"F1 Performance score :{f1:.2f}")
Output:
              Confusion Matrix.
               [[4]]
              Accuracy:1.00
              Precision:1.00
              Recall:1.00
              F1 Performance score :1.00
```

EX.NO:	
DATE:	
	IMPLEMENT DECISION TREE CLASSIFIER
SOURCE COL	DE:
Step 1:	
	import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix,accuracy_score,precision_score,recall_score,fl_score
Step 2:	
Output:	data=pd.read_csv("DecisionTree_TargetIncome.csv") print("the First 5 values of data is :\n") data.head() First 5 values of data is :
	Age Income Gender TargetVariable

	Age	Income	Gender	TargetVariable
0	25	50000	Male	0
1	45	64000	Female	1
2	35	58000	Female	0
3	50	72000	Male	1
4	23	48000	Male	0

Step 3:

data=pd.get_dummies(data, columns=['Gender'],drop_first=True)

```
Step 4:
      print(data.columns)
Step 5:
      X = data.drop('TargetVariable',axis=1)
             y = data['TargetVariable']
Step 6:
              X_{train}, X_{test}, y_{train}, y_{test} = train_{test} split(X, y, test_{size} = 0.25, random_{state} = 0)
     classifier=DecisionTreeClassifier(random state=0)
              classifier.fit(X train, y train)
Output:
                 DecisionTreeClassifier
        DecisionTreeClassifier(random_state=0)
Step 7:
      y_pred=classifier.predict(X_test)
Step 8:
             cm=confusion_matrix(y_test,y_pred)
      accuracy=accuracy_score(y_test,y_pred)
             precision=precision_score(y_test,y_pred)
             recall=recall score(y test,y pred)
             fl=fl_score(y_test,y_pred)
Step 9:
      print(f"Confusion Matrix :\n",cm)
             print(f"Accuracy : {accuracy:.2f}")
             print(f"Precision : {precision:.2f}")
             print(f"Recall :{recall:.2f}")
             print(f"F1 score :{f1:.2f}")
```

Output: Confusion Matrix: [[0 0] [1 3]] Accuracy:0.75 Precision:1.00 Recall:0.75 F1 score:0.86

EX.NO : DATE :	
DAIE .	IMPLEMENT RANDOM FOREST ALGORITHM
SOURCE COL	DE:
Step 1:	
	import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, classification_report import warnings warnings.filterwarnings('ignore')
Step 2:	
	titanic_data=pd.read_csv('RandomForest_TitanicSurvival.csv') titanic_data.head()
Output:	

	Passenger Id	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	<i>y</i> 0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.25	-	S
1	2		1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.925	-	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.05	-	S

	titanic_data=titanic_data.dropna(subset=['Survived'])
Step 4:	
[]	X=titanic_data[['Pclass','Sex','Age','SibSp','Parch','Fare']]
	y=titanic_data['Survived']
Step 5:	
	$X.loc[:,'Sex'] = X['Sex'].map(\{'female':0,'male':1\})$ X.loc[:,'Age'] = X['Age'].fillna(X['Age'].median())
Step 6:	
	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=
	$rf_classifier = RandomForestClassifier (n_estimators = 100, random_state = 42)$
	rf_classifier.fit(X_train, y_train)
Output:	
Output:	RandomForestClassifier
•	RandomForestClassifier ndomForestClassifier(random_state=42)
•	
•	
Rail Step 7:	
Rai	ndomForestClassifier(random_state=42)
Rail Step 7:	ndomForestClassifier(random_state=42)
Ral Step 7:	ndomForestClassifier(random_state=42)
Rail Step 7: [] Step 8:	y_pred=rf_classifier.predict(X_test)
Rail Step 7: [] Step 8:	y_pred=rf_classifier.predict(X_test) accuracy=accuracy_score(y_test,y_pred)
Rail Step 7: [] Step 8:	y_pred=rf_classifier.predict(X_test) accuracy=accuracy_score(y_test,y_pred)
Ral Step 7: [] Step 8:	y_pred=rf_classifier.predict(X_test) accuracy=accuracy_score(y_test,y_pred)

Output	
Ouipui	٠

Accurancy:0.80

Classification Report :

J	precision	recall	f1-score	support
0	0.82	0.85	0.83	105
1	0.77	0.73	0.75	74
accuracy			0.80	179
macro avg	0.79	0.79	0.79	179
weighted avg	0.80	0.80	0.80	179

EX.NO: DATE:	
	IMPLEMENT K-MEANS CLUSTERING ALGORITHM
SOURCE CO.	DE:
Step 1:	
	import pandas as pd import numpy as np from sklearn.cluster import KMeans import matplotlib.pyplot as plt
Step 2:	
	data=pd.read_csv("KMeans_FeatureClusters.csv") print("the First 5 values of data is :\n") data.head()
Output:	

the First 5 values of data is:

	Feature1	Feature2
0	2.3	3.4
1	1.5	1.8
2	7.6	6.5
3	2.1	4.2
4	8.0	7.0

Step 3:

[] kmeans=KMeans(n_clusters=2,random_state=0)
kmeans.fit(df)

Output:

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:870:

FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382:

UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.

warnings.warn(

KMeans

KMeans(n_clusters=2, random_state=0)

Step 4:

[] df['cluster']=kmeans.labels_

Step 5:

[] print(df.head())

	Feature1	Feature2	Cluster
0	2.3	3.4	1
1	1.5	1.8	1
2	7.6	6.5	0
3	2.1	4.2	1
4	8.0	7.0	0

Step 6:

```
[] plt.figure(figsize=(10,8))

plt.scatter(df['Feature1'],df['Feature2'],c=df['cluster'],cmap='viridis',s=50)

plt.title('K-Means Clustering')

plt.xlabel('Feature 1')

plt.ylabel('Feature 2')

plt.show()
```


EX.NO: DATE:		
	IMP	PLEMENT PRINCIPAL COMPONENT ANALYSIS (PCA)
SOURCE	COL	DE:
Step	1:	
		import pandas as pd import numpy as np from sklearn.decomposition import PCA
		from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import seaborn as sns
Step	2:	
		data=pd.read_csv("PCA_CustomerSegmentation.csv") print("the First 5 values of data is :\n") data.head()
Out <u>f</u>	out:	

the First 5 values of data is:

	Age	Annual Income	Spending Score	Number of Purchases	Cluster
0	22	35000	45	15	3
1	28	45000	50	18	2
2	33	60000	55	22	1
3	38	70000	60	25	4
4	45	80000	65	30	2

Step 8:

[] explained_variance=pca.explained_variance_ratio_
print(f'Explained Variance by each Component: {explained_variance}')
print(f'Total Explained Variance : {np.sum(explained_variance)}')

Output:

Explained Variance by each Component: [0.87276806 0.1144451]

Total Explained Variance: 0.9872131621734076

EX.NO:										
DATE:										
IMPLEMENT K-NEAREST NEIGHBORS										
(KNN) ALGORITHM										
SOUDCE COL	$n_{m E}$.									
SOUNCE COL	SOURCE CODE:									
Step 1:										
	import pandas as pd									
	import plotly.graph_objects as go									
	import plotly.offline as pyoff									
	from sklearn.model_selection import train_test_split									
	from sklearn.preprocessing import StandardScaler									
	from sklearn.neighbors import KNeighborsClassifier									
	from sklearn.metrics import classification_report,confusion_matrix,accuracy_score									
Step 2:										
	data=pd.read_csv("KNN_CellClassification.csv")									
	data.info()									
Output:										
	<class 'pandas.core.frame.dataframe'=""></class>									
	RangeIndex: 698 entries, 0 to 697 Data columns (total 11 columns):									
	# Column Non-Null Count Dtype									
	0 1000025 698 non-null int64									
	0									
	2 1 698 non-null int64									
	3									
	5 2 698 non-null int64									
	6 1.3 698 non-null object 7 3 698 non-null int64									
	8 1.4 698 non-null int64									
	9 1.5 698 non-null int64									
	10 2.1 698 non-null int64 dtypes: int64(10), object(1)									
	memory usage: 60.1+ KB									

Step 3: [] data.head()

Output:

	1000025	5	1	1.1	1.2	2	1.3	3	1.4	1.5	2.1
0	1002945	5	4	4	5	7	10	3	2	1	2
1	1015425	3	1	1	1	2	2	3	1	1	2
2	1016277	6	8	8	1	3	4	3	7	1	2
3	1017023	4	1	1	3	2	1	3) 1	1	2
4	1017122	8	10	10	8	7	10	9	7	1	4

Step 4:

[] data.columns=['Id','Clump Thickness','uniformity of cell size','uniformity of cell shape','Marginal Adhesion','Single Epithelial cell size','Bare Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class']

Step 5:

```
[] target_balance=data['Class'].value_counts().reset_index()
    target_balance.columns=['Class','Count']
    target_class=go.Bar(
        name="Target Balance",
        x=target_balance['Class'].astype(str),
        y=target_balance['Count']
    )
    fig=go.Figure(target_class)
    pyoff.iplot(fig)
```


Step 6:

```
[] beg_class_pat=data.loc[data['Class']==2]

mal_class_pat=data.loc[data['Class']==4]

Mith_10_beg=beg_class_pat['Mitoses'].value_counts().reset_index()

Mith_10_beg.columns=['Mitoses','Count']

Mith_10_mal=mal_class_pat['Mitoses'].value_counts().reset_index()

Mith_10_mal.columns=['Mitoses','Count']
```

Step 7:

```
[] fig=go.Figure(data=[
go.Bar(name='Levels of Mitoses in Benign
Group',x=Mith_10_beg['Mitoses'].astype(str),y=Mith_10_mal['Count']),
go.Bar(name='Levels of Mitoses in Malignant
Group',x=Mith_10_beg['Mitoses'].astype(str),y=Mith_10_mal['Count'])])
fig.update_layout(barmode='group')
fig.show()
```

Levels of Mitoses in Benign Group Levels of Mitoses in Malignant Group

Output:

Step 8:

```
[] x=data.drop(columns=['Id','Class'])
y=data['Class']
```

```
Step 9:
     print("Unique Values in 'Bara Nuclei':",x['Bare Nuclei'].unique())
Output:
              Unique Values in 'Bara Nuclei': ['10' '2' '4' '1' '3' '9' '7' '?' '5' '8' '6']
Step 10:
     x['Bare Nuclei']=pd.to_numeric(x['Bare Nuclei'],errors='coerce')
Step 11:
     x=x.fillna(x.median())
Step 12:
     x train,x test,y train,y test=train test split(x,y,test size=0.3,random state=42)
Step 13:
            scaler=StandardScaler()
      x train scaled=scaler.fit transform(x train)
            x test scaled=scaler.transform(x test)
Step 14:
     knn=KNeighborsClassifier(n neighbors=5)
            knn.fit(x_train_scaled,y_train)
Output:
            ▼ KNeighborsClassifier
            KNeighborsClassifier()
Step 15:
            y pred=knn.predict(x test scaled)
```

Step 16:

[] print("Accuracy: ",accuracy_score(y_test,y_pred))
print()
print("Confusion Matrix: \n",confusion_matrix(y_test,y_pred))
print("Classification Report: \n",classification_report(y_test,y_pred))

Output:

Accuracy: 0.9714285714285714

Confusion Matrix:

[[131 4]

[2 73]]

Classification Report:

	precision	recall	fl-score	suppor
			\	
2	0.98	0.97	0.98	135
4	0.95	0.97	0.96	75
		(7
accuracy			0.97	210
macro avg	0.97	0.97	0.97	210
weighted avg	0.97	0.97	0.97	210

EX.NO:	
DATE:	
	DEMONSTRATE WEKA TOOL
SOURCE COL	DE:
Step 1:	
	import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
Step 2:	data=pd.read_csv("Weka_CustomerChurn.csv") print("the First 5 values of data is :\n")
	data.head()

Output:

the First 5 values of data is :

	Customer ID	Gender	Senior Citizen	Partner	Dependents	Tenure	Phone Service	Monthly Charges	Total Charges	Churn
0	1	Male	0	Yes	No	1	No	29.85	29.85	No
1	2	Female	1	No	No	34	Yes	56.95	1889.50	No
2	3	Female	0	Yes	Yes	2	Yes	53.85	108.15	Yes
3	4	Male	0	No	Yes	45	Yes	42.30	1840.75	No
4	5	Female	1	No	No	2	No	70.70	151.65	Yes

```
Step 3:
             X = data.drop(columns = ['Churn'])
      y = data['Churn'].apply(lambda x: 1 if x == 'Yes' else 0)
Step 4:
             X = pd.get \ dummies(X, drop \ first=True)
Step 5:
             X_{train}, X_{test}, y_{train}, y_{test} = train_{test} split(X, y, test_{size} = 0.2, random_{state} = 42)
     Step 6:
     scaler = StandardScaler()
              X train = scaler.fit transform(X train)
              X test = scaler.transform(X test)
Step 7:
     model = RandomForestClassifier(n estimators=100, random state=42)
Step 8:
             model.fit(X train, y train)
Output:
                  RandomForestClassifier
       RandomForestClassifier(random_state=42)
Step 9:
      y pred = model.predict(X test)
Step 10:
      accuracy = accuracy score(y test, y pred)
             conf_matrix = confusion_matrix(y_test, y_pred)
             report = classification report(y test, y pred)
```

Output:

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. warn prf(average, modifier, msg_start, len(result))

Step 11:

```
[] print(f'Accuracy: {accuracy}')
print('Confusion Matrix:')
print(conf_matrix)
print('Classification Report:')
print(report)
```

Output:

Accuracy: 0.5 Confusion Matrix:

[[0 1] [0 1]]

Classification Report:

	precision	recall	f1-score	suppor	į
0	0.00	0.00	0.00	1	
	0.50	1.00	0.67	1	
accuracy			0.50	2	
macro avg	0.25	0.50	0.33	2	
weighted avg	0.25	0.50	0.33	2	

EX.NO:	
DATE:	
	DIJII D AN UNGUDEDIJICED MODEL
	BUILD AN UNSUPERVISED MODEL
	USING [Scikit-Learn and PyTorch]
SOURCE COL	N.F
SOURCE COL	DE:
Step 1:	
Siep 1.	
	import pandas as pd
	from sklearn.datasets import load_iris
	from sklearn.preprocessing import StandardScaler
Step 2:	
	iris=load iris()
	X=pd.DataFrame(iris.data,columns=iris.feature_names)
Step 3:	
[]	Scaler=StandardScaler() V. Scaled=Scaler fit transform(V)
	X_Scaled=Scaler.fit_transform(X)
Step 4:	
	from sklearn.cluster import KMeans
	from sklearn.metrics import silhouette_score
	kmeans=KMeans(n_clusters=3,random_state=42)
	kmeans_labels=kmeans.fit_predict(X_Scaled)
Output :	
-	
Futu	rogramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:870: reWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the e of `n_init` explicitly to suppress the warning
	nings.warn(rogramData\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1382:
	Warning: KMeans is known to have a memory leak on Windows with MKL, when there
are le	ess chunks than available threads. You can avoid it by setting the environment variable
	P_NUM_THREADS=1. rnings.warn(

```
Step 5:
     kmeans silhouette=silhouette score(X Scaled, kmeans labels)
            print(f'K-Means Silhouette Score: {kmeans silhouette}')
Output:
           K-Means Silhouette Score: 0.45994823920518635
Step 6:
     import torch
              import torch.nn as nn
              import torch.optim as optim
             from torch.utils.data import DataLoader, TensorDataset
             X tensor=torch.tensor(X Scaled, dtype=torch.float32)
Step 7:
            data\ loader=DataLoader(TensorDataset(X\ tensor),batch\ size=16,shuffle=True)
     Step 8:
     class Autoencoder(nn.Module):
               def __init__(self):
                 super(Autoencoder, self).__init__()
                 self.encoder=nn.Sequential(
                   nn.Linear(4,2),
                   nn.ReLU()
                 self.decoder=nn.Sequential(
                   nn.Linear(2,4),
                   nn.ReLU()
               def forward(self,x):
                 encoded=self.encoder(x)
                 decoded=self.decoder(encoded)
                 return decoded
```

```
Step 9:
     Г٦
            autoencoder=Autoencoder()
            criterion=nn.MSELoss()
            optimizer = optim.Adam(autoencoder.parameters(), lr = 0.01)
Step 10:
     num epochs=100
            for epoch in range(num epochs):
              for data in data loader:
                 inputs, =data
                 optimizer.zero grad()
                 outputs=autoencoder(inputs)
                 loss=criterion(outputs, inputs)
                 loss.backward()
                 optimizer.step()
Step 11:
            with torch.no grad():
     encoded data=autoencoder.encoder(X tensor).numpy()
Step 12:
            encoded kmeans=KMeans(n clusters=3,random state=42)
            encoded kmeans labels=encoded kmeans.fit predict(encoded data)
Output:
         C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:870:
         FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set
         the value of `n init` explicitly to suppress the warning
          warnings.warn(
         C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1382:
         UserWarning: KMeans is known to have a memory leak on Windows with MKL,
         when there are less chunks than available threads. You can avoid it by setting the
         environment variable OMP NUM THREADS=1.
          warnings.warn(
```

Step 13: encoded_silhouette = silhouette_score(X_Scaled, encoded_kmeans_labels) []print(f'Autoencoder + kmeans silhouette score : {encoded_silhouette}') Output: Autoencoder + kmeans silhouette score : 0.302958422921628

	IMPLEMENT LOGISTIC REGRESSION
E COL	DE:
<i>1</i> :	
[]	import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, LabelEncoder
	from sklearn.linear_model import LogisticRegression
	from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
p 2:	
[]	data=pd.read_csv("LogisticRegression_HeartDisease.csv") print("the First 5 values of data is : \n") data.head()
	0 1:

Output:

the First 5 values of data is:

	Age	CholesterolLevel	BloodPressure	SmokingStatus	HeartDisease
0	68	213.510222	119.336301	No	No
1	58	209.232228	109.821694	Yes	No
2	44	194.023226	154.003458	No	No
3	72	152.111973	162.855094	Yes	No
4	37	179.826361	121.379939	No	Yes

Step 3:

```
[] label_encoder = LabelEncoder()

data['SmokingStatus'] = label_encoder.fit_transform(data['SmokingStatus'])

data['HeartDisease'] = label_encoder.fit_transform(data['HeartDisease'])
```

Step 4:

X = data[['Age', 'CholesterolLevel', 'BloodPressure', 'SmokingStatus']] X.head()

Output:

	Age	CholesterolLevel	BloodPressure	SmokingStatus
0	68	213.510222	119.336301	0
1	58	209.232228	109.821694	1
2	44	194.023226	154.003458	0
3	72	152.111973	162.855094	1
4	37	179.826361	121,379939	0

Step 5:

[] y = data[['HeartDisease']] y.head()

Output:

		HeartDisease
	0	0
	1) 0
	2	0
1	3	0
/	4	1

Step 6:

 $[\]$ $X_{train}, X_{test}, y_{train}, y_{test} = train_{test_split}(X, y, test_{size}=0.2, random_{state}=42)$

Step 7:

[] scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

Step 8: model = LogisticRegression()model.fit(X_train, y_train) Output: C:\ProgramData\anaconda3\Lib\site-packages\sklearn\utils\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel(). $y = column \ or \ ld(y, warn=True)$ ▼ LogisticRegression LogisticRegression() Step 9: y pred = model.predict(X test)**Step 10:** accuracy = accuracy score(y test, y pred) conf matrix = confusion matrix(y test, y pred)class report = classification report(y test, y pred) **Step 11:** print(f'Accuracy: {accuracy:.2f}') print('Confusion Matrix:') print(conf matrix) print('Classification Report:') print(class report) Output: Accuracy: 0.60 Confusion Matrix: [[7 3] [5 5]] Classification Report: precision recall f1-score support 10 0.58 0.70 0.64 0.62 0.56 10 0.50 0.60 20 accuracy 20 0.60 0.60 0.60 macro avg weighted avg 0.60 0.60 0.60 20

	NO: TE:										
			<i>IMPLE</i>	EMENT	NEUR	AL NE	TWORK	MODE	EL.		
so	URCE (CODE:									
	Step 1:										
		imp fro fro fro fro imp	port numpy port panda m sklearn., m tensorflo m tensorflo m sklearn., port matplo	s as pd model_sel preproces. ow.keras.h ow.keras.l metrics im otlib.pyplo	sing impo nodels imp ayers impo port class	rt Standar oort Seque ort Dense	dScaler ential	nfusion_m	atrix		
	Step 2:										
	Outpu	prodf.	=pd.read int("the F head() t 5 values	irst 5 valı	ues of dat		ctiveMair	ntenance.	csv")		
	sensor_1	sensor_2	sensor_3	sensor_4	sensor_5	sensor_6	sensor_7	sensor_8	sensor_9	sensor_10	failure
0	0.374540	0.950714	0.731994	0.598658	0.156019	0.155995	0.058084	0.866176	0.601115	0.708073	0

	sensor_1	sensor_2	sensor_3	sensor_4	sensor_5	sensor_6	sensor_7	sensor_8	sensor_9	sensor_10	failure
0	0.374540	0.950714	0.731994	0.598658	0.156019	0.155995	0.058084	0.866176	0.601115	0.708073	0
1	0.020584	0.969910	0.832443	0.212339	0.181825	0.183405	0.304242	0.524756	0.431945	0.291229	1
2	0.611853	0.139494	0.292145	0.366362	0.456070	0.785176	0.199674	0.514234	0.592415	0.046450	1
3	0.607545	0.170524	0.065052	0.948886	0.965632	0.808397	0.304614	0.097672	0.684233	0.440152	1
4	0.122038	0.495177	0.034389	0.909320	0.258780	0.662522	0.311711	0.520068	0.546710	0.184854	0

Step 3:

X = df.drop('failure', axis=1).values # Features (sensor data)y = df['failure'].values # Target (failure labels)

```
Step 4:
      scaler = StandardScaler()
             X \ scaled = scaler.fit \ transform(X)
Step 5:
     X train, X test, y train, y test = train test split(X scaled, y, test size=0.15,
             random\ state=42)
             X train, X val, y train, y val = train test split(X train, y train, test size=0.15,
             random state=42)
Step 6:
      Г٦
             model = Sequential()
             model.add(Dense(64, input dim=X.shape[1], activation='relu'))
             model.add(Dense(32, activation='relu'))
             model.add(Dense(1, activation='sigmoid'))
Output:
     C:\ProgramData \anaconda3\Lib\site-packages\keras\src\layers\core\dense.py:87: UserWarning:
    Do not pass an 'input_shape'/'input_dim' argument to a layer. When using Sequential models,
    prefer using an 'Input(shape)' object as the first layer in the model instead.
     super(). init (activity regularizer=activity regularizer, **kwargs)
Step 7:
     []
             model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
Step 8:
             # Train the model with fewer epochs
      history = model.fit(X train, y train, validation data=(X val, y val), epochs=10,
             batch size=32)
             # Evaluate the model on the test set
             test loss, test accuracy = model.evaluate(X test, y test)
             print(f"Test Loss: {test loss}")
             print(f"Test Accuracy: {test accuracy}")
             # Predict and generate classification report
             y pred = (model.predict(X test) > 0.5).astype("int32")
             print(classification report(y test, y pred))
```

Output:

```
Epoch 1/10
23/23
                                                      0s 4ms/step - accuracy: 0.7976 - loss: 0.5117 -
val accuracy: 0.5156 - val loss: 0.7832
Epoch 2/10
23/23
                                                      0s 2ms/step - accuracy: 0.7784 - loss: 0.5235 -
val accuracy: 0.5156 - val loss: 0.7902
Epoch 3/10
23/23 -
                                                      Os 3ms/step - accuracy: 0.7891 - loss: 0.5068 -
val accuracy: 0.5000 - val loss: 0.7948
Epoch 4/10
23/23
                                                      0s 3ms/step - accuracy: 0.7687 - loss: 0.5194 -
val accuracy: 0.4922 - val loss: 0.8020
Epoch 5/10
23/23
                                                       0s 2ms/step - accuracy: 0.7619 - loss: 0.5247 -
val accuracy: 0.5312 - val loss: 0.8121
Epoch 6/10
23/23
                                                       0s 2ms/step - accuracy: 0.7967 - loss: 0.5169 -
val accuracy: 0.5234 - val loss: 0.8118
Epoch 7/10
23/23
                                                      0s 2ms/step - accuracy: 0.7831 - loss: 0.5106 -
val accuracy: 0.5000 - val loss: 0.8141
Epoch 8/10
23/23
                                                       0s 3ms/step - accuracy: 0.7767 - loss: 0.5078 -
val accuracy: 0.5391 - val loss: 0.8291
Epoch 9/10
23/23
                                                       0s 2ms/step - accuracy: 0.7946 - loss: 0.4805 -
val_accuracy: 0.4922 - val_loss: 0.8261
Epoch 10/10
23/23
                                                      0s 2ms/step - accuracy: 0.8199 - loss: 0.4780 -
val accuracy: 0.5156 - val loss: 0.8287
                                                    0s 2ms/step - accuracy: 0.4935 - loss: 0.7497
Test Loss: 0.7296823263168335
Test Accuracy: 0.5
                                                    Os 2ms/step
5/5/
                            precision
                                         recall f1-score
                                                             support
                              0.48
                                         0.44
                       0
                                                   0.46
                                                               73
                              0.51
                                        0.56
                                                  0.53
                                                               77
             accuracy
                                                  0.50
                                                            150
           macro avg
                            0.50
                                       0.50
                                                 0.50
                                                            150
        weighted avg
                            0.50
                                      0.50
                                                 0.50
                                                            150
```

Step 9:

```
[] # Confusion Matrix

cm = confusion_matrix(y_test, y_pred)

plt.figure(figsize=(6, 4))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['No Failure',

'Failure'], yticklabels=['No Failure', 'Failure'])

plt.title('Confusion Matrix')

plt.xlabel('Predicted')

plt.ylabel('True')

plt.show()
```


Step 10:

```
[] # Plot learning curves for loss

plt.figure(figsize=(10, 5))

plt.plot(history.history['loss'], label='Training Loss')

plt.plot(history.history['val_loss'], label='Validation Loss')

plt.title('Learning Curve: Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()
```


Step 11:

```
# Plot learning curves for accuracy

plt.figure(figsize=(10, 5))

plt.plot(history.history['accuracy'], label='Training Accuracy')

plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

plt.title('Learning Curve: Accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend()

plt.show()
```

