Hypothesis Testing Two Proportions Two Means

Math 122

In any hypothesis test:

- We define two hypotheses H₀ and H₁.
- We collect data relevant to the claim.
- We assume H₀ and use this assumption to calculate the probability of seeing data as extreme as our data. This probability is P.
- If P is small, the observations are inconsistent with H_0 . We reject H_0 and support H_1 .
- If P is large, the observations are consistent with H₀. We do not reject H₀ and do not support H₁.

P-value and formal conclusion

- If $P \le \alpha$ then H_0 is not consistent with the observations.
 - Reject H₀ and support H₁.

- If $P > \alpha$ then H_0 is consistent with the observations.
 - Do not reject H₀ and do not support H₁.

We consider claims about two means or two proportions such as

(Mechanically, we actually consider the difference $\mu_1 - \mu_2$ and compare that difference to 0.)

Two Samples

Polio Vaccine

- In a famous 1954 experiment to test the effectiveness of the Salk Polio vaccine, 200,000 children were given the vaccine and 200,000 were given a placebo. 33 vaccinated children contracted Polio. 115 non-vaccinated children contracted Polio.
- Test the claim: The rate of Polio among the vaccinated children is lower than the rate among the non-vaccinated children. Use a significance level of $\alpha=0.5\%$

• $p_1 =$ • $p_2 =$ \bullet $n_1 =$ \bullet $n_2 =$ • $x_2 =$ • $x_1 =$ • Claim: Opposite: • H₀: • H₁: P-value= Formal Conclusion: • Conclusion:

H1N1 and Obesity

- In a sample of 268 adult H1N1 patients, 47% were found to be obese.
- In a sample of 700 adults, 34% were found to be obese.

 Test the claim: The rate of obesity among H1N1 patients is greater than the rate of obesity in the general population.

• $p_1 =$ • $p_2 =$ \bullet $n_1 =$ \bullet $n_2 =$ • $x_2 =$ • $x_1 =$ • Claim: Opposite: • H₀: • H₁: P-value= Formal Conclusion: • Conclusion:

Two Independent Means

Age and Promotion

- A large company conducted a competition for promotions in which employees were asked to apply for promotion and the "most qualified" applicants received promotions or raises.
- Many of the applicants complained of age discrimination in granting the promotions.
- There were 23 unsuccessful applicants whose average age was 47 with a standard deviation of 7.2.
- There were 30 successful applications whose average age was 43.9 with a standard deviation of 5.9.

Age and Promotion

Test the claim: The successful applicants
 come from a population whose average age
 is less than the average age of the population
 from which the unsuccessful applicants
 come.

	Number	Mean Age	St. Dev
Unsuccessful	23	47	7.2
Successful	30	43.9	5.9

• $\mu_1 =$ • $\mu_1 =$ • $\bar{x}_1 =$ • $\bar{x}_1 =$ • $s_1 =$ \bullet $s_1 =$ • $n_1 =$ • $n_1 =$ • Claim: Opposite: • H₀: • H₁: P-value= Formal Conclusion: • Conclusion:

Hours of Sleep

On average, male and female students get the same amount of sleep.

• $\mu_1 =$ • $\mu_1 =$ • $\bar{x}_1 =$ • $\bar{x}_1 =$ • $s_1 =$ \bullet $s_1 =$ • $n_1 =$ • $n_1 =$ • Claim: Opposite: • H₀: • H₁: P-value= Formal Conclusion: • Conclusion:

