

Yingyu YY Hu¹, Zoe V Finkel¹

¹Dalhousie University

Works for me

This protocol is published without a DOI.

© Total RNA and DNA in Microalgae V.2

Oct 15, 2020

Marine Microbial Macroecology Lab Tech. support email: ruby.hu@dal.ca

ARSTRACT

Here we describe a protocol for extracting and quantifying bulk RNA and DNA from microalgae, which is adapted from Berdalet E. et al. (2005).

RNA and DNA are extracted from microalgae samples and then quantified by fluorochrome SYBR Green II.

Berdalet E, Roldán C, Olivar MP, Lysnes K. Quantifying RNA and DNA in planktonic organisms with SYBR Green II and nucleases. Part A. Optimisation of the assay. Scientia Marina. https://doi.org/10.3989/scimar.2005.69n11

Berdalet E, Roldán C, Olivar MP. Quantifying RNA and DNA in planktonic organisms with SYBR Green II and nucleases. Part B. Quantification in natural samples. Scientia Marina. https://doi.org/10.3989/scimar.2005.69n117

PROTOCOL CITATION

Yingyu YY Hu, Zoe V Finkel 2020. Total RNA and DNA in Microalgae. protocols.io https://protocols.io/view/total-rna-and-dna-in-microalgae-bmdsk26e Version created by Yingyu Hu

KEYWORDS

RNA, DNA, SYBR Green II, DNase, RNase, microalgae, fluorescence

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Sep 15, 2020

LAST MODIFIED

Oct 15, 2020

PROTOCOL INTEGER ID

GUIDELINES

The optimized linear range in this assay for DNA is $0\sim100$ ng/mL and RNA is $0\sim300$ ng/mL in the microplate, respectively. Samples are diluted to 1/40 in the assay, therefore, maximum DNA and RNA required in the assay is around 4 ug and 12 ug per sample. Assuming total DNA and RNA is 1% and 5.7% of total biomass at replete condition, carbon per sample required in this assay is about 80 ug.

Microalgae samples are collected on polycarbonate filter and kept frozen under -80 °C.

STEPS MATERIALS

NAME	CATALOG #	VENDOR
Nuclease decontamination solution	11-05-03-01	IDT
Ribonuclease A from bovine pancreas	R6513-50MG	Sigma Aldrich
DEOXYRIBONUCLEASE1 RNase and Protease Free	DRB002.10	Bioshop
Magnesium chloride solution	63069-100ML	Sigma Aldrich
Calcium chloride solution	21115-100ML	Sigma Aldrich
SYBR™ Green II RNA Gel Stain, 10,000X concentrate in DMSO	S7564	Thermo Fisher
Tris(hydroxymethyl)aminomethane hydrochloride	A A 16 00 00 A 16	Fisher Scientific
1M pH 8.0 RNase free	AAJ60080AK	Tisher Scientific
	D4522-1MG	Sigma Aldrich
1M pH 8.0 RNase free		
1M pH 8.0 RNase free Deoxyribonucleic acid from calf thymus N-Lauroylsarosine sodium salt solution (20%	D4522-1MG	Sigma Aldrich
1M pH 8.0 RNase free Deoxyribonucleic acid from calf thymus N-Lauroylsarosine sodium salt solution (20% RNase/DNase free)	D4522-1MG L744-50mL	Sigma Aldrich

EQUIPMENT

NAME	CATALOG #	VENDOR
VWR ANALOG VORTEX MIXER	10153-838	VWR international Ltd
Fastprep-24 5G™ Sample Preparation Instrument	116005500	VWR international Ltd
SHAKING INCUBATOR	6753	
LYSING TUBES	116913500/116933050	VWR international Ltd
Falcon® Centrifuge Tubes	352096	VWR international Ltd
Screw-Cap Centrifuge Tube	10002-738	VWR international Ltd
CENTRIFUGE 5430 R	MP2231000510	
FreeZone® 2.5 L Benchtop Freeze Dryers	700202000	VWR international Ltd
BT Barrier Pipet Tips	BT1250, BT100, BT10	VWR international Ltd
Falcon® Centrifuge Tubes	352070	VWR international Ltd
Filter forceps	XX6200006P	Emdmillipore
Finntip stepper pipette tips	Thermo Scientific™ 9404173	Fisher Scientific
Finnpipette Stepper Pipette	4540000	Fisher Scientific
Microcentrifuge Tubes	MCT-175-C/MCT-060-L-C	VWR international Ltd
Finntip stepper pipette tips	Thermo Scientific™ 9404183	Fisher Scientific
Finntip™ Stepper Pipette Tips	21-377-149	Fisher Scientific
Finntip™ Stepper Pipette Tips	Thermo Scientific™ 9404193	Fisher Scientific
Finntip™ Stepper Pipette Tips	9404170	Fisher Scientific
96-Well Black Microplates	655076	
Black Vinyl Films for Fluorescence and Photoprotection	89087-692	
Microplate Lids	07000288	Fisher Scientific
Varioskan LUX Multimode Microplate Reader	VL0L00D0	
μDrop™ Plates	N12391	Thermo Scientific

ABSTRACT

Here we describe a protocol for extracting and quantifying bulk RNA and DNA from microalgae, which is adapted from Berdalet E. et al. (2005).

RNA and DNA are extracted from microalgae samples and then quantified by fluorochrome SYBR Green II.

Berdalet E, Roldán C, Olivar MP. Quantifying RNA and DNA in planktonic organisms with SYBR Green II and nucleases. Part B. Quantification in natural samples. Scientia Marina. https://doi.org/10.3989/scimar.2005.69n117

Day 1: Freeze-dry samples

1 Freeze dry samples and blank filters. Freeze at 8 -80 °C until processed.

- 1. Freeze-drying should be as short as possible to reduce sample degradation.
- 2. The exact duration of freeze-drying depends on size of filter, quantity of sample and the size of container.

Day 1: Prepare primary solutions

2 Turn on UV light in biosafety cabinet for **© 00:15:00** and clean working surface with decontamination solution.

3 Prepare Tris buffer [M]5 mM PH8.0

3.2 Directly add 2.5 mL [M] 1 M PH8.0 Tris into 500 mL RNase free water in its original package.

- 4 RNA primary standard solution ([M]200 ug/ml)
 - 4.1 In the original package, the E. Coli Total RNA is of 1 mg/mL, in which total RNA is 200 ug.

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/sp_7940.pdf

4.2 Uncap the original package of E. Coli Total RNA and directly add $300 \, \mu l$ Tris buffer ([M]5 mM, pH8.0).

Cap the package and vortex for a thorough mix.

4.3 Aliquot 30 uL by stepper with sterile tip to 600 uL RNase free microtubes. Keep frozen at δ -80 °C.

Finntip stepper pipette tips
500 ul (sterile)

Thermo Thermo Scientific™
Scientific 9404173

- 5 DNA primary standard solution (≈ [M] 500 ug/ml)
 - 5.1 Uncap the original package of Deoxyribonucleic acid from calf thymus and add __2 mL Tris buffer (
 [M]5 mM , pH8.0).

- https://www.sigmaaldrich.com/content/dam/sigmaaldrich/docs/Sigma/Product_Information_Sheet/d4522pis.pdf
- 5.2 Cap the package. Do not vortex or sonicate.

- 5.3 Keep the solution at & 0 °C ~ & 4 °C overnight to completely solubilize the DNA. Gentle reversion is recommended.
- 5.4 Aliquot 10 uL by stepper with sterile tip to 600 uL RNase free microtubes. Keep frozen at δ -80 °C.

5.5 Dilute 5 ul primary DNA standard solution with 95 ul Tris buffer ([M] 5 mM , [P+8.0]) in a microtube (600 ul).

Measure DNA concentration by using udrop plate (sample volume: 4 ul)

- 5.6 DNA concentration (μ g/ml) = Abs₂₆₀x 50 μ g/ml x (10mm/0.5 mm) X DF = Abs₂₆₀ x 50 x 20 X10
- 6 RNase primary stock solution ([M]10 mg/ml)
 - 6.1 Uncap the original package of Ribonuclease A from bovin pancreas and add \$\subseteq 5 \text{ mL}\$ Tris buffer (
 [M]5 mM , pH8.0).

Cap the package and vortex for a thorough mix.

6.2 Aliquot 30 uL by stepper with sterile tip to 600 uL RNase free microtubes. Keep frozen at 8 -20 °C.

Finntip™ Stepper Pipette Tips
500 ul (Sterile)

Thermo Scientific 21-377-149

- 7 DNase primary stock solution ([M]5 mg/ml = 10,000 U/mL)
 - 7.1 Uncap the original package of Deoxyribonuclease1 and add **1 mL** Tris buffer ([M]5 mM , [PH8.0]). Cap the package and vortex for a thorough mix.

7.2 Aliquot 100 uL by stepper with sterile tip to 600 uL RNase free microtubes. Keep frozen at 8 -20 °C.

Day 2: Exact RNA and DNA

8 Turn on UV light in biosafety cabinet for \odot 00:15:00 and clean working surface with decontamination solution.

9 Prepare falcon tubes and tube rack in biosafety cabinet

Volume of tube (mL)	Contents in the tube
5	0.5 M EDTA
5	20% sarcosine
15	1 M Tris
15	5 mM Tris
15	1% STEB

- Falcon® Centrifuge Tubes
 Polypropylene, Sterile, 15 mL
 Corning® 352096
- Falcon® Centrifuge Tubes
 Polypropylene, Sterile, 50 mL
 Corning® 352070
- 10 Prepare STEB ([M]1 %)
 - Use the following formula to determine the total volume of 1% STEP required:

 (# samples + # blank filters) X (500 ul) + (500 ul) = total volume of 1% STEP required
 - 10.1 Pour sarcosine ([M]20 %) into an RNase free 5 mL falcon tube.
 - N-Lauroylsarosine sodium salt solution
 (20% RNase/DNase free)
 by Sigma Aldrich
 Catalog #: L744-50mL
 - 10.2 Pour EDTA ([M]0.5 M) into an RNase free 5 mL falcon tube.
 - EDTA buffer (0.5M DNase/RNase free)
 by Bioshop
 Catalog #: EDT333.100

- 10.3 Pour Tris buffer ([M] 5 MM , [PH8.0]) into an RNase free 15 ML falcon tube.
- 10.4 Mix $\square 500 \ \mu I$ sarcosine ([M]20 %), $\square 10 \ \mu I$ EDTA ([M]0.5 M) and $\square 9 \ mL + \square 490 \ \mu I$ Tris buffer ([M]5 mM , pH8.0) to obtain STEB ([M]1 %).
- 11 Prepare ice bath
- Add 500 μl Tris buffer ([M]5 mM , PH8.0) and 500 μl STEB ([M]1 %) to the bead tube. Place tubes 8 On ice .

Rinse forceps by [M]70 % volume ethanol and air dry.

- 15 Transfer sample/blank filter into the bead tube by using clean forceps.
- 16 Vortex immediately then put back § On ice.

17 Disrupt samples on the bead mill at 6.5 m/s.

20s

30s

- 1m 30s 18 Keep tubes § On ice. Check the label on each tube, restore the label if it fades. 30s 19 Disrupt samples on the bead mill at 6.5 m/s. 1m 30s 20 Keep tubes & On ice. Check the label on each tube, restore the label if it fades. 30s 21 Disrupt samples on the bead mill at 6.5 m/s 1m 30s 22 Keep tubes § On ice. Check the label on each tube, restore the label if it fades. 30s Disrupt samples on the bead mill at 6.5 m/s. 23 1h Continuously shake homogenate in a multi-head vortex at the highest speed for © 01:00:00 **§ Room temperature** Votex mixer should be able to remain stable on the bench under this vortex speed.
- 25 In the biosafety cabinet, aliquot 150 uL of homogenates into RNase free 600 uL tubes.
 - Finntip™ Stepper Pipette Tips
 2.5 mL (sterile)
 Thermo Thermo Scientific™
 Scientific 9404193
- 26 Freeze at & -80 °C until analyzed.

- 27 Prepare ice bath.
- 28 Turn on UV light in biosafety cabinet for © 00:15:00 and clean working surface with decontamination solution.
- $29 \quad \hbox{Prepare falcon tubes, microtubes and tube racks in biosafety cabinet}$
 - * Maximum number of samples (including blanks) per assay is 20.

Number of tubes	Type of tubes	Contents		
6	5 mL falcon tubes	1 M MgCl2, 1 M CaCl2, Working solution A (WS-A), Working solution B (WS-B), Working solution C (WS-C), Sybr Green II working solution (SG-II WS)		
2	15 mL falcon tubes	5 mM Tris buffer, 0.05% STEB		
3	600 uL RNase free tubes	RNase working solution, 900 mM MgCl2, 900 mM CaCl2		
2	1.7 mL RNase free tubes	Secondary RNA standard solution, Secondary DNA standard solution		
33	1.7 mL RNase free tubes	RNA standard solutions for RNA standard curves, DNA standard soutions for DNA standard curves		
N= total number of samples and blanks	1.7 mL RNase free tubes	Samples and blanks		
3XN	1.7 mL RNase free tubes	Diluted samples and blanks		
5	Microtube racks	Tubes of 600 uL and 1.7 mL		
1	Tube racks	Falcon tubes		

Screw-Ca 5 mL	p Centrifuge Tube
VWR	10002-738

30 Organize and label the tubes as shown below

Set 1:

In microtube rack, label 1.7 mL tubes for samples and blanks to be further diluted.

1	2 3	4	5	6	7	8	9		Blank
---	-----	---	---	---	---	---	---	--	-------

Set 2:

In microtube rack, label 1.7 mL tubes for RNA (marked in pink) and DNA (marked in blue) standard solutions to be used as standard curves.

Tubes A is for standard solutions treated with working solution A (WS-A)

Tubes B is for standard solutions treated with working solution B (WS-B)

Tubes C is for standard solutions treated with working solution C (WS-C)

Tubes A	R1A	R2A	R3A	R4A	R5A	R6A	D1A	D2A	D3A	D4A	D5A
Tubes B	R1B	R2B	R3B	R4B	R5B	R6B	D1B	D2B	D3B	D4B	D5B
Tubes C	R1C	R2C	R3C	R4C	R5C	R6C	D1C	D2C	D3C	D4C	D5C

Set 3:

In microtube rack, label 1.7 mL tubes for diluted samples and blanks.

Tubes A is for diluted samples and blanks treated with working solution A (WS-A)

Tubes B is for diluted samples and blanks treated with working solution B (WS-B)

Tubes C is for diluted samples and blanks treated with working solution C (WS-C)

Tubes A	1A	2A	3A	4A	5A	6A	7A	8A	9A		BlankA
Tubes B	1B	2B	3B	4B	5B	6B	7B	8B	9B	:	BlankB
Tubes C	1C	2C	3C	4C	5C	6C	7C	8C	9C	:	BlankC

31 Label tubes for reagents as following.

Follow the sheet, add Tris buffer ([M] 5 MM , [PH8.0]) to the reagent tubes:

Reagent	5 mM Tris (uL)
0.05% STEB	9X1000+500
RNase	190
900 mM MgCl ₂	20
900 mM CaCl ₂	20
WS-A	2X1000+820
WS-B	2X1000+820
WS-C	2X1000+940
RNA	990+495
DNA	998

32 Add $\blacksquare 900 \ \mu I$ Tris buffer ([M] 5 mM , pH8.0) to each tube in Set 1

Follow the sheet, add Tris buffer ([M]5 mM , [pH8.0]) to each tube in Set 2. The unit of volume is uL.

Tubes A											
Tubes B											
Tubes C	600	590	575	550	500	450	590	580	560	530	500

Follow the sheet, add Tris buffer ([M]5 mM , [PH8.0]) to each tube in Set 3. The unit of volume is uL.

Tubes A	650	650	650	650	650	650	650	650	650	 650
Tubes B	650	650	650	650	650	650	650	650	650	 650
Tubes C	600	600	600	600	600	600	600	600	600	 600

35 Prepare STEB ([M] 0.05 %)

Add 500 µl STEB ([M]1 %) to 0.05% STEB tube, and vortex.

- 36 Add $250 \, \mu l$ STEB ([M]0.05 %) to each tube in Set 2.
- Place RNase and DNase primary stock solutions, RNA and DNA primary standard solutions and samples § On ice.

Turn on shaker/incubator and set temperature to § 37 °C.

- 40 Prepare [M]900 mM MgCl₂
 - 40.1 Pour [M] 1 M MgCl₂ solution into 5 mL RNase free Falcon tube

40.2 Transfer \blacksquare 180 μ l [M] 1 M MgCl₂ solution into 900 mM MgCl₂ tube

- 41 Add **60 μl** [M] **900 mM** MgCl₂ to WS-A and WS-B
- 42 Prepare [M]900 mM CaCl₂
 - 42.1 Pour [M] 1 M CaCl₂ solution into 5 mL RNase free Falcon tube

- 42.2 Transfer \blacksquare 180 μ l [M]1 M CaCl₂ solution into 900 mM CaCl₂ tube
- 43 Add **□60 μl** [M]**900 mM** CaCl₂ to WS-A and WS-B
- Prepare RNase working solution [M]0.5 mg/ml

Add □10 µl RNase primary stock solution ([M]10 mg/ml) to RNase tube

45 Add \blacksquare 60 μ l [M]0.5 mg/ml RNase to WS-B and WS-C.

Keep WS-B and WS-C & On ice .

- 46 Add \Box 60 μ I DNase primary stock solution ([M]5 mg/mI) to WS-A. Keep WS-A & On ice .
- 47 Centrifuge extracted samples \$\infty\$10000 x g, 4°C, 00:04:00
- 48 Prepare RNA secondary standard solution [M]2 ug/ml

Add $\;\; \boxed{\hspace{-0.1cm} 15~\mu l}\;\;$ RNA primary standard solution to RNA standard tube and vortex.

Keep & On ice .

49 Prepare DNA secondary standard solution [M]1 ug/ml

Add **22 µl** DNA primary standard solution to DNA standard tube and vortex.

Keep & On ice.

- 50 Load **50 μl** WS-A to Tubes A in **Set 2** and **Set 3**.
- 51 Load **50 μl** WS-A to Tubes C in **Set 2** and **Set 3**.
- 52 Load \bigcirc 50 μ l WS-B to Tubes B in Set 2 and Set 3.
- 53 Load $\mathbf{50} \, \mu \mathbf{l}$ WS-C to Tubes C in **Set 2** and **Set 3**.
- Add **100** μl centrifuged samples to its corresponding tubes in **Set 1**. Vortex each tube.
- 55 From Set 1, transfer 250 μl of diluted samples to each corresponding tubes in **Set 3**.
- 56 Follow the sheet:

Add RNA secondary standard to tubes (marked in pink) in Set 2.

Add DNA secondary standard to tubes (marked in blue) in Set 2.

The unit of volume is uL.

Tubes A	0	10	25	50	100	150	10	20	40	70	100
Tubes B	0	10	25	50	100	150	10	20	40	70	100
Tubes C	0	10	25	50	100	150	10	20	40	70	100

Vortex each tube for © 00:00:02 and place all tubes into the shaker/incubator at § 37 °C , continuously shaking at 200 RPM for © 00:20:00 .

Read fluorescence

- 58 Prepare SYBR Green II working solution (SG-II WS)
 - 58.1 Each 96-well microplate requires 1 mL of SG-II WS.
 - Wrap 5 mL tube with foil, add $\mathbf{7} \mu \mathbf{I}$ SYBR Green II 10,000X concentrate to each one mL Tris buffer ([M]5 mM , $\mathbf{p} + \mathbf{8.0}$) in biosafety cabinet.

58.3 Load \Box 10 μ I SG-II WS to each well in the microplate with 0.5 mL tip of stepper.

- 96-Well Black Microplates
 Polystyrene
 Greiner Bio-One 655076
- Wipe or dab the liquid drop on the outside of the tip, avoid wiping the tip open before dispensing the liquid.
- 58.4 Adhere black film on the top of a microplate lid and cover the plate with this lid.
 - Black Vinyl Films for Fluorescence and Photoprotection

 VWR 89087-692
 - Microplate Lids
 Polystyrene
 Greiner Bio-One 07000288
- After incubation, vortex each tube for **© 00:00:02** and then place into the fridge to stop the reaction.

45m

61 Load **190 μl** working sample to the microplate.

Standards must be included in each microplate.

Pink area: RNA standard solutions for RNA standard curves Blue area: DNA standard solutions for DNA standard curves

Yellow area: Samples and blanks

	1	2	3	4	5	6	7	8	9	10	11	12
Α	R1A	R2A	R3A	R4A	R5A	R6A	1A	1A	1B	1B	1C	1C
В	R1B	R2B	R3B	R4B	R5B	R6B	2A	2A	2B	2B	2C	2C
С	R1C	R2C	R3C	R4C	R5C	R6C	3A	3A	3B	3B	3C	3C
D	D1A	D2A	D3A	D4A	D5A		4A	4A	4B	4B	4C	4C
Ε	D1B	D2B	D3B	D4B	D5B		5A	5A	5B	5B	5C	5C
F	D1C	D2C	D3C	D4C	D5C		6A	6A	6B	6B	6C	6C
G	9A	9A	9B	9B	9C	9C	7A	7A	7B	7B	7C	7C
н	Blank	Blank	Blank	Blank	Blank	Blank	8A	8A	8B	8B	8C	8C
	Α	Α	В	В	С	С						

Wipe or dab the liquid drop on the outside of the tip, avoid wiping the tip open before dispensing the liquid.

10m

62 Shake black film covered microplate at § Room temperature for § 00:10:00

63 Setup microplate reader:

Plate: Greiner F bottom chimney well PP 96 well;

Shake: Continuous 5s at 600 rpm

Endpoint reading: Ex 490 nm/Em 520 nm;

64 Read fluorescence and export data to excel sheet.

Calculate

65 RNA standard curve

65.1 Concentrations of RNA standards in the microplate

Standard	2 ug/mL	Tris+WS	0.05% STEB	SG II	Final	
Standard	(uL)	(uL)	(uL)	WS (uL)	(ng/mL)	
R1	0	700	250	50	0	
R2	10	690	250	50	20	
R3	25	675	250	50	50	
R4	50	650	250	50	100	
R5	100	600	250	50	200	
R6	150	550	250	50	300	

- 65.2 Slope of fluorescence in Tube A vs concentration of RNA standard gives $m_{\text{RNA+DNase}}$ Slope of fluorescence in Tube B vs concentration of RNA standard gives $m_{\text{RNA+RNase}}$
- 65.3 Calculate ρ

$$\rho = \frac{m_{RNA+RNase}}{m_{RNA+DNase}}$$

66 Total RNA of the samples

 $ug Total RNA (ml assay)^{-1}$

$$= 0.001 \times \frac{\left(RFU_A - RFU_{A_{Blank}}\right) - \left(RFU_C - RFU_{C_{Blank}}\right)}{(1 - \rho)} / m_{RNA+DNase}$$

Where.

 RFU_A and RFU_C are the fluorescence in Tube A and Tube C of the same sample.

 $\mathsf{RFU}_{\mathsf{ABlank}}$ and $\mathsf{RFU}_{\mathsf{CBlank}}$ are the fluorescence in Tube A and Tube $_{\mathsf{C}}$ of the blank.

- 67 DNA standard curve
 - 67.1 Concentrations of DNA standards in the microplate

Standard	1 ug/mL	Tris+WS	0.05% STEB	SG II	Final	
Standard	(uL)	(uL)	(uL)	WS (uL)	(ng/mL)	
D1	10	690	250	50	10	
D2	20	680	250	50	20	
D3	40	660	250	50	40	
D4	70	630	250	50	70	
D5	100	580	250	50	100	

- 67.2 Slope of fluorescence in Tube A vs concentration of DNA standard gives $m_{\text{DNA+DNase}}$ Slope of fluorescence in Tube B vs concentration of DNA standard gives $m_{\text{DNA+RNase}}$
- 67.3 Calculate δ

$$\delta = \frac{m_{DNA+DNase}}{m_{DNA+RNase}}$$

68 Total DNA of the samples

 $ug\ Total\ DNA\ (ml\ assay)^{-1}$

$$=0.001\times\frac{\left(RFU_B-RFU_{B_{Blank}}\right)-\left(RFU_C-RFU_{C_{Blank}}\right)}{(1-\delta)}/m_{DNA+RNase}$$

Where.

 RFU_B and RFU_C are the fluorescence in Tube B and Tube C of the same sample

 $\mathsf{RFU}_\mathsf{BBlank}$ and $\mathsf{RFU}_\mathsf{CBlank}$ are the fluorescence in Tube B and Tube $_\mathsf{C}$ of the blank.

69 Dilution factor=40

If,

- Sample is extracted by 1 mL extraction reagent
- In Set 1, sample is diluted to 1/10
- In Set 3, diluted by Tris and all working solutions to 250/950
- In microplate, diluted by SG-II WS to 190/200