TRANSFORMADA DE LAPLACE

Definiciones integrales

Transformada de Laplace	Transformada inversa de Laplace
$F(s) = \mathcal{L}\{f(t)\} \equiv \lim_{b \to \infty} \int_0^b e^{-st} f(t) dt$	$f(t) = \mathcal{L}^{-1}{F(s)} = \lim_{R \to \infty} \frac{1}{2\pi i} \int_{\sigma - iR}^{\sigma + iR} e^{st} F(s) ds$
s es en realidad una variable compleja pero se trata como constante durante la integración	σ es un número real elegido de tal forma que todos los polos de $F(s)$ queden a la izquierda de la recta vertical que pasa por σ

Tabla de transformadas

	f(t)	$\mathcal{L}\{f(t)\}$
1	1	$\frac{1}{s}$
2	t^n n es un entero positivo	$\frac{n!}{s^{n+1}}$
3	\sqrt{t}	$\sqrt{\frac{\pi}{4s^3}}$
4	$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
5	e^{at}	$\frac{1}{s-a}$
6	$t^n e^{at}$ n es un entero positivo	$\frac{n!}{\left(s-a\right)^{n+1}}$
7	sen <i>kt</i>	$\frac{k}{s^2 + k^2}$
8	cos kt	$\frac{s}{s^2 + k^2}$
9	senh <i>kt</i>	$\frac{k}{s^2 - k^2}$
10	cosh <i>kt</i>	$\frac{s}{s^2 - k^2}$
11	e^{at} sen kt	$\frac{k}{\left(s-a\right)^2+k^2}$
12	e ^{at} cos <i>kt</i>	$\frac{\left(s-a\right)}{\left(s-a\right)^2+k^2}$
13	t sen kt	$\frac{2ks}{\left(s^2+k^2\right)^2}$
14	t cos kt	$\frac{s^2 - k^2}{\left(s^2 + k^2\right)^2}$
15	sen kt – kt cos kt	$\frac{2k^3}{\left(s^2+k^2\right)^2}$
16	$\operatorname{sen} kt + kt \cos kt$	$\frac{2ks^2}{\left(s^2+k^2\right)^2}$

	f(t)	$\mathcal{L}\{f(t)\}$
17	senh kt – sen kt	$\frac{2k^3}{s^4 - k^4}$
18	cosh kt − cos kt	$\frac{2k^2s}{s^4-k^4}$
19	1 – cos <i>kt</i>	$\frac{2k^2s}{s^4 - k^4}$ $\frac{k^2}{s(s^2 + k^2)}$
20	kt – sen <i>kt</i>	$\frac{k^3}{s^2(s^2+k^2)}$
21	$\frac{a \operatorname{sen} bt - b \operatorname{sen} at}{ab\left(a^2 - b^2\right)}$	$\frac{1}{\left(s^2+a^2\right)\!\left(s^2+b^2\right)}$
22	$\frac{\cos bt - \cos at}{a^2 - b^2}$	$\frac{s}{\left(s^2+a^2\right)\!\left(s^2+b^2\right)}$
23	ln <i>t</i>	$-\frac{\gamma + \ln s}{s}$ γ es la constante de Euler $(\gamma = 0.5772156)$
24	$\ln^2 t$	$\frac{\pi}{6s} + \frac{\left(\gamma + \ln s\right)^2}{s}$
25	$-(\gamma + \ln t)$	$\frac{\ln s}{s}$
26	$\left(\gamma + \ln t\right)^2 - \frac{\pi^2}{6}$	$\frac{\ln^2 s}{s}$
27	$\frac{e^{-at}-e^{-bt}}{t}$	$\ln\left(\frac{s+b}{s+a}\right)$
28	$\frac{e^{-at}-e^{-bt}}{\sqrt{4\pi t^3}}$	$\sqrt{s+b} - \sqrt{s+a}$
29	$\frac{a}{\sqrt{4\pi t^3}}e^{-a^2/4t}$	$e^{-a\sqrt{s}}$
30	$\operatorname{erf}(t)$	$\frac{e^{s^2/4}}{s} \left[1 - \operatorname{erf}\left(\frac{1}{2}s\right) \right]$
31	$\frac{\operatorname{sen} t}{t}$	$\arctan \frac{1}{s}$

REVISIÓN 6 – 86256.94 PÁGINA 1 DE 2

Teoremas y propiedades diversas

1	Linearidad	$C_{\ell}(C_{\ell}(C_{\ell})) = C_{\ell}(C_{\ell}) = C_{\ell}(C_{\ell})$
	Elifeandad	$\mathcal{L}\left\{c_{1}f_{1}(t)+c_{2}f_{2}(t)+\cdots+c_{n}f_{n}(t)\right\}=c_{1}F_{1}(s)+c_{2}F_{2}(s)+\cdots+c_{n}F_{n}(t)$ donde c_{1} , c_{2} , c_{n} son constantes
2	Primer teorema de traslación	$\left \mathcal{L}\left\{ e^{at} f(t) \right\} = \mathcal{L}\left\{ f(t) \right\} \right _{s \to s-a} = F(s) _{s \to s-a} = F(s-a)$
		$\mathcal{L}^{-1}\{F(s-a)\} = e^{at}\mathcal{L}^{-1}\{F(s)\} = e^{at}f(t)$
	Segundo teorema de traslación donde la función escalón unitario es	$\mathcal{L}\left\{f(t-a)\mathcal{U}(t-a)\right\} = e^{-as}\mathcal{L}\left\{f(t)\right\} = e^{-as}F(s)$
	$\mathcal{U}(t-a) = \begin{cases} 0, & 0 \le t < a \\ 1, & t \ge a \end{cases}$	$\mathcal{L}^{-1}\left\{e^{-as}F(s)\right\} = \mathcal{L}^{-1}\left\{F(s)\big _{t\to t-a}\right\}\mathcal{U}(t-a) = f(t-a)\mathcal{U}(t-a)$
	Función multiplicada por t^n (derivada de transformada)	$\mathcal{L}\left\{t^n f(t)\right\} = (-1)^n \frac{d^n}{ds^n} F(s)$
	Función dividida entre <i>t</i> (integral de transformada)	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(s)ds$
6	Transformada de derivada	$\mathcal{L}\left\{\frac{df}{dt}\right\} = sF(s) - f(0)$
		$\mathcal{L}\left\{\frac{d^2f}{dt^2}\right\} = s^2F(s) - sf(0) - f'(0)$
		$\mathcal{L}\left\{\frac{d^n f}{dt^n}\right\} = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$
7	Transformada de integral	$\mathcal{L}\left\{\int_0^t f(t)dt\right\} = \frac{F(s)}{s}$
	Teorema de convolución	$\mathcal{L}\left\{f*g\right\} = \mathcal{L}\left\{f(t)\right\}\mathcal{L}\left\{g(t)\right\} = F(s)G(s)$
	donde la integral de convolución es $f * g \equiv \int_0^t f(\tau)g(t-\tau)d\tau$	$\mathcal{L}^{-1}\left\{F(s)G(s)\right\} = f * g$
	Transformada de una función periódica con periodo T tal que $f(t+T)=f(t)$	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$
	Transformada de una función periódica con periodo T tal que $g(t+T)=-g(t)$	$\mathcal{L}\left\{g(t)\right\} = \frac{1}{1 + e^{-sT}} \int_0^T e^{-st} g(t) dt$
		$\delta_a (t - t_0) = \begin{cases} \frac{1}{2a}, & t_0 - a \le t \le t_0 + a \\ 0, & t \le t_0 - a \text{ o bien } t \ge t_0 + a \end{cases}$
		$\mathcal{L}\left\{\delta_a(t-t_0)\right\} = e^{-st_0} \frac{e^{sa} - e^{-sa}}{2sa}$
11	Función delta de Dirac	$\mathcal{L}_{0}\left\{\delta(t-t_{0})\right\} = e^{-st_{0}}$
	$\delta(t-t_0) = \begin{cases} \infty, & t = t_0 \\ 0, & t \neq t_0 \end{cases}$	
	Derivada de la función delta (función doble impulso)	$\mathcal{L}\left\{\frac{d}{dt}\delta(t-t_0)\right\} = se^{-st_0}$
13	Teorema del valor inicial	$\lim_{t \to 0} f(t) = \lim_{s \to \infty} [sF(s)]$
14	Teorema del valor final	$\lim_{t \to \infty} f(t) = \lim_{s \to 0} \left[sF(s) \right]$

REVISIÓN 6 – 86256.94 PÁGINA 2 DE 2