Multivariate Statistical Analysis

Lecture 06

Fudan University

luoluo@fudan.edu.cn

Outline

Maximum Likelihood Estimation

2 Distribution Theory

Outline

Maximum Likelihood Estimation

2 Distribution Theory

If $\mathbf{x}_1,\dots,\mathbf{x}_N$ constitutes a sample from $\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$ with N>p and define

$$\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}},$$

then what is the maximum likelihood estimator of ρ_{ij} ?

We can replace σ_{ii} , σ_{ij} and σ_{ii} with

$$egin{aligned} \hat{\sigma}_{ii} &= rac{1}{N} \sum_{lpha=1}^{N} (x_{ilpha} - ar{x}_i)^2, \ \hat{\sigma}_{ij} &= rac{1}{N} \sum_{lpha=1}^{N} (x_{ilpha} - ar{x}_i) (x_{jlpha} - \mu_j), \ \hat{\sigma}_{jj} &= rac{1}{N} \sum_{lpha=1}^{N} (x_{jlpha} - ar{x}_j)^2, \end{aligned}$$

leading to

$$\hat{\rho}_{ij} = \frac{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j)}{\sqrt{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{j\alpha} - \bar{x}_j)^2}}.$$

Theorem

On the basis of a given sample, if

$$\hat{\theta}_1, \ldots, \hat{\theta}_m$$

are maximum likelihood estimators of the parameters

$$\theta_1, \dots, \theta_m$$

of a distribution, then

$$\phi_1(\hat{\theta}_1,\ldots,\hat{\theta}_m),\ldots,\phi_m(\hat{\theta}_1,\ldots,\hat{\theta}_m)$$

are maximum likelihood estimator of

$$\phi_1(\theta_1,\ldots,\theta_m),\ldots,\phi_m(\theta_1,\ldots,\theta_m)$$

if the transformation from $\theta_1, \ldots, \theta_m$ to ϕ_1, \ldots, ϕ_m is one-to-one.

If $\phi: \mathcal{S} \to \mathcal{S}^*$ is not one-to-one, we let

$$\phi^{-1}(oldsymbol{ heta}^*) = \{oldsymbol{ heta}: oldsymbol{ heta}^* = \phi(oldsymbol{ heta})\}.$$

and define (the induced likelihood function)

$$g(\theta^*) = \sup\{f(\theta) : \theta^* = \phi(\theta)\}.$$

If $heta=\hat{ heta}$ maximize f(heta), then $heta^*=\phi(\hat{ heta})$ also maximize $g(heta^*)$.

The maximum likelihood estimator of ρ_{ij} is indeed

$$\hat{\rho}_{ij} = \frac{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j)}{\sqrt{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{j\alpha} - \bar{x}_j)^2}}.$$

Outline

Maximum Likelihood Estimation

2 Distribution Theory

Distribution Theory

Theorem

Let x_1, \ldots, x_N be independent, each distributed according to $\mathcal{N}(\mu, \Sigma)$. Then the mean of the sample

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha}$$

is distributed according to $\mathcal{N}(\mu, \frac{1}{N}\mathbf{\Sigma})$ and independent of

$$\hat{\mathbf{\Sigma}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

Additionally, we have

$$N\hat{\mathbf{\Sigma}} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top},$$

where $\mathbf{z}_{\alpha} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ for $\alpha = 1, \dots, N-1$, and $\mathbf{z}_1, \dots, \mathbf{z}_{N-1}$ are independent.

Distribution Theory

Lemma

Suppose $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independent, where $\mathbf{x}_\alpha \sim \mathcal{N}_p(\boldsymbol{\mu}_\alpha, \boldsymbol{\Sigma})$. Let $\mathbf{C} \in \mathbb{R}^{N \times N}$ be an orthogonal matrix, then

$$\mathbf{y}_{lpha} = \sum_{eta=1}^{N} c_{lphaeta} \mathbf{x}_{eta} \sim \mathcal{N}_{p}(oldsymbol{
u}_{lpha}, oldsymbol{\Sigma}),$$

where $\nu = \sum_{\beta=1}^{N} c_{\alpha\beta} \mu_{\beta}$ for $\alpha = 1, ..., N$ and $y_1, ..., y_N$ are independent.

Lemma

$$If \mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{p1} & c_{p2} & \dots & c_{pp} \end{bmatrix} = \begin{bmatrix} c_1^\top \\ c_2^\top \\ \vdots \\ c_p^\top \end{bmatrix} \in \mathbb{R}^{p \times p} \text{ is orthogonal,}$$

then $\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} = \sum_{\beta=1}^{N} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top}$ where $\mathbf{y}_{\alpha} = \sum_{\beta=1}^{N} c_{\alpha\beta} \mathbf{x}_{\beta}$ for $\alpha = 1, \dots, N$.

Distribution Theory

Theorem

If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}_p(\mu, \mathbf{\Sigma})$ with N > p, the estimator

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

is positive definite with probability is 1.

- **1** The matrix $\hat{\Sigma}$ be must singular if $N \leq p$.
- ② The proof indicates $\mathbf{U}^{\top}\mathbf{U}$ is non-singular with probability 1 for $\mathbf{U} \in \mathbb{R}^{d \times k}$ with $k \leq d$ and $u_{ij} \stackrel{i.i.d}{\sim} \mathcal{N}(0,1)$.