1. 1) On raisonne par récurrence sur le nombre k de dérivations. La propriété est vraie pour k = 0 (avec $P_0 = Q_0 = 1$), et si elle est vraie pour k, alors une dérivation supplémentaitre donne :

$$\frac{d^{k+1}\phi_0}{dx^{k+1}} = \left(\frac{2x}{x^3} \frac{P_k(x)}{Q_k(x)} + \left(\frac{P_k(x)}{Q_k(x)}\right)'\right) e^{-1/x^2} ,$$

qui est bien de la forme $\frac{P_{k+1}(x)}{Q_{k+1}(x)}.e^{-1/x^2}$. Or, par croissances comparées, $x^{\alpha}e^{-1/x^2} \to 0$ quand $x \to 0$, donc, comme une fraction rationnelle équivaut en x=0 à un terme de la forme $a.x^{\alpha}$, on a que toutes les dérivées k-ièmes de ϕ_0 admettent une limite nulle quand $x \to 0^+$, donc aussi quand $x \to 0$. Par le théorème limite de la dérivée appliqué indéfiniment, on en déduit que ϕ_0 est indéfiniment dérivable en 0 (et avec $\frac{d^k\phi_0}{dx^k}(0)=0$. Par ailleurs, par quotient et composées de fonction C^{∞} , ϕ_0 est C^{∞} sur \mathbb{R}^*_+ , et l'étant clairement sur \mathbb{R}^*_+ , ϕ_0 est bien C^{∞} sur \mathbb{R} tout entier.

1. 2) La fonction $h(x) = \phi_0(x)\phi_0(1-x)$ est C^{∞} par produit de fonctions C^{∞} , elle est nulle en dehors de [0,1] puisqu'à chaque fois un des deux facteurs du produit est nul.

Par composition de fonctions C^{∞} , la fonction $\psi_{a,b}(x) = h\left(\frac{x-a}{b-a}\right)$ est C^{∞} sur \mathbb{R} et convient.

1. 3)

1. 3.a) Un petit schéma éclaire la situation :

Si on a $\frac{3}{4} \leqslant 2^{-q}|x| \leqslant \frac{8}{3}$, alors d'une part $2^{-q-2}|x| \leqslant \frac{2}{3} < \frac{3}{4}$, d'où $\psi(2^{-q'}x) = 0$ pour $q' \geqslant q+2$; d'autre part, $2^{-q+2}|x| \geqslant 3 > \frac{8}{3}$, d'où $\psi(2^{-q'}x) = 0$ pour $q' \leqslant q-2$. On a bien seulement deux termes non nuls au plus dans la somme $\sum_{q\geqslant 0} \psi(2^{-q}|x|)$.

Si maintenant $|x| \geqslant \frac{3}{2}$, il y a effectivement deux termes consécutifs non nuls dans la somme ci-dessus, par exemple $\phi(2^{-q}|x|)$ et $\phi(2^{-q-1}|x|)$. Notons $y=2^{-q}|x|$. On a alors :

$$\sum_{q=0}^{\infty} \phi(2^{-q}|x|) = \frac{\psi(y)}{\psi(2y) + \psi(y) + \psi(y/2)} + \frac{\psi(y/2)}{\psi(y) + \psi(y/2) + \psi(y/4)} ,$$

et la somme fait 1 car $\psi(y/4) = 0 = \psi(2y)$.

1. 3.b) Remarquons que ϕ est C^{∞} sur]3/8,16/3[comme quotient de fonctions C^{∞} car le dénominateur, ayant trois termes consécutifs $\geqslant 0$ dont un au moins > 0, ne s'annule pas sur cet intervalle. Comme $\phi = \psi = 0$ en dehors du segment [3/4,8/3] \subset]3/8,16/3[, on a bien que ϕ est C^{∞} sur \mathbb{R} .

Soit $s(x) = \sum_{q=0}^{\infty} \phi(2^{-q}|x|)$. Tous les termes de la somme s sont nuls pour $|x| \leq 3/4$, et on a vu que la somme vaut 1

pour $|x|\geqslant 3/2$. De plus, comme au voisinage de tout point, seulement deux termes au plus de la somme sont non nuls, s est C^{∞} sur $\mathbb R$ comme somme finie de fonction C^{∞} . On complète alors s par la fonction χ , paire, valant 1-s(x) pour $0\leqslant |x|\leqslant 2$, et 0 pour $x\geqslant 2$, suivant le schéma ci-dessous :

1. 3.c) On utilise un lemme : si deux nombres réels a et b ont pour somme 1 , alors $a^2 + b^2 \geqslant 1/2$.

somme 1, on a bien l'inégalité

$$\chi(x)^2 + \sum_{q=0}^{\infty} \phi^2(2^{-q}|x|) \geqslant \frac{1}{2}$$
.

De plus, sur le compact [-2, 2], la somme dese carrés ci-dessus est une fonction continue qui atteint son minimum en un point, et ce minimum ne peut donc pas être nul, sinon tous les termes seraient nuls ce qui contredirait $\chi(x) + s(x) = 1$.

NB: à quoi sert cette question???

1. 4) La fonction $\xi \mapsto \mathcal{F}_u(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ix\xi} u(x) dx$ est continue, car il s'agit d'une intégrale à paramètre sur un intervalle J compact (le support de u), l'intégrande $(x,\xi) \mapsto e^{-ix\xi} u(x)$ étant continue des deux variables sur $J \times \mathbb{R}$ et dominée pour tout ξ par la fonction constante $||u||_{\infty}$, intégrable sur J. On en déduit que les fonctions $\xi \mapsto \phi(2q|\xi|)\mathcal{F}_u(\xi)$ et $\xi \mapsto \chi(\xi)\mathcal{F}_u(\xi)$ sont continues et à support compact sur \mathbb{R} . Or on a le lemme suivant : Si u est une fonction continue à support compact, \mathcal{S}_u est C^{∞} sur \mathbb{R} .

En effet, on a encore un intégrale à paramètre sur un compact, et on peut dériver indéfiniment sous le signe \int , en dominant toujours les intégrandes par des constantes : $\frac{d^k}{dx^k}(\mathcal{S}_u) = \int_{\mathbb{R}} (i\xi)^k e^{ix\xi} u(x) dx$.

On en conclut que les fonction $\Delta_q u$ et $\Delta_{-1} u$ sont C^{∞} sur \mathbb{R}

1. 5) Appelons K_u un intervalle compact contenant le support de u, $K_q = 2^q K_0$ un intervalle compact contenant le support de $\xi \mapsto \phi(2^{-q}|\xi|)$. On peut appliquer le théorème de Fubini sur les intégrales doubles, car il s'agit en fait d'intégrales doubles sur un pavé $K_u \times K_q$:

$$\Delta_{q} u(x) = \frac{1}{2\pi} \int_{K_{q}} e^{ix\xi} \phi(2^{-q}|\xi|) \left(\int_{K_{u}} e^{-it\xi} u(t) dt \right) d\xi$$
$$= \frac{1}{2\pi} \int_{K_{u}} \left(\int_{K_{q}} e^{i(x-t)\xi} \phi(2^{-q}|\xi|) d\xi \right) u(t) dt$$
$$= cq f d. \quad (3)$$

1. 6) Le caractère C^{∞} de h_q a déjà été vu (lemme du **1.4**). Comme $\phi(2^{-q}\xi)$ est à support compact, $|h_q|$ est majorée sur \mathbb{R} par $\frac{1}{2\pi}\int_{\mathbb{R}}|\phi(2^{-q}\xi)|\,d\xi$. De plus, toujours parce que ϕ , donc aussi ϕ' , ϕ'' , sont à support compact, on a, par intégration par parties et pour A>0 suffisamment grand :

$$\int_{\mathbb{R}} \phi'(2^{-q}\xi)e^{ix\xi} d\xi = -2^q \underbrace{\left[\phi(2^{-q}\xi)e^{ix\xi}\right]_{-A}^A}_{=0} + 2^q \int_{-A}^A i\xi\phi(2^{-q}\xi)e^{ix\xi} d\xi ,$$

d'où on voit que $xh_q(x)=-i2^{-q}\int_{\mathbb{R}}\phi'(2^{-q}\xi)e^{ix\xi}\,d\xi$, et de même $x^2h_q(x)=-2^{-2q}\int_{\mathbb{R}}\phi''(2^{-q}\xi)e^{ix\xi}\,d\xi$; comme ci-dessus, ces fonctions sont donc bornées sur \mathbb{R} .

(On en déduit en particulier que h_q est un $O\left(\frac{1}{x^2}\right)$ en $\pm\infty$, donc est intégrable sur $\mathbb R$.) Notons ϕ_q la fonction $x\mapsto \phi(2^{-q}|x|)$. ϕ_q est dans $L^2\cap L^1(\mathbb R)$, donc, (2) s'applique, or :

$$h_q = \frac{1}{\sqrt{2\pi}} \mathcal{S}\phi_q \quad ,$$

donc $\int_{\mathbb{R}} h_q(x) dx = (\mathcal{F} \mathcal{S} \phi_q)(0) = \phi_q(0) = 0$ (par définition de ϕ). Comme $\phi_{q+1}(x) = \phi_q(x/2)$, le changement de variable u = x/2 donne:

$$h_{q+1}(z) = \frac{1}{2\pi} \int_{\mathbb{R}} 2\phi_q(u)e^{2izu} du = 2h_q(2z)$$
,

donc,
$$\int_{\mathbb{R}} |h_{q+1}(x)| dx = \int_{\mathbb{R}} |h_q(2x)| 2dx = \int_{\mathbb{R}} |h_q(u)| du.$$

1. 8) Par **1.6** $C_0 = \int_{\mathbb{R}} |h_q|$, indépendant de q, convient pour la première inégalité. Mais $\Delta_q u'$ a la même expression que $\Delta_q u$ sauf qu'on met h'_q a la place de h_q (dérivation sous le signe f sur un compact), et, dérivation sour le signe f toujours, et changement de variables $u = 2^{-q}\xi$:

$$h'_{q}(z) = \frac{1}{2\pi} \int_{\mathbb{R}} i\xi \phi_{q}(\xi) e^{i\xi z} d\xi$$
$$= \frac{4^{q}}{2\pi} \int_{\mathbb{R}} i\xi \phi(\xi) e^{i2^{q}\xi z} d\xi$$
$$= 4^{q} h'_{1}(2^{q}z) .$$

Il s'ensuit que $\int_{\mathbb{R}} |h_q'(z)| dz = 2^q \int_{\mathbb{R}} |h_1'(2^q z)| 2^q dz = 2^q \int_{\mathbb{R}} |h_1'(u)| du$. Donc, la deuxième inégalité est satisfaite avec $C_1 = \int_{\mathbb{R}} |h_1'(u)| du$, et les deux inégalités avec $C = \operatorname{Max}(C_0, C_1)$.

Partie II

2.1) La positivité et la définie-positivité sont évidentes, l'homogénéité résulte de la propriété générale $\sup_{z \in A} |\lambda v(z)| = |\lambda| \sup_{z \in A} |v(z)|$ (se montre par double inégalité), montrons donc juste l'inégalité triangulaire. Celle-ci est vraie pour $\|\cdot\|_{\infty}$, et, pour toutes fonction u et v, on a, par inégalité triangulaire dans \mathbb{R} :

$$\forall (x,y) \in \mathbb{R}^2 \ \ x < y \Rightarrow \frac{|u(y) + v(y) - u(x) - v(x)|}{|y - x|^{\alpha}} \leqslant \frac{|u(y) - u(x)|}{|y - x|^{\alpha}} + \frac{|v(y) - v(x)|}{|y - x|^{\alpha}}$$

$$\Rightarrow \frac{|u(y) + v(y) - u(x) - v(x)|}{|y - x|^{\alpha}} \leqslant \sup_{x < y} \frac{|u(y) - u(x)|}{|y - x|^{\alpha}} + \sup_{x < y} \frac{|v(y) - v(x)|}{|y - x|^{\alpha}} \ ,$$

donc comme le sup est plus petit que tout majorant, on en déduit bien l'inégalité triangulaire sur la norme indiquée. Complétude : On sait que C^0 est complet pour la norme $\|\cdot\|_{\infty}$. Or une suite de Cauchy pour la norme $\|\cdot\|_{C^{0,\alpha}}$ est a fortiori une suite de Cauchy pour la norme $\|\cdot\|_{\infty}$. Soit (u_n) une telle suite de Cauchy. On a donc déjà que u_n converge (simplement et uniformément) vers une limite v continue. Mais de plus, pour tout $\varepsilon > 0$, à partir du rang n_0 où $\forall p \geqslant 0$ $\|u_{n+p} - u_n\|_{C^{0,\alpha}} < \varepsilon$, on a a fortiori :

$$\forall (x,y) \in \mathbb{R}^2 \quad x < y \Rightarrow \forall p \geqslant 0 \quad \frac{|u_{n+p}(y) - u_n(y) - u_{n+p}(x) + u_n(x)|}{|y - x|^{\alpha}} < \varepsilon \quad ;$$

en faisant tendre p vers $+\infty$ dans cette dernière inégalité, on en déduit

$$\forall (x,y) \in \mathbb{R}^2 \ x < y \Rightarrow \frac{|v(y) - u_n(y) - v(x) + u_n(x)|}{|y - x|^{\alpha}} \leqslant \varepsilon ,$$

puis (sup inférieur au majorant)

$$\sup_{x < y} \frac{|v(y) - u_n(y) - v(x) + u_n(x)|}{|y - x|^{\alpha}} \le \varepsilon \quad (\forall n \ge n_0).$$

On a donc bien que $u_n \to v$ au sens de la norme $\| . \|_{C^{0,\alpha}}$, cqfd.

2.2) **Notation**: on note désormais $||u||_{\alpha} = \sup_{x < y} \frac{|u(y) - u(x)|}{|x - y|^{\alpha}}$.

Par ajout de -u(x)v(y) + v(y)u(x) au numérateur, on a pour tout couple x < y:

$$\frac{|(uv)(y) - (uv)(x)|}{|x - y|^{\alpha}} \le ||u||_{\infty} \frac{|v(y) - v(x)|}{|x - y|^{\alpha}} + ||v||_{\infty} \frac{|u(y) - u(x)|}{|x - y|^{\alpha}}$$
$$\le ||u||_{\infty} ||v||_{\alpha} + ||v||_{\infty} ||u||_{\alpha} ,$$

d'où, puique le sup est inférieur au majorant,

$$||uv||_{C^{0,\alpha}} \leq ||u||_{\infty} ||v||_{\infty} + ||u||_{\infty} ||v||_{\alpha} + ||v||_{\infty} ||u||_{\alpha}$$
$$\leq ||u||_{\infty} ||v||_{C^{0,\alpha}} + ||v||_{\infty} ||u||_{C^{0,\alpha}}.$$

Ainsi, la constante C=1 convient.

est dans $C^{0,1}$ puisqu'alors sa dérivée est bornée et on utilise le théorème des accroissements finis.

L'inclusion inverse $C^{0,1} \subset C^1$ est fausse, on peut trouver des contre-exemples où la fonction admet des points anguleux. Par exemple, $u: x \mapsto e^{-|x|}$ est dans $C^{0,1}$ (avec $||u||_{C^{0,1}} = 2$) mais n'est pas C^1 .

2.4) A x fixé dans $\mathbb R$ et pour tout $y\neq x$ on a $\frac{|u(y)-u(x)|}{|x-y|^{\alpha}}\leqslant \|u\|_{C^{0,\alpha}}$, d'où

$$\frac{|u(y)-u(x)|}{|x-y|}\leqslant \|u\|_{C^{0,\alpha}}|x-y|^{\alpha-1}\underset{y\to x}{\longrightarrow} 0\ .$$

Donc u est dérivable en tout point et à dérivée nulle, donc est constante. La réciproque est immédiate.

2.5) Dans les formules (3) et (4) , l'intégrabilité des fonctions h et g demeurent (elles sont définies de la même façon), donc, puisque u est une fonction bornée les intégrales définissant $\Delta_q u$ existent et donnent de fonction bornées sur \mathbb{R} (respectivement par $\|u\|_{\infty} \int_{\mathbb{D}} |h_q|$ et $\|u\|_{\infty} \int_{\mathbb{D}} |g|$.

Pour $q \geqslant 0$, la formule (5) $\Delta_q u(x) = \int_{\mathbb{R}} (u(y) - u(x)) h_q(x - y) dy$ vient de l'égalité $\int_{\mathbb{R}} h_q(x - y) dy = 0$ vue en **1.6**.

La fonction $x \mapsto x^{\alpha}h(x) = \frac{x^2h(x)}{x^{2-\alpha}}$ est intégrable en $\pm \infty$ puisque $2-\alpha > 1$ et que $|x^2h(x)|$ est bornée (1.6 toujours), d'autre part on a la majoration $|u(y) - u(x)| \le ||u||_{\alpha}.|x-y|^{\alpha} \le ||u||_{C^{0,\alpha}}|x-y|^{\alpha}$, et donc (5) donne finalement :

$$\forall q \geqslant 0 \ \|\Delta_q u\|_{\infty} \leqslant \|u\|_{C^{0,\alpha}} \int_{\mathbb{R}} |x|^{\alpha} |h(x)| dx .$$

Or, on a vu que $h_{q+1}(x)=2h_q(2x)$, on a donc immédiatement (faire le changement de variables u=2x) que $2^{q\alpha}\int_{\mathbb{R}}|x|^{\alpha}|h_q(x)|\,dx$ est une constante M indépendante de q. On a donc finalement établi une majoration du type

$$\forall q \geqslant 0 \ 2^{-q\alpha} \|\Delta_q u\|_{\infty} \leqslant \|u\|_{C^{0,\alpha}} M ,$$

et il suffit d'ajuster la constante M pour qu'elle soit aussi valable pour q=-1 (puisque $\Delta_{-1}u$ est bornée).

2.6)

- 2.6.1) Il y a convergence normale de la série définissant $R_p u$, puisqu'on a une majoration de la forme $\|\Delta_q u\| \leqslant \frac{K}{(2^{\alpha})^q}$, terme général d'une série géométrique convergente $(2^{\alpha} > 1)$. Les fonctions $\Delta_q u$ étant continues, $R_p u$ est donc bien continue et bornée sur \mathbb{R} .
- 2.6.2) Par linéarité de l'intégrale, on a

$$S_p u = \mathcal{S}\left(\left(\chi(\xi) + \sum_{q=0}^{p-1} \phi_q(\xi)\right) \mathcal{F}u(\xi)\right) .$$

Or, par (2), puisque la somme finie $\chi(\xi) + \sum_{q=0}^{p-1} \phi_q(\xi)$ est à support compact, on a $\mathcal{F}S_p u = \chi(\xi) + \sum_{q=0}^{p-1} \phi_q(\xi)\mathcal{F}u$, et comme par (1) \mathcal{F} conserve la norme $\|\cdot\|_2$, on a :

$$||S_p u - u||_2 = ||\mathcal{F}S_p u - \mathcal{F}u||_2 = ||(\chi(\xi) + \sum_{q=0}^{p-1} \phi_q(\xi) - 1)\mathcal{F}u||_2$$
.

On sait par **1.3b)** que la fonction $h(\xi) = \chi(\xi) + \sum_{q=0}^{p-1} \phi_q(\xi) - 1$ tend (simplement) vers 0 quand $p \to \infty$. Mais on

supposera ici de plus que h est construit comme dans ${\bf 1.3}$ à partir d'une fonction $\psi>0$, d'où d'une part $0\leqslant h\leqslant 1$, et d'autre part h=0 sur $\left[-3.2^{p-2},3.2^{p-2}\right]$ (en effet, les termes $\phi_q(x)$ sont nuls pour $q\geqslant p$ lorsque x est dans cet intervalle, et donc la somme infinie de somme 1 est alors en fait une somme finie jusqu'à p-1). On en déduit la majoration

$$\left\|h(\xi)\mathcal{F}u(\xi)\right\|_2^2\leqslant \int_{|\xi|\geqslant 3.2^{p-2}}\!\left|\mathcal{F}u(\xi)\right|^2d\xi\underset{p\to\infty}{\longrightarrow}\ 0\ ,$$

On a vu que la serie des $\Delta_q u$ convergeait normalement sur \mathbb{R} , donc on peut definir la fonction $v = \sum_{q=-1} \Delta_q u$, continue sur \mathbb{R} . Soit A>0 quelconque. Comme il y a convergence uniforme de $S_p u$ vers v sur [-A,A] (et donc aussi de $|S_p u - u|^2$ vers $|v - u|^2$), on a que $\int_{-A}^A |S_p u(x) - u(x)|^2 dx \to \int_{-A}^A |v(x) - u(x)|^2 dx$ quand $p \to \infty$. Mais puisque $||S_p u - u||_2^2 \to 0$, on a a fortiori $\int_{-A}^A |S_p u(x) - u(x)|^2 dx \to 0$ quand $p \to \infty$. Par unicité d'une limite, on en déduit que pour tout A>0, $\int_{-A}^A |v(x) - u(x)|^2 = 0$. On a donc v=u sur \mathbb{R} et la convergence de $S_p u$ vers u est aussi ponctuelle.

2.6.3) Par changement de variables $\xi=2^qu$, on obtient $h_q(z)=2^qh_0(2^qz)$, d'où

$$\Delta_q u(x) = \int_{\mathbb{R}} 2^q h_0 \left(2^q (x - y) \right) u(y) \, dy = \left(\Delta_0 u_q \right) (2^q x) ,$$

où on a posé $u_q(y) = u(2^{-q}y)$. On a alors $(\Delta_q u)'(x) = 2^q (\Delta_0 u_q)'(2^q x)$, donc il suffit de montrer que $\frac{\|\Delta_0 u_q\|_{\infty}}{\|(\Delta_0 u_q)\|_{\infty}}$ est majoré indépendemment de q.

Appelons T(x) une fonction C^{∞} à support compact valant x sur [-3,3] par exemple (qui contient le support de $\phi(|x|)$). Comme T est C^{∞} , on voit par des intégrations par parties que la transformée de Fourier inverse $\mathcal{S}T$ est à décroissance rapide en $+\infty$ (i.e. est un $o(x^{-n})$ pour tout $n \in N$), et donc en particulier elle est dans $L^1(\mathbb{R})$ et on peut appliquer à T la formule d'inversion (2) $\mathcal{F}\mathcal{S}T = T$. Pour alléger les notations, notons v(s) la fonction $\phi(|s|)\mathcal{F}_u(s)$. On a alors d'une part :

$$\Delta_0 u(x) = \int_{\mathbb{R}} v(s)e^{isx} ds = \int_{-3}^3 v(s)e^{isx} ds ,$$

et d'autre part, en utilisant (2) et Fubini :

$$(\Delta_0 u)'(x) = \int_{-3}^3 isv(s)e^{ixs} ds = \int_{-3}^3 iT(s)v(s)e^{ixs} ds$$

$$\stackrel{T = \mathcal{F}ST}{=} \int_{-3}^3 iv(s) \left(\int_{-\infty}^\infty \mathcal{S}Te^{-its} dt\right)e^{ixs} ds$$

$$\stackrel{Fubini}{=} i \int_{\mathbb{R}} \mathcal{S}T(t) \left(\int_{-3}^3 v(s)e^{i(x-t)s} ds\right) dt$$

$$= i \int_{\mathbb{R}} \mathcal{S}T(t)\Delta_0 u(x-t) dt .$$

(Fubini est justifié par le fait que, comme on l'a remarqué, la fonction $(s,t)\mapsto |v(s)||\mathcal{S}T(t)|$ est intégrable sur $[-3,3]\times\mathbb{R}$).

On voit ainsi que $\|(\Delta_0 u)'\|_{\infty} \leqslant K.\|(\Delta_0 u)'\|_{\infty}$, où $K = \|\mathcal{S}T\|_1 = \int_{\mathbb{R}} |\mathcal{S}T(t)| dt$ est une constante indépendante de u, cqfd.

2.6.4) On a supposé une majoration de la forme $\|\Delta_q u\|_{\infty} \leq \frac{K}{2^{q\alpha}}$, donc on déduit de ci-dessus $\|(\Delta_q u)'\|_{\infty} \leq C_0 K 2^{q(1-\alpha)}$. Donc, somme de dérivées et inégalité triangulaire,

$$||(S_p u)'|| \leqslant C_0 K \sum_{q=-1}^{p-1} (2^{1-\alpha})^q$$

$$\leqslant C_0 K \frac{2^{p(1-\alpha)} - 2^{\alpha-1}}{2^{1-\alpha} - 1}$$

$$\leqslant \frac{C_0 K}{2^{1-\alpha} - 1} 2^{p(1-\alpha)} , cqfd.$$

2.6.5) On applique la formule des accroissements finis : $|S_p u(x) - S_p u(y)| \le ||(S_p u)'||_{\infty}.|x - y|$. Donc, comme par **2.6.2**, $u(x) - u(y) = S_p u(x) - S_p u(y) + R_p u(x) - R_p u(y)$, on a bien par inégalité triangulaire :

$$|u(x) - u(y)| \le ||(S_p u)'||_{\infty} ||x - y|| + 2||R_p u||_{\infty}.$$

$$||R_p u||_{\infty} \leqslant K \sum_{q=p}^{\infty} \frac{1}{2^{q\alpha}} = K 2^{-\alpha p} \times \frac{1}{1 - 2^{-\alpha}} = K_1 2^{-\alpha p}$$
.

Donc, en utilisant l'inégalité de la question précédente,

$$\frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C_1 \left(2^p |x - y|\right)^{1 - \alpha} + \frac{2K_1}{\left(2^p |x - y|\right)^{\alpha}}$$

$$\le \frac{C_1 \cdot 2^p |x - y| + 2K_1}{\left(2^p |x - y|\right)^{\alpha}}.$$

A x fixé, on peut, pour tout $y \neq x$ tel que |y-x| < 1, choisir un p dépendant de y tel que $1 \leqslant 2^p |x-y| < 2$, ce qui donne $\frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leqslant 2C_1 + 2K_1$, constante indépendante de x et de y. Comme lorsque $|x-y| \geqslant 1$ on peut majorer $\frac{|u(x)-u(y)|}{|x-y|^{\alpha}}$ par la constante $2\|u\|_{\infty}$, on a finalement que u est bien dans $C^{0,\alpha}$.

Partie III

3. 1) Vu qu'on a l'hypothèse $\sup_{q\geqslant -1} 2^q \|\Delta_q u\|_{\infty} < \infty$, on peut répéter dans le cas $\alpha=1$ les raisonnements des questions **2.6.1** et **2.6.2**, donc on a $u=S_p u+R_p u$ avec $S_p u$ de classe C^{∞} . On utilise cette égalité aux points (x+y), (x-y) et x, ainsi que l'inégalité de Taylor-Lagrange à l'ordre 2:

$$\forall (x,y) \in \mathbb{R}^{2} \begin{cases} \left| S_{p}u(x+y) - \left(S_{p}u(x) + y.S_{p}u'(x) \right) \right| \leqslant \frac{y^{2}}{2} ||S_{p}u''||_{\infty} \\ \left| S_{p}u(x-y) - \left(S_{p}u(x) - y.S_{p}u'(x) \right) \right| \leqslant \frac{y^{2}}{2} ||S_{p}u''||_{\infty} \end{cases},$$

d'où en faisant la somme membre à membre et par inégalité triangulaire.

$$\left| S_p u(x+y) + S_p u(x-y) - 2S_p u(x) \right| \le y^2 ||S_p u''||_{\infty}$$
.

Comme avant, la série $\sum_{q\geqslant p}\|\Delta_q u\|_{\infty}$ converge car majorée par une série géométrique, et sa somme majore $\|R_p u\|_{\infty}$.

Finalement, par inégalité triangulaire, on obtient bien l'inégalité désirée :

(6)
$$\left| u(x+y) + u(x-y) + -2u(x) \right| \le y^2 \|S_p u''\|_{\infty} + 4 \sum_{q \ge p} \|\Delta_q u\|_{\infty}$$
.

On traduit l'hypothèse sur les $\|\Delta_q u\|_{\infty}$ par $\|\Delta_q u\|_{\infty} \leqslant \frac{K}{2^q}$, et on utilise une inégalité analogue à celle obtenue en **2.6.3** (démonstration identique sauf qu'elle utilise cette fois-ci une fonction U(x) C^{∞} à support compact valant x^2 sur [-3,3]). On obtient :

$$\|(\Delta_q u)''\|_{\infty} \leqslant C_0 4^q \|\Delta_q u\|_{\infty} \leqslant C_0 K 2^q .$$

L'inégalité (6) précédente donne alors :

$$\left| u(x+y) + u(x-y) - 2u(x) \right| \le K \left[C_0 y^2 \frac{2^p - 2^{-1}}{2 - 1} + 4 \frac{2^{-p}}{1 - 2^{-1}} \right]$$
$$\le K \left(C_0 y^2 2^p + \frac{8}{2^p} \right) .$$

A x fixé, pour tout y suffisamment petit on peut choisir un p dépendant de y tel que $C_04^py^2-6\sqrt{C_0}|y|2^p+8\leqslant 0$. En effet, en posant $X=\sqrt{C_0}2^p|y|$, on a que le polynôme $X^2-6X+8=(X-2)(X-4)$ est négatif pour $2\leqslant X<4$, or on peut toujours trouver une puissance de 2 tel que $2^p\times\sqrt{C_0}|y|$ soit dans cet intervalle si $\sqrt{C_0}|y|<1$. D'où la majoration pour tout x fixé et pour tout y:

- si
$$|y| < \frac{1}{\sqrt{C_0}}$$
, $|u(x+y) + u(x-y) - 2u(x)| \le 6K\sqrt{C_0}|y|$;
- si $|y|\sqrt{C_0} \ge 1$, $|u(x+y) + u(x-y) - 2u(x)| \le 4||u||_{\infty}\sqrt{C_0}|y|$.

$$\Delta_q u(x) = \frac{1}{2} \int_{\mathbb{R}} \left(u(x+y) + u(x-y) - 2u(x) \right) h_q(y) \, dy \quad .$$

En effet, h_q est paire (car $\xi \mapsto \phi \left(2^{-q} |\xi| \right)$ l'est) et d'intégrale nulle, donc on peut écrire :

$$\Delta_q u(x) = \int_{\mathbb{R}} (u(y) - u(x)) h_q(x - y) dy$$

$$\stackrel{v = x - y}{=} \int_{\mathbb{R}} (u(x - v) - u(x)) h_q(v) dv$$

$$\stackrel{v \leftarrow - v}{=} \int_{\mathbb{R}} (u(x + v) - u(x)) h_q(v) dv .$$

D'où, avec **3.1)** : $|\Delta_q u(x)| \leq \frac{C}{2} \int_{\mathbb{R}} |y| |h_q(y)| dy$. Appelons w_q l'intégrale de droite de cette dernière inégalité ; on a , par $h_{q+1}(y) = 2h_q(2y)$,

$$w_{q+1} = \int_{\mathbb{R}} |y| |h_{q+1}(y)| \, dy = \int_{\mathbb{R}} |2yh_q(2y)| \, dy = \frac{1}{2} w_q \quad ,$$

d'où $2^q w_q$ est constant, et finalement $\|2^q \Delta_q u\|_{\infty}$ est borné indépendemment de q. En conclusion, si u, continue à support compact, vérifie l'inégalité

$$\forall (x, y \in \mathbb{R}^2 \ \left| u(x+y) + u(x-y) - 2u(x) \right| \leqslant C|y| ,$$

alors $u \in C^1_*$.

3. 3) On prend la même méthode qu'en **2.6**, sauf qu'ici, puisque $\alpha=1$, on a $\|(S_pu)'\|_{\infty}\leqslant C_1\times p$. On en déduit, pour tout x,y:

$$|u(x) - u(y)| \le C_1 |x - y| \times p + K_1 2^{-p}$$
.

Pour chaque $y \neq x$ tel que |x-y| < 1, on choisit p dépendant de y tel que $|x-y| \leqslant 2^{-p} < 2|x-y|$, d'où $p < -\ln|x-y|$, et on a :

$$|u(x) - u(y)| \le -C_1|x - y|\ln|x - y| + 2K_1|x - y|$$

 $\le C|x - y|(1 - \ln|x - y|).$

où on prend $C = \text{Max}(2K_1, C_1)$. D'où cqfd puisque le cas x = y est trivial.

3. 4) • Si u est C^1 à support compact, alors par le théorème des accroissements finis,

$$|u(x+y) + u(x-y) - 2u(x)| \le 2||u'||_{\infty}|y|$$
,

et par 3.2) on conclut que $u \in C^1_*$. Donc $C^1 \subset C^1_*$ pour les fonctions à support compact.

• L'inclusion réciproque est fausse. En effet, toute fonction u continue à support compact et C/2-lipschitzienne vérifie l'inégalité du **3.1**) donc, par **3.2**), est dans C^1_* . Pourtant elle n'est pas nécessairement C^1 (C^1 par morceaux suffit par exemple...)