

Quadruple Operational Amplifiers LM324

Features

- 2-kV ESD Protection (K-Suffix Devices)
- Wide Supply Range:
 - Single Supply . . . 3 V to 32 V
 - -or Dual Supplies . . \pm 1.5 V to \pm 16 V
- Low Supply-Current Drain Independent of Supply Voltage . . . 0.8 mA Typ
- Common-Mode Input Voltage Range Includes Ground, Allowing Direct Sensing Near Ground
- Low Input Bias and Offset Parameters:
 - Input Offset Voltage . . . 3 mV Typ

A Versions . . . 2 mV Typ

- Input Offset Current . . . 2 nA Typ
- Input Bias Current . . . 20 nA Typ
 - A Versions . . . 15 nA Typ
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . 32 V
- Open-Loop Differential Voltage
 Amplification . . . 100 V/mV Typ
- Internal Frequency Compensatio

■ schematic (each amplifier)

http://www.luguang.cn

mail:lge@luguang.cn

■ Absolute maximum ratings over operating free-air temperature range

Parameter	Rating	Unit
Supply voltage, Vcc *1	32	V
Differential input voltage, VID *2	±32	V
Input voltage, Vı (either input)	-0.3 to 32	V
Duration of output short circuit (one amplifier) to ground at (or below) TA = 25 $^{\circ}$ C,Vcc \leq 15 V *3	Unlimited	
Package thermal impedance, θ JA*4	76	°C/W
Operating virtual junction temperature, TJ	150	$^{\circ}$
Storage temperature range, Tstg	-65 to 150	$^{\circ}$
Charged-Device Model	±2	kV

^{*1} All voltage values (except differential voltages and Vcc specified for the measurement of los) are with respect to the network GND.

*4 Maximum power dissipation is a function of T_{J(max)}, θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_{J(max)}-T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can affect reliability.

■ Operating conditions, Vcc=±15 V, TA=25°C

Parameter	Symbol	Testconditons	Тур	Unit
Slew rate at unity gain	SR	RL = 1 M Ω , CL = 30 pF, VI = \pm 10 V (see Figure 1)	0.5	V/µs
Unity-gain bandwidth	B ₁	RL = 1 M Ω , CL = 20 pF (see Figure 1)	1.2	MHz
Equivalent input noise voltage	Vn	Rs = 100Ω , V _I = 0 V, f = 1 kHz (see Figure 2)	35	nV∕√Hz

Figure 1. Unity-Gain Amplifier

Figure 2. Noise-Test Circuit

^{*2} Differential voltages are at IN+, with respect to IN-.

^{*3} Short circuits from outputs to Vcc can cause excessive heating and eventual destruction.

■ Electrical characteristics at specified free-air temperature, Vcc = 5 V (unless otherwise noted)

Parameter	Symbol	Ta *2	Testconditons *1	Min	Typ *3	Max	Unit
Input offset voltage	Vio	25℃	Vcc = 5 V to MAX,		3	7	mV
nput offset voltage	VIO	Full range	VIC = VICRmin, VO = 1.4 V			9	
Input offset current	lio	25℃	Vo = 1.4 V		2	50	nA
		Full range				150	
Input bias current	Iв	25℃	Vo = 1.4 V		-20	-250	nA
		Full range				-500	
Common-mode input voltage range	Vicr -	25 ℃	Vcc = 5 V to MAX	0 to Vcc- 1.5			V
		Full range		0 to Vcc-2			٧
High-level output voltage	Vон	25 ℃	RL = 2 KΩ	Vcc- 1.5			V
		25 ℃	RL = 10 KΩ				
		Full range	$Vcc = MAX, RL = 2 k\Omega$	26			
		Full range	Vcc = MAX, RL $≥$ 10 kΩ	27	28		
Low-level output voltage	Vol	Full range	$RL \leqslant 10 \text{ k}\Omega$		5	20	mV
arge-signal differential voltage	Avd	25℃	Vcc = 15 V, Vo = 1 V to 11 V,RL	25	100		V/mV
amplification	7.00	Full range	≥ 2 kΩ	15			V/IIIV
Common-mode rejection ratio	CMRR	25℃	VIC = VICRmin	65	80		dB
Supply-voltage rejection ratio (△ Vcc/△Vio)	ksvr	25℃		65	100		dB
Crosstalk attenuation	V01/V02	25 ℃	f = 1 kHz to 20 kHz		120		dB
Output current	lo	25 ℃	Source Vcc = 15 V,ViD = 1 V,Vo =	-20	-30	-60	mA
		Full range	0	-10			
		25 ℃	Sink Vcc = 15 V,ViD =-1 V,Vo = 15	10	20		
		Full range	V	5			
		25 ℃	VID = -1 V, Vo = 200 mV	12	30		μΑ
Short-circuit output current	los	25 ℃	Vcc at 5 V,Gnd at -5 V,Vo = 0,		±40	60	mA
Supply current (four amplifiers)	Icc	Full range	Vo = 2.5 V, No load		0.7	1.2	mA
		Full range Vo	Vcc = MAX,Vo = 0.5 Vcc, No load		1.4	3	

^{*1} All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.

■ Marking

Marking	LM324

■ Ordering Information

Deviece	Packaging	Shipping
LM324	SOP14	2500/Tape&Reel

^{*3} All typical values are at Ta = 25° C.

■ Typlacl Characteristics

V_{CC} = 15 V V_{EE} = Gnd A VOL LARGE-SIGNAL OPEN LOOP VOLTAGE GAIN (dB) 100 $T_A = 25^{\circ}C$ 80 60 40 20 0 -20 1.0 10 1.0 k 10 k 100 k 1.0 M f, FREQUENCY (Hz)

120

Figure 4. Input Voltage Range

Figure 5. Open Loop Frequency

Figure 6. Large-Signal Frequency Response

Figure 7. Small–Signal Voltage Follower Pulse Response (Noninverting)

Figure 8. Power Supply Current versus Power Supply Voltage

Figure 9. Input Bias Current versus Power Supply Voltage