CVIČENÍ MODELOVÁNÍ A SIMULACE

Cvičení 4 - LS 2014 - Michel Kana

Co uděláme ve dnešním cvičení?

- Shrnuti minulého cvičeni
- 2. Model populací s věkovou strukturou
- 3. Model dvoudruhových populací dravec kořist
- 4. Model dvoudruhových populací s konkurence
- 5. Model dvoudruhových populací se spolupráce
- 6. Epidemiologické modely
- 7. Shrnuti

Shrnutí minulého cvičení

[Modely populací]

Model populací s věkovou strukturou

Modely populací s věkovou strukturou

- 6 věkových skupin.
- \square 10 jedinců ve každé věkové skupině v čase 0.
- □ Věková skupina 0 a 1 nejsou plodné.
- Ve věkové skupině 2 až 4 je plodnost 0.35 potomku za jednotlivec.
- Ve věkové skupině 5 je plodnost 0.1 potomku za jednotlivec.
- □ Ve každé věkové skupině, kromě skupina 5 přežije 80% jednotlivců.

$$A = \begin{bmatrix} 0 & 0 & 0.35 & 0.35 & 0.35 & 0.10 \\ 0.8 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.8 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.8 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.8 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.8 & 0 \end{bmatrix} X_0 = \begin{bmatrix} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \end{bmatrix}$$

$$A^t \cdot X_0 = X_t$$

A = [0.00 0.00 0.35 0.35 0.35 0.10; 0.8 0 0 0 0; 0 0.8 0 0 0 0; 0 0.8 0 0 0 0; 0 0.8 0 0 0; 0 0 0.8 0 0; 0 0 0 0 0.8 0]

X = [10;10;10;10;10;10]

A^10 * X

Population = X

for x=1:10, X= A * X; Population = [Population X], end

surf(Population)

Modely populací s věkovou strukturou

$$A = \begin{bmatrix} 0 & 4 & 20 & 60 \\ 0.05 & 0 & 0 & 0 \\ 0 & 0.3 & 0 & 0 \\ 0 & 0 & 0.6 & 0 \end{bmatrix}$$

$$X_0 = \begin{bmatrix} 500 \\ 50 \\ 6 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 1.5 & 1.2 \\ .8 & 0 & 0 & 0 \\ 0 & .5 & 0 & 0 \\ 0 & 0 & .25 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 45 \\ 18 \\ 11 \\ 4 \end{bmatrix}$$

Populace 1

Populace 2

• Vypočítávat vektor stabilní věkové rozložení v a souvislý poměrný exponenciální růst λ .

$$\begin{bmatrix} b_0 & b_1 & b_2 & \cdots & b_{n-1} & b_n \\ p_0 & 0 & 0 & & 0 & 0 \\ 0 & p_1 & 0 & & 0 & 0 \\ 0 & 0 & p_2 & & 0 & 0 \\ \vdots & & & & & \vdots \\ 0 & 0 & 0 & \cdots & p_{n-1} & 0 \end{bmatrix} \begin{bmatrix} x_{0,t} \\ x_{1,t} \\ x_{2,t} \\ \vdots \\ x_{n,t} \end{bmatrix} = \begin{bmatrix} x_{0,t+1} = \sum b_i . x_{i,t} \\ x_{1,t+1} = p_0 . x_{0,t} \\ x_{2,t+1} = p_1 . x_{1,t} \\ x_{3,t+1} = p_2 . x_{2,t} \\ \vdots \\ x_{n,t+1} = p_{n-1} . x_{n-1,t} \end{bmatrix}$$

$$A^t \cdot X_0 = X_t$$

Model dvoudruhových populací dravec – kořist

- Jedna populace prospívá, druhá chřadne.
- \Box X(t) představuje počet kořistí v čase t.
- \square Y(t) představuje počet dravců v čase t.
- $lue{k}_1$ představuje relativní porodnosti kořistí.
- $\mathbf{k}_1 \cdot X(t)$ vyjadřuje počet kořistí, které se narodily během časového intervalu $\langle t-1\cdots t\rangle$.
- k₂ představuje pravděpodobnost, že setkání dravce s kořistí skončí zahubením kořisti.
- $\mathbf{k}_2 \cdot X(t) \cdot Y(t)$ vyjadřuje počet kořistí ulovených dravci během časového intervalu $\langle t-1 \cdots t \rangle$.
- Arr k_3 představuje účinnost přeměny biomasy kořisti na biomasy dravce.
- $k_3 \cdot k_2 \cdot X(t) \cdot Y(t)$ vyjadřuje počet narozených dravců během časového intervalu $(t-1\cdots t)$.
- Arr k_4 představuje relativní úmrtnost dravců.
- $\mathbf{L} = k_4 \cdot Y(t)$ vyjadřuje úbytek v populaci dravců během časového intervalu $(t-1\cdots t)$.

$$\frac{dX(t)}{dt} = k_1 \cdot X(t) - k_2 \cdot X(t) \cdot Y(t)$$
$$\frac{dY(t)}{dt} = k_3 \cdot k_2 \cdot X(t) \cdot Y(t) - k_4 \cdot Y(t)$$

Rovnice modelu Lotky – Volterry

Model dvoudruhových populací dravec – kořist

$$\frac{\frac{dX(t)}{dt}}{\frac{dY(t)}{dt}} = k_1 \cdot X(t) - k_2 \cdot X(t) \cdot Y(t)$$

$$\frac{\frac{dY(t)}{dt}}{dt} = k_3 \cdot k_2 \cdot X(t) \cdot Y(t) - k_4 \cdot Y(t)$$

In Matlab

plot(Predator.signals.values, Prey.signals.values)

Model dvoudruhových populací dravec – kořist se zpožděním

- Populace kořisti se vyvíjí podle logistické rovnice
 - ρ_1 představuje porodnosti kořistí
 - $lue{K}_1$ představuje kapacita životního prostředí kořistí.
 - au je střední doba dosažení reprodukční schopnosti pro kořistí.
 - $ho_1 \cdot au_1 > rac{\pi}{2}$ umožňující vznik oscilací
- Přírůstek populace dravců je definován vztahem $rac{
 ho_2}{K_1} \cdot X(t)$
 - $\frac{\rho_2}{K_1}$ je vliv vzájemné interakce a přeměny biomasy
 - $f au_2$ je střední doba dosažení reprodukční schopnosti dravců.
 - $\rho_2 \cdot \tau_2 > \frac{\pi}{2}$ umožňující vznik oscilací
- Úbytek populace dravců je definován vztahem $\frac{
 ho_2}{K_2} \cdot Y(t- au_2)$.
 - $lue{f C}$ K $_2$ představuje kapacita životního prostředí dravců .

$$\frac{dX(t)}{dt} = \rho_1 \cdot \left(1 - \frac{X(t - \tau_1)}{K_1}\right) \cdot X(t)$$

$$\frac{dY(t)}{dt} = \rho_2 \cdot \left(\frac{X(t)}{K_1} - \frac{Y(t - \tau_2)}{K_2}\right) \cdot Y(t)$$

Kolmogorovův model dravec – kořist

- Model Lotky Volterry není realistické.
 - populace dravců a kořisti nekonečně cykluje bez stabilizace
 - populace kořisti v nepřítomnosti predátora poroste exponenciálně
- Funkce A reprezentuje relativní rychlost rozmnožování populace kořistí podle logistické rovnice.
 - ρ je porodnosti populace kořisti
 - K₁ je kapacita životního prostředí populace kořisti
- □ Funkce V určuje množství kořisti, které dravec uloví za jednotku času v závislosti na stavu populace kořisti.
 - p je maximální přírůstek dravce.
 - a udává množství kořisti potřebné k tomu, aby se dravec mohl rozmnožovat rychlostí $\frac{p}{2}$.
 - c je koeficient přeměny biomasy $\in (0; 1)$.
- Funkce K udává celkový přírůstek populace dravce, který je záporný pro nízké stavy kořisti, která nestačí dravce uživit.
 - e a m jsou pozitivní konstanty

$$\frac{dX(t)}{dt} = A \cdot X(t) - V \cdot Y(t)$$

$$\frac{dY(t)}{dt} = K \cdot Y(t)$$

$$A = \rho \cdot \left(1 - \frac{X(t)}{K_1}\right)$$

$$V = \frac{p \cdot X(t)}{c \cdot (a + X(t))}$$

$$K = e \cdot V - m$$

Rovnice modelu Kolmogorovův

- Obě populace vzájemným kontaktem trpí.
- \square $X_1(t)$ představuje počet jedinců v první populaci.
- \square $X_2(t)$ představuje počet jedinců v druhé populaci.

- \square K_1 je kapacita životního prostředí první populace.
- \square K_2 je kapacita životního prostředí druhé populace.
- b_{12} reprezentují vzájemný konkurenční vliv druhé populace na první.
- b_{21} reprezentují vzájemný konkurenční vliv první populace na druhou.

$$\frac{dX_1(t)}{dt} = \rho_1 \cdot \left(1 - \frac{X_1(t)}{K_1} - b_{12} \cdot \frac{X_2(t)}{K_1}\right) \cdot X_1(t)$$

$$\frac{dX_2(t)}{dt} = \rho_2 \cdot \left(1 - \frac{X_2(t)}{K_2} - b_{21} \cdot \frac{X_1(t)}{K_2}\right) \cdot X_2(t)$$

$$\frac{dX_{1}(t)}{dt} = \rho_{1} \cdot \left(1 - \frac{X_{1}(t)}{K_{1}} - b_{12} \cdot \frac{X_{2}(t)}{K_{1}}\right) \cdot X_{1}(t)$$

$$\frac{dX_{2}(t)}{dt} = \rho_{2} \cdot \left(1 - \frac{X_{2}(t)}{K_{2}} - b_{21} \cdot \frac{X_{1}(t)}{K_{2}}\right) \cdot X_{2}(t)$$

 K_1/α_{42} K_1/α_{42} $K_1 \qquad K_2/\alpha_{21}$ $N_1 \qquad K_2/\alpha_{21}$

Druh 2 zanikne a druh 1 se zmnoží, dokud nedosáhne nosnost K_1 $\frac{\kappa_2}{b_{21}} < K_1 \text{ and } \frac{\kappa_1}{b_{12}} > K_2$

Druh 1 zanikne a druh 2 se zmnoží, dokud nedosáhne nosnost K_2 $\frac{\kappa_2}{b_{21}} > K_1 \text{ and } \frac{\kappa_1}{b_{12}} < K_2$

Výsledek závislí na výchozích počet jedinců pro oba druhů

$$\frac{K_2}{b_{21}} < K_1 \text{ and } \frac{K_1}{b_{12}} < K_2$$

koexistence obou druhů

$$\frac{K_2}{b_{21}} > K_1 \text{ and } \frac{K_1}{b_{12}} > K_2$$

Model dvoudruhových populací se spolupráce

- Vzájemně prospěšnou interakci dvou různých populací.
- \square $X_1(t)$ představuje počet jedinců v první populaci.
- \square $X_2(t)$ představuje počet jedinců v druhé populaci.
- ρ_2 představuje relativní porodnosti druhé populace.
- \square K_1 je kapacita životního prostředí první populace.
- \square K_2 je kapacita životního prostředí druhé populace.
- oxdots b_{12} reprezentují vzájemný prospěšný vliv první populace na druhou.
- b_{21} reprezentují vzájemný prospěšný vliv druhé populace na první.

$$\frac{dX_1(t)}{dt} = \rho_1 \cdot \left(1 - \frac{X_1(t)}{K_1} + b_{12} \cdot \frac{X_2(t)}{K_1}\right) \cdot X_1(t)$$

$$\frac{dX_{2}(t)}{dt} = \rho_{2} \cdot \left(1 - \frac{X_{2}(t)}{K_{2}} + b_{21} \cdot \frac{X_{1}(t)}{K_{2}}\right) \cdot X_{2}(t)$$

Epidemiologické modely - SIR

- Jednoduchý model pro mnoho infekčních chorob včetně spalničkám, příušnicím a zarděnkám
- \Box S(t) představuje počet jedinců náchylných k infekci.
- I(t) představuje počet jedinců infikovaných. Jedinci, kteří vykazují známky onemocnění a šíří chorobu dále.
- R(t) představuje počet jedinců v období izolace nebo odolných jedinců. Jedinci, kteří byli dříve infikováni, ale nyní již nemohou šířit chorobu.
- r určuje průměrný rychlost šíření infekce, t.z. počet adekvátních kontaktů (které jsou dostatečné pro přenos infekce) jedince s ostatními.
- \Box a určuje rychlost izolace nebo léčení infikovaných jedinců.
- □ N představuje celkový počet jedinců v populaci.
- $\frac{r \cdot I(t)}{N}$ představuje průměrný počet kontaktů jednoho náchylného jedince s nakažlivými jedinci za jednotku času.
- $rac{r \cdot I(t)}{N} \cdot S(t)$ představuje počet nových nakažených případů za jednotku času.
- $\frac{r}{a} \cdot S(0)$ představuje základní reprodukční číslo
 - $\frac{r}{a} \cdot S(0) > 1$: počet nakažených zvyšuje a nemoc se rozšiřuje.
 - $\frac{r}{a} \cdot S(0) < 1$: nemoc vytrácí.

$$\frac{dS(t)}{dt} = -r \cdot S(t) \cdot I(t)$$

$$\frac{dI(t)}{dt} = r \cdot S(t) \cdot I(t) - a \cdot I(t)$$

$$\frac{dR(t)}{dt} = a \cdot I(t)$$

$$S(t) + I(t) + R(t) = N$$

Shrnutí dnešního cvičení

[Modely populací]

Model dvoudruhových populací dravec – kořist: Lotky – Volterry se zpožděním, Kolmogorovův model

Model dvoudruhových populací s konkurence

Model dvoudruhových populací se spolupráce

Epidemiologické modely

[Co bude dál?]

Příští týden představíme kompartmentové modely.