-			CO	BL	Marks
	1	Let X_1, X_2, X_3, X_n be a random sample from a Poisson distribution with parameter μ . Find the maximum likelihood estimator (MLE) for μ .	CO4	L3	5
	2	Let X_1, X_2, X_3, X_{25} be a random sample from the distribution of X having mean 10 and variance 50. Find the mean and standard deviation of $Y = 7\bar{X} + 5$	CO4	1.3	5
	3	The coefficient of rank correlation between marks in statistics and marks in physics obtained by a certain group of students is 0.8. If the sum of squares of the difference in the ranks is given to be 33, find the number of students in the group.	CO4	L3	5
	4	Derive the normal equations for fitting a line of form $y = a + bx$ to the given n data (X,Y). Also explain how to get best fit line.	CO6	L2	5
	5	Define the regression coefficients and write lines of regression. Also show that correlation coeff-		L3	5
44	6	Find the correlataion coefficient r(X, Y) for following seven data points: X: 1 3 4 5 7 8 10 and V: 2 6 8 10 14 16 20 taking in respective order.	C06	L3	5

Course title: Probability and Statistics.	Time: 50 Minutes Section:			
	CO	BL	Marks	
nsistent estimator for μ in sampling from normal distribution,	CO4	L3	5	
X_n are choosen from a distribution having pdf, $f(x, \theta) = 0$ hen, find the MLE for parameter θ .	CO4	L2	5	
is independent of change of scale and origin.	CO6	L2	5	
we of form $y = ab^x$ to the given n data (X,Y). Derive the normal	C06	L3	5	
(X, Y) for following five data points: X : 4 2 10 5 8 and Y : e order.	CO6	L3	5	
or two given regresion lines $x+2y-5=0$ and $2x+3y-8=0$,	C06	L3	5	

Academic Tasks (22232)

SET: A
Course code: MTH302

Roll No .:

Academic task number: 3

Course title: Probability and Statistics.

Name:

Maximum marks: 30.

Time: 50 Minute

Section:

Question Statement	C) BI
Check whether sample mean is consistent estimator for μ in sampling from normal distribution,	CO	4 L3
If a sample units, X_1, X_2, X_3, X_4X_n are choosen from a distribution having pdf, $f(x, \theta) = 0$ with parameter θ . Then, find the MLE for parameter θ .	CO4	L2
Show that cofficient of correlation is independent of change of scale and origin. Explan the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the process of fitting a curve of form at a children in the	C06	L2
y = ab to the given n data (X, Y) . Derive the normal	C06	L3
12 4 10 2 taking in respective order.	Ç06	L3
	C06	L3

Academic Tasks (22232)

SET: B Course code: MTH302

Academic task number: 3

Maximum marks: 30.

Course title: Probability and Statistics.

Time: 50 Minutes

Roll No.:

Name:

Section:

Q. No.	Question Statement	CO	BL	Marks
1	Let X_1, X_2, X_3, X_n be a random sample from a Poisson distribution with parameter μ . Find the maximum likelihood estimator (MLE) for μ .	CO4	L3	5
2	Let X_1, X_2, X_3, X_{25} be a random sample from the distribution of X having mean 10 and variance 50. Find the mean and standard deviation of $Y = 7\bar{X} + 5$	CO4	L3	5
3	The coefficient of rank correlation between marks in statistics and marks in physics obtained by a certain group of students is 0.8. If the sum of squares of the difference in the ranks is given to be 33, find the number of students in the group.	CO4	L3	5
4	Derive the normal equations for fitting a line of form $y = a + bx$ to the given n data (X,Y). Also explain how to get best fit line.	CO6	L2	5
5	Define the regression coefficients and write lines of regression. Also show that correlation coefficient is geometric mean of regression coefficients.	CO6	L3	5
6	Find the correlataion coefficient $r(X, Y)$ for following seven data points: $X: 1 \ 3 \ 4 \ 5 \ 7 \ 8 \ 10$ and $Y: 2 \ 6 \ 8 \ 10 \ 14 \ 16 \ 20$ taking in respective order.	CO6	L3	5

	None: Name: South	100		
Q. No.	Question Statement			
1		co	ML.	Marko
	Let X1, X2, X3,Xn be a random sample taken from a distribution of X having mean μ and variance σ^2 . Check whether the estimator $T = \frac{2\sum_{i=1}^{n} i X_i}{n(n+1)}$ is baised or unbaised for μ .			5
	tion $f(x, \beta) = \frac{1}{3}e^{-\frac{\pi}{\beta}}$, with $0 \le x \le \infty$, find the MF F of the response of with the density func-			3
	2, 120. If a sample of 100 men is taken, what is the probability their mean salaries will be less than 29, 000? [Given that $P(z < -1.51) = 0.655$, $P(z < 0.50) = 0.0000$			
10	$x + cx^2$ to the n given data points.	CO6	1.3	1 3
5 F	and the correlataion coefficient $r(X, Y)$ for following five data points: $X: -10 -5 = 0 -5 = 10$ and	C06	E	1
o W	rite lines of regression. Find the mean values of X and Y for two given regression lines $z + 2y - 0$ and $2x + 3y - 8 = 0$.	COS	E	2

Time-50m		Course	Max. Max Bloom's level	Marks
Question Number	Question Statement(Set B)	Outcome	anom s arm	per Question
Q1	Obtain the MLE of α for the distribution with probability density function $f(x,\alpha) = \alpha^x (1-\alpha)^x$, $x = 0,1$; $0 \le \alpha \le 1$ for a sample of size n .	COI	L3: Apply	10
Q2	Let $x_1, x_2,, x_n$ be a random sample from uniform population in $[0, \theta]$. Check whether that \overline{X} is unbiased estimator of θ or not.	COI	L2: Understand	5
Q3	A random sample X_1, X_2, X_3, X_4, X_5 of size 5 is drawn from normal population with unknown mean μ . Consider the following estimators to estimate μ . $Y = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5}, Z = \frac{x_1 + x_2}{2} + X_3, T = \frac{3x_1 + x_2 - x_3}{3}.$ Find the unbiased estimators among Y, Z, T and of the unbiased estimators find which is the best?	COI	L2: Understand	5
Q4	If the mean age at death of 64 men engaged in an occupation is 52.4 years with s.d. of 10.2 years, Could it be a random sample from a population with mean 55 at 5% LOS. Also find 99% confidence limits for mean age of all men in the population. [Given: $P(z > 1.96) = 0.05$, $P(z > 1.645) = 0.05$,].	CO2	L4: Analyze	10

Time-50n	The state of the s		Max. Mark	s-30
Question Number		Course Outco me	Bloom's level	Marks per Question
21	The lifetime of a certain brand of an electric bulb is a random variable with mean 100 and standard deviation 30. Find the probability that Total of the life time of 30 bulbs exceeds 120.	CO4	L3: Apply	5
2	The Bernoulli random variable X takes the values 1 and 0 with respective probabilities p and $1-p$. Let $Y = \sum_{i=1}^{n} X_i$. Show that $\frac{Y(n-Y)}{n(n-1)}$ is unbiased estimate of $p(1-p)$.	CO4	L2: Understand	10
	Let X_1, X_2, X_3 and X_4 be random sample from $N(\mu, \sigma^2)$. If $T = \frac{-X_1 - 4X_2 + 3X_3 + 5X_4}{4}$, $\bar{X} = \frac{1}{4} \sum_{i=1}^4 X_i$. Which is more efficient, also find efficiency of T relative to \bar{X} .	CO4	L2: Understand	5
d th m	An online pizza shop delivers its, 49 orders with average elivery time of 25 minutes. Is it reasonable to believe that he average mean delivery time for pizza is less than 36 inutes with a standard deviation of 15 minutes? Also find % confidence limits of the mean of the population.		L4: Analyze	1

SET: D
Course code: MTH302
Roll No.:

Academic task number: 3

Course title: Probability and Statistics.

 $f(x,\sigma) = \frac{1}{\kappa}e^{-\frac{|x|}{\sigma}}$ find the maximum likelihood estimate of σ .

ics.

Time: 50 M Section:

C

Maximum marks: 30.

Question Statement

Q. No.

1

Name:

	$f(x, y) = \frac{1}{2\pi}e^{-x}$ Into the intermediate in the second s	10
2	Let X_1, X_2, X_3, X_{25} be a random sample from the distribution of X having mean 10 and vari-	10
	ance 50. Find the mean and standard deviation of $Y = 5X + 10$	1
3	A survey found that the American family generates an average of 17.2 pounds of glass garbage each year. Assume the standard deviation of the distribution is 2.5 pounds. Find the probability that the mean of a sample of 55 families will be between 17 and 18 pounds. [Given that $P(z < -0.59 = 0.2776)$, $P(z < -1.51) = 0.655$ and $P(z < 2.37) = 0.9911$]	: \
4	Find the rank correlation of the following data of price of tea and price of coeffee in order pair (X, Y): (74, 121), (88, 135), (96, 152), (70, 115), (60, 110), (80, 140), (81, 142), (50, 100).	
5	Explain how to fit a curve of the form $y = ax^b$ to the n given data points (X_i, Y_i) with help normal equations for fitting.	
	Find the correlataion coefficient for the following marks of six candidates in Mathematics a	and

English. X: 70 92 80 74 65 83 and Y: 74 84 63 87 78 90 taking in respective order.

Suppose X1, X2, ..., Xn are i.i.d. random variables from a distribution with density function

Question Number	n Test-3 MTH302 Section-K21AR (Roll no.) Question Statement (SET A)			Marks per Question
Q1	A distribution with unknown mean μ and variance 1.44. Use CLT to find how large a sample should be taken from the distribution in order that the probability will be at least 90% that the sample mean will be within 0.1 about the population mean. Given: $P(z > 1.96) = 0.05$, $P(z > 1.645) = 0.05$].	CO1	L3: Apply	5
Q2	Suppose X and Y are independent random variables with the same unknown mean μ . Both X and Y have variance 36. Let $T = aX + bY$ be an estimator of μ . Find the condition on a, b such that T is unbiased estimator of μ . Also for $a = \frac{1}{3}$, $b = \frac{2}{3}$, find variance of T.	CO1	L2: Understand	5
Q3	If $x_1, x_2,, x_n$ is a random sample with mean μ and variance σ^2 . Check whether $T = \frac{2}{(n^2-1)} \sum_{i=1}^n i X_i$ is consistent estimator of population mean?	S	L2: Understand	10
Q4	A drug was administered to 10 patients, and the increment in their blood pressure were recorded to be 2, 3, 0, 6, 4, -3 , 4, -2 , 3, 6. Is it reasonable to believe that the druhas no change of blood pressure? [Given: $P(t > 2.262)$ 0.025, $P(t \ge 1.833) = 0.05$].	4, ng	L4: Analyze	10

Q2 a) From a vessel containing 3 white and 5 black balls, 4 balls are transferred into an empty vessel. From this vessel a ball is drawn and found to be white. What is the probability that out of four balls transferred 3 are white and 1 is black?

[10 Marks]

OR

- b) (i) Two persons A and B, make an appointment to meet on a certain day at a certain place between 4 pm to 5 pm at random points of time and agree that each is to wait not more than 15 minutes for the other. Assuming that each is independently equally likely to arrive at any time during the hour. Find that probability that they meet?
 [5 Marks]
- (ii) A manufacturer of air-plane parts from past experience that the probability is 0.80 that an order will be ready for shipment on time, and it is 0.70 that an order will be ready for shipment on time and will also be delivered on time. What is the probability such an order will be delivered on time given that it was ready for shipment on time.
 [5 Marks]
- Q3 a) A coffee connoisseur daims that he can distinguish between a cup of instant coffee and a cup of percolator coffee 75% of the time. It is agreed that his claim will be accepted if he correctly identifies at least 5 of the 6 cups. Find his chances of having the claim.

 (i) accepted, (ii) rejected, when he does have the ability he claims.

OR

10 Marks 1

b) (i) In a book of \$20 pages, 390 type-graphical errors occur. Assuming Poisson law for the number of errors per page, find the probability that a random sample of 5 pages will contain no error. [5 Marks]

(II) In a book of 500 pages, 300 typo-graphical errors occur. Assuming Poisson law for the number of errors per page, find the probability that a random sample of 5 pages will contain no error. [5 Marks]

Q4 a) In a random sampling from normal population $N(\mu, \sigma^2)$. Find the Maxi when σ^2 is known. (ii) σ^2 when μ is known.

b) (1) A random sample $(X_1, X_2, X_3, X_4, X_5)$ of size five is drawn from a normal Consider the following estimators to estimate μ :

(a).
$$t_1 = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5}$$

(b).
$$t_2 = \frac{x_1 + x_2}{2} + X_3$$

(c). $t_3 = \frac{2X_1 + X_2 + \lambda X_3}{3}$

(i) Find \(\lambda\) such that \(t_3\) is unbiased estimator.

(ii) Which is the best estimator among t1, t2 and t2.

(ii) Let X_1 , X_2 , X_3 , X_4 , X_5 are 5 independent observation from normal po and variance σ^2 . Consider statistic (i) $t_1 = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5}$ (ii) $t_2 = \frac{x_1 + x_2}{2}$ Which is the best estimator among t, and t2

Q5 a) In a partially destroyed laboratory, record of an analysis of correlation legible: variance of X = 9. Regression equation: 8X-10Y+66=0, 40X-18Y=2 What are: (i) the mean values X and Y, (ii) the correlation coefficient between

deviation of Y?

OR b) (i) Obtain the equation of two lines of regression for the following data.

68 72 **(:** 65 66 67 67 68 65 68 72 69 67

(ii) The variables X and Y are connected by the equation aX+bY+c=0.SI s-1 if the signs of a and b are alike and +1 if they are different.

6 a) The following figures show that the distribution of digits in numbers of irectory

igits: 0 6 8 997 966 1075 933 1026 1107 requency: 1107 972 964

est whether the digits may be taken to occur equally frequently in the dire Given that tabulated $\chi^2_{0.05}$ for 9 degree of freedom = 16.919

bulated $\chi^2_{0.05}$ for 10 degree of freedom = 18.307

OR

(i) A machinist is making engine parts with axle diameters of 0.700 inch. at a mean diameter of 0.742 inch with a Standard Deviation of 0.040 inch test whether the wok is meeting the specifications. Also state how you w iven that tabulated t at 0.05 level of significance for 9 and 10 degrees of spectively.}

(ii) A random sample of 16 values from a population showed a mean of viations from this mean equal to 135 square inches. Check the assumpt oulation is reasonable or not at 1% level of significance. $P(X \ge 2.947) =$ 4. What do you understand by Point Estimation? When would you say that estimate a parameter is good? Also discuss the requirements of consistency unbiasedness of

www.lpuguide.com

[10 marks]

OR

4a. A random sample X; i=1,2,...,5 are independently and identically distributed as ormal variables with mean μ and variance σ^2 . Consider the following estimators to stimate µ:

(i)
$$t_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$$
 (ii) $t_2 = \frac{X_1 + X_2}{2} + X_3$

are t, and t, unbiased? State giving reasons, the estimator which is best among t, and

[5 marks]

Q 4b. Describe the maximum likelihood method of estimation and discuss five of its optimal properties.

[5 marks]

Q 5. State the properties of regression coefficients. From the two lines of regression X+2Y-5=0 and 2X+3Y-8=0 and Var(X)=12

Find (i) Mean values of X and Y (ii) Variance of Y and (iii) Correlation coefficient between X and Y.

[10 marks]

OR

nt between X and Y for the following data

X:	65	66	67	67	68	69	70	72
Y:	67	68	65	68	72	72	89	71
		_		_	-	-	-	16 modes

Q 5b. What is regression analysis? How does it differ from correlation? Why there are two regression equations?

Q 6: A few engineering students decide to check whether cars that use high speed petrol gives more mileage than cars that use regular petrol. They test several cars using both types of petrol in each car independently at different times. The distance travelled

per litre for each car is as follows 18 15 Regular Petrol 25 21 18 High Speed Petrol

a) Test at 5% level of significance that high speed petrol gives more mileage than regular petrol. Also construct 95% confidence interval

b) Do you think any assumption needed in testing (a) have been violated? Explain.

[10 marks]

Q 6a. In an examination of Statistics, following are the grades obtained by the students:

Grade:	A	В	C	F
No of Students:	280	100	80	20

Are these results consistent with the hypothesis that the grades are in the ratio 9:3:3:1 at 5% level of significance?

[5 marks]

Q 6b. The average milk production per cow was estimated to be 1600kg in one year with standard deviation 209kg. In order to test this, a random sample of 100 cows was taken and that gave mean as 1800kg with standard deviation 258kg. Does the sample justify the estimation about the whole herd of cows? Use 5% level of significance.

www.lpuguide.com

[5 marks]

extracts from Statistical Tables to be consulted wherever required

Stration!	STATISTIC	al Tables to be consulted t	wherever require
Statistic	d.f.	Level of Significance	Table value
-	9,9	0.05	3.18
-	10,10	0.05	2.98
1	18	0.05	2.10
-	19	0.05	2.09
-	18	0.10	1.73
72	19	0.10	1.73
12	_1_	0.05	3.84
	3	0.05	7.81
7 (7000 0 70	4	0.05	9.49
Z (Two-tail)		0.05	1.95
Z(Two-tell) Z(One-tail)		0.01	2.58
7(One-tail)		0.05	1.645
-True faul		0.03	2.33

Q2 a) From a vessel containing 3 white and 5 black balls, 4 balls are transferred into an empty vessel. From this vessel a ball is drawn and found to be white. What is the probability that out of four balls transferred 3 are white and 1 is black? [10 Marks] OR

- b) (i) Two persons A and B, make an appointment to meet on a certain day at a certain place between 4 pm to 5 pm at random points of time and agree that each is to wait not more than 15 minutes for the other. Assuming that each is independently equally likely to arrive at any time during the hour. Find that probability that they meet? 5 Marks 1
- (ii) A manufacturer of air-plane parts from past experience that the probability is 0.80 that an order will be ready for shipment on time, and it is 0.70 that an order will be ready for shipment on time and will also be delivered on time. What is the probability such an order will be delivered on time given that it was ready for shipment on time. 5 Marks
- Q3 a) A coffee connoisseur claims that he can distinguish between a cup of instant coffee and a cup of percolator coffee 75% of the time. It is agreed that his claim will be accepted if he correctly identifies at least 5 of the 6 cups. Find his chances of having the claim (i) accepted, (ii) rejected, when he does have the ability he claims. 10 Marks 1

OR

- b) (i) In a book of 520 pages, 390 type-graphical errors occur. Assuming Poisson law for the number of errors per page, find the probability that a random sample of 5 pages will contain no error. [5 Marks]
- (ii) In a book of 600 pages, 300 typo-graphical errors occur. Assuming Poisson law for the number of errors per page, find the probability that a random sample of 5 pages will contain no error. [5 Marks]