Perceptrón simple y multicapa

72.27 - Sistemas de Inteligencia Artificial

Grupo 7

Luque Meijide, Manuel - 57386

Karpovich, Lucía - 58131

Tarradellas del Campo, Manuel - 58091

1.

Perceptrón simple con función de activación escalón

Perceptrón simple

- Calcula la suma ponderada del input
- Transforma la salida en 0 ó 1

Geométricamente, esto quiere decir que el perceptrón puede separar el espacio del conjunto de entrada a través de un hiperplano.

¿Todas las funciones lógicas son separables?

a. Función lógica AND

Output

Entrada: { {-1, 1}, {1, -1}, {-1, -1}, {1, 1} }

Salida esperada: $y = \{-1, -1, -1, 1\}$

Learning rate: 0.2

a. Función lógica AND

Output

b. Función lógica XOR

Output

Final predictions:

AND, OR y XOR

¿Cómo se puede modelar XOR? 2 opciones

Aprendizaje perceptrón simple Perceptrón multicapa

2.
Perceptrón simple lineal y no lineal

Resultados

Perceptrón simple lineal

0.1217	0.1305
Training Error	Testing Error

Learning rate: 0.01 Iteraciones (entrenamiento) = 1000

Perceptrón simple no lineal

0.1820	0.2141
	Testing Error

Learning rate: 0.1 Función (no lineal): tanh(x) Iteraciones (entrenamiento) = 10000

Problemas

Los gráficos anteriores nos brindan una forma de medición para los distintos algoritmos, sin embargo no dan respuestas a las siguientes cuestiones:

- ¿Cómo podemos medir la eficiencia de la red ante otro conjunto de datos distinto del de entrenamiento?
- ¿Cómo podemos elegir el mejor conjunto de datos para el entrenamiento?

Cross Validation

Se implementó Cross Validation para abordar los anteriores problemas.

- Se separa el conjunto de datos en k grupos.
- Se toman k-1 grupos como datos de entrenamiento.
- El grupo restante se utilizará para testear la red.

Cross Validation

¿Cómo podemos escoger el mejor conjunto de entrenamiento?

- \bullet $\mathbf{k} = 4$
- **Epocas** = **50**

Output

```
~~ Cross validation:

Group # 1 Epoch # 50 --> error = 0.10138165164863702

Group # 2 Epoch # 50 --> error = 0.05516562928336181

Group # 3 Epoch # 50 --> error = 0.2358440761037263

Group # 4 Epoch # 50 --> error = 0.03557168843697372

Lowest error found in: Group: 4, Epoch: 50
```

Tomamos el conjunto que menor error produce en el <u>testing</u>.

Linear function 13

3.Perceptrón multicapa

a. Función lógica XOR

Esquema

Output

```
1 1 : [-0.99706026]
-1 -1 : [-0.99641481]
-1 1 : [0.99901092]
1 -1 : [0.99700656]
```

Entrada: { {-1, 1}, {1, -1}, {-1, -1}, {1, 1} }

Salida esperada: $y = \{1, 1, -1, -1\}$

Learning rate: 0.1 Función: tanh(x)

N° de capas: 3

Iteraciones (entrenamiento) = 100.000

a. Función lógica XOR

Variando algunos parámetros...

Tasa de aprendizaje				
0.1	-0.9928	0.9930	0.9954	-0.9942
0.3	-0.9993	0.9985	0.9985	-0.9986
0.7	-0.998	0.998	0.998	-0.998

Iteraciones: 100.000

N° capas: 3

b. Discriminar n° pares

Esquema

Output

```
0 : [-0.997418]

1 : [0.99824698]

2 : [-0.99745099]

3 : [0.99794024]

4 : [-0.99761232]

5 : [0.99838914]

6 : [-0.99755307]

7 : [0.99845554]

8 : [-0.99736247]

9 : [0.99836882]
```

Entrada: { [0 - 9] }

Salida esperada: y = {-1, 1, -1, 1, -1, 1, -1, 1, -1, 1}

Learning rate: 0.1 Función: tanh(x) N° de capas: 3

Generalización

Teniendo en cuenta que:

- Los datos de entrada son la forma de los números
- Estas formas no guardan relación numérica con el próximo valor
- Es un data set muy pequeño

¿Tiene sentido hablar de generalización en este caso?

Análisis de generalización

Experimento: Se divide el set de datos en conjunto de entrenamiento y conjunto para testing.

Learning rate = 0.1

Entrenamiento		8		
[0 - 7]	0.997	-0.943	-0.984	
[0 - 8]	0.997	-0.997	-0.988	

Learning rate = 0.4

Entrenamiento		8	
[0 - 7]	0.998	-0.989	-0.997
[0 - 8]	0.998	-0.997	-0.99

4.

Extensión Perceptrón simple

Extender dimensión del problema

Extender dimensión del problema

