基因编辑慢病毒载体构建、包装和操作手册

第·	一部分	载体构建和病毒包装	3
1.	服务流	程	3
2.	仪器与	试剂	4
3.	构建实	例	5
3	3.1. 基因	日基因编辑慢病毒载体构建	5
		目的基因	
	3.1.2.	载体信息	5
	3.1.1.	基因编辑载体图谱(NC 序列):	5
3		立构建步骤	
	3.2.1.	sgRNA 靶点设计	6
	3.2.2.	载体酶切	6
	3.2.3.	目的序列合成及退火	6
	3.2.4.	退火产物与载体进行连接	6
	3.2.5.	转化涂板	7
	3.2.6.	阳性克隆摇菌及质粒提取	7
	3.2.7.	质粒质控(目的基因测序)	7
	3.2.8.	测序引物	8
4.	慢病毒	包装	8
_	11 HF	K 293FT 细胞准备	Q
		s毒包装系统转染	
		5毒收集及浓缩	
		5 年収集及水组	
2	+.4. /内母	导队里型例	. тО

4.1.1. 物理指标检测	10
4.1.2. 无菌检测	10
4.1.3. 病毒滴度测定	10
第二部分 病毒操作	12
1. 注意事项	12
1.1. 慢病毒的使用环境	12
1.2. 清洗与消毒	12
1.3. 储存	12
1.4. 运输	12
2. 慢病毒的稀释	12
3. 感染预实验	13
4. 慢病毒感染 MOI 预实验步骤(以 96 孔板为例)	10
4. 慢构母感来 WOI IV关型少录(以 50 记仅为例)	тэ
4.1. 第一天:铺板	13
4.2. 第二天: 感染。	13
5. 贴壁细胞的感染	14
5. 贴壁细胞的感染5.1. 第一天: 铺板	
	15
5.1. 第一天:铺板	15
5.1. 第一天:铺板	15 15 15
5.1. 第一天:铺板	151515
5.1. 第一天:铺板	151515
5.1. 第一天:铺板	15151515
5.1. 第一天: 铺板	1515151516
5.1. 第一天:铺板	1515151616

第一部分 载体构建和病毒包装

1. 服务流程

2. 仪器与试剂

表 1 主要仪器及生产商

仪器名称	生产厂家
Sorvall Legend Mircro 17 台式离心机	美国 ThermoFisher 公司
Sorvall ST 16R 冷冻离心机	美国 ThermoFisher 公司
微量移液器	德国 Eppendorf 公司
生物安全柜	新加坡 ESCO 公司
EVOS 荧光显微成像系统	美国 ThermoFisher 公司
恒温二氧化碳细胞培养箱	德国 Binder 公司
实验室耗材 I(移液枪头、1.5/2.0 mL 离心管)	美国 Axygen 公司
实验室耗材 II(细胞培养皿、移液管等)	美国 Corning 公司
超低温冷冻冰箱	美国 ThermoFisher 公司
凝胶成像分析系统	北京赛智创业科技有限公司
凝胶电泳系统	美国 BioRad 公司

表 2 主要试剂及生产商

试剂名称	生产厂家
质粒小量快速提取试剂盒(离心柱型)	北京艾德莱生物科技有限公司
限制性内切酶类	美国 NEB 公司/美国 ThermoFisher 公司
DNA Ligase	北京合生基因科技有限公司
慢病毒包装试剂盒	北京合生基因科技有限公司
EpFect Transfection Reagent	北京合生基因科技有限公司
EvaGreen 2× Master Mix	北京合生基因科技有限公司
DMEM 高糖培养基	美国 Gibco 公司
胎牛血清	美国 Gibco 公司

3. 构建实例

以 sgRNA 阴性对照靶点序列为例描述载体构建。

3.1. 基因基因编辑慢病毒载体构建

3.1.1. 目的基因

sgRNA NC 序列

3.1.2. 载体信息

载体编号	载体元件	/ /	原核抗性
XX	pLV-U6-sgRNA-hEF1a-EGFP-2A-Puro		AMP

3.1.1. 基因编辑载体图谱(NC序列):

基因编辑慢病毒载体示例

3.2. 质粒构建步骤

3.2.1. sgRNA 靶点设计

针对目的基因序列,遵循基因 sgRNA 靶点设计原则,设计多个 sgRNA 靶点序列,选择最优靶点构建目的载体。除了针对目的基因的靶点序列外,我们也使用一些无义序列作为 sgRNA 阴性对照。另外, sgRNA 靶点序列也可由客户提供,根据客户的需求构建在相应的载体上。

3.2.2. 载体酶切

酶切骨架载体,对载体酶切产物进行琼脂糖凝胶电泳,回收目的条带:

酶切体系:

10x buffer $2 \mu L$ 酶 1 $1 \mu L$ 酶 2 $1 \mu L$ Plasmid/product $2 \sim 3 \mu L$

Add ddH2O to $20 \mu L$

3.2.3. 目的序列合成及退火

根据目的序列及骨架载体序列,设计引物序列;先合成单链引物序列, 然后退火成双链 DNA。

 ddH2O
 14 μL

 10×Buffer
 2 μL

 100 μΜ 正向引物
 2 μL

 100 μΜ 反向引物
 2 μL

反应程序为:95 ℃ 3 min ,95 ℃ 到 25 ℃ 缓慢冷却,例如 -1 ℃/30 s

3.2.4. 退火产物与载体进行连接

退火产物 1 μL

骨架载体 1 μ L 1×Buffer 5 μ L ddH₂O 2 μ L

3.2.5. 转化涂板

连接后产物 10 μ L 转化至 100 μ L 感受态 $A2^{\circ}$ C 金属浴 热激 1 min, 冰上迅速预冷 2 min, 在超净工作台中,加入 600 μ L 无抗培养基,37°C 摇床振荡培养 1 h,取适量菌液涂布在含有相应抗生素的平板上,在恒温培养箱中倒置培养 12-16 h。

3.2.6. 阳性克隆摇菌及质粒提取

挑选 3-4 个单菌落摇菌,加入相应抗性培养基摇菌过夜(8 mL LB 液体培养基),然后参照质粒抽提试剂盒进行质粒抽提。

3.2.7. 质粒质控(目的基因测序)

完成基因编辑慢病毒质粒构建后,针对目的基因序列测序,并比对鉴定,以获得构建正确的质粒。

基因编辑慢病毒载体信息

载体编号 载体内容	shRNA 序列
NC NC shRNA	5- <mark>AAACGTGACACGTTCGGAGAA</mark> CGA
INC INCSTRIVA	ATTCTCCGAACGTGTCACGTTT -3'

NC 载体测序结果:

基因编辑慢病毒质粒测序比对结果

3.2.8. 测序引物

引物名称	序列
NC 质粒	CAGGAAGAGGCCTATTTCCC

4. 慢病毒包装

4.1. HEK 293FT 细胞准备

将 $3\sim5\times10^6$ 个 HEK 293FT 细胞传代接种至 100 mm 细胞培养皿中,置于 37 °C,5% CO $_2$ 的培养箱中,培养 16 h ~24 h。传代过程中需要将细胞充分消化为单细胞悬液,以获得较好的包装效果。

4.2. 慢病毒包装系统转染

- 1) 将慢病毒包装试剂盒中的包装质粒混合物 (Package Plasmid Mix) 及 慢病毒表达质粒使用 ddH₂O 稀释为终浓度 1.0 μg/μL 的质粒溶液 ;
- 2) 取1支1.5 mL 离心管(标记为A管),分别加入300 μL Opti-MEM 培养基及40 μL EpFectTM Transfection Reagent,混匀后室温静置 5 min;
- 3) 取 1 支 1.5 mL 离心管(标记为 B 管),加入 2.5 μL 终浓度为 1.0 μ g/μL 的慢病毒表达质粒质粒溶液及 7.5 μL Package Plasmid Mix,充 分混匀;
- 4) 将 A 管中溶液加入 B 管中, 充分混匀, 室温静置 15~30 min;
- 5) 将 B 管中的混合溶液逐滴均匀加入接种 HEK 293FT 细胞的培养皿中, 轻微水平震荡培养皿以混匀,将培养皿置于 37 ℃,5% CO₂培养 6 h, 将培养基更换为 37 ℃水浴预热的新鲜完全培养基;

基因编辑慢病毒包装过程中荧光表达情况示例

4.3. 慢病毒收集及浓缩

- 1) 转染 48 h 后,收集含有慢病毒的上清液,向培养皿中补充 10~15 mL 新鲜的完全培养基;继续培养 24 h,进行第二次病毒上清液收集;
- 2) 将两次收集的病毒上清液混合 , 0.45 μm 滤器过滤 , 过滤后的病毒液可以进行浓缩或直接感染目的细胞 ;
- 3) 按照病毒上清液:浓缩试剂 = 5:1 比例进行混合,4 ℃ 放置 2 h 或过 夜;
- 4) 将混合液按照 4 °C , 4000 g 离心 30 min , 可见管底有米白色沉淀 ;
- 5) 小心移去上清,切勿碰触沉淀物,加入适量体积无血清培养基或 PBS 溶液,用微量移液器轻轻吹打重悬沉淀物;
- 6) 将病毒浓缩液分装,保存于-80℃,即取即用,切忌反复冻融。

4.4. 病毒质量检测

慢病毒的质量控制要点包括物理状态检测、无菌检测及病毒滴度检测。

4.1.1. 物理指标检测

- 1) 颜色判定:通过肉眼判定,慢病毒保存液呈澄清液体状。
- 2) 粘稠度判定 :用 20-200 μL 规格移液器缓慢吸取 50 μL 慢病毒保存液体,无明显粘稠感或吸液滞后现象;

4.1.2. 无菌检测

将病毒加入 293T 细胞验证,正常培养 24 h 后镜检,无任何细菌及 真菌污染情况,同时参照空细胞组,细胞间隙无明显颗粒存在,培养基澄清 透明。

4.1.3. 病毒滴度测定

合生基因采用的慢病毒滴定方法是 qPCR 法, 具体流程为:

- 1) 细胞接种:将生长状态良好的 HEK 293H 细胞消化计数后,按照 10⁵ 细胞/孔接种至 12 孔培养板中,每种病毒接种 3 个孔,置于 37 ℃,5% CO₂ 培养 16~24 h;
- 2) 病毒感染 取 20 μL浓缩后的慢病毒液 稀释 10 倍后 分别取 100/50/25 μL, 加入接种有 HEK 293H 细胞的 12 孔板中, 并添加终浓度为 8 μ g/mL 的促感染试剂 Polybrene 将培养液混匀后 置于 37 ℃ ,5% CO₂ 培养 48~72 h;
- 3) 滴度测定:提取上述感染慢病毒的 HEK 293H 细胞的基因组 DNA,稀释已知拷贝数的 DNA 标准品(10⁴~10⁹ copies/μL),与上述基因组同时进行 qRT- PCR 检测,qRT-PCR 实验的扩增/检测对象为慢病毒载体上的 WPRE 序列(WPRE 序列可以随目的基因整合入细胞基因组),根据 qRT-PCR 的实验数据进行整理换算,即可获得慢病毒液的滴度。

第二部分 病毒操作

1. 注意事项

1.1. 慢病毒的使用环境

请在生物安全柜中操作和使用慢病毒。

1.2. 清洗与消毒

任何接触过病毒的材料、试剂、样品,应经消毒处理,可以采用 1%的 SDS 溶液或 84 消毒液(1:20)浸泡半小时以上,或 121°C,灭菌 20~30 分钟。

实验完成后,请用医用洗手液清洗双手。切勿直接接触病毒,如意外接触,请及时用清水冲洗,并适当对皮肤进行消毒。

1.3. 储存

慢病毒应于-80℃条件下长期保存,临时使用可以置于 4℃(一周内使用, 且存放时间越长,滴度下降越明显)。建议不要在-20℃下长期保存慢病毒, 避免反复冻融。通常情况下病毒可于-80℃条件下稳定保存约 6 个月,超过 此期限后请重新检测病毒滴度。

1.4. 运输

运输过程中应避免发生反复冻融的情况,一般采用泡沫箱加干冰后包装运输,并根据运输时间和环境调整干冰使用量,以保证在病毒运送到目的地之前,大部分干冰仍处于固体状态。

2. 慢病毒的稀释

从-80℃条件下取出慢病毒后,4℃冰箱中暂存。如果需要稀释病毒,可加用 PBS 或培养基,适当稀释后使用。

注: 详细的稀释方法可以参考本文件常见问题解答 09)。

3. 感染预实验

每种细胞对慢病毒的敏感性不同,有的容易感染,有的则比较难,同时每种慢病毒载体荧光强度也有差异,所以在正式实验前需要做病毒感染预实验来确认 MOI 值以达到理想的实验效果。理论上 MOI 值越高,慢病毒感染上的可能性越大,感染效率越高,但是这样对细胞的毒性也就越大。所以预实验确认 MOI 值是要在细胞成活率和感染效率中找到一个平衡点。

一般如果 MOI 超过 100, 甚至 200 还感染不上, 说明慢病毒非常难感染这株细胞, 甚至感染不上, 那么就要考虑换一种方式, 比如腺病毒或者电转。

4. 慢病毒感染 MOI 预实验步骤(以 96 孔板为例)

4.1. 第一天:铺板

在96孔板中按每孔约1x10⁴个细胞接种。

注:如果细胞特别大可以适当减少,特别小可以增加,原则上以第二天,汇合度达到30%~40%为宜。

4.2. 第二天: 感染。

4.2.1. 设计 MOI 梯度实验组

- 1) MOI 依次设置为: 0、1、10、20、50、100。
- 2) 同时设置加含 8 ug/ml Polybrene 的培养基实验组。
- Blank 组即空细胞组,作为参照,以检验细照生长状态。

Polybrene (0µ	MOI 0	MOI 1	MOI 10	MOI 20	MOI 50	MOI 100
g/ml)						
Blank						

细胞感染预实验分组设计

注: Polybrene 的使用请参见本文件常见问题 08) ,本感染预实验中 Polybrene 的浓度默认设置为 8ug/ml。

4.2.2. 计算病毒量

每孔加病毒量(ul)=MOI x 感染时的细胞数/滴度(TU/ml)×1000

注:一般第二天细胞数按倍增来算,生长较慢或不增殖的细胞可适当调整。

例如:病毒滴度 1×10^8 TU/ml,接种细胞数 1×10^4 ,那么 MOI 为 10 的组中病毒量= $10\times2\times1\times10^4$ /(1×10^8)×1000=2ul,依次类推。

4.2.3. 加慢病毒

按照计算好的量将病毒液分别加入培养基中,混匀,继续培养。

注:如果遇到病毒滴度太高,每孔加的病毒太少,移液器量程不够等情况,可以先将病毒稀释后再加。有关稀释的方法请参考本文件常见问题 09)。

4.3. 第三天: 换液

感染后 12-24 小时,将各实验组更换为新鲜培养基,继续培养。

4.4. 第五天: 确定合适的 MOI 值

- 1) 感染后 72 小时在荧光显微镜下观察,并拍照。
- 2) 确定合适的 MOI 值。

5. 贴壁细胞的感染

以 24 孔板为例:

5.1. 第一天: 铺板

准备细胞将状态良好的目的细胞接种到 24 孔板中 细胞计数后 进行铺板,每孔加入 500ul 培养基。保证第二天感染病毒时融合率达到 30-40%。通常,24 孔板内以 5~10x10⁴cells/孔的密度铺板。

5.2. 第二天:病毒感染,换液

1) 计算病毒加样量

根据预实验的结论,选择合适 MOI 值和感染条件,进行病毒感染,加样量计算方法:(细胞数 x MOI 值/病毒原液滴度) x 10³=病毒加样量(ul)注:由于细胞状态之间的差异,建议每次在选定 MOI 后,再分别设置高低MOI 实验组,减少因细胞状态差异导致的感染效果差异。

2) 感染

按照预实验的结论更换为相应的培养基,然后加入对应量的病毒。(假设预实验的结论是在含 8ug/ml Polybrene 的 DMEM 培养基的条件下感染效果较好,则更换为含 8ug/ml Polybrene 的 DMEM 培养基,再加入病毒)

3) 换液

病毒感染 12-24 小时后,观察细胞状态。如细胞状态差,尽快换新鲜培养基;如细胞状态良好,可以在 24 小时内换液,但不宜超过 24 小时。

5.3. 第五天:观察荧光表达情况

病毒感染细胞 72 小时后,在荧光显微镜下观察细胞,判断慢病毒感染目的细胞的效率。若荧光弱,可到 96 小时后观察。

6. 悬浮细胞的感染

6.1. 第一天: 感染

悬浮或半悬浮细胞可以通过离心的方法来辅助感染,即将病毒液加入细胞后,用 Parafilm 膜密封,低速离心 1 小时,然后放回培养箱继续培养。

如没有水平转子,可采用离心管代替,将细胞吹打转入离心管中,进行低速离心,去掉大部分上清液,重新悬浮细胞,加入病毒液,培养箱中放置1小时后转入培养皿中继续培养。

- 6.2. 第二天: 换液感染后 12~24 小时更换培养基。
- 6.3. 第五天: 观察荧光表达情况 病毒感染细胞 72 小时后, 在荧光显微镜下观察细胞, 判断慢病 毒感染目的细胞的效率, 若荧光弱, 可到 96 小时后观察。

第三部分 常见问题

1. 你们提供的慢病毒具有复制能力吗?会传染人吗?

合生基因提供的慢病毒颗粒是一种假病毒,病毒中的毒性基因已经被剔除并被外源性目的基因所取代,具有感染能力但是不具有复制能力,因此是不会传染人的,是相对很安全的一种工具,但该病毒仍然具有潜在的生物学危险,不建议使用编码已知或可能会致病的基因的假型病毒。除非已经完全公认某个基因没有致病性,否则均不建议采用假型病毒。进行相关的慢病毒实验时建议使用生物安全柜。

2. 某细胞株的 MOI 值是多少?

您可以查阅文献 ,也可以按照本手册感染预实验中的 MOI 测定方法 对其进行测定。由于不同实验室细胞状态等存在差异可能导致细胞 MOI 值 有差异,建议实验前都先用对照病毒进行 MOI 预实验摸索合适的 MOI。

3. 什么是 MOI?

MOI, 复感染指数,是指病毒对细胞的感染能力, MOI 越高, 细胞越难被感染。

通常把某株细胞有 80%被感染时所用的病毒颗粒数和细胞数目的比值 作为该株细胞的 MOI。

4. 如何确定向细胞中加入慢病毒的最佳时间?

慢病毒感染细胞后需要 72~96h 才能观察到慢病毒携带的基因表达, 应在细胞汇合度 30~40%时且细胞状态良好时加入慢病毒,确保在感染后 72~96h 细胞增长达到 90%~100%的汇合度。

5. 为什么我的病毒感染细胞后荧光不亮?

由于目的基因和荧光蛋白表达的方式不一样,导致荧光表达有差异的情况也时有发生。

- 1) 目的基因和荧光蛋白融合表达,少数的目的基因对融合的荧光蛋白的荧光有影响(可能是目的基因表达量低,导致融合蛋白的表达量也低,荧光不亮;也可能是目的基因对荧光蛋白的结构和功能有影响,导致荧光不亮),建议使用 sfGFP 代替常用的 EGFP 看是否有改善。
- 2) 目的基因和荧光蛋白使用不同的启动子表达,那么荧光强度更多的与启动子在目的细胞中的表达强弱有关。
- 3) 使用目的基因-IRES-荧光蛋白这种结构,由于 IRES 下游基因表达偏弱,容易导致荧光弱。
- 4) 使用目的基因-2A-荧光蛋白这种结构, 2A 上游的目的基因和下游的荧光蛋白在蛋白翻译的时候断开, 如果上游的目的基因表达量低(譬如有很多稀有密码子), 也会导致下游的荧光蛋白表达受影响, 导致荧光弱。
- 6. 慢病毒感染是不是一定要用安全柜,没有怎么办? 病毒操作时应使用生物安全柜,如果没有生物安全柜,操作病毒时请关闭排风机。
- 7. 慢病毒感染细胞后什么时候基因表达到达峰值?

慢病毒表达时间较慢,表达所需时间较长,大部分细胞在慢病毒感染后72~96 小时,荧光或目的基因表达达到峰值,但是对于生长缓慢的细胞,时间可能会更长。

8. Polybrene 如何使用?

Polybrene 是一种阳离子聚合物,可以中和电荷以促进假病毒外壳与细胞膜之间结合。Polybrene 最佳浓度因不同细胞株而异,通常范围为2~10ug/ml,可以通过预实验来摸索或查阅相关文献。Polybrene 长时间的作用(大于12小时)可能对某些细胞产生毒性作用,影响细胞状态,某些原代细胞如神经元等,不适合使用 Polybrene。

9. 慢病毒如何进行梯度稀释?

慢病毒可以用培养基、D-Hanks 液、PBS 液进行稀释,稀释过的病毒建议尽快使用完。一般病毒可以直接加入正在培养的细胞中, 轻晃混匀孵育,不用提前配置含病毒的培养基。

梯度稀释示例:假设病毒滴度为1x10°TU/ml,则取10ul病毒液加入到90ul培养基中,则稀释后的病毒液滴度为1x10°TU/ml,依次类推。

10. Puromycin 怎么用, 浓度多少?

嘌呤霉素(Puromycin)是由白黑链霉菌(Streptomyces alboniger)发酵代谢产生的一种氨基糖苷类抗生素,通过抑制蛋白质合成而杀死革兰氏阳性菌、各种动物和昆虫细胞。每种细胞对抗生素的敏感性不同,所以Puromycin 最佳浓度因不同细胞而异,通常范围 1~10ug/ml , 具体可以通过做嘌呤霉素杀灭曲线或者查阅文献来摸索。

以下以 24 孔板为例:

- 1) 第一天:在 24 孔板内以 5~10×10cell 孔的密度铺板,铺足够量的孔以进行后续的梯度实验,细胞 5%CO 培养箱育过夜;
- 2) 第二天:准备筛选培养基

配制含不同浓度嘌呤素的新鲜培养基(如 0-15mg/ml, 至少 5 个梯度), 更换为含嘌呤霉素的培养液,继续培养。约 2~3 天后,继续更换含嘌呤霉素的培养基,维持细胞的继续生长;

- 3) 每日观察细胞,监测存活细胞比例;
- 4) 最低耐受浓度就是指从抗生素筛选开始 1~4 天内杀死所有细胞的最低浓度。

11.慢病毒通常可以装多大的基因?

通常情况下,包含标记基因在内,不超过 4kb,且一般情况下,载体越大,可能导致病毒包装滴度越低。

12. 慢病毒载体不包病毒能不能当质粒用?

可以, 但不适合于制备稳转细胞株, 且装载基因后载体较大(10Kb以上)。

13.慢病毒能不能用于体内?

由于慢病毒的免疫原性,毒性、滴度等原因,尤其整体注射实验易被免疫系统清除,体内实验推荐使用我们的腺相关病毒。

14. 慢病毒和逆转录病毒使用上的区别?

慢病毒可以感染分裂与非分裂细胞, 逆转录病毒只能感染分裂的细胞。 逆转录病毒常在发育与损伤修复相关研究中使用。

第四部分 常见细胞 MOI 列表

细胞系名称	细胞描述	MOI 值范围	能否添加
			polybrene
K562	人白血病细胞	20~40	可
Jurkat	人白血病细胞株	50~80	不可
kasumi	人白血病细胞株	10~30	不可
NB4	人白血病细胞株	50~80	不可
U937	人单核细胞	20~40	可
THP-1	人单核细胞株	50~80	可
GBC-SD	人胆囊癌细胞株	30~50	不可
H929	人多发性骨髓症	100~150	不可
	细胞系	_' /	
H1299	人非小细胞性癌	1~3	口
	细胞		
95D	人肺巨细胞癌	2~4	可
A549	人肺腺癌	20~40	可
SPC-A-1	人肺腺癌细胞	100~150	口
7402	人肝癌细胞	10~15	可
Нер 3В	人肝癌细胞	10~30	可
Hep G2	人肝癌细胞	10~30	可
SMMC-7721	人肝癌细胞	10~30	可

1	I	1	
Huh-7	人肝癌细胞系	10~30	可
Hela	人宫颈癌细胞株	10~30	可
HOS	人骨肉瘤细胞系	20~40	可
Hep-2	人喉癌细胞株	10~30	口
HL-60	人急性髓系白血病	>100	口
	细胞株		
HT-29	人结肠癌细胞	10~30	可
РКО	人结肠癌细胞	2~4	可
SW480	人结肠癌细胞株	10~30	口
DLD-1	人结直肠肿瘤胞	10~30	可
	株	XX/	
SK-OV-3	人卵巢癌细胞株	2~4	可
SHG-44	人脑胶质瘤细胞	10~30	可
U251	人脑胶质母细胞瘤	1~3	可
U87	人脑星型胶质母细	1~3	可
	胞瘤		
293T	人胚肾上皮细胞	1~3	可
HUVEC-2C	人脐静脉血管内皮	10~30	可
	细胞		
PC-3	人前列腺癌细胞	20~40	可
MDA-MB-231	人乳腺癌细胞	10~30	可
MCF-7	人乳腺癌细胞株	20 ~ 40	不可

Tca8113	人舌鳞状细胞癌	10~30	可
RPE	人视网膜色素上皮	10~30	可
	细胞		
AGS	人胃癌细胞	100~150	可
BGC-823	人胃癌细胞	100~150	可
SGC-7901	人胃癌细胞	10~30	可
MKN-28	人胃癌细胞株	20~40	可
MKN-45	人胃低分化腺癌细	20~40	可
	胞株	X	
BxPc-3	人胰腺癌细胞	20~40	可
CFPAC-1	人胰腺癌细胞	50~80	可
Panc-1	人胰腺癌细胞	2~4	可
HEC-1-B	人子宫内膜癌细胞	2~4	可
	株		
NIH-3T3	小鼠成纤维细胞系	20~40	可
Raw264.7	小鼠单核巨噬细胞	10~30 (感染分	不可
	白血病细胞	化)	
СНО	中国仓鼠卵巢细胞	20~40	可
HSC-T6	大鼠肝星型细胞	10~30	不可
C6	大鼠脑胶质瘤细胞	>100	可
NRK	大鼠肾细胞	10~30	可

注:不同实验室由于细胞的来源、代数和细胞状态等因素的影响, MOI 值也略有差异,以下数据是在细胞感染效率在85-100%细胞状态良好的情况下获得的,仅供参考。

