Лабораторная работа №4

Модель гармонических колебаний

Белов Максим Сергеевич, НПИбд-01-21

Содержание

Цель работы	4
Задание	5
Теоретическое введение	6
Уравнение свободных колебаний гармонического осциллятора	6
Выполнение лабораторной работы	7
Моделирование на Julia	7
Моделирование на Modelica	13
Вывод	18

Список иллюстраций

1	Колебания гармонического осциллятора без затуханий и без действий	
	внешней силы (julia)	9
2	Колебания гармонического осциллятора с затуханием и без действий	
	внешней силы (julia)	11
3	Колебания гармонического осциллятора с затуханием и под действием	
	внешней силы (julia)	13

Цель работы

Построить фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для нескольких случаев

Задание

33 вариант ((1032219262 % 70) + 1)

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев:

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы x''+1.7x=0
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы x'' + 9.8x' + x = 0
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы x''+3.9x'+2.9x=0.9cos(2t)

Теоретическое введение

Уравнение свободных колебаний гармонического осциллятора

Уравнение свободных колебаний гармонического осциллятора имеет следующий вид: $x'' + 2gx' + w_0^2 x = 0$

Выполнение лабораторной работы

Моделирование на Julia

• 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы x''+1.7x=0

Исходный код:

```
sol = solve(prob, dtmax = 0.05)
X = [u[1] \text{ for } u \text{ in } sol.u]
Y = [u[2] \text{ for } u \text{ in } sol.u]
T = [t for t in sol.t]
plt = plot(
    layout = (1,2),
    dpi = 300,
    legend = false)
plot!(
    plt[1],
    Τ,
    Χ,
    title = "Решение уравнения",
    color=:blue)
plot!(
    plt[2],
    Χ,
    Υ,
    title="Фазовый портрет",
    color=:blue)
savefig(plt, "lab4_1.png")
```

Получившийся график:

Рис. 1: Колебания гармонического осциллятора без затуханий и без действий внешней силы (julia)

• 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы x'' + 9.8x' + x = 0

Исходный код:

using Plots
using DifferentialEquations

$$w = 1$$

 $g = 9.8$
 $x0 = 0$
 $y0 = -1.4$

end

```
v0 = [x0, y0]
tspan = (0.0, 29.0)
prob = ODEProblem(ode_fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
X = [u[1] \text{ for } u \text{ in } sol.u]
Y = [u[2] \text{ for } u \text{ in } sol.u]
T = [t for t in sol.t]
plt = plot(
    layout = (1,2),
    dpi = 300,
    legend = false)
plot!(
    plt[1],
    Τ,
    Χ,
    title = "Решение уравнения",
    color=:blue)
plot!(
    plt[2],
    Χ,
    Υ,
    title="Фазовый портрет",
    color=:blue)
```

savefig(plt, "lab4_2.png")

Получившийся график:

Рис. 2: Колебания гармонического осциллятора с затуханием и без действий внешней силы (julia)

• 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы x''+3.9x'+2.9x=0.9cos(2t)

Исходны код:

using Plots

using DifferentialEquations

$$w = 2.9$$

$$g = 3.9$$

$$x0 = 0$$

$$y0 = -1.4$$

```
function ode_fn(du, u, p, t)
    x, y = u
    du[1] = u[2]
    du[2] = -w*u[1] - g*u[2] - 0.9*cos(2*t)
end
v0 = [x0, y0]
tspan = (0.0, 29.0)
prob = ODEProblem(ode_fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
X = [u[1] \text{ for } u \text{ in } sol.u]
Y = [u[2] \text{ for } u \text{ in } sol.u]
T = [t for t in sol.t]
plt = plot(
    layout = (1,2),
    dpi = 300,
    legend = false)
plot!(
    plt[1],
    Τ,
    Χ,
    title = "Решение уравнения",
    color=:blue)
plot!(
    plt[2],
```

```
X,
Y,
title="Фазовый портрет",
color=:blue)
savefig(plt, "lab4_3.png")
```

Получившийся график:

Рис. 3: Колебания гармонического осциллятора с затуханием и под действием внешней силы (julia)

Моделирование на Modelica

• 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы x''+1.7x=0

Исходный код:

```
model lab4_1
Real x;
Real y;
```

```
Real w = 1.7;
Real g = 0.0;
Real t = time;
initial equation
x = 0;
y = -1.4;
equation
der(x) = y;
der(y) = -w*x - g*y;
end lab4_1;
```

График:

• 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы x'' + 9.8x' + x = 0

Исходный код:

```
model lab4_2
Real x;
Real y;
Real w = 1.0;
Real g = 9.8;
Real t = time;
initial equation
x = 0;
y = -1.4;
equation
der(x) = y;
der(y) = -w*x - g*y;
end lab4_2;
```

График:

• 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы x''+3.9x'+2.9x=0.9cos(2t)

Исходный код:

```
model lab4_3
Real x;
Real y;
Real w = 2.9;
Real g = 3.9;
Real t = time;
initial equation
x = 0;
y = -1.4;
equation
der(x) = y;
der(y) = -w*x - g*y - 0.9*cos(2*time);
end lab4_3;
```

График:

Вывод

В ходе работы я построил фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для нескольких случаев