EEE 313 - Electronic Circuit Design - Lab 4 Preliminary Report Tuna Şahin - Wide-Band Amplifier

1 - Introduction:

In this lab we were asked to implement a two-stage wide-band amplifier with feedback. Due to the feedback, the gain of the amplifier is stable and not ' β ' dependent.

2 - Calculations:

I arbitrarily chose $I_{C1}=9mA$ and $I_{C2}=33mA$ at DC to leave room for the current swing at AC so it is less than 70mA. (We need $V_{E1}=V_{E2}\simeq 1V$)

We need to choose R_1 , R_2 , R_4 , R_5 , R_6 , R_8 biasing resistors to obtain these values.

By writing the mesh for the base emitter line of the first transistor:

$$I_{C1} \frac{R_1}{\beta} + R_2 I_{C1} = 12 - V_{BE} \Rightarrow 9m = \frac{11.4}{R_1/400 + R_2}$$
 (i) We obtain a solution: $R_1 = 390k$, $R_4 = 47$

For the second transistor:

$$V_{TH} = 12 \frac{R_6}{R_5 + R_6} \text{ and } R_{TH} = R_5 \parallel R_6 \qquad \qquad V_{TH} - \frac{I_{C2}}{\beta} R_{TH} - V_{BE} - I_{C2} R_8 = 0 \ (ii)$$

We get a solution as: $R_5 = 3900$, $R_6 = 820$, $R_8 \simeq 40$

Gain resistors are chosen as $R_9=560$ and $R_4=47$ which give a ratio of approximately 12.

Emitter bypass capacitor $C_4 = 220 \mu$ from the formula $X_{C4} = R_8 \parallel (\frac{1}{g_{m2}})$

All of the bypass capacitors are chosen as $10\mu F$.

Collector resistors are chosen as their maximum value where the wave does not saturate.

3 - LTSpice Schematic:

Figure 3: LTSpice Schematic

4 - LTSpice Simulations:

Figure 4.1: $V_{out} = 1.98 V_{pp}$ when $V_{in} = 0.2 V_{pp}$ (Gain = 19.91dB)

Specification 1: The current consumption is less than 70mA

Figure 4.2: Peak Source Current Observed to be 52.5mA

Specification 2: The small-signal bandwidth is at least 2KHz-2MHz while the mid-band gain is 20dB±0.5dB (by AC analysis)

Figure 4.3: -3dB Bandwidth is found to include 2kHz-2MHz (AC Sweep Settings: 200Hz - 20MHz)

Specification 3: The harmonic content of the output voltage is better than -30dBc with 0.1V peak input signal at 200KHz

Figure 4.4: The Highest Harmonic (2rd) is 30.5dB Lower than the fundamental harmonic.

Determination 1: The small-signal input impedance of the amplifier at 200KHz (the adjusted value of RS in AC analysis until the voltage gain drops by 6dB compared to RS=0)

Figure 4.5: The gain is 14dB when $R_{S}=60k$ ($V_{in}=0.2V_{pp}$ and $V_{out}=1V_{pp}$)

Determination 2: The small-signal output impedance of the amplifier at 200KHz (the adjusted value of RL in AC analysis until the voltage gain drops by 6dB compared to RL= ∞)

Determination 3: The phase margin of the open-loop system.

Figure 4.7: Phase Margin is found to be 200 degrees.

5 - Conclusion

To summarise, we were asked to design a two-stage amplifier that had to satisfy some criteria. The amplifier I designed has a band (-3dB) between 16MHz and 74Hz. That interval includes the desired band of 2kHz to 2MHz. The amplifier had a 50mA current consumption which is less than the upper limit of 70dB. And the amplifier's output had a 30.5dB difference between the fundamental harmonic and the second highest harmonic.

- The maximum value of RS that had -6dB of gain was found to be $60k\Omega$.
- The minimum value of RL that had -6dB of gain was found to be 9Ω
- The phase margin of the open-loop system was found to be 200 degrees

6 - Diptrace Schematic:

#	Name	Quantity	Value	RefDes
1	Cap, Electrolytic, 300mil	4	10u	C1, C2, C4, C5
2	Cap, Electrolytic, 300mil	1	1u	C3
3	Cap, Electrolytic, 150mil	1	10u	C6
4	BC238	2	BC238	Q1, Q2
5	Resistor320	1	390k	R1
6	Resistor320	1	220	R3
7	Resistor320	1	45	R4
8	Resistor320	1	820	R5
9	Resistor320	1	3.9k	R6
10	Resistor320	1	120	R7
11	Resistor320	1	39	R8
12	Resistor320	1	560	R9
13	Resistor320	1	47	R10
14	Resistor320	1	500	R11

Figure 5: DipTrace Schematic and Component List