

CLAIMS

1 1. (canceled)

1 2. (previously presented) The method of claim 19, wherein the piezoelectric film is
2 composed of aluminum nitride or zinc oxide.

1 3. (previously presented) The method of claim 19, wherein the patterned electrode is
2 composed of aluminum or titanium.

1 4. (previously presented) The method of claim 19, wherein the substrate is composed of
2 silicon or gallium arsenide.

1 5. (canceled)

1 6. (previously presented) The method of claim 19, wherein the non-conducting layer is
2 planarized by chemical mechanical polishing.

1 7-8. (canceled)

2 9. (previously presented) The method of claim 19, wherein the second layer is a
3 non-conducting layer that has a low dielectric constant.

1 10. (previously presented) The method of claim 19, wherein the second layer is SiO₂.

1 11-18. (canceled)

1 19. (currently amended) A method of forming a thin film acoustic device, the method
2 comprising the steps of:

3 forming a base electrode;

4 forming a second electrode;

5 forming a piezoelectric film between the base electrode and the second electrode to enable
6 application of an electric field to the piezoelectric film, wherein the foregoing is accomplished by:

7 providing a substrate;

8 depositing and patterning a first conductive layer to define the base electrode with an
9 edge region having a first height relative to the substrate; and

10 placing a second layer of material over the substrate with a portion positioned along the
11 edge region of the base electrode, said portion having a height relative to the substrate so as to eliminate
12 or substantially reduce a step along the base electrode edge region relative to the first height, wherein the
13 second layer of material is formed by:

14 depositing a ~~non-conductive~~ non-conducting layer after patterning the first conductive layer; and

15 planarizing the non-conducting layer by chemical mechanical polishing, polymer planarization,
16 or polymer reflow with liftoff.

1 20. (previously presented) The method of claim 19, wherein the step of forming the
2 piezoelectric film includes depositing the piezoelectric film on the patterned electrode and the second
3 layer.

1 21. (previously presented) The method of claim 19, wherein the piezoelectric film serves as
2 a support membrane for the device.

1 22. (previously presented) A method of forming a thin film acoustic device, comprising:
2 forming a base electrode on a substrate;
3 patterning the base electrode;
4 depositing a non-conducting layer on the patterned base electrode and substrate;
5 planarizing the non-conducting layer by chemical mechanical polishing, polymer planarization,
6 or polymer reflow with liftoff so that the non-conducting layer and patterned base electrode form a
7 continuous layer having a level surface;
8 forming a piezoelectric layer on the level surface of the continuous layer; and
9 forming a second electrode so that the piezoelectric layer is positioned between the base
10 electrode and the second electrode to enable application of an electric field to the piezoelectric film.

1 23. (previously presented) The method of claim 22, wherein the level surface provided by
2 the planarized non-conducting layer and patterned electrode improves the mechanical integrity of the
3 piezoelectric layer by eliminating the edge of the patterned electrode.

1 24. (canceled)

1 25. (canceled)

1 26. (previously presented) The method of claim 19, wherein the non-conducting layer is
2 planarized by polymer reflow with liftoff.

1 27. (currently amended) The method of claim 19, wherein the base electrode is formed by:
2 applying the first conductive layer of ~~electrode material~~ on the substrate;
3 applying and patterning non-electrode material over the first conductive layer of ~~electrode~~
4 ~~material~~ to form an etch mask;
5 etching the first conductive layer ~~electrode material~~ to form the base electrode under the non-
6 electrode material;
7 applying the ~~second layer~~ of non-conducting layer ~~material~~ over the non-electrode material and
8 adjacent to the base electrode; and
9 removing the non-conducting layer ~~material~~ over the non-electrode material and removing the
10 non-electrode material, leaving the non-conducting layer ~~material~~ adjacent to the base electrode.

1 28. (previously presented) The method of claim 22, wherein the non-conducting layer is
2 planarized by chemical mechanical polishing.

1 29. (previously presented) The method of claim 22, wherein the non-conducting layer is
2 planarized by polymer reflow with liftoff.

1 30. (previously presented) The method of claim 22, wherein the continuous layer is formed
2 by:
3 applying a layer of electrode material on the substrate;
4 applying and patterning a layer of non-electrode material over the layer of electrode material to
5 form an etch mask;
6 etching the electrode material to form the base electrode under the non-electrode material;
7 applying non-conducting material over the non-electrode material and adjacent to the base
8 electrode; and
9 removing the non-conducting material over the non-electrode material and the non-electrode
10 material, leaving the non-conducting material adjacent to the base electrode.

1 31. (previously presented) The method of claim 30, wherein:

2 the non-electrode material is a polymer material; and
3 the non-conducting material over the polymer material and the polymer material are removed by
4 immersion in a liquid polymer solvent to lift off the non-conducting material over the polymer material.

1 32. (previously presented) The method of claim 30, wherein:
2 the electrode material is etched using an isotropic process to create the base electrode having an
3 undercut profile under the non-electrode material; and
4 the non-electrode material over the base electrode is reflowed after creating the base electrode
5 having the undercut profile to retract the non-electrode material towards the edge of the electrode.

1 33. (previously presented) The method of claim 32, wherein:
2 the non-electrode material is a polymer material; and
3 the non-conducting material over the polymer material and the polymer material are removed by
4 immersion in a liquid polymer solvent to lift off the non-conducting material over the polymer material.