HSPICE Memory - SRAM

Yi-Ting Lai

Master Student
International College of Semiconductor Technology
National Chiao Tung Yang Ming University

Memory Categories

Memory Categories

- RAM: Random Access Memory
 - Historically defined as memory array with individual bit access
- ROM: Read Only Memory
 - Write typically requires high voltages or erasing by UV light
- Volatility vs. Non-volatile of Memory
 - Volatile memory loses data over time or when power is removed (ex:RAM)
 - ◆ Non-volatile memory stores data even when power is removed (ex:ROM)
- Static vs. Dynamic Memory
 - ◆ Static: holds data as long as power is applied (SRAM)
 - Dynamic: must be refreshed periodically (DRAM)

SRAM Architecture

- SRAM basic structure
 - SRAM Array
- SRAM Peripheral Circuits
 - Sense amplifier
 - Write Driver
 - Row decoder
 - Column decoder
 - Timing unit
- SRAM I/O Latches/FFs
 - ◆ Address Latch
 - Input latch
 - Output latch

SRAM Array

2ⁿ words of 2^m bits each

Read Operation in Global Circuits

Read Path

- Address latch
- Timing Unit
- Row Decoder (WL driver)
- ◆ SRAM Array
- Selected WL
- Selected BL pairs
- Sense Amplifier
- Output latch

Write Operation in Global Circuits

Data Path

- Input latch
- Write Driver
- SRAM Array (Selected BL pairs)

Control Path

- Address latch
- Timing Unit
- ◆ SRAM Array (Selected WL)

6T SRAM Cell

- Cross-coupled inverter to latch/store data
- Bi-directional access transistor
 - ♦ "I" NMOS: "strong 0 weak 1" when passing data
 - ... SRAM cell is written through data 0 side.

6T SRAM Cell - Hold

- When power on and no read/write operation command input.
- Bit line & bit line bar is pre-charged, preparing for the command input and do the operations.

6T SRAM Cell - Read

- Open word line (pull high) and make the pass transistor opened.
- Data (Q & Q bar) influences bit line & bit line bar. The voltage difference on bit line & bit line bar is small and hard to be sensed by ordinary logic gate correctly. To solve the problem, we need sense amplifier at the bottom of array.
- The sensing time in read operation is the critical path of the SRAM because there are many cell on the column and each size of MOS in cells is small.

6T SRAM Cell - Write

- Write circuit makes bit line & bit line bar transfer to its value.(input 0, input bar 1)
- Open word line and write the value to Q & Q bar.
- Because NMOS pass strong 0 weak 1, the value is written into the cell mainly by "0" side.

Static Noise Margin (SNM): Butterfly Curve

- SNM: The maximum value of "Vn" that can be tolerated by the flip-flop before changing state
- Standby (or Retention) SNM: word line low
- Read SNM (RSNM): word line high

Static Noise Margin (SNM): Butterfly Curve

Write-ability and Write Margin

Exercise

- Using 7nm FinFFT model to design ap 6T SRAM and measure its WM and HSNM and RSNM
- Show the wave form:

SNM (show signal: v1, v2)

- ☐ Hold SNM
- ☐ Read SNM
-] Write SNM

Hold Read

Exercise Notice

Elit of voltage.

 BL & BLB: I prefer using ".ic" command instead of using ordinary voltage definition because BL & BLB would be floating after pre-charged in the real circuit.

```
.ic V(??.BL) = ?? * ?? need to be edited
.ic V(??.BLB) = ?? * ?? need to be edited
```

 Adding the capacitor on BL & BLB is to make the simulation closer to reality. (if the wave form is weird you can adjust by yourself)

CBLB BLB GND BITCAP

Exercise Hint

Exercise SNM Wave Form Hint

Hold SNM wave form:

Read SNM wave form:

Write SNM wave form:

