

Metabolic flux & modeling

Prof. Dr. Boas Pucker (Plant Biotechnology and Bioinformatics)

Availability of slides

- All materials are freely available (CC BY) after the lectures:
 - O StudIP: Lecture: Grundlagen der Biochemie und Bioinformatik der Pflanzen (Bio-MB 09)
 - Skype: (link shared via email)
 - GitHub: https://github.com/bpucker/teaching

- Questions: Feel free to ask at any time
- Feedback, comments, or questions: b.pucker[a]tu-braunschweig.de

My figures and content can be re-used in accordance with CC-BY 4.0, but this might not apply to all images/logos. Some figure were constructed using bioRender.com.

Metabolism

- Metabolism:
 - o Biochemical modification of chemical compounds in living organisms
 - Enzymatic transformation of organic molecules in cells
 - All processes handling substances in an organism
- Metabolism requires input (substrates) and generated output (products)
- Enzymes catalyze the reactions (facilitation)
- Examples:
 - gene expression
 - biosynthesis
 - signaling

Plant metabolites

- Extremely diverse specialized metabolism
- Many metabolites are restricted to one or a few species
- 200,000-1,000,000 metabolites (estimated)
- Major groups:
 - Phenylpropanoids
 - Benzenoids
 - Flavonoids
 - Terpenes
 - N-containing compounds

Enzymes

- Bind substrates and facilitate conversion
- Enzymes do not change direction of reaction
- Enzymatic activity depends on:
 - \circ pH
 - Temperature
 - Substrate concentration
 - Product concentration

Metabolic networks

- Metabolism of plants can be divided into reactions that form pathways/networks
- Many steps/pathways are still unknown resulting in gaps (12k different flavonoids)
- Metabolism is regulated by external factors e.g. environmental conditions
- Metabolism can be described by a metabolic model

What is a metabolic model?

- Simplified illustration of a metabolism based on genome sequence annotation
- Simplification can cause differences between prediction and reality
- Enzymes, substrate, intermediates, and products are displayed
- Metabolic networks are influenced by genetic regulation (often ignored)

What is the purpose of metabolic models?

- Understand (complex) biological systems
 - Example: flux of metabolites into different branches of flavonoid biosynthesis
 - Example: diseases involving multiple factors
- Identification of targets for engineering
 - Example: find bottleneck in the flavonol biosynthesis
- Prediction of behaviour of biological systems
 - Example: what is the consequence of a FLAVONOL SYNTHASE (FLS) knock-out

Competing branches

- Different branches of a pathway can compete for substrate
- Activity of different branches can vary between conditions/tissues
- Metabolic modeling can be applied to optimize flux through pathway

What is needed for a metabolic model?

- 1. Knowledge about metabolic network (connections of metabolites)
- 2. Metabolite concentrations
- 3. Enzyme properties that determine reactions

(1) Knowledge about metabolic networks

- Pathway databases
 - KEGG
 - MetaCyc
- Information from the literature
 - PubMed
 - GoogleScholar
- Knock-out experiments to understand pathway topology

(2) Metabolite concentrations

- Metabolite concentrations can be taken from the literature
- HPLC allows to quantify metabolite concentrations in a sample
- Simulation of a concentration range if no information are available

(3) Enzyme properties

- K_M = substrate affinity
- V_{max} = reaction speed
- K₁ = affinity for inhibitor
- enzyme abundance ([E]_T) = transcription, transcript stability, translation efficiency, protein stability
- $k_{cat} = V_{max} / [E]_{T}$

Summary of data sources

Database/ Resource	Scope				
	Enzymes	Genes	Reactions	Pathways	Metabolites
KEGG	Х	Х	x	х	х
ВіоСус	Х	Х	х	Х	х
MetaCyc	х		X	х	х
ENZYME	х		X		х
BRENDA	х		X		х
PubMed	х	х	X	х	х
Google Scholar	х	Х	x	Х	х

The language of systems biology

- SBML = Systems Biology Markup Language
- Similar to HTML, but for biology
- Formal description of biological processes

```
<?xml version="1.0" encoding="UTF-8"?>
<sbml level="2" version="1" xmlns="http://www.sbml.org/sbml/level2">
 <model name="example">
   <compartment id="cell" size="1e-15" />
   </listOfCompartments>
   Species>
    <species id="A" compartment="cell"</pre>
                  initialConcentration="0.6" />
    <species id="B" compartment="cell"</pre>
                  initialConcentration="0.3" />
   </listOfSpecies>
   <parameter id="k" value="1" />
   </list0fParameters>
   <reaction id="AinB">
      <speciesReference species="A" />
      <speciesReference species="B" />
      <kineticLaw>
        <parameter id="k" value="0.1">
        </list0fParameters>
        <math xmlns="http://www.w3.org/1998/Math/MathML">
         <apply>
           <times/>
           <ci>ci>cell</ci>
           <ci>k</ci>
           <ci>A</ci>
         </apply>
        </kineticLaw>
    </reaction>
   </model>
</sbml>
```


Modeling metabolic pathways

- Different methods for modeling metabolic networks:
 - Ordinary differential equation (ODE) systems
 - Each compound concentration in the system is described by a differential equation
 - System needs to be solved to understand a pathway
 - Petri nets
 - System with token that are passed through the system
 - Metabolic reactions are represented by transitions
 - Named after Carl Adam Petri

Differential equation system

$$A \xrightarrow{k_{cat1}} B \xrightarrow{k_{cat3}} C$$

$$k_{cat2} \qquad k_{cat4}$$

$$\frac{d[A]}{dt} = \frac{k_{cat2} * [B]}{K_{M2} + [B]} - \frac{k_{cat1} * [A]}{K_{M1} + [A]}$$

$$\frac{d[B]}{dt} = \frac{k_{cat1} * [A]}{K_{M1} + [A]} + \frac{k_{cat4} * [C]}{K_{M4} + [C]} - \frac{k_{cat2} * [B]}{K_{M2} + [B]} - \frac{k_{cat3} * [B]}{K_{M3} + [B]}$$

$$\frac{d[C]}{dt} = \frac{k_{cat3} * [B]}{K_{M3} + [B]} - \frac{k_{cat4} * [C]}{K_{M4} + [C]}$$

Petri nets

- Metabolites are represented by transitions
- Reactions are represented by edges
- Tokens move along the edges between transitions
- Colored tokens can be used to represent different substrates of the same enzyme

Tools

- VANESA: Petri net-based tool for modeling
- CellDesigner: differential equation system-based modeling
- Cytoscape: visualization of systems biology data sets
- bio.tools: overview of additional tools (https://bio.tools/)

VANESA (Petri nets)

- Open source tool for metabolic simulation based on petri nets
- Graphical user interface for construction of model
- Visualization of model and results
- Modeling based on input values

https://cbrinkrolf.github.io/VANESA/ Brinkrolf et al., 2014: biecoll-jib-2014-239 Brinkrolf et al., 2018: 10.1515/jib-2018-0018

Brinkrolf et al., 2021: 10.1016/j.biosystems.2021.104531

CellDesigner

- Software for the modeling of biochemical networks
- Graphical user interface facilitates use by biologists
- Available for Windows, Mac, Linux: https://www.celldesigner.org/
- SBML files are visualized and modified

Cytoscape

- Open source tool for network data integration, analysis, and visualization
- Graphical user interface makes application easy
- Co-expression networks can be visualized
- Transcriptional/metabolic up- and down-regulation can be displayed

Shannon et al., 2003: 10.1101/gr.1239303 Madrova et al., 2022: 10.3390/metabo12030241

Time for questions!

Questions

- 1. What are important groups of specialized metabolites in plants?
- 2. What is the influence of enzymes on reactions?
- 3. What are the objectives of metabolic modeling?
- 4. Which tools are available to visualize metabolic networks?
- 5. Which information is required to build a metabolic model?
- 6. Which enzyme properties are important in the context of metabolic modeling?

