

Day -1 Introduction to Machine Learning

Why "Learn"?

(APPROVED BY DST)

CERTIFICATE OF REGISTRATION OF SOCIETIES

S No. 438 of 2010

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to "learn" to calculate payroll
- Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)

What We Talk About When We Talk About "Learning"

- Learning general models from a data of particular examples
- Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.
- Example in retail: Customer transactions to consumer behavior:

People who bought "Da Vinci Code" also bought "The Five People You Meet in Heaven" (www.amazon.com)

• Build a model that is a good and useful approximation to the data.

What is Machine Learning?

- Machine Learning
 - Study of algorithms that
 - improve their performance
 - at some task
 - with experience
- Optimize a performance criterion using example data or past experience.
- Role of Statistics: Inference from a sample
- Role of Computer science: Efficient algorithms to
 - Solve the optimization problem
 - Representing and evaluating the model for inference

VEL TECH TECHNOLOGY INCUBATOR

(APPROVED BY DST)
CERTIFICATE OF REGISTRATION OF SC
S.No. 438 of 2010

Growth of Machine Learning

- Machine learning is preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Medical outcomes analysis
 - Robot control
 - Computational biology
- This trend is accelerating
 - Improved machine learning algorithms
 - Improved data capture, networking, faster computers
 - Software too complex to write by hand
 - New sensors / IO devices
 - Demand for self-customization to user, environment
 - It turns out to be difficult to extract knowledge from human experts → failure of expert systems in the 1980's.

CERTIFICATE OF REGISTRATION OF SOCIETIES

Learning Associations

Basket analysis:

 $P(Y \mid X)$ probability that somebody who buys X also buys Y where X and Y are products/services.

Example: P (chips | beer) = 0.7

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

VEL TECH TECHNOLOGY INCUBATOR

(APPROVED BY DST)

CERTIFICATE OF REGISTRATION OF SOCIETIES
S.No. 438 of 2010

Classification

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their income and savings

Discriminant: IF $income > \theta_1$ AND $savings > \theta_2$ THEN low-risk ELSE high-risk

11

Classification: Applications

- Pattern recognition
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Medical diagnosis: From symptoms to illnesses
- Web Advertizing: Predict if a user clicks on an ad on the Internet.

VEL TECH TECHNOLOGY INCUBATOR

(APPROVED BY DST)

CERTIFICATE OF REGISTRATION OF SOCIETIES
S.No. 438 of 2010

Face Recognition

Training examples of a person

Test images

Prediction: Regression CERTIFICATE OF REGISTRATION OF SOCIETIES S.No. 438 of 2010

• Example: Price of a used car

• x : car attributes

y: price

$$y = g(x \mid \vartheta)$$

g() model,

θ parameters

Regression Applications

- Navigating a car: Angle of the steering wheel (CMU NavLab)
- Kinematics of a robot arm

Unsupervised Learning

- Learning "what normally happens"
- No output
- Clustering: Grouping similar instances
- Other applications: Summarization, Association Analysis
- Example applications
 - Customer segmentation in CRM
 - Image compression: Color quantization
 - Bioinformatics: Learning motifs

Reinforcement Learning

- Topics:
 - Policies: what actions should an agent take in a particular situation
 - Utility estimation: how good is a state (> used by policy)
- No supervised output but delayed reward
- Credit assignment problem (what was responsible for the outcome)
- Applications:
 - Game playing
 - Robot in a maze
 - Multiple agents, partial observability, ...

Training and testing

CERTIFICATE OF REGISTRATION OF SOCIETIES
S No. 438 of 2010

Why Python

- Python is a high-level programming language
- Open source and community driven
- "Batteries Included"
 - a standard distribution includes many modules
- Dynamic typed
- Source can be compiled or run just-in-time
- Similar to perl, tcl, ruby

Python Interfaces

(APPROVED BY DST)

CERTIFICATE OF REGISTRATION OF SOCIETIES

S.No. 438 of 2010

- IDLE a cross-platform Python development environment
- PythonWin a Windows only interface to Python
- Python Shell running 'python' from the Command Line opens this interactive shell
- Jupyter Notebook The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.

IDLE – Development Environment

CERTIFICATE OF REGISTRATION OF SOCIETIES
S.No. 438 of 2010

IDLE helps you program

in Python by:

- color-coding your program code
- debugging
- auto-indent
- interactive shell

Jupyter Notebook

(APPROVED BY DST)

CERTIFICATE OF REGISTRATION OF SOCIETIES
S.No. 438 of 2010

Python scikit-learn

CERTIFICATE OF REGISTRATION OF SOCIETIES S.No. 438 of 2010

- Popular machine learning toolkit in Python http://scikit-learn.org/stable/
- Requirements
 - Anaconda
 - Available from https://www.anaconda.com/products/individual
 - Includes numpy, scipy, and scikit-learn (former two are necessary for scikit-learn)
 - In Anaconda prompt "conda install -c anaconda scikitlearn"

VEL TECH TECHNOLOGY INCUBATOR

(APPROVED BY DST)

CERTIFICATE OF REGISTRATION OF SOCIETIES
S.No. 438 of 2010

A First Application: Classifying Iris Species

 The Iris dataset is a classic dataset for classification, machine learning, and data visualization.

- The dataset contains: 3 classes (different Iris species) with 50 samples each, and then four numeric properties about those classes: Sepal Length, Sepal Width, Petal Length, and Petal Width.
- One species, Iris Setosa, is "linearly separable" from the other two. This means that we can draw a line (or a hyperplane in higher-dimensional spaces) between Iris Setosa samples and samples corresponding to the other two species.
- Predicted Attribute: Different Species of Iris plant.

Open Google Colab Task -1

https://colab.research.google.com

https://github.com/arunpandianj/Introduction-to-Machine-Learning-with-Python

CERTIFICATE OF REGISTRATION OF SOCIETIES S.No. 438 of 2010

References

- 1. Andreas C. Müller and Sarah Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists, O'Reilly, 2016
- 2. Jake VanderPlas, Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly, 2016
- 3. Cognitive class.ai
- 4. Deeplearning.ai