Friend or Foe: Comparison of R & Python in Data Wrangling & Visualisation

11th October 2019, PyCon DE & PyData Berlin 2019 Yuta Kanzawa @yutakanzawa

SFE Senior Analyst at Janssen Pharmaceutical K.K., Tokyo A Family Company of Johnson & Johnson

Agenda

- 1. Comparison of R and Python as Language
- 2. Data Wrangling
- 3. Data Visualisation
- 4. Other Cases (Brief Overview)
 - ML, Big Data, NLP
- 5. Conclusion
 - R versus Python?
 - To be bilingual

Ich bin...

- Yuta Kanzawa (twitter: oyutakanzawa)
- Data scientist an Janssen Japan, Tokyo
 - Eine pharmazeutische Firma von Johnson & Johnson
 - Vertriebseffektivität, Marketing

- Oper- & weinliebhaber
 - Wagner
 - Burgunder
- 7 Sprachen
 - Menschen: Japanish, Englisch, Deutsch (Grundlagen)
 - Computer: R, Python, SAS, SQL

I am...

- Yuta Kanzawa (twitter: oyutakanzawa)
- Data scientist at Janssen Japan, Tokyo
 - A pharmaceutical company of Johnson & Johnson
 - Sales force effectiveness, marketing

- Opera & wine lover
 - Wagner
 - Bourgogne
- 7 languages
 - Human: Japanese, English, German (basic)
 - Computer: R, Python, SAS, SQL

Germany & I

4sq check-ins: from July 2012 to Sept 2019

Quick Survey

• R? Python? Both?

if (you use now or have ever used R){
Raise your hand.

if you use now or have ever used Python: Raise your hand. # Not an error

If you use now or have ever used both, raise your hand (and jump!)

Comparison of R and Python as Language

- Differences
- Similarities

Differences

	R	Python
Purpose	Specific: Statistical analysis	General: Web app, system dev, data science
Paradigm	Procedural	Object-oriented
IDE/Editor /Dev Tool	RStudio	Jupyter Notebook, PyCharm, VS Code
Dots	Allowed in names	Dot notation
Indexing	1-based	0-based

Operators, functions to be applied to each element of a vector in R.

If you want to get each value of vector x squared as y, where x = (1, 2, 3):

R

Python*

 $[\]ensuremath{^{*}}$ Some of numpy functions support this kind of operation.

Similarities

	R	Python
First appeared in	1993*1	1990*2
Major conference	useR! (since 2004)	PyCon (since 2003*3)
Current stable ver.*4	3.6.1 (July 2019) "Action of the Toes"*5	3.7.4 (July 2019)
Typing	Dynamic	Dynamic, optionally static
Iris dataset	Built-in	<pre>from sklearn.datasets import load_iris iris_org = load_iris()</pre>

^{*1} https://en.wikipedia.org/wiki/R_(programming_language)

^{*2} https://en.wikipedia.org/wiki/Python_(programming_language)

^{*3} First EuroPython was held in 2002.

^{*4} As of 09:00 CEST, 11th October 2019

^{*5} Each release version of R has a nickname.

Data Wrangling

- tidyverse
- pandas

tidyverse and pandas

	tidyverse towerse	pandas pa
Description	Collection of R packages designed for data science	Library providing data structures and data analysis tools
Status	Modernising base R for 'tidy data'	De facto standard
Flow	Pipe operator %>%	Method chaining

What's 'tidy' data?

- Codd's 3rd normal form*1,2
 - 1. Each variable forms a column.
 - 2. Each observation forms a row.
 - 3. Each type of observational unit forms a table.

Not tidy

product	week01	week02
Α	NA	2
В	16	11
С	3	1

week	amount
1	NA
2	16
1	3
2	2
1	11
2	1
	week 1 2 1 2 1 1

Tidy

Example case: iris dataset

Original

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa

Tidy

id	Species	part	dim	value
1	setosa	Sepal	Length	5.1
1	setosa	Sepal	Width	3.5
1	setosa	Sepal	Length	1.4
1	setosa	Sepal	Width	0.2
2	setosa	Sepal	Length	4.9
2	setosa	Sepal	Width	3.0

Example codes

tidyverse*1

```
library(tidyverse)
tidy_iris <- iris %>%
  rowid_to_column("id") %>%
  pivot_longer(Sepal.Length:Petal.Width) %>%
  separate(name, into = c("part", "dim"))
```

^	id [‡]	Species [‡]	part [‡]	dim [‡]	value [‡]
1	1	setosa	Sepal	Length	5.1
2	1	setosa	Sepal	Width	3.5
3	1	setosa	Petal	Length	1.4
4	1	setosa	Petal	Width	0.2
5	2	setosa	Sepal	Length	4.9
6	2	setosa	Sepal	Width	3.0

pandas*2

```
import pandas as pd
tidy_iris = iris\
    .reset_index().rename(columns={'index': 'id'})\
    .melt(id_vars=['species'])
tidy_iris[['part', 'dim']] = tidy_iris.variable\
    .apply(lambda v: pd.Series(str(v).split()))
tidy_iris.drop(columns='variable', inplace=True)
```

id	species	value	part	dim
0	setosa	5.1	sepal	length
1	setosa	4.9	sepal	length
2	setosa	4.7	sepal	length
3	setosa	4.6	sepal	length
4	setosa	5.0	sepal	length
5	setosa	5.4	sepal	length

n.b. Orders of columns and rows could be different in the results.

^{*1} Update tidyr to 1.0.0 or higher.

^{*2} Jupyter NB of this code snippet: To be updated

In my experience:

- R offers quick and simple ways to talk with data.
 - e.g. Exploratory data analysis at your hand
- But not so suitable for data pipeline
 - Unless you use some tools/libraries
 - e.g. When your data flows into database

Data Visualisation

- ggplot2
- matplotlib
- plotly

ggplot2 and matplotlib

	ggplot2 ggplot2	matplotlib 🛞
Description	A system for declaratively creating graphics	A Python 2D plotting library which produces publication quality figures
Status	Modernising base R plot function	De facto standard
Key feature	Aesthetics	Axes
Interactive	Not implemented	Implemented
ggplot style	Built-in	<pre>import matplotlib.pyplot as plt plt.style.use('ggplot')</pre>

ggplot2 Usage*

- (0) Start with ggplot()
 - supply a dataset and aesthetic mapping with aes()
- Add on (1) Layers
 - e.g. Scatter plot: geom_point(), Histogram: geom_histogram()
- And (2) Scales
 - e.g. Specify colour sets. Reverse x axis.
- (3) Faceting specifications
 - e.g. Lay out panels in a grid.
- (4) Coordinate systems
 - e.g. Flip coordinates.

```
e.g.
ggplot(data, aes(...)) +
   geom_point() +
   scale_colour_brewer(...) +
   scale_x_log10()
```

Example case: iris dataset

 Boss: Show me relationships between sepal length and petal length by species ASAP!

- Me: (Draw a scatter plot!)
 - x: Sepal length
 - y: Petal length
 - Colour each point based on its species.

^{*} https://xkcd.com/2207/

^{*} Matplotlib's xkcd style: https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.xkcd.html

Example codes

ggplot2

```
library(ggplot2)
ggplot(iris,
    aes(x = Sepal.Length,
        y = Petal.Length,
        colour = Species)) +
    geom_point()
```


matplotlib*

```
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
cmap = plt.get_cmap('tab10')
for i, (key, df) in enumerate(iris.groupby('species')):
    df.plot.scatter(x='sepal_length', y='petal_length',
                     ax=ax, color=cmap(i), label=key)
ax.legend()
                           versicolor
plt.show()

    virginica
```

^{*} Jupyter NB of this code snippet: To be updated

plotly: an interactive graph option for R

- Has APIs for R (besides Python!)
 - plot_ly()
 - ggplotly(): Plotlify ggplot objects.

Example

In my experience:

- R provides strong and efficient ways to draw graphs.
 - e.g. Exploratory data analysis
 - e.g. **Presentation slides**, charts in reports
- But not necessarily the best option for dashboards
 - · e.g. When you build dashboards shared with marketing team

Other Cases (Brief Overview)

- Machine learning
- Big data (distributed data processing)
- Natural language processing

Task x library

	R	Python
ML	baseR, E1071, xgboost, caret, mlr, h2o, keras*1, tensorflow*2	scikit-learn, statsmodels, Keras, TensorFlow
Big Data	sparklyr*3, SparkR*3	Dask, pyspark*3, pydoop*4, mrjob*4
NLP	tm, tidytext, spacyr*5, wordcloud2	NLTK, StanfordNLP, spaCy, wordcloud

^{*1} Interface to keras

^{*2} Interface to TensorFlow

^{*3} Interfaces to Apache Spark

^{*4} Interfaces to Apache Hadoop

^{*5} Interface to spaCy

Conclusion

- R versus Python?
- To be bilingual

R versus Python?

I think that is not helpful because it is not actually a battle. These things exist independently and are both awesome in different ways. [...] R is a weird language but it is weird for good reasons, and it's a really good fit for data science. [...] There are multiple ways of attacking the same problem, and sometimes the reason R is different is good. [...] Use whatever makes you happy.

Hadley Wickham*

^{*} Creator and developer of tidyverse package in R. https://qz.com/1661487/hadley-wickham-on-the-future-of-r-python-and-the-tidyverse/

To be bilingual

- Enhances your data analysis skills
 - Exploratory data analysis
 - Publication-grade graphs
- Could widen your career path in data science field
 - Public exposure
 - Community
- And... learning new things is just fun! (isn't it?)

Enjoy! Viel Spaß!

Appendix

- Reference
- R in Jupyter Notebook
- Hybrid

Reference

- C. Roach. "R for Pythonistas", presented at PyData NYC 2017, NYC, USA, 2017.
- E.F. Codd. *The Relational Model for Database Management: Version 2*. Boston: Addison-Wesley Longman Publishing, 1990.
- H. Wickham. "Tidy Data". Journal of Statistical Software, vol. 59, 20th February 2013.
- D. Kopf. "What's next for the popular programming language R?" Internet: https://qz.com/1661487/hadley-wickham-on-the-future-of-r-python-and-the-tidyverse/, 17th August, 2019 [30th September, 2019].
- T. Kluyver and Philipp A. "IRkernel". Internet: https://irkernel.github.io/, [30th September, 2019].
- T. Motohashi. *Maeshori Taizen* (Comprehensive Data Preprocessing). Tokyo: Gijutsu-Hyohron, 2018.

You can run R in Jupyter Notebook.

Just by installing IRkernel (R kernel for Jupyter).*

^{*} https://irkernel.github.io/

You can hybrid them (if necessary).

rpy2 runs R code in Python.

reticulate runs Python code in R.

