Моделирование показания фМРТ по видео, показанному человеку

 \mathcal{A} орин \mathcal{A} . \mathcal{A} . 1,2 , Γ рабовой A. B. 2 dorin.dd@phystech.edu 1 Организация; 2 Организация

Исследуется задача прогнозирования показаний датчиков фМРТ по видеоряду, показанному человеку. Предложен метод апроксимации показаний фМРТ по видеоряду на основе моделей типа Трансформер. Проанализирована зависимость между показаниями датчиков и восприятием внешнего мира человеком. Эффективность предложенного подхода демонстрируется на наборе данных, собранных у большой группы людей в процессе просмотра фильма.

Ключевые слова: фМРТ, видеоряд, Трансформер модель.

1 Введение

Человеческий мозг — один из самых интересных объектов исследования [8]. Внутречеренные записи человека являются редким и ценным источником информации о мозге. Поэтому исследование методов получения данных о функциональной активности коры головного мозга актуально в наши дни.

Функциональная магнитно-резонансная томография [9] — один из методов исследования активности головного мозга. фМРТ проводится с целью измерения гемодинамических реакций — изменений в потоке крови. Этот метод основывается на связи мозгового кровотока и активности нейронов. Когда область мозга активна, приток крови к этой области также увеличивается. фМРТ позволяет определить активацию определенной области головного мозга во время нормального функционирования под влиянием различных заданий, например, зрительных, когнитивных, моторных, речевых. В работе [2] собраны современные возможности фМРТ в нейровизуализации. Под нейровизуализацией понимается общее название нескольких методов, позволяющих визуализировать структуру, функции и биохимические характеристики мозга.

В работе [3] собран обширный набор данных, сотоящий из видеорядов, просмотренных человеком, и соответствующих снимков фМРТ. Одна из проблем при работе с данными нейровизуализации — шум, вызванный дивжением головы, биением сердца, тепловыми эффектами и др. В работе [4] рассмотрены подходы к подготовке, предварительной обработке, шумоподавлению, направленные на устранение артефактов, вредных для распознавания образов, а также методы классификации данных нейровизуализации.

Наиболее известные методы обработки видео основаны на 3D свертках. Отличие 3D от 2D сверток заключается в одновременной работе с пространственной и временной частью информации. Существенный недостаток данных методов — сильное увеличение числа параметров модели и большие вычислительные затраты. В работе используется более современная архитектура — модель типа Трансформер. Впервые модель Трансформер была предложена в статье «Attention Is All You Need» Ashish Vaswani [5]. Архитектура активно применяется в области машинного перевода. А в 2022 году появилась работа [6] на тему адаптации архитектуры Трансформер для работы с видеорядами. Данная архитектура учитывает пространственно-временные зависимости и повышает скорость обучения засчет механизма внимания. Сама модель состоит из кодирующего компонента, декодирующего компонента и связи между ними. Каждый компонент состоит из стека энкодеров и

декодеров соотвественно [1]. Входящая последовательность, поступающая в энкодер, сначала проходит через слой внимания, помогающий энкодеру посмотреть на другие слова во входящем объеме во время кодирования конкретного элемента. Выход слоя внимания отправляется в нейронную сеть прямого распространения. Аналогично устроен декодер, за исключением наличия еще одного слоя внимания, помогающего фокусироваться на релевантных элементах.

В данной работе предлагается метод аппроксимации показаний датчиков фМРТ по видеоряду. При получении метода использовались два основных предположения. Первая гипотеза заключается в существовании зависимости между результатами фМРТ и просматриваемым фильмом. Второе предположение заключается в том, что реакция мозга, фиксируемая фМРТ, на информацию, поступающую от органов зрения, происходит не мгновенно, а с некоторой задержкой [7]. Полученная в ходе экспериментов корреляционная картина между данными в выборке подтверждает зависимость между показаниями фМРТ и восприятием внешнего мира человеком.

Проверка метода проводится на выборке, представленной в работе [3]. Набор данных включает в себя в себя записи фМРТ 30 участников в возрасте от 7 до 47 лет во время выполнения одинаковой задачи и записи внутричерепной электроэнцефалографии 51 участника в возрасте от 5 до 55 лет.

2 Постановка задачи

Пусть Ω — видеоряд, ν — частота кадров, t — продолжительность видеоряда:

$$\Omega = (\boldsymbol{\omega}_1, \dots, \boldsymbol{\omega}_{\nu t}), \tag{1}$$

где $\boldsymbol{\omega} \in \mathbb{R}^{W_{\boldsymbol{\omega}} \times H_{\boldsymbol{\omega}} \times C_{\boldsymbol{\omega}}}$ — изображение, $W_{\boldsymbol{\omega}}$ — ширина изображения, $H_{\boldsymbol{\omega}}$ — высота изображения и $C_{\boldsymbol{\omega}}$ — число каналов.

Введем также S — последовательность фМРТ снимков, μ — частота снимков:

$$S = (\mathbf{s}_1, \dots, \mathbf{s}_{\mu t}), \tag{2}$$

где $s \in \mathbb{R}^{X_s \times Y_s \times Z_s}$ — фМРТ снимок, X_s , Y_s , Z_s — размерность одного измерения.

Также считаем, что известно несколько дополнительных измерений фМРТ S_0 того же испытуемого. Необходимо построить отображение f:

$$f(\boldsymbol{\omega}_1, \dots, \boldsymbol{\omega}_{i-\nu\Delta t}, \mathcal{S}_0) = \boldsymbol{s}_i,$$
 (3)

которое учитывает задержку Δt , между фМРТ картиной и моментом получения информации зрительными органами.

3 Вычислительный эксперимент

4 Анализ ошибки

5 Заключение

6 *

Список литературы

СПИСОК ЛИТЕРАТУРЫ 3

[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. *IEEE transactions on pattern analysis and machine intelligence*, 39(12):2481–2495, 2017.

- [2] A. A. Belyaevskaya, N. V. Meladze, M. A. Sharia, D. V. Ustyuzhanin, and M. H. Zashezova. MODERN POSSIBILITIES OF FUNCTIONAL MAGNETIC RESONANCE IMAGING IN NEUROIMAGING. *Medical Visualization*, (1):7–16, February 2018.
- [3] Julia Berezutskaya, Mariska J. Vansteensel, Erik J. Aarnoutse, Zachary V. Freudenburg, Giovanni Piantoni, Mariana P. Branco, and Nick F. Ramsey. Open multimodal iEEG-fMRI dataset from naturalistic stimulation with a short audiovisual film. *Scientific Data*, 9(1), March 2022.
- [4] Maxim Sharaev, Alexander Andreev, Alexey Artemov, Alexander Bernstein, Evgeny Burnaev, Ekaterina Kondratyeva, Svetlana Sushchinskaya, and Renat Akzhigitov. fmri: preprocessing, classification and pattern recognition, 2018.
- [5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.
- [6] Shen Yan, Xuehan Xiong, Anurag Arnab, Zhichao Lu, Mi Zhang, Chen Sun, and Cordelia Schmid. Multiview transformers for video recognition, 2022.
- [7] Вячеслав Евгеньевич Демидов. Как мы видим то, что видим. Знание, 1979.
- [8] ТА Жумакова, ШО Рыспекова, ДД Жунистаев, НМ Чурукова, АМ Исаева, and ИО Алимкул. Тайны человеческого мозга. *Межедународный журнал прикладных и фундаментальных исследований*, (6-2):230–232, 2017.
- [9] ВЛ Ушаков, ВМ Верхлютов, ПА Соколов, МВ Ублинский, ВБ Стрелец, АЮ Аграфонов, АВ Петряйкин, and ТА Ахадов. Активация структур мозга по данным фМРТ при просмотре видеосюжетов и припоминании показанных действий. Журнал высшей нервной деятельности им. ИП Павлова, 61(5):553–564, 2011.