CINÉTICA DE LAS REACCIONES

I. OBJETIVOS

- Determinar el orden de la reacción del ion yoduro (I^-) con el ion peroxodisulfato ($S_2O_8^{2-}$) con respecto a cada reactivo.
- Determinar la ley de velocidad para la reacción estudiada.
- Determinar el efecto de la temperatura y catalizadores en la reacción estudiada.

II. FUNDAMENTO TEÓRICO

La velocidad y los mecanismos de las reacciones químicas constituyen el campo de estudio de la cinética química o cinética de las reacciones.

Realizar un estudio cinético es determinar el orden de la reacción, la ecuación cinética y la energía de activación; además implica establecer el mecanismo molecular de la transformación de reactivos en productos.

Experimentalmente se ha encontrado que la velocidad de una reacción depende de la temperatura, naturaleza y concentración de las especies implicadas. La presencia de un catalizador puede aumentar la velocidad considerablemente.

Mediante el análisis de la velocidad de una reacción y de su dependencia respecto a los factores enunciados, se puede aprender mucho sobre las etapas por las que los reaccionantes se transforman en productos.

Reacciones con Yodo

El yodo es soluble en agua en la proporción de 0,001 moles por litro a la temperatura ambiente. Sin embargo en presencia de yoduros solubles como el yoduro potásico, aumenta la solubilidad por formación del complejo triyoduro:

$$I_2 + I^- \rightarrow I_3^- \tag{1}$$

El ion triyoduro es el ion principal en las disoluciones de yodo pero por conveniencia en la representación de las ecuaciones se escribirá normalmente I_2 en lugar del complejo I_3 .

El yodo se puede usar como valorante en dos técnicas llamadas:

a. Yodimetría: es un método directo en el que se utiliza una disolución patrón de yodo para valorar reductores fuertes, normalmente en disolución neutra o débilmente ácida.

b. Yodometría es un método indirecto en que los oxidantes se determinan haciéndolos reaccionar con un exceso de yoduro; el yodo liberado se valora en disolución débilmente ácida con un reductor patrón, como tiosulfato sódico.

Estos métodos son posibles dado que el potencial normal del sistema:

$$I_3^- + 2e^- \longrightarrow 3 I^-$$
 es $E^0 = +0.536 V$

Entonces, los oxidantes fuertes oxidan el I^- a I_3^- y los reductores fuertes reducen el I_3^- a I^- .

Los métodos en los que interviene el yodo tienen facilidad y sensibilidad para detectar el punto final.

En el método directo, el yodo es autoindicador; una gotita de yodo 0,1 N le da un color amarillo a 200 mL de agua.

En los métodos indirectos se usa el almidón como indicador; cuando se calientan en agua gránulos de almidón, estos se rompen y originan productos de descomposición, entre ellos -amilosa que da lugar a un color azul intenso con yodo en presencia de yoduro. El material coloreado es un complejo de adsorción de yodo, -amilosa y yoduro. El almidón debe prepararse el mismo día de uso porque se descompone y ya no es sensible al yodo.

Una "reacción reloj" es aquella en la que ocurre un cambio de color dramático a un tiempo, determinado por la concentración y la temperatura. La más famosa es la reacción reloj del yodo que se produce entre el ion yoduro y el oxidante fuerte peroxodisulfato. La reacción completa en estudio es:

$$2 I^{-}_{(ac)} + S_{2}O_{8}^{2-} \longrightarrow I_{2(ac)} + 2 SO_{4(ac)}^{2-}$$
 (2)

Cuando se forma el I_2 , se consume con una cantidad fija de tiosulfato, $S_2O_3^{\,2-}$, adicionado:

$$I_{2 \text{ (ac)}} + 2 S_2 O_3^{2-} \longrightarrow 2 I_{\text{(ac)}}^- + S_4 O_6^{2-}$$
 (3)

Una vez que se consume el S $_2$ O $_3$ $^{2-}$, el exceso de I_2 forma un producto azulnegro con el almidón preparado y presente en la solución. Debe notar que la velocidad de aparición de I_2 , en la ecuación (2), es igual a la mitad de la velocidad de desaparición del S $_2$ O $_3$ $^{2-}$, en la ecuación (3).

En el estudio cinético se tomará como tiempo cero el momento de la mezcla, y como punto final la aparición de color azul.

III. PROCEDIMIENTO EXPERIMENTAL

Experimento N° 1: Determinación el orden de la reacción de oxidación del ion yoduro cuando interactúa con el ión peroxodisulfato (temperatura constante)

- 1. En cada uno de cinco tubos coloque la cantidad de peroxodisulfato potásico 0,1 M que indica la tabla 1.
- 2. En otro tubo, coloque yoduro potásico 0,1 M, la cantidad que se indica en la tabla 1; previamente adicione 5 mL del indicador (almidón 2 %) + tiosulfato de sodio 0,0001 M que los sacará de un frasco donde ya se encuentran mezclados y además agregue H₂O. Proceda en las cantidades según la tabla 1.
- 3. Antes de mezclar el tubo de peroxodisulfato y el tubo del yoduro (con el almidón, el tiosulfato y el H_2O) coloque ambos tubos en agua a temperatura ambiente por 5 minutos para lograr homogenizar la temperatura.
- 4. En el tiempo de inicio (tiempo cero) mezcle rápidamente ambas soluciones y homogenice la mezcla. Tome el tiempo cronométricamente hasta la aparición del color azul.

N° de	$K_2S_2O_8$	KI 0,1 M	Almidón +	H ₂ O	Tiempo
Tubo	0,1 M (mL)	(mL)	tiosulfato (mL)	(mL)	
01	2,5	2,5	5	0,0	
02	2,5	2,0	5	0,5	
03	1,5	2,0	5	1,5	
04	2,5	1,0	5	1,5	
05	2,5	0,5	5	2,0	

Tabla 1

Experimento N° 2: Efecto de la temperatura sobre la velocidad de reacción

- 1. Del experimento anterior escoja la mezcla que haya reportado menor valor de velocidad de reacción.
- 2. Seguir el procedimiento anterior. Pero antes de proceder a mezclar el contenido de los dos tubos, calentarlos en "baño maría" por espacio de 5 minutos.

Experimento $N^{\rm o}$ 3: Efecto de los catalizadores sobre la velocidad de reacción

- 1. Del experimento N° 1 escoja la mezcla que haya reportado menor valor de velocidad de reacción y prepare dos muestras de peroxodisulfato potásico de la misma concentración en dos tubos a los que marcará como: "A", "B".
- 2. En el tubo "A" agregue, una gota de nitrato de cobre 1M.
- 3. En el tubo "B" agregue una gota de nitrato de plata 1M.
- 4. Proceda a mezclar con KI + almidón + tiosulfato y agua igual que en el experimento 1.
- 5. Tomar tiempos de reacción y observe si alguna muestra ha sido catalizada.

IV. CÁLCULO

1. Para la Ley de Velocidad considerará la expresión general como:

$$Velocidad = k [I^{-}]^{m} [S_{2}O_{8}^{2-}]^{n}$$

- 2. Calcule la concentración inicial de los reaccionantes considerando los mililitros tomados de cada reactivo y el volumen total de la mezcla que es 10 mL.
- 3. Calcule la concentración del tiosulfato, $S_2O_3^{-2-}$.
- 4. Calcule la velocidad de desaparición del tiosulfato considerando que es el doble de la velocidad de aparición del yodo.