PROJECT DESIGN PHASE-II

Technology Architecture

Date	19 October 2022	
Team ID	PNT2022TMID51618	
Project name	Natural disaster intensity analysis and classification using artificial intelligence	
Maximum marks	4 marks	

Technical Architecture:

4c. Minimizing future disaster risk

Table-1: Components and Technologies

S.no	Component	description	technology
1.	Support vector	Logic for process in	Python, SQL
	machine	the application	
2.	Linear	Logic for a process	AI
		in the application	
3.	Database	Datatype,	MySQL,
		configurations, etc.	NoSQL, etc.
4.	Pooling layer	Database service on	IBM DB2, IBM
		cloud	Cloudant, etc.
5.	File storage	File storage	IBM block
		requirements	storage or other
			storage service
			or local file
			system
6.	Decision tree	Purpose of external	IBM weather
		API used in the	API, etc.
		application	

7.	External API-2	Purpose of external	Aadhar API, etc.
		API used in the	
		application	

Table-2: Application Characteristics

S.no	characteristics	description	technology
1.	Open-source	Functional	Source code,
	frameworks	discriminant	design
		analysis	documents
2.	Security	Geographical	Seismographs,
	implementations	information to share	creepmeters
		problems in	
		prediction	
3.	Scalable	Signal processing,	GPS (global
	architecture	image processing	positioning
		are using scalable	system)
		natural disasters	
4.	Availability	AI system	NDRF, seismic
		information from	intensity meters
		seismic imaging	
		earthquake	
		predictors solve	
		some techniques	
5.	Performance	Web-enabled	Land-based
		awareness research	sensors, radar
		network can help	sensors.
		save lives and limit	
		the impacts of	
		natural disasters	