Analisi Matematica II

Analisi complessa

Virginia De Cicco Sapienza Univ. di Roma

Come conseguenza del teorema di Cauchy vedremo che una funzione olomorfa è analitica nel senso della definizione seguente.

Sia $A \subseteq \mathbb{C}$ un aperto connesso e ∂A la sua frontiera.

Definizione Una funzione $f: A \to \mathbb{C}$ si dice *analitica* se

per ogni $z_0 \in A$ essa è sviluppabile in serie di Taylor nell'intorno $B_r(z_0) \subseteq A$ di z_0 con $r = dist(z_0, \partial A)$, cioè

$$f(z) = \sum_{n \geq 0} c_n (z - z_0)^n = \sum_{n \geq 0} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \quad \forall z : \ |z - z_0| < r.$$

Abbiamo già visto che se f è analitica, allora f (insieme a tutte le sue derivate) è olomorfa nel cerchio di convergenza della serie. In realtà vale anche il viceversa.

Teorema

Sia $A\subseteq\mathbb{C}$ un aperto connesso e sia $f:A\to\mathbb{C}$ una funzione olomorfa.

Allora per ogni $z_0 \in A$, posto $r = dist(z_0, \partial A)$

$$f(z) = \sum_{n \geq 0} c_n (z - z_0)^n$$

per ogni $z \in B_r(z_0)$ ed inoltre

$$c_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz,$$

dove γ è una circonferenza di centro z_0 e raggio minore di r.

Formula integrale di Cauchy per le derivate

Ne segue

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz,$$

dove γ è una circonferenza di centro z_0 e raggio minore di r.

Ne segue

$$\int_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0).$$

5 / 27

Appello del 18 aprile 2008

- (i) Si dia la formula integrale di Cauchy.
- (ii) Si calcolino i seguenti integrali

$$\int_{\gamma} \frac{e^{z-5}}{z-1} \ dz,$$

$$\int_{\gamma} \frac{e^{z-5}}{(z-1)^{20}} \ dz,$$

dove γ è una curva chiusa contenente il punto 1.

Soluzione: (ii) Sia $f(z)=e^{z-5}$. Usando la formula integrale di Cauchy si ha

$$\int_{\gamma} \frac{e^{z-5}}{z-1} \ dz = 2\pi i \ f(1) = 2\pi i e^{-4}$$

e usando la formula integrale di Cauchy per le derivate

$$\int_{\gamma} \frac{e^{z-5}}{(z-1)^{20}} \ dz = \frac{2\pi i}{(19)!} f^{(19)}(1) = \frac{2\pi i}{(19)!} e^{-4}.$$

Per n = 0 è esattamente la formula integrale di Cauchy.

Per n>0 si ottiene dalla formula di Cauchy derivando n volte rispetto ad z_0 sotto il segno di integrale.

Se $A = \mathbb{C}$ si prende $r = \infty$.

Il risultato afferma che basta che esista una derivata perché esistano tutte le successive. In tal caso si dice che f è $C^{\infty}(A)$, cioè infinitamente derivabile.

Inoltre f derivabile implica che f è localmente sviluppabile in serie di Taylor. Tutto ciò non accade in campo reale .

Per concludere: in campo complesso si ha che:

f olomorfa in A \Leftrightarrow f analitica in A.

Dalla coincidenza delle funzioni olomorfe con le funzioni analitiche in campo complesso si hanno varie conseguenze.

Funzioni armoniche

Vediamo un'importante proprietà delle funzioni analitiche.

Teorema

Sia $f = u + iv : \mathbb{C} \to \mathbb{C}$ una funzione analitica.

Allora u(x, y) e v(x, y) (viste come funzioni delle due variabili reali x e y) sono funzioni *armoniche*,

i.e. valgono le seguenti equazioni di Laplace

$$\Delta u := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

е

$$\Delta v := \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

(l'operatore Δ è detto Laplaciano).

Funzioni armoniche

Dimostrazione

Essendo f analitica (e quindi olomorfa), dalle condizioni di Cauchy-Riemann si ha

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Derivando e usando il teorema di inversione dell'ordine di derivazione (Teorema di Schwartz) si ha

$$\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}$$

e analogamente si prova l'equazione di Laplace per v.

Ш

Teorema di Morera

Dall'analiticità delle funzioni olomorfe si ha il seguente teorema:

Teorema di Morera

Sia $f: A \to \mathbb{C}$ una funzione continua nell'aperto connesso $A \in \mathbb{C}$.

Se l'integrale di f su ogni curva semplice e chiusa in A è nullo,

allora f è analitica in A.

Dimostrazione

Sappiamo che se l'integrale di f su ogni curva semplice e chiusa in A è nullo, allora f ammette una primitiva.

Quindi f è la derivata di una funzione F olomorfa e dunque analitica.

Ne segue che anche f è analitica (essendo la derivata di una analitica).

Sia $f: A \to \mathbb{C}$ una funzione continua nell'aperto connesso $A \in \mathbb{C}$.

Un punto $a \in A$ si dice uno zero di f se f(a) = 0.

Se a è uno zero di f e

$$f(z) = \sum_{n \ge 0} c_n (z - a)^n = \sum_{n \ge 0} \frac{f^{(n)}(a)}{n!} (z - a)^n$$

è lo sviluppo di Taylor in un intorno di a,

allora $c_0 = f(a) = 0$.

Diremo che a è uno zero di ordine n se $f^{(k)}(a) = 0$ per ogni $0 \le k \le n - 1$ e $f^{(n)}(a) \ne 0$.

Esempi: la funzione $f(z) = (z-1)^3$ ha uno zero di ordine 3 in a=1;

la funzione $f(z) = (senz)^2$ ha uno zero di ordine 2 in a = 0.

In particolare, zero del primo ordine vuol dire f(a)=0 , ma $f'(a)\neq 0$.

Nel campo reale una funzione (non nulla) $C^{\infty}(\mathbb{R})$ può avere uno zero di ordine infinito.

Esempio: la funzione

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 (1)

è una funzione di classe $C^{\infty}(\mathbb{R})$

ed è nulla in 0 con tutte le sue derivate.

Quindi la somma della serie di Taylor in un intorno di 0 è nulla.

Ne segue che f non è sviluppabile in serie di Taylor.

Può succedere una cosa analoga nel campo complesso dove le C^{∞} coincidono con le analitiche?

No, tranne se f = 0. Infatti vale il seguente teorema.

Teorema

Sia $f: A \to \mathbb{C}$ una funzione analitica nell'aperto connesso $A \in \mathbb{C}$. Sono equivalenti le seguenti proposizioni:

- (i) esiste $a \in A$ tale che $f^{(n)}(a) = 0$ per ogni $n \ge 0$;
- (ii) f è nulla in un intorno di a;
- (iii) f è nulla in A.

Sono banali le implicazioni: (iii) \Rightarrow (ii) \Leftrightarrow (i). Omettiamo la dimostrazione di (ii) \Rightarrow (iii).

14 / 27

Principio degli zeri isolati

Corollario 1

Se due funzioni analitiche coincidono in un intorno di $a \in A$, allora coincidono ovunque.

In realtà , come vedremo in seguito, basta conoscere i valori su un insieme "più povero".

Teorema (Principio degli zeri isolati)

L'insieme degli zeri di una funzione analitica non identicamente nulla definita in A (se non è vuoto) è costituito da punti isolati ed è privo di punti di accumulazione appartenenti ad A.

Esempio

Dal corollario segue che per ogni $z\in\mathbb{C}$ si ha

$$sen^2z + cos^2z - 1 = 0.$$

Infatti poiché per ogni $x \in \mathbb{R}$ si ha $sen^2x + cos^2x - 1 = 0$,

la funzione $f(z) = sen^2z + cos^2z - 1$ ammette un insieme di zeri che non e costituito da punti isolati (asse delle x).

Dunque grazie al corollario si ha che f(z) deve essere identicamente nulla.

Appello dell'8 settembre 2008

- (i) Si provi che l'insieme degli zeri di una funzione analitica non identicamente nulla, se non è vuoto, è costituito interamente da punti isolati.
- (ii) Se ne deduca che vale l'identità

$$sen 2z - 2sen z cos z = 0$$
 $\forall z \in \mathbb{C}$.

Soluzione:

ii) La funzione

$$f(z) = sen 2z - 2sen z \cos z$$

è analitica e ha come insieme di zeri tutto l'asse reale che non è un insieme interamente costituito da punti isolati.

Dunque l'unica possibità è che sia identicamente nulla.

Principio di identità

Dal corollario precedente si ha che vale il seguente *principio di identità* delle funzioni analitiche:

Corollario 2 (Principio di identità)

Se due funzioni analitiche coincidono su un dominio

che sia dotato di un punto di accumulazione appartenente allo stesso dominio,

allora le due funzioni coincidono ovunque.

Prolungamento analitico

Ne segue che

Corollario 3 (Prolungamento analitico) Dato $I \subseteq \mathbb{R}$ un intervallo ed $f: I \to \mathbb{R}$,

se esiste una funzione analitica definita in un aperto $A \subseteq \mathbb{C}$ tale che $I \subseteq A \cap \mathbb{R}$

e la cui restrizione ad I coincide con f(x),

allora tale funzione è univocamente determinata ed è detta *prolungamento* analitico.

ESEMPI:

Le funzioni e^z , cosz e senz, con $z \in \mathbb{C}$, sono i prolungamenti analitici di e^x , cosx e senx, con $x \in \mathbb{R}$.

Prolungamento analitico

Inoltre il prolungamento analitico esiste sempre per le funzioni sviluppabili in serie di Taylor, cioè per quelle per cui si ha

$$f(x) = \sum_{n>0} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \qquad \forall x \in I =]x_0 - R, x_0 + R[\subseteq \mathbb{R}.$$

In tal caso il prolungamento analitico è

$$f(z) = \sum_{n>0} \frac{f^{(n)}(x_0)}{n!} (z - x_0)^n \qquad \forall z \in I = B_r(x_0) \subseteq \mathbb{C}.$$

Questo motiva gli sviluppi delle funzioni elementari.

Appello del 20 febbraio 2009

- (i) Si enunci il Principio del prolungamento analitico.
- (ii) Usando tale principio si dimostri la seguente formula:

$$\operatorname{sen} z = (-1)^k \operatorname{sen} (z + k\pi) \quad \forall z \in \mathbb{C}, \ \forall k \in \mathbb{Z}.$$

Soluzione:

(ii) Si consideri la funzione

$$f(z) = \operatorname{sen} z - (-1)^k \operatorname{sen} (z + k\pi).$$

Per ogni numero reale $x \in \mathbb{R}$ si ha

$$sen x = (-1)^k sen (x + k\pi) \forall k \in \mathbb{Z}$$

e quindi, per ogni numero reale $x \in \mathbb{R}$, si ha

$$f(x) = 0.$$

Dal Principio del prolungamento analitico (per l'unicità di tale prolungamento) si ha che f(z) = 0 su tutto \mathbb{C} , da cui segue la validità della formula.

Diseguaglianza di Cauchy

Abbiamo visto che

se f è analitica in $A \subseteq \mathbb{C}$,

allora il suo sviluppo in un punto $a \in A$

$$f(z) = \sum_{n \geq 0} c_n (z - a)^n$$

è unico nel senso che

$$c_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz,$$

dove γ è una curva chiusa che circuita il punto a.

Quindi

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz.$$

Diseguaglianza di Cauchy

Sia γ una circonferenza di centro a e raggio r,

allora per n=0 si ha

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} dz = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(a + re^{it})}{re^{it}} i re^{it} dt = \frac{1}{2\pi} \int_{0}^{2\pi} f(a + re^{it}) dt.$$

Ciò significa che il valore f(a) in un punto $a \in A$ si ottiene come *media integrale* dei valori che f assume su una qualunque circonferenza di centro a, contenuta in A.

Separando parte reale e parte immaginaria, si ottiene un risultato analogo per u = Ref e per v = Imf, che dunque godono della stessa proprietà della media.

Si potrebbe dimostrare più in generale che tale proprietà è caratteristica delle funzioni armoniche.

Diseguaglianza di Cauchy

Dalla formula

$$c_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz,$$

con $\gamma = \gamma_r$, detto

$$M(r) := \max\{|f(z)| : z \in \gamma_r\},\$$

si ha

$$|c_n| \leq \frac{1}{2\pi} \frac{M(r)}{r^{n+1}} 2\pi r = \frac{M(r)}{r^n}$$

per ogni $n \in \mathbb{N}$ e per ogni r > 0 tale che $B_r(a) \subseteq A$.

Quest'ultima è detta diseguaglianza di Cauchy.

Teorema di Liouville

Se f è analitica su \mathbb{C} e $|f(z)| \leq M$ per ogni $z \in \mathbb{C}$,

allora f è costante.

Dimostrazione

Poichè $A = \mathbb{C}$, la formula

$$|c_n| \le \frac{1}{2\pi} \frac{M(r)}{r^{n+1}} 2\pi r = \frac{M(r)}{r^n}$$

vale con r arbitrario.

Quindi

$$|c_n| \leq \frac{M(r)}{r^n} \qquad \forall r > 0.$$

Facendo tendere $r \to \infty$ si ha

$$c_n = 0 \quad \forall n \in \mathbb{N} \setminus \{0\}.$$

Teorema fondamentale dell'algebra

Usando il teorema di Liouville si può dimostrare il seguente

Teorema fondamentale dell'algebra

Ogni polinomio a coefficienti complessi ha almeno uno zero (in realtà ne ha esattamente n).

Appello del 21 settembre 2011

Domanda a risposta multipla

Se f è analitica su \mathbb{C} con $|f(z)| \leq 2$, allora per il Teorema di Liouville, una delle seguenti affermazioni è vera. Quale?

- a) f=M dove $M\in\mathbb{C}$ è una costante complessa tale che $|M|\leq 2$
- b) f = 2
- c) f=M dove $M\in\mathbb{R}^+$ è una costante reale positiva tale che $M\leq 2$
- d) f = 0.

Soluzione : a)