ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ОДНОПАРАМЕТРИЧЕСКИХ МОДЕЛЕЙ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ СТАТИСТИЧЕСКИМИ МЕТОДАМИ

Цель работы:

- 1) изучить методику обработки экспериментальных данных и получить параметры модели технологического процесса методом наименьших квадратов (МНК);
- проверить адекватность полученной модели по критерию Фишера.

В данной работе по экспериментальным данным, полученным на промышленных технологических установках ректификации, дегидрирования углеводов, сушки и т.д., необходимо выработать вид однопараметрической линии регрессии, определить параметры и оценить адекватность предложенной регрессионной модели реальному процессу.

1. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ РАБОТЫ

1.1. Общие положения

Регрессионные модели применяются для описания статических режимов технологических процессов, т.е. для установления взаимосвязи между значениями выхода (отклика) процесса и входа (фактора). Например, необходимо установить зависимости между выходом продукта химической реакции на пропущенное сырье и температурой в слое катализатора, коэффициентом извлечения целевого продукта из многокомпонентной смеси и нагрузкой на аппарат в процессе ректификации или влагосодержанием высушиваемого материала на выходе из сушилки и температурой в зоне сушки. Для получения уравнений соответствующих моделей на первом этапе проводят эксперименты по снятию данных с технологической установки в рабочих диапазонах параметров: температуры, расхода, давления и т.д. в статических режимах. Затем строится эмпирическая линия регрессии для соответствующих значений входа и выхода (например, температура

- выход на пропущенное сырье) и по типовым кривым выбирается вид соответствующей зависимости. Для процессов химической и пищевой технологии наиболее характерные кривые статических характеристик и виды соответствующих им уравнений представлены в конце методических указаний. После выбора вида зависимости производят расчет коэффициентов регрессионной модели с использованием МНК [3, С.81]. Полученные модели могут быть использованы для создания алгоритмов оптимального управления статическими режимами, например, установками брагоректификации, дозирования и измельчения, пиролиза, дегидрирования нефтепродуктов.

1.2. Расчет коэффициентов регрессионной модели

Рассмотрим пример получения параметров параболической линии регрессии. Для определения параметров a,b,c параболической регрессии

$$\hat{\mathbf{y}} = a\mathbf{x}^2 + b\mathbf{x} + c \,, \tag{1}$$

используя набор экспериментальных данных по фактору x и отклику y, проводится расчет коэффициентов из условия:

$$\boldsymbol{\Phi} = \sum_{i=1}^{N} \left(y_i - \hat{y}_i \right)^2 \xrightarrow{a,b,c} \min, \qquad (2)$$

где N - объем выборки.

Исходя из условия существования экстремума функции нескольких переменных необходимым условием минимума $\Phi(a,b,c)$ является выполнение равенств:

$$\frac{\partial \Phi}{\partial a} = 0; \frac{\partial \Phi}{\partial b} = 0; \frac{\partial \Phi}{\partial c} = 0. \tag{3}$$

Таким образом, для случая (1) требуется решить систему уравнений:

$$\begin{cases} a \sum_{i=1}^{N} x_i^4 + b \sum_{i=1}^{N} x_i^3 + c \sum_{i=1}^{N} x_i^2 = \sum_{i=1}^{N} y_i x_i^2; \\ a \sum_{i=1}^{N} x_i^3 + b \sum_{i=1}^{N} x_i^2 + c \sum_{i=1}^{N} x_i = \sum_{i=1}^{N} y_i x_i; \\ a \sum_{i=1}^{N} x_i^2 + b \sum_{i=1}^{N} x_i + cN = \sum_{i=1}^{N} y_i. \end{cases}$$
(4)

Или в общем виде:

$$\begin{cases} ak_{11} + bk_{12} + ck_{13} = p_1; \\ ak_{21} + bk_{22} + ck_{23} = p_2; \\ ak_{31} + bk_{32} + ck_{33} = p_3, \end{cases}$$
 (5)

где k_{11}, \dots, k_{33} - коэффициенты системы:

$$k_{11} = \sum_{i=1}^{N} x_i^4, k_{21} = \sum_{i=1}^{N} x_i^3, k_{13} = \sum_{i=1}^{N} x_i^2,$$

$$k_{21} = \sum_{i=1}^{N} x_i^3, k_{22} = \sum_{i=1}^{N} x_i^2, k_{23} = \sum_{i=1}^{N} x_i,$$

$$k_{31} = \sum_{i=1}^{N} x_i^2, k_{32} = \sum_{i=1}^{N} x_i, k_{33} = N.$$
(6)

 $p_1, ..., p_3$ - правые части системы уравнений:

$$p_1 = \sum_{i=1}^{N} y_i x_i^2$$
, $p_2 = \sum_{i=1}^{N} y_i x_i$, $p_3 = \sum_{i=1}^{N} y_i$. (7)

Для решения системы линейных уравнений (5) используется правило Крамера:

$$\Delta = \begin{vmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{vmatrix} = k_{11} \begin{vmatrix} k_{22} & k_{23} \\ k_{32} & k_{33} \end{vmatrix} - k_{12} \begin{vmatrix} k_{21} & k_{23} \\ k_{31} & k_{33} \end{vmatrix} + k_{13} \begin{vmatrix} k_{21} & k_{22} \\ k_{31} & k_{32} \end{vmatrix} = k_{11} (k_{22}k_{33} - k_{32}k_{23}) - k_{12} (k_{33}k_{21} - k_{31}k_{23}) + k_{13} (k_{32}k_{21} - k_{31}k_{22}) = k_{11}k_{22}k_{33} - k_{11}k_{32}k_{23} - k_{12}k_{33}k_{21} + k_{12}k_{31}k_{23} + k_{13}k_{32}k_{21} - k_{13}k_{31}k_{22};$$
(8)

$$\Delta a = \begin{vmatrix} p_1 & k_{12} & k_{13} \\ p_2 & k_{22} & k_{23} \\ p_3 & k_{32} & k_{33} \end{vmatrix} = p_1 \begin{vmatrix} k_{22} & k_{23} \\ k_{32} & k_{33} \end{vmatrix} - k_{12} \begin{vmatrix} p_2 & k_{23} \\ p_3 & k_{33} \end{vmatrix} + k_{13} \begin{vmatrix} p_2 & k_{22} \\ p_3 & k_{32} \end{vmatrix} =$$

$$= p_1 (k_{22}k_{33} - k_{32}k_{23}) - k_{12} (k_{33}p_2 - p_3k_{23}) + k_{13} (k_{32}p_2 - p_3k_{22}) =$$

$$= p_1 k_{22}k_{33} - p_1 k_{32}k_{23} - k_{12}k_{33}p_2 + k_{12}p_3k_{23} + k_{13}k_{32}p_2 - k_{13}p_3k_{22};$$

$$(9)$$

$$\Delta b = \begin{vmatrix} k_{11} & p_1 & k_{13} \\ k_{21} & p_2 & k_{23} \\ k_{31} & p_3 & k_{33} \end{vmatrix} = k_{11} \begin{vmatrix} p_2 & k_{23} \\ p_3 & k_{33} \end{vmatrix} - p_1 \begin{vmatrix} k_{21} & k_{23} \\ k_{31} & k_{33} \end{vmatrix} + k_{13} \begin{vmatrix} k_{21} & p_2 \\ k_{31} & p_3 \end{vmatrix} =$$

$$= k_{11} (p_2 k_{33} - p_3 k_{23}) - p_1 (k_{33} k_{21} - k_{31} k_{23}) + k_{13} (p_3 k_{21} - k_{31} p_2) =$$

$$= k_{11} p_2 k_{33} - k_{11} p_3 k_{23} - p_1 k_{33} k_{21} + p_2 k_{31} k_{23} + k_{13} p_3 k_{21} - k_{13} k_{31} p_2;$$

$$(10)$$

$$\Delta c = \begin{vmatrix} k_{11} & k_{12} & p_1 \\ k_{21} & k_{22} & p_2 \\ k_{31} & k_{32} & p_3 \end{vmatrix} = k_{11} \begin{vmatrix} k_{22} & p_2 \\ k_{32} & p_3 \end{vmatrix} - k_{12} \begin{vmatrix} k_{21} & k_2 \\ k_{31} & k_3 \end{vmatrix} + p_3 \begin{vmatrix} k_{21} & k_{22} \\ k_{31} & k_{32} \end{vmatrix} =$$

$$= k_{11} (k_{22} p_3 - k_{32} p_2) - k_{12} (p_3 k_{21} - k_{31} p_2) + p_1 (k_{32} k_{21} - k_{31} k_{22}) =$$

$$= k_{11} k_{22} p_3 - k_{11} k_{32} p_2 - k_{12} p_3 k_{21} + k_{12} k_{31} p_2 + p_1 k_{32} k_{21} - p_1 k_{31} k_{22};$$

$$(11)$$

$$a = \frac{\Delta a}{\Delta}; \ b = \frac{\Delta b}{\Delta}; \ c = \frac{\Delta c}{\Delta}; \ (\Delta \neq 0).$$
 (12)

1.3. Проверка адекватности модели

1.3.1. Проверка адекватности при отсутствии параллельных опытов

Адекватность полученного уравнения регрессии при отсутствии параллельных опытов проверяется по критерию Фишера [1, C.46] сравнением остаточной дисперсии S^2_{ocm} и дисперсии относительно среднего S^2_y :

$$F = \frac{S_y^2}{S_{ocm}^2},\tag{13}$$

где
$$S_y^2 = \frac{\sum_{i=1}^N (y_i - \overline{y})^2}{N-1}$$
, $S_{ocm}^2 = \frac{\sum_{i=1}^N (y_i - \hat{y}_i)^2}{N-1}$, (14)

$$\bar{y} = \frac{\sum\limits_{i=1}^{N} y_i}{N}$$
 - среднее значение выхода объекта; (15)

 \hat{y}_i - значения отклика, рассчитанные по модели;

N - объем выборки;

l - число связей, наложенных на выборку, равное числу определенных коэффициентов в уравнении (для параболической регрессии l=3).

Дисперсия S_{oem}^2 характеризует отклонение значений \hat{y}_i , рассчитанных по модели, от экспериментальных значений y_i , а S_v^2 - отклонение экспериментальных значений y_i от средних \overline{y} .

Если F больше некоторого критического значения:

$$F = \frac{S_y^2}{S_{ocm}^2} > F_p(f_1, f_2, p),$$
 (16)

то модель близка к описанию объекта, т.е. она адекватна объекту. $F_p(f_1,f_2,p)$ - табличное (критическое) значение критерия Фишера [2, C.196], которое зависит от чисел f_1,f_2 степеней свободы для дисперсий S_y^2 и S_{ocm}^2 соответственно, а также от уровня значимости p.

Число степеней свободы f любой дисперсии определяется разностью между общим количеством опытов и числом характеристик, рассчитанных по этим опытам и используемых при расчете данных дисперсий:

$$f_1 = N - 1, \ f_2 = N - I.$$
 (17)

Уровень значимости р характеризует вероятность того, что условие (16) не будет выполняться. Наиболее часто уровень значимости принимается равным 1% или 5%.

В данном случае критерий Фишера показывает, во сколько раз уменьшается рассеяние экспериментальных значений выхода относительно полученного уравнения регрессии по сравнению с рассеянием относительно среднего значения. Чем больше расчетное значение критерия Фишера F превышает табличное значение $F_p(f_1,f_2,p)$, тем эффективнее уравнение регрессии. Если $S_{ocm}^2,\ S_y^2$ отличаются незначительно и не выполняется условие (16), то применять выбранную модель нецелесообразно.

Для оценки силы связи х и у при линейной зависимости вычисляется коэффициент парной корреляции г:

$$r = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{\sqrt{\left[N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2\right] \left[N \sum_{i=1}^{N} y_i^2 - \left(\sum_{i=1}^{N} y_i\right)^2\right]}}$$
(18)

Коэффициент r может изменяться от 0 до ± 1 . Чем ближе |r|к единице, тем теснее связь между случайными величинами х и у.

В случае нелинейной связи между х и у (например, для параболической трансцендентной регрессии) оценка тесноты связи характеризуется величиной корреляционного отношения θ .

$$\theta = \sqrt{1 - \xi} \,\,, \tag{19}$$

где
$$\xi = \frac{(N-l)S_{ocm}^2}{(N-l)S_y^2}$$
 (20)

Величина корреляционного отношения heta также может изменяться от 0 до 1. Чем больше θ , тем сильнее связь. При θ =1 наблюдается функциональная зависимость между х и у. 1.3.2. Проверка адекватности при наличии параллельных

Адекватность полученного уравнения при наличии параллельных опытов проверяется также по критерию Фишера, но дисперсионное отношение F определяется соотношением [1, C.45]:

$$F = \frac{S_{a\phi}^2}{S_{aocn}^2} \,, \tag{21}$$

где S_{socn}^2 - дисперсия воспроизводимости;

 S_{ab}^2 - дисперсия адекватности.

Дисперсия воспроизводимости рассчитывается по формуле:

$$S_{eocn}^2 = \frac{\sum_{i=1}^{N} S_i^2}{N},$$
 (22)

где
$$S_i^2$$
 - выборочные дисперсии: $S_i^2 = \frac{\displaystyle\sum_{u=1}^m (y_{iu} - \overline{y}_i)^2}{m-1}, i = \overline{1, N}$, (23) m - число параллельных опытов;

т - число параллельных опытов;

 y_{in} - результат u-го параллельного опыта;

среднее из результатов параллельных $y_{n}, (u=1,m)$

$$\bar{y}_i = \frac{\sum_{u=1}^{m} y_{iu}}{m}, i = \bar{1}, N$$
 (24)

Дисперсия адекватности рассчитывается по формуле:

$$S_{a\phi}^{2} = \frac{m \sum_{i=1}^{N} (\hat{y}_{i} - \overline{y}_{i})^{2}}{N \ m - \ell}, \tag{25}$$

где \hat{y}_i - значения отклика, рассчитанные по модели.

 $S^2_{a\phi}$ характеризует разброс между выходом модели \hat{y}_i и выходом объекта \overline{y}_i .

С помощью критерия Фишера проверяется гипотеза: дисперсия адекватности и дисперсия воспроизводимости относятся к одной и той же генеральной совокупности.

Если F меньше некоторого критического значения:

$$F = \frac{S_{ao}^2}{S_{eocn}^2} < F_p(f_1, f_2, p),$$
 (26)

то модель близка к описанию объекта, т.е. она адекватна объекту. Для определения критического значения критерия (26):

$$f_1 = Nm-t, f_2 = N(m-1).$$
 (27)

Пример

Установить адекватность модели $\hat{y}=1,2+0,01x$, описывающей зависимость потерь изопентана с изоамиленовой фракцией от нагрузки на колонну в процессе экстрактивной ректификации изопентан-изоамиленовой смеси, используя экспериментальные данные из табл. 1. Параллельные опыты при этом отсутствовали.

х - нагрузка на колонну (расход сырья);

у - концентрация изопентана в изоамиленовой фракции.

Таблица 1 Экспериментальные данные

№ опыта	1	2	3	4	5
х, т/ч	25	28	30	31	33
y, %	1,44	1,48	1,51	1,51	1,54

Среднее значение выхода объекта определяется из (15):

$$\overline{y} = \frac{1,44 + 1,48 + 1,51 + 1,51 + 1,54}{5} = 1,496$$

Используя исследуемую модель находятся значения \hat{y} путем подстановки x в данное уравнение линии регрессии (табл. 2).

Таблица 2 Расчетные значения

х	25	28	30	31	33
û	1,45	1.48	1,5	1,51	1,53

В соответствии с (14) проводится расчет остаточной дисперсии S^2_{pom} и дисперсии относительно среднего S^2_{y} :

$$S_{\text{occor}}^{2} = \frac{\left(1,44 - 1,45\right)^{2} + \left(1,48 - 1,48\right)^{2} + \left(1,51 - 1,5\right)^{2} + \left(1,51 - 1,51\right)^{2} + \left(1,54 - 1,53\right)^{2}}{5 - 2} = 0,000 \text{ I};$$

$$S_{\gamma}^{2} = \frac{\left(1,44 - 1,496\right)^{2} + \left(1,48 - 1,496\right)^{2} + \left(1,51 - 1,496\right)^{2} + \left(1,51 - 1,496\right)^{2} + \left(1,54 - 1,496\right)^{2}}{5 - 1} = 0,002.$$

Из (13) находим дисперсионное отношение:

$$F = \frac{0,002}{0,0001} = 20$$

Числа степеней свободы согласно (17) будут равны: $f_1 = 5 - 1 = 4$; $f_2 = 5 - 2 = 3$.

Критическое значение критерия Фишера для уровня значимости p=5% и чисел степеней свободы $f_1=4$ и $f_2=3$ составляет $F_p(f_1,f_2,p)=9,1172$ [2, C.198].

$$F > F_p(f_1, f_2, p)$$
.

Из неравенства следует, что модель, описывающая взаимосвязь нагрузки на колонну и концентрации потерь изопентана, адекватна объекту.

1.4. Схема алгоритма решения

Представленный алгоритм (рисунок) предназначен для вычисления параметров модели, величины корреляционного отношения и установления адекватности параболической модели при отсутствии параллельных опытов в эксперименте.

Рисунок. Схема алгоритма решения задачи

Рисунок. Окончание

Схема алгоритма (рисунок) позволяет разработать программу решения и просчитать рассматриваемый пример.

Для составления схемы алгоритма определения параметров другого вида зависимости (гиперболической, логарифмической и т.д.) необходимо составить и решить систему уравнений, аналогичную (4). Выбор вида зависимости (1) осуществляется по характеру изменения эмпирической линии регрессии, построенной на корреляционном поле. Получение неадекватной модели свидетельствует о неправильном выборе вида линии регрессии или ошибках при составлении алгоритма и программы. Поэтому выбирается новый вид зависимости из табл. 4, более точно описывающий экспериментальные данные, или проверяется программа, после чего расчет выполняется сначала.

2. ЗАДАНИЕ НА САМОСТОЯТЕЛЬНУЮ РАБОТУ

Для указанного преподавателем варианта исходных данных из табл. 3 построить эмпирическую линию регрессии у по х. По виду построенной линии подобрать уравнение регрессии, пользуясь табл. 4. Используя МНК составить систему уравнений, аналогичную (4), и решить ее относительно определяемых параметров. Построить схему алгоритма и составить программу расчета параметров модели, критерия Фишера, а также коэффициента парной корреляции (корреляционного отношения).

Программа составляется на языке Cu или с использованием одного из известных математических пакетов (MatCad, Matlab, Maple и др.)

Произвести расчет на ПЭВМ и сделать вывод о пригодности модели к использованию.

3. ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

- 3.1. Изучить методические указания.
- 3.2. Построить график по исходным данным из табл. 3.
- 3.3. Выбрать из табл. 4 вид уравнения регрессии.

3.4. Составить алгоритм решения для определения параметров модели в соответствии с выбранным уравнением, проверки адекватности и установления корреляционной связи.

3.5. Составить схему алгоритма решения.

3.6. Составить и отладить программу решения.

3.7. Ввести исходные данные (табл. 3) в ПЭВМ и провести расчет параметров модели и оценки адекватности.

3.8. Оформить и представить преподавателю отчет о рабо-

4. СОДЕРЖАНИЕ ОТЧЕТА

Отчет должен оформляться в тетради для лабораторных работ и содержать следующие разделы:

4.1. Название и цель работы, номер варианта.

4.2. Вывод алгоритма решения.

4.3. Схема алгоритма с пояснениями.

4.4. Листинг программы.

4.5. Распечатка исходных данных, результатов расчетов, построенных графиков экспериментальной и расчетной кривых.

4.6. Выводы.

5. КОНТРОЛЬНЫЕ ВОПРОСЫ

5.1. Что такое объем выборки?

5.2. В чем суть МНК при определении параметров регрессионной модели?

сионной модели? 4 5.3. Какие параметры технологических процессов относятся к факторам, какие к откликам? /

5.4. Что оценивает коэффициент парной корреляции? &

5.5. Какие дисперсии вы знаете, и как они рассчитываются? 🗟 9

5.7. Чем отличаются методы проверки адекватности при наличии и отсутствии параллельных опытов?

5.8. Как определить критическое значение критерия Фишера?

5.9. Что такое эмпирическая линия регрессии?

5.10. Что такое корреляционное поле?

			A CONTRACTOR OF THE PARTY OF TH							
№ опыта № вар.	1	2	3	4	5	9	7	8	6	10
×	1.0	2,0	3,0	4,0	5,0	0,9	7,0	8,0	0,6	10,0
À	3,95	7,95	11,95	15,95	19,95	23,95	27,97	32,0	36,03	39,95
×	2.0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	0,9	6,5
>	4.95	6,45	7,95	9,45	10,95	12,45	13,96	15,5	17,03	18,35
×	1.0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9
Α	12,95	14,95	16,78	18,46	20,02	21,47	22,84	24,15	25,38	26,43
×	1.0	1.1	1.2	1,3	1,4	1,5	1,6	1,7	1,8	1,9
>	6.95	7,47	8,03	8,63	9,27	9,95	10,69	11,48	12,31	13,07
×	1.0	2.0	3,0	4,0	5,0	0'9	7,0	8,0	0'6	10,0
>	1.25	2.0	3,12	4.81	7,35	11,16	16,01	23,61	38,60	57,41
x 9	1.0	1.1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9
>	9.95	10,67	11,44	12,26	13,15	14,10	15,12	16,23	17,44	18,61
x /	1.0	1,07	1,14	1,21	1,28	1,35	1,42	1,49	1,56	1,63
>	10,82	11,61	12,45	13,30	14,34	15,38	16,51	17,75	19,07	20,37
x 8	1.0	2.0	3,0	4,0	5,0	0'9	7,0	8,0	0'6	10,0
Λ	0,385	0,412	0,440	0,454	0,469	0,493	0,528	0,50	0,485	0,47
x 6	10,0	60'0	0,18	0,25	0,33	0,41	0,49	0,57	0,65	0,73
*	24.80	24.30	23.60	22.81	21 94	21 02	20 09	13.16	18 23	17.2

								П	родолже	ние табл	, 3
№ on	200	10.85	2	3	4 1. 1. 26	5	6	19 21	8 0	9	10
10	X	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0
	V	19,95	33,28	42,81	49,95	55,51	59,35	63,7	66,67	69,26	71,38
11	X	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1
	V	900	450,0	287,5	210,0	166,6	139,8	121,8	109,3	100,0	92,9
12	x	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0
	v	4,12	3,59	3,39	3,28	3,20	3,18	3,16	3,17	3,18	3,09
13	X	0,1	0,26	0,36	0,46	0,56	0,66	0,76	0,86	0,96	1,06
	V	37,9	59,1	77,9	94,2	107,9	119,3	128,4	135,7	141,1	145,0
14	X V	1,0 0,95	2,0	3,0 1,91	4,0 2,16	5,0 2,35	6,0 2,51	7,0 2,64	8,0 2,76	9,0 2,86	10,0 2,95
15	X	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9
	V	129,71	128,12	126,67	125,33	124,07	122,85	121,65	120,44	119,2	117,9
16	X	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
	V	1,21	4,79	10,62	18,49	28,06	38,96	50,75	62,96	75,10	86,69
17	X V	0,0 2,28	0,2	0,4 2,19	0,6 2,09	0,8 1,97	1,0 1,85	1,2 1,74	1,4 1,65	1,6 1,666	1,8 1,58
18	X	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
	V	7,0	7,05	7,10	7,20	7,20	7,28	7,36	7,16	7,59	7,76

				11/03	10.45		1333	п	родолже	ние табл	ι, 3
№ OI	пыта ар.	1	2	3	4	5	6	7.0	8	9	10
19	x y	1,5 29,5	2,0 29,6	2,5 29,7	3,0 29,8	3,5 29,9	4,0 31,0	4,5 31,1	5,0 31,8	5,5 32,6	6,0 33,8
20	X y	1,0 11,0	2,0 12,3	3,0 13,2	4,0 14,1	5,0 14,0	6,0 11,5	7,0 11,2	8,0 12,0	9,0 12,8	10,0 14,0
21	X V	0,01 24,89	0,3 23,20	0,6 21,69	0,9 20,36	1,2 19,18	1,5 18,14	1,8 17,21	2,1 16,40	2,4 25,66	2,7 14,88
22	X y	0,10 1040	0,11 856	0,12 734,4	0,13 613,7	0,14 550,2	0,15 481,4	0,16 430,6	0,17 386,6	0,18 387,0	0,19
23	X V	0,01 1003	0,02 504	0,03 337,3	0,04 254	0,05 204	0,06 170,6	0,07 146,8	0,08	0,09 115,1	0,10
24	x y	2,0 71,0	4,0 71,6	6,0 71,9	8,0 72,6	10,0 73,4	12,0 74,2	14,0 75,0	16,0 75,6	18,0 76,2	20,0
25	X y	1,0 14,0	2,0 12,8	3,0 11,2	4,0 11,0	5,0 10,8	6,0 10,8	7,5 108	8,0 10,8	9,0 10,8	10,0
26	x y	1,0 17,1	2,0 15,0	3,0 13,1	4,0 12,6	5,0 12,5	6,0 12,8	7,0 13,0	8,0 13,6	9,0 13.9	10,0 14,2

№ ome		11 ₁	12	13	14	15	16	17	18	19	20
	X X	11,0	12,0	13,0	14,0	15.0	16,0	17,0	18,0	19,0	20,0
	v	44,03	48,04	52,03	55,67	60,0	63,98	68,01	72,05	75,94	80,02
-	X	7.0	7.5	8,0	8,5	9,0	9,5	10,0	10,5	11,0	11,5
-	v	20,03	21,54	23,03	24,47	26,0	27,48	29,01	30,55	31,96	33,52
3	x	2.0	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9
	v	27,59	28,62	29,6	30,46	31,38	32,27	33,08	33,08	33,91	34,58
4	X	2,0	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9
,	v	14.03	14,95	15.91	16,85	17,92	18,98	20,13	21,33	22,44	23,74
5	x	11.0	12,0	13.0	14,0	15,0	16,0	17,0	18,0	19,0	20,0
	v	88,66	129.90	194,8	291,8	437,9	656,8	985,3	1478	2216	2285
6	X	2,0	2.1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9
	v	20.03	21,47	23,01	24,59	26,38	28,27	30,33	32,57	34,78	37,54
7	X	1,7	1.77	1,84	1,91	1,98	2,05	1,12	2,19	2,26	2,33
	v	21,92	23,32	25,22	26,38	28,97	31,05	33,34	35,73	38,29	41,13
8	X	11.0	12,0	13,0	14,0	15,0	16,0	17,0	18,0	19,0	20,0
-	v	0,465	0.454	0,441	0,427	0,412	0,398	0,384	0,371	0,359	0,348
9	X	0.81	0,89	0,97	1,05	1,13	1,21	1,29	1,37	1,45	1,53
	v	16,5	15,48	14,63	13,75	13,01	12,27	11,62	11,01	10,322	9,81

									Продолж	кение та	бл.
№ on		11	12	13	14	15	16	17	18	19	20
10	x v	11,0 73,37	12,0 75,08	13,0 76,50	14,0 77,74	15,0 78,95	16,0 79,98	17,0 80,97	18,0 81,87	19,0 82,57	20,0 83,56
11	X V	1,2 87,5	1,3 83,2	1,4 79,6	1,5 76,6	1,6 74,2	1,7 72,1	1,8 70,4	1,9 68,9	2,0 67,5	2,1 66,3
12	X	11,0 3,16	12,0	13,0 3,13	14,0 3,14	15,0 3,07	16,0 3,08	17,0 3,07	18,0 3,06	19,0 3,08	20,0 3,07
13	X	1,16 147,8	1,26 149,4	1,36 150,2	1,46 150,1	1,56 149,6	1,66 148,6	1,76 147,2	1,86 145,6	1,96 143,6	2,06 143,6
14	X V	11,0	12,0	13,0 3,18	14,0 3,25	15,0 3,31	16,0 3,36	17,0 3,42	18,0 3,47	19,0 3,51	20,0 3,56
15	X	2,0 116,51	2,1 114,98	2,2 113,27	2,3 111,3	2,4 108,9	2,5 105,9	2,6 102,0	2,7 96,62	2,8 88,25	2,9 73,3
16	X	1,1	1,2	1,3 113,73	1,4 118,9	1,5	1,6 122,4	1,7 120,5	1,8 116,2	1,9 109,7	2,0 101,3
17	X	2,0	2,2	2,4	2,6 1,78	2,8 1,84	3,0 1,87	3,2 1,88	3,4 1,86	3,6 1,8	3,8 1,74
18	X	1,0 7,99	1,1 8,35	1,2 8,95	1,3 10,12	1,4 13,61	1,5 37,21	1,6 132,2	1,7 10,65	1,8 7,28	1,9 6,21

19

Таблица 4

Типы	уравнений	регрессии

№ n/n	Тип кривой	Уравнение регрессии	Замена х	Замена	Функция в новых координатах
1	2	3	4	<i>y</i> 5	6
1	1	$\hat{y} = ax + b$	u = x	$\hat{z} = \hat{y}$	$\hat{z} = au + b$
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				74.1
2	14	$\hat{y} = bx^a$	$u = \lg x$	$\hat{z} = \lg \hat{y}$	$\hat{z} = au + \lg b$
	W x		A PART		-411
3	17	$\hat{z} = \frac{u}{\lg a} + \frac{\lg b}{\lg a}$	u = x	$\hat{z} = \ln \hat{y}$	$\hat{z} = au + \ln b$
4	Ty W	$\hat{y} = \log_a bx$	$u = \lg x$	$\hat{z} = \hat{y}$	$\hat{z} = \frac{u}{\lg a} + \frac{\lg b}{\lg a}$
5	· V	$\hat{y} = a \ln bx$	$u = \ln x$	$\hat{z} = \hat{y}$	$\hat{z} = au + a \ln b$
6	1y	$\hat{y} = a \lg bx$	$u = \lg x$	$\hat{z} = \hat{y}$	$\hat{z} = au + a \lg b$

|--|

ī	2	3	4	5	6
7	Ty Ly	$\hat{y} = \frac{1}{ax+b}$	u = x	$\hat{z} = \frac{1}{\hat{y}}$	$\hat{z} = \alpha u + b$
8	*	$\hat{y} = \frac{x}{ax+b}$	<i>u</i> = <i>x</i>	$\hat{z} = \frac{x}{\hat{y}}$	
9	¥ ¥	$\hat{y} = ax^2 + bx + c$	u = x	$\hat{z} = \hat{y}$	$\hat{z} = \alpha u^2 + bu + c$
10	× x	$\hat{y}^2 = ax^2 + bx + c$	<i>u</i> = <i>x</i>	$\hat{z} = \hat{y}^2$	
11		$\hat{y} = \frac{1}{ax^2 + bx + c}$	<i>u</i> = <i>x</i>	$\hat{z} = \frac{1}{\hat{y}}$	
12	T x	$\hat{y} = \frac{x}{ax^2 + bx + c}$	<i>u</i> = <i>x</i>	$\hat{z} = \frac{x}{\hat{y}}$	

			Окончані	ие табл.	4
1	2	3	4	5	6
13		$\hat{y} = \frac{a}{x^2} + \frac{b}{x} + c$	$u=\frac{1}{x}$	$\hat{z} = \hat{y}$	$\hat{z} = au^2 + bu + c$
14	Ay x	$\hat{y} = a \lg^2 x_1 + b \lg x + c$	$u = \lg x$	$\hat{z} = \hat{y}$	
15	Y x	$\hat{y} = a \ln^2 x + b \ln x + c$	$u = \ln x$	$\hat{z} = \hat{y}$	
16	130 x	$\hat{y} = a\sin^2 x + b\sin x + c$	$u = \sin x$	$\hat{z} = \hat{y}$	
17	* m.	$\hat{y} = a\cos^2 x + b\cos x + c$	$u = \cos x$	$\hat{z} = \hat{y}$	
18	X x	$\hat{y} = a \operatorname{tg}^2 x + b \operatorname{tg} x + c$	$u = \operatorname{tg} x$	$\hat{z} = \hat{y}$	
19	x	$\hat{y} = a \operatorname{ctg}^2 x + b \operatorname{ctg} x + c$	$u = \operatorname{ctg} x$	$\hat{z} = \hat{y}$	

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Кафаров В.В. Математическое моделирование основных процессов химических производств: Учеб. пособие для вузов / В.В. Кафаров, М.Б. Глебов. -М.: Высш. шк., 1991. -400с.: ил.

2. Львовский Е.Н. Статистические методы построения эмпирических формул. -М.: Высш. шк., 1982. -224с.: ил.

3. Ракитин В.И. Практическое руководство по методам вычислений с приложением программ для персональных компьютеров: Учеб. пособие / В.И. Ракитин, В.Е. Первушин. -М.: Высш. шк., 1998. -383с.: ил.