

TEST REPORT

Date:	201	5-02	-24
-------	-----	------	-----

Report No.: 60.870.15.002.02F

Applicant: Ckicom Technology Limited

Flat F, 4/F, Universal Industrial Centre, 19-21 Shan Mei

Street, Fo Tan, Shatin, N.T., Hong Kong

Description of Samples: Model name: Infant Monitoring System (Indicator)

Model no.: R-125

FCCID: YQKCEIIHR-125

Date Samples Received: 2015-01-09

Date Tested: 2015-01-12 to 2015-02-03

Investigation Requested: FCC Part 15 Subpart C, Section 15.249

Conclusions: The submitted product <u>COMPLIED</u> with the requirements of

Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on

Section 2.2 in this Test Report.

Remarks: ----

Checked by: Approved by:-

Ray Cheung Jeff Pong
Project Engineer Manager

Wireless & Telecom department Wireless & Telecom department

_					
\sim	\sim L	-	_		
		JT	_	•	
\sim	_	41	_		

	Cover Content	Page 1 of 21 Page 2 of 21
<u>1.0</u>	General Details	
1.1	Test Laboratory	Page 3 of 21
1.2	Applicant Details	Page 3 of 21
1.3	Equipment Under Test [EUT]	Page 4 of 21
1.4	Equipment Modification	Page 4 of 21
1.5	Related Submittal(s) Grants	Page 4 of 21
<u>2.0</u>	Technical Details	
2.1	Investigations Requested	Page 5 of 21
2.2	Test Standards and Results Summary	Page 5 of 21
<u>3.0</u>	Test Methodology	
3.1	Radiated Emission	Page 6 of 21
3.2	Field Strength Calculation	Page 6 of 21
3.3	Conducted Emission	Page 6 of 21
<u>4.0</u>	Test Results	
4.1	Field Strength of Fundamental and Harmonics	Page 7-9 of 21
4.2	Spurious Radiated Emission	Page 10-12 of 21
4.3	Out of Band Emissions	Page 13-14 of 21
4.4	Bandwidth Measurement	Page 15-17 of 21
4.5	Conducted Emission	Page 18-20 of 21
<u>5.0</u>	List of Measurement Equipments	Page 21 of 21

Appendix A
Photos of Test Setup

Appendix B External EUT Photos

Appendix C Internal EUT Photos

1.0 General Details

1.1 Test Laboratory

TUV SUD Certification and Testing (China) Co., Ltd Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Shenzhen, 518052 China

Registration Number: 502708

Tested by:

John Zhi

1.2 Applicant Details Applicant

Ckicom Technology Limited

Flat F, 4/F, Universal Industrial Centre, 19-21 Shan Mei Street, Fo Tan, Shatin, N.T., Hong Kong

Manufacturer

Suga Electronic Dongguan Company Limited

Suga High Tech Industrial Park, No.8 Fulong Road, Sanzhong, Qingxi Town, Dongguan, Guangdong, China

1.3 Equipment Under Test [EUT]

Description of EUT

Model Name: Infant Monitoring System (Indicator)

Model No: R-125

FCC ID: YQKCEIIHR-125

Rating: DC 5V, 500mA powered by AC/DC Adaptor

OR

DC 3.7V, 800mAh Li-ion Rechargeable Battery

Antenna Type: PCB Antenna

Antenna Gain: 0 dBi

Operated Frequency: 2402 MHz to 2424 MHz

Modulation: FSK
No. of Channel: 23
Channel Separation: 1 MHz

Channel List: 2402; 2403; 2404; 2405; 2406; 2407; 2408; 2409; 2410; 2411; 2412;

2413; 2414; 2415; 2416; 2417; 2418; 2419; 2420; 2421; 2422; 2423; 2424

Accessories and Auxiliary Equipment: AC/DC Adaptor

EUT Exercising Software: None

General Operation of EUT

The Equipment Under Test (EUT) is an Indicator of Infant Monitoring System.

1.4 Equipment Modification

No modification was made to the tested unit by TÜV SÜD Hong Kong Ltd.

1.5 Related Submittal(s) Grants

This is a single application of certification for this transmitter.

2.0 Technical Details

2.1 Investigations Requested

Perform ElectroMagnetic Interference measurement in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15: 2012 and ANSI C63.4: 2009.

2.2 Test Standards and Results Summary Tables

EMISSION Results Summary							
Test Condition	FCC Test		Test Result				
	Requirement	Pass	Failed	N/A			
Field Strength of Fundamental and Harmonics	Part 15.249 (a),(e)						
Spurious Radiated Emission	Part 15.249 (d) Part 15.209 Part 15.205						
Out of Band Emissions	Part 15.249 (d)						
Bandwidth Measurement	Part 15.215 (c)						
Conducted Emission	Part 15.207						

Note: N/A - Not Applicable

3.0 Test Methodology

3.1 Radiated Emission

The sample was placed 0.8m above the ground plane on a standard emission test site *. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

3.2 Field Strength Calculation

The field strength at 3 m was established by adding the meter reading of the spectrum analyzer to the factors associated with antenna correction factor, cable loss, preamplifiers and filter attenuation.

The equation is expressed as follow:

FS = R + System Factor System Factor = AF + CF + FA - PA

Where FS = Net Field Strength in dBuV/m at 3 meters.

R = Reading of Spectrum Analyzer / Test Receiver in dBuV.

AF = Antenna Factor in dB.

CF = Cable Attenuation Factor in dB.

FA = Filter Attenuation Factor in dB.

PA = Preamplifier Factor in dB.

FA and PA are only be used for the measuring frequency above 1 GHz.

3.3 Conducted Emissions

The EUT was placed on a non-metallic table 0.8m above the horizontal metal reference place and 0.4m from a vertical ground plane which is connected to the horizontal metal ground plane. Meanwhile, the AC main of EUT was connected to the distance of 0.8m line impedance stabilization network (LISN) during measurement.

Initial measurements were performed in quasi-peak and average detection modes by the test receiver, any emissions recorded within 30dB of the relevant limit lines were re-measured using quasi-peak and average detection on the live and neutral lines with the worst case recorded in the table of results.

4.0 Test Results

4.1 Field Strength of Fundamental and Harmonics

Test Requirement: FCC part 15 section 15.249(a)(e)

Test Method: ANSI C63.4:2009
Test Date: 2015-01-26

Mode of Operation: Transmitting mode.

Detector Function: Quasi-peak (Below 1000 MHz)

Average and Peak (Above 1000 MHz)

Measurement BW: 120 kHz (Below 1000 MHz)

1 MHz (Above 1000 MHz)

Test Setup:

Results: PASS

Field Strength of Fundamental and Harmonics									
Channel	Value	Emissions	E-Field	Reading	System	Field	Limit	Delta to	Remarks
		Frequency	Polarity		Factor	Strength		Limit	
						at 3m			
		MHz		dΒμV/m	dB	dBµV/m	dBµV/m	dBμV/m	
Lowest	PK	2402.00	Н	86.50	-0.40	86.10	114.00	-27.90	Fund.
	PK	2402.00	V	88.60	-0.40	88.20	114.00	-25.80	Fund.
Middle	PK	2413.00	Н	87.20	-0.40	86.80	114.00	-27.20	Fund.
	PK	2413.00	V	87.30	-0.40	86.90	114.00	-27.10	Fund.
Highest	PK	2424.00	Н	83.50	-0.30	83.20	114.00	-30.80	Fund.
	PK	2424.00	V	89.50	-0.30	89.20	114.00	-24.80	Fund.
Lowest	PK	3762.50	Н	36.10	5.70	41.80	74.00	-32.20	Harmonic
	PK	3762.50	V	37.70	5.70	43.40	74.00	-30.60	Harmonic
Middle	PK	3912.50	Н	36.70	6.40	43.10	74.00	-30.90	Harmonic
	PK	3812.50	V	35.90	6.00	41.90	74.00	-32.10	Harmonic
Highest	PK	3750.00	Н	36.40	5.60	42.00	74.00	-32.00	Harmonic
	PK	3850.00	V	35.90	6.10	42.00	74.00	-32.00	Harmonic

Remark : - (*) Radiated emissions which fall in the restricted bands as defined in Section 15.205(a).

- All emission more than 20 below the limit which does not be mentioned in the report
- Calculated measurement uncertainty: ±3.28dB

Limits of Field Strength for Fundamental and Harmonics Frequency [Section 15.249 (a)]:

Fundamental Frequency	Field Strength	of Fundamental	Field Strength	of Harmonics
[MHz]	[mV/m] [dBμV/m]		[µV/m]	[dBµV/m]
902 – 928	50	94	500	54
2400 – 2483.5	50	94	500	54

Compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector.

Limit Requirement under Section 15.249 (e):

According to section 15.249 (e), for frequencies above 1000MHz, the above field strength limits is based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20dB under any condition of modulation.

Limit for Radiated Emission [Section 15.209]:

Frequency (MHz)	Field Strength	Field Strength
	[μV/m]	[dBµV/m]
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
Above 960	500	54.0

Radiated emissions, which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209.

The emission limits shown in the above table are based on measurement employing a CISPR quasipeak detector and above 1000MHz are based on measurements employing an average detector.

4.2 Spurious Radiated Emission

Test Requirement: FCC part 15 section 15.249(d),15.209

Test Method: ANSI C63.4:2009
Test Date: 2015-01-26

Mode of Operation: Transmitting Mode

Detector Function: Quasi-peak (Below 1000 MHz)

Average and Peak (Above 1000 MHz)

Measurement BW: 120 kHz (Below 1000 MHz) 1 MHz (Above 1000 MHz)

Test Setup:

Results: PASS

Frequency	Detector	Antenna	Result	Limit	Margin
(MHz)	Type		(dBµV/m)	(dBµV/m)	
37.76	QP	Н	26.10	40.00	-13.90
156.59	QP	Н	32.50	43.50	-11.00
194.42	QP	Н	29.20	43.50	-14.30
616.85	QP	Н	28.40	46.00	-17.60
744.89	QP	Н	30.30	46.00	-15.70
952.96	QP	Н	33.80	46.00	-12.20
78.50	QP	V	26.00	40.00	-14.00
130.40	QP	V	30.60	43.50	-12.90
140.58	QP	V	34.70	43.50	-8.80
157.07	QP	V	36.60	43.50	-6.90
166.29	QP	V	35.70	43.50	-7.80
952.96	QP	V	33.80	46.00	-12.20

Note: - No further spurious emissions found between 30MHz and lowest internal used / generated frequency.

- The result shown the worst case of the operating frequency.
- All emission more than 20 below the limit which does not be mentioned in the report.
- Result data graph is shown at the next pages for reference.
- No significant emissions noise floors were detected above 1 GHz without the operating frequency.

Remark: - (*) Radiated emissions which fall in the restricted bands as defined in Section 15.205(a).

- Calculated measurement uncertainty: ±3.28dB.

Limit of Outside of the Specified Bands [Section 15.249 (d)]

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in section 15.209, whichever is the lesser attenuation

Limit for Radiated Emission [Section 15.209]:

Frequency (MHz)	Field Strength	Field Strength
	[μV/m]	[dBµV/m]
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
Above 960	500	54.0

Radiated emissions, which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209.

The emission limits shown in the above table are based on measurement employing a CISPR quasipeak detector and above 1000MHz are based on measurements employing an average detector.

Horizontal

Vertical

4.3 Out of Band Emissions

Test Requirement: FCC part 15 section 15.249 (d)

Test Method: ANSI C63.4:2009
Test Date: 2015-01-26

Mode of Operation: Transmitting mode.

Detector Function: Peak

Results: PASS

Refer to the data graph, the lower and higher edge of the specified frequency bands fulfill the general radiated emission limits in section 15.209. Therefore, the EUT meets the requirement of section 15.249 (d).

Limit for Out of Band Emissions [Section 15.249 (d)]

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in section 15.209, whichever is the lesser attenuation.

Test Result: Result data graph is shown at the next pages for reference.

Highest Channel

4.4 Bandwidth Measurement

Test Requirement: FCC part 15 section 15.215 (c)

Test Method: ANSI C63.4:2009
Test Date: 2015-01-26

Mode of Operation: Transmitting mode.

Detector Function: Peak

Results: PASS

Refer to the data graph, the 20dB points of Low Channel, Mid Channel and High Channel. All channels within the operation bandwidth when equipment is operated. Therefore, the EUT meets the requirement of section 15.215(c).

Limit for Bandwidth [Section 15.215 (c)]

The 20dB bandwidth of the emission shall be within the frequency band designated in the rule section under which the equipment is operated.

Test Result: Result data graph is shown at the next pages for reference.

Low Channel - Bandwidth 822 kHz

Mid Channel – Bandwidth 682 kHz

High Channel – Bandwidth 692 kHz

4.5 Conducted Emissions (0.15MHz to 30MHz)

Test Requirement: FCC part 15 Section 15.207 Class B

Test Method: ANSI C63.4:2009
Test Date: 2015-01-26

Mode of Operation: Transmitting mode
Detector Function: Quasi-peak, average

Measurement BW: 9 kHz

Test Setup:

Result: PASS

Limits for Conducted Emission [Section 15.207]:

Frequency Range	Quasi-Peak Limit	Average Limit
[MHz]	[dB _µ V]	[dBµV]
0.15-0.5	66 to 56*	56 to 46*
0.5-5.0	56	46
5.0-30.0	60	50

^{*} Decreases with the logarithm of the frequency.

Remarks:

Calculated measurement uncertainty: ±2.8dB

Result data graph shows the conducted emission (Live).

MEASUREMENT RESULT:

Frequency	Level	Transd	Limit	Margin	Detector
MHz	dBuV	dB	dBuV	dB	
0.150000 0.178000 0.226000 0.662000 0.862000	41.80 38.80 33.30 25.20 20.80	0.2 0.2 0.2 0.1	66 65 63 56 56	24.2 25.8 29.3 30.8 35.2	QP QP QP QP QP
2.562000	17.50	0.1	56	38.5	QP

MEASUREMENT RESULT:

Frequency	Level	Transd	Limit	Margin	Detector
MHZ	dBuV	dB	dBuV	dB	
0.150000 0.182000 0.226000 0.618000 1.314000	22.90 18.00 18.70 13.60 4.60	0.2 0.2 0.2 0.1	56 54 53 46 46	33.1 36.4 33.9 32.4 41.4	AV AV AV AV

Result data graph shows the conducted emission (Neutral).

MEASUREMENT RESULT:

Frequency	Level	Transd	Limit	Margin	Detector
MHz	dBuV	dB	dBuV	dB	
0.162000	41.80	0.2	65	23.6	QP
0.182000	39.30	0.2	64	25.1	QP
0.214000	35.60	0.2	63	27.4	QP
0.258000	31.10	0.2	62	30.4	QP
0.466000	21.70	0.2	57	34.9	QP
0.614000	26.30	0.1	56	29.7	QP

MEASUREMENT RESULT:

Frequency	Level	Transd	Limit	Margin	Detector
MHz	dBuV	dB	dBuV	dB	
0.162000 0.186000 0.214000 0.302000 0.614000	28.00 13.20 21.10 15.60 19.90	0.2 0.2 0.2 0.2 0.1	55 54 53 50 46	27.4 41.0 31.9 34.6 26.1	AV AV AV AV
0.666000	17.30	0.1	46	28.7	AV

5.0 List of Measurement Equipment

Radiated Emission and Bandwidth Emissions

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2015-8-17
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2017-8-17
Horn Antenna	Rohde & Schwarz	HF907	102294	2017-8-17
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2015-8-17
Spectrum Analyzer	Agilent	E7405A	MY45111421	2015-8-19
3m Semi-anechoic chamber	TDK	9X6X6		2019-5-29

Conducted Emissions

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2015-8-17
LISN	Rohde & Schwarz	ENV4200	100249	2015-8-17
LISN	Rohde & Schwarz	ENV216	100326	2015-8-17

N/A Not Applicable or Not Available