

Optimizing Base Rankers Using Clicks A Case Study using BM25

Anne Schuth, Floor Sietsma, Shimon Whiteson, and Maarten de Rijke

Outline

- Introduction
 - Learning to Rank
 - □ Two Issues
 - □ Their solutions
- Research Questions
- Method
- Experiments
- Results
- Conclusions

Select a set of representative queries

- Select a set of representative queries
- Assess top documents for each of these queries

- Select a set of representative queries
- Assess top documents for each of these queries
- Select many (dozens, hundreds) of features:
 - Base rankers: PageRank, BM25, Language Models, ...
 - Each base ranker applied to title of document, body of document, url, ...

- Select a set of representative queries
- Assess top documents for each of these queries
- Select many (dozens, hundreds) of features:
 - Base rankers: PageRank, BM25, Language Models, ...
 - Each base ranker applied to title of document, body of document, url, ...
- Compute feature values for all query-document pairs

- Select a set of representative queries
- Assess top documents for each of these queries
- Select many (dozens, hundreds) of features:
 - Base rankers: PageRank, BM25, Language Models, ...
 - Each base ranker applied to title of document, body of document, url, ...
- Compute feature values for all query-document pairs
- Train a combination of features that maximizes some metric
 - □ Combinations: Linear, neural net, ...
 - □ Metrics: nDCG, MAP, ...

- Select a set of representative queries
- Assess top documents for each of these queries
- Select many (dozens, hundreds) of features:
 - Base rankers: PageRank, BM25, Language Models, ...
 - Each base ranker applied to title of document, body of document, url, ...
- Compute feature values for all query-document pairs
- Train a combination of features that maximizes some metric
 - □ Combinations: Linear, neural net, ...
 - □ Metrics: nDCG, MAP, ...
- Apply the learned model in the wild

- 1. Assessments
 - expensive (laborious)

- 1. Assessments
 - expensive (laborious)
 - incomplete (selection of queries, selection of documents)

- expensive (laborious)
- incomplete (selection of queries, selection of documents)
- quickly outdated

- expensive (laborious)
- incomplete (selection of queries, selection of documents)
- quickly outdated
- come from assessors instead of users

- expensive (laborious)
- incomplete (selection of queries, selection of documents)
- quickly outdated
- come from assessors instead of users
- ...

- 1. Assessments
 - expensive (laborious)
 - incomplete (selection of queries, selection of documents)
 - quickly outdated
 - come from assessors instead of users
 - ...
- 2. Choosing base rankers parameters

1. Assessments

- expensive (laborious)
- incomplete (selection of queries, selection of documents)
- quickly outdated
- come from assessors instead of users
- **.**..

2. Choosing base rankers parameters

Don't choose (choose many)

1. Assessments

- expensive (laborious)
- incomplete (selection of queries, selection of documents)
- quickly outdated
- come from assessors instead of users
- **.**..

2. Choosing base rankers parameters

- Don't choose (choose many)
- From literature

1. Assessments

- expensive (laborious)
- incomplete (selection of queries, selection of documents)
- quickly outdated
- come from assessors instead of users
- ...

2. Choosing base rankers parameters

- Don't choose (choose many)
- From literature
- Using the learning to rank procedure

- 1. Assessments
 - Use implicit user feedback (clicks) instead

- 1. Assessments
 - Use implicit user feedback (clicks) instead
 - Widely available (in industry)

- 1. Assessments
 - Use implicit user feedback (clicks) instead
 - Widely available (in industry)
 - Natural byproduct

- Use implicit user feedback (clicks) instead
 - Widely available (in industry)
 - Natural byproduct
 - Always up to date

- Use implicit user feedback (clicks) instead
 - Widely available (in industry)
 - Natural byproduct
 - Always up to date
- But: biased

- Use implicit user feedback (clicks) instead
 - Widely available (in industry)
 - Natural byproduct
 - Always up to date
- But: biased
 - Online learning (with exploration) to rank (instead of supervised)

1. Assessments

- Use implicit user feedback (clicks) instead
 - Widely available (in industry)
 - Natural byproduct
 - Always up to date
- But: biased
 - Online learning (with exploration) to rank (instead of supervised)

2. Choosing base rankers parameters

1. Assessments

- Use implicit user feedback (clicks) instead
 - Widely available (in industry)
 - Natural byproduct
 - Always up to date
- But: biased
 - Online learning (with exploration) to rank (instead of supervised)

2. Choosing base rankers parameters

Using the online learning to rank procedure

1. Assessments

- Use implicit user feedback (clicks) instead
 - Widely available (in industry)
 - Natural byproduct
 - Always up to date
- But: biased
 - Online learning (with exploration) to rank (instead of supervised)

2. Choosing base rankers parameters

- Using the online learning to rank procedure
- But base rankers are not always linear

Outline

- Introduction
 - Learning to Rank
 - □ Two Issues
 - □ Their solutions
- Research Questions
- Method
- Experiments
- Results
- Conclusions

■ RQ1: How good are the manually tuned parameter values of BM25 that are currently used?

- RQ1: How good are the manually tuned parameter values of BM25 that are currently used?
- RQ2: Are they optimal for all data sets on average?
 Are they optimal for individual data sets?

- RQ1: How good are the manually tuned parameter values of BM25 that are currently used?
- RQ2: Are they optimal for all data sets on average?
 Are they optimal for individual data sets?
- RQ3: Is it possible to learn good values of the BM25 parameters from clicks?

A Case Study using BM25

- RQ1: How good are the manually tuned parameter values of BM25 that are currently used?
- RQ2: Are they optimal for all data sets on average?
 Are they optimal for individual data sets?
- RQ3: Is it possible to learn good values of the BM25 parameters from clicks?
- RQ4: Can we approximate or even improve the performance of BM25 achieved with manually tuned parameters?

Outline

- Introduction
 - Learning to Rank
 - □ Two Issues
 - □ Their solutions
- Research Questions
- Method
- Experiments
- Results
- Conclusions

A Case Study using BM25

$$BM25(q,d) = \sum_{q_i: tf(q_i,d)>0} \frac{idf(q_i) \cdot tf(q_i,d) \cdot (k_1+1)}{tf(q_i,d) + k_1 \cdot (1-b+b \cdot \frac{|d|}{avgdl})}$$

- lacktriangle We optimize 2 parameters: k_1 and b
- Typical magnitudes:
 - $\Box\,b$ between 0.45 and 0.9
 - $\Box k_1$ between 2 and 25

Current Best BM25

Current Best BM25

Current Best BM25

Dueling Bandit Gradient Des k1 step size is larger then

step size of b

Current Best BM25

Dueling Bandit Gradient Des k1 step size is larger then

step size of b

Current Best BM25

Current Best BM25

Current Best BM25

Current Best BM25

Explorative BM25

Interleaved Ranking

Current Best Ranking

Interleaved Ranking

Current Best Ranking

Interleaved Ranking

Explorative Ranking

С	
G	
D	
A	
В	
E	

Current Best Ranking

Interleaved Ranking

Explorative Ranking

С	
G	
D	
A	
В	
E	

Current Best Ranking

Interleaved Ranking

Explorative Ranking

G	_
D	
A	
B	
E	

Current Best Ranking

Interleaved Ranking

Explorative Ranking

Interleaved Ranking

query	R
С	
A	
G	
D	
В	
E	

Interleaved Ranking

C
<u>A</u>
<u>G</u>
D
<u>B</u>
<u>=</u>

Current Best BM25

Explorative BM25

Current Best BM25

Explorative BM25

Current Best BM25

Explorative BM25

Current Best BM25

Outline

- Introduction
 - Learning to Rank
 - □ Two Issues
 - □ Their solutions
- Research Questions
- Method
- Experiments
- Results
- Conclusions

Experiments

- Clicks
 - Simulated using simple click model
- Data
 - □ LETOR (HP2003/4, NP2003/4, TD2003/4)
- Software

Outline

- Introduction
 - Learning to Rank
 - □ Two Issues
 - □ Their solutions
- Research Questions
- Method
- Experiments
- Results
- Conclusions

	k_1	b	HP2003 HP2004 NP2003 NP2004 TD2003 TD2004	Overall
.gov	2.50	0.80		0.613

	k_1	b	HP2003	HP2004	NP2003	NP2004	TD2003	TD2004	Overall
.gov	2.50 (0.80	0.674	0.629	0.693	0.599	0.404	0.469	0.613

	k_1	b	HP2003	HP2004	NP2003	NP2004	TD2003	TD2004	Overall
.gov	2.50	0.80	0.674	0.629	0.693	0.599	0.404	0.469	0.613
HP2003	7.40	0.80	0.692	0.650	0.661▼	0.591	0.423	0.477	0.614

	k_1	b	HP2003	HP2004	NP2003	NP2004	TD2003	TD2004	Overall
.gov	2.50	0.80	0.674	0.629	0.693	0.599	0.404	0.469	0.613
HP2003	7.40	0.80	0.692	0.650	0.661▼	0.591	0.423▲	0.477	0.614
HP2004	2.50	0.85	0.688 0.671 0.690	0.672 [△] 0.613 0.647	0.657 [▼] 0.682 0.661 [▼]	0.579 [▽]	٠٠د	0.482 ^Δ 0.473 0.477	0.613 0.605 [▽] 0.613

	k_1	b	HP2003	HP2004	NP2003	NP2004	TD2003	TD2004	Overall
.gov	2.50	0.80	0.674	0.629	0.693	0.599	0.404	0.469	0.613
HP2003	7.40	0.80	0.692	0.650	0.661▼	0.591	0.423▲	0.477	0.614
HP2004	7.30	0.85	0.688	0.672△	0.657▼	0.575	0.423	0.482△	0.613
	2.50	0.85	0.671	0.613	0.682	0.579°	0.404	0.473	0.605 ▽
	7.30	0.80	0.690	0.647	0.661♥	0.592	0.423▲	0.477	0.613
NP2003	2.60	0.45	0.661	0.572▽	0.719	0.635	0.374▼	0.441▼	0.607
	2.50	0.45	0.660	0.572^{\triangledown}	0.718	0.635	0.374▼	0.441♥	0.607
	2.60	0.80	0.675	0.629	0.692	0.601	0.403	0.470	0.613
NP2004	4.00	0.50	0.663	0.584	0.705	0.647△	0.386▽	0.446▼	0.609
	2.50	0.50	0.663	0.573 ▽	0.713	0.635	0.381▼	0.444▼	0.607
	4.00	0.80	0.680	0.645	0.683	0.605	0.414^{\triangle}	0.474	0.616
TD2003	25.90	0.90	0.660	0.597	0.515▼	0.478▼	0.456△	0.489△	0.550▼
	2.50	0.90	0.676	0.607	0.672	0.560▼	0.405	0.471	0.600 [▼]
	25.90	0.80	0.645	0.576	0.535♥	0.493▼	0.445	0.482	0.549▼
TD2004	24.00	0.90	0.664	0.604	0.520▼	0.481▼	0.449△	0.491 [△]	0.553▼
	2.50	0.90	0.676	0.607	0.672	0.560▼	0.405	0.471	0.600 [▼]
	24.00	0.80	0.645	0.578	0.538▼	0.496▼	0.446	0.482	0.550▼

RQ1: How good are the manually tuned parameter values of BM25 that are currently used?

	k_1	b	HP2003	HP2004	NP2003	NP2004	TD2003	TD2004	Overal
.gov	2.50	0.80	0.674	0.629	0.693	0.599	0.404	0.469	0.613
HP2003	7.40	0.80	0.692	0.650	0.661▼	0.591	0.423	0.477	0.614
HP2004	7.30	0.85	0.688	0.672△	0.657▼	0.575	0.423	0.482△	0.613
	2.50	0.85	0.671	0.613	0.682	0.579°	0.404	0.473	0.605 ♥
	7.30	0.80	0.690	0.647	0.661▼	0.592	0.423	0.477	0.613
NP2003	2.60	0.45	0.661	0.572▽	0.719	0.635	0.374▼	0.441▼	0.607
	2.50	0.45	0.660	0.572^{\triangledown}	0.718	0.635	0.374▼	0.441▼	0.607
	2.60	0.80	0.675	0.629	0.692	0.601	0.403	0.470	0.613
NP2004	4.00	0.50	0.663	0.584	0.705	0.647△	0.386 [▽]	0.446▼	0.609
	2.50	0.50	0.663	0.573 ▽	0.713	0.635	0.381▼	0.444▼	0.607
	4.00	0.80	0.680	0.645	0.683	0.605	0.414^{\triangle}	0.474	0.616
TD2003	25.90	0.90	0.660	0.597	0.515▼	0.478▼	0.456△	0.489△	0.550▼
	2.50	0.90	0.676	0.607	0.672	0.560▼	0.405	0.471	0.600 [▼]
	25.90	0.80	0.645	0.576	0.535♥	0.493▼	0.445	0.482	0.549▼
TD2004	24.00	0.90	0.664	0.604	0.520▼	0.481▼	0.449△	0.491△	0.553▼
	2.50	0.90	0.676	0.607	0.672	0.560▼	0.405	0.471	0.600 [▼]
			0.645	0.578	0.538▼	0.496▼	0.446	0.482	0.550▼

RQ1: How good are the manually tuned parameter values of BM25 that are currently used?

	k_1	b	HP2003	HP2004	NP2003	NP2004	TD2003	TD2004	Overall
.gov	2.50	0.80	0.674	0.629	0.693	0.599	0.404	0.469	0.613
HP2003	7.40	0.80	0.692	0.650	0.661▼	0.591	0.423	0.477	0.614
HP2004	7.30	0.85	0.688	0.672△	0.657▼	0.575	0.423	0.482△	0.613
	2.50	0.85	0.671	0.613	0.682	0.579°	0.404	0.473	0.605^{\triangledown}
	7.30	0.80	0.690	0.647	0.661♥	0.592	0.423▲	0.477	0.613
NP2003	2.60	0.45	0.661	0.572▽	0.719	0.635	0.374▼	0.441▼	0.607
	2.50	0.45	0.660	0.572^{\triangledown}	0.718	0.635	0.374▼	0.441▼	0.607
	2.60	0.80	0.675	0.629	0.692	0.601	0.403	0.470	0.613
NP2004	4.00	0.50	0.663	0.584	0.705	0.647△	0.386 [▽]	0.446▼	0.609
	2.50	0.50	0.663	0.573 [▽]	0.713	0.635	0.381▼	0.444▼	0.607
	4.00	0.80	0.680	0.645	0.683	0.605	0.414^{\triangle}	0.474	0.616
TD2003	25.90	0.90	0.660	0.597	0.515▼	0.478▼	0.456 [△]	0.489△	0.550▼
	2.50	0.90	0.676	0.607	0.672	0.560▼	0.405	0.471	0.600 [▼]
	25.90	0.80	0.645	0.576	0.535♥	0.493▼	0.445	0.482	0.549▼
TD2004	24.00	0.90	0.664	0.604	0.520▼	0.481▼	0.449△	0.491△	0.553▼
	2.50	0.90	0.676	0.607	0.672	0.560▼	0.405	0.471	0.600▼
	24.00	0.80	0.645	0.578	0.538▼	0.496▼	0.446	0.482	0.550▼

quite good

24.00 0.80 0.645

RQ1: How good are the manually tuned parameter values of BM25 that are currently used?

							المستسعا	and the second	
	k_1	b	HP2003	HP2004	NP2003	NP2004	TD2003	TD2004	Overall
.gov	2.50	0.80	0.674	0.629	0.693	0.599	0.404	0.469	0.613
HP2003	7.40	0.80	0.692	0.650	0.661▼	0.591	0.423	0.477	0.614
HP2004	7.30	0.85	0.688	0.672△	0.657▼	0.575	0.423	0.482△	0.613
	2.50	0.85	0.671	0.613	0.682	0.579°	0.404	0.473	$0.605^{ 7}$
	7.30	0.80	0.690	0.647	0.661♥	0.592	0.423	0.477	0.613
NP2003	2.60	0.45	0.661	0.572▽	0.719	0.635	0.374▼	0.441▼	0.607
	2.50	0.45	0.660	0.572^{\triangledown}	0.718	0.635	0.374▼	0.441♥	0.607
	2.60	0.80	0.675	0.629	0.692	0.601	0.403	0.470	0.613
NP2004	4.00	0.50	0.663	0.584	0.705	0.647△	0.386▽	0.416 V	0.609
	2.50	0.50	0.663	0.573 [▽]	0.713	0.635	0.381▼	ROS	. ^
	4.00	0.80	0.680	0.645	0.683	0.605	0.414	RQ2	
TD2003	25.90	0.90	0.660	0.597	0.515♥	0.478▼	0.4564	data	sets a
	2.50	0.90	0.676	0.607	0.672	0.560▼	11 1115		
	25.90	0.80	0.645	0.576	0.535▼	0.493▼	0.445	ney o	ptim
TD2004	24.00	0.90	0.664	0.604	0.520▼	0.481♥	0.449	ets?	
	2.50	0.90	0.676	0.607	0.672	0.560▼	0.405	Market and the	
					_	_			

 $0.578 \quad 0.538^{\blacktriangledown} \quad 0.496^{\blacktriangledown} \quad 0.446 \quad 0.482$

quite good

RQ2: Are they optimal for all data sets on average? Are they optimal for individual data sets?

0.550

RQ1: How good are the manually tuned parameter values of BM25 that are currently used?

	k_1	b	HP2003	HP2004	NP2003	NP2004	TD200	3 TD2004	Overall	Quito
.gov	2.50	0.80	0.674	0.629	0.693	0.599	0.404	0.469	0.613	quite good
HP2003	7.40	0.80	0.692	0.650	0.661▼	0.591	0.423	0.477	0.614	
HP2004	2.50	0.85	0.688 0.671 0.690	0.672 [△] 0.613 0.647	0.657 [▼] 0.682 0.661 [▼]	0.575 0.579 [▽] 0.592	0.423 ⁴ 0.404 0.423 ⁴	0.482 [△] 0.473 0.477	0.613 0.605 [▽] 0.613	
NP2003	2.60 2.50	0.45 0.45	0.661 0.660 0.675	0.572° 0.572° 0.629	0.719 0.718 0.692	0.635 0.635 0.601	0.423 0.374 0.374 0.403	0.441 ♥ 0.441 ♥ 0.470	0.607 0.607 0.613	
NP2004	2.50	0.50	0.663	0.584 0.573 [▽]	0.705 0.713	0.647 [△] 0.635	0.386 [▽] 0.381 [▼]	RQ2		
TD2003	25.90 2.50	0.90 0.90	0.680	0.645 0.597 0.607	0.683 0.515 0.672	0.605 0.478 ♥ 0.560 ♥	0.414 ^Δ 0.456 ^Δ 0.405			ey optimal for all average? Are
TD2004	24.00	0.90	0.645 0.664 0.676	0.576 0.604 0.607	0.535 [▼] 0.520 [▼] 0.672	0.493 [▼] 0.481 [▼] 0.560 [▼]	0.445 0.449 0.405	sets?	ptimal	for individual data
	24.00	0.80	0.645	0.578	0.538▼	0.496▼	0.446	0.482	0.550	no

no

Learning curves

Learning curves

Learning curves

Optimization Landscape

Convergence per Dataset

Convergence per Dataset

Convergence per Dataset

Outline

- Introduction
 - Learning to Rank
 - □ Two Issues
 - □ Their solutions
- Research Questions
- Method
- Experiments
- Results
- Conclusions

■ Parameters of base rankers matter

- Parameters of base rankers matter
 - values from literature are good in general but not for particular settings

- Parameters of base rankers matter
 - values from literature are good in general but not for particular settings
- We can learn good parameters

- Parameters of base rankers matter
 - values from literature are good in general but not for particular settings
- We can learn good parameters
 - □ from clicks

- Parameters of base rankers matter
 - values from literature are good in general but not for particular settings
- We can learn good parameters
 - □ from clicks
 - □ using an online algorithm

- Parameters of base rankers matter
 - values from literature are good in general but not for particular settings
- We can learn good parameters
 - □ from clicks
 - using an online algorithm
- Expensive assessments are not needed to find good parameters

thank you