Abstract Algebra II

Ji, Yong-hyeon

May 4, 2025

We cover the following topics in this note.

- Group Action
- Cayley Theorem
- Normal Subgroups
- TBA

Contents

Group Action

Definition. Let (G,*) be a group and let $X \neq \emptyset$. A (left) group action of G on X is a function

$$\cdot: G \times X \to X, \quad (g, x) \mapsto g \cdot x$$

satisfying the followings: for all $g, h \in G$ and all $x \in X$,

- (i) (Identity) $e \cdot x = x$, where $e \in G$ is the identity element of G;
- (ii) (Compatibility) $(g * h) \cdot x = g \cdot (h \cdot x)$.

The pair (X, \cdot) (or simply X) is then called a G-set.

Note (Notation). If a group G acts on a set X, one commonly writes: $G \curvearrowright X$.

Remark. A right group action of *G* on *X* is a function $\cdot: X \times G \to X$, $(x,g) \mapsto x \cdot g$ satisfying:

- (i) $x \cdot e = x$ for all $x \in X$;
- (ii) $(x \cdot g) \cdot h = x \cdot (gh)$ for all $g, h \in G, x \in X$.

Example (Scalar Multiplication on a Vector Space). Let \mathbb{F} be a field, and let $X = \mathbb{F}^n$ be the *n*-dimensional vector space over \mathbb{F} . Consider the multiplicative group of nonzero scalars in \mathbb{F} :

$$G = (\mathbb{F}^{\times}, \times), \text{ where } \mathbb{F}^{\times} = \mathbb{F} \setminus \{0\}.$$

We define an action $G \curvearrowright X$ by scalar multiplication:

$$\begin{array}{cccc} \cdot & : & \mathbb{F}^{\times} \times \mathbb{F}^{n} & \longrightarrow & \mathbb{F}^{n} \\ & & (\lambda, \mathbf{v}) & \longmapsto & \lambda \cdot \mathbf{v} \end{array}$$

where the product $\lambda \cdot \mathbf{v}$ is defined componentwise. Then

- (i) $1 \cdot \mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in \mathbb{F}^n$.
- (ii) $(\lambda \mu) \cdot \mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v})$ for all $\lambda, \mu \in \mathbb{F}^{\times}$, $\mathbf{v} \in \mathbb{F}^{n}$.

Example (Conjugation Action on the Group Itself). Let G be any group, and consider X = G. Define an action of G on itself by conjugation:

$$G \curvearrowright G$$
, $(g, x) \mapsto g \cdot x := g * x * g^{-1}$.

Then

- (i) $e \cdot x = e * x * e^{-1} = x$ for all $x \in G$.
- (ii) Note that

$$(g * h) \cdot x = (g * h) * x * (g * h)^{-1}$$

$$= (g * h) * x * (h^{-1} * g^{-1})$$

$$= g * (h * x * h^{-1}) * g^{-1}$$

$$= g * (h \cdot x) * g^{-1}$$

$$= g \cdot (h \cdot x).$$

Thus, this is a left group action.

Example (Trivial *G*-Set). Let *G* be any group and define the set $X = \{x\}$, a singleton. Define the action

$$G \curvearrowright X$$
, $(g, x) \mapsto g \cdot x := x$ for all $g \in G$.

This is the **trivial action**, where every group element acts as the identity on *X*:

- (i) $e \cdot x = x$.
- (ii) $(g * h) \cdot x = x = g \cdot (h \cdot x)$.

Example (Action on Coset Space G/H). Let (G, *) be a group, and let $H \le G$. Let X = G/H be the set of left cosets of H in G, i.e.,

$$X=G/H=\{gH\mid g\in G\}.$$

Define an action

$$G \curvearrowright G/H, \quad (g,aH) \mapsto (ga)H.$$

This is well-defined because if $a_1H = a_2H$, then $a_1^{-1}a_2 \in H$, so: $ga_1H = ga_2H$.. Since

- (i) $e \cdot aH = aH$;
- (ii) $(gh) \cdot aH = g \cdot (h \cdot aH)$,

this is a **transitive action**.

Group Elements Act as Permutations

Proposition. Let G be a group action on a set X via a left action $G \curvearrowright X$, given by $(g, x) \mapsto g \cdot x$. Then for each $g \in G$, the map

$$\sigma_g: X \to X, \quad x \mapsto g \cdot x$$

is one-to-one and onto. That is, $\sigma_g \in Sym(X)$, the group of all permutations of X.

Proof. TBA

Group Actions Induce Permutation Representations

Theorem. Let G be a group action on a set X via a left group action $G \curvearrowright X$, $(g, x) \mapsto g \cdot x$. For each $g \in G$, define the bijection $\sigma_g : X \to X$ by $\sigma_g(x) := g \cdot x$. Then the map

$$\phi: G \to \operatorname{Sym}(X), \quad g \mapsto \sigma_g,$$

is a **group homomorphism** from G to the symmetric group Sym(X). In other words, for all g, $h \in G$,

$$\phi(g*h) = \sigma_{g*h} = \sigma_g \circ \sigma_h = \phi(g) \circ \phi(h).$$

Remark. A group action $G \curvearrowright X$ is equivalent to a group homomorphism $G \to \operatorname{Sym}(X)$, i.e., a **permutation representation** of G.

Proof. TBA

Cayley Theorem

Theorem. Let G be a group. Consider the action of G on itself by left multiplication. For each $g \in G$, define

$$\sigma_g: G \longrightarrow G, \quad x \mapsto g \cdot x.$$

Then the map

$$\phi \,:\, G\,\longrightarrow\, {\rm Sym}(G),\qquad g\,\mapsto\,\sigma_g$$

is an injective group homomorphism (group monomorphism). In particular,

$$\phi(G) \simeq G$$
 and $\varphi(G) \leq \operatorname{Sym}(G)$.

Proof.

Normal Subgroups

Existence of the Quotient Group

Proposition. Let (G, *) be a group and let $H \leq G$ be a subgroup. Define a binary operation \boxtimes on the set of left cosets G/H by

$$(g*H) \boxtimes (g'*H) = (g*g')*H$$

where $g, g' \in G$. Then this operation is well-defined (and makes G/H into a group) if and only if

$$g*h*g^{-1}\in H.$$

for all $g \in G$, $h \in H$.

Proof. (\Rightarrow) Let $g \in G$ and $h \in H$. Then

$$h * g^{-1} \in H \implies g * H = g(h)$$

 (\Leftarrow)

Normal Subgroup

Definition.

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 23. 추상대수학(d) 군 작용과 케일리-정리 group action and Cayley theorem" YouTube Video, 29:20. Published October 23, 2019. URL: https://www.youtube.com/watch?v=5SQfrH83HfA&t=1040s.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 24. 추상대수학 (e) 정규부 분군의 정의 def of normal subgroups" YouTube Video, 23:00. Published October 25, 2019. URL: https://www.youtube.com/watch?v=3UJILZr4CNo.

Appendices

Orbit and Stabilizer

Definition. Let *G* be a group acting on a set *X* via a (left) group action:

$$G \curvearrowright X$$
, $(g, x) \mapsto g \cdot x$.

Let $x \in X$.

(1) The **orbit** of *x* under the action of *G* is defined by

$$Orb_G(x) := G \cdot x = \{g \cdot x \mid g \in G\} \subseteq X.$$

This is the set of all elements of X to which x can be moved by the action of $g \in G$.

(2) The **stabilizer subgroup** of an $x \in X$, also called the **isotropy subgroup** or **fixer**, is defined by

$$Stab_G(x) := \{ g \in G \mid g \cdot x = x \}.$$

This is a subgroup of *G* consisting of all elements that fix *x* under the action.

Remark.

• The orbits form a *partition* of *X*; that is, *X* is the disjoint union of its orbits under the action of *G*.