Chapitre 4

Intégrales surfaciques

4.1 Rappels sur le produit vectoriel

On rappelle la formule du produit vectoriel, qui nous sera nécessaire pour calculer un vecteur orthogonal à une surface.

Définition 4.1. Soient \overrightarrow{v} , $\overrightarrow{w} \in \mathbb{R}^3$. Le produit vectoriel de \overrightarrow{v} et \overrightarrow{w} est un vecteur

$$\vec{v} \times \vec{w} = \det \begin{pmatrix} 1 & u_1 & v_1 \\ 1 & u_2 & v_2 \\ 1 & u_3 & v_3 \end{pmatrix} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}.$$

Le produit vectoriel a les propriétés fondamentales suivantes.

Proposition 4.2. On a:

- 1. $\overrightarrow{v} \times \overrightarrow{w} = -\overrightarrow{w} \times \overrightarrow{v}$.
- 2. $(\alpha \cdot \overrightarrow{v}) \times \overrightarrow{w} = \alpha \cdot (\overrightarrow{v} \times \overrightarrow{w})$.
- 3. $(\overrightarrow{v}_1 + \overrightarrow{v}_2) \times \overrightarrow{w} = \overrightarrow{v}_1 \times \overrightarrow{w} + \overrightarrow{v}_2 \times \overrightarrow{w}$
- 4. (Produit Mixte) $\langle \overrightarrow{u}, \overrightarrow{v} \times \overrightarrow{w} \rangle = \det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$.

La conséquence principale de ces propriétés est

Corollaire 4.3. On $\overrightarrow{v} \times \overrightarrow{w} \perp \overrightarrow{v}$ et $\overrightarrow{v} \times \overrightarrow{w} \perp \overrightarrow{w}$.

4.2 Intégrales surfaciques

Les intégrales surfaciques sont l'analogue des intégrales doubles pour les intégrales curvilignes.

intégrales simples ↔ intégrales doubles intégrales curvilignes ↔ intégrales surfaciques

Rappelons nous qu'une surface S est un objet de dimension 2, comme une sphère ou une nappe par exemple, qui vit, la plupart du temps, dans l'espace à trois dimensions \mathbb{R}^3 . Pour pouvoir intégrer une fonction f sur S, on a besoin d'une paramétrisation $\varphi(x,y)$ de S, où (x,y) varient dans une région U de \mathbb{R}^2 .

Exemple 4.4. La sphère unité \mathbb{S}^2 de \mathbb{R}^3 donnée par l'équation $x^2 + y^2 + z^2 = 1$ peut être paramétrée à l'aide des coordonnées sphériques par

$$\varphi(\theta, \sigma) = (\sin(\theta)\cos(\sigma), \sin(\theta)\sin(\sigma), \cos(\theta)) \in \mathbb{R}^3,$$

 $où \theta \in [0, \pi]$ est la coordonnée de latitude et $\sigma \in [0, 2\pi)$ est la coordonnée de longitude.

Exemple 4.5. Le paraboloïde d'équation $z = x^2 + y^2$ dans \mathbb{R}^3 est une surface paramétrée par

$$\varphi(x, y, z) = (x, y, x^2 + y^2) \in \mathbb{R}^3,$$

 $avec (x,y) \in \mathbb{R}^2$ (ici le domaine de φ est tout \mathbb{R}^2).

Pour être très précis, lorsque l'on calcule des intégrales surfaciques, il faut faire attention à choisir des paramétrisations que ne sont pas trop "singulières".

Définition 4.6. On va dire que φ paramètre S de façon régulière si

- 1. φ de classe C^1 ,
- 2. les vecteurs tangents

$$\frac{\partial \varphi}{\partial x}(x,y)$$
 et $\frac{\partial \varphi}{\partial y}(x,y)$

sont non-nuls et non-colinéaires pour tous (x, y).

Un objet important pour l'intégration surfacique est la notion de vecteur normal.

Définition 4.7. Soit S une surface paramétrée de façon régulière par $\varphi(x,y)$. Le vecteur normal à S au point $\varphi(x,y)$ est

$$n_{\varphi}(x,y) = \frac{\partial \varphi}{\partial x}(x,y) \times \frac{\partial \varphi}{\partial y}(x,y).$$

Par construction, le vecteur $n_{\varphi}(x,y)$ est perpendiculaire aux deux vecteurs tangents $\frac{\partial \varphi}{\partial x}(x,y)$ et $\frac{\partial \varphi}{\partial y}(x,y)$, d'où le nom de vecteur normal.

Exemple 4.8. Si l'on considère à nouveau la paraboloïde $z=x^2+y^2$ paramétrée par $\varphi(x,y,z)=(x,y,x^2+y^2)$, alors les vecteurs tangents sont donnés par

$$\frac{\partial \varphi}{\partial x}(x,y) = \begin{pmatrix} 1\\0\\2x \end{pmatrix} \ et \ \frac{\partial \varphi}{\partial y}(x,y) = \begin{pmatrix} 0\\1\\2y \end{pmatrix}.$$

On remarque que φ est une paramétrisation régulière dont le vecteur normal est

$$n_{\varphi}(x,y) = \begin{pmatrix} 1\\0\\2x \end{pmatrix} \times \begin{pmatrix} 0\\1\\2y \end{pmatrix} = \begin{pmatrix} -2x\\-2y\\1 \end{pmatrix}.$$

On en arrive finalement à la définition de l'intégrale surfacique.

Définition 4.9. Soit S une surface paramétrée de façon régulière par $\varphi \colon U \to \mathbb{R}^3$ et soit $f \colon S \to \mathbb{R}$ une fonction continue à intégrer. L'intégrale surfacique de f sur S est

$$\iint_{S} f = \iint_{U} f(\varphi(x, y)) \cdot ||n_{\varphi}(x, y)|| \, dx \, dy.$$

Exemple 4.10. Intégrer la fonction constante f(x, y, z) = 1 sur la sphère \mathbb{S}^2 d'équation $x^2 + y^2 + z^2 = 1$.

Solution. On utilise la paramétrisation de \mathbb{S}^2 avec les coordonnées sphériques donnée par

$$\varphi(\theta, \sigma) = (\sin(\theta)\cos(\sigma), \sin(\theta)\sin(\sigma), \cos(\theta)).$$

Les vecteurs tangents sont donnés par

$$\frac{\partial \varphi}{\partial \theta}(\theta, \sigma) = \begin{pmatrix} \cos(\theta) \cos(\sigma) \\ \cos(\theta) \sin(\sigma) \\ -\sin(\theta) \end{pmatrix} \text{ et } \frac{\partial \varphi}{\partial \sigma}(\theta, \sigma) = \begin{pmatrix} -\sin(\theta) \sin(\sigma) \\ \sin(\theta) \cos(\sigma) \\ 0 \end{pmatrix}.$$

Le vecteur normal est donc donné par

$$n_{\varphi}(\theta,\sigma) = \begin{pmatrix} \cos(\theta)\cos(\sigma) \\ \cos(\theta)\sin(\sigma) \\ -\sin(\theta) \end{pmatrix} \times \begin{pmatrix} -\sin(\theta)\sin(\sigma) \\ \sin(\theta)\cos(\sigma) \\ 0 \end{pmatrix} = \begin{pmatrix} \sin(\theta)^2\cos(\sigma) \\ -\sin(\theta)^2\sin(\sigma) \\ \cos(\theta)\sin(\theta) \end{pmatrix}.$$

Sa norme est donc

$$||n_{\varphi}(\theta,\sigma)|| = \sqrt{\sin(\theta)^4 \cos(\sigma)^2 + \sin(\theta)^4 \sin(\sigma)^2 + \cos(\theta)^2 \sin(\theta)^2} = \sin(\theta).$$

On en déduit donc que

$$\iint_{\mathbb{S}^2} 1 = \int_0^{\pi} \int_0^{2\pi} \sin(\theta) \, d\sigma \, d\theta$$
$$= 2\pi \int_0^{\pi} \sin(\theta) \, d\theta$$
$$= 4\pi$$

4.2.1 Applications de l'intégrale surfacique

La première interprétation est celle de l'aire de la surface

Proposition 4.11. L'aire d'une surface S paramétrée de façon régulière par $\varphi \colon U \to \mathbb{R}^3$ est

$$\operatorname{aire}(S) = \iint_{U} ||n_{\varphi}(x, y)|| \, dx \, dy.$$

4.2.2 Propriétés de l'intégrale surfacique

Proposition 4.12. Soient U et V deux domaines de \mathbb{R}^2 et $\varphi: U \to \mathbb{R}^3$ et $\psi: V \to \mathbb{R}^3$ deux paramétrisations régulières d'une surface S. Alors, pour toute fonction continue f, on a

$$\iint_U f(\varphi(x,y)) \cdot \|n_{\varphi}(x,y)\| \, dx \, dy = \iint_V f(\psi(x,y)) \cdot \|n_{\psi}(x,y)\| \, dx \, dy.$$

Cela signifie que l'intégrale de f sur la surface S ne dépend pas de la paramétrisation de S.