REMARKS

The amendment to the specification is made to add claims that are the same or substantially the same as claims as found in third party patent application publications, namely in 20050037392, 20050042648, 20050079510, 20050130173, and 20040185484.

The chart below shows each claim and support therefore in the specification. It also identifies the claim in a third party application that it is the same or substantially the same as.

Additional claim fees are believed due in connection with this paper. The Director is authorized to debit our deposit account no. 19-0733 in the appropriate amount. Applicants respectfully solicit favorable consideration and allowance of the instant application. If there are any questions, the Examiner is invited to contact the undersigned to further prosecution.

NEW CLAIM	SUPPORT	PUBLISHED
		APPLICATION
		SOURCE
64. (New) A method for amplifying a nucleic acid	"Microemulsions comprising one or more species of	20050037392,
molecule comprising the steps of: (a) forming	analyte DNA molecules are formed. The analyte DNA	claim 2
aqueous compartments in a water-in-oil	molecules in the microemulsions are amplified in the	•
emulsion, wherein a plurality of	presence of reagent beads which are bound to a plurality	
compartments include a nucleic acid	of molecules of a primer for amplifying the analyte DNA	
molecule, a bead capable of being linked to	linked to molecules." ¶10; "The microemulsions are temperature	
the nucleic acid molecule, and an aqueous	cycled as in a conventional PCR. If a DNA template and	
solution comprising components necessary to	a bead are present together in a single aqueous	
perform nucleic acid amplification; (b)	compartment, the bead bound oligonucleotides act as	
amplifying the nucleic acid molecule in the	primers for amplification." ¶15, step 3; "Each of the	
compartments to form amplified product	plurality of beads comprises a plurality of bound	
copies of the nucleic acid molecule; and (c)	polynucleotides. "¶08 "Product beads are formed that	
capturing the amplified product copies to the	are bound to a plurality of copies of a single species of	
bead in the compartments, thereby amplifying	analyte DNA molecule." ¶10.	
of the nucleic acid molecule.		
65. (New) The method of claim 64, wherein the	"For example, for polymerase chain reaction (PCR) the	20050037392,
nucleic acid amplification is performed using	compartments will desirably contain a DNA polymerase	claim 4

polymerase chain reaction.	and deoxyribonucleotides." ¶34	
66. (New) The method of claim 65, wherein the	"The oil phase was composed of 4.5% Span 80 (S6760,	20050037392,
emulsion comprises a detergent.	Sigma, St. Louis, MO), 0.40 % Tween 80 (Sigma S-	claim 6
	8074), and 0.05% Triton X-100 (Sigma T-9284) in	
	mineral oil (Sigma M-3516). "¶44; " Detergents which	
	can be used include, but are not limited to Triton X100,	
	Laureth 4, Nonidet." ¶35.	
67. (New) The method of claim 64 wherein the	"After PCR cycling, the microemulsion from five wells	20050037392,
the nucleic acid amplification is performed	of a PCR plate were pooled and broken by the addition	claim 15
using polymerase chain reaction, and the	800 microliters of NX buffer (100 mM NaCl containing	
emulsion is thermostable.	1% Triton X-100, 10 mM Tris-HCl, pH 7.5, 1 mM	
	EDTA) in a 1.5 ml tube (Corning 430909). "¶47	
68. (New) The method of claim 64 wherein the	"Sample DNA for amplification and analysis according	20050037392,
nucleic acid molecule is genomic DNA or	to the present invention can be genomic DNA, cDNA,	claim 16
cDNA.	PCR products of genomic DNA, or PCR products of	
	cDNA, for example." ¶36	
69. (New) The method of claim 64 wherein a	"In order to maximize the proportion of beads which are	20050037392,
plurality of compartments when formed each	plurality of compartments when formed each homogeneous with respect to oligonucleotide, it is	claim 17
contains on average less than one nucleic acid	desirable that on average, each aqueous compartment	
molecule.	contains less than 1 template molecule. "¶34	

20050042648,	claim 2																			
70. (New) A method for amplifying a nucleic acid "Microemulsions are made by stirring or agitation of oil, 20050042648,	aqueous phase, and detergent. The microemulsions form	small aqueous compartments which have an average	diameter of 0.5 to 50 microns. The compartments may	be from 1 to 10 microns, inclusive, from 11 to 100	microns, inclusive, or about 5 microns, on average. All	such compartments need not comprise a bead.	Desirably, at least one in 10,000 of said aqueous	compartments comprise a bead. Typically from 1/100	to 1/1 or from 1/50 to 1/1 of said aqueous compartments	comprise a bead. In order to maximize the proportion of	beads which are homogeneous with respect to	oligonucleotide, it is desirable that on average, each	aqueous compartment contains less than 1 template	molecule. Aqueous compartments will also desirably	contain whatever reagents and enzymes are necessary to	carry out amplification. For example, for polymerase	chain reaction (PCR) the compartments will desirably	contain a DNA polymerase and deoxyribonucleotides.	For rolling circle amplification a DNA polymerase and a	generic DNA circle may be present." ¶34.
70. (New) A method for amplifying a nucleic acid	molecule comprising the steps of: (a) forming	aqueous compartments in a water-in-oil	emulsion, wherein a plurality of the	compartments include a nucleic acid	molecule, and an aqueous solution comprising	components necessary for nucleic acid	amplification; (b) amplifying the nucleic acid	molecule in the compartments to form	amplified copies of the nucleic acid molecule.						•					

71. (New) The method of claim 70 wherein the	71. (New) The method of claim 70 wherein the For example, for polymerase chain reaction (PCR) the 20050042648,	20050042648,
nucleic acid amplification is performed using	compartments will desirably contain a DNA polymerase	claim 5
polymerase chain reaction.	and deoxyribonucleotides." ¶34.	
72. (New) The method of claim 70 wherein the	"PCR was carried out under the following cycling	20050042648,
emulsion is thermostable.	conditions: 94°C for 2 minutes; 40 cycles of 94°C for	claim 11
	15 seconds, 57°C for 30 seconds, 70°C for 30 seconds."	
	¶44; "After PCR cycling, the microemulsion from five	
	wells of a PCR plate were pooled and broken by the	
	addition 800 microliters of NX buffer (100 mM NaCl	
	containing 1% Triton X-100, 10 mM Tris-HCl, pH 7.5, 1	
	mM EDTA) in a 1.5 ml tube (Corning 430909)." ¶47.	
73. (New) The method of claim 70 wherein the	"Beads, after being prepared according to the present	20050042648,
amplified copies of the nucleic acid molecule	invention as product beads, have more than one copy of	claim 13
are linked to a bead.	the same nucleic acid molecule bound to them." ¶26.	
74. (New) The method of claim 73 wherein the	"PCR was carried out under the following cycling	20050042648,
nucleic acid amplification is performed using	conditions: 94°C for 2 minutes; 40 cycles of 94°C for	claim 16
polymerase chain reaction, and the emulsion	15 seconds, 57°C for 30 seconds, 70°C for 30 seconds."	
is thermostable.	¶44; "After PCR cycling, the microemulsion from five	
	wells of a PCR plate were pooled and broken by the	
	addition 800 microliters of NX buffer (100 mM NaCl	

	containing 1% Triton X-100, 10 mM Tris-HCl, pH 7.5, 1	
	mM EDTA) in a 1.5 ml tube (Corning 430909). "¶47.	
75. (New) The method of claim 70 wherein a	"In order to maximize the proportion of beads which are 200	20050042648,
plurality of compartments when formed each	homogeneous with respect to oligonucleotide, it is cla	claim 17
contains on average less than one nucleic acid	desirable that on average, each aqueous compartment	
molecule.	contains less than 1 template molecule. "¶34.	
76. (New) A method for amplifying one or more	"Microemulsions are made by stirring or agitation of oil, 200	20050079510,
nucleic acids comprising the steps of: (a)	aqueous phase, and detergent. The microemulsions form cla	claim 1
forming a water-in-oil emulsion to create a	small aqueous compartments which have an average	
plurality of aqueous compartments wherein at	diameter of 0.5 to 50 microns. The compartments may	
least one of the compartments comprises a	be from 1 to 10 microns, inclusive, from 11 to 100	
single nucleic acid template, a single bead	microns, inclusive, or about 5 microns, on average. All	
capable of binding to the nucleic acid, and	such compartments need not comprise a bead.	
amplification reaction solution containing	Desirably, at least one in 10,000 of said aqueous	
reagents necessary to perform nucleic acid	compartments comprise a bead. Typically from 1/100	
amplification; (b) amplifying the nucleic acids	amplification; (b) amplifying the nucleic acids to 1/1 or from 1/50 to 1/1 of said aqueous compartments	
in the compartments to form amplified copies	comprise a bead. In order to maximize the proportion of	,
of said nucleic acids; and (c) binding the	beads which are homogeneous with respect to	
amplified copies to the beads in the	oligonucleotide, it is desirable that on average, each	
compartments.	aqueous compartment contains less than 1 template	
	molecule. Aqueous compartments will also desirably	

	contain whatever reagents and enzymes are necessary to	
	carry out amplification. For example, for polymerase	
	chain reaction (PCR) the compartments will desirably	·
	contain a DNA polymerase and deoxyribonucleotides.	
	For rolling circle amplification a DNA polymerase and a	
	generic DNA circle may be present. "¶34;" Beads, after	
	being prepared according to the present invention as	
	product beads, have more than one copy of the same	
	nucleic acid molecule bound to them." ¶26.	
77. The method of claim 76 wherein said	"PCR was carried out under the following cycling	20050079510,
emulsion is heat stable.	conditions: 94°C for 2 minutes; 40 cycles of 94°C for	claim 8
	15 seconds, 57°C for 30 seconds, 70°C for 30 seconds."	,
	¶44; "After PCR cycling, the microemulsion from five	
	wells of a PCR plate were pooled and broken by the	
	addition 800 microliters of NX buffer (100 mM NaCl	
	containing 1% Triton X-100, 10 mM Tris-HCl, pH 7.5, 1	
	mM EDTA) in a 1.5 ml tube (Corning 430909)." ¶46.	
78. (New) The method of claim 76, wherein the	"Beads can be modified by covalent or non-covalent	20050079510,
bead comprises a member of a binding pair	interactions with other materials, either to alter gross	claim 31
and the binding pair is avidin/biotin.	surface properties, such as hydrophobicity or	
	hydrophilicity, or to attach molecules that impart binding	

	specificity. Such molecules include without limitation,	
•	antibodies, ligands, members of a specific-binding	
	protein pair, receptors, nucleic acids. Specific-binding	
	protein pairs include avidin-biotin, streptavidin-biotin,	
	and Factor VII-Tissue Factor." ¶25.	
79. (New) A method for sequencing nucleic	"Beads generated from random fragments of whole	20050130173,
acids comprising: (a) fragmenting large	genomes (24)" ¶41; "Microemulsions are made by c	claim 1
template nucleic acid molecules to generate a	stirring or agitation of oil, aqueous phase, and detergent.	
plurality of fragmented nucleic acids; (b)	The microemulsions form small aqueous compartments	
delivering the fragmented nucleic acids into	which have an average diameter of 0.5 to 50 microns.	
aqueous compartments in a water-in-oil	The compartments may be from 1 to 10 microns,	
emulsion such that a plurality of aqueous	inclusive, from 11 to 100 microns, inclusive, or about 5	
compartments comprise a single copy of a	microns, on average. All such compartments need not	
fragmented nucleic acid, a single bead	comprise a bead. Desirably, at least one in 10,000 of	
capable of binding to the fragmented nucleic	said aqueous compartments comprise a bead. Typically	
acid, and amplification reaction solution	from 1/100 to 1/1 or from 1/50 to 1/1 of said aqueous	
containing reagents necessary to perform	compartments comprise a bead. In order to maximize	
nucleic acid amplification; (c) amplifying the	the proportion of beads which are homogeneous with	
fragmented nucleic acids in the compartments	respect to oligonucleotide, it is desirable that on average,	
to form amplified copies of said nucleic acids	each aqueous compartment contains less than 1 template	

and binding the amplified copies to beads in	and binding the amplified copies to beads in molecule. Aqueous compartments will also desirably	
the compartments; (d) delivering the beads to	contain whatever reagents and enzymes are necessary to	
an array, and (e) performing a sequencing	carry out amplification. For example, for polymerase	
reaction simultaneously on a plurality of the	chain reaction (PCR) the compartments will desirably	
reaction chambers.	contain a DNA polymerase and deoxyribonucleotides.	
	For rolling circle amplification a DNA polymerase and a	
	generic DNA circle may be present." ¶34, "Template	
	analyte molecules on product beads can be employed for	
	solid phase sequencing. In one solid phase sequencing	
	technique, product beads are arrayed by placing them on	
	slides spotted with complementary oligonucleotides. In	
	another solid phase sequencing technique, product beads	
	are placed into individual wells." ¶32.	
80. (New) A method for delivering a nucleic acid	"Template analyte molecules on product beads can be	20050130173,
template to an array, comprising dispersing	employed for solid phase sequencing. In one solid phase	claim 40
over the array a plurality of beads, each bead	sequencing technique, product beads are arrayed by	
having at least one nucleic acid template	placing them on slides spotted with complementary	
immobilized thereon, wherein the nucleic acid	oligonucleotides. In another solid phase sequencing	
template is suitable for use in a nucleic acid	technique, product beads are placed into individual	
sequencing reaction.	wells."¶32.	

81. (New) A method for sequencing nucleic	"Beads generated from random fragments of whole	20050130173,
acids comprising: (a) fragmenting nucleic	genomes (24)" ¶41; "Beads, after being prepared	claim 76
acid molecules to generate a plurality of	according to the present invention as product beads, have	
fragmented nucleic acids; (b) attaching one	more than one copy of the same nucleic acid molecule	
strand of a plurality of the fragmented nucleic	bound to them." ¶26 "Template analyte molecules on	
acids individually to beads to generate single	product beads can be employed for solid phase	
stranded nucleic acids attached individually to	sequencing. In one solid phase sequencing technique,	
beads; (c) delivering a population of the	product beads are arrayed by placing them on slides	
single stranded fragmented nucleic acids	spotted with complementary oligonucleotides. In	
attached individually to beads to an array; (d)	another solid phase sequencing technique, product beads	
performing a sequencing reaction	are placed into individual wells." ¶32	
simultaneously on a plurality of the reaction		
chambers.		
82. (New) A method for delivering nucleic acid	"The microemulsions are temperature cycled as in a	20040185484,
templates to an array comprising the steps of:	conventional PCR. If a DNA template and a bead are	claim 50
(a) providing a population of nucleic acid	present together in a single aqueous compartment, the	
templates; (b) isolating each nucleic acid	bead bound oligonucleotides act as primers for	
template from said population to a bead; (c)	amplification. The straight red and green lines	
delivering a population of said nucleic acid	connected to the beads represent extension products	
templates isolated to a bead to said array.	from the two different kinds of templates. " ¶15;	
	"Template analyte molecules on product beads can be	

	employed for solid phase sequencing. In one solid phase
	sequencing technique, product beads are arrayed by
	placing them on slides spotted with complementary
	oligonucleotides. In another solid phase sequencing
	technique, product beads are placed into individual
	wells." ¶32.
83. (New) The method of claim 81, wherein said	"If a DNA template and a bead are present together in a 20040185484,
isolating step comprises encapsulating said	single aqueous compartment, the bead bound claim 52
nucleic acid template in an emulsion of a	oligonucleotides act as primers for amplification. The
water-in-oil emulsion.	straight red and green lines connected to the beads
	represent extension products from the two different
	kinds of templates. "¶15.
84. (New) The method of claim 81, wherein said	If a DNA template and a bead are present together in a 20040185484,
nucleic acid template is encapsulated with a	single aqueous compartment, the bead bound claim 53
bead and wherein the bead can bind said	oligonucleotides act as primers for amplification. The
nucleic acid.	straight red and green lines connected to the beads
	represent extension products from the two different
	kinds of templates. "¶15.

Respectfully submitted,

Date: 02-17-06

By: Sarah A. Kagan

Registration No. 32,141

Banner & Witcoff, Ltd.

Customer No.: 22907

SAK/