

MAT 520142: ALGEBRA y ALGEBRA LINEAL

Primer Semestre 2002, Universidad de Concepción

CAPITULO 1

DEPARTAMENTO DE INGENIERIA MATEMATICA

Facultad de Ciencias Físicas y Matemáticas

La lógica es la herramienta con que se construye el edificio llamado Matemática

Conceptos primitivos

Los valores de verdad VERDADERO (V) y FALSO (F) son los conceptos primitivos de la lógica.

Proposición

Una proposición es una sentencia (expresión) sujeta a un valor de verdad. Usualmente se denotan por letras minúsculas p, q, r, s, etc.

Conectivos lógicos

Un conectivo lógico es una operación que nos permite obtener nuevas proposiciones a partir de otras dadas. Los conectivos básicos son:

- lacksquare negación (\sim) ("no")
- conjunción (∧) ("y")
- disyunción (∨) ("o")
- lacksquare condicional (\rightarrow) ("entonces")
- lacksquare bicondicional (\leftrightarrow) ("sí y sólo sí")

Tipos de proposiciones

Las proposiciones se clasifican en simples y compuestas, vale decir, las que no incluyen conectivos lógicos, y las que sí los incluyen.

Valores posibles de dos proposiciones dadas

p	q
V	V
V	F
F	V
F	F

Negación (\sim)

Dada una proposición p, se llama negación de p, y se escribe $\sim p$, a la proposición "no p". Esto significa que $\sim p$ es V si p es F, y $\sim p$ es F si p es V.

p	$\sim p$
V	F
F	V

Conjunción (∧)

Dadas dos proposiciones p y q, la conjunción de ellas es la proposición "p y q", la cual se escribe $p \wedge q$. Así, $p \wedge q$ es V si ambas lo son, y $p \wedge q$ es F si al menos una de ellas lo es.

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

Disyunción (∨)

Dadas dos proposiciones p y q, la disyunción de ellas es la proposición "p o q", la cual se escribe $p \lor q$. Así, $p \lor q$ es V si al menos una de ellas lo es, y $p \lor q$ es F si ambas lo son.

p	q	$p \lor q$
V	V	V
V	F	V
$\mid F \mid$	V	V
$\mid F \mid$	F	F

Condicional (ightarrow)

Dadas dos proposiciones p y q, la condicional de ellas es la proposición "si p entonces q", la cual se escribe $p \to q$. Aquí, p se llama antecedente y q consecuente. También, $p \to q$ se lee "p es condición suficiente para q", o bien "q es condición necesaria para p". Así, $p \to q$ es F sólo si p es V y q es F.

p	q	p o q
V	V	V
V	F	F
$\mid F \mid$	V	V
$\mid F \mid$	F	V

Bicondicional (↔)

Dadas dos proposiciones p y q, la bicondicional de ellas es la proposición "p sí y sólo sí q", la cual se escribe $p \leftrightarrow q$. También, $p \leftrightarrow q$ se lee "p es condición necesaria y suficiente para q". Así, $p \leftrightarrow q$ es V sólo si ambas proposiciones tienen el mismo valor de verdad.

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
$\mid F \mid$	V	F
$\mid F \mid$	F	V

Definiciones varias

Una proposición compuesta se dice una:

- ullet TAUTOLOGIA (o TEOREMA LOGICO), si ella es siempre V, cualesquiera sean los valores de verdad de las proposiciones simples que la componen.
- lacksquare CONTRADICCION, si ella es siempre F.
- CONTINGENCIA, si no es tautología ni contradicción.

Implicación lógica

Dadas dos proposiciones p y q, se dice que p implica lógicamente q, si $p \to q$ es una tautología. En tal caso se escribe $p \Rightarrow q$ y se lee "p implica q".

Equivalencia lógica

Dadas dos proposiciones p y q, se dice que ellas son lógicamente equivalentes, si $p \leftrightarrow q$ es una tautología. En tal caso se escribe $p \Leftrightarrow q$ y se lee "p es equivalente a q".

Algunas tautologías importantes

- lacksquare $\sim (\sim p) \Leftrightarrow p$ (doble negación)
- $lackbox{\hspace{0.5em}\rlap{\rlap/}} p \wedge q \quad \Leftrightarrow \quad q \wedge p \quad \text{(conmutatividad de } \land \text{)}$
- $p \lor q \Leftrightarrow q \lor p$ (conmutatividad de \lor)

Algunas tautologías importantes (continuación)

- $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$ (distributividad de \land con respecto a \lor)
- lacksquare $\sim (p \wedge q) \quad \Leftrightarrow \quad \sim p \vee \sim q \quad \text{(Ley de De Morgan para } \land \text{)}$
- lacksquare $\sim (p \lor q) \Leftrightarrow \sim p \land \sim q$ (Ley de De Morgan para \lor)
- $lacksquare\ p
 ightarrow q \quad \Leftrightarrow \quad \sim q
 ightarrow \sim p \quad \text{(contrarecíproca)}$

Función proposicional

Se llama función proposicional (o enunciado abierto) a una expresión p que contiene una o más variables, y tal que ella se convierte en una proposición lógica cuando se le asignan valores expecíficos a dichas variables.

Conjunto de validez

Se llama Conjunto de validez de una función proposicional p, y se denota por V_p , al conjunto de valores (o n-uplas de valores) para los cuales dicha función es verdadera.

Cuantificadores lógicos

Para indicar que una función proposicional es verdadera para cualquier elemento de un determinado conjunto A se usa el símbolo ∀, el cual se llama cuantificador universal.

∀ se lee: "para todo", "cualquiera sea", "para cada".

Para indicar que una función proposicional es verdadera sólo para algunos elementos de un determinado conjunto A se usa el símbolo \exists , el cual se llama cuantificador existencial.

∃ se lee: "existe (un)", "existe al menos un", "existe algún".

Para indicar que una función proposicional es verdadera para un único elemento de un determinado conjunto A se usa el símbolo $\exists!$.

∃! se lee: "existe un único".

Más sobre cuantificadores lógicos

Sean A un conjunto y p una función proposicional que depende de una variable *x* (en tal caso se escribe p(x)).

- lacksquare $\forall x \in A: p(x)$ se lee "para todo x en A, p(x) es verdadera".
- \blacksquare $\exists x \in A : p(x)$ se lee "existe x en A tal que p(x) es verdadera".

Negaciones importantes

- \blacksquare $\sim (\forall x \in A : p(x)) \Leftrightarrow (\exists x \in A : \sim p(x))$
- $(\forall x \in A : \sim p(x)) \quad \lor \quad (\exists x \in A, \exists y \in A, x \neq y : p(x) \land p(y))$

Idea de Conjunto

Llamaremos conjunto a cualquier colección de objetos. Los objetos los llamaremos elementos del conjunto. Dos conjuntos importantes son el conjunto vacío, que no contiene elementos, y el conjunto universo, que contiene todos los elementos.

Notación

- **Los conjuntos:** A, B, \cdots
- **L**os elementos: a, b, \cdots
- lacktriangle a pertenece a A: $a \in A$
- lacktriangledown a no pertenece a A: $a \notin A$
- **Description** Conjunto vacío: ϕ
- lacksquare Conjunto universo: U

Definición de un conjunto A

Dado $x \in U$ y un conjunto A: $x \in A \lor x \notin A$?. Si esta pregunta puede responderse siempre, entonces se dice que A está bien definido .

Maneras de definir un conjunto

lacksquare Por extensión, vale decir mostrando los elementos de A.

$$Ejemplo: A = N := \{1, 2, 3, \cdots\}$$
 (Números naturales)

Por comprensión, esto es dando una propiedad (o proposición) que caracterice a los elementos del conjunto.

$$\pmb{Ejemplo}: \quad \mathbf{Q} := \left\{ egin{array}{ll} a \ b \in \mathbf{Z}, \ b
eq 0 \end{array}
ight\} \quad (\mathsf{N\'umeros\ racionales})$$

Inclusión de conjuntos

Dados dos conjuntos A y B, se dice que A es subconjunto de B, y se escribe $A \subseteq B$, si todos los elementos de A están también en B, esto es:

$$A \subseteq B \Leftrightarrow (x \in A \Rightarrow x \in B)$$

Propiedades de la inclusión

Dados A, B, C conjuntos, se tiene

- $\phi \subseteq A \subseteq U$
- lacksquare $A \subset A$

Igualdad de conjuntos

Dados dos conjuntos A y B, se dice que A y B son iguales, y se escribe A = B, si los elementos de A y B coinciden, esto es:

$$A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

Conjunto de las partes de un conjunto dado

Dado un conjunto A, se define el conjunto de las partes de A, y se denota $\mathcal{P}(A)$, como el conjunto de todos los subconjuntos de A, esto es:

$$\mathcal{P}(A) := \{ X : X \subseteq A \}$$

Notar que $\mathcal{P}(A) \neq \phi$ ya que $\phi, A \in \mathcal{P}(A)$

Operaciones entre conjuntos

Sea U el conjunto universo, y sean A, B subconjuntos de U.

La diferencia de A y B es el conjunto

$$A - B := \{ x \in U : x \in A \land x \notin B \}$$

El Complemento de A con respecto a U, el cual se denota A^c (o bien A', -A), es el conjunto U-A, vale decir:

$$A^c := U - A = \{ x \in U : x \notin A \}$$

Algunas propiedades

- lacksquare Para todo $x \in U$ se tiene: $x \in A \quad \lor \quad x \in A^c$

Otras operaciones entre conjuntos

Sea U el conjunto universo, y sean A, B subconjuntos de U.

La intersección de A y B, la cual se denota $A \cap B$, es el conjunto de todos los elementos comunes a A y B, esto es

$$A \cap B := \{ x \in U : x \in A \land x \in B \}$$

La unión de A y B, la cual se denota $A \cup B$, es el conjunto de todos los elementos que están en A o en B, esto es

$$A \cup B := \{ x \in U : x \in A \lor x \in B \}$$

Propiedades de ∩ y ∪

- lacksquare $A \cup A = A$ \wedge $A \cap A = A$ (idempotencia)
- \blacksquare $A \cup B = B \cup A \land A \cap B = B \cap A$ (conmutatividad de \cup y \cap)

- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributividad de \cup con respecto a \cap)
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (distributividad de \cap con respecto a \cup)

Más definiciones

- Dos conjuntos A y B se dicen disjuntos sí y sólo sí $A \cap B = \phi$.
- Dados dos conjuntos no vacíos A y B, se define el Producto Cartesiano de ellos, el cual se denota por $A \times B$, como el conjunto de todos los pares ordenados (a,b) tales que a pertenece a A y b pertenece a B, esto es

$$A \times B := \{ (a, b) : a \in A \land b \in B \}$$

Dados n conjuntos no vacíos $A_1, A_2, ..., A_n$, se define el Producto Cartesiano de ellos, el cual se denota por $A_1 \times A_2 \times \cdots \times A_n$, como el conjunto de todas las n-uplas ordenadas $(a_1, a_2, ..., a_n)$ tales que a_i pertenece a A_i para cada $i \in \{1, ..., n\}$, esto es

$$A_1 \times A_2 \times \cdots \times A_n := \{ (a_1, a_2, ..., a_n) : a_i \in A_i, i \in \{1, ..., n\} \}$$

Partición de un conjunto

Sean $A_1, A_2, ..., A_n$ subconjuntos de un conjunto B. Se dice que $\{A_1, A_2, ..., A_n\}$ es una PARTICION de B si estos conjuntos son no vacíos, disjuntos dos a dos y su unión es el conjunto B, vale decir sí y sólo sí:

- lacksquare $A_i
 eq \phi$, para cada $i \in \{1,...,n\}$.
- lacksquare $A_i \cap A_j = \phi$ para cada $i \neq j$.

Cardinalidad

El número de elementos de un conjunto finito A se llama cardinalidad de A y se denota |A|.

Propiedades

- lacksquare Si A y B son conjuntos disjuntos, entonces $|A \cup B| = |A| + |B|$.
- Si A y B son conjuntos arbitrarios, entonces $|A \cup B| = |A| + |B| |A \cap B|$.
- lacksquare Si A, B y C son conjuntos arbitrarios, entonces

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$$