Laborator 2 - 2017

- A1. Joc de zaruri (sec. XVII): Un pasionat jucător de zaruri, cavalerul de Méré, susținea în discuțiile sale cu Pascal că jocurile de noroc uneori conduc la rezultate, care contrazic matematica. Astfel, afirma el, că a arunca un zar de 4 ori pentru a obține cel puțin o dată fața șase, este același lucru cu a arunca de 24 ori câte două zaruri pentru a obține cel puțin o dublă de șase. Cu toate acestea, cavalerul de Méré a observat că jucând în modul al doilea (cu două zaruri aruncate de 24 ori), pierdea față de adversarul său, dacă acesta alegea primul mod (aruncarea unui singur zar de 4 ori). Pascal și Fermat au arătat că probabilitatea p_1 de câștig la jocul cu un singur zar aruncat de 4 ori este mai mare decât probabilitatea p_2 de la jocul cu două zaruri aruncate de 24 de ori. Deși diferența dintre cele două probabilități este mică, totuși, la un număr mare de partide, jucătorul cu probabilitatea de câștig p_1 câștigă în fața jucătorului cu probabilitatea de câștig p_2 . Practica jocului confirmă astfel justețea raționamentului matematic, contrar credinței lui de Méré.
- (1) Simulați cu ajutorul unui program aceste jocuri: aruncarea de patru ori a unui zar, respectiv aruncarea unui zar de 24 de ori, apoi estimați pe baza simulărilor cele două probabilități p_1 și p_2 . Are loc $p_1 > p_2$?
- (2) Dacă în loc de 24 de aruncări se fac 25 de aruncări, rămâne valabil că $p_1 > p_2$?
- **A2.** Joc de pariuri: Se arunc simultan trei zaruri. Câştigă jocul acea persoană, care prevede suma celor trei numere, care au apărut.
- (1) Cu ce număr ar trebui pariat pentru a avea şanse cât mai mari de câștig?
- (2) Care număr (sau numere) au probabilitatea cea mai mică de a apărea?
- (3) Care sunt aceste probabilități?

Să se simuleze acest joc de m (100, 1000...) ori, să se realizeze un tabel cu suma numerelor care au apărut. Să se compare rezultatele obținute din simulări cu răspunsurile teoretice de la (3).

Observație: Dacă folosiți Octave și simulați un experiment de un număr foarte mare de ori, obținerea rezultatului durează foarte mult; folosind Matlab viteza de lucru este mult mai mare; dacă nu există Statistics Toolbox în Matlab, în loc de *unidrnd* folosiți *randi*.

Completare teorie:

Fie A un eveniment asociat unei experiențe, repetăm experiența de n ori (în aceleași condiții date) și notăm cu k numărul de realizări ale evenimentului A; frecvența relativă a evenimentului A este numărul

$$f_n(A) = \frac{k}{n}$$

k este frecvența absolută a evenimentului A.

Numărul

$$P(A) = \frac{\text{numărul de cazuri favorabile}}{\text{numărul total de cazuri posibile}}$$

se numeste probabilitatea evenimentului A. Atenție: $P(A) \in [0,1]$.

Prin repetarea de multe ori a unui experiment, în condiții practic identice, frecvența relativă $f_n(A)$ de apariție a evenimentului A este aproximativ egală cu P(A)

$$f_n(A) \approx P(A)$$
, dacă $n \to \infty$.