

Programmation système et réseaux

Chapitre 1: Introduction à l'environnement Unix/Linux

ISSAT Sousse, LSI-A2

Dr. Roua Jabla roua.jabla.ihm.projet@gmail.com

• Généralités sur les systèmes d'exploitation

• Concepts fondamentaux d'Unix

Concepts fondamentaux de Linux

Généralités sur les systèmes d'exploitation

Qu'est-ce qu'un système d'exploitation

• Un programme:

 Qui fait l'interface entre l'utilisateur et l'ordinateur / les applications et le matériel,

macOS

Unux

Windows

 Que l'on installe sur un ordinateur pour exploiter ses ressources: processeur, carte graphique, mémoire, etc..,

Qu'est-ce qu'un système d'exploitation

• Un programme:

- Offre une interface unifiée aux applications,
- Gère la mémoire et les processeurs de l'ordinateur,
- Gère et protège les logiciels et les ressources matérielles de l'ordinateur,

Qu'est-ce qu'un système d'exploitation

→ Passerelle entre l'utilisateur, les ressources et les applications,

- ✓ Lorsqu'une application est lancée, elle ne communique pas directement avec un périphérique,
- ✓ Les instructions passent par le système d'exploitation, qui se charge de les transmettre au périphérique,
- ✓ Un utilisateur passe par une application qui passe par le système d'exploitation pour pouvoir accéder au matériel,

Exemples de systèmes d'exploitation

- Les systèmes d'exploitation les plus répandus sont:
 - Windows,
 - Mac OS,
 - Unix,
 - Linux,
 - Etc.,

- Systèmes mono-tâche:
 - Gère une seule tâche à la fois,
 - Processeur ne peut exécuter qu'une instruction à la fois,
 - Seul programme lancé utilise les ressources de la machine et ne rend pas la main au système d'exploitation qu'en fin d'exécution, ou en cas d'erreur,
 - → MS-DOS (1981),

```
Starting MS-DOS...

HIMEN is testing extended memory...done.

C:\C:\DOS\SMARTDRU.EXE /X

MODE prepare code page function completed

MODE select code page function completed

C:\City dir

Volume in drive C is MS-DOS_6

Volume Serial Number is 4084-7F23

Directory of C:\

DOS (DIB)

CONHAND COM 54 615 94.95.31 6:22

CONNIND COM 54 94.95.31 6:22

CONNIND S96 9 349 94.95.31 6:22

CONNIND S96 949 94.95.31 6:22

CONNIND S96 949 94.95.31 6:22

CONNIND S96 949 94.95.29 15:57

AUTOLEXEC MAT 188 12.95.29 15:57

64 326 bytes

24 760 329 bytes free
```


- Systèmes multi-tâches:
 - Gère plusieurs tâches sur une même machine,
 - Système d'exploitation partage le temps du processeur entre plusieurs programmes,
 - → Windows 95, 98, ...,

- Systèmes multi-utilisateurs:
 - Gère l'environnement propre à chaque utilisateur,
 - Chaque utilisateur est associé à un terminal et à un ou plusieurs processus,
 - → Impression de disposer d'un ordinateur pour lui seul,
 - → Windows 2000, XP, Unix, Linux, ...,

- Systèmes multi-processeurs:
 - Fonctionne plusieurs processeurs en parallèle afin d'obtenir une puissance de calcul plus importante ou d'augmenter la disponibilité du système,

- Nécessairement multi-tâche puisqu'on lui demande d'une part de pouvoir exécuter simultanément plusieurs applications, mais surtout d'organiser leur exécution sur les différents processeurs,
 - → Windows, Unix, Linux, ...,

SE	Mono-tâche	Multi-tâches	Mono-utilisateur	Multi-utilisateurs
MS-DOS	X		X	
Windows 95/98		X	X	
Windows XP		X		X
Unix		X		X
Distribution Linux		X		X
MAC OS		X		X
•••				

Composants d'un système d'exploitation

• Système d'exploitation contient :

 Noyau (Kernel) qui réalise toutes les tâches qui lui sont attribuées en gérant la mémoire, les processus, les fichiers, les entrées/sorties, etc.,

Composants d'un système d'exploitation

• Système d'exploitation contient :

 Interpréteur de commande (SHELL ou Terminal) qui permet à l'utilisateur de communiquer directement avec le système d'exploitation en utilisant un langage de commandes,

Composants d'un système d'exploitation

• Système d'exploitation contient :

 Système de fichiers (File System) qui permet d'enregistrer les fichiers en suivant une arborescence,

• Système d'exploitation fournit des services aux autres programmes et applications. Il leur permet de :

- S'exécuter,
- Accéder aux ressources (mémoire, disque, etc.),
- Communiquer entre eux,

• Dans un ordinateur, le système d'exploitation gère:

- 1. Processeur,
- 2. Mémoire,
- 3. Systèmes de fichiers,
- 4. Entrées/sorties,

1. Gestion de processeur:

- Système d'exploitation gère l'allocation du processeur entre les différents programmes grâce à un **ordonnanceur**,
 - → L'ordonnanceur est un composant qui choisit l'ordre d'exécution des différents processus,
 - → On a l'impression que le système d'exploitation gère en parallèle différents programmes alors qu'il gère l'allocation du processeur entre les différents programmes,

2. Gestion de la mémoire:

 Système d'exploitation est responsable des opérations d'allocation et du suivi de l'occupation mémoire,

Système d'exploitation gère l'espace mémoire alloué à chaque application,

3. Gestion des fichiers:

 Système d'exploitation est responsable des opérations de mise à jour des fichiers et répertoires,

- Système d'exploitation gère la lecture et l'écriture dans le système de fichiers sur les supports physiques,
- Système d'exploitation gère également les droits d'accès aux fichiers par les utilisateurs et les applications,

4. Gestion des entrées/sorties:

- Système d'exploitation permet d'unifier et de contrôler l'accès des programmes aux ressources matérielles par l'intermédiaire des drivers appelés aussi pilotes,
 - → Pilote permet de manipuler le périphérique par des simples demandes de lectures ou d'écriture,

Avantages de systèmes d'exploitation

- Systèmes d'exploitation garantissent:
 - Sécurité,
 - → Contrôle d'accès, ...,
 - Efficacité,
 - → Performances du système,
 - Rapidité de traitement,
 - Optimisation,
 - → Eviter tout surcout en termes de temps et place consommés par le système au détriment de l'application,

Concepts fondamentaux d'Unix

Qu'est-ce que UNIX

- Unix est un système d'exploitation écrit dans le langage de programmation C et le langage d'assemblage,
- Unix est un système d'exploitation multi-tâches et multi-utilisateurs,
- Unix est devenu le système d'exploitation le plus utilisés dans les années 70 et 80,
- Unix est considéré comme la mère de la plupart des systèmes d'exploitation,

Qu'est-ce que UNIX

- Unix était utilisé dans les serveurs Web, les postes de travail et les PC,

- Unix présente:
 - ✓ Un système de fichiers unifié et basé sur Inode (système de fichiers UNIX),
 - ✓ Un mécanisme de communication,
 - ✓ Un SHELL et un langage de commande,

Qu'est-ce que UNIX

- La conception des systèmes Unix est basée sur la «philosophie Unix» qui comprend les caractéristiques suivantes:
 - ✓ Utilisation de texte brut pour le stockage des données,
 - ✓ Système de fichiers hiérarchique,
 - ✓ Manipuler les périphériques et certains types spécifiques de communication interprocessus sous forme de fichiers,

√ ...

Exemples d'UNIX

- Quelques versions d'Unix sont SunOS, Solaris, SCO UNIX, AIX, HP/UX, ULTRIX, etc.,
- Unix a donné naissance à des autres systèmes d'exploitation dont Linux, MacOS et etc.,

Concepts fondamentaux de Linux

Qu'est-ce que Linux

- Linux est une continuation de la base de la conception Unix,
- Linux est un noyau de type UNIX et open source,
- Linux et Unix sont différents mais ils ont une relation l'un avec l'autre,
 - → Linux est dérivé d'Unix,

Qu'est-ce que Linux

- Linux n'est qu'un noyau et non le système d'exploitation complet,
- Le noyau Linux a été entièrement écrit à partir de zéro,
- Le noyau Linux est conçu de telle manière qu'il agit comme Unix mais il ne contient pas le code Unix original,

Qu'est-ce que Linux

- Le noyau Linux est généralement emballé dans des distributions Linux, ce qui en fait un système d'exploitation complet,
- Une distribution Linux est un système d'exploitation créé à partir d'une collection de logiciels utilisant le noyau Linux et les outils GNU,
 - → Une distribution Linux standard comprend un noyau Linux, des outils GNU et des logiciels supplémentaires,

Rôles de Linux

- Le noyau Linux gère les tâches de base du système:
 - ✓ La gestion des ressources,
 - ✓ La gestion des processus,
 - ✓ La gestion des fichiers,
 - ✓ La gestion des entrées/sorties,
 - → L'utilisateur communique avec le noyau par l'intermédiaire d'un SHELL,

Propriétés de Linux

- **Portable:** Écrit majoritairement en C,

 Multi-utilisateurs: Plusieurs utilisateurs peuvent se connecter et travailler sur une machine,

 Multi-tâches: Peut exécuter plusieurs tâches en même-temps,

 Protection: Protection mémoire, les plantages du système par lui-même sont très rares,

Exemples des distributions Linux

Les principales distributions Linux sont:

Structure d'une distribution Linux

- Linux est divisé en 3 couches distinctes:
 - ✓ La couche interface: SHELL et/ou le système X-Window,
 - → X-Window est l'environnent graphique de tous les systèmes Linux,
 - → SHELL permet aux utilisateurs de communique avec le noyau,
 - ✓ La couche système: noyau Linux,
 - ✓ La couche physique: périphériques et BIOS,
 - → BIOS (système de base d'entrée/sortie) gère le flux des données entre le système d'exploitation et les périphériques (ex., clavier, souris, l'imprimante, etc.,),

Structure d'une distribution Linux

- SHELL est un programme interpréteur de ligne de commande,
- SHELL est une interface entre l'utilisateur et le système d'exploitation,

- → SHELL permet aux utilisateurs et aux programmes d'envoyer des signaux,
- → SHELL analyse et envoie des commandes au système d'exploitation,

Structure d'une distribution Linux

- Linux est livré avec plusieurs SHELLs différents,
- SHELLs Unix/Linux les plus connus sont:
 - ✓ BOURBE AGAIN SHELL (bash),
 - ✓ BOURNE SHELL (sh),
 - ✓ KORN-SHELL (ksh),
 - ✓ C-SHELL,
 - ✓ TC-SHELL,

- Lister sur une feuille de papier:
 - Les différences entre Unix et Linux: Unix Vs Linux

– 10 min,

Unix Vs Linux

Critère	Unix	Linux
Système d'exploitation	Package complet de système d'exploitation	Noyau de système d'exploitation de type Unix
Version	Plus ancien	Plus récent
Langage	C et langage d'assemblage	C et autres langages de programmation
Modèle source	Partiellement open source (nécessite une licence)	Open Source
Coût	Coût de Licence et de services de support	Distributions gratuites
Interface	Utilise principalement la ligne de commande	Utilise principalement une interface graphique avec une ligne de commande optionnelle
Sécurité	Hautement sécurisé	Plus grande sécurité

Pourquoi Linux

- Open-source,
- Moins cher,
- Plus sécurisé,
- plus portable (que des alternatives commerciales),
- Largement utilisé
 - ✓ serveurs, équipements réseau
 - ✓ appareils Android
 - ✓ autres « petits » appareils

Système d'exploitation

- Un intermédiaire entre les applications et le matériel,

Rôles du système d'exploitation

- Offrir une interface du matériel unifiée et plus adaptée,
- Assurer la gestion et la protection des ressources,

Résumé

- Unix est un système d'exploitation
 - Payant,
 - Non libre,
- Linux est l'alternative
 - Noyau,
 - Accessible gratuitement à tous,
 - Plusieurs distributions Linux,

• Distribution est un noyau auquel des logiciels ont été ajoutés

Fin