香港中文大學

版權所有 不得翻印 Convright Reserved

The Chinese University of Hong Kong

二零一零至一一年度 上學期科目考試

Course Examination 1st Term, 2010 - 11

科目編號及名稱 Course Code & Title :	MATH1510A	UNIVERSIT	Y MATHE	EMATICS F	OR ENGINEERING
時間 Time allowed :	2	小時 hours	00	分鐘 minutes	
學生編號			座號	·	
Student I D. No. •			Seat No .		

Answer ALL questions. Justify all your steps.

- 1. (a) Sketch the function $f(x) = \frac{x}{(x+1)x(x-1)}$.
 - (b) Let $k(x) = (\sin x)^x$. Compute k'(x).
 - (c) Let $f(x) = \frac{x}{1+x}$, $g(x) = \sqrt{1+x}$, compute f(g(x))'.
- 2. (a) Write down the Taylor's polynomial of degree 3 centered at 1 for the function

$$f(x) = \sqrt{x}.$$

(b) Compute the value of

 $\sin 3$

with an error less than 0.001 using Taylor's theorem.

- 3. (a) Let the function $f:(a,b)\to\mathbb{R}$ satisfy f'(x)>0 for each x in (a,b). Show that it is a strictly increasing function.
 - (b) Compute the limit

$$\lim_{x \to \infty} x^{\left(\frac{1}{1+x^2}\right)}.$$

4. (a) Compute the indefinite integral

$$\int \frac{x^2+1}{x+1} dx.$$

(b) Compute the definite integral

$$\int_0^{\pi} (\sin x) \cdot (\cosh x) dx.$$

5. (a) Find the inverse of the following 3×3 matrix.

$$\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

(b) Let $a(x), b(x), \dots, i(x)$ be differentiable functions. Consider the function

$$f(x) = \left| \begin{array}{ccc} a(x) & b(x) & c(x) \\ d(x) & e(x) & f(x) \\ g(x) & h(x) & i(x) \end{array} \right|.$$

Show the following formula: (' means derivative with respect to x)

$$f'(x) = \begin{vmatrix} a'(x) & b(x) & c(x) \\ d'(x) & e(x) & f(x) \\ g'(x) & h(x) & i(x) \end{vmatrix} + \begin{vmatrix} a(x) & b'(x) & c(x) \\ d(x) & e'(x) & f(x) \\ g(x) & h'(x) & i(x) \end{vmatrix} + \begin{vmatrix} a(x) & b(x) & c'(x) \\ d(x) & e(x) & f'(x) \\ d(x) & e(x) & f'(x) \\ g(x) & h(x) & i'(x) \end{vmatrix}.$$

----- End of Paper -----