Numerical Optimization Lab 10: Constrained Steepest Descent

Francesco Della Santa

Abstract

In this lesson, we implement the *Projected Gradient* method for *Constrained optimization* problems with respect to the *Steepest Descent* method.

1 Exercises

Exercise 1 (Sphere Projection). Write a Matlab function $sphere_projection.m$ that, for each $x \in \mathbb{R}^n$ and any n-dimensional sphere $X = B_r(c)$, returns $\Pi_X(x)$ as defined in (3). In particular the inputs and outputs of the function are the following.

INPUTS:

```
x: the input column vector \boldsymbol{x} \in \mathbb{R}^n;
c: the column vector \boldsymbol{c} \in \mathbb{R}^n representing the center of the sphere;
r: the radius r > 0 of the sphere.
```

OUTPUTS:

```
xhat: the value \Pi_X(x).
```

Exercise 2 (Box Projection). Write a Matlab function $box_projection.m$ that, for each $\boldsymbol{x} \in \mathbb{R}^n$ and any n-dimensional "box" $X = [m_1, M_1] \times \cdots \times [m_n, M_n]$, returns $\Pi_X(\boldsymbol{x})$ as defined in (4). In particular the inputs and outputs of the function are the following.

INPUTS:

```
x: the input column vector \boldsymbol{x} \in \mathbb{R}^n;

mins: n-dimensional column vector [m_1, \dots, m_n]^\top;

maxs: n-dimensional column vector [M_1, \dots, M_n]^\top.
```

OUTPUTS:

```
xhat: the value \Pi_X(x).
```

Exercise 3 (Steepest Descent with Projected Gradient Implementation). Write a Matlab function $constr_steepest_desc_bcktrck.m$ that implement the constrained steepest descent optimization method with projected gradient (see Appendix A); the function implements the case with fixed $\gamma_k \equiv \gamma > 0$ and the backtracking strategy with respect to α_k (see item 1 of Appendix A.1). In particular, start from the code of the function the function steepest desc bettrek m and modify

In particular, start from the code of the function the function $steepest_desc_bcktrck.m$ and modify it, introducing/removing the following inputs and outputs:

Removed INPUTS:

alpha0: We do not need to specify $\alpha_k^{(0)}$ since it is equal to 1.

Additional INPUTS:

- gamma: fixed factor $\gamma > 0$ that multiplies the descent direction befor the (possible) projection on ∂X , where X is the optimization domain;
- tolx: a real scalar value characterizing the tolerance with respect to the norm of $\| x_{k+1} x_k \|$ to stop the method;
- Pi_X: a function handle variable that characterizes the function Π_X with respect to an arbitrary set $X \subset \mathbb{R}^n$. For each column vector $\boldsymbol{x} \in \mathbb{R}^n$, Π_X returns \boldsymbol{x} if $\boldsymbol{x} \in X$, and its projection on ∂X otherwise. The function handle must take only \boldsymbol{x} as input argument.

Additional OUTPUTS:

deltaxk_norm: the euclidean norm $||x_k - x_{k-1}||$ (where k is intended to be the last iteration).

Once you have written the function, test it using the data in $test_functions2.mat$. Concerning the other paramters: $c1 = 10^{-4}$, rho = 0.8, btmax = 50, $\gamma = 0.1$, tolx= 10^{-12} , sphere center $c = [-3, -3]^{\top}$, sphere radius r = 1.5, box domain $[-4.5, -1.5] \times [-4.5, -1.5]$. Then, plot:

- the loss f_i (given in test-functions 2.mat), i = 1, 2, 3, using the Matlab function contour, the sequence xseq and the boundary domain;
- the loss f_i (given in test-functions2.mat), i = 1, 2, 3, using the Matlab function surf, the sequence xseq and the boundary domain projected on the surface defined by the function.
- the barplot of the values in btseq using the function bar, with respect to the functions f_i .

A Steepest Descent and Projected Gradient

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a loss function that have to be minimized with respect to a set $X \subset \mathbb{R}^n$ of constrains, i.e. we want to find

$$\operatorname{arg\,min}_{\boldsymbol{x}\in X} f(\boldsymbol{x})$$
.

The *Projected Gradient* method applied to the steepest descent is characterized by the following main steps (at the k-th iteration):

- 1. compute the steepest descent direction $p_k = -\nabla f(x_k)$;
- 2. given an arbitrary sequence of $\gamma_k > 0$, we check if $\bar{\boldsymbol{x}}_k = (\boldsymbol{x}_k + \gamma_k \boldsymbol{p}_k)$ is in X or not; in particular, we compute

$$\widehat{\boldsymbol{x}}_k = \Pi_X(\bar{\boldsymbol{x}}_k) := \begin{cases} \bar{\boldsymbol{x}}_k , & \text{if } \bar{\boldsymbol{x}}_k \in X \\ \Pi_X(\bar{\boldsymbol{x}}_k) , & \text{otherwise} \end{cases} , \tag{1}$$

where $\Pi_X(\bar{\boldsymbol{x}}_k)$ is the projection of $\bar{\boldsymbol{x}}_k$ on the boundary ∂X of X.

- 3. compute the feasible direction $\pi_k := (\widehat{x}_k x_k)$;
- 4. compute the next step of the optimization method: $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{\pi}_k$, where $\alpha_k \in [0,1]$ is the sequence of step length factors.

Attention: Since the minimum not necessarily corresponds to a point with null gradient, a second stopping criterium with respect to the incrementation step $||x_{k+1} - x_k||$ is necessary.

A.1 Linea Search and values of γ_k and α_k

In a nutshell, two main line search methods exist for the Projected Gradient method:

- 1. Line Search along the feasible direction π_k : we assume a constant sequence $\gamma_k \equiv \gamma > 0$, for each $k \in \mathbb{N}$, and we perform a line search method with respect to α_k along the direction π_k (starting from the value $\alpha_k^{(0)} = 1$).
- 2. Linea Search along the projection arc: we assume the sequence α_k constantly equal to 1; then, from (1), we have that

$$\mathbf{x}_{k+1} = \widehat{\mathbf{x}}_k = \Pi_X \left(\mathbf{x}_k + \gamma_k \mathbf{p}_k \right) = \Pi_X \left(\mathbf{x}_k - \gamma_k \nabla f(\mathbf{x}_k) \right),$$
(2)

and we can perform a linea search method with respect to the parameter γ_k along the projection arc.

B Projection Functions

Here, some example of function Π_X with X as a sphere or a box in \mathbb{R}^n .

B.1 *n*-dimesnional Sphere

Let $c = [c_1, \dots, c_n]^{\top}$ be the center of the sphere X and let $r \in \mathbb{R}^+$ be its radius. Then, it holds

$$\Pi_X(\boldsymbol{x}) = \begin{cases} \boldsymbol{x} , & \text{if } \parallel \boldsymbol{x} - \boldsymbol{c} \parallel \leq r \\ \boldsymbol{c} + r \frac{\boldsymbol{x} - \boldsymbol{c}}{\parallel \boldsymbol{x} - \boldsymbol{c} \parallel} , & \text{otherwise} \end{cases} .$$
(3)

B.2 *n*-dimesnional Box

Let X be the n-dimensional box $[m_1, M_1] \times \cdots \times [m_n, M_n] \subset \mathbb{R}^n$. Then, it holds

$$\Pi_X(\mathbf{x}) = \left[\Pi_{[m_1, M_1]}(x_1), \dots, \Pi_{[m_n, M_n]}(x_n)\right]^{\top},$$
 (4)

where

$$\Pi_{[m_i, M_1]}(x_i) = \begin{cases}
m_i, & \text{if } x_i < m_i \\
M_i, & \text{if } x_i > M_i \\
x_i, & \text{otherwise}
\end{cases}$$
(5)