N2 INTERDISCIPLINAR

Grupo de 3 a 5 integrantes.

Esta atividade valerá como (N2) do 2º bimestre nas disciplinas de Engenharia de Software, Estatística e Pesquisa Operacional, conforme as entregas específicas de cada disciplina descritas neste documento.

40% da pontuação será atribuída à apresentação (seminário), com duração de até 10 minutos, destacando os principais pontos do projeto em cada disciplina. A apresentação deverá ocorrer no dia da avaliação da respectiva disciplina, conforme o calendário acadêmico da faculdade.

20% da pontuação será atribuída conforme A Avaliação de Pares dentro dos grupos.

Atenção: Poderá ser entregue um único pdf para todas as disciplinas ou arquivos separados.

Objetivo: Desenvolver uma aplicação em linguagem Python que simule o comportamento de filas com múltiplos servidores (modelo M/M/c), utilizando dados reais ou simulados (em CSV), calcular métricas estatísticas e aplicar princípios ágeis de desenvolvimento com base no framework Scrum.

Uma organização (ex: clínica, restaurante, central de suporte) deseja entender o comportamento do seu atendimento frente à demanda. Para isso, disponibilizou dados sobre o tempo entre chegadas dos clientes e o tempo que cada atendimento levou. Seu grupo será responsável por simular esse sistema e, com base nos resultados, realizar uma análise estatística dos dados reais e dos gerados.

O grupo deve escolher 1 entre os 3 contextos abaixo:

- 1. Clínica de vacinação
- 2. Restaurante universitário
- 3. Central de suporte técnico

PROGRAMAÇÃO/ PESQUISA OPERACIONAL

- Ler um arquivo CSV com dados de tempo entre chegadas e tempo de atendimento
- 2. Simular o funcionamento de um sistema de filas M/M/c
- 3. Calcular as seguintes métricas:
 - o Po: Probabilidade do sistema estar vazio
 - o P_{espera}: Probabilidade de espera
 - L_q: Número médio na fila
 - o W_q: Tempo médio de espera
 - o W: Tempo médio no sistema
 - L: Número médio no sistema
- 4. Visualização do comportamento da fila Gráfico de:
 - Tempo de espera por cliente
 - · Tamanho da fila ao longo do tempo
 - Tempo de ocupação dos servidores
- 5. Apresentar um relatório técnico e visualizações com as métricas.

Entrega da parte Pesquisa Operacional:

- Código .py
- resultados.csv gerado pela simulação
- Relatório (pdf):
 - o Contendo os resultados dos itens 3, 4.
 - Responder as seguintes perguntas:
 - Vale a pena adicionar mais um servidor?
 - Qual seria o impacto de um atendente mais rápido (μ maior)?

ESTATÍSTICA

- 1. Calcular estatísticas descritivas sobre os dados do CSV:
 - Média, mediana, moda, variância, desvio padrão
- 2. Visualizar os dados:

- Histograma para:
 - o Tempo de atendimento
 - o Tempo de espera
- Boxplot comparando:
 - o Tempos de atendimento vs tempos de espera
- 3. Comparações e Inferência:
 - Apresente o intervalo de confiança:
 - o Para a média do tempo de atendimento
 - o Para a média do tempo de espera

Entrega da parte Estatística:

Código de análise .py ou .ipynb

Relatório: relatorio_estatistico.pdf, com:

- Os resultados dos itens de 1 a 3
- Interpretação dos dados e gráficos.
- Sugestão de melhorias no atendimento com base nos dados

ENGENHARIA DE SOFTWARE

1. Papéis Scrum:

- Product Owner: responsável por manter o backlog
- Scrum Master: guia o grupo nos ritos Scrum
- Time de Desenvolvimento: responsável por implementar o projeto

2. Product Backlog com pelo menos 10 itens

Como por exemplo:

ID	Descrição	Prioridade	Sprint
PB1	Ler o CSV com pandas	Alta	1
PB2	Simular fila com múltiplos servidores	Alta	1
PB3	Calcular métricas da fila	Alta	1
PB4	Gerar gráficos da simulação	Média	2

ID	Descrição	Prioridade	Sprint
PB5	Analisar estatisticamente os tempos de chegada	Alta	2
PB6	Criar boxplot dos tempos de espera	Média	2
PB7	Validar distribuição de Poisson	Baixa	3
PB8	Criar relatório final da simulação	Alta	3
PB9	Criar protótipo do dashboard (Streamlit)	Média	3
PB10	Fazer retrospectiva final do projeto	Média	3

3. Planejamento por Sprint

- Sprint 1: base funcional da simulação
- Sprint 2: análise estatística e gráficos
- Sprint 3: interface, ajustes, finalização e apresentação

4. Quadro Kanban (Trello, Planner, etc.)

- Use colunas: Backlog, A Fazer, Em Progresso, Concluído
- Print da tela das tarefas

5. Cerimônias Scrum (simuladas):

- Sprint Planning (definição de tarefas por sprint)
- Daily Scrum (registro semanal de progresso)
- Sprint Review (entrega ao final de cada sprint)
- Retrospective (análise do processo e aprendizados)

ACOMPANHAMENTO COM GIT

Repositório Git /GitHub contendo:

- Código das simulações (Python)
- Código das análises estatísticas
- Documentos (backlog, relatórios, gráficos)

2. Histórico de commits organizado:

- o Commits com mensagens claras e contextualizadas
- o Commits separados por tarefa ou componente
- Uso de branches é recomendado (ex: simulação, estatistica, interface)

3. Registro do uso do Git:

- o Print da tela de commits.
- o Print da estrutura do repositório
- o Print de merges e branches

4. Sugestão de README.md do repositório:

- Objetivo do projeto
- o Instruções de execução
- o Divisão de tarefas (por disciplina)
- Referências

Entrega da PARTE Engenharia de Software:

Relatório em pdf com todos os prints do GIT e das etapas SCRUM.