On souhaite construire de de façon approchée la courbe représentative d'une fonction dérivable f qui vérifie

$$f'(a) = f(a)$$
 pour tout réel a et $f(0) = 1$.

Nous allons utiliser la méthode d'Euler qui repose sur l'utilisation d'une approximation affine d'une fonction en un point et donc construire point par point C_f , la courbe représentative de f.

Étape 1 : f(0) = 1

Ona donc f'(0) =

Placer A le premier point de \mathcal{C}_f et tracer T_A la tangente à \mathcal{C}_f en ce point.

Étape 2 : Approximation de f(0,1)

Sur la figure ci-contre, B est le point de \mathcal{C}_f d'abscisse 0,1. Comme B est proche de A, la droite (AB) est proche de la tangente à \mathcal{C}_f en A. Donc le coefficient directeur de la droite (AB), $\frac{f(0,1)-f(0)}{0,1-0}$ est proche du coefficient directeur de (T_A) égal à f'(0).

 (T_A) égal à f'(0). Donc $\frac{f(0,1)-f(0)}{0,1-0}pprox f'(0)$.

En utilisant cette approximation, donner une approximation de f(0,1) et placer le point B correspondant.

Étape 3 : Approximation de f(0,2)

Comme précedemment $\frac{f(0,2)-f(0,1)}{0,2-0,1}\approx f'(0,1).$

En déduire une approximation de f(0,2) et placer le point ${\cal C}$ correspondant.

Étape 4

COmpléter le tableau suivant. Si besoin, effectuer au brouillon les calculs pour les trois dernières colonnes ou mettre en évidence un moyen rapide de calculer les approximations demandées.

x	0	0, 1	0, 2	0,3	0,4	0,5
Approximation de $f(x)$	1					