

Nyhavna – et nabolag med systemsmart energiforsyning

Hovedresultater fra arbeidet, inkludert klimagassberegninger - 12.9.2024 Hanne Kauko, August Brækken, Magnus Askeland – SINTEF Energi

Innhold

- Oversikt
 - Energibehov
 - Scenariene for varmeforsyning
 - Scenariet for lokal produksjon av strøm
 - Metodikk: modellering med Integrate
- Datainnput
- Resultater
 - Økonomi
 - Energi
 - Klimagassutslipp
- Konklusjoner

Bygingsmassen og energibehov

Planlagt bygningsmasse: 427 751 m²

• Leiligheter: 313 500 m²

• Forretning: 114 251 m²

Estimert energibehov med PROFet¹

	Årlig total [GWh]	Max [MWh/h]
Termisk	34.6	9.7
Elektrisk	26.4	4.1

¹Verktøy utviklet av SINTEF Community.

https://fagpressenytt.no/artikkel/utviklingen-av-profet-gir-resultater

Scenarier: Varme

Scenario 0: Reference (no local production)

85/45 °C 10/16 °C **Energy central** District heating 95/50 °C

Scenario A: Medium temperature

Scenario B: Low temperature

Scenarier: Strøm

Trondheim Kommune, Asplan Viak (2021). Nyhavna som nullutslippsområde.

- PV-scenario: Maks utnyttelse uten å utforme bygget med tanke på solceller
 - Årlig produksjon: 14 GWh
 - Effekttopp eksport: 12.5 MW
 - Areal: 52 000 m² på tak + 51 000 m² på fasader
- Batterier
 - Liten: 1 MWh, maks ladeeffekt: 560 kW
 - Tilsvarer Norges største nettbatteri per i dag (Skagerak Arena), på størrelse med en standard 40-fots container
 - Medium: 10 MWh, maks ladeeffekt: 1500 kW
 - Tilsvarer en større sentral batteriinstallasjon

Modellering av energisystemet

Varmepumpe_STES

STES

Integrate: driftsoptimalisering og investeringsplanlegging

• En byggefase = et lastepunkt

Energibehov modellert med PROFet-grensesnittet

Energiforsyning: varme, kulde og strøm

DATAINPUT

Bygningsmasse og utetemperatur

Energibehov er beregnet med PROFet i Integrate ved bruk av gitte data for bygningsmassen og utetemperatur i de ulike sesongene.

DO	Navn	Bolig (BRA)	Næring (BRA)	Totalt (BRA)	Beskrivelse	Kategori i PROFet (næring)
1	Brannstasjonen	5 155	17 540	22 695	Næringsbygg, brannstasjon	Office
2	Hotelltomta	12 750	26 650	39 400	Hotell og kontor	Hotel, Office
3	Dora I	1	9 863	9 864	Eksisterende	Office
4	Dora II	16 389	2 685	19 074	Urban utnyttelse med både bolig og næring	Culture, sport
5	Strandveikaia sør	17 858	4 402	22 260	Hovedvekt på boligformål; bydelstorg, mobilitetspunkt	Shop
6	Kullkranpiren	51 329	1 955	53 284	Overvekt av boliger, næring	Shop
7	Ladehammerkaia sør	49 860	221	50 081	Bolig med næring på bakkeplan, barnehage	Kindergarten
7b	Ladehammerkaia nord	8 372	1	8 373	Bolig	-
8	Båtmannsgata	62 640	29 840	92 480	Urban utnyttelse med både bolig og næring	Office
9	Transittgata	76 695	7 430	84 125	Bolig med innslag av næring på bakkeplan, barnehage	Kindergarten
10	Havna	0	0	0	Strandpromenade	-
11	Strandveikaia nord	20 372	1 420	21 792	Hovedvekt på boligformål	Shop
	Totalt	321 421	102 007	423 428		

Sesonglager

• Kapasitet:

Ladet varme: 34 GWh

- Utladet varme: 30 GWh

• Størrelse:

- 300 brønner, med dybde på 200 m
 hver
- Ytelse modellert av Asplan Viak

Investeringene

	Scenario		Kapasitet/ størrelse	Antall	Investering [MNOK]	Driftskostnad [MNOK/år]	Levetid [år]	
	Ref	MT	LT					
Energisentral, inkl. varmepumpe (sjøvann/STES)		X	X	10 / 7 MW (MT / LT)	1	150 / 105 (MT / LT)	6 / 4.2 (MT / LT)	25
Nærvarmenett	Х	X	X	4500 m	1	38.3 / 45.0 (Ref&MT / LT)		50
Kundesentraler	Х	X	Х		60	15.0 / 17.3 (Ref&MT / LT)		30
Tappevanns- varmepumper			X	40 kW	60	36	1.44	20
Akkumuleringstanker			Χ	1.41 MWh	60	5.78		30
Sesonglager		Χ	Χ	30 GWh	1	42		60
Solceller		Χ	Χ					30
Batterier (lite/stort)		(X)	(X)	1 / 10 MWh	1	3.83 / 27.25		25

Energikostnader

Strøm

Fjernvarme

RESULTATER – ØKONOMI

Investeringsanalyse

	Drift [MNOK/år]	Investering [MNOK/år]	Total [MNOK/år]	Reduksjon fra referanse
Referanse	33.28	3.23	36.51	-
МТ	20.78	15.69	36.47	-0.1 %
LT	19.90	16.07	35.98	-1.5 %

RESULTATER - ENERGI

Totale årlige energibehov & topplastbehov

Figurene viser utvikling i årlig totalt behov (til venstre) og topplastbehov (til høyre) for strøm og fjernvarme på Nyhavna fram mot 2045 - uavhengig av scenario for energiforsyning.

Levert energi

Figurene viser utvikling i årlig levert energi for strøm og fjernvarme i de ulike scenariene.

Lever effekt i den kaldeste perioden

Figurene viser utvikling i årlig topplastbehov for strøm og fjernvarme i de ulike scenariene.

Energibalanse for varme og strøm for siste planleggingsperiode

Årlig varmebalanse for varme i GWh/år

		REF	MT	LT
Behov	Romoppvarming	19.1	19.1	19.1
	Tappevann	14.5	14.5	10.9
	Lading av STES	0	34.0	34.0
	Sum	33.6	67.7	64.1
Tilførsel	Fjernvarme	35.1	12.4	12.0
	Sjøvanns-VP HT	0	22.2	22.2
	Sjøvanns-VP LT	0	8.2	5.4
	Sesonglager-VP	0	26.0	24.7
	Tappevanns-VP	0	0.0	0.0
	Sum	35.1	68.8	64.3
	Varmetap (%)	4.5%	3.3%	0.9%
	GWh	1.5	1.1	0.3

Årlig energibalanse for strøm i GWh/år

		REF	MT	LT
Behov	Bygninger	27.5	27.5	27.5
	Kjølenett	0.06	0.1	0.1
	Elbiler	4.3	4.3	4.3
	Sjøvanns-VP HT	0	11.9	11.9
	Sjøvanns-VP LT	0	3.5	1.7
	Sesonglager-VP	0	4.9	1.6
	Tappevanns-VP	0	0.0	3.6
	Pumpe varmenett	0.04	0.09	0.16
	Sum	31.9	52.3	50.8
Tilførsel	Strømnett	31.8	38.8	37.4
	PV	0	14.3	14.3
	Eksport PV	0	0.8	0.8
	Sum (minus eksport)	31.8	52.3	50.8

Energiforsyning per time og sesong: mellomtemperatur-scenario

Time [h]

Energiforsyning per time og sesong: lavtemperatur-scenario

Time [h]

Vintertopplast-uke

Vår

Sommertopp

Energisamspill i LT-scenariet

Figurene illustrerer fleksibel produksjon av tappevann i vår og sommertopplast-ukene med tappevannsvarmpumpe og – lagring, hensyntatt strømprisene og tilgjengelig solenergi.

Vår

Sommertopplast

RESULTATER – KLIMAGASSUTSLIPP

Utslippsfaktorer

- Basert på Norsk Energi sin rapport «Klimaregnskap for fjernvarme 2020 "
 - El Norsk forbruksmiks: 18 gCO₂/kWh
- Produksjonsmiks for fjernvarme
 - Sesongbasert fordeling basert på tidligere data fra Statkraft Varme
 - Innslag av fossil olje i første planleggingsperiode, men denne fases ut med bio-olje de neste planleggingsperiodene
 - Varmeproduksjon med varmepumpe: COP 3
- Utslippsfaktor bio-olje 2 scenarier
 - 50/50 med/uten bærekraftkriterier: 147,5 gCO₂/kWh
 - Med bærekraftskriterier: 4 gCO₂/kWh

Z	
• N	Research Centre on ZERO EMISSION NEIGHBOURHOODS IN SMART CITIES

	Energibærer*	Forbrenning	Produksjon og transport"	Totalt
	Elektrisitet, norsk forbruksmiks, NO	18	NA	18
	Elektrisitet, europeisk forbruksmiks, EU28+NO	136	NA	136
	Lettolje	265	21	286
	Tungolje	284	21	306
	LPG	233	39	271
	Naturgass (LNG)	201	40	241
ANBEFALTE	Naturgass (tørrgass)	202	40	242
FAKTORER gCO ₂ e/kWh	Energivekster	0	28	28
gCO2e/kWn	GROT og stubber	0	7	7
	Skogsflis	0	9	9
	RT-flis	0	3	3
	Bark og spon	0	5	5
	Pellets og trepulver	0	13	13
_	Briketter	0	15	15
	Bioolje (med bærekraftskriterier)	0	4	4
	Bioolje (uten bærekraftskriterier)	287	4	291
	Biogass fra org. komm. avfall	0	11	11
	Biogass fra flytende gjødsel	0	18	18
	Biogass fra fast gjødsel	0	14	14
	Spillvarme fra industri og avfallsforbrenning	0	0	0
	T(

Torstensen, S. (2020). <u>Klimaregnskap for fjernvarme 2020</u>. Rapport fra Norsk Energi på oppdrag av Norsk Fjernvarme.

Resulterende utslippsfaktor for fjernvarme per sesong og periode

50/50 med/uten bærekraftkriterier for bio-olje

Med bærekraftkriterier for bio-olje

gCO ₂ /kWh	Vinter	Vår	Sommer	Høst	Vinter- peak
2025-2030	27.5	3.8	0.9	3.8	76.7
2030-2035	26.8	3.8	1.1	3.8	65.1
2035-2045	26.8	3.8	1.1	3.8	65.1

gCO ₂ /kWh	Vinter	Vår	Sommer	Høst	Vinter- peak
2025-2030	11.72	2.32	0.9	2.32	32.19
2030-2035	3.82	2.32	1.08	2.32	4.83
2035-2045	3.82	2.32	1.08	2.32	4.83

Resultater klimagassutslipp for energiforsyning – varme og el

Resultater kommer fra

- Mer bruk av fjernvarme i vinteren og mindre bruk av strøm i referansescenario (se slide 18 med energibalanser)
- Mer bruk av strøm til varmepumper i MTvs. LT-scenario

NB!

- Dette er resultat av antakelsene gjort for utslippsfaktorer, se forrige slide
- Sesongbaserte utslippsfaktorer for strøm ikke tatt i betraktning
- Ingen reduksjon i utslipp fra eksport av varme/strøm

50/50 med/uten bærekraftkriterier for bio-olje

Mellomtemperatur

Lavtemperatur

Referansescenario

200

0

Konklusjoner

- Kostnader
 - Lavest totalkostnad: sesonglager med lavtemperatur-distribusjon
 - Lite forskjell mellom lav- og mellomtemperaturscenario innenfor usikkerheten i investeringskostnadene
 - Høyest totalkostnad : referansescenario
 - Lite forskjell i totalkostnad, men store forskjeller i driftskostnader
- Lav turtemperatur gir
 - Mer effektiv utnyttelse av sesonglageret, slik at området kan være selvforsynt med oppvarming i hele fyringssesongen
 - Effektiv drift av varmepumper, som minimerer etterspørselen for strøm;
 - Fleksibel drift på timenivå gjennom varmtvannsvarmepumpene og -tankene i bygningene
- Med prisene brukt for strøm og fjernvarme var det ikke kostnadsoptimalt å lade sesonglageret med overskuddsvarme fra avfallsforbrenning importert gjennom fjernvarmenettet alene.
- Klimagassberegninger
 - Resultatene svært avhengige av valget av utslippsfaktorer for strøm og fjernvarme!

THANK YOU!

