1. A. Write the Boolean expression of the following circuit diagram [2 marks].

Or Simplified:

$$K = \overline{A} \cdot L$$

$$L = B . M$$

$$M = \overline{CB}$$

$$N = \overline{M}$$

$$O = \overline{K}$$

$$P = L \oplus N$$

$$Y = P + O$$

B. Set up the truth table [9 marks]

Α	В	С	\overline{A}	\overline{A} . $(B.\overline{C})$	\overline{B}	$B.\overline{CB}$	Ci	В	$\overline{(CB)}$)	$\overline{\left(\overline{A}\right)}$	$\overline{(B.\overline{CB})}$	$B.\overline{CB}$		$\overline{(CB)}$	Υ
0	0	0	1	0		0	1		0		1		0			1
0	0	1	1	0		0	1		0		1		0			1
0	1	0	1	1		1	1		0		0		1			1
0	1	1	1	0		0	0		1		1		1			1
1	0	0	0	0		0	1		0		1		0			1
1	0	1	0	0		0	1		0		1		0			1
1	1	0	0	0		1	1		0		1		1			1
1	1	1	0	0		0	0		1		1		1			1
Α		В		С	\overline{A}	K	•	L		М		N	0	Р	Υ	
0		0		0	1	0		0		1		0	1	0	1	
0		0		1	1	0		0		1		0	1	0	1	

0	1	0	1	1	1	1	0	0	1	1
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	0	0	1	0	1	0	1
1	0	1	0	0	0	1	0	1	0	1
1	1	0	0	0	1	1	0	1	1	1
1	1	1	0	0	0	0	1	1	1	1

2. A. Given the two following decimal numbers: 37, -126

i) Represent the two numbers in One's Complement representation (using 8-bit binary in the result) [4 marks]

37 as a binary number = 0010 0101

We find 126 as a binary number which = 0111 1110

To get ones complement, you invert the bits of the binary number:

37 represented in one's complement = 1101 1010

-126 represented in one's complement = 1000 0001

ii) Represent the two numbers in Two's Complement representation (using 8-bit binary in the result) [6 marks]

37 as a binary number = 0010 0101

We find 126 as a binary number which = 0111 1110

To get two's complement, you invert the bits of the binary number and add one.

37 inverted or represented in one's complement = 1101 1010

-126 inverted or represented in one's complement = 1000 0001

-126 represented in two's complement = 1000 0010

37 represented in two's complement = 1101 1011

B. Convert the positive number N=1010000001001 in single precision floating point format [3 marks]

Step 1: $1010000001001 = 1.010000001001 \times 2^{12}$

Step 2: $N = (-1)^S (1+F)(2^{E-127})$

S = 0 (Positive Number)

F = 01000000100100000000000

$$E - 127 = 12$$
, $E = 139_{10} = 1000 \ 1011_2$

N =

(0	10001011	0100000100100000000000
---	---	----------	------------------------

3. If main memory is of 4 giga bytes and every word is of 2 bytes how many bits do we need to address any single word in memory? [4 marks]

4 giga bytes = 4000mb, which is $2^{12} + 2^{20} = 2^{32}$

Memsize = number.words x word.size so,

 $4000mb = 2^{31} \times 2^{1}$

We need log₂ 2³¹ or 31 bits to address each word

4. How much RAM memory can a 16-bit CPU can use? Provide your answer in bytes. [4 marks]

A 16 bit cpu means that the address space capacity = 2^{16} words

$$2^{16}$$
 words = 64 x 2^{10} = 64KB = 65,536 bytes

So the maximum amount of RAM that it can use is 65,536 bytes.

5. Consider a 7-stage pipelined CPU where every stage is 30nsecs. How much time does it take to execute 1000 CPU instructions if no stall cycles occur? Provide the answer in nsecs. [5 marks]

 $7 \times 30 = 210$

1000 x 210 = 210,000nsecs

6. Let a CPU with CPU frequency 2 GHz. It executed 1.5 million instructions in 6 million CPU clock cycles.

A. What is the average value of the CPI for this CPU? [4 marks]

6,000,000 / 1,500,000 = 4

The average value of the CPI for this CPU = 4

B. How long did it take to complete all the instructions? [3 marks]

6,000,000 / 2GHz = 2billion = 0.003 seconds

7. A CPU has an average CPI of 2.5. It took 1.6 seconds to execute 9.6 million instructions. What is the speed of this CPU? [6 marks]

Speed = instruction / (time * CPI)

Speed = 9.6 million / 1.6 * 2.5

9.6 million / 4 = 2.4 million = 2.4MHz

8. Convert the following C code into assembly code. Do not simplify the code. The assembly code must be a) provided as a separate .asm file and b) included in the delivered .docx file [50 marks]

```
; A simple template for assembly programs.
.386; Specify instruction set
.model flat, stdcall; Flat memory model, std. calling convention
.stack 4096; Reserve stack space
ExitProcess PROTO, dwExitCode: DWORD; Exit process prototype
.data; data segment
; define your variables here
A BYTE 3,2,3,1,7,5,0,8,9,2
B BYTE 0,0,0,0,0,0,0,0,0,0
.code; code segment
main PROC; main procedure
; write your assembly code here
lea ebx, A; loads A into ebx
mov esi, 0
update:
; (3*i + 1)/5
```

```
mov eax, 3; moves 3 into eax
mul esi; multiplies i by eax
add eax, 1; adds 1 to eax
mov ecx, 5; moves 5 into ecx
div ecx; divs eax by 5
mov ecx, eax; moves eax into ecx
; (2*i + ecx)
mov eax, 2; moves 2 into eax
mul esi ;multiplies i bys esi
add eax, ecx; adds ecx to eax
; 2*eax
mov ecx, 2; moves 2 into ecx
mul ecx; multiplies 2 by eax
;B[i] = A[i] + eax
mov ecx, [ebx + TYPE A * esi]; moves i position of array into ecx
add eax, ecx; adds ecx to eax
mov [ebx + TYPE B * esi], eax; moves eax into the i position of B array in ebx
inc esi;
cmp esi, 10
jne update; end or start of loop
```

main ENDP; exit main procedure

END main; stop assembling