

Chapitre I – Les suites

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES ■	
I - Généralités	1
1. Définition	1
2. Suites arithmétiques	1
3. Suites géométriques	3
II - Étude des suites	5
1. Sens de variation	5
2. Introduction aux limites	5
3. Représentation graphique	7

I - Généralités

1. Définition

On appelle **suite** une fonction de $\mathbb N$ dans $\mathbb R$: cette fonction va prendre des éléments de l'ensemble de départ $\mathbb N$ et va les amener dans l'ensemble d'arrivée $\mathbb R$.

À RETENIR 🕴

Définition

Il y a plusieurs manières de définir une suite :

- **Par récurrence :** On donne le premier terme de la suite ainsi que le terme au rang n+1.
- Par son terme général : On donne le n-ième terme de la suite en fonction

Attention! Bien que ces deux modes de génération soient les principaux, il en existe d'autres : algorithme, motifs géométriques, ...

À LIRE 👀

Exemple

On définit les suites (u_n) et (v_n) ainsi :

— $u_n = n$ pour tout $n \in \mathbb{N}$ ((u_n) est définie par son terme général).

$$- (v_n) = \begin{cases} v_0 = 0 \\ v_{n+1} = v_n + 1 \text{ pour tout } n \ge 1 \end{cases}$$
 ((v_n) est définie par récurrence).

On remarque que bien que définies différemment, (u_n) et (v_n) sont égales.

À ne pas confondre:

- (u_n) qui est la **suite** (u_n) . u_n qui est le n-**ième terme** de la suite (u_n) .

Ce ne sont pas les mêmes objets : le premier est une suite, le second est un réel.

2. Suites arithmétiques

À RETENIR 🕴

Définition

Une suite (u_n) est dite **arithmétique** si elle est de la forme $u_{n+1} = u_n + r$ avec $r \in \mathbb{R}$.

À RETENIR 💡

Raison

Le réel r est la **raison** de la suite (si r > 0, (u_n) est strictement croissante, si r < 0, (u_n) est strictement décroissante et si r = 0, (u_n) est constante).

Il est possible de trouver le terme général d'une suite arithmétique :

À RETENIR 💡

Terme général

On note p le rang initial de la suite (celui à partir duquel la suite est définie). Alors, pour tout $n \ge p$:

$$u_n = u_p + (n - p) \times r$$

Et si (u_n) est définie à partir du rang 0 (on a p=0), alors pour tout $n \in \mathbb{N}$:

$$u_n = u_0 + (n - 0) \times r = u_0 + n \times r$$

DÉMONSTRATION

Terme général

On a $u_{p+1}=u_p+r$. Puis, $u_{p+2}=u_{p+1}+r=u_p+r+r=u_p+2\times r$. De même, $u_{p+3}=u_{p+2}+r=u_p+3\times r$ et caetera.

En fait, pour tout k entier plus grand que p, on a $u_{p+k} = u_p + k \times r$.

Donc si on pose n = p + k, alors $u_n = u_p + (n - p) \times r$.

À RETENIR 💡

Somme des termes

Pour tout $n \in \mathbb{N}^*$,

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

DÉMONSTRATION

Somme des termes

On pose pour tout $n \in \mathbb{N}$, $S_n = 1 + 2 + \dots + n$. On a également $S_n = n + (n-1) + \dots + 1$ (en écrivant la somme à l'envers).

D'où
$$S_n + S_n = 2S_n = \underbrace{(n+1) + (n+1) + \dots + (n+1)}_{n \text{ fois}} = n \times (n+1)$$
. Et ainsi $S_n = \frac{n(n+1)}{2}$.

À LIRE 00

Exemple

On souhaite calculer $S = 24 + 25 + \cdots + 104$.

En fait, $S = 1 + 2 + \dots + 23 + 24 + 25 + \dots + 104 - (1 + 2 + \dots + 23)$. Calculons les deux sommes séparément :

$$-1+2+\cdots+23 = \frac{23\times24}{2} = 276$$

$$-1+2+\cdots+104 = \frac{104\times105}{2} = 5460$$

D'où S = 5460 - 276 = 5184.

3. Suites géométriques

À RETENIR 💡

Définition

Une suite (v_n) est dite **géométrique** si elle est de la forme $v_{n+1} = v_n \times q$ avec $q \in \mathbb{R}$.

À RETENIR 💡

Raison

Le réel q est la **raison** de la suite (si q > 1, (v_n) est strictement croissante, si 0 < q < 1, (v_n) est strictement décroissante et si q = 1 ou 0, (v_n) est constante).

Il est possible de trouver le terme général d'une suite géométrique :

À RETENIR 💡

Terme général

On note p le rang initial de la suite (celui à partir duquel la suite est définie). Alors, pour tout $n \ge p$:

$$v_n = v_p \times q^{n-p}$$

Et si (u_n) est définie à partir du rang 0 (on a p=0), alors pour tout $n\in\mathbb{N}$:

$$v_n = v_0 \times q^{n-0} = v_0 \times q^n$$

DÉMONSTRATION

Terme général

On a $v_{p+1}=v_p\times q$. Puis, $v_{p+2}=v_{p+1}\times q=v_p\times q\times q=v_p\times q^2$. De même, $v_{p+3}=v_{p+2}\times q=v_p\times q^3$ et caetera.

En fait, pour tout k entier plus grand que p, on a $v_{p+k} = v_p \times q^k$.

Donc si on pose n = p + k, alors $v_n = v_p \times q^{n-p}$.

Somme des termes

Soit $n \neq 0$ un entier et q un réel, alors :

— Si
$$q \neq 1$$
, alors $1 + q^1 + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$.

Somme des termes

Le cas q = 1 étant donné juste au-dessus, on supposera $q \neq 1$. On pose pour tout $n \in \mathbb{N}$, $S_n = 1 + q^1 + q^2 + \dots + q^n$.

On a:
$$qS_n = q^1 + q^2 + q^3 + \dots + q^{n+1}$$
, puis: $S_n - qS_n = 1 + q^1 + q^2 + \dots + q^n - q^1 - q^2 - q^3 - \dots - q^{n+1} = 1 - q^{n+1}$.

Donc on a en factorisant par S_n : $(1-q)S_n = 1-q^{n+1} \iff S_n = \frac{1-q^{n+1}}{1-a}$.

À LIRE 00

Exemple

On souhaite calculer $S = 3^5 + 3^6 + \dots + 3^{10}$

En fait, $S = 1 + 3 + \dots + 3^4 + 3^5 + 3^6 + \dots + 3^{10} - (1 + \dots + 3^4)$. Calculons les deux sommes séparément :

$$-1+3+\cdots+3^4=\frac{1-3^5}{1-3}=121$$

$$-1 + 3 + \dots + 3^4 = \frac{1 - 3^5}{1 - 3} = 121$$

$$-1 + 3 + \dots + 3^{10} = \frac{1 - 3^{11}}{1 - 3} = 88573$$
D'où $S = 88573 - 121 = 88452$.

II - Étude des suites

1. Sens de variation

À RETENIR 💡

Définition

Soit (u_n) une suite.

- (u_n) est **croissante** si on a $u_{n+1} \ge u_n$ (ou $u_{n+1} u_n \ge 0$) pour tout $n \in \mathbb{N}$.
- (u_n) est **décroissante** si on a $u_{n+1} \le u_n$ (ou $u_{n+1} u_n \le 0$) pour tout $n \in \mathbb{N}$.
- (u_n) est dite **constante** s'il existe $c \in \mathbb{R}$ tel que $u_n = c$ pour tout $n \in \mathbb{N}$.

Si une suite est croissante ou décroissante et ne change pas de variation, alors elle est dite **monotone**.

2. Introduction aux limites

Quand on souhaite s'intéresser à la limite d'une suite (u_n) , on étudie le comportement de ses termes quand "n devient très grand". On préfère dire alors que n tend vers $+\infty$.

À RETENIR 💡

Définition

Soit (u_n) une suite.

- Si (u_n) tend vers un réel quand n tend vers $+\infty$, on dit qu'elle **converge**.
- Si (u_n) tend vers une limite infinie quand n tend vers $+\infty$, on dit qu'elle **diverge**.

À LIRE 00

Exemple

On définit la suite (u_n) pour tout $n \in \mathbb{N}$ par $u_n = \frac{1}{n}$. On souhaite trouver la limite possible de cette suite en $+\infty$.

Pour cela, regardons les valeurs que prend cette suite pour des valeurs de n très grandes :

100	0,01
1000	0,001
100000	0,00001
1000000000	0,00000001

Il semble que cette suite converge vers 0.

À savoir que si une suite a une limite, alors cette limite est **unique**. Mais il est également possible pour une suite de ne pas admettre de limite.

Exemple

À LIRE 00

On définit la suite (u_n) pour tout $n \in \mathbb{N}$ par $u_n = (-1)^n$. On souhaite trouver la limite possible de cette suite en $+\infty$.

100	1
101	-1
1000000	1
1000001	-1

En fait, si n est pair cette suite vaut 1 et si n est impair elle vaut -1. Cette suite n'admet donc pas de limite : elle diverge.

3. Représentation graphique

Il est possible de représenter graphiquement une suite. Cela peut aider, par exemple dans le but de chercher sa limite.

À RETENIR 🦞

Méthode pour une suite définie par récurrence

Soit (u_n) une suite définie par récurrence. Pour représenter (u_n) dans un graphique :

- 1. On trace la droite d'équation y = x.
- 2. Comme cette suite est définie par récurrence, pour tout entier n on a une relation du type $u_{n+1} = f(u_n)$. Il s'agit de tracer la courbe représentative \mathscr{C}_f de la fonction f.
- 3. On place le point A de coordonnées (u_0 ; 0)
- 4. On trace une droite verticale passant par A, son intersection avec \mathcal{C}_f donne un point $B = (u_0; u_1)$.
- 5. À l'aide du point *B*, on place le point $C = (0; u_1)$.
- 6. On trace une droite horizontale passant par C, son intersection avec la droite y = x donne un point $D = (u_1; u_1)$.
- 7. Une fois le point D obtenu, on place le point $(u_1; 0)$.
- 8. On recommence l'opération en remplaçant u_0 par u_1 et u_1 par u_2 , puis on recommence, etc.

8

Exemple

Représentation des trois premiers termes de la suite $(u_n) = \begin{cases} u_0 = 3 \\ u_{n+1} = \frac{u_n}{2} \end{cases}$

Il est cependant plus facile de représenter graphiquement une suite dont on connaît le terme général.

À RETENIR 💡

Méthode pour une suite définie par son terme général

Soit (v_n) une suite définie par son terme général. Pour représenter (v_n) dans un graphique :

- 1. On place le point de coordonnées $(0; v_0)$.
- 2. On place le point de coordonnées $(1; v_1)$.
- 3. On place le point de coordonnées $(2; v_2)$. Etc.

9

Exemple

Représentation des trois premiers termes de la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = 2^n$.

