

Figure 1: B — MESFET element.

```
\mathit{f} \mathsf{REEDA}^{\mathit{TM}} \mathit{Form} \colon \mathsf{mesfetm} \colon \! \langle \mathsf{instance} \; \mathsf{name} \rangle \; n_1 \; n_2 \; n_3 \; \; \langle \mathsf{parameter} \; \mathsf{list} \rangle
                        is the drain node
                        is the gate node
                 n_2
                        is the source node
                 n_3
 parameter list
                        see table 1 for parameter list
                     is the drain node
                     is the gate node
                     is the source node
 ModelName
                     is the model name
                     is the optional relative area factor. (Units: none; Default: 1; Symbol:Area)
           Area
Example:
In fREEDA^{TM}:
mesfetm:b1 2 0 3
```

In SPICE:

B1 3 7 4 GAAS12 0.5

∐ The Materka-Kacprzac Model

Model Parameters:

Name	Description	Units	Default
AFAB	Slope factor of breakdown current (AFAB)	1/V	0.0
AFAG	Slope factor of gate conduction current $(AFAG)$	1/V	38.696
AREA	Area Multiplier (AREA)	-	1.0
C10	Gate source Schottky barrier capacitance for (C_{10})	F	0.0
CFO	Gate drain feedback capacitance for (C_{F0})	F	0.0
CLS	Constant parasitic component of gate-source capacitance (C_{LS})	F	0.0
Е	Constant part of power law parameter (E)	-	2.0
GAMA	Voltage slope parameter of pinch-off voltage (γ)	1/V	0.0
IDSS	Drain saturation current for (I_{DSS})	A	0.1
IGO	Saturation current of gate-source Schottky barrier (I_{G0})	A	0.0
K1	Slope parameter of gate-source capacitance (K_1)	1/V	1.25
KE	Dependence of power law on V_{GS} , (K_E)	1/V	0.0
KF	Slope parameter of gate-drain feedback capacitance (K_F)	1/V	1.25
KG	Drain dependence on V_{GS} in the linear region, (K_G)	1/V	0.0
KR	Slope factor of intrinsic channel resistance (K_R)	1/V	0.0
RI	Intrinsic channel resistance for (R_I)	Ω	0.0
SL	Slope of the drain characteristic in the saturated region, (S_L)	S	0.15
SS	Slope of the drain characteristic in the saturated region (S_S)	S	0.0
T	Channel transit-time delay (τ)	S	0.0
VBC	Breakdown voltage (V_{BC})	V	10^{10}
VPO	Pinch-off voltage for (V_{P0})	V	-2.0

The physical constants used in the model evaluation are

k	Boltzman's constant	$1.380622610^{-23}\mathrm{J/K}$
q	electronic charge	$1.602191810^{-19}~\mathrm{C}$

Standard Calculations

$$V_{TH} = (kT)/q \tag{1}$$

T is the analysis temperature

Intrinsic drain source voltage Intrinsic gate source voltage Intrinsic gate drain voltage

Device Equations:

Current Characteristics

$$I_{DS} = Area I_{DSS} \left[1 + S_S \frac{V_{DS}}{I_{DSS}} \right] \left[1 - \frac{V_{GS}(t-\tau)}{V_{P0} + \gamma V_{DS}} \right]^{(E+K_E V_{GS}(t-\tau))}$$

$$\times \tanh \left[\frac{S_L V_{DS}}{I_{DSS}(1 - K_G V_{GS}(t-\tau))} \right]$$
(2)

$$I_{GS} = AreaI_{G0} \left[e^{A_{FAG}V_{GS}} - 1 \right] - I_{B0} \left[e^{-A_{FAB}(V_{GS} + V_{BC})} \right]$$
 (3)

$$I_{GS} = AreaI_{G0} \left[e^{A_{FAG}V_{GS}} - 1 \right] - I_{B0} \left[e^{-A_{FAB}(V_{GS} + V_{BC})} \right]$$

$$I_{GD} = AreaI_{G0} \left[e^{A_{FAG}V_{GD}} - 1 \right] - I_{B0} \left[e^{-A_{FAB}(V_{GD} + V_{BC})} \right]$$
(4)

$$R_{I} = \begin{cases} R_{10}(1 - K_{R}V_{GS})/Area & K_{R}V_{GS} < 1.0\\ 0 & K_{R}V_{GS} \ge 1.0\\ 2 \end{cases}$$
 (5)

Capacitance

 $C_{LVL} = 1$ (default) for the standard Materka-Kacprzak capacitance model described below is used. The Materka-Kacprzak capacitances are

$$C'_{DS} = C_{DS} \tag{6}$$

$$C'_{GS} = \begin{cases} \begin{bmatrix} C_{10}(1 - K_1 V_{GS})^{M_{GS}} + C_{1S} \end{bmatrix} & K_1 V_{GS} < F_{CC} \\ [C_{10}(1 - F_{CC})^{M_{GS}} + C_{1S}] & K_1 V_{GS} \ge F_{CC} \end{cases}$$

$$C'_{GD} = \begin{cases} Area \begin{bmatrix} C_{F0}(1 - K_1 V_1)^{M_{GD}} \end{bmatrix} & K_1 V_1 < F_{CC} \\ Area \begin{bmatrix} C_{F0}(1 - F_{CC})^{M_{GD}} \end{bmatrix} & K_1 V_1 \ge F_{CC} \end{cases}$$

$$(8)$$

$$C'_{GD} = \begin{cases} Area \left[C_{F0} (1 - K_1 V_1)^{M_{GD}} \right] & K_1 V_1 < F_{CC} \\ Area \left[C_{F0} (1 - F_{CC})^{M_{GD}} \right] & K_1 V_1 \ge F_{CC} \end{cases}$$
(8)

Version: 2000.09.01

Credits:Name Affiliation Date Logo Carlos E. Christofferson NC State University Sept 2000 NC STATE UNIVERSITY www4.ncsu.edu/~ cechrist