

PHI Applied Research Fellows 2021 Intro to Demography

Jessica Godwin

June 23, 2021

What is Demography?

What is Demography?

$$P_{t+1} = P_t + B_t - D_t + IM_t - OM_t$$

- ▶ Fertility, mortality, migration, population size
- ▶ The balancing equation
- ▶ How these processes work together in a population
- ▶ Break it all down by age and sex and ...

Why is Demography?

Why is Demography?

- Understand a population's make up today
- ► Targeted intervention
- Projections allow planning for future population
- Historical demography
- Social demography

The main textbooks

- Demography: Measuring and Modeling Population Processes
- ▶ Samuel Preston, Patrick Heuveline, Michell Guillot
- Essential Demographic Methods
- ► Kenneth Wachter
- ► Tools for Demographic Estimation
- ► IUSSP (many prominent world demographers)

The Demographic Transistion Theory

- ▶ Mortality begins to decrease →
- ightharpoonup Fertility begins to decrease ightarrow
- In countries that have already experienced the transition, to below "replacement level" ≈ 2.1 children per parents \rightarrow rise to and fluctuation around this point
- behind model in WPP (Alkema et al., 2011)
- ▶ Is this true in places where TFR remains high? Is all "high" fertility a result of unmet family planning needs?
- ► This really succinct amazing graphic on Wikipedia

N Africa & West Asia: 1950-1955 to 2015-2020

Sub-Saharan Africa: 1950-1955 to 2015-2020

Central & South Asia: 1950-1955 to 2015-2020

East & South-Eastern Asia: 1950-1955 to 2015-2020

Latin America & the Caribbean: 1950-1955 to 2015-2020

Australia, New Zealand, Oceania: 1950-1955 to 2015-2020

Europe & North America: 1950-1955 to 2015-2020

Population Growth by Continent

Population Pyramids: Latin America & Caribbean, 2015 Male Female

Population Pyramids: Asia, 2015

Population Pyramids: Africa, 2015

Population Pyramids: WA, 2011

Mortality: Age-specific Mortality

1995-2000

Mortality: Age-specific Mortality

2015-2020

The Lexis Diagram: Age-Period-Cohort

The Lexis Diagram: Age-Period-Cohort

The Life Table: Age-Period-Cohort

The Life Table: Age-Period-Cohort

x	l_x	$_{n}d_{x}$	$_{n}q_{x}$	$_{n}L_{x}$	$_{n}m_{x}$
a_0	l_0	$a_{1}-a_{0}D_{a_{0}}^{t_{2}}$	$\frac{a_1 - a_0 D_{a_0}^{t_2}}{B_{a_0}^{t_2}}$	$(a_1 - a_0) \times (B_{a_0}^{t_2} - \frac{1}{2}D_{a_0}^{t_2})$	$\frac{a_1 - a_0 d_{a_0}}{a_1 - a_0 L_{a_0}}$
a_1	$l_0 - {}_{a_1 - a_0} d_{a_0}$	$a_{2}-a_{1}D_{a_{1}}^{t_{1}}$	$\frac{a_2-a_1D_{a_1}^{t_1}}{B_{a_1}^{t_1}}$	$(a_2-a_1) imes(B^{t_1}_{a_1}-rac{1}{2}D^{t_1}_{a_1})$	$\frac{a_2 - a_1 d_{a_1}}{a_2 - a_1 L_{a_1}}$
a_2	$l_{a_1} - {}_{a_2-a_1}d_{a_1}$	$a_3-a_2D_{a_2}^{t_0}$	$\frac{a_3 - a_2 D_{a_2}^{t_0}}{B_{a_2}^{t_0}}$	$(a_3 - a_2) \times (B_{a_2}^{t_0} - \frac{1}{2}a_3D_{a_2}^{t_0})$	$\frac{a_3 - a_2 d_{a_2}}{a_3 - a_2 L_{a_2}}$
a_4	l_{∞}	l_{∞}	1		