- 1. The events A and B have probabilities P(A)=0.3 and P(B)=0.4. Find $P(A\cup B)$ if
 - (a) A and B are mutually exclusive.

(b) A and B are independent.

$$P(AVB) = p(A) + p(B) - p(ANB)$$

= 0.3+ 0.4 - 0.12
= 0.58

2. The second term of an arithmetic series is 7 and the seventh term is 22. Find the sum of the first twenty terms.

$$\begin{cases} a+d=7 & S_{20} = \frac{(4+4+19x3)\times 20}{2} \\ a+6d=22 & = 10\times(8+57) \\ a=4 & = 650 \end{cases}$$

3. The graph of $y = a\cos(b(x+c)) + d$ is shown below. Find the values of a, b, c and d.

4. Two fair tetrahedral dice are thrown. Find the probability that at least one die is a 2 given that sum is less than 6.

(2,3)

5. Two cards are drawn without replacement from a well shuffled pack. Using a clearly labelled tree diagram find the probability that the cards have different colours.

$$P = \frac{1}{2} \cdot \frac{26}{51} \cdot 2 = \frac{26}{51}$$

i' according to the graph,

6. Solve $\frac{3x+6}{2x+5} \ge 1$ expressing your answer in interval notation.

3 x+6 = 2x+3

$$\frac{3}{2}\frac{3+6}{2+5} = 1$$

7. A desk has three drawers. Drawer A contains three gold coins, drawer B contains two gold coins and one silver coin, and drawer C contains one gold coin and two silver coins. A drawer is chosen at random and from it a coin is chosen at random. Given that the chosen coin is gold, find the probability that drawer C was chosen.

$$P(C16) = \frac{\frac{1}{9}}{\frac{1}{3} + \frac{1}{9} + \frac{1}{9}}$$

$$= \frac{1}{\frac{3}{5} + 2 + 1}$$

$$= \frac{1}{\frac{1}{6}}$$

$$P((16) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \frac{1}{6} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

8. Find the exact value of x in the diagram.

mark the two angles as θ .

$$\chi^2 = 1^2 + 4^2 - 2 \cdot 1 \cdot 4 \cdot \omega_5 \theta$$

$$= 3^2 + 4^2 - 2 \cdot 3 \cdot 4 \cdot \omega_5 \theta$$

9. Without the calculator solve $\log_3(2\sin x) = \log_9(\cos 2x + 2)$ for $0 \le x < 2\pi$.

$$log_{3}(2i,inx) = \frac{1}{2}log_{3}(Los_{2}x+2)$$

$$log_{3}(2sinx)^{2} = log_{3}(Cos_{2}x+2)$$

$$4 sin^{2}x = cos^{2}x - sin^{2}x + 2$$

$$5 sin^{2}x = 1 - sin^{2}x + 2$$

$$6 sin^{2}x = \frac{1}{2}$$

$$sin^{2}x = \frac{1}{2}$$

$$sin^{2}x = \frac{1}{2}$$

$$sin^{2}x = \frac{1}{2}$$

$$1 - x = \frac{1}{2}$$

$$2 - x = \frac{1}{2}$$

$$3 - x = \frac{1}{2}$$

$$4 - x = \frac{1}{2}$$

$$3 - x = \frac{1}{2}$$

$$4 - x = \frac{1}{2}$$

$$5 - x = \frac{1}{2}$$

$$5 - x = \frac{1}{2}$$

$$7 - x = \frac{1}{2}$$

$$8 - x = \frac{1}{2}$$

$$\mathcal{L}. \quad \mathcal{A} = \frac{\pi}{4}, \frac{3}{4}\pi.$$

10. Events A and B are such that $P(A) = \frac{1}{2}$, $P(A \mid B) = \frac{3}{7}$ and $P(A \mid B') = \frac{2}{3}$. Find $P(B \mid A)$.

	A	A'	
ß	39		70
В,	0.5-3a		1
	0.5	0.5	T

$$P(B|A) = \frac{P(A\cap B)}{P(A)} = \frac{0.3}{0.5} = \frac{3}{5}$$

Solutions to HL1 Test #6

- 1. (a) 0.7 (b) 0.58
- 2. Since a + d = 7 and a + 6d = 22, we conclude d = 3 and a = 4. Hence $S_{20} = 10(8 + 19 \cdot 3) = 650$.
- 3. $a=2, b=\pi, c=-\frac{1}{2}, d=1$
- 4. Let T be the event of a 2 and L the event of a sum less than 6. Using a lattice diagram, which you should draw, we then have $P(T \mid L) = \frac{5}{10}$.
- 5. Let D be the event of different colours. Using a tree diagram, which you should draw, we have $P(D) = 2 \cdot \frac{1}{2} \cdot \frac{8}{51} = \frac{1}{51} \cdot \frac{1}{51} = \frac{26}{51} \cdot \frac{1}{51}$
- 6. From the graph of $y = \frac{3x+6}{2x+5}$ we conclude $x \in]-\infty, -\frac{5}{2}[\ \cup \ [-1,\infty[, \ \text{or if you prefer} \ x \in \mathbb{R} \setminus [-\frac{5}{2},-1[,\infty[, \]]]]]$
- 7. Using a tree diagram, a Venn diagram or by Bayes' theorem $P(C \mid G) = \frac{\frac{1}{3} \cdot \frac{1}{3}}{\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot \frac{2}{3} + \frac{1}{3} \cdot \frac{1}{3}} = \frac{1}{6}$.
- 8. By applying the cosine rule to both triangles we obtain $x^2 = 4^2 + 1^2 2 \cdot 4 \cdot 1 \cdot \cos \theta$ and $x^2 = 4^2 + 3^2 2 \cdot 4 \cdot 3 \cdot \cos \theta$. Solving simultaneously gives $x = \sqrt{13}$.
- 9. After agreeing on a base of 3 we find $\log_3(2\sin x)^2 = \log_3(\cos 2x + 2)$. Letting $s = \sin x$ gives $4s^2 = (1 2s^2) + 2$, whence $s^2 = 0.5$. As s > 0, we conclud $x = \frac{\pi}{4}, \frac{3\pi}{4}$.
- 10. Now $P(A) = P(B \cap A) + P(B' \cap A) = P(B) \cdot P(A \mid B) + P(B') \cdot P(A \mid B')$. So

$$\frac{1}{2} = P(B) \cdot \frac{3}{7} + (1 - P(B)) \cdot \frac{2}{3},$$

whence P(B) = 0.7. So

$$P(B \mid A) = \frac{P(B)}{P(A)} \cdot P(A \mid B) = \frac{0.7}{0.5} \cdot \frac{3}{7} = \frac{3}{5}.$$