Project Objective

In this project, you will

- 1. learn how to implement a video system on FPGA.
- 2. get introduced to video hardware functions.
- 3. develop an application that runs on the video system.

Hardware Requirements

- a. Remove the 7-segments components, as well as onchip_memory component, bcd_switches and speed_switches. Keep only the system_mode switches.
- b. Rename the clock source as clock_source_0, nios processor as processor and JTAG-UART
 as jtag components.
- c. Make sure that your processor is on the fast mode (niosII/f) and the instruction and data cache is 4KB.
- d. Add the following components and setup its parameters as shown below. You may also use the diagram in L.6 as a reference.
 - 1. Clock_source_1

name	Conduit name
clock_source_1	sdram_clk

2. System and sdram clock

name	Setting
sys_sdram_pll	DE-Series Board: DE2-115

3. <u>Dual-Clock FIFO</u>

name	Color bits	Color planes
dual_clock_fifo	10	3

4. RGB Resampler

name	Incoming format	Outgoing format
rgb_resampler	24-bit RGB	30-bit RGB

5. SDRAM controller

board device	name	Conduit name	Bit Width	Architecture	Address width	Generic memory
DRAM	sdram_controller	sdram	32	Chip select: 1,	Row: 13,	Enable
				Banks:4	Col: 10	

6. SRAM Controller

Name	conduit	Setting	Enable
sram_controller	sram	DE2-115	Use as pixel buffer for video out

7. Pixel Buffer DMA Controller

name	Addressing Mode	Frame Resolution	Pixel Format
dma_buffer	Consecutive	Width 320, Height 240	24-bit RGB

8. Video Alpha Blender

name	Addressing Mode	Clock	Connection
Video Alpha	Simple	cys_cllk	Connect foreground to video
Blender			Character buffer.
			Connect Background to Video Scaler.
			Connect output to Video FIFO.

9. Video Character Buffer

Transaction	Clock	Connection
Enable	cys_cllk	Connect data/control to processor Avalon data bus.
		Connect output to foreground Alpha blender

10. Scaler

name	Width factor	Height factor	width	Height	Data bits per symbol	Symbol per beat
video_scaler	2	2	320	240	10	3

11. VGA Controller

name	conduit	DE-series Board	Video out device	VGA Resolution
vga	vga	DE2-115	VGA connector	VGA 640 x 480

12. Video clocks for DE-series Boards

Input settings	Video out setting
50 MHz	Enable vga clock

- e. Set reset and exception vectors of NIOS processor to sdram_controller (instead of onchip memory as we had in previous projects).
- f. In Blackboard, along with the assignment, you will find video system_connections.pdf attached which can be used as a reference to connect the components.
- g. **All resets must be connected to the Reset Output (clk_reset) of clock_source_0

Software Requirements

You are required to write a C/C++ application code to execute the functions shown in the following table. Several things are explained below as a guidance you use to write the code.

mode	Function
0	Display the gamecock image
	on the screen
1	Resize the image by factor of
	0.5 (both width and height)
2	Resize the image by factor of
	2 (both width and height)
3	Print message "Video project"

- 1. A software template (ctemplate.c) is attached which you can use it as your reference.
- Two attached documents (file.c and file.h) include the source code of gamecock image and the header file respectively.
- 3. You should add these two files (file.c and file.h) into your application project by doing the following:
 - a. Download the two files into any directory (for example download folder).
 - b. Then, open the folder containing the files (the download folder)
 - c. Drag these two files into your application project.
 - d. The instructor/TA will also explain this during the lecture/lab.
- 4. To access the pixel buffer and dma functions, call the following the header in your application C/C++ code:

```
#include <altera_up_avalon_video_pixel_buffer_dma.h>
```

5. To read the pixel_buffer (or the sram content), use the following code:

```
alt_up_pixel_buffer_dma_dev *my_pixel_buffer;
my_pixel_buffer =
alt_up_pixel_buffer_dma_open_dev("/dev/dma_buffer");
```

6. After that you need to check if the pixel buffer array (my_pixel_buffer) contains the image pixel to do so, add the following code:

```
if(!my_pixel_buffer) printf("Error opening pixel buffer\n");
```

7. Anytime you want to display an image on the screen, try first to clear the screen by calling the following function:

```
alt_up_pixel_buffer_dma_clear_screen(my_pixel_buffer,0);
```

8. To display an image, you need to use the following function and include the following header file:

9. To resize the image by any factor f (where f is a float) and display the new image. For example, to double the image size, f=2.0. You may use the following code.

Project Report (50%)

The project report will be graded out of 100, and the points will be distributed as following:

1.0 (30 points total, each value is 10 points) Run the application project and take a picture for the screen that shows the execution of each function: display image, resize image by 0.5 and resize image by 2.

- **2.0** (70 points) Answer the following questions:
 - a. You are given the following frame.
 - 1. (15 points) Find its resolution
 - 2. (15 points) The coordinates of the red pixel.
 - b. Assume you are required to map the given frame as 24-bit RGB into a pixel memory which its base address is 0x08000000.
 - 1. (20 points) Find the pixel address of the yellow pixel.
 - 2. (20 points) Find the frame size

Project Demo (50%)

- ♣ The main purpose of the demo is to test your project functionality and execution.
- ♣ Demos will be graded out of 100, but worth 50% of total project grade.
- ♣ Both partners must show up in that day. If a member didn't show up, he/she receives 0 unless an excused absence was provided.
- Demos will be conducted during the lab time on the following dates:
 - Wednesday March 15th for group1
 - o Friday March 17th for group2
- Below are how the demo points will be distributed.

Tasks	Point
Display image at mode=0	/25
Resize image by 0.5 at mode=1	/25
Resize image by 2 at mode=2	/25
Questions	/25

Project Submission

- 1. Save the project report as **r4_username1_username2.pdf**, username of both students in the group. Five Points will be deducted if the group didn't save their files as it is explained above.
- 2. For this project, you are required to submit only the project report (No project submission is required). Submission date is <u>Tuesday November 1st before the class starts.</u>
- 3. **Only one attempt** is allowed.
- 4. **Only one group member** can submit the report.
- 5. **Remember:** Any grade dispute must be raised within one week of the grade posting.