

Circuitos Seqüenciais: Latches e Flip-Flops

Fabrício Noveletto

• • Objetivos

- Usar portas lógicas para construir latches básicos
- Explicar a diferença entre um latch S-R e um latch D
- o Reconhecer a diferença entre um latch e um flip-flop
- o Explicar a diferença entre flip-flops S-R, D e J-K
- Usar flip-flop em aplicações básicas

- Nos circuitos combinacionais, uma dada saída do circuito é função única e exclusiva das suas entradas atuais.
- Nos circuitos seqüenciais, elas são também função da história passada do circuito. Isso ocorre em função do circuito seqüencial apresentar elementos com capacidade de armazenamento de informação.

• • Circuitos Seqüenciais

- Na parte combinacional: recebe sinais externos e saídas dos elementos de memória
- No elemento de memória: armazena entradas anteriores, onde o elemento de memória é o flip-flop.

• • Circuitos Seqüenciais

Exemplos:

- o Combinacional: Cadeados com código. O cadeado será aberto se, num tempo t, o código específico é colocado nas entradas em t, desconsiderando o passado das entradas.
- o Seqüencial: Em um sistema de telefonia, uma chamada é concretizada se, num instante t, ocorrer a discagem do último número e os números discados anteriormente (passado), corresponderem a seqüência correta do número do usuário desejado. Por exemplo, se o número do telefone do assinante for 3434-1587, o último dígito discado deve ser o 7 e os anteriores devem ser discados na ordem 3, 4, 3, 4, 1 e 5.

• • Latch

- o O latch é um dispositivo de armazenamento temporário que tem dois estados estáveis (biestável).
- Os latches são similares aos flip-flops porque são dispositivos biestáveis e que podem permanecer em um dos dois estados estáveis usando uma configuração de realimentação, na qual as saídas são ligadas as entradas opostas.
- A principal diferença entre os latches e flip-flops é o método usado para a mudança de estado.

• • Latch R-S

- o As saídas das portas, em condições normais, estão sempre em níveis lógicos inversos. Existem duas entradas: SET é a que seta Q para o estado 1; a entrada CLEAR (ou RESET) é a que reseta Q para o estado 0.
- As entradas estão normalmente em repouso no estado ALTO, e uma delas é pulsada em nível baixo sempre que se deseja alterar as saídas do latch.

- o As saídas das portas, em condições normais, estão sempre em níveis lógicos inversos. Existem duas entradas no latch: SET é a que seta Q para o estado 1; a entrada RESET é a que reseta Q para o estado 0.
- As entradas estão normalmente em repouso no estado ALTO, e uma delas é pulsada em nível baixo sempre que se deseja alterar as saídas do latch.
- Inicialmente, se SET = RESET = 1, pode-se levar a duas configurações.

• • Latch R-S

Quando a entrada SET é momentaneamente pulsada em nível BAIXO, enquanto a entrada RESET é mantida em nível ALTO, há mudança nas saídas do latch. A figura abaixo demonstra essa mudança para uma das condições anteriormente vistas do latch.

Set	Reset	Saída
1	1	Não muda
0	1	Q = 1
1	0	Q = 0
0	0	Inválida*

*Produz Q = \overline{Q} = 1.

- o Duas portas NOR interligadas de modo cruzado podem ser usadas como um latch com portas NOR. Abaixo essa configuração é exibida, de forma similar à configuração do latch NAND, exceto pelo fato da mudança na tabela-verdade.
- Nesse caso, SET e CLEAR (RESET) são ativadas em nível ALTO.

Set	Reset	Saída
0	0	Não muda
1	0	Q = 1
0	1	Q = 0
1	1	lnválida*

*Produz Q =
$$\overline{Q}$$
 = 0.

Latch R-S

Latch com portas NAND

Set Reset			Saída
1	1		Não muda
0	1		Q = 1
1	0		Q = 0
0	0		Inválida*

*Produz $Q = \overline{Q} = 1$.

Latch com portas NOR

Set	Reset	Saída
0	0	Não muda
1	0	Q = 1
0	1	Q = 0
1	1	Inválida*

*Produz Q = \overline{Q} = 0.

• • Latch R-S

Latch RS simulado no Circuitmaker

- Nos latches R-S anteriores, o usuário não tem controle sobre as entradas. Quando as informações R e S acessam o latch, elas são imediatamente processadas sem nenhum tipo de controle.
- Para obter algum controle, o circuito do latch pode ser modificado, introduzindo-se uma entrada com a função de habilitar (Enable) ou bloquear o latch.

• • • Latch R-S Síncrono

(a) Latch R-S síncrono. (b) Símbolo. (c) Tabela de combinações.

Entr	adas		Saí	das	
"Enable"	R	S	Q	Ō	
0	χ	X	Não	muda	→ Bloqueio - "Latch"
1	0	0	Não	muda	→ Indeterminado
1	0	1	1	0	
1	1	0	0	1	
1	1	1	1	1	
			(c)		

• • Latch R-S com entradas diretas

o (a) Latch R-S com entradas diretas. (b) Símbolo.

• • Latch R-S com entradas diretas

Tabela de combinações

	Entradas		Saídas				
	"Enable"	"Set"	"Reset"	R	S	Q	Ō
	1	1	1	0	0	Não	muda
Liberado —	1	1	1	0	1	1	0
	1	1	1	1	0	0	1
	1	1	1	1	1	1	1
Bloqueio –	0		1	Х	Χ	1	0
Diodasio	0	1		Х	Χ	0	1

• • • Latch R-S com entradas diretas

Latch RS com entradas diretas simulado no Circuitmaker

- O latch R-S síncrono não consegue evitar o estado de oscilação quando os atrasos de propagação forem iguais e ocorrer a transição de R=S=1 para R=S=0.
- Introduzindo um inversor entre as entradas R e S, as mesmas serão complementares, fazendo com que o circuito atue na região normal de operação.
- o Tal circuito é conhecido com latch D (latch transparente).

- A entrada comum das portas que implementam o circuito direcionador é denominada entrada de habilitação (ENABLE).
- o Se **EN** = 1, a saída **Q** será igual à entrada **D** (transparente).
- Se EN = 0, a saída Q não será modificada (guarda o último valor – memória).

(a) Tabela de combinações. (b) Símbolo.

D	O.
χ	Não muda
1	1
0	0
	X 1

(a)

Exemplo do comportamento de um latch D para as formas de onda dadas:

Latch D com entradas diretas simulado no Circuitmaker

• • • Latch – Aplicação

Exemplo:

- o O fenômeno conhecido como trepidação de contato ("contact bounce") torna praticamente impossível obter uma transição de tensão "limpa" com uma chave mecânica.
- As múltiplas transições no sinal de saída geralmente não duram mais do que alguns poucos milisegundos, mas podem ser inaceitáveis em algumas aplicações.

Latch – Aplicação

 Para evitar que a trepidação de contato afete a saída podese usar um latch NAND.

• • • Flip-Flops

- Latches controlados D e RS são ativados ou controlados pelo nível lógico do sinal de controle.
- Isso significa que, enquanto o sinal de controle estiver ativando o latch, eventuais variações das entradas D ou R e S serão percebidas pelo latch e este poderá mudar de estado.
- o Essa característica é particularmente imprópria para a construção de circuitos seqüenciais síncronos, uma vez que em tais circuitos qualquer troca de estado deve ocorrer de maneira sincronizada com o sinal de relógio.

• • • Flip-Flops

- o Os **flip-flops** são circuitos derivados dos latches, porém ativados pela transição do sinal de controle (borda).
- Isso faz com que um flip-flop permaneça ativado apenas durante um intervalo de tempo muito pequeno, após a ocorrência de uma transição do sinal de controle.
- Nesse caso, uma eventual troca de estado só pode ocorrer durante esse breve intervalo de tempo em que o flip-flop está ativado.
- Entre duas transições sucessivas do mesmo tipo (ou subida ou descida) do sinal de controle, o flip-flop mantém o último estado adquirido.

• • • Flip-Flops

- Dependendo de sua construção, um flip-flop pode ser disparado pela transição de subida ou pela transição de descida do sinal de controle.
- Nesse caso, pode-se dizer que flip-flops são disparados pela borda (subida ou descida), enquanto que latches são sensíveis ao nível lógico (alto ou baixo).

• • • Flip-Flop D

o (a) Flip-Flop D. (b) Tabela de combinações. (c) Símbolo.

"Clock"	D	O.			
+	1	1			
+	0	0			
1	χ	Não muda			
O X Não muda					
(b)					

• • • Flip-Flop D

Flip-Flop D simulado no Circuitmaker

• • • Flip-Flop J-K (edge-triggered)

 O flip-flop J-K gatilhado na transição de sinal clock (edge-triggered) é um dos mais importantes circuitos seqüenciais básicos.

• • • Flip-Flop J-K (edge-triggered)

- (a) Tabela de combinações. (b) Símbolo. (c) Entradas na transição.
- (d) Diagramas no tempo.

• • • Flip-Flop J-K (edge-triggered)

Flip-Flop J-K simulado no Circuitmaker

• • • Flip-Flop J-K (master-slave)

- Esse circuito é formado por dois latches, denominados mestre (master) e escravo (slave).
- Possui a mesma tabela de combinações que o flip-flop J-K (edge-triggered), mas com convenções de tempos t_n e t t_{n+1} diferentes.
- o J_n , K_n e Q_n correspondem aos valores de J, K e Q no tempo imediatamente anterior a subida do pulso, enquanto Q_{n+1} corresponde a saída no tempo posterior a descida do pulso.

• • • Flip-Flop J-K (master-slave)

(a) Flip-Flop J-K (master-slave). (b) Diagramas no tempo

• • • Flip-Flops: Aplicações

Sincronização usando Flip-Flops:

O sinal assíncrono A pode produzir pulsos parciais em X.

• • • Flip-Flops: Aplicações

o Sincronização usando Flip-Flops:

Um flip-flop D disparado por transição negativa é usado para sincronizar a habilitação da porta AND com a descida do *clock*.

• • • Flip-Flops: Aplicações

o Detecção de uma Sequência de Entrada:

Um flip-flop JK é usado para responder a uma determinada sequência de entrada.

• • • Flip-Flops - Aplicações

Alarme utilizando flip-flops simulado no Circuitmaker

