Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 1 of 18

H. grisea CBH1.1

Figure 1: Total Genomic Sequence (1638 nucleotides):

1	ATGCGTACCG	CCAAGTTCGC	CACCCTCGCC	GCCCTTGTGG	CCTCGGCCGC	50
51	CGCCCAGCAG	GCGTGCAGTC	TCACCACCGA	GAGGCACCCT	TCCCTCTCTT	100
101	GGAAGAAGTG	CACCGCCGGC	GGCCAGTGCC	AGACCGTCCA	GGCTTCCATC	150
151	ACTCTCGACT	CCAACTGGCG	CTGGACTCAC	CAGGTGTCTG	GCTCCACCAA	200
201	CTGCTACACG	GGCAACAAGT	GGGATACTAG	CATCTGCACT	GATGCCAAGT	250
251	CGTGCGCTCA	GAACTGCTGC	GTCGATGGTG	CCGACTACAC	CAGCACCTAT	300
301	GGCATCACCA	CCAACGGTGA	TTCCCTGAGC	CTCAAGTTCG	TCACCAAGGG	350
351	CCAGCACTCG	ACCAACGTCG	GCTCGCGTAC	CTACCTGATG	GACGGCGAGG	400
401	ACAAGTATCA	GAGTACGTTC	TATCTTCAGC	CTTCTCGCGC	CTTGAATCCT	450
451	GGCTAACGTT	TACACTTCAC	AG CCTTCGAG	CTCCTCGGCA	ACGAGTTCAC	500
501	CTTCGATGTC	GATGTCTCCA	ACATCGGCTG	CGGTCTCAAC	GGCGCCCTGT	550
551	ACTTCGTCTC	CATGGACGCC	GATGGTGGTC	TCAGCCGCTA	TCCTGGCAAC	600
601	AAGGCTGGTG	CCAAGTACGG	TACCGGCTAC	TGCGATGCTC	AGTGCCCCCG	650
651	TGACATCAAG	TTCATCAACG	GCGAGGCCAA	CATTGAGGGC	TGGACCGGCT	700
701	CCACCAACGA	CCCCAACGCC	GGCGCGGGCC	GCTATGGTAC	CTGCTGCTCT	750
751	GAGATGGATA	TCTGGGAAGC	CAACAACATG	GCTACTGCCT	TCACTCCTCA	800
801	CCCTTGCACC	ATCATTGGCC	AGAGCCGCTG	CGAGGGCGAC	TCGTGCGGTG	850
851	GCACCTACAG	CAACGAGCGC	TACGCCGGCG	TCTGCGACCC	CGATGGCTGC	900
901	GACTTCAACT	CGTACCGCCA	GGGCAACAAG	ACCTTCTACG	GCAAGGGCAT	950
951	GACCGTCGAC	ACCACCAAGA	AGATCACTGT	CGTCACCCAG	TTCCTCAAGG	1000
1001	ATGCCAACGG	CGATCTCGGC	GAGATCAAGC	GCTTCTACGT	CCAGGATGGC	1050
1051	AAGATCATCC	CCAACTCCGA	GTCCACCATC	CCCGGCGTCG	AGGGCAATTC	1100
1101	CATCACCCAG	GACTGGTGCG	ACCGCCAGAA	GGTTGCCTTT	GGCGACATTG	1150
1151	ACGACTTCAA	CCGCAAGGGC	GGCATGAAGC	AGATGGGCAA	GGCCCTCGCC	1200
1201	GGCCCCATGG	TCCTGGTCAT	GTCCATCTGG	GATGACCACG	CCTCCAACAT	1250
1251	GCTCTGGCTC	GACTCGACCT	TCCCTGTCGA	TGCCGCTGGC	AAGCCCGGCG	1300
1301	CCGAGCGCGG	TGCCTGCCCG	ACCACCTCGG	GTGTCCCTGC	TGAGGTTGAG	1350
1351	GCCGAGGCCC	CCAACAGCAA	CGTCGTCTTC	TCCAACATCC	GCTTCGGCCC	1400
1401	CATCGGCTCG	ACCGTTGCTG	GTCTCCCCGG	CGCGGGCAAC	GGCGGCAACA	1450
1451	ACGGCGGCAA	CCCCCCGCCC	CCCACCACCA	CCACCTCCTC	GGCTCCGGCC	1500
1501	ACCACCACCA	CCGCCAGCGC	TGGCCCCAAG	GCTGGCCGCT	GGCAGCAGTG	1550
1551	CGGCGGCATC	GGCTTCACTG	GCCCGACCCA	GTGCGAGGAG	CCCTACACTT	1600
1601	GCACCAAGCT	CAACGACTGG	TACTCTCAGT	GCCTGTAA		1638

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 2 of 18

Figure 2: Putative intron sequence deleted (GTACGTT...CAG = 413-472) Gives the cDNA sequence (1578 nucleotides):

1	ATGCGTACCG	CCAAGTTCGC	CACCCTCGCC	GCCCTTGTGG	CCTCGGCCGC	50
51	CGCCCAGCAG	GCGTGCAGTC	TCACCACCGA	GAGGCACCCT	TCCCTCTCTT	100
101	GGAAGAAGTG	CACCGCCGGC	GGCCAGTGCC	AGACCGTCCA	GGCTTCCATC	150
151	ACTCTCGACT	CCAACTGGCG	CTGGACTCAC	CAGGTGTCTG	GCTCCACCAA	200
201	CTGCTACACG	GGCAACAAGT	GGGATACTAG	CATCTGCACT	GATGCCAAGT	250
251	CGTGCGCTCA	GAACTGCTGC	GTCGATGGTG	CCGACTACAC	CAGCACCTAT	300
301	GGCATCACCA	CCAACGGTGA	TTCCCTGAGC	CTCAAGTTCG	TCACCAAGGG	350
351	CCAGCACTCG	ACCAACGTCG	GCTCGCGTAC	CTACCTGATG	GACGGCGAGG	400
401	ACAAGTATCA	GACCTTCGAG	CTCCTCGGCA	ACGAGTTCAC	CTTCGATGTC	450
451	GATGTCTCCA	ACATCGGCTG	CGGTCTCAAC	GGCGCCCTGT	ACTTCGTCTC	500
501	CATGGACGCC	GATGGTGGTC	TCAGCCGCTA	TCCTGGCAAC	AAGGCTGGTG	550
551	CCAAGTACGG	TACCGGCTAC	TGCGATGCTC	AGTGCCCCCG	TGACATCAAG	600
601	TTCATCAACG	GCGAGGCCAA	CATTGAGGGC	TGGACCGGCT	CCACCAACGA	650
651	CCCCAACGCC	GGCGCGGGCC	GCTATGGTAC	CTGCTGCTCT	GAGATGGATA	700
701	TCTGGGAAGC	CAACAACATG	GCTACTGCCT	TCACTCCTCA	CCCTTGCACC	750
751	ATCATTGGCC	AGAGCCGCTG	CGAGGGCGAC	TCGTGCGGTG	GCACCTACAG	800
801	CAACGAGCGC	TACGCCGGCG	TCTGCGACCC	CGATGGCTGC	GACTTCAACT	850
851	CGTACCGCCA	GGGCAACAAG	ACCTTCTACG	GCAAGGGCAT	GACCGTCGAC	900
901	ACCACCAAGA	AGATCACTGT	CGTCACCCAG	TTCCTCAAGG	ATGCCAACGG	950
951	CGATCTCGGC	GAGATCAAGC	GCTTCTACGT	CCAGGATGGC	AAGATCATCC	1000
1001	CCAACTCCGA	GTCCACCATC	CCCGGCGTCG	AGGGCAATTC	CATCACCCAG	1050
1051	GACTGGTGCG	ACCGCCAGAA	GGTTGCCTTT	GGCGACATTG	ACGACTTCAA	1100
1101	CCGCAAGGGC	GGCATGAAGC	AGATGGGCAA	GGCCCTCGCC	GGCCCCATGG	1150
1151	TCCTGGTCAT	GTCCATCTGG	GATGACCACG	CCTCCAACAT	GCTCTGGCTC	1200
1201	GACTCGACCT	TCCCTGTCGA	TGCCGCTGGC	AAGCCCGGCG	CCGAGCGCGG	1250
1251	TGCCTGCCCG	ACCACCTCGG	GTGTCCCTGC	TGAGGTTGAG	GCCGAGGCCC	1300
1301	CCAACAGCAA	CGTCGTCTTC	TCCAACATCC	GCTTCGGCCC	CATCGGCTCG	1350
1351	ACCGTTGCTG	GTCTCCCCGG	CGCGGGCAAC	GGCGGCAACA	ACGGCGGCAA	1400
1401	CCCCCGCCC	CCCACCACCA	CCACCTCCTC	GGCTCCGGCC	ACCACCACCA	1450
1451	CCGCCAGCGC	TGGCCCCAAG	GCTGGCCGCT	GGCAGCAGTG	CGGCGGCATC	1500
1501	GGCTTCACTG	GCCCGACCCA	GTGCGAGGAG	CCCTACACTT	GCACCAAGCT	1550
1551	CAACGACTGG	TACTCTCAGT	GCCTGTAA			1578

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 3 of 18

Figure 3: Translation of the cDNA sequence gives the *H. grisea var thermoidea* CBH1 precursor (i.e.: with signal sequence) protein sequence (525 amino acids):

1	MRTAKFATLA	ALVASAAAQQ	ACSLTTERHP	SLSWKKCTAG	GQCQTVQASI	50
51	TLDSNWRWTH	QVSGSTNCYT	GNKWDTSICT	DAKSCAQNCC	VDGADYTSTY	100
101	GITTNGDSLS	LKFVTKGQHS	TNVGSRTYLM	DGEDKYQTFE	LLGNEFTFDV	150
151	DVSNIGCGLN	GALYFVSMDA	DGGLSRYPGN	KAGAKYGTGY	CDAQCPRDIK	200
201	FINGEANIEG	WTGSTNDPNA	GAGRYGTCCS	EMDIWEANNM	ATAFTPHPCT	250
251	IIGQSRCEGD	SCGGTYSNER	YAGVCDPDGC	DFNSYRQGNK	TFYGKGMTVD	300
301	TTKKITVVTQ	FLKDANGDLG	EIKRFYVQDG	KIIPNSESTI	PGVEGNSITQ	350
351	DWCDRQKVAF	GDIDDFNRKG	GMKQMGKALA	GPMVLVMSIW	DDHASNMLWL	400
401	DSTFPVDAAG	KPGAERGACP	TTSGVPAEVE	AEAPNSNVVF	SNIRFGPIGS	450
451	TVAGLPGAGN	GGNNGGNPPP	PTTTTSSAPA	TTTTASAGPK	AGRWQQCGGI	500
501	GFTGPTQCEE	PYTCTKLNDW	YSQCL			525

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 4 of 18

Figure 4: Mature (i.e.: expressed protein with the putative signal sequence removed) protein sequence (507 amino acids):

1	QQACSLTTER	HPSLSWKKCT	AGGQCQTVQA	SITLDSNWRW	THQVSGSTNC	50
51	YTGNKWDTSI	CTDAKSCAQN	CCVDGADYTS	TYGITTNGDS	LSLKFVTKGQ	100
101	HSTNVGSRTY	LMDGEDKYQT	FELLGNEFTF	DVDVSNIGCG	LNGALYFVSM	150
151	DADGGLSRYP	GNKAGAKYGT	GYCDAQCPRD	IKFINGEANI	EGWTGSTNDP	200
201	NAGAGRYGTC	CSEMDIWEAN	NMATAFTPHP	CTIIGQSRCE	GDSCGGTYSN	250
251	ERYAGVCDPD	GCDFNSYRQG	NKTFYGKGMT	VDTTKKITVV	TQFLKDANGD	300
301	LGEIKRFYVQ	DGKIIPNSES	TIPGVEGNSI	TQDWCDRQKV	AFGDIDDFNR	350
351	KGGMKQMGKA	LAGPMVLVMS	IWDDHASNML	WLDSTFPVDA	AGKPGAERGA	400
401	CPTTSGVPAE	VEAEAPNSNV	VFSNIRFGPI	GSTVAGLPGA	GNGGNNGGNP	450
451	PPPTTTTSSA	PATTTTASAG	PKAGRWQQCG	GIGFTGPTQC	EEPYTCTKLN	500
501	DWYSQCL					507

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 5 of 18

1 (1) QQACSLTTERHPSLSWKKCTAGGQCQTVQASITLDSNWRWTHQVSGSTNCYTGNKWDTSICTDAKSCAQNCCVDG (1) QQACSLTTERHPSLSWKKCTAGGQCQTVQASITLDSNWRWTHQVSGSTNCYTGNKWDTSICTDAKSCAQNCCVDG (1) QQACSLTTERHPSLSWNKCTAGGQCQTVQASITLDSNWRWTHQVSGSTNCYTGNKWDTSICTDAKSCAQNCCVDG (1) QQACSLTTERHPSLSWKKCTAGGQCQTVQASITLDSNWRWTHQVSGSTNCYTGNKWDTSICTDAKSCAQNCCVDG (1) QQACSLTTERHPSLSWKKCTAGGQCQTVQASITLDSNWRWTHQVSGSTNCYTGNKWDTSICTDAKSCAQNCCVDG	150 (76) ADYTSTYGITTNGDSLSLKFVTKGQHSTNVGSRTYLMDGEDKYQTFELLGNEFTFDVDVSNIGCGLNGALYFVSM (76) ADYTSTYGITTNGDSLSLKFVTKGQYSTNVGSRTYLMDGEDKYQTFELLGNEFTFDVDVSNIGCGLNGALYFVSM (76) ADYTSTYGITTNGDSLSLKFVTKGQHSTNVGSRTYLMDGEDKYQTFELLGNEFTFDVDVSNIGCGLNGALYFVSM (76) ADYTSTYGITTNGDSLSLKFVTKGQHSTNVGSRTYLMDGEDKYQTFELLGNEFTFDVDVSNIGCGLNGALYFVSM (76) ADYTSTYGITTNGDSLSLKFVTKGQHSTNVGSRTYLMDGEDKYQTFELLGNEFTFDVDVSNIGCGLNGALYFVSM	151 DADGGLSRYPGNKAGAKYGTGYCDAQCPRDIKFINGEANIEGWTGSTNDPNAGAGRYGTCCSEMDIWEANNMATA (151) DADGGLSRYPGNKAGAKYGTGYCDAQCPRDIKEINGEANIEGWTGSTNDPNAGAGRYGTCCSEMDIWEANNMATA (151) DADGGLSRYPGNKAGAKYGTGYCDAQCPRDIKFINGEANIEGWTGSTNDPNAGAGRYGTCCSEMDIWEANNMATA (151) DADGGLSRYPGNKAGAKYGTGYCDAQCPRDIKFINGEANIEGWTGSTNDPNAGAGRYGTCCSEMDIWEANNMATA	300 (226) FTPHPCTLIGQSRCEGDSCGGTYSNERYAGYCDPDGCDFNSYRQCNKTFYGKGMTVDTTKKITVVTQFLKDANGD (226) FTPHPCTLIGQSRCEGDSCGGTYSNERYAGYCDPDGCDFNSYRQGNKTFYGKGMTVDTTKKITVVTQFLKDANGD (226) FTPHPCTLIGQSRCEGDSCGGTYSNERYAGYCDPDGCDFNSYRQGNKTFYGKGMTVDTTKKITVVTQFLKDANGD (226) FTPHPCTLIGQSRCEGDSCGGTYSNERYAGYCDPDGCDFNSYRQGNKTFYGKGMTVDTTKKITVVTQFLKDANGD	301 1301) <u>IGBIKRFYVODGKI IPNSESTIPGVEGNSITODWCDROKVAFGDIDDFNRKGGMKOMGKALAGPMVIVMSIWDH</u> (301) <u>IGBIKREYVODGKI IPNSESTI PGVEGNSITODWCDROKVAFGDIDDFNRKGGMKOMGKALAGPMVIVMSIWDH</u> (301) <u>IGEIKREYVODGKI IPNSESTI PGVEGNSITODWCDROKVAFGDIDDFNRKGGMKOMGKALAGPMVIVMSIWDDH</u> (301) LGEIKRFYVQDGKI IPNSESTI PGVEGNSITQDWCDRQKVAFGDIDDFNRKGGMKOMGKALAGPMVIVMSIWDDH	376 <u>FONNCHIDSTERVDANGKPGAERGAOPTISGVPAEVEARAPUSUVAPSNIREGETGSTVAGLPGAGNGGNP</u> (376) <u>PSINITIVEDSTIEPVDANGKRANERGAOPTITSGVPAEVEARAPUSUVAPSNIREGETGST</u> VAGL <u>PGAGNGGNP</u> (376) <u>PSINITIVEDSTIREVDANGKRANERGAOPTITSGVPAEVEARAPUSUVAPSNIREGETGSTVAGLPGAGNGGNP</u> (376) ASNMLWLDSTTFPVDAAGKPGAERGACPTTSGVPAEVEAEAPNSNVVFSNIREGETGSTVAGLPGAGNGGNP	451 <u>Pēpititīssapātītitāsagbkāgrwoogggigergprocepytcikāndwysoci</u> (451) <u>Pēpititīssapātītitāsagbkāgrwoogggigergprocepytcikāndwysoci</u> (451) <u>Pēpititīssapātītītāsagbkāgrwoogggigergprocepy</u> tciklandwysoci
BS 225.63 15 mature 58 mature Consensus	BS 225.63 15 mature 58 mature Consensus	225.63 mature mature	225.63 mature mature nsensus	225.63 mature mature sensus	225.63 mature mature nsensus	225.63 mature mature isensus
CBS D63515 X17258 Cor	CBS D63515 X17258	CBS D63515 X17258	CBS D63515 X17258	CBS D63515 X17258 Con	CBS D63515 X17258 Cor	CBS D63515 X17258 Con

Figure 5. Sequence alignment of two public sequences and variant H. grisea CBH1.1

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 6 of 18

Figure 6: pRAX1

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 7 of 18

Figure 7: Destination vector pRAXdes2 for expression in A. niger

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 8 of 18

Figure 8: Replicative expression pRAXdesCBH1 vector of CBH1 genes under the control of the glucoamylase promotor.

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 9 of 18

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 10 of 18

3 fold rate difference b/n H. grisea and rCBHI Figure 13A

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 12 of 18

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 13 of 18

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 14 of 18

1 ATGCGTACCG	CCAAGTTCGC	CACCCTCGCC	GCCCTTGTGG	CCTCGGCCGC
51 CGCCCAGCAG	GCGTGCAGCC	TCACCACCGA	GAGGCACCCT	TCCCTCTCCT
101 GGAAGAAGTG	CACCGCCGGC	GGCCAGTGCC	AGACCGTCCA	GGCTTCCATC
151 ACTCTCGACT	CCAACTGGCG	CTGGACTCAC	CAGGTGTCTG	GCTCCACCAA
201 CTGCTACACG	GGCAACGAGT	GGGATTCTAG	CATCTGCACT	GATGCCAAGT
251 CGTGCGCTCA	GAACTGCTGC	GTCGATGGTG	CTGACTACAC	CAGCACCTAT
301 GGCATCACCA	CCAACGGTGA	TTCCCTGAGC	CTCAAGTTCG	TCACCAAGGG
351 CCAGTACTCG	ACCAACGTCG	GCTCGCGTAC	CTACCTGATG	GACGGCGAGG
401 ACAAGTATCA	GAGTAGGTTC	TATCTTCAGC	CTTCTCGCGC	CTTGAATCCT
451 GGCTAACTTT	TACACTTCAC	AGCCTTCGAG	CTCCTCGGCA	ACGAGTTCAC
501 CTTCGATGTC	GATGTCTCCA	ACATCGGCTG	CGGTCTCAAC	GGCGCCCTGT
551 ACTTCGTCTC	CATGGACGCC	GATGGTGGTC	TCAGCCGCTA	TCCTGGCAAC
601 AAGGCTGGTG	CCAAGTACGG	TACCGGCTAC	TGCGATGCTC	AGTGCCCCCG
651 TGACATCAAG	TTCATCAACG	GCGAGGCCAA	CATTGAGGGC	TGGACCGGCT
701 CCACCAACGA	CCCCAACGCC	GGCGCGGCC	GCTATGGTAC	CTGCTGCTCT
751 GAGATGGATA	TCTGGGAGGC	CAACAACATG	GCTACTGCCT	TCACTCCTCA
801 CCCTTGCACT	ATCATTGGCC	AGAGCCGCTG	CGAGGGCGAC	TCGTGCGGTG
851 GCACCTACAG	CAACGACCGC	TACGCCGGCG	TCTGCGACCC	CGATGGCTGC
901 GACTTCAACG	CGTATCGCCA	GGGCAACAAG	ACCTTCTACG	GCAAGGGCAT
951 GACCGTCGAC	ACCACCAAGA	AGCTCACCGT	CGTCACCCAG	TTCCTCAAGG
1001 ACGCCAACGG	CGATCTCGGC	GAGATCAAGC	GCTTCTACGT	CCAGGATGGG
1051 AAGATCATCC	CCAACTCCGA	GTCCACCATC	CCCGGCGTCG	AGGGCAACTC
1101 CATCACCCAG	GATTGGTGCG	ACCGCCAGAA	GGTTGCCTTT	GGCGACATTG
1151 ACGACTTCAA	CCGCAAGGGC	GGCATGAAGC	AGATGGGCAA	GGCCCTCGCC
1201 GGCCCCATGG	TCCTGGTCAT	GTCCATCTGG	GATGACCACG	CCTCCAACAT
1251 GCTCTGGCTC	GACTCGACCT	TCCCTGTCGA	TGCCGCTGGC	AAGCCCGGCG
1301 CCGAGCGCGG	TGCCTGCCCG	ACCACCTCGG	GTGTCCCTGC	TGAGGTTGAG
1351 GCCGAGGCCC	CCAACAGCAA	CGTCGTCTTC	TCCAACATCC	GCTTCGGCCC
1401 CATCGGCTCG	ACCGTTGCCG	GCCTTCCCAG	CGATGGCGGC	AACAACGGCG
1451 GCAACACCAC	CGTCCAGCCC	CCGCCCAGCA	CCACCACCAC	CTCTGCCAGC
1501 AGCAGCACCA	CCTCGGCTCC	TGCCACCACC	ACCACCGCCA	GCGCTGGCCC
1551 CAAGGCTGGC	CGCTGGCAGC	AGTGCGGCGG	CATCGGCTTC	ACTGGCCCGA
1601 CCCAGTGCGA	GGAGCCCTAC	ACTTGCACCA	AGCTCAACGA	CTGGTACTCT
1651 CAGTGCCTGT	AA			

Figure 14A
Scytalidium thermophilium CBH1 Genomic DNA

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 15 of 18

1	ATGCGTACCG	CCAAGTTCGC	CACCCTCGCC	GCCCTTGTGG	CCTCGGCCGC
	CGCCCAGCAG	GCGTGCAGCC	TCACCACCGA	GAGGCACCCT	TCCCTCTCCT
101	GGAAGAAGTG	CACCGCCGGC	GGCCAGTGCC	AGACCGTCCA	GGCTTCCATC
	ACTCTCGACT	CCAACTGGCG	CTGGACTCAC	CAGGTGTCTG	GCTCCACCAA
201	CTGCTACACG	GGCAACGAGT	GGGATTCTAG	CATCTGCACT	GATGCCAAGT
	CGTGCGCTCA	GAACTGCTGC	GTCGATGGTG	CTGACTACAC	CAGCACCTAT
301	GGCATCACCA	CCAACGGTGA	TTCCCTGAGC	CTCAAGTTCG	TCACCAAGGG
	CCAGTACTCG	ACCAACGTCG	GCTCGCGTAC	CTACCTGATG	GACGGCGAGG
401	ACAAGTATCA	GACCTTCGAG	CTCCTCGGCA	ACGAGTTCAC	CTTCGATGTC
	GATGTCTCCA	ACATCGGCTG	CGGTCTCAAC	GGCGCCCTGT	ACTTCGTCTC
501	CATGGACGCC	GATGGTGGTC	TCAGCCGCTA	TCCTGGCAAC	AAGGCTGGTG
	CCAAGTACGG	TACCGGCTAC	TGCGATGCTC	AGTGCCCCCG	TGACATCAAG
601	TTCATCAACG	GCGAGGCCAA	CATTGAGGGC	TGGACCGGCT	CCACCAACGA
	CCCCAACGCC	GGCGCGGCC	GCTATGGTAC	CTGCTGCTCT	GAGATGGATA
701	TCTGGGAGGC	CAACAACATG	GCTACTGCCT	TCACTCCTCA	CCCTTGCACT
	ATCATTGGCC	AGAGCCGCTG	CGAGGGCGAC	TCGTGCGGTG	GCACCTACAG
801	CAACGACCGC	TACGCCGGCG	TCTGCGACCC	CGATGGCTGC	GACTTCAACG
	CGTATCGCCA	GGGCAACAAG	ACCTTCTACG	GCAAGGGCAT	GACCGTCGAC
901	ACCACCAAGA	AGCTCACCGT	CGTCACCCAG	TTCCTCAAGG	ACGCCAACGG
	CGATCTCGGC	GAGATCAAGC	GCTTCTACGT	CCAGGATGGG	AAGATCATCC
1001	CCAACTCCGA	GTCCACCATC	CCCGGCGTCG	AGGGCAACTC	CATCACCCAG
	GATTGGTGCG	ACCGCCAGAA	GGTTGCCTTT	GGCGACATTG	ACGACTTCAA
1101	CCGCAAGGGC	GGCATGAAGC	AGATGGGCAA	GGCCCTCGCC	GGCCCCATGG
	TCCTGGTCAT	GTCCATCTGG	GATGACCACG	CCTCCAACAT	GCTCTGGCTC
1201	GACTCGACCT	TCCCTGTCGA	TGCCGCTGGC	AAGCCCGGCG	CCGAGCGCGG
	TGCCTGCCCG	ACCACCTCGG	GTGTCCCTGC	TGAGGTTGAG	GCCGAGGCCC
1301	CCAACAGCAA	CGTCGTCTTC	TCCAACATCC	GCTTCGGCCC	CATCGGCTCG
	ACCGTTGCCG	GCCTTCCCAG	CGATGGCGGC	AACAACGGCG	GCAACACCAC
1401	CGTCCAGCCC	CCGCCCAGCA	CCACCACCAC	CTCTGCCAGC	AGCAGCACCA
	CCTCGGCTCC	TGCCACCACC	ACCACCGCCA	GCGCTGGCCC	CAAGGCTGGC
1501	CGCTGGCAGC	AGTGCGGCGG	CATCGGCTTC	ACTGGCCCGA	CCCAGTGCGA
	GGAGCCCTAC	ACTTGCACCA	AGCTCAACGA	CTGGTACTCT	CAGTGCCTGT
1601	AA				

Figure 14B
Scytalidium thermophilium CBH1 cDNA

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 16 of 18

1	MRTAKFATLAALVASAAAQQACSLTTERHPSLSWKKCTAGGQCQTVQASI	50
51	TLDSNWRWTHQVSGSTNCYTGNEWDSSICTDAKSCAQNCCVDGADYTSTY	100
101	GITTNGDSLSLKFVTKGQYSTNVGSRTYLMDGEDKYQTFELLGNEFTFDV	150
151	DVSNIGCGLNGALYFVSMDADGGLSRYPGNKAGAKYGTGYCDAQCPRDIK	200
201	FINGEANIEGWTGSTNDPNAGAGRYGTCCSEMDIWEANNMATAFTPHPCT	250
251	IIGQSRCEGDSCGGTYSNDRYAGVCDPDGCDFNAYRQGNKTFYGKGMTVD	300
301	TTKKLTVVTQFLKDANGDLGEIKRFYVQDGKIIPNSESTIPGVEGNSITQ	350
351	DWCDRQKVAFGDIDDFNRKGGMKQMGKALAGPMVLVMSIWDDHASNMLWL	400
401	DSTFPVDAAGKPGAERGACPTTSGVPAEVEAEAPNSNVVFSNIRFGPIGS	450
451	TVAGLPSDGGNNGGNTTVQPPPSTTTTSASSSTTSAPATTTTASAGPKAG	500
501	RWQQCGGIGFTGPTQCEEPYTCTKLNDWYSQCL-	534

<u>Figure 14C</u>
Scytalidium thermophilum CBHI, including signal sequence

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 17 of 18

var. thermoidea CBH1.1, and Scytalidium	
ea jecorina CBHI, Humicola grisea var. 1	
re protein sequences for Hypocrea jecorn	
Figure 15: Alignment of the matur	thermophilum CBH

				į		
1 (1) QSACTLQSETHPPLTWQKCSSGGTCTQQTGSVVIDANWRWTHATNSSTNCYDGN <u>T</u> WS <u>S</u> TLCPDNETCAKNCCLDG (1) QQACSLTTERHPSLSWNKCTAGGQCQTVQASITLDSNWRWTHQVSGSTNCYTGNKWDTSICTDAKSCAQNCCVDG (1) QQACSLTTERHPSLSWKKCTAGGQCQTVQASITLDSNWRWTHQVSGSTNCYTGNEWDSSICTDAKSCAQNCCVDG (1) QQACSLTTERHPSLSWKKCTAGGQCQTVQASITLDSNWRWTHQVSGSTNCYTGNKWDSSICTDAKSCAQNCCVDG	150 (76) AAYASTYGVTTSGNSLSIGFVTQSAQKN-VGARLYLMASDTTYQEFTLLGNEFSFDVDVSQLPCGLNGALYFVSM (76) ADYTSTYGITTNGDSLSLKFVTKGQHSTNVGSRTYLMDGEDKYQTFELLGNEFTFDVDVSNIGCGLNGALYFVSM (76) ADYTSTYGITTNGDSLSLKFVTKGQYSTNVGSRTYLMDGEDKYQTFELLGNEFTFDVDVSNIGCGLNGALYFVSM (76) ADYTSTYGITTNGDSLSLKFVTKGQYSTNVGSRTYLMDGEDKYQTFELLGNEFTFDVDVSNIGCGLNGALYFVSM (76)	151 (150) DADGGVSKYPTNTAGAKYGTGYCDSQCPRDLKFINGQANVEGWEPSSNNANTGIGGHGSCCSEMDIWEANSISEA (151) DADGGLSRYPGNKAGAKYGTGYCDAQCPRDIKFINGEANIEGWTGSTNDPNAGAGRYGTCCSEMDIWEANNMATA (151) DADGGLSRYPGNKAGAKYGTGYCDAQCPRDIKFINGEANIEGWTGSTNDPNAGAGRYGTCCSEMDIWEANNMATA (151) DADGGLSRYPGNKAGAKYGTGYCDAQCPRDIKFINGEANIEGWTGSTNDPNAGAGRYGTCCSEMDIWEANNMATA	226 (225) LTPHPCTTVGQEICEGDGCGGTYSDNRYGGTCDPDGCDWNPYRLGNTSFYGPGSSFTLDTTKKLTVVTQFETSG-(226) FTPHPCTIIGQSRCEGDSCGGTYSNERYAGVCDPDGCDFNSYRQGNKTFYGKGMTVDTTKKITVVTQFLKDAN (226) FTPHPCTIIGQSRCEGDSCGGTYSNDRYAGVCDPDGCDFNAYRQGNKTFYGKGMTVDTTKKLTVVTQFLKDAN (226) FTPHPCTIIGQSRCEGDSCGGTYSNERYAGVCDPDGCDFNAYRQGNKTFYGKGMTVDTTKKLTVVTQFLKDAN (226) FTPHPCTIIGQSRCEGDSCGGTYSNERYAGVCDPDGCDFNSYRQGNKTFYGKG MTVDTTKKITVVTQFLKDAN	375 (299)AINRYYVQNGVTFQQPNAELGSYSGNELNDDYCTAEEAEFGGSS-FSDKGGLTQFKKATSGGMVLVMSLWD (299) GDLGEIKRFYVQDGKIIPNSESTIPGVEGNSITQDWCDRQKVAFGDIDDFNRKGGMKQMGKALAGPMVLVMSIWD (299) GDLGEIKRFYVQDGKIIPNSESTIPGVEGNSITQDWCDRQKVAFGDIDDFNRKGGMKQMGKALAGPMVLVMSIWD (301) GDLGEIKRFYVQDGKIIPNSESTIPGVEGNSITQDWCDRQKVAFGDIDDFNRKGGMKQMGKALAGPMVLVMSIWD	376 (369) DYYANMLWLDSTYPTNETSSTPGAVRGSCSTSSGVPAQVESQSPNAKVTFSNIKFGPIGSTGNPSGGNP (374) DHASNMLWLDSTFPVDAAG-KPGAERGACPTTSGVPAEVEAEAPNSNVVFSNIRFGPIGSTVAGLPGAGNGGN (374) DHASNMLWLDSTFPVDAAG-KPGAERGACPTTSGVPAEVEAEAPNSNVVFSNIRFGPIGSTVAGLPSDGGNNGGN (376) DHASNMLWLDSTFPVDAAG KPGAERGACPTTSGVPAEVEAEAPNSNVVFSNIRFGPIGSTVAGLPGAG NGGN	451 (438) PGGNPPGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYSGPTVCASGTTCQVLNPYYSQCL (446) NGGNPPPPTTTTSSAPATTTTASAGPKAGRWQQCGGIGFTGPTQCEEPYICTKLNDWYSQCL (448) TTVQPPPSTTTTSASSSTTSAPATTTTASAGPKAGRWQQCGGIGFTGPTQCEEPYTCTKLNDWYSQCL (448) NGGNPPP PTTTSSAPATTTTASAGPKAGRWQQCGGIGFTGPTQCEEPYTCTKLNDWYSQCL (451) NGGNPPP
Genencor Hypocrea jecorina Cel7A Humicola grisea CBH1.1 Scytalidium thermophilum 69 Consensus	Genencor Hypocrea jecorina Cel7A Humicola grisea CBH1.1 Scytalidium thermophilum 69	Genencor Hypocrea jecorina Cel7A Humicola grisea CBH1.1 Scytalidium thermophilum 69 Consensus	Genencor Hypocrea jecorina Cel7A Humicola grisea CBH1.1 Scytalidium thermophilum 69 Consensus	Genencor Hypocrea jecorina Cel7A Humicola grisea CBH1.1 Scytalidium thermophilum 69 Consensus	Genencor Hypocrea jecorina Cel7A Humicola grisea CBH1.1 Scytalidium thermophilum 69 Consensus	Genencor Hypocrea jecorina Cel7A Humicola grisea CBH1.1 Scytalidium thermophilum 69 Consensus

Variant Humicola Grisea CBH1.1 Goedegebuur et al. SN# Unassigned Docket No. GC794-2 Sheet 18 of 18

Figure 16