EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

01129483

PUBLICATION DATE

22-05-89

APPLICATION DATE

14-11-87

APPLICATION NUMBER

62287655

APPLICANT: NIPPON TELEGR & TELEPH CORP

<NTT>:

INVENTOR: MATSUMOTO TAKAO;

INT.CL.

: H01S 3/18 H04B 9/00

TITLE

: LIGHT AMPLIFIER

ABSTRACT: PURPOSE: To obtain a constant gain with respect to injected light without depending upon the state of polarization of the light by mutually crossing the thickness directions of active layers in two semiconductor laser elements arranged onto the same optical path in a cascade manner at right angles to the deflection of light on the optical path.

> CONSTITUTION: Light propagated in a single-mode optical fiber 1 is injected to an active layer 4 in a light amplifier 3 through a SELFOC lens 2, and amplified respectively to TE waves and TM waves only by gains GTE₁, GTM₁ and output. Amplified light is injected to an active layer 7 in a light amplifier 6 through a lens 5", and amplified respectively only by gains GTE2, GTM2 and output. When an optical isolator 10 having no polarized wave dependency is inserted between the light amplifiers 3, 6, light returns to the light amplifier 3 at a pre-stage owing to the incompleteness of a nonreflective film, thus preventing the generation of the increase of noises and the saturation of gains. When an optical filter is used at an outgoing end, the quantity of spontaneous emission light of the light amplifier 3 is reduced.

COPYRIGHT: (C)1989,JPO&Japio

砂日本国特許庁(JP)

①特許出顧公開

@公開特許公報(A)

平1-129483

@int_Cl.4

4

ij

識別記号

庁内整理番号

❸公開 平成1年(1989)5月22日

H 01 S 3/18 H 04 B 9/00 7377-5F 8523-5K

審査請求 未請求 発明の数 2 (全5頁)

⊗発明の名称 光増幅装置

到特 頤 昭62-287655

❷出 額 昭62(1987)11月14日

砂発明者 古賀 正文 第

東京都千代田区内幸町1丁目1番6号 日本電信電話株式

会社内

東京都千代田区内幸町1丁目1番6号 日本電信電話株式

会社内

東京都千代田区内幸町1丁目1番6号 日本電信電話株式

会社内

②出 願 人 日本電信電話株式会社

東京都千代田区内幸町1丁目1番6号

20代理人 并理士 井出 直孝

発明の名称 光増幅装置

- 2. 特許請求の範囲
- (1) 両端面に無反射被膜が設けられた半導体レー ザ素子を光増報器として備えた光増程装置におい て、

同一光路上に縦続に配置された二つの半導体レ ーザ素子を構え、

この二つの半導体レーザ素子は、その活性層の 厚さ方向が上記光路上の光の傾向に対して互いに 直交して配置された

ことを特徴とする先増幅装置。

(2) 両端面に無反射被膜が設けられた半導体レー デ素子を允増福器として備えた光増福装置におい ア

問一光路上に縦続に配置された二つの半導体レ ーザ素子を備え、 この二つの半導体レーザ素子は、その活性層の 厚さ方向が上記光路上の光の偏向に対して互いに 変交して記載され、

上記二つの半導体レーザ素子の間の光路上に実 質的に偏放依存性のない光アイソレータを備えた ことを特徴とする光増報装置。

図 売アイソレータはその出射域に売フィルタを 含む特許請求の範囲第四項に記載の売増幅装置。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は光通信その他の光信号処理に利用する。 特に、半導体レーデ票子を光増報器として利用する光増報要認に関する。

(従来の技術)

従来から半導体レーザ素子は、発展素子ではなく尤増極器として利用されている。このような尤 増幅器として、両端面に無反射被重が設けられた 半導体レーザ素子を1個または複数個被狭に配置 した進行波形光増幅器が知られている。

特閒平1-129483(2)

第6図は一般的な光増報器の構成を示す。ここで、この光増報器61の活性圏62の厚さ方向を×方向とし、活性圏の報方向をy方向とする。この光増報器61を使用するには、一般に、電界の援助方向をy方向とするTE波を×輪およびy軸と直交する z 軸方向に注入する。この場合に、現状では1個の光増報器で最大25dB程度の利得が得られている。

(発明が解決しようとする問題点)

しかし、半導体レーザ素子を光増幅器として使用する場合には、TM放に対する利得が小さい欠点がある。TE放に比べると、TM彼の利得は3~8dB程度小さい。これは、TEモードとTMモードとに対する素子の閉じ込め係数 Γ_{TR} 、 Γ_{TR} が異なるからである。一般に製造されている半導体レーザ素子では、 Γ_{TR} と Γ_{TR} との比 Γ_{TR} / Γ_{TR} は 0.9~0.7 であり、この値を1にすることは現状では困難である。

また、無反射被膜が良好でなければ、TM彼に 対する利得は上述の3~8d8よりさらに小さくな り、利得差が大きくなる。

TE放とTM放とに対する利得差が大きいと、 個光状態に応じて利得が変化してしまう。このため、単一モード尤ファイバを用いた伝送系のよう に個光状態が保持されていない系で先増幅器を用いるには、値波補慎回路が必要となり、送信装置 および中磁装置が複雑となる欠点がある。

これらの問題については、IEBEジャーナル・オブ・クウェンタム・リレクトロニクス第0E-23 独第 6号1987年6月第1011頁ないし第1013頁 (IEBE J. Quantum Electronics Vol. QE-23, No. 6. June 1987, pp1011-1013) や、外田通信技術1985年6月第29頁に詳しく説明されている。

本発明は、以上の問題点を解決し、備光状態に 依存しない光増幅装置を提供することを目的とする。

[問題点を解決するための手段]

本発明の光増幅装置は、四一光路上に縦続に配置された二つの半導体レーデ素子を備え、この二つの半導体レーデ素子を備え、この二つの半導体レーデ素子は、その活性層の厚さ方向

が上記光路上の光の偏向に対して互いに直交して 配置されたことを特徴とする。

さらに、二つの半導体レーザ果子の間の光路上 に、実質的に偏波依存性のない光アイソレータを 備えることが望ましい。また、光の出射端には光 フィルタを設けることが望ましい。

(作用)

本発明の光増幅装置は、同一の条件で製造された二つの半導体レーザ素子を利用し、その活性層の厚さ方向が光路上の光の偏向に対して互いに直交していることから、値光によらず一定の利得を得ることができる。

(実施例)

第1回は本発明第一実施例先増幅装置の構成を 示す。

この光増幅装置は、両端面に無反射被膜が設けられた半導体レーザ素子を光増幅器 3、6として備え、この二つの光増幅器 3、6は同一光路上に縦続に配置され、その活性器 4、7の厚さ方向が光路上の光の偏向に対して互いに変交して配置さ

れている。さらにこの光増幅装置は、光増幅器 3、 6 の間に集光用のレンズ 5 を備えている。

入射側にはセルフォックレンズ2が設けられた 単一モード光ファイバ1が配置され、出射側には セルフォックレンズ8が設けられた単一モード光 ファイバ9が配置される。

単一モード光ファイバ1を伝搬した光は、セルフォックレンズ2を介して光増機器3の活性層4に住入される。この住入光は、TE被およびTM放に対してそれぞれ利得Gvel、Gvelだけ増幅されて出力される。この出力光は、レンズ5を応止して光増幅器6の活性層7に住入される。この注入光は、TE被およびTM被に対してそれぞれ利得Gvel 、Gvel だけ増幅されて出力される。この出力元は、セルフォックレンズ2を介して単一モード光ファイバ9に結合する。

ここで、光増組器3に注入される光のパワーを Pia、この光増組器3の出力光のパワーをPosti、 光増組器6の出力光のパワーをPostiとする。

第2回は光増幅器3による利得を説明する国で

特別平1-129483(3)

..... (2)

ある。ここで、従来例で説明したと同様に、活性 暦4の輝さ方向をx方向とし、活性層の幅方向を y方向とし、光の進行方向を 2 軸とする。

一般に光増幅器3に注入される光は、電界成分 E.、E. およびE. を用いて、

$$\begin{cases} E_x = a_1 \cos(\omega t - kz + \delta_1) \\ E_y = a_2 \cos(\omega t - kz + \delta_2) \\ E_k = 0 \end{cases}$$

と表すことができる。ここで、 ω は光の角接動数であり、kは真空中での伝搬定数であり、 δ 。、 δ 。はそれぞれ E。、E,の位相定数である。

TE波、TM波に対する利得がそれぞれ G_{TRI} (G_{TRI} $\neq G_{TRI}$) なる光増幅器 3 に(i)式で表される光を注入すると、この光増幅器 3 から出力される光は、

(以下本頁余白)

..... (1)

$$\begin{cases} E_{s'} = G_{TR1} \cdot E_{s} \\ = G_{TR1} \cdot a_{s} \cos(\omega t - k z + \delta_{s}) \end{cases}$$

$$E_{s'} = G_{TR1} \cdot E_{s} \\ = G_{TR1} \cdot a_{s} \cos(\omega t - k z + \delta_{s} + \delta_{s})$$

$$E_{s'} = 0$$

と表される。 8。 は光増幅器 3 内における T E 被 と T M 放との伝 機定数の違いからくる位相の遅れ である。

さらにこの光を光増幅器 6に往入すると、

$$E''' = G_{TE2} \cdot E''$$

$$= G_{TE2}G_{TE1} a_1 \cos(\omega t - k z + \delta_1 + \delta_2)$$

$$E''' = G_{TE2}G_{TE1} a_2 \cos(\omega t - k z + \delta_2 + \delta_3)$$

$$E''' = 0$$

となる。これを第3回に示す。

したがって二つの光増幅器3、6による全体的 な利得Gは、

$$\frac{G = P_{0112}/P_{11}}{\sqrt{(G_{712}G_{711}a_1)^2 + (G_{712}G_{721}a_2)^2}}$$

$$= \frac{\sqrt{a_1^2 + a_2^2}}{\sqrt{a_1^2 + a_2^2}}$$
.....(4)

となる。ここで、

とすると、仏式は、

ることを示す。

G = b GTH1 · GTH2

第4回は本発明第二実施例光増報装置の構成を示す。この実施例では、性能向上のために、二つの光増報器3、6の間に個被依存性のない光アイソレータ10が挿入されている。また、光増報器3

と光アイソレータ10との間にはレンズ 5 、が配置され、光アイソレータ10と光増幅器 6 との間にはレンズ 5 、が配置される。これ以外の構成は第一実施例と同等である。

光アイソレータ10の効果について説明する。前段の光増幅器3から出力された光は、後段の先増幅器6に往入されて増幅される。増幅された光の一部は、無反射被膜の不完全性のために、後方すなわち前段の増幅器3の方向にも出力される。また、後段の光増幅器6は、それ自身が多くの自然な出光を出力して、2011年の増加および利得の飽和を引き起こす。光アイソレータ10によりこれを防止することができる。

光アイソレータ10としては個被面依存性のない ものを用いる必要がある。このような光アイソレ ータは、例えばトランザクションズ・オブ・1ECE、 1979年7月第62-C巻第7号 (Trans. IECE, 1979/7, vol. 62-C、No. 7) に示されている。

第5団は木発明第三実施例光増幅装置の構成を

示す。この実路例では、第二実施例におけるレンズ 5 ″ に代えて、光フィルタ11と、その両側に配置されたレンズ12、13とを備える。

光フィルタ11は10dB低下幅が1m以下の光フィルタである。また、レンズ12は、光アイソレータ10からの光をコリメートするためのものであり、レンズ13は光フィルタ11を透過した光を後段の光増幅器6に集光するためのものである。

光フィルタ11としては誘電体多層膜フィルタまたはエタロン板が適しているが、前者の方が損失が少ない。また、誘電体多層膜フィルタを用いる場合には、光軸方向に対して5°程度傾けることにより、反射による特性劣化を緩和できる。

光フィルタ目を用いることにより、後段の光増報器6に注入される前段の光増幅器3の自然放出光量を10d8以上にわたり低減することができる。これにより、後段の光増幅器6の利得飽和の加速および雑音増加を防ぐことができる。

図示していないが、後段の光増幅器 6 の出力側 にも光フィルタを配置することにより、さらに雑 音を低端できる。

以上の実施例では、二つの光増幅器3、6の間で光が直進し、しかもその個光の方向が変化しない場合を例に説明したが、これらの方向が変化しても、その変化の方向に沿って活性層4、7を互いに直交に配置することにより、同様に本発明を実施できる。

(発明の効果)

以上説明したように、本発明の光増幅装置は、 優光状態に依存せずに、住入された光に対して一 定の利得を示す。したがって、偏波面が保存され ない伝送系において、偏光状態に依存せずに一定 の増幅を行うことができる。本発明は、単一モー ド光ファイバを用いた伝送装置に利用して特に効 県がある。

4. 図面の簡単な説明

第1回は本発明第一実施例光増福装置の構成を 示す図。

第2図は光増幅器による利得を説明する図。

第3図は二つの光増福器による利得の効果を示す図。

第4回は本発明第二実施例先増幅装置の構成を 示す図。

第5回は本発明第三実施例光増幅装置の構成を 示す図。

第6図は半導体レーザ素子を用いた一般的な光 増幅器の構成を示す図。

1、9…単一モード光ファイバ、2、8…セルフォックレンズ、3、6…光増福費、4、7…活性層、5、5′、5″、12、13…レンズ、10…先アイソレータ、11…光フィルタ。

特許出職人 日本電信電話株式会社 代理人 弁理士 井 出 直 孝

第一天超时 第 1 阿

特開平1-129483 (5)

光增恒器

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LÎNES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.