Dis 5A Notes Monday, July 20, 2020	12:32 PM
	2 CPV. Zat. On
UN	2 (1 · Eat · OV)
*	State Space
*	5/91° 5/90
X	Eavililaium Points
* L	Equilibrium Points inearization
	Scalar Case
	Vector Case Jacobiah
	16018 CARE COM
	,
	- Workshoet
(T)	State Space Models
)
_	State variables, set of variables
	that fully represent the state of
	or dynamical system at any point in the
	S. Synamica 39, 100
	ps. At in the
	$(X/4)$ $=$ $(X,(+)$ \in $(X,(+)$
724	- X(1) - / -
16(ta	$X(t)$ $=$ $X_1(t)$ $=$ $X_2(t)$
	xn(+)) (state space)

Lxn(+)] (state space) 141 , .. inputs $u(t) = \begin{bmatrix} u_1(t) \\ u_m(t) \end{bmatrix} \in \mathbb{Z}$ $- \begin{bmatrix} control & space \end{bmatrix}$ $- \underbrace{\int x(t)}_{x}(t) = f(x'(t), u'(t))$ not necessarily timear! If linear! matrix! $\left|\frac{dx(t)}{dx(t)}\right| = Ax(t) + Bx(t)$

Dis5A Page 2

$$\frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$$

$$\frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}} = 0$$

b) no solutions

if Bir & Col(A)

Linearization

a) Scalar care

Taylor series:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x^*)}{n!} (x-x^*)^n$$

$$= f(x^*) + \frac{f'(x^*)}{n!} (x-x^*)^n$$

$$+ \frac{f''(x^*)}{n!} (x-x^*)^n$$
I'Taylor expansion about $x = x^{n-1}$

D Linearization: Just take the 1st $x = x^{n-1}$

Themate ways of saying same thing;

Alternate ways of saying same thing;

$$Sf = f(x) - f(x^*)$$

$$- f(x) \simeq f(x^*) + f'(x^*) \leq x$$

$$- f(x) \simeq f(x^*) + f'(x^*) \leq x$$

$$- f(x^* + \delta x) = f(x^*) + f'(x^*) \delta x$$

$$- f(x^* + \delta x) = f(x^*) + f'(x^*) \delta x$$

$$- f(x^* + \delta x) = f(x^*) + f'(x^*) \delta x$$

$$- f(x^* + \delta x) = f(x^*) + f'(x^*) \delta x$$

$$- f(x^* + \delta x) = f(x^*) + f'(x^*) \delta x$$

$$- f(x^* + \delta x) = f(x^*) + f'(x^*) \delta x$$

$$- f(x^* + \delta x) = f(x^*) + f'(x^*) \delta x$$

$$- f(x^* + \delta x) = f(x^*) + f'(x^*) \delta x$$

$$\begin{cases}
\begin{pmatrix}
x_1 & \dots & x_n \\
 & & \downarrow \\
 & \downarrow \\$$

As matrix multiplication:
$$f(x) = f(x) + \nabla f(x) + \nabla f(x) = x^{*}$$

$$= f(x) + \left[\frac{\partial f}{\partial x} \right]_{x_{1} = x_{1}}^{x_{2} = x_{2}}$$

$$= f(x) + \left[\frac{\partial f}{\partial x_{1}} \right]_{x_{1} = x_{2}}^{x_{2} = x_{3}}$$

b) Verter case and Jacobians
$$x_n \cdot x_n^{*}$$

$$f(\vec{x}) = \begin{bmatrix} f_1(\vec{x}) \\ f_1(\vec{x}) \end{bmatrix}$$

$$f(\vec{x}) \approx f(\vec{x}) + \begin{bmatrix} \sum_{j=1}^{n} \frac{1}{2^{j}} (x_j - x_j^{*}) \\ \frac{1}{2^{j}} \frac{1}{2^{j}} (x_j - x_j^{*}) \end{bmatrix}$$

$$f(\vec{x}) \approx f(\vec{x}) + \begin{cases} \frac{1}{2^{j}} \frac{1}{2^{j}} (x_j - x_j^{*}) \\ \frac{1}{2^{j}} \frac$$

In the case of
$$f(\vec{x}, \vec{u})$$

$$\frac{d\vec{x}}{dt} = f(\vec{x}, \vec{u})$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

$$\frac{d\vec{x}}{dt} \approx f(\vec{x}, \vec{u}) + \sqrt{f} \int_{X} f(\vec{x}, \vec{u}) d\vec{x}$$

1 Single-dimensional linearization

This is an exercise in linearizing a scalar system. The scalar nonlinear differential equation we have is

$$\frac{d}{dt}x(t) = \sin(x(t)) + u(t). \tag{1}$$

a) Find the equilibrium points for $u^* = 0$. You can do this by sketching $\sin(x)$ for $-4\pi \le x \le 4\pi$ and intersecting it with the horizontal line at 0. This will give you the equilibrium points x^* where $\sin(x^*) + u^* = 0$.

$$\sqrt{\frac{1}{2}} = 0 \cdot \left(\frac{1}{2} \cdot \frac{1$$

 $\overline{\chi}(t) = f(\overline{\chi}, \overline{\chi}) = 0$

b) Linearize the system (1) around the equilibrium $(x_0^*, u^*) = 0, 0$). What is the resulting linearized scalar differential equation for $x(t) = x(t) - x_0^* = x(t) - 0$, involving $x(t) = y(t) - u^* = y(t) - 0$?

$$\int (x,u) = \sin(x) + U$$

$$\int (x,y) = \int (x^*y) + \frac{\partial f}{\partial x} (x - x)$$

$$\int (x,y) = \int (x^*y) + \frac{\partial f}{\partial x} (x - x)$$

$$\frac{1}{3} \left(\frac{1}{3} \right)^{3} \left$$

2 Jacobian Warm-Up

Consider the following function $f: \mathbb{R}^2 \mapsto \mathbb{R}^3$

$$f(x_1,x_2) = \begin{bmatrix} f_1(x_1,x_2) \\ f_2(x_1,x_2) \\ f_3(x_1,x_2) \end{bmatrix} = \begin{bmatrix} x_1^2 - x_2^2 \\ x_1^2 + x_1 x_2^2 \\ x_1 \end{bmatrix}$$

Calculate its Jacobian.

its Jacobian.

$$\frac{\partial f_1}{\partial x_1} \frac{\partial f_1}{\partial x_2} = \frac{\partial f_1}{\partial x_1} \frac{\partial f_2}{\partial x_2} = \frac{\partial f_2}{\partial x_1} \frac{\partial f_2}{\partial x_2} = \frac{\partial f_3}{\partial x_2} \frac{\partial f_3}{\partial x_2} = \frac{\partial f_3}{\partial x_2} \frac{\partial f_$$

3 Linearization

Consider a mass attached to two springs:

1-0000-1 M

We assume that each spring is linear with spring constant k and resting length X_0 . We want to build a state space model that describes how the displacement y of the mass from the spring base evolves. The differential equation modeling this system is $\frac{d^2y}{dt^2} = -\frac{2k}{m}(y - X_0\frac{y}{\sqrt{y^2+a^2}})$.

$$= -\frac{2k}{m} \left(y - \chi_{s} \sin \Theta \right)$$

a) Write this model in state space form $\dot{x} = f(x)$.

State variables:
$$X_1 = y$$
 $y_1 = y$
 $y_2 = y$
 $y_3 = y$
 $y_4 = y$
 y_4

b) Find the equilibrium of the state-space model. You can assume $X_0 < a$.

c) Linearize your model about the equilibrium.

$$\frac{\partial f_{2}}{\partial x_{1}} = \frac{2k}{m} \frac{\partial}{\partial x_{1}} \left(x_{1} - \sqrt{\frac{x_{1}}{\sigma^{2}}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{1}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{2}}{\sigma^{2}} \right) = 0$$

$$= -\frac{2k}{m} \left(1 - \frac{x_{$$

