$$B = \begin{cases} 1 & -1 & -1^{2} \\ 1 & 0 & 0^{2} \\ 1 & 1 & 1^{2} \end{cases}, \quad a^{2} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix}, \quad f^{2} \begin{bmatrix} 1 \\ 0 \\ a_{2} \end{bmatrix}, \quad f^{2} \begin{bmatrix} 1 \\ 0 \\ a_{2} \end{bmatrix}, \quad f^{2} \begin{bmatrix} 1 \\ 0 \\ a_{2} \end{bmatrix}, \quad f^{2} \begin{bmatrix} 1 \\ 0 \\ a_{2} \end{bmatrix}, \quad f^{2} \begin{bmatrix} 1 \\ 0 \\ a_{2} \end{bmatrix}, \quad f^{2} \begin{bmatrix} 1 \\ 0 \\ a_{2} \end{bmatrix}, \quad f^{2} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad f^{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad f^{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad f^{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad f^{2}$$

$$= 7 \alpha = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 7 P_n(x) = x^2$$

$$= f_{0} - \frac{(X-Y_{1})(X-X_{2})}{(X_{0}-X_{1})(X_{0}-X_{2})} + f_{1} \cdot \frac{(X-X_{0})(X-X_{2})}{(X_{1}-X_{0})(X_{1}-X_{2})} + f_{2} \cdot \frac{(X-X_{0})(X-X_{1})}{(X_{2}-X_{0})(X-X_{1})} = f_{2} \cdot \frac{(X-X_{0})(X-X_{1})}{(X_{1}-X_{0})(X-X_{1})} + f_{3} \cdot \frac{(X-X_{0})(X-X_{1})}{(X-X_{0})(X-X_{1})} + f_{4} \cdot \frac{(X-X_{0})(X-X_{1})}{(X-X_{0})(X-X_{1})} + f_{4} \cdot \frac{(X-X_{0})(X-X_{1})}{(X-X_{0})(X-X_{1})} + f_{5} \cdot \frac{(X-X_{0})(X-X_{1})}{(X-X_{0})(X-X_{1})} + f_{7} \cdot \frac{(X-X_{0})(X-X_{1})}{(X-X_{0})} +$$

$$C)b_{2}(x) = (x - x_{0})(x - x_{1})$$

$$b_{1}(x) = x - x_{0}$$

$$b_{2}(x) = x - x_{0}$$

$$b_{3}(x) = x - x_{0}$$

$$b_{4}(x) = x - x_{0}$$

$$b_{5}(x) = x - x_{0}$$

$$b_{7}(x) = x - x_{0}$$

$$b_{1}(x) = x - x_{0}$$

$$b_{2}(x) = x - x_{0}$$

$$c_{1}(x) = x - x_{0}$$

$$c_{2}(x) = x - x_{0}$$

$$c_{3}(x) = x - x_{0}$$

$$c_{4}(x) = x - x_{0}$$

$$c_{5}(x) = x - x_{0}$$

$$A_{0} = f_{0} = 1$$

$$A_{1} = \frac{f_{1} - f_{0}}{x_{1} - x_{0}} = \frac{D - 1}{D + 1} = -1$$

$$A_{2} = \frac{f_{2} - f_{1}}{x_{2} - x_{1}} = \frac{f_{1} - f_{0}}{x_{1} - x_{0}}$$

$$= \frac{1 - 0}{1 - 0} = \frac{D - 1}{0 + 1} = 1$$

2. 5 points from
$$[0, \frac{7}{2}]$$
:

(0, 9)

($\sqrt{8}, \sqrt{12}$)

($\sqrt{8}, \sqrt{12}$

with monomial bios:
$$X_0 \times X_0^2 \times X_0^3 \times X_0^4$$

$$B = \begin{bmatrix} 1 & X_1 & X_1^2 & X_1^3 & X_1^4 \\ 1 & X_1 & X_1^2 & X_2^3 & X_2^4 \\ 1 & X_2 & X_2^2 & X_3^3 & X_3^4 \\ 1 & X_4 & X_4^2 & X_4^3 & X_4^4 \end{bmatrix}, \quad \begin{cases} 0 \\ \overline{X_1^2} \\ 0 \\ \overline{X_1^2} \\ 0 \\ 0 \\ 0 \end{cases}$$

P4Ct)=0.99631689x+0.01995143x2-0.20358546x3+

Bound = 1.(8)4 = 0.0014863448

(the bound for SM(X)/5 4th derivative is 1)

Here I plot the error as the yellow line at the top, and the absolute difference P4(+) and the top, which is the blue curve at the bottom. Sincxy, which is the blue curve at the bottom. We can see that the error does not exceed the bound in the interval ID, 21 bound in the interval ID, 21

Set we want not points, then we will use degree n polynomial, thus h should be $\frac{\pi}{n}$.

$$\frac{Mh^{2}}{4n} = 10^{-10}$$

$$\frac{1 \cdot (\frac{7}{5})^{n}}{4n} = 10^{-10}$$

$$\frac{4n}{70^{n}} = 4x \cdot 10^{-10}$$

$$h(2n)^{n} = 4x \cdot 10^{-10}$$

n = 10.27904829 = 711Thus, we at least need n+1=12 points.

Code is given on the next page, and by comparing we can find that the cubic spin line mothod definately gives a much better approximation.

```
f a_generator(n, i_start, i_end):
   h = (i_end - i_start) / (n-1)
   hs = []
   B = []
      hs.append(i_start + (i-1)*h)
      B.append([hs[-1] ** j for j in range(n)])
   B = np.array(B)
   f = np.array([1/(1+25 * x ** 2) for x in hs])
   a = LA.solve(B, f)
   return a
def cubic_denerator(n, i_start, i_end):
   h = (i_end - i_start) / (n-1)
   hs = []
   for i in range(1, n + 1):
      hs.append(i_start + (i-1)*h)
      fx.append(origin(hs[-1]))
   return scipy.interpolate.CubicSpline(hs, fx)
def poly_est(x, a):
    for item in a:
      y += item * x ** i
if __name __ " __ main ":
    # n = 11
   a = a_generator(11, -1, 1)
   x_val_11 = []
   original_fun_11 = []
   poly_11 = []
   for i in np.arange(-1, 1, 0.001):
      x_val_11.append(i)
       original_fun_11.append(origin(i))
       poly_11.append(poly_est(i, a))
   cubic_11 = cubic_denerator(11, -1, 1)
   plt.xlabel("t")
   plt.ylabel("f(t)")
   plt.legend(("f(t)", "poly 11", "cubic 11"))
   plt.show()
   a = a\_generator(21, -1, 1)
   x_val_21 = []
   original_fun_21 = []
   poly_21 = []
   for i in np.arange(-1, 1, 0.001):
      x_val_21.append(i)
       original_fun_21.append(origin(i))
       poly_21.append(poly_est(i, a))
   cubic_21 = cubic_denerator(21, -1, 1)
   plt.plot(x_val_21, original_fun_21, "r", x_val_21, poly_21, "--b", x_val_21, cubic_21(x_val_21), '--g')
   plt.xlabel("t")
   plt.ylabel("f(t)")
   plt.legend(("f(t)", "poly 21", "cubic 21"))
   plt.show()
```