

Multi-Modal Self-Supervised Learning for Surgical Feedback Effectiveness Assessment

Arushi Gupta*¹, Rafal Kocielnik*¹, Jiayun Wang¹, Firdavs Nasriddinov¹, Cherine Yang², Elyssa Wong³, Anima Anandkumar¹, Andrew Hung²

¹Caltech ²Cedars-Sinai ³USC

Motivation

- Real-time surgical feedback important for immediate correction and long-term skill acquisition [1]
- Analyzing feedback effectiveness crucial for improving surgical training but no automated approaches exist [2]
- Manual annotation time and resource-demanding

Dataset

- Dataset of 4210 timestamped feedback instances from live robot-assisted surgery
 - Trainer audio and surgical video
- Manual annotations for whether feedback was effective (resulted in trainee behavior change)

Methods

• Extract features using **VideoMAE** and **SBERT** [3, 4]

• Additional fine-tuning of VideoMAE on surgical video data

Multimodal supervised training using extracted features

Results

Method	AUROC	Precision	Recall
VideoMAE	$0.58_{\pm 0.00}$	$0.55_{\pm 0.02}$	$0.58_{\pm 0.37}$
VideoMAE (Task-relevant)	$0.61_{\pm 0.01}$ \$\dagger\$ 5.46\%	$0.57_{\pm 0.04}$	$0.61_{\pm 0.11}$
VideoMAE (Domain-relevant)	$0.60_{\pm 0.01}$ \$\dagger 3.73\%	$0.56_{\pm 0.02}$	$0.62_{\pm 0.22}$

Performance of Video Models: Self-supervised fine-tuning of VideoMAE improves AUROC.

Method	AUROC	Precision	Recall
Text	$0.66_{\pm 0.004}$	$0.62_{\pm 0.02}$	$0.62_{\pm 0.13}$
Text + VideoMAE	$0.68_{\pm 0.01}$ \$\dagger3.59\%	$0.63_{\pm 0.01}$	$0.59_{\pm 0.10}$
Text + VideoMAE (Task-relevant)	$0.70_{\pm 0.02}$ \$\phi_{6.16\%}\$	$0.65_{\pm 0.03}$	$0.56_{\pm 0.15}$
Text + VideoMAE (Domain-relevant)	$0.70_{\pm 0.02}$ $\uparrow 6.55\%$	$0.63_{\pm 0.03}$	$0.66_{\pm 0.09}$

Performance of Text and Multimodal Models: Addition of video improves AUROC.

Conclusions

- Text and video individually predictive of feedback effectiveness; text is more predictive than video
- Adding video alongside text improves performance, but not significantly
- Task-relevant (using 14.8% of data) and domain-relevant fine-tuning of VideoMAE perform similarly
- Model has practical use: trainers can review predictions of model post-surgery to improve feedback delivery

Confidence	% of Instances	Accuracy
>90%	2.46%	87%
>85%	6.53%	80%
>80%	11.24%	76%
>75%	22.59%	72%
>70%	36.30%	70%

Model prediction accuracy at different confidence score thresholds

Future Work

- Improve video component of model
 - Extract specific, structured information
 - Leverage contrastive learning approaches directly comparing pre-/post-feedback
- Extract general, interpretable insights from model to improve practical use

[1] Wong et al., 2023. "Deconstructing and quantifying live surgical feedback in the operating room." American Urological Association.
[2] Agha et al., 2015. "The role of non-technical skills in surgery." Annals of Medicine and Surgery.
[3] Zhan et al., 2022. "VideoMAE: Masked autoencoders are data-efficient learners for self-supervised video

pre-training." *NeurIPS*.
[4] Reimers and Gurevych, 2019. "Sentence-BERT: Sentence embeddings using siamese BERT-networks." *CoRR*.