

RCI 1G-B04 103020

INVESTOR IN PEOPLE

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

RECEIVED	
16 AUG 2004	
WIPO	PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

BEST AVAILABLE COPY

Signed

Dated 9 August 2004

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

200EP13 004046-34 002832
POV/7/00 0.00-0322655.2THE PATENT OFFICE
M

27 SEP 2003

NEWPORT

The Patent Office

Cardiff Road
Newport
South Wales
NP10 8QQ**Request for grant of a patent**

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

1. Your reference

F070.007.00

27 SEP 2003

2. Patent application number

(The Patent Office will fill in this part)

0322655.2

3. Full name, address and postcode of the or of each applicant (*underline all surnames*)Future Technology (R&D) Ltd
Unit 3
Dene Valley Business Centre
Brookhampton Lane
Kineton, Warwickshire, CV35 0JDPatents ADP number (*If you know it*)

If the applicant is a corporate body, give the country/state of its incorporation

3722126001

4. Title of the invention

SENSORS

5. Name of your agent (*If you have one*)"Address for service" in the United Kingdom to which all correspondence should be sent (*Including the postcode*)Serjeants
25 The Crescent
King Street
Leicester LE1 6RXPatents ADP number (*If you know it*)

1461001

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (*If you know it*) the or each application number

Country

Priority application number
(*If you know it*)Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (*Answer 'Yes' if:*

Yes

- a) any applicant named in part 3 is not an inventor, or
 - b) there is an inventor who is not named as an applicant, or
 - c) any named applicant is a corporate body.
- See note (d)*

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description	9	/
Claim(s)	3	/
Abstract	1	/
Drawing(s)	7 + 7	/

10. If you are also filing any of the following, state how many against each item.

Priority documents	0
Translations of priority documents	0
Statement of inventorship and right to grant of a patent (Patents Form 7/77)	1
Request for preliminary examination and search (Patents Form 9/77)	2
Request for substantive examination (Patents Form 10/77)	1
Any other documents (please specify)	0

11. I/We request the grant of a patent on the basis of this application.

Signature *Serjeants.*

Date

Serjeants

26 September 2003

12. Name and daytime telephone number of person to contact in the United Kingdom Darran Thacker 0116 233 2626

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

Figure 1

2/7

Figure 2

3/7

Figure 3

Figure 4a

Figure 4b

Figure 5

Figure 6

7/7

Figure 7

TITLE

Sensors

DESCRIPTION5 Technical Field

The present invention relates to sensors, and in particular to sensors that can be used for capacitively measuring the distance to either a stationary or passing object.

Background Art

10 In many industrial measurement applications there is a need for a sensor that can be used at high operating temperatures to measure the distance to either a stationary or passing object. A typical application is the measurement of clearance between the tip of a gas turbine engine blade and the surrounding casing. In this situation the operating temperature of the sensor can reach 1500°C. Other applications including
15 molten metal and molten glass level measurement, for example, have similar operating temperature requirements.

United States Patent 5,760,593 (BICC plc) describes a conventional sensor having a metal or metal-coated ceramic electrode that couples capacitively with the stationary
20 or passing object. The electrode is connected directly to the centre conductor of a standard triaxial transmission cable and is surrounded by a metal shield and an outer housing. The metal shield and the outer housing are connected directly to the intermediate conductor and the outer conductor of the triaxial transmission cable respectively. Electrical insulation is provided between the electrode and the shield
25 and also between the shield and the housing. The insulation can be in the form of machined ceramic spacers or deposited ceramic layers.

One problem with these conventional sensors is that they utilise an alternating combination of metal and ceramic materials. As the operating temperature of the
30 sensor increases, the metal components tend to expand more than the ceramic components. This often results in stress fractures forming in the ceramic spacers or layers, which reduce their electrical performance and may even result in the

disintegration or de-lamination of the ceramic components. Not only does this cause the sensor to fail electrically, but the disintegration or de-lamination of the ceramic components also allows the metal components to vibrate and this can result in the mechanical failure of the complete sensor assembly.

5

Gas turbine engine manufacturers now require an operating lifetime of at least 20,000 hours for sensors that are to be fitted to production models. Although conventional sensors have been successfully used at high operating temperatures for short periods of time, it is unlikely that they will ever be able to meet the required operating 10 lifetime because of the inherent weakness of the sensor assembly caused by the different thermal expansion properties of the metal and ceramic components.

15

A further problem is the way in which the electrode, shield and outer housing are connected to the transmission cable. With conventional sensor designs, the conductors of the transmission cable are directly connected to the electrode, shield and outer housing at a high temperature region (i.e. a part of the sensor that reaches an elevated temperature in use). Many types of transmission cables (in particular those where the conductors are insulated using mineral compounds) cannot be used at high temperatures and often fail after a short period of time. Furthermore, some 20 conventional sensors do not have a hermetic seal between the transmission cable and the rest of the sensor assembly. This can allow moisture to penetrate the sensor assembly and reduce the performance of the sensor.

Summary of the Invention

25

The present invention provides a sensor for capacitively measuring the distance to a stationary or passing object, comprising an electrically conductive ceramic electrode for capacitively coupling with the object, and a housing that substantially surrounds the electrode.

30

Because the electrode is formed from an electrically conductive ceramic, the sensor can be used at higher operating temperatures than conventional sensors that use metal or metal-coated ceramic electrodes. The housing is preferably formed from an

electrically non-conductive ceramic and may be of any suitable shape or size to suit the installation requirements.

- To isolate the electrode from any external electrical interference, the sensor can
- 5 further comprise a shield that substantially surrounds the electrode and is electrically isolated from the electrode by an insulating layer. The shield is preferably formed from an electrically conductive ceramic. The insulating layer is preferably formed as a machined electrically non-conductive ceramic spacer.
- 10 The electrically conductive ceramic and the non-electrically conductive ceramic are preferably selected to have similar thermal expansion coefficients so that the sensor assembly remains virtually stress free at high operating temperatures. The electrode and the shield can be formed from SiC and the insulating layer and the housing can be formed from SiN, for example. The electrode, shield and housing can be bonded
- 15 together using standard diffusion bonding or vacuum braising methods to form an integral ceramic structure. The bonding provides a hermetic seal between the components that prevents the ingress of moisture into the sensor assembly and the transmission cable.
- 20 The sensor can have a "captive" design so that if any of the ceramic components do fail for any reason then they are retained within the overall sensor assembly.

Instead of joining the conductors of the transmission cable directly to the electrode and the housing at a high temperature region of the sensor, the conductors are

25 preferably connected to electrically conductive bridges that are in turn connected to the electrode and the housing. The electrically conductive bridges extend away from the front face of the electrode (i.e. the face that faces toward the object in use) so that the connection between the conductors and the electrically conductive bridges takes place at a low temperature region at the rear of the sensor.

30

If the sensor does not include a shield then a coaxial transmission cable having a central conductor and an outer conductor can be used. The central conductor is

preferably connected to the electrode by means of a first electrically conductive bridge and the outer conductor is preferably connected to the housing by means of a second electrically conductive bridge. The first electrically conductive bridge preferably passes through apertures provided in the housing and the second electrically conductive bridge.

The connection between the conductors and the electrically conductive bridges is preferably made using an adapter. The adapter can be shaped to accommodate a variety of different types and diameters of transmission cable. Furthermore, the adapter can connect the conductors to the electrically conductive bridges in a number of different orientations depending on the installation requirements of the sensor. For example, the conductors can be connected such that the transmission cable extends away from the front face of the electrode substantially parallel to the electrically conductive bridges. Alternatively, the conductors can be connected such that the transmission cable extends substantially at right angles to the electrically conductive bridges. Other orientations are also possible.

If the sensor does include a shield then a triaxial transmission cable having a central conductor, an intermediate conductor and an outer conductor can be used. The central conductor is preferably connected to the electrode by means of a first electrically conductive bridge, the outer conductor is preferably connected to the housing by means of a second electrically conductive bridge and the intermediate conductor is preferably connected to the shield by means of a third electrically conductive bridge. The first electrically conductive bridge preferably passes through apertures provided in the insulating layer, the shield, the third electrically conductive bridge, the housing and the second electrically conductive bridge. Similarly, the third electrically conductive bridge preferably passes through aperture provided in the housing and the second electrically conductive bridge.

The electrically conductive bridges can be formed from metal or electrically conductive ceramic and are preferably connected to the electrode, housing and shield using standard diffusion bonding or vacuum braising methods. Although it is

generally preferred that the bridges are formed from electrically conductive ceramic, metal bridges can be used because they are connected to the electrode, shield and housing at an intermediate temperature region and so do not suffer significantly from the problems of thermal expansion. The electrically conductive bridges can be made
5 in any size or shape depending on the design and installation requirements of the sensor.

An adapter is preferably provided to connect the second and third electrically conductive bridges to the outer and intermediate conductors, as described above.

10

The second electrically conductive bridge can substantially surround the housing such that it extends a part or all of the way along the side face of the housing. However, it is generally preferred that the shield, the insulating layer, the housing and the second electrically conductive bridge do not extend along the front face of the electrode.

15

The use of electrically conductive bridges means that the sensor assembly can be manufactured and tested before it is connected to the transmission cable using an adaptor. This is not possible with conventional sensors where the transmission cable has to be directly connected to the electrode, housing and shield during the assembly
20 process.

The electrically conductive bridges can also be used with conventional sensors and those that utilise metal/ceramic and plastics/metal components. The invention therefore also provides a sensor for capacitively measuring the distance to a stationary or passing object comprising a electrode that capacitively couples with the object, a housing that substantially surrounds the electrode, a first electrically conductive bridge connected to the electrode and connectable to the conductor of a transmission cable, and a second electrically conductive bridge connected to the housing and connectable to the conductor of a transmission cable.
25

30

The sensor preferably further comprises a shield that substantially surrounds the electrode and is electrically isolated from the electrode by an insulating layer, and a

third electrically conductive bridge connected to the housing and connectable to the conductor of a transmission cable.

Drawings

- 5 Figure 1 is a cross-section view of a sensor according to a first embodiment of the present invention;
- Figure 2 is a cross-section view showing how the sensor of Figure 1 can be connected to a coaxial transmission cable in a first orientation;
- Figure 3 is a cross-section view showing how the sensor of Figure 1 can be connected to a coaxial transmission cable in a second orientation;
- 10 Figures 4a and 4b are cross-section views showing how the first electrically conductive bridge can be adapted to substantially surround the housing of the sensor of Figure 1;
- Figure 5 is a cross-section view of a sensor according to a second embodiment of the present invention;
- 15 Figure 6 is a cross-section view showing how the sensor of Figure 5 can be connected to a triaxial transmission cable in a first orientation; and
- Figure 7 is a cross-section view showing how the sensor of Figure 5 can be connected to a triaxial transmission cable in a second orientation.
- 20 With reference to Figure 1, a "coaxial" sensor 1 has a cylindrical electrode 2 formed from an electrically conductive ceramic material. A front face 3 of the electrode 2 is directed toward a stationary or passing object (not shown). The electrode 2 is located within and bonded to a housing 4 formed from an electrically non-conductive ceramic material. The electrically conductive and electrically non-conductive ceramic materials are chosen so that they have a similar thermal expansion coefficient and the sensor 1 remains virtually stress free at high operating temperatures.
- 25

- 30 A front bridge piece 5 is located within the housing 4 and is bonded to a rear face 6 of the electrode 2. A rear bridge piece 7 is bonded to a rear face 8 of the housing 4. The front bridge piece 5 passes through apertures provided in the housing 4 and the rear bridge piece 7 to extend beyond the rear bridge piece. The aperture provided in the

rear bridge piece 7 is wider than the front bridge piece 5 so that the two bridge pieces are separated by an annular air gap 9.

- 5 The front and rear bridge pieces 5 and 7 are connected to the two concentric conductors of a mineral insulated coaxial transmission cable 20 as shown in Figure 2. The transmission cable 20 has a central conductor 21 and an outer conductor 22 separated by a mineral insulating layer 23. An electrically conductive cylindrical adaptor 30 is used to join the front bridge piece 5 to the central conductor 21 at a common interface 24 and the rear bridge piece 7 to the outer conductor 22.
- 10 Alternatively, the electrically conductive adaptor 40 shown in Figure 3 can be used. The adaptor 40 is designed to receive the transmission cable 20 such that central and outer conductors 21 and 22 are connected substantially at right angles to the front and rear bridge pieces 5 and 7 and the centreline of the sensor 1.
- 15 It will be readily appreciated that the use of the adaptor 30, 40 means that the "coaxial" sensor 1 can be fully assembled and tested before being connected to the transmission cable 20. It also means that the front and rear bridges pieces 5 and 7 and the central and outer conductors 21 and 22 are connected together at a low-temperature region or the sensor 1.
- 20 In Figures 1 to 3, the rear bridge piece 7 is formed on the rear face 8 of the housing 4 only. However, the rear bridge piece 7 can also extend along part or all of the side face 10 of the housing 4 as shown in Figures 4a and 4b.
- 25 In operation, the "coaxial" sensor 1 is mounted so that the front face 3 of the electrode 2 is directed toward the stationary or passing object. The electrode 2 is energised by a signal transmitted along the central conductor 21 of the transmission cable 20 so that it capacitively couples with the stationary or passing object. The changes in the capacitance detected by the electrode 2 are transmitted back along the central conductor 21 as voltage signals and converted into distance measurements so that the distance between the electrode and the stationary or passing object can be calculated.
- 30

With reference to Figure 5, a "triaxial" sensor 100 has a cylindrical electrode 102 formed from an electrically conductive ceramic material. A front face 103 of the electrode 102 is directed toward a stationary or passing object (not shown). The 5 electrode 102 is located within and bonded to an electrically non-conductive ceramic spacer 104. The electrode 102 and the spacer 104 are located within and bonded to an electrically conductive ceramic shield 105 which isolates the electrode from any external electrical interference. The shield 105 is located within and bonded to a housing 106 formed from an electrically non-conductive ceramic material. The 10 electrically conductive and electrically non-conductive ceramic materials are chosen so that they have a similar thermal expansion coefficient.

A front bridge piece 107 is bonded to a rear face 108 of the electrode 102. An intermediate bridge piece 109 is bonded to a rear face 110 of the shield 105. A rear 15 bridge piece 111 is bonded to a rear face 112 of the housing 106. The intermediate bridge piece 109 passes through apertures provided in the housing 106 and the rear bridge piece 111 to extend beyond the rear bridge piece. The front bridge piece 107 passes through apertures provided in the spacer 104, the shield 105, the intermediate bridge piece 109 and the rear bridge piece 111 to extend beyond the intermediate 20 bridge piece and the rear bridge piece. The aperture provided in the rear bridge piece 111 is wider than the intermediate bridge piece 109 so that the two bridge pieces are separated by an annular air gap 113. Similarly, the aperture provided in the intermediate bridge piece 109 is wider than the front bridge piece 107 so that the two bridge pieces are separated by an annular air gap 114.

25

The front, intermediate and rear bridge pieces 107, 109 and 111 are connected to the three concentric conductors of a mineral insulated triaxial transmission cable 50 as shown in Figure 6. The transmission cable 50 has a central conductor 51, an intermediate conductor 52 and an outer conductor 53 separated by mineral insulating 30 layers 54. An electrically conductive cylindrical adaptor 60 is used to join the front bridge piece 107 to the central conductor 51 at a common interface 55, the intermediate bridge piece 109 to the intermediate conductor 52 and the rear bridge

piece 111 to the outer conductor 53. Alternatively, the electrically conductive adaptor 70 shown in Figure 7 can be used. The adaptor 70 is designed to receive the transmission cable 50 such that the central, intermediate and outer conductors 51, 52 and 53 are connected substantially at right angles to the front, intermediate and rear bridge pieces 107, 109 and 111 and the centreline of the sensor 100.

The "triaxial" sensor 100 has the same technical advantages and may operate in the same way as the "coaxial" sensor 1 described above. It will be readily appreciated that different measurement electronics can be used with the "coaxial" and "triaxial" sensors.

CLAIMS

1. A sensor (1,100) for capacitively measuring the distance to a stationary or passing object comprising an electrically conductive ceramic electrode (2, 102) for capacitively coupling with the object, and a housing (4, 106) that substantially surrounds the electrode (2, 102).
2. A sensor according to claim 1, wherein the housing (106) is formed from an electrically non-conductive ceramic.
- 10 3. A sensor according to claim 1 or claim 2, further comprising a shield (105) that surrounds the electrode (102) and is electrically isolated from the electrode (102) by an insulating layer (104).
4. A sensor according to claim 3, wherein the shield (105) is formed from an electrically conductive ceramic.
- 15 5. A sensor according to claim 3 or claim 4, wherein the insulating layer (104) is formed from an electrically non-conductive ceramic.
- 20 6. A sensor according to any preceding claim, further comprising:
a first electrically conductive bridge (5) connected to the electrode (2) and connectable to the conductor of a transmission cable; and
a second electrically conductive bridge (7) connected to the housing (4) and connectable to the conductor of a transmission cable.
- 25 7. A sensor according to claim 6, wherein the first electrically conductive bridge (5) passes through apertures provided in the housing (4) and the second electrically conductive bridge (7).
- 30 8. A sensor according to claim 6 or claim 7, wherein the second electrically conductive bridge (7) substantially surrounds the housing (4).

9. A sensor according to any of claims 6 to 8, further comprising an adaptor (30, 40) for connecting the second electrically conductive bridge (7) to the conductor of a transmission cable.
- 5 10. A sensor according to any of claims 3 to 5, further comprising:
a first electrically conductive bridge (107) connected to the electrode (102) and connectable to the conductor of a transmission cable;
a second electrically conductive bridge (111) connected to the housing (106) and connectable to the conductor of a transmission cable; and
10 a third electrically conductive bridge (109) connected to the shield (105) and connectable to the conductor of a transmission cable.
11. A sensor according to claim 10, wherein the first electrically conductive bridge (107) passes through apertures provided in the insulating layer (104), the shield (105), the third electrically conductive bridge (109), the housing (106) and the second electrically conductive bridge (111), and wherein the third electrically conductive bridge (109) passes through apertures provided in the housing (106) and the second electrically conductive bridge (111).
- 20 12. A sensor according to claim 10 or claim 11, further comprising an adaptor (60,70) for connecting the second electrically conductive bridge (111) to the conductor of a transmission cable and the third electrically conductive bridge (109) to the conductor of a transmission cable.
- 25 13. A sensor (100) according to claim 3, wherein one or more of the electrode (102), shield (105), insulating layer (104) and housing (106) are bonded together.
14. A sensor (100) according to claim 13, wherein the bonding provides a hermetic seal between the one or more of the electrode (102), shield (105), insulating layer (104) and housing (106).
- 30

15. A sensor (1,100) for capacitively measuring the distance to a stationary or passing object comprising:

a electrode (2,102) that capacitively couples with the object;

a housing (4, 106) that substantially surrounds the electrode (2, 102);

5 a first electrically conductive bridge (5, 107) connected to the electrode (2, 102) and connectable to the conductor of a transmission cable; and

10 a second electrically conductive bridge (7, 111) connected to the housing (4, 106) and connectable to the conductor of a transmission cable.

10 16. A sensor according to claim 15, further comprising:

a shield (105) that substantially surrounds the electrode (102) and is electrically isolated from the electrode (102) by an insulating layer (104); and

a third electrically conductive bridge (109) connected to the shield (105) and connectable to the conductor of a transmission cable.

TITLE

Sensors

(Figure 1)

5

ABSTRACT

The invention provides a sensor (1) for capacitively measuring the distance to a stationary or passing object. The sensor (1) has an electrode (2) that capacitively couples with the object and is formed from an electrically conductive ceramic material. The electrode (2) is substantially surrounded by a housing (4) formed from an electrically non-conductive ceramic. The electrically conductive and electrically non-conductive ceramic materials are chosen so that they have the similar thermal expansion coefficients so that the sensor (1) remains virtually stress free at high temperatures.

10
15

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.