Fundamental Issues in Wireless Comm

- Radiowave propagation impairments
 - Fadings (WS: 5.4)
 - Doppler Spread (PK: 2.4)
- Error compensation schemes(WS:5.4)

Wireless channel

The impairment in the wireless channel can be conveniently into three types fading: path loss, shadowing (slow fading) and fast fading (or multipath fading).

Wireless channels (2)

An example is illustrated by the signal received by a mobile receiver.

-- due to the distance, Friis' equation.

-- due to varying obstructions (tall buildings, woods, etc)

-- due to multipath interference, moving, etc.

Shadowing – Slow Fading

Slowing fading

The Effects of Multipath Propagation

Multiple copies of a signal may arrive at different phases

- If phases add destructively, the signal level relative to noise declines, making

detection more difficult – fast fading!

- Intersymbol interference (ISI)
 - One or more delayed copies of a pulse may arrive at the same time as the primary pulse for a subsequent bit

Types of Fading

- Slow fading
 - Shadowing, due to obstruction.
- Fast fading
 - » The signals varies rapidly with the distance due to multipath.
 - Rayleigh fading
 - » No LoS!
 - Rician fading LoS
 - Flat fading
 - » The signal fluctuates in the same proportions simultaneously over the frequency band - 'narrow band signal'.
 - Selective fading
 - » Affects unequally the different spectral components.

Rayleigh/Rician Fading

- All energy is scattered from scatterers near to mobile
- Direction of transmitter not necessarily perceived direction-of-arrival
- Multipaths interfere, causing cancellation and enhancement with deep and rapid variations in amplitude
- Strong coherent component added to random scattered component
- Signal fading less deep than NLoS case
- · Distinct direction of arrival

Rayleigh fading (k=0)

Rician fading (k >1)

K = Power in dominant path / Power in Scattered path

Flat/Selective Fading

- Flat fading: Narrow band case limited signal spread, no ISI
- Frequency selective fading: 'Wideband' case wide signal spread – causing ISI!

Flat fading

- In a flat fading channel inter-symbol interference (ISI) is absent
- The channel has a constant gain and a linear phase response over a bandwidth that is greater than the bandwidth of the transmitted signal.

- The spectral characteristics of the transmitted signal are preserved at the receiver
- The channel does not cause any non-linear distortion due to time dispersion
- However, the strength of the received signal generally changes slowly in time due to fluctuations caused by $\frac{\text{multipath}}{\text{ECS702}}$

Frequency selective fading

- Frequency selective fading
 - The channel has a constant gain and a linear phase response over a bandwidth that is much smaller than the bandwidth of the transmitted signal.

- The spectral characteristics of the transmitted signal are not preserved at the receiver
- Certain frequency components have larger gains than others

BER for Various Fading Conditions

Fadings in Wireless Channels

Please watch this video clip on your own

12

Doppler Effect

$$f_d = f_c \frac{v}{c} \cos \alpha$$

$$f_d \max = \pm f_c \frac{v}{c}$$

13

 Shift in apparent carrier frequency due to receiver motion relative to source (scatterer or transmitter)

Doppler Spread

- In multipath channel, have a range of α
- Leads to Doppler spread, not simply shift

Classical Doppler spectrum:

- -- Second order statistic in the fast fading
- the rate of signal changes
- -- Determine the error correction capability

Error Compensation Mechanisms

Increase transmitter power

counters flat fading – fading margin.

(Adaptive) Equalization

compensates for ISI/Frequency selective fading.

Forward error correction (FEC)

transmit redundant data bits - "coding gain" provides "fading margin"

Automatic Repeat Request (ARQ)

 retransmission protocol for blocks of data (e.g. packets) in error - stop-andwait, go-back-N, selective-repeat etc.

Frequency diversity

Spread Spectrum / OFDM and etc.

Space or time diversity

Diversity antenna, adaptive antenna and MIMO

ECS702 15

Adaptive Equalization

- Used to combat intersymbol interference in GSM.
- Involves gathering dispersed symbol energy back into its original time interval
- Has to be adaptive to account for the fast changing of the channel.
- The principle of the equaliser
 reverse the channel effect:

Coping with Data Transmission Errors

- Error detection codes
 - Detects the presence of an error
- Automatic repeat request (ARQ) protocols
 - Block of data with error is discarded
 - Transmitter retransmits that block of data
- Error correction codes, or forward correction codes (FEC)
 - Designed to detect and correct errors

Error Detection Process

Transmitter

- For a given frame, an error-detecting code (check bits) is calculated from data bits
- Check bits are appended to data bits

Receiver

- Separates incoming frame into data bits and check bits
- Calculates check bits from received data bits
- Compares calculated check bits against received check bits
- Detected error occurs if mismatch

Error Detection Process

Figure 8.1 Error Detection Process

Parity Check

- Parity bit appended to a block of data
- Even parity
 - Added bit ensures an even number of 1s
- Odd parity
 - Added bit ensures an odd number of 1s
- Examples, 7-bit character [1110001]
 - Under Even parity: [11100010];
 - Under Odd parity: [11100011]
 - » If 10100011 received, there is an error.
- In Wireless Comm, Cyclic Redundancy Check using k bits! ECS702

Wireless Transmission Errors

- Error detection requires retransmission
- Detection inadequate for wireless applications
 - Error rate on wireless link can be high, results in a large number of retransmissions
 - Long propagation delay compared to transmission time

Block Error Correction Codes

Transmitter

- Forward error correction (FEC) encoder maps each k-bit block into an n-bit block codeword
- Codeword is transmitted; analog for wireless transmission

Receiver

- Incoming signal is demodulated
- Block passed through an FEC decoder

Error Correction Code types

- Block coding
- Convolutional coding

Forward Error Correction Process

Figure 8.5 Forward Error Correction Process

Block Code Principles

• Hamming distance – for 2 *n*-bit binary sequences, the number of different bits

- E.g.,
$$v_1$$
=011011; v_2 =110001; $d(v1, v_2)$ =3

Example (WS:p.215):

Data block: 00 01 10 11

Codeword: 00000 00111 11001 11110

Suppose 00100 is received, which is not a valid codeword.

The Hamming distance:

d(00000,00100) = 1, d(00111,00100) = 2, d(11001,00100) = 4, d(11110,00100) = 3.

So the valid codeword with minimum distance is selected, i.e. $00000 \rightarrow 00!$

Class Quizzes

- What are: slow/fast fadings, Rayleigh/Rician fadings and flat and frequency selective fadings?
- How does Doppler Spread impact the wireless channels?
- What is the forward correction code(FEC)? Why do we need it in wireless communications?

25

Reading References

References:

- (PK): K. Pahlavan and P. Krishnamurthy, Principles of Wireless Networks: A Unified Approach, Prentice Hall, 2002 (new version coming)
- (WS): William Stallings, Wireless Communications and Networks,
 2/e , Prentice Hall, 2005
- Antennas and Propagation in Wireless Communication Systems,
 S. Saunders, Wiley, 1999, ISBN: 0471986097

ECS702 26