Convex Optimization

Hu SiXing, Hakki Can Karaimer, Pan An, Philipp Keck

National University of Singapore

January 29, 2016

Linear Regression

Linear Regression Example

There should be a picture here.

Ordinary Least Squares

$$\begin{array}{ll} \text{Input: points } (x_i, y_i) & (\vec{x_i}, y_i) \\ \text{Regression line: } y = mx + b & y = \vec{w} \cdot \vec{x} + b \\ \text{Objective:} & \min_{m,b} \sum_i (y_i - mx_i - b)^2 & \min_{\vec{w}} \sum_i (y_i - \vec{w} \cdot \vec{x_i} - b)^2 \end{array}$$

- Easily Solved: $\vec{w}^*(X^TX) 1X^T\vec{y}$
- But what if $\dim \vec{x}$ is large?
- What about other similar regressions?

Convex Optimization Problems

- OrdinaryLinearRegression: $\min_{\vec{w}} \sum_{i} (y_i \vec{w} \cdot \vec{x_i})^2$
- General: $\min_{x} f(x)$ where f(x) is convex
- $\bullet \ \, \mathrm{Set} \, \, C \, \, \mathrm{is} \, \, \mathrm{convex} \Longleftrightarrow \exists x,y \in C, 0 \leqslant t \leqslant 1 : tx + (1-t)y \in C$
- Function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is convex and $\exists x, y \in \text{dom } f, 0 \leqslant t \leqslant 1$:

$$f(tx + (1-t)y) \leqslant tf(x) + (1-t)f(y)$$

• Unconstrained.

Outliers

Supposed to be a picture here.

Outlier Penalty

pic

Capped Penalty

Linear Regression 0000000

pic

Huber Penalty Function pic

Linear Regression ○○○○○○●

• Minimize f(x);

Linear Regression

- Where $f: \mathbb{R}^n \to \mathbb{R}$ is convex and twice differentiable;
- No additional constraints;
- Assume that unique minimum x^* exists.

- Objective: minimize f(x)
- Necessary and sufficient condition: $\nabla f(x^*) = 0$
 - Solve analytically
 - Iterative algorithms

Iterative Algorithm:

$$x^{(0)}, x^{(1)}, ... \in dom f$$

$$k \to \infty$$
, $f(x^{(k)}) < f(x^*)$

Descent Method:

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)},$$
s.t. $f(x^{(k+1)}) < f(x^{(k)})$

Descent Method:

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}, \mathbf{s.t.} f(x^{(k+1)}) < f(x^{(k)})$$
 (1)

Algorithm:

Linear Regression

Given $x^{(0)} \in \text{dom } f$; repeat

Determine a descent direction Δx ;

Choose a step size t > 0;

Update
$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)};$$

until Δx is within an acceptable range and is stable;

Noticing that f is convex:

$$\nabla f(x^{(k)})^{\mathsf{T}} \Delta x^{(k)} < 0 \tag{2}$$

_ _ _ _ _ _

Descent Method:

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}, \text{s.t.} f(x^{(k+1)}) < f(x^{(k)})$$
 (1)

Theorem

Linear Regression

For a continuously differentiable function f:

f is convex
$$\leq f(x) \leq f(y) + f'(y)(x - y)$$

Proof

$$\begin{split} f(x^{(k+1)}) \geqslant f(x^{(k)}) + f'(x^{(k)}) \Delta x^{(k)} \\ \nabla f(x^{(k)}) \leqslant f(x^{(\ell)}k + 1)) - f(x^{(k)}) < 0 \end{split}$$

Noticing that f is convex:

$$\nabla f(x^{(k)})^{\mathsf{T}} \Delta x^{(k)} < 0 \tag{2}$$

General Descent Method

Descent Method:

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}, \mathbf{s.t.} f(x^{(k+1)}) < f(x^{(k)})$$
 (1)

Linear Regression

Given $x^{(0)} \in \text{dom } f$: repeat

> Determine a descent direction $\Delta x \Rightarrow Gradient/SteepestDescent;$ Choose a step size $t > 0 \Rightarrow$ LineSearchAlgo;

Update $x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$:

until Δx is within an acceptable range and is stable;

Noticing that f is convex:

$$\nabla f(x^{(k)})^{\mathsf{T}} \Delta x^{(k)} < 0 \tag{2}$$

Line Search

Linear Regression

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{t}^{(k)} \Delta \mathbf{x}^{(k)}, \mathbf{f}(\mathbf{x}^{(k+1)}) \leftarrow \mathbf{f}(\mathbf{x}^{(k)})$$

Should be pics
Exact Line Search Method:

$$t = \underset{s \leq 0}{\operatorname{argmin}} \{ f(x + s\Delta x) \}$$

• Armijo Condition:

$$f(x^{(k)} + t\Delta x^{(k)}) \le f(x^{(k)}) + c_1 \alpha \nabla f(x^{(k)})^T \Delta x^{(k)}, c_1 > 0$$

• Wolfe Conditions (Including Armijo Condition):

$$\nabla f(x^{(k)} + t\Delta x^{(k)})^{\mathsf{T}} p^{(k)} \geqslant c_2 \nabla f(x^{(k)})^{\mathsf{T}} p^{(k)}, 0 < c_1 < c_2 < 1$$

Theorem:

Gradient descent will find local minimum if step size α satisfies Wolfe conditions.

Exact Line Search Method:

$$t = \underset{s \leqslant 0}{\operatorname{argmin}} \{ f(x + s\Delta x) \}$$

• Armijo Condition:

$$f(x^{(k)} + t\Delta x^{(k)}) \le f(x^{(k)}) + c_1 \alpha \nabla f(x^{(k)})^T \Delta x^{(k)}, c_1 > 0$$

Algorithm:

```
Given a descent direction \Delta x for f at x \in \text{dom } f, \alpha \in (0, 0.5), \beta \in (0, 1), t = 1; repeat  | \quad t = \beta t; until f(x^{(k)} + t\Delta x^{(k)}) \leqslant f(x^{(k)}) + c_1 \alpha \nabla f(x^{(k)})^T \Delta x^{(k)};
```

Exact Line Search Method:

$$t = \underset{s \leqslant 0}{argmin} \{ f(x + s\Delta x) \}$$

General Descent Method

- Gradient Descent Method
- Steepest Descent Method

 Δx satisfies:

Linear Regression

$$\nabla f(x^{(k)})^\mathsf{T} \Delta x < 0$$

Gradient Descent Method

Linear Regression

```
Given x^{(0)} \in \text{dom } f;
repeat
    \Delta x = -\nabla f(x^{(k)}):
     Choose a step size t > 0, [LineSearch];
     Update x^{(k+1)} = x^{(k)} + t\Delta x:
until \Delta x is within an acceptable range and is stable;
```

 $\Delta x = \Delta x_{sd}$ Taylor Series:

Linear Regression

$$f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x} \nabla f(\mathbf{x}) \Delta \mathbf{x}$$

$$f(\mathbf{x} + \mathbf{v}) \approx \hat{f}(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v}$$

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}, \text{s.t.} f(x^{(k+1)}) < f(x^{(k)})$$

Where **v** is a descent direction if $\nabla f(\mathbf{x})^{\mathsf{T}} < 0$

$$f(\mathbf{x} + \mathbf{v}) \approx \hat{f}(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v}$$

Normalized Steepest Descent Direction:

$$\Delta \mathbf{x}_{nsd} = \operatorname{argmin}\{\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} | \|\mathbf{v}\| = 1\}$$
$$= \operatorname{argmin}\{\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} | \|\mathbf{v}\| \leq 1\}$$
(3)

Steepest Descent Method

Dual Norm, denoted $\|\cdot\|_*$, is defined as:

$$||z||_* = \sup\{z^{\mathsf{T}}x | ||x|| \le 1\}$$

Unnormalized Steepest Descent Direction:

$$\Delta \mathbf{x} = \left\| \nabla f(\mathbf{x}) \right\|_* \cdot \Delta \mathbf{x}_{nsd}$$

$$\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} = \nabla f(\mathbf{x})^{\mathsf{T}} \Delta \mathbf{x}_{sd}$$

$$= \|f(\mathbf{x})\|_{*} \nabla f(\mathbf{x})^{\mathsf{T}} \Delta \mathbf{x}_{nsd}$$

$$= - \|\nabla f(\mathbf{x})\|_{*}^{2}$$

Proof

$$\begin{aligned} \Delta \mathbf{x}_{\text{nsd}} &= \text{argmin}\{\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} | \| \mathbf{v} \| = 1\} \\ &= - \text{argmax}\{\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} | \| \mathbf{v} \| \leqslant 1\} \\ &\| \nabla f(\mathbf{x}) \|_{*}^{2} &= \sup\{\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} | \| \mathbf{v} \| \leqslant 1\} \\ &\Rightarrow \| \nabla f(\mathbf{x}) \|_{*}^{2} &= -\nabla f(\mathbf{x})^{\mathsf{T}} \Delta \mathbf{x}_{\text{nsd}} \end{aligned}$$

Steepest Descent Method

Linear Regression

$$\Delta \mathbf{x}_{nsd} = \operatorname{argmin}\{\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} | \|\mathbf{v}\| \leq 1\}$$

$$\Delta \mathbf{x}_{sd} = \|\nabla f(\mathbf{x})\|_* \Delta \mathbf{x}_{nsd}$$

```
Given x^{(0)} \in \text{dom } f:
repeat
```

Compute steepest descent direction Δx_{sd} ; Choose a step size t > 0, [LineSearch]:

Update $x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x_{sd}^{(k)}$;

until Δx is within an acceptable range and is stable;

Descent Method

General

Linear Regression

```
\begin{split} & \mathrm{Given} \ x^{(0)} \in \mathrm{dom} \, f; \\ & \mathrm{repeat} \\ & \quad \mathrm{Determine} \ \mathrm{a} \ \mathrm{descent} \ \mathrm{direction} \ \Delta x; \\ & \quad \mathrm{Choose} \ \mathrm{a} \ \mathrm{step} \ \mathrm{size} \ t > 0; \\ & \quad \mathrm{Update} \ x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}; \\ & \quad \mathrm{until} \ \Delta x \ \mathrm{is} \ \mathrm{within} \ \mathrm{an} \ \mathrm{acceptable} \ \mathrm{range} \ \mathrm{and} \ \mathrm{is} \ \mathrm{stable}; \end{split}
```

Gradient Descent

```
\begin{split} & \text{Given } x^{(0)} \in \text{dom}\, f; \\ & \text{repeat} \\ & \Delta x = -\nabla f(x^{(k)}); \\ & \text{Choose a step size } t > 0, [\texttt{LineSearch}]; \\ & \text{Update } x^{(k+1)} = x^{(k)} + t\Delta x; \\ & \text{until } \Delta x \text{ is within an acceptable range and is stable;} \end{split}
```

Steepest Descent

```
Given x^{(0)} \in \text{dom } f; repeat

Compute steepest descent direction \Delta x_{sd}; Choose a step size t > 0, [LineSearch];

Update x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x_{sd}^{(k)}; until \Delta x is within an acceptable range and is
```

stable;

General

Linear Regression

- $\Delta \mathbf{x}_{nsd} = \operatorname{argmin}\{\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} | \|\mathbf{v}\| \leq 1\}$
- $\Delta \mathbf{x}_{sd} = \|\nabla f(\mathbf{x})\|_{\mathbf{x}} \cdot \Delta \mathbf{x}_{nsd}$
- If the norm $\|\cdot\|$ is Euclidean norm, $\Delta \mathbf{x} = -\nabla f(\mathbf{x})$

```
Given x^{(0)} \in \text{dom } f:
repeat
      \Delta x = -\nabla f(x^{(k)}):
      Choose a step size t > 0, [LineSearch];
      Update x^{(k+1)} = x^{(k)} + t\Delta x:
until \Delta x is within an acceptable range and is
stable;
```

```
Given x^{(0)} \in \text{dom } f:
repeat
      Compute steepest descent direction \Delta x_{s,d};
      Choose a step size t > 0, [LineSearch];
      Update x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x_{ad}^{(k)};
```

until Δx is within an acceptable range and is stable;

Linear Regression method is applicable only if nonlinear function is linear in terms of function parameters:

$$f(x; a) = \sum_{k=1}^{m} a_k h_k(x)$$

Many nonlinear functions are not like that, for example:

$$f_1(x) = \frac{x^2}{a_1 + (x - a_2)}$$

$$f_2(x, y, z) = \frac{x^2}{a_1 + x^2} + \frac{y^2}{a_2 + y^2} + \frac{z^2}{a_3 + z^2}$$

Condition Number

Linear Regression

- The condition number of C gives a measure of its anisotropy or eccentricity.
- If the condition number of a set C is small (say, near one) it means that the set has approximately the same width in all directions, i.e., it is nearly spherical.
- If the condition number is large, it means that the set is far wider in some directions than in others.
- cond(f) = $\frac{\lambda_{max}(f)}{\lambda_{min}(f)}$
- λ_{max} and λ_{min} describes minimum and maximum eigenvalues in 2D.

Image Processing — Lucas-Kanade

Classic examples are optical flow techniques like Lucas-Kanade (VideoTracking), Horn-Schunck.

Linear Regression

Goal of Lucas-Kanade

Minimize the sum of squared error between two images.

Assumption

The displacement of the image contents between two nearby instants (frames) is small and approximately constant within a neighborhood of the point p under consideration.

Lucas-Kanade

Linear Regression

Optical Flow Equation (2 Dementional)

For a pixel location (x, y, t), the intensity has moved by $\Delta x, \Delta y, \Delta t$, the basic assumption can be represented as:

$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

Lucas-Kanade

Linear Regression

Optical Flow Effect:

For all pixels within a window centered at p:

$$I_{x}(q_{i})V_{x} + I_{y}(q_{i})V_{y} = -I_{t}(q_{i})$$

Where i = 1, 2, 3...n.

Abbreviations:

$$A = [I_x(q_i)^T, I_y(q_i)^T]$$

$$V = [v_x, v_y]^T$$

$$b = [-I_t(q_i)]^T$$

Lucas-Kanade Method Abstraction:

LK method tries to solve 2×2 system:

$$A^{\mathsf{T}}AV = A^{\mathsf{T}}b$$

A.K.A:

$$V = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}b$$

Notice:

 $V = [v_x, v_y]^T$ is variable. Which means that the system does not know the actual velocity of the system.

Goal of Lucas-Kanade Method:

To minimize $||A^TV - b||^2$.

Basic LK Derivation for Models(Stuff to be Tracked):

$$E[v_x, v_y] = \Sigma [I(x + v_x, y + v_y) - T(x, y)]^2$$

Where v_x, v_y is the hypothesized location of the model(s) to be tracked, and T(x,y) model.

Key Step for Implementation of GD (Step 1):

Generalizing LK approach by introducing warp function W:

$$E[v_x, v_y] = \Sigma[I(W(x, y); P) - T(x, y)]^2$$

Generalizing is used to solve the problem where the constant flow of larger picture frames for a long time is a total waste of calculation power. Warp function examples are Affine and Projective.

The warping function are the convergence factor for steepest descent algorithm.

Key Step for Implementation of GD (Step 2):

The key to the derivation is Taylor series approximation:

$$I(W(x,y); P + \Delta P) \approx I(W([x,y]; P)) + \nabla I \frac{\partial W}{\partial P} \Delta P$$

- The approximation equation is actually the abstract of the basic assumption of optical flow described in the slides before.
- Derivation of this equation can be discussed in forum (Too long for slides).

Lucas-Kanade

Linear Regression

Some Explainations:

- Gradient image ∇I
- Image error $I_E = T(x,y) I(W[x,y];P)$
- Jacobian matrix $\frac{\partial W}{\partial P}$
- Steepest image $I_S = \nabla I \frac{\partial W}{\partial P}$
- \bullet Iteration step $\Delta P = \Sigma I_S^T I_E$

Algorithms:

- Warp image and get I(W[x,y];P);
- Get image error I_E;
- Warp gradient image ∇I ;
- Evaluate Jacobian;
- Compute steepest descent image $I_S = \nabla I \frac{\partial W}{\partial P}$;
- Compute Hessian matrix $\Sigma I_S^T I_S$;
- Get warping step $\Delta P = I_S I_E$;
- Update warping parameter $P = P + \Delta P$;
- Repeat until ΔP is negligible.

APPLICATIONS – MACHINE LEARNING

Generalized Utilization of Convex: Delta Rule

- The delta rule is derived by attempting to minimize the error in the output of the neural network through gradient descent.
- Gradient Descent optimization is the most basic principle for training neurons even with different activation functions.
- Delta rule, can also be modified, if possible, with steepest descent method.

APPLICATIONS – MACHINE LEARNING

Delta Rule:

Linear Regression

$$\Delta w_{ji} = \alpha(t_j - y_j)g'(h_j)x_j$$

Where α is the learning rate, g(x) is the neuron's activation function. t_j and y_j is the target and actual output of the neuron. h_j is the weighted sum of the neuron's inputs. And x_i is the i_{th} input.

The above equation holds the following:

$$h_{j} = \sum x_{i} w_{ji}$$
$$y_{j} = g(h_{j})$$

Goal of Inverse Kinematics

Given a position in the space, calculate a way for a robot hand to reach a place.

Problem Abstract:

Linear Regression

$$\vec{e} = R_1 T_1 R_2 T_2 R_3 T_3 R_4 T_4 \vec{e_0}$$

Where T_i is a series of translation transformation and R_i is a series of rotation translation.

Abstraction for Convex Optimization:

$$\Delta \vec{\theta} = \alpha J^{\mathsf{T}} \vec{e}$$

The target for the optimization is to achieve $|\vec{e_p} - \vec{e_t}| = 0$, where $\vec{e_p}$ is the original position of the tip of the robotic arm and $\vec{e_t}$ is the target position. J is the jacobian matrix in terms of $\vec{\theta}$, which is the vector of all the spatial angles of all joints. α is the convergence rate and \vec{e} is the position derivation (step size).

About Inverse Kinematics

- Jacobian transpose is the implementation of gradient descent in the real physical world.
- It can actually achieve near linear solution for robotic arms with a fast convergence rate.