Benchmarking ARM big.LITTLE

CPE-534
Operating Systems
Spring 2020
William Pannell

Unit Under Test

- The Odroid-XU3
 - Samsung Exynos 5422
 - 8 core big.LITTLE System on Chip
 - 4x ARM Cortex-A15 (2GHz)
 - 4x ARM Cortex-A7 (1.3GHz)
 - 2GB LPDDR3 (933MHz)
 - micro-HDMI (Mali T-628 MP6 iGPU)
 - 10/100 Mbps Ethernet
 - 4X USB 2.0, 1X USB 3.0
 - 30pin GPIO

Specs and images sourced from wiki.odroid.com

ARM big.LITTLE Architecture

Highlights:

- "big" A15 Cores:
 - 32KB I/D cache per-core
 - Cores share 2MB L2 cache
- "LITTLE" A7 Cores
 - 32KB I/D cache per-core
 - Cores Share 512KB L2 Cache
- DRAM, GPU, and IO peripherals connected via 128-bit bus.

Block Diagram sourced from wiki.odroid.com

Identifying big.LITTLE cores

- Use /proc/cpuinfo to get information about the CPU
 - "processor" gives core enumeration
 - "CPU part" Identifies the core type
 - 0xC07 → Arm A7 → LITTLE Core
 - 0xC0F → Arm A15 → big Core
 - Cores 0-3 are LITTLE, 4-7 big

Benchmarking with **ZIP**

- 7Zip has builtin Benchmarking
- 7z b [N] [-mmt{N}] [-md{N}]
 - N runs
 - mmt{N} Benchmark using N threads
 - md{N} Benchmark with 2^N byte sample dict
 - -md22 yields 4MB test file
 - Tests start at 4MB and climb to -md{N} setting
 - 64MB test file crashes on this machine
- Each run consists of 1 Compression and 1 Decompression

Summarized from 7zip manual https://sevenzip.osdn.jp/chm/cmdline/commands/bench.htm

Benchmarking with

- Compression
 - Speed Depends upon:
 - RAM Latency
 - Data Cache Size/Speed (As opposed to Instruction Cache)
 - TLB hit/miss
 - Large Number of Random Accesses to RAM/Cache Memory

- Decompression
 - Speed Depends Upon:
 - 32bit integer operation latency (shift/mult/add)
 - Branch (Mis)Prediction Penalty
 - Conditional Execution
 - No Special Extension Instructions (SSE,NEON,etc.)

Summarized from 7zip manual https://sevenzip.osdn.jp/chm/cmdline/commands/bench.htm

Methodology

- Use taskset to pin 7z to cores
- Perform 10 runs each using:
 - 4 big cores
 - 1 big core
 - 4 LITTLE cores
 - 1 LITTLE core
 - All cores
- Log temperature during tests

```
File Edit Tools Syntax Buffers Window Riv Solarized Help
           # Use for all thread<mark>s</mark>
           # 7z b 10 -md=22 > "$1"_threads.log
           mv templog.txt "$1" templog.txt
```

Compression Performance

Compression – Core Utilization

- Screen shot of Top Running during All Cores test
- High Utilization on LITTLE cores, Low utilization of big cores
- High idle time on big cores
- Background processes not to blame

Decompression Performance

Decompression - Core Utilization

- Screen shot of Top Running during All Cores test
- Near 100% Utilization on all LITTLE cores
- 85% utilization of big cores
 - Averaging 13.5% idle time on each big core
- Background processes not to blame

```
Tasks: 222 total, 1 running, 221 sleeping, 0 stopped, 0 zombie
%cpu0 : 98.7 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 1.3 si, 0.0 st
%cpu1 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu2 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu3 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu3 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu4 : 85.4 us, 0.3 sy, 0.0 ni, 14.2 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu5 : 85.4 us, 3.0 sy, 0.0 ni, 11.6 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu6 : 86.5 us, 0.3 sy, 0.0 ni, 13.2 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu7 : 85.0 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu8 : 86.5 us, 0.3 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu8 : 86.5 us, 0.3 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu8 : 86.5 us, 0.3 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu8 : 86.5 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu8 : 86.5 us, 0.0 sy, 0.0 ni, 15.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%cpu8 : 86.5 us,
```

Thermal Performance

- Temperature logged during both 1 and 4 threaded tests
 - 4 Threads First
 - 1 Thread test begins at Dip
- Evidence of Throttling During "All Threads" and "big cores 4 threads" runs
- No evidence of Throttling During LITTLE cores runs.

Performance Summary

- big ~2X faster than LITTLE
- Cache constraints hurts LITTLE Compression performance
- 4 Thread Compression Experiences Bottlenecks
- LITTLE punches above weight in integer-math-heavy workloads (decompression)
- 8 Core performance falls short of expectations due to thermal constraints.

Relative MIPS	Compression	Decompression
Big 4 Thread	100.0%	100.0%
Big 1 thread	35.9%	28.3%
LITTLE 4 thread	44.3%	60.6%
LITTLE 1 Thread	15.4%	15.5%
All cores	112.9%	120.6%

Further Experimentation

- Improve Datalogging
 - Monitor core frequencies to detect throttling
 - Instrument DRAM/Cache usage (perf in linux-tools)
 - Instrument Power Consumption
 - Log each run individually
 - Allow quantifying performance differences run-to-run
- Split Compression/Decompression phases into discrete tests
 - Provides better granularity of logging.
 - No built-in support, but 7z is open source
- Reduce Variables
 - Kill other processes (X11, PulseAudio, Virtualized Guests, etc.)
 - Migrate background tasks to other cores before starting tests
- Goals
 - Verify assumed bottlenecks
 - Identify cause of low utilization during 4/8 threaded compression tests.
 - Empower reasonable decisions (when to use big vs Little), in common workloads
 - Optimize All-Core Performance vs Power consumption