

Masterarbeit

Kernel k-means Methoden zur spektralen Clusteranalyse von Graphen

Lukas Pradel 16. Dezember 2014

Gutachter:

Prof. Dr. Christian Sohler Dipl.-Inf. Melanie Schmidt

Technische Universität Dortmund Fakultät für Informatik Lehrstuhl II - Effiziente Algorithmen und Komplexitätstheorie http://ls2-www.cs.tu-dortmund.de/

Inhaltsverzeichnis

1	Ein	leitung	1
2	Grundlegende Definitionen und Algorithmen		2
	2.1	Clustering und k -means	2
	2.2	Graphen und Clusteranalyse von Graphen	4
	2.3	Kernel-Methoden und spektrales Clustering	7
Li	terat	cur	9
Erklärung			12

1 Einleitung

2 Grundlegende Definitionen und Algorithmen

In diesem Kapitel definieren wir die für unsere Zwecke relevanten Begriffe im Kontext der Clusteranalyse und führen die wichtigen grundlegenden Algorithmen ein, deren Ideen für uns im Folgenden noch von Bedeutung sein werden. Wir gehen dabei nach Themengebieten geordnet vor: In Abschnitt 2.1 skizzieren wir kurz das Themengebiet der Clusteranalyse, definieren die üblichen Zielfunktionen und stellen zwei bedeutende Algorithmen vor. Abschnitt 2.2 führt kurz in die Graphentheorie sowie die Clusteranalyse von Graphen ein. In diesem Abschnitt werden wir zudem die von der klassischen Clusteranalyse sehr unterschiedlichen Optimierungskritierien für die Clusteranalyse von Graphen herausstellen. Schließlich fassen wir in Abschnitt 2.3 die wichtigsten Methoden und Algorithmen aus dem Bereich der spektralen Clusteranalyse zusammen und stellen zudem die wesentlichen Konzepte von Kernel-Methoden vor.

2.1 Clustering und k-means

Clusteranalyse oder "Clustering" beschäftigt sich mit der Einteilung von Objekten in Gruppen ("Cluster"), sodass sich die Objekte innerhalb eines Clusters gemäß eines bestimmten Optimierungskriteriums ähnlich sind und von Objekten eines anderen Clusters unterscheiden. Es existieren zahlreiche grundsätzlich verschiedene Ansätze, Clusteringprobleme zu lösen. Wir beschränken uns in dieser Arbeit auf partitionierende Clusteringprobleme und -verfahren. Bei diesen soll eine Menge von d-dimensionalen Punkten, welche der erste Teil der Eingabe ist, gemäß einer Cluster-Zielfunktion möglichst optimal in genau k Cluster unterteilt werden, wobei k der ganzzahlige zweite Teil der Eingabe ist.

Für die Zielfunktion, welche die Nähe oder Ferne von Punkten zueinander quantifiziert, sind bei Eingabepunkten aus \mathbb{R}^d Metriken naheliegend. Intuitiv ist dabei die euklidische Distanz, welche als Zielfunktion für die beiden bekanntesten Clustering-Problemstellungen dient.

Definition 2.1.1 (k-median und k-means). Sei $P \subset \mathbb{R}^d$ und $k \in \mathbb{N}^+$. Das k-median-Problem besteht darin, eine Menge von k (Cluster-) $Zentren\ C = \{c_1, \ldots, c_k\}$ mit $c_i \in \mathbb{R}^d$ zu finden, sodass der folgende Term minimal wird:

$$\sum_{p \in P} \min_{c_i \in C} ||p - c||$$

Das k-means-Problem unterscheidet sich nur darin, dass bei diesem die Summe der quadrierten euklidischen Distanzen zum jeweils nächstgelegenen Zentrum minimiert

werden soll, das heißt, dass der folgende Term minimiert werden soll:

$$\sum_{p \in P} \min_{c_i \in C} ||p - c||^2$$

Beim qewichteten k-means-Problem werden den Eingabepunkten zusätzlich mit einer Funktion $w: P \to \mathbb{R}$ Gewichte zugewiesen. Die zu minimierende Zielfunktion lautet dann entsprechend

$$\sum_{p \in P} \min_{c_i \in C} w(p) \|p - c\|^2$$

Sowohl das k-Median-Problem [MS84] als auch das k-means-Problem [ADHP09] sind optimal NP-schwer lösbar. Typischerweise werden zur Lösung daher approximative oder heuristische Algorithmen eingesetzt. Die bekannteste und bis heute sehr erfolgreiche Heuristik für das k-means-Problem ist der Algorithmus von Lloyd [Llo82]. Der Algorithmus wählt initial k zufällige Punkte aus der Eingabemenge oder sogar beliebige Punkte aus \mathbb{R}^d als initiale Clusterzentren. Anschließend wird jedem Punkt das am nächsten gelegene Zentrum zugewiesen. Dadurch entstehen die initialen Cluster mit ihren jeweiligen Zentren. Im zweiten Schritt wird das neue Zentrum eines jeden Clusters als der geometrische Zentroid des Clusters gewählt. Die Zuweisung von Punkten zum nächstgelegenen Cluster und die Neuberechnung der neuen Zentren werden solange alterniert, bis die Lösung konvergiert, also wenn sich die Zuordnungen der Punkte nicht mehr ändern. In der Praxis wird gelegentlich auch nach einer festen Anzahl von Iterationen terminiert.

Algorithmus 1: Algorithmus von Lloyd

Eingabe: $P \subseteq \mathbb{R}^d, k \in \mathbb{N}^+$

Ausgabe: : k-means-Clustering von P

- 1 Wähle zufällig k Zentren $c_1^{(0)}, \dots, c_k^{(0)}$ aus P oder \mathbb{R}^d 2 $S_i^{(0)} \leftarrow \{p \in P: \|p c_i^{(0)}\|^2 \le \|p c_{i'}^{(0)}\|^2 \, \forall \, i' \in \{1, \dots, k\}\}$
- $c_i^{(t)} \leftarrow \frac{1}{|S_i^{(t-1)}|} \sum_{p_j \in S_i^{(t-1)}} p_j$
- $S_i^{(t)} \leftarrow \{ p \in P : \|p c_i^{(t)}\|^2 \le \|p c_{i'}^{(t)}\|^2 \, \forall \, i' \in \{1, \dots, k\} \}$
- 6 until $S_i^{(t)} = S_i^{(t-1)}$

Die asymptotische Laufzeit des Algorithmus beträgt $\mathcal{O}(nkdi)$, wobei i die Anzahl an durchgeführten Iterationen ist. Wenn der Algorithmus konvergiert und nicht durch eine feste Anzahl von Iterationen terminiert wird, wurde ein lokales Optimum gefunden, welches jedoch im Allgemeinen kein globales Optimum oder eine Approximation eines globalen Optimums ist. Die Güte des berechneten Clusterings hängt maßgeblich von der initialen Wahl der Cluster ab. Der Algorithmus

k-means++ [AV07] setzt genau an dieser Stelle an: er berechnet auf einfache, aber dennoch geschickte Art und Weise die initialen Cluster und führt anschließend mit diesen die übrigen Schritte von Lloyds Algorithmus durch. Der Algorithmus wählt zunächst ein einzelnes Clusterzentrum c_1 zufällig gleichverteilt aus der Eingabe-Punktmenge P und wählt alle weiteren Clusterzentren sukzessive nach der folgenden Vorschrift, bis insgesamt k Zentren gewählt wurden. Im Weiteren bezeichnen wir mit D(x) für einen Punkt x aus der Eingabe-Punktmenge P die geringste Distanz von x zum nächstgelegenen bereits gewählten Zentrum. In jeder Iteration wird als nächstes Zentrum c_i der Punkt $x' \in P \setminus \{c_1, \ldots, c_{i-1}\}$ mit Wahrscheinlichkeit $\frac{D(x')^2}{\sum_{x \in P} D(x)}$ gewählt.

$\overline{\mathbf{Algorithmus}}$ 2: k-means++

Eingabe: $: P \subseteq \mathbb{R}^d, k \in \mathbb{N}^+$

Ausgabe: :k initiale Clusterzentren für P

1 Wähle c_1 zufällig gleichverteilt aus P

2 for $i \leftarrow 1$ to k do

Wähle den Punkt $x' \in P \setminus \{c_1, \dots, c_{i-1}\}$ als Zentrum c_i mit Wahrscheinlichkeit $\frac{D(x')^2}{\sum_{x \in P} D(x)}$

4 Führe Lloyds Algorithmus mit den initialen Clusterzentren c_1,\ldots,c_k aus.

Die k Zentren, die von k-means++ ausgewählt werden, sind eine $\mathcal{O}(\log k)$ -Approximation für das k-means-Problem, die durch die anschließende Ausführung von Lloyds Algorithmus noch zu einem lokalen Optimum verbessert werden.

Im nächsten Abschnitt betrachten wir eine konkrete Anwendung partitionierender Clusteringverfahren.

2.2 Graphen und Clusteranalyse von Graphen

Gerade im Umgang mit großen Datenmengen hat sich in der Informatik der *Graph* als geeignete Datenstruktur erwiesen. Er ist wie folgt definiert.

Definition 2.2.1 (Graph). Sei V eine endliche Menge und $E \subseteq \{\{u,v\} \mid u,v \in V, u \neq v\}$. Dann heißt das Tupel G = (V,E) ein (endlicher) G mit Knotenmenge V und Kantenmenge E. Ist $e = \{u,v\} \in E$, dann sagen wir, dass die Kante e des Graphen G die Knoten u und v verbindet. In diesem Fall sind u und v die Endknoten von e. Ein Knoten $u \in V$ und eine Kante $e \in V$ heißen inzident genau dann, wenn $u \in e$. Wir sagen, dass u und ein weiterer Knoten $v \in V$ adjazent sind genau dann, wenn es eine Kante $e' = \{u,v\}$ in E gibt. Typischerweise bezeichnet n = |V| die Enotenzahl von E0 und E1 die E2 die E3 und E3.

Bei einem 3-Tupel G' = (V', E', w') mit $w' : E \to \mathbb{N}$ spricht man von einem gewichteten Graphen, dessen Kanten über ein Gewicht verfügen, das von der Gewichtsfunktion w' abgebildet wird.

Für die konkrete Datenhaltung von Graphen haben sich im Wesentlichen zwei Ansätze als praktikabel erwiesen: Bei den sogenannten Adjazenzlisten wird für jeden Knoten v im Graphen eine Liste Adj_v gehalten, in der für jeden zu v inzidenten Knoten ein Eintrag in Adj_v enthalten ist, der den entsprechenden adjazenten Knoten referenziert, sowie gegebenenfalls das Gewicht der Kante zwischen den beiden Knoten. Alternativ wird in einer $Adjazenzmatrix \ Adj^G$ der Größe $|V| \times |V|$ an der Stelle $Adj_{u,v}^G$ das Gewicht der Kante zwischen den Knoten u und v eingetragen, sofern die beiden Knoten durch eine Kante miteinander verbunden sind. Anderenfalls wird zumeist -1 oder 0 eingetragen. Bei ungewichteten Graphen wird dementsprechend lediglich 0 oder 1 eingetragen.

Wenn die Eingabe keine Punktmenge, sondern ein (gewichteter) Graph ist, können wir die Ideen partitionierender Clusteringverfahren übertragen. Wir interessieren uns in diesem Fall für die "Ähnlichkeit" von Knotenmengen im Graphen.

Definition 2.2.2 (Graph-Schnitt). Sei G = (V, E, w) ein gewichteter Graph. Ein *Schnitt* C = (S, T) von G ist eine Partitionierung von V in die beiden Mengen S und T, das heißt, dass $V = S \cup T$. Die *Schnittmenge* von C sind die Kanten in E, die einen Endpunkt in S und den anderen Endpunkt in S heißt formal ist die Schnittmenge definiert als

$$\{(u,v) \in E \mid u \in S, v \in T\}.$$

Das Gewicht oder der Wert eines Schnittes ist die Summe der Kantengewichte der Schnittmenge. Wir verwenden die folgende Notation:

$$w_{cut}(S,T) = \sum_{u \in S, v \in T} w((u,v))$$

Falls der Graph in Form einer Adjazenzmatrix Adj^G vorliegt, lautet die Berechnungsvorschrift entsprechend:

$$w_{cut}(S,T) = \sum_{u \in S, v \in T} Adj_{u,v}^G$$

Für eine direkte Analogie zum k-means-Problem wäre ein Schnitt- beziehungsweise Paritionierungs-Begriff wünschenswert, der eine k-fache Paritionierung der Knotenmenge erlaubt. Diese lautet wie folgt.

Definition 2.2.3 (k-Graphpartitionierung). Sei G = (V, E, w) ein gewichteter Graph. Für zwei Mengen $A, B \subseteq V$ definieren wir:

$$w(A,B) = \sum_{u \in A, v \in B} w((u,v))$$

Das k-Graphpartitionierungsproblem besteht darin, eine Partitionierung der Knotenmenge V in k disjunkte Teilmengen V_1, \ldots, V_k mit $\bigcup_{i \in \{1, \ldots, k\}} V_i = V$ zu ermitteln, sodass sich die Knoten innerhalb einer Partition bezüglich einer Ähnlichkeitsrelation möglichst ähnlich sind und die Knoten unterschiedlicher Partitionen bezüglich der Ähnlichkeitsrelation möglichst stark voneinander unterscheiden.

Beim Clustering von Punktmengen lagen für die Ähnlichkeitsrelation Metriken nahe, im Falle der Graphpartitionierung existiert eine Reihe von Optimierungskriterien, von denen wir im Folgenden die verbreitetsten einführen.

1. Ratio Association. Bei der Ratio Association sollen die Intra-Clusterabstände relativ zur jeweiligen Clustergröße maximiert werden:

$$\max_{V_1, \dots, V_k} \sum_{c=1}^k \frac{w(V_c, V_c)}{|V_c|}$$

2. Ratio Cut. Beim Ratio Cut wird der Schnitt zwischen jeweils einem Cluster und allen anderen Punkten im Graphen minimiert:

$$\min_{V_1, \dots, V_k} \sum_{c=1}^k \frac{w(V_c, V \setminus V_c)}{|V_c|}$$

3. **Kernighan-Lin**. Bei dem in [KL70] vorgestellten Optimierungskriterium werden die Intra-Clusterabstände ähnlich der Ratio Association minimiert, allerdings müssen alle Partition hier zusätzlich die selbe Größe haben:

$$\min_{V_1,\dots,V_k} \sum_{c=1}^k \frac{w(V_c,V_c)}{|V_c|} \text{ subject to } |V_c| = \frac{|V|}{k} \,\forall \, c \in \{1,\dots,k\}$$

- 4. .
- 5. .
- 6. .

2.3 Kernel-Methoden und spektrales Clustering

Literatur

- [ADHP09] Aloise, Daniel; Deshpande, Amit; Hansen, Pierre; Popat, Preyas: NP-hardness of Euclidean sum-of-squares clustering. In: *Machine Learning* (2009), S. 245–248
 - [AV07] ARTHUR, David; VASSILVITSKII, Sergei: k-means++: The advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, 2007, S. 1027–1035
 - [KL70] KERNIGHAN, B. W.; LIN, S.: An Efficient Heuristic Procedure for Partitioning Graphs. In: The Bell System Technical Journal 49 (1970), Nr. 1, S. 291–307
 - [Llo82] Lloyd, Stuart P.: Least squares quantization in PCM. In: *IEEE Transactions on Information Theory* 28 (1982), Nr. 2, S. 129–136
 - [MS84] MEGIDDO, Nimrod; SUPOWIT, Kenneth J.: On the Complexity of Some Common Geometric Location Problems. In: SIAM J. Comput. 13 (1984), Nr. 1, S. 182–196

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate kenntlich gemacht habe.

Dortmund, den 16. Dezember 2014

Lukas Pradel