<u>Claims</u>

1 2	In a multicarrier communication system in which a signal to be transmitted comprises
3	data bits to be converted into a symbol modulated by each subcarrier of the signal prior to
4	transmission on a channel, a method for minimizing a peak to average power ratio while
5	minimizing introduction of errors into the signal to be transmitted:
6	sampling the symbols to be transmitted of a frame;
7	compare magnitudes of the samples of the frame to a predetermined threshold to
8	determine whether sample magnitudes in the frame violate the
9 □	predetermined threshold, the predetermined threshold being selectable to
4 0	control the number of samples violating the threshold;
11	responsive to determining a sample magnitude does violate the predetermined
12	threshold, applying a differentiable penalty function to the samples having
字 : 13 : 宣	magnitudes exceeding the predetermined threshold;
	computing a net penalty function value, the net penalty function value responsive
15	to the individual penalty function values computed for the samples having
16	magnitudes exceeding the predetermined threshold;
17	computing a gradient vector responsive to the net penalty function value;
18	determining a direction of the gradient vector;
19	determining an upper limit correction value for each symbol, the upper limit
20	correction value being selectable to control an amount of signal to noise
21	ratio deterioration;

- applying a correction to the symbols to be transmitted in a direction opposite to 22 the direction of the gradient vector of a magnitude not exceeding the 23 determined correction values for each symbol; and transmitting the corrected symbols to the channel.
 - The method of claim 1 wherein determining an upper limit correction value for each 2. symbol, the upper limit correction value further comprises:
- selecting a correction value for a symbol as a value less than the interpoint 4 distance to ensure that the symbol is not mistaken for other symbols.

computing an interpoint distance between symbols;

The method of claim 1 wherein applying a differentiable penalty function to the samples 3. having magnitudes exceeding the predetermined threshold comprises: applying the function:

$$h(x[k]) = \begin{cases} (x[k] - T)^{2m} & \text{if } x[k] \ge T \\ 0 & \text{if } |x[k]| \le T \\ (x[k] + T)^{2m} & \text{if } x[k] \le -T \end{cases}$$

2

3

9

10

1

where m is a positive integer that decides the severity of penalty, T is the predetermined threshold, x is the frame of data symbols expressed by: X = $(r_0, r_1 \exp(j\theta_1), r_2 \exp(j\theta_2), \dots, r_{N/2-1} \exp(j\theta_{N/2-1}), r_{N/2})$, where r_i and θ_i denote the magnitude and phase of symbol in channel i, and k is the number of the symbol.

The method of claim 3 wherein the net penalty function comprises: 4.

$$f(x) = \sum_{k=0}^{N-1} h(x[k])$$

1 5. The method of claim 4, wherein the gradient vector is computed as:

$$\frac{\partial f}{\partial r_{i}} = \sum_{k=0}^{N-1} \frac{dh(x[k])}{dx[k]} \cos\left(\frac{2\pi ki}{N} + \theta_{i}\right); i \in \{1, ..., N/2 - 1\}$$

$$\frac{\partial f}{\partial r_{0}} = \sum_{k=0}^{N-1} \frac{dh(x[k])}{dx[k]}; \frac{\partial f}{\partial r_{N/2}} = \sum_{k=0}^{N-1} \frac{dh(x[k])}{dx[k]} \cos(\pi k)$$

$$\frac{\partial f}{\partial \theta_{i}} = -r_{i} \sum_{k=0}^{N-1} \frac{dh(x[k])}{dx[k]} \sin\left(\frac{2\pi ki}{N} + \theta_{i}\right); i \in \{1, ..., N/2 - 1\}$$

- The method of claim 1 wherein the gradient vector is computed only as a function of the 1 6. magnitude of the sample values.
 - The method of claim 1 wherein computing a net penalty function value comprises adding 7. together the individual penalty function values computed for the samples having magnitudes exceeding the predetermined threshold to generate the net penalty function value.
 - In a multicarrier communication system in which a signal to be transmitted comprises 8. data bits to be converted into a symbol modulated by each subcarrier of the signal prior to transmission on a channel, for a signal having a single peak in a frame, a method for minimizing
 - a peak to average power ratio while minimizing introduction of errors into the signal to be 4
 - 5 transmitted:

©2

3

- sampling the symbols to be transmitted of the frame; 6
- compare magnitudes of the samples of the frame to a predetermined threshold to 7
- determine whether sample magnitudes in the frame violate the 8

9	predetermined threshold, the predetermined threshold being selectable to
10	control the number of samples violating the threshold;
11	determining an upper limit correction value for each symbol, the upper limit
12	correction value being selectable to control an amount of signal to noise
13	ratio deterioration;
14	computing a peak reduction kernel responsive to the upper limit correction values;
15	responsive to determining a sample magnitude does violate the predetermined
16	threshold, applying the peak reduction kernel to the sample to reduce the
17	peak of the frame; and
48 48 48	transmitting the modified symbol.
日 48 日 1 日 1 1 2	The method of claim 8 wherein computing a peak reduction kernel responsive to the upper limit correction values comprises:
5 3	determining a phase component and an amplitude component of the upper limit
53 10 10 10 10 10 10 10	correction values; and
<u>ا</u> ا	setting the phase component of the upper limit correction values to zero to ensure
6	that the peak reduction kernel has its peak value at the first sample of the
7	frame.
1	10. The method of claim 8 wherein applying the peak reduction kernel to the sample to
2	reduce the peak of the sample comprises:
3	rotating the peak kernel by amount to ensure a peak of the peak reduction kernel
4	coincides with a peak of the frame;

5	determining whether the peak of the kernel has a sign equal to a sign of the peak
6	of the frame;
7	responsive to the signs of the peaks of the kernel and the frame being equal,
. 8	multiplying the peak of the frame by minus one; and
1/1/9	adding the peak of the kernel to the samples to reduce the peak of the frame.
<i>J</i> * 1	11. The method of claim 7 in a system in which more than one peak may be present per
2	frame, comprising the steps of:
3	responsive to determining that a sample magnitude exceeds the predetermined
5 4	threshold, applying the peak kernel to the sample, wherein the peak kernel
5 5 5 6	applied for each sample has a magnitude scaled relative to an extent the
<u>–</u> 6	sample magnitude exceeds the predetermined threshold.
<u>.</u>	1
	12. The method of claim 11 wherein the scaling factors are chosen to ensure a sum of the
2	magnitudes of the kernels applied is equal to one.