Матлог. Основные записи

Мастера конспектов 22 января 2020 г.

Основные моменты.

Содержание

1	Лекция 1.	3
2	Лекция 2.	4
3	Лекция 3.	5

1 Лекция 1.

Определение 1. *Конкатенация* - записали подряд два слова. (A - алфавит, A^* - слова).

Определение 2. *Подслово* - как есть, *вхождение* - учитываем, где начинается подслово. Если подслово стоит в начале, то мы его и называем *начало*, а обозначаем как $\psi \sqsubseteq \varphi$.

Определение 3. w[w'/u, k] - замена подслова w' на u, начинающегося в позиции k.

Определение 4. Фиксированное счётное множество Prop - *пропозициональные переменные*. Язык \mathscr{L} классической пропозициональной логики состоит из переменных, а также символов \to , \lor , \land , \neg и круглых скобочек.

Определение 5. Form (формулы) - наименьшее множество слов в алфавите, замкнутое относительно следующих порождающих правил:

- если $p \in \text{Prop}$, то $p \in \text{Form}$;
- если $\{\varphi, \psi\} \subseteq$ Form, то $(\varphi * \psi) \in$ Form, где * любая из операций в определении выше (если отрицание, то отсительно одногой формулы, конечно).

Лемма 1. Пусть $\{\varphi, \psi\} \subseteq \text{Form } mаковы, что <math>\psi \sqsubseteq \varphi$. Тогда $\psi = \varphi$.

Доказательство. По индукции по мощности большей формулы. База - переменная, очевидно. Иначе ψ представляется в виде "композиции" единственным образом, тогда возьмём первую часть этой композиции и сравним с первой частью того, как φ представляется в виде "композиции". По предположению индукции они должны совпасть, продолжение тривиально.

Лемма 2. Каждую $\varphi \in \text{Form} \setminus \text{Prop}$ можно единственным способом представить в виде $(\theta \to \chi)$, $(\theta \lor \chi)$, $(\theta \land \chi)$ или $\neg \theta$, где $\{\theta, \chi\} \subseteq \text{Form}$ (это я везде безграмотно называю композицией).

 \Box

Доказательство. От противного по лемме 2.

Определение 6. Для каждой $\varphi \in$ Form определим $\mathrm{Sub}(\varphi) := \{ \psi \in$ Form $|\psi \preccurlyeq \varphi \}$ - $nod \phi op-$ мулы.

Лемма 3. Пусть $\varphi \in \text{Form.}$ Тогда каждое вхождение \neq или (является началом вхождения некоторой подформулы.

Доказательство. Возвратная индукция по длине формулы.

Лемма 4. Множество подслов φ - объединение множеств подслов элементов его композиции и его самого.

Доказательство. Из лемм выше.

Определение 7. Оценка (v) - произвольная функция из Prop в $\{0,1\}$, которую можно расширить и до Form (v^*) посредством применения операций к переменным. Если $v^*(\varphi)=1$, то порой пишут $v \Vdash \varphi$.

Определение 8. Формулу называют *выполнимой*, если $v \Vdash \varphi$ для некоторой оценки, и *общезначимой* (тождественно истинной или тавтологией), если $v \Vdash \varphi$ для всех оценок.

Определение 9. Формула семантически следует из множества формул и записывается $\Gamma \vDash \varphi$, если для любой оценки v, любоя формула из множества истина, то φ истина. Формулы называют семантически эквивалентны, и пишут $\varphi \equiv \psi$, если $\vDash \varphi \leftrightarrow \psi$.

2 Лекция 2.

В Гильбертовском исчислении для классической пропозициональной логики используются следующие схемы аксиом (implication, conjunction, disjunction, negotiation):

- (I1). $\varphi \to (\psi \to \varphi)$;
- (I2). $\varphi \to (\psi \to \chi) \to ((\varphi \to \psi) \to (\varphi \to \chi));$
- (C1). $\varphi \wedge \psi \rightarrow \varphi$;
- (C2). $\varphi \wedge \psi \rightarrow \psi$;
- (C3). $\varphi \to (\psi \to \varphi \land \psi)$;
- (D1). $\varphi \to \varphi \lor \psi$;
- (D2). $\psi \to \varphi \lor \psi$;
- (D3). $(\varphi \to \chi) \to ((\psi \to \chi) \to (\varphi \lor \psi \to \chi));$
- (N1). $(\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi);$
- (N2). $\neg \varphi \rightarrow (\varphi \rightarrow \psi)$;
- (N3). $\varphi \vee \neg \varphi$,

а также, одно правило вывода, которое называется $modus \ ponents$:

$$\begin{array}{ccc} \varphi & \varphi & \rightarrow & \psi \\ \hline & \psi & \end{array}$$

Определение 10. Пусть $\Gamma \subseteq$ Form, тогда выводом из него в гильбертовском исчислении понимают конечную последовательность $\varphi_0, \ldots, \varphi_n \ (n \in \mathbb{N})$ элементов Form, что для каждого $i \in \{0, \ldots, n\}$ выполнено одно из следующиъ условий:

- φ_i аксиома;
- φ_i элемент Γ ;
- $\exists \{j,k\} \subseteq \{0,\ldots,i-1\}$ такие, что φ_k есть $\varphi_j \to \varphi_i$.

При этом, φ_n - заключение, а элементы Γ - гипотезы. Если φ выводится из Γ , то пишут $\Gamma \vdash \varphi$.

Основные свойства ⊢:

- монотонность;
- транзитивность;
- компактность (если $\Gamma \vdash \varphi$, то $\Delta \vdash \varphi$ для некоторого конечного $\Delta \subseteq \Gamma$).

Теорема 1. (О дедукции). Для любых $\Gamma \cup \{\varphi, \psi\} \subseteq \text{Form}$,

$$\Gamma \cup \{\varphi\} \vdash \psi \iff \Gamma \vdash \varphi \to \psi.$$

Доказательство. В одну правую сторону очевидно, в обратную - по индукции по $i \in \{0,1,\ldots,n\}$ показываем, что $\Gamma \vdash \varphi \to \psi_i$, там три случая, и все, кроме одного, тривиальны.

Введём обозначения: $\top := p \to p$ и $\bot := \neg \top$, где p - фиксированная пропозициональная переменная.

Следствие 1. Для любых $\Gamma \cup \{\varphi\} \subseteq Form$,

$$\Gamma \vdash \varphi \iff \vdash \bigwedge_{i=1}^{n} \psi_i \to \varphi$$

для некоторых $\{\varphi_1, \ldots, \varphi_n\} \subseteq \Gamma$.

Доказательство. Влево - очевидно, вправо - очевидно и применяется теорема о дедукции.

П

Лемма 5. Всякая аксиома гильбертовского исчисления для классической пропозициональной логики общезначима.

Теорема 2. (О корректности). Для любых $\Gamma \cup \{\varphi\} \subseteq \text{Form}$,

$$\Gamma \vdash \varphi \Longrightarrow \Gamma \vDash \varphi.$$

Доказательство. Фиксируем вывод $\varphi_0, \dots, \varphi_n = \varphi$. Затем рассматриваем произаольную оценку v такую что $v \Vdash \psi$ для всех $\psi \in \Gamma$ и покажем по индукции по $i \in \{0, \dots, n\}$, что $v \Vdash \varphi_i$.

Определение 11. $\Gamma \subseteq$ Form называется *простой теорией*, если оно обладает следующими свойствами:

- $\Gamma \neq \text{Form}$;
- $\{\varphi \in \text{Form } | \Gamma \vdash \varphi \} \subseteq \Gamma;$
- для любого $\varphi \lor \psi \in \Gamma$ верно $\varphi \in \Gamma$ или $\psi \in \Gamma$.

Лемма 6. Пусть Γ - простая теория, тогда для любых её элементов можно переписать действия над ними в рамках принадлежности к теории.

Лемма 7. (О расширении. а.к.а. Линденбаума). Пусть $\Gamma \cup \{\varphi\} \subseteq$ Form таковы, что $\Gamma \nvdash \varphi$. Тогда существует простая теория $\Gamma' \supseteq \Gamma$ такая, что $\Gamma' \nvdash \varphi$.

Доказательство. Рекурсивно докидываем к Γ элементы Form (их счётно).

3 Лекция 3.

Для каждой простой теории Γ определим оценку v_{Γ} по правилу $v_{\Gamma}(p):=1,$ если $p\in\Gamma$ и 0 иначе.

Лемма 8. Пусть Γ - простая теория. Тогда для любой $\varphi \in \mathrm{Form},$

$$v_{\Gamma} \Vdash \varphi \Longleftrightarrow \varphi \in \Gamma$$

Доказательство. Индукция по построению φ , используя лемму 6.

Теорема 3. (О сильной полноте \vdash). Для любых $\Gamma \cup \{\varphi\} \subseteq \mathrm{Form}$,

$$\Gamma \vdash \varphi \Longleftrightarrow \Gamma \vDash \varphi.$$

В частности, $\Gamma \not\vdash \bot$ если и только если $\Gamma \not\vdash \bot$, а значит, Γ непротиворечиво если и только если Γ выполнимо.

Доказательство. Вправо - теорема о корректности, влево - от противного, рассматриваем Γ' , как в лемме 7.

Теорема 4. (О слабой полноте \vdash). Для любой $\varphi \in \text{Form}$,

$$\vdash \varphi \Longleftrightarrow \vDash \varphi$$

то есть, выводимость из пустого равносильна обзезначимости,

Теорема 5. (О компактности \models). Для любых $\Gamma \cup \{\varphi\} \subseteq \text{Form}$,

$$\Gamma \vDash \varphi \Longleftrightarrow \Delta \vDash \varphi$$

для некоторого конечного $\Delta \subseteq \Gamma$. В частности, $\Gamma \nvDash \bot$ тогда и только тогда, когда $\Delta \nvDash \bot$ для всех конечных $\Delta \subseteq \Gamma$, а значит, Γ выполнимо тогда и только тогда, когда всякое конечное подмножество Γ выполнимо.

Утверждение 1. Слабая полнота \vdash плюс компактность \models равно сильная полнота \vdash .

Определение 12. Сигнатура - четвёрка вида

$$\sigma = \langle \operatorname{Pred}_{\sigma}, \operatorname{Func}_{\sigma}, \operatorname{Const}_{\sigma}, \operatorname{arity}_{\sigma} \rangle,$$

где первые три - попарно непересекающиеся множества, а последнее - функция из $\operatorname{Pred}_{\sigma} \cup \operatorname{Func}_{\sigma}$ в $\mathbb{N} \setminus \{0\}$.

Определение 13. σ -структура - пара вида

$$\mathfrak{A} = \langle A, I_{\mathfrak{A}} \rangle,$$

где A - непустое множество, а $I_{\mathfrak{A}}$ - функция с областью определения $\operatorname{Pred}_{\sigma} \cup \operatorname{Func}_{\sigma} \cup \operatorname{Const}_{\sigma}$, такая что:

- для любого n-местного $P \in \operatorname{Pred}_{\sigma}$ верно $I_{\mathfrak{A}}(P) \subseteq A^n$;
- для любого m-местного $f \in \operatorname{Func}_{\sigma}$ верно $I_{\mathfrak{A}}(f): A^m \to A;$
- для любого $c \in \text{Const}_{\sigma}$ верно $I_{\mathfrak{A}}(c) \in A$.

При этом, A - носитель, а $I_{\mathfrak{A}}$ - интерпретация σ в \mathfrak{A} .

Определение 14. Пусть $\mathfrak A$ b $\mathfrak B$ - две σ -структуры. Говорят, что $\xi:A\to B$ есть *гомоморфизм* из $\mathfrak A$ в $\mathfrak B$, если выполнены следующие условия:

• для любого n-местного предиката и всех $(a_1, \ldots, a_n) \in A^n$,

$$(a_1,\ldots,a_n)\in P^{\mathfrak{A}}\Rightarrow (\xi(a_1),\ldots,\xi(a_n))\in P^{\mathfrak{B}};$$

• для любого m-местного функционала и всех $(a_1, \ldots, a_m) \in A^m$,

$$\xi(f^{\mathfrak{A}}(a_1,\ldots,a_m)) = f^{\mathfrak{B}}(\xi(a_1),\ldots,\xi(a_m));$$

7

• для любой константы,

$$\xi(c^{\mathfrak{A}}) = c^{\mathfrak{B}}.$$

Определение 15. Инъективный гомоморфизм называют *сложением*, если выполнено усиление первого пункта, где следствие заменяется на равносильность.

Определение 16. Сюръективное вложение называют *изоморфизмом* и пишут $\mathfrak{A} \simeq \mathfrak{B}$, если они изоморфны, т.е. между ними существует изоморфизм.

Определение 17. *Автоморфизм* - изоморфизм на себя. $\mathrm{Aut}(\mathfrak{A})$ - множество всех автоморфизмов \mathfrak{A} .