Name: Rajavel A

Rollno: 611219106061

Date: 21\09\2022

1.Download the dataset from the source

About the dataset:

This dataset is all about churn modelling of a credit company. It has the details about the end user who are using credit card and also it has some variables to depicit the churn of the customer.

RowNumber - Serial number of the rows

CustomerId - Unique identification of customer

Surname - Name of the customer

CreditScore - Cipil score of the customer

Geography - Location of the bank

Gender - Sex of the customer

Age - Age of the customer

Tenure - Repayment period for the credit amount

Balance - Current balance in thier creidt card

NumOfProducts - Products owned by the customer from the company

HasCrCard - Has credit card or not (0 - no , 1 - yes)

IsactiveMember - Is a active member or not

EstimatedSalary - Salary of the customer

Exited - Churn of the customer

```
import warnings
warnings.filterwarnings("ignore")

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

2.Load the Dataset

```
df = pd.read_csv("Churn_Modelling.csv")
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	1	15634602	Hargrave	619	France	Female	42	2
1	2	15647311	Hill	608	Spain	Female	41	1
2	3	15619304	Onio	502	France	Female	42	8
3	4	15701354	Boni	699	France	Female	39	1
4	5	15737888	Mitchell	850	Spain	Female	43	2

df.tail()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tent
9995	9996	15606229	Obijiaku	771	France	Male	39	
9996	9997	15569892	Johnstone	516	France	Male	35	
9997	9998	15584532	Liu	709	France	Female	36	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	
9999	10000	15628319	Walker	792	France	Female	28	

3 a) Univariate analysis

```
df.shape
```

```
(10000, 14)
```

```
credit = df['CreditScore']
credit.plot(kind="hist",figsize=(8,5))
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1c4c5d90>


```
geo = df['Geography'].value_counts()
geo.plot(kind="pie",figsize=(10,8))
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1ba4fb50>

sns.countplot(df['Gender'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1b5614d0>

sns.distplot(df['Age'],hist=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1b52cfd0>

plt.figure(figsize=(10,8))
sns.countplot(df['Tenure'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1b4cfdd0>

product = df['NumOfProducts'].value_counts()
product.plot(kind="pie",figsize=(10,8))

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1b54bbd0>

cr = df['HasCrCard'].value_counts()
cr.plot(kind="pie",figsize=(10,8))

plt.figure(figsize=(8,5))
sns.countplot(df['IsActiveMember'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1b36f6d0>

sns.distplot(df['EstimatedSalary'],hist=False)

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1b2e6110>
```

```
plt.figure(figsize=(8,5))
sns.countplot(df['Exited'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1b379b90>

3 b) Bivariate analysis

sns.barplot(x='Gender',y='CreditScore',hue='Geography',data=df)

sns.violinplot(x='Geography',y='Balance',data=df)

<matplotlib.axes. subplots.AxesSubplot at 0x7f8f1b1bc2d0>

sns.violinplot(x='Geography',y='EstimatedSalary',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1b0dcd90>

sns.violinplot(x='Gender',y='Balance',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1b052850>

sns.barplot(x='Exited',y='CreditScore',hue='Gender',data=df)

<matplotlib.axes. subplots.AxesSubplot at 0x7f8f1b036d90>

sns.barplot(x='Exited',y='CreditScore',hue='Geography',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1afb8550>

sns.barplot(x='IsActiveMember',y='EstimatedSalary',hue='Gender',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1b3c8890>

sns.barplot(x='Exited',y='Tenure',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1b220a90>

3 c) Multivariate analysis

gpl = df.groupby('Gender')['Geography'].value_counts()
gpl.plot(kind='pie',figsize=(10,8))
print(gpl)

Gender	Geography	
Female	France	2261
	Germany	1193
	Spain	1089
Male	France	2753
	Spain	1388
	Germany	1316
Male	France Spain	2753 1388

Name: Geography, dtype: int64

gp2 = df.groupby('Gender')['Age'].mean()
print(gp2)

Gender

Female 39.238389
Male 38.658237
Name: Age, dtype: float64

gp3 = df.groupby(['Gender','Geography'])['Tenure'].mean()
print(gp3)

Gende	r Geograp	hy
Female	e France	4.950022
	Germany	4.965633
	Spain	5.000000
Male	France	5.049401
	Germany	5.050152
	Spain	5.057637
Name:	Tenure, d	type: float64

gp4 = df.groupby(['Gender','HasCrCard','IsActiveMember'])['EstimatedSalary'].mean()
gp4.plot(kind="line",figsize=(10,8))
print(gp4)

Gender	HasCrCard	IsActiveMember	
Female	0	0	102006.080352
		1	102648.996944
	1	0	101208.014567
		1	98510.152300
Male	0	0	99756.431151
		1	99873.931251
	1	0	100353.378996
		1	98914.378703

Name: EstimatedSalary, dtype: float64

gp5 = df.groupby(['Gender','IsActiveMember'])['Exited'].value_counts()

```
gp5.plot(kind='bar',figsize=(10,8))
print(gp5)
```

IsActiveMember	Exited	
0	0	1534
	1	725
1	0	1870
	1	414
0	0	2013
	1	577
1	0	2546
	1	321
		1 1 0 1 0 0

Name: Exited, dtype: int64

gp6 = df.groupby('Exited')['Balance','EstimatedSalary'].mean()
print(gp6)

	Balance	EstimatedSalary
Exited		
0	72745.296779	99738.391772
1	91108.539337	101465.677531

4. Descriptive statistics

	count	mean	std	min	25%	
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500
CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25	1.569074
CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00	6.520000
Age	10000.0	3.892180e+01	10.487806	18.00	32.00	3.700000
Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00	5.000000
Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00	1.000000
HasCrCard	10000.0	7.055000e-01	0.455840	0.00	0.00	1.000000
IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	0.00	1.000000
EstimatedSalary	10000.0	1.000902e+05	57510.492818	11.58	51002.11	1.001939
Exited	10000.0	2.037000e-01	0.402769	0.00	0.00	0.000000

5. Handling the missing values

```
df.isnull().sum()
```

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

There is no missing value in the dataset

6. Finding outliers

```
def replace_outliers(df, field_name):
    Q1 = np.percentile(df[field_name],25,interpolation='midpoint')
    Q3 = np.percentile(df[field_name],75,interpolation='midpoint')
    IQR = Q3-Q1
    maxi = Q3+1.5*IQR
    mini = Q1-1.5*IQR
    df[field_name]=df[field_name].mask(df[field_name]>maxi,maxi)
    df[field_name]=df[field_name].mask(df[field_name]<mini,mini)</pre>
```

```
plt.title("Before removing outliers")
sns.boxplot(df['CreditScore'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'CreditScore')
sns.boxplot(df['CreditScore'])
plt.show()
```

Before removing outliers

After removing outliers


```
plt.title("Before removing outliers")
sns.boxplot(df['Age'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'Age')
sns.boxplot(df['Age'])
plt.show()
```

Before removing outliers

After removing outliers

sns.boxplot(df['Balance'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1ab8f310>

sns.boxplot(df['EstimatedSalary'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1aaf5f50>

Outliers from Age and Credit Score columns are removed

7. Check for categorical column and perform encoding.

from sklearn.preprocessing import LabelEncoder le = LabelEncoder()

EstimatedSalary

df.head()

1.1

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	1	15634602	Hargrave	619.0	France	Female	42.0	2
1	2	15647311	Hill	608.0	Spain	Female	41.0	1
2	3	15619304	Onio	502.0	France	Female	42.0	8
3	4	15701354	Boni	699.0	France	Female	39.0	1
4	5	15737888	Mitchell	850.0	Spain	Female	43.0	2

I = I

Only two columns(Gender and Geography) is label encoded

Removing unwanted columns and checking for feature importance

df = df.drop(['RowNumber','CustomerId','Surname'],axis=1)

df.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrC
0	619.0	France	Female	42.0	2	0.00	1	
1	608.0	Spain	Female	41.0	1	83807.86	1	
2	502.0	France	Female	42.0	8	159660.80	3	
3	699.0	France	Female	39.0	1	0.00	2	
4	850.0	Spain	Female	43.0	2	125510.82	1	

```
plt.figure(figsize=(20,10))
df_lt = df.corr(method = "pearson")
df_lt1 = df_lt.where(np.tril(np.ones(df_lt.shape)).astype(np.bool))
sns.heatmap(df_lt1,annot=True,cmap="coolwarm")
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f8f1a34de10>

- 1. The Removed columns are nothing to do with model building.
- 2. Feature importance also checked using pearson correlation.

8. Data Splitting

9. Scaling the independent values

```
from sklearn.preprocessing import StandardScaler
se = StandardScaler()

data['CreditScore'] = se.fit_transform(pd.DataFrame(data['CreditScore']))
data['Age'] = se.fit_transform(pd.DataFrame(data['Age']))
data['Balance'] = se.fit_transform(pd.DataFrame(data['Balance']))
data['EstimatedSalary'] = se.fit_transform(pd.DataFrame(data['EstimatedSalary']))
```

data.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	Has
0	-0.326878	France	Female	0.342615	2	-1.225848	1	
1	-0.440804	Spain	Female	0.240011	1	0.117350	1	
2	-1.538636	France	Female	0.342615	8	1.333053	3	
3	0.501675	France	Female	0.034803	1	-1.225848	2	
4	2.065569	Spain	Female	0.445219	2	0.785728	1	

10. Train test split

(2500, 10) (7500,) (2500,)

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(data,target,test_size=0.25,random_
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)

(7500, 10)
```

×