#### To Do

Read Sections 6.1 – 6.3.

Assignment 4 is due Friday November 25.

#### **Last Class**

- (1) Confidence Interval for Slope  $\beta$  and Testing  $H_0$ :  $\beta = \beta_0$
- (2) Test of No Relationship between Response and Explanatory Variates
- (3) Confidence interval for the mean response  $\mu(x) = \alpha + \beta x$
- (4) Prediction Interval for an Individual Response Y

### Simple Linear Regression Model

For data  $(x_i, y_i)$ , i = 1, 2, ..., nwe assume the model

$$Y_i \sim G(\alpha + \beta x_i, \sigma)$$
 for  $i = 1, 2, ..., n$   
independently and where the  $x_i$ 's,  $i = 1, 2, ..., n$   
are assumed to be known constants.

## **Today's Class**

- (1) General Form of a Gaussian Response Model
- (2) Linear Regression Models
- (3) Checking the Assumptions of the Simple Linear Regression Model

# Simple Linear Regression Model Simple linear regression model

$$Y_i \sim G(\alpha + \beta x_i, \sigma)$$
 for  $i = 1, 2, ..., n$   
independently and where the  $x_i$ 's,  $i = 1, 2, ..., n$   
are assumed to be known constants.

This model is a member of a larger family of models called Gaussian response models.

### **Gaussian Response Models**

The general form of a Gaussian response model is

$$Y_i \sim G(\mu(x_i), \sigma)$$
 for  $i=1,2,...,n$  independently and where the  $x_i$ 's,  $i=1,2,...,n$  are assumed to be known constants (possibly vectors).

In this model

$$\mathsf{E}(\mathsf{Y}_\mathsf{i}) = \mu(\mathsf{x}_\mathsf{i})$$

depends on the explanatory variate  $x_i$ , but

$$sd(Y_i) = \sigma$$

does not.

### Gaussian Response Model

The Gaussian Response Model

 $Y_i \sim G(\mu(x_i), \sigma)$  for i = 1, 2, ..., n independently can also be written in the form

 $Y_i = \mu(x_i) + R_i$  where  $R_i \sim G(0,\sigma)$ , i = 1,2,...,n independently.

 $Y_i$  is a sum of two components.

The first component,  $\mu(x_i)$ , is a deterministic component (not a random variable) and the second component,  $R_i$ , is a random component or random variable.

## Linear Regression Models and STAT 331/STAT 371/STAT 373

In many examples the deterministic component takes the form

$$E(Y_i) = \mu(\boldsymbol{x}_i) = \beta_0 + \sum_{j=1}^k \beta_j x_{ij}$$

so  $E(Y_i)$  is a linear function of

 $x_i = (x_{i1}, x_{i2}, ..., x_{ik})$ , a vector of explanatory variates for unit i, and the unknown parameters  $\beta_0, \beta_1, ..., \beta_k$ .

These models are called linear regression models. The  $\beta_j$ 's are called the regression coefficients. The  $x_i$ 's are called covariates.

### **Model Checking**

There are two main assumptions for Gaussian linear response models:

- (1)  $Y_i$  (given covariates  $x_i$ ) has a Gaussian distribution with standard deviation  $\sigma$  which does not depend on the covariates.
- (2)  $E(Y_i) = \mu(x_i)$  is a linear combination of known covariates  $x_i = (x_{i1}, x_{i2}, ..., x_{ik})$ , and unknown regression coefficients  $\beta_0, \beta_1, ..., \beta_k$ .

MODEL ASSUMPTIONS SHOULD ALWAYS BE CHECKED!!!

We use graphical methods to do this.

## **Model Checking Method 1**

In simple linear regression, a scatterplot of the data with the fitted line superimposed indicates how well the model fits the data.



## Model Checking Method 2 - Residual Plots

Residual plots are very useful for model checking when there are 2 or more covariates. For the simple linear regression model let

$$\hat{\mu}_i = \hat{\alpha} + \hat{\beta}_i x_i$$

(often called the "fitted" response) and

$$\hat{r}_i = y_i - \hat{\mu}_i$$

The  $\hat{r}_i$ 's are called residuals since  $\hat{r}_i$  represents what is "left" after the model has been "fitted" to the data.

#### **Residual Plots**

The idea behind the  $\hat{r}_i$ 's is that they can be thought of as "observed"  $R_i$ 's in the model

 $Y_i = \mu_i + R_i$  where  $R_i \sim G(0,\sigma)$ , i = 1,2,...,n independently.

This isn't exactly correct since we are using  $\hat{\mu}_i$  instead of  $\mu_i$ .

However if the model is correct, then the  $\hat{r}_i$ 's should behave roughly like a random sample from the  $G(0,\sigma)$  distribution.

#### Residual Plots

#### Recall

$$\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$$
 or  $\overline{y} - \hat{\alpha} - \hat{\beta}\overline{x} = 0$ 

### which implies

$$0 = \bar{y} - \hat{\alpha} - \hat{\beta}\bar{x} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i) = \frac{1}{n} \sum_{i=1}^{n} \hat{r}_i$$

so that the average of the residuals is always zero.

#### **Residual Plots**

If the model assumptions hold then a plot of the points  $(x_i, \hat{r_i})$ , i = 1, 2, ..., n should lie more or less within a horizontal band or belt around the line  $\hat{r_i} = 0$  showing no obvious pattern.



### STAT 231/230 Residual Plot

#### What would you conclude?



#### Standardized Residual Plots

#### Define the standardized residuals

$$\hat{r}_{i}^{*} = \frac{\hat{r}_{i}}{S_{e}} = \frac{y_{i} - \hat{\mu}_{i}}{S_{e}}$$
  $i = 1, 2, ..., n$ 

What is the only difference between a plot of the points  $(x_i, \hat{r}_i)$ , i = 1, 2, ..., n and a plot of the points  $(x_i, \hat{r}_i^*)$ , i = 1, 2, ..., n?

If the model is correct then the  $\hat{r_i}^*$  values will lie in the range (-3,3). Why is this?

# Example – Standardized Residual Plot



## STAT 231/230 Standardized Residual Plot



## Residual Plot Type 2

Another type of residual plot consists of plotting the points

 $(\hat{\mu}_i, \hat{r}_i^*), i = 1, 2, ..., n$ 

Such a plot can be used to check the assumption about the form of the mean  $E(Y_i) = \mu(x_i)$ .

For the simple linear regression model we are checking whether the assumed mean  $E(Y_i) = \mu(x_i) = \alpha + \beta x_i$  is reasonable.

If the assumed mean is reasonable we should see approximately a horizontal band around the line

$$\hat{r}_i^* = 0$$

# Example – Standardized Residual Plot Using Muhat



## STAT 231/230 Standardized Residual Plot with Muhat



## **Qqplot of Residuals**

To check the Gaussian assumption we use a qqplot of the standardized residuals. Since our assumed model is

$$R_i / \sigma = (Y_i - \mu_i)/\sigma \sim G(0,1)$$

the  $\hat{r}_i^*$ 's should roughly represent a sample from the G(0,1) distribution.

Therefore a qqplot of the  $\hat{r}_i^*$ 's should give approximately a straight line if the model assumptions hold.

## **Example - Qqplot**



## **STAT 231/230 Qqplot**



### **Interpreting Residual Plots**

#### If a plot of the points

$$(\hat{\mu}_i, \hat{r}_i^*), i = 1, 2, ..., n$$

or

$$(\hat{\mu}_i, \hat{r}_i), i = 1, 2, ..., n$$

shows a distinctive pattern then this suggests the assumed form for  $E(Y_i) = \mu(x_i)$  may be inappropriate.

### **Interpreting Residual Plots**

If a plot of the points

$$(\hat{\mu}_i, \hat{r}_i^*), i = 1, 2, ..., n$$

indicates that the variability in the  $\hat{r}_i^*$ 's is bigger for large values of  $\hat{\mu}_i$ than for small values of  $\hat{\mu}_i$ (or vice versa) then there is evidence to suggest that the assumption of constant variance,  $Var(Y_i) = Var(R_i) = \sigma^2$ , i=1,2,...,ndoes not hold.

### **Interpreting Residual Plots**

If the points in the qqplot do not lie roughly in a straight line then this suggests the Gaussian assumption may not hold.

# Interpreting Residual Plots - Warning

Reading these plots takes practice and you should try not to read too much into plots especially if the plots are based on a small number of points.

The plots on the next slides exhibit patterns.

## Examples of Residual Plots with Patterns

This plot suggests that the function  $\mu(x_i)$  is not correctly specified. Can you suggest a better model?



## Examples of Residual Plots with Patterns

Assume a quadratic model for the mean:  $\mu(x_i) = \alpha + \beta x_i + \gamma x_i^2$  rather than  $\mu(x_i) = \alpha + \beta x_i$ 



## Examples of Residual Plots with Patterns

#### What do you notice?



## Scatterplot for same data

