SISTEMAS OPERACIONAIS

Professor Fábio Angelo E-mail: fabio.angelo@unisul.br

O QUE ROLOU NA ÚLTIMA AULA?

REVISÃO SOBRE ARQUITETURA DE COMPUTADORES

- Importante para melhor entender os próximos conceitos sobre Sistemas Operacionais;
- Unidade Central de Processamento (UCP)
- Memória e sua hierarquia;
- Barramentos de comunicação;
- Tradutor, Montador, Compilador, Interpretador, Linker, Loader e Depurador (Debugger).

APRESENTAÇÃO DO FORMATO DO TRABALHO1 E DIVISÃO DOS GRUPOS

1. Quais são os componentes de um processador e quais suas funções?

R.: É composto por ULA, UC e registradores. ULA é responsável pelas operações lógicas e aritméticas, UC gerencia o acesso aos recursos, registradores

2. O que são memórias voláteis e não-voláteis?

R.: Memória volátil é toda a informação que é perdida ao ser retirada de uma fonte de energia, já a não-volátil é armazenável e pode ser novamente acessada após uma ruptura de energia.

3. Qual a importância do princípio da localidade na eficiência da memória cache?

R.: A memória cache está localizada juntamente ao processador, sendo de rápido acesso e fornecendo mais velocidade para executar funções. Se fosse preciso recorrer a unidades como um HD, seria muito mais lento e menos efetivo sua atividade.

4. Porque os projetistas devem estar atentos aos números de cache hit e cache miss?

R: Porque essas são as definições para dizer onde o dado será lido: na memória cache ou principal.

- 5. Quais as diferenças entre a memória principal e a memória secundária?
- R.: Memória secundária: Meio permanente de armazenamento (não-volátil), Tempo de acesso à informação é mais lento que a memória primária, mas possui maior capacidade de armazenamento; Memória principal: Local para armazenar instruções e dados, é composto por células geralmente de 8 bits;
- 6. Ciente de que as velocidades dos dispositivos de E/S são diferentes, como isso é tratado pelo sistema computacional?
- R.: Com os barramentos na comunicação para fazer a intermediação entre as unidades funcionais de um SO.

7. Como a técnica de pipelining melhora o desempenho dos sistemas computacionais?

R.: O pipelining não aumenta o tempo de execução, mas otimiza o uso do processamento utilizando os recursos do processador que não estão sendo utilizados, fazendo com que cada ciclo incremente uma atividade para o processamento. A atividade não desempenha melhor, mas a fila diminui, pois aumenta o throughput

8. Faça print de tela (na linguagem de sua preferência) das facilidades que citamos do depurador?

```
index.ts routes X Server.ts are
                                         import { Router } from 'express';
    this: undefined
                                         const routes = Router();
                                         routes.post('/users', (request, response) ⇒ {
   request: IncominaMessage { req.
                                           const = { name, email } = request.body;
    user: undefined
                                            const user = {
                                              name,
                                              email,
                                           return response.json(user);
∨ WATCH
                                         1):
                                         export default routes;
                                                      DEBUG CONSOLE TERMINAL
   (anonymous function) index.ts
                                   Server started on port 3333!
   next
                 route is 137:13
                                      at /Users/diegofernandes/www/bootcomp2019/2020/aulas/primeiro-projeto-node/src/routes/index.ts:6:9
                  route.js 112:3
   (anonymous function) index.is
                                      at Route.dispatch (/Users/diegofernandes/www/bootcamp2019/2020/aulas/primeiro-projeto-node/node_modules/express/lib/router/route.js:112:3)
                                      at Layer.handle [as handle_request] (/Users/diegofernandes/www/bootcamp2019/2020/aulas/primeiro-projeto-node/node_modules/express/lib/router/layer.js:95:
   process parans index is 335/12
                 index.is 275:10
                                      at /Users/diegofernandes/www/bootcamp2019/2020/aulas/primeiro-projeto-nade/nade_modules/express/lib/router/index.js:281:22
> LOADED SCRIPTS
∨ BREAKPOINTS
 All Exceptions
  Uncaught Exceptions
                                     Server started on port 3333!
                                                                                                                                                                                           server.ts
```

LOCALIZE NO ARTIGO... (LARISSA)

1) Porque o equilibrio no dimensionamento da memória cache é especialmente importante para os sistemas embarcados?

Devemos saber até quanto ela deve ser expandida para que, por exemplo o custo benefício referente a um fabricante de processadores de sistemas embarcados seja relevante.

2) Que conclusão chegou o autor do experimento em relação ao uso do cache para algoritmos criptográficos?

O L2 deve ter, no mínimo, o dobro do L1, para ter garantido o princípio de inclusão.

CONCORRÊNCIA

- Sistemas operacionais podem ser vistos como um conjunto de rotinas executadas de forma concorrente e ordenada (Pinkert, 1990);
- A capacidade do processador executar instruções e ao mesmo tempo solicitar operações de E/S, permite que diversas tarefas sejam executadas ao mesmo tempo;
- O conceito de concorrência é o princípio básico para o projeto e a implementação dos sistemas multiprogramáveis.

CONCORRÊNCIA

UMA DÚVIDA...

Seria correto afirmar que apenas o processamento seria melhor aproveitado nos sistemas multiprogramáveis?

CONCORRÊNCIA NA PRÁTICA

Características	Prog1	Prog2	Prog3
Utilização da UCP	Alta	Baixa	Baixa
Operação de E/S	Poucas	Muitas	Muitas
Tempo de processamento	5 min	15 min	10 min
Memória utilizada	50 Kb	100 Kb	80 Kb
Utilização de disco	Não	Não	Sim
Utilização de terminal	Não	Sim	Não
Utilização de impressora	Não	Não	Sim

	Monoprogramação	Multiprogramação
Utilização da UCP	17%	33%
Utilização da memória	30%	67%
Utilização de disco	33%	67%
Utilização de impressora	33%	67%
Tempo total de processamento	30 min	15 min
Taxa de throughput	6 prog./hora	12 prog./hora

INTERRUPÇÕES E EXCEÇÕES

- Eventos inesperados que provocam um desvio no fluxo de execução de um programa;
- São provenientes da sinalização de algum dispositivo de hardware ou pela execução de instruções do próprio programa;
- A interrupção é o mecanismo que tomou possível a implementação da concorrência nos computadores, sendo o fundamento básico dos sistemas multiprogramáveis;
- A diferença entre interrupção e exceção é dada pelo tipo de evento ocorrido.

INTERRUPÇÕES E EXCEÇÕES

- Uma interrupção é sempre gerada por algum evento externo ao programa e, nesse caso, independe da instrução que está sendo executada;
- A exceção é resultado direto da execução de uma instrução do próprio programa, como a divisão de um número por zero ou ocorrência de overflow.

EVENTOS SÍNCRONOS E ASSÍNCRONOS

- Um evento síncrono é resultado direto da execução de um programa corrente, sendo tais eventos previsíveis e, por definição, só podem ocorrer um de cada vez;
- Os eventos assíncronos podem acontecer múltiplas vezes, como no caso de diversos dispositivos de E/S informarem ao processador que estão prontos para receber ou transmitir dados;
- A diferença fundamental entre exceção e interrupção é que a primeira é gerada por um evento síncrono, enquanto a segunda é gerada por eventos assíncronos.

UMA DÚVIDA...

Um programa coleta dois números para dividir, se o divisor informado for zero, a rotina que trata a exceção ocorrerá sempre na mesma instrução?

TRATANDO AS INTERRUPÇÕES

- Por serem eventos assíncronos (e imprevisíveis), com possibilidade múltiplas de incidências, é necessário mecanismos para tratar a simultaneidade;
- Umas das maneiras é desabilitando as interrupções, quando uma está sendo tratada (interrupções mascaráveis);
- Outro caminho é usar o controlador de pedidos de interrupção, responsável por avaliar as interrupções geradas e suas prioridades de atendimento.

OPERAÇÕES DE ENTRADA E SAÍDA

- Inicialmente o controle das operações (E/S) era executada pelo processador que deveria monitorar o término;
- Com o uso do recurso das interrupções, os periféricos passaram a informar quando finalizaram a operação solicitada.

OTIMIZANDO OPERAÇÕES DE ENTRADA E SAÍDA

- DMA (Direct Access Memory) é uma técnica usada para liberar o processador quando arquivos grandes são acessados;
- Canal de E/S foi a evolução para dar maior vazão nas operações, possuindo em sua estrutura memória própria e controlando mais dispositivos.

BUFFERING

- Técnica utilizada para otimizar a transferência de dados entre os dispositivos e memória;
- Permite o processador para manipular os dados no buffer;
- O objetivo principal desta técnica é manter, na maior parte do tempo, processador e dispositivos ocupados.

SPOOLING

- A técnica de spooling (simultaneous peripheral operation on-line) foi introduzida para aumentar o grau de concorrência e a eficiência dos sistemas operacionais;
- Esse recurso foi fundamental para os sistemas em batch;
- Permite desvincular a impressão do dispositivo, impedindo que um programa reserve a impressora para uso exclusivo.

REENTRÂNCIA

- Capacidade de um código executável (código reentrante) ser compartilhado por diversos usuários, exigindo que apenas uma cópia do programa esteja na memória;
- Alguns SOs permitem implementar o conceito de reentrância em aplicativos desenvolvidos pelos próprios usuários.

ARTIGO DE INSPIRAÇÃO AO TRABALHO 1...

- Observaram os virtualizadores usados?
- 2) Qual foi a ferramenta para benchmark e quais recursos foram testados?
- 3) Os tipos dos gráficos permitem uma correção comparação entre os sistemas virtualizados?

O QUE FICOU NA MENTE?

- 1. O que é concorrência e como este conceito está presente nos sistemas operacionais?
- 2. Por que o mecanismo de interrupção é fundamental para a implementação da multiprogramação?
- 3. Descreva os passos que são executados quando um programa trata uma interrupção ou exceção.
- 4. O que são eventos síncronos e assíncronos? Como estes eventos estão relacionados ao mecanismo de interrupção e exceção?

O QUE FICOU NA MENTE?

- 5. O que é DMA e qual a vantagem desta técnica?
- 6. Como a técnica de buffering permite aumentar a concorrência em um sistema computacional?
- 7. Explique o mecanismo de spooling de impressão.

O QUE FICOU NA MENTE?

8. Em um sistema multiprogramável, seus usuários utilizam o mesmo editor de textos (2 Mb), software de correio eletrônico (1.5 Mb) e uma aplicação corporativa (900 Kb). Caso o sistema não implemente reentrância, qual o espaço de memória principal ocupado pelos programas quando 10 usuários estiverem utilizando todas as aplicações simultaneamente? Qual o espaço liberado quando o sistema implementa reentrância em todas as aplicações?