Wstęp Tworzenie silnika szachowego Ulepszenia Testowanie Dalsze kierunki rozwoju

Bot dla gry w Szachy

Krzysztof Wiśniewski dr Maciej Gębala, prof. uczelni

Politechnika Wrocławska Wydział Informatyki i Telekomunikacji Informatyka Algorytmiczna

Styczeń 2025

Wstęp

Etapy pracy nad programem

- Stworzenie silnika szachowego
- Ulepszenie algorytmów oceny i wyszukiwania
- Testowanie siły silnika

Reprezentacja szachownicy i generowanie ruchów

Reprezentacja szachownicy

- Tablica pól szachowych
- Tablice bitowe bierek

Generowanie ruchów pionów

moves = empty

 $moves = moves \land (pionki_w \ll 16)$

 $moves = moves \land (empty \ll 8)$

 $moves = moves \land rank4$

Hyperbola Quintessence

$$linia = (o-2r) \oplus \left[(o'-2r') \right]'$$

Wyszukiwanie i ewaluacja

Charakterystyka szachów

- Gra dwuosobowa
- @ Gra o sumie stałej
- Postać ekstensywna
- Gra skończona
- Gra o doskonałej informacji

Gra ściśle konkurencyjna

Aby uzyskać maksymalną wypłatę, gracz dąży do tego, by zminimalizować sumę wypłat przeciwnika.

Ocena heurystyczna

- Ocena stanu gry
- Wartość bierek

Ulepszenia dla algorytmów wyszukiwania - I

Alfa-Beta ciecie

n	$(b_f)^n$	$b_f^{\lceil \frac{n}{2} \rceil} + b_f^{\lfloor \frac{n}{2} \rfloor} - 1$		
1	35	35		
2	1 225	69		
3	42 875	1 259		
:	:	· :		
10	$\simeq 2,76*10^{15}$	$\simeq 1,05 * 10^8$		

Lista zaimplementowanych ulepszeń algorytmów wyszukiwania

Biblioteka otwarć, Alfa-Beta cięcie, Ewaluacja stanów cichych, Sortowanie ruchów, Tabela transpozycji, Okno estymacji.

Ulepszenia dla algorytmów wyszukiwania - II

Start pos	Stockfish	Wersja podstawowa	Alfa-beta	Quiescence	Move ordering	Estimation	Transposition
1.	20	20	20	20	20	20	20
2.	400	400	186	194	214	214	214
3.	8 902	8 902	2 262	2 279	2 360	2741	2 360
4.	197 281	197 281	20 596	23 119	20 428	23 597	17 481
5.	4865609	4 865 609	223 840	225 836	173 183	199 062	123 575
6.	119 060 324	119 060 324	3 349 766	1 606 833	1 019 119	1 245 427	615 267
7.	3 195 901 860	xxx	20 668 442	19 449 096	7 934 005	9 078 322	3 923 917
8.	84 998 978 956	xxx	275 274 306	183 000 753	57 778 837	70 097 202	23 360 242

Ulepszenia dla oceny heurystycznej

Lista zaimplementowanych ulepszeń oceny heurystycznej

Tablice figur, Ochrona króla, Struktura pionów, Moment gry.

Testowanie siły silnika

Platforma Lichess

- **1 Ranking silnika** 1617ELO
- Ranking przeciwnika 1 625.85ELO
- **3** Wśród graczy 38%
- **Q** Ruchów na grę 43.41
- **⊙** Czas ruchu 5.65 sekundy
- **10** Wygranych 41.1%
- **⊘** Remisów 16.9%
- Strata do ruchu optymalnego – 45.29 ACPL

Sekwencyjny test probabilistyczny

$$H_0: p = p_0, H_1: p = p_1$$

 $S_i = S_{i-1} + \log \Lambda_i$

- $S_i \leq \alpha : H_0$
- $S_i \geq \beta$: H_1
- $S_i \in (\alpha, \beta)$: brak decyzji

Dalsze możliwości rozwoju

Wybrane przykłady

- Algorytm genetyczny
- ② Dynamiczne sortowanie ruchów
- Sieć neuronowa
- Połączenie z LLM

Dziękuję za uwagę!