Chemistry 172

$I\Sigma\Pi$

Winter 2016

Entropy Equations

Table 1: Equations for Entropy

Vary Temperature	Vary Pressure	Vary Volume
$\Delta S = C_{ m v/p} \ln rac{T_{ m f}}{T_{ m i}}$	$\Delta S = nR \ln \frac{P_{\rm i}}{P_{\rm f}}$	$\Delta S = nR \ln \frac{V_{\rm f}}{V_{\rm i}}$

$$S = k \ln W$$

 $\Delta H = \Delta U + P\Delta V$

Enthalpy Equations

$$\Delta H = \Delta U + \Delta nRT$$

$$\Delta H = \frac{C_p}{\Delta T}$$

$$\Delta U = \frac{C_v}{\Delta T}$$

$$C_p = C_v + nR$$

$$w_{\rm sys} = -\int_{V_{\rm f}}^{V_{\rm i}} P dV$$

$$\Delta U = \frac{\Delta T}{\Delta T}$$

$$C_{n} = C_{n} + nF$$

$$w_{\rm sys} = -\int_{V_c}^{V_{\rm i}} P dV$$

Table 2: Equations for Work

Constant Pressure	Constant Temperature	Constant Volume
$w_{\rm sys} = -P_{\rm ext}\Delta V$	$w_{\rm sys} = -nRT \ln \frac{V_{\rm f}}{V_{\rm i}}$	0

Table 3: Ideal Molecules

Molecule	Translation	Rotation	$C_{ m v}$	C_{p}	Internal Energy
Atom	3	0	$\frac{3}{2}R$	$\frac{5}{2}R$	$\frac{3}{2} nRT$
Linear	3	2	$\frac{5}{2}R$	$\frac{7}{2}R$	$\frac{5}{2} nRT$
Non-Linear	3	3	3R	4R	3 nRT