13 Integrals

13.1 If [0,1] is divided into n equal subintervals then each strip has width 1/n. The height of the first strip is $(1/n)^3$, the height of the second one is $(2/n)^3$, and so on, so the total area covered by the strips is

$$A_n = \frac{1}{n} \left(\frac{1^3}{n^3} + \frac{2^3}{n^3} + \frac{3^3}{n^3} + \dots + \frac{n^3}{n^3} \right) = \frac{1}{n^4} \sum_{k=1}^n k^3.$$

From Chapter 7, we know that

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

so we have

$$A_n = \frac{n^2(n+1)^2}{4n^4} = \frac{(n+1)^2}{4n^2}.$$

In the limit as $n \to \infty$ we get

$$A = \lim_{n \to \infty} A_n = \lim_{n \to \infty} \frac{(n+1)^2}{4n^2} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{4n^2} = \lim_{n \to \infty} \left(\frac{1}{4} + \frac{1}{2n} + \frac{1}{4n^2}\right) = \frac{1}{4}$$

as required.

- 13.2 Applying Theorem 13.1 to the interval [a, d] for the point $b \in (a, d)$ shows that f is integrable on [b, d]. Similarly, applying Theorem 13.1 to the interval [b, d] for the point $c \in (b, d)$ shows that f is integrable on [b, c].
- 13.3 Let

$$I = \int_a^b \left(\int_c^d f(x)g(y) \, \mathrm{d}y \right) \, \mathrm{d}x.$$

First consider

$$\int_{c}^{d} f(x)g(y) \, \mathrm{d}y.$$

As f(x) does not depend on y, we can apply Theorem 13.2 and write

$$\int_{c}^{d} f(x)g(y) dy = f(x) \int_{c}^{d} g(y) dy,$$

SO

$$I = \int_a^b \left(f(x) \int_c^d g(y) \, \mathrm{d}y \right) \, \mathrm{d}x.$$

As $\int_c^d g(y) dy$ does not depend on x, we can apply Theorem 13.2 again to get

$$I = \left(\int_{c}^{d} g(y) \, \mathrm{d}y \right) \left(\int_{a}^{b} f(x) \, \mathrm{d}x \right),$$

SO

$$I = \left(\int_{a}^{b} f\right) \left(\int_{c}^{d} g\right).$$

13.4 Consider a partition $P = \{x_0, x_1, x_2, \dots, x_n\}$ of [a, b]. The lower sum of f for P is given by

$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i$$

where m_i is the minimum function value on the interval $[x_{i-1}, x_i]$ and $\Delta x_i = x_i - x_{i-1}$. We have $\Delta x_i \geq 0$ for each i and, if $f(x) \geq 0$ for all $x \in [a, b]$, then $m_i \geq 0$ for every i, so $L(f, P) \geq 0$. But (by Definition 13.3) the definite integral of f on [a, b] satisfies $L(f, P) \leq I$ so the result is proved.

13.5 If $f(x) \ge g(x)$ for all $x \in [a, b]$ then the function h(x) = f(x) - g(x) satisfies $h(x) \ge 0$ for all $x \in [a, b]$. Hence, by Exercise 13.4,

$$\int_a^b h \ge 0 \iff \int_a^b (f - g) \ge 0 \iff \int_a^b f - \int_a^b g \ge 0 \iff \int_a^b f \ge \int_a^b g$$

as required.