VLSI LAB Digital Assignment 10

Submitted by:

Swarup Tripathy — 19BEE0167

School of Electrical Engineering

Faculty: Professor Balamurugan S

Course: **EEE-4028**

Course Name: VLSI Lab

Lab Slot: **L43** + **L44**

This work is submitted in partial fulfilment of the requirement of the award of the degree of Bachelor of Technology in EEE

April 21, 2022

DCT DESIGN

Objectives

- 1. To provide students with the background needed to design, develop, and test digital arithmetic circuits using IEEE standard Verilog HDL.
- 2. To provide an understanding complex arithmetic circuit design principles and its architecture design.

Outcomes

1. After completion of this course the students will be familiar with design and implementation of Digital Arithmetic building blocks using Verilog HDL and Modelsim Software.

AIM

1. To design a DCT.

REQUIRED SOFTWARE

- 1. Model sim software for simulation
- 2. Microsoft Visio for making flowchart
- 3. Documentation to be done using LTFX

CIRCUIT DIAGRAM

DCT 4-POINT DESIGN

Swarup Tripathy - 19BEE0167

Design Code

1. **Verilog Module** — designcode.v

endmodule

2. **Test Fixture** — Test.v

```
module test;
reg signed[3:0]x0,x1,x2,x3;
wire signed[9:0]y0,y1,y2,y3;
DCT_4point UUT(x0,x1,x2,x3,y0,y1,y2,y3);
initial begin
x0=1;
x1=2;
x2=3;
x3=4;
#10;
end
endmodule
```

3. Output

Result

1. Successfully the 4-point DCT has been designed and the output was verified.

```
DCT - 4 POINT
 >> DesignCode · V
     module ICT 4 point (input signed (3:0) x0, x1, x2, x3,
                         output signed [9:0] yo, 41,42,43);
     wire signed [4:0] po, mo, p1, m1;
     assign \rho 0 = x0 + x3;
    assign m0 = x0-x3;
    assign p1 = x1 + x2;
    assign m1 = x1 - x2;
    paranuter c1=1;
    parameter c2 = 2;
    parameter c3 = 3;
    assign y0 = (p0+p1) * c2;
    assign y1 = (m0 * c1) + (m1 * c3);
    assign 42 = (p0-p1) * c2;
    assign y3 = (m0 * (3) - (m1 * (1));
     endmodule
>> TestRenchode · V
     module testbenchance ().
     sug signed [3:0] no, n1, x2, x3;
     wire signed [9:0] yo, y1, y2, y3;
     DCT - 4 point UUT (20, x1, x2, x3, y0, y1, y2, y3);
```


Inference

1. In this experiment learnt about how to construct a 4point DCT.