

US Army Corps of Engineers **Construction Engineering Research Laboratories**

Advanced Gas Cooling Study for the Hospital at Davis-Monthan AFB, AZ

by Michael A. Caponegro William T. Brown III Timothy W. Pedersen

Based on its experience with a cogeneration project at Tyndall AFB, the Air Force Civil Engineering Support Agency (AFCESA) tasked the U.S. Army Construction Engineering Research Laboratories (USACERL) to perform an analysis to see if such a concept, or some other cooling options, could be of economic benefit at the Air Force medical facility at Davis-Monthan AFB, AZ, where the cost of purchased electrical power is relatively high compared to that of natural gas.

USACERL researchers developed a cooling load profile for the facility by reviewing plant

TYPIC QUALITY INSPECTED 1

Approved for public release; distribution is unlimited.

records and interviewing plant operators. Boiler logs (daily and monthly) were consulted to determine heating loads, and a spreadsheet was developed to analyze nine options. Savings and first costs were input into the Life Cycle Cost in Design (LCCID) computer program to determine simple paybacks and savings-to-investment ratios for all options. Based on the results of the investigation, preferred options were recommended for meeting the facility cooling load.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report 99/24, Advanced Gas Cooling Study for the Hospital at Davis-Monthan AFB, AZ

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As user of this report, your customer comments will provide USACERL with information essential for improving future reports.

1. rep	Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which port will be used.)
2.	How, specifically, is the report being used? (Information source, design data or procedure, management occdure, source of ideas, etc.)
3. sav	Has the information in this report led to any quantitative savings as far as manhours/contract dollars red, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.
	· · · · · · · · · · · · · · · · · · ·
4.	What is your evaluation of this report in the following areas?
	a. Presentation:
	b. Completeness:
	c. Easy to Understand:
	d. Easy to Implement:
	e. Adequate Reference Material:
	f. Relates to Area of Interest:
	g. Did the report meet your expectations?
	h. Does the report raise unanswered questions?

i. General Comments. (Indicate w	what you think should be changed to make this report and future reports
of this type more responsive to your ne	eeds, more usable, improve readability, etc.)
·	
5. If you would like to be contacted by discuss the topic, please fill in the follows:	y the personnel who prepared this report to raise specific questions or owing information.
Name:	
Telephone Number:	
Organization Address:	
6. Please mail the completed form to:	

Department of the Army
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES
ATTN: CECER-TR-I
P.O. Box 9005
Champaign, IL 61826-9005

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

Davis Highway, Suite 1204, Artington, VA 2	2202-4302, and to the Office of Management a	nd Budget, Paperwork Heduction	Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE January 1999	3. REPORT TYPE AND DAT Final	ES COVERED
TITLE AND SUBTITLE Advanced Gas Cooling Study	5. FUNDING NUMBERS MIPR N94-92		
6. AUTHOR(S) Michael A. Caponegro, Willia	am T. Brown III, and Timothy W.	. Pedersen	
7. PERFORMING ORGANIZATION NAME U.S. Army Construction Engi P.O. Box 9005 Champaign, IL 61826-9005	e(S) AND ADDRESS(ES) neering Research Laboratories (U	SACERL)	8. PERFORMING ORGANIZATION REPORT NUMBER TR 99/24
9. SPONSORING / MONITORING AGENCY Tyndall AFB ATTN: HQ AFCESA/CESE 139 Barnes Drive, Suite 1 Tyndall AFB, FL 32403-5319			10. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES Copies are available from the	National Technical Information S	ervice, 5285 Port Royal	Road, Springfield, VA 22161.
12a. DISTRIBUTION / AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE
Approved for public release; of	listribution is unlimited.		
13. ABSTRACT (Maximum 200 words)			
(AFCESA) tasked the U.S. Ar see if such a concept, or some Davis-Monthan AFB, AZ, who USACERL researchers develor operators. Boiler logs (daily a analyze nine options. Savings determine simple paybacks and	other cooling options, could be or ere the cost of purchased electricated ped a cooling load profile for the and monthly) were consulted to de	search Laboratories (USA f economic benefit at the all power is relatively high facility by reviewing platermine heating loads, and the Life Cycle Cost in Designal options. Based on the	ACERL) to perform an analysis to Air Force medical facility at a compared to that of natural gas. And records and interviewing plant and a spreadsheet was developed to ign (LCCID) computer program to
14. SUBJECT TERMS Davis-Monthan AFB, AZ gas cooling technologies life cycle costs	cogeneration		15. NUMBER OF PAGES 148 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	ABSTRACT

Foreword

This study was conducted for the Air Force Civil Engineering Support Agency (AFCESA) under Military Interdepartmental Purchase Request (MIPR) No. N94-92, Work Unit WL4, "Evaluation and Application of Gas Cooling Technologies." The technical monitor was Rich Bauman, AFCESA.

The work was performed by the Utilities Division (UL-U) of the Utilities and Industrial Operations Laboratory (UL), U.S. Army Construction Engineering Research Laboratories (CERL). The CERL Principal Investigator was Timothy W. Pedersen. Martin J. Savoie is Chief, CECER-UL-U, and Dr. John Bandy is Operations Chief, CECER-UL. The responsible Technical Director was Gary W. Schanche, CECER-TD. The CERL technical editor was William J. Wolfe, Technical Information Team.

Dr. Michael J. O'Connor is Director of CERL.

Contents

SF	2981
Fo	reword2
1	Introduction7
	Background7
	Objectives7
	Approach7
	Scope10
	Mode of Technology Transfer11
	Metric Conversion Factors
2	Cooling Options12
	Status Quo12
	Two Hundred Fifty (250)-Ton Capacity Natural Gas Engine-Driven Chiller With Heat Recovery (Option #1)12
	Power Generation With Sufficient Waste Heat To Operate a Water Chilling Unit13
	Power Generation With Sufficient Waste Heat To Operate a Water Chilling Unit and Satisfy Facility Thermal Requirements
3	Boiler Load and Heating Requirements17
	Space Heating Requirements
	Direct Steam Requirements17
	Domestic Hot Water Heating Requirements17
4	Heat Recovery19
	Option #119
	Remaining Options (Heat Recovery from Engine-Generator Sets)19
5	Utility Rate Structures21
	Electrical Rates21
	Natural Gas Rates22
6	Methodology for Analysis23
	Option #2a24
	Option #2b24
	Option #2c (also applicable to Option #3a)25

Option #3b	25
First Costs Life Cycle Cost Analysis 7 Results 8 Conclusions and Recommendations Appendix A: Notes Regarding Interviews and Discussions for Chiller Study at Davis-Monthan AFB Appendix B: Equipment Selections and Capitol Costs Appendix C: Recent Electric Bills for Davis-Monthan AFB	
Results Conclusions and Recommendations Appendix A: Notes Regarding Interviews and Discussions for Chiller Study at Davis-Monthan AFB Appendix B: Equipment Selections and Capitol Costs Appendix C: Recent Electric Bills for Davis-Monthan AFB	25
7 Results	
8 Conclusions and Recommendations	26
Appendix A: Notes Regarding Interviews and Discussions for Chiller Study at Davis-Monthan AFB	27
Appendix B: Equipment Selections and Capitol Costs	28
Appendix C: Recent Electric Bills for Davis-Monthan AFB	30
	35
Appendix D: Spreadsheet Calculation Based on Option #2a	39
- pp-	53
Appendix E: Spreadsheet Calculation Based on Option #2b	54
Appendix F: Spreadsheet Calculation Based on Options #2c and 3a	
Appendix G: Spreadsheet Calculation Based on Options #2d and 3c	
Appendix H: Spreadsheet Calculation Based on Option #3b	
Appendix I: Spreadsheet Calculation Based on Option #3d	
Appendix J: Construction Cost Estimates for Each Option	
Appendix K: Energy Cost Estimates for Each Option	
Appendix L: Calculated Paybacks and Savings-to-Investment Ratio for Option 1.	
Appendix M: Calculated Paybacks and Savings-to-Investment Ratio for Option 2a	
Appendix N: Calculated Paybacks and Savings-to-Investment Ratio for Option 2b	
Appendix O: Calculated Paybacks and Savings-to-Investment Ratio for Option 20	
Appendix P: Calculated Paybacks and Savings-to-Investment Ratio for Option 2d	-
Appendix R: Calculated Paybacks and Savings-to-Investment Ratio for Option 3a Appendix R: Calculated Paybacks and Savings-to-Investment Ratio for Option 3b	

Appendix S:	Calculated Paybacks and Savings-to-Investment Ratio for Option 3c	142
Appendix T:	Calculated Paybacks and Savings-to-Investment Ratio for Option 3d	144
Distribution		

1 Introduction

Background

The Air Force Civil Engineering Support Agency (AFCESA) has been actively involved with a cogeneration project at Tyndall AFB hospital. The project uses an absorption chiller to satisfy the hospital's base cooling load. The steam for activating the absorption chiller is obtained from waste heat, which is derived from an engine driving a generator to produce electrical power — which is also used by the hospital. Based on this experience, AFCESA funded USACERL to perform an analysis to see if such a concept, or some other cooling options, could be of economic benefit at the Air Force medical facility at Davis-Monthan AFB. AZ, where the cost of purchased electrical power is relatively high compared to that of natural gas. USACERL researchers evaluated the case of power generation providing sufficient waste heat to meet the facility base cooling load, and also considered options under which sufficient waste heat could be derived from power production so that a 250-ton absorption chiller could replace an existing motor-driven centrifugal chiller of equal capacity. (The centrifugal chiller uses a chlorofluorocarbon [CFC] refrigerant, R-11.) Heat produced as a result of power generation can be used to satisfy facility thermal, as well as cooling, loads.

Objectives

The objective of the study was to determine the approach that will minimize the cost of meeting the cooling requirements of the medical facility at Davis-Monthan AFB.

Approach

Cooling Load Profile

Considerable time was spent developing a cooling load profile for the facility. This was done by meticulously reviewing plant records and discussing plant operation with the operators (Appendix A). Where data appeared inconsistent or

erroneous, or was missing, trends were examined and reasonable estimates made for the actual cooling loads. Figures 1 and 2 show the results of the data analysis.

Figure 1. Cooling load estimate, May-October 1996.

Figure 2. Cooling load estimate, November 1996-April 1997.

Boiler Load Profile

Boiler logs (daily and monthly) were consulted to determine heating loads. The hospital cooling and heating plant was visited a number of times to obtain information on the plant equipment, including water chillers, cooling towers, boilers, pumps, and heat exchangers. It became obvious that the plant's boilers are grossly oversized for the load and, based on the pressure of the steam produced (50 psig>15 psig), that the boilers require onsite plant operators. Consequently, it became clear that waste heat from power generation could be used not only to meet facility cooling loads through absorption water chilling, but also to meet facility thermal loads, and in the process to possibly reduce manpower requirements and increase utility cost savings.

Analysis

An EXCEL® spreadsheet was developed to analyze the numerous options that were considered. The options considered were:

- (Option #1) Natural gas engine-driven chiller to replace existing 250-ton motor-driven centrifugal chiller, with waste heat used to offset facility thermal requirements
- (Option #2a) Natural gas-fired engine-generator set, waste heat used to provide steam for single-effect absorption water chiller to meet facility base cooling load (100 tons) with residual heat used for thermal requirement
- (Option #2b) Natural gas-fired engine-generator set, waste heat used to provide steam for double-effect absorption water chiller to meet facility base cooling load (100 tons), with residual heat used for thermal requirements
- (Option #2c) Natural gas-fired engine-generator set, waste heat used to provide steam for single-effect absorption water chiller to replace existing 250-ton motor-driven centrifugal chiller, with residual heat used for thermal requirements
- (Option #2d) Natural gas-fired engine-generator set, waste heat used to provide steam for double-effect absorption water chiller to replace existing 250-ton motor-driven centrifugal chiller, with residual heat used for thermal requirements
- (Option #3a) Natural gas-fired engine-generator set, waste heat used to provide steam for single-effect absorption water chiller to meet facility base cooling load (100 tons) with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only)
- (Option #3b) Natural gas-fired engine-generator set, waste heat used to provide steam for double-effect absorption water chiller to meet facility base cooling load (100 tons) with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only)

USACERL TR 99/24

- (Option #3c) Natural gas-fired engine-generator set, waste heat used to
 provide steam for single-effect absorption water chiller to replace existing
 250-ton motor-driven centrifugal chiller, with residual heat adequate to
 satisfy facility thermal requirements (existing boilers as backup only)
- (Option #3d) Natural gas-fired engine-generator set, waste heat used to provide steam for double-effect absorption water chiller to replace existing 250-ton motor-driven centrifugal chiller, with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only).

In essence, Option #1 did not entail the use of an engine-generator set, only a replacement of the existing 250-ton electric motor-driven centrifugal chiller with a natural gas engine-driven chiller, waste heat from which would partially offset facility thermal loads. Options #2a, 2b, 2c, and 2d entailed use of an engine-generator set, with the waste heat providing sufficient energy to activate the absorption chiller and also to meet a portion of the facility thermal load. Options #3a, 3b, 3c, and 3d entailed use of an engine-generator set sized so that the waste heat would not only be sufficient to activate the absorption water chiller, but also to meet the entire thermal load of the facility. Note that, at one time, another option was considered for analysis: use of a 250-ton capacity, direct-fired, double-effect, absorption chiller. This option was discarded prior to more in-depth analysis because the coefficient-of-performance would be less than for the engine-driven option, particularly when heat is recovered from the engine.

Once the spreadsheet calculated the operating cost savings for each option, the savings and first costs were input into the Life Cycle Cost in Design (LCCID) computer program to determine simple paybacks and savings-to-investment ratios for all options. Based on the results of the investigation, recommendations were made as to the preferred option for meeting the facility cooling load.

Scope

The scope of the project was to investigate feasible options for meeting the facility's cooling loads, with emphasis on using waste heat from electrical power generation for absorption cooling. An ancillary benefit was that waste heat could be used not only for absorption cooling, but also for partially or totally meeting the medical facility thermal loads.

Mode of Technology Transfer

This report documents the opportunities available and financial resources required for reducing cooling and overall utility costs for the Davis-Monthan AFB medical facility. USACERL would be amenable to developing a scope of work for architect-engineer (A-E) services to design the installation of the equipment for whatever option USAF management desires to pursue to reduce the medical facility's utility costs. Additionally, USACERL would be amenable to reviewing the design and participating in technical oversight during construction, as well as monitoring equipment performance to verify estimated savings. Additionally, the technologies considered here for possible application at the medical facility at Davis-Monthan AFB have the potential to benefit other DOD medical facilities. Consequently, it is recommended that this document be circulated to the larger DOD medical community for its consideration in applying the technologies at other sites.

Metric Conversion Factors

The following metric conversion factors are provided for standard units of measure used throughout this report:

1 in. = 25.4 mm 1 lb = 0.453 kg 1 gal = 3.78 L 1 psi = 6.89 kPa 1 ton (refrigeration) = 3.516 kW 1 Btu = 1.055 kJ

2 Cooling Options

Status Quo

At present, three electric motor-driven chillers in the Davis-Monthan AFB cooling plant meet the cooling requirements of the medical facility: a York centrifugal chiller nominally of 250-tons capacity, and two Dunham-Bush screw machines of nominal 75-tons capacity each. Performance characteristics of the York chiller were obtained for part load operation and for condenser water return temperatures coincident with load as determined from analyzing cooling logs provided by the base. An earlier analysis contained information as to the full-load performance of the screw machines. Part-load performance was estimated using Figure 14 of Chapter 42, 1994 ASHRAE Refrigeration Handbook.

Two Hundred Fifty (250)-Ton Capacity Natural Gas Engine-Driven Chiller With Heat Recovery (Option #1)

This option did not involve electrical power generation, but offered a potentially economical approach for meeting the facility's cooling loads. This hypothesis was based on the fact that previous analyses indicated this technology should be economically viable at other sites on the base. Under this option, the existing 250-ton capacity York motor-driven centrifugal chiller would be replaced by a natural gas engine-driven chiller using HCFC-22. The engine would be capable of delivering jacket water at temperatures varying between 183 and 201 °F, depending on load, for heat exchange to produce water for space and domestic hot water heating. Return jacket water temperature would be 180 °F. Chiller performance took into account part load efficiencies and the return condenser water temperatures coincident with load as determined from analyzing cooling logs provided by the base.

Power Generation With Sufficient Waste Heat To Operate a Water Chilling Unit

Option #2a: One Hundred (100)-Ton Capacity Single-Effect Indirect-Fired Absorption Chiller

Analysis of the hospital's cooling loads indicated a year-round base load of 100 tons. Under this option, that base load would be met by a single-effect absorption chiller. The heat input would be provided by 15 psig steam produced from heat as the byproduct of power generation from a Caterpillar G3512 (600 kW) engine-generator set. Although the intent was to match, as far as possible, the estimated amount of "waste" heat to the chiller heat input required, some residual waste heat will result, which will be used to satisfy part of the facility's thermal load. Chiller performance was based on the assumption that the chiller would continuously provide 100 tons of cooling, but under variable condenser water return temperatures (as determined from logs provided by the base). Under this option (and for all [four] options involving a new base-loaded 100-ton capacity absorption chiller), the existing 250-ton capacity centrifugal chiller would not be removed. Replacing the existing chiller with only a 100-ton capacity absorption chiller would leave the plant short of capacity. (The data indicates there are periods when the total load on the plant exceeds 250 tons.) For this option and the next, the analysis is based on the assumption that, beyond 100 tons, screw machines will operate until the plant load reaches approximately 175 tons, at which point the operating screw machine will shut off and the 250-ton capacity centrifugal chiller will come on. The new 100-ton capacity absorption chiller would be located in the vicinity of the enginegenerator set and heat recovery equipment.

Option #2b: One Hundred (100)-Ton Capacity Double-Effect Indirect-Fired Absorption Chiller

As stated above, analysis of the hospital's cooling loads indicated a year-round base load of 100 tons. Under this option, that base load would be met by a double-effect absorption chiller; the engine-generator set is a Caterpillar G-3516 (820 kW). The double-effect absorption chiller is about 50 percent more efficient than the single-effect unit. However, the double-effect requires a steam input at higher temperature – at the temperature of 115 psig versus the 15 psig of the single-effect unit. Also, the first cost of the double-effect unit is higher than that of the single-effect chiller. The performance at reduced condenser water temperatures was assumed to be the same as that of the single-effect unit. Under this option, the existing 250-ton capacity centrifugal chiller would not be removed. Replacing the existing chiller with only a 100-ton capacity absorption chiller

USACERL TR 99/24

would leave the plant short of capacity. (The data indicates there are periods when the total load on the plant exceeds 250 tons.) The analysis is based on the assumption that, beyond 100 tons, screw machines will operate until the plant load reaches approximately 175 tons, at which point the operating screw machine will shut off and the 250-ton capacity centrifugal chiller will come on. The new 100-ton capacity absorption chiller would be located in the vicinity of the engine-generator set and heat recovery equipment.

Option #2c: Two Hundred Fifty (250)-Ton Capacity Single-Effect Indirect-Fired Absorption Chiller

Under this option, two 820 kW Caterpillar G-3516s would be selected so that the waste heat matches the heat input requirement for the chiller as closely as possible. All residual heat over what the chiller requires will be used to at least partially meet the facility's thermal requirements (also like the two preceding options). However, the new indirect-fired absorption chiller under this option would be able to produce 250 tons of cooling, matching the capacity of the existing centrifugal chiller. Under this option (and for all [four] options involving a new 250-ton capacity absorption chiller), the existing centrifugal chiller will be physically replaced by the new absorption unit. Chiller performance characteristics were based not only on return condenser water temperature, but also on load since the intent is for the absorption chiller to meet all cooling loads up to the initial 250 tons. Above that threshold, one or both of the existing screw machines would operate.

Option #2d: Two Hundred Fifty (250)-Ton Capacity Double-Effect Indirect-Fired Absorption Chiller

For this option, the engine-generator set (three 820 kW Caterpillar G-3516s) would be selected so that its waste heat matches the heat input requirement for the chiller as closely as possible. Any residual heat over what the chiller requires will be used to at least partially meet the facility's thermal requirements. However, the new double-effect indirect-fired absorption chiller under this option would be able to produce 250 tons of cooling, matching the capacity of the existing centrifugal chiller. Under this option, the existing centrifugal chiller will be physically replaced by the new double-effect indirect-fired absorption unit. Chiller performance characteristics were based not only on return condenser water temperature, but also on load since the intent is for the absorption chiller to meet all cooling loads up to the initial 250 tons. Above that threshold, one or both of the existing screw machines would operate. This option is similar in all respects to that immediately preceding it except that a more

efficient double-effect absorption chiller would be installed, requiring 115 psig steam instead of 15 psig.

Power Generation With Sufficient Waste Heat To Operate a Water Chilling Unit and Satisfy Facility Thermal Requirements

Option #3a

This option is identical to Option #2a, except the engine-generator capacity is sized to meet the thermal requirements of the facility in addition to the energy requirements of the chiller. Under this option, that base load would be met by a single-effect indirect-fired absorption chiller. The heat input would be provided by 15 psig steam produced from heat as the byproduct of power generation from two Caterpillar G3516 (820 kW) engine-generator sets. The intent was to match the estimated amount of "waste" heat to the chiller heat input required and satisfy the facility's thermal load. Chiller performance was based on the assumption that the chiller would continuously provide 100 tons of cooling, but under variable condenser water return temperatures (as determined from logs provided by the base). Under this option, the existing 250-ton capacity centrifugal chiller would not be removed. Replacing the existing chiller with only a 100-ton capacity absorption chiller would leave the plant short of capacity. For this option, the analysis is based on the assumption that, beyond 100 tons, screw machines will operate until the plant load reaches approximately 175 tons, at which point the operating screw machine will shut off and the 250-ton capacity centrifugal chiller will come on. The new 100-ton capacity single-effect indirect-fired absorption chiller would be located in the vicinity of the enginegenerator set and heat recovery equipment.

Option #3b

This option is identical to Option #2b, except the engine-generator capacity is sized to meet the thermal requirements of the facility in addition to the energy requirements of the chiller. Analysis of the hospital's cooling loads indicated a year-round base load of 100 tons. Under this option, that base load would be met by a 100 ton, double-effect, indirect-fired absorption chiller; the engine-generator sets are four Caterpillar G-3516s (820 kW). The double-effect absorption chiller is about 50 percent more efficient than the single-effect unit. However, the double-effect requires a steam input at higher temperature – at the temperature of 115 psig versus the 15 psig of the single-effect unit. Also, the first cost of the double-effect unit is higher than that of the single-effect chiller. The performance at reduced condenser water temperatures was assumed to be the same as

that of the single-effect unit. Under this option, the existing 250-ton capacity centrifugal chiller would not be removed. Replacing the existing chiller with only a 100-ton capacity absorption chiller would leave the plant short of capacity. The analysis is based on the assumption that, beyond 100 tons, screw machines will operate until the plant load reaches approximately 175 tons, at which point the operating screw machine will shut off and the 250-ton capacity centrifugal chiller will come on. The new 100-ton capacity absorption chiller would be located in the vicinity of the engine-generator set and heat recovery equipment.

Option #3c

This option is identical to Option #2c, except the engine-generator capacity is sized to meet the thermal requirements of the facility in addition to the energy requirements of the chiller. Under this option, three 820 kW Caterpillar G-3516s would be selected so that the waste heat matches the heat input requirement for the chiller and will meet the thermal requirements of the facility. The new single-effect indirect-fired absorption chiller under this option would be able to produce 250 tons of cooling, matching the capacity of the existing centrifugal chiller. Under this option, the existing centrifugal chiller will be physically replaced by the new absorption unit. Chiller performance characteristics were based not only on return condenser water temperature, but also on load since the intent is for the absorption chiller to meet all cooling loads up to the initial 250 tons. Above that threshold, one or both of the existing screw machines would operate.

Option #3d

This option is identical to Option #2d, except the engine-generator capacity is sized to meet the thermal requirements of the facility in addition to the energy requirements of the chiller. For this option, the engine-generator set, six 820 kW Caterpillar G-3516s, would be selected so that its waste heat matches the heat input requirement for the chiller and meets the thermal requirements of the facility. However, the new double-effect indirect-fired absorption chiller under this option would be able to produce 250 tons of cooling, matching the capacity of the existing centrifugal chiller. The existing centrifugal chiller will be physically replaced by the new double-effect indirect-fired absorption unit. Chiller performance characteristics were based not only on return condenser water temperature, but also on load since the intent is for the absorption chiller to meet all cooling loads up to the initial 250 tons. Above that threshold, one or both of the existing screw machines would operate. This option is similar in all respects to that immediately preceding it except a more efficient double-effect absorption chiller would be installed, requiring 115 psig steam instead of 15 psig.

3 Boiler Load and Heating Requirements

The maximum hourly boiler load was found from the daily boiler logs to be 3,491 pounds per hour (#/hr) of steam at 0800 on 1 February 94. With the steam produced at 50 psig, this equates approximately to 3,491 #/hr x 912 Btu/# = 3,184 MBH. The steam was used indirectly for space heating and domestic hot water production, and directly for humidification, dining hall requirements, and medical equipment sterilization.

Space Heating Requirements

Based on the time of day and year, the space heating requirement was probably very close to that of the basis of design. Schedules on the design drawings were used to calculate design space heating loads, as follows: (13,400 + 4,570) gal/hr x hr/60 min x 500 x (150 - 130) °F = 2,995 MBH.

Direct Steam Requirements

Previous analysis estimated that direct steam usage constitutes some 5 percent of the boiler output. On that basis, the direct steam used was about $0.05 \times 3,184$ MBH = 159 MBH. Requirements for direct steam usage will be substantially reduced as the dining portion of the hospital will be eliminated. Further, local sterilizers are now being used in some instances instead of imported steam from the central heat plant. Clearly, local humidifiers are also readily available that can be used for humidification, without use of imported steam.

Domestic Hot Water Heating Requirements

The remainder of the boiler output is attributed to domestic hot water production, or:

This figure is in line with an estimate found in an earlier analysis, but is small compared to the domestic hot water heating capacity determined from the schedule on the design drawings, which is:

640 gal/hr x 62.4 #/cu ft/7.48 gal/cu ft x 1 Btu/#- $^{\circ}$ F x 80 $^{\circ}$ F = 427 MBH

It may well be that the domestic hot water load was grossly overestimated, similar to the required boiler capacity, or there may have actually been, at one time, that much load. Mr. Domako of the Base Civil Engineering (BCE) staff has indicated that he anticipates domestic hot water load will decrease in the future as the hospital is converted to an outpatient facility.

The maximum thermal load for the purposes of this analysis will be considered to be the sum of the space heating and domestic hot water load, above, or 3,025 MBH. The direct steam requirements will not be provided by way of waste heat. Those requirements should be met by continuing the trend toward local sterilization and installation of grid (or other type) humidifiers at the air handling units. This will permit the plant to be unmanned. The thermal space and domestic hot water heating loads will still be met as they are already satisfied by 15 psig steam from a pressure reducing valve station from the central heat plant boilers. The thermal energy requirements will be determined from the monthly boiler logs for Summer and for Winter (Table 1), and will be compared against the Btus of waste heat energy generated for those seasons to see if there will be an overall surplus or shortfall of energy.

Table 1. Identification of energy requirements from monthly boiler logs for 1995.

Summer (May - Oct):	Energy Requirements (# of Steam)		
May	1,551,000		
June	1,163,100		
July	902,500		
August	703,600		
September	841,800		
October	1,200,800		
Summer Total =	6,362,800 (x 912 Btu/# = 5,802.874 Mbtu)		
Winter (Nov - Apr):			
November	1,200,800		
December	1,559,800		
January	1,622,700		
February	1,334,200		
March	1,369,200		
April	1,766,200		
Winter Total =	8,852,900 = (x 912 Btu/# = 8,073.845 Mbtu)		
* Indicates data that was averaged using September and December data			

4 Heat Recovery

Heat recovery is a feature of all options considered except (of course) the base option.

Option #1

Under this option, heat is potentially recoverable from both the engine and the exhaust. Due to the fact there would be light load conditions experienced during the year, USACERL was advised that heat should be extracted from the engine only. Extracting heat at low load will lower the temperature of the exhaust gas to the point where some condensation will occur with resulting corrosion. Consequently, only heat recovery from the engine was considered.

Remaining Options (Heat Recovery from Engine-Generator Sets)

Remaining options considered heat recovery from the engine and/or the exhaust. depending on whether high (115 psig) or low (15 psig) pressure steam was required (i.e., depending on whether a double or single-effect absorption chiller was under consideration). Low load that would promote corrosion is not a problem - the engine-generator sets, when operating, would be running at full load, generating the maximum amount of electricity possible. As pointed out earlier in the discussion regarding options, the amount of heat recovery considered was either that necessary to operate the absorption chiller at full load, with any excess used to offset facility thermal requirements, or was that required to operate the absorption chiller at full load and to meet the facility The analysis does not allow more heat energy to be thermal load as well. recovered than required. This limitation is imposed seasonally (Winter, Summer) and thus is somewhat broad. For cases where equipment is sized to produce waste heat to operate the chiller and meet the facility thermal load, the seasonal excess of energy available over required is sufficiently large that short duration thermal requirements should still be met for the vast majority of the The excess heat would be "dumped" to the generously sized existing cooling tower that currently cools the condenser water for the existing 250-ton capacity motor-driven centrifugal chiller. USACERL acknowledges and appreci-

USACERL TR 99/24

ates the assistance of Mr. Warner Bauer of Engineering Controls, Inc., St. Louis, MO, in selecting the engine-generator models and quantities, and heat recovery equipment that would meet the performance criteria under each option considered. Capital costs for the equipment were also provided by Engineering Controls. The equipment selections and capital costs as provided by Engineering Controls, Inc. appear in Appendix B. Note that Waukesha and Caterpillar selections were made so that sole source procurement would not be required and to ensure that performance should be comparable.

5 Utility Rate Structures

Electrical Rates

Appendix C contains recent monthly electric bills for Davis-Monthan AFB for a year (with the exception of September, for which interpolated data was used). Using the electric bills, the rates were determined for use in the spreadsheet. The basic demand charge of \$10.28/billable kW (bkW) is applicable for the entire year. The demand charge is apparently subject to 5 percent Arizona state sales tax, applied to 92 percent of the total (demand plus energy charges) due to a hospital exemption. Power factor adjustment and the Arizona Corporation Commission Assessment were not considered as individually they are well within the "noise" level of the total monthly electric charge and their difference (the former is typically a credit, the latter a debit) is even more so. Consequently, the basic demand cost was figured as:

10.28/bkW x bkW = demand cost (DC)

upon which the sales tax is levied, subject to the allowable exemption, or:

 $DC = $10.28 \times bkW + $10.28 \times bkW \times 0.92 \times 0.05$

so that the actual demand cost would be:

 $DC = $10.28 \times bkW \times (1 + 0.92 \times 0.05) = $10.75 \times bkW$

The electrical *energy* rate is subject to the same levy. The basic Summer rate is \$0.047457/kWh and the basic Winter rate is \$0.045084/kWh. Adjusted for the same levy as applied to the demand charge, the rates become, respectively:

 $1.046 \times \$0.047457/kWh = \$0.0496/kWh$

and

USACERL TR 99/24

Additionally, the electrical rate schedule includes a 0.667 ratchet applied to the peak KW demand experienced over the previous 11 months. The contract with Tucson Electric Power Company includes a minimum monthly buy of 3,000 kW. None of the options regarding power generation will penetrate this floor, based on the data in Appendix C.

Natural Gas Rates

Information received from Mr. Weleck of the BCE staff indicated the gas rates are now \$2.75/MBtu in Summer and \$3.90 in Winter.

6 Methodology for Analysis

Based on the cooling load profile, hours at various loads were determined. The spreadsheet then modeled how these loads would be met, either using the existing cooling equipment or the equipment described above under the various options considered. Note that the hours at the various loads do not total the entire hours of the year (8,760), although there is apparently a requirement for year-round cooling. This simplification was introduced since, once a load over 250 tons is experienced, the equipment that will operate to meet that additional load will be the same under any of the options considered. However, for options involving onsite electrical power generation, all hours of the year were considered, except for the estimated periods of time when the equipment would be inoperative for maintenance (95 and 98 percent availability on average in Summer and Winter, respectively). The hours of operation are divided between Summer (May through October, inclusive) and Winter (November through April) due to the variation in utility rates between the two seasons. The enginegenerator sets have been derated to account for altitude (Tucson's elevation is 2,654 feet above sea level) and outdoor temperature.

Maintenance costs for the Caterpillar G3516 were based on a previous analysis by Empire Power Systems, Phoenix, AZ. This included all parts and labor for oil changes, makeup oil, scheduled preventive maintenance, overhauls, unscheduled stoppages due to out-of-tolerance conditions, etc. The maintenance required for the G3512 was assumed to be essentially equal to that of the G3516. interruption for over 15 minutes in the monthly operation of a given generator will render demand savings from that generator moot for the month (although savings in billable demand may still be possible where operation has reduced peak and the month is one in which billable demand would exceed actual demand). This would be the case regardless of the estimated overall Summer 95 percent or Winter 98 percent availability rates. If units must be down, clearly the preference is to take them down during periods of months when demand is relatively low, keeping the units in service during months when peak demands are typically experienced. Preference should be given to pulling operationally interruptive maintenance during months when billable demand typically exceeds actual demand. It is, of course, recognized that this isn't always possible. The operational assumptions made in the spreadsheet are based on operating the equipment according to the recommendations above, but allowing for the

possibility that unscheduled events will occur. Operating scenarios were developed for all options based on the practices recommended above and are indicated in the following.

Option #2a

With only one Caterpillar G3512 engine-generator set, it was assumed that there would be totally uninterrupted service for 3 of the 6 summer months. It is assumed that, of the 3 months, due diligence has been taken to ensure uninterrupted operation for 2 of the 3 months with the highest actual demand, but the unit went down for the month with the third-highest demand. For Winter, it is assumed that there will be uninterrupted service for 3 months, and interrupted service for 3 months. (Actually, it really does not matter from a demand reduction viewpoint whether the engine-generator does or does not operate during months in which the minimum billable amount is determined by the ratchet; i.e., November to February, inclusive.) Appendix D indicates the situation, incorporating the data from Appendix E. Table 2 lists the projected demand reductions by month.

For input to the spreadsheet, there would be 3 months in Summer when the demand reduction would be 555 kW, and for Winter, there would be 4 months for which the reduction would be 370 kW and 1 month for which the reduction would be 555 kW.

Option #2b

This option is considered identical to Option #2a from an operational standpoint. However, the power production is greater for the Caterpillar G3516 engine-generator that would be installed under this option. Appendix E shows the results. Note again that, in Winter, for the 4 months when the ratchet is in effect, it does not matter from a demand reduction perspective whether any unit does or does not operate. This pattern is characteristic for all the options involving onsite power production.

Table 2. Projected demand reductions, by month.

reductions, by month.				
Jul	555 kW			
Aug	555 kW			
Sep	0 kW			
Oct	555 kW			
Nov	370 kW (= 12,543 - 12,173)			
Dec	370 kW			
Jan	370 kW			
Feb	370 kW			
Mar	0 kW			
Apr	555 kW			
May	0 kW			
Jun	0 kW			

Option #2c (also applicable to Option #3a)

Under this option, it is assumed that in Summer, one Caterpillar G3516 unit will be available to achieve demand reductions for 3 months and two such units will be available to achieve reductions for the remaining 3 months. It is assumed that Winter operation will replicate Summer. Appendix F shows operation for the year. Since two Caterpillar G3516 engine-generators are being considered for Option #3a, the same results apply for that option.

Option #2d (also applicable to Option #3c)

This option involves three Caterpillar G3516 engine-generator sets. It is assumed that in Summer, all three will be available for 2 months and two will be continuously available for 4 months. In Winter, the same assumption is made. Appendix G shows the results. The same results also apply to Option #3c.

Option #3b

This option involves four Caterpillar G3516 engine-generator sets. It is assumed that in Summer all four will be available for 2 months and three will be available for the remaining 4 months. In Winter, the same availability is assumed. Appendix H shows the results.

Option #3d

Six Caterpillar G3516 engine-generator sets were considered for installation under this option. For operation in Summer, it is assumed that all six units will operate for 2 months, five units will operate continuously for 2 months, and four units will be maintained in continuous operation for 2 months. Winter operation will be assumed to be identical. Appendix I shows the results.

First Costs

Appendix J contains the construction cost estimates for each option. The cost estimates for the heat recovery equipment and associated engine-generator sets

USACERL TR 99/24

were those provided by Engineering Controls, Inc., as previously discussed. All other costs were based on *Means Mechanical Cost Data 1997*.

The cost estimates do not include the construction of an enclosure for equipment located exterior to the central energy plant building. Estimating the cost of such a structure would be difficult since the architectural requirements vary for each base. However, it does include the cost of a concrete pad on which to install the equipment.

Life Cycle Cost Analysis

The life cycle cost analysis for each option was calculated using Life Cycle Cost In Design (LCCID) software.* The life cycle cost analysis accounts for the construction, overhead, and design costs associated with each option. The sum of these values is the total investment. The economic life is taken over a 20-year period and accounts for all scheduled maintenance activities as detailed by the manufacturer. No service contracts were considered as part of this study.

^{*} Linda K. Lawrie, Technical Report (TR) E-85/07/ADA162522, Development and Use of the Life Cycle Cost in Design Computer Program (LCCID) (U.S. Army Construction Engineering Research Laboratories [USACERL], November 1985).

7 Results

Appendix K shows the EXCEL® spreadsheet that contains the raw energy data. Appendixes L to T and Table 3 contain calculated payback and savings-to-investment ratio for each option. The table below summarizes the economic results. These results form the basis for the recommendations in the next paragraph. This report does not include potential savings that may be achievable under Options #3a, 3b, 3c, and 3d by having an unmanned plant. Under these options, there would be initial first cost incurred due to installation of humidification units at the air handling units and use of sterilizers where the energy input for sterilization would be at the point of use. Estimating overall savings through removing the plant manning requirement was beyond the scope of a cooling study. However, in addition to the considerable utility savings identified for Options #3a through 3d, inclusive, there would likely be considerable savings from eliminating the requirement for a manned plant.

Table 3. Calculated payback and savings-to-investment ratios for options.

Option	Payback (years)	SIR	Total Investment	Recommendation
3a	1.01	9.29	\$269,507	implement
3b	1.21	6.61	\$536,817	implement
3c	1.49	5.83	\$538,392	
3d	1.43	5.44	\$934,974	
2c	1.65	5.96	\$476,529	
2d	1.75	4.96	\$639,087	
2b	2.51	2.77	\$235,412	
2a	2.87	2.32	\$196,252	
1	9.35	1.32	\$290,974	do not implement

8 Conclusions and Recommendations

The medical facility at Davis-Monthan AFB can realize considerable utility cost savings by implementing any of several options analyzed in this study. It is likely such savings can be replicated at other DOD medical facilities where there are year-round air conditioning requirements, large thermal energy requirements, and utility rates where the unit cost of purchased electricity is high compared to that of natural gas.

Based on these results, this study recommends the projects be prioritized for implementation, from most to least highly recommended, as follows:

- 1. Option 3a: Two natural gas-fired Caterpillar G-3516 (820 kW) engine-generator sets, waste heat used to provide steam for a 100 ton single-effect indirect-fired absorption water chiller to meet facility base cooling load (100 tons) with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only). This option is recommended for implementation.
- 2. Option 3b: Four natural gas-fired Caterpillar G-3516 (820 kW) engine-generator sets, waste heat used to provide steam for a 100 ton double-effect indirect-fired absorption water chiller to meet facility base cooling load (100 tons) with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only). This option is recommended for implementation.
- 3. Option 3c: Three natural gas-fired Caterpillar G-3516 (820 kW) engine-generator sets, waste heat used to provide steam for 250 ton single-effect indirect-fired absorption water chiller to replace existing 250-ton motor-driven centrifugal chiller, with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only).
- 4. Option 3d: Six natural gas-fired Caterpillar G-3516 (820 kW) engine-generator sets, waste heat used to provide steam for a 250 ton double-effect indirect-fired absorption water chiller to replace existing 250-ton motor-driven centrifugal chiller, with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only).

- 5. Option 2c: Two natural gas-fired Caterpillar G-3516 (820 kW) enginegenerator sets, waste heat used to provide steam for a 250 ton single-effect indirect-fired absorption water chiller to replace existing 250-ton motordriven centrifugal chiller, with residual heat used for thermal requirements.
- 6. Option 2d: Three natural gas-fired Caterpillar G-3516 (820 kW) enginegenerator sets, waste heat used to provide steam for a 250 ton double-effect indirect-fired absorption water chiller to replace existing 250-ton motordriven centrifugal chiller, with residual heat used for thermal requirements.
- 7. Option 2b: One natural gas-fired Caterpillar G-3516 (820 kW) engine-generator set, waste heat used to provide steam for a 100 ton double-effect indirect-fired absorption water chiller to meet facility base cooling load (100 tons) with residual heat used for thermal requirements.
- 8. Option 2a: One natural gas-fired Caterpillar G-3512 (600 kW) enginegenerator set, waste heat used to provide steam for a 100 ton single-effect indirect-fired absorption water chiller to meet facility base cooling load (100 tons) with residual heat used for thermal requirement.
- 9. Option 1: A 250 ton natural gas engine-driven chiller to replace existing 250-ton motor-driven centrifugal chiller, with waste heat used to offset facility thermal requirements. Note that this option is not recommended for implementation.

USACERL TR 99/24

Appendix A: Notes Regarding Interviews and Discussions for Chiller Study at Davis-Monthan AFB

SSgt Rinn, TSgt Farmer, Central Plant Operators -

- A. As of 1 Apr 97, the foregoing operators have been on temporary assignment pending award of a contract for private sector O&M for the hospital, including the central plant. The operators provided chilled water logs for the previous year (to be returned to Steve Weleck). They also furnished monthly boiler logs for the months (Jan Jun 97, logs to be returned to Weleck) and referred us to Lt. Doolittle for the balance of the previous year's monthly boiler logs. Lt. Doolittle furnished CERL with monthly logs from Jan 94 Sep 95. In an attempt to determine peak plant thermal load, CERL went back to boiler log data for Feb 94 (records to be returned to Weleck).
- B. Upon initial arrival, CERL was appraised that a cogeneration study had already been completed, Dec 95, with design drawings based on the study results also provided. The study and drawings were loaned to CERL for review, and CERL will return same to Weleck. While meeting with Weleck, CERL learned that two significant projects are planned for the hospital, a 6,000 SF addition and a follow-on 30,000 SF addition (both projects discussed in greater detail below). Additionally, Weleck furnished a document "FY88 MCP ECIP Facility Energy Improvements" for CERL's perusal to see if it might contain helpful information. Mr. Weleck also provided utility rate schedules and sample billings.
- C. SSgt Rinn and TSgt Farmer retrieved plant drawings on file for CERL's review, particularly drawings containing schedules for space heating and domestic hot water equipment. Inquiry verified there is no separate metering of steam usage – some is used for space heating, some for domestic hot water production, and the remainder is direct steam usage. Therefore, the schedule sheets were used with other

input to determine the relative uses for the steam produced. Of prime concern was the amount of steam used directly for various applications (dining facility, humidification, and medical sterilizers). The requirement for high pressure steam (> 15 psig [the plant operates at 50 psig]) drives the requirement for 24-hour manning of the plant.

D. Lt. Chicotah, facility manager at the hospital, was contacted by phone in an attempt to find out about future projects planned for the hospital. She Faxed a Preliminary Statement of Work for design of a FY00 30,000 SF addition (Ambulatory Health Care Center) to the existing medical facility. This is in addition to the 6,000 SF Aerospace Medicine Clinic programmed for FY98. Neither this document nor the DD Form 1391 or the Requirements and Management Plan (the latter two provided by SMSgt Mortenson) provided insight as to the mechanical equipment that is anticipated for use in heating and cooling either the planned 6,000 SF addition or the 30,000 SF addition. In a final attempt to get this information, CERL called Horace Hopper of AFCEE. The information Hopper currently has basically leaves the issue of the mechanical equipment to be used for the facility additions at the discretion of the designer. At this time, per Mr. Hopper, the designer has not been selected (contrary to information provided by Lt. Chicotah who indicated an A-E contract is to be awarded by the end of July 97). Numerous references were made to a Capt Reinhardt in San Francisco as the prime source of information regarding future plans for the hospital. Attempts to reach Reinhardt to date have been unsuccessful; however, CERL's plan is to use his information to resolve any conflicting or missing information. Mr. Ken Domako indicated he would attempt to resolve the issue of future requirements for direct steam use. He also indicated his estimate that domestic hot water usage at this time has been reduced significantly from what was the original basis of design, and that future requirements will likely be only about half that of the original basis of design. This is due to removal of the dining facility and elimination of showers for patients. Mr. Domako stated that the two planned hospital projects will be undertaken.

Approach

- A. Contact Capt Reinhardt regarding future hospital requirements.
- B. Compute heating loads (process steam, space heating, and domestic hot water).
- C. Plot cooling load profiles.
- D. Consider the following options:
 - 1. gas fired dual-effect absorption unit
 - 2. gas engine-driven chiller
 - 3. cogen system made up of a generator and indirect fired absorption unit
- E. Analyze data and produce report.

Determination of Heating Loads

A. The existing boilers in the hospital central plant are greatly oversized. They are products of Nebraska Boiler, each rated at 7.5 million British Thermal Units per hour (MBH) with a mass flow of 7,000 pounds per hour (#/hr) of 50 pounds per square inch gauge (psig) saturated steam. Examination of the boiler logs available indicated that the maximum boiler load experienced over the last 5 years (on 4 Feb 94) was 3,500 #/hr, which translates into a heating load of

 $3,500 \text{ #/hr} \times 7,500,000 \text{ Btu/}7,000 \text{ #/hr} = 3,750,000 \text{ Btu/hr}$

This indicates a peak load of only 25 percent of the existing plant boiler capacity (3.75 MBH/[2 x 7.5 MBH]). Most of the time, the load is significantly less. The load will decrease even more due to the factors described in the following paragraphs.

B. Domestic Hot Water Loads

Mr. Domako indicated that hospital care is going to be limited basically to outpatient care, including outpatient surgery. Showers for patients will be significantly reduced compared to that anticipated when the plant was constructed. Mr. Domako's estimate of the reduction is 50 percent. There are currently two domestic hot water generators in the plant, the original design intent being that either

one could provide 100 percent redundancy. The schedule on the design drawings indicates the generators are capable of heating 640 gal of water from 60 to 120 °F in 1 hour. The design also provided for what appears to be a booster heater to heat the water initially from 60 to 90 °F, with the 90 °F water then heated to 120 °F by the hot water generators. Since the heating from the booster actually supplants (although it also accelerates) the heating that would otherwise be required by the domestic hot water generators (increasing the domestic hot water temperature from 60 to 90 °F), only the full capacity of the hot water generators need be calculated, which is

640 gal/hour x 8.34 lb/gal x 1 Btu/lb °F x (120-60) °F

= 320,256 Btu/hr

Assuming a 50 percent reduction in load, the estimated domestic hot water heating requirement would be 320,256 Btu/hr/2 = 160,128 Btu/hr.

C. Space Preheating, Heating, and Reheating Loads

Drawings that contained schedules indicating the required capacities for preheat, heating, and reheat coils were reviewed. Rather than add these all up and then assume some diversity factor, the schedule for the converters was checked. Based on those schedules, the design heating water requirement was determined from

Converter #1: 500 x 13,400 gal/hr/60 min/hr x (150-128) °F

= 2,456,667 Btu/hr

where operators indicated that the temperature of the supply hot water is 150 °F and the return is typically the 128 °F indicated.

Converter #2: 500 x 4,570 gal/hr/60 min/hr x (150-128) °F

= 837,333 Btu/hr

Since both converters operate simultaneously, the capacities are summed to produce a joint capacity of (2,456,667 + 837,333) Btu/hr = 3,294,500 Btu/hr.

USACERL TR 99/24

D. Process Steam Loads

Boiler plant steam is used directly for a number of purposes/applications: sterilization, dining hall requirements, and humidification. Unfortunately, this steam (nor the domestic hot water or heating water used for space conditioning) has been metered. Therefore, the quantity of steam used directly (as opposed to heat exchange within the plant to produce domestic hot water and heating water for space conditioning) was calculated by subtracting the quantities in subparagraphs b) and c) from the peak steam load identified in subparagraph a). The quantity was calculated as:

3,750,000 Btu/hr - 160,171 Btu/hr - 3,294,500 Btu/hr = 295,329 Btu/hr

Based on discussions with Mr. Domako and TSgt Mortenson, the dining hall will be eliminated and the space used for an alternative function. This will eliminate a portion of the present direct steam usage. Additionally, discussion with plant operators indicated that in a number of instances, steam from the plant is not being used for sterilization. Rather, portable units are being used for sterilization. Mr. Domako expects use of this type of sterilization to be expanded. He indicated he will check with medical personnel to try to ascertain future steam requirements.

Appendix B: Equipment Selections and Capitol Costs

August 12, 1997 Budget #2917 Page 1 of 2

BUDGET COST FOR
U.S. ARMY CONSTRUCTION ENGINEERING
RESEARCH LABORATORIES

A 1	1,714,300 BTU/HR required at 15 PSIG.	
Option #Za	One Caterpillar G3512, 600 KWe, 2,091,660 BTU/HR:	\$ 54,560.00
	One Waukesha VHP-2900GSI, 425 KWe, 2,201,942 BTU/HR: Feedwater unit adds:	\$ 53,780.00 \$ 13,560.00
REF 2B:	4,507,750 BTU/HR required at 15 PSIG.	
Option # 2C	Two Caterpillar G-3516, 820 KWe, 2,886,660 BTU/HR/Engine: Two Waukesha VHP-2900GSI, 425 KWe, 2,201,942 BTU/HR/Engine: Feedwater unit adds:	\$108,480.00 \$101,240.00 \$ 19,340.00
ner ac.	1,000,000 BTU/HR required at 115 PSIG.	
REF 2C: Option #2b	One Caterpillar G-3516, 820 KWe, 1,010,000	\$ 80,660.00
	One Waukesha VHP-3600GSI, 550 KWe, 1,063,000 BTU/HR: Feedwater unit adds:	\$ 68,620.00 \$ 18,540.00
REF 2D:	2,500,000 BTU/HR required at 115 PSIG.	
Option #2d	Three Caterpillar G-3516, 820 KWe, 1,010,000 BTU/HR/Engine: Two Waukesha 7100GSI, 1100 KWe, 2,212,000 BTU/HR/Engine: Feedwater unit adds:	\$232,920.00 \$183,500.00 \$ 23,920.00

The 15 PSIG systems include the heat recovery unit, back pressure control valve, excess steam control valve and excess steam condenser.

The 115 PSIG systems include the heat recovery unit, back pressure control valve and external by-pass tee.

August 12, 1997 Budget #2917 Page 2 of 2

BUDGET COST FOR U.S. ARMY CONSTRUCTION ENGINEERING RESEARCH LABORATORIES

	4,739,300 BTU/HR required at 15 PSIG.	
Option #3a	Two Caterpillar G351 6. 820 KWe, 2,886,660 BTU/HR/Engine: Two Waukesha VHP-7100GSI, 1100 KWe, 5,487,129 BTU/HR/Engine: Feedwater unit adds:	\$106,920.00 \$ 76,940.00 \$ 19,340.00
	7,532,750 BTU/HR required at-15 PSIG.	
Option #3c	Three Caterpillar G-3516, 820 KWe, 2,886,660 BTU/HR/Engine: Two Waukesha VHP-5900GSI, 900 KWe, 4,352,552 BTU/HR/Engine: Feedwater unit adds:	\$154,080.00 \$100,100.00 \$ 22,840.00
	4,025,000 BTU/HR required at 115 PSIG.	
Option #3b	Four Caterpillar G-3516, 820 KWe, 1,010,000 BTU/HR: Two Waukesha VHP-7100GSI, 1100 KWe, 2,212,000 BTU/HR: Feedwater unit adds:	\$312,620.00 \$183,820.00 \$ 25,800.00
	5,525,000 BTU/HR required at 115 PSIG.	
Option #3d	Six Caterpillar G-3516, 820 KWe, 1,010,000 BTU/HR/Engine: Two Waukesha VHP-9500GSI, 1475 KWe, 3,058,312 BTU/HR/Engine: Feedwater unit adds:	\$461,220.00 \$224,660.00 \$ 30,460.00

The 15 PSIG systems include the heat recovery unit, back pressure control valve, excess steam control valve and excess steam condenser.

The 115 PSIG systems include the heat recovery unit, back pressure control valve and external by-pass tee.

ENGINEERING CONTROLS, INC. SAINT LOUIS, MISSOURI

13 Aug 97 phone discussion with Terry Hurley, Engineering Controls, St. Louis, MO

Mr. Hurley provided the following natural gas flow rates for the Caterpillar engines, as follows:

3512 TA, 600 KWe ----- 100,431 Btu/minute 3516 TA 90, 820 KWe ---- 132,221 Btu/minute Appendix C: Recent Electric Bills for Davis-Monthan AFB

TUCSON ELECTRIC POWER COMPANY P. O. Box 711 . Tucson, Arizona 85702

Dear Customer.

At your request, we submit our Large Light and Power Rate No. 14 showing current adjustments:

LARGE LIGHT AND POWER RATE NO. 14

LARGE LIGHT AND POWER	Billing Mc	onths
	Summer Mav-Oct.	Winter NovAor.
DEMAND CHARGE: Per kW of Billing Demand per month	\$10.28	S10.28
ENERGY CHARGE: All kWh per month @	4.7457¢	4.5084\$

BILLING DEMAND:

The Billing Demand shall be specified in the contract, but shall not be less than 3,000 kW.

POWER FACTOR ADJUSTMENT: The above rate is subject to a discount or a charge of 1.3¢ per kW of billing demand for each 1% the average monthly power factor is above or below 90% lagging to a maximum discount of 13.0¢ per kW of billing demand per month.

By law, the following tax and assessment percentages are applied where appropriate to calculations on the above rates:

FRANCHISE TAX: (Tucson, South Tucson)

CITY SALES TAX: (Tucson, South Tucson, Marana)

STATE SALES TAX: (Applicable to all sales)

ARIZONA CORPORATION COMMISSION ASSESSMENT: (Applicable to all sales)

RESIDENTIAL UTILITY CONSUMER ASSESSMENT: (Residential Customers Only)

20%

2.0% (Tucson); 2.5% (South Tucson); and 4.0% (Marana) (also , applied to Arizona Corporation Commission Assessment and Residential Utility Consumer Assessment amounts)

5.0% (also applied to City Franchise Tax amount and Arizona Corporation Commission Assessment and Residential Utility Consumer Assessment amounts)

.14% (also applied to City Franchise Tax amount, City Sales Tax amount and State Sales Tax amount)

.05% (also applied to City Franchise Tax amount, City Sales Tax amount and State Sales Tax amount)

Very truly yours,

TUCSON ELECTRIC POWER COMPANY

Effective August 1996 Billings (Change due to revision of ACC and RUCO Assessments) ACCOUNT 2325-2001-1 CONTRACT NO. FO2601-79-DO023

DATE OF BILL: June 26, 1997 DATE DELINQUENT: July 10, 1997

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE MAY 27, 1997 TO JUNE 24, 1997

DEMAND CHARGE

18,099 KW

@

\$10.28 PER KW

\$186,057.72

18,099.1 KW ACTUAL DEMAND

9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7, 1987

12,542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS

18,805 KW -AUGUST 1996

18,099 KW BILLING DEMAND

ENERGY CHARGE

7,962,400 KWH

0.047457

KWH

\$377,871.52

POWER FACTOR ADJUSTMENT

93.96

-90.00

3 06

3.96 -0.05148 X 0.013 X 18,099 = -0.05148

18,099 KW BILLING DEMAND

(\$931.74)

SUBTOTAL

SUBTOTAL HOSPITAL EXEMPTION

(STATE SALES TAX ON 92% OF TOTAL)

\$517,957.79

ARIZONA CORPORATION COMMISSION ASSESSMENT

STATE SALES TAX

\$827.61

\$25,934.15

\$562,997.60

TOTAL AMOUNT DUE

\$589,759.36

ACCOUNT 2325-2001-1 CONTRACT NO. FO26O1-79-DOO23

DATE OF BILL: May 29, 1997 DATE DELINQUENT: June 11, 1997

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE APRIL 25, 1997 TO MAY 27, 1997

DEMAND CHARGE

17,026 KW

\$10.28

PER KW

\$175,027.28

17,025.0 KW ACTUAL DEMAND

9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7, 1987

12,542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST 18,805 KW -AUGUST 1996

ELEVEN (11) MONTHS 17,026 KW BILLING DEMAND

ENERGY CHARGE

8,119,360 KWH

0.047457

KWH

\$385,320.47

POWER FACTOR ADJUSTMENT

94.83

-90.00

4.83 X -0.06279

0.013 -0.0627917,026 KW BILLING DEMAND

(\$1,069.06)

SUBTOTAL

\$559,278.69

ARIZONA CORPORATION COMMISSION ASSESSMENT

STATE SALES TAX

\$822.14 \$28,003.08

CURRENT AMOUNT DUE PREVIOUS BALANCE

\$588,103.91 ·\$457,844.38

TOTAL AMOUNT DUE

\$1,045,948.29

COUNT 25-2001-1 ONTRACT NO. 2601-79-DO023

DATE OF BILL: April 30, 1997 DATE DELINQUENT: May 13, 1997

TUCSON ELECTRIC POWER COMPANY **SERVICES RENDERED**

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE MARCH 24, 1997 TO APRIL 25, 1997

EMAND CHARGE

14,142 KW

\$10.28

PER KW

\$145,379.76

14,141.7 KW ACTUAL DEMAND 9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND) EFFECTIVE APRIL 7, 1987

12,542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST 18,805 KW -AUGUST 1996 ELEVEN (11) MONTHS 14,142 KW BILLING DEMAND

VERGY CHARGE

6,447,240 KWH

@ 0.045084

PER KWH

\$290,667.37

OWER FACTOR ADJUSTMENT

-0.0455

93.50 -90.00 3,50 X

X

3.50 = 0:013

-0.0455 14,142 KW BILLING DEMAND

(\$643.46)

JBTOTAL

\$435,403.67

RIZONA CORPORATION COMMISSION ASSESSMENT

TATE SALES TAX

\$640.05 \$21,800.66

URRENT AMOUNT DUE REVIOUS BALANCE

STAL AMOUNT DUE

\$457,844.38

\$457,844.38

ACCOUNT 2325-2001-1 CONTRACT NO. FO2601-79-DO023 DATE OF BILL: March 26, 1997 DATE DELINQUENT: April 8, 1997

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE FEBRUARY 25, 1997 TO MARCH 24, 1997

DEMAND CHARGE

12,613 KW

@

\$10.28

PER KW

\$129,661.64

12,612.9 KW ACTUAL DEMAND

9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7, 1987

12,542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS

18,805 KW -AUGUST 1996

12.613 KW BILLING DEMAND

ENERGY CHARGE

5,321,080 KWH

0.045084

5084 PER KWH

\$239,895.57

POWER FACTOR ADJUSTMENT

91.14 -90.00

X X

0.013 = -0.01482

1.14 -0.01482

12,613 KW BILLING DEMAND

(\$186.92)

SUBTOTAL

\$369,370.29

ARIZONA CORPORATION COMMISSION ASSESSMENT

STATE SALES TAX

\$542.98

\$18,494.37

CURRENT AMOUNT DUE

PREVIOUS BALANCE

\$388,407.64 \$4,553.58

TOTAL AMOUNT DUE

\$392,961.22

ACCOUNT 2325-2001-1 CONTRACT NO. =02601-79-D0023 ·

DATE OF BILL: February 27, 1997 DATE DELINQUENT: March 12, 1997

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE JANUARY 24, 1997 TO FEBRUARY 25, 1997

DEMAND CHARGE

12,543 KW

@

\$10.28

PER KW

\$128,942.04

10.696.2 KW ACTUAL DEMAND

9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7, 1987

12,542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

. ELEVEN (11) MONTHS .

18,805 KW -AUGUST 1996

12,543 KW BILLING DEMAND

ENERGY CHARGE

5,953,040 KWH

0.045084

PER KWH

\$268,386.86

POWER FACTOR ADJUSTMENT

91.68

-0.02184

-90.00

1.68

1.68 ٠X X

0.013 12,543 KW BILLING DEMAND

-0.02184

(\$273.94)

SUBTOTAL

\$397.054.96

ARIZONA CORPORATION COMMISSION ASSESSMENT STATE SALES TAX

\$583.67

\$19,880.54

TOTAL AMOUNT DUE

\$417,519.17

ACCOUNT 2325-2001-1 CONTRACT NO. F02601-79-D0023

DATE OF BILL: January 28, 1997 DATE DELINQUENT: February 10, 1997

TUCSON ELECTRIC POWER COMPANY **SERVICES RENDERED**

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE DECEMBER 26, 1996 TO JANUARY 24, 1997

DEMAND CHARGE

12,543 KW

\$10.28

PER KW

\$128,942.04

11,141.3 KW ACTUAL DEMAND

9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7, 1987

12,542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS

18,805 KW -AUGUST 1996

12,543 KW BILLING DEMAND

ENERGY CHARGE

5,313,640 KWH

0.045084

PER KWH

\$239,560.15

POWER FACTOR ADJUSTMENT

. 91.86

-90.00

1.86 -0.02418

-0.02418 0.013 12,543 KW BILLING DEMAND

(\$303.29

SUBTOTAL

\$368,198.90

ARIZONA CORPORATION COMMISSION ASSESSMENT

STATE SALES TAX

\$541.25

\$18,435.72

TOTAL CURRENT AMOUNT

\$387,175.87

ARREARS AMOUNT

TOTAL AMOUNT DUE

\$403,754.44

\$790,930.31

ACCOUNT . . 2325-2001-1 . CONTRACT NO. FO2601-79-DO023

DATE OF BILL: December 30, 1996 DATE DELINQUENT: January 10, 1997

TUCSON ELECTRIC POWER COMPANY **SERVICES RENDERED**

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE

NOVEMBER 25, 1996 TO DECEMBER 26, 1996

DEMAND CHARGE

12,543 KW

PER KW

\$128,942.04

10,787.2 KW ACTUAL DEMAND -

9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND) **EFFECTIVE APRIL 7, 1987**

12,542.9 KW 68.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

18,805 KW -AUGUST 1996

ELEVEN (11) MONTHS 12,543 KW BILLING DEMAND

\$10.28

ENERGY CHARGE

5,662,800 KWH

0.045084

PER KWH

\$255,301.68

POWER FACTOR ADJUSTMENT

91.71 1.71

-0.02223

-90.00 X 0.013

х

1.71

-0.02223 12,543 KW BILLING DEMAND

(\$278.83)

SUBTOTAL

\$383,964,89

ARIZONA CORPORATION COMMISSION ASSESSMENT

STATE SALES TAX

\$564.43

\$19,225.12

TOTAL CURRENT AMOUNT

\$403,754.44

ARREARS AMOUNT

TOTAL AMOUNT DUE

\$417,054.18 \$820,808.62

Page 1

ACCOUNT 2325-2001-1 CONTRACT NO. F02601-79-D0023

DATE OF BILL: November 27, 1996 DATE DELINQUENT: December 12, 1996

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE OCTOBER 24, 1996 TO NOVEMBER 25, 1996

DEMAND CHARGE

12,543 KW

@

\$10.28

PER KW

\$128,942.04

11,605.7 KW ACTUAL DEMAND

9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7, 1987

12,542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS

18,805 KW --AUGUST 1996

12,543 KW BILLING DEMAND

ENERGY CHARGE

5,963,160 KWH

0.045084

PER KWH

\$268,843.11

POWER FACTOR ADJUSTMENT -80.00

97.19

7.19

х 7.19 -0.09347 X

-0.09347 0.013 12,543 KW BILLING DEMAND

(\$1,172.39)

SUBTOTAL

\$396,612.76

ARIZONA CORPORATION COMMISSION ASSESSMENT

STATE SALES TAX

\$583.02 \$19,858.40

TOTAL CURRENT AMOUNT

ARREARS AMOUNT TOTAL AMOUNT DUE \$417,054.18

\$534,627.34

\$951,681.52

ACCOUNT 2325-2001-1 CONTRACT NO. FO26O1-79-DOO23

DATE OF BILL: October 28, 1996 DATE DELINQUENT: November 8, 1996

TUCSON ELECTRIC POWER COMPANY **SERVICES RENDERED**

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE SEPTEMBER 25, 1996 TO OCTOBER 24, 1996 .

DEMAND CHARGE

16,947 KW

\$10.28

PER KW

\$174,215.16

16,947.4 KW ACTUAL DEMAND

9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7, 1987

12,542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS

18,805 KW -AUGUST 1996

16,947.0 KW BILLING DEMAND

0.013

ENERGY CHARGE

7,065,360 KWH

0.047457

PER KWH

\$335,300.79

POWER FACTOR ADJUSTMENT 4.96

-0.06448

-90.00 94.96

-0.06448 16,947 KW BILLING DEMAND

(\$1,092.74)

SUBTOTAL

\$508,423.21

ARIZONA CORPORATION COMMISSION ASSESSMENT STATE SALES TAX

\$747.38 \$25,456,75

TOTAL CURRENT AMOUNT

\$534,627.34

ARREARS AMOUNT

TOTAL AMOUNT DUE

\$589,803.27

\$1,124,430.61

ACCOUNT 2325-2001-1 CONTRACT NO. FO2601-79-DO023

DATE OF BILL: August 28, 1996 DATE DELINQUENT: September 11, 1996

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE JULY 25, 1996 TO AUGUST 26, 1996

DEMAND CHARGE

18,805 KW

\$10.28

PER KW

\$193,315.40

18,804.7 KW ACTUAL DEMAND

9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7, 1987

12,560.3 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

LF - 7/5 /18.831 KW —SEPTEMBER 1995 ELEVEN (11) MONTHS

18,805.0 KW BILLING DEMAND

ENERGY CHARGE

9,816,480 KWH

0.047457

PER KWH

\$465,860.69

POWER FACTOR ADJUSTMENT

-0.03536

92.72 -90.00 2.72

0.013

-0.03536 18,805 KW BILLING DEMAND

(\$664.94)

SUBTOTAL

ARIZONA CORPORATION COMMISSION ASSESSMENT STATE SALES TAX

TOTAL CURRENT AMOUNT

ARREARS AMOUNT TOTAL AMOUNT DUE \$658,511.15

\$968.02

\$692,450.83

\$32,971.66

\$661,960.08 \$1,354,410.91

Page 1

ACCOUNT 2325-2001-1 CONTRACT NO. FO2601-79-DO023 DATE OF BILL: July 29, 1996 DATE DELINQUENT: August 9, 1996

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED .

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE JUNE 25, 1996 TO JULY 25, 1996

DEMAND CHARGE

18,659 KW

@

PER KW

\$191,814.5:

18,659.4 KW ACTUAL DEMAND 9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND) EFFECTIVE APRIL 7, 1987

13,278.0 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST ELEVEN (11) MONTHS 19,907 KW —AUGUST 1995

18,659.0 KW BILLING DEMAND

\$10.28

ENERGY CHARGE

9,237,720 KWH

0.047457

PER KWH

\$438,394.4

POWER FACTOR ADJUSTMENT

92.59

-90.00 =

2.59

2.59 X 0.013 = -0.03367 -0.03367 X 18,659 KW BILLING DEMAND

(\$628.2

SUBTOTAL

\$629,580.7

ARIZONA CORPORATION COMMISSION ASSESSMENT

STATE SALES TAX

\$859.3

\$31,519.9

TOTAL CURRENT AMOUNT

\$661,960.0

ARREARS AMOUNT TOTAL AMOUNT DUE

S647,774.9

\$1,309,734.9

ACCOUNT 2325-2001-1 CONTRACT NO. F02601-79-D0023

DATE OF BILL: June 27, 1996 DATE DELINQUENT: July 11, 1996

TUCSON ELECTRIC POWER COMPANY **SERVICES RENDERED**

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE

MAY 24, 1996 TO JUNE 25, 1996

DEMAND CHARGE

18,344 KW

\$10.28

PER KW

\$188,576.32

18,344.0 KW ACTUAL DEMAND

9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7, 1987

13,278.0 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS

0.013

18,344

19,907 KW -AUGUST 1995

18,344.0 KW BILLING DEMAND

ENERGY CHARGE

9,024,360 KWH

0.047457 @

PER KWH

\$428,269.05

***OWER FACTOR ADJUSTMENT**

93.17

-90.00

3.17

3.17 -0.04121

Х X

-0.04121 KW BILLING DEMAND

(\$755.96)

UBTOTAL

\$616,089.41

RIZONA CORPORATION COMMISSION ASSESSMENT

TATE SALES TAX

\$840.97

\$30.844.52

OTAL CURRENT AMOUNT

\$647,774.90

RREARS AMOUNT

STAL AMOUNT DUE

\$575,399.82 \$1,223,174.72

Appendix D: Spreadsheet Calculation Based on Option #2a

Historic

With Engine Generator
Operating 3 of 6 Months (Summer)

Operating 3 of 6 Months (Winter)

			Thursday of the		
Month	Billing Demand	Actual Demand	Month	Billing Demand	Actual Demand
JUL 96 (S)	18,659	18,659	+JUL 98 (S)	18,104	18,104
AUG 96(S)	18,805	18,805	+AUG 98 (S)	18,250	18,250
*SEP 96(S)	17,876	17,876	++SEP 98 (S)	17,876	17,876
OCT 96 (S)	16,947	16,947	+OCT 98 (S)	16,392	16,392
NOV 96(W)	12,543	11,606	++NOV 98 (W)	12,173	11,606
DEC 96(W)	12,543	10,787	+DEC 98 (W)	12,173	10,232
JAN 97 (W)	12,543	11,141	++JAN 99 (W)	12,173	11,141
FEB 97 (W)	12,543	10,696	+FEB 99 (W)	12,173	10,141
MAR 97(W)	12,613	12,613	++MAR 99 (W)	12,613	12,613
APR 97 (W)	14,142	14,142	+APR 99 (W)	13,587	13,587
MAY 97 (S)	17,026	17,026	++MAY 99 (S)	17,026	17,026
JUN 97 (S)	18,099	18,099	++JUN 99 (S)	18,099	18,099

SAVINGS		RECAP FOR SEASON
JUL	555 kW	Summer:
AUG	555 kW	3 months @ 555 kW reduction each
SEP	0 kW	3 months @ 0 kW reduction each
OCT	555 kW	Winter:
NOV	370 kW	4 months @ 370 kW reduction each
DEC	370 kW	1 month @ 555 kW reduction each
JAN	370 kW	1 month @ 0 kW reduction each
FEB	370 kW	
MAR	0 kW	
APR	555 kW	
MAY	0 kW	
JUN	0 kW	

[&]quot;*" indicates data that has been averaged between the month preceding and that following.

[&]quot;+" symbol indicates a month in which the engine-generator operated continuously,

[&]quot;++" indicates a month when it did not.

⁽S) denotes a Summer month, while (W) denotes a Winter month.

Appendix E: Spreadsheet Calculation Based on Option #2b

Historic

With Engine Generator

Operating 3 of 6 Months (Summer)
Operating 3 of 6 Months (Winter)

Month	Billing	Actual	Month	Billing	Actual
	Demand	Demand		Demand	Demand
JUL 96 (S)	18,659	18,659	+JUL 98 (S)	17,900	17,900
AUG 96(S)	18,805	18,805	+AUG 98 (S)	18,046	18,046
*SEP 96(S)	17,876	17,876	++SEP 98 (S)	17,876	17,876
OCT 96 (S)	16,947	16,947	+OCT 98 (S)	16,188	16,188
NOV 96(W)	12,543	11,606	++NOV 98 (W)	12,037	11,606
DEC 96(W)	12,543	10,787	+DEC 98 (W)	12,037	10,028
JAN 97 (W)	12,543	11,141	++JAN 99 (W)	12,037	11,141
FEB 97 (W)	12,543	10,696	+FEB 99 (W)	12,037	9,937
MAR 97(W)	12,613	12,613	++MAR 99 (W)	12,613	12,613
APR 97 (W)	14,142	14,142	+APR 99 (W)	13,383	13,383
MAY 97 (S)	17,026	17,026	++MAY 99 (S)	17,026	17,026
JUN 97 (S)	18,099	18,099	++JUN 99 (S)	18,099	18,099

SAVINGS		RECAP FOR SEASON
JUL	759 kW	Summer:
AUG	759 kW	3 months @ 759 kW reduction each
SEP	0 kW	3 months @ 0 kW reduction each
OCT	759 kW	Winter:
NOV	506 kW	4 months @ 506 kW reduction each
DEC	506 kW	1 month @ 759 kW reduction each
JAN	506 kW	1 month @ 0 kW reduction each
FEB	506 kW	
MAR	0 kW	
APR	759 kW	
MAY	0 kW	
JUN	0 kW	

indicates data that has been averaged between the month preceding and that following.

[&]quot;+" symbol indicates a month in which the engine-generator operated continuously,

[&]quot;++" indicates a month when it did not.

⁽S) denotes a Summer month,

⁽W) denotes a Winter month.

⁽⁾⁻number within = #units operating continuously for that month

Appendix F: Spreadsheet Calculation Based on Options #2c and 3a

Historic With Engine Generator

Month Billing Actual Month Billing

Month	Billing Demand	Actual Demand	Month	Billing Demand	Actual Demand
JUL 96 (S)	18,659	18,659	JUL 98 (S)	17,141	17,141 (2)
AUG 96(S)	18,805	18,805	AUG 98 (S)	17,287	17,287 (2)
*SEP 96(S)	17,876	17,876	SEP 98 (S)	17,117	17,117 (1)
OCT 96 (S)	16,947	16,947	OCT 98 (S)	15,429	15,429 (2)
NOV 96(W)	12,543	11,606	NOV 98 (W)	11,530	10,847 (1)
DEC 96(W)	12,543	10,787	DEC 98 (W)	11,530	9,269 (2)
JAN 97 (W)	12,543	11,141	JAN 99 (W)	11,530	10,382 (1)
FEB 97 (W)	12,543	10,696	FEB 99 (W)	11,530	9,178 (2)
MAR 97(W)	12,613	12,613	MAR 99 (W)	11,854	11,854 (1)
APR 97 (W)	14,142	14,142	APR 99 (W)	12,624	12,624 (2)
MAY 97 (S)	17,026	17,026	MAY 99 (S)	16,267	16,267 (1)
JUN 97 (S)	18,099	18,099	JUN 99 (S)	17,340	17,340 (1)

SAVINGS		RECAP FOR SEASON
JUL	1,518 kW	Summer:
AUG	1,518 kW	3 months @ 1,518 kW reduction each
SEP	759 kW	3 months @ 759 kW reduction each
OCT	1,518 kW	Winter:
NOV	1,013 kW	4 months @ 1,013 kW reduction each
DEC	1,013 kW	1 month @ 759 kW reduction each
JAN	1,013 kW	1 month @ 1,518 kW reduction each
FEB	1,013 kW	
MAR	759 kW	
APR	1,518 kW	
MAY	759 kW	
JUN	759 kW	

- "*" indicates data that's been averaged between the month preceding and that following.
- (S) denotes a Summer month
- (W) denotes a Winter month
- ()-number within = #units operating continuously for that month

Appendix G: Spreadsheet Calculation Based on Options #2d and 3c

Historic With Engine Generator

111310110	ISION THE ENGINE CONSTANT				
Month	Billing Demand	Actual Demand	Month	Billing Demand	Actual Demand
JUL 96 (S)	18,659	18,659	JUL 98 (S)	16,382	16,382 (3)
AUG 96(S)	18,805	18,805	AUG 98 (S)	16,528	16,528 (3)
*SEP 96(S)	17,876	17,876	SEP 98 (S)	16,358	16,358 (2)
OCT 96 (S)	16,947	16,947	OCT 98 (S)	15,429	15,429 (2)
NOV 96(W)	12,543	11,606	NOV 98 (W)	11,024	9,329 (3)
DEC 96(W)	12,543	10,787	DEC 98 (W)	11,024	9,269 (2)
JAN 97 (W)	12,543	11,141	JAN 99 (W)	11,024	9,623 (2)
FEB 97 (W)	12,543	10,696	FEB 99 (W)	11,024	9,178 (2)
MAR 97(W)	12,613	12,613	MAR 99 (W)	11,095	11,095 (2)
APR 97 (W)	14,142	14,142	APR 99 (W)	11,865	11,865 (3)
MAY 97 (S)	17,026	17,026	MAY 99 (S)	15,508	15,508 (2)
JUN 97 (S)	18,099	18,099	JUN 99 (S)	16,581	16,581 (2)

SAVINGS		RECAP FOR SEASON
JUL	2,277 kW	Summer:
AUG	2,277 kW	4 months @ 1,518 kW reduction each
SEP	1,518 kW	2 months @ 2,277 kW reduction each
OCT	1,518 kW	Winter:
NOV	1,519 kW	4 months @ 1,519 kW reduction each
DEC	1,519 kW	1 month @ 2,277 kW reduction each
JAN	1,519 kW	1 month @ 1,518 kW reduction each
FEB	1,519 kW	
MAR	1,518 kW	
APR	2,277 kW	
MAY	1,518 kW	
JUN	1,518 kW	

indicates data that has been averaged between the month preceding and that following.

⁽S) denotes a Summer month

⁽W) denotes a Winter month

⁽⁾⁻number within = #units operating continuously for that month

Appendix H: Spreadsheet Calculation Based on Option #3b

Historic

With Engine Generator

Thistorie With Engine denerator					
Month	Billing Demand	Actual Demand	Month	Billing Demand	Actual Demand
JUL 96 (S)	18,659	18,659	JUL 98 (S)	15,623	15,623 (4)
AUG 96(S)	18,805	18,805	AUG 98 (S)	15,769	15,769 (4)
*SEP 96(S)	17,876	17,876	SEP 98 (S)	15,599	15,599 (3)
OCT 96 (S)	16,947	16,947	OCT 98 (S)	14,670	14,670 (3)
NOV 96(W)	12,543	11,606	NOV 98 (W)	10,518	8,570 (4)
DEC 96(W)	12,543	10,787	DEC 98 (W)	10,518	8,510 (3)
JAN 97 (W)	12,543	11,141	JAN 99 (W)	10,518	8,864 (3)
FEB 97 (W)	12,543	10,696	FEB 99 (W)	10,518	8,419 (3)
MAR 97(W)	12,613	12,613	MAR 99 (W)	10,518	10,336 (3)
APR 97 (W)	14,142	14,142	APR 99 (W)	11, 106	11,106 (4)
MAY 97 (S)	17,026	17,026	MAY 99 (S)	14,749	14,749 (3)
JUN 97 (S)	18,099	18,099	JUN 99 (S)	15,822	15,822 (3)

SAVINGS		RECAP FOR SEASON
JUL	3,036 kW	Summer:
AUG	3,036 kW	4 months @ 2,277 kW reduction each
SEP	2,277 kW	2 months @ 3,036 kW reduction each
OCT	2,277 kW	Winter:
NOV	2,025 kW	4 months @ 2,025 kW reduction each
DEC	2,025 kW	1 month @ 2,095 kW reduction each
JAN	2,025 kW	1 month @ 3,036 kW reduction each
FEB	2,025 kW	
MAR	2,095 kW	
APR	3,036 kW	
MAY	2,277 kW	
JUN	2,277 kW	

[&]quot;*" indicates data that's been averaged between the month preceding and that following.

- (S) denotes a Summer month
- (W) denotes a Winter month
- ()-number within = #units operating continuously for that month

Appendix I: Spreadsheet Calculation Based on Option #3d

Historic With Engine Generator

HISTORIC			Titti Liigine dei		
Month	Billing	Actual Demand	Month	Billing Demand	Actual Demand
	Demand				
JUL 96 (S)	18,659	18,659	JUL 98 (S)	14,105	14,105 (6)
AUG 96(S)	18,805	18,805	AUG 98 (S)	14,251	14,251 (6)
*SEP 96(S)	17,876	17,876	SEP 98 (S)	14,081	14,081 (5)
OCT 96 (S)	16,947	16,947	OCT 98 (S)	13,911	13,911 (4)
NOV 96(W)	12,543	11,606	NOV 98 (W)	9,505	7,052 (6)
DEC 96(W)	12,543	10,787	DEC 98 (W)	9,505	6,992 (5)
JAN 97 (W)	12,543	11,141	JAN 99 (W)	9,505	8,105 (4)
FEB 97 (W)	12,543	10,696	FEB 99 (W)	9,505	6,901 (5)
MAR 97(W)	12,613	12,613	MAR 99 (W)	9,577	9,577 (4)
APR 97 (W)	14,142	14,142	APR 99 (W)	9,588	9,588 (6)
MAY 97 (S)	17,026	17,026	MAY 99 (S)	13,990	13,990 (4)
JUN 97 (S)	18,099	18,099	JUN 99 (S)	14,304	14,304 (5)

SAVINGS		RECAP FOR SEASON
JUL.	4,554 kW	Summer:
AUG	4,554 kW	2 months @ 4,554 kW reduction each
SEP	3,795 kW	2 months @ 3,795 kW reduction each
OCT	3,036 kW	2 months @ 3,036 kW reduction each
NOV	4,554 kW	Winter:
DEC	3,795 kW	4 months @ 3,038 kW reduction each
JAN	3,036 kW	1 month @ 4,554 kW reduction each
FEB	3,795 kW	1 month @ 3,036 kW reduction each
MAR	3,036 kW	
APR	4,554 kW	
MAY	3,036 kW	
JUN	3,795 kW	

[&]quot;*" indicates data that has been averaged between the month preceding and that following.

⁽S) denotes a Summer month

⁽W) denotes a Winter month

⁽⁾⁻number within = #units operating continuously for that month.

Appendix J: Construction Cost Estimates for Each Option

Equipment (Option 1)	Material Cost	Installa	Total Cost
250-Ton Natural Gas Engine-Driven Chiller	168,000) (20)	\$168.000
Chiller Startup		4,000	\$4,000
Suidding		4,350	\$4,350
Exhaust Heat Recovery		16,000	\$16,000
Transformer Base (10' x 10') - 16" thick concrete slab (Tucson, AZ cost index = 96.7 for matt, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86/sq ft (matt), \$0.77/sq ft (inst))	277	8 2	\$342
Condensate Cooler (Tucson, AZ cost index = 99.8 for mati, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for hot water shell and tube heat exchanger with 10 GPM condensate return and 200 deg F return outlet: \$1108 (matl), \$79 (inst))	1,106	જ	\$1,171
Duplex Condensate Return Unit/Cast Iron Receiver (Tucson, AZ cost index = 99.8 for matt, 82.0 for inst; 1997 Means Mech Cost Data: \$2750 (mattl), \$885 (inst))	2,745	726	\$3,471
122.5 Ft of Chain Link Fence, 7' High (Tucson, AZ cost index = 98.3 for matl, 81.8 for inst; data interpolated based on 1997 Means Mech Cost Data for chain link fencing: \$4.35/ft (matl), \$5.40/ft (inst))	524	541	\$1,065
Demolition of 250-Ton Electric Centritigal Chiller, Weight = 10,010 lb based on 1989 YORK CodePak data (Tucson, AZ cost index = 96.3; 1997 Means Mech Cost Data: \$495/(2000 lb))		2,386	\$2,386
Gas plping based on 35 psig inlet pressure, 17,200 CFH, 1" OD Schedule 40 steel pipe, 3007.5 ft total length (Tucson, AZ cost index = 71.7 for matl, 96.3 for inst; 1997 Means Mech Cost Data: \$3.48/ft (matl), \$4.95/ft (inst))	7,504	14,336	\$21,840
Field office trailer rental for 8 weeks (Tucson, AZ cost Index = 98.3 for matt; 1997 Means Mech Cost Data: \$145/mo)	263		\$263
lelephone bill usage for 8 weeks incl. long dist (Tucson, AZ cost index ≈ 98.3 for mail; 1997 Means Mech Cost Data: \$230/mo)	417		\$417
Labor for bot superintendent for 8 weeks, 8 hrs/day, 5 days/wk (Tucson, AZ cost index = 81.8; 1997 Means Mech Cost Data: \$27.10/hr)		7,094	\$7,094
Field office supplies for 8 weeks (Tucson, AZ cost index = 98.3 for matti, 1997 Means Mech Cost Data: \$83/mo)	151		\$151
Field office lights and HVAC for 8 weeks (Tucson, AZ cost index = 98.3 for mati, 1997 Means Mech Cost Data: \$86/mo)	156		\$156
Field office equipment rental for 8 weeks (Tucson, AZ cost Index = 98.3 for matt; 1997 Means Mech Cost Data: \$129/mo)	234		\$234
Sub-total			\$230,940
Bond @ 2% (4,619) + Contractors fee @ 6% (13,856) + State taxes @ 5% (11,547)			\$30,022
Attemate bid estimate			\$260,963

Equipment (Option #2a)	Material	Installa	Total Cost
	js So	tion Cost	
One (1) Caterpillar G3512 Natural Gas-Fired Engine Generator Unit, 600 KWe, 2,091,660 Btu/hr	54,560		\$54,560
100-Ton Single-Effect Indirect-Fired Absorption Chiller (Tucson, AZ cost Index = 99.8 for matl, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for gas absorption chiller, water cooled: \$28,750 (matl), \$17,750 (inst))	28,750	17,750	\$46,500
Feedwater Unit	13,560		\$13,560
Cogeneration Unit Base (22' x 34') - 16" thick concrete slab (Tucson, AZ cost index = 96.7 for matl, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86/sq ft (matl), \$0.77/sq ft (inst))	2,069	485	\$2,554
Transformer Base (10' x 10') - 16" thick concrete slab (Tucson, AZ cost Index = 96.7 for matt, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86/sq ft (matt), \$0.77/sq ft (inst))	277	83	\$342
Condensate Cooler (Tucson, AZ cost index = 99,8 for mati, 82,0 for inst; data interpolated based on 1997 Means Mech Cost Data for hot water shell and tube heat exchanger with 10 GPM condensate return and 200 deg F return outlet: \$1108 (matt), \$79 (inst))	1,106	જ	\$1,171
Duplex Condensate Return Unit/Cast Iron Receiver (Tucson, AZ cost index = 99,8 for matl, 82.0 for inst; 1997 Means Mech Cost Data: \$2750 (matl), \$885 (inst))	2,745	726	\$3,471
122.5 Ft of Chain Link Fence, 7' High (Tucson, AZ cost index = 98.3 for matl, 81.8 for inst; data interpolated based on 1997 Means Mech Cost Data for chain link fencing: \$4.35/ft (matl), \$5.40/ft (inst))	524	541	\$1,065
Demolition of 250-Ton Electric Centrifugal Chiller, Weight = 10,010 lb based on 1989 YORK CodePak data (Tucson, AZ cost index = 96.3; 1997 Means Mech Cost Data: \$495/(2000 lb))		2,386	\$2,386
Gas piping based on 35 psig inlet pressure, 17,200 CFH, 1" OD Schedule 40 steel pipe, 3007.5 it total length (Tucson, AZ cost index = 71.7 for mail, 96.3 for inst; 1997 Means Mech Cost Data: \$3.48/ft (mail), \$4.95/ft (inst))	7,504	14,336	\$21,840
Field office trailer rental for 8 weeks (Tucson, AZ cost index = 98.3 for matt, 1997 Means Mech Cost Data: \$145/mo)	263		\$263
Telephone bill usage for 8 weeks incl. long dist (Tucson, AZ cost index = 98.3 for mati; 1997 Means Mech Cost Data; \$230/mo)	417		\$417
		7,094	\$7,094
Field office supplies for 8 weeks (Tucson, AZ cost Index = 88.3 for mat; 1997 Means Mech Cost Data: \$83/mo)	151		\$151
Field office lights and HVAC for 8 weeks (Tucson, AZ cost Index = 98,3 for matt; 1997 Means Mech Cost Data: \$66/mo)	156		\$156
Field office equipment rental for 8 weeks (Tucson, AZ cost Index = 98.3 for matt; 1997 Means Mech Cost Data: \$129/mo)	234		\$234
Sub-total			\$155,762
Bond @ 2% (\$3,115) + Contractors fee @ 6% (\$9,346) + State taxes @ 5% (\$7,788)			\$20249
Alternate bid estimate			\$176,011

Equipment (Option #2b)	Material	Installa	Total Cost
	Cost	tion Cost	
One (1) Caterpillar G3516 Natural Gas-Fired Engine Generator Unit, 820 KWe, 1,010,000 Btu/hr	80,660		099'08
100-Ton Double-Effect Indirect-Fired Absorption Childer (Tucson, AZ cost index = 99.8 for matl, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for gas absorption childer, water cooled: \$28,750 (matl), \$17,750 (inst))	28,750	17,750	\$46,500
Feedwater Unit	18,540		18,540
Cogeneration Unit Base (22' x 34') - 16" thick concrete stab (Tycson, AZ cost index = 96.7 for matt, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete stabs: \$2.86/sq ft (matt), \$0.77/sq ft (inst))	2,069	485	\$2,554
Transformer Base (10' x 10') - 16" thick concrete slab (Tucson, AZ cost index = 96.7 for matl, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86/sq ft (matl), \$0.77/sq ft (inst))	27.2	8	\$342
Condensate Cooler (Tucson, AZ cost index = 99.8 for mati, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for hot water shell and tube heat exchanger with 10 GPM condensate return and 200 deg F return outlet: \$1108 (matt), \$79 (inst))	1,106	æ	\$1,176
Duplex Condensate Return Unit/Cast Iron Receiver (Tucson, AZ cost index = 99,8 for matt, 82.0 for inst; 1997 Means Mech Cost Data: \$2750 (matl), \$885 (inst))	2,745	726	\$3,471
122.5 Ft of Chain Link Fence, 7' High (Tucson, AZ cost Index = 98.3 for matt, 81.8 for inst; data interpolated based on 1997 Means Mech Cost Data for chain link fencing: \$4.35/ft (matt), \$5.40/ft (inst))	524	541	\$1,065
Demoition of 250-Ton Electric Centrifugal Chiller, Weight = 10,010 lb based on 1989 YORK CodePak data (Tucson, AZ cost Index = 96.3; 1997 Means Mech Cost Data: \$495/(2000 lb))		2,386	\$2,386
Gas piping based on 35 psig inlet pressure, 17,200 CFH, 1" OD Schedule 40 steel pipe, 3007.5 it total length (Tucson, AZ cost index = 71.7 for matl, 96.3 for inst; 1997 Means Mech Cost Data: \$3.48/ft (matl), \$4.95/ft (inst))	7,504	14,336	\$21,840
Field office trailer rental for 8 weeks. (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$145/mo)	263		\$263
Telephone bill usage for 8 weeks incl. long dist (Tucson, AZ cost index = 98.3 for matl; 1997 Means Mech Cost Data: \$230/mo)	417		\$417
Labor for job superintendent for 8 weeks, 8 hrs/day, 5 days/wk (Tucson, AZ cost index = 81.8; 1997 Means Mech Cost Data: \$27.10/hr)		7,094	\$7,094
Field office supplies for 8 weeks (Tucson, AZ cost Index = 98.3 for matt; 1997 Means Mech Cost Data: \$83/mo)	151		\$151
Field office lights and HVAC for 8 weeks (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$86/mo)	156		\$156
Field office equipment rental for 8 weeks (Tucson, AZ cost Index = 98.3 for matt; 1997 Means Mech Cost Data: \$129/mo)	234		\$234
Sub-total			\$186,842
Bond @ 2% (\$3,737) + Contractors fee @ 6% (\$11,211) + State taxes @ 5% (\$9,342)			\$24,290
Alternate bid estimate			\$211.132
	*		

Equipment (Option #2c)	Material Cost	Installa tion	Total Cost
Two (2) Caterpillar G3516 Natural Gas-Fired Engine Generator Units. 1.640 KWe. 5.773.320 Bhuhr	108 480) 203	100 400
250-Ton Single-Effect Indirect-Fired Absorption Chiller (Tucson, AZ cost index = 99.8 for matl, 82.0 for inst; data interpolated based on 1997 Means Mech	145,375	63,875	\$209,250
Feedwater Unit	0,00,		9.00
Cogeneration Unit Base (22 x 34) - 16" thick concrete stab (Tucson, AZ cost Index = 96.7 for mail, 84.2 for institutation intermedated based on 1997 Means	2 060	485	19,340
Mech Cost Data for concrete slabs: \$2.86/sq ft (matl), \$0.77/sq ft (inst))	2001	₽	#CC'7#
Transformer Base (10' x 10') - 16" thick concrete slab (Turson, AZ cost Index = 96.7 for matl, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86/sq ft (matl), \$0.77/sq ft (inst))	277	65	\$342
Condensate Cooler (Tucson, AZ cost index = 99.8 for matt, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for hot water shell and	1,106	65	\$1,171
The Condense Both In University February Condense State Condense State Condense State Condense Condens			
Upwas Consensate neguri Unincessi intri neceiver (Tucson, AC cast index = 32,5 tof mat, 82.0 for inst; 1997 Means Mech Cost Data: \$2750 (mati), \$885 (inst))	2,745	726	\$3,471
122.5 Ft of Chain Link Fence, 7' High (Tucson, AZ cost index = 98.3 for mati, 81.8 for inst; data interpolated based on 1997 Means Mech Cost Data for chain link fencing: \$4.35# (math. \$5.40# (inst))	524	541	\$1,065
Demoition of 250-Ton Electric Centificial Chiller, Weight = 10,010 lb based on 1989 YORK CodePak data (Tucson, AZ cost index = 96.3; 1997 Means Mech Cost Data: \$495/(2000 lb))		2,386	\$2,386
Gas piping based on 35 psig inlet pressure, 17,200 CFH, 1" OD Schedule 40 steel pipe, 3007.5 ft total length (Tucson, AZ cost index = 71.7 for matl, 96.3 for inst; 1997 Means Mech Cost Data: \$3.48/ft (matl), \$4.95/ft (inst))	7,504	14,336	\$21,840
Field office trailer rental for 8 weeks. (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$145/mo)	263		\$263
1 elephone bill usage for 8 weeks incl. fong dist (Tucson, AZ cost index = 98.3 for matt, 1997 Means Mech Cost Data: \$230/mo)	417		\$417
Labor for lob superintendent for 8 weeks, 8 hrs/day, 5 days/wk (Tucson, AZ cost index = 81.8; 1997 Means Mech Cost Data: \$27.10/hr)		7,094	\$7,094
Field office supplies for 8 weeks (Tucson, AZ cost index = 98.3 for matt; 1997 Mears Mech Cost Data: \$83/mo)	151		\$151
Field Office Ignis and HVAC for 8 weeks (1ucson, AZ cost index = 88.3 for mati; 1997 Means Mech Cost Data: \$86/mo)	156		\$156
Held office equipment ferrial for 8 weeks (Tucson, AZ cost index = 98.3 for mati; 1997 Means Mech Cost Data: \$129/mo)	234		\$234
Sub-total			\$378,212
Bond @ 2% (\$7,564) + Contractors fee @ 6% (\$22,693) + State taxes @ 5% (\$18,911)			\$49,168
Allemate bid estimate			\$427,380

Equipment (Option #2d)	Materia!	Installa	Total Cost
	Cost	tion Cost	٠
Three (3) Caterpillar G3516 Natural Gas-Fired Engine Generator Units, 2,460 KWe, 3,030,000 Btu/hr	232,920		\$232,920
250-Ton Single-Effect Indirect-Fired Absorption Chiller (Tycson, AZ cost Index = 99.8 for math, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for gas absorption chiller, water cooled: \$145,375 (math, \$63,875 (inst))	145,375	63,875	\$209,250
Feedwater Unit	23,920		\$23,920
Cogeneration Unit Base (22' x 34') - 16" thick concrete slab (Tucson, AZ cost Index = 96,7 for mati, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86/sq ft (mati), \$0.77/sq ft (inst))	2,069	485	\$2,554
Transformer Base (10' x 10') - 16" thick concrete stab (Tiyoson, AZ cost Index = 96.7 for matl, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete stabs: \$2.86/sq ft (matl), \$0.77/sq ft (inst))	277	જ	\$ 342
Condensate Cooler (Tucson, AZ cost index = 99.8 for matt, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for hot water shell and tube heat exchanger with 10 GPM condensate return and 200 deg F return outlet: \$1108 (matt), \$79 (inst))	1,106	ಜ	\$1,171
Duplex Condensate Return Unit/Cast Iron Receiver (Turson, AZ cost Index = 99.8 for matt, 82.0 for thet; 1997 Means Mech Cost Data: \$2750 (matt), \$885 (inst))	2,745	726	\$3,47:
122.5 Ft of Chain Link Fence, 7 High (Tucson, AZ cost index = 98.3 for mat), 81.8 for inst; data interpolated based on 1997 Means Mech Cost Data for chain link fencing: \$4.35/ft (mati), \$5.40/ft (inst))	524	541	\$1,065
Demolition of 250-Ton Electric Centrifugal Chiller, Weight = 10,010 lb based on 1989 YORK CodePak data (Tucson, AZ cost Index = 96.3; 1997 Means Mech Cost Data: \$495/(2000 lb))		2,386	\$2,386
Gas piping based on 35 psig inlet pressure, 17,200 CFH, 1" OD Schedule 40 steel pipe, 3007.5 ft total length (Tucson, AZ cost Index = 71.7 for matl, 96.3 for inst; 1997 Means Mech Cost Data: \$3.48/ft (matl), \$4.95/ft (inst))	7,504	14,336	\$21,840
Field office trailer rental for 8 weeks. (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$145/mo)	263		\$263
Telephone bill usage for 8 weeks incl. long dist (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$230/mo)	417		\$417
Labor for lob superintendent for 8 weeks, 8 his/day, 5 days/wk (Tucson, AZ cost Index = 81.8; 1997 Means Mech Cost Data: \$27.10/hr)		7,094	\$7,094
Field office supplies for 8 weeks (Tucson, AZ cost index = 98.3 for mail; 1997 Means Mech Cost Data: \$83/mo)	151		\$151
Field office lights and HVAC for 8 weeks (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$86/mo)	156		\$156
Field office equipment rental for 8 weeks (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$129/mo)	234		\$234
Sub-total			\$507,232
Bond @ 2% (\$10,145) + Contractors fee @ 6% (\$30,434) + State taxes @ 5% (\$25,362)			\$65,941
Atternate bid estimate			\$573,173

Equipment (Option #3a)	Material Cost	Installa	Total Cost
T () () () () () () () () ()	1835 25	So E	
1 WO (2) Caleipliar G3512 Natural Gas-Fred Engine Generator Units, 1,640 KWe, 5,773,320 Btu/hr	106,920		106,920
250-10th Single-Effect Indirect-Fried Absorption Childer (Tucson, AZ cost index = 99.8 for matl, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for gas absorption childer, water cooled: \$145,375 (matl), \$63,875 (inst))	28,750	17,750	\$46,500
Feedwater Unit	19,340		19.340
Cogeneration Unit base (22 x 34) - 16" thick concrete stab (Tucson, A2 cast index = 96.7 for matt, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete stabs: \$2.86/sq ft (matt), \$0.77/sq ft (inst))	2,069	485	\$2,554
Transformer Base (10' x 10') - 16" thick concrete slab (Tucson, A2 cost index = 96,7 for mat), 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86/sq ft (matl), \$0.77/sq ft (inst))	277	83	\$342
Condensate Cooler (Tucson, AZ cost Index = 99,8 for mail, 82,0 for Inst; data Interpolated based on 1997 Means Mech Cost Data for hot water shell and tube heat exchanger with 10 GPM condensate return and 200 deg F return outlet: \$1108 (matt), \$79 (inst))	1,106	S .	\$1,171
Duppex Condensate Return Unit/Cast Iron Receiver (Tucson, AZ cost Index = 99.8 for math, 82.0 for inst; 1997 Means Mech Cost Data: \$2750 (math), \$885 (inst))	2,745	726	\$3,471
122.5 Ft of Chain Link Fence, 7' High (Tucson, AZ cost index = 98.3 for matt, 81.8 for inst; data interpolated based on 1997 Means Mech Cost Data for chain link fencing: \$4.35/ft (matt), \$5.40/ft (inst))	524	541	\$1,065
Dempition of 250-Ton Electric Centrifugal Chiller, Weight = 10,010 lb based on 1989 YORK CodePak data (Tucson, AZ cost Index = 96.3; 1997 Means Mech Cost Data: \$495/(2000 lb))		2,386	\$2,386
Gas piping based on 35 psig inlet pressure, 17,200 CFH, 1" OD Schedule 40 steel pipe, 3007.5 ft total length (Tucson, AZ cost index = 71.7 for matl, 96.3 to inst; 1997 Means Mech Cost Data: \$3.48/ft (matl), \$4.95/ft (inst))	7,504	14,336	\$21,840
Field once trailer rental for 8 weeks. (Tucson, AZ cost index = 98.3 for mat; 1997 Means Mech Cost Data: \$145/mo)	263		\$263
relegation bill usage for 8 weeks inc. long dist (1 ucson, AZ cost incex = 98.3 for mati; 1997 Means Mech Cost Data: \$230/mo)	417		\$417
Labor for too supermendent for 8 Weeks, 8 his/day, 5 days/wk (Tucson, AZ cost index = 81.8; 1997 Means Mech Cost Data: \$27.10/hr)		7,094	\$7,094
From July Suppress to weeks (10/550n, AZ COSt motex = 98.3 for mail; 199/ Means Mech Cost Data: \$83/mo)	151		\$151
They will still they will not be weeks I uction Az cost index = 98.3 for mail; 1997 Means Mech Cost Data: \$86/mo)	156		\$156
rieu dince edupinent forta not 8 Weeks (1 UCSO1, AZ cost Index = 98.3 for mail; 1997 Means Mech Cost Data: \$129/mo)	234		\$234
Sub-total			\$213,902
Bond @ 2% (\$4,278) + Contractors fee @ 6% (\$12,834) + State taxes @ 5% (\$10,695)			\$27,807
Alternate bid estimate			\$241,709

Equipment (Option #3b)	Material Cost	Installa tion Cost	Total Cost
Four (4) Caterpillar G3516 Natural Gas-Fired Engine Generator Units, 3,280 KWe, 4,040,000 Buynr	312,620		312,620
100-Ton Double-Effect Indirect-Fired Absorption Chiller (Tucson, AZ cost Index = 99.8 for matt, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for gas absorption chiller, water cooled; \$28,750 (matt), \$17,750 (inst))	28,750	17,750	\$46,500
Feedwater Unit	25,800		25,800
Cogeneration Unit Base (22' x 34') - 16" thick concrete slab (Turson, AZ cost index = 96.7 for math, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86/sq ft (math), \$0.77/sq ft (inst))	2,069	485	\$2,554
Transformer Base (10' x 10') - 16" thick concrete slab (Tucson, AZ cost index = 96.7 for matl, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86/sq ft (matl), \$0.77/sq ft (inst))	277	જ	\$342
Condensate Cooler (Tucson, AZ cost Index = 99.8 for mait, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for hot water shell and tube heat exchanger with 10 GPM condensate return and 200 deg F return outlet: \$1108 (matl), \$79 (inst))	1,106	65	\$1,171
Duplex Condensate Return Unit/Cast Iron Receiver (Tucson, AZ cost Index = 99.8 for matl, 82.0 for inst; 1997 Means Mech Cost Data: \$2750 (matl), \$885 (inst))	2,745	726	\$3,471
122.5 Ft of Chain Link Fence, 7 High (Tucson, AZ cost index = 98.3 for matl, 81.8 for inst; data interpolated based on 1997 Means Mech Cost Data for chain link fencing: \$4.35/ft (matl), \$5.40/ft (inst))	524	541	\$1,065
Demoition of 250-Ton Electric Centrifugal Chiller, Weight = 10,010 lb based on 1989 YORK CodePak data (Tucson, AZ cost index = 96.3; 1997 Means Mech Cost Data: \$495/(2000 lb))		2,386	\$2,386
Gas piping based on 35 psig inlet pressure, 17,200 CFH, 1" OD Schedule 40 steel pipe, 3007.5 ft total length (Tucson, AZ cost index = 71.7 for matl, 96.3 for inst; 1997 Means Mech Cost Data: \$3.48/ft (matl), \$4.95/ft (inst))	7,504	14,336	\$21,840
Field office trailer rental for 8 weeks. (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$145/mo)	263		\$263
Telephone bill usage for 8 weeks incl. long dist (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$230/mo)	417		\$417
Labor for job superintendent for 8 weeks, 8 hrs/day, 5 days/wk (Tucson, AZ cost index = 81.8; 1997 Means Mech Cost Data: \$27.10/hr)		7,094	\$7,094
Field office supplies for 8 weeks (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$83/mo)	151		\$151
Field office lights and HVAC for 8 weeks (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$86/mo)	156		\$156
Field office equipment rental for 8 weeks (Tucson, AZ cost Index = 98.3 for matt; 1997 Means Mech Cost Data: \$129/mo)	234		\$234
Sup-iotal	3. K		\$426,062
Bond @ 2% (\$8,521) + Contractors fee @ 6% (\$25,564) + State taxes @ 5% (\$21,303)			\$55,388
Alternate bid estimate			\$481.450

a Total Cost	154,080 5 \$209,250		\$2,554	\$342	\$1,171	\$3,471	\$1,065	\$2,386	\$21,840	\$263	\$417	\$7,094	\$151	\$156	\$427 319	\$55,551	
Installa tion Cost	63,875	63,87	88	ક્ક	જ	726	541	2,386	14,336			7,094					
Material Cost	154,080 145,375	145,375	2,069	277	1,106	2,745	524		7,504	263	417		151	8 8	\$3		
Equipment (Option #3c)	Three (3) Caterpillar G3516 Natural Gas-Fired Engine Generator Units, 2,480 KWe, 8,659,660 Btu/hr 250-Ton Single-Effect Indirect-Fired Absorption Chiller (Tucson, AZ cost Index = 99.8 for matt, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for gas absorption chiller, water cooled: \$145,375 (matt), \$63.875 (inst).	1997 Means Mech Cost Data for gas absorption chiller, water cooled: \$145,375 (matl), \$63,875 (inst)) Feedwater Unit	Cogeneration Unit Base (22' x 34') - 16" thick concrete slab (Tucson, AZ cost index = 96.7 for mati, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86'sq ft (mati), \$0.77'sq ft (inst))	Transformer Base (10' x 10') - 16" thick concrete stab (Tiveson, AZ cost index = 96.7 for mati, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86/sq ft (matt), \$0.77/sq ft (inst))	Condensate Cooler (Tucson, AZ cost Index = 99,8 for matl, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for hot water shell and tube heat exchanger with 10 GPM condensate return and 200 deg F return outlet: \$1108 (matl), \$79 (inst))	Duplex Condensate Return Unit/Cast fron Receiver (Tucson, AZ cost index = 99.8 for matl, 82.0 for inst; 1997 Means Mech Cost Data: \$2750 (matl), \$885 (inst))	122.5 Ft of Chain Link Fence, 7' High (Tucson, AZ cost index = 98.3 for matt, 81.8 for inst; data interpolated based on 1997 Means Mech Cost Data for chain link fencing: \$4.35/ft (matt), \$5.40/ft (inst))	Demolition of 250-Ton Electric Centrifugal Chiller, Weight = 10,010 lb based on 1989 YORK CodePak data (Tucson, AZ cost Index = 96.3; 1997 Means Mech Cost Data; \$495/(2000 lb))	Gas piping based on 35 psig inlet pressure, 17,200 CFH, 1" OD Schedule 40 steel pipe, 3007.5 ft total length (Tucson, AZ cost index = 71.7 for matl, 96.3 for inst; 1997 Means Mech Cost Data: \$3.48ft (matl), \$4.95ft (inst))	Field office trailer rental for 8 weeks (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$145/mo)	l eleprione bill usage for 8 weeks incl. long dist (Tucson, AZ cost index = 98.3 for matt, 1997 Means Mech Cost Data: \$230/mo)	Labor for job superintendent for 8 weeks, 8 his/day, 5 days/wk (Tucson, AZ cost index = 81.8; 1997 Means Mech Cost Data: \$27.10/hr)	Field office lighte and HV&C for 8 works (Tucson, AZ cost index = 96.3 for mail, 1997 Means Mean Cost Lata: \$43/mg)	Field office equipment rental for 8 weeks (Tucson, AZ onst Index = 98.3 for matt. 1997 Means Mach Cost Data: \$100ms)		Bond @ 2% (\$8,546) + Contractors fee @ 6% (\$25,639) + State taxes @ 5% (\$21,366)	

Equipment (Option #3d)	Material	Installa	Total Cost
	Set	to Cost	
Six (6) Caterpillar Natural Gas-Fired Engine Generator Units, 4,920 KWe, 6,060,000 Btu/hr	461,220		461,220
250-Ton Double-Effect Indirect-Fired Absorption Chiller (Tucson, AZ cost Index = 99.8 for mati, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for gas absorption chiller, water cooled: \$145,375 (matl), \$63,875 (inst))	145,375	63,875	\$209,250
Feedwater Unit	30,460		30,460
Cogeneration Unit Base (22' x 34') - 16" thick concrete slab (Tucson, AZ cost index = 96.7 for matl, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86/sq ft (matl), \$0.77/sq ft (inst))	2,069	485	\$2,554
Transformer Base (10' x 10') - 16" thick concrete slab (Tucson, AZ cost index = 96.7 for matl, 84.2 for inst; data interpolated based on 1997 Means Mech Cost Data for concrete slabs: \$2.86/sq ft (matl), \$0.77/sq ft (inst))	277	88	\$342
Condensate Cooler (Tucson, AZ cost index = 99.8 for matt, 82.0 for inst; data interpolated based on 1997 Means Mech Cost Data for hot water shell and tube heat exchanger with 10 GPM condensate return and 200 deg F return outlet: \$1108 (matt), \$79 (inst))	1,106	85	\$1,171
Duplex Condensate Return Unit/Cast Iron Receiver (Tucson, AZ cost Index = 99,8 for math, 82.0 for inst; 1997 Means Mech Cost Data: \$2750 (math), \$885 (inst))	2,745	726	\$3,471
122.5 Ft of Chain Link Fence, 7" High (Tucson, AZ cost Index = 98,3 for matl, 81.8 for inst; data interpolated based on 1997 Means Mech Cost Data for chain link fencing: \$4.35/ft (matl), \$5.40/ft (inst))	524	£ 24	\$1,065
Demolition of 250-Ton Electric Centrifugal Chiller, Weight = 10,010 lb based on 1989 YORK CodePak data (Tucson, AZ cost index = 96.3; 1997 Means Mech Cost Data: \$495/(2000 lb))		2,386	\$2,386
Gas piping based on 35 psig inlet pressure, 17,200 CFH, 1" OD Schedule 40 steel pipe, 3007.5 ft total length (Tucson, AZ cost index = 71.7 for matl, 96.3 for inst; 1997 Means Mech Cost Data: \$3.48/ft (matl), \$4.95/ft (inst))	7,504	14,336	\$21,840
Flekt office trailer rental for 8 weeks. (Tucson, AZ cost index = 98.3 for mat; 1997 Means Mech Cost Data: \$145/mo)	263		\$263
Telephone bill usage for 8 weeks incl. king dist (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$230/mo)	417		\$417
Labor for job superintendent for 8 weeks, 8 hrs/day, 5 days/wk (Tucson, AZ cost index = 81.8; 1997 Means Mech Cost Data: \$27.10/hr)		7,094	\$7,094
Field office supplies for 8 weeks (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$83/mo)	151		\$151
Field office lights and HVAC for 8 weeks (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$86/mo)	156		\$156
Field office equipment rental for 8 weeks (Tucson, AZ cost index = 98.3 for matt; 1997 Means Mech Cost Data: \$129/mo)	234		\$234
Sub-total			\$742,072
Bond @ 2% (\$14,841) + Contractors fee @ 6% (\$44,524) + State taxes @ 5% (\$37,104)			\$96,469
Altemate hid estimate	-	_	\$838 541

USACERL TR-99/24

Appendix K: Energy Cost Estimates for Each Option

	kW/ton if Existing	Motor-Driven Centrifu-	gal Chiller is Used	0.640	0.631	0.605	0.594	0.600	0.608	0.640			0.640	0.631	0.605	0.594	0.600	0.608	0.640
	Cost of	Nat'l Gas	Used (\$)	2,677.97	1,849.06	3,457.70	2,165.35	1,508.48	501.40	221.77			975.23	1,024.34	1,935.65	4,244.72	5,068.93	3,291.66	1,242.55
	Natural	Gas Rate	(\$/MBtu)	2.75	2.75	2.75	2.75	2.75	2.75	2.75			3.90	3.90	3.90	3.90	3.90	3.90	3.90
nine-Driven Chiller	urs ChillerNat'l Chiller Natural Gas	Gas Used Consumption (MBtu)		973.807	672.384	1,257.344	787.400	548.537	182.328	80.642			250.059	262.650	496.320	1,088.390	1,299.725	844.016	318.602
ural Gas En	ChillerNat 'l	Gas Used C	(Btu/hr)	2,033,000	1,751,000	1,504,000	1,270,000	1,061,000	856,000	661,000			2,033,000	1,751,000	1,504,000	1,270,000	1,061,000	856,000	661,000
Sapacity Nat	Ton-Hours			119,750	86,400	167,200	108,500	77,550	26,625	12,200			30,750	33,750	000'99	149,975	183,750	123,250	48,200
- 250-Ton (# Hours	at Load	May-Oct	479	384	836	620	517	213	122		Nov-Apr	123	150	330	857	1225	986	482
Option #1	Cooling	Load	(Tons)	250	225	200	175	150	125	100	•		250	225	200	175	150	125	100

kW if Existing Motor-	kWh if	Rate for	Cost for	Elec Energy	Cost for	Total Elec	"Waste" Heat From
Driven Centrifugal Is	Centrifugal	Demand	Demand	Rate	Elec Energy	Cost Savings	Chiller Operation
Used	Nsed	(\$/kW)	(\$)	(\$/kWh)	<u>(s)</u>	(\$)	(Btu/hr)
160	76,640	10.75	6,881.84	\$0.0496	3,804.41	10,686.25	638.000
142	54,528	10.75	3,053.82	\$0.0496	2,706.77	5,760.59	539,000
121	101,156	10.75	0	\$0.0496	5,021.39	5,021.39	446,000
104	64,480	10.75	0	\$0.0496	3,200.79	3,200.79	357,000
.06	46,530	10.75	0	\$0.0496	2,309.75	2,309.75	306,000
76	16,188	10.75	0	\$0.0496	803.57	803.57	267,000
2	7,808	10.75	0	\$0.0496	387.59	387.59	192,000
160	19,680	10.75	3,440.92	\$0.0472	928.07	4,368.99	638,000
142	21,300	10.75	0	\$0.0472	1,004.46	1,004.46	539,000
121	39,930	10.75	0	\$0.0472	1,883.01	1,883.01	446,000
104	89,128	10.75	0	\$0.0472	4,203.09	4,203.09	357,000
06	110,250	10.75) O ,	\$0.0472	5,199.15	5,199.15	306,000
9.2	74,936	10.75	0	\$0.0472	3,533.82	3,533.82	267,000
. 49	30,848	10.75	0	\$0.0472	1,454.73	1,454.73	192,000

Avoided Total En- Vat'l Gas ergy Cost	Savings(\$,9,085.73	4,641.26	2,878.25	1,815.80	1,359.04	502.68	248.41		3,786.13	384.38	683.27	1,488.11	2,004.48	1,558.47	674.90	
Avoided Nat'l Gas	Cost (\$)	1,077.44	729.72	1,314.56	780.37	557.76	200.51	82.58		392.37	404.25	735.90	1,529.75	1,874.25	1,316.31	462.72	
Avoided Avoided Natural Gas Boller Gas Consumption (MBtu)		391.797	265.354	478.021	283.769	202.823	72.912	30.031		100.608	103.654	188.692	392.242	480.577	337.515	118,646	
Avoided Boiler Gas	UseBtu/hr	817,949	691,026	571,795	457,692	392,308	342,308	246,154		817,949	691,026	571,795	457,692	392,308	342,308	246,154	
Avoided Boiler	Btu/hr	638,000	539,000	446,000	357,000	306,000	267,000	192,000		638,000	539,000	446,000	357,000	306,000	267,000	192,000	
Thermal Energy Required (MBtu)			-						5,802.87								8,073.84
"Waste" Heat Energy for Thermal	(MBtu)	305.602	206.976	372.856	221.34	158.202	56.871	23.424	1,345.27	78.474	80.85	147.18	305.949	374.85	263.262	92.544	1,343.11

Notes re cost: from Jeff Glick,

Note: During Summer months, peak of 250 tons is

experienced for 4 months,

May - August, inclusive. Peak for September and October is 225 tons.

8/8/97

Cost of unit = \$168,000

Startup \$4,000

Shipping \$4,350

Exhaust heat recovery = \$16,000

recovery if there will be low part Tecogen does not recommend exhaust heat

load operation

since exhaust velocities will be low and there

likely be stack corrosion.

Basis for comparison: Base case would be status quo and the energy expenses would be Columns R + AC.

Energy expenses for alternative (Option #1) would be Columns H.

		Avoided		KWhUtility		Cost (\$)		16.513.28	16.513.28	16,513,28	16,513,28	16,513.28	16.513.28	16,568,42	115,648,11	•	15,923,27	15,923.27	15,923.27	15,923.27	15,923.27	15,923.27	15,151.99
	ed(t)	UtilityCost	•	(\$/KWh)		Cost (\$)		\$ 0.0496	. 49	· 49	-	-	- +	· 49	•		\$ 0.0472	<u>.</u>	6	8	\$ 0.0472	\$ 0.0472	\$ 0.0472
apacity	Heat ~ Chiller R	Avoided		KW Utility	•	0		5,972	5,972	5.972	0		0	0			5,972	3,979	3,979	3,979	3,979	0.00	0.00
h 100-Ton C	Iller (Waste I	UtilityCost	: r	(\$/KW)	•			10.75	10.75	10.75	10.75	10.75	10.75	10.75			10.75	10.75	10.75	10.75	10.75	10.75	10.75
ine-Generator wit	ed Absorption Ch	Electrical Energy		Produced (kWh)	•			332,661	332,661	332,661	332,661	332,661	332,661	333,771			337,659	337,659	337,659	337,659	337,659	337,659	100 482 0 609 338,214 10.75 0.00
ired Eng	Irect-Fire	Total		Hours	.,			299	599	599	599	299	299	601			809	809	809	809	809	608	609
ral Gas-F	ffect Ind	Power		Produce	ਰ	(K (¥		555.36	555.36	555.36	0	0	0	0		-Apr	555.36	370	370	370	370	0	0
a - Natu	Single-E	*	Honrs	ਲ	Load	May-	ö	479	384	836	620	517	213	122	3171	Ž	123	150	330	857	1225	986	482
Option #		Cooling		Load		(Tons)		250	225	200	175	150	125	100			250	225	200	175	150	125	9

kW for All	Electric Cooling		160	142	121	104	06	2/2	75	;	160	142	121	104	06	92	64
kW/ton for	All Elec	Cool	0.640	0.631	0.605	0.594	0.600	0.608	0.640		0.640	0.631	0.605	0.594	0.600	0.608	0.640
Cooling Produced	From Waste Heat	(Tons)	100	100	100	100	100	100	100		100	100	100	100	100	100	100
Cost of	Nat'l Gas	(\$)	9,926.10	9,926.10	9,926.10	9,926.10	9,926.10	9,926.10	9,959.24	69,515.83	14,288.52	14,288.52	14,288.52	14,288.52	14,288.52	14,288.52	14,312.02
Natural	Gas Rate	(\$/MBtu)	2.75	2.75	2.75	2.75	2.75	2.75	2.75		3.90	3.90	3.90	3.90	3.90	3.90	3.90
Natural Gas Con-	sumption to Generate	Electric Power(MBtu)	3,609,490	3,609.490	3,609.490	3,609.490	3,609.490	3,609.490	3,621.542		3,663.723	3,663.723	3,663.723	3,663.723	3,663.723	3,663.723	3,669.749
Natural Gas to Pro-	duce Electricity	(Btu/hr)	6,025,860	6,025,860	6,025,860	6,025,860	6,025,860	6,025,860	6,025,860		6,025,860	6,025,860	6,025,860	6,025,860	6,025,860	6,025,860	6,025,860

Cost for kW for Remaining Electric Cooling 3903.295 1653.255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1951.65 0 0 0 0 0 0
kW for Remaining Elec Cool 76.88 65.00 53.48 34.05 19.98	90.75 76.88 65.00 53.48 34.05 19.98
KW/ton for k Remaining F Elec Cool E 0.605 0.615 0.713 0.681 0.799	0.605 0.615 0.650 0.713 0.681
Remaining Tons of Elec Cool 150 125 100 75 50 25	150 125 100 75 50 50 0
MBtu for 100 tons Abs Cool 804.636 651.305 1431.559 1071.778 885.306 364.739 204.939	206.618 254.416 565.089 1481,474 2097.679 1688.417 809.675
1,679,824 1,696,108 1,712,391 1,712,391 1,712,391 1,679,824	1,679,824 1,696,108 1,712,391 1,712,391 1,712,391 1,712,391
Btu/hr for 100 tons Abs Caol	
#/ton-hr for 100 tons Abs 17.74 17.92 18.09 18.09 18.09 18.09	17.74 17.92 18.09 18.26 18.09 18.09
Total Cost for All Elec Cooling 10,686.25 5,760.59 5,021.39 3,200.79 2,309.75 803.57 387.59	4,368.99 1,004.46 1,883.01 4,203.09 5,199.15 3,533,82 1,454.73
<u></u>	928.07 1,004.46 1,883.01 4,203.09 5,199.15 3,533.82 1,454.73
kW Cost kWh Cost for All Elec Cooling Cooling 6,881.84 3,804.41 3053.82 2,706.77 0 5,021.39 0 3,200.79 0 2,309.75 0 387.59 18,234.2	3440.92 0 0 0 0 0

"Waste" Heat For Chiller	Operation (Btu/hr)	1,679,824	1.712.391	1,728,674	1,712,391	1.712.391	1 679 824		1.679.824	1,696,108	1,712,391	1.728.674	1,712,391	1,712,391	1,679,824	
Total "Waste" Heat From Power Produc-	tion (Btu/hr)	2,091,660	2,091,660	2,091,660	2.091.660	2,091,660	2.091.660		2,091,660	2.091.660	2,091,660	2,091,660	2.091.660	2,091,660	2,091,660	
Total Electric Cost Savings w/ Absorption	Cooling	2,641.96	2,323.95	1,555.00	1,435.89	592.37	387.59		1,890.95	460.67	871.48	2,041.93	3,232.14	2,605.03	1,454.73	
Total Electric Costs WhenElectricProvides	Remaining Cooling	3,118.63	2,697.44	1,645.79	873.86	211.20	0.00		2,478.04	543.79	1,011.54	2,161.15	1,967.01	928.79	0.00	
Cost for kWh for Remaining Electric	Cooling 2.157.81	1,465.37	2,697.44	1,645.79	873.86	211.20	0.00	9,051.47	526.39	543.79	1,011.54	2,161.15	1,967.01	928.79	0.00	
kWh for Remaining	Elec Cool	29,520	54,340	33,155	17,604	4,255	0		11,162	11,531	21,450	45,828	41,711	19,695	0	

Residual "Waste"	Residual "Waste"Heat	Thermal Energy	Avoided	Avoided	Avoided
Heat for Thermal Use	Energy For Thermal	Required (MBtu)	Boiler	Boiler Gas	Natural Gas
					Consumption (MBtu)
(Btu/hr)	Use (MBtu)		Btu/hr	UseBtu/hr	
411,836	684.471		411,836	527,994	877.526
395,552	151.892		395,552	507,118	194.733
379,269	317.069		379,269	486,242	406,499
362,986	225.051		362,986	465,366	288.527
379,269	196.082		379,269	486,242	251.387
379,269	80.784		379,269	486,242	103.570
411,836	50.244		411,836	527,994	64,415
	1,705.593	5,802.874			2186.658
411,836	127.669		411.836	527.994	163,678
395,552	59.333		395,552	507,118	76.068
379,269	125.159		379,269	486,242	160.460
362,986	311.079		362,986	465,366	398.819
379,269	464.605		379,269	486,242	595.647
379,269	373.959		379,269	486,242	479.435
411,836	198.505		411,836	527,994	254.493

Per Engineering Controls: One (1) Caterpillar G3512 600 Kwe; 2,091,660 Btu/hr;	\$54,560.00 Feedwater unit adds	\$13,560.00				·					
Total Gas Costs (\$)	155,244.11										
Total Elec Energy Savings(\$)	246,590.18			٠.							
Total Demand Savings(\$)	45,670				·		,				•
Total Energy Cost Savings(\$)	\$19,597.25	\$15,736.38				\$10,135.77	\$5,370.66 \$7,110.59	\$9,210.64	\$11,168.48 \$6.109.58	\$3,287	-4
Avoided Nat'l Gas Cost (\$)	2,413.20	535.52	793.45 691.32	284.82	6,013.3	638.35	230.00 625.79	1,555.39	2,323.02 1,869.80	992.52	8,301.54

Basis for comparison: Base case would be status quo and the energy expenses would be Columns K + Z + BD. Energy expenses for alternative (Option #2) would be Columns R + AL.

Note: This basis of comparison applies for all options with engine-generator sets.

		Avoided	KWhUtility	Cost (\$)	2,568.15	2,568.15	2,568.15	2,568.09	2,568,09	2.568.09	22,643.44		1,761.80	1,761.75	1,761.75	1,761.75	1,761.75	21,761.75	1,797.54
		JtilityCost	(\$/KWh) K				\$ 0.0496 2	\$ 0.0496 2	\$ 0.0496 2	\$ 0.0496 2			\$ 0.0472 2			\$ 0.0472 2			
	_	Avoided	KW Utility	Cost (\$)	8, [6], 35	8,101.35	8,161,35	0.00	0.00	0.00	0.00		8,161.35	5,440.96	2,710	0.00	0.00	0.00	0.00
city	ired Absorption Chiller (Waste Heat - Chiller Reg't)	UtilityCost	(\$/KW)	7	10.73	10.75	10.75	10.75	10.75	10.75	10.75		10.75	10.75	10.75	10,75	10.75	10.75	10.75
ne-Generator with 100-Ton Capacity	:hiller (Waste H	Electrical France	Produced (KWh)	:					454,635									461,466	
Generator wit	l Absorption C	Total	Hours	, C	SEC 4	PRO I	599	299	299	299	601		809	809	809	809	809	809	809
		Power	Produced	(KW)	750.09	700.00	758.99	0	0		0	Apr	758.99	506.00	506.00	506.00	506.00	0.00	0
<u> Option #2b - Natural Gas-Fired Engl</u>	Double-Effect Indirect-F	# Hours	at Load	May-Oct	6/4 700	†	836	620	517	213	122	Nov-Apr	123	150	330	857	1225	986	482
Option #2b		Cooling	Load	(Tons)	200	3	200	175	150	125	9		250	225	200	175	120	125	1 00

Total Electrical Cost	Natural Gas to Pro-	Natural Gas Con-	Natural	Cost of	Cooling Produced	
Savings From Generator Power Produced	duce Electricity (Btu/hr)	sumption to Generate Electric Power(MBtu)	Gas Rate	Nat'i Gas	From Waste Heat	
	7,933,260	4,752.023	2.75	\$13,068.06	100	
30,729.50	7,933,260	4,752.023	2.75	\$13,068.06	100	
30,729.50	7,933,260	4,752.023	2.75	\$13,068.06	100	
22,568.09	7,933,260	4,752.023	2.75	\$13,068.06	100	
22,568,09	7,933,260	4,752.023	2.75	\$13,068.06	100	
22,568.09	7,933,260	4,752.023	2.75	\$13,068.06	100	
22,643,44	7,933,260	4,767.889	2.75	\$13,111.70	100	
	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
29,923.15	7,933,260	4,823.422	3.90	\$18,811.35	100	
27,202.70	7,933,260	4,823.422	3.90	\$18,811.35	100	
24,471.47	7,933,260	4,823.422	3.90	\$18,811.35	100	
21,761.75	7,933,260	4,823.422	3.90	\$18,811.35	100	
21,761.75	7,933,260	4,823.422	3.90	\$18,811.35	100	
21,761.75	7,933,260	4,823.422	3.90	\$18,811.35	100	
21,797.54	7,933,260	4,831.355	3.90	\$18,842.29	100	

kW/ton for	kW for All	kW Cost	kWh Cost	Total Cost #/ton-hr	//ton-hr	Btu/hr for	MBtu for	Remainin	kW/ton for
All Elec Cool	Electric Cooling	for All Elec Caolina	for All Elec Cooling	for All Elec f	for 100 tons Abs	100 tons 100 Abs Cool Abs	100 tons Abs Cool	Tons of Flec Cool	Remaining Elec Cool
0.640	160	8	3804.41	3.25		772140.5	369.855		0,605
0.631	142	8	2706.77	5,760.59		779629	299.378		0.615
0.605	121	8	5021.39	5,021.39		787117.4	658.030		0.650
0.594	104	\$0.00	3200.79	3,200.79		794605.8	492.656		0.713
0.600	06	\$0.00	2309.75	2,309.75		787117.4	406.940		0.681
0.608	76	\$0.00	803.57	803.57		787117.4	167,656		0,799
0.640	. 64	\$0.00	387.59	387.59		772140.5	94.201	0	
	•			. /d					
0.640	160	\$3,440.92	928.07	\$4,368.99		772140.5		•	0.605
0.631	142	\$0.00	1004.46	\$1,004.46		779629		•	0.615
0.605	121	\$0.00	1883.01	\$1,883.01		787117.4			0.650
0.594	104	\$0.00	4203.09	\$4,203.09		794605.8			0.713
0.600	06	\$0.00	5199,15	\$5,199.15		787117.4			0.681
0.608	26	\$0.00	3533.82	\$3,533.82		787117.4		52	0.799
0.640	2	\$0.00	1454,73	\$1,454.73	8.83	772140.5	372.172		

Total Electric Cost Savings w/ Absorption Cooling \$4,625.14 \$2,641.96 \$2,323.95 \$1,555.00 \$1,435.89 \$592.37 \$387.59	\$1,890,95 \$460.67 \$871,48 \$2,041.93 \$3,232.14 \$2,605.03 \$1,454.73
Total Electric Costs WhenElectric Provides Remaining Cooling 6061.11 3118.63 2697.44 1645.79 873.86 211.20	2478.04 543.79 1011.54 2161.15 1967.01 928.79
Cost for kWh for Remaining Electric Cooling 2157.81 1465.37 2697.44 1645.79 873.86 211.20	526.39 543.79 1011.54 2161.15 1967.01 928.79
kWh for Remaining Elgc Cool 43469 29520 54340 33155 17604 4255	11162 11531 21450 45828 41711 19695
Cost for kW for Remaining Electric Cooling 3903,295 1653,255 0 0 0	1951.65 0 0 0 0 0
kW for Bernaining Elec Cool 90.75 76.88 65.00 53.48 34.05 19.98	90.75 76.88 65.00 53.48 34.05 19.98

Thermal Energy Required (MBtu)	5802.874
Residual "Waste"Heat Energy For Thermal Use (MBtu) 395.322 88.46247 186.3298 133.5444 115.2303 47.47399 29.01885	995.382 73.736 34.55565 73.55126 184.5928 273.0312 219.7622 114.6483
Residual "Waste" Heat for Thermal Use (Btu/hr) 237,859 230,371 222,883 222,883 222,883	237,859 230,371 222,883 215,394 222,883 227,859
"Waste" Heat For Chiller Operation (Btu/hr) 772,141 779,629 787,117 787,117 787,117	772,141 779,629 787,117 794,606 787,117 787,117
Total "Waste" Heat From Power Produc- tion (Btu/hr) 1,010,000 1,010,000 1,010,000 1,010,000 1,010,000	1,010,000 1,010,000 1,010,000 1,010,000 1,010,000 1,010,000

Total Elec Energy Savings(\$) 330,670.71	Cost = Costs=	•
Total Demand Savings(\$) 46,664	Recurring O&M Cost = YearlyOne-Time Costs=	
Total Energy Cost Savings(\$) \$23,680.35	\$20,642.32 \$11,525.86 \$11,342.18 \$10,259.78 \$10,021.65	\$13,371.44 \$9,024.81 \$6,899.36 \$5,915.30 \$7,547.70 \$6,654.24
Avoided Nat'l Gas Cost (\$) 1393.76 311.89	656.93 470.83 406.26 167.38 102.31	368.68 172.78 367.76 922.96 1365.16 1098.81
Avoided Natural Gas Consumption (MBtu) 506.824	238.8842 171.21074 147.73115 60.864092 37.203659	94.534 44.30212 94.296481 236.65743 350.03997 281.74646 146.98495
ш <u>«</u>	285747 276146 285747 285747 304948	304948 295347 285747 276146 285747 285747 304948
Avoided Boiler Btu/hr (237,859	222,883 215,394 222,883 222,883 237,859	237,859 230,371 222,883 215,394 222,883 222,883

Per Engineering Contr	One (1) Caterplinal G3 820 Kwe: 1,010,000 B	Feedwater unit adds
Total	Costs (\$)	214,851.68

			,
		Year 9 18,115	Year 19 16,250
		Year 8 17,998	Year 18 19,212
		Year 7 55,542	Year 17 0
		Year 6 16,724	Year 16 72,476
00		Year 5 15,458	Year 15 18,527
520 Nwe, 1,010,000 blumit; \$00,000.00 Feedwater unit adds \$18,540.00		Year 4 55,950	Year 14 0
adds 9		Year 3 15,797	Year 13 54,056
e, 1,010 Iter unit		Year 2 16,934	<u>Year 12</u> 18,184
ozo nw Feedwa	\$50,991	Year 1 0	Year 11 16,586

Recurring O&M Cost = Yearly One-Time Costs =

		Avoided	KWhUtility	Cost (\$)	45.136.30	45,136,30	45,136,30	45,136,18	45,136,18	45,136,18	45,286.89		43,523,61	43.523.49	43,523,49	43.523.49	43,523.49	43.523.49	43,595.08
		UtilityCost	(\$/KWh)	(\$)	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496		\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472
	Reg't)	Avoided	kW Utility	Cost	16,322.70	16,322.70	16,322.70	8,161.35	8,161.35	8,161.35	000	•	16,322.70	10,892.67	10,892,67	10,892.67	10,892.67	8,161.33	0.00
in Capacity	le Heat - Chiller	UtilityCost	(\$/KW)		10.75	10.75	10.75	10.75	10.75	10.75	10.75		10.75	10.75	10.75	10.75	10.75	10.75	10.75
nerator with 250-To	red Absorption Chiller (Wast	Electrical Energy	Produced (KWh)		909,272	909,272	909,272	909,270	909,270	909,270	912,306	:	922,934	922,932	922,932	922,932	922,932	922,932	924,450
ingine-Gen	ired Absor	Total	Hours	- - -	599	299	299	599	599	599	601		809	809	608	809	608	809	609
Option #2c - Natural Gas-Fired E	1	Power	Produced	(KW)	1,517.98	1,517.98	1,517.98	758.99	758.99	758.99	0.00	Nov-Apr	1,517.98	1,013.00	1,013.00	1,013.00	1,013.00	758.99	0.00
c - Natural	Single-Effe	# Hours	at Load	May-Oct	479	384	836	620	517	213	1 22	Nov	123	150	330	857	1225	986	482
Option #2	771	Cooling	Load	(Tans)	520	225	500	175	150	<u> </u>	1 0		220	225	දි	175	150	125	1 00

Total Electrical Cost Savings From Gener- ator Power Produced 61,459.00 61,459.00 63,297.53 53,297.53 53,297.53 53,297.53 53,297.63 53,416.16 54,416.16 54,416.16	Natural Gas to Produce Electricity (Btu/hi) 15,866,520 15,866,520 15,866,520 15,866,520 15,866,520 15,866,520 15,866,520	Natural Gas Consumption to Generate Electric Power(MBtu) 9504.045 9504.045 9504.045 9535.779 9646.844 9646.844 9646.844	Natural Gas Rate (\$/MBtu) (2.75 2.75 2.75 2.75 2.75 3.90 3.90 3.90	Cost of Nat'l Gas (\$) \$26,136.13 \$26,136.13 \$26,136.13 \$26,136.13 \$26,136.13 \$26,136.13 \$26,136.13 \$26,23.39 \$37,622.69 \$37,622.69	Cooling Produced From Waste Heat (Tons) 250 225 200 175 150 125 100 250 225 225 200 175
	15,866,520 15,866,520	9646,844 9662.711	3.90 3.90 3.90 3.90	\$37,622.69	125

Remaining Tons of Elec Cool	0	0	0	0	C	· C	•	5	c	0	c	· c	C	· c	0
MBtu for Abs Tons	1,984.155	1,412.408	2,701,569	1,729,557	1.200.392	404 959		[88.78]	509.501	551,722	1.066.409	2,390,694	2.844.256	1.874.597	722.964
Btu/hr for Abs Toris	4,142,286								4.142.286	3,678,145	3.231.542	2,789,609	2,321,842	1.901.214	1,499,926
#/ton-hr for Abs Tohs	17.48	17.24	17.04	16.82	16.33	16.04	15.00	79.61	17.48	17.24	17.04	16.82	16.33	16.04	15.82
Total Cost for All Elec Cooling	10,686.25	5,760.59	5,021.39	3,200.79	2,309.75	803.57	207 50	80. 700 1000	4,368.99	1,004.46	1,883.01	4,203.09	5,199.15	3,533.82	1,454.73
kWh Cost for All Elec Coaling	3,804.41	2,706.77	5,021.39	3,200.79	2,309.75	803,57	207 50	66.105	928.07	1,004.46	1,883.01	4,203.09	5,199.15	3,533,82	1,454,73
KW Cost 1 for All Elec 1 Cooling	\$6,881.84	\$3,053,82	\$0.00	\$0.00	\$0,00	\$0.00	40 0		\$3,440.92	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
kW for All Electric Cooling	160	142	121	104	06	92	72		160	142	121	104	06	76	64
kW/ton for All Elec Cool	0.640	U.631	0.605	0.594	0.600	0.608	0.640		0.640	0.631	0.605	0.594	0.600	0.608	0.640

Total Electric Cost Savings w/ Absorption Cooling 10,686.25 5,760.59 5,021.39 3,200.79 2,309.75 803.57	\$4,368.99 \$1,004.46 \$1,883.01 \$4,203.09 \$5,199.15 \$3,533.82 \$1,454.73
Total Electric Costs WhenElectricProvides Remaining Cooling 0 0 0 0 0 0 0 0 0	000000
Cost for kWh for Remaining Electric Cooling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000
kWh for Remaining Elec Gool 0 0 0 0 0	000000
Cost for kW for Remaining Electric Cooling 0 0 0 0 0 0 0	000000
kW for Remaining Elec Cool 0 0 0 0 0	000000
kW/ton for Remaining Elec Cool	

Thermal Energy Required (MBtu)				,			5802.874							
Residual "Waste"Heat Energy For Thermal Use (MBtu)	781.2653	2124.926	1849.901	1784 414	824.7586	521.3541	7345.054	200.6172	314.2762	838.7866	2557.041	4228.061	3817.897	2059.776
Residual "Waste" Heat for Thermal Use (Btu/hr)	1,631,034	2,541,778	2,983,712	3,451,478	3,872,106	4,273,394		1,631,034	2,095,175	2,541,778	2,983,712	3,451,478	3,872,106	4,273,394
"Waste" Heat For Chiller Operation (Btu/hr)	4,142,286 3,678,145	3,231,542	2,789,609	2,321,842	1,901,214	1,499,926		4,142,286	3,678,145	3,231,542	2,789,609	2,321,842	1,901,214	1,499,926
Total "Waste" Heat From Power Produc- tion (Btu/hr)	5,773,320	5,773,320	5,773,320	5,773,320	5,773,320	5,773,320		5,773,320	5,773,320	5,773,320	5,773,320	5,773,320	5,773,320	5,773,320

Total Elec		Savings(\$)		•	&M Cost =	lime Costs=												
Total	Demand	Savings(\$	154,883		Recurring O	YearlyOne-							01		~	~		
Total En-	ergy Cost	Savings(\$)	\$48,763.59	\$43,920.01	\$43,160.99	\$34,126.20	\$33,012.36	\$30,872.78	\$21,289.19		\$27,595.69	\$19,369.31	\$22,870.42	\$31,441.76	\$27,532.93	\$24,985.43	\$17,591.07	
Avoided	Nat'l Gas	Cost (\$)	2754.461	2836.544	2816.726	3764.005	3541,205	2907.803	1838.107		1003.086	1571.381	4193,933	10445.2	5540.305	7389.482	10225.84	•
Avoided Natural Gas	Consumption (MBtu)				1024.264		1287.711	1057.3828	668.403	7439.582	257.202	402.918	1075,367	2678,257	1420.591	1894.739	2622.009	10351.083
Avoided	Boiler Gas	UseBtu/hr	2091069	2686122	1225196	2207627	2490737	4964238	5478711		2091069							
Avoided	Boiler	Btu/hr	1,631,034	2,095,175	955,653	1,721,949	1,942,775	3,872,106	4,273,394		1,631,034	2,095,175	2,541,778	2,437,620	904,540	1,498,881	4,243,085	

Per	Two	1,64	Food
Total	Gas	Costs (\$)	385 632 79

•										
Recurring O&M Cost ≈	\$101,982						e.			
Yearly One-Time Costs =	Year 1 \$0	Year 2 \$33,868	Year.3 \$31,594	Year 4 \$111,900	Year 5 \$30,916	Year 6 \$33,448	Year Z \$111,084	Year 8 \$35,996	Year 9 \$36,230	-107
,	Year 11 \$33,172	Year 12 \$36,368	Year 13 \$108,112	Xear 14 \$0	Xear 15 \$37,054	Year 16 \$144,952	Year 17 \$0	Year 18 \$38,424	Year 19 \$32,500	-147

Year 10 \$113,278 Year 20 \$110,240

		Avoided	KWhUtility	Cost (\$)	67704.45	67704.45	45136.30	67704.57	67704.57	67704.57	67930.63		65285.41	65285.53	65285.53	65285.53	65285.53	65285.53	65392 91
		UtilityCost	(\$/KWh)	Cost (\$)	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496	8 0.0496	\$ 0.0496	\$ 0.0496		\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0,0472	\$ 0.0472
		Avoided	KW Utility	•	24484.05	24484.05	16322.70	16322.70	16322.70	16322.70	0.00		24484.05	16333.62	16333.62	16333.62	16333.62	16322.70	0.00
İİV	- Chiller Rea't)	UtilityCost	(\$/KW)	•	10.75	10.75	10.75	10.75	10.75	10.75	10.75		10.75	10.75	10.75	10.75	10.75	10.75	10.75
Option #2d - Natural Gas-Fired Engine-Generator with 250-Ton Capacity	tion Chiller (Waste Heat ~ Chiller Reg't)	Electrical Energy	Produced (kWh)		1,363,909	1,363,909	909,272	1,363,911	1,363,911	1,363,911	1,368,465		1,384,401	1,384,404	1,384,404	1,384,404	1,384,404	1,384,404	1.386.681
Ine-Generate	d Absorptio	Total	Hours		299	299	239	233	599	299	601		608	809	609	809	809	<u>809</u>	609
las-Fired End	t Indirect-Fire	# Hours Power Total	Produced	(KW)	2,276.98	2,276.98	1,517.98	1,517.98	1,517.98	1,517.98	0.00	Apr	2,276.98	1,519.00	1,519.00	1,519.00	1,519.00	1,517.98	0.00
d - Natural C	Souble-Effec	# Hours	at Load	May-Oct	479	384	836	620	517	213	122	Nov-Apr	123	150	330	857	1225	986	482
Option #2		Cooling		(Tons)	250	225	800	175	150	5	100		. 250	225	200	175	150	125	001

Cooling Produced From Waste Heat (Tons) 250 225 200 175 150 125	250 225 200 175 125 100
Cost of Nat'l Gas (\$) \$39,204.19 \$39,204.19 \$39,204.19 \$39,204.19 \$39,204.19 \$39,204.19	\$56,434.04 \$56,434.04 \$56,434.04 \$56,434.04 \$56,434.04 \$56,434.04 \$56,526,86
Natural Gas Rate (\$/MBtu) 2.75 2.75 2.75 2.75 2.75	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6
Natural Gas Consumption to Generate Electric Power(MBtu) 14,256.07 14,256.07 14,256.07 14,256.07 14,363.67	14,470.27 14,470.27 14,470.27 14,470.27 14,470.27
Natural Gas to Produce Electricity (Btu/hr) 23,799,780 23,799,780 23,799,780 23,799,780 23,799,780	23,799,780 23,799,780 23,799,780 23,799,780 23,799,780 23,799,780
Total Electrical Cost Savings From Generator Power Produced 92188.50 92188.50 61459.00 84027.27 84027.27 67930.63	89769.46 81619.15 81619.15 81619.15 81619.15 81608.23 65392.91

Remaining Tons of Flec Cool	0	· C	0	· C	· c	0	0	0	0	0	0	0	· c	0	
MBtu for Abs Tons	928.6834	661,0963	1264.535	809.5174	561.8888	186.9317	86.85794	238.4719	258.2407	499.1587	1118,962	1331.361	865.327	343.1601	
Btu/hr for Abs Tons A	1,938,796	1,721,605	1,512,602	1.305,673	1,086,826	877,614	711,950	1,938,796	1,721,605	1,512,602	1,305,673	1,086,826	877.614	711,950	
#/ton-hr for Ats Tons	8.87	8.75	8.65	8.54	8.29	8.03	8.15	8.87	8.75	8.65	8.54	8.29	8.03	8.15	
Total Cost for All Elec Cooling	10,686.25		5,021.39			,		2,648.53	1,004.46	1,883.01	4,203.09	5,199,15	3,533.82	1,454.73	
kWh Cost for All Elec Cooling	3,804.41	2,706.77	5,021.39	3,200.79	2,309.75	803.57	387.59	928.07	1,004.46	1,883.01	4,203.09	5,199.15	3,533,82	1,454.73	
kW Cost kWh Co for All Elec for All E Cooling Cooling	\$6,881.84	\$3,053.82	\$0,00	\$0.00	\$0.00	\$0.00	\$0.00	\$1,720.46	\$0.00	\$0.00	\$0,00	\$0.00	\$0.00	\$0.00	
kW fdr All Electric Cooling	160							160	142	121	5	06	92	2	
kW/ton for All Elec Cool	0.640	0.631	0.605	0.594	0.600	0.608	0.640	0.640	0.631	0.605	0.594	0.600	0.608	0.640	

Total Electric Total Electric	Costs WhenElectricPr Savings w/	ovides Absorption Remaining Cooling	\$10,686.25 0 \$10,686.25	\$5,021.39 \$5,021.39	0 \$3,200.79	0 \$2,309.75	0 \$803.57	0 \$387.59	0 \$2,648.53	0 \$1,004.46	0 \$1,883,01	0 \$4,203.09	0 \$5,199.15	0 \$3,533.82	0 \$1,454.73
										-					
Cost for kWh for	Remaining Electric	Cooling	00	0	0	0	0	>			0	0	0	0	
kWh for	Remaining	Elec Cóöl	00		0	0,	00	>	0	0	0	0 (0	0	0
Cost for kW for	Remaining Electric	Cooling	00	0	0	-	-	•	0	-	-	-	<i>,</i>	> (•
kW for	Remaining	Elec Cool	00	0	0 (0	-	>	0 (-	> 0	0	> (> (0
kW/ton for	Remaining	Elec Cool													

Thermal Energy Required (MBtu) 5802.874	
Residual "Waste"Heat Energy For Thermal Use (MBtu) 1,813.581 502.424 1,268.545 1,069.083 1,004.621 458.458 282.802 6,399,513	338.273 196.259 500.741 1,477.748 2,380.389 2,122.253 1,117.300
Residual "Waste" Heat for Thermal Use (Btu/hr) 1,091,204 1,308,395 1,517,398 1,724,327 1,943,174 2,152,386 2,152,386	1,091,204 1,308,395 1,517,398 1,724,327 1,943,174 2,152,386 2,318,050
"Waste" Heat For Chiller Operation (Btu/hr) 1,938,796 1,721,605 1,512,602 1,305,673 1,086,826 877,614 711,950	1,938,796 1,721,605 1,512,602 1,305,673 1,086,826 877,614 711,950
Total "Waste" Heat From Power Produc- tion (Btu/hr) 3,030,000 3,030,000 3,030,000 3,030,000 3,030,000 3,030,000	3,030,000 3,030,000 3,030,000 3,030,000 3,030,000

					- ,													
Total Elec	Energy	Savings(%)	945 138 12		Cost =	Costs=												
Total	Demand	Savinds(\$)	232.056		\$31,748.63 Recurring O&M Cost =	\$51,793.08 YearlyOne-Time Costs=	Service description of the service o											
Total En-	ergy Cost	Savings(\$)	\$70,064.60	\$60,516.27	\$31,748.63	\$51,793.08	\$49,942.10	\$47.243.02	\$29,980.19	\$341,287.90	\$37.675.32	\$27,170.87	\$29,571.83	\$36,776.94	\$42,286.21	\$39,319.28	\$15,907.27	
Avoided	Nat'l Gas	Cost (\$)	6,394,03	1,771.37	4,472.43	3,769,20	2.809.27	1.616.36	997.06		1,691.37	981.30	2.503.71	7.388.74	11.901.94	10.611.26	5,586.50	
Avoided Natural Gas	Consumption (MBtu)		2,325.103	644.133	1,626,339	1,370.619	1,021,552	587.767	362.567	7,938.080	433.684	251.614	641.976	1,894.549	3,051.780	2,720,837	1,432,436	,
Avoided	Boiler Gas	UseBtu/hr	1,398,979	1,677,429	1,945,382	2,210,675	2,491,249	2,759,470	2,971,859		1,398,979	1,677,429	1,945,382	2,210,675	2,491,249	2,759,470	2,971,859	
Avoided	Roller	Btu/hr	1,091,204	1,308,395	1,517,398	1,724,327	1,943,174	2,152,386	2,318,050		1,091,204	1,308,395	1,517,398	1,724,327	1,943,174	2,152,386	2,318,050	

Total	Per Engineering Controls
Gas	Three (3) Caterpillar G35
Costs (\$)	2,460 KWe total; 3,030,0
607,196.76	Feedwater unit adds \$

Per Engineering Controls: Three (3) Caterpillar G3516 --2,460 KWe total; 3,030,000 Btu/hr total; \$232,920.00 Feedwater unit adds -- \$23,920.00

Recurring O&M Cost ≈	\$152,973.0	8								
Yearly One-Time Costs =	Year 1	Year 2 \$50,802	Year 3 \$47,391	Year 4 \$167,850	Year 5 \$46,374	Year 6 \$50,172	Year 7 \$166,626	Year 8 \$53,994	Year 9 \$54,345	Xear 10 \$169,917
	Year 11	Year 12 \$54 552	Year 13	Year 14 \$0	Year 15	Year 16 \$217.428	Year 17 \$0	Year 18 \$57.636	Year 19 \$48.750	Year 20 \$165,360

		Avoided	KWhUtility	Cost (\$)	45,136,30	45.136.30	45.136.30	45,136.18	45,136,18	45,136,18	45,286.89		43,523.61	43,523.49	43,523.49	43.523.49	43,523.49	43.523.49	43,595.08
	l Reg't))	UtilityCost	(\$/KWh)	(S)	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496		\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472
	Chiller Reg't + Thermal	Avoided	KW Utility	Cost	16,322.70	16,322.70	16,322.70	8,161.35	8,161.35	8,161.35	0.00		16,322.70	10,892.67	10,892,67	10,892.67	10,892,67	8,161.33	0.00
pacity	eat - Chiller Re	UtilityCost	(\$/KW)	•	10.75	10.75	10.75	10.75	10.75	10.75	10.75		10.75	10.75	10.75	10.75	10.75	10.75	10.75
ed Engine-Generator with 100-Ton Capacity	Absorption Chiller (Waste Heat ~ (Electrical Energy	Produced (kWh)		909,272	909,272	909,272	909,270	909,270	909,270	912,306		922,934	922,932	922,932	922,932	922,932	922,932	924,450
dine-Generato	ed Absorption	Total	Hours		288	599	299	299	299	299	601		809	809 9	809	809	809	909	609
	ct Indirect-Fired	Pawer	Produced	(KW)	1,517,98	1,517.98	1,517.98	758.99	758.99	758.99	0.00	Nov-Apr	1,517,98	1,013.00	1,013.00	1,013.00	1,013.00	758.99	0.00
Option #3a - Natural Gas-Fire	Single-Effect Indire	# Hours	at Load	May-Oct	479	384	836	620	517	213	122	⁸	123	150	330	857	1225	986	485
Option #3	7	Cooling	Load	(Lous)	250	225	200	175	150	125	\$		250	225	200	175	150	125	9

Total Electrical Cost	Natural Gas to Pro-	Natural Gas Con-	Natural Gas Bato	Cost of	Cooling Produced
ator Power Produced	_	Electric Power(MBtu)	(\$/MBtu)	14at 1 Gas (\$)	Tions Waste near
61459.00	15,866,520	9504,045	2.75	\$26,136,13	100
61459.00	15,866,520	9504,045	2.75	\$26,136,13	100
61459.00	15,866,520	9504,045	2.75	\$26,136.13	100
53297.53	15,866,520	9504.045	2.75	\$26,136.13	100
53297.53	15,866,520	9504,045	2.75	\$26,136.13	100
53297.53	15,866,520	9504.045	2.75	\$26,136.13	001
45286.89	15,866,520	9535.779	2.75	\$26,223,39	100
			•		
59846.31	15,866,520	9646.844	3.90	\$37,622.69	100
54416.16	15,866,520	9646.844	3.90	\$37,622.69	100
54416.16	15,866,520	9646,844	3.90	\$37,622,69	100
54416.16	15,866,520	9646.844	3.90	\$37,622.69	100
54416.16	15,866,520	9646,844	3.90	\$37,622.69	100
51684.82	15,866,520	9646,844	3.90	\$37,622.69	100
43595.08	15,866,520	9662.711	3.90	\$37,684,57	100

kW/ton for	kW for All	kW Cost	Cost	Total Cost #/	ton-hr		Bhi/hr for		Remaining
All Elec Cool	Electric Cooling	for All Elec for All Cooling	I Elec	for All Elec for Abs Cooling Tons	for Abs Tons		Abs Tons	Abs Tons	Tons of
0.640	160	6,881.84	304.41	10,686.25		7	1,679,824	804.636	150
0.631	142	3,053,82	77,907	5,760.59		2	1,696,108	651,305	125
0.605	121	0.00	21.39	5,021.39		6	1.712,391	1431.559	100
0.594	104	0.00	200.79	3,200.79		93	1,728,674	1071.778	75
0.600	06	0.00	309.75	2,309.75		60	1,712,391	885.306	20
0.608	9/	0.00	03.57	803.57		6	1,712,391	364.739	52
0.640		0.00	87.59	387.59	17,74	74	1,679,824	204.939	0
0.640	160	3,440.92	928.07	4,368.99	17.7	74	1,679,824		150
0.631	142	0.00	1004.46	1,004.46	17,9	22	1,696,108		125
0.605	121	0.00	1883.01	1,883.01	18.(<u>6</u>	1,712,391		100
0.594	104	0.00	4203.09	4,203.09	18.26	9	1,728,674	1481.474	75
0.600	6	0.00	5199.15	5,199.15	18.	22	1,712,391		20
0.608	92	0.00	3533.82	3,533.82	18.0	<u> </u>	1,712,391		52
0.640	64	0.00	1454.73	1,454.73	17.7	74	1,679,824		0

kW/ton for	kW for	Cost for kW for	kWh for	Cost for kWh for	Total Electric Costs	Total Electric
Remaining	Remaining	Remaining Electric	Remaining	Remaining Electric	WhenElectricProvides	Savings w/ Absorption
Elec Cool	Elec Cool	Cooling	Elec Cool	Cooling	Remaining Cooling	Coolina
0.60	5 90.75	3903,295	43469	2157.81	6061.11	4,625.14
0.615	5 76.88	1653.255	29520	1465.37	3118.63	2,641.96
0.65	65.00	0	54340	2697.44	2697.44	2,323,95
0.71	3 53.48	0	33155	1645.79	1645.79	1,555.00
0.68	1 34.05	0	17604	873.86	873,86	1,435.89
0.79	9 19.98		4255	211.20	211.20	592.37
	0	0	0	0	0	387.59
0.60		1951.65	11162	526.39	2478.04	1 890 95
0.615	5 76.88	0	11531	543.79	543.79	460.67
0.65		0	21450	1011.54	1011.54	871.48
0.71		0	45828	2161.15	2161.15	2,041.93
0.68		0	41711	1967.01	1967.01	3,232.14
0.79		0	19695	928.79	928.79	2,605.03
		0	0	0	0	1,454.73

Thermal Energy Required (MBtu) 5,802.87	
Residual "Waste"Heat Energy Actually Used for Thermal (MRtu) 2,507.68 0.00 787.51 2,507.68 0.00 6.00	0.00 0.00 0.00 4,069.96 4,004.08 0.00
Residual "Waste" Heat for Thermal Use (Btw/hr) 4,093,496 4,060,929 4,044,646 4,060,929 4,060,929 4,093,496	4,093,496 4,077,212 4,060,929 4,060,929 4,060,929 4,093,496
"Waste" Heat For Chiller Operation (Btu/hr) 1,679,824 1,696,108 1,712,391 1,712,391 1,712,391 1,712,391	1,679,824 1,696,108 1,712,391 1,728,674 1,712,391 1,679,824
Total "Waste" Heat From Power Produc- tion (Btu/hr) 5,773,320 5,773,320 5,773,320 5,773,320 5,773,320 5,773,320	5,773,320 5,773,320 5,773,320 5,773,320 5,773,320 5,773,320

Total Elec Energy Savings(\$)	641,090.96	Cost =	Costs=										
Total Demand Savings(\$)	\$48,789.20 147,375 641,0 \$37,964.84	Recurring O&M	YearlyOne-Time										
Total En- ergy Cost Savings(\$)	\$48,789.20 \$37,964.84	\$40,423.30	\$37,557.59	0E.185,597.30	\$27,753.78	\$221,086.01	\$24,114.57	\$17,254.14	\$17,664.95	\$18,835.40	\$40,375.39	\$36,687.54	\$7,365,23
Avoided Nat'l Gas Cost (\$)	8,841.18 0.00	2,776.48	8,841.18	>	0		0	0	0	0	20349.77	20020,38	0
Avoided Avoided Natural Gas Boiler Gas Consumption (MBtu) JseBtu/hr	3214.9749 0	1009.6282	3214.9749	>	0	7439.578	0	0	0	0	5,217.891	5,133.431	0
Avoided Boiler Gas UseBtu/hr	5,185,443 0	1,207,68	5,185,443	> '	0		0	0	0	0	4,259,503	5,206,319	0
Avoided Boiler Btu/hr	4,044,646 0	941,998	4,044,646	> (0		0	0	0	0	3,322,412 4,259,50	4,060,929	0

Per Engineering Controls:	1,640 Kwe; 5,773,320 Btu/hr; \$106,920.00
Two (2) Caterpillar G3516	Feedwater unit adds \$19,340.00
Total	Costs (\$)
Gas	385,631.87

		~	70
		Year 9 \$36,230	Year 19 \$32,500
		Year 8 \$35,996	Year 18 \$38,424
		Year Z \$111,084	Year 17 \$0
,920.00		Year 6 \$33,448	Year 16 \$144,952
nr; \$106 ,340.00		Year 5 \$30,916	Year 15 \$37,054
120 Btu/1 Is \$19		Year 4 \$111,900	Year 14 \$0
1,640 Kwe; 5,773,320 Btu/hr; \$106,920.0 Feedwater unit adds \$19,340.00		Year 3 \$31,594	Year 13 \$108,112
540 Kwe edwater		Year 2 \$33,868	Year 12 \$36,368
, H	\$101,982	Year 1 \$0	Year 11 \$33,172
Costs (\$) 385,631.87	Recurring O&M Costs =	Yearly One-Time Costs =	

Year 10 \$113,278 Year 20 \$110,240

		>		·	,					. ~	,		~	~	· c^	· e^	m	m	₹
	Avoided	KWhUtilit	Cost (\$)	90272.61	90272.61	67705.17	90272.66	90272.66	9027266	90574 08			87047.28	87047.28	87047.28	87047.28	87047.28	87047.28	87190.44
((),0	HilityCost	/kWh)		0.0496	0.0496	0.0496	0.0496	0.0496	0.0496	0.0496	10年に大い		0.0472	0.0472	0.0472	0.0472	0.0472	0.0472	0.0472
i i	3	છ	t (S)	49	₩	₩	₩	₩	₩	₩.	•		49	₩	∙ ₩	∙ ₩	₩	₩	₩
ëd't + Therm	Avoided	KW Utility	Cos	32,645.40	32,645,40	24,484,31	24,484.31	24,484.31	24.484.31	00.0)		32,645.42	22,527.28	21,774.58	21,774.58	21,774.58	21,774.58	0.00
acity at ~ Chiller R	UtilityCost	(\$/KW)	·	10.75	10.75	10.75	10.75	10.75	10.75	10.75			10.75	10.75	10.75	10.75	10.75	10.75	10.75
Fired Engine-Generator with 100-Ton Capacity Idirect-Fired Absorption Chiller (Waste Heat ~ Chiller Red't + Thermal Red't)	Electrical Energy	Produced (KWh)	•	1,818,545	1,818,545	1,363,923	1,818,546	1,818,546	1,818,546	1,824,618			1,845,870	1,845,870	1,845,870	1,845,870	1,845,870	1,845,870	1,848,906
ne-Generator A Absorption	Total	Hours		288	299	299	299	299	288	601			809	909	909	809	809	809	609
as-Fired Engl ct Indirect-Fire	Power	Produced	(KW)	3,035.97	3,035.97	2,277.00	2,277.00	2,277.00	2,277.00	0.00		/-Apr	3,035.97	2,095.00	2,025.00	2,025.00	2,025.00	2,025.00	0.0
Option #3b - Natural Gas- Double-Effect Ir	g # Hours Pc	at Load	May-Oct	479	384 44	836	620	517	213	122	3171	ÓN	123	150	330	857	1225	986	482
Option #3	Cooling	Load	(Lons)	250	225	200	175	150	125	100			250	225	200	175	150	125 25	001

Total Electrical Cost Savings From Gener- ator Power Produced	Natural Gas to Produce Electricity (Btu/hr)	Natural Gas Consumption to Generate Electric Power(MBtu)	Natural Gas Rate	Cost of Nat'l Gas	Cooling Produced From Waste Heat
122,918.01	31,733,040	19008.091	2.75	\$52,272.25	
122,918.01	31,733,040	19008.091	2.75	\$52,272.25	100
92,189.48	31,733,040	19008,091	2.75	\$52,272,25	100
114,756.97	31,733,040	19008.091	2.75	\$52,272,25	100
114,756.97	31,733,040	19008.091	2.75	\$52,272,25	100
114,756.97	31,733,040	19008.091	2.75	\$52,272,25	90
90,574.08	31,733,040	19071.557	2.75	\$52,446.78	00
119,692.70	31,733,040	19293.688	3.90	\$75.245.38	100
109,574.56	31,733,040	19293,688	3,90	\$75.245.38	001
108,821.86	31,733,040	19293.688	3.90	\$75.245.38	100
108,821.86	31,733,040	19293.688	3.90	\$75,245.38	001
108,821.86	31,733,040	19293,688	3.90	\$75.245.38	100
108,821.86	31,733,040	19293.688	3.90	\$75,245.38	9
87,190.44	31,733,040	19325.421	3.90	\$75,369.14	100
				•	

kW/ton for	Remaining Flee Cool								0.605	0.615	0.650	0.713	0.681	0.799	
Remaining	Tons of Flec Cool	150	125	100	75	20	52	0	150	125	100	75	20	25	0
MBtu for	AĎS Tơns	369,855	299.378	658.030	492.656	406.940	167.656	94.201	94.973						
Btu/hr for	Abs Tons	772140.5	779629	787117.4	794605.8	787117.4	787117.4	772140.5	772140.5	779629	787117.4	794605.8	787117.4	787117.4	772140.5
#/ton-hr	for Abs Tons	8.83	8.92	9.01	<u>60</u> .6	9.01	9.01	8.83							8.83
Total Cost	for All Elec Cooling	10,686.25	5,760.59	5,021.39	3,200.79	2,309.75	803.57	387.59	\$2,648.53	\$1,810.93	\$1,883.01	\$4,203.09	\$5,199.15	\$3,533.82	\$1,454.73
kWh Cost	for All Elec Cooling	3804.41	2706.77	5021,39	3200,79	2309.75	803.57	387.59	928.07			-			
kW Cost	for All Elec for All El Cooling Cooling	\$6,881.84	\$3,053,82	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$1,720.46	\$806.47	\$0.00	\$0,00	80.00	\$0.00	\$0.00
kW for All	Electric Cooling 1									75					
			142						160	142	121	104	6	9/	2
kW/toh for	All Elec Cool	0.640	0.631	0.605	0.594	0.600	0.608	0.640	0.640	0.631	0.605	0.594	0.600	0.608	0.640

·	
Total Electric Cost Savings w/ Absorption Cooling \$4,625.14 \$2,641.96 \$2,323.95 \$1,555.00 \$1,435.89 \$592.37 \$387.59	\$170.49 \$1,267.14 \$871.48 \$2,041.93 \$3,232.14 \$2,605.03 \$1 454 73
Total Electric Costs WhenElectricProvides Remaining Cooling 6061.11 3118.63 2697.44 1645.79 873.86 211.20	2478.04 543.79 1011.54 2161.15 1967.01 928.79
Cost for kWh for Remaining Electric Cooling 2157.81 1465.37 2697.44 1645.79 873.86 211.20	526.39 543.79 1011.54 2161.15 1967.01 928.79
KWh for Remaining Elec Cool 43469 29520 54340 33155 17604 4255	11162 11531 21450 45828 41711 19695
Cost for kW for Remaining Electric Cooling 3903.295 1653.255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1951.65 0 -8.12 0 0 0 0
kW for Remaining Elec Cool 90.75 76.88 65.00 53.48 34.05 19.98	90.75 76.88 65.00 53.48 34.05 19.98

Thermal Energy Required (MBtu) 5802.874	
Residual "Waste" Heat Energy Actually Used for Thermal (MBtu) 0 1251.982 2535.419 2012.144 0 0 5799.546	0 489.0557 1073.451 2781.303 3725.591 0
Residual "Waste" Heat for Thermal Use (Btu/hr) 3,267,859 3,260,371 3,252,883 3,252,883 3,252,883 3,252,883	3,267,859 3,260,371 3,252,883 3,245,394 3,252,883 3,252,883 3,267,859
"Waste" Heat For Chiller Operation (Btu/hr) 772,140.5 779,629.0 787,117.4 787,117.4 787,117.4 772,140.5	772,140.5 779,629.0 787,117.4 794,605.8 787,117.4 787,117.4
Total "Waste" Heat From Power Produc- tion (Btu/hr) 4,040,000 4,040,000 4,040,000 4,040,000 4,040,000 4,040,000	4,040,000 4,040,000 4,040,000 4,040,000 4,040,000 4,040,000

8073.845

Total Elec	Energy	Savings (\$)	1 239 367 00					•				•		,					
Total					Recurring O&M Cost =	YeartyOne-Time Costs=													
Total En-	Energy Cost	Savings(\$)	\$75,270.90	\$77.701.76	\$51,180,15	\$71,133.82	\$63,920.62	\$63,077.09	\$38,514.88	\$440,799.22		\$44,617.80	\$38,041.59	\$39.815.21	\$49,524.92	\$55,436.57	£36 181 50	\$13.276.03	
Avoided	Nat'l Gas	Cost (S)	0	4414.041	8938.977	7094.099	•	0	0		•	o. O	2445.278	5367.256	13906.51	18627.96	0	0	
Avoided Natural Gas	Consumption (MBtu)		0	1605.1057	3250.5372	2579.6723			0	7435.315		-	626.994	1376.220	3565.773	4776.399	0	0	
Avoided	Boiler Gas	UseBtu/hr	o	4179963	3888202	4160762	0	0	0		•	>	4179963	4170362	4160762	3899101	0	0	
_	Boiler				3,032,798			0	0		ć	3	3,260,371	3,252,883	3,245,394	3,041,299	0	0	

	osts (\$)
Total	Cc
Gas	832,127.61

Per Engineering Controls: Four (4) Caterpillar G-3516 --3,280 Kwe total; 4,040,000 Btu/hr total; \$312,620.00 Feedwater unit adds -- \$25,800.00

 Recurring O&M Costs =
 \$203,964

 Yearly One-Time Costs =
 Year.1
 Year.2
 Year.3
 Year.4
 Year.5
 Year.6
 Year.7
 Year.7
 Year.8
 \$53,188
 \$523,800
 \$61,832
 \$66,896
 \$222,168
 \$77,9

Year 10 \$226,556 **Year 20** \$220,480 **Year 9** \$72,460 Year 19 \$65,000 **Year 8** \$71,992 **Year 18** \$76,848 Year Z \$222,168 Year 17 \$0 **Year 16** \$289,904 Year 15 \$74,108 **Year 5** \$61,832 Year 14 \$0 Year 13 \$216,224 Year 12 \$72,736 Year 2 \$67,736 **Year 11** \$66,344

		Avoided	KWhUtility	Cost (\$)	67,704.45	67,704.45	45,136.30	67,704.57	67,704.57	67,704.57	67,930.63		65285.41	65285.53	65285,53	65285.53	65285.53	65285.53	65392.91
	Thermal Reg't))	UtilityCost	(\$/KWh)	S	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496	\$ 0.0496		\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0.0472	\$ 0,0472
		Avoided	KW CEIITY	Cost (\$	24484.05	24484.05	16322.70	16322.70	16322.70	16322.70	0.00		24484.05	16333.62	16333.62	16333.62	16333.62	16322.70	0.00
on Capacity	aste Heat - Chil	UtilityCost	(\$/KA)		10.75	10.75	10.75	10.75	10.75	10.75	10.75		10.75	10.75	10.75	10,75	10.75	10.75	10.75
Fired Engine-Generator with 250-Ton Capacity	direct-Fired Absorption Chiller (Waste Heat - Chiller Reg't + 1	Electrical Energy	Produced (kWh)		1,363,909	1,363,909	909,272	1,363,911	1,363,911	1,363,911	1,368,465		1,384,401	1,384,404	1,384,404	1,384,404	1,384,404	1,384,404	1,386,681
ngine-Ge	ired Abs	Total	Hours	,	599	2 89	230	299	299	236	601		909	809	809	809	809	809	609
Gas-Fired E	ct Indirect-F	Power	Produced	(KW)	2,276.98	2,276.98	1,517.98	1,517.98	1,517.98	1,517.98	0.00	-Apr	2,276.98	1,519,00	1,519.00	1,519.00	1,519.00	1,517,98	0.00
tion #3c - Natural Gas-	Single-Effect in	# Hours	at Load	May-Oct	479	384	836	620	517	213	122	Nov-Apr	123	150	330	857	1225	986	482
otion #3c	4	Sooling	Load	Tons)	250	225	200	175	150	125	100		220	225	200	175	150	125	100

Cooling Produced From Waste Heat (Torrs) 250 225 200 175 150 125	250 225 200 175 125 100
Cost of Nat'l Gas (\$) \$39,204.19 \$39,204.19 \$39,204.19 \$39,204.19 \$39,204.19 \$39,204.19	\$56,434.04 \$56,434.04 \$56,434.04 \$56,434.04 \$56,434.04 \$56,434.04 \$56,434.04
Natural Gas Rate (\$/MBtu) 2.75 2.75 2.75 2.75 2.75 2.75	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.
Natural Gas Consumption to Generate Electric Power(MBtu) 14,256.068 14,256.068 14,256.068 14,256.068 14,256.068 14,256.068 14,303,668	14,470.266 14,470.266 14,470.266 14,470.266 14,470.266 14,494,066
Natural Gas to Produce Electricity (Btu/hr) 23,799,780 23,799,780 23,799,780 23,799,780	23,799,780 23,799,780 23,799,780 23,799,780 23,799,780 23,799,780
Total Electrical Cost Savings From Gener- ator Power Produced 92,188.50 61,459.00 84,027.27 84,027.27 84,027.27	89,769.46 81,619.15 81,619.15 81,619.15 81,619.15 81,608.23 65,392.91

Remaining Tons of	0	0	0	0	0	0	0	0	0	0	0	0		0
MBtu for Abs Tons	1,984.155	1,412.408	2,701.569	1,729,557	1,200,392	404,959	182.991	509.501	551.722	1,066.409	2,390,694	2.844.256	1.874.597	722.964
Btu/hr for Abs Tons	4,142,286	3,678,145	3,231,542	2,789,609	2,321,842	1,901,214	1,499,926	4,142,286	3,678,145	3,231,542	2,789,609	2,321,842	1.901.214	1,499,926
#/ton-hr for Abs Tons	17.48	17.24	17.04	16.82	16.33	16.04	15.82	17.48	17.24	17.04	16.82	16.33	16.04	15.82
Total Cost for All Elec Cooling	10,686.25	5,760.59	5,021.39	3,200.79	2,309.75	803.57	387.59	\$2,648.53	\$1,004.46	\$1,883.01	\$4,203.09	\$5,199.15	\$3,533.82	\$1,454.73
kWh Cost for All Elec Cooling	3,804.41	2,706.77	5,021.39	3,200.79	2,309.75	803.57	387.59	928.07	1004.46	1883.01	4203.09	5199.15	3533.82	1454.73
kW Cöst k for All Elec f	\$	\$3,053.82	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$1,720.46	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
kW for All Electric Cooling	160	142	121	104	06	92	64	160	142	121	104	06	92	64
kW/ton for All Elec Cool	0.640	0.631	0.605	0.594	0.600	0.608	0.640	0.640	0.631	0.605	0.594	0.600	0.608	0.640

-	
Total Electric Cost Savings w/ Absorption Cooling 10,686.25 5,760.59 5,021.39 3,200.79 2,309.75 803.57	\$2,648.53 \$1,004.46 \$1,883.01 \$4,203.09 \$5,199.15 \$3,533.82 \$1,454.73
Total Electric Costs WhenElectricProvides Remaining Cooling 0 0 0 0 0 0 0 0 0	000000
Cost for kWh for Remaining Electric Cooling 0 0 0 0 0	000000
kWh for Remaining Elec Cool 0 0 0 0 0 0	000000
Cost for kW for Remaining Electric Cooling 0 0 0 0 0	000000
kW for Remaining Elec Cool 0 0 0 0 0 0	000000
on for aining Cool	

Thermal Energy	Required (MBtu)	•								2.87					•	<i>;</i>	
Therm	Requir	-								5,802.87							
																	:
Residual "Waste" Heat	Energy For Thermal	Use (MBtu)	2.163.975	1.913.025	4.538.174	3,639,630	3,276.818	1,439.617	873.527	15,531.62	555.6764	747.2752	1791.384	5030.908	7764.22	6664.143	3451.146
	Jse									-		. •		ě			
Residual "Waste"	Heat for Thermal Use	(Btu/hr)	4,517,694	4,981,835	5,428,438	5,870,372	6,338,138	6,758,766	7,160,054		4,517,694	4,981,835	5,428,438	5,870,372	6,338,138	6,758,766	7,160,054
"Waste" Heat For	Chiller Operation	(Btu/hr)	4,142,286	3,678,145	3,231,542	2,789,609	2,321,842	1,901,214	1,499,926		4,142,286	3,678,145	3,231,542	2,789,609	2,321,842	1,901,214	1,499,926
otal "Waste" Heat	rom Power Produc-	on (Btu/hr)	8,659,980	8,659,980	8,659,980	8,659,980	8,659,980	8,659,980	8,659,980	<i>i</i> .	8,659,980	8,659,980	8,659,980	8,659,980	8,659,980	8,659,980	8,659,980

3073.84

Total Elec Energy Savinos(\$)	945,136,12	Costs=					
d Total En- Total Total Elecase Bengal Elecase Demand Energy Savings(\$) Savings(\$)	232,056	Recurring O&M (YearlyOne-Time					
Total En- ergy Cost Savings(\$)	\$66,624.97	\$30,076.17 \$50,988.02	\$30,023.22 \$48,502.23 \$32,062.88	\$339,917.03			\$34,728.73
Avoided Nat'l Gas Cost (\$)	2854.399	2799.973 2964.143	2875.573 3079.741	2778.382	3736.376 8956.922	5700.002	6020.715
Avoided Natural Gas Consumption (MBtu)		1018.172 1077.87			958.04515 2296.6467	1461.539 1954.128	1543.773 1424.546
Avoided Boiler Gas UseBtu/hr	2,242,854 2,741,135	1,217,909 1,738,500	4,909,216 9,179,557	5.791.915	6,386,968 6,959,535	1,705,413	1,565,693
Avoided Boiler Btu/hr	1,749,426 2,138,086	949,969 1,356,030	7,363,720 3,829,188 7,160,054	4517694	4981834.8 5428437.6	1,330,222	1,221,240

	osts (\$) 1.22
Total	C
Gas	608,863

Per Engineering Controls: Three (3) Caterpillar G-3516 --2,460 KWe total; 8,659,980 Btu/hr total; \$154,080.00 Feedwater unit adds -- \$22,840.00

Recurring O&M Costs = \$152,973

Year 20 \$165,360 **Year 10** \$169,917 Year 9 \$54,345 **Year 19** \$48,750 **Year 8** \$53,994 **Year.18** \$57,636 **Year 7** \$166,626 Year 17 \$0 **Year 16** \$217,428 **Year 6** \$50,172 **Year.15** \$55,581 **Year 4 Year 5** \$167,850 \$46,374 Year 14 \$0 Year 13 \$162,168 **Year 3** \$47,391 **Year 2** \$50,802 Year 12 \$54,552 **Year 11** \$49,758 Year 1 \$0 Yearly One-Time Costs =

Cooling # Hours Load at Load	Power Produced	Total Hours	Cooling # Hours Power Total Electrical Energy UtilityCo Avoided UtilityCost st Load at Load Produced Hours Produced (kWh) (\$/kW) kW Utility (\$/kWh)	UtilityCo st (\$/kW)	Avoided KW Utility	UtilityCost (\$/kWh)	
479 200 200 200 200	(KW) 4,553.95	299	2,727,817	10.75	Cost (\$)		Cost (\$)
384 36 36	4,553.95 3,794.96	200 200 200	2,727,817 2,273,181	10.75	48,968.10	\$ 0.0496 \$ 0.0496	135,408.91
620	3,794.96	599	2,727,816	10.75	40,806.75	\$ 0.0496	135,408.85
517	3,036.00	299	2,727,816	10.75	32,645.74	\$ 0.0496	135,408.85
213	3,036.00	299	2,727,816	10.75	32,645.74	\$ 0.0496	135,408.85
122	0.0	601	2,736,924	10.75	0.00	\$ 0.0496	135,860.97
Nov-	v-Apr		:				
123	4,553.95	809	2,768,803	10.75	48,968.10	\$ 0.0472	130,570.83
150	3,038.0	809	2,768,802	10.75	32,667.25	\$ 0.0472	130,570.77
330	3,038.0	809	2,768,802	10.75	32,667.25	\$ 0.0472	130,570.77
857	3,038.0	608	2,768,802	10.75	32,667.25	\$ 0.0472	130,570.77
1225	3,038.0	809	2,768,802	10.75	32,667.25	\$ 0.0472	130,570.77
986	3,036.0	909	2,768,802	10.75	32,645.74	\$ 0.0472	130,570.77
482	0.0	609	2,773,356	10.75	0.00	\$ 0.0472	130,785.52

250 225 200 175 150
\$112,868.08 \$112,868.08 \$112,868.08 \$112,868.08 \$112,868.08 \$112,868.08 \$112,868.08
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28,940.532 28,940.532 28,940.532 28,940.532 28,940.532 28,986.132
47,599,560 47,599,560 47,599,560 47,599,560 47,599,560 47,599,560
179,538.93 163,238.02 163,238.02 163,238.02 163,238.02 163,216.51

Remaining Tons of Elec Cool	0			0	0	0	0	0	0	0	0	0	0
MBtu for Abs Tons	928.683	561,096 4,064,595	809 517	561,889	186.932	86.858					1,331.361		
Btu/hr for Abs Tons	1,938,796	. •		•			1,938,796	1,721,605	1,512,602	1,305,673	1,086,826	877,614	711,950
#/ton-hr for Abs Tons	8.87	0.70 0.73	ο. α Ο 2	8 20	8.03	8.15	8.87	8.75	8.65	8.54	8.29	8.03	8.15
Total Cost #/ton-l for All Elec for Ab Cooling Tons	10,686.25	5,760.59	3,021.39	2.309.75	803.57	387.59	2,648.53	1,004.46	1,883.01	4,203.09	5,199.15	3,533.82	1,454.73
kWh Cost for All Elec Cooling							928.07	1,004.46	1,883.01	4,203.09	5,199.15	3,533,82	1,454.73
kW Cost k for All Elec f Cooling (\$6,881.84	43,003,82	90.00	\$0.00	\$0.00	\$0.00	\$1,720.46	\$0.00	\$0.00	\$0.00	\$0.00	\$0,00	\$0.00
kW for All Electric Cooling	160	742	127	6	92	64	160	142	121	104	06	76	2
kW/ton for All Elec Cool	0.640	0.631	0.003	0.600	0.608	0.640	0.640	0.631	0.605	0.594	0.600	0.608	0.640

Total Electric Cost Savings w/ Absorption Cooling \$10,686.25 \$5,760.59 \$5,021.39 \$3,200.79 \$2,309.75 \$803.57 \$387.59	\$2,648.53 \$1,004.46 \$1,883.01 \$4,203.09 \$5,199.15 \$3,533.82 \$1,454.73
Total Electric Costs WhenElectricProvides Remaining Cooling 0 0 0 0 0 0 0 0	000000
Cost for kWh for Remaining Electric Cooling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000
kWh for Remaining Elec Cool 0 0 0 0 0 0 0	000000
Cost for kW for Remaining Electric Cooling 0 0 0 0 0 0 0	000000
kW for Remaining Elec Cool 0 0 0 0 0 0	000000

Thermał Energy Required (MBtu)	5802.874
Residual "Waste"Heat Energy For Thermal Use (MBtu) 1,974.057 1,665.944 3,801.625 2,947.683 2,571.131 1,103.848 652.462	14716.749 506.9081 650.7593 1500.641 4074.458 6092.139 5109.833 2577.76
Residual "Waste" Heat for Thermal Use (Btu/hr) 4,121,204 4,338,395 4,547,398 4,754,327 4,973,174 5,182,386 5,348,050	4,121,204 4,338,395 4,547,398 4,754,327 4,973,174 5,182,386 5,348,050
"Waste" Heat For Chiller Operation (Btu/hr) 1,938,796 1,721,605 1,512,602 1,305,673 1,086,826 877,614 711,950	1,938,796 1,721,605 1,512,602 1,305,673 1,086,826 877,614
Total "Waste" Heat From Power Produc- tion (Btu/hr) 6,060,000 6,060,000 6,060,000 6,060,000 6,060,000	6,060,000 6,060,000 6,060,000 6,060,000 6,060,000 6,060,000

8073.845

Total Elec Energy	6,397	, 11	.		,							
Tota En	1,87	O&M Cost :))									
Total Demand	468,780	Recurring (٠.
Total En- Total Elecergy Cost Demand Energy Savings(\$)	\$119,736.91 \$114,199.99	\$85,639.59	\$95,282.50	\$91,820.29 \$58,419.07	\$670,095.63	\$70,549.38	\$52,874.40	\$54,392.18	\$63,143.03	\$67,819.10	\$63,742.26	\$24 006 K3
Avoided Nat'l Gas	3082.027	5379.071 3989.263	3326.53	840.686	V.	1230	1500	2139.225	8570	12250	0986	ARON
Avoided Natural Gas Consumption (MBtu)		1,956.026 1,450.641				315.38462	384.61538	548.51923	2197.4359	3141.0256	2528.2051	1235 8974
Avoided Boiler Gas	2339744 2339744	2339744	2339744	2505771	•	2564103	2564103	1662179	2564103	2564103	2564103	2564103
Avoided Boiler Rtu/hr	1,825,000	1,825,000 1,825,000	1,825,000	1,954,501	12,904,501	2,000,000	2,000,000	1,296,500	2,000,000	2,000,000	2,000,000	000 000 6

Total	5

Costs (\$)

1,278,555

Per Engineering Controls: Six (6) Caterpillar G-3516 --4,920 KWe total; 6,060,000 Btu/hr total; \$461,220.00 Feedwater unit adds -- \$30,460.00

\$305,946 Yearly One-Time Costs = Recurring O&M Costs =

Year 7 Year 8 Year 9 \$333,252 \$107,988 \$108,690 **Year 6** \$100,344 **Year 5** \$92,748 \$335,700 Year.2 Year.3 \$101,604 \$94,782 Year 1 \$0

Year 10 \$309,834

Year 20 \$330,720 **Year. 19** \$97,500 **Year 18** \$115,272 **Year 11** \$99,516

Year 17 \$0 **Year 16** \$434,856 Year 15 \$111,162 **Year 13** \$324,336 **Year 12** \$109,104

Appendix L: Calculated Paybacks and Savings-to-Investment Ratio for Option 1

Life Cycle Cost Analysis Study: Option #1 Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4
Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #1 Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T. Brown III

LCCID FY96

ECIP Summary Report

1. Investment

A. Construction Cost	\$260,963
B. SIOH	\$14,353
C. Design Cost	\$15,658
D. Total Cost (1A+1B+1C)	\$290,974
E. Salvage Value of Existing Equip.	\$0
F. Public Utility Company Rebate	\$0
G. Total Investment (1D-1E-1F)	\$290.974

2. Energy Savings (+) / Costs (-)
Date of NISTIR 85-3273-X used for Discount Factors Oct 1995

Fuel		Price Units	Usage Savings	Usage Units	Annual Savings	Discount Factor	Discounted Savings
==========	=====	=====	======	=====	=======	=======	========
Electricity	\$46.	/Mwatt	792	Mwatt-	\$36,441	14.47	\$527,296
Elec. Deman	1		!		\$13,377	13.47	\$180,188
Natural Gas	\$3.4	/Mbtus	-5,502	Motus	-\$18,706	17.32	-\$323,993
TOTAL			-2,799	Motus	\$31,111		\$383,491

3. Non Energy Savings (+) / Costs (-)

-									
	Item	Savings/	Year	Discount	Discounted				
		Cost		Factor	Savings/Cost				
	=======================================	=======	======	=======	========				
	ANNUAL TOTAL	\$0		ĺ	\$0 i				
	ONE TIME TOTAL	\$0		İ	İ \$0İ				
	TOTAL	\$0		j	j \$0 j				

4. First Year Dollar Savings	\$31,111
5. Simple Payback Period (Years)	9.35
6. Total Net Discounted Savings	\$383,491
7. Savings to Investment Ratio	1.32
<pre>If < 1, Project does not qualify</pre>	
8. Adjusted Internal Rate of Return	5.55%

Appendix M: Calculated Paybacks and Savings-to-Investment Ratio for Option 2a

Life Cycle Cost Analysis Study: Option #2a
Energy Conservation Investment Program (ECIP)
Installation & Location: Davis-Monthan AFB
Region data: ARIZONA Census Region: 4
Project NO. & Title: 250-Ton Chiller Replacement
Fiscal Year: 97 Discrete Portion: Option #2a
Analysis Date: 10/01/97 Economic Life: 20 years
Prepared by: William T Brown III

LCCID FY96

ECIP Summary Report

_	_	
1	Investmen	+

A. Construction Cost	\$176,011
B. SIOH	\$9,681
C. Design Cost	\$10,561
D. Total Cost (1A+1B+1C)	\$196,252
E. Salvage Value of Existing Equip.	\$0
F. Public Utility Company Rebate	\$0
G. Total Investment (1D-1E-1F)	\$196,252

2. Energy Savings (+) / Costs (-)

Date of NISTIR 85-3273-X used for Discount Factors Oct 1995

				=======				=========
Ī	Fuel		Price Units		Usage Units	Annual Savings	Discount Factor	Discounted Savings
1:	========	!=====	=====	=======	=====	========	======	========
	Electricity	\$46.	/Mwatt	5,361	Mwatt-	\$246,590	14.47	\$3,568,160
_ i 1	Elec. Deman	i	i		İ	1 \$45,670	13.47	\$615,175
	Natural Gas		/Mbtus	-45,660	Motus	-\$155,244		-\$2,688,826
į:	TOTAL	İ	İ	-27,369	Motus	\$137,016		\$1,494,509

3. Non Energy Savings (+) / Costs (-)

Item	Savings/ Cost	Year	Discount Factor	Discounted Savings/Cost			
=======================================	=======	======	=======	=========			
Baseline Maint	-\$50,991	Annual	13.47	-\$686,849			
ANNUAL TOTAL	-\$50,991			-\$686,849			
Maintenance	-\$16,934		.92				
Maintenance	-\$15,797	!	.89	1			
Maintenance	-\$55,950	4	.85				
Maintenance	-\$15,458	5	.82				
Maintenance	-\$16,724	6	.79	-\$13,141			
Maintenance	-\$55,542	7	.75	-\$41,924			
Maintenance	-\$17,998	8	.73	-\$13,050			
Maintenance	-\$18,115	9	.7	-\$12,618			
Maintenance	-\$56,639	10	.67	-\$37,897			
Maintenance	-\$16,586	11	.64	-\$10,661			
Maintenance	-\$18,184	12	.62	-\$11,227			
Maintenance	-\$54,056	13	.59	-\$32,062			
Maintenance	-\$18,527	15	.55	-\$10,140]			
Maintenance	-\$72,476	16	.53	-\$38,105			
Maintenance	-\$19,212	18	.49	-\$9,321			
Maintenance	-\$16,250	19	.47	-\$7,573			
Maintenance	-\$55,120	20	.45	-\$24,677			
ONE TIME TOTAL	-\$539,568	!		-\$352,314			
TOTAL	-\$590,559	i		-\$1,039,163			

Life Cycle Cost Analysis Study: DAVMON2.LC Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB

Region data: ARIZONA Census Region: 4
Project NO. & Title: 250-Ton Chiller Replacement
Fiscal Year: 97 Discrete Portion: Option #2a
Analysis Date: 10/01/97 Economic Life: 20 years

Prepared by: William T Brown III

Item 	Savings/ Cost ======	Year ======	Discount Factor ======	Discounted Savings/Cost =======
4. First Year Dollar 5. Simple Payback Pe 6. Total Net Discour 7. Savings to Invest If < 1, Project do		\$59,047 2.87 \$455,346 2.32		
8. Adjusted Internal				8.57%

Appendix N: Calculated Paybacks and Savings-to-Investment Ratio for Option 2b

Life Cycle Cost Analysis Study: Option #2b Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #2b Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY96

ECIP Summary Report

1.	In	vestment	
	Α.	Construction Cost	\$211,132
	в.	SIOH	\$11,612
	Ċ.	Design Cost	\$12,668
		Total Cost (1A+1B+1C)	\$235,412
	E.	Salvage Value of Existing Equip.	\$0
		Public Utility Company Rebate	\$0
	G.	Total Investment (1D-1E-1F)	\$235,412

Fuel	Price	•		Usage Units	Annual Savings	Discount Factor	Discounted Savings
Electricity Elec. Deman Natural Gas	j	/Mwatt	7,188	===== Mwatt- Motus	========	13.47 17.32	#4,784,803 \$4,784,803 \$628,564 -\$3,721,231 \$1,692,136

3. Non Energy Savings (+) / Costs (-)

Item	Savings/ Cost	Year	Discount Factor	Discounted Savings/Cost
	=======	======	=======	=========
Baseline Maint	-\$50,991	Annual	13.47	-\$686,849
ANNUAL TOTAL	-\$50,991	İ		-\$686,849
Maintenance	-\$16,934	2	.92	[-\$15,626]
Maintenance	-\$15,797	3	.89	-\$14,003
Maintenance	-\$55,950	4	.85	-\$47,643
Maintenance	-\$15,458	. 5	.82	-\$12,644
Maintenance	-\$16,724	6	.79	-\$13,141
Maintenance	-\$55,542	7	.75	
Maintenance	-\$17,998	8	.73	-\$13,050
Maintenance	-\$18,115	9	.7	-\$12,618
Maintenance	-\$56,639	10	.67	-\$37,897
Maintenance	-\$16,586	11	.64	-\$10,661
Maintenance	-\$18,184	12	.62	-\$11,227
Maintenance	-\$54,056	13	.59	-\$32,062
Maintenance	-\$18,527	15	.55	-\$10,140
Maintenance	-\$72,476	16	.53	-\$38,105
Maintenance	-\$19,212	18	.49	-\$9,321
Maintenance	-\$16,250	19	.47	-\$7,573
Maintenance	-\$55,120	20	.45	-\$24,677
ONE TIME TOTAL	-\$539,568			-\$352,314
TOTAL	-\$590,559		İ	-\$1,039,163

Life Cycle Cost Analysis Study: DAVMON3.LC Energy Conservation Investment Program (ECIP)

Installation & Location: Davis-Monthan AFB
Region data: ARIZONA Census Region: 4
Project NO. & Title: 250-Ton Chiller Replacement
Fiscal Year: 97 Discrete Portion: Option #2b
Analysis Date: 10/01/97 Economic Life: 20 years

Prepared by: William T Brown III

Item	Savings/ Cost	Year	,	Discounted Savings/Cost =======
4. First Year Dollar 5. Simple Payback Pe 6. Total Net Discour 7. Savings to Invest	· ·	\$84,513 2.51 \$652,973 2.77		
If < 1, Project do 8. Adjusted Internal		9.55%		

Appendix O: Calculated Paybacks and Savings-to-Investment Ratio for Option 2c

Life Cycle Cost Analysis Study: Option #2c Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #2c Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY96

ECIP Summary Report

1.	Inv	estment	
	Α.	Construction Cost	\$427,380
	в.	SIOH	\$23,506
	C. :	Design Cost	\$25,643
		Total Cost (1A+1B+1C)	\$476,529
	E.	Salvage Value of Existing Equip.	\$0
		Public Utility Company Rebate	\$0
		Total Investment (1D-1E-1F)	\$476,529

:	=========	======	======	==== = ==	======	========		
	Fuel	Price	Price	Usage	Usage	Annual	Discount	Discounted
	·		Units	Savings	Units	Savings	Factor	Savings
	=========	=====	=====	=======	=== ==	=======	=======	========
	Electricity	\$46.	/Mwatt	14,289	Mwatt-	\$657,281		\$9,510,858
	Elec. Deman		ĺ	İ]	\$154,883	13.47	\$2,086,274
	Natural Gas	\$3.4	/Mbtus	-113,421	Mbtus	-\$385,633	17.32	-\$6,679,160
	TOTAL		,	-64,666		\$426,531	ļ	\$4,917,973

3. Non Energy Savings (+) / Costs (-)

=======================================	========	=======	=======	
Item	Savings/ Cost	Year	Discount Factor	Discounted Savings/Cost
	=======	======	=======	========
Baseline Maint	-\$101,982	Annual	13.47	-\$1,373,698
ANNUAL TOTAL	-\$101,982			-\$1,373,698
Maintenance	-\$33,868	2	.92	-\$31,253
Maintenance	-\$31,594	3	.89	-\$28,006
Maintenance	-\$111,900	4	.85	-\$95,286
Maintenance	-\$30,916	5	.82	-\$25,289
Maintenance	-\$33,448	6	.79	-\$26,282
Maintenance	-\$111,084	7	.75	-\$83,849
Maintenance	-\$35,996	8	.73	-\$26,100
Maintenance	-\$36,230	9	.7	-\$25,235
Maintenance	-\$113,278	10	.67	-\$75,795
Maintenance	-\$33,172	11	.64	-\$21,321
Maintenance	-\$36,368	12	.62	-\$22,455
Maintenance	-\$108,112	13	.59	-\$64,123
Maintenance	-\$37,054	15	.55	-\$20,280
Maintenance	-\$144,952	16	.53	-\$76,210
Maintenance	-\$38,424	18	.49	-\$18,642
Maintenance	-\$32,500	19	.47	-\$15,147
Maintenance	-\$110,240	20	.45	-\$49,354
ONE TIME TOTAL	-\$1,079,1	l]	-\$704,628
TOTAL	-\$1,181,1	1	1	-\$2,078,325

Life Cycle Cost Analysis Study: DAVMON4.LC Energy Conservation Investment Program (ECIP)
Installation & Location: Davis-Monthan AFB

Region data: ARIZONA Census Region: 4
Project NO. & Title: 250-Ton Chiller Replacement
Fiscal Year: 97 Discrete Portion: Option #2c

Analysis Date: 10/01/97 Economic Life: 20 years

Prepared by: William T Brown III

Item	Savings/ Çost ======	Year	Discount Factor =======	Discounted Savings/Cost ======
4. First Year Dollar 5. Simple Payback Pa 6. Total Net Discour 7. Savings to Invest If < 1, Project do		\$270,593 1.65 \$2,839,647 5.96		
8. Adjusted Internal	l Rate of F	Return		13.82%

Appendix P: Calculated Paybacks and Savings-to-Investment Ratio for Option 2d

Life Cycle Cost Analysis Study: Option #2d Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #2d Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY96

ECIP Summary Report

1.	Investment	
	A. Construction Cost	\$573,172
	B. SIOH	\$31,524
	C. Design Cost	\$34,390
	D. Total Cost (1A+1B+1C)	\$639,087
	E. Salvage Value of Existing Equip.	\$0
	F. Public Utility Company Rebate	\$0
	G. Total Investment (1D-1E-1F)	\$639,087
	* · · · · · · · · · · · · · · · · · · ·	

=								
	Fuel	Price	Price	Usage	Usage	Annual	Discount	Discounted
			Units	Savings	Units	Savings	Factor	Savings
	=========	=====	=====	=======	=====	=======	=======	========
	Electricity	\$46.	/Mwatt	20,546	Mwatt-	\$945,136	14.47	\$13,676,120
	Elec. Deman		i i		i	\$232,056	13.47	\$3,125,795
	Natural Gas		/Mbtus	-178,587	Mbtus	-\$607,197	17.32	-\$10,516,65
	TOTAL	,		-108,480		\$569,995	İ	\$6,285,267
				·				

3. Non Energy Savings (+) / Costs (-)

Item	Savings/ Cost	Year	Discount Factor	Discounted Savings/Cost
	=======	======	========	
Baseline Maint	-\$152,973	•	13.47	
ANNUAL TOTAL	-\$152,973			-\$2,060,546
Maintenance	-\$50,802			4
Maintenance	-\$47,391	3	.89	-\$42,009
Maintenance	-\$167,840	4	.85	-\$142,920
Maintenance	-\$46,374	5	.82	-\$37,933
Maintenance	-\$50,172	6	.79	-\$39,424
Maintenance	-\$166,626	7	.75	-\$125,773
Maintenance	-\$53,994	8	.73	-\$39,151
Maintenance	-\$54,345	9	.7	- \$37,853
Maintenance	-\$169,917	10	.67	-\$113,692
Maintenance	-\$49,758	11	.64	-\$31,982
Maintenance	-\$54,552	12	.62	-\$33,682
Maintenance	-\$162,168	13	.59	-\$96,185
Maintenance	-\$55,581	15	.55	-\$30,420
Maintenance	-\$217,428	16	.53	-\$114,315
Maintenance	-\$57,636	18	.49	-\$27,963
Maintenance	-\$48,750	19	.47	-\$22,720
Maintenance	-\$165,360	20	.45	-\$74,031
ONE TIME TOTAL	-\$1,618,6	ļ		-\$1,056,933
TOTAL	-\$1,771,6	i	ļ	-\$3,117,479

Life Cycle Cost Analysis Study: DAVMON5.LC Energy Conservation Investment Program (ECIP)

LCCID FY96

Installation & Location: Davis-Monthan AFB
Region data: ARIZONA Census Region: 4
Project NO. & Title: 250-Ton Chiller Replacement
Fiscal Year: 97 Discrete Portion: Option #2d
Analysis Date: 10/01/97 Economic Life: 20 years
Prepared by: William T Brown III

Item	Savings/	Year	Discount	Discounted
	Cost		Factor	Savings/Cost
	=======	======	======	======
4. First Year Dolla 5. Simple Payback P 6. Total Net Discou 7. Savings to Inves If < 1, Project d 8. Adjusted Interna	eriod (Year nted Saving tment Ratio oes not qua	gs o alify		\$336,088 1.75 \$3,167,788 4.96

Appendix Q: Calculated Paybacks and Savings-to-Investment Ratio for Option 3a

Life Cycle Cost Analysis Study: Option #3a
Energy Conservation Investment Program (ECIP)
Installation & Location: Davis-Monthan AFB
Region data: ARIZONA Census Region: 4
Project NO. & Title: 250-Ton Chiller Replacement
Fiscal Year: 97 Discrete Portion: Option #3a
Analysis Date: 10/01/97 Economic Life: 20 years
Prepared by: William T Brown III

LCCID FY96

ECIP Summary Report

1.	Investment	
	A. Construction Cost	\$241,710
	B. SIOH	\$13,294
	C. Design Cost	\$14,503
	D. Total Cost (1A+1B+1C)	\$269,507
	E. Salvage Value of Existing Equip.	\$0
	F. Public Utility Company Rebate	\$0
	G. Total Investment (1D-1E-1F)	\$269,507

=	========	:=== = =	======	=======	===		=======	=========	*
1	Fuel	Price	Price	Usage	Usage	Annual		Discounted	
j			Units	Savings	Units	Savings	Factor	Savings	
1	=========	=====	=====	======	=====	========	======	========	
i	Electricity	\$46.	/Mwatt	13,937	Mwatt-	\$641,091		\$9,276,586	
İ	Elec. Deman			1		\$147,375	13.47	\$1,985,141	
•	Natural Gas	\$3.4	/Mbtus	-113,421	Motus	-\$385,632		-\$6,679,142	
į	TOTAL	•		-65,867	Motus	\$402,834	l	\$4,582,585	
_			======	=======	======		=======		٠

3. Non Energy Savings (+) / Costs (-)

Item 	Savings/ Cost	Year	Discount Factor	Discounted Savings/Cost
	=======	======	=======	
Baseline Maint	-\$101,982	Annual	13.47	-\$1,373,698
ANNUAL TOTAL	-\$101,982	·		-\$1,373,698
Maintenance	-\$33,868	2	.92	-\$31,253
Maintenance	-\$31,594	3	.89	-\$28,006
Maintenance	-\$111,900	4	.85	-\$95,286
Maintenance	-\$30,916	5	.82	-\$25,289
Maintenance	-\$33,448		.79	-\$26,282
Maintenance	-\$111,084	7	.75	-\$83,849
Maintenance	-\$35,996	8	.73	-\$26,100
Maintenance	-\$36,230	9	.7	-\$25,235
Maintenance	-\$113,278	10	.67	-\$75,795
Maintenance	-\$33,172	11	.64	-\$21,321
Maintenance	-\$36,368	12	.62	-\$22,455
Maintenance	-\$108,112	13	.59	-\$64,123
Maintenance	-\$37,054	15	.55	-\$20,280
Maintenance	-\$144,952	16	.53	-\$76,210
Maintenance	-\$38,424	18	.49	-\$18,642
Maintenance	-\$32,500	19	.47	-\$15,147
Maintenance	-\$110,240	20	.45	-\$49,354
ONE TIME TOTAL	-\$1,079,1		İ	-\$704,628
TOTAL	-\$1,181,1			-\$2,078,325

Life Cycle Cost Analysis Study: DAVMON6.LC Energy Conservation Investment Program (ECIP)

Installation & Location: Davis-Monthan AFB
Region data: ARIZONA Census Region: 4
Project NO. & Title: 250-Ton Chiller Replacement
Fiscal Year: 97 Discrete Portion: Option #3a
Analysis Date: 10/01/97 Economic Life: 20 years

Prepared by: William T Brown III

Item	Savings/ Cost	Year	Discount Factor	Discounted Savings/Cost	
=======================================	=======	======	=======	========	
	=== = ======	========	-=======		
4. First Year Dollar	r Savings		\$246,895		
5. Simple Payback Pe	eriod (Year	cs)		1.01	
6. Total Net Discour			\$2,504,260		
7. Savings to Invest	ment Ratio)	9.29		

If < 1, Project does not qualify 8. Adjusted Internal Rate of Return 16.37%

Appendix R: Calculated Paybacks and Savings-to-Investment Ratio for Option 3b

Life Cycle Cost Analysis Study: Option #3b Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #3b Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY96

ECIP Summary Report

1.	In	vestment	
	A.	Construction Cost	\$481,450
		SIOH	\$26,480
		Design Cost	\$28,887
		Total Cost (1A+1B+1C)	\$536,817
	E.	Salvage Value of Existing Equip.	\$0
		Public Utility Company Rebate	\$0
		Total Investment (1D-1E-1F)	\$536,817

Fuel				=======	======		=======	=========
=======	Fuel	Price				•		
	Elec. Deman	•	===== /Mwatt /Mbtus	26,943 -244,743	===== Mwatt- Mbtus	=====================================	14.47 13.47 17.32	======= \$17,933,640 \$4,181,802 -\$14,412,45

3. Non Energy Savings (+) / Costs (-)

Item	Savings/ Cost	Year	Discount Factor	Discounted Savings/Cost
	=======	======	=======	=========
Baseline Maint	-\$203,964	Annual	13.47	-\$2,747,395
ANNUAL TOTAL	-\$203,964			-\$2,747,395
Maintenance	-\$67,736	2	.92	-\$62,505
Maintenance	-\$63,188	3	.89	-\$56,012
Maintenance	-\$223,800	4	.85	
Maintenance	-\$61,832	5	.82	-\$50,578
Maintenance	-\$66,896	6	.79	-\$52,565
Maintenance	-\$222,168	7	.75	-\$167,697
Maintenance	-\$71,992	8	.73	-\$52,201
Maintenance	-\$72,460	9	.7	-\$50,471
Maintenance	-\$226,556	10	.67	-\$151,589
Maintenance	-\$66,344	11	.64	-\$42,643
Maintenance	-\$72,736	12	.62	-\$44,910
Maintenance	-\$216,224	13	.59	-\$128,246
Maintenance	-\$74,108	15	.55	-\$40,561
Maintenance	-\$289,904	16	.53	-\$152,420
Maintenance	-\$76,848	18	.49	-\$37,284
Maintenance	-\$65,000	19	.47	-\$30,294
Maintenance	-\$220,480	20	.45	-\$98,709
ONE TIME TOTAL	-\$2,158,2	I		-\$1,409,255
TOTAL	-\$2,362,2	J		-\$4,156,651

Life Cycle Cost Analysis Study: DAVMON7.LC Energy Conservation Investment Program (ECIP)

Installation & Location: Davis-Monthan AFB

Region data: ARIZONA Census Region: 4
Project NO. & Title: 250-Ton Chiller Replacement

Fiscal Year: 97 Discrete Portion: Option #3b Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

Item	Savings/ Cost ======	Year 	Discounted Savings/Cost ======
4. First Year Dollar 5. Simple Payback Pe 6. Total Net Discour 7. Savings to Invest If < 1, Project do 8. Adjusted Internal	ys O alify	\$405,815 1.21 \$3,546,342 6.61	

Appendix S: Calculated Paybacks and Savings-to-Investment Ratio for Option 3c

Life Cycle Cost Analysis Study: Option #3c Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #3c Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY96

ECIP Summary Report

1.	Investment	
	A. Construction Cost	\$482,863
	B. SIOH	\$26,557
	C. Design Cost	\$28,972
	D. Total Cost (1A+1B+1C)	\$538,392
	E. Salvage Value of Existing Equip.	\$0
	F. Public Utility Company Rebate	\$0
	G. Total Investment (1D-1E-1F)	\$538,392

_					======			
	Fuel	Price	Price Units	, , , , , , , , , , , , , , , , , , , ,	Usage Units	Annual Savings	Discount Factor	Discounted Savings
	========	======	======	=======	=====	_=======	=======	========
	Electricity	\$46.	/Mwatt	20,546	Mwatt-	\$945,136		\$13,676,120
	Elec. Deman			Ì	1	\$232,056	13.47	\$3,125,795
	Natural Gas		/Mbtus	-179,077	Motus	-\$608,863	17.32	-\$10,545,51
	TOTAL	İ		-108,970		\$568,329]	\$6,256,406

3. Non Energy Savings (+) / Costs (-)

=======================================	========	=======		
Item	Savings/	Year	Discount	Discounted
ļ	Cost		Factor	Savings/Cost
=======================================	=======	======	=======	========
Baseline Maint	[-\$152,973	Annual	13.47	-\$2,060,546
ANNUAL TOTAL	-\$152,973			-\$2,060,546
Maintenance	-\$50,802	2	.92	-\$46,879
Maintenance	-\$47,391	3	.89	-\$42,009
Maintenance	1-\$167,850	4	.85	-\$142,928
Maintenance	-\$46,374	5	.82	-\$37,933
Maintenance	-\$50,172		.79	-\$39,424
Maintenance	-\$166,626	7	.75	-\$125,773
Maintenance	-\$53,994	. 8	.73	-\$39,151
Maintenance	-\$54,345	9	.7	-\$37,853
Maintenance	-\$169,917	10	.67	-\$113,692
Maintenance	-\$49,758	11	.64	-\$31,982
Maintenance	-\$54,552	12	.62	-\$33,682
Maintenance	-\$162,168	13	.59	-\$96,185
Maintenance	-\$55,581	15	.55	
Maintenance	-\$217,428	16	.53	-\$114,315
Maintenance	-\$57,636	18	.49	-\$27,963
Maintenance	-\$48,750	19	.47	
Maintenance	-\$165,360	20	.45	-\$74,031
ONE TIME TOTAL	-\$1,618,7	.	. I	-\$1,056,941
TOTAL	-\$1,771,6		` I	-\$3,117,488

Life Cycle Cost Analysis Study: DAVMON8.LC Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB

Region data: ARIZONA Census Region: 4
Project NO. & Title: 250-Ton Chiller Replacement

Fiscal Year: 97 Discrete Portion: Option #3c Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

-	Item	Savings/ Cost	Year	Discount Factor	Discounted Savings/Cost	
5	. First Year Dollar . Simple Payback Pe . Total Net Discour	eriod (Year nted Saving	gs		\$334,421 1.49 \$3,138,918	=
	. Savings to Invest If < 1, Project do . Adjusted Interna	es not qua	alify		5.83 13.69%	

Appendix T: Calculated Paybacks and Savings-to-Investment Ratio for Option 3d

Life Cycle Cost Analysis Study: Option #3d Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #3d

LCCID FY96

Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

ECIP Summary Report

1.	Investment	
	A. Construction Cost	\$838,542
	B. SIOH	\$46,120
	C. Design Cost	\$50,313
	D. Total Cost (1A+1B+1C)	\$934,974
	E. Salvage Value of Existing Equip.	\$0
	F. Public Utility Company Rebate	. \$0
	G. Total Investment (1D-1E-1F)	\$934,974

-			======	=======	=====:	=======		
	Fuel	Price	Price	Usage	Usage	Annual	Discount	Discounted
			Units	Savings	Units	Savings	Factor	Savings
	=========	======	=====	======	=====	========	======	=======
	Electricity	\$46.	/Mwatt	40,791	Mwatt-	\$1,876,397		\$27,151,460
	Elec. Deman	i ʻ	i	İ	1	\$468,780	13.47	\$6,314,467
	Natural Gas		/Mbtus	-376,046	Motus	-\$1,278,55		-\$22,144,57
	TOTAL			-236,860		\$1,066,622	j l	\$11,321,360

3. Non Energy Savings (+) / Costs (-)

Item	Savings/ Cost	Year	Discount Factor	Discounted Savings/Cost
===========	=======	======	========	=======
Baseline Maint	-\$305,946	Annual	13.47	-\$4,121,093
ANNUAL TOTAL	1-\$305,946	1	1	-\$4,121,093
Maintenance	[-\$101,604	2	.92	-\$93,758
Maintenance	-\$94,782	j . 3	i .89	-\$84,018
Maintenance	 - \$335,700	j 4	.85	-\$285,857
Maintenance	-\$92,748	j 5	.82	-\$75,867
Maintenance	[-\$100,344	6	.79	-\$78,847
Maintenance	1-\$333,252	7	.75	-\$251,546
Maintenance	j-\$107,988	j 8	.73	-\$78,301
Maintenance	-\$108,690	j 9	.7	-\$75,706
Maintenance	-\$339,834	10	.67	-\$227,384
Maintenance	-\$99,516	11	.64	-\$63,964
Maintenance	-\$109,104	12	.62	-\$67,365
Maintenance	-\$324,336	13	.59	-\$192,369
Maintenance	-\$111,162	15	.55	-\$60,841
Maintenance	-\$434,856	16	.53	-\$228,630
Maintenance	-\$115,272	18	.49	-\$55,926
Maintenance	-\$97,500	19	.47	-\$45,440
Maintenance	-\$330,720	20	.45	-\$148,063
ONE TIME TOTAL	-\$3,237,4	l		-\$2,113,883
İTOTAL	1-\$3,543,3	i i	İ	-\$6,234,975

Life Cycle Cost Analysis Study: DAVMON9.LC Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #3d Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

| Item | Savings/ | Year | Discount | Discounted | Cost | Factor | Savings/Cost | | Factor | Savings/Cost | | Factor | Savings/Cost | | Factor | Savings/Cost | | Factor | Savings/Cost | | Factor | Savings/Cost | Factor | Savings/Cost | Factor | Savings/Cost | Factor | Savings/Cost | Factor | Savings/Cost | Factor | Factor | Savings/Cost | Factor | Fact

LCCID FY96

6. Total Net Discounted Savings \$5,086,382
7. Savings to Investment Ratio 5.44
If < 1, Project does not qualify
8. Adjusted Internal Rate of Return 13.3%

USACERL DISTRIBUTION

Chief of Engineers ATTN: CEHEC-IM-LH (2)

ATTN: CEHEC-IM-LP (2)

ATTN: CECC-R

ATTN: CERD-L ATTN: CERD-M

Tyndall AFB 32403

ATTN: HQAFCESA/CES

ATTN: Engrg & Srvc Lab

Defense Tech Info Center 22304

ATTN: DTIC-O (2)

11 2/98

XU.S. GOVERNMENT PRINTING OFFICE: 1999 - 746-070/80039