```
# Data Science --- R --- Homework questions #2
# Student name: Mihir Sachdeva --- student ID: 14244197
# --- Excercise 6.7 --- Question 3
# calling iris and setting it as dataframe for 'data_iris'
data iris <- as.data.frame(iris)
#viewing the iris data
View(data iris)
# summary for the iris dataframe
summary(data_iris)
# Using the gsub function to create the groups by updating the binary variables
data iris$Group <- gsub("setosa", "0", data iris$Species)
data_iris$Group <- gsub("versicolor", "0", data_iris$Group)</pre>
data iris$Group <- gsub("virginica", "1", data iris$Group)
# changing the data type of the varaibles for the group created above
data_iris$Group <- as.numeric(data_iris$Group)</pre>
# summary for the iris dataframe
summary(data_iris)
#loading the library for scatter plots
library(ggplot2)
# checking the behavior of the group with the sepal length using scatter plot,
# violin and line
ggplot(data = data_iris,aes(x=Sepal.Length,y=Group))+
 geom point()
ggplot(data = data_iris,aes(x=Sepal.Length,y=Group))+
 geom violin()
ggplot(data = data iris,aes(x=Sepal.Length,y=Group))+
 geom_line()
# Analysis for 3A #
# combined the Setosa and Versicolor into group "0" and labelled the Virginica as "1".
# Created a new variable called data iris$Group with the 0 or 1 labels.
# The max Sepal.length is 7.9 for this particular run and the max Petal.Length is 6.9
# which is pretty close to the competitive.
# On plotting the ggplot as a scatter plot we can see that it is a S shaped linear
# curve which also represents a A sigmoid function is a mathematical function
# having a characteristic "S"-shaped curve or sigmoid curve.
# The violin and line plots are just visual statistics that are of no use for
# any of our analysis. I have just used them to see what insights the outputs
# could potentially provide us.
# using the desc function from the class
desc func <- function (x){
```

```
min <- try(min(x, na.rm=TRUE))
 mean <- try(mean(x, na.rm=TRUE))
 sd <- try(sd(x, na.rm=TRUE))
 max <- try(max(x, na.rm=TRUE))
 return(c(min, mean, sd, max))
} #Closing the i-loop
# using the Z score for standardization
s function <- function(var){</pre>
 s score <- (var - mean(var))/sd(var)
 return(s_score)
} #closing the standard function
# using the desc function from the class on the data iris group
desc func(s function(var = data iris$Group))
#recreating UDF - t score
s function <- function(var){
 s_score <- (var - mean(var))/sd(var)
 t_score <- s_score*10 + 50
 return(t_score)
} #closing the function
#creating UDF - in order to normalize with min and max
n function <- function(var){
 data iris norm <- (var - min(var))/(max(var) - min(var))
 return(data iris norm)
} #closing the norm func loop
data_iris$Sepal.Length_norm <- n_function(var = data_iris$Sepal.Length)
data iris$Sepal.Width norm <- n function(var = data iris$Sepal.Width)
data iris$Petal.Length norm <- n function(var = data iris$Petal.Length)
data iris$Petal.Width norm <- n function(var = data iris$Petal.Width)
#random sampling - training and testing
training idx <- sample(1:nrow(data iris), size = 0.8*nrow(data iris))
data_iris_train <- data_iris[training_idx, ]</pre>
data iris test <- data iris[-training idx,]
#Building a logistic regression for data iris
print(data_iris)
my logit <- glm(Group~Petal.Length+Petal.Width+Sepal.Length+Sepal.Width,
         data = data_iris_train, family = "binomial")
#summary for the iris dataframe - logistic regression model
summary(my_logit)
# logistic model coefficients - saving as vector
logit_coeff <- my_logit$coefficients
# it is important to create the exponential extraction of our coefficients to
# be able to take business insights and make a decision accordingly
exponential output <- exp(logit coeff)
# printing exponential_output
print(exponential output)
```

Analysis for 3B
The p values for the coefficients are very good outputs and this shows that are
train and test data is very suitable for our regression model. However, this
data set is also close to an over fit due to the near 0 values of the
Petal.length and the Petal.Width. These observations are key for further
investigation of the data.
<u> </u>
The AIC for this test was 21.824 is low as per the expectation. It is known that
the lower AIC score of the model means the lesser the significance of the
model is in predicting the accuracy of the species.
######################################
spotting the variables and declaring values for species prediction
creating dataframe previously created variables
data_iris_prediction <- data.frame(Sepal.Width = 5, Petal.Length = 10,
Petal.Width = 7, Sepal.Length = 9)
, ota , oopan201.8 o,
predicting species
pred_val <- predict(my_logit, newdata = data_iris_prediction, type = "response")
prod_ran + product(,_rogs, new adda _ addao_production, t)po
printing the output for species prediction
print(pred val)
print(pred_var)
Analysis for 20
Analysis for 3C
Calculated the probability of the new plant being a Virginica for the following parameters:
Sepal.Width =5 Petal.Length =10 Petal.Width =7 Sepal.Length=9
We cannot fully comment of the output of this prediction whether it is a true
positive or a false negative.
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################
######################################

```
#random sampling - training and testing
training idx <- sample(1:nrow(k data), size = 0.8*nrow(k data))
k_data_train <- k_data[training_idx, ]</pre>
k data test <- k data[-training idx,]
#Building a logistic regression for kyphosis
k my logit <- glm(Kyphosis~Number+Age+Start,
        data = k data train, family = "binomial")
#summary for k_my_logit - logistic regression model
summary(k my logit)
# logistic model coefficients - saving as vector
k_my_logit_coeff <- k_my_logit$coefficients
# it is important to create the exponential extraction of our coefficients to
# be able to take business insights and make a decision accordingly
k_exponential_output <- exp(k_my_logit_coeff)</pre>
# printing k exponential output
print(k_exponential_output)
# predicting group
k_dependent <- predict(k_my_logit, newdata = k_data_test, type = "response")</pre>
print(round(k dependent, digits = 0))
# _____ Analysis for 4B _____ #
# The p value for start coefficients is that this value is highly significant
# for our data. This has been a growth from the previously created models in 3.
# The AIC of 51.2 is really 5 and this reflects that on the totality this model
# is less significant for our analysis and business decision making.
# spotting the variables and declaring values for k data
# creating dataframe for the defined variables
k pred <- data.frame(Age = 50, Start = 10, Number = 7)
# kyphosis prediction for the above data frame
k pred val <- predict(k my logit, newdata = k pred,
           type = "response")
# printing the results
print(k_pred_val)
# _____ Analysis for 4C _____ #
# The probability of kyphosis being present in the resultant is 33.12%
```

This is a decent score however, anything below a 50% is not a suitable

choice for business decisions.

#summary for linear regression 2 summary(lin 2)

lin_3 <- Im(Sepal.Length~Petal.Width, data = data_iris)</pre>

#summary for linear regression 3
summary(lin_3)

_____ Analysis for 5 part 1 _____

Adjusted r-squared for lin1 - 0.007 high significance

Adjusted r-squared for lin2 - 0.758 high significance

Adjusted r-squared for lin3 - 0.667 high significance

#script for plots

plot(x=data_iris\$Sepal.Length, y=data_iris\$Sepal.Width, type= "p")
heteroscedastic

plot(x=data_iris\$Sepal.Length, y=data_iris\$Petal.Length, type= "p")
homoscedastic

plot(x=data_iris\$Sepal.Length, y=data_iris\$Petal.Width, type= "p")
heteroscedastic

- # _____ Analysis for 5 _____ #
- # Sepal.Length by Sepal.Width
- # Sepal.Length by Petal.Length
- # Sepal.Length by Petal.Width

ee i i i i i i i i i i i i i i i i i i		<u>≡</u> List - © -			
			O data_iris	150 obs. of 10 variables	
			○ data_iris_prediction	1 obs. of 4 variables	
O data_iris_test	30 obs. of 10 variables				
O data_iris_train	120 obs. of 10 variables				
○ k_data	81 obs. of 4 variables				
O k_data_test	17 obs. of 4 variables				
○ k_data_train	64 obs. of 4 variables				
O k_my_logit	List of 30	Q			
O k_pred	1 obs. of 3 variables				
Olin_1	List of 12	Q			
Olin 2	List of 12	Q			
O lin 3	List of 12	Q			
O my_logit	List of 30	Q			
Values					
exponential_output	Named num [1:5] 1.59e-18 9.01e+03 4.96e+07 9.04e-02 1.49e-03				
k_dependent	Named num [1:17] 0.01871 0.09307 0.00256 0.46723 0.65498				
k_exponential_output	Named num [1:4] 0.0318 1.8453 1.0223 0.768				
k_my_logit_coeff	Named num [1:4] -3.45 0.613 0.022 -0.264				
k_pred_val	Named num 0.332				
logit_coeff	Named num [1:5] -40.98 9.11 17.72 -2.4 -6.51				
pred_val	Named num 1				
training_idx	int [1:64] 61 16 44 49 13 55 19 65 74 15				
Functions					
desc_func	function (x)				
n_function	function (var)				
s_function	function (var)				

