Отчет о выполненой лабораторной работе 2.1.2

Котляров Михаил, Б01-402

1 Введение

Цель работы: : определить отношение $\gamma = \frac{C_p}{C_v}$ для воздуха и углекислого газа по измерению давления в стеклянном сосуде.

Оборудование: стеклянный сосуд; U-образный жидкостный манометр (жидкость - вода); резиновая груша; газгольдер с углекислым газом; психрометр.

2 Экспериментальная установка и некоторые теоретические сведения

Используемая для опытов экспериментальная установка состоит из стеклянного сосуда A, снабженного краном K, и U-образного жидкостного манометра, измеряющего избыточное давление газа в сосуде. Схема установки показана на Puc. 1.

Избыточное давление создаётся с помощью резиновой груши, соединённой с сосудом трубкой с краном K_1 .

Рис. 1. Экспериментальная установка

В начале опыта в стеклянном сосуде A находится исследуемый газ при комнатной температуре T_1 и давлении P_1 , несколько превышающем атмосферное давление P_0 . После открытия крана K, соединяющего сосуд A с атмосферой, давление и температура газа будут понижаться. Это уменьшение температуры приближённо можно считать адиабатическим, поскольку $\Delta t_P \ll \Delta t_T$, Δt_P и Δt_T обозначают соответственно выравнивание давления и температуры.

Обозначим состояние газа после повышения давления в сосуде и выравнивания температуры с комнатной индексом 1, сразу после открытия крана K индексом 2, после закрытия крана K и изохорного нагревания индексом 3. Из

уравнений адиабаты и Клапейрона получим

$$(\frac{P_1}{P_2})^{\gamma-1} = (\frac{T_1}{T_2})^{\gamma}.$$

По закону Гей-Люссака для изохорного процесса

$$\frac{P_2}{T_2} = \frac{P_3}{T_3} = \frac{P_3}{T_1}.$$

С учетом того, что $P_1=P_0+\rho g h_1,\, P_2=P_0,\, P_3=P_0+\rho g h_2,$

$$\gamma = \frac{\ln(P_1/P_0)}{\ln(P_1/P_3)},$$

$$\gamma = \frac{\ln(1 + \rho g h_1/P_0)}{\ln(1 + \rho g h_1/P_0) - \ln(1 + \rho g h_2/P_0)} \approx \frac{h_1}{h_1 - h_2}.$$
(1)

3 Выполнение

3.1 Воздух

- 1. Перед началом измерений оценим время установления равновесия. Для этого закроем кран K и увеличим с помощью груши давление на 21,9 см.вод.ст.. Давление установилось примерно через 40 секунд, поэтому в дальнейших измерениях время установления равновесия бралось 40-50 с.
- 2. Проведем теперь 3 серии измерения. Для каждого времени открытия Δt будем нагнетать давление в сосуде, ждать пока давление перестанет меняться, фиксировать Δh_1 . Затем откроем кран K на время Δt , подождем, пока система придет в равновесие. Зафиксируем Δh_2 . Эти действия проделаем 5-6 раз для трех диапазонов Δt .
- 3. Полученные данные приведены в следующих таблицах

h_1, c_M	h_2, c_M	γ	$\sigma_{\gamma}^{{ m cuc}_{ m T}}$	$\varepsilon_{\gamma}^{\text{сист}}, \%$
14.9 ± 0.2	2.5 ± 0.2	1.202	0.020	1.64
10.1 ± 0.2	1.9 ± 0.2	1.232	0.031	2.48
8.3 ± 0.2	2.0 ± 0.2	1.317	0.043	3.27
7.8 ± 0.2	1.6 ± 0.2	1.258	0.041	3.29
7.9 ± 0.2	1.9 ± 0.2	1.317	0.045	3.43

Таблица 1. $\Delta t \approx 0,5c$

h_1, c_M	h_2, c_{M}	γ	$\sigma_{\bullet}^{\text{сист}}$	$\varepsilon_{\infty}^{\text{сист}}, \%$
19.1 ± 0.2	4.8 ± 0.2	1.336	0.019	1.44
18.7 ± 0.2	4.8 ± 0.2	1.345	0.020	1.49
18.5 ± 0.2	4.6 ± 0.2	1.331	0.020	1.48
19.3 ± 0.2	4.8 ± 0.2	1.331	0.019	1.42
19.4 ± 0.2	4.5 ± 0.2	1.302	0.018	1.38
19.1 ± 0.2	4.6 ± 0.2	1.317	0.019	1.42

Таблица 2. $\Delta t \approx 0, 5 - 1, 5c$

h_1, c_M	h_2, c_M	γ	$\sigma_{\gamma}^{\text{сист}}$	$\varepsilon_{\gamma}^{\text{сист}}, \%$
20.2 ± 0.2	4.3 ± 0.2	1.270	0.016	1.29
19.0 ± 0.2	4.2 ± 0.2	1.284	0.018	1.38
18.9 ± 0.2	4.2 ± 0.2	1.286	0.018	1.39
19.5 ± 0.2	4.3 ± 0.2	1.283	0.017	1.35
19.5 ± 0.2	4.2 ± 0.2	1.275	0.017	1.34

Таблица 3. $\Delta t \approx 5c$

4. Индексами 1, 2, 3 обозначены значения для соответствующих серий измерений. Средние значения показателей равны $\bar{\gamma}_1=1,265,\ \bar{\gamma}_2=1,327,\ \bar{\gamma}_3=1,279.$ Погрешности:

$$\sigma_{\gamma}^{\text{случ}} = \sqrt{\frac{\sum_{i=1}^{n} (\bar{\gamma} - \gamma_{i})^{2}}{n(n-1)}}$$

$$\sigma_{\gamma_{1}}^{\text{случ}} = 0,005 \qquad \sigma_{\gamma_{2}}^{\text{случ}} = 0,0003 \qquad \sigma_{\gamma_{3}}^{\text{случ}} = 0,0003 \qquad (1)$$

$$\sigma_{\gamma}^{\text{сист}} = \max(\sigma_{\gamma}^{\text{сист}}) = 0,0451$$

Поэтому случайными погрешностями в 2 и 3 сериях можно принебречь.

$$\sigma_{\gamma} = \sqrt{\sigma_{\gamma}^{\text{chc}_T 2} + \sigma_{\gamma}^{\text{c,ny}_4 2}}$$

$$\sigma_{\gamma_1} = 0,0454 \qquad \sigma_{\gamma_2} = 0,0451 \qquad \sigma_{\gamma_3} = 0,0451 \qquad (2)$$

5. Построим по МНК график зависимости показателя адиабаты для воздуха от времени открытия крана $\gamma(\Delta t)$.

График №1 Зависимость показателя адиабаты для воздуха от времени открытия крана $\gamma(\Delta t)$

$$k = -0,001 \pm 0,008$$
$$\gamma_0 = 1,293 \pm 0,015$$

По полученным параметрам прямой вычисли диапазон показателя адиабаты при $\Delta t = 0.1\text{-}0.2\text{c}$.

$$\gamma_{\text{bo3}} = 1,293$$

$$\sigma_{\gamma_{\text{bo3}}} = \sqrt{(\Delta t \sigma_k)^2 + \sigma_{\gamma_0}^2} = \sqrt{0,0008^2 + 0,015^2} = 0,015$$

$$\gamma_{\text{bo3}} = 1,293 \pm 0,015$$

3.2 Углекислый газ

Проделаем все то же самое для углекислого газа

h_1, cm	h_2, c_M	γ	$\sigma_{\gamma}^{ ext{cuct}}$	$\varepsilon_{\gamma}^{\text{сист}}, \%$
9.0 ± 0.2	1.7 ± 0.2	1.233	0.034	2.79
8.9 ± 0.2	1.9 ± 0.2	1.271	0.037	2.92
9.1 ± 0.2	2.0 ± 0.2	1.282	0.037	2.88
8.9 ± 0.2	1.9 ± 0.2	1.271	0.037	2.92
8.9 ± 0.2	1.9 ± 0.2	1.271	0.037	2.92

Таблица 4. $\Delta t \approx 0, 5c$

h_1, cm	h_2, c_M	γ	$\sigma_{\gamma}^{ ext{cuct}}$	$\varepsilon_{\gamma}^{\mathrm{сист}},\%$
8.9 ± 0.2	1.9 ± 0.2	1.271	0.037	2.92
8.9 ± 0.2	1.7 ± 0.2	1.236	0.035	2.83
9.1 ± 0.2	1.9 ± 0.2	1.264	0.036	2.84
9.1 ± 0.2	1.6 ± 0.2	1.213	0.033	2.71
8.9 ± 0.2	1.9 ± 0.2	1.271	0.037	2.92

Таблица 5. $\Delta t \approx 0, 5-1, 5c$

h_1, c_M	h_2, c_M	γ	$\sigma_{\gamma}^{ ext{cuct}}$	$\varepsilon_{\gamma}^{\text{сист}}, \%$
8.9 ± 0.2	1.5 ± 0.2	1.203	0.033	2.74
8.7 ± 0.2	1.5 ± 0.2	1.208	0.034	2.82
9.1 ± 0.2	1.6 ± 0.2	1.213	0.033	2.71
9.0 ± 0.2	1.5 ± 0.2	1.200	0.032	2.70
9.1 ± 0.2	1.5 ± 0.2	1.197	0.032	2.67

Таблица 6. $\Delta t \approx 5c$

$$\sigma_{\gamma_{1}}^{\text{случ}} = 0,0005 \qquad \qquad \sigma_{\gamma_{2}}^{\text{случ}} = 0,0008 \qquad \qquad \sigma_{\gamma_{3}}^{\text{случ}} = 0,0004 \qquad \qquad (3)$$

$$\sigma_{\gamma}^{\text{сист}} = \max(\sigma_{\gamma}^{\text{сист}}) = 0,037 \qquad \qquad \sigma_{\gamma_{3}} = 0,037 \qquad \qquad \sigma_{\gamma_{3}} = 0,037 \qquad \qquad (4)$$

Построим по MHK график зависимости показателя адиабаты для углекислого газа от времени открытия крана $\gamma(\Delta t)$.

График №2 Зависимость показателя адиабаты для углекислого от времени открытия крана $\gamma(\Delta t)$

$$k = -0,0136 \pm 0,0001$$

 $\gamma_0 = 1,2721 \pm 0,0002$

По полученным параметрам прямой вычисли диапазон показателя адиабаты при $\Delta t = 0,1\text{-}0,2\mathrm{c}.$

$$\gamma_{CO_2} = 1,2694 - 1,2708$$

$$\sigma_{\gamma_{\text{Bo3}}} = \sqrt{(\Delta t \sigma_k)^2 + \sigma_{\gamma_0}^2} = \sqrt{(1, 2 \cdot 10^{-5})^2 + 0,0002^2} = 0,0002$$

$$\gamma_{CO_2} = (1,2694 \div 1,2708) \pm 0,0002$$

4 Результаты и обсуждения

1. Сравним полученные показатели адиабаты для воздуха и углекислого газа с табличными данными*. Для этого рассчитаем молярную теплоемкость воздуха при постоянном давлении с учетом влажности. Давление примем за P=101,325 кПа, температура в комнате T=297 К, влажность $\varphi=91\%$. Молярные массы водяного пара и сухого воздуха равны $\mu_{\text{пар}}=18,0156\frac{\Gamma}{\text{моль}}$ и $\mu_{\text{воз}}=28,96\frac{\Gamma}{\text{моль}}$ соответственно. Плотность воздуха при данной температуре определим с помощью уравнения Менделеева-Клапейрона для идеального газа

$$\rho_{\text{воз}} = \frac{P\mu_{\text{воз}}}{RT} \approx 1,189 \frac{\Gamma}{\Pi}$$

Плотность насыщенного пара при данной температуре $\rho_{\rm н\pi}=21, 8\frac{\Gamma}{{
m m}^3}.$ Массовые и молярные доли

$$\begin{split} \omega_m^{\text{пар}} &= \frac{\rho_{\text{пар}}}{\rho_{\text{нп}} + \rho_{\text{воз}}} = \frac{\varphi \cdot \rho_{\text{нп}}}{\rho_{\text{нп}} + \rho_{\text{воз}}} = 0,0164 \\ & \omega_m^{\text{воз}} = 0,9836 \\ & \omega_\nu^{\text{пар}} = \frac{\frac{\omega_m^{\text{пар}}}{\mu_{\text{пар}}}}{\frac{\omega_m^{\text{пар}}}{\mu_{\text{пар}}} + \frac{\omega_m^{\text{воз}}}{\mu_{\text{воз}}}} = 0,0261 \\ & \omega_\nu^{\text{воз}} = 0,9739 \end{split}$$

^{*}Табличное данные взяты из книги Лабораторный практикум по общей физике Том I Термодинамика и молекулярная физика

Молярные теплоемкости водяного пара и сухого воздуха равны $C_p^{\rm nap}=34,5$ и $C_p^{\rm воз}=29,3$ соответственно. Итоговая теплоемкость влажного воздуха равна

$$C_p = \omega_{\nu}^{\text{bos}} C_p^{\text{bos}} + \omega_{\nu}^{\text{pap}} C_p^{\text{pap}} = 29,4358$$

Приняв воздух за идеальный газ, используем соотношением Майера и найдем показатель адиабаты влажного воздуха

 $\gamma_{\text{bos}}^{\text{Ta6JI}} = \frac{C_p}{C_v} = \frac{C_p}{C_p - R} = 1,3868$

2. Теперь перейдем к сравнению. Значения для CO_2 оказались довольно близкими к табличным, точки на

Газ	$\gamma^{_{ m 9KCH}}$	$\gamma^{ ext{табл}}$	$\sigma_{\gamma}^{_{ m 9KCH}}$	$\sigma_{\gamma}^{{ m an}}$	$\varepsilon_{\gamma}^{\mathfrak{s}_{\kappa}_{\mathrm{CII}}},\%$	$\varepsilon_{\gamma}^{ ext{табл}}, \%$
Воздух	1.293	1.3868	0.015	0.0936	1.18	6.75
CO_2	1.2701	1.3	0.0002	0.0299	0.02	2.30

Таблица 7. Сравнение экспериментальных и табличных значений γ для различных газов

графике 2 лежат на прямой с хорошей точностью. Для воздуха значения и график получились менее точными. Это связано с тем, что в первых сериях для воздуха давление Δh_1 недостаточно для измерений с высокой точностью, нужно было накачивать больше. В то же время для CO_2 наоборот для всех серий бралось максимальное допустимое давление, поэтому результаты намного ближе к табличным и погрешность меньше. Также большое расхождение связано с тем, что Δt не измерялось с большой точностью, а бралось приблизительное для диапазона. Поэтому графики могут сильно отличаться от ожидаемых. Стоит также напомнить, что итоговая формула (1) получилась с приближением.

5 Выводы

По давлению газа определили показатель адиабаты γ для воздуха и CO_2 для каждого измерения. Построили графики зависимости показателя адиабаты от времени открытия крана $\gamma(\Delta t)$. По экстраполяции определили окончательные показатели адиабаты для газов (см. Таблица 7). Убедились, что экспериментальные значения близки к табличным.