Homework 8

$\frac{\text{Setup}}{y_i \sim N(\beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{100} x_{i(100)}, \sigma^2)} \\ \sigma^2 = 1 \\ \beta_1, \dots, \beta_5 \sim N(0, 2)$

$$\beta_6, \dots, \beta_{100} = 0$$

$$x_i \sim N_{100}(0, I)$$

$$n = 100$$

For this simulation, I set 5 non-zero betas $\beta_1, ..., \beta_5$ [each drawn from N(0,2)] and 95 betas $\beta_6, ..., \beta_{100}$ equal to zero. I then simulated $100 x_i$'s each with its predictors drawn independently from a standard normal N(0,1). Finally I calculated the values of y_i using the beta and x_i values plus noise distributed N(0,1).

Implementation of different methods

Fully Bayes ridge: I set the priors for τ and σ^{-2} to be $\tau \sim Ga(0.5, 0.5)$ and $\sigma^{-2} \sim Ga(0.001, 0.001)$. Using the full conditionals (derived in the Appendix), I performed 1000 iterations of Gibbs sampling with the initial value of the betas set to the true values of the betas. After examining the trace plots, no burn-ins were needed, perhaps because my initial values of the betas were the true values. **t-prior with** $\nu = 1$: Similarly, I set the priors for τ and σ^{-2} to be $\tau \sim Ga(0.5, 0.5)$ and $\sigma^{-2} \sim Ga(0.001, 0.001)$. Using the full conditionals (derived in the Appendix), I performed 1000 iterations of Gibbs sampling with the initial value of the betas set to the true values of the betas. After examining the trace plots, no burn-ins were needed, perhaps because my initial values of the betas were the true values. **t-prior with** $\nu = 0.001$: Similarly, I set the priors for τ and σ^{-2} to be $\tau \sim Ga(0.5, 0.5)$ and $\sigma^{-2} \sim Ga(0.001, 0.001)$. Using the full conditionals (derived in the Appendix), I performed 1000 iterations of Gibbs sampling with the initial value of the betas set to the true values of the betas. After examining the trace plots, no burn-ins were needed, perhaps because my initial values of the betas were the true values.

Lasso: I utilized the glmnet package in R to get Lasso estimates of the betas.

Comparison among different methods

The following is a plot comparing the beta estimates among the different methods.

- The fully Bayes ridge method appears to pull the estimates of the true (non-zero) betas too close to 0 while pulling the estimates of the fake betas too much out from 0
- The *t*-prior methods appears to estimate the true (non-zero) betas slightly better than Lasso, but Lasso estimates the fake betas better

For each method, I calculated the MSE on the β 's and the predictive MSE on a newly generated test dataset of 100 observations. The results are summarized in the table below.

Table: Comparison of MSE's among different methods for estimating β 's

	MSE on β 's	Predictive MSE
Fully Bayes ridge	0.0411	4.4731
<i>t</i> -prior with $\nu = 1$	0.0074	1.7688
<i>t</i> -prior with $\nu = 0.001$	0.0027	1.2153
Lasso	0.0026	1.2270

- The fully Bayes ridge regression performs the worst in terms of both estimating β 's and predicting new observations
- The *t*-prior with the smaller ν value performs better than the *t*-prior with the larger ν value in terms of both MSE on β 's and predictive MSE
- The Bayesian method of using a t-prior with v = 0.001 performs about the same as the frequentist Lasso method in terms of both estimating β 's and predicting new observations. Both of these methods do very well compared to the others.

```
Fully Bayes ridge
```

$$\mathcal{K}(\beta,\tau,\sigma^{\lambda}|x,y) = L(y|x,\beta,\sigma^{\lambda}) \mathcal{K}(\beta|\tau,\sigma^{\lambda}) \mathcal{K}(\tau) \mathcal{K}(\sigma^{\lambda})$$

$$\propto (\sigma^{\lambda})^{-50} \exp\left[-\frac{1}{2}\sigma^{2}(y^{T}y - y^{T}X\beta - \beta^{T}X^{T}y + \beta^{T}X^{T}X\beta) - \frac{\tau}{2}\sigma^{2}\beta^{T}\beta\right] (\tau^{-1}\sigma^{2})^{-50} \tau^{\alpha-1}e^{-b\tau}(\sigma^{-2})^{c-1}e^{-b\sigma^{-2}}$$

$$T(\beta \mid \tau, \sigma^2, x, y) \propto \exp\left[-\frac{1}{2\sigma^2}(-\lambda \beta^T x^T y + \beta^T x^T x \beta + \tau \beta^T \beta)\right]$$

$$\approx \exp\left[-\frac{1}{2\sigma^2}\left[\beta^T(x^T x + \tau \mathbf{I})\beta - \lambda \beta^T(x^T y)\right]\right]$$

$$T(\sigma^{-\lambda}|\beta,\tau,x,y) \propto (\sigma^{-\lambda})^{c+qq} \exp[-\sigma^{-\lambda}(\lambda+\frac{1}{2}(y-x\beta)^{T}(y-x\beta)+\frac{1}{2}\tau\beta^{T}\beta)]$$

$$\pi(\sigma^{2}|\beta,\lambda,\tau,x,y) \propto (\sigma^{2})^{c+49} \exp[-\sigma^{2}(3+\frac{1}{2}(y-x\beta)^{T}(y-x\beta))]$$