Student's *t*-distribution

STAT 587 (Engineering) Iowa State University

September 17, 2020

Student's t distribution

The random variable X has a Student's t distribution with degrees of freedom $\nu>0$ if its probability density function is

$$p(x|\nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

where $\Gamma(\alpha)$ is the gamma function,

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx.$$

We write $X \sim t_{\nu}$.

Student's t probability density function

Student's t mean and variance

If $T \sim t_v$, then

$$E[X] = \int_{-\infty}^{\infty} x \, \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} dx = \dots = 0, \quad \nu > 1$$

and

$$Var[X] = \int_0^\infty (x - 0)^2 \frac{\Gamma(\frac{\nu + 1}{2})}{\sqrt{\nu \pi} \Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu} \right)^{-\frac{\nu + 1}{2}} dx = \dots = \frac{\nu}{\nu - 2}, \quad \nu > 2.$$

Gamma cumulative distribution function - graphically

Location-scale t distribution

If $X \sim t_{\nu}$, then

$$Y = \mu + \sigma X \sim t_{\nu}(\mu, \sigma^2)$$

for parameters:

- degrees of freedom $\nu > 0$,
- ullet location μ and
- scale $\sigma > 0$.

By properties of expectations and variances, we can find that

$$E[Y] = \mu, \qquad \nu > 1$$

and

$$Var[Y] = \frac{\nu}{\nu - 2}\sigma^2, \qquad \nu > 2.$$

Generalized Student's t probability density function

The random variable Y has a generalized Student's t distribution with

- degrees of freedom $\nu > 0$,
- location μ , and
- scale $\sigma > 0$

if its probability density function is

$$p(y) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\nu\pi}\sigma} \left(1 + \frac{1}{\nu} \left[\frac{y-\mu}{\sigma}\right]^2\right)^{-\frac{\nu+1}{2}}$$

We write $Y \sim t_{\nu}(\mu, \sigma^2)$.

Generalized Student's t probability density function

t with 1 degree of freedom

If $T \sim t_1(\mu, \sigma^2)$, then T has a Cauchy distribution and we write

$$T \sim Ca(\mu, \sigma^2).$$

If $T \sim t_1(0,1)$, then T has a standard Cauchy distribution. A Cauchy random variable has no mean or variance.

As degrees of freedom increases

If
$$T_{\nu} \sim t_{\nu}(\mu, \sigma^2)$$
, then

$$\lim_{\nu \to \infty} T_{\nu} \stackrel{d}{=} X \sim N(\mu, \sigma^2)$$

t distribution arising from a normal sample

Let $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$. We calculate the sample mean

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

and the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

Then

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

Inverse-gamma scale mixture of a normal

lf

$$X|\sigma^2 \sim N(\mu,\sigma^2/n)$$
 and $\sigma^2 \sim IG\left(rac{
u}{2},rac{
u}{2}s^2
ight)$

then

$$X \sim t_{\nu}(\mu, s^2/n)$$

which is obtained by

$$p_x(x) = \int p_{x|\sigma^2}(x|\sigma^2)p_{\sigma^2}(\sigma^2)d\sigma^2$$

where

- p_x is the marginal density for x
- $p_{x|\sigma^2}$ is the conditional density for x given σ^2 , and
- p_{σ^2} is the marginal density for σ^2 .

Summary

Student's t random variable:

- $T \sim t_{\nu}(\mu, \sigma^2), \ \nu, \sigma > 0$
- $E[X] = \mu, \nu > 1$
- $Var[X] = \frac{\nu}{\nu 2}\sigma^2, \ \nu > 2$
- Relationships to other distributions