FLUID POWER FORMULAS

		BASIC FORMULAS	
FORMULA FOR:	WORD FORMULA:		LETTER FORMULA:
FLUID PRESSURE In Pounds/Square Inch	PRESSURE	= FORCE (pounds) UNIT AREA (Square Inches)	$P = \frac{F}{A} \text{ or psi} = \frac{F}{A}$
FLUID FLOW RATE In Gallons/Minute	FLOW RATE	= VOLUME (Gallons) UNIT TIME (Minute)	$Q = \frac{V}{T}$
FLUID POWER IN HORSEPOWER	HORSEPOWER	= PRESSURE (PSI) × FLOW (GPM) 1714	$HP = \frac{PQ}{1714}$
		FLUID FORMULAS	
VELOCITY THROUGH PIPING In Feet/Second Velocity	VELOCITY	= .3208 × FLOW RATE THROUGH I.D. (GPM) INTERNAL AREA (Square Inches)	V = \frac{.32080}{A}
COMPRESSIBILITY OF OIL	ADDITIONAL	PRESSURE (psi) × VOLUME OF OIL UNDER PRESSURE 250,000 (approx.)	$V_A = \frac{PV}{250,000} \frac{\text{Approximately}}{\text{approx.}} \frac{V_2\% \text{ Per } 1000 \text{ ps}}{\text{ps}}$
In Additional Required Oil To Reach Pressure	VOLUME	230,000 (889108.)	
COMPRESSIBILITY OF A FLUID	COMPRESSIBILITY	= 1 BULK MODULUS OF THE FLUID	$C(\beta) = \frac{1}{BM}$
SPECIFIC GRAVITY OF A FLUID	SPECIFIC GRAVITY	= WEIGHT OF ONE CUBIC FOOT OF FLUID WEIGHT OF ONE CUBIC FOOT OF WATER	$SG = \frac{W}{62.4283}$
VALVE (C _v) FLOW FACTOR	VALVE FACTOR (C _V)	= FLOW RATE (GPM) × VSPECIFIC GRAVITY VPRESSURE DROP (PSI)	$C_v = \frac{0 \text{ VSG}}{\text{V}\Delta P}$
VISCOSITY IN CENTISTOKES		SAYBOLT UNIVERSAL SECONDS: = .2253 × SUS - 194.4 SUS	$CS = .2253 \text{ SUS} - \frac{194.4}{\text{SUS}}$
VISCOSITY IN CENTISTOKES	FOR VISCOSITIES OF 100 TO 24 CENTISTOKES	0 SAYBOLT UNIVERSAL SECONDS: = $.2193 \times SUS - \frac{134.6}{SUS}$	$CS = .2193 SUS - \frac{134.6}{SUS}$
VISCOSITY IN CENTISTOKES	FOR VISCOSITIES GREATER THA CENTISTOKES	AN 240 SAYBOLT UNIVERSAL SECONDS: = SUS 4.635	$CS = \frac{SUS}{4.635}$
NOTE: SAYBOLT UNIVERSAL SECONDS IS OFTE	N ABBREVIATED AS SSU. SEE PAGE	120 FOR ADDITIONAL VISCOSITY INFORMATION.	
		PUMP FORMULAS	T
PUMP OUTLET FLOW In Gallons/Minute	FLOW	= RPM × PUMP DISPLACEMENT (Cu. In./Rev.) 231	$Q = \frac{nd}{231}$
PUMP INPUT PÖWER In Horsepower Required	HORSEPOWER INPUT	= FLOW RATE OUTPUT (GPM) × PRESSURE (ρsi) 1714 × EFFICIENCY (Overall)	$HP_{IN} = \frac{QP}{1714 \text{ Eff}} \text{ or } \frac{GPM \times psi}{1714 \text{ Eff}}$
PUMP EFFICIENCY OVERALL IN PERCENT	OVERALL EFFICIENCY	$= \frac{\text{OUTPUT HORSEPOWER}}{\text{INPUT HORSEPOWER}} \times 100$	$Eff_{OV} = \frac{HP_{OUT}}{HP_{IN}} \times 100$
PUMP EFFICIENCY VOLUMETRIC IN PERCENT	VOLUMETRIC EFFICIENCY	= VOLUMETRIC Eff. × MECHANICAL Eff = ACTUAL FLOW RATE OUTPUT (GPM) THEORETICAL FLOW RATE OUTPUT (GPM) × 100	$Eff_{OV} = Eff_{VOL} \times Eff_{MECM}$ $Eff_{VOL} = \frac{0_{ACT}}{0_{TMED}} \times 100$
PUMP EFFICIENCY MECHANICAL IN PERCENT	MECHANICAL EFFICIENCY	= THEORETICAL TORQUE TO DRIVE × 100	$Eff_{MECN} = \frac{T_{TMEO}}{T_{ACT.}} \times 100$
PUMP LIFE B ₁₀ BEARING LIFE	B ₁₀ HOURS OF BEARING LIFE	= RATED LIFE HOURS $\times \frac{\text{RATED SPEED } (RPM)}{\text{NEW SPEED } (RPM)} \times \left(\frac{\text{RATED PRESSURE } (PSI)}{\text{NEW PRESSURE } (PSI)} \right)^3$	$B_{10} = RATED HRS. \times \frac{RPM_R}{RPM_N} \times \left(\frac{P_R}{P_N}\right)^3$
		ACTUATOR FORMULAS	
FORMULA FOR:	WORD FORMULA		LETTER FORMULA
CYLINDER AREA	AREA	= τ × RADIUS² (Inches)	$A = \pi r^2$
In Square Inches	AREA	$= \frac{x}{4} \times \text{DIAMETER}^2 \text{ (Inches)}$	$A = \frac{\pi D^2}{4} \text{ or } A = .785D^2$

FLUID POWER FORMULAS

ACTUATOR FORMULAS — CONTINUED

		ACTUATOR	FORMULAS -	- CONTINUED					
FORMULA FOR:	WORD FORMU	LA				LETTER FORMULA			
CYLINDER VELOCITY or SPEED In Feet/Second	VELOCITY	VELOCITY = $\frac{231 \times FLOW RATE (GPM)}{12 \times 60 \times NET AREA (Square Inches)}$							
CYLINDER VOLUME CAPACITY In Gallons of Fluid	VOLUME	$=\frac{\pi \times R^{\prime}}{}$	ADIUS ² (Inches) × STI 231	ROKE (Inches)	2	$V = \frac{\pi f^2 / 221}$			
		= NET AR	EA (Square Inches) x 231	STROKE (Inches)		$V = \frac{AI}{231}I = Len$	gth of Stroke		
CYLINDER FLOW RATE In Gallons Per Minute	FLOW RATE	= 12 × 6	0 × VELOCITY (Feet/S	Sec) × NET AREA (Squar	e Inches)	$Q = \frac{720 \text{vA}}{231} \text{ or } Q =$	= 3.117vA		
FLUID MOTOR TORQUE In Inch Pounds	TORQUE	= PRESSU	JRE (psi) × F.M. DISPL 2π	ACEMENT (Cu. In./Rev.)		$T = \frac{psi d}{2\pi} \text{ or } T$	$=\frac{Pd}{2\pi}$		
		= HORSEF	POWER × 63025 RPM		(\$**) (4)	$T = \frac{63025 \text{ HP}}{n}$			
		= FLOW R	ATE (GPM) × PRESSU RPM	RE (psi) × 36.77		$T = \frac{36.77QP}{n}o$	$T = \frac{36.770psi}{n}$		
FLUID MOTOR TORQUE/100 psi In Inch Pounds	TORQUE/100 psi -	= EM. DIS	SPLACEMENT (Cu. Incl .0628	nes/Revolution)	3	$T_{100ps} = \frac{d}{.0628}$			
FLUID MOTOR SPEED In Revolutions/Minute	SPEED	= F.M. DIS	231 FLOW RATE (GPM) SPLACEMENT (Cu. Incl	nes/Revolution)	028	$n = \frac{2310}{d}$			
FLUID MOTOR POWER In Horsepower Output	HORSEPOWER	_ TORQUE	OUTPUT (Inch Pounds 63025	E) × RPM		$HP = \frac{Tn}{63025}$	-		
		TH	ERMAL FORM	ULAS					
NOTE: ONE BRITISH THERMAL UNIT (BTU	IS THE AMOUNT OF HEAT REQU	JIRED TO RAISE THE	TEMPERATURE OF ONE	POUND OF WATER ONE I	DEGREE FAHRENHEIT, ONE	HORSEPOWER = 2545 (BTU/HR.		
RESERVOIR COOLING CAPACITY BASED ON ADEQUATE AIR CIRCULATION	HEAT (BTU/HR)		MPERATURE DIFFEREN A OF RESERVOIR (SQ. F	CE BETWEEN RESERVOIR T.)	WALLS AND AIR (°F)	BTU/HR = 2.0 >	ΔT×A		
HEAT IN HYDRAULIC OIL (approx.) DUE TO SYSTEM INEFFICIENCY (SG = .89 .92)	HEAT (BTU/HR)	= FLOW R	ATE (GPM) × 210 × 1	EMPERATURE DIFFERENCE	CE (°F)	BTU/HR = 0 × 210 × ΔT			
HEAT IN FRESH WATER (approx.)	HEAT (BTU/HR)	= FLOW R	ATE (GPM) × 500 × T	EMPERATURE DIFFERENCE	CE (°F)	BTU/HR = $0 \times 500 \times \Delta T$			
N ote: See pages 79 Through 84 For In	FORMATION	PRESS	SURE DROP FO	RMULAS					
NOTE: SEE PAGES 130 AND 131 FOR ADDI	TIONAL INFORMATION	ACCU	MULATOR FOI	RMULAS	Where "P" = psia (AE	BSOLUTE) = psig (GAUGE	PRESSURE) + 14.7 p		
FORMULA FOR:	WORD FORMU	LA:				LETTER FOR	MULA:		
PRESSURE OR VOLUME w/Constant "T" (Temperature)	ORIGINAL PRESSURE ×	ORIGINAL VOLUME	P ₁ V ₁ = P ₂ V ₂ Isothermic						
PRESSURE OR TEMPERATURE w/ Constant "V" (Volume)	ORIGINAL PRESSURE X	FINAL TEMPERATU	P, T ₂ = P ₂ T, Isochoric						
VOLUME OR TEMPERATURE w/Constant "P" (Pressure)	ORIGINAL VOLUME × I	FINAL TEMPERATURE	E = FINAL VOLUME ×	ORIGINAL TEMPERATURE	E	V, T ₂ = V ₂ T, Iso	paric		
PRESSURE OR VOLUME w/Temperature Change Due To Heat of Compression	× FINAL VOLUME® RESSURE PRESSURE		$\begin{array}{ccc} P_1 V_1 & = P_2 V_2 \\ \hline I_2 & = \left(\frac{V_1}{V_2}\right)^{n-1} = \left(\frac{V_1}{V_2}\right)^{n-1} \end{array}$	P ₂)a-1/a					
	V	OLUME &	CAPACITY I	EQUIVALENTS	3				
Cubic Inches	Cubic Feet	Cubic Yards	Liters	U.S. Gallons	Imperial Gallons	39.2°	Max. Density F 4° C		
						Pounds of Water	Kilograms of Water		
u Inches 1 J Feet 1728 J Yards 46,656 ters 61.0234 S. Gallons 231	.0005787 1 27 .0353145 .133681	.00002143 .037037 1 .001308 .004951	.016384 28.317 764.56 1 3.78543	.004329 7.48052 201.974 .264170	.0036065 6.23210 168.266 .220083 .833111	.0361275 62.4283 1685.56 2.20462 8.34545	.0163872 28.3170 764.559 1 3.78543		
pp Gallons 277.274 ps Water 27.6798	.160459 .0160184	.0059429 .0005929	4.54374 .453592	1.20032 .119825	1 .0998281	10.0172 1	4.54373 .453593		

To Convert	Into	Multiply by
Barrel (U.S. liquid)	Gallons	31.5
Bars	Kgs/sq meter	10,200
Bars	Pounds/sq in	14.50
Centigrade	Fahrenheit	(C° x 9.5) +32
Cubic centimeters	Cu feet	.00003521
Cubic centimeters	Cu inches	0.06102
Cubic centimeters	Cu meters	.000001
Cubic centimeters	Gallons (U.S. liquid)	.0002642
Cubic centimeters	Liters	0.001
Cubic feet	Cu cms	28,320
Cubic feet	Cu inches	1,728
Cubic feet	Cu meters	0.02832
Cubic feet	Gallons (U.S. liquid)	7.48052
Cubic feet	Imperial gallons	6.23210
Cubic feet	Liters	28.317
Cubic feet/min	Cu cms/min	28,317
Cubic feet/min	Gallons/min	7.481
Cubic feet/min	Liters/min	28.32
Cubic feet/sec	Gallons/min	448.83
Cubic inches	Cu cms	16.39
Cubic inches	Cu feet	.0005787
Cubic inches	Cu meters	.00001639
Cubic inches	Gallons (U.S. liquid)	.004329
Cubic inches	Imperial gallons	.0036065
Cubic inches	Liters	0.01639
Cubic meters	Cu cms	1,000,000
Cubic meters	Cu feet	35.31
Cubic meters	Cu inches	61,023
Cubic meters	Gallons (U.S. liquid)	264.2
Cubic meters	Liters	1,000
Degree Fahrenheit	Degree Celsius	$t ^{\circ}\text{C} = (t ^{\circ}\text{F} - 32)/1.8$
Feet/min	Cms/sec	0.5080

To Convert	Into	Multiply by
Feet/min	Meters/min	0.3048
Gallons/min	Cu cms/min	3,785.412
Gallons/min	Cu feet/min	.1337
Gallons/min	Liters/min	3.785
Imperial gallons	Cu feet	.160459
Imperial gallons	Cu inches	277.274
Imperial gallons	Liters	4.54374
Imperial gallons	U.S. gallons	1.20032
Kilograms/sq cm	Pounds/sq ft	2,048
Kilograms/sq cm	Pounds/sq in	14.22
Kilograms/sq meter	Bars	.00009807
Kilograms/sq meter	Pounds/sq in	.001422
Liters	Cu cm	1,000
Liters	Cu feet	0.0353145
Liters	Cu inches	61.0234
Liters	Cu meters	0.001
Liters	Gallons (U.S. liquid)	0.264170
Liters	Imperial gallons	.220083
Liters/min	Cu cms/min	1000
Liters/min	Cu feet/min	.035
Liters/min	Gallons/min	.264
Pascal (Pa)	Bar	.00001
Pascal (Pa)	Pounds/sq in	.000145
Pounds/sq inch	Kgs/sq meter	703.1
Pounds/sq inch	Pascal (Pa)	6,895
Pounds/sq inch	Bar	.069
U.S. gallons	Imperial gallons	.83267
U.S. gallons	Cu cms	3785
U.S. gallons	Cu feet	.133681
U.S. gallons	Cu inches	231
U.S. gallons	Cu meters	.3785
U.S. gallons	Liters	3.785

TABLE 6-E. CONVERSION BETWEEN ENGLISH UNITS AND SI UNITS

The "SI" (International Standards) units shown below are adopted for use by the International Fluid Power Community, and should be used on documents prepared for international circulation.

Quantity	SI Unit for Fluid Power	"Customary" U.S. Unit	Conversion Factor
Length	millimeter (mm)	inch (in). Ibs/sq in (psig or psia)	1 in = 25.4 mm 1 bar = 14.5 psi 1 in Hg = 25.4 mm Hg 1 U.S. GPM = 3.79 l/min 1 dm ³ /sec = 2.12 cfm 1 lb(f) - 4.44N 1 Kg = 2.20 lb(m) 1 U.S. gal = 3.79 l °C = 5/9 (°F - 32) 1 Nm = 8.88 lb(f)-in 1 kw = 1.34 HP 1 Hz = 1 cps 1 ml/rev = 0.061 cipr cSt = (4.635)(SUS)††
NOTES: *Pressure a		ure below atmospheric ***Liquid C; Factor is 4.667 @ 99°C	

EQUIVALENT MEASUREMENTS

1 U.S. Gallon = 231 Cubic Inches	1 Horsepower = 33,000 Ft. Lbs. per Minute			
= 4 Quarts; or 8 Pints	= 550 Ft. Lbs. per Second			
= 8.3356 Pounds	= 42.4 BTU per Minute			
= 3.785 Liters	= 2545 BTU per Hour			
	= 746 Watts, or 0.746 Kilowatts			
1 Imperial Gallon = 1.2 U.S. Gallons	1 PSI = 2.0416 "Hg			
1 Liter = 0.2642 U.S. Gallons	= 27.71 "Water			
	1 Foot Column of Water = 0.433 PSI			
1 Cubic Foot = 7.48 Gallons	1 Foot Column of Oil = 0.390 PSI			
= 1728 Cubic Inches	1 "Hg = 0.491 PSI			
1 Cubic Foot of Water Weighs 62.4 Pounds	= 1.132 Ft. Water			
1 Bar at Sea Level = 14.5 PSI (Approx. 1 Atmos.)	1 Barrel Oil = 42 Gallons			
= 33.8 Foot Water Column	1 Micro-meter = 1 Millionth of a Meter (Micron)			
= 42 Foot Oil Column	= 1 Thousandth of a Meter			
= 29.92 "Hg.	= 0.00004 Inch			
Approx. ½PSI Decrease Each 1000 Ft. Altitude	25 Micro-meters = 0.001 Inch			

APPROXIMATE MEASUREMENTS

1 Pint = 2 cups = 16 fluid ounces = 1 pound
1 Pint = 96 teaspoons = 32 tablespoons = 16 fluid ounces
1 Quart = 4 cups = 2 pints = 32 fluid ounces = 2 pounds
1 Quart = 192 teaspoons = 64 tablespoons = 32 fl. oz.
1 Gallon = 16 cups = 4 quarts = 8 pints
1 Gallon = 768 teaspoons = 256 tablespoons = 128 oz.

- 1 Gallon = 231 cubic inches = 76,800 drops 1 Cup = 16 tablespoons = 48 teaspoons 1 Tablespoon = 3 teaspoons
- 2 Tablespoons = 1 fluid ounce
- 1 Fluid ounce (volume) = 600 drops (hydraulic oil) 1 Cubic inch = 330 drops

TABLE 6-F. EQUIVALENT VALUES

To convert units appearing in Column 1 into equivalent values of units in Column 2, multiply by factor in Column 3, Example: To convert 7 gallons into cubic inches, multiply 7 x 231 = 1617 cubic inches.

To convert units appearing in Column 2 into equivalent values of units in Column 1, divide by factor in Column 3. Example: To convert 25 horsepower into BTU per minute, divide 25 by 0.02356 = 1061 BTU per minute.

Column 1	Column 2	Column 3	Column 1	Column 3	
Please r	ead instructions above		Please	read instructions above	
Atmospheres * Atmospheres * Atmospheres * BTU BTU per Hour BTU per Minute	Feet of Water Inches of Mercury ("Hg) PSI (Lbs.per Sq. In) Foot Lbs	33.9 29.92 14.7 778.3 0.2931 0.02356	Horsepower Horsepower Horsepower Hours Inches	. Foot Lbs. per Secon . Watts Days Weeks	d 550 . 745.7 . 0.04167 . 0.005952
Centigrade Centimeters Cubic Centimeters . Cubic Centimeters . Cubic Feet Cubic Feet	Fahrenheit Inches	°C x 1.8+32 0.3937 0.0002642 0.001 1728 7.48052	Inches of Mercury (" Inches of Mercury (" Inches of Mercury (" Inches of Water Liters Liters	Hg) Feet of Water . Hg) PSI (Lbs. per Sq. In. PSI (Lbs. per Sq. In. Cubic Centimeters	. 1.133 0.4912 0.03613 . 1000
Cubic Inches Cubic Inches	Cubic Feet U.S.Gallons Liquid Seconds	0.004329 86,400 0.01745 0.3048	Micro-meter (Micron) Miles (Statute) Miles per Hour (MPH Miles per Hour (MPH Ounces (Weight) Ounces (Fluid)	Feet	. 5280 . 88 . 1.467 . 0.0625
Feet of Water Feet of Water Feet of Water Feet per Minute Feet per Second Foot Lbs	Atmospheres (Bars)* Inches of Mercury ("Hg) PSI (Lbs. per Sq. In) . Miles per Hour Miles per Hour BTU	0.8826 0.4335 0.01136 0.6818	Pints	. Grains	. 7000 . 453.5924 . 16 . 0.06804
Foot Lbs. per Minute Foot Lbs. per Second Gallons (U.S.Liquid) Gallons (U.S.Liquid) Gallons of Water Horsepower	Horsepower Horsepower Cubic Feet Cubic Inches Pounds of Water BTU per Minute	0.001818 0.1337 231 8.3453	PSI (Lbs. per Sq. in) Quarts Square Feet Temperature (°F) - 3 Tons (U.S.) Watts	. Gallons Square Inches . 2 . Temperature (°C) . Pounds	. 0.25 . 144 . 0.5555 . 2000

^{*1} Bar equals approximately 1 atmosphere. See Pages 17 and 236.

TABLE 6-G. PSI GAUGE PRESSURE CONVERTED TO METRIC PRESSURE UNITS

This table is calculated on the basis of 1 bar = 14.5 PSI, or, 1 PSI = .069 bar

PSI	50	100	250	500	750	1000	1500	2000	2500	3000	5000
Bars—— → 0.69	3.45	6.90	17.2	34.5	51.7	69.0	103.4	137.9	172.4	206.9	344.8

TABLE 6-H. GPM OIL FLOW CONVERTED TO METRIC UNITS

This table is calculated on the basis of 1 U.S. GPM = 3.79 liters per min. (liquid) or, 1 liter per min. = 0.2638 GPM.

											NEW PERSONS
GPM────5	8	12	15	20	25	30	35	40	50	75	100
Liters/min. → 18.95											

TABLE 6-I. SCFM AIR FLOW CONVERTED TO METRIC UNITS

This table is calculated on the basis of 1	SCFM = 0.4716 cubic decimeters per second,	or $1 dm^3/sec. = 2.12 SCFM.$
--	--	---------------------------------

SCFM———5	10	15	25	50	75	100	150	200	250	300	350
Dm ³ /sec.—2.358	4.716	7.074	11.79	23.58	35.37	47.16	70.74	94.32	117.9	141.5	165.1