ICP

ICP-10111 Barometric Pressure Sensor

v1.0 2025-07-15 Rev. A

Compact and efficient sensor designed for high-accuracy atmospheric pressure measurements

PRODUCT OVERVIEW

The ICP-10111 Barometric Pressure Sensor Module is a compact and efficient sensor designed for high-accuracy atmospheric pressure measurements with low power consumption. Based on MEMS capacitive technology, this module offers ultra-low noise performance, exceptional relative accuracy, and stable sensor throughput. Ideal for weather monitoring, altitude measurement, and environmental sensing, it delivers industry-leading precision in demanding applications.

PRODUCT VIEWS

TOP VIEW

Component placement and connectors

BOTTOM VIEW

Underside components and connections

KEY TECHNICAL SPECIFICATIONS

POWER SUPPLY

Supply 3.3 V-5.5 V (module), 1.8 V (sensor

Voltage: core)

Supply Current:

Low Power (10 Hz): 1.3 μA

CONNECTIVITY

Interfaces: up to 400 kHz, 7-bit address 0x63

Connector: Qwiic + Pin Headers

PIN CONFIGURATION

PIN	VOLTAGE LEVEL	FUNCTION
vcc	3.3 V - 5.5 V	Provides power to the on-board regulator and sensor core.
GND	0 V	Common reference for power and signals.
SDA	1.8 V to VCC	Serial data line for I ² C communications.
SCL	1.8 V to VCC	Serial clock line for I ² C communications.

COMMUNICATION INTERFACES

INTERFACE	SIGNALS / PINS	TYPICAL USE
UART	_	Not supported
I ² C	SDA, SCL, VCC, GND (via Qwiic/STEMMA QT $^{\text{TM}}$)	Main digital interface for pressure & temperature
SPI	_	Not supported

TECHNICAL FEATURES

Board Dimensions 20.32 mm × 17.78 mm	Mounting Holes 4 × Ø 2.2 mm
High-stability MEMS capacitive pressure sensor with low drift	Integrated temperature sensor for on-board compensation
Ultra-low-noise $\Delta\Sigma$ ADC with 24-bit resolution	Three user-selectable power/noise modes for optimized current usage
Qwiic/STEMMA QT connector for solder-free I ² C daisy-chaining	On-board level shifting and 1.8 V core regulator

Wide operating range

-40 °C to +85 °C, 30 kPa to 110 kPa

TYPICAL APPLICATIONS

Weather Stations & Barographs	Track atmospheric pressure trends.	Altimeters & UAVs
Estimate real-time altitude changes.	Indoor/Outdoor Navigation	Enhance GPS accuracy with pressure-based elevation.
Wearables & IoT	Monitor environmental conditions in low-power devices.	Climatology & Research
High-resolution pressure mapping for science projects.	Weather Forecasting	

VISUAL DOCUMENTATION

PRIMARY TECHNICAL DOCUMENTATION

MECHANICAL DIMENSIONS

Physical dimensions and mounting specifications (measurements in millimeters)

SUPPLEMENTARY TECHNICAL DOCUMENTATION

Connection topology and system integration

CIRCUIT SCHEMATIC

Detailed circuit schematic diagram

USAGE

- Arduino IDE
- Install SparkFun_ICP10111 library via Library Manager
- Include and in your sketch
- PlatformIO
- Add sparkfun/sparkfun-icp10111@^1.0.0 to lib_deps in platformio.ini
- · Raspberry Pi (Linux/C or Python)
- Use the I2C-1 bus (/dev/i2c-1) with smbus2 (Python) or i2c-dev (C)
- · CircuitPython / MicroPython

- Install adafruit_icp10111 from the Adafruit bundle
- Use busio.I2C or I2C() to communicate over SDA/SCL

DOWNLOADS

- Schematic PDF
- Board Dimensions DXF
- Pinout Diagram PNG

PIN CONFIGURATION & LAYOUT

Detailed pin assignment and connector layout

PINOUT

Description:

Complete pin configuration diagram showing all connectors, pin assignments, and electrical connections for proper integration

© 2025 UNIT Electronics México Technical document automatically generated ICP v1.0 Professional Technical Datasheet Date: 2025-07-15 For commercial distribution