

Locality and Error Mitigation of Quantum Circuits

Quantum Wednesday

Nate Stemen

Apr 19, 2023

Today's Paper

Locality and Error Mitigation of Quantum Circuits

Minh C. Tran, ¹ Kunal Sharma, ¹ and Kristan Temme ¹

¹ IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

(Dated: March 14, 2023)

In this work, we study and improve two leading error mitigation techniques, namely Probabilistic Error Cancellation (PEC) and Zero-Noise Extrapolation (ZNE), for estimating the expectation value of local observables. For PEC, we introduce a new estimator that takes into account the light cone of the unitary circuit with respect to a target local observable. Given a fixed error tolerance, the sampling overhead for the new estimator can be several orders of magnitude smaller than the standard PEC estimators. For ZNE, we also use light-cone arguments to establish an error bound that closely captures the behavior of the bias that remains after extrapolation.

https://arxiv.org/abs/2303.06496

Review²

Zero-Noise Extrapolation

¹McDonough et al., "Automated quantum error mitigation based on probabilistic error reduction".

²Temme, Bravyi, and Gambetta, "Error Mitigation for Short-Depth Quantum Circuits".

Review²

Zero-Noise Extrapolation

¹McDonough et al., "Automated quantum error mitigation based on probabilistic error reduction".

²Temme, Bravyi, and Gambetta, "Error Mitigation for Short-Depth Quantum Circuits".

Review²

Zero-Noise Extrapolation

- $\langle A(\lambda) \rangle = \operatorname{tr}[A\rho(\lambda)]$
- biased estimator, but no knowledge of noise model needed
- error bounded by (Richardson) extrapolation error

 $^{^{1}}$ McDonough et al., "Automated quantum error mitigation based on probabilistic error reduction".

²Temme, Bravyi, and Gambetta, "Error Mitigation for Short-Depth Quantum Circuits".

Zero-Noise Extrapolation

Probabilistic Error Cancellation

- $\langle A(\lambda) \rangle = \operatorname{tr}[A\rho(\lambda)]$
- biased estimator, but no knowledge of noise model needed
- error bounded by (Richardson) extrapolation error

 $^{^{1}}$ McDonough et al., "Automated quantum error mitigation based on probabilistic error reduction".

²Temme, Bravvi, and Gambetta, "Error Mitigation for Short-Depth Quantum Circuits".

Zero-Noise Extrapolation

Probabilistic Error Cancellation

- $\langle A(\lambda) \rangle = \operatorname{tr}[A\rho(\lambda)]$
- biased estimator, but no knowledge of noise model needed
- error bounded by (Richardson) extrapolation error

 $^{^{1}}$ McDonough et al., "Automated quantum error mitigation based on probabilistic error reduction".

²Temme, Bravyi, and Gambetta, "Error Mitigation for Short-Depth Quantum Circuits".

Zero-Noise Extrapolation

- $\langle A(\lambda) \rangle = \operatorname{tr}[A\rho(\lambda)]$
- biased estimator, but no knowledge of noise model needed
- error bounded by (Richardson) extrapolation error

Probabilistic Error Cancellation

- $\langle A \rangle = \mathrm{tr}[A\,\mathcal{U}(\rho)] = \sum_{\vec{\alpha}} \eta_{\vec{\alpha}}\,\langle A_{\vec{\alpha}} \rangle_{\mathrm{noisy}}$
- unbiased estimator, but requires detailed knowledge of noise model
- more efficient methods exist¹

 $^{^{1}}$ McDonough et al., "Automated quantum error mitigation based on probabilistic error reduction" .

²Temme, Bravyi, and Gambetta, "Error Mitigation for Short-Depth Quantum Circuits".

Key Concepts

Local Observable

- 1. An *observable* is a thing that we can design an experiment to measure.
- 2. Mathematically, this means a self-adjoint, or Hermitian, operator $A=A^{\dagger}.$
- Local means A is supported one a subset of the quantum systems at hand.
- 4. Examples:

Light Cone

1. something else

Assumptions

1.

Numerical Results

Numerical Results

Results

$$\hat{o}_z^{\mathsf{LoPEC}}(\boldsymbol{\sigma}) \stackrel{\mathsf{def}}{=} o_z(\boldsymbol{\sigma}) \prod_{(i,j) \in \mu} \gamma_{i,j} \sigma_{i,j}$$
$$\operatorname{Var} \left[\hat{o}_z^{\mathsf{LoPEC}} \right] = \mathcal{O} \left(\exp \left[4 \sum_{(i,j) \in \mu} \lambda_{i,j} \right] \right)$$

Do we want these techniques in Mitiq?

- 1. Does this slot into our existing execute_with_pec function?
- 2. How does this perform as an observable ${\cal O}$ go from local to "unlocal".

and then...

V. CONCLUSIONS

In this paper, we analyzed and improved errormitigation techniques for measuring expectation values of local observables. Our results directly improve the performance of near-term algorithms, which heavily rely on substantial mitigation of errors in quantum devices. In particular, one can use our results and similar light-cone arguments to combine error mitigation with other techniques, including circuit knitting and classical shadow tomography.

