9. gyakorlat

VÉGTELEN SOROK 3.

 $Eml\'e keztet\Howange a$. Az adott $(\alpha_n): \mathbb{N} \to \mathbb{R}$ sorozattal és az $a \in \mathbb{R}$ számmal képzett

$$\sum_{n=0}^{\infty} \alpha_n (x-a)^n = \alpha_0 + \alpha_1 (x-a) + \alpha_2 (x-a)^2 + \cdots \qquad (x \in \mathbb{R})$$

függvénysort $a \in \mathbb{R}$ középpontú, (α_n) együtthatójú **hatványsornak** nevezzük.

A hatványsor konvergenciahalmaza. Azok az $x \in \mathbb{R}$ értékek, amelyekre a hatványsor konvergens:

$$\operatorname{KH}\left(\sum_{n=0}\alpha_n(x-a)^n\right):=\left\{x\in\mathbb{R}\ \middle|\ \text{a}\ \sum_{n=0}\alpha_n(x-a)^n\ \text{számsor konvergens}\right\}\ni a.$$

A hatványsor konvergencia
sugara. Tetszőleges $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsor konvergenciahalmazára a következő három eset egyike áll fenn:

1. $\underline{\exists \ 0 < R < +\infty}$, hogy a hatványsor $\forall x \in \mathbb{R} \colon |x-a| < R$ pontban abszolút konvergens, és a hatványsor $\forall x \in \mathbb{R} \colon |x-a| > R$ pontban divergens, azaz $(a-R,a+R) \subset \mathrm{KH} \left(\sum \alpha_n (x-a)^n\right) \subset [a-R,a+R]$.

2. A hatványsor csak az x = a pontban konvergens, azaz KH $\left(\sum \alpha_n (x - a)^n\right) = \{a\}$. Ekkor legyen R := 0.

3. A hatványsor abszolút konvergens $\forall x \in \mathbb{R}$ esetén, azaz $\mathrm{KH} \left(\sum \alpha_n (x-a)^n \right) = \mathbb{R}$. Ekkor legyen $\underline{R} := +\infty$.

R-et a hatványsor konvergenciasugarának nevezzük.

Tétel. (A Cauchy-Hadamard-tétel) Tekintsük a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsort, és tegyük fel, hogy

$$\exists \lim \left(\sqrt[n]{|\alpha_n|}\right) =: A \in \overline{\mathbb{R}}.$$

Ekkor a hatványsor konvergenciasugara

$$R = \frac{1}{A}$$
 $\left(\frac{1}{+\infty} := 0, \frac{1}{0} := +\infty\right).$

A konvergenciasugár hányadoson alapuló kiszámítása. Tekintsük a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsort, és tegyük fel, hogy $\alpha_n \neq 0$ $(n \in \mathbb{N})$ és

$$\exists \lim \left| \frac{\alpha_{n+1}}{\alpha_n} \right| =: A \in \overline{\mathbb{R}}.$$

Ekkor $A \geq 0$, és a hatványsor konvergenciasugara

$$R = \frac{1}{A}$$
 $\left(\frac{1}{+\infty} := 0, \quad \frac{1}{0} := +\infty\right).$

1

1. Feladat. Határozzuk meg a

a)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n$$
, b) $\sum_{n=1}^{\infty} \frac{2^{n-1}}{2n-1} (3x-1)^n$, c) $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} (x+2)^n$

hatványsorok konvergenciasugarát és konvergenciahalmazát a valós számok halmazán.

Megoldás. A hatványsorok általános alakja $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$.

a) A $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n$ hatványsornál $\alpha_0 = 0$, $\alpha_n = \left(1 + \frac{1}{n}\right)^n$, ha $n \in \mathbb{N}^+$, és $\underline{a=0}$. A Cauchy–Hadamard-tétel szerint

$$A = \lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lim_{n \to +\infty} \sqrt[n]{\left|\left(1 + \frac{1}{n}\right)^n\right|} = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right) = 1 + 0 = 1,$$

amiből következik, hogy a hatványsor konvergenciasugara:

$$R = \frac{1}{A} = 1.$$

Ezért

$$(-1,1) = (a-R, a+R) \subset \mathrm{KH}\left(\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n\right) \subset [a-R, a+R] = [-1,1].$$

A határpontok vizsgálata.

• Hax=1,akkor a $\sum\limits_{n=1}\left(1+\frac{1}{n}\right)^n$ sort kapjuk, ami divergens, hiszen

$$a_n = \left(1 + \frac{1}{n}\right)^n \xrightarrow[n \to +\infty]{} e \neq 0,$$

azaz a sort generáló sorozat nem tart nullához.

• Ha x = -1, akkor a $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n (-1)^n$ sort kapjuk, ami divergens, hiszen

$$|a_n| = \left| \left(1 + \frac{1}{n} \right)^n (-1)^n \right| = \left(1 + \frac{1}{n} \right)^n \xrightarrow[n \to +\infty]{} e \neq 0,$$

azaz a sort generáló a_n sorozat nem tart nullához.

Összefoglalva:

$$KH\left(\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n\right) = (-1, 1).$$

b) Vegyük észre, hogy

$$\sum_{n=1}^{\infty} \frac{2^{n-1}}{2n-1} (3x-1)^n = \sum_{n=1}^{\infty} \frac{2^{n-1} 3^n}{2n-1} \left(x - \frac{1}{3} \right)^n.$$

2

Ez olyan hatványsor, ahol $\alpha_0 = 0$, $\alpha_n = \frac{2^{n-1}3^n}{2n-1} \neq 0$, ha $0 < n \in \mathbb{N}$, és $\underline{\underline{a} = \frac{1}{3}}$.

Ekkor

$$A = \lim_{n \to +\infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \lim_{n \to +\infty} \frac{2^n 3^{n+1}}{2n+1} \cdot \frac{2n-1}{2^{n-1} 3^n} = \lim_{n \to +\infty} 6 \cdot \frac{2n-1}{2n+1} = 6 \lim_{n \to +\infty} \frac{2 - \frac{1}{n}}{2 + \frac{1}{n}} = 6,$$

amiből következik, hogy a hatványsor konvergenciasugara:

$$R = \frac{1}{A} = \frac{1}{6}.$$

Ezért

$$\left(\frac{1}{6}, \frac{1}{2}\right) = (a - R, a + R) \subset \mathrm{KH}\left(\sum_{n=1}^{\infty} \frac{2^{n-1}3^n}{2n-1} \left(x - \frac{1}{3}\right)^n\right) \subset [a - R, a + R] = \left[\frac{1}{6}, \frac{1}{2}\right].$$

A határpontok vizsgálata

• Ha $x=\frac{1}{6}$, akkor a $\sum\limits_{n=1}^{\infty}\frac{2^{n-1}3^n}{2n-1}\left(-\frac{1}{6}\right)^n=\sum\limits_{n=1}^{\infty}\frac{1}{2(2n-1)}(-1)^n$ sort kapjuk, ami konvergens, hiszen ez egy Leibniz-típusú sor. Valóban, az

$$a_n = \frac{1}{2(2n-1)} \xrightarrow[n \to +\infty]{} 0$$

és a sorozat monoton csökkenő.

• Ha $x=\frac{1}{2}$, akkor a $\sum\limits_{n=1}^{\infty}\frac{2^{n-1}3^n}{2n-1}\left(\frac{1}{6}\right)^n=\sum\limits_{n=1}^{\infty}\frac{1}{2(2n-1)}$ sort kapjuk, ami divergens a minoráns kritérium szerint. Valóban

$$\frac{1}{2(2n-1)} \ge \frac{1}{2(2n)} = \frac{1}{4n} \quad (n>0)$$
 és $\sum_{n=1} \frac{1}{4n}$ divergens.

Összefoglalva:

$$KH\left(\sum_{n=1}^{\infty} \frac{2^{n-1}3^n}{2n-1} \left(x - \frac{1}{3}\right)^n\right) = \left[\frac{1}{6}, \frac{1}{2}\right).$$

Megjegyzés. A feladat megoldható a t=3x-1 transzformáció alkalmazásával is. Igazolható, hogy az így kapott

$$\sum_{n=1}^{\infty} \frac{2^{n-1}}{2n-1} t^n$$

hatványsor konvergenciahalmaza a $[-\frac{1}{2},\frac{1}{2})$ intervallum. Ebből következik, hogy az eredeti sor akkor és csak akkor konvergens, ha

$$-\frac{1}{2} \le 3x - 1 < \frac{1}{2} \qquad \iff \qquad \frac{1}{2} \le 3x < \frac{3}{2} \qquad \iff \qquad \frac{1}{6} \le x < \frac{1}{2}.$$

c) A $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} (x+2)^n$ hatványsornál $\alpha_n = \frac{(n!)^2}{(2n)!} \neq 0$, ha $n \in \mathbb{N}$, és $\underline{\underline{a} = -2}$. Ekkor

$$A = \lim_{n \to +\infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \lim_{n \to +\infty} \frac{((n+1)!)^2}{(2(n+1))!} \cdot \frac{(2n)!}{(n!)^2} = \lim_{n \to +\infty} \frac{(n+1)^2 (n!)^2 (2n)!}{(2n+2)(2n+1)(2n)!(n!)^2} = \lim_{n \to +\infty} \frac{(n+1)^2}{(2n+2)(2n+1)} = \lim_{n \to +\infty} \frac{(1+\frac{1}{n})^2}{(2+\frac{2}{n})(2+\frac{1}{n})} = \frac{1}{4},$$

3

amiből következik, hogy a hatványsor konvergenciasugara:

$$R = \frac{1}{A} = 4.$$

Ezért

$$(-6,2) = (a-R, a+R) \subset \mathrm{KH}\left(\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} (x+2)^n\right) \subset [a-R, a+R] = [-6,2].$$

A határpontok vizsgálata

• Ha x=2, akkor a $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} 4^n$ sort kapjuk. Megmutatjuk, hogy a sort generáló

$$a_n = \frac{(n!)^2}{(2n)!} 4^n \qquad (n \in \mathbb{N})$$

sorozat nem tart nullához, ezért a hatványsor az x=2 pontban divergens. Valóban $a_0=\frac{(0!)^2}{(2\cdot 0)!}4^0=1$ és az (a_n) sorozat szigorúan monoton növekvő, mert

$$\frac{a_{n+1}}{a_n} = \frac{((n+1)!)^2 4^{n+1}}{(2(n+1))!} \cdot \frac{(2n)!}{(n!)^2 4^n} = \frac{(n+1)^2 (n!)^2 \cdot 4 \cdot 4^n (2n)!}{(2n+2)(2n+1)(2n)!(n!)^2 4^n} = \frac{4(n+1)^2}{(2n+2)(2n+1)} = \frac{4(n+1)^2}{2(n+1)(2n+1)} = \frac{2(n+1)}{2n+1} = 1 + \frac{1}{2n+1} > 1.$$

Ezért (a_n) nem nullsorozat, és így a hatványsor divergens az x=2 pontban.

• Ha x=-6, akkor a $\sum\limits_{n=0}^{\infty}\frac{(n!)^2}{(2n)!}(-4)^n$ sort kapjuk, ami divergens, hiszen generáló sorozata nem tart nullához. Valóban, az előzőek alapján az

$$|b_n| = \left| \frac{(n!)^2}{(2n)!} (-4)^n \right| = \frac{(n!)^2}{(2n)!} 4^n \qquad (n \in \mathbb{N})$$

generáló sorozat abszolút értéke nem tart nullához, és így (b_n) nem nullsorozat. A hatványsor az x=-6 pontban is divergens.

Összefoglalva:

$$KH\left(\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} (x+2)^n\right) = (-6,2).$$

Eml'e keztető. $Hatv\'anysor\ \ddot{o}sszegf\ddot{u}ggv\'enye$. A konvergenciahalmaz minden egyes x eleméhez a sor összegét rendelve egy függvényt, nevezetesen a hatványsor $\ddot{o}sszegf\ddot{u}ggv\'eny\'et$ értelmezzük:

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n$$
, ha $x \in \mathrm{KH} \left(\sum_{n=0} \alpha_n (x-a)^n \right)$.

A mértani sor összegfüggvénye. A

$$\sum_{n=0}^{\infty} x^n$$

 $hat v\'any sor\ \"osszeg f\"ugg v\'eny e$

$$f(x) = \sum_{n=0}^{+\infty} x^n = \frac{1}{1-x} \qquad (-1 < x < 1).$$

Tétel. (Műveletek hatványsorokkal) Tegyük fel, hogy a $\sum_{n=0} \alpha_n (x-a)^n$, illetve $\sum_{n=0} \beta_n (x-a)^n$ hatványsorok R_{α} , illetve R_{β} konvergenciasugarai pozitívak, és legyen

$$R := \min\{R_{\alpha}, R_{\beta}\}.$$

Jelölje f, illetve g az összegfüggvényeket:

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \qquad (x \in (a - R_\alpha, a + R_\alpha)),$$

$$g(x) := \sum_{n=0}^{+\infty} \beta_n (x-a)^n \qquad (x \in (a - R_\beta, a + R_\beta)).$$

Ekkor a $\lambda \cdot f$, f + g és $f \cdot g$ függvények az (a - R, a + R) intervallumon felírhatók az alábbi hatványsorok összegeként:

1.
$$\lambda \cdot f(x) = \sum_{n=0}^{+\infty} \lambda \alpha_n (x-a)^n \qquad (x \in (a-R, a+R)),$$

2.
$$f(x) + g(x) = \sum_{n=0}^{+\infty} (\alpha_n + \beta_n)(x - a)^n \qquad (x \in (a - R, a + R)),$$

3.
$$f(x) \cdot g(x) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \alpha_k \, \beta_{n-k} \right) (x-a)^n \qquad (x \in (a-R, a+R)).$$

2. Feladat. Az alábbi f függvényeket (vagy egy alkalmas leszűkítésüket) állítsuk elő nulla középpontú hatványsor összegeként:

a)
$$f(x) = \frac{1-x}{1-x^2}$$
 $(x \in \mathbb{R} \setminus \{-1, 1\}),$

b)
$$f(x) = \frac{1}{1+x^2}$$
 $(x \in \mathbb{R}),$

c)
$$f(x) = \frac{x}{x^2 - 5x + 6}$$
 $(x \in \mathbb{R} \setminus \{2, 3\}).$

Megoldás.

a) Alakítsuk át a függvényt!

$$f(x) = \frac{1-x}{1-x^2} = \frac{1-x}{(1-x)(1+x)} = \frac{1}{1+x} = \frac{1}{1-(-x)} \qquad (x \in \mathbb{R} \setminus \{-1,1\}).$$

A mértani sor összegfüggvénye alapján (x helyett -x-et írunk)

$$\frac{1}{1 - (-x)} = \sum_{n=0}^{+\infty} (-x)^n = \sum_{n=0}^{+\infty} (-1)^n x^n \qquad (-1 < -x < 1),$$

azaz minden -1 < x < 1 esetén. Ez azt jelenti, hogy

$$f(x) = \sum_{n=0}^{+\infty} (-1)^n x^n \qquad (-1 < x < 1).$$

b) Alakítsuk át a függvényt!

$$f(x) = \frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$$
 $(x \in \mathbb{R}).$

A mértani sor összegfüggvénye alapján (x helyett $-x^2$ -et írunk)

$$\frac{1}{1 - (-x^2)} = \sum_{n=0}^{+\infty} (-x^2)^n = \sum_{n=0}^{+\infty} (-1)^n x^{2n} \qquad (-1 < -x^2 < 1),$$

azaz minden -1 < x < 1 esetén. Ez azt jelenti, hogy

$$f(x) = \sum_{n=0}^{+\infty} (-1)^n x^{2n} \qquad (-1 < x < 1).$$

Megjegyzés. $\sum_{n=0}^{\infty} (-1)^n x^{2n}$ egy olyan nulla középpontú hatványsor, amelynek minden páratlan indexű tagja nulla. Valóban, a sor felírható a

$$\sum_{n=0} \alpha_n (x-0)^n \quad \text{alakban, ahol} \quad \alpha_n = \begin{cases} (-1)^{n/2} & (n \text{ páros szám}) \\ 0 & (n \text{ páratlan szám}). \end{cases}$$

c) Alakítsuk át a függvényt!

$$f(x) = \frac{x}{x^2 - 5x + 6} = \frac{x}{(x - 2)(x - 3)} \qquad (x \in \mathbb{R} \setminus \{2, 3\}).$$

Parciális törtekre bontunk:

$$\frac{x}{(x-2)(x-3)} = \frac{A}{x-2} + \frac{B}{x-3} = \frac{A(x-3) + B(x-2)}{(x-2)(x-3)} = \frac{(A+B)x - 3A - 2B}{(x-2)(x-3)}.$$

Ekkor

$$x = (A+B)x - 3A - 2B \qquad (x \in \mathbb{R}).$$

Ez csak akkor lehetséges, ha A+B=1 és -3A-2B=0, amiből

$$B = 1 - A$$
 \implies $0 = -3A - 2B = -3A - 2(1 - A) = -2 - A$

azaz A = -2 és B = 3. Így

$$f(x) = -\frac{2}{x-2} + \frac{3}{x-3} = \frac{1}{1-\frac{x}{2}} - \frac{1}{1-\frac{x}{2}}$$
 $(x \in \mathbb{R} \setminus \{2,3\}).$

A mértani sor összegfüggvénye alapján (x helyett x/2-et írunk)

$$\frac{1}{1 - \frac{x}{2}} = \sum_{n=0}^{+\infty} \left(\frac{x}{2}\right)^n = \sum_{n=0}^{+\infty} \frac{1}{2^n} x^n \qquad (-1 < \frac{x}{2} < 1),$$

azaz minden -2 < x < 2 esetén, illetve (x helyett x/3-at írunk)

$$\frac{1}{1 - \frac{x}{3}} = \sum_{n=0}^{+\infty} \left(\frac{x}{3}\right)^n = \sum_{n=0}^{+\infty} \frac{1}{3^n} x^n \qquad (-1 < \frac{x}{3} < 1),$$

azaz minden -3 < x < 3 esetén.

Tehát

$$f(x) = \frac{1}{1 - \frac{x}{2}} - \frac{1}{1 - \frac{x}{3}} = \sum_{n=0}^{+\infty} \frac{1}{2^n} x^n - \sum_{n=0}^{+\infty} \frac{1}{3^n} x^n = \sum_{n=0}^{+\infty} \left(\frac{1}{2^n} - \frac{1}{3^n} \right) x^n \quad (-2 < x < 2).$$

Megjegyzés. A feladat hatványsorok szorzatával is megoldható. Valóban

$$f(x) = \frac{x}{(x-2)(x-3)} = \frac{x}{(2-x)(3-x)} = \frac{x}{6} \cdot \frac{1}{1-\frac{x}{2}} \cdot \frac{1}{1-\frac{x}{3}},$$

illetve már igazoltuk, hogy

$$\frac{1}{1 - \frac{x}{2}} = \sum_{n=0}^{+\infty} \frac{1}{2^n} x^n \quad (-2 < x < 2) \qquad \text{és} \qquad \frac{1}{1 - \frac{x}{3}} = \sum_{n=0}^{+\infty} \frac{1}{3^n} x^n \quad (-3 < x < 3).$$

A fenti két hatványsor szorzata

$$\frac{1}{1 - \frac{x}{2}} \cdot \frac{1}{1 - \frac{x}{2}} = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{1}{2^k} \cdot \frac{1}{3^{n-k}} \right) x^n \qquad (-2 < x < 2).$$

Ezért

$$f(x) = \frac{x}{6} \cdot \frac{1}{1 - \frac{x}{2}} \cdot \frac{1}{1 - \frac{x}{3}} = \frac{x}{6} \cdot \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{1}{2^{k}} \cdot \frac{1}{3^{n-k}} \right) x^{n} = \frac{x}{6} \cdot \sum_{n=0}^{+\infty} \frac{1}{3^{n}} \left(\sum_{k=0}^{n} \left(\frac{3}{2} \right)^{k} \right) x^{n} = \frac{x}{6} \cdot \sum_{n=0}^{+\infty} \frac{1}{3^{n}} \cdot \frac{1 - (3/2)^{n+1}}{1 - 3/2} \cdot x^{n} = \frac{x}{6} \cdot \sum_{n=0}^{+\infty} \frac{2}{3^{n}} \left(\frac{3^{n+1}}{2^{n+1}} - 1 \right) x^{n} = \frac{1}{3^{n+1}} \left(\frac{3^{n+1}}{2^{n+1}} - 1 \right) x^{n+1} = \sum_{n=0}^{+\infty} \left(\frac{1}{2^{n}} - \frac{1}{3^{n}} \right) x^{n} = \sum_{n=0}^{+\infty} \left(\frac{1}{2^{n}} - \frac{1}{3^{n}} \right) x^{n} \qquad (-2 < x < 2).$$

 $\pmb{Emlékeztető.}$ \pmb{Az} exponenciális függvény. A $\sum\limits_{n=0}^{x^n}$ hatványsor minden $x\in\mathbb{R}$ pontban abszolút konvergens. Az összegfüggvényét, vagyis a

$$\exp(x) := \sum_{n=0}^{+\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots \qquad (x \in \mathbb{R})$$

függvényt exponenciális függvénynek nevezzük.

Az e szám hatványait tetszőleges $x \in \mathbb{R}$ kitevő esetén így értelmezzük:

$$e^x := \exp(x) \qquad (x \in \mathbb{R}).$$

 \pmb{A} szinusz- és koszinuszfüggvény. A $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ hatványsor minden $x \in \mathbb{R}$ pontban abszolút konvergens. Az összegfüggvényét szinuszfüggvénynek nevezzük, vagyis

$$\sin x := \sin(x) := \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots \qquad (x \in \mathbb{R}).$$

A $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ hatványsor minden $x \in \mathbb{R}$ pontban abszolút konvergens. Az összegfüggvényét **koszinuszfüggnew** nevezzük, vagyis

$$\cos x := \cos(x) := \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots \qquad (x \in \mathbb{R}).$$

3. Feladat. Állítsuk elő az

a)
$$f(x) = e^{-\frac{x^2}{2}}$$
 $(x \in \mathbb{R}),$ b) $f(x) = \sin^2 x$ $(x \in \mathbb{R})$

függvényeket nulla középpontú hatványsor összegeként.

Megoldás.

a) Az exponenciális függvény hatványsora alapján (x helyett $-x^2/2$ -et írunk)

$$e^{-\frac{x^2}{2}} = \exp(-\frac{x^2}{2}) = \sum_{n=0}^{+\infty} \frac{(-\frac{x^2}{2})^n}{n!} \qquad (\underbrace{-x^2/2 \in \mathbb{R}}_{x \in \mathbb{R}}),$$

azaz

$$e^{-\frac{x^2}{2}} = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(-2)^n n!}$$
 $(x \in \mathbb{R}).$

b) A

$$\cos^2 x + \sin^2 x = 1$$
 és $\cos^2 x - \sin^2 x = \cos 2x$ $(x \in \mathbb{R})$

trigonometrikus azonosságok kivonásával azt kapjuk, hogy

$$2\sin^2 x = 1 - \cos 2x$$
 \Longrightarrow $\sin^2 x = \frac{1 - \cos 2x}{2}$ $(x \in \mathbb{R})$

A koszinuszfüggvény hatványsora alapján (x helyett 2x-et írunk)

$$\cos 2x = \sum_{n=0}^{+\infty} (-1)^n \frac{(2x)^{2n}}{(2n)!} \qquad (\underbrace{2x \in \mathbb{R}}_{x \in \mathbb{R}}),$$

azaz

$$\sin^2 x = \frac{1}{2} - \frac{1}{2}\cos 2x = \frac{1}{2} - \frac{1}{2}\sum_{n=0}^{+\infty} (-1)^n \frac{(2x)^{2n}}{(2n)!} = \frac{1}{2} - \frac{1}{2}\sum_{n=0}^{+\infty} (-1)^n \frac{4^n x^{2n}}{(2n)!} =$$

$$= \frac{1}{2} + \sum_{n=0}^{+\infty} \frac{(-4)^n}{-2} \frac{x^{2n}}{(2n)!} = \frac{1}{2} + \sum_{n=0}^{+\infty} 2(-4)^{n-1} \frac{x^{2n}}{(2n)!} =$$

$$= \frac{1}{2} - \frac{1}{2} + \sum_{n=1}^{+\infty} 2(-4)^{n-1} \frac{x^{2n}}{(2n)!} = \sum_{n=1}^{+\infty} 2(-4)^{n-1} \frac{x^{2n}}{(2n)!} \qquad (x \in \mathbb{R}).$$