

Proposta de teste de avanação		
Matemática A		
12.º ANO DE ESCOLARIDADE		
Duração: 150 minutos Data:		

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

- 1. Na figura, estão representados, num referencial o.n. Oxyz, o quadrado [ABCD], contido no plano α , definido pela equação 3y+4z+5=0, bem como o ponto E, de cota positiva. Sabe-se que
 - os pontos A e C têm coordenadas (-2, 1, -2) e
 (8, -7, 4), respetivamente;
 - [ABCDE] é uma pirâmide quadrangular regular de altura igual a 15.

- uma circunferência de centro O e raio r;
- dois pontos, A e B, da circunferência;
- o ângulo ao centro AOB de amplitude x radianos $(x \in]0, \pi[)$.

- d o comprimento da corda [AB];
- c o comprimento do arco correspondente AB;
- f a função que a cada valor de x faz corresponder o quociente $\frac{c}{d}$.

2.1. Mostre que
$$f(x) = \frac{x}{2\sin(\frac{x}{2})}$$
, $x \in]0$, $\pi[$.

2.2. Determine $\lim_{x\to 0} f(x)$ e interprete o resultado obtido no contexto da situação apresentada.

Considere a função f definida, em \mathbb{R} , por $f(x) = 1 - \sin x$. 3.

O valor de $\lim_{h\to 0} \frac{f(\pi+h)-f(\pi)}{h}$ é:

- **(A)** −1
- **(B)** 0
- **(C)** 1
- **(D)** 2
- 4. Considere, para um certo número real k, as funções $f \in g$, de domínio \mathbb{R}^+ , definidas por

$$f(x) = x^2 \ln x \ e \ g(x) = k + f(2x).$$

- **4.1.** Seja r a reta tangente ao gráfico de f no ponto de abcissa 1.
 - Determine a equação reduzida da reta r. a)
 - Sabe-se que a reta r também é tangente ao gráfico da função g, num único ponto de b) abcissa $x_0 \in]0,1[$.

Determine o valor de x_0 recorrendo à calculadora gráfica.

Na sua resposta deve:

- apresentar a equação que lhe permite resolver o problema;
- reproduzir o gráfico da função ou os gráficos das funções que tiver necessidade de visualizar na calculadora, devidamente identificado(s), incluindo o referencial;
- apresentar o valor de x_0 arredondado às centésimas.
- 4.2. Estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.
- Considere k=1 e determine $\lim_{x\to +\infty} \frac{g(x)}{f(x)}$.
- Para um certo número real k, seja g a função, de domínio \mathbb{R} , definida por: 5.

$$g(x) = \begin{cases} \frac{e^{kx} + x - 1}{2x} & \text{se } x < 0\\ x e^{2-x} - x & \text{se } x \ge 0 \end{cases}$$

Sabe-se que a função g é contínua no ponto 0. 5.1.

Qual \acute{e} o valor de k?

- (A)
- **(B)** 0 **(C)** $\frac{1}{2}$
- **(D)**
- O gráfico da função g tem uma assíntota oblíqua quando $x \to +\infty$. **5.2.**

Determine a equação reduzida dessa assíntota.

6. Considere, para um certo número real a, a função de domínio \mathbb{R} definida por $f(x) = (x+a)e^x$. Sabe-se que que o ponto do gráfico de f com abcissa a é um ponto de inflexão.

O valor de a é:

- **(C)**
- 7. Na figura, está representado um tabuleiro retangular dividido em doze quadrados iguais, dispostos em três linhas e quatro colunas.

Pretende-se colocar sobre este tabuleiro, situado à nossa frente, doze peças de igual tamanho e feitio, das quais quatro são brancas e oito são cinzentas.

Cada casa do tabuleiro é ocupada por uma só peça.

Supondo que as peças são colocadas ao acaso, qual é a probabilidade de pelo penos uma coluna ficar com pelo menos duas peças brancas?

- (A) $\frac{9}{55}$ (B) $\frac{46}{55}$ (C) $\frac{36}{55}$ (D) $\frac{19}{55}$
- 8. Sejam E um conjunto finito, P uma probabilidade em $\mathcal{P}(E)$ e sejam A e B dois acontecimentos possíveis e equiprováveis $(A, B \in \mathcal{P}(E))$.

Sabe-se que P(A|B) = 0.25 e $P(\overline{A} \cap \overline{B}) = 0.3$.

Qual é o valor de P(A)?

- 0, 2(A)
- **(B)** 0, 3
- **(C)** 0,4
- **(D)** 0,5

- Em \mathbb{C} , conjunto dos números complexos, considere os elementos z_1 e z_2 , tais que $\frac{z_2}{z_1} = e^{i\frac{\pi}{3}}$. 9.
 - **9.1.** Se $|z_1| = 1$, então $|z_2 z_1|$ é igual a:

 - (A) 2 (B) $\frac{\sqrt{3}}{2}$ (C) 1 (D) $\frac{1}{2}$

9.2. Mostre que $z_1^2 + z_2^2 = z_1 z_2$.

Sugestão: Comece por mostrar que $z_1^2 + z_2^2 = e^{i\frac{\pi}{3}} z_1^2$

De uma sucessão (v_n) de termos positivos, sabe-se que $v_n = v_{n+1} + \frac{1}{n^2}$, $\forall n \in \mathbb{N}$. 10.

Qual das afirmações seguintes é verdadeira?

- (v_n) é uma progressão aritmética.
- **(B)** (v_n) é um infinitamente grande.
- (C) (v_n) é convergente.
- **(D)** Se $v_6 = \frac{24}{25}$, então $v_5 = \frac{23}{25}$.

FIM

Cotações:

Item																	
Cotação (em pontos)																	
1.1.	1.2.	2.1.	2.2.	3.	4.1.a)	4.1.b)	4.2.	4.3.	5.1.	5.2.	6.	7.	8.	9.1.	9.2.	10.	Total
15	15	10	10	10	10	15	15	15	10	10	10	10	10	10	15	10	200

FORMULÁRIO

GEOMETRIA

Comprimento de um arco de circunferência: αr

 $(\alpha : amplitude, em radianos, do ângulo ao centro; r : raio)$

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular: $\frac{\alpha r^2}{2}$

(α : amplitude, em radianos, do ângulo ao centro; r: raio)

Área lateral de um cone: $\pi r g$

(r : raio da base; g : geratriz)

Área de uma superfície esférica: $4\pi r^2$

(*r* : raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{2} \pi r^3$ (r : raio)

PROGRESSÕES

Soma dos n primeiros termos de uma progressão (u_n):

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

TRIGONOMETRIA

 $\sin(a+b) = \sin a \cos b + \sin b \cos a$

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

COMPLEXOS

$$\left(\rho e^{i\theta}\right)^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho\,\mathrm{e}^{\mathrm{i}\theta}} = \sqrt[n]{\rho\,\,\mathrm{e}^{\frac{\theta+2k\pi}{n}}}\,\left(k\in\left\{0\;,\;\ldots\;,\;n\!-\!1\right\}\;\,\mathrm{e}\;\,n\in\mathbb{N}\right)$$

REGRAS DE DERIVAÇÃO

$$(u+v)'=u'+v'$$

$$(u \ v)' = u' \ v + u \ v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'\ v - u\ v'}{v^2}$$

$$(u^n)' = n \ u^{n-1} \ u' \quad (n \in \mathbb{R})$$

$$(\sin u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\tan u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$\left(\operatorname{In} u\right)' = \frac{u'}{u}$$

$$\left(\log_a u\right)' = \frac{u'}{u \ln a} \qquad \left(a \in \mathbb{R}^+ \setminus \{1\}\right)$$

LIMITES NOTÁVEIS

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad \left(n \in \mathbb{N}\right)$$

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

$$\sqrt[n]{\rho e^{\mathrm{i}\theta}} = \sqrt[n]{\rho} e^{\frac{\theta + 2k\pi}{n}} \left(k \in \{0, \dots, n-1\} \ e \ n \in \mathbb{N} \right)$$

Proposta de resolução

1. 1.1. $A(-2,1,-2) \in C(8,-7,4)$

$$\overrightarrow{AC} = C - A = (8, -7, 4) - (-2, 1, -2) = (10, -8, 6)$$

Equação vetorial da reta AC:

$$(x, y, z) = (-2, 1, -2) + k(10, -8, 6), k \in \mathbb{R}$$

Coordenadas de um ponto genérico da reta AC:

$$(x, y, z) = (-2 + 10k, 1 - 8k, -2 + 6k), k \in \mathbb{R}$$

O plano yOz é definido pela equação x = 0.

O ponto de coordenadas $(-2+10k, 1-8k, -2+6k), k \in \mathbb{R}$, pertence ao plano yOz se

$$-2+10k = 0 \Leftrightarrow k = \frac{2}{10} \Leftrightarrow k = \frac{1}{5}$$

As coordenadas do ponto P obtêm-se para $k = \frac{1}{5}$:

$$\left(-2+10\times\frac{1}{5},1-8\times\frac{1}{5},-2+6\times\frac{1}{5}\right) = \left(0,-\frac{3}{5},-\frac{4}{5}\right)$$
. Logo, $P\left(0,-\frac{3}{5},-\frac{4}{5}\right)$

$$d(O,P) = \sqrt{0^2 + \left(-\frac{3}{5}\right)^2 + \left(-\frac{4}{5}\right)^2} = \sqrt{\frac{9}{25} + \frac{16}{25}} = \sqrt{\frac{25}{25}} = 1$$

1.2. O vetor $\vec{u}(0,3,4)$ é normal ao plano ABC.

Seja M o ponto médio de AC.

$$M\left(\frac{-2+8}{2}, \frac{1-7}{2}, \frac{-2+4}{2}\right)$$
, ou seja, $M(3, -3, 1)$

O vetor \overrightarrow{ME} é colinear com \overrightarrow{u} e tem norma igual a 15:

$$\overrightarrow{ME} = k \, \overrightarrow{u} \wedge \left\| \overrightarrow{ME} \right\| = 15$$

$$\|\vec{u}\| = \sqrt{0^2 + 3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

$$\overrightarrow{ME} = k \vec{u} \wedge \|\overrightarrow{ME}\| = 15 \Rightarrow \|k \vec{u}\| = 15 \Leftrightarrow$$

$$\Leftrightarrow$$
 $|k| \|\vec{u}\| = 15 \Leftrightarrow |k| \times 5 = 15 \Leftrightarrow |k| = 3 \Leftrightarrow$

$$\Leftrightarrow k = -3 \lor k = 3$$

Se
$$k = -3$$
, $\overrightarrow{ME} = -3\overrightarrow{u} = -3(0, 3, 4) = (0, -9, -12)$ e

$$E = M + \overrightarrow{ME} = (3, -3, 1) + (0, -9, -12) = (3, -12, -11)$$

Se
$$k=3$$
, $\overrightarrow{ME} = 3\vec{u} = 3(0, 3, 4) = (0, 9, 12)$ e

$$E = M + \overrightarrow{ME} = (3, -3, 1) + (0, 9, 12) = (3, 6, 13)$$

Como o ponto E tem cota positiva, então E(3, 6, 13).

2.

2.1.
$$c = r x$$

$$\frac{\frac{d}{2}}{r} = \sin\left(\frac{x}{2}\right) \Leftrightarrow \frac{d}{2} = r\sin\left(\frac{x}{2}\right) \Leftrightarrow d = 2r\sin\left(\frac{x}{2}\right)$$

$$\frac{c}{d} = \frac{rx}{2r\sin\left(\frac{x}{2}\right)} = \frac{x}{2\sin\left(\frac{x}{2}\right)}$$

Logo,
$$f(x) = \frac{x}{2\sin\left(\frac{x}{2}\right)}$$

2.2.
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x}{2 \sin\left(\frac{x}{2}\right)} = \lim_{x \to 0} \frac{1}{\frac{2 \sin\left(\frac{x}{2}\right)}{x}} = \frac{1}{\lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}} = \frac{1}{\lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}} = \frac{1}{\lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{y}} = \frac{1}{\lim_{x \to 0}$$

Quando $x \to 0$, o comprimento do arco AB tende a igualar o comprimento do segmento de reta [AB], pelo que o quociente $\frac{c}{d}$ tende para 1.

3.
$$f'(x) = (1 - \sin x)' = -\cos x$$

$$\lim_{h \to 0} \frac{f(\pi + h) - f(\pi)}{h} = f'(\pi) = -\cos \pi = -(-1) = 1$$

Resposta: (C)

4.1. a)
$$f(x) = x^2 \ln x$$

 $f(1) = 1^2 \ln 1 = 0$
 $f'(x) = (x^2)' \ln x + x^2 (\ln x)' = 2x \ln x + x^2 \times \frac{1}{x} = 2x \ln x + x$
 $f'(1) = 2 \times 1 \times \ln 1 + 1 = 0 + 1 = 1$

Coordenadas do ponto de tangência: (1,0)

Declive da reta
$$r: m = f'(1) = 1$$

$$r: y-0=1\times(x-1) \Leftrightarrow y=x-1$$

b) Se a reta r também é tangente ao gráfico da função g, num ponto de abcissa

$$x_0 \in]0, 2[$$
, então $g'(x_0) = 1$.

$$g'(x) = (k + f(2x))' = 0 + (2x)' f'(2x) =$$

$$= 2 [2 \times 2x \ln(2x) + 2x] = 8x \ln(2x) + 4x$$

Em alternativa:

$$g(x) = k + f(2x) = k + (2x)^{2} \ln(2x) = k + 4x^{2} \ln(2x)$$
.

$$g'(x) = k' + (4x^{2})' \ln(2x) + 4x^{2} \left[\ln(2x)\right]' =$$

$$= 8x \ln(2x) + 4x^{2} \times \frac{2}{2x} = 8x \ln(2x) + 4x$$

A solução da equação $g'(x) = 1 \Leftrightarrow 8x \ln(2x) + 4x = 1$, no intervalo]0, 1[, é o valor de x_0 que se pretende.

Recorrendo à calculadora gráfica, determinou-se, no intervalo referido, a abcissa do ponto de interseção dos gráficos das funções definidas por $y_1 = 8x \ln(2x) + 4x$ e $y_2 = 1$, tendo-se obtido o resultado indicado.

Portanto, $x_0 \approx 0.41$.

4.2.
$$f'(x) = 2x \ln x + x$$

$$f''(x) = (2x \ln x)' + x' = (2x)' \ln x + 2x (\ln x)' + 1 =$$

$$= 2 \ln x + 2x \times \frac{1}{x} + 1 = 2 \ln x + 2 + 1 = 2 \ln x + 3$$

$$f''(x) = 0 \Leftrightarrow 2 \ln x + 3 = 0 \Leftrightarrow \ln x = -\frac{3}{2} \Leftrightarrow x = e^{-\frac{3}{2}}$$

x	$-\infty$	$e^{-\frac{3}{2}}$	+∞
f''	_	0	+
f	\cap	P.I.)

O gráfico da função f tem a concavidade voltada para baixo em $\left]-\infty$, $e^{-\frac{3}{2}}\right[$ e a concavidade voltada para cima em $\left]e^{-\frac{3}{2}}$, $+\infty$. O ponto de abcissa $e^{-\frac{3}{2}}$ é um ponto de inflexão.

4.3.
$$f(x) = x^2 \ln x$$

$$g(x)=1+f(2x)=1+(2x)^2\ln(2x)=1+4x^2\ln(2x)$$

$$\lim_{x \to +\infty} \frac{g(x)}{f(x)} = \lim_{x \to +\infty} \frac{1 + f(2x)}{f(x)} = \lim_{x \to +\infty} \frac{1 + 4x^2 \ln(2x)}{x^2 \ln x} =$$

$$= \lim_{x \to +\infty} \left(\frac{1}{x^2 \ln x} + \frac{4x^2 \ln(2x)}{x^2 \ln x} \right) = \lim_{x \to +\infty} \frac{1}{x^2 \ln x} + 4 \lim_{x \to +\infty} \frac{\ln(2x)}{\ln x} =$$

$$= \frac{1}{+\infty} + 4 \lim_{x \to +\infty} \frac{\ln 2 + \ln x}{\ln x} = 0 + 4 \lim_{x \to +\infty} \left(\frac{\ln 2}{\ln x} + 1 \right) =$$

$$= 4 \times \left(\frac{\ln 2}{+\infty} + 1 \right) = 4 \times (0 + 1) = 4$$

5.
$$g(x) = \begin{cases} \frac{e^{kx} + x - 1}{2x} & \text{se } x < 0 \\ x e^{2-x} - x & \text{se } x \ge 0 \end{cases}$$

5.1. Se g é contínua em x = 0, então existe $\lim_{x \to 0} g(x)$.

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} \frac{e^{kx} + x - 1}{2x} = \lim_{x \to 0^{-}} \left(\frac{e^{kx} - 1}{2x} + \frac{x}{2x} \right) = \lim_{x \to 0^{-}} \frac{e^{kx} - 1}{2x} + \frac{1}{2} =$$

$$= \frac{1}{2} + \frac{1}{2} \times k \lim_{x \to 0^{-}} \frac{e^{kx} - 1}{kx} = \frac{1}{2} + \frac{k}{2} \lim_{y \to 0} \frac{e^{y} - 1}{y} =$$

$$= \frac{1}{2} + \frac{k}{2} \times 1 = \frac{1 + k}{2}$$

$$|y = kx|$$

$$|Se(x) \to 0^{-}, y \to 0$$

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x e^{2-x} - x) = 0 \times e^{2-0} - 0 = 0 = g(0)$$

Se g é contínua em x = 0, então $\frac{1+k}{2} = 0 \Leftrightarrow k = -1$.

Resposta: (A)

5.2. Seja y = mx + b a equação da assíntota ao gráfico da função g quando $x \to +\infty$.

$$m = \lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{x e^{2-x} - x}{x} = \lim_{x \to +\infty} \left(e^{2-x} - 1 \right) = e^{-\infty} - 1 = 0 - 1 = -1$$

$$b = \lim_{x \to +\infty} \left[g(x) - mx \right] = \lim_{x \to +\infty} \left(x e^{2-x} - x + x \right) = \lim_{x \to +\infty} \left(x e^{2-x} \right)^{(\infty \times 0)} =$$

$$= \lim_{x \to +\infty} \left(x e^{2} e^{-x} \right) = e^{2} \lim_{x \to +\infty} \frac{x}{e^{x}} = e^{2} \lim_{x \to +\infty} \frac{1}{\frac{e^{x}}{x}} =$$

$$= e^{2} \times \frac{1}{\lim_{x \to +\infty} \frac{e^{x}}{x}} = e^{2} \times \frac{1}{+\infty} = e^{2} \times 0 = 0$$

y = -x é a equação pedida.

6. $f(x) = (x+a)e^x$

$$f'(x) = (x+a)' e^x + (x+a)(e^x)' = e^x + (x+a)e^x = (1+x+a)e^x$$

$$f''(x) = (1+x+a)' e^x + (1+x+a)(e^x)' =$$

$$= e^x + (1+x+a)e^x = (1+1+x+a)e^x = (x+a+2)e^x$$

$$f''(a) = 0 \Leftrightarrow (a+a+2)e^a = 0 \Leftrightarrow (2a+2)e^a = 0 \Leftrightarrow 2a+2=0 \Leftrightarrow a=-1$$

Resposta: (A)

- 7. O acontecimento contrário do acontecimento
 - A: "Pelo menos uma coluna fica com pelo menos duas peças brancas"

é o acontecimento

 \overline{A} : "Cada coluna fica com uma e uma só peça branca".

Calculemos a probabilidade de \overline{A} :

Número de casos possíveis:

 $^{12}C_4 = 495$ (É o número de maneiras de colocar as quatro peças brancas nos 12 lugares do tabuleiro. O lugar das peças cinzentas fica univocamente determinado.)

Número de casos favoráveis:

$$3 \times 3 \times 3 \times 3 = 3^4 = 81$$
 (Em cada coluna há três maneiras de colocar uma peça branca.)

$$P\left(\overline{A}\right) = \frac{81}{495} = \frac{9}{55}$$

$$P(A) = 1 - P(\overline{A}) = 1 - \frac{9}{55} = \frac{46}{55}$$

Resposta: (B)

8.
$$P(A) = P(B), P(A|B) = 0.25 \text{ e } P(\overline{A} \cap \overline{B}) = 0.3$$

$$P(\overline{A} \cap \overline{B}) = 0,3 \Leftrightarrow P(\overline{A \cup B}) = 0,3 \Leftrightarrow$$

$$\Leftrightarrow 1 - P(A \cup B) = 0.3 \Leftrightarrow P(A \cup B) = 0.7$$

$$P(A|B) = 0.25 \Leftrightarrow \frac{P(A \cap B)}{P(B)} = 0.25 \Leftrightarrow P(A \cap B) = 0.25P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$0,7 = P(B) + P(B) - 0,25P(B)$$

$$\Leftrightarrow 0,7=1,75P(B) \Leftrightarrow P(B) = \frac{0,7}{1,75} \Leftrightarrow P(B) = 0,4$$

$$P(A) = P(B) = 0,4$$

Resposta: (C)

Re(z)

Im(z)

9.1. $\frac{z_2}{z_1} = e^{i\frac{\pi}{3}} \Leftrightarrow z_2 = e^{i\frac{\pi}{3}} z_1$

$$\left| z_{2} \right| = \left| e^{i\frac{\pi}{3}} z_{1} \right| = \left| e^{i\frac{\pi}{3}} \right| \times \left| z_{1} \right| = 1 \times \left| z_{1} \right| = \left| z_{1} \right|$$

Se
$$|z_1| = 1$$
 então $|z_2| = |z_1| = 1$

Sejam, no plano complexo, $A \in B$ os afixos de

 z_1 e z_2 , respetivamente.

Logo,
$$|z_2 - z_1| = \overline{AB} = 1$$
.

Em alternativa:

$$|z_{2}-z_{1}| = \left| e^{i\frac{\pi}{3}} z_{1} - z_{1} \right| = \left| z_{1} \left(e^{i\frac{\pi}{3}} - 1 \right) \right| = \left| z_{1} \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3} - 1 \right) \right| =$$

$$= \left| z_{1} \left(\frac{1}{2} + \frac{\sqrt{3}}{2} i - 1 \right) \right| = \left| z_{1} \right| \left| -\frac{1}{2} + \frac{\sqrt{3}}{2} i \right| = \left| z_{1} \right| \sqrt{\left(-\frac{1}{2} \right)^{2} + \left(\frac{\sqrt{3}}{2} \right)^{2}} =$$

$$= \left| z_{1} \right| \sqrt{\frac{1}{4} + \frac{3}{4}} = \left| z_{1} \right| \times 1 = \left| z_{1} \right| = 1$$

Resposta: (C)

9.2.
$$z_{1}^{2} + z_{2}^{2} = z_{1}^{2} + \left(e^{i\frac{\pi}{3}}z_{1}\right)^{2} = z_{1}^{2} + \left(e^{i\frac{\pi}{3}}\right)^{2} z_{1}^{2} = z_{1}^{2} + e^{i\frac{2\pi}{3}} z_{1}^{2} =$$

$$= z_{1}^{2} \left(1 + e^{i\frac{2\pi}{3}}\right) = z_{1}^{2} \left(1 + \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = z_{1}^{2} \left(1 - \frac{1}{2} + \frac{\sqrt{2}}{2}i\right) =$$

$$= z_{1}^{2} \left(\frac{1}{2} + \frac{\sqrt{2}}{2}i\right) = z_{1}^{2} \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = z_{1}^{2} e^{i\frac{\pi}{3}}$$

$$z_{1}z_{2} = z_{1} e^{i\frac{\pi}{3}} z_{1} = z_{1}^{2} e^{i\frac{\pi}{3}}$$

$$Logo, z_{1}^{2} + z_{2}^{2} = z_{1}z_{2}.$$

$$V_n = V_{n+1} + \frac{1}{n^2}, \ \forall n \in \mathbb{N} \Leftrightarrow V_{n+1} - V_n = -\frac{1}{n^2}, \ \forall n \in \mathbb{N}$$

Logo, $\forall n \in \mathbb{N}$, $v_{n+1} - v_n < 0$, ou seja, (v_n) é decrescente.

Por outro lado, se (v_n) é uma sucessão de termos positivos, então $v_n > 0$, $\forall n \in \mathbb{N}$, ou seja, (v_n) é minorada.

Podemos, portanto, concluir que (v_n) é convergente, porque toda a sucessão decrescente e minorada é convergente.

Resposta: (C)

