Topología 2018-1 Taller 2

Juan Sebastián Gaitán Escarpeta

3 de junio de 2018

1. Armstrong

Página 72

Ejercicio 5

Sea X la unión de todos los circulos de la porma $(x-\frac{1}{n})^2+y^2=\frac{1}{n}$ para $n\in\{1,2,\ldots\}$ con la topología subespacio del plano. Sea Y el conjunto de los números reales identificando los enteros a un único punto. Demuestre que X y Y no son homeomorfos.

Demostración. Veamos que X es compacto. Sea $\{U_{\alpha}\}$ una cobertura abierta de X. Entonces existe $U_{\alpha i}$ tan que $(0,0) \in U_{\alpha i}$. Entonces existe $N \in \mathbb{N}$ tan que $U_{\alpha i}$ contiene todos los circulos de la forma $(x-\frac{1}{k})^2+y^2=\frac{1}{k}$ siempre que k>N. El conjunto $X\setminus U_{\alpha i}$ es homeomorfo a la unión de finitos intervalos compactos y por lo tantop $\{U_{\alpha}\}$ tiene una subcobertura finita.

intervalos compactos y por lo tantop $\{U_{\alpha}\}$ tiene una subcobertura finita. Ahora, considere los conjuntos $W_n = (n + \frac{1}{10}, n - \frac{1}{10})$ para $n \in \mathbb{Z}$ y sea $V = (\frac{-1}{5}, \frac{1}{5})$. Entonces la imagen de $W_n \cup V$ bajo la relación de Y forma una cobertura abierta para Y; note que $\frac{2k+1}{2}$ está en un único W_n por lo tanto $W_n \cup V$ no tiene una subcovertura finita.

Ejercicio 11

Demuestre que la función $f:[0,2\pi]\times[0,\pi]\to\mathbb{R}^5$ definida por:

 $f(x,y) = (\cos x, \cos 2y, \sin 2y, \sin x \cos y, \sin x \cos y, \sin x \sin y)$

Induce un encajamiento de la botella de Klein en \mathbb{R}^5

Demostración. Sea $Y = [0, 2\pi] \times [0, \pi]$ y sea $X = f(Y) \subseteq \mathbb{R}^5$. Como \mathbb{R}^5 es un espacio de Hausdorff y un subespacio de un espacio de Hausdorff es de Hausdorff, entonces X es de Hausdorff. Además Y es compacto. Y por lo tanto, f es de identificación restringiendo el codominio a la imágen. Es claro que la botella de Klein se obtiene identificando dos lados de Y en la misma dirección y dos lados en dirección contraria.

Primero, note que f identificalas cuatro esquinas de Y juntas. Veamos que pasa con los demás puntos del borde. Suponga que $f(x_1,y_1)=f(x_2,y_2)$. Primero, supongamos que $y_1 \neq y_2$ y asuma que $y_1,y_2 \in (0,\pi)$. Usando el gráfico de $\sin(x)$ sabemos que si $\sin 2y_1 = \sin 2y_2$ entonces al; guna de las dos siguientes afirmaciones son ciertas: (i) $0 < 2y_1, 2y_2 < \pi$ y $2y_1 = \pi - 2y_2$ ó (ii) $0 < 2y_1, 2y_2 < 2\pi$ y $2y_1 = 3\pi - 2y_2$. Ahora, $\cos 2y_1 = \cos 2y_2$ implica $y_1 = \pi - y_2$. Pero esto contradice (i) y (ii). Como $y_1 \neq y_2$ entonces alguno entre y_1 y y_2 es 0 o π . Como $y_1 = \pi - y_2$ entonces si $y_1 = 0$ entonces $y_2 = \pi$ y viceversa. Esto demuestra que si $f(x_1, y_1) = f(x_2, y_2)$ entonces alguno de los dos puntos está en la parte superior del rectángulo y el otro en la parte inferior.

Suponga ahora que $f(a,0)=f(b,\pi)$. Suponga además que $0 < a,b < 2\pi$. Entonces tenemos $\cos a = \cos b$ y $\sin a = -\sin b$. Como $\cos a = \cos b$ entonces o a = b ó $a = 2\pi - b$. Como $\sin a = -\sin b$, entonces el unico caso viable de los dos anteriores es $a = 2\pi - b$. con esto demostramos que si $f(x_1,y_1)=f(x_2,y_2)$ con $y_1 \neq y_2$ entonces $(x_1,y_1)=(0,x)$ y $(x_2,y_2)=(2\pi - x,\pi)$. De forma análoga es posible demostrar que si $f(x_1,y_1)=f(x_2,y_2)$ con $x_1 \neq x_2$ entonces $y_1=y_2$. Estas son exactamente las identificaciones de la botella de Kein.

Ejercicio 12

Con la notación del ejercicio 11, demuestre que si $(2 + \cos x)\cos 2y = (2 + \cos x')\cos 2y'$ y $(2 + \cos x)\sin 2y = (2 + \cos x')\sin 2y'$, entonces $\cos x = \cos x'$, $\cos 2y = \cos 2y'$ y $\sin 2y = \sin 2y'$. Deduzca que la función $g: [0,2\pi] \times [0,\pi] \to \mathbb{R}^4$ dada por $g(x,y) = ((2 + \cos x)\cos 2y, (2 + \cos x)\sin 2y, \sin x\cos y, \sin x\sin y)$ induce un encajamiento de la botella de Klein en \mathbb{R}^4 .

- Demostración. Caso 1: $\{y, y'\} \cap \{\frac{\pi}{4}, \frac{3\pi}{4}\} = \emptyset$. Entonces $\cos 2y \neq 0$. Podemos dividir $(2 + \cos x)\cos 2y = (2 + \cos x')\cos 2y'$ por $(2 + \cos x)\sin 2y = (2 + \cos x')\sin 2y'$ para obtener que $\tan 2y = \tan 2y'$. Para $y, y' \in [0, \pi]$ esto solo es posible si y = y'. En cuyo caso, se sigue $\cos x = \cos x'$, $\cos 2y = \cos 2y'$ y $\sin 2y = \sin 2y'$.
 - Caso 2; $\{y,y'\} \cap \{\frac{\pi}{4}, \frac{3\pi}{4}\} \neq \emptyset$. Si $y = \frac{\pi}{4}$, entonces, usando $(2+\cos x)\cos 2y = (2+\cos x')\cos 2y'$ se tiene $y' = \frac{\pi}{4}$ ó $y' = \frac{3\pi}{4}$. Pero si $y' = \frac{3\pi}{4}$ entonces es falso que $(2+\cos x)\sin 2y = (2+\cos x')\sin 2y'$. Entonces $y = y' = \frac{\pi}{4}$. En cuyo caso, se tienen los resultados. Ahora, si $y = \frac{3\pi}{4}$. Entonces, igual que en la parte anterior, $y' = \frac{\pi}{4}$ ó $y' = \frac{3\pi}{4}$ e igual que en el caso anterior, si $y' = \frac{\pi}{4}$ es falso que $(2+\cos x)\sin 2y = (2+\cos x')\sin 2y'$ y por lo tanto $y = y' = \frac{3\pi}{4}$ y por lo tanto se tiene el resultado.

Ahora, sea f la función definida en el problema 11. Entonces g es una función cociente por la misma razón que f lo es y por lo que acabamos de demosatrar, $g(x_1,y_1)=g(x_2,y_2)\Leftrightarrow f(x_1,y_1)=f(x_2,y_2)$. Y por lo tanto, el espacio cociente de f es el mismo que el de g y por lo tanto la imágen de f es la misma que la de g (la botella de Klein).

1.1. Página 78

Ejercicio 14

Demostración. Sea $f: G \times G \to G$ tal que $f(x,y) = xy^{-1}$. Como G es grupo topológico, entonces f es continua, por lo tanto $f^{-1}(\bar{H})$ es cerrado. Como H es grupo, entonces $H \times H \subseteq f^{-1}(\bar{H})$, tomando clausuras, se tiene $\overline{H \times H} \subseteq f^{-1}(\bar{H})$ y como $\overline{H \times H} = \overline{H} \times \overline{H}$, entonces $f(\overline{H} \times \overline{H}) \subseteq \overline{H}$. De donde \overline{H} es subgrupo de G.

Veamos que si H es normal, entonces \overline{H} también lo es. Sea $g: G \times G \to G$ tal que $g(x,y) = xyx^{-1}$. Como G es grupo topológico, entonces g es continua y por tanto, $g^{-1}(\overline{H})$ es cerrado. Como H es normal, entonces $G \times H \subseteq g^{-1}(\overline{H})$. Tomando clausuras $\overline{G \times H} \subseteq g^{-1}(\overline{H})$. Y como $\overline{G \times H} = \overline{G} \times \overline{G} = G \times \overline{H}$, entonces $g(G \times \overline{H}) \subseteq \overline{H}$. Por lo tanto \overline{H} es normal en G.

Ejercicio 17

Sean A, B subconjuntos compactos de un espacio topológico. Demuestre que $AB = \{ab | a \in A, b \in B\}$ es compacto.

Demostraci'on. Considere el mapa producto $p: G \times G \to G$. p es continua. Como $A \times B$ es compacto en la topoligía producto, entonces p(A,B) = AB lo es.

Ejercicio 21

Demuestre que todo subgrupo discreto no trivial de R es infinito cíclico

Demostración. Sea H un subgrupo discreto no trivial de \mathbb{R} . Sea $h = \inf_r \{r \in H, r > 0\}$. Por el ejercicio anterior, $h \in H$. Claramente, $\langle h \rangle \subseteq H$. Suponga que existe $b \in H$ con $b \notin \langle h \rangle$. entonces existe $n \in \mathbb{N}$ tal que nh < b < (n+1)h entonces 0 < b - nh < h y $b - nhb \in H$ pero h era el menor real positivo en H, esto es una contraducción, por lo tanto $\langle h \rangle = H$.

Página 86

Ejercicio 34

Demuestre que L(2,1) es homeomorfo a \mathbb{P}_3 , además, que si p divide a q-q' entonces L(p,q) es homeomorfo a L(p,q')

Demostración. L(2,1) se define como el espacio orbita de S^3 identificando $(z_o, z_1) \sim (e^{i\pi}z_0, e^{i\pi}z_1)$ pero como $(e^{i\pi}z_0, e^{i\pi}z_1) = (-z_o, -z_1)$, esto es simplemente la esfera con identificación antipodal, es decir, \mathbb{P}_3 .

Ahora, suponga que p|(q-q'). Entonces q=q'+np para algún $n\in\mathbb{N}$. Entonces $e^{2\pi\frac{qi}{p}}=e^{2\pi(q'+np)\frac{i}{p}}=e^{\frac{2i\pi q'}{p}+\frac{2i\pi np}{p}}=e^{2\pi q'\frac{i}{p}}$. Por lo tanto la acción de \mathbb{Z}_p es la misma en ambos casos. \square

Munkres

Página 271

Ejercicio 6

Un espacio X se dice topológicamente completo si existe una metrica para la topología de X para la cual X es completo.

Muestre que un subespacio cerrado de un espacio topológicamente completo es topológicamente completo.

Demostraci'on. Sea X Topológicamente completo. Entonces, existe una métrica d con la cual (X,d) es completo. Todo subespacio cerrado de un espacio completo es completo.

■ Muestre que el producto contable de espacio topológicamente completo es topológicamente completo en la topología producto.

 $\begin{array}{l} \textit{Demostraci\'on}. \text{ Sea } X = \prod_{n=0}^{\infty} X_n \text{ con la topolog\'ia producto. Como todos los } X_i \text{ son topologicamente completos, entonces para cada uno existe una distancia } d_i \text{ tal que } (X_i, d_i) \text{ es completo. Defina la función } \overline{d_i}(x_i, y_i) = \sup\{1, d_i(x_i, y_i)\}. \text{ La función } d(x, y) = \sup_{i \in \mathbb{N}} \{\overline{d_i}(x^i, y^i)\} \text{ donde } x^i \text{ es la } i\text{--\'esima componente de } x \in X \text{ define una distancia en } X. \\ \text{Sea } \{x_j\}_{j \in \mathbb{N}} \text{ una sucesión de Cauchy en } X. \text{ Entonces dado } \varepsilon > 0 \text{ existe un } N \in \mathbb{N} \text{ tal que si } m, n > N \text{ entonces } \sup_{i \in \mathbb{N}} \{\overline{d_i}(x_n^i, x_m^i)\} < \varepsilon. \text{ Y por lo tanto para todo } i \in \mathbb{N} \text{ cada sucesión } \{x_m^i\}_{m \in \mathbb{N}} \text{ (fijando la componente y variando el elemento de } \{x_j\}_{j \in \mathbb{N}} \text{ cumple que } d_i(x_m^i, x_n^i) < \varepsilon \text{ para } m, n > N \text{ luego son de Cauchy, y como } X_i \text{ es completo, entonces } \{x_m^i\}_{m \in \mathbb{N}} \text{ converge}. \end{array}$

■ Muestre que un subespacio abierto de un espacio topológicamente completo es topológicamente completo.

Lemma 1.1. Todo subespacio U abierto de un espacio completo (X, d) es homeomorfo a un espacio completo.

Demostración. Sea U un subconjunto abierto de X y d la métrica sobre d. Defina:

$$f: U \to \mathbb{R}: x \mapsto \frac{1}{d(x, X \setminus U)}$$

Como f es continua, ahora defina:

$$\rho: U \times U \to \mathbb{R}: (x,y) \mapsto d(x,y) + |f(x) - f(y)|$$

 ρ define una metrica en U. Es posible ver que (U,ρ) es completo. La idea intuituva es descartar las sucesiones de Cauchy en U cuyos límites caen en $X\setminus U$; f(x) es muy grande cuando x está cerca de la frontera de U. Entonces añadir |f(x)-f(y)| hace que las sucesiones que convergen en $X\setminus U$ no sean de Cauchy.

1.1.1. Ejercicio 8

Sean X y Y espacios. Considere la función $e: X \times C(X,Y) \to Y$ tal que $e(x,\phi) = \phi(x)$. Sea d una métrica para Y y dote a C(X,Y) de la correspondiente topología uniforme. Demuestre que e es continua.

Demostración. Sea $A \subseteq_{ab} Y$. Veamos que $e^{-1}(A)$ es abierto en $X \times C(X,Y)$. Sea $(x_0,\phi_0) \in e^{-1}(A)$. Sea V una vecindad de x_0 tal que $\phi_0(V) \subseteq A$ y defina $\varepsilon = \sup\{\overline{d}(\phi_0(x),a) \mid a \in A, x \in V\}$ y considere el conjunto:

$$W = \{ \varphi \in C(X, Y) \mid \overline{\rho}(\varphi, \phi_0) < \varepsilon \}$$

El conjunto $V \times W$ es una vecindad de (x_0, ϕ_0) en $e^{-1}(A)$ y por lo tanto $e^{-1}(A)$ es abierto. \square

Página 280

Ejercicio 2

Sea (Y, d) un espacio métrico. Sea F un subconjunto de C(X, Y).

 \blacksquare Muestre que si F es finito entonces es equicontinuo.

Demostración. Sea $x_0 \in X$. Dado $\varepsilon > 0$. Para cada $f \in F \subseteq C(X,Y)$ existe una vecindad abierta U_f tal que para todo $x \in U_f$, se tiene $d(f(x), f(x_0)) < \varepsilon$. Considere $V = \bigcap_{f \in F} U_f$. Como F es finito, entonces V es abierto.

■ Muestre que si f_n es una sucesión de elementos de C(X,Y) que convergen uniformemente, entonces la colección $\{f_n\}$ es equicontinua.

Demostración. Sea $x_0 \in X$.sea $\varepsilon > 0$. Tome $f_i \in \{f_n\}$ y llame f al límite de la sucesión de funciones. Entonces:

• Caso 1: $d(f_i(x_0), f(x_0)) < \frac{\varepsilon}{3}$ entonces existe una vecindad V_1 de x_0 tal que si $x \in V_1$ entonces $d(f_i(x), f(x)) < \frac{\varepsilon}{3}$ y además, $d(f(x), f(x_0)) < \frac{\varepsilon}{3}$ y usando la desigualdad triangular, se tiene

$$d(f_i(x), f_i(x_0)) < d(f_i(x), f(x)) + d(f(x), f(x_0)) + d(f_i(x_0), f(x_0)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

• Caso 2: $d(f_i(x_0), f(x_0)) \geq \frac{\varepsilon}{3}$. Entonces, como f_n converge uniformemente, el conjunto $F' = \{f_j \in \{f_n\} \mid (f_j(x_0), f(x_0)) \geq \frac{\varepsilon}{3}\}$ es finito, por el ejercicio anterior, existe una vecindad abierta V_2 de x_0 tal que si $x \in V_2$, entonces $d(f_i(x), f_i(x_0)) < \varepsilon$ para todo $f_i \in F'$.

Tome $V = V_1 \cap V_2$. Entonces dado $\varepsilon > 0$, si $x \in V$ y $f_i \in (f_n)$ entonces $d(f_i(x), f_i(x_0)) > \varepsilon$. Claramete, como V_1 es abierto, V_2 es abierto y $x_0 \in V_1$, $x_0 \in V_2$, entonces V es abierto no vacío.