Mini Project Report- Applied SDLC and Software Testing

Team 15

Digital Modulation Tools

Contents

Introduction	3
Digital Modulation Concepts and Types:	3
Analog to Digital Modulation Techniques	3
Digital to Digital Modulation Techniques	4
SWOT analysis	6
4W's and 1H	6
Who:	6
What:	6
When:	6
Where:	6
How:	6
Detail requirements	7
High Level Requirements:	7
Low level Requirements:	7
Design	8
High Level Requirements UML Diagrams	8
Package Diagram	8
Component Diagram	9
Use Case	10
Activty Diagram	10
Low Level Requirements UML Diagrams	10
NRZ and RZ Activity Diagram	10
NRZ and RZ Component Diagram	10
NRZ and RZ Package Diagram	10
NRZ and RZ Use Case Diagram	11
ASK Use Case Diagram	11
ASK Use Case Diagram	11
ASK Component Diagram	11
Display Activity Diagram	11
Display Structural Diagram	11
Manchester Activity Diagram	11
Manchester Component Diagram	11

Manchester Package Diagram	11
Manchester Use Case Diagram	12
FSK Component Diagram	13
FSK Use Case Diagram	13
PSK Component Diagram	14
FSK Activity Diagram	15
FSK Sequence Diagram PSK Activity Diagram	16
PSK Sequence Diagram	18
TEST PLAN:	19
Table: High level test plan	19
Table: Low level test plan	19
Results	22
References	27

Introduction

Digital Modulation Tools is a simple console application designed to give the user a simulation of their data and the possible modulations and encoding. The bit stream given can be modulated in various modulation techniques like - ASK, FSK, PSK, etc. It is developed using C programming language.

Digital Modulation Concepts and Types:

Analog to Digital Modulation Techniques

Amplitude Shift Keying

ASK is a type of modulation where the digital signal is represented as a change in amplitude. In order to carry out amplitude shift keying, we require a carrier signal and a binary sequence signal. It is also known as On-Off keying. This is because the carrier waves switch between 0 and 1 according to the high and low level of the input signal.

Frequency Shift Keying

Frequency Shift Keying FSK is the digital modulation technique in which the frequency of the carrier signal varies according to the digital signal changes. FSK is a scheme of frequency modulation.

The output of a FSK modulated wave is high in frequency for a binary High input and is low in frequency for a binary Low input. The binary 1s and 0s are called Mark and Space frequencies.

Binary Phase Shift Keying

Phase Shift Keying PSK is the digital modulation technique in which the phase of the carrier signal is changed by varying the sine and cosine inputs at a particular time. This is also called as 2-phase PSK or Phase Reversal Keying. In this technique, the sine wave carrier takes two phase reversals such as 0° and 180°. BPSK is basically a Double Side Band Suppressed Carrier DSBSC modulation scheme, for message being the digital information.

Quadrature Amplitude Modulation

The creation of symbols that are some combination of amplitude and phase can carry the concept of transmitting more bits per symbol further. This method is called quadrature amplitude modulation (QAM).

While QAM is enormously efficient of spectrum, it is more difficult to demodulate in the presence of noise, which is mostly random amplitude variations. Linear power amplification is also required.

Phase Shift Keying

Digital to Digital Modulation Techniques

NRZ

- NRZ stands for Non-return zero.
- In NRZ encoding, the level of the signal can be represented either positive or negative.

NRZ-L

- In NRZ-L encoding, the level of the signal depends on the type of the bit that it represents.
- If a bit is 0 or 1, then their voltages will be positive and negative respectively. Therefore, we can say that the level of the signal is dependent on the state of the bit.

NRZ-I

- NRZ-I is an inversion of the voltage level that represents 1 bit.
- In the NRZ-I encoding scheme, a transition occurs between the positive and negative voltage that represents 1 bit.
- In this scheme, 0 bit represents no change and 1 bit represents a change in voltage level.

RZ

- RZ stands for Return to zero.
- There must be a signal change for each bit to achieve synchronization. However, to change with every bit, we need to have three values: positive, negative and zero.
- RZ is an encoding scheme that provides three values, positive voltage represents 1, the negative voltage represents 0, and zero voltage represents none.
- In the RZ scheme, halfway through each interval, the signal returns to zero.
- In RZ scheme, 1 bit is represented by positive-to-zero and 0 bit is represented by negative-to-zero.

Bi-phase

Manchester Encoding

- It changes the signal at the middle of the bit interval but does not return to zero for synchronization.
- In Manchester encoding, a negative-to-positive transition represents binary 1, and positive-to-negative transition represents 0.
- Manchester has the same level of synchronization as RZ scheme except that it has two levels of amplitude.

Differential Manchester Encoding

- It changes the signal at the middle of the bit interval and here the presence or absence of the transition at the beginning of the interval determines the bit.
- A transition means binary 0 and no transition means binary 1.
- Two signal changes represent 0 and one signal change represent 1.

SWOT analysis Visual representation Not covering analog modulation as Simple to use and understand of now. S Strengths Opportunities Threats O Can be made a better guide for students especially in online Same project in a different learning. framework might yield better Adding interesting graphics and results. increasing the coverage area of topics.

4W's and 1H

Who:

• Students and curious learners who wish to see how digital signals are encoded.

What:

A console based simulating tool covering digital modulation concepts.

When:

• On encountering troubles in understanding digital modulation concepts.

Where:

A handy tool that can be accessed from anywhere.

How:

 One-to-one mapping will be used for displaying the modulated waveforms and bitstreams and also a database of circuits used for the respective purpose will be prepared which would be displayed as and when needed and thus guiding the user to a complete extent.

Detail requirements

High Level Requirements:

ID	Description	Category	Status
HLR01	User Interface	Technical	Done
HLR02	Digital to Analog Modulation Techniques	Technical	Done
HLR02	Digital to Digital Modulation Techniques	Technical	Done

Low level Requirements:

ID	Description	HLR ID	Status
LR00	Input Interface	HLR01	Done
LR01	Output Display	HLR01	Done
LR02	Displaying theory of circuits	HLR01	Done
LR03	Amplitude Shift Keying	HLR02	Done

ID	Description	HLR ID	Status
LR04	Frequency Shift Keying	HLR02	Done
LR05	Phase Shift Keying	HLR02	Done
LR06	Quadrature Amplitude Modulation	HLR02	Done
LR07	Non Return to Zero - I	HLR03	Done
LR08	Non Return to Zero - L	HLR03	Done
LR09	Return to Zero	HLR03	Done
LR10	Biphase Manchester	HLR03	Done
LR11	Differential Manchester	HLR03	Done

Design High Level Requirements UML Diagrams Package Diagram

Component Diagram

Use Case

NRZ and **RZ** Use Case Diagram

Display Structural Diagram

Manchester Use Case Diagram

FSK Component Diagram

FSK Use Case Diagram

PSK Component Diagram

PSK Use Case Diagram

FSK Activity Diagram

FSK Sequence Diagram

PSK Activity Diagram

PSK Sequence Diagram

TEST PLAN:

Table: High level test plan

Test ID	Descriptio n	Exp IN	Exp OUT	Actual Out	Mean s of Test	Type Of Test
H_0 1	Display should work		display	<u>OPdisp</u>	Teste r	Requireme nt Based
H_0 2	Waveform s should turn up		waveform	Opwavefor m	Teste r	Scenario Based
H_0 3	Input Interface		interfacedispl ay	<u>OPintdisp</u>	Teste r	Requireme nt Based
H_0 4	Access Database	Integer(1-5)	<u>database</u>	Opdatabas <u>e</u>	Teste r	Scenario Based

Table: Low level test plan

Test ID	Description	Exp I/P	Exp O/P	Actual Out	Means of Test
L_01	ASK	Enter 8 bit binary number: 10001101	ASK OP	ASK OP	Tester

Test ID	Description	Exp I/P	Exp O/P	Actual Out	Means of Test
L_02	FSK	Enter 8 bit binary number: 10101011	FSK OP	FSK OP	Tester
L_03	PSK	Enter 8 bit binary number: 11101001	PSK OP	PSK OP	Tester
L_04	QAM	Enter 8 bit binary number: 11101001	QAM OP	QAMP OP	Tester
L_05	NRZ-L	Enter 8 bit binary number: 11011110	NRZL OP	NRZL OP	Tester
L_06	NRZ-L	Enter 8 bit binary number: 10010011	NRZL OP	NRZL OP	Tester
L_07	NRZ-L	Enter 8 bit binary number: 11001	NRZL OP	NRZL OP	Tester
L_08	NRZ-I	Enter 8 bit binary number: 11011110	NRZI OP	NRZI OP	Tester

Test ID	Description	Exp I/P	Exp O/P	Actual Out	Means of Test
L_09	NRZ-I	Enter 8 bit binary number: 10010011	NRZI OP	NRZI OP	Tester
L_10	NRZ-I	Enter 8 bit binary number: 11001	NRZI OP	NRZI OP	Tester
L_11	RZ	Enter 8 bit binary number: 11011110	<u>RZ OP</u>	<u>RZ OP</u>	Tester
L_12	RZ	Enter 8 bit binary number: 10010011	RZ OP	RZ OP	Tester
L_13	RZ	Enter 8 bit binary number: 11001	RZ OP	RZ OP	Tester
L_14	Biphase Manchester	Enter 8 bit binary number: 11011110	Man EOP	Man AOP	Tester
L_15	Differential Manchester	Enter 8 bit binary number: 11011110	Diff EOP	Diff AOP	Tester

Results

Implementation Screen

```
WELCOME TO DIGITAL MODULATION APP FROM TEAM 15

1 -> EXPLORE
2 -> QUIT

YOUR CHOICE: 1
Enter 8 bit binary number: 1001
Valid binary number 1001.
Select the modulation type:
1. Digital to Analog
2. Digital
```

```
YOUR CHOICE : 1
Enter 8 bit binary number: 1001
Valid binary number 1001 .
Select the modulation type:
1. Digital to Analog
2. Digital to Digital
Select a modulation technique:
1. Non Return to Zero - I
2. Non Return to Zero - L
3. Return to Zero
4. Biphase:Manchester
5. Biphase:Differential Manchester
MODULATION: Non-return to-zero-Level
DEFINATION: It is the same as NRZ, however, the first bit of the input signal should have a change of polarity.
PROCESS: There is a change in the polarity of the signal, only when the incoming signal changes from 1 to 0 or from 0 to 1.
ADVANTAGES:
1. It is simple.
2. A lesser bandwidth is required.
1. No error correction done.
2. Presence of low frequency components may cause the signal droop.
1. Non-return to zero encoding is commonly used in slow speed communications interfaces for both synchronous and asynchronous transmission
2. Used in CAN protocol.
The output string is: 00001001
```

Display Waveforms Examples

Build

Unit Testing

GCC Coverage

Valgrind

References

- <u>Different Modulation Techniques</u>
- How to plot in C