

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: G01M 3/22, 3/14, 3/04

A1

(11) International Publication Number:

WO 99/19706

(43) International Publication Date:

22 April 1999 (22.04.99)

(21) International Application Number:

PCT/GB98/03010

(22) International Filing Date:

8 October 1998 (08.10.98)

(81) Designated States: AU, CA, DE, DK, GB, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

___,__,

(30) Priority Data:

08/949,124

10 October 1997 (10.10.97) US

Published

With international search report.

(71) Applicant (for all designated States except US): APV NORTH AMERICA, INC. [US/US]; 9525 W Bryn Mawr Avenue, Rosemont, IL 60018 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SHAW, Jonathan, Graham [GB/US]; 203 Ann Street, Goldsboro, NC 27534-8915 (US). DALL, Stephan [DK/DK]; Brakkervej 29, DK-6040 Egtved (DK).
- (74) Agent: BARKER BRETTELL; 138 Hagley Road, Edgbaston, Birmingham B16 9PW (GB).

(54) Title: A METHOD OF LEAK TESTING AN ASSEMBLED PLATE TYPE HEAT EXCHANGER

(57) Abstract

A method of positively locating the source of leaks in the heat transfer surface area of the plate heat exchanger between separate product and service fluid paths arranged in an intimitate heat exchange relationship is disclosed. The method comprises: circulating a solution through one fluid path of the exchanger, the solution consisting of solvent with appreciable vapor pressure under the chosen test conditions; providing a gas flow across the other fluid path of the exchange surface by means of forced or natural convection; applying a positive pressure differential between solution and gas stream; and detecting visually the location of deposited solutes on or around the other fluid path.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under th

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑŬ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	re	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazîl	n.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	rr	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP:	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PΤ	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		•
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
					~*		

Singapore

Liberia

Estonia

A METHOD OF LEAK TESTING AN ASSEMBLED PLATE TYPE HEAT EXCHANGER

Technical field of the invention

5

15

20

The invention relates to the leak testing of an assembled plate type heat exchanger. The method used serves to pinpoint accurately the precise source of all cross leaks in the heat transfer surface.

10 Summary of the invention

According to our invention a method of positively locating the source of leaks in the heat transfer surface area of a plate heat exchanger between separate product and service fluid paths arranged in an intimate heat exchange relationship comprises:

circulating a solution through one fluid path of the exchanger, the solution consisting of a solvent with appreciable vapor pressure under the chosen test conditions;

providing a gas flow across the other fluid path of the exchange surface by means of forced or natural convection;

applying a positive pressure differential between solution and gas stream; and

detecting visually the location of deposited solutes on or around the other fluid path

25

30

Specific Description

The following description and accompanying drawings referred to therein are included by way of non-limiting example to illustrate how the invention may be utilized.

Figure 1 illustrates a diagrammatic representation of a dairy pasteurizing thermal section undergoing testing in accordance with the method of this invention.

5

10

15

Figure 1 shows a multipass heat exchange section within a pasteurizer to be leak tested along with a balance tank (TK), pump (P1) and various valves. The method outlined can be applied to any individual heat exchange section within a plate exchanger or to all thermal sections simultaneously if piped appropriately. The term "test section" can thus be interchanged with the term "complete plate heat exchanger" in the following description. Reference is made to the two sides of the heat transfer surface which are designated as product (A) or service (B) and correspond to the two normally separated fluid flow paths. The designation of which path fluid path is A or B is totally arbitrary and therefore interchangeable.

In the special case of a duo-safety type plate heat exchanger the two fluid paths, product (A) and service (B) are separated by a third leakage fluid path (C) between the two sides of the heat transfer surface normally separating side (A) and (B). For the purposes of this leak test described below a duo-safety plate can be examined by considering side (A) and/or side (B) to constitute the single fluid path side (A) and leakage path (C) to be the service side (B).

25

20

This test is normally applied to a plate heat exchanger which is already known to have cross leaks in order to locate accurately all defective components.

The test section is first thoroughly cleaned in place using the existing CIP procedures adopted by the end user to normally clean his equipment, it is then flushed with clean water to remove trace wash chemicals.

5

10

15

20

25

30

The next step is to substantially drain the service side (B) of the test section sufficient to permit a gaseous flow through this side. In rare cases this may necessitate the exchanger being opened depending on the plate type and pass arrangement employed. If the test section is actually opened then a quick visual inspection of the plates can be conducted to locate and remove any plates with obvious defects. For a duo-safety type plate side (B) is the leakage path and therefore normally self draining and the forced drainage step can be omitted. For any plate type heat exchanger using elastomeric gaskets, the plate pack pitch and thereby sealing gasket compression can at the discretion of the operator be relaxed to help improve the crack detection in areas of the surface which could harbor a crack otherwise sealed by fully compressed gasket.

After drainage the assembled plate heat exchanger is connected on the service side (B) at point (D) to a process air supply or any other gaseous supply via regulator (R), the other connection point (E) being left open via a valve (V2). The gas used is usually air. The regulator is adjusted to allow a small continuous gas flow rate through this service side (B). Some exchangers may already permit gas circulation across one side of the exchanger by being substantially open by plate design to the surroundings. For example, in the case of a duo-safety-plate, the edge of the leakage path (B) is exposed to natural circulation of ambient air.

The next step is not essential and at the discretion of the tester can be omitted. Its function is only to obtain qualitative information about the

20

25

30

magnitude of cross leakage expected and thereby indicate a suitable value for the back pressure to be applied in the next step. A simple pressure test on the gas side (B) is conducted by closing the valve (V2) and adjusting the regulator until the desired gas pressure level is reached, whereupon (V1) is closed. Observation of the pressure with time can then be made using a manual gauge. After observation, side (B) is depressurized and (V1,V2) opened.

The next step is to fill the product side of the system with clean solvent, normally water, or pre-made up solution and circulate this by means of a pump (P1) from a ballast tank (TK) through the product side of the test section and back to the tank so forming a complete circulation loop. In the case of a pasteurizer the existing product side or CIP plant equipment may be effectively utilized for this purpose. The liquid flow rate should be such as to substantially expel all trapped gases held within the product side (A) of the test section but not in excess.

The circulating solvent or solution in the ballast tank may need to be heated above ambient temperature to a test value depending on solvent choice. If the solvent is water, the temperature should be above ambient.

Heating can be accomplished using a "drop in" type electric heater or steam coil if process steam is available. Circulation is continued for several minutes to promote drying of the service side (B) of the test section. Solvent vapor is removed from the side (B) in the gas stream and the surface dried except at any points of cross leakage.

Pump (P1) is now stopped and a suitable solute (e.g. Potassium sulphate or nitrate) added into the ballast tank. If not using a pre-made up solution then enough solute is dissolved to reach the desired test

concentration. Pump (P1) is periodically turned on and off to move solution through the test section and help dissolve the solute as required. In addition to the solute a small quantity of fluorescent or highly colored chemical can be added, to aid later in detection under UV or visible light.

5

The pump (P1) is then run continually and the desired flow established. Adjustments are then made to the outlet valve (V2) at connection (E) to produce a static back pressure on the hot solution side (A).

10

The back pressure ensures a positive pressure differential between the solution side (A) and air side over the entire heat exchange surface of the test section. At the leak detection pressure, the solution is forced through any small plate defects within the heat transfer area and into the side (B) of the exchanger carrying dissolved solute as it passes. The hot solution evaporates into the gas stream concentrating and depositing the solute. For conventional heat exchangers the solute is deposited in the immediate proximity to the leakage site but for a duo-safety plate type until the solute will be concentrated around the exposed leakage path edge or plate periphery.

20

25

30

15

Solvent vapor is removed through the air stream and out at connection (E) or in case of duo-safety plates by natural convection from the plate edge. The deposited solute forms a continually growing surface area from which solvent can evaporate and the underlying lattice structure of the solute acts to locally lower surface tension and help draw solution through the crack. (i.e. promote wicking action.) The rate under which solution is drawn through the defect can increase as the evaporative surface area of the solute deposit increases, thus accelerating the rate of solute formation making the test highly sensitive. Rate of cross leakage

30

once the process is initiated by the test pressure differential becomes fairly insensitive to the magnitude of the differential pressure applied as solute tends to decrease the cross sectional area for flow from the leakage path. This process helps to prevent solute deposits forming away from the actual end of the leakage path so helping to pin point exact locations. In the case of duo-safety plates solute is formed away from the actual site of leakage so in this instance will not accurately pinpoint the site of failure.

Under the test conditions the fluorescent or colored agent is concentrated on the bright solute surface which by virtue of increased contrast makes the presence of the leakage path highly visible. The crystal structure of the solute when covered with a fluorescent agent can serve to concentrate the light emitted making the solute appear to shine more brightly than if only the dye were present alone. The synergistic action of solute and fluorescent agent makes detection of even very small solute deposits possible.

In a modification of the process described above, at one side (A) of the plate heat exchanger a fluid (X) is put on overpressure by circulation over a balance tank to ensure that all air has been removed from the plate heat exchanger. Circulation can be stopped, but static pressure must be held on side (B). At side (B) a fluid (Y) is entered in a similar manner, but it is essential to ensure that side (B) is at a lower pressure than side A.

A small quantity of fluid (X) will be forced into side (B) and a reaction between the two fluids at the location of any crack or cracks will take place. The reaction will remain on the location to ensure easy visual identification after disassembly of the plate heat exchanger.

The processes described above have the advantage that testing of the plates for leakage is achieved without dismantling gaskets prior to testing.

5

In a traditional method end plate is tested one-by-one and much more time is consumed since each plate is tested individually using penetrant liquids which are difficult and expensive to dispense.

CLAIMS

1. A method of positively locating the source of leaks in the heat transfer surface area of a plate heat exchanger between separate product and service fluid paths arranged in an intimate heat exchange relationship the method comprises:

circulating a solution through one fluid path of the exchanger, the solution consisting of a solvent with appreciable vapor pressure under the chosen test conditions;

providing a gas flow across the other fluid path of the exchange surface by means of forced or natural convection;

applying a positive pressure differential between solution and gas stream; and

detecting visually the location of deposited solutes on or around the other fluid path.

15

20

5

- 2. A method according to claim 1, in which a duo-safety type plate heat exchanger is tested, two fluid paths product (A) and service (B) being separated by a third leakage fluid path (C) existing between the two sides of the heat transfer surface separating side (A) and (B), a duo-safety plate being examined by considering side (A) and/or side (B) to constitute the fluid path product side (A), and service side (B) to be the leakage path (C).
- 3. A method according to claim 1 or claim 2 in which the heat exchanger is a plate type exchanger, said plate exchanger being of the fully gasketed or welded plate pair type construction.
 - 4. A method according to claim 1 or claim 2 in which the heat exchanger is a shell and tube exchanger.

- 5. A method according to any preceding claim, in which enhanced detection of cracks is achieved by relaxing the compressed pitch of a gasketed plate type heat exchanger.
- 5 6. A method according to any of claims 1 to 4, in which enhanced detection of the presence of solute deposits is made by viewing in presence of ultra violet (UV) light.
- 7. A method according to any preceding claim, in which the detection sensitivity of rate of solution cross leakage is increased by addition of surfactant agents.
 - 8. A method according to any of claims 1 to 6, in which the leak detection sensitivity is increased through use of a non steady state applied differential pressure.
 - 9. A method according to any preceding claim, in which the gas flow across the non solution side is replaced by a different solvent and/or solute to that used on side (A), such that when solution (A) mixes with the solution from side (B) it reacts chemically to form an insoluble product in the solvent used on side (B) and which is deposited in and around the plate defect.
- 10. A method according to claim 9, in which the product formed is
 visually obvious when the surface of the plates are inspected in ambient or UV light condition.
 - 11. A method according to any preceding claim, in which the solution includes a fluorescent component.

20

WO 99/19706 PCT/GB98/03010

10

12. A method according to any of claims 1 to 10, in which the solution includes a colored dye component.

1/1

Fig. 1

PCT/GB 98/03010 CLASSIFICATION OF SUBJECT MATTER C 6 G01M3/22 G01M A. CLASS G01M3/14 G01M3/04 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 G01M Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 3 Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Α US 5 170 840 A (GRUNWALD JAMES L) 1,12 15 December 1992 see column 1, line 52 - column 2, line 31 Α EP 0 597 659 A (NALCO CHEMICAL CO) 1,9-11 18 May 1994 see the whole document Α WO 95 16900 A (SOMERSET TECHNICAL LAB LTD 1.2 ;BOWLING MICHAEL (GB)) 22 June 1995 see claims; figures 1,2 Further documents are listed in the continuation of box C. Χ Patent family members are listed in annex. Special categories of cited documents: "I" later document published after the international filing date "A" document defining the general state of the art which is not considered to be of particular relevance or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docucitation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 23 December 1998 05/01/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Zafiropoulos, N

Fax: (+31-70) 340-3016

information on patent family members

Int Atlonal Application No PCT/GB 98/03010

Patent document cited in search report		- Publication date			atent family member(s)	Publication date	
US	5170840	Α	15-12-1992	NONE			
EP	0597659	Α	18-05-1994	US	5304800 A	19-04-1994	
				AT	166719 T	15-06-1998	
				BR	9304674 A	01-11-1994	
				CA	2102338 A	11-05-1994	
				DE	69318803 D	02-07-1998	
				DE	69318803 T	22-10-1998	
				ES	2118908 T	01-10-1998	
				JP	6281528 A	07-10-1994	
				MX	9306984 A	31-01-1995	
				US	5416323 A	16-05-1995	
WO	9516900	Α	22-06-1995	AU	697251 B	01-10-1998	
				. AU	1198695 A	03-07-1995	
				BR	9408312 A	26-08-1997	
				CA.	2179164 A	22-06-1995	
				CN	1142866 A	12-02-1997	
				EP	0734511 A	02-10-1996	
				FI	962456 A	29-07-1996	
				GB ·	2291192 A,B	17-01-1996	
				HK	209696 A	06-12-1996	
				JP	9506707 T	30-06-1997	
				NO	962446 A	08-08-1996	
				NZ	277092 A	27-04-1998	
				NZ	329918 A	27-04-1998	