Микроэкономика 1

Лекция 15 28-29.04.2025

Морфий

Группа БЭАД242

Равновесие и оптимальность (продолжение)

Напоминание:

Утверждение. Первая теорема благосостояния

Пусть предпочтения потребителей монотонны, и (\tilde{x}, \tilde{p}) — равновесие по Вальрасу. Тогда \tilde{x} — ПО.

1)

Пример. Предпочтения с "толстой" кривой безразличия

Пусть:

$$u^A = \begin{cases} x_1^A x_2^A, x_1^A x_2^A < 3\\ 3, 3 \leqslant x_1^A x_2^A \leqslant 6\\ x_1^A x_2^A - 3, x_1^A x_2^A > 6 \end{cases}$$

Тогда у A не монотонные предпочтения. Пусть у B строго монотонные строго выпуклые предпочтения. Пусть например получится вот такая картина:

- \hat{x} равновесие по Вальрасу, но не ПО, так как есть \overline{x} пример ПУ для \hat{x} .
- 2) Если выполнены условия первой теоремы благосостояния, то равновесным распределением может быть только ΠO .
- 3) Важны институциональные предпосылки:
- конкурентность (цены заданные)
- отсутствие экстерналий
- отсутствие асимметрии информации

Вторая теорема благосостояния.

Идея:

Пусть предпочтения потребителей «хорошие», то есть строго выпуклые и строго монотонные. Тогда точка пересечения бюджетной линии с множеством ПО будет равновесным распределением по Вальрасу при соответствующих ценах.

Наоборот, если \overline{x} — ΠO , то \overline{x} будет равновесным распределением при отношении цен, равному $MRS_{12}^A = MRS_{12}^B$.

Чтобы сдвинуть бюджетную линию в необходимую точку \overline{x} , если изначальная бюджетная линия не проходит через точку первоначального запаса, нужно произвести паушальную трансферту: на одного налог, на другого — субсидия в том же объёме.

Определение.

Набор $\left(\tilde{x}, \tilde{p}, \tilde{T}\right)$ называется равновесием по Вальрасу в экономике с трансфертами, если:

1) $\forall k$ набор \tilde{x}^{k} является решением UMP потребителя k :

$$\begin{cases} u^k(x^k) \to \max_{x^k \geqslant 0} \\ px^k \leqslant p\omega^k + T^k \end{cases}$$

при \overline{p} и \overline{T}^K .

2) Рынки уравновешены, то есть

$$\forall i \ \sum_k \tilde{x}_i^k = \sum_k \omega_i^k$$

3) Финансовый баланс:

$$\sum_k \tilde{T}^k = 0$$

Утверждение. Вторая теорема благосостояния

Пусть предпочтения потребителей строго монотонные, выпуклы и представимы дифференцируемыми функциями полезности.

Пусть \overline{x} — внутренний ПО. Тогда найдутся такие положительные цены \overline{p} , при которых \overline{x} реализуемо как равновесное в экономике с трансфертами, где трансфер потребителю $k: \overline{T}^k = \overline{p} \cdot \overline{x}^k - \overline{p} \cdot \omega^K$

Доказательство:

 \overline{x} — внутренний ПО, предпочтения строго монотонны, выпуклые, функция полезности дифференцируема. Тогла $MRS_{10}^A(\overline{x}^A) = MRS_{10}^B(\overline{x}^B)$ и $\overline{x}^A + \overline{x}^B = \overline{\omega}$.

Тогда $\operatorname{MRS}_{12}^A(\overline{x}^A) = \operatorname{MRS}_{12}^B(\overline{x}^B)$ и $\overline{x}_i^A + \overline{x}_i^B = \overline{\omega}_i$. Возьмём $\frac{\overline{p}_1}{\overline{p}_2} = \operatorname{MRS}_{12}^A(\overline{x}^A) = \operatorname{MRS}_{12}^B(\overline{x}^B)$, $\overline{T}^k = \overline{p} \cdot \overline{x}^k - \overline{p} \cdot \omega^k$.

1) Рациональность потребителя $k: \overline{x}^k > 0$, предпочтения строго монотонны, выпуклы, значит, $\frac{\overline{p}_1}{\overline{p}_2} = \text{MRS}_{12}^k(\overline{x}^k)$ — необходимое и достаточное условие внутреннего решения UMP.

Бюджетное ограничение выполняется как равенство: $\overline{p} \cdot \overline{x}^k = \overline{p} \cdot \omega^k + \overline{p} \cdot \overline{x}^k - \overline{p} \cdot \omega^k = \overline{p} \cdot \omega^k - \overline{T}^k$. Выполняется.

- 2) Рынки уравновешены в силу допустимости ПО: $\overline{x}^A + \overline{x}^B = \overline{\omega}$
- 3) Финансовый баланс:

$$\overline{T}^A + \overline{T}^B = \overline{p} \cdot (\overline{x}^A + \overline{x}^B - \omega^A - \omega^B) = 0$$

Идея решения подобных задач приведена в доказательстве.

Теория поведения фирмы.

Описание технологии.

ресурсы или факторы производства
$$\underbrace{x}$$
 выпуск или объём готовой продукции

x: либо скаляр — однофакторная фирма, либо вектор, где $x_i\geqslant 0$ — объём использования і-го фактора производства. $y\geqslant 0$ — уровень выпуска некоторой продукции $o\partial nonpodykmosoù$ фирмы.

Определение.

Производственная функция f(x) показывает, какой максимальный уровень выпуска можно произвести, используя x факторов производства, то есть $y \leq f(x)$.

Предпосылки односительно f(x):

- возрастает (для однофакторной) по x, не убывает по x (если факторов больше 1),
- непрерывна
- f(0) = 0

Графическая иллюстрация.

1) N=1 — однофакторная фирма. Например, $f(x)=2x, f(x)=2\sqrt{x}$. В этом случае можно нарисовать график производственной функции в осях Oxy:

2) N=2. В этом случае можно изобразить линии уровня производственной функции в осях Ox_1x_2 — изокванты.

Определение.

Изокванта — множество комбинаций факторов, которые позволяют производить один и тот же максимальный уровень выпуска.

Пример.

$$f(x)=\min\{x_1,\frac{x_2}{4}\}$$
 (один стул — 1 сиденье и 4 ножки).
 Но $f(x)=\min\{4x_1,x_2\}$ не подходит, т.к. $f(1,1)\neq\min\{4,1\}=1$ (одной ножки не хватит)

Можно сказать, что в запими f(x) нет произвола в терминах положительного монотонного преобразования, в отличие от функции полезности.

Пример.

- 1) $f(x) = \min\left\{\frac{x_1}{\alpha}, \frac{x_2}{\beta}\right\}$ для производства 1 единицы готовой продукции требуется α единиц 1-го и β единиц 2-го фактора.
- $f(x) = \alpha x_1 + \beta x_2$ факторы взаимозаменяемы ($\frac{1}{\alpha}$ единиц 1-го фактора можно заменить на $\frac{1}{\beta}$ единиц второго)
- $3) \ f(x) = Ax_1^{lpha}x_2^{eta}, lpha, eta > 0$ функция Кобба-Дугласа, A = f(1,1) (график на рис. выше)

Предельный и средний продукт фактора.

1) Предельный продукт фактора (МР):

$$\mathrm{MP}_i = \frac{\partial f(x)}{\partial x_i}$$

показывает, на сколько малых единиц увеличится (снизится) выпуск при увеличении (уменьшении) количества i-го фактора на малую единицу и незименном количестве других факторов.

Пример.

$$f(x) = Ax_1^{\alpha} x_2^{\beta}$$

$$MP_1(x) = Ax_2^{\beta} \cdot \alpha \cdot x_1^{\alpha - 1} > 0$$

$$\mathrm{MP}_1'(x) = Ax_2^\beta(\alpha-1)\alpha x_1^{\alpha-2} \qquad \begin{cases} >0 \text{ при } \alpha > 1 \\ =0 \text{ при } \alpha = 1 \\ <0 \text{ при } \alpha < 1 \end{cases}$$

Определение.

Средний продукт (AP — average product)

$$\mathrm{AP}_i = \frac{f(x)}{x_i}$$

АР и МР

Утверждение.

Пусть функции дифференцируемы. Тогда:

- если $AP(x) \downarrow$, то AP(x) > MP(X),
- если $AP(x) \uparrow$, то AP(x) < MP(x)
- если AP(x) = const, то AP(x) = MP(X)

Доказательство.

$$AP'(x) = \left(\frac{f(x)}{x}\right)' = \frac{f'(x) \cdot x - f(x)}{x^2} = \frac{f'(x) - \frac{f(x)}{x}}{x} = \frac{MP(x) - AP(x)}{x}$$

Отсюда следует требуемое.

Предельная норма технологического замещения.

Определение.

 $MRTS_{12}$ (marginal rate of technological substitution) — предельная норма технологического замещения 2-го фактора 1-ым.

$$MRTS_{12}(x) = \frac{MP_1(x)}{MP_2(x)}$$

это наклон изокванты в пространстве факторов (x_1, x_2) , взятый с обратным знаком:

$$-MRTS_{12}(x) = \frac{\mathrm{d}x_2}{\mathrm{d}x_1}$$

Показывает какое количество малых единиц 2-го фактора можно заменить малой единицей 1-го фактора так, чтобы остаться на той же изокванте.

Отдача от масштаба

Определение.

Производственная функция f(x) характеризуется:

• CRTS (постоянная отдача от масштаба), если

$$f(tx) = tf(x), \forall t > 0$$

• DRTS (убывающая отдача от масштаба), если

$$\forall t > 1 \ f(tx) < tf(x)$$

• IRTS (возрастающая отдача от масштаба), если

$$\forall t > 1 \quad f(tx) > t f(x)$$

Пример.

ΚД

$$f(x) = Ax_1^{\alpha} x_2^{\beta}$$

$$f(tx) = At^{\alpha+\beta}x_1^\alpha x_2^\beta = f(x) \cdot t^{\alpha+\beta}$$

Если $\alpha+\beta>1,$ IRTS, Если $\alpha+\beta=1,$ CRTS, ЕСли $\alpha+\beta<1,$ DRTS