Lecture 10: Deep Sequence Modeling. Recurrent neural networks.

#### **Predictive learning**

- Given an element predict nearby elements (e.g. next, previous, adjacent, etc.)
- Does not require annotated data ("selfsupervised")
- Usually considered as unsupervised, but often works much better than "plain" unsupervised
- Particularly prominent in NLP, but now gaining popularity in many fields

**Today's focus:** sequence modeling, sequence prediction

#### **Predicting sequences matters**









#### Applications:

- Synthesis (text, speech, etc.)
- **Probabilistic** modelling
- Compression



smbc-comics.com

## **Training sequence prediction**

A cat sat on a ma?



Inherently probabilistic: need to predict probabilities over alphabet/lexicon

#### Training sequence prediction

A cat sat on a ma?

Predominantly maximum likelihood learning:

$$\max_{\theta} \sum_{i} \log p_{\theta}(x_{t}^{i} | x_{t-1}^{i}, x_{t-2}^{i}, \dots, x_{1}^{i})$$

Many models go back fixed number of steps:

$$\max_{\theta} \sum_{i} \log p_{\theta}(x_{t}^{i} | x_{t-1}^{i}, x_{t-2}^{i}, \dots, x_{t-N}^{i})$$

Temporal window

#### Fixed window/order architectures

$$p_{\theta}(x_t^i \mid x_{t-1}^i, x_{t-2}^i, \dots, x_{t-N}^i)$$

- N-grams (with smoothing)
- ConvNets (aka TDNNs)
- Any probabilistic classifier (e.g. decision forest, etc.)

NB: using padding for the special symbol (UNK) we can train model for shorter sequences

### Assessing a probabilistic model

1. Train  $p_{\theta}(x_j \mid x_{j-1}, \dots, x_{j-N})$ 

2. Evaluate  $\prod_{j=1}^{n} p_{\theta}(x_j \,|\, x_{j-1}, \dots, x_{j-N})$  on a hold-out set (can be a long text)

Common measure (perplexity):

$$PP(x_1,...,x_M) = \sqrt[M]{\prod_{j=1}^{M} p_{\theta}(x_j | x_{j-1},...,x_{j-N})}$$

- log PP = "bits/nats per token"

## Probabilistic modeling of long sequences

Assume given  $p_{\theta}(x_t^i \mid x_{t-1}^i, x_{t-2}^i, \dots, x_{t-N}^i)$ 

$$p(x_M, x_{M-1}, \dots, x_1) =$$

$$p(x_M | x_{M-1}, \dots, x_1) \cdot p(x_{M-1}, x_{M-2}, \dots, x_1) =$$

$$\prod_{j=2}^{M} p(x_j \mid x_{j-1}, \dots, x_1) \cdot p(x_1) \approx$$

$$\prod_{j=1}^{M} p_{\theta}(x_j \mid x_{j-1}, \dots, x_{j-N})$$

### **ML** categorical sequence generation

Task: draw a sample sequence with high-probability  $\prod_{j=1}^{M} p_{\theta}(x_j \,|\, x_{j-1}, \dots, x_{j-N})$ 

**Option 1:** synthesize one-by-one greedily, picking the symbol with highest probability

$$\hat{x}_j = \arg\max_{x} p_{\theta}(x \mid \hat{x}_{j-1}, \dots, \hat{x}_{j-N})$$

Option 2: beam search

## Why greedy synthesis is suboptimal



**Toy example:** three letters in the alphabet.

**Task:** synthesize most likely three letter word starting from red.

Greedy solution:



Best solution:



## Beam search

|             | IVI                          |                 |
|-------------|------------------------------|-----------------|
| The c?????? | $\prod p_{\theta}(x_j   x_j$ | $x_{j-N}$       |
| The ca????? | j=1 The cat????              | The cat????     |
|             | The cap????                  |                 |
|             |                              |                 |
| The co????? | The cor????                  | The cap????     |
|             | The col????                  |                 |
|             |                              | <b>T</b> I 2222 |
| The ch????? | The cha????                  | The cor????     |

 $\overline{M}$ 

The cho????

#### WaveNet: real-valued sequence modeling



Generating raw waveforms at 16 kHz (very uncommon)

#### WaveNet: dilated ConvNet



Repeated pattern of dilations:

Gated (bilinear) non-linearity:

$$\mathbf{z} = \tanh\left(W_{f,k} * \mathbf{x}\right) \odot \sigma\left(W_{g,k} * \mathbf{x}\right)$$

There are also skip connections

## Synthesis with casual dilated ConvNet



#### **Details of the ConvBlock**



#### WaveNet: speech results

- Trained on 24.6 hours of speech
- Receptive field is 0.24 seconds
- Conditioned on the speaker ID



## WaveNet: piano results



 Trained on 60 hours of piano (from YouTube)



#### Similar ConvNet for sequence modeling



[Bai et al. 2018]

#### ConvNets vs RNNs

|      | Sequence Modeling Task                    | Model Size ( $\approx$ ) | Models |        |        |        |
|------|-------------------------------------------|--------------------------|--------|--------|--------|--------|
| . 30 |                                           |                          | LSTM   | GRU    | RNN    | TCN    |
|      | Seq. MNIST (accuracy <sup>h</sup> )       | 70K                      | 87.2   | 96.2   | 21.5   | 99.0   |
|      | Permuted MNIST (accuracy)                 | 70K                      | 85.7   | 87.3   | 25.3   | 97.2   |
|      | Adding problem $T$ =600 (loss $^{\ell}$ ) | 70K                      | 0.164  | 5.3e-5 | 0.177  | 5.8e-5 |
|      | Copy memory $T=1000$ (loss)               | 16K                      | 0.0204 | 0.0197 | 0.0202 | 3.5e-5 |
|      | Music JSB Chorales (loss)                 | 300K                     | 8.45   | 8.43   | 8.91   | 8.10   |
|      | Music Nottingham (loss)                   | 1M                       | 3.29   | 3.46   | 4.05   | 3.07   |
|      | Word-level PTB (perplexity <sup>ℓ</sup> ) | 13M                      | 78.93  | 92.48  | 114.50 | 89.21  |
|      | Word-level Wiki-103 (perplexity)          | -                        | 48.4   | -      | -      | 45.19  |
|      | Word-level LAMBADA (perplexity)           | -                        | 4186   | -      | 14725  | 1279   |
|      | Char-level PTB (bpc <sup>ℓ</sup> )        | 3M                       | 1.41   | 1.42   | 1.52   | 1.35   |
|      | Char-level text8 (bpc)                    | 5M                       | 1.52   | 1.56   | 1.69   | 1.45   |

[Bai et al. 2018]

### Picking a probabilistic model

- N-grams
- CNNs (aka TDNNs)
- Any probabilistic classifier

# **Common problem:** picking size of the window

- Avoiding overfitting
- To work on instances of different length
- To track long-range behavior

## Probabilistic modeling of long sequences

$$p(x_M, x_{M-1}, \dots, x_1) =$$

$$p(x_M | x_{M-1}, \dots, x_1) \cdot p(x_{M-1}, x_{M-2}, \dots, x_1) =$$

$$\prod_{j=2}^{M} p(x_j \mid x_{j-1}, \dots, x_1) \cdot p(x_1) \approx$$

$$\prod_{i=1}^{M} p_{\theta}(x_j \mid h_{j-1})$$

"context variable"  $\prod_{i=1}^{n} p_{\theta}(x_{j} \mid h_{j-1}) \qquad h_{j-1} = F(x_{j-1}, h_{j-2})$ 

Let us use a simple network here!

#### Recurrent neural network (RNN)

$$p_{\theta}(x_t^i \mid x_{t-1}^i, x_{t-2}^i, \dots, x_1)$$

$$\downarrow h_t \qquad \qquad \downarrow softmax$$

$$x_t \qquad \qquad \downarrow y_t \qquad \qquad \downarrow softmax$$

$$h_t = W\phi(h_{t-1}) + W_x x_t$$

$$y_t = W_y\phi(h_t)$$

NB: I omit bias terms but they can be useful!

#### Most popular non-linearity for RNNs

$$anh x: \mathbb{R} o (-1;1)$$

#### **Unwrapping RNN**



$$h_t = W\phi(h_{t-1}) + W_x x_t$$
$$y_t = W_y \phi(h_t)$$

#### Training RNN



$$h_t = W\phi(h_{t-1}) + W_x x_t \quad y_t = W_y \phi(h_t)$$

#### **Training RNN**

$$h_t = W\phi(h_{t-1}) + W_x x_t$$

$$y_t = W_y \phi(h_t)$$

$$E = \sum_{t=1}^{S} E_t \qquad \frac{dE}{dW} = \sum_{t=1}^{S} \frac{dE_t}{dW}$$

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$





In practice: unwrapping for a finite number of time-steps (or training on bounded length sequences)

"Deep Learning", Spring 2019: Lecture 10, "Sequence prediction"

#### **Training RNN**

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

$$\frac{\partial h_t}{\partial h_k} = \prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} = \prod_{i=k+1}^t W^T \operatorname{diag}(\phi'(h_{i-1}))$$

$$\left\| \frac{\partial h_i}{\partial h_{i-1}} \right\|_2 \le \|W\|_2 L_\phi = \sigma_{max} L_\phi$$

$$\left\| \frac{\partial h_i}{\partial h_k} \right\|_{2} \leq (\sigma_{max} L_{\phi})^{t-k}$$

## **Challenges with training RNN**

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

$$\parallel \partial h_i \parallel$$

$$\left\| \frac{\partial h_i}{\partial h_k} \right\|_2 \le (\sigma_{max} L_{\phi})^{t-k}$$

$$\sigma_{\max} L_{\phi} < 1$$
  $\sigma_{\max} L_{\phi} > 1$ 

vanishing gradient: network ignores

long links

exploding gradient: learning quickly "explodes"

"Deep Learning", Spring 2019: Lecture 10, "Sequence prediction"

#### LayerNorm

- Further improves the situation with vanishing/exploding gradients
- Often used in NLP instead of batchnorm

[Ba et al. ICLR16]

20

$$\mu^t = \frac{1}{H} \sum_{i=1}^H a_i^t$$

$$\sigma^t = \sqrt{\frac{1}{H} \sum_{i=1}^{H} \left( a_i^t - \mu^t \right)}$$

$$\mathbf{h}^t = anh\left(rac{\mathbf{g}}{\sigma^t}\odot(\mathbf{a}^t-\mu^t)+\mathbf{b}
ight)$$



#### **Gradient clipping**

#### Algorithm 1 Pseudo-code for norm clipping

$$\begin{array}{c} \hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta} \\ \text{if } \| \| \hat{\mathbf{g}} \| \geq threshold \text{ then} \\ \hat{\mathbf{g}} \leftarrow \frac{threshold}{\| \hat{\mathbf{g}} \|} \hat{\mathbf{g}} \\ \text{end if} \end{array}$$



Simple trick handles gradient explosion (provided that the "valley" is wide)

[Pascanu et al. 2013]

#### Handling vanishing gradient

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

$$\sigma_{\rm max} L_{\phi} < 1$$

- Even if the gradient does not vanish totally, the information stored in lowenergy subspaces will not be propagated
- Idea: we need mechanism to ensure long-term propagation.

## Long Short-term Memory: cell update



## **Long Short-term Memory: gate activations**



## Vanishing gradient visualization



The influence of an input unit quickly vanishes with time [Graves 12]

# **Long Short-term Memory**



[Graves 12]

[Hochreiter & Schmidhuber 97]

# Recap: RNN-LSTM as a probabilistic model

$$p(x_t|x_1\dots x_{t-1}) = ?$$

$$h_t = LSTM(x_{t-1}, h_{t-1})$$

$$y_t = W_y h_t$$

$$p_t^i = \frac{\exp(y_t^i)}{\sum_k \exp(y_t^k)} = p(i|x_1, \dots x_{t-1})$$

$$x_t \sim \{p_t^i\}$$

# **Multi-layer RNNs**



## Computer generated "Linux kernel code"

© Andrej Karpathy:

```
static void do_command(struct seq file *m, void *v)
  int column = 32 << (cmd[2] & 0x80);
  if (state)
    cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
  else
    seg = 1;
  for (i = 0; i < 16; i++) {
    if (k & (1 << 1))
      pipe = (in use & UMXTHREAD UNCCA) +
        ((count & 0x0000000ffffffff8) & 0x000000f) << 8;
    if (count == 0)
      sub(pid, ppc md.kexec handle, 0x20000000);
    pipe set bytes(i, 0);
  /* Free our user pages pointer to place camera if all dash */
  subsystem info = &of changes[PAGE SIZE];
  rek controls(offset, idx, &soffset);
  /* Now we want to deliberately put it to device */
  control check polarity(&context, val, 0);
  for (i = 0; i < COUNTER; i++)
    seq puts(s, "policy ");
```

More fun: 1) <a href="http://karpathy.github.io/2015/05/21/rnn-effectiveness/">http://karpathy.github.io/2015/05/21/rnn-effectiveness/</a> 2) your assignment



```
Cell that turns on inside comments and quotes:
static inline int audit_dupe_lsm
   df->1sm_str);
  eturn ret;
```

```
Cell that is sensitive to the depth of an expression:
#ifdef CONFIG AUDITSYSCALL
static inline int audit_match_class bits(int
                  < AUDIT_BITMASK_SIZE; i++)
   if (mask[i] & classes[class][i])
Cell that might be helpful in predicting a new line. Note that it only turns on for some ")":
char 'audit_unpack_string(void ''bufp, size_t 'remain, si
     defines the longest valid length.
        n ERR_PTR(-ENAMETOOLONG);
               PTR ( - ENOMEM);
             , *bufp, len);
                                                [Karpathy et al.
                                                ICLR<sub>16</sub>1
```

#### Non-interpretable LSTM Cells

```
A large portion of cells are not easily interpretable. Here is a typical example:

/ * unpack a filter field's string representation from user-space
buffer, //
char audit unpack string (void * bufp, size_t * remain, size_t len)

(char *str;
if (!*bufp | | (len == 0) | (len > * remain))
return ERR_PTR(-EINVAL);
/* of the currently implemented string fields, PATH_MAX
* defines the longest valid length.
```



#### **Gated Recurrent Units (GRU)**



[Cho et al. 14] [Chung et al. 14]

# **Gated Recurrent Units (GRU)**

$$h_t = (1-z_t) \odot h_{t-1} + \\ z_t \odot \phi(W_x x_t + W \ r_t \odot h_{t-1} + b) \\ z_t = \sigma(W_{xz} x_t + W_{hz} h_{t-1} + b_z) \\ r_t = \sigma(W_{xr} x_t + W_{hr} h_{t-1} + z_r)$$

## **GRU** gate statistics



#### Plain vs LSTM vs GRU

Success at predicting next characters in the test sequence (cross-entropy loss) [Karpathy et al. ICLR16]:

| (Closs-elitropy loss) [Karpathy et al. ICER10]: |                            |        |        |       |        |       |       |       |       |       |       |
|-------------------------------------------------|----------------------------|--------|--------|-------|--------|-------|-------|-------|-------|-------|-------|
|                                                 | LSTM                       |        |        |       |        | RNN   |       |       | GRU   |       |       |
|                                                 | Layers                     | 1      | 2      | 3     | 1      | 2     | 3     | 1     | 2     | 3     |       |
|                                                 | Size War and Peace Dataset |        |        |       |        |       |       |       |       |       |       |
|                                                 | 64                         | 1.449  | 1.442  | 1.540 | 1.446  | 1.401 | 1.396 | 1.398 | 1.373 | 1.472 |       |
|                                                 | 128                        | 1.277  | 1.227  | 1.279 | 1.417  | 1.286 | 1.277 | 1.230 | 1.226 | 1.253 |       |
|                                                 | 256                        | 1.189  | 1.137  | 1.141 | 1.342  | 1.256 | 1.239 | 1.198 | 1.164 | 1.138 |       |
|                                                 | 512                        | 1.161  | 1.092  | 1.082 | -      | -     | -     | 1.170 | 1.201 | 1.077 |       |
|                                                 | Linux Kernel Dataset       |        |        |       |        |       |       |       |       |       |       |
|                                                 | 64                         | 1.355  | 1.331  | 1.366 | 1.407  | 1.371 | 1.383 | 1.335 | 1.298 | 1.357 |       |
|                                                 | 128                        | 1.149  | 1.128  | 1.177 | 1.241  | 1.120 | 1.220 | 1.154 | 1.125 | 1.150 |       |
|                                                 | 256                        | 1.026  | 0.972  | 0.998 | 1.171  | 1.116 | 1.116 | 1.039 | 0.991 | 1.026 |       |
|                                                 | 512                        | 0.952  | 0.840  | 0.846 | -      | -     | -     | 0.943 | 0.861 | 0.829 |       |
| Model                                           | n                          | 1      | 2      | 3     | 4      | 5     | 6     | 7     | 8     | 9     | 20    |
| War and Peace Dataset                           |                            |        |        |       |        |       |       |       |       |       |       |
| n-gram                                          | 2.                         | 399 1. | 928 1. |       |        |       | 1.203 | 1.194 | 1.194 | 1.194 | 1.195 |
| n-NN                                            | 2.                         | 399 1. | 931 1. | 553 1 | .451 1 | .339  | 1.321 | -     | -     | -     | -     |
| Linux Kernel Dataset                            |                            |        |        |       |        |       |       |       |       |       |       |
| n-gram                                          |                            |        |        |       |        | .097  | 1.027 | 0.982 | 0.953 | 0.933 | 0.889 |
| n-NN                                            | 2.                         | 707 1. | 974 1. | 505 1 | .395 1 | .256  | 1.376 | -     | -     | -     | -     |

#### **RNN** success cases

Success at predicting next characters in the test sequence (cross-entropy loss) [Karpathy et al. ICLR16]:

Linux kernel:



War and peace:



#### Plain vs LSTM vs GRU

Model similarity (t-SNE embedding of character probabilities):

```
LSTM-3 (64) A
              RNN-1 (64) ▼
                            RNN-3 (64)
                                      LSTM-1 (64)
        RNN-1 (128) ▼
                                       GRU-3 (64) A
                   RNN-2 (64) GRU-1 (64)

    LSTM-2 (64)

    GRU-2 (64)

     RNN-2 (128) . RNN-3 (128)
        LSTM-1 (128) ▼
                                     ▲ LSTM-3 (128)
▼ RNN-1 (256)
                   LSTM-2 (128)
                                   ▲ GRU-3 (128)
       ▲ RNN-3 (256)

    RNN-2 (256) GRU-1 (128) ▼ GRU-2 (128)

            LSTM-2 (256) LSTM-3 (256)
       GRU-1 (256) ▼
                         ▲ GRU-3 (256)
                           ▼ LSTM-1 (512)
  GRU-1 (512) ▼

    LSTM-3 (512)

       GRU-3 (512) A LSTM-2 (512)
            GRU-2 (256) • GRU-2 (512)
```

# Recap and outlook

- Sequence prediction
- ConvNets and Recurrent nets are SOA in wide variety of domains (NLP, speech/signal, bioinformatics)
- Gating in RNN makes its memory longer
- Sequence prediction extends to other tasks (fixed->seq, seq->fixed, seq->seq, fixed->fixed) – next lecture

# **Bibliography**

Elman, Jeffrey L. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

A. Karpathy

The Unreasonable Effectiveness of Recurrent Neural Networks http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Razvan Pascanu, Tomas Mikolov, Yoshua Bengio: On the difficulty of training recurrent neural networks. ICML (3) 2013: 1310-1318

A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks. Textbook, Studies in Computational Intelligence, Springer, 2012

Sepp Hochreiter, Jürgen Schmidhuber:

Long Short-Term Memory. Neural Computation 9(8): 1735-1780 (1997)

# **Bibliography**

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. EMNLP 2014: 1724-1734

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, Yoshua Bengio: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRRabs/1412.3555 (2014)

Andrej Karpathy, Justin Johnson, Fei-Fei Li: Visualizing and Understanding Recurrent Networks. ICLR 2016

Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., & Ranzato, M. A. (2014). Learning longer memory in recurrent neural networks. arXiv preprint arXiv:1412.7753.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, Koray Kavukcuoglu:

WaveNet: A Generative Model for Raw Audio. SSW 2016: 125

Lei Jimmy Ba, Ryan Kiros, Geoffrey E. Hinton: Layer Normalization. ICLR 16