Dynamic Programming

- Formalized by Richard Bellman
- "Programming" relates to planning/use of tables, rather than computer programming.
- Solve smaller problems first, record solutions in a table; use solutions of smaller problems to get solutions for bigger problems.
- Differs from Divide and Conquer in that it stores the solutions, and subproblems are "overlapping"
- Fibonacci Numbers, Binomial Coefficients, Warshall's algorithm for transitive closure, Floyd's all pairs shortest path, Knapsack, optimal binary search tree

Fibonacci Numbers

$$F_1=F_2=1.$$
 $F_n=F_{n-1}+F_{n-2},$ for $n\geq 3.$ Fib(n) If $n=1$ or $n=2$, then return 1 Else return $Fib(n-1)+Fib(n-2)$

End

Problem:

Too time consuming.

The sub problems Fib(n-1) and Fin(n-2) are 'overlapping'

Time complexity: Exponential

$$T(n) = T(n-1) + T(n-2) + constant$$

> $2T(n-2),$
 $\in \Omega(2^{n/2})$

- Calculates Fib(n-2) twice, Fib(n-3) thrice, Fib(n-4) five times, and so on.
- We next consider a method which memorizes the values already computed.

Dynamic Programming Algorithm

```
\begin{aligned} & \text{Fib(n):} \\ & F(1) \leftarrow 1 \\ & F(2) \leftarrow 1 \\ & \text{For } i = 3 \text{ to } n \\ & F(n) \leftarrow F(n-1) + F(n-2) \\ & \text{EndFor} \\ & \text{Return } F(n) \end{aligned}
```

- ullet $T(n) \in O(n)$.
- Uses Extra Memory.

Using constant memory

```
Fib(n):
If n = 1 or n = 2, then return 1
Else
    prevprev \leftarrow 1
    prev \leftarrow 1
    For i = 3 to n {
          f \leftarrow prev + prevprev
          prevprev \leftarrow prev
          prev \leftarrow f
    Return f
End
```

Binomial Coefficients

- $C(n,k) = {}^{n}C_{k} = {n \choose k}$: number of ways to choose k out of n objects
- C(n,k) = C(n-1,k-1) + C(n-1,k), for n > k > 0.
- C(n,0) = 1 = C(n,n).
- So C(n,k) can be computed using smaller problems.

Binomial Coefficients

	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Complexity for calculating C(n,k) (besides the initial

$$C(i, 0), C(i, i)$$
).

$$\Sigma_{i=1}^{k} \Sigma_{j=1}^{i-1} 1 + \Sigma_{i=k+1}^{n} \Sigma_{j=1}^{k} 1$$

$$= (k-1)(k)/2 + k(n-k) \in \Theta(nk).$$

Transitive Closure

- Intuitively, a relation is transtive if aRb and bRc implies aRc.
- Think of a directed graph. Then, transitive closure can be used to determine if there is a non-trivial directed path from node i to node j.

Warshall's Algorithm

- Given adjacency matrix A
- $R^k(i,j)$ denotes if there is a path from i to j which has intermediate vertices only among $\{1,2,\ldots,k\}$.
- Thus, $R^0(i,j) = A(i,j)$.
- $R^{k+1}(i,j)$ from $R^k(i,j)$?
- If $R^k(i,j) = 1$, then $R^{k+1}(i,j) = 1$
- If $R^k(i, k+1) = 1$ and $R^k(k+1, j) = 1$, then $R^{k+1}(i, j) = 1$
- Thus, we compute R^0, R^1, \ldots one by one.
- Can consider this as 3D matrix (involving the parameters i, j, k)
- Takes time $\Theta(n^3)$.

```
Warshall's Algorithm
  Input A[1..n, 1..n].
R[0, i, j] = A[i, j].
   For k = 1 to n do
         For i = 1 to n do
         For j = 1 to n do
               If R[k-1,i,j] = 1 or (R[k-1,i,k] = 1 and
                 R[k-1, k, j] = 1),
               then R[k,i,j] \leftarrow 1 Else R[k,i,j] \leftarrow 0 Endif
         Endfor
         Endfor
   Endfor
```

Complexity: $\Theta(n^3)$.

- p. 12/43

All pairs shortest path algorithm

- Suppose A is the adjacency matrix of a weighted graph, that is, A[i,j] gives the weight of the edge (i,j).
- \bullet Here the vertices are numbered 1 to n.
- Here we assume that A[i,j] is non-negative. One can handle negative weights also as long as there is no negative circuits (because going through negative circuits repeatedly can reduce the weight of the path by arbitrary amount).
- If edge does not exist then the weight is taken to be ∞ .
- We want to find shortest path between all pairs of vertices.

Floyd's algorithm

- Idea similar to Warshall's algorithm.
- **●** $D_k[i,j]$ denote the length of the shortest path from i to j where the intermediate vertices (except for the end vertices i and j) are all $\leq k$.
- $D_0[i,j] = A[i,j]$.
- Here we assume A[i, i] = 0 for all i.

 If initially not so, then update A[i, i] to be so.
- To find, $D_k[i,j]$, for $1 \le k \le n$:
- $D_k[i,j] = min(D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j])$.

- In the algorithm, next[i,j] denotes the vertex which appears just after i in the shortest (known) path from i to j.
- Note: $D_k[i,k] = D_{k-1}[i,k]$ and $D_k[k,j] = D_{k-1}[k,j]$. So, we can do the computation in place! (using D itself to compute D_0, D_1, D_2, \ldots).

Floyds algorithm

```
Input A[1..n, 1..n]
 For i = 1 to n do, For j = 1 to n do
     next[i, j] = j; D[i, j] = A[i, j]
 EndFor EndFor
 For i = 1 to n do D[i, i] = 0 EndFor
 For k=1 to n do
      For i = 1 to n
            For j = 1 to n
                   If D[i,j] > D[i,k] + D[k,j], then
                           D[i,j] = D[i,k] + D[k,j]
                           next[i, j] = next[i, k]
                            Endif
            EndFor
      EndFor
 EndFor
```

```
Path(i, j)

current = i;

Print(i);

While \ current \neq j \ do

current = next(current, j);

Print(current)

EndWhile
```

0/1 Knapsack problem

- Some objects O_1, O_2, \ldots, O_n
- Their weights W_1, W_2, \ldots, W_n (assumed to be integral values)
- Their values V_1, V_2, \ldots, V_n
- Capacity C
- To find a set $S \subseteq \{1, 2, \dots, n\}$ such that $\Sigma_{i \in S} W_i \leq C$ (capacity constraint) and
 - $\Sigma_{i \in S} V_i$ is maximsed
- Note that here we cannot use fractional items! We either take the whole or nothing of each item.

- Let F(C, j) denote the maximum value one can obtain using capacity C such that objects chosen are only from O_1, \ldots, O_j .
- Then, F(C,0) = 0.
- If $W_j \le C$, then $F(C, j) = max(F(C, j 1), F(C W_j, j 1) + V_j)$.
- If $W_i > C$, then F(C, j) = F(C, j 1).

```
For s=0 to C do F(s,0)=0 EndFor. For s=1 to C do  \text{For } j=1 \text{ to } n \text{ do }   \text{If } W_j \leq s \text{, then }   F(s,j)=max(F(s,j-1),F(s-W_j,j-1)+V_j);   \text{Else } F(s,j)=F(s,j-1) \text{ Endif }   \text{EndFor }
```

Complexity: O(C * n)

Want to see which objects are chosen

```
For s = 0 to C do F(s, 0) = 0; Used(s, 0) = false EndFor
   For s=1 to C do
        For j = 1 to n do
              If W_i \leq s, then
                     F(s, j) =
                       max(F(s, j-1), F(s-W_j, j-1) + V_j);
                     If F(s, j) = F(s, j - 1), then
                       Used(s,j) = false
                     Else Used(s, j) = true Endif
              Else F(s, j) = F(s, j - 1); Used(s, j) = false
              Endif
        EndFor
   EndFor
```

```
\begin{array}{c} Left = C \\ \text{For } j = n \text{ down to } 1 \text{ do } \{ \\ \text{ If } Used(Left,j) = true, \text{ then} \\ \text{ Print("Pick item" } j); \ Left = Left - W_j; \\ \text{EndIf} \\ \text{EndFor} \end{array}
```

Coin changing using DP

- Given some denominations $d[1] > d[2] > \ldots > d[n] = 1$.
- To find the minimal number of coins needed to make change for certain amount S.
- We will give a dynamic programming algorithm which is optimal for all denominations.

Intuition

- Let C[i,j] denote the number of coins needed to obtain value j, when one is only allowed to use coins $d[i], d[i+1], \ldots, d[n]$. Then, C[n,j] = j, for $0 \le j \le S$.
- Computing: C[i-1,j]:
 - If we use at least one coin of denomination d[i-1]: 1+C[i-1,j-d[i-1]]
 - If we do not use any coins of denomination d[i-1]: C[i,j]
- Taking minimum of above, we get: C[i-1,j] = min(1+C[i-1,j-d[i-1]],C[i,j])

```
CoinChange
For j = 0 to S do
   C[n,j] = j
Endfor
For i = n down to 2 do
   For j = 0 to S do
       If j \geq d[i-1], then
       C[i-1,j] = min(1+C[i-1,j-d[i-1]],C[i,j])
        Else C[i - 1, j] = C[i, j]
   EndFor
EndFor
```

Complexity: $\Theta(S * n)$

– p. 25/43

To give coins used:

EndFor

```
For j = 0 to S do C[n, j] \leftarrow j; used[n, j] \leftarrow true EndFor
For i = n down to 2 do
    For j = 0 to S do
         If j \ge d[i-1] and 1 + C[i-1, j-d[i-1]] < C[i, j],
            then
                C[i-1,j] \leftarrow 1 + C[i-1,j-d[i-1]];
                 used[i-1,j] \leftarrow true
         Else C[i-1,j] \leftarrow C[i,j];
              used[i-1,j] \leftarrow false
    EndFor
```

```
For i=1 to n do U[i] \leftarrow 0 EndFor i \leftarrow 1 val \leftarrow S While val \geq 0 do \text{If } used(i, val) = true \text{, then } U[i] \leftarrow U[i] + 1 \text{, } val \leftarrow val - d[i] Else i \leftarrow i+1 EndWhile
```

Now U[i] gives the number of coins with denomination d[i] used.

Matrix Multiplication

- Suppose we have matrices M_j with r_j rows and c_j columns, for $1 \le j \le k$, where $c_j = r_{j+1}$, for $1 \le j < k$
- We want to compute $M_1 \times M_2 \times \ldots \times M_k$.
- Note that matrix multiplication is associative (though not commutative). So whether we do the multiplications (for k=3) as
- $(M_1 \times M_2) \times M_3$
- $M_1 \times (M_2 \times M_3)$ does not matter for final answer.
- Note that multiplying matrix of size $r \times c$ with matrix of size $c \times c'$ takes time $r \times c \times c'$ (for standard method).

- Different orders of multiplication can give different time complexity for matrix chain multiplication!
- If $r_1 = 1$, $c_1 = r_2 = n$, $c_2 = r_3 = 1$ and $c_3 = n$, then
- Doing it first way $((M_1 \times M_2) \times M_3)$ will give complexity $r_1c_1c_2 + r_1c_2c_3 = 2n$
- Doing it second way $(M_1 \times (M_2 \times M_3))$ will give complexity $r_2c_2c_3 + r_1c_1c_3 = 2n^2$

- Given n martices M_1, M_2, \ldots, M_n , we want to find $M_1 \times M_2 \times \ldots \times M_n$ but minimize the number of multiplications (using standard method of multipliation).
- Let F(i,j) denote the minimum number of operations needed to compute $M_i \times M_{i+1} \times \ldots \times M_j$.
- Then, F(i,j), for i < j, is minimal over k (for $i \le k < j$) of $F(i,k) + F(k+1,j) + cost(M_i \times ... \times M_k, M_{k+1} \times ... \times M_j)$
- Here $cost(M_i \times ... \times M_k, M_{k+1} \times ... \times M_i) = r_i c_k c_i$

- To compute F(i,j) for $1 \le i \le j \le n$,
- F(i,i) = 0, for $1 \le i \le n$.
- F(i,j), for $1 \le i < j \le n$, by using formula given earlier.
- Need appropriate order of computing F(i, j) so that we do not duplicate work: what is needed is available at the time of use.
- Do it in increasing order of j-i.

For
$$i = 1$$
 to n do $F(i, i) = 0$

EndFor

For
$$r = 1$$
 to $n - 1$ do

3. For i = 1 to n - r do

4.
$$j = i + r$$
.

5.
$$F(i,j) = \min_{k=i}^{j-1} [F(i,k) + F(k+1,j) + r_i c_k c_j]$$
.

EndFor

EndFor

Complexity

- Complexity of finding the optimal order: $O(n^3)$ ($O(n^2)$ values to be computed, and computation at step 5 takes time O(n)).
- Note: This is complexity of finding the optimal solution, not the complexity of matrix multiplication!
- To determine the exact order of multiplication needed, one can do it by keeping track of the k which was used for F(i, j). That will give us the order of multiplication.

Dyn Prog Algorithms in general

- Define sub problems
- use optimal solutions for "sub problems" to give optimal solutions for the larger problem.
- using optimal solutions to smaller problems, one should be able to determine an optimal solution for a larger problem.
- Note: We do not just combine solutions for arbitrary subproblems.
 - For example, if we use coin denominations 1, 5 and 50, and find optimal solution for S=6 and S=4, then respectively, we will get $U_6[1]=1$, $U_6[5]=1$ and $U_4[1]=4$ respectively. However, just combining them for U_{10} will give $U_{10}[1]=5$ and $U_{10}[5]=1$, which is not the optimal solution.

- So, we "use" optimal solutions for some specific subprobelms to obtain an optimal solution for the larger problem.
- The subproblems are often generated by "reducing" some parts of the original problem
- ordering among subproblems, so that result of smaller subproblems are available when solving larger subproblem.
- Optimal substructure Property:
- We always need that for the optimal solution, the "reduced part" is optimal for the smaller problem.

- Example: If S is optimal solution to coin changing problem for value S, then if remove one coin, with denomination d, from S, then it is optimal solution for S-d.
- Example: Given a weighted graph consider the problem of finding the longest simple path. Then, this does not satisfy the optimal substructure property. If path $v_0, v_1, v_2, \ldots, v_k$ is longest simple path from v_0 to v_k , then it does not mean that $v_0, v_1, \ldots, v_{k-1}$ is the longest simple path from v_0 to v_{k-1} !

- When do we use dynamic programming?
- When, the sub-problems are overlapping, dynamic programming allows one to avoid duplication of work as compared to recursion.

Longest Common Subsequence

- Motivated by problem of whether two proteins are similar.
- A subsequence of a sequence $a[1]a[2] \dots a[n]$ is a sequence of the form $a[i_1]a[i_2] \dots a[i_k]$ such that $1 \le i_1 < i_2 < \dots < i_k \le n$.
- Example: ACAE, AB, BA, AE, E are subsequences of ABCADE.
- ullet DA is not a subsequence of ABCADE.
- Longest common subsequence of two sequences ABC and BDC is BC.

- Input: x[1]x[2]...x[n] and y[1]y[2]...y[m]
- Find the longest common subsequence of the above two sequences (strings).
- If x[n] = y[m], then the longest common subsequence is: (the longest common subsequence of $x[1] \dots x[n-1]$ and $y[1] \dots y[m-1]$) followed by x[n]
- If $x[n] \neq y[m]$, then the longest common subsequence is: (the longest common subsequence of $x[1] \dots x[n-1]$ and $y[1] \dots y[m]$) or (the longest common subsequence of $x[1] \dots x[n]$ and $y[1] \dots y[m-1]$)

- F(i,j) length of the longest common subsequence of $x[1]x[2]\dots x[i]$ and $y[1]y[2]\dots y[j]$, where $0 \le i \le n$ and $0 \le j \le m$
- Base Case: F[i,j] = 0, for i = 0 or j = 0
- Solve the recurrence equation given earlier to obtain other F[i, j].

```
LCS(x[1] \dots x[n], y[1] \dots y[m])
   For i = 0 to n do F(i, 0) = 0 EndFor
   For j = 0 to m do F(0, j) = 0 EndFor
   For i = 1 to n
        For j = 1 to m
               If x[i] = y[j], then F(i, j) = 1 + F(i - 1, j - 1)
                 Endif
               If x[i] \neq y[j], then
                 F(i, j) = max(F(i - 1, j), F(i, j - 1)) Endif
         EndFor
   EndFor
End
Complexity: \Theta(mn)
```

```
\begin{aligned} &\mathsf{LCSP}(x[1]\dots x[n],n,m,F)\\ &\mathsf{lf}\ F(n,m)=0, \ \mathsf{then}\ \mathsf{return}.\\ &\mathsf{Elself}\ F(n,m)=F(n,m-1), \ \mathsf{then}\ \mathsf{return}\\ &  \  \, LCSP(x,n,m-1,F)\\ &\mathsf{Elself}\ F(n,m)=F(n-1,m), \ \mathsf{then}\ \mathsf{return}\\ &  \  \, LCSP(x,n-1,m,F)\\ &\mathsf{Else}\ \mathsf{return}\ LCSP(x,n-1,m,F)\\ &\mathsf{Else}\ \mathsf{return}\ LCSP(x,n-1,m-1,F)\cdot x(n)\\ \mathsf{End} \end{aligned}
```

The main idea of dynamic programming is:

- Solve several smaller problems
- Store these solutions (in an array) and use them to solve large problems
- Have a recurrence; solve in particular order
- Subproblems have overlaps (i.e., some of the subsubproblems they solve are same)
- In Divide an conquer usually do not have overlaps, and do not store the solutions.