1. Determinemos primero $\mathbb{E}(T_n)$. Para ello seguimos los siguientes pasos:

$$\mathbb{P}{X > t} = \int_t^\infty f(x) dx = \int_t^\infty 3\theta^3 x^{-4} dx = \frac{\theta^3}{t^3} \quad \text{si } t > \theta$$

$$\mathbb{P}\{T_n > t\} = \mathbb{P}\{\min(X_1, \dots, X_n) > t\} = \prod_{i=1}^n P\{X_i > t\} = \frac{\theta^{3n}}{t^{3n}}$$

Función de distribución de T_n : $F_{T_n}(t) = \mathbb{P}\{T_n \leq t\} = 1 - \mathbb{P}\{T_n > t\} = 1 - \frac{\theta^{3n}}{t^{3n}}$

Densidad de
$$T_n$$
: $f_{T_n}(t) = \frac{d}{dt} F_{T_n}(t) = 3n\theta^{3n} \frac{1}{t^{3n+1}}$ si $t > \theta$

$$\mathbb{E}(T_n) = \int_{\theta}^{\infty} t f_{T_n}(t) dt = \theta \frac{3n}{3n - 1}$$

Como $\mathbb{E}(T_n) \neq \theta$ el estimador T_n está sesgado y su sesgo es

Sesgo
$$(T_n) = \mathbb{E}(T_n) - \theta = \theta \frac{1}{3n-1}.$$

Observemos que Sesgo $(T_n) \to 0$ cuando $n \to \infty$, así que T_n es asintóticamente insesgado.

Probemos ahora que T_n es consistente en probabilidad: dado $\epsilon>0$, por la desigualdad de Markov tenemos que

$$\mathbb{P}\{|T_n - \theta| > \epsilon\} \le \frac{\mathbb{E}|T_n - \theta|}{\epsilon} = \frac{\theta}{\epsilon} \frac{1}{3n - 1} \to 0 \text{ cuando } n \to \infty.$$

- **2.** a) La cantidad de información de Fisher, $I(\theta)$, aparece en
 - la cota inferior de Fréchet-Cramer-Rao ($\mathbb{V}(T_n) \geq 1/(n\,I(\theta))$ para la varianza de un estimador insesgado, T_n , de θ ;
 - la varianza asintótica, $1/I(\theta)$, de los estimadores de máxima verosimilitud (bajo ciertas condiciones de regularidad).

Para la distribución $Beta(\theta,1)$ tenemos que

$$I(\theta) = \mathbb{E}_{\theta} \left[-\frac{\partial^2}{\partial \theta^2} \log f(X; \theta) \right] = \frac{1}{\theta^2},$$

donde hemos utilizado que

$$\log f(x; \theta) = \log \theta + (\theta - 1) \log x$$
 y $\frac{\partial}{\partial \theta} \log f(x; \theta) = \frac{1}{\theta} + \log x$.

b) La función de verosimilitud es

$$L_n(\theta; x_1, \dots, x_n) = \prod_{i=1}^n \theta x_i^{\theta-1} = \theta^n \left(\prod_{i=1}^n x_i \right)^{\theta-1}.$$

Para calcular el estimador de máxima verosimilitud (e.m.v.) de θ

$$\hat{\theta}_{\text{MV}} = -\frac{n}{\sum_{i=1}^{n} \log x_i}$$

basta calcular el punto de máximo del logaritmo de la verosimilitud:

$$\log L_n(\theta) = n \log \theta + (\theta - 1) \sum_{i=1}^n \log x_i \implies \frac{d}{d\theta} \log L_n(\theta) = \frac{n}{\theta} + \sum_{i=1}^n \log x_i = 0$$

$$\Rightarrow \frac{d^2}{d\theta^2} \log L_n(\theta) = -\frac{n}{\theta^2} < 0$$

Para obtener la distribución asintótica del e.m.v podemos aplicar el teorema sobre la eficiencia asintótica de los e.m.v.:

$$\sqrt{n}(\hat{\theta}_{MV} - \theta) \xrightarrow{d} N\left(0, \frac{1}{\sqrt{I(\theta_0)}}\right) = N(0, \theta).$$

Aplicando el método delta obtenemos el mismo resultado. Primero observemos que $\hat{\theta}_{MV} = g(\bar{Y})$, siendo g(y) = -1/y e $Y = \log X$. Por el TCL sabemos que

$$\sqrt{n}(\bar{Y} - \mathbb{E}Y) \stackrel{d}{\longrightarrow} N(0, \mathbb{V}^{1/2}(Y)) = N\left(0, \frac{1}{\theta}\right),$$

donde hemos utilizado que

$$\mathbb{E}Y = \int_0^1 (\log x) \theta x^{\theta - 1} dx = -\frac{1}{\theta} \quad \text{y} \quad \mathbb{V}(Y) = \mathbb{E}(Y^2) - \mathbb{E}^2(Y) = \frac{1}{\theta^2}.$$

Ahora aplicamos el método delta:

$$\sqrt{n}(\hat{\theta}_{MV} - \theta) = \sqrt{n}(g(\bar{Y}) - g(\mathbb{E}Y)) \xrightarrow{d} N(0, |g'(\mathbb{E}Y)| \mathbb{V}^{1/2}(Y)) = N(0, \theta).$$

c) Para obtener el estimador de θ por el método de los momentos igualamos los momentos poblacional y muestral de orden 1 de X:

$$\mathbb{E}X = \int_0^1 x \theta x^{\theta - 1} dx = \frac{\theta}{\theta + 1} = \bar{X} \Rightarrow \hat{\theta}_{\text{MOM}} = \frac{\bar{X}}{1 - \bar{X}}.$$

Para determinar la distribución asintótica del estimador aplicamos de nuevo el método delta: $\hat{\theta}_{\text{MOM}} = g(\bar{X})$ y $\theta = g(\mathbb{E}X)$, siendo g(x) = x/(1-x). Por tanto,

$$\sqrt{n}(\hat{\theta}_{\text{MOM}} - \theta) = \sqrt{n}(g(\bar{X}) - g(\mathbb{E}X)) \xrightarrow{d} N(0, |g'(\mathbb{E}X)| \mathbb{V}^{1/2}(X)) = N\left(0, \frac{\theta^{1/2}(\theta + 1)}{(\theta + 2)^{1/2}}\right)$$

Es fácil comprobar que la varianza asintótica de $\hat{\theta}_{MV}$ es menor que la de $\hat{\theta}_{MOM}$:

$$\theta^2 < \frac{\theta(\theta+1)^2}{\theta+2} \Leftrightarrow \theta^2(\theta+2) \le \theta(\theta+1)^2$$
, lo cual se cumple $\forall \theta > 0$.

d) Observemos que la región de rechazo del contraste es la que aparece sombreada en la siguiente figura, es decir, $R = \{(x_1, x_2) \in \mathbb{R}^2 : 3/4 \le x_1 \le 1, 3/(4x_1) \le x_2 \le 1\}$

El nivel de significación o tamaño del test es la máxima probabilidad de error de tipo I, es decir, la máxima probabilidad de rechazar H_0 siendo cierta. En este caso, como la hipótesis nula es puntual, el nivel de significación es simplemente la probabilidad de rechazar H_0 cuando $\theta = 1$. Observemos que, si $\theta = 1$, entonces la función de densidad de X es f(x;1) = 1 si $0 \le x \le 1$ y la función de densidad de la muestra X_1, X_2 es $f_{\theta=1}(x_1, x_2) = f(x_1; 1)f(x_2; 1) = 1$ si $0 \le x_1, x_2 \le 1$, que corresponde a una distribución uniforme en el cuadrado unidad. Por tanto,

$$\mathbb{P}_{\theta=1}(R) = \mathbb{P}_{\theta=1} \left\{ \frac{3}{4} \le X_1 \le 1, \frac{3}{4X_1} \le X_2 \le 1 \right\}$$
$$= \int_{3/4}^1 \int_{3/(4x_1)}^1 dx_2 \, dx_1 = \frac{1}{4} \left(1 + 3 \log \left(\frac{3}{4} \right) \right) \simeq 0.0342$$

La probabilidad de error de tipo 2 es la probabilidad de aceptar H_0 siendo falsa, es decir, $1 - \mathbb{P}_{\theta=2}(R)$. Para $\theta=2$, la función de densidad de la muestra X_1, X_2 es $f_{\theta=1}(x_1,x_2)=f(x_1;2)f(x_2;2)=4x_1x_2$, si $0 \le x_1,x_2 \le 1$. Luego

$$\mathbb{P}_{\theta=2}(R) = \int_{3/4}^{1} \int_{3/(4x_1)}^{1} 4x_1 x_2 \, dx_2 \, dx_1 = \frac{1}{8} \left(\frac{7}{2} + 9 \log \left(\frac{3}{4} \right) \right) \simeq 0.1139$$

y, en consecuencia, $1 - \mathbb{P}_{\theta=2}(R) \simeq 0.8861$.

3. Sea

$$X = \left\{ \begin{array}{ll} 1 & \text{si un encuestado es partidario de endurecer la ley} \\ 0 & \text{si no} \end{array} \right.$$

que sigue una distribución de Bernoulli(p) con $0 . Se ha tomado una muestra <math>x_1, \ldots, x_{1500}$ que ha proporcionado el dato $\bar{x} = 0.43$.

a)
$$IC_{0.95}(p) = \left[0.43 \mp 1.96\sqrt{\frac{0.43(1 - 0.43)}{1500}}\right] = [0.043 \mp 0.025] = [0.405, 0.455]$$

b) Planteamos el contraste

 $H_0: p \ge 0.5$

 $H_1: p < 0.5$ (la mayoría de los ciudadanos se opone a endurecer la ley),

cuya región de rechazo es

$$R = \left\{ \bar{x} - 0.5 < z_{1-\alpha} \sqrt{\frac{0.5^2}{n}} \right\} = \left\{ z < z_{1-\alpha} \right\} = \left\{ -z > z_{\alpha} \right\},\,$$

siendo

$$z = \frac{\bar{x} - 0.5}{\sqrt{0.5^2/n}} = -5.42$$

el estadístico del contraste. El p-valor del contraste es la probabilidad de que una N(0,1) sea mayor que 5.42. Con la información de la tabla ($\mathbb{P}\{Z>3.99\}=0.0010$) llegamos a la conclusión de que el p-valor es menor que 0.0010. Utilizando R (pnorm(-5.42)) obtenemos que el p-valor es 2.979952e-08: es razonable rechazar la hipótesis nula.

4. medias = apply(datos,1,mean)

medianas = apply(datos,1,median)

 $ECMmedia = (mean(medias)-2)^2 + var(medias)$

Se ha usado que ECM(T)=Sesgo^2(T)+V(T)

 $ECMmediana = (mean(medianas)-2)^2 + var(medianas)$

Otro código alternativo (sin usar la función apply sino un for, y utilizando directamente la definición de ECM: $ECM_{\theta}(T) = \mathbb{E}[(T-\theta)^2]$), sería

medias < -rep(0,200)

medianas<-rep(0,200)

for (i in 1:200) {medias[i] <-mean(datos[i,])}

for (i in 1:200){medianas[i]<-median(datos[i,])}</pre>

ECMmedia <- mean ((medias-2)^2)

ECMmediana <- mean ((medianas-2)^2)