1 Problem 2

1.1 Correctness

Lemma 1. G is isomorphic to G' if and only if the resulting formula \varnothing is satisfiable. Assume |V| = |V'| = n. Define the variables of \varnothing as follows:

$$x_{ij} = \begin{cases} 1 & \pi \text{ creates an isomorphic graph that maps node } v_i \in V \text{ to } v_j \in V' \\ 0 & \text{otherwise.} \end{cases}$$

Hence formula will consist of the following types of clauses:

- 1. For each node $a \in [0, n-1]$, $C_i = (x_{a0} \lor x_{a1} \lor ... \lor x_{an-1})$. Hence, node $v_a \in V$ is mapped to some vertex in V'
- 2. For all nodes $a, b, c \in [0, n-1]$ in which $a \neq b, C_b = (\overline{x_{ac}} \vee \overline{x_{bc}})$
- 3. For all nodes $a, b, c, d \in [0, n-1]$ where $a \neq b, c \neq d$, edge $e_{ab} \in E$ if and only if edge $e_{cd} \notin E'$, $C_c = (\overline{x_{ac}} \vee \overline{x_{bd}})$.

Proof of Lemma 1. We will first prove that if \varnothing is satisfiable, G is isomorphic to G'. Assuming \varnothing is satisfiable; this implies that all clauses of \varnothing are true. Note, the three types of clauses imply the conditions (1) node $v_a \in V$ is mapped to some vertex in V' for each $a \in [0, n-1]$, (2) no two distinct nodes are mapped to the same node in V', and (3) there a mapping of $V \to V'$, so that for all pairs of nodes v, w in V, the edge $(v, w) \in E$ if and only if $(\pi(v), \pi(w)) \in E'$. Because the assignment encodes all conditions of an isomorphism and as all clauses are true, the conditions of an isomorphism are met. Thus, function π exists and G is isomorphic to G'.

We will now prove that if G is isomorphic to G', \varnothing is satisfiable. Assuming G is isomorphic to G' implies that conditions (1), (2), and (3) are met for graphs G' and G. As conditions (1), (2), and (3) represent type 1, 2, and 3 clauses, all clauses of type 1, 2, and 3 are true. Thus, the assignment of all the clauses \varnothing is true and the instance of SAT is satisfiable.

Thus, Graph Isomorphism \leq SAT.

1.2 Runtime and Space Complexity

The runtime of the above reduction algorithm is bounded by $O(n^4)$. Assume G, G' are set as adjacency matrices. Determining the output for a clause of type 1 takes O(n) as for each node, we must iterate through all n nodes in graph G' to check for some map pairing. Because graph G has n nodes, the total time to calculate clause 1 for all n nodes in G is $O(n^2)$. The total time to calculate clause 2 for each pair (i, j) in G is $O(n^2)$, the number of

pairs of nodes is bounded by n^2 . Hence, checking that the mapping for each adjacent pair of nodes doesn't map to the same node in V' take $O(n^2)$. The total time to calculate clause 3 for each pair of edges $e_{ab} \in E$ and edge $e_{cd} \notin E'$ is $O(n^4)$, as the number of pairs of edges is bounded by n^4 . Hence, checking that the mapping for each pair of edges maps accordingly takes $O(n^4)$.

Note, because the runtime is polynomial, the space complexity is polynomial as well.