

WIRELESS NETWORKS SECURITY

Shambhu Upadhyaya Computer Science & Eng. University at Buffalo Buffalo, New York 14260

The State University of New York

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Acknowledgments

- DoD Capacity Building Grant
- NSF Capacity Building Grant
- Cisco Equipment Grant
- Anusha Iyer, Pavan Rudravaram, Himabindu Challapalli, Parag Jain, Mohit Virendra, Chris Crawford, Ameya Sanzgiri

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Motivation

- Military
 - Success of Desert Storm in Gulf War attributed to Wireless communication
 - Military superiority may not win war anymore
 - Mass destruction possible with Cyber weapons
 - Data sharing is critical in coalition partners
 - Wireless is key for communication in the intelligence community
- Public/Private
 - Today, a large no. of Internet connections happen from mobile devices
 - Wireless is ubiquitous, it has stayed here
- Info. must flow in and out of government to private sectors

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Wireless – Another Perspective

- Why and when of Wireless
 - No way to run the cable
 - Convenience of less hardware e.g., Conferences
 - Temporary setups
 - Costs of cabling too expensive
 - Scalability and Flexibility Easy to grow
 - Reduced cost of ownership initial costs the same as the wired networks
 - Mobility

1/29/2019

Wireless Networks Security

Mobility and Security

- · Increased mobility has become way of life
- Wireless is at the first and last miles
- Presents itself to security problems
- Proper security must be practiced
- A new security culture needs to emerge across the entire Internet user community
- Hacker ethic "destructiveness is inquisitiveness" must be resisted
- Instead, proper online security habits must be practiced

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

bhu J Upadhyay

Good Security Thinking (Edney & Arbaugh '04)

- Don't talk to anyone you don't know
- Accept nothing without a guarantee
- Treat everyone as enemy until proven otherwise
- Don't trust your friends for long
- Use well-tried solutions
- Watch the ground you are standing on for cracks
- Good habits
 - Changing passwords, disconnecting when not in use, run antivirus daily, change default password, use appropriate security and encryption services

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Wireless Security - the Course

- An approach of best business practice due to the nature of the topic
- Components of the course
 - Threat model
 - Security protocol
 - Keys and passwords
 - Key entropy
 - Authentication
 - Authorization
 - Encryption

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Why is Wireless Different

- First know the distinction between communication and computing (cellular networks vs. data networks)
- Wireless info. travels through free-space on certain spectrum allocations
- PDAs, Cell phones, pagers inherently less secure
 - Limited bandwidth, memory, processing capabilities
 - Anyone with some technology can intercept it
 - Enemy need not come to you, victims go to attackers simply by roaming
 - Poor authenticating services poor identity guarantees on user and devices
 - You can deny your act (non-repudiation)
 - Reestablishing connections without re-authenticating is dangerous
- Man in the middle attacks are easier

1/29/2019

Wireless Networks Security

Security and Privacy

- · Wireless infrastructure
 - Less physical assets to protect
 - But there is no locked door on the airways
- Infrastructure protection
 - In Government hands
 - Being public asset, government feels responsible
 - National security
- Military is often the originator of digital security measures
- · Regulations are likely to thwart privacy
- FBI's Carnivore program automated snooping tool, unpopular
 - Similar to wiretapping, but sniff email, designed in 1999
 - Violated free speech and civil rights?
 - Program abandoned completely in Jan. 2005
- NSA's Prism Program
 - Clandestine mass electronic surveillance data mining program (2007)
 - Existence was leaked by Edward Snowden in June 2013

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

ona s opadnya

Course Outline

- Mixture of basic and advanced topics
- Projects, Homeworks and Research Reading
- Form groups of 2
- Two midterms (3/28, 5/7) and several quizzes
- Several projects using network simulation tools and laptops

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Sample Projects

- Packet Analysis & Spoofing
 - WildPacket's AiroPeek, Ethereal, etc.
- RF Jamming & Data Flooding
 - Get an idea on AP vulnerabilities
- Information Theft
 - Implement a covert channel through a wireless communication path, how easy or difficult?
- Layered Wireless Security
 - Lightweight Extensible Authentication Protocol (LEAP) system of Cisco
- Wireless Bridging Security
 - Fragile communication path from a wireless to wired device

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

1

Wireless Networks

- Cellular Networks (CDMA, OFDMA, GSM)
 - 1G, 2G, 3G, 4G, 5G
 - Main function is to send voice (make calls), but data over voice applications (GPRS, EDGE, HSDPA) have been developed to enable web surfing from cell phones
- Data Networks (802.11, 802.15, 802.16, 802.20 Mobile Broadband Wireless Access (MBWA))
 - Main function is to send data, but voice over data applications have also been developed (e.g., VOIP)
- Emphasis of the course is on Data Networks
 - 802.11: WLANs, MANETs, Sensor Networks
 - 802.11 is a STANDARD with different implementations
 - 802.11 only tells about how to access the channel, how to back-off to prevent collisions, how to send a packet over the air

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Cellular Networks

- 1G or first generation
 - analog networks
 - · Low voice quality
 - · very less security
 - · low capacity
- 2G or second generation
 - analog and digital networks
 - Advanced Mobile Phone Service (AMPS)
 - Time Division Multiple Access (TDMA)
 - Global System for Mobile Communications (GSM)
 - Code Division Multiple Access (CDMA)
 - · digital encoding
 - · high bit rate voice
 - better security
 - · limited data communication

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

13

Cellular Networks (Contd.)

- 3G or third generation
 - Includes GSM, EDGE, UMTS, and CDMA2000
 - Universal Mobile Telecommunications System (UMTS)
 - · higher data rates
 - · more security
 - Transfer rates 26x faster than CDMA networks
 - 3G networks implemented in the United States in the last 10-12 years
 - AT&T iPhone
- 4G
 - Aims to provide ultra-broadband (gigabit-speed) Internet access to mobile as well as stationary users
 - 100 Mbit/s to 1 Gbit/s

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Cellular Networks (Contd.)

- Wireless Wide Area Networks
- Connects to the office network wirelessly from home or while traveling
- Use Radio waves
- · Request for information is sent to WAP gateway
- · Coverage area several miles
- Transfer speeds: from 5 kbps 20 kbps
- Operated by public carriers
- · Use open standards such as AMPS, GSM, TDMA, and CDMA

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

15

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

WAP

- WAP Internet and advanced telephony services
- WAP bridges mobile world, Internet and corporate intranets
- WAP defines WAE (wireless application environment)
 - Micro browser
 - Scripting facilities
 - e-mail
 - World Wide Web (WWW)-to-mobile-handset messaging
 - Mobile-to-telefax access, etc.

1/29/2019 Wireless Networks Security Shambhu J Upadhyaya

Data Networks (WLANS)

- WLANs
- · Coverage areas-fixed
- Range: 100 500 ft indoors; 1000 ft outdoors
- Transfer speeds: up to 54 mbps
- Electromagnetic waves-Spread spectrum technology
- As Ethernet is for wired LANs 802.11 is for wireless LANs
- 802.11 works in unlicensed spectrum of 2.4 GHz

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Wi-Fi-802.11

- Uses unlicensed spectrum 2.4 GHz
- · Simple, flexible, cost effective
- · Covers MAC layer and physical layer
- Uses FHSS for transmission
- 802.11b uses DFSS for transmission
- Speeds
 - 2, 9, 11, 54 Mbps
 - Speed depends on
 - Modulation technique
 - · Distance of the node to the Access Point
 - FEC level (Forward Error Correction)

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

21

802.11 (Contd.)

- MAC (Media Access)
 - Same in 802.11, 802.11b, 802.11a
 - Based on CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance)
 - Basic idea
 - RTS (request to send)
 - CTS (clear to send) channel reservation mechanism
- HIPERLAN Alternative to 802.11, did not survive due to complexity of implementation
- MMAC -HiSWAN costlier multimedia alternative
- Disadvantage:
 - Cannot provide QoS support for increasing number of multimedia applications

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

History of 802.11x

- 1990 IEEE Started 802.11 standard
- 1997 Drafted 802.11
- 1999 Drafted 802.11a and 802.11b
- 2003 802.11g Draft Approved
- 2006 802.11n (draft, ratified in 2009)
- (2003 802.15 Draft Approved)
 - Personal Area Networks
 - Bluetooth, ZigBee (low-powered digital radios), etc.

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Wireless Network Types

- Fixed networks
 - Point-to-point network
- Nomadic networks
 - Point-to-multipoint network
 - Computing devices are somewhat mobile
 - 802.11b, 802.11g, 802.11a support this
 - Becoming quite commonplace coffee shop
- Mobile networks
 - Must support high velocity mobility
 - 802.16e, 802.20 and CDMA2000 standards

1/29/2019

Wireless Networks Security

802.11 Variations

Variation	Operating Frequency	Bandwidth	Disadvantages
802.11	2.4GHz	2 Mbps	Less Bandwidth
802.11b	2.4 GHz	11 Mbps	Lack of QoS and multimedia support
802.11g	2.4 GHz	20 Mbps	Same as 802.11b
802.11a	5 GHz	54 Mbps	More Expensive and less range
802.11h	5 GHz	54 Mbps	Same as 802.11a
802.11n	2.4 GHz or 5 GHz	300 Mbps	Expensive
802.11e	QoS Support to 802.11 LAN		
802.11f	access point communications among multiple vendors		
802.11i	Enhance security and authentication mechanism for 802.11 mac		

1/29/2019 Wireless Networks Security Shambhu J Upadhyaya 25

Other Types of Data Networks (WLANs)

- HiperLAN-
 - High Performance Local Area Network
 - Similar to 802.11
 - Two types
 - HiperLAN 1 -20 mbps
 - HiperLAN 2 -54mbps
 - 5Ghz bandwidth
 - One of the prime features of HiperLAN is its support for Wireless ATM
 - WATM extension of ATM capabilities
- HomeRF-
 - Wireless home networking
 - 50 meters
 - Data rates upto 1.6 Mbps
 - Uses SWAP (shared wireless access protocol)
 - Uses 2.4Ghz band

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Bluetooth

- · Cable replacement technology
- Interconnect portable devices
- 2.45 Gigahertz (GHz)
- Transfer speeds: up to 1 mbps
- Ad hoc network provides spontaneous connectivity
- Range: 20-350 feet
- Supports up to three simultaneous voice channels
- Employs frequency-hopping schemes
- Power reduction to reduce interference
- IEEE 802.15 (standardized within the 802.15 Personal Area Network Working group)

1/29/2019 Wireless Networks Security Shambhu J Upadhyaya

Bluetooth (Cont..)

- Uses Link Manager Protocol (LMP)
 - To configure
 - Authenticate
 - Handle connections
- Piconets-
 - Up to 8 devices
 - Master and slaves
- Scatternet up to 10 piconets
- Present status of the technology
 - common with phones and handheld devices
 - Laptops and smartphones are nowadays Bluetooth enabled

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

1yaya 20

Near Field Communication (NFC)

- This is an extension of RFID technology, allowing for two-way communication
- Standard for smartphones to communicate with each other using radio (standardized in 2004)
- Uses
 - NFC is predominantly meant more for secure transactions Contactless payments, airline check-ins, etc.
 - Social networking sharing photos, videos, files, etc., securely
 - In-vehicle networks
- Range is a few centimeters
- Logo:

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Wireless Networks Deployment Strategies

- Two modes of operation of 802.11 devices
 - a) Infrastructure mode
 - b) Ad hoc mode
- Infrastructure mode
 - AP bridging wireless media to wired media
 - AP handles station authentication and association to the wireless network
- Ad hoc mode
 - An ad hoc network between two or more wireless devices without Access point (AP)

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

3

Infrastructure Mode

- 802.11 networking framework
- Devices communicate through an Access Point (AP)
- AP connected to wired network and a set of wireless stations - Basic Service Set (BSS)
- Extended Service Set (ESS) is a set of two or more BSSes
- Operate in infrastructure mode when required access to the wired LAN
- Corporate sector implementation

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Ad-hoc Networks

- 802.11 networking framework
- · Devices or stations communicate directly with each other
- Networks with no fixed infrastructure
- Mobile nodes: communicate within radio-range directly
- · Node mobility-frequent change in network topology
- Rapidly deployed networks
- Relatively low cost
- The lack of infrastructure
 - Introduces vulnerability to DoS
 - Mobility induces link breakage and channel errors
- Growing commercial and military deployments rapid need for scalability

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Devices Associated with Wireless Networking

- · Access point
- NIC compatible devices
 - Laptops
 - PDAs
 - Scratchpads
- Smart phones-Cellular phones
- Mouse
- · Keyboards
- · Text messaging devices
- · Speakers/Headphones

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

37

Wireless Network Concerns

- Radio Signal Interference
 - Sources-Atmospheric noise, Nearby wireless devices
 - Effects-Delay, Blocking, Bit errors, Limit the coverage area
 - Counter measures-Limit operating power, Spread spectrum techniques, Frequency management
- · Power Management
 - Battery weight, operation time
- System Interoperability
 - Protocols and Electrical characteristics
- · Network Security and threats
 - Main concerns
- Connection Problems
- Installation Issues Infrastructure, initial installations

1/29/2019

Wireless Networks Security

Shambhu J Upadhyaya

Limitations of Wireless Networks

Wireless Devices

•Slow processing power

- •Less memory
- Power constraints
- Smaller displays
- •Weak authentication

Wireless Networks

- •Less bandwidth
- •Higher latency
- Lower stability
- •Lower availability
- Slow connections

1/29/2019 Wireless Networks Security Shambhu J Upadhyaya

Security Issues in 802.11

- WEP (Wired Equivalent Privacy)
- 128-bit key in 802.11a
- Security Problems 802.11 family faces the same problems
 - Sniffing and War driving
 - WEP (Wired Equivalent Privacy)
 - Authentication
 - MAC Address
- Default installation
 - Allows any wireless node (NIC) to access the network
 - Walk around and gain access to the network

1/29/2019

Wireless Networks Security