Exemples
Terminologie et notions de base
Représentation et primitives de base
Forte connexité
Tri topologique

Graphes orientés

Alix Munier-Kordon et Maryse Pelletier

LIP6 Sorbonne Université Paris

21003 Initiation à l'algorithmique

Plan du cours

- Exemples
- Terminologie et notions de base
- 3 Représentation et primitives de base
- Forte connexité
- Tri topologique

Personnages en relation

Figure: Graphe G = (V, A). Sommets \leftrightarrow personnages, arc \leftrightarrow relation

Déterminer toutes les personnes que Morpheus connait ?

Tâches en relation de précédence

Figure: Sommets ↔ tâches, arc ↔ relation de précédence

Peut-on déterminer un ordre (total) des tâches qui respecte les contraintes de précédence ? Est-il unique ?

Définition

Definition

Un graphe orienté G est défini par un couple G = (V, A), où V est un ensemble de sommets et A un ensemble d'arcs. Un graphe orienté est *connexe* si le graphe non orienté obtenue en remplaçant chaque arc par une arête est connexe.

$$G = (V, A)$$
 avec $V = \{1, 2, 3, 4\}$, $A = \{(4, 1), (4, 2), (2, 3), (3, 4)\}$. G est-il connexe?

5

Terminologie

Pour tout sommet $u \in V$,

- $\Gamma^+(u) = \{v \in V, (u, v) \in A\}$ est l'ensemble des successeurs de u.
- $\Gamma^-(u) = \{v \in V, (v, u) \in A\}$ est l'ensemble des prédécesseurs de u.
- Un *chemin* est une séquence de sommets et d'arcs $\nu = v_1 e_1 v_2 e_2 \cdots v_n e_n v_{n+1}$ avec $v_i \in V$ pour $i \in \{1, \dots, n+1\}$ et $e_i = (v_i, v_{i+1}) \in A$ pour $i \in \{1, \dots, n\}$.
- Un chemin élémentaire est un chemin qui ne passe pas deux fois par le même sommet.
- Un *circuit* est un chemin ν tel que $v_{n+1} = v_1$. Un *circuit* élémentaire est un chemin élémentaire ν tel que $v_{n+1} = v_1$

Arborescence

Une arborescence est un graphe orienté $G_r = (V, A)$ construit à partir d'un arbre T = (V, E) et d'un sommet $r \in V$.

- \bigcirc G_r et T ont les mêmes sommets ;
- Les arcs de G_r correspondent aux arêtes de T orientés du sommet r vers les feuilles.

r est la racine de G_r . Il s'agit de l'unique sommet de G_r sans prédécesseur.

Degré et $\frac{1}{2}$ -degrés d'un graphe orienté

Definition

Soit G = (V, A) un graphe orienté.

• $d^+(u) = |\Gamma^+(u)|$ est le $\frac{1}{2}$ -degré sortant de u.

Tri topologique

- $d^-(u) = |\Gamma^-(u)|$ est le $\frac{1}{2}$ -degré entrant de u.
- $d(u) = d^{+}(u) + d^{-}(u)$ est le degré de u.

Theorem

Pour tout graphe G = (V, A) orienté,

$$\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = |A|$$

Par récurrence sur le nombre d'arcs (en TD).

Matrice sommet-arc pour G = (V, A) orienté

M est une matrice $|V| \times |A|$ telle que, $\forall a = (i, j) \in A$

- M[i, a] = 1, M[j, a] = -1;
- **2** $\forall k \in V \{i, j\}, M[k, a] = 0.$

$$M = \begin{pmatrix} -1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 \\ 1 & 1 & 0 & -1 & 0 \end{pmatrix}$$
 étudié la matrice colonne par depart départ

9

Matrice sommet-sommet pour G = (V, A) orienté

R est une matrice $|V| \times |V|$ telle que, $\forall (i, j) \in V^2$

- **1** $R[i,j] \in \{0,1\}$;
- 2 $R[i,j] = 1 \text{ ssi } a = (i,j) \in A.$

Etidié le graphe ligne puis colonne

$$R = \left(egin{array}{cccc} 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 1 & 1 & 0 & 0 \end{array}
ight) \left. egin{array}{c} ext{il igne } ext{" a '' colonne ''} \ ext{`` ligne } ext{" a '' colonne ''} \ ext{`` ligne } ext{" a '' colonne ''} \ ext{`` ligne } ext{`` a '' colonne ''} \ ext{`` a '' colonne '' colonne ''} \ ext{`` a '' colonne ''} \ ext{`` a '' colonne ''} \ ext{`` a '' colonne '' colonne ''} \ ext{`` a '' colonne '' colonne ''} \ ext{`` a '' colonne ''$$

il y existe un arc qui va de

Listes de successeurs pour G = (V, A) orienté

Pour $i \in V$, L[i] est la liste des sommets successeurs de i.

$$L[1] = []$$

 $L[2] = [3]$
 $L[3] = [1, 4]$
 $L[4] = [1, 2]$

Taille en mémoire des trois représentations

Soit G = (V, A) un graphe orienté :

	Taille mémoire
Matrice sommet-arcs	$\Theta(V \times A)$
Matrice sommet-sommet	$\Theta(V ^2)$
Listes de successeurs	$\Theta(\max(V , A))$

Complexité des primitives d'accès aux arcs

Soit G = (V, A) un graphe orienté :

- G.existeArc(i,j): True ssi $(i,j) \in A$;
- ② G.listeSuccesseurs(i): pour $i \in V$, $\Gamma^+(i)$;
- ⊙ G.listePredecesseurs(i): pour i ∈ V, Γ-(i).

Num. primitives	1	2	3
Matrice som-a	$\mathcal{O}(m)$	$\mathcal{O}(m \times n)$	$\mathcal{O}(m \times n)$
Matrice som-som	Θ(1)	$\Theta(n)$	Θ(<i>n</i>)
Liste de Succ.	$\mathcal{O}(d^+(i))$	Θ(1)	Θ(<i>m</i>)

$$\overline{n=|V|, m=|A|.}$$

Rappels sur les relations d'équivalence

Soit \mathcal{R} une relation définie dans un ensemble A.

Definition

 \mathcal{R} est une *relation d'équivalence* sur A si

- \mathcal{R} est *réflexive* : $x\mathcal{R}x$,
- \mathcal{R} est symétrique : si $x\mathcal{R}y$ alors $y\mathcal{R}x$,
- \mathcal{R} est transitive : si $x\mathcal{R}y$ et si $y\mathcal{R}z$ alors $x\mathcal{R}z$.

Par exemple, pour $A = \mathbb{Z}$, soit \mathcal{R}_5 telle que pour tout $(x, y) \in A^2$, $x\mathcal{R}y$ si $x = y \mod 5$. On peut vérifier que \mathcal{R}_5 est une relation d'équivalence.

Rappels sur les relations d'équivalence (suite)

Definition

Soir \mathcal{R} une relation d'équivalence sur A, la classe d'équivalence d'un élément x de A est l'ensemble des éléments y de A qui sont en relation avec x.

$$\mathcal{C}_{\mathcal{R}}(x) = \{ y \in A, x \mathcal{R} y \}$$

Theorem

Les classes d'équivalence forment une partition de A.

A quoi correspondent les classes d'équivalence pour \mathcal{R}_5 ?

Une classe d'équivalence liée aux graphes orientés

Soit G = (V, A) un graphe orienté connexe et la relation \mathcal{R}_{FC} définie sur V^2 par :

 $u\mathcal{R}_{FC}v$ si il existe un chemin dans G de u à v et de v à u.

$$\mathcal{R}_{FC} = \begin{array}{ll} \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\} \cup \\ \{(1,2),(2,1),(2,3),(3,2),(1,3),(3,1),(4,5),(5,4)\} \end{array}$$

Forte connexité et composantes fortement connexes

Theorem

 \mathcal{R}_{FC} est une relation d'équivalence sur V.

Definition

Les classes d'équivalence de la relation \mathcal{R}_{FC} sont désignées par les *composantes fortement connexes* de G. Un graphe est *fortement connexe* si la relation \mathcal{R}_{FC} ne possède qu'une seule classe d'équivalence.

Forte connexité et composantes fortement connexes (suite)

Les classes d'équivalence pour \mathcal{R}_{FC} forment une partition des sommets telle que, pour tout couple de sommets (u, v) dans une même composante, $u\mathcal{R}_{FC}v$, *i.e.* il existe un chemin de u à v et de v à u.

Pour l'exemple, il y a 3 classes d'équivalence

 $\mathcal{C}_{\mathcal{R}_{FC}}(1)=\{1,2,3\},\,\mathcal{C}_{\mathcal{R}_{FC}}(4)=\{4,5\}\mbox{ et }\mathcal{C}_{\mathcal{R}_{FC}}(6)=\{6\}.$ Elles constituent les composantes fortement connexes de $\emph{G}.$ \emph{G} n'est donc pas fortement connexe.

CRFC (i): l'ensemble des sommets que l'on peut atteindre à partir de i qui peuvent atteindre i un graphe fortement connexe est un caractéristique propre au graphe orienté:
- il faut qu'a partir de n'importe quel sommet on puisse atteindre tout les autres
Quel(s) arcs(s) faut-il rajouter au minimum pour obtenir un graphe fortement connexe?

Rappels sur les relations d'ordre

Soit \mathcal{R} une relation définie dans un ensemble V.

Definition

 \mathcal{R} est une *relation d'ordre* sur V si

- R est réflexive,
- \mathcal{R} est antisymétrique : si $x\mathcal{R}y$ et si $y\mathcal{R}x$ alors x=y,
- R est transitive.

Un ordre est *total* si tous les éléments sont comparables, *i.e.* pour tout couple $(u, v) \in V^2$, $u \mathcal{R} v$ ou $v \mathcal{R} u$. Un ordre partiel partiel est un ordre qui n'est pas total.

Ordre associé à un graphe orienté sans circuit

Definition

Pour tout graphe orienté sans circuit G = (V, A), on peut associer la relation \leq définie par : pout tout couple de sommets $(\mathbf{U}, \mathbf{V}) \in V^2$, $u \leq v$ si il existe un chemin de u à v dans G.

Ordre associé à un graphe orienté sans circuit

Theorem

Si G = (V, A) est un graphe orienté sans circuit alors la relation \leq est une relation d'ordre.

Remarque

- il est nécessaire que le graphe soit sans circuit pour que la relation soit antisymétrique,
- l'ordre ≤ peut être total ou partiel.

Tri (ou ordre) topologique

Definition

Soit G un graphe orienté sans circuit. Un *tri topologique* de G est une liste (u_1, \ldots, u_n) des sommets de G telle que :

 $i < j \Rightarrow \; \text{il n'y a pas de chemin de } u_i \text{ a pas de chemin de } u_i \text{ a } u_i.$

(1,7,4,10,2,5,12,11,6,3,8,9) est un tri topologique (1,7,4,10,2,5,8,12,11,6,3,9) n'en est pas un.

Rang d'un sommet

Definition

Soit *G* un graphe orienté sans circuit. Le *rang* d'un sommet *u* est défini récursivement :

$$\operatorname{rang}(u) = \begin{cases} 0 \text{ si } u \text{ n'a pas de prédécesseur} \\ 1 + \max\{\operatorname{rang}(v) \mid v \text{ prédécesseur de } u\} \text{ sinon} \end{cases}$$

Remarque

Cette définition a un sens car le graphe est sans circuit.

Exemple du rang d'un sommet

u	1	2	3	4	5	6	7	8	9	10	11	12	
rang(u)	0	1	2	0	0	2	0	3	4	1	1	0	-

Existence d'un tri topologique

Theorem

Si un graphe orienté est sans circuit alors il admet un tri topologique.

La preuve est basée sur le lemme suivant :

Lemma

Si G est un graphe orienté sans circuit ayant n sommets alors :

- il existe u_1, \ldots, u_n tels que rang $(u_1) \leq \ldots \leq \operatorname{rang}(u_n)$
- $si \operatorname{rang}(u_1) \leq \ldots \leq \operatorname{rang}(u_n)$ alors (u_1, \ldots, u_n) est un tri topologique.

Principe de calcul d'un tri topologique

Soit G = (V, E) un graphe orienté sans circuit. Initialement L est une liste vide et tous les sommets sont à traiter.

- Pour tout sommet u on pose $\Delta(u) = d^-(u)$ (demi-degré entrant de u).
- On choisit un sommet u tel que $\Delta(u) = 0$:
 - on ajoute *u* à *L*,
 - pour chaque successeur v de u on pose $\Delta(v) = \Delta(v) 1$,
 - le sommet *u* n'est plus à traiter.
- On réitère l'étape précédente tant qu'il y a des sommets à traiter.

