Calling C++ code from R using Rcpp

Johannes Kruisselbrink Biometris, Wageningen University & Research January 16, 2018

```
ibonacci de
ibrary(Rcpp)
cppFunction('|
   int fibRcpp(int n)
   if (n < 2) {
        return(n);
        return(fibRcpp())
}</pre>
```


Contents

- About Rcpp
- Basics and some simple examples
- Use of Rcpp the R package Kohonen

About Rcpp?

What is Rcpp?

An R package that allows you to include C++ code in R

Why Rcpp?

- To make your R code faster
- (... or to include already existing C/C++ code)

Made by...

Dirk Eddelbuettel and Romain Francois

Our first example: Fibonacci in R

```
fibR <- function(n) {
  if (n < 2) return(n)
  return(fibR(n-1) + fibR(n-2))
}</pre>
```

```
sapply(1:10, fibR)
# [1] 1 1 2 3 5 8 13 21 34 55
```


Our first example: Fibonacci in Rcpp

```
library(Rcpp)
cppFunction('
  int fibRcpp(int n) {
    if (n < 2) {
       return(n);
    }
    return(fibRcpp(n-1) + fibRcpp(n-2));
}
')</pre>
```

```
sapply(1:10, fibRcpp)
# [1] 1 1 2 3 5 8 13 21 34 55
```


Source: http://dirk.eddelbuettel.com/papers/rcpp sydney-rug jul2013.pdf

Fibonacci in R/Rcpp – timings (1)

```
library(microbenchmark)
timings <- microbenchmark(
  fibR(20),
  fibRcpp(20)
)</pre>
```


Fibonacci in R/Rcpp – timings (2)

library(ggplot2)
autoplot(timings)

Source: http://dirk.eddelbuettel.com/papers/rcpp_sydney-rug_jul2013.pdf

Ways to call Rcpp

sourceCpp: imports all functions marked with the Rcpp::export attribute of the specified C++ file or source code

cppFunction: imports a single R function from the provided C++ source code

evalCpp: evaluates a C++ expression

Example sourceCpp

A file containing the C++ code; use Rcpp::export to specify the functions that are to be imported in R.

```
File: DoubleMeRcpp.cpp
```

```
#include <Rcpp.h>
// [[Rcpp::export]]
int doubleMeRcpp(int x) {
  return 2 * x;
}
```

```
sourceCpp("DoubleMeRcpp.cpp")
doubleMeRcpp(5)
# 10
```


Example cppFunction

One function declaration that is assumed to be the C++ function that is to be imported in R.

```
cppFunction('
  int doubleMeRcpp(int x) {
    return 2 * x;
  }
')
doubleMeRcpp(5)
# 10
```


Example evalCpp

No function arguments here, just evaluate.

```
evalCpp("5 * 5")
# [1] 25
```


Rcpp data types

Rcpp provides C++ wrappers for R data structures:

- IntegerVector, NumericVector, LogicalVector, CharacterVector
- List, DataFrame
- Named, Dimension
- IntegerMatrix, NumericMatrix
- Function
- Environment

Example NumericVector - CumSum

```
cppFunction('
  NumericVector cumSumRcpp(NumericVector x) {
    double acc = 0;
    NumericVector res(x.size());
    for(int i = 0; i < x.size(); i++) {
        acc += x[i];
        res[i] = acc;
    }
    return res;
}
')</pre>
```

```
cumSumRcpp(1:10)
# [1] 1 3 6 10 15 21 28 36 45 55
```


Example NumericMatrix - RowMeans

```
cppFunction('
 NumericVector rowMeansRcpp(NumericMatrix& x) {
    int nRows = x.nrow();
    int nCols = x.ncol();
   NumericVector out (nRows);
    for (int i = 0; i < nRows; i++) {
      double sum = 0;
      for (int j = 0; j < nCols; j++) {
        sum += x(i, j);
      out[i] = sum / nCols;
    return out;
```

```
set.seed(1)
rowMeansRcpp(matrix(runif(100), ncol=20))
# [1] 0.5301390 0.5045979 0.5150565 0.5092252 0.5302167
```


Example List

```
cppFunction('
  List rcppSquare(const NumericVector &x) {
    NumericVector vec(x.size());
    for (int i = 0; i < x.size(); i++) {
       vec[i] = x[i] * x[i];
    }
    return List::create(
       Named("original") = x,
       Named("result") = vec
    );
}
')</pre>
```

```
rcppSquare(1:10)
# $original
# [1] 1 2 3 4 5 6 7 8 9 10
# 
# $result
# [1] 1 4 9 16 25 36 49 64 81 100
```


Calling R functions from C++

```
cppFunction('
  double callFunctionRcpp(NumericVector x, Function f) {
    double result = as<double>(f(x));
    return result;
  }
')
```

```
callFunctionRcpp(1:10, sum)
# [1] 55
```

```
callFunction(1:10, mean)
# [1] 5.5
```


Printing to R console – Rcout and Rcerr

```
cppFunction('
  void helloWorld() {
    Rcout << "Hello World!" << std::endl;</pre>
helloWorld()
# Hello World!
cppFunction('
  void helloError() {
    Rcerr << "Hello error!" << std::endl;</pre>
1)
```


Rcpp's (syntactic) sugar

- A collection of C++ routines that mirror frequently used R functions
 - +, -, *, /
 - <, >, <=, >=, !=
 - any, all
 - is_na, is_true, is_false
 - seq, seq_along, seq_len
 - ifelse
 - log, sin, cos, . . .
 - distribution functions dnorm, qnorm, . . .
 - lapply, sapply
 - ...

Example Rcpp sugar - ifelse

```
cppFunction('
  NumericVector rcppIfElse(NumericVector x, NumericVector y) {
    return ifelse(x < y, x * x, -(y * y));
  }
')</pre>
```

```
rcppIfElse(1:10, rep(5,10))
# [1] 1 4 9 16 -25 -25 -25 -25 -25
```


Rcpp and STL

C++ standard library (STL) provides a set of generic algorithms and data structures

Rcpp knows how to convert many of STL data structures to their R equivalents

Rcpp integrates well with the STL algorithms

Example Rcpp and STL

```
cppFunction('
  std::vector<double> logRcpp(std::vector<double> x) {
    std::transform(x.begin(), x.end(), x.begin(), ::log);
    return x;
}
')
```

```
logRcpp(1:5)
# [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379
```


.C versus .Call versus Rcpp

C

- Simplest interface
- Useful if you have standard C code
- Does not work directly on the R objects
- Objects are copied from R and passed as a pointer
- No way of creating new objects in C and pass them back to R

.Call

- Allows you to create objects and pass them back to R
- Faster than .C because it does not copy objects from R
- Works with R objects in the form of S expressions (SEXPs)
- Requires proper bookkeeping to work with the R objects
- Steep learning curve

Rcpp

- Still uses the .Call interface under the hood
- Rcpp generates extern
 "C" and .Call wrappers
 for C++ functions
- Much simpler C/C++ code
- Easier to learn

Example .C vs. .Call versus Rcpp

```
void doubleMeC(int* x) {
  *x = *x + *x;
#include <R.h>
#include <Rdefines.h>
SEXP doubleMeCall(SEXP x) {
  SEXP result;
  PROTECT (result = NEW INTEGER (1));
  INTEGER (result) [0] = INTEGER(x)[0] * 2;
  UNPROTECT (1);
#include <Rcpp.h>
// [[Rcpp::export]]
int doubleMeRcpp(int x) {
  return 2 * x;
```


Rcpp – Use verbose to see generated code

```
cppFunction('
  int doubleMeRcpp(int x) {
    return 2 * x;
  }
', verbose=T)
```

```
#include <Rcpp.h>
// doubleMeRcpp
int doubleMeRcpp(int x);
RcppExport SEXP sourceCpp_3_doubleMeRcpp(SEXP xSEXP) {
BEGIN_RCPP
    Rcpp::RObject rcpp_result_gen;
    Rcpp::RNGScope rcpp_rngScope_gen;
    Rcpp::traits::input_parameter< int >::type x(xSEXP);
    rcpp_result_gen = Rcpp::wrap(doubleMeRcpp(x));
    return rcpp_result_gen;
END_RCPP
}
```


Rcpp in Kohonen v3 package

- Kohonen: R package containing several self-organizing map implementations
- Kohonen v2 used C code for the training and mapping functions and .C to call it
- Objectives:
 - Improve memory usage
 - Improve calculation efficiency and add parallelization
 - Allow for user defined distance functions
- Wehrens, Lutgarde, and Buydens. "Self- and Super-organizing Maps in R: The kohonen Package". Journal of Statistical Software, Volume 21, Issue 5 (8 October 2007)
- Wehrens and Kruisselbrink. "Flexible Self-Organising Maps in kohonen v3.0". Journal of Statistical Software (to appear).

Self-Organizing Maps (SOMs)

- Unsupervised learning technique that projects multidimensional data onto a two-dimensional map in which topological properties are maintained
- SOM: a two-dimensional map of nodes (units) organized in some grid in which each unit is associated with a codebook vector that resides in the domain of the data samples
- Suitable for clustering / identification of groups of data points with similar characteristics

Training and mapping

Training:

- Start: assign a random codebook vector to each unit
- Loop: expose the SOM to the data points; for each data point, update the best-matching node and its neighbors by pulling them in the direction of the data point

Mapping:

 New data points are mapped to the unit of which the codebook vector is most similar to that data point

SOMs for pepper image segmentation

SOM trained on pixel position and RGB value

Memory improvement

Issue:

- Kohonen v2 uses the .C interface
- With .C, the R objects are copied before being passed to the C code, and copied again to an R list object when the compiled code returns

Solution:

- Switch to .Call or Rcpp which act on the R objects directly
- ... we choose Rcpp

Memory improvement

Memory profiling results of different versions of the training and mapping functions on varying dataset sizes.

Calculation speed improvement

Issue:

Can we speed-up Kohonen v2?

Answer:

- Flip data matrices in order to get the elements of the data and codebook vectors contiguous in memory
- Omit NA checks in distance/similarity calculations when not neede
- Implement batch training algorithm and a parallel version of this training algorithm

R stores matrices in column major order

```
cppFunction('
  NumericMatrix iterateMatrix(int nRow, int nCol) {
    NumericMatrix out(nRow, nCol);
    int xsize = nRow * nCol;
    for (int i = 0; i < xsize; i++) {
        out[i] = i;
    }
    return out;
}
')
iterateMatrix(4,3)</pre>
```

```
iterateMatrix(4,3)
# [,1] [,2] [,3]
# [1,] 0 4 8
# [2,] 1 5 9
# [3,] 2 6 10
# [4,] 3 7 11
```


Row first versus column first

```
mat <- matrix(runif(100000), ncol=500)

library(microbenchmark)

timings <- microbenchmark(
   sumMatrixElementsColFirst(mat),
   sumMatrixElementsRowFirst(mat))
)</pre>
```


BTW – alternative to previous examples

```
cppFunction('
  double sumMatrixElementsFlat(NumericMatrix& x) {
    double sum = 0;
    int xsize = x.nrow() * x.ncol();
    for (int i = 0; i < xsize; i++) {
        sum += x[i];
    }
    return sum;
}
')</pre>
```


Check for NaN - A small difference ...

```
cppFunction('
  int rcppNanCountV1(NumericVector x) {
   int count = 0;
  int size = x.size();
  for (int i = 0; i < size; i++) {
    if (ISNAN(x[i])) {
      count++;
    }
  }
  return count;
}</pre>
```

```
cppFunction('
  int rcppNanCountV2(NumericVector x) {
   int count = 0;
   int size = x.size();
   for (int i = 0; i < size; i++) {
      if (std::isnan(x[i])) {
        count++;
      }
   }
   return count;
}</pre>
```


Check for NaN - A small difference ...


```
# Unit: microseconds

# expr min lq mean median uq max neval cld

# rcppNanCountV1(x) 24.395 24.396 25.51866 24.696 24.697 75.595 100 b

# rcppNanCountV2(x) 6.626 6.626 7.45723 6.927 6.927 49.091 100 a
```


Batch implementation and parallelisation

- Batch training algorithm:
 - Datasets are split up in subsets that are trained separately
 - Training results of subsets are merged after each epoch
- Use Rcpp + OpenMP for parallelization (alternatively, RcppParallel could be used for parallelization)

Calculation speed improvement

Timing results of different versions of the training and mapping on varying dataset sizes.

Training

Mapping

User-defined distance functions

■ Issue:

- Default distance function is Euclidean distance
- Can we enable user to specify custom distance/dissimilarity functions (as C++ code)?

Solution:

- Encapsulate function definitions in Rcpp XPtrs
- Inspiration: http://gallery.rcpp.org/articles/passing-cpp-function-pointers/

Example defining and using XPtrs

```
code <- '
  #include <Rcpp.h>
  typedef double (*FuncionPtr)(double);
  double myCustomFunction(double value) {
    return value * value;
  // [[Rcpp::export]]
  Rcpp::XPtr<FuncionPtr> myFunctionPtr() {
    return Rcpp::XPtr<FuncionPtr>(new FuncionPtr(&myCustomFunction));
  // [[Rcpp::export]]
  double evaluate(SEXP xpsexp, double x) {
    Rcpp::XPtr<FuncionPtr> distanceFunctionXPtr(xpsexp);
    FuncionPtr fun = *distanceFunctionXPtr;
    return fun(x);
sourceCpp (code = code)
```

evaluate(myFunctionPtr(), 6)
[1] 36

Bray-Curtis dissimilarity

```
BCcode <- '
  #include <Rcpp.h>
  typedef double (*DistanceFunctionPtr) (double *, double *, int, int);
  double brayCurtisDissim(double *data, double *codes, int n, int nNA) {
    if (nNA > 0) return NA REAL;
    double num = 0.0, denom = 0.0;
    for (int i = 0; i < n; i++) {
        num += std::abs(data[i] - codes[i]);
        denom += data[i] + codes[i];
    return num/denom;
  // [[Rcpp::export]]
  Rcpp::XPtr<DistanceFunctionPtr> BrayCurtis() {
    return Rcpp::XPtr<DistanceFunctionPtr>(new DistanceFunctionPtr(&brayCurtisDissim));
```


Kudos to the Rcpp development team

- Very active development
- 1000+ CRAN packages use Rcpp
- Good package documentation
- Many tutorials available on the web
- Growing collection of questions/answers on stackoverflow
- Good support from the rcpp-devel mailing list

Some good sources

- Rcpp quick reference guide: http://dirk.eddelbuettel.com/code/rcpp/Rcpp-quickref.pdf
- Rcpp tutorial by Dirk Eddelbuettel: http://dirk.eddelbuettel.com/papers/rcpp workshop introduction user2012.pdf
- Guide by Hadley Wickham: http://adv-r.had.co.nz/Rcpp.html
- Rcpp gallery: http://gallery.rcpp.org/

Thank you

```
sonacci deci
  ⊿rary(Rcpp)-
ppFunction('
 int fibRcpp(int n) {
if (n < 2) {-
···return(n);-
 --return(fibRcpp(n-
```


