Introduction to Audio Content Analysis

Module 3.6: Instantaneous Features

alexander lerch

introduction overview

corresponding textbook section

Section 3.6

■ lecture content

- introduction to the concept of features
- timbre
- spectral shape instantaneous features

■ learning objectives

- describe the process of feature extraction
- list possible pre-processing option and explain potential use cases
- describe the general impact of spectral shape on timbre perception
- summarize features, describe their computation, and discuss their meaning

introduction overview

corresponding textbook section

Section 3.6

■ lecture content

- introduction to the concept of features
- timbre
- spectral shape instantaneous features

■ learning objectives

- describe the process of feature extraction
- list possible pre-processing option and explain potential use cases
- describe the general impact of spectral shape on timbre perception
- summarize features, describe their computation, and discuss their meaning

instantaneous features introduction

remember the flow chart of a general ACA system:

feature

- terminology
 - audio descriptor
 - instantaneous/short-term/low-level feature
- characteristics:
 - not necessarily musically, perceptually, or semantically meaningful
 - low-level: usually one value per block

instantaneous features introduction

remember the flow chart of a general ACA system:

feature:

- terminology:
 - audio descriptor
 - instantaneous/short-term/low-level feature
- characteristics:
 - not necessarily musically, perceptually, or semantically meaningful
 - low-level: usually one value per block

instantaneous features introduction

remember the flow chart of a general ACA system:

feature:

- terminology:
 - audio descriptor
 - instantaneous/short-term/low-level feature
- characteristics:
 - not necessarily musically, perceptually, or semantically meaningful
 - low-level: usually one value per block

rview intro timbre spectral features MFCCs tonalness technical learned summary ○●○○ ○○ ○○○○ ○○○○○ ○○○○○ ○○○○ ○○○

instantaneous features

a feature . . .

- is task-specific, i.e. holds descriptive power relevant to the task,
- may be custom-designed, chosen from a set of established features, or learned from data,
- can be a representation of any data (audio, meta data, other features, ...),
- is not necessarily musically, perceptually, or semantically meaningful or interpretable
- also: non-redundant, invariant to irrelevancies

view intro timbre spectral features MFCCs tonalness technical learned summary $00 \bullet 0$ 00 00000 000000 0000 00 0000 0

instantaneous features feature example

Georgia Center for Music Tech Technology

waveform envelope of three different signals

envelopes of waveforms can have distinct shape

⇒ a feature describing envelope shape could help to distinguish these signal types

instantaneous features feature example

waveform envelope of three different signals

- envelopes of waveforms can have distinct shape
- \Rightarrow a feature describing envelope shape could help to distinguish these signal types $^{
 m I}$

instantaneous features feature extraction

Georgia Center for Music Tech Tech Technology

- repeat for every block
- repeat for every feature: Spectral Centroid, RMS, MFCCs, . . .
- \Rightarrow feature matrix per audio input

definition (American Standards Association)

...that attribute of sensation in terms of which a listener can judge that two sounds having the same loudness and pitch are dissimilar

What is the problem with this definition?

¹A. S. Bregman, Auditory Scene Analysis. MIT Press, 1994.

²S. McAdams and A. Bregman, "Hearing Musical Streams," Computer Music Journal, vol. 3, no. 4, pp. 26–60, Dec. 1979, ISSN: 0148-9267.

definition (American Standards Association)

...that attribute of sensation in terms of which a listener can judge that two sounds having the same loudness and pitch are dissimilar

What is the problem with this definition? Bregman:¹

- implies that timbre only exists for sounds with pitch!
- 2 only says that timbre is not loudness and pitch

¹A. S. Bregman, Auditory Scene Analysis. MIT Press, 1994.

²S. McAdams and A. Bregman, "Hearing Musical Streams," Computer Music Journal, vol. 3, no. 4, pp. 26–60, Dec. 1979, ISSN: 0148-9267.

definition (American Standards Association)

...that attribute of sensation in terms of which a listener can judge that two sounds having the same loudness and pitch are dissimilar

What is the problem with this definition? Bregman:¹

- implies that timbre only exists for sounds with pitch!
- 2 only says that timbre is not loudness and pitch
- → [timbre is] "...the psychoacoustician's multidimensional waste-basket category for everything that cannot be labeled pitch or loudness." ²

¹A. S. Bregman, Auditory Scene Analysis. MIT Press, 1994.

²S. McAdams and A. Bregman, "Hearing Musical Streams," Computer Music Journal, vol. 3, no. 4, pp. 26-60, Dec. 1979, ISSN: 0148-9267.

timbre is

- a function of temporal envelope
 - attack time characteristics
 - amplitude modulations
 - . . .
- a function of spectral distribution
 - spectral envelope
 - number of partials
 - energy distribution of partials
 - ...

when dealing with complex mixtures of sound, it is very difficult (maybe impossible?) to extract detailed temporal information for individual tones

timbre introduction 2/2

timbre is

- a function of temporal envelope
 - attack time characteristics
 - amplitude modulations
 - . . .
- a function of spectral distribution
 - spectral envelope
 - number of partials
 - energy distribution of partials
 - ...

when dealing with complex mixtures of sound, it is very difficult (maybe impossible?) to extract detailed temporal information for individual tones

timbre introduction 2/2

timbre is

- a function of temporal envelope
 - attack time characteristics
 - amplitude modulations
 - ...
- a function of spectral distribution
 - spectral envelope
 - number of partials
 - energy distribution of partials
 - ...

when dealing with complex mixtures of sound, it is very difficult (maybe impossible?) to extract detailed temporal information for individual tones

timbre is

- a function of temporal envelope
 - attack time characteristics
 - amplitude modulations
 - ...
- a function of spectral distribution
 - spectral envelope
 - number of partials
 - energy distribution of partials
 - ...

when dealing with complex mixtures of sound, it is very difficult (maybe impossible?) to extract detailed temporal information for individual tones

spectral shape features spectral centroid

Georgia Center for Music Tech Technology

$$v_{\text{SC}}(n) = \frac{\sum_{k=0}^{K/2-1} k \cdot |X(k,n)|}{\sum_{k=0}^{K/2-1} |X(k,n)|}$$

spectral shape features spectral centroid

$$v_{\rm SC}(n) = \frac{\sum_{k=0}^{K/2-1} k \cdot |X(k,n)|}{\sum_{k=0}^{K/2-1} |X(k,n)|}$$

common variants:

- power spectrum
- logarithmic frequency scale

$$v_{\text{SC,log}}(n) = \frac{\sum\limits_{k=k(f_{\min})}^{\mathcal{K}/2-1} \log_2\left(\frac{f(k)}{f_{\text{ref}}}\right) \cdot |X(k,n)|^2}{\sum\limits_{k=k(f_{\min})}^{\mathcal{N}/2-1} |X(k,n)|^2}$$

spectral shape features spectral spread

Georgia Center for Music Tech Technology

$$v_{\rm SS}(n) = \sqrt{\frac{\sum\limits_{k=0}^{\mathcal{K}/2-1} (k - v_{\rm SC}(n))^2 \cdot |X(k,n)|^2}{\sum\limits_{k=0}^{\mathcal{K}/2-1} |X(k,n)|^2}}$$

spectral shape features spectral spread

$$v_{ ext{SS}}(n) = \sqrt{rac{\sum\limits_{k=0}^{\mathcal{K}/2-1} (k - v_{ ext{SC}}(n))^2 \cdot |X(k,n)|^2}{\sum\limits_{k=0}^{\mathcal{K}/2-1} |X(k,n)|^2}}$$

common variants:

■ same variants as with *Spectral Centroid*, e.g. logarithmic:

$$v_{\mathrm{SS,log}}(\textit{n}) = \sqrt{rac{\sum\limits_{k=k(f_{\mathrm{min}})}^{\mathcal{K}/2-1} \left(\log_2\left(rac{f(k)}{1000\,\mathrm{Hz}}
ight) - v_{\mathrm{SC}}(\textit{n})
ight)^2 \cdot |X(k,\textit{n})|^2}{\sum\limits_{k=k(f_{\mathrm{min}})}^{\mathcal{K}/2-1} |X(k,\textit{n})|^2}}$$

spectral shape features spectral rolloff

Georgia Center for Music Tech Technology

$$v_{ ext{SR}}(extbf{ extit{n}}) = i \quad ext{at } \sum_{k=0}^i |X(k, extit{n})| = \kappa \cdot \sum_{k=0}^{\mathcal{K}/2-1} |X(k, extit{n})|$$

spectral shape features spectral rolloff

$$v_{\mathrm{SR}}(\textit{n}) = i \quad \mathsf{at} \; \sum_{k=0}^{i} |X(k,\textit{n})| = \kappa \cdot \sum_{k=0}^{\mathcal{K}/2-1} |X(k,\textit{n})|$$

common variants:

- scaled to frequency
- power spectrum

spectral shape features spectral decrease

Georgia Center for Music Tech Technology

$$v_{\text{SD}}(n) = \frac{\sum_{k=1}^{\kappa/2-1} \frac{1}{k} \cdot (|X(k,n)| - |X(0,n)|)}{\sum_{k=1}^{\kappa/2-1} |X(k,n)|}$$

spectral shape features spectral decrease

$$v_{\text{SD}}(n) = \frac{\sum\limits_{k=1}^{K/2-1} \frac{1}{k} \cdot (|X(k,n)| - |X(0,n)|)}{\sum\limits_{k=1}^{K/2-1} |X(k,n)|}$$

common variants:

restricted frequency range:

$$v_{ ext{SD}}(n) = rac{\sum\limits_{k=k_{ ext{l}}}^{k_{ ext{u}}} rac{1}{k} \cdot ig(|X(k,n)| - |X(k_{ ext{l}}-1,n)| ig)}{\sum\limits_{k=k_{ ext{l}}}^{k_{ ext{u}}} |X(k,n)|}$$

spectral shape features spectral flux

Georgia Center for Music Tech Technology

$$v_{ ext{SF}}(n) = rac{\sqrt{\sum\limits_{k=0}^{\mathcal{K}/2-1} ig(|X(k,n)| - |X(k,n-1)|ig)^2}}{\mathcal{K}/2}$$

spectral shape features

$$v_{ ext{SF}}(n) = rac{\sqrt{\sum\limits_{k=0}^{\mathcal{K}/2-1} \left(|X(k,n)| - |X(k,n-1)|
ight)^2}}{\mathcal{K}/2}$$

common variants:

$$egin{array}{lcl} v_{
m SF}(n,eta) &=& rac{\sqrt[eta]{\sum\limits_{k=0}^{\mathcal{K}/2-1}}\left(|X(k,n)|-|X(k,n-1)|
ight)^eta}{\mathcal{K}/2} \ &v_{
m SF},_{\sigma}(n) &=& \sqrt{rac{2}{\mathcal{K}}\sum\limits_{k=0}^{\mathcal{K}/2-1}\left(\Delta X(k,n)-\mu_{\Delta X}
ight)^2} \ &v_{
m SF},_{
m log}(n) &=& rac{2}{\mathcal{K}}\sum\limits_{k=0}^{\mathcal{K}/2-1}\log_2\left(rac{|X(k,n)|}{|X(k,n-1)|}
ight) \end{array}$$

signal model:

convolution of excitation signal and transfer function

$$x(i) = e(i) * h(i)$$

$$X(j\omega) = E(j\omega) \cdot H(j\omega)$$

$$\log (X(j\omega)) = \log (E(j\omega) \cdot H(j\omega))$$
$$= \log (E(j\omega)) + \log (H(j\omega))$$

signal model:

convolution of excitation signal and transfer function

$$x(i) = e(i) * h(i)$$

$$X(\mathrm{j}\omega) = E(\mathrm{j}\omega) \cdot H(\mathrm{j}\omega)$$

$$\log (X(j\omega)) = \log (E(j\omega) \cdot H(j\omega))$$
$$= \log (E(j\omega)) + \log (H(j\omega))$$

signal model:

convolution of excitation signal and transfer function

$$x(i) = e(i) * h(i)$$

$$X(\mathrm{j}\omega) = E(\mathrm{j}\omega) \cdot H(\mathrm{j}\omega)$$

$$\log (X(j\omega)) = \log (E(j\omega) \cdot H(j\omega))$$
$$= \log (E(j\omega)) + \log (H(j\omega))$$

Georgia Center for Music Tech Tech College of Design

$$c_{x}(i) = \mathfrak{F}^{-1} \{ \log (X(j\omega)) \}$$

$$= \mathfrak{F}^{-1} \{ \log (E(j\omega)) + \log (H(j\omega)) \}$$

$$= \mathfrak{F}^{-1} \{ \log (E(j\omega)) \} + \mathfrak{F}^{-1} \{ \log (H(j\omega)) \}$$

$$\hat{c}_{x}(i_{s}(n) \dots i_{e}(n)) = \sum_{k \neq j} \log (|X(k,n)|) e^{iki\Delta\Omega}$$

Georgia Center for Music Tech Tech College of Design

$$c_{x}(i) = \mathfrak{F}^{-1} \{ \log (X(j\omega)) \}$$

$$= \mathfrak{F}^{-1} \{ \log (E(j\omega)) + \log (H(j\omega)) \}$$

$$= \mathfrak{F}^{-1} \{ \log (E(j\omega)) \} + \mathfrak{F}^{-1} \{ \log (H(j\omega)) \}$$

$$\hat{c}_{x}(i_{s}(n) \dots i_{e}(n)) = \sum_{k}^{\kappa/2-1} \log (|X(k,n)|) e^{jki\Delta\Omega}$$

$$c_{x}(i) = \mathfrak{F}^{-1} \{ \log (X(j\omega)) \}$$

$$= \mathfrak{F}^{-1} \{ \log (E(j\omega)) + \log (H(j\omega)) \}$$

$$= \mathfrak{F}^{-1} \{ \log (E(j\omega)) \} + \mathfrak{F}^{-1} \{ \log (H(j\omega)) \}$$

$$\hat{c}_{x}(i_{s}(n) \dots i_{e}(n)) = \sum_{j=1}^{K/2-1} \log (|X(k,n)|) e^{jki\Delta\Omega}$$

Georgia Center for Music Tech Tech Technology

$$\hat{c}_{x}(i_{s}(n)\dots i_{e}(n)) = \sum_{k=1}^{K/2-1} \log(|X(k,n)|) e^{jki\Delta\Omega}$$

■ summary:

- cepstrum 'replaces' time domain convolution operation with addition
- result is the *unfiltered* excitation signal *plus* the filter IR (both logarithmic)
- can be used for, e.g., spectral envelope extraction or pitch detection
- more naming silliness: cepstrum, quefrency, liftering, . . .

■ summary:

- cepstrum 'replaces' time domain convolution operation with addition
- result is the *unfiltered* excitation signal *plus* the filter IR (both logarithmic)
- can be used for, e.g., spectral envelope extraction or pitch detection
- more naming silliness: cepstrum, quefrency, liftering, . . .

spectral shape features mel frequency cepstral coefficients 1/4

- typical processing steps for the mel frequency cepstral coefficients (MFCCs):
 - 1 compute magnitude spectrum
 - 2 convert linear frequency scale to logarithmic
 - 3 group bins into bands
 - 4 apply logarithm to all bands
 - 5 compute (inverse) cosine transform (DCT)

$$v_{\mathrm{MFCC}}^{j}(n) = \sum_{k'=1}^{\mathcal{K}'} \log\left(|X'(k',n)|\right) \cdot \cos\left(j \cdot \left(k' - \frac{1}{2}\right) \frac{\pi}{\mathcal{K}'}\right)$$

spectral shape features mel frequency cepstral coefficients 2/4

Georgia | Center for Music Tech 🛚 Technology

- constant Q filter spacing for higher frequencies (mel scale)
- FFT values are weighted and summed over bins for each band

verview intro timbre spectral features MFCCs tonalness technical learned summary

spectral shape features mel frequency cepstral coefficients 3/4

mel-warped cosine bases for DCT

spectral shape features mel frequency cepstral coefficients 4/4

Georgia Center for Music Tech Tech Technology

Property	DM	НТК	SAT
Num. filters	20	24	40
Mel scale	lin/log	log	lin/log
Freq. range	[100; 4000]	[100; 4000]	[200; 6400]
Normalization	Equal height	Equal height	Equal area

tonalness features spectral crest factor

Georgia Center for Music Tech Technology

$$v_{\mathrm{Tsc}}(n) = rac{\displaystyle\max_{0 \leq k \leq \mathcal{K}/2-1} |X(k,n)|}{\sum\limits_{k=0}^{\mathcal{K}/2-1} |X(k,n)|}$$

tonalness features spectral crest factor

$$v_{\mathrm{Tsc}}(n) = \frac{\max\limits_{0 \leq k \leq K/2-1} |X(k,n)|}{\sum\limits_{k=0}^{K/2-1} |X(k,n)|}$$

common variants:

- normalization
- power spectrum
- measure *per band* instead of whole spectrum

tonalness features spectral flatness

Georgia Center for Music Tech Technology

$$v_{\mathrm{Tf}}(n) = \frac{\sqrt[K/2-1]{\prod\limits_{k=0}^{K/2-1}|X(k,n)|}}{\frac{2}{K} \cdot \sum\limits_{k=0}^{K/2-1}|X(k,n)|}$$

tonalness features spectral flatness

$$v_{\mathrm{Tf}}(n) = \frac{\sqrt[\kappa/2]{\prod_{k=0}^{\kappa/2-1}|X(k,n)|}}{\sqrt[2]{\kappa} \cdot \sum_{k=0}^{\kappa/2-1}|X(k,n)|}$$

common variants:

- power vs. magnitude spectrum
- smoothed spectrum (avoid spurious 0-bins)
- measure *per band* instead of whole spectrum

tonalness features spectral tonal power ratio

Georgia Center for Music Tech Tech College of Design

$$u_{\mathrm{Tpr}} = \frac{E_{\mathrm{T}}(n)}{\sum\limits_{i=0}^{K/2-1} |X(k,n)|^2}$$

tonalness features spectral tonal power ratio

$$v_{\mathrm{Tpr}} = \frac{E_{\mathrm{T}}(n)}{\sum\limits_{i=0}^{\kappa/2-1} |X(k,n)|^2}$$

common variants:

definition of tonal/non-tonal components

tonalness features maximum of ACF

$$v_{\mathrm{Ta}}(n) = \max_{\eta_1 \leq \eta \leq \mathcal{K} - 1} |r_{\mathsf{xx}}(\eta, n)|$$

Tech 🛭 Technology

technical features

zero crossing rate

$$v_{ ext{ZC}}(n) = rac{1}{2 \cdot \mathcal{K}} \sum_{i=i_{ ext{s}}(n)}^{i_{ ext{e}}(n)} ig| \operatorname{sign}\left[x(i)
ight] - \operatorname{sign}\left[x(i-1)
ight] ig|$$

technical features ACF coefficients

$$v_{\text{ACE}}^{\eta}(n) = r_{xx}(\eta, n)$$
 with $\eta = 1, 2, 3, \dots$

feature learning introduction

hand-crafted features:

- arbitrary definitions
- simple to compute
- mostly focus on one technical property
- provide limited information

■ feature learning:

- automatically learn features from data-set
- meaning not obvious, can combine multiple properties

feature learning introduction

hand-crafted features:

- arbitrary definitions
- simple to compute
- mostly focus on one technical property
- provide limited information

■ feature learning:

- automatically learn features from data-set
- meaning not obvious, can combine multiple properties

feature learning

Georgia Denter for Music Tech Tech College of Design

principle

- 1 put (a lot of) raw data at input
- 2 learn a way of reducing dimensionality while keeping as much information as possible

advantages

- features might contain more useful information than provided by hand-crafted features
- no expert knowledge required

disadvantages

- usually time consuming
- limited ways of controlling the type of information learned

feature learning

Georgia Center for Music Tech Technology

principle

- 1 put (a lot of) raw data at input
- 2 learn a way of reducing dimensionality while keeping as much information as possible

advantages

- features might contain more useful information than provided by hand-crafted features
- no expert knowledge required

disadvantages

- usually time consuming
- limited ways of controlling the type of information learned

feature learning

principle

- 1 put (a lot of) raw data at input
- 2 learn a way of reducing dimensionality while keeping as much information as possible

advantages

- features might contain more useful information than provided by hand-crafted features
- no expert knowledge required

disadvantages

- usually time consuming
- limited ways of controlling the type of information learned

■ dictionary learning (sparse coding, non-negative matrix factorization)

$$X = B \cdot A$$

X: input signal to be modeled (often spectrogram)

B: dictionary/template matrix (often set of single spectra that comprise the basic building blocks of X)

A: activation matrix indicating the weight and superposition of templates

- derive B,A, by minimizing a cost function, e.g. $||X BA||_2$
- → templates are trained, activations are used as feature vector (length: number of templates)

■ dictionary learning (sparse coding, non-negative matrix factorization)

$$X = B \cdot A$$

X: input signal to be modeled (often spectrogram)

B: dictionary/template matrix (often set of single spectra that comprise the basic building blocks of X)

A: activation matrix indicating the weight and superposition of templates

- derive B,A, by minimizing a cost function, e.g. $||X BA||_2$
- \rightarrow templates are trained, activations are used as feature vector (length: number of templates)

■ clustering

- find clusters in data set (e.g., from magnitude spectra or simple features)
- store median of clusters (compare: template matrix)
- \rightarrow features
 - binary vector (length: number of clusters, zero except for closest cluster)
 - distance vector (distance to each cluster)
- neural networks and deep architectures
 - stack multiple layers of simple learning blocks
 - each layer uses the output of the previous layer as input
 - → feature: output of the highest layer

■ clustering

- find clusters in data set (e.g., from magnitude spectra or simple features)
- store median of clusters (compare: template matrix)
- \rightarrow features:
 - binary vector (length: number of clusters, zero except for closest cluster)
 - distance vector (distance to each cluster)
- neural networks and deep architectures
 - stack multiple layers of simple learning blocks
 - each layer uses the output of the previous layer as input
 - → feature: output of the highest layer

■ clustering

- find clusters in data set (e.g., from magnitude spectra or simple features)
- store median of clusters (compare: template matrix)
- \rightarrow features:
 - binary vector (length: number of clusters, zero except for closest cluster)
 - distance vector (distance to each cluster)

neural networks and deep architectures

- stack multiple layers of simple learning blocks
- each layer uses the output of the previous layer as input
- \rightarrow feature: output of the highest layer

■ clustering

- find clusters in data set (e.g., from magnitude spectra or simple features)
- store median of clusters (compare: template matrix)
- \rightarrow features:
 - binary vector (length: number of clusters, zero except for closest cluster)
 - distance vector (distance to each cluster)
- neural networks and deep architectures
 - stack multiple layers of simple learning blocks
 - each layer uses the output of the previous layer as input
 - → feature: output of the highest layer

rview intro timbre spectral features MFCCs tonalness technical learned summary

summary lecture content

■ feature

- descriptor with condensed relevant information
- not necessarily interpretable by humans

■ low-level feature extraction

- usually extracted per short block of samples
- many features can be extracted from audio data, resulting in feature matrix

■ timbre

- mostly dependent on both spectral shape and time domain envelope characteristics
- multi-dimensional perceptual property not as clearly defined as pitch or loudness

■ instantaneous spectral shape features

- established set of baseline features
- usually extracted from the magnitude spectrum
- condensing various properties of the spectral shape into single values
- there exist multiple variants of "the same" feature

Module 3.6: Instantaneous Features