Todays content ->

- Painters Partition
- -> Aggressive Cows.
 - -> Ath Magical Number (if tim permits)

Painter's Partition Problem

Civen N boards with length of each board.

- a) A painter takes T unit of time to paint 1 unit of length.
- b) A board can only be painted by I painter.
- e) A painter can only paint boards placed next to each other (i.e continuous segment)
- If find min no. of painters required to paint all boards in X unit of time. Return -1 if not possible.

Niss.
$$\begin{cases} T=2 \\ X=15 \end{cases}$$
 One=-1, Gor (ast board, time taken = 9.2= 18 min

$$\begin{bmatrix} T = 2 \\ X = 30 \end{bmatrix}$$

$$= 10 + 6 + 12 + 2$$

$$= 18$$

$$= 10$$

$$= 1$$

$$= 1$$

$$\begin{bmatrix} T = 2 \\ x = 20 \end{bmatrix}$$
 $= 10 + 6$ $= 12 + 2$ $= 18 \text{ min}$ $= p2$

$$t=2$$
 $x=20$
 p_1
 p_2
 p_3
 p_4
 p_4
 p_4
 p_4
 p_4

code ->

```
count=1, long timeleft = X
 for ( i = 0; i < N; i++) {
        1/2 (arr(i) + T > X) { return -1 }
         if (arr(i) *T = timeleft) {

{

timeleft -= arr(i) *T;
        elu(

Count ++;

timeleft = x - arr(i) +7;
                                         5, 3, 6, 1, 9.
                                        count=1 fimelest=20
2 104
```

Painter's Partition Problem - I

[aboyle]

Civen N boards with length of each board.

- a) A painter takes T unit of time to paint I unit of length.
- b) A board can only be painted by I painter.
- e) A painter can only paint boards placed next to each other (i.e continuous segment)
- Ques find minimum time to paint all boards it P painters are available.

$$\left\{ \begin{array}{c|c} & & & \\ \hline & & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array} \right. \qquad \left. \begin{array}{c|c} & & \\ \hline \end{array}$$

$$\begin{bmatrix} T=2 \\ p=1 \end{bmatrix}$$

$$10 + 6 + 12 + 2 + 18 = 48 \text{ min}$$

$$= 48 \text{ min}$$

$$= 48 \text{ min}$$

ans 28 min

min possible time = 1 (max-length +T) \ Scorch-space. max possible time = Earr(17 + T target - Min time to paint all boards with P painters. By on thing Sarrii) * T 1 mid. time taken a 1 for time = mid, find no of painters min no. of painkrs required to pain all boards 4 P 11 Go to right ans = mid l= mid+1 r = mid-1

\$		J 📋	9	13
2	6	1	7	

l	8	mid	no. of painters required with time = mid?
1	48	1+48 - 24	3 → Go right → l=mid+1
25	48	25+48 = 36	2 an=36, r=mid-1.
25	25	25+35 = 30	2 an $= 20$ $3 = mid-1$.
25	29	25+29 = 27 2	3 d=mid+1
28	29	28+29 = 28	$2 \qquad \text{ans} = 28 \qquad \text{r-mid-1}$
28	27	→ search	spau exhausted (stop)


```
# code ->
                                                                   14 N = 105
long l= 1, long r = Sum of all elements * T
                                                                   12 T = 106
   ans = -1;
                                                                  1 \( \arr(i) \( \alpha\)
   while ( e = r) {
                long mid = (2+r) 12;
                 IL = min-painters (arr(7, T, mid);
                if ( x = = -1) {
                          l = mid +1;
                else if (x \in P) {

ans = mid;

r = mid-1;

else {

l = mid+1;
                                                          [ T. L → O(N + log _ Eam(1) + T)

S. L → O(1)
```

return ans i

9 former has build a born with N stalls. Ali] - location of ith stall in sorted order. $M \rightarrow no \cdot g$ cows the farmer has. $2 \le M \le N$ Cows one aggressive towards each other so, farmer wants to maximise the minimum distance blue any pair of cows. find max possible min distance-A[1- [1 4 8 10], M-3 [distance $\alpha \frac{1}{n_0 \cdot of cows}$] Consider all combinations all combinations

(select m stalls out of N stalls) Sacktracking idea...

```
arr > [12489]
        D=4.
             Not possible.
D=5
1=6
                                 distance
D = 7
D = 8
                                         B.s on distance
D=9
min-distanu (l) - 1
mar-distanu (r) - arr [N-1] - arr [0]
 target - max value of min-distance (D) possible.
                                                   am(N-1)-arr(0)
                               L
                              mid.
                    if it is possible to place m cows
                     with min-distance b/w all pairs
                      of cows as mid?
               any=mid
                                            r=mid-1
               1 = mid+1
```

l	Υ	mid	Can we place M cows with distance = mid?	
1	41	1+41 = 21	No	r = mid-1
1	20	1+20 = 10	Yω	an=10 l=mid+1
(I	20	11+20 = 15	No	r=mid-1
11	14	11+14 = 12	Ya	an = 12 l= mid+1
\ <u>3</u>	ાપ	13 + 14 = 13	No	8=mid-1
13	12	→ Shop	l neturn am.	

```
Apsudo-code.
   l=1, r= arr[N-1] - arr[o], ans -- 1
   while (1 \le r)
           mid = (lar) 12;
           if ( check ( arr, mid, m) = = true)){
                     ans = mid;

1 = mid+1;
                                                   J.C → O(N/y(x))
           CHI
                    r = mid-1;
    return ans;
   boolean check ( int 1) am, int dist, int m) {
         cows = 1, last-pos = arr[0]; N-arrileyth
         for ( i=1; 1 < N; i++) {
                                                        -> 0(N)
                  if [ arr[i] - last-pos \geq dist) {
                           lows ++;
                          -urr(i)
ig(cows = = m) + (i)
f(a)
                                return true;
         rcturn false;
```

Where you can think of applying B.S?

O- Array is sorted a searching is required

O- monofonous increasing/ decreasing graph.

O- loj N

- Complete all assignment problem
- Revision. Prime No - Sieve, Combinatories, modular arithmetic

Recursion - Dry-run & very important

Sorting - M.S. I.P., R.P., Mary 2 sorted among

L. also all sorting algos.

Live Conket - failed - Revix. - Give re-attempt.