

Search to Distill: Pearls are Every where but not the Eyes

报告人: 时间: 2020年7月9日

Outline

- Motivation
- Method
- Search space
- Experiments

motivation

Figure 1. Searching neural architectures by the proposed AKD and conventional NAS [34] lead to different optimal architectures.

Teachers	Student1	Student2	Comparison
EfficientNet-B7 [35]	65.8%	66.6%	student1 < student2
Inception-ResNet-v2 [32]	67.4%	66.1%	student1 > student2

Table 1. ImageNet accuracy for students with different teachers.

motivation

S2 is the pearl (best student) in the eye of T(A)

Tag Model name		Input size	Top-1 accuracy	
T(A)	EfficientNet-B7 [35]	600	84.4	
T(B)	PNASNet-large [18]	331	82.9 74	
T(C)	SE-ResNet-154 [11]	224	81.33	
T(D)	PolyNet [41]	331	81.23	
T(E)	Inception-ResNet-v2 [32]	299	80.217	
T(F)	ResNeXt-101 [38]	224	79.431	
T(G)	Wide-ResNet-101 [40]	224	78.84	
T(H)	ResNet-152 [5]	224	78.31	

Table 2. A comparison of popular off-the-shelf models, sorted by top-1 accuracy.

Teacher models							
T(A)	T(B)	T(E)	T(F)				
S_2 (66.6)	S_3 (66.9)	S_1 (67.4)	S_5 (67.1)				
S_3 (66.5)	S_5 (66.4)	S_4 (67.0)	S_1 (67.1)				
S_4 (66.3)	S_4 (66.1)	S_5 (66.9)	S_4 (66.6)				
S_5 (66.0)	S_1 (65.7)	S_3 (66.5)	S_3 (66.3)				
S_1 (65.8)	S_2 (65.4)	S_2 (66.1)	S_2 (66.0)				
	T(A) S ₂ (66.6) S ₃ (66.5) S ₄ (66.3) S ₅ (66.0)	$T(A)$ $T(B)$ S_2 (66.6) S_3 (66.9) S_3 (66.5) S_5 (66.4) S_4 (66.3) S_4 (66.1) S_5 (66.0) S_1 (65.7)	$T(A)$ $T(B)$ $T(E)$ S_2 (66.6) S_3 (66.9) S_1 (67.4) S_3 (66.5) S_5 (66.4) S_4 (67.0) S_4 (66.3) S_4 (66.1) S_5 (66.9) S_5 (66.0) S_1 (65.7) S_3 (66.5)				

Distilling the same teacher model to different students leads to different performance results,

and no student architecture produces the best results across all teacher networks.

motivation

Figure 2. Confusion matrix for models' outputs, p or q denotes softmax probability output, GT means one-hot label.

These observations inspire us to rethink the knowledge in a teacher network, which we argue depends not only on its parameters or performance but also on its architecture.

Outline

- Motivation
- Method
- Search space
- Experiments

Method

Search space: the number of layers, the convolution and skip operation type, conv kernel size, squeeze-and-excite ratio, input/output filter size,

Figure 3. Pipeline of searching process in AKD. there are three core components: environment, RL agent and search space.

Method

We treat each sampled model as a student, and distill teacher's knowledge by training on the mini-train for 5 epochs

Then evaluating on the mimi-val to obtain its accuracy.

We do not use a shared weight among different sampled models

Each experiment takes about 5 days on 200 TPUv2 Donut devices

Outline

- Motivation
- Method
- Experiments

Understanding the searching process

Latency target:15ms

how different the AKDNet and NASNet

Figure 5. The architecture evolves during searching. Each dot represents an architecture. Different colors indicate different NAS policies – orange for conventional NAS and blue for AKD based NAS. PCA is used for visualization. Best view in color.

Existence of structural knowledge

If two identical RL agents perform AKD on two different teacher architectures, will they converge to different area in search space?

Figure 6. All generations searched by AKD on two different teachers. Their final generations converge into different areas. This proves the structural knowledge does exist in the teacher model.

If two different RL agents perform AKD on the same teacher, will they converge to similar area?

Figure 7. All generations searched by AKD on the same teacher model but different RL agents. Their final generations converge into the same area. Note that there are a large amount of blue dots overlapped by the orange dots. Best view in color.

Opertaion distribution

AKDNet becomes KD-friendly along searching

$$[\mathrm{KD}(\mathrm{AKDNet}) - \mathrm{CLS}(\mathrm{AKDNet})] - [\mathrm{KD}(\mathrm{NASNet}) - \mathrm{CLS}(\mathrm{NASNet})], \tag{1}$$

Generation	initial	~1k	~3k	~10k
Winning ratio	10 / (20-2)	12 / 20	16 / 20	18 / 20
Average gain	-0.07	0.10	0.46	1.05

Table 4. Relative performance gain between KD(AKDNet) and KD(NASNet) during different searching stages.

Ablation study on ImageNet

Latency	searching by	training by	top-1	top-5
1	hard label	hard label	59.73	81.39
024.0	hard label	distillation	63.9	84.26
15±1 ms	distillation	hard label	61.4	83.1
	distillation	distillation	66.5	87.5
	hard label	hard label	67.0	87.4
02/25/3	hard label	distillation	68.1	88.0
25±1 ms	distillation	hard label	67.2	87.5
Ī	distillation	distillation	69.6	89.1
75±1 ms	hard label	hard label	73.0	92.1
	hard label	distillation	74.7	92.54
	distillation	hard label	73.6	92.2
	distillation	distillation	75.5	93.1

whether AKD overfits the original KD policy

Training	Latency	Advanced KD method		
method		TA-KD	RCO-KD	CC-KD
MNet-v2 w/o KD				
MNet-v2 w/ KD	33ms	67.6 †2.2	68.2 ↑2.8	67.7 ↑2.3
AKDNet-M w/o KD			68.9	
AKDNet-M w/ KD	32.8ms	72.0 ↑3.1	72.4 †3.5	72.2 †3.3

Table 6. AKDNet transfers to other advanced KD method. 'MNetv2' denotes the MobileNet-v2 $0.5\times$. The 'M' in AKDNet-M denotes the 32.8ms version of ADKNet. Even with a much higher baseline, AKDNet consistently brings considerable gain ($\sim 1\%$) under each KD method compared to MobileNet-v2.

Compare with SOTA architectures

Latency	architecture	with KD?	top-1	top-5
	AKDNet		61.4	83.1
	AKDNet	✓	†2.6	↑3.24
	AKDNet	RCO-KD	†3.1	†3.8
	MNet-v2-a		59.2	79.8
15~20 ms	MNet-v2-a	✓	↑1.4	↑2.1
15 20 115	MNASNet-a		62.2	83.5
	MNASNet-a	✓	†1.49	↑2.3
	MNet-v3-a		64.1	85.0
	MNet-v3-a	✓	↑1.3	† 2.2
	AKDNet		67.2	87.5
	AKDNet	✓	↑2.4	†1.6
25~27 ms	AKDNet	RCO-KD	†2.8	↑1.5
	MNASNet-b		66.0	86.1
	MNASNet-b	✓	↑1.1	↑0.6

Latency vs. FLOPS

$$3.4 \times (latency - 7) \leq mFLOPS \leq 10.47 \times (latency - 7)$$

	searching by	training by	top-1	top-5
	hard label	hard label	69.92	89.1
NASNet	hard label	distillation	71.2	90.4
	distillation	hard label	70.0	89.4
AKD	distillation	distillation	72.1	91.7
	distillation	RCO-KD	73.0	92.2

Towards million level face retrieval

Training	KD		Distract	tor num.		
method	method	1e3	1e4	1e5	1e6	
Teacher	-	99.56	99.3	99.0	98.2	MS-Celeb1M
MNet-v2	-	91.49	84.45	75.6	65.9	
MNet-v2	CC-KD	97.93	95.76	91.99	86.29	
MNet-v2	RCO-KD	98.29	95.01	90.97	85.9	
AKDNet-M	-	93.8	86.4	78.2	68.6	
AKDNet-M	CC-KD	98.26	97.48	93.85	88.41	
AKDNet-M	RCO-KD	98.42	97.56	94.1	90.2	

Table 9. Transfer the AKDNet on MegaFace. The teacher model in all KD settings is Inception-ResNet-v2.

Training	0 	Training	Distractor num	
Method	Architecture	method	1e5	1e6
Ensemble Teacher	HRNet-w48 [36] + R100 [2] + EPolyFace [20] + IncRes-v2 [33] + SE154 [12]	-	99.6	99.3
AKDNet-M	AKDNet	hard label	78.2	68.6
AKDNet-M	AKDNet	original-KD	94.9	90.1
AKDNet-M	AKDNet	RCO-KD	95.7	90.9

The End!