F statistics

Shyam Gopalakrishnan Aug 8th 2019

Overview

- Comparing two populations
 - Trees to show population relationships
 - F statistics
 - D statistic
- Genetic affinities using F statistic
- Admixture signals using D statistics

How to compare two groups

Group 1: -0.2609 0.3309 0.6095 -0.8065 -0.6407 -0.4874 0.8393 -0.343 1.0843 0.4343

Group 2: -0.2732 -1.0104 1.0404 -0.1881 -1.1271 -0.2672 -0.5584 0.7958 -1.3073 1.1832

What methods would you use to compare these two sets of numbers?

- -- How similar are they?
- -- How different are they?

Comparing two populations

 Using similar ideas as the previous slide, how would you compare two populations?

Comparing two populations

 Using similar ideas as the previous slide, how would you compare two populations, given genetic information on them?

Comparing two populations

- Using similar ideas as the previous slide, how would you compare two populations, given genetic information on them?
 - Use allele frequencies
 - Correlations
 - Differences

Using trees to relate populations

 Trees are often used to show the relationships between populations.

Measuring distances between populations on a tree?

- How far is pop1 from pop2, in the first tree?
- How far is ancestor of pop1 and pop3 from pop2

What do these branch lengths on trees mean?

- Branch lengths are often related to genetic drift
 - Genetic drift can be thought of as the rate at which frequencies change, under neutrality
 - Drift depends on demography most notably, on population size

F statistics

- Let us first define an F statistic
 - Given four populations A, B, C, D with allele frequencies a, b, c and d respectively,
 - F(A,B; C,D) = E[(a-c)(b-d)]
 - Here think of **E[]** as average over all SNPs.

F2 statistic or pairwise distance

 If A == B and C == D, then we reduce to the two population F2 statistic.

$$F2(A,B) = E[(a-b)^2]$$

F3 statistic

With three populations, one gets the F3 statistic.

$$F3(C;A,B) = E[(a-c)(b-c)]$$

F3 stat in terms of F2 stat

13 / 21

F4 statistic

Four distinct populations

$$F4(A,B;C,D) = E[(a-c)(b-d)]$$

Using F-statistics

- Testing for treeness with F3
 - Admixture F3
 - Think back to getting F3 from F2 stats.

Using F-statistics

 Suppose you have an unknown population, P1, and you want to figure out which population it is genetically closet to. How would you do it?

Using F-statistics

- Suppose you have an unknown population, P1, and you want to figure out which population it is genetically closet to. How would you do it?
 - Outgroup F3 statistic

Outgroup F3 statistic

- Why outgroup F3?
 - Individual population do not matter
 - Sampling times of PX
 matter

F4 statistic and testing for treeness

What kind of violations of this tree would affect the F4 statistic?

Are there any kind of admixture/migrations that would make the F4 statistic weird?

D statistic (ABBA-BABA)

Exercise time!!!