

DS-DC-13 LECTURE NOTES

Jim Simpson Data Scientist, Sotera

LESSON 07

LESSON 7 LEARNING OBJECTIVES

- D LOSS FUNCTIONS

 -MEAN SQUARED ERROR

 CROSS VALIDATION

 -K-FOLDS VALIDATION

 D REGULARIZATION

 -PREVENT OVERFITTING

 D GRID SEARCH
- FOR HYPERPARAMETER TUNING
- GRADIENT DESCENT
 FOR MODEL WEIGHT LEARNING

CROSS VALIDATION

2-FOLDS VS. 10-FOLDS

K=2 K=10 50% training 50% Leshing 10% 3 10% testing x2

USING CROSS VALIDATION TO CHECK FOR OVERFITTING optimal stopping point underfit < ; > overfit testing error error training error iterations -> mo del Complexity

$$\gamma = m \times + c + R(m)$$

$$\gamma = \beta_0 \times + \beta_1 + R(\beta)$$

GRADIENT DESCENT

Hypothesis/
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

Gradient

Prediction

Weights/

Parameters

 $\theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \end{bmatrix}$

Gradient

Oescent

Hyperparameters

Search

Search

Search

To tune

The iterations

Error(Objective $J(\theta) = J \leq h_{0}(h_{0}(x) - y^{(i)})^{2} \leq h_{0}(h_{0}($

GRADIENT DESCENT VS GRID SEARCH

Use Grid Search to find best (learning rate)

for a gradient descent Hyperparameter of Gradient Descent

Use Gradient descent to find optimal weights)
for a linear regression model.

Parameter of

A Send out additional reading

Linear Regression