Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2007-2008. Esame del 28/11/2008

Nome	Cognome
Matricola/	

1. Sia dato il seguente problema di programmazione lineare:

Min
$$z = kx_1 + 5x_2$$

 $3x_1 + 4x_2 \le 12 - k$
 $-x_1 + 4x_2 \le 2 + 4k$
 $x_1 \ge 0$; $x_2 \ge 0$

- a) (4 punti) si determinino tutti i valori di k che rendano la base B={2,3} ammissibile ed ottima
- b) (2 punti) si fissi il valore di k= 2 e si risolva il problema graficamente
- c) (2 punti) si fissi il valore di k= 2 e si individuino le basi associate a ciascun vertice della regione ammissibile
- d) (2 punti) si fissi il valore di k=2 e si modifichi la funzione obiettivo in modo tale che la base $B=\{2,3\}$ sia ottima ma non unica
- 2. Sia dato il seguente problema di programmazione lineare:

Min
$$z = 3x_1 + x_2 + 13x_3 + 11 x_4$$

 $3x_1 + 4x_2 = 12$
 $7x_1 + 3x_2 + 44x_3 + x_4 \ge 2$
 $x_2 - 8x_3 + x_4 \ge 3$
 x_1 non vincolata; $x_2 \ge 0$ $x_3 \ge 0$ $x_4 \le 0$

- a) (2 punti) si scriva la formulazione matematica del problema duale associato al problema dato.
- b) (2 punti) si riscriva il problema in forma standard
- c) (2 punti) si scriva il corrispondente modello matematico del problema associato alla prima fase del metodo delle due fasi
- 3. Si disegni un grafo orientato e pesato sugli archi con n=8 nodi ed m=20 archi.
 - (a) (4 punti) Si applichi l'algoritmo dei cammini aumentanti per determinare il flusso massimo dal nodo 1 al nodo 8, si determini il taglio associato e la corrispondente capacità
 - (b) (4 punti) Si scriva il modello matematico associato al problema e si determini il valore ottimo delle variabili trovato al punto precedente.
- 4. (6 punti) Data una coppia di problemi primale/duale, si enunci e dimostri il teorema forte della dualità.