

Special class

Painting Fence

R GB

. 4 .	$\mathcal{L}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}} = $			<u>~)(× ×)</u>
K:-3	n=2_	h=3	r= y	<u>A</u>
Jan	RR 3B 66/	RBB RGG BRK BGG GBG	RR BB RBKK RINKS BRKK BRKK BRKK BRKK BRKK BRKK BRKK BR	BLEK 13460) 48KR CABLLE LAKEB CABLLE LAKEB
diff	13 (x 1) (x	RRB RBR BRB BRB BBB BBB BBB BBB BBB BBB	RISOR RISOR LARGE LABBR BRKG LABBR BRKG LABBR BRKG LABBR	Bhar Book (K-1) Bhar Book (K-1) Bhar Book (K-1)

$$f(4) = (f(2) + f(3)) + (K-1)$$

$$= (g + 24) \times (31)$$

$$= 2 33 \times 2$$

$$= (11)$$

$$f(n) = \left\{ \begin{pmatrix} (n-1) + d(n-2) \\ (n-1) + d(n-2) \end{pmatrix} \right\} \times (\kappa - 1)$$

$$f(n) = \left\{ \begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right\} \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-2) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-2) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left(\begin{pmatrix} (n-1) + d(n-2) \\ (n-1) \end{pmatrix} \right) \times (\kappa - 1)$$

$$2 \left($$

Court de vargement

Rnapsack Problem:-

Same patturs Jubset Sum Eguel Subsit sun partition > Mir Subset sun difference

=n - itams Ugnmin

Weigh 3 Kna psed n=3weight. inc CYL Value - 21, 2, 39 Capacity -> 4.

wij <2 (wt [o) & z (apa city

(value [o))

inden inden m)+0(m) CM

