

Calzetti 2007 astro-ph/0707.0467

Brinchmann et al. 2004 MNRAS 351, 1151

SFR indicators in general

- O SFR indicators are defined from the X-ray to the radio
- O All probe the MASSIVE stars formation rate
- IMF and population synthesis model assumed
- Other wavelength calibrated against "unbiased" indicators
 - P α (λ = 1.876 μ m) corrected for extinction using H α / P α ratio
- O Each calibration is valid in certain cases and has its own limit
 - o star-forming region vs. global
 - O Star burst vs. normal star-forming
 - O High metallicity vs. low metallicity

The Ultraviolet (λ : 912 – 3000Å)

- Motivation: directly probes the bulk of the emission from young, massive stars
- Mass range and time scale: B stars, 100 Myr, not sensitive to SFH
- O Cons
 - Highly sensitive to dust reddening and attenuation
 - Well-established correlation between attenuation and SFR
 - Effectiveness of correction techniques depends on the nature of the galaxy
 - o FIR/UV ratio vs. UV color
 - Contamination from AGB stars

The Optical and NIR (λ : 0.3 – 2.5 μ m)

- Motivation: hydrogen recombination lines (H α , H β , P α) and forbidden line emission ([OII], [OIII]) trace the ionizing photons
- Mass range and time scale: ionizing massive stars (>10M_☉), short life span of 10Myr, tracers of the current SFR
- O Cons
 - O Dust extinction
 - O Sensitive to the upper end of the stellar IMF
 - O Underlying stellar absorption (H recombination lines)
 - Metallicity and ionization conditions (forbidden lines)
 - Aperture correction (fiber spectroscopy)
 - O Continuum and [NII] subtraction (narrow band imaging)
 - Contamination from AGN

Calorimetric FIR (λ : 5 - 1000 μ m)

O Motivation

- O Star-forming regions tend to be dusty and the dust absorption cross-section peaks in the UV
- Measure star formation via the stellar light that has been reprocessed by dust and emerges beyond a few μ m
- O Pros: complementary to UV-optical indicators

O Cons

- Not all of the luminous energy produced by recently formed stars is re-processed by dust in the infrared, depending on dust amount
- Evolved non-star-forming stellar populations also heat the dust that emits in the FIR
- Full energy census needs to be included, otherwise large uncertainty due to extrapolations from sparsely sampled SED

Monochromatic MIR (λ : 5 – 40 μ m)

O Motivation

- MIR dust continuum: dust heated by hot, massive stars can have high temperatures and will then emit at short infrared wavelengths
- MIR bands: PAHs are heated by UV and optical photons in the general radiation field of galaxies or near B stars

$0.8 \mu \text{ m}$

- Sensitive to both metallicity and star formation history
- O Contribution from dust heated by non-ionizing stellar populations

- O Good SFR tracer in absence of strong AGNs
- O Non-liner trend in high L end

Combining two tracers

- O Motivation
 - Observed H α luminosity: unobscured star formation
 - \circ 24 μ m luminosity: dust-obscured star formation
- Calibration

$$SFR(M_{\odot} \ yr^{-1}) = 5.3 \times 10^{-42} [L(H\alpha)_{obs} + (0.031 \pm 0.006)L(24 \ \mu m)]$$

- O Pros: unaffected by metallicity variations or stellar population mix
- O Cons: deviation from a simple linear correlation at high L surface densities

SFR from Sloan Spectra (Brinchmann et al. 2004)

- O Data and classification
 - 146994 galaxies, 14.5<r<17.77, 0.005<z<0.22
 - O BPT diagram: S/N > 3 in all lines including SF, C, AGN
 - O Low S/N LINER Low S/N SF
 - UnClass:weak emission linesred galaxies without SF

	1.5		-				
	1.0	Brinchmann et al. 2004					
	-	AGN					
$ ho_{ m M} = 100000000000000000000000000000000000$	0.5		-				
	0.0	Star forming Composition					
ass de	nsity		-				
100.0%			+				
20.6%]				
11.3%			-				
7.1%			1				
	9.5%						
20.0%		-1.5 -1.0 -0.5 0.0	0.5				

Log [N II]6584/Hα

	Subsample	Number	Percent	Percent of mass density
	All	146994	100.0%	100.0%
	SF	39141	26.6%	20.6%
	C	14372	9.8%	11.3%
	AGN	8836	6.0%	7.1%
	Low S/N LINER	11752	8.0%	9.5%
	Low S/N SF	29115	19.8%	20.0%
0.0000000000000000000000000000000000000	UnClass	43778	29.8%	31.6%

- O Model all emission lines (derive SFR_e for SF class)
 - O Galaxy evolution model (B&C02)
 - + Emission line modeling (CLOUDY)
 - Parameter: Z, ionization parameter, dust attenuation in V band, dustto-metal ratio of the ionized gas
 - O Constant star formation history at t=108yrs
 - Multi-component dust model (Charlot et al. 2000)
 - A grid (library, prior) ~ 2x10⁵ model
 - O Bayesian approach to calculate the likelihood

$$\ln P(M_j | \{L_i\}) = -\frac{1}{2} \sum_{i=0}^{N_{\text{lines}}} \left(\frac{L_i - AM_{i,j}}{\sigma_i}\right)^2$$

- $OL_{H\alpha}$ SFR_e relationship
 - Calibrated from SF class
 - \circ SFR_e = $L_{H\alpha}^0/10^{41.28}$ (Kennicutt 1998 + Kroupa IMF)

- Applied on low S/N SF class
 - O Use H α /H β (intrinsically 2.86) to determine dust attenuation
 - O Stellar absorption: assume $EW_{abs}(H \alpha) = 0.6EW_{abs}(H \beta)$

- O SFR_d/M_{*} D4000 relationship
 - Calibrated from SF class
 - O Applied on AGN, C and unclassifiable classes
 - O Invalid assumption (Salim et al. 2007)

Salim et al. 2007

- Aperture correction
 - Construct likelihood distribution P(SFR/L_i | color) on a grid with bins of size 0.05 in ^{0.1}(g-r) and 0.025 in ^{0.1}(r-i)
 - Assume the distribution of P is the same inside and outside of fiber
 - O Invalid assumption (Salim et al. 2007)

Salim et al. 2007

Brinchmann et al. 2004

Main results

O Total SFR density of the local universe

$$\rho_{\rm SFR} = 1.915^{+0.02}_{-0.01} ({\rm rand.})^{+0.14}_{-0.42} ({\rm sys.}) 10^{-2} \, h_{70} \, M_{\odot} / {\rm yr/Mpc}^3$$

- O Stellar mass SFR relationship
- O The majority of SF takes place in high mass, high surface brightness, disk-dominated galaxies
- O Bimodel natural of specific star formation rate, r_{SFR}
- Low mass (constantly)vs. Massive (depressed SFR)

Brinchmann et al. 2004