Abstract Number: 1141

Background

- A salient stimulus can overshadow a nonsalient even when both are predictive of the response.
- When a cue is contingent with the occurrence of a target response, it can create a contingency learning effect.
- Immediate Stimulus Repetition trials can explain CL effect.

Does overshadowing occur by contingency learning or stimulus repetition effects?

Methods

Odd/Even number categorization Task

Compound <u>Learn</u> Display → Both Salient and Nonsalient cue(For eg., G (salient) and X (nonsalient))

Contingency with the target response: If contingent → Valid; If not contingent →

Single Cue <u>Test</u> Display → Either the Salient/Nonsalient + valid/invalid target based on contingency; Test for Overshadowing

Contingency Guessing Trials:

A "?" is shown in place of a number and a response is

Awareness Questionnaire with questions regarding contingencies is shown.

Experiment 1: Presented in between the experimen and at the end experiment Experiment 2: Presented only at the end of the

- 2x2 ANOVA: Validity (Valid vs Invalid) x Saliency(Salient vs Nonsalient)
- Mixed 2x2x2 ANOVA: Validity x Saliency x

Aware/ Unaware based on the guessing trials accuracy

3. MLM analysis

To check for stimulus repetition effects

If you know you know!

Awareness modulates overshadowing of salient over non-salient cues

In the (K)now: Dissociating the Role of Episodic Bindings Versus Insight-**Based Contingency Awareness for Overshadowing Effects in Learning**

Mrudula Arunkumar, Dr. Carina G.Giesen, Prof. Klaus Rothermund Friedrich-Schiller University Jena, Germany

JENA

Results

1. Overshadowing Effect: 2- way interaction Validity x Saliency for Single Cue Test Trials

	Experiment 1	Experiment 2
Reaction Time	F(1,69) = 8.02, $p=.006, \eta_p^2=.10$	F(1,66) = 3.29, $p = .074, \eta_p^2 = .05$
Error Rate	F(1,69) = 13.9, $p < .001, \eta_p^2 = .17$	F(1,66) = 14.7, $p < .001, \eta_p^2 = 0.18$

- With Awareness Scores: 3-way interaction Validity x Saliency x Awareness Level
 - Contrasting results for Experiment 1 and Experiment 2 which differed in placement of guessing trials

	Experiment 1	Experiment 2
2-way interaction	Remained significant for RT and ER	Not significant for RT but significant for ER
3-way interaction	Not significant for both ER and RT	Significant for both RT and ER

MLM analysis did not reveal any effect of previous response or last occurrence → NO benefit from stimulus repetition in overshadowing.

Conclusion

- Overshadowing effect is driven by awareness of the contingencies and not by stimulus repetition effects
- Once the awareness was tested at the end (Experiment 2) rather than nudging participants during the experiment (Experiment 1), awareness played a moderating role in driving the overshadowing effect

Overshadowing occurs when one is aware of the contingency relation between the cues and the response.