

Background and Rationale

SOCIAL MEDIA PLATFORMS

BLACK BOX AND LACK OF TRANSPERANCY

Research question

- Can the implementation of Explainable AI techniques effectively improve content moderation with object detection systems by providing transparent insights into decision-making processes and enhancing moderators' ability to assess detection outcomes?
 - Yes, but...
 - RQ1.1: Can state of the art ML / DL models effectively be used to help with violent content moderation in social media? - Yes
 - RQ1.2: Can these SOTA Models be used together with xAI and Captum? -Generally yes, but...
 - RQ1.3: How do different SOTA ML image detection models differ in their explainabilty from each other? Which models are better explainable than others? - Future Research

Models & Libraries

Self-Trained Yolov8

- Dataset based on weapons and similar data
- Good at identifying smartphones
- Bad at every other category
- Overall Precision of 0.2

Pre-Trained model

- Only 2 classes
- Guns and knifes
- Way better performance
- More fitting for our use case

Dataset & Model Classes

- Sohas_weapon-Detection (Our model)
 - 5000 training images
 - 6 classes
 - Pistol
 - Knife
 - Smartphone
 - Bill
 - Purse
 - Card

- Weapon 2 Computer Vision Project (Pre-Trained Model)
 - 4098 training images
 - 2 classes
 - Knife
 - Gun

Why does the pre-trained model work better? **Assumption: 6 vs 2 Classes**

xAI with Eigen Grad-CAM

- Highlight the most critical features -> PCA
- Visualize the important regions of an input image that contribute to the CNN's output
- Uses PCA to reduce the dimensionality of the gradients, potentially highlighting the most significant features more effectively

Our final result

Standard Model

Our self-trained model

Our final result

Pre-Trained Weapon Model

Eigen Grad-CAM

What would be our next steps...

- Improve object / weapon detection model
 - Test Different Frameworks (e.g. DETR, Yolov10)
 - Better Data
- Compare different explainability techniques
 - Grad-CAM ++
 - Augmented Grad-CAM
- Try it on social media
 - Real-time detection
- Usage in Security Context
 - Real-time security footage monitoring

Hurl

Standard Model

Our model

Hurl

Weapon Model

Grad-CAM

Robbery

Standard Model

Our model

Robbery

Weapon Model

Grad-CAM

Robbery

Our Model

Our model GradCam

