WHAT IS CLAIMED IS:

1	1. A trench field effect transistor formed on a silicon substrate,			
2	the trench transistor comprising:			
3	a trench extending into the substrate;			
4	a dielectric layer formed on walls and bottom of the trench; and			
5	a gate conductive material substantially filling the trench,			
6	wherein, the dielectric layer comprises a gate oxide layer grown at a			
7	temperature above about 1,100 °C to result in the gate oxide layer having a			
8	thickness that is substantially uniform, the gate oxide layer having substantially			
9	uniform stress.			
1	2. The trench transistor of claim 1 wherein the dielectric layer			
2	further comprises:			
3	a silicon nitride layer disposed on the gate oxide layer; and			
4	a second oxide layer disposed between the silicon nitride layer and			
5	the gate conductive material.			
1	3. The trench transistor of claim 2 wherein the gate oxide layer			
2	has a first thickness of at least about 300 Å, the silicon nitride layer has a second			
3	thickness of about 120Å, and the second oxide layer has a third thickness of about			
4	50 Å.			
1	4. A trench field effect transistor formed on a silicon substrate,			
2	the trench transistor comprising:			
3	a trench extending into the substrate;			
4	a first oxide layer thermally grown on walls and bottom of the			
5	trench;			

6		a silic	on nitride layer disposed on the first oxide layer;	
7	a second oxide layer disposed on the silicon nitride layer; and			
8		a gate	conductive material substantially filling the trench.	
1		5.	The trench transistor of claim 4 wherein the first oxide layer is	
2	grown at a temperature of at least about 1,100°C.			
1		6.	The trench transistor of claim 5 wherein the first oxide has a	
1	thickness of			
2	tmekness of	about.	500A.	
1		7.	The trench transistor of claim 6 wherein the silicon nitride	
2	laver has a t	ss of about 120Å.		
_	<i></i>			
	,			
1		8.	The trench transistor of claim 7 wherein the second oxide	
2	layer has a thickness of about 50Å.			
1		9.	A method of forming a gate dielectric layer of a trench field-	
2	effect transistor, the method comprising the steps of:			
3		(a)	forming a trench in silicon on a substrate; and	
4		(b)	heating the substrate to at least about 1,100 °C to form a layer	
5	of silicon o	xide at	least about 100 Å thick inside the trench.	
1		10.	The method of claim 9 further comprising the steps of:	
2		(c)	forming a layer of silicon nitride on the layer of silicon oxide;	
3	and	(0)	70	
1	W1. W	(4)	forming a second layer of oxide on the layer of silicon nitride.	

10

of silicon nitride.

11. The method of claim 10 wherein the layer of silicon nitride is 1 2 about 120Å thick. 1 12. The method of claim 10 wherein a low-pressure chemicalvapor deposition process is used to form a conformal layer of silicon nitride. 2 13. The method of claim 11 wherein the second layer of oxide is 1 about 50Å thick. 2 A method of forming a gate dielectric layer of a trench field-1 14. effect transistor, the method comprising: 2 forming a trench in silicon on a substrate; 3 (a) heating the substrate to at least about 1,100 °C to form a layer 4 (b) of silicon oxide at least about 100Å thick; 5 forming a conformal layer of silicon nitride about 120Å thick (c) 6 on the layer of silicon oxide by a low-pressure chemical-vapor deposition process; 7 and 8 9 growing a second layer of oxide about 50Å thick on the layer (d)