STAT/MA 41600

Practice Problems: November 14, 2014 Solutions by Mark Daniel Ward

- **1.** Let X_1, \ldots, X_{30} denote the 30 waiting times. Then $\mathbb{E}(X_j) = 1/2$ and $\operatorname{Var} X_j = 1/4$, so $\mathbb{E}(X_1 + \cdots + X_{30}) = (30)(1/2) = 15$ and $\operatorname{Var}(X_1 + \cdots + X_{30}) = (30)(1/4) = 7.5$. So $P(X_1 + \cdots + X_{30} > 14) = P(\frac{X_1 + \cdots + X_{30} 15}{\sqrt{7.5}} > \frac{14 15}{\sqrt{7.5}}) \approx P(Z > -.37) = P(Z < .37) = .6443$.
- 2. Let X_1, \ldots, X_{30} be indicator random variables that denote whether the 30 students are happy with their items, i.e., $X_j = 1$ if the jth student is happy, or $X_j = 0$ otherwise. Then $\mathbb{E}(X_j) = .60$ and $\mathrm{Var}(X_j) = (.60)(.40) = .24$, so $\mathbb{E}(X_1 + \cdots + X_{30}) = (30)(.60) = 18$ and $\mathrm{Var}(X_1 + \cdots + X_{30}) = (30)(.24) = 7.2$. So, using continuity correction since the X_j 's are integer-valued random variables, $P(X_1 + \cdots + X_{30} \ge 20) = P(X_1 + \cdots + X_{30} \ge 19.5) = P(\frac{X_1 + \cdots + X_{30-18}}{\sqrt{7.2}} \ge \frac{19.5 18}{\sqrt{7.2}}) \approx P(Z \ge .56) = 1 P(Z < .56) = 1 .7123 = .2877$.
- **3.** a. We compute $\mathbb{E}(X) = \int_0^{10} x \frac{(10-x)^3}{2500} dx = \int_0^{10} (10-u) \frac{u^3}{2500} du = 2$, and $\mathbb{E}(X^2) = \int_0^{10} x^2 \frac{(10-x)^3}{2500} dx = \int_0^{10} (10-u)^2 \frac{u^3}{2500} du = 20/3$, so $\text{Var}(X) = 20/3 2^2 = 8/3$.
- b. Let X_1, \ldots, X_{200} be the delays of the 200 people. So $\mathbb{E}(X_1 + \cdots + X_{200}) = (200)(2) = 400$ and $\text{Var}(X_1 + \cdots + X_{200}) = (200)(8/3) = 1600/3$. So $P(X_1 + \cdots + X_{200} > 420) = P(\frac{X_1 + \cdots + X_{200} 400}{\sqrt{1600/3}} > \frac{420 400}{\sqrt{1600/3}}) \approx P(Z > .87) = 1 P(Z \le .87) = 1 .8078 = .1922$.
- **4.** Let X_1, \ldots, X_{100} be the completion times of the 100 people. So $\mathbb{E}(X_1 + \cdots + X_{100}) = (100)(3.5) = 350$ and $\text{Var}(X_1 + \cdots + X_{100}) = (100)(1/4) = 25$. So $P(348 < X_1 + \cdots + X_{100} < 352) = <math>P(\frac{348 350}{\sqrt{25}} < \frac{X_1 + \cdots + X_{100} 350}{\sqrt{25}} > \frac{352 350}{\sqrt{25}}) \approx P(-.4 < Z < .4)$. We break this up as $P(Z < .4) P(Z \le .4) = P(Z < .4) P(Z \le .4) = P(Z < .4) (1 P(Z < .4)) = 2P(Z < .4) 1 = (2)(.6554) 1 = .3108$.
- **5.** We have $\mathbb{E}(X_1 + \dots + X_{12}) = (12)(0.99) = 11.88$ and $\text{Var}(X_1 + \dots + X_{12}) = (12)(.03^2) = .0108$. So $P(Y > 1) = P(\frac{X_1 + \dots + X_{12}}{12} > 1) = P(X_1 + \dots + X_{12} > 12) = P(\frac{X_1 + \dots + X_{12} 11.88}{\sqrt{.0108}}) \approx P(Z > 1.15) = 1 P(Z \le 1.15) = 1 .8749 = .1251$.