

Machine Learning with Python

PXL i-Talent

Overview **Introduction**

What is Machine Learning

Practical exercises

About us

Dr. Glenn Cich

- Master Computer Science
 PhD Mobility Sciences
- Data/Software Engineer

Lorenz Feyen

- Master Nuclear Physics
- Data Scientist

What is InfoFarm?

- Data Science company
- Help customers find insights and business value in their data
- Analysis & implementations
- 7 data scientists, 6 data engineers
- Located in Hasselt, Merelbeke & Kontich

OUR PASSION

Plow data - Grow information - Harvest value

Data Science

Big Data

Training & Y

Machine Learning & Deep Learning

Setting up and maintaining on-premise and Cloud-based Big Data architectures

Training and guiding organisations through the digital era using the power of Data Science

What is InfoFarm?

- Part of Xplore Group
 - Mobile development
 - Web development
 - E-commerce
 - Lots of partner companies for InfoFarm
- Part of Cronos Group
 - Largest independent IT services supplier in Belgium
 - 6000+ Consultants

InfoFarm customers

LINEAS

What is Machine Learning?

Machine Learning: Concept

- Learn and make predictions on data
- No instructions for single cases
- behavior is determined from past data

Traditional Programming

Machine Learning

Machine Learning: Features

Gender	Age	Height (cm)	Hair color
Man	24	184	Black
Woman	27	169	Brown
Man	19	192	Red
Woman	15	155	Brown

Machine Learning: Supervised

Machine Learning: Train and Test

Machine Learning: Unsupervised

Machine Learning: Unsupervised

Machine Learning: Models

Classification

Machine Learning: Models

Supervised Unsupervised Classification Clustering Collaborative filtering Regression

Machine Learning: Classification

Classification: Decision Tree

Regression

Machine Learning: Models

Supervised	Unsupervised
Classification	Clustering
Regression	Collaborative filtering

Machine Learning: Regression

Regression: Linear Regression

Linear regression

Clustering

Machine Learning: Models

Supervised	Unsupervised
Classification	Clustering
Regression	Collaborative filtering

Machine Learning: Clustering

Collaborative filtering

Machine learning: Models

Supervised	Unsupervised
Classification	Clustering
Regression	Collaborative filtering

Filtering: User-based filtering

recommend

Jupyter Notebook

Installing Jupyter notebook

Starting Jupyter notebooks

Microsoft Windows [Version 10.0.15063]

(c) 2017 Microsoft Corporation. All rights reserved.

C:\Users\oolsana>jupyter notebook

Exercise 1: Classification

Classification: Iris dataset

Machine Learning: Models

Supervised	Unsupervised
Classification	Clustering
Regression	Collaborative filtering

Exercise 2: Regression

Regression: Boston dataset

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10

Machine Learning: Models

Supervised	Unsupervised
Classification	Clustering
Regression	Collaborative filtering

Exercise 3: Collaborative filtering

Machine learning: Models

Supervised	Unsupervised
Classification	Clustering
Regression	Collaborative filtering