Physical Layer Issues and Methods

Content

802.3 Physical Layer

Ethernet Technology

Physical Layer Encoding

Ethernet Standard Defines Physical Layer

- 802.3 standard defines both MAC and physical layer details
- Even though we have worked from top down, Ethernet was about hardware first

Metcalfe's original Ethernet Sketch

Physical Layer Configurations for 802.3

- Physical layer configurations are specified in three parts
- Data rate (10, 100, 1,000)
 - 10, 100, 1,000Mbps
- Signaling method (base, broad)
 - Baseband
 - Digital signaling
 - Broadband
 - Analog signaling
- Cabling (2, 5, T, F, S, L)
 - 5 Thick coax (original Ethernet cabling)
 - F Optical fiber
 - S Short wave laser over multimode fiber
 - L Long wave laser over single mode fiber

Ethernet Technologies: 10Base2

- 10: 10Mbps; 2: under 185 (~200) meters cable length
- Thin coaxial cable in a bus topology

- Repeaters used to connect multiple segments
 - Repeater repeats bits it hears on one interface to its other interfaces: physical layer device only!

CS 640

10BaseT and 100BaseT

- 10/100 Mbps rate
- T stands for Twisted Pair
- Hub(s) connected by twisted pair facilitate "star topology"
 - Distance of any node to hub must be < 100M

Switched Ethernet

- Switches forward and filter frames based on LAN addresses
 - It's not a bus or a router (although simple forwarding tables are maintained)
- Very scalable
 - Options for many interfaces
 - Full duplex operation (send/receive frames simultaneously)
- Connect two or more "segments" by copying data frames between them
 - Switches only copy data when needed
 - key difference from repeaters
- Higher link bandwidth
 - Collisions are completely avoided
- Much greater aggregate bandwidth
 - Separate segments can send at once

CS 640

6

Physical Layer Data Transfer

- Signals are placed on wire via transceivers
- Problem is how to do transmit 0's and 1's (signal encoding) in a robust fashion
 - Binary voltage encoding
 - Map 1 to high voltage
 - Map 0 to low voltage
 - How are consecutive 0's or 1's detected at node?
 - Clock synchronization problem
- Transmitted signals have a variety of problems
 - Attenuation
 - Noise
 - Dispersion

Encoding Taxonomy

- Digital data, digital signal
 - Codes which represent bits
 - Our focus
 - Many options!
- Analog data, digital signal
 - Sampling to represent voltages
- Digital data, analog signal
 - Modulation to represent bits
- Analog data, analog signal
 - Modulation to represent voltages

Encoding Requirements

- Small bandwidth
 - Enables more efficient use of signaling capability
- Low DC level
 - Increases transmission distance
- Frequent changes in the voltage
 - Enables synchronization between the transmitter and the receiver without the addition of extra signal
- Non-polarized signal
 - Enables use of 2-wire cable to not be affected by the physical connection of the wires.

CS 640

Non-Return to Zero (NRZ)

- High voltage = 1 and low voltage = 0
- Voltage does not return to 0 between bits
- Receiver keeps average of signal seen to distinguish 0 from 1

NRZ

Benefits

- Easy to engineer most basic encoding
- Efficient use of bandwidth not many transitions

Drawbacks

- Long strings of 0's can be confused with no signal
- Long strings of 1's can cause signal average to wander
- Clock synchronization can be poor
- High DC average of ½V

NRZ-Inverted (NRZI)

- NRZI addresses clock synchronization problem
 - Encodes 1 by transitioning from current signal
 - Encodes 0 by staying at current signal
 - So we're still out of luck on consecutive strings of 0's

Manchester Data Encoding

- Explicit merging of clock and bit stream
 - Each bit contains a transition
 - High-low = 1
 - Low-high = 0
 - Enables effective clock signal recovery at receiver
 - Clocks are still needed to differentiate between bit boundaries
- Poor bandwidth utilization
 - Effective sending rate is cut in half
- Used by 802.3 10Mbps Ethernet

Manchester Phase Encoding

Cable category

Туре	Application	Distance	Frequency
Cat 1	Voice		
Cat 2	4 Mb/s (localtalk)		
Cat 3	10 Mb/s (ethernet)	100 m	16 MHz
Cat 4	20 Mb/s (16Mb token)		20 MHz
Cat 5	100 Mb/s (fast ethernet)	100 m	100 MHz
Cat 5e (extended)	1000 Mb/s (Gigabit Ethernet)	100 m	100 MHz
Cat 6			250 MHz
Cat 7			600 MHz

RJ 45 Connector Illustration

Contact	10Base-T Signal	100base-TX Signal	1000Base-T Signal
1	TD+ (Transmit Data)	TX+ (Transmit Data)	Bidir_D A+ (Bidirectional Data)
2	TD- (Transmit Data)	TX- (Transmit Data)	Bidir_D A- (Bidirectional Data)
3	RD+ (Receive Data)	RD+ (Receive Data)	Bidir_D B+ (Bidirectional Data)
4	Not used	Not used	Bidir_D C+ (Bidirectional Data)
5	Not used	Not used	Bidir_D C- (Bidirectional Data)
6	RD- (Receive Data)	RD- (Receive Data)	Bidir_D B- (Bidirectional Data)
7	Not used	Not used	Bidir_D D+ (Bidirectional Data)
8	Not used	Not used	Bidir_D D- (Bidirectional Data)