

Study of OpenStack Internal bus in a Fog/Edge Context

Orange/Inria - started 1. Oct 17

Abdelhadi Chari (Orange)
Adrien Lebre (IMT Nantes)
Ali Sanhaji (Orange)
Matthieu Simonin (Inria)
Alexandre Van Kempen (Inria)

01

Context

We got an ERC¹!

- (en)ERC: Externalised Research Contract
- (fr)CRE: Contrat de Recherche Externalisée
- Signed between Orange and Inria
- Started 1. Oct 2017 Orange

 Inria

 the ERC/CRE

 OpenStack community Red Hat

1. this is not an ERC grant from the European Research Council

Technical environment : Openstack

Is the communication bus of OpenStack Fog/Edge ready?

OpenStack: target infrastructure

Challenge: locality

- Distributing the database :
 - Ronan's talk tomorrow Next Talk from Ronan
- Distributing the message bus
 - Current talk

02

Communication bus of OpenStack

OpenStack: bus implementation

OpenStack: RPC patterns

OpenStack: RPC transport

- RabbitMQ driver (main stream)
 - Centralized broker solution
 - First bottleneck when scaling the deployment
- ZeroMQ driver
 - « embarrassingly » distributed brokerless
 - only suitable for small deployments
 - less supported
- AMQP1.0
 - new driver (beta version)
 - can use a mesh of routers to route messages

03

Planned Activity

CRE: planned activities

RPC Transport:

Which RPC transport protocol in the Fog/Edge context?

Communication patterns and service agents deployment:

- Anti-patterns in the Fog/Edge clouds context?
- Locality requirements

CRE: planned activities

Experimental protocol and objectives are being approved

https://review.openstack.org/#/c/491818

- In brief:
 - Emulate a target fog/edge infrastructure on Grid'5000
 - · Choose a message bus and deploy it
 - Evaluate all the messaging patterns
 - Evaluate the resilience of the message bus
 - Evaluate the overall performance of (a distributed)
 OpenStack

CRE: tools

- EnOSlib (Inria Discovery)
 - Experimental workflow description/deployment/ execution
- Ombt (kgiusti oslo.messaging core dev)
 - Benchmarking & orchestration tool for oslo.messaging
- Os-fault (OpenStack Performance team)
 - Failure injection framework (agnostic)
- Osprofiler (OpenStack Performance team)
 - Distributed tracing system
 - -> Identification of the communication patterns

CRE: short term

Short Term: Evaluation of RabbitMQ

- Central RabbitMQ and many edge servers
- Distributed RabbitMQ through federations

CRE: short term

Mid Term: Evaluation of AMQP1.0 (qpid-dispatch-router)

Collaboration with Red Hat

Vancouver (05/18): Distributing OpenStack

Distribution of the message broker

- Joint work with
 - Red Hat (qpid dispatch router)
 - oslo.messaging

=> CRE Orange

Distribution of the database

Joint work with

=> next talk tomorrow

- CockroachDB (newSQL implementation)
- oslo.db

Study of OpenStack Internal bus in a Fog/Edge Context

Orange/Inria - started 1. Oct 17

Abdelhadi Chari (Orange)
Adrien Lebre (IMT Nantes)
Ali Sanhaji (Orange)
Matthieu Simonin (Inria)
Alexandre Van Kempen (Inria)

CRE: using EnOS(lib)

Get/Check machines and networks

Deploy the cloud

Benchmark the cloud

Analyse the cloud in real time or offline

Release resources

The Discovery Inria Project Lab

Cloud computing

- centralized
- small number of large datacenter
- user locality unaware

Edge computing

- distributed
- large number of small datacenter
- user locality aware

Fog computing

https://beyondtheclouds.github.io/

OpenStack Internal bus in a Fog/Edge Context

CRE-Orange/Inria - started 1. Oct 17

Abdelhadi Chari (Orange) Adrien Lebre (IMT Nantes) <u>Matthieu Simonin (Inria)</u>

Thank you!

05

Conclusion

The Akamaï case

Akamaï Internet in Internet:

- more distributed

- faster

- more reliable

- but only for content delivery

https://www.akamai.com/us/en/multimedia/documents/technical-publication/the-akamai-network-a-platform-for-high-performance-internet-applications-technical-publication.pdf

The Akamaï case

Peak Usage*:

- 10+ millions simultaneous video streams
- traffic :50+ Tbps

* estimation made in 2009 for the next 5 years

https://www.akamai.com/us/en/multimedia/documents/technical-publication/the-akamai-network-a-platform-for-high-performance-internet-applications-technical-publication.pdf

02

EnOS: performance toolkit for OpenStack

From the performance angle

Goal:

- Discovery/Inria to be visible in the OpenStack community
- Fog/Edge use case to be visible

Mean:

- Working groups (Performance + FEMDC)
- Summit presentations
- A toolkit for the performance study of OpenStack

Challenge:

Small task force

« The PhD student problem »

This includes:

- Dealing with OpenStack deployment
- Maintaining code + deployment
- Ensuring the reproducibility (at least reusability) of the experiments
- Scaling the experiment

In summary:

What makes an experimental validation technically trustworthy

EnOS

EnOS: Experimental ENvironment for OpenStack

A common good for the IPL:

- Take care of the deployment
- Can be customized easily
- Allow the emulation of geo-distributed ressources

Ronan-Alexandre Cherrueau, Dimitri Pertin, Anthony Simonet, Adrien Lèbre, Matthieu Simonin: Toward a Holistic Framework for Conducting Scientific Evaluations of OpenStack. CCGrid2017

EnOS workflow

Get/Check machines and networks

Deploy the cloud

Benchmark the cloud

Analyse the cloud in real time or offline

Release resources

EnOS workflow: up

resources : servers and networks of the provider

Different providers:

- Local machines
 - virtual box
 - libvirt
- Testbeds
 - Grid'5000
 - OpenStack
 - Chameleon Cloud

EnOS workflow: deploy

Configuration, Environment

A cloud deployed

small-sized deployments (100 machines)

approx 500 agents to deploy

EnOS workflow: deploy

Configuration, Environment

A cloud deployed

EnOS is flexible:

- Custom topology
- Different scales

EnOS workflow: bench

Configuration, Environment

Benchmarks report

Integrated evaluation tools:

- Rally (control plane)
- Shaker (data plane)
- OSProfiler (tracing)

EnOS workflow: backup

Configuration, Environment

A tarball with settings/results

Backups include

- Logs/Configurations
- Benchmark reports
- Metrics gathered

EnOS workflow: netem

Network emulated

03

EnOS: Case studies

Monitoring functions placement

Mohamed Abderrahim, Meryem Ouzzif, Karine Guillouard, Jerome Francois, Adrien Lèbre. A Holistic Monitoring Service for Fog/Edge Infrastructures: a Foresight Study. *The IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud 2017)*, Aug 2017, Prague, Czech Republic.

Large scale deployment

Achievements:

- « Chasing 1000 nodes scalability »
- Joint Work with Mirantis
- G5K official listed as official testbed for OpenStack performance evaluation

OpenStack WANWide

Collaboration

Network emulation : latency/bandwitdth/loss

OpenStack WANWide

Collaboration

Achievements:

- Experiments run on Grid'5000 and Chameleon independently
- Fully automatized
- 250 benchmarks (approx. 100 running hours) on each testbeds
- Results followed the same trends
- experimental setup : https://github.com/beyondtheclouds/enos-scenarios
- results : https://enos.irisa.fr/html

OpenStack IOT

FBK (Italy) - FEMDC active members

- OpenStack with EnOS on an IOT use case
- Results will be presented @Openstack day Italy (Milan 28 Sept. 17)
- EnOS contributions

Fed4fire+

- Benchmarks comparisons between Open Nebula and OpenStack
- Results will be presented in the next engineering conference (Volos 4-6 Oct. 17)
- EnOS contributions

