Teaching with Chapel

Kyle Burke Wittenberg University

Supercomputing 2011

Teaching with Chapel

Two Classes

Programming Languages

Spring 2010, 2011

Teaching with Chapel

Two Classes

Programming Languages

Spring 2010, 2011

Analysis of Algorithms

Fall 2010, 2011

• For students with data-structures class

- For students with data-structures class
- Paradigms:
 - Functional: Scheme
 - Logical: Prolog
 - Event-Driven: Java
 - Object-Oriented: Java

- For students with data-structures class
- Paradigms:
 - Functional: Scheme
 - Logical: Prolog
 - Event-Driven: Java
 - Object-Oriented: Java
 - High-Performance: Chapel

- Chapel Topics:
 - task generation (begin, cobegin)

- Chapel Topics:
 - task generation (begin, cobegin)
 - parallel iteration (forall, coforall)

- Chapel Topics:
 - task generation (begin, cobegin)
 - parallel iteration (forall, coforall)
 - race conditions (sync)

- Chapel Topics:
 - task generation (begin, cobegin)
 - parallel iteration (forall, coforall)
 - race conditions (sync)
 - language additions (reduce)

- Chapel Topics:
 - task generation (begin, cobegin)
 - parallel iteration (forall, coforall)
 - race conditions (sync)
 - language additions (reduce)
- Cover lots of HPC material

- Projects:
 - binary xor
 - matrix multiplication
 - collatz conjecture testing

- Projects:
 - binary xor
 - matrix multiplication
 - collatz conjecture testing

Matrix Multiplication

Serial Time: $\Theta(n^3)$

Matrix Multiplication

Serial Time: $\Theta(n^3)$

Parallel Time: $\Theta(n^2)$ (n processors)

Conclusions

- Lots of material
- Usually favorite language in class

• For students with data-structures and discrete math

- For students with data-structures and discrete math
- Already Sequential and Parallel

- For students with data-structures and discrete math
- Already Sequential and Parallel
- Replaced C with Chapel
 - only teach cobegin and forall
 - ~ 1 day of class time (use tutorial)

- Projects
 - set partition
 - sorting (mergeSort, bubbleSort)
 - nearest neighbors

- Projects
 - set partition
 - sorting (mergeSort, bubbleSort)
 - nearest neighbors

- Two Algorithms:
 - Divide-and-Conquer:

$$\Theta(n\log(n)) \rightarrow \Theta(n)$$

- Two Algorithms:
 - Divide-and-Conquer:

$$\Theta(n\log(n)) \rightarrow \Theta(n)$$

- Brute-Force:

$$\Theta(n^2) \rightarrow \Theta(n)$$

- Two Algorithms:
 - Divide-and-Conquer:

$$\Theta(n\log(n)) \rightarrow \Theta(n)$$

- Brute-Force:

$$\Theta(n^2) \rightarrow \Theta(n)$$

Divide-and-Conquer is more difficult to program...

Algorithms

Conclusion

Little Class Time to Teach, Students learn Parallel Theory

Chapel has easy-to-learn parallel constructs

• Less time lecturing, more time using

Useful in different contexts

- Wittenberg: modest linux cluster
 - speedup noticeable
 - bigger cluster would be better
 - biggest problem: cluster issues!

- More info:
 - me: kburke@wittenberg.edu
 - Chapel Education: http://chapel.cray.com/education.html
 - Chapel Education sourceforge mailing list

- More info:
 - me: kburke@wittenberg.edu
 - Chapel Education: http://chapel.cray.com/education.html
 - Chapel Education sourceforge mailing list

Thank You!

Extra Thanks: Ernie Heyder