Meerut Institute of Engineering & Technology, Meerut First Sessional Examination Even Semester, 2020-2021 (December– 2020)

Course:M.TechBranch:CSESubject:Foundation of Computer ScienceSubject Code:MTCS101M.M.60Time:2:00hrs

Section A

Q.1 Attempt any TWO from the following.

(2X 4 = 8)

Q.	Question	Level of	СО
No.		Taxonomy	
a.	Define Data Structures. What are the applications of data structures in computer Science? What are the factors that influence the choice of a particular Data structure	Understand	CO 1
b.	Write an algorithm to evaluate postfix expression using stacks	Understand	CO 1
c.	Write an algorithm to search elements using Binary search	Understand	CO 1

Q.2 Attempt any TWO from the following.

(2X 4 = 8)

Q. No.				Qu	estio	า					Level of Taxonomy	Course Outcome
a.	A Binary tree \mathbf{T} has 9 nodes the inorder and preorder traversal of \mathbf{T} yield the following sequences of nodes:							eorder	Understand	CO 1		
	inorder Z A C K F H D B G								G			
	Preorder	F	Α	Z	K	С	D	Н	G	В		
	Draw the	Binar	y tree	e T an	d per	form	Post (order	trave	rsal.		
b.	Convert the following infix expression to the postfix equivalents						alents	Understand	CO 1			
		((A-B)+	-D/((E	+F)*(ā))						
C.	Explain Tower of Hanoi .Write a recursive "C" function for Solving Towers of Hanoi Problem.								Understand	CO 1		

Section B

Q.3 Attempt any TWO from the following.

 $(2 \times 6 = 12)$

Q. No.	Question	Level of	Course
		Taxonomy	Outcome
a.	Explain the term infix expression, prefix expression and postfix expression. Convert the following infix expressions to their postfix equivalents	Understand	CO 1
b.	Explain the concept of a circular queue? How is it better	Understand	CO 1

	than a linear queue?		
c.	Draw the queue structure in each case when the following operations are performed on an empty queue.	Understand	CO 1
	 Add A, B, C, D, E, F Delete two letters Add G Add H Delete four letters Add I 		

Q.4 Attempt any TWO from the following.

(2 X 6 = 12)

Q.	Question	Level of	Course
No.		Taxonomy	Outcome
a.	Write a function to print the memory location which are used to store the data in a single linked list?	Understand	CO 2
b.	Figure 1: A binary tree Draw the memory representation of the binary tree of Figure 1.	Understand	CO 2
C.	Explain the differences between multi-programming, multi-user, and multitasking operating systems.	Understand	CO 2

Section C

Q.5 Attempt any ONE from the following.

 $(1 \times 10 = 10)$

Q.	Question	Level of	Course
No		Taxonomy	Outcome
a.	Consider the graph given below. Find out its depth-first and breadth-first traversal scheme.	Apply	CO2

Q.6 Attempt any ONE from the following.

(1 X 10 = 10)

Q. No.	Question	Level of	Course
a.	1. Five batch jobs, A through E, arrive at a computer center at essentially the same time. They have an estimated running time of 15,9,3,6 and 12 minutes, respectively. Their (externally defined) priorities are 6,3,7,9, and 4 respectively, with a lower value on responding to a higher priority. For each of the following scheduling algorithm be termine the turnaround time for each process and the average turnaround for all jobs. Ignore process switching overhead. Explain how you arrived at your answers in the last three cases assume that only one job at a time runs until it finishes and that a jobs are completely processor bound. a. Round robin with a time quantum of 1 minute b. Priority scheduling c. FCFS (run in order 15,9,3,6, and 12) d. Shortest job first	Taxonomy Understand	Outcome CO 2
b.	2. Consider the following set process, with the length of the CPU burst given in milliseconds:	Understand	CO 2
	$\begin{array}{ccc} \underline{\textbf{Process}} & \underline{\textbf{Burst Time}} & \underline{\textbf{Priority}} \\ P_1 & 10 & 3 \end{array}$		

	p_2	1	1		
	p_3	2	3		
	p 4	1	4		
	p ₅	5	2		
	•				
a.	Draw four G	antt that	illustrate	the	
	execution of the	hese proce	esses using	the	
	following schee	duling alg	orithms: FO	CFS,	
	SJF, non-pree				
	implies a high		<u>-</u>		
	(quantum = 1).	,ner prio	irty), and	I	
1.		1	4: C	1.	
D.	What is the t				
	process for e		the schedu	aling	
	algorithms in pa	rt a?			

c.	What is the wa	iting time	of each pro	ocess	
	for each of these	schedulin	g algorithms	s?	

d.	Which of the	_			
	minimum avera	ge waiting	g time (over	r all	
	processes)?				