Documentation: data input

Compute lambdas	Read lambdas	
"_discr_temp.dat"	"_WMA_discr.dat"	
"_discr_esp.dat"	"_WMA_lambdas.dat"	
"_tpt_props.dat"		
"_BCs.dat"		
"_flux_inflow.dat" *		
"_quim_loc.dat"		
"_tar_wat.dat"		
"_out_options.dat"		
"_chem_	opts.dat"	

^{*} Only if the flux is non uniform.

•	"_WMA_discr.dat": This file contains the time discretisation for the WMA.						
	0	Class: 1D transient reactive transport					
	0	Line 1: Name of the problem					
	0	Line 2: Section separation					
	0	Line 3: Section name					
	0	Line 4: Num_time (integer)					
		Number of time steps					
	0	Line 5: Delta_t (real)					
		■ Time step					
		Note: If discretization is not uniform, you must write the array of time steps on the					
		same line					
	0	Line 6: int_method (integer)					
		■ Time integration method:					
		1. Euler explicit					
		2. Euler fully implicit					
		3. Crank-Nicolson					
	0	Line 7: end of section					
TITI F (OF THE	PROBLEM: Gypsum in equilibrium'					
	J	Trioble in Cypsain in Cyambrian					
		'					
TIN 451							
TIME'							
LO		! number of time steps					
ld1		I time step (we assume uniform time discretisation)					
LUI		! time step (we assume uniform time discretisation) Δt					
L		! time integration method for chemical reactions					
*'							
ች '							
_							
end'							

- "_WMA_lambdas.dat": This file contains the mixing ratios and their associated target waters to apply the WMA.
 - o Class: Transient 1D transport
 - o Line 1: Name of the problem
 - o Line 2: Section separation
 - O Section name: 'MIXING RATIOS'
 - Lines 1-nº mixing waters: num_mix_ratios (integer), mixing_ratios (real vector)
 - num_mix_ratios: number of mixing ratios in each target
 - mixing_ratios: mixing ratios in each target (contains sink/sources and boundary terms)
 - Line nº mixing waters+1: end of mixing ratios pseudomatrix
 - o **Line nº mixing waters+2**: end of section
 - section separation
 - O Section name: 'MIXING WATERS'
 - o **Lines 1-nº mixing waters**: *ind_tar_wat* (integer), *mix_wat_indices* (integer vector)
 - ind_tar_wat: index of target water
 - mix_wat_indices: indices of target waters associated to each mixing ratio
 - o **Line nº mixing waters+1**: end of section
 - o end of file

'TITLE OF THE PROBLEM: Gypsum in equilibrium' 'MIXING RATIOS' ! in each line: number of mixing ratios, mixing ratios at each target (including sink/sources and boundary terms) 1 1.00000E+00 9.20000E-01 4.20000E-02 3.80000E-02 3 9.20000E-01 4.20000E-02 3.80000E-02 3 9.20000E-01 4.20000E-02 3.80000E-02 9.20000E-01 4.20000E-02 3.80000E-02 3 9.20000E-01 4.20000E-02 3.80000E-02 3 9.20000E-01 4.20000E-02 3.80000E-02 9.20000E-01 4.20000E-02 3.80000E-02 3 9.20000E-01 4.20000E-02 3.80000E-02 3 9.20000E-01 4.20000E-02 3.80000E-02 1.00000E+00 0 ! indicates the end of the mixing ratios pseudomatrix 'MIXING WATERS' ! target water index, water indices in 'MIXING RATIOS' 1 1 2 3 5 6 7 6 6 7 8 8 8 9 9 9 10 10 10 11 11 'end'

 Class: Chemical system o Line 1: Name of the problem Line 2: Section separation o Line 3: Section name If Section name = 'PRIMARY AQUEOUS SPECIES' or 'AQUEOUS COMPLEXES': 0. Line 3a: sp name (string) Name of species in database "master25_modif.dat" 1. Line 3b: end of section If Section name = 'MINERALS' or 'GASES': 0. **Line 3a**: *sp_name* (string), flag_eq (logical), flag_cst_act (logical) o sp_name: Name of species in database "master25_modif.dat" o flag_eq: TRUE if equilibrium reaction, FALSE otherwise o flag_cst_act: TRUE if species has constant activity, FALSE otherwise 1. Line 3b: end of section If Section name = 'REDOX REACTIONS': 0. **Line 3a**: react_name (string), flag_eq (logical) o react_name: Name of redox reaction in database "reacciones monod JW.dat" o flag eq: TRUE if equilibrium reaction, FALSE otherwise 1. Line 3b: end of section If Section name = 'SURFACE COMPLEXES': 0. **Line 3a**: *sp_name* (string) sp_name: Name of species in database "master25_modif.dat" 1. Line 3b: end of section Line 4: end of section o Line 5: end of file 'TITLE OF THE PROBLEM: Gypsum in equilibrium' 'PRIMARY AQUEOUS SPECIES' 'h2o(p)' ! name of primary aqueous species 'ca+2' 'so4-2' 'MINERALS' 'gypsum' .true. .true. ! name of mineral, flag equilibrium, flag constant activity '*' .true. .true. 'GASES' 'co2(g)' .true. .true. ! name of gas, flag equilibrium, flag constant activity 'o2(g)' .true. .true. ! name of gas, flag equilibrium, flag constant activity '*' .true. .true.

"_sist_quim.dat": This file contains the information related to the chemical system (species,

reactions, etc)

'end'

- "_quim_loc.dat": This file contains the local chemical information (water types, mineral zones, gas zones)
 - O Class: Chemistry
 - O Line 1: Name of the problem
 - O Line 2: Section separation
 - O Section name: 'INITIAL AND BOUNDARY WATER TYPES'
 - Line 1: act_coeffs_model (integer)
 - 0. Ideal
 - 1. Debye-Hückel
 - 2. Debye-Hückel extended
 - 3. Davies
 - 4. Truesdell-Jones
 - O Line 2: num_wat_types (integer)
 - 0. Number of water types (include initial, recharge, boundary etc)
 - o Line 3: ind_wat_type (integer), temp (real)
 - *ind_wat_type*: index of water type
 - *temp*: temperature of solution
 - Line 3a: name (string)
 - Name of water type
 - o Line 3b: water type data begins
 - *Icon*: initial condition type
 - 1. prescribed primary concentration
 - 2. prescribed total concentration
 - 3. prescribed activity
 - 4. primary species is in equilibrium with a phase
 - <u>Guess</u>: Initial guess for primary species concentration
 - <u>Ctot</u>: (all concentrations are expressed in molalities)
 - 0. *Icon=1*: primary species concentration
 - 1. *Icon=2*: total concentration of primary species
 - 2. *Icon=3*: activity of primary species
 - 3. *Icon=4*: activity of phase that is in equilibrium with this primary species
 - Constrain: if icon=4, it is the phase in equilibrium with the primary species
 - o Line 3c: prim_sp_name (string), icon (integer), guess (real), ctot (real), constrain (string)
 - o **Line 3d**: end of water type data
 - o **Line 4**: end of section

'TITLE OF THE PROBLEM: Gypsum in equilibrium'		
·	'	
'INITIAL AND BOUNDARY WATER TYPES'		
0	! activity coefficients model	
2	! number of water types	
1 25.0	! index water type, temperature (C)	
'boundary'	! name of water type	
' icon guess ctot constrain'		
'h2o(p)' 3 1d0 1d0 ''		
'ca+2' 1 1d-3 1d-3 "		
'so4-2' 4 1d-5 1d0 'gypsum'		
¹*¹ 0 0.0 0.0 ¹¹		
2 25.0	! index water type, temperature (C)	
'initial'	! name of water type	
' icon guess ctot constrain'		
'h2o(p)' 3 1d0 1d0 ''		
'ca+2' 1 1d-5 1d-5 "		
'so4-2' 4 1d-5 1d0 'gypsum'		
¹*¹ 0 0.0 0.0 ¹¹		
1	1	

"_quim_loc.dat":

- O Section name: 'INITIAL MINERAL ZONES'
- O Line 1: num_min_zones (integer)
 - Number of mineral zones
- Line 2a: ind_min_zone (integer), temp (real)
 - *ind_min_zone*: index of mineral zone
 - *temp*: temperature of mineral zone
- Line 2b: name (string)
 - Name of initial mineral zone
- o **Line 2c**: mineral zone data begins
- Line 2d: min_name (string), vol_frac (real), react_surf (real)
 - min_name: name of mineral in mineral zone (must be in the chemical system)
 - *vol_frac.:* initial volumetric fraction of mineral
 - react_surf: specific surface of mineral (surface of mineral per unit volume of medium)
- o Line 2e: end of block
- Line 3: end of section

'INITIAL MINERAL ZONES'		
1	! number of mineral zones	
1 25.0	! index of mineral zone, temp (C)	
'gypsum'	! name of mineral zone	
'mineral vol.frac. area'		
'gypsum' 0.50 0.1d+3		
1*1 0.00 0.00		
'	'	
·	'	

"_quim_loc.dat":

- O Section name: 'INITIAL AND BOUNDARY GAS ZONES'
- O Line 1: num_gas_zones (integer)
 - Number of gas zones
- Line 2a: ind_gas_zone (integer), temp (real), vol (real)
 - *ind_gas_zone*: index of gas zone
 - *temp*: temperature of gas zone
 - vol: total volume of gas
- o **Line 2b**: gas zone data begins
- o Line 2c: name (string)
 - Name of gas zone
- Line 2d: gas_name (string), part_press (real)
 - gas_name: name of gas in gas zone (must be in the chemical system)
 - part_press: initial partial pressure (equivalent to activity) of gas
- Line 2e: end of blockLine 3: end of section
- o Line 4: end of file

'INITIAL AND	BOUNDARY GAS ZONES'	
1		! number of gas zones
1 25	1d9	! index gas zone, temp (ºC), volume
'atmosphere'		! name of gas zone
'gas	partial pressure'	! pressure (in atm)
'co2(g)'	3.5d-4	
'o2(g)'	2d-1	
1*1	0.00	
'		'
'end'		

- "_tar_wat.dat": This file contains the association between target waters, target solids and/or target gases, and it also indicates if the target waters belong to the domain or not.
 - Class: Chemistry
 - o **Line 1**: Name of the problem
 - o Line 2: Section separation
 - O Section name: 'TARGET WATERS'
 - O Line 1: num tar wat (integer)
 - Number of target waters
 - Line 2: num_ext_wat (integer)
 - Number of external target waters
 - Lines 3 num_tar_wat+2: ind_tar_wat (integer), iwtype (integer), ind_min_zone (integer), ind_gas_zone(integer), flag_wat_type(logical)*
 - ind_tar_wat: Index target water
 - *iwtype*: Index water type in section 'INITIAL AND BOUNDARY WATER TYPES'
 - ind_min_zone: Index mineral zone in section 'INITIAL MINERAL ZONES'
 - ind_gas_zone: Index gas zone in section 'INITIAL AND BOUNDARY GAS ZONES'
 - flag_wat_type: Flag to indicate target water type. **Optional** variable.
 - 0: Boundary
 - 1: Domain
 - 2: Recharge
 - o end of section

* Only if there are external and/or boundary waters					
'TITLE	OF THE P	ROBLEM:	Gypsum i	n equilibri	um'
'					'
'TARG	ET WATE	RS'			
11					! number of target waters
0					! number of recharge target waters
2					! number of boundary target waters
1	1	1	0	0	! target water index, water type index, mineral zone index, gas zone index, flag water type
2	2	1	0	1	
3	2	1	0	1	
4	2	1	0	1	
5	2	1	0	1	
6	2	1	0	1	
7	2	1	0	1	
8	2	1	0	1	
9	2	1	0	1	
10	2	1	0	1	
11	2	1	0	0	
'					······································
'end'					

- "_out_options.dat": This file contains the variables whose values will be written during the simulation.
 - Type: Chem_out_options
 - o Line 1: Name of the problem
 - Line 2: Section separation
 - Section 'TIME STEPS':
 - Line 1: nits (integer)
 - Nº intermediate time steps
 - If *nits* = 0: only initial and final waters are considered for output
 - If *nits* = -1: all intermediate time steps considered
 - Line 2: inter_time_steps (integer array)
 - Intermediate time steps
 - If *nits* < 1: skip line
 - Else: must have dimension = nits
 - Section 'TARGET WATERS':
 - Line 1: notw (integer)
 - Nº output target waters
 - If *notw* = 0: all target waters considered
 - Line 2: tar_wat (integer array)
 - target waters
 - If *notw* = 0: skip line
 - Else: must have dimension = notw
 - Section 'VARIABLES':
 - Line 1: var (string)
 - name of variable that will be included in output file
 - if *var*='all': all of them will be written
 - if var='conc': concentrations
 - if *var*='act': activities
 - if <u>var='react_rate'</u>: reaction rates
 - if *var=*'vol frac': volumetric fractions of minerals
 - Section 'AQUEOUS SPECIES':
 - Line 1: aq_sp_name (string)
 - Name of aqueous species that will be included in output file
 - If aq_sp_name='all': all aqueous species included
 - Section 'MINERALS':
 - Line 1: min_name (string)
 - Name of minerals that will be included in output file
 - If min_name='all': all minerals included
 - Section 'REACTIONS':
 - Line 1: react_name (string)
 - Name of reaction that will be included in output file
 - If react_name='all': all reactions included

'TITLE OF THE PROBLEM: Gypsum in equilibrium'		
'TIME STEPS'		
2	! number of intermediate output time steps	
15	! intermediate time steps for output file	
'		
'TARGET WATERS'		
6	! number of output target waters	
1357911	! target waters for output file	
'	·	
'VARIABLES'	! names of variables that will be written in output file	
'conc'		
'react_rate'		
'vol_frac'		
1*1		
	'	
'AQUEOUS SPECIES'	! names of aqueous species that will be considered in output file	
'all'		
**		
	¹	
'MINERALS'	! names of minerals that will be considered in output file	
'all'		
1*1		
	'	
'REACTIONS'	! names of reactions that will be considered in output file	
'gypsum'		
1*1		
	'	
'end'		

- "_chem_opts.dat": This file contains the different options to solve reactive mixing with the WMA.
 - Class: Chemistry
 - o Line 1: Name of the problem
 - o Line 2: Section separation
 - O Line 3: Section name
 - **Line 4**: *opt* (integer)
 - Chemical input data option
 - Line 5: opt (integer)
 - Jacobian option
 - o Line 6: flag (logical)
 - Lumping flag
 - o Line 7: opt (integer)
 - Consistent WMA option
 - Line 8: opt (integer)
 - Estimation of downstream waters kinetic reaction amounts option
 - Line 9: opt (integer)
 - Time weighting kinetic reaction rates option
 - o Line 10: end of section

TITLE OF THE PROPERTY Constructions with a second			
'TITLE OF THE PROBLEM: Gypsum in equilibrium'			
I			
'CHEMICAL OPTIONS'			
1	! Chemical input data option (1: CHEPROO-based, 2: PHREEQC, 3: PFLOTRAN)		
1	! Option to compute Jacobians (0: incremental coefficients, 1: analytically)		
.true.	! Lumping flag		
2	! Consistent WMA option (1: explicit, 2: upstream to downstream)		
1	! Estimation of downstream waters rk (4 options, see documentation for details)		
2	! Time weighting rk option (1: concentrations, 2: reaction rates)		
·	'		
'end'			