Introduction to ML with Scikit-learn your first pipeline

confitura

Organizator

0 mnie

Waldemar Kołodziejczyk

Zawodowo:

Artificial Intelligence Developer (Atende Software, besmart.energy)
Trener (Sages, kursy ML/AI)

Background akademicki:

Informatyka, Energetyka (Politechnika Warszawska)

Obszar zainteresowań:

Machine Learning, Reinforcement Learning, algorytmika, statystyka

Jak najlepiej wykorzystać ten kurs?

 Materiały są przygotowane tak, aby stanowiły dobry materiał do powtórek, ale istotnym elementem szkolenia jest też część "opowiadana", więc zachęcam do robienia własnych notatek i komentarzy w kodzie.

 W czasie trwania szkolenia uwzględniony jest też czas na pytania, więc zachęcam do ich zadawania.;)

 Slajdy są cały rozwijane i staram się ze szkolenia na szkolenie je usprawniać, uzupełniać i aktualizować.

Stack technologiczny

Agenda

- Wstęp, nazewnictwo i źródła danych
- 2. Preprocessing danych
- 3. Problem klasyfikacji
- 4. Miary oceny modeli przy problemie klasyfikacji
- 5. Podsumowanie i zakończenie

Machine Learning z lotu ptaka

Supervised Learning

Regresja

- predictions
- process optimization

Klasyfikacja

- image classification
- diagnostics
- fraud detection

Machine Learning

Unsupervised Learning

Klastrowanie

- recommendation system
- targeted marketing
- customer segmentation

Redukcja wymiarowości

- Big Data visualisation
- feature elicitation
- data compression

Reinforcement Learning

- games
- real-time decisions
- robot / dron navigation

Bias (obciążenie) - niemożność uchwycenia przez model prawdziwej zależności pomiędzy wejściem a wyjściem.

Wariancja - błąd wynikający z wrażliwości na małe zmiany danych treningowych (np. model "uczy się" szumu w danych)

Sposoby na underfitting:

- dobór bardziej złożonego modelu z większą ilością parametrów,
- zwiększenie liczby feature'ów do modelu (ang. feature engineering),
- zmniejszenie ograniczeń modelu (np. usunięcie parametru regularyzacji).

Sposoby na overfitting:

- pozyskanie większej ilości danych uczących,
- uproszczenie modelu lub zmiana na mniej złożony lub zawierający mniej parametrów,
- zmniejszenie zaszumienia danych, poprzez np. usunięcie błędnych danych lub outlierów.

Model zbalansowany - wynik kompromisu pomiędzy biasem a wariancją

Niska wariancja Wysoka wariancja Duży bias Mały bias

Preprocessing danych

Kluczowe pojęcia:

- 1. Rodzaje zmiennych
- Wyszukiwanie wartości odstających
- 3. Uzupełnianie brakujących danych
- 4. Encoding zmiennych kategorycznych
- 5. Skalowanie danych
- 6. Podział zbioru danych na treningowe, walidacyjne i testowe
- 7. Walidacja krzyżowa (klasyczna i dla szeregów czasowych)

Numeryczne	Kategoryczne	Szeregi czasowe	Złożone
Cingle	Dinorno	Number	Talvat
Ciągłe	Binarne	Numeryczne	Tekst
Dyskretne	Nominalne	Kategoryczne	Obrazy
	Uszeregowane	Mieszane	Video
			Audio

Kategoryczne Binarne Nominalne Uszeregowane

Szeregi czasowe Numeryczne Kategoryczne Mieszane

Złożone Tekst Obrazy Video Audio

Numeryczne	Kategoryczne	Szeregi czasowe	Złożone
Ciągłe	Binarne	Numeryczne	Tekst
Dyskretne	Nominalne	Kategoryczne	Obrazy
	Uszeregowane	Mieszane	Video
			Audio

Jak odnaleźć wartości odstające (ang. outliery)

1. **Na podstawie wiedzy 'eksperckiej'** - jako doświadczeni w danej dziedzinie możemy z góry być pewni niektórych ograniczeń naszych zmiennych, np. zajmowana pamięć czy wiek człowieka nie mogą być ujemne

2. **Na podstawie rozkładów statystycznych -** Wizualizując rozkłady można wyodrębnić pojedyncze próbki o wartościach zupełnie innych niż reszta wartości znajdujących się w danej dystrybucji, szczególnie przydatne są w

takiej sytuacji box-ploty

Typy brakujących danych:

 Missing at Random (MAR) - przyczyny brakujących danych nie korelują z typem obserwacji, ich obecność w konkretnych miejscach nie wnosi dodatkowej informacji, na przykład błędy przy odczycie z bazy danych

2. **Missing not at Random (MNAR)** - brakujące dane nie są przypadkowo rozmieszczone w zbiorze danych i mogą wnosić dodatkową informację, na przykład osoby z wyższymi zarobkami rzadziej będą się dzielić wysokością swojej pensji, pozostawiając puste pole w ankiecie

Brakujące dane

Imputacja

Usuwanie

mediana, średnia

poszczególne rekordy (wiersze)

wartość losowa

całe feature'y (kolumny)

estymacja złożona (np. interpolacja)

utworzenie feature'a 'niewiadomej'

Brakujące dane

Usuwanie poszczególne rekordy (wiersze) całe feature'y (kolumny)

Encoding zmiennych kategorycznych

height	name
156	'Ted'
187	'Amy'
124	'Max'
184	'Max'

height	name
156	0
187	1
124	2
184	2

! czasem nieodpowiednie

Encoding zmiennych kategorycznych

height	name
156	'Ted'
187	'Amy'
124	'Max'
184	'Max'

height	name_Ted	name_Amy	name_Max
156	1	0	0
187	0	1	0
124	0	0	1
184	0	0	1

? czy da się uprościć?

Encoding zmiennych kategorycznych

height	name
156	'Ted'
187	'Amy'
124	'Max'
184	'Max'

height	name_Ted	name_Amy	name_Max
156	1	0	0
187	0	1	0
124	0	0	1
184	0	0	1

Wypróbujmy to!

Kiedy skalować dane?

Zawsze, gdy algorytm operuje na odległościach lub gradientach.

Algorytmy szczególnie wrażliwe na nieprzeskalowane feature'y, to np.:

- Metoda Najbliższych Sąsiadów,
 - modele liniowe i neuronowe,
- Maszyny Wektorów Wspierających,
 - Principal Component Analysis.

Kiedy skalować dane?

Zawsze, gdy algorytm operuje na odległościach lub gradientach.

Niektóre algorytmy są niewrażliwe na nieprzeskalowane feature'y, np.:

- modele oparte o drzewa decyzyjne,
- modele wykorzystujące statystykę Bayes'owską.

Skalowanie danych

Standaryzacja (x'.mean() = 0 , x'.std() = 1)
 x' = (x - x.mean()) / x.std()

Normalizacja średniej (x'.mean() = 0 , -1 < x' < 1)
 x' = (x - x.mean()) / (x.max() - x.min())

3. Skalowanie Min-Max (0 < x' < 1)x' = (x - x.min()) / (x.max() - x.min())

Wypróbujmy to!

Podział zbioru treningowego

train - zbiór treningowy, na którym uczymy model

valid - zbiór walidacyjny, na którym testujemy obecność np. overfittingu

test - zbiór, na którym testujemy nasz ostateczny model przed deploymentem

Problem klasyfikacji

Klasyfikacja binarna (dwuklasowa)

Podstawowa forma klasyfikacji, odpowiada na pytania typu: 'Czy obiekt należy do klasy X?' - Tak lub Nie

Do tej postaci sprowadzane są wszystkie problemy klasyfikacji wieloklasowej.

Klasyfikacja wieloklasowa

Klasyfikacja wieloklasowa - One vs. All

Klasyfikacja wieloklasowa - All vs. All

Algorytmy, które zastosujemy, to:

- Metoda Najbliższych Sąsiadów (K-NN)
- 2. Regresja Liniowa + Logistyczna
- 3. Maszyny Wektorów Wspierających (SVM + Kernel)
- 4. Drzewa Decyzyjne
- 5. Lasy Drzew Losowych
- 6. Naiwny Bayes
- 7. Sieci Neuronowe

1. Umieść nowy punkt dla przestrzeni cech wraz z innymi oznaczonymi punktami.

2. Dla każdego punktu w zbiorze trenującym oblicz odległości do nowego punktu.

3. Wybierz K najmniejszych odległości do nowego punktu.

4. Spośród K punktów, oblicz liczność każdej z klas i nowemu punktowi przypisz najliczniejszą.

Wypróbujmy to!

Regresja Liniowa

Pensja = 5000 + (3000/2) * Lata doświadczenia

Regresja Liniowa

Formalnie:

$$\hat{y} = \theta_0 + \theta_1 x_1$$

dla jednej zmiennej

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

dla n zmiennych

Regresja Liniowa - funkcja kosztu

Regresja Liniowa

hackernoon.com

Regresja Wielomianowa

Pensja = 5000 + (3000/2) * Lata doświadczenia + 50 * Lata doświadczenia²

Regresja Wielomianowa

Pensja = 5000 + (3000/2) * Lata doświadczenia + 50 * Lata doświadczenia²

Formalnie:

$$\hat{y} = \theta_0 + \theta_{11}x_1 + \theta_{12}x_1^2 + \theta_{13}x_1^3 + \ldots + \theta_{1p}x_1^p$$
dla **jednej** zmiennej stopnia **p**
dla **n** zmiennych stopnia **p**

dla **n** zmiennych stopnia **p**

Regresja Logistyczna

Regresja Liniowa

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

Regresja Logistyczna

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\hat{p} = \sigma(f(X)) = \frac{1}{1 + e^{-f(X)}}$$

Regresja Logistyczna

Regresja Liniowa

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \ldots + \theta_n x_n$$

Funkcja kosztu:

$$L(\theta) = MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

Regresja Logistyczna

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\hat{p} = \sigma(f(X)) = \frac{1}{1 + e^{-f(X)}}$$

$$\hat{p} = \sigma(\theta_0 + \theta_1 x_1 + \dots) = \frac{1}{1 + e^{\theta_0 + \theta_1 x_1 + \dots}}$$

Funkcja kosztu:

$$L(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{i} log(\hat{p}^{(i)}) + (1 - y^{i}) log(1 - \hat{p}^{(i)}) \right]$$

Wypróbujmy to!

Maszyny Wektorów Wspierających (SVM)

Maszyny Wektorów Wspierających

Maszyny Wektorów Wspierających

Hiperparametr C

Określa wagę funkcji kosztu, umożliwia regularyzację modelu.

Im większe C, tym węższa ulica.

"Uczenie Maszynowe", A. Geron

Maszyny Wektorów Wspierających - Kernele

Maszyny Wektorów Wspierających - Kernele

Najpopularniejsze kernele w SVM:

Wielomianowe: np. kwadratowe

Oparte o funkcję podobieństwa: (ang. Radial Basis Function, RBF)

$$\phi(x, l) = exp(-\gamma |x - l|^2), \gamma = \frac{1}{2\sigma^2}$$

"Uczenie Maszynowe", A. Geron

Wypróbujmy to!

Indeksy Gini i Entropia (ang. impurity indexes):

$$Gini(L) = 1 - \sum_{i=1}^{k} p_i^2 = 1 - p_{True}^2 - p_{False}^2$$

$$Entrophy(L) = -\sum_{i=1}^{k} p_i log(p_i) = -p_{True} log(p_{True}) - p_{False} log(p_{False})$$

G(F) =
$$1 - (1/10)^2 - (9/10)^2 = 0.18$$

G(T) =
$$1 - (11/15)^2 - (4/15)^2 = 0.39$$

Dla roota kryterium:

$$G(X>=7) = (10/25) * G(F) + (15/25) * G(T)$$

Punkt odcięcia	Gini dla kryterium
X >= a	0.48
X >= p	0.32
X >= c	0.31
X >= d	0.33

scikit-learn.org

Wypróbujmy to!

Wypróbujmy to!

Ekstremalne lasy losowe (ang. Extra trees)

Ekstremalne lasy losowe (ang. Extra trees)

2. Dla każdego drzewa: Dla każdego podziału w drzewie wybierz losowo **K** cech (parametr max_features).

3. Dla każdej z **K** cech wylosuj punkt odcięcia, a następnie wybierz ten, który daje najczystszy podział.

Dla K = 3 dla przykładowego drzewa:

x1	x2	хЗ	x4	x5	У

Ekstremalne lasy losowe (ang. Extra trees)

Ekstremalne lasy losowe (ang. Extra trees)

Wypróbujmy to!

Macierz pomyłek (ang. confusion matrix)

Predicted Real	Pred: False	Pred: True	
Real: False	121 True Negative	24 False Positive	
Real: True	7 False Negative	87 True Positive	

Przykłady dla klasyfikacji pacjentów (wykrywanie choroby):

True Negative (TN) - Ludzie **zdrowi** poprawnie zdiagnozowani jako **zdrowi**.

False Positive (FP) - Ludzie **zdrowi** błędnie zdiagnozowani jako **chorzy**.

False Negative (FN) - Ludzie **chorzy** błędnie zdiagnozowani jako **zdrowi**.

True Positive (TP) - Ludzie **chorzy** poprawnie zdiagnozowani jako **chorzy**.

Macierz pomyłek dla wielu klas

Predicted Real	HIV	Cancer	SM
HIV	87	3	4
Cancer	5	64	7
SM	19	17	33

Często zdarza się, że klas jest więcej niż jedna.

Pokazana macierz pomyłek reprezentuje sytuację, w której chory pacjent musi zostać sklasyfikowany pod względem choroby, którą posiada.

Możliwe choroby to:

- → HIV.
- → rak,
- stwardnienie rozsiane.

Zakładamy, że pacjent jest chory na jedną i tylko jedną chorobę.

Macierz pomyłek dla wielu klas

Predicted Real	HIV	Cancer	SM
HIV	87	3	4
Cancer	5	64	7
SM	19	17	33

Binarna macierz pomyłek dla HIV:

Predicted Real	Pred: False	Pred: True	
Real: False	121 True Negative	24 False Positive	
Real: True	7 False Negative	87 True Positive	

Dokładność (ang. accuracy, ACC)

Prawdopodobieństwo dokonania poprawnej klasyfikacji dla losowo wybranej binarnej próbki.

ACC = (TP + TN) / (FP + TP + FN + TN)

Przykład (dla klasyfikacji HIV/nie HIV):

Prawdopodobieństwo, że losowo wybrany pacjent spośród wszystkich został poprawnie zaklasyfikowany.

ACC = (87 + 121) / (24 + 87 + 7 + 121) = 0.871

Predicted Real	Pred: False	Pred: True	
Real: False	121 True Negative	24 False Positive	
Real: True	7 False Negative	87 True Positive	

Precyzja (ang. precision, positive predictive value, PPV)

Prawdopodobieństwo, iż losowa binarna próbka zaklasyfikowana jako True, jest rzeczywiście True.

PPV = TP / (TP + FP)

Przykład (dla klasyfikacji HIV/nie HIV):

Prawdopodobieństwo, że losowo wybrany pacjent spośród zaklasyfikowanych jako chory na HIV jest rzeczywiście chory na HIV.

PPV = 87 / (87 + 24) = 0.783

Predicted Real	Pred: False	Pred: True
Real: False	121 True Negative	24 False Positive
Real: True	7 False Negative	87 True Positive

Czułość (ang. sensitivity, recall, true positive rate, TPR)

Prawdopodobieństwo, iż losowa binarna próbka rzeczywista True, została zaklasyfikowana jako True.

TPR = TP / (TP + FN)

Przykład (dla klasyfikacji HIV/nie HIV):

Prawdopodobieństwo, że losowo wybrany pacjent spośród chorych na HIV został poprawnie zaklasyfikowany jako chory na HIV.

TPR = 87 / (87 + 7) = 0.925

Predicted Real	Pred: False	Pred: True	
Real: False	121 True Negative	24 False Positive	
Real: True	7 False Negative	87 True Positive	

Specyficzność (ang. fall-out, false positive rate, FPR)

Prawdopodobieństwo, iż losowa binarna próbka rzeczywista False, została źle zaklasyfikowana jako True.

FPR = FP / (FP + TN)

Przykład (dla klasyfikacji HIV/nie HIV):

Prawdopodobieństwo, że losowo wybrany pacjent spośród niechorych na HIV został niepoprawnie zaklasyfikowany jako chory na HIV.

FPR = 24 / (24 + 121) = 0.166

Predicted Real	Pred: False	Pred: True	
Real: False	121 True Negative	24 False Positive	
Real: True	7 False Negative	87 True Positive	

Błędy dla wielu klas, mikro- i makrouśrednianie

Na przykładzie miary ACC

	TP	TN	FP	FN	ACC
dla klasy HIV	87	121	24	7	0.871
dla klasy Cancer	64	143	20	12	0.866
dla klasy SM	33	159	11	36	0.842
wartość średnia	61.3	141	18.3	18.3	0.86

Mikrouśrednianie:

- jest wrażliwe na nierówne liczności klas
- mierzy "wkład" każdej z klas

Makrouśrednianie:

ACC_{makro}

- traktuje wszystkie klasy jednakowo
- jest zwykłą średnią arytmetyczną z miary dokładności

 $ACC_{makro} = (61.3 + 141) / (61.3 + 141 + 18.3 + 18.3) = 0.847$

Krzywa ROC

Krzywa ROC

<u>lukeoakdenrayner.wordpress.com</u>

Wypróbujmy to!

Dobór modeli i dobre praktyki

Walidacja krzyżowa (ang. cross validation)

Walidacja krzyżowa dla szeregów czasowych 1

Walidacja krzyżowa dla szeregów czasowych 2

Dobór modelu - Grid Search

- 1. Wygeneruj w wielowymiarowej przestrzeni wszystkie kombinacje z list wartości hiperparametrów, tworząc tym samym siatkę (grid) wszystkich (n) możliwości.
- 2. Stwórz **n** modeli i wybierz **najlepszy** punkt (z **najmniejszym** błędem modelu).

Dobór modelu - Grid Search

Zalety:

- z dużym prawdopodobieństwem wskazuje optymalny model,
- nie wymaga iteracji,
- wygodny przy dyskretnym skończonym zbiorze wartości danego hiperparametru.

Wady:

- dla wielowymiarowej (ciągłej) przestrzeni hiperparametrów ogromna złożoność obliczeniowa,
- wymaga podanie explicite listy wartości hiperparametrów, które przeszukujemy.

Dobór modelu - Random Search + Hill Climbing

- 1. Wygeneruj losowo w zadanej przestrzeni hiperparametrów **n** punktów.
- 2. Wybierz **najlepszy** punkt (z **najmniejszym** błędem modelu).

Dobór modelu - Random Search + Hill Climbing

- 3. Wygeneruj losowo **n** punktów w bliskiej odległości od **najlepszego** punktu.
- 4. Wróć do **punktu 2**, powtórz **kilkukrotnie** procedurę aż do uzyskania pożądanego poziomu błędu modelu.

Dobór modelu - Random Search

Zalety:

- dla wielowymiarowej (ciągłej) przestrzeni hiperparametrów mała złożoność obliczeniowa,
- nie wymaga podania listy wartości hiperparametrów, które przeszukujemy, wystarczą zakresy,
- w większości bardziej złożonych modeli sprawdza się lepiej niż Grid Search.

Wady:

- mniejsza szansa (w porównaniu z Grid Search) na znalezienie optymalnego modelu,
- wymaga iteracji,
- utrudnione losowanie dla hiperparametrów o dyskretnych wartościach.

Wypróbujmy to!

Podsumowanie i zakończenie

Co dalej?

Gdzie bywać, kogo znać?

Książki, które polecam na początek:

- 1. "An Introduction to Statistical Learning with Applications in R", Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani dostepna online
- 2. "The Elements of Statistical Learning Data Mining, Inference, and Prediction", Trevor Hastie, Robert Tibshirani, Jerome Friedman dostępna online
- "Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems", Aurélien Géron
- 4. "Deep Learning" Ian Goodfellow, Yoshua Bengio, Aaron Courville
- 5. *"Reinforcement Learning: An Introduction"*, Richard S. Sutton, Andrew G. Barto dostępna online

Kursy, które polecam na początek:

- "Machine Learning", Coursera, Stanford University, Andrew Ng, sprawdź
- 2. "Deep Learning Specialization", Coursera, deeplearning.ai, Andrew Ng, sprawdź
- 3. Cokolwiek, Andrew Ng
- 4. "Artificial Intelligence", YouTube, MIT OpenCourseWare, sprawdź
- 5. "RL Course by David Silver", YouTube, sprawdź

Blogi, ludzie i wydarzenia, które warto śledzić:

- 1. wildml.com
- 2. <u>machinelearningmastery.com</u>
- 3. towardsdatascience.com
- 4. <u>medium.com</u>
- 5. colah.github.io
- 6. Andrew Ng
- 7. Geoffrey Hinton
- 8. Confitura
- 9. PyData
- Data Science Summit

Ankieta

tinyurl.com/introduction-to-ml-confitura