

COMP343/ITEC643- Week 2

Introduction to Number Theory

A/Prof Christophe Doche Department of Computing

E6A 371 - christophe.doche@mq.edu.au

First Session 2017

Plan

Integer Representation

Euclidean Division

Prime Numbers and Factorisation

GCD

Modular Arithmetic

Birthday Paradox

Elliptic Curves

Integer

Representation

We normally represent integers in base 10

Example. 123456 stands for

$$1 \times 10^5 + 2 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$$

Remark. This can be generalized to any fixed integer $b \ge 2$ called the radix or the base

Take $b \geqslant 2$

Every integer u > 0 can be written in base b as

$$u = u_{n-1}b^{n-1} + \dots + u_1b + u_0$$

where $0 \leq u_i < b$, for all i

This expansion is denoted $(u_{n-1} \dots u_0)_b$

Remark. Another popular choice, especially in computing is b = 2 or $b = 2^k$

Hexadecimal notation corresponds to $b = 2^4$

We will use the C notation starting with 0x

What is the decimal value of 0xFFFF?

Properties.

Multiplying u by b^m shifts the digits of u to the left by introducing m zeroes at the end

$$(u_{n-1} \dots u_0)_b \times b^m = (u_{n-1} \dots u_0 \underbrace{0 \dots 0}_{m \text{ times}})_b$$

Properties.

Dividing u by b^m shifts the digits of u to the right by truncating the last m digits

$$\lfloor (u_{n-1}\dots u_0)_b/b^m\rfloor = (u_{n-1}\dots u_m)_b$$

Consequence.

The Euclidean division of

$$u = (u_{n-1} \dots u_0)_b$$

by b^m satisfies

$$u = b^m q + r$$

with
$$q = (u_{n-1} \dots u_m)_b$$
 and $r = (u_{m-1} \dots u_0)_b$

Euclidean Division

Euclidean Division

Given $a, b \in \mathbb{Z}$, we can always write

$$a = bq + r$$
 with $0 \le r < b$

in a unique way, where q is the quotient and r is the remainder

We have q = |a/b| and $r = a \mod b$

Euclidean Division

Example. Let a = 13 and b = 3. We have

$$13 = 3 \times 4 + 1$$

Euclidean Division

Definition. We say that b divides a or that b is a divisor of a iff a = bq and we write $b \mid a$

Examples.

7 is a divisor of 56.

We also say that 56 is a multiple of 7

 $1 \mid n$, for all n

 $n \mid 0$, for all n

PARI/GP

Useful commands

```
divrem
%
\
```

Prime Numbers & Factorisation

Prime Numbers

A prime number is an integer with exactly two divisors: 1 and itself

Facts.

- 1 is not prime
- 2 is the only prime that is even
- There are infinitely many prime numbers

Prime Numbers

Let p_k be the k-th prime number

It is possible to show that

$$p_k \sim k \log k$$

In other words

$$\frac{p_k}{k \log k} \to 1$$

when k tends to infinity

Factorisation

Factorisation consists in finding the prime factors of an integer

It is straightforward to multiply two primes

It is much more challenging to factor a large integer that is the product of two prime numbers

This asymmetry is used to design cryptoprimitives

Factorisation

Fundamental Theorem of Algebra.

Every integer n > 1 can be written in a unique way (up to a permutation of the factors) as a product of powers of prime numbers

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$$

where the α_i 's are nonnegative integers

PARI/GP

Useful commands

```
isprime
prime
nextprime
randomprime
forprime
factor
```

GCD

Given two integers a > b, gcd(a, b) is the largest integer d such that $d \mid a$ and $d \mid b$

It satisfies

- 1. $d \mid a \text{ and } d \mid b$
- 2. whenever $c \mid a$ and $c \mid b$, then $c \mid d$

Bezout relation.

Let
$$d = \gcd(a, b)$$

There are two integers u and v such that

$$au + bv = d$$

We can compute gcd(a, b) using that if a = bq + r then

$$\gcd(a,b) = \gcd(b,r)$$

Euclid's Algorithm.

Let a = bq + r and let us us prove that

$$\gcd(a,b) = \gcd(b,r)$$

We show that

$$\gcd(a,b) \mid \gcd(b,r) \quad \text{and} \quad \gcd(b,r) \mid \gcd(a,b)$$

Algorithm. Euclid GCD

Input: Two integers a and b such that a > b.

Output: The integer d such that $d = \gcd(a, b)$.

- 1. repeat
- 2. $r \leftarrow a \bmod b$
- 3. $a \leftarrow b \text{ and } b \leftarrow r$
- 4. until r=0
- 5. $d \leftarrow a$
- 6. return d

Example. Let us compute the gcd of 91 and 35

$$91 = 35 \times 2 + 21$$
 $35 = 21 + 14$
 $21 = 14 + 7$
 $14 = 7 \times 2 + 0$

So

$$\gcd(91,35) = \gcd(35,21) = \cdots = \gcd(7,0) = 7$$

Algorithm. Euclid GCD (recursive version)

Input: Two integers a and b such that a > b.

Output: The integer d such that $d = \gcd(a, b)$.

- 1. $d \leftarrow a$
- 2. if $b \neq 0$ then
- 3. $r \leftarrow a \bmod b$
- 4. $d \leftarrow \gcd(b, r)$
- 5. return d

Least Common Multiple

d = lcm(a, b) is the smallest non-negative integer divisible by both a and b.

It satisfies

- 1. $a \mid d$ and $b \mid d$
- 2. whenever $a \mid c$ and $b \mid c$, then $d \mid c$
- 3. $lcm(a,b) = \frac{ab}{\gcd(a,b)}$

Euler's Totient Function.

Definition. Two integers a and b are said to be coprime iff gcd(a, b) = 1

Definition. The Euler's totient function of n > 0 denoted by $\varphi(n)$ is the number of integers in [1, n] coprime with n

Example. We have $\varphi(15) = 8$

Indeed, 1, 2, 4, 7, 8, 11, 13, 14 are coprime with 15 °

Properties.

• If p is a prime number, then $\varphi(p) = p - 1$

• If p and q are distinct prime numbers then

$$\varphi(pq) = (p-1)(q-1)$$

• More generally, if $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ then

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_k}\right)_{31}$$

PARI/GP

Useful commands

```
gcd
bezout
lcm
eulerphi
```

Modular

Arithmetic

Modular Arithmetic

Congruence.

Definition. Let n be a positive integer

We say that a is congruent to b mod n iff $n \mid (b-a)$

It is denoted by $a = b \pmod{n}$

Example. 2 and 16 are congruent modulo 14

Modular Arithmetic

Class.

Definition. A class modulo n is a set containing all the integers which are congruent mod n

Example. Let n = 14. The class of 2 modulo 14 denoted by $\overline{2}$ or $[2]_{14}$ is the set

$$\{\ldots, -26, -12, 2, 16, 30, \ldots\}$$

Modular Arithmetic

Operations modulo n.

We can define an addition and a multiplication modulo n

Namely, we have $\overline{a} + \overline{b} = \overline{a+b}$ and $\overline{a} \times \overline{b} = \overline{a \times b}$

5	×	1		$\pmod{11}$
5	×	2		$\pmod{11}$
5	×	3		$\pmod{11}$
5	×	4	_	$\pmod{11}$
5	×	5	_	$\pmod{11}$
5	×	6	_	$\pmod{11}$
5	×	7	_	$\pmod{11}$
5	×	8	_	$\pmod{11}$
5	×	9	_	$\pmod{11}$
5	×	10	_	$\pmod{11}$
5	×	11		$\pmod{11}$

5	×	1	=	5	
5	×	2	=	10	$\pmod{11}$
5	×	3	_	4	$\pmod{11}$
5	×	4	=	9	$\pmod{11}$
5	×	5	<u> </u>	3	$\pmod{11}$
5	×	6	<u> </u>	8	$\pmod{11}$
5	×	7	<u> </u>	2	$\pmod{11}$
5	×	8	=	7	$\pmod{11}$
5	×	9	_	1	$\pmod{11}$
5	×	10	=	6	$\pmod{11}$
5	×	11	=	0	$\pmod{11}$

4	×	1		$\pmod{12}$
4	×	2		$\pmod{12}$
$\mid 4 \mid$	×	3	=	$\pmod{12}$
$\mid 4 \mid$	×	4		$\pmod{12}$
$\mid 4 \mid$	×	5		$\pmod{12}$
$\mid 4 \mid$	×	6	_	$\pmod{12}$
4	×	7	_	$\pmod{12}$
4	×	8	_	$\pmod{12}$
4	×	9	_	$\pmod{12}$
4	×	10	_	$\pmod{12}$
4	×	11	_	$\pmod{12}$
$\mid 4 \mid$	×	12	=	$\pmod{12}$

$\boxed{4}$	×	1	=	4	$\pmod{12}$
$\mid 4 \mid$	×	2	=	8	$\pmod{12}$
4	×	3	=	0	$\pmod{12}$
4	×	4	=	4	$\pmod{12}$
4	×	5	=	8	$\pmod{12}$
4	×	6	=	0	$\pmod{12}$
4	×	7	=	4	$\pmod{12}$
4	×	8	=	8	$\pmod{12}$
4	×	9	=	0	$\pmod{12}$
4	×	10	=	4	$\pmod{12}$
$\mid 4 \mid$	×	11	=	8	$\pmod{12}$
$\mid 4 \mid$	×	12	=	0	$\pmod{12}$

Inverse.

Any nonzero element has an inverse modulo a prime number p

This inverse can be found using Bezout relation

$$au + bp = 1$$

Which implies that

$$au = 1 \pmod{p}$$

Inverse.

Modulo a composite number any element a that is coprime with n has an inverse modulo n

Again, this inverse can be found using Bezout relation

$$au + bn = 1$$

Which implies that

$$au = 1 \pmod{n}$$

Exponentiation.

To compute x^k modulo n one could compute x^k and then reduce the final result modulo n

It is smart to reduce the intermediate computations modulo n

Also, we use a fast exponentiation technique called square and multiply

Algorithm. Square and multiply

Input: An element x and an integer $k = (k_{\ell-1} \dots k_0)_2$.

OUTPUT: The element x^k .

- 1. $t \leftarrow 1$
- 2. for $i = \ell 1$ downto 0 do
- 3. $t \leftarrow t^2$
- 4. if $k_i = 1$ then $t \leftarrow t \times x$
- 5. $\mathbf{return} \ t$

Example. Let us compute x^{21}

$$21 = (10101)_2$$

$$t = 1, 1, x, x^2, x^4, x^5, x^{10}, x^{20}, x^{21}$$

i 4 3 2 1 0

Fermat's Theorem.

Let p be a prime number, then for every $a \in \mathbb{Z}$ coprime with p we have

$$a^{p-1} = 1 \pmod{p}$$

Euler's Theorem.

Let N and a be integers such that gcd(a, N) = 1then

$$a^{\varphi(N)} \equiv 1 \pmod{N}$$

where $\varphi(N)$ is the Euler's totient function

Fermat test.

Based on Fermat's theorem, we deduce Fermat compositeness test

- 1. choose a random $a \in [1, N-1]$
- 2. **if** $a^{N-1}
 eq 1 \pmod{N}$ return that N is composite
- 3. \mathbf{else} return that N is prime

Fast exponentiation makes this test very efficient

However, even if N is composite, there can be some values a such that

$$a^{N-1} = 1 \pmod{N}$$

Such a value a is called a false witness

It tells us that N is likely to be prime but it lies!

Example. Let N = 4087 and

We have $841^{N-1} = 1 \pmod{N}$

Also, $1905^{N-1} = 1 \pmod{N}$

These values suggest that N is prime...

PARI/GP

Useful commands

```
Mod
lift
```

Birthday

Paradox

Take a group of n people

Question. What is the probability that at least 2 people in the group have the same birthday?

Take a group of n people

Question. What is the probability that at least 2 people in the group have the same birthday?

Answer. It depends on n

If there are only 2 people in the group, i.e. n=2 the probability is close to 0

If n > 365 this probability is 1

Now, what is the order of magnitude of n so that the probability to have 2 people with the same birthday is equal to 1/2

In other words, how large should be the group to have a reasonable chance to find 2 people with the same birthday

Is it n = 200, 150, 100, 50 or 20?

In fact n should be approximately equal to 23

This is surprisingly low, hence the term paradox

You don't believe it?

Ok, let us simulate it!

Let B = 365 and let us consider lists of length n with elements $\leq B$

If a list has at least 2 elements that are the same, we have a match (or a collision)

Then generate a (very) large number of lists at random

For each list check if it contains a match, and deduce an approximation of the probability

Consequence.

If we consider a list of length $O(\sqrt{B})$, we can reasonably expect that this list contains 2 identical elements

Another formulation:

If we draw elements at random from [1, B], we can expect a match after $O(\sqrt{B})$ draws

Pollard's rho method.

This factoring method was introduced in 1975 by Pollard

It was refined by Brent to factor the eighth Fermat number $F_8 = 2^{2^8} + 1$ in 1980

This method relies on the birthday paradox

Algorithm. Pollard's rho

Input: A positive integer N.

Output: A nontrivial factor of N or a failure message.

- 1. $x \leftarrow 2, y \leftarrow 2$
- 2. while true do
- 3. $x \leftarrow x^2 + 1 \mod N \text{ and } y \leftarrow y^4 + 2y^2 + 2 \mod N$
- 4. $g \leftarrow \gcd(y x, N)$
- 5. if g > 1 then break
- 6. if g = N then the algorithm fails else return g

Elliptic

Curves

Definition. An elliptic curve defined modulo p is given by an equation of the form

$$y^2 = x^3 + ax + b \pmod{p}$$

with a and b integers such that

$$4a^3 + 27b^2 \neq 0 \pmod{p}$$

Elliptic curve $y^2 = x^3 - x$ defined over \mathbb{R}

Example. Take p = 2017 and E defined modulo p by the equation

$$E: y^2 = x^3 + 2x + 1$$

The point P = [1, 2] is on the curve as

$$2^2 = 1 + 2 + 1$$

The point [51, 866] is also on the curve, as

$$866^2 = 51^3 + 2 \times 51 + 1 \pmod{p}$$

There is a recipe to add points on the curve

Let
$$P_1 = [x_1, y_1]$$
 and $P_2 = [x_2, y_2]$ on E

It is possible to associate to P_1 and P_2 another point, also on the curve, denoted by P_1+P_2

We proceed as follows

To add P_1 to itself, we need to modify the approach a bit

You may ask yourself what is the neutral element for this addition law?

Which element is going to leave any point unchanged?

An affine point is a point of the form $[x_1, y_1]$

The point at infinity is a special point, that cannot be represented as $[x_1, y_1]$

It is denoted by [0]

From the previous diagrams, it is possible to derive formulas to add or double any point on the curve

$$P_1 + P_2 = [x_3, y_3]$$

where
$$x_3 = \lambda^2 - x_1 - x_2$$
 and $y_3 = \lambda(x_1 - x_3) - y_1$

and λ is the slope defined by

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P_1 \neq \pm P_2 \\ \frac{3x_1^2 + a}{2y_1} & \text{otherwise} \end{cases}$$

The arithmetic on the curve

$$E: y^2 = x^3 + ax + b$$

modulo a large prime p is given by the same formulas as for the real case

Definition.

All the points on an ellitpic curve E together with the point at infinity form a finite set

This set endowed with the addition law that we defined previously forms the group of rational points of E

Scalar multiplication.

Definition. Given an integer n and a point P on the curve, the scalar multiplication is the operation

$$nP = \underbrace{P + \dots + P}_{n \text{ times}}$$

Of course for any $n \in \mathbb{Z}$, then nP is again on the curve

Order of a Point.

Definition. The order of a point P is the smallest positive integer k such that kP = [0]

Discrete Logarithm Problem.

Given an integer n and point P on E, it is straightforward to compute Q = nP

Given, P and Q, it is much more challenging to retrieve n such that Q = nP

This asymmetry can again be used to implement cryptoprimitives

PARI/GP

Useful commands

```
ellinit
ellisoncurve
ellorder
ellordinate
elladd
ellsub
ellpow
```