Tensilica Vision DSP Product Line Introduction

- Cadence Imaging/Vision GroupJuly 2017 Update

Application Targeted Processor Portfolio

Broad Range of Application Specific DSPs

HiFi DSPs

- Audio Pre and Post-Processing
- Voice trigger
- Noise Reduction
- Audio Encode & Decode

Fusion DSPs

- Auto Radar
- Always-alert
 Sensor processing
- Low-end Imaging
- Audio, Video and Speech

ConnX DSPs

- Narrow to wide band Wireless
- LTE/LTE-A/5G
- WiFi, Smart Grid
- Infrastructure & Terminals

Vision DSPs

- Image Pre and Post-Processing
- Convolutional Neural Networks
- AR/VR
- ADAS

Custom

Custom ISAs

- High Performance DSPs, NPUs, CPUs
- Application specific data types
- Custom ISA
- Special Functions

Automated User-Defined Customization

Interfaces, Instructions, State & Registers, Unique and Secure features

Xtensa® Processor Generator

Configurable and Extensible Common Foundation Technology of all Tensilica Processors

Emerging use cases: Cameras everywhere

Imaging and computer vision for embedded systems

Imaging
Is Still
Important!

Required before any neural network processing

Higher resolution: 32MP in Mobile, 4K video, 720p to 1080p in Automotive

Higher frame rates: 240, 120fps

Killer use cases: Stereo camera on mobile devices, high FOV (120, fisheye lens), 360° camera

Computer Vision

Traditional computer vision is based on feature detection

Neural networks are better at many tasks and are being applied more today

Compute, power consumption for embedded devices is a challenge

The Basics of Real-Time Neural Networks:

Tensilica® Vision C5 DSP aimed at *inference* applications in embedded systems

Most important for embedded systems: Power

Vision DSPs: Family of Imaging and NN DSPs

Tensilica® Vision C5 and Vision P6 DSPs:

Cadence Addressing All Market Segments for Neural Networks

Processing Power **Automotive (towards autonomous) Runs multiple NNs** Up to Multiple 10TMAC/sec all the time Vision C5 DSPs Surveillance / Automotive (semi-autonomous) Runs a couple of NNs 1TMAC/sec all the time Vision C5 DSP Mobile Runs a NN once in a <200 while Vision P6 DSP GMAC/sec

Vision P6 DSP: A complete imaging/vision and CNN processor

Neural Network Performance

Up to 4X neural network performance

Imaging and Vision Benchmarks

Up to 4X performance in well-known benchmarks

Multiply Accumulate (MAC)

4X MAC count

Vector Floating-Point Support

- 32-way SIMD vector FPU with 16-bit (FP16)
- Easy GPU code porting

Software compatible

- Software compatible to Vision P5
- Up to 25% improvement with Vision P5 software

Vision P6 block diagram, architecture, and features

Vision P6 DSP: Flagship performance

Tensilica® Vision C5 DSP for Neural Networks

Complete, standalone DSP that runs all layers of NN (convolution, fully connected, normalization, pooling...)

Building a DSP for changing NN field – general purpose and programmable

Not a "hardware accelerator" paired with a vision DSP, rather a dedicated, NN-optimized DSP

Architected for multi-processor design – scales to multi-TMAC/sec solution

Same proven software tool set as Vision P5/P6 DSP

Tensilica® Vision C5 DSP for Neural Networks

Tensilica® Vision C5 DSP for Neural Networks

**16nm

Features and Benefits of Vision C5

Feature

Benefit

First stand-alone, dedicated CNN DSP

Faster and lower power than conventional CPU/GPU/DSP

Programmable and extensible

Flexible and future proof, can do anything vs hardwired accelerators

Support for new layers as they evolve

All layers run on Vision C5 compared to running the convolutions on the accelerator Normalization, max pooling

No need to move data between Vision C5 and main vision/imaging DSP Simple programming model Simplifies hardware architecture

1 TMAC in <1 mm2 in 16nm Vision C5 is architected for multi-processor clusters

Computational capacity and scalability for all CNN applications in surveillance and automotive

Vision Product Comparison Chart

		Vision P5	Vision P6	Vision C5
Use Case		Imaging	Imaging and low-end CNN	Mid and high end CNN (Always-on CNN)
MACs (Higher MAC = Higher Compute)	8x8	64	256	1024
	8x16	64	128	
	16x16	32	64	512
Vector Floating Point Unit	16b Half Precision	No	32 way SIMD (optional)	No
	32b Single Precision	16 way SIMD (optional)	16 way SIMD (optional)	No
MAX SIMD Width		64 way 8bit	64 way 8bit	128 way 8bit
Scatter Gather - Optimal LD/ST for dispersed pixels		Yes	Yes	No
Coefficient Decompression - Saves Memory Bandwidth		No	Yes	Yes
Data rearrangement – Efficient switch between vectorization schemes		Limited	Limited	Extensive

Broad software ecosystem for imaging/vision applications

Libraries

- Familiar programming model
- 1000 optimized library functions
- CNN, OpenVX, and OpenCV-based library functions

Kernels

- High-performance Sobel, Median, Gaussian filters
- CNN Lib: Convolution, RELU
- SIFT, SURF, Harris Corner: Detection algorithm
- HOG, HAAR: Object detection and classification
- LK: Optical flow

Applications

- HDR, video WDR
- Image stabilization
- Face/people detection
- Face recognition
- CNN: Vehicle detection

XI-Library: Accelerates Commonly used OpenCV functionality

XI-Library

- <u>Tile based processing</u> for chaining of functions in local memory to efficiently use memory bandwidth
- Specific <u>kernel sizes</u>, <u>data types and modes as part</u> of API to avoid excessive checking inside the function for every tile
- Function works on image planes to avoid frequent deinterleaving of interleaved image data

XI Library Deliverables

- XI Library source code workspace: Delivered with XPG
- XI Library performance
- XI Library user's guide

XI-Library Example Functions

- Image Proc Modules: Convolution functions, Geometric Functions,...
- Features Modules: Feature Detection, Feature Descriptor
- Motion Analysis & background analysis
- Core modules: Binary elements, bitwise operation, vector operations...

Cadence OpenVX for Vision P DSP

Fully compliant to OpenVX 1.1

Highly optimized kernels leveraging the Cadence XI Library Performance benchmarks provided

Automatic tiling, DMA, local memory management, scatter-gather kernels
Via provided Graph Mapper and Runtime
Automatic overlapping of data transfer (DMA) and compute

Supported on Tensilica Vision P5 and Vision P6 processor cores

Compliance tested for 2-core system with Xtensa host running Linux 4.3 connected to Vision DSP

Vision DSP IP license includes source code for all APK modules

Cadence & Partner Developed Full-Speed Development Platform

Imaging Performance

- 1024 MAC per/cycle: 512GMAC (@500MHz)
- 1024 ALU per cycle (8bit)
- 1280 8 bit fixed point operation per cycle
- 128/256 GFLOP Single precision/half precision

Cadence & Partner Developed Full-Speed Development Platform

T2D Chip Development Platform

T2D Development Platform

- -T2D Chip @500MHz
- -Four HDMI I/F for Camera Connection
- -HDMI Monitor output

Board available in September 2017

Vision DSP Partner Ecosystem (Public)

- WDR (wide dynamic range)
- Super video image stabilization

- Face and voice authentication
- Face detection

- Super-resolution zoom, HDR
- Camera processing

- Mobile imaging experts
- Low-light enhancement
- Dual-camera solutions

- ADAS suite
- Fog removal, object detection
- System integrator

- CNN neural networking
- Imaging algorithm expertise

- Imaging and vision experts
- Low light enhancement
- Advanced noise reduction
- Face detection

Summary

Imaging DSP and Neural Network DSP

- Market needs both Imaging DSP and Neural Network DSP
- Imaging processing requirement continues to increase: higher resolution and dual sensor
- Neural Network are evolving computational capacity continue to increase

Vision C5 DSP for Neural Network

- Complete, standalone DSP that runs all layers of NN: Not an accelerator
- General purpose and programmable
- 1 TMAC/Sec computational capacity: 4X MAC capacity compare to Vision P6

Vision P6 DSP

- Up to 4X neural network performance compare to Vision P5
- 4X MAC capacity
- Easy migration of GPU floating-point code, with optional 16-bit floating-point unit
- Up to 4X performance improvement on well-known imaging/vision benchmarks

cadence®

© 2017 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. All other trademarks are the property of their respective owners.