#### MoCAD: Macao Connected and Autonomous Driving

# Reinforcement Learning for Autonomous Driving

Cheng-Zhong Xu FST & IoTSC

czxu@um.edu.mo

## Outline

- Overview of RL
- Markov Decision Process
  - -Bellman Optimality Equation
  - -Value Iteration
  - –Policy Iteration
- RL for unknown environment
  - -Q-learning
- Deep RL for Large State Space
  - -DQN algorithm

## Machine Learning for Autonomous Driving



# Types of Learning

- Supervised learning: CNN and RNN
  - -Learning from a "teacher"
  - -Training data includes desired outputs
- Unsupervised learning
  - -Discover structure in data
  - -Training data does not include desired outputs
- Reinforcement learning
  - -Learning to act under evaluative feedback (rewards)

# Supervised LearningLearning

**Data**: (x, y) x is data, y is label

**Goal**: Learn a *function* to map x -> y

**Examples**: Classification, regression, object detection, semantic segmentation, image captioning, etc.



Classification

# Unsupervised Learning Learning

Data: x

Just data, no labels!

**Goal**: Learn some underlying hidden structure of the data

**Examples**: Clustering, dimensionality reduction, feature learning, density estimation, etc.



1-d density estimation



2-d density estimation

# Reinforcement Learning

- Learning by interacting with environment to make good sequences of decisions under uncertainty
  - Environment may be unknown, nonlinear, stochastic and complex
  - Agent learns a policy mapping states to actions
    - learning by trial and error

 Goal is to take actions so as to maximize expected but delayed cumulative reward in the long run



- Examples
  - Self-driving: accelerate, decelerate, turn left/right, etc
  - NLP: summarization, question answer, translation, etc
  - Healthcare: patient treatment
  - Recommendation system to track the change of user behaviors
  - Resource management in cloud datacenters

Rao, et al, VCONF: a reinforcement learning approach to virtual machines auto-configuration, ICAC 2009

#### Elements of RL

#### Agent state:

- fully observable env (e.g. chess)
- Partially observable env, indirectly observes env (e.g. porker)
  - Beliefs of env state
- Discrete vs Continuous

#### Major components:

- Policy is about agent's behavior, concerning about how an agent should behave
- Value function in state s and action a is prediction of future award. It is about how good is each state and/or state-action pair
  - Optimal state-action value function → optimal actions
- Model : predict what env will do next
  - Transition Probability
  - Reward R to predict the next (immediate) reward

#### Environment is unknown in reality

- Interact with environment
- Agent improves policy

# Inter-disciplinary Studies



# RL for Autonomous Driving

#### RL for Behavior Planning in self-driving

- Agent observes state env (How to represent a state?)
- Agent takes an action to achieve a benefit (stop, left, right, accelerate, decelerate, etc)
- Agent receives a reward based on the results of that action (positive or negative)

 RL enables the agent to learn the optimal behavior that will maximize the reward



- Why RL matters...
  - Range of maneuvers: it can learn an extremely large number of roadway maneuvers
  - Complexity of maneuvers: it can learn complex maneuvers involving many contextual parameters
  - Decision: it can make decisions akin to a human driver

## DeepTraffic: Example of RL for Highway Driving



See <a href="https://github.com/lexfridman/deeptraffic">https://github.com/lexfridman/deeptraffic</a> for online car racing

#### Markov Decision Process

- Almost all RL problems can be formulated as MDP
- Markov property
  - The future is independent of the past, given the present
- Defined as 5 tuple <S, A, R, P, r>
  - S: set of possible states [start state =  $s_0$  optional terminal / absorbing state]
  - A: set of possible action
  - R: immediate reward given (state, action, next state) tuple
  - P: transition probability distribution from one state to another
  - r: discount factor to reflect the uncertainty about the future (r=0: short sight; r=1 far sight)
- Policy is defined as a map from state to action
  - Deterministic policy:
  - Deterministic policy:  $\pi(s) = a$  Stochastic policy:  $\pi(a|s) = \mathbb{P}(A_t = a|S_t = s)$
- What is a good policy?

Maximizes current reward? Sum of all future reward? Discounted future rewards!

Optimal policy

$$\pi^* = \arg\max_{\pi} \mathbb{E} \left| \sum_{t \ge 0} \gamma^t r_t | \pi \right|$$

# Markov Decision Process (cont')

- State Value Function (Value Function)
  - How good is a state? Am I screwed or winning this game?
  - Value function of state s under policy  $\pi$

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, \pi\right]$$

- Action-Value Function (Q-function)
  - How good is a state action-pair? Should I do this now?
  - State action value func of state s, action a, under policy pi

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi\right]$$

 Optimal Q-value function is the expected cumulative reward from taking action a in state s and acting optimally thereafter

$$Q^*(s, a) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi^*\right]$$

# Bellman Optimality Equations

Extracting optimal value / policy from Q-values:

$$V^*(s) = \max_{a} Q^*(s, a)$$
  $\pi^*(s) = \arg\max_{a} Q^*(s, a)$ 

Recursive optimality equations:

$$V^{*}(s) = \max_{a} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{*}(s')]$$

$$Q^{*}(s, a) = \underset{s' \sim p(s'|s, a)}{\mathbb{E}} [r(s, a) + \gamma V^{*}(s)]$$

$$= \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{*}(s)]$$

$$= \sum_{s'} p(s'|s, a) [r(s, a) + \gamma \max_{a} Q^{*}(s', a')]$$





#### Value Iteration

Based on the Bellman Optimality Equation

$$V^*(s) = \max_{a} \sum_{s'} p\left(s'|s, a\right) \left[r(s, a) + \gamma V^*\left(s'\right)\right]$$

- VI Algorithm
  - Initialize values of all states  $V^0(s) = 0$
  - While not converged:
    - For each state:

$$V^{i+1}(s) \leftarrow \max_{a} \sum_{s'} p(s'|s,a) \left[ r(s,a) + \gamma V^{i}(s') \right]$$

- Repeat until convergence (no change in values)

$$V^0 \to V^1 \to V^2 \to \cdots \to V^i \to \cdots \to V^*$$

Time complexity per iteration O(|S|<sup>2</sup>|A|)

## Q-Value Iteration

Value Iteration Update:

$$V^{i+1}(s) \leftarrow \max_{a} \sum_{s'} p(s'|s,a) \left[ r(s,a) + \gamma V^{i}(s') \right]$$

Q-Value Iteration Update:

$$Q^{i+1}(s, a) \leftarrow \sum_{s'} p\left(s'|s, a\right) \left[r\left(s, a\right) + \gamma \max_{a'} Q^{i}(s', a')\right]$$

Same algorithm as value iteration, but it loops over actions as well as states

## Policy Iteration

• Policy iteration: Start with arbitrary  $\pi_0$  and refine it.

$$\pi_0 \to \pi_1 \to \pi_2 \to \dots \to \pi^*$$

- Involves repeating two steps:
  - Policy Evaluation: Compute  $V^\pi$  (similar to Value Iteration)
  - Policy Refinement: Greedily change actions as per  $V^{\pi}$   $\pi'(s) = \operatorname{argmax}_a V^{\pi}(s)$

$$\pi_0 \longrightarrow V^{\pi_0} \longrightarrow \pi_1 \longrightarrow V^{\pi_1} \longrightarrow \dots \longrightarrow \pi^* \longrightarrow V^{\pi^*}$$

Do what  $\pi$  says to do





Policy evaluation Estimate  $v_{\pi}$ Any policy evaluation algorithm Policy improvement Generate  $\pi' \geq \pi$ Any policy improvement algorithm



# Canonical Example: Grid World

- Agent lives in a grid
- Walls block the agent's path
- Actions do not always go as planned
  - 80% of the time, go to desired direction
  - 10% of the time, West of desired direction; 10% East of desired action
  - If there is a wall, the agent stays put



State: Agent's location

Actions: N, E, S, W

Rewards: +1 / -1 at absorbing states

# Value Iteration (VI)



(c) C. Xu

# The optimal policy $\pi^*$

- Computing Actions from Q values
  - Easy job than value function



$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$



$$r(s) = -0.04$$

Policy is dependent on r(s) as well





$$r(s) = 2.0$$

## Limitations of MDP

- Typically, we don't know the environment
  - -Transition probability p(s'|s,a) is unknown, how actions affect the environment?
  - -Immediate reward function r(s, a, s') is unknown, what/when are the good actions?
- But, we can learn by trial and error
  - -Gather experience (data) by performing actions.

$$\{s, a, s', r\}_{i=1}^{N}$$

Approximate unknown quantities from data.





Reinforcement Learning

# Deep Learning Based Methods

- In addition to not knowing the environment, sometimes the state space is too large.
- A value iteration updates takes O(|S|<sup>2</sup>|A|)
  - Not scalable to high dimensional states e.g.: RGB images.
- Solution: Deep Learning!
  - Use deep neural networks to learn low-dimensional representations.

Deep Reinforcement Learning

#### Outline

- Overview of RL
- Markov Decision Process
  - -Bellman Optimality Equation
  - -Value Iteration
  - -Policy Iteration
- RL for unknown environment
  - -Q-learning
- Deep RL for Large State Space
  - -DQN algorithm

# Reinforcement Learning

- We want to evaluate V, without known transition probability P and reward function R
- Sample-based Monte-Carlo

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_i$$



- learn from every experience
- Update V(s) each time we experience a transition (s, a, s', r)
- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s): 
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s): 
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update: 
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$



# Q-Learning

SARSA: sample-based Q-value iter

$$Q(a,s) \leftarrow Q(a,s) + \alpha \cdot (r_s + \gamma \cdot Q(a',s') - Q(a,s))$$

Q-Learning: sample-based

$$Q(a,s) \leftarrow Q(a,s) + \alpha \cdot \left( r_s + \gamma \max_{a'} Q(a',s') - Q(a,s) \right)$$

- Learn Q(s,a) values as you go
  - Receive a sample (s,a,s',r)
  - Consider your old estimate Q(s,a)
  - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{s} Q(s', a')$$

- Incorporate new estimate into a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

 Off policy learning: update policy is different behavior policy



Q-learning



# Deep Q Learning

- Q table Q(s,a) is too big for large problems
- Use NN to approximate Q table



## DQN Learning

(Mnih, et al, Playing Atari with Deep Reinforcement Learning, 2013)

- Approximation of NN for Q(s, a)
  - Define Loss Function for Mean Square Error of a single data point

$$\operatorname{MSE\ Loss} := \left( \frac{Q_{new}(s,a) - (r + \gamma \max_{a} Q_{old}(s',a))}{\operatorname{Predicted\ Q-Value}} \right)^{2}$$

-Gradient Descent is to minimize its loss function

 $\frac{\partial Loss}{\partial \theta_{new}}$ 

- Calculation over the full training set at each step
- Computational expensive
- -Stochastic Gradient Descent to use a "random" set of data for gradient calculation: minibatch  $\{(s,a,s',r)_i\}_{i=1}^B$

(c) C. Xu RL for Self-Drving 27

## Performance of DQN vs Q Learning



Ohnishi, et al, Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning, Neurorobot, Dec 2019

# How To Gather Experience?



Challenge 1: Exploration vs Exploitation

Challenge 2: Non i.i.d, highly correlated data

# **Exploration** and Exploitation

• What should  $\pi_{\mathrm{gather}}$  be?

-Greedy? 
$$\rightarrow$$
 Exploit local minimal, 
$$\arg \max_{a} Q(s, a; \theta)$$



An exploration strategy:

 $-\epsilon$ -greedy  $a_t = \begin{cases} \arg\max_a Q(s, a) & \text{with probability } 1 - \epsilon \\ \text{random action} & \text{with probability } \epsilon \end{cases}$ 

Eat in "best" restaurant (exploitation) Explore "new" restaurant (exploration)

#### Correlated Data Problem

- Samples are correlated, not i.i.d
  - => high variance gradients
  - => inefficient learning
- Experience Replay
  - A replay buffer stores transitions
  - -Continually update replay buffer as game (experience) episodes are played, older samples discarded
  - Train Q-network on random mini-batches of transitions from the replay memory, instead of consecutive samples

# Putting together: DQN Algorithm

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
                                                                             Experience Replay
  Initialize action-value function Q with random weights
  for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1.T do
                                                                     Epsilon-greedy
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
           Set y_j = \begin{cases} r_j & \text{for terminal } \varphi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
                                                                                                    Q Update
            Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
       end for
  end for
```

## In Summary: RL for Self-Driving

- Value-based RL
  - (Deep) Q-Learning, approximating Q\*(s,a), with a deep Q-network
- Policy-based RL
  - Directly approximate optimal policy  $\pi_{\theta}^*$  with a parametrized policy $\pi^*$
- Model-based RL
  - Approximate transition function p(s, a, s') and reward function r(s,a)
  - Plan by looking ahead in the (approx.) future!

