

Artificial Neural Networks and Deep Learning

- Word Embedding-

Matteo Matteucci, PhD (matteo.matteucci@polimi.it)

Artificial Intelligence and Robotics Laboratory

Politecnico di Milano

Word Embedding Motivation

Natural language processing treats words as discrete atomic symbols

- 'cat' is encoded as Id537
- 'dog' is encoded as Id143

•

Audio Spectrogram

DENSE

Encoding Text is a Serious Thing

Performance of real-world applications (e.g., chatbot, document classifiers, information retrieval systems) depends on input encoding:

Local representations

- N-grams <u>Language Model</u>
- Bag-of-words
- 1-of-N coding

Continuous representations

- Latent Semantic Analysis
- Latent Dirichlet Allocation
- Distributed Representations

Determine $P(s = w_1, ..., w_k)$ in some domain of interest

$$P(s_k) = \prod_{i=1}^{k} P(w_i | w_1, ..., w_{i-1})$$

In traditional n-gram language models "the probability of a word depends only on the context of n-1 previous words"

$$\widehat{P}(s_k) = \prod_{i=1}^{k} P(w_i | w_{i-n+1}, \dots, w_{i-1})$$

Typical ML-smoothing learning process (e.g., Katz 1987):

- compute $\hat{P}(w_i | w_{i-n+1}, ..., w_{i-1}) = \frac{\#w_{i-n+1}, ..., w_{i-1}, w_i}{\#w_{i-n+1}, ..., w_{i-1}}$
- smooth to avoid zero probabilities

N-gram Language Model: Curse of Dimensionality

Let's assume a 10-gram LM on a corpus of 100.000 unique words

- The model lives in a 10D hypercube where each dimension has 100.000 slots
- Model training
 → assigning a probability to each of the 100.000¹⁰ slots
- Probability mass vanishes → more data is needed to fill the huge space
- The more data, the more unique words! \rightarrow Is not going to work ...

In practice:

- Corpuses can have 10⁶ unique words
- Contexts are typically limited to size 2 (trigram model), e.g., famous Katz (1987) smoothed trigram model
- With short context length a lot of information is not captured

N-gram Language Model: Word Similarity Ignorance

Let assume we observe the following similar sentences

- Obama speaks to the media in Illinois
- The President addresses the press in Chicago

With classic one-hot vector space representations

```
    speaks = [0 0 10 ... 0 0 0 0]
    addresses = [0 0 0 0 ... 0 1 0]
    obama = [0 0 0 0 ... 0 1 0 0]
    president = [0 0 0 1 ... 0 0 0 0]
    illinois = [1 0 0 0 ... 0 0 0 0]
    chicago = [0 1 0 0 ... 0 0 0 0]
```

Word pairs share no similarity, and we need word similarity to generalize

Embedding <a>□

Any technique mapping a word (or phrase) from it's original high-dimensional input space (the body of all words) to a city lower-dimensional numerical vector space - so one *embeds* the word in a different space

Neural Autoencoder Recall

Network trained to output the input (i.e., to learn the identity function)

- Limited number of units in hidden layers (compressed representation)
- Constrain the representation to be sparse (sparse representation)

Word Embedding: Distributed Representation

Each unique word w in a vocabulary V (typically $||V|| > 10^6$) is mapped to a continuous m-dimensional space (typically 100 < m < 500)

$$w \in V \xrightarrow{mapping C} \mathfrak{R}^m$$

$$w_1 \quad \text{obama} \quad w_V \quad \Longrightarrow \quad f_1 \quad f_m$$

$$w_2 \quad \text{obama} = [0.12 \dots -0.25]$$

$$w_3 \quad \text{obama} = [0.12 \dots -0.25]$$

$$w_4 \quad \text{obama} = [0.12 \dots -0.25]$$

Fighting the curse of dimensionality with:

- Compression (dimensionality reduction)
- Smoothing (discrete to continuous)
- Densification (sparse to dense)

Similar words should end up to be close to each other in the feature space ...

For each training sequence: input = (context, target) pair: $(w_{t-n+1}...w_{t-1}, w_t)$ objective: minimize $E = -\log \widehat{P}(w_t \mid w_{t-n+1}...w_{t-1})$

Projection layer contains the word vectors in $C_{|V|,m}$

For each training sequence: input = (context, target) pair: $(w_{t-n+1}...w_{t-1}, w_t)$ objective: minimize $E = -\log \widehat{P}(w_t \mid w_{t-n+1}...w_{t-1})$

OUTPUT LAYER

HIDDEN LAYER

nonlinear

PROJECTION
LAYER
linear

INPUT LAYER

input context: (n-1) past words

Training by stochastic gradient descent has complexity $n \times m + n \times m \times h + h \times |V|$

500 < h < 1000

Softmax is used to output a multinomial distribution

$$\widehat{P}(w_i = w_t | w_{t-n+1}, \dots, w_{t-1}) = \frac{e^{y_{w_i}}}{\sum_{i'}^{|V|} e^{y_{w_{i'}}}}$$

• $y = b + U \cdot \tanh(d + H \cdot x)$

 W_{t-1}

- x is the concatenation C(w) of the context weight vectors
- d and b are biases (respectively h and |V| elements)
- U is the $|V| \times h$ matrix with hidden-to-output weights
- H is the $(h \times (n-1) \cdot m)$ projection-to-hidden weights matrix

For each training sequence: input = (context, target) pair: $(w_{t-n+1}...w_{t-1}, w_t)$ objective: minimize $E = -\log \widehat{P}(w_t | w_{t-n+1} ... w_{t-1})$

OUTPUT LAYER

HIDDEN
LAYER
nonlinear

PROJECTION
LAYER
linear

INPUT LAYER

input context: (n-1) past words

0010.....

 W_{t-2}

Tested on Brown (1.2M words, $V \cong 16K$, 200K test set) and AP News (14M words, $V \cong 150K$ reduced to 18K, 1M est set)

Brown: h=100, n=5, m=30 AP News: h=60, n=6, m=100

- **3 week** training using **40 cores**
- 24% (Brown) and 8% (AP News)
 relative improvement wrt traditional
 smoothed n-gram in terms of test set
 perplexity

Due to **complexity**, NNLM can't be applied to large data sets and it shows on rare words

Mikolov et al. (2013), instead, focused on the word vectors

 vv_{t-1}

0000.....0010

 W_{t-n+1}

Google's word2vec (Mikolov et al. 2013a)

<u>Idea</u>: achieve better performance allowing a simpler (shallower) model to be trained on much larger amounts of data

- No hidden layer (leads to 1000X speed up)
- Projection layer is shared (not just the weight not j
- Context contain words both from history and future

«You shall know a word by the company it keeps» John R. Firth, 1957:11.

...Pelé has called **Neymar** an excellent player...

...At the age of just 22 years, **Neymar** had scored 40 goals in 58 internationals...

...occasionally as an attacking midfielder, **Neymar** was called a true phenomenon...

These words will represent Neymar

Google word2vec Flavors

Skip-gram architecture

Word2vec's Continuous Bag-of-Words (CBOW)

input = (context, target) pair: $(w_{t-\frac{n}{2}} ... w_{t-1} w_{t+1} ... w_{t+\frac{n}{2}}, w_t)$ For each training sequence: objective: minimize $E = -\log \widehat{P}(w_t \mid w_{t-n/2} \dots w_{t-1} w_{t+1} \dots w_{t+n/2})$ t^{th} output = P ($w_i = w_t | w_{t-n/2} ... w_{t-1} w_{t+1} ... w_{t+n/2}$) hierarchical softmax. **OUTPUT** |V| probabilities **LAYER** that sum to 1 averaging **PROJECTION** 100 < m < 1000 LAYER typically linear $\frac{1}{n} \cdot C(\overrightarrow{\Box})$ table lookup in shared $C_{|V|,\mathrm{m}}$ INPUT LAYER <u></u>= $1\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ \dots \dots \ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 0$ |V|0000...0010 0000...0010 $n \cong 8$ typically

n/2 history words: $w_{t-\frac{n}{2}} \dots w_{t-1}$ n/2 future words: $w_{t+1} + \dots + w_{t+\frac{n}{2}}$

input context:

Word2vec facts

Word2vec shows significant improvements w.r.t. the NNML

- Complexity is $n \times m + m \times log|V|$ (Mikolov et al. 2013a)
- On Google news 6B words training corpus, with $|V| \sim 10^6$
 - CBOW with m=1000 took 2 days to train on 140 cores
 - Skip-gram with m=1000 took 2.5 days on 125 cores
 - NNLM (Bengio et al. 2003) took 14 days on 180 cores, for m=100 only!
- word2vec training speed \approx 100K-5M words/s
- Best NNLM: 12.3% overall accuracy vs. Word2vec (with Skip-gram): 53.3%

Capital-Country	Past tense	Superlative	Male-Female	Opposite
Athens: Greece	walking: walked	easy: easiest	brother: sister	ethical: unethical

Adapted from Mikolov et al. (2013a)

Regularities in word2vec Embedding Space

Picture taken from:

Regularities in word2vec Embedding Space

Country and Capital Vectors Projected by PCA

Picture taken from:

https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-NNforText

Regularities in word2vec Embedding Space

Vector operations are supported make «intuitive sense»:

- $w_{king} w_{man} + w_{woman} \cong w_{queen}$
- $w_{paris} w_{france} + w_{italy} \cong w_{rome}$
- $w_{windows} w_{microsoft} + w_{google} \cong w_{android}$
- $w_{einstein} w_{scientist} + w_{painter} \cong w_{picasso}$
- $w_{his} w_{he} + w_{she} \cong w_{her}$
- $w_{cu} w_{copper} + w_{gold} \approx w_{qu}$
- •

"You shall know a word by the company it keeps" John R. Firth, 1957:11.

https://www.scribd.com/document/285890694/NIPS-DeepLearningWorkshop-wwworless

Applications of word2vec in Information Retrieval

Query: "restaurants in mountain view that are not very good"

Phrases: "restaurants in (mountain view) that are (not very good)"

Vectors: "restaurants+in+(mountain view)+that+are+(not very good)"

Expression	Nearest tokens		
Czech + currency	koruna, Czech crown, Polish zloty, CTK		
Vietnam + capital	Hanoi, Ho Chi Minh City, Viet Nam, Vietnamese		
German + airlines	airline Lufthansa, carrier Lufthansa, flag carrier Lufthansa		
Russian + river	Moscow, Volga River, upriver, Russia		
French + actress	Juliette Binoche, Vanessa Paradis, Charlotte Gainsbourg		

(Simple and efficient, but will not work for long sentences or documents)

Applications of word2vec in Document Classification/Similarity

With BoW D_1 and D_2 are equally similar to D_0 .

Word embeddings allow to capture the «semantics» of the document ...

Applications of word2vec in Sentiment Analysis

No need for classifiers, just use cosine distance

"You shall know a word by the company it keeps" John R. Firth, 1957:11.

Enter word or sentence (EXIT to break): sad	
Word: sad Position in vocabulary: 4067	
Word	Cosine distance
saddening	0.727309
Sad	0.661083
saddened	0.660439
heartbreaking	0.657351
disheartening	0.650732
Meny_Friedman	0.648706
parishioner_Pat_Patello	0.647586
saddens_me	0.640712
distressing	0.639909
reminders_bobbing	0.635772
Turkoman_Shiites	0.635577
saddest	0.634551
unfortunate	0.627209
sorry	0.619405
bittersweet	0.617521
tragic	0.611279
regretful	0.603472

GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

GloVe makes explicit what word2vec does implicitly

- Encodes meaning as vector offsets in an embedding space
- Meaning is encoded by ratios of co-occurrece probabilities

Probability and Ratio	k = solid	k = gas	k = water	k = fashion	
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}	
P(k steam)	$2.2 imes 10^{-5}$	7.8×10^{-4}	2.2×10^{-3}	18	
P(k ice)/P(k steam)	8.9	8.5×10^{-2} Refer to Pennington et al. paper for details on this			
				loss functio	

Trained by weighted least squares

$$J = \sum_{i,j=1}^{V} f(X_{ij}) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij} \right)^2$$

GloVe: Global Vectors for Word Representation (Pennington et al. 2014)

Nearest Neighbours with GloVe

What are the closest words to the target word *frog*:

- 1.Frog
- 2.Frogs
- 3.Toad
- 4.Litoria
- 5.Leptodactylidae
- 6.Rana
- 7.Lizard
- 8. Eleutherodactylus

3. litoria

5. rana

4. leptodactylidae

7. eleutherodactylus