修士論文題目

Riemann 対称空間上における測地線の簡約部分 Lie 代数への射影に対する有界性 —低階数・低次元の場合—

氏名: 奥田 堯子

本修士論文では、小林俊行氏による次の予想 1 を G の実階数や H の次元が低い場合に証明した (記号は後述する).

予想 $\mathbf{1}$ ベクトル空間としての分解 $\mathfrak{p}=(\mathfrak{p}\cap\mathfrak{h})\oplus(\mathfrak{p}\cap\mathfrak{h}^{\perp})$ に沿って $X=X_1+X_2$ と分解すると, $\mathfrak{p}_{H,\mathrm{bdd}}=\{X\in\mathfrak{p}\mid [X_1,X_2]\neq 0 \text{ or } X_1=0\}$ である.

慣例的な記号や設定は以下の通りとする.

記号と定義

- G を非コンパクト実半単純 Lie 群, H を G の Cartan 対合 Θ に対する非コンパクトな簡約部分 Lie 群とする.
- $\mathfrak{g} \coloneqq \operatorname{Lie} G$, $\mathfrak{h} \coloneqq \operatorname{Lie} H$ とし, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を $\theta \coloneqq d\Theta$ による Cartan 分解とする.
- e_G を G の単位元とし、 $o_K := e_G K \in G/K$ とする.
- B(-,-)を \mathfrak{g} の Killing 形式とし、 $\mathfrak{h}^{\perp} \cap \mathfrak{p} := \{W \in \mathfrak{p} \mid B(Y,W) = 0, \forall Y \in \mathfrak{h} \cap \mathfrak{p}\}$ とする.

以下の 定理 2 を用いて、 $X \in \mathfrak{p}$ に対し、 $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot o_K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義する.

定理 2 [Kob89, Lemma 6.1]

 $\pi: (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^{Y} e^{Z} \cdot o_{K} \in G/K$ は上への微分同相である.

参考文献

[Kob89] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann., Vol. 285, Issue. 2, 1989, pp. 249–263.

[Kob97] T. Kobayashi, Invariant mesures on homogeneous manifolds of reductive type, J. Reine Angew. Math., Vol. 1997, No. 490–1, 1997, pp. 37–54