Time Series Analysis for Enhancing the Recognition of License Plate Number in Video Stream of IOT Camera Bada Kim, Doohyuk Chang, Junyoung Heo

List

- 1. OCR ?
- 2. Necessity of Classification the Outlier
- 3. Recognition of License Plate
- 4. Outlier?
- 5. Experiment method
 - 5 -1. location tracking
 - 5 -2. template matching
 - 5 -3. analysis of hamming distance
 - 5 -4. analysis of score
- 6. Experiment
 - 6-1. Model configuration standard
 - 6-2. Verification
- 7. Conclusion

Part.)

To which will be added a Pernai.

Wheedle, Mi's Kirb ;

And Lauset, Mile POPE,

OCR?

Necessity of Classification the Outlier

Diversity of Input Data

Configuration of Various Environment

Recognition of License Plate

OUTLIER?

Experiment Method

Location Tracking

(1)

$$d_{distance} = |\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\,|$$

(2)

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Template Matching

$$R(x,y) = \frac{\sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

Analysis of Hamming Distance

Analysis of Score

Experiment

Model Configuration Standard & Training Data

Verification

Model Configuration Standard

Category content 4layers Layer Image Channel **Gray Scale** Loss function Categorical cross-entropy Adam optimization Optimizer Python3.6 Language Deep Learning library Keras 2.2.4 **CNN** model Based on Shufflenet

Training Data

Model	Training Data	Testing Data	Outlier Data
City recognition	9421	972	101
Number recognition	24278	2366	207
Char recognition	41597	4098	405

Verification

Model	Including Outlier data	Accuracy
City recognition model	Not included	0.9702
Number recognition model	Not included	0.9978
Char recognition model	Not included	0.9769
City recognition model	included	0.9193
Number recognition model	included	0.9478
Char recognition model	included	0.9356

Model	Precision	Recall	F1- score	Accuracy
Integration performance	0.9015	0.8517	0.8759	0.7793
Integration performance + time series analysis	0.9836	0.8797	0.9287	0.8525

Conclusion

- 1. If time series analysis is a useful example, such as real-time license plate recognition, it can be seen that outlier detection is possible
- 2. The limitations of this study are that it has already assessed performance based on data or circumstances known as Outlier.