Mathematical and Logical Foundations of Computer Science

Lecture 9 - Propositional Logic (SAT)

Vincent Rahli

(some slides were adapted from Rajesh Chitnis' slides)

University of Birmingham

Where are we?

- Symbolic logic
- ► Propositional logic
- Predicate logic
- ► Constructive vs. Classical logic
- Type theory

Today

- History of Computing
- ▶ SAT (first \mathcal{NP} -hard problem)
- ▶ Algorithms for SAT

Recap: Propositional logic syntax

Syntax:

$$P ::= a \mid P \land P \mid P \lor P \mid P \to P \mid \neg P$$

Two special atoms:

- ▶ T which stands for True
- ▶ ⊥ which stands for False

We also introduced four connectives:

- $P \wedge Q$: we have a proof of both P and Q
- $P \vee Q$: we have a proof of at least one of P and Q
- ▶ $P \rightarrow Q$: if we have a proof of P then we have a proof of Q
- ▶ $\neg P$: stands for $P \rightarrow \bot$

Recap: Normal forms

Among the formulas equivalent to a given formula, some are of particular interest (the variables here stand for atoms):

- Conjunctive Normal forms (CNF)
 - $(A \lor B \lor C) \land (D \lor X) \land (\neg A)$
 - ANDs of ORs of literals (atoms or negations of atoms)
 - ▶ A clause in this context is a disjunction of literals
- Disjunctive Normal Form (DNF)
 - $(P \land Q \land A) \lor (R \land \neg Q) \lor (\neg A)$
 - ORs of ANDs of literals
 - ▶ A clause in this context is a conjunction of literals

Theorem: Every proposition is equivalent to a formula in CNF!

Theorem: Every proposition is equivalent to a formula in DNF!

Recap: Every proposition can be expressed in DNF

Every proposition can be expressed in DNF (ORs of ANDs)!

Express
$$(P \rightarrow Q) \land Q$$
 in DNF

We do it using a truth table

P	Q	$(P \to Q)$	$(P \to Q) \land Q$
Т	Т	T	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	F

- ▶ Enumerate all the **T** rows from the conclusion column
 - Row 1 gives $P \wedge Q$
 - ▶ Row 3 gives $\neg P \land Q$
- ► Take OR of these formulas
- ▶ Final answer is $(P \land Q) \lor (\neg P \land Q)$

Recap: Every formula can be expressed in CNF

Every proposition can be expressed in CNF (ANDs of ORs)!

Express
$$(P \to Q) \land Q$$
 in CNF

We do it by using a truth table

P	Q	$(P \to Q)$	$(P \to Q) \land Q$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	F

- Enumerate all the F rows from the conclusion column
 - Row 2 gives $P \wedge \neg Q$
 - ▶ Row 4 gives $\neg P \land \neg Q$
- Do AND of negations of each of these formulas
- We obtain $\neg (P \land \neg Q) \land \neg (\neg P \land \neg Q)$
- ▶ Finally: equivalent to $(\neg P \lor Q) \land (P \lor Q)$ by De Morgan

Satisfiability of CNF formulas

Problem definition: Given a CNF formula can we set **T** or **F** value to each variable to satisfy the formula?

- **Example**: Consider the formula $(A \vee \neg B) \wedge (C \vee B)$
- ▶ Is it satisfiable?
- ▶ Satisfiable by setting A = T, B = F and C = T
- Known as CNF Satisfiability or simply SAT

First a bit of history

History of Computing

1930s

- Alan Turing invented the Turing Machine in 1936
- Mathematical model of computable functions (as abstract machines)
- Basis of modern computers
- ▶ Biography: Alan Turing: The Enigma
- Movie: The Imitation Game

1940s and 1950s

- Code-breaking by Allies in Bletchley Park
 Go visit the National Museum of Computing
- Should not really have been breakable
 Made use of manual & hardware errors
- Alan Turing was heavily involved

History of Computing

1960s

- People began to look at general ways to solve a problem, rather than solving given instance!
 - ▶ Is $(A \lor \neg B) \land (\neg A) \land (B \lor Z \lor \neg X)$ satisfiable?
 - ▶ How (fast) can we check in general if a CNF formula is satisfiable?
- Many known problems had polynomial running time
 - Actually even n^4 or smaller
- Polynomial time became accepted as standard of efficiency
 - P: The class of problems solvable in polynomial time (in size of input)
- ► Claim: Any exponential (ultimately) beats any polynomial

History of Computing

1970s

- But still many problems no one knew how to solve in polynomial time!
- ► CNF satisfiability (SAT)
 - lacktriangle Say we have N atoms and M clauses
 - ightharpoonup No known algorithm to solve in time polynomial in N and M
 - **Brute force**: does 2^N truth assignments, and checks in N time if each of the M clauses is satisfied
 - So, total running time is $2^N \cdot N \cdot M$
 - Note that the input size is N+M
- Can we design a polynomial time algorithm for SAT?
- Or show that such an algorithm cannot exist?
- NP: class of problems where we can verify a potential solution in polynomial time

$\mathcal P$ vs. $\mathcal N\mathcal P$

 $\mathcal{P}\colon$ the class of problems which we can solve in polynomial time $\mathcal{NP}\colon$ the class of problems where we can verify a potential solution/answer in polynomial time

Clearly, $\mathcal{P} \subseteq \mathcal{NP}$ (solving is a (hard) way of verifying)

What about the other direction? Is P = NP?

- Status unknown!
- Million dollar question

What do most people believe?

• \mathcal{P} is not equal to \mathcal{NP}

Why haven't we been able to prove it then?

Hard to rule out all possible polytime algorithms?

Hardness for the class \mathcal{NP}

 $\mathcal{NP}\colon$ the class of problems where we can verify a potential solution/answer in polynomial time

Definition: A problem is \mathcal{NP} -hard if it is at least as hard as any problem in \mathcal{NP} .

More precisely, a problem X is \mathcal{NP} -hard if any problem $Y \in \mathcal{NP}$ can be solved

- ightharpoonup using an oracle for solving X
- lacktriangle plus a polynomial overhead for translating between X and Y

If $\mathcal{P} \neq \mathcal{NP}$ then a problem being \mathcal{NP} -hard means it cannot be solved in polynomial time!

Great, except no one knew how to show existence of a single \mathcal{NP} -hard problem!

The first \mathcal{NP} -hard problem

Cook-Levin Theorem (1971/1973):

CNF-Satisfiability (**SAT**) is \mathcal{NP} -hard

How do you show a problem, say X, is \mathcal{NP} -hard?

- A polytime reduction from any of the known \mathcal{NP} -hard problems, say SAT, to X
- ▶ That is, show how you can solve SAT using an oracle for X
- Plus a polynomial overhead for the translation

Tens of thousands of problems known to be \mathcal{NP} -hard

Significance of SAT

Many practical problems can be encoded into SAT (e.g., formal verification, planning/scheduling, etc.)

A possible solution (valuation) can be verified "efficiently"

No known algorithm to solve the problem "efficiently" in all cases

In practice, SAT solvers are very efficient (\mathcal{NP} -hardness is the worst case)

Special cases

Let $n\text{-}\mathsf{SAT}$ be the SAT problem restricted to $n\text{-}\mathsf{CNFs}$, i.e., where clauses are disjunctions of n literals

- ▶ 1-SAT is in \mathcal{P}
- ▶ 2-SAT is in \mathcal{P}
- ▶ 3-SAT is \mathcal{NP} -hard

Why not consider DNF instead of CNF?

Theorem: Any propositional formula can be expressed in CNF

Theorem: Any propositional formula can be expressed in DNF

Theorem: CNF satisfiability is \mathcal{NP} -hard

How hard is DNF satisfiability?

Example of a DNF formula:

$$(A \land \neg B \land C) \lor (\neg X \land Y) \lor (Z)$$

- Is it satisfiable?
- Trivial to check in polytime!
- ▶ Just pick any clause, and set variables to **T** or **F**.

Why not use DNFs then?

Because changing a formula from CNF to DNF can cause exponential blowup!

Why not consider DNF instead of CNF?

Because changing a formula from CNF to DNF can cause exponential blowup!

Convert
$$(A \lor B) \land (C \lor D)$$
 into DNF

Remember: $P \wedge (Q \vee R) \leftrightarrow (P \wedge Q) \vee (P \wedge R)$

$$(A \lor B) \land (C \lor D)$$

$$\leftrightarrow ((A \lor B) \land C) \lor ((A \lor B) \land D)$$

$$\leftrightarrow (C \land (A \lor B)) \lor (D \land (A \lor B))$$

$$\leftrightarrow (C \land A) \lor (C \land B) \lor (D \land A) \lor (D \land B)$$

Consider the CNF formula: $(P_1 \vee Q_1) \wedge \cdots \wedge (P_n \vee Q_n)$

Expressing this formula in DNF requires 2^n clauses

Algorithms for SAT?

Brute force for SAT with N variables and M clauses needs $2^N \cdot N \cdot M$ time

- ightharpoonup There are 2^N truth assignments
- lacktriangle For each truth assignment and each clause, verify if it is satisfied in N time

Can we solve SAT faster than 2^N ? Say 1.999999999^N ?

Conjecture (Strong Exponential Time Hypothesis (SETH)): SAT cannot be solved in $(2-\alpha)^N \cdot \operatorname{poly}(N+M)$ time for any constant $\alpha>0$

Many state-of-the-art SAT solvers are based on the **Davis-Putman-Logemann-Loveland** algorithm (DPLL)

Basic idea (does a lot of pruning instead of brute force):

- 1. Easy cases
 - Atom p only appears as either p or $\neg p$ (but not both): assign truth value accordingly
- 2. Branch on choosing a variable p and set a truth value to it
 - ► This choice needs to be done cleverly
 - ▶ If $p = \mathbf{T}$: remove all clauses containing p and remove all literals $\neg p$ from clauses
 - If $p = \mathbf{F}$: remove all clauses containing $\neg p$ and remove all literals p from clauses
- 3. Keep running the above steps until
 - All clauses have been removed (all true): return SAT
 - One clause is empty (one is false): backtrack in Step 2 and choose a different truth value for p; if it is not possible to backtrack, return UNSAT

Apply the DPLL algorithm to

$$(\neg p \lor q \lor r) \land (p \lor q \lor r) \land (p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r)$$

Here is a possible run of the algorithm:

$$\begin{array}{l} (\neg p \lor q \lor r) \land (p \lor q \lor r) \land (p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r) \\ p = \mathbf{T} \\ (q \lor r) \land (\neg q \lor r) \\ q = \mathbf{T} \\ (r) \\ r = \mathbf{T} \\ \mathsf{SAT} \end{array}$$

Let us use this SAT solver: https://rise4fun.com/z3/tutorial

two variables, two clauses:

$$(p \lor q) \land (\neg q)$$

```
(declare-const p Bool)
(declare-const q Bool)
(define-fun conjecture () Bool
  (and (or p q) (not q))
)
(assert conjecture)
(check-sat)
(get-model)
```

Let us use this SAT solver: https://rise4fun.com/z3/tutorial

three variables, three clauses:

$$(p \lor q \lor r) \land (\neg p \lor \neg q) \land (q \lor \neg r)$$

```
(declare-const p Bool)
(declare-const q Bool)
(declare-const r Bool)
(define-fun conjecture () Bool
(and (or p q r) (or (not p) (not q)) (or q (not r)))
)
(assert conjecture)
(check-sat)
(get-model)
```

Let us use this SAT solver: https://rise4fun.com/z3/tutorial

four variables, five clauses:

```
(p \lor q \lor \neg r) \land (q \lor r \lor \neg s) \land (\neg p \lor q \lor r) \land (\neg p) \land (\neg r \lor s)
```

Let us use this SAT solver: https://rise4fun.com/z3/tutorial

five variables, eight clauses:

```
 (p \lor t \lor s) \land (q \lor r \lor \neg s \lor \neg t) \land (\neg t \lor r) \land (p \lor \neg q \lor s) \land (p \lor q \lor r \lor \neg t) \land (q \lor r \lor \neg s) \land (p \lor \neg s) \land (\neg p \lor q \lor s \lor t)
```

Conclusion

What did we cover today?

- History of Computing
- ► SAT (first *NP*-hard problem)
- Algorithms for SAT

Next time?

Propositional logic (wrap-up)