Stats 231A - Machine Learning

University of California, Los Angeles

Duc Vu

Fall 2021

This is stats 231A – an intro graduate level course on **Pattern Recognition and Machine Learning** taught by Professor Wu. We meet weekly on TR from 3:30 pm to 4:45 pm for lecture. Other course notes can be found at my blog site. Please let me know through my email if you spot any typos in the note.

Contents

	Lec 1: Sep 28, 2021 1.1 Modes of Learning	2 2
Li	ist of Theorems	
${f L}_{f i}$	ist of Definitions	

$\S1$ Lec 1: Sep 28, 2021

§1.1 Modes of Learning

Table 1: Supervised Learning

Table 2: Unsupervised Learning

Representation Learning:

supervised

This is known as thought vector, features, base learners, or hidden variables.

Each argument in unsupervised learning is known as latents, code, embedding. The decoding part also requires generative model (auto-encoder). Reinforcement Learning

$$s_0 \to \dots \to \underbrace{s_t \xrightarrow{a_t}}_{r_t(\text{reward})} s_{t+1} \underbrace{\xrightarrow{a_{t+1}}}_{r_{t+1}+\dots}$$

where s represents state and a stands for action and

policy:
$$\pi(a|s)$$

value: $v(s) = E(r_t + r_{t+1} + ... | s_t = s)$

Supervised Learning: Consider regression problems where y_i is continuous or in classification where y_i is categorical binary (+/-, 1/0)

• Regression:

$$y_i \sim N(s_i, \sigma^2)$$

 $s_i = f(x_i)$

• Classification:

$$p_i = p_r (y_r = 1 | x_i) = \frac{e^{s_i}}{1 + e^{s_i}}$$
$$= \frac{1}{1 + e^{s_i}} = \text{sigmoid}(s_i)$$

Before logistic regression, we also have perceptron (non-probabilistic)

$$\hat{y}_i = \operatorname{sign}(s_i) = \begin{cases} 1 & \text{if } s_i \ge 0 \\ 0 & \text{if } s_i < 0 \end{cases}$$

Consider the linear model

$$s_i = \beta_0 + \sum_{j=1}^p \beta_j X_{ij}$$

where β_0 is the bias and β_1, \ldots, β_p are the connection weights. We can use this for linear regression. One hidden layer:

$$s_i = f(x_i)$$

$$= h_i^{\top} \beta$$

$$= h(x_i)^{\top} \beta$$

We can divide R into different partitions where $h_{ik} = 1(x_i \in R_k)$ and $h_{ik} = \text{tree}$.

classification tree
$$\longrightarrow$$
 adaboost regression tree \longrightarrow XGB

Kernel:

$$k(x, x') = \langle h(x), h(x') \rangle$$

where k is explicit.

Two Layer Neural Network:

$$s_i = \sum_{k=1}^d \beta_k h_{ik}$$

$$h_{ik} = r \left(\sum_{j=1}^p d_{kj} x_{ij} \right)$$

$$= \text{Relu} \left(\sum_{j=1}^p d_{kj} x_{ij} \right) = \max \left(0, \sum_{j=1}^p d_{kj} x_{ij} \right)$$

1D:

$$s = \beta_0 + \sum_{k=1}^{d} \beta_k \max(0, x - a_k)$$

This can be very flexible and it can be used to approximate any nonlinear function (by piecewise linear function/line). For β_k (curvature),

$$\underbrace{\left|\beta\right|_{l_2}^2}_{\text{smoothness}} = \sum_{k=1}^d \beta_k^2$$

2D:

$$h_k = \max(0, \alpha_{k_1} x_1 + \alpha_{k_2} x_2 - b_k)$$