Lineární prostory nad ℝ

Odpřednesenou látku naleznete v kapitolách 1.1–1.4 skript *Abstraktní a konkrétní lineární algebra*.

Co je definice?

Co je hypotéza?

Co je (matematická) věta? Lemma? Tvrzení?

Co je důkaz?

Více např. v textech

- J. Velebil, Velmi jemný úvod do matematické logiky
- 2 J. Velebil, Sbírka problémů z lineární algebry

Neformálně

Lineární prostor (nad $\mathbb R$) je kolekce jakýchkoli objektů (těm budeme říkat vektory), které mezi sebou můžeme sčítat a každý z nich můžeme vynásobit skalárem (v našem případě prvkem $\mathbb R$). Sčítání vektorů a násobení skalárem se musí řídit jistými zákonitostmi.

Příklady

- Vektory v rovině (fyzikální, případně geometrická intuice).
- ② Reálné polynomy (značení: $\mathbb{R}[x]$).
- **3** *n*-tice reálných čísel (značení: \mathbb{R}^n , $n \ge 0$).
- Komplexní čísla (značení: C).

^aDůležité: Prvky \mathbb{R}^n budeme psát jako *n*-tice do sloupců.

Příklad (orientované úsečky v rovině)

Dvě operace:

sčítání:
$$OC = OA + OB$$

násobení skalárem: $OY = \sqrt{2} \cdot OX$, $OZ = -\sqrt{2} \cdot OX$

Sčítání orientovaných úseček a násobení orientované úsečky reálným skalárem splňují jisté axiomy.

Definice (lineární prostor nad R)

Lineární prostor (nad \mathbb{R}) je množina L spolu se dvěma funkcemi

$$+: L \times L \to L, \quad \cdot: \mathbb{R} \times L \to L$$

pro které platí následující:

- Vlastnosti sčítání:
 - Existuje $\vec{o} \in L$ tak, že pro vš. $\vec{x} \in L$ platí: $\vec{x} + \vec{o} = \vec{o} + \vec{x} = \vec{x}$ (existence nulového vektoru).
 - **9** Pro vš. $\vec{x}, \vec{y}, \vec{z} \in L$ platí: $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$ (asociativita sčítání vektorů).
 - **9** Pro vš. $\vec{x}, \vec{y} \in L$ platí: $\vec{x} + \vec{y} = \vec{y} + \vec{x}$ (komutativita sčítání vektorů).
 - Pro vš. $\vec{x} \in L$ existuje právě jeden $\vec{y} \in L$ tak, že $\vec{x} + \vec{y} = \vec{o}$ (existence opačného vektoru, značíme $\vec{y} = -\vec{x}$).

Definice (lineární prostor nad \mathbb{R}), pokrač.

- Vlastnosti násobení skalárem:
 - Pro vš. $\vec{x} \in L$ platí: $1 \cdot \vec{x} = \vec{x}$ (násobení jednotkovým skalárem).
 - **2** Pro vš. $a, b \in \mathbb{R}$ a vš. $\vec{x} \in L$ platí: $a \cdot (b \cdot \vec{x}) = (a \cdot b) \cdot \vec{x}$ (asociativita násobení skalárem).
- Oistributivní zákony:
 - Pro vš. $a, b \in \mathbb{R}$ a vš. $\vec{x} \in L$ platí: $(a + b) \cdot \vec{x} = a \cdot \vec{x} + b \cdot \vec{x}$ (distributivita součtu skalárů).
 - **2** Pro vš. $a \in \mathbb{R}$ a vš. $\vec{x}, \vec{y} \in L$ platí: $a \cdot (\vec{x} + \vec{y}) = a \cdot \vec{x} + a \cdot \vec{y}$ (distributivita součtu vektorů).

Poznámka

Axiomy tří typů: chování operace +, chování operace \cdot a vzájemný vztah obou operací.

Jednoduché důsledky definice

Ať *L* je lineární prostor. Potom:

- Nulový vektor je jednoznačně určen.
- 2 Pro vš. $\vec{x} \in L$ platí: $0 \cdot \vec{x} = \vec{o}$.
- **3** Opačný vektor k $\vec{x} \in L$ je vektor $(-1) \cdot \vec{x}$.
- **1** Pro vš. $a \in \mathbb{R}$ platí: $a \cdot \vec{o} = \vec{o}$.

Důkaz.

- **1** Ať existují $\vec{o_1}$, $\vec{o_2}$ tak, že pro vš. $\vec{x} \in L$ platí: $\vec{x} + \vec{o_1} = \vec{o_1} + \vec{x} = \vec{x}$ a $\vec{x} + \vec{o_2} = \vec{o_2} + \vec{x} = \vec{x}$. Pak $\vec{o_1} = \vec{o_1} + \vec{o_2} = \vec{o_2}$.
- ② Pro vš. $\vec{x} \in L$ platí: $\vec{x} = 1 \cdot \vec{x} = (1+0) \cdot \vec{x} = 1 \cdot \vec{x} + 0 \cdot \vec{x} = \vec{x} + 0 \cdot \vec{x}$. Tudíž $0 \cdot \vec{x}$ musí být nulový vektor.

Důkaz (pokrač.)

- **3** Platí: $\vec{x} + (-1) \cdot \vec{x} = 1 \cdot \vec{x} + (-1) \cdot \vec{x} = (1-1) \cdot \vec{x} = 0 \cdot \vec{x} = \vec{o}$.
- 1 Platí: $a \cdot \vec{o} = a \cdot (0 \cdot \vec{o}) = (a \cdot 0) \cdot \vec{o} = 0 \cdot \vec{o} = \vec{o}$.

Velmi důležitý důsledek definice

Ať L je lineární prostor, $a \in \mathbb{R}$, $\vec{x} \in L$. Pak $a \cdot \vec{x} = \vec{o}$ právě tehdy, když a = 0 nebo $\vec{x} = \vec{o}$.

Důkaz.

Díky předchozímu stačí dokázat pouze implikaci zleva doprava.

At $a \cdot \vec{x} = \vec{o}$ a $a \neq 0$. Potom existuje a^{-1} . Tudíž $\vec{o} = a^{-1} \cdot \vec{o} = a^{-1} \cdot (a \cdot \vec{x}) = (a^{-1} \cdot a) \cdot \vec{x} = 1 \cdot \vec{x} = \vec{x}$.

Povšimněme si, čeho využívá předchozí tvrzení:

Pro vš. $a \in \mathbb{R}$ platí: a^{-1} existuje, jakmile $a \neq 0$.

Další příklady a protipříklady

- $L = (0, +\infty)$. Operace sčítání vektorů: $x \oplus y := x \cdot y$. Násobení skalárem: $\alpha \odot x := x^{\alpha}$. Pak L je lineární prostor.
- ② L je jakákoli jednoprvková množina. Pak L (spolu s evidentními operacemi) je lineární prostor. Říkáme mu triviální lineární prostor. Nutně: $L = \{\vec{o}\}$.

Role reálných skalárů

Lze \mathbb{R} nahradit jiným "číselným oborem"?

Se skaláry je třeba umět následující: rozumné sčítání, násobení.

Abstraktní pojem: skaláry musí tvořit strukturu \mathbb{F} , které se říká těleso.

To vede k pojmu lineární prostor nad tělesem F. Více v příští přednášce.

Poznámka

Abstrakce v lineární algebře má tedy dva stupně:

- Lineární prostor nad R abstrahuje (například) prostor orientovaných úseček.
- 2 Lineární prostor nad $\mathbb F$ abstrahuje dále: roli skalárů převezmou prvky tělesa $\mathbb F$.

Jaký nejobecnější výpočet lze v lineárním prostoru vykonat?

- **1** Například můžeme sečíst čtyři vektory: $\vec{x} + \vec{y} + \vec{z} + \vec{w}$. Díky asociativitě sčítání nemusíme psát závorky.
- ② Například můžeme násobek vektoru opět vynásobit: $b \cdot (a \cdot \vec{x})$. Díky axiomům jde opět o násobek $(b \cdot a) \cdot \vec{x}$.
- Obecněji, můžeme sčítat konečně mnoho násobků vektorů. To znamená: je-li dán konečný seznam vektorů (x1,...,xn) a konečný seznam skalárů (a1,...,an), lze utvořit lineární kombinaci

$$a_1 \cdot \vec{x_1} + a_2 \cdot \vec{x_2} + a_3 \cdot \vec{x_3} + \ldots + a_n \cdot \vec{x_n}$$

značenou i
$$\sum_{i=1}^n a_i \cdot \vec{x_i}$$
 nebo $\sum_{i \in \{1,\dots,n\}} a_i \cdot \vec{x_i}$

^aTěmto skalárům říkáme koeficienty lineární kombinace.

Definice

Seznam (také: skupina) vektorů je buď prázdná posloupnost () nebo konečná posloupnost $(\vec{x_1}, \dots, \vec{x_n})$.

Pozor: je rozdíl mezi seznamem a množinou

$$(\vec{x}_1, \vec{x}_2, \vec{x}_3) \neq (\vec{x}_3, \vec{x}_2, \vec{x}_1) \text{ vs. } \{\vec{x}_1, \vec{x}_2, \vec{x}_3\} = \{\vec{x}_3, \vec{x}_2, \vec{x}_1\}$$

 $(\vec{x}_1, \vec{x}_1, \vec{x}_2) \neq (\vec{x}_1, \vec{x}_2) \text{ vs. } \{\vec{x}_1, \vec{x}_1, \vec{x}_2\} = \{\vec{x}_1, \vec{x}_2\}$

Definice (lineární kombinace konečného seznamu vektorů)

Pro seznam vektorů tvaru

- () definujeme \vec{o} jako jeho (jedinou možnou) lineární kombinaci (s prázdným seznamem koeficientů).
- ② $(\vec{x}_1, \dots, \vec{x}_n)$ je vektor $\sum_{i=1}^n a_i \cdot \vec{x}_i$ jeho lineární kombinace (se seznamem koeficientů (a_1, \dots, a_n)).

Zobecnění předchozího (zatím jen slogan)

Lineární kombinace seznamu $(\mathbf{a}_1,\ldots,\mathbf{a}_k)$ v \mathbb{R}^n vytvářejí "rovný kus" prostoru \mathbb{R}^n .

Tento "rovný kus" prostoru \mathbb{R}^n prochází počátkem a má směr $(\mathbf{a}_1,\ldots,\mathbf{a}_k)$.

Příští přednášky: těmto "rovným kusům" v \mathbb{R}^n budeme říkat lineární podprostory \mathbb{R}^n .

Pochopitelně, v příštích přednáškách budeme pracovat daleko abstraktněji než v \mathbb{R}^n .

Slogan je reklamní heslo!

Na přednášce budeme zmiňovat řadu sloganů. Slogany mají sloužit k intuitivnímu pochopení. Slogany v žádném případě nemohou nahradit přesná znění definic, vět, atd.

