

KANPURINSTITUTEOFTECHNOLOGY

(An Autonomous Institute of AKTU, Lucknow) A-1,UPSIDC Industrial Area, Rooma,Kanpur-208001 (U.P.)India

EVEN SEM SUMMATIVEEXAM, AY: 2024-25	PROGRAM: B. TECH	ROLLNO: 2416503100 L
SUBJECTCODE: AH12010	BRANCH: CS/TT/AIML/EC/EN/ME	SECTION: A/B/C/D
SUBJECTNAME: ENGINEERING MATHS-II	SEMESTER: U	FACULTYNAME: DR NEETU SINGH

Time: 2hrs

Total Marks: 30

Note: Attempt all Sections

Attempt all questions for CO1

	Attempt all questions	02 x 01=02	BL
1a.	Find the DE which represents the family of straig	ght lines passing through the origin.	1
1b.	Find the particular integral (PI) of $(D-1)^2 y =$	c×	3

Attempt any one question 01x 04=04		BL	
2a,	Solve: $(D^2 - 2D + 4)y = e^x \cos x + \sin x \cos 3x$	OR Solve: $(D^3 - 1)y = 3x^4 - 2x^3$	3
2b.	Solve: $\frac{d^2x}{dt^2} + y = \sin t$ and $\frac{d^2y}{dt^2} + x = \cos t$ OR	Solve: $\frac{d^2y}{dx^2} + a^2y = \sec ax$	3

Attempt all questions for CO2

Attempt all questions 02 x 01=02		BL	
3a.	Define Linear Transformation.		2
3b.	Define Dimension.		

	Attempt any one question	01x 04=04	BL
4a.	Show that function $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) =$ transformation OR	(x+y+2z, x+z+1) is not a linear	3
	Investigate for what values of λ , μ the simultaneous equand $x + 2y + \lambda z = \mu$ have (i) No solution (ii) a unique		
4b.	Show that the set $\{1, x, 1 + x + x^2\}$ is linearly indeperpolynomial over the real number field. OR Write the vectors $u_1 = (1,1,1), u_2 = (1,2,3), u_3 = (2,-1,1)$ in a	ector $u = (1, -2, 5)$ as a linear combination of	3

Attempt all questions for CO3

	Attempt all questions	02 x 01=02	BL
52.	Define D'Alembert Test.		2
5b.	Discuss the convergence of the sequence u_n , whe	$re u_n = \sin\left(\frac{1}{n}\right)$	3

	Attempt any one question	01x 04=04	BL
ба.	Test the convergence of the series $\frac{1}{1\cdot 2\cdot 3} + \frac{x}{4\cdot 5\cdot 6} + \frac{x}{7}$	$\frac{x^2}{16.9} + \cdots$, where $x \in R$ OR	3
	Test the convergence of the series whose nth term	$\sin is \frac{1}{\pi} \sin \left(\frac{1}{\pi}\right)$	

1|Page

6b.	Find the half range cosine series for the function $f(x) = (x-1)^2$ in the interval (0,1). Hence	3
	prove that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$ OR	
	Find the FS of the function $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & o < x < \pi \end{cases}$ also deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$	

Attempt all questions for CO4

	Attempt all questions	02 x 01=02	BL
7a.	Define analytic function with example.		2
7b.	Show that the function $f(z) = z ^2$ is not analytic	c at origin.	3

	Attempt any one question 01x 04=04	BL
8a.	Determine an analytic function $f(z)$ in terms of z whose real part $u(x, y)$ is $e^{x}(x\cos y - y\sin y)$ and $f(1) = e$. OR	3
	Show that $v(x, y) = e^{-x}(x\cos y + y\sin y)$ is harmonic. Find its harmonic conjugate.	
8b.	Find the image of $ z-2i =2$ under the mapping $w=\frac{1}{z}$ OR Find the bilinear transformation	3
	which maps the points $i, -i, 1$ of the $z - plane$ into $0, 1, \infty$ of $w - plane$ respectively.	

Attempt all questions for CO5

	Attempt all questions	02 x 01=02	BL
9a.	Discuss the singularity of $\sin\left(\frac{1}{z-a}\right)$		3
9b.	State Cauchy's Integral Theorem.		2

	Attempt any one question 01x 04=04	BL
10a.	Evaluate the integral using Cauchy Integral formula: $\oint \frac{e^z}{z(1-z)^3} dz$, $ z = \frac{1}{2}$ OR	3
	Evaluate the integral using Cauchy Integral formula: $\oint \frac{z^2 + Y}{(z^2 - 1)} dz$, where $ z = \frac{3}{2}$	
10b.	Expand $f(z) = \frac{7z-2}{z^3-z^2-2z^2}$ in the region (i) $ z < 1$ (ii) $1 < z < 2$ (iii) $ z > 2$ OR	3
	Find the Taylor's and Laurent's series which represent the function $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ when	
	(i) z < 2(ii) 2 < z < 3(iii) z > 3	

2|Page