Introducción al Deep Learning

Día 4: Arquitecturas Avanzadas. Transformers

Manuel Germán y David de la Rosa Universidad de Jaén

(mgerman, drrosa) @ujaen.es

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit* Google Brain Google Brain Google Research Google Research avaswani@google.com noam@google.com nikip@google.com usz@google.com Aidan N. Gomez* † Llion Jones* Łukasz Kaiser* Google Research University of Toronto Google Brain llion@google.com lukaszkaiser@google.com aidan@cs.toronto.edu

Illia Polosukhin* † illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. *Advances in neural information processing systems*, 30.

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee2435 47dee91fbd053c1c4a845aa-Paper.pdf 1

Motivación

Modelos sequence-to-sequence

Modelos sequence-to-sequence

A lo largo del tiempo, aparecen mejoras que aumentan el rendimiento de las RNN

Bidireccionalidad

Modelos sequence-to-sequence

A lo largo del tiempo, aparecen mejoras que aumentan el rendimiento de las RNN

Bidireccionalidad

Atención

Bahdanau, D., Cho, K., & Bengio, Y. (2014). *Neural Machine Translation by Jointly Learning to Align and Translate*. http://arxiv.org/abs/1409.0473

Sin embargo, la triada sigue presente...

Pérdida de dependencias temporales

Complejidad

Paralelización

2017: Nacimiento de los *Transformers*

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. *Advances in neural information processing systems*, 30.

Procesan secuencias de manera más eficiente

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. *Advances in neural information processing systems*, 30.

¡Y en paralelo! (cogedlo con pinzas, no es lo que parece)

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. *Advances in neural information processing systems*, 30.

2

¿Qué es un transformer?

Idea general

Tipo de arquitectura compuesta de varios **codificadores** y **decodificadores**.

Los codificadores convierte las secuencias de entrada en representaciones continuas que luego los decodificadores usan para generar la salida paso a paso.

Codificador: Self-Attention

Entendiendo el mecanismo de atención

Es una especie de tabla hash "difusa". Para encontrar un valor, comparamos

unas consultas respecto a un conjunto de claves.

Las representaciones q, k y v se aprenden.

Entendiendo el mecanismo de atención

Pretende responder a la pregunta: ¿Cuán relevante es elemento i para el j?

Atención multicabezal

Podemos tener varias capas de atención en paralelo para luego combinarlas. Cada "cabeza" prestará su atención a unas características específicas.

 $MultiHead(Q, K, V) = Concat(head_0, ..., head_h)W_O$ $head_i = Attention(QW_Q^i, KW_K^i, VW_V^i)$

Codificador: Feed-Forward Layer

Mejorando el entrenamiento: Conexiones residuales

Las **conexiones residuales** permiten mitigar el olvido o la distorsión de información importante. A efectos prácticos:

Mejorando el entrenamiento: Normalización por capas

Mitigar explosión/desvanecimiento de gradiente estandarizando cada característica de los datos de entradas.

https://docs.pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

Codificación posicional

https://erdem.pl/2021/05/understandingpositional-encoding-in-transformers

Decodificador

Es muy similar al codificador.

- Posee dos capas de atención. La primera se denomina enmascarada y la segunda cruzada.
- Su salida se usa para realizar la predicción.

Atención enmascarada

Un elemento **solo** puede atender a él mismo o a elementos que están **antes** que él.

Se emplea una **máscara** para anular las posiciones de la matriz que se correspondan con elementos posteriores.

Atención cruzada

Logra que el decodificador se centre en los elementos de la entrada adecuados.

Las claves y los valores se obtienen de la salida de la pila de codificadores, mientras que las consultas se obtienen a partir de la entrada del decodificador.

Inferencia

La entrada se procesa en la pila de decodificadores. Su salida es usada por la pila de decodificadores para realizar la tarea

Inferencia

La inferencia finaliza tras emitir una cantidad de elementos predeterminada o cuando el modelo lo considera conveniente.

3

Aplicaciones

Modularidad

En función de la tarea usaremos los *encoders*, los *decoders* o ambos.

Encoder Decoder Encoder-Decoder

Entender Generar Ambos

Clasificación de audio y reconocimiento automático del habla: Wav2Vec2

Clasificación de imágenes: ViT

Generación y clasificación de texto: GPT-2

Generación de mallas de triángulos: MeshGPT

Detección de objetos: DETR

Modelos pre-entrenados y Modelos fundacionales

La evolución de la IA muestra un **aumento** en la **emergencia** de capacidades y la **homogeneización** de algoritmos, arquitecturas y modelos.

Modelos pre-entrenados y Modelos fundacionales

	Emerge	Homogeneización de
Aprendizaje Automático	Aprender a partir de la experiencia	Un algoritmo puede servir para varias tareas
Aprendizaje Profundo	Integración del aprendizaje de la representación	La neurona artificial como su base
Modelos Fundacionales	Nuevas funcionalidades debido a su tamaño	Un modelo puede servir para varias tareas

Modelos pre-entrenados y Modelos fundacionales

Adapted (especializado)

Introducción al Deep Learning

Día 4: Arquitecturas Avanzadas. Transformers

Manuel Germán y David de la Rosa Universidad de Jaén

(mgerman, drrosa) @ujaen.es

Material Complementario

- https://jalammar.github.io/illustrated-transformer/
- https://llm-class.github.io/schedule.html (Week 4 lectures)
- Implementación (no optimizada) de un transformer desde cero https://github.com/mgermanm0/transformer-pytorch
- Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2023). Dive into deep learning. Cambridge University Press. https://d2l.ai/ https://arxiv.org/abs/2106.11342 Capítulo 11
- Ejemplos HuggingFace
 https://huggingface.co/docs/transformers/notebooks
- Ejemplos detallados de las tareas
 https://huggingface.co/docs/transformers/tasks explained