STAT430: Machine Learning for Financial Data

Ensemble methods

Bootstrap aggregation (bagging)

- Reduce variances in forecasts
- · Steps:
 - 1. generate N training datasets by random sampling with replacement
 - 2. fit N estimators, one on each training set
 - 3. the ensemble forecast is the simple average of the individual forecasts from the N models

Bagging - reduce variance

- Bagging's main advantage: reduce forecasts' variance, hence helping address overfitting
 - Let φ_i , $i=1,\ldots,N$, be the predictions, and define the average variance $\bar{\sigma}^2=(\sum_{i=1}^N\sigma_i^2)/N$, and the **average correlation** $\bar{\rho}:=\left(\sum_{i\neq i}\sigma_i\sigma_j\rho_{ij}\right)/\left(\bar{\sigma}^2N(N-1)\right)$, then

$$V\left((1/N)\sum_{i=1}^{N}\varphi_{i}\right) = (1/N^{2})\left(\sum_{i=1}^{N}\sigma_{i}^{2} + \sum_{i\neq j}\sigma_{i}\sigma_{j}\rho_{i,j}\right)$$
$$= \bar{\sigma}^{2}\left(\bar{\rho} + \frac{1-\bar{\rho}}{N}\right).$$

- Reduce $\bar{\rho}$ to reduce the variance of predictions; when N is large, $(1-\bar{\rho})/N$ diminishs.

Bagging - Limitations

- Consider k classes, n independent classifiers, and p the probability of correct prediction.
- · Let S_n be the total number of success, then $S_n \sim \text{Binomial}(n, p)$.
- The chance of being better than **random guess** is $P[S_n > n/k] = \sum_{i=|n/k|+1}^n \binom{n}{i} p^i (1-p)^{n-i}$
- By WLLN, p>1/k implies that $\lim_{n\to\infty}P[S_n/n>1/k]=\lim_{n\to\infty}P[S_n/n-p>1/k-p]\to 1$. Therefore, when n is large enough, we can have $P[S_n>n/k]>p$.

Bagging - Limitations

- · Bagging is more likely to be successful in reducing variance than in reducing bias.
- If the individual learners are poor classifiers (i.e., $p \ll 1/k$, assuming k classes), majority voting will still perform poorly (although with lower variance).
 - It's relative easier to have $\bar{\rho} \ll 1$ than p > 1/k
- See Figure 6.2 in AFML

Redundancy in financial data

- · Samples drawn with replacement are more likely to be virtually identical, even if they do not share the same observations.
 - When $\bar{\rho} \approx 1$, $V((1/N) \sum_{i=1}^{N} \varphi_i)$ can not be reduced.
- Inflate out-of-bag accuracy.

Redundancy in financial data - solutions

- · An easy solution: set a maximum percentage of samples to be used each time for bootstrap used in bagging
 - the maximum percentage can be the mean of the average uniqueness of the labels, i.e., $(1/I)\sum_{i=1}^{I} \bar{u}_i$.
 - rationale: not sample more frequently than the uniqueness
- · A better solution: sequential bootstrap for bagging
 - No information leakage even if use info from the test set to calculate uniqueness for features bars in the training set
 - However, labels between training and test sets may overlap (more to discuss in the cross validation section)
 - Can be very time consuming, and require parallel computing in R
- · Try R

Random forest

- · Like bagging, RF reduces forecasts' variance without overfitting
- · Improve the variance reduction of bagging by reducing the correlation between the trees, without increasing the variance too much
- RF evaluates feature importance
- Like bagging, RF will not necessarily exhibit lower bias than individual decision trees
- · Sequential bootstrap can also be applied for random forest

Boosting

- Typical steps for adaBoost
 - 1. generate one training set by random sampling with replacement, according to some sample weights (initialized with uniform weights).
 - 2. fit one estimator using that training set.
 - 3. if the single estimator achieves an accuracy greater than the acceptance threshold (better than guess), the estimator is kept, otherwise it is discarded.
 - 4. give more weight to mis-classified observations, and less weight to correctly classified observations.
 - 5. repeat the previous steps until N estimators are produced.
 - 6. the ensemble forecast is the weighted average of the individual forecasts from the N models, where the weights are determined by the accuracy of the individual estimators.

Boosting in finance

- Differences from bagging
 - Individual classifiers are fit sequentially
 - Poor-performing classifiers are dismissed
 - Observations are weighted differently in each iteration
 - The ensemble forecast is a weighted average of the individual learners
- Pros and cons
 - Reduces both variance and bias in forecasts, but greater risk of overfitting
 - For financial data, bagging is preferred
 - Bagging can be paralleled, but boosting requires sequential running (can do parallel in building trees, e.g., xgboost)

Boosting - some R functions to consider

- Adaptive Boosting (Adaboost)
 - R: adabag::boosting
- Extreme Gradient Boosting (Xgboost)
 - R: xgboost::xgboost
- Try R
- Back to Course Scheduler