Binary Search Trees: Applications

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Data Structures Fundamentals Algorithms and Data Structures

Learning Objectives

- Compute order statistics in binary search trees.
- Use trees to store and manipulate sequential lists of elements.

Outline

Problem

Things you might want to do:

- Return the 7th largest element.
- Return the median element.
- Return the 25% percentile element.

Order Statistics

Order Statistics

Input: The root of a tree T and a number

k

Output: The k^{th} smallest element in T

ldea

- Need to know which subtree to look in.
- Need to know how many elements are in left subtree.

New Field

N.Size returns the number of elements in the subtree of *N*. Should satisfy:

N.Size = N.Left.Size + N.Right.Size + 1, where null nodes have size zero.

Maintaining Value

When you rotate, you need to recompute sizes.

Recompute

RecomputeSize(N)

 $N.Size \leftarrow N.Left.Size + N.Right.Size + 1$

Rotate

As before
RecomputeSize(Old root)
RecomputeSize(New root)

Order Statistics

OrderStatistic(R, k)

```
s \leftarrow R Left Size
if k = s + 1:
  return R
else if k < s+1:
  return OrderStatistic(R.Left, k)
else if k > s+1:
  return OrderStatistic(R.Right, k -
(s - 1)
```

Analysis

Runtime O(h).

Puzzle

How do you compute the rank of the node with a given key?

Outline

Problem

- Array of squares.
- Each black or white.
- Want to be able to flip colors of all squares after index x.

Operations

- NewArray(n)-Creates an array with n white squares.
- Color(m) Returns color of m^{th} square.
- Flip(x) Flips the color of all squares of index > x.

New Use For Trees

Store elements in sorted order.

Problem

Which node represents the 5^{th} smallest element in this tree?

Problem

Which node represents the 5th smallest element in this tree?

Idea

Store tree with nodes corresponding to list colors:

Idea II

Two trees- one with opposite colors:

Idea
Flip using merge and split

Create

NewArray(n)

Create two trees T_1 , T_2 with keys $1 \dots n$.

Give nodes extra Color field.

All in T_1 have color White

All in T_2 have color Black

Find

Color(m)

 $N \leftarrow \text{Find}(m, T_1)$ return N.Color

Flip

```
Flip(x)
```

$$(L_1,R_1) \leftarrow exttt{Split}(T_1,x)$$

 $(L_2,R_2) \leftarrow exttt{Split}(T_2,x)$
 $exttt{Merge}(L_1,R_2) \rightarrow T_1$
 $exttt{Merge}(L_2,R_1) \rightarrow T_2$

Moral

Trees can be used for more than searching. Can be used to store lists.