Chapter 2: Systems of Equations

Liangda Fang

Dept. of Computer Science Jinan University

Conclusions

Motivation

Question: Given a nonsingular square matrix A and a vector b, how to solve a linear equation Ax = b?

Outline

- Introduction
- **Preliminaries**
- Iterative method
 - Jacobi Method
 - Gauss-Seidel Method
 - Successive Over-Relaxation
 - Convergence of iterative methods
- Methods for symmetric positive-definite matrices
 - Symmetric positive-definite matrices
 - Conjugate Gradient Method
 - Preconditioning
- Conclusions

Outline

Introduction

- **Preliminaries**
- - Jacobi Method
 - Gauss-Seidel Method
 - Successive Over-Relaxation
 - Convergence of iterative methods
- - Symmetric positive-definite matrices
 - Conjugate Gradient Method
 - Preconditioning

Conclusions

Definition (Vectors)

An *n*-dimensional (column) vector is of the following form

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}.$$

Definition (Row vectors)

An *n*-dimensional **row vector** is of the following form

$$u = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}.$$

Matrices

Definition (Matrices)

Preliminaries

An $m \times n$ matrix is of the following form

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Matrix-matrix multiplication

Definition (Matrix-matrix multiplication)

Let A be an $m \times n$ matrix, and B be $n \times p$ matrix. Then, AB, which is an $m \times p$ matrix, is defined as follows:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix} = \\ \begin{bmatrix} \sum_{i=1}^n a_{1i}b_{i1} & \sum_{i=1}^n a_{1i}b_{i2} & \cdots & \sum_{i=1}^n a_{1i}b_{ip} \\ \sum_{i=1}^n a_{2i}b_{i1} & \sum_{i=1}^n a_{2i}b_{i2} & \cdots & \sum_{i=1}^n a_{2i}b_{ip} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^n a_{mi}b_{i1} & \sum_{i=1}^n a_{mi}b_{i2} & \cdots & \sum_{i=1}^n a_{mi}b_{ip} \end{bmatrix}.$$

Introduction

Conclusions

Definition (Matrix form)

A system of m linear equations in n unknowns can be written in \mathbf{matrix} form as

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Definition (Identity matrix)

The $n \times n$ identity matrix I_n is the matrix with $I_{ii} = 1$ for $1 \le i \le n$ and $I_{ij} = 0$ for $i \ne j$.

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Definition (Identity matrix)

The $n \times n$ identity matrix I_n is the matrix with $I_{ii} = 1$ for $1 \le i \le n$ and $I_{ij} = 0$ for $i \ne j$.

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Definition (Inverse)

For an $n \times n$ matrix A, the **inverse** A^{-1} of A is an $n \times n$ matrix s.t. $AA^{-1} = A^{-1}A = I_n$.

Definition (Identity matrix)

The $n \times n$ identity matrix I_n is the matrix with $I_{ii} = 1$ for $1 \le i \le n$ and $I_{ij} = 0$ for $i \neq j$.

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Definition (Inverse)

For an $n \times n$ matrix A, the **inverse** A^{-1} of A is an $n \times n$ matrix s.t. $AA^{-1} = A^{-1}A = I_n.$

Definition (Singular)

The $n \times n$ matrix A is **nonsingular (invertible)**, if it has a inverse A^{-1} ; otherwise, it is singular (noninvertible).

Introduction

<u>Definition</u> (Transpose)

The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^{\top} whose entries are $A_{ii}^{\top} = A_{ji}$.

Conclusions

Definition (Transpose)

The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^{\top} whose entries are $A_{ii}^{\top} = A_{ji}$.

Example

Let A be a 2×3 matrix as follows: $\begin{bmatrix} 1 & 1 & 3 \\ 5 & -4 & 2 \end{bmatrix}$.

Then, A^{\top} is a 3×2 matrix as follows: $\begin{bmatrix} 1 & 5 \\ 1 & -4 \\ 3 & 2 \end{bmatrix}$.

Definition

Given a vector v,

- **1** p-norm: $||v||_p = (\sum_{i=1}^n |v_i|^p)^{\frac{1}{p}}$;
- 2 Euclidean norm (2-norm): $||v||_2 = \sqrt{\sum_{i=1}^n |v_i|^2}$;
- **3** Infinity norm: $||v||_{\infty} = \max\{|v_1|, \dots, |v_n|\};$

Definition

Introduction

Given a vector v,

- **1** p-norm: $||v||_p = (\sum_{i=1}^n |v_i|^p)^{\frac{1}{p}};$
- 2 Euclidean norm (2-norm): $||v||_2 = \sqrt{\sum_{i=1}^n |v_i|^2}$;
- Infinity norm: $||v||_{\infty} = \max\{|v_1|,\ldots,|v_n|\};$

Proposition

- **1** Non-negativity: $||v||_n \ge 0$;
- **2** Absolute scalability: $||av||_p = |a| ||v||_p$;
- Triangle inequality: $||v+u||_p \leq ||v||_p + ||u||_p$;
- **4** Separates points: If $||v||_p = 0$, then v = 0.

11/101

Preliminaries

Example

Assume that v = (2, -1) and w = (1, 3).

•
$$||v||_2 = \sqrt{|2|^2 + |-1|^2} = \sqrt{5}$$
 and $||v||_\infty = \max\{|2|, |-1|\} = 2;$

$$\bullet \ \|w\|_2 = \sqrt{|1|^2 + |3|^2} = \sqrt{10} \ \text{and} \ \|w\|_\infty = \max\{|1|, |3|\} = 3;$$

Example

Assume that v = (2, -1) and w = (1, 3).

- $||v||_2 = \sqrt{|2|^2 + |-1|^2} = \sqrt{5}$ and $||v||_{\infty} = \max\{|2|, |-1|\} = 2$;
- $||w||_2 = \sqrt{|1|^2 + |3|^2} = \sqrt{10}$ and $||w||_\infty = \max\{|1|, |3|\} = 3$;
- $||2v||_2 = \sqrt{|2 \times 2|^2 + |2 \times (-1)|^2} = 2\sqrt{5}$;
- $||3v||_{\infty} = \max\{|3\times 2|, |3\times (-1)|\} = 6 = 3\times 2;$

Example

Assume that v = (2, -1) and w = (1, 3).

•
$$||v||_2 = \sqrt{|2|^2 + |-1|^2} = \sqrt{5}$$
 and $||v||_\infty = \max\{|2|, |-1|\} = 2;$

$$\bullet \ \|w\|_2 = \sqrt{|1|^2 + |3|^2} = \sqrt{10} \ \text{and} \ \|w\|_\infty = \max\{|1|, |3|\} = 3;$$

•
$$||2v||_2 = \sqrt{|2 \times 2|^2 + |2 \times (-1)|^2} = 2\sqrt{5};$$

•
$$||3v||_{\infty} = \max\{|3 \times 2|, |3 \times (-1)|\} = 6 = 3 \times 2;$$

•
$$||v+w||_2 = \sqrt{|2+1|^2 + |-1+3|^2} = \sqrt{13} < \sqrt{5} + \sqrt{10} = ||v||_2 + ||w||_2;$$

•
$$||v+w||_{\infty} = \max\{|2+1|, |-1+3|\} = 3 < 2+3 = ||v||_{\infty} + ||w||_{\infty};$$

12/101 Liangda Fang

Example

Assume that v = (2, -1) and w = (1, 3).

•
$$||v||_2 = \sqrt{|2|^2 + |-1|^2} = \sqrt{5}$$
 and $||v||_\infty = \max\{|2|, |-1|\} = 2;$

$$\bullet \ \|w\|_2 = \sqrt{|1|^2 + |3|^2} = \sqrt{10} \ \text{and} \ \|w\|_\infty = \max\{|1|, |3|\} = 3;$$

•
$$||2v||_2 = \sqrt{|2 \times 2|^2 + |2 \times (-1)|^2} = 2\sqrt{5};$$

•
$$||3v||_{\infty} = \max\{|3 \times 2|, |3 \times (-1)|\} = 6 = 3 \times 2;$$

•
$$||v+w||_2 = \sqrt{|2+1|^2 + |-1+3|^2} = \sqrt{13} < \sqrt{5} + \sqrt{10} = ||v||_2 + ||w||_2;$$

•
$$||v+w||_{\infty} = \max\{|2+1|, |-1+3|\} = 3 < 2+3 = ||v||_{\infty} + ||w||_{\infty};$$

• $||0||_2 = 0$ and $||0||_{\infty} = 0$.

12/101 Liangda Fang

Introduction

Definition

Let v_1, \dots, v_m be *n*-dimensional vectors.

The subspace of $V: \{v_1, \dots, v_m\}$ is $\{x \mid x = a_1v_1 + \dots + a_mv_m\}$.

A point $y \in \mathbb{R}^n$ is in V, if $y \in V$ (i.e., there is a vector of a_1, \dots, a_m s.t.

$$y = a_1 v_1 + \dots + a_m v_m.)$$

Example (Orthonormal sets)

- \bullet {(1,1)} (Figure ??)
- $\{(1,0,0),(0,1,0)\};$ (Figures ??)

Conclusions

Introduction

Conclusions

Definition

Let V and V' be two subspaces. We say V is a subspace of V', denoted by $V \subseteq V'$, if every point of V is in V'.

Introduction

Definition

Let V and V' be two subspaces. We say V is a subspace of V', denoted by $V \subseteq V'$, if every point of V is in V'.

Lemma

Let $V: \{v_1, \dots, v_m\}$ and $V': \{v'_1, \dots, v'_n\}$ be two subspaces. Then, $V \subseteq V'$ iff $v_i \in V'$ for 1 < i < n.

Conclusions

Preliminaries

Proof.

Introduction

 (\Leftarrow) : Let $v \in V$.

Conclusions

Proof.

Introduction

$$(\Leftarrow)$$
: Let $v \in V$.

Then, $v = a_1 v_1 + \cdots + a_m v_m$.

Proof.

$$(\Leftarrow)$$
: Let $v \in V$.

Then, $v = a_1 v_1 + \cdots + a_m v_m$.

By the assumption, $v_i = b_{1i}v'_1 + \cdots + b_{ni}v'_n$ for $1 \le i \le m$.

Proof.

$$(\Leftarrow)$$
: Let $v \in V$.

Then,
$$v = a_1 v_1 + \cdots + a_m v_m$$
.

By the assumption, $v_i = b_{1i}v'_1 + \cdots + b_{ni}v'_n$ for $1 \le i \le m$.

$$v = a_1 v_1 + \cdots + a_m v_m$$

Proof.

$$(\Leftarrow)$$
: Let $v \in V$.

Then,
$$v = a_1 v_1 + \cdots + a_m v_m$$
.

By the assumption, $v_i = b_{1i}v'_1 + \cdots + b_{ni}v'_n$ for $1 \le i \le m$.

$$v = a_1 v_1 + \dots + a_m v_m$$

= $a_1 (b_{11} v'_1 + \dots + b_{n1} v'_n) + \dots + a_m (b_{1m} v'_1 + \dots + b_{nm} v'_n)$

Proof.

Introduction

$$(\Leftarrow)$$
: Let $v \in V$.

Then,
$$v = a_1 v_1 + \cdots + a_m v_m$$
.

By the assumption, $v_i = b_{1i}v'_1 + \cdots + b_{ni}v'_n$ for $1 \le i \le m$.

$$v = a_1 v_1 + \dots + a_m v_m$$

= $a_1 (b_{11} v'_1 + \dots + b_{n1} v'_n) + \dots + a_m (b_{1m} v'_1 + \dots + b_{nm} v'_n)$
= $[\sum_{i=1}^m (a_i \cdot b_{1i}) v'_1] + \dots + [\sum_{i=1}^m (a_i \cdot b_{1n}) v'_n].$

Conclusions

Proof.

Introduction

 (\Leftarrow) : Let $v \in V$.

Then, $v = a_1 v_1 + \cdots + a_m v_m$.

By the assumption, $v_i = b_{1i}v'_1 + \cdots + b_{ni}v'_n$ for $1 \le i \le m$.

$$v = a_1 v_1 + \dots + a_m v_m$$

= $a_1 (b_{11} v'_1 + \dots + b_{n1} v'_n) + \dots + a_m (b_{1m} v'_1 + \dots + b_{nm} v'_n)$
= $[\sum_{i=1}^m (a_i \cdot b_{1i}) v'_1] + \dots + [\sum_{i=1}^m (a_i \cdot b_{1n}) v'_n].$

 (\Rightarrow) : Each v_i is also a point of V. By the assumption that $V\subseteq V'$, we get that $v_i\in V'$.

Conclusions

Orthonormal sets

Definition

A **unit** vector is a vector whose Euclidean norm is 1, i.e., $\sum\limits_{i=1}^n v_i^2=1.$

Orthonormal sets

Definition

A unit vector is a vector whose Euclidean norm is 1, i.e., $\sum_{i=1}^{\infty} v_i^2 = 1$.

Definition

Two vectors v and w are **orthogonal** if $v^{\top}w=0$, i.e., $\sum_{i=1}^{n}v_{i}w_{i}=0$.

Definition

A unit vector is a vector whose Euclidean norm is 1, i.e., $\sum_{i=1}^{n} v_i^2 = 1$.

Definition

Two vectors v and w are **orthogonal** if $v^{\top}w=0$, i.e., $\sum_{i=1}^{n}v_{i}w_{i}=0$.

Definition

A set of vectors is **orthonormal** if the elements of the set are unit vectors that are pairwise orthogonal.

Orthonormal sets

Preliminaries

Definition

A unit vector is a vector whose Euclidean norm is 1, i.e., $\sum v_i^2 = 1$.

Definition

Two vectors v and w are **orthogonal** if $v^{\top}w=0$, i.e., $\sum_{i=1}^{\infty}v_{i}w_{i}=0$.

Definition

A set of vectors is orthonormal if the elements of the set are unit vectors that are pairwise orthogonal.

Example (Orthonormal sets)

- \bullet {(1,0,0), (0,1,0), (0,0,1)};
- **2** $\{(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}), (\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})\}.$

Properties of orthonormal sets

Lemma

Introduction

If $\{v_1, v_2, \dots, v_n\}$ is an orthonormal set, then

$$(a_1v_1 + \dots + a_nv_n)^{\top}(b_1v_1 + \dots + b_nv_n) = \sum_{i=1}^n a_ib_i.$$

Conclusions

Properties of orthonormal sets

Lemma

If $\{v_1, v_2, \dots, v_n\}$ is an orthonormal set, then $(a_1v_1 + \dots + a_nv_n)^{\top}(b_1v_1 + \dots + b_nv_n) = \sum_{i=1}^n a_ib_i.$

Proof.

Let
$$v_i = [v_{i1}, \ldots, v_{im}]^\top$$
.

Properties of orthonormal sets

Lemma

If $\{v_1, v_2, \dots, v_n\}$ is an orthonormal set, then $(a_1v_1 + \dots + a_nv_n)^{\top}(b_1v_1 + \dots + b_nv_n) = \sum_{i=1}^{n} a_ib_i.$

Proof.

Let
$$v_i = [v_{i1}, \dots, v_{im}]^{\top}$$
.
 $(a_1 v_1 + \dots + a_n v_n)^{\top} (b_1 v_1 + \dots + b_n v_n)^{\top}$
 $= \left[\sum_{i=1}^n a_i v_{i1} \dots \sum_{i=1}^n a_i v_{im}\right] \left[\sum_{j=1}^n b_j v_{j1}\right]^{\top}$
 \vdots
 $\sum_{i=1}^n b_j v_{jm}$

Lemma

If $\{v_1, v_2, \dots, v_n\}$ is an orthonormal set, then $(a_1v_1 + \dots + a_nv_n)^{\top}(b_1v_1 + \dots + b_nv_n) = \sum_{i=1}^{n} a_ib_i.$

Proof.

Let
$$v_i = [v_{i1}, \dots, v_{im}]^{\top}$$
.
 $(a_1 v_1 + \dots + a_n v_n)^{\top} (b_1 v_1 + \dots + b_n v_n)$
 $= \left[\sum_{i=1}^n a_i v_{i1} \dots \sum_{i=1}^n a_i v_{im}\right] \begin{bmatrix} \sum_{j=1}^n b_j v_{j1} \\ \vdots \\ \sum_{j=1}^n b_j v_{jm} \end{bmatrix}$
 $= \sum_{k=1}^m (\sum_{i=1}^n a_i v_{ik}) \cdot (\sum_{i=1}^n b_j v_{jk})$

Liangda Fang 17/101

Proof.

$$= \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j v_{ik} v_{jk})$$

18/101 Liangda Fang

Proof.

$$= \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j v_{ik} v_{jk})$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} [(a_i b_j) \cdot \sum_{k=1}^{m} (v_{ik} v_{jk})]$$

Liangda Fang 18/101

Proof.

$$= \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j v_{ik} v_{jk})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} [(a_i b_j) \cdot \sum_{k=1}^{m} (v_{ik} v_{jk})]$$

If
$$i \neq j$$
, then $\sum_{k=1}^{m} v_{ik} v_{jk} = v_i^{\top} v_j = 0$.

Ow,
$$\sum\limits_{k=1}^{m}v_{ik}v_{jk}=v_{i}^{\top}v_{j}=1.$$

18/101 Liangda Fang

Proof.

$$= \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j v_{ik} v_{jk})$$

=
$$\sum_{i=1}^{n} \sum_{j=1}^{n} [(a_i b_j) \cdot \sum_{k=1}^{m} (v_{ik} v_{jk})]$$

$$i=1 \ j=1 \qquad \qquad k=1$$
 If $i \neq j$, then $\sum\limits_{k=1}^m v_{ik}v_{jk} = v_i^\top v_j = 0$.

Ow,
$$\sum\limits_{k=1}^m v_{ik}v_{jk}=v_i^{\intercal}v_j=1.$$

We get
$$\sum_{i=1}^{n} a_i b_i$$

18/101 Liangda Fang

Outline

- Iterative method
 - Jacobi Method
 - Gauss-Seidel Method
 - Successive Over-Relaxation
 - Convergence of iterative methods
- - Symmetric positive-definite matrices
 - Conjugate Gradient Method
 - Preconditioning

Liangda Fang 19/101

Example

A linear equation is as follows:

$$3u + v = 5$$
$$u + 2v = 5.$$

We have:

$$u = \frac{5-v}{3}$$
$$v = \frac{5-u}{2}.$$

Liangda Fang 20/101

Example (Iteration process)

$$\bullet \begin{bmatrix} u_0 \\ v_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

5 The process converges to the solution, which is [1, 2].

Liangda Fang 21/101

Jacobi Method

Example

A linear equation is as follows:

$$u + 2v = 5$$

$$3u + v = 5.$$

We have:

$$u = 5 - 2v$$

$$v = 5 - 3u.$$

Liangda Fang 22/101

Jacobi method

Example (Iteration process)

$$\bullet \begin{bmatrix} u_0 \\ v_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The process tends to diverge.

Liangda Fang 23/101

Introduction

Question: What is the condition under which Jabobi method does work?

Conclusions

Liangda Fang 24/ 101

Question: What is the condition under which Jabobi method does work?

Definition

The $n \times n$ matrix $A = (a_{ij})$ is **strictly diagonally dominant**, if for each $1 \le i \le n$, $|a_{ii}| > \sum_{j \ne i} |a_{ij}|$.

Example

$$\begin{bmatrix} 3 & 1 & -1 \\ 2 & -5 & 2 \\ 1 & 6 & 8 \end{bmatrix}$$
 is strictly diagonally dominant.

- |3| > |1| + |-1|;
- | -5 | > |2| + |2|;
- |8| > |1| + |6|.

Liangda Fang 24/101

Example

$$\begin{bmatrix} 3 & 2 & 6 \\ 1 & 8 & 1 \end{bmatrix}$$

 $\begin{bmatrix} 3 & 2 & 6 \\ 1 & 8 & 1 \\ 9 & 2 & -2 \end{bmatrix} \text{ is not strictly diagonally dominant.}$

$$9 \ 2 \ -2$$

$$| -2 | < |9| + |2|.$$

Liangda Fang 25/101

Example

$$\begin{bmatrix} 3 & 2 & 6 \\ 1 & 8 & 1 \\ 9 & 2 & -2 \end{bmatrix}$$
 is not strictly diagonally dominant.

$$|-2| < |9| + |2|.$$

But
$$\begin{bmatrix} 9 & 2 & -2 \\ 1 & 8 & 1 \\ 3 & 2 & 6 \end{bmatrix}$$
 is strictly diagonally dominant.

$$|9| > |2| + |-2|;$$

$$|8| > |1| + |1|$$
;

$$|6| > |3| + |2|$$
.

25/101 Liangda Fang

Theorem

Introduction

If the $n \times n$ matrix A is strictly diagonally dominant, then

- A is a nonsingular matrix;
- ② for every vector b and every starting guess, the Jacobi Method applied to Ax = b converges to the unique solution.

Conclusions

Liangda Fang 26/ 101

Definition

Introduction

Suppose that A is a matrix.

- D: the main diagonal of A;
- L: the lower triangle of A;
- U: the upper triangle of A.

Conclusions

Liangda Fang 27/ 101

Example

$$\bullet \ A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\bullet \ L = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

$$\bullet \ \ U = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Liangda Fang 28/101

$$Ax = b$$

$$(D + L + U)x = b$$

$$Dx = b - (L + U)x$$

$$Dx_{k+1} = b - (L + U)x_k$$

$$x_{k+1} = D^{-1}(b - (L + U)x_k).$$

Liangda Fang 29/101

$$Ax = b$$

$$(D + L + U)x = b$$

$$Dx = b - (L + U)x$$

$$Dx_{k+1} = b - (L + U)x_k$$

$$x_{k+1} = D^{-1}(b - (L + U)x_k).$$

Jacobi Method is as follows:

$$\begin{array}{rcl} x_0 & = & \text{initial vector} \\ x_{k+1} & = & D^{-1}(b-(L+U)x_k) \\ x_{k+1,i} & = & \frac{1}{a_{ii}}(b_i-\sum_{j\neq i}a_{ij}x_{k,j}) \text{ for } 1\leq i\leq n. \end{array}$$

Liangda Fang 29/101

Example

$$\bullet \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix},$$

•
$$x_{k+1} = \begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = D^{-1}(b - (L+U)x_k)$$

$$= \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} (\begin{bmatrix} 5 \\ 5 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} u_k \\ v_k \end{bmatrix})$$

$$= \begin{bmatrix} \frac{5-v_k}{5-u_k} \\ \frac{5-u_k}{2} \end{bmatrix}.$$

30/101 Liangda Fang

Outline

- Iterative method
 - Jacobi Method
 - Gauss-Seidel Method
 - Successive Over-Relaxation
 - Convergence of iterative methods
- - Symmetric positive-definite matrices
 - Conjugate Gradient Method
 - Preconditioning

Liangda Fang 31/101

Gauss-Seidel Method

Question: Are there some methods converging faster than the Jacobi Method?

Liangda Fang 32/101

Gauss-Seidel Method

Introduction

Question: Are there some methods converging faster than the Jacobi Method?

Answer: Yes! The Gauss-Seidel Method.

Conclusions

Liangda Fang 32/101

Methods for symmetric positive-definite matrices

Gauss-Seidel Method

Example

- The definition of v_{k+1} uses u_{k+1} instead of u_k ;
- $\bullet \quad \begin{vmatrix} u_{k+1} \\ v_{k+1} \end{vmatrix} = \begin{bmatrix} \frac{5-v_k}{3} \\ \frac{5-u_{k+1}}{3} \end{bmatrix}.$
- $\mathbf{0} \quad \begin{bmatrix} u_0 \\ v_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Liangda Fang 33/101

Gauss-Seidel Method

Introduction

Preliminaries

Times	Jacobi Gauss-Seidel	
1	0.8333	0.7454
2	0.3727	0.1242
3	0.1389	0.0207

After 3 iterations, Gauss-Seidel converges faster than Jacobi.

Conclusions

Liangda Fang 34/ 101

The matrix form of Gauss-Seidel Method

Introduction

Preliminaries

$$Ax = b$$

$$(D + L + U)x = b$$

$$(D + L)x = b - Ux$$

$$(D + L)x_{k+1} = b - Ux_k$$

For computation:

$$x_{k+1} = D^{-1}(b - Ux_k - Lx_{k+1})$$

For the proof of convergence:

$$x_{k+1} = (D + L)^{-1}(b - Ux_k).$$

Conclusions

Liangda Fang 35/ 101

The matrix form of Gauss-Seidel Method

$$Ax = b$$

$$(D + L + U)x = b$$

$$(D + L)x = b - Ux$$

$$(D + L)x_{k+1} = b - Ux_k$$

For computation:

$$x_{k+1} = D^{-1}(b - Ux_k - Lx_{k+1})$$

For the proof of convergence:

$$x_{k+1} = (D + L)^{-1}(b - Ux_k).$$

Gauss-Seidel Method is as follows:

$$\begin{array}{rcl} x_0 & = & \text{initial vector} \\ x_{k+1} & = & D^{-1}(b- {\color{red} U}x_k - {\color{blue} L}x_{k+1}) \\ x_{k+1,i} & = & \frac{1}{a_{ii}}(b_i - \sum_{j>i} {\color{blue} a_{ij}}x_{k,j} - \sum_{j< i} {\color{blue} a_{ij}}x_{k+1,j}) \text{ for } 1 \leq i \leq n \end{array}$$

Liangda Fang 35 / 101

The matrix form of Gauss-Seidel Method

Example

$$\bullet \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix},$$

Liangda Fang 36/101

Convergence of Gauss-Seidel Method

Theorem

Introduction

If the $n \times n$ matrix A is strictly diagonally dominant, then

- A is a nonsingular matrix;
- ② for every vector b and every starting guess, the Gauss-Seidel Method applied to Ax = b converges to the unique solution.

Conclusions

Liangda Fang 37/101

- Iterative method
 - Jacobi Method
 - Gauss-Seidel Method
 - Successive Over-Relaxation
 - Convergence of iterative methods
- - Symmetric positive-definite matrices
 - Conjugate Gradient Method
 - Preconditioning

Liangda Fang 38/101

Successive Over-Relaxation

Introduction

Question: Are there some methods converging faster than the Gauss-Seidel Method?

Conclusions

Liangda Fang 39/101

Successive Over-Relaxation

Introduction

Question: Are there some methods converging faster than the Gauss-Seidel Method?

Answer: Yes! Successive Over-Relaxation, a variant of the Gauss-Seidel Method

Conclusions

Liangda Fang 39/101

Relaxation parameter

Example

• Relaxation parameter ω : used to define each component of the new guess x_{k+1} as ω times, and $1-\omega$ times the current guess x_k ;

$$\bullet \begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} (1-\omega)u_k + \omega \frac{5-v_k}{3} \\ (1-\omega)v_k + \omega \frac{5-u_{k+1}}{2} \end{bmatrix}.$$

Liangda Fang 40/ 101

Relaxation parameter

Example

Liangda Fang 41/101

Successive Over-Relaxation

Times	Jacobi	Gauss-Seidel	$SOR(\omega = \frac{11}{10})$
1	0.8333	0.7454	0.8724
2	0.3727	0.1242	0.0227
3	0.1389	0.0207	0.0087

After 3 iterations, SOR converges faster than Jacobi and Gauss-Seidel.

Liangda Fang 42/101 **Preliminaries**

Introduction

- The Gauss-Seidel Method: $\omega = 1$;
- Under-relaxation: $\omega < 1$.

Conclusions

Liangda Fang 43/101

Different relaxation parameters lead to different convergence speeds

Introduction

	Times	Jacobi	Gauss-Seidel	$SOR(\omega = \frac{11}{10})$	$SOR(\omega = \frac{6}{5})$
Г	1	0.8333	0.7454	0.8724	1.0198
	2	0.3727	0.1242	0.0227	0.1641
	3	0.1389	0.0207	0.0087	0.0230

SOR with parameter $\frac{6}{5}$ converges faster than Jacobi, but slower than Gauss-Seidel.

Conclusions

The matrix form of Successive Over-Relaxation

Introduction

$$Ax = b$$

$$\omega Ax = \omega b$$

$$(\omega D + \omega L + \omega U)x = \omega b$$

$$(D + \omega L)x = \omega b - \omega Ux + (1 - \omega)Dx$$

$$(D + \omega L)x_{k+1} = \omega b - \omega Ux_k + (1 - \omega)Dx_k$$

$$Dx_{k+1} = \omega b + (1 - \omega)Dx_k - \omega Ux_k - \omega Lx_{k+1}$$

$$x_{k+1} = (1 - \omega)x_k + D^{-1}(\omega b - \omega Ux_k - \omega Lx_{k+1})$$

Conclusions

The matrix form of Successive Over-Relaxation

$$Ax = b$$

$$\omega Ax = \omega b$$

$$(\omega D + \omega L + \omega U)x = \omega b$$

$$(D + \omega L)x = \omega b - \omega Ux + (1 - \omega)Dx$$

$$(D + \omega L)x_{k+1} = \omega b - \omega Ux_k + (1 - \omega)Dx_k$$

$$Dx_{k+1} = \omega b + (1 - \omega)Dx_k - \omega Ux_k - \omega Lx_{k+1}$$

$$x_{k+1} = (1 - \omega)x_k + D^{-1}(\omega b - \omega Ux_k - \omega Lx_{k+1})$$

Successive Over-Relaxation is as follows:

$$\begin{array}{rcl} x_0 & = & \text{initial vector} \\ x_{k+1} & = & (1-\omega)x_k + D^{-1}(\omega b - \omega \ensuremath{U} x_k - \omega \ensuremath{L} x_{k+1}) \\ x_{k+1,i} & = & (1-\omega)x_{k,i} + \frac{\omega}{a_{ii}}(b_i - \sum_{j>i} a_{ij}x_{k,j} - \sum_{j$$

Outline

- Introduction
- 2 Preliminaries
- Iterative method
 - Jacobi Method
 - Gauss-Seidel Method
 - Successive Over-Relaxation
 - Convergence of iterative methods
- 4 Methods for symmetric positive-definite matrices
 - Symmetric positive-definite matrices
 - Conjugate Gradient Method
 - Preconditioning
- Conclusions

Conclusions

Eigenvalues and eigenvectors

Definition (Eigenvalues and eigenvectors)

- A: an $n \times n$ matrix;
- λ : a real number;

Introduction

• v: a nonzero n-dimensional real vector.

If $Av = \lambda v$, then λ is called an **eigenvalue** of A, and v is its corresponding **eigenvector**.

Conclusions

Eigenvalues and eigenvectors

Definition (Eigenvalues and eigenvectors)

- A: an $n \times n$ matrix;
- λ : a real number;
- v: a nonzero n-dimensional real vector.

If $Av = \lambda v$, then λ is called an **eigenvalue** of A, and v is its corresponding **eigenvector**.

Proposition

Introduction

Eigenvalues are the roots of the **characteristic polynomial** $det(A - \lambda I) = 0$.

Conclusions

Definition (Eigenvalues and eigenvectors)

- A: an $n \times n$ matrix;
- λ : a real number;
- v: a nonzero n-dimensional real vector.

If $Av = \lambda v$, then λ is called an **eigenvalue** of A, and v is its corresponding **eigenvector**.

Proposition

Eigenvalues are the roots of the **characteristic polynomial** $det(A - \lambda I) = 0$.

Proposition

Suppose that A is an $n \times n$ matrix, λ is an eigenvalue of A, v is the eigenvector of A w.r.t. λ .

Then, $A^m v = \lambda^m v$.

1906 NIVERS

Example

$$\bullet \ \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$$

Example

$$\bullet \ \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$$

•
$$\det(A-\lambda I) = \begin{vmatrix} 1-\lambda & 3\\ 2 & 2-\lambda \end{vmatrix} = (1-\lambda)(2-\lambda)-6 = (\lambda-4)(\lambda+1);$$

• The eigenvalues: 4 and -1;

Preliminaries

Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- $\bullet \det(A \lambda I) = \begin{vmatrix} 1 \lambda & 3 \\ 2 & 2 \lambda \end{vmatrix} = (1 \lambda)(2 \lambda) 6 = (\lambda 4)(\lambda + 1);$
- The eigenvalues: 4 and -1;
- $(A-4I)x = 0 \Rightarrow \begin{bmatrix} -3 & 3 \\ 2 & -2 \end{bmatrix} x = 0 \Rightarrow -3x_1 + 3x_2 = 0 \Rightarrow x_1 = x_2;$
- The eigenvectors wrt $\lambda=4$: all nonzero multiples of $\begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$;

Eigenvalues and eigenvectors

Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- $\bullet \det(A \lambda I) = \begin{vmatrix} 1 \lambda & 3 \\ 2 & 2 \lambda \end{vmatrix} = (1 \lambda)(2 \lambda) 6 = (\lambda 4)(\lambda + 1);$
- The eigenvalues: 4 and -1:
- $(A-4I)x = 0 \Rightarrow \begin{bmatrix} -3 & 3 \\ 2 & -2 \end{bmatrix} x = 0 \Rightarrow -3x_1 + 3x_2 = 0 \Rightarrow x_1 = x_2;$
- The eigenvectors wrt $\lambda=4$: all nonzero multiples of $\begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$;
- $(A+I)x = 0 \Rightarrow \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix} x = 0 \Rightarrow 2x_1 + 3x_2 = 0 \Rightarrow x_1 = -\frac{3}{2}x_2;$
- The eigenvectors wrt $\lambda = -1$: all nonzero multiples of $\begin{bmatrix} 3 & -2 \end{bmatrix}^{\top}$;

Definition (Similarity)

Two $n \times n$ matrices A_1 and A_2 are **similar**, denoted by $A_1 \sim A_2$, if there exists a nonsingular $n \times n$ matrix S s.t. $A_1 = SA_2S^{-1}$.

Definition (Diagonal matrix)

The $n \times n$ diagonal matrix D_n is the matrix with $I_{ii} \neq 0$ for 1 < i < n.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Definition (Diagonalizable matrix)

An $n \times n$ matrix A is **diagonalizable**, if it is similar to a diagonal matrix B.

Proposition

- A: an $n \times n$ matrix;
- $\lambda_1, \lambda_2, \dots, \lambda_n$: the eigenvalues of A;
- v_i : the eigenvector of A wrt λ_i ;

$$\bullet \ S = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix};$$

$$\bullet B = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}.$$

Then, $A = SBS^{-1}$.

50/101 Liangda Fang

Introduction

Example

$$\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$$

• The eigenvalues: 4 and -1;

Liangda Fang 51/101

Introduction

Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- The eigenvalues: 4 and -1;

$$\bullet \ B = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix};$$

Liangda Fang 51/101 Introduction

Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- The eigenvalues: 4 and -1;
- $\bullet \ B = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix};$
- ullet An eigenvector wrt $\lambda_1=4$: $\begin{bmatrix}1\\1\end{bmatrix}$;
- An eigenvector wrt $\lambda_2 = -1$: $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$;

Liangda Fang 51/ 101

Introduction

Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- The eigenvalues: 4 and -1;
- $\bullet \ B = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix};$
- An eigenvector wrt $\lambda_1 = 4$: $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$;
- An eigenvector wrt $\lambda_2 = -1$: $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$;
- $S = \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix}$;

Liangda Fang 51/101

Introduction

Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- The eigenvalues: 4 and -1;
- $\bullet \ B = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix};$
- An eigenvector wrt $\lambda_1 = 4$: $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$;
- An eigenvector wrt $\lambda_2 = -1$: $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$;
- $\bullet \ S = \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix};$
- $\bullet \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix}^{-1}.$

Liangda Fang 51/101

Spectral radius

Definition

Let A be an $n \times n$ matrix and $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. The **spectral radius** $\rho(A)$ is defined as $\max\{|\lambda_1|,\ldots,|\lambda_n|\}$.

The spectral radius: the upper bound of $\frac{||Ax||_2}{||x||_2}$.

Liangda Fang 52/101 **Preliminaries**

Introduction

Conclusions

Definition

Let A be an $n \times n$ matrix and $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. The **spectral radius** $\rho(A)$ is defined as $\max\{|\lambda_1|,\ldots,|\lambda_n|\}$.

The spectral radius: the upper bound of $\frac{||Ax||_2}{||x||_2}$.

Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- The eigenvalues: 4 and -1;

Liangda Fang 52/101 Introduction

Theorem

- A: an $n \times n$ matrix with spectral radius $\rho(A) < 1$;
- b: an vector.

Preliminaries

For any initial vector x_0 , the iteration $x_{k+1} = Ax_k + b$ converges, i.e., there exists a unique x_* s.t. $\lim_{k \to \infty} x_k = x_*$ and $x_* = Ax_* + b$.

Liangda Fang 53/ 101

Proof of the convergence of Jacobi Method

Proof.

- Matrix form: $x_{k+1} = -D^{-1}(L+U)x_k + D^{-1}b$;
- Reduce the proof of convergence to that of $\rho(D^{-1}(L+U)) < 1$;
- Let λ be any eigenvalue of $D^{-1}(L+U)$ with corresponding eigenvector v;
- m: the index such that $|v_m| \ge |v_i|$ for $1 \le i \ne m < n$;
- $D^{-1}(L+U)v = \lambda v \Rightarrow (L+U)v = \lambda Dv$.

54/101 Liangda Fang

Proof of the convergence of Jacobi Method

Proof.

• Take absolute values of the *m*th component of this vector equation:

$$\begin{aligned} |\lambda||v_m||a_{mm}| &= |\lambda a_{mm}v_m| \\ &= |\sum_{i\neq m} a_{mi}v_i| \\ &\leq |v_m|\sum_{i\neq m} |a_{mi}| \\ &< |v_m||a_{mm}|. \end{aligned}$$

- Hence, $|\lambda| < 1$.
- Since λ is an arbitrary eigenvalue, we have that $\rho(D^{-1}(L+U)) < 1$.

Liangda Fang 55/101

Preliminaries

Proof of the convergence of Gauss-Seidel Method

Proof.

- Matrix form: $x_{k+1} = -(L+D)^{-1}Ux_k + (L+D)^{-1}b$
- Reduce the proof of convergence to that of $\rho((L+D)^{-1}U) < 1$;
- Let λ be any eigenvalue of $(L+D)^{-1}U$ with corresponding eigenvector v;
- m: the index such that $|v_m| \geq |v_i|$ for $1 \leq i \neq m \leq n$;
- $(L+D)^{-1}Uv = \lambda v \Rightarrow Uv = \lambda(D+L)v$.

56/101 Liangda Fang

Proof.

•

$$\begin{aligned} |\lambda||v_m| \cdot \sum_{i>m} |a_{mi}| &< |\lambda||v_m| \cdot (|a_{mm}| - \sum_{i< m} |a_{mi}|) \\ &\leq |\lambda| \cdot (|a_{mm}v_m| - \sum_{i< m} |a_{mi}v_i|) \\ &\leq |\lambda| \cdot |a_{mm}v_m + \sum_{i< m} a_{mi}v_i| \\ &= |\sum_{i>m} a_{mi}v_i| \\ &\leq |v_m| \sum |a_{mi}| \end{aligned}$$

- Hence, $|\lambda| < 1$.
- Since λ is arbitrary, we have that $\rho((L+D)^{-1}U) < 1$.

1906

Liangda Fang 57/ 101

Outline

- Introduction
- 2 Preliminaries
- 3 Iterative method
 - Jacobi Method
 - Gauss-Seidel Method
 - Successive Over-Relaxation
 - Convergence of iterative methods
- Methods for symmetric positive-definite matrices
 - Symmetric positive-definite matrices
 - Conjugate Gradient Method
 - Preconditioning
- Conclusions

Methods for symmetric positive-definite matrices

Sometimes, we handle some special matrices, e.g., symmetric and positive-definite.

Question: For this type of matrices, are there some methods converging faster?

Preliminaries

Methods for symmetric positive-definite matrices

Sometimes, we handle some special matrices, e.g., symmetric and positive-definite.

Question: For this type of matrices, are there some methods converging faster?

Answer: Yes! Conjugate Gradient Method.

Liangda Fang 59/101

Symmetric positive-definite matrices

Definition

Introduction

The $n \times n$ matrix A is

- symmetric: $A^{\top} = A$;
- positive-definite: $x^{T}Ax > 0$ for all vectors $x \neq 0$.

Example

$$A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}$$
 is symmetric positive-definite.

• symmetric: $A^{\top} = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} = A;$

• positive-definite:
$$x^{T}Ax = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= 2x_1^2 + 4x_1x_2 + 5x_2^2$$

$$= 2(x_1 + x_2)^2 + 3x_2^2$$

$$> 0 \text{ if } x_1, x_2 > 0$$

Conclusions

Liangda Fang 60/ 101

Example

$$A = \begin{bmatrix} 2 & 4 \\ 4 & 5 \end{bmatrix}$$
 is not positive-definite.

$$x^{T} A x = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$= 2x_{1}^{2} + 8x_{1}x_{2} + 5x_{2}^{2}$$

$$= 2(x_{1} + 2x_{2})^{2} - 3x_{2}^{2}$$

$$= 2(-2 + 2 \cdot 1)^{2} - 3 \cdot 1^{2} \quad (x_{1} = -2, x_{2} = 1)$$

$$= -3$$

$$< 0$$

Liangda Fang 61/ 101

Properties of positive-definite matrices

Lemma

A matrix is nonsingular iff Ax = 0 implies that x = 0.

Proposition

A positive-definite matrix is nonsingular.

Proof.

We want to prove that x = 0 when A is positive-definite and Ax = 0.

Since $y^{\top}Ay > 0$ for every nonzero vector y, we have $Ay \neq 0$. Hence, x must be zero vector.

So A is nonsingular.

Liangda Fang 62/101 Introduction

Conclusions

Properties of symmetric matrices

Theorem (The finite-dimensional spectral theorem)

Let A be a symmetric $n \times n$ matrix. Then the set of unit eigenvectors of A is an orthonormal set $\{v_1, \ldots, v_n\}$ forming a basis of \mathbb{R}^n .

Liangda Fang 63/101

operates of symmetric matrices

Theorem (The finite-dimensional spectral theorem)

Let A be a symmetric $n \times n$ matrix. Then the set of unit eigenvectors of A is an orthonormal set $\{v_1, \ldots, v_n\}$ forming a basis of R^n .

Example

$$\bullet \ \ A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix};$$

Liangda Fang 63/101

Theorem (The finite-dimensional spectral theorem)

Let A be a symmetric $n \times n$ matrix. Then the set of unit eigenvectors of A is an orthonormal set $\{v_1, \ldots, v_n\}$ forming a basis of R^n .

Example

$$\bullet \ \ A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix};$$

$$\bullet \ \det(A-\lambda I) = \left| \begin{array}{cc} 2-\lambda & 2 \\ 2 & 5-\lambda \end{array} \right| = (2-\lambda)(5-\lambda)-4 = (\lambda-6)(\lambda-1);$$

• The eigenvalues: 6 and 1.

Liangda Fang 63/101

Properties of symmetric matrices

Example

•
$$(A - 6I)x = 0 \Rightarrow \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} x = 0 \Rightarrow 2x_1 - x_2 = 0 \Rightarrow x_1 = \frac{1}{2}x_2;$$

- An eigenvector wrt $\lambda = 6$: $\begin{bmatrix} 1 & 2 \end{bmatrix}^{\top}$;
- The unit eigenvector wrt $\lambda=6$ via normalization:

$$\begin{bmatrix} \frac{v_1}{\|v\|_2} & \frac{v_2}{\|v\|_2} \end{bmatrix}^{\top} = \begin{bmatrix} \frac{1}{\sqrt{2^2 + 1^2}} & \frac{2}{\sqrt{2^2 + 1^2}} \end{bmatrix}^{\top} = \begin{bmatrix} \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} \end{bmatrix}^{\top};$$

Properties of symmetric matrices

Example

•
$$(A - 6I)x = 0 \Rightarrow \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} x = 0 \Rightarrow 2x_1 - x_2 = 0 \Rightarrow x_1 = \frac{1}{2}x_2;$$

- An eigenvector wrt $\lambda = 6$: $\begin{bmatrix} 1 & 2 \end{bmatrix}^{\top}$;
- The unit eigenvector wrt $\lambda=6$ via normalization:

$$\begin{bmatrix} \frac{v_1}{\|v\|_2} & \frac{v_2}{\|v\|_2} \end{bmatrix}^\top = \begin{bmatrix} \frac{1}{\sqrt{2^2 + 1^2}} & \frac{2}{\sqrt{2^2 + 1^2}} \end{bmatrix}^\top = \begin{bmatrix} \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} \end{bmatrix}^\top;$$

•
$$(A - I)x = 0 \Rightarrow \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} x = 0 \Rightarrow x_1 + 2x_2 = 0 \Rightarrow x_1 = -2x_2;$$

- An eigenvector wrt $\lambda = 1$: $\begin{bmatrix} 2 & -1 \end{bmatrix}^{\top}$;
- The unit eigenvector wrt $\lambda = 1$ via normalization:

$$\begin{bmatrix} \frac{v_1}{\|v\|_2} & \frac{v_2}{\|v\|_2} \end{bmatrix}^\top = \begin{bmatrix} \frac{2}{\sqrt{2^2 + (-1)^2}} & -\frac{1}{\sqrt{2^2 + (-1)^2}} \end{bmatrix}^\top = \begin{bmatrix} \frac{2\sqrt{5}}{5} & -\frac{\sqrt{5}}{5} \end{bmatrix}^\top;$$

SOS E

Properties of symmetric matrices

Example

•
$$(A - 6I)x = 0 \Rightarrow \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} x = 0 \Rightarrow 2x_1 - x_2 = 0 \Rightarrow x_1 = \frac{1}{2}x_2;$$

- An eigenvector wrt $\lambda = 6$: $\begin{bmatrix} 1 & 2 \end{bmatrix}^{\top}$;
- The unit eigenvector wrt $\lambda = 6$ via normalization:

$$\begin{bmatrix} \frac{v_1}{\|v\|_2} & \frac{v_2}{\|v\|_2} \end{bmatrix}^\top = \begin{bmatrix} \frac{1}{\sqrt{2^2 + 1^2}} & \frac{2}{\sqrt{2^2 + 1^2}} \end{bmatrix}^\top = \begin{bmatrix} \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} \end{bmatrix}^\top;$$

$$\bullet (A - I)x = 0 \Rightarrow \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} x = 0 \Rightarrow x_1 + 2x_2 = 0 \Rightarrow x_1 = -2x_2;$$

- An eigenvector wrt $\lambda = 1$: $\begin{bmatrix} 2 & -1 \end{bmatrix}^{\top}$;
- The unit eigenvector wrt $\lambda = 1$ via normalization:

$$\begin{bmatrix} \frac{v_1}{\|v\|_2} & \frac{v_2}{\|v\|_2} \end{bmatrix}^\top = \begin{bmatrix} \frac{2}{\sqrt{2^2 + (-1)^2}} & -\frac{1}{\sqrt{2^2 + (-1)^2}} \end{bmatrix}^\top = \begin{bmatrix} \frac{2\sqrt{5}}{5} & -\frac{\sqrt{5}}{5} \end{bmatrix}^\top;$$

• $\left\{ \begin{bmatrix} \sqrt{5} & \frac{2\sqrt{5}}{5} \end{bmatrix}^{\top}, \begin{bmatrix} \frac{2\sqrt{5}}{5} & -\frac{\sqrt{5}}{5} \end{bmatrix}^{\top} \right\}$ are an orthonormal set of R^2 .

Properties of symmetric positive-definite matrices

Proposition

Suppose that the $n \times n$ matrix A is symmetric.

Then, A is positive-definite iff all of its eigenvalues are positive.

Proof.

 (\Longrightarrow) A is positive-definite and $Av = \lambda v$ for any nonzero vector v. $0 < v^{\top} A v = v^{\top} \lambda v = \lambda \|v\|_2^2$.

Since $||v||_2^2 > 0$, $\lambda > 0$.

Liangda Fang 65 / 101

Properties of symmetric positive-definite matrices

ALambda > 0

Proof.

 (\Leftarrow) By the finite-dimensional spectral theorem, any nonzero vector xcan be represented by

$$x = c_1 v_1 + \ldots + c_n v_n$$

where v_1, \ldots, v_n are the eigenvectors of A and not all c_i are zero.

$$x^{\top} A x = (c_1 v_1 + \ldots + c_n v_n)^{\top} A (c_1 v_1 + \ldots + c_n v_n)$$

$$= (c_1 v_1 + \ldots + c_n v_n)^{\top} (\lambda_1 c_1 v_1 + \ldots + \lambda_n c_n v_n)$$

$$= \lambda_1 c_1^2 + \ldots + \lambda_n c_n^2$$

Liangda Fang 66 / 101

Properties of symmetric positive-definite matrices

Definition

A principal submatrix of a square matrix A is a square submatrix whose diagonal entries are diagonal entries of A.

Proposition

Any principal submatrix of a symmetric positive-definite matrix is symmetric positive-definite.

Example

$$\mathsf{If} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

is symmetric positive-definite,

then so is $\begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix}$.

Liangda Fang 67/ 101

- - Jacobi Method
 - Gauss-Seidel Method
 - Successive Over-Relaxation
 - Convergence of iterative methods
- Methods for symmetric positive-definite matrices

Iterative method

- Symmetric positive-definite matrices
- Conjugate Gradient Method
- Preconditioning

Assume we have a symmetric positive-definite $n \times n$ matrix A.

Definition

For two n-vectors v and w, define the A-inner product as $(v,w)_A = v^\top A w$.

The vectors v and w are A-conjugate if $(v, w)_A = 0$.

lvwAvwA=0

Liangda Fang 69/ 101

Assume we have a symmetric positive-definite $n \times n$ matrix A.

Definition

For two *n*-vectors v and w, define the A-inner product as $(v, w)_A = v^\top A w$.

The vectors v and w are A-conjugate if $(v, w)_A = 0$.

Proposition

- *Symmetry:* $(v, w)_A = (w, v)_A$;
- Linearity: $(\alpha v, w)_A = \alpha(v, w)_A$ and $(v, \alpha w)_A = \alpha(v, w)_A$;
- Positive-definiteness: $(v, v)_A > 0$ if $v \neq 0$;
- Classical inner-product: $(v, w) = (v, w)_I$.

Liangda Fang 69/ 101

Conjugate Gradient Method

Lemma

Let $D = \{d_1, \dots, d_n\}$ a set of n mutually conjugate vectors wrt to A. Then D forms a basis for \mathbb{R}^n .

Liangda Fang 70/101

Conjugate Gradient Method

Lemma

Let $D = \{d_1, \dots, d_n\}$ a set of n mutually conjugate vectors wrt to A. Then D forms a basis for \mathbb{R}^n .

Proposition

The solution x^* of Ax = b can be represented by

$$x^* = \sum_{k=1}^n \alpha_k d_k.$$

Liangda Fang 70/101 Introduction

Conclusions

Some notations of Conjugate Gradient Method

- **1** d_k : the k-th mutually conjugate vector;
- α_k : the coefficient of d_k for x^* ensuring $(d_k, r_{k+1}) = 0$;
- 3 x_k : the approximate solution at step k;
 - the projection of x^* onto $\{d_1,\ldots,d_{k-1}\}$, i.e., $\sum_{i=1}^{k-1}\alpha_i d_i$;

Some notations of Conjugate Gradient Method

- **1** d_k : the k-th mutually conjugate vector;
- α_k : the coefficient of d_k for x^* ensuring $(d_k, r_{k+1}) = 0$;
- **3** x_k : the approximate solution at step k;
 - the projection of x^* onto $\{d_1,\ldots,d_{k-1}\}$, i.e., $\sum_{i=1}^{k-1}\alpha_i d_i$;
- r_k : the residual of x_k at step k, i.e., $b Ax_k$;
 - $(r_i, r_k) = 0$ for 0 < i < k:
- **5** β_k : the coefficient ensuring $(d_k, d_{k+1})_A = 0$.

An iterative framework for Conjugate Gradient Method

Algorithm 1: Conjugate Gradient Method

1 x_0 = initial guess

$$d_0 = r_0 = b - Ax_0$$

3 for $k = 0, 1, 2, \dots, n-1$ do

if r_k is sufficiently small then

return x_k 5

Compute the parameters $\alpha_k, x_{k+1}, r_{k+1}, \beta_k$ and d_{k+1} .

Liangda Fang 73/101

An iterative framework for Conjugate Gradient Method

Algorithm 2: Conjugate Gradient Method

- 1 x_0 = initial guess
- 2 $d_0 = r_0 = b Ax_0$
- 3 for $k = 0, 1, 2, \dots, n-1$ do
- if r_k is sufficiently small then
- return x_k
 - Compute the parameters $\alpha_k, x_{k+1}, r_{k+1}, \beta_k$ and d_{k+1} .
 - $(r_i, r_k) = 0$ for $0 \le i < k$ implies the method ends in niterations.
 - To achieve this, we need $(r_{k+1}, d_k) = 0$ for each iteration.
 - In addition, $(d_k, d_{k+1})_A = 0$ is guaranteed for each iteration.

Liangda Fang 73/101

Computation of x_{k+1} , r_{k+1} and d_{k+1}

By definition:

$$x_{k+1} = x_k + \alpha_k d_k$$

$$b - Ax_{k+1} = b - Ax_k - \alpha_k A d_k$$

$$r_{k+1} = r_k - \alpha_k A d_k$$

Update d_{k+1} by r_{k+1} and d_k :

$$d_{k+1} = r_{k+1} + \beta_k d_k.$$

Liangda Fang 74/ 101

Computation of α_k

Choose
$$\alpha_k$$
 s.t. $r_{k+1}^{\top} d_k = 0$:

Liangda Fang 75/ 101

Computation of α_k

Choose α_k s.t. $r_{k+1}^{\top} d_k = 0$:

$$r_{k+1} = r_k - \alpha_k A d_k$$

$$0 = d_k^{\top} r_{k+1} = d_k^{\top} r_k - \alpha_k d_k^{\top} A d_k$$

$$\alpha_k = \frac{d_k^{\top} r_k}{d_k^{\top} A d_k}$$

Liangda Fang 75/101

Computation of α_k

Choose α_k s.t. $r_{k+1}^{\top} d_k = 0$:

$$r_{k+1} = r_k - \alpha_k A d_k$$

$$0 = d_k^{\top} r_{k+1} = d_k^{\top} r_k - \alpha_k d_k^{\top} A d_k$$

$$\alpha_k = \frac{d_k^{\top} r_k}{d_{\iota}^{\top} A d_k}$$

 α_k can be transformed as $\frac{r_k^{\top} r_k}{d_k^{\top} A d_k}$ because the following

$$\begin{array}{rcl} d_k - r_k & = & \beta_{k-1} d_{k-1} \\ r_k^\top d_k - r_k^\top r_k & = & 0 & (r_k^\top d_{k-1} = 0) \end{array}$$

Liangda Fang 75/101

Computation of β_k

Choose β_k s.t. $d_k^{\top} A d_{k+1} = 0$:

76/101 Liangda Fang

Computation of β_k

Choose β_k s.t. $d_k^{\top} A d_{k+1} = 0$:

$$d_{k+1} = r_{k+1} + \beta_k d_k$$

$$0 = d_k^{\top} A d_{k+1} = d_k^{\top} A r_{k+1} + \beta_k d_k^{\top} A d_k$$

$$\beta_k = -\frac{d_k^{\top} A r_{k+1}}{d_k^{\top} A d_k}.$$

Liangda Fang 76/101 Choose β_k s.t. $d_k^{\top} A d_{k+1} = 0$:

$$d_{k+1} = r_{k+1} + \beta_k d_k 0 = d_k^{\top} A d_{k+1} = d_k^{\top} A r_{k+1} + \beta_k d_k^{\top} A d_k \beta_k = -\frac{d_k^{\top} A r_{k+1}}{d_k^{\top} A d_k}.$$

 β_k can be simplified as $\frac{r_{k+1}^{\top}r_{k+1}}{r_k^{\top}r_k}$ because the following

- $d_k^{\mathsf{T}} A r_{k+1} = \frac{1}{\alpha_k} (r_k r_{k+1})^{\mathsf{T}} r_{k+1} = -\frac{1}{\alpha_k} r_{k+1}^{\mathsf{T}} r_{k+1};$
- $d_k^{\top} A d_k = (r_k + \beta_{k-1} d_{k-1})^{\top} A d_k = \frac{1}{\alpha_k} r_k^{\top} (r_k r_{k+1}) = \frac{1}{\alpha_k} r_k^{\top} r_k$.

Liangda Fang 76/ 101

Conjugate Gradient Method

Algorithm 3: Conjugate Gradient Method

1 $x_0 = initial guess$

$$d_0 = r_0 = b - Ax_0$$

3 for
$$k = 0, 1, 2, \dots, n-1$$
 do

4 if r_k is sufficiently small then

return
$$x_k$$

$$\mathbf{6} \quad \alpha_k = \frac{r_k^\top r_k}{d_k^\top A d_k}$$

$$r_{k+1} = r_k - \alpha_k A d_k$$

$$\boldsymbol{9} \quad \boldsymbol{\beta}_k = \frac{r_{k+1}^\intercal r_{k+1}}{r_k^\intercal r_k}$$

10
$$d_{k+1} = r_{k+1} + \beta_k d_k$$

Liangda Fang 77/ 101

Example (Initialize x_0 , d_0 and r_0)

Solve $\begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$ using the Conjugate Gradient Method. .

•
$$x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
;

•
$$r_0 = d_0 = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$
.

Preliminaries

Conclusions

Example

Example (1st step)

•
$$\alpha_0 = \frac{\begin{bmatrix} 6 & 3 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}}{\begin{bmatrix} 6 & 3 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}} = \frac{45}{6 \cdot 18 + 3 \cdot 27} = \frac{5}{21};$$

•
$$x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \frac{5}{21} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{10}{7} \\ \frac{5}{7} \end{bmatrix};$$

•
$$r_1 = \begin{bmatrix} 6 \\ 3 \end{bmatrix} - \frac{5}{21} \begin{bmatrix} 18 \\ 27 \end{bmatrix} = 12 \begin{bmatrix} \frac{1}{7} \\ -\frac{2}{7} \end{bmatrix};$$

•
$$d_1 = 12 \begin{bmatrix} \frac{1}{7} \\ -\frac{2}{7} \end{bmatrix} + \frac{16}{49} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{180}{49} \\ -\frac{120}{49} \end{bmatrix}$$
.

Liangda Fang 79/101

Example (2nd step)

$$\bullet \ \alpha_1 = \frac{\begin{bmatrix} \frac{12}{7} & -\frac{24}{7} \end{bmatrix} \begin{bmatrix} \frac{12}{7} \\ -\frac{24}{7} \end{bmatrix}}{\begin{bmatrix} \frac{180}{49} & -\frac{120}{49} \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} \frac{180}{49} \\ -\frac{120}{49} \end{bmatrix}} = \frac{7}{10};$$

•
$$x_2 = \begin{bmatrix} \frac{10}{7} \\ \frac{7}{5} \end{bmatrix} + \frac{7}{10} \begin{bmatrix} \frac{180}{49} \\ -\frac{120}{49} \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix};$$

•
$$r_2 = 12 \begin{bmatrix} \frac{1}{7} \\ -\frac{2}{7} \end{bmatrix} - \frac{7}{10} \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} \frac{180}{49} \\ -\frac{120}{49} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix};$$

• The solution is $x_2 = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$ since $r_2 = 0$.

Theorem (Main theorem)

Let $b \neq 0$, $x_0 = 0$, and $r_k \neq 0$ for k < n. Then for each $1 \leq k \leq n$,

• the following three subspaces of \mathbb{R}^n are equal:

$$(x_1,\ldots,x_k)=(r_0,\ldots,r_{k-1})=(d_0,\ldots,d_{k-1});$$

distinct residuals are pairwise orthogonal:

$$r_k^{\top} r_j = 0$$
 for $j < k$;

3 distinct vectors of a subspace span are pairwise A-conjugate:

$$d_k^{\top} A d_j = 0$$
 for $j < k$.

Proof of 1st item

Proof.

• Base case (k = 1): $(x_1) = (r_0) = (d_0)$ since $x_1 = x_0 + \alpha d_0 = \alpha_0 d_0 = \alpha_0 r_0$.

Proof of 1st item

Proof.

- Base case (k = 1): $(x_1) = (r_0) = (d_0)$ since $x_1 = x_0 + \alpha d_0 = \alpha_0 d_0 = \alpha_0 r_0.$
- Inductive step (k > 1): Suppose that the k 1 case hold.

Proof of 1st item

Proof.

- Base case (k = 1): $(x_1) = (r_0) = (d_0)$ since $x_1 = x_0 + \alpha d_0 = \alpha_0 d_0 = \alpha_0 r_0$.
- Inductive step (k > 1): Suppose that the k 1 case hold.

$$(x_1, \ldots, x_k) \subseteq (d_0, \ldots, d_{k-1}): x_k = \sum_{i=0}^{k-1} \alpha_i d_i;$$

Proof.

- Base case (k = 1): $(x_1) = (r_0) = (d_0)$ since $x_1 = x_0 + \alpha d_0 = \alpha_0 d_0 = \alpha_0 r_0$.
- Inductive step (k > 1): Suppose that the k 1 case hold.

$$(x_1, \ldots, x_k) \subseteq (d_0, \ldots, d_{k-1}): x_k = \sum_{i=0}^{k-1} \alpha_i d_i;$$

②
$$(x_1, \ldots, x_k) \supseteq (d_0, \ldots, d_{k-1})$$
:
 $x_k = x_{k-1} + \alpha_{k-1} d_{k-1} \Rightarrow d_{k-1} = \frac{1}{\alpha_{k-1}} x_k - \frac{1}{\alpha_{k-1}} x_{k-1}$.

Proof.

- Base case (k = 1): $(x_1) = (r_0) = (d_0)$ since $x_1 = x_0 + \alpha d_0 = \alpha_0 d_0 = \alpha_0 r_0$.
- Inductive step (k > 1): Suppose that the k 1 case hold.
 - **1** $(x_1, \ldots, x_k) \subseteq (d_0, \ldots, d_{k-1}): x_k = \sum_{i=0}^{k-1} \alpha_i d_i;$
 - ② $(x_1, \ldots, x_k) \supseteq (d_0, \ldots, d_{k-1})$: $x_k = x_{k-1} + \alpha_{k-1} d_{k-1} \Rightarrow d_{k-1} = \frac{1}{\alpha_{k-1}} x_k - \frac{1}{\alpha_{k-1}} x_{k-1}$.
 - $(r_0, \dots, r_{k-1}) \subseteq (d_0, \dots, d_{k-1}):$ $d_{k-1} = r_{k-1} + \beta_{k-2} d_{k-2} \Rightarrow r_{k-1} = d_{k-1} \beta_{k-2} d_{k-2};$

Proof.

- Base case (k = 1): $(x_1) = (r_0) = (d_0)$ since $x_1 = x_0 + \alpha d_0 = \alpha_0 d_0 = \alpha_0 r_0$.
- Inductive step (k > 1): Suppose that the k 1 case hold.

1
$$(x_1, \ldots, x_k) \subseteq (d_0, \ldots, d_{k-1}): x_k = \sum_{i=0}^{k-1} \alpha_i d_i;$$

$$(x_1, \dots, x_k) \supseteq (d_0, \dots, d_{k-1}):$$

$$x_k = x_{k-1} + \alpha_{k-1} d_{k-1} \Rightarrow d_{k-1} = \frac{1}{\alpha_{k-1}} x_k - \frac{1}{\alpha_{k-1}} x_{k-1}.$$

$$(r_0, \dots, r_{k-1}) \subseteq (d_0, \dots, d_{k-1}):$$

$$d_{k-1} = r_{k-1} + \beta_{k-2} d_{k-2} \Rightarrow r_{k-1} = d_{k-1} - \beta_{k-2} d_{k-2};$$

$$(r_0, \dots, r_{k-1}) \supseteq (d_0, \dots, d_{k-1}):$$

$$d_{k-2} = \sum_{i=0}^{k-2} \gamma_i r_i \Rightarrow$$

$$d_{k-1} = r_{k-1} + \beta_{k-2} d_{k-2} = r_{k-1} + \sum_{i=0}^{k-2} (\beta_{k-2} \gamma_i) r_i.$$

\$000 NIVE 15

Lemmas of the 2nd and 3rd items

Lemma

Introduction

$$(r_j, d_k)_A = 0$$
 for $0 \le j < k$ or $0 \le k < j + 1$.

Conclusions

Lemma

Introduction

$$(r_i, d_k)_A = 0$$
 for $0 \le j < k$ or $0 \le k < j + 1$.

Proof.

Here we only prove the case that $0 \le j < k$.

If
$$j=0$$
, then $d_k^{\top}Ar_0=d_k^{\top}Ad_0=0$;

Conclusions

Lemmas of the 2nd and 3rd items

Lemma

$$(r_j, d_k)_A = 0$$
 for $0 \le j < k$ or $0 \le k < j + 1$.

Proof.

Here we only prove the case that $0 \le i \le k$.

If j = 0, then $d_k^{\top} A r_0 = d_k^{\top} A d_0 = 0$;

Otherwise.

$$d_k^{\top} A r_j = d_k^{\top} A (d_j - \beta_{j-1} d_{j-1}) = d_k^{\top} A d_j - \beta_{j-1} d_k^{\top} A d_{j-1} = 0.$$

Lemma

 $(r_i, d_k)_A = 0$ for 0 < i < k or 0 < k < i + 1.

Proof.

Here we only prove the case that $0 \le i \le k$.

If j = 0, then $d_h^{\top} A r_0 = d_h^{\top} A d_0 = 0$;

Otherwise.

$$d_k^{\top} A r_j = d_k^{\top} A (d_j - \beta_{j-1} d_{j-1}) = d_k^{\top} A d_j - \beta_{j-1} d_k^{\top} A d_{j-1} = 0.$$

Lemma

$$d_k^{\top} A d_k = r_k^{\top} A d_k.$$

Lemma

 $(r_i, d_k)_A = 0$ for 0 < i < k or 0 < k < i + 1.

Proof.

Here we only prove the case that $0 \le i \le k$.

If
$$j = 0$$
, then $d_k^{\top} A r_0 = d_k^{\top} A d_0 = 0$;

Otherwise.

$$d_k^{\top} A r_j = d_k^{\top} A (d_j - \beta_{j-1} d_{j-1}) = d_k^{\top} A d_j - \beta_{j-1} d_k^{\top} A d_{j-1} = 0.$$

Lemma

$$d_k^{\top} A d_k = r_k^{\top} A d_k.$$

Proof.

$$d_{k}^{\top} A d_{k} = r_{k}^{\top} A d_{k} + \beta_{k-1} d_{k-1}^{\top} A d_{k} = r_{k}^{\top} A d_{k}.$$

Base case (k = 1):

$$\bullet \quad r_0^{\top} r_1 = r_0^{\top} r_0 - \alpha_0 r_0^{\top} A d_0 = r_0^{\top} r_0 - \frac{r_0^{\top} r_0}{d_0^{\top} A d_0} d_0^{\top} A d_0 = 0;$$

Base case (k = 1):

$$\bullet \ r_0^\top r_1 = r_0^\top r_0 - \alpha_0 r_0^\top A d_0 = r_0^\top r_0 - \frac{r_0^\top r_0}{d_0^\top A d_0} d_0^\top A d_0 = 0;$$

$$\beta_0 = -\frac{r_1^\top A d_0}{d_0^\top A d_0};$$

Base case (k=1):

$$\beta_0 = -\frac{r_1^\top A d_0}{d_0^\top A d_0};$$

$$\bullet \ d_0^\top A d_1 = d_0^\top A r_1 + \beta_0 d_0^\top A d_0 = d_0^\top A r_1 - \frac{r_1^\top A d_0}{d_0^\top A d_0} d_0^\top A d_0 = 0.$$

Inductive step (k > 1): Suppose that the k - 1 case hold.

The 2nd item:

Inductive step (k > 1): Suppose that the k - 1 case hold.

The 2nd item:

2 If
$$j < k-1$$
, then $r_i^{\top} r_k = 0$;

Inductive step (k > 1): Suppose that the k - 1 case hold.

The 2nd item:

$$\mathbf{0} \ r_i^{\top} r_k = r_i^{\top} r_{k-1} - \alpha_{k-1} r_i^{\top} A d_{k-1};$$

② If
$$j < k-1$$
, then $r_j^\top r_k = 0$;

$$\textbf{ 3} \ \, \text{If} \, \, j = k-1, \, \text{then} \, \, \alpha_{k-1} = \frac{r_{k-1}^\top r_{k-1}}{d_{k-1}^\top A d_{k-1}};$$

Inductive step (k > 1): Suppose that the k - 1 case hold.

The 2nd item:

$$\mathbf{0} \ r_j^{\top} r_k = r_j^{\top} r_{k-1} - \alpha_{k-1} r_j^{\top} A d_{k-1};$$

② If
$$j < k-1$$
, then $r_j^\top r_k = 0$;

$$\textbf{ If } j = k-1 \text{, then } \alpha_{k-1} = \frac{r_{k-1}^{\top} r_{k-1}}{d_{k-1}^{\top} A d_{k-1}};$$

$$\begin{array}{l} \bullet \quad r_{k-1}^\top r_k = r_{k-1}^\top r_{k-1} - \alpha_{k-1} r_{k-1}^\top A \, d_{k-1} \\ = r_{k-1}^\top r_{k-1} - \frac{r_{k-1}^\top r_{k-1}}{d_{k-1}^\top A \, d_{k-1}} \, d_{k-1}^\top A \, d_{k-1} = 0. \end{array}$$

Inductive step (k > 1): Suppose that the k - 1 case hold. The 3rd item:

Proof.

Inductive step (k > 1): Suppose that the k - 1 case hold. The 3rd item:

- ② If j < k-1, then $Ad_j = \frac{r_j r_{j+1}}{\alpha_j}$ is orthogonal to r_k , *i.e.*, $d_j^\top A r_k = 0$;

00/101

Proof.

Inductive step (k > 1): Suppose that the k - 1 case hold. The 3rd item:

- $\mathbf{0} \ d_j^{\top} A d_k = d_j^{\top} A r_k + \beta_{k-1} d_j^{\top} A d_{k-1};$
- ② If j < k-1, then $Ad_j = \frac{r_j r_{j+1}}{\alpha_j}$ is orthogonal to r_k , *i.e.*, $d_j^\top A r_k = 0$;
- $oldsymbol{\mathbf{So}} d_i^{\top} A d_k = 0.$

Proof.

Inductive step (k > 1): Suppose that the k - 1 case hold. The 3rd item:

- ② If j < k-1, then $Ad_j = \frac{r_j r_{j+1}}{\alpha_j}$ is orthogonal to r_k , *i.e.*, $d_j^\top A r_k = 0$;
- $\bullet \ \, \text{If} \, \, j = k-1, \, \text{then} \, \, \beta_{k-1} = -\frac{r_k^{\mathsf{T}} A \, d_{k-1}}{d_{k-1}^{\mathsf{T}} \, A \, d_{k-1}}.$

Proof.

Inductive step (k > 1): Suppose that the k - 1 case hold. The 3rd item:

- ② If j < k-1, then $Ad_j = \frac{r_j r_{j+1}}{\alpha_j}$ is orthogonal to r_k , *i.e.*, $d_j^\top A r_k = 0$;
- $\textbf{ If } j=k-1 \text{, then } \beta_{k-1}=-\frac{r_k^\intercal A d_{k-1}}{d_{k-1}^\intercal A d_{k-1}}.$
- $\begin{array}{l} \textbf{ 5} \text{ So } d_{k-1}^{\intercal}Ad_k = d_{k-1}^{\intercal}Ar_k + \beta_{k-1}d_{k-1}^{\intercal}Ad_{k-1} \\ &= d_{k-1}^{\intercal}Ar_k \frac{r_k^{\intercal}Ad_{k-1}}{d_{k-1}^{\intercal}Ad_{k-1}}d_{k-1}^{\intercal}Ad_{k-1} = 0. \end{array}$

Outline

- Introduction
- 2 Preliminaries
- 3 Iterative method
 - Jacobi Method
 - Gauss-Seidel Method
 - Successive Over-Relaxation
 - Convergence of iterative methods
- Methods for symmetric positive-definite matrices
 - Symmetric positive-definite matrices
 - Conjugate Gradient Method
 - Preconditioning
- Conclusions

- Suppose that Ax = b is a linear system.
- Condition number of A: a bound on how inaccurate the solution x will be after approximation.
- ullet A is ill-conditioned: the condition number of A is very large.
- A is ill-conditioned \Rightarrow Conjugate Gradient Method fails.

Motivation of Preconditioning

- Suppose that Ax = b is a linear system.
- Condition number of A: a bound on how inaccurate the solution x will be after approximation.
- ullet A is ill-conditioned: the condition number of A is very large.
- A is ill-conditioned \Rightarrow Conjugate Gradient Method fails.
- Questions: Is it possible to handle the ill-conditioned matrix?
- Answer: Precondition.

Motivation of Preconditioning

Definition

Suppose $M=M_1M_2$ is nonsingular and Ax=b is a linear system. Let $\tilde{A}\tilde{x} = \tilde{b}$ be the linear system where

- $\tilde{A} = M_1^{-1} A M_2^{-1}$:
- $\tilde{x} = M_2 x$;
- $\tilde{b} = M_1^{-1} b$.

The matrix M is called a **preconditioner**.

Motivation of Preconditioning

Definition

Suppose $M = M_1 M_2$ is nonsingular and Ax = b is a linear system. Let $\tilde{A}\tilde{x} = \tilde{b}$ be the linear system where

- $\tilde{A} = M_1^{-1} A M_2^{-1}$:
- $\tilde{x} = M_2 x$;
- $\tilde{b} = M_1^{-1} b$.

The matrix M is called a **preconditioner**.

- An effective preconditioner reduces the condition number, *i.e.*, $cond(M_1^{-1}AM_2^{-1})$ is small.
- Two criterion of choosing *M*:
 - \bullet M as close to A:
 - M is simple to invert.

Let
$$A = L + D + L^{\top}$$
.

- **1** Jacobi preconditioner: M = D;
- **②** Gauss-Seidel preconditioner: $M = (D+L)D^{-1}(D+L)^{\top}$;
- **3 SSOR preconditioner**: $M = (D + \omega L)D^{-1}(D + \omega L)^{\top}$ where $0 < \omega < 2$.

Liangda Fang 90/ 101

Lemma

Let M be symmetric positive-definite matrix. Then, there exists a unique symmetric positive-definite matrix C s.t. $M = C^2$.

Liangda Fang 91/101

Lemma

Let M be symmetric positive-definite matrix. Then, there exists a unique symmetric positive-definite matrix C s.t. $M = C^2$.

Since A is symmetric positive-definite, we choose a symmetric positive-definite preconditioner M.

Definition

Suppose $M=C^2$ is symmetric positive-definite and Ax=b is a linear system. Let $\tilde{A}\tilde{x}=\tilde{b}$ be the linear system where

- $\tilde{A} = C^{-1}AC^{-1}$:
- $\tilde{x} = Cx$:
- $\tilde{b} = C^{-1}b$

The matrix M is called a **preconditioner**.

1905 C

Liangda Fang 91/ 101

Some notations of Conjugate Gradient Method to preconditioned linear system

We use the Conjugate Gradient method to solve

$$\tilde{A}\tilde{x} = \tilde{b}$$
.

- \tilde{d}_k : the k-th mutually conjugate vector wrt $C^{-1}AC^{-1}$;
- 2 $\tilde{\alpha}_k$: the coefficient of \tilde{d}_k for \tilde{x}^* ;
- **3** \tilde{x}_k : the approximate solution to \tilde{x}^* at step k;
- \tilde{r}_k : the residual of \tilde{x}_k of preconditioned system at step k, i.e., $\tilde{b} - \tilde{A}\tilde{x}_k = C^{-1}(b - Ax_k) = C^{-1}r_k$
- **5** $\tilde{\beta}_k$: the coefficient ensuring $(\tilde{d}_k, \tilde{d}_{k+1})_{\tilde{A}} = 0$.

Liangda Fang 92/101

Computation of the forementioned notations

$$\tilde{x}_{k+1} = \tilde{x}_k + \tilde{\alpha}_k \tilde{d}_k;$$

$$\tilde{r}_{k+1} = \tilde{r}_k - \tilde{\alpha}_k \tilde{A} \tilde{d}_k;$$

$$\tilde{\beta}_k = \frac{\tilde{r}_{k+1}^\top \tilde{r}_{k+1}}{\tilde{r}_k^\top \tilde{r}_k};$$

$$\tilde{d}_{k+1} = \tilde{r}_{k+1} + \tilde{\beta}_k \tilde{d}_k.$$

Liangda Fang 93/101

Conclusions

The Extra Computation of Direct Usage of CGM

- Decompose M as $C \cdot C$;
- 2 Compute C^{-1} ;

Preliminaries

Introduction

- **3** Compute $\tilde{A} = C^{-1}AC^{-1}$;
- Ompute $\tilde{b} = C^{-1}b$;
- **5** Compute $x_k = C^{-1}\tilde{x}_k$.

Liangda Fang 94/101

The Extra Computation of Direct Usage of CGM

- Decompose M as $C \cdot C$;
- 2 Compute C^{-1} ;
- **3** Compute $\tilde{A} = C^{-1}AC^{-1}$;
- **5** Compute $x_k = C^{-1}\tilde{x}_k$.

To reduce the extra computations, we incorporate the above computations into CGM.

Liangda Fang 94/ 101

- **1** Let $z_k = M^{-1} r_k$;
- $\hspace{-0.5cm} \bullet \hspace{-0.5cm} \tilde{r}_k^\top \tilde{r}_k = r_k^\top (C^{-1})^\top C^{-1} r_k = r_k^\top M^{-1} r_k = r_k^\top z_k;$
- **3** Let $d_k = C^{-1}\tilde{d}_k$;
- $\bullet \quad \tilde{d}_k^\top \tilde{A} \tilde{d}_k = d_k^\top C^\top C^{-1} A C^{-1} C d_k = d_k^\top A d_k.$

Liangda Fang 95/101

$$\bullet \quad \tilde{\alpha}_k = \frac{\tilde{r}_k^\top \tilde{r}_k}{\tilde{d}_k^\top \tilde{A} \tilde{d}_k} = \frac{r_k^\top z_k}{d_k^\top A d_k};$$

②
$$\tilde{x}_{k+1} = \tilde{x}_k + \tilde{\alpha}_k \tilde{d}_k \Rightarrow Cx_{k+1} = Cx_k + \tilde{\alpha}_k Cd_k \Rightarrow Cx_{k+1} = C(x_k + \tilde{\alpha}_k d_k) \Rightarrow x_{k+1} = x_k + \tilde{\alpha}_k d_k;$$

$$\bullet \quad \tilde{\alpha}_k = \frac{\tilde{r}_k^\top \tilde{r}_k}{\tilde{d}_k^\top \tilde{A} \tilde{d}_k} = \frac{r_k^\top z_k}{d_k^\top A d_k};$$

②
$$\tilde{x}_{k+1} = \tilde{x}_k + \tilde{\alpha}_k \tilde{d}_k \Rightarrow Cx_{k+1} = Cx_k + \tilde{\alpha}_k Cd_k \Rightarrow Cx_{k+1} = C(x_k + \tilde{\alpha}_k d_k) \Rightarrow x_{k+1} = x_k + \tilde{\alpha}_k d_k;$$

$$\tilde{r}_{k+1} = \tilde{r}_k - \tilde{\alpha}_k \tilde{A} \tilde{d}_k \Rightarrow
C^{-1} r_{k+1} = C^{-1} r_k - \tilde{\alpha}_k C^{-1} A C^{-1} C d_k \Rightarrow
C^{-1} r_{k+1} = C^{-1} (r_k - \tilde{\alpha}_k A d_k) \Rightarrow
r_{k+1} = r_k + \tilde{\alpha}_k A d_k;$$

$$\bullet \quad \tilde{\alpha}_k = \frac{\tilde{r}_k^\top \tilde{r}_k}{\tilde{d}_k^\top \tilde{A} \tilde{d}_k} = \frac{r_k^\top z_k}{d_k^\top A d_k};$$

- ② $\tilde{x}_{k+1} = \tilde{x}_k + \tilde{\alpha}_k \tilde{d}_k \Rightarrow Cx_{k+1} = Cx_k + \tilde{\alpha}_k Cd_k \Rightarrow Cx_{k+1} = C(x_k + \tilde{\alpha}_k d_k) \Rightarrow x_{k+1} = x_k + \tilde{\alpha}_k d_k;$
- $\tilde{r}_{k+1} = \tilde{r}_k \tilde{\alpha}_k \tilde{A} d_k \Rightarrow \\ C^{-1} r_{k+1} = C^{-1} r_k \tilde{\alpha}_k C^{-1} A C^{-1} C d_k \Rightarrow \\ C^{-1} r_{k+1} = C^{-1} (r_k \tilde{\alpha}_k A d_k) \Rightarrow \\ r_{k+1} = r_k + \tilde{\alpha}_k A d_k;$

$$\bullet \quad \tilde{\alpha}_k = \frac{\tilde{r}_k^\top \tilde{r}_k}{\tilde{d}_k^\top \tilde{A} \tilde{d}_k} = \frac{r_k^\top z_k}{d_k^\top A d_k};$$

- ② $\tilde{x}_{k+1} = \tilde{x}_k + \tilde{\alpha}_k \tilde{d}_k \Rightarrow Cx_{k+1} = Cx_k + \tilde{\alpha}_k Cd_k \Rightarrow Cx_{k+1} = C(x_k + \tilde{\alpha}_k d_k) \Rightarrow x_{k+1} = x_k + \tilde{\alpha}_k d_k;$
- $\tilde{r}_{k+1} = \tilde{r}_k \tilde{\alpha}_k \tilde{A} d_k \Rightarrow$ $C^{-1} r_{k+1} = C^{-1} r_k - \tilde{\alpha}_k C^{-1} A C^{-1} C d_k \Rightarrow$ $C^{-1} r_{k+1} = C^{-1} (r_k - \tilde{\alpha}_k A d_k) \Rightarrow$ $r_{k+1} = r_k + \tilde{\alpha}_k A d_k;$
- $\tilde{\beta}_k = \frac{\tilde{r}_{k+1}^\top \tilde{r}_{k+1}}{\tilde{r}_k^\top \tilde{r}_k} = \frac{r_{k+1}^\top z_{k+1}}{r_k^\top z_k};$

$$\bullet \quad \tilde{\alpha}_k = \frac{\tilde{r}_k^\top \tilde{r}_k}{\tilde{d}_k^\top \tilde{A} \tilde{d}_k} = \frac{r_k^\top z_k}{d_k^\top A d_k};$$

$$\tilde{x}_{k+1} = \tilde{x}_k + \tilde{\alpha}_k \tilde{d}_k \Rightarrow Cx_{k+1} = Cx_k + \tilde{\alpha}_k Cd_k \Rightarrow Cx_{k+1} = C(x_k + \tilde{\alpha}_k d_k) \Rightarrow x_{k+1} = x_k + \tilde{\alpha}_k d_k;$$

$$\tilde{r}_{k+1} = \tilde{r}_k - \tilde{\alpha}_k \tilde{A} d_k \Rightarrow \\ C^{-1} r_{k+1} = C^{-1} r_k - \tilde{\alpha}_k C^{-1} A C^{-1} C d_k \Rightarrow \\ C^{-1} r_{k+1} = C^{-1} (r_k - \tilde{\alpha}_k A d_k) \Rightarrow \\ r_{k+1} = r_k + \tilde{\alpha}_k A d_k;$$

$$z_{k+1} = M^{-1} r_{k+1};$$

$$\tilde{\beta}_k = \frac{\tilde{r}_{k+1}^\top \tilde{r}_{k+1}}{\tilde{r}_k^\top \tilde{r}_k} = \frac{r_{k+1}^\top z_{k+1}}{r_k^\top z_k};$$

$$\tilde{d}_{k+1} = \tilde{r}_{k+1} + \tilde{\beta}_k \tilde{d}_k \Rightarrow C d_{k+1} = C^{-1} r_{k+1} + \tilde{\beta}_k C d_k \Rightarrow d_{k+1} = M^{-1} r_{k+1} + \tilde{\beta}_k d_k \Rightarrow d_{k+1} = z_{k+1} + \tilde{\beta}_k d_k.$$

Some notations of preconditioned Conjugate Gradient Method

- $\mathbf{0}$ d_k : the k-th mutually conjugate vector wrt A;
- 2 z_k : the auxiliary vector instead of \tilde{r}_k ;
- **3** $\tilde{\alpha}_k$: the coefficient of \tilde{d}_k for \tilde{x}^* :
- x_k : the approximate solution to x^* at step k;
- **5** r_k : the residual of x_k of original system at step k;
- $\tilde{\beta}_k$: the coefficient ensuring $(\tilde{d}_k, \tilde{d}_{k+1})_{\tilde{A}} = 0$.

Liangda Fang 97/101

Preconditioned Conjugate Gradient Method

Algorithm 4: Preconditioned Conjugate Gradient Method

```
1 x_0 = initial guess
 r_0 = b - Ax_0
 3 d_0 = z_0 = M^{-1}r_0
 4 for k = 0, 1, 2, \dots, n-1 do
            if r_k is sufficiently small then
 5
                   return x_k
 6
           \tilde{\alpha}_k = \frac{r_k^{\top} z_k}{d^{\top} A d_k}
            x_{k\perp 1} = x_k + \tilde{\alpha}_k d_k
 8
            r_{k+1} = r_k - \tilde{\alpha}_k A d_k
 g
            z_{k \perp 1} = M^{-1} r_{k \perp 1}
10
           \tilde{\beta}_k = \frac{r_{k+1}^\top z_{k+1}}{r_{k}^\top z_k}
11
           d_{k+1} = z_{k+1} + \tilde{\beta}_k d_k
12
```


Outline

- - Jacobi Method
 - Gauss-Seidel Method
 - Successive Over-Relaxation
 - Convergence of iterative methods
- - Symmetric positive-definite matrices
 - Conjugate Gradient Method
 - Preconditioning
- Conclusions

Liangda Fang 99/101

- Three iterative methods for strictly diagonally dominant matrix
 - Jacobi Method
 - @ Gauss-Seidel Method
 - Successive Over-Relaxation

Liangda Fang 100/ 101

- Three iterative methods for strictly diagonally dominant matrix
 - Jacobi Method
 - Gauss-Seidel Method
 - Successive Over-Relaxation
- Two iterative methods for symmetric positive-definite matrix
 - Conjugate Gradient Method
 - 2 Preconditioned Conjugate Gradient Method

Liangda Fang 100/101

Introduction

Conclusions

Liangda Fang