

Non è possibile realizzare una compressione di un fluido dalle condizioni di vapore a titolo basso a quelle di liquido saturo (non con rendimenti elevati, sicuramente non isoentopica).

Inoltre, una macchina capace di sostenere questo ciclo sarebbe troppo ingombrante e assorbirebbe troppa energia per la compressione (bassa potenza utile sulla potenza ottenuta dalla turbina).

Come ovviare a questo problema? Semplicemente, nel punto 1 lavoriamo direttamente con un liquido, sostituendo il compressore con una meno dispendiosa pompa. Il fluido passa a vapore saturo in fase di adduzione di calore.

Anche la pressione minima ha effetti sul rendimento, rilevanti già per riduzioni dell'ordine di 1 bar.

CICLO HIRN

Nel ciclo Rankine ci siamo fermati al vapore saturo secco. Se però riuscissimo ad inoltrarci nella regione del vapore surriscaldato potremmo ottenere maggiori lavoro, rendimento e titolo allo scarico.

RISURRISCALDAMENTO

Esiste un limite tecnico alla temperatura massima del vapore nel ciclo Rankine/Hirn: intorno ai 560-580°C l'acciaio subisce una riduzione delle caratteristiche meccaniche detta scorrimento viscoso; tale riduzione è aggravata in presenza di ionizzazione nel vapore, che ulteriormente contribuisce all'infragilimento del metallo a causa della presenza di ioni H+ che meglio penetrano il reticolo. Si possono però adottare cicli di surriscaldamento successivi.

A causa dell'aumento della portata volumetrica (aumenta il volume specifico) al ridursi della pressione, i condotti di adduzione del vapore aumentano di diametro, con conseguente incremento delle perdite di carico: per questo motivo, generalmente non si va oltre i due risurriscaldamenti.

Questo ciclo avrebbe lo stesso rendimento di quello di Carnot equivalente; nella pratica, non lo si può realizzare efficientemente (sarebbero necessarie superfici di scambio superiori a quelle ottenibili in una turbina).

200

(V)

RIGENERAZ. A GRADM

Si preferisce quindi riscaldare il liquido in uscita dalla pompa in uno scambiatore di calore dal punto 2 al punto 2R, sottraendo calore da una parte della portata di vapore spillata dalla turbina, in un punto A della linea di espansione.

1 (ma+mc) her Con in = postate spillate
in c = postate al condematore 1 michs maha + michc = (ma + mic) hzr mic (hzr-hi) = ma(ha-hzr)

PRO
+ Si ridue la guantità di calore - Si rottrae parte del vapore in turbina necenaria in fare di addutione a espansione incompleta, dinumendo iniziale (bano rendimento) il lavoro

ENDI	HENS	Ō															
- m	-v (h3	- RA)+	· mc	(ha-	hu)=	· m	c (f	L3 - E	24)	+ 🔥	ha (1	~3-	ha)	P	ASVISTO	UTIC	έ
		-hzr)													_		
					Bil	an	حنه	SUR	ည	Sea	mbi	ator	e (d	a So	pra):		
								(2	120	_ k.	\	أممن	(Q.	- h 20) = Ø		
unqu													(.4	1021	9 9		
	h = f	$\frac{\partial}{\partial x} = \frac{\alpha}{\alpha}$	nc (h	.3 - h	4) + ~	n _A (h3-	hp)	-								
	7-6	ير عو	~c(h	3-h2	د)+ ۴	λA(h3-	he)									
					7		•	ma	· (f	L3 -	hu\	+ ~	na (<u> کے -</u>	ha)		
					• (2	0 \.	_	÷		+	_	+++	-		10	
					micla	13 ⁻¹	ner)	тисд	'(ħ	3-h;	er) +	Mc	(ns	<u>r-n</u>	i)-ii	LA (MA	n
h - im	rc (h3	- hu)	+ ma	(h3-	ha)		A	+ ×		A	0						
'(=	inc(h:	3-hs)+	ma (h2-1	24)		F	+ ×	>	R	Y	inel	ie x	·>O			
R	ENDIM.		GRANI	7 553 7	721												
ρ	Senza NGENER.		AGGIO	AVITVA 2)				10	PN	> 1	w	0.					
		CAINIL															
		ENDIH	-		0							//					
+X -	-> 1 F	er X-	+00 -	-> (Cereh	ian											
5+×							1	Ma	m	Δ = <i>/</i>	m (hze	- h	<u>r</u>)			
\sim	\sim	ha-		\sim	$^{\sim}$							(ha	- h				
												/ 0	0				
na->1	Tax €	> ha-	>h3 (J hza	-> R 2	2'	ma	x {^	m _A	\ = 1	شر	(hi) - K	1)			
		1	→IA	→ 3								(h	3-f	· 2')			
			→ A h	3-ha	→ 0		m	4 (hz	P	(_A) -	- 90	Ni	ESSU	N 1	NCRE	HEN	ĵo.
^													DÉL	RE	NDIKE	NLO	
		2			001		0.	0 5	- 0 -		_	IN	EN	TRA	нви і	CASI	!
			$\overline{}$		RADO												
		14/		4	EFINIT	2101	ε:	R=	hz	r-f	بر ک	0	≤ R	£1			
	2//				_				R;	·- R	4				_		
1=2		6 Volore			R=0	, ne	Mun	a vi	ge~	voz.	. R	-= 1	, bo	mo (levoro	util	
0 2	- 4	6	8 10	ss	iceomo	د)	ma	= 2		1h	-R,	, =C) (my	e Dh	3A	
						_{{	per "	R=0		l pe	r R	= 1		- Son	s lin	eari	
). ^^-	3. A 2	(6) <i>a</i>	ئى ئا	.(e	- 6 - 1	o. d	اسم)			284.	مه: ام	ta	c. ho	1000	R=
										14			~~~~	- ,		- 1-0	<u>'</u>
KREVE	RSIB	IUTÁ	DEU	0 50	CAHBI	10	TER	HICC				Sec	millia	mos	apore	مالو	
. 6	,40	640	٨٥	^		>	۷_	<u>, </u>	T-				1		più alt		ımo
72 = `]	T -	JTC	772					7 1	۲		f	sott	raen	do al	la turb	ina u	
	' F	, ,	Δς	→ 'M '	10x (> f	+ →	5,	ار	<i>77</i>	y	fluid			maggi ergetio		
												COII	unu	נט כוו	CIECHI	٠٠.	1

R=0,5 -> Massinizzazione del fattore aggiuntivo ma(h3-ha) Buon compromeno tra un'elevota temp. di adduzione
e un bano grado di irreversibilità Ma perchè η τη max se Tma = Tma, max? Perchè in questo caro:

η = Q1 - Q2 = 1 - Tms (Imals)s Corr (Imals) to (Imals) add

Tima (Imals)a (eamtions le mane e i solti entropici)

SPILLAMENTI MULTIPU

È possibile aumentare ulteriormente il rendimento adottando spillamenti multipli. In questo caso, il massimo rendimento si ottiene impostando i punti di prelievo a temperatura crescente equidistanti sulla linea di espansione 3-4, in modo da contenere le irreversibilità nello scambio termico. Con infiniti spillamenti, si arriverebbe al caso limite della rigenerazione continua, che ricordiamo non è tecnicamente realizzabile per via di una serie di fattori.

