

Assessment of fine-tuned open-source large language models on gold standard synthetic epilepsy clinical notes with focus on Seizure Frequency and Prescriptions

Presenter:

Akson Sam Varghese

2311233

M. Sc. Health Data Science Singleton Park Campus, Swansea University

https://github.com/Xnsam/HDS

Motivation

Aim: To perform clinical NER on clinical notes to extract Seizure Frequency (SF) and Prescriptions.

Why Seizure Frequency?

- 1. Seizure Frequency could be used to understand Assess Seizure Freedom and effectiveness of drugs in controlling the seizures
- 2. Poor documentation and audit trail of seizure frequency robs opportunity to research
- 3. Capture a rate of seizure to improve clinician-patient engagement and care, study comorbidities e.g. depression induced due to drugs

Why Prescription?

- 1. Research exists in extracting prescriptions from notes for digitization, auditing and automation
- 2. Crack the existing benchmark with new data extraction approach
- 3. Nuanced to extract dosage of drugs, to increase or decrease dosage, intake frequency direct indicators of epilepsy status

References:

Wang et al., 2015; Fonferko-Shadrach et al., 2019; Li et al 2021; Xie et al., 2022; Lehman, E et al., 2023;

Example

Given Clinical Text Dataset

Dear Dr,

Diagnosis: symptomatic, structural right temporal lobe epilepsy Subarachnoid haemorrhage (right MCA) 2017

Current antiepileptic medication: lamotrigine 75 mg twice a day (to increase as stated below) seizure type and frequency: focal seizures with loss of awareness (Unusual smell) approximately 2 to 3 per month.

Investigations: CT head 2017 collier in situ plus low density right temporal lobe

I reviewed this 57 year old man in clinic today. He continues to have what he calls "absences" which are focal seizures. During them, he has a smell which is difficult to describe. He will lose awareness for a couple of minutes. When he has the warning of an unusual smell he will sit down. He injured his right elbow in a seizure last year.

As he is continuing to have seizures, I suggest that he increases the lamotrigine slowly by 25 mg every fortnight, to an initial dose of 100 mg twice a day. If he has no side-effects with this, then he can again continue to increases the lamotrigine by no more than 25 mg every fortnight.

I will see him again in around six months time, should there be a problem before then he can contact my secretary on the number above.

Extract JSON

```
"entity": "Prescription",
"start index": "152",
"end index": "181",
"text": "lamotrigine-75-mg-twice-a-day",
"attributes": {
 "DrugName": "lamotrigine",
 "DrugDose": "75",
 "DoseUnit": "mg",
 "Frequency": "2"
"entity": "SeizureFrequency",
"start index": "239",
"end index": "276",
"text": "focal-seizures-with-loss-of-awareness",
"attributes": {
 "LowerNumberOfSeizures": "2",
 "UpperNumberOfSeizures": "3",
 "TimePeriod": "Month",
 "NumberOfTimePeriods": "1"
```

<u>Literature Review – Search Query Formulation</u>

- Query combination
 - Query combination was formed by using the topics mentioned in the literature search flow chart,
 - Terms parent and child combination along with synonyms
 - Query Structure: Parent term (AND / OR) Child Term (AND / OR)

NLP AND Information Extraction AND Epilepsy AND Clinical NER OR LLMs

Query Examples:

- 1. Clinical NER with LLMs
- 2. Information extraction with LLMs
- 3. Biomedical information extraction with LLMs
- 4. NLP and clinical NER epilepsy applications
- 5. Clinical NER with LLMs in epilepsy

<u>Literature Review – Results</u>

<u>Overall</u>

- Total references NLP: 78; Epilepsy: 19
- Unique Themes 6
- Combination of Themes 6+

Pre-LLMs ERA

- Number of papers 7
- Number of models (architecture) overall 7
- Number of themes -5

LLMs ERA

- Number of papers 4
- Number of models (architecture) overall 23
- Number of themes -3

^{*} See appendix for more detailed metrics on models

Development Cycle

Gold standard annotation of epilepsy clinic letters for the development of information extraction tools (zenodo.org)

^{*} Development is an iterative and Semi-cyclic process

Exploratory Data Analysis

1. Distribution of length of single clinical notes

Insight

- 1. Identified outlier
- 2. Average size of the documents with and without unique words in top 50 and bottom 50 files

Exploratory Data Analysis

- 2. Combined text file: Removed stop words, punctuations, symbols, spaces using standard English and MedSpacy tokenizer, tokenized and counted words
- To understand what should be the max length value in the tokenizer
- If padding / truncation is required in the data

Insight

- 1. Centre and distribution of word in the entire file collection
- 2. Outlier in the file collection
- 3. Max length of the string

Exploratory Data Analysis

3. Word Importance

Insight

- 1. Most important word in the entire file collection
- 2. Top 20 TF IDF values sorted words in the documents

A. Data Checks

- Prescriptions Absent 10 / 200
- Seizure Frequency Absent 34 / 200
- Both Absent 10 / 200
- Unique JSON structure
 - Seizure 25 patterns
 - Prescriptions 3 patterns

Insight

- 1. Unequal distribution of data in the JSON files
- 2. Mismatch in data dictionary structure

Action

- 1. Design separate Input-output pair for the seizure frequency and prescription
- 2. Create customized structure for each change in the prompt input
- 3. Data cleaning and simplification is required

B. Data Cleaning and simplification

```
"entity": "Diagnosis",
 "start_index": "21",
 "end index": "73",
 "text": "symptomatic, -structural-right-temporal-lobe-epilepsy",
 "attributes": {}
{₪},
 "entity": "PatientHistory",
 "start_index": "74",
 "end_index": "98",
 "text": "Subarachnoid-haemorrhage",
 "attributes": {
 "entity": "Prescription",
  "start_index": "152",
 "end_index": "181",
 "text": "lamotrigine-75-mg-twice-a-day",
 "attributes": {
 "entity": "Diagnosis",
 "start index": "239",
 "end_index": "276",
 "text": "focal-seizures-with-loss-of-awareness",
 "attributes": {}
 "entity": "SeizureFrequency",
 "start_index": "239",
 "end_index": "276",
  "text": "focal-seizures-with-loss-of-awareness",
```

- 1. Filter out only Seizure
 Frequency and Prescription
 associated JSON
- 2. Removed CUI ID
- 3. Removed the Hyphens from text field in the JSON files
- 4. Removed "entity" key value from the JSON
- 5. Cleaned and Removed
 Unexpected characters in
 clinical text
 - Trimmed white spaces and additional tab spaces
 - Removed characters "\u00a0" encoding errors

```
"entity": "Prescription",
"start_index": "152",
"end index": "181",
"text": "lamotrigine-75-mg-twice-a-day",
"attributes": {
  "DrugName": "lamotrigine",
  "DrugDose": "75",
  "DoseUnit": "mg",
  "Frequency": "2",
  "CUIPhrase": "lamotrigine"
  "CUI": "C0064636"
"entity": "SeizureFrequency",
"start index": "239",
"end_index": "276",
"text": "focal-seizures-with-loss-of-awareness",
"attributes": {
  "LowerNumberOfSeizures": "2",
  "UpperNumberOfSeizures": "3",
  "TimePeriod": "Month",
  "NumberOfTimePeriods": "1",
  "CUIPhrase": "focal-seizures-with-loss-of-awareness",
  "CUI": "C0270834"
```

C. Input-Output Pairing

JSONL is a text-based format using the . jsonl file extension that is basically the same as JSON format but implemented using newline characters to separate JSON values

D. Input Templates – Fine Tuning

Instruction Template

```
"""Your task is to extract prescription information from a clinical text Below is the clinical notes from a doctor, delimited by triple quotes. clinical text: ```{clinical_text}``.

Extract the {extract_entity} only from the clinical text in JSON format. Give me the output in the json format as mentioned below, delimited by triple quotes

```{json_format}```.

"""
```

## Chat System Template

### Human: Your task is to extract prescription information from a clinical text

<<Instruction Template>>

### Answer:



Llama Chat System Input Template

### **LLM Model Candidates**

Models were built on seizure frequency and prescription separately. Open Source Models are selected.



Pennlaine/Mistral-7B-v02-Entity-Extraction



NousResearch/Llama-2-7b-chat-hf



NousResearch/Hermes-3-Llama-3.1-8B



mistralai/Mistral-7B-Instruct-v0.2



google/gemma-2-2b



### Result Validation - Multi-label classification

• The results were converted to python dictionary and treated as multi-label classification for validation

## Dictionary Key Metrics

• Ground Truth keys are the keys of the dictionary and predicted keys are the keys of the generated dictionary

```
{ "text": "Levetiracetam", "start_index": 1, "end_index": 20
```

#### Metrics

- Exact match Ratio
- 0/1 loss (1 exact match ratio)
- Hamming Loss
- F1 Score
- Recall
- Precision

# Dictionary Value Metrics

• Ground values are the values of the dictionary and predicted values are the values of the generated dictionary

```
{ "text": 'Levetiracetam', "start_index": 1, "end_index": 20}
```

Reference: <a href="https://mmuratarat.github.io/2020-01-25/multilabel\_classification\_metrics">https://mmuratarat.github.io/2020-01-25/multilabel\_classification\_metrics</a>

## Result Validation - Multi-label classification

Multi-label classification metrics for Prescriptions

Type	Model		Exact Match Ratio	Hamming Loss	Recall	Precision	F1 Measure
Fine Tuning	Hama 2	Key match	1.00	0	1.00	1.00	1.00
	Llama 2	Value Match	0	0.38	0.62	1.00	

Size of the train set: 264. Size of the validation set: 30

• Multi-label classification metrics for Seizure Frequency

Type	Model		Exact Match Ratio	Hamming Loss	Recall	Precision	F1 Measure
Fine Tuning	Hama 2	Key match	1.00	0	1.00	1.00	1.00
	Llama 2	Value Match	0	0.30	0.60	1.00	0.74

Size of the train set: 236. Size of the validation set: 27

## Result Validation - String comparison

• Text comparison between the ground truth and predicted / generated text

Ground Truth . : lamotrigine-75-mg-twice-a-day

VS

Generated / Extracted: lamotrigine-75-mg-twice-a-day

Reference: (Dice, 1945)

## **String comparison methods**

Sørensen–Dice Coefficient: A similarity algorithm that computes difference coefficients of adjacent character pairs.

Dice(A, B) = 2 \* |A n B| / (|A| + |B|)

## Result Validation - String comparison

• Generated text string match – word level





Threshold: 0.5; 10% validation dataset

## Sorensen Dice Coefficient Seizure Frequency



# Error Analysis Sample

		Python
generated_text_string	output_text_string	sorensen_dice_coefficient
seizur	focal motor seizures	0.0
seizure	seizures	0.0
seizure free	focal seizures with altered awareness	0.0
focal seizures with altered awareness	seizure free	0.0
seizures	seizure frequency:	0.0

Seizure Frequency

generated_text_string	output_text_string	sorensen_dice_coefficient
zonismaide	brivitiracetam	0.0
zonisamide : 100mg bd	current medication: levetiracetam 1500mg twice	0.0
topiramate	lamotrigine	0.0
levetiracetam to start	lamotrigine	0.0
epilim 300mg twice a day	eplim	0.0

Prescription

## **Future Work**

#### Data

- 1. Data Augmentation and resampling techniques like random resampling, SMOTE & variants
- 2. Possibility to increase sample size
- 3. Feature engineering

#### Model

- 1. Research models Mixtral 8 x 7B
- 2. SLM Microsoft phi3.5
- 3. Prompt Tuning / Engineering; chain prompting (COT)\*
- 4. More Compute Time
- 5. LangChain, RAG & variants approach
- 6. Output JSON generation single + multiple
- 7. Start End index of text locations
- 8. Hyperparameter tuning

#### Validation

- 1. Word accuracy calibration
- 2. Human Intervention for improved accuracy
- 3. InterpretEval https://arxiv.org/pdf/2011.06854

<sup>\*</sup> Intended to complete by submission

# **Appendix: Literature Review - Results**

Pre-LLMs ERA - Clinical NER tasks

Models By	Architecture	Detail	Performance	Scope
(Xie et al., 2022)	Masked Language Modelling (MLM) + BERT	Pretrained Deep Bi-Directional Transformers	Accuracy: 80% + F1 Score: 80% +	Epilepsy
(Xie et al., 2022)	MLM + BioClinicalBert	BERT + pretraining on clinical text	Accuracy: 80% + F1 Score: 80% +	Epilepsy
(Xie et al., 2022)	MLM + RoBERTa	BERT + improved training objectives and hyperparameters	Accuracy: 80% + F1 Score: 80% +	Epilepsy
(Harnoune et al., 2021)	Transformers + CRF	Knowledge Graph + BERT + CRF	Accuracy: 90.7%	MIMIC-III
(Zhang et al., 2020)	Transformers	BERT-XML	Macro AUC: 0.933	ICD -10
(Fonferko- Shadrach et al., 2019)	General Architecture for Text Engineering (GATE) – ExECT	Rule based + Statistical techniques	Precision: 91.4% Recall: 81.4% F1 score: 86.1%	Epilepsy
(Zhu et al., 2018)	Recurrent Neural Network (RNN)	ELMo + Bi-directional LSTM + CRF	Precision: 89.34% Recall: 87.87% F1 Score: 88.60%	2010 i2b2/VA
(Chalapathy et al., 2016)	RNN	GloVe / word2vec + Bi-directional LSTM + CRF	Precision: 84.36% Recall: 83.41% F1 score: 83.88%	2010 i2b2/VA
(Savova et al., 2010) cTAKES		Rule-based + ML	F1 score exact: 71.5% F1 score overlap: 82.4%	Mayo Clinic EMR

# Appendix: Literature Review – Results

LLMs Era - Clinical NER tasks

Models By	Architecture	Detail	Performance	Scope
(Monajatipoor et al., 2024)	DiRAG + GPT 3.5 / 4 Turbo	Prompt Tuning with TANL + DICE,	M/T analysis: 53.1/62.8; 61.0/66.2;	i2b2 / NCBI disease /
		DiRAG	51.1/55.0	BC2GM
(Hu et al., 2024)	GPT 3.5 / 4	Prompt Tuning / ICL	F1 Score: 0.794, 0.861 [MTSamples] F1 Score: 0.676, 0.736 [VAERS]	MTSamples, VAERS
(Munnangi et al.,	GPT 3.5 / 4, Claude	ICL + Definition		BigBIO
2024)	2, Llama 2	Augmentation	_	DISDIO
(Naguib et al., 2024)	MLM: mBERT, XLM-R-large, BERT-large, MedBERT, RoBERTa-large, Bio clinicalBert, Bert variants, CLM: Llama 2-70B, Mistral-7B, BLOOM-7B1, Falcon-40B, GPT, OPT, Vicuna, Medalpaca – 7B, Vigogne-13B	Prompt Tuning / ICL on MLM + CLM models	-	WikiNER, CoNLL2003, E3C, n2c2, NCBI