CLAIMS

What is claimed is:

1	1. An acoustic imaging system, comprising:
2	a transducer including a two-dimensional transducer element matrix array, the
3	transducer having a protective cover configured to mate with a transducer body, the
4	protective cover superposed above the two-dimensional transducer element matrix
5	such that acoustic energy incident at the protective cover is mechanically directed by
6	the protective cover and wherein the transducer element matrix array is encased by the
7	protective cover and the transducer body; and
8	an image processing system coupled to the transducer configured provide a
9	plurality of individualized excitation signals to the plurality of transducer elements
10	over time such that the two-dimensional transducer element matrix array generates
11	and transmits acoustic energy through the protective cover over time such that
12	acoustic energy transmitted through the protective cover is electronically focused.
1	2. The acoustic imaging system of claim 1, wherein the protective cover
2	comprises an acoustic material, the acoustic material exhibiting acoustic impedance
3	corresponding to acoustic impedance of a body to be imaged.
1	3. The acoustic imaging system of claim 1, wherein at least one of the
2	dimensions of the two-dimensional transducer element matrix array is curved.
1	4. The acoustic imaging system of claim 1, wherein the protective cover
2	is constructed with a non-uniform thickness.
1	5. The acoustic imaging system of claim 1, wherein the protective cover
2	has an acoustic impedance of between approximately 1.3Mrayl and 1.7MRayl.
1	6. The acoustic imaging system of claim 1, wherein the protective cover
2	has a transducer-engagement having a tissue-engagement surface, the transducer-
3	engagement end being configured to engage a transducer body, the tissue engagement
4	surface forming a portion of a substantially cylindrical surface.

1

2

3

4

5

- 7. The acoustic imaging system of claim 6, wherein the tissue engagement surface forms a portion of a substantially spherical surface.
- 1 8. The acoustic imaging system of claim 1, wherein the transducer body is 2 ergonomically adapted to be grasped by the hand of an operator.
- 9. The acoustic imaging system of claim 1, wherein the protective cover has a shape that reduces the probability of a sonographer developing a repetitive motion injury.
- 1 10. The acoustic imaging system of claim 1, wherein the image processing 2 system electronically focuses transmitted acoustic energy at a target by compensating 3 for the non-uniform acoustic delays caused by the protective cover.
- 1 11. The acoustic imaging system of claim 10, wherein the electronic compensation is a function of the position of the target point.
 - 12. The acoustic imaging system of claim 1, wherein the image processing system receives a plurality of individualized receive mode signals from a plurality of transducer elements, the receive mode signals representative of the incident acoustic energy at a plurality of the transducer elements of the two-dimensional transducer element matrix array that traverses the protective cover.
- 1 13. The acoustic imaging system of claim 12, wherein the image 2 processing system electronically focuses the acoustic energy received through the 3 protective cover.
- 1 14. The acoustic imaging system of claim 13, wherein electronic focusing comprises compensating for the non-uniform acoustic delays caused by the protective cover.
- 1 15. The acoustic imaging system of claim 13, wherein the electronic compensation is a function of the position of the target point.

- 1 16. The acoustic imaging system of claim 15, further comprising:
- 2 means for accessing an acoustic window of a body to be imaged.
- 1 The acoustic imaging system of claim 16, wherein the accessing means
- 2 comprises placing the transducer between adjacently disposed ribs of the body of a
- 3 patient.

1	18. A method for acoustically imaging a patient, comprising the steps of:
2	providing a transducer having a two-dimensional transducer element matrix
3	array, the transducer having a protective cover configured to mate with a transducer
4	body, the protective cover superposed above the two-dimensional transducer element
5	matrix such that acoustic energy transmitted from the protective cover and into the
6	body is mechanically directed by the protective cover, wherein the two-dimensional
7	transducer element matrix array and the protective cover are shaped to reduce patient
8	discomfort;
9	generating a plurality of time delayed transmit signals to separately control
10	individual transducer elements of the two-dimensional transducer element matrix
11	array to electronically focus acoustic transmit waves that traverse the protective cover;
12	and
13	receiving a plurality of time delayed response echoes at the separately
14	controllable individual transducer elements of the two-dimensional transducer elemen
15	matrix array to electronically focus acoustic receive echoes that traverse the protective
16	cover.
1	19. The method of claim 18, further comprising the step of: processing the
2	reflected acoustic echoes to generate an image.
1	20. The method of claim 18, further comprises the steps of: accessing an
2	acoustic window of a patient; and
3	transmitting acoustic energy through the protective cover and into the patient
4	via the acoustic window.
•	via the acoustic window.
1	21. The method of claim 18, wherein the steps of generating and receiving
2	further comprise:
3	electronically focusing the acoustic energy in an elevation dimension; and
4	electronically focusing the acoustic energy in a lateral dimension.

22. The method of claim 20, wherein the step of accessing an acoustic window comprises an acoustic window formed between adjacently disposed ribs of the patient.