

Klasterovanje

Gaussian Mixture Model

Modeli mešavina

 Upoznali smo se sa algoritamskim pristupom klasterovanju (K-means)

 Modeli mešavina: probabilistički pristup klasterovanju (klasterovanje zasnovano na modelu)

Motivacioni primer

- Učenje preferenci korisnika nad skupom tema
- Klasterovaćemo dokumente u neke skupove tema i onda koristiti korisnički feedback za članke koje je pročitao

Ograničenja K-means

1. "Čvrsta" (isključiva) dodela objekta klasteru, bez kvantifikacije nesigurnosti

Ograničenja K-means

- 2. Pretpostavlja sferično simetrične klastere
 - K-means dodeljuje objekat klasteru sa najbližim centroidom:

$$z_i \leftarrow \arg\min_j \left\| \frac{\mu_j}{2} - x_i \right\|_2^2$$

Samo centroid figuriše, ništa o obliku klastera nije uzeto u obzir

Možemo ga modifikovati da koristi otežinjenu Euklidsku udaljenost, ali...

Klasteri su isključivo elipsoidni

Elipse su isključivo paralelne sa osama

Kako da odredimo težine?

Slučajevi u kojima k-means ne uspeva

Model mešavina

 Ova ograničenja motivišu probabilistički model: model mešavina (mixture model)

- 1. Model mešavina nam omogućava "meku" dodelu objekata klasterima
 - Npr. "svetske vesti" 54%, "nauka" 45%, "sport" 1% i "zabava" 0%
- 2. Pored centra klastera uzima u obzir i njegov oblik
- 3. Omogućava da učimo "težine" različitih dimenzija
 - Npr. prilikom klasterovanja dokumenata kakve težine da dodelimo svakoj reči iz rečnika (prilikom računanja sličnosti dokumenata)

Ilustrativni primer: klasterovanje slika

Reprezentacija: prosečna vrednost intenziteta crvenih, zelenih i plavih piksela [R, G, B]

Histogram vrednosti plave boje

Ako bismo imali labele, mogli bismo se uveriti da je ova reprezentacija adekvatna

Histogram vrednosti plave boje

Nije jasno kojoj grupi pripada. Možda ćemo to lakše uočiti posmatrajući drugu dimenziju (npr. crvenu boju)

Histogram vrednosti crvene boje

- U "crvenoj" dimenziji značajno lakše možemo razdvojiti kategorije "šume" i "zalaska sunca"
- Prilikom klasterovanja, zakonitosti koje nam mogu pomoći da razdvojimo klastere mogu biti uočljivije ako posmatramo više dimenzija, a ne samo jednu

Fitovanje normalne (Gausove) raspodele

- Za svaku dimenziju [R, G, B]:
 - Intenzitet piksela ćemo tretirati kao slučajnu promenljivu
 - Naša pretpostavka je da su uočene opservacije $x^{(i)}$ izvučene nezavisno jedna od druge iz iste Gausove distribucije $\mathcal{N}(x^{(i)}|\mu,\sigma^2)$
 - Želimo da na osnovu podataka odredimo parametre distribucije μ (srednju vrednost) i σ^2 (varijansu)