Eksploracja tekstu i wyszukiwanie informacji w mediach społecznościowych

LABORATORIUM 9

- Model word2vec
- Model GloVe

Model word2vec

Jednym z częstych zagadnień związanych z text mining jest budowa tzw. word embedding, czyli sposobu reprezentacji wyrazów w postaci liczbowej. W pewien sposób mówliśmy już o tym, kiedy rozpatrywaliśmy model przestrzeni wektorowej - jest to jednak bardzo ograniczona rezprezentacja.

Semantyka dystrybucyjna znalazła w ostatnich latach szerokie zastosowanie w rozwiązywaniu szeregu zadań związanych z przetwarzaniem języka naturalnego. U jej podstaw leży hipoteza, że słowa występujące w podobnych kontekstach w dużych zbiorach danych tekstowych mają **podobne znaczenie**. Znaczenia słów reprezentowane są przez wektory liczbowe.

Jednym z bardziej popularnych przykładów, należącym do tej grupy metod jest ${\bf word2vec}$, stworzony przez Tomasa Mikolova z Google ok. 5 lat temu. Podejście to może wykorzystywać dwie różne techniki: ${\bf CBOW}$ - Continuous Bag of Words oraz ${\bf Skip\text{-}Gram}$. Teoretycznie metody są algorytmicznie identyczne, oprócz tego, że CBOW przewiduje kluczowe słowo na podstawie kontekstu np. ``cat sits on the ${\bf mat}$ ", a Skip-Gram odwrotnie. Word2vec używa sieci neuronowej z pojedynczą warstwą jako podstawowej architektury, ale jako ogólny wskaźnik używane jest po prostu prawdopodobieństwo $p(w_t|h)$ słowa w_t pod warunkiem historii (otoczenia) h, które jest wyznaczane przy użyciu metody największej wiarygodności.

Model GloVe

GloVe, czyli **Global Vectors for Word Representation** jest datującą się na rok 2014 techniką zaproponowaną przez naukowców ze Stanford University i opierającą się na następującym algorytmie:

- wykonaj statystykę współwystepowania słów i zapisz ją w postaci macierzy \mathbf{X} ; zwykle korpus jest skanowany w taki sposób, że szukmay słów kontekstowych w pewnym oknie zarówno przed jak i po interesującym nas słowie; zwykle też dalsze słowa wchodzą z mniejszą wagą np. w=1/przesunięcie
- zdefiniuj więzy dla każdej pary słów występującej w macierzy \mathbf{X} jako $\mathbf{w}_i^T \mathbf{w}_j + b_i + b = \log X_{ij}$, gdzie \mathbf{w}_i to wektor głównego słowa, a \mathbf{w}_j to wektor słowa z kontekstu, natomiast b_i , b_j to skalary

$$ullet$$
 zdefinuj fukcję kosztu $J = \sum\limits_{i=1}^V \sum\limits_{j=1}^V f(X_{ij}) (\mathbf{w}_i^T \mathbf{w}_j + b_i + b - \log X_{ij})^2$,

przy czym $f(X_{ij})$ jest pewną funkcją ważącą, zapobiegającą uczeniu się jedynie od najczęściej wystepujących słów. Funkcja zostało zaproponowana jako $f(X_{ij})=(X_{ij}/x_{max})^{\alpha}$ dla $X_{ij}< x_{max}$ i $f(X_{ij})=1$ w przeciwnym razie.

Rozpoczynamy od zainstalowania pakietu **text2vec** (co może trochę potrwać), a następnie pobiramy plik potrzebny do analiz - uwaga, dane mają ok. 100MB!

```
# PRZYKŁAD 9.1

library(text2vec)
file.name <- "http://www.if.pw.edu.pl/~julas/TEXT/lab/text8"
file.in <- readLines(file.name, n = 1, warn = FALSE)</pre>
```

Wykorzystywany tekst jest wczytywany, a następnie usuwane są najrzadsze oraz naczęstsze słowa.

```
# PRZYKŁAD 9.2
tokens <- space tokenizer(file.in)</pre>
tokens[[1]][1:10]
                  "anarchism" "originated" "as"
## [1] ""
                  "of" "abuse" "first" "used"
## [6] "term"
it <- itoken(tokens, progressbar = FALSE)</pre>
vocab <- create vocabulary(it)</pre>
vocab
## Number of docs: 1
## 0 stopwords: ...
\#\# ngram min = 1; ngram max = 1
## Vocabulary:
##
               term term count doc count
      1: piagarmi 1
##
##
      2: manganiyar
                            1
                                      1
                            1
##
      3: yavne
                                       1
##
      4: aroostock
                            1
                                      1
      5: stollwerck
##
                            1
                                       1
      ---
##
## 253850: in 372201
## 253851: one 411764
## 253852: and 416629
                                       1
                                       1
                                       1
## 253853:
                of
                       593677
                                       1
## 253854: the 1061396
```

```
vocab <- prune_vocabulary(vocab, term_count_min = 5L)</pre>
```

Kolejnym krokiem jest stworzenie macierzy współwystępowania słów, opartej na wspomniane wcześniej ruchome okno - wartośc wynosi 5, co oznacza, że wejdzie do niego po 5 słów z lewej i prawej strony wyrazu.

```
# PRZYKŁAD 9.3
vectorizer <- vocab_vectorizer(vocab)
tcm <- create_tcm(it, vectorizer, skip_grams_window = 5L)
options(max.print = 1000)
tcm</pre>
```

```
## 71290 x 71290 sparse Matrix of class "dgTMatrix"
##
   [[ suppressing 29 column names 'kentauros', 'tornatore', 'phantastica' ... ]]
   [[ suppressing 29 column names 'kentauros', 'tornatore', 'phantastica' ... ]]
##
##
## kentauros
## tornatore
                 ## phantastica
## steinhoff
          ## minthe
                 ## jizyah
## pommern
## iconodules
## palas
          . . . .
## splinters
          . . . .
## nears
## cashed
## dimasi
                 . . . .
## yisra
                 . . . .
## mistranslated . . . .
                 ## adenocarcinoma . . . .
## cheetham
                 ##
##
 .....suppressing columns and rows in show(); maybe adjust 'options(max.print= *
, width = *)'
##
  [[ suppressing 29 column names 'kentauros', 'tornatore', 'phantastica' ... ]]
##
```

```
##
## three . . . .
## s
## for
## as
         ## is
## two
  ## zero . . . . . . . . . . . . .
## to
## a
  ## in
## one
## and
## of
## the
```

Wreszcie przechodzimy do samego uruchomienia algorytmu, ustawiając rozmiar wektora na 50 elementów

```
# PRZYKŁAD 9.4

glove_model <- GlobalVectors$new(word_vectors_size = 50, vocabulary = vocab, x_max = 1
0)
words_main <- glove_model$fit_transform(tcm, n_iter = 10, convergence_tol = 0.01)</pre>
```

```
## INFO [2019-01-07 06:23:09] 2019-01-07 06:23:09 - epoch 1, expected cost 0.0880
## INFO [2019-01-07 06:23:24] 2019-01-07 06:23:24 - epoch 2, expected cost 0.0614
## INFO [2019-01-07 06:23:39] 2019-01-07 06:23:39 - epoch 3, expected cost 0.0542
## INFO [2019-01-07 06:23:54] 2019-01-07 06:23:54 - epoch 4, expected cost 0.0502
## INFO [2019-01-07 06:24:11] 2019-01-07 06:24:11 - epoch 5, expected cost 0.0477
## INFO [2019-01-07 06:24:28] 2019-01-07 06:24:28 - epoch 6, expected cost 0.0459
## INFO [2019-01-07 06:24:44] 2019-01-07 06:24:44 - epoch 7, expected cost 0.0445
## INFO [2019-01-07 06:24:59] 2019-01-07 06:24:59 - epoch 8, expected cost 0.0434
## INFO [2019-01-07 06:25:15] 2019-01-07 06:25:15 - epoch 9, expected cost 0.0425
## INFO [2019-01-07 06:25:30] 2019-01-07 06:25:30 - epoch 10, expected cost 0.0418
```

Na wyjściu otrzymujemy tak naprawdę dwa wektory \mathbf{w}_i oraz \mathbf{w}_j - teoretycznie powinny byc symetryczne. W praktyce wykorzystuje się średnią lub ich sumę.

```
# PRZYKŁAD 9.5

words_components <- glove_model$components

W <- words_main + t(words_components)

options(max.print = 1000)

round(W, 3)</pre>
```

##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	
##	kentauros	0.325	-0.013	0.071	0.146	0.683	0.187	
##	tornatore	-0.384	-0.477	-0.169	0.817	0.279	0.116	
##	phantastica	0.024	-0.420	0.169	0.771	0.277	-0.440	
##	steinhoff	0.074	-1.078	0.093	-0.416	0.680	-0.837	
##	minthe	0.346	-0.616	0.126	1.045	-0.006	0.485	
##	jizyah	-0.167	-0.437	0.550	0.481	0.307	-0.120	
##	pommern	-0.473	0.073	0.512	0.302	-0.497	0.238	
##	iconodules	0.267	0.001	0.095	-0.178	-0.190	-0.622	
##	palas	0.274	0.716	-0.064	-0.314	0.462	-0.048	
##	splinters	-0.042	-0.426	1.159	0.041	0.002	-0.161	
##	nears	-0.151	0.060	0.305	0.060	0.259	0.028	
##	cashed	0.072	-0.526	0.286	0.425	0.637	0.253	
##	dimasi	0.640	-0.681	-0.124	0.010	0.433	0.291	
##	yisra	-0.996	0.364	-0.341	0.675	-0.031	-0.677	
##	mistranslated	-0.733	-0.014	0.046	0.053	-0.262	-0.800	
##	adenocarcinoma	0.319	-0.535	-0.358	0.356	0.113	0.122	
##	cheetham	0.104	0.292	0.311	1.217	-0.490	-0.187	
##	cowbell	0.009	-0.710	-0.276	0.680	0.060	0.010	
##	wallerstein	0.701	-0.137	0.315	-0.019	0.832	-0.808	
##	bluie	0.621	0.050	-0.389	0.047	0.027	0.661	
##					[,10]			
##	kentauros	0.225	-0.095	-0.136	-0.180	-0.213	-0.010	
##	tornatore	-0.327	-0.127	0.125	-0.034	0.401	-0.319	
##	phantastica	0.003	0.245	-0.112	-1.028	0.316	-0.130	
##	steinhoff	-0.466	0.117	-0.054	0.000	0.635	-0.682	
##	minthe	-0.033	-0.091	0.650	-0.818	0.272	0.086	
##	jizyah	0.622						
	pommern				-0.176			
##	iconodules	0.366	0.312	-0.094	-0.595	0.189	-0.177	
##	palas	-0.031	0.587	0.420	-0.456	-0.487	-0.161	
##	splinters	-0.402	0.417	-0.551	0.114	0.515	-0.431	
##	nears	-0.115	0.232	1.087	-0.401	0.427	0.005	
##	cashed	0.101	0.337	0.086	-0.302	-0.103	-0.900	
##	dimasi	0.371	0.637	-0.407	-0.353	1.087	-0.267	
##	yisra	0.701	0.289	0.930	0.275	0.695	-0.306	
##	mistranslated	0.301	0.293	0.658	0.166	0.289	0.175	
##	adenocarcinoma	0.539	-0.373	0.104	0.813	0.526	-0.742	
##	cheetham	0.881	0.438	0.903	-0.420	1.140	-0.748	
##	cowbell	-0.594	-0.223	-0.657	-0.093	0.517	0.122	
##	wallerstein	0.521	0.209	-0.308	0.049	0.847	-0.029	
##	bluie	-0.241	-0.188	0.140	0.424	0.597	-0.294	
##		[,13]	[,14]	[,15]	[,16]	[,17]	[,18]	
##	kentauros				-0.291			
##	tornatore	-0.313	0.870	-0.367	-0.559	1.004	-0.637	
##	phantastica	-0.955	0.462	-0.561	-0.166	0.110	-0.750	
	steinhoff				-0.051			
	minthe				0.936			
	jizyah				-0.428			
	pommern				-0.383			

##	iconodules	-0.268	0.323	-0.019	0.532	0.208	-1.128
##	palas	-0.730	0.115	-0.334	-0.281	0.843	-0.260
##	splinters	0.409	0.687	-0.175	0.151	0.054	-0.494
##	nears	0.089	0.506	-0.435	-0.247	-0.978	-0.299
##	cashed	-0.512	-0.002	-0.067	-0.242	0.214	-0.618
	dimasi	-0.577	-0.251	-0.886	-0.113	-0.019	-0.208
##	yisra	0.088	0.920	-0.549	0.488	0.039	-0.587
##	mistranslated	-0.814	0.195	0.119	0.270	-0.235	-0.715
##	adenocarcinoma	-0.259	-0.158	-0.682	-0.028	0.424	-0.457
##	cheetham	0.091	0.495	-0.036	-0.136	0.000	0.653
##	cowbell	-0.577	0.208	-0.576	0.566	-0.025	-0.142
##	wallerstein	-0.595	-0.176	0.608	0.189	0.001	-0.758
##	bluie	0.233	-0.148	-0.526	-0.285	0.054	-0.961
##		-, -				[,23]	
##	kentauros	-0.519	-0.167	-0.946	-0.163	-0.200	-0.555
	tornatore	0.840	-0.089	-0.137	0.378	0.228	-0.793
	phantastica					0.509	
##	steinhoff	0.272	0.014	-0.602	-0.582	-0.074	0.369
	minthe					-0.134	
##	jizyah					-0.332	
	pommern					-0.553	
##	iconodules	-0.351	-0.037	0.290	-0.090	0.308	-0.039
	palas					0.379	
	splinters					0.536	
	nears	-0.012	0.276	-0.701	0.812	-0.072	-0.083
	cashed	-0.862				0.105	
	dimasi	-0.675				-0.509	
##	yisra	-0.671	0.379	-0.271	-0.477	0.014	-0.900
	mistranslated	-0.567	0.633	-0.951	-0.095	0.324	0.367
	adenocarcinoma	-0.050	0.135	-0.692	0.068	-0.083	0.019
	cheetham	0.276				-0.483	
	cowbell	0.445				-0.503	
	wallerstein					-0.811	0.186
	bluie					1.028	
##						[, 29]	
	kentauros					0.148	
	tornatore					-0.432	
	phantastica	-0.281				-0.203	
	steinhoff					0.104	
	minthe	0.034				-0.390	
	jizyah	0.265				0.029	
	pommern	0.188				0.494	
	iconodules	-0.648				0.200	
	palas		-0.009			-0.482	
	splinters		0.016			-0.307	
	nears					0.176	
	cashed					-0.082	
	dimasi					-0.045	
	yisra					-0.133	
	mistranslated					0.088	
##	adenocarcinoma	-0.129	-0.029	-0.329	-0.052	0.183	0.9/0

##							
11 11	cheetham	-0.330	0.101	0.803	-0.155	-0.058	0.693
##	cowbell	-0.103	0.681	-0.188	-0.616	0.017	0.388
##	wallerstein	0.204	-0.007	0.665	-0.115	-0.488	0.297
##	bluie	-0.323	-0.175	0.340	0.028	-0.249	0.923
##		[,31]	[,32]	[,33]	[,34]	[, 35]	[, 36]
##	kentauros	-0.184	-0.184	0.956	-0.201	0.160	0.502
##	tornatore	-0.403	0.728	0.284	-0.061	-0.510	0.414
##	phantastica	-0.210	0.110	-0.554	-0.746	-0.451	0.428
##	steinhoff	0.180	0.781	0.467	-0.625	0.598	0.230
##	minthe	0.149	-0.650	0.349	0.350	0.139	0.516
##	jizyah	-0.603	0.786	0.227	-0.522	0.286	-0.058
##	pommern	-1.080	0.464	0.419	0.359	0.725	0.137
##	iconodules	0.528	0.789	-0.284	-0.755	-0.145	0.085
##	palas	0.449	0.673	0.331	-0.349	-0.135	0.093
##	splinters	-0.836	-0.532	0.513	-0.380	0.197	0.195
##	nears	-0.043	1.238	0.340	0.129	-0.097	0.141
##	cashed	-0.439	0.327	-0.206	-0.612	0.927	-0.841
##	dimasi	-0.113	0.394	-0.069	0.098	-0.841	-0.059
##	yisra	0.662	0.523	-0.583	0.122	-0.696	0.554
##	mistranslated	-0.490	1.081	-0.392	0.604	0.160	-0.185
##	adenocarcinoma	-0.555	-0.594	0.432	-0.033	0.613	-0.562
##	cheetham	-0.847	0.742	0.104	-0.386	0.031	0.385
##	cowbell	-0.117	-0.081	0.199	0.572	-0.020	0.733
##	wallerstein	-0.333	0.552	0.542	-0.127	-0.159	0.577
##	bluie	0.091	0.901	0.435	-0.014	-0.035	0.116
##		[,37]	[,38]	[, 39]	[,40]	[,41]	[,42]
##	kentauros	0.665	0.397	-0.368	-0.009	0.367	0.273
##	tornatore	-0.317	0.598	-0.125	-0.484	0.518	0.018
##	phantastica	0.872	0.141	-0.733	-0.456	0.306	-0.259
##	steinhoff	0.549	0.621	-0.350	-0.274	0.274	0.245
##	minthe	0.339	0.165	0.420	-0.332	0.850	0.302
##	jizyah	0.980	-0.188	-0.244	-0.197	0.587	0.129
##	pommern	0.038	0.443	-0.073	-0.511	0.029	0.459
##	iconodules	-0.136	-0.493	-0.503	0.075	0.717	0.127
##	palas	-0.164	-0.319	0.160	-1.176	0.583	-0.385
##	splinters	-0.025	0.402	0.347	0.088	0.401	0.091
##	nears	0.708	0.576	-0.185	-0.479	0.308	0.973
##	cashed	-0.220	0.315	-0.108	0.399	0.334	0.251
##	dimasi	0.302	-0.019	0.195	-0.680	1.085	-0.151
##	yisra	0.279	-0.219	-0.621	-0.227	-0.056	0.526
##	mistranslated	0.955	0.361	-0.841	-0.045	-0.108	0.131
##	adenocarcinoma	0.724	0.519	-0.090	-0.162	0.074	-0.035
##	cheetham	0.506	0.462	-0.312	0.411	0.801	0.715
##	cowbell	0.954	-0.171	-0.613	-0.772	0.171	0.329
##	wallerstein	0.119	0.495	-0.268	0.574	0.400	0.101
##	bluie	0.942	1.147	-0.721	-0.129	0.572	-0.206
##						[,47]	
##	kentauros	-0.567	0.605	0.354	-0.505	-0.083	-0.311
	tornatore					0.053	
##	phantastica	-0.484	-0.025	-0.276	0.270	-0.054	-0.127
##	steinhoff	-0.394	-0.427	-0.780	-0.011	0.295	0.261

```
## minthe
                               0.396  0.524  -0.255  -0.131  -0.432  0.440
## jizyah
                              -0.550 0.165 -0.310 -0.481 0.830 0.404
## pommern
                              -0.397   0.438   -0.188   0.181   -0.592   -0.504
## iconodules
                              -0.009 0.707 0.078 -0.267 -0.456 0.395
## palas
                               0.018 0.281 -0.334 -0.720 0.016 0.274
## splinters
                               0.512 0.140 -0.206 0.394 0.229 0.216
                               0.158 -0.362 -0.162  0.614 -0.364  0.965
## nears
## cashed
                               0.090 0.244 0.074 0.549 0.194 0.035
## dimasi
                              -1.080 -0.279 -0.897 0.378 -0.473 0.269
## yisra
                              -0.338 0.472 -0.805 0.789 -0.300 -0.103
                              -0.555 0.017 -0.027 0.048 -0.408 0.613
## mistranslated
                              0.070 0.595 -0.178 -0.216 0.284 0.521
## adenocarcinoma
## cheetham
                              -0.094 -0.146 -0.410 0.753 0.086 -0.099
## cowbell
                               ## wallerstein
                              -0.150 -0.204 -0.239 0.264 0.368 -0.724
## bluie
                              -0.407 0.125 0.220 0.703 -0.293 0.277
                               [,49] [,50]
## kentauros
                               0.475 - 0.755
## tornatore
                              -0.594 -0.324
                              -0.355 -0.300
## phantastica
## steinhoff
                               0.063 -0.161
## minthe
                               0.021 0.062
## jizyah
                               0.162 0.049
## pommern
                              -0.168 -0.548
## iconodules
                               0.006 -0.609
## palas
                               0.025 0.497
## splinters
                               0.071 0.283
## nears
                              -0.192 0.438
## cashed
                               0.135 0.006
## dimasi
                               0.030 -0.156
                               0.383 0.142
## yisra
## mistranslated
                              0.560 -0.214
## adenocarcinoma
                             -0.495 -0.017
## cheetham
                              0.202 -0.011
## cowbell
                               0.401 0.498
## wallerstein
                               0.461 -1.009
                              -0.314 - 0.174
## [ reached getOption("max.print") -- omitted 71270 rows ]
```

W tym momencie dysponujemy już w pełni nauczonym modelem, czyli reprezentacją słów w pewnej 50-wymiarowej przestrzeni. Oczywiście najprostsza rzeczą jest po prostu podanie konkretnego słowa i wypisanie podobieństwa do innych wyrazów, korzystając z cosinusa podobieństwa jako miary.

```
# PRZYKŁAD 9.6

query <- W["student", , drop = FALSE]

cos_sim <- sim2(x = W, y = query, method = "cosine", norm = "12")
head(sort(cos_sim[,1], decreasing = T))</pre>
```

```
## student students school graduate undergraduate
## 1.0000000 0.7621514 0.7508940 0.7284443 0.7018185
## teacher
## 0.6861288
```

```
# PRZYKŁAD 9.7

query <- W["poland", , drop = FALSE]
cos_sim <- sim2(x = W, y = query, method = "cosine", norm = "12")
head(sort(cos_sim[,1], decreasing = T))

## poland russia hungary finland spain italy
## 1.0000000 0.7979293 0.7544698 0.7481203 0.7429340 0.7403539</pre>
```

Jak widać, można w ten sposób otrzymać również zależności geograficzne. Ciekawą cechą tego typu modeli jest to, że skoro operujemy w pewnej przestrzni wektorowej, to w pewnien sposób możemy oczekiwać, że będzie tam działać zykła arytmatyka wektorowa. W szczególności dodawanie i odejmowanie może doprowadzić do ciekawych wyników:

```
# PRZYKŁAD 9.8

query <- W["paris", , drop = FALSE] - W["france", , drop = FALSE] + W["germany", , dro
p = FALSE]
cos_sim <- sim2(x = W, y = query, method = "cosine", norm = "12")
head(sort(cos_sim[,1], decreasing = T))</pre>
```

```
## berlin paris munich germany leipzig dresden
## 0.7578314 0.7458624 0.6459617 0.6394657 0.5938925 0.5883877
```

```
# PRZYKŁAD 9.9

query <- W["man", , drop = FALSE] - W["he", , drop = FALSE] + W["she", , drop = FALSE]

cos_sim <- sim2(x = W, y = query, method = "cosine", norm = "12")
head(sort(cos_sim[,1], decreasing = T))</pre>
```

```
## man woman beautiful my girl child
## 0.8457696 0.8144908 0.6523653 0.6342506 0.6299519 0.6100867
```

I wreszcie chyba najciekawsza cecha, tzw. regularność lingwistyczna. Okazuje się, że tego typu modele zanurzeniowe mogą służyć do wizualizacji pewnych reguł gramatycznych, np. związanych z częsciami mowy etc. Ponieważ pracujemy na 50-wymiarowej przestrzeni, aby wykonac sensowne wykresy musimy wykorzystać metodę skalowania wielowymiarowego.

```
# PRZYKŁAD 9.10

q <- c("see", "saw", "have", "had", "is", "was", "buy", "bought")
z <- cmdscale(dist(W[q,]))
plot(z, pch = 19, cex = 0.8, col = "red", xlab = "pierwszy wymiar", ylab = "drugi wymiar")
text(z, labels = q, pos = 2, font = 2)
invisible(sapply(seq(1, nrow(z) - 1, 2), function(i) arrows(z[i,1],z[i,2],z[i+1,1],z[i+1,2], length = 0.15, col = "blue")))</pre>
```



```
# PRZYKŁAD 9.11

q <- c("king", "queen", "father", "mother", "brother", "sister", "uncle", "aunt")
z <- cmdscale(dist(W[q,]))
plot(z, pch = 19, cex = 0.8, col = "red", xlab = "pierwszy wymiar", ylab = "drugi wymiar")
text(z, labels = q, pos = 2, font = 2)
invisible(sapply(seq(1, nrow(z) - 1, 2), function(i) arrows(z[i,1],z[i,2],z[i+1,1],z[i+1,2], length = 0.15, col = "blue")))</pre>
```



```
# PRZYKŁAD 9.12

q <- c("good", "better", "big", "bigger", "light", "lighter")
z <- cmdscale(dist(W[q,]))
plot(z, pch = 19, cex = 0.8, col = "red", xlab = "pierwszy wymiar", ylab = "drugi wymi ar")
text(z, labels = q, pos = 2, font = 2)
invisible(sapply(seq(1, nrow(z) - 1, 2), function(i) arrows(z[i,1],z[i,2],z[i+1,1],z[i+1,2], length = 0.15, col = "blue")))</pre>
```

