COMS 573 LAB 2 HOMAGNI SAHA

DESCRIPTION OF DESIGN CHOICES MADE:

Fully connected vs. Convolutional neural networks:

We tried different cases when only fully connected neural networks were used and when a convolutional neural network was used. Generally, after performing a 2D convolution, the features need to be converted to 1 dimension and connected to the final layer.

Relu vs. Tanh:

Both are activation functions applied to the neuron. They have different characteristics and work differently on different datasets. For the hidden layers we tried two different activation functions relu and tanh.

Sum of squares vs. cross entropy:

They are two different loss functions used to calculate the final loss with the labels and backpropagate the loss throughout the network.

Hidden layers:

The number of fully connected layers may be varied in a neural network hence producing deep and shallow architectures.

Hidden units:

The number of neurons in each layer may be varied to produce either "broad" or "narrow" architectures.

Learning rate:

This is a parameter that determines how fast the weights are updated in the neural networks.

Momentum:

This is a parameter that acts like "inertia" and helps the neural network to overcome "ravine surface" problems. It also helps to speed up the rate of convergence. The optimizer acts like a ball that rolls over the gradient surface. If it faces sloping hill for a long time then it rolls faster, i.e., the learning rate increases.

Input scaling:

The inputs could be normalized to lie between a set range of values.

Epochs:

This is the number of times the training algorithm makes passes over the training data

Batch-size:

In batch gradient descent, these are the number of samples chosen in a batch

Last activation layer:

This is the activation applied to the last layer of the neural network.

Optimizer used:

Two popular optimizers: stochastic gradient descent (sgd) and root mean square propagation(rmsprop) were compared.

Square filter size:

This is the kernel size for the 2d convolution operation

Max-pool size:

This is the pooling size for the 2d convolution operation

Dropout:

This is used throughout the architecture to ensure better generalization abilities and prevent overfitting.

The experimental results are summarized in the tables and figures that follow. The four major possible cases that were asked for are divided into 4 tables and the comments and discussion follow at the end of each table.

-													
FCN CASE II	RELU CASE A	First layer after CNN has 8*8 units	These results were obtained using Keras with Theano backend. The 1 st number in the results is the validation accuracy (training data was split into 30 percent validation). The 2 nd number in the results denote the test accuracy. For the figures, the left-hand side denote case1 and right-hand side denote case2 of the same table. The figures are plotted to show accuracy or the reduction in the model loss across number of epochs. The discussions and comments are listed as the cases are encountered.										
Case 1	SUM OF SQUA RES												
		Hidd en layer s	Hidde n Units	Learnin g Rate	Mome ntum rate/rh o	Input scaling	Epoc hs	Batch- size	Last layer activatio n	Optimi zer used	Filte r Size	Max- pool size	Result
	Classif icatio n Accur acy	10 10 8 5 2	256 150 100 100 150	0.005 0.01 0.1 0.1	0.9 0.7 0.5 0.5	Yes No Yes No Yes	50 30 20 20 30	100 50 10 10 50	Softmax Sigmoid Softmax Sigmoid Softmax	Sgd Sgd Rmspr Rmspr Sgd			45.4,47.4 30.1,30.9 9.43,9.85 10.9,9.68 87.0,85.3
	Conve rgenc e Speed		256 0.005 0.9 No 50 100 sigmoid rmspr 98.1,95.8 ease see the following figures for a better understanding. With respect to time taken, increasing batch size duces time taken by a huge margin, and improves generalization error.										
	Comm ents/d iscussi on	2. 3. 4.	, , ,										mizer to low chs within a etworks.
Case 2	CROSS - ENTR OPY												
		Hidd en Layer s	Hidde n Units	Learnin g Rate	Mome ntum Rate/r ho	Input scaling	Epoc hs	Batch- size	Last layer activatio n	Optimi zer used	Filte r size	Max- poo size	Result

Classif	10	256	0.005	0.9	Yes	50	100	Softmax	Sgd			97.9,96.3
icatio	10	150	0.01	0.7	No	30	50	Sigmoid	Sgd			96.6,94.2
n	8	100	0.1	0.5	Yes	20	10	Softmax	Rmspr			9.43,9.85
Accur	5	100	0.1	0.5	No	20	10	Sigmoid	Rmspr			10.2,9.91
асу	2	150	0.01	0.7	Yes	30	50	Softmax	Sgd			98.7,95.8
	1	256	0.005	0.9	No	50	100	sigmoid	rmspr			96.2,95.1
Conve	Please	see the f	ollowing fi	gures for a	a better ur	nderstan	ding. Wit	h respect to	o time tak	en, incr	easing b	atch size
rgenc	reduce	s time tal	ken by a h	uge margi	n, and imp	roves ge	eneralizat	ion error.				
е												
Speed												
Comm	1.								•			epochs and
ents/d				•				•	nize the e	ntropy	differen	ce between
iscussi		predicti	on and res	ult as opp	osed to m	inimizin	g the squa	ared sum.				
on												

FIGURES (CASE II- CASE A):

General note: By loss on the y-axis I mean reduction in loss or the increase in accuracy. So, please don't be confused. I mean it to be the model accuracy but Keras stores the training record in a different manner, so the plots have y-axis labelled as loss.

model loss

model loss

25

10

FCN CASE II	TAN H CASE B	First layer after CNN has 8*8 units											
Case 1	SUM OF SQUA RES												
		Hidd en layer s	Hidde n Units	Learnin g Rate	Mome ntum rate/rh o	Input scaling	Epoc hs	Batch- size	Last layer activatio n	Optimi zer used	Filte r Size	Max- pool size	Result
	Classif	10	256	0.005	0.9	Yes	50	100	Softmax	Sgd			96.8,94.9
	icatio	10	150	0.01	0.7	No	30	50	Sigmoid	Sgd			89.5,88.7
	n	8	100	0.1	0.5	Yes	20	10	Softmax	Rmspr			9.98,10.07
	Accur	5	100	0.1	0.5	No	20	10	Sigmoid	Rmspr			9.43,9.81
	асу	2	150	0.01	0.7	Yes	30	50	Softmax	Sgd			94.1,93.4
		1	256	0.005	0.9	No	50	100	sigmoid	rmspr			97.4,95.0
	Conve			_	_			_	h respect to	o time tak	en, incr	easing b	atch size
	rgenc e Speed	reduce	s time ta	ken by a h	uge margi	n, and imp	oroves ge	eneralizat	ion error.				
	Comm ents/d iscussi ons	1.							n mean squ onclusive e				_
Case 2	CROSS - ENTR OPY												
		Hidd en Layer s	Hidde n Units	Learnin g Rate	Mome ntum Rate/r ho	Input scaling	Epoc hs	Batch- size	Last layer activatio n	Optimi zer used	Filte r size	Max- poo size	Result

Classif	10	256	0.005	0.9	Yes	50	100	Softmax	Sgd			98.5,95.9
icatio	10	150	0.01	0.7	No	30	50	Sigmoid	Sgd			98.2,96.6
n	8	100	0.1	0.5	Yes	20	10	Softmax	Rmspr			9.43,9.85
Accur	5	100	0.1	0.5	No	20	10	Sigmoid	Rmspr			9.43,9.85
асу	2	150	0.01	0.7	Yes	30	50	Softmax	Sgd			97.9,96.4
	1	256	0.005	0.9	No	50	100	sigmoid	rmspr			97.4,94.3
Conve	Please	see the fo	ollowing fi	gures for a	a better ur	derstan	ding. Wit	h respect to	time take	en, incr	easing b	atch size
rgenc	reduce	s time tal	ken by a h	uge margii	n, and imp	roves ge	eneralizat	ion error.				
е												
Speed												
Comm	Genera	ılly, accur	acy increa	ses with ir	ncreasing e	epochs. [•]	This make	es sense as	there are i	more p	asses ov	er the data.
ents/d												
iscussi												
ons												

FIGURE (CASE II-CASE B):

	ı		1	ı	ı	ı	1	1	I	ı	1	ı	1	
CNN	RELU	First												
CASE I	CASE	layer												
0,102.	Α	after												
		CNN												
		has												
		512												
	0111	units												
Case 1	SUM													
	OF													
	SQUA													
	RES													
		Hidd	Hidde	Learnin	Mome	Input	Epoc	Batch-	Last	Optimi	Filte	Max-	Result	
		en	n	g	ntum	scaling	hs	size	layer	zer	r	pool		
		layer	Units	Rate	rate/rh				activatio	used	Size	size		
		S	010		0				n	0.000	0.20	0.20		
	Classif		256	0.005		Voc	Ε0	100		Cad	(2.2)	(2.2)	20.0.10.1	
		10	256	0.005	0.9	Yes	50	100	Softmax	Sgd	(3,3)	(2,2)	30.9,10.1	
	icatio	10	150	0.01	0.7	No	30	50	Sigmoid	Sgd	(5,5)	(3,3)	43.5,46.2	
	n	8	100	0.1	0.5	Yes	20	10	Softmax	Rmspr	(7,7)	(5,5)	9.75,9.96	
	Accur	5	100	0.1	0.5	No	20	10	Sigmoid	Rmspr	(3,3)	(5,5)	10.0,10.1	
	acy	2	150	0.01	0.7	Yes	30	50	Softmax	Sgd	(5,5)	(3,3)	18.2,12,4	
		1	256	0.005	0.9	No	50	100	sigmoid	rmspr	(7,7)	(2,2)	98.5,97.9	
	Conve	Please	lease see figures that follow											
	rgenc													
	e													
	Speed													
	Comm	1	In addit	ion to abo	vo tables	CNN achie	was tha	host acci	iracy bocau	co of woid	ht char	ing coal	e invariance	
		1.								se or weig	iit Siiai	ilig, scai	e ilivariance	
	ents/d		and abi	lity to dete	ect local ci	ialiges ove	region	is or the n	nage.					
	iscussi													
	on		T	1	T	1	1	1	1	T	1	ı	1	
Case 2	CROSS	First												
	-	layer												
	ENTR	after												
	OPY	CNN												
		has												
		512												
		units												
		Hidd	Hidde	Learnin	Mome	Input	Ерос	Batch-	Last	Optimi	Filte	Max-	Result	
		en			ntum	scaling	hs	size		zer			Result	
			n	g		Scalling	115	Size	layer		r -:	poo		
		Layer	Units	Rate	Rate/r				activatio	used	size	size		
		S			ho				n					
	Classif	10	256	0.005	0.9	Yes	50	100	Softmax	Sgd	(3,3)	(2,2)	96.5,93.3	
	icatio	10	150	0.01	0.7	No	30	50	Sigmoid	Sgd	(5,5)	(3,3)	98.3,96.9	
	n	8	100	0.1	0.5	Yes	20	10	Softmax	Rmspr	(7,7)	(5,5)	9.75,9.96	
	Accur	5	100	0.1	0.5	No	20	10	Sigmoid	Rmspr	(3,3)	(5,5)	10.2,9.91	
	асу	2	150	0.01	0.7	Yes	30	50	Softmax	Sgd	(5,5)	(3,3)	97.2,94.9	
		1	256	0.005	0.9	No	50	100	sigmoid	rmspr	(7,7)	(2,2)	98.7,98.3	
	l	-	233	0.005	0.5	1	1 30	1 100	3.5.11010	, , , , , , , , , , , , , , , , , , ,	\','\	\-,-,	30.7,30.3	

Conve rgenc e Speed	Please	see figur	es that foll	low.								
Comm ents	Genera	Generally, accuracy increases with increasing epochs.										

FIGURES (CASE I, CASE A):

General note: By loss on the y-axis I mean reduction in loss or the increase in accuracy. So, please don't be confused. I mean it to be the model accuracy but Keras stores the training record in a different manner, so the plots have y-axis labelled as loss.

0.102

0.098

0.0 2.5 5.0

7.5 10.0

15.0 17.5

CNN CASE I	TAN H CASE B	First layer after CNN has 512 units											
Case 1	SUM OF SQUA RES												
		Hidd en layer s	Hidde n Units	Learnin g Rate	Mome ntum rate/rh o	Input scaling	Epoc hs	Batch- size	Last layer activatio n	Optimi zer used	Filte r Size	Max- pool size	Result
	Classif icatio n Accur acy	10 10 8 5 2	256 150 100 100 150	0.005 0.01 0.1 0.1 0.01	0.9 0.7 0.5 0.5	Yes No Yes No Yes	50 30 20 20 30	100 50 10 10 50	Softmax Sigmoid Softmax Sigmoid Softmax	Sgd Sgd Rmspr Rmspr Sgd	(3,3) (5,5) (7,7) (3,3) (5,5)	(2,2) (3,3) (5,5) (5,5) (3,3)	84.3,51.8 49.5,50.3 9.43,9.85 10.2,9.91 34.3,14.9
	Conve rgenc e Speed	1 Please	256 see figur	0.005 es	0.9	No	50	100	sigmoid	rmspr	(7,7)	(2,2)	98.9,98.0
	Comm ents/d iscussi ons												
Case 2	CROSS - ENTR OPY												
		Hidd en Layer s	Hidde n Units	Learnin g Rate	Mome ntum Rate/r ho	Input scaling	Epoc hs	Batch- size	Last layer activatio n	Optimi zer used	Filte r size	Max- poo size	Result
	Classif icatio n Accur acy	10 10 8 5 2	256 150 100 100 150 256	0.005 0.01 0.1 0.1 0.01 0.005	0.9 0.7 0.5 0.5 0.7	Yes No Yes No Yes No	50 30 20 20 30 50	100 50 10 10 50 100	Softmax Sigmoid Softmax Sigmoid Softmax sigmoid	Sgd Sgd Rmspr Rmspr Sgd rmspr	(3,3) (5,5) (7,7) (3,3) (5,5) (7,7)	(2,2) (3,3) (5,5) (5,5) (5,5) (3,3) (2,2)	98.3,63.3 97.7,96.7 10.2,10.1 9.35,10.0 97.1,81.7 98.4,96.8

Conve													
rgenc													
е													
Speed													
Comm	Genera	Generally, accuracy increases with increasing epochs. Convolutional neural networks with cross-entropy as loss											
ents/d	functio	n perforr	ns the bes	t.									
iscussi													
ons													

FIGURES (CASE I, CASE B)

