

Exercise 5A

Question 29:

Given: a guarilateral ABCD in which AB=AD and BC=DC

To Prove: (i) AC bisects \angle A and \angle C (ii) AC \bot BD and AC bisects BD

Proof: In ΔABC and ΔADC,we have

 AB=AD
 [Given]

 BC=DC
 [Given]

 AC=AC
 [Common]

Thus by Side-Side-Side criterion of congruence,

 $\triangle ABC \cong \triangle ADC$ [By SSS]

The corresponding parts of the congruent triangles are equal.

So, $\angle BAC = \angle DAC$ [C.P.C.T] $\Rightarrow \angle BAO = \angle DAO$ (1)

It means that AC bisects \angle BAD, that is \angle A Also, \angle BCA= \angle DCA [C.P.C.T]

It means that AC bisects $\angle BCD$, that is $\angle C$

(ii)

Now in AABO and AADO

AB = AD [Given] $\angle BAO = \angle DAO$ [from (1)] AO = AO [Common]

Thus, by Side-Angle-Side criterion of congruence, we have

 $\triangle ABO \cong \triangle ADO$ [By SAS]

The corresponding parts of the congruent triangles are equal.

∴ ∠BOA =∠DOA

But ∠BOA+∠DOA = 180°

Or 2∠BOA = 180°

 $\Rightarrow \qquad \angle BOA = \frac{180^{\circ}}{2} = 90^{\circ}$

Also, as $\triangle ABO \cong \triangle ADO$ So, BO = ODwhich means that AC bisects BD.

********* END *******