(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-143674

(43)公開日 平成9年(1997)6月3日

(51) Int.Cl.6		識別記号	庁内整理番号	FΙ					技術表示箇所	
C 2 3 C	14/00			C 2 3	C 1	4/00		В		
	14/56				1	4/56		F		
H01L	21/203			H01	L 2	21/203		Z		
	21/205				2	21/205				
	21/31				2	21/31		С		
			審査請求	未請求	球龍	質の数11	FD	(全 12 頁)	最終頁に続く	
(21)出願番		特願平7-329857		(71) 出	順人	000219	967			
						東京工	レクト	ロン株式会社	:	
(22)出願日		平成7年(1995)11月24日				東京都	港区赤	坂5丁目3番	6号	
			1	(71) 出	人颠	000005	234	34		
				1		富士電	機株式	会社		
			神奈川県			県川崎	川崎市川崎区田辺新田1番1号			
				(72)勞	e明者	横田	隆			
		•		1		神奈川	県津久	井郡城山町町	屋1丁目2番41	
						身 東	京エレ	クトロン東北	株式会社相模事	
						業所内				
				(74) #	人野分	弁理士	浅井	章弘		
									最終質に続く	

(54) 【発明の名称】 成膜装置及びその使用方法

(57)【要約】

【課題】 メイン処理以外の補助処理を行なうに際して、外部との間で被処理体の搬入・搬出操作を行なわなくて済む処理装置を提供する。

【解決手段】 被処理体Wに成膜処理を施す処理室22 の前段に、真空状態に維持されて、更にその前段より搬送されてくる被処理体を前記処理室に対して搬入・搬出させるための搬送室24を有する成膜装置において、前記搬送室に、クリーニング用ダミー被処理体DW2と、モニタ用ダミー被処理体DW3と、ダニーラン用ダミー被処理体DW3と、ダニーラン用ダミー被処理体を収容するためのダミー被処理体収容室26を前記搬送室と連通状態となるように連設するように構成する。そして、補助処理を行なう場合には、外部からではなく、ダミー被処理体収容室からダミー被処理体を取り込んで、処理を行なう。これにより、搬入・搬出操作に伴う時間的損失を最小限にする。

【特許請求の範囲】

【請求項1】 被処理体に成膜処理を施す処理室と、この処理室に対して前記被処理体を搬入・搬出可能に設けられた搬送室を有する成膜装置において、前記処理室内のクリーニング処理を行なう時に用いるクリーニング用ダミー被処理体と、前記処理室の内壁面を保護するためのカラデボジション処理を行なう時に用いるカラデボジション肌ダミー被処理体と、前記成膜による膜厚等を検査するためにモニタ処理を行なう時に用いるモニタ用ダミー被処理体と、前記成膜装置自体を安定化させるためのダミーラン処理を行なう時に用いるダミーラン用ダミー被処理体と、これらダミー被処理体の内、少なくとも2種類のダミー被処理体を収容するためのダミー被処理体収容室を前記搬送室と連通状態となるように連設するように構成したことを特徴とする成膜装置。

【請求項2】 前記搬送室には、複数の前記処理室が共 通に連設されていることを特徴とする請求項1記載の成 膜装置。

【請求項3】 前記ダミー被処理体収容室内には、複数の前記ダミー被処理体を収容することができるダミー用カセットと、このダミー用カセットを載置して昇降移動可能になされたダミー用昇降台とが設けられていることを特徴とする請求項1又は2記載の成膜装置。

【請求項4】 前記ダミー被処理体収容室の少なくとも 1つの壁面は、前記ダミー用カセットの搬入・搬出を可 能とするために開閉可能になされていることを特徴とす る請求項3記載の成膜装置。

【請求項5】 前記開閉可能になされた少なくとも1つの壁面は、前記被処理体収容室の天井部であることを特徴とする請求項4記載の成膜装置。

【請求項6】 前記ダミー被処理体収容室の少なくとも 1つの壁面には、内部を監視するための監視窓が設けられていることを特徴とする請求項1乃至5記載の成膜装置。

【請求項7】 前記搬送室の前段には、複数の前記被処理体を収容することができるカセットを収容するカセット室を設けてあることを特徴とする請求項1乃至6記載の成膜装置。

【請求項8】 被処理体に成膜処理を施す処理室と、この処理室に対して前記被処理体を搬入・搬出可能に設け 40 られた搬送室を有する成膜装置の使用方法であって、前記処理室内のクリーニング処理を行なう時に用いるクリーニング用ダミー被処理体と、前記処理室の内壁面を保護するためのカラデポジション処理を行なう時に用いるカラデポジション用ダミー被処理体と、前記成膜による腹厚等を検査するためにモニタ処理を行なう時に用いるモニタ用ダミー被処理体と、前記成膜装置自体を安定化させるためのダミーラン処理を行なう時に用いるダミーラン用ダミー被処理体と、これらダミー被処理体の内、少なくとも2種類のダミー被処理体を、前記搬送室と連 50

通状態となるように連設するダミー被処理体収容室に予め収納し、前記処理室での処理に必要とするダミー被処理体を選択して前記処理室の予め定められた位置に搬入し、所望する処理を行なう工程を設けたことを特徴とする成膜装置の使用方法。

【請求項9】 前記処理室内をクリーニング処理した後に、前記ダミー被処理体収容室から前記カラデポジション用ダミー被処理体を取り出してこれを前記処理室内に搬入し、その後、カラデポジション処理を行なって前記処理室の内壁に保護膜を形成するように構成したことを特徴とする請求項8記載の成膜装置の使用方法。

【請求項10】 前記カラデポジション処理を行なった後に、前記ダミー被処理体収容室から前記ダミーラン用ダミー被処理体を取り出してこれを前記処理室内に搬入し、その後、モニタ処理を行なうようにしたことを特徴とする請求項9記載の成膜装置の使用方法。

【請求項11】 被処理体に成膜処理を施す処理室と、 この処理室に対して前記被処理体を搬入・搬出可能に設 けられた搬送室を有する成膜装置であって、前記搬送室 に、前記処理室内のクリーニング処理を行なう時に用い るクリーニング用ダミー被処理体と、前記処理室の内壁 面を保護するためのカラデポジション処理を行なう時に 用いるカラデポジション用ダミー被処理体と、膜厚等を 検査するために成膜を施すモニタ処理を行なう時に用い るモニタ用ダミー被処理体と、前記成膜装置自体を安定 化させるためのダミーラン処理を行なう時に用いるダミ ーラン用ダミー被処理体と、これらダミー被処理体の 内、少なくとも2種類のダミー被処理体を収容するため のダミー被処理体収容室を前記搬送室と常時連通状態と 30 なるように連設するようにした成膜装置の使用方法にお いて、前記被処理体に前記成膜処理を施すに先立って、 前記ダミー被処理体収容室からダミーラン用ダミー被処 理体を取り出してこれを前記処理室内に搬入し、ダミー ラン処理を行なうように構成したことを特徴とする成膜 装置の使用方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体ウエハ等に 成膜する成膜装置及びその使用方法に関する。

[0002]

【従来の技術】近年、半導体製品の高密度化及び高微細化に伴い半導体製品の製造工程において、成膜、エッチング、アッシング等の処理のためにプラズマ処理装置が使用される場合があり、特に、0.1~10mTorr程度の比較的圧力が低い高真空状態でも安定してプラズマを立てることができることからマイクロ波とリング状のコイルからの磁場とを組み合わせて高密度プラズマを発生させるマイクロ波プラズマ装置が使用される傾向にある。従来、この種のマイクロ波プラズマ装置としては例えば磁場形成手段を有するプラズマ発生室にマイクロ

波導入口を設けて電子サイクロトロン共鳴空間を形成し、プラズマ発生室からイオンを引き出して反応室内の 処理ガスをこのプラズマで活性化させて成膜処理等を行なうものが知られている。

【0003】図6はこのような従来の処理装置を示す概 略構成図であり、材質例えばアルミニウム等によりなる 密閉状態で区画された処理室2内には被処理体としての 半導体ウェハ♥を載置するための載置台4が設けられ る。この処理室2の上方には、高周波発生源6、例えば マイクロ波を出力するマグネトロンに接続された導波管 8が配置されており、処理室2内にマイクロ波を導入で きるようになっている。また、処理室2の上方側部に は、電磁コイル10が設けられており、これより発生す る磁界とマイクロ波との間で電子サイクロトロン共鳴を 生ぜしめるようになっている。そして、投入されたマイ クロ波電力によりプラズマガス、例えばアルゴンガスを プラズマ化し、このプラズマによりこの下方に供給され る処理ガス、例えば成膜ガスとしてのシランガスや酸素 を活性化して反応させ、ウエハ表面上に成膜を施すよう になっている。

【0004】この種の枚葉式の処理室2は、一般的には 処理効率を高めるために複数個、共通に搬送室12に連設され(図示例にあっては1つのみ記載)、カセット室14内に収容した多数のウエハWを搬送室12内の多関節搬送アーム16により、各処理室に対して搬入・搬出させるようになっている。尚、各室間或いはカセット室14には、これら空間を気密に開閉するゲートバルブG1、G2或いはゲートドア18が設けられる。

[0005]

【発明が解決しようとする課題】ところで、例えばウエ 30 ハ成膜処理を行なうと成膜がウエハ表面のみなず、処理室内の不必要な部分、例えば処理室内壁等にも付着するが、これが剥離するとパーティクルの原因となることから、ある一定の枚数、例えば10枚或いは20枚のウエハの成膜処理を行なうと、不要部分に付着した成膜を除去するために、例えばNF,等のクリーニングガスを処理室内に流し、ブラズマレスのクリーニング処理を行なわなければならない。この場合、クリーニングガスは非常に反応性に富むことから、載置台4上にウエハを吸着するために設けた静電チャックを保護する目的で、クリ 40 ーニング期間、ダミーウエハを載置し、前記静電チャックを保護しつつクリーニング処理を行なうようになっている。

【0006】しかしながら、このダミーウエハを処理室 2内に搬入するためには、図6から明らかなように、大気に開放されたカセット室14内にまず外部からダミーウエハを取り込み、そして、カセット室14内を密閉してこの中を搬送室12と略同様の真空度まで真空引きし、その後、搬送アーム16を用いて処理室2内へこのダミーウェハを搬入するようになっている。そして、ク 50

リーニング処理後においては、上記した経路の逆の経路を通って搬出される。そのために、クリーニング処理を行なうために外部との間で、上記したようにダミーウェハの搬入・搬出操作を行なわなければならないことから、カセット室14内の真空引きと大気復帰に要する期間は製品ウエハの処理ができず、スループットを低下させる原因となっていた。

【0007】また、このようなクリーニング処理を行な った後には、処理室内壁の母材、例えばアルミニウムが 剥き出しになることから、この母材からクリーニング残 渣物が排出するのを防止すると共にこの母材を保護する ためにこの内壁に保護膜を形成するためにカラデポジシ ョン処理を行なわなければならない。この場合にも、静 電チャックに保護膜が付着することは好ましくないとか ら、このチャックに、前述とは別のダミーウエハを載置 して吸着させ、カラデポジション処理を行なっている。 従って、このカラデポジション用のダミーウエハの搬入 ・搬出操作にも前述したと同様に時間がかかり、スルー ブットを低下させていた。また、このカラデポジション 20 後などにおいては、膜厚が所定の目的とする厚さとなる ように成膜できるか、或いは所定値以下のパーティクル 数に実際になっているか否かなどをチェックするため に、モニタ処理を行なってダミーウエハにモニタ膜付け を行なう場合もある。との場合にも、モニタ処理専用の ダミーウエハを用いなければならず、この搬入・搬出操 作を行わなければならない。

【0008】更には、装置を立ち上げた後の例えば最初 の1回目の処理、或いはカセット入れ代え時などのよう に処理を休止していて、再開する場合など、最初の1回 目の処理は、装置自体が安定しないことから、最初の1 枚目だけはダミー用のウエハを用いて、いわゆるダミー ラン処理を行ない、2枚目から製品ウエハを流してウエ ハ間の処理の均一性を良くすることが行なわれるが、こ のダミーラン用のウエハも前述したと同様に、カセット 室14及び搬送室12を介して外部との間で搬入・搬出 しなければならず、この点よりもスループットを低下さ せるという問題があった。本発明は、以上のような問題 点に着目し、これを有効に解決すべく創案されたもので ある。本発明の目的は、メインの成膜処理以外の補助処 理を行なうに際して、外部との間でダミー被処理体の搬 入・搬出操作を行なわなくても済む成膜装置及びその使 用方法を提供することにある。

[0009]

【課題を解決するための手段】本発明は、上記問題点を解決するために、被処理体に成膜処理を施す処理室の前段に、真空状態に維持されて、更にその前段より搬送されてくる被処理体を前記処理室に対して搬入・搬出させるための搬送室を有する成膜装置において、前記搬送室に、前記処理室内のクリーニング処理を行なう時に用いるクリーニング用ダミー被処理体と、前記処理室内壁面

を保護するためのカラデポジション処理を行なう時に用 いるカラデポジション用ダミー被処理体と、膜厚等を検 査するために成膜を施すモニタ処理を行なう時に用いる モニタ用ダミー被処理体と、前記成膜装置自体を安定化 させるためのダミーラン処理を行なう時に用いるダミー ラン用ダミー被処理体の内、少なくとも2種類のダミー 被処理体を収容するためのダミー被処理体収容室を前記 搬送室と連通状態となるように設けるように構成したも のである.

【0010】本発明においては、通常のメインの所定の 10 い。 処理以外の補助処理、例えばクリーニング処理、カラデ ポジション処理、ダミーラン処理、モニタ処理を行なう ときに必要とする各ダミー被処理体は、ダミー被処理体 収容室に予め収容されたダミー被処理体を用いる。ま ず、通常のメインの所定の処理、例えば成膜処理を行な う場合には、例えばカセット室内に外部より取り込んだ 未処理の被処理体を、搬送室を介して処理室内に搬入 し、これに成膜処理を施す。成膜処理が完了したならば 上記した搬入操作と逆の操作を行なって、処理済みのウ エハを搬出し、カセット室に戻すことになる。

【0011】とのような成膜処理を連続的に例えば10 枚の被処理体に施すと、処理室の内壁面等には、剥がれ るとパーティクルとなる余分な膜が付着するので、これ をクリーニング操作により除去する必要がある。こと で、搬送室に連設されたダミー被処理体収容室内には用 途別に応じた複数のダミー被処理体が予め収容されてお り、従って、クリーニング操作を行なう場合には、静電 チャックを保護するためにこのダミー被処理体収容室か らクリーニング用のダミー被処理体を取り出してこれを 処理室内へ搬入して載置台に設置し、クリーニング操作 30 を行なう。そして、クリーニング操作が終了したなら ば、そのクリーニング用のダミー被処理体を上記ダミー 被処理体収容室内に再度収容し、次のクリーニング操作 に備える。

【0012】また、クリーニング操作により露出した処 理室の内壁面を保護するために、この内壁面に保護膜を 形成するカラデポジション処理及び複数の製品用被処理 体を連続処理するに先立って行なわれるダミーラン処理 を行なう場合にも、上記したダミー被処理体収容室内に 予め収容してあるカラデポジション用のダミー被処理体 40 及びダミーラン用のダミー被処理体をそれぞれ用いる。 ダミー被処理体収容室内には、ダミー用昇降台により昇 降移動可能になされたダミー用カセットが設けられてお り、これに前述したような必要とされるダミー被処理体 が複数枚、予め収容されている。

【0013】更には、カラデポジョン処理後に、所望す る膜厚の成膜が付着するか否か、或いは所定値以下のバ ーティクル数となっているか否かを実際にテストする場 合があり、そのために、モニタ用のダミー被処理体に実 のダミー被処理体も上記ダミー被処理体収容室内へ収容 しておき、必要に応じてとの収容室から取り出して用い る。これにより、上記した一連の補助処理を行なう場合 に、その都度、外部との間でダミー被処理体の搬入・搬 出操作を行なう必要がなく、従って、例えばカセット室 の真空引き操作や大気圧復帰操作を行なう必要がなく、 装置の稼働効率を上げてスループットを向上させること が可能となる。処理室の数は1つに限定されず、複数の **処理室を搬送室に共通に接続するような構造としてもよ**

【0014】また、上記ダミー被処理体収容室の例えば 天井部は、ボルト等により気密に着脱自在に設けられて おり、ダミー用カセットの交換を行うことができるよう にしていると共に、内部のメンテナンスを行なう時もこ れを容易にできるようにしている。更に、この天井部や 或いは収容室の側壁に例えば石英等の透明材料により、 監視窓を設けることにより、内部を監視でき、例えば装 置の位置決めティーチング時等に内部を開放することな く、これを行うことが可能となる。

20 [0015]

【発明の実施の形態】以下に、本発明に係る成膜装置及 びその使用方法の一実施例を添付図面に基づいて詳述す る。図1は本発明の成膜装置の全体を示す概略構成図、 図2は処理室と搬送室とダミー被処理体収容室との連結 状態を示す断面図、図3は図2に示すダミー被処理体収 容室の拡大断面図、図4は処理室を示す断面図、図5は カセット室の近傍を示す図である。本実施例において は、成膜装置をスパッタCVD装置に適用した場合を例 にとって説明する。

【0016】図1に示すようにこの成膜装置20は、2 つの処理室22、22と、これらの処理室22、22に 共通に連結される搬送室24と、この搬送室24に開放 状態で連結される本発明の特徴とするダミー被処理体収 容室26と、上記搬送室24に共通に連結される2つの カセット室28とにより主に構成されており、全体が箱 状のハウジング30により覆われている。カセット室2 8の前段(入口側)には、被処理体としての半導体ウエ ハ♥を複数枚、例えば25枚収容するカセット34をハ ウジング30内へ搬入・搬出させるための1/0ポート 32が設けられており、ことに図示例においては4つの I/Oステージ36を設けて、最大4つのカセット34 を載置し得るようになっている。図5にも示すようにカ セット室28は、例えばアルミニウム等により箱状に成 形されて、内部に収容したカセット34を上下に少なく ともカセット1つ分の高さだけ昇降し得る大きさを有し ている。

【0017】このカセット室28内には、カセット34 を載置するカセット載置台38と、これを上下方向へ移 動させる昇降機構40とが設けられており、必要に応じ 際に膜付けを行なうモニタ処理を行なう。このモニタ用 50 て即ち、ウエハの搬入・搬出に際し、ウエハの高さレベ ルを搬送室24内に設けられているウエハ搬送のための アームの高さ位置に調整し得るようになっている。ま た、このカセット室28の1/0ポート側の側壁には、 カセット34を搬出入できる大きさのゲートドア42が 気密に開閉可能に設けられると共にその反対側の側壁に は、1枚のウエハWを搬出入できる大きさのゲートバル ブ44(図5)が気密に開閉可能に設けられ、このバル ブ44を介して搬送室24が連結されている。また、と のカセット室28の底部には、内部雰囲気を真空引きす るために図示しない真空ポンプに接続された真空排気系 10 46(図5)が接続されると共に、真空状態のカセット 室28には例えばN、ガス等を導入して大気圧に戻すた めのN、ガス供給系48が接続される。

7

【0018】上記カセット室28と1/0ポート34と の間には、カセット34をこの1/〇ポート34とカセ ット室28との間で受け渡しするためのカセット用多関 節アーム50(図5)が屈伸可能に設けられる。このア ーム50は、1/0ポート34の長さ方向に沿って形成 された案内レール52に摺動可能に設けられ、図示しな い水平移動機構によって4つの1/0ステージ36の 内、所望するI/Oステージに位置させ得るようになっ ている。一方、図2にも示すように搬送室24は、アル ミニウム等により薄い箱状に成形され、この内部には搬 送室24の底部に支持されたウエハ搬送用多関節アーム 54が屈伸可能に設けられる。そして、この多関節アー ム54の基端部に設けた回転軸56をモータ等の駆動部 58により回転制御することにより、ウエハ用多関節ア ーム54の方向付けとその屈伸動作を行なうようになっ ている。

【0019】また、この搬送室24の底部には、内部雰 囲気を真空引きするために図示しない真空ポンプに接続 された真空排気系60が接続されると共に、真空状態の 搬送室24内に例えばN, ガス等を導入するためのN. ガス供給系62が接続される。そして、この搬送室24 は前記各処理室22と気密に開閉可能になされたゲート バルブ64を介して連結されている。

【0020】一方、2つの処理室22、22は、この実 施例では、同じ構造になされており、ことではECR (電子サイクロトロン) CVD装置として構成される。 ルミニウムにより筒体状に成形された処理容器66内に 区画形成されており、この容器66の底部には、半導体 ウエハWを載置するための例えばアルミニウム製のサセ プタ68が設置されると共に、この上面には内部に円板 上の銅箔70を埋め込んである、例えばポリイミド樹脂 等よりなる静電チャック72が貼り付けて設けられてお り、これに直流電源74より高い直流電圧を印加するこ とによりクーロン力でもってウエハ♥を吸着保持し得る ようになっている。更に、この銅箔70には、マッチン グボックス84を介して例えば13.56MHzのバイ アス用高周波電源86が接続されており、後述するよう にイオンの引き込みを効果的に行なうようになってい

【0021】また、サセプタ68内には、処理時にウエ ハWが過度に加熱されるととを防止するためにこれを冷 却する冷却ジャケット76や必要時にウエハWを加熱す るための加熱ヒータ78又は、所望する温度に調整する ための温調機構 (図示せず) がそれぞれ設けられてお り、それぞれ冷媒源80及び加熱源82に接続されてい る。上記処理容器66は、上部が例えば段部状に狭めら れており、この部分はプラズマを発生するためのプラズ マ室88とし、その下方は幅広の成膜するための反応室 90として処理室22内を上下に2区分している。ブラ ズマ室88の天井部には、マイクロ波を透過するための 窓、例えば石英等よりなる板状の誘電体92が0リング 等のシール部材94を介して気密に設けられており、マ イクロ波導入窓96を構成している。

[0022] このマイクロ波導入窓96には、断面三角 形状になされたテーバ導波管98が接続されると共にこ 20 のテーパ導波管98は矩形導波管100を介してマイク 口波発生器102、例えばマグネトロンに接続されてお り、プラズマ室88内にマイクロ波を導入し得るように 整合調整されている。上記段部状のプラズマ室88の外 側面には、これを取り囲むようにリング状のメインコイ ル104が設けられており、プラズマ室88及び反応室 90に上方から下方に貫く磁力線M1を形成して、この 磁力線M1と前記導入されたマイクロ波とで電子サイク ロトロン共鳴を生ぜしめるようになっている。また、反 応室90を挟んで上記メインコイル104と略対称とな る容器66の底部より下方には、同じくリング状になさ れたサブコイル106が配置されており、反応室90内 に上記磁力線M1と同方向の下向き磁力線M2を発生さ せて、両磁力線M1、M2の相互作用によるミラー磁場 を形成してイオン等の閉じ込めを効率的に行なってい る。

【0023】また、ブラズマ室88を区画する側壁に は、プラズマガス導入ノズル108が設けられており、 とのノズル108にはガス通路110を介してAェガス 源110、酵素ガス(O。)源112及びクリーニング 図4に示すようにこの処理室22は、略全体が例えばア 40 用ガスとして例えばNF,ガス源114が接続されてお り、それぞれ開閉弁116A、116B、116Cやマ スフローコントローラ118A、118B、118Cに より流量制御を行なうようになっている。また、反応室 90及びプラズマ室88の区画部側壁には、処理ガス導 入ノズル120が設けられており、このノズル120に はガス通路122を介して処理ガス、例えばシラン源1 24が接続されている。とのガスは、ガス通路122の 途中に介設した開閉弁116D及びマスフローコントロ ーラ118Dによりその流量が制御される。そして、処 50 理室22の側壁には、この内部を真空引きにするために

図示しない真空ボンブに接続された排気口126が設け られる。

【0024】次に、このように構成された装置による成 膜処理について詳細を後述する。すなわち、処理室22 内のチャンバクリーニング処理、カラデポジション処 理、ダミーラン処理、モニタ処理等の補助処理を行なう が、この場合には、それぞれに対応したダミー被処理体 としてのダミーウエハを用いる。この実施例において は、これらのダミーウエハを収容するために搬送室24 には、図2に示すように、前記ダミー被処理体収容室2 6が連結されている。図3に示すように、この収容室2 6は、例えばアルミニウム等により、略円筒体状に成形 された容器128により構成されており、搬送室24と の連結部、即ち側壁は開口部129を形成するフランジ 130を介して同一雰囲気の構造になっている。即ち、 搬送室24の側壁に搬送室24に対して連通、例えば開 放状態で接続されている。この容器128の底部128 Aは、ボルト131等により開閉可能に且つシール部材 133を介して容器本体に気密に取り付けられている。 【0025】この収容室24内においては、枚数例えば 20 7~10枚程度のダミーウエハDWを収容できる大きさ で、材質例えば石英製のダミー用力セット132がダミ - 用載置台134上に載置されている。このダミー用載 置台134は、容器底部128Aを貫通して設けられた ダミー用昇降機構136の昇降ヘッド136Aの先端に 取り付けられており、載置台134上に設けたダミー用 カセット132を昇降可能としている。前記ロッド13 6Aは、容器底部128Aにシール手段、例えば0リン グ等よりなるシール部材138を介して気密にその長手 方向へ滑動自在に貫通して設けられる。従って、ダミー 30 エハDWをダミー被処理体収容室26内のダミー用カセ 用昇降機構136によりダミー用カセット132の高さ 調整を行なうことにより、このダミー用カセット132 に収容された任意のダミーウエハDWに対して、搬送室 24内のウェハ用多関節アーム54が開口部129を介 してハンドリングし、アクセス可能となるよう構成され ている。

【0026】ここで、ダミーウエハDWとは、詳細は後 述するようなクリーニング用ダミーウエハDW1、カラ デポジョン用ダミーウエハDW2、ダミーラン用ダミー ウエハDW3及びモニタ用ダミーウエハDW4よりな る。尚、シール性を確保しつつ、ダミー載置台134を 昇降し得るならば、この種の昇降機構に限定されず、ど のようなものでも用いることができる。このような構成 は、搬送室24と収容室26をゲートバルブによる気密 性の仕切りが無いため、ダミーウエハのハンドリングス ループットを向上する利点を有する。搬送室24と収容 室26とは一度排気されれば、被処理体の処理の都度排 気しなくても済むよう、ロードロック室(図示せず)を 設ければスループットの劣化はない。

【0027】また、この収容室26の1つの壁である、

例えば天井部142全体は耐久性のある透明材料、例え ば石英により形成されて監視窓144となっており、内 部状態を視認できるようになっている。そして、この天 井部14の周辺部は、収容室26の側壁の上端フランジ 部146にシール部材、例えば〇リング148を介して ボルト150でもって強固に且つ着脱可能に取れ付けら れ、開閉蓋となっている。従って、ダミー用力セット1 32をこの収容室26内に搬入・搬出させる場合には、 との天井部142を取り外して行うことが可能となる。 更に、この収容室26の少なくとも1つの側壁には、透 明材料、例えば石英よりなる監視窓152が、シール部 材、例えば〇リング154を介して気密に取り付けられ ている。図示例では監視窓152の位置は、ダミー用カ セット132の背面側となっているが、カセット132 内が見易いように他の側壁面に設けるようにしてもよ

【0028】また、収容室26の高さは、ダミー用カセ ット132を昇降し得るように少なくともこのカセット 132の髙さの略2倍の髙さを有している。このような ダミー用カセット132には、前述した各補助処理に対 応させた複数枚のダミーウェハDWが予め収容されてい る。尚、図1中において符号140は、プラズマ成膜処 理するための前述した各種ガス源を収容するガスボック スである。

【0029】次に、以上のように構成された本発明の使 用方法について説明する。

ダミーウエハローディング工程。

まず、通常の処理、例えばECRによる成膜処理を行な うに先立って、補助処理時に使用する複数枚のダミーウ ット132に予め収容しておく。このダミーウエハとし ては、詳細は後述するクリーニング処理時に使用するク リーニング用ダミーウエハDW1、カラデポジション時 に使用するカラデポジション用ダミーウエハDW2及び ダミーラン時に使用するダミーラン用ダミーウエハD♥ 3、膜厚やパーティクル数等を事前にチェックするモニ タ処理時に使用するモニタ用ダミーウエハ DW4 があ る。

【0030】ととで、クリーニング用ダミーウエハD♥ 1としては、例えばアルミウエハ、サファイヤウエハを 用いて繰り返し使用するが、他のカラデポジョン用ダミ ーウエハDW2、ダミーラン用ダミーウエハDW3及び モニタ用ダミーウェハDW4は、ベアシリコンウエハを 用い、1回限りの使用とする。各ダミーウエハは、収容 室26内の容量が許す限り、それぞれ複数枚収容してお けばよく、また、ダミーウエハの交換は搬送室24及び カセット室を介して取り換えればよい。図示例では、ク リーニングDW1が1枚、他のダミーウエハDW2、D W3、DW4はそれぞれ2枚収容している状態を示す。

50 ダミーウエハDWの収納が終了したならば、通常の処理

に移行するのであるが、まず、未処理の製品ウエハを収 容したカセットを外部からユニット間搬送ロボットなど により搬送してきて、これを1/Oポート32に設置す る(図1及び図5参照)。

【0031】ウエハカセットローディング工程。

そして、この I / Oポート32とカセット室28との間 に設けられたカセット用多関節アーム50を予め記憶さ れたプログラムにより伸縮駆動することにより、I/O ポート32に設置したカセット34を、開かれたゲート ドア42を介してカセット室28内に取り込み、これを 10 カセット載置台38上に設置する。

ウエハローディング工程。

そして、ゲートドア42を閉じてカセット室28内を密 閉した後に、ここに設けた真空排気系46を駆動してカ セット室28内を真空引きし、すなわち、搬送室24の 真空度と同一又はやや負圧となる所定の真空度に達した ならば、これと予め真空状態になされている搬送室24 との間を区画するゲートバルブ44を開いて両室を連通 させ、搬送室24内のウエハ用多関節アーム54を用い 定の処理室22内のサセプタ68上に載置してこれを静 電チャック72で吸着保持する(図4参照)。

【0032】ECRCVD工程。

そして、処理室22内を密閉した後に、との処理室22 の内部を真空引きして予め定められた真空度に達した 後、アルゴンガス、酸素及び原料ガスであるシランガス をとの処理室22内に供給しつつ所定のプロセス圧力、 例えば1mTorr程度に維持する。これと同時に、マ イクロ波発生器102から発生したマイクロ波をマイク 口波導入窓96を介してプラズマ室88内に導入し、更 30 にメインコイル104及びサブコイル106を駆動して 処理室22内に下方向に向かうミラー磁界を形成する。 このミラー磁界と、導入さたマイクロ波の相互作用で電 子サイクロトロン共鳴が生じてプラズマ室88にてアル ゴンガスがプラズマ化され、ここで発生したイオンは磁 界に沿って反応室90側に供給され、このプラズマエネ ルギーにより、酸素及びシランガスが活性化されて反応 し、ウェハ表面に対してスパッタを行いつつSiO、の 成膜が施される。この時、静電チャック72へはバイア ス高周波電源86よりパイアス電圧を印加し、ウエハ表 40 面へのイオンの引き付けを良好に行なわしめている。と のようにしてECRCVDを行なう。

【0033】ウェハアンローディング工程。

このようにして、ウェハWに対して所定の成膜処理を施 したならば、予め定められたプログラムにより、この処 理済みのウェハWを取り出して、前記したと逆の経路を 経て、処理済みのウエハ♥を収容するカセットに収容 し、また、新たな未処理のウエハに対して同様な処理を 施す。このようにして、連続して複数枚、例えば10枚 内壁等にもかなりの蛩の不要な膜が付着し、この付着物 の一部が落下してパーティクルの原因となるとから、と れをクリーニング処理により除去する。

【0034】チャンバクリーニング工程。

クリーニング用ダミーウエハのローディング。

このクリーニング処理は、次のようにして行なう。図2 及び図3に示すように、まず、搬送室24内のウエハ用 多関節アーム54を用いて、ダミー被処理体収容室26 内に予め収容してある複数種類のダミーウエハから予め 定められた位置に収納されているクリーニング用のダミ ーウエハDW1を取り出し、これをクリーニング対象と なっている処理室22内に搬入してサセプタ68上に載 置し、とれを静電チャック72で吸着保持する。

【0035】とのダミーウエハの設置はクリーニング処 理中に、クリーニングガスで静電チャック構造の表面に 設けられている誘電体膜が損傷を受けることを防止す る。収容室26からダミーウエハを取り出す時には、ダ ミー昇降機136を自動的に駆動してダミー用力セット 132を上下動し、アーム54により搬出される選択さ て 1 枚のウェハWを搬送室 2 4 内に取り込み、これを所 20 れたクリーニング用ダミーウエハ DW 1 の高さ調整を自 動的に行なう。

クリーニング工程。

クリーニング用ダミーウェハDW1の搬入が完了したな らば、処理室22内を密閉状態にして、この中にクリー ニングガスとして例えばNF」を流し込み、プラズマレ スのチャンバクリーニング処理工程を行なって内壁等に 付着していた不要な成膜を除去してしまう。

【0036】クリーニング用ウエハアンローディング。 とのようにしてクリーニング処理が終了したならば、と とで使用したクリーニング用のダミーウエハD♥1を、 静電チャックを解除してアーム54により搬出し、上記 したと逆の経路を経て、再度、ダミー被処理体収容室2 6内のダミー用カセット132の所定の位置に収容し、 次のプログラムで再び使用する。使用回数はクリーニン グの都度エッチングされることにより薄くなり、ハンド リングのための機械的強度が保持されている回数を予め 設定して、との回数だけ繰り返し使用される。

【0037】カラデポジョン工程。

次に、上記クリーニング処理により、処理容器60を構 成する母材が剥き出し状態になるのでこれを保護する目 的で、この表面に保護膜を形成するカラデポジション処 理を行なう。このカラデポジション処理は、次のように 行なう。まず、前述のクリーニング処理の場合と同様 に、搬送室24内のウエハ用多関節アーム54を用い て、ダミー被処理体収容室26内に予め定められた位置 に収容してあるカラデポジション用のダミーウェハD♥ 2を取り出し、これをクリーニング完了後の処理室22 内に搬入してサセプタ68上に載置し、これを静電チャ ック72で吸着保持する。これにより、カラデポジショ のウエハの成膜処理が完了すると、例えば処理室22の 50 ン中に、静電チャック72の表面に保護膜が成膜してし

まうことを防止する。

【0038】上記ダミーウエハDW2のサセプタ68上 への搬入が完了したならば、処理室22内を密閉状態に して、との中に、成膜ガス例えば前述した通常の成膜処 理時と同様にアルゴンガス、酸素、シランガスを供給す ると同時にマイクロ波も導入してミラー磁界も形成し、 ECRプラズマを発生させて通常のカラデポジション処 理を行なう。これにより、処理容器等の剥き出しになっ た母材表面に保護膜(SiO。)を形成する。このカラ デポジション処理は、実質的には、成膜処理であるが、 成膜時間等が異なっており、後続して行なわれる本来の 成膜処理に対して十分に耐久性のある保護膜を形成でき るような処理条件が設定される。

カラデポジョン用ダミーウエハアンローディング工程。 とのようにして、カラデポジション処理が終了したなら ば、ことで使用したカラデポジション用のダミーウエハ DW2を上記したと逆の経路を経て、再度ダミー用カセ ット132の所定の位置に収納しておく。そして、以後 は、前述したような通常の成膜処理に移行することにな る。

【0039】ダミーラン処理工程。

ところで、休止していた処理装置を立ち上げた後など は、装置自体が十分に安定していないので、この状態で いきなり製品ウエハの成膜処理を行なうと、ウエハ間で 成膜品質のバラツキが生じて均一性を保てなくなる。従 って、このような場合には、直ちに製品ウエハの成膜処 理を行なわず、これに先立って、ダミーウエハを用いて 例えば1回だけダミーランを行なうことによって装置を 安定化させ、安定化した後これに引き続いて製品ウエハ の成膜処理を行なうようになっている。この場合、複数 30 回必要に応じて実行することは有益である。即ち、1回 のダミー成膜毎にダミーウエハを交換して、複数回行な ってもよいし、ダミーウエハは交換せず、ダミーの成膜 処理プロセスを複数実行してもよい。

【0040】このダミーラン処理は、次のようにして行 なう。まず、前述したクリーニング処理時等と同様にし て、予めダミー用カセット132内の定められた位置に 収容してあったダミーラン用のダミーウェハD♥3を、 アーム54を用いて取り出し、これを処理室22のサセ プタ68上に載置保持させる。次に成膜ガスであるアル 40 ゴンガス、酸素、シランガス等を供給し、マイクロ波を 導入して、ECRプラズマによる通常の成膜処理時と同 様の条件下で成膜処理を行なって、ダミーランを実施す

【0041】ダミーラン用ダミーウエハアンローディン グ工程。

ダミーラン終了後のダミーラン用のダミーウエハDW3 は、静電チャック72を解除し、アーム54によりサセ プタ68から搬出され、搬入時と逆の経路を経て再度、 ダミー用カセット132の所定の位置に収容されること 50 また、ここでは搬送室24とダミー被処理体収容室26

になる。以後は、製品未処理ウエハがカセット室28側 から処理室22内に搬入され、一連の成膜処理が連続的 に行なわれることになる。

14

モニタ処理工程。

(8)

又、上記カラデポジョンの処理が終了した後には、この 後、直ちに成膜処理を行なっても予期した膜厚の膜付け ができるか否か、或いはパーティクル数は十分に減少し ているか否か、チェックの必要性が生ずる場合がある。 このような場合には、ダミー用カセット132内の予め 定められた位置に収容してあったモニタ用ダミーウエハ 10 DW4を、アーム54を用いて取り出し、これをサセブ タ68上に載置保持させる。次に、上記ダミーラン処理 と同様に所定の成膜ガスを処理室22内に供給し、マイ クロ波を導入してECRプラズマによる成膜処理を通常 の成膜処理と同様な条件下で行なってモニタ処理を行な

【0042】モニタ用ダミーウエハアンローディング工 程。

モニタ処理終了後のモニタ用ダミーウエハDW4は静電 20 チャック72を解除し、アーム54によりサセプタ68 から搬出され、カセット室28を介して検査のために外 部に取り出されることになる。尚、上記処理後の各ダミ ーウエハDWは、収容室26から必要に応じて、或いは その処理が終了した時に装置外に取り出され、また、未 使用のダミーウエハDWと交換される。

【0043】このように、本発明においては、クリーニ ング処理、カラデポジション処理、ダミーラン処理、モ ニタ処理等の補助処理を行なう場合には、搬送室24に 連設されたダミー被処理体収容室26内に予め収容して おいたダミーウエハDWを用いるようにしたので、これ らの処理を迅速に行なうことができ、常に被処理半導体 ウエハをクリーンな環境で成膜でき、装置の稼動率を高 めてスループットを向上させることが可能となる。

【0044】更に、上記した補助処理を行なう毎に、外 部よりそのためのダミーウェハを搬入・搬出させる場合 と比較してその都度、カセット室28内の雰囲気を給排 気して真空引き操作と大気圧復帰操作とを繰り返し行な わなければならず、その操作に要する時間をロスする が、この実施例においては、そのような給排気操作が不 要になるので、その分、前述したように、スループット を向上させることが可能となる。一般的には、給気或い は排気動作に例えば5~6分程度要することから、少な くともこの時間に相当する分だけ、スループットを向上 させることができる。

【0045】上記ダミーウエハDWが、複数回繰り返し 使用されて限界に達したならば、これを I / Oポート3 2側へ搬出し、新たなダミーウェハと交換すればよい。 或いは、1回しか使用できない場合には、同種のダミー ウエハを複数枚、収容室26内に収容しておけばよい。

との間は、開放されて、常時連通状態になされているが、これらの間にゲートバルブを設け、必要時のみこれらの間を連通させるようにし、パーティクル対策を施すようにしてもよい。更に、上記したようなダミー被処理体収容室26を複数個、搬送室24に対して連設し、補助処理の種別毎に使用する収容室を分けるようにしてもよい。また、この実施例にあっては、同種の処理室22を2台、搬送室24に連設させた場合を例にとって説明したが、これに限定されず、処理室が1台のみの場合、或いは3台以上の場合、更には異種の処理を行なう場合 10

にも適用することができる。

15

【0046】また、収容室26内にダミー用カセット132を搬入・搬出する場合或いは内部をメンテナンスする場合には、収容室内部を常圧とし、そして、ボルト150を解除することにより、着脱可能になされた天井部142を取り外すことにより行なえばよい。更には、この収容室26の天井部42及び一部の側壁はそれぞれ監視窓144、152として構成されるので、これを密閉状態で内部を監視でき、特に、多関節アーム54の位置決めのティーチング時には、監視窓144、152から20内部を覗きつつこのティーチング操作を行なうようにすれば、ティーチングのために内部を開放する必要もなく、作業能率を向上させることができる。

【0047】また更には、処理室としては、ミラー磁界によるCVD装置のみならず、カスプ磁界によるCVD装置、エッチング装置、スパッタ装置、アッシング装置等、種々の装置に適用することが可能である。更にまた、上記実施例では、クラスタツール構成のCVDに適用した例について説明したが、インライン型マルチチャンパでも、ロードロック室とプロセス室それぞれ1室の 30 みの構成でもよい。

[0048]

【発明の効果】以上説明したように、本発明の処理装置及びその使用方法によれば次のように優れた作用効果を発揮することができる。搬送室に連設したダミー被処理体収容室内に予めダミー被処理体を収容しておき、クリーニング処理、カラデポジョン処理、モニタ処理、ダミーラン処理の内、少なくとも2種以上の補助処理を行なう場合には、この収容室内に設けたダミー被処理体を用いて行なうようにしたので、ダミー被処理体の搬入・搬40出操作を迅速に行なうことができる。

【0049】従って、従来装置の様にダミー被処理体を使用する毎にこれを外部から搬入・搬出させる場合と異なり、カセット室の真空引き、大気復帰操作にもとなう時間的損失をなくすことができるので、装置の稼動率を上げて、スループットを大幅に向上させることができる。また、収容室の壁面を開閉可能とすることにより、

ダミー用カセットの搬入・搬出及びメンテナンスが容易となる。また、収容室の壁面に監視窓を設けるととにより、内部の状態を監視でき、例えばティーチング操作を、内部を大気開放することなく行うととができる。 【図面の簡単な説明】

【図 1 】本発明の成膜装置の全体を示す概略構成図である

【図2】処理室と搬送室とダミー被処理体収容室との連結状態を示す断面図である。

) 【図3】図2に示すダミー被処理体収容室の拡大断面図 である。

【図4】処理室を示す断面図である。

【図5】カセット室の近傍を示す図である。

【図6】従来の処理装置を示す概略構成図である。

【符号の説明】

- 20 成膜装置
- 22 処理室
- 2.4 搬送室
- 26 ダミー被処理体収容室
- 28 カセット室
- 32 1/0ポート
- 34 カセット
- 38 カセット載置台
- 50 カセット用多関節アーム
- 54 ウエハ用多関節アーム
- 66 処理容器
- 68 サセプタ
- 72 静電チャック
- 86 バイアス用高周波電源
- 88 プラズマ室
- 90 反応室
- 96 マイクロ波導入窓
- 100 矩形導波管
- 102 マイクロ波発生器
- 104 メインコイル
- 128 容器
- 132 ダミー用カセット
- 134 ダミー載置台
- 136 ダミー昇降機構
- 144、152 監視窓
- DW ダミーウエハ(ダミー被処理体)
- DW1 クリーニング用ダミーウエハ
- DW2 カラデポジョン用ダミーウエハ
- DW3 ダミーラン用ダミーウエハ
- DW4 モニタ用ダミーウエハ
- ₩ 半導体ウエハ(被処理体)

【図2】

【図6】

【図3】

【図4】

【図5】

フロントページの続き

(51)Int.Cl. ⁶		識別記号	庁内整理番号	Γl			技術表示箇所
H O 1 L	21/31			H01L	21/31	D	
	21/68				21/68	Α	
H 0 5 H	1/46	,		H 0 5 H	1/46	L	
						С	
						В	

(72)発明者 清水 明夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 片桐 源一 神奈川県川崎市川崎区田辺新田 1 番 1 号 富士電機株式会社内