

Regresión Lineal: Análisis de Desempeño y Regularización

Inteligencia artificial avanzada para la ciencia de datos I

David Gomez Carrillo - A01642824

1. Introducción

Este reporte evalúa el desempeño de una implementación propia de regresión lineal entrenada con descenso de gradiente (GD) sobre el conjunto de California Housing. Se usa una partición Train/Validation/Test y se explora la regularización L2 para mejorar el rendimiento.

2. Partición de datos

Se separó el conjunto en Train y Test (20% para Test). A partir de Train se generó un conjunto de Validación (20% de Train). Los modelos se ajustan en Train, se seleccionan hiperparámetros en Validación y se reporta el desempeño final en Test.

3. Modelo base y métricas

El modelo base no usa regularización (L2=0). En la Figura 3 se muestra la curva de pérdida y en las Figuras 4 y 5 la comparación Real vs Predicción.

Cuadro 1: Métricas del modelo base							
Conjunto	MSE	RMSE	MAE	\mathbb{R}^2			
Train	4765842091.708	69035.079	50020.104	0.6467			
Validación	4516422595.903	67204.335	48447.894	0.6407			
Test	4784978303.370	69173.538	50073.808	0.6423			

4. Diagnóstico: bias, varianza y ajuste

Para el modelo base, el sesgo es bajo, la varianza es baja y el nivel de ajuste es fit (brecha R^2 Train-Validación = 0.006).

5. Búsqueda de regularización y modelo mejorado

Se exploraron distintos valores de L2 y se eligió el que minimiza el MSE en Validación (L2=0). En la Figura 6 se muestra la curva de pérdida y en las Figuras 7 y 8 la dispersión Real vs Predicción. La Figura 9 compara las métricas de Validación entre el modelo base y el regularizado.

Nota sobre regularización El valor óptimo L2=0 indica que la regularización no fue necesaria en este experimento. El modelo lineal ya mostraba baja varianza (brecha Train–Validación pequeña) y buena capacidad de generalización. Con datos relativamente numerosos, características estandarizadas y una hipótesis lineal simple, la penalización sobre los pesos no aportó mejora adicional.

5.1. Exploración completa de L2

La Figura 1 muestra cómo varían MSE, RMSE y MAE con L2 (escala log-log) y la Figura 2 muestra el R². En la Tabla 2 se listan los mejores valores en Validación.

Para el modelo mejorado, el sesgo es bajo, la varianza es baja y el nivel de ajuste es fit (brecha R^2 Train-Validación = 0.006).

Figura 1: Validación: MSE/RMSE/MAE vs L2 (log-log)

Cuadro 2: Top L2 por MSE en Validación

L2	MSE	RMSE	MAE	\mathbb{R}^2		
0	4516422595.903	67204.335	48447.894	0.6407		
0.001	4518879020.887	67222.608	48466.366	0.6405		
0.005	4531278683.495	67314.773	48564.412	0.6395		
0.01	4550578062.424	67457.973	48709.159	0.6380		
0.05	4726961121.690	68752.899	50073.260	0.6240		
0.1	4929704653.686	70211.856	51697.526	0.6078		

6. Figuras

7. Conclusiones

La exploración de regularización arrojó un **L2 óptimo de 0**, por lo que **no fue necesario regularizar** para este problema. El modelo lineal entrenado por GD ya mostraba **buena generalización** (brecha Train–Validación pequeña) y **baja varianza**; añadir penalización a los pesos no produjo mejoras adicionales en Validación ni en Test.

Figura 2: Validación: \mathbb{R}^2 vs L2 (log-x)

Cuadro 3: Métricas del modelo mejorado (L2=0)

Conjunto	MSE	RMSE	MAE	\mathbb{R}^2			
Train	4765842091.708	69035.079	50020.104				
Validación	4516422595.903	67204.335	48447.894	0.6407			
Test	4784978303.370	69173.538	50073.808	0.6423			

Figura 3: Curva de pérdida del modelo base

Figura 4: Validación: Real vs Pred (Base)

Figura 5: Test: Real vs Pred (Base)

Figura 6: Curva de pérdida del modelo mejorado

Figura 7: Validación: Real vs Pred (L2 óptimo)

Figura 8: Test: Real vs Pred (L2 óptimo)

Figura 9: Validación: comparación de métricas (escala log)

Figura 10: Validación: razón (mejor/baseline), menor a 1 es mejor

Figura 11: Test: comparación de métricas (escala log)

Figura 12: Test: razón (mejor/baseline), menor a 1 es mejor