

无人机软硬件架构

课程内容及答疑:

https://www.shenlanxueyuan.com/course/385

无人机硬件架构

组件认识:飞控

遥控器输入 电机,舵机输出

电源输入

- 飞控又称飞行控制器, 用于根据 输入指令解算电机推力
- 内置了IMU, 气压计, 磁罗盘等
- I2C,UART,CAN,GPS等接口
- 主要分为DJI,PX4,APM三大派系, 其中开发者最常用的是PX4飞控
- 选型指标: 内置减震 恒温系统

组件认识: 电调

- 电调,全称电子调速器,英文 Electronic Speed Control,简称ESC
- 相当于电机驱动器
- 分为四合一电调与分体电调
- 选型指标: 是否分体 额定工作电流

组件认识: 电机

3寸桨电机(KV6000)

5寸桨电机(KV1750)

7寸桨电机(KV1300)

- 无人机上常用无刷电机
- 选型指标: 电机尺寸 适配桨的尺寸 KV值 外观

空心杯电机

什么是KV值?

电机的转速(空载)=KV值X电压

力效表

型号	桨	油门点	拉力 (g)	电压 (V)	电流 (A)	转速	功率 (W)	力效 (G/W)	电机温度 (°C)
F90 KV1500	GF 7042 两叶桨	30%	432.05	23.95	2.76	8506	66.05	6.54	96 (环境温度:27°C)
		35%	549.31	23.93	4.04	9659	96.69	5.68	
		40%	699.29	23.89	5.96	10772	142.38	4.91	
		45%	839.58	23.84	8.11	12021	193.25	4.34	
		50%	980.00	23.79	10.62	13240	252.74	3.88	
		55%	1134.08	23.73	13.56	14379	321.86	3.52	
		60%	1293.48	23.65	16.53	15407	391.06	3.31	
		70%	1475.60	23.47	26.05	17166	611.47	2.41	
		80%	1642.99	23.32	31.12	18809	725.79	2.26	
		90%	1765.77	23.16	39.27	20211	909.44	1.94	
		100%	1840.71	23.02	47.07	21357	1083.74	1.70	
	T6143 三叶桨	30%	280.07	23.98	1.84	9810	44.17	6.34	97 (环境温度:27℃)
		35%	378.01	23.96	2.86	11345	68.63	5.51	
		40%	489.09	23.93	4.14	12852	99.07	4.94	
		45%	596.88	23.91	5.58	14198	133.44	4.47	
		50%	686.68	23.88	7.01	15518	167.43	4.10	
		55%	811.55	23.84	8.86	16693	211.08	3.84	
		60%	930.00	23.80	10.95	17812	260.63	3.57	
		70%	1185.39	23.70	15.83	19986	375.13	3.16	
		80%	1451.51	23.59	21.60	21879	509.59	2.85	
		90%	1708.33	23.46	28.24	23664	662.53	2.58	
		100%	1961.04	23.32	35.73	25185	833.01	2.35	

F90 KV1500 力效表

2000g 起飞重量

500g/桨叶

35%悬停油门

5.68g/W力效

悬停功率=2000/5.68≈350W

悬停电流=350/23.93≈15A

电池容量=15*0.5=7500mAh

组件认识: 其他配件

锂电池

• 电机,飞控,机载电脑等供电

• 选型指标: 电压(电芯数) 容量 放电倍率

• 指示电池电压, 并在低压时报警

组件认识: 电调

接收机

遥控器

GPS

• 为飞控接收遥控器信号

- 发送控制信号给飞控来控制无人机
- 选型指标: 通道数 手感

• 接收卫星信号为无人机定位

组件认识: 机架

Q250 机架

F330 机架

F550 机架

F450 机架

- 承载飞机主体部分
- 选型指标: 轴距重量可拓展性

异形机架

组件认识: 机载电脑

机载电脑: Jetson Xavier NX

CPU:ARMv8.2-A

GPU:Volta-GV10B(21TOPS)

内存: DDR4 8GB(1600MHz)

硬盘: TF卡

系统架构: ARM64

运行平台: Ubuntu 18.04

重量: <100g

接口: 1*USB2.0+1*USB3.0

CPU: Intel I7-8550U

GPU:无

内存: DDR4 8GB (2400MHz)

硬盘: 256GB SSD

系统架构: x86

运行平台: Ubuntu 16.04

重量: 205g

接口: 3*USB3.0

机载电脑: DJI Manifold2-C

冬虫科技载板

- 尺寸小
- ARM架构适合大批量配置
- 可以运行神经网络算法
- CPU算力很差,运行较重Planner需要大量优化
- · 接口较少,外接设备需HUB转接

- · CPU算力强
- x86架构环境配置方便
- 硬盘读写更快
- 尺寸、重量大

组件认识: 传感器

USB 免驱 广角无畸变 逆光清晰

USB摄像头

双目相机

激光雷达

光流传感器

追踪相机

自主无人机结构图

无人机设计方法

无人机设计方法

视觉识别? CPU算力?

设计案例——Ego-planner

组装与调试

设计案例——空地两用无人机

无人机建模 与结构件设计

应用场景要求: 无外部定位, 需建图 双目相机

在复杂环境中采取 空中/地面混合运动模式 完成自主导航任务 &小型化

负载、续航要求:负载约600g,续航至少8min

定制200mm机架

推质比要求: 无需高速飞行

F2203.5 KV2850+4寸桨

无需视觉识别,需小型化

Xavier NX

组装与调试

机载相机视角

可视化

自主空中飞行

第三人称视角

播放速度: 1X

设计案例——Fast-Tracker

应用场景要求: 无外部定位,需建图,需目标识别

双目相机 +USB相机 ← Monocular Camera
← Gimbal Motor

Manifold2
← N3 Autopilot

Jetson
Xavier NX

给定任务

在复杂环境中 自主跟踪运动意图 未知的人体目标 负载、续航要求:负载约1500g,续航至少5min

Q250机架

推质比要求: 无需高速飞行

F60 2350KV+5寸桨

需视觉识别,需运行VIO

妙算2-C +Xavier NX 组装与调试

无人机软件架构

无人机软件架构

Ubuntu, ROS

什么是ROS

ROS: Robot Operating System 机器人操作系统

- ROS不是一个操作系统(虽然名字叫OS),需要在Linux上运行
- ROS不是一个独立的系统,其实是一个工具链的组合和包装。
- (比如catkin_make就是cmake的包装、node和topic机制就是对tcp通信的包装)
- · ROS不需要详尽而系统地进行学习, 最好的办法是边用边学

ROS的发展史

2007 诞生于斯坦福 STAIR项目 Morgan Quigley

:::Box Turtle 2010 ROS 1.0 发布

ROSCon 2012 2012 第一届ROScon

2014 ROS Indigo发布

2017 ROS 2.0 Ardent发布

2008 Willow Garage接手

2011 TurtleBot发布

2013 OSRF接管

2016

Open Source Robotics Foundation

ROS的工作空间构成方式

ROS的开发工具

WORKSPACES

Create Workspace

mkdir catkin_ws && cd catkin_ws wstool init src catkin_make source devel/setup.bash

Add Repo to Workspace

roscd; cd ../src
wstool set repo_name \
--git http://github.com/org/repo_name.git \
--version=kinetic-devel
wstool up

Resolve Dependencies in Workspace

sudo rosdep init # only once
rosdep update
rosdep install --from-paths src --ignore-src \
--rosdistro=\${ROS_DISTRO} -y

PACKAGES

Create a Package

catkin_create_pkg package_name [dependencies ...]

Package Folders

include/package_name C++ header files

src Source files.

Python libraries in

subdirectories

scripts Python nodes and scripts

msg, srv, action Message, Service, and Action definitions

Release Repo Packages

catkin_generate_changelog
review & commit changelogs
catkin_prepare_release

bloom-release --track kinetic --ros-distro kinetic repo_name

Reminders

- Testable logic
- Publish diagnostics
- Desktop dependencies in a separate package

TF坐标变换

Rviz

QT工具箱

Gazebo

命令行&编译器

ROS的开发工具

Terminator 提供了在一个窗口创建多个终端的功能,以加快你的工作速度

Plotjuggler 一个基于Qt的应用程序,允许用户加载,搜索和绘图数据

ROS的应用场景

谢谢观看