

CURSO: Engenharias

DISCIPLINA: Estruturas de Dados 2 SEMESTRE/ANO: 2025/2 CARGA HORÁRIA: 60 horas CRÉDITOS: 04

PROFESSORES: John Lenon Cardoso Gardenghi

Edson Alves da Costa Júnior

PLANO DE ENSINO

1 Objetivos da Disciplina

Tornar o aluno capaz de implementar problemas de maior sofisticação técnica, utilizando estruturas de dados não-lineares, como árvores e grafos, e algoritmos de ordenação eficientes, os quais são recorrentes em situações de ordem prática e em sistemas reais.

2 Ementa do Programa

- I. Estruturas não-lineares
 - i. Árvores
 - ii. Tabelas hash
 - iii. Filas de prioridade
 - iv. Heaps
- II. Algoritmos de Ordenação

- i. Algoritmos de Ordenação $O(n \log n)$
- ii. Algoritmos de Ordenação O(n)
- III. Grafos
 - i. Representação de grafos
 - ii. Algoritmos em grafos
 - iii. Aplicações

3 Horário das aulas e atendimento

AULAS: terças e quintas, das 14:00 às 15:50 hrs.

ATENDIMENTO: segundas, das 12:30 às 14:30 hrs, via plataforma Teams.

4 Metodologia

A metodologia consiste em aulas expositivas, com o auxílio do quadro branco e projetor digital. A fim de fortalecer a aprendizagem da disciplina, as aulas serão complementadas com exercícios e atividades, presenciais e extra-classe.

Também serão utilizadas listas de exercícios para prática dos conceitos apresentados em aula e para preparação para as avaliações.

5 Critérios de Avaliação

5.1 Provas

A avaliação do curso será feita através de duas provas teóricas e duas provas práticas.

5.1.1 Provas Teóricas

As provas teóricas T_1 e T_2 serão compostas por questões de múltipla escolha e valerão 10 pontos cada. O estudante deve marcar, **à caneta**, uma, e apenas uma, dentre as alternativas apresentadas para cada questão. Uma questão será considerada certa apenas se o estudante marcou a alternativa correta, de acordo com o gabarito. Serão consideradas incorretas questões sem marcação, com mais de uma marcação, com rasuras ou com marcações à lapis.

5.1.2 Provas Práticas

As provas práticas P_1 e P_2 serão compostas por problemas a serem resolvidos na plataforma MOJ. Serão permitidas submissões de soluções escritas em C, C++ ou Python.

Uma solução proposta para cada problema será corrigida de acordo com os seguintes critérios: após ser **compilado** ou **interpretado** de forma bem sucedida, uma série de **testes unitários automatizados** alimentarão o programa com **entradas válidas** e comparará os resultados obtidos com as **saídas corretas**. Uma solução problema será considerada **correta** se obtiver sucesso em **todos os testes unitários**.

5.2 Listas de exercícios

Serão propostas listas, na plataforma MOJ, com exercícios relacionados com o conteúdo ministrado. A resolução das listas não modifica a menção, mas é fortemente encorajada para a fixação dos conceitos apresentados no curso.

5.3 Atividades Extras

Poderão ser aplicadas, a critério do professor, atividades extras, de caráter facultativo. A forma, data de entrega e método de avaliação de tais atividades serão divulgados na plataforma SIGAA. A pontuação atribuída a tais atividades será somada à nota final do aluno.

5.4 Nota

A nota N do aluno será dada pela expressão por 10:

$$N = \frac{2(T_1 + T_2) + 3(P_1 + P_2)}{10}$$

5.5 Menção Final

A menção final do curso será dada em função da nota N, de acordo com a tabela abaixo.

N	Menção	Descrição
0	SR	Sem rendimento
0,1 a 2,9	II	Inferior
3,0 a 4,9	MI	Médio inferior
5,0 a 6,9	MM	Médio
7,0 a 8,9	MS	Médio superior
9,0 a 10	SS	Superior

No final do semestre será aplicada uma **prova substitutiva**, individual, caso o aluno apresente um atestado de saúde em até 5 (cinco) dias após a realização da prova, ou em outros casos previstos em lei (alistamento militar, etc). A prova substitutiva corresponderá à avaliação perdida pelo aluno e abrangerá todo o conteúdo do curso.

5.6 Critérios de aprovação

Obterá aprovação no curso o aluno que cumprir as duas exigências abaixo:

- 1. Ter presença em 75% ou mais das aulas;
- 2. Obter menção igual ou superior a MM.

IMPORTANTE: Atestados médicos e documentos comprobatórios de justificativa de faltas dão direito à realização de atividades avaliativas que você venha a perder, mas essas ausências justificadas também são levadas em consideração como ausências efetivas para o cômputo da frequência mínima obrigatória (*Graduação UnB – Manual para estudantes*, pág. 35).

6 Cronograma

Semana	Aula	Data	Conteúdo
01	1	19/08	Apresentação do curso. Recursão.
	2	21/08	Exercícios de recursão.
02	3	26/08	Árvores binárias. Árvores de busca binárias.
	4	28/08	Inserção, remoção, busca e travessia em árvores de busca binárias.
03	5	02/09	Balanceamento de árvores.
	6	04/09	Árvores Red-Black: Parte I.
04	7	09/09	Árvores Red-Black: Parte II.
	8	11/09	Heap Binária: Parte I.
05	9	16/09	Heap Binária: Parte II.
	10	18/09	Árvores m-árias. Implementação de árvores.
06	11	23/09	Definição de hashes.
	12	25/09	Sondagem linear e quadrática.
07	-	30/09	Prova Teórica 1
	13	02/10	Árvore de Fenwick.
08	14	07/10	Árvore de Segmentos: Parte I.
	15	09/10	Árvore de Segmentos: Parte II.
09	16	14/10	Definição de grafos.
	17	16/10	DFS.
10	18	21/10	BFS.
	19	23/10	Componentes Conectados.
11	20	28/10	Union-Find Disjoint Sets.
	21	30/10	Ordenação Topológica.
12	-	04/11	Semana de Extensão Universitária
	-	06/11	Semana de Extensão Universitária
13	22	11/11	Grafos bipartidos.
	23	13/11	Pontes e pontos de articulação.
14	-	18/11	Feriado: Dia de Zumbi e Consciência Negra
	24	20/11	Árvore geradora mínima.
15	25	25/11	Algoritmo de Dijkstra.
	-	27/11	Prova Teórica 2
16	-	02/12	Prova Prática 1
	-	04/12	Prova Prática 2
17	-	09/12	Prova substitutiva
	-	11/12	Menções finais

7 Bibliografia

Todos os livros abaixo se encontram disponíveis na Biblioteca da FGA, na Biblioteca Virtual da UnB ou tem acesso livre.

LIVRO TEXTO

CORMEN, Thomas H., LEISERSON, Charles E., RIVEST, Ronald L, STEIN, Clifford. *Algoritmos: Teoria e Prática*, Elsevier, 2002.

DROZDEK, Adam. Estruturas de Dados e Algoritmos em C++, Thomson, São Paulo, 2002.

LAFORE, R. Estruturas de Dados e Algoritmos em Java, 1ª edição, Ciência Moderna, 2005.

LITERATURA COMPLEMENTAR

- **CORMEN,** Thomas H., LEISERSON, Charles E., RIVEST, Ronald L, STEIN, Clifford. *Introduction to Algoritms*, MIT Press, 2014. (eBrary)
- **MEHLHORN,** K., SANDERS, P. *Algorithms and Data Structures: The Basic ToolBox*, 1st edition, Springer, 2008. (eBrary)
- HALIM, Steve S., HALIM, Felix. Competitive Programming, 1st edition, Lulu, 2010. (Open Acess)
- **STEPHENS,** Rod. *Essential Algorithms: A Pratical Approach to Computer Algorithms*, John Wiley & Sons, 2013. (eBrary)
- **AHO,** A. V., ULLMAN, J. D.. Foundations of Computer Science: C Edition, 1st edition, W. H. Freeman, 1994. (Open Access).