The McGraw-Hill Companies

Chapter 2
Basic Structures: Sets,
Functions, Sequences,
and Sums

Outlines

- **4**2.1 Sets
- **4**2.2 Set Operations
- **4**2.3 Functions
- **42.4** Sequences and Summations

Getting Started

- **4**2.1 Sets
- **42.2** Set Operations
- **4**2.3 Functions
- **42.4** Sequences and Summations

2.1 Sets(1/8)

- <u>Definition 1</u>: A *set* is an unordered collection of objects
- <u>Definition 2</u>: Objects in a set are called *elements*, or *members* of the set.
 - $-a \in A$, $a \notin A$
 - $V = {a, e, i, o, u}$
 - O = $\{1, 3, 5, 7, 9\}$ or O = $\{x \mid x \text{ is an odd positive integer less than 10}\}$
 - or O = $\{x \in \mathbb{Z}^+ \mid x \text{ is odd and } x < 10\}$

2.1 Sets(2/8)

- $N=\{0, 1, 2, 3, ...\}$, natural numbers
- **Z**={...,-2, -1, 0, 1, 2, ...}, integers
- $Z^{+}=\{1, 2, 3, ...\}$, positive integers
- Q={p/q | p∈**Z**, q∈**Z**, and q≠0}, rational numbers
- \mathbf{Q}^+ ={x∈R | x=p/q, for positive integers p and q}
- R, real numbers

2.1 Sets(3/8)

- <u>Definition 3</u>: Two sets are *equal* if and only if they have the same elements. A=B iff $\forall x(x \in A \leftrightarrow x \in B)$
- Venn diagram
 - Universal set U
 - Empty set (null set) \emptyset (or $\{\}$)

FIGURE 1 Venn Diagram for the Set of Vowels.

Set example

The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements. Note that the order in which the elements of a set are listed does not matter. Note also that it does not matter if an element of a set is listed more than once, so {1, 3, 3, 5, 5, 5, 5} is the same as the set {1, 3, 5} because they have the same elements.

2.1 Sets(5/8)

• <u>Definition 4</u>: The set A is a *subset* of B if and only if every element of A is also an element of B.

$$A \subseteq B \text{ iff } \forall x(x \in A \rightarrow x \in B)$$

- Theorem 1: For every set S, $(1) \varnothing \subseteq S$ and $(2) S \subseteq S$.
- Proper subset: $A \subset B$

A is a **proper subset** of *B* only if $\forall x(x \in A \rightarrow x \in B) \land \exists x(x \in B \land x \notin A)$

2.1 Sets(6/8)

- If $A\subseteq B$ and $B\subseteq A$, then A=B
- Sets may have other sets as members
 - $A = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$ B= $\{x \mid x \text{ is a subset of the set } \{a,b\}\}$
 - -A=B

FIGURE 2 Venn Diagram Showing that *A* Is a Subset of *B*.

2.1 Sets(8/8)

• Definition 5: If there are exactly *n* distinct members in the set *S* (*n* is a nonnegative integer), we say that *S* is a finite set and that *n* is the *cardinality* of *S*.

$$|S| = n$$

$$-|\varnothing| = 0$$

• <u>Definition 6:</u> A set is *infinite* if it's not finite.

- Z⁺

The Power Set

- Definition 7: The *power set* of S is the set of all subset of the set S. P(S)
 - $-P({0,1,2})$

What is the power set of the empty set? What is the power set of the set $\{\emptyset\}$

- $-P(\varnothing)=\{\emptyset\}\ .$
- $-P(\{\varnothing\}) = \{\emptyset, \{\emptyset\}\} .$
- If a set has n elements, then its subset has 2^n elements.

Cartesian Products

- Definition 8: Ordered n-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_i as its ith element for i=1, 2, ..., n.
- Definition 9: Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

- $E.g. A = \{1, 2\}, B = \{a, b, c\}$
- $A \times B$ and $B \times A$ are not equal, unless $A = \emptyset$ or $B = \emptyset$ or A = B

• Definition 10: Cartesian product of A_1 , A_2 , ..., A_n , denoted by $A_1 \times A_2 \times ... \times A_n$, is the set of all ordered n-tuples $(a_1, a_2, ..., a_n)$, where $a_i \in A_i$ for i=1,2,...,n. $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ for } i=1,2,...,n\}$

• What is the Cartesian product $A \times B \times C$, where $A = \{0, 1\}, B = \{1, 2\}, \text{ and } C = \{0, 1, 2\}$?

Solution: The Cartesian product $A \times B \times C$ consists of all ordered triples (a, b, c), where $a \in A, b \in B$, and $c \in C$. Hence,

 $A \times B \times C = \{(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)\}.$

Example

• What are the ordered pairs in the less than or equal to relation, which contains (a, b) if $a \le b$, on the set $\{0, 1, 2, 3\}$?

Solution: The ordered pair (a, b) belongs to R if and only if both a and b belong to $\{0, 1, 2, 3\}$ and $a \le b$. Consequently, the ordered pairs in R are (0,0), (0,1), (0,2), (0,3), (1,1), (1,2), (1,3), (2,2), (2,3), and (3,3).

Getting Started

2.2 Set Operations

- Definition 1: The *union* of the sets A and B, denoted by $A \cup B$, is the set containing those elements that are either in A or in B, or in both.
 - $-A \cup B = \{x \mid x \in A \lor x \in B\}$
- <u>Definition 2</u>: The *intersection* of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and B.
 - $-A \cap B = \{x \mid x \in A \land x \in B\}$

 $A \cup B$ is shaded.

FIGURE 1 Venn Diagram Representing the Union of *A* and *B*.

 $A \cap B$ is shaded.

FIGURE 2 Venn Diagram Representing the Intersection of *A* and *B*.

- <u>Definition 3:</u> Two sets are *disjoint* if their intersection is the empty set.
- $|A \cup B| = |A| + |B| |A \cap B|$
 - Principle of inclusion-exclusion

- <u>Definition 4</u>: The *difference* of the sets *A* and *B*, denoted by *A-B*, is the set containing those elements that are in *A* but not in *B*.
 - Complement of B with respect to A
 - $-A-B=\{x\mid x\in A \land x\notin B\}$
- <u>Definition 5</u>: The *complement* of the set A, denoted by \bar{A} , is the complement of A with resepect to \bar{U} .
 - $\bar{A} = \{x \mid x \not\in A\}$

A - B is shaded.

FIGURE 3 Venn Diagram for the Difference of *A* and *B*.

 \overline{A} is shaded.

FIGURE 4 Venn Diagram for the Complement of the Set *A*.

Set Identities

- To prove set identities
 - Show that each is a subset of the other
 - Using membership tables
 - Using those that we have already proved

Identity	Name		
$A \cup \emptyset = A$ $A \cap U = A$	Identity laws		
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws		
$A \cup A = A$ $A \cap A = A$	Idempotent laws		
$\overline{(\overline{A})} = A$	Complementation law		
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws		
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws		
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws		
$\frac{\overline{A \cup B} = \overline{A} \cap \overline{B}}{\overline{A} \cap \overline{B} = \overline{A} \cup \overline{B}}$	De Morgan's laws		
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws		
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws		

TABLE 2 (2.2)

The McGraw-Hill Companies, Inc. all rights reserved.

A	B	C	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

Generalized Unions and Intersections

• <u>Definition 6</u>: The *union* of a collection of sets is the set containing those elements that are members of at least one set in the collection.

$$-A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i$$

• <u>Definition 7</u>: The *intersection* of a collection of sets is the set containing those elements that are members of all the sets in the collection.

$$-A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i$$

- Computer Representation of Sets
 - Using bit strings

• Let $A = \{0, 2, 4, 6, 8\}$, $B = \{0, 1, 2, 3, 4\}$, and $C = \{0, 3, 6, 9\}$. What are $A \cup B \cup C$ and $A \cap B \cap C$? Solution: The set $A \cup B \cup C$ contains those elements in at least one of A, B, and C. Hence, $A \cup B \cup C = \{0, 1, 2, 3, 4, 6, 8, 9\}$. The set $A \cap B \cap C$ contains those elements in all three of A, B, and C. Thus, $A \cap B \cap C = \{0\}$.

(a) $A \cup B \cup C$ is shaded.

(b) $A \cap B \cap C$ is shaded.

FIGURE 5 The Union and Intersection of *A*, *B*, and *C*.

Getting Started

42.1 Sets

42.2 Set Operations

42.3 Functions

42.4 Sequences and Summations

2.3 Functions

- Definition 1: A *function* f from A to B is an assignment of exactly one element of B to each element of A. f: $A \rightarrow B$
- Definition 2: $f: A \rightarrow B$.
 - A: domain of f, B: codomain of f.
 - f(a)=b, a: **preimage** of b, b: **image** of a.
 - Range of f: the set of all images of elements of
 - *f*: maps *A* to *B*

• What are the domain, codomain, and range of the function that assigns grades to students described in the first paragraph of the introduction of this section?

Solution: Let G be the function that assigns a grade to a student in our discrete mathematics class. Note that G(Adams) = A, for instance. The domain of G is the set $\{Adams, Chou, Goodfriend, Rodriguez, Stevens\}$, and the codomain is the set $\{A, B, C, D, F\}$. The range of G is the set $\{A, B, C, F\}$, because each grade except D is assigned to some student.

FIGURE 1

FIGURE 1.1: An example of function with it's components.

FIGURE 2

FIGURE 1.2: An example of not being function

FIGURE 3

FIGURE 1.3: An example of not being function

FIGURE 2 The Function f Maps A to B.

• Definition 3: Let f_1 and f_2 be functions from A to **R**. f_1+f_2 and f_1f_2 are also functions from A to **R**:

$$- (f_1 + f_2)(x) = f_1(x) + f_2(x)$$

$$-(f_1f_2)(x)=f_1(x)f_2(x)$$

Ex: Let f1 and f2 be functions from \mathbf{R} to \mathbf{R} such that f1(x) = x2 and f2(x) = x - x2. What are the functions f1 + f2 and f1f2?

Solution: From the definition of the sum and product of functions, it follows that

$$(f1 + f2)(x) = f1(x) + f2(x) = x2 + (x - x2) = x$$

and

$$(f1f2)(x) = x2(x - x2) = x3 - x4.$$

Definition 4: $f: A \rightarrow B$, S is a subset of A. The image of S under the function f is the subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so $f(S) = \{t \mid \exists s \in S \ (t = f(s))\}.$

Ex: Let $A = \{a, b, c, d, e\}$ and $B = \{1, 2, 3, 4\}$ with f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1, and f(e) = 1. The image of the subset $S = \{b, c, d\}$ is the set $f(S) = \{1, 4\}$.

One-to-One and Onto Functions

- Definition 5: A function f is one-to-one or injective, iff f(a)=f(b) implies that a=b for all a and b in the domain of f.
 - $\forall a \forall b (f(a)=f(b) \rightarrow a=b)$ or $\forall a \forall b (a \neq b \rightarrow f(a) \neq f(b))$ a function f is one-to-one if and only if $f(a) \neq f(b)$ whenever $a \neq b$.
- Determine whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one?

FIGURE 3 A One-to-One Function.

One-to-One and Onto Functions

- Definition 7: A function f is onto or surjective, iff for every element $b \in B$ there is an element $a \in A$ with f(a)=b.
 - $\forall y \exists x (f(x)=y) \text{ or}$ $\forall a \forall b (a \neq b \rightarrow f(a) \neq f(b))$
 - When co-domain = range
- <u>Definition 8</u>: A function *f* is a *one-to-one correspondence* **or** *a bijection* if it is both one-to-one and onto.
 - Ex: identity function $\iota_A(x)=x$

FIGURE 4 An Onto Function.

FIGURE 5 (2.3)

@ The McGraw-Hill Companies, Inc. all rights reserved.

FIGURE 5 Examples of Different Types of Correspondences.

Inverse Functions and Compositions of Functions

• <u>Definition 9:</u> Let f be a one-to-one correspondence from A to B. The inverse function of f is the function that assigns to an element b in B the unique element a in A such that f(a)=b.

$$-f^{1}(b)=a$$
 when $f(a)=b$

Prove It

• Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible, and if it is, what is its inverse? Solution: The function f is invertible because it is a

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence given by f, so $f^{-1}(1) = c$, $f^{-1}(2) = a$, and $f^{-1}(3) = b$

Let f be the function from R to R with f(x) = x2. Is f invertible? Because f(-2) = f(2) = 4, f is not one-to-one. f is not invertible.

FIGURE 6 The Function f^{-1} Is the Inverse of Function f.

Definition 10: Let g be a function from A to B, and f be a function from B to C. The *composition* of functions f and g, denoted by f∘g, is defined by:

- $-f\circ g(a)=f(g(a))$
- $f \circ g$ and $g \circ f$ are not equal --- Prove it

FIGURE 7 The Composition of the Functions f and g.

Let f and g be the functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition of g and f?

Solution: Both the compositions $f \circ g$ and $g \circ f$ are defined. Moreover,

$$(f \circ g)(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$$

and

$$(g \circ f)(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11.$$

Graphs of Functions

• **Definition 11:** The **graph** of function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a)=b\}$

FIGURE 8 The Graph of f(n) = 2n + 1 from Z to Z.

FIGURE 9 The Graph of $f(x) = x^2$ from Z to Z.

Floor and Ceil Functions

- Definition 12: The *floor function* assigns to x the largest integer that is less than or equal to x ($\lfloor x \rfloor$ or [x])..
- Definition 13: The *ceiling function* assigns to x the smallest integer that is greater than or equal to x (x)

FIGURE 10 Graphs of the (a) Floor and (b) Ceiling Functions.

TABLE 1 (2.3)

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n+1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$

$$(2) \quad x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

(3a)
$$\lfloor -x \rfloor = -\lceil x \rceil$$

(3b)
$$\lceil -x \rceil = -\lfloor x \rfloor$$

$$(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

(4b)
$$\lceil x + n \rceil = \lceil x \rceil + n$$

Proof: 4(a)

- Let x = m where m is a positive integer.
- By property **1**(a)

$$m \le x < m + 1$$

Adding n on both sides

$$m+n \leq x+n < m+n+1$$

• Using 1(a) again

$$|x + n| = m + n$$
$$|x + n| = |x| + n$$

• A useful approach for considering statements about the floor function is to let

$$x = n + \varepsilon$$

where

$$n = |x|, 0 \le \varepsilon < 1$$

• For ceil

$$x = n - \varepsilon$$

where

$$n = [x], 0 \le \varepsilon < 1$$

Proof: $\lfloor 2x \rfloor = \lfloor x \rfloor + \left\lfloor x + \frac{1}{2} \right\rfloor$

- Let $x = n + \varepsilon$ (1) where $0 \le \varepsilon < 1$ and $n = \lfloor x \rfloor$ (c) is an integer
- Two cases to consider, depending on whether ε is less than, or greater than or equal to $\frac{1}{2}$.

or
$$0 \le 2\varepsilon < 1$$

- ❖ From (1) $2x = 2n + 2\varepsilon$ (3) and |2x| = 2n
- Similarly from (1) $x + \frac{1}{2} = n + \frac{1}{2} + \varepsilon$ and $\lfloor 2x \rfloor = 2 n \dots (a)$
- From (2) $\frac{1}{2} \le \varepsilon + \frac{1}{2} < 1$ or $0 < \varepsilon + \frac{1}{2} < 1$ and so $\left| x + \frac{1}{2} \right| = n \dots (b)$
- From (a) and (b)+(c), |2x| = 2n and $|x| + |x + \frac{1}{2}| = n + n = 2n$ $|2x| = |x| + |x + \frac{1}{2}|$

Proof:
$$\lfloor 2x \rfloor = \lfloor x \rfloor + \left\lfloor x + \frac{1}{2} \right\rfloor$$

❖ Let
$$\frac{1}{2}$$
 ≤ ε < 1......(4)

or
$$1 \le 2\varepsilon < 2$$
 or $0 \le 2\varepsilon - 1 < 1$

❖ From (3)
$$2x = 2n + 2\varepsilon = (2n + 1) + (2\varepsilon - 1)$$

and $|2x| = 2n + 1(x)$

$$\Rightarrow$$
 Similarly from (1) $x + \frac{1}{2} = n + \frac{1}{2} + \varepsilon = (n+1) + (\varepsilon - \frac{1}{2}) \dots (y)$

* From (4)
$$0 \le \varepsilon - \frac{1}{2} < \frac{1}{2}$$
 or $0 < \varepsilon - \frac{1}{2} < 1$
and so $\left| x + \frac{1}{2} \right| = n + 1 \dots (b)$

From (x) and (y)+(c),
$$|2x| = 2n + 1$$
 and $|x| + |x + \frac{1}{2}| = n + n + 1 = 2n + 1$

So
$$[2x] = [x] + \left[x + \frac{1}{2}\right]$$