Práctica 0 Preliminares de Análisis

Pablo Brianese

12 de abril de 2021

Definición 1. Dadas $f, g : \mathbb{R}^n \to \mathbb{R}$ ambas en $L(\mathbb{R}^n)$, definimos la convolución de la siguiente manera

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy$$
 (1)

Ejercicio 1. Probar que si $f, g, h \in L^1(\mathbb{R}^n)$ y $\lambda \in \mathbb{R}$, entonces valen:

- 1. f * g = g * f
- 2. f * (g + h) = f * g + f * h
- 3. f * (g * h) = (f * g) * h
- 4. $\lambda(f*q) = f*(\lambda q)$
- 5. $||f * g||_1 \le ||f||_1 ||g||_1$

Observación 1. Las propiedades anteriores se pueden resumir diciendo que $(L^1(\mathbb{R}^n),\|-\|_1)$ es un álgebra de Banach conmutativa con la convolución como producto.

Solución. 1 Supongamos $f \geq 0$. Y pensemos en el caso en que g es la función característica, $g = \mathbbm{1}_A$, de un conjunto boreliano $A \subseteq \mathbb{R}^n$. Observemos que $\mathbbm{1}_A(x-y) = \mathbbm{1}_{x-A}(y)$ para todo $y \in \mathbb{R}$. Esto nos permite calcular, para todo $x \in \mathbb{R}^n$, fórmulas muy similares para ambas convoluciones

$$f * \mathbb{1}_A(x) = \int_{\mathbb{R}^n} f(y) \mathbb{1}_A(x - y) \mathrm{d}y$$
 (2)

$$= \int_{\mathbb{R}^n} f(y) \mathbb{1}_{x-A}(y) \mathrm{d}y \tag{3}$$

$$\mathbb{1}_A * f(x) = \int_{\mathbb{R}^n} f(x - y) \mathbb{1}_A(y) dy$$
 (4)

$$= \int_{\mathbb{R}^n} f(x-y) \mathbb{1}_A(x-(x-y)) \mathrm{d}y \tag{5}$$

$$= \int_{\mathbb{R}^n} f(x-y) \mathbb{1}_{x-A}(x-y) dy$$
 (6)

Sea $\{f_n\}_n$ una sucesión de funciones simples nonegativas que convergen puntualmente a f. Por el teorema de convergencia dominada

$$\lim_{n \to \infty} \int_{\mathbb{R}^n}$$
 (7)