Titorial 05. Velocidade terminal de partículas que caen no seo de un fluído

Enunciado

Un balance simple de forzas sobre unha partícula esférica que acada súa velocidade terminal de caída no seo dun fluído ven dada por:

$$v_t = \sqrt{\frac{4g(\rho_p - \rho)D_p}{3C_D\rho}} \tag{1}$$

onde v_t é a velocidade terminal de caída, en m/s, g é a aceleración da gravidade (g = 9,80665 m/s²), ρ_p é a densidade da partícula, en kg·m³, ρ é a densidade do fluído, en kg·m³, D_p o diámetro da partícula esférica, en m, e C_D é o coeficiente de rozamento adimensional.

O coeficiente de rozamento dunha partícula esférica a súa velocidade terminal varía co **número de Reynolds** (Re) do xeito seguinte:

$$C_D = rac{24}{Re} \quad \mathrm{para} \ R_e < 0.1 \qquad \qquad (2)$$

$$C_D = 0.44Re \text{ para } 1000 < R_e < 350000$$
 (4)

$$C_D = 0.19 - \frac{8 \cdot 10^4}{Re}$$
 para $350000 < R_e$ (5)

onde:

$$R_e = \frac{D_p v_t \rho}{\mu} \tag{6}$$

e μ é a viscosidade expresada en Pa·s ou kg·m·s⁻¹.

1. Calcular a velocidade terminal de partículas de carbón con:

- \circ ρ_p = 1800 kg·m⁻³
- $\circ~D_p$ = 0,208·10⁻³ kg·m⁻³ caendo en auga a:
- $\circ T$ = 298.15 K, onde
- ρ = 994.6·kg·m⁻³ e
- 2. Estimar a velocidade de caída terminal das partículas de carbón en auga dentro dun separador centrífugo no que a aceleración é de 30g.