Envolventes de fases, de lo simple a lo complejo

Federico Benelli

Segunda jornada GTF

Introducción

Equilibrio de fases

En los procesos industriales es muy común que exista la necesidad de calcular un equilibrio de fases, ya sea para una extracción, un proceso de separación, etc.

Equilibrio de fases

Para que un sistema esté en equilibrio es necesario que se den las condiciones.

Condiciones

$$T^V=T^L$$

$$P^V = P^L$$

$$f_i^V = f_i^L$$

Cálculo flash

En una operación, puede ser importante determinar la composición de fases en equilibrio. Para esto puede realizarse un cálculo Flash.

$$K_i = \frac{y_i}{x_i} = \frac{\phi_i^L(x,p,T)}{\phi_i^V(y,p,T)}$$

$$\textstyle\sum_{i}^{N}(y_{i}-x_{i})$$

$$z_i = \beta y_i + (1 - \beta) x_i$$

Puntos de saturación

Puntos de transición donde aparece una fase incipiente

- Puntos de burbuja.
- Puntos de rocío.

Envolventes de fases

Envolventes de fases

La unión de todos los puntos de saturación a z=cte se la denomina envolvente de fases.

Envolventes de fases

Envolvente bifásica: Cálculo

Una envolvente bifásica puede calcularse resolviendo el sistema de ecuaciones:

$$\begin{split} \ln K_i - (\ln \phi_i^l(x,p,T) - \ln \phi_i^v(y,p,T)) &= 0 \\ \sum_i^N (y_i - x_i) &= 0 \end{split}$$

Punto a punto, mediante un método de continuación numérica

Método de continuación

Método que realiza el trazado de líneas obtenidas a partir de sistemas de ecuaciones complejos de resolver mediante método Newton.

Método de continuación: Ejemplo simple

Se desea trazar la ecuación de un círculo:

$$x^2 + y^2 = 1$$

De por si el sistema está subespecificado (GL > 0), por lo que es necesario agregar una ecuación extra:

$$x - x_0 = 0$$
 (punto x_0 donde se desea resolver el sistema)

Método de continuación: Ejemplo simple (Resolución Newton)

$$F = \begin{bmatrix} x^2 + y^2 - 1 \\ x - x_0 \end{bmatrix} = 0$$
$$J = \begin{bmatrix} 2x & 2y \\ 1 & 0 \end{bmatrix}$$

$$J(X_i)\Delta X + F(X_i) = 0$$

$$\begin{array}{l} X_0 = [0.5 \ -1] \\ X_3 = [0.5 \ -0.87] \end{array}$$

Ahora, si se toma $X_0 = \begin{bmatrix} 1 & 0 \end{bmatrix}$ La matriz jacobiana es:

$$J = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix}$$

Singular! No sirve esta inicialización.

Metodo de conditunacion: Seleccion de especificacion

Variable de especifcacion dinamica

$$F = \begin{bmatrix} x^2 + y^2 - 1 \\ X_s - S \end{bmatrix} = 0$$

$$J = \begin{bmatrix} 2x & 2y \\ \frac{dF_2}{dx} & \frac{dF_2}{dy} \end{bmatrix}$$

Se determina que tanto varian las variables con respecto a la especificacion

$$J\frac{dX}{dS} + \frac{\partial F}{\partial S} = 0$$

$$X_{new} = X_{old} + \tfrac{dX}{dS} \Delta S$$

Método de continuación: Envolvente bifasica

$$\ln K_i - (\ln \phi_i^l(x,p,T) - \ln \phi_i^v(y,p,T) = 0$$

$$\sum_i^N (y_i - x_i) = 0$$

$$X_S - S = 0$$

Donde S es una variable de especificación (por ejemplo T o P)

Envolventes: Dificultades

- Buena inicialización
- Correcta de detección de puntos críticos
- Casos con mucha asimetría

Envolventes: Dificultades (PC)

Al acercarse a un punto crítico

$$x_i \approx y_i \to K_i \approx 1$$

Envolventes: Dificultades (PC)

Al acercarse a un punto crítico

$$x_i \approx y_i \to K_i \approx 1$$

Envolventes: Dificultades (Asimetría)

En sistemas muy asimétricos, pueden surgir otros tipos de problemas.

Envolventes: Dificultades (Asimetría)

Envolventes: Dificultades (Asimetría)

Estos casos son indicadores de posibles equilibrios trifásicos.

Envolvente trifásica

Para resolver un sistema en equilibrio trifásico se añade otro set de ecuaciones, correspondiente a equilibrio y balance de la fase nueva.

$$\begin{split} \ln K_i - (\ln \phi_i^{L1}(x,p,T) - \ln \phi_i^V(x,p,T)) &= 0 \\ \sum_i^N (y_i - x_i) &= 0 \\ \sum_i^N (x_i - w_i) &= 0 \\ \ln K_i^s - (\ln \phi_i^{L2}(w,p,T) - \ln \phi_i^{L1}(x,p,T)) &= 0 \\ X_S - S &= 0 \end{split}$$

Envolventes trifásicas: Dificultades

Incrementa la dificultad

- Correctas inicializaciones
- Puntos críticos

Envolventes de fases, de lo simple a lo complejo

Envolventes trifásicas: Casos fallutos

Envolventes trifásicas: Casos fallutos

SPE 77770

Phase Envelope Calculations for Hydrocarbon-Water Mixtures
Niels Lindeloff, Calsep, and Michael L. Michelsen, IVC-SEP, Technical University of Denmark

Figure 7: Comparison of phase diagrams for Fluid C with and

Figure 4: Concris BT phase diagram for a he water system

Futuro

- Encontrar más casos.
- Perfeccionar algoritmos:
 - Incluir casos nuevos.
 - Asegurar convergencia de casos conocidos.