Homotopically Standard Tight Non-fillable Contact Structures on the Sphere

Josua Kugler results by Bowden, Gironella, Moreno and Zhou

Heidelberg University

Background

Contact topology: The study of contact manifolds, up to isotopy.

Contact topology: The study of contact manifolds, up to isotopy.

Fillability: *fillable* contact mflds are boundaries of symplectic mflds.

Contact topology: The study of contact manifolds, up to isotopy.

Fillability: *fillable* contact mflds are boundaries of symplectic mflds.

Fillability question

Which contact manifolds are **fillable**?

Contact topology: The study of contact manifolds, up to isotopy.

Fillability: *fillable* contact mflds are boundaries of symplectic mflds.

Fillability question

Which contact manifolds are fillable?

Eliashberg, Borman-Eliashberg-Murphy:

Dichotomy: Rigidity vs. Flexibility.

- tight (rigid/geometric);
- overtwisted (flexible/topological).

Contact topology: The study of contact manifolds, up to isotopy.

Fillability: *fillable* contact mflds are boundaries of symplectic mflds.

Fillability question

Which contact manifolds are fillable?

Eliashberg, Borman–Eliashberg–Murphy:

Dichotomy: Rigidity vs. Flexibility.

- tight (rigid/geometric);
- overtwisted (flexible/topological).

Theorem (Eliashberg–Gromov)

Fillable contact manifolds are tight.

Converse is false (Etnyre–Honda, Massot–Niederkrueger–Wendl).

Existence and classification

Topological obstruction: *almost* contact structure, i.e. reduction of structure group to $U(n) \times 1$.

Theorem (Lutz-Martinet (dim 3), Casals-Pancholi-Presas (dim 5), Borman-Eliashberg-Murphy (any dim))

Almost contact manifolds are contact, where the contact structure is overtwisted.

Existence and classification

Topological obstruction: *almost* contact structure, i.e. reduction of structure group to $U(n) \times 1$.

Theorem (Lutz-Martinet (dim 3), Casals-Pancholi-Presas (dim 5), Borman-Eliashberg-Murphy (any dim))

Almost contact manifolds are contact, where the contact structure is overtwisted.

Tight manifolds

How can we understand tight contact manifolds?

Contact topology: fillability

Hierarchy of fillability:

$$\{Stein\} \stackrel{\textcircled{1}}{=} \{Weinstein\} \stackrel{\textcircled{2}}{\subsetneq} \{Liouville\} \stackrel{\textcircled{3}}{\subsetneq} \{strong\}$$

$$\stackrel{\textcircled{4}}{\subsetneq} \{weak\} \stackrel{\textcircled{5}}{\subsetneq} \{tight\}$$

- $\dim = 3$: 1 Cieliebak–Eliashberg, 2 Bowden, 3 Ghiggini, 4 Eliashberg, 5 Etnyre–Honda.
- dim ≥ 5: 1 Cieliebak–Eliashberg,
- ② Bowden–Crowley–Stipsicz, ③ Zhou,
- 4 Bowden–Gironella–Moreno, 5 Massot–Niederkrüger–Wendl.

Contact structures on spheres

First step in classification: contact structures on spheres.

Standard contact structure

The standard contact structure is $(S^{2n-1}, \xi) = \partial(B^{2n}, \omega_{std})$.

Contact structures on spheres

First step in classification: contact structures on spheres.

Standard contact structure

The standard contact structure is $(S^{2n-1}, \xi) = \partial(B^{2n}, \omega_{std})$.

Theorem (Eliashberg, '91)

On S³, it is the unique tight contact structure.

In particular, no tight and non-fillable contact structures on S^3 .

Tight and non-fillable structures in dim ≥ 5

Theorem (Bowden-Gironella-Moreno-Zhou '22-'24)

In dim ≥ 7 , if M admits a tight structure, it also admits a tight and non strongly-fillable structure, in the same almost contact class.

Tight and non-fillable structures in dim ≥ 5

Theorem (Bowden-Gironella-Moreno-Zhou '22-'24)

In dim $\geqslant 7$, if M admits a tight structure, it also admits a tight and non strongly-fillable structure, in the same almost contact class. In dim = 5, the same holds, if the first Chern class vanishes.

Case of spheres

The general theorem follows by connected sum with an "exotic" sphere:

Theorem (Bowden-Gironella-Moreno-Zhou '22-'24)

For every $n \ge 2$, the sphere \mathbb{S}^{2n+1} admits a tight, non-fillable contact structure that is homotopically standard.

General remarks

• This is a novel and strictly higher-dimensional phenomenon (false in dim 3).

General remarks

- This is a novel and strictly higher-dimensional phenomenon (false in dim 3).
- Suggests that higher-dimensional contact phenomena should occur independently of underlying smooth topology.

Tight and non-fillable spheres

Open books

Giroux correspondence

Giroux: Contact structures are *supported* by open books.

Figure: Supported contact structure.

Bourgeois contact structures

Theorem (Bourgeois '02)

Open book supporting $(M, \xi) \leadsto$ contact structure on $M \times \mathbb{T}^2$.

These are \mathbb{T}^2 -equivariant.

Geometric construction: We now construct **one** tight and non-fillable contact structure on \mathbb{S}^{2n+1} .

Geometric construction: We now construct **one** tight and non-fillable contact structure on \mathbb{S}^{2n+1} .

• Milnor open book on $\mathbb{S}^{2n-1} \leadsto$ Bourgeois manifold on $\mathbb{S}^{2n-1} \times \mathbb{T}^2$ \leadsto two 1-surgeries = $\mathbb{S}^{2n-1} \times \mathbb{S}^2 \leadsto$ one 2-surgery = \mathbb{S}^{2n+1} .

Geometric construction: We now construct **one** tight and non-fillable contact structure on \mathbb{S}^{2n+1} .

- Milnor open book on $\mathbb{S}^{2n-1} \leadsto$ Bourgeois manifold on $\mathbb{S}^{2n-1} \times \mathbb{T}^2$ \leadsto two 1-surgeries = $\mathbb{S}^{2n-1} \times \mathbb{S}^2 \leadsto$ one 2-surgery = \mathbb{S}^{2n+1} .
- If $n \ge 3$, surgeries are *subcritical* \leadsto by 'Eliashberg's' h-pple, Weinstein cobordism \leadsto contact manifold ($\mathbb{S}^{2n+1}, \xi_{ex}$).

Geometric construction: We now construct **one** tight and non-fillable contact structure on \mathbb{S}^{2n+1} .

- Milnor open book on $\mathbb{S}^{2n-1} \leadsto$ Bourgeois manifold on $\mathbb{S}^{2n-1} \times \mathbb{T}^2$ \leadsto two 1-surgeries = $\mathbb{S}^{2n-1} \times \mathbb{S}^2 \leadsto$ one 2-surgery = \mathbb{S}^{2n+1} .
- If $n \ge 3$, surgeries are *subcritical* \leadsto by 'Eliashberg's' h-pple, Weinstein cobordism \leadsto contact manifold $(\mathbb{S}^{2n+1}, \xi_{ex})$.

Claim: (\mathbb{S}^{2n+1} , ξ_{ex}) is tight and non-fillable.

Facts:

lacktriangle Milnor open book \Rightarrow algebraically tight Bourgeois manifold.

Facts:

- Milnor open book ⇒ algebraically tight Bourgeois manifold.
 - Algebraic tightness is nonvanishing of a certain contact homology algebra.

Facts:

- Milnor open book ⇒ algebraically tight Bourgeois manifold.
 - Algebraic tightness is nonvanishing of a certain contact homology algebra.
- Algebraic tightness is preserved under surgeries.

Facts:

- Milnor open book ⇒ algebraically tight Bourgeois manifold.
 - Algebraic tightness is nonvanishing of a certain contact homology algebra.
- Algebraic tightness is preserved under surgeries.
- Algebraically tight ⇒ tight.

Facts:

- Milnor open book ⇒ algebraically tight Bourgeois manifold.
 - Algebraic tightness is nonvanishing of a certain contact homology algebra.
- Algebraic tightness is preserved under surgeries.
- Algebraically tight ⇒ tight.

Milnor open book \Rightarrow (\mathbb{S}^{2n+1} , ξ_{ex}) is *tight*.

Non-fillability

Non-fillability of $(\mathbb{S}^{2n+1}, \xi_{ex})$ can be proven via:

- Homological obstruction and cobordisms as in [Bowden–Gironella–Moreno], building on [Massot–Niederkrüger–Wendl].
- 2 Symplectic cohomology computations as in [Zhou].

Convex Decomposition and Capping Cobordism

Observations:

• Bourgeois manifolds have convex decomposition

$$M \times \mathbb{T}^2 = (M \times \mathbb{S}^1) \times \mathbb{S}^1 = V_+ \times \mathbb{S}^1 \cup_{\phi} \overline{V}_- \times \mathbb{S}^1,$$

with $V_{\pm} = \Sigma \times D^* \mathbb{S}^1$, $\Sigma =$ page of the open book, $\phi =$ monodromy.

Convex Decomposition and Capping Cobordism

Observations:

Bourgeois manifolds have convex decomposition

$$M \times \mathbb{T}^2 = (M \times \mathbb{S}^1) \times \mathbb{S}^1 = V_+ \times \mathbb{S}^1 \cup_{\phi} \overline{V}_- \times \mathbb{S}^1,$$

with $V_{\pm} = \Sigma \times D^* \mathbb{S}^1$, $\Sigma =$ page of the open book, $\phi =$ monodromy.

• Capping cobordism from $M \times T^2$ to $\Gamma \times \mathbb{S}^2$, via handles $V_{\pm} \times D^2$ with co-core $C_{+} \simeq V_{+}$.

Capping Cobordism: Example

Homological obstructions

Theorem (Bowden-Gironella-Moreno)

 $M \times T^2 = V \times \mathbb{S}^1 = V_+ \times \mathbb{S}^1 \cup_{\phi} \overline{V_-} \times \mathbb{S}^1$ with convex decomposition, $\Gamma = \partial V_{\pm}$ dividing set. If W is a symplectic filling of $M \times T^2$, then

$$H_*(\Gamma) \to H_*(V_\pm) \to H_*(W),$$

induced by inclusion. Then second map is injective on image of the first.

Namely, if a homology class in Γ survives in V_{\pm} , then it survives in the filling.

• Capping cobordism from $M \times T^2$ to $\Gamma \times \mathbb{S}^2$, via handles $V_{\pm} \times D^2$ with co-core $C_{+} \simeq V_{+}$.

- Capping cobordism from $M \times T^2$ to $\Gamma \times \mathbb{S}^2$, via handles $V_{\pm} \times D^2$ with co-core $C_{+} \simeq V_{+}$.
- Second factor gives moduli space of spheres \mathcal{M}_* with evaluation map $ev: \mathcal{M}_* \to W$.

- Capping cobordism from $M \times T^2$ to $\Gamma \times \mathbb{S}^2$, via handles $V_{\pm} \times D^2$ with co-core $C_{+} \simeq V_{+}$.
- Second factor gives moduli space of spheres \mathcal{M}_* with evaluation map $ev: \mathcal{M}_* \to W$.
- Spheres intersect C_{\pm} precisely once \leadsto intersection map $\mathcal{I}_+:\mathcal{M}_*\to\mathcal{C}_+.$

- Capping cobordism from $M \times T^2$ to $\Gamma \times \mathbb{S}^2$, via handles $V_{\pm} \times D^2$ with co-core $C_{+} \simeq V_{+}$.
- Second factor gives moduli space of spheres \mathcal{M}_* with evaluation map $ev: \mathcal{M}_* \to W$.
- Spheres intersect C_{\pm} precisely once \leadsto intersection map $\mathcal{I}_+:\mathcal{M}_*\to C_+.$
- If $\sigma \subset W$ satisfies $\partial \sigma = z$ with z cycle in Γ , then z also bounds $b = \mathcal{I}_+ ev^{-1}(\sigma) \subset V_+$.

Josua Kugler (Heidelberg University)

Homological obstructions

Fact:

• If dim $\geqslant 7$, subcritical surgeries on $\mathbb{S}^{2n-1} \times \mathbb{T}^2$ can be pushed away from dividing set to V_+ .

$$\Rightarrow$$
 (\mathbb{S}^{2n+1} , ξ_{ex}) still has a dividing set Γ ,

with $H_n(\Gamma) \neq 0$.

Homological obstructions

Fact:

• If dim $\geqslant 7$, subcritical surgeries on $\mathbb{S}^{2n-1} \times \mathbb{T}^2$ can be pushed away from dividing set to V_+ .

$$\Rightarrow$$
 ($\mathbb{S}^{2n+1}, \xi_{ex}$) still has a dividing set Γ ,

with $H_n(\Gamma) \neq 0$.

4 Homological obstruction theorem persists under surgery away from dividing set (capping cobordisms).

Figure: Capping cobordism.

End of the proof: Assume *W* filling of $(\mathbb{S}^{2n+1}, \xi_{ex})$.

• \exists homology class $z \subset \Gamma$ s.t. z survives in V_{\pm} .

End of the proof: Assume *W* filling of $(\mathbb{S}^{2n+1}, \xi_{ex})$.

- \exists homology class $z \subset \Gamma$ s.t. z survives in V_{\pm} .
- Homological obstruction theorem: $H_n(\Gamma) \to H_n(W) \neq 0$.

End of the proof: Assume *W* filling of $(\mathbb{S}^{2n+1}, \xi_{ex})$.

- \exists homology class $z \subset \Gamma$ s.t. z survives in V_{\pm} .
- Homological obstruction theorem: $H_n(\Gamma) \to H_n(W) \neq 0$.
- However, this factors as

$$0 \neq H_n(\Gamma) \rightarrow H_n(\mathbb{S}^{2n+1}) = 0 \rightarrow H_n(W),$$

contradiction.

Thank you!