

S-gráf alapú várható profit maximalizálás sztochasztikus környezetben

Dunár Olivér Mérnökinformatikus BSc.

Témavezető: dr. Hegyháti Máté

Széchenyi István Egyetem

2019.06.28.

Tartalom

- Ütemezési feladatok
- Megoldó módszerek
- Az S-gráf keretrendszer
- Problémadefiníció
- A megoldómódszer megvalósítása
- Teszteredmények

Ütemezés

- Általánosan
 - Feladatok, erőforrások, időzítés
 - Célkitűzés, korlátozások
- Szakaszos üzemű gyártórendszerek
 - Munkák, lépéseik, berendezések
 - Végrehajtási-, átállási-, tisztítási idők
 - Tárolási stratégia

Megoldó módszerek

- MILP (Mixed-Integer Linear Programming) modellek
 - Időfelosztásos (Time discretization based)
 - Precedencia alapú (Precedence based)
- Állapottér bejárásán alapuló módszerek
 - Időzített automaták
 - Időzített petri hálók
- S-gráf keretrendszer
- Carlos A. Mendez, Jaime Cerda, Ignacio E. Grossmann, Iiro Harjunkoski, and Marco Fahl. State-of-the-art review of optimization methods for short-term scheduling of batch processes. Computers & Chemical Engineering, 30(6-7):913–946, May 2006.
- Mate Hegyhati and Ferenc Friedler. Overview of industrial batch process scheduling. Chemical Engineering Transactions, 21:895–900, 01 2010.

Az S-gráf keretrendszer

- Irányított gráf alapú matematikai modell
- Receptek, ütemtervek vizualizációja
- Recept gráf:

Az S-gráf keretrendszer

- Ütemezési algoritmusok
- ► Meghozott ütemezési döntések → ütemezési élek a gráfban
- Ütemezési gráf:

Determinisztikus profit maximalizálási feladat

- Bemeneti adatok:
 - Termékek receptjei
 - Termékek ára (1 batch ára)
 - Időkorlát
- Szabadsági fok az ütemezési döntéseken felül:
 - Melyik termékből hány batchet termeljünk?
- Célfüggvény:
 - Profit maximalizálása (profit = ár · mennyiség)
- Tibor Holczinger, Thokozani Majozi, Mate Hegyhati, and Ferenc Friedler. An automated algorithm for throughput maximization under fixed time horizon in multipurpose batch plants: S-graph approach. In 17th European Symposium on Computer Aided Process Engineering, volume 24 of Computer Aided Chemical Engineering, pages 649–654. Elsevier, 2007

Sztochasztikus profit maximalizálási feladat

- Bemeneti adatok:
 - Időkorlát
 - Termékek receptjei
 - Minimális-, maximális batch méret
 - Diszkrét forgatókönyvek (scenario)
 - Valószínűségeik
 - Termék ára
 - Kereslet
 - Alul-, túltermelési költségek
- Szabadsági fok az ütemezési döntéseken felül:
 - Melyik termékből hány batchet termeljünk?
 - Mekkora batch méret mellett?
- Célfüggvény:
 - Várható profit maximalizálása

Problémadefiníció

Problémadefiníció

Problémadefiníció

- C++ alapú S-gráf solver
 - Boost függvénykönyvtár, OpenMP
 - Determinisztikus profit maximalizáló
- Implementációs lépések:
 - Input fájl definiálása, beolvasása
 - Parancssori kapcsoló
 - Töröttvonal osztály
 - Determinisztikus profit maximalizáló refaktorálása
 - Sztochasztikus módszerek implementálása
 - Kötött batch méretű eset
 - Változó batch méretű eset
 - Két lépcsős eset
 - Multiproduct esetek
 - Új kimenet
 - Tesztelés

- Preventív ütemezés változó batch méretű esetben
- Egy termék profit függvénye egy adott forgatókönyvben:

$$Profit_{s,p}(x) = \begin{cases} price_{s,p} \cdot x - (dem_{s,p} - x) \cdot uc_{s,p} & \text{ha } x < dem_{s,p} \\ price_{s,p} \cdot dem_{s,p} - (x - dem_{s,p}) \cdot oc_{s,p} & \text{egy\'ebk\'ent} \end{cases}$$

Célfüggvény:

$$\sum_{p \in P} \left(\sum_{s \in S} prob_s \cdot profit_{s,p}(x) \right)$$

Preventív ütemezés változó batch méretű esetben

$$dem_{S1} = 2$$
 $price_{S1} = 2$
 $uc_{S1} = 0$ $oc_{S1} = 2.5$

Preventív ütemezés változó batch méretű esetben

$$dem_{S1} = 2$$
 $price_{S1} = 2$
 $uc_{S1} = 0$ $oc_{S1} = 2.5$

$$dem_{S2} = 1$$
 $price_{S2} = 2$
 $uc_{S2} = 2$ $oc_{S2} = 1$

$$\sum_{s \in S} prob_s \cdot profit_{s,p}(x)$$

Az optimális x érték kiválasztása:

$$[s_p^{min} \cdot b_p, s_p^{max} \cdot b_p]$$

Termék várható profitja kiszámítva.

Összes várható profit kiszámítása a termékek várható profitjainak összegeként:

$$\sum_{p \in P} \left(\sum_{s \in S} prob_s \cdot profit_{s,p}(x) \right)$$

Implementált esetek:

	Egy terméket eredményező receptek	Multiproduct receptek (diszjunkt halmazokkal)	Multiproduct receptek (halmaz metszetekkel)
Kötött batch méretű eset			
Változó batch méretű eset			X (+LP)
Két lépcsős eset		\checkmark	X (+LP)

Teszteredmények

- Random generált paraméterek
- Kötött ≤ változó ≤ két lépcsős

Teszteredmények

Speciális tesztesetek pl.:

Min és max batch méret megegyezik (1,2)

Kötött = változó = két lépcsős

Teszteredmények

Speciális tesztesetek pl.:

Min és max batch méret megegyezik (1,2)

Kötött = változó = két lépcsős

Csak 1 db forgatókönyv van (3,4)

Összefoglalás

- Várható profit maximalizálás S-gráf keretrendszer segítségével, sztochasztikus paraméterek használatával
- 3 különböző feladatosztály megoldómódszerének részleteinek kidolgozása, implementálása a keretrendszerbe
- A már meglévő determinisztikus és az új sztochasztikus profit maximalizáló tesztelése

Köszönöm a figyelmet!