<u>Medición:</u> Obtener un valor que expresa una relación entre esa cantidad y una unidad conocida de la misma magnitud Magnitud: Propiedades o atributos medibles del mundo que nos rodea

Numero de cifras significativas: Es el número de cifras que permite conocer el valor de la cantidad con certeza.

Explicación	Ejemplo				
Todos los dígitos distintos de 0	0,0543 (3 cifras significativas)				
Los ceros que están entre dígitos distintos de 0	0,4200 (4 cifras significativas)				
0 a la derecha de un dígito distinto de 0	320 (3 cifras significativas)				

Reglas de redondeo

- Incrementarse en uno cuando la cifra despreciada es mayor a 5
- No variar si la cifra despreciada es menor a 5
- Redondearse al último dígito conservando el número más próximo

Proceso de medición

- 1) Sistema objeto: Lo que se desea medir
- 2) Sistema de medición: Dispositivo con el que se medirá
- 3) Operador: Responsable de las mediciones

Es el proceso de medición el que define la magnitud

El proceso de medición da como resultado un número real que es la cantidad medida

Error: Evaluación de una incerteza

Incerteza: Estimación del posible error en una medida entre límites

Apreciación nominal: Mínimo valor que puede medir un instrumento

Unidad estándar: Unidad aceptada oficialmente

Sistema de unidades estándar: Es el conjunto de unidades estándar

<u>Dimensión:</u> Naturaleza física de una cantidad sin importar en que unidades se mida

Análisis dimensional: Escritura de la unidad en función de sus dimensiones

$$v = \frac{m}{s} = \left[\frac{L}{T}\right]$$

$$\frac{kgm}{s^2A} = \frac{ML}{T^2A}$$

<u>Calibración:</u> Es definir el error que comete el instrumento. Define un intervalo de confianza

<u>Intervalo de confianza:</u> Intervalo donde va a estar presente el valor real de la magnitud

$$\frac{}{x-\Delta x}$$
 x $x+\Delta x$

Error absoluto: Mitad de la apreciación nominal del instrumento $(\pm \Delta x)$

Error relativo: Relación entre el error absoluto y el mayor valor de la medición

$$\varepsilon_r = \frac{\Delta z}{z}$$

<u>Discrepancia:</u> Diferencia entre mediciones por haber sido tomada por diferentes instrumentos o por diferentes instrumentistas

• Error absoluto ΔZ 🕳	• Por su origen On	 En el instrumento Interacción σ_{int} (el correcto) Por falta de definicien el instrumento) 	Apreciación σ _{ap} (limitación instrumento) Exactitud σ _{ext} (calibración instrumento) método utilizado no es el con σ _{def} (imperfecciones
	۲	• Sistemático, repetitivo	nedición que puede suceder) aceptable
	• Por su carácter	* Estadístico O _{est} (error 1	nedición que puede suceder)
		• Ilegitimo o espúreo, ina	aceptable
$\sigma^2_n = \sigma^2_{ap} + \sigma^2$	$ext + \sigma^2_{int} + \sigma^2$	def	

 $\Delta z = (\sigma_n^2 + \sigma_{est}^2)^{0.5}$ <u>Histograma:</u> Grafico de barras donde se indica la distribución de las lecturas. Con una gran cantidad de datos se puede apreciar una campana de Gauss

Propagación de errores

Se produce cuando se producen muchas mediciones indirectas

- Permite asignar un error al resultado final
- Indica la importancia relativa de las diferentes medidas directas
- Planificación del experimento

$$k(x \pm \Delta x) = kx + k\Delta x$$

$$\frac{x \pm \Delta x}{k} = \frac{x}{k} \pm \frac{\Delta x}{k}$$

Suma, resta, producto, cociente

10 ⁻¹ 10 ⁻²
0-3
.0 -
l 0 ⁻⁶
10-9
0-12
0-15
0-18
0-21
0-24

Un

m

S

K

A

cd

mole

Dim

L

T

M

K

A

cd

mole

Cantidad

Longitud

Tiempo

Temperatura

Corriente eléctrica

Intensidad luminosa

Cantidad de materia

Masa