Gramatici LL(k) tari. Derivare descendent recursiva

Ce e gramatica LL(k)? - reaminitire

O gramatica independenta de context G = (T, N, P, Z) este LL(k) pentru un $k \ge 0$ daca pentru derivari arbitrare

$$Z \Rightarrow^L \mu X \chi \Rightarrow \mu \nu \chi \Rightarrow^* \mu \gamma$$

$$Z \Rightarrow^L \mu X \chi \Rightarrow \mu \omega \chi \Rightarrow^* \mu \gamma'$$

unde
$$\mu, \gamma, \gamma' \in T^*, \nu, \chi, \omega \in V^*, X \in N$$

avem urmatoarea proprietate: $k: \gamma = k: \gamma'$ implica $\nu = \omega$ Observatie: Dependenta de μ obliga pastrarea in situatiile $[X \to \alpha.\beta; \omega]$ a contextului dreapta. Daca se elimina aceasta dependenta: gramatici **LL(k)** tari

Gramatici LL(k) tari

O gramatica independenta de context G = (T, N, P, Z) este o gramatica LL(k) tare pentru un k > 0 daca pentru derivari arbitrare

$$Z \Rightarrow^L \mu X \chi \Rightarrow \mu \nu \chi \Rightarrow^* \mu \gamma$$

$$Z \Rightarrow^L \mu' X \chi' \Rightarrow \mu' \omega \chi' \Rightarrow^* \mu' \gamma'$$

unde
$$\mu, \mu', \gamma, \gamma' \in T^*, \nu, \chi, \omega \in V^*, X \in N$$

avem urmatoarea proprietate: $k: \gamma = k: \gamma'$ implica $\nu = \omega$

Fie G cu
$$P = \{ Z \rightarrow X \\ X \rightarrow aAab|bAbb \\ A \rightarrow a|\varepsilon \}$$

$$Z \Rightarrow X \Rightarrow aAab \stackrel{A \rightarrow \varepsilon}{\Rightarrow} aab$$

$$Z \Rightarrow X \Rightarrow aAab \Rightarrow aaab$$

$$Z \Rightarrow X \Rightarrow bAbb \Rightarrow bbb$$

$$Z \Rightarrow X \Rightarrow bAbb \stackrel{A \rightarrow a}{\Rightarrow} babb$$
Este LL(1)? Este LL(2)? Este strong LL(2)?

```
Fie G cu P = \{ Z \rightarrow X \}
                                X \rightarrow aAab|bAbb
                                A \to a|\varepsilon
Z \Rightarrow X \Rightarrow aAab \stackrel{A \to \varepsilon}{\Rightarrow} aab
7 \Rightarrow X \Rightarrow aAab \Rightarrow aaab
Z \Rightarrow X \Rightarrow bAbb \Rightarrow bbb
7 \Rightarrow X \Rightarrow bAbb \stackrel{A \to a}{\Rightarrow} babb
Este LL(1)? Este LL(2)? Este strong LL(2)?
7 \Rightarrow X \Rightarrow aAab \Rightarrow aab
7 \Rightarrow X \Rightarrow bAbb \Rightarrow babb
pt LL(k) tare: k: \gamma = k: \gamma \Rightarrow aceeasi productie pt A; dar aici
contextul stanga conteaza
```

Conditia strong LL(k)

O gramatica independenta de context G este strong LL(k) daca pentru orice pereche de productii $X \to \chi$, $X \to \chi'$, $\chi \neq \chi'$ urmatoarea conditie este adevarata:

$$FIRST_k(\chi FOLLOW_k(X)) \cap FIRST_k(\chi' FOLLOW_k(X)) = \emptyset$$

$$\begin{array}{ll} \textit{Fie G cu P} = \{ & \textit{Z} \rightarrow \textit{X} \\ \textit{exemplu} & \textit{X} \rightarrow \textit{aAab}|\textit{bAbb} \\ & \textit{A} \rightarrow \textit{a}|\varepsilon \} \\ \textit{pt A} : \textit{FIRST}_2(\textit{a}\{\textit{ab},\textit{bb}\}) \cap \textit{FIRST}_2(\varepsilon\{\textit{ab},\textit{bb}\}) = \{\textit{ab}\} \end{array}$$

Strong LL(k)

NU e necesar niciun context pt a decide productia pentru nonterminalul X. Nu trebuie tinuti minte pasii anteriori din derivarea stanga, cei care au condus la nonterminalul X.

Algoritmul LL(k) - reamintire

Fie G = (T, N, P, Z). Pt automatul stiva se determina Q si tranzitiile R:

- 1. $Q = \{q_0\}$ si $R = \emptyset$ cu $q_0 = [Z \to .S, \{\#\}]$ Obs: $FOLLOW_k(Z) = \{\#\}$. q_0 starea initiala si a stivei. Automatul se opreste daca aceasta stare se intalneste din nou, stiva este vida, simbolul de intrare urmator este #.
- 2. fie $q = [X \to \mu.\nu; \Omega]$ un element al lui Q care inca nu a fost tratat
- 3. Daca $\nu = \varepsilon$ atunci se include $q\varepsilon \to \varepsilon$ in R.
- 4. Daca $\nu = t\gamma$, $t \in T$ si $\gamma \in V^*$, fie $q' = [X \to \mu t. \gamma; \Omega]$. Adauga a' in Q si $at \rightarrow a'$ in R.
- 5. Daca $\nu = Y\gamma$, $Y \in \mathbb{N}$ si $\gamma \in \mathbb{V}^*$.
 - fie $q' = [X \rightarrow \mu Y.\gamma; \Omega]$
 - ▶ si $H = \{ [Y \to .\beta_i; FIRST_k(\gamma\Omega)] | Y \to \beta_i \in P \}.$
 - ▶ actualizeaza $Q = Q \cup \{q'\} \cup H$
 - ightharpoonup si $R = R \cup \{q\tau_i \rightarrow q'h_i\tau_i|h_i \in H, \tau_i \in FIRST_k(\beta_i\gamma\Omega)\}$
- 6. daca toate starile din q au fost analizate, stop. Altfel continua cu 2.

Algoritm LL(k) tare

Daca $\nu = Y\gamma$, $Y \in N$ si $\gamma \in V^*$ in loc de pasul 5 din LL(k)

- fie $q' = [X \to \mu Y.\gamma; \Omega]$
- ▶ si $H = \{ [Y \to .\beta_i; FIRST_k(\gamma\Omega)] | Y \to \beta_i \in P \}.$
- ▶ actualizeaza $Q = Q \cup \{q'\} \cup H$ si
- $R = R \cup \{q\tau_i \to q'h_i\tau_i | h_i \in H, \tau_i \in FIRST_k(\beta_i\gamma\Omega)\}$

se poate folosi pentru strong LL(k)

- fie $q' = [X \to \mu Y.\gamma; \Omega]$
- ▶ si $H = \{[Y \rightarrow .\beta_i; FOLLOW_k(Y)] | Y \rightarrow \beta_i \in P\}.$
- ▶ actualizeaza $Q = Q \cup \{q'\} \cup H$ si
- ► $R = R \cup \{q\tau_i \rightarrow q'h_i\tau_i|h_i \in H, \tau_i \in FIRST_k(\beta_i FOLLOW_k(Y))\}$

Toate situatiile distincte anterior doar prin context dreapta apartin intotdeauna aceleiasi stari.

LL(1) tare

Fie
$$Z \to E$$
, $E \to E + F|F$, $F \to i|(E)$

Prin eliminarea recursivitatii stanga:

$$Z \to E, E \to FE_1, E_1 \to \varepsilon | + FE_1, F \to i | (E)$$

simbol	$FIRST_1(X)$	$FOLLOW_1(X)$
Ε	{(, i}	{),#}
E_1	$\{+, \varepsilon\}$	$\{),\#\}$
F	$\{(,i\}$	$\{+, \#,)\}$

Conditie LL(1) tare:

pt
$$E_1$$
:

$$FIRST_1(\varepsilon FOLLOW(E_1)) \cap FIRST_1(+FE_1FOLLOW(E_1)) = \emptyset$$

$$FIRST_1(iFOLLOW(F)) \cap FIRST_1((E)FOLLOW(F)) = \emptyset$$

 $\frac{Z \to E, \ E \to FE_1, \ E_1 \to \varepsilon| + FE_1, \ F \to i|(E)}{\frac{\text{stari noi}}{q_0 = [Z \to .E;\#]}}$

$Z \rightarrow$	$E, E \rightarrow FE_1, E_1 \rightarrow \varepsilon$	$+ FE_1, F \rightarrow i (E)$
	stari noi	tranzitii noi
	$q_0 = [Z \rightarrow .E; \#]$	
q_0	$q' = [Z \to E.; \#] = q_1$	$\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$
	$H = \{ [E \rightarrow .FE_1; \#] = q_2 \}$	$q_0i \rightarrow q_1q_2i$
		$q_0(\rightarrow q_1q_2($

$Z \rightarrow$	$E, E \rightarrow FE_1, E_1 \rightarrow \varepsilon$	$+ FE_1, F \rightarrow i (E)$
	stari noi	tranzitii noi
	$q_0 = [Z \rightarrow .E; \#]$	
q_0	$q' = [Z \rightarrow E.; \#] = q_1$	$\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$
	$H = \{ [E \rightarrow .FE_1; \#] = q_2 \}$	$q_0 i \rightarrow q_1 q_2 i$
		$q_0(\rightarrow q_1q_2($
q_1		$q_1 \varepsilon \to \varepsilon$

$Z \rightarrow$	$E, E \rightarrow FE_1, E_1 \rightarrow \varepsilon$	$+ FE_1, F \rightarrow i (E)$
	stari noi	tranzitii noi
	$q_0 = [Z \rightarrow .E; \#]$	
90	$q' = [Z \rightarrow E.; \#] = q_1$	$\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$
	$H = \{ [E \rightarrow .FE_1; \#] = q_2 \}$	$q_0i \rightarrow q_1q_2i$
		$q_0(\rightarrow q_1q_2($
q_1		$q_1 \varepsilon o \varepsilon$
q 2	$[E \rightarrow F.E_1] = q_3$	$\tau \in FIRST_1(iFOLLOW_1(F))$
	$H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$	$q_2i \rightarrow q_3q_4i$
	$[F \rightarrow .(E): FOLLOW_1(F)] = a_5$	$a_2(\rightarrow a_3 a_5)$

 $[F \rightarrow .(E); FOLLOW_1(F)] = q_5\}$ | $q_2(\rightarrow q_3q_5($ fiind LL(1) strong, capetele din situatii nu le mai pastram (se pot deduce din situatie)

$$Z \rightarrow E, \ E \rightarrow FE_1, \ E_1 \rightarrow \varepsilon | + FE_1, \ F \rightarrow i | (E)$$

		1 1
	stari noi	tranzitii noi
	$q_0 = [Z \rightarrow .E; \#]$	
q_0	$q' = [Z \rightarrow E.; \#] = q_1$	$\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$
	$H = \{[E \rightarrow .FE_1; \#] = q_2\}$	$q_0i \rightarrow q_1q_2i$
		$q_0(\rightarrow q_1q_2($
q_1		$q_1 \varepsilon o \varepsilon$
q ₂	$[E \rightarrow F.E_1] = q_3$	$\tau \in FIRST_1(iFOLLOW_1(F))$
	$H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$	$q_2i \rightarrow q_3q_4i$
	$[F \rightarrow .(E); FOLLOW_1(F)] = q_5$	$q_2(\rightarrow q_3q_5($
fiir	nd $LL(1)$ strong, capetele din situatii nu le	mai pastram (se pot deduce din situatie)

$$\begin{array}{lll} q_3 & [E \to FE_1.] = q_6 & \tau \in FIRST_1(FOLLOW(E_1)) \\ H = \{[E_1 \to .\varepsilon] = q_7 & q_3 \to q_6 q_7) \\ & [E_1 \to .+FE_1] = q_8\} & q_3 \leftrightarrow q_6 q_8 + \end{array}$$

$$Z \to E, \ E \to FE_1, \ E_1 \to \varepsilon | + FE_1, \ F \to i | (E)$$

$$\begin{array}{c} \text{stari noi} & \text{tranzitii noi} \\ q_0 = [Z \to E; \#] & \\ q_0 = q' = [Z \to E; \#] = q_1 & \\ H = \{[E \to .FE_1: \#] = q_2\} & q_0 i \to q_1 q_2 i \\ q_1 & q_1 \in \to \varepsilon \\ q_2 = [E \to F.E_1] = q_3 & \tau \in FIRST_1(iFOLLOW_1(F)) \\ H = \{[F \to .i, FOLLOW_1(F)] = q_4 \\ [F \to .(E); FOLLOW_1(F)] = q_5\} & q_2 (\to q_3 q_5) \end{array}$$

fiind LL(1) strong, capetele din situatii nu le mai pastram (se pot deduce din situatie)

$$\begin{array}{lll} q_3 & [E \to FE_1.] = q_6 & \tau \in FIRST_1(\varepsilon FOLLOW(E_1)) \\ H = \{[E_1 \to .\varepsilon] = q_7 & q_3 \to q_6 q_7) \\ & [E_1 \to .+FE_1] = q_8 \} & q_3 + \to q_6 q_7 + \\ q_4 & [F \to i.] = q_9 & q_4 i \to q_9 \end{array}$$

$$Z \to E, \ E \to FE_1, \ E_1 \to \varepsilon| + FE_1, \ F \to i|(E)$$

	stari noi	tranzitii noi
	$q_0 = [Z \rightarrow .E; \#]$	
q_0	$q' = [Z \rightarrow E.; \#] = q_1$	$\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$
	$H = \{[E \rightarrow .FE_1; \#] = q_2\}$	$q_0i \rightarrow q_1q_2i$
		$q_0(\rightarrow q_1q_2($
q_1		$q_1 \varepsilon o \varepsilon$
q_2	$[E \rightarrow F.E_1] = q_3$	$\tau \in FIRST_1(iFOLLOW_1(F))$
	$H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$	$q_2i \rightarrow q_3q_4i$
	$[F \rightarrow .(E); FOLLOW_1(F)] = q_5$	$q_2(\rightarrow q_3q_5($
fiir	nd $LL(1)$ strong, capetele din situatii nu le	
	$[E \rightarrow FE_1.] = q_6$	$\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$

$$Z \to E, \ E \to FE_1, \ E_1 \to \varepsilon | + FE_1, \ F \to i | (E)$$

	stari noi	tranzitii noi
	$q_0 = [Z \rightarrow .E; \#]$	
$\overline{q_0}$	$q' = [Z \rightarrow E.; \#] = q_1$	$\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$
	$H = \{[E \rightarrow .FE_1; \#] = q_2\}$	$q_0i \rightarrow q_1q_2i$
		$q_0(\rightarrow q_1q_2($
q_1		$q_1 \varepsilon o \varepsilon$
q 2	$[E \rightarrow F.E_1] = q_3$	$\tau \in FIRST_1(iFOLLOW_1(F))$
	$H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$	$q_2 i \rightarrow q_3 q_4 i$
	$[F \rightarrow .(E); FOLLOW_1(F)] = q_5$	$q_2(\rightarrow q_3q_5($
fii	nd $LL(1)$ strong, capetele din situatii nu le	
<i>q</i> ₃	$[E \rightarrow FE_1.] = q_6$	$\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$
	$H = \{[E_1 \rightarrow .\varepsilon] = q_7$	$q_3) \rightarrow q_6 q_7)$
		$q_3\# \rightarrow q_6q_7\#$
	$[E_1 \rightarrow . + FE_1] = q_8\}$	$q_3+ \rightarrow q_6q_8+$
q 4	$[F \rightarrow i.] = q_9$	$q_4i \rightarrow q_9$
q 5	$[F \rightarrow (.E)] = q_{10}$	$q_5(o q_{10}$

$Z \to E, E \to FE_1, E_1 \to \varepsilon | + FE_1, F \to i | (E)$ stari noi $q_0 = [Z \to .E; \#]$ $q_0 = [Z \to .E; \#]$

$$\begin{array}{c} \text{Scall Hold} \\ \text{q0} = [Z \rightarrow .E;\#] \\ q_0 \quad q' = [Z \rightarrow E:,\#] = q_1 \\ H = \{[E \rightarrow .FE_1;\#] = q_2\} \\ q_1 \quad q_2 \quad [E \rightarrow F.E_1] = q_3 \\ H = \{[F \rightarrow .i,FOLLOW_1(F)] = q_4 \\ [F \rightarrow .(E);FOLLOW_1(F)] = q_3\} \\ \text{fiind LL(1) strong, capetele din situatii nu le mai pastram (se pot deduce din situatie)} \\ \end{array}$$

$$\begin{array}{lll} q_3 & [E \to FE_1.] = q_6 & \tau \in FIRST_1(\varepsilon FOLLOW(E_1)) \\ H = \{[E_1 \to .\varepsilon] = q_7 & q_3) \to q_6q_7 \\ & q_3) \to q_6q_7 \\ & q_3 \# \to q_6q_7 \# \\ & q_3 \# \to q_6q_7 \# \\ q_4 & [F \to i.] = q_9 & q_4i \to q_9 \\ q_5 & [F \to (.E)] = q_{10} & q_5(\to q_{10}) \\ & q_6 & q_6 \to \varepsilon \\ q_7 & q_7 & q_7 \varepsilon \to \varepsilon \end{array}$$

 $Z \to E$, $E \to FE_1$, $E_1 \to \varepsilon | + FE_1$, $F \to i | (E)$ tranzitii noi stari noi $q_0 = [Z \rightarrow .E; \#]$ $q' = [Z \to E_{:}; \#] = q_1$ $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ $H = \{ [E \rightarrow .FE_1 : \#] = a_2 \}$ $q_0i \rightarrow q_1q_2i$ $q_0(\rightarrow q_1q_2($ $q_1\varepsilon \rightarrow \varepsilon$ q_1 $[E \rightarrow F.E_1] = a_3$ $\tau \in FIRST_1(iFOLLOW_1(F))$ 92 $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_A$ $q_2i \rightarrow q_3q_4i$ $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$ $q_2(\rightarrow q_3q_5)$ fiind LL(1) strong, capetele din situatii nu le mai pastram (se pot deduce din situatie) $[E \rightarrow FE_1.] = q_6$ $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$ q_3 $H = \{ [E_1 \rightarrow .\varepsilon] = q_7 \}$ $q_3) \rightarrow q_6 q_7)$ $q_3\# \rightarrow q_6q_7\#$ $[E_1\rightarrow .+FE_1]=q_8\}$ $q_3+ \rightarrow q_6q_8+$ $[F \rightarrow i.] = q_9$ $q_4i \rightarrow q_9$ $\overline{[F \rightarrow (.E)]} = q_{10}$ $q_5(\rightarrow q_{10})$

97

98

 $[E_1 \to +.FE_1] = q_{11}$

 $q_6 \varepsilon \to \varepsilon$ $q_7 \varepsilon \to \varepsilon$

 $q_8+\rightarrow q_{11}$

 $Z \to E$, $E \to FE_1$, $E_1 \to \varepsilon | + FE_1$, $F \to i | (E)$ tranzitii noi stari noi $q_0 = [Z \rightarrow .E; \#]$ $q' = [Z \to E_{:}; \#] = q_1$ $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ $H = \{ [E \rightarrow .FE_1 : \#] = a_2 \}$ $q_0i \rightarrow q_1q_2i$ $q_0(\rightarrow q_1q_2($ $q_1\varepsilon \to \varepsilon$ q_1 $[E \rightarrow F.E_1] = a_3$ $\tau \in FIRST_1(iFOLLOW_1(F))$ 92 $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_4$ $q_2i \rightarrow q_3q_4i$ $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$ $q_2(\rightarrow q_3q_5)$ fiind LL(1) strong, capetele din situatii nu le mai pastram (se pot deduce din situatie)

 $[E \rightarrow FE_1.] = q_6$ $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$ q_3 $H = \{ [E_1 \rightarrow .\varepsilon] = q_7 \}$ $q_3) \rightarrow q_6 q_7)$ $q_3\# \rightarrow q_6q_7\#$ $[E_1 \rightarrow . + FE_1] = q_8$ $q_3+ \rightarrow q_6q_8+$ $[F \rightarrow i.] = q_9$ $q_4i \rightarrow q_9$ $[F \to (.E)] = q_{10}$ $q_5(\rightarrow q_{10})$ q_6 $q_6\varepsilon \rightarrow \varepsilon$ $q_7 \varepsilon \rightarrow \varepsilon$ 97 $[E_1 \to +.FE_1] = q_{11}$ $q_8+ \rightarrow q_{11}$ **9**8 $q_0 \varepsilon \rightarrow \varepsilon$ q_{0}

 $Z \to E$, $E \to FE_1$, $E_1 \to \varepsilon | + FE_1$, $F \to i | (E)$ tranzitii noi stari noi $q_0 = [Z \rightarrow .E; \#]$ $q' = [Z \to E.; \#] = q_1$ $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ $H = \{ [E \rightarrow .FE_1; \#] = q_2 \}$ $q_0i \rightarrow q_1q_2i$ $q_0(\rightarrow q_1q_2($ $q_1\varepsilon \rightarrow \varepsilon$ $[E \rightarrow F.E_1] = a_3$ $\tau \in FIRST_1(iFOLLOW_1(F))$ 92 $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_A$ $q_2i \rightarrow q_3q_4i$ $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$ $q_2(\rightarrow q_3q_5)$ fiind LL(1) strong, capetele din situatii nu le mai pastram (se pot deduce din situatie) $[E \rightarrow FE_1] = a_6$ $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$ q_3 $H = \{ [E_1 \rightarrow .\varepsilon] = q_7 \}$ $q_3) \rightarrow q_6 q_7$ $q_3\# \rightarrow q_6q_7\#$ $[E_1 \rightarrow . + FE_1] = q_8$ $q_3+ \rightarrow q_6q_8+$ $[F \rightarrow i.] = q_9$ $q_4i \rightarrow q_9$ $[F \to (.E)] = q_{10}$ $q_5(\rightarrow q_{10}$

$$H = \{[E_1 \to .\varepsilon] = q_7 \qquad q_3) \to q_6q_7\}$$

$$[E_1 \to .+ FE_1] = q_8\} \qquad q_3 + \to q_6q_7 + q_3 + \to q_6q_8 + q_3 + q_6q_8 + q_4 + q_9$$

$$q_5 \qquad [F \to (.E)] = q_{10} \qquad q_5(\to q_{10})$$

$$q_6 \qquad q_6 \varepsilon \to \varepsilon$$

$$q_7 \qquad q_7 \varepsilon \to \varepsilon$$

$$q_8 \qquad [E_1 \to +.FE_1] = q_{11} \qquad q_8 \varepsilon \to \varepsilon$$

$$q_{10} \qquad [F \to (E.)] = q_{12} \qquad \tau \in FIRST_1(FE_1FOLLOW(E))$$

$$H = \{[E \to .FE_1] = q_2\} \qquad q_{10}(\to q_{12}q_2(q_{10}))$$

 $Z \to E$, $E \to FE_1$, $E_1 \to \varepsilon | + FE_1$, $F \to i | (E)$ tranzitii noi stari noi $q_0 = [Z \rightarrow .E; \#]$ $q' = [Z \to E.; \#] = q_1$ $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ $H = \{[E \rightarrow .FE_1; \#] = a_2\}$ $q_0i \rightarrow q_1q_2i$ $q_0(\rightarrow q_1q_2($ $q_1\varepsilon \rightarrow \varepsilon$ q_1 $[E \rightarrow F.E_1] = a_3$ $\tau \in FIRST_1(iFOLLOW_1(F))$ 92 $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_A$ $q_2i \rightarrow q_3q_4i$ $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$ $q_2(\rightarrow q_3q_5)$ fiind LL(1) strong, capetele din situatii nu le mai pastram (se pot deduce din situatie) $[E \rightarrow FE_1] = a_6$ $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$ q_3 $H = \{ [E_1 \rightarrow .\varepsilon] = q_7 \}$ $q_3) \rightarrow q_6 q_7$ $q_3\# \rightarrow q_6q_7\#$ $[E_1 \rightarrow . + FE_1] = q_8$ $q_3+ \rightarrow q_6q_8+$ $[F \rightarrow i.] = q_9$ $q_4i \rightarrow q_9$ $[F \to (.E)] = q_{10}$ $q_5(\rightarrow q_{10})$ 96 $q_6\varepsilon \rightarrow \varepsilon$ $q_7\varepsilon \rightarrow \varepsilon$ 97 $[E_1 \rightarrow +.FE_1] = q_{11}$ $q_8+ \rightarrow q_{11}$ **9**8 q_9 $q_0 \varepsilon \rightarrow \varepsilon$ $\tau \in FIRST_1(FE_1FOLLOW(E))$ $[F \to (E.)] = q_{12}$ 910

 $Z \to E$, $E \to FE_1$, $E_1 \to \varepsilon | + FE_1$, $F \to i | (E)$ tranzitii noi stari noi $q_0 = [Z \rightarrow .E; \#]$ $a' = [Z \to E.; \#] = q_1$ $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ $H = \{[E \rightarrow .FE_1; \#] = a_2\}$ $q_0i \rightarrow q_1q_2i$ $q_0(\rightarrow q_1q_2($ $q_1\varepsilon \rightarrow \varepsilon$ q_1 $[E \rightarrow F.E_1] = a_3$ $\tau \in FIRST_1(iFOLLOW_1(F))$ 92 $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_A$ $q_2i \rightarrow q_3q_4i$ $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$ $q_2(\rightarrow q_3q_5)$ fiind LL(1) strong, capetele din situatii nu le mai pastram (se pot deduce din situatie) $[E \rightarrow FE_1] = a_6$ $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$ q_3 $H = \{ [E_1 \rightarrow .\varepsilon] = q_7 \}$ $q_3) \rightarrow q_6 q_7$ $q_3\# \rightarrow q_6q_7\#$ $[E_1 \rightarrow . + FE_1] = q_8$ $q_3+ \rightarrow q_6q_8+$ $[F \rightarrow i.] = q_9$ $q_4i \rightarrow q_9$ $[F \to (.E)] = q_{10}$ $q_5(\rightarrow q_{10})$ 96 $q_6\varepsilon \rightarrow \varepsilon$ $q_7\varepsilon \rightarrow \varepsilon$ 97 $[E_1 \rightarrow +.FE_1] = q_{11}$ $q_8+ \rightarrow q_{11}$ **9**8 q_9 $q_0 \varepsilon \rightarrow \varepsilon$ $\tau \in FIRST_1(FE_1FOLLOW(E))$ $[F \to (E.)] = q_{12}$ 910 $H = \{ [E \rightarrow .FE_1] = q_2 \}$ $q_{10}(\rightarrow q_{12}q_2)$ $q_{10}i \rightarrow q_{12}q_2i$ $[E_1 \rightarrow +F.E_1] = q_{13}$ $\tau \in FIRST_1(iFOLLOW_1(F))$ 911

 $q_{11}i \rightarrow q_{13}q_4i$

 $q_{11}(\rightarrow q_{13}q_{5})$

 $q_{12}) \rightarrow q_{14}$

 $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_A$

 $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$

 $[F \rightarrow (E)] = a_{14}$

912

 $Z \to E$, $E \to FE_1$, $E_1 \to \varepsilon | + FE_1$, $F \to i | (E)$ tranzitii noi stari noi $q_0 = [Z \rightarrow .E; \#]$ $a' = [Z \rightarrow E : \#] = a_1$ $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ $H = \{[E \rightarrow .FE_1; \#] = a_2\}$ $q_0i \rightarrow q_1q_2i$ $q_0(\rightarrow q_1q_2($ $q_1\varepsilon \rightarrow \varepsilon$ q_1 $[E \rightarrow F.E_1] = a_3$ $\tau \in FIRST_1(iFOLLOW_1(F))$ 92 $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_A$ $q_2i \rightarrow q_3q_4i$ $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$ $q_2(\rightarrow q_3q_5($ fiind LL(1) strong, capetele din situatii nu le mai pastram (se pot deduce din situatie) $[E \rightarrow FE_1] = a_6$ $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$ q_3 $H = \{ [E_1 \rightarrow .\varepsilon] = q_7 \}$ $q_3) \rightarrow q_6 q_7$ $q_3\# \rightarrow q_6q_7\#$ $[E_1 \rightarrow . + FE_1] = q_8$ $q_3+ \rightarrow q_6q_8+$ $[F \rightarrow i.] = q_9$ $q_4i \rightarrow q_9$ $[F \to (.E)] = q_{10}$ $q_5(\rightarrow q_{10})$ 96 $q_6\varepsilon \rightarrow \varepsilon$ $q_7\varepsilon \rightarrow \varepsilon$ 97 $[E_1 \rightarrow +.FE_1] = q_{11}$ $q_8+ \rightarrow q_{11}$ 98 $q_0 \varepsilon \rightarrow \varepsilon$ q_9 $\tau \in FIRST_1(FE_1FOLLOW(E))$ $[F \to (E.)] = q_{12}$ 910 $H = \{ [E \rightarrow .FE_1] = q_2 \}$ $q_{10}(\rightarrow q_{12}q_{2})$ $q_{10}i \rightarrow q_{12}q_{2}i$ $[E_1 \rightarrow +F.E_1] = q_{13}$ $\tau \in FIRST_1(iFOLLOW_1(F))$ 911 $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_A$ $q_{11}i \rightarrow q_{13}q_4i$ $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$ $q_{11}(\rightarrow q_{13}q_{5})$ $[F \to (E).] = q_{14}$ 912 $q_{12}) \rightarrow q_{14}$ $[E_1 \to +FE_1.] = q_{15}$ $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$ 913 $H = \{ [E_1 \rightarrow .\varepsilon] = a_7$ $q_{13}) \rightarrow q_{15}q_{7}$

 $[E_1 \rightarrow . + FE_1] = q_8$

 $q_3\# \rightarrow q_6q_7\#$

 $q_{13}+ \rightarrow q_{15}q_{8}+$

 $Z \to E$, $E \to FE_1$, $E_1 \to \varepsilon | + FE_1$, $F \to i | (E)$ tranzitii noi stari noi $q_0 = [Z \rightarrow .E; \#]$ $a' = [Z \rightarrow E : \#] = a_1$ $\tau \in FIRST_1(FE_1FOLLOW_1(E)) = \{i, (\}$ $H = \{[E \rightarrow .FE_1 : \#] = a_2\}$ $q_0i \rightarrow q_1q_2i$ $q_0(\rightarrow q_1q_2($ $q_1\varepsilon \rightarrow \varepsilon$ q_1 $[E \rightarrow F.E_1] = a_3$ $\tau \in FIRST_1(iFOLLOW_1(F))$ 92 $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_A$ $q_2i \rightarrow q_3q_4i$ $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$ $q_2(\rightarrow q_3q_5)$ fiind LL(1) strong, capetele din situatii nu le mai pastram (se pot deduce din situatie) $[E \rightarrow FE_1] = a_6$ $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$ q_3 $H = \{ [E_1 \rightarrow .\varepsilon] = q_7 \}$ $q_3) \rightarrow q_6 q_7$ $q_3\# \rightarrow q_6q_7\#$ $[E_1 \rightarrow . + FE_1] = q_8$ $q_3+ \rightarrow q_6q_8+$ $[F \rightarrow i.] = q_9$ $q_4i \rightarrow q_9$ $[F \to (.E)] = q_{10}$ $q_5(\rightarrow q_{10})$ 96 $q_6\varepsilon \rightarrow \varepsilon$ $q_7\varepsilon \rightarrow \varepsilon$ 97 $[E_1 \rightarrow +.FE_1] = q_{11}$ $q_8+ \rightarrow q_{11}$ **9**8 $q_0 \varepsilon \rightarrow \varepsilon$ q_9 $\tau \in FIRST_1(FE_1FOLLOW(E))$ $[F \to (E.)] = q_{12}$ 910 $H = \{ [E \rightarrow .FE_1] = q_2 \}$ $q_{10}(\rightarrow q_{12}q_{2})$ $q_{10}i \rightarrow q_{12}q_{2}i$ $[E_1 \rightarrow +F.E_1] = q_{13}$ $\tau \in FIRST_1(iFOLLOW_1(F))$ 911 $H = \{[F \rightarrow .i, FOLLOW_1(F)] = q_A$ $q_{11}i \rightarrow q_{13}q_4i$ $[F \rightarrow .(E); FOLLOW_1(F)] = q_5$ $q_{11}(\rightarrow q_{13}q_{5}($ $[F \to (E)] = q_{14}$ $q_{12}) \rightarrow q_{14}$ $[E_1 \to +FE_1.] = q_{15}$ $\tau \in FIRST_1(\varepsilon FOLLOW(E_1))$ 913 $H = \{ [E_1 \rightarrow .\varepsilon] = a_7 \}$ $q_{13}) \rightarrow q_{15}q_{7}$ $q_3\# \rightarrow q_6q_7\#$ $[E_1 \rightarrow . + FE_1] = q_8$ $q_{13}+ \rightarrow q_{15}q_{8}+$

> $q_{14}\varepsilon \to \varepsilon$ $q_{15}\varepsilon \to \varepsilon$

914

 q_{15}

```
q_0: [Z \rightarrow \bullet E] q_8: [E_1 \rightarrow \bullet + FE_1]
q_1: [Z \rightarrow E \bullet] \qquad q_9: [F \rightarrow i \bullet]
q_2: [E \to \bullet FE_1] \quad q_{10}: [F \to (\bullet E)]
q_3: [E \rightarrow F \bullet E_1] \quad q_{11}: [E_1 \rightarrow + \bullet F E_1]
q_4: [F \rightarrow \bullet i] q_{12}: [F \rightarrow (E \bullet)]
q_5: [F \rightarrow \bullet(E)] q_{13}: [E_1 \rightarrow +F \bullet E_1]
q_6: [E \to FE_1 \bullet] \quad q_{14}: [F \to (E) \bullet]
q_7: [E_1 \to \bullet \epsilon] \qquad q_{15}: [E_1 \to +FE_1 \bullet]
q_0i \rightarrow q_1q_2i, \qquad q_0(\rightarrow q_1q_2),
q_1 \to \epsilon,
 q_2i \rightarrow q_3q_4i, \qquad q_2(\rightarrow q_3q_5),
 q_3 \# \to q_6 q_7 \#, \qquad q_3) \to q_6 q_7), \qquad q_3 \# \to q_6 q_8 \#,
q_4i \rightarrow q_9
 q_5(\rightarrow q_{10},
 q_6 \to \epsilon,
 q_7 \to \epsilon,
 q_8 + \to q_{11},
 q_0 \to \epsilon.
 q_{10}i \to q_{12}q_2i, \qquad q_{10}(\to q_{12}q_2),
 q_{11}i \to q_{13}q_4i,
                                 q_{11}(\to q_{13}q_5(,
 q_{12}) \to q_{14},
 q_{13}\# \to q_{15}q_7\#, \quad q_{13}) \to q_{15}q_7), \quad q_{13}+\to q_{15}q_8+,
q_{14} \rightarrow \epsilon,
 q_{15} \rightarrow \epsilon
```

Algoritm derivator LL(1)

Convertirea automatului LL(1) in proceduri recursive: Descendenta recursiva (Recursive descent)

- derivator descendent recursiv: starea automatului este o pozitie din derivator
- stiva locatii de unde derivatorul poate relua executia
- ▶ daca starea e $[X \to \mu.B\nu; \omega]$, $B \in N$: se pune pe stiva informatia despre $[X \to \mu B.\nu; \omega]$ inainte de a lua in considerare $B \to \beta$.
- daca folosim limbaje de programare cu suport pt recursivitate: procedura pt fiecare nonterminal B + mecanismul standard de recursivitate pentru a implementa stiva automatului

Schema de program

$ extbf{q} ightarrow arepsilon$	q: end
qt o q'	q: if symbol = t then next_symbol else error; q'
	q: X; q' :
	proc X:
$qt_1 \to q'q_1t_1$	begin
	case symbol of
$qt_m o q'q_mt_m$	t_1 : begin q_1 : end;
	t_m : begin q_m : end;
unde	otherwise error
$q = [Y \rightarrow \mu.X\nu;]$	end
	end

Reguli de transformare

- nonterminal X procedura X; simbolul de start programul principal
- 2. corpul functiei X:
 - ► ramificare case pt productiile cu X in partea stanga
 - fiecare nonterminal din partea dreapta a productiei apel al procedurii corespunzatoare
 - fiecare terminal din partea dreapta a productiei verificare a presentei terminalului, urmat de apel al next_symbol
- 3. daca niciunul dintre terminalele asteptate nu e prezent apel functia de tratare a erorilor

```
Pt tranzitii qt_1 \rightarrow q'q_1t1...
  schema program indica:
     q: F(); q'
      procedura F() - case pt toate t_i

ightharpoonup q_2 i 
ightharpoonup q_3 q_4 i, q_2 (
ightharpoonup q_3 q_5 (
     q_4 i \rightarrow q_9, q_9 \rightarrow \varepsilon, q_5 (\rightarrow q_{10},
     q_{10}i \rightarrow q_{12}q_2i, q_{10}(\rightarrow q_{12}q_2),
     q_{12}) \to q_{14}

ightharpoonup q_2 = [E \to .FE_1], q_3 = [E \to F.E_1], q_{10} = [F \to (.E)]
q2: F(); q3
procedure F()
{ case symbol of
    'i' : { q4: if (symbol == 'i') then next_symbol else
         error();
    '(' : { q5: if (symbol == '(') then next_symbol else
         error():
               q10: E();
               q12: if (symbol == ')') then next_symbol else
                    error():
               q14: ;}
     otherwise error(): }
                                                         4 D > 4 B > 4 B > 4 B > 9 Q P
```

```
derivator()
                                procedure E()
{ q0: E()
                                { q2: F();
 q1: if (symbol != '#')
                                q3: E1();
       error();
                                  q6: ;
procedure E1()
{ case symbol of
    '#' , ')' : q7: ;
    ·+ · · {
          q8: if (symbol == '+') next_symbol(); else error
             ():
          q11: F();
          q13: E1;
         q15: ;
    otherwise : error();
procedure F()
{ case symbol of
   'i' : { q4: if (symbol == 'i') then next_symbol else
      error():
         q9: ;}
   '(' : { q5: if (symbol == '(') then next_symbol else
      error():
          q10: E();
           q12: if (symbol == ')') then next_symbol else
               error();
           q14: ;}
                                      ◆ロト ←問 ト ← 重 ト ← 重 ・ 夕 Q @
    otherwise error(); }
```

Parsing table - tabel de derivare

- ▶ Ullman 4.4 . Nonrecursive predictive parsing
- ► Table-driven predictive parsing: input, stiva, parsing table.
- ► Tabel de derivare: M[A,a] A nonterminal, a terminal sau #

Exemplu de tabel de derivare

		lookahead				
	i	+	*	()	#
E	$E \rightarrow TE'$			E o TE'		
E'		$E' \rightarrow +TE'$			$E' o \varepsilon$	$E' o \varepsilon$
T	T o FT'			T o FT'		
T'		T' o arepsilon	T' o *FT'		T' oarepsilon	T' oarepsilon
F	$F \rightarrow i$			$F \rightarrow (E)$		

$$P = \{E \rightarrow TE' \\ E' \rightarrow +TE' | \varepsilon$$
$$T \rightarrow FT'$$
$$T' \rightarrow *FT' | \varepsilon$$
$$F \rightarrow (E) | id \}$$

Algoritm de derivare predictiva cu tabel de derivare

```
#S (simbol de start) pe stiva, string# la intrare
set ip to point to the first symbol of input string
repeat
 let X be the top stack symbol and a the symbol pointed to
      by ip
  if X is a terminal or # then
     if X = a then
        pop X from the stack and advance ip
     else error()
 else
     if M[X,a] = X -> Y1 Y2 ... Yk then begin
        pop X fro the stack
        push Yk, Yk-1, ... Y1 onto the stack, with Y1 on top
        output the production X-> Y1 Y2 ... Yk
     else error()
unt.il X=#
```

Algoritm de derivare predictiva cu tabel de derivare

```
#S (simbol de start) pe stiva, string# la intrare
set ip to point to the first symbol of input string
repeat
  let X be the top stack symbol and a the symbol pointed to
      by ip
  if X is a terminal or # then
     if X = a then
        pop X from the stack and advance ip
     else error()
  else
     if M[X,a] = X -> Y1 Y2 ... Yk then begin
        pop X fro the stack
        push Yk, Yk-1, ... Y1 onto the stack, with Y1 on top
        output the production X-> Y1 Y2 ... Yk
     else error()
unt.il X=#
 \{tqt \rightarrow q | t \in T\} \cup
 \{Xq \to x_n...x_1 \ q | X \to x_1x_2...x_n \in P, n > 0, X \in N, X_i \in V\}
```

Exemplu de tabel de derivare

			lookahead	d d		
	id	+	*	()	#
Ε	$E \rightarrow TE'$			E o TE'		
E'		$E' \rightarrow +TE'$			$E' \to \varepsilon$	$E' o \varepsilon$
T	T o FT'			T o FT'		
T'		T' ightarrowarepsilon	T' o *FT'		T' oarepsilon	T' oarepsilon
F	F o id			F o (E)		

simbol	$FIRST_1(X)$	$FOLLOW_1(X)$
E	{(, id}	{),#}
E'	$\{+, \varepsilon\}$	$\{), \#\}$
T	$\{(,id\}$	$\{+, \#,)\}$
T'	$\{*, \varepsilon\}$	$\{+, \#,)\}$
F	$\{(,id\}$	$\{*, +, \#,)\}$

- 1. for each production $A \rightarrow \alpha$ do steps 2 and 3
- 2. for each terminal a in $FIRST(\alpha)$, add $A \to \alpha$ to M[A, a]
- 3. if $\varepsilon \in FIRST(\alpha)$, add $A \to \alpha$ to M[A, b] for each terminal $b \in FOLLOW(A)$. if $\varepsilon \in FIRST(\alpha)$ and $\# \in FOLLOW(A)$, add $A \to \alpha$ to M[A, #]
- 4. Make each undefined entry of M be error

test it online

First, follow sets, predict set

Algoritm First₁ - gramatici fara recursivitate stanga

Nu intra la examen

Se aplica urmatoarele reguli pana cand nu se mai poate reduce nimic

- ightharpoonup FIRST(a) = {a}
- $ightharpoonup X
 ightharpoonup \varepsilon$: $FIRST(X) = \varepsilon$
- \blacktriangleright $X \rightarrow Y_1Y_2Y_3$:
 - ▶ daca $\varepsilon \notin FIRST(Y_1)$ then $FIRST(X) = FIRST(Y_1)$
 - ▶ daca $\varepsilon \in FIRST(Y_1)$ then $FIRST(X) = (FIRST(Y_1) \{\varepsilon\}) \cup FIRST(Y_2Y_3)$

Algoritm *Follow*₁

Nu intra la examen

- penrtu simbolul de start: se adauga {#} in follow(Z)
- ► $X \rightarrow \alpha Y$: FOLLOW(Y) = FOLLOW(X)
- \blacktriangleright $X \rightarrow \alpha Y \beta$:
 - ▶ daca $\varepsilon \notin FIRST(\beta)$ then $FOLLOW(Y) = FIRST(\beta)$
 - ▶ daca $\varepsilon \in FIRST(\beta)$ then $FOLLOW(Y) = (FIRST(\beta) \{\varepsilon\}) \cup FOLLOW(X)$