Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 2: lista M 10 13 grudnia 2016 r.

M10.1. 2 punkty Niech $D^{(k)} = \{x_0^{(k)}, x_1^{(k)}, \dots, x_{n+1}^{(k)}\} \subset [a, b]$ będzie ciągiem zbiorów konstruowanych w algorytmie Remeza. Udowodnić, że kolejne dwa elementy w tych zbiorach, nie mogą być zbyt bliskie, tzn. że istnieje taka liczba $\eta > 0$, dla której

$$x_{i+1}^{(k)} - x_i^{(k)} \ge \eta$$
 $(0 \le i \le n, k \ge 0).$

- **M10.2.** I punkt Wyznaczyć pierwszy wielomian optymalny w sensie aproksymacji jednostajnej dla funkcji $f(x) = \sqrt{x}$ w przedziale [0, 1].
- **M10.3.** I punkt Niech będzie $f(x) = x^{n+1} + a_1 x^n + \ldots + a_n x + a_{n+1}$ $(-1 \le x \le 1; a_1, \ldots, a_{n+1} \text{dane stałe})$ i niech $L_n \in \Pi_n$ będzie wielomianem interpolującym funkcję f w węzłach x_0, x_1, \ldots, x_n , leżących w przedziale [-1,1]. Jak należy wybrać te węzły, żeby wyrażenie $||f L_n||_{\infty}^{[-1,1]}$ było możliwie najmniejsze? Uzasadnić odpowiedź.
- **M10.4.** 2 punkty Niech dla $f \in C[a,b]$ istnieją wszystkie pochodne i niech $|f^{(k)}(x)| > 0$ dla każdego $x \in [a,b]$ $(k=1,2,\ldots)$. Wykazać, że dla każdego $n \geqslant 0$ zachodzi wówczas nierówność $E_n(f) > E_{n+1}(f)$.
- **M10.5.** 1 punkt Wyznaczyć trzeci wielomian optymalny w sensie normy jednostajnej na zbiorze $\{0,1,2,4,6\}$ dla funkcji o wartościach

M10.6. 2 punkty Wyznaczyć z dokładnością do 6 miejsc po przecinku współczynniki wielomianu $w_2(x) = ax^2 + bx + c$, będącego drugim wielomianem optymalnym w sensie normy jednostajnej dla funkcji $\sin(x)$ w przedziale $[0, 2\pi]$.

Wskazówka: $a + b + c \approx 0.465...$

- **M10.7.** 2 punkty, Włącz komputer! Rozważyć aproksymację fukncji Rungego $f(x) = \frac{1}{25x^2+1}$ w przedziale [-1,1] za pomocą wielomianu $w \in \Pi_9$. Dla każdego z poniższych wielomianów podać wartość błędu $\max_{x \in [-1,1]} |f(x) w(x)|$ (wartość tę można przybliżyć obliczając $|f(x_k) w(x_k)|$ dla $x_k = -1 + 2k/N$, gdzie N jest bardzo duże, np. N = 1000). Rozważyć następujące wielomiany:
 - a) wielomian interpolujący funkcję f w węzłach równoodległych,
 - b) wielomian interpolujący funkcję f w zerach wielomianu T_{10} ,
 - c) wielomian interpolujący funkcję f w punktach ekstremalnych wielomianu T_9 ,
 - d) 9-ty wielomian optymalny w sensie normy średniokwadratowej z funkcją wagową Legendre'a $p(x) \equiv 1$,
 - e) 9-ty wielomian optymalny w sensie normy średniokwadratowej z funkcją wagową Czebyszewa $p(x) \equiv 1$.