Diffraction at HERA: Inclusive Measurements and the Final State

Frank-Peter Schilling

Univ. Heidelberg, Germany

representing the

and

collaborations

Workshop on low-x Physics Tel Aviv, Israel, 15-18/06/1999

http://www.desy.de/~fpschill

Contents

- Introduction: Diffraction at HERA
- Inclusive diffraction (F_2^D) and models
- Hadronic final state (Energy flow, Event shapes, Dijets, Charm)
- Leading baryons
- Summary

Diffraction at HERA

At HERA, diffractive $\gamma^{(*)}p$ interactions can be studied:

Variables:

$$Q^2 = -q^2$$
 γ virtuality $W = (q+p)^2$ γp CM energy $t = (p-p')^2$ (momentum transfer) 2 at p vertex M_X , M_Y Masses of X and Y

Additional Variables:

$$x_{I\!\!P} = \frac{q \cdot (p-Y)}{q \cdot p} = \frac{Q^2 + M_X^2 - t}{Q^2 + W^2 - M_p^2}$$

ightarrow long. momentum fraction transferred from p to exchange

$$\beta = \frac{-q^2}{q \cdot (p - Y)} = \frac{Q^2}{Q^2 + M_X^2 - t}$$

ightarrow fraction of exchange momentum carried by q coupling to γ

- $Q^2 pprox 0$, |t| pprox 0: similar to soft hadron-hadron interaction
- $Q^2\gg 0$: γ^* probes IP structure

- \rightarrow Vector meson production (EL+PD) covered by talk of S. Kananov
- ightarrow Focus here on inclusive diffraction, diffractive final states and leading baryon production

The Diffractive Structure Function ${\cal F}_2^D$

Most general case: Define five-fold differential cross section:

$$\frac{\frac{d\sigma(ep\to eXY)}{dx_{I\!\!P} \ dt \ dM_Y \ d\beta \ dQ^2}}{\frac{d\sigma(ep\to eXY)}{dt \ dM_Y \ d\beta \ dQ^2}} = \frac{4\pi\alpha^2}{\beta Q^4} \left(1 - y + \frac{y^2}{2(1 + R^{D(5)})}\right) \times \\ F_2^{D(5)}(x_{I\!\!P}, t, M_Y, \beta, Q^2)$$

 $R^{D(5)}: \mathsf{Ratio}\ \sigma_L/\sigma_T o \mathsf{neglected}!$

If Y is not measured, integrate over M_Y , t

$$\frac{d\sigma^{ep \to eXY}}{dx_{I\!\!P} d\beta dQ^2} = \frac{4\pi\alpha^2}{\beta Q^4} \left(1 - y + \frac{y^2}{2} \right) F_2^{D(3)}(x_{I\!\!P}, \beta, Q^2)$$

Inclusive diffractive DIS:

 $Q^2\gg 0~GeV^2$, small M_X , small M_Y :

$$x_{I\!\!P} \ll 1 \qquad ({\rm H1:} \; x_{I\!\!P} < 0.05) \ {
m small} \; |t| \qquad ({\rm H1:} \; |t| < 1 \; GeV^2) \ {
m small} \; M_Y \qquad ({\rm H1:} \; M_Y < 1.6 \; GeV)$$

Factorizable Ansatz:

Regge parametrization of $F_2^{D(3)}$

Parametrize long-distance physics at p vertex using Regge phenomenology:

$$f_{I\!\!P/p}(x_{I\!\!P}) = \int_{-1~GeV^2}^{t_{min}(x_{I\!\!P})} \left(\frac{1}{x_{I\!\!P}}\right)^{2\alpha_{I\!\!P}(t)-1} e^{b_{I\!\!P}t} dt$$

with
$$\alpha_{I\!\!P}(t) = \alpha_{I\!\!P}(0) + \alpha'_{I\!\!P}t$$

 $F_2^{D(3)}$ (H1 1994): $x_{I\!\!P}$ dependence varies with eta

→ Additional sub-leading exchange necessary:

$$F_2^{D(3)} = f_{I\!\!P/p}(x_{I\!\!P}) \ F_2^{I\!\!P}(\beta, Q^2) + f_{I\!\!R/p}(x_{I\!\!P}) \ F_2^{I\!\!R}(\beta, Q^2)$$

H1 phenomenological Regge fits with free parameters:

$$\alpha_{I\!\!P}(0), \; \alpha_{I\!\!R}(0), \; F_2^{I\!\!P}(\beta,Q^2), \; F_2^{I\!\!R}(\beta,Q^2)$$

The Pomeron intercept $\alpha_{I\!\!P}(0)$

Result from the H1 Regge fit:

- $\alpha_{I\!\!P}(0) = 1.203 \pm 0.020 \pm 0.013 \pm 0.035$ higher than in soft hadron-hadron physics $(\alpha_{I\!\!P}^{soft} = 1.08)$
- $\alpha_{I\!\!R}(0) = 0.50 \pm 0.11 \pm 0.11 \pm 0.10$ consistent with f, ω, ρ , etc. exchange
- ightarrow Diffractive DIS at HERA dominated by $I\!P$ exchange!

Comparision of H1 and ZEUS:

 $\overline{\alpha}_{I\!\!P}$: averaged over t

• ZEUS 1994 <u>H1 1994</u>

- ightarrow no significant variation within $Q^2=8\dots 80~GeV^2$!
- \rightarrow agreement between ZEUS and H1 on $\alpha_{I\!\!P}(0)!$

The Pomeron intercept at very low Q^2

- New ZEUS results
- use Beam Pipe Calorimeter (BPC)
- $Q^2 = 0.22 0.7 \ GeV^2$
- $\begin{array}{l} \bullet \ \ \text{extract} \ \ \alpha_{I\!\!P}(0) \ \ \text{from} \\ \text{fit to} \\ \frac{d\sigma}{dM_X^2} \sim W^{2(2\overline{\alpha}_{I\!\!P}-2)} \end{array}$

 \rightarrow access to transition region!

Measurement of the t dependence

• t can only be measured if outgoing proton is tagged directly!

• Fit to $\frac{d\sigma}{dt} \propto e^{bt}$

ZEUS 1995 Preliminary (LPS)

 $b = 7.1 \pm 1.0(stat.) \pm 1.2(syst.) \ GeV^{-2}$

→ Consistent with soft hadron-hadron interactions!

QCD Analysis of $F_2^{D(3)}$ (H1)

H1 observes scaling violations:

• flat or rising behaviour, even at large beta!

QCD Analysis of $F_2^{D(3)}$ (H1) H1 1994

- within resolved IP model (Ingelman, Schlein), obtain PDF's for IP through DGLAP QCD analysis
- ullet can be successfully extended into low and high Q^2 regions!
- fit 2: 'flat gluon' solution fit 3: 'peaked gluon' solution

80 - 90% gluons!

SCI Model for Diffractive DIS

Edin, Ingelman, Rathsman: Soft Colour Interactions

- ullet Start from standard QCD ME+PS description of $F_2(x,Q^2)$
- ullet low x: dominated by Boson-gluon-fusion
- additional non-perturbative interactions affect final-state colour connections but not parton momenta
- ullet free parameter: probability R_{SCI} to be fixed by data
- implemented in LEPTO 6.5

$F_2^{D(3)}$ H1 and LEPTO 6.5

2-gluon exchange models

- Many models available:
 Low, Nussinov, Mueller, Donnachie, Landshoff, Nikolaev,
 Zakharov, Diehl, Bartels, Wüsthoff, Bialas, Peschanski, ...
- ullet $q\overline{q}$ / $q\overline{q}g$ production via gg-exchange / BFKL ladder

Example: BEKW (Bartels, Ellis, Kowalski, Wüsthoff) model:

- Investigate decomposition into leading / higher twist, longitudinal / transverse γ interactions, $q\overline{q}$ / $q\overline{q}g$ final states
- 3 significant contributions to F_2^D , 9 free parameters:

$$\begin{split} F_{q\bar{q}}^{\mathrm{T}} &= A \left(\frac{x_0}{x_{I\!\!P}} \right)^{n2(Q^2)} \beta (1-\beta) \\ F_{q\bar{q}g}^{\mathrm{T}} &= B \left(\frac{x_0}{x_{I\!\!P}} \right)^{n2(Q^2)} \alpha_{\mathrm{s}} \ln \left(\frac{Q^2}{Q_0^2} + 1 \right) (1-\beta)^{\gamma} \\ \Delta F_{q\bar{q}}^{\mathrm{L}} &= C \left(\frac{x_0}{x_{I\!\!P}} \right)^{n4(Q^2)} \frac{Q_0^2}{Q^2} \left[\ln \left(\frac{Q^2}{4Q_0^2\beta} + \frac{7}{4} \right) \right]^2 \beta^3 (1-2\beta)^2 \end{split}$$

$F_2^{D(3)}$ ZEUS 1994 / 2 gluon models

NZ: Nikolaev, Zakharov

BPR: Bialas, Peschanski (incl. IR)

BEKW: Bartels, Ellis, Kowalski, Wüsthoff

 $\boldsymbol{x_{IP}} \rightarrow \text{Parameters can be fixed to describe } F_2^{D(3)} \text{, even at large } \beta$

β dependence in BEKW model

- Mixture of $q\overline{q}\ /\ q\overline{q}g$ states
- Higher twist contributions important at large β
- → Clear prediction for partonic composition of final states!

Diffractive Final States

Motivation:

- Hadronic final state observables sensitive to QCD structure of diffraction
- ullet Resolved IP model: distinguish $q \ / \ g$ dominated IP
- 2-gluon models: decomposition into $q\overline{q}$, $q\overline{q}g$

Studies made in $\gamma^* IP$ - CMS (rest frame of X):

- q induced: low p_T , aligned
- ullet g induced: high p_T , non-aligned

Topics:

- Energy Flow
- Event Shapes (Thrust, Sphericity)
- (Particle spectra, multiplicites, correlations) not here...
- Dijet production
- ullet Open charm (D^*) production

Energy Flow (H1)

- large M_X : central rapidity pleateau emerges \rightarrow gluons are needed to model finals state!
- RAPGAP q-dominated IP fails!
- ullet RAPGAP g-dominated IP and SCI: reasonable description (except SCI at low M_X)

(Measurement in agreement with ZEUS LPS 1997)

Event Shapes: Thrust and Sphericity

Observables:

- Thrust definition: $T = \max \frac{\sum_i |n \cdot p_i|}{\sum_i |p_i|}$
- Sphericity definition: $S=3/2(\lambda_2+\lambda_3)$, where the λ_k are eigenvalues of the Sphericity tensor $S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |p_i|^2}.$

$$T \to 1 \qquad S \to 0$$

Measurements:

- H1 1994 Data: $x_{I\!\!P} < 0.05$, $10 < Q^2 < 100~GeV^2$, $4 < M_X < 36~GeV$
- ZEUS 1997 LPS Data: $0.0003 < x_{I\!\!P} < 0.03$, $4 < Q^2 < 90~GeV^2$, $4 < M_X < 35~GeV$

 $M_X \to \infty,$ $1/M_X \to 0:$ hadronisation corrections negligible

increases with M_{X}

lower than in e^+e^- :

ightarrow higher parton multiplicities more important, e.g. $q\overline{q}g$

MEPS o.k! CDM fails!

Thrust/Sphericity (ZEUS 97 LPS)

- ullet independent of $Q^2, x_{I\!\!P}, W$, agreement with e^+e^-
- Rapgap + Hadronisation: MEPS fails! CDM o.k.!
- RIDI (Ryskin $\gamma^* \to q\overline{q}(g)$): fails at low $M_X \to \text{too 2-jet like!}$
- → Discrepancy H1-ZEUS!

Diffr. Jet and Charm Production: Models

Motivation for Jets, Charm: Large sensitivity to gluons!

Resolved IP Model (Ingelman, Schlein)

 $z_{I\!\!P}$: Momentum fraction from IP entering hard process: $z_{I\!\!P} \leq 1$

2-gluon $q\overline{q}$ Model (e.g. Bartels et al.)

$$M_X = M_{q\overline{q}}$$

$$\boxed{z_{I\!\!P} = 1}$$
 (at parton level, not for $q\overline{q}g$)

SCI model

Diffractive Dijets (H1 1994)

Dependence on fractional momentum from IP

→ Momentum distribution neither soft nor 'super-hard'

 $p_T > 6 \; GeV$

Combined DGLAP QCD fits to Jet sections cross and $F_2^{D(3)}$ within resolved IP model

acceptable fits only if *IP* dominated by hard gluons

Gluon fraction in IP : 70 - 80%

Charm production: $ep \rightarrow e(D^*X)Y$

H1 data (95-97): $D^* \to K\pi\pi$ $L = 21 \ pb^{-1}$

$$L = 21 \ pb^{-1}$$

$$2 < Q^2 < 100 \ GeV^2$$

 $x_{IP} < 0.04$
 $p_T(D^*) > 2 \ GeV$

$$N(D^*) = 38 \pm 10 \pm 4$$
 $\sigma = (154 \pm 45 \pm 35) \ pb$

ZEUS data (95-97, 96-97):

$$3 < Q^2 < 150 \ GeV^2 \ p_T(D^*) > 1.5 \ GeV \ x_{I\!\!P} < 0.012$$

$$1 < Q^2 < 480 \; GeV^2 \ p_T(D^*) > 2.0 \; GeV \ x_{T\!P} < 0.015$$

- Resolved IP, H1 F_2^D fits: Shapes o.k., but but rate too high by a factor of 3!
- 2-gluon model, Bartels $q\overline{q}$: reasonable normalization, but fails at large masses (large $x_{I\!\!P}$, low $z_{I\!\!P}$) \to need $q\overline{q}g$!
- SCI model: Shapes o.k., but rate too high by a factor of 2!

\rightarrow In contrast to other H1 measurements!!

- ACTW: gluon dominated res. IP model
- RIDI: Ryskin's pQCD model $q\overline{q}$ AND $q\overline{q}g!$ (normalized)
- BHM: SCI model
- → reasonable description by all models!
- → Disagreement H1-ZEUS! Need more work...

Leading Baryon Production

Introduction:

- H1 and ZEUS use $forward\ detectors$:

 Proton spectrometers and Neutron calorimeters located $60\ldots 110\ m$ downstream the IP
- ullet forward p's and n's measured over wide energy range

Kinematics:

Questions:

- Description of p fragmentation region by 'standard models'
- ullet Applicability of Regge models to soft physics at p vertex at large $x_{I\!\!P}$
- ullet Probe sub-leading exchanges (e.g. π) at large $x_{I\!\!P}$

Detector acceptances:

	H1	ZEUS
Leading p	$p_T < 0.2 \; GeV$	$p_T < 0.5 \; GeV$
	$0.7 < x_L < 0.9$	$0.6 < x_L < 1.0$
Leading n	$p_T < 0.2 \; GeV$	$\theta < 0.8 \ mrad$
	$0.2 < x_L < 1.0$	$0.6 < x_L < 1.0$

x_L distribution (ZEUS)

ZEUS PRELIMINARY 1995

Frac. of DIS events with leading baryon

$$\frac{1}{N_{DIS}}\frac{dN_{LB}}{dx_L}$$

$$0.11 < Q^2 < 0.65$$

 $3 < Q^2 < 254$
 (GeV^2)

- diffractive peak at $x_L \approx 1$
- If pure π exch., exp. $N_{LP}=\frac{1}{2}N_{LN}$ But: $N_{LP}\gg N_{LN}!$
- Ariadne Colour Dipole Model (CDM) fails to describe data!

Regge model of baryon production

$$F_2^{LB(3)}(z,eta,Q^2) = \sum_{i=\pi,I\!\!P,I\!\!R} \; f_{i/p}(z) \cdot F_2^i(eta,Q^2)$$

- Protons: add contributions from π^0 , $I\!\!P$, $I\!\!R$ $I\!\!R=f_2$ (neglect other secondary reggeons)
- Neutrons: only π^+ exchange contributes (shown by the data)
- Flux factors: $f_{i/p}(z)$ from Hadron-Hadron data:

$$f_{\pi/p}(z,t) = C \frac{g_{\pi Np}^2}{16\pi^2} (1-z)^{1-2\alpha_\pi' t} \frac{|t|}{(m_\pi^2-t)^2} \exp\left(2R_\pi^2(t-m_\pi^2)\right)$$
 with

$$C=2/3$$
 for n 's, $C=1/3$ for p 's.

$$f_{I\!\!P/p}(z,t) = rac{54.4~GeV^{-2}}{8\pi^2}(1-z)^{1-2lpha}I\!\!P^{(t)}\exp\left(2R_{I\!\!P}^2t
ight)$$

$$f_{I\!\!R/p}(z,t) = {390~GeV^{-2} \over 8\pi^2} (1-z)^{1-2lpha} I\!\!R^{(t)} \exp\left(2R_{I\!\!R}^2 t
ight)$$
 with

$$\alpha_{I\!\!P}(t) = 1.08 + 0.25 \; GeV^{-2}t, \; R_{I\!\!P}^2 = 1.9 \; GeV^{-2}$$
 $\alpha_{I\!\!R}(t) = 0.50 + 0.90 \; GeV^{-2}t, \; R_{I\!\!R}^2 = 2.0 \; GeV^{-2}$

• Structure functions:

large $x_{I\!\!P} \to {\sf low} \; \beta \colon F_2^\pi, F_2^{I\!\!P}, F_2^{I\!\!R} \; {\sf not much constrained}.$

$$\begin{split} F_2^\pi &= F_2^\pi (GRV) \\ F_2^{I\!\!R} &= F_2^\pi \\ F_2^{I\!\!P} &= (0.026/0.12) \cdot F_2^\pi \text{ (c.f. Szczurek et al.)} \end{split}$$

Semi-inclusive structure functions (H1) $2 < Q^2 < 50 \; GeV^2$

0.00006 < x < 0.006

 $p_T < 0.2 \; GeV$

 F_2^{LN} rises to lower z, higher $x_{I\!\!P} o \pi$ -exchange! $F_2^{\overline{L}P}$ approx flat ightarrow sum of $I\!P+I\!R+\dots$

$$\frac{d\sigma(ep \to e(p,n)X)}{dx \ dQ^2 \ dz} = \frac{4\pi\alpha^2}{xQ^4} \left(1 - y + \frac{y^2}{2} \right) \ F_2^{LB(3)}(x, Q^2, z)$$

Constraint on F_2^{π} (H1)

$$F_2^{LN(3)}(z,\beta,Q^2)=f_{\pi/p}(z)\cdot F_2^\pi(\beta,Q^2)$$
 and
$$\Gamma_\pi=\int_t f_{\pi/p}(z=0.7,t)\ dt$$
 then

$$\frac{F_2^{LN(3)}(z=0.7,\beta,Q^2)}{\Gamma_{\pi}} = F_2^{\pi}(\beta,Q^2)$$

- \rightarrow Consistent with GRV(LO)!
- ightarrow First constraint on F_2^π at x < 0.02!

Ratios LB / all DIS (ZEUS)

ZEUS PRELIMINARY 1995

$$\frac{F_2^{LP}}{F_2^{DIS}}$$

flat in x, Q^2 in ranges

$$4.5 < Q^2 < 100 \text{ GeV}^2$$

 $0.0002 < x < 0.04$

ZEUS PRELIMINARY (95-97)

(LN) [%]

$$\frac{N_{LN}}{N_{DIS}}$$

flat in Q^2 in ranges

$$\begin{array}{l} 0.1 \; < \; Q^2 \; < \; 0,7 \; \text{ and} \\ 7 < Q^2 < 1000 \; GeV^2 \end{array}$$

- ightarrow same x behaviour, Q^2 scaling as $F_2(x,Q^2)$
- → LB production factorising from hard interaction (in Regge or Fragmentation picture)

Summary

 At HERA, the QCD dynamics of diffractive scattering can be studied

- ullet $lpha_{I\!\!P}(0)$ in DIS higher than for soft IP , now: transition region (very low Q^2) accessible!
 - t slope compatible with hadron-hadron scattering
- \bullet Resolved IP model (Ingelman, Schlein) with gluon dominated (80 90%) parton densities evolving with DGLAP describes H1 data for inclusive diffr. DIS and several hadronic final state observables (Energy flow, Jets, etc.)
 - New results on diffractive charm production!
 - \rightarrow H1 sees discrepancy to other hadr. final states, but also disagrees with ZEUS! More work to be done!
- ullet Soft Colour Interaction (SCI) model: some problems, esp. at low Q^2
 - Several 2-gluon models on the market, free parameters can be tuned to describe H1 and ZEUS data;
 - \rightarrow clear need for $q\overline{q} + q\overline{q}g$ states!
- Leading baryons:
 - Clean sample of diffractive events (w.o. LRG etc.)
 - Neutrons: saturated by pion exchange
 - \rightarrow extraction of F_2^{π} at x < 0.02!
 - -Protons: described by sum of $IP + IR + \pi$ -exchange