hw1 coding

October 19, 2023

```
!pip install six

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple,
https://pypi.ngc.nvidia.com
Requirement already satisfied: numpy in
/home/zjk/anaconda3/envs/cs182/lib/python3.7/site-packages (1.21.6)
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple,
https://pypi.ngc.nvidia.com
Requirement already satisfied: six in
```

/home/zjk/anaconda3/envs/cs182/lib/python3.7/site-packages (1.16.0)

1 k-Nearest Neighbor (kNN) exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

The kNN classifier consists of two stages:

[]: !pip install numpy

- During training, the classifier takes the training data and simply remembers it
- During testing, kNN classifies every test image by comparing to all training images and transfering the labels of the k most similar training examples
- The value of k is cross-validated

In this exercise you will implement these steps and understand the basic Image Classification pipeline, cross-validation, and gain proficiency in writing efficient, vectorized code.

```
[]: # Run some setup code for this notebook.

import random
import numpy as np
from data_utils import load_CIFAR10
import matplotlib.pyplot as plt

# This is a bit of magic to make matplotlib figures appear inline in the
    →notebook
# rather than in a new window.
```

```
%matplotlib inline
     plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
     plt.rcParams['image.interpolation'] = 'nearest'
     plt.rcParams['image.cmap'] = 'gray'
     # Some more magic so that the notebook will reload external python modules;
     # see http://stackoverflow.com/questions/1907993/
     \rightarrow autoreload-of-modules-in-ipython
     %load_ext autoreload
     %autoreload 2
[]: # Load the raw CIFAR-10 data.
     cifar10 dir = 'datasets/cifar-10-batches-py'
     # Cleaning up variables to prevent loading data multiple times (which may cause,
     →memory issue)
     try:
       del X_train, y_train
       del X_test, y_test
       print('Clear previously loaded data.')
     except:
       pass
     X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
     # As a sanity check, we print out the size of the training and test data.
     print('Training data shape: ', X_train.shape)
     print('Training labels shape: ', y_train.shape)
     print('Test data shape: ', X_test.shape)
     print('Test labels shape: ', y_test.shape)
    Training data shape: (50000, 32, 32, 3)
    Training labels shape: (50000,)
    Test data shape: (10000, 32, 32, 3)
    Test labels shape: (10000,)
[]: # Visualize some examples from the dataset.
     # We show a few examples of training images from each class.
     classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', _
     num classes = len(classes)
     samples_per_class = 7
     for y, cls in enumerate(classes):
         # print(y, cls)
        idxs = np.flatnonzero(y_train == y)
        idxs = np.random.choice(idxs, samples_per_class, replace=False)
        for i, idx in enumerate(idxs):
```

```
plt_idx = i * num_classes + y + 1
    plt.subplot(samples_per_class, num_classes, plt_idx)
    plt.imshow(X_train[idx].astype('uint8'))
    plt.axis('off')
    if i == 0:
        plt.title(cls)
plt.show()
```



```
[]: # Subsample the data for more efficient code execution in this exercise
   num_training = 5000
   mask = list(range(num_training))
   X_train = X_train[mask]
   y_train = y_train[mask]

   num_test = 500
   mask = list(range(num_test))
   X_test = X_test[mask]
   y_test = y_test[mask]
```

```
print('X_train origin shape : ', X_train.shape)
# Reshape the image data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
print(X_train.shape, X_test.shape)
```

```
X_train origin shape : (5000, 32, 32, 3)
(5000, 3072) (500, 3072)
```

```
[]: from k_nearest_neighbor import KNearestNeighbor

# Create a kNN classifier instance.
# Remember that training a kNN classifier is a noop:
# the Classifier simply remembers the data and does no further processing classifier = KNearestNeighbor()
classifier.train(X_train, y_train)
```

We would now like to classify the test data with the kNN classifier. Recall that we can break down this process into two steps:

- 1. First we must compute the distances between all test examples and all train examples.
- 2. Given these distances, for each test example we find the k nearest examples and have them vote for the label

Lets begin with computing the distance matrix between all training and test examples. For example, if there are **Ntr** training examples and **Nte** test examples, this stage should result in a **Nte** x **Ntr** matrix where each element (i,j) is the distance between the i-th test and j-th train example.

Note: For the three distance computations that we require you to implement in this notebook, you may not use the np.linalg.norm() function that numpy provides.

First, open k_nearest_neighbor.py and implement the function compute_distances_two_loops that uses a (very inefficient) double loop over all pairs of (test, train) examples and computes the distance matrix one element at a time.

```
[]: # Open cs231n/classifiers/k_nearest_neighbor.py and implement
# compute_distances_two_loops.

# Test your implementation:
dists = classifier.compute_distances_two_loops(X_test)
# print(dists)
print(dists.shape)
```

(500, 5000)

```
[]: # We can visualize the distance matrix: each row is a single test example and # its distances to training examples plt.imshow(dists, interpolation='none') plt.show()
```


Inline Question 1

Notice the structured patterns in the distance matrix, where some rows or columns are visibly brighter. (Note that with the default color scheme black indicates low distances while white indicates high distances.)

- What in the data is the cause behind the distinctly bright rows?
- What causes the columns?

Your Answer:

The brighter the dot is, the farthur the distance between the testing data and the training data.

We could regard each image as a 3072 dimension's vector.

As we have learned, about the **Curse of Dimensionality**.

The higher the dimension is, the points are less likely to be close to the center.

i.e. if one point is close to the center, then it is more likely to be far from other points than the points closer to the edges.

And the images can be seen as the 3072 dimensions vectors, which is quite high level of dimension.

So if the testing data is closer to the center of the domain, it is more likely to be far from most of the training data, which is a far distance, so the row corresponding to these kind of data are bright, since the brighter dot is, the farther the datas between.

Similarly, if the training data is closer to the center of the domain, it is more likely to be far from most of the testing data, so the column seems bright.

```
[]: # Now implement the function predict_labels and run the code below:
    # We use k = 1 (which is Nearest Neighbor).
    y_test_pred = classifier.predict_labels(dists, k=1)

# Compute and print the fraction of correctly predicted examples
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))
```

Got 137 / 500 correct => accuracy: 0.274000

You should expect to see approximately 27% accuracy. Now lets try out a larger k, say k = 5:

```
[]: y_test_pred = classifier.predict_labels(dists, k=5)
num_correct = np.sum(y_test_pred == y_test)
```

```
accuracy = float(num_correct) / num_test
     print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))
    Got 139 / 500 correct => accuracy: 0.278000
    You should expect to see a slightly better performance than with k = 1.
[]: # Now lets speed up distance matrix computation by using partial vectorization
     # with one loop. Implement the function compute_distances_one_loop and run the
     # code below:
     dists_one = classifier.compute_distances_one_loop(X_test)
     # To ensure that our vectorized implementation is correct, we make sure that it
     # agrees with the naive implementation. There are many ways to decide whether
     # two matrices are similar; one of the simplest is the Frobenius norm. In case
     # you haven't seen it before, the Frobenius norm of two matrices is the square
     # root of the squared sum of differences of all elements; in other words,
     \rightarrow reshape
     # the matrices into vectors and compute the Euclidean distance between them.
     difference = np.linalg.norm(dists - dists_one, ord='fro')
     print('One loop difference was: %f' % (difference, ))
     if difference < 0.001:
         print('Good! The distance matrices are the same')
     else:
         print('Uh-oh! The distance matrices are different')
    One loop difference was: 0.000000
    Good! The distance matrices are the same
[]: # Now implement the fully vectorized version inside compute distances no loops
     # and run the code
     dists_two = classifier.compute_distances_no_loops(X_test)
     # check that the distance matrix agrees with the one we computed before:
     difference = np.linalg.norm(dists - dists two, ord='fro')
     print('No loop difference was: %f' % (difference, ))
     if difference < 0.001:</pre>
         print('Good! The distance matrices are the same')
         print('Uh-oh! The distance matrices are different')
    No loop difference was: 0.000000
    Good! The distance matrices are the same
```

```
[]: # Let's compare how fast the implementations are def time_function(f, *args):
"""
```

```
Call a function f with args and return the time (in seconds) that it took \Box
 \rightarrow to execute.
    11 11 11
    import time
    tic = time.time()
    f(*args)
    toc = time.time()
    return toc - tic
two_loop_time = time_function(classifier.compute_distances_two_loops, X_test)
print('Two loop version took %f seconds' % two_loop_time)
one_loop_time = time function(classifier.compute distances_one_loop, X test)
print('One loop version took %f seconds' % one_loop_time)
no_loop_time = time_function(classifier.compute_distances_no_loops, X_test)
print('No loop version took %f seconds' % no_loop_time)
# You should see significantly faster performance with the fully vectorized,
\rightarrow implementation!
# NOTE: depending on what machine you're using,
# you might not see a speedup when you go from two loops to one loop,
# and might even see a slow-down.
```

Two loop version took 26.953301 seconds One loop version took 22.523698 seconds No loop version took 0.104006 seconds

1.0.1 Cross-validation

We have implemented the k-Nearest Neighbor classifier but we set the value k=5 arbitrarily. We will now determine the best value of this hyperparameter with cross-validation.

```
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
# pass
X_train_folds = np.array_split(X_train, num_folds)
y_train_folds = np.array_split(y_train, num_folds)
print(X_train.shape)
print(y_train.shape)
# print(y train)
# print(y train folds)
# print(len(y_train_folds[0]))
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
# A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
# k_to_accuracies[k] should be a list of length num folds giving the different
# accuracy values that we found when using that value of k.
k_to_accuracies = {}
# TODO:
# Perform k-fold cross validation to find the best value of k. For each
# possible value of k, run the k-nearest-neighbor algorithm num folds times,
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all
\# values of k in the k to accuracies dictionary.
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
# pass
for k in k_choices:
   k_to_accuracies[k] = []
   for i in range(num_folds):
       x_training = np.array(X_train_folds[:i] + X_train_folds[i+1:])
       x_testing = X_train_folds[i]
       y_training = np.array(y_train_folds[:i] + y_train_folds[i+1:])
       y_testing = y_train_folds[i]
       # print(x train.shape, y train.shape)
       x_training = x_training.reshape(-1, x_training.shape[2])
       y_training = y_training.reshape(-1)
```

```
# print(x_train.shape, y_training.shape)
         classifier = KNearestNeighbor()
         classifier.train(x_training, y_training)
         y_pred = classifier.predict(x_testing, k=k)
        num_correct = np.sum(y_pred == y_testing)
        accuracy = float(num_correct) / x_testing.shape[0]
        k_to_accuracies[k].append(accuracy)
 # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
 # Print out the computed accuracies
for k in sorted(k_to_accuracies):
     for accuracy in k_to_accuracies[k]:
         print('k = %d, accuracy = %f' % (k, accuracy))
(5000, 3072)
(5000,)
k = 1, accuracy = 0.263000
k = 1, accuracy = 0.257000
k = 1, accuracy = 0.264000
k = 1, accuracy = 0.278000
k = 1, accuracy = 0.266000
k = 3, accuracy = 0.239000
k = 3, accuracy = 0.249000
k = 3, accuracy = 0.240000
k = 3, accuracy = 0.266000
k = 3, accuracy = 0.254000
k = 5, accuracy = 0.248000
k = 5, accuracy = 0.266000
k = 5, accuracy = 0.280000
k = 5, accuracy = 0.292000
k = 5, accuracy = 0.280000
k = 8, accuracy = 0.262000
k = 8, accuracy = 0.282000
k = 8, accuracy = 0.273000
k = 8, accuracy = 0.290000
k = 8, accuracy = 0.273000
k = 10, accuracy = 0.265000
k = 10, accuracy = 0.296000
k = 10, accuracy = 0.276000
k = 10, accuracy = 0.284000
k = 10, accuracy = 0.280000
k = 12, accuracy = 0.260000
k = 12, accuracy = 0.295000
k = 12, accuracy = 0.279000
```

```
k = 12, accuracy = 0.283000
    k = 12, accuracy = 0.280000
    k = 15, accuracy = 0.252000
    k = 15, accuracy = 0.289000
    k = 15, accuracy = 0.278000
    k = 15, accuracy = 0.282000
    k = 15, accuracy = 0.274000
    k = 20, accuracy = 0.270000
    k = 20, accuracy = 0.279000
    k = 20, accuracy = 0.279000
    k = 20, accuracy = 0.282000
    k = 20, accuracy = 0.285000
    k = 50, accuracy = 0.271000
    k = 50, accuracy = 0.288000
    k = 50, accuracy = 0.278000
    k = 50, accuracy = 0.269000
    k = 50, accuracy = 0.266000
    k = 100, accuracy = 0.256000
    k = 100, accuracy = 0.270000
    k = 100, accuracy = 0.263000
    k = 100, accuracy = 0.256000
    k = 100, accuracy = 0.263000
[]: # plot the raw observations
     for k in k_choices:
         accuracies = k_to_accuracies[k]
         plt.scatter([k] * len(accuracies), accuracies)
     # plot the trend line with error bars that correspond to standard deviation
     accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.
     \rightarrowitems())])
     accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.
     →items())])
    plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std)
    plt.title('Cross-validation on k')
    plt.xlabel('k')
    plt.ylabel('Cross-validation accuracy')
    plt.show()
```



```
[]: # Based on the cross-validation results above, choose the best value for k,
# retrain the classifier using all the training data, and test it on the test
# data. You should be able to get above 28% accuracy on the test data.

best_k = 10
# from the graph abova, we could see that when k = 10, it has the best result

    → through cross-validation

classifier = KNearestNeighbor()
classifier.train(X_train, y_train)
y_test_pred = classifier.predict(X_test, k=best_k)

# print(np.sum(y_test_pred == y_test))
# print(y_test.shape)
# print(y_test_pred.shape)
# print(num_test)

# Compute and display the accuracy
```

```
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))
```

Got 141 / 500 correct => accuracy: 0.282000

Inline Question 2

Which of the following statements about k-Nearest Neighbor (k-NN) are true in a classification setting, and for all k? Select all that apply. 1. The decision boundary of the k-NN classifier is linear. 2. The training error of a 1-NN will always be lower than or equal to that of 5-NN. 3. The test error of a 1-NN will always be lower than that of a 5-NN. 4. The time needed to classify a test example with the k-NN classifier grows with the size of the training set. 5. None of the above.

YourAnswer:

2, 4

Your Explanation:

2. 1-NN has no training errors.

While 5-NN is likely to have errors, the best situation of 5-NN is no errors.

So 1-NN always has lower than or equal to the training error of 5-NN.

3. When doing classification on testing, k-NN requires to calculate the distance between the testing data and all of the training data, then use sorting the get the k closest points. Calculating distances and sorting are all related to the number of training datas, the more training data, the more time are needed to predict.