Università degli Studi Roma Tre Anno Accademico 2008/2009

AL1 - Algebra 1 Esercitazione 7

Venerdì 21 Novembre 2008

domande/osservazioni: dibiagio@mat.uniroma1.it

1. Dimostrare per induzione forte che:

- (a) ogni numero intero positivo n si può scrivere come somma di potenze di due distinte;
- (b) ogni numero intero positivo n si può scrivere come somma di numeri di Fibonacci distinti;
- (c) chiamata ϕ la radice positiva dell'equazione $x^2-x-1=0$, l'n-esimo numero di Fibonacci è uguale a $\frac{\phi^n-(1-\phi)^n}{\sqrt{5}}$.
- (a) Per n=1 l'asserto è verificato: $1=2^0$. Supponiamo vero l'asserto per $1,\ldots,n$ e dimostriamolo per n+1. Se n+1 è una potenza di 2 non vi è nulla da dimostrare, altrimenti $\exists k \in \mathbb{N}$ tale che $2^k < n+1 < 2^{k+1}$. Consideriamo $n+1-2^k$: per l'ipotesi induttiva $n+1-2^k$ è somme di potenze di 2 distinte. Notiamo che tra tali potenze non può comparire 2^k , altrimenti $n+1 \geq 2^k+2^k=2^{k+1}$. Dato che $n+1=(n+1-2^k)+2^k$ la dimostrazione è conclusa.
- (b) Ricordiamo che i numeri di Fibonacci, F_n , sono definiti ricorsivamente come $F_1=1,F_2=1,\ldots,F_n=F_{n-1}+F_{n-2},\ldots$ Per n=1 l'asserto è ovviamente verificato: $1=F_1$. Supponiamolo quindi vero per $1,\ldots,n$ e dimostriamolo per n+1. Se n+1 è un numero di Fibonacci allora non vi è nulla da dimostrare, altrimenti $\exists k \in \mathbb{N}$ tale che $F_k < n+1 < F_{k+1}$. Consideriamo $n+1-F_k$: per l'ipotesi induttiva esso si può scrivere come somme di numeri di Fibonacci distinti. Notiamo che tra tali numeri di Fibonacci non può comparire F_k altrimenti $n+1 \geq F_k + F_k \geq F_k + F_{k-1} = F_{k+1}$. Dato che $n+1=(n+1-F_k)+F_k$ la dimostrazione è conclusa.
- (c) $\phi = \frac{1+\sqrt{5}}{2}$. Notiamo, inoltre, che anche $1-\phi = \frac{1-\sqrt{5}}{2}$ è radice dell'equazione. Quindi $\phi + 1 = \phi^2$ e $(1-\phi) + 1 = (1-\phi)^2$. Procediamo con la dimostrazione per induzione: il caso n=1 è ovviamente verificato; supponiamo allora l'asserto vero per $1,\ldots,n$ e dimostriamolo per n+1: $F_{n+1}=F_n+F_{n-1}=$ (ipotesi induttiva) $\frac{\phi^n-(1-\phi)^n}{\sqrt{5}}+\frac{\phi^{n-1}-(1-\phi)^{n-1}}{\sqrt{5}}=\frac{1}{\sqrt{5}}(\phi^{n-1}(\phi+1)-(1-\phi)^{n-1}((1-\phi)+1))=\frac{1}{\sqrt{5}}(\phi^{n+1}-(1-\phi)^{n+1}).$
- 2. Calcolare $(1+i)^{86}$, $(1+i\sqrt{3})^{42}$, $(\sqrt{3}+i)^{18}$.

Per calcolare potenze, e più in generale prodotti, di numeri complessi è conveniente ricondursi alla forma polare (o trigonometrica) dei numeri stessi. Quindi: $1+i=\sqrt{2}(\cos(\pi/4)+i\sin(\pi/4))$ da cui $(1+i)^{86}=2^{43}(\cos(3\pi/2)+i\sin(3\pi/2))=-2^{43}i;$ $1+i\sqrt{3}=2(\cos(\pi/3)+i\sin(\pi/3))$ da cui $(1+i\sqrt{3})^{42}=2^{42};$ $(\sqrt{3}+i)=2(\cos(\pi/6)+i\sin(\pi/6)),$ da cui $(\sqrt{3}+i)^{18}=-2^{18}.$

3. Calcolare tutte le radici ottave complesse dell'unità e individuarne la posizione sul piano di Gauss.

Le radici complesse ottave dell'unità sono quei numeri complessi (scritti in forma polare) $\rho(\cos(\theta)+i\sin(\theta))$ tali che $(\rho(\cos(\theta)+i\sin(\theta)))^8=\rho^8(\cos(8\theta)+i\sin(8\theta))=1=1(\cos(0)+i\sin(0))$. Affinché due numeri scritti in forma polare siano uguali essi devono avere stesso modulo e argomenti che differiscono per multipli di 2π : nel nostro caso si ha $\rho=1,\,\theta=\frac{2\pi k}{8}$ al variare di $k\in\mathbb{Z}$. Per $k=0,\ldots,7$ avremo gli otto valori distinti di θ tra 0 (incluso) e 2π (escluso): $0,\pi/4,\pi/2,3\pi/4,\pi,5\pi/4,3\pi/2,7\pi/4$. A essi corrispondono le otto radici dell'unità: $1,\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2},i,-\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2},-1,-\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}$. Tali punti sono i vertici di un ottagono regolare inscritto nella circonferenza di centro 0 e raggio 1 nel piano di Gauss.

4. Determinare tutte le soluzioni complesse $z\in\mathbb{C}$ del seguente sistema: $\left\{\begin{array}{l} |z|=1\\ |1-z|=1 \end{array}\right.$

Scriviamo z=x+iy. Allora le due equazioni del sistema si leggono come: $x^2+y^2=1$ e $(1-x)^2+y^2=1$ da cui $x=1/2,\ y=\pm\sqrt{3}/2$. Quindi il sistema ammete due soluzioni: $z_1=1/2+i\sqrt{3}/2$ e $z_2=1/2-i\sqrt{3}/2$.