

Applicants have repeated the amendments requested in the Preliminary Amendment with reference to the paragraph numbers included in the substitute specification. Applicants respectfully request the entry of these amendments.

The Claims Are Supported by the Specification

The Examiner rejected claim 26 as allegedly containing subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventors, at the time the application was filed, had possession of the claimed invention. *Id.*, page 3. The Examiner states that, except for the glycine at position 28, all of the amino acids recited by claim 26 are identical to those found in SEQ ID NO: 1. *Id.* According to the Examiner, there is no literal support for a glycine residue at position 28. *Id.*, page 4. The Examiner concludes that claim 26 presents new matter.

Applicants respectfully traverse, but, in order to expedite prosecution, have cancelled claim 26 without prejudice or disclaimer. Applicants have added claims 43-46 to more particularly point out and distinctly claim certain embodiments of their invention. Support for the presence of amino acids other than those found in SEQ ID NO: 1 at positions 28, 43, 48, 111, 125, and 128 is found, for example, in the cDNA sequences SEQ ID NOs: 6 and 7. For example, the protein encoded by SEQ ID NO: 7 has an asparagine at position 28, a methionine at position 43, a glutamine at position 48, an arginine at position 111, a cysteine at position 125, and a phenylalanine at position 128.

The Claims Are Definite

The Examiner also rejected claim 26 under 35 U.S.C. § 112, second paragraph, as allegedly being indefinite. Office Action, page 4. According to the Examiner, the

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER LLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

recitation in claim 26 that the claim proteins "comprise" SEQ ID NO: 1 contradicts the recitation in claim 25 that the proteins "consist[] essentially of" SEQ ID NO: 1. *Id.*

Without acquiescing in the rejection, Applicants have cancelled claim 26 and added new claim 43, which recites "protein consisting essentially of an amino acid sequence."

The Examiner also contends that claim 26 is indefinite in its recitation of a protein that "further comprises" specific residues at particular positions of SEQ ID NO: 1." *Id.* According to the Examiner, "it is unclear how SEQ ID NO: 1 can 'further' comprise specific amino acid residues at particular positions of SEQ ID NO: 1 when those residues are already present in SEQ ID NO: 1." *Id.*

Without acquiescing in the rejection, Applicants have cancelled claim 26 and added independent claim 43 rendering this rejection moot.

The Claims Are Not Anticipated

The Examiner rejected claim 25 under 35 U.S.C. § 102(b) as allegedly being anticipated by Stricklin et al., J. Biol. Chem. 258: 12252-12258, 1983 ("Stricklin"). Office Action, page 5. According to the Examiner, Stricklin reports the purification of a collagenase inhibitor from human skin fibroblasts, which comprises the NH₂-terminal 25 amino acids of SEQ ID NO: 1. *Id.* The Examiner cites Carmichael et al., Proc. Natl. Acad. Sci. USA 83: 2407-2411, 1986, as evidence that the protein of SEQ ID NO: 1 is the same as the protein purified by Stricklin. *Id.*

Without acquiescing in the rejection, Applicants have amended claim 25. The proteins encompassed by the amended claim all include NH₂-terminal amino acids in addition to those reported by Stricklin and are not anticipated by that reference.

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER LLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

Applicants respectfully request withdrawal of the rejection of claim 25 under 35 U.S.C. § 102(b).

Applicants respectfully request reconsideration and reexamination of this application and the timely allowance of the application.

Please grant any extensions of time required to enter this response and charge any additional required fees to Deposit Account No. 06-0916.

Respectfully submitted,

FINNEGAN, HENDERSON, FARABOW,
GARRETT & DUNNER, L.L.P.

Dated: July 1, 2003

By:

William L. Strauss
Reg. No. 47,114

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER LLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

APPENDIX TO AMENDMENT OF JULY 1, 2003

VERSION WITH MARKINGS TO SHOW CHANGES MADE

Amendments to the Specification

Paragraph [016]:

--[016] The coding strand of a first preferred DNA sequence which has been discovered has the following nucleotide sequence (SEQ ID No: 5):

10	20	30	40	50	60
GTTGTTGCTG	TGGCTGATAG	CCCCAGCAGG	GCCTGCACCT	GTGTCCCACC	CCACCCACAG
70	80	90	100	110	120
ACGGCCTTCT	GCAATTCCGA	CCTCGTCATC	AGGGCCAAGT	TCGTGGGGAC	ACCAGAAGTC
130	140	150	160	170	180
AACCAGACCA	CCTTATACCA	GCGTTATGAG	ATCAAGATGA	CCAAGATGTA	TAAAGGGTTC
190	200	210	220	230	240
CAAGCCTTAG	GGGATGCCGC	TGACATCCGG	TTCGTCTACA	CCCCCGCCAT	GGAGAGTGTC
250	260	270	280	290	300
TGCGGATACT	TCCACAGGTC	CCACAACCGC	AGCGAGGAGT	TTCTCATTGC	TGGAAAAC TG
310	320	330	340	350	360
CAGGATGGAC	TCTTGCACAT	CACTACCTGC	AGTTTCGTGG	CTCCCTGGAA	CAGCCTGAGC
370	380	390	400	410	420
TTAGCTCAGC	GCCGGGGCTT	CACCAAGACC	TACACTGTTG	GCTGTGAGGA	ATGCACAGTG
430	440	450	460	470	480
TTTCCCTGTT	TATCCATCCC	CTGCCTAACTG	CAGAGTGGCA	CTCATTGCTT	GTGGACGGAC
490	500	510	520	530	540
CAGCTCCTCC	AAGGCTCTGA	AAAGGGCTTC	CAGTCCCGTC	ACCTTGCTG	CCTGCCTCGG
550	560	570	580	590	600
GAGCCAGGGC	TGTGCACCTG	GCAGTCCCTG	CGGTCCCAGA	TAGCCTGAAT	CCTGCCCGGA
610	620	630	640	650	660
GTGGAAGCTG	AAGCCTGCAC	AGTGTCCACC	CTGTTCCCAC	TCCCATCTTT	CTTCCGGACA

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER LLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

670 680 690 700
ATGAAATAAA GAGTTACCAAC CCAGCAAAAA AAAAAAGGAA TTC--

Paragraph [018]:

--[018] A second preferred DNA sequence has been discovered which has an additional nucleotide sequence 5' to the initiator sequence. This sequence, which contains as the eighty-second through four-hundred-thirty-second nucleotides nucleotides 1 through 351 of the first preferred sequence set forth above, has the following nucleotide sequence (SEQ ID No: 6):

10 20 30 40 50 60
GGCCATCGCC GCAGATCCAG CGCCCAGAGA GACACCAGAG AACCCACCAT GGCCCCCTTT
70 80 90 100 110 120
GACCCCTGGC TTCTGCATCC TGTTGTTGCT GTGGCTGATA GCCCCAGCAG GGCCTGCACC
130 140 150 160 170 180
TGTGTCCCAC CCCACCCACA GACGGCCTTC TGCAATTCCG ACCTCGTCAT CAGGGCCAAG
190 200 210 220 230 240
TTCGTGGGA CACCAGAAAGT CAACCAGACC ACCTTATACC AGCGTTATGA GATCAAGATG
250 260 270 280 290 300
ACCAAGATGT ATAAAGGGTT CCAAGCCTTA GGGGATGCCG CTGACATCCG GTTCGTCTAC
310 320 330 340 350 360
ACCCCCGCCA TGGAGAGTGT CTGCGGATAC TTCCACAGGT CCCACAACCG CAGCGAGGAG
370 380 390 400 410 420
TTTCTCATTG CTGGAAAACT GCAGGATGGA CTCTTGCACA TCACTACCTG CAGTTCGTG
430
GCTCCCTGGA AC--

Paragraph [019]:

--[019] A third preferred DNA sequence which incorporates the 5' region of the second preferred sequence and the 3' sequence of the first preferred sequence, has the following nucleotide sequence (SEQ ID No: 7):

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER LLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

10	20	30	40	50	60
GGCCATCGCC	GCAGATCCAG	CGCCCAGAGA	GACACCAGAG	AACCCACCAT	GGCCCCCTT
70	80	90	100	110	120
GACCCCTGGC	TTCTGCATCC	TGTTGTTGCT	GTGGCTGATA	GCCCCAGCAG	GGCCTGCACC
130	140	150	160	170	180
TGTGTCCCAC	CCCACCCACA	GACGGCCTTC	TGCAATTCCG	ACCTCGTCAT	CAGGGCCAAG
190	200	210	220	230	240
TTCGTGGGGA	CACCAGAAGT	CAACCAGACC	ACCTTATACC	AGCGTTATGA	GATCAAGATG
250	260	270	280	290	300
ACCAAGATGT	ATAAAGGGTT	CCAAGCCTTA	GGGGATGCCG	CTGACATCCG	GTTCGTCTAC
310	320	330	340	350	360
ACCCCCGCCA	TGGAGAGTGT	CTGCGGATAC	TTCCACAGGT	CCCACAACCG	CAGCGAGGAG
370	380	390	400	410	420
TTTCTCATTG	CTGGAAAACT	GCAGGATGGA	CTCTTGCACA	TCACTACCTG	CAGTTCGTG
430	440	450	460	470	480
GCTCCCTGGA	ACAGCCTGAG	CTTAGCTCAG	CGCCGGGGCT	TCACCAAGAC	CTACACTGTT
490	500	510	520	530	540
GGCTGTGAGG	AATGCACAGT	GTTCCTCTGT	TTATCCATCC	CCTGCAAACT	GCAGAGTGGC
550	560	570	580	590	600
ACTCATTGCT	TGTGGACGGA	CCAGCTCCTC	CAAGGCTCTG	AAAAGGGCTT	CCAGTCCCCT
610	620	630	640	650	660
CACCTTGCCT	GCCTGCCTCG	GGAGCCAGGG	CTGTGCACCT	GGCAGTCCCT	GCGGTCCCAG
670	680	690	700	710	720
ATAGCCTGAA	TCCTGCCCGG	AGTGGAAAGCT	GAAGCCTGCA	CAGTGTCCAC	CCTGTTCCCA
730	740	750	760	770	780
CTCCCATCTT	TCTTCCGGAC	AATGAAATAA	AGAGTTACCA	CCCAGCAAAA	AAAAAAAGGA--

Paragraph [030]:

--[030] A first preferred portable DNA sequence of the present invention has a nucleotide sequence SEQ ID No: 5 as follows:

10	20	30	40	50	60
GTTGTTGCTG	TGGCTGATAG	CCCCAGCAGG	GCCTGCACCT	GTGTCCCACC	CCACCCACAG
70	80	90	100	110	120
ACGGCCTTCT	GCAATTCCGA	CCTCGTCATC	AGGGCCAAGT	TCGTGGGGAC	ACCAGAAGTC

130	140	150	160	170	180
AACCAGACCA	CCTTATACCA	GCGTTATGAG	ATCAAGATGA	CCAAGATGTA	TAAAGGGTTC
190	200	210	220	230	240
CAAGCCTTAG	GGGATGCCGC	TGACATCCGG	TTCGTCTACA	CCCCCGCCAT	GGAGAGTGTGTC
250	260	270	280	290	300
TGCGGATACT	TCCACAGGTC	CCACAACCGC	AGCGAGGAGT	TTCTCATTGC	TGGAAAACGTG
310	320	330	340	350	360
CAGGATGGAC	TCTTGCACAT	CACTACCTGC	AGTTTCGTGG	CTCCCTGGAA	CAGCCTGAGC
370	380	390	400	410	420
TTAGCTCAGC	GCCGGGGCTT	CACCAAGACC	TACACTGTTG	GCTGTGAGGA	ATGCACAGTG
430	440	450	460	470	480
TTTCCCTGTT	TATCCATCCC	CTGCAAACGT	CAGAGTGGCA	CTCATTGCTT	GTGGACGGAC
490	500	510	520	530	540
CAGCTCCTCC	AAGGCTCTGA	AAAGGGCTTC	CAGTCCCGTC	ACCTTGCCTG	CCTGCCTCGG
550	560	570	580	590	600
GAGCCAGGGC	TGTGCACCTG	GCAGTCCCTG	CGGTCCCAGA	TAGCCTGAAT	CCTGCCCGGA
610	620	630	640	650	660
GTGGAAGCTG	AAGCCTGCAC	AGTGTCCACC	CTGTTCCCAC	TCCCATCTTT	CTTCCGGACA
670	680	690	700		
ATGAAATAAA	GAGTTACAC	CCAGCAAAAA	AAAAAAAGGAA	TTC--	

Paragraph [031]:

--[031] A second preferred portable DNA sequence of the present invention has the following nucleotide sequence (SEQ ID No: 6):

10	20	30	40	50	60
GGCCATCGCC	GCAGATCCAG	CGCCCAGAGA	GACACCAGAG	AACCCACCAT	GGCCCCCTTT
70	80	90	100	110	120
GACCCCTGGC	TTCTGCATCC	TGTTGTTGCT	GTGGCTGATA	GCCCCAGCAG	GGCCTGCACC
130	140	150	160	170	180
TGTGTCCCAC	CCCACCCACA	GACGGCCTTC	TGCAATTCCG	ACCTCGTCAT	CAGGGCCAAG
190	200	210	220	230	240
TTCGTGGGGA	CACCAGAACT	CAACCAGACC	ACCTTATACC	AGCGTTATGA	GATCAAGATG
250	260	270	280	290	300
ACCAAGATGT	ATAAAGGGTT	CCAAGCCTTA	GGGGATGCCG	CTGACATCCG	GTTCGTCTAC

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER LLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

310	320	330	340	350	360
ACCCCCGCCA	TGGAGAGTGT	CTGCGGATAC	TTCCACAGGT	CCCACAACCG	CAGCGAGGAG
370	380	390	400	410	420
TTTCTCATTG	CTGGAAAACT	GCAGGGATGGA	CTCTTGCACA	TCACTACCTG	CAGTTTCGTG
430					
GCTCCCTGGA	AC--				

Paragraph [033]:

--[033] A third preferred portable DNA sequence has the nucleotide sequence
(SEQ ID No: 7):

10	20	30	40	50	60
GGCCATCGCC	GCAGATCCAG	CGCCCCAGAGA	GACACCAGAG	AACCCACCAT	GGCCCCCTTT
70	80	90	100	110	120
GACCCCTGGC	TTCTGCATCC	TGTTGTTGCT	GTGGCTGATA	GCCCCAGCAG	GGCCTGCACC
130	140	150	160	170	180
TGTGTCCCAC	CCCACCCACA	GACGGCCTTC	TGCAATTCCG	ACCTCGTCAT	CAGGGCCAAG
190	200	210	220	230	240
TTCGTGGGGA	CACCAGAAAGT	CAACCAGACC	ACTTTATACC	AGCGTTATGA	GATCAAGATG
250	260	270	280	290	300
ACCAAGATGT	ATAAAGGGTT	CCAAGCCTTA	GGGGATGCCG	CTGACATCCG	GTTCGTCTAC
310	320	330	340	350	360
ACCCCCGCCA	TGGAGAGTGT	CTGCGGATAC	TTCCACAGGT	CCCACAACCG	CAGCGAGGAG
370	380	390	400	410	420
TTTCTCATTG	CTGGAAAACT	GCAGGGATGGA	CTCTTGCACA	TCACTACCTG	CAGTTTCGTG
430	440	450	460	470	480
GCTCCCTGGA	ACAGCCTGAG	CTTAGCTCAG	CGCCGGGGCT	TCACCAAGAC	CTACACTGTT
490	500	510	520	530	540
GGCTGTGAGG	AATGCACAGT	GTTCCTCTGT	TTATCCATCC	CCTGCAAACCT	GCAGAGTGGC
550	560	570	580	590	600
ACTCATTGCT	TGTGGACGGA	CCAGCTCCTC	CAAGGCTCTG	AAAAGGGCTT	CCAGTCCCGT
610	620	630	640	650	660
CACCTTGCCT	GCCTGCCTCG	GGAGCCAGGG	CTGTGCACCT	GGCAGTCCCT	GCGGTCCCAG
670	680	690	700	710	720
ATAGCCTGAA	TCCTGCCCGG	AGTGGAAAGCT	GAAGCCTGCA	CAGTGTCCAC	CCTGTTCCCA

FINNEGAN
 HENDERSON
 FARABOW
 GARRETT &
 DUNNER LLP

1300 I Street, NW
 Washington, DC 20005
 202.408.4000
 Fax 202.408.4400
 www.finnegan.com

730 740 750 760 770 780
CTCCCCATCTT TCTTCCGGAC AATGAAATAA AGAGTTACCA CCCAGCAAAA AAAAAAAAGGA--

Paragraph [059]:

--[059] It is anticipated that translation of mRNA coding for the metalloproteinase inhibitor in yeast will be more efficient with the preferred codon usage of yeast than with the sequence present in pUC8-Fic, as identified in Example 2, which has been tailored to the prokaryotic bias. For this reason, the portion of the 5' end of the portable DNA sequence beginning at the *Tth111I* site is preferably resynthesized. The new sequence favors the codons most frequently used in yeast. This new sequence preferably has the following nucleotide sequence:

HgiAI
(SEQ ID No: 8) 5' GAT CCG TGC ACT TGT GTT CCA CCA CAC
(SEQ ID No: 9) GC ACG TGA ACA CAA GGT GGT GTG
CCA CAA ACT GCT TTC TGT AAC TCT GAC C
GGT GTT TGA CGA AAG ACA TTG AGA CTG GA 3'--

Paragraph [075]:

--[075] In this method, the portable DNA sequences are those synthetic or naturally-occurring polynucleotides described above. In a preferred embodiment of the present method, the portable DNA sequence has the nucleotide sequence SEQ ID No: 5 as follows:

10 20 30 40 50 60
GTTGTTGCTG TGGCTGATAG CCCCAGCAGG GCCTGCACCT GTGTCCCACC CCACCCACAG
70 80 90 100 110 120
ACGGCCTTCT GCAATTCCGA CCTCGTCATC AGGGCCAAGT TCGTGGGGAC ACCAGAAGTC
130 140 150 160 170 180
AACCAGACCA CCTTATACCA GCGTTATGAG ATCAAGATGA CCAAGATGTA TAAAGGGTTC
190 200 210 220 230 240
CAAGCCTTAG GGGATGCCGC TGACATCCGG TTCGTCTACA CCCCCGCCAT GGAGAGTGTGTC

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER LLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

250	260	270	280	290	300
TGCGGATACT	TCCACAGGTC	CCACAACCGC	AGCGAGGAGT	TTCTCATTGC	TGGAAAACTG
310	320	330	340	350	360
CAGGATGGAC	TCTTGCACAT	CACTACCTGC	AGTTTCGTGG	CTCCCTGGAA	CAGCCTGAGC
370	380	390	400	410	420
TTAGCTCAGC	GCCGGGGCTT	CACCAAGACC	TACACTGTTG	GCTGTGAGGA	ATGCACAGTG
430	440	450	460	470	480
TTTCCCTGTT	TATCCATCCC	CTGCAAACGT	CAGAGTGGCA	CTCATTGCTT	GTGGACGGAC
490	500	510	520	530	540
CAGCTCCTCC	AAGGCTCTGA	AAAGGGCTTC	CAGTCCCGTC	ACCTTGCCTG	CCTGCCTCGG
550	560	570	580	590	600
GAGCCAGGGC	TGTGCACCTG	GCAGTCCCTG	CGGTCCCAGA	TAGCCTGAAT	CCTGCCCGGA
610	620	630	640	650	660
GTGGAAGCTG	AAGCCTGCAC	AGTGTCCACC	CTGTTCCCAC	TCCCATCTT	CTTCCGGACA
670	680	690	700		
ATGAAATAAA	GAGTTACAC	CCAGCAAAAA	AAAAAAGGAA	TTC--	

Paragraph [084]:

--[084] In certain circumstances, the metalloproteinase inhibitor will assume its proper, active structure upon expression in the host microorganism and transport of the protein through the cell wall or membrane into the periplasmic space. This will generally occur if DNA coding for an appropriate leader sequence has been linked to the DNA coding for the recombinant protein. The preferred [metalloproteinase] metalloproteinase inhibitors of the present invention will assume their mature, active form upon translocation out of the inner cell membrane. The structures of numerous signal peptides have been published, for example by Marion E.E. Watson in Nuc. Acid Res.

[12: 515-5164] 12: 5145-5164, 1984, specifically incorporated herein by reference. It is intended that these leader sequences, together with portable DNA, will direct intracellular production of a fusion protein which will be transported through the cell

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER LLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

membrane and will have the leader sequence portion cleaved upon release from the cell.--

Paragraph [0104]:

--[0104] The structure of FIBAC A is

(SEQ ID No: 10) GA TCC GCG ATC GGA GTG TAA GAA ATG TGC ACT
(SEQ ID No: 11) G CGC TAG CCT CAC ATT CTT TAC ACG TGA

TGC GTT CCG CCG CAT CCG CAG ACT GCT TTC
ACG CAA GGC GGC GTA GGC GTC TGA CGA AAG

TGC AAC TCT GAC C
ACG TTG AGA CTG GA--

Paragraph [0106]:

--[0106] Component oligonucleotide FA1 (SEQ ID No: 12) is:
GATCC GCGAT CGGAG TGTAA GAAAT GTGCA CTTGC--

Paragraph [0107]:

--[0107] Component oligonucleotide FA2 (SEQ ID No: 13) is:
GGAACG CAAGT GCACA TTTCT TACAC TCCGA TCGCG--

Paragraph [0108]:

--[0108] Component oligonucleotide FA3 (SEQ ID No: 14) is:
GTTC CGCCG CATCC GCAGA CTGCT TTCTG CAACT CTGAC C--

Paragraph [0109]:

--[0109] Component oligonucleotide FA4 (SEQ ID No: 15) is:
AGGTC AGAGT TGCAG AAAGC AGTCT GCGGA TGCAG C--

Paragraph [0112]:

--[0112] Linker A1 (SEQ ID No: 16) is: AATTGGCAG--

Paragraph [0113]:

--[0113] Linker A2 (SEQ ID No: 17) is: TCGACTGCC--

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER LLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

Paragraph [0116]:

--[0116] The sequence of the sense strand (SEQ ID No: 18) is:

10	20	30	40	50	60
GAATTCTGATA	TCTCGTTGGA	GATATTCTATG	ACGTATTTTG	GATGATAACG	AGGCGCAAAA
E	T	E		F	M
C	A	C		O	N
O	Q	O		K	L
1	1	5		1	1
70	80	90	100	110	
AATGAAAAAAG	ACAGCTATCG	CGATCGCAGT	GGCACTGGCT	GGTTTCGCTA	CCGTA
A	NF	PS			
L	RN	VA			
U	UU	UU			
1	12	1A			
120	130				
GCGCA	GGCCTCTGGT	AAAAGCTT			
H	S	H	M	HA	
H	T	A	N	IL	
A	U	E	L	NU	
1	1	3	1	31--	

Paragraph [0120]:

--[0120] Linker B1 (SEQ ID No: 19) is: GATCCCAGGCCTGCA--

Paragraph [0121]:

--[0121] Linker B2 (SEQ ID No: 20) is: GGCCTGG--

Paragraph [0136]:

--[0136] The second preferred sequence (SEQ ID No: 6) as set forth herein, i.e.,

10	20	30	40	50	60
GGCCATCGCC	GCAGATCCAG	CGCCCAGAGA	GACACCAGAG	AACCCACCAT	GGCCCCCTTT
70	80	90	100	110	120
GACCCCTGGC	TTCTGCATCC	TGTTGTTGCT	GTGGCTGATA	GCCCCAGCAG	GGCCTGCACC
130	140	150	160	170	180
TGTGTCCCAC	CCCACCCACA	GACGGCCTTC	TGCAATTCCG	ACCTCGTCAT	CAGGGCCAAG
190	200	210	220	230	240
TTCGTGGGGA	CACCAGAACT	CAACCAGACC	ACCTTATACC	AGCGTTATGA	GATCAAGATG
250	260	270	280	290	300

ACCAAGATGT ATAAAGGGTT CCAAGCCTTA GGGGATGCCG CTGACATCCG GTTCGTCTAC
310 320 330 340 350 360
ACCCCCGCCA TGGAGAGTGT CTGCGGATAC TTCCACAGGT CCCACAACCG CAGCGAGGAG
370 380 390 400 410 420
TTTCTCATTG CTGGAAAATC GCAGGATGGA CTCTTGCACA TCACTACCTG CAGTTCTGTG
430
GCTCCCTGGA AC--

Amendments to the Claims:

Claim 25:

25. (Amended) A purified collagenase inhibitor protein, said protein consisting essentially of an amino acid sequence selected from among the following:

[a] amino acid sequence SEQ ID NO: 1; or]

[b]a) amino acid sequence SEQ ID NO: 2; or

[c]b) the amino acid sequence[s] of a) or of SEQ ID NO: 1 [b]), further having a

Met at position -1; or

[d]c) the amino acid sequence of a) or of SEQ ID NO: 1 [b]), further having a leader sequence at the N-terminal, -1 position, wherein said leader sequence consists essentially of the following amino acid sequence from positions -38 to -1:

Gly His Arg Arg Arg Ser Ser Ala Gln Arg Asp Thr Arg Glu Pro Thr
Met Ala Pro Phe Asp Pro Trp Leu Leu His Pro Val Val Ala Val Ala
Asp Ser Pro Ser Arg Ala (SEQ ID NO: 3); or

[e]d) the amino acid sequence of a) or of SEQ ID NO: 1, [b]) further having a leader sequence at the N-terminal, -1 position, wherein said leader sequence consists essentially of the following amino acid sequence from positions -22 to -1: Met Ala Pro

Phe Asp Pro Trp Leu Leu His Pro Val Val Ala Val Ala Asp Ser Pro Ser Arg Ala (SEQ ID NO: 4).

FINNEGAN
HENDERSON
FARABOW
GARRETT &
DUNNER LLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com