

Worksheet 3

HoTTEST Summer School 2022

The HoTTEST TAs, and FRANK 11 July 2022

1 (*)

Let A be a type, and x, y, z : A. Show that path inversion distributes over concatention, i.e., construct a term of the following type:

$$\Pi_{p:x=y}\Pi_{q:y=z}\underbrace{(p\cdot q)^{-1}}_{\mathbf{Z}=\mathbf{x}} = \underbrace{q^{-1}\cdot p^{-1}}_{\mathbf{Z}=\mathbf{x}}$$

$$[\operatorname{refl}_{\mathbf{x}}\cdot \operatorname{refl}_{\mathbf{y}}]^{-1}$$

$$= \operatorname{refl}_{\mathbf{z}}\cdot \operatorname{refl}_{\mathbf{y}} = \operatorname{refl}_{\mathbf{z}}$$

$$= \operatorname{refl}_{\mathbf{z}}\cdot \operatorname{refl}_{\mathbf{y}} = \operatorname{refl}_{\mathbf{z}}$$

2 (**)

Let A and B be types. We can define the product type as $A \times B := \Sigma_A B$, where B is considered a constant type family over A. The resulting elimination principle is:

$$\frac{\Gamma, z: A \times B \vdash D(z) \text{ type} \quad \Gamma, a: A, b: B \vdash d: D(a, b)}{\Gamma, z: A \times B \vdash \mathsf{ind}_{\times}(d, z): D(z)} \times -\mathsf{Elim}$$

Define the two projections $\operatorname{\sf pr}_1:A\times B\to A$ and $\operatorname{\sf pr}_2:A\times B\to B$ using the elimination principle.

$$\Gamma$$
, $z:A\times B+A$ type Γ , $a:A$, $b:B+a:A$

$$\Gamma$$
, $z:A\times B+B$ type Γ , $a:A$, $b:B+b:B$

$$\Gamma$$
, $z:A\times B+P\Gamma_2(z):A$

$$\Gamma$$
, $z:A\times B+P\Gamma_2(z):B$

$$III$$

$$Index(b,z)$$

Now use the elimination principle to give a term of the following type:

$$\Pi_{z:A\times B}z = (\operatorname{pr}_1z,\operatorname{pr}_2z)$$

proof
$$(a,b) = refl_{(a,b)}$$

3 (*)

Let A and B be types. Give an informal construction of a term of the following type:

$$\Pi_{a,a':A}\Pi_{b,b':B}(a=_Aa')\times(b=_Bb')\rightarrow \big((a,b)=_{A\times B}(a',b')\big)$$

(We will later see that this map is an *equivalence*, and this map *characterises* paths in product types as pairs of paths between the components.)

4 (**)

Let A be a type and a:A. Show that refl_a is unique among paths starting at a but with the other endpoint free. That is, for any $z:\Sigma_{x:A}(a=x)$ construct a term

$$(a, \mathsf{refl}_a) =_{\Sigma_{x:A}(a=x)} z \qquad (a', a = a')$$

(We emphasize that this does not mean that refl_a is unique as a loop at a!)

(This is Prop. 5.5.1 in Egbert's book.)

$\mathbf{5} \quad (\star \star \star)$

Let A be a type. In the third lecture, a function ${\sf concat}$ of the following type was constructed:

$$\mathsf{concat}: \Pi_{x,y,z:A}(x=y) \to ((y=z) \to (x=z))$$

Call the above for concat₁. Define two different terms concat₂ and concat₃ of the same type.

Choose your favorite numbers $i, j \in \{1, 2, 3\}$ $(i \neq j)$. Give a term of the following type:

$$\Pi_{x,y,z:A}\Pi_{p:x=y}\Pi_{q:y=z}\mathrm{concat}_i(p,q)=\mathrm{concat}_j(p,q)$$

6
$$(\star \star \star)$$

Let A be a type with an element a:A. Can you construct a term of the following type? If not, what goes wrong?

$$\Pi_{p:(a={}_Aa)}p=_{(a={}_Aa)}\operatorname{refl}_a$$

No, this implies that every proof of identity is propositionally equal to refla, so it implies UIP, but UIP is not derivable.