Learn to represent and visualize basic qubit states on the Bloch Sphere

1 - Pure Qubit

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle, |\alpha|^2 + |\beta|^2 = 1$$

Being

 $|\psi\rangle$ - a representation of the state vector of a 2-dimensional complex vector space (C2).

 α , β - are complex numbers, amplitudes for the Qubit, two real angles that can be represented in a Bloch Sphere.

 $|0\rangle$, $|1\rangle$ - are computational basis states

Mathematically:

$$|0\rangle = |1|$$
 $|1\rangle = |0|$ $|1|$

Physically: spin up or down, depending of the processor model (Superconducting, Trapped Ion, Neutral Atom, Quantum Dots)

 $|\alpha|^2$, $|\beta|^2$ - probabilities of measuring the qubit in $|0\rangle$, $|1\rangle$ in modulus.

2 - Qubit State in terms of angles

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$$

 θ represent the balance between $|0\rangle$ and $|1\rangle$

 ϕ represent the imaginary part (phase).

Exercise:

Initialize a Qubit in the $|0\rangle$ state:

- Create a simple quantum circuit with one qubit in the |0| state
- visualize this state on the Bloch Sphere

Change to $|1\rangle$ state:

- Apply the X gate (NOT gate) to change the Qubit to $|1\rangle$.
- visualize this state on the Bloch Sphere

Create a superposition:

- Apply the Hadamard gate to create superposition state
- visualize this state on the Bloch Sphere

