## EEL 4930 Stats – Lecture 25

## EXPECTED VALUE

- Consider again set of observations  $x_1, x_2, \dots, x_n$
- Then the average of the data is

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- We would like to define a similar notion for a random variable X, but take the average over the *ensemble* of potential values of X
- $\bullet$  This value is the *expected value*, *ensemble mean*, or simply *mean* of X
- We can use *relative frequency* to connect the two:

The *expected value* or *mean* of a random variable X is  $^1$ 

$$\mu_X = E[X] =$$



if X is a discrete random variable, and is

$$\mu_X = E[X] =$$

if X is a continuous random variable.

NOTES L25-3

## WHY DO WE CARE ABOUT THE MEAN?

- In a repeated experiment, the limit of the average value is the mean
  - In fact, we will show that we can determine a limit on the number of times the experiment
    must be repeated to ensure that the average is within a range around the mean with a
    specified probability (Chebyshev's inequality, covered later)
- If we wish to use a constant value to estimate a random variable, then the mean is the value that minimizes the mean-square error
- Note that E[X] may be infinite





## **Notes**

<sup>&</sup>lt;sup>1</sup>In some special cases, we would not define the expected value because it is of the form  $-\infty + \infty$ . We won't cover those in this class.