Équations Différentielles Linéaires d'ordre 2 $_{\text{Corrigé}}$

DARVOUX Théo

Novembre 2023

Exercices.	
Exercice 12.1	2

Exercice 12.1 $[\blacklozenge \lozenge \lozenge]$

Résoudre le problème de Cauchy ci-dessous :

$$\begin{cases} y'' + 2y' + 10y = 5\\ y(0) = 1 \quad y'(0) = 0 \end{cases}$$

Polynome caractéristique : $r^2 + 2r + 10$. $\Delta = -36$. $r_{\pm} = -1 \pm 3i$. Solutions de l'équation homogène : $S_0 = \{x \mapsto e^{-x} (\alpha \cos(3x) + \beta \sin(3x)) \mid (\alpha, \beta) \in \mathbb{R}^2\}$

Solution particulière : $S_p : x \mapsto \frac{1}{2}$.

Solution générale : $S = \{x \mapsto \frac{1}{2} + e^{-x} (\alpha \cos(3x) + \beta \sin(3x)) \mid (\alpha, \beta) \in \mathbb{R}^2 \}.$

Conditions initiales.

Soit $(\alpha, \beta) \in \mathbb{R}^2 \mid \forall x \in \mathbb{R}, \ y(x) = \frac{1}{2} + e^{-x} (\alpha \cos(3x) + \beta \sin(3x)).$

On a $y(0) = 1 \iff \frac{1}{2} + \alpha = 1 \iff \alpha = \frac{1}{2}$.

On a $y'(0) = 0 \iff -\frac{1}{2} + 3\beta = 0 \iff \beta = \frac{1}{6}$.

L'unique solution de ce problème de Cauchy est : $x \mapsto \frac{1}{2} + e^{-x} \left(\frac{1}{2} \cos(3x) + \frac{1}{6} \sin(3x) \right)$