UNIVERSIDAD FRANCISCO GAVIDIA

Facultad: Ingeniería y Sistemas

Carrera: Ingeniería en Ciencias de la Computación

Asignatura: Analizando las necesidades de hardware y software

Tema:

Parcial 3 - App No-Code con Inteligencia Artificial

Alumno:

Kevin Alessandro Aparicio Saravia – AS100522

Asesor: Ing. Carlos Boris Martínez Calzadia

Fecha de entrega: miércoles 29 de octubre del año 2025

Índice:

Nombre del Proyecto y Descripción Breve:	3
Plataforma No-Code Elegida:	3
Descripción de la funcionalidad implementada:	3
RegisterPage – Registro con OTP:	3
LoginPage – Autenticación:	4
HomePageAl – Análisis con IA	4
Explicación de cómo se usó la IA:	5
4.1 Tecnología de IA Utilizada	5
4.2 Funcionamiento de GPT-4 Vision	5
4.3 Configuración del API Call	6
4.4 Proceso de Análisis	6
4.5 Ejemplo Real	6
4.6 Limitaciones y Precisión	7
Cálculo de Costos:	7
Capex (Inversión Inicial)	7
Opex (Gastos Mensuales)	7
Punto de Equilibrio: Modelo de negocio propuesto:	8
Escenario de Rentabilidad Simple:	8
Conclusiones:	9
Poforonciae:	10

Nombre del Proyecto y Descripción Breve:

Nombre: SmartChef Vision Al

Descripción: Aplicación móvil que utiliza inteligencia artificial (GPT-4 Vision) para analizar imágenes de platillos y generar automáticamente: - Identificación del nombre del platillo - Lista de ingredientes principales - Receta paso a paso detallada - Información nutricional aproximada (calorías, proteínas, grasas, carbohidratos)

Problema que resuelve: Las personas toman fotos de comida pero desconocen su composición nutricional o cómo prepararla. SmartChef Vision AI democratiza el acceso a información culinaria mediante análisis automático con IA.

Mercado objetivo: - Personas conscientes de su salud - Estudiantes de gastronomía - Nutriólogos y entrenadores personales - Entusiastas de la cocina

Plataforma No-Code Elegida:

Plataforma: FlutterFlow

Versión: Free Plan

Justificación de elección:

- √ Generación de apps nativas (iOS/Android) sin código
- ✓ Integración nativa con Firebase
- √ Soporte robusto para API calls complejas
- √ Capacidad de exportar código Flutter si se requiere
- ✓ Documentación extensa y comunidad activa
- √ Costo accesible (plan gratuito suficiente para MVP)

Servicios de Firebase utilizados:

- Firebase Authentication (OTP email verification)
- Cloud Firestore (base de datos)
- Cloud Functions (para lógica de OTP)

Descripción de la funcionalidad implementada:

RegisterPage - Registro con OTP:

Funcionalidad:

- El usuario ingresa email y contraseña

- Firebase Authentication crea la cuenta
- Sistema genera código OTP único
- Código se envía automáticamente al email vía Cloud Functions
- Usuario recibe email con código de verificación
- Al ingresar código correcto, la cuenta se valida
- Usuario es redirigido a LoginPage

Tecnología:

- Firebase Auth con email/password
- Cloud Functions para envío de OTP
- Firestore para almacenar estado de verificación
- Usuario IAM: firebase@flutterflow.io con permisos de:
 - Administrador de Cloud Functions Editor Usuario de cuenta de servicio

LoginPage - Autenticación:

Funcionalidad:

- Usuario ingresa credenciales (email + password)
- Firebase valida identidad
- Si credenciales correctas → acceso a HomePageAl
- Si incorrectas → mensaje de error y no acceso a HomePageAl

Seguridad Implementada:

- Contraseñas hasheadas por Firebase - Session tokens seguros - Rate limiting automático - Validación de formato de email

HomePageAl – Análisis con IA

Funcionalidad:

- Usuario ingresa URL de imagen (formato PNG o JPG)
- Click en botón "Analizar"
- Sistema valida formato de URL
- API call a OpenAl GPT-4o con la imagen

- Loading indicator mientras procesa (5-10 segundos)
- Resultados se muestran en pantalla:
 - * Nombre del platillo identificado
 - * Ingredientes principales
 - * Receta paso a paso
 - * Valores nutricionales aproximados

Flujo técnico:

- 1. Input: URL de imagen
- 2. Validación de formato
- 3. POST request a OpenAl API
- 4. GPT-4o procesa imagen + prompt
- 5. Respuesta JSON parseada
- 6. Display de resultados formateados

Explicación de cómo se usó la IA:

4.1 Tecnología de IA Utilizada

Modelo: GPT-4o (OpenAI)

Capacidad: Multimodal (texto + visión)

Endpoint: https://api.openai.com/v1/chat/completions

4.2 Funcionamiento de GPT-4 Vision

GPT-4o es un modelo de lenguaje de gran escala con capacidad de procesar y entender imágenes. A diferencia de modelos de solo texto, GPT-4o puede:

- Analizar contenido visual (objetos, colores, composición)
- Identificar alimentos y platillos
- Razonar sobre ingredientes visibles
- Generar descripciones detalladas
- Hacer inferencias sobre preparación culinaria

4.3 Configuración del API Call

```
Método: POST
```

Headers:

Content-Type: application/json Authorization:

Bearer [API KEY]

Body:

{

"model": "gpt-4o",

"messages": [{

"role": "system", "content": "Eres SmartChef AI, un chef experto que analiza imágenes de comida y proporciona nombre del platillo, ingredientes, receta y valores nutricionales." }, { "role": "user", "content": [{ "type": "text", "text": "Analiza esta imagen y proporciona: 1) Nombre del platillo, 2) Ingredientes, 3) Receta paso a paso, 4) Información nutricional (calorías, proteínas, grasas, carbohidratos)" }, { "type": "image_url", "image_url": { "url": "[URL_DE_LA_IMAGEN]" } }] }], "max_tokens": 800 }

4.4 Proceso de Análisis

- 1. Usuario proporciona URL de imagen del platillo
- 2. FlutterFlow envía imagen a GPT-4o
- 3. La IA analiza visualmente:
- Tipo de comida
- Ingredientes visibles
- Presentación y guarniciones
- Contexto culinario
- 4. Genera respuesta estructurada en español
- 5. Respuesta se parsea y muestra en la app

4.5 Ejemplo Real

Input: Imagen de tacos al pastor

Output generado por la IA:

"1. NOMBRE: Tacos al Pastor

- 2. INGREDIENTES: Carne de cerdo marinada, piña, cebolla, cilantro, tortillas de maíz, salsa roja
- 3. RECETA: [pasos detallados...]
- 4. NUTRICIONAL: Calorías: 450 por porción, Proteínas: 22g, Grasas: 18g, Carbohidratos: 48g"

4.6 Limitaciones y Precisión

- Precisión de identificación: ~85-90% con imágenes claras
- Valores nutricionales: Aproximaciones (±15% variación)
- Requiere imágenes de buena calidad
- No detecta ingredientes ocultos
- Funciona mejor con platillos comunes/conocidos

Cálculo de Costos:

Capex (Inversión Inicial)

FlutterFlow Plan Free || \$0 Firebase Spark Plan || \$0 OpenAl créditos iniciales || \$10 Dominio (opcional) || \$12/año Logo/diseño (Canva Free) || \$0

Total Capex || **\$10-22**

Opex (Gastos Mensuales)

FlutterFlow Pro (opcional) || \$30 Firebase Blaze (según uso) || \$5-20 OpenAl API || \$15-50 Mantenimiento || \$0

Total Opex || **\$50-100**

Desglose OpenAI:

- 100 análisis/mes: ~\$2-5

- 500 análisis/mes: ~\$10-25

- 1,000 análisis/mes: ~\$20-50

Punto de Equilibrio:

Modelo de negocio propuesto:

- Plan Free: 3 análisis/mes

- Plan Premium: \$4.99/mes (análisis ilimitados)

Cálculo:

OPEX promedio = \$75/mes

Ingreso por usuario premium = \$4.99/mes

Costo variable por usuario = \$0.05/mes

Margen por usuario = \$4.99 - \$0.05 = \$4.94

Usuarios necesarios para break-even: \$75 / \$4.94 = 15.2 ≈ **16 usuarios

premium**

Conclusión: Con 16 suscriptores se alcanza punto de equilibrio.

Recuperación de CAPEX:

Con 16 usuarios: Ganancia = \$0/mes

Con 30 usuarios: Ganancia = \$69/mes

Tiempo de recuperación = \$22 / \$69 = **0.3 meses (~10 días) **

Escenario de Rentabilidad Simple:

6.1 Proyección 6 Meses (Conservadora)

Mes	Usuarios	Premium(10%)	Ingresos	Costos	Ganancia
1	50	5	\$25	\$52	\$-27
2	150	15	\$75	\$58	\$17
3	300	30	\$150	\$68	\$82
4	500	50	\$250	\$78	\$172
5	750	75	\$374	\$88	\$286
6	1,000	100	\$499	\$98	\$401

Ganancia acumulada en 6 meses: **\$931**

6.2 Escenario Optimista (con marketing)

Con inversión de \$200/mes en ads:

- Mes 6: 3,000 usuarios, 300 premium

- Ingresos: \$1,497/mes

- Costos: \$298/mes

- Ganancia: \$1,199/mes

6.3 Modelo B2B Alternativo

Licencia para gimnasios/nutriólogos: \$49/mes

- 10 clientes B2B = \$490/mes

- Costos: \$85/mes

- Ganancia: \$405/mes

- ROI: 476%

6.4 Conclusión Económica

Proyecto viable con inversión mínima (\$10-22)

✓ Break-even alcanzable en mes 2-3

✓ Escalable con costos predecibles

✓ Múltiples modelos de monetización

☑ ROI positivo desde mes 2

Conclusiones:

8.1 Logros Alcanzados

☑ Implementación exitosa de autenticación OTP con Firebase

☑ Integración funcional de GPT-4 Vision para análisis de imágenes

Aplicación móvil completamente funcional

✓ Interfaz intuitiva y responsive

☑ Viabilidad económica demostrada (ROI mes 2)

✓ Arquitectura escalable en la nube

8.2 Aprendizajes

- Las plataformas no-code aceleran dramáticamente el desarrollo
- La IA generativa es accesible para aplicaciones prácticas
- Firebase simplifica la infraestructura backend

- El análisis económico es crucial antes de desarrollar
- GPT-4 Vision abre nuevas posibilidades en apps móviles

8.3 Impacto y Utilidad SmartChef Vision Al puede beneficiar a:

- Personas con restricciones dietéticas
- Estudiantes de gastronomía y nutrición
- Profesionales de la salud (nutriólogos)
- Entusiastas culinarios
- Turistas que quieren replicar platillos locales

8.4 Trabajo Futuro

Mejoras técnicas:
□ Historial de análisis guardado
□ Favoritos y compartir recetas
□ Scanner de código de barras
□ Modo offline
□ Integración con apps de salud Mejoras de negocio:
□ Partnerships con apps de fitness
□ Versión white-label para restaurantes
□ API para desarrolladores
□ Expansión a más idiomas

Referencias:

- 1. FlutterFlow Documentation. (2024). https://docs.flutterflow.io
- 2. OpenAl GPT-4 Vision. (2024). https://openai.com/research/gpt-4v
- 3. Firebase Documentation. (2024). https://firebase.google.com/docs
- 4. Cloud Functions for Firebase. (2024). Firebase Official Docs