- 1- Define sets. Explain different operations of sets with example?
- 2- Define: a) Equality b) Superset c) Cardinality of set d) The power set e) Cartesian product f) Null set.
- 3- Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$. Find a) $A \cup B$. b) $A \cap B$. c) A B. d) B A.
- 4- Draw a venn diagram for each of these combinations of the sets A, B, and C.
 - a) A \Box (B-C) b) (A \Box B) \cup ((A \Box C) c) (A \Box \overline{B}) \cup (A \Box \overline{C})
- 5- Let P (n) be the statement that $1^2 + 2^2 + \cdots + n^2 = n(n + 1)(2n + 1)/6$ for the positive integer n.
- 6- Let P (n) be the statement that $1^3 + 2^3 + \cdots + n^3 = (n(n+1)/2)^2$ for the positive integer n.
- 7- Show that- $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n-1)(2n-1)}{3}$
- 8- What is strong induction and well ordering?
- 9- Define Functions and its types with suitable diagram?
- 10- List the ordered pairs in the relation R from $A = \{0, 1, 2, 3, 4\}$ to $B = \{0, 1, 2, 3\}$, where $(a, b) \in R$ if and only if
 - a) a = b. b) a + b = 4. c) a > b. d) $a \mid b$. e) gcd(a, b) = 1
- 11- List all the ordered pairs in the relation $R = \{(a, b) \mid a \text{ divides } b\}$ on the set $\{1, 2, 3, 4, 5, 6\}$.
- 12- For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.
 - a) $\{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$
 - b) $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$
 - c) $\{(2,4),(4,2)\}$
 - d) {(1, 2), (2, 3), (3, 4)}
 - e) $\{(1, 1), (2, 2), (3, 3), (4, 4)\}$
 - f) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}
- 13- Define Relations. Explain its types with suitable example?
- 14- Define Equivalence Relation and classes with example?
- 15- Use Warshall's algorithm to find the transitive closures of the relations $R=\{1, 2, 3, 4\}$.

```
a) \{(1, 2), (2,1), (2,3), (3,4), (4,1)\}
```

b)
$$\{(2, 1), (2,3), (3,1), (3,4), (4,1), (4,3)\}$$

c)
$$\{(1, 2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$$

d)
$$\{(1, 1), (1,4), (2,1), (2,3), (3,1), (3,2), (3,4), (4,2)\}$$

- 16- Define Partial Order Relation with example. What is Hasse diagram or Poset?
- 17- Draw the Hasse diagram for the "less than or equal to" relation on

$$\{0, 2, 5, 10, 11, 15\}.$$

- 18- Draw the Hasse diagram for divisibility on the set
 - a) {1, 2, 3, 4, 5, 6, 7, 8}.
 - b) {1, 3, 9, 27, 81, 243}.
- 19- Answer these questions for the partial order represented by this Hasse diagram.

- a) Find the maximal elements.
- b) Find the minimal elements.
- c) Is there a greatest element?
- d) Is there a least element?
- e) Find all upper bounds of {a, b, c}.
- f) Find the least upper bound of {a, b, c}, if it exists.
- g) Find all lower bounds of {f, g, h}.
- h) Find the greatest lower bound of $\{f, g, h\}$, if it exists.
- 20- Answer these questions for the poset $({3, 5, 9, 15, 24, 45}, |)$.
 - a) Find the maximal elements.
 - b) Find the minimal elements.

- c) Is there a greatest element?
- d) Is there a least element?
- e) Find all upper bounds of {3, 5}.
- f) Find the least upper bound of $\{3, 5\}$, if it exists.
- g) Find all lower bounds of {15, 45}.
- h) Find the greatest lower bound of $\{15, 45\}$, if it exists.
- 21-Define a maximal and minimal element of a poset and the greatest and least element of a poset.
- 22- Define Lattice.