Computer Simulation and Performance Evaluation

Homework 1

Due: 11/13/2000

- 1. Suppose that the number of arrivals in time [0,t] is given by a Poisson process with parameter. λ . Suppose we are told that there is exactly one arrival in [0,t]. Show that the arrival time of this customer is uniformly distributed in [0,t]; i.e., show that the probability that the customers has arrived before some time x, 0 < x < t, is given by x/t. (10%)
- 2. Let X_1 and X_2 be two independent Poisson sources with parameters λ_1 and λ_2 , respectively. Show that their sum $Y = X_1 + X_2$ has a Poisson distribution with parameter $\lambda_1 + \lambda_2$. (10%)
- 3. Let X_1 and X_2 be independent exponentially distributed r.v.'s with parameters λ_1 and λ_2 , respectively. Define a new r.v. Y as the minimum of X_1 and X_2 . Find the CDF and pdf of Y. What kind of distribution does Y have? (10%)
- 4. Let X_1 , ..., X_n be n i.i.d.r.v.'s, each has an exponential distribution with parameter λ . How is $Y = X_1 + ... + X_n$ distributed? (10%)
- 5. Consider the motion of a particle on the space $\{0, 1, 2, ...\}$. If the particle is in state $j \ge 0$ at time $n \ (n \ge 0)$ then at time n+1 it will be either in state j+1 with probability $p_{j,j+1}$, in state j-1 with probability $p_{j,j-1}$, or in state j with probability $p_{j,j}$, where $p_{j,j+1}+p_{j,j}+p_{j,j-1}=1$ for all $j \ge 0$, where by convention $p_{0,-1}=0$. Let X_n be the location of the particle at time n. (20%)
 - (a) Say why $(X_n, n \ge 0)$ is a discrete-time discrete-state M.C. and write down its transition matrix P.
 - (b) Given sufficient conditions under which this M.C. is irreducible and aperiodic.
 - (c) We assume that X_n in $\{0,1,2\}$. Compute the limiting probabilities π_i , i=0, 1, 2 aas well as E[X] and var(X) when $p_{0,0}$ =0.25, $p_{0,0}$ =0.25, $p_{0,0}$ =0.75, $p_{1,0}$ =0.1, $p_{1,1}$ =0.3, $p_{1,2}$ =0.6, $p_{2,1}$ =0.4, $p_{2,2}$ =0.6, $p_{2,3}$ =0.
- 6. Question 2.18 in textbook. (20%)
- 7. Question 2.19 in textbook. (20%)