

Algoritmos Genéticos: Introdução

Gisele L. Pappa

Algoritmos Genéticos

- Técnica mais dissiminada em EA
- Introduzida por Holland em 1975, e desenvolvida por um de seus alunos, Goldberg

Algoritmos Genéticos

- Indivíduos são vetores binários
- Cromossomo (indivíduo) tem tamanho fixo
 - Genes normalmente tem tamanho fixo
- Existe um mapeamento do genótipo para o fenótipo

Gisele L Pappa

Genótipo versus Fenótipo

• Em alguns algoritmos evolucionários não existe distinção entre genótipo e fenótipo

Espaço de busca

Espaço de Soluções

Da biologia para computação

DCC
DEPARTAMENTO DE
CIÊNCIA DA COMPUTAÇÃO

© Gisele L Pappa

Algoritmos Genéticos

- Operadores são aplicados sobre o genótipo
- O espaço do problema é conhecido como espaço de busca, e engloba todas as soluções possíveis para um determinado problema

Exemplo

- OneMax
 - Maximizar o número de 1s em um string de bits de tamanho *n*
 - Definição de parâmetros: n = 8 e tamanho da população = 4
- Gerar população inicial: atribuir aleatoriamente 1s e 0s a todos os genes

Id da Solução	Genótipo
A	00000110
В	11101110
\mathbf{C}	00100000
D	00110100

UFMG Algoritmos Genéticos Gera uma população inicial de NRetorna melhor vetores (vetor = solução) indivíduo Não Decodifica esses vetores (genótipos) Sim em soluções (fenótipos) Condição de e avalia fitness parada satisfeita? Não Seleciona 2 pais dentre Substitui os indivíduos os indivíduos da população Sim. da população atual por seus filhos Aplica operadores de mutação e N filhos cruzamento para criar novos filhos criados?

Gisele L Pappa

DCC

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Exemplo

- OneMax
 - Maximizar o número de 1s em um string de bits de tamanho
 n (n = 8 e tamanho da população = 4)
- Calcular o valor da fitness
 - Contar o número de 1s

Id da Solução	Genótipo
A	00000110
В	11101110
\mathbf{C}	00100000
D	00110100

Exemplo

- OneMax
 - Maximizar o número de 1s em um string de bits de tamanho n (n = 8 e tamanho da população = 4)
- Calcular o valor da fitness
 - Contar o número de 1s

Id da Solução	Genótipo	Fitness
A	00000110	2
В	11101110	6
\mathbf{C}	00100000	1
D	00110100	3

Seleção de indivíduos

- Ocorre em 2 fases
- 1. Fase de reprodução:
 - Pais são selecionados para gerar filhos a partir de um algoritmo de seleção que considera toda a população
- 2. Fase de remoção:
 - Decisão de que indivíduos remover para inserir novos indivíduos na população

Seleção de indivíduos

- Ocorre em 2 fases
- 1. Fase de reprodução:
 - Pais são selecionados para gerar filhos a partir de um algoritmo de seleção que considera toda a população
- 2. Fase de remoção:
 - Decisão de que indivíduos remover para inserir novos indivíduos na população

Seleção Proporcional a Fitness (Roleta)

- Considere a fitness de um indivíduo i como sendo f_i
- Fitness média da população pode ser calculada como

$$\bar{f} = \frac{1}{n} \sum_{i=1}^{N} f_i$$

• Indivíduo j pode ser selecionado com probabilidade

$$p_j = \frac{f_j}{\sum_{i=1}^N f_i}$$

Seleção Proporcional a Fitness (Roleta)

Id da Soluç	ão Genótipo	Fitness	
A	00000110	2	
В	11101110	6	
\mathbf{C}	00100000	1	
D	00110100	3	
DCC		12 Fitness=3 25%	Fitness=2 17% Fitness=6 Fitness=6 Fitness=3 Fitness=2 Fitness=1 8%
DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO		Gise	le L Pappa

Seleção Proporcional a Fitness (Roleta)

• Rodo a roleta

$$r \in \left[0, \sum_{j=1}^{n} f_i\right)$$

Operadores Genéticos

- Cruzamento de um ponto (de acordo com probabilidade definidas pelo usuário)
 - Padrão para GAs
 - Probabilidades altas (70-99%)
 - Ponto de cruzamento é escolhido aleatoriamente

Pais selecionados	Indivíduo B	Indivíduo C
	1 1101110	0 0100000
Filhos gerados	Indivíduo E 0 1101110	Indivíduo F 1 0100000
	0 1101110	1 0100000

Operadores Genéticos

- Outro tipo de crossover: Crossover Uniforme
 - Cada gene é trocado de acordo com uma probabilidade p_c

• Não existe bias posicional: probabilidade de genes vizinhos serem trocados simultaneamente é muito maior do que a de genes distantes serem trocados simultaneamente

Operadores Genéticos

- Mutação de um ponto
- Mutação uniforme
 - Similares ao cruzamento mas envolvem um indivíduo único

	Uniforme	Um ponto
– Pai	1 1101110	0 0100000
_ Filho	01001110	10100000

Algoritmos Genéticos

- Modo de operação: Steady state versus geracional
 - Diferem pelo fato da população antiga e a nova se sobreporem ou não
- Geracional
 - A cada nova geração toda a população é substituída por uma nova (GA tradicional)
- Steady state
 - Não existem gerações, e um esquema de substituição de indivíduos varia
 - Ex: Considerar filhos e pais e manter os 2 melhores

Substituição da população atual pela nova

População
atual

Id da Solução	Genótipo	Fitness
A	00000110	2
В	11101110	6
\mathbf{C}	00100000	1
${ m D}$	00110100	3

Nova
população

Id da Solução	Genótipo	Fitness
E	01001110	4
\mathbf{F}	10100000	2
\mathbf{G}	11101110	6
\mathbf{H}	00110100	3

Gisele L Pappa

Agradecimentos

• Alguns slides foram traduzidos/adaptados das notas de aula de Alex A. Freitas e Michael O'Neil

Algoritmos Genéticos: Introdução

Gisele L. Pappa

