CHAPTER 2

RELATIONS AND FUNCTIONS

Ordered Pair

A pair of numbers or elements grouped together in a definite order is known as ordered pair. If a and b are any two numbers, then (a, b) is called ordered pair a, b. Here 'a' is known as first element or x element or x coordinate or abscissa and 'b' is known as second element or y element or y co-ordinate or ordinate.

E.g.:
$$(2,3),(-1,-2),(\frac{1}{2},\frac{2}{3}),(x, y)$$
, etc. are ordered pairs.

Note:
$$\{a,b\} = \{b,a\}$$
 but $(a,b) \neq (b,a)$ unless $a = b$

Cartesian product of sets

If A and B be any two non-empty sets, then the Cartesian product or cross product of $A \times B$ is the set of all ordered pairs of elements from A to B and the Cartesian product or cross product of $B \times A$ is the set of all ordered pairs of elements from B to A.

i.e.,
$$A \times B = \{ (x, y) : x \in A, y \in B \}.$$

And $B \times A = \{ (x, y) : x \in B, y \in A \}$

Note: If either A or B is a null set, then $A \times B$ will also be a null set, i.e., $A \times B = \phi$ and $B \times A = \phi$

Note:

- Two ordered pairs are equal, iff the corresponding first elements are equal and the second elements are also equal. i.e., if $(a,b)=(c,d) \Rightarrow a=c$ and b=d
- If there are m elements in A and n elements in B, then there will be 'mn' elements in $A \times B$. i.e., if n(A) = m and n(B) = n, then $n(A \times B) = mn$ and $n(B \times A) = nm = mn$ elements.
- If A and B are non-empty sets and either A or B is an infinite set, then $A \times B$ is also infinite.
- If A = B, then $A \times B$ becomes $A \times A$ and is denoted by A^2 .
- $A \times A = \{(a, b) : a, b \in A\}$. Here (a, b) is called an ordered doublet.
- $A \times A \times A = \{(a, b, c) : a, b, c \in A\}$. Here (a, b, c) is called an ordered triplet.
- If set A has m elements and set B has n elements, then number of subsets of $A \times B$ or $A \times B = 2^{mn}$.

- The Cartesian product $R \times R = \{(x, y) : x, y \in R\}$ represents the coordinates of all points in the two dimensional space and the Cartesian product $R \times R \times R = \{(x, y, z) : x, y, z \in R\}$ represents the coordinates of all points in the three dimensional space.
- If a set A has n elements, then $n(A \times A) = n^2$ elements.
- If a set A has n elements, then $n(A \times A \times A) = n^3$ elements.

RELATIONS

Relation means an association of two objects according to some property possessed by them.

E.g.:

- Trivandrum is the capital of Kerala,
- Sita is the wife of Rama,
- 12 is greater than 10,
- {a} is the subset of {a,b}, etc..

Relation R from A to B

A relation R in a set A to a set B is the subset of $A \times B$. If (x,y) is a member of a relation R, then we write xRy and read x is the relation R to y.

Domain of R from A to B: The set of all first elements of the ordered pairs in R from A to B is known as domain of R.

Range of R from A to B: The set of all second elements of the ordered pairs in R from A to B is known as range of R.

Co-domain of R: Set B is known as co-domain.

Consider a relation, $R = \{(x, y) : y = x + 1, x \in A \text{ and } y \in B\}$, where $A = \{0, 1, 2\}$ and $B = \{1, 2, 3, 4\}$. Then

$$R = \{(0,1),(1,2),(2,4)\}$$

Domain of $R = \{0,1,2\}$

Range of $R = \{1, 2, 4\}$

Co-domain of $R = \text{set } B = \{1, 2, 3, 4\}$

Note: $Range \subset Co - domain$

Relation R from B to A

A relation R in a set B to a set A is the subset of $B \times A$. If (x,y) is a member of a relation R, then we write xRy and read x is the relation R to y.

Domain of R from B to A: The set of all first elements of the ordered pairs in R from B to A is known as domain of R.

Range of R from B to A: The set of all second elements of the ordered pairs in R from B to A is known as range of R.

Co-domain of R: Set A is known as co-domain.

Consider a relation, $R = \{(x, y): y = x^2 + 1, x \in B \text{ and } y \in A\}$, where $A = \{1, 2, 3, 5, 10\}$ and $B = \{0, 1, 2, 3\}$. Then

$$R = \{(0,1),(1,2),(2,5),(3,10)\}.$$

Domain of $R = \{0,1,2,3\}$

Range of $R = \{1, 2, 5, 10\}$

Co-domain of $R = \text{set } A = \{1, 2, 3, 5, 10\}$

Representation of a relation:

A relation can be expressed in:

- a) Roster Method,
- b) Set-builder Method,
- c) Arrow diagram and
- d) Graphical method.

E.g.: Let $A = \{1,2,3,4\}$; $B = \{2,3,4\}$

R is a relation from A to B such that $y = x + 2, x \in A$ and $y \in B$.

Roster Method

$$R = \{(1,3),(2,4)\}$$

Domain = $\{1,2\}$

Range = $\{3,4\}$

Set-builder Method

$$R = \{(x, y) : y = x + 2, x \in A \text{ and } y \in B\}$$

Arrow diagram:

Graphical Method

Y

Note: If a set A has m elements and B has n elements, then

No. of relations from A to B = 2^{mn}

No. of relations from B to A = $2^{nm} = 2^{mn}$

FUNCTIONS

Let A and B be any two non-empty sets. A relation from A to B is said to be a function if and only if,

X

- i) if every x element has y element,
- ii) the x element cannot be repeated.

or

- i) If every x in A has image in B,
- ii) And no element in A has not more than one image in B

E.g.: Let $A = \{0,1,2,3,4\}$; $B = \{1,23,5,7,9\}$

Let
$$R = \{(x, y) : y = 2x + 1, x \in A, y \in B\}$$

Note: If a set A has 'm' elements and set B has 'n' elements, then,

- i. No. of functions from A to B = $n(B)^{n(A)} = n^m$
- ii. No. of functions from B to A = $n(A)^{n(B)} = m^n$

E.g.: If set A has 2 elements and set B has 3 elements, then number of functions from:

i. A to B =
$$3^2 = 9$$

ii. B to
$$A = 2^3 = 8$$

Domain, Range and co-domain of a function:

If $f: A \rightarrow B$ is a function from A to B, then

- i) Domain of f = set A
- ii) Range of f = set of all images of elements of A is known as range.
- iii) Codomain of f = set B

Similarly, If $f: B \rightarrow A$ is a function from B to A, then

- iv) Domain of f = set B
- v) Range of f = set of all images of elements of B is known as range.
- vi) Codomain of f = set A

Note: Thus $range \subseteq co-domain$.

Equal functions: If two functions f and g are said to be equal, then,

- i. domain of f = domain of g
- ii. codomain of f = codomain of g

Note: The terms map or mapping are also used to denote function.

If f is a function from A to B, we denote f: A \rightarrow B or $A \xrightarrow{f} B$. If f is a function from A to B and (a, b) \in f, then f(a) = b, where 'b' is called the image of 'a' under f and 'a' is called the pre-image of 'b' under f.

Types of functions:

Real function: A function $f: R \to R$ is said to be a real function, if its domain is a real constant.

Constant function: A function $f: R \to R$ is said to be a constant function if f(x) = c, where 'c' is a constant.

Domain: R, Range : c (a constant)

Graph:

Identity function: A function $f: R \to R$ is said to be an identity function if f(x) = x.

Domain: R

Range: R

Graph:

Modulus function: A function $f: R \to R$ is said to be a modulus function, if $f(x) = |x| = \begin{cases} x, & \text{when } x \ge 0 \\ -x, & \text{when } x < 0 \end{cases}$.

Domain: R

Range : R⁺ (Positive real numbers)

Graph:

Signum Function: A function
$$f: R \to R$$
 is said to be a signum function, if $f(x) = \begin{cases} -1, & \text{if } x < 0 \\ 0, & \text{if } x = 0 \\ 1, & \text{if } x > 0 \end{cases}$

or $f(x) = \frac{|x|}{x}$, $x \ne 0$ and 0 for x = 0 is known as signum function.

Domain: R

Range: $\{-1,0,1\}$, if x < 0, x = 0 and x > 0

Graph

Greatest Integer Function: A function $f: R \to R$ is said to be a greatest integer function, if $f(x) = [x], x \in R$.

Domain : R Range : Integer.

Graph

Note: The above graph is also known as step graph.

Note:

[1]	$0 \le x < 1 = 0$
[2]	$1 \le x < 2 = 1$
[0]	$-1 \le x < 0 = -1$
[1.3]	$1 \le x < 1.3 = 1$
[2.999]	$2 \le x < 2.999 = 2$
[-2.3]	$-3 \le x < -2.3 = -3$

Polynomial Functions: A function $f: R \to R$ is said to be a greatest integer function, if $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + ... + a_3 x^3 + a_2 x^2 + a_1 x + a_0$.

Domain : R Range : R

E.g.:
$$f(x) = x^3 - 2x + 5$$
; $g(x) = 2x^2 + 3x - 1$, etc..

Graphs of polynomial functions:

Rational Function: A function $f: R \to R$ is said to be a greatest integer function, if $f(x) = \frac{ax+b}{cx+d}, x \neq -\frac{d}{c}$.

E.g.:
$$f(x) = \frac{2x+1}{x-2}, x \neq 2$$
; $g(x) = \frac{x-5}{x+1}, x \neq -1$, etc..

- 1. Find the domain of the rational function $f(x) = \frac{2x-3}{1-x}$:
 - f(x) is defined, if $1-x=0 \Rightarrow x=1$.
- 2. Find the domain of the rational function $f(x) = \frac{x^2 3x + 5}{x^2 5x + 6}$:

$$f(x)$$
 is defined, if $x^2 - 5x + 6 = 0 \Rightarrow (x-3)(x-2) = 0 \Rightarrow x = 3$ or $x = 2$

- $\therefore domain = R \{2, 3\}$
- 3. Find the domain and range of the function: $f(x) = \sqrt{4 x^2}$

Let
$$f(x) = \sqrt{4-x^2}$$

i.e,
$$y = \sqrt{4 - x^2}$$
(1)

In order to find the domain, let $4-x^2 \ge 0$

$$4 \ge x^2 \Rightarrow x^2 \le 4 \Rightarrow x \le \pm 2$$

$$\Rightarrow x \ge -2$$
 and $x \le 2$

$$\therefore$$
 domain of f is $[-2,2]$ or $-2 \le x \le 2$

From (1),
$$y \ge 0$$
(2)

To find the range:

Let
$$y = \sqrt{4 - x^2}$$

$$y^2 = 4 - x^2 \Rightarrow x^2 = 4 - y^2$$

$$x = \sqrt{4 - y^2}$$

In order to define x, let $4 - y^2 \ge 0$

$$4 \ge y^2 \Rightarrow y^2 \le 4 \Rightarrow y \le \pm 2$$

$$\Rightarrow$$
 $y \ge -2$ and $y \le 2$ (3)

From (2) and (3), we have

Range of
$$f$$
 is $[0,2]$ or $0 \le x \le 2$

Algebra of functions:

Let f(x) and g(x) be any two functions of x, then

1.
$$f+g=f(x)+g(x)$$

2.
$$f-g=f(x)-g(x)$$

3.
$$f.g = f(x) \times g(x)$$

4.
$$\frac{f}{g} = \frac{f(x)}{g(x)}$$
, provided $g(x) \neq 0$

E.g.: If $f(x) = x^2$ and g(x) = 2x+1, then

$$f + g = f(x) + g(x) = x^2 + 2x + 1 = (x+1)^2$$

$$f - g = f(x) - g(x) = x^2 - (2x+1) = x^2 - 2x - 1$$

$$f.g = f(x) \times g(x) = x^2(2x+1) = 2x^3 + x^2$$

$$\frac{f}{g} = \frac{f(x)}{g(x)} = \frac{x^2}{2x+1}, x \neq -\frac{1}{2}$$

Objective Questions (Try yourself)

- 1. If n(A) = 6 and n(B) = 5, then the number of relations on $A \times B$ is
 - a) 2^{49}
- b) 2^{35}
- c) 2^{25}
- d) 2^{70}
- e) $2^{35 \times 35}$
- 2. Suppose the number of element in set A is p, number of elements B is q and the number of elements in $A \times B$ is 7 then p^2+q^2 ?
 - a) 42
- b) 49
- c) 50
- d) 51
- e) 55
- 3. n(A) = 18, n(B) = 15 and $n(A \cap B) = 5$ then $n[(A \times B) \cap (B \times A)]$ is
 - a) 28
- b) 38
- c) 35
- d) 10
- e) 25
- 4. Let A be the set of first 10 natural numbers and let R be a relation on A defined by $(x, y) \in R \Leftrightarrow x + 2y = 10$ then R^{-1} .
 - a) $\{(2,4),(4,3),(6,2),(8,1)\}$
- b) $\{(2,4),(4,3),(2,6),(1,8)\}$
- c) $\{(4,2),(3,4),(2,6),(1,8)\}$
- d) $\{(4,8),(4,1),(2,6)\}$
- e) None of these.

- 5. If $R = \{(x, x^3) : x \text{ is a prime number} < 10\}$, then Range(R) =
 - a) {125, 27, 8, 341}

b) {27,353,125,7}

c) {18,127,125,343}

- d) {343,125,8,27}
- 6. If a set A has 3 elements and set B has 2 elements, then number of relations from B to A is

a) 32

b) 16

c) 64

d) 32

e) None

7. If $R = \{(1,1),(2,3),(3,5),(4,7)\}$ is a function and this is described by the formula that $g(x) = \alpha x + \beta$, then the value of α and β is

a) $\alpha = 2$; $\beta = 1$

b) $\alpha = 2; \beta = -1$ c) $\alpha = 3; \beta = 1$ d) $\alpha = 2; \beta = -1$ e) $\alpha = -2; \beta = -1$

8. If a set A has 3 elements and B has 2 elements, then the number of functions from B to A is

b) 9

c) 8

d) 4

e) None of these

9. If f(x) = |x| + [x] then $f\left(-\frac{3}{2}\right) + f\left(\frac{3}{2}\right)$ is

a) 1

b) 2

c) $\frac{1}{2}$

10. The domain of the function $f(x) = \frac{1}{\sqrt{4-x^2}}$ is

a) $-2 \le x \le 2$

b) -2 < x < 2 c) $-4 \le x \le 4$

d) -4 < x < 4 e) $-\infty \le x \le \infty$

11. If $f(x) = \log\left(\frac{1-x}{1+x}\right)$, then the value of f(a) + f(b) is

a) $\log\left(\frac{a-b}{1+ab}\right)$ b) $\log\left(\frac{a+b}{1-ab}\right)$ c) $\log\left(\frac{a+b}{1+ab}\right)$

d) $\log \left(\frac{a-b}{1-ab} \right)$ e) None of these

12. The domain of the function |x|+|x-1|+|x-2| is

a) $R - \{1\}$

b) $R - \{2\}$ c) $R - \{1, 2\}$

d) R

e) None of these

13. The range of the function $f(x) = \sin x$ is

a) $\{-1 \le y \le 1\}$ b) $\{-1 \le x \le 1\}$ c) -1 < y < 1

d) -1 < x < 1

e) None of these

14. Let $f\left(x+\frac{1}{x}\right)=x^2+\frac{1}{x^2}, (x \neq 0)$, then $f\left(x\right)$ equals

d) $x^2 - 2$

e) None of these

a) x^2 b) $x^2 - 1$ c) $x^2 + 1$ 15. The domain of the function $f(x) = \sqrt{x - \sqrt{1 - x^2}}$ is

a) $\left| -1, -\frac{1}{\sqrt{2}} \right| \cup \left| \frac{1}{\sqrt{2}}, 1 \right|$

b) [-1,1]

c) $\left| -\infty, -\frac{1}{2} \right| \cup \left| \frac{1}{\sqrt{2}}, \infty \right|$

e) None of these

16. The domain of $\sqrt{x-1} + \sqrt{8-x}$

a) [1,8)

b) (-8,8)

c) [1,8]

d) (1,8)

e) None of these

17. The range of the function $y = \frac{x+2}{x^2-8x+4}$ is

a) $\left(-\infty, -\frac{1}{4}\right)$ b) $R - \left\{-\frac{1}{4}, -\frac{1}{20}\right\}$

c) $\left| -\frac{1}{20}, \infty \right|$ e) None of these

- 18. If $f: R \to R$ be defined by f(x) = 5x 2, then $f^{-1}(x)$ is
- b) $\frac{x-2}{5}$ c) $\frac{x}{5}-2$ d) $\frac{x}{5}+2$
- e) None of these
- 19. The graph of the function y = ax + b, where a and b are constants is a
 - a) straight line
- b) parabola
- c) circle
- d) hyperbola
- e) None of these

- 20. Let $f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}, x \neq -1$, then $f(x) = \frac{1}{x^2}$

- a) x^2 b) x^2-1 c) x^2-2
- d) $x^2 + 2$

CHAPTER 2 RELATIONS AND FUNCTIONS

ASSIGNMENT

	Questions
1.	If $P = \{a,b,c\}$ and $Q = \{q\}$, find $(P \times Q)$ and $(Q \times P)$. Show that $(P \times Q) \neq (Q \times P)$.
2.	Find x and y, if $(x+3, 5)=(6, 2x+y)$.
3.	If A={1,2,3}, B={3,4} and C={4,5,6}, find $A \times (B \cap C)$
4.	Is the relation a function? Give reasons. $f = \{(1,3), (1,5), (2,3), (2,5)\}$
5.	Let $f(x) = x^2$ and $g(x) = 3x + 2$ be two real functions. Then, find $(f+g)(x)$
6.	Let $f: R - \{2\} \rightarrow R$ be defined by $f(x) = \frac{x^2 - 4}{x - 2}$ and $g: R \rightarrow R$ be defined by $g(x) = x + 2$. Find
7	whether $f = g$ or not.
7. 8.	Let A = $\{1,3\}$ and B = $\{2,3,4\}$. Find the number of relations from A to B. If $A \times B = \{(3,2), (3,4), (5,2), (5,4)\}$, find A and B.
9.	Find the domain and range of the real function $f(x) = x^2$
10.	Find the domain and range of the real function $f(x) = - x $
11.	Find the domain and range of the real function $f(x) = \frac{1}{(1-x^2)}$.
12.	If A= $\{1,3,5\}$ and B= $\{x,y\}$ represent $A \times B$ in arrow diagram
13.	Find the domain and range of the function $f(x) = \frac{x^2 - 9}{x - 3}$
14.	Find the domain and range of the function $f(x) = \frac{x^2 - 9}{x - 3}$ Find the domain and range of the function $f(x) = \frac{1}{\sqrt{x^2 - 1}}$
15.	The given figure shows a relation R between two sets P and Q
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Write the relation R in
	i) Set builder form

HSSLIVE,IN rchciit@gmail.com

	ii) Roster form. What is its domain and range and co-domain?
16.	Find the domain and range of the function $f(x)=1- x-3 $
17.	Let $A = \{x \in \mathbb{N} : x^2 - 5x + 6 = 0\}$, $B = \{x \in \mathbb{W} : 0 \le x < 2\}$ and $C = \{x \in \mathbb{N} : x < 3\}$, then verify that
	i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
	ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
18.	Find the domain and range of the real function $f(x) = \sqrt{4-x^2}$
19.	Let R be the relation on Z defined by $R = \{(a,b): a,b \in Z, a^2 = b^2\}$. Find R, domain and range of R
20.	Let $A = \{1,2\}$, $B = \{2,3,4\}$ write:
	a) the number of relations from A to B.
	b) the number of functions from A to B.
	c) the number of functios from B to A.
21.	Determine the domain and range of the relation $R = \{(x+2, x+4) : x \in \{0,1,2,3,4,5\}$
22.	Define a function $f: R \to R$ by $y = f(x) = x^2, x \in R$. What is the domain and range of the function?
	Draw the graph of f .
23.	Find the domain and range of the function $y = \sqrt{x-2}$
24	Let A= $\{1,2,3,4,5,6\}$ Define a relation R from A to A by $R = \{(x, y) : y = x + 2\}$
25.	Let $f(x) = \sqrt{x}$ and $g(x) = x^2 - x$ be two real functions, then find $(f + g)(x)$, $(f - g)(x)$, $(fg)(x)$, $(fg)(x)$.
26.	$\int 1+x , if \ 1 \le x < 2$
	The function f is defined on the set $\{1,2,3,4,5\}$ as follows: $f(x) = \{2x-1 : if \ 2 \le x < 4 .$
	$3x-10$, if $4 \le x < 6$
	Find the range of the function. Find the value of $f(1)$, $f(3)$, $f(5)$.

HSSLIVE.IN rchciit@gmail.com