AMENDMENTS TO THE CLAIMS

- 1. (currently amended) A copolymer of ethylene with α -olefins which has a molar mass distribution M_w/M_n of from 1 to 8, a density of from 0.85 to 0.94 g/cm³, a molar mass M_n of from 10 000 g/mol to 4 000 000 g/mol and a CDBI of less than 50%, and in which thea side chain branching of the maxima of the individual peaks of thea side chain branching distribution is in each case greater than 5 CH₃/1 000 carbon atoms.
- (currently amended) A<u>The</u> copolymer of ethylene with α -olefins as claimed in claim 1
 which has an at least bimodal wherein the side chain branching distribution is at least
 bimodal.
- 3. (currently amended) A<u>The</u> copolymer of ethylene with α -olefins as claimed in claim 1-or 2 which has a wherein the molar mass M_n of is from 150 000 g/mol to 1 000 000 g/mol.
- 4. (currently amended) A<u>The</u> copolymer of ethylene with α -olefins as claimed in any of elaims 1 to 3claim 1 which has at least one peak in thea Crystaf® spectrum of thea differential distribution in the range from 15 to 40°C and at least one further peak in the Crystaf® spectrum of the differential distribution in the range from 25 to 80°C.
- 5. (currently amended) A<u>The</u> copolymer of ethylene with α -olefins as claimed in any of elaims 2 to 4claim 2 in which the side chain branching distribution is bimodal or trimodal.
- 6. (currently amended) A process for preparing ethylene copolymers <u>having a molar mass</u> distribution M_w/M_n of from 1 to 8, a density of from 0.85 to 0.94 g/cm³, a molar mass M_n of from 10 000 g/mol to 4 000 000 g/mol and a CDBI of less than 50%, and in which a side chain branching of the maxima of the individual peaks of a side chain branching distribution is in each case greater than 5 CH₃/1 000 carbon atoms as claimed in any of

elaims 1 to 5, which comprises the process comprising polymerizing ethylene with α -olefins in the presence of the following components:

A) at least one monocyclopentadienyl complex comprising thea structural feature of thea formula (Cp-Z-A)Cr (I), where the variables have the following meanings:

Cp-Z-A is a ligand of the formula (II):

$$A - Z - R^{1A}$$

$$R^{3A}$$

$$R^{3A}$$

$$R^{3A}$$

where

R^{1A}-R^{4A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{11A}₂, N(SiR^{11A}₃)₂, OR^{11A}, OSiR^{11A}₃, SiR^{11A}₃, BR^{11A}₂, where the organic radicals R^{1A}-R^{4A} may also be substituted by halogens and where at least two of the vicinal radicals R^{1A}-R^{4A} are joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S[[,]];

Z is a bridge between A and Cp having the formula:

where

L is carbon or silicon, preferably carbon,

 R^{5A} , R^{6A} are each hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11A} 3, where the organic radicals R^{5A} and R^{6A} may also be substituted by halogens and R^{5A} and R^{6A} may also be joined to form a five- or six-membered ring[[,]];

where

E^{1A}-E^{4A} are each carbon or nitrogen,

 R^{7A} - R^{10A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11A}_{3} , where the organic radicals R^{7A} - R^{10A} may also bear halogens or nitrogen or further C_1 - C_{20} -alkyl groups, C_2 - C_{20} -alkenyl groups, C_6 - C_{20} -aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11A}_{3} as substituents and two vicinal radicals R^{7A} - R^{10A} or R^{7A} and Z may also be joined to form a five- or six-membered ring,

 R^{11A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the

alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{11A} may also be joined to form a five- or six-membered ring, and

- p is 0 when E^{1A} - E^{4A} is nitrogen and is 1 when E^{1A} - E^{4A} is carbon[[,]];
- B) optionally an organic or inorganic support[[,]];
- C) optionally one or more activating compounds at least one activating compound; and
- D) optionally one or moreat least one metal compounds compound containing a metal of group 1, 2 or 13 of the Periodic Table.
- 7. (currently amended) A catalyst system for olefin polymerization comprising
 - A') at least one monocyclopentadienyl complex A') comprising the structural feature of thea formula (Cp-CR^{5B}R^{6B}-A)Cr (IV), where the variables have the following meanings:

Cp-CR^{5B}R^{6B}-A is A
$$\stackrel{R^{5B}}{\underset{P^{4B}}{|}}$$
 $\stackrel{R^{2B}}{\underset{P^{4B}}{|}}$ (V)

where

R^{1B}-R^{4B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical, NR^{5A}₂, N(SiR^{11B}₃)₂, OR^{11B}, OSiR^{11B}₃, SiR^{11B}₃, BR^{11B}₂, where the organic radicals

 R^{1B} - R^{4B} may also be substituted by halogens and two vicinal radicals R^{1B} - R^{4B} may also be joined to form a five- or six-membered ring,

 R^{5B} , R^{6B} are each hydrogen or methyl[[,]];

A is
$$R_{p}^{7B} = E_{p}^{1B} = E_{p}^{3B} = R_{p}^{9B}$$
 (VI)

where

E^{1B}-E^{4B} are each carbon or nitrogen,

 R^{7B} - R^{10B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11B}_{3} , where the organic radicals R^{7B} - R^{10B} may also bear halogens or nitrogen or further C_1 - C_{20} -alkyl groups, C_2 - C_{20} -alkenyl groups, C_6 - C_{20} -aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11B}_{3} as substituents and two vicinal radicals R^{7B} - R^{10B} may also be joined to form a five- or sixmembered ring,

 R^{11B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{11B} may also be joined to form a five- or six-membered ring,

p is 0 when E^{1B} - E^{4B} is nitrogen and is 1 when E^{1B} - E^{4B} is carbon,

where at least one radical R^{7B} - R^{10B} is C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11B}_3 and the organic radicals R^{7B} - R^{10B} may also bear halogens or nitrogen or further C_1 - C_{20} -alkyl groups, C_2 - C_{20} -alkenyl groups, C_6 - C_{20} -aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}_3 as substituents and two vicinal radicals R^{7B} - R^{10B} may also be joined to form a five- or six-membered ring or at least one E^{1B} - E^{4B} is nitrogen[[,]];

- B) optionally an organic or inorganic support[[,]];
- C) optionally one or more activating compounds at least one activating compound; and
- D) optionally one or more metal compounds at least one metal compound containing a metal of group 1, 2 or 13 of the Periodic Table.
- 8. (currently amended) A<u>The</u> catalyst system for olefin polymerization as claimed in claim 7, wherein two vicinal radicals R^{1B}-R^{4B} in the monocyclopentadienyl complex A') form a fused ring system.
- 9. (currently amended) A prepolymerized catalyst system comprising a catalyst system as claimed in claim 7 or 8

comprising:

A') at least one monocyclopentadienyl complex A') comprising the structural feature of a formula (Cp- CR^{5B}R^{6B} -A)Cr (IV), where the variables have the following meanings:

Cp-CR^{5B}R^{6B}-A is A
$$\stackrel{R^{5B}}{\stackrel{}{\stackrel{}}}$$
 $\stackrel{R^{2B}}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$ $\stackrel{}}{\stackrel{}}$

where

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical, NR^{5A}₂, N(SiR^{11B}₃)₂, OR^{11B}, OSiR^{11B}₃, SiR^{11B}₃, BR^{11B}₂, where the organic radicals R^{1B}-R^{4B} may also be substituted by halogens and two vicinal radicals R^{1B}-R^{4B} may also be joined to form a five- or six-membered ring,

R^{5B},R^{6B} are each hydrogen or methyl;

$$\frac{A \text{ is}}{R_{p}^{7B}} = \frac{R_{p}^{8B}}{R_{p}^{1B}} = \frac{R_{p}^{9B}}{R_{p}^{10B}}$$
(VI)

where

 E^{1B} - E^{4B} are each carbon or nitrogen,

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11B}₃, where the organic radicals R^{7B}-R^{10B} may also bear halogens or nitrogen or further C₁-C₂₀-alkyl groups, C₂-C₂₀-alkenyl groups, C₆-C₂₀-aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and

6-20 carbon atoms in the aryl part or SiR^{11B}₃ as substituents and two vicinal radicals R^{7B}-R^{10B} may also be joined to form a five- or six-membered ring,

- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{11B} may also be joined to form a five- or six-membered ring,
- p is 0 when E^{1B} - E^{4B} is nitrogen and is 1 when E^{1B} - E^{4B} is carbon,

where at least one radical R^{7B} - R^{10B} is C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or $SiR^{11B}_{\ 3}$ and the organic radicals R^{7B} - R^{10B} may also bear halogens or nitrogen or further C_1 - C_{20} -alkyl groups, C_2 - C_{20} -alkenyl groups, C_6 - C_{20} -aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or $SiR^{5C}_{\ 3}$ as substituents and two vicinal radicals R^{7B} - R^{10B} may also be joined to form a five- or six-membered ring or at least one E^{1B} - E^{4B} is nitrogen;

- B) optionally an organic or inorganic support;
- C) optionally at least one activating compound; and
- D) optionally at least one activating compound containing a metal of group 1, 2 or 13 of the Periodic Table;

and linear C_2 - C_{10} -1-alkenes polymerized onto it in a mass ratio of from 1:0.1 to 1:200.

10. (currently amended) The use of a catalyst system as claimed in any of claims 7 to 9 for the polymerization or copolymerization of ethylene with α-olefins. A process comprising polymerizing or copolymerizing ethylene with α-olefins in the presence of a catalyst system comprising:

A') at least one monocyclopentadienyl complex A') comprising a structural feature of the formula (Cp- CR^{5B}R^{6B} -A)Cr (IV), where the variables have the following meanings:

Cp-CR^{5B}R^{6B}-A is A
$$\stackrel{R^{5B}}{\stackrel{}{\underset{}}}$$
 $\stackrel{R^{2B}}{\stackrel{}{\underset{}}}$ $\stackrel{}{\underset{}}$ $\stackrel{}{\underset{}}$

where

 $\frac{R^{1B}-R^{4B}}{alkenyl,\,C_6-C_{20}-aryl,\,alkylaryl\,having\,from\,1\,to\,10\,carbon\,atoms\,in\,the}\\ \frac{alkyl\,radical\,and\,6-20\,carbon\,atoms\,in\,the\,aryl\,radical,\,NR^{5A}{}_{2},\\ \frac{N(SiR^{11B}{}_{3})_{2},\,OR^{11B},\,OSiR^{11B}{}_{3},\,SiR^{11B}{}_{3},\,BR^{11B}{}_{2},\,where\,the\,organic\,radicals}\\ \frac{R^{1B}-R^{4B}\,may\,also\,be\,substituted\,by\,halogens\,and\,two\,vicinal\,radicals\,R^{1B}-R^{4B}\,may\,also\,be\,joined\,to\,form\,a\,five-\,or\,six-membered\,ring,}\\$

R^{5B},R^{6B} are each hydrogen or methyl;

$$\begin{array}{c|c}
R_{p}^{8B} \\
\downarrow^{p} \\
R_{p}^{7B} & \downarrow^{1B} & E^{2B} \\
\downarrow^{1B} & E^{2B} & E^{3B} & R_{p}^{9B} \\
\downarrow \downarrow & \downarrow^{1B} & \downarrow^{1B} \\
\downarrow & \downarrow^{1B} & \downarrow^{1B} & \downarrow^{1B} \\
\underline{A \text{ is}} & & & & & & & & & \\
\end{array}$$

$$\begin{array}{c|c}
R_{p}^{8B} & & & & & & & \\
\downarrow^{p} & & & & & & & \\
\downarrow^{1B} & & & & & & & \\
\downarrow^{1B} & & & & & & & \\
\downarrow^{1B} & & & & & & & \\
\downarrow^{1B} & & & & & & & \\
\downarrow^{1B} & & & & & & \\
\downarrow^{1B} & & & & & & & \\
\downarrow^{1B} & & & & \\
\downarrow^{1B} & & & & & \\
\downarrow^{1B} & & & & & \\
\downarrow^{1B} & & \\
\downarrow$$

where

E^{1B}-E^{4B} are each carbon or nitrogen,

- R^{7B}-R^{10B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11B}₃, where the organic radicals R^{7B}-R^{10B} may also bear halogens or nitrogen or further C₁-C₂₀-alkyl groups, C₂-C₂₀-alkenyl groups, C₆-C₂₀-aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11B}₃ as substituents and two vicinal radicals R^{7B}-R^{10B} may also be joined to form a five- or sixmembered ring,
- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{11B} may also be joined to form a five- or six-membered ring,
- p is 0 when E^{1B} - E^{4B} is nitrogen and is 1 when E^{1B} - E^{4B} is carbon,

where at least one radical R^{7B} - R^{10B} is C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11B}_3 and the organic radicals R^{7B} - R^{10B} may also bear halogens or nitrogen or further C_1 - C_{20} -alkyl groups, C_2 - C_{20} -alkenyl groups, C_6 - C_{20} -aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}_3 as substituents and two vicinal radicals R^{7B} - R^{10B} may also be joined to form a five- or six-membered ring or at least one E^{1B} - E^{4B} is nitrogen;

- B) optionally an organic or inorganic support;
- C) optionally at least one activating compound; and

- D) optionally at least one metal compound containing a metal of group 1, 2 or 13 of the Periodic Table.
- 11. (currently amended) A process for preparing ethylene copolymers as claimed in any of claims 1 to 4

a copolymer of ethylene with α -olefins which has a molar mass distribution M_w/M_n of from 1 to 8, a density of from 0.85 to 0.94 g/cm³, a molar mass M_n of from 10 000 g/mol to 4 000 000 g/mol and a CDBI of less than 50% and in which a side chain branching of the maxima of the individual peaks of a side chain branching distribution is in each case greater than 5 CH₃/1 000 carbon atoms

, which comprises the process comprising polymerizing ethylene with α -olefins in the presence of a catalyst system as claimed in any of claims 7 to 9comprising:

A') at least one monocyclopentadienyl complex A') comprising the structural feature of a formula (Cp-CR^{5B}R^{6B}-A)Cr (IV), where the variables have the following meanings:

Cp-CR^{5B}R^{6B}-A is A
$$\stackrel{R^{5B}}{\stackrel{}{\underset{}}}$$
 $\stackrel{R^{2B}}{\stackrel{}{\underset{}}}$ $\stackrel{}{\underset{}}$ $\stackrel{}{\underset{}}{\underset{}}$ $\stackrel{}{\underset{}}$ $\stackrel{}{\underset{}}{\underset{}}$ $\stackrel{}{\underset{}}$ $\stackrel{}{\underset{}}{\underset{}}$ $\stackrel{}{\underset{}}$ $\stackrel{}{\underset$

where

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical, NR^{5A}₂, N(SiR^{11B}₃)₂, OR^{11B}, OSiR^{11B}₃, SiR^{11B}₃, BR^{11B}₂, where the organic radicals

R^{1B}-R^{4B} may also be substituted by halogens and two vicinal radicals R^{1B}-R^{4B} may also be joined to form a five- or six-membered ring.

R^{5B},R^{6B} are each hydrogen or methyl;

$$\frac{A \text{ is}}{P} = \frac{R_{p}^{7B}}{E} = \frac{E_{p}^{2B}}{E_{p}^{3B}} = \frac{R_{p}^{9B}}{R_{p}^{10B}} \qquad (VI)$$

where

 E^{1B} - E^{4B} are each carbon or nitrogen,

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11B}₃, where the organic radicals R^{7B}-R^{10B} may also bear halogens or nitrogen or further C₁-C₂₀-alkyl groups, C₂-C₂₀-alkenyl groups, C₆-C₂₀-aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11B}₃ as substituents and two vicinal radicals R^{7B}-R^{10B} may also be joined to form a five- or sixmembered ring,

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{11B} may also be joined to form a five- or six-membered ring,

p is 0 when E^{1B}-E^{4B} is nitrogen and is 1 when E^{1B}-E^{4B} is carbon,

where at least one radical R^{7B} - R^{10B} is C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in

the aryl part or SiR^{11B}_3 and the organic radicals R^{7B} - R^{10B} may also bear halogens or nitrogen or further C_1 - C_{20} -alkyl groups, C_2 - C_{20} -alkenyl groups, C_6 - C_{20} -aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}_3 as substituents and two vicinal radicals R^{7B} - R^{10B} may also be joined to form a five- or six-membered ring or at least one E^{1B} - E^{4B} is nitrogen;

- B) optionally an organic or inorganic support;
- C) optionally at least one activating compound; and
- D) optionally at least one metal compound containing a metal of group 1, 2 or 13 of the Periodic Table.
- 12. (currently amended) A<u>The</u> process as claimed in claim 11, wherein the polymerization is carried out using, as monomers, a monomer mixture which comprises <u>at least one of</u> ethylene <u>and/orand</u> C₃-C₁₂-1-alkenes and contains at least 50 mol% of ethylene.
- 13. (currently amended) A polymer mixture comprising
 - (E) from 1 to 99% by weight of one or moreat least one ethylene eopolymerscopolymer as elaimed in any of claims 1 to 5having a molar mass distribution M_w/M_n of from 1 to 8, a density of from 0.85 to 0.94 g/cm³, a molar mass M_n of from 10 000 g/mol to 4 000 000 g/mol and a CDBI of less than 50% and in which a side chain branching of the maxima of the individual peaks of a side chain branching distribution is in each case greater than 5 CH₃/1 000 carbon atoms;

and

- (F) from 1 to 99% by weight of a polymer which is different from (E), where the percentages by weight are based on the total mass of the polymer mixture.
- 14. (currently amended) A fiber, film or molding comprising an ethylene copolymer as claimed in any of claims 1 to 55 having a molar mass distribution M_w/M_n of from 1 to 8, a

density of from 0.85 to 0.94 g/cm 3 , a molar mass M_n of from 10 000 g/mol to 4 000 000 g/mol and a CDBI of less than 50% and in which a side chain branching of the maxima of the individual peaks of a side chain branching distribution is in each case greater than 5 CH₃/1 000 carbon atoms.

15. (new) The process of claim 6 where L is carbon.