Vorlesung Kognition 1: 4: Wahrnehmung III

Klaus Oberauer

Lernziele

- Gestaltprinzipien der Organisation visueller Wahrnehmung kennenlernen
- Die Probleme des Erkennens von Mustern und Objekten verstehen
- Theorien des Objekterkennens verstehen
- Wissen, was beim Wahrnehmen von Gesichtern besonders ist

Organisationsprinzipien

- Wahrnehmung = Konstruktion einer Repräsentation der Welt aus Information in den Sinnesorganen
 - Helmholtz: "Unbewusste Schlüsse"
- Die Information ist mehrdeutig
 - z.B. Kippfiguren

Rubin'sche Figur

Necker-Würfel

Organisationsprinzipien

- Wahrnehmung = Konstruktion einer Repräsentation der Welt aus Information in den Sinnesorganen
 - Helmholtz: "Unbewusste Schlüsse"
- Die Information ist mehrdeutig
 - z.B. Kippfiguren
 - z.B. Grösse und Tiefe; 3-dimensionale Formen
- Auflösung der Mehrdeutigkeit: Visuelles System organisiert die Information
 - Was ist vorne, was hinten?
 - Was gehört zusammen?

Gestaltpsychologie

- Ziel: Prinzipien der Organisation der Wahrnehmung
- Emergente Eigenschaften
 - "Das Ganze ist mehr als die Summe der Teile"

Figur-Grund Unterscheidung

 Oberflächen werden bevorzugt als Figur wahrgenommen, wenn sie

- symmetrisch sind
- parallele Grenzen haben
- konvexe Grenzen haben
- im Gesichtsfeld unten sind

Gruppierung von Stimuli

- Welche Elemente gehören zusammen?
- Zerlegung einer Szene in Objekte

Gestaltprinzipien für Gruppierung

- Nähe
- Ähnlichkeit
- Gute Fortsetzung
- Gemeinsames Schicksal

Angewandte Gestaltprinzipien

 Gute Fortsetzung bei Zebras: Einzeltier schwer identifizierbar

Die "gute Gestalt"

- Gemeinsames Prinzip der Organisationsprinzipien?
 - Möglichst "prägnante" Interpretation der Stimuli ("gute Gestalt")
 - Was ist "prägnant"? Einfach, regelmässig?
- Eine mögliche Erklärung: Likelihood-Prinzip
 - Schluss von Sinnes-Information auf die wahrscheinlichste Konstellation in der Welt

Likelihood: Illustration

Ist das Wissen, dass Licht meist von oben kommt, in unser visuelles System eingebaut?

Kontexteffekte

 Das Ganze bestimmt die Interpretation der Teile

Kontexteffekte

Das Ganze bestimmt die Interpretation der

Teile

Zusammenfassung: Organisation der Wahrnehmung

- Wahrnehmung ist Interpretation der visuellen Information
 - "Unbewusster Schluss"
 - Möglichst einfach und plausibel

Erkennen von Mustern und Objekten

- Interpretation der visuellen Information als etwas, was man kennt
 - Verbindung von Wahrnehmung und Gedächtnis
- Beispiele:
 - Logo einer Firma, Unterschrift
 - Tasse, Auto, ...
 - Gesicht (einer bekannten Person)

Was sehen Sie?

Problem

 Wie erkennt das kognitive System ein "K" als K?

Mögliche Lösung 1: Abgleich mit Schablone

- Das typische Netzhautbild von "K" ist im Gedächtnis gespeichert (K-Schablone)
- Jedes Netzhautbild wird mit der K-Schablone verglichen

Mögliche Lösung 2: Merkmalsvergleich

 K = "1 Vertikale, 2 Diagonalen, 3 spitze Winkel"

Merkmalsvergleich, raffinierter: Interactive-Activation Model

(McClelland & Rumelhart, 1981)

- Erkennt Buchstaben und Wörter
- Merkmale: Liniensegmente in Referenzrahmen

b X

Interactive Activation Model

(McClelland & Rumelhart, 1981)

Warum interaktiv?

- Bottom-up und Top-Down-Effekte
 - Aktivierung von Wörtern stützt dazu passende Buchstaben
 - Beispiel: "Word superiority effect"

Word Superiority Effect

(Reicher, 1969)

 Ein Buchstabe in einem Wort wird besser erkannt als in einem Nichtwort

Erkennen von 3-D Objekten

 Dreidimensionalität erzeugt ein weiteres Problem für die Objekterkennung

Erkennen von 3-D Objekten

- Problem: Variabilität der Ansichten
 - Objekte ändern ihre Orientierung
 - Manche Objekte verformen sich

3 Stufen der Objekterkennung

(Marr, 1982)

- Primärskizze: 2D Repräsentation der Szene
 - Kontraste → Kanten
- 2½ D Skizze:
 - Flächen
 - Tiefeninformation relativ zum Betrachter
 - Orientierung von Flächen relativ zum Betrachter
 - Ansichtsabhängig
- 3D Modell
 - Ansichtsunabhängig
 - Zerlegt in "generalisierte Kegel"

3 Stufen der Objekterkennung

(Marr, 1982)

Vom Retinalbild zur Primärskizze: Identifikation von Konturen

2½ D Skizze

3 Stufen der Objekterkennung

(Marr, 1982)

3D-Modell, zerlegt in generalisierte Kegel

Zerlegung anhand von konkaven Strukturen

Hierarchisch verschachtelt

Geons

(Biederman, 1987)

Geons

(Biederman, 1987)

- Geons werden erkannt an konstanten Merkmalen
 - Variieren nicht mit Blickwinkel

Geons

(Biederman, 1987)

 Objekte sind leichter erkennbar, wenn konstante Merkmale erhalten bleiben

Probleme der ansichtsunabhängigen Theorien

- 3-D Modelle sind nicht geeignet, Individuen zu erkennen
 - Alle Menschen haben sehr ähnliche Geon-Struktur
- Objekterkennung hängt von Perspektive ab

Objekterkennung ist abhängig von Perspektive

(Bülthoff & Edelman, 1992)

- Lernen von 2
 Ansichten eines neuen Objekts
 (75° Rotation)
- Erkennen neuer Ansichten

Objekterkennung ist abhängig von Perspektive

(Bülthoff & Edelman, 1992)

- Lernen von 2
 Ansichten eines neuen Objekts
 (75° Rotation)
- Erkennen neuer Ansichten
 - Interpolation
 - Extrapolation
 - Neue Drehrichtung

Objekterkennung ist abhängig von Perspektive

(Bülthoff & Edelman, 1992)

- Erkennung wird schlechter mit grösserer Drehung weg von gelernter Ansicht
- Erkennung ist besser für Drehungen auf der gelernten Achse

Objekterkennung ohne 3-D Modell

(Bülthoff & Edelman, 1992; Poggio & Edelman, 1990)

- Objekt repräsentiert durch mehrere Ansichten
- Neue Ansicht eines Objekts wird verglichen mit allen bekannten Objekt-Ansichten
 - Grössere Ähnlichkeit → grössere Aktivierung der Objektrepräsentation
- Ähnlichkeiten mit allen Ansichten desselben Objekts werden summiert
- Neue Ansicht wird identifiziert als das Objekt mit grösster summierter Ähnlichkeit

Objekterkennung ohne 3-D Modell

(Bülthoff & Edelman, 1992; Poggio & Edelman, 1990)

Zusammenfassung: Objekterkennung

- Problem: Jedes bekannte Objekt kommt in vielen Ansichten vor
- Lösungen
 - Nutzung von konstanten Merkmalen zum Vergleich mit 3-D Modell
 - Vergleich mit mehreren gelernten Ansichten desselben Objekts

Gesichtserkennung

- Holistische Erkennung
 - = Konfigurational: Es kommt stark auf die Anordnung der Merkmale an
 - Nur für aufrechte, nicht kopfstehende Gesichter

Umkehrungs-Effekt für Gesichter

(McKone et al., 2007)

- Aufrechte Gesichter werden
 - besser verglichen
 - besser wiedererkannt
- Effekt ist stärker bei Gesichtern als anderen Objekten
 - Selbst bei Experten für andere Objekte

Umkehrungs-Effekt für Gesichter: Die "Thatcher Illusion"

Umkehrungs-Effekt für Gesichter: Die "Thatcher Illusion"

Automatische Integration: Kompositionseffekt

(McKone et al., 2007)

- Hälften von 2 bekannten Gesichtern
- Bennene obere (oder untere) Hälfte
- Leichter bei versetzen Gesichtern
- Kein Effekt bei anderen Objekten

Zusammenfassung: Gesichter

- Aufrechte Gesichter werden stärker holistisch verarbeitet
- Kopfstehende Gesichter und andere Objekte – werden stärker analytisch verarbeitet

Was sehen Sie?

Literatur

- Pflichtlektüre (prüfungsrelevant):
 - Wendt, M. (2014). Allgemeine Psychologie:
 Wahrnehmung, Kapitel 9: Bewegungswahrnehmung
- Empfohlen zur Vertiefung:
 - Wendt, M. (2014). Allgemeine Psychologie: Wahrnehmung, Kapitel 7 + 8
 - Goldstein, B. E. (2015). Wahrnehmung. Berlin: Springer (Kapitel 2, 3, 4).

Zitierte Literatur

- Bülthoff, H. H., & Edelman, S. (1992). Psychophysical support for a twodimensional view interpolation theory of object recognition. *Proceedings of* the National Academy of Sciences, 89, 60-64.
- McClelland, J. L., & Rumelhart, D. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375-407.
- McKone, E., Kanwisher, N., & Duchaine, B. C. (2007). Can generic expertise explain special processing for faces? *Trends in Cognitive Sciences*, 11, 8-15.
- Poggio, T., & Edelman, S. (1990). A network that learns to recognize threedimensional objects. Nature, 343(263-266).
- Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of stimulus material. *Journal of Experimental Psychology*, 69, 275-280.