Baze podataka

Predavanja svibanj 2008.

12. ER model baze podataka (1. dio)

Primjer normalizacije

Zadana je relacijska shema:

ISPIT = { matBr, prez, ime, sifPred, nazPred, datIsp, ocj, sifNas, prezNas }
i trenutna vrijednost relacije ispit(ISPIT):

ispit (ISPIT)

matBr	prez	ime	sifPred	nazPred	datlsp	ocj	sifNas	prezNas
1111	Novak	Ivan	1001	Mat-1	29.01.06	1	1111	Pašić
1111	Novak	Ivan	1001	Mat-1	05.02.06	3	1111	Pašić
1111	Novak	Ivan	1003	Fiz-1	28.06.06	2	3333	Horvat
1111	Novak	Ivan	1002	Mat-2	27.06.06	4	2222	Brnetić
1234	Kolar	Petar	1001	Mat-1	29.01.06	3	2222	Brnetić

- funkcijske zavisnosti odrediti na temelju značenja podataka
- odrediti primarni ključ relacije (tako da bude zadovoljen uvjet 1NF prema kojem neključni atributi funkcijski ovise o ključu)
- postupno normalizirati relacijsku shemu ISPIT na 2NF i 3NF

Primjer normalizacije

student (STUDENT)

matBr	prez	ime	
1111	Novak	Ivan	
1234	Kolar	Petar	

predmet (PREDMET)

•	,
sifPred	nazPred
1001	Mat-1
1003	Fiz-1
1002	Mat-2
•	

nastavnik (NASTAVNIK)

sifNas	prezNas	
1111	Pašić	
3333	Horvat	
2222	Brnetić	

ispit₃ (ISPIT₃)

matBr	sifPred	datlsp	ocj	sifNas
1111	1001	29.01.06	1	1111
1111	1001	05.02.06	3	1111
1111	1003	28.06.06	2	3333
1111	1002	27.06.06	4	2222
1234	1001	29.01.06	3	2222

Shema baze podataka STUSLU:

STUSLU = { STUDENT, PREDMET, NASTAVNIK, ISPIT₃ }

Implementacija: SQL

```
CREATE TABLE student (
   matBr INTEGER
, prez CHAR(20)
, ime CHAR(20)
, PRIMARY KEY (matBr));
```

```
CREATE TABLE predmet (
    sifPred INTEGER
, nazPred CHAR(20)
, PRIMARY KEY (sifPred));
```

```
CREATE TABLE nastavnik (
sifNas INTEGER
, prezNas CHAR(20)
, PRIMARY KEY (sifNas));
```

```
CREATE TABLE ispit (
, matBr INTEGER REFERENCES student (matBr)
ON DELETE CASCADE
, sifPred INTEGER REFERENCES predmet (sifPred)
, datIsp DATE
, ocj SMALLINT CHECK (ocj BETWEEN 1 AND 5)
, sifNas INTEGER REFERENCES nastavnik (sifNas)
ON DELETE SET NULL
, PRIMARY KEY (matBr, sifPred, datIsp));
```

OBLIKOVANJE MODELA BAZE PODATAKA

ER model (Entity-Relationship Model) Model entiteti-veze

- postrelacijski model
- zadržava dobre karakteristike relacijskog modela
- omogućuje eksplicitni prikaz veza koje u sebi sadrže važne semantičke informacije

Literatura:

- P.P.Chen:
 - The Entity-Relationship Model Toward a Unified View of Data, ACM Transactions on Database Systems, Vol. 1, No. 1, 1976
- T. J. Teorey:

Database Modeling & Design, Morgan Kaufmann, 1999

Entiteti, veze, uloge

Entitet

 bilo što, što ima suštinu ili bit, ima jasnoću kao činjenica ili ideja, posjeduje značajke s pomoću kojih se može razlučiti od svoje okoline

Skup entiteta E_i (entityset)

Slični entiteti se grupiraju u skupove entiteta

Skup veza R_i (relationship set)

matematička relacija između n entiteta:

$$R_i \subseteq E_1 \times E_2 \times E_3 \times ... \times E_n$$

ili
$$R_i = \{ (e_1, e_2, ..., e_n) \mid e_1 \in E_1, e_2 \in E_2, ..., e_n \in E_n \}$$

n-torka (e_1 , e_2 , e_3 , ... e_n), naziva se vezom.

Uloga (role)

funkcija koju skup entiteta obavlja u skupu veza.

Skup vrijednosti, atribut

- Informacije o entitetu ili vezi izražavaju se s pomoću parova atribut-vrijednost
- Vrijednosti su klasificirane u skupove vrijednosti V_i.
- Atribut je funkcija koja preslikava iz skupa entiteta ili skupa veza u skup vrijednosti ili Kartezijev produkt skupova vrijednosti:

$$f: E_i \rightarrow V_i$$

 $f: E_i \rightarrow V_{i_1} \times V_{i_2} \times ... \times V_{i_n}$
 $f: R_i \rightarrow V_i$

$$f: R_i \rightarrow V_{i_1} \times V_{i_2} \times ... \times V_{i_n}$$

funkcija koja preslikava sa skupa entiteta na skup vrijednosti ...

... ili na Kartezijev produkt skupova vrijednosti PostBroj × Ulica **PostBroi** adresa 10000 Ilica 10000 Student • 31000 10000 Gundulićeva 21000 10000 Vukovarska S • 21000 Ilica **Ulica** 21000 Gundulićeva S_2 21000 Vukovarska Ilica Gundulićeva • 31000 Ilica Vukovarska 31000 Gundulićeva 31000 Vukovarska adresa:Student→PostBroj×Ulica

... ili na Kartezijev produkt skupova vrijednosti

Terminologija

```
Chen:
```

entitet, skup entiteta veza, skup veza

Teorey:

instanca entiteta, entitet
(entity instance)
(entity occurrence)
instanca veze, veza
(relationship instance)
(relationship occurrence)

Grafički prikaz entiteta i veza

- entitet se grafički prikazuje pravokutnikom unutar kojeg se nalazi ime entiteta
- veza se grafički prikazuje rombom unutar kojeg se nalazi ime veze

OSOBA RadiU PODUZEĆE

- atribut entiteta se grafički prikazuju ovalom unutar kojeg se upisuje ime atributa
- atribut (ili atributi) primarnog ključa se potcrtavaju

- povećanjem broja atributa, dijagram postaje nepregledan
 - atributi se tada ne prikazuju grafički umjesto toga, uz dijagram se prilažu sheme entiteta

 NASTAVNIK

Shema entiteta:

NASTAVNIK = <u>sifNast</u>, <u>jmbgNast</u>, imeNast, prezNast

sifNast
jmbgNast
imeNast
prezNast

K₁ = { sifNast }

K₂ = { jmbgNast }

PK = K₁

Vlastiti atributi entiteta

Entiteti se opisuju samo vlastitim atributima

 vlastiti atribut entiteta je atribut koji opisuje znanja o entitetu koja se pripisuju isključivo samom entitetu, a nikako vezi s drugim entitetima

 isključivo identifikacijski slabi entiteti, osim svojih vlastitih atributa, posjeduju i atribute primarnog ključa entiteta vlasnika

Regularni i slabi entiteti

- regularni entitet je entitet koji može postojati sam za sebe
- slabi entiteti (engl. weak entity) ne postoje ukoliko ne postoji i neki drugi entitet (entitet vlasnik)
- Slabi entitet se grafički prikazuje dvostruko uokvirenim pravokutnikom, sa strelicom koja dolazi iz smjera veze koja ga povezuje s entitetom vlasnikom slabi entitet čiji je vlasnik

- slabi entiteti, osim što su egzistencijalno slabi, također mogu biti i identifikacijski slabi
 - kod određivanja identifikatora nisu im dovoljni vlastiti atributi
 - za identifikaciju se koriste i ključni atributi entiteta vlasnika

entitet DJELATNIK

Identifikacijski slabi entiteti (primjer)

 entitet DIJETE, osim što je egzistencijalno slab, također je i identifikacijski slab

entitet PUTOVNICA je egzistencijalno slab (nije identifikacijski slab)

Stupanj veze

- broj entiteta koje povezuje dotična veza
- veza može biti unarna(refleksivna), binarna, ternarna, itd.
 - unarna ili refleksivna veza veza je definirana nad jednim entitetom koji u vezi ima dvije različite uloge

Spojnost veze (connectivity)

- spojnost veze opisuje ograničenje preslikavanja pojedinačnih entiteta koje veza povezuje
- vrijednosti spojnosti: jedan (one), više (many)
- koriste se oznake 1, N ili rasponi, npr. 0..1, 1..N, 1..2, itd.

jedan djelatnik radi na jednom projektu, na jednom projektu radi N djelatnika

• jedan djelatnik radi na nula (niti jednom) ili jednom projektu, na jednom projektu radi između nula (niti jedan) i više djelatnika

Spojnost veze (connectivity)

- radi pojednostavljenja
 - spojnost 0..N se često označava samo oznakom N
 - spojnost 1..1 se često označava samo oznakom 1

Preslikavanje (mapping)

- preslikavanje međusobni odnos entiteta u vezi
- kod binarnih veza moguća su preslikavanja 1:1 (jedan-premajedan), 1:N (jedan-prema-više), N:1 (više-prema-jedan), N:N (više-prema-više).

Preslikavanje 1:1

Preslikavanje N:1

Preslikavanje 1:N

Preslikavanje N:N

Atributi veza

- Shema veze sadrži ključeve entiteta koje povezuje, te vlastite atribute
- Atribut veze se grafički prikazuje ovalom unutar kojeg se upisuje ime atributa

Atributi veza

sheme entiteta:

STUDENT = <u>matBrSt</u>, prezime, ime MJESTO = <u>postBroj</u>, nazMj

shema veze:

ZiviU = matBrSt, postBroj

Koji atributi čine ključ veze?

Ključevi veza

- Povezanost entiteta opisuje se kao odnos među ključevima entiteta
- Ključevi veza definirani su s pomoću ključeva entiteta koje povezuju i njihovih spojnosti

Definicija 1. (Teorey)

U vezi koja povezuje entitete

 $E_1, ..., E_k, ..., E_m$

spojnost =1 entiteta E_k znači da za svaku vrijednost svih entiteta $E_1, ..., E_m$, osim E_k , <u>uvijek postoji točno jedna vrijednost</u> od E_k .

može se reći da tada vrijedi funkcijska zavisnost:

 $\bigcup_{j=1}^{m} K_{j} \setminus K_{k} \rightarrow K_{k}$

gdje su skupovi K_i , (j = 1, ..., m) ključevi entiteta E_1 , ..., E_m

Ključevi veza

sheme entiteta:

STUDENT = <u>matBrSt</u>, prezime, ime MJESTO = <u>postBroj</u>, nazMj

shema veze:

ZiviU = matBrSt, postBroj

Iz definicije 1: matBrSt → postBroj

Ključevi veza

DJELATNIK = <u>matBrDj</u>, prezime, ime

PROJEKT = <u>sifProj</u>, nazProj

RadiNa = matBrDj, sifProj

Vlastiti atributi veza

DJELATNIK = <u>matBrDj</u>, prezime, ime

PROJEKT = <u>sifProj</u>, nazProj

RadiNa = <u>matBrDj, sifProj,</u> brojSati ključ veze funkcijski određuje vlastite atribute veze:

matBrDj, $sifProj \rightarrow brojSati$

Ključ veze - dodatna razmatranje

 iz definicije 1. proizlazi da se ključ veze sastoji isključivo od ključeva entiteta koje povezuje (svih ili samo nekih, ovisno o spojnostima)

Međutim, u nekim slučajevima ključ može sadržavati i neke druge atribute.

STUDENT = matBrSt, prezime, ime

PREDMET = <u>sifPred</u>, nazPred

Položio = matBrSt, sifPred, ocjena

Ključ veze - dodatna razmatranje

- ako se želi evidentirati sva polaganja ispita matBrSt, sifPred /> ocjena
- potrebno je uvesti atribut datPol (datum polaganja):

STUDENT = <u>matBrSt</u>, prezime, ime

PREDMET = sifPred, nazPred

Polagao = matBrSt, sifPred, datPol, ocjena

Ključ veze - dodatna razmatranje

druga mogućnost - veza postaje entitet:

STUDENT = <u>matBrSt</u>, prezime, ime

PREDMET = sifPred, nazPred

ISPIT = matBrSt, sifPred, datPol, ocjena

StudIsp = matBrSt, sifPred, datPol

PredIsp = matBrSt, sifPred, datPol

Veza 1:N → preslikavanje u relacijski model

DJELATNIK = <u>matBrDj</u>, prezime, ime

MJESTO = postBr, nazMjesto

Stanuje = matBrDj, postBr, adresa

Relacijske sheme opisuju entitete (veze postaju entiteti)

DJELATNIK = <u>matBrDj</u>, prezime, ime

MJESTO = postBr, nazMjesto

Stanuje = matBrDj, postBr, adresa

Unija relacijskih shema s jednakim ključevima

DJELATNIK = <u>matBrDj</u>, prezime, ime, postBr, adresa

MJESTO = postBr, nazMjesto

Veza N:N → preslikavanje u relacijski model

DJELATNIK= matBrDj, prezime, ime

PROJEKT= <u>sifProj</u>, nazProj

RadiNa = matBrDj, sifProj, brojSati

Relacijske sheme opisuju entitete (veze postaju entiteti)

DJELATNIK= matBrDj, prezime, ime

PROJEKT= sifProj, nazProj

RadiNa = matBrDj, sifProj, brojSati

Primjer: zašto je važno ispravno odrediti <u>vlastite</u> atribute entiteta i veza?

Entiteti se opisuju samo vlastitim atributima: vlastiti atribut entiteta
je atribut koji opisuje znanja o entitetu koja se pripisuju isključivo
samom entitetu, a nikako vezi s drugim entitetima

Ako se preslikavanje promijeni u N:N

Primjer: zašto je važno ispravno odrediti <u>vlastite</u> atribute entiteta i veza?

Ako se preslikavanje promijeni u N:N

DJELATNIK= <u>matBrDj</u>, prezime, ime

PROJEKT= sifProj, nazProj

RadiNa = <u>matBrDj</u>, <u>sifProj</u>, brojSati

Paralelne veze

Boravi = matBrSt, postBroj PostBrojBor

Paralelne veze → relacijski model

Unija shema s jednakim ključevima:

```
MJESTO = <u>postBroj</u>, nazMjesto
STUDENT = <u>matBrSt</u>, prezime, ime, <u>postBroj</u>, <del>postBroj</del>
```

STUDENT = <u>matBrSt</u>, prezime, ime, postBrojBor, postBrojPreb + pravila integriteta

Zadatak: Ispisati prezime i ime studenta, poštanski broj i naziv mjesta boravka te poštanski broj i naziv mjesta prebivališta

Problem

Kako opisati organizacijsku strukturu poduzeća?

- Organizacijske jedinice opisane su svojom šifrom i nazivom
- Organizacijske jedinice međusobno su povezane
 - kako?
 - među njima postoji hijerarhijski odnos!
 - kolika je dubina stabla (broj razina)?
 - promjenjiva!
- Kako opisati hijerarhiju stablo promjenjive dubine?
- Čvorovi stabla su opisani na isti način (šifra, naziv)

Homogeno stablo

Čvorovi stabla imaju jednaku strukturu: ORGJED= sifOrgJed, nazOrgJed

Refleksivne veze - preslikavanje 1:N

ORGJED = sifOrgJed, nazOrgJed

ImaNad = sifOrgJed, sifOrgJed

ImaNad = <u>sifOrgJed</u>, <u>sifNadOrgJed</u>

Preimenovati jedan od atributa!

Homogeno stablo

ORGJED

sifOrgJed	nazOrgJed
1	FER
9	Zavod za prim.mat.
21	Grupa Matematika
33	Grupa Rač. Znanost
49	Zavod za aut. i proc. rač.
53	Grupa Automatika
67	Grupa RASIP
73	Zavod za el.mikroel. i int.
89	Grupa Rač. tehnika

imaNad

sifOrgJed	sifNadOrgJed
9	1
21	9
33	9
49	1
53	49
67	49
73	1
89	73

Refleksivne veze 1:N → relacijski model

Unija shema s jednakim ključevima:

```
ORGJED = <u>sifOrgJed</u>, nazOrgJed
imaNad = <u>sifOrgJed</u>, sifNadOrgJed
```

```
ORGJED = <u>sifOrgJed</u>, nazOrgJed, sifNadOrgJed + pravila integriteta
```

Zadatak: Ispisati naziv organizacijske jedinice i naziv njezine nadređene organizacijske jedinice (ukoliko postoji)

```
SELECT orgjed.nazOrgJed, nadorgjed.nazOrgJed
FROM orgjed
LEFT OUTER JOIN orgjed AS nadorgjed
ON orgjed.sifNadOrgJed = nadorgjed.sifOrgJed
```

Što je šifra organizacijske jedinice?

Govoreća šifra – šifra koja označava poziciju organizacijske jedinice unutar poduzeća??

npr. XXYYZZZ

XX – šifra sektora

YY – šifra odjela

ZZZ – šifra odsjeka

- što se dešava prilikom reorganizacije?
 - moraju se promijeniti šifre organizacijskih jedinica!
- što se dešava kada broj odjela preraste 100??
 - moraju se promijeniti šifre organizacijskih jedinica!
- Šifra organizacijske jedinice NE SMIJE BITI GOVOREĆA!
- → To vrijedi i za sve ostale šifre i identifikatore!!!

Što je šifra organizacijske jedinice?

sifOrgJed	nazOrgJed	
01	Sektor A	
0101	Odjel X	
0102	Odjel Y	
0101001	Odsjek M	
0101002	Odsjek N	
0102001	Odsjek P	
0102002	Odsjek Q	

Što kada Odsjek P zbog reorganizacije iz Odjela Y preseli u Odjel X?

Što kada broj odjela preraste broj 99?

ORGJED

Oblikovanje ER modela

Oblikovanje ER modela

- definiranje entiteta
 - ime, opis, komentar
- definiranje veza
 - ime, opis, komentar, entiteti koje povezuje, preslikavanje
- definiranje atributa entiteta
 - za svaki atribut: ime, opis, komentar, domena
 - definirati ključeve, provjeriti da li zadovoljava 3NF
- definiranje atributa veza
 - za svaki atribut: ime, opis, komentar, domena
 - definirati ključeve, provjeriti da li zadovoljava 3NF

POSTUPAK JE ITERATIVAN!

Model baze podataka

SADRŽI OPISE

- entiteta
- veza
- atributa entiteta
- atributa veza

KARAKTERISTIKE DOBROG MODELA

- opisuje suštinu, prirodu stvari, neovisan o postojećem stanju
- sveobuhvatan
- neredundantan
- fleksibilan
- razumljiv korisnicima i informatičarima

POSEBNO OBRATITI PAŽNJU NA:

- različito shvaćanje istih stvari kupac, dobavljač → poslovni partner
- praćenje promjena u vremenu stipendist, djelatnik, penzioner
- jednakost uopćavanje različiti odjeli i pojedinci mogu iste ili slične stvari shvaćati različito

Primjer: Model baze podataka za studentsku službu

 Oblikovati model baze podataka koja će omogućiti praćenje podataka o studentima, predmetima, nastavnicima i polaganjima ispita

Stud = matBrStud, prezStud, imeStud, datRodStud

MJESTO ROĐENJA STUDENTA ???

Stud = matBrStud, prezStud, imeStud, datRodStud

Mjesto = <u>pbrMjesto</u>, nazMjesto

PREBIVALIŠTE STUDENTA ???

BORAVIŠTE STUDENTA ???

Stud = <u>matBrStud</u>, prezStud, imeStud, datRodStud, datUpisFERStud, rangKlasIspitStud, eMailStud

Mjesto = <u>pbrMjesto</u>, nazMjesto

Ispit = matBrStud, sifraPred, datumIspit, ocjena

SLABI ENTITET !!!!

Stud = <u>matBrStud</u>, prezStud, imeStud, datRodStud, datUpisFERStud, rangKlasIspitStud, eMailStud

Mjesto = <u>pbrMjesto</u>, nazMjesto

Ispit = matBrStud, sifraPred, datumIspit, ocjena

Nast = <u>sifraNast</u>, prezNast, imeNast

ORGANIZACIJSKA JEDINICA ???

Stud = <u>matBrStud</u>, prezStud, imeStud, datRodStud, datUpisFERStud, rangKlasIspitStud, eMailStud

Mjesto = <u>pbrMjesto</u>, nazMjesto

Ispit = matBrStud, sifraPred, datumIspit, ocjena

Nast = <u>sifraNast</u>, prezNast, imeNast

OrgJed = <u>sifraOrgJed</u>, nazivOrgJed

NADREĐENA ORGANIZACIJSKA JEDINICA ???

© FER - Zagreb

Stud = <u>matBrStud</u>, prezStud, imeStud, datRodStud, datUpisFERStud, rangKlasIspitStud, eMailStud

Mjesto = pbrMjesto, nazMjesto

Ispit = matBrStud, sifraPred, datumIspit, ocjena

Nast = <u>sifraNast</u>, prezNast, imeNast, eMailNast, URLNast

OrgJed = <u>sifraOrgJed</u>, nazivOrgJed

Pred = <u>sifraPred</u>, kraticaPred, nazivPred, URLPred

PREDMET PRIPADA ORGANIZACIJSKOJ JEDINICI ???

Primjer (nastavak) - Opis veza

Iz = matBrStud, sifraPred, datumIspit

Ispituje = matBrStud, sifraPred, datumIspit, sifraNast

RadiU = sifraNast, sifraOrgJed

Pripada = <u>sifraPred</u>, sifraOrgJed

Nadred = <u>sifraOrgJed</u> ,sifraNadOrgJed

→ Relacijski model

Stud = <u>matBrStud</u>, prezStud, imeStud, datRodStud, datUpisFERStud, rangKlasIspitStud, eMailStud

Mjesto = <u>pbrMjesto</u>, nazMjesto

Ispit = matBrStud, sifraPred, datumIspit, ocjena

Nast = <u>sifraNast</u>, prezNast, imeNast, eMailNast, URLNast

 $OrgJed = \underline{sifraOrgJed}$, nazivOrgJed

Pred = <u>sifraPred</u>, kraticaPred, nazivPred, URLPred

Rodjen = matBrStud, postBrMjRodStud

Prebiva = <u>matBrStud</u>, postBrMjPrebStud, adresaMjPrebStud Boravi = <u>matBrStud</u>, postBrMjBorStud, adresaMjBorStud

Polaze = matBrStud, sifraPred, datumIspit

Iz = matBrStud, sifraPred, datumIspit

Ispituje = matBrStud, sifraPred, datumIspit ,sifraNast

RadiU = sifraNast, sifraOrgJed

Pripada = <u>sifraPred</u> ,sifraOrgJed

Nadred = <u>sifraOrgJed</u> ,sifraNadOrgJed

→ Relacijski model

Unija shema s jednakim ključevima

```
Stud = <u>matBrStud</u>, prezStud, imeStud, datRodStud,datUpisFERStud, rangKlasIspitStud, eMailStud, postBrMjRodStud, postBrMjPrebStud, adresaMjPrebStud, postBrMjBorStud, adresaMjBorStud
```

Mjesto = <u>pbrMjesto</u>, nazMjesto

Ispit = matBrStud, sifraPred, datumIspit, ocjena, sifraNast

Nast = sifraNast, prezNast, imeNast, eMailNast, URLNast, sifraOrgJed

OrgJed = sifraOrgJed, nazivOrgJed, sifraNadOrgJed

Pred = <u>sifraPred</u>, kraticaPred, nazivPred, URLPred, <u>sifraOrgJed</u>

