Mengjie Shen

Jeffrey Simonoff

Regression and Multivariate Data Analysis

May 10, 2021

Predicting the Oscar Award for Best Picture

Every year, the Oscar Award for Best Picture is usually regarded as the most prestigious honor of the ceremony and attracts the most attention. In my report, I would like to use several factors to distinguish the movies that won the Oscar Award and those that didn't. I chose three predicting variables which are IMDb rating, Metascore and the ratio of winning prizes. IMDb rating can represent the preference of the mass; Metascore can represent the preference of the leading critics. For the ratio of winning prizes, I use the formula of the total number of prizes that a movie won divided by the total number of prizes that a movie won or get nominated to get the ratio $(\frac{\#win}{\#win+\#nominated})$. The reason I chose this formula is that this probably can tell me the chances a movie can win the prize given that it has been nominated.

I obtained the list of nominees and winners from the database on the official website of the Academy Award (http://awardsdatabase.oscars.org/). I chose 12 movies that won the prize in the last 12 years and I chose 21 movies in the past three years that got nominated in order to make my data more balanced. Then, I obtained the corresponding IMDb Rating, Metascore and the total number of prizes it won and nominated from IMDb (https://www.imdb.com/).

This is the head of my data:

Movie Name	Metascore	win_ratio	IMDB rating	У
The Father	88	15.483871	8.3	0
Judas and the Black Messiah	85	40.4761905	7.5	0
Mank	79	16.3987138	6.9	0
Minari	89	33.2278481	7.6	0
Nomadland	93	62.7071823	7.4	1
Parasite	96	52.920354	8.6	1
Once upon a Timein Hollywood	83	26.5748031	7.6	0

First, we construct the boxplot for each predictor:

There is not a clear separation between films that won Oscar Award for the Best Picture and those that did not, especially for the Metascore and IMDB ratings. There seems to be a right-tailed pattern in the boxplot of the ratio of winning. I tried logging this variable, but the performance is quite similar, so I won't pursue it further.

Then I run the logistic regression to analyze the relationship between the predicting variables and the probability of a film that gets the Oscar Award for Best Picture more precisely. The indicator of whether the film gets the Oscar Award for Best Picture is the target variable (represents as y in Minitab). Here is the output for a logistic regression model fit to these data.

Method Link function Logit Residuals for diagnostics Pearson Rows used 33 Response Information Variable Value Count y 1 12 (Event) 0 21 Total 33 Regression Equation P(1) = exp(Y')/(1 + exp(Y')) Y' = -17.3 + 0.0512 Metascore + 0.1238 win_ratio + 1.04 IMDB rating

Coefficients

Term	Coef	SE Coef	Z-Value	P-Value	VIF
Constant	-17.3	14.3	-1.21	0.225	
Metascore	0.0512	0.0573	0.89	0.372	1.22
win_ratio	0.1238	0.0559	2.22	0.027	1.10
IMDB rating	1.04	1.55	0.67	0.503	1.12

Odds Ratios for Continuous Predictors

	Odds Ratio	95% CI
Metascore	1.0525	(0.9407, 1.1775)
win_ratio	1.1317	(1.0144, 1.2627)
IMDB rating	2.8229	(0.1353, 58.8879)

Model Summary

Deviance	Deviance				Area Under
R-Sq	R-Sq(adj)	AIC	AICc	BIC	ROC Curve
31.62%	24.68%	37.58	39.01	43.57	0.8611

Goodness-of-Fit Tests

Test	DF C	:hi-Square P	-Value
Deviance	29	29.58	0.435
Pearson	29	31.42	0.346
Hosmer-Lemeshow	8	6.64	0.576

Analysis of Variance

				Likelihood	l Ratio
Source	DF	Adj Dev	Adj Mean	Chi-Square	P-Value
Regression	3	13.6789	4.5596	13.68	0.003
Metascore	1	0.8718	0.8718	0.87	0.350
win_ratio	1	7.3718	7.3718	7.37	0.007
IMDB rating	1	0.4715	0.4715	0.47	0.492
Error	29	29.5829	1.0201		
Total	32	43.2618			

Measures of Association

Pairs	Number	Percent	Summary Measures	Value
Concordant	216	85.7	Somers' D	0.72
Discordant	35	13.9	Goodman-Kruskal Gamma	0.72
Ties	1	0.4	Kendall's Tau-a	0.34
Total	252	100.0		

Association is between the response variable and predicted probabilities

The Chi-Square of the regression is 13.68 with a p-value of 0.003. So, we strongly reject the null hypothesis of no relationship. The ratio of winning awards is highly statistically significant, while Metascore and IMDB ratings are not significant.

The coefficient for the ratio of winning awards means that holding everything else in the model fixed, an increase of one percentage point in the ratio of winning awards is associated with an increase in the odds of getting the Oscar by 13.17%. The coefficient for Metascore shows that holding everything else in the model fixed, an increase of one point in the Metascore

is associated with an increase in the odds of getting the Oscar by 5.25%. The coefficient for IMDB rating shows that holding everything else in the model fixed, an increase of 0.1 in the IMDB rating is associated with multiplying the odds of getting the Oscar by 1.11 (e^{0.1*1.04}), which is an increase in the odds of getting the Oscar by 11%. VIF doesn't indicate any possibility of the problem of collinearity.

The Hosmer-Lemeshow test has a p-value equals 0.576, indicating no evidence of lack of fit. Value for Somers' D equals to 0.72 and the area under the ROC curve is 0.8611, indicating that there is good separation, with 85.7% concordant pairs and 13.9% discordant pairs. But we witness that Metascore and IMDB Ratings don't have a strong predicting power, let's perform the best subsets regression. Here is the resultant of the best subset output:

Response is y								
							ı	
							Μ	
					W	Μ	D	
					i	е	В	
					n	t		
					_	a	r	
					r	s	а	
					a	C	t	
					t	0	i	
					i	r	n	
Vars	R-Sq	R-Sq (adj)	R-Sq (pred)	Mallows Cp	So	е	g	
1	33.1	30.9	25.6	0.9	0.40593 X			
1	13.5	10.7	3.9	9.6	0.46151	Χ		
2	34.5	30.2	23.7	2.3	0.40825 X	Χ		
2	33.5	29.0	22.2	2.7	0.41151 X		Χ	
3	35.1	28.4	20.6	4.0	0.41342 X	Χ	Χ	

The best subsets point to a model with only one predictor ratio of winning awards. Let's run the logistic regression again using this variable:

Method							
Link fur Residua Rows u	Logit gnostics Pearso 33	וכ					
Response Information Variable Value Count							
у	1	12 (Event)					
	0	21					
	Total	33					

_

Regression Equation $P(1) = \exp(Y')/(1 + \exp(Y'))$ Y' = -5.65 + 0.1456 win_ratio Coefficients Term Coef SE Coef Z-Value P-Value VIF Constant -5.65 1.98 -2.85 0.004 win_ratio 0.1456 0.0538 2.71 0.007 1.00 **Odds Ratios for Continuous Predictors** Odds Ratio 95% CI win_ratio 1.1567 (1.0409, 1.2854) **Model Summary** Deviance Deviance Area Under R-Sq R-Sq(adj) AIC AICc BIC ROC Curve 29.21% 26.90% 34.62 35.02 37.62 0.8571 **Goodness-of-Fit Tests** Test DF Chi-Square P-Value Deviance 31 30.62 0.485 Pearson 31 30.15 0.510 Hosmer-Lemeshow 8 3.83 0.872 **Analysis of Variance** Likelihood Ratio Source DF Adj Dev Adj Mean Chi-Square P-Value Regression 1 12.64 12.6382 12.64 0.000 win_ratio 1 12.64 12.6382 12.64 0.000 Error 31 30.62 0.9879 Total 32 43.26 Measures of Association Pairs Number Percent Summary Measures Value Concordant 216 85.7 Somers' D 0.71 36 14.3 Goodman-Kruskal Gamma 0.71 Ties 0 0.0 Kendall's Tau-a 0.34

252 100.0

Association is between the response variable and predicted probabilities

The AIC_c value has dropped by 3.99 from the original three-predictor model, therefore, the simpler model might be a better choice. The Somers' D is 0.71, indicating that there is good separation. The Hosmer-Lemeshow test indicates no lack of fit. The predictor ratio of winning awards is statistically significant.

Next, let's identify the unusual observations which can have a strong effect on the fitted logistic regression model.

ROWS SPEARRES 1 HI 1 COOK 1

1	-0.1875	0.044383	0.000816
2	-1.1684	0.044383	0.046537
3	-0.20063	0.003827	0.040337
4	-0.68326	0.047067	0.011529
5	0.18143	0.065823	0.00116
6	0.37771	0.103967	0.008277
7	-0.42297	0.056059	0.005312
8	-1.04728	0.056766	0.033004
9	-0.6207	0.048458	0.00981
10	-0.39912	0.05666	0.004784
11	-0.26529	0.053768	0.002
12	-0.25949	0.053302	0.001896
13	-0.3792	0.056978	0.004344
14	1.79908	0.049647	0.084544
15	-0.77781	0.046878	0.014878
16	2.37966	0.055345	0.165884
17	0.77444	0.077541	0.025207
18	0.6202	0.094796	0.020141
19	0.98763	0.058332	0.030211
20	0.84134	0.070503	0.026846
21	1.16946	0.049836	0.035866
22	0.74106	0.081279	0.024292
23	1.50028	0.046869	0.055342
24	0.5479	0.101439	0.016944
25	-1.04938	0.056882	0.033208
26	-0.6885	0.046995	0.011688
27	-0.33841	0.056951	0.003458
28	-0.67444	0.047205	0.011268
29	-0.23964	0.051437	0.001557
30	-0.22405	0.049665	0.001312
31	-3.00875	0.103482	0.522456
32	-0.20764	0.047493	0.001075
33	-0.48201	0.053896	0.006618

There is one outlier witnessed from row 31. It also has a relatively large Cook's Distance This corresponds to the movie Roma. It has an extremely high ratio of winning awards (53%), but it didn't get the Oscar Best Picture. However, even though it lost the biggest prize of Oscar, it actually took home three Academy Awards, including Best Cinematography, Best Foreign

Language Film and Best Director. These awards still can prove that the movie is a success.

Failing to win the Oscar Best Picture can be due to some random factors.

We can also witness this unusual observation in residual plots, which is at the left bottom of the normality probability plot:

Here is the fit of the three-predictor model to the dataset without the outlier:

Method

Link function Logit Residuals for diagnostics Pearson Rows used 32

Response Information

Varia	ble Value C	Count
у	1	12 (Event)
	0	20
	Total	32

Regression Equation

 $P(1) = \exp(Y')/(1 + \exp(Y'))$

Y' = -21.6 + 0.1899 win_ratio + 0.0696 Metascore + 1.10 IMDB rating

Coefficients

Term	Coef	SE Coef	Z-Value	P-Value	VIF
Constant	-21.6	17.4	-1.24	0.215	
win_ratio	0.1899	0.0792	2.40	0.017	1.02
Metascore	0.0696	0.0664	1.05	0.294	1.16
IMDB rating	1.10	1.85	0.60	0.551	1.15

Odds Ratios for Continuous Predictors

	Odds Ratio	95% CI
win_ratio	1.2091	(1.0352, 1.4122)
Metascore	1.0721	(0.9413, 1.2211)
IMDB rating	3.0182	(0.0800, 113.9134)

Model Summary

Deviance	Deviance				Area Under
R-Sq	R-Sq(adj)	AIC	AICc	BIC	ROC Curve
43.77%	36.68%	31.81	33.29	37.67	0.9083

Goodness-of-Fit Tests

Test	DF	Chi-Square	P-Value
Deviance	28	23.81	0.692
Pearson	28	25.90	0.578
Hosmer-Lemeshow	2	5.96	0.652

Analysis of Variance

				Likelihood	l Ratio
Source	DF	Adj Dev	Adj Mean	Chi-Square	P-Value
Regression	3	18.5314	6.1771	18.53	0.000
win_ratio	1	11.1968	11.1968	11.20	0.001
Metascore	1	1.2432	1.2432	1.24	0.265
IMDB rating	1	0.3714	0.3714	0.37	0.542
Error	28	23.8086	0.8503		
Total	31	42.3400			

Measures of Association

Pairs	Number	Percent	Summary Measures	Value
Concordant	216	90.0	Somers' D	0.81
Discordant	22	9.2	Goodman-Kruskal Gamma	0.82
Ties	2	0.8	Kendall's Tau-a	0.39
Total	240	100.0		

Association is between the response variable and predicted probabilities

Next, we rerun the best subsets regression and here is the output:

Response is y

							I
							М
					W	Μ	D
					i	е	В
					n	t	
					_	a	r
					r	s	a
					a	С	t
					t	0	i
					i	r	n
Vars	R-Sq	R-Sq (adj)	R-Sq (pred)	Mallows Cp	So	е	g
1	42.5	40.6	37.1	1.1	0.37918 X		
1	16.3	13.5	6.7	14.4	0.45736	Χ	
2	44.5	40.6	35.8	2.2	0.37901 X	Χ	
2	42.6	38.7	33.3	3.1	0.38518 X		Χ
3	44.8	38.8	32.4	4.0	0.38468 X	Χ	Χ

The model with only one predictor ratio of winning awards still seems to be the best model. Here is the output for the model:

Method

Link function Logit Residuals for diagnostics Pearson Rows used 32

Response Information

Variable	Value	Count	
у	1	12	(Event)
	0	20	
	Total	32	

Regression Equation

 $P(1) = \exp(Y')/(1 + \exp(Y'))$ $Y' = -7.83 + 0.2126 \text{ win_ratio}$

Coefficients

Term	Coef	SE Coef	Z-Value	P-Value	VIF
Constant	-7.83	2.78	-2.82	0.005	
win_ratio	0.2126	0.0769	2.77	0.006	1.00

Odds Ratios for Continuous Predictors

	Odds Ratio	95% CI
win_ratio	1.2369	(1.0639, 1.4380)

Model Summary

[Deviance	Deviance				Area Under
	R-Sq	R-Sq(adj)	AIC	AICc	BIC	ROC Curve
	40.74%	38.37%	29.09	29.51	32.02	0.8958

Goodness-of-Fit Tests

Test	DF	Chi-Square	P-Value
Deviance	30	25.09	0.721
Pearson	30	24.20	0.763
Hosmer-Lemeshow	8	4.82	0.776

Analysis of Variance

				LIKEIIIIOUU	Natio
Source	DF	Adj Dev	Adj Mean	Chi-Square	P-Value
Regression	1	17.25	17.2476	17.25	0.000
win_ratio	1	17.25	17.2476	17.25	0.000

Error 30 25.09 0.8364 Total 31 42.34

Measures of Association

Pairs	Number	Percent	Summary Measures	Value
Concordant	215	89.6	Somers' D	0.79
Discordant	25	10.4	Goodman-Kruskal Gamma	0.79
Ties	0	0.0	Kendall's Tau-a	0.38
Total	240	100.0		

Association is between the response variable and predicted probabilities

The coefficient for the ratio of winning awards means that holding everything else in the model fixed, an increase of one percentage point in the ratio of winning awards is associated with an increase in the odds of getting the Oscar by 23.69%. Here are the three-in-one plot for the model. There are still some indications of unusual observations in the model, however, since a new outlier will keep popping up if we subset the data, we will stop here.

Movie Name	FITS	SPEARRES	HI	COOK
The Father	0.032505	-0.1875	0.044383	0.000816
Judas and the Black Messiah	0.561022	-1.1684	0.063827	0.046537
Mank	0.036965	-0.20063	0.046468	0.000981
Minari	0.307896	-0.68326	0.047067	0.011529
Nomadland	0.970169	0.18143	0.065823	0.00116
Parasite	0.886658	0.37771	0.103967	0.008277
Once upon a Timein Hollywood	0.144478	-0.42297	0.056059	0.005312
1917	0.508485	-1.04728	0.056766	0.033004
Marriage Story	0.268258	-0.6207	0.048458	0.00981
Little Women	0.130642	-0.39912	0.05666	0.004784

Ford v Ferrari	0.062439	-0.26529	0.053768	0.002
Vice	0.059927	-0.25949	0.053302	0.001896
A Star Is Born	0.119408	-0.3792	0.056978	0.004344
Green Book	0.245338	1.79908	0.049647	0.084544
The Favorite	0.365735	-0.77781	0.046878	0.014878
The Shape of Water	0.157496	2.37966	0.055345	0.165884
Moonlight	0.643813	0.77444	0.077541	0.025207
Spotlight	0.741736	0.6202	0.094796	0.020141
Birdman	0.521234	0.98763	0.058332	0.030211
12 Years a Slave	0.603156	0.84134	0.070503	0.026846
Argo	0.434879	1.16946	0.049836	0.035866
The Artist	0.664661	0.74106	0.081279	0.024292
The King's Speech	0.317929	1.50028	0.046869	0.055342
The Hurt Locker	0.787562	0.5479	0.101439	0.016944
Promising Young Woman	0.509457	-1.04938	0.056882	0.033208
Sound of Metal	0.311178	-0.6885	0.046995	0.011688
The Trial of the Chicago 7	0.097473	-0.33841	0.056951	0.003458
Joker	0.302358	-0.67444	0.047205	0.011268
Jojo Rabbit	0.05166	-0.23964	0.051437	0.001557
The Irishman	0.045534	-0.22405	0.049665	0.001312
Roma	0.8903	-3.00875	0.103482	0.522456
BlacKkKlansman	0.039447	-0.20764	0.047493	0.001075
Black Panther	0.180202	-0.48201	0.053896	0.006618

Next, we put the unusual observation back to our dataset and plot the classification matrix.

Rows: y Co	lumns: predic	t
------------	---------------	---

0 1 All
17 4 21
51.52 12.12 63.64
4 8 12
12.12 24.24 36.36
II 21 12 33
63.64 36.36 100.00
Cell Contents
Count
% of Total

75.76% of the films were correctly classified, much higher than

$$C_{pro} = 1.25 \, \times (0.6364 \times 0.6364 + 0.3636 \times 0.3636) = 67.15\%$$

And $C_{max} = 63.64\%$. Therefore, the model performs well in predicting which movie can win Oscar Award for Best Picture.

Next, we would like to adjust the intercept term in order to estimate the prospective probabilities of getting an Oscar Award for Best Picture. Since the winner is usually generated from 8 to 9 nominees, I will use a 12.5% prior probability of winning the award. Then, the adjusted intercept is:

$$\widetilde{\beta_0} = \widehat{\beta_0} + ln \left[\frac{0.125 \times 20}{0.875 \times 12} \right] = -9.27$$

I can then convert the original probability estimates to adjusted ones, and here is the estimated probability:

row	Movie Name	newprob
	1 The Father	0.008217
,	2 Judas and the Black Messiah	0.239633
,	3 Mank	0.009377
4	4 Minari	0.098858
:	5 Nomadland	0.889133
(6 Parasite	0.658598
,	Once upon a Timein Hollywood	0.03998
;	8 1917	0.203258
9	9 Marriage Story	0.082908
10) Little Women	0.035733
1	l Ford v Ferrari	0.016157
12	2 Vice	0.015476
1.	3 A Star Is Born	0.032356
14	4 Green Book	0.074218
1:	5 The Favorite	0.124492
10	The Shape of Water	0.044067
1′	7 Moonlight	0.308307
13	8 Spotlight	0.414599
19	9 Birdman	0.211649
20	12 Years a Slave	0.27262
2	l Argo	0.159498
22	2 The Artist	0.328304

23	The King's Speech	0.103094
24	The Hurt Locker	0.477589
25	Promising Young Woman	0.203888
26	Sound of Metal	0.100235
27	The Trial of the Chicago 7	0.025942
28	Joker	0.096556
29	Jojo Rabbit	0.013255
30	The Irishman	0.011627
31	Roma	0.666815
32	BlacKkKlansman	0.010025
33	Black Panther	0.051418

There are 7 movies that are classified incorrectly (Judas and the Black Messiah, 1917, Green Book, The Shape of Water, The King's Speech, Promising Young Woman, Roma).

Notably, Roma has an estimated probability of 66.68% of getting the Oscar Awards, lower than the previous one 89.03%, but it is still misclassified.

To conclude, the model with only one predictor of the ratio of winning awards is the best model. I was hoping for a stronger relationship between either Metascore or IMDb rating because this represents the taste of professional critics and the audience, which should be consistent with the result of the Oscar Award for the Best Picture. The ratio of winning the awards is quite consistent with the result of the Oscar Award. I think this probably because the result of other awards can reflect the view of the critics in the industry to some extent. In the future, more variables such as the box office or movie genre can also be considered into the model to see whether there can be a more accurate prediction.