Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \le c \cdot f(n)$.

Lower bounds. T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \ge c \cdot f(n)$.

Tight bounds. T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.

Ex: $T(n) = 32n^2 + 17n + 32$.

T(n) is $O(n^2)$, $O(n^3)$, $\Omega(n^2)$, $\Omega(n)$, and $\Theta(n^2)$.

T(n) is not O(n), $\Omega(n^3)$, $\Theta(n)$, or $\Theta(n^3)$.

Properties

Transitivity.

If
$$f = O(g)$$
 and $g = O(h)$ then $f = O(h)$.

If f =
$$\Omega(g)$$
 and g = $\Omega(h)$ then f = $\Omega(h)$.

If
$$f = \Theta(g)$$
 and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity.

If
$$f = O(h)$$
 and $g = O(h)$ then $f + g = O(h)$.

If
$$f = \Omega(h)$$
 and $g = \Omega(h)$ then $f + g = \Omega(h)$.

If
$$f = \Theta(h)$$
 and $g = O(h)$ then $f + g = \Theta(h)$.

Special functions

Polynomial $O(n^a)$, a independent of n

O(n) linear

 $O(n^2)$ quadratic

 $O(n^3)$ cubic

 $O(\log n)$ logarithms $- O(\log n) = O(n^{\varepsilon})$

logarithms grow more slowly than polynomial

Nonpolynomial

 $O(n!), O(3^n)$

Practice 2n6 (n) 2n + 30 (n) 2n + 10,000,000,0000 /N) 2n - 10.000.000.0000 (n) 0 (p2) $3n^2 + 2n + 3$ $3n^2 + 10000000000n + 3$ 0 (n2) 0 (log(r)) $2\log(n)$ $2\log_{100}(n)$ 0 (log (1)) 0 (n). $2n + \log(n)$ $3^n + n^{100}$ O (3") $\log_a b = \frac{\log_c c}{\log_c b}$ D PSEUDO Code Practice: Simple **(2)** Assumption about one operation: · compare two numbers

System.out.println("Hello"); for (int i=1; i<=n; i++) sum = sum + i;0 (n) O(n)PSEUDO Code Practice: Simple

 math operations(+, /, log) · assign value to an array element

for (int i=1; i<=n; i=i+2)

(1)

(3)

}

for (int i=1; i<=n; i=i*2)

sum = sum + i;

sum = sum + i;n=5, i=1,2,4n=5, i=1,3,5n=20, i=1,2,4,8,16 n=10, i=1,3,5,7,9 $O(\log(n))$ loop times: n/2 O(n)

PSEUDO Code Practice: Simple

```
= (5)
                                         (6)
for (int i=1; i<=n; i=i*3)
                                         for (int i=1; i<=n; i++)
                                                           D
                                                  for(int j=1; j<=n; j++)
                                                          A[i,j]=i*j;
n=5, i=1,3
n=20, i=1,3,9
loop times: log_3(n) - 1
O(\log(n))
```

Practice

One hour: $3.6 * 10^{13}$ operations n^2

(Assume these are the exact number of operations performed as a func-
tion of the input size n.) Suppose you have a computer that can perform
10 ¹⁰ operations per second, and you need to compute a result in at most
an hour of computation. For each of the algorithms, what is the largest
input size n for which you would be able to get the result within an hour?

2. Suppose you have algorithms with the six running times listed below.

Practice

(b) n^3 (c) 100n²

(d) n log n 📐

(e) 2ⁿ

(a) n2

3600 . 106

 n^3 33019 $100n^{2}$ 600,000 $1.29 * 10^{12}$ $n \log n$ (different results for different base) 2^n 45 n^{2^n} 5

6,000,000