Solução numérica de Equações Diferenciais Ordinárias: Método de Taylor de ordem superior

Marina Andretta/Franklina Toledo

ICMC-USP

28 de outubro de 2013

Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires

Considere o Problema de Valor Inicial bem-posto

$$y'(t) = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

Suponha que a solução y(t) deste problema tenha n+1 derivadas contínuas.

Neste caso, podemos aproximar y, em torno de t_i , pelo polinômio de Taylor

$$y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)y'(t_i) + \frac{(t_{i+1} - t_i)^2}{2!}y''(t_i) + \dots + \frac{(t_{i+1} - t_i)^{(n+1)}}{(n+1)!}y^{(n+1)}(\xi_i),$$

 $com \xi_i \in (t_i, t_{i+1}).$

Como $h = t_{i+1} - t_i$, temos

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2!}y''(t_i) + ... + \frac{h^{(n+1)}}{(n+1)!}y^{(n+1)}(\xi_i),$$

 $com \xi_i \in (t_i, t_{i+1}).$

Note que, derivando a solução y, temos

$$y'(t) = f(t, y(t)), y''(t) = f'(t, y(t)),$$
 etc

Ou seja, para um dado k,

$$y^{(k)}(t) = f^{(k-1)}(t, y(t)).$$

Substituindo estas derivadas no polinômio de Taylor, temos

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2!}f'(t_i, y(t_i)) + ... + \frac{h^{(n+1)}}{(n+1)!}f^{(n)}(\xi_i, y(\xi_i)),$$

$$com \xi_i \in (t_i, t_{i+1}).$$

Note que, truncando este polinômio no termo de ordem n, temos um erro de $\frac{h^{(n+1)}}{(n+1)!}f^{(n)}(\xi_i,y(\xi_i))$.

Se $f^{(n)}$ for limitada por uma constante M, temos que o erro local $\tau_{i+1}(h)$ deste truncamento satisfaz

$$| au_{i+1}(h)| \leq \frac{h^{(n+1)}}{(n+1)!}M.$$

O Método de Taylor de ordem *n* usa este truncamento para definir os pontos para aproximar a solução *y*.

Este método é definido da seguinte maneira:

$$\omega_0 = \alpha$$
,

$$\omega_{i+1} = \omega_i + hT^{(n)}(t_i, \omega_i),$$

com

$$T^{(n)}(t_i,\omega_i) = f(t_i,\omega_i) + \frac{h}{2}f'(t_i,\omega_i) + ... + \frac{h^{(n-1)}}{n!}f^{(n-1)}(t_i,\omega_i),$$

para i = 0, 1, ..., N - 1.

Note que o Método de Euler é o Método de Taylor de ordem 1.

Considere o seguinte Problema de Valor Inicial

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

Utilize o Método de Taylor de segunda e quarta ordens, com ${\it N}=10$, para aproximar a solução deste problema.

Para aplicar o Método de Taylor de segunda e quarta ordens, vamos precisar calcular até a terceira derivada de $f(t, y(t)) = y(t) - t^2 + 1$ em relação à variável t:

$$f'(t,y(t)) = y'(t) - 2t = y - t^2 - 2t + 1,$$

$$f''(t,y(t)) = y'(t) - 2t - 2 = y - t^2 + 1 - 2t - 2 = y - t^2 - 2t - 1,$$

$$f'''(t,y(t)) = y'(t) - 2t - 2 = y - t^2 + 1 - 2t - 2 = y - t^2 - 2t - 1.$$

Como
$$a = 0$$
, $b = 2$ e $N = 10$, temos que $h = \frac{b-a}{N} = \frac{2-0}{10} = 0.2$ e $t_i = a + hi = 0 + 0.2i = 0.2i$.

Assim,

$$T^{(2)}(t_i,\omega_i) = f(t_i,\omega_i) + \frac{h}{2}f'(t_i,\omega_i) = \omega_i - t_i^2 + 1 + \frac{h}{2}(\omega_i - t_i^2 - 2t_i + 1) =$$

$$\left(1+rac{h}{2}
ight)(\omega_i-t_i^2+1)-ht_i=1.1(\omega_i-(0.2i)^2+1)-0.2(0.2i)=$$

$$1.1((\omega_i - 0.04i^2 + 1) - 0.04i = 1.1\omega_i - 0.044i^2 - 0.04i + 1.1.$$

Desta forma, o Método de Taylor de segunda ordem é dado por

$$\omega_0 = \alpha = 0.5,$$

$$\omega_{i+1} = \omega_i + hT^{(2)}(t_i, \omega_i) = \omega_i + 0.2(1.1\omega_i - 0.044i^2 - 0.04i + 1.1) =$$

$$1.22\omega_i - 0.0088i^2 - 0.008i + 0.22,$$

para i = 0, ..., 9.

Temos ainda que

$$T^{(4)}(t_i,\omega_i) = f(t_i,\omega_i) + \frac{h}{2}f'(t_i,\omega_i) + \frac{h^2}{3!}f''(t_i,\omega_i) + \frac{h^3}{4!}f'''(t_i,\omega_i) =$$

$$\omega_i - t_i^2 + 1 + \frac{h}{2}(\omega_i - t_i^2 - 2t_i + 1) + \frac{h^2}{6}(\omega_i - t_i^2 - 2t_i - 1) + \frac{h^3}{24}(\omega_i - t_i^2 - 2t_i - 1) = 0$$

$$\left(1+\frac{h}{2}+\frac{h^2}{6}+\frac{h^3}{24}\right)(\omega_i-t_i^2)-\left(1+\frac{h}{3}+\frac{h^2}{12}\right)ht_i+1+\frac{h}{2}-\frac{h^2}{6}-\frac{h^3}{24}.$$

Desta forma, o Método de Taylor de quarta ordem é dado por

$$\omega_0 = \alpha = 0.5$$
,

$$\omega_{i+1} = \omega_i + hT^{(4)}(t_i, \omega_i) = 1.2214\omega_i - 0.008856i^2 - 0.00856i + 0.2186,$$

para i = 0, ..., 9.

A solução exata para o Problema de Valor Inicial é $y(t) = (t+1)^2 + 0.5e^t$.

Na tabela a seguir temos as aproximações obtidas pelo Método de Taylor de segunda e quarta ordens, bem como o valor exato e os erros cometidos.

ti	$y_i = y(t_i)$	ω_i (T2)	$ \omega_i-y_i $	ω_i (T4)	$ \omega_i - y_i $
0.0	0.5000000	0.5000000	0.0000000	0.5000000	0.0000000
0.2	0.8292986	0.8300000	0.0007014	0.8293000	0.0000014
0.4	1.2140877	1.2158000	0.0017123	1.2140910	0.0000034
0.6	1.6489406	1.6520760	0.0031354	1.6489468	0.0000062
0.8	2.1272295	2.1323327	0.0051032	2.1272396	0.0000101
1.0	2.6408591	2.6486459	0.0077868	2.6408744	0.0000153
1.2	3.1799415	3.1913480	0.0114065	3.1799640	0.0000225
1.4	3.7324000	3.7486446	0.0162446	3.7324321	0.0000321
1.6	4.2834838	4.3061464	0.0226626	4.2835285	0.0000447
1.8	4.8151763	4.8462986	0.0311223	4.8152377	0.0000615
2.0	5.3054720	5.3476843	0.0422123	5.3055554	0.0000834

Exercícios:

1) Use o método de Taylor de segunda ordem para obter uma aproximação das soluções de cada um dos seguintes problemas de valor inicial.

a.
$$y' = e^{t-y}$$
, $0 \le t \le 1$, $y(0) = 1$, $com h = 0.5$
b. $y' = \frac{1+t}{1+y}$, $1 \le t \le 2$, $y(1) = 2$, $com h = 0.5$
c. $y' = -y + ty^{1/2}$, $2 \le t \le 3$, $y(2) = 2$, $com h = 0.25$
d. $y' = t^{-2} (sen 2t - 2ty)$, $1 \le t \le 2$, $y(1) = 2$, $com h = 0.25$

2) As soluções reais dos problemas de valor inicial do Exercício 1 são dadas a seguir. Determine o erro real para cada passo.

a.
$$y(t) = \ln(e^t + e - 1)$$

b. $y(t) = \sqrt{t^2 + 2t + 6} - 1$
c. $y(t) = \left(t - 2 + \sqrt{2}ee^{-\frac{t}{2}}\right)^2$
d. $y(t) = \frac{4 + \cos 2 - \cos 2t}{2t^2}$