Introduction to Statistics Distributions

Eslam Ahmed

Software Engineer

Probability Distribution

What is a Distribution?

Distribution is a mathematical function that provides the probabilities of occurrence of different possible outcomes in an experiment.

-- Wikipedia

Distribution of Discrete Variables

		Dice	1 →				
		1	2	3	4	5	6
.2	1	2	3	4	5	6	7
← Dice2	2	3	4	5	6	7	8
Ψ	3	4	5	6	7	8	9
	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

$$P(2) = 1/36$$

$$P(3) = 2/36$$

$$P(4) = 3/36$$

$$P(5) = 4/36$$

$$P(6) = 5/36$$

$$P(7) = 6/36$$

$$P(8) = 5/36$$

$$P(9) = 4/36$$

$$P(10) = 3/36$$

$$P(11) = 2/36$$

$$P(12) = 1/36$$

Temperature
30.6
31.4
31.2
32.1
32.2
32.7
33.4
33.8
34.6

Frequency Distribution with Bins

What % of values are between

$$30-31 \rightarrow 1/9 = 11.1\%$$

$$31-32 \rightarrow 2/9 = 22.2\%$$

$$32-33 \rightarrow 3/9 = 33.3\%$$

Temperature
30.6
31.4
31.2
32.1
32.2
32.7
33.4
33.8
34.6

Frequency Distribution with Bins

Probability of the Bins

Probability of the Bins

Probability Density

Probability Density Function

Area =
$$\lim_{\triangle X \to 0} \sum_{i=1}^{n} f(x_i) * \triangle x_i$$

$$\int_{x_1}^{x_2} f(x) dx$$

Probability Density Function

What is the probability that the temperature of the city will be exactly 32 degrees?

Area =
$$\lim_{\triangle X \to 0} \sum_{i=1}^{n} f(x_i) * \triangle X_i$$

$$\int_{x1}^{x2} f(x) dx$$

Probability Density Function

What is the probability that the temperature of the city will be between 32 and 33 degrees?

Area =
$$\lim_{\triangle X \to 0} \sum_{i=1}^{n} f(x_i) * \triangle X_i$$

$$\int_{x_1}^{x_2} f(x) dx$$

Normal Distribution

Normal Distribution - Bell Curve - Gaussian Distribution

Carl Gauss

Examples of Normal Distribution

• Diastolic Blood Pressure

Manufacturing

Arrival Time at office

Normal Distribution - Bell Curve - Gaussian Distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} * e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Characteristics of Normal Distribution

- Mean defines the centre of the graph
- Mean = Median = Mode
- Standard Deviation defines the width of the graph
- Entire distribution can be specified using mean and variance
- The total area under the curve is 1
- Probability at a given point is zero
- 68.2% of the area under the curve is within 1 σ of the mean
- 95.4% of the area under the curve is within 2 σ of the mean
- 99.7% of the area under the curve is within 3 σ of the mean

Standard Normal Distribution

Z-Score

Z-Score Table

• Standard Normal Table

Provides Cumulative Distribution
 Function Values

	0.00	0.01	0.02	0.03
1.00	0.841345	0.843752	0.846136	0.848495
1.10	0.864334	0.866500	0.868643	0.870762
1.20	0.884930	0.886861	0.888768	0.890651
1.30	0.903200	0.904902	0.906582	0.908241
1.40	0.919243	0.920730	0.922196	0.923641
1.50	0.933193	0.934478	0.935745	0.936992

Importance of Standard Normal Distribution and Z-Score

- Standardises the readings or scores
- Calculate the probability within the normal distribution
- Comparison of two records from different normal distribution at two different scale

Experience in years	Salary
1	\$ 4,500
4	\$ 7,200
4	\$ 6,500
6	\$ 8,500
7	\$ 8,900

Sampling Distribution

Population and Sample

Population and Sample

Yrs 6 10 10 **7.4**

Sample 1		
5		
7	7.33	
10		:

Sample 4	
8	8 6 7
9	8.07
9	

Sample 7	
3	7.66
10	7,00
10	

Sample 2		
3	7.33	
9	7.33	
10		

<u> </u>	
Sample 5	
6	
7	7.67
10	

Sample 8	1			1					
3									
7					ס				
8	1			1					

Sample 3]
6	
7	
8	

Sample 6	
5	0.33
10	8.33
10	

CI- 0	
Sample 9	
5	
_	
	6 22
	0.33
(
8	
0	
_	

Sampling Distribution

Central Limit Theorem

Central Limit Theorem

When independent random variables are added, their <u>properly normalized</u> <u>sum</u> tends toward a <u>normal distribution</u> even if the <u>original variables</u> <u>themselves are not normally distributed</u>.

-- Wikipedia

Central Limit Theorem

Importance of Sampling

- Inferences about the population using a small subset
- Efficient in terms of time and money
- Flexible to approximate many sums and integrals in Machine Learning
- Sum or integral can be intractable/impossible or hard to define

Importance of Central Limit Theorem

Importance of Central Limit Theorem

- Valid Sample → Population Inferences
- Population Information → Valid Sample
- Population and Sample

 Sample Verification
- Multiple Valid Samples → Infer the origin

Confidence Interval

Normal and Sampling Distribution

Sampling distribution of Mean

Point Estimate

A single value which is used to serve as a "best guess" or "best estimate" of an unknown population parameter.

-- Wikipedia

$$\overline{x} \sim \mu$$

$$\chi \sim \mu$$

$$\chi \sim \mu$$
84 ?

Standard Error

A Number based on the Sampling Distribution of the point estimate and the degree of confidence.

A Number based on the Sampling Distribution of the point estimate and the degree of confidence.

A Number based on the Sampling Distribution of the point estimate and the degree of confidence.

Confidence Level = $1 - \alpha$

$$Z_{\alpha/2} = -1.7 + 0.05 = -1.65$$

A Number based on the Sampling Distribution of the point estimate and the degree of confidence.

90% CI does not mean there is 90% probability that population mean will be in the given interval.

90% intervals will have population mean within the interval limits.

9 out of 10 random intervals will have population mean within the range.

If we draw a sample and calculate its mean, we are 90% confident that the population mean will be within an interval of,

$$\overline{x} \pm 1.65 * \sigma_{\overline{x}}$$

Confidence Interval

Confidence Interval = Point Estimate + Reliability Factor * Standard Error

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

Lower Endpoint

$$\overline{x}$$
 - $Z_{\alpha/2} * \sigma_{\overline{x}}$

Upper Endpoint

$$\overline{x} + Z_{\alpha/2} * \overline{\sigma}_{\overline{x}}$$

 $\alpha = 1 - Confidence Level$

Thank You!