Setting optimization problem

- Normalize inputs
- Data vanishing and exploding gradients
- Weights initialization

Normalize inputs

• Z – score

$$X \coloneqq \frac{X - \mu}{\sigma}$$

Objective: training deep neural network (L layers)

•
$$w^{[l]} = {1,5 \atop 0} {0 \atop 1,5} \to +\infty$$
: exploding gradient if L is big

•
$$w^{[l]} = \begin{matrix} 0.5 & 0 \\ 0 & 0.5 \end{matrix} \rightarrow 0$$
: Data vanishing if L is big

Solution to this problem:
Weight initialization

Weight initialization

- Set Variance of weights (of the same I):
 - $Var(w_i) = \frac{1}{n}$ with np,random,randn(shape) * np,sqrt(1/n[l-1]) of previous layer
 - If we use ReLU function $Var(w_i) = \frac{2}{n}$
 - Xavier initialization: for tanh activation function $\sqrt{\frac{1}{n^{[l-1]}}}$ or $\sqrt{\frac{2}{n^{[l-1]}*n^{[l]}}}$