EE451 Mobile Communication Systems Homework 1 (CLO-1 & CLO-2)

Problem 1 (CLO-1):

- (a) Compute the maximum system capacity in Erlangs when providing a 1% blocking probability with 4 channels, with 20 channels, with 40 channels?
- (b) How many users can be supported with 40 channels at 1% blocking? Assume H=120s, A=2 call/hour.
- (c) Using the traffic intensity per channel calculated in part(a), demonstrate the grade of service in a lost call delayed system for the case of delays being greater than 30 seconds. Assume that H=120s, and determine the GOS for 4 channels, for 20 channels, and for 40 channels.

(a) Maximum system capacity in Erlangs A?

Blocking Probability = 0.01 (1%)

Channels 4,	using erlang B chart,	$\mathbf{A} = 0.89$
Channels 20,	using erlang B chart,	$\mathbf{A} = 12$
Channels 40,	using erlang B chart,	$\mathbf{A} = 29$

(b) Users supported with 40 Channels. With Pb = 0.01, H = 120s and A = 2 Calls/Hour

$$H = 120s = 120/3600 = 1/30$$

$$Au = \lambda H = (2) * (1/30) = 1/15$$

Users =
$$U = A/Au = 29 / (1/15) = 435$$
 users

(c) GOS = P (delay > 30sec)?

We know that.

$$P (delay > 20sec) = P (delay > 30|delay > 0) P (delay > 0)$$
(1)

Where
$$P(delay > 0) = C(C, A)$$
 (2)

$$P\left(delay > t | delay > 0\right) = e\left\{-(C-A) t / H\right\} \tag{3}$$

C(A, N) = N B(A, N) / N - A [1-B(A, N)]

$\underline{Channels} = 4$

$$C(4,0.89) = 4 * (0.01) / 4 - 0.89[1-0.01] = 0.0128$$

GOS = C (A, N)
$$e \{-(C-A) t/H\} = (0.0128) * e \{-(4-0.89) 30/120\} = 5.38X10^3$$

$\underline{Channels} = 20$

$$C(20,12) = 20 * (0.01) / 20 - 12[1-0.01] = 0.025$$

GOS = C (A, N)
$$e \{-(C-A) t/H\} = (0.025) * e \{-(20-12) 30/120\} = 3.38X10^3$$

$\underline{Channels} = 40$

$$C(40,29) = 40 * (0.01) / 40 - 29[1-0.01] = 0.035$$

GOS = C (A, N)
$$e \{-(C-A) t/H\} = (0.035) * e \{-(40-0.035) 30/120\} = \frac{2.24 \times 10^{3}}{2.000}$$

Problem 2 (CLO-1):

Co-channel interference	Adjacent channel interference	
Definition Interference received at	Definition Interference received from	
home cell from transmissions from	the transmissions from adjacent cells	
other cells using same set of	(normally using different set of	
frequencies is called cochannel	frequencies).	
interference.		
Reduction Techniques	Reduction Techniques	
(i) By increasing spatial	(i) Improve filters in the	
separation between co-	receivers.	
channel cells. In other words,	(ii) (ii) Assigning frequencies to	
cochannel reuse ratio $Q =$	adjacent cells to be as far as	
D/R may be increased.	possible.	
(ii) (ii) Using sectoring technique	(iii) (iii) Using advanced signal	
in the cells improves Co-	processing techniques at the	
channel interference.	receiver end.	

Problem 3 (CLO-1)

Suppose a Cellular Service Provider has a total of 78 channels. Suppose each user contributes 0.8 Erlangs of traffic.

(a) Compute the maximum number of users in one cell that can be supported with a 0.01 probability of blocking if 4-cell clusters are used?

No. of channels for =
$$\frac{78}{4}$$
 = 19.5 \approx 19 chands (rounded-down) each cell

N=19, PB = 0.01; AT = 11.2 Er (From Exlang-B graph)

No. of Usex = $\frac{A\tau}{An}$ = $\frac{11.2}{0.9}$ [14 users]

(b) Compute the maximum number of users in one cell that can be supported with a 0.01 probability of blocking if 12-cell clusters are used?

No. of channels for =
$$\frac{78}{12}$$
 = 6.5 \approx 6 channels (nounded-down) each cell

N=6, PB = 0.01; AT = 1.9 Er (From Exlang-B graph)

No. of Usex = $\frac{A\tau}{Au}$ = $\frac{1.9}{0.9}$ = 2.375 \approx 2 users

Problem 4 (CLO-2)

A cellular service provider decides to design a system on the forward channel that can tolerate 15dB of worst-case carrier-to-interference ratio. Compute the optimal value of N for a) omni-directional antennas b) for 120-degree cell sectoring and c) for 60-degree cell sectoring. Should sectoring be used? If so, what case b) or c) should be used.

Assume path loss exponent of 4.

Tolerance = 15dB ,
$$B = 4$$

(a) $0 \underline{\text{mni-Directional Antenna}}$: (6 co-channel interference)

$$\frac{C}{I} : \frac{R^{B}}{2(P-R)^{-B} + 2D^{B} + 2(D+R)^{-B}} = \frac{1}{2} \cdot \frac{1}{(\frac{D}{R}-1)^{-B} + (\frac{D}{R})^{B} + (\frac{D}{R}+1)^{A}}$$

$$\frac{C}{I} = \frac{1}{2} \cdot \frac{1}{(\frac{1}{2N}-1)^{-B} + (\frac{1}{3N})^{-B} + (\frac{1}{3N}+1)^{-B}} \qquad (: 0 = \frac{D}{R} = \sqrt{3N})$$

$$\frac{C}{I} (dR) = \begin{cases} 17 \cdot 27 \ dR ; N = 7 \ \text{(optimal)} \end{cases}$$
(b) $\frac{120^{\circ} \text{ cell sectoring}}{(\frac{1}{N})^{-B} + (\frac{1}{N})^{-B}} = \frac{1}{(\frac{D}{R})^{-B} + (\frac{D}{R}+10.7)^{-B}}$

$$\frac{C}{I} = \frac{R^{B}}{D^{-B} + (D+0.7R)^{-B}} = \frac{1}{(\frac{D}{R})^{-B} + (\frac{D}{R}+10.7)^{-B}}$$

$$\frac{C}{I} = \frac{1}{(\frac{J}{N})^{-B} + (\frac{J}{N})^{-B} + (\frac{J}{N})^{-B}}$$

$$\frac{C}{I} = \frac{1}{(\frac{J}{N})^{-B} + (\frac{J}{N})^{-B} + (\frac{J}{N})^{-B}}$$

$$\frac{C}{I} = \frac{1}{(\frac{J}{N})^{-B} + (\frac{J}{N})^{-B} + (\frac{J}{N})^{-B}}$$

$$\frac{C}{I} = \frac{1}{(\frac{J}{N})^{-B} + (\frac{J}{N})^{-B}}$$

$$\frac{C}{I} = \frac{1}{(\frac{J}{N})^{-B}}$$

$$\frac{C}{I} = \frac{1}{(\frac{J}{N})^$$

(c) 60 cell sectoring:

For N=3, 2 co-channel interference should be catered.

$$\frac{C}{I} = \frac{R^{-B}}{(D)^{-B} + (D+0.7R)^{-B}} = \frac{1}{(\sqrt{3N})^{-B} + (\sqrt{3N} + 0.7)^{-B}}$$

For N=4 to 9, 1 co-channel interference should be catered.

$$\frac{C}{I} = \frac{R^{-B}}{(D+0.7R)^{-B}} = \frac{1}{(\sqrt{3N} + 0.7)^{-B}}$$

$$\frac{C}{I} = \frac{R^{-B}}{(D+0.7R)^{-B}} = \frac{1}{(\sqrt{3N} + 0.7)^{-B}}$$

$$\frac{C}{I} = \frac{24.79 \text{ dB}}{17.52 \text{ dB}} ; N=3 \text{ (optimal)}$$

Result: Yes, sectoring should be used. 120 sectoring is the optimal scheme in comparison to 60 sectoring because in both cases, N-value is same but in 120 scatoring, trunking efficiency will be high or.

Problem 5 (CLO-2)

If a measurement campaign shows that the path loss exponent is 3 instead of 4 in problem 2, how does your design change? Compare it.

(a)
$$\frac{0 \text{ mni- Directional Antenna}}{\frac{C}{I}} = \frac{1}{2} \cdot \frac{1}{(\sqrt{2N-1})^{-\beta} + (\sqrt{3N})^{-\beta} + (\sqrt{3N+1})^{-\beta}}}{\frac{C}{I}} = \frac{1}{2} \cdot \frac{1}{(\sqrt{2N-1})^{-\beta} + (\sqrt{3N+1})^{-\beta}}}{\frac{C}{I}} = \frac{15.07 \text{ dB}}{13.03 \text{ dB}}, N = 12 \sim \text{(optimal)}$$

(b)
$$\frac{120^{\circ}}{C} = \frac{120^{\circ}}{(\sqrt{3}N)^{-8} + (\sqrt{3}N + 0.7)^{-8}}$$

$$= \frac{1}{(\sqrt{3}N)^{-8} + (\sqrt{3}N + 0.7)^{-8}}$$

$$= \frac{17.65 \, d8}{14.21 \, d8}, N = 7 \quad \text{(optimal)}$$
c) 60° cell sectoring:

For N=3, 2 co-channel interference should be catered.
$$\frac{c}{L} = \frac{R^{-B}}{(D)^{-B} + (D+0.7R)^{-B}} = \frac{1}{(\sqrt{3N})^{-B} + (\sqrt{3N} + 0.7)^{-B}}$$

For
$$N = 4$$
 to 9, 1 co-channel interference should be catered.

$$\frac{C}{I} = \frac{R^{-B}}{(D + 0.7R)^{-B}} = \frac{1}{(\sqrt{2N} + 0.7)^{-B}}$$

$$\frac{C}{I}(dB) = \begin{cases} 19.58 & dB ; N = 4 / (optimal) \\ 12.46 & dB ; N = 3 \end{cases}$$

Result: Yes, sectoring should be used. In this case, 60° sectoring is optimal scheme because cluster size is lowest in this case which in turn increases number of channels per cell.