Введение в принципы модели BERT

или по верхам о модели, взорвавшей NLP

Маша Шеянова, masha.shejanova@gmail.com

Byte Pair Encodings (BPE)

Что такое <u>BPE</u>

Альтернативный способ токенизации для обучения эмбеддингов слов. Чем-то похож на fasttext, но лучше.

Алгоритм:

- вначале у нас столько "токенов", сколько не-пробельных символов
- пока мы не получили столько токенов, сколько мы хотим в итоге получить
 - находим два самых часто встречаемых друг с другом элемента
 - о сливаем, их образуя новый токен
 - повторяем

Пример

Если в обучающем корпусе не было слова велоремонтник, то получится (вело, ремонтник) или (вело, ремонт, ник).

Attention and Transformers

seq2seq (стандартная)

<u>seq2seq + attention</u>

Виды attention (источник)

Виды attention (<u>источник</u>)

Name	Alignment score function	Citation
Content- base attention	$score(s_t, h_i) = cosine[s_t, h_i]$	Graves2014
Additive(*)	$score(s_t, \boldsymbol{h}_i) = \mathbf{v}_a^{\top} tanh(\mathbf{W}_a[s_t; \boldsymbol{h}_i])$	Bahdanau2015
Location- Base	$\alpha_{t,i} = \operatorname{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
General	$score(s_t, h_i) = s_t^{\top} \mathbf{W}_a h_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
Dot-Product	$score(s_t, \boldsymbol{h}_i) = \boldsymbol{s}_t^{T} \boldsymbol{h}_i$	Luong2015
Scaled Dot- Product(^)	$\mathrm{score}(s_t, \boldsymbol{h}_i) = \frac{s_t^\intercal \boldsymbol{h}_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017

<u>Трансформер</u> (Attention is all you need, 2017)

Это очень большая и сложная модель. Если хотите глубоко понять устройство — переходите по ссылкам на слайде. В общих чертах:

- как и seq2seq, состоит из энкодера и декодера
- но не использует RNN, полностью заменив передачу вектора состояния на attention (и в энкодере это тоже происходит, называется *self-attention*)
- и энкодер, и декодер многослойные (в оригинальной версии, 6 слоёв), attention применяется на каждом из них

<u>BERT</u> — это большой энкодер из трансформера, обученный предсказывать пропущенные слова и угадывать, идёт ли одно предложение за другим.

о применениях BERT

BERT как контекстные эмбеддинги

BERT использует BPE и в процессе обучения создаёт векторное представление для BPE-токенов.

За счёт self-attention эмбединги каждого слова знают о его контексте.

```
print ("Similarity of 'bank' as in 'bank robber' to 'bank' as in 'bank vault':", same_bank)

Similarity of 'bank' as in 'bank robber' to 'bank' as in 'bank vault': 0.9456751

print ("Similarity of 'bank' as in 'bank robber' to 'bank' as in 'river bank':", different_bank)

Similarity of 'bank' as in 'bank robber' to 'bank' as in 'river bank': 0.6797334
```

BERT для классификации

Кроме эмбеддингов BPE-токенов, BERT обучает представление добавленного токена [CLS], который "отвечает" за весь текст.

Дальше:

- можно использовать эмбеддинг этого символа как эмбеддинг текста, и сверху добавлять свою модель
- (advanced) можно дообучать его

Практика

Использование модели BERT

- для классификации
- как эмбеддинги