MTK DLP Lab1 - Backpropagation

TA 鍾嘉峻

Outline

- Lab Objective
- Important Date
- Lab Description
- Scoring Criteria

Lab Objective

• In this lab, you will need to understand and implement a simple neural network with forward and backward pass using two hidden layers

Important Date

- Report Submission Deadline: 9/2 (Wed) 11:59 a.m
- Demo date: 9/2 (Wed)
- Zip all files in one file
 - Report (.pdf)
 - Source code
- name it like 「DLP_LAB1_yourID_name.zip」
 - ex:「DLP_LAB1_0756172_鍾嘉峻.zip」
- Email to
 - Zivzhong.cs07g@nctu.edu.tw

Lab Description

- Implement a simple neural network with two hidden layers
- You can only use Numpy and other python standard libraries.
- Plot your comparison figure showing the predictions and ground truth.
- Plot your learning curve (loss, epoch).
- Print the accuracy of your prediction.

Lab Description – Flowchart

- Data prepare
- Create a model
- Train
- Test
- Plot result

- Data prepare
- Create a model
- Train
- Test
 - We don't need to do this this time
- Plot result

- Data prepare
- Create a model
- Train
- Test
 - We don't need to do this this time
- Plot result

Just show the loss of training set we create!!

Lab Implementatio

- Data prepare
- Create a model
- Train
- Plot result

```
import numpy as np
    ⊞def generate linear(n=100):
    ⊞def generate XOR easy():

    def show result(x, y, y pred):
 40
    ⊞def derivative(f, *args):
 43

    def sigmoid(x, derivative=False):
 48
    Hdef mse(y pred, y data, derivative=False):
 53
    Eclass NN:
 98
     nn = NN(dim=[2, 3, 3, 1])
     lr, epoch, done = 0.8, 0, False
101
     X, Y = generate XOR easy()
102
      #X, Y = generate linear()
    ⊟while not done:
105
         loss = []
106
          for x, y in zip(X, Y):
107
              x, y = x.reshape(1, -1), y.reshape(1, -1)
108
              y pred = nn.predict(x)
109
              nn.backprop(y)
110
              nn.update(lr)
111
              loss += [mse(y pred, y)]
112
              epoch += 1
113
              if epoch % 5000 == 0:
114
                  print('epoch', epoch, 'loss:', loss[-1])
          done = all(np.array(loss) < 0.04)
115
116
      Y pred = [int(nn.predict(x.reshape(1, -1)) >= 0.5) for x in X]
118
      show result (X, Y, Y pred)
```

- Data prepare
 - Use the functions TA prepare
- Create a model
- Train
- Plot result

generate_linear()

```
def generate_linear(n=100):
    import numpy as np
    pts = np.random.uniform(0, 1, (n, 2))
    inputs = []
    labels = []
    for pt in pts:
        inputs.append([pt[0], pt[1]])
        distance = (pt[0]-pt[1])/1.414
        if pt[0] > pt[1]:
            labels.append(0)
        else:
            labels.append(1)
    return np.array(inputs), np.array(labels).reshape(n, 1)
```


generate_XOR_easy()

```
def generate_XOR_easy():
    import numpy as np
    inputs = []
    labels = []
    for i in range(11):
        inputs.append([0.1*i, 0.1*i])
        labels.append(0)
        if 0.1*i == 0.5:
           continue
        inputs.append([0.1*i, 1-0.1*i])
        labels.append(1)
    return np.array(inputs), np.array(labels).reshape(21, 1)
```

- Data prepare
- Create a model
 - You can only use numpy or other standard python library
- Train
- Plot result

Lab Description

$$\theta = \{w_1, w_2, w_3, w_4, \cdots\}$$

$$\nabla L(\theta) = \begin{bmatrix} \partial L(\theta)/\partial w_1 \\ \partial L(\theta)/\partial w_2 \\ \partial L(\theta)/\partial w_3 \\ \vdots \\ \vdots \end{bmatrix}$$

Compute
$$\nabla L(\theta^0)$$

Compute
$$\nabla L(\theta^0)$$
 $\theta^1 = \theta^0 - \rho \nabla L(\theta^0)$

Compute
$$\nabla L(\theta^1)$$
 $\theta^2 = \theta^1 - \rho \nabla L(\theta^1)$

Compute
$$\nabla L(\theta^2)$$
 $\theta^3 = \theta^2 - \rho \nabla L(\theta^2)$

 ρ : Learning rate

Lab Description – Architecture

 $X:[x_1,x_2]$ y: outputs $\widehat{y}:$ ground truth

 W_1, W_2, W_3 : weight matrix of network layers

Lab Description – Architecture

- Define 4 layers
 - One input layer
 - Two hidden layers
 - One output layer
- Define 3 groups of weights
 - Between any two adjacent layers

Lab Description – Create a Model

```
54
   ∃class NN:
55
         """Dense Layer"""
56
               init (self, dim, activation=sigmoid, loss=mse):
57
         def
68
69
         def predict(self, X):
77
78
         def backprop(self, y data):
92
93
         def update(self, lr):
99 nn = NN(dim=[2, 3, 3, 1])
```

Lab Description – Create a Model

```
def __init__ (self, dim, activation=sigmoid, loss=mse):
    def init weights(d):

    self.layers = [None] * len(dim)
    self.weights = [init_weights(d) for d in zip(dim[:-1], dim[1:])]
    self.act = activation
    self.loss = loss
```

```
99 nn = NN(dim=[2, 3, 3, 1])
```

- Data prepare
- Create a model
- Train
 - Loss
 - Forward
 - Backward
- Plot result

Lab Description – Forward

Lab Description – Training Part

```
∃class NN:
55
         """Dense Layer"""
56
57
               init (self, dim, activation=sigmoid, loss=mse):
         def
68
69
         def predict(self, X):
77
         def backprop(self, y data):
78
92
93
         def update(self, lr):
```

Lab Description – Loss

MSE Loss

```
49 ± def mse (y pred, y data, derivative=False):
```

Lab Description – Forward(Predict)

- Forward(Predict)
 - Z = X
 - for i, W in enumerate(self.weights):
 - Z = self.act(Z @ W)
 - Remember move to next layer
 - (e.g self.layers[next_layer] = np.array(Z)

$$\sigma(y) = \frac{1}{1 + e^{-y}}$$

$$\sigma'(y) = \sigma(y)(1 - \sigma(y))$$

- Ref Link:
 - https://medium.com/pyradise/%E4%BD%BF%E7%94%A8-python-%E4%BE%86%E8%AA%8D%E8%AD%98%E7%9F%A9%E9%99%A3-915376207187

Lab Description – Backward

Chain rule

$$y = g(x) \quad z = h(y)$$

$$\mathbf{x} \stackrel{\mathbf{g}()}{\to} \mathbf{y} \stackrel{\mathbf{h}()}{\to} \mathbf{z} \qquad \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

$$\frac{\partial L(\theta)}{\partial w_1} = \frac{\partial y}{\partial w_1} \frac{\partial L(\theta)}{\partial y}
= \frac{\partial x''}{\partial w_1} \frac{\partial y}{\partial x''} \frac{\partial L(\theta)}{\partial y}
= \frac{\partial z}{\partial w_1} \frac{\partial x''}{\partial z} \frac{\partial y}{\partial x''} \frac{\partial L(\theta)}{\partial y}
= \frac{\partial x'}{\partial w_1} \frac{\partial z}{\partial x'} \frac{\partial x''}{\partial z} \frac{\partial y}{\partial x''} \frac{\partial L(\theta)}{\partial y}
= \frac{\partial x'}{\partial w_1} \frac{\partial z}{\partial x'} \frac{\partial x''}{\partial z} \frac{\partial y}{\partial x''} \frac{\partial L(\theta)}{\partial y}$$

Lab Description – Gradient descent

Network Parameters
$$\theta = \{w_1, w_2, w_3, w_4, \cdots\}$$

$$\theta^{1} = \theta^{0} - \rho \nabla L(\theta^{0})$$

$$\theta^{2} = \theta^{1} - \rho \nabla L(\theta^{1})$$

$$\theta^{3} = \theta^{2} - \rho \nabla L(\theta^{2})$$

 ρ : Learning rate

Lab Description – Backward & Update

Backward the gradient & update

```
∃class NN:
55
         """Dense Layer"""
56
57
                     (self, dim, activation=sigmoid, loss=mse):
        def
               init
68
69
        def predict(self, X):
77
        def backprop(self, y data):
78
92
93
        def update(self, lr):
```

Lab Description – Backward & Update

- Backward the gradient & update
 - Gradient

```
# dw = dL / dW
dw = np.kron(Z.T, dz)
dW.append(np.array(dw))
# dz = dL / dZ * s(Z)
dz = np.multiply(dz @ W.T, derivative(self.act, Z))
dZ.append(np.array(dz))
```

Update

```
self.weights[i] -= lr * dw
```

- Data prepare
- Create a model
- Train
- Plot result
 - Screenshot of loss
 - Plot the prediction & ground truth

Lab Description - Prediction

• In the training, you need to print loss

```
epoch 10000 loss : 0.16234523253277644
  epoch 15000 loss : 0.2524336634177614
  epoch 20000 loss : 0.1590783047540092
  epoch 25000 loss : 0.22099447030234853
  epoch 30000 loss : 0.3292173477217561
  epoch 35000 loss : 0.40406233282426085
  epoch 40000 loss : 0.43052897480298924
  epoch 45000 loss : 0.4207525735586605
  epoch 50000 loss : 0.3934759509342479
  epoch 55000 loss : 0.3615008372106921
  epoch 60000 loss : 0.33077879872648525
  epoch 65000 loss : 0.30333537090819584
  epoch 70000 loss : 0.2794858089741792
  epoch 75000 loss : 0.25892812312991587
  epoch 80000 loss : 0.24119780823897027
  epoch 85000 loss : 0.22583656353511342
  epoch 90000 loss : 0.21244497028971704
32 epoch 95000 loss : 0.2006912468389013
```

• In the testing, you need to show your predictions, also the accuracy

```
[[0.01025062]
 [0.99730607]
 [0.02141321]
 [0.99722154]
 [0.03578171]
 [0.99701922]
 [0.04397049]
 [0.99574117]
 [0.04162245]
 [0.92902792]
 [0.03348791]
 [0.02511045]
 [0.94093942]
 [0.01870069]
 [0.99622948]
 [0.01431959]
 [0.99434455]
 [0.01143039]
 0.98992477
 [0.00952752]
 0.98385905]
```

Lab Description - Prediction

• Visualize the predictions and ground truth at the end of the training process

Lab Description - Prediction

• Visualize the predictions and ground truth at the end of the training process

```
def show_result(x, y, pred_y):
   import matplotlib.pyplot as plt
    plt.subplot(1,2,1)
    plt.title('Ground truth', fontsize=18)
   for i in range(x.shape[0]):
        if y[i] == 0:
            plt.plot(x[i][0], x[i][1], 'ro')
        else:
            plt.plot(x[i][0], x[i][1], 'bo')
    plt.subplot(1,2,2)
    plt.title('Predict result', fontsize=18)
   for i in range(x.shape[0]):
       if pred y[i] == 0:
            plt.plot(x[i][0], x[i][1], 'ro')
        else:
            plt.plot(x[i][0], x[i][1], 'bo')
    plt.show()
```

Demo

Video Link: https://youtu.be/OdwA9SaMh4E

Scoring Criteria

- Report (40%)
- Demo(60%)
 - Experimental results (40%)
 - Questions (20%)
- Late report or demo
 - Score *0.8

Reference

- 1. http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
- 2. http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html

Backup Slide

- In python, you may observe some weird things
 - 0.1+0.2 != 0.3 (because IEEE 754
 - 0.2+0.1 != 0.3
 - 0.1+0.2 == 0.2+0.1

Backup Slide

- In python, you may observe some weird things
 - 0.1+0.2 != 0.3 (because IEEE 754
 - 0.2+0.1 != 0.3
 - 0.1+0.2 == 0.2+0.1
 - 0.1+0.2+0.1+0.2 != 0.6
 - 0.2+0.1+0.2+0.1 == 0.6
 - 0.1+0.2+0.1+0.2 != 0.2+0.1+0.2+0.1

```
(base) pc3433@pc3433-B360-HD3:~$ python
Python 3.7.4 (default, Aug 13 2019, 20:35:49)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 0.1 + 0.2
0.300000000000000004
>>> 0.2 +0.1
0.300000000000000004
>>> 0.1 + 0.2 == 0.2 + 0.1
True
|>>> 0.1 + 0.2 + 0.1 + 0.2
0.60000000000000001
>>> 0.2 + 0.1 + 0.2 + 0.1
0.6
>>> a = 0.1 + 0.2 + 0.1 + 0.2
>>> b = 0.2 + 0.1 + 0.2 + 0.1
>>> a == b
lFalse
>>>
```

Backup Slide

- In python, you may observe some weird things
 - 0.1+0.2 != 0.3 (because IEEE 754
 - 0.2+0.1 != 0.3
 - 0.1+0.2 == 0.2+0.1
 - 0.1+0.2+0.1+0.2 != 0.6
 - 0.2+0.1+0.2+0.1 == 0.6
 - 0.1+0.2+0.1+0.2 != 0.2+0.1+0.2+0.1
- Check WTFPython
 - https://github.com/satwikkansal/wtfpython