

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

Bachelor of Science in Applied Sciences Second Year - Semester I Examination - July/August 2023

MAP 2301 - ALGEBRA

Time allowed: Two and Half $(2\frac{1}{2})$ hours

Answer ALL (05) questions

1. a) Let A, B, and C be any three subsets of a given set S. Prove that,

i.
$$(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$$
,

ii.
$$A \times (B - C) \subseteq (A \times B) - (A \times C)$$
.

(30 marks)

b) Define an equivalence relation. Prove that the following defined on $\mathbb Z$ are equivalence relations:

i.
$$R = \{(x, y) | x, y \in \mathbb{Z}, 3x - 5y \text{ is even} \},$$

ii.
$$R = \{(x, y) | x, y \in \mathbb{Z}, 4 | (x + 3y) \}.$$

(30 marks)

c) Which of the following functions are injective (one to one), surjective (onto), and bijective:

i.
$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
 is defined by $f(m, n) = 3n - 4m$,

ii.
$$f: \{0,1\} \times \mathbb{N} \to \mathbb{Z}$$
 is defined by $f(a,b) = (-1)^a b$,

iii.
$$f: \mathbb{R} - \{0\} \to \mathbb{R}$$
 is defined by $f(x) = \frac{1}{x} + 1$.

(40 marks)

2. Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 5 & 7 & 1 & 2 & 4 & 8 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 5 & 7 & 3 & 2 & 1 & 8 & 4 \end{pmatrix}$ be permutations in S_8 .

a) Write α and β as a product of disjoint cycles.

(20 marks)

b) Calculate the orders of α, β and $\alpha\beta$.

(20 marks)

29

(20 marks)

d) Find non-trivial permutation σ such that $\alpha^{-1}\beta\sigma\beta^{-1}\alpha = \sigma$.

(20 marks)

e) Does a permutation $\sigma \in S_8$ exist such that $\sigma \alpha \sigma^{-1} = \beta$? Justify your answer.

(20 marks)

- 3. a) Which of the followings are binary operations defined on the given set:
 - i. The operation * defined on $\mathbb{R} \{0\}$ by a * b = |a|b.
 - ii. The operation * defined on $\mathbb{R} \{-1\}$ by a * b = a + b + ab.
 - iii. The operations * defined on $\mathbb{R}^+ \{0\}$ by $a * b = a^{\ln b}$.
 - iv. The operation * defined on \mathbb{Q} by $a*b = \frac{ab}{3}$.

(20 marks)

b) Define group axioms.

Let $G = \{(a,b)|a \in \mathbb{Z}, b \in \mathbb{Q}\}$. An operation * on G is defined by $(a,b)*(c,d) = (a+c,2^cb+d)$. Show that (G,*) is a group. Is (G,*) Abelian group? Justify your answer.

(30 marks)

c) Let $G = \{z \in \mathbb{C} | z^n = 1\}$ be the set of all n^{th} roots of unity. Prove that (G, \cdot) is a group under the usual multiplication of complex numbers.

(50 marks)

4. a) Define a subgroup.

Prove that, a non empty subset H of a group G is a subgroup of G if and only if for all $a, b \in H$ implies $ab^{-1} \in H$.

(25 marks)

b) Define coset of a subgroup H of a group G.

Find all distinct right cosets and left cosets of $H = \{-1, +1\}$, where H is a subgroup of the group $G = \{-1, +1, i, -i\}$.

(20 marks)

c) State and prove the Lagrange's Theorem.

(25 marks)

d) Define a normal subgroup H of a group G.

Prove that, a subgroup H of a group G is normal if and only if $gHg^{-1}=H$ for all $g\in G$.

(30 marks)

5.	a)	Prove that, the linear Diophontine equation $ax + by = c$ has a solution if and only
		if $d c$, where $d = gcd(a, b)$. If x_0, y_0 is any particular solution of this equation, then
		all other solutions are given by $x = x_0 + (\frac{b}{d})t, y = y_0 - (\frac{a}{d})t; t \in \mathbb{Z}$.

(40 marks)

- b) Solve the following Diophontine equations:
 - i. 16x + 54y = 8,
 - ii. 19x + 20y = 1909.

(20 marks)

c) Evaluate (4655, 12075) and express the result as a linear combination of 4655 and 12075; that is in the form 4655x + 12075y.

(20 marks)

- d) If n is an integer, show that
 - i. $3n^2 1$ is not a perfect square,
 - ii. 6|n(n-4)(n-5).

(20 marks)

..... END