Experiment 10

Aim: You have abusiness with several offices; you want to lease shone lines to connect them up with each other; and the shone company charges diff amounts of money to connect different poins of cities you want a set of lines that connects all your offices with a minimum total cost. Solve the problem by suggesting appropriate data stouctures.

Theory's

Prim's algorithm to find minimum cost spanning tree (as kouskal's algorithm) reses the greedy approach.

Poim's algorithm shapes a similarity with the st shortest forth first algorithm.

Boim's algorithm in contrast with Kouskal's algorithm, treats the nodes as a single tree of Keeps on adding new nodes to the spanning tree From the given graph.

To contrast with Kouskal's algorithm and to understand Poin's algorithm better, we shall use the same

ex:

A spanning tree is a subset of Graph 61, which has all the vertices covered with minimum fromible no. of edges. Hence, a spanning tree does not have cycle and it connot be disconnected.

By this definition, we can draw a conclusion that every connected & rendirected lyruph G has at least one spanning tree. A disconnected graph does not have any spanning tree, as it connot be spanned to all its vertices.

Page No.:	VOUVA
Date:	6

Thus, we can conclude that spanning trees are a subset of connected Graph to 4 disconnected graphs do not have spanning tree.

Application of Spanning Tree

Spanning tree is basically used to find a minimum path to connect all nodes in a graph. Common application of spanning are.

· Gvil Network Planning

· Computer network Routing Protocol

· Chuster An alysis.

Let us rendentand this through a simall ex. Consider, city network as a huge graph and now plans to deploy telephone lines is such a way that in minimum lines we can connect to all city nodes. This is whose the spanning tree comes into picture.

Minimum Spanning Tree (MST)

In a weighted graph, a minimum spanning tree that has minimum weight than all other spanning trees of the same graph. In real world situations, this weight can be measured as distance, congestion, traffic land or any arbith arbitrary value denoted to the edges.

Minimum Spanning - Tree Algorithm
We Shall learn about two most important spanning tree algorithm here.

· Krushal Algorithm.

· Prim's Algorithm.

Stop- Remove all loops & havallel edges.

Resp the one which has the least coast associated & semove all others.

Step 2 - Choose any arbitrary nodes as root node.

In the case, we choose I node as the root node of Prim's sparning tree. This node is at arbitrarily chosen, Is any node can be the root node. One may wonder why any video can be a root node. So the answer is, in the spanning tree all the nodes of a graph are included & because it is connected then there must be at least one edge, which will join it to the rest of the tree.

Step-3 - Check outgoing edges & select the one with less cost

After choosing the root nodes, we see that S, A&S, C are two edges with weight 748, respectively. We choose the edge S,A as it is I ener than the other.

Now, the tree S-7-A is treated as one node of we check for all edges going out from it. We select the one which has the lowest coast of include it in the tree.

After this step, S-7-A-3-c tree is formed. Now we'll again treat it as a node of will check all the edges again. However, we will choose only the least cost edges. In this case, (-3-) is the new edge, which is less than other edges cost 8, 6, 4, etc.

After adding node D to the spanning tree, we now it have two edges going.
Out of it having the same coas cost, i.e. D-2 - T & B2+ D-2-D. Thus, we
can add either one. But the next step will again yield edges 2 as the least want
Hence, we are showing a spanning tree with both edges included.

We may find that the output sparning tree of the same graph using two different algorithms is some.