

Giulia Clementi

Imaging e visualizzazione 3d di circuiti cerebrali del primate trattati con clarity

Corso di informatica biomedica

Indice dei contenuti

- * Introduzione: contesto, applicazioni e problematiche;
- * Visualizzazione 3d: ViSUS & LAR framework;
- Tecniche istologiche;
- * Risultati.

Introduzione

Contesto ed applicazioni

- * Neuroscienze;
- * Neuro-anatomia;
- Connettoma;
- Studio di patologie come autismo, schizofrenia, depressione, ansia;
- * Ambliopia;
- * Tracciamento automatico delle connessioni.

Neurotracker - ViSUS

Problematiche

- * Grandi dimensioni e complessità del cervello del primate rispetto a quello del topo;
- * Mole massiva di dati;
- * Lunghi tempi di acquisizione;

Esempio

- Corteccia visiva primaria (V1)
- * Diametro del sito di iniezione: 1mm
- Assoni marcati: 60mm³
- * Z-risoluzione: 1μm
- Imaging di un volume di 5mm³:
 - * tempo: 96 ore
 - * dati generati: 130GB
- Imaging di un volume di 60mm³:
 - * tempo: 19 giorni
 - * dati generati: 1.6TB

Visualizzazione 3D

ViSUS framework

- Analisi e visualizzazione in streaming;
- Approccio progressivo;
- Visualizzazione "on-the-fly";
- * Accesso di dati da remoto;
- * Gestione semplice ed interattiva simultanea da parte di differenti utenti;
- In futuro, possibilità di visualizzare i dati durante l'acquisizione;

LAR framework

- Immagini a massima risoluzione;
- * Modelli esatti, privi di errore di calcolo;
- * Semplificazione.

Tecniche istologiche

CLARITY

"Transformation of intact biological tissue into a hybrid form in which specific components are replaced with exogenous elements that provide new accessibility or functionality."

– Chung, K.; Wallace, J.; Kim, S. Y.; Kalyanasundaram, S.; Andalman, A. S.; Davidson, T. J.; Mirzabekov, J. J.; Zalocusky, K. A.; Mattis, J.; Denisin, A. K.; Pak, S.; Bernstein, H.; Ramakrishnan, C.; Grosenick, L.; Gradinaru, V.; Deisseroth, K. (2013). "Structural and molecular interrogation of intact biological systems". Nature **497** (7449): 332–337.

Tecniche di colorazione

- Colorazioni istologiche;
- * Immunoistochimica;
- Immunofluorescenza;
- * Immunogold;

Fig. Colorazione con ematossilina-eosina.

Green Fluorescent Protein - 1GFP

Marcatura fluorescente

- Tecnica che non prevede necessariamente fissazione ed è compatibile con tessuti vivi;
- * Medusa Aequorea victoria;
- Emette un fotone nella regione verde dello spettro di luce;
- * Struttura:
 - * primaria: 238 amminoacidi;
 - * secondaria: 11 foglietti beta e 2 alfa elica
 - * dominio: beta barile

Virione

- * Materiale genetico costituito da DNA o RNA, lunghe molecole che trasportano le informazioni genetiche;
- *Rivestimento proteico, chiamato capside, che circonda e protegge il materiale genetico;
- *In alcuni casi, sacca di lipidi che circonda il rivestimento proteico.

Ciclo litico e lisogeno

Virus adeno-associati

- * Piccolo (25 nm);
- Elica a singolo filamento di DNA;
- * Due tipi di geni:
 - cap: proteine del capside;
 - * rep: proteine per replicazione ed integrazione;
- * Struttura capside: icosaedrico;
- Virus difettivi: non sono in grado di replicarsi in assenza di virus helper (Adenovirus o Herpesvirus);
- In presenza di virus helper, ciclo litico, con produzione di virioni; in assenza integrazione fino a superinfezione con AV o HSV;
- Capacità di infettare sia cellule in divisione che non;
- Assenza apparente di patogenicità;
- * 11 sierotipi noti;
- * Ogni sierotipo infetta più tessuti diversi.

AAV sierotipo 9

- * Esprime proteine fluorescenti all'interno dei neuroni infettati;
- * In grado di attraversare le barriere venose nel cervello per etichettare il SNC;
- * Virus geneticamente modificato:
 - * Eliminazione dei geni cap e rep per replicazione del DNA e assemblaggio del capside, per evitare la lisi e creare spazio per l'inserto di DNA esogeno;
 - * Il DNA esogeno elimina la necessità di infettare la cellula con Adenovirus helper.

Altre fasi di preparazione

- * Fissazione: previene la decomposizione dei tessuti;
- Disidratazione;
- * Sezionamento tramite:
 - * microtomo: 4μm;
 - * ultramicrotomo: fino a poche decine di nm.

Microscopia di fluorescenza

- * A due fotoni;
- * Risoluzione: fra i 10 e i 50 nm.

Memorizzazione dei dati

- Pila di immagini 2D, dove ogni immagine è una griglia di pixel pieni o vuoti;
- * Problematiche dovute alla presenza di rumore nei dati.

Limiti dell'approccio

- * Microtomo;
- * Risoluzione;
- * Tempi di acquisizione;
- * Mole di dati;
- * Potenza di calcolo.

Risultati

Bibliografia

- * C. CHRISTENSEN, F. FEDERER, A. GOOCH, S. MERLIN, V. PASCUCCI, A. ANGELUCCI, Large scale imaging and 3d visualisation of long-range circuits in clarity-treated primate visual cortex;
- * G.CLEMENTI, D. SALVATI, G. SCORZELLI, A. PAOLUZZI, V. PASCUCCI, Progressive extraction of neural models from high-resolution 3D images of the brain;
- * V. PASCUCCI, G. SCORZELLI, B. SUMMA, P. T. BREMER, A. GYULASSY, C. CHRISTENSEN, S. PHILIP, S. KUMAR, *The Visus Visualization Framework*.

Grazie per l'attenzione!