

Arab Academy for Science, Technology and Maritime Transport College of Artificial Intelligence

Course	Swarm Intelligence (RB414)		Feb. 2025
Teaching Staff	Dr. Omar Shalash	Eng. Ahmed Métwalli	

Sheet 1: Ant Colony Optimization

Coordinates of Points (cities):

$$x_1 = (9, 76),$$

 $x_2 = (28, 75),$
 $x_3 = (98, 3),$
 $x_4 = (69, 27).$

ACO Parameters:

$$\begin{split} & \text{Population Size} = 4, \\ & \text{Maximum Iterations} = 10, \\ & \text{Pheromone Evaporation Rate} = 0.05, \\ & \text{Artificial Pheromone (Initial)} = 0.0453, \\ & \alpha = 1, \quad \beta = 1, \quad Q = 1. \end{split}$$

We need to find the shortest route visiting each of the four points $\{x_1, x_2, x_3, x_4\}$ exactly once and returning to the start, using the Ant Colony Optimization steps:

- 1. Initialize pheromone values on all edges to the artificial pheromone (0.0453).
- 2. Place 4 ants on different starting nodes.
- **3.** Compute paths based on probability (influenced by pheromone τ_{ij} and distance via $\eta_{ij} = 1/d_{ij}$).
- 4. Update pheromone intensities on edges used by ants.
- **5.** Repeat until the maximum iteration (10) or convergence.

Table 1: Distance Matrix d_{ij}

$i \setminus j$	1	2	3	4
1	_	19.03	115.22	77.47
2	19.03	_	100.42	63.17
3	115.22	100.42	_	37.65
4	77.47	63.17	37.65	_

(Values are rounded to 2 decimal places.)

Arab Academy for Science, Technology and Maritime Transport College of Artificial Intelligence

Course	Swarm Intelligence (RB414)		Feb. 2025
Teaching Staff	Dr. Omar Shalash	Eng. Ahmed Métwalli	

Sheet 2: Particle Swarm Optimization

Problem: Communication in Particle Swarm Optimization (PSO)

In Particle Swarm Optimization, each particle communicates implicitly with other particles by sharing information through the global best-known solution (g^{best}) . The communication mechanism is defined by the following steps: **Problem: Minimization of the Rastrigin Function (Non-Convex)** The Rastrigin function is non-convex, multimodal, and a standard benchmark for testing optimization algorithms:

$$f(x) = 20 + x_1^2 - 10\cos(2\pi x_1) + x_2^2 - 10\cos(2\pi x_2)$$

PSO Parameters:

Population Size = 2, Maximum Iterations = 10, Inertia Weight (w) = 0.5, Cognitive Coefficient $(c_1) = 1.5$, Social Coefficient $(c_2) = 2.0$.

Initial Particle Positions and Velocities:

$$x_1^0 = [4, 5],$$
 $v_1^0 = [0, 0],$
 $x_2^0 = [3, -4],$ $v_2^0 = [1, -1].$

Procedure:

- 1. Evaluate initial fitness for each particle using the Rastrigin function.
- **2.** Determine personal best (p_i^{best}) and global best (g^{best}) .
- **3.** Update velocities:

$$v_i^{t+1} = wv_i^t + c_1r_1(p_i^{best} - x_i^t) + c_2r_2(g^{best} - x_i^t)$$

4. Update positions:

$$x_i^{t+1} = x_i^t + v_i^{t+1}$$

5. Repeat until convergence or maximum iterations.

The global minimum is at (0,0) with f(0,0) = 0, but multiple local minima complicate the optimization. This indirect communication through g^{best} enables particles to explore collectively and find optimal solutions efficiently.