Customer Churn Prediction in the Telecom Industry

- PRESENTED BY:
 - Vidhi Shukla
 - Unni Krishnan
 - Vamshi Krishna Vallabhaneni

DATE: 10 FEBRUARY 2025

Introduction

Problem Statement:

Customer churn is a critical challenge in the telecom industry.
Predicting churn helps businesses retain highvalue customers.

Objective:

Build a machine learning model to predict churn and provide insights to reduce churn rates.

Data Understanding

Dataset:

The dataset contains customer data with metrics like ARPU, data usage, and recharge history.

Sample features include:

- 1. Total Recharge Amount
- 2. Data Usage
- 3. Call Usage
- 4. Recharge Counts
- 5. Customer Last month Recharge.
- 6. Total Monthly Charges
- 7. VBC(Volume based count)
- 8. Average Revenue per User & Total Data Usage

Exploratory Data Analysis (EDA) Churn Distribution & Recharge Amount Distribution

Churn Distribution:

Show the distribution of churners vs non-churners.

Key Insights:

- 1. High ARPU customers tend to churn less.
- 2. Higher recharge drop correlates with churn.

Feature Engineering

High-Value Customer Filter: Filtered customers based on recharge amount.

Derived Features:

- 1. Recharge Drop
- 2. Call Drop
- 3. Data Usage Drop

These features help in identifying customer churn patterns.

Like: High Value Customers

New Features:

Recharge Drop

Call Drop

Data usage Drop

Modeling Process

Models Used:

Train-Test Split: 80-20

Handling Imbalance: Applied SMOTE to balance the data.

- 1. Logistic Regression
- 2. Random Forest
- 3. XGBoost

Evaluating Logistic Regression Model

Model Performance:

	precision	recall	f1-score	support
0	0.97	0.90	0.94	5484
1	0.41	0.73	0.52	519
accuracy			0.89	6003
macro avg	0.69	0.81	0.73	6003
weighted avg	0.92	0.89	0.90	6003

ROC-AUC Score: 0.8895785813766866

Confusion Matrix:

[[4940 544] [141 378]]

Evaluating Random Forest Model

Model Performance:

	precision	recall	f1-score	support
0	0.97	0.97	0.97	5484
1	0.63	0.63	0.63	519
accuracy			0.94	6003
macro avg	0.80	0.80	0.80	6003
weighted avg	0.94	0.94	0.94	6003

ROC-AUC Score: 0.9322082878340072

Confusion Matrix:

[[5293 191] [190 329]]

Evaluating Random Forest Model

Model Performance:

	precision	recall	f1-score	support
0	0.97	0.97	0.97	5484
1	0.63	0.63	0.63	519
accuracy			0.94	6003
macro avg	0.80	0.80	0.80	6003
weighted avg	0.94	0.94	0.94	6003

ROC-AUC Score: 0.9322082878340072

Confusion Matrix:

[[5293 191] [190 329]]

Model Evaluation

- ▶ Metrics Evaluated:
 - ▶ 1. Accuracy
 - ▶ 2. Precision
 - ▶ 3. Recall
 - ▶ 4. F1-Score
- Random Forest Model performed the best with the highest ROC-AUC score.

Final Model Performance:

	precision	recall	f1-score	support
0	0.97	0.96	0.96	5484
1	0.62	0.63	0.63	519
accuracy			0.94	6003
macro avg	0.79	0.80	0.80	6003
weighted avg	0.94	0.94	0.94	6003

ROC-AUC Score: 0.9327339016708617

Confusion Matrix:

[[5285 199] [191 328]]

Feature Importance & Recommendations

Key Features
Impacting Churn:

- 1. Recharge Drop
- 2. Data Usage Drop
- 3. AON (Age on Network)

Business Recommendations:

- 1. Focus on high-value customers with declining data and recharge usage.
- 2. Implement targeted retention campaigns.

Conclusion

Conclusion:

The model successfully predicts customer churn with key indicators such as recharge drop and data usage decline. Implementing retention strategies based on these insights can reduce churn.

