SEMAINE DU 25/01 AU 29/01

1 Cours

Arithmétique

Division dans ℤ Relation de divisibilité. Opérations sur la divisibilité. Relation de congruence. Opérations sur la congruence. Division euclidienne.

Diviseurs et multiples communs PGCD : définition, existence et unicité d'un pgcd positif. Opérations sur le pgcd. Algorithme d'Euclide. Théorème de Bézout. Algorithme d'Euclide étendu. Nombres premiers entre eux. Théorème de Bézout (équivalence). Théorème de Gauss. Si a|n et b|n avec $a \land b = 1$, alors ab|n. Si $a \land n = 1$ et $b \land n = 1$, alors $ab \land n = 1$. PPCM : définition, existence et unicité d'un ppcm positif. Relation $(a \lor b)(a \land b) = |ab|$. Opérations sur le ppcm.

Nombres premiers Définition. Lemme d'Euclide. Tout entier n > 1 admet un diviseur premier. Infinité des nombres premiers. Décomposition en facteurs premiers. Valuation p-adique. Lien avec la divisibilité, le pgcd et le ppcm.

Compléments PGCD d'un nombre fini d'entiers. Théorème de Bézout. Entiers premiers entre eux dans leur ensemble. Théorème de Bézout (équivalence).

2 Méthodes à maîtriser

- De manière générale, divisibilité = factorisabilité.
- Montrer que deux entiers positifs sont égaux en montrant qu'ils se divisent l'un l'autre (notamment pour montrer que deux PGCD sont égaux).
- Pour montrer qu'un entier a divise un entier b, on peut suivant le cas :
 - factoriser b par a (on pensera notamment à la formule de Bernoulli);
 - montrer que $b \equiv 0[a]$.
- Calculer avec des congruences (notamment lorsque $a \equiv 1[n]$, alors $a^k \equiv 1[n]$).
- Caractériser le reste d'une division euclidienne par une relation de congruence.
- Résoudre des équations diophantiennes linéaires i.e. du type ax + by = c avec $a, b, c \in \mathbb{Z}$ et x, y des inconnues entières.
- Résoudre un système de congruences.
- Se ramener à des entiers premiers entre eux en factorisant par le pgcd.
- Pour montrer que des entiers sont premiers entre eux, on peut suivant le cas :
 - montrer que leur PGCD divise 1 et donc vaut 1;
 - exhiber une relation de Bezout;
 - montrer par l'absurde qu'ils ne possèdent pas de diviseur premier commun;
- Montrer qu'un entier p est premier : on se donne un diviseur positif de p et on montre qu'il vaut 1 ou p.

3 Questions de cours

Equations diophantiennes linéaires

Résoudre une équation diophantienne du type ax + by = c au choix de l'examinateur.

Nombres de Mersenne

Soient a et r deux entiers supérieurs ou égaux à 2. On suppose que $a^r - 1$ est premier. Montrer que a = 2 et que r est premier.

Nombres de Fermat

- 1. Soit $m \in \mathbb{N}$ tel que $2^m + 1$ est premier. Montrer qu'il existe $n \in \mathbb{N}$ tel que $m = 2^n$.
- 2. On pose $F_n = 2^{2^n} + 1$ pour $n \in \mathbb{N}$. Soit $(m, n) \in \mathbb{N}^2$ tel que $m \neq n$. Montrer que $F_m \wedge F_n = 1$.

BCCP 86 (petit théorème de Fermat)

- 1. Soit $(a, b, p) \in \mathbb{Z}^3$. Prouver que si $p \wedge a = 1$ et $p \wedge b = 1$, alors $p \wedge ab = 1$.
- 2. Soit *p* un nombre premier.

- (a) Prouver que pour tout $k \in [1, p-1]$, p divise $\binom{p}{k} k!$ et en déduire que p divise $\binom{p}{k}$.
- (b) Prouver par récurrence que : $\forall n \in \mathbb{N}, \ n^p \equiv n[p].$
- (c) En déduire que pour tout entier naturel n non divisible par $p, n^{p-1} \equiv \mathbb{1}[p]$.

BCCP 94

- 1. Enoncer le théorème de Bézout dans \mathbb{Z} .
- 2. Soient a et b deux entiers naturels premiers entre eux. Soit $c \in \mathbb{N}$. Montrer que $(a \mid c \in b \mid c) \iff ab \mid c)$.
- 3. On considère le système (S): $\begin{cases} x \equiv 6[17] \\ x \equiv 4[15] \end{cases}$ d'inconnue $x \in \mathbb{Z}$.
 - (a) Déterminer une solution particulière x_0 de (S) dans \mathbb{Z} .
 - (b) Déduire des questions précédentes la résolution dans $\mathbb Z$ du système ($\mathcal S$).