

Expectation-Maximization Based Defense Mechanism for Distributed Model Predictive Control

Rafael Accácio Nogueira, Romain Bourdais, Simon Leglaive, Hervé Guéguen

IETR-CentraleSupélec 35510 Cesson-Sévigné, Ille-et-Vilaine, France

{rafael-accacio.noqueira, romain.bourdais, simon.leglaive, herve.quequen} @centralesupelec.fr

1. Context - False Data injection in dMPC exchange

- Cyber-Physical Systems
- Large Scale

MPC

- Linear Model
- Linear Control Objective (e.g. $(w[k] - y[k]) \to 0$)
- Linear Input Constraints

MPC Quadratic Program (QP) $\underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} \quad \frac{1}{2} \|\boldsymbol{U}[k]\|_{H} + f[k]^{T} \boldsymbol{U}[k]$ $ar{\Gamma} oldsymbol{U}[k] \preceq oldsymbol{U}_{ ext{max}}$ subject to

HARD TO COMPUTE

2. Attack and consequences

- $\triangleright \lambda_i$ is the dissatisfaction of *i* to allocation θ_i
- ► Attacker increases λ_i using function $\gamma(\cdot)$
- $ightharpoonup \uparrow$ dissatisfaction == \uparrow allocation

Assumption 1

The attacker chooses a linear function

$$\tilde{\lambda}_i = \gamma_i(\lambda_i) = T_i[k]\lambda_i,$$
 (3)

 $\widetilde{\boldsymbol{\lambda}}_i = \mathbf{0}$ only if $\boldsymbol{\lambda}_i = \mathbf{0} \to T_i[k]$ is invertible.

- Effects
 - Increase on global objective
 - Destabilization

Example $T_i[k] = \tau_1 I$

Can we mitigate the effects?

What if we estimate $T_i[k]$ and invert it? Problem: How to estimate it?

3. Estimating cheating matrix $T_i[k]$

Local pbs. (1) are **QP** → **Explicit Solution** PWA form w.r.t θ_i :

 $\boldsymbol{\lambda}_i[k] = -P_i^n \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^n[k], \text{ if } G_i^n[k] \boldsymbol{\theta}_i[k] \leq \boldsymbol{b}_i^n[k]$ (4) with $n \in \{1:N\}$. $G_i^n[k]$ and $\boldsymbol{b}_i^n[k]$ define regions. Remark 1

Sensibilities P_i^n are **time invariant**.

Assumption 2

In Region 1 local constraints are active:

$$\lambda_i[k] = -P_i^1 \theta_i[k] - s_i^1[k]$$
, if $G_i^1[k] \theta_i[k] \leq b_i^1[k]$ (5)

Assumption 3

 $\theta_i = \mathbf{0}$ belongs to Region 1

Attacker modifies sensibility $\tilde{P}_i[k] = T_i[k]\bar{P}_i$

If we can know **nominal** \bar{P}_i^1 , estimating $\tilde{P}_i[k]$, we can find $T_i[k]^{-1}$:

$$\widehat{T_i[k]}^{-1} = \bar{P}_i^1 \widehat{\tilde{P}_i^1[k]}^{-1}$$
 (6)

But how do we estimate $\tilde{P}_i^1[k]$?

Enter Expectation Maximization

- Classify data in regions
- Estimates parameters using weights

EM estimates $\tilde{P}_i^1[k]$ if we provide minimally excited inputs θ_i and $\hat{\lambda}_i$.

- Minimally excited inputs
 - Estimation negotiation (time dependence)
 - ► Solution: 2 phases Detection and Negotiation

4. Expectation Maximization

- ▶ Each zone has a different $z \in \mathcal{Z} = \{1 : Z\}$
- ► Gaussian mixture (mean (4) and $\Sigma \to 0$)
- ▶ Parameters $\mathcal{P} = \{\mathcal{P}^z \mid z \in \mathcal{Z}\}$, with $\mathcal{P}^z = (P^z, \widetilde{\mathbf{s}}^z, \pi^z)$.
- ► Generate *O* observations close to **0**

Algorithm 1: Expectation Maximization Initialize parameters \mathcal{P}_{new}

repeat

 $\mathcal{P}_{\mathrm{cur}} \leftarrow \mathcal{P}_{\mathrm{new}}$

E step:

Evaluate $\zeta_{zo}(\mathcal{P}) = \mathbb{P}(\underline{z}_o = z | \underline{\lambda}_o, \underline{\theta}_o; \mathcal{P})$

M step:

Reestimate parameters using:

$$\mathcal{P}_{\text{new}} = \arg \max_{\mathcal{P}} \mathbb{E}_{\zeta_{zo}(\mathcal{P}_{\text{cur}})} \left[\ln \mathbb{P}(\underline{\Theta}, \underline{\Lambda}, \underline{Z}; \mathcal{P}) \right]$$

until \mathcal{P}_{cur} converges to local maximum

5. Secure dMPC

Modified negotiation (some additional steps):

- **Detection Phase**
- 1.1 Estimate sensibility $\tilde{P}_i^1[k]$
 - Artificial Scarcity Sampling + EM
- 1.2 Detect attack if $\|\tilde{P}_i^1[k] \bar{P}_i^1\|_F \ge \epsilon_P$
- 2. Negotiation Phase
- 2.1 If detected reconstruct λ_i

$$\lambda_{irec} = \widehat{T_i[k]^{-1}} \widetilde{\lambda}_i$$
 (7

2.2 Use adequate λ_i to update θ_i (2)

6. Example | 4 distinct rooms | 3 scenarios (Nominal, Selfish, Selfish + Correction)

Figure: 3R-2C Thermic Model.

Table: Objective functions J_i (% error)

Agent	Nominal	Selfish	+ Correction
	35008.7 (0.0)	21969.6 (-40.0)	35008.7 (-0.0)
Ш	29495.3 (0.0)	38867.4 (30.0)	29495.4 (0.0)
Ш	24808.7 (0.0)	33266.4 (30.0)	24808.7 (0.0)
IV	23457.8 (0.0)	31511.0 (30.0)	23457.8 (0.0)
Global	112770.6 (0.0)	125614.4 (10.0)	112770.6 (-0.0)

Figure: Air temperature in room I and the decision variable $E_I[k]$ for three scenarios: nominal (N), selfish behavior (S), and selfish behavior with correction (C).

Figure: Control applied in all rooms for the 3 scenarios.

