Method#01 - Zero-bearing guidance method

Initial state of the distance between a vehicle#1 and a vehicle#2

$$r_0 = \sqrt{(Y_{C0} - Y_0)^2 + (X_{C0} - X_0)^2}.$$
 (1.01)

Initial state of the sight angle

$$\varphi_0 = arctg\left(\frac{Y_{C0} - Y_0}{X_{C0} - X_0}\right). \tag{1.02}$$

Kinematic equations of the center of mass motion

$$\frac{dr}{dt} = V_C \cos(\varphi - \theta_C) - V \cos(\varphi - \theta),$$

$$r \frac{d\varphi}{dt} = -V_C \sin(\varphi - \theta_C) + V \sin(\varphi - \theta),$$
(1.03)

where φ is a sight angle.

Dynamic equations of angular motion

$$\frac{d\theta}{dt} = \frac{P + C_{\gamma}^{\alpha} S \rho(H) V^2 / 2}{mV} \alpha. \tag{1.04}$$

Equation for a calculation of ideal constraint

$$\varepsilon = \zeta^* - \zeta, \tag{1.05}$$

where ζ is the lead angle.

Condition for zero-bearing guidance method is $\zeta^*=0$.

Constraint equation is

$$\alpha = \varphi - \theta . \tag{1.06}$$

Equations for a calculation of vehicles coordinates

$$\frac{dX}{dt} = \frac{dL}{dt} = V\cos\theta, \quad \frac{dX_C}{dt} = \frac{dL_C}{dt} = V_C\cos\theta_C,
\frac{dY}{dt} = \frac{dH}{dt} = V\sin\theta, \quad \frac{dY_C}{dt} = \frac{dH_C}{dt} = V_C\sin\theta_C. \tag{1.07}$$

Equation for a calculation of a g-force

$$n_{y} = \frac{V}{g}\dot{\theta} + \cos\theta \tag{1.08}$$

Method#02 - Fixed lead angle guidance method

Initial state of the distance between a vehicle#1 and a vehicle#2

$$r_0 = \sqrt{(Y_{C0} - Y_0)^2 + (X_{C0} - X_0)^2}. (2.01)$$

Initial state of the sight angle

$$\varphi_0 = arctg\left(\frac{Y_{C0} - Y_0}{X_{C0} - X_0}\right). \tag{2.02}$$

Kinematic equations of the center of mass motion

$$\frac{dr}{dt} = V_C \cos(\varphi - \theta_C) - V \cos(\varphi - \theta),$$

$$r \frac{d\varphi}{dt} = -V_C \sin(\varphi - \theta_C) + V \sin(\varphi - \theta).$$
(2.03)

Equation for a calculation of ideal constraint

$$\varepsilon = \eta^* - \eta = 0 \tag{2.04}$$

Condition for fixed lead angle guidance method is $\eta^* = const$ ($\varphi = const$).

Constraint equation is

$$\theta = \varphi - \eta \tag{2.05}$$

It follows from the equations (2.03) and (2.05) assuming $\dot{\phi}\!=\!0$, the lead angle is

$$\eta = \arcsin\left(\frac{V_C}{V}\sin(\varphi - \theta_C)\right) \tag{2.06}$$

For each lead angle η , two straight-line trajectories can be found by condition, oriented at angles $arphi_1$ and $arphi_2$

$$\varphi_{1} = \arcsin(\frac{V}{V_{C}}\sin\eta),$$

$$\varphi_{2} = \pi - \arcsin(\frac{V}{V_{C}}\sin\eta).$$
(2.07)

Equation for a calculation of a g-force

$$n_{y} = \frac{V\dot{\theta}}{g} = \frac{V}{g} \left(\frac{V_{c}\sin\varphi - V\sin\eta}{r} \right) \tag{2.07}$$

Case study - Input data

Vehicle#1	Vehicle#2
$V = 630 \ (m/s)$	$V_C = 300 \ (m/s)$
$X_0 = 0 \ (m) \ , Y_0 = 15000 \ (m)$	$X_{C0} = 12000 \ (m)$
$S = 0.3 \ (m^2) \ , m = 350 \ (kg)$	$Y_C = 9000 \ (m)$
$P = 5250 (N)$, $C_y^{\alpha} = 4$	$\theta_C = -115 \ (grad)$

Case study - Simulation results

Figure 1.01 Docking trajectory (method#1)

Figure 2.01 Docking trajectory (method#2)

Appendix A. Coordinate frame and angles

References

[1] https://www.red3d.com/cwr/steer/gdc99/