

www.learnizy.in

संदर्भ:- eagri.org

हीट इंजन

एक हीट इंजन एक प्रणाली है जो गर्मी या थर्मल ऊर्जा को यांत्रिक ऊर्जा में परिवर्तित करती है, जिसका उपयोग यांत्रिक कार्य करने के लिए किया जा सकता है।

हीट इंजन का वर्गीकरण

- 1. ईंधन के दहन के आधार पर:
 - (i) बाहरी दहन इंजन
 - (ii) आंतरिक दहन इंजन।

बाहरी दहन इंजन

यहां, काम कर रहे माध्यम, भाप, एक बॉयलर में उत्पन्न होता है, इंजन के बाहर स्थित है और सिलेंडर में पिस्टन को यांत्रिक काम करने के लिए संचालित करने की अन्मति दी जाती है।

आंतरिक दहन इंजन

आंतरिक दहन इंजन में, ईंधन का दहन इंजन सिलेंडर के अंदर होता है और सिलेंडर के भीतर गर्मी उत्पन्न होती है। इस गर्मी को सिलेंडर के अंदर हवा में जोड़ा जाता है और इस तरह हवा का दबाव काफी बढ़ जाता है। यह उच्च दबाव वाली हवा पिस्टन को घुमाती है जो क्रैंक शाफ्ट को घुमाती है और इस प्रकार यांत्रिक कार्य किया जाता है

2. उपयोग किए गए ईंधन के आधार पर

- 1. डीजल इंजन
- 2. पेट्रोल इंजन
- 3. गैस इंजन

डीजल इंजन - डीजल ईंधन के रूप में प्रयोग किया जाता है पेट्रोल इंजन - पेट्रोल ईंधन के रूप में प्रयोग किया जाता है

गैस इंजन - प्रोपेन, ब्युटेन या मीथेन गैसों का उपयोग किया जाता है

3. ईंधन का आधारित इग्निशन

- 1. स्पार्क इग्निशन इंजन (कार्बोरेटर प्रकार के इंजन)
- 2. संपीड़न इंग्निशन इंजन (इंजेक्टर प्रकार इंजन)
- स्पार्क इंग्निशन इंजन इंजन सिलेंडर में हवा और ईंधन का मिश्रण खींचा जाता है। ईंधन का इंग्निशन एक स्पार्क प्लग का उपयोग करके किया जाता है। स्पार्क प्लग एक चिंगारी पैदा करता है और हवा ईंधन मिश्रण प्रज्वित करता है। इस तरह के दहन को निरंतर मात्रा दहन (C.V.C कहा जाता है।

www.learnizy.in

• संपीड़न इंग्निशन इंजन - संपीड़न इंग्निशन इंजन में हवा इंजन सिलेंडर में संकुचित है, इस कारण संकुचित हवा का तापमान 700-900 डिग्री सेल्सियस तक बढ़ जाता है। इस स्तर पर डीजल को बारीक कणों में सिलेंडर में छिड़काया जाता है। बहुत अधिक तापमान होने के कारण ईंधन प्रज्वित हो जाता है। इस प्रकार के दहन को निरंतर दबाव दहन (सीपी.C) कहा जाता है क्योंकि दहन होने पर सिलेंडर के अंदर दबाव लगभग स्थिर होता है।

4. कार्य चक्र के आधार पर

- 1. चार स्ट्रोक चक्र इंजन जब चक्र क्रैंकशाफ्ट की दो क्रांतियों में पूरा हो जाता है, तो इसे चार स्ट्रोक चक्र इंजन कहा जाता है।
- 2. दो स्ट्रोक चक्र इंजन। जब चक्र क्रैंकशाफ्ट की एक क्रांति में पूरा हो जाता है, तो इसे दो स्ट्रोक चक्र इंजन कहा जाता है

I.C इंजन/फोर स्ट्रोक साइकिल इंजन/दो स्ट्रोक साइकिल इंजन का कार्य सिद्धांत फोर स्ट्रोक साइकिल इंजन (डीजल/पेट्रोल इंजन)

√ चार स्ट्रोक चक्र इंजन में चार घटनाओं अर्थात् सक्शन, संपीइन, शिक्त और निकास इंजन सिलेंडर के अंदर जगह ले लो। चार घटनाओं पिस्टन के चार स्ट्रोक (सनकी शाफ्ट के दो क्रांतियों) में पूरा कर रहे हैं।

1. सक्शन स्ट्रोक

✓ सक्शन स्ट्रोक इनलेट वाल्व के दौरान खुलता है और पिस्टन नीचे की ओर बढ़ता है। सिलेंडर के अंदर केवल हवा या हवा और ईंधन
 का मिश्रण खींचा जाता है। इस स्ट्रोक के दौरान एग्जॉस्ट वॉल्व बंद स्थिति में रहता है। इस स्ट्रोक के दौरान इंजन सिलेंडर में द<mark>बाव</mark>

वाय्मंडलीय दबाव से कम होता है

2. संपीड़न स्ट्रोक

- इस स्ट्रोक के दौरान पिस्टन ऊपर की ओर बढ़ता है। दोनों वाल्व बंद स्थिति में हैं। सिलेंडर में लिया गया चार्ज पिस्टन के ऊपर की ओर आंदोलन से संकुचित होता है। यदि केवल हवा संकुचित होती है, जैसा कि डीजल इंजन के मामले में, डीजल को संपीड़न स्ट्रोक के अंत में इंजेक्ट किया जाता है और संपीड़ित हवा के उच्च दबाव और तापमान के कारण ईंधन का प्रज्वलन होता है। यदि सिलेंडर में हवा
- 3. **थौंबर्इं स्ट्रीक** मिश्रण संकुचित होता है, जैसा कि पेट्रोल इंजन के मामले में, मिश्रण एक स्पार्क प्लग द्वारा प्रज्वलित किया जाता है।
- ईंधन के प्रज्वलन के बाद, गर्मी की जबरदस्त मात्रा उत्पन्न होती है, जिससे सिलेंडर में बहुत अधिक दबाव होता है जो पिस्टन को नीचे (चित्र 1 b) धक्का देता है। इस पल में पिस्टन की नीचे की गति को पावर स्ट्रोक कहा जाता है। कनेक्टिंग रॉड पिस्टन से क्रैंक शाफ्ट और क्रैंक शाफ्ट को पावर पहुंचाता है। यांत्रिक काम घूर्णन सनकी शाफ्ट पर टेप किया जा सकता है। पावर स्ट्रोक के दौरान दोनों वाल्य वंद गदने हैं।

वाल्व बंद रहते हैं। 4. निकास स्ट्रोक

- इस स्ट्रोक के दौरान पिस्टन ऊपर की ओर बढ़ता है। निकास वाल्व खुलता है और निकास गैसों निकास वाल्व खोलने के माध्यम से बाहर जाना। सभी जली हुई गैसें इंजन से बाहर चली जाती हैं और सिलेंडर फ्रेश चार्ज मिलने के लिए तैयार हो जाता है। इस स्ट्रोक के
- दौरान इनलेट वाल्व बंद रहता है
 इस प्रकार, यह पाया जाता है कि चार स्ट्रोक में से, चार स्ट्रोक चक्र इंजन में केवल एक पावर स्ट्रोक और तीन निष्क्रिय स्ट्रोक है। पावर
 स्ट्रोक उपयोगी काम के लिए आवश्यक गति की आपूर्ति करता है।

दो स्ट्रोक साइकिल इंजन (पेट्रोल इंजन)

• दो स्ट्रोक साइकिल इंजन में घटनाओं का पूरा क्रम यानी सक्शन, कंप्रेशन, पावर और एग्जॉस्ट पिस्टन के दो स्ट्रोक यानी क्रैंकशाफ्ट की एक क्रांति में पूरा होता है।

दो स्ट्रोक चक्र:

- 1. पिस्टन के ऊपर स्ट्रोक (सक्शन +संपीड़न)
- 2. नीचे स्ट्रोक (पावर + निकास)

www.learnizy.in

TWO-STROKE PETROL ENGINE

दो स्ट्रोक और चार स्ट्रोक इंजन के बीच तुलना

× × ·	X X .
फोर स्ट्रोक इंजन	दो स्ट्रोक इंजन
1. क्रैंकशाफ्ट की हर दो क्रांतियों के लिए एक पावर	की प्रत्येक क्रांति के लिए एक पावर स्ट्रोक
स्ट्रोक।	क्रैंकशाफ्ट।
2. इनलेट और निकास वाल्व में हैं	इसके बजाय इनलेट और निकास बंदरगाह हैं
इंजन।	वाल्व की।
3. क्रैंककेस पूरी तरह से बंद नहीं है और हवा	
-रोधी।	क्रैंककेस पूरी तरह से बंद है और एयर टाइट है।
4. पिस्टन के ऊपर संकुचित	पिस्टन के दोनों पक्षों को सेक
आवेशित करना।	आवेशित करना।
5. चक्का का आकार तुलनात्मक रूप से है	चक्का का आकार तुलनात्मक रूप से है
बड़ा।	छोटे।
6. ईंधन की पूरी खपत होती है।	ईंधन की पूरी खपत नहीं होती है।
	प्रति एचपी इंजन का वजन तुलनात्मक रूप से है
7. प्रति एचपी इंजन का वजन अधिक है।	संख्या आदि।
8. थर्मल दक्षता अधिक है।	थर्मल दक्षता तुलनात्मक रूप से कम है।
	एग्जॉस्ट गैसों को तुलनात्मक रूप से हटाना
9. हटाने या निकास गैसों आसान।	म्श्किल।

www.learnizy.in

10. उत्पादित टॉर्क भी है।	उत्पादित टॉर्क भी कम है।
11. एक दिए गए वजन के लिए, इंजन देना होगा	एक ही वजन के लिए, दो स्ट्रोक इंजन देता है
केवल दो स्ट्रोक इंजन की आधी शक्ति।	दो बार चार स्ट्रोक इंजन की है कि शक्ति ।
12. गति के सभी प्रकार संभव है (उच्च और कम) ।	ज्यादातर हाई-स्पीड इंजन हैं।
13. यह एक दिशा में संचालित किया जा सकता है केवल।	यह दोनों दिशा में संचालित किया जा सकता है (दक्षिणावर्त और दक्षिणावर्त मुकाबला)।

डीजल इंजन की विशेष विशेषताएं

- 1) इंजन में 14:1 से लेकर 22:1 तक उच्च संपीड़न अनुपात है।
- 2) संपीड़न स्ट्रोक के दौरान, इंजन 30 से 45 किलोग्राम/सेमी² और लगभग 500 डिग्री सेल्सियस के उच्च तापमान से अधिक दबाव प्राप्त करता है।
- 3) संपीड़न स्ट्रोक के अंत में, ईंधन को 120 से 200 किलोग्राम/सेमी 2 तक बहुत अधिक दबाव पर इंजेक्टर (परमाणु) के माध्यम से सिलेंडर में इंजेक्ट किया जाता है।
- 4) केवल संपीड़न की गर्मी के कारण इंग्निशन होता है।
- 5) डीजल इंजन में बाहरी चिंगारी नहीं है।
- 6) डीजल इंजन में बेहतर स्लॉगिंग या घिसाव की क्षमता होती है यानी यह कम गति पर लंबी अवधि के लिए उच्च टॉर्क बनाए रखता है।

पेट्रोल इंजन के साथ डीजल इंजन की तुलना

डीजल इंजन	पीएटरोल इंजन
i) इसमें कोई कार्बोरेटर, इग्निशन कॉइल और स्पार्क प्लग नहीं मिला है।	इसमें कार्बोरेटर, इग्निशन कॉइल और स्पार्क मिला है
	प्लग।
ii) इसका संपीड़न अनुपात 14:1 से बदलता है	इसका संपीड़न अनुपात 5:1 से भिन्न होता है
22:1	8:1.
	यह पेट्रोल (गैसोलीन) या पावर केरोसिन का उपयोग
iii) यह ईंधन के रूप में डीजल तेल का उपयोग करता	करता है
है।	ईंधन के रूप में।
iv) सक्शन में सिलेंडर में केवल हवा चूसा जाता है	ईंधन और हवा का मिश्रण में चूसा जाता है
आघात।	सक्शन स्ट्रोक में सिलेंडर।
	यह कोई ईंधन इंजेक्शन पंप और इंजेक्टर मिला है,
v) इसमें 'ईंधन इंजेक्शन पंप' और इंजेक्टर मिला है	बजाय यह कार्बोरेटर मिल गया है और
	प्रज्ज्वलन कंडली।
	त्रव्यवस्था च् _र वस्था।

www.learnizy.in

vi) ईंधन दहन कक्ष में इंजेक्शन है ईंधन के जल रहे थे	वायु ईंधन मिश्रण दहन कक्ष में संकुचित होता है जब इसे
कारण स्थानों लेता है संपीड़न की गर्मी के लिए।	प्रज्वलित किया जाता है एक बिजली की चिंगारी।
vii) थर्मल दक्षता 32 से 38% तक होती है	थर्मल दक्षता 25 से 32% तक होती है
viii) प्रति हार्स-पावर इंजन वजन अधिक है।	प्रति हॉर्स पावर इंजन वजन अपेक्षाकृत कम है।
xi) ऑपरेटिंग कॉस्ट कम है।	ऑपरेटिंग कॉस्ट ज्यादा है।
x) सिलेंडर के अंदर संपीड़न दबाव 35 से 45	
	संपीड़न दबाव 6 से 10 किलो/सेमी 2 तक होता है और
किलो/सेमी ² तक होता है और तापमान लगभग	तापमान 260 डिग्री सेल्सियस से ऊपर होता है।

LEARNIZY