analy_theta

Haodong Li

2022-11-28

1. Experiment and question

The LEADER trial is a multi-centre randomised trial to determine Liraglutide (GLP-1) effects on cardiovascular events. So the original treatment variable is Liraglutide/Placebo and outcome consists of several cardiovascular events. It is known that GLP-1 users are also often on statins and other cardiovascular drugs. In this project, we want to explore the heterogeneity of liraglutide treatment effect among concomitant medication (especially statin) users, with diabetes progression as primary outcome, cardiovascular events as second outcome.

2. Overview of data

```
outcome = 'diab'; t = 24
df <- get_data(outcome, t)</pre>
nodes <- list(W = setdiff(names(df), c("Y", "A")),</pre>
              A = 'A'
              Y = YYY
p_before = ncol(df)-2
df <- process_missing(df, nodes)$data</pre>
print(paste0("data dimension (before): n=", nrow(df), ", p=", p_before))
## [1] "data dimension (before): n=4169, p=51"
print(paste0("data dimension (after): n=", nrow(df), ", p=", ncol(df)-2))
## [1] "data dimension (after): n=4169, p=61"
# Table of Baseline Characteristics
df_w_summary <- df_w %>%
  filter(INSNVFL == FALSE) %>%
  select(-c("USUBJID", "INSNVFL")) %>%
  mutate(A = ifelse(A == 1, "Liraglutide", "Placebo"))
df_w_summary <- labelled::remove_labels(df_w_summary)</pre>
tbl <- table1(~. | A, data = df_w_summary, caption = "Baseline characteristics in LEADER")
# kable(as.data.frame(tbl), longtable=TRUE, booktabs=TRUE)
```

Table 1: Baseline characteristics in LEADER

	Liraglutide	Placebo	Overall
	(N=2038)	(N=2131)	(N=4169)
\mathbf{AGE}			
Mean (SD)	64.5 (7.22)	64.5 (7.13)	64.5 (7.17)
Median [Min, Max]	64.0 [50.0, 87.0]	64.0 [50.0, 88.0]	64.0 [50.0, 88.0]
Missing	1 (0.0%)	0 (0%)	1 (0.0%)
SEX	1 (0.070)	0 (0/0)	1 (0.070)
F	764 (37.5%)	829 (38.9%)	1593 (38.2%)
M	1274 (62.5%)	1302 (61.1%)	2576 (61.8%)
	1274 (02.370)	1302 (01.170)	2570 (01.670)
RACE	/ ~ ()	/ ~/>	/~/
ASIAN	199 (9.8%)	210 (9.9%)	409 (9.8%)
BLACK	185 (9.1%)	223 (10.5%)	408 (9.8%)
OTHER	89 (4.4%)	76 (3.6%)	165 (4.0%)
WHITE	$1565 \ (76.8\%)$	$1622 \ (76.1\%)$	$3187 \ (76.4\%)$
COUNTRY			
Africa	64 (3.1%)	86 (4.0%)	150 (3.6%)
America	956~(46.9%)	$1011 \ (47.4\%)$	1967 (47.2%)
Asia	$337\ (16.5\%)$	$330 \ (15.5\%)$	$667 \ (16.0\%)$
Europe	615 (30.2%)	644 (30.2%)	1259 (30.2%)
Pacific	66 (3.2%)	60 (2.8%)	126 (3.0%)
SMOKER			
CURRENT SMOKER	236 (11.6%)	246 (11.5%)	482 (11.6%)
NEVER SMOKED	853 (41.9%)	886 (41.6%)	1739 (41.7%)
PREVIOUS SMOKER	949 (46.6%)	999 (46.9%)	1948 (46.7%)
NYHACLAS	, ,	, ,	, ,
NYHA CLAS NA	1672 (82.0%)	1760 (82.6%)	3432 (82.3%)
NYHA CLASS I	75 (3.7%)	78 (3.7%)	153 (3.7%)
NYHA CLASS II	244 (12.0%)	244 (11.5%)	488 (11.7%)
NYHA CLASS III	47 (2.3%)	49 (2.3%)	96 (2.3%)
DIABDUR	(-, -,	- (-, -,	(
Mean (SD)	15.5 (7.91)	15.3 (8.01)	15.4 (7.96)
Median [Min, Max]	14.2 [0.100, 54.9]	14.3 [0.100, 61.0]	14.3 [0.100, 61.0]
Missing	4 (0.2%)	3 (0.1%)	7 (0.2%)
=	4 (0.270)	3 (0.170)	1 (0.270)
ANTDBFL	0.01 (1 = =04)	0== (1==04)	200 (1 2 2 (4)
Insulin-OAD	361 (17.7%)	377 (17.7%)	738 (17.7%)
Insulin + OAD(s)	$1677 \ (82.3\%)$	1754~(82.3%)	$3431 \ (82.3\%)$
$\mathbf{AHYPERFL}$			
Yes	192 (9.4%)	189 (8.9%)	381 (9.1%)
No	$1846 \ (90.6\%)$	1942 (91.1%)	$3788 \ (90.9\%)$
INCPASSN			
Mean (SD)	5.00(0.0585)	4.99(0.0717)	$5.00 \ (0.0656)$
Median [Min, Max]	5.00 [4.00, 5.00]	5.00 [4.00, 5.00]	5.00 [4.00, 5.00]
BMIBL			
Mean (SD)	32.8 (6.18)	33.0 (6.47)	32.9 (6.33)
Median [Min, Max]	32.0 [19.7, 66.5]	32.0 [18.0, 81.0]	32.0 [18.0, 81.0]
Missing	3 (0.1%)	2 (0.1%)	5 (0.1%)
PULSEBL	` -,	` ' "/	` '-'/
Mean (SD)	72.8 (11.3)	72.8 (11.6)	72.8 (11.4)
Median [Min, Max]	72.0 [37.0, 172]	72.0 [35.0, 121]	72.0 [35.0, 172]
	12.0 [01.0, 112]	12.0 [00.0, 121]	12.0 [55.0, 112]
SYSBPBL			

Mean (SD) Median [Min, Max]	136 (18.7) 135 [74.0, 222]	136 (17.9) 135 [72.5, 227]	136 (18.3) 135 [72.5, 227]
DIABPBL			
Mean (SD) Median [Min, Max]	76.1 (10.4) 76.5 [43.5, 128]	76.0 (10.3) 76.5 [38.5, 123]	76.1 (10.3) 76.5 [38.5, 128]
HBA1CBL			
Mean (SD) Median [Min, Max]	8.93 (1.61) 8.50 [5.10, 18.5]	8.84 (1.52) 8.50 [5.80, 16.7]	8.88 (1.56) 8.50 [5.10, 18.5]
HDL1BL			
Mean (SD) Median [Min, Max] Missing	1.17 (0.322) 1.13 [0.270, 3.21] 40 (2.0%)	1.16 (0.314) 1.11 [0.0800, 3.32] 33 (1.5%)	1.17 (0.318) 1.11 [0.0800, 3.32] 73 (1.8%)
LDL1BL			
Mean (SD) Median [Min, Max] Missing	2.29 (0.915) 2.12 [0.360, 8.23] 40 (2.0%)	2.30 (0.935) 2.14 [0.200, 7.93] 33 (1.5%)	2.30 (0.925) 2.12 [0.200, 8.23] 73 (1.8%)
CHOL1BL			
Mean (SD) Median [Min, Max] Missing	4.35 (1.11) 4.17 [1.86, 9.35] 40 (2.0%)	4.35 (1.15) 4.17 [1.81, 12.6] 33 (1.5%)	4.35 (1.13) 4.17 [1.81, 12.6] 73 (1.8%)
RC			
Mean (SD) Median [Min, Max] Missing	0.883 (0.507) 0.750 [-0.910, 4.87] 40 (2.0%)	0.882 (0.565) 0.750 [0.150, 11.0] 33 (1.5%)	0.883 (0.538) 0.750 [-0.910, 11.0] 73 (1.8%)
RCoverHDL			
Mean (SD) Median [Min, Max] Missing	0.864 (0.717) 0.669 [-0.820, 10.0] 40 (2.0%)	0.868 (0.800) 0.663 [0.0753, 14.7] 33 (1.5%)	0.866 (0.760) 0.667 [-0.820, 14.7] 73 (1.8%)
TRIG1BL			
Mean (SD)	2.03 (1.36)	2.03(1.65)	2.03(1.52)
Median [Min, Max] Missing	1.66 [0.440, 13.3] 40 (2.0%)	1.65 [0.360, 36.1] 33 (1.5%)	1.65 [0.360, 36.1] 73 (1.8%)
CREATBL			
Mean (SD)	92.0 (43.7)	91.1 (43.3)	91.5 (43.5)
Median [Min, Max]	81.5 [33.0, 609]	81.0 [20.0, 726]	81.0 [20.0, 726]
EGFMDRBC			
Mean (SD)	77.0(27.8)	77.7 (28.4)	77.4 (28.1)
Median [Min, Max]	76.2 [7.30, 200]	77.0 [6.80, 419]	76.5 [6.80, 419]
RETINSEV			
no retinopathy	32 (1.6%)	41 (1.9%)	73 (1.8%)
non-proliferative	435 (21.3%) 154 (7.6%)	397 (18.6%)	832 (20.0%)
proliferative retinsev NA	1417 (69.5%)	162 (7.6%) 1531 (71.8%)	316 (7.6%) 2948 (70.7%)
GERDBLFL	1417 (03.070)	1001 (11.070)	2340 (10.170)
Yes	943 (46.3%)	910 (42.7%)	1853 (44.4%)
No	1095 (53.7%)	1221 (57.3%)	2316 (55.6%)
PPIFL	1000 (00.170)	1221 (01.070)	2010 (00.070)
Yes	475 (23.3%)	495 (23.2%)	970 (23.3%)
No	1563 (76.7%)	1636 (76.8%)	3199 (76.7%)
H2BLFL	,	,	, ,
Yes	83 (4.1%)	75 (3.5%)	158 (3.8%)
No	1955 (95.9%)	2056~(96.5%)	4011 (96.2%)
MIFL			
Yes	652 (32.0%)	658 (30.9%)	1310 (31.4%)
No	1386 (68.0%)	$1473 \ (69.1\%)$	2859 (68.6%)

CEDOKEEI			
STROKEFL Yes	345 (16.9%)	370 (17.4%)	715 (17.2%)
No	1693 (83.1%)	1761 (82.6%)	3454 (82.8%)
REVASFL	1000 (00.170)	1701 (02.070)	0101 (02.070)
Yes	822 (40.3%)	900 (42.2%)	1722 (41.3%)
No	1216 (59.7%)	1231 (57.8%)	2447 (58.7%)
STENFL	1210 (001170)	1201 (01.070)	2 111 (001170)
Yes	539 (26.4%)	546 (25.6%)	1085 (26.0%)
No	1499 (73.6%)	1585 (74.4%)	3084 (74.0%)
CHDFL		(,,)	(, =,0,0)
Yes	182 (8.9%)	192 (9.0%)	374 (9.0%)
No	1856 (91.1%)	1939 (91.0%)	3795 (91.0%)
IHDFL	,	,	,
Yes	522 (25.6%)	550 (25.8%)	1072 (25.7%)
No	1516 (74.4%)	1581 (74.2%)	3097 (74.3%)
CHFFL	,	,	,
Yes	291 (14.3%)	293 (13.7%)	584 (14.0%)
No	1747 (85.7%)	1838 (86.3%)	3585 (86.0%)
KIDFL			
Yes	627 (30.8%)	623 (29.2%)	1250 (30.0%)
No	1411 (69.2%)	1508 (70.8%)	2919 (70.0%)
MICFL			
Yes	563 (27.6%)	619 (29.0%)	1182 (28.4%)
No	1475 (72.4%)	1512~(71.0%)	2987 (71.6%)
HYPFL			
Yes	488 (23.9%)	515 (24.2%)	1003 (24.1%)
No	$1550 \ (76.1\%)$	1616~(75.8%)	$3166 \ (75.9\%)$
LVSDFL			
Yes	472 (23.2%)	495~(23.2%)	967 (23.2%)
No	$1566 \ (76.8\%)$	$1636 \ (76.8\%)$	$3202\ (76.8\%)$
PADFL			
Yes	$274 \ (13.4\%)$	300 (14.1%)	574 (13.8%)
No	1764~(86.6%)	$1831 \ (85.9\%)$	$3595 \ (86.2\%)$
CVRISK			
High	1717~(84.2%)	$1762 \ (82.7\%)$	3479 (83.4%)
Medium	$321\ (15.8\%)$	369 (17.3%)	$690 \ (16.6\%)$
HBA1CGRN			
Mean (SD)	$1.56 \ (0.497)$	1.55 (0.498)	1.55 (0.497)
Median [Min, Max]	2.00 [1.00, 2.00]	2.00 [1.00, 2.00]	2.00 [1.00, 2.00]
DDURGRN			
Mean (SD)	1.68 (0.467)	1.66 (0.472)	1.67 (0.470)
Median [Min, Max]	2.00 [1.00, 2.00]	2.00 [1.00, 2.00]	2.00 [1.00, 2.00]
Missing	4 (0.2%)	3 (0.1%)	7 (0.2%)
statin_use			24.40 (== =04)
Yes	1558 (76.4%)	1591 (74.7%)	3149 (75.5%)
No	480 (23.6%)	$540 \ (25.3\%)$	$1020 \ (24.5\%)$
antihypertensives	1000 (00 104)	1881 (00.004)	2444 (02 404)
Yes	1693 (83.1%)	1751 (82.2%)	3444 (82.6%)
No	345 (16.9%)	380 (17.8%)	725 (17.4%)
betab	1100 (50 00)	1010 (55.0%)	0405 (55 504)
Yes	1186 (58.2%)	1219 (57.2%)	2405 (57.7%)
No	852 (41.8%)	912 (42.8%)	$1764 \ (42.3\%)$
minera	195 (0.007)	141 (0.007)	976 (C CM)
Yes	$135 \ (6.6\%)$	141 (6.6%)	$276 \ (6.6\%)$

No	1903 (93.4%)	1990 (93.4%)	3893 (93.4%)
adp			
Yes	1511 (74.1%)	1567 (73.5%)	3078 (73.8%)
No	527 (25.9%)	$564\ (26.5\%)$	1091 (26.2%)
vkantag			
Yes	135~(6.6%)	137 (6.4%)	272 (6.5%)
No	1903~(93.4%)	1994~(93.6%)	3897 (93.5%)
caantag			
Yes	713 (35.0%)	708 (33.2%)	1421 (34.1%)
No	1325~(65.0%)	1423~(66.8%)	2748~(65.9%)
${f thiazide}$			
Yes	393 (19.3%)	380 (17.8%)	773 (18.5%)
No	1645 (80.7%)	1751 (82.2%)	3396 (81.5%)
loopdiur			
Yes	433 (21.2%)	486 (22.8%)	919 (22.0%)
No	1605 (78.8%)	1645 (77.2%)	3250 (78.0%)

3. CATE estimation

```
# generate risk table
# risk and cate est
# temp = cbind(df, "mua_hat" = df_fit$mua_hat, "tau" = df_fit$tau) %>%
    group_by(A, statin_use) %>%
    summarise(EY = mean(mua_hat), "cate_d" = mean(tau))
#
# temp$statin_use <- as.logical(temp$statin_use)</pre>
\# cate_t1 = temp$EY[which(temp$statin_use & temp$A == 1)] - temp$EY[which(temp$statin_use & temp$A == 0]
# cate_t0 = temp$EY[which(!temp$statin_use & temp$A == 1)] - temp$EY[which(!temp$statin_use & temp$A ==
\# temp\$cate\_t = c(cate\_t0, cate\_t1, cate\_t0, cate\_t1)
# temp$cate d = rep(c(mean(temp$cate d[c(1,3)]), mean(temp$cate d[c(2,4)])), 2)
# #empirical risk
\# tmp_Y = df \%>\%
# group_by(A, statin_use) %>%
# mutate(statin_use = as.logical(statin_use)) %>%
#
  summarise(count_Y = sum(Y),
#
              group_N = n(),
#
              risk_emp = sum(Y)/n())
# temp \leftarrow left_join(temp, tmp_Y, by = c("A", "statin_use"))
cm_names <- c("statin_use", "antihypertensives", "betab", "minera", "adp",</pre>
              "vkantag", "caantag", "thiazide", "loopdiur")
get_df_risk <- function(df, df_fit, cm_names){</pre>
 df_risk = data.frame()
  for (cm in cm_names){
    temp = cbind(df, "mua_hat" = df_fit$mua_hat, "tau" = df_fit$tau) %>%
    group_by(across(all_of(c("A", cm)))) %>%
    summarise(EY = mean(mua_hat), "cate_d" = mean(tau))
    cate_t1 = temp$EY[which(temp[,cm] == "TRUE" & temp$A == 1)] -
      temp$EY[which(temp[,cm] == "TRUE" & temp$A == 0)]
    cate_t0 = temp$EY[which(temp[,cm] == "FALSE" & temp$A == 1)] -
      temp$EY[which(temp[,cm] == "FALSE" & temp$A == 0)]
    temp$cate_t = c(cate_t0,cate_t1,cate_t0,cate_t1)
```

```
temp\$cate_d = rep(c(mean(temp\$cate_d[c(1,3)]), mean(temp\$cate_d[c(2,4)])), 2)
    #empirical risk
    tmp_Y = df \%
      group_by(across(all_of(c("A", cm)))) %>%
      summarise(count_Y = sum(Y),
                group_N = n(),
                risk_emp = sum(Y)/n())
    temp <- left_join(temp, tmp_Y, by = c("A", cm))</pre>
    tmp <- temp %>% rename("risk_n" = "EY") %>%
      select(all_of(c("A", cm, "count_Y", "group_N",
                      "risk_emp", "risk_n", "cate_t", "cate_d")))
    tmp <- tmp %>% mutate(across(all_of(c(cm)), ~paste0(str_sub(., 1,1),"_", str_sub(cm, 1,6))))
    colnames(tmp) <- c("A", "subgroup", "count_Y", "group_N",</pre>
                      "risk_emp", "risk_n", "cate_t", "cate_d")
    df_risk <- rbind(df_risk, tmp)</pre>
 return(df_risk)
tmp <- get_df_risk(df, df_fit, cm_names)</pre>
tmp[, -c(7,8)] \%
 mutate(across(where(is.numeric), ~round(., 4))) %>%
 kable("latex", booktabs = T, linesep = c("", "", "", "\addlinespace"),
        caption = "Subgroup risk estimates in LEADER", align=rep('c', 6)) %>%
  # collapse_rows(columns = 1, latex_hline = "major", valign = "middle") %>%
  column spec(1:6, width = "0.6in") %>%
  kable_styling(font_size = 9)
```

Table 2: Subgroup risk estimates in LEADER

A	subgroup	count_Y	group_N	risk_emp	risk_n
0	F_statin	111	540	0.2056	0.1983
0	T_statin	300	1591	0.1886	0.1811
1	F_statin	82	480	0.1708	0.1591
1	T_statin	189	1558	0.1213	0.1408
0	F_antihy	73	380	0.1921	0.1912
0	T_antihy	338	1751	0.1930	0.1842
1	F_antihy	44	345	0.1275	0.1556
1	T_antihy	227	1693	0.1341	0.1430
0	F_betab	184	912	0.2018	0.1879
0	T_betab	227	1219	0.1862	0.1836
1	F_betab	113	852	0.1326	0.1497
1	T_betab	158	1186	0.1332	0.1419
0	F_minera	386	1990	0.1940	0.1854
0	T_{minera}	25	141	0.1773	0.1854
1	$F_{\underline{}}$ minera	256	1903	0.1345	0.1458
1	T_{minera}	15	135	0.1111	0.1362
0	F_adp	105	564	0.1862	0.1878
0	T_adp	306	1567	0.1953	0.1846
1	F_adp	70	527	0.1328	0.1494
1	T_adp	201	1511	0.1330	0.1437
0	F_vkanta	378	1994	0.1896	0.1856
0	T_vkanta	33	137	0.2409	0.1831
1	F_vkanta	254	1903	0.1335	0.1461
1	T_vkanta	17	135	0.1259	0.1322
0	F_caanta	279	1423	0.1961	0.1873
0	T_{caanta}	132	708	0.1864	0.1817
1	F_{canta}	180	1325	0.1358	0.1455
1	T_{canta}	91	713	0.1276	0.1445
0	F_{thiazi}	333	1751	0.1902	0.1842
0	T_{thiazi}	78	380	0.2053	0.1913
1	F_{-}^{-} thiazi	208	1645	0.1264	0.1446
1	T_{-}^{-} thiazi	63	393	0.1603	0.1475
0	F_loopdi	328	1645	0.1994	0.1864
0	T_loopdi	83	486	0.1708	0.1823
1	F_loopdi	214	1605	0.1333	0.1471
1	T_loopdi	57	433	0.1316	0.1378

Figure 1: CATE estiamtes

4. VTE estimation

```
# VTE
# df_fit$tau <- df_fit$mu1_hat - df_fit$mu0_hat
aipw_vte <- VTE(df_fit, method="AIPW")
tmle_vte <- VTE(df_fit, method="TMLE")
aipw_vte
##
## Call:
## VTE(data = df_fit, method = "AIPW")</pre>
```

```
##
## Estimator: AIPW
## Estimate Values:
##
          Estimate Std.Error CI_L CI_U Wald.value Wald.pval
       ## rootVTE 0.20028062 0.01158241 0.17758 0.22298215 299.0060 < 2.22e-16 ***
## VTE
      0.04011233 0.00231973 0.03557 0.04465900 299.0060 < 2.22e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
tmle_vte
##
## Call:
## VTE(data = df_fit, method = "TMLE")
## Estimator: TMLE
## Estimate Values:
##
          Estimate Std.Error CI_L CI_U Wald.value Wald.pval
       ## rootVTE 0.12140251 0.02729289 0.06791 0.17489657 19.7859 8.6618e-06 ***
## VTE
        0.01473857 0.00331343 0.00824 0.02123288 19.7859 8.6618e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

5. VIM estimation

Figure 2: VIM estiamtes