位相とその例

芝浦工業大学 数理科学研究会

BV15005 石川直幹

平成29年11月3日

研究動機

芝浦祭の研究発表の準備をしていたところ, 自身の位相の理解が十分でないことが致命的となり, 研究が止まってしまった. それを受け, 今回は位相について, 例を多く取り上げながら, 勉強したので, その内容をまとめた.

1 位相空間

1.1 位相の基本概念

定義 1.1 $X \neq \emptyset$, \mathcal{O} : ベキ集合 $P(x) = 2^X$ の部分集合とすると \mathcal{O} が次の条件

- (O_1) $X \in \mathcal{O}$, $\emptyset \in \mathcal{O}$.
- (O_2) $O_1, \ldots, O_k \in \mathcal{O} \Rightarrow O_1 \cap \cdots \cap O_k \in \mathcal{O}$.
- (O_3) $(O_{\lambda}|\lambda \in \Lambda) \in \mathcal{O} \Rightarrow \bigcup_{\lambda \in \Lambda} O_{\lambda} \in \mathcal{O}.$

を満たすとき、集合 X の位相といい、位相が定義された集合 (X,\mathcal{O}) を位相空間という。また、位相 \mathcal{O} の元を (X,\mathcal{O}) の開集 合 $(\mathcal{O}-$ 開集合) といい、 (X,\mathcal{O}) の部分集合が閉集合 $(\mathcal{O}-$ 閉集合) とは、その補集合が開集合であることと定義する。

位相空間 (X, \mathcal{O}) の \mathcal{O} の部分集合 \mathcal{B} について, どんな \mathcal{O} -開集合 \mathcal{O} に対しても, \mathcal{B} のある部分集合 \mathcal{B}_0 を選んで,

$$O = \cup \mathscr{B}_0$$

とできるとき、 \mathscr{B} を位相 \mathscr{O} の開基であるという。また、 (X,\mathscr{O}) の $x\in X$ の近傍系 $\mathfrak{N}(x)$ の部分集合 $\mathfrak{B}(x)$ について, $N\in\mathfrak{N}(x)$ ならば, $U\subset N$ となる元 $U\in\mathfrak{B}$ が常に存在するとき, \mathfrak{B} を点x の基本近傍系という。点x の開近傍の全体,すなわち,点x を含む \mathscr{O} -開集合の全体は点x の基本近傍系である。

定義 1.2 位相空間 (X,\mathcal{O}) において, 任意の開被覆 U が必ず高々可算個の部分被覆 U' をもつとき, (X,\mathcal{O}) は Lindelöf であるという.

コンパクトは任意の開被覆Uが必ず有限個の部分被覆U'をもつので、コンパクトならば Lindelöf であることが分かる.

1.2 可算公理と分離公理

定義 1.3 位相空間 (X, \mathcal{O}) の各点が高々可算個の近傍からなる基本近傍系を持つとき, (X, \mathcal{O}) および \mathcal{O} は第 1 可算公理を満たすという. また, \mathcal{O} が高々可算個のからなる開基を持つとき, (X, \mathcal{O}) および \mathcal{O} は第 2 可算公理を満たすという.

定義 1.4 位相空間 (X, \mathcal{O}) が次の条件

 (T_4) $\forall A_1, A_2$:閉集合 $(A_1, A_2 \subset X, A_1 \cap A_2 = \emptyset)$, $\exists O_1, O_2$:開集合 s.t. $A_1 \subset O_1, A_2 \subset O_2, O_1 \cap O_2 = \emptyset$.

を第 4 分離公理または Tietze の公理といい, $\forall x,y \in S$ に対し, x の近傍で y を含まないものが存在していて, かつ (T_4) を満たす位相空間 (X,\mathcal{O}) を T_4 -空間または正規空間という.

また, 正規空間であることと, \mathcal{O} -閉集合 F と \mathcal{O} -開集合 G について.

$$F \subset G \Rightarrow F \subset U, \overline{U} \subset G$$

となる. F, G が存在することは同値である.

2 Sorgenfray 直線

位相学において代表的な反例として Sorgenfray 直線がある. Sorgenfray 直線の性質としては、主に、

- 1. 第1可算公理を満たすが、第2可算は満たさない.
- 2. Lindelöf であるが、第2可算公理を満たさない.
- 3. 正規空間であるが、直積は正規空間ではない.

が挙げられる. 今回は, Sorgenfray 直線が上の性質をもつことの証明を主に発表する.

定義 2.1 (Sorgenfrey 直線) $X = \mathbb{R}$ 上に半開区間

$$\mathscr{B}_{Sor} = \{ [a, b) \mid a < b, \ a, b \in \mathbb{R} \}$$

で開基を定め、これによって位相を定めた位相空間を Sorgenfrey 直線という.

今後の課題

今回は、同相写像や連結性に対する議論がほとんどできなかったので、豊富な例と合わせて勉強したい. また、個人的に興味のある代数学や解析学に、今回学んだ位相の知識や経験を生かしていきたい.

参考文献

- [1] 松坂和夫, 集合·位相入門, 岩波書店, 2008年.
- [2] 内田伏一, 集合と位相, 裳華房, 2015年.
- [3] 川崎徹郎, 位相空間, pc1.math.gakushuin.ac.jp/~kawasaki/16isoukuukan.pdf, 2017/11/02 最終アクセス.