Table 1: A summary of the cumulative signal acceptance times efficiency, $\mathcal{A}\varepsilon$ [%], for various benchmark models with both compressed and uncompressed mass spectra, following the application of the event selection criteria used to define the signal region. Values for $\mathcal{A}\varepsilon$ are also shown following the application of additional requirements that define the four most sensitive $n_{\rm jet}$ event categories, as defined in Table 5. Scale factor corrections to simulated signal events that account for the mismodelling of theoretical and experimental parameters are not applied, and so the values for $\mathcal{A}\varepsilon$ differ with respect to those in Table 5 by up to 15%.

Event selection	Benchmark model (m_{SUSY}, m_{LSP})						
	T1qqqq	T1qqqq	T2qq_8fold	T2qq_8fold	T2qq_1fold	T2qq_1fold	
	(1300, 100)	(900, 700)	(1050, 100)	(650, 550)	(600, 50)	(400, 250)	
Before selection	100	100	100	100	100	100	
Event veto for muons and electrons	99	100	100	100	100	100	
Event veto for single isolated tracks	94	91	96	95	96	95	
Event veto for photons	92	90	95	94	95	95	
Event veto for forward jets $(\eta > 3.0)$	81	78	82	81	80	80	
$n_{\rm jet} \ge 2$	81	78	81	72	80	75	
$p_{\rm T}^{\tilde{l}_1} > 100 {\rm GeV}$	81	71	81	57	79	66	
$ \eta^{j_1} < 2.5$	81	70	81	55	79	65	
$H_{\rm T} > 200{ m GeV}$	81	69	81	50	79	60	
$H_{\rm T}^{\rm miss} > 130 {\rm GeV}$	77	50	78	33	71	40	
$H_{\rm T}^{\rm miss}/E_{\rm T}^{\rm miss} < 1.25$	74	44	75	28	65	33	
$H_{\rm T}$ -dependent $\alpha_{\rm T}$ requirements ($H_{\rm T} < 800{\rm GeV}$)	74	30	71	15	50	17	
$\Delta \phi_{\min}^* > 0.5$	22	18	44	10	33	13	
Four most sensitive n_{jet} event categories	22	13	43	5.5	31	6.1	

Table 2: A summary of the cumulative signal acceptance times efficiency, $\mathcal{A}\varepsilon$ [%], for various benchmark models with both compressed and uncompressed mass spectra, following the application of the event selection criteria used to define the signal region. Values for $\mathcal{A}\varepsilon$ are also shown following the application of additional requirements that define the four most sensitive $n_{\rm jet}$ event categories, as defined in Table 5. Scale factor corrections to simulated signal events that account for the mismodelling of theoretical and experimental parameters are not applied, and so the values for $\mathcal{A}\varepsilon$ differ with respect to those in Table 5 by up to 15%.

Event selection	Benchmark model (m_{SUSY}, m_{LSP})						
	T1bbbb	T1bbbb	T1tttt	T1tttt	T1ttbb	T1ttbb	
	(1500, 100)	(1000, 800)	(1300, 100)	(800, 400)	(1300, 100)	(1000, 700)	
Before selection	100	100	100	100	100	100	
Event veto for muons and electrons	99	98	41	42	61	64	
Event veto for single isolated tracks	94	91	31	32	51	54	
Event veto for photons	93	91	30	32	50	54	
Event veto for forward jets ($ \eta > 3.0$)	82	79	27	27	44	47	
$n_{\rm jet} \ge 2$	82	78	27	27	44	47	
$p_{\rm T}^{\tilde{l}_1} > 100 {\rm GeV}$	82	69	27	25	44	43	
$ \eta^{\hat{j}_1} < 2.5$	82	68	27	25	44	42	
$H_{\rm T} > 200 {\rm GeV}$	82	66	27	25	44	42	
$H_T^{miss} > 130 \text{GeV}$	79	48	25	15	41	32	
$H_{\rm T}^{\rm miss}/E_{\rm T}^{\rm miss} < 1.25$	77	43	24	11	38	26	
$H_{\rm T}$ -dependent $\alpha_{\rm T}$ requirements ($H_{\rm T} < 800{\rm GeV}$)	77	29	24	8.3	38	19	
$\Delta \phi_{\min}^* > 0.5$	23	17	5.6	1.3	9.5	8.8	
Four most sensitive $n_{\rm jet}$ event categories	23	12	5.6	1.3	9.5	7.4	

Table 3: A summary of the cumulative signal acceptance times efficiency, $\mathcal{A}\varepsilon$ [%], for various benchmark models with both compressed and uncompressed mass spectra, following the application of the event selection criteria used to define the signal region. Values for $\mathcal{A}\varepsilon$ are also shown following the application of additional requirements that define the four most sensitive $n_{\rm jet}$ event categories, as defined in Table 5. Scale factor corrections to simulated signal events that account for the mismodelling of theoretical and experimental parameters are not applied, and so the values for $\mathcal{A}\varepsilon$ differ with respect to those in Table 5 by up to 15%.

Event selection	Benchmark model (m_{SUSY}, m_{LSP})						
	T5tttt_DM175	T5tttt_DM175	T5ttcc	T5ttcc			
	(800, 100)	(700, 400)	(1200, 200)	(750, 600)			
Before selection	100	100	100	100			
Event veto for muons and electrons	41	42	63	63			
Event veto for single isolated tracks	30	32	53	53			
Event veto for photons	30	31	53	52			
Event veto for forward jets $(\eta > 3.0)$	25	27	46	45			
$n_{\rm jet} \ge 2$	25	27	46	41			
$p_{\rm T}^{\rm j_1} > 100 {\rm GeV}$	25	21	46	25			
$ \eta^{\hat{j}_1} < 2.5$	25	21	46	24			
$H_{\rm T} > 200{ m GeV}$	25	21	46	23			
$H_{\mathrm{T}}^{\mathrm{miss}} > 130 \mathrm{GeV}$	17	9.4	44	15			
$H_{\mathrm{T}}^{\mathrm{miss}}/E_{\mathrm{T}}^{\mathrm{miss}} < 1.25$	11	5.6	42	12			
$H_{\rm T}$ -dependent $\alpha_{\rm T}$ requirements ($H_{\rm T} < 800{\rm GeV}$)	11	3.9	41	7.5			
$\Delta \phi_{\min}^* > 0.5$	0.4	0.5	13	3.2			
Four most sensitive $n_{\rm jet}$ event categories	0.4	0.4	13	2.3			

Table 4: A summary of the cumulative signal acceptance times efficiency, $\mathcal{A}\varepsilon$ [%], for various benchmark models with both compressed and uncompressed mass spectra, following the application of the event selection criteria used to define the signal region. Values for $\mathcal{A}\varepsilon$ are also shown following the application of additional requirements that define the four most sensitive $n_{\rm jet}$ event categories, as defined in Table 5. Scale factor corrections to simulated signal events that account for the mismodelling of theoretical and experimental parameters are not applied, and so the values for $\mathcal{A}\varepsilon$ differ with respect to those in Table 5 by up to 15%.

Event selection	Benchmark model (m_{SUSY}, m_{LSP})					
	T2bb	T2bb	T2tb	T2tb	T2tt	T2tt
	(800, 50)	(375, 300)	(600, 50)	(350, 225)	(700, 50)	(350, 100)
Before selection	100	100	100	100	100	100
Event veto for muons and electrons	99	99	72	80	63	63
Event veto for single isolated tracks	96	94	61	72	53	53
Event veto for photons	95	94	60	72	52	52
Event veto for forward jets ($ \eta > 3.0$)	81	81	51	62	45	45
$n_{\rm jet} \ge 2$	80	61	51	53	45	44
$p_T^{j_1} > 100 \text{GeV}$	80	36	50	36	44	35
$ \hat{\eta}^{j_1} < 2.5$	80	34	50	34	44	34
$H_{\rm T} > 200{ m GeV}$	80	30	50	30	44	33
$H_T^{\text{miss}} > 130 \text{GeV}$	75	18	44	17	40	20
$H_{\rm T}^{\rm miss}/E_{\rm T}^{\rm miss} < 1.25$	72	15	38	12	38	15
H_{T} -dependent α_{T} requirements ($H_{\mathrm{T}} < 800 \mathrm{GeV}$)	62	7.2	30	5.5	34	8.8
$\Delta \phi_{\min}^* > 0.5$	39	4.5	17	3.2	21	4.0
Four most sensitive $n_{\rm jet}$ event categories	37	2.9	14	2.1	19	3.0

Table 5: A summary of the cumulative signal acceptance times efficiency, $\mathcal{A}\varepsilon$ [%], for various benchmark models with both compressed and uncompressed mass spectra, following the application of the event selection criteria used to define the signal region. Values for $\mathcal{A}\varepsilon$ are also shown following the application of additional requirements that define the four most sensitive $n_{\rm jet}$ event categories, as defined in Table 5. Scale factor corrections to simulated signal events that account for the mismodelling of theoretical and experimental parameters are not applied, and so the values for $\mathcal{A}\varepsilon$ differ with respect to those in Table 5 by up to 15%.

Event selection	Benchmark model (m_{SUSY}, m_{LSP})				
	T2cc	T2tt_degen	T2tt_mixed		
	(325, 305)	(300, 290)	(300, 250)		
Before selection	100	100	100		
Event veto for muons and electrons	100	100	89		
Event veto for single isolated tracks	97	98	83		
Event veto for photons	97	97	83		
Event veto for forward jets $(\eta > 3.0)$	83	84	72		
$n_{ m jet} \ge 2$	26	21	36		
$p_{\rm T}^{ m j_1} > 100 { m GeV}$	16	14	19		
$ \eta^{j_1} < 2.5$	15	13	18		
$H_{\mathrm{T}} > 200\mathrm{GeV}$	13	11	15		
$H_{\mathrm{T}}^{\mathrm{miss}} > 130\mathrm{GeV}$	11	9.2	10		
$H_{\rm T}^{ m miss}/E_{ m T}^{ m miss} < 1.25$	9.2	7.5	8.4		
$H_{\rm T}$ -dependent $\alpha_{\rm T}$ requirements ($H_{\rm T} < 800 {\rm GeV}$)	4.8	4.3	3.7		
$\Delta \phi_{\min}^* > 0.5$	3.7	3.7	2.3		
Four most sensitive $n_{\rm jet}$ event categories	1.9	1.9	0.9		