Gradient Descent

Review: Gradient Descent

 In step 3, we have to solve the following optimization problem:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 L: loss function θ : parameters

Suppose that θ has two variables $\{\theta_1, \theta_2\}$

Randomly start at
$$\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$$

$$\nabla L(\theta) = \begin{bmatrix} \frac{\partial L(\theta_1)}{\partial L(\theta_2)} / \frac{\partial \theta_1}{\partial \theta_2} \end{bmatrix}$$

$$\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(\theta_1^0)}{\partial L(\theta_2^0)} / \frac{\partial \theta_1}{\partial \theta_2} \end{bmatrix} \implies \theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\begin{bmatrix} \theta_2^2 \end{bmatrix} = \begin{bmatrix} \theta_1^1 \\ \theta_2^0 \end{bmatrix} = \begin{bmatrix} \theta_1^1 \\ \theta_2^0$$

$$\begin{vmatrix} \theta_1^2 \\ \theta_2^2 \end{vmatrix} = \begin{vmatrix} \theta_1^1 \\ \theta_2^1 \end{vmatrix} - \eta \begin{vmatrix} \partial L(\theta_1^1)/\partial \theta_1 \\ \partial L(\theta_2^1)/\partial \theta_2 \end{vmatrix} \implies \theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

Review: Gradient Descent

Gradient Descent Tip 1: Tuning your learning rates

Learning Rate

$$\theta^{i} = \theta^{i-1} - \eta \nabla L(\theta^{i-1})$$

Set the learning rate η carefully

Adaptive Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

$$\eta^t = \frac{\eta}{\sqrt{t+1}}$$
 $g^t = \frac{\partial L(\theta^t)}{\partial w}$

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t g^t$$

w is one parameters

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

 σ^t : **root mean square** of $w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$ the previous derivatives of parameter w

Parameter dependent

Adagrad

 σ^t : **root mean square** of the previous derivatives of parameter w

$$w^{1} \leftarrow w^{0} - \frac{\eta^{0}}{\sigma^{0}} g^{0} \qquad \sigma^{0} = \sqrt{(g^{0})^{2}}$$

$$w^{2} \leftarrow w^{1} - \frac{\eta^{1}}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\frac{1}{2} [(g^{0})^{2} + (g^{1})^{2}]}$$

$$w^{3} \leftarrow w^{2} - \frac{\eta^{2}}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\frac{1}{3} [(g^{0})^{2} + (g^{1})^{2} + (g^{2})^{2}]}$$

$$\vdots$$

$$w^{t+1} \leftarrow w^{t} - \frac{\eta^{t}}{\sigma^{t}} g^{t} \qquad \sigma^{t} = \sqrt{\frac{1}{t+1} \sum_{i=0}^{t} (g^{i})^{2}}$$

Adagrad

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

Contradiction?
$$\eta^t = \frac{\eta}{\sqrt{t+1}}$$
 $g^t = \frac{\partial L(\theta^t)}{\partial w}$

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t \underline{g}^t \longrightarrow \begin{array}{c} \text{Larger gradient,} \\ \text{larger step} \end{array}$$

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} \underline{g^t}$$

Larger gradient, larger step

Larger gradient, smaller step

Intuitive Reason

$$\eta^t = \frac{\eta}{\sqrt{t+1}} \ g^t = \frac{\partial C(\theta^t)}{\partial w}$$

• How surprise it is 反差

特別大

g ⁰	g ¹	g ²	g ³	g ⁴	•••••
0.001	0.001	0.003	0.002	0.1	•••••
g ⁰	g^1	g ²	g^3	σ4	
0	5	5	5	5	••••

特別小

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$
 造成反差的效果

Larger gradient, larger steps?

Comparison between different parameters

Larger 1st order derivative means far from the minima

Do not cross parameters

Second Derivative

$$\frac{\partial^2 y}{\partial x^2} = 2a$$
 The best step is

|First derivative|

Second derivative

Comparison between different parameters

Larger 1st order derivative means far from the minima

Do not cross parameters

Use first derivative to estimate second derivative

Gradient Descent Tip 2: Stochastic Gradient Descent

Make the training faster

Stochastic Gradient Descent

$$L = \sum_{n} \left(\hat{y}^{n} - \left(b + \sum_{i} w_{i} x_{i}^{n} \right) \right)^{2}$$
 Loss is the summation over all training examples

- Gradient Descent $heta^i = heta^{i-1} \eta
 abla Lig(heta^{i-1}ig)$
- Stochastic Gradient Descent

Faster!

Pick an example xⁿ

$$L^{n} = \left(\hat{y}^{n} - \left(b + \sum w_{i} x_{i}^{n}\right)\right)^{2} \quad \theta^{i} = \theta^{i-1} - \eta \nabla L^{n} \left(\theta^{i-1}\right)$$

Loss for only one example

• Demo

Stochastic Gradient Descent

Gradient Descent

Update after seeing all examples

Stochastic Gradient Descent

Update for each example If there are 20 examples, 20 times faster.

Gradient Descent

Tip 3: Feature Scaling

Feature Scaling

Source of figure: http://cs231n.github.io/neural-networks-2/

$$y = b + w_1 x_1 + w_2 x_2$$

Make different features have the same scaling

Feature Scaling

$$y = b + w_1 x_1 + w_2 x_2$$

Feature Scaling

Gradient Descent Theory

Question

When solving:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 by gradient descent

• Each time we update the parameters, we obtain θ that makes $L(\theta)$ smaller.

$$L(\theta^0) > L(\theta^1) > L(\theta^2) > \cdots$$

Is this statement correct?

Warning of Math

Formal Derivation

Taylor Series

• **Taylor series**: Let h(x) be any function infinitely differentiable around $x = x_0$.

$$h(x) = \sum_{k=0}^{\infty} \frac{h^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$= h(x_0) + h'(x_0)(x - x_0) + \frac{h''(x_0)}{2!} (x - x_0)^2 + \dots$$

When x is close to $x_0 \Rightarrow h(x) \approx h(x_0) + h'(x_0)(x - x_0)$

E.g. Taylor series for h(x)=sin(x) around $x_0=\pi/4$

$$\sin(x) = \frac{1}{\sqrt{2}} + \frac{x - \frac{\pi}{4}}{\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^2}{2\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^3}{6\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^4}{24\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^5}{120\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^6}{720\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^8}{120\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^8}{40320\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^9}{362880\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^{10}}{3628800\sqrt{2}} + \dots$$

Multivariable Taylor Series

$$h(x,y) = h(x_0, y_0) + \frac{\partial h(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0)$$

+ something related to $(x-x_0)^2$ and $(y-y_0)^2 +$

When x and y is close to x_0 and y_0

$$h(x,y) \approx h(x_0,y_0) + \frac{\partial h(x_0,y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0,y_0)}{\partial y} (y - y_0)$$

Back to Formal Derivation

Based on Taylor Series:

If the red circle is small enough, in the red circle

$$L(\theta) \approx L(a,b) + \frac{\partial L(a,b)}{\partial \theta_1} (\theta_1 - a) + \frac{\partial L(a,b)}{\partial \theta_2} (\theta_2 - b)$$

$$s = L(a,b)$$

$$u = \frac{\partial L(a,b)}{\partial \theta_1}, v = \frac{\partial L(a,b)}{\partial \theta_2}$$

$$L(\theta)$$

$$\approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

Back to Formal Derivation

Based on Taylor Series:

If the red circle is small enough, in the red circle

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

Find θ_1 and θ_2 in the <u>red circle</u> **minimizing** L(θ)

$$(\theta_1 - a)^2 + (\theta_2 - b)^2 \le d^2$$

Simple, right?

constant

$$s = L(a,b)$$

$$u = \frac{\partial L(a,b)}{\partial \theta_1}, v = \frac{\partial L(a,b)}{\partial \theta_2}$$

Gradient descent – two variables

Red Circle: (If the radius is small)

$$L(\theta) \approx v + u(\underline{\theta_1 - a}) + v(\underline{\theta_2 - b})$$

$$\Delta \theta_1 \qquad \Delta \theta_2$$

Find θ_1 and θ_2 in the red circle **minimizing** L(θ)

$$\frac{\left(\underline{\theta_1} - a\right)^2 + \left(\underline{\theta_2} - b\right)^2 \le d^2}{\Delta \theta_1}$$

$$\Delta \theta_2$$

To minimize $L(\theta)$

$$\begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix} = -\eta \begin{bmatrix} u \\ v \end{bmatrix} \qquad \qquad \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix}$$

Back to Formal Derivation

Based on Taylor Series:

If the red circle is **small enough**, in the red circle

$$s = L(a,b)$$

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

$$u = \frac{\partial L(a, b)}{\partial \theta_1}, v = \frac{\partial L(a, b)}{\partial \theta_2}$$

Find θ_1 and θ_2 yielding the smallest value of $L(\theta)$ in the circle

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(a,b)}{\partial \theta_1} \\ \frac{\partial L(a,b)}{\partial \theta_2} \end{bmatrix}$$
 This is gradient descent.

Not satisfied if the red circle (learning rate) is not small enough

You can consider the second order term, e.g. Newton's method.

End of Warning

