Trie

Notation : trie

Description: A structure for organizing sequential data hierarchically. Members of a previous generation can spawn infinitely many members of the next generation, but the data cannot be read out of sequence. In other words a parent can spawn any number of children, but cannot skip a generation. This ensures that all the data in a trie are related to each other properly.

A simple kind of trie that everyone has used is a list:

1 Trie Terminology[1]

Root – The top (first) node in a tree.

Child – A node directly connected to another node when moving away from the Root.

Parent – The converse notion of a child.

Siblings – A group of nodes with the same parent.

- Descendant A node reachable by repeated proceeding from parent to child.
 - Ancestor A node reachable by repeated proceeding from child to parent.
 - Leaf ¹– A node with no children.
 - Branch² A node with at least one child.
 - Degree The number of subtrees of a node.
 - Edge The connection between one node and another.
 - Path A sequence of nodes and edges connecting a node with a descendant.
 - Level The level of a node is defined by 1 + (the number of connections between the node and the root).
- Node Height The height of a node is the number of edges on the longest path between that node and a leaf.
- Tree Height The height of a tree is the height of its root node.
 - Depth The depth of a node is the number of edges from the tree's root node to the node.
 - Forest A forest is a set of $n \ge 0$ disjoint trees.

References

[1] W. contributors, Tree (data structure) — wikipedia, the free encyclopedia, [Online; accessed 15-December-2017], 2017. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Tree_(data_structure)&oldid=813972413.

 $^{^{1}}$ a.k.a. External Node