REMARKS

This Amendment responds to the Office Action dated April 27, 2010 in which the Examiner rejected claims 1-3, 7, 11-13, 17, 21-23, 27, 31-33, 37, 41-43 and 47 under 35 U.S.C. § 102 (e) and rejected claims 4-6, 8-10, 14-16, 18-20, 24-26, 28-30, 34-36, 38-40, 44-46 and 48-50 under 35 U.S.C. § 103.

As indicated above, claims 1, 2, 8, 10-12, 18, 20-21, 31 and 41 have been amended in order to make explicit what is implicit in the claims. The amendment is unrelated to a statutory requirement for patentability.

Claims 1-2, 8, 10, 21 and 31 claim a multiplexing apparatus and claims 11-12, 18, 20 and 41 claim a multiplexing method. The multiplexing apparatus and method multiplex audio and video data using a stored instruction set which states the unit storage location, number of bytes and order of multiplexing. The claimed invention thus provides a multiplexing apparatus and method which reduces the processing burden on a CPU since the CPU does not have to transfer an instruction directly to a multiplexer at the time of transfer, but instead, the multiplex stream is generated by the multiplexer reading the instruction set from the memory. The prior art does not show, teach or suggest the invention as claimed in claims 1-2, 8, 10-12, 18, 20-21, 31 and 41.

Claims 1-3, 7, 11-13, 17, 21-23, 27, 31-33, 37, 41-43 and 47 were rejected under 35 U.S.C. § 102 (e) as being anticipated by *Robinett, et al.* (U.S. Publication No. 2002/0126711).

Robinett, et al. appears to disclose an audio-video program as composed of one or more coded bit streams or elementary streams (ES). Each ES is separately encoded. The encoded ESs are then combined into a systems layer stream such as a program stream PS or a transport streams TS [0014]. Robinett, et al. is illustrated for TSs [0017]. Often it is desired to remultiplex TSs. Remultiplexing involves the selective modification of the content of a TS, such

as adding transport packets to a TS, deleting transport packets from a TS, rearranging the order of transport packets in a TS and/or modifying the data contained in the transport packets [0025]. It is the object of *Robinett, et al.* to provide a flexible remultiplexing architecture [0027]. An illustrative application of *Robinett, et al.* is the remultiplexing one or more MPEG-2 compliant transport streams (TSs). TSs are bit streams that contain the data of one or more compressed/encoded audio-video programs [0033].

Thus, *Robinett*, et al. is merely directed to remultiplexing a transport stream (TS).

However, as claimed in claims 1, 2, 8, 10-12, 18, 20-21, 31 and 41, the present invention is directed to multiplexing video data from a video source and audio data from an audio source in order to form the transport stream. However, *Robinett*, et al. remultiplexes a transport stream (i.e. Robinett, et al. would be applied to the output of the present invention). Thus, *Robinett*, et al. is not a proper reference.

Additionally, *Robinett, et al.* merely discloses a remultiplexer node is provided with one or more adapters, each adapter including a cache, a data link control circuit connected to the cache and a direct memory access circuit connected to the cache. The data link control circuit has an input port for receiving transport streams and an output port for transmitting transport streams. Using an asynchronous communication link, the direct memory access circuit can access a memory in the remultiplexer node. The memory can store one or more queues of descriptor storage locations such as a queue assigned to an input port and a queue assigned to an output port. The memory can also store transport packets in transport packet storage locations to which descriptors stored in such descriptor storage locations of each queue point [0034, emphasis added]. When an adaptor is used to input transport streams, the data link control circuit allocates to each received transport packet to be retained, an unused descriptor in one of a

Response to Office Action dated April 27, 2010

sequence of descriptor storage locations, of a queue allocated to the input port [0035, emphasis added). When an adaptor is used to output transport packets, the data link control circuit retrieves from the cash each descriptor of a sequence of descriptor storage locations of a queue assigned to the output port. The descriptors are retrieved from the beginning of the sequence in order. The data link control circuit also retrieves from the cache the transport packets stored in the transport packet storage locations to which the descriptors point [0036, emphasis added]. Each descriptor is also used to restore a receipt time stamped indicating the transport packet is received that the input port or a dispatched time stamp indicating the time at which the transport packet is to be transmitted from the output port [0037, emphasis added]. The DMA control circuit 116 is for transferring transport packet data and descriptor data between the host memory 120 and the cache 114 [0076].

Thus, Robinett, et al. merely discloses a control circuit 116 for transferring transport packet data and descriptor data between the host memory and the cache 114. Nothing in Robinett, et al. shows, teaches or suggests (1) calculating an order of multiplexing based on storage location, (2) generating an instruction set of (a) a unit storage location, (b) number of bytes and (c) order of multiplexing and (3) storing the unit storage location, number of bytes and order of multiplexing as an instruction set as claimed in claims 1, 2, 11, 12, 21, 31 and 41. Rather, Robinett, et al. only discloses a remultiplexer having a control circuit for transferring transport packet data and descriptor data between a host memory and a cache.

Since Robinett, et al. is directed to a remultiplexer operating on a transport stream and since nothing in Robinett, et al. shows, teaches or suggests (a) a multiplexing apparatus, (b) calculating an order of multiplexing based on storage location, (c) generating an instruction set of a unit storage location, number of bytes and order of multiplexing and (d) storing the unit

Response to Office Action dated April 27, 2010

storage location, number of bytes and order of multiplexing as the instruction set as claimed in claims 1-2, 11-12, 21, 31 and 41, Applicant respectfully requests the Examiner withdraws the rejection to claims 1-2, 11-12, 21, 31 and 41 under 35 U.S.C. § 102 (e).

Claims 3, 7, 13, 17, 22-23, 27, 32-33, 37, 42-43 and 47 recite additional features.

Applicant respectfully submits that claims 3, 7, 13, 17, 22-23, 27, 32-33, 37, 42-43 and 47 would not have been anticipated by *Robinett*, *et al.* within the meaning of 35 U.S.C. § 102 (e) at least for the reasons as set forth above. Therefore, Applicant respectfully requests the Examiner withdraws the rejection to claims 3, 7, 13, 17, 22-23, 27, 32-33, 37, 42-43 and 47 under 35 U.S.C. § 102 (e).

Claims 4-6, 14-16, 24-26, 34-36 and 44-46 were rejected under 35 U.S.C. § 103 as being unpatentable over *Robinett, et al.* in view of *Kelly, et al.* (U.S. Publication No. 2001/0036355).

Applicant respectfully traverses the Examiner's rejection of the claims under 35 U.S.C. §

103. The claims have been reviewed in light of the Office Action, and for reasons which will be set forth below, Applicant respectfully requests the Examiner withdraws the rejection to the claims and allows the claims to issue.

As discussed above, since nothing in *Robinett, et al.* shows, teaches or suggests the primary features as claimed in claims 1, 12, 21, 31 and 41 as discussed above, Applicant respectfully submits that the combination of the primary reference with the secondary reference to *Kelly, et al.* would not overcome the deficiencies of the primary reference. Therefore, Applicant respectfully requests the Examiner withdraws the rejection to claims 4-6, 14-16, 24-26, 34-36 and 44-46 under 35 U.S.C. § 103.

Claims 8-9, 18-19, 28-29, 38-39 and 48-49 were rejected under 35 U.S.C. § 103 as being unpatentable over Robinett, et al. and further in view of Dobson, et al. (U.S. Patent No. 6,188,703).

As discussed above, Robinett, et al. is only directed to a remultiplexer not a multiplexor. Furthermore, nothing in Robinett, et al. (a) calculating an order of multiplexing based on storage location, (b) generating an instruction set of (1) a unit storage location, (2) the number of bytes and (3) an order of multiplexing of each data unit and (c) storing the unit storage location, number of bytes and order of multiplexing into a memory as an instruction set as claimed in claims 8 and 18. Rather, Robinett, et al. merely discloses a remultiplexer which transfers transport packet data and descriptor data between a host memory and a cache.

Dobson, et al. appears to disclose a FIFO buffer 32 which signals a MUX microprocessor 22 when sufficient video data is in a buffer 32 (column 3, line 65-column 4, line 3). When a start code is detected, the value of the FIFO-fullness-counter 40 is latched into another counter called the start-code position counter 48. The start-code position counter 48 only counts down on compressed data FIFO read by the MUX 30 (column 4, lines 31-35).

Thus, Dobson, et al. merely discloses a buffer which signals a microprocessor 22 when sufficient video data is in a buffer. Nothing in Dobson, et al. shows, teaches or suggests (a) calculating an order of multiplexing based on storage locations, (b) generating an instruction set of (1) the unit storage location, (2) the number of bytes and (3) the order of multiplexing and (c) storing the unit storage location, number of bytes and order of multiplexing into a memory for the instruction set as claimed in claims 8 and 18. Rather, Dobson, et al. only discloses a buffer 32 signaling a microprocessor when it is filled with sufficient data.

A combination of *Robinett, et al.* and *Dobson, et al.* would merely suggest a remultiplexer having a control circuit transferring transport packet data and descriptive data between a host memory and a cache as taught by *Robinett, et al.* and to signal when sufficient data is in a buffer as taught by *Dobson, et al.* Thus, nothing in the combination of the references shows, teaches or suggests a multiplexer which calculates an order of multiplexing based on storage location, generating an instruction set of a unit storage location, number of bytes and order of multiplexing and storing the unit storage location, number of bytes and order of multiplexing into a memory as an instruction set as claimed in claims 8 and 18. Therefore, Applicant respectfully requests the Examiner withdraws the rejection to claims 8 and 18 under 35 U.S.C. § 103.

Claims 9, 19, 28-29, 38-39 and 48-49 recite additional features. Applicant respectfully submits that claims 9, 19, 28-29, 38-39 and 48-49 would not have been obvious within the meaning of 35 U.S.C. § 103 over *Robinett, et al.* and *Dobson, et al.* at least for the reasons as set forth above. Therefore, Applicant respectfully requests the Examiner withdraws the rejection to claims 9, 19, 28-29, 38-39 and 48-49 under 35 U.S.C. § 103.

Claims 10, 20, 30, 40 and 50 were rejected under 35 U.S.C. § 103 as being unpatentable over *Robinett, et al.* in view of *Zaun, et al.* (U.S. Publication No. 2001/0024456).

As discussed above, nothing in *Robinett, et al.* shows, teaches or suggests (a) a multiplexer, (b) calculating an order of multiplexing based on storage location, (c) generating an instruction set of a unit storage location, number of bytes and order of multiplexing and (d) storing the unit storage location, number of bytes and order of multiplexing into a memory as an instruction set as claimed in claims 10 and 20. Furthermore, nothing in *Robinett, et al.* shows,

teaches or suggests that the instruction set includes type of multiplex stream as claimed in claims 10 and 20.

Zaun, et al. appears to disclose a remultiplexing module including an output processor 124 which generates two or more output streams from data stored in packet buffers 104. The output processing section then generates two or more independent high-speed transport multiplex output streams incorporating the selected packet data [0035].

Thus, Zaun, et al. merely discloses outputting two or more multiplexed streams. Nothing in Zaun, et al. shows, teaches or suggests (a) calculating an order of multiplexing based on storage location, (b) generating an instruction set of a unit storage location, number of bytes, order of multiplexing and type of multiplexed stream and (c) storing the unit storage location, number of bytes, order of multiplexing and type of multiplexed stream into a memory as the instruction set as claimed in claims 10 and 20. Rather, Zaun, et al. merely discloses outputting two or more multiplexed streams.

A combination of Robinett, et al. and Zaun, et al. would merely suggest to remultiplex a transport stream as taught by Robinett, et al. and to generate two or more output streams as taught by Zaun, et al. Thus, nothing in the combination of the references shows, teaches or suggests (a) the multiplexing apparatus, (b) calculating and order of multiplexing based on storage location, (c) generating an instruction set of unit storage location, number of bytes, order of multiplexing and type of multiplexed stream and (d) storing the unit storage location, number of bytes, order of multiplexing and type of multiplexed stream into a memory as an instruction set as claimed in claims 10 and 20. Therefore, Applicant respectfully requests the Examiner withdraws the rejection to claims 10 and 20 under 35 U.S.C. § 103.

Claims 30, 40 and 50 recite additional features. Applicant respectfully submits that claims 30, 40 and 50 would not have been obvious within the meaning of 35 U.S.C. § 103 over *Robinett, et al.* and *Zaum, et al.* at least for the reasons as set forth above. Therefore, Applicant respectfully requests the Examiner withdraws the rejection to claims 30, 40 and 50 under 35 U.S.C. § 103.

Thus, it now appears that the application is in condition for a reconsideration and allowance. Reconsideration and allowance at an early date are respectfully requested.

CONCLUSION

If for any reason the Examiner feels that the application is not now in condition for allowance, the Examiner is requested to contact, by telephone, the Applicant's undersigned attorney at the indicated telephone number to arrange for an interview to expedite the disposition of this case.

In the event that this paper is not timely filed within the currently set shortened statutory period, Applicant respectfully petitions for an appropriate extension of time. The fees for such extension of time may be charged to Deposit Account No. 50-0320.

In the event that any additional fees are due with this paper, please charge to our Deposit Account No. 50-0320.

Respectfully submitted,

FROMMER LAWRENCE & HAUG LLP

Attorneys for Applicant

Date: June 3, 2010

By Ellen Marcie Emas

Reg. No. 32,131 (202) 292-1530