Contrôle TD 4

Nom:

Prénom:

Classe:

Question de cours

Soient E et F deux \mathbb{R} -ev, et $\varphi \in \mathcal{L}(E,F)$ une application linéaire de E dans F.

a. Donner la définition mathématique précise de $\mathrm{Ker}(\varphi)$ et $\mathrm{Im}(\varphi)$.

b. À quelle condition φ est-elle injective? À quelle condition φ est-elle surjective? Répondez à ces deux questions en vous servant obligatoirement des notions de la question précédente.

Exercice 1

Soit Δ : $\left\{ \begin{array}{ccc} \mathbb{R}[X] & \longrightarrow & \mathbb{R}[X] \\ P & \longmapsto & XP'-2P \end{array} \right.$. Montrer que Δ est linéaire.

Exercice 2

Soient $E = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, u_0 = u_1 = 0\}$ et $F = \{(v_n) \in \mathbb{R}^{\mathbb{N}}, \exists (a, b) \in \mathbb{R}^2, \forall n \in \mathbb{N}, v_n = an + b\}$ deux sev de $\mathbb{R}^{\mathbb{N}}$. Montrer que E et F sont supplémentaires.

[suite du cadre page suivante]

Exercice 3

Soit $E = \left\{ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \in \mathbb{R}^3$ tel que $\left| \begin{array}{c} -x - 3y + 2z = 0 \\ -x + y - 2z = 0 \\ -x + 3y - 4z = 0 \end{array} \right\}$. Écrire E sous forme de sev engendré en utilisant la notation Vect.