Handbook of TOOL 1 Excel to Gurobi for Network Models

STEP 1:

Input the data into the cells of the chosen sheet of the attached Excel file.

STEP 2:

Replace the sheet name in the Jupyter Notebook file.

```
main = wb['Transportation Problem']
```

STEP 3:

Run all cells.

Appendix

Example 1: Transportation Problem

4	А	В	С	D	Е	F	G
	Objective	min					
	Variable Type						
	non-neg?	Υ					
	Problem Type	MCNF					
5							
,	START HERE	Edmonton	Toronto	Ottawa		FLOW IN = OUT (Y/N)	SUPPLY
	Winnipeg	5	4	3		N	100
	Montreal	3	2	1		N	300
)	Halifax	9	7	5		N	300
ı							
	DEMAND	300	200	200			

Example 2: Transshipment Problem

	A	В	С	D	E	F	G	Н
L	Objective	min						
2	Variable Type							
3	non-neg?	Υ						
1	Problem Type	MCNF						
5								
5								
7	START HERE	Chicago	Memphis	NY	Boston		FLOW IN = OUT (Y/N)	SUPPLY
3	Denver	6	8				N	200
9	LA	12	10				N	150
0	Chicago			4	5		Y	
1	Memphis			5	7		Y	
2								
3	DEMAND			130	130			

Example 3: Assignment Problem

Assignment Example Data

 The time it would take each employee to complete each task is given by this table. How to minimize total hours worked?

	Task 1	Task 2	Task 3	Task 4
Employee 1	7	3	4	8
Employee 2	5	4	6	5
Employee 3	6	7	15	6
Employee 4	8	6	7	4

	А	В	С	D	E	F	G	Н
1	Objective	min						
2	Variable Type							
3	non-neg?	Υ						
1	Problem Type	MCNF						
5								
5								
7	START HERE	Task_1	Task_2	Task_3	Task_4		FLOW IN = OUT (Y/N)	SUPPLY
3	Employee_1	7	3	4	8		N	1
9	Employee_2	5	4	6	5		N	1
0	Employee_3	6	7	15	6		N	1
1	Employee_4	8	6	7	4		N	1
2								
3	DEMAND	1	1	1	1			

Example 4: Shortest Path Problem

Shortest Path Problem Example Data

• Find the shortest path from station O to station T

	A	В	С	D	E	F	G	Н	1	J
	Objective	min								
١	Variable Type									
L	non-neg?	Υ								
1	Problem Type	MCNF								
	START HERE	Α	В	С	D	E	т		FLOW IN = OUT (Y/N)	SUPPLY
	o	2	5	4					N	1
	A		2		7				Υ	
	В				4	3			Υ	
	С		1			4			Υ	
	D						5		Υ	
	E				1		7		Υ	
	DEMAND						1			

Maximum Flow Problem Example Data

• Determine the maximum flow from O to T, the limit between the nodes shown in the diagram:

	A	В	C	D	E	F	G	Н	1	J	K
	Objective	min									
	Variable Type										
	non-neg?	Υ									
	Problem Type	MFP									
L											
L											
	START HERE	Α	В	С	D	E	т	О		FLOW IN = OUT (Y/N)	SUPPLY
	o	5	7	4						Y	
	Α		1		3					Y	
	В				4	5				Υ	
	С		2			4				Υ	
	D						9			Υ	
Ī	E				1		6			Υ	
Ī	Т							9999999		Υ	
Ī											
	DEMAND										

Example 6: Traveling Salesperson Problem

	A	В	С	D	E	F	G	Н	1
	Objective	min							
	Variable Type	int							
	non-neg?	Y							
	Problem Type	TSP							
L									
	START HERE	A	В	С	D	E		FLOW IN = OUT (Y/N)	SUPPLY
	A		1	2	10	13		Y	1
	В	1		3	7	10		Υ	1
	С	2	3		9	11		Υ	1
	D	10	7	10		3		Y	1
	E	8	9	11	4			Y	1
	DEMAND	1	1	1	1	1			