Факультет БИТ

Физика

Скачать презентацик

Модуль №2. Термодинамика и молекулярно-кинетическая теория

Лекция №9

Основы молекулярно-кинетической теории и термодинамики. Температура. Давление. Идеальный газ. Уравнения состояния идеального газа. Основное уравнение МКТ. Скорости газовых молекул. Эффективное сечение взаимодействия молекул. Длина свободного пробега.

https://study.physics.itmo.ru/

Факультет БИТ

Физика с элементами компьютерного моделирования

Модуль №2. Термодинамика и молекулярно-кинетическая теория

Лекция №9

Основы молекулярно-кинетической теории и термодинамики. Температура. Давление. Идеальный газ. Уравнения состояния идеального газа. Основное уравнение МКТ. Скорости газовых молекул. Эффективное сечение взаимодействия молекул. Длина свободного пробега.

- Молекулярно-кинетическая теория объясняет физические свойства макроскопических тел на основе представлений о том, что все тела состоят из микроскопических частиц - атомов и молекул. При этом молекулярно-кинетическая теория не интересуется движением каждой отдельной молекулы, а только такими средними величинами, которые характеризуют движение огромного числа молекул. Эти средние величины связаны с параметрами, характеризующими состояние макроскопического тела.
- **Термодинамика** изучает макроскопические свойства тел, не интересуясь их микроскопической природой.

Основные положения молекулярнокинетической теории

- Любое вещество состоит из мельчайших частиц молекул и атомов. Они расположены в пространстве дискретно, то есть на некоторых расстояниях друг от друга.
- Атомы или молекулы вещества находятся в состоянии беспорядочного движения, которое в отсутствие внешних силовых воздействий не имеет какого-либо преимущественного направления, и которое никогда не прекращается.
- Атомы или молекулы вещества взаимодействуют друг с другом силами притяжения и отталкивания, которые зависят от расстояний между частицами.

Атомы и молекулы

- Атом это наименьшая частица данного химического элемента, сохраняющая все его химические свойства. Химических элементов не так много — все они сведены в таблицу Менделеева.
- Молекула это наименьшая частица данного вещества (не являющегося химическим элементом), сохраняющая все его химические свойства. Молекула состоит из двух или более атомов одного или нескольких химических элементов, связанных друг с другом за счет валентных электронов.
- Размер атома или молекулы (состоящей из небольшого числа атомов) составляет порядка 10^{-10} м (1 Å(Ангстрем)).

Газы, жидкости и твёрдые тела

- В газах молекулы удалены друг от друга на расстояния, значительно превышающие размеры самих молекул (в воздухе при нормальных условиях примерно в 1000 раз). На таких расстояниях силы взаимодействия между молекулами практически отсутствуют, поэтому газы занимают весь предоставленный им объём и легко сжимаются.
- В жидкостях промежутки между молекулами сравнимы с размерами молекул. Силы молекулярного притяжения весьма ощутимы и обеспечивают сохранение жидкостями объёма. Но для сохранения жидкостями ещё и формы эти силы недостаточно велики жидкости, как и газы, принимают форму сосуда.
- В твёрдых телах силы притяжения между частицами очень велики: твёрдые тела сохраняют не только объём, но и форму.
- Переход вещества из одного агрегатного состояния в другое является результатом изменения величины сил взаимодействия между частицами вещества. Сами частицы остаются при этом неизменными.

Идеальный газ

- это физическая модель, в которой:
- пренебрегают собственными размерами молекул;
- пренебрегают энергией взаимодействия между молекулами;
- в процессе столкновения между собой и со стенками сосуда молекулы ведут себя как абсолютно упругие тела.

Идеальный газ — это настолько разреженный газ, что взаимодействием между его молекулами можно пренебречь.

Опыт показывает, что при давлениях, близких к атмосферному, и температурах, близких к комнатной, многие газы (азот, кислород, водород, пары воды и т.д.) можно считать идеальными. Энергией взаимодействия молекул между собой здесь можно пренебречь потому, что в этих условиях лишь небольшая доля молекул находится в каждый момент времени в состоянии соударения.

Макроскопические и микроскопические параметры системы

```
— это величины, характеризующие состояние системы.
T — температура (K),
p - давление (Па),
V — объём вещества (M^3),
т — масса вещества (кг), m = \rho V, m = m_0 N,
\rho— плотность вещества (масса единицы объёма) (кг/м<sup>3</sup>),
    \rho=m/V=m_0N/V=m_0N/V=m_0n
m_0 — масса частицы вещества,
n — концентрация вещества (число частиц в единице объёма) n = N/V (м^{-3}),
N — число частиц вещества (атомов или молекул), N = nV,
```

Количество вещества (моль) и число Авогадро

Масса атома водорода порядка 10^{-24} г, размер атома порядка 10^{-8} см.

Один моль — это количество вещества, в котором содержится столько же атомов или молекул, сколько атомов содержится в 12 граммах углерода.

В 12 граммах углерода содержится примерно 6,02 · 10²³ атомов.

Следовательно, в одном моле вещества содержится $6,02 \cdot 10^{23}$ частиц.

Это число называется постоянной Авогадро:

$$N_A = 6,02214179 \cdot 10^{23} \text{ моль}^{-1}.$$

Количество вещества обозначается v. Это число молей данного вещества.

Молярная масса (кг/моль)

Масса одного моля вещества называется молярной массой этого вещества

 $M = m/v = M_r \cdot 10^{-3} \text{ кг/моль} = m_0 N_A.$

Относительная молекулярная масса M_r – это отношение массы молекулы к атомной единице массы (1 а.е.м=1,66·10 $^{-27}$ кг), равна сумме относительных атомных масс всех химических элементов с учётом индексов в формуле вещества.

Для одноатомных веществ относительная атомная масса A_r в таблице Менделеева равна молярной массе, выраженной в г/моль.

Молярная масса углерода равна 12 г/моль по определению. Ядро атома углерода содержит 12 нуклонов. Каждый нуклон вносит в молярную массу 1 г/моль. Поэтому молярная масса химического элемента с атомной массой А оказывается равной А г/моль.

Для кислорода $A_r = 16$, молярная масса равна 16 г/моль.

Молярная масса вещества, молекула которого состоит из нескольких атомов, получается простым суммированием молярных масс. Молярная масса углекислого газа CO_2 равна $M = 12 + 16 \cdot 2 = 44 \text{ г/моль} = 0,044 \text{ кг/моль}$.

Молярная масса газообразного водорода равна 2 г/моль, поскольку его молекула состоит из двух атомов (H_2). То же касается часто встречающихся в задачах азота и кислорода (N_2 , O_2).

Гелий (Не) — является одноатомным газом и имеет молярную массу 4 г/моль, предписанную таблицей Менделеева

При расчётах не забывайте переводить молярную массу в кг/моль.

Закон Авогадро (1811): при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое количество молекул. $N_{\Delta} = 6,02214179 \cdot 10^{23} \text{ моль}^{-1}$.

Молярный объём V_m — отношение объёма вещества к его количеству, численно равен объёму одного моля вещества, $V_m = V/v = M/\rho$. При нормальных условиях (T = 273,15 K, p = 101325 Па) молярный объём газов $V_m = 22,4$ л/моль (дм³/моль = 10^{-3} м³/моль).

Постоянная Лошмидта — число атомов (или молекул, ионов, электронов или любых других частиц) в 1 м³ вещества в состоянии идеального газа при нормальных условиях, $N_L = N_A / V_m = 2,69 \cdot 10^{19}$ см⁻³.

Масса молекулы

- Основной характеристикой атомов и молекул служат относительная атомная масса элемента (сокращенно атомная масса) и относительная молекулярная масса вещества (сокращенно молекулярная масса).
- За единицу атомной массы выбрана 1/12 часть массы атома углерода и называется атомной единицей массы (1 а.е.м=1,66·10⁻²⁷ кг).
- Атомной массой Ar химического элемента называется отношение массы атома этого элемента к 1/12 массы атома углерода. Молекулярной массой Mr вещества называется отношение массы молекулы этого вещества к 1/12 массы атома углерода. Атомная и молекулярная масса величины безразмерные.
- Масса атома, выраженная в килограммах, будет равна A_r ·а.е.м., а масса молекулы M_r ·а.е.м.
- Масса самой легкой молекулы молекулы водорода H₂ равна

$$m_{H2} = \frac{M}{N_A} = \frac{2 \, \Gamma / \text{моль}}{6,022 \cdot 10^{23} \text{моль}^{-1}} \approx 1,328 \cdot 10^{-24} \Gamma$$

Размер молекулы

$$m = Nm_0 = N\frac{M}{N_A}$$
 $N_A = 6,02214179 \cdot 10^{23} \text{ моль}^{-1}$

$$N_A = 6,02214179 \cdot 10^{23} \text{ моль}^-$$

$$N = \frac{mN_A}{M}$$

$$N = \frac{\rho V N_A}{M}$$

Число шарикв, заполняющих куб $N pprox V/d^3$

$$d \approx \sqrt[3]{\frac{M}{\rho N_A}}$$

$$H_2O$$
: $d \approx \sqrt[3]{\frac{18 \text{ г/моль}}{1 \text{ r/cm3} *6,022 \cdot 10^{23}}} \approx 3 \cdot 10^{-10} \text{ м}$

Периодическая таблица Д. И. Менделеева

год	Ряд	группы элементов										
Период		I	II	III	IV	v	VI	VII		VIII		
1	1	(H)						H 1,00797	Не 2 4,0026	Обозначение элемента	Атомный номер	
2	2	Li 3 6,939	Be 4 9,0122 Бериллий	B 5 10,811	С 6 12,01115 Углерод	N 7 14,0067	O 8 15,9994 Кислород	F 9 18,9984	Ne 10 20,179	Li Литий	6,939	
3	3	Na 11 Натрий	Mg 12 24,305 Магний	Al 13 26.9815 Алюминий	Si 14 _{28,086} Кремний	P 15 Фосфор	S 16 32,064 Cepa	Cl 17 Хлор 35,453	Ar 18 39,948		Относительная атомная масса	
4	4	К 19 39,102	Са 20 40,08 Кальций	21 44,956 Скандий	²² 47,90 Ті Титан	23 V 50,942 Ванадий	24 51,996 Cr Xpom	25 54,9380 Mn Марганец	26 55,847 Fe Железо	27 Со 58,9330 Кобальт	28 58,71 Ni Никель	
7	5	²⁹ Cu медь	30 65,37 Zn Цинк	Ga 31 69,72	Ge 32 _{72,59} Германий	As 33 Мышьяк	Se 34 78,96	Br 35 _{79,904} Бром	Kr 36 83,80			
5	6	Rb 37 85,47 Рубидий	Sr 38 87,62 Стронций	39 88,905 Иттрий	40 Zr 91,22 Цирконий	41 Nb 92,906 Ниобий	42 Мо 95,94 Молибден	43 Тс [99] _{Технеций}	44 Ru 101,07 P утений	45 102,905 Rh Родий	46 Pd 106,4 Палладий	
3	7	47 107,868 Аg Серебро	48 112,40 Сd Кадмий	индии	Sn 50 118,69 Олово	Sb 51 121,75 Сурьма	Те 52 127,60	I 53 Иод 126,9044	Хе 54 Ксенон			
	8	Cs 55 Цезий 132,905	Ва 56 137,34 Барий	⁵⁷ La* Лантан	72 178,49 Гафний	73 Та 180,948 Та Тантал	74 W 183,85 Вольфрам	75 186,2 Re Рений	76 190,2 Ос мий	77 Ir 192,2 Иридий	78 Pt 195,09 Платина	
6	9	79 196,967 Au Золото	80 200,59 Нg Ртуть	Т1 81 204,37	Рb 82 Свинец	Ві 83 Висмут	Ро 84 Полоний	At 85 [210]	Rn 86 [222]			
7	10	Fr 87 [223] Франций	Ra 88 [226]	89 Ас** [227] Актиний	104 Rf [261] Резерфордий	105 [262] Db Дубний	106 Sg [263] Сиборгий	107 [262] Bh Борий	108 [265] Нs Хассий	[266]	110 D S [271] Дармштадтий	
	11	111 Rg [272] Рентгений	112 [285] Сп Коперниций	Nh 113 [286]	FI 114 Флеровий	Мс 115 Московий	Lv 116 Ливерморий	Ts 117 Теннессин	Од [294] Оганесон			

Ланта	58 140	Се _{0,12} Церий	59 Pr 140,907 Празеодим		. Nd Неодим	61 Рт [147]* Прометий	62 Sm 150,35 C амарий	63 Eu 151,96 E вропий	64 Gd 157,25 Гадолиний	65 Тb 158,924 Тербий	66 Dy 162,50 Диспрозий	67 Но 164,930 Гольмий	68 Er ^{167,26} Эрбий	69 Тт 168,934 Тулий	70 Yb 173,04 Иттербий	
Акти	90 232	Th 2,038 Торий	91 Ра [231] Протактивий	The same		93 Np ^[237] Нептуний	94 Pu [244] Плутоний	95 Am [243] Америций	[247]	97 Вк ^[247] Берклий	98 Сf [252]* Калифорний	99 Es [254] Эйнштейний	100 Fm [257] Фермий	101 Md [257] Менделевий	102 No [255] Нобелий	103 Lr [256] Лоуренсий

Состояние системы

Система — это выделенная определенная совокупность физических тел.

Параметры системы — это величины, характеризующие состояние системы.

Процесс — это всякий переход системы из одного состояния в другое.

Термодинамическое равновесие

Если внешние условия неизменны, то система с течением времени приходит в равновесное состояние: выравниваются давления и температуры ее отдельных частей, так что параметры системы принимают определенные значения, остающиеся постоянными сколь угодно долго. При этом внешние условия должны быть таковы, чтобы в системе не было переноса вещества, энергии, импульса и т. п.

В состоянии термодинамического равновесия в системе отсутствуют все возможные процессы обмена энергией:

- 1) ни одна из подсистем системы не совершает работы над другими подсистемами;
- 2) ни одна из подсистем системы не обменивается теплотой с другими подсистемами системы;
- 3) ни одна из подсистем системы не обменивается частицами с другими подсистемами системы.

При равновесии, в отсутствие внешних силовых полей, молекулы газа распределяются по всему объему замкнутого сосуда равномерно с постоянной плотностью.

Уравнение состояния системы

Для полного описания равновесного состояния системы достаточно всего трёх параметров: p, V, T.

Если состояние равновесно, то между этими тремя параметрами существует связь: заданные два параметра системы (например, ее температура и объем) однозначно определяют третий (в данном случае давление). Математически эту связь можно охарактеризовать уравнением состояния системы F (p, V, T) = 0, где конкретный вид функции F зависит от свойств системы.

Примером служат уравнения Клапейрона — Менделеева для идеального или Ван-дер-

Ваальса для реальных газов.

Термодинамические процессы

Равновесный процесс — это бесконечно медленно протекающий процесс, при котором в каждый данный момент времени состояние системы термодинамически равновесно.

Обратимый процесс — это процесс, который может протекать в обратном направлении, проходя те же промежуточные состояния в обратном порядке, причем в окружающих телах не останется никаких изменений.

Функция состояния — это физическая характеристика, которая зависит только от состояния системы и не зависит от того, как система попала в это состояние.

Температура

характеризует состояние теплового равновесия тел, это макроскопический параметр, значения которого одинаковы для всех частей термодинамической системы, находящейся в состоянии теплового равновесия

Температура не аддитивна: температура тела не равна сумме температур его частей.

Если система находится в тепловом равновесии, то температура всех её частей одинакова. В противном случае в системе происходит передача энергии от более нагретых частей системы к менее нагретым, приводящая к выравниванию

температур в системе

В процессе измерения температуры термометр приводится в тепловой контакт с телом, температура которого определяется. Показания термометра после наступления теплового равновесия — это и есть температура тела. При этом термометр показывает свою температуру.

В физике пользуются термодинамической (старое название: абсолютной) шкалой температур (шкалой Кельвина), которая не зависит от термометрического тела, а устанавливается на основе законов термодинамики.

Некоторые основные температуры [править | править код]

+	кельвин \$	градус Цельсия	градус Фаренгейта ф
Абсолютный ноль	0 K	−273,15 °C	−459,67 °F
Температура кипения жидкого азота	77,4 K	-195,8 °C ^[10]	−320,3 °F
Сублимация (переход из твёрдого состояния в газообразное) сухого льда	195,1 K	−78 °C	−108,4 °F
Точка пересечения шкал Цельсия и Фаренгейта	233,15 K	-40 °C	−40 °F
Температура плавления льда	273,1499 K	-0,0001 °C ^[11]	31,99982 °F
Тройная точка воды	273,16 K	0,01 °C	32,018 °F
Нормальная температура человеческого тела ^[12]	310 K	36,6 °C	97,9 °F
Температура кипения воды при давлении в 1 атмосферу (101,325 кПа)	373,1339 K	99,9839 °C ^[11]	211,971 °F

Абсолютный ноль температуры — это предельно низкая температура, при которой давление идеального газа постоянного объёма обращается в нуль. Состояние с температурой равной абсолютному нулю экспериментально недостижимо, так что ноль на шкале Кельвина есть результат экстраполяции.

https://online.mephi.ru

https://mathus.ru/phys/mt.pdf

Давление

Давлением р, в случае равномерного распределения сил вдоль поверхности, называется величина p=F/S

[p] = Па (паскаль) = H/м²

где F - сумма приложенных перпендикулярно к участку поверхности сил, S - площадь участка поверхности.

Прибор для измерения давления называется манометром.

```
1 атм. = 9,8 H/см<sup>2</sup> = 98066 Па \approx10<sup>5</sup> Па,
1 мм рт.ст. = 1 тор = 1/760 атм. = 133,3 Па,
1 бар = 10<sup>5</sup> Па; 1 атм. = 0,98 бар.
```


Парциальное давление. Закон Дальтона

Закон Дальтона

Давление смеси газов равно сумме парциальных давлений

$$P_{\scriptscriptstyle \mathrm{CM}} = \sum_i p_i$$

*р*_i - парциальное давление – давление, которое данный газ создавал бы в отсутствие остальных

$$P_{\rm cm} = P_1 + P_2 + P_3 + \cdots Pn$$

Количество вещества смеси газов

Все газы в смеси занимают весь объем сосуда, в которм находится смесь.

$$u_{\text{cmecu}} = \sum_{i} v_{i}$$

 v_i - количество вещества газов, входящих в состав смеси

Молярная масса смеси газов

$$\mu_{ extit{ iny CMECU}} = rac{\displaystyle\sum_{i} m_{i}}{\displaystyle\sum_{i}
u_{i}} = rac{\displaystyle\sum_{i} m_{i}}{\displaystyle\sum_{i} rac{m_{i}}{\mu_{i}}}$$

массовая доля:
$$w_i = \frac{m_i}{m}$$

 m_i — масса \dot{F} го компонента, m- масса смеси

Объем

Газ занимает весь объем сосуда, в котором находится. Объем газа равен объему сосуда.

Видео 3.1. Флуктуации числа молекул в половине сосуда вполне заметны, если число молекул невелико.

Законы идеальных газов

Закон Бойля — Мариотта: для данной массы газа при постоянной температуре произведение давления газа на его объем есть величина постоянная:

pV= const при T=const, m=const.

График зависимости между параметрами состояния газа при постоянной температуре называется *изотермой*. Изотермы в координатах р, V представляют собой гиперболы, расположенные на графике тем выше, чем выше температура,

при которой происходит процесс.

Изотермический процесс — это термодинамический процесс, протекающий при постоянной температуре.

Законы идеальных газов

Законы Гей-Люссака (Шарля):

1) объем данной массы газа при постоянном давлении изменяется линейно с температурой:

при
$$p$$
= $const$, m = $const$: $V=V_0(1+\alpha t)$ или $\frac{V_1}{V_2}=\frac{T_1}{T_2}$.

Процесс, протекающий при постоянном давлении, называется *изобарным*. На диаграмме в координатах V, t этот процесс изображается прямой, называемой изобарой.

2) давление данной массы газа при постоянном объеме изменяется линейно с температурой:

при V=const, m=const:
$$p=p_0(1+\alpha t)$$
 или $\frac{p_1}{p_2}=\frac{T_1}{T_2}$.

Процесс, протекающий при постоянном объеме, называется *изохорным*. На диаграмме в координатах р, t он изображается прямой, называемой изохорой. В этих уравнениях t — температура по шкале Цельсия, p_0 и V_0 — давление и объем при 0°C, коэффициент α = 1/273,15 K⁻¹ .

Индексы 1 и 2 относятся к произвольным состояниям, лежащим на одной изобаре или изохоре.

Законы идеальных газов

	p(V)	p(T)	V(T)
изобарный $p = const,$ $\frac{V}{T} = const$	T_1 T_2 $T_1 < T_2$	V_1 V_2 $V_1 < V_2$	p_1 p_2 $p_1 < p_2$ $p_1 < p_2$
изохорный $V = const,$ $\frac{p}{T} = const$	T_1 T_2 $T_1 < T_2$	V_1 V_2 $V_1 < V_2$	p_1 p_2 $p_1 < p_2$
изотермический $T = const,$ $pV = const$	T_1 T_2 $T_1 < T_2$	V_1 V_2 $V_1 < V_2$	p_1 p_2 $p_1 < p_2$ p_2

Уравнение состояния идеального газа

Пусть некоторая масса газа занимает объем V₁ и имеет давление р₁ и находится при температуре Т₁. Эта же масса газа в другом произвольном состоянии характеризуется параметрами р₂, V₂, T₂.

Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов: p_1 — p_1 p_2 p_3 p_4 p_4 p_4 p_4 p_5 p_6 p_6

- 1) изотермического (изотерма 1-1'),
- 2) изохорного (изохора 1'-2).

В соответствии с законами Бойля-Мариотта и Гей-Люссака:

$$\frac{p_1'}{p_2} = \frac{T_1}{T_2} \qquad p_1 V_1 = p_1' V_2$$

Исключив из уравнений p_1' , получим: $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$

Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа величина $\frac{\mathrm{pV}}{\mathrm{r}}$ остается постоянной, т.е $\frac{pV}{r}$ = B = const - уравнение Клапейрона, в котором В — газовая постоянная, различная для разных газов

Д.И.Менделеев (1834—1907) объединил уравнение Клапейрона с законом Авогадро, отнеся его к 1 моль газа, использовав молярный объем V_m : $pV_m = RT - уравнение Менделеева - Клапейрона$

 $R = 8,31 \, \text{Дж/(моль} \cdot \, \text{K)}$ - универсальная газовая постоянная

Уравнение состояния идеального газа

Для идеального газа уравнение состояния называется уравнением Менделеева-Клапейрона для произвольной массы газа:

$$pV = \frac{m}{M}RT$$

где R=8,31 Дж/(моль·К) – универсальная газовая постоянная;

р - давление газа;

V - его объем;

Т - абсолютная температура;

т - масса газа;

М - молярная масса данного газа;

Уравнение состояния идеального газа

Разные формы записи

$$pV = \frac{m}{M}RT$$

$$p = RT \frac{\rho}{M}$$

$$pV = \nu RT$$

$$pV_m = RT$$

[M] = 12 / моль

R=8,31 Дж/(моль·К) – универсальная газовая постоянная;

p=nkT, k=kNA k = 1,38 · 10⁻²³ Дж/К — постоянная Больцмана; n - концентрация газа;

Уравнение Менделеева – Клапейрона для смеси газов

$$PV = \left(\frac{m_1}{M_1} + \frac{m_2}{M_2} + \cdots + \frac{m_n}{M_n}\right) RT$$

Пусть газ находится в сосуде слева от стенки, на которой мы выделим площадку S. Направим ось х вправо, перпендикулярно стенке сосуда.

Пусть молекула массой \mathbf{m}_0 летит вдоль оси х со скоростью $\vec{v} = \overrightarrow{v}_I$ по направлению к стенке.

После упругого удара о стенку скорость молекулы изменит свое направление на противоположное $\overrightarrow{v_2}$ =- $\overrightarrow{v_1}$,

откуда для проекций на ось х: $v_{\rm 2x}$ = - $v_{\rm 1x}$

По второму закону Ньютона, средняя сила <F'x>, действующая со стороны стенки на одну молекулу равна:

$$< F_{x}'> = \frac{\Delta p}{\Delta t} = \frac{\Delta (m_{0}v_{x})}{\Delta t} = \frac{m_{0}(v_{2x} - v_{1x})}{\Delta t} = \frac{m_{0}(-v_{1x} - v_{1x})}{\Delta t} = -\frac{2m_{0}v_{1x}}{\Delta t} = -\frac{2m_{0}v}{\Delta t}$$

По третьему закону Ньютона, со стороны молекулы на стенку действует в течение промежутка времени Δt средняя сила:

$$\langle F_{\chi} \rangle = -\langle F_{\chi}' \rangle = \frac{2m_0 v}{\Delta t}$$

Давление р найдем, если силу одного удара < $F_x>$ домножим на N_x - число ударов молекул о стенку за время Δt , а затем поделим на S:

$$p = \frac{N_{\chi} < F_{\chi} >}{S}$$

За время Δt до стенки долетят лишь те молекулы, которые находятся от стенки не дальше, чем на расстоянии $l = v \Delta t$ и имеют положительную проекцию скорости v_x (летят к стенке).

Выразим число молекул в объеме $Sv\Delta t$ через их концентрацию n: $N = nV = nSl = nSv\Delta t$.

Тогда
$$N_x = \frac{1}{6}N = \frac{1}{6}nSv\Delta t$$

$$p = \frac{N_{\chi} < F_{\chi} >}{S} = \frac{1}{6} n S v \Delta t \cdot \frac{2m_{0}v}{\Delta t S} = \frac{1}{3} n m_{0} v^{2}$$

$$\langle F_{\chi} \rangle = -\langle F_{\chi}' \rangle = \frac{2m_0 v}{\Delta t}$$

Чтобы учесть различие скоростей молекул надо вместо v^2 взять $< v^2 > -$ среднее значение этой величины. Тогда для давления получим:

$$p = \frac{1}{3}nm_0 < v^2 > = \frac{2}{3}n\frac{m_0 < v^2 >}{2} = \frac{2}{3}n < \varepsilon_{\text{noct}} >$$

- основное уравнение молекулярнокинетической теории идеального газа

$$<\!\!\epsilon_{\text{\tiny NOCT}}\!\!> = \frac{\epsilon_1 + \epsilon_2 + \dots + \epsilon_N}{N} = \frac{1}{N} \bigg(\frac{m_0 v_1^2}{2} + \frac{m_0 v_2^2}{2} + \dots + \frac{m_0 v_N^2}{2} \bigg) = \frac{m_0}{2} \bigg(\frac{v_1^2 + v_2^2 + \dots + v_N^2}{N} \bigg) = \frac{m_0 < v^2 > 1}{2} + \dots + \frac{m_0 v_N^2}{N} = \frac{m_0 < v^2 > 1}{N} = \frac{$$

 $\langle arepsilon_{
m пост}
angle = rac{1}{2} I$ Температура - это величина, пропорциональная средней $ho = {
m nkT}, =>$

 $\langle \varepsilon_{\text{пост}} \rangle = \frac{3}{2} kT$ - средняя кинетическая энергия поступательного движения одной молекулы

Это и есть внутренняя энергия газа, и она зависит только от температуры

$$\langle v^2 \rangle = \frac{3kT}{m_0}$$

пропорциональная средней энергии поступательного движения одной молекулы

 $k = 1,38 \cdot 10^{-23} \, \text{Дж/K} - \text{постоянная Больцмана}$

Основное уравнение МКТ для смеси газов

$$p = nkT = (n_1 + n_2 + \cdots)kT$$

$$p = p_1 + p_2 + \dots = \sum p_i$$

Связь температуры и кинетической энергии молекул

• Средняя кинетическая энергия молекулы

Число степеней свободы механической системы – количество независимых величин, с помощью которых может быть задано положение системы.

(Существуют поступательные, колебательные и вращательные степени свободы.)

Каждая степень свободы вносит вклад в энергию молекулы, равный $\frac{1}{2}k_{\mathrm{B}}T$

$\langle v^2 \rangle = \frac{3kT}{m}$

Скорости газовых молекул

Среднеквадратичная (среднеквадратическая) скорость:

$$\langle v_{\text{KB}} \rangle = \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3kT}{m_0}} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3p}{\rho}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} v_i^2}$$

$$R = kNA \qquad p = RT \frac{\rho}{M}$$

Например, при плотности азота, равной 1,25 кг/м 3 , при t = 0 °C и P = 1 атм, скорости молекул азота 500 м/с. Для водорода 2000 м/с.

Скорость звука в газе близка к скорости молекул в этом газе $v_{\scriptscriptstyle 3B} = \sqrt{\gamma \frac{p}{
ho'}}$, где γ — коэффициент Пуассона

(величина отношения относительного поперечного сжатия к относительному продольному растяжению).

Это объясняется тем, что звуковые волны переносятся молекулами газа.

Среднеквадратическая скорость

$$\frac{1}{2}m_0\overline{v^2} = \frac{3}{2}k_{\rm B}T \qquad \qquad v_{\rm rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3k_{\rm B}T}{m_0}} = \sqrt{\frac{3RT}{M}}$$

Gas	Molar Mass (g/mol)	at 20° C (m/s)	Gas	Molar Mass (g/mol)	${\rm at} \ 20^{\circ}{\rm C} \ (\rm m/s)$
H_2	2.02	1902	NO	30.0	494
He	4.00	1352	O_2	32.0	478
H_2O	18.0	637	$\overline{\mathrm{CO}}_2$	44.0	408
Ne	20.2	602	SO_2	64.1	338
N_2 or CO	28.0	511	-		

Скорости газовых молекул

$$< v> = \sqrt{rac{8RT}{\pi M}}$$
 - средняя арифметическая скорость молекул — это отношение

суммы абсолютных величин скоростей всех молекул в системе к числу этих молекул.

$$\langle v \rangle = \frac{v_1 \cdot \Delta N_1 + v_2 \cdot \Delta N_2 + \dots}{N} = \sum_{i=1}^n v_i \cdot \frac{\Delta N_i}{N}$$

Эффективное сечение взаимодействия молекул σ

Молекулы представляем в виде упругих шариков. При столкновении молекул с эффективными диаметрами d_1 и d_2 их центры сближаются на расстояние: $R=(d_1+d_2)/2$ - эффективный радиус взаимодействия молекул

Если молекула 1 налетает на молекулу 2, то столкновение произойдет, если первая молекула попадет в сферу радиусом R, описанную вокруг второй молекулы. Площадь сечения этой сферы:

$$\sigma = \pi R^2 = rac{\pi (d_1 + d_2)^2}{4}$$
 – эффективное сечение взаимодействия молекул

При столкновении одинаковых молекул
$$\sigma = \pi d^2$$
 ($d_1 = d_2 = d_r$, $R = d$)

Средняя длина свободного пробега молекулы λ

P(x) — вероятность пролететь без столкновений расстояние x

$$P(x) = \exp\left(-\frac{x}{\lambda}\right)$$

Вероятность пролететь без столкновений расстояние х

Вероятность преодолеть расстояниех $x=\lambda$ без столкновений:

$$P(x) = \exp\left(-\frac{x}{\lambda}\right) = \exp\left(-\frac{\lambda}{\lambda}\right) = \exp(-1) \approx 0.368$$

то есть 63,2 % (=(1-0.368)*100%) частиц испытают столкновения на этом пути.

При длине пути $x = 2\lambda$:

$$P(2\lambda) = \exp\left(-\frac{2\lambda}{\lambda}\right) = \exp(-2) = \frac{1}{e^2} \approx 0.135$$
 (86,5 % частиц испытают столкновение).

При $x = 3 \lambda$:

$$P(2\lambda) = \exp\left(-\frac{3\lambda}{\lambda}\right) = \exp(-3) = \frac{1}{e^3} \approx 0.0498$$
 (в столкновениях участвует 95 % частиц).

Частота столкновений v

(число столкновений в единицу времени)

и столкнется со всеми молекулами, попавшими в ломаный цилиндр радиусом d

площадь основания такого цилиндра $\sigma = \pi d^2$

объем этого цилиндра $V = \sigma x = \pi d^2 \langle v^* \rangle \Delta t$

число столкновений $\Delta N = nV = n\pi d^2 \langle v^* \rangle \Delta t$

Частота столкновений v (число столкновений в единицу времени) $v=\Delta N/\Delta t=n\pi d^2 \langle v^* \rangle = n \ \sigma \ \langle v^* \rangle$

$$\langle v^* \rangle = \sqrt{2} \langle v \rangle$$

Средняя длина свободного пробега молекулы λ

$$\langle v^* \rangle = \sqrt{2} \langle v \rangle$$

 $v=\Delta N/\Delta t = n\pi d^2 \langle v^* \rangle = n \sigma \langle v^* \rangle$

Частота столкновений v (число столкновений в единицу времени)

$$v = \sqrt{2} n\pi d^2 \langle v \rangle = \sqrt{2} n\sigma \langle v \rangle$$

Средняя длина свободного пробега молекулы λ

$$\lambda = \frac{\langle v \rangle}{v}$$

 $<\!v\!>$ - средняя арифметическая скорость движения молекул ν — частота соударений

$$\lambda = \frac{\langle v \rangle}{v} = \frac{\langle v \rangle}{\sqrt{2}n\pi d^2 \langle v \rangle} = \frac{1}{\sqrt{2}n\pi d^2} = \frac{1}{\sqrt{2}n\sigma}$$

Средняя длина свободного пробега молекулы \lambda

$$pV = \frac{m}{M}RT \qquad \rho = \frac{m}{V} = \frac{pM}{RT} = \frac{nkTM}{RT}$$

$$p = nkT$$

$$\frac{1}{n} = \frac{kTM}{\rho RT}$$

$$\lambda = \frac{1}{\sqrt{2}n\pi d^2} = \frac{kM}{\sqrt{2}\pi d^2 \rho R} = \frac{M}{\sqrt{2}\pi d^2 \rho N_A} = \frac{kT}{\sqrt{2}\pi d^2 \rho}$$

R=8,31 Дж/(моль·К) – универсальная газовая постоянная;

$$R = kNA$$

 $k = 1,38 \cdot 10^{-23} \, \text{Дж/K} - \text{постоянная Больцмана};$

n - концентрация газа

Средняя длина свободного пробега молекулы λ

$$\lambda = \frac{1}{\sqrt{2}n\pi d^2} = \frac{1}{\sqrt{2}n\sigma}$$

Среднее расстояние между частицами далеко не совпадает со средней длиной свободного пробега.

Эффективный диаметр молекулы водяного пара $d = 3.10^{-10}$ м и среднее расстояние между молекула..... Отсюда находим концентрацию молекул $n = \frac{1}{I^3} \approx 4 \cdot 10^{25} \ \text{м}^{-3}$ расстояние между молекулами при нормальных условиях $L = 3^{\circ} 10^{-9} \, \text{м}$.

$$n = \frac{1}{L^3} \approx 4 \cdot 10^{25} \ \text{M}^{-3}$$

Подставляя найденное п

в выражение для длины свободного пробега, находим $\lambda \approx 6 \cdot 10^{-8}~M$

	Газ	λ, м при 0°С п 760 мм рт. ст.	d, Å	Газ	λ. м при 0°С и 760 мм рт. ст.	d, Å
Савельев И.В. Курс	_	I,10 · 10 ⁻⁷ I,75 · 10 ⁻⁷ 0,63 · 10 ⁻⁷ ики, с 377	2,18	Воздух	$0,59 \cdot 10^{-7}$ $0,60 \cdot 10^{-7}$ $0,39 \cdot 10^{-7}$	3,74

Явления переноса в газах

47

Диффузия

Диффузия от латинского diffusio — распространение, растекание - взаимное проникновение соприкасающихся веществ друг в друга, вследствие теплового движения частиц вещества. Диффузия происходит в направлении уменьшения концентрации вещества и ведет к его равномерному распределению по занимаемому объему. Диффузия имеет место в газах, жидкостях и твердых телах. Наиболее быстро диффузия происходит в газах, медленнее в жидкостях, еще медленнее в твердых телах, что обусловлено характером движения частиц в этих средах.

Для газа диффузия – это распределение молекул примеси от источника (или взаимная диффузия газа).

Решаем одномерную задачу. Пусть в газе присутствует примесь с концентрацией n в точке с координатой x. Концентрация примеси зависит от координаты x

Градиент концентрации в общем случае:

grad
$$n = \frac{\mathrm{d}n}{\mathrm{d}x}\mathbf{i} + \frac{\mathrm{d}n}{\mathrm{d}y}\mathbf{j} + \frac{\mathrm{d}n}{\mathrm{d}z}\mathbf{k}$$

Так как у нас одномерная задача, то

При наличии grad n хаотическое движение будет более направленным и возникнет поток молекул примеси, направленный от мест с большей концентрацией к местам с меньшей концентрацией. Найдём этот поток.

Пусть в плоскости с координатой х находится единичная площадка dS, перпендикулярная оси х. Подсчитаем число молекул, проходящих со скоростью < v >через площадку в направлении слева направо dN_{\perp} и справа налево dN_{\perp} , за время dt

$$dN_{+} = \frac{1}{6}n_{1} < v > dSdt$$
$$dN_{-} = \frac{1}{6}n_{2} < v > dSdt$$

$$dN_{-} = \frac{1}{6}n_2 < v > dSdt$$

где n_1 - концентрация молекул слева от площади, а n_2 - концентрация молекул справа от площадки dS. dN=dN₊-dN₋.

Результирующий диффузионный поток частиц через единицу

поток частиц через единицу площади в единицу времени: $J = \frac{dN}{dSdt} = \frac{1}{6}(n_1 - n_2)\langle v \rangle$

перепишем в виде: $J = -\frac{1}{3} \langle v \rangle \lambda \frac{n_2 - n_1}{2 \langle \lambda \rangle}$

$$n_2$$
- n_1 = dn , $2\langle \lambda \rangle = dx$, $\Rightarrow \frac{n_2 - n_1}{2\lambda} = \frac{dn}{dx}$

$$J = -\frac{1}{3} \langle v \rangle \lambda \frac{dn}{dx}$$

$$D=rac{1}{3}\langle v
angle \lambda$$
 - коэффициент диффузии

Из уравнения Фика видно, что поток направлен в сторону уменьшения концентрации. При этом коэффициент диффузии D численно равен диффузионному потоку через единицу площади в единицу времени при $\operatorname{grad} n = 1$. Измеряется коэффициент диффузии в M/c^2 .

Тогда диффузионный поток будет равен: $J = -D \frac{\mathrm{d}n}{\mathrm{d}x}$

или в общем случае (в трёхмерной системе): $I = -D \operatorname{grad} n$ – уравнение Фика.

Диффузия (перенос массы)

Масса газа, переносимая в результате диффузии за время dt через плоскую поверхность площадью S, расположенную перпендикулярно направлению переноса:

$$dm = -D\left(\frac{dn}{dx}\right)S \cdot dt \cdot m_0$$
 (Закон Фика)

 $m_{\it o}$ – масса одной молекулы

 $\frac{dn}{dx}$ – градиент концентрации

$$D$$
 — коэффициент диффузии $D = \frac{1}{3} \langle v \rangle \lambda$

$$J = \frac{\mathrm{d}N}{\mathrm{d}S\mathrm{d}t} = -D\,\frac{\mathrm{d}n}{\mathrm{d}x}$$

Диффузия (Второй закон Фика)

Второй закон Фика позволяет найти зависимость концентрации диффундирующих частиц от времени.

$$\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2}$$

$$\Phi = \frac{\partial N}{\partial t}$$

$$dN = (\Phi(z) - \Phi(z + dz))dt$$

$$dN = -\frac{d\Phi}{dz}dzdt$$

Разделив dN на объем Sdz зазора между квадратиками, получаем изменение концентрации частиц за время dt

$$dn = -\frac{d\Phi(z)}{dz} \cdot \frac{dt}{S}$$

Используя первый закон Фика, находим
$$\frac{\partial n}{\partial t} = \frac{\partial}{\partial z} \left(D \frac{\partial n}{\partial z} \right)$$