Fax: 7038946430

P. 03 RECEIVED CENTRAL FAX CENIER AUG 2 5 2010

The state of the state of the state of the state of

Application of Hindrik Willem DE VRIES et al. Application S.N.: 10/584,075

Please amend the claims as follows:	. :				
1. (Original) Method of removing contaminants from	om a surface of a substrate by	<u>, </u>			
subjecting said substrate surface to an atmospheric pressur	re glow plasma generated in	\mathbf{a}_{\perp}			
discharge space comprising one or more electrodes, where	ein said plasma is generated l	ÿ 	gamp t gap (····	•
applying an alternating plasma energizing voltage to said	electrodes causing a plasma	urrent		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
and a displacement current, and wherein said plasma is sta	abilised by controlling said			:	
displacement current during plasma generation such that n	nodification of properties of	said) in marke market	,	
substrate surface is prevented.	- *1 				•
·				•	
2. (Original) Method according to claim 1, wherein	n said step of controlling said	l * ·			
displacement current comprises providing a relative decre	ase of said displacement cur	ent duri	ng	**************************************	••
plasma generation.	•				
·					
3. (Original) Method according to claim 2, wherein	n said relative decrease of sa	ig	98 9 94 h · · · · · · · · · · · · · · · · · ·	· ·	
displacement current is provided in fractions of a microse	cond, and wherein said relati	ve			•
decrease of said displacement current is at least 100% in a	a fraction of a microsecond.				ļ

CLAIMS

- 4. (Previously Presented) Method according to claim 1, wherein removing of said contaminants is performed in the presence of a gaseous substance or mixture of gasseous substances in said discharge space.
- 5. (Original) Method according to claim 4, wherein said gaseous substance or mixture of gaseous substances comprises at least one of a group comprising helium, argon, oxygen, nitrogen, carbon dioxide, ammonia, hydrogen, mixtures of oxygen with argon, mixtures of oxygen with helium, or mixtures of oxygen with argon and helium.

Application of Hindrik Willem DE VRIES et al. Application S.N.: 10/584,075

- 6. (Previously Presented) Method according to claim 1, wherein said surface of said substrate comprises at least one transparent conductive oxide.
- 7. (Previously Presented) Method according to claim 6, wherein said transparent conductive oxide comprises at least one of a group comprising indium tin oxide, tin oxide, indium oxide, zinc oxide, indium oxide, cadmium tin oxide, cadmium oxide, gallium oxide, and combinations thereof.
- 8. (Previously Presented) Method according to claim 6, wherein said at least one transparent conductive oxide is coated on a dielectric or metal surface.
- 9. (Previously Presented) Method according to claim 1, wherein said displacement current is controlled using controlling means, and wherein said controlling means comprises at least one inductor.
- 10. (Original) Method according to claim 9, wherein said at least one inductor comprises at least one of a group comprising a matching coil operated substantially in an unsaturated mode, and a choke coil operated in a saturated mode.
- 11. (Previously Presented) Method according to claim 1, wherein said displacement current is controlled using controlling means, wherein said controlling means comprises pulse generator means providing voltage pulses superimposed on said energising voltage.
- 12. (Previously Presented) Method according to claim 2, wherein said plasma comprises plasma pulse having an absolute pulse maximum, and wherein said displacement current is controlled by controlling said energizing voltage such that said relative decrease of said displacement current is provided before said pulse maximum.

Fax:7038946430

Application of Hindrik Willem DE VRIES et al. Application S.N.: 10/584,075	
13. (Original) Method according to claim 12, further com	aprising a step of synchronizing
said relative decrease of said displacement current with the onset	
14. (Original) Method according to claim 12, wherein sai	id energizing voltage is
controlled such that said relative decrease of said displacement c	current is provided before the
onset of said plasma pulse.	
15. (Previously Presented) Method according to claim 2,	wherein said plasma comprises
plasma pulse having an absolute pulse maximum, and wherein sa	aid displacement current is
controlled by controlling said energizing voltage such that said re	elative decrease of said
displacement current is provided after said pulse maximum.	· · · · · · · · · · · · · · · · · · ·
16. (Original) Method according to claim 15, further com	prising a step of synchronizing
said relative decrease of said displacement current with plasma is	nstabilities after said pulse
maximum.	
17. (Previously Presented) Method according to claim 9,	wherein said at least one
inductor comprises a choke coil operated in a saturated mode du	ring said plasma pulse after said
pulse maximum.	
•	
18. (Previously Presented) Method according to claim 1	wherein said energizing voltage
is shaped such that said displacement current substantially comp	
·	•
19. (Previously Presented) Method according to claim 1,	wherein said substrate surface is
moved through said discharge space.	
20. (Original) Method according to claim 19, wherein sai	id energizing voltage is an
alternating voltage operated at a frequency in a range of 1 kHz a	and 1 MHz.
4	· · · · · · · · · · · · · · · · · · ·

Application of Hindrik Willem DE VRIES et al. Application S.N.: 10/584,075

- 21. (Previously Presented) Method according to claim 1, wherein at least one of said electrodes is covered by a dielectric material.
- 22. (Original) Apparatus for removing contaminants from a surface of a substrate by subjecting said substrate surface to an atmospheric pressure glow plasma, comprising a discharge space, wherein said discharge space comprises one or more electrodes, means for generating said atmospheric pressure glow plasma in said discharge space using said electrodes, wherein means for generating said plasma comprise means for applying an AC plasma energizing voltage to said electrodes for causing a plasma current and a displacement current, wherein said apparatus further comprises means for controlling said displacement current during plasma generation for stabilising said plasma such that modification of properties of said substrate surface is prevented.
- 23. (Original) Apparatus according to claim 22, wherein said means for controlling said displacement current are arranged for providing a relative decrease of said displacement current during plasma generation.
- 24. (Previously Presented) Apparatus according to claim 22, wherein said means for controlling said displacement current comprises at least one of a group comprising an inductor, a matching coil arranged for being operated substantially in an unsaturated mode during plasma generation, a choke coil arranged for being operated in a saturated mode during plasma generation, and pulse generator means providing voltage pulses superimposed on said energising voltage.
- 25. (Previously Presented) Apparatus according to claim 22, wherein at least one of said electrodes is covered by a dielectric material.

Application of Hindrik Willem DE VRIES et al. Application S.N.: 10/584,075	
26. (Previously Presented) Apparatus according to cla	aim 22, wherein said means for
generating said plasma are arranged for generating at least or	ne plasma pulse having a pulse
maximum, and wherein said means for controlling said displa	
controlling said displacement current after said pulse maximu	
27. (Original) Apparatus according to claim 26, where	ein said controlling means
comprises a choke coil arranged for being operated in a satur	ated mode during plasma
generation, and wherein said choke coil is arranged for being	in a saturated state during said
plasma pulse after said pulse maximum.	
28. (Previously Presented) Apparatus according to cla	im 22, wherein said means for
generating said plasma are arranged for generating at least on	ne plasma pulse having a pulse
maximum, and wherein said means for controlling said displa	acement current are arranged for
controlling said displacement current before said pulse maxir	•
29. (Previously Presented) Apparatus according to cla	im 22, further comprising means
for moving said substrate surface through said discharge space	