Diseño e implementación de una interfaz entre las bibliotecas OMPL y nD FMM

TRABAJO FIN DE GRADO

13 de octubre de 2015

Álvaro Muñoz Serrano

Departamento de Sistemas y Automática

Objetivos

nD FMM: n-Dimensional Fast Marching Methods

OMPL: Open Motion Planning Library

Índice

Motivación y objetivos

Marco teórico

Trabajo Realizado

Resultados y conclusiones

Motivación y objetivos

Motivación Motivación y objetivos

Crear una interfaz que permita complementar las funcionalidades que ofrecen ambas bibliotecas.

- ▶ nD FMM
 - Cargar entornos y robots 3D
 - Aplicar orientación de los robots
 - Visualizar resultados
- ▶ OMPL
 - Utilizar algoritmos basados en Fast Marching

Marco teórico

- ▶ Métodos combinatorios
- Métodos basados en muestreo aleatorio

- ▶ Métodos combinatorios
- Métodos basados en muestreo aleatorio

- ▶ Métodos combinatorios
- ► Métodos basados en muestreo aleatorio

- ▶ Métodos combinatorios
- Métodos basados en muestreo aleatorio

- El FMM es un método numérico que modeliza el comportamiento de una onda.
- ► Se basa en la ecuación Eikonal

$$1 = F(x) |\nabla T(x)| \tag{1}$$

	2			
2	1	2		
1	0	1	2	
2	1	2		

3	2	3			
2	1	2	3		
1	0	1	2	3	
2	1	2	3		

5					
4					
3	2	3			
2	1	2	3	4	5
1	0	1	2	3	4
2	1	2	3	4	5

5	6	7			
4					7
3	2	3			6
2	1	2	3	4	5
1	0	1	2	3	4
2	1	2	3	4	5

5	6	7	8		8
4					7
3	2	3			6
2	1	2	3	4	5
1	0	1	2	3	4
2	1	2	3	4	5

5	6	7	8		8
4					7
3	2	3			6
2	1	2	3	4	5
1	0	1	2	3	4
2	1	2	3	4	5

Clases principales de nD FMM

- ▶ nDGridMap: Contiene la información del espacio.
- Solver: Implementa los algoritmos basados en FMM para la expansión de la onda.
- GradientDescent: Calcula el camino mediante la aplicación del descenso de gradiente.

Representación del espacio en nD FMM Marco teórico

Biblioteca OMPL

Representación del espacio en OMPL

- ▶ Describe el espacio de la manera mas general posible
- ► Encapsulados en clase StateSpace
 - RealVectorStateSpace
 - SO2StateSpace
 - SO3StateSpace
 - ► CompoundStateSpace
 - ► SE2StateSpace
 - SE3StateSpace
- Los espacios de estados son continuos

OMPL.app Marco teórico

- ► Expansión de la OMPL para la resolución de problemas SE(2) y SE(3)
- ► SE2RigidBodyPlanning y SE3RigidBodyPlanning
- ► Implementa un detector de colisiones
- Permite cargar archivos COLLADA de entornos y robots en 3D
- Incluye una interfaz gráfica de usuario

Trabajo Realizado

Conversión de mapas Trabajo realizado

Conversión de estados Trabajo Realizado

17

- Utilizar método as<T> para hacer casting de StateSpace
- Obtener vector de coordenadas
- 3. Obtener límites del entorno
- Unificar ejes de coordenadas
- Convertir coordenadas a índice en la rejilla

Conversión de la rotación Trabajo Realizado

Conversión de la rotación Trabajo Realizado

Conversión de mapas de OMPL a nD FMM

Trabajo Realizado

- ▶ No todos los algoritmos requieren mapas exactos
- ► Es preferible en algunos casos minimizar el coste computacional
- Dos tipos de métodos para convertir mapas
 - Muestreo secuencial
 - Muestreo aleatorio

Comparación de métodos Trabajo Realizado

Métodos aleatorios implementados Trabajo Realizado

- ► Primer método: Uso de StateSampler de OMPL
- ► Segundo método: Uso de generador de índices aleatorio
- ► Tercer método: Uso de función recursiva para buscar obstáculos

Comparación de métodos aleatorios Trabajo Realizado

Comparación de métodos aleatorios Trabajo Realizado

Métodos aleatorios Trabajo Realizado

► MapLoader

- Cargar mapas en 3D y convertirlos a nDGridMap
- ► Representar la rotación en la rejilla
- ► Convertir camino de GradientDescent a PathGeometric de OMPL
- ► Exportar soluciones al formato de OMPL.app

► nDFMM

- ► Encapsular algoritmos nD FMM
- Instanciar automáticamente todo lo necesario para resolver el problema
- Convertir solución a formato OMPL

Encapsulación de nD FMM Trabajo realizado

Resultados y conclusiones

Resultados obtenidos

Resultados y conclusiones

- Posibilidad de cargar entornos y robots tridimensionales
- Adaptación a entornos con rotación
- Visualización de resultados en la GUI de la OMPL.app
- Posibilidad de comparación entre métodos de la nD FMM y OMPL en las mismas condiciones

Vídeo de ejemplo Resultados y conclusiones

¿Alguna pregunta?

