1 Representing Complex Data

1.1 Recursive Types

Let's define natural numbers from scratch; in particular,

```
data Nat = Zero | Succ Nat
```

Specifically, a Nat is either

- An empty box labeled Zero,
- or a box labeled Succ with another Nat in it.

Some examples of Nat values are

```
      Zero
      -- 0

      Succ Zero
      -- 1

      Succ (Succ Zero)
      -- 2

      Succ (Succ (Succ Zero))
      -- 3
```

1.1.1 Functions on Recursive Types

We can then write a recursive function for this type:

```
data Nat = Zero -- Base Constructor
| Succ Nat -- Inductive Constructor
```

Call this function to Int, which convers the recursive type to its corresponding number. First, we add a pattern for each constructor.

```
toInt :: Nat -> Int
toInt Zero = ... -- Base Case
toInt (Succ n) = ... -- Inductive Case (Recursive Call Goes Here)
```

Next, we can fill in the base case.

```
toInt :: Nat -> Int
toInt Zero = 0
toInt (Succ n) = ...
```

After that, we can fill in the inductive case using a recursive step.

```
toInt :: Nat -> Int
toInt Zero = 0
toInt (Succ n) = 1 + toInt n
```

```
(Quiz.) What does this evaluate to?
    let foo i = if i <= 0 then Zero else Succ (foo (i - 1))
    in foo 2

(a) Syntax error
(b) Type error
(c) 2
(d) Succ Zero
(e) Succ (Succ Zero)</pre>
```

The answer is **E**. This function does the reverse of toInt; that is, given an Int, it returns the Nat representation.

1.1.2 Recursive Type as Result

TODO

1.1.3 Putting the Two Together

Let us now implement the add function.

The idea is that n' = n - 1, so we're basically doing n - 1 + m for the add function in the inductive case. What we want is n + m, so we can use Succ to add one.

Subtraction is somewhat more difficult.

Here, we have that n'=n-1 and m'=m-1, so we're doing n-1-(m-1)=n-1-m+1=n-m.

1.2 Lists

Note that lists are not built-in. In fact, they are an algebraic data type like any other. So,

So, [1, 2, 3] is represented by Cons 1 (Cons 2 (Cons 3 Nill)). So, we can think of the built-in list constructors [] and (:) as fancy syntax for Nil and Cons.

Functions on lists follow the same general strategy. For example,

```
length :: List -> Int
length Nil = 0
length (Cons _ xs) = 1 + length xs
```

What about appending two lists?

```
append :: List -> List -> List
append xs ys = ??
```

One implementation is

Now, we expect append [1, 2] [3, 4] to give us [1, 2, 3, 4]. Indeed, this is the expected result that we get.

1.3 Calculator

Suppose you want to implement an arithmetic calculator to evaluate expressions like

- \bullet 4.0 + 2.9
- 3.78 5.92
- \bullet (4.0 + 2.9) * (3.78 5.92)

What is a datatype that we can use to represent these expressions?

Now, how do we write said function to evaluate an expression?

1.4 Trees

We can think of lists as unary trees.

In particular, we can represent lists using the following datatype:

```
data List = Null | Cons Int List
```

How do we represent binary trees? Generally, a binary tree is just a bunch of nodes that can either have more nodes or leaves.

(Quiz.) What is a Haskell datatype that can represent this binary tree?

- (a) data Tree = Leaf | Node Int Tree
- (b) data Tree = Leaf | Node Tree Tree
- (c) data Tree = Leaf | Node Int Tree Tree
- (d) data Tree = Leaf Int | Node Tree Tree
- (e) data Tree = Leaf Int | Node Int Tree Tree

The answer is **C**. Note that each Node has an Int value associated with it, but each Leaf doesn't. Also note that each Node – which has two Trees, hence the name – can just be a Leaf.