Music AI: Threats and Opportunities

overview

alexander lerch

education

- Electrical Engineering (Technical University Berlin)
- Tonmeister (music production, University of Arts Berlin)

professional

- Associate Dean for Research & Creative Practice, College of Design, Georgia Tech
- Associate Professor, School of Music, Georgia Tech
- prev: 2000-2013: CEO at zplane.development

background

- machine learning for audio and music (20+ years)
- audio algorithm design (20+ years)
- commercial music software development (10+ years)
- entrepreneurship (10+ years)

introduction artificial intelligence

■ artificial intelligence

- unclear definition: everything that is perceived to act intelligently
- changes over time

■ machine learning

 data-driven: algorithm is more agnostic to task and is parametrized through training with data

■ deep learning

deep neural networks are the ML approach used

■ generative AI

• deep neural networks generating content

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- technical challenges concerning data
 - *imbalance & bias* (distribution is skewed, biased)
 - diversity & representativeness
 - subjectivity of annotations
 - noisiness (bad quality, bad annotations, ...)
 - amount

machine learning importance of data

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- technical challenges concerning data
 - imbalance & bias (distribution is skewed, biased)
 - diversity & representativeness
 - subjectivity of annotations
 - noisiness (bad quality, bad annotations, ...)
 - amoun

machine learning importance of data

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- technical challenges concerning data
 - imbalance & bias (distribution is skewed, biased)
 - diversity & representativeness
 - subjectivity of annotations
 - noisiness (bad quality, bad annotations, ...)
 - amount

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- distribution & listening
 - music recommendation and discovery

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- distribution & listening
 - music recommendation and discovery

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- distribution & listening
 - music recommendation and discovery

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- **■** distribution & listening
 - music recommendation and discovery

musical communication paradigm shift

- historical technological shifts in music:
 - recording devices (tape, grammophone)
 - digitization/softwarization of recording studio
- historical technological shifts in general:
 - internet
 - introduction of photography

musical communication paradigm shift

- historical technological shifts in music:
 - recording devices (tape, grammophone)
 - digitization/softwarization of recording studio
- historical technological shifts in general:
 - internet
 - introduction of photography

blues funk metal chanson^a

ntro ai & ml music ai **evaluation** challenges conclusion thank

systematic evaluation evaluation targets

Georgia Center for Music Tech Technology

■ system output

- originality
 - plagiarism
 - diversity
 - creativity
- audio quality
- musical & aesthetic qualities

user experience

other criteria

- explainability
- bias
- ethical use of data & data curation practices
- resource use & environmental impact

systematic evaluation methods

■ **subjective** testing

- preference test
- Turing test
- rating of properties

objective testing

- reference-independent
- comparison of distributions

systematic evaluation methods

- subjective testing
 - preference test
 - Turing test
 - rating of properties
- objective testing
 - reference-independent
 - comparison of distributions

systematic evaluation methods

Georgia Center for Music Tech Technology

- **subjective** testing
 - preference test
 - Turing test
 - rating of properties
- objective testing
 - reference-independent
 - comparison of distributions

music ai opportunities & threats

Georgia Center for Music Tech Technology

opportunities

- content creation:
 - speed-up, increased efficiency
 - creative possibilities (morphing, etc.)
 - co-creative idea givers
 - democratization
- consumption:
 - personalization
 - effective discovery and accessibility
 - (inter)active listening experiences

- content creation:
 - ethical use of data
 - growth in plagiarism
 - liability for harmful content
 - livelihood of creators
 - value perception of artistic content
- consumption:
 - consumer distrust through
 - ▶ inflationary ai-generated content
 - ▶ inexplainable black-box systems
- **both**:
 - 'mainstreamification'
 - bias (data curation, for-profit system control)

music ai opportunities & threats

Georgia Center for Music Tech Technology

opportunities

- content creation:
 - speed-up, increased efficiency
 - creative possibilities (morphing, etc.)
 - co-creative idea givers
 - democratization
- consumption:
 - personalization
 - effective discovery and accessibility
 - (inter)active listening experiences

threats

- content creation:
 - ethical use of data
 - growth in plagiarism
 - liability for harmful content
 - livelihood of creators
 - value perception of artistic content
- consumption:
 - consumer distrust through
 - ▶ inflationary ai-generated content
 - inexplainable black-box systems
- both:
 - 'mainstreamification'
 - bias (data curation, for-profit system control)

thanks

links

alexander lerch: www.linkedin.com/in/lerch

mail: alexander.lerch@gatech.edu

book: www.AudioContentAnalysis.org

music informatics group: musicinformatics.gatech.edu

