CHAPTER 29

29.1 The new representation of the plate is

Because the left edge is insulated, the finite-difference equations for the nodes on that edge are written as

$$(0, 3)$$
: $4T_{0,3} - 2T_{1,3} - T_{0,2} = 150$

$$(0, 2)$$
: $4T_{0,2} - T_{0,3} - 2T_{1,2} - T_{0,1} = 0$

$$(0, 1)$$
: $4T_{0,1} - 2T_{1,1} - T_{0,2} = 0$

All the other nodes are represented by Eq. (29.11). The first two iterations of Liebmann's method are

150	150	150	150	
45	58.5	62.55	84.615	50
0	0	0	19.5	50
0	0	0	15	50
0	0	0	0	
150	150	150	150	
75.15	81.09	91.935	86.2509	50
13.5	21.6	32.445	51.978	50
0	0	4.5	19.2	50
0	0	0	0	
	45 0 0 0 150 75.15 13.5 0	45 58.5 0 0 0 0 0 0 0 0 150 150 75.15 81.09 13.5 21.6 0 0	45 58.5 62.55 0 0 0 0 0 0 0 0 0 150 150 150 75.15 81.09 91.935 13.5 21.6 32.445 0 0 4.5	45 58.5 62.55 84.615 0 0 0 19.5 0 0 0 15 0 0 0 0 150 150 150 150 75.15 81.09 91.935 86.2509 13.5 21.6 32.445 51.978 0 0 4.5 19.2

After 10 iterations, the maximum approximate error is 0.754% with the result

150	150	150	150	
109.8519	108.8637	104.6117	91.54351	50
71.75664	70.97995	68.0271	61.55182	50
35.49834	35.32963	34.98164	36.63082	50
0	0	0	0	

Note that the ultimate result is

29.2 Here are the results of using Liebmann's method to obtain the solution. Notice that after 6 iterations all the relative error estimates have fallen below 1% and the computation is terminated.

iterat	ion = 1		
	18	5.4	16.62
	23.4	8.64	22.578
	61.02	56.898	74.8428
ea:			
	100	100	100
	100	100	100
	100	100	100
iterat	ion = 2		
	23.04	13.41	22.4724
	41.13	38.4768	51.222
	71.2044	79.9776	75.39132
ea:			
	21.875	59.73154362	26.04261227
	43.10722101	77.54491018	55.92128382
	14.30304869	28.85758012	0.727563863
•			
•			
•			
iterat	ion = 6		
	37.80666066	32.41632148	34.29437766
	59.01952801	57.51727394	54.73884006
	80.71921628	83.84433834	77.14262488
ea:			
	0.688181746	0.130204454	0.019913358
	0.010933694	0.020874012	0.049145839
	0.033767672	0.037176168	0.02465349

Therefore, the results are:

120

29.3 The fluxes for Prob. 29.2 can be calculated as in Example 29.2. For example, for i = j = 1,

$$\begin{aligned} q_x &= -0.49 \frac{32.41632148 - 60}{2(10)} = 0.675800124 \\ q_y &= -0.49 \frac{59.01952801 - 0}{2(10)} = -1.445978436 \end{aligned}$$

$$q_n = \sqrt{0.675800124^2 + (-1.445978436)^2} = 1.596107592$$

$$\theta = \tan^{-1} \left(\frac{-1.445978436}{0.675800124} \right) \times \frac{180^{\circ}}{\pi} = -64.95024572^{\circ}$$

All the results are summarized below:

qx:		
0.675800124	0.086050934	-0.430800124
0.060826788	0.104876855	0.184173212
-0.584186289	0.087626489	0.829186289
d\lambda:		
-1.445978436	-1.409173212	-1.341101582
-1.051357613	-1.259986413	-1.049782057
-1.494021564	-1.530826788	-1.598898418
qn:		
1.596107592	1.41179811	1.408595825
1.053115724	1.26434367	1.065815246
1.604173947	1.533332664	1.801118001
theta:		
-64.95024572	-86.50558167	-107.8085014
-86.68881693	-85.24186843	-80.04932455
-111.356292	-86.72389108	-62.588814

29.4 The plate is redrawn below

After 15 iterations of the Liebmann method, the result is

	100	100	100	100	100	100	100	
75	85.32617	88.19118	88.54443	87.79909	86.06219	82.39736	73.69545	50
75	78.10995	78.88691	78.1834	76.58771	74.05069	69.82967	62.38146	50
75	73.23512	71.06672	68.71675	66.32057	63.72554	60.48986	55.99875	50
75	68.75568	63.42793	59.30269	56.25934	54.04625	52.40787	51.1222	50
75	63.33804	54.57569	48.80562	45.37425	43.79945	43.97646	46.08048	50
75	54.995	42.71618	35.95756	32.62971	31.80514	33.62176	39.22063	50
75	38.86852	25.31308	19.66293	17.3681	17.16645	19.48972	27.17735	50
	0	0	0	0	0	0	0	

with percent approximate errors of

	0	0	0	0	0	0	0	
0	0.012%	0.011%	0.007%	0.005%	0.004%	0.004%	0.003%	0
0	0.011%	0.012%	0.008%	0.005%	0.006%	0.006%	0.005%	0
0	0.024%	0.010%	0.001%	0.001%	0.004%	0.007%	0.006%	0
0	0.054%	0.016%	0.007%	0.011%	0.002%	0.007%	0.008%	0
0	0.101%	0.040%	0.008%	0.007%	0.003%	0.008%	0.011%	0

	0	0.234%	0.119%	0.063%	0.033%	0.012%	0.010%	0.015%	0
ĺ	0	0.712%	0.292%	0.219%	0.126%	0.030%	0.001%	0.014%	0
ſ		0	0	0	0	0	0	0	

29.5 The solution is identical to Prob. 29.4, except that now the bottom edge must be modeled. This means that the nodes along the bottom edge are simulated with equations of the form

$$4T_{i,j} - T_{i-1,j} - T_{i+1,j} - 2T_{i,j+1} = 0$$

The resulting simulation (after 15 iterations) yields

	100	100	100	100	100	100	100	
75	86.4529	90.2627	91.2337	90.6948	88.7323	84.4436	74.8055	50
75	80.5554	83.3649	83.9691	82.8006	79.7785	74.2277	64.7742	50
75	77.4205	78.6771	78.4736	76.7481	73.3375	67.8999	60.0537	50
75	75.5117	75.4794	74.5080	72.3743	68.9073	63.9608	57.5247	50
75	74.2631	73.2996	71.7406	69.3405	65.9436	61.4870	56.0597	50
75	73.4348	71.8433	69.8853	67.3320	64.0357	59.9572	55.1934	50
75	72.8998	70.9218	68.7359	66.1171	62.9167	59.0892	54.7153	50
75	72.5345	70.4401	68.1797	65.5685	62.4467	58.7477	54.5354	50

with percent approximate errors of

	0	0	0	0	0	0	0	
0	0.009%	0.018%	0.024%	0.024%	0.018%	0.011%	0.004%	0
0	0.042%	0.066%	0.074%	0.069%	0.053%	0.034%	0.015%	0
0	0.079%	0.140%	0.155%	0.140%	0.110%	0.071%	0.032%	0
0	0.113%	0.224%	0.260%	0.239%	0.187%	0.124%	0.057%	0
0	0.133%	0.327%	0.388%	0.359%	0.284%	0.190%	0.089%	0
0	0.173%	0.471%	0.544%	0.502%	0.395%	0.261%	0.124%	0
0	0.289%	0.628%	0.709%	0.651%	0.508%	0.330%	0.153%	0
0	0.220%	0.665%	0.779%	0.756%	0.620%	0.407%	0.180%	0

29.6 The solution is identical to Examples 29.1 and 29.3, except that now heat balances must be developed for the three interior nodes on the bottom edge. For example, using the control-volume approach, node 1,0 can be modeled as

$$-0.49(5)\frac{T_{10} - T_{00}}{10} + 0.49(5)\frac{T_{20} - T_{10}}{10} + 0.49(10)\frac{T_{11} - T_{10}}{10} - 2(10) = 0$$

$$4T_{10} - T_{00} - T_{20} - 2T_{11} = -81.6327$$

Using Liebmann's method and iterating to a high level of precision, the results are

	100	100	100	
75	79.9046	77.7153	70.7550	50
75	66.9027	60.2010	55.3045	50
75	52.5044	40.8810	40.2619	50
75	27.2332	10.5561	14.8618	50

The fluxes for the computed nodes can be determined as

q_x .				
	-0.0665	0.2242	0.6790	
	0.3626	0.2842	0.2499	

0.8359	0.2999	-0.2234	
1.5789	0.3031	-0.9664	

q_{y} :				
	-0.8109	-0.9751	-1.0950	
	-0.6713	-0.9024	-0.7471	
	-0.9719	-1.2163	-0.9908	
	-1.2383	-1.4859	-1.2446	

q_n :				
	0.8136	1.0005	1.2885	
	0.7630	0.9461	0.7878	
	1.2819	1.2527	1.0157	
	2.0066	1.5165	1.5757	

θ (degr	ees):			
	-94.6893	-77.0532	-58.1978	
	-61.6256	-72.5225	-71.5041	
	-49.3013	-76.1474	-102.7074	
	-38 1063	-78 //711	-127 8281	

29.7 The solution is identical to Example 29.4, except that now heat balances must be developed for the interior nodes at the lower left and the upper right edges. The balances for nodes 1,1 and 3,3 can be written as

$$-4T_{11} + 0.8453T_{21} + 0.8453T_{12} = -1.154701(T_{01} + T_{10})$$

$$-4T_{33} + 0.8453T_{32} + 0.8453T_{23} = -1.154701(T_{34} + T_{43})$$

Using the appropriate boundary conditions, simple Laplacians can be used for the remaining interior nodes. The resulting simulation yields

75	100	100	100	
50	75	86.02317	94.09269	100
50	63.97683	75	86.02317	100
50	55.90731	63.97683	75	100
	50	50	50	75

29.8 The nodes to be simulated are

Simple Laplacians are used for all interior nodes. Balances for the edges must take insulation into account. For example, node 1,0 is modeled as

$$4T_{1,0} - T_{0,0} - T_{2,0} - 2T_{1,1} = 0$$

The corner node, 0,0 would be modeled as

$$4T_{0,0} - 2T_{1,0} - 2T_{0,1} = 0$$

The resulting set of equations can be solved for

0	25	50	75	100
23.89706	32.16912	45.58824	60.29412	75
31.25	34.19118	39.88971	45.58824	50
32.72059	33.45588	34.19118	32.16912	25
32.72059	32.72059	31.25	23.89706	0

The fluxes can be computed as

J_x				
-1.225	-1.225	-1.225	-1.225	-1.225
-0.40533	-0.53143	-0.68906	-0.72059	-0.72059
-0.14412	-0.21167	-0.27923	-0.2477	-0.21618
-0.03603	-0.03603	0.031526	0.225184	0.351287
0	0.036029	0.216176	0.765625	1.170956
J_y				
1.170956	0.351287	-0.21618	-0.72059	-1.225
0.765625	0.225184	-0.2477	-0.72059	-1.225
0.216176	0.031526	-0.27923	-0.68906	-1.225
0.036029	-0.03603	-0.21167	-0.53143	-1.225
0	-0.03603	-0.14412	-0.40533	-1.225
J_n				
1.694628	1.274373	1.243928	1.421222	1.732412
0.866299	0.577174	0.732232	1.019066	1.421222
0.259812	0.214008	0.394888	0.732232	1.243928
0.050953	0.050953	0.214008	0.577174	1.274373
0	0.050953	0.259812	0.866299	1.694628
θ (degrees)				
136.2922	163.999	-169.992	-149.534	-135
117.8973	157.0362	-160.228	-135	-120.466
123.6901	171.5289	-135	-109.772	-100.008
135	-135	-81.5289	-67.0362	-73.999
0	-45	-33.6901	-27.8973	-46.2922

29.9 Node 0,3:

There are two approaches for modeling this node. One would be to consider it a Dirichlet node and not model it at all (i.e., set its temperature at 50°C). The second alternative is to use a heat balance to model it as shown here

$$0 = 0.75(15)(0.5)\frac{T_{1,3} - T_{0,3}}{40} - 0.75(20)(0.5)\frac{T_{0,3} - T_{0,2}}{30} + 0.015(20)(0.5)(10 - T_{0,3})$$

$$-1.04046T_{1,3} + 4T_{0,3} - 1.84971T_{0,2} = 11.09827$$

Node 2,3:

$$0 = -0.75(15)(0.5)\frac{T_{2,3} - T_{1,3}}{40} + 0.75(15)(0.5)\frac{T_{3,3} - T_{2,3}}{20} - 0.75(30)(0.5)\frac{T_{2,3} - T_{2,2}}{30}$$

$$+0.015(30)(0.5)(10-T_{2.3})$$

$$4T_{2,3} - 0.55046T_{1,3} - 1.10092T_{3,3} - 1.46789T_{2,2} = 8.807339$$

Node 2,2:

$$0 = -0.75(22.5)(0.5)\frac{T_{2,2} - T_{1,2}}{40} + 0.75(22.5)(0.5)\frac{T_{3,2} - T_{2,2}}{20} - 0.75(30)(0.5)\frac{T_{2,2} - T_{2,1}}{15} + 0.75(30)(0.5)\frac{T_{2,3} - T_{2,2}}{30} + 10\pi(7.5)^{2}$$

$$4T_{2,2} - 0.48T_{1,2} - 0.96T_{3,2} - 1.70667T_{2,1} - 0.85333T_{2,3} = 4021.239$$

Node 5,3:

$$0 = -0.75(15)(1)\frac{T_{5,3} - T_{4,3}}{20} - 0.75(10)(1)\frac{T_{5,3} - T_{5,2}}{30} + 0.01(10)(0.5)(10 - T_{5,3})$$

$$4T_{5,3} - 2.33766T_{4,3} - 1.03896T_{5,2} = 6.23377$$

29.10 Node 0,0:

$$0 = 0.01(7.5)(2)(20 - T_{0,0}) + 0.7(7.5)(2)\frac{T_{1,0} - T_{0,0}}{40} + 0.7(20)(2)\frac{T_{0,1} - T_{0,0}}{15}$$

$$4T_{0,0} - 0.460695T_{1,0} - 3.276051T_{0,1} = 5.265082$$

Node 1,1:

$$\begin{split} 0 = -0.7(22.5)(1)\frac{T_{1,1} - T_{0,1}}{40} + 0.5(22.5)(2)\frac{T_{2,1} - T_{1,1}}{20} - 0.7(20)(2)\frac{T_{1,1} - T_{1,0}}{15} \\ - 0.5(10)(2)\frac{T_{1,1} - T_{1,0}}{15} + 0.7(20)(2)\frac{T_{1,2} - T_{1,1}}{30} + 0.5(10)(2)\frac{T_{1,2} - T_{1,1}}{30} \end{split}$$

$$4T_{1,1} - 0.78775T_{2,1} - 1.77389T_{1,0} - 0.88694T_{1,2} - 0.55142T_{0,1} = 0$$

Node 2,1:

$$\begin{split} 0 = -0.5(22.5)(2)\frac{T_{2,1} - T_{1,1}}{20} + 0.5(22.5)(2)\frac{T_{3,1} - T_{2,1}}{20} - 0.5(20)(2)\frac{T_{2,1} - T_{2,0}}{15} \\ &\quad + 0.5(20)(2)\frac{T_{2,2} - T_{2,1}}{30} + 10(22.5)(20) \end{split}$$

$$4T_{2,1} - 1.05882T_{1,1} - 1.05882T_{3,1} - 1.2549T_{2,0} - 0.62745T_{2,2} = 4,235.294$$

29.11 The control volume is drawn as in

A flux balance around the node can be written as (note $\Delta x = \Delta y = h$)

$$-kh\Delta z \frac{T_{1,j} - T_{0,j}}{h} + k(h/2)\Delta z \frac{T_{0,j} - T_{0,j-1}}{h} - k(h/2)\Delta z \frac{T_{0,j+1} - T_{0,j}}{h} = 0$$

Collecting and canceling terms gives

$$4T_{0,j} - T_{0,j-1} - T_{0,j+1} - 2T_{1,j} = 0$$

29.12 A setup similar to Fig. 29.11, but with $\theta > 45^{\circ}$ can be drawn as in

The normal derivative at node 3 can be approximated by the gradient between nodes 1 and 7,

$$\left. \frac{\partial T}{\partial \eta} \right|_{3} = \frac{T_1 - T_7}{L_{17}}$$

When θ is greater than 45° as shown, the distance from node 5 to 7 is $\Delta y \cot \theta$, and linear interpolation can be used to estimate

$$T_7 = T_5 + (T_6 - T_5) \frac{\Delta y \cot \theta}{\Delta x}$$

The length L_{17} is equal to $\Delta y/\sin\theta$. This length, along with the approximation for T_7 can be substituted into the gradient equation to give

$$T_{1} = \left(\frac{\Delta y}{\sin \theta}\right) \frac{\partial T}{\partial \eta}\bigg|_{3} + T_{6} \frac{\Delta y \cot \theta}{\Delta x} + T_{5} \left(1 - \frac{\Delta y \cot \theta}{\Delta x}\right)$$

29.13 The following VBA program implements Liebmann's method with relaxation.

```
Option Explicit
Sub Liebmann()
Dim nx As Integer, ny As Integer, l As Integer
Dim i As Integer, j As Integer
Dim T(20, 20) As Double, ea(20, 20) As Double, Told(20, 20) As Double
Dim qy(20, 20) As Double, qx(20, 20) As Double, qn(20, 20) As Double
Dim th(20, 20) As Double
Dim Trit As Double, Tlef As Double, Ttop As Double, Tbot As Double
Dim lam As Double, emax As Double, es As Double
Dim pi As Double
Dim k As Double, x As Double, y As Double, dx As Double, dy As Double
ny = 4
pi = 4 * Atn(1)
x = 40
y = 40
k = 0.49
lam = 1.5
es = 1
dx = x / nx
dy = y / ny
```

```
Tbot = 0
Tlef = 75
Trit = 50
Ttop = 100
For i = 1 To nx - 1
  T(i, 0) = Tbot
Next i
For i = 1 To nx - 1
  T(i, ny) = Ttop
Next i
For j = 1 To ny - 1
 T(0, j) = Tlef
Next j
For j = 1 To ny - 1
 T(nx, j) = Trit
Next j
1 = 0
Sheets("sheet1").Select
Range("a5:z5000").ClearContents
Range("a5").Select
Do
  1 = 1 + 1
  emax = 0
  For j = 1 To ny - 1
    For i = 1 To nx - 1
      Told(i, j) = T(i, j)
      T(i, j) = (T(i + 1, j) + T(i - 1, j) + T(i, j + 1) + T(i, j - 1)) / 4
      T(i, j) = lam * T(i, j) + (1 - lam) * Told(i, j)
      ea(i, j) = Abs((T(i, j) - Told(i, j)) / T(i, j)) * 100
      If (ea(i, j) > emax) Then emax = ea(i, j)
    Next i
  Next j
  ActiveCell.Value = "iteration = "
  ActiveCell.Offset(0, 1).Select
  ActiveCell.Value = 1
  ActiveCell.Offset(1, -1).Select
  For j = 1 To ny - 1
    For i = 1 To nx - 1
      ActiveCell.Value = T(i, j)
      ActiveCell.Offset(0, 1).Select
    Next i
    ActiveCell.Offset(1, -(nx - 1)).Select
  Next j
  ActiveCell.Value = "ea = "
  ActiveCell.Offset(1, 0).Select
  For j = 1 To ny - 1
    For i = 1 To nx - 1
      ActiveCell.Value = ea(i, j)
      ActiveCell.Offset(0, 1).Select
    Next i
    ActiveCell.Offset(1, -(nx - 1)).Select
  Next j
  If emax <= es Then Exit Do
For j = 1 To ny - 1
  For i = 1 To nx - 1
    qy(i, j) = -k * (T(i, j + 1) - T(i, j - 1)) / 2 / dy
    qx(i, j) = -k * (T(i + 1, j) - T(i - 1, j)) / 2 / dx
    qn(i, j) = Sqr(qy(i, j) ^ 2 + qx(i, j) ^ 2)
    th(i, j) = Application.WorksheetFunction.Atan2(qx(i, j),qy(i, j))*180/pi
  Next i
Next j
```

```
ActiveCell.Offset(1, 0).Select
ActiveCell.Value = "qx = "
ActiveCell.Offset(1, 0).Select
For j = 1 To ny - 1
 For i = 1 To nx - 1
   ActiveCell.Value = qx(i, j)
    ActiveCell.Offset(0, 1).Select
 Next i
 ActiveCell.Offset(1, -(nx - 1)).Select
Next j
ActiveCell.Offset(1, 0).Select
ActiveCell.Value = "qy = "
ActiveCell.Offset(1, 0).Select
For j = 1 To ny - 1
  For i = 1 To nx - 1
    ActiveCell.Value = qy(i, j)
    ActiveCell.Offset(0, 1).Select
 ActiveCell.Offset(1, -(nx - 1)).Select
Next j
ActiveCell.Offset(1, 0).Select
ActiveCell.Value = "qn = "
ActiveCell.Offset(1, 0).Select
For j = 1 To ny - 1
  For i = 1 To nx - 1
    ActiveCell.Value = qn(i, j)
    ActiveCell.Offset(0, 1).Select
 Next i
 ActiveCell.Offset(1, -(nx - 1)).Select
Next i
ActiveCell.Offset(1, 0).Select
ActiveCell.Value = "theta = "
ActiveCell.Offset(1, 0).Select
For j = 1 To ny - 1
 For i = 1 To nx - 1
   ActiveCell.Value = th(i, j)
    ActiveCell.Offset(0, 1).Select
 ActiveCell.Offset(1, -(nx - 1)).Select
Next j
End Sub
```

When the program is run, the result of the last iteration is shown below. Note that for simplicity in programming, the sense of the *y* dimension is reversed from Fig. 29.3. That is, node 1,1 is at the upper left rather than the lower left corner of the domain.

iteration =	9	
43.0006	33.29754	33.88506
63.21151	56.11237	52.33998
78.58717	76.06401	69.71051
ea =		
0.711643	0.342925	0.247647
0.045667	0.464174	0.027927
0.194747	0.17208	0.47127
qx =		
1.02171	0.223331	-0.40921
0.462747	0.266352	0.149753
-0.02607	0.217478	0.638568
qy =		

	-1.54868	-1.37475	-1.28233
	-0.87187	-1.04778	-0.87772
	-0.90132	-1.07525	-1.16767
qn =			
	1.855346	1.392775	1.346039
	0.987063	1.081103	0.890407
	0.901695	1.09702	1.330873
theta	a =		
	-56.586	-80.7728	-107.699
	-62.0428	-75.7371	-80.3177
	-91.6567	-78.5657	-61.3269

29.14 When the program is run, the result of the last iteration is:

iterat	ion =	6	
	37.80666	32.41632	34.29438
	59.01953	57.51727	54.73884
	80.71922	83.84434	77.14262
ea =			
	0.688182	0.130204	0.019913
	0.010934	0.020874	0.049146
	0.033768	0.037176	0.024653
qx =			
44	0.6758	0.086051	-0.4308
	0.060827	0.104877	0.184173
	-0.58419	0.087626	0.829186
qy =			
	-1.44598	-1.40917	-1.3411
	-1.05136	-1.25999	-1.04978
	-1.49402	-1.53083	-1.5989
qn =			
411 –	1.596108	1.411798	1.408596
	1.053116	1.264344	1.065815
	1.604174	1.5333333	1.801118
theta	=		
	-64.9502	-86.5056	-107.809
	-86.6888	-85.2419	-80.0493
	-111.356	-86.7239	-62.5888

29.15 When the program is run, the result of the last iteration is:

iteration =	15					
38.86852	25.31308	19.66293	17.3681	17.16645	19.48972	27.17735
54.995	42.71618	35.95756	32.62971	31.80514	33.62176	39.22063
63.33804	54.57569	48.80562	45.37425	43.79945	43.97646	46.08048
68.75568	63.42793	59.30269	56.25934	54.04625	52.40787	51.1222
73.23512	71.06672	68.71675	66.32057	63.72554	60.48986	55.99875
78.10995	78.88691	78.1834	76.58771	74.05069	69.82967	62.38146
85.32617	88.19118	88.54443	87.79909	86.06219	82.39736	73.69545
ea =						
0.711857	0.292484	0.219373	0.125895	0.030211	0.001306	0.013573
0.234333	0.119163	0.06299	0.032735	0.01195	0.009868	0.014938
0.100506	0.040025	0.007652	0.007407	0.003258	0.007935	0.010582

0.054168	0.016381	0.006687	0.010552	0.002001	0.006646	0.007611
0.024103	0.009696	0.000684	0.000661	0.003571	0.006687	0.006189
0.010882	0.012035	0.007912	0.00547	0.005693	0.006169	0.005055
0.011993	0.011445	0.007054	0.004884	0.004262	0.003984	0.003025
qx = 2.434659 1.581907 1.000791 0.567032 0.192731 -0.19046 -0.64637	0.941074	0.389304	0.122327	-0.10396	-0.49053	-1.495
	0.932835	0.494237	0.203469	-0.04861	-0.36336	-0.80253
	0.712088	0.450871	0.245303	0.068492	-0.11177	-0.29515
	0.463196	0.351261	0.257566	0.188722	0.143278	0.117986
	0.2214	0.232561	0.24457	0.285705	0.378613	0.514003
	-0.0036	0.112661	0.202503	0.331144	0.571792	0.971654
	-0.15769	0.019212	0.12163	0.264685	0.60597	1.587471
qy = -2.69476 -1.19901 -0.67427 -0.48496 -0.45836 -0.59246 -1.07261	-2.09309	-1.76192	-1.59886	-1.55845	-1.64747	-1.92181
	-1.43387	-1.42799	-1.3723	-1.30502	-1.19985	-0.92625
	-1.01488	-1.14391	-1.15785	-1.08981	-0.92052	-0.58318
	-0.80806	-0.97565	-1.02637	-0.97638	-0.80916	-0.486
	-0.75749	-0.92515	-0.99609	-0.98022	-0.85367	-0.5517
	-0.8391	-0.97156	-1.05245	-1.0945	-1.07347	-0.86714
	-1.03454	-1.06901	-1.1472	-1.27152	-1.47835	-1.84331
qn = 3.631704 1.984955 1.206742 0.746129 0.497231 0.622322 1.252313	2.29492	1.804417	1.603529	1.561915	1.718944	2.434829
	1.710602	1.511103	1.387304	1.305922	1.253663	1.225563
	1.239775	1.22956	1.183552	1.091965	0.92728	0.653614
	0.931403	1.036951	1.058194	0.99445	0.821744	0.500112
	0.789183	0.953937	1.025675	1.021006	0.933861	0.75404
	0.839106	0.978066	1.071752	1.143494	1.216256	1.302321
	1.046491	1.069186	1.153632	1.298773	1.597719	2.432663
theta = -47.9028 -37.1603 -33.9697 -40.5389 -67.1942 -107.821 -121.074	-65.7909	-77.5404	-85.6249	-93.8164	-106.581	-127.88
	-56.9531	-70.9089	-81.5663	-92.1332	-106.848	-130.907
	-54.9446	-68.4882	-78.0382	-86.4039	-96.923	-116.845
	-60.1778	-70.1997	-75.9126	-79.0603	-79.9587	-76.3542
	-73.7074	-75.8896	-76.2051	-73.7501	-66.0821	-47.026
	-90.2458	-83.3856	-79.1087	-73.1666	-61.9576	-41.7469
	-98.6669	-88.9704	-83.9479	-78.241	-67.7114	-49.2647
	$q_{lower-A} + q_{lower-B}$ $\frac{d^2 - k_B h \Delta z}{h/2} \frac{T_{22} - T}{h/2}$	$\frac{T_{23}}{2} + k_A \frac{h}{2} \Delta z \frac{T_{12}}{2}$	$\frac{-T_{22}}{h} + k_B \frac{h}{4} \Delta z$		$\left(\frac{3}{6}h \cdot h\right) \Delta z = 0$	
0.25(10)(0.25)	0.45(10) - 0.45(10)	$\frac{10}{10}(0.25)\frac{T_{22}-T_{22}}{5}$ $\frac{T_{12}-T_{22}}{10}-0$	$\frac{r_{23}}{0.25(5)(0.25)} + 0.25(5)(0.25) \frac{r_{22}}{0.25(5)(0.25)}$	$\frac{T_{12} - T_{22}}{10}$	'	

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$\begin{aligned} 0.0625(T_{21}-T_{22}) - 0.225(T_{22}-T_{23}) + 0.03125(T_{12}-T_{22}) + 0.028125(T_{12}-T_{22}) \\ - 0.03125(T_{22}-T_{32}) - 0.028125(T_{22}-T_{32}) + 112.5 &= 0 \\ 0.0625T_{21} - (0.0625 + 0.225 + 0.03125 + 0.028125 + 0.03125 + 0.028125)T_{22} + 0.225T_{23} \\ + (0.03125 + 0.028125)T_{12} + (0.03125 + 0.028125)T_{32} &= -112.5 \\ - 0.40625T_{22} + 0.0625T_{21} + 0.225T_{23} + 0.059375T_{12} + 0.059375T_{32} &= -112.5 \end{aligned}$$

This equation can be multiplied by -4/0.40625 in order that the coefficient of the T_{22} term is 4. The result is

$$4T_{22} - 0.61538T_{21} - 2.21538T_{23} - 0.58462T_{12} - 0.58462T_{32} = 1107.692$$

29.17

Horizontal flux:

$$q_{xA} = -0.25 \frac{51.6 - 74.2}{10} = 0.565$$
 from A into B
 $q_{xB} = -0.45 \frac{45.3 - 51.6}{5} = 0.567$ from A into B

The horizontal flux at the boundary should be equal.

Vertical flux:

$$q_{yA} = -0.25 \frac{38.6 - 87.4}{2(10)} = 0.610$$
 upward
$$q_{yB} = -0.45 \frac{38.6 - 87.4}{2(10)} = 1.098$$
 upward

The 2 vertical fluxes are unequal.

29.18

120	90.05528	74.61385	66.58249	63.96664				
100	82.80365	70.9088	63.87474	61.35079				
80	70.2505	62.34297	56.65689	53.68704				
60	55.85537	51.5557	46.72278	40.08361	26.69476	16.97098	8.328404	0
40	41.61528	41.30169	38.59493	33.22986	24.86222	16.43038	8.171316	0
20	29.30405	33.44084	33.12539	29.37867	23.09389	15.71702	7.926474	0
0	22.16008	30.03222	31.08714	28.06553	22.41766	15.41731	7.817566	0

29.19 Substituting centered finite-divided differences for the second derivatives gives

$$\frac{T_{i+1,j,k} - 2T_{i,j,k} + T_{i-1,j,k}}{\Delta x^2} + \frac{T_{i,j+1,k} - 2T_{i,j,k} + T_{i,j-1,k}}{\Delta y^2} + \frac{T_{i,j,k+1} - 2T_{i,j,k} + T_{i,j,k-1}}{\Delta z^2} = f(x, y, z)$$

Consolidating terms gives

$$T_{i+1,j,k} + T_{i-1,j,k} + T_{i,j+1,k} + T_{i,j-1,k} + T_{i,j,k+1} + T_{i,j,k-1} - 6T_{i,j,k} = f(x, y, z)\Delta x^2$$

This can be solved for

$$T_{i,j,k} = \frac{T_{i+1,j,k} + T_{i-1,j,k} + T_{i,j+1,k} + T_{i,j-1,k} + T_{i,j,k+1} + T_{i,j,k-1} - f(x, y, z) \Delta x^2}{6}$$

or substituting f = -10 and $\Delta x = \Delta y = \Delta z = 1/6$ gives,

$$T_{i,j,k} = \frac{T_{i+1,j,k} + T_{i-1,j,k} + T_{i,j+1,k} + T_{i,j-1,k} + T_{i,j,k+1} + T_{i,j,k-1} + 0.277778}{6}$$

The following table of values summarizes the resulting solution:

- 0	A	· 0.4007	0.2222	·· 0.F	· 0.0007	0.0000	. 4	- 0
z = 0	x = 0		x = 0.3333	•	x = 0.6667	x = 0.8333	x = 1	z = 0
y = 1	0	0	0	0	0	0	0	y = 1
y = 0.8333	0	0	0	0	0	0	0	y = 0.8333
y = 0.6667	0	0	0	0	0	0	0	y = 0.6667
y = 0.5	0	0	0	0	0	0	0	y = 0.5
y = 0.3333	0	0	0	U	0	0	0	y = 0.3333
y = 0.1667	0	0	0	U	0	0	0	y = 0.1667
y = 0	0	0	0	0	0 0007	0	0	y = 0
z = 0.1667	x = 0	x = 0.1667	x = 0.3333	x = 0.5	x = 0.6667	x = 0.8333	x = 1	z = 0.1667
y = 1	0	0	0	0	0	0	0	y = 1
y = 0.8333	0	0.1474	0.2023	0.2166	0.2023	0.1474	0	y = 0.8333
y = 0.6667	0	0.2023	0.2858	0.3088	0.2858	0.2023	0	y = 0.6667
y = 0.5	_	0.2166	0.3088	0.3344	0.3088	0.2166	-	y = 0.5
y = 0.3333	0	0.2023 0.1474	0.2858 0.2023	0.3088 0.2166	0.2858 0.2023	0.2023 0.1474	0	y = 0.3333
y = 0.1667	_	-					0	y = 0.1667
y = 0	0	0 1667	0	0	0	0		y = 0
z = 0.3333	x = 0	x = 0.1667	x = 0.3333	x = 0.5	x = 0.6667	x = 0.8333	x = 1	z = 0.3333
y = 1	0	0	0	0	0	0	0	y = 1
y = 0.8333	0	0.2023	0.2858	0.3088	0.2858	0.2023	0	y = 0.8333
y = 0.6667	0	0.2858	0.4153	0.4521	0.4153	0.2858	0	y = 0.6667
y = 0.5	0	0.3088	0.4521	0.4934	0.4521	0.3088	0	y = 0.5
y = 0.3333	0	0.2858	0.4153	0.4521	0.4153	0.2858	0	y = 0.3333
y = 0.1667	0	0.2023	0.2858	0.3088	0.2858	0.2023	0	y = 0.1667
y = 0	0	0	0	0	0	0	0	y = 0
z = 0.5	x = 0	x = 0.1667	x = 0.3333	x = 0.5	x = 0.6667	x = 0.8333	x = 1	z = 0.5
y = 1	0	0	0	0	0	0	0	y = 1
y = 0.8333	0	0.2166	0.3088	0.3344	0.3088	0.2166	0	y = 0.8333
y = 0.6667	0	0.3088	0.4521	0.4934	0.4521	0.3088	0	y = 0.6667
y = 0.5	0	0.3344	0.4934	0.5397	0.4934	0.3344	0	y = 0.5
y = 0.3333	0	0.3088	0.4521	0.4934	0.4521	0.3088	0	y = 0.3333
y = 0.1667	0	0.2166	0.3088	0.3344	0.3088	0.2166	0	y = 0.1667
y = 0	0	0	0	0	0	0	0	y = 0
z = 0.6667	x = 0	x = 0.1667	x = 0.3333	x = 0.5	x = 0.6667	x = 0.8333	x = 1	z = 0.6667
y = 1	0	0	0	0	0	0	0	y = 1
y = 0.8333	0	0.2023	0.2858	0.3088	0.2858	0.2023	0	y = 0.8333
y = 0.6667	0	0.2858	0.4153	0.4521	0.4153	0.2858	0	y = 0.6667
y = 0.5	0	0.3088	0.4521	0.4934	0.4521	0.3088	0	y = 0.5
y = 0.3333	0	0.2858	0.4153	0.4521	0.4153	0.2858	0	y = 0.3333
y = 0.1667	0	0.2023	0.2858	0.3088	0.2858	0.2023	0	y = 0.1667
y = 0	0	0	0	0	0	0	0	y = 0
z = 0.8333	x = 0	x = 0.1667	x = 0.3333	x = 0.5	x = 0.6667	x = 0.8333	x = 1	z = 0.8333
y = 1	0	0	0	0	0	0	0	y = 1

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

y = 0.8333	0	0.1474	0.2023	0.2166	0.2023	0.1474	0	y = 0.8333
y = 0.6667	0	0.2023	0.2858	0.3088	0.2858	0.2023	0	y = 0.6667
y = 0.5	0	0.2166	0.3088	0.3344	0.3088	0.2166	0	y = 0.5
y = 0.3333	0	0.2023	0.2858	0.3088	0.2858	0.2023	0	y = 0.3333
y = 0.1667	0	0.1474	0.2023	0.2166	0.2023	0.1474	0	y = 0.1667
y = 0	0	0	0	0	0	0	0	y = 0
z = 1	x = 0	x = 0.1667	x = 0.3333	x = 0.5	x = 0.6667	x = 0.8333	x = 1	z = 1
y = 1	0	0	0	0	0	0	0	y = 1
y = 0.8333	0	0	0	0	0	0	0	y = 0.8333
y = 0.6667	0	0	0	0	0	0	0	y = 0.6667
y = 0.5	0	0	0	0	0	0	0	y = 0.5
y = 0.3333	0	0	0	0	0	0	0	y = 0.3333
y = 0.1667	0	0	0	0	0	0	0	y = 0.1667
y = 0	0	0	0	0	0	0	0	y = 0
	x = 0	x = 0.1667	x = 0.3333	x = 0.5	x = 0.6667	x = 0.8333	x = 1	