Data Modelling

Learning Outcomes

- Understand and be able to explain the basic concepts associated with Entity-Relationship(ER) model.
- Be able to use Entity—Relationship (ER) modelling in database design.
- Be able to build an ER model from a requirements specification.

Data model

- Recap: Database is a shared collection of logically related data (and a description of this data), designed to meet the information needs of an organization.
- How do we build a Database?
- A technique called data modelling helps you to understand the structure and meaning of data.
- A data model is a graphical description of the components of database.

Recap of Relational model

- E. F. Codd proposed relational data model in 1970.
- In the relational model, all data is logically structured within relations (tables).
- A **relation**, is a two-dimensional table arranged in columns and rows.
- A relational database is a collection of relations.
- One row of a table stores details of one case (instance)
 of an item. All the rows in a table store data about the
 same type of items.
- One column in the table contains the same type of data.

Recap of Relational model

 In a relational database, each row must be uniquely identified with primary key.

studentID	firstName	surname	age	programme
001	Mary	White	20	IoT
004	Tom	Hardy	19	Telecom
006	Mary	Bennet	20	E-commerce
032	John	Doe	21	Telecom
101	Ann	Martins	19	IoT

 The tables in a relational database are connected or related by means of the data in the tables.

Entity-relationship (E-R) modelling

- E-R modelling is a high-level conceptual modelling technique for DB applications
- Developed by Peter Chen and published in 1976 *
- Main concepts (building blocks)
 - Entity
 - Attributes
 - Relationship

^{*} Chen, Peter (March 1976). "The Entity-Relationship Model - Toward a Unified View of Data". ACM Transactions on Database Systems 1 (1): 9–36.

Entity

- Basic building block of a data model.
- An entity is a "thing" about which data should be stored.
- Group of objects with same properties, identified by enterprise as having an independent existence.
- Can be objects with a physical or conceptual existence
 - Physical existence: (e.g. student or a textbook)
 - Conceptual existence: (e.g. a module or an exam)

Entity

An entity is represented by a *rectangle*. The name of the entity is shown in singular form in uppercase in the top part of the rectangle.

STUDENT

Attributes

- An entity has characteristics or attributes.
- An attribute is a discrete element of data; it describes an entity.
- Attributes shown below the entity's name.
- Attribute names must be carefully selected so that they are self-explanatory and unique.
- A identifier (primary key) uniquely identifies an instance of an entity.
 Attribute(s) that are identifiers are labelled in the entity (here with a star).

STUDENT

* studentID firstName surName age programme

Exercise 1

Read the following description:

- An second hand bookshop want to keep a record of all the books in stock.
- Each book has a title, ISBN number, year of publication, price, condition of the book (like new, good condition, worn etc.)
- Design a single entity database using ER diagram.
 Clearly label everything.

One possible solution

BOOK

title
*ISBN
yearPublished
price
condition

Relationship

- Entities are related to other entities.
- Relationship describes a linkage between two entities and is represented by an arc between them.

Test your understanding

True or false:

- Statement 1: STUDENT is an Entity
- Statement 2: STUDIES is an Entity
- Statement 3: moduleID is a primary key for module
- Statement 4: moduleID is an attribute of MODULE

One-to-many (1:m) relationship

 Consider the database to record countries and cities. (On E-R diagram 1 and * shows 1 to many)

 This can be read as: "a country can have many cities, but a city belongs to only one country."

Exercise 2

The second hand bookshop now realised a problem in their earlier single entity database:

 one book may have many copies and each copy has its own condition, e.g. Harry Potter and the Philosopher's Stone has 3 copies, one nearly new condition and two worn condition; the nearly new condition copy has a higher price than the worn ones.

Redesign your database with 1:m relationship.

One possible solution

Many-to-Many (m:m) relationship

 Consider the case when items are sold. We can identify two entities: SALE and ITEM. A sale can contain many items, and an item can appear in many sales. (On ER diagram * and *)

But how do we record the information for the *m:m* relationship?

Many-to-Many (m:m) relationship

- Information missing from the relationship includes: quantity of an item being sold, total price etc.
- To store these information (attributes related to the m:m relationship), we create a third entity
 (associative entity) to link the entities through two
 1:m relationships.

Relational keys

Candidate Key

- A set of attributes that uniquely identifies a tuple within a relation.
- Uniqueness: In each tuple, candidate key uniquely identify that tuple.
- Irreducibility: No proper subset of the candidate key has the uniqueness property.

Primary Key

 Candidate key selected to identify tuples uniquely within relation.

Foreign Key

 Attribute, or set of attributes, within one relation that matches candidate key of some (possibly same) relation.

Composite Key

A candidate key that consists of two or more attributes.

Exercise 3

Considering the following descriptions about students enrolling on modules:

- A student has various properties including student number, name, date of birth, gender.
- A module has various properties including module code, name, programme a module belongs to.
- A student can enrol on many modules and a module can be enrolled by many students. The database also need to record the year a student enrols on a module.

Draw the ER diagram for the above descriptions.

One possible solution

Exercise 4

Create an ER model for a sport magazine with the following descriptions:

- The sport magazine regularly reports the performance of professional marathon runners. It has asked you to design a database to record the details of all major marathons (e.g., London, Beijing and Paris marathons).
- A professional marathon runner may compete in several races each year. A race will have many professional runners.
- For each race, the magazine reports a runner's time and finishing position and some personal details such as name, gender, and date of birth.

One possible solution

One-to-one relationship

- A department has one or more employees (EMP), and an employee belongs to one department (DEPT).
- A department has one boss, and a person is boss of only one department.
- Boss is a 1:1 relationship between DEPT and EMP.

Recursive Relationships

- There is more to boss than just a department.
- People also have a boss. An employee can be boss to many other employees, and an employee has normally just one boss.
- The person-boss relationship is a recursive 1:m relationship.

Recursive Relationships

- Recursive Relationship
 - Relationship type where same entity type participates more than once in different roles.
- Relationships may be given role names to indicate purpose that each participating entity type plays in a relationship.

Structural Constraints

- Main type of constraint on relationships is called multiplicity.
- Multiplicity number (or range) of possible occurrences of an entity type that may relate to a single occurrence of an associated entity type through a particular relationship.
- Represents policies (called business rules) established by user or company.

Structural Constraints

 The most common degree for relationships is binary.

- Binary relationships are generally referred to as being:
 - one-to-one (1:1)
 - one-to-many (1:*)
 - many-to-many (*:*)

Exercise 5

What is the multiplicity for the relationship:

Every member of staff has 1 (and only 1) office. Some offices empty, some have several members of staff. Replace the? with the correct answer.

* means each office can have many staff

1 means each member of staff has exactly one office

Relationship Types

- Degree of a Relationship
 - Number of participating entities in a relationship.
- Degree of a Relationship:
 - two is binary (what we have seen so far are all binary relationships)
 - three is ternary
 - four is quaternary
 - n-ary is general n-entity relationship

Ternary relationship 1

 In a ternary relationship, <u>three</u> entities are simultaneously involved.

Ternary relationship of "Doctor prescribes patients medicines"

Note: a ternary relationship is *not the same* as three binary relationships!

Ternary relationship 2

- Vendors can supply various parts to warehouses.
- Three entity types: Vendor, Part and Warehouse

Ternary Relationship 3

Attributes associated with the "Supply Schedule" ternary relationship

Note: a ternary relationship is *not the same* as three binary relationships! e.g. Unit cost cannot be properly associated with any one of the three possible binary relationships among the three entity types.

Ternary relationship 4

Business rules

- Each vendor supplies 0 or more parts to 0 or more warehouses.
- Part can be supplied by 1 or more vendors to 1 or more warehouse.
- Warehouse supplied with 0 or more parts from each of 0 or more vendors but must be supplied at least one part.

Ternary relationship 5

 Number (or range) of possible occurrences of an entity type in an n-ary relationship when other (n-1)values are fixed.

The above rule tells us

how we can determine multiplicity of a particular **Part** entity in a relationship, whether it's binary, ternary or n-ary. **Supply Schedule** *Part_id *Vendor_id * Vendor Warehouse *Warehouse_id **Shipping Mode Unit Cost** date 40

Exercise 6

True or false:

1. A ternary relationship involves three entities.

TRUE

2. A relationship with four entities is known as quaternary.

TRUE

3. A ternary relationship can be simplified into three binary relationships

FALSE – the relationship is between all three.

Exercise 7

 In DreamHome database, draw the ternary relationship of "a client is registered by a member of staff at a branch" and determine the multiplicity for the relationship.

One possible solution

One possible solution

What have we learned?

- Entity: (name, attributes, *primary key)
- Relationship
 - Degree: binary (2 entities), ternary (3 entities) ...
 - In binary relationship:
 - 1:1, 1:m, m:m (create two 1:m relationships using associative entity)
 - Recursive relationships
- Multiplicity defines the possible number of occurrences of each entity type in a relationship.

What have we learned?

- Relationship degree
 - Ternary relationship (three entities)
 - Not the same as three binary relationships
 - Quaternary is for four

Data modelling

Data modelling

- A technique for modelling data
- A graphical representation of a database
- The goal is to identify the facts to be stored in a database
 - not concerned with how the data will be stored
 - not concerned with how the data will be processed
- Data modelling is a partnership between the client and designer
- Drawing a data model is an iterative process of trial and revision.

Data model quality

The goal of a quality data model is to achieve:

A well-formed data model

A high fidelity image

Data model quality

Data model quality: A well-formed data model

- Construction rules obeyed
- No ambiguity
 - All entities, attributes, relationships, and identifiers are defined
 - All relationships are represented, using the correct notation
 - Relationships are labeled to avoid misunderstanding
 - All attribute names are meaningful and unique
 - Names are meaningful to the client

Data model quality: A high fidelity image

- Faithfully describes the world it is supposed to represent
- Relationships are of the correct degree
- Data model is complete, understandable, and accurate
- The data model makes sense to the client

Data model: Quality improvement

- Drawing a data model is an iterative process of trial and revision.
 - Is the level of detail correct?
 - Are all exceptions handled?
 - Is the model accurate?

Data model Quality improvement: Library

Consider the following data model for library.

- Is the above model an accurate model?
- What happens if the library has two copies of the book?
- Add an attribute to Book called copy number?
- ISBN vs b_no?

Revised library data model

Is this model an *accurate* representation of the data?

Hints on data modeling

- The model will expand and contract
- Invent identifiers(keys) where necessary
- Keys should have only one purpose identification
- A data model does not imply ordering
- Create an attribute if ordering of instances is required
- An attribute's meaning must be consistent

Hints on data modeling

- Single instance entities are OK
- Select names carefully
- Synonyms—different words have the same meaning
 - Get clients to settle on a common word or use views
- Homonyms—same word has different meanings
 - Clarify to avoid confusion
- Naming associative entities
 - Concatenate entity names if there is no obvious real world name

Hints on data modeling

- Uncover all exceptions
- Label relationships to avoid ambiguity
- Keep the data model well-formed and accurate

Making assumptions

- Data model is all about documenting rules and policies of an organisation.
- Database analyst should:
 - Identify and understand those rules that govern data
 - Represent those rules for information systems developers and users
 - Implement those rules in database technology
- Business rules can be gathered by interviews and organisation documents (policies, manuals, procedures etc)
- Sometimes a data analyst has to ask questions to clarify business rules.
- Occasionally a data analyst has to make assumptions.

Making assumptions

- Different assumptions can result in different data models.
- Assumptions have to be sensible and reasonable.
- You must clearly state the assumptions if you make any – important for your coursework and exam!

Exercise 6

Create an ER model for the following descriptions:

- A cinema has multiple theatres. Each theatre has different seating capacity.
- Movies are shown through the day starting at 11am and finishing at 11am. A movie has its length, but each movie is given a two-hour time slot.
- One movie is never shown in more than one theatre at a time, but movies can be shifted among theatres because seating capacity varies.
- The cinema boss also want to store the data of how many people, classified by adults and children, attended each showing of a movie.
- Ticket prices vary by each show of movie. For example, X-men Apocalypse is £10 for everyone at 11am but is £15 at 9pm.

Clearly state the assumptions if you make any.

One possible solution

