SSN COLLEGE OF ENGINEERING, KALAVAKKAM DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Subject : Design and Analysis of Algorithms

Class : IV Sem

Sub. Code : UCS1403 Acad. Year: 2021-2022 (Even) Staff Incharge : Dr. V. Balasubramanian / Dr. H. Shahul Hamead Batch : 2020-2024

LTPC : 3 0 0 3

LESSON PLAN

Content Delivery Methods (CDM)

• Synchronous Lecture (S)

• Lab

• LMS

SNo	Topic	K	CDM	No of Sessions		Deviation
		level				S
				Propose	Actual	if any
				d		
	UNIT – I Introduction and Analysis			9		
1.	Introduction and Motivation	K1	S	1		
2.	Overview of Algorithm Design Techniques	K2	S	1		
3.	Iterative Algorithms	К3	S	1		
4.	Recursive Algorithms	К3	S	1		
5.	Analysis of Algorithms I (Iterative)	К3	S	1		
6.	Analysis of Algorithms II (Recursive)	К3	S	2		
7.	Analysis of Algorithms III (Asymptotic)	K3	S	1		
8.	Algorithm Analysis Example	К3	S	1		

SNo	Topic	K	CDM	No of Sessions		Deviation
		level				S
				Propose	Actual	if any
				d		
UNIT – II Brute Force and Divide and Conquer				9		
9.	Divide-and-conquer Recursion	K3	S	1		
10.	Divide-and-conquer: Mergesort	K3	S	2		
11.	Divide-and-conquer: Quicksort	K3	S	2		
12.	Divide-and-conquer: Multiplication of Large	К3	S	1		
	Integers					
13.	Divide-and-conquer: Matrix Multiplication	K3	S	1		
14.	Brute Force: String Matching	K3	S	1		
15.	Brute Force: Closest-Pair	К3	S	1		

SNo	Topic	K	CDM	No of Sessions		Deviation
		level				S
				Propose	Actual	if any
				d		

UNIT – III Dynamic Programming and Greedy				9	
	Technique				
16.	Dynamic Programming: Introduction	K2	S	1	
17.	Dynamic Programming: Sequence	K4	S	2	
18.	Dynamic Programming: Subset Sum	K3	S	2	
19.	Dynamic Programming: Shortest Paths	K3	S	1	
20.	Greedy Algorithms: SSSP (Dijkstra)	K4	S	1	
21.	Greedy Algorithms: MST (Prim's)	K4	S	1	
22.	Greedy Algorithms: MST	K3	S	1	

SNo	Topic	K level	CDM	No of Sessions		Deviation s
				Propose d	Actual	if any
	UNIT – IV Iterative Improvement and Backtracking			9		
23.	Iterative Improvement	K2	S	1		
24.	Iterative Improvement: Bipartite Matching	К3	S	1		
25.	Iterative Improvement: Stable Matching	K4	S	1		
26.	Iterative Improvement: Network Flow	К3	S	2		
27.	State-space approach for problem solving	К3	S	1		
28.	Exhaustive Search — DFS & BFS	K3	S	1		
29.	Backtracking: n-Queens problem	К3	S	1		
30.	Backtracking: Hamiltonian Cycles	К3	S	1		

SNo	Topic	, K	CDM	No of Sessions		Deviation
		level			I	S
				Propose	Actual	if any
				d		
U	NIT – V Limitations of Algorithm Power			9		
31.	Limitations: Algorithm Complexity Revisited	K3	S	1		
32.	Complexity classes	K4	S	1		
33.	Coping with the limitations	K3	S	1		
34.	Branch and Bound: Knapsack Problem	K4	S	2		
35.	Branch and Bound: Travelling Salesman	K4	S	1		
	Problem					
36.	Approximation algorithms — Knapsack	K4	S	1		
	problem					
37.	Approximation algorithms - Travelling	К3	S	2		
	Salesman Problem					

Lab Schedule:

Language/Tools/Packages: Linux, Python, Repl.it, LMS

S.No	Topic	Hours
1	Iterative and recursive algorithms	2
2	Decrease and conquer	2
3	Decrease and conquer	2
4	Divide and conquer	2
5	Divide and conquer	2
6	Dynamic Programming	2
7	Dynamic Programming	2
8	Greedy Technique	2
9	Greedy Technique	2
10	Iterative Improvement	2
11	Iterative Improvement	2
12	Exhaustive Search	2
13	Exhaustive Search	2

Prepared by	Verified by	Approved by
V. Balasubramanian H. Shahul Hamead	UG-PAC team	HOD-CSE

Description of Assessment Tools

Exams: Three Unit Assessment Tests during the term, assignments, and final University exams.

Course Assessment Matrix

Assessment Tools	Course Outcomes					Weightage
Assessment 100is	CO1	CO2	CO3	CO4	CO5	
CAT 1 (Units 1,	Y	Y	Y	Y		Best of 2
2)						[2*15 = 30 Marks]
CAT 2 (Units 3)	Y	Y	Y	Y		
CAT 3 (Units 4,5)	Y	Y	Y	Y	Y	
Lab Assignment	Y	Y	Y	Y	Y	[1*10=10 Marks]
End Semester	Y	Y	Y	Y	Y	60 Marks
Examination						
Total						100 Marks