2.1.3.
$$\left\{\frac{(-1)^n}{2n}\right\}$$
 Converges to 0 since the limit at infinity i30

2.1.7. {Xn}

a. lim Xn = 0 \implies \lim |Xn| = 0

[\Rightarrow] Xn converges to 0, |Xn|

must also converge to 0 since all values

get closer to 0

[\implies All values |Xn| converge to 0, Su the

distance gets smaller so even if there were no

abs. value Xn would still converge

b. {|(-i)^n|} converges, {(-i)^n} diverges

2.1.10. lim
$$X_n = \inf \{ X_n : n \in \mathbb{N} \} \}$$
 $n > \infty$

Monotone decreasing since X_n is bounded by $|$
as $\frac{n+1}{n} > |$ for all $n \in \mathbb{N}$

Using	Propusition	2.1.10,	the	limit	Cornegesto
,		,			

2.1.15, $\chi_n := \begin{cases} n & \text{if } n \text{ is odd} \\ \forall n & \text{if } n \text{ is even} \end{cases}$

a. Yes, its lower bound is 0 sinco Xn>0 for all nEN

b. No

2.1.16. $\lim_{i \to \infty} x_{n_i} = a$ $\lim_{i \to \infty} x_{m_i} = b$ A sequence converges to only one number All subsequences of that sequence must also converge to that number or else that sequence doesn't 6 nverge