

Numerical Representation and Codes

Exercises Digital Design

1	NUM -	Number	systems
---	-------	--------	---------

1.1	Determine up	p to what value	you can count with	numbers coded on

a) 4 bits

c) 16 bits

b) 8 bits

d) 32 bits

c) 10 bits

num/number-systems-01

1.2 Determine up to which value can be counted, with hexadecimal numbers encoded on:

a) 4 Digits

b) 8 Digits

num/number-systems-02

2 | NUM - Converting from one numbering system to another

2.1 Perform the conversion of the following pure binary numbers in decimal format:

a)
$$110_2 = ?_{10}$$

c)
$$01001010_2 = ?_{10}$$

e)
$$111111111_2 = ?_{10}$$

b)
$$1111_2 = ?_{10}$$

d)
$$1011_2 = ?_{10}$$

num/conversion-01

2.2 Perform the conversion of the following decimal numbers in binary format:

a) a)
$$125_{10} = ?_2$$

e)
$$9_{10} = ?_2$$

b)
$$16_{10} = ?_2$$

d)
$$256_{10} = ?_2$$

num/conversion-02

2.3 Perform the conversion of the following hexadecimal numbers in binary format:

a)
$$E_{16} = ?_2$$

c)
$$AB3D_{16} = ?_2$$

e)
$$2346_{16} = ?_2$$

b)
$$15C_{16} = ?_2$$

d)
$$9F7_{16} = ?_2$$

num/conversion-03

2.4 Perform the conversion of the following binary numbers in hexadecimal format:

a)
$$1010_2 = ?_{16}$$

c)
$$11101011_2 = ?_{16}$$

e)
$$1100_2 = ?_{16}$$

b)
$$110_2 = ?_{16}$$

d)
$$0101111_2 = ?_{16}$$

num/conversion-04

2.5 Perform the conversion of the following hexadecimal numbers in decimal format:

a)
$$D_{16} = ?_{10}$$

e)
$$A6B9_{16} = ?_{10}$$

b)
$$15C_{16} = ?_{10}$$

d)
$$FE_{16} = ?_{10}$$

num/conversion-05

2.6 Perform the conversion of the following decimal numbers in hexadecimal format:

1.
$$128_{10} = ?_{16}$$

3.
$$65113_{10} = ?_{16}$$

5.
$$9_{10} = ?_{16}$$

2.
$$16_{10} = ?_{16}$$

4.
$$209_{10} = ?_{16}$$

num/conversion-06

3 | NUM - Operation on logical numbers

3.1 Perform the following additions in the binary system:

1.
$$0000\ 1100_2 + 0001\ 1110_2$$

2.
$$0000\ 1111_2 + 0101\ 1010_2$$

3.
$$0011\ 0100_2 + 0111\ 1111_2$$

4.
$$0111\ 1111_2 + 0000\ 0001_2$$

num/operation-01

3.2 Perform the following subtractions in the binary system:

$$1. \ \ 0100 \ \ 0011_2 - 0000 \ \ 1001_2$$

2.
$$1010\ 0110_2 - 0110\ 1100_2$$

$$3.\ \ 0011\ \ 0100_2 - 0010\ \ 1000_2$$

4.
$$1000\ 0000_2 - 0000\ 0001_2$$

num/operations-02

3.3 Perform the following multiplications in binary:

1.
$$1010_2 * 0110_2$$

$$2. \ 0110_{2} * 1010_{2}$$

$$3.\ \ 1000_2*0110_2$$

4.
$$0111_2 * 1110_2$$

 $num/operation\hbox{-}03$

3.4 Perform the following additions in the hexadecimal system:

1.
$$1234_{16} + CC_{16}$$

2.
$$8888_{16} + FC_{16}$$

3.
$$1234_{16} + FF_{16}$$

4.
$$89AB_{16} + AB89_{16}$$

num/operation-04

3.5 Determine the binary value of:

1.
$$(11_2)^2$$

$$3. (1111_2)^2$$

2.
$$(111_2)^2$$

By analogy, estimate the binary value of $(111111_2)^2$ and use it to check the formula: $(2^n - 1)^2 = 2^{2n} - 2 * 2^n + 1$.

num/operation-05

4 | NUM - Codes

- 4.1 Perform the following additions on BCD encoded numbers:
 - 1. $0001\ 0010\ 0011_{\text{BCD}} + 0011\ 0010\ 0001_{\text{BCD}}$ 3. $1000\ 0101_{\text{BCD}} + 0000\ 0111_{\text{BCD}}$

 $2. \ 0011 \ 0110 \ 1001_{\rm BCD} + 0010 \ 0110 \ 0100_{\rm BCD} \qquad 4. \ 1001 \ 1001_{\rm BCD} + 0000 \ 0001_{\rm BCD}$

4.2 Perform the conversion of the Gray code $1001_{\rm Gray}$ using the recursion formula in the script.

num/codes-02

num/codes-01

NUM - Representation of signed numbers

5.1 Represent the following decimal and pure binary numbers encoded to 8 bits using the sign-size, one's complement, and two's complement methods:

$$\begin{array}{ccc} 1. & +18_{10} \\ 2. & -3_{10} \end{array}$$

4. 0001 1010₂ 5. 1010₂

3. 0_{10}

6. -100_{10}

num/representation-01

 $1.\ 0000\ 0001_2$

3. 1111 0000₂

5. 44_{16}

2. 0111 1000₂

4. 01_{16}

6. 81₁₆

num/representation-02

5.2 Given the numbers 0001_2 and 1001_2 expressed as two's complement encoded on 4 bits. Represent the same numbers encoded as two's complement on 8 bits.

num/representation-03