Statistical Pattern Recognition

شناسایی آماری الگو بخش ششه (۱۰-۱۱۷-۰۱)

دانشگاه شهید بهشتی پژوهشکدهی فضای مجازی بهار ۱۳۹۷ احمد محمودی ازناوه

فهرست مطالب

- ماشین بردار پشتیبان(SVM)
 - تاریخچه
 - معرفی
 - دادههای جداییپذیر خطی
 - Soft Margin •
- مجموعههای جداییناپذیر خطی
 - نگاشت به فضایی با ابعاد بالا
 - Inner product kernel
 - مثال XOR
 - الم SVM در Matlab در

تاريخچه

- نسخىى اوليىي SVM توسط آقاى Vladimir Vapnik ارائه شد.
- Vapnik با همکاری خانه Corinna Cortes با همکاری خانه Vapnik کنونی SVM را در سال ۱۹۹۳ پایهریزی کرده و در سال ۱۹۹۵ منتشر نمودند.

Cortes, C. and V. Vapnik (1995). "Support-vector networks." Machine Learning 20(3): 273-297.

معرفي

 یک جداکنندهی خطی را میتوان همانند شکل زیر در نظر گرفت.

$$W^{T}X + B > 0$$

$$W^{T}X + b < 0$$

$$F(X) = SIGN(W^{T}X + b)$$

مرز بهینه

- سوال
- کداه یک از مرزها، مرزی بهینه برای جداسازی است؟

مرز جداسازی

• میفواهیم به گونهای بهترین مرز جداسازی را بهدست آوریم.

Margin of separation

فرض کنیم نزدیک ترین نقطه به مرز مداسازی در نظر گرفته شده و فاصله را r بنامیم.

هدف ماکزیمه نمودن ۲ است.

یک ماشیه مشمص میکنیه هر مرزی که ماشیهی پهنتری را نتیمه دهد، بهتر است.

ماشیهی ماکزیمی

- ماکزیمی نمودن حاشیه (Margin) ایدهی خوبی است جهت جداسازی خطی، این شیوه را LSVM یا Linear SVM مینامند.
- در این مالت نمونههایی که به روی مرز ماشیه هستند، از اهمیت ویژهای برخوردارند.
- بدین وسیله می توان از نمونه های دیگر صرفنظر کرد
 و تنها به نمونه های مهم روی مرز ماشیه پرداخت.

Support Vector

بردار پشتیبان

• به نمونههای روی مرز ماشیه «بردار پشتیبان» میگویند.

بردارهای پشتیبان

Optimal hyperplane

مرز جداسازی

• برای معادلهی مرز جداسازی داشتیه:

$$W^{T}X + b = 0$$

 $(X_{i}, d_{i} = +1)$ $W^{T}X_{i} + b > 0$

$$(X_i, d_i = -1)$$
 $W^T X_i + b < 0$ منآ کنده مرز دهنه توسط b_{on} . W_{on} لمنآ

 $oldsymbol{\bullet}$ فرض کنیہ مرز بھینہ توسط $oldsymbol{w}_{
m op}$ مشخص شود۔

فرض: فرض کنیم نزدیک ترین نقطه به مرز مداسازی را در نظر گرفته، فاصله را «r» بنامیم.

• هدف

- است. $\rho=2r$ ماکزیمی نمودن فاصله یا همان
 - برای نقاط روی مرز جداسازی بهینه داریم:

$$W_{op}^{T}X + b_{op} = 0$$

برای نقاط خارج از مرز داریه:

$$g(X) = W_{op}^T X + b_{op}$$

میتواند مثبت یا منفی باشد. g(X) –

• در صورتی که X بردار پشتیبان باشد، طبق شکل زیر خواهیه داشت:

$$X = X_p + \overrightarrow{\mathbf{AB}}$$

- AB در جهت عمود بر مرز جداکننده
- اگر اندازهی بردار AB=r در نظر گرفته شود، خواهیه داشت:

$$X = X_p + r \frac{W_{op}}{\|W_{op}\|}$$

$$\overrightarrow{AB} = r \frac{W_{op}}{\|W_{op}\|}$$

$$g(X) = W_{op}^T X + b_{op}$$

$$X = X_p + r \frac{W_{op}}{\|W_{op}\|}$$

$$g(X) = W_{op}^{T} [X_{p} + r \frac{W_{op}}{\|W_{op}\|}] + b_{op}$$

$$g(X) = W_{op}^{T} X_{p} + b_{op} + r \frac{W_{op}}{\|W_{op}\|} W_{op}^{T}$$

روی مرزیس برابر ما صفر

$$g(X) = r \frac{\left\|W_{op}\right\|^2}{\left\|W_{op}\right\|}$$
در الگوشناسي آماري

$$g(X) = r \|W_{op}\|$$

هدف ماکزیمه نمودن ۲ است.

در این مالت تمت شرایطی میباید W عمینه گردد.

$$r = \frac{g(X)}{\|W_{op}\|} = \frac{b_{op}}{\|W_{op}\|}$$

مثبت یا منفی بودن bop نشان دمندهی این است که مبدأ در کداه سمت فط مرزی است.

$$r = \frac{g(X)}{\|W_{op}\|}$$

فاصله از میدا مفتصات

مساله یافتن Wop و است

• جداساز غطی را به صورت زیر در نظر میگیریه:

$$(X_i, +1)$$
 $W_{op}^T X_i + b_{op} \ge 1$ for $d_i = +1$

$$(X_i, -1)$$
 $W_{op}^T X_i + b_{op} \le -1$ for $d_i = -1$

به صورت کلی داریم:

$$d_i(W_{op}^T X + b_{op}) \ge 1$$

• رابطهی بالا برای تمامی الگوهای آموزشی برقرار است.

• و در نتیجه برای بردارهای پشتیبان

$$g(X^{s}) = W_{op}^{T} X^{s} + b_{op} = \pm 1$$

$$g(X^{s}) = W_{op}^{T} X^{s} + b_{op} = \pm 1$$

$$r = \frac{g(X^s)}{\|W_{op}\|} = \begin{cases} \frac{1}{\|W_{op}\|} \\ \frac{1}{\|W_{op}\|} \end{cases}$$

• در نتیجه فاصلهی دو بردار پشتیبان در دو طرف مرز:

$$\rho = 2r = \frac{2}{\|W_{op}\|}$$

مداییپذیر مطی

مىدانيم:

• **W** .
$$X^+ + b = +1$$

• W.
$$X^{-} + b = -1$$

• W.
$$(X^+-X^{-1})=2$$

$$\rho = 2r = \frac{\left\| \pm 2 \right\|}{\left\| W_{op} \right\|}$$

مداییپذیر خطی

 $d_i(W_{op}^T X + b_{op}) \ge 1$

- با توجه به دو رابطهی
- به این نتیجه میرسیه که \mathbf{W}_{op} میباید مینیمه گردد.
- $\Phi(W) = \frac{1}{2}W^TW$ این مسأله معادل مینیمه کردن
 - است. (Convex Function) یک تابع محدب Φ –
 - N الگوی $d_i(W_{op}{}^TX_i + b_{op}) \geq 1$ برای M الگوی الموزشی شرط زیر میباید برقرار باشد:

$$\sum_{i=1}^{N} [d_i(W_{op}^T X_i + b_{op}) - 1]$$

این میزان بزرگ تریا مساوی صفر است

الگوشناسی آماری

خلاصه

وزنها و بایاس را به گونهای بیابید که:

$$\rho = \frac{2}{\|W\|} \text{ is maximized}$$

and for all (X_i, d_i) , i=1..n: $d_i(W^TX_i + b) \ge 1$

وزنها و بایاس را به گونهای بیابید که:

 $\Phi(W) = 1/2 ||W||^2 = 1/2 W^T W$ is minimized

and for all (X_i, d_i) , i=1..n: $d_i(W^TX_i + b) \ge 1$

یافتن رویهی بهینه

$$J(W,b,\alpha) = \frac{1}{2}W^{T}W - \sum_{i=1}^{N} \alpha_{i} d_{i}(W^{T}X_{i} + b) - 1]$$

Lagrange multiplier(nonnegative)

و برای به دست آوردن $oldsymbol{W}_{\mathrm{op}}$ $oldsymbol{W}_{\mathrm{op}}$ برای به دست آوردن $oldsymbol{W}_{\mathrm{op}}$ مشتق میگیریه.

$$\frac{\partial J}{\partial W} = 0 \Longrightarrow W - \sum_{i=1}^{N} \alpha_i d_i X_i = 0$$

 $\frac{\partial J}{\partial b} = 0 \Longrightarrow -\sum_{i=1}^{N} \alpha_i d_i = 0$

$$W_{op} = \sum_{i=1}^{N} \alpha_i d_i X_i$$

یافتن رویهی بهینه

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

دو شرط برای α خواهیی داشت:

$$\alpha_i[d_i(W^TX_i+b)-1]=0$$

Karush-Kuhn-Tucker(KKT) condition of optimization theory

غیر صفر

 به ازای هر α_i برای الگوهای آموزشی متناظر با ۷۷ها رابطهی زیر برقرار است:

$$d_i(W_{op}^T X_i + b_{op}) - 1 = 0$$

یافتن رویمی بهینه

$$J(W,b,\alpha) = \frac{1}{2} ||W||^2 - \sum_{i=1}^{N} \alpha_i [d_i(W^T X_i + b) - 1]$$

$$J(W,b,\alpha) = \frac{1}{2} W^T W - \sum_{i=1}^{N} \alpha_i d_i W^T X_i - \sum_{i=1}^{N} \alpha_i d_i b + \sum_{i=1}^{N} \alpha_i$$

• برای مقادیر بهینه داشتیه:

$$W_{op} = \sum_{i=1}^{N} \alpha_i d_i X_i$$

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

Duality theorem

• پس خواهیه داشت:

$$J(W_{op}, b_{op}, \alpha) = \frac{1}{2} W_{op}^T W_{op} - W_{op}^T W_{op} + 0 + \sum_{i=1}^{N} \alpha_i$$

Dual Problem

$$J(W_{op}, b_{op}, \alpha) = \frac{1}{2} W_{op}^T W_{op} - W_{op}^T W_{op} + 0 + \sum_{i=1}^{N} \alpha_i$$

$$\begin{bmatrix}
= \sum_{i=1}^{N} \alpha_i - \frac{1}{2} W_{op}^T W_{op} \\
\sum_{i=1}^{N} \alpha_i d_i = 0
\end{bmatrix}$$

مینیمه نمودن W همانند ماکزیمه نمودن Q است زیرا در $W_{\rm op}$ مقدار W کهترین میزان است و در این صورت است که کل عبارت ماکزیمه می شود.

یافتن رویهی بهینه

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} W_{op}^{T} W_{op}$$

$$= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} [\sum_{i=1}^{N} \alpha_{i} d_{i} X_{i}]^{T} [\sum_{j=1}^{N} \alpha_{j} d_{j} X_{j}]$$

$$= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} d_{i} \alpha_{j} d_{j} X_{i}^{T} X_{j}$$

$$\begin{cases} = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} d_{i} \alpha_{j} d_{j} X_{i}^{T} X_{j} \\ \sum_{i=1}^{N} \alpha_{i} d_{i} = 0 \\ \alpha_{i} \ge 0 \text{ for } 1 = 0, 1,, N \end{cases}$$

یافتن رویمی بهینه

$$= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \left[\sum_{i=1}^{N} \alpha_{i} d_{i} X_{i} \right]^{T} \left[\sum_{j=1}^{N} \alpha_{j} d_{j} X_{j} \right]$$

بدون در نظر گرفتن قیود، جهت مماسبهی α_k می نوان نسبت به α_k مشتق گرفته برابر با صفر قرار

$$\frac{\partial Q(\alpha)}{\partial \alpha_k} = 1 - \sum_{\substack{i=1\\i\neq k}}^{N} \alpha_i d_i d_k X_i^T X_k - \alpha_k d_k^2 X_k^T X_k = 0$$

$$M_{i,j} = X_i^T X_j$$
فرب دافلی

$$\frac{\partial \mathbf{Q}(\alpha)}{\partial \alpha_{\mathbf{k}}} = 1 - d_{\mathbf{k}} \sum_{i=1}^{N} \alpha_{i} d_{i} M_{i,k} = 0$$

یافتن رویهی بهینه

• پس از به دست آوردن α خواهیی داشت:

$$W_{op} = \sum_{i=1}^{N} \alpha_i d_i X_i$$

$$X^s = X^{\text{support vector}}$$

$$b_{op} = \pm 1 - W_{op}^T X^s$$

یافتن رویهی بهینه

 $W = \Sigma \alpha_i d_i X_i$ $b = d_k - W^T X_k$ for any X_k such that $\alpha_k \neq 0$

 X_i مخالف صفر، نشان دهندهی این است که $lpha_i$ متناظرش یک بردار پشتیبان است.

در این مالت تابع جداکننده همانند زیر است:

$$g(X) = \sum \alpha_{i} d_{i} X_{i}^{T} X + b$$

توجه:

ضرب دافلی دو بردار

Soft Margin

- SVM برای داده های جدایی پذیر فطی مورد بررسی قرار گرفت.
- مال اگر مجموعی دادههای آموزش قابلیت جداسازی را نداشته باشند، چه خواهد شد؟ به بیان بهتر صحبت در مورد مسائل جداییپذیر است که با نویز همراه هستند.

Soft Margin

- مسألهی Hard Margin را تبدیل به عل مسألهی Soft Margin میشود.
- ماشیمی جداسازی soft گفته می شود، در صورتی که برای برخی داده ما شرط زیر نقض شود: $(W^T X \perp b) > 1$
 - $d_i(W_{op}^T X + b_{op}) \ge 1$
 - با اضافه کردن یک Slack Variable مسأله را بار دیگر بررسی میکنیه.
 - این متغیر میزان انمراف از شرط فوق را نشان میدهد.

- دادهی در کلاس درست ولی در ماشیه قرار گیرد.
 - دادهی آموزشی به اشتباه دستهبندی شود.

$$d_i(W_{op}^TX + b_{op}) \geq 1 - \xi_i, \qquad i = 1, 2, \cdots, N$$
الگوشناسی آماری

$$d_i(\mathbf{W}_{op}^T\mathbf{X} + b_{op}) \ge 1 - \boldsymbol{\xi}_i, \quad i = 1, 2, \dots, N$$

- در این مالت بردارهای پشتیبان آنهایی هستند که در رابطهی تساوی در عبارت بالا صدق میکنند، متی ں وحود 0<}
- در صورتی که دادههای نویزی از مجموعه خارج شود، رویهی جداکننده تغییر خواهد کرد.
- هدف یافتن «رویهای جداکننده» است که در آن خطای طبقهبندی نادرست در آن مینیمی شود:

با توجه به این که کمینه کردن چنین تابعی یک مسألهی بهینهسازی nonconvex مسألهی بهینهسازی NP-complete قرار می گیرد، آن را با تابع زیر تقریب می زنیم: $\Phi(\xi) = \sum_{i=1}^{N} \xi_{i}$

• و در کل هدف مینیمی کردن عبارت زیر است:

$$\Phi(W,\xi) = \frac{1}{2}W^TW + C\sum_{k=1}^R \varepsilon_k$$

regularization parameter

این پادامترنوعی مصالحه بین پیچیگی ماشین و خطا برقرار می کند، هرچه C به صفر نزدیک تر باشد به این معناست که خطا اهمیت کم تری دارد و در نتیجه حاشیه بزرگ تر می شود. و هرچه برزگ تر باشد، مساله به حالت hard margin نزدیک تر می شود.

Soft Margin

• برای Hard Margin داشتیه:

Find W and b such that $\Phi(W) = \frac{1}{2} W^T W$ is minimized and for all $\{(X_i, d_i)\}$ $d_i(W^T X_i + b) \ge 1$

• با اضافه کردن Slack Variable داریم:

Find W and b such that $\Phi(W) = \frac{1}{2} W^T W + C \Sigma \xi_i \quad \text{is minimized and for all } \{(X_i, d_i)\}$ $d_i (W^T X_i + b) \ge 1 - \xi_i \quad \text{and} \quad \xi_i \ge 0 \text{ for all } i$

یافتن رویهی بهینه

 رابطی لاگرانژ زیر تعریف میشود به گونهای که همی نیازمندیها را پوشش دهد:

$$J(W, b, \xi, \alpha, \mu) = \frac{1}{2}W^{T}W + C\sum_{i} \xi_{i} - \sum_{i=1}^{N} \alpha_{i}[d_{i}(W^{T}X_{i} + b) - 1 + \xi_{i}] - \sum_{i} \mu_{i}\xi_{i}$$

بخش آخر از این رو اضافه شده است که تا نامنفی بودن ξ را تضمین کند.

در نهایت ضرایب لاگران از عبادت زیر محاسبه خوا سند شد:

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j X_i^T X_j$$

با در نظر گرفتن قیود زیر

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

$$0 \le \alpha_i \le C$$

بقيه مراحل مانند حالت قبل خوا مد بود:

$$W_{op} = \sum_{i=1}^{N_s} \alpha_i d_i X_i$$

1/t x

```
n = 20;
rand('seed',2);
X = 4* rand (2,n);
bt = -6;
wt = [4 ; -1];
d = sign (wt (1) * X (1 ,:) + wt (2) * X (2 ,:) + bt) ;
x1min=min(X(1,:));
x1max=max(X(1,:));
x2min=min(X(2,:));
x2max=max(X(2,:));
figure;
axis([x1min x1max x2min x2max]);
plot (X (1 , find (d ==1)) , X (2 , find (d ==1)) , ' or ') ;
hold on
plot (X(1,find (d ==-1)), X(2, find (d ==-1)), 'ob');
Line t = 0(x1, x2) wt (1) *x1+wt (2) *x2+bt;
ezplot(Linet,[x1min x1max x2min x2max]);
```

مثال(ادامه...)

مثال(ادامه...)

```
C=10;
H=zeros(n,n);
for k1=1:n
    for k2=1:n
        H(k1,k2)=d(k1)*d(k2)*X(:,k1)'*X(:,k2);
    end
end
f=-ones(n,1);
Aeq=d;
beq=0;
 1b=zeros(n,1);
ub=C*ones(n,1);
 alpha=quadprog(H,f,[],[],Aeq,beq,lb,ub)';
 Svs=find(alpha> 1e-5);
 w=0;
for k1=Svs
    w=w+alpha(k1)*d(k1)*X(:,k1);
end
b=mean(d(Svs)-w'*X(:,Svs));
```


مثال(ادامه...)

```
plot(X(1,Svs),X(2,Svs),'ko','MarkerSize',12);
Line=@(x1, x2) w(1)*x1+w(2)*x2+b;
LineA=@(x1,x2) w(1)*x1+w(2)*x2+b+1;
LineB=@(x1,x2) w(1)*x1+w(2)*x2+b-1;
handle=ezplot(Line,[x1min x1max x2min x2max]);
set(handle, 'Color', 'k', 'LineWidth', 2);
handleA=ezplot(LineA, [x1min x1max x2min x2max]);
set(handleA, 'Color', 'k', 'LineWidth',1, 'LineStyle', '--');
handleB=ezplot(LineB, [x1min x1max x2min x2max]);
set(handleB, 'Color', 'k', 'LineWidth', 1, 'LineStyle', '--');
```


SVM غيرخطى

• برای دادههایی که قابلیت جداسازی فطی دارند، عملکرد سیستی بسیار فوب است.

• اگر دادهها به صورتهای زیر باشد، مسأله چِگونه عل میشود؟

- همواره فضای ورودی میتواند به فضایی با ابعاد بالاتر نگاشت گردد.
- این نگاشت میتواند به صورتی باشد که در این فضای جدید ورودیها قابلیت جداسازی داشته

$$W^T X + b = 0$$

ullet هنگامیکه ورودیها به فضای دیگری نکاشت شوند، برای نگاشت جدید خواهیم داشت: $\Phi(X) = \left[\varphi_1(X), \varphi_2(X), \dots, \varphi_m(X) \right]^T$

$$\sum_{j=1}^{m_1} w_j \varphi_j(X) + b = 0$$

$$\sum_{j=1}^{m1} w_{j} \varphi_{j}(X) + b = 0$$

$$\varphi_0(\mathbf{X}) = 1$$
 فرض •

• خواهیم داشت:

$$\sum_{j=0}^{m1} w_j \varphi_j(X) = 0$$

$$W^T\Phi(X)=0$$

$$\Phi(X) = [1, \Phi(X)]^T$$

$$W = [b = w_0, w_1, w_2, \dots, w_{m1}]^T$$

• در این مرحله تمامی شروط و قیودی که برای جداسازی خطی در نظر گرفتیم وجود دارد تنها به ازای X_i ها $\Phi(X_i)$ در نظر گرفته می شود:

$$d_i\sum_{j=0}^{m_1}w_jarphi_j(X_i)-1\geq 0$$

$$W_{opt}=\sum_{i=1}^Nlpha_i.d_i(\Phi(X_i))$$
 المحالا

$$\mathbf{W}_{opt}^T \Phi(\mathbf{X}) = 0$$

$$\mathbf{W}_{opt}^T \Phi(\mathbf{X}) = 0 \qquad \sum_{i=1}^N \alpha_i . d_i \Phi^T(\mathbf{X}_i) \Phi(\mathbf{X}) = 0$$

$$\sum_{i=1}^{N} \alpha_i . d_i \Phi^T(X_i) \Phi(X) = 0$$

 $K(X_i,X_j) = \varphi(X_i)^T \varphi(X_j)$

$$\sum_{i=1}^{N} \alpha_i . d_i K(X_i, X) = 0$$

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j K(X_i, X_j)$$

تابع kernel، تابعی است که معادل ضرب داخلی دو بردار خصیصه است.

$$\mathbf{x} = [x_1 \ x_2];$$

where
$$\varphi(X) = \begin{bmatrix} 1 & x_1^2 & \sqrt{2} & x_1 & x_2 & x_2^2 & \sqrt{2} & x_1 & \sqrt{2} & x_2 \end{bmatrix}$$

Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

$K(X_1, X_1)$	$K(X_1, X_2)$	$K(X_1, X_3)$	• • •	$K(X_1, X_n)$
$K(X_2, X_1)$	$K(X_2, X_2)$	$K(X_2, X_3)$		$K(X_2, X_n)$
			•••	
$K(X_n, X_1)$	$K(X_n, X_2)$	$K(X_n, X_3)$	•••	$K(X_n, X_n)$

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \Phi(X_i) \Phi(X_j)$$

$$K_{N \times N} = \left\{K(X_i, X_j)\right\}_{i, j=1}^{N} K(X_i, X_j)$$
ماتریس متقارن

مدف یافتن ضرایب لاگرانژ بیشینه در عبارت زیر است:

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j K(X_i, X_j)$$

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$
بادر نظر گرفتن قیود زیر

kernel trick

 $0 \le \alpha \le C$

در صورت یافتن تابع kernel مناسب بدون این که درگیر مشکلات فضای با ابعاد بالا (نکبت ابعاد) شویم، تنها از نتیجه این نگاشت بهره می بریم.

توابع نگاشت

TABLE 6.1 Summary of Mercer Kernels			
Type of support vector machine	Mercer kernel $k(\mathbf{x}, \mathbf{x}_i), i = 1, 2,, N$	Comments	
Polynomial learning machine	$(\mathbf{x}^T\mathbf{x}_i+1)^p$	Power <i>p</i> is specified <i>a priori</i> by the user	
Radial-basis-function network	$\exp\left(-\frac{1}{2\sigma^2}\ \mathbf{x}-\mathbf{x}_i\ ^2\right)$	The width σ^2 , common to all the kernels, is specified <i>a priori</i> by the user	
Two-layer perceptron	$\tanh(\beta_0 \mathbf{x}^T \mathbf{x}_i + \beta_1)$	Mercer's theorem is satisfied only for some values of β_0 and β_1	

chi-squared kernel

$$k(x,y) = 1 - \sum_{i=1}^{n} \frac{(x_i - y_i)^2}{\frac{1}{2}(x_i + y_i)}$$

مِند نکتہ

- SVM به گونهای است که به شیوههای رایج برای طراحی شبکههای RBF و MLP نیازی ندارد.
- در SVM، ابعاد فضای خصیصه توسط بردارهای پشتیبان مشخص میشود.
- تعداد توابع شعاعی مورد استفاده و مراکز آن به صورت خودکار مشخص میگردد (RBF network).
- تعداد لایههای مخفی و وزنها به صورت خودکار مشخص میشود.(two-layer perceptron)
 - پیچیدگی مسأله به ابعاد دادهها بستگی ندارد.

مثال XOR Problem

$$X_1 = [-1 - 1] \rightarrow d_1 = -1$$

 $X_2 = [-1 \ 1] \rightarrow d_2 = +1$
 $X_3 = [1 - 1] \rightarrow d_3 = +1$
 $X_4 = [1 \ 1] \rightarrow d_4 = -1$

$$N = 4$$

$$K(X, X_i) = \Phi^T(X) \cdot \Phi(X_i)$$

$$K(X, X_i) = (1 + X^T X_i)^2$$

• نمونههای آموزشی دو بعدی هستند.

$$X_i = [x_{i1} \ x_{i2}]$$

$$X = [x_1 \ x_2]$$

$$K(X, X_i) = (1 + X^T X_i)^2$$

$$= (1 + [x_{i1} \ x_{i2}] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix})^2 = (1 + x_{i1}x_1 + x_{i2}x_2)^2$$

$$= 1 + x_1^2 x_{i1}^2 + 2x_1 x_2 x_{i1} x_{i2} + x_{i2}^2 x_2^2 + 2x_1 x_{i1} + 2x_2 x_{i2}$$

حال اگر بخواهیی پاسخ بهدست آمده را با ضرب داخلی دو بردار $\phi(X)$ و $\phi(X)$ نشان دهیی خواهیی داشت:

$$= 1 + x_1^2 x_{i1}^2 + 2x_1 x_2 x_{i1} x_{i2} + x_{i2}^2 x_{i2}^2 + 2x_1 x_{i1} + 2x_2 x_{i2}$$
$$\mathbf{\varphi}(X) = [1, x_1^2, \sqrt{2}x_1 x_2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2]^T$$

$$\varphi(x_i) = [1 + x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}]^T$$
 $i=1,2,3,4$

$$\mathbf{\phi}(\mathbf{x}) = [1, x_1^2, \sqrt{2}x_1x_2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2]^T$$

$$\mathbf{\phi}(x_i) = [1 + x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}]^T \quad i=1,2,3,4$$

$$X_{1} = \begin{bmatrix} -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & \sqrt{2} & 1 & -\sqrt{2} & -\sqrt{2} \\ X_{2} = \begin{bmatrix} -1 & 1 \end{bmatrix} & 1 & 1 & -\sqrt{2} & 1 & -\sqrt{2} & \sqrt{2} \\ X_{3} = \begin{bmatrix} 1 & -1 \end{bmatrix} & 1 & 1 & -\sqrt{2} & 1 & \sqrt{2} & -\sqrt{2} \\ X_{4} = \begin{bmatrix} 1 & 1 \end{bmatrix} & 1 & \sqrt{2} & 1 & \sqrt{2} & \sqrt{2} \end{bmatrix}$$

$$K_{4\times4} = \begin{bmatrix} 1 & 1 & \sqrt{2} & 1 & -\sqrt{2} & -\sqrt{2} \\ 1 & 1 & -\sqrt{2} & 1 & -\sqrt{2} & \sqrt{2} \\ 1 & 1 & -\sqrt{2} & 1 & \sqrt{2} & -\sqrt{2} \\ 1 & 1 & \sqrt{2} & 1 & \sqrt{2} & \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \sqrt{2} & -\sqrt{2} & -\sqrt{2} & \sqrt{2} \\ 1 & 1 & 1 & 1 \\ -\sqrt{2} & -\sqrt{2} & \sqrt{2} & \sqrt{2} \end{bmatrix}$$

$$K(X, X_i) = (1 + X^T X_i)^2 \qquad K_{4 \times 4} = \begin{bmatrix} 9 & 1 & 1 & 1 \\ 1 & 9 & 1 & 1 \\ 1 & 1 & 9 & 1 \\ 1 & 1 & 1 & 9 \end{bmatrix}$$

$$Q(\alpha) = \sum_{i=1}^{4} \alpha_i - \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_i \alpha_j d_i d_j K(X_i, X_j)$$

$$Q(\alpha) = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$$

$$-\frac{1}{2}(9\alpha_{1}^{2}+9\alpha_{2}^{2}+9\alpha_{3}^{2}+9\alpha_{4}^{2}-2\alpha_{1}\alpha_{2}-2\alpha_{1}\alpha_{3}+2\alpha_{1}\alpha_{4}+2\alpha_{2}\alpha_{3}-2\alpha_{2}\alpha_{4}-2\alpha_{3}\alpha_{4})$$

دست آوردن α_i ها بهینه منجر به روابط زیر می شود:

$$1-9\alpha_1+\alpha_2+\alpha_3+\alpha_4=0$$

$$1 + \alpha_1 - 9\alpha_2 - \alpha_3 + \alpha_4 = 0$$

$$1 + \alpha_1 - \alpha_2 - 9\alpha_3 - \alpha_4 = 0$$

$$1-\alpha_1+\alpha_2+\alpha_3-9\alpha_4=0$$

$$\alpha_i = \frac{1}{8}$$

$$Q(\alpha) = \frac{1}{4}$$

• بنابراین هر چهار ورودی، بردار پشتیبان هستند.

• پس از مماسبهی α ما را مماسبه میکنیم:

• جهت مماسیهی اندازهی وزن بهینه داریه:

$$\frac{1}{2} \|\mathbf{W}_{\text{opt}}\|^2 = \frac{1}{4} \qquad \|\mathbf{W}_{\text{opt}}\| = \frac{1}{\sqrt{2}}$$

$$\|\mathbf{W}_{\text{opt}}\| = \frac{1}{\sqrt{2}}$$

$$W_{opt} = \sum_{i=1}^{N} \alpha_i . d_i(\varphi_j(X_i))$$

• داشتیه:

$$\mathbf{w}_o = \frac{1}{8} \left[-\varphi(\mathbf{x}_1) + \varphi(\mathbf{x}_2) + \varphi(\mathbf{x}_3) - \varphi(\mathbf{x}_4) \right]$$

$$=\frac{1}{8}\begin{bmatrix} -\begin{bmatrix} 1\\1\\1\\-\sqrt{2}\\1\\-\sqrt{2}\\-\sqrt{2} \end{bmatrix} + \begin{bmatrix} 1\\1\\-\sqrt{2}\\1\\-\sqrt{2}\\\sqrt{2} \end{bmatrix} + \begin{bmatrix} 1\\1\\-\sqrt{2}\\1\\\sqrt{2}\\-\sqrt{2} \end{bmatrix} - \begin{bmatrix} 1\\1\\1\\\sqrt{2}\\1\\\sqrt{2}\\\sqrt{2} \end{bmatrix} = \begin{bmatrix} 0\\0\\-1/\sqrt{2}\\0\\0\\0 \end{bmatrix}$$

• رویهی بهینه به وسیلهی رابطهی زیر مماسبه میشود:

$$W_{opt}^T \varphi(X) = 0$$

$$\begin{bmatrix} 0, 0, \frac{-1}{\sqrt{2}}, 0, 0, 0 \end{bmatrix} \begin{bmatrix} 1 \\ x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \\ \sqrt{2}x_1 \\ \sqrt{2}x_2 \end{bmatrix} = 0 \quad \blacksquare \quad -x_1x_2 = 0$$

$x_1 \square \times y = -x_1 x_2$ $x_2 \square \times y = -x_1 x_2$ $x_3 \square \times y = -x_1 x_2$ $x_4 \square \times y = -x_1 x_2$ $x_4 \square \times y = -x_1 x_2$ $x_5 \square \times y = -x_1 x_2$ $x_6 \square \times y = -x_1 x_2$ $x_7 \square \times y = -x_1 x_2$ $x_8 \square \times y = -x_1 x_2$

$\begin{array}{c|c} 1.0 \times (1,-1) \\ & (-1,1) \end{array}$ $\begin{array}{c|c} 0 & \textbf{Decision} \\ & \text{boundary} \\ & (-1,1) \end{array}$

XOR Problem

(a) Polynomial machine for solving the XOR problem. (b) Induced images in the feature space due to the four data points of the XOR problem.


```
clear all;
close all;
load fisheriris
data = [meas(:,1), meas(:,2)];
groups = ismember(species, 'setosa');
[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);
svmStruct =
svmtrain(data(train,:),groups(train),'showplot',true,'boxconstr
aint',1e6);
title(sprintf('Kernel Function: %s',...
    func2str(svmStruct.KernelFunction)),...
    'interpreter','none');
classes = symclassify(symStruct,data(test,:),'showplot',true);
classperf(cp,classes,test);
cp.CorrectRate
```


مثال

```
clear all;
close all;
load fisheriris
data = [meas(:,1), meas(:,2)];
groups = ismember(species, 'setosa');
[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);
svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
title(sprintf('Kernel Function: %s',...
    func2str(svmStruct.KernelFunction)),...
    'interpreter','none');
classes = svmclassify(svmStruct,data(test,:),'showplot',true);
classperf(cp,classes,test);
cp.CorrectRate
```


40

مثال

```
r = sqrt(rand(100,1)); % radius
t = 2*pi*rand(100,1); % angle
data1 = [r.*cos(t), r.*sin(t)]; % points
r2 = sqrt(3*rand(100,1)+1); % radius
t2 = 2*pi*rand(100,1); % angle
data2 = [r2.*cos(t2), r2.*sin(t2)]; % points
plot(data1(:,1),data1(:,2),'r.')
plot(data2(:,1),data2(:,2),'b.')
axis equal
data3 = [data1;data2];
theclass = ones(200,1);
theclass (1:100) = -1;
cl = symtrain(data3,theclass,'Kernel Function','rbf',...
    'boxconstraint', Inf, 'showplot', true);
hold on
axis equal
```


ساخت کرنلهای جدید

- براساس کرنلهای موجود به سادگی میتوان
 کرنلهای جدید ساخت:
- هر تابع (.,.) یک کرنل است چنانچه معادل ضرب داخلی بردارهای ماصل از نگاشت باشد.

$$K(x,y) = c_1 K_1(x,y) + c_2 K_2(x,y), c_1 \ge 0, c_2 \ge 0$$

$$\phi(x) = (\sqrt{c_1}\phi_1(x), \sqrt{c_2}\phi_2(x))$$

$$\phi(x) \cdot \phi(y) = c_1 \phi_1(x) \cdot \phi_1(y) + c_2 \phi_2(x) \cdot \phi_2(y)$$

ساخت کرنلهای جدید(ادامه...)

$$K(x,y) = K_1(x,y) \cdot K_2(x,y)$$

$$\phi(x) = (\phi_{1,i}(x)\phi_{2,j}(x))_{i \in \{1,\dots,n\}, j \in \{1,\dots,m\}}$$

$$\phi(x) \cdot \phi(y) = \sum_{i,j} \phi_{1,i}(x) \phi_{2,j}(x) \phi_{1,i}(y) \phi_{2,j}(y)$$

$$= \sum_{i} \left(\phi_{1,i}(x) \phi_{1,i}(y) \sum_{j} \phi_{2,j}(x) \phi_{2,j}(y) \right)$$

$$= \sum_{i} \left(\phi_{1,i}(x) \phi_{1,i}(y) K_2(x,y) \right)$$

$$= K_1(x,y) \cdot K_2(x,y)$$

ساخت کرنلهای جدید(ادامه...)

$$k(x,z) = k_1(f(x), f(z)), \text{ where } f: X \to X.$$

$$k(x,z) = g(x)g(z)$$
, for $g: X \to R$.

$$k(x,z) = f(k_1(x,z)),$$

$$k(x,z) = exp(\tilde{k}(x,z))$$

$$k(x, z) = \exp\left(\frac{-||x-z||^2}{\sigma^2}\right)$$

