Linear Programming

Outline

- Linear Programming
 - Integer
 - Vertex Cover
 - Fractional
- How are fractional solutions useful?
 - Rounding
 - Approximate Vertex Cover

Outline

- Linear Programming
 - Integer
 - Vertex Cover
 - Fractional
- How are fractional solutions useful?
 - Rounding
 - Approximate Vertex Cover

Learning objectives:

You are able to

- describe the concept of a linear program
- explain the difference between an integer and a fractional linear program
- illustrate how to model the vertex cover as a linear program
- apply rounding to turn a fractional vertex cover into an integer vertex cover

Linear Programs

Recall the optimization formulation

Minimize x

Objective function f(x)

Subject to

Linear Programs

Minimize x

Objective function f(x)

Subject to

$$\mathbf{x} = x_1, x_2, \dots, x_n$$

Linear Programs

Minimize

 χ

Objective function f(x)

Subject to

Constraints $g_1(x)$ $g_2(x)$... $g_m(x)$

$$\mathbf{x} = x_1, x_2, \dots, x_n$$

Linear:

Each g_i is a linear inequality on $x_1, x_2, ..., x_n$ f is a linear function

Maximize x

Objective function f(x)

Subject to

$$x = x_1, x_2$$

Maximize x

Objective function f(x)

Subject to

$$x = x_1, x_2$$

Maximize x

Objective function f(x)

Subject to

$$x = x_1, x_2$$

Maximize x

Objective function f(x)

Subject to

$$x = x_1, x_2$$

Maximize

 χ

$$f(x) = 2x_2 + x_1$$

Subject to

$$x = x_1, x_2$$

Maximize

 χ

 $f(x) = 2x_2 + x_1$

Subject to

$$x = x_1, x_2$$

Maximize *x*

Objective function f(x)

Subject to

$$x = x_1, x_2, ..., x_n$$

Maximize x

Objective function f(x)

Subject to

Constraints $g_1(x)$ $g_2(x)$... $g_m(x)$

$$\mathbf{x} = x_1, x_2, \dots, x_n$$

Integer linear program:

$$\forall i, x_i = \{0,1\}$$

Outline

- Linear Programming
 - Integer
 - Vertex Cover
 - Fractional
- How are fractional solutions useful?
 - Rounding
 - Approximate Vertex Cover

An Informative Example Problem: Vertex Cover

Given a graph G = (V, E)Find a set of nodes $C \subseteq V$ that *covers* all edges.

An Informative Example Problem:

Vertex Cover

Given a graph G = (V, E)Find a set of nodes $C \subseteq V$ that covers all edges.

For each $\{u, v\} \in E$, either $u \in C$ or $v \in C$

An Informative Example Problem: Vertex Cover

Given a graph G = (V, E)Find a set of nodes $C \subseteq V$ that covers all edges.

For each $\{u, v\} \in E$, either $u \in C$ or $v \in C$

$$x_i = \begin{cases} 1 & \text{if node } i \text{ in the cover} \\ 0 & \text{otherwise} \end{cases}$$

Nodes numbered from 1 to n

Minimize x

$$\sum_{i=1}^{n} x_i$$

Integer program:

$$x_i = \begin{cases} 1 & \text{if node } i \text{ in the cover} \\ 0 & \text{otherwise} \end{cases}$$

Nodes numbered from 1 to n

Minimize x

$$\sum_{i=1}^{n} x_i$$

Subject to

$$x_i + x_j \ge 1$$
 for all $\{i, j\} \in E$

Integer program:

$$x_i = \begin{cases} 1 & \text{if node } i \text{ in the cover} \\ 0 & \text{otherwise} \end{cases}$$

Nodes numbered from 1 to n

Minimize x

$$\sum_{i=1}^{n} x_i$$

$$x_i + x_j \ge 1$$
 for all $\{i, j\} \in E$

Minimize x

$$\sum_{i=1}^{n} x_i$$

$$x_i + x_j \ge 1$$
 for all $\{i, j\} \in E$

Minimize x

$$\sum_{i=1}^{n} x_i$$

$$x_i + x_j \ge 1$$
 for all $(i, j) \in E$
 $x_i \in \{0, 1\}$ for all $i \in V$

Outline

- Vertex Cover
- Linear Programming
 - Integer
 - Fractional
- How are fractional solutions useful?
- Approximate Vertex Cover

from 1 to n

Minimize x

$$\sum_{i=1}^{n} x_i$$

$$x_i + x_j \ge 1$$
 for all $(i, j) \in E$
 $x_i \ge 0$ for all $i \in V$

Minimize x

$$\sum_{i=1}^{n} x_i$$

$$x_i + x_j \ge 1$$
 for all $(i, j) \in E$
 $x_i \ge 0$ for all $i \in V$

$$x_i + x_j \ge 1$$
 for all $(i, j) \in E$
 $x_i \ge 0$ for all $i \in V$

$$f(x)=4$$

Theorem:

Linear program relaxations can be solved in polynomial time

Usually the definition of "efficient"

Theorem:

Linear program relaxations can be solved in polynomial time

Usually the definition of "efficient"

In this course, we use this theorem as a tool

Theorem:

Linear program relaxations can be solved in polynomial time

Usually the definition of "efficient"

In this course, we use this theorem as a tool

Simplex is a classic text-book algorithm

Theorem:

Linear program relaxations can be solved in polynomial time

Usually the definition of "efficient"

In this course, we use this theorem as a tool

Simplex is a classic text-book algorithm

The ellipsoid method achieves polynomial time

Outline

- Vertex Cover
- Linear Programming
 - Integer
 - Fractional
- How are fractional solutions useful?
 - Rounding
 - Approximate Vertex Cover

Optimum of Relaxation is Better

Observation:

A solution to the integer program is a solution to the relaxation.

Optimum of Relaxation is Better

Observation:

A solution to the integer program is a solution to the relaxation.

$$\sum_{i=1}^{n} x_i$$

$$x_i + x_j \ge 1$$
 for all $(i, j) \in E$
 $x_i \ge 0$ for all $i \in V$

$$\sum_{i=1}^{n} x_i$$

$$x_i + x_j \ge 1$$
 for all $(i, j) \in E$
 $x_i \in \{0, 1\}$ for all $i \in V$

Optimum of Relaxation is Better

Observation:

A solution to the integer program is a solution to the relaxation.

Therefore, the optimum x_{IP} to the integer program is at most as good as the solution to the relaxation x_{LP} .

$$\sum_{i=1}^{n} x_i$$

$$x_i + x_j \ge 1$$
 for all $(i, j) \in E$
 $x_i \ge 0$ for all $i \in V$

$$\sum_{i=1}^{n} x_i$$

$$x_i + x_j \ge 1$$
 for all $(i, j) \in E$
 $x_i \in \{0, 1\}$ for all $i \in V$

Rounding

Optimum integer x_{IP} Optimum fractional x_{LP}

$$f(x_{\mathsf{LP}}) \le f(x_{\mathsf{IP}})$$

Rounding

Optimum integer x_{IP} Optimum fractional x_{LP}

$$f(x_{\mathsf{LP}}) \le f(x_{\mathsf{IP}})$$

Idea:

Find an optimum x_{LP} .

Turn x_{LP} into an integer solution with almost the same cost.

Rounding

Optimum integer x_{IP} Optimum fractional x_{LP}

$$f(x_{\mathsf{LP}}) \le f(x_{\mathsf{IP}})$$

Idea:

Find an optimum x_{LP} .

Turn x_{LP} into an integer solution with almost the same cost.

Using a black box

Outline

- Vertex Cover
- Linear Programming
 - Integer
 - Fractional
- How are fractional solutions useful?
 - Rounding
 - Approximate Vertex Cover

$$x_i + x_j \ge 1$$
 for all $(i, j) \in E$
 $x_i \ge 0$ for all $i \in V$

$$x_i + x_j \ge 1$$
 for all $(i, j) \in E$
 $x_i \ge 0$ for all $i \in V$

Get fractional values from a black box.

$$x_i + x_j \ge 1$$
 for all $(i, j) \in E$
 $x_i \ge 0$ for all $i \in V$

Get fractional values from a black box.

At least one endpoint has $x_u \ge 1/2$

$$\frac{\{u,v\}}{x_u} = \frac{2}{3} \qquad x_v = \frac{2}{5}$$

Algorithm:

- 1) Find an optimum fractional solution
- 2) Set all $x_i \ge 1/2$ to 1
- 3) Set all $x_i < 1/2$ to 0

At least one endpoint has

$$x_u \ge 1/2$$

Algorithm:

- 1) Find an optimum fractional solution
- 2) Set all $x_i \ge 1/2$ to 1
- 3) Set all $x_i < 1/2$ to 0

Rounding:

Add to the cover

At least one endpoint has

$$x_u \ge 1/2$$

Algorithm:

- 1) Find an optimum fractional solution
- 2) Set all $x_i \ge 1/2$ to 1
- 3) Set all $x_i < 1/2$ to 0

At least one endpoint has

$$x_u \ge 1/2$$

Analysis:

i) Cost increases by at most a factor of 2

Algorithm:

- 1) Find an optimum fractional solution
- 2) Set all $x_i \ge 1/2$ to 1
- 3) Set all $x_i < 1/2$ to 0

At least one endpoint has

$$x_u \ge 1/2$$

Analysis:

- i) Cost increases by at most a factor of 2
- ii) At least one endpoint is in the cover

Algorithm:

- 1) Find an optimum fractional solution
- 2) Set all $x_i \ge 1/2$ to 1
- 3) Set all $x_i < 1/2$ to 0

At least one endpoint has

$$x_u \ge 1/2$$

Optimum integer χ_{IP} Optimum fractional $\chi_{|P|}$ $f(x_{\mathsf{LP}}) \leq f(x_{\mathsf{IP}})$ 2-approximation! Analysis:

- i) Cost increases by at most a factor of 2.
- ii) At least one endpoint is in the cover

Wrap-up

Linear program:

A linear objective function and a set of linear constraints.

Has a nice geometric interpretation, especially in the case of two variables.

Rounding:

We know how to solve fractional LPs efficiently.

Sometimes, fractional solutions can be easily turned into integer solutions.