Abteilung Maschinelles Lernen Institut für Softwaretechnik und theoretische Informatik Fakultät IV, Technische Universität Berlin Prof. Dr. Klaus-Robert Müller Email: klaus-robert.mueller@tu-berlin.de

Maschinelles Lernen 2

Sommersemester 2013

Exercise Sheet 6

Due May 27, 9am local time on ISIS

1. String Kernels (40+30 points)

Fix a set of characters \mathcal{A} . The set of strings with characters in \mathcal{A} is denoted by \mathcal{A}^* ; for a string $x \in \mathcal{A}^*$, we denote its length by |x|. If $s, x \in \mathcal{A}^*$, one denotes the number of occurrences of s as a substring of x by

$$\#(s \sqsubseteq x).$$

For example, $\#(\text{na} \sqsubseteq \text{ananasanna}) = 3$. In general, a string kernel on \mathcal{A}^* is defined as follows:

$$k(.,.): \mathcal{A}^* \times \mathcal{A}^* \longrightarrow \mathbb{R}$$

 $(x,y) \mapsto \sum_{s \in \mathcal{A}^*} \#(s \sqsubseteq x) \cdot \#(s \sqsubseteq y) \cdot w(s),$

where $w(.): \mathcal{A}^* \to \mathbb{R}$ is some kernel and substring specific weighting function.

(a) A string kernel is called bag-of-words-kernel when $w(s) \neq 0$ if and only if s is a word in a natural language, e.g., German. That is, the sum in the kernel ranges over the words of a natural language only (e.g., ziegenpeter or ananasanna). One possible assignment is w(s) = 1 if s is a word, the unweighted bag-of-words; a different weighting is given by the so-called inverse document frequency (IDF), which gives rise to the IDF-kernel. That is, given N documents D_1, \ldots, D_N (in the same language), one considers for each word s the number of documents

$$DF(s) = \#\{k \; ; \; 1 \le k \le N, s \sqsubseteq D_k\}$$

in which the word s occurs - the so-called document frequency, and then sets

$$w(s) = IDF(s) = \log N - \log DF(s)$$

(de facto, that's semantically the log of the inverse document frequency).

Prove that for both assignments of w(s) (i.e., unweighted bag-of-words, and IDF), the sodefined functions k(.,.) are in fact kernels. Recall: a function k(.,.) is a kernel function if and only if all possible kernel matrices are symmetric positive semi-definite.

(b) A string kernel is called *n*-spectrum kernel when w(s) = 1 if |s| = n and w(s) = 0 else. A string kernel is called blended *n*-spectrum kernel, or mixed spectrum kernel when w(s) = 1 if $|s| \le n$ and w(s) = 0 else. Prove that these are indeed kernels (you can use (a) for that).

Calculate the kernel matrices for the n-spectrum kernel and the blended n-spectrum kernel over the latin alphabet for the special case of n=3 and the data set

ananas, anna, natter, otter, otto

2. Tree kernels (30 points)

In the lecture, the subsequence kernel was presented which uses suffix trees for efficient representation and calculation of the kernel matrix. *Prove* the following basic results about suffix trees:

- (a) A string x contains $\mathcal{O}(|x|^2)$ substrings.
- (b) A substring w of x can be reached in $\mathcal{O}(|w|)$ in the suffix tree of x.
- (c) The suffix tree of x can be stored in $\mathcal{O}(|x|)$ space.