Fachbereic Praktikum I	FH MÜNSTER University of Applied Sciences			
Versuch: Stromquund Stromspiege		Gruppe:	Datum:	Antestat:
Teilnehmer:				
-	Abtestat:			
_	(Nam	ne)	(Vorname)	

Versuchsdurchführung

Verwendeter NMOS-Transistor CD4007

Abbildung 1 zeigt das Gehäuse des CD4007, indem sich u.a. drei NMOS Transistoren befinden. Die Kontaktierung der Bulk-Anschlüsse ist in der Abbildung nicht dargestellt. Im zugehörigen Datenblatt findet man die Information, dass die Bulk-Anschlüsse der NMONS Transistoren mit

Abbildung 1: Top View des CD4007 IC

VSS verbunden sind und die Bulk-Anschlüsse der PMOS Transistoren mit VDD verbunden sind. Um den IC auf den Steckboards verwenden zu können, wurden die drei NMOS Transistoren wie in gezeigt herausgeführt.

Abbildung 2: Steckbrettgehäuse des CD4007 IC

Stromquelle

In diesem Versuch sollen die Berechnungen und Simulationen aus dem Vorbereitungsteil a) bis e) überprüft werden.

- a) Bauen Sie hierzu zunächst eine Stromquelle (0,5mA) ohne Rückkopplung auf dem Steckbrett auf.
- b) Zur Bestimmung von $R_{Last,max}$ und $U_{aus,min}$ messen und plotten/zeichnen Sie zunächst die Ausgangskennlinie. Dabei können Sie im Ausgangspfad einen Lastwiderstand von 1 k Ω verwenden, um den Ausgangsstrom zu messen. Es sollten Sie mindestens an Messpunkten der nachfolgenden Tabelle Werte aufgenommen werden. $U_{aus,min}$ kann anhand der Kennlinie bestimmt werden. Es handelt sich um den Punkt an dem der Übergang vom Linearbereich zum Sättigungsbereich stattfindet.

$U_{aus,min} =$	
-----------------	--

c) Anschließend Setzen Sie die Betriebsspannung auf 10V und setzen als Lastwiderstand einen $10k\Omega$ Widerstand in Reihe mit einem $10k\Omega$ Poti ein. Verändern Sie die Potieinstellungen so, dass Sie $U_{aus,min}$ erreichen und dokumentieren Sie den Gesamtlastwiderstand.

$R_{Last,max} =$	
,	

d) Wie verändern sich die Werte für die minimale Ausgangsspannung $U_{aus,min}$ und den maximalen Lastwiderstandswert R_{Last} bei einem Gegenkopplungswiderstand von $R_S = 1k\Omega$? Wiederholen Sie dazu die Aufgaben a) bis c).

$U_{aus,min} =$					
$R_{Iastmax} =$					

Seite 2 von 6 Elektronik 2 Prof. Glösekötter

Werte Stromquelle ohne Rückkopplung

U _{aus} [V]	V _{1kOhm} [V] / I _{aus} [mA]
0	
	0,1
	0,2
	0,3
	0,4
	0,48
	0,49
5	
10	

Werte Stromquelle mit Rückkopplung

U _{aus} [V]	V_{1kOhm} [V] / I_{aus} [mA]
0	
	0,1
	0,2
	0,3
	0,4
	0,48
	0,49
5	
10	

Stromspiegel

Nun soll die Stromquelle zu einem Stromspiegel erweitert werden und die Messwerte mit den Ergebnissen aus den vorbereitenden Aufgaben verglichen werden.

e)	Erweitern Sie die Stromquelle zu einem Stromspiegel. Verzichten Sie zunächst auf die
	Rückkopplungswiderstände. Verwenden Sie das Potentiometer als Teil von R _{Last} , um den
	Referenzstrom auf 0,5 mA festzulegen.

$R_{Last} = $

f)	Messen und plotten/zeichnen Sie die Ausgangskennlinie. Es sollten Sie mindestens an
	Messpunkten der nachfolgenden Tabelle Werte aufgenommen werden. Bestimmen Sie
	anschließend das Übersetzungsverhältnis.

Übersetzungsverhältnis =	

g) Bestimmen Sie die minimale Ausgangsspannung:

T	r .					
,,,		_				
v	aus.min	_				

Werte Stromspiegel ohne Rückkopplung

U _{aus} [V]	V _{1kOhm} [V] / I _{aus} [mA]
0	
	0,1
	0,2
	0,3
	0,4
	0,48
	0,49
5	
10	

Seite 4 von 6 Elektronik 2 Prof. Glösekötter

Stromspiegel mit Gegenkopplung

h) Setzen Sie nun die beiden Rückkopplungswiderstände mit $10k\Omega$ ein. Verwenden Sie das Potentiometer als Teil von R_{Last} , um den Referenzstrom auf 0.5 mA festzulegen.

$R_{Last} =$	

- i) Messen und plotten/zeichnen Sie die Ausgangskennlinie. Es sollten Sie mindestens an Messpunkten der nachfolgenden Tabelle Werte aufgenommen werden. Welche Vor- und Nachteile sind durch die Rückkopplung zu erkennen?
- j) Bestimmen Sie die minimale Ausgangsspannung:

$$U_{aus.min} =$$

k) Entfernen Sie die Gegenkopplungswiderstände und erweitern Sie den Stromspiegel zu einem Wilson Stromspiegel (siehe Abbildung 3). Messen und plotten/zeichnen Sie die Ausgangskennlinie. Es sollten Sie mindestens an Messpunkten der nachfolgenden Tabelle Werte aufgenommen werden.

Abbildung 3: Wilson Stromspiegel

1) Bestimmen Sie die minimale Ausgangsspannung:

$$U_{aus,min} =$$

Seite 5 von 6 Elektronik 2 Prof. Glösekötter

Werte Stromspiegel mit Rückkopplung

U _{aus} [V]	$V_{1kOhm}[V] / I_{aus}[mA]$
0	
	0,1
	0,2
	0,3
	0,4
	0,48
	0,49
5	
10	

Werte Wilson Stromspiegel

U _{aus} [V]	V _{1kOhm} [V] / I _{aus} [mA]
0	
	0,1
	0,2
	0,3
	0,4
	0,48
	0,49
5	
10	

Denken Sie an die Dokumentation Ihrer Berechnungen/ Simulationen/ Versuche. Beschreiben Sie genau was Sie gemacht und welche Ergebnisse (Skizze, Werte,...) Sie erhalten haben.

Seite 6 von 6 Elektronik 2 Prof. Glösekötter