## FURTHER INVESTIGATIONS OF ASPHALT MODIFIERS

(EFFECTS OF COMMERCIAL MODIFIERS ON THE PHYSICAL PROPERTIES OF MONTANA ASPHALT)

Prepared for the STATE OF MONTANA DEPARTMENT OF HIGHWAYS' RESEARCH PROGRAM

in cooperation with the

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

AUGUST 1989

By

Joseph D. Armijo Murari Man Pradhan

Department of Civil and Agricultural Engineering

Montana State University Bozeman, Montana 59717



#### Technical Report Documentation Page

|                                                    |                             | realition report bocamentation Page   |  |  |
|----------------------------------------------------|-----------------------------|---------------------------------------|--|--|
| 1. Report No.                                      | 2. Government Accession No. | 3. Recipient's Catalog No.            |  |  |
| FHWA/MT - 89/002                                   |                             |                                       |  |  |
| 4. Title and Subtitle                              | vermes aiverressores        | 5. Report Date<br>August, 1989        |  |  |
| FURTHER INVESTIGATIONS                             | OF ACRUAIT MODIFIEDS        | 6. Performing Organization Code       |  |  |
| FURTHER INVESTIGATIONS                             | OF ASPHALI MODIFIERS        | MSU G&C 291038                        |  |  |
| 7 A. thor(a)                                       |                             | 8. Performing Organization Report No. |  |  |
| 7. Author(s) Armijo, Dr. J.D.; Pradha              |                             |                                       |  |  |
| 9. Performing Organization Name and Add            |                             | 10. Work Unit No. (TRAIS)             |  |  |
| Department of Civil & A                            | gricultural Engineering     |                                       |  |  |
| School of Engineering                              | CONTRACTAL MOCKLESS OF      | 11. Contract or Grant No.             |  |  |
| Montana State Universit                            | Y                           | MDOH 8910                             |  |  |
| Bozeman, MT. 59717                                 |                             | 13. Type of Report and Period Covered |  |  |
| 12. Sponsoring Agency Name and Address             | Final                       |                                       |  |  |
| Materials Bureau, Resea<br>Montana Department of H | April 1989 to Aug. 1989     |                                       |  |  |
| 2701 Prospect Avenue                               | irdinala                    |                                       |  |  |
| Helena, Montana 59620                              | STATE OF THE PARTY.         | 14. Sponsoring Agency Code            |  |  |
| nerena, noncana 33020                              |                             |                                       |  |  |

16. Abstract During the period of 4-89 to 9-89, asphalts were tested and evaluated in the Asphalt Laboratory at Montana State University. Penetration grade 85-100 asphalts from each of the four Montana refinery sources (Conoco, Exxon, Cenex, and Montana Refining Co.) were combined with paving aggregates, obtained from a Yellowstone River source, to mold Marshall specimens.

Optimum asphalt content, percentage air void, density, Marshall stability and flow at optimum asphalt content for each of the 85-100 unmodified Montana asphalts were determined. The results of these tests were then compared with the results obtained when the same tests were done on modified and unmodified 120-150 asphalts. Evaluation of the test results indicated that the modifiers improved high temperature susceptibility, with variations among the four sources, to levels comparable with the unmodified 85-100 asphalts from the same source.

| 17. Key Words adhesion, asphalt modifiers, Uraton phalt, Microfil 8/carbon Polybilt, Ultrapave, physi properties, softening poi temperature susceptibilit | black,<br>cal test         | 18. Distribution Statemen | ıt                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|--------------------------------------------|--|
| 19. Security Classif. (of this report) None                                                                                                               | 20. Security Class<br>None | ssif. (of this page)      | 21. No. of Pages<br>26 Main<br>17 Appendix |  |

15. Supplementary Notes



## FURTHER INVESTIGATIONS OF ASPHALT MODIFIERS

(EFFECTS OF COMMERCIAL MODIFIERS ON THE PHYSICAL PROPERTIES OF MONTANA ASPHALT)

Prepared for the STATE OF MONTANA DEPARTMENT OF HIGHWAYS' RESEARCH PROGRAM

in cooperation with the

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

AUGUST 1989

By

Joseph D. Armijo Murari Man Pradhan

Department of Civil and Agricultural Engineering

Montana State University Bozeman, Montana 59717 DESCRIPTION ASSESSED.

AND THE REAL PROPERTY AND ADDRESS OF TAXABLE PARTY.

AND THE CONTRACTOR

one did not recommend to

THE RESERVE AND THE PARTY OF TH

The District

750

Descript in Account

COLUMN TAXABLE TO SELECT THE PROPERTY OF THE PERSON.

Target and market areas and

#### DISCLAIMER STATEMENT

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Montana Department of Highways or of the Federal Highway Administration. This report does not constitute a standard, specification or regulation.

### DESCRIPTION OF PERSONS

and the first and the processes the second of the second o

### TABLE OF CONTENTS

|                                                | Page |
|------------------------------------------------|------|
| DISCLAIMER                                     | ii   |
| INTRODUCTION                                   | 1    |
| MATERIALS                                      | 2    |
| METHODS AND PROCEDURES                         | 4    |
| TEST RESULTS AND OBSERVATIONS                  | 4    |
| Comparison of the MSU test results with Custer |      |
| Interchange Project (MDOH) Results             | 12   |
| Comparison of 85/100 Asphalt Test Results with |      |
| Modified & Unmodified 120/150 Test Results     | 13   |
| CONCLUSION                                     | 19   |

mps?

. .....

----

U ....

93.

131

## LIST OF TABLES

| Table | <u>Description</u>                                                                                                                | Page |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|------|
| 1     | Optimum Asphalt Content in the Mix                                                                                                | 5    |
| 2     | Data of Unmodified 85/100, 120/150 Asphalts and Modified 120/150 Asphalts - CENEX                                                 | 6    |
| 3     | Data of Unmodified 85/100, 120/150 Asphalts and Modified 120/150 Asphalts - CONOCO                                                | 7    |
| 4     | Data of Unmodified 85/100, 120/150 Asphalts and Modified 120/150 Asphalts - EXXON                                                 | 8    |
| 5     | Data of Unmodified 85/100, 120/150 Asphalts and Modified 120/150 Asphalts - MONTANA REFININING                                    | 9    |
| 6     | Comparison of MSU Test Results with MDOH Test Results                                                                             | 12   |
| 7     | Comparison of Test Parameters of 85/100 Asphalt and Modified Asphalts in % Difference W.R.T. Unmodified 120/150 Asphalt - CENEX   | 14   |
| 8     | Comparison of Test Parameters of 85/100 Asphalt and Modified Asphalts in % Difference W.R.T.                                      | 15   |
| 9     | Unmodified 120/150 Asphalt - CONOCO  Comparison of Test Parameters of 85/100 Asphalt and Modified Asphalts in % Difference W.R.T. |      |
| 10    | Unmodified 120/150 Asphalt - EXXON                                                                                                | 16   |
|       | Unmodified 120/150 Asphalt - MONTANA REFINING                                                                                     | 17   |



### LIST OF FIGURES

| Figure | <u>Description</u>           | Page |
|--------|------------------------------|------|
| 1      | Aggregate Gradation Curve    | . 3  |
| 2      | Marshall Stability Test Data | . 10 |
| 3      | Marshall Flow Test Data      | . 11 |



## Appendix A

85/100 Asphalt Marshall Specimen Test Results
Test Property Curves for Hot-mix Design Data by Marshall Method



#### INTRODUCTION

"Further Investigation of Asphalt Modifiers" is essentially a continuation of the study, "Effects of Commercial Modifiers on the Physical Properties of Montana Asphalt", which was completed on April 1, 1989. In that study, asphalt cements of penetration grade 120/150, from the four Montana refineries, were modified with six commercial modifiers. Physical properties of the modified and unmodified 120/150 asphalts including unmodified 85/100 asphalts were determined in the laboratory, before and after the thin film oven tests. In addition, Marshall specimens were molded and tested for each modified and unmodified 120/150 asphalts.

Results of the testing gave good insight into the changes in temperature susceptibility of the Montana asphalts, which were improved by the modifiers. Strength performance was also enhanced by the modifiers. However, availabile resources did not allow a total testing effort on penetration grade 85/100 asphalts. Only the physical tests on each of 85/100 unmodified Montana asphalts were done. No Marshall testing was done on the 85/100 asphalts.

The idea of asphalt modification is to alter the properties of a softer asphalt (120/150), so that it behaves like a harder asphalt (85/100) during high temperatures; thus rutting is decreased. Therefore, it is desirable to have, at least, the properties of unmodified 85/100 asphalts to compare to modified 120/150 asphalts. The Marshall testing on each of unmodified 85/100 asphalts is performed to obtain a complete data base.

The following section outlines materials, methods and procedures, results and conclusions.

#### MATERIALS

The 85/100 grade of asphalt obtained from four Montana refineries in 1988 were used in the test. The refineries are Cenex (Laurel), Conoco (Billings), Exxon (Billings) and Montana Refining (Great Falls).

Selection of the aggregate was done after conferring with the MDOH materials personnel in Helena and Billings. Since much of the rutting problems in Montana are in the eastern areas and involve Yellowstone River gravel, a representative of YR gravel was chosen. The Billings District provided material from the E.E. St. John pit (NE 1/4 Sec 31, T5N, R34E). The aggregate conforms to MDOH specification for plant mix grade B and is basically a well graded 3/4 inch minus aggregate (Fig 1). The aggregate plus 1.4% hydrated lime filler was used for the Custer Interchange East project, IR 94-1 (49)47, with 5.3% 85-100 AC by Exxon. Mineral filler was not used in the asphalt-modifier molded specimens. The samples were obtained from stockpiles by MDOH, and submitted in several sacks of three fractions, coarse, crushed fine, and natural fine; a composite sample was formed utilizing 45%, 40%, and 15% portions in accordance with MODH lab reports. Standardization of Marshall procedures required careful attention to representative splitting of the composite sample.

St. John Pit .. LABORATORY NO CE ASPHAIL E HYDROMETER ANALYSIS DATE 11-5-88, 1-20-890 NO Br M. Pradhan .. GRAIN SIZE IN MILLIMETERS NUMBER OF MESH - US STANDARD CURVE GRADATION ANALYSIS Figure 1. SIEVE ŗ BAAVEL OF OPENINGS IN INCHES DEPARTMENT OF CIVIL ENGINEERING \*\*\*\*\* SOIL MECHANICS LABORATORY MONTANA STATE UNIVERSITY 3715 COBBLES 3

#### METHODS AND PROCEDURES

The Marshall test on each of unmodified 85/100 grade Montana asphalt (Cenex, Conoco, Exxon and Montana Refining) was performed. The test procedure as prescribed in the AASHTO method was followed in conducting the Marshall and related tests.

Fifteen Marshall specimens were molded for each of Montana asphalts (three specimens per asphalt content of 5%, 5.5%, 6%, 6.5%, and 7%). The Marshall test for stability and flow, bulk specific gravity, Rice specific gravity and determination of percentage air void were conducted for each specimen. The test results and the test property curves for hot-mix design data by Marshall method is shown in Appendix A. The optimum asphalt content for each of Montana asphalt were computed from the curves and presented in the Table 1.

#### TEST RESULTS AND OBSERVATIONS

The test results of the optimum asphalt content, percentage air void, density, Marshall stability and flow at optimum asphalt content for each of 85/100 unmodified Montana asphalts are presented in the tabulated form (blocked out) along with the unmodified and unmodified 120/150 asphalt results, thus completing the data base, Tables 2, 3, 4 and 5.

The Figures 2 and 3 demonstrate the relative improvement of the Marshall stability and flow test results respectively of the unmodified 120/150 through modification as compared to 85/100 asphalt.

Table 1. Optimum Asphalt Content for Unmodified 85/100 Asphalt Mix. Data Obtained from Test Property Curves.

| Asphalt             | Marshall<br>Stability | Marshall<br>Flow | Density | % Air Void Optimum<br>@ 4% Aasphalt Asphalt |
|---------------------|-----------------------|------------------|---------|---------------------------------------------|
| CENEX               | 7%                    | 5%               | 7%      | 6.55% 6.9%                                  |
| CONOCO              | 7%                    | 5.5%             | 6.68%   | 5.84% 6.5%                                  |
| EXXON               | 6.0%                  | 5%               | 6.0%    | 6.257% 6.3%                                 |
| MONTANA<br>REFINING | 6.0%                  | 5.5 <b>%</b>     | 6.15%   | 5.65% 5.9%                                  |

Table 2. Data of Unmodified 120/150 Asphalt, Modified 120/150 Asphalts

CENEX Asphalt

| CENEX Asphalt               |                    |           |                |                  |                 |          |           |                   |  |
|-----------------------------|--------------------|-----------|----------------|------------------|-----------------|----------|-----------|-------------------|--|
| Test Description            | 120/150<br>Asphalt | Novophalt | Kraton<br>4463 | Kraton<br>4141 G | Microfil<br>- 8 | Polybilt | Ultrapave | 85/100<br>Asphalt |  |
| Penetration @ 77 F, dmm     | 137.0              | 69.0      | 121.0          | 79.0             | 99.0            | 91.0     | 105.0     | 89.0              |  |
| Penetration @ 39.2 F, dmm   | 42.0               | 29.0      | 63.0           | 37.0             | 37.0            | 39.0     | 45.0      | 24.0              |  |
| Ring and Ball Softening Pt. | 114.8              | 127.4     | 149.0          | 163.4            | 129.2           | 133.7    | 118.4     | 116.6             |  |
| Kinematic Viscosity # 275F  | 235.8              | HA        | 921.9          | 1089.2           | NA              | 387.6    | 452.4     | 317.9             |  |
| Absolute Viscosity # 140F   | 775.0              | NA        | NA             | NA               | NA              | 1050.9   | 1718.6    | 1425.5            |  |
| Ductility @ 77F, cms.       | 100.0              | 21.0      | 82.5           | 90.5             | 100.0           | 64.5     | 100.0     | 100.0             |  |
| Ductility @ 39.2F, cms      | 100.0              | 8.0       | 4.0            | 92.0             | 63.5            | 11.5     | 100.0     | 15.0              |  |
| After Thin Film Oven Test   |                    |           |                |                  |                 |          |           |                   |  |
| Penetration @ 77 F, dmm     | 85.6               | 57.0      | 89.0           | 64.0             | 68.0            | 59.0     | 71.0      | 54.0              |  |
| Penetration @ 39.2 F, dmm   | 31.0               | 24.0      | 41.0           | 35.0             | 28.0            | 29.0     | 37.0      | 28.0              |  |
| Ring and Ball Softening Pt. | 116.5              | 134.5     | 156.2          | 162.5            | 138.2           | 137.3    | 125.6     | 124.7             |  |
| Kinematic Viscosity @ 275F  | 309.3              | MA        | 780.5          | 1253.8           | MA              | 531.1    | 518.5     | 426.0             |  |
| Absolute Viscosity @ 140F   | 1501.3             | МА        | KA             | MA               | HA              | 5207.0   | 2458.4    | 2851.2            |  |
| Ductility @ 77F, cms.       | 100.0              | 31.5      | 83.0           | 86.5             | 97.0            | 93.0     | 100.0     | 100.0             |  |
| Ductility # 39.2F, cms      | 12.0               | 4.0       | 83.0           | 73.0             | 10.5            | 6.0      | 63.5      | NA                |  |
| Adhesion                    | 88.0               | 75.0      | 20.0           | 90.0             | 95.0            | 75.0     | 85.0      | 65.0              |  |
| Optimum Asphalt Content 1   | 5.8                | 5.7       | 5.6            | 5.7              | 6.0             | 5.6      | 6.0       | 6.9               |  |
| Air Void \$                 | 3.0                | 3.0       | 3.8            | 3.8              | 3.7             | 3.0      | 3.0       | 3.5               |  |
| Unit Weight                 | 2.387              | 2.379     | 2.378          | 2.37             | 2.364           | 2.383    | 2.385     | 2.332             |  |
| Marshall Stability          | 2400.0             | 2650.0    | 2550.0         | 3500.0           | 2890.0          | 2330.0   | 2370.0    | 2480.0            |  |
| Marshall Flow 1/100 Inch.   | 7.0                | 7.68      | 7.80           | 7.60             | 6.00            | 8.20     | 7.88      | 6.47              |  |

 $<sup>^{**}</sup>$  Results obtained from further investigations of asphalt modifiers.

Table 3. Data of Unmodified 120/150 Asphalt, Modified 120/150 Asphalts

CONOCO Asphalt

| CONOCO ASPIRATO             |                    |           |                |                  |                 |          |           |                   |    |
|-----------------------------|--------------------|-----------|----------------|------------------|-----------------|----------|-----------|-------------------|----|
| Test Description            | 120/150<br>Asphalt | Novophalt | Kraton<br>4463 | Kraton<br>4141 G | Microfil<br>- 8 | Polybilt | Ultrapave | 85/100<br>Asphalt |    |
| Penetration @ 77 F, dmm     | 133.0              | 60.0      | 128.0          | 82.0             | 106.0           | 80.0     | 90.0      | 92.0              |    |
| Penetration @ 39.2 F, dmm   | 40.0               | 24.0      | 60.0           | 36.0             | 38.0            | 34.0     | 36.0      | 30.0              |    |
| Ring and Ball Softening Pt. | 113.0              | 134.6     | 167.0          | 179.6            | 136.4           | 158.9    | 129.2     | 120.2             |    |
| Kinematic Viscosity @ 275F  | 192.1              | NA        | 650.1          | 1159.0           | NA              | 388.8    | 426.0     | 262.5             |    |
| Absolute Viscosity @ 140F   | 549.5              | MA        | NA             | HA               | MA              | 949.2    | 1390.3    | 1017.0            |    |
| Ductility @ 77F, cms.       | 100.0              | 28.0      | 72.0           | 87.0             | 75.0            | 36.5     | 100.0     | 100.0             |    |
| Ductility @ 39.2F, cms      | 100.0              | 5.5       | 100.0          | 94.0             | 25.5            | 9.0      | 100.0     | 14.0              |    |
| After Thin Film Oven Test   |                    |           |                |                  |                 |          |           |                   |    |
| Penetration @ 77 F, dam     | 94.0               | 47.0      | 98.0           | 67.0             | 69.0            | 62.0     | 69.8      | 68.0              |    |
| Penetration @ 39.2 F, dmm   | 31.0               | 30.0      | 43.0           | 39.0             | 30.0            | 26.0     | 25.0      | 19.0              |    |
| Ring and Ball Softening Pt. | 118.4              | 144.5     | 174.2          | 176.9            | 147.2           | 149.8    | 132.8     | 121.1             |    |
| Kinematic Viscosity @ 275F  | 237.1              | NA NA     | 663.2          | 1158.4           | MA              | 459.9    | 487.9     | 312.1             |    |
| Absolute Viscosity @ 140F   | 859.1              | MA        | MA             | NA.              | MA              | 1699.6   | 2262.1    | 1679.6            |    |
| Ductility @ 77F, cms.       | 100.0              | 33.0      | 81.0           | 91.0             | 69.0            | 45.8     | 10070     | 100.0             |    |
| Ductility # 39.2F, cms      | 15.6               | 4.0       | 85.0           | 70.0             | 6.0             | 5.5      | 180.0     | 6.0               |    |
| Adhesion                    | 90.0               | 85.0      | 58.0           | 85.0             | 90.0            | 65.0     | 85.0      | 55.0              | •• |
| Optimum Asphalt Content \$  | 5.4                | 6.0       | 5.8            | 5.8              | 6.0             | 5.7      | 6.3       | 6.5               |    |
| Air Yoid \$                 | 3.6                | 2.6       | 2.0            | 3.0              | 3.5             | 3.2      | 3.6       | 3.1               |    |
| Unit Weight                 | 2.388              | 2.384     | 2.382          | 2.373            | 2.38            | 2.376    | 2.342     | 2.361             |    |
| Marshall Stability          | 2060.0             | 2330.0    | 2280.0         | 2418.0           | 2640.0          | 2640.0   | 1910.0    | 2680.0            |    |
| Harshall Flow 1/100 Inch.   | 4.2                | 8.8       | 7.0            | 7.5              | 5.4             | 6.8      | 5.0       | 6.8               |    |

<sup>\*\*</sup> Results obtained from further investigations of asphalt modifiers.

Table 4. Data of Unmodified 120/150 Asphalt, Modified 120/150 Asphalts

EXXON Asphalt

| Test Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CANON RESPIRATE             |        |           |        |        |        |          |           |        |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|-----------|--------|--------|--------|----------|-----------|--------|-----|
| Penetration @ 39.2 F, dmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test Description            |        | Novophalt |        |        |        | Polybiit | Uitrapave |        |     |
| Ring and Ball Softening Pt. 113.0 127.4 136.4 174.2 131.0 136.4 123.8 120.2  Kinematic Viscosity @ 275F 260.5 MA 639.1 1366.1 MA 421.0 508.8 321.3  Absolute Viscosity @ 140F 869.0 MA MA MA MA 1076.3 1947.3 1916.0  Ductility @ 77F, cms. 100.0 69.0 82.5 84.0 100.0 63.5 100.0 100.0  Ductility @ 39.2F, cms 100.0 5.0 100.0 61.5 42.0 10.0 100.0 100.0  After Thin Film Oven Test  Penetration @ 77 F, dmm 87.0 70.0 103.0 68.0 78.0 64.0 76.0 64.0  Penetration @ 39.2 F, dmm 33.0 27.0 49.0 40.0 38.0 29.0 30.0 24.0  Ring and Ball Softening Pt. 117.5 131.0 165.2 169.7 144.5 143.6 127.4 127.4  Kinematic Viscosity @ 275F 324.5 MA 946.4 1242.1 MA 572.2 500.9 422.9  Absolute Viscosity @ 140F 1609.9 MA MA MA MA 1818.0 3994.5 2919.7  Ductility @ 77F, cms. 100.0 29.0 67.0 73.0 82.0 54.0 100.0 100.0  Ductility @ 39.2F, cms 12.0 5.0 67.0 82.0 8.5 5.5 86.0 6.0  Adhesion 90.0 75.0 80.0 85.0 85.0 75.0 90.0 75.0  Optimum Asphalt Content \$ 5.8 5.5 5.8 5.9 5.9 5.9 5.6 5.9 6.3  Air Yold \$ 2.3 3.5 2.5 2.7 3.2 3.0 4.0 3.4  Unit Weight 2.4 2.375 2.363 2.360 2.385 2.375 2.343 2.349  Marshall Stability 2090.0 2320.0 2350.0 3060.0 2550.0 2750.0 1950.0 2738.0 | Penetration @ 77 F, dmm     | 134.0  | 72.0      | 119.0  | 73.0   | 99.0   | 84.0     | 108.0     | 89.0   |     |
| Kinematic Viscosity @ 275F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Penetration @ 39.2 F, dmm   | 44.0   | 27.0      | 66.0   | 43.0   | 43.0   | 41.0     | 49.0      | 27.0   |     |
| Absolute Viscosity @ 140F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ring and Ball Softening Pt. | 113.0  | 127.4     | 136.4  | 174.2  | 131.0  | 136.4    | 123.8     | 120.2  |     |
| Ductility @ 77F, cms. 100.0 69.0 82.5 84.0 100.0 63.5 100.0 100.0 Ductility @ 39.2F, cms 100.0 5.0 100.0 61.5 42.0 10.0 100.0 13.0 After Thin Film Oven Test  Penetration @ 77 F, dmm 87.0 70.0 103.0 68.0 78.0 64.0 76.0 64.0 Penetration @ 39.2 F, dmm 33.0 27.0 49.0 40.0 38.0 29.0 30.0 24.0 Ring and Ball Softening Pt. 117.5 131.0 165.2 169.7 144.5 143.6 127.4 127.4 Kinematic Viscosity @ 275F 324.5 MA 946.4 1242.1 MA 572.2 580.9 422.9 Absolute Viscosity @ 140F 1609.9 MA MA MA MA 1818.0 3994.5 2919.7 Ductility @ 77F, cms. 100.0 29.0 67.0 73.0 82.0 54.0 100.0 100.0 Ductility @ 39.2F, cms 12.0 5.0 67.0 82.0 8.5 5.5 86.0 6.0 Adhesion 90.0 75.0 80.0 85.0 85.0 75.0 90.0 75.0 Optimum Asphalt Content \$ 5.8 5.5 5.8 5.9 5.9 5.9 5.6 5.9 6.3 Air Yold \$ 2.3 3.5 2.5 2.7 3.2 3.0 4.8 3.4 Unit Weight 2.4 2.375 2.363 2.360 2.305 2.375 2.343 2.349 Marshall Stability 2090.0 2320.0 2350.0 3060.0 2550.0 2750.0 1950.0 2730.0                                                                                                                                                                                                                                     | Kinematic Viscosity € 275F  | 260.5  | NA        | 639.1  | 1366.1 | NA     | 421.8    | 508.8     | 321.3  |     |
| Ductility @ 39.2F, cms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Absolute Viscosity @ 140F   | 869.0  | NA        | NA     | NA     | AK     | 1076.3   | 1947.3    | 1916.0 |     |
| After Thin Film Oven Test  Penetration @ 77 F, dmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ductility @ 77F, cms.       | 100.0  | 69.0      | 82.5   | 84.0   | 100.0  | 63.5     | 100.0     | 100.0  |     |
| Penetration @ 77 F, dmm 87.0 70.0 103.0 68.0 78.0 64.0 76.0 64.0  Penetration @ 39.2 F, dmm 33.0 27.0 49.0 40.0 38.0 29.0 30.0 24.0  Ring and Ball Softening Pt. 117.5 131.0 165.2 169.7 144.5 143.6 127.4 127.4  Kinematic Viscosity @ 275F 324.5 NA 946.4 1242.1 NA 572.2 580.9 422.9  Absolute Viscosity @ 140F 1609.9 NA NA NA NA NA 1818.0 3994.5 2919.7  Ductility @ 77F, cms. 100.0 29.0 67.0 73.0 82.0 54.0 100.0 100.0  Ductility @ 39.2F, cms 12.0 5.0 67.0 82.0 8.5 5.5 86.0 6.0  Adhesion 90.0 75.0 80.0 85.0 85.0 75.0 90.0 75.0  Optimum Asphalt Content \$ 5.8 5.5 5.8 5.9 5.9 5.6 5.9 6.3  Air Void \$ 2.3 3.5 2.5 2.7 3.2 3.0 4.8 3.4  Unit Weight 2.4 2.375 2.363 2.360 2.305 2.375 2.343 2.349  Marshall Stability 2090.0 2320.0 2350.0 3060.0 2550.0 2750.0 1950.0 2730.0                                                                                                                                                                                                                                                                                                                                                                                         | Ductility @ 39.2F, cms      | 100.0  | 5.0       | 100.0  | 61.5   | 42.0   | 10.0     | 100.0     | 13.0   |     |
| Penetration @ 39.2 F, dmm 33.0 27.0 49.0 40.0 38.0 29.0 30.0 24.0 Ring and Ball Softening Pt. 117.5 131.0 165.2 169.7 144.5 143.6 127.4 127.4 Kinematic Viscosity @ 275F 324.5 NA 946.4 1242.1 NA 572.2 580.9 422.9 Absolute Viscosity @ 140F 1609.9 NA NA NA NA 1818.0 3994.5 2919.7 Ductility @ 77F, cms. 100.0 29.0 67.0 73.0 82.0 54.0 100.0 100.0 Ductility @ 39.2F, cms 12.0 5.0 67.0 82.0 8.5 5.5 86.0 6.0 Adhesion 90.0 75.0 80.0 85.0 85.0 75.0 90.0 75.0 Optimum Asphalt Content \$ 5.8 5.5 5.8 5.9 5.9 5.6 5.9 6.3 Air Void \$ 2.3 3.5 2.5 2.7 3.2 3.0 4.8 3.4 Unit Weight 2.4 2.375 2.363 2.360 2.305 2.375 2.343 2.349 Marshall Stability 2090.0 2320.0 2350.0 3060.0 2550.0 2750.0 1950.0 2730.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | After Thin Film Oven Test   |        |           |        |        |        |          |           |        |     |
| Ring and Ball Softening Pt. 117.5 131.0 165.2 169.7 144.5 143.6 127.4 127.4 Kinematic Viscosity @ 275F 324.5 NA 946.4 1242.1 NA 572.2 588.9 422.9 Absolute Viscosity @ 140F 1609.9 NA NA NA NA NA 1818.8 3994.5 2919.7 Ductility @ 77F, cms. 100.0 29.0 67.0 73.0 82.0 54.0 100.0 100.0 Ductility @ 39.2F, cms 12.0 5.0 67.0 82.0 8.5 5.5 86.0 6.0 Adhesion 90.0 75.0 80.0 85.0 85.0 75.0 90.0 75.0 Optimum Asphalt Content \$ 5.8 5.5 5.8 5.9 5.9 5.9 5.6 5.9 6.3 Air Void \$ 2.3 3.5 2.5 2.7 3.2 3.0 4.8 3.4 Unit Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Penetration @ 77 f, dmm     | 87.0   | 70.0      | 103.0  | 68.0   | 78.0   | 64.0     | 76.8      | 64.0   |     |
| Kinematic Viscosity @ 275F       324.5       NA       946.4       1242.1       NA       572.2       588.9       422.9         Absolute Viscosity @ 140F       1609.9       NA       NA       NA       NA       NA       1818.8       3994.5       2919.7         Ductility @ 77F, cms.       100.0       29.0       67.0       73.0       82.0       54.0       100.0       100.0         Ductility @ 39.2F, cms       12.0       5.0       67.0       82.0       8.5       5.5       86.0       6.0         Adhesion       90.0       75.0       80.0       85.0       85.0       75.0       90.0       75.0         Optimum Asphalt Content \$       5.8       5.5       5.8       5.9       5.9       5.6       5.9       6.3         Air Void \$       2.3       3.5       2.5       2.7       3.2       3.0       4.8       3.4         Unit Weight       2.4       2.375       2.363       2.360       2.385       2.375       2.343       2.349         Harshall Stability       2090.0       2320.0       2350.0       3060.0       2550.0       2750.0       1950.0       2730.0                                                                                             | Penetration # 39.2 F, dmm   | 33.0   | 27.0      | 49.0   | 48.0   | 38.0   | 29.8     | 30.0      | 24.0   |     |
| Absolute Viscosity @ 140F 1609.9 MA MA MA MA 1818.8 3994.5 2919.7  Ductility @ 77F, cms. 100.0 29.0 67.0 73.0 82.0 54.0 100.0 100.0  Ductility @ 39.2F, cms 12.0 5.0 67.0 82.0 8.5 5.5 86.0 6.0  Adhesion 90.0 75.0 80.0 85.0 85.0 75.0 90.0 75.0  Optimum Asphalt Content \$ 5.8 5.5 5.8 5.9 5.9 5.6 5.9 6.3  Air Void \$ 2.3 3.5 2.5 2.7 3.2 3.0 4.8 3.4  Unit Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ring and Ball Softening Pt. | 117.5  | 131.0     | 165.2  | 169.7  | 144.5  | 143.6    | 127.4     | 127.4  |     |
| Ductility @ 77F, cms.       100.0       29.0       67.0       73.0       82.0       54.0       100.0       100.0         Ductility @ 39.2F, cms       12.0       5.0       67.0       82.0       8.5       5.5       86.0       6.0         Adhesion       90.0       75.0       80.0       85.0       85.0       75.0       90.0       75.0         Optimum Asphalt Content \$       5.8       5.5       5.8       5.9       5.9       5.6       5.9       6.3         Air Void \$       2.3       3.5       2.5       2.7       3.2       3.0       4.8       3.4         Unit Weight       2.4       2.375       2.363       2.360       2.385       2.375       2.343       2.349         Marshall Stability       2000.0       2320.0       2350.0       3060.0       2550.0       2750.0       1950.0       2730.0                                                                                                                                                                                                                                                                                                                                                              | Kinematic Viscosity € 275F  | 324.5  | NA 1      | 946.4  | 1242.1 | MA     | 572.2    | 588.9     | 422.9  |     |
| Ductility @ 39.2F, cms       12.0       5.0       67.0       82.0       8.5       5.5       86.0       6.0         Adhesion       90.0       75.0       80.0       85.0       85.0       75.0       90.0       75.0         Optimum Asphalt Content \$       5.8       5.5       5.8       5.9       5.9       5.6       5.9       6.3         Air Void \$       2.3       3.5       2.5       2.7       3.2       3.0       4.8       3.4         Unit Weight       2.4       2.375       2.363       2.360       2.385       2.375       2.343       2.349         Marshall Stability       2090.0       2320.0       2350.0       3060.0       2550.0       2750.0       1950.0       2738.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Absolute Viscosity @ 140F   | 1689.9 | MA        | MA     | MA     | HA     | 1818.8   | 3994.5    | 2919.7 |     |
| Adhesion 90.0 75.0 80.0 85.0 75.0 90.0 75.0 Optimum Asphalt Content \$ 5.8 5.5 5.8 5.9 5.9 5.6 5.9 6.3 Air Void \$ 2.3 3.5 2.5 2.7 3.2 3.0 4.8 3.4 Unit Weight 2.4 2.375 2.363 2.368 2.385 2.375 2.343 2.349 Marshall Stability 2090.0 2320.0 2350.0 3060.0 2550.0 2750.0 1950.0 2730.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ouctility @ 77F, cms.       | 100.0  | 29.0      | 67.0   | 73.0   | 82.0   | 54.8     | 100.0     | 100.0  |     |
| Optimum Asphalt Content \$ 5.8 5.5 5.8 5.9 5.9 5.6 5.9 6.3         Air Void \$ 2.3 3.5 2.5 2.7 3.2 3.0 4.8 3.4         Unit Weight 2.4 2.375 2.363 2.368 2.385 2.375 2.343 2.349         Harshall Stability 2000.0 2320.0 2350.0 3060.0 2550.0 2750.0 1950.0 2730.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ductility @ 39.2F, cms      | 12.0   | 5.0       | 67.0   | 82.8   | 8.5    | 5.5      | 86.8      | 6.8    |     |
| Air Void \$ 2.3 3.5 2.5 2.7 3.2 3.0 4.8 3.4 Unit Weight 2.4 2.375 2.363 2.368 2.385 2.375 2.343 2.349  Marshall Stability 2090.0 2320.0 2350.0 3060.0 2550.0 2750.0 1950.0 2730.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Adhesion                    | 90.0   | 75.0      | 80.0   | . 85.0 | 85.8   | 75.0     | 90.0      |        | • • |
| Unit Weight 2.4 2.375 2.363 2.368 2.385 2.375 2.343 2.349  Marshall Stability 2090.0 2320.0 2350.0 3060.0 2550.0 2750.0 1950.0 2730.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Optimum Asphalt Content 1   | 5.8    | 5.5       | 5.8    | 5.9    | 5.9    | 5.6      | 5.9       | 6.3    |     |
| Marshall Stability 2090.0 2320.0 2350.0 3060.0 2550.0 2750.0 1950.0 2730.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Air Void \$                 | 2.3    | 3.5       | 2.5    | 2.7    | 3.2    | 3.0      | 4.8       | 3.4    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit Weight                 | 2.4    | 2.375     | 2.363  | 2.368  | 2.385  | 2.375    | 2.343     | 2.349  |     |
| Harshall Flow 1/100 Inch. 9.5 5.0 -7.2 7.6 7.5 5.5 5.8 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marshall Stability          | 2090.0 | 2320.0    | 2350.0 | 3060.0 | 2550.0 | 2750.0   | 1950.0    | 2738.0 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marshall Flow 1/186 Inch.   | 9.5    | 5.0       | -7.2   | 7.6    | 7.5    | 5.5      | 5.8       | 6.2    |     |

<sup>\*\*</sup> Results obtained from further investigations of asphalt modifiers.

Table 5. Data of Unmodified 120/150 Asphalt, Modified 120/150 Asphalts

MONTANA REFINERY Asphalt

| Test Description            | 120/150<br>Asphalt | Novophalt | Kraton<br>4463 | Kraton<br>4141 G | Microfil<br>- 8 | Polybilt | Ultrapave | 85/100<br>Asphalt |
|-----------------------------|--------------------|-----------|----------------|------------------|-----------------|----------|-----------|-------------------|
| Penetration @ 77 F, dmm     | 129.0              | 59.0      | 115.0          | 75.0             | 89.0            | 93.0     | 111.0     | 87.0              |
| Penetration @ 39.2 F, dmm   | 32.0               | 27.0      | 63.0           | 42.0             | 35.0            | 36.0     | 48.0      | 29.0              |
| Ring and Ball Softening Pt. | 116.6              | 127.4     | 127.4          | 174.2            | 127.4           | 141.8    | 118.4     | 122.0             |
| Kinematic Viscosity @ 275F  | 270.3              | NA        | 570.6          | 1365.0           | NA              | 437.8    | 453.6     | 358.0             |
| Absolute Viscosity @ 140F   | 826.5              | NA        | NA             | NA               | NA              | 1123.5   | 1640.3    | 1481.5            |
| Ductility @ 77F, cms.       | 100.0              | 24.0      | 93.5           | 86.0             | 97.5            | 52.5     | 100.0     | 100.0             |
| Ductility @ 39.2F, cms      | 43.0               | 4.5       | 99.0           | 56.0             | 12.0            | 9.0      | 100.0     | 7.5               |
| After Thin Film Oven Test   |                    |           |                |                  |                 |          |           |                   |
| Penetration @ 77 F, dmm     | 93.0               | 53.0      | 107.0          | 61.0             | 68.0            | 65.0     | 75.0      | 52.0              |
| Penetration @ 39.2 F, dmm   | 29.0               | 24.0      | 49.0           | 36.0             | 30.0            | 26.0     | 26.0      | 24.0              |
| Ring and Ball Softening Pt. | 122.0              | 136.4     | 154.4          | 167.0            | 138.2           | 140.0    | 123.8     | 127.4             |
| Kinematic Viscosity # 275F  | 339.4              | MA        | 779.8          | 1275.3           | NA              | 500.0    | 491.3     | 450.2             |
| Absolute Viscosity # 140F   | 1464.7             | NA        | NA             | MA               | NA              | 3522.1   | 2688.7    | 2889.1            |
| Ductility @ 77F, cms.       | 100.0              | 36.0      | 85.0           | 82.0             | 83.0            | 53.0     | 100.0     | 100.0             |
| Ductility @ 39.2F, cms      | 8.5                | 4.0       | 62.0           | 62.5             | 5.8             | 6.0      | 100.0     | 5.0               |
| Adhesion                    | 98.8               | 75.0      | 95.0           | 90.0             | 85.0            | 75.0     | 90.0      | 80.0              |
| Optimum Asphalt Content \$  | 5.5                | 5.4       | 5.5            | 5.7              | 5.9             | 5.5      | 6.3       | 5.9               |
| Air Void \$                 | 3.3                | 3.5       | 2.5            | 2.8              | 3.7             | 2.2      | 3.6       | 3.4               |
| Unit Weight                 | 2.4                | 3.366     | 2.364          | 3.36             | 2.39            | 3.375    | 2.335     | 2.368             |
| Marshall Stability          | 2200.0             | 2550.0    | 2340.0         | 2610.0           | 2790.0          | 2510.0   | 1430.0    | 2964.0            |
| Marshall Flow 1/100 Inch.   | 4.4                | 7.0       | 5.9            | 7.4              | 7.0             | 7.2      | 8.7       | 6.4               |

<sup>\*\*</sup> Results obtained from further investigations of asphalt modifiers.



THEFT WHEN

Ξ

# Comparison of the MSU Test Results with Custer Interchange Project Results:

The asphalt used for the Custer Interchange-East Termini was also AC 85/100 grade of Exxon. The aggregate used for the project was also obtained from the same source, E. E. John pit. The comparison of the test results between the Montana State University (MSU) tests and the Montana Department of Highways (MDOH) tests are presented in tabulated form as shown below. The MDOH results were obtained from the Lab. No. G18744, Project No. IR 94-1(49)47. The MDOH test results without asphalt additive (mineral filler) is used for comparison.

Table 6. Comparison of MSU Test Results with MDOH Test Results. Rice Specific Density Percent Marshall Percent Marshall Air Void Asphalt Gravity (qm/cc) Stability Flow MSU MDOH MDOH MSU MDOH MSU MSU MDOH MSU MDOH MSU MDOH 2.319 2.334 6.3 5.7 2622 1638 5.0 5.0 2.474 2.474 10.5 9 3.6 2609 2015 5.5 5.5 2.462 2.457 2.334 2.368 5.2 10.7 11 6.0 6.0 2.440 2.440 2.343 2.373 4.0 2.7 2787 2132 11.6 11 6.5 6.5 2.428 2.423 2.351 NA 3.2 NA 2676 NA 13.0 NA 7.0 2.412 2.406 2.351 NA 2453 NA 7.0 2.6 NA 14.7 NA

It is observed from the above comparison that Marshall stability is increasing upto 6% asphalt content in both the MSU and MDOH results. Similarly, density is increasing upto 6% asphalt content and beyond in the case of MSU results. The 4% air

void is achieved between 5.0 and 5.5% in case of MDOH and at 6.0% in the case of MSU results. If the optimum asphalt content is to be calculated from the above data, it will be found at close to 6.0% asphalt content. The conclusion derived will be same from both the results.

However, the absolute value of the Marshall stability of the MSU results is much higher. The Rice specific gravity results are almost same in both MSU and MDOH results. The MDOH density results are higher compared to that of MSU.

# Comparison of 85/100 Asphalt Test Results with Modified and Unmodified 120/150 Test Results:

The comparison of the test parameters of 85/100 unmodified asphalt and modified 120/150 asphalt with 120/150 unmodified asphalt in percentage difference with respect to unmodified 120/150 asphalt are presented in Tables 7, 8, 9 and 10 (blocked out data obtained in further test).

Since the idea of the asphalt modification is to alter a soft asphalt in the higher temperature ranges, while maintaining low temperature properties, a comparison to unmodified 85/100 asphalt should add insight. The comparisons that follow will involve data from the previous study, as well as the Marshall data for AC 85/100 of this report.

Assume that an area, which has been using AC 120/150, has experienced rutting problems. The conventional solution to the problem would be to switch to AC 85/100. Table 7, for example, tells you that switching to 85/100 would cause an increase in

Table 7. Comparison of Test Parameters of 85/100 Asphalt & Modified 120/150 Asphalts

in \$ Difference With Respect to Unmodified Asphalt 120/150

CENEX Asphalt -----85/100 Movophalt Kraton Kraton Microfil Polybilt Ultrapave Test Description 4463 4141 G - 8 Asphalt -23.36-33.58 -35.04 -49.64 -11.68 -42.34 -27.74 Penetration @ 77 F, dmm Penetration @ 39.2 F, dmm -42.86 -30.95 50.00 -11.90 -11.90 -7.14 7.14 10.98 42.33 12.54 16.46 3.14 Ring and Ball Softening Pt. 1.57 29.79 Kinematic Viscosity @ 275F 34.82 NA 290.97 361.92 MA 64.38 91.86 Absolute Viscosity @ 140F 83.94 NA NA NA MA 35.60 121.75 Ductility @ 77F, cms. 0.00 -79.00 -17.50 -9.50 0.00 -35.500.00 Ductility # 39.2F, cms -85.00 -92.00 -96.80 -8.00 -36.50 -88.58 0.00 After Thin Film Oven Test F. A\* C\* 0\* B\* E. Penetration @ 77 F, dmm -36.47 -32.944.71 -24.71-20.00 -30.59-16.47E\* FO C\* 8\* A\* 0\* Penetration # 39.2 F, dmm -35.48-22.58 32.26 12.90 -9.68-6.45 19.35 A\* 0. Fe E\* 8\* C\* Ring and Ball Softening Pt. 7.04 15.45 34.08 39.48 18.63 17.85 7.81 8. C. 0. A\* Kinematic Viscosity ₽ 275F 37.72 152.34 305.37 71.71 67.64 MA MA MA NA Absolute Viscosity @ 140F 89.92 MA MA 246.83 63.75 A. 8\* C. €\* 0\* F# Ductility # 77F, cms. 0.00 -68.58 -17.80 -13.58 -3.00 -7.88 0.00 Fo A\* 8. 0. C. €\* Ductility @ 39.2F, cms -66.67 591.67 508.33 -12.58 -58.80 429.17 MA Fo A\* 9. C\* E\* 8. -18.75-6.25 -75.00 12.50 18.75 -6.25 Adhesion 6.25 8. A\* 8. C\* A\* C. 18.97 -1.72-3.45 -1.72 3.45 -3.453.45 Optimum Asphalt Content 1 A. A. A\* A\* A\* Air Void 1 16.67 23.33 1.80 9.80 0.86 26.67 26.67 -2.30 -8.34 -0.96 -0.17 Unit Weight -0.38 -0.71 -0.86 84 8. C\* E\* 20.42 -1.25Marshall Stability 3.33 10.42 6.25 ( 45.83 -2.92 80 C. A\* 0. C\*

#### Note:

Marshall Flow 1/100 Inch.

Negative \$ Difference = Decrease in value
Positive \$ difference = Increase in value
With Respect To 120/150 Unmodified Asphalt value

-7.57

8.57

11.43

8.57

-14.29

17.14

11.43

<sup>\*</sup> Letter refers to rating - see discussion
\*\* Results obtained from further investigations of asphalt modifiers.

Table 8. Comparison of Test Parameters of 85/100 Asphalt & Modified 120/150 Asphalts

in % Difference With Respect to Unmodified Asphalt 120/150

| **********                 |                   |              |                |                       |              |             |              |
|----------------------------|-------------------|--------------|----------------|-----------------------|--------------|-------------|--------------|
| CONOCO Asphalt             |                   |              |                |                       |              |             |              |
| Test Description           | 85/100<br>Asphalt | Novophalt    | Kraton<br>4463 | Kraton<br>4141 G      |              | Polybilt    | Ultrapave    |
| Penetration @ 77 F, dmm    | -30.83            | -54.89       | -3.76          | -38.35                | -20.30       | -39.85      | -32.33       |
| Penetration @ 39.2 F, dmm  | -25.00            | -40.00       | 50.00          | -10.00                | -5.00        | -15.00      | -10.00       |
| Ring and Ball Softening Pt | . 6.37            | 19.12        | 47.79          | 58.94                 | 20.71        | 40.62       | 14.34        |
| Kinematic Viscosity @ 275F | 36.65             | NA           | 238.42         | 503.33                | NA           | 102.39      | 121.76       |
| Absolute Viscosity @ 140F  | 85.08             | NA           | NA             | MA                    | MA           | 72.74       | 153.01       |
| Ductility @ 77F, cms.      | 0.00              | -72.00       | -28.00         | -13.00                | -25.00       | -63.50      | 0.00         |
| Ductility @ 39.2F, cms     | -86.00            | -94.50       | 0.00           | -6.00                 | -74.58       | -91.00      | 0.00         |
| After Thin Film Oven Test  |                   |              |                |                       |              |             |              |
| Penetration @ 77 F, dmm    | -<br>-27.66       | A*<br>-50.00 | 4.26           | C*<br>-28.72          | -26.60       |             | _            |
| Penetration @ 39.2 F, dmm  | -38.71            | A*<br>-3.23  | 38.71          | 0°<br>25.81           | A*<br>-3.23  |             | C*<br>-19.35 |
| Ring and Ball Softening Pt | . 2.28            |              | 8°<br>47.13    |                       |              | C*<br>25.84 |              |
| Kinematic Viscosity @ 275F |                   |              |                | A*<br>3 <b>80.5</b> 7 |              | 0*          |              |
|                            |                   |              |                |                       |              |             |              |
| Absolute Viscosity @ 140F  | 95.51             | NA<br>A*     | NA<br>De       | MA<br>Fe              | C.           | 97.83<br>8° | 163.31<br>F* |
| Ductility # 77F, cms.      | 0.00              | -67.00       | -19.00         | -9.00                 | -31.06       | -55.00      | 8.86         |
| Ductility @ 39.2F, cms     | -60.00            | C*<br>-73.33 | 466.67         | 366.67                | A*<br>-60.00 | -63.33      |              |
| Adhesion                   | -38.89            | 8*<br>-5.56  | 0*<br>-44,44   |                       | A*           |             | 8*<br>-5.56  |
|                            | •                 | <u>•</u> C•  | 8*             | 8.                    | C.           | A*          | 9*           |
| Optimum Asphalt Content \$ | 28.37             | 8.11         | 7.41           |                       | 11.11        | 5.56<br>A*  | 16.67        |
| Air Void \$                | -13.89            | 1            | -44.44         |                       |              |             | 1.00         |
| Unit Weight                | -1.13             |              | -0.25          | -0.63                 |              | -0.50       | -1.93        |
| Marshall Stability         | 30.10             | C*           | 0°<br>18.68    | 17.30                 | A*<br>28.16  | A*<br>28.16 | €°<br>-7.28  |
|                            |                   | ke.          | 0*             | E*                    | 8*           | C.          | A*           |
| Harshall Flow 1/100 Inch.  | - 62.62           | 96.48        | 66.67          | 78.57                 | 28.57        | 61.90       | 19.05        |

#### Note:

Negative % Difference = Decrease in value
Positive % difference = Increase in value
With Respect To 120/150 Unmodified Asphalt value

<sup>\*</sup> Letter refers to rating - see discussion
\*\* Results obtained from further investigations of asphalt medifiers.

Table 9. Comparison of Test Parameters of 85/100 Asphalt & Modified 120/150 Asphalts

in 1 Difference With Respect to Unmodified Asphalt 120/150

| EXXON | sphal | lt |
|-------|-------|----|
|-------|-------|----|

| EXXUM ASPNAIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |              |                |                  |                 |              |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|----------------|------------------|-----------------|--------------|--------------|
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85/100<br>Asphalt | Novophalt    | Kraton<br>4463 | Kraton<br>4141 G | Microfil<br>- 8 | Polybilt     | Ultrapave    |
| Penetration @ 77 F, dmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -33.58            | -46.27       | -11.19         | -45.52           | -26.12          | -37.31       | -19.40       |
| Penetration @ 39.2 F, dmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -38.64            | -38.64       | 50.00          | -2.27            | -2.27           | -6.82        | 11.36        |
| Ring and Ball Softening Pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 6.37            | 12.74        | 20.71          | 54.16            | 15.93           | 20.71        | 9.56         |
| Kinematic Viscosity @ 275F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.34             | NA           | 145.34         | 424.41           | NA              | 61.61        | 95.32        |
| Absolute Viscosity @ 140F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.48            | NA           | NA             | NA               | NA              | 23.86        | 124.09       |
| Ductility @ 77F, cms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00              | -31.00       | -17.50         | -16.00           | 0.00            | -36.50       | 0.00         |
| Ductility @ 39.2F, cms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -87.00            | -95.00       | 0.00           | -38.50           | -58.00          | -90.00       | 0.00         |
| After Thin Film Oven Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |              |                |                  |                 |              |              |
| Penetration @ 77 F, dmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -<br>-26.44       | C*<br>-19.54 | 18.39          | 8*<br>-21.84     | E*<br>-10.34    | A*<br>-26.44 | 0*<br>-12.64 |
| Penetration # 39.2 F, dmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -27 27            | 0°<br>-18.18 | F* 48.48       | E*               | C*              | 8*<br>-12.12 | A*<br>-9.09  |
| renectation g 37.2 r, umm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -21.21            | E*           | 8*             | A*               | C+              | 0.15         | F#           |
| Ring and Ball Softening Pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 8.43            | 11.49        | 40.60          | 44.43            | 22.98           | 22.21        | 8.43         |
| Kinematic Viscosity @ 275F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.32             | NA           | 8°             | A*<br>282.77     | NA              | 0°<br>76.33  | C*<br>81.48  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                | 40.0             | ***             |              |              |
| Absolute Viscosity @ 148F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81.36             | NA<br>A*     | C*             | NA<br>D*         | É.              | 12.93<br>8*  | 148.12       |
| Ductility # 77F, cms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00              | -71.00       | -33.00         | -27.00           | -18.80          | -46.80       | 0.00         |
| Ductility @ 39.2F, cms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -50.00            | ლი<br>-58.33 | 9°<br>458.33   | E* 583.33        | A*<br>-29.17    | 8°<br>-54.17 | F*<br>616.67 |
| Ductifity e 37.2r, cas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -34.44            | 0.33         | C*             | 8*               | 8*              | 0*           | A*           |
| Adhesion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -16.67            |              | -11.11         | -5.56            | -5.56           | -16.67       | 0.00         |
| Ontinum Asphalt Contact #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 62              | 7 7          | 0*             | €*               | C*              | 8*<br>-3.45  | C*           |
| Optimum Asphalt Content \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.62              | -5.17<br>B*  | 8.80<br>B*     | 1.72<br>A*       | 1.72<br>A*      | -3.45<br>A*  | A*           |
| Air Void \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47.83             | 1            | 8.70           | 17.39            | 39.13           | 30.43        | 188.78       |
| Unit Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.63             | -0.54        | -1.05          | -0.84            | -0.13           | -0.54        | -1.88        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | €*           | D*             | A*               | C.              | 8*           | Ł.           |
| Marshall Stability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.00             | 1            | 12.44          | 46.41            | 22.01           | 31.58        | -6.70        |
| Harshall Flow 1/188 Inch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -34.84            | A*<br>-47.37 | D*<br>-24.21   | -20.00           | -21.05          | 8°<br>-42.11 | C*<br>-38.95 |
| The state of the s | 34.04             | -1           | 27121          |                  | -1144           |              |              |

#### Note:

Negative % Difference = Decrease in value Positive % difference = Increase in value

With Respect To 120/150 Unmodified Asphalt value

\* Letter refers to rating - see discussion

<sup>\*\*</sup> Results obtained from further investigations of asphalt modifiers.

Table 10. Comparison of Test Parameters of 85/100 Asphalt & Modified 120/150 Asphalts

in \$ Difference With Respect to Unmodified Asphalt 120/150

| HONTANA REI | FINERY | Asphalt |
|-------------|--------|---------|
|-------------|--------|---------|

| HONTANA RELITIONAL REPORTS |                   |                    |                     |                    |                  |              |               |
|----------------------------|-------------------|--------------------|---------------------|--------------------|------------------|--------------|---------------|
| Test Description           | 85/100<br>Asphalt | Novophalt          | Kraton<br>4463      | Kraton<br>4141 G   | Microfil<br>- 8  | Polybilt     | Ultrapave     |
| Penetration @ 77 F, dmm    | -32.56            | -54.26             | -10.85              | -41.86             | -31.01           | -27.91       | -13.95        |
| Penetration @ 39.2 F, dmm  | -9.38             | -15.63             | 96.88               | 31.25              | 9.38             | 12.50        | 50.00         |
| Ring and Ball Softening Pt | . 4.63            | 9.26               | 9.26                | 49.40              | 9.26             | 21.61        | 1.54          |
| Kinematic Viscosity @ 275F | 32.45             | NA                 | 111.10              | 404.99             | NA               | 61.97        | 67.81         |
| Absolute Viscosity @ 140F  | 79.25             | NA                 | NA                  | NA                 | HA               | 35.93        | 98.46         |
| Ductility @ 77F, cms.      | 0.00              | -76.00             | -6.58               | -14.00             | -2.50            | -47.50       | 0.00          |
| Ouctility @ 39.2F, cms     | -82.56            | -89.53             | 130.23              | 30.23              | -72.09           | -79.07       | 132.56        |
| After Thin Film Oven Test  |                   | 4.0                |                     | 0.0                | D+               | C*           | E#            |
| Penetration @ 77 F, dmm    | -44.89            | A*<br>-43.01<br>C* | 15.05<br>E*         | 8°<br>-34.41<br>D* | -26.88           | -30.11<br>8° | -19.35<br>8*  |
| Penetration @ 39.2 F, dmm  | -17.24            |                    | 68.97<br>B*         | 24.14<br>A*        | A*<br>3.45<br>D* | -10.34<br>C* | -10.34<br>F*  |
| Ring and Ball Softening Pt | . 4.43            | ~                  | 26.56<br>8*         | 36.89              | 13.28            | 14.75<br>C*  | 1.48          |
| Kinematic Viscosity @ 275F | 32.65             | KA                 | 129.76              | 275.75             | HA               | 47.32        | 44.76         |
| Absolute Viscosity # 140F  | 97.25             | MA<br>A*           | NA<br>E*            | MA<br>C*           | NA<br>D*         | 140.47       | 83.57         |
| Ductility @ 77F, cms.      | 0.00              |                    | -15.00              | -18.00<br>E*       | -17.00<br>8*     | -47.00<br>A* | 0.00          |
| Ouctility @ 39.2F, cms     | -41.18            |                    | 629.41<br>A*        | 635.29             | -41.18<br>C*     | -29.41<br>0* | 1076.47<br>8* |
| Adhesion                   | -11.11            | -16.67             | 5.56                | 0.00               | -5.56            | -16.67       | 0.00<br>E*    |
| Optimum Asphalt Content \$ | 1.27              | -1.82              | 0.00                | 3.64               | 7.27             | 0.00         | 14.55         |
| Air Void \$                | -4.62             | A*<br>7.69         | -21.85              | 8°<br>-13.85       | A*<br>13.85      | -32.31       | A*<br>10.77   |
| Unit Weight                | 0.17              |                    | 0.00                | 42.13              | 1.10             | 42.77        | -1.23         |
| Harshall Stability         | 35.64             | 1                  | 6.36                | 18.64              | A*<br>26.82      | 0°<br>i4.09  | -35.00        |
| Marshall Flow 1/100 Inch.  | 45.68             | 59.89              | A*<br>34. <b>09</b> | 0*<br>68.18        | 59.09            | 63.64        | E*<br>97.73   |

#### Mote:

Negative \$ Difference = Decreese in value Positive \$ difference = Increese in value

With Respect To 120/150 Unmodified Asphalt value

<sup>\*</sup> Letter refers to rating - see discussion

<sup>\*\*</sup> Results obtained from further investigations of asphalt modifiers.

Marshall stability by only 3.3 percent. On the other hand. electing to switch to a 120/150 AC modified with Kraton 4141G would increase stability by 45.83%, which means Kraton 4141G is a better choice. Another example, unit weight; by switching from 120/150 to 85/100, the density value is brought down by 2.30%, while Polybilt modified 120/150 is able to bring the unit weight value down by 0.17%. (See circled values on Table 7). It is observed from Table 7 that the percentage air void of 85/100 Cenex is greater, by 16.67%, than unmodified 120/150. Similar observation was made in Kraton modified Cenex indicating the need of greater compacting effort to obtain the same percentage air void as that of 120/150 Cenex. This is also confirmed by the decrease in the unit weight. Marshall stability of modified Kraton, Microfil 8 and Novophalt is higher by 46%, 10%, and 20%, respectively, where as that of 85/100 Cenex is greater by only 3% than that of 120/150 unmodified Cenex.

85/100 Conoco and Montana Refining behaved differently from other refineries, Cenex and Exxon. The percentage air void values of 85/100 asphalt and modified 120/150 asphalt are low as compared to that of unmodified 120/150 asphalt. Kraton and Polybilt modified 120/150 asphalt behaved as unmodified 85/100 asphalt as seen from Tables 8 and 10.

Marshall stability of 85/100 Conoco is greater by 30% to that of 120/150 Conoco, similar higher values were noticed in Polybilt, Microfil 8 and Kraton 4141 G modified 120/150 Conoco. Marshall flow of modified Conoco is higher than that of 85/100.

In the case of 85/100 Exxon the percentage air void is higher by 48%, than that of unmodified 120/150 Exxon. Similar higher values are noticed in Microfil 8 and Polybilt indicating the need of greater compacting effort. Marshall stability of Kraton 4141 G and Polybilt modified 120/150 Exxon increased to the level of 85/100 Exxon. The Marshall flow of all modified 120/150 Exxon decreased to the level of 85/100 Exxon.

Similar improvement in the Marshall stability of modified 120/150 Montana Refining is observed but not to the extent of 85/100 Montana Refining. Marshall flow of modified 120/150 Montana Refining increased to the level of 85/100 Montana Refining.

In general, the optimum asphalt content of 85/100 grade asphalt is high relative to 120/150 asphalt.

#### CONCLUSION

The data base is complete enabling us to compare the result of the Marshall molded specimen tests of the modified 120/150 grade of Montana asphalts with that of the 85/100 grade unmodified asphalts.

The objective of obtaining the parameter test values of the 120/150 asphalt to the level of 85/100 asphalt through modification is achieved to the greater degree depending on the make of the Montana asphalts. The results of Marshall molded specimen test of the modified Cenex and Exxon are more closer to that of the 85/100 asphalts. Particularly, the Kraton 4141 G, Polybilt and Microfil 8 modified Cenex and Exxon are favorable.

## APPENDIX A

Test Results and the Test Property Curves

for Hot-Mix Design Data

## Test Results of 85/100 Asphalt.

| Sample              | % Asphalt                       | Percentage<br>Air Void               |                                      |                                      | Density                                   |
|---------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|
| CENEX               | 5.0                             | 8.51                                 | 1721                                 | 5.17                                 | 2.275                                     |
|                     | 5.5                             | 6.92                                 | 1966                                 | 5.30                                 | 2.304                                     |
|                     | 6.0                             | 5.07                                 | 2192                                 | 6.17                                 | 2.326                                     |
|                     | 6.5                             | 5.92                                 | 2087                                 | 6.30                                 | 2.302                                     |
|                     | 7.0                             | 3.37                                 | 2498                                 | 6.50                                 | 2.340                                     |
| CONOCO              | 5.0                             | 5.57                                 | 2477                                 | 5.83                                 | 2.329                                     |
|                     | 5.5                             | 5.03                                 | 2614                                 | 5.50                                 | 2.332                                     |
|                     | 6.0                             | 3.5                                  | 2403                                 | 5.83                                 | 2.362                                     |
|                     | 6.5                             | 3.1                                  | 2628                                 | 6.83                                 | 2.356                                     |
|                     | 7.0                             | 2.1                                  | 2767                                 | 6.33                                 | 2.366                                     |
| EXXON               | 5.0                             | 6.27                                 | 2622                                 | 5.25                                 | 2.319                                     |
|                     | 5.5                             | 5.19                                 | 2609                                 | 5.33                                 | 2.334                                     |
|                     | 6.0                             | 3.96                                 | 2787                                 | 5.80                                 | 2.343                                     |
|                     | 6.5                             | 3.17                                 | 2676                                 | 6.50                                 | 2.351                                     |
|                     | 7.0                             | 2.55                                 | 2453                                 | 7.33                                 | 2.351                                     |
| MONTANA<br>REFINING | 5.0<br>5.5<br>6.0<br>6.5<br>7.0 | 6.62<br>5.16<br>2.75<br>2.57<br>2.58 | 2887<br>2718<br>2984<br>2449<br>2446 | 6.00<br>5.67<br>6.67<br>7.50<br>6.50 | 2.307<br>2.330<br>2.371<br>2.369<br>2.345 |

UNMODIFIED ASPHALT - CENEX 85/100





## UNMODIFIED ASPHALT - CENEX 85/100





## UNMODIFIED ASPHALT - CONOCO 85/100







## UNMODIFIED ASPHALT - CONOCO 85/100



UNMODIFIED ASPHALT - EXXON 85/100









UNMODIFIED ASPHALT - EXXON 85/100





UNMODIFIED ASPHALT - MONTANA REFINING 85/100



UNMODIFIED ASPHALT - MONTANA REFINING 85/190







