

Your First RecSys

Даниил Потапов

Руководитель группы персонализации и рекомендательных систем MTC BigData

"Куда" и "как" копать дальше

План

- Продвинутые метрики
- Approximate nearest neighbors
- Нейронные сети

Проверка качества

Два этапа тестирования:

- Offline на ретро данных
 - Метрики: Precision@K, MAP, MRR, NDCG...
- Online в реальном мире
 - Метрики: Conversion rate, CTR, Retention...

Основная цель - подобрать и оптимизировать такие offline метрики, которые улучшат online метрики.

- Coverage покрытие
- Diversity разнообразие
- Novelty новизна
- Serendipity прозорливость

Coverage

- Сколько наших объектов в итоге попадает в рекомендации?
- Сколько наших пользователей в итоге могут получить рекомендации?

Как считать:

- Построить рекомендации для всей базы
- Посчитать, сколько уникальных объектов попало в наши рекомендации
- Посчитать соотношение рекомендованных уникальных объектов к кол-ву объектов во всей базе

Diversity

- Сколько категорий объектов представлено в рекомендациях?
- Сколько разных жанров/актеров/режиссеров в рекомендациях для одного человека?

Как считать - так же как и Coverage, только с усреднением по пользователям и в разрезе фичей объектов.

Novelty

• Насколько новы наши рекомендации для пользователя?

Novelty(
$$item$$
) = $1 - \frac{\text{count(users recommended } item)}{\text{count(all users)}}$

Novelty(
$$item$$
) = $1 - \frac{\text{count(users recommended } item)}{\text{count(users not interacted item)}}$

Serendipity

- Неожиданность рекомендаций при сохранений релевантности
- Чаще всего основная цель рекомендательной системы

Serendipity(user) =
$$\frac{1}{count(recs)} \sum_{i \in recs} \max(P(user, i) - P(allUsers, i), 0)) * rel(user, i)$$

В матричных методах процесс построения рекомендаций - это нахождение для вектора пользователя таких векторов объектов, что их скалярное произведение будет максимально возможным.

Если данных много, то такой поиск может занимать слишком много времени. Этот момент можно ускорить и с помощью методов поиск ближайших соседей.

Базовая схема использования:

- Построить матричную модель и получить вектора для объектов
- На основе векторов построить индекс в inner product space
- Для каждого пользователя по его вектору получаем из индекса топ объектов с наиболее большим скалярным произведением

Evaluated

- Annoy
- FLANN
- scikit-learn; LSHForest, KDTree, BallTree
- PANNS
- NearPy
- KGraph
- NMSLIB (Non-Metric Space Library): SWGraph, HNSW, BallTree, MPLSH
- hnswlib (a part of nmslib project)
- RPForest
- FAISS
- DolphinnPy
- Datasketch
- PyNNDescent
- MRPT
- NGT: ONNG, PANNG
- SPTAG
- PUFFINN
- N2
- ScaNN

glove-100-angular

Основные три либы:

- faiss cpu/gpu, quantization, memory mapping
- annoy cpu, memory mapping
- nmslib cpu, sparse data, many metrics

Как выбрать либу:

- Если векторов порядка 10⁵ sklearn.neighbors.KDTree
- 10^6 10^8 можно подбирать из faiss, annoy, nmslib
- 10^9 и выше только faiss

Neural Collaborative Filtering

Image credit

Wide & Deep Learning for Recommender Systems

Wide & Deep Learning for Recommender Systems

Нейронные сети. Youtube

Deep Neural Networks for YouTube Recommendations

Нейронные сети. Youtube

Deep Neural Networks for YouTube Recommendations

Инструментарий

Фреймворки:

- https://github.com/maciejkula/spotlight
- https://github.com/wubinzzu/NeuRec
- https://github.com/PreferredAl/cornac
- https://github.com/ylonggi/openrec

RL:

- https://github.com/google-research/recsim
- https://github.com/criteo-research/reco-gym

RecSys на Java

https://github.com/quoquibing/librec

И даже на С++

https://github.com/cnclabs/smore

Или Go

https://github.com/zhenghaoz/gorse

Awesome recsys:

- https://github.com/hongleizhang/RSPapers
- https://github.com/chihming/competitive-recsys

Papers with code

Recommendation Systems on MovieLens 10M

Collaborative Filtering on movielens-10m

Всем спасибо за внимание :)

Вопросы можно задавать здесь

▼ Telegram чате курса

sharthZ23