Пловдивски университет "Паисий Хилендарски"

Факултет по Математика и информатика Софтуерно инженерство, IV курс, редовно обучение

Верификация и валидиране на софтуер

КУРСОВА РАБОТА

върху

моделите за моделиране на надеждност на

софтуер

Gompertz и Cheng-Pham

Изготвили:

Олег Заим – 1701321109 Степан Серт – 1701321107 Ще разгледами две изградени оценки на софтуерна от литературата "Handbook of software reliability engineering" глава 7 "Software Reliability Measurement Experience" Allen P. Nikora and Michael R. Lyu. J1, J4

1. Ј1(Наричан по-долу Софтуер 1)

1	6	6
2	1	7
3	1	8
4	0	8
5	1	9
6	3	12
7	0	12
8	5	17
9	6	23
10	1	24
11	0	24
12	3	27
13		36
14	9 3	39
15		41
16	2 3	44
17	0	44
18	2	46
19	4	50
20	0	50
21	0	50
22	0	50
23	0	50
24	0	50
25	2	52
26	0	52
27	0	52
28	2	54
29	3	57
30	11	68
31	5	73
32	3	76
33	2	78
34	4	82
35	2	84
36	0	84
37	1	85

38	2	87
39	0	87
40	1	88
41	3	91
42	0	91
43	1	92
44	6	98
45	2	100
46	0	100
47	5	105
48	10	115
49	3	118
50	3	121
51	2	123
52	1	124
53	0	124
54	3	127
55	0	127
56	2	129
57	0	129
58	1	130
59	0	130
60	1	131
61	0	131
62	2	133
	J4(Наричан по-долу Софтуер 2)	
1	0	0
2	0	0
3	1	1
4	0	1
5	0	1
6	0	1
7	0	1
8	0	1
•	Δ	4

4 =		0
17	1	8
18	2	10
19	0	10
20	0	10
21	2	12
22	1	13
23	3	16
24	0	16
25	0	16
26	5	21
27	2	23
28	0	23
29	0	23
30	1	24
31	3	27
32	2	29
33	0	29
34	2	31
35	0	31
36	0	31
37		33
	2 1	
38		34
39	0	34
40	0	34
41	0	34
42	0	34
43	0	34
44	0	34
45	0	34
46	0	34
47	0	34
48	1	35
49	2	37
50	0	37
51	0	37
52	5	42
53	2	44
54	0	44
55	1	45
56	6	51
57	8	59
58	2	61
59	1	62
60	6	68
61	8	76
VI.	J	70

62	8	84
63	6	90
64	3	93
65	4	97
66	3	100
67	1	101
68	1	102
69	1	103
70	1	104
71	5	109
72	2	111
73	1	112
74	1	113
75	1	114
76	2	116
77	0	116
78	1	117
79	1	118
80	1	119
81	1	120
82	0	120
83	1	121
84	1	122
85	1	123
86	2	125
87	2	127
88	3	130
89	3	133
90	5	138
91	1	139
92	2	141
93	3	144
94	1	145
95	1	146
96	1	147
97	2	149
98	0	149
99	1	150
100	4	154
101	3	157
102	0	157
103	1	158
104	8	166
105	4	170
106	7	177
	,	± / /

107	1	178
108	1	179
109	2	181
110	1	182
111	0	182
112	1	183

Оценките са направени на база открити грешки в софтуера за определен период от време.

И в двете оценки се отбелязват дни без открити грешки. В отделна колона са въведени общият брой грешки до момента.

При Софтуер 1 са записани данни за 62 дни, а при Софтер 2 – за 112 дни.

От таблиците се забелязва, че общия брой грешки в Софтуер 2 е много по-голям, от колкото в Софтуер 1 — съответно 183 към 133, пресметнато за равен период (62 дни) — 133 към 84, което е 1.58 пъти по-малко открити дефекти.

Сравнявайки денят с най-много грешки от Софтуер 1 с този от Софтуер, съответно ден 30 (11 грешки) и ден 57(8 грешки), Софтуер 1 води по брой грешки за един ден.

При Софтуер 1 се забелязва, че много грешки се откриват още в първите дни на тестването, докато при Софтуер 2 в началото са малко на брой или изобщо няма.

Gompertz

$$M(t) = \omega a^{b^t}$$

$$M(t) = \omega e^{-\alpha e^{-\beta t}}$$

- M(t): Комулативният брой софтуерни грешки, открити за време t >=0
- ∘ w: горната граница, на която надеждността се приближава асимптотично като Т ∞, или максималната надеждност, която може да бъде постигната (∼ w*a)
- o b: индикатора за модела на растеж
- t: индикация за време, старт или номер на етап. t>0
- о α: параметър при поява на грешка
- о β: коефициент на надеждност на системата

Софтуер 1

THE GOMPERTZ SOFTWARE RELIABILITY MODEL

```
In[1217]= j1 = Import["/Users/olegzaim/Downloads/Верефикация и Валидиране на Софтуер/FMI-SE-4-2-Software_Reliability-master/J1_data.csv"];

Manipulate[
Dyr ○ ow[Plot[f[t], {t, 1, 62}, (* функция на времето на изпитване *)

LabelStyle → Directive[Green, Bold], (* форматиране на динамичната графика*)

PlotLabel → 133 * Exp[-a * Exp[-β * t]]],

ListPlot[j1,

PlotStyle → Red,

PlotMarkers → {Automatic, Small}],

PlotRange → {Automatic, {0, 133}},

AxesOrigin → {0, 0}],

{(a, 0}, 0, 10, Appearance → "Open"},

{(β, 0}, 0.01, 10, Appearance → "Open"},
```


Initialization \Rightarrow (f[t_] := 140 * Exp[- α * Exp[- β * t]])

```
In(1230) = α = 3.48;
β = 0.665;
f[t_] := 140 * Exp[-α * Exp[-β * t]];
linechart = Plot[f[t], (t, 1, 62), Epilog → Map[Point, j1], PlotStyle → (Red), PlotRange → (θ, 140}];|
Show(linechart, ListPlot[j1, Joined → True, Mesh → Full, MeshStyle → Directive[PointSize[Large], Thick]]]

140
120
100
100
20
30
40
50
60
```

Софтуер 2


```
a = 9.14;
β = 0.065;
f[t] := 183*Exp[-α*Exp[-β*t]];
j4 = Import["/Users/olegzaim/Downloads/Bepeфикация и Banидиране на Coфryep/FNI-SE-4-2-Software_Reliability-master/J4_data.csv"];
linechart = Plot[f[t], (t, 1, 112), Epilog → Map[Point, j4], PlotStyle → (Red), PlotRange → (0, 183)];
Show[linechart, ListPlot[j4, Joined → True, Mesh → Full, MeshStyle → Directive[PointSize[Large], Thick]]]
100-
```

Cheng-Pham

$$M(t) = a(1 - \left(\frac{\beta}{\beta + \ln\frac{a + e^{bt}}{a + 1}}\right)^{\alpha}$$

С използване на функцията FindFit получаваме числените стойности на параметрите b, α и β за списъка c входни данни при зададен израз – функцията на моела на Cheng-Pham.

$$model = \alpha * (1-\beta/\beta + Log[(a+Exp[b+t])/(a+1)])) ^ \alpha$$
 fit = FindFit[data, model, [b, \alpha, \beta], t]

Софтуер 1

```
modelmodel = a * \{1 - \beta / (\beta + Log[(a + Exp[b * t]) / (a + 1)])\} ^{\alpha} \alpha
           a = 140
           fitfit = FindFit[j1, modelmodel, \{b, \alpha, \beta\}, t]
           \beta = 0.3535
           \alpha = 49.346
           a = 140
           b = 1.203
           H[t_{-}] := a * (1 - \beta / (\beta + Log[(a + Exp[b * t]) / (a + 1)])) ^ \alpha
           \texttt{H1[}t\_\texttt{]} := \texttt{b} \, / \, (\texttt{1} + \texttt{a} \star \texttt{Exp[}-\texttt{b} \star t\texttt{]} \, )
           H2[t_] := a
           g1 = Plot[H[t], \{t, 0, 62\}, PlotRange \rightarrow \{0, 140\}, AspectRatio \rightarrow 0.6, PlotStyle \rightarrow \{Red\}];
             \texttt{g2} = \texttt{Plot}[\texttt{H1[t]}, \{\texttt{t}, \, \texttt{0}, \, \texttt{62}\}, \, \texttt{PlotRange} \rightarrow \{\texttt{0}, \, \texttt{140}\}, \, \texttt{AspectRatio} \rightarrow \texttt{0.6}, \, \texttt{PlotStyle} \rightarrow \{\texttt{Blue}\}]; 
             \texttt{g3 = Plot[H2[t], \{t, 0.1, 62\}, PlotRange} \rightarrow \{0, 140\}, AspectRatio \rightarrow 0.6, PlotStyle \rightarrow \{Dashed\}]; 
           Show[g1, g2, g3, \ ListPlot[j1, \ Joined \rightarrow True, \ Mesh \rightarrow Full, \ MeshStyle \rightarrow Directive[PointSize[Large], \ Thick]]]
Out[1961]= 140
           ··· FindFit: Failed to converge to the requested accuracy or precision within 100 iterations.
Out[1962]= \{b \rightarrow 1.20336, \alpha \rightarrow 49.3467, \beta \rightarrow 0.353559\}
Out[1963]= 0.3535
Out[1964]= 49.346
Out[1965]= 140
Out[1966]= 1.203
```

Софтуер 2

```
ın[3490]≔ j4 = Import["/Users/olegzaim/Downloads/Верефикация и Валидиране на Софтуер/FMI-SE-4-2-Software_Reliability-master/J4_data.csv"];
          Clear[\beta]
          Clear[b]
          Clear[a]
          Clear[α]
          modelmodel = a * (1 - \beta / (\beta + Log[(a + Exp[b * t]) / (a + 1)])) ^ \alpha
          a = 198
          fitfit = FindFit[j4, modelmodel, \{b, \alpha, \beta\}, t]
          \beta = 0.18
          \alpha = 1.028
          a = 198
          b = 0.053
          \mathsf{H}[\,t_-]\, \vcentcolon=\, \mathsf{a}\,\star\,\, (\mathsf{1}\,-\,\beta\,/\,\,(\beta\,+\,\mathsf{Log}\,[\,(\mathsf{a}\,+\,\mathsf{Exp}\,[\,\mathsf{b}\,\star\,t\,]\,)\,\,/\,\,(\mathsf{a}\,+\,\mathsf{1})\,]\,)\,\,{}^{\wedge}\,\alpha
          H1[t_{-}] := b / (1 + a * Exp[-b * t])
          H2[t_]:= a
          g1 = Plot[H[t], {t, 0, 114}, PlotRange \rightarrow {0, 190}, AspectRatio \rightarrow 0.6, PlotStyle \rightarrow {Red}];
          g2 = Plot[H1[t], \{t, 0, 114\}, PlotRange \rightarrow \{0, 190\}, AspectRatio \rightarrow 0.6, PlotStyle \rightarrow \{Blue\}];
          g3 = Plot[H2[t], {t, 0.1, 114}, PlotRange \rightarrow {0, 190}, AspectRatio \rightarrow 0.6, PlotStyle \rightarrow {Dashed}];
          Show[g1, g2, g3, ListPlot[j4, Joined → True, Mesh → Full, MeshStyle → Directive[PointSize[Large], Thick]]]
Out[3495]= a 1 -
                  \beta + \text{Log} \left[ \frac{a + e^{bt}}{1 - a^{bt}} \right]
Out[3496]= 198
Out[3497]= { b \rightarrow 0.0534186 , \alpha \rightarrow 1.02897 , \beta \rightarrow 0.185076 }
Out[3498]= 0.18
Out[3499]= 1.028
Out[3500]= 198
Out[3501]= 0.053
           150
```

Out[3508]=

50

Извод:

Според първата графика Софтуер 1 е надежден. Почвайки от първата и до 19 седмица то се доближава до модела на Gompertz. От 19 и до 29 седмица виждаме че се откриват малко на брой грешки. Обаче след това почвайки от 30 седмица и до 50 виждаме че имаме скок на броя грешките. От 50 седмца и до края, броя на грешките онтово се изровниха с модела на Gompertz.

Анализираки втория график виждаме че първите 18 седмици съвпадат с модела на Gompertz, после се вижда че от 20 седмица и до 38 се увеличава броя на грешки и се разминава с графика. Следващите 16 седмици виждаме че софтуера е много надежден тъй като има по 1-2 грешки или изобщо няма. Обаче от тук и до 66 седмица виждаме силно увелечение на броя грешките, софтуера стана крайно не стабилен. След това до 86 седмица драстично се намалиха грешките и софтуера стано относително стабилен. От 86 седмица и до 107 наблюдаваме пак силно увелечаване на броя грешките. До края на изучаваните седмици софтуера се стабелизира и максимално се доблежи до функцията на Gompertz. Можем да кажем че софтуера е надежден въз основа на това че поне три последни седмци се доблежиха до модела на Gompertz.

Можем да кажем че Софтуер 2 е по-надежден от Сфотуер 1, защото за Софтуер 1 изкуствено увелечихме броя на грешките за да съвпада с графика на Gompertz.

И за двата софтуера този Gompertz модела работи добре. Той дава възможност да се предскаже какво би се случило в следващ етап от развитието на системата.

Модела Gompertz работи по-добре от Cheng-Pham конкретно за тези два софтуера.