ATM and ADSL

Lecture 6

- ATM
- VPs / VCs
- Aggregation
- Segmentation
- Coding
- History and modern day

What was the problem?

- Different information types require different qualities of service from the network
 - stock quotes vs. web
 - video vs. email
- Traditional telephone networks provided:
 - a single quality of service fixed bandwidth and delay
 - and seemed to be very expensive!
- The Internet supports no quality of service
 - but is flexible and cheap
- The goal was to devise a new network that would support a range of service qualities at a reasonable cost
 - 1980s: voice, video, and data on separate networks
 - Desire for Integrated Services
 - easier to manage
 - innovative new services
 - Potentially to subsume both the telephone network and the Internet

BISDN is born

 In the early 1990s there was a plan for a "Broadband Integrated Services Digital Network" and it would be based on a techology known as ATM

Design goals:

- Provide end-to-end quality of service
- High bandwidth (target was 140Mbps to each home!)
- Scalability (reach all homes)
- Manageability
- Cost-effective

ATM Concepts

- 1. Fixed-size packets (cells)
- 2. Small-size packets
- 3. Virtual circuits
- 4. Statistical multiplexing
- 5. Integrated services

Together

- can carry multiple types of traffic
- with end-to-end quality of service

Reminder...ATM

"asynchronous transfer mode"

- the destination of data in the network is based on a label
- all packets are the same size

Fixed-size packets

Pros

- Simpler buffer hardware
 - packet arrival and departure requires us to manage fixed buffer sizes
- Simpler line scheduling
 - · each cell takes a constant chunk of bandwidth to transmit
- Easier to build large parallel packet switches

Cons

- overhead for sending small amounts of data
- segmentation and reassembly cost
- last unfilled cell after segmentation wastes bandwidth

Small packet size

- Pros
 - For voice sampled at 8kHz
 - that is 125 microseconds per byte
 - the smaller the cell, the less time to fill it
 - packetization delay
 - in the voice network, we must consider "echo"
 - When multiplexing two flows, small packets allow fine grained scheduling
- Cons
 - The smaller the packet
 - the larger the header overhead
 - less time to process
- Standards body balanced the two to arrive at:
 - 48 bytes + 5 byte header = 53 bytes
 - -> maximum efficiency of 90.57%

Virtual circuits

- Two ways to use packets
 - carry entire destination address in header
 - carry only an identifier

Data Sample

VCI Data ATM cell

Addr. Data Datagram

Features of virtual circuits

- Signaling => separation of data and control
 - Must establish label mappings in advance
- All packets must follow the same path
 - A failure requires a re-reoute
- Switches store per-VCI state
 - Importantly can store QoS information
- Small Ids can be looked up quickly in hardware
 - harder to do this with IP addresses (esp. v6!)
 - ids can be assigned in sequence
- Setup must precede data transfer
 - delays short messages
- Switched vs. Permanent virtual circuits
 - can pre-establish connections

ATM - Virtual circuits & paths

- Small ids
 - Need as many bits as channels on the link
 - Unrelated to endsystem address space
- We also need to switch ids at intermediate points
- Preallocate a range of VCIs along a path
 - Virtual Path VPI

Byte 1	GFC	VPI
Byte 2	VPI	VCI
Byte 3	VCI	
Byte 4	VCI	PT
Byte 5	HEC	
Byte 6	Payload 1	
	•••	
Byte 53	Payload 48	

ATM - QoS

- CBR Constant bit rate:
 - defined by a peak cell rate;
 - service guarantees low delay even at peak.
- VBR Variable bit rate:
 - defined by average cell rate, with a specified "burstiness";
 - service delivers average rate and may queue traffic within burst spec and throw away anything above that.
- ABR Available bit rate:
 - a minimum guaranteed rate is specified;
 - service aims to indicate to senders when they might send more.
- UBR Unspecified bit rate:
 - traffic is allocated to all remaining transmission capacity.
- These simple descriptions turn out to be really hard to put into specifications that make a lot of sense...
 - Ended up with QoS specified by what we could figure how to implement
 - QoS still subject of research 20 years later!

Challenges in the 80/90s

- Quality of service
 - and still a subject of research!
- Scaling
 - little experience
- Competition from other LAN technologies
 - Fast Ethernet
 - FDDI
- Standardization
 - political
 - slow

Challenges

- IP
 - a vast, fast-growing, non-ATM infrastructure
 - ATM to IP interoperation is a pain in the neck, because of fundamentally different design philosophies
 - connectionless vs. connection-oriented
 - resource reservation vs. best-effort
 - different ways of expressing QoS requirements
 - routing protocols differ
 - Emerged as IP over ATM...

ATM today

- Widely used in core of mobile networks
- And in combination with some fancy signal processing as basis of ADSL...

ADSL as deployed today

Remember QAM

- One carrier f_c
- The symbol rate is the bandwidth of the signal being centered on carrier frequency

Multicarrier Modulation

- Divide broadband channel into narrowband subchannels
- Discrete Multitone (DMT) modulation
 - Based on fast Fourier transform (related to Fourier series)
 - Standardized for ADSL
 - Proposed for VDSL

Dynamic Issues

- In real world not usually so clean an envelope
 - Example below is unfiltered phone attachment
- Must adapt to changes in SNR and attenuation in each subcarrier
 - Deal with changing environment, e.g. rain!
 - Others in same wiring loom using ADSL...

Static issues

Attenuation with distance eventually kills performance...

 Technology not getting us much beyond 5-6km from DSLAM...

Communications systems & Electromagnetic Spectrum

Frequency of communications signals

