

# Parallelisierung einer speichereffizienten Approximation der LZ77-Faktorisierung

Gajann Sivarajah



## **LZ-Kompression - Konzept**

Eingabe:  $S=e_1...e_n$ 

 $ullet e_i \in \Sigma = \{0,\ldots,255\}$ 

Ausgabe:  $F=(f_1,\ldots,f_z)$ 

 $ullet f_1 \cdots f_z = S$ 

•  $f_i = \begin{cases} (L\ddot{a}\, nge, Position) &, ext{falls Referenz} \ (0, Zeichen) &, ext{sonst} \end{cases}$ 

Algorithmus:  $COMP_{LZ}: S 
ightarrow F \Longleftrightarrow DECOMP_{LZ}: F 
ightarrow S$ 



## **LZ-Kompression - Gütemaße**

#### **Qualität:**

$$ullet FR = rac{z}{n} \Longleftrightarrow CR = rac{|F|_{Bin}}{|S|_{Bin}}$$

#### Zeit:

ullet T(n,p), hier n:=200MB und  $p=16\lor128$ 

#### **Speicher:**

•  $Mem_{Peak} :=$  Spitze der allokierten Speichers



#### **LZ77**

#### **Konzept:**

- Scanne von links nach rechts
- ullet Maximiere jeden Faktor  $|f_i| o Greedy$

#### **Zeit / Speicher:**

- Zeit: O(n)
- Speicher: O(n)

3



#### **Ablauf:**

- Rundenbasierter Algorithmus
- ullet Runde  $r \Rightarrow$  Extrahiere Faktoren der Länge  $\dfrac{|S|}{2^r}$
- ullet Letzte Runde  $r_{End} = \log |S| \Rightarrow$  Alle Zeichen sind faktorisiert



#### **Runde:**

- (Noch unverarbeitete) Zeichenfolge in Blöcke aufteilen
- Unter den Blöcken Duplikate/Referenzen finden(InitTables)
- Freie Suche nach Referenzen in S (ReferenceScan)
- Extrahiere Faktoren aus Referenzen



#### **InitTables**

- ullet Erzeuge RFPTable und RefTable:
  - $\circ RFPTable(RFP) = Linkester Block mit RFP als Hash$

$$\circ \ RefTable(Block) = \begin{cases} \text{Position einer Referenz zu } Block &, \text{falls bekann} \\ \text{Position von } Block &, \text{sonst} \end{cases}$$

ullet Blöcke, die nicht in RFPTable eingetragen werden  $\Rightarrow$  Faktoren

6



#### ReferenceScan

- Scan von links nach rechts  $\Rightarrow$  Bewege RFP-Fenster
- Treffer in RFPTable + Links von Eintrag in RefTable  $\Rightarrow$  Faktor

Gajann Sivarajah



# **Approx. LZ77 - Güte**

**Zeit:**  $O(n \log n)$ 

Speicher: O(z)



# Approx. LZ77Par - S ⇒ Blöcke





# Approx. LZ77Par - InitTables



10



## **Approx. LZ77Par - ReferenceScan**



ajann Sivarajah



# **Optimierungen - DynStart**

Gajann Sivarajah  $oldsymbol{1}$ 



# **Optimierungen - DynEnd**

ajann Sivarajah 13



# **Optimierungen - PreMatching**

Sajann Sivarajah 14



## **Optimierungen - ScanSkip**

 $ullet \ |F_{ReferenceScan}| \leq |RFPTable| = |Blocks| - |F_{InitTables}|$ 

• 
$$k = \frac{|RFPTable|}{|Blocks|}$$

ullet Führe ReferenceScan nur bei  $k \geq k_{min} \in [0,1]$  durch

15



# **Evaluation - Qualität**

| СОМР            | proteins | sources | dna  | xml  | english |
|-----------------|----------|---------|------|------|---------|
| LZ77            | help     | help    | help | help | help    |
| Approx. LZ77    | help     | help    | help | help | help    |
| Approx. LZ77Par | help     | help    | help | help | help    |

Sajann Sivarajah 16



# **Evaluation - Speicher**

| СОМР            | proteins | sources | dna  | xml  | english |
|-----------------|----------|---------|------|------|---------|
| LZ77            | help     | help    | help | help | help    |
| Approx. LZ77    | help     | help    | help | help | help    |
| Approx. LZ77Par | help     | help    | help | help | help    |

Sajann Sivarajah 1



# **Evaluation - Zeit**

ajann Sivarajah 18



# **Evaluation - Optimierungen**





Sajann Sivarajah  $oldsymbol{1}$ 



## Zusammenfassung

- Approx. LZ77 → Approx. LZ77Par: Korrektheit nachgewiesen
- Zeitersparnis durch Optimierungen nachgewiesen
- Zeit(Approx. LZ77Par) < Zeit(LZ77) < Zeit(Approx. LZ77)</li>
- Speicher(Approx. LZ77Par)  $\approx$  Speicher(Approx. LZ77) < Speicher(LZ77)

#### **Offene Punkte**

- Alternative Techniken (Hashtabelle, Bloom-Filter,...)
- ullet Dynamische Generierung der Parameter  $r_{PreMatch}$  und  $k_{min}$
- Zweite und Dritte Phase des Approximationsalgorithmus

Gajann Sivarajah