

Ensembl Compara Perl API

Stephen Fitzgerald

EBI - Wellcome Trust Genome Campus, UK

http://www.ebi.ac.uk/~stephenf/Workshops/EBI_may_2013/

Sequence types and outputs

Nucleotide sequence analyses

Pairwise Alignments

BLASTZ-net

LASTZ-net

t-BLAT-net

Syntenic regions

Only for species with chromosomal mappings

Multiple alignments

Mercator-Pecan

Enredo-Pecan-Ortheus

Conservation

GERP Cons. Scores

GERP Constr. Elements

Pairwise Alignments in Compara 71

43 tBLAT alignments of distantly related species

Compara 71

65 BlastZ/LastZ alignments of closely related species

26 analyses of species with karyotypes

Multiple Alignments in Compara 71

Genomic alignments schema

Exercises – GenomeDB and DnaFrag

- A GenomeDB is used to link the Compara database to each of the Core species databases.
- Print the name, assembly version and genebuild version for all the GenomeDBs in the compara db
- A DnaFrag represents a top-level SeqRegion in the Compara database.
- Print all the DnaFrags for chimp

Exercises – MethodLinkSpeciesSet

- The MethodLinkSpeciesSet is a central component in the Compara database, it stores information connecting the various analyses (method_link_type) with a set of species (species_set).
- Print the total number of MethodLinkSpeciesSet entries stored in the database.
- Print a unique list of method_link_types and a count of their number in the database.
- ➤ Print a list of the species and their internal ids (dblDs) for the 12 eutherian mammal EPO alignments

Compara database is coupled to Ensembl core databases

Compara stores relationships between the genomes by loading references or 'handles' to external data.

Since there is minimal primary data inside Compara, to gain full access to the data these external links must be re-established

Example: compara_70 must be linked with the Ensembl core_70 databases

Proper REGISTRY configuration is needed

Alignments are stored in the genomic_align and genomic_align_block tables

A small example:

```
gorilla_gorilla/MT/935-953
macaca_mulatta/MT/1469-1488
pan_troglodytes/MT/934-953
pongo_pygmaeus/MT/940-958
homo_sapiens/MT/1516-1534
```

5MD11MD3M 17MD3M 5MD15M 5MD11MD3M 5MD11MD3M

5 genomic_align entries 1 genomic_align_block

Sequences from core

Exercises - GenomicAlignBlock

- A GenomicAlignBlock represents an alignment between two or more regions of genomic DNA. Within these blocks every region of genomic DNA is represented by a GenomicAlign object.
- ➤ Print the LASTZ-NET alignments for pig chromosome 15 with cow (using pig coordinates 105734307 and 105739335).
- Change the above example so that it prints the 13-way eutherian mammal (EPO) multiple alignments.

Adding low-coverage (2X) genomes

- Low coverage genomes cannot be fully assembled
- Resulting assembly is too scattered to be used with Enredo
- Run EPO on high-coverage genomes only
- Map 2X genomes using pairwise alignments

ACGG-TT-C...C-TAAT
ACGG-TTACTGCCG-TTAT
ACCGGTTACTGCCCGTTAT
ACGGGTAACTG--GGTTAT
ACGGTTTACTGCCGGTTTT

Exercises – GenomicAlignBlock (Constrained elements)

 A Constrained Elements represent regions in the multiple alignment which appear to be under functional constraint.

Print the constrained element alignments from the above pig locus (use the constrained elements generated from the EPO LOW COVERAGE mammals alignments)

Exercises - Synteny

- Synteny blocks are derived from Lastz-net alignments
 - > group syntenic alignments closer than 200Kb
 - ➤ link syntenic groups closer than 3Mb
 - > minimum length of the syntenic block: 100 kb
- Print the pig-cow synteny map using pig chromosome 15 as a reference

Acknowledgements

Compara Team

Javier

Kathryn

Stephen

Matthieu

Published online 30 November 2012

Ensembl 2013

Paul Flicek^{1,2,*}, Ikhlak Ahmed¹, M. Ridwan Amode², Daniel Barrell², Kathryn Beal¹, Simon Brent², Denise Carvalho-Silva¹, Peter Clapham², Guy Coates², Susan Fairley², Stephen Fitzgerald¹, Laurent Gil¹, Carlos García-Girón², Leo Gordon¹, Thibaut Hourlier², Sarah Hunt¹, Thomas Juettemann¹, Andreas K. Kähäri², Stephen Keenan¹, Monika Komorowska¹, Eugene Kulesha¹, Ian Longden¹, Thomas Maurel¹, William M. McLaren¹, Matthieu Muffato¹, Rishi Nag², Bert Overduin¹, Miguel Pignatelli¹, Bethan Pritchard², Emily Pritchard¹, Harpreet Singh Riat², Graham R. S. Ritchie¹, Magali Ruffier¹, Michael Schuster¹, Daniel Sheppard², Daniel Sobral¹, Kieron Taylor¹, Anja Thormann¹, Stephen Trevanion², Simon White², Steven P. Wilder¹, Bronwen L. Aken², Ewan Birney¹, Fiona Cunningham¹, Ian Dunham¹, Jennifer Harrow², Javier Herrero¹, Tim J. P. Hubbard², Nathan Johnson¹, Rhoda Kinsella¹, Anne Parker², Giulietta Spudich¹, Andy Yates¹, Amonida Zadissa² and Stephen M. J. Searle²

¹European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge CB10 1SD, UK and ²Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK

wellcometrust

Miguel

