논문 읽기

हां । अव्यक्तित्र Morphological features

Using the QRS summits (after normalization), the maximum of cross-correlation function between each detected beat and the following beat was calculated, as well as the maximum of cross-correlation between the current beat and the previous beat detected, called respectively Corr1 and Corr2 [17]. Another feature was the maximum of cross-correlation between a template of normal beat, with each QRS complex detected, called CxyCxy, was computed. For each record, the template was calculated as the averaged beat of a sequence of many normal sinus beats.

bent 1: cross combation

Q

Con 2

towner Opes
beat 7: cross-combation

21 maximum

Normal H towner

Normal

Cross Correlation

: 比如 钻外的 出口吃了 外知 地

THE CHAIN COURT (OUT TIES DES MAN 22 CLEVISE HE IS SON SONTH STROM BOR GHORE BEAM

→ 신호가 비슷하다면 큰 값!

ex)

위 그림과 같이 동일한 sine 함수이면 CorrCoef(상관계수) = 1

위 그림과 같이 정 반대인 경우 CorrCoef = -1

numpy 로 cross correlation 구하기 기초

깃허브 코드 보기

→ One Note 정리

Cross Correlation (웹 보기)

csv 파일들 불러와서 정리하기

```
05. walk
# txt & csv 100 ~ 234
for dirname, _, filenames in os.walk('dataset'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
dataset#100.csv
dataset#100annotations.txt
dataset#101.csv
dataset#101annotations.txt
dataset#102.csv
dataset#102annotations.txt
dataset#103.csv
dataset#103annotations.txt
dataset#104.csv
dataset#104annotations.txt
dataset#105.csv
dataset#105annotations.txt
dataset#106.csv
dataset#106annotations.txt
dataset#107.csv
dataset#107annotations.txt
dataset#108.csv
dataset#108annotations.txt
dataset#109.csv
```

```
# os.path.splitext : 파일명과 확장자 분리 Of. path.splitext for f in filenames:
    filename, file_extension = os.path.splitext(f)

# csv확장자는 records에 저장
    if(file_extension == '.csv'):
        records.append(path + filename + file_extension)

# txt확장자는 annotations에 저장
    else:
        annotations.append(path + filename + file_extension)
```

dataset#109annotations txt

jupyter 100.csv ✓ 2019.09.29 : (500)

File	Edit	View	Lanç	guage		
	inde	M	2156	v5152		
1		e #','ML	.11'.'	V5 '		
2	0,995,					
3	1,995,1011					
4	2,995,1011					
5	3,995,	1011				
6	4,995,1011					
7	5,995,1011					
8	6,995,1011					
9	7,995,	1011				
10	8 1000	1008				

ু jupyter 100annotations.txt✔ 4시간 전 File JENER HENNING HENNING ZONIEN RB Edit **►⊓t** Time Sub Chan Num Sample # Туре Num ∗Aux 0:00.050 18 0 0 0-×(N 0:00.214 77 Ν 0 0 Ω 0:01.028 370 0 0 0 0:01.839 662 Ν 0 0 0 R 0:02.628 946 0 0 Ν 0 0:03.419 1231 Ν 0 0 0 8 0:04.208 1515 Ν 0 0 0 9 0:05.025 1809 Ν 0 0 0 0:05.678 2044 0

3개의 beat 로 corrcoef 구하기

```
plt.plot(signals[:1050])
# rspot = []
# for i in samples[:5]:
# rspot.append(signals[i])
plt.scatter(samples[1:5], [signals[i] for i in samples[1:5]], c='r')
plt.show()

**Temp = samples[1:4] # R 위치 가지고 우전적으로 correlation구하기
window = []
for i in temp:
    window.append([i-30, i+30])
window
window
# rspot = []
# for i in samples[1:5], c='r')
# window = []
# for i in temp:
    window.append([i-30, i+30])
window
# rspot = []
# for i in temp:
    window.append([i-30, i+30])
window
```

Samples on 1511

R 9441442 HYDZ FORMA

NGOHN OF ON ADMIN SIGNE

(3,0 vindow 311 6014)

```
1]: [[47, 107], [340, 400], [632, 692]]
```

Corn? tou best?!

US bester cornelations

Cornelation beater

Olice bester correlation

Olece the cornelation

(biblishe cornelation

= Suball lite Cornelation

```
In [108]: H for idx, item in enumerate(classes[1:], start = 1): #8,A

if item != 'N':
    print(idx, item)
    break;

8 A
```


arr = np.corrcoef(normal_signal, signals[samples[8]-30:samples[8]+30])
print(arr[0][1])

0.9848637652319113

HAPPER I'M SHI OLAPU MARAN HARISHAN WAR IN NEW "

beat 별 분류클래스

AAMI Class	MIT-BIH Annotation	Туре	Total # of Heartbeats
Normal (N)	(N) 18H	Normal beat	74722
	[L] WHAT NEAH	Left bundle branch block beat	8069
	R) Shirty 25041	Right bundle branch block beat	7250
	e	Atrial escape beat	16
	j	Nodal escape	85 0746) 14 11-11-11-11-11-11-11-11-11-11-11-11-11-
Supraventricular ectopic beat (SVEB)	(A) 1345 31.9tg	Atrial premature beat	2544
, ,	a	Aberrated atrial premature beat	4247 150 123
	J	Nodal (junctional) premature beat	83
	S	Supraventricular premature beat	2
Ventricular ectopic beat (VEB)	(V) Hitzhotan	Premature ventricular contraction	7122
	E	Ventricular escape beat	106
Fusion beat (F)	F	Fusion of ventricular and normal beat	802
Unknown beat (Q)	P or /	Paced beat	3616
	f	Fusion of paced and normal beat	260
	Q	Unclassifiable beat	15
	104986		