Mérési útmutató a "Publikus Kulcsú Infrastruktúra" című méréshez

2020. március

A mérést kidolgozta:

Paulik Tamás

Microsec Zrt.

BME, CrySyS Adat- és Rendszerbiztonsági Laboratórium,

Rozgonyi Attila

Microsec Zrt.

Tartalomjegyzék

A mérés célja	3
Mérési környezet bemutatása	3
Szoftveres PKI eszközök	3
Méréshez szükséges egyéb szoftverek	3
Egyéb felhasználói szoftverek	3
Mérési feladatok	4
Webszerver tanúsítványok igénylése és kibocsátása	4
Önaláírt CA tanúsítvány kibocsátása	4
Webszerver tanúsítvány kibocsátása	5
Apache http szerver konfigurálása https kapcsolatokhoz	7
Hosts file módosítás	7
Webszerver indítás	7
SSL engedélyezés és konfiguráció	7
Tanúsítvány telepítése a böngésző tanúsítványtárába	8
Tanúsítvány alapú autentikáció bekapcsolása	8
Elfogadott tanúsítványok tárának építése	9
SSL konfiguráció	9
Tanúsítványadatok kinyerése	10
Apache konfigurálás	10
Adatok feldolgozása PHP szkriptből	10
SSL tanúsítványok vizsgálata	11
A pkilabor.crysys.hu tanúsítvány vizsgálata	11
Az e-szigno.hu szervertanúsítvány vizsgálata	11
Digitális aláírások vizsgálata	11
Aláírt PDF készítése parancssorból	11
Adobe Reader konfiguráció Windows tanúsítványtár használathoz	12
Az e-Szignóval aláírt PDF-ek vizsgálata	13
Aláírás Adobe Readerrel	13

A mérés célja

A mérés célja, hogy a hallgatók megismerkedjenek a Publikus Kulcsú Infrastruktúra legfontosabb gyakorlati alkalmazásaival és gyakorlati tudásra tegyenek szert az alábbi témakörökben:

- SSL kapcsolatok fogadására alkalmas webszerverek felállítása és konfigurálása
- Tanúsítvány alapú autentikáció fogadására alkalmas webszerverek felállítása, az autentikált tanúsítvány adatainak továbbítása a háttéralkalmazások felé
- Elektronikus aláírás készítése automatizált szerveroldali és kliensoldali eszközökkel
- A különböző aláírás típusok közötti különbségek megismerése

A mérésre való felkészülésben nagy segítséget jelent Dr. Berta István Zsolt Nagy e-Szignó könyve, mely publikusan elérhető. A mérés elméleti hátterét a 3-8. és a 10. fejezet adják.

Mérési környezet bemutatása

A mérés az interneten szabadon elérhető szoftverekkel, valamint a Microsec Zrt. hitelesítés-szolgáltatója által biztosított eszközökkel történik. A mérés során az alábbi eszközök kerülnek felhasználásra:

Szoftveres PKI eszközök

- e-Szignó kliens: A kliens oldali aláírási feladatok során használt elektronikus aláíró szoftver
- e-Szignó parancssoros eszköz: A szerver oldali aláírási feladatok során használt elektronikus aláíró szoftver
- openssl: Az alapvető PKI műveletek elvégzésére

Méréshez szükséges egyéb szoftverek

- Adobe Reader: A PDF aláírások vizsgálatához és készítéséhez
- Apache httpd: A mérésekben ezt a webszerver implementációt használjuk
- Cygwin terminal: Ebben kerül futtatásra az openssl
- PHP interpreter: A webszerver mögötti szoftverkörnyezet ebben kerül megvalósításra

Egyéb felhasználói szoftverek

A mérés során használt szoftverkörnyezet ezen felül még az alábbi szoftvereket tartalmazza:

- Chrome böngésző
- Notepad++
- Total Commander

Mérési feladatok

Webszerver tanúsítványok igénylése és kibocsátása

Ebben a mérési feladatban fel fogunk állítani ez kezdetleges hitelesítés szolgáltatói hierarchiát, valamint kulcsot fogunk generálni és PKCS#10 formátumú tanúsítvány kiállítási kérelmet generálunk a generált kulcsokhoz. A felállított hierarchia segítségével kibocsátunk egy webszerver tanúsítványt, majd felkonfiguráljuk a webszerverünket, hogy az a tanúsítvány használatával fogadjon SSL kapcsolatokat.

Önaláírt CA tanúsítvány kibocsátása

Kulcs generálása a CA számára

Ahhoz, hogy a mérés során felállhasson egy olyan webszerver, amelynek saját a mérés során kiadott webszerver tanúsítványa van, először szükséges egy hitelesítés szolgáltató gyökértanúsítvány kibocsátása, amely aláírhatja majd a webszerver tanúsítványt.

Indítsuk el a Cygwin alkalmazást és a meres felhasználó home könyvtárában hozzunk létre egy új mappát pkilabor néven. Ebben a mappában hozzunk létre két másik mappát certificate_authority és webserver_admin néven. A továbbiakban ezeken belül dolgozzunk.

A Cygwin által mutatott /home/meres mappa a Windows fájlrendszerben a c:\cygwin\home\meres elérési úton található meg. A certificate_authority mappában fogjuk elvégezni azokat a műveleteket, amelyeket egy hitelesítés-szolgáltatónak el kell végeznie, míg a webserver_admin mappában a webszerver adminisztrátorának munkafolyamatát követhetjük végig.

Lépjünk be a certificate_authority mappába. Generáljunk egy önaláírt tanúsítványt a hitelesítés szolgáltató számára! Az EC kulcsgeneráláshoz az **openssl ecparam**, a tanúsítványkészítéshez az **openssl req** parancsot használjuk a megfelelő paraméterezéssel. A parancssori paraméterek az alábbiak legyenek:

- A kimenet x509 formátumú legyen.
- Az újonnan generált kulcs egy 256 bites EC kulcspár legyen, NIST P-256 (prime256v1) görbén.
- A tanúsítvány aláírási lenyomatképző algoritmusa sha256 legyen.
- A tanúsítvány érvényessége 365 nap legyen.
- Kimenetként kerüljön elmentésre a generált privát kulcs ca.key és a tanúsítvány ca.crt néven.

A parancssori paraméterekkel kapcsolatban segítséget a Cygwin terminálban az alábbi paranccsal kaphatunk: **openssl ecparam -help,** illetve **openssl req -help.** A generálás során megadandó adatokat az alábbiak szerint válasszuk:

Country Name: HU

• State or Province: Budapest

• Locality: Budapest

Organization: CrySyS LabOrganization Unit: PKI LaborCommon Name: PKI Labor CA

• Email Address: ezt hagyjuk üresen

Vizsgáljuk meg a most kibocsátott tanúsítványt! Ehhez használjuk az **openssi x509** parancsot: Segítséget újfent a **-help** paraméter megadásával kérhetünk) A paramétereket az alábbiak szerint válasszuk:

Bemeneti formátum: PEM

• Bemeneti fájl: ca.crt

Text formátumú kimenetet kérjünk

• Ne adjunk meg kimeneti fájlt. (ehhez meg kell adnunk a -noout paramétert)

Láthatjuk, hogy az Issuer és a Subject mezők tartalma azonos, láthatjuk a tanúsítvány érvényességi idejét. Az x509v3 extensions szekcióban láthatjuk, hogy a Subject Key Identifier és az Authority Key Identifier azonos, azaz önaláírt tanúsítvánnyal van dolgunk. A Basic Constraints mező mutatja, hogy egy hitelesítés szolgáltatóhoz tartozó tanúsítványt hoztunk létre.

Webszerver tanúsítvány kibocsátása

Ahhoz, hogy a felállítandó webszerverünk számára egy hitelesítés szolgáltató webszerver tanúsítványt bocsáthasson ki először szükséges generálnunk egy kulcspárt, majd a kulcspár alapján egy CSR-t (Certificate Signing Request). Ezt a CSR-t kell eljuttatnunk a hitelesítés szolgáltatónak, aki az ebben található adatok alapján kibocsátja a tanúsítványt.

Az OpenSSL Subject Alternate Name konfigurációja a CSR generálásához

A virtuális számítógépen használt Google Chrome böngésző felhasználja a Subject Alternate Name mezőt is a domainhez való társítás során. Amennyiben ezt nem adjuk meg, a tanúsítvány nem fog megfelelően megjelenni.

A kiegészítő mező beállításához készítsünk másolatot a /usr/ssl/openssl.cnf fájlban található alapértelmezett OpenSSL konfigurációs fájlról! A másolatban készítsünk új szekciót, mely egyetlen kulcs-érték párt tartalmaz – a subjectAltName kulcsot DNS:pkilabor.crysys.hu értékkel! A következő lépésben található CSR generálása során adjuk meg a másolatot, mint használandó konfigurációs fájlt és hivatkozzunk a most elkészített új szekcióra!

Kulcs és CSR generálás

Lépjünk át a webserver_admin mappába. Generáljunk kulcspárt az **openssl ecparam** és CSR-t az **openssl req** parancs használatával. A paramétereket az alábbiak szerint válasszuk:

- Válasszuk az új kulcs generálását. A kulcs legyen 256 bites EC kulcs NIST P-256 (prime256v1) görbén.
- Válasszuk az új request generálását.
- A kimeneti kulcs a pkilabor.crysys.hu.key fájlba kerüljön
- A kérelem a pkilabor.crysys.hu.csr fájlba kerüljön

A generálás során megadandó adatokat az alábbiak szerint válasszuk:

Country Name: HU

• State or Province: Budapest

• Locality: Budapest

Organization: CrySyS LabOrganization Unit: PKI Labor

Common Name: pkilabor.crysys.huEmail Address: ezt hagyjuk üresen

• Challenge password: pkilabor_challenge

Company name: CrySyS Lab

CSR vizsgálat

Másoljuk át a keletkezett pkilabor.crysys.hu.csr állományt a certificate_authority mappába, majd lépjünk át oda, hiszen a CSR ellenőrzését a hitelesítés szolgáltató végzi el.

Vizsgáljuk meg és ellenőrizzük le a létrejött CSR-t! Ehhez használjuk az **openssi req** parancsot. A paramétereket az alábbiak szerint válasszuk:

- Kérjünk szöveges kimenetet
- Ne kérjünk fájl kimenetet (-noout)
- Kérjük a CSR-en található aláírás ellenőrzését
- Bemenetként adjuk meg a pkilabor.crysys.hu.csr fájlt

A kimenetben visszaköszönnek az általunk a kérés generálásakor megadott paraméterek. A kimenet tetején a 'verify OK' üzenet mutatja, hogy a CSR-en található aláírás nem sérült. A CSR-be továbbá belekerül a challenge jelszó is, amelyet korábban megadtunk. Ez a mező biztosít lehetőséget egy hitelesítés szolgáltató számára, hogy egy ügyfélnek challenge jelszót kibocsátva később bármikor befogadhasson az ügyféltől CSR-t, amelyet a jelszó ismerete alapján autentikál. Figyeljük meg továbbá a Subject Alternative Name kiterjesztést is!

Az OpenSSL Subject Alternate Name konfigurációja a webszerver tanúsítvány kibocsátásához

A virtuális számítógépen használt Google Chrome böngésző felhasználja a Subject Alternate Name mezőt is, a domainhez való társítás során. Amennyiben ezt nem adjuk meg, a tanúsítvány nem fog megfelelően megjelenni.

A kiegészítő mező beállításához ismét készítsünk másolatot a /usr/ssl/openssl.cnf fájlban található alapértelmezett OpenSSL konfigurációs fájlról! A másolatban készítsünk új szekciót, mely egyetlen kulcs-érték párt tartalmaz – a subjectAltName kulcsot DNS:pkilabor.crysys.hu értékkel! A következő lépésben található webszerver tanúsítvány kibocsátása során adjuk meg a másolatot, mint használandó konfigurációs fájlt és hivatkozzunk a most elkészített új szekcióra!

Webszerver tanúsítvány kibocsátása

A CSR ellenőrzését követően a hitelesítés szolgáltatónak minden rendelkezésére áll, ami alapján kibocsáthatja a tanúsítványt.

Bocsássunk ki a webszerverünk számára tanúsítványt a CSR-ben található adatokra alapozva, az **openssi x509** parancsot az alábbi paraméterekkel felhasználva:

- Az üzemmód -req legyen. Az való CSR befogadására, aláírásra és tanúsítványkibocsátásra
- A tanúsítvány érvényessége legyen 20 nap
- A bemeneti fájl a pkilabor.crysys.hu.csr legyen
- A használt CA tanúsítvány a ca.crt legyen
- A használt CA kulcs a ca.key legyen
- A tanúsítvány sorozatszáma legyen 00001
- A kimenet a pkilabor.crysys.hu.crt fájl legyen

Mivel a kibocsátás során nem adtunk meg kimeneti formátumot, a tanúsítvány PEM formátumú lesz.

Webszerver tanúsítvány vizsgálata

Vizsgáljuk meg a kibocsátott tanúsítvány tartalmát a már használt openssl x509 paranccsal. Figyeljük meg a Subject Alternate Name kiterjesztést!

Apache http szerver konfigurálása https kapcsolatokhoz

A frissen kiadott webszerver tanúsítványunk segítségével már felkonfigurálhatunk egy webszervert, amely fogad HTTPS kapcsolatokat.

Első lépésként a kiadott pkilabor.crysys.hu.crt állományt másoljuk át a webserver_admin mappába és lépjünk is át oda. ("A hitelesítés-szolgáltató eljuttatta a kibocsátott tanúsítványt az igénylőnek.")

Hosts file módosítás

Vegyük fel az alábbi sort a C:\Windows\System32\drivers\etc\hosts fájlba:

127.0.0.1 pkilabor.crysys.hu # CrySyS PKI labor re-route

Webszerver indítás

(A mérés során egy valódi üzemeltetési környezettől eltérően a XAMPP programcsomagot használjuk a webszerver menedzsmentjére. A XAMPP csomag lehetővé teszi számunkra, hogy kényelmesebben kezeljük a webszervert és a mérés szempontjából lényeges feladatokra koncentráljunk)

Indítsuk el a XAMPP Control Panelt: C:\xampp\xampp-control. Kattintsunk az Apache sorában található Start gombra.

Miután az Apache elindult, indítsuk el a böngészőt és ellenőrizzük le, hogy elindult-e a "localhost"-on a webszerver. Ha minden rendben van, akkor a "Welcome to XAMPP for Windows" oldal fogad minket.

Ellenőrizzük le, hogy a hosts fájlban található módosításaink érvényre jutottak-e. A címsor használatával navigáljunk a http://pkilabor.crysys.hu címre. Ha az átirányítás működik, akkor megint a XAMPP nyitóképernyőnek kell megjelennie.

SSL engedélyezés és konfiguráció

Ahhoz, hogy a webszerverünket SSL kapcsolatokhoz felkonfiguráljuk, meg kell adnunk a most kiadott tanúsítványt és kulcsot az Apache konfigurációs állományában.

Navigáljunk a C:\xampp\apache\conf mappába és nyissuk meg a httpd.conf állományt. Ez tartalmazza apache szerverünk általános konfigurációját.

Ellenőrizzük le, hogy az SSL modul (mod_ssl) be van-e kapcsolva és a konfigurációit tartalmazó fájlt betölti-e a webszerver!

Nyissuk meg az extras/httpd-ssl.conf állományt. Ebben a fájlban találhatóak az apache szerverünk SSL konfigurációját.

Keressük meg az alábbi paramétereket és állítsuk be értelemszerűen.

- ServerName: pkilabor.crysys.hu:443
- SSLCertificateFile: Az előző lépésekben kiadott SSL szerver tanúsítvány
- SSLCertificateKeyFile: Az előző lépésekben kiadott SSL szerver kulcsfájlja (jelszó nélküli)
- SSLCertificateChainFile: Az SSL szerver tanúsítványunk lánca (jelen esetben a CA tanúsítvány)

Indítsuk el az apache szolgáltatást és nyissuk meg Chrome böngészőben a https://pkilabor.crysys.hu címet!

A böngésző figyelmeztetni fog minket, hogy a kapcsolat nem biztonságos. A felületen az alábbi hibaüzenet jelenik meg: NET::ERR_CERT_AUTHORITY_INVALID Ez figyelmeztet minket arra, hogy a tanúsítvány elutasításának oka az, hogy ismeretlen a kibocsátó CA.

Tanúsítvány telepítése a böngésző tanúsítványtárába

Ahhoz, hogy a böngészőnk elfogadja az általunk kibocsátott tanúsítványt fel kell vennünk a kibocsátó CA-t a megbízható tanúsítványok közé. Ezt kizárólag akkor tesszük, ha ismerjük és megbízunk a CA-ban, ami most teljesül. Böngészés közben általában ez a feltétel nem teljesül, ezért ilyen hiba esetén nem telepítjük a CA tanúsítványát.

Telepítsük az általunk kiadott CA tanúsítványt a windows tanúsítványtárába.

Ehhez navigáljunk az alábbi mappába: C:\cygwin64\home\meres\pkilabor\certificate_authority

Kattintsunk duplán a ca.crt fájlra és kövessük a varázsló lépéseit. A tanúsítványtároló opciónál válasszuk ki a "Megbízható legfelső szintű hitelesítés-szolgáltatók" tárolót.

Indítsuk újra a böngészőt és térjünk vissza az általunk konfigurált weboldalra.

Látható, hogy a böngésző innentől elfogadja az általunk kiadott tanúsítványt.

Tanúsítvány alapú autentikáció bekapcsolása

Amennyiben a webszerver rendelkezik SSL tanúsítvánnyal lehetőségünk nyílik arra, hogy a csatlakozó klienseket is PKI alapon, autentikációs tanúsítványuk segítségével is azonosíthatjuk. Az apache felkonfigurálható úgy, hogy csak a megadott hitelesítés szolgáltatók által kiadott tanúsítványokat fogadja el, illetve képes CRL alapon elvégezni a tanúsítványok visszavonás ellenőrzését.

Elfogadott tanúsítványok tárának építése

A mérés során használt autentikációs tanúsítványt az e-Szignó Teszt CA adta ki. Ahhoz, hogy a webszerverünket felkonfigurálhassuk a tanúsítvány befogadására, először be kell szereznünk a hitelesítés szolgáltató tanúsítványát.

Töltsük le a szükséges szolgáltatói tanúsítványokat! Ehhez kövessük az alábbi lépéseket:

- Látogassunk el a https://srv.e-szigno.hu oldalra, majd lépjünk a Hitelesítés szolgáltatás > Tanúsítványok menübe
- A jobb oldali menüben válasszuk a "Szolgáltatói tanúsítványok" menüpontot
- Görgessünk le a lap aljára, majd a ECC alapú tesztrendszer megfelelői tanúsítványainak szürke dobozain Jobb klikk/Link mentése másként opcióval mentsük le a C:\cygwin64\home\meres\pkilabor\webserver_admin mappába a Test e-Szigno CA 2017 tanúsítványt és a Microsec e-Szigno Test Root CA 2008 gyökértanúsítványt.

A CA tanúsítványokat az Apache PEM formátumban várja el, amit most letöltöttünk viszont DER formátumban van.

Openssi segítségével konvertáljuk a letöltött CA tanúsítványokat PEM formátumba! Ehhez használjuk az **openssi x509** parancsot!

A paramétereket az alábbiak szerint válasszuk:

- Bemeneti formátum: der
- Kimeneti formátum: pem
- Bemeneti fájl: testeca2017.crt/TRootCA2008.crt
- Kimeneti fájl: testeca2017_pem.crt/TRootCA2008_pem.crt

Az Apache számára a befogadandó tanúsítványok láncait PEM fájlokban kell megadni.

Hozzunk létre egy fájlt auth_ca.pem.crt néven és másoljuk bele testeca2017_pem.crt és a TRootCA2008_pem.crt tartalmát egymás mögé.

SSL konfiguráció

Nyissuk meg szerkesztésre a httpd-ssl.conf állományt. és végezzük el az SSL konfigurációt!

- Állítsuk be a SSLCACertificateFile paramétert a most létrehozott PEM tanúsítványtárra (auth_ca.pem.crt). Az SSLCACertificatePath paraméter használatával megadhatnánk egy mappát, amiben több tanúsítvány is lehet.
- 2. Az SSLCARevocationPath paramétert hagyjuk kikommentezve, ebben a demóban nem fogunk foglalkozni vele. Ez a paraméter lenne alkalmas arra, hogy már letöltött CRL fájlok segítségével az Apache ellenőrizze a csatlakozó tanúsítvány érvényességét. FONTOS, hogy az Apache nem frissíti a CRL-t, egy éles környezetben ennek frissítéséről nekünk kell gondoskodnunk!
- 3. Vegyük ki a kommentet az SSLVerifyClient és SSLVerifyDepth paraméterek elől.
- 4. Indítsuk újra az Apache szervert.

Zárjuk be a böngészőt és indítsuk újra!

Látogassuk meg a https://pkilabor.crysys.hu oldalt. A böngésző ekkor kérni fogja a tanúsítvány alapú autentikációt.

FONTOS: Egy tanúsítvány alapú azonosítást követően a böngésző megjegyzi a tanúsítványt. Ha meg kívánjuk ismételni az azonosítást zárjuk be a böngészőt és látogassuk meg újra az oldalt.

Tanúsítványadatok kinyerése

A kliens által megadott tanúsítvánnyal való további műveletvégzésre az Apache több lehetőséget is ad számunkra.

Apache konfigurálás

Az Apache SSL beállításairól bővebben az alábbi címen lehet olvasni: https://httpd.apache.org/docs/2.4/mod/mod_ssl.html

Az SSLOptions paraméter segítségével több mindent is megtehetünk.

Nyissuk meg a httpd-ssl.conf-ot és _default_:443 virtualhost számára kapcsoljuk be az alábbi paramétereket:

- StdEnvVars: SSL-lel kapcsolatos további információk átadása a háttérrendszernek környezeti változóban.
- ExportCertData: A tanúsítvánnyal kapcsolatos további információk átadása a háttérrendszernek környezeti változóban.

(A konfigurációs állományban ezek az opciók részlegesen már benne vannak, keressük meg a megfelelő blokkot és a konfigurálást ott végezzük el! Figyeljünk arra, hogy pontosan egy aktív SSLOptions sor maradjon csak a virtualhoston belül!)

A gyakorlatban még hasznosak lehetnek az alábbi SSLOptions kapcsolók is:

- OptRenegotiate
- FakeBasicAuth

Érdemes megvizsgálni még az SSLRequire direktívát, amely a gyakorlatban további szűrési lehetőségeket ad a tanúsítványokra.

Indítsuk újra az Apache szolgáltatást!

Adatok feldolgozása PHP szkriptből

Amennyiben a konfigurációt helyesen végeztük el, mostantól az Apache szerver a háttérben futó PHP számára környezeti változóban több, a tanúsítvány alapú autentikációra vonatkozó adatot is át fog adni.

Navigáljunk a C:\xampp\htdocs mappába és írjunk PHP szkriptet pkilabor.php néven, amely kiírja a csatlakozó autentikációs tanúsítványt és a kliens Subject DN-t!

SSL tanúsítványok vizsgálata

Természetes, hogy a mérés során általunk kiadott webszerver tanúsítvány nem felel meg a nemzetközi előírásoknak és elvárásoknak. Egy hitelesítés szolgáltatótól beszerezhető webszerver tanúsítvány sokkal több adatot tartalmaz és szolgáltat, mint az, amit mi most kiállítottunk.

A pkilabor.crysys.hu tanúsítvány vizsgálata

Vizsgáljuk meg az általunk kiadott tanúsítvány alapvető tulajdonságait. Milyen fontosabb mezőket tartalmaz a tanúsítvány?

- 1. Nyissuk meg Chrome böngészőben az oldalunkat.
- 2. Kattintsunk a címsorban található lakat ikonra.
- 3. Kattintsunk a tanúsítvány adatai linkre.

A részletek fülön megfigyelhetjük, hogy az általunk megadott adatok belekerültek a tanúsítványba és ezt a végfelhasználói oldalon is meg lehet tekinteni.

Az e-szigno.hu szervertanúsítvány vizsgálata

Vizsgáljuk meg az srv.e-szigno.hu webszerver tanúsítvány alapvető tulajdonságait. Milyen fontosabb mezőket tartalmaz a tanúsítvány? Miben tér el a pkilabor.crysys.hu tanúsítványától?

- 1. Nyissuk meg Chrome böngészőben a https://srv.e-szigno.hu címet.
- 2. Kattintsunk a címsorban található lakat ikonra.
- 3. Kattintsunk a Kapcsolat fülre.
- 4. Kattintsunk a tanúsítvány adatai linkre.

A részletek fülön megfigyelhetjük, hogy egy, a nemzetközi elvárásoknak megfelelő Hitelesítés Szolgáltató által kibocsátott tanúsítvány miben különbözik az általunk előbb kiadott tanúsítványtól.

Digitális aláírások vizsgálata

Aláírt PDF készítése parancssorból

Ahhoz, hogy egy elektronikusan aláírt dokumentumot létrehozzunk, az alábbiakra van szükségünk:

- Aláíratlan dokumentum
- Aláíró tanúsítvány (szoftveres, vagy hardwares eszközön tárolt)
- Aláírás létrehozó szoftver

Aláírás létrehozásra az e-Szignó termékcsaládot, valamint az Adobe Acrobat Readert fogjuk használni. Az e-Szignó termékcsaládban találhatunk egy grafikus felületű végfelhasználói szoftvert, valamint egy parancssoros klienst, melyet parancssoros, C, COM és Java interfészeken keresztül lehet integrálni az alkalmazásainkba.

Fontosabb tudnivalók

- A kliens e-Szignó alkalmazás az asztalon és a start menüben található ikonokkal indítható
- A parancssoros e-Szignó c:\eszigno3 mappában található
 - A doc mappában találhatjuk a dokumentációt

- o Az examples mappában találhatóak példák a legtipikusabb felhasználási területekre
- A pfx mappában találhatóak a tesztekhez használható tanúsítványok
- A bin mappában található a futtatható bináris

Készítsünk aláírt PDF-et a parancssoros e-Szignó alkalmazás segítségével.

Ehhez futtassuk parancssorból a példák között található pdf_sign.bat szkriptet. Ahhoz, hogy a futtatás sikeres legyen a c:\eszigno3 mappa legyen a munkakönyvtár!

Ez a parancs létrehoz egy aláírt PDF állományt. A parancssori utasítás megadja az aláírandó állományt, az aláíráshoz használt kulcsfájlt, annak jelszavát, formátumát (pfx). Megadja a tanúsítványláncépítéshez használható köztes és gyökértanúsítványok mappáit, valamint az aláírás típusát, illetve az időbélyeg hozzáférés adatait arra az esetre, ha az aláírásnak tartalmaznia kellene időbélyeget.

Milyen típusú aláírásokat hoz létre a szkript? (Alap, időbélyeges, vagy archív?)

Megjegyzés: Bár a PDF aláírás szabvány önállóan is létezik PAdES néven, az aláírt PDF-ek belül CAdES típusú aláírásokat tartalmaznak.

Készítsünk egy-egy aláírt PDF-et mindhárom (alap, időbélyeges, archív) típusból!

A szoftver dokumentációját segítségül hívva módosítsuk a pdf_sign.bat állományt úgy, hogy más típusú aláírt PDF-et hozzon létre. A három állomány neve legyen:

- signed_bes.pdf
- signed_t.pdf
- signed_a.pdf

Adobe Reader konfiguráció Windows tanúsítványtár használathoz

Nyissuk meg valamelyik PDF-et Adobe Reader-rel.

Láthatjuk, hogy a Reader hibát jelez: "Legalább egy aláírás hibás". Ennek oka az, hogy a teszt tanúsítványainkhoz kapcsolódó teszt hitelesítés szolgáltatót az Adobe Reader (nagyon helyesen) nem ismeri el megbízhatóként.

A Windows Tanúsítványtárába a mérést megelőzően telepítésre kerültek a Microsec Teszt CA-i.

Konfiguráljuk be az Adobe Reader-t, hogy használja a Windows tanúsítványtárát!

Ehhez kövessük az alábbi lépéseket:

- Válasszuk a Szerkesztés/Beállítás menüpontot
- Válasszuk az Aláírások menüpontot
- Kattintsunk a Tovább gombra az Ellenőrzés mezőben
- Alul, az "Együttműködés a Windows rendszerrel" mezőben pipáljuk be mindkét opciót

Ezt követően újbóli megnyitásra az aláírás ellenőrzése sikeres lesz.

Az e-Szignóval aláírt PDF-ek vizsgálata

Nyissuk meg a három aláírt PDF-et! Az Aláírás panel segítségével hasonlítsuk össze az aláírásokat!

Milyen különbségeket tapasztalunk? Milyen új elemek jelennek meg, ahogy a dokumentumon található aláírás típusa változik?

Aláírás Adobe Readerrel

Nyissuk meg az C:\eszigno3\doc\E-Szigno_EULA.pdf állományt Adobe Readerrel! Készítsünk a dokumentumra elektronikus aláírást több különböző módon az Adobe Reader segítségével!

Ehhez használjuk az Eszközök/Tanúsítványok opciót. Készítsük el az alábbi dokumentum variációkat (Ebben a sorrendben!):

- 1. Csak aláírást tartalmazó dokumentum: eula_bes.pdf
- 2. Csak időbélyeget tartalmazó dokumentum: eula_ts.pdf
- 3. Időbélyeg, majd aláírás elhelyezése: eula ts and t.pdf
- 4. Aláírás, majd időbélyeg elhelyezése: eula_t_and_ts.pdf

Az aláíráshoz szükséges lesz a digitális aláírási azonosító konfigurálása; ezt fájlból adjuk meg, mely legyen a C:\eszigno3\pfx\peterke.pfx fájl! A jelszó 12345.

Időbélyegzéshez az alábbi kiszolgálót állítsuk be:

- Kiszolgáló URL: https://bteszt.e-szigno.hu/tsa
- Felhasználónév: teszt
- Jelszó: teszt

Hasonlítsuk össze az így keletkezett dokumentumokat az e-Szignóval készültekkel!

Ha eddig még nem tettük volna, most olvassuk el a parancssoros e-Szignó dokumentációjában (eszigno3_ref.html) a pdf_sign parancs leírását.

Próbáljunk megfeleltetést találni a releváns e-Szignó paraméterek (cades_type = bes,t,a) és Adobe Reader két funkciójával kombinációival elérhető eredmények között.

Láthatjuk, hogy bizonyos Adobe Reader-rel készített állományok egy- az-egyben megfeleltethetőek az e-Szignó által készítetteknek. Vannak azonban olyan fájlok, amelyekhez nem található e-Szignós állomány.

Mi az a funkció, amit az e-Szignó parancsok nem láttak el? Melyik e-Szignó parancs segítségével lehetséges a hiányzó funkciót betölteni?