INNOVATIVE INPUT

Assignment 3

Andy Waterhouse 100744494 Fardeen Faisal 100755369 Ethan Kowalchuk 100752686

TEAM CONTRIBUTION

Andy Waterhouse: I was responsible for creating the unity demo game. I created a movement system and simple gameplay mechanics with a win/lose condition. It also shows the button mapping with the 3D model in the scene by changing its material to red.

Fardeen Faisal: I was responsible for coding the arduino and wiring/placement of all the components. I also coded the arduino parts of the code on the unity project.

Ethan Kowalchuk: I was responsible for making the sliding paper prototype and managing scope and adjusting the fabrication process.

PAPER PROTOTYPE

FABRICATION - PROCESS

• Process: We started brainstorming ideas and settled for expandable controller. After plenty of designs, we settled on one that expands out horizontally from the center. We created a model in blender to get an idea of what it might look like. After this, we made a simple version in Fusion 360 and iterated on it continuously which we will get into soon.

FABRICATION - CONSIDERATIONS

- Considerations: When designing this controller, our goal was to make sure it fit everyone's hands. We needed to make sure it was a similar blueprint to pre-existing controller such as the PlayStation 5. However, we needed to consider our minimal experience and limited tools. Because of this, we had to down scope our project.
- We also had to make sure that the controller fit together since there are tons of separate parts. The sizes needed to be precise as to not fall apart.

FABRICATION - ADJUSTMENTS

- Adjustments: As mentioned previously, we had to downsize our project. Instead of making our controller's button layout like a PlayStation 5, we decided to simplify it to be more like a SNES controller with only 2 bumper buttons, a d-pad (or joystick in our case), 2 start/ select buttons, and 4 other action buttons on the right.
- Since our 3D print turned out super thin, we may have to adjust the overall shell thickness for our final print.

Controls:

R_Trigger = Dash Right

L_Trigger = Dash Left

X = Jump

Square = Turn Green

Triangle = Turn Red

Circle = Turn Purple

Start/ Select = Pause/ Unpause

Joystick = Move Left/Right

Goal:

Navigate obstacles and change the player to the correct colour corresponding with the floor to not fall through. Reach the finish line to win

UNITY GAME INTERACTIVE SCENE

PROJECT PROGRESSION (ASSIGNMENT 1)

- We came up with the idea of making an expandable controller.
- We created a prototype in blender.

PROJECT PROGRESSION (ASSIGNMENT 2)

- We created our model in Fusion 360.
- Due to component size and practicality, we decided to pivot and changed out button layout.
- We also decided to use magnets to hold each part of the controller together
- There were tons of detours from our original plan as we learned more about what was possible.

PROJECT PROGRESSION (ASSIGNMENT 3)

- During the 3rd stage in development (A3), we really made sure our 3D model would work properly. We added support, tested the components using a breadboard, and tried 3D printing a portion of the controller.
- All that's left is to print the rest of the controller and solder the components together and plop them into the shell.

3D PRINTING/SLICER ANALYSIS

Innovative Input Controller Gantt Chart

Project Planning

Design & Simulation

Develop 3D prototype

Finalize
Prototype and
functionality

- Discover problem. (1 day)
- Brainstorm. (1 day)
- Solution (3 days)
- Plan (7 days)

- Assemble list of components (2 days
- Electronic simulation (3 days
- Technical drawings (4 days)
- Assembly process organization (2 days)

- Set up for printing (4 days)
- Print the controller shell (3 days)
- Layout internals (5 days)
- Connect internals (8 days)

- Maintenance (7 days)
- Prepare proposal (7 days)
- Prepare demo (7 days)
- Once over (2 days)