Sentiment Analysis on IMDB movie review using SVM

Faculty-Prof. Dr. P. Aparna By-Mayank Rajpurohit (202SP015) Sameer Koleshwar (202SP010)

Introduction

What is Sentiment Analysis?

- IMDB's movie review dataset
 - o 50,000 movie reviews.
 - 25,000 Positive reviews
 - 25,000 Negative reviews.

Support Vector Classifier

Pre-processing of dataset

- Tokenization
- Removal of stopwords
- Stemming
- Transformation:
 - Bag of Words
 - Term Frequency Inverse Document Frequency (TF IDF)
 - TF = Frequency of word in sentence / Total no. of words in sentence
 - IDF = log(Total no. of sentences / No. of sentences contains that word)
 - o **n-gram**

Support Vector Classifier (SVC)

• SVMs classify an input vector $x \in R_d$ using:

$$y_i = argmax (w^T x)$$

Optimization problem:

Min
$$0.5 * ||w||^2$$

Subject to $(x_i \cdot w + b) \cdot y_i \ge 1$ for all i

Crammer - Singer formulation for optimization problem

minimize
$$(0.5 * \Sigma ||w_m||^2) + C (\Sigma [1 + max (w_m^T.x_i - w_{yi}^T.x_i)])$$

Algorithm for solving Crammer-Singer equation

- 1. INPUT: X as train data, Y as train labels
- 2. X = hstack([X, ones((len(X), 1))])
- 3. N, d = X.shape
- 4. k = no. of classes
- 5. Initialize W matrix of size (k, d), penalty constant C = 1.0 , i=0
- 6. while i < iterations do
 - a. grad = gradient(W, X, Y, C)
 - b. $W = W \alpha * grad$ (Gradient Descent Approach)
 - c. i = i + 1
- 7. end

Results

Models	Precision	Recall	F1-Score	Accuracy
1-Gram Sklearn	0.772	0.778	0.775	0.773
2-Gram Sklearn	0.788	0.779	0.784	0.786
3-Gram Sklearn	0.792	0.773	0.783	0.785
1-Gram Scratch	0.681	0.948	0.792	0.753
2-Gram Scratch	0.646	0.971	0.776	0.720
3-Gram Scratch	0.683	0.945	0.795	0.756

Recall comparison

Confusion Matrix for 2-gram TF-IDF Model build from scratch

References

- [1] Aditi Sharan Sheeba Naz and Nidhi Malik. "sentiment classification on twitter data using support vector machine". In: IEEE/WIC/ACM International Conference on Web Intelligence (WI) (2018).
- [2] Casi Setianingsih Rimba Nuzulul Chory Muhammad Nasrun. "Sentiment analysis on user satisfaction level of monile data services using support vector machine (SVM) algorithm". In: IEEE International Conference on Internet of Things and Intelligence System (2018).
- [3] Andia Enggar Mayasari and Anggit Dwi Hartanto. "User Satisfaction Levels Sentiment Analysis Toward Goods Delivery Service On Twitter Using Support Vector Machine Algorithm (SVM)". In: International Conference on Information Technology, Information system and Electrical Engineering (2019).
- [4] Yoram Singer Koby Crammer. "On the Algorithmic Implementation of Multiclass Kernelbased Vector Machines". In: Journal of Machine Learning Research (2001).

Thank you