# Multi-column SUMPRODUCT with LAMBDA



## Suppose we have some sales data

|    | Α | В             | С          | D        | Е       | F |
|----|---|---------------|------------|----------|---------|---|
| 1  |   |               |            |          |         |   |
| 2  |   | Product       | Date       | Quantity | Price   |   |
| 3  |   | Gooseberries  | 2023-06-26 | 11       | \$ 5.22 |   |
| 4  |   | Gooseberries  | 2024-05-09 | 2        | \$ 7.47 |   |
| 5  |   | Blackberries  | 2024-03-23 | 12       | \$ 6.54 |   |
| 6  |   | Blackberries  | 2024-09-30 | 13       | \$ 7.19 |   |
| 7  |   | Pears         | 2024-01-18 | 10       | \$ 5.23 |   |
| 8  |   | Blackberries  | 2024-04-27 | 10       | \$ 6.91 |   |
| 9  |   | Boysenberries | 2024-09-24 | 14       | \$ 5.40 |   |
| 10 |   | Boysenberries | 2024-03-21 | 15       | \$ 5.66 |   |
| 11 |   | Snozzberries  | 2024-01-06 | 3        | \$ 7.98 |   |
| 12 |   | Raspberries   | 2024-01-30 | 15       | \$ 8.40 |   |
| 13 |   |               |            |          |         |   |

# The simple way to calculate the total amount is to multiply the quantity by the price on each row, then sum the new column

|    | Α | В             | С          | D        | Е               |    | F      | G            |  |
|----|---|---------------|------------|----------|-----------------|----|--------|--------------|--|
| 1  |   |               |            |          |                 |    |        |              |  |
| 2  |   | Product       | Date       | Quantity | Price           | Am | ount   |              |  |
| 3  |   | Gooseberries  | 2023-06-26 | 11       | \$ 5.22         | \$ | 57.42  | =D3*E3       |  |
| 4  |   | Gooseberries  | 2024-05-09 | 2        | \$ 7.47         | \$ | 14.94  |              |  |
| 5  |   | Blackberries  | 2024-03-23 | 12       | \$ 6.54         | \$ | 78.48  |              |  |
| 6  |   | Blackberries  | 2024-09-30 | 13       | \$ 7.19         | \$ | 93.47  |              |  |
| 7  |   | Pears         | 2024-01-18 | 10       | \$ 5.23         | \$ | 52.30  |              |  |
| 8  |   | Blackberries  | 2024-04-27 | 10       | \$ 6.91         | \$ | 69.10  |              |  |
| 9  |   | Boysenberries | 2024-09-24 | 14       | \$ 5.40         | \$ | 75.60  |              |  |
| 10 |   | Boysenberries | 2024-03-21 | 15       | \$ 5.66         | \$ | 84.90  |              |  |
| 11 |   | Snozzberries  | 2024-01-06 | 3        | \$ 7.98         | \$ | 23.94  |              |  |
| 12 |   | Raspberries   | 2024-01-30 | 15       | \$ 8.40         | \$ | 126.00 |              |  |
| 13 |   |               |            |          | Total Amount \$ | \$ | 676.15 | =SUM(F3:F12) |  |
| 14 |   |               |            |          |                 |    |        |              |  |

# This can also be slightly simplified with an array formula to create the new column. The sum now refers to the spilled range using F3#

|    | Α | В             | С          | D        | Е               | F         | G              |  |
|----|---|---------------|------------|----------|-----------------|-----------|----------------|--|
| 1  |   |               |            |          |                 |           |                |  |
| 2  |   | Product       | Date       | Quantity | Price           | Amount    |                |  |
| 3  |   | Gooseberries  | 2023-06-26 | 11       | \$ 5.22         | \$ 57.42  | =D3:D12*E3:E12 |  |
| 4  |   | Gooseberries  | 2024-05-09 | 2        | \$ 7.47         | \$ 14.94  |                |  |
| 5  |   | Blackberries  | 2024-03-23 | 12       | \$ 6.54         | \$ 78.48  |                |  |
| 6  |   | Blackberries  | 2024-09-30 | 13       | \$ 7.19         | \$ 93.47  |                |  |
| 7  |   | Pears         | 2024-01-18 | 10       | \$ 5.23         | \$ 52.30  |                |  |
| 8  |   | Blackberries  | 2024-04-27 | 10       | \$ 6.91         | \$ 69.10  |                |  |
| 9  |   | Boysenberries | 2024-09-24 | 14       | \$ 5.40         | \$ 75.60  |                |  |
| 10 |   | Boysenberries | 2024-03-21 | 15       | \$ 5.66         | \$ 84.90  |                |  |
| 11 |   | Snozzberries  | 2024-01-06 | 3        | \$ 7.98         | \$ 23.94  |                |  |
| 12 |   | Raspberries   | 2024-01-30 | 15       | \$ 8.40         | \$ 126.00 |                |  |
| 13 |   |               |            |          | Total Amount \$ | \$ 676.15 | =SUM(F3#)      |  |
| 14 |   |               |            |          |                 |           |                |  |

## We can also skip calculating the new column and calculate the total amount directly using the SUMPRODUCT function

|    | Α | В             | С          | D                   | Е        | F F                                                  |
|----|---|---------------|------------|---------------------|----------|------------------------------------------------------|
| 1  |   |               |            |                     |          |                                                      |
| 2  |   | Product       | Date       | Quantity            | Price    | Ma can nace 1 as make associa                        |
| 3  |   | Gooseberries  | 2023-06-26 | 11                  | \$ 5.2   | We can pass 1 or more arrays (ranges) to SUMPRODUCT, |
| 4  |   | Gooseberries  | 2024-05-09 | 2                   | \$ 7.4   | separated by commas.                                 |
| 5  |   | Blackberries  | 2024-03-23 | 12                  | \$ 6.5   | SUMPRODUCT multiplies each                           |
| 6  |   | Blackberries  | 2024-09-30 | 13                  | \$ 7.1   | element by the corresponding                         |
| 7  |   | Pears         | 2024-01-18 | 10                  | \$ 5.2   | elements in the other arrays,                        |
| 8  |   | Blackberries  | 2024-04-27 | 10                  | \$ 6.9   | then sums the result.                                |
| 9  |   | Boysenberries | 2024-09-24 | 14                  | \$ 5.4   | 0                                                    |
| 10 |   | Boysenberries | 2024-03-21 | 15                  | \$ 5.6   | 6                                                    |
| 11 |   | Snozzberries  | 2024-01-06 | 3                   | \$ 7.9   | 8                                                    |
| 12 |   | Raspberries   | 2024-01-30 | 15                  | \$ 8.4   | 0                                                    |
| 13 |   |               |            |                     |          |                                                      |
| 14 |   |               |            | <b>Total Amount</b> | \$ 676.1 | =SUMPRODUCT(D3:D12,E3:E12)                           |
| 15 |   |               |            |                     |          |                                                      |

## However, if we want to just pass one multiplecolumn array, it will not calculate the products row-wise

|    | Α | В             | С          | D                   |       | Е      | F                                                    |           |
|----|---|---------------|------------|---------------------|-------|--------|------------------------------------------------------|-----------|
| 1  |   |               |            |                     |       |        |                                                      |           |
| 2  |   | Product       | Date       | Quantity            | Price |        |                                                      |           |
| 3  |   | Gooseberries  | 2023-06-26 | 11                  | \$    | 5.22   | Posausa wa anki nassad                               | l 1       |
| 4  |   | Gooseberries  | 2024-05-09 | 2                   | \$    | 7.47   | Because we only passed<br>argument to SUMPRODU       |           |
| 5  |   | Blackberries  | 2024-03-23 | 12                  | \$    | 6.54   | multiplication happens.                              | It simply |
| 6  |   | Blackberries  | 2024-09-30 | 13                  | \$    | 7.19   | takes the SUM of all the                             |           |
| 7  |   | Pears         | 2024-01-18 | 10                  | \$    | 5.23   | elements in the array. The identical to using the SU |           |
| 8  |   | Blackberries  | 2024-04-27 | 10                  | \$    | 6.91   | function.                                            | /IVI      |
| 9  |   | Boysenberries | 2024-09-24 | 14                  | \$    | 5.40   |                                                      |           |
| 10 |   | Boysenberries | 2024-03-21 | 15                  | \$    | 5.66   |                                                      |           |
| 11 |   | Snozzberries  | 2024-01-06 | 3                   | \$    | 7.98   |                                                      |           |
| 12 |   | Raspberries   | 2024-01-30 | 15                  | \$    | 8.40   |                                                      |           |
| 13 |   |               |            |                     |       |        |                                                      |           |
| 14 |   |               |            | <b>Total Amount</b> | \$    | 171.00 | =SUMPRODUCT(D3:E12)                                  |           |
| 15 |   |               |            |                     |       |        |                                                      |           |
| 16 |   |               |            | Comparison          |       | 171    | =SUM(D3:E12)                                         |           |
| 17 |   |               |            |                     |       |        |                                                      |           |

# If we want to mimic SUMPRODUCT behavior on a 2D array, we can wrap PRODUCT with BYROW, and wrap the result in SUM

|    | Α | В             | С          | D            |       | Е      | F                                                           |  |
|----|---|---------------|------------|--------------|-------|--------|-------------------------------------------------------------|--|
| 1  |   |               |            |              |       |        |                                                             |  |
| 2  |   | Product       | Date       | Quantity     | Price |        |                                                             |  |
| 3  |   | Gooseberries  | 2023-06-26 | 11           | \$    | 5.22   |                                                             |  |
| 4  |   | Gooseberries  | 2024-05-09 | 2            | \$    | 7.47   |                                                             |  |
| 5  |   | Blackberries  | 2024-03-23 | 12           | \$    | 6.54   |                                                             |  |
| 6  |   | Blackberries  | 2024-09-30 | 13           | \$    | 7.19   | PRODUCT within BYROW                                        |  |
| 7  |   | Pears         | 2024-01-18 | 10           | \$    | 5.23   | multiplies the values on each row. SUM then sums the result |  |
| 8  |   | Blackberries  | 2024-04-27 | 10           | \$    | 6.91   | Tow. Solvi then sums the result                             |  |
| 9  |   | Boysenberries | 2024-09-24 | 14           | \$    | 5.40   |                                                             |  |
| 10 |   | Boysenberries | 2024-03-21 | 15           | \$    | 5.66   |                                                             |  |
| 11 |   | Snozzberries  | 2024-01-06 | 3            | \$    | 7.98   |                                                             |  |
| 12 |   | Raspberries   | 2024-01-30 | 15           | \$    | 8.40   |                                                             |  |
| 13 |   |               |            |              |       |        |                                                             |  |
| 14 |   |               |            | Total Amount | \$    | 676.15 | =SUM(BYROW(D3:E12,PRODUCT))                                 |  |
| 15 |   |               |            |              |       |        |                                                             |  |
| 16 |   |               |            | Comparison   | \$    | 676.15 | =SUMPRODUCT(D3:D12,E3:E12)                                  |  |
| 47 |   |               |            |              |       |        |                                                             |  |

## If we want to use this 2D array syntax frequently, we can create a LAMBDA

|    |   |               |            |                     |       |        | RODUCT2 = LAMBDA(array)    | -    |
|----|---|---------------|------------|---------------------|-------|--------|----------------------------|------|
|    |   |               |            |                     |       |        | SUM(BYROW(array, PRODUC    | CT)) |
|    | Α | В             | С          | D                   |       | );     |                            | , ,  |
| 1  |   |               |            |                     |       | / >    |                            |      |
| 2  |   | Product       | Date       | Quantity            | Price |        |                            |      |
| 3  |   | Gooseberries  | 2023-06-26 | 11                  | \$    | 5.22   |                            |      |
| 4  |   | Gooseberries  | 2024-05-09 | 2                   | \$    | 7.47   |                            |      |
| 5  |   | Blackberries  | 2024-03-23 | 12                  | \$    | 6.54   |                            |      |
| 6  |   | Blackberries  | 2024-09-30 | 13                  | \$    | 7.19   |                            |      |
| 7  |   | Pears         | 2024-01-18 | 10                  | \$    | 5.23   |                            |      |
| 8  |   | Blackberries  | 2024-04-27 | 10                  | \$    | 6.91   |                            |      |
| 9  |   | Boysenberries | 2024-09-24 | 14                  | \$    | 5.40   |                            |      |
| 10 |   | Boysenberries | 2024-03-21 | 15                  | \$    | 5.66   |                            |      |
| 11 |   | Snozzberries  | 2024-01-06 | 3                   | \$    | 7.98   |                            |      |
| 12 |   | Raspberries   | 2024-01-30 | 15                  | \$    | 8.40   |                            |      |
| 13 |   |               |            |                     |       |        |                            |      |
| 14 |   |               |            | <b>Total Amount</b> | \$    | 676.15 | =SUMPRODUCT2(D3:E12)       |      |
| 15 |   |               |            |                     |       |        |                            |      |
| 16 |   |               |            | Comparison          | \$    | 676.15 | =SUMPRODUCT(D3:D12,E3:E12) |      |
| 17 |   |               |            |                     |       |        |                            |      |

In future, we might want to perform the multiplication BYCOL, so we can extend the LAMBDA

|    |   |               |            |          | SUM   | PROI | DUCT2  | <pre>= LAMBDA(array, axis,</pre> |
|----|---|---------------|------------|----------|-------|------|--------|----------------------------------|
|    | Α | В             | С          | D        |       | IF   | (axis  | = 0,                             |
| 1  |   |               |            |          |       |      | SUM(B  | YROW(array, PRODUCT)),           |
| 2  |   | Product       | Date       | Quantit  |       |      | SUM(B  | YCOL(array, PRODUCT))            |
| 3  |   | Gooseberries  | 2023-06-26 |          |       | )    | •      | ,,,                              |
| 4  |   | Gooseberries  | 2024-05-09 |          | ١.    | ,    |        |                                  |
| 5  |   | Blackberries  | 2024-03-23 |          | );    |      |        |                                  |
| 6  |   | Blackberries  | 2024-09-30 |          | 13    | \$   | 7.19   |                                  |
| 7  |   | Pears         | 2024-01-18 |          | 10    | \$   | 5.23   |                                  |
| 8  |   | Blackberries  | 2024-04-27 |          | 10    | \$   | 6.91   |                                  |
| 9  |   | Boysenberries | 2024-09-24 |          | 14    | \$   | 5.40   |                                  |
| 10 |   | Boysenberries | 2024-03-21 |          | 15    | \$   | 5.66   |                                  |
| 11 |   | Snozzberries  | 2024-01-06 |          | 3     | \$   | 7.98   |                                  |
| 12 |   | Raspberries   | 2024-01-30 |          | 15    | \$   | 8.40   |                                  |
| 13 |   |               |            |          |       |      |        |                                  |
| 14 |   |               |            | Total An | nount | \$   | 676.15 | =SUMPRODUCT2(D3:E12,0)           |
| 15 |   |               |            |          |       |      |        |                                  |
| 16 |   |               |            | Compar   | rison | \$   | 676.15 | =SUMPRODUCT(D3:D12,E3:E12)       |
| 17 |   |               |            |          |       |      |        |                                  |

## Most use of this function will be BYROW, so we can make the axis argument optional

```
IFOMITTED = LAMBDA(arg, then, IF(ISOMITTED(arg), then, arg));
   SUMPRODUCT2 = LAMBDA(array, [axis],
        LET(
             axis, IFOMITTED(axis,0),
3
             IF( axis=0,
                 SUM(BYROW(array, PRODUCT)),
                                                          The axis argument is made
5
                 SUM(BYCOL(array, PRODUCT))
                                                          optional by wrapping it in square
6
                                                          brackets.
                                                          Now, if we omit the axis
8
                                                          argument, it will default to
                                                          BYROW.
     Boysenberries
                    2024-03-21
                                      15 $
                                                5.66
10
     Snozzberries
11
                    2024-01-06
                                       3
                                                7.98
12
     Raspberries
                    2024-01-30
                                      15 $
                                                8.40
13
14
                              Total Amount
                                               676.15
                                                     =SUMPRODUCT2(D3:E12)
15
                              Comparison
16
                                         $
                                              676.15 = SUMPRODUCT(D3:D12,E3:E12)
```

## But this can still be simplified

From this

To this

### Which can be further condensed

#### From this

#### To this

```
IFOMITTED = LAMBDA(arg,then,IF(ISOMITTED(arg),then,arg));
SUMPRODUCT2 = LAMBDA(array, [axis],
    SUM(IF(IFOMITTED(axis,0)=0, BYROW, BYCOL)(array, PRODUCT))
);
Using a variable's name is the same as using the calculation for that variable!
```



## Takeaways:

- If an Excel function doesn't do something we would like it to do, we can create a LAMBDA with the new behavior
- Functions can be assigned to LET variables
- 3. Anywhere we use a LET variable, we can use the calculation for that LET variable. Including in place of function calls