

A Shared Multi-Attention Framework for Multi-Label Zero-Shot Learning

Dat Huynh and Ehsan Elhamifar

Khoury College of Computer Sciences
Northeastern University

Motivation

Person

Shared

Attention 1

Shared

Attention 2

- Multi-label Learning:
 - Recognize all labels in an image
 - Require large costly annotations
- Multi-label Zero-Shot Learning:
 - Recognize both seen and unseen labels
 - Annotations for only seen labels
- Few work on multi-label ZSL
 - Holistic feature cannot encode all labels
 - Ignore labels from small regions
- Contributions
 - Shared multi-attention features for ZSL
 - Transfers knowledge between seen/unseen

Arch Stone Travel Person

Stone

Shared

Multi-Attention

Seen label Unseen label
Arch

Travel

Proposed Architecture

- Multiple Soft Attention NNs:
 - Generating multiple attention feature for an image
- Attention Selection (label-agnostic):
 - For each label, choose attention feature maximizing prediction score
- Learning:
 - Diversity Loss: Minimize overlap between attention
 - Relevance Loss: Focus only on regions improving prediction
 - Distribution Loss: Effectively use all attention modules

Experiments

Recognition: outperforms SOTA on NUS-WIDE and Open Images

	Task	NUS-WIDE (#seen/#unseen = 925/81)							Open Images (#seen/#unseen = 7186/400)						
Method		K = 3			K=5			mAP	K = 10			K = 20			mAP
		P	R	F1	P	R	F1	ША	P	R	F1	P	R	F1	ША
CONSE	ZS	17.5	28.0	21.6	13.9	37.0	20.2	9.4	0.2	7.3	0.4	0.2	11.3	0.3	40.4
LabelEM		15.6	25.0	19.2	13.4	35.7	19.5	7.1	0.2	8.7	0.5	0.2	15.8	0.4	40.5
Fast0Tag		22.6	36.2	27.8	18.2	48.4	26.4	15.1	0.3	12.6	0.7	0.3	21.3	0.6	41.2
One Attention per Label		20.9	33.5	25.8	16.2	43.2	23.6	10.4	-	-	-	-	-	-	-
Ours		25.7	41.1	31.6	19.7	52.5	28.7	19.4	0.7	25.6	1.4	0.5	37.4	1.0	41.7
		+3.8% (F1@3)				+4.3%	P)	+0.7% (F1@10)			.	+0.5% (mAP)			

Qualitative Results:

Attention utility depends on label complexity

Successfully attend relevant image regions

