TUGAS EKSPLORASI DATA MULTIVARIAT

OLEH:

A Rofiqi Maulana (125090500111025)

Dosen Pengampu: Dr. Ir. Solimun, MS

PROGRAM STUDI STATISTIKA
JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS BRAWIJAYA
MALANG
2015

PENDAHULUAN

1. Analisis Komponen Utama (PCA)

Analisis komponen utama (PCA) merupakan suatu teknik mereduksi data multivariat (banyak data) untuk mengubah (transformasi) suatu matriks data awal menjadi suatu set kombinasi linier yang lebih sedikit akan tetapi menyerap sebagian besar jumlah varians dari data awal. Pada analisis komponen utama terbagi menjadi dua fungsi yaitu fungsi reduksi dan transformasi. Berikut merupakan konsep dasar dari persamaan analisis komponen utama

$$PC_{1} = a_{11}X_{1} + a_{21}X_{2} + \dots + a_{p1}X_{p} + \varepsilon_{i}$$

$$PC_{2} = a_{12}X_{1} + a_{22}X_{2} + \dots + a_{p2}X_{p} + \varepsilon_{i}$$

$$\vdots$$

$$\vdots$$

$$PC_{k} = a_{12}X_{1} + a_{22}X_{2} + \dots + a_{pk}X_{p} + \varepsilon_{i}$$
(Supranto, 2010)

Persamaan di atas menunjukkan bahwa komponen utama seolah-olah merupakan kombinasi linier dari peubah asal yang diamati.

2. Analisis Faktor

Analisis Faktor merupakan suatu teknik dalam analisis multivariat yang bertujuan mengidentifikasi sejumlah faktor umum (*common factor*) yang dibutuhkan untuk menjelaskan korelasi antar indikator (Widarjono, 2010). Terdapat dua fungsi dalam FA yaitu fungsi eksploratori dan konfirmatori. Perbedaan analisis faktor dan analisis komponen utama adalah ada tidaknya faktor bersama. Faktor bersama merupakan faktor yang secara bersamasama juga dimiliki oleh peubah lainnya. Hal ini dapat dilihat berdasarkan persamaan analisi faktor yaitu

$$\begin{split} X_1 &= c_{11}F_1 + c_{21}F_2 + \dots + c_{p1}F_p + \varepsilon_i \\ X_2 &= c_{12}F_1 + c_{22}F_2 + \dots + c_{p2}F_p + \varepsilon_i \\ &\cdot \\ \cdot \\ \cdot \\ X_k &= c_{11}F_1 + c_{21}F_2 + \dots + c_{pk}F_p + \varepsilon_i \end{split}$$

Persamaan di atas menunjukkan bahwa peubah asal seolah-olah merupakan kombinasi linier dari sejumlah faktor p.

2.1 Menghitung Korelasi Indikator

Di dalam melakukan analisis faktor, keputusan pertama yang harus diambil oleh peneliti adalah menganalisis apakah data yang ada cukup memenuhi syarat di dalam analsisi faktor. Langkah pertama ini dilakukan dengan mencari korelasi matriks antara indikator-indikator yang diamati. Ada beberapa ukuran yang bisa digunakan untuk syarat kecukupan data sebagai *rule of thumb*:

1. Korelasi matriks antar indikator

Tingginya korelasi antara indikator mengindikasikan bahwa indikator – indikator tersebut dapat dikelompokkan ke dalam sebuah indikator yang bersifat homogen sehingga setiap indikator mampu membentuk faktor bersama.

2. Korelasi Parsial

Korelasi parsial ini disebut dengan *negative anti image correlation*. Untuk bisa dimasukkan ke dalam analisis faktor maka korelasi parsial ini seharusnya sekecil mungkin.

3. Kaiser-Meyer Olkin (KMO)

Metode ini paling banyak digunakan untuk melihat syarat kecukupan sampel untuk analisis faktor. Metode KMO mengukur kecukupan *sampling* secara menyeluruh dan mengukur kecukupan *sampling* untuk setiap indikator. Berikut merupakan formula untuk menghitung KMO

$$KMO = \frac{\sum \sum_{i=j} r_{ij}^{2}}{\sum \sum_{i=j} r_{ij}^{2} + \sum \sum_{i=j} a_{ij}^{2}}$$

Di mana r_{ij} adalah korelasi parsial dan a_{ij} merupakan koefisien korelasi parsial. Nilai KMO > 0.5 masih bisa diakomodasi untuk penentuan analisis faktor. Selain memasukkan semua indikator di dalam perhitungan korelasi, Kaiser-Meyer Olkin juga menghitung koefisien korelasi di dalam analisis faktor untuk indikator tertentu yaitu sebagai berikut:

$$MSA = \frac{\sum r_{ij}^2}{\sum r_{ij}^2 + \sum a_{ij}^2}$$

Di mana r_{ij} adalah korelasi parsial dan a_{ij} merupakan koefisien korelasi parsial.

4. Bartlets test of sphecirity

Uji Bartlet ini merupakan uji statistik untuk signifikansi menyeluruh dari semua korelasi di dalam matriks korelasi. Di dalam hal ini kita menguji hipotesis nol bahwa data yang diobservasi merupakan sampel dari distribusi populasi normal multivariat yang mana semua koefisien korelasi besarnya nol. Uji ini bisa diproksi menggunakan uji distribusi Chi Square.

2.2 Ekstraksi Faktor

Ekstraksi faktor adalah suatu metode yang digunakan untuk mereduksi data dari beberapa indikator untuk menghasilkan faktor yang lebih sedikit yang mempu menjelaskan korelasi antara indikator yang diamati. Beberapa metode yang dapat digunakan adalah *Principle Component Analysis, Principle Axis Factoring, Unweighted Least Square, Generalized Least Square, dan Maximum Likelihood.*

2.3 Rotasi Faktor

Rotasi Faktor diperlukan jika metode ekstraksi faktor belum menghasilkan komponen faktor utama yang jelas. Tujuan rotasi faktor agar nilai loading hanya tinggi pada satu peubah saja.

(Widarjono, 2010)

2.4 Commumalities

Komunalitas menunjukkan proporsi ragam yang dapat dijelaskan oleh sejumlah p faktor bersama.

$$V(X_i) = c_{i1}^2 + c_{i2}^2 + \dots + c_{ip}^2 + \varphi_i = h_i^2 + \varphi_i$$

Penerapan Analisis Komponen Utama Pada Prevalensi Beberapa Penyakit Provinsi, Indonesia 2013

DATA

Data yang digunakan merupakan data prevalensi beberapa penyakit di Indonesia yang bersumber dari laporan riset dasar kesehatan (RIKESDAS) tahun 2013. Prevalensi adalah seberapa sering suatu penyakit atau kondisi terjadi pada sekelompok orang. Prevalensi dihitung dengan membagi jumlah orang yang memiliki penyakit atau kondisi dengan jumlah total orang dalam kelompok.

	TB	Hepatitis	Diare	Malaria	Asma	PPOK
Provinsi	(%)	(%)	(%)	(%)	(%)	(%)
Aceh	0.3	1.8	7.4	1.6	4	4.3
Sumatera Utara	0.2	1.4	4.3	1.2	2.4	3.6
Sumatera Barat	0.2	1.2	4.8	1.1	2.7	3
Riau	0.1	0.7	3.5	0.8	2	2.1
Jambi	0.2	0.7	3.5	1.9	2.4	2.1
Sumatera Selatan	0.2	0.7	2.9	1.3	2.5	2.8
Bengkulu	0.2	0.9	3.8	5.7	2	2.3
Lampung	0.1	0.8	2.9	1.3	1.6	1.4
Baangka Belitung	0.3	0.8	2.1	4.4	4.3	3.6
Kepulauan Riau	0.2	0.9	2.3	1.5	3.7	2.1
DKI Jakarta	0.6	0.8	5	0.3	5.2	2.7
Jawa Barat	0.7	1	4.9	0.5	5	4
Jawa Tengah	0.4	0.8	4.7	0.6	4.3	3.4
DI Yogyakarta	0.3	0.9	3.8	0.5	6.9	3.1
Jawa Timur	0.2	1	4.7	0.5	5.1	3.6
Banten	0.4	0.7	4.3	0.4	3.8	2.7
Bali	0.1	0.7	3.6	0.4	6.2	3.5
Nusa Tenggara						
Barat	0.3	1.8	5.3	2.5	5.1	5.4
NusaTenggaraTimur	0.3	4.3	6.3	10.3	7.3	10
Kalimantan Barat	0.2	0.8	2.8	1.6	3.2	3.5
Kalimantan Tengah	0.3	1.5	3.7	2.2	5.7	4.3
Kalimantan Selatan	0.3	1.4	3.2	1.1	6.4	5
Kalimantan Timur	0.2	0.6	3.4	1.4	4.1	2.8
Sulawesi Utara	0.3	1.9	4.1	3.7	4.7	4
Sulawesi Tengah	0.2	2.3	4.5	4	7.8	8
Sulawesi Selatan	0.3	2.5	5.6	1	6.7	6.7
Sulawesi Tenggara	0.2	2.1	4.1	1.2	5.3	4.9
Gorontalo	0.5	1.1	4.3	1.1	5.4	5.2
Sulawesi Barat	0.3	1.2	5.3	1.3	5.8	6.7
Maluku	0.3	2.3	3.7	3.9	5.3	4.3
Maluku Utara	0.2	1.7	2.6	4.7	5	5.2
Papua Barat	0.4	1	3.9	12.2	3.6	2.5
Papua	0.6	2.9	8.7	17.5	5.8	5.4

		Jantung	Gagal		
	Kanker	Koroner	Jantung	Stroke	
Provinsi	(%)	(%)	(%)	(%)	
Aceh	1.4	0.7	0.1	6.6	
Sumatera Utara	1	0.5	0.13	6	
Sumatera Barat	1.7	0.6	0.13	7.4	
Riau	0.7	0.2	0.12	4.2	
Jambi	1.5	0.2	0.04	3.6	
Sumatera Selatan	0.7	0.4	0.07	5.2	
Bengkulu	1.9	0.3	0.1	7	
Lampung	0.7	0.2	0.08	3.7	
Baangka Belitung	1.3	0.6	0.05	9.7	
Kepulauan Riau	1.6	0.4	0.17	7.6	
DKI Jakarta	1.9	0.7	0.15	9.7	
Jawa Barat	1	0.5	0.14	6.6	
Jawa Tengah	2.1	0.5	0.18	7.7	
DI Yogyakarta	4.1	0.6	0.25	10.3	
Jawa Timur	1.6	0.5	0.19	9.1	
Banten	1	0.5	0.09	5.1	
Bali	2	0.4	0.13	5.3	
Nusa Tenggara Barat	0.6	0.2	0.04	4.5	
NusaTenggaraTimur	1	0.3	0.1	4.2	
Kalimantan Barat	0.8	0.3	0.08	5.8	
Kalimantan Tengah	0.7	0.3	0.07	6.2	
Kalimantan Selatan	1.6	0.5	0.06	9.2	
Kalimantan Timur	1.7	0.5	0.08	7.7	
Sulawesi Utara	1.7	0.7	0.14	10.8	
Sulawesi Tengah	0.9	0.8	0.12	7.4	
Sulawesi Selatan	1.7	0.6	0.07	7.1	
Sulawesi Tenggara	1.1	0.4	0.04	4.8	
Gorontalo	0.2	0.4	0.06	8.3	
Sulawesi Barat	1.1	0.3	0.07	5.9	
Maluku	1	0.5	0.09	4.2	
Maluku Utara	1.2	0.2	0.02	4.6	
Papua Barat	0.6	0.3	0.08	4.2	
Papua	1.1	0.2	0.07	2.3	

HASIL ANALISIS

Analisis Pendahuluan	Perbedaan utama PCA dan analisis faktor terletak pada ada tidaknya faktor bersama. Analisis faktor dapat dilakukan jika terdapat faktor bersama, jika tidak terdapat faktor bersama maka tidak dapat dilakukan analisis faktor sehingga lebih cocok menggunakan PCA. Faktor bersama merupakan faktor yang secara bersama-sama juga dimiliki oleh peubah lainnya. Berdasarkan peubah yang digunakan pada data prevalensi beberpa penyakit di Indonesia, tidak terdapat faktor bersama, sehingga lebih layak digunakan PCA. Misal pada faktor penyakit menular tidak semua peubah mengandung faktor tersebut contohnya stroke, gagal jantung.								
Pemilihan									
komponen	Eigenanalysis of the Correlation Matrix								
bermakan	Eigenvalue 3,3819 2,8551 1,1587 0,8920 0,5512 0,4654 0,3125 0,1864 0,1374 0,0595 Proportion 0,338 0,286 0,116 0,089 0,055 0,047 0,031 0,019 0,014 0,006 Cumulative 0,338 0,624 0,740 0,829 0,884 0,930 0,962 0,980 0,994 1,000								
	Pemilihan komponen bermakna dapat dilihat berdasarkan komponen pokok yang memiliki nilai eigen lebih dari 1. Berdasarkan informasi tersebut, terdapat tiga komponen yang memiliki nilai eigen >1. Sehingga dapat disimpulkan bahwa banyak komponen yang bermakna sebanyak tiga komponen.								
Reduksi data	Interpretasi pada analisis komponen utama dapat ditinjau dari nilai loading								
dan	tiap variabel pada masing masing komponen utama yang bermakna.								
Interpretasi	Variable PC1 PC2 PC3 TB 0,190 -0,217 0,592 hepatitis 0,472 -0,138 -0,189 diare 0,365 -0,199 0,395 malaria 0,380 0,083 0,343 asma 0,281 -0,396 -0,287 paru 0,435 -0,207 -0,396 kanker -0,228 -0,374 0,093 koroner -0,127 -0,471 -0,094 gagal -0,239 -0,373 0,267 stroke -0,265 -0,433 -0,108								
	Berdaskan nilai loading, dapat disimpulkan sebagai berikut								
	KP 1: Hepatitis, PPOK (Penyakti Paru Obstuksi Kronis), KP 2: Jantung Koroner, Asma, Kanker, Gagal Jantung Dan Stroke KP 3: TB Paru								
	Komponen utama 1 dapat diberi label sebagai penyakit menular Komponen utama 2 dapat diberi label sebagai penyakit tidak menular Lomponen utama 3 merupakan penyakit Tuberkolosis (TB)								
Fungsi	PCA dengan fungsi transformasi dapat dilihat pada lampiran 1. Skor								
Transformasi	komponen ini berguna untuk analisis lanjutan seperti dalam analisis regresi, analisis cluster dan lainnya								

Penerapan Analisis Faktor yang Mempengaruhi Kesenjangan Ekonomi/Pendapatan Berdasarkan PDRB Tiap Provinsi di Indonesia

DATA

Data yang digunakan merupakan data PDRB tiap provinsi di Indonesia pada tahun 2013 bersumber dari www.bps.go.id. PDRB merupakan penjumlahan nilai output bersih perekonomian yang ditimbulkan oleh seluruh kegiatan ekonomi di suatu wilayah tertentu (provinsi dan kabupaten /kota), dan dalam satu kurun waktu tertentu (satu tahun kelender). Kegiatan ekonomi yang dimaksud kegiatan pertanian, pertambangan, industri pengolahan, sampai dengan jasa.

Provinsi	X1	X2	X3	X4	X5	X6
Aceh	10428	4998	1236	3025	73	807
Sumatera Utara	28319	8993	3202	86672	4576	4869
Sumatera Barat	15266	3548	3303	13620	1299	3569
Riau	4817	9524	2828	88460	1156	1492
Jambi	7386	1093	841	8336	251	425
Sumatera Selatan	9173	6072	3525	29664	665	3855
Bengkulu	5363	1248	126	1231	54	199
Lampung	30844	10639	1363	25517	738	3936
Kepulauan Bangka Belitung	1819	2882	988	7404	39	264
Kepulauan Riau	284	3032	378	47844	291	438
DKI Jakarta	448	396	0	191337	14221	80909
Jawa Barat	94706	9871	2452	344465	2080	10374
Jawa Tengah	79829	4889	5679	141552	932	8398
DI Yogyakarta	6304	281	417	8771	221	1376
Jawa Timur	88114	21419	16473	302312	13870	27233
Banten	12401	1690	207	11463	2315	3336
Bali	6888	3113	758	8242	1320	1712
Nusa Tenggara Barat	9769	1384	1245	2103	99	690
Nusa Tenggara Timur	6651	1675	542	591	214	479
Kalimantan Barat	7132	1853	704	13818	939	1726
Kalimantan Tengah	2757	3387	482	4222	513	298
Kalimantan Selatan	6531	3032	887	7443	252	1029
Kalimantan Timur	5556	9337	2304	23899	6440	2388
Sulawesi Utara	2710	2111	1488	3825	227	571
Sulawesi Tengah	5894	3565	1222	3721	209	362
Sulawesi Selatan	20732	13006	1500	22559	714	2437
Sulawesi Tenggara	2602	4446	851	2495	202	347
Gorontalo	1560	724	128	601	52	323
Sulawesi Barat	2004	1753	143	1137	11	87
Maluku	810	1840	62	609	67	88
Maluku Utara	629	520	54	963	36	203
Papua Barat	931	2199	397	1768	114	1009
Papua	5028	3325	524	1578	217	2877

Keterangan:

X1 : PDRB Tanaman Pangan (Miliar)

X2 : PDRB Perikanan (Miliar)X3 : PDRB Penggalian (Miliar)

X4 : PDRB Industri Non Migas (Miliar)X5 : PDRB Jasa Penunjang Angkutan (Miliar)

X6 :PDRB Komunikasi (Miliar)

HASIL ANALISIS

Analisis	Berdasarkan	peubah ya	ng digur	akan p	ada da	ta PDF	RB indo	onesia t	ahu	
Pendahuluan	2013, terdapa	t faktor be	ersama ya	aitu ker	nampu	an men	igolah s	sumber	day	
	alam dan kemampuan menghasilkan jasa. Oleh karena itu, data tersebu									
		dapat dilakukan analisis faktor.								
KMO dan Uji	KMO and Bartlett's Test									
Bartlett	Kaiser-Meyer-Olkin Measure of Sampling Adequacy. ,665									
Darticti		Sartlett's Test o			Chi-Square		181,166			
		Sphericity	,,	df	Jiii-Square	, I	15			
				Sig.			,000			
	L			org.			,000			
	KMO MSA 1	nerunakan	svarat k	ecukun	an sam	nel da	lam an	alisis fa	ktor	
	Jika nilai KM									
							-		_	
	sampel untuk							iaian set	besa	
	0.665 > 0.5, so	ehingga pr	oses anal	isis takt	tor bisa	dilanju	itkan.			
	Berdasarkan <i>E</i>	Bartlett's T	Tes of Sph	iericity	dengan	Chi-S	quare 1	81,166	(df :	
	15) dan nilai	sig = 0.0	0.00 < 0.00	5 menu	unjukka	ın bahv	wa mat	riks kor	relas	
			15) dan nilai sig = 0,000 < 0,05 menunjukkan bahwa matriks korelas bukan merupakan matriks identitas sehingga dapat dilakukan analisis							
				11145 50						
		akan man	iiks ideii	iiias se	ımıgga	чарат	dilaka	Kan and	umsi	
	faktor.	akan man	irks iden	ilias sc	ımıgga	иарат	difuku	Kun un	umsi	
Matrika Anti		akan mad		image Matri		чарат	Giraka	Kan and		
		akan mad	Anti	image Matri	ices					
						×4 -,101	X5 ,043	X6 ,004		
	faktor.		Anti X1	-image Matri X2	ices X3	X4	X5	X6		
	faktor.	Sovariance X1 X2 X3	X1 ,134 -,018 -,077	-image Matri X2 -,018 ,303 -,065	X3 -,077 -,065 ,202	X4 -,101 -,028 ,030	X5 ,043 -,060 -,082	X6 ,004 ,084 ,060		
	faktor.	ovariance X1 X2 X3 X4	X1 ,134 -,018 -,077 -,101	image Matri X2 -,018 ,303 -,065 -,028	X3 -,077 -,065 ,202 ,030	X4 -,101 -,028 ,030 ,117	X5 ,043 -,060 -,082 -,019	X6 ,004 ,084 ,060 -,039		
	faktor.	ovariance X1 X2 X3 X4 X5	X1 ,134 -,018 -,077 -,101 ,043	X2 -,018 ,303 -,065 -,028 -,060	X3 -,077 -,065 ,202 ,030 -,082	X4 -,101 -,028 ,030 ,117 -,019	X5 ,043 -,060 -,082 -,019 ,100	X6 ,004 ,084 ,060 -,039 -,093		
	faktor. Anti-image C	ovariance X1 X2 X3 X4 X5 X6	X1 .134018077101 .043 .004	X2 -,018 ,303 -,065 -,028 -,060 ,084	X3 -,077 -,065 ,202 ,030 -,082 ,060	X4 -,101 -,028 ,030 ,117 -,019 -,039	X5 ,043 -,060 -,082 -,019 ,100 -,093	X6 ,004 ,084 ,060 -,039 -,093 ,135		
	faktor.	ovariance X1 X2 X3 X4 X5 X6 correlation X1	X1 .134 -,018 -,077 -,101 .043 .004	X2 -,018 ,303 -,065 -,028 -,060 ,084 -,088	X3 -,077 -,065 ,202 ,030 -,082 ,060 -,467	X4 -,101 -,028 ,030 ,117 -,019 -,039 -,807	X5 ,043 -,060 -,082 -,019 ,100 -,093 ,375	X6 ,004 ,084 ,060 -,039 -,093 ,135		
	faktor. Anti-image C	ovariance X1 X2 X3 X4 X5 X6	X1 .134018077101 .043 .004	X2 -,018 ,303 -,065 -,028 -,060 ,084	X3 -,077 -,065 ,202 ,030 -,082 ,060	X4 -,101 -,028 ,030 ,117 -,019 -,039	X5 ,043 -,060 -,082 -,019 ,100 -,093	X6 ,004 ,084 ,060 -,039 -,093 ,135		
	faktor. Anti-image C	Sovariance X1 X2 X3 X4 X5 X6 Correlation X1 X2	X1 .134 -,018 -,077 -,101 .043 .004 .641 -,088	-image Matri X2 -,018 ,303 -,065 -,028 -,060 ,084 -,088 ,809 ^a	X3 -,077 -,065 ,202 ,030 -,082 ,060 -,467 -,264	X4 -,101 -,028 ,030 ,117 -,019 -,039 -,807 -,146	X5 ,043 -,060 -,082 -,019 ,100 -,093 ,375 -,346	X6 ,004 ,084 ,060 -,039 -,093 ,135 ,032 ,414		
	faktor. Anti-image C	Sovariance X1 X2 X3 X4 X5 X6 Correlation X1 X2 X3	X1 .134018077101 .043 .004 .641088467	-image Matri X2 -,018 ,303 -,065 -,028 -,060 ,084 -,088 ,809 ^a -,264	X3 -,077 -,065 -,202 -,030 -,082 -,060 -,467 -,264 -,710 ^a	X4 -,101 -,028 ,030 ,117 -,019 -,039 -,807 -,146 ,193	X5 ,043 -,060 -,082 -,019 ,100 -,093 ,375 -,346 -,576	X6 ,004 ,084 ,060 -,039 -,093 ,135 ,032 ,414 ,366		
	faktor. Anti-image C	ovariance X1 X2 X3 X4 X5 X6 X6 X6 X6 X6 X6	Anti X1 .134018077101 .043 .004 .641 a088467807 .375 .032	-image Matri X2 -,018 ,303 -,065 -,028 -,060 ,084 -,088 ,809 ^a -,264 -,146	X3 -,077 -,065 -,202 -,030 -,082 -,060 -,467 -,264 -,710 ^a -,193	X4 -,101 -,028 ,030 ,117 -,019 -,039 -,807 -,146 ,193 ,727 ^a	X5 ,043 -,060 -,082 -,019 ,100 -,093 ,375 -,346 -,576 -,175	X6 ,004 ,084 ,060 -,039 -,093 ,135 ,032 ,414 ,366 -,314		
Matriks Anti Image	faktor. Anti-image C	Sovariance X1 X2 X3 X4 X5 X6 Correlation X1 X2 X3 X4 X5 X6 X6 X6 X5 X6 X5 X6 X5 X6 X5 X6 X5	Anti X1 .134018077101 .043 .004 .641088467807 .375	-image Matri X2 -,018 ,303 -,065 -,028 -,060 ,084 -,088 ,809 ^a -,264 -,146 -,346	X3 -,077 -,065 -,202 -,030 -,082 -,060 -,467 -,264 -,710 ^a -,193 -,576	X4 -,101 -,028 ,030 ,117 -,019 -,039 -,807 -,146 ,193 ,727 ^a -,175	X5 ,043 -,060 -,082 -,019 ,100 -,093 ,375 -,346 -,576 -,175 ,593°	X6 ,004 ,084 ,060 -,039 -,093 ,135 ,032 ,414 ,366 -,314 -,802		
	faktor. Anti-image C	Sovariance X1 X2 X3 X4 X5 X6 Correlation X1 X2 X3 X4 X5 X6 X6 X6 X5 X6 X5 X6 X5 X6 X5 X6 X5	Anti X1 .134018077101 .043 .004 .641 a088467807 .375 .032	-image Matri X2 -,018 ,303 -,065 -,028 -,060 ,084 -,088 ,809 ^a -,264 -,146 -,346	X3 -,077 -,065 -,202 -,030 -,082 -,060 -,467 -,264 -,710 ^a -,193 -,576	X4 -,101 -,028 ,030 ,117 -,019 -,039 -,807 -,146 ,193 ,727 ^a -,175	X5 ,043 -,060 -,082 -,019 ,100 -,093 ,375 -,346 -,576 -,175 ,593°	X6 ,004 ,084 ,060 -,039 -,093 ,135 ,032 ,414 ,366 -,314 -,802		
	faktor. Anti-image C	ovariance X1 X2 X3 X4 X5 X6 correlation X1 X2 X3 X4 X5 X6 es of Sampling A	Anti X1 .134018077101 .043 .004 .641 ^a 088467807 .375 .032 dequacy(MSA)	-image Matri X2 -,018 ,303 -,065 -,028 -,060 ,084 -,088 ,809 ^a -,264 -,146 -,346 ,414	x3 -,077 -,065 ,202 ,030 -,082 ,060 -,467 -,264 ,710 ^a ,193 -,576 ,366	X4 -,101 -,028 ,030 ,117 -,019 -,039 -,807 -,146 ,193 ,727 -,175 -,314	X5 ,043 -,060 -,082 -,019 ,100 -,093 ,375 -,346 -,576 -,175 ,593 ^a -,802	X6 ,004 ,084 ,060 -,039 -,093 ,135 ,032 ,414 ,366 -,314 -,802 ,518 ^a		
	faktor. Anti-image C Anti-image C a. Measur	ovariance X1	Anti X1 ,134 -,018 -,077 -,101 ,043 ,004 ,641 ^a -,088 -,467 -,807 ,375 ,032 dequacy(MSA) isis fakto	-image Matri X2 -,018 ,303 -,065 -,028 -,060 ,084 -,088 ,809 ^a -,264 -,146 -,346 ,414 Dr, lang	x3 -,077 -,065 ,202 ,030 -,082 ,060 -,467 -,264 ,710 ^a ,193 -,576 ,366	X4 -,101 -,028 ,030 ,117 -,019 -,039 -,807 -,146 ,193 ,727 -,175 -,314	X5 ,043 -,060 -,082 -,019 ,100 -,093 ,375 -,346 -,576 -,175 ,593 ^a -,802	X6 ,004 ,084 ,060 -,039 -,093 ,135 ,032 ,414 ,366 -,314 -,802 ,518 ^a	eliha	
	Anti-image C Anti-image C a. Measur Setelah terpe variabel varia	ovariance X1	X1 .134 -,018 -,077 -,101 .043 .004 .641 ^a -,088 -,467 -,807 .375 .032 dequacy(MSA) isis fakto yang laya	-image Matri X2 -,018 ,303 -,065 -,028 -,060 ,084 -,088 ,809 ^a -,264 -,146 -,346 ,414	x3 -,077 -,065 ,202 ,030 -,082 ,060 -,467 -,264 ,710 ^a ,193 -,576 ,366	X4 -,101 -,028 ,030 ,117 -,019 -,039 -,807 -,146 ,193 ,727 -,175 -,314 elanjutr is fakto	x5 ,043 -,060 -,082 -,019 ,100 -,093 ,375 -,346 -,576 -,175 ,593 ^a -,802	X6 .004 .084 .060039093 .135 .032 .414 .366314802 .518a		
	faktor. Anti-image C Anti-image C a. Measur Setelah terpe variabel varia nilai MSA ≥	covariance X1 X2 X3 X4 X5 X6 correlation X1 X2 X3 X4 X5 X6 es of Sampling A nuhi anal bel mana 0.5, maka	Anti X1	-image Matri X2 -,018 ,303 -,065 -,028 -,060 ,084 -,088 ,809 ^a -,264 -,146 -,346 ,414 or, lang ik untuk	x3 -,077 -,065 ,202 ,030 -,082 ,060 -,467 -,264 ,710 ^a ,193 -,576 ,366 gkah sec analis	×4 -,101 -,028 ,030 ,117 -,019 -,039 -,807 -,146 ,193 ,727 -,175 -,314 elanjutr is fakto k untul	x5 ,043 -,060 -,082 -,019 ,100 -,093 ,375 -,346 -,576 -,175 ,593 ^a -,802 nya ada or. Pros	X6 .004 .084 .060039093 .135 .032 .414 .366314802 .518 ^a alah mee	eliha i jik	
	faktor. Anti-image C a. Measur Setelah terpe variabel varia nilai MSA ≥ faktor dan tid	ovariance X1 X2 X3 X4 X5 X6 orrelation X1 X2 X3 X4 X5 X6 es of Sampling A nuhi analibel mana bel mana 0.5, maka ak dikelua	Anti X1 ,134 -,018 -,077 -,101 ,043 ,004 ,641 ^a -,088 -,467 -,807 ,375 ,032 dequacy(MSA) isis fakto yang laya a variabel arkan dal	-image Matri X2 -,018 ,303 -,065 -,028 -,060 ,084 -,088 ,809a -,264 -,146 -,346 ,414 -,346 ,414	x3 -,077 -,065 ,202 ,030 -,082 ,060 -,467 -,264 ,710 ^a ,193 -,576 ,366 gkah sec analis ut layal gujian.	x4 -,101 -,028 ,030 ,117 -,019 -,039 -,807 -,146 ,193 ,727 -,175 -,314 elanjutr is fakto k untul Nilai	x5 ,043 ,060 ,082 ,019 ,100 ,093 ,375 ,346 ,576 ,175 ,593 ^a ,802 nya ada or. Pros	x6 ,004 ,084 ,060 -,039 -,093 ,135 ,032 ,414 ,366 -,314 -,802 ,518 ^a alah me edurnya ukan ana ntuk ma	eliha i jik alisi	
	faktor. Anti-image C Anti-image C a. Measur Setelah terpe variabel varia nilai MSA ≥	covariance X1 X2 X3 X4 X5 X6 correlation X1 X2 X3 X4 X5 X6 res of Sampling A nuhi anal bel mana bel mana 0.5, maka ak dikelua el memilil	Anti X1	-image Matri X2 -,018 ,303 -,065 -,028 -,060 ,084 -,088 ,809a -,264 -,146 -,346 ,414 -,346 ,414	x3 -,077 -,065 ,202 ,030 -,082 ,060 -,467 -,264 ,710 ^a ,193 -,576 ,366 gkah sec analis ut layal gujian.	x4 -,101 -,028 ,030 ,117 -,019 -,039 -,807 -,146 ,193 ,727 -,175 -,314 elanjutr is fakto k untul Nilai	x5 ,043 ,060 ,082 ,019 ,100 ,093 ,375 ,346 ,576 ,175 ,593 ^a ,802 nya ada or. Pros	x6 ,004 ,084 ,060 -,039 -,093 ,135 ,032 ,414 ,366 -,314 -,802 ,518 ^a alah me edurnya ukan ana ntuk ma	eliha i jik alisi	

Communalities

Communalities

	Initial	Extraction
X1	1,000	,816
X2	1,000	,793
Х3	1,000	,819
X4	1,000	,833
X5	1,000	,909
X6	1,000	,970

Extraction Method: Principal Component Analysis.

Dari keseluruhan nilai dalam tabel communalities, diperoleh bahwa keenam variabel mempunyai nilai communalities yang besar (> 0.5). Hal ini dapat diartikan bahwa keseluruhan variabel yang digunakan memiliki hubungan yang kuat dengan faktor yang terbentuk. Dengan kata lain, semakin besar nilai dari communalities maka semakin baik analisis faktor, karena proporsi keragaman peubah yang mampu dijelaskan oleh sejumlah faktor bersama makin tinggi.

Total Variance Explained

Total Variance Explained

		Initial Eigenvalu	ies	Extraction Sums of Squared Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	3,810	63,505	63,505	3,810	63,505	63,505	
2	1,329	22,148	85,653	1,329	22,148	85,653	
3	,526	8,762	94,415				
4	,216	3,598	98,013				
5	,068	1,125	99,138				
6	,052	,862	100,000				

Extraction Method: Principal Component Analysis.

Tampilan *total variance explained* menjelaskan tentang besarnya varian yang dapat dijelaskan oleh faktor yang terbentuk. Berdasarkan nilai eigen yang lebih dari satu, terdapat dua faktor yang terbentuk. Besarnya keragaman yang dapat dijelaskan oleh kedua faktor tersebut sebesar 85%.

Component Matrix

Component Matrix^a

	Component						
	1	2					
X1	,815	-,390					
X2	,783	-,424					
Х3	,849	-,313					
X4	,911	,047					
X5	,804	,512					
X6	,579	,796					

Extraction Method: Principal Component Analysis.

> a. 2 components extracted

Tampilan *component matrix* menyediakan informasi variabel mana yang masuk pada faktor pertama atau pada faktor kedua. Nilai tersebut

	merupakan loading atau korelasi antara variabel dengan faktor yang terbentuk. Pada variabel X6 cukup sulit untuk menentukan masuk faktor pertama atau kedua. Sehingga perlu dilakukan rotasi pada compoent matrix.
Rotated Component Matrix	Rotated Component Matrix Component
Component Transformation Matrix	Faktor pertama terdiri dari X1,X2,X3, dan X4. Sedangkan faktor kedua terdiri dari X5 dan X6 Component Transformation Matrix Component 1 2 1 2 1 886 464 2 -464 886 Extraction Method: Principal Component Analysis. Rotation Method: Quartimax with Kaiser Normalization. Tabel Component Transformation Matrix berfungsi untuk menunjukkan apakah faktor – faktor yang terbentuk sudah tidak memiliki korelasi lagi satu sama lain atau orthogonal. Bila dilihat dari tabel Component Transformation Matrix, nilai – nilai korelasi yang terdapat pada diagonal utama berada di atas 0,5 yaitu 0.886 dan 0.886. Hal ini menunjukkan bahwa kedua faktor yang terbentuk sudah tepat karena memiliki korelasi yang tinggi pada diagonal – diagonal utamanya.
Interpertasi dan Penamaan faktor	Faktor 1 : PDRB Tanaman Pangan (Miliar) PDRB Perikanan (Miliar) PDRB Penggalian (Miliar) PDRB Industri Non Migas (Miliar) Faktor 2 : PDRB Jasa Penunjang Angkutan (Miliar) PDRB Komunikasi (Miliar) Faktor pertama dapat diberi label sebagai kemampuan mengolah sumber daya alam. Faktor kedua dapat diberi label sebagai kemampuan

menghasilkan jasa

Pada analisis faktor, terdapat faktor bersama yang merupakan faktor yang juga ada pada setiap variabel meskipun kontribusi yang dihasilkan sedikit. Hal inilah yang membedakan antara analisis faktor dengan analisis komonen utama. Pada permasalah tersebut dapat juga diartikan sebagia berikut

- Kemampuan mengolah sumber daya alam juga diperlukan dalam meningkatkan PDRB jasa penunjang angkutan dan transportasi. Hal ini karena dalam pelayanan jasa angkutan butuh seseorang yang mampu/mengerti tentang pangan sehingga dapat mengirimkan baraang dengan baik dan tidak rusak.
- Kemampuan menghasilka jasa juga diperlukan dalam meingkatkan PDRB Tanaman Pangan Perikanan, Penggalian dan Industri Non Migas. Hal ini karena dalam menghasilka industri non migas perlu kemampuan pelayanan/jasa yang baik kepada semua elemen yang terlibat.
- Fakor yang mempengaruhi kesenjangan pendapatan tiap provinsi yaitu kemampuan mengolah sumber daya alam dan jasa

Lampiran 1.

PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
0.68	-1.27	0.63	0.22	2.09	-0.37	-1.04	0.01	0.27	0.12
-0.78	0.52	0.07	-0.20	1.31	-0.50	0.41	-0.12	-0.28	-0.24
-1.34	-0.46	0.29	-0.40	1.19	-0.67	-0.40	-0.15	-0.10	-0.13
-1.41	2.59	0.11	-0.72	0.81	0.35	0.72	-0.25	0.13	0.10
-0.90	2.65	0.27	-0.50	-0.16	0.49	-0.99	0.17	-0.26	-0.15
-1.16	1.95	-0.27	0.49	0.33	-0.33	0.10	0.23	-0.01	-0.24
-1.25	1.11	0.83	-1.09	-0.37	-0.77	-0.55	-0.72	-0.13	-0.22
-1.44	3.24	-0.01	-0.52	0.51	0.01	0.25	0.06	-0.18	0.23
-1.17	-0.19	-0.67	1.21	-1.27	-1.50	-0.43	-0.08	0.10	-0.19
-2.21	0.09	0.01	-0.75	-0.40	-0.21	0.98	-0.03	-0.27	0.21
-1.23	-2.62	1.62	1.40	-0.13	0.17	-0.21	0.16	-0.21	0.15
0.16	-1.15	1.83	1.84	-0.06	1.05	0.72	0.31	-0.53	-0.28
-1.35	-1.50	1.14	-0.29	0.16	0.61	0.24	-0.13	-0.14	-0.33
-2.68	-4.24	0.50	-2.26	-1.16	0.81	-0.15	0.16	-0.16	-0.07
-1.38	-1.53	-0.02	-0.60	0.51	0.18	0.76	-0.62	0.60	0.36
-0.67	0.56	0.77	1.01	0.46	0.40	-0.14	0.70	0.00	-0.10
-1.12	-0.16	-0.88	-1.26	-0.26	1.00	-0.07	0.71	0.79	0.12
1.84	1.34	-0.36	0.35	0.19	0.94	-0.22	-0.46	0.07	0.23
5.37	-0.99	-1.00	-1.50	0.08	-0.15	0.80	-0.44	-0.63	-0.25
-0.89	1.74	-0.48	0.23	-0.14	0.02	0.35	-0.21	0.01	-0.20
0.60	0.70	-0.61	0.57	-0.53	0.48	0.36	-0.11	0.08	0.51
-0.18	-1.05	-1.30	0.77	-1.06	0.00	-0.52	-0.25	-0.04	0.20
-1.56	0.12	-0.37	0.09	-0.28	-0.31	-0.71	0.03	0.33	0.01
-0.68	-2.21	-0.16	0.15	0.02	-1.48	0.11	-0.49	-0.31	0.32
1.74	-2.39	-2.04	0.30	0.51	-0.83	0.75	0.72	0.75	-0.33
1.64	-1.83	-1.18	0.15	0.49	0.25	-0.87	0.08	-0.30	0.06
1.00	0.71	-1.30	0.02	0.23	0.27	-0.54	0.37	-0.36	0.30
0.72	-0.03	-0.04	2.36	-0.40	0.42	0.43	-0.70	0.16	0.12
1.25	0.05	-0.63	0.33	0.04	1.22	-0.23	-0.61	0.56	-0.49
1.07	0.24	-0.44	-0.08	0.10	-0.28	0.36	1.10	-0.59	0.24
0.98	1.80	-1.30	-0.33	-1.25	0.15	-0.36	0.05	-0.32	-0.20
0.95	1.92	1.79	0.01	-1.08	-1.12	0.52	0.48	0.57	-0.07
5.38	0.31	3.18	-1.02	-0.48	-0.29	-0.44	0.03	0.39	0.21