Nobel Project

Eduardo Chamizo

2025-06-17

Resumen

Este proyecto indaga en las técnicas propias para la visualización y análisis exploratorio del conjunto de datos "Nobel Prize", empleando diversas librerías para su consecución.

Objetivo del problema

Explicar los datos de manera tabular y visual, analizando patrones significativos y otros resultados destacables.

Librerías

- httr: conexión con APIs.
- jsonlite: maneja datos JSON.
- lubridate: manejo de fechas.
- dplyr: manipulación de datos.
- ggplot2: gráficos.
- tidyverse: conjunto de paquetes.
- maps: datos geográficos.
- countrycode: codificación de países.
- tidytext: análisis de texto.
- wordcloud: nubes de texto.

library(httr)

library(jsonlite)

library(lubridate)

library(dplyr)

library(ggplot2)

library(tidyverse)

library(maps)

library(countrycode)

library(tidytext)

library(wordcloud)

Carga de datos desde el API

Procesamiento de datos

Limpieza inicial

Cambiar strings vacíos por NAs

Estandarización de nomenclatura de algunas columnas

Columnas con fechas

Renombrar algunos países

```
df_final$bornCountry <- sub(".*\\(now ([^)]+)\\)", "\\1", df_final$bornCountry)

df_final <- df_final %>%
    mutate(
    bornCountry = case_when(
        bornCountry %in% c("England", "Scotland", "Wales", "Northern Ireland", "UK", "United Kingdom", "G
        bornCountry %in% c("USA", "U.S.", "U.S.A.", "United States", "United States of America") ~ "USA",
        bornCountry == "Faroe Islands (Denmark)" ~ "Denmark",
        bornCountry == "East Timor" ~ "Timor-Leste",
        bornCountry == "Guadeloupe France" ~ "France",
        bornCountry == "Trinidad and Tobago" ~ "Trinidad and Tobago",
        bornCountry == "the Netherlands" ~ "Netherlands",
        TRUE ~ bornCountry
    )
    )
}
```

Quitamos el "now" en el nombre de ex-países y sustituimos por el nombre final. Ello se realiza para facilitar la codificación posterior, necesaria para mostrar visualmente los países.

Análisis exploratorio

Estadísticas básicas

```
summary(df_final[, c("born", "died", "year", "age_at_death")])
##
        born
                            died
                                                year
##
  \mathtt{Min}.
         :1817-11-30 Min.
                              :1903-11-01
                                           Min.
                                                  :1901-01-01
##
   1st Qu.:1893-06-03 1st Qu.:1958-07-17
                                           1st Qu.:1950-01-01
## Median :1918-07-16 Median :1987-05-17
                                           Median :1979-01-01
## Mean
         :1913-07-26
                       Mean
                             :1980-12-24
                                           Mean
                                                 :1974-02-10
                                           3rd Qu.:2003-01-01
## 3rd Qu.:1939-02-24
                       3rd Qu.:2009-09-10
## Max.
         :1997-07-12
                       Max. :2025-05-28
                                           Max. :2024-01-01
## NA's
         :19
                       NA's :298
##
   age_at_death
## Min.
        : 39.00
## 1st Qu.: 74.00
## Median: 82.00
## Mean
         : 80.69
## 3rd Qu.: 89.00
## Max.
         :103.00
  NA's
          :299
```

Métricas cuantitativas por género

```
df_final %>%
  group_by(gender) %>%
  summarise(
```

```
mean_age_death = mean(age_at_death, na.rm = T),
min_age_death = min(age_at_death, na.rm = T),
max_age_death = max(age_at_death, na.rm = T),
mean_age_prize = mean(age_at_prize,na.rm = T),
min_age_prize = min(age_at_prize,na.rm=T),
max_age_prize = max(age_at_prize,na.rm = T),
n = n()
)
```

```
## # A tibble: 2 x 8
     gender mean_age_death min_age_death max_age_death mean_age_prize min_age_prize
##
                      <dbl>
     <chr>>
                                    <dbl>
                                                   <dbl>
                                                                   <dbl>
                                                                                  <dbl>
## 1 female
                       78.9
                                        58
                                                     103
                                                                    56.9
                                                                                     16
## 2 male
                      80.8
                                        39
                                                     102
                                                                    59.4
                                                                                     24
## # i 2 more variables: max_age_prize <dbl>, n <int>
```

Destaca la aplastante presencia varonil frente a la de mujeres. También, el hecho de que los hombres experimentan los dos eventos estudiados con posterioridad.

Top países con más apariciones

```
paises_top <- df_final %>%
  count(bornCountry, sort=T) %>%
  top_n(20)

paises_top
```

```
bornCountry
##
## 1
               USA 297
## 2
                UK 109
## 3
           Germany 84
## 4
            France
## 5
            Sweden
                    30
## 6
            Poland
                    29
                    29
## 7
            Russia
## 8
             Japan
                    28
## 9
            Canada
                    21
             Italy
## 10
                    20
## 11
           Austria 19
## 12
      Netherlands 19
## 13
       Switzerland 19
## 14
           Denmark 13
## 15
            Norway
                   13
## 16
             China
                    12
## 17
           Hungary
                    11
## 18
         Australia
                    10
## 19
           Belgium
                     9
## 20
             India
                     9
## 21 South Africa
```

Las principales potencias históricas son las que coronan el encabezado.

Diversidad geográfica

```
df_final %>%
 group_by(category) %>%
  summarise(
   n_paises = n_distinct(bornCountry),
   pais_dominante = names(sort(table(bornCountry), decreasing=T))[1])
## # A tibble: 6 x 3
    category n_paises pais_dominante
    <chr> <int> <chr>
##
## 1 chemistry
                  37 USA
                 21 USA
46 France
## 2 economics
## 3 literature
## 4 medicine
                  36 USA
## 5 peace
              47 USA
30 USA
## 6 physics
```

Visualización de datos

Pirámide de edades por género

```
ggplot(df_final, aes(age_at_prize, fill=gender)) +
  geom_histogram(alpha=0.7, position="identity") +
  facet_wrap(~gender, scales="free_y") +
  labs(title="Distribución de edad al recibir el premio")
```

Distribución de edad al recibir el premio

Se confirma con este gráfico lo que anteriormente se concluía de manera tabular.

Boxplot de edades por categoría y género

```
ggplot(df_final, aes(category, age_at_prize, fill=gender)) +
  geom_boxplot() +
  coord_flip() +
  labs(title="Edad al premio por categoría y género")
```


La edad de premiación típica oscila entre los 25 y 70 años. Especialmente en física, hay más jóvenes premiados que en otras categorías.

Longevidad post-premio

```
df_final %>%
  filter(!is.na(age_at_death)) %>%
  mutate(años_despues_premio = age_at_death - age_at_prize) %>%
  ggplot(aes(category, años_despues_premio)) +
  geom_boxplot(width=0.1) +
  coord_flip()
```


Los físicos/as, al soler recibir el premio más prematuramente como se vio antes, tienden a durar más. Esta afirmación nos hace pensar que el gráfico es consistente con el anterior.

Gráfico de líneas para la variación de la edad promedio al recibir el premio

```
df_final %>%
  group_by(year, category) %>%
  summarise(mean_age = mean(age_at_prize, na.rm=T)) %>%
  ggplot(aes(year, mean_age, color=category)) +
  geom_smooth(method="loess") +
  facet_wrap(~category) +
  labs(title="Evolución de la edad promedio al recibir el premio")
```

Evolución de la edad promedio al recibir el premio

Mientras la tendencia general ha sido que los premiados cada vez sean más longevos, algo que podría achacarse a la mayor esperanza de vida; destacan los premiados por la paz, posiblemente fundamentado en el mayor componente activista que caracteriza a los jóvenes.

Mapa mundial

```
world_map <- map_data("world") %>%
  mutate(region = case_when(
    region == "USA" ~ "United States",
    region == "UK" ~ "United Kingdom",
    TRUE ~ region))
nobel_by_country <- df_final %>%
  count(bornCountry) %>%
  mutate(
    region = case_when(
      TRUE ~ countrycode(bornCountry, "country.name", "country.name", warn = FALSE))) %>%
  filter(!is.na(region))
world_nobel <- world_map %>%
  left_join(nobel_by_country, by = "region")
ggplot(world_nobel, aes(long, lat, group = group, fill = n)) +
  geom_polygon() +
  scale_fill_viridis_c(na.value = "grey90") +
```

```
theme_void() +
labs(title = "Distribución mundial de premios Nobel por país de nacimiento")
```

Distribución mundial de premios Nobel por país de nacimiento

Visualización gráfica del número de premios por país.

Análisis de texto

Nube de texto según la categoría del premio (en nuestro caso "peace")

```
motivaciones_words <- df_final %>%
  unnest_tokens(word, motivation) %>%
  anti_join(stop_words) %>%
  count(category, word, sort=T)

motivaciones_words %>%
  filter(category == "peace") %>%
  with(wordcloud(word, n, max.words=50))
```


Las palabras más frecuentes son "peace", "international" y "efforts". Esto concuerda con la coyuntura en que muchos de estos premios se otorgaron: tras dos guerras mundiales, la creación de la ONU, descolonización... Resulta interesante mencionar también la aparición de la palabra "nuclear" en un contexto ajeno a la física o química.

Conclusiones

- Se puede establecer una tendencia temporal en algunas de las características estudiadas, como la edad al recibir el premio.
- El mapa facilita mucho el reconocimiento de potencias no sólo históricas y económicas, sino también intelectuales.