

DM54/74S472 (512 x 8) 4096-Bit TTL PROM

General Description

This Schottky memory is organized in the popular 512 words by 8 bits configuration. A memory enable input is provided to control the output states. When the device is enabled, the outputs represent the contents of the selected word. When disabled, the 8 outputs go to the "OFF" or high impedance state.

PROMs are shipped from the factory with lows in all locations. A high may be programmed into any selected location by following the programming instructions.

Features

- Advanced titanium-tungsten (Ti-W) fuses
- Schottky-clamped for high speed Address access down to—35 ns max Enable access—25 ns max Enable recovery—25 ns max
- PNP inputs for reduced input loading
- All DC and AC parameters guaranteed over temperature
- Low voltage TRI-SAFE™ programming
- TRI-STATE® outputs

Block Diagram

Pin Names

A0-A8	Addresses				
G	Output Enable				
GND	Ground				
Q0-Q7	Outputs				
V _{CC}	Power Supply				

TL/D/9191-3

Connection Diagrams

Dual-In-Line Package

TL/D/9191-2

Order Number DM54/74S472J, 472AJ, 472BJ DM74S472N, 472AN, 472BN See NS Package Number J20A or N20A

Top View

Plastic Leaded Chip Carrier (PLCC)

Top View

Order Number DM74S472V, 472AV, 472BV See NS Package Number V20A

Ordering Information

Commercial Temp Range (0°C to +70°C)

Parameter/Order Number	Max Access Time (ns)
DM74S472AN	45
DM74S472BN	35
DM74S472N	60
DM74S472AJ	45
DM74S472BJ	35
DM74S472J	60
DM74S472AV	45
DM74S472BV	35
DM74S472V	60

Military Temp Range (-55°C to + 125°C)

Parameter/Order Number	Max Access Time (ns)			
DM54S472AJ	60			
DM54S472BJ	50			
DM54S472J	75			

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (Note 2)	-0.5V to $+7.0V$
Input Voltage (Note 2)	-1.2V to $+5.5V$
Output Voltage (Note 2)	-0.5V to $+5.5V$
Storage Temperature	−65°C to +150°C
Lead Temp. (Soldering, 10	seconds) 300°C
ESD to be determined	

Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do not mean that the device may be operated at these values.

Note 2: These limits do not apply during programming. For the programming ratings, refer to the programming instructions.

Operating Conditions Max Units Supply Voltage (V_{CC}) Military 4.50 5.50 Commercial 4.75 5.25 ٧ Ambient Temperature (TA) Military -55+125 °C Commercial 0 +70 °C Logical "0" Input Voltage 0 0.8 ٧

2.0

5.5

٧

Logical "1" Input Voltage

DC Electrical Characteristics (Note 1)

Symbol	Parameter	Conditions	DM54S472			DM74S472			11
		Conditions	Min	Тур	Max	Min	Тур	Max	Units
l _I L	Input Load Current	$V_{CC} = Max, V_{IN} = 0.45V$		-80	-250		80	-250	μΑ
I _{IH}	Input Leakage Current	$V_{CC} = Max, V_{IN} = 2.7V$			25			25	μΑ
		$V_{CC} = Max, V_{IN} = 5.5V$			1.0			1.0	mA
V _{OL}	Low Level Output Voltage	V _{CC} = Min, I _{OL} = 16 mA		0.35	0.50		0.35	0.45	V
V _{IL}	Low Level Input Voltage				0.80			0.80	٧
V_{IH}	High Level Input Voltage		2.0			2.0			V
V _C	Input Clamp Voltage	$V_{CC} = Min, I_{IN} = -18 \text{ mA}$		-0.8	-1.2		-0.8	-1.2	٧
CI	Input Capacitance	$V_{CC} = 5.0V, V_{ N} = 2.0V$ $T_A = 25^{\circ}C, 1 \text{ MHz}$		4.0			4.0	.•	pF
Co	Output Capacitance	$V_{CC} = 5.0V$, $V_{O} = 2.0V$ $T_{A} = 25^{\circ}C$, 1 MHz, Outputs Off		6.0	·		6.0		pF
Icc	Power Supply Current	V _{CC} = Max, Input Grounded All Outputs Open		110	155		110	155	mA
los	Short Circuit Output Current	V _O = 0V, V _{CC} = Max (Note 2)	-20		- 70	- 20		-70	mA
	Output Leakage	V _{CC} = Max, V _O = 0.45V to 2.4V Chip Disabled			+50			+ 50	μΑ
	(TRI-STATE)				-50			-50	μА
VoH	Output Voltage High	$I_{OH} = -2.0 \text{ mA}$	2.4	3.2					V
		$I_{OH} = -6.5 \text{mA}$				2.4	3.2		V

Note 1: These limits apply over the entire operating range unless stated otherwise. All typical values are for V_{CC} = 5.0V and T_A = 25°C.

Note 2: During IOS measurement, only one output at a time should be grounded. Permanent damage may otherwise result.