Firm Dynamics with Downward Nominal Wage Rigidity

Marc de la Barrera MIT & IESE

Masao Fukui BU

December 2024

SED

Motivation

- Downward nominal wage rigidity is a pervasive feature of the labor market
- How does it shape the firm dynamics and allocation of workers across firms?

Motivation

- Downward nominal wage rigidity is a pervasive feature of the labor market
- How does it shape the firm dynamics and allocation of workers across firms?
- We propose a framework featuring
 - 1. firm dynamics à la Hopenhayn-Rogerson
 - 2. firm wage with on-the-job search à la Burdett-Mortensen
 - 3. long-term contracting subject to downward nominal wage rigidity

Motivation

- Downward nominal wage rigidity is a pervasive feature of the labor market
- How does it shape the firm dynamics and allocation of workers across firms?
- We propose a framework featuring
 - 1. firm dynamics à la Hopenhayn-Rogerson
 - 2. firm wage with on-the-job search à la Burdett-Mortensen
 - 3. long-term contracting subject to downward nominal wage rigidity
- The goal is to use the framework to study
 - 1. the long-run implications of changes in inflation target
 - 2. the short-run implications for moneatry policy by embedding into NK (not today)

Model

Environment

- Continuous time, $t \in [0, \infty)$
- Focus on the steady state for today
- \blacksquare A continuum of risk-neutral workers with discount rate r
 - Unemployed: flow value of leisure b, off-the-job search λ^U
 - Employed: endogenous wage w, on-the-job search $\lambda^E \equiv \zeta \lambda^U$
- A continuum of heterogenous firms hire workers
- Random search with CRS matching function $M(\tilde{u}, V)$, where $\tilde{u} \equiv u + \zeta(1 u)$

Technology

Firm's production function

$$y = z^{1-\alpha}n^{\alpha}$$

Idiosyncratic productivity z follows geometric Brownian motion:

$$dz = \mu z dt + \sigma z dW$$

- The evolution of employment *n* consists of:
 - hiring with cost c(h)n, where h is the hiring rate and $c(h) \equiv \frac{\kappa}{1+\nu} h^{1+\nu}$
 - no vacancy cost
 - poaching from other firms
 - ullet exogenous separation at rate s
 - firing
- \blacksquare Firms exit at rate \varkappa and replaced by the new entrants

Wage Setting

- Assume equal treatment within a firm (same wages & randomized firing)
- Firms offer recursive contracts with full commitment. Workers can't commit.
- Given $(z_{t-dt}, n_{t-dt}, W_{t-dt}, w_{t-dt})$, firms offer $\{w_t, W_t\}$ subject to

Wage Setting

- Assume equal treatment within a firm (same wages & randomized firing)
- Firms offer recursive contracts with full commitment. Workers can't commit.
- Given $(z_{t-dt}, n_{t-dt}, W_{t-dt}, w_{t-dt})$, firms offer $\{w_t, W_t\}$ subject to
 - 1. Promise keeping ($dt \rightarrow 0$):

$$rWdt \le wdt + (s + \varkappa)(U - W)dt + \lambda^E \int \max\{\tilde{W} - W, 0\}dF(\tilde{W})dt + dW$$

- F(W): endogenous offer distribution
- rules out risk-sharing contracts

Wage Setting

- Assume equal treatment within a firm (same wages & randomized firing)
- Firms offer recursive contracts with full commitment. Workers can't commit.
- Given $(z_{t-dt}, n_{t-dt}, W_{t-dt}, w_{t-dt})$, firms offer $\{w_t, W_t\}$ subject to
 - 1. Promise keeping ($dt \rightarrow 0$):

$$rWdt \le wdt + (s + \varkappa)(U - W)dt + \lambda^E \int \max\{\tilde{W} - W, 0\}dF(\tilde{W})dt + dW$$

- F(W): endogenous offer distribution
- rules out risk-sharing contracts
- 2. Downward nominal wage rigidity

$$dw \ge -\pi w dt$$

• w_t : real wage, π : inflation rate (set by the central bank)

Firm's HJB-QVI

Let $\tilde{J}(n, z, W, w)$ be the firm's value function

Firm's HJB-QVI

- Let $\tilde{J}(n, z, W, w)$ be the firm's value function
- Then $\tilde{J}(n, z, W, w) = J(\hat{n}, W, w)z$, where $\hat{n} \equiv n/z$ and $J \equiv J(\hat{n}, W, w)$ solves HJB-QVI:

$$\min \left\{ \rho J - \max_{d\hat{n},h} \left\{ \hat{n}^{\alpha} - w\hat{n} - c(h)\hat{n} + d\hat{n}\partial_{\hat{n}}J + \frac{\sigma^2}{2}\hat{n}^2\partial_{\hat{n}\hat{n}}^2 J + dW\partial_W J - \pi w\partial_W J \right\}, \right\} = 0$$

$$J - J^*(\hat{n}, W, w)$$

where
$$\rho \equiv r + \varkappa - \mu$$
,

$$\begin{split} d\hat{n} &= \hat{n} \left(h - \mu - s - \lambda^E (1 - F(W)) \right) \\ dW &= rW - \left[w + (s + \varkappa)(U - W) + \lambda^E \int \max\{W' - W, 0\} dF(W') \right] \end{split}$$

Firm's HJB-QVI

- Let $\tilde{J}(n, z, W, w)$ be the firm's value function
- Then $\tilde{J}(n, z, W, w) = J(\hat{n}, W, w)z$, where $\hat{n} \equiv n/z$ and $J \equiv J(\hat{n}, W, w)$ solves HJB-QVI:

$$\min \left\{ \rho J - \max_{d\hat{n},h} \left\{ \hat{n}^{\alpha} - w\hat{n} - c(h)\hat{n} + d\hat{n}\partial_{\hat{n}}J + \frac{\sigma^2}{2}\hat{n}^2\partial_{\hat{n}\hat{n}}^2 J + dW\partial_W J - \pi w\partial_W J \right\}, \right\} = 0$$

$$J - J^*(\hat{n}, W, w)$$

where
$$\rho \equiv r + \varkappa - \mu$$
,
$$d\hat{n} = \hat{n} \left(h - \mu - s - \lambda^E (1 - F(W)) \right)$$

$$dW = rW - \left[w + (s + \varkappa)(U - W) + \lambda^{E} \int \max\{W' - W, 0\} dF(W') \right]$$

$$J^*(\hat{n}, W, w) \equiv \max_{\hat{n}^* \le \hat{n}, W^* \ge W, w^* \ge w} J(\hat{n}^*, W^*, w^*)$$

s.t.
$$W*\frac{n^*}{n} + U(1 - \frac{n^*}{n}) \ge W$$

The entrants draw (\hat{n}^0, z^0) from cdf $\Psi(\hat{n}^0, z^0)$ and solve $(w^0(\hat{n}^0), W^0(\hat{n}^0)) \in \arg\max_{W,w} J(\hat{n}^0, W, w)$

- The entrants draw (\hat{n}^0, z^0) from cdf $\Psi(\hat{n}^0, z^0)$ and solve $(w^0(\hat{n}^0), W^0(\hat{n}^0)) \in \arg\max_{W,w} J(\hat{n}^0, W, w)$
- The stationary distribution $G(z, \hat{n}, W, w)$ solve KFE

- The entrants draw (\hat{n}^0, z^0) from cdf $\Psi(\hat{n}^0, z^0)$ and solve $(w^0(\hat{n}^0), W^0(\hat{n}^0)) \in \arg\max_{W|_W} J(\hat{n}^0, W, w)$
- The stationary distribution $G(z, \hat{n}, W, w)$ solve KFE
- The value of unemployment is

$$rU = b + \lambda^{U} \int \max\{W - U, 0\} dF(W) + \frac{\chi \int \hat{n}z d\Psi(\hat{n}, z)}{u} \int \frac{\hat{n}z}{\int \hat{n}z d\Psi(\hat{n}, z)} W^{0}(\hat{n}) d\Psi(\hat{n}, z)$$

The entrants draw (\hat{n}^0, z^0) from cdf $\Psi(\hat{n}^0, z^0)$ and solve

$$(w^0(\hat{n}^0), W^0(\hat{n}^0)) \in \arg\max_{W,w} J(\hat{n}^0, W, w)$$

- The stationary distribution $G(z, \hat{n}, W, w)$ solve KFE
- The value of unemployment is

$$rU = b + \lambda^{U} \int \max\{W - U,0\} dF(W) + \frac{\chi \int \hat{n}z d\Psi(\hat{n},z)}{u} \int \frac{\hat{n}z}{\int \hat{n}z d\Psi(\hat{n},z)} W^{0}(\hat{n}) d\Psi(\hat{n},z)$$

Consistency

$$F(W) = \int_{\tilde{W} < W} \frac{v(\hat{n}, \tilde{W}, w)\hat{n}z}{V} dG(z, \hat{n}, \tilde{W}, w)$$

$$v(\hat{n}, W, w) = \frac{h(\hat{n}, W, w)\hat{n}z}{\lambda^F(p^u + p^e H(\tilde{W}))}, \quad H(W) = \int_{\tilde{W} \le W} \frac{\hat{n}z}{N} dG(z, \hat{n}, \tilde{W}, w)$$

and
$$\lambda^U = \frac{M(V, \tilde{u})}{\tilde{u}}, \lambda^F = \frac{M(V, \tilde{u})}{V}$$

Equilibrium

Flexible Wage

■ No DNWR \Rightarrow PK must bind. If it were slack, firms can lower w to increase profits.

Flexible Wage

- No DNWR \Rightarrow PK must bind. If it were slack, firms can lower w to increase profits.
- Then, $J(\hat{n}, W, w) = S(\hat{n}) W\hat{n}$, and the joint value, $S(\hat{n})$, solves

$$\begin{split} \rho S(\hat{n}) &= \max_{h \geq 0, W' \geq U} \hat{n}^{\alpha} - c(h)\hat{n} - W'h\hat{n} + \lambda^{E} \int_{\tilde{W} \geq W'} \tilde{W} dF(\tilde{W})\hat{n} + (\varkappa + s)U\hat{n} \\ &+ S_{n}(\hat{n})\hat{n}(h - \mu - s - \lambda^{E}(1 - F(W')) + S_{nn}(\hat{n})\frac{1}{2}(\sigma\hat{n})^{2} \end{split}$$

with $S_n(\hat{n}^*) = U$. Note W is now a jump variable achieved through $w = \pm \infty$.

Flexible Wage

- No DNWR \Rightarrow PK must bind. If it were slack, firms can lower w to increase profits.
- Then, $J(\hat{n}, W, w) = S(\hat{n}) W\hat{n}$, and the joint value, $S(\hat{n})$, solves

$$\begin{split} \rho S(\hat{n}) &= \max_{h \geq 0, W' \geq U} \hat{n}^{\alpha} - c(h)\hat{n} - W'h\hat{n} + \lambda^{E} \int_{\tilde{W} \geq W'} \tilde{W} dF(\tilde{W})\hat{n} + (\varkappa + s)U\hat{n} \\ &+ S_{n}(\hat{n})\hat{n}(h - \mu - s - \lambda^{E}(1 - F(W')) + S_{nn}(\hat{n})\frac{1}{2}(\sigma\hat{n})^{2} \end{split}$$

with $S_n(\hat{n}^*) = U$. Note W is now a jump variable achieved through $w = \pm \infty$.

FOCs:

$$\left(S_n(\hat{n}) - W'\right) \lambda^E f(W') = h, \quad \left(S_n(\hat{n}) - W'\right) = \kappa h^{\nu}$$

c'(h)

- $\nu > 1$: W' is increasing in $S_n(\hat{n})$
- $\nu = 1$: W' is independent of $S_n(\hat{n})$
- $\nu < 1$: W' is decreasing in $S_n(\hat{n})$

- Now bring back DNWR constraint
- Promise-keeping can be slack
 - Firms may want to raise W but cannot lower w

- Now bring back DNWR constraint
- Promise-keeping can be slack

• Firms may want to raise W but cannot lower w

- Now bring back DNWR constraint
- Promise-keeping can be slack

- Firms may want to raise W but cannot lower w
- No sharp analytical characterization. We take numerical apparoch

- Now bring back DNWR constraint
- Promise-keeping can be slack

- Firms may want to raise W but cannot lower w
- No sharp analytical characterization. We take numerical apparoch
- Computational algorithm:
 - Guess F(W)
 - Solve firm's HJB-QVI to obtain policy functions
 - Obtain steady state distribution using KFE
 - Compute implied $F^{new}(W)$ and check $F^{new}(W) \approx F(W)$
 - If not, update F(W) using $F^{new}(W)$

Parameter Values

- A period is a quarter
- Assume Cobb-Douglas matching function $M(\tilde{u}, V) = \tilde{u}^{\eta} V^{1-\eta}$
- Parameter values:

$$\alpha = 2/3$$
 $s = 0.068$
 $\alpha = 0.021$
 $\alpha = -0.01$
 $\alpha = 0.15$
 $\alpha = 0.5$
 $\alpha = 0.5$
 $\alpha = 0.5$
 $\alpha = 0.5$

• Choose (b, κ) to target unemployment rate 5% & aggregate wage markdown 20%

Negative Productivity Shock

Negative Productivity Shock

Increasing Long-run Inflation Target

	Annual 2% Inflation	Annual 4% Inflation
EE rate	5.81%	5.94%
Output	0.440	0.448
Unemployment Rate	5%	2.1%
Labor Share	52.1%	52.7%
Top 1% Firm Emp Share	8.0%	8.1%

Conclusion

- A framework that integrates
 - 1. firm dynamics
 - 2. frictional labor market
 - 3. frictional wage settings
- Many more things to do...