

$$\frac{500\times10^{6}}{N} = 2\times10^{3}$$

$$\therefore N = \frac{500\times0^{6}}{7.\times10^{3}} = 250\times10^{3}$$

Verifyif TONYBO Can hold up to that Number

PP1117

32.4 SPECIAL FUNCTION REGISTERS

32.4.1 REGISTER MAP

	Descrip	R/W	Offset	Register
	Timer Configuration Registe two 8-bit Prescaler and Dea	R/W	0x7F006000	TCFG0
	Timer Configuration Registe and DMA Mode Select Bit	R/W	0x7F006004	TCFG1
-32	Timer Control Register	R/W	0x7F006008	TCON
232	Timer 0 Count Buffer Regis	R/W	0x7F00600C	TCNTB0
	Timer 0 Compare Buffer Re	R/W	0x7F006010	TCMPB0
	Timer 0 Count Observation	R	0x7F006014	TCNT00
	Timer 1 Count Buffer Regis	R/W	0x7F006018	TCNTB1
				TO: 155.4

32.4.1.4 TCNTB0 (Timer0 Counter Register)

Register	Offset	R/W	
TCNTB0	0x7F00600C	R/W	Timer 0 Count I

Conclusion: 5-Steps oferntion of PWM. Can be described as U) Count By N with Egn (4), 783. And deposit

N into TCNTBp; (2)

Deposit Count Minto TCmprzp,

Where M=(D.C.) X N
... (5)

(3) The Down Counting will

decrement Tont By's count

by I at a time, And a

Comparison is made to Tomp By

'If Matched, then trigger the Dulpat

to "I", Down Counting continues

till the Count in Tont By = 0

One period is veached. Then

Tepeat this process.

Example: Suppose CLK = 50 MHz.

Dosign Implementation technique
to produce from = 1000 Hz, to

Prive Stepper meter Girty-Oler,
in addition, Duty Gode is 30%.

Find: (1) TCNTBn=? (2) Find TCME

Sollo = from, ... (1)

N= 50×10 = from, ... (1)

N= 50×10 = 5×10 - DHex | from = 1000

March 21 (mordy)

Midtern DN Zard (wed)

Ihr. Exam, + 15 min.

Review on Midtern.

3 Questions.

1. A eynestion on Basic Concepts.

1. CPU Architecture 32 Bit Architecture

a. Memory map. BANKS, b. GPP/IO Peripheral Controller.

C. Spirs. Naming, Junctions.

GRX COW, GRXDAT

Tech. Spec & Binary Pattern

d. ARMII Reference, Code User Sprue, Kernel Sprue

e. Tinget Hatform, NANO,

Software Side O.S. distribution.
Tool Chain,
menn config.

f. SPRs in Driver Gode. GPID USER Program.

for = Open(");

roth ();

Kernel Spine Program Sample
GPECON, etc - CFU
Datasheet

G. GPIO Testing I I/P Testing. Ref: D/P testing.

2022S-101-notes-cmpe242-3-14.pdf

TPIQ CKT -> Pin Selection

GPNO79 (Pintz)

GP1078 (Pin 40)

Questinos on PIO Lontroller Design.

Hardware J Motor Drive LSoftware GPP/PWM

Motor Prive Fin Connection Regginerates Sch., Cornectivity Table.

Demo Live Executional 3. Theoretim Aspects of the your trogram. PID Controller Design. i. Bound is Ready. Take a. PJD Block Dingram. a photo of your Board During PN, PIN, PD, ... etc. 19. Stepper motor motor Drive P(crivative Controller) Short Juture. And the Protolype Board I (Megration Controller) Fristory work together, take a photo, Screen Capture of Frogram 6. Computation. Forward Difference, Bonkward Difference, Control Difference. Kernels, execution. motor Operation, micro steps, Comprisation. Angular Displanement. Integration Controller. Pristory Turget Platform. Hardware Brick N Steps Configuration to a class device C. Sensor Interfere Hardware IZC dviver, such as GIPIO, PWM

or Izc.

vehicle, "skipping"
may occur

Path

Displacement

Path

Reference trajectory

Actual trajectory

Actual trajectory

Actual trajectory

Path

Pa

LSM303 IZC Bused Sensor.

Find II pa II is defined by

PWM Oniver Stepper motor

action.

STEPPERONLIN

Motor Gear Rat

Motor DIY CNC

VISIT the STEPPERONLINE

Fig.z

The wheel of the

Robot Rus the

dimension R= | DDmm

Now Let's take a look at

Now, Let'S take a look at the hard ware of the motor Combo.

STEPPERONLINE Nema 17 Geared Stepper Motor Gear Ratio 5:1 3D Printer Extruder Motor DIY CNC Robotics

Visit the STEPPERONLINE Store

25 ratings

Amazon's Choice in 3D Printer Motors by STEPPERONLINE

\$4005

Robot Wheel

Rednetion Patio, RR

For the purpose of increasing the Touque.

Fig. 4a,4b With Reduction Pation Gear Box.

(mpEz4z Marchz1, zz

To find Establish one-to-one NANO mapping Between the actual IZCz Touth and FWM Operation. Aprily (monday) Topics: 10 Izc Interfine for 15m303 Sensor Integration Ref: 2022S-108b-AngularSensing-i2c-LSM303- final HL 2017-3-13.pdf IZC Handware Features Fig.3 [Protocal Definition IZCK Coding Implementation Sub-Address: 7 bits, 27=128 -Hardware Features: K=128 Devices, But in Real 1. Pins) SDA: Bi-Direction L Deta Pin. (Signals SCK: in Both Direction) Engineering Design", FAN-IN", FAN-DIT (e.g. Adequate Electric Current) Seruldock. have to be taken into Consideration. Speed: ~ 4 mbps < 10 mbps Bus Communication | Marster Device Z. IZCBus modification of Ref: IzC Interfere to 2022S-108-LSM303DLHC.PDF Sipport K Devices **12C Interface**

(1) The transaction started through a START (ST) signal, defined as a high-to-low on the data line while the SCL line is held high.

(2) After ST, the next byte contains the slave address (the first 7 bit), bit 8 for if the master is receiving or transmitting data.

 (3) When an address sent, each device compares the first seven bits after ST. If they match, the device is addressed.

Compenies Araly, 22 Wate to the tets Table 11. Transfer when master is writing one byte to slave, pp 20, datasheet SAD + W otext -time Table17

Note: Space Time Diagram.

Target (NAJO) 'Slave" IZCWaster

CAZ

SAK

On SOA Line b. from the Touthe Address master c. 7 lits

for SAD

(Salve Addr)

Overtional Rit:

J WRITE: | LREAD; 0

Time

Note: 1. ST Shut

Figy.

Table 14.

2º SAD Slave Address

3° SAK Slave Ack.

And out to: SUB Sub-Slave-Addu

Slave Device.

to Address the unit inside the

Questin: SAD for 15m303

(b. SAD[7:1]

Fig.b PP.20

SAD+Read/Write patterns SAD[7:1] Command R/W SAD+R/W Read 0011001 00110011 (33h) Write 0011001 00110010 (32h)

Special Purp

DOLLIOPIX

10 0011 Read: 3 10 0010 Write: 2

MCW: Micropholessor

/FSM: First State machine

SPRS: Config & Contrel, Data

0X33 white 0X3Z

3D Accelerometer and

Note: Read OF is very often the 1st

One from the master to get Manufadere'S ID & Device ID ok. Ref: Slide 7. a. Sub-Addr. for magnetic Symbor 2. identify control register(s) for the right sensor

block with the sub-address to set data rate (1) CRA_REG_M register (0x00) to set data rate

Control/ConfigRegister'S Address: 0X00 SAB For Magnetic Sensor. "SUB"

	- 11		
Command	SAD[6:0]	R/W	SAD+R/W
Read	0011110	1	00111101 (3Dh)
Write	0011110	0	00111100 (3Ch)

Register address map (continued)

Table 17. Trogister dual coo map (continuou)							
Name	Slave address	Ivpe	Registe	Default			
Name			Hex	Binary	Default		
TIME_LATENCY_A	Table 14	rw	3C	011 1100	00000000		
TIME_WINDOW_A	Table 14	rw	3D	011 1101	00000000		
Reserved (do not modify)	Table 14		3E-3F			Γ	
CRA_REG_M	Table 16	rw	00	00000000	0001000		
CRB_REG_M	Table 16	rw	01	00000001	0010000		
MR_REG_M	Table 16	rw	02	00000010	00000011		
OUT_X_H_M	Table 16	r	03	00000011	output		
						г-	

Example: Tech Spec

1° Read Angular Information / x-, y-, 2-Acceleration Z. Sample Rate (of Read): 30Hz

Find 1° Special Furpose Register Responsible

to tedorn Configuration.

2° Find Binary Pattern to initialize

the SPTZ

Arila. Wed

Topics: 1° 15M303 Interfere Designe Project Due April 18 befor Class.

CMPEZYZ Amil7122

Note: Try to Tannmill ple pulses of the Thorest Regimenents: FWM, for Example, 5rto Pulses. When Collecting Data 1. Wilten Tegnanents + Tubrics Are to Be posted online, on Canvas. 6. Create Readme file, one page Z. Integrate SM303 Sousov to to Describe your implementation. Sm303
Boardon
this holder
This holder a. Schemitis b. Screen Capture of your code execution C. Generate 10 Sec. ~ 15 Sec. Video Clips to Show the working system d. 7 photos. 1 one for the Entire
System.
(Captop, Tanget Phtform,
Stepac Motor,
Sensor)
One for the Sensor (SM3)
Tute Lone Design Totalions for Both Directions

2 530 3. to Run Stepper motor Tragram to Arthate motor Rotation, then Teal LSM 303 Data to find Interferse Design 7. Includes All your Source code for each Actual the displacement for testing verification. Valne. 8. Fut all of the Above into A Zip file, Submit the file to CANVAS 4. Test 3 Configuration of the motor, e.g. a. Full Step. 18 Degree Angle per Step. b. Hulf Step. 09 Degree Note: please Bring your Implementation Board to the Class fur Demo. Next Monday. c. 1/4 Step. 0.45 Degree Example: Process Steps to Interfere to LSm303. 5. Form A table to List the Data Read from LSM 303 Step 1. Addr. of the Sensor. See Tuble 16 PWM Pulses | LSM303 Imput For may Sensor. Note: Tuble 17, Special Purpose
Registers J For Config Control
L For Data

		7.2	Ma	gnetic	field s	ensing register	r				
		7.2.1	CRA	A_REG_	_M (00h)	81	out Regist	ur			
		œ,	<u>ب</u>	\sim			Table 73				
		1			0]0		CRA_PE	6T7:57			
		Tabl	le 73.	. с	RA_F	REG registe		, Pi 7			
		(GN2		GN1	GN0	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
		1. T	his bit	must b	oe set t	to '0' for correct	working of the	e device.			
						k	. For Ma	in Sensor	Smaller	Pange mo	ve Sensitive Zamge
			Table 7	75. G	ain sett	ting 📈	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9		c. Onti	Zemap
			GN2	GN1	GN0	Sensor input field range [Gauss]	Gain X, Y, and Z [LSB/Qauss]	Gair Z [LSB/Gauss]	Output range	1	2"=1024xZ =2048
			0	0	1	±1.3	1100	980		Ī	
			0	1	0	±1.9	855	760	4	4	2047
			0	1	1	±2.5	670	600	0xF800-0x07FF	15	
			1	0	0	±4.0	450	400	(-2048–2047)	-1.3	13 Gaus
			1	1	0	±4.7 ±5.6	330	355 295			A
			1	1	1	±8.1	230	205			S orla
									senstive.		-2048 0,GN1=0,
		111	a .	\ _ _		eithende	arger Rav			(4) b =	10,GN1=0,
		1004	<i>ن</i> اط	,	wi9n C	Lilla and	La constitution of the con	"" (L. L			
				•		t the gain	· ·			•	
	_	Ther	מסא ני	tor	Regis	der for Op	eration m	ode Seleo	tion	On ly	28K
	ident ole 76	_	ne co	ontro 1R_F	l reg REG ₋	ister respo _M (02h)	onsible for Sµb	mode of Addr. for	operation, いいら でしょ	from datas	sheet, pp 37,
Γ	O ⁽¹	1)		0 ⁽¹⁾		0 ⁽¹⁾	0 ⁽¹⁾	O ⁽¹⁾	0 ⁽¹⁾	MD1	MD0
								use Co	ntinuous mo	de _	IVIC
_[М	D1		MD	0	B				Mode	
-[0		0		Continuo	us-conve	ersion mo	ode		

Single-conversion mode

0

	CMPEDYZ APWZ7,ZZ 12
	To confin/Access to Special thorpse Registerts), follow this "White" Pattern: Spr's Addres: Oxol for Grath Setting, CRB-REG_M OXOZ for mode MR_IZEG_M, SUB DATA=
	Remoters), follow this "White"
	Pattern: COR'S Maddress. OXOI for GrAEN Setting, CRB-REG_M
	OXOZ for mode MK-IZECL-W
	SUB DATA =
	Binary Pattern
	· ·
	For Reading After the Configuration, we will need find SADHR (Addr. for Read), Example is given in FPT, from Datos heet, Tuble 15, 70.70.
	Read), Example is given in FPT, from Datos heet, Tuble 15 7070
(Coding Implementation: Clott Option
	Coding Implementation: Clott Option LRython Option.
	• •