11.3 Closed-Loop Transfer Function

The closed-loop should have an output $y(t) \leq 0.05$ for reference commands $n(t) = 10 \sin(\omega t)$ with $\omega \geq 1000 \, \text{rad/sec}$. This means that $|T(j\omega)| \leq A$ for $\omega \geq B \, \text{rad/sec}$. What is the value of A and B?

Solution:

(A, B) = (0.005, 1000).

Steps:

We have $y(t) = -10|T(j\omega)|\sin(\omega t + \angle T(j\omega))$.

Since $y(t) \le 0.1$ for $\omega \ge 1000 \, \text{rad/sec}$, we must have:

$$|T(j\omega)| \le \frac{0.05}{10} = 0.005$$

for $\omega \geq 1000 \, \mathrm{rad/sec.}$

GPT Answer:

The system's response y(t) to a reference command must be less than or equal to 0.05 for $n(t) = 10 \sin(\omega t)$, where $\omega \geq 1000 \, \mathrm{rad/sec}$. This condition translates to $|T(j\omega)| \leq 0.005$ for $\omega \geq 1000 \, \mathrm{rad/sec}$. Therefore, A = 0.005 and B = 1000.

Confidence Level: 95%

Correct

Claude Answer:

Let's break this down step by step:

- 1) The output is $y(t) = T(j\omega) \cdot n(t)$, where $T(j\omega)$ is the closed-loop transfer function.
- 2) We are given that $n(t) = 10\sin(\omega t)$ and we want $y(t) \le 0.05$ for $\omega \ge 1000$ rad/sec.
- 3) Therefore, we can write:

$$|T(j\omega)\cdot 10\sin(\omega t)| \leq 0.05$$
 for $\omega \geq 1000\,\mathrm{rad/\,sec}$

4) The maximum value of $|\sin(\omega t)|$ is 1, so we can simplify this to:

$$|T(j\omega)| \cdot 10 \leq 0.05$$
 for $\omega \geq 1000\,\mathrm{rad/sec}$

5) Dividing both sides by 10:

$$|T(j\omega)| \le 0.005$$
 for $\omega \ge 1000$ rad/sec

6) So, comparing this to $|T(j\omega)| \leq A$ for $\omega \geq B$ rad/sec, we can see that:

$$A=0.005$$
 and $B=1000\,\mathrm{rad/\,sec}$

Therefore, the values are: - A=0.005 - $B=1000\,\mathrm{rad/\,sec}$ Confidence level: 95%

Correct