METODY MONTE CARLO

Metoda Monte Carlo

- Simulační metoda založená na užití stochastických procesů a generování náhodných čísel
- Historie
 - poprvé v projektu Manhattan (Los Alamos 1944, E. Fermi)
 - výzkum dynamiky řetězových reakcí vysoce obohaceného uranu
 - × John von Neumann, Stanislaw Ulam a Nicholas Metropolis
 - nedokázali vyřešit metodami teoretické fyziky
 - navrhli výpočet pomocí metody Monte Carlo
 - × ENIAC, MANIAC
- Vlastnosti
 - × numerická metoda
 - nelze řešit analyticky
 - × možné řešit libovolné matematické úlohy
 - nejen úlohy pravděpodobnostního charakteru
- K realizaci náhodného pokusu na počítači potřebujeme mít k dispozici nějakou náhodnou veličinu

Metoda Monte Carlo

Využití

- dnes mnoho oblastí vědy a inženýrství
- různé typy aplikací
- × obecné úlohy
 - numerická integrace
 - geometrické úlohy
- x počítačová fyzika a fyzikální modelování
 - termodynamika
 - stochastické molekulární simulace
 - vývoj na strukturální úrovni
- × počítačová grafika
 - realistické osvětlení scény
- x finanční inženýrství
 - optimalizace portfolia akcií
- × mnohé jiné oblasti
 - výzkum nových léků
 - ekonofyzika, sociofyzika atd.

Metoda Monte Carlo

Princip

- pomocí mnohonásobného opakování náhodných pokusů lze získat střední hodnotu hledané veličiny
- × známe-li rozdělení pravděpodobností pro dílčí procesy jevu, můžeme modelovat rozdělení pravděpodobnosti určité konfigurace systému
 - simulace pohybu částic v tekutině pomocí modelu tuhých koulí

opakuje experiment s náhodně zvolenými daty s velkým počtem opakování za účelem získání souhrnné statistiky z výsledků experimentu

Postup:

- Analýza problému a vytvoření modelu
 - popis jevu pomocí náhodné veličiny
 - minimální, maximální hodnoty, omezení, atd.
- Z. Generování a transformace náhodné veličiny (rozehrání)
 - z rozdělení, které jevu odpovídá
 - Gauss, rovnoměrné, trojúhelníkové, Poissonovo, atd.
- × 3. Opakování předchozího kroku
- × 4. Statistické vyhodnocení výsledků
 - souhrnné statistiky, histogramy, intervaly spolehlivosti

Buffonova úloha o jehle

- Buffonova úloha o jehle
 - × George-Louis Leclerc, Comte de Buffon, 1777

Jaká je pravděpodobnost P, že jehla protne jednu z čar?

$$\times$$
 $P = \frac{2d}{t\pi}$, $P \approx \frac{n}{n_0} \rightarrow \pi \approx 2d\frac{n_0}{n}$

- × n: celkový počet hodů jehly
- imes n_0 : kolikrát jehla protne jednu z čar

Pomocí mnohonásobných náhodných pokusů lze spočítat číslo π s <u>libovolnou přesností</u>

Buffonova úloha o jehle

- Buffonova úloha o jehle
 - Chyba metody Monte Carlo by měla klesat proporčně k převrácené hodnotě odmocniny z počtu kroků

 $\epsilon \sim \frac{1}{\sqrt{n_0}}$

Výsledky pro N pokusů

Počet pokusů N	Získané číslo π
10	3,333333333333334
100	3,030303030303030
1 000	3,129890453834116
10 000	3,106554830692762
100 000	3,139027529271432
1 000 000	3,142583738071931
10 000 000	3,141338395495446
100 000 000	3,141720284443186
1 000 000 000	3,141666595285384

Výpočet čísla π – čtvrtkruh

- Mějme jednotkovou kružnici, resp. 1/4 jednotkové kružnice
- Obsah čtverce $S_{\square} = r^2$
- Obsah čtvrtkruhu $S_o = \frac{\pi r^2}{4}$

$$S_o = \frac{\pi r^2}{4} \rightarrow \frac{S_o}{r^2} = \frac{\pi}{4} \Rightarrow \frac{S_o}{S_{\Box}} = \frac{\pi}{4}$$

$$\square$$
 $S_{\square}\cong N$ a $S_{o}\cong n'$

$$\pi\cong\frac{4n'}{N}$$

Výpočet čísla π – čtvrtkruh

- Generujeme bod $P = P(\xi, \gamma)$
- (ξ, γ) jsou náhodná čísla z intervalu (0,1)
- Úspěšný pokus

$$\times$$
 | r_{0P} | < 1 \Rightarrow $n' = n' + 1$

Počet pokusů N	Získané číslo π
10	3,2000
100	3,1600
1000	3,1000
10000	3,1444

$$\pi \cong \frac{4n'}{N}$$

výsledek pro 1000 pokusů

Výpočet určitého integrálu

 Jelikož Metodou Monte Carlo lze spočítat obsah nebo objem nějaké oblasti, lze s ní spočítat i určitý integrál

Výpočet určitého integrálu – střední hodnota

$$I = \int_{a}^{b} f(x) \mathrm{d}x$$

Metoda Monte Carlo pracuje se střední hodnotou sledované veličiny

Určitý integrál – věta o střední hodnotě

Necht' funkce f(x) je spojitá na intervalu $\langle a, b \rangle$ Pak existuje číslo $\xi \in \langle a, b \rangle$ tak, že platí:

$$\int_{a}^{b} f(x) dx = f(\xi)(b - a)$$

ullet Funkce f(x) je nezáporná na $\langle a,b \rangle$

- Existuje bod ξ , kde se obsah plochy pod křivkou rovná obsahu obdélníku daného $(b-a)\,f(\xi)$
- Hodnota $f(\xi) = \frac{1}{(b-a)} \int_{a}^{b} f(x) dx$
- ullet vyjadřuje střední hodnotu funkce f(x) na intervalu $\langle a,b
 angle$

Výpočet určitého integrálu – stř. hodnota

Výpočet určitého integrálu – střední hodnota

$$\int_{b}^{a} f(x) dx = (b - a)\langle f \rangle$$

$$\langle f \rangle = \sum_{i=1}^{N} f(\xi_i)$$

$$I \approx (b-a)\frac{1}{N} \sum_{i=1}^{N} f(\xi_i)$$

ullet – náhodné číslo z intervalu (a,b)

Výpočet určitého integrálu – geom. metoda

Výpočet určitého integrálu – geometrická metoda

- × integrál obsah plochy pod křivkou funkce f(x) na intervalu (a,b)
- × funkce f(x) je na (a,b):
 - omezená
 - spojitá
- imes označme f_{sup} supremum funkce (ξ, φ) náhodná čísla z intervalu (a,b) a $(0,f_{sup})$
- Postup výpočtu
 - × generujeme celkem n dvojic (ξ_i, φ_i)
 - × počítáme pokusy pod křivkou: jestliže platí $\varphi_i < f(\xi_i)$, potom n' = n' + 1
- Výsledná hodnota integrálu:

$$I \approx f_{sup}(b-a)\frac{n'}{n}$$

Výpočet určitého integrálu

$$I \approx (b-a)\frac{1}{N} \sum_{i=1}^{N} f(\xi_i)$$

Geometrická metoda

$$I \approx f_{sup}(b-a)\frac{n'}{n}$$

- Geometrická metoda má větší rozptyl
 - × je (zpravidla) méně přesná
 - x nemusí být méně efektivní (celkový počet pokusů)

Náhodný posun částice

- Generování bodu na kružnici (2D): Polární soustava souřadnic
 - × Zobrazení z (x, y) do (r, φ) pomocí transformace

$$x = r \cos \varphi, \quad y = r \sin \varphi, \quad \varphi \in (0, 2\pi)$$

Náhodný posun částice

- Generování bodu na kouli (3D): Sférická soustava souřadnic
 - × Zobrazení z (x, y, z) do (r, φ, ϑ) pomoci transformace

$$x = r \cos \theta \sin \varphi$$
$$y = r \sin \theta \sin \varphi$$
$$z = r \cos \theta$$

$$\varphi \in (0,2\pi), \quad \vartheta \in (0,\pi)$$

Simulace ideálního plynu

- Model ideálního plynu
 - x mezičásticový potenciál lze popsat Lennard-Jonesovým vzorcem

Simulace ideálního plynu

- Postup simulace vývoje polohy ideálního plynu:
 - × 1. vygeneruj náhodně částice ve 2D simulačním čtverci
 - × 2. pohni s náhodně vybranou částicí
 - × 3. pokud se energie po posunu zmenšila, tak tam částici ponech
 - 4. pokud se zhoršila, losuj Metropolisovým algoritmem pravděpodobnost, která je podmíněna teplotou
 - × 5. pokračuj do konce iteračního cyklu

Ověření funkčnosti

- × můžeme vykreslovat vývoj energie
- x nebo uspořádat molekuly na počátku nevýhodně a porovnat s koncovým stavem

Možný výstup

- × např. na následujícím obrázku
- molekuly v nevýhodné původní poloze (modrá) a v koncové (oranžová)

Optimalizace portfolia akcií

- Chceme rozložit finance do vybraných akcií, ale nevíme, kolik do jakých akcií investovat
- Můžeme spočítat určité příznaky
 - x na základě analýzy časového vývoje historických dat o akciích
 - × dají informaci o volatilitě (rozptylu) ceny akcie a riziku, které z investice plyne

Postup

- vygenerujeme náhodné rozložení portfolia
- zkoumáme, které z mnoha pokusů o rozložení dopadly nejlépe
 - z pohledu očekávané návratnosti a míře očekávaného rizika
- × o tom vypovídá tzv. Sharpeho poměr

lsingův model magnetismu

- Model interakce mezi magnetickými momenty ve feromagnetické látce
 - × spiny se mohou nacházet ve dvou hodnotách (up $\sigma_i = 1$, down $\sigma_i = -1$)
 - × spiny se nacházejí ve mřížce a mohou interagovat se svými sousedy
 - × stejně natočené spiny mají v páru nižší energii než při opačném natočení
 - × systém se snaží dostat do stavu s minimální energií

$$H = -\sum_{\langle i,j\rangle} J \,\sigma_i \sigma_j$$

- Závislost na teplotě
 - 1. při vysoké teplotě spin snadno změní orientaci a systém je málo organizovaný
 - 2. při nízké teplotě jsou upřednostňovány stavy s nižší energií
 - vytvoří se malé zarovnané domény
 - 3. pokud se velikost domén zvětší, jednotlivé momenty se přidají k celkovému magnetickému poli
- Cíl
 - × jak bude vypadat výsledné natočení spinů v daném čase

Metody MC v počítačové grafice

- Aproximace řešení stochastickým vzorkováním
- Vyšetřování trajektorie od pozorovatele nebo od zdroje světla
- Výhody
 - × libovolně definované zobrazované objekty
 - × bez předzpracování
 - × jakákoliv BRDF
 - × nestranné výsledné řešení
 - x nízká paměťová náročnost
- Nevýhody
 - × pomalá konvergence
 - × přesnost roste s odmocninou chyba metody klesá s počtem pokusů N jako

$$\vartheta\!\sim\!rac{1}{\sqrt{N}}$$

imes empirická složitost $O(\log(n))$

(n počet objektů)