Trigonometric Formula Sheet Definition of the Trig Functions

Right Triangle Definition

Assume that:

$$0 < \theta < \frac{\pi}{2}$$
 or $0^{\circ} < \theta < 90^{\circ}$

$$\sin \theta = \frac{opp}{hyp}$$
 $\csc \theta = \frac{hyp}{opp}$ $\cos \theta = \frac{adj}{hyp}$ $\sec \theta = \frac{hyp}{adj}$ $\tan \theta = \frac{opp}{adj}$ $\cot \theta = \frac{adj}{opp}$

Unit Circle Definition

Assume θ can be any angle.

Domains of the Trig Functions

$$\sin \theta$$
, $\forall \theta \in (-\infty, \infty)$

$$\cos \theta$$
, $\forall \theta \in (-\infty, \infty)$

$$\tan \theta$$
, $\forall \theta \neq \left(n + \frac{1}{2}\right)\pi$, where $n \in \mathbb{Z}$

$$\csc \theta$$
, $\forall \theta \neq n\pi$, where $n \in \mathbb{Z}$

$$\sec \theta$$
, $\forall \theta \neq \left(n + \frac{1}{2}\right)\pi$, where $n \in \mathbb{Z}$

$$\cot \theta$$
, $\forall \theta \neq n\pi$, where $n \in \mathbb{Z}$

Ranges of the Trig Functions

$$-1 \le \sin \theta \le 1$$

$$-1 \le \cos \theta \le 1$$

$$-\infty \le \tan \theta \le \infty$$

$$\csc \theta \ge 1$$
 and $\csc \theta \le -1$
 $\sec \theta \ge 1$ and $\sec \theta \le -1$
 $-\infty \le \cot \theta \le \infty$

Periods of the Trig Functions

The period of a function is the number, T, such that $f(\theta + T) = f(\theta)$. So, if ω is a fixed number and θ is any angle we have the following periods.

$$\sin(\omega\theta) \Rightarrow T = \frac{2\pi}{\omega}$$

 $\cos(\omega\theta) \Rightarrow T = \frac{2\pi}{\omega}$
 $\tan(\omega\theta) \Rightarrow T = \frac{\pi}{\omega}$

$$\csc(\omega\theta) \Rightarrow T = \frac{2\pi}{\omega}$$
$$\sec(\omega\theta) \Rightarrow T = \frac{2\pi}{\omega}$$
$$\cot(\omega\theta) \Rightarrow T = \frac{\pi}{\omega}$$

Dr. Rachana Desai

Identities and Formulas

Tangent and Cotangent Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}$

Reciprocal Identities

$$\sin \theta = \frac{1}{\csc \theta}$$
 $\csc \theta = \frac{1}{\sin \theta}$
 $\cos \theta = \frac{1}{\sec \theta}$ $\sec \theta = \frac{1}{\cos \theta}$
 $\tan \theta = \frac{1}{\cot \theta}$ $\cot \theta = \frac{1}{\tan \theta}$

Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$

Even and Odd Formulas

$$\sin(-\theta) = -\sin\theta$$
 $\csc(-\theta) = -\csc\theta$
 $\cos(-\theta) = \cos\theta$ $\sec(-\theta) = \sec\theta$
 $\tan(-\theta) = -\tan\theta$ $\cot(-\theta) = -\cot\theta$

Periodic Formulas

If n is an integer

$$\sin(\theta + 2\pi n) = \sin \theta$$
 $\csc(\theta + 2\pi n) = \csc \theta$
 $\cos(\theta + 2\pi n) = \cos \theta$ $\sec(\theta + 2\pi n) = \sec \theta$
 $\tan(\theta + \pi n) = \tan \theta$ $\cot(\theta + \pi n) = \cot \theta$

Double Angle Formulas

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$= 2\cos^2\theta - 1$$

$$= 1 - 2\sin^2\theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

Degrees to Radians Formulas

If x is an angle in degrees and t is an angle in radians then:

$$\frac{\pi}{180^{\circ}} = \frac{t}{x} \qquad \Rightarrow \qquad t = \frac{\pi x}{180^{\circ}} \ \ \text{and} \ \ x = \frac{180^{\circ} t}{\pi}$$

Half Angle Formulas

$$\sin \theta = \pm \sqrt{\frac{1 - \cos(2\theta)}{2}}$$

$$\cos \theta = \pm \sqrt{\frac{1 + \cos(2\theta)}{2}}$$

$$\tan \theta = \pm \sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}}$$

Sum and Difference Formulas

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

Product to Sum Formulas

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

Sum to Product Formulas

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

Cofunction Formulas

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta \qquad \sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta \qquad \cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$

Dr. Rachana Desai

Unit Circle

For any ordered pair on the unit circle (x,y): $\cos \theta = x$ and $\sin \theta = y$

Dr. Rachana Desai