4-1 题 **4-1** 图中,300V 电源电压不稳定,设它突然升高到 360V,求电压 U_0 的变化量。

解 设电源电压为 Us, 原电路等效为如题 4-1 解图所示。

由题 4-1 解图,有
$$U_o = \frac{1}{2} \times \frac{1}{3} U_s = \frac{1}{6} U_s$$

由齐次定理,得 $\Delta U_o = \frac{1}{6} (360 - 300) = 10 \text{ V}$

4-2 题 **4-2** 图所示梯形电路中,求 U_0/U_s 。

解 设题 4-2 图所示梯形电路各支路电流的参考方向如题 4-2 解图所示,并设 U_o = $20\mathrm{V}$ 。

题 4-2 解图中,由欧姆定律,有

$$I_1 = \frac{U_o}{20} = 1 \text{ A}, \quad I_2 = \frac{I_1(20+4)}{12} = 2 \text{ A}, \quad I_3 = \frac{(I_1 + I_2) \times 5 + I_2 \times 12}{39} = 1 \text{ A}$$

由KCL和KVL,有

$$I_4 = I_1 + I_2 = 3 \text{ A}$$
, $I_5 = I_3 + I_4 = 4 \text{ A}$, $U_S = 4I_5 + 39I_3 = 55 \text{ V}$

所以,有
$$\frac{U_o}{U_s} = \frac{20}{55} = 0.364$$
、

4-3 用叠加定理求题 4-3 图所示电路的电压 U。

解 利用叠加原理,题 4-3 图所示电路分解为如题 4-3()解(a)和(b)图所示电路。

由题 4-3 解(a)图,有
$$U' = \frac{12}{3+1} \times 3 = 9V$$

由题 4-3 解(b)图,有
$$U'' = \frac{1}{3+1} \times 2 \times 3 = 1.5 \text{ V}$$

由叠加原理, 得 U = U' + U'' = 10.5V

4-4 电路如题 4-4 图所示,用叠加定理求电流 I。

解 利用叠加原理,题 4-4 图所示电路分解为如题 4-4 解(a)、(b)和(c)图所示电路。

由叠加原理,得

$$I = I' + I'' + I''' = \frac{10}{4+2+2} - 0.5 + \frac{4+2}{4+2+2} \times 2 = 2.25A$$

4-5 题 4-5 图所示电路中,已知:当 3A 电流源移去时,2A 电流源所产生的功率为 28W, $U_3=8$ V;当 2A 电流源移去时,3A 电流源产生的功率为 54W, $U_2=12$ V。求当两个电流源共同作用时各自产生的功率。

题 4-5 图

解 利用叠加原理,设 $U_2 = \alpha \times 2 + \beta \times 3$

由已知条件知
$$\begin{cases} \frac{28}{2} = \alpha \times 2 \\ 12 = \beta \times 3 \end{cases}$$
 求得
$$\begin{cases} \alpha = 7 \\ \beta = 4 \end{cases}$$

所以,当两个电流源共同作用时 U_2 =26V,2A 电流源产生的功率为 $P=2\times26=52$ W 同理,设 $U_3=\gamma\times2+\lambda\times3$

由已知条件知
$$\begin{cases} 8 = \gamma \times 2 \\ \frac{54}{3} = \mu \times 3 \end{cases}$$
 求得
$$\begin{cases} \gamma = 4 \\ \mu = 6 \end{cases}$$

所以,当两个电流源共同作用时 U_3 =26V,3A 电流源产生的功率为 $P=3\times26=78$ W

4-6 用叠加定理求题 **4-6** 图中电压 U_2 。

解 利用叠加原理,题 4-64 图所示电路分解为如题 4-6 解(a)和(b)图所示电路。

由题 4-6 解(a)图,有
$$I'_1 = \frac{2}{4} = 0.5$$
A

$$U_2' = -3 \times 2I_1' + 2 = -1V$$

由题 4-6 解 (b)图,有 $I_1'' = 0$ A, $U_2'' = 3 \times 3 = 9$ V

由叠加原理,得
$$U_2 = U_2' + U_2'' = -1 + 9 = 8V$$

4-7 题 4-7 图中,(1) 选一电阻替代原来的电流源,使电路的各电压、各电流不受影响;(2) 选一电流源替代原来的 18Ω电阻,使电路的各电压各电流不受影响。

解(1)题 4-7所示电路图等效为题 4-7解(a)图所示。

$$U_1 = 36 - 4 \times 6 = 12 \text{V}$$

使电路的各电压、各电流不受影响,替代原来的电流源的电阻为

$$R = \frac{12}{4} = 3\Omega$$

(2) 题 4-7 所示电路图等效为题 4-7 解(b)图所示。

使电路的各电压、各电流不受影响,替代原来电阻的电流源为

$$I = -\frac{9}{18+9} \times (6-4) = -0.667A$$

4-8 题 4-8 图中,支路电流 I_x =0.5A,求电阻 R_x 的值为多少?

解 利用替代定理将题 4-8 所示电路图等效为题 4-8 解图所示,列节点电压方程如下

$$\begin{cases} U_1 = 5V \\ -\frac{1}{3}U_1 + (\frac{1}{3} + \frac{1}{3} + \frac{1}{2})U_2 - \frac{1}{3}U_3 = 0 \\ -\frac{1}{6}U_1 - \frac{1}{3}U_2 + (\frac{1}{3} + \frac{1}{6})U_3 = -0.5 \end{cases}$$

求得 $U_3 = 2V$

所以,有
$$R_x = \frac{U_3}{0.5} = 4\Omega$$

4-9 题 4-9 图电路中,电阻 R_L 从 15 Ω 变到 35 Ω ,应用戴维南定理求电流 I 如何变化。

解 戴维南等效电路如图所示。

$$U_{OC} = 3 \times 2 + 4 = 10 \text{ V}$$

 $Req=5\Omega$

 $R_{\rm L}$ =15 Ω 时,I=0.5A

 R_L =35 Ω 时,I=0.25A

4-10 应用诺顿定理求题 4-10 图所示电路中的电流 I。

解 诺顿等效电路如图所示。

Isc=2A

 $Req=4//6=2.4\Omega$

$$I = \frac{2.4}{2.4 + 3.6} \times 2 = 0.8A$$

4-11 用戴维南定理和诺顿定理求题 4-11 图所示各电路的等效电路。

题 4-11 图

(a)解 (1)求开路电压,如题 4-11(a)图所示,列 KVL 方程

$$\begin{cases} U_{OC} = -40 + 12I_1 + 6 \times 2 \\ 12I_1 + 4 \times (I_1 - 2) = 40 \end{cases}$$

解得
$$I_1 = 3A$$
, $U_{OC} = 8V$

(2) 求等效电阻 Req, 如题 4-11 解(a1)图所示, 有

$$R_{eq} = 12 // 4 + 6 = 9\Omega$$

题 4-11 解(a1)图

题 4-11 解(a2)图

- (3) 等效电路如题 4-11 解(a2)图所示。
- (b)解 (1)求开路电压,如题 4-11(b)图所示,有

$$U_{OC} = 10 \times 1 + 5I_1 + 6 - 5 = 11 + 5I_1$$

又
$$(10+5)I_1-10(2-I_1)=0$$
, 求得 $I_1=0.8A$

从而,有
$$U_{oc} = 11 + 5I_1 = 15V$$

(2) 求等效电阻 Req,将题 4-11(b)图所示电路中独立电源置零,得

$$R_{eq} = 10 + [5 / /(10 + 10)] = 14\Omega$$

(3) 等效电路如题 4-11 解(b1)图所示。

(c)解 (1)求开路电压,如题 4-11(c)图所示,有

$$U_{OC} = U_{ab} = -9 + 6 \times 2 + 3 = 6 \text{ V}$$

(2) 求等效电阻 Req,将题 4-11(c)图所示电路中独立电源置零,得

$$R_{eq} = 6 + 10 = 16\Omega$$

(3) 等效电路如题 4-11 解(c1)图所示。

题 4-11 解(c1)图

(d)解 (1)求开路电压,如题 4-11(d)图所示,有

$$U_{OC} = 2I_1 - 2I_1 = 0 \text{ V}$$

(2) 采用外加电源法求等效电阻 Req, 如题 4-11 解(d1)图所示, 有

$$u = 5i + 2 \times (i + I_1) - 2I_1 = 7i$$

所以,得 $R_{eq} = 7\Omega$

题 4-11 解(d1)图

题 4-11 解(d2)图

- (3) 等效电路如题 4-11 解(d2)图所示。
- **4-12** 题 4-12 图所示 N_S 为含源单口网络,已知开关 S 扳向 1,电流表读数为 2A;开关 S 扳向 2,电压表读数为 4V;求开关 S 扳向 3 后,电压 U 等于多少?

解 由己知条件,知

开关 S 扳向 1,电流表读数为端口的短路电流,即 I_{SC} =2A

开关 S 扳向 2, 电压表读数为端口的开路电压, 即 U_{oc} =4V

所以,含源单口网络
$$N_{\mathrm{S}}$$
 的等效电阻为 $R_{eq}=\frac{U_{\mathit{OC}}}{I_{\mathit{SC}}}=2\Omega$

从而,有含源单口网络 N_S 的等效电路如题 4-12 解(a)图所示。

当开关 S 扳向 3 后,等效电路如题 4-12 解(b)图所示,有

$$U - (2+5) \times 1 - 4 = 0$$

从而,有 U=11V

4-13 题 4-13 图中 N_1 的伏安关系为 U=2000I+10,其中 U 单位为伏特,I 单位为毫安, $I_s=2mA$,

(1) 求 N 的等效电路; (2) 若 I=-1mA, 求电阻 R 的值。

 $2k\Omega$

题 4-13 图

题 4-13 解图

解 (1) 已知条件, U=2000I+10

又 I=i-2,代入上式,得 U=2000i+6

Uoc=6V, Req=2k Ω

所以, N的等效电路如题 4-13 解图所示。

(2) 当 I=-1mA 时,U=8V

此时
$$I_1 = \frac{8}{1} = 8 \text{mA}$$
, $I_2 = I_1 + I = 7 \text{mA}$

所以,有
$$R = \frac{10-8}{7} = \frac{2}{7}k\Omega$$

4-14 题 4-14 图(a)所示电路, U_2 =12.5V,若将网络 N 短路,如题图 4-14(b)所示,短路电路 I=10mA, 试求网络 N 在 AB 端的戴维南等效电路。

题 4-14 图

解 设网络 N 的等效电路如题 4-14 解图所示。由已知条件列出如下表达式

对题 4-14(a)图列节点电压方程,即
$$\left(\frac{1}{2.5} + \frac{1}{5} + \frac{1}{R_{eq}}\right) \times 12.5 = \frac{20}{2.5} + \frac{U_{oc}}{R_{eq}}$$

对题 4-14(b)图列 KCL 方程,即
$$\frac{20}{2.5} + \frac{U_{oc}}{R_{eq}} = 10$$

联立二式,求得
$$U_{oc} = 10 \text{V}, R_{eq} = 5 \text{k}\Omega$$

4-15 本题所示电路只存在一种等效电路。(1) 求题 4-15(a) 图所示单口网络的戴维南等效电路; (2)求题 4-15(b) 图的诺顿等效电路。

题 4-15 图

解 (a)图 (1)求开路电压,如题 4-15 解(a)图所示。

开路时 I=0

列 KVL 方程 6i-10+6i=0 求得 i=5/6A

所以,有 *Uoc=6i=5V*

(2)求等效电阻 Req, 如题 4-15 解(b)图所示。

求得 u=0,从而,Req=0,所以该电路不存在诺顿等效电路。

- (3)题 4-15(a)图所示单口网络的戴维南等效电路如题 4-15 解(c)图所示。
- (b)图 (1)求短路电流,如题 4-15 解(d)图所示,有

$$I_1 = \frac{15}{6 + \frac{8 \times 12}{8 + 12}} \times \frac{12}{8 + 12} = \frac{5}{6}$$
A
 $U_2 = 8I_1 = \frac{20}{3}$ V, $I_2 = \frac{4U_2}{4} = \frac{20}{3}$ A
所以,有 $I_{SC} = I_1 + I_2 = 7.5$ A

(2)求等效电阻 Req,采用外加电源法,如题 4-15 解(e)图所示,进一步等效为题 4-15 解(f)图所示电路。

求得 Req=0

- (3) 题 4-15(b)图所示单口网络的诺顿等效电路等效电路如题 4-15 解(g)图所示。
- **4-16** 题 4-16 图所示电路中负载电阻 R_L 为何值时其上获得最大功率,求此最大功率。

解 戴维南等效电路如图所示。

$$U_{oc} = \frac{24}{8+4} \times 4 = 8V$$

 $R_o = 4 + 8 / /4 = \frac{20}{3} = 6.67\Omega$

 R_L = R_o =6.67Ω时获得最大功率,最大功率为

$$P_{\text{max}} = \frac{U_{OC}^2}{4R_{eq}} = \frac{8^2}{4 \times 6.67} = 2.4 \text{W}$$

4-17 题 4-17 图中 R 为多大时,它吸收的功率最大?并求此最大功率。若 $R=8\Omega$,欲使 R 中电流为零,则 a、b 间应再接什么理想元件,参数为多大?

解 (1)求 R 支路以外得等效电路。

先求开路电压,将 R 断开,并作等效变换,如题 4-17 解(a)图所示。

$$U_{oc} = \frac{25/20 + 50/20}{1/20 + 1/20} = 37.5 \text{V}$$

等效电阻为 $R_{eq} = 20 // 20 = 10 \Omega$

当 $R = R_{eq} = 10\Omega$ 时,R吸收的功率最大,最大功率为

$$P_{\text{max}} = \frac{U_{oC}^2}{4R_{eq}} = \frac{37.5^2}{4 \times 10} = 35.16 \text{W}$$

(2) 若 $R=8\Omega$, 欲使 R 中电流为零,则 a、b 间应再并联一条内阻为 10Ω ,电压为 37.5V 的有源支路,如题 4-17 解(b)图所示。

$$U = \frac{\frac{1}{10}U_{oc} - \frac{1}{10} \times 37.5}{\frac{1}{10} + \frac{1}{10} + \frac{1}{R}} = 0 \qquad \text{fig. fill} \qquad I = \frac{U}{R} = 0$$

即并联一条内阻为 10Ω , 电压为 37.5V 的有源支路可以使 R 中电流为零。

4-18 题 4-18 图中, R_1 =1 Ω,电阻 R 可变,当 $R=\frac{1}{3}$ Ω时其功率为最大,值为 0.75W,试求 μ 与 I_{s3} 值。

解 由己知条件,得 $R_{eq} = \frac{1}{3}\Omega, U_{OC} = \pm \sqrt{4P_{\text{max}}R_{eq}} = \pm 1\text{V}$

(1) 利用 R_{eq} 求 μ , 如题 4-18 解(a)图所示。

采用外加电源法, 得
$$R_{eq} = \frac{R_1}{1+\mu} = \frac{1}{3}$$
, 求得 $\mu = 2$

(2) 利用开路电压 U_{OC} 求 I_{s3} 的值,如题 4-18 解(b)图所示,有

$$U_{OC} = -\mu U_{OC} + R_1 I_{S3} = \pm 1 \text{V}$$

所以,有 $I_{S3} = \pm 3A$

4-19 题 4-19 图中, R_s =1 Ω , g_m 与 U_s 为定值, R_L 可变,已知当 R_L =0.5 Ω 时, R_L 上获最大功率,

值为 0.125W, 试确定 g_m 与 U_s 值。

解 题 4-19 图的等效电路如题 4-19 解(a)图所示。

由已知条件,知
$$R_{eq}=R_L=0.5\Omega, U_{OC}=\pm\sqrt{4\times0.4\times0.125}=\pm0.5 \mathrm{V}$$

(1) 利用 Req 求 g_m , 电压源 U_s 置零, 如题 4-19 解(b)图所示。

采用外加电源法,得
$$R_{eq} = \frac{R_S}{1 + g_{m}R_{s}}$$

所以,有
$$0.5 = \frac{1}{1 + g_m}$$
 从而,得 $g_m = 1$

(2) 利用 Uoc 求 Us, 将 R_L 断开

$$U_{S} = R_{S} g_{m} U_{OC} + U_{OC} = 2U_{OC} = \pm 1 \text{V}$$

4-20 题 4-20 图(a)所示电路中,有 I_{s1} =1A, U_1 =2V, U_2 =1V;题 4-20 图(b)中有 \hat{U}_{s1} =20 V, \hat{I}_{s2} =10A, N_R 为互易网络,试确定电流 \hat{I}_1 值。

题 4-20 图

解 应用戴维南定理和互易定理求解。断开待求支路,如题 4-20 解(a)图所示。

题 4-20 解(a)图

题 4-20 解(b)图

题 4-20 图(a)所示电路与如题 4-20 解(a)图所示互易,所以,有 $U_{oc}=rac{\hat{I}_{s2}}{I_{s1}}U_{2}=10 ext{V}$

将题 4-20 解(a)图所示电路独立源置零,利用题 4-20 图(a)的已知条件,得 $R_{eq}=\frac{U_1}{I_{s1}}=2\Omega$

题 4-20 图(b)所示电路的戴维南等效电路如题 4-20 解(b)图所示,有

$$\hat{I}_1 = \frac{\hat{U}_{S1} - 10}{2} = 5A$$

4-21 题 4-21 图(a)电路中,有 U_{s1} =1V, I_1 =2A, I_2 =1A;题 4-21 图(b)中,有 \hat{U}_{s2} =5V, \hat{I}_1 =1A, N_R 为互易网络,试确定电阻 R 值。

题 4-21 图

解 应用诺顿和互易定理求解,将题 4-21 图(b)所示电路作诺顿等效,如题 4-21 解(a)图所示。 (1)求短路电流 i_{SC} ,电阻 R 所在支路短接,如题 4-21 解(b)图所示。

题 4-21 解(b)图

比较题 4-21 图(a)电路和题 4-21 解(b)图所示电路,由互易定理,知 $i_{SC}=5A$

(2)求等效电阻 Req,如题 4-21 解(b)图中将独立电压源置零,从端口 1-1'看,与题 4-25 图(a)从端口 1-1'看是完全相同的,所以,有

$$R_{eq} = \frac{U_{s1}}{I_1} = 0.5\Omega$$

(3)由题 4-21 解(a)图所示电路,知

$$\hat{I}_1 = \frac{R_{eq}}{R + R_{eq}} i_{SC} \qquad \text{ BP} \quad 1 = \frac{R_{eq}}{R + R_{eq}} \times 5$$

求得 $R = 2\Omega$

4-22 题 4-22 图(a)含有两个未知电阻的互易网络,当电流源 I_s 作用于 1-1'之间时,有 $I_2^{(1)}=\frac{1}{6}I_s$; 当电流源 I_s 作用于 2-2'之间时,电路如题 4-22 图(b)所示,有 $I_2^{(2)}=0.5I_s$ 。应用互易定理确定电阻 R_1 与 R_2 值。

题 4-22 图

解 依据互易定理: 题 4-22 图(a)中 U_{22}' 与题 4-22 图(b)中 U_{11}' 相等,即

$$3I_2^{(1)} = R_1 I_2^{(2)}$$
 从而,得 $R_1 = 1\Omega$

由分流公式,得
$$I_2^{(1)} = \frac{1}{6}I_S = \frac{I_S \cdot R_1}{R_1 + R_2 + 3}$$

从而,得
$$R_2 = 2\Omega$$

4-23 题 4-23 图 (a) 含有两个未知电阻的互易网络,当电压源 $U_{\rm s}$ 作用于 1-1'之间时,有 $U_3^{(1)} = \frac{6}{11} U_s$; 当 $U_{\rm s}$ 作用于 2-2'之间时电路如题 4-23 图(b)所示,有 $U_3^{(2)} = \frac{3}{11} U_s$ 。应用 互易定理确定电阻 R_1 与 R_3 值。

解 依据互易定理: 题 4-23 图(a)中 I_{22}' 与题 4-23 图(b)中 I_{11}' 相等,即

$$\frac{U_3^{(1)}}{2} = \frac{U_3^{(2)}}{R_1} \qquad \qquad \exists I \quad \frac{1}{2} \times \frac{6}{11} U_S = \frac{1}{R_1} \times \frac{3}{11} U_S$$

从而,得
$$R_1 = 1\Omega$$

由题 4-23 图(a)列 KVL 方程,有

$$U_{S} = U_{3}^{(1)} + R_{1} \left(\frac{U_{3}^{(1)}}{R_{3}} + \frac{U_{3}^{(1)}}{2} \right) \qquad \text{PL} \quad U_{S} = \frac{6}{11} U_{S} + \frac{6}{11 R_{3}} U_{S} + \frac{6}{2 \times 11} U_{S}$$

从而,得 $R_3 = 3\Omega$

4-24 电路如题 4-24 图所示,已知非线性元件 A 的 VCR 为 $u = \begin{cases} 0, & \exists i < 0 \\ i^2, & \exists i > 0 \end{cases}$,试求 i 和 i_1 。

- 解 将题 4-24 图所示电路等效为如题 4-24 解(a)图所示戴维南等效电路。
- (1)求开路电压,如题 4-24 解(b)图所示,进一步等效变换为题 4-24 解(c)图所示,求得

$$U_{oc} = 2 + \frac{2-2}{2+2} \times 2 = 2V$$

- (2)求等效电阻 Req,如题 4-24 解(c)图所示电路中置独立电源为零,得 $Req=1\Omega$
- (3)由等效电路题 4-24 解(a)图,有 $u=U_{oc}-R_{eq}i=egin{cases}0\\i^2\end{cases}$

即
$$\begin{cases} 0 = 2 - 1 \times i \to i = 2(\text{不合题意, 舍去}) \\ i^2 = 2 - i \to i = -2(\text{不合题意, 舍去}), i = 1A \end{cases}$$

所以,有 *i*=1A

求 i_1 时,将元件A由1A的电流源替代,如题4-24解(d)图所示。

求得 i₁=1.5A

4-25 在题 4-25 图所示电路中,已知当 u_s =4V, i_s =1A 时,u=4V;当 u_s =0, i_s =2A 时,u=2V。求 u_s =2V,电流源换成电阻 R=2Ω时,电压 u 为多少?

- 解 电流源换成电阻 R=2 Ω 时,电路如题 4-23 解(a)图所示,求电压 u 将电路等效为题 4-25 解(b)图所示电路。
- (1) 求开路电路 Uoc

由己知条件当 u_s =0, i_s =2A 时,u=2V,那么,当 u_s =0, i_s =1A 时,u'=1V

所以, 当 u_s = 4V 单独作用时 u'' = 4-1 = 3V, 如题 4-25 解(c)图所示。

从而,当 u_s =2V 时, $U_{oc} = \frac{1}{2}U'' = 1.5V$

(2)求等效电阻 Req,将题 4-25 解(c)图所示电路独立源置零。采用外加电源法,如题 4-25 解(d) 图所示(已知条件)。

$$R_{eq} = \frac{2}{2} = 1\Omega$$

(3)由题 4-25 解(b)图所示电路,有

$$u = \frac{2}{2 + R_{eq}} U_{OC} = 1V$$

4-26 题 4-26 图所示电路, $N_{\rm S}$ 为线性含独立源电阻网络,当 U_s =6V 时, I_2 =1A, U_3 =2V;当 U_s =10V 时, I_2 =2A.。求当 U_s =12V 时的 I_2 和 U_3 。

题 4-26 图

解 应用叠加定理,令 $I_2 = \alpha U_s + \beta U_N$, 由已知条件,得

$$\begin{cases} 1 = \alpha \times 6 + \beta U_N \\ 2 = \alpha \times 10 + \beta U_N \end{cases} \rightarrow \begin{cases} \alpha = 0.25 \\ \beta U_N = -0.5 \end{cases}$$

则 $I_2 = 0.25U_s - 0.5$

所以, 当 U_s =12V 时的 I_2 =2.5A

另,当 U_s =6V 时, I_2 =1A, U_3 =2V 时,有 U_3 =0.5×1×R=2V,得 R=4 Ω

 U_s =12V 时的 I_2 =2.5A 时, U_3 =0.5×2.5×R=5V

4-27 题 4-27 图所示电路, $R=2\Omega$ 时, $I_1=3A$, $I_2=1A$ 。求当 $R=4\Omega$ 时 I_1 和 I_2 的值。

解 R 以外的部分做戴维南等效,等效电路如图题 4-27(a)所示。等效电阻的求解电路如题 4-27(b) 图所示,采用外加电源方法求得 R_0 =2 Ω

由已知条件,由题 4-27(a)图求得,Uoc=12V,当 $R=4\Omega$ 时 I_1 为

$$I_1 = \frac{U_{oc}}{R_0 + R} = \frac{12}{2 + 4} = 2A$$

求 I_2 ,

将 I_1 用电流源来置换,用叠加定理分析置换后的电路,即将 I_2 分解成 $I_2 = I_2' + I_2''$ 。

其中 I_2' 为电流源 I_1 单独作用时的解答,题 4-27(c)图所示; I_2'' 是其余电源共同作用时的解答,如题 4-27(d)图所示。由图(c)可得:

KVL:
$$5\Omega I_2' + 5\Omega I' = 0$$

KCL:
$$-I_1 + 0.5I' - I_2' + I' = 0$$

联立解得

$$I_2' = -0.4I_1$$

因此,电流 I_2 可以写成:

$$I_2 = I_2' + I_2'' = -0.4I_1 + I_2''$$

由已知条件得

$$1A = -0.4 \times 3A + I_2''$$
 $I_2'' = 2.2A$

所以,当 $R = 4\Omega$ 时,

$$I_2 = -0.4 \times 2A + 2.2A = 1.4A$$

4-28 题 4-28 图所示电路中,N 为含源电阻网络, A_1 和 A_2 是电流表,已知 K 打开时 I_1 =1A, I_2 =5A,K 闭合后, I_1 =2A, I_2 =4A,此时调节 R 使两电流表读数相等。求此读数的大小。

题 4-28 图

解 综合应用替代定理和叠加原理。将电阻 R 所在支路视为与 I_3 大小相同、方向一致的电流源,设 I_3 对 I_1 影响的比例系数为α, I_3 对 I_2 影响的比例系数为β,则有

$$\begin{cases} 1 + \alpha I_3 = 2 \\ 5 + \beta I_3 = 4 \end{cases}$$
 求得 $\alpha = -\beta$

当两电流表读数相等时,设此读数为x,则有

$$\begin{cases} 1 + \alpha I_3 = x \\ 5 - \alpha I_3 = x \end{cases}$$
 求得 $x = 3A$

4-29 题 **4-29** 图 (a) 所示电路中, N 网络的伏安关系曲线如图 **4-29** (b) 所示,可变电阻为 $9k\Omega$, 滑动端为 A 点,设 A 点下部电阻大小为 R_1 ,问 R_1 为多少时电流表的指示为零?

解 由题 4-29 图(b)知 N 网络的伏安关系为 $U = -6 + \frac{4}{3}I = U_{oc} - R_{eq}I$

所以,N网络可以等效为如题 4-29 解图所示电路。

电流表的指示为零时,由题 4-29(a)图,有

$$U_{OC} = -\frac{18+9}{9} \times R_1 + 9$$
,又 U_{OC} =-6V,求得 R_1 =5k Ω