

TD Statistique inférentielle ¹ Interro 4-5

Pour préparer le déconfinement, l'institut Pasteur a publié une série d'études scientifiques sur la COVID-19. L'un des axes de ces études était de comprendre la durée d'hospitalisation d'un patient atteint de cette maladie dans le but d'anticiper les tensions éventuelles en réanimation. Il a été observé qu'il y a deux types de patients : ceux qui nécessitent une hospitalisation courte, et ceux qui nécessitent une hospitalisation de longue durée. Ainsi le modèle proposé par l'institut Pasteur est le suivant 2 . Avec probabilité $1-\rho$, le patient nécessite une hospitalisation courte, dont la durée suit la loi exponentielle $\mathscr{E}(\lambda)$; et avec probabilité ρ , le patient nécessite une hospitalisation de longue durée suivant la loi log-normale $\mathscr{L}(\mu, \sigma^2)$. Ici $\rho \in [0, 1], \mu \in \mathbb{R}$ et $\sigma \in \mathbb{R}_+^*$.

On suppose dans la suite que l'on observe un échantillon X_1, \ldots, X_n des durées d'hospitalisation.

Exercice 1: Méthode des moments (3 pt)

On suppose que $\rho \in]0,1[.$

- Montrez que $\mathbf{E}(X_1) = \frac{1-\rho}{\lambda} + \rho e^{\mu + \frac{\sigma^2}{2}}$.
- En supposant à chaque fois que les 3 autres paramètres sont connus, donnez les estimateurs par la méthode des moments (utilisant le moment d'ordre 1) de λ , de σ et de μ .
- Sous quelle condition sur (λ, σ, μ) , l'estimateur par la méthode des moments (utilisant le moment d'ordre 1) de ρ existe? Calculez cet estimateur et étudiez son comportement asymptotique.

Exercice 2 : Méthode du maximum de vraisemblance (2 pt)

On s'intéresse maintenant qu'aux hospitalisations de longue durée ($\rho = 1$).

- Calculer l'estimateur par la méthode du maximum de vraisemblance de μ (σ étant connu) et étudiez son comportement asymptotique. Précisez sa loi, son biais et son risque quadratique.
- Calculer l'estimateur par la méthode du maximum de vraisemblance de σ (μ étant connu) et étudiez son comportement asymptotique. Précisez sa loi, son biais et son risque quadratique.

Exercice 3 : Estimation du couple (μ, σ^2) (1 pt)

Toujours pour les hospitalisations de longue durée ($\rho = 1$), donnez les estimateurs par la méthode de maximum de vraisemblance et par la méthode des moments du couple (μ, σ^2).

 $^{1. \ \} Mohamed-slim.kammoun@univ-lille.fr$

^{2.} Le modèle est tiré d'un document de travail qui a été rendu public le 20 avril 2020 et est disponible sur l'adresse : https://hal-pasteur.archives-ouvertes.fr/pasteur-02548181/document. On peut retrouver cette modélisation en page 7.