Kevin_Pollard_HW3

Kevin Pollard

4/22/2020

Introduction

The marketing department of KNJ Financial keeps records on customers, including demographic information and, number of type of accounts. When launching a new product, such as a "Personal Equity Plan" (PEP), a direct mail piece, advertising the product, is sent to existing customers, and a record kept as to whether that customer responded and bought the product. Based on this store of prior experience, the managers decide to use data mining techniques to build customer profile models.

The personal equity plan was designed to encourage investment by individuals. Many plans required a minimum amount to be invested, depending on the type of plan and the plan manager's requirements. The individuals who responded to the PEP direct mailer piece indicate a wiliness to both save money and respond marketing mailers from KNJ Financial. It is a fair assumption these same customer will likely repond to future campaigns, but more analysis is required.

The type of analysis recommended for the managers to leverage is called **propensity to buy.** The purpose of a propensity to buy analysis is to understand the likelihood a customer will be predisposed to purchasing a product based upon purchases they've already made. A few data mining techniques will be introduced in the sections below, and concepts will be explained along the way.

Analysis and Models

About the Data

Data Loading

KNJ finance has provided the bankdata csv all.csv file to support the analysis.

Data Structure

The data has 600 observations with 12 features to describe each. The id field has no value and will be elinated from the analysis.

The data contains of a number of the following fields:

- id a unique identification number
- age age of customer in years
- sex MALE / FEMALE
- region inner_city/rural/suburban/town
- income income of customer
- married Is the customer married (YES/NO)
- children number of children
- car Does the customer own a car (YES/NO)
- save acct Does the customer have a saving account (YES/NO)
- current_acct Does the customer have a current account (YES/NO)
- mortgage Does the customer have a mortgage (YES/NO)
- pep Did the customer buy a PEP after the last mailing (YES/NO

```
## 'data.frame': 600 obs. of 12 variables:
                : Factor w/ 600 levels "ID12101", "ID12102", ...: 1 2 3 4 5
6 7 8 9 10 ...
   $ age
                : int 48 40 51 23 57 57 22 58 37 54 ...
                : Factor w/ 2 levels "FEMALE", "MALE": 1 2 1 1 1 1 2 2 1 2
   $ region
                : Factor w/ 4 levels "INNER CITY", "RURAL", ..: 1 4 1 4 2 4
2 4 3 4 ...
   $ income
                : num 17546 30085 16575 20375 50576 ...
   $ married
                : Factor w/ 2 levels "NO", "YES": 1 2 2 2 2 2 1 2 2 2 ...
                : int 1 3 0 3 0 2 0 0 2 2 ...
   $ children
                : Factor w/ 2 levels "NO", "YES": 1 2 2 1 1 1 1 2 2 2 ...
   $ car
   $ save act : Factor w/ 2 levels "NO", "YES": 1 1 2 1 2 2 1 2 1 2 ...
   $ current act: Factor w/ 2 levels "NO", "YES": 1 2 2 2 1 2 2 2 1 2 ...
```

```
## $ mortgage : Factor w/ 2 levels "NO", "YES": 1 2 1 1 1 1 1 1 1 1 1 ...

## $ pep : Factor w/ 2 levels "NO", "YES": 2 1 1 1 1 2 2 1 1 1 ...
```

Data Tidiness and Completeness

The banking data is clean with no NA, incomplete sets, or duplicate records.

```
## 1 Complete Cases? TRUE Incomplete Count: 0
```

columns	percent_missing
id	0
age	0
sex	0
region	0
income	0
married	0
children	0
car	0
save_act	0
current_act	0
mortgage	0
pep	0
columns	count_missing
id	0

count_missing columns age 0 sex 0 region 0 income 0 married 0 children 0 car 0 save_act 0 current_act 0 mortgage 0 0 pep d

Duplicate Count: o

```
## [1] "summary"
## pep income age married
## NO:326 Min. : 5014 Min. :18.00 NO:204
## YES:274 1st Qu:17265 1st Qu:30.00 YES:396
## Median:24925 Median:42.00
## Mean :27524 Mean :42.40
## 3rd Qu:36173 3rd Qu:55.25
## Max. :63130 Max. :67.00
## [1] "summary"
## children current_act save_act car
## Min. :0.000 NO:145 NO:186 NO:304
```

```
## 1st Qu.:0.000 YES:455 YES:414 YES:296

## Median :1.000

## Mean :1.012

## 3rd Qu.:2.000

## Max. :3.000
```

Proportions of the feature data are found below here. The Pep proportions of YES = 0.46 means a very large portion of KNJ customers responded to the pep mailer. This bodes well, since past responders or purchasers of services tend to respond again.

Checking proportions of the original data.

- "Pep proportions NO= 0.54 YES= 0.46"
- "Car proportions NO= 0.51 YES= 0.49"
- "Married proportions NO= 0.34 YES= 0.66"
- "Children proportions 0= 0.44 1= 0.22 2= 0.22 3= 0.11"
- "Mortgage proportions NO= 0.65 YES= 0.35"
- "Savings Account proportions NO= 0.31 YES= 0.69"

The table below shows top 10 customers arranged by income **income high to low.**.

- Most of the top 10 by income have responded to the Personal Equity Plan" mailer.
- All have savings and current accounts.
- The majority are married females who are retirement age.
- This cross section doesn't have a lotof mortgages, so maybe the mortagees are paid off and kids left the nest.

These points should help inform a deeper analysis.

id	agesex	region	incomemarried	childrencar	save_act	current_act	mortgage	pep
ID12291	67FEMALE	SUBURBAN	63130.1YES	2YES	YES	YES	NO	YES
ID12558	65FEMALE	INNER_CITY	61554.6YES	0NO	YES	YES	NO	NO
ID12371	67FEMALE	SUBURBAN	60747.5NO	2NO	YES	YES	YES	YES
ID12605	63FEMALE	INNER_CITY	59805.6YES	1YES	YES	YES	NO	YES
ID12111	66FEMALE	TOWN	59803.9YES	0NO	YES	YES	NO	NO
ID12235	66FEMALE	TOWN	59503.8YES	2YES	YES	YES	YES	YES
ID12307	63MALE	INNER_CITY	59409.1NO	0YES	YES	YES	NO	YES
ID12631	64MALE	SUBURBAN	59175.1YES	1NO	YES	YES	NO	YES
ID12532	64FEMALE	TOWN	58367.3YES	1YES	YES	YES	NO	YES
ID12513	67FEMALE	INNER_CITY	58092.0NO	2YES	YES	YES	NO	YES
The table	e below sho	ows top 10 cu	ıstomers arrang	ged by inc o	me low	to high.		

• Most did not respond to the pep mailer

The majority are not married

These points may also be significant.

id a	agesex	region	incomemarriedchildre	encar save_ac	ctcurrent_a	actmortgag
ID12165	21MALE	TOWN	5014.21NO	OYESYES	YES	YES
ID12679	18MALE	INNER_CITY	7 6294.21NO	oNO YES	YES	YES
ID12512	22MALE	INNER_CITY	77304.20NO	OYESYES	YES	YES
ID12264	21FEMAL	ETOWN	7549.38NO	1YESNO	YES	NO
ID12347	23FEMAL	EINNER_CITY	77606.25NO	3YESNO	NO	NO
ID12656	20FEMAL	ETOWN	7723.93YES	2YESYES	YES	NO
ID12473	24FEMAL	EINNER_CITY	7756.36NO	oNO NO	NO	NO
ID12197	22MALE	INNER_CITY	77948.62YES	1NO NO	NO	YES
ID12651	23FEMAL	EINNER_CITY	78020.19YES	1YESNO	YES	NO
ID12172	21MALE	INNER_CITY	78062.73NO	oNO NO	YES	NO

Summary Stats Analysis

- The average age of the customer population is 42, and 44% of them have no children.
- Average income is \$27,524.

```
## [1] 600 12
## [1] "-----"
## [1] "age"
## [1] "mean: 42.395"
## [1] "median: 42"
## [1] "min: 18"
## [1] "max: 67"
```

```
## [1] "range: 49"
## [1] "sd: 14.424947377538"
## [1] "quantile: 18" "quantile: 30" "quantile: 42" "quantile:
55.25"
## [5] "quantile: 67"
## [1] "IQR: 25.25"
## [1] "-----
## [1] "income"
## [1] "-----
## [1] "mean: 27524.0312166667"
## [1] "median: 24925.3"
## [1] "min: 5014.21"
## [1] "max: 63130.1"
## [1] "range: 58115.89"
## [1] "sd: 12899.4682456306"
## [1] "quantile: 5014.21" "quantile: 17264.5" "quantile: 24925.3"
## [4] "quantile: 36172.675" "quantile: 63130.1"
## [1] "IQR: 18908.175"
## [1] "-----
## [1] "children"
## [1] "------"
## [1] "mean: 1.0116666666667"
## [1] "median: 1"
## [1] "min: 0"
## [1] "max: 3"
## [1] "range: 3"
## [1] "sd: 1.05675214567302"
## [1] "quantile: 0" "quantile: 1" "quantile: 2" "quanti
## [1] "IQR: 2"
```

Income and Age Income and Age Savings Status Pep Mailer Response Status NO NO YES YES 60 60 9g 40 20 20 20000 40000 60000 20000 40000 60000 20000 40000 60000 20000 40000 60000 income income

Income and Age Children Status

Income and Age Children Status

Data Transforms

Discretization and numeric-to-nominal transformation is necessary for the Apriori algorithm to be used. The following transformations will be applied to the data.

- Discretize age by customized bin
- Discretize income by equal-width bin
- Convert numeric to nominal for "children"
- Now the second step of conversion, changing "YES" to "[variable_name]=YES".

```
## $ income : num 17546 30085 16575 20375 50576 ...
## $ married : Factor w/ 2 levels "NO","YES": 1 2 2 2 2 2 1 2 2 2 ...
## $ children : int 1 3 0 3 0 2 0 0 2 2 ...
## $ car : Factor w/ 2 levels "NO","YES": 1 2 2 1 1 1 1 2 2 2 ...
## $ save_act : Factor w/ 2 levels "NO","YES": 1 1 2 1 2 2 1 2 1 2 ...
## $ current_act: Factor w/ 2 levels "NO","YES": 1 2 2 2 1 2 1 2 1 1 1 1 1 1 1 ...
## $ mortgage : Factor w/ 2 levels "NO","YES": 2 1 1 1 1 1 1 1 1 1 ...
## $ pep : Factor w/ 2 levels "NO","YES": 2 1 1 1 1 2 2 1 1 1 ...
```

age	sex	region	incomemarriedchild	rencar save_	_actcurrent	_actmortga	gepe
fourties	s FEMAL	EINNER_CIT	Y 17546.0NO	1NO NO	NO	NO	ΥE
thirties	MALE	TOWN	30085.1YES	3YESNO	YES	YES	NC
fifties	FEMAL	EINNER_CIT	Y 16575.4YES	oyesyes	YES	NO	NC
twentie	esFEMAL	ETOWN	20375.4YES	3NO NO	YES	NO	NC
fifties	FEMAL	ERURAL	50576.3YES	oNO YES	NO	NO	NC
fifties	FEMAL	ETOWN	37869.6YES	2NO YES	YES	NO	YE
age	sex	region	income ma	ırriedchildı	encar save_	_actcurrent_	_actr
J			income ma Y(5.01e+03,2.44e+04] NO		rencar save_ 1NO NO	_actcurrent_ NO	_actr N
fourties)			_actr 1 Y
fourties	S FEMAL	EINNER_CIT	Y(5.01e+03,2.44e+04] NC	S	1NO NO	NO	_actr N N
fourties thirties fifties	S FEMAL	EINNER_CIT TOWN EINNER_CIT	Y(5.01e+03,2.44e+04] NC (2.44e+04,4.38e+04]YE	s s	1NO NO 3YESNO	NO YES	_actr N N
fourties thirties fifties	MALE FEMALE sFEMALE	EINNER_CIT TOWN EINNER_CIT	Y(5.01e+03,2.44e+04] NC (2.44e+04,4.38e+04]YE Y(5.01e+03,2.44e+04] YE	s s s	1NO NO 3YESNO 0YESYES	NO YES YES	_actr N N

age	sex	region	income	married	children	icar sav	e_actcurrent	_actr
fourties	FEMAL	EINNER_CIT	Y(5.01e+03,2.44e+04]NO	1	NO NO	NO	ľ
thirties	MALE	TOWN	(2.44e+04,4.38e+04]YES ;	3	YESNO	YES	Y
fifties	FEMAL	EINNER_CIT	Y(5.01e+03,2.44e+04]YES	0	YESYES	YES	ľ
twentie	sFEMAL	ETOWN	(5.01e+03,2.44e+04)]YES ;	3	NO NO	YES	ľ
fifties	FEMAL	ERURAL	(4.38e+04,6.31e+04)]YES	0	NO YES	NO NO	1
fifties	FEMAL	ETOWN	(2.44e+04,4.38e+04]YES	2	NO YES	YES	1
age	sex	region	income	married	child	lrencar	save_act	cı
		C	income Y(5.01e+03,2.44e+04]				save_act =NO save_act=	
	FEMAL	C] married=1	NO 1	car=	_	NO cu
fourties	FEMALI	EINNER_CIT	Y(5.01e+03,2.44e+04)] married=1]married=1	NO 1 YES3	car=	=NO save_act=	NO cu NO cu
fourties thirties fifties	FEMALI	EINNER_CIT	Y(5.01e+03,2.44e+04) (2.44e+04,4.38e+04] married=1]married=1] married=1	NO 1 YES3 YES0	car= car=	=NO save_act= =YESsave_act=	NO cu NO cu YEScu
fourties thirties fifties	FEMALI FEMALI sFEMALI	EINNER_CIT	Y(5.01e+03,2.44e+04) (2.44e+04,4.38e+04) Y(5.01e+03,2.44e+04)] married=1]married=1] married=1] married=1	NO 1 YES3 YES0 YES3	car= car= car=	=NO save_act= =YESsave_act= =YESsave_act=	NO cu NO cu YEScu NO cu

Application of the Apriori algothim

The **Apriori algorithm** can now be used on the transofrmed data to generate association rules. Parameters of support, confidence and lift will be leveraged to study rules that will inform KNJ's targeted marking campaigns.

- **Support**: This measure gives an idea of how frequent an itemset is in all the transactions.
- **Confidence**: Confidence is an indication of how often the rule has been found to be true.
- Lift: Lift is the ratio of the observed support to that expected

Several different combinations of the support, and confidence were use to filter the universe of strong rules for the KNJ Financial data. * Set support: .11 * Set confidence: .79 * Set lift: >= 1

A set of 29 strong rules was obtained from these parameters about. Those 29 are filtered more to get the top 5 strong rules.

```
## Apriori
##
## Parameter specification:
   confidence minval smax arem aval originalSupport maxtime support minl
en
        0.75 0.1 1 none FALSE
                                      TRUE 5 0.07
##
1
   maxlen target ext
##
        3 rules FALSE
## Algorithmic control:
   filter tree heap memopt load sort verbose
      0.1 TRUE TRUE FALSE TRUE
## Absolute minimum support count: 42
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[31 item(s), 600 transaction(s)] done [0.00s].
## sorting and recoding items ... [30 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 done [0.00s].
## writing ... [194 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
```

Plot 29 Strong Rules

Scatter plot for 29 rules


```
Itemsets in Antecedent (LHS)
    [1] "{age=twenties, married=married=YES}"
    [2] "{age=twenties,current act=current act=YES}"
##
    [3] "{age=twenties}"
##
    [4] "{age=twenties, mortgage=mortgage=NO}"
##
##
    [5] "{age=twenties, save_act=save_act=YES}"
    [6] "{age=twenties,pep=pep=NO}"
##
    [7] "{children=1, save act=save act=YES}"
##
    [8] "{children=1, current act=current act=YES}"
##
    [9] "{married=married=YES, children=1}"
   [10] "{children=1}"
   [11] "{children=1, mortgage=mortgage=NO}"
  [12] "{income=(4.38e+04,6.31e+04]}"
```

```
## [13] "{children=0, pep=pep=NO}"
## [14] "{age=old}"
  [15] "{mortgage=mortgage=NO, pep=pep=NO}"
## [16] "{mortgage=mortgage=YES,pep=pep=NO}"
## [17] "{married=married=NO, save act=save act=YES}"
## [18] "{married=married=NO, car=car=NO}"
## [19] "{car=car=NO, pep=pep=YES}"
## [20] "{car=car=NO, mortgage=mortgage=NO}"
## [21] "{sex=FEMALE, region=INNER CITY}"
## [22] "{sex=FEMALE, married=married=NO}"
## [23] "{married=married=NO, pep=pep=NO}"
## [24] "{married=married=NO,children=0}"
## [25] "{married=married=NO}"
  [26] "{income=(2.44e+04,4.38e+04],pep=pep=YES}"
## [27] "{income=(2.44e+04,4.38e+04],car=car=NO}"
## [28] "{married=married=NO, pep=pep=YES}"
## Itemsets in Consequent (RHS)
## [1] "{current act=current act=YES}" "{married=married=YES}"
## [3] "{save_act=save_act=YES}"
                                      "{pep=pep=YES}"
## [5] "{income=(5.01e+03,2.44e+04]}"
```

Matrix with 29 rules

Rules sorted by support

This sort gives us perspective in terms of what high support means in the context of the KNJ Financial dataset. The highest support is .35 but that number tapers off very fast to .21 after just ten entries.

Rules sorted by confidence

Rules sorted by lift

Top 5 Rules

Sticking with the premise that past responders will have a tendency to respond again to future KNJ's mailers/campaigns, we use the left hand side (LHS) filter to specify pep=YES. Recall that "**pep=YES**" means the customer responded to the KNJ pepe mailer.

This results in only 5 rules, but they are very strong ones. Not only do they have good support, confidence and lift, but they also occur a lot. Recall there are only 600 observations in the KNJ dataset, so 110 occurances of a rule is high.

customer segment: Married couples with only 1 child who do business with KNJ, but not on the mortgage side.

- Children 1 rule with support of .183 is in the top 10 of all rules.
- Children 1 shows up in the antecedent of every rule in the top 5
- Current and Savings Account are YES
- No Mortgage though
- Married

Top Five Rules

- 1.) {children=1} {pep=pep=YES} 0.183 0.815 1.784 **110.000**
- 2.) {children=1,mortgage=mortgage=NO} {pep=pep=YES} 0.118 0.845 1.851 **71.000**
- 3.) {married=married=YES,children=1} {pep=pep=YES} 0.123 0.831 1.821 **74.000**
- 4.) {children=1,save act=save act=YES} {pep=pep=YES} 0.133 0.842 1.844 **80.000**
- 5.) {children=1,current_act=current_act=YES} {pep=pep=YES} 0.140 0.832 1.821 **84.000**

Data Resulting from the top 5 rules

The campaign developed below takes all five rules into account for maximum response. The mailer would be for 29 accounts. If KNJ would like to go broader adjustments to the rule filters will open up the list more. For example, you could have a broader campaign of 100 accounts by only including rule Children=1 combined with past PEP responders.

ArulViz Visualizations

Plotting Top 5 Rules

The plotting shows the lift comes mostly from having a savings and current account. No mortgage may indicate they have more disposable income.

Grouped Matrix for 5 Rules

Plot Support

Graph for 5 rules

size: support (0.188 - 0.285) color: support (0.188 - 0.285)

Plot Confidence

Two-key plot

Plot Lift

Models

Classification Models

Model Data Splitting

The data will be split into 2/3 for training set, and 1/3 for the testing set.

dimension_training_train

dimension_testing_train

76 59FEMALERURAL 35611NO 2YESNO NO NO YES

8	agesex	region	ir	icomen	narriedchil	drencar savo	e_actcuri	rent_actmo	rtgagepe _l
298	18MAL	E RURAI	_	8639Y	ES	2NO NO	NO	NO	NO
414	26FEM	ALEINNER	_CITY	16519Y	ES	oYESNO	YES	NO	YES
473	61MAL	E INNER	_CITY	21140Y	ES	2YESYES	NO	NO	NO
325	36MAL	E SUBUR	BAN	28495Y	ES	oNO YES	YES	NO	NO
499	51FEM	ALETOWN		43800N	IO	oNO YES	YES	YES	S NO
i	d a	agesex	region	i	ncomemar	riedchildren	car save_	_actcurrent	_actmort
76 I	D12176	59FEMAL	ERURAI	L	35611NO	2	YESNO	NO	NO
298I	D12398	18MALE	RURAI	L	8639YES	2	NO NO	NO	NO
414 I	D12514	26FEMAL	EINNER	R_CITY	16519YES	O	YESNO	YES	NO
473 I	D12573	61MALE	INNER	R_CITY	21140YES	2	YESYES	NO	NO
325 I	D12425	36MALE	SUBUE	RBAN	28495YES	O	NO YES	YES	NO
499I	D12599	51FEMAL	ETOWN		43800NO	O	NO YES	YES	YES
			dime	nsion_	testing_bd	_train	dim((bd_test)	
						400		200	

age	sex	region	income	married	childrenc	ear save_	_act
76 fifties	FEMAL	ERURAL	(2.44e+04,4.38e+0	4]married=NC) 2	ar=YESsave_	act=No
298teens	MALE	RURAL	(5.01e+03,2.44e+04	4] married=YE	S2 c	ar=NO save_	act=No
414 twentie	esFEMAL	EINNER_CIT	Y(5.01e+03,2.44e+04	4] married=YE	So c	ar=YESsave_	act=No
473 old	MALE	INNER_CIT	Y(5.01e+03,2.44e+04	4] married=YE	S2 c	ar=YESsave_	act=YI

age	sex	region	income	married	children	ıcar	save_	act
325thirties	MALE	SUBURBAN	(2.44e+04,4.38e+04]married=YE	So	car=NO	save_a	ct=YF
499fifties	FEMALE	ETOWN	(4.38e+04,6.31e+04)] married=NO	0	car=NO	save_a	ct=YF
age	sex	region	income	married	children	ıcar	save_	act
76 fifties	FEMALE	ERURAL	(2.44e+04,4.38e+04]married=NO	2	car=YES	save_a	ct=N0
298teens	MALE	RURAL	(5.01e+03,2.44e+04)] married=YE	S2	car=NO	save_a	ct=N0
414 twenties	sFEMALF	EINNER_CITY	Y(5.01e+03,2.44e+04] married=YE	So	car=YES	save_a	ct=N0
473 old	MALE	INNER_CITY	Y(5.01e+03,2.44e+04] married=YE	S2	car=YES	save_a	ct=YF
325 thirties	MALE	SUBURBAN	(2.44e+04,4.38e+04]married=YE	So	car=NO	save_a	ct=YI
499fifties	FEMALE	ETOWN	(4.38e+04,6.31e+04] married=NO	0	car=NO	save_a	ct=YF

Model Data Prep

```
## [1] "Imbalance checking for pep target variable"
##
## pep=NO pep=YES
    0.57 0.43
## [1] "Imbalance is not a problem here as the no and yes values are nearl
y balanced"
## Rows: 200
## Columns: 11
## $ age
             <int> 59, 18, 26, 61, 36, 51, 42, 46, 32, 55, 45, 23, 47,
37,...
## $ sex
                <dbl> 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
1, 1...
## $ region
                <fct> RURAL, RURAL, INNER CITY, INNER CITY, SUBURBAN, TOW
N, I...
                <dbl> 35611, 8639, 16519, 21140, 28495, 43800, 17390, 171
## $ income
49, ...
```

```
## $ married <dbl> 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1,
1, 0...
## $ children
              <int> 2, 2, 0, 2, 0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 1, 0, 0,
0, 0...
## $ car
               <dbl> 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0,
1, 0...
## $ save act
              <dbl> 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
1, 1...
1, 1...
## $ mortgage
              <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 1...
## $ pep
               <fct> YES, NO, YES, NO, NO, NO, YES, YES, YES, NO, NO
, YE...
```

ages	exregion	incomema	rriedchildr	enc	arsa	ave_actcurren	t_actmort	gagepep
59	oRURAL	35611	О	2	1	O	0	oYES
18	1RURAL	8639	1	2	O	О	0	oNO
26	oINNER_CITY	16519	1	0	1	O	1	oYES
61	1INNER_CITY	21140	1	2	1	1	0	oNO
36	1SUBURBAN	28495	1	0	0	1	1	oNO
51	oTOWN	43800	0	O	0	1	1	1NO

```
## Rows: 200
## Columns: 12
                 <fct> ID12176, ID12398, ID12514, ID12573, ID12425, ID1259
## $ id
9, I...
                 <int> 59, 18, 26, 61, 36, 51, 42, 46, 32, 55, 45, 23, 47,
## $ age
37, . . .
## $ sex
                 <dbl> 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
1, 1...
## $ region
                 <fct> RURAL, RURAL, INNER CITY, INNER CITY, SUBURBAN, TOW
N, I...
                 <dbl> 35611, 8639, 16519, 21140, 28495, 43800, 17390, 171
## $ income
49, ...
```

```
## $ married
              <dbl> 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1,
1, 0...
## $ children
              <int> 2, 2, 0, 2, 0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 1, 0, 0,
0, 0...
## $ car
              <dbl> 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0,
1, 0...
## $ save act
              <dbl> 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
1, 1...
1, 1...
              <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
## $ mortgage
0, 1...
## $ pep
              <fct> YES, NO, YES, NO, NO, NO, NO, YES, YES, YES, NO, NO
, YE...
```

id ages	exregion i	ncomem	arriedchild	renc	arsave	_actcurre	ent_actmortg	agepep
ID12176 59	oRURAL	35611	O	2	1	0	0	oYES
ID12398 18	1RURAL	8639	1	2	0	0	0	oNO
ID12514 26	oINNER_CITY	16519	1	0	1	0	1	oYES
ID12573 61	1INNER_CITY	21140	1	2	1	1	0	oNO
ID12425 36	1SUBURBAN	28495	1	0	0	1	1	oNO
ID12599 51	oTOWN	43800	0	0	0	1	1	1NO

Model Training

Apriori classifier was shown to be 100% accurate in predicting pep responders. This means we can use a classifier based upon aprior to determine the target audience if we assume pep response is a good index for propensity to respond.

CBA classifer accuracy is 1 or 100% accuracy"

```
## CBA Classifier Object
## Class:
## Default Class: NA
## Number of rules: 21
```

```
## Classification method: first
## Description: CBA algorithm (Liu et al., 1998)
## [1] "CBA classifer accuracy is 1 or 100% accuracy"
```

Training Other Classifer Models: Random Forest and Support Vector Machines

The results of the association rule based predictions were quite high, so other classification method will be used to challenge or confirm.

Model Testing

Testing for random forest and support vector machine classifers. The most important features for the Random forest algorithm can be seen below here. **Income** is the most important by far followed by children.

```
## rf variable importance
##
##
                  Overall
## income
                  100.000
## children
                   72.324
                    36.619
## age
## mortgage
                    26.776
## save act
                    21.867
## married
                    20.302
                     4.896
## sex
## regionRURAL
                    1.949
                     1.327
## car
## current act
                     0.691
## regionSUBURBAN
                     0.275
## regionTOWN
                     0.000
```

Results

Model Training Results

Definition of the Terms related to measuring classification models:

- Positive (P): Observation is positive (for example: is an apple).
- Negative (N): Observation is not positive (for example: is not an apple).
- True Positive (TP): Observation is positive, and is predicted to be positive.
- False Negative (FN): Observation is positive, but is predicted negative.
- True Negative (TN): Observation is negative, and is predicted to be negative.
- False Positive (FP): Observation is negative, but is predicted positive.

Accuracy: * Classification Rate or Accuracy is given by the relation: (TP + TN) / (TP + TN + FP + FN) * It assumes equal costs for both kinds of errors. A 99% accuracy can be excellent, good, mediocre, poor or terrible depending upon the problem.

Recall: Recall can be defined as the ratio of the total number of correctly classified positive examples divide to the total number of positive examples. High Recall indicates the class is correctly recognized (a small number of FN). Recall is given by the relation: TP / (TP + FN)

AUC-ROC curve: This is a performance measurement for classification problem at various thresholds settings. ROC is a probability curve and AUC represents degree or measure of separability. It tells how much model is capable of distinguishing between classes. **Higher the AUC, better the model** is at binary predictions. ### Support Vector Machine and Random Forest training results

```
##
## Call:
## summary.resamples(object = results)
##
## Models: svm, rf
## Number of resamples: 10
## Accuracy
      Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
  svm 0.45
             0.66 0.75 0.72 0.80 0.85
                                              0
                                0.95 1.00
  rf 0.70
             0.80 0.88 0.87
                                             0
##
## Kappa
       Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
  svm -0.10
               0.27 0.48 0.41
                                 0.59 0.69
## rf
      0.32
               0.60 0.75 0.72
                                  0.90 1.00
                                              0
```

Support Vector Machine and Random Forest plotting results

The graph below shows two evaluation metrics for the models.

- Accuracy is the percentage of correctly classifies instances out of all instances. It
 is more useful on a binary classification than multi-class classification problems
 because it can be less clear exactly how the accuracy breaks down across those
 classes (e.g. you need to go deeper with a confusion matrix). Learn more about
 Accuracy here.
- Kappa or Cohen's Kappa is like classification accuracy, except that it is normalized at the baseline of random chance on your dataset. It is a more useful measure to use on problems that have an imbalance in the classes (e.g. 70-30 split for classes 0 and 1 and you can achieve 70% accuracy by predicting all instances are for class 0). Learn more about Kappa here.

The random forest algorithm denoted by rf is the better model according to these metrics.

The last graph is plotting AUC-ROC and the random forest(rf) shows more area under the curve as compared to the support vector machine (svm) denoted by the red line. This means the random forest is a better fit for the data by this AUc-ROC metric.

Model Testing Results

Confusion Matrix

The random forest classifer was also able to get 100% accuracy predicting pep response using the test dataset.

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction NO YES
## NO 114 0
## YES 0 86
##
## Accuracy: 1
```

```
##
                   95% CI: (0.982, 1)
##
      No Information Rate: 0.57
      P-Value [Acc > NIR] : <2e-16
##
##
##
                    Kappa: 1
##
   Mcnemar's Test P-Value : NA
##
             Sensitivity: 1.00
##
             Specificity: 1.00
       Pos Pred Value : 1.00
##
        Neg Pred Value: 1.00
##
##
               Prevalence: 0.57
           Detection Rate: 0.57
##
##
    Detection Prevalence: 0.57
##
        Balanced Accuracy: 1.00
##
         'Positive' Class : NO
##
```

The support vector machine had significant as well with 85% accuracy.

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction NO YES
## NO 107 22
## YES 7 64
##
## Accuracy: 0.855
## 95% CI: (0.798, 0.901)
## No Information Rate: 0.57
## P-Value [Acc > NIR]: < 2e-16</pre>
```

```
##
##
                      Kappa: 0.698
##
##
    Mcnemar's Test P-Value: 0.00933
##
##
               Sensitivity: 0.939
##
               Specificity: 0.744
##
            Pos Pred Value: 0.829
            Neg Pred Value: 0.901
##
                Prevalence: 0.570
            Detection Rate: 0.535
##
##
      Detection Prevalence: 0.645
##
         Balanced Accuracy: 0.841
##
##
          'Positive' Class : NO
##
```

Conclusions

Association rule mining algorithms typically generate a large number of association rules, which poses a major problem for understanding and analyzing rules. The analysis performed here demonstrated the ability to to mine rules from the KNJ financial data using the apriori technique. Our process found 29 strong rules, but we filtered those rules down even further to our 5 strongest rules. The metrics measured to gauge rule strength were support, confidence and lift and there was an important filter used to consider past responders as the mostly likely to respond again.

The premise of past responders being the index for future responders was bolstered by using classification models. The classification models were trained to perdict passed responders by using the pep response feature. The classification approach simply tried to determine yes or no in terms of customer response After using several classification methods it is safe to say our premise of using past responses as a means to segment the customer, was an informed one. Two out of three models tested predicted with 100% accuracy, which isn't surprising given the strength of the rules we found using the apriori rule mining methods.

In summary, the KNJ Finance data supports a means to create rules and classifiaction models to build profiles, which can support a targeted marketing campaigns. The target customer segment is married couples with only 1 child who do business with KNJ, but

not on the mortgage side. The top 5 rules were used to generate a targeted campaign with 29 accounts, and a broader campaign with 100 was created by using less rules. KNJ finanical will have the option to choose which campaign serves their purposes.