YEAR	AUTHOR	TITLE	APPROACH	RESULT
2016	Kamal Nayan Reddy Challa; Venkata Sasank Pagolu; Ganapati Panda; Babita Majhi	An improved approach for prediction of Parkinson's disease using machine learning techniques	Multilayer Perceptron, BayesNet, Random Forest and Boosted Logistic Regression.	It is observed that Boosted Logistic Regression provides the best performance with an impressive accuracy of 97.159 % and the area under the ROC curve was 98.9%.
2018	Gunjan Pahuja &T. N. Nagabhushan	A Comparative Study of Existing Machine Learning Approaches for Parkinson's Disease Detection	Multilayer Perceptron, Support Vector Machine and K-nearest neighbour	The Voice input dataset for these classifiers has been obtained from UCI machine learning repository. ANN with Levenberg—Marquardt algorithm was found to be the best classifier, having highest classification accuracy (95.89%)

YEAR	AUTHOR	TITLE	APPROACH	RESULT
2018	Mosarrat Rumman; Abu Nayeem Tasneem; Sadia Farzana; Monirul Islam Pavel; Md. Ashraful Alam	Early detection of Parkinson's disease using image processing and artificial neural network	Early detection of PD using image processing and artificial neural network (ANN).	The simple but fast ANN built, could classify subjects with and without PD with an accuracy of 94%, sensitivity of 100% and specificity of 88%.
2020	Wu Wang, Junho Lee, Fouzi Harrou, Ying Sun [IEEE]	Early Detection of Parkinson's Disease Using Deep Learning and Machine Learning	Boosting, Random Forest, K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Logistic regression	The logistic regression, random forest (RF), discriminate analysis (DIS), KNN, SVM and TREE methods are very fast. On average, they use less than 1 second to process the data.