

Aufgabennummer: A_037

Technologieeinsatz:

möglich ⊠

erforderlich

Es sollen Pinboards in der Form eines Fisches angefertigt werden.

$$y_2(x) = x^2 + \frac{1}{2} \cdot x - \frac{3}{2}$$
 $-1,5 \le x \le 1,5$

Die Funktionsgraphen von y_1 und y_2 schließen die im Diagramm dargestellte Fläche ein. Die Funktionen y_1 und y_2 sind symmetrisch bezüglich der x-Achse.

(Maße in dm)

- a) Berechnen Sie den im Diagramm dargestellten Flächeninhalt des Fisches.
- b) Ein anderes Pinboard wird durch eine quadratische Funktion, die durch die Punkte $P_1 = (-1,5|0)$, $P_2 = (0|1)$ und $P_3 = (1|0)$ verläuft, begrenzt.
 - Stellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten dieser Polynomfunktion 2. Grades auf.
 - Berechnen Sie die entsprechende quadratische Funktionsgleichung.
- c) Argumentieren Sie mithilfe der Differenzialrechnung, dass die Funktion y_2 nur eine lokale Extremstelle und keine Wendestelle hat ohne die Betrachtung der Randstellen des Intervalls.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Möglicher Lösungsweg

a)
$$y_2(x) = x^2 + \frac{1}{2} \cdot x - \frac{3}{2}$$

$$A_1 = \int_{-1,5}^{1} y_2(x) dx$$
 $A_1 = -2,6042$

$$A_2 = \int_1^{1.5} y_2(x) dx$$
 $A_2 = 0.3542$

$$2(|A_1| + A_2) = 5,9167$$

Die Fläche des Fisches beträgt $A \approx 5,92 \text{ dm}^2$.

Gleichungssystem: b)

$$(1) \qquad \frac{9}{4} \cdot b_0 \quad - \quad \frac{3}{2} \cdot b_1 \quad + \quad b_2 \quad = \quad 0$$

$$(2) b_2 =$$

(2)
$$b_2 = 1$$

(3) $b_0 + b_1 + b_2 = 0$

Koeffizienten:

$$b_0 = -\frac{2}{3}$$
, $b_1 = -\frac{1}{3}$, $b_2 = 1$

quadratische Funktion:

$$f(x) = -\frac{2}{3} \cdot x^2 - \frac{1}{3} \cdot x + 1$$

 y_2 ist eine Polynomfunktion 2. Grades. An der Stelle $x_S = -\frac{1}{4}$ ist der kleinstmögliche Funktionswert, nämlich $y_2(x_S) = -\frac{25}{16}$. Für alle $x < x_S$ ist die Funktion streng monoton fallend und für alle $x > x_{\rm S}$ streng monoton steigend. Die 2. Ableitung ergibt eine konstante Funktion, nämlich $y''_{2}(x) = 2$, daher besitzt y_{2} keinen Wendepunkt. Die Funktion hat daher genau den einen lokalen Extrempunkt $S = (x_S|y_S)$.

Auch andere Argumentationen sind möglich:

Die 2. Ableitung ergibt eine konstante Funktion, nämlich $y''_2(x) = 2 > 0$, daher besitzt y_2 keinen Wendepunkt und ist links gekrümmt. Die Nullstelle der 1. Ableitungsfunktion ergibt $x_S = -\frac{1}{4}$ deren y-Koordinate $y_S = -\frac{25}{16}$ beträgt. Daher ist $S = (x_S|y_S)$ der einzige lokale Extrempunkt.

Klassifikation

Nassiination	
⊠ Teil A □ Teil B	
Wesentlicher Bereich der Inhaltsdimension:	
a) 4 Analysisb) 2 Algebra und Geometriec) 4 Analysis	
Nebeninhaltsdimension:	
a) — b) — c) —	
Wesentlicher Bereich der Handlungsdimension:	
a) B Operieren und Technologieeinsatzb) B Operieren und Technologieeinsatzc) D Argumentieren und Kommunizieren	
Nebenhandlungsdimension:	
 a) – b) A Modellieren und Transferieren c) – 	
Schwierigkeitsgrad:	Punkteanzahl:
a) mittelb) mittelc) mittel	a) 2 b) 2 c) 2
Thema: Alltag	
Quellen: –	