Lab – Modelos de Captura-Recaptura Espacialmente Explícitos (SCR-SMR-SC)

Seguimiento de la Diversidad Biológica

José Jiménez CSIC-IREC

1. Mejorar la inferencia

- ▶ Los modelos no espaciales no pueden utilizar de forma apropiada las fuentes de variación en *p* que pueden sesgar los resultados.
 - Distancia a las trampas
 - Covariables específicas de la trampa
- SCR posibilita estimar densidades, no sólo N en una región desconocida.
- Mejorar el conocimiento científico

- 1. Mejorar la inferencia
 - Los modelos no espaciales no pueden utilizar de forma apropiada las fuentes de variación en p que pueden sesgar los resultados.
 - Distancia a las trampas
 - Covariables específicas de la trampa
 - SCR posibilita estimar densidades, no sólo N en una región desconocida.
- 2. Mejorar el conocimiento científico

Podemos hacernos nuevas preguntas, como:

En vez de pensar en SCR como una nueva herramienta de estima, debemos considerarla como un marco basado en individuos para inferencia de la dinámica espacial de la población.

1. Mejorar la inferencia

- Los modelos no espaciales no pueden utilizar de forma apropiada las fuentes de variación en p que pueden sesgar los resultados.
 - Distancia a las trampas
 - Covariables específicas de la trampa
- SCR posibilita estimar densidades, no sólo N en una región desconocida.

- Podemos hacernos nuevas preguntas, cómo:
 - ¿Cómo influye la variación espacial en la densidad?
 - ¿Como varía la supervivencia y el reclutamiento en el espacio y el tiempo?
 - ¿Cómo influye el movimiento en la densidad y en la detectabilidad?
- En vez de pensar en SCR como una nueva herramienta de estima, debemos considerarla como un marco basado en individuos para inferencia de la dinámica espacial de la población.

1. Mejorar la inferencia

- Los modelos no espaciales no pueden utilizar de forma apropiada las fuentes de variación en p que pueden sesgar los resultados.
 - Distancia a las trampas
 - Covariables específicas de la trampa
- ► SCR posibilita estimar densidades, no sólo *N* en una región desconocida.

- Podemos hacernos nuevas preguntas, cómo:
 - ¿Cómo influye la variación espacial en la densidad?
 - ¿Como varía la supervivencia y el reclutamiento en el espacio y el tiempo?
 - ¿Cómo influye el movimiento en la densidad y en la detectabilidad?
- En vez de pensar en SCR como una nueva herramienta de estima, debemos considerarla como un marco basado en individuos para inferencia de la dinámica espacial de la población.

1. Mejorar la inferencia

- Los modelos no espaciales no pueden utilizar de forma apropiada las fuentes de variación en p que pueden sesgar los resultados.
 - Distancia a las trampas
 - Covariables específicas de la trampa
- SCR posibilita estimar densidades, no sólo N en una región desconocida.

- Podemos hacernos nuevas preguntas, cómo:
 - ¿Cómo influye la variación espacial en la densidad?
 - ¿Como varía la supervivencia y el reclutamiento en el espacio y el tiempo?
 - ¿Cómo influye el movimiento en la densidad y en la detectabilidad?
- En vez de pensar en SCR como una nueva herramienta de estima, debemos considerarla como un marco basado en individuos para inferencia de la dinámica espacial de la población.

1. Mejorar la inferencia

- Los modelos no espaciales no pueden utilizar de forma apropiada las fuentes de variación en p que pueden sesgar los resultados.
 - Distancia a las trampas
 - Covariables específicas de la trampa
- SCR posibilita estimar densidades, no sólo N en una región desconocida.

- Podemos hacernos nuevas preguntas, cómo:
 - ¿Cómo influye la variación espacial en la densidad?
 - ¿Como varía la supervivencia y el reclutamiento en el espacio y el tiempo?
 - ¿Cómo influye el movimiento en la densidad y en la detectabilidad?
- En vez de pensar en SCR como una nueva herramienta de estima, debemos considerarla como un marco basado en individuos para inferencia de la dinámica espacial de la población.

FIGURA: Malla de detectores para SCR

Los datos de captura SCR se organizan como matrices 3D donde y_{ijk} indica si el individuo $i=1,\ldots,n$, fue capturado en la trampa $j=1,\ldots,J$ en la ocasión $k=1,\ldots,K$.

Aquí os pongo un ejemplo de una matriz 3D "aplanada" con n=4 animales capturados en J=3 trampas en K=2 ocasiones.

	Ocasión							
		1		2				
	Trap			Trampa				
Individuo	1	2	3	1	2	3		
1				1		1		
2	1	1	1		1	1		
3		1						
4		1	1	1				

Como conocemos las coordenadas de las trampas, sabemos dónde y

Los datos de captura SCR se organizan como matrices 3D donde y_{ijk} indica si el individuo $i=1,\ldots,n$, fue capturado en la trampa $j=1,\ldots,J$ en la ocasión $k=1,\ldots,K$.

Aquí os pongo un ejemplo de una matriz 3D "aplanada" con n=4 animales capturados en J=3 trampas en K=2 ocasiones.

	Ocasión							
	1				2			
	Trap			Tı	Trampa			
Individuo	1	2	3		1	2	3	
1	0	0	0		1	0	1	
2	1	1	1		0	1	1	
3	0	1	0		0	0	0	
4	0	1	1		1	0	0	

Como conocemos las coordenadas de las trampas, sabemos dónde y cuándo fue detectado cada individuo.

Los datos de captura SCR se organizan como matrices 3D donde y_{ijk} indica si el individuo $i=1,\ldots,n$, fue capturado en la trampa $j=1,\ldots,J$ en la ocasión $k=1,\ldots,K$.

Aquí os pongo un ejemplo de una matriz 3D "aplanada" con n=4 animales capturados en J=3 trampas en K=2 ocasiones.

	Ocasión						
	1			2			
	Trap			Trampa			
Individuo	1	2	3		1	2	3
1	0	0	0		1	0	1
2	1	1	1		0	1	1
3	0	1	0		0	0	0
4	0	1	1		1	0	0

Como conocemos las coordenadas de las trampas, sabemos dónde y cuándo fue detectado cada individuo.

Los datos de captura SCR se organizan como matrices 3D donde y_{ijk} indica si el individuo $i=1,\ldots,n$, fue capturado en la trampa $j=1,\ldots,J$ en la ocasión $k=1,\ldots,K$.

Aquí os pongo un ejemplo de una matriz 3D "aplanada" con n=4 animales capturados en J=3 trampas en K=2 ocasiones.

	Ocasión							
	1				2			
	Trap			Tı	Trampa			
Individuo	1	2	3		1	2	3	
1	0	0	0		1	0	1	
2	1	1	1		0	1	1	
3	0	1	0		0	0	0	
4	0	1	1		1	0	0	

Como conocemos las coordenadas de las trampas, sabemos dónde y cuándo fue detectado cada individuo.

Proceso espacial de puntos

El estado de SCR es un proceso de puntos espacial (o espacio-temporal)

Hay muchas variantes posibles de estos procesos de puntos espaciales

- Proceso de puntos binomiales (no)homogéneos
- Proceso de puntos Poisson (no)homogéneos
- Procesos de Cox
- Procesos de Gibbs
- Procesos de puntos de Markov
- ... y otros

Proceso espacial de puntos

El estado de SCR es un proceso de puntos espacial (o espacio-temporal)

Hay muchas variantes posibles de estos procesos de puntos espaciales

- Proceso de puntos binomiales (no)homogéneos
- Proceso de puntos Poisson (no)homogéneos
- Procesos de Cox
- Procesos de Gibbs
- Procesos de puntos de Markov
- ... y otros

- Los datos son una colección de puntos llamados "patrón de puntos"
- Los puntos están en un área llamado el espacio de estados (S), o ventana de observación, que suele ser bidimensional.
- La función de intensidad $(\lambda(s))$ describe la variación espacial en la densidad de puntos
- El área bajo esta función es el número esperado de puntos (o de otra forma, N) en la region estudiada:

$$E(N) = \Lambda = \int_{\mathcal{S}} \lambda(s) \, \mathrm{d}s$$

- Los datos son una colección de puntos llamados "patrón de puntos"
- Los puntos están en un área llamado el espacio de estados (S), o ventana de observación, que suele ser bidimensional.
- La función de intensidad $(\lambda(s))$ describe la variación espacial en la densidad de puntos
- El área bajo esta función es el número esperado de puntos (o de otra forma, N) en la region estudiada:

$$E(N) = \Lambda = \int_{\mathcal{S}} \lambda(s) \, \mathrm{d}s$$

- Los datos son una colección de puntos llamados "patrón de puntos"
- Los puntos están en un área llamado el espacio de estados (S), o ventana de observación, que suele ser bidimensional.
- La función de intensidad $(\lambda(s))$ describe la variación espacial en la densidad de puntos
- El área bajo esta función es el número esperado de puntos (o de otra forma, N) en la region estudiada:

$$E(N) = \Lambda = \int_{\mathcal{S}} \lambda(s) \, \mathrm{d}s$$

- Los datos son una colección de puntos llamados "patrón de puntos"
- Los puntos están en un área llamado el espacio de estados (S), o ventana de observación, que suele ser bidimensional.
- La función de intensidad $(\lambda(s))$ describe la variación espacial en la densidad de puntos
- El área bajo esta función es el número esperado de puntos (o de otra forma, N) en la region estudiada:

$$E(N) = \Lambda = \int_{\mathcal{S}} \lambda(s) \, \mathrm{d}s$$

- Los datos son una colección de puntos llamados "patrón de puntos"
- Los puntos están en un área llamado el espacio de estados (S), o ventana de observación, que suele ser bidimensional.
- La función de intensidad $(\lambda(s))$ describe la variación espacial en la densidad de puntos
- El área bajo esta función es el número esperado de puntos (o de otra forma, N) en la region estudiada:

$$E(N) = \Lambda = \int_{\mathcal{S}} \lambda(s) \, \mathrm{d}s$$

Modelo de población cerrado

Modelo de estado (un proceso de puntos espacial)

$$\lambda(s) = \exp(\beta_0 + \beta_1 w_1(s) + \beta_2 w_2(s) \dots)$$

$$\Lambda = \int_{\mathcal{S}} \lambda(s) ds$$

$$N \sim \operatorname{Pois}(\Lambda)$$

$$s_i \propto p(\lambda(s)) \text{ for } i = 1, \dots, N$$

Modelo de observación (habría que añadir el aumentado de datos)

$$p_{ij} = \lambda_0 \cdot e^{-\frac{\|\mathbf{s}_i - \mathbf{x}_j\|^2}{(2\sigma^2)}} \text{ for } j = 1, \dots, J$$

 $y_{ijk} \sim \text{Bernoulli}(p_{ij})$

Modelo de población cerrado

Modelo de estado (un proceso de puntos espacial)

$$\lambda(s) = \exp(\beta_0 + \beta_1 w_1(s) + \beta_2 w_2(s) \dots)$$

$$\Lambda = \int_{\mathcal{S}} \lambda(s) ds$$

$$N \sim \operatorname{Pois}(\Lambda)$$

$$s_i \propto p(\lambda(s)) \text{ for } i = 1, \dots, N$$

Modelo de observación (habría que añadir el aumentado de datos)

$$p_{ij} = \lambda_0 \cdot e^{-\frac{\|\mathbf{s}_i - \mathbf{x}_j\|^2}{(2\sigma^2)}} \text{ for } j = 1, \dots, J$$

 $y_{ijk} \sim \text{Bernoulli}(p_{ij})$

Modelo de población cerrado

Modelo de estado (un proceso de puntos espacial)

$$\lambda(s) = \exp(\beta_0 + \beta_1 w_1(s) + \beta_2 w_2(s) \dots)$$

$$\Lambda = \int_{\mathcal{S}} \lambda(s) ds$$

$$N \sim \operatorname{Pois}(\Lambda)$$

$$s_i \propto p(\lambda(s)) \text{ for } i = 1, \dots, N$$

Modelo de observación (habría que añadir el aumentado de datos)

$$p_{ij} = \lambda_0 \cdot e^{-\frac{\|\mathbf{s}_i - \mathbf{x}_j\|^2}{(2\sigma^2)}} \text{ for } j = 1, \dots, J$$

 $y_{ijk} \sim \text{Bernoulli}(p_{ij})$

FIGURA: Probabilidad de detección: una normal bivariada

Modelo bayesiano o aumentado de datos (DA)

La versión DA de un modelo SCR básico es:

$$egin{aligned} oldsymbol{s}_i &\sim \operatorname{Unif}(\mathcal{S}) \ z_i &\sim \operatorname{Bern}(\psi) \ p_{ij} &= \lambda_0 \exp(-\|oldsymbol{s}_i - oldsymbol{x}_j\|^2/(2\sigma^2)) \ y_{ijk} &\sim \operatorname{Bern}(z_i p_{ij}) \ N &= \sum_{i=1}^M z_i \end{aligned}$$

Modelo SCR₀ (versión JAGS)

```
model {
psi ~ dunif(0, 1)
g0 ~ dunif(0, 1)
sigma ~ dunif(0, 0.5)
for(i in 1:M) {
  s[i,1] ~ dunif(xlim[1], xlim[2])
  s[i,2] ~ dunif(ylim[1], ylim[2])
  z[i] ~ dbern(psi)
  for(j in 1:J) {
    dist[i,j] \leftarrow sqrt((s[i,1]-x[j,1])^2 + (s[i,2]-x[j,2])^2)
    p[i,j] \leftarrow g0*exp(-dist[i,j]^2/(2*sigma^2))
    for(k in 1:K) {
      y[i,j,k] ~ dbern(z[i]*p[i,j])
EN <- M*psi
N \leftarrow sum(z)
```

Modelo SCR₀ (versión Nimble que usaremos (1))

```
model {
psi ~ dunif(0, 1)
g0 ~ dunif(0, 1)
sigma \sim dunif(0, 0.5)
for(i in 1:M) {
  s[i,1] ~ dunif(xlim[1], xlim[2])
  s[i,2] ~ dunif(ylim[1], ylim[2])
  z[i] ~ dbern(psi)
  dist[i,1:J] \leftarrow sqrt((s[i,1]-x[1:J,1])^2 + (s[i,2]-x[1:J,2])^2)
  p[i,1:J] <- g0*exp(-dist[i,1:J]^2/(2*sigma^2))
  for(j in 1:J) {
    for(k in 1:K) {
      y[i,j,k] ~ dbern(z[i]*p[i,j])
EN <- M*psi
N \leftarrow sum(z)
```

Modelo SCR₀ (versión Nimble que usaremos (2))

```
model {
psi ~ dunif(0, 1)
g0 ~ dunif(0, 1)
sigma \sim dunif(0, 0.5)
for(i in 1:M) {
  s[i,1] ~ dunif(xlim[1], xlim[2])
  s[i,2] ~ dunif(ylim[1], ylim[2])
  z[i] ~ dbern(psi)
  dist[i,1:J] \leftarrow sqrt((s[i,1]-x[1:J,1])^2 + (s[i,2]-x[1:J,2])^2)
  p[i,1:J] <- g0*exp(-dist[i,1:J]^2/(2*sigma^2))
  for(j in 1:J) {
     y[i,j] ~ dbinom(z[i]*p[i,j], K)
EN <- M*psi
N \leftarrow sum(z)
```

${f Modelo~SMR}_0~({ m versi\'{o}n~Nimble})$

```
code <- nimbleCode({
  lam0 ~ dunif(0.5)
  sig ~ dunif(0.5)
  sig2 <- 2*sig^2
  psi ~ dbeta(1.1)
  # PROCESO ECOLOGICO (ESTADO)
  for(i in 1:M) {
    s[i,1] ~ dunif(xlim[1], xlim[2])
    s[i,2] ~ dunif(ylim[1], ylim[2])
    z[i] ~ dbern(psi)
    d2[i,1:J] \leftarrow (s[i,1]-x[1:J,1])^2 + (s[i,2]-x[1:J,2])^2
    lam[i,1:J] <- lam0*exp(-d2[i,1:J]/sig2)*z[i]*K
  # PROCESO DE OBSERVACION
  # Fraccion marcada
  for(i in 1:nMarked) {
    for(j in 1:J) {
      y[i,j] ~ dpois(lam[i,j])
  # Parte no marcada
  for(j in 1:J) {
    Lam[i] <- sum(lam[((nMarked+1):M).i])</pre>
    n[j] ~ dpois(Lam[i])
  N \leftarrow sum(z[1:M])
  D <- N/A
})
```

$Modelo UN-SCR_0 (versi\'on Nimble)$

```
code <- nimbleCode({
  sigma ~ dgamma(sh,ra)
  psi ~ dunif(0,1)
  lam0 ~ dunif(0,5)
  # PROCESO ECOLOGICO (ESTADO)
  for(i in 1:M) {
    z[i] ~ dbern(psi)
    s[i,1] ~ dunif(xlim[1],xlim[2])
    s[i,2] ~ dunif(ylim[1],ylim[2])
    d2[i,1:J] \leftarrow (s[i,1]-X[1:J,1])^2 + (s[i,2]-X[1:J,2])^2
    lam[i,1:J] \leftarrow lam0*exp(-d2[i,1:J]/(2*sigma^2))*z[i]*K
  # PROCESO DE OBSERVACION
  for(j in 1:J){
    bigLambda[j] <- sum(lam[1:M,j])</pre>
    n[j] ~ dpois(bigLambda[j])
 N \leftarrow sum(z[1:M])
})
```

REFERENCIAS

- Efford, M. G. (2004). Density estimation in live-trapping studies. Oikos, 106(3), 598–610.
- Royle, J. A., Nichols, J. D., Karanth, K. U., & Gopalaswamy, A. M. (2009). A hierarchical model for estimating density in camera-trap studies. Journal of Applied Ecology, 46(1), 118–127. doi:10.1111/j.1365-2664.2007.0
- Royle, J. A., Chandler, R. B., Sollmann, R., & Gardner, B. (2014). *Spatial capture-recapture*. Waltham, Massachusetts: Elsevier, Academic Press. doi:10.1016/B978-0-12-405939-9.00026-8