

Analyse Numérique Corrigé Série 14

1. (Unicité de la décomposition QR)

Soit $A \in \mathbb{R}^{n \times n}$ une matrice inversible. On étudie actuellement en cours la décomposition A = QR, où Q est orthogonale et R est triangulaire supérieure.

- (a) (0.75 points) Montrer qu'on peut choisir R tel que tous les éléments sur la diagonale soient positifs, c.-à-d. $\operatorname{diag}(R) > 0$.
 - **Sol.:** Soit $A = \widetilde{Q}\widetilde{R}$ une décomposition de A avec une matrice \widetilde{Q} orthogonale et une matrice \widetilde{R} triangulaire supérieure. Puisque A et \widetilde{Q} sont inversibles, $\widetilde{R} = \widetilde{Q}^T A$ est aussi inversible. Ainsi tous les éléments R_{ii} $i = 1, \ldots, n$ sur la diagonale de \widetilde{R} sont non-nuls. On définit la matrice diagonale $\widetilde{I} \in \mathbb{R}^{n \times n}$ par $\widetilde{I}_{ii} := \text{sign}(R_{ii}), i = 1, \ldots, n$. Alors la matrice $Q := \widetilde{Q}\widetilde{I}$ est orthogonale et $R := \widetilde{I}\widetilde{R}$ est triangulaire supérieure avec $\operatorname{diag}(R) > 0$. En plus on a A = QR parce que \widetilde{I}^2 est l'identité.
- (b) En supposant cette condition supplémentaire, on va montrer ensuite que cette décomposition est unique. Supposons qu'on ait deux décompositions A = QR = Q'R'. On va suivre les étapes suivants pour démontrer l'unicité.
 - i. (0.25 points) Soit $U = Q'^T Q$. Montrer que U est aussi égale à $U = R' R^{-1}$. Sol.: On multiplie l'égalité QR = Q'R' à gauche par Q'^T et à droite par R^{-1} .
 - ii. (0.25 points) Demontrer que U est orthogonale et triangulaire supérieure. Sol.: U est orthogonale comme produit des matrices orthogonales Q'^T , Q. U est triangulaire supérieure comme produit des matrices triangulaires supérieures R', R^{-1} .
 - iii. (0.25 points) Déduire des remarques précédentes que U doit être nécessairement diagonale. Sol.: Comme U est orthogonale on a que $U^T = U^{-1}$. D'une part U^T est triangulaire inférieure et d'autre part U^{-1} est triangulaire supérieure, donc U^T est diagonale, de même que U.
 - iv. (0.25 points) À l'aide de l'hypothèse $\operatorname{diag}(R) > 0$, déduire que U = I. Sol.: Comme U est orthogonale on a $U^TU = I$, donc les termes de U peuvent être seulement 1 et -1. De plus, par hypothèse on sait que $\operatorname{diag}(R) > 0$ et $\operatorname{diag}(R') > 0$, donc le produit de $R'R^{-1} = U$ doit être toujours positif. Alors U = I.
 - v. (0.25 points) Montrer l'unicité. Sol.: Finalement on a la relation $(Q')^TQ = I = R'R^{-1}$ qui implique le résultat Q = Q' et R = R'.

2. (Polynôme adapté aux données)

Considérons les données (x_i, y_i) , $i = 1 \dots m$. On voudrait trouver les coefficients c_0, c_1, \dots, c_{n-1} tel que

$$y_i \approx c_0 + c_1 x_i + c_2 x_i^2 + \dots + c_{n-1} x_i^{n-1} \quad i = 1, \dots, m.$$
 (1)

(a) Ecrire le système matriciel pour ce problème.

Sol.: On écrit le système en utilisant les matrices comme ci-dessous

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_m & x_1^2 & \dots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{bmatrix} \approx \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

$$(2)$$

(b) Considérons les données (0,0),(1,0),(2,1). En utilisant l'équations normale, trouver $y=c_0+c_1x$ qui approche les données.

Sol.: On doit résoudre les équations normales

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} \approx \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \tag{3}$$

En utilisant les équations normales on a

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 (4)

$$\begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \tag{5}$$

Ainsi,

$$\begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 5 & -3 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1/6 \\ 1/2. \end{bmatrix}$$
 (6)

Et donc on obtient, $y = -\frac{1}{6} + \frac{1}{2}x$.

(c) Trouver le polynôme quadratique $y = c_0 + c_1 x + c_2 x^2$ pour les données de partie (b).

Sol.: On a le système ci-dessous

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \tag{7}$$

Ici, il n'y a pas besoin de trouver l'équations normale. On peut résoudre cet système linéaire carré directement :

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & -3 & 1 \\ 0 & 4 & -2 \\ 0 & -1 & 1 \end{bmatrix}^T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ -3 & 4 & -1 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1/2 \\ 1/2 \end{bmatrix}$$
(8)

On obtient donc $y = -\frac{1}{2}x + \frac{1}{2}x^2$.

3. (Décomposition LDL^T et décomposition de Cholesky)

(a) Soit $A \in \mathbb{R}^{n \times n}$ une matrice symétrique définie positive. A partir de la factorisation LDL^T (série 12, exercice 2), comment retrouve-t-on la factorisation de Cholesky de la matrice A? $Rappel: D = \operatorname{diag}(a_{11}^0, a_{22}^1, \ldots, a_{nn}^{n-1})$

Sol.: Par définition des matrices définies positives, $x^T A x > 0$ pour tout $x \neq 0$. Posons $x_i = (L^T)^{-1} e_i$, où e_i est le vecteur dont toutes les composantes sont nulles, exceptée la ième composante. Notons $D = diag(d_1, \ldots, d_n)$. On obtient

$$x_i^T A x_i = e_i^T L^{-1} L D L^T (L^T)^{-1} e_i = e_i^T D e_i = d_i > 0.$$

Tous les éléments de D étant positifs, on peut prendre leur racine carrée et on obtient, $D = \sqrt{D}\sqrt{D}$, où $\sqrt{D} = diag(\sqrt{d_1}, \dots, \sqrt{d_n})$. Une matrice triangulaire reste triangulaire lorsque on la multplie par une matrice diagonale. On obtient finalement $A = \tilde{L}\tilde{L}^T$, où $\tilde{L} = \sqrt{D}L$.

(b) Touver la décomposition LDL^T et la décomposition de Cholesky de la matrice

$$\begin{bmatrix} 4 & 8 & 12 \\ 8 & 20 & 36 \\ 12 & 36 & 73 \end{bmatrix}.$$

Sol.: On commence avec la décomposition LDL^T de A.

$$\begin{bmatrix} 4 & 8 & 12 \\ 8 & 20 & 36 \\ 12 & 36 & 73 \end{bmatrix} \xrightarrow{l_{21}=2, l_{31}=3} \begin{bmatrix} 4 & 8 & 12 \\ 0 & 4 & 12 \\ 0 & 12 & 37 \end{bmatrix} \xrightarrow{l_{32}=3} \begin{bmatrix} 4 & 8 & 12 \\ 0 & 4 & 12 \\ 0 & 0 & 1 \end{bmatrix}.$$

Ainsi

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{bmatrix} \quad et \quad D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

On retrouve la décomposition de Cholesky en multipliant L avec \sqrt{D} . On obtient

$$\tilde{L} = \begin{bmatrix} 2 & 0 & 0 \\ 4 & 2 & 0 \\ 6 & 6 & 1 \end{bmatrix}.$$