1. Fill in missing items:

1. Γ	$\vdash (P \lor Q) \supset R$ premise
2. <i>P</i>	⊢ <i>P</i> A
3. <u>P</u>	$\vdash P \lor Q$ 2, \lor I
4. $\underline{\Gamma, P}$	⊢ <u>R</u> 1,3,⊃E
5. Γ	$\vdash P \supset R$ 4, \supset I
6. <i>Q</i>	$\vdash Q$
7. <u>Q</u>	$\vdash P \lor Q$ 6, \lor I
8. $\underline{\Gamma, Q}$	⊢ <u>R</u> 1,7,⊃E
9. Г	$\vdash \ Q \supset R \qquad \qquad8, \supset I$
10. Γ	$\vdash (P \supset R) \land (Q \supset R)$

2. Add missing items.

1.
$$\Gamma$$
 $\vdash \neg P \land \neg Q$
 premise

 2. $P \lor Q$
 $\vdash P \lor Q$
 .A

 3. P
 $\vdash P$
 .A

 4. Γ
 $\vdash \neg P$
 .1, $\land E$

 5. $P, P \lor Q$
 $\vdash P$
 .3

 6. $\Gamma, P \lor Q$
 $\vdash \neg P$
 .4

 7. Γ, P
 $\vdash \neg P$
 .5,6, $\neg I$

 8. Q
 $\vdash \neg P$
 .A

 9. Γ
 $\vdash \neg Q$
 .1, $\land E$

 10. $Q, P \lor Q$
 $\vdash \neg Q$
 .9

 11. $\Gamma, P \lor Q$
 .9
 .9

 12. Γ, Q
 $\vdash \neg P$
 .10,11, $\neg I$

 13. $\Gamma, P \lor Q$
 $\vdash \neg P \lor Q$
 .10,11, $\neg I$

 13. $\Gamma, P \lor Q$
 $\vdash \neg P \lor Q$
 .2,7,12, $\lor E$

 14. Γ
 $\vdash \neg P \lor Q$
 .2,13, $\neg I$

3. Here is part of a derivation from $\Gamma \vdash \neg (P \lor Q)$ to $\Gamma \vdash \neg P \land \neg Q$. Complete the rest.

Answer	Key
6. <i>Q</i>	$\vdash Q$
7. Q	$\vdash P \lor Q$ 6, \lor I
8. Γ, Q	$\vdash \neg (P \lor Q)$
9. Γ	$\vdash \neg Q$
10. Γ	$\vdash \neg P \land \neg Q$

4. When someone offers considerations that lead to a contradiction, that is usually taken to be a bad thing. One reason why contradictions are bad is captured by the observation known as *ex contradictione quodlibet*: from a contradiction, derive at will. That is, if you had proof of a contradiction you could prove anything you want. The following demonstrates the point. Add the missing annotations:

1. Γ	$\vdash P \land \neg I$	premise premise
2. $\Gamma, \neg Q$	$\vdash P \land \neg I$	<u> </u>
3. $\Gamma, \neg Q$	$\vdash P$	<u>2,∧E</u>
4. $\Gamma, \neg Q$	$\vdash \neg P$	<u>2,∧E</u>
5. Γ	$\vdash \neg \neg Q$	<u>3,4,¬I</u>
6. Γ	$\vdash Q$	<u>5,¬E</u>

Notice that you could replace Q with anything you please. So can equally well derive $\neg Q$. Here we have a decisive reason to reject the premise: something must have gone wrong in thinking that we have conclusive reason to accept the premise.

5. Derive from $\Gamma \vdash P \lor P$ to $\Gamma \vdash P$.

6. Derive from $\Gamma \vdash P \supset (Q \supset R)$ to $\Gamma \vdash (P \land Q) \supset R$. Hint: assume $P \land Q$.

```
Answer Key

1. \Gamma \vdash P \supset (Q \supset R) premise

2. P \land Q \vdash P \land Q ... A

3. P \land Q \vdash P ... 2,\landE

4. \Gamma, P \land Q \vdash Q \supset R ... 1,3,\supsetE

5. P \land Q \vdash Q ... 2,\landE

6. \Gamma, P \land Q \vdash R ... 4,5,\supsetE

7. \Gamma \vdash (P \land Q) \supset R ... 6,\supsetI
```

7. Derive from $\Gamma \vdash (P \land Q) \supset R$ to $\Gamma \vdash P \supset (Q \supset R)$. Hint: assume P and assume Q.

Answer Key	
1. Γ	$\vdash (P \land Q) \supset R$ premise
2. P	⊢ <i>P</i> A
3. Q	⊢ <i>Q</i> A
4. P,Q	$\vdash P \land Q$
5. Γ, P, Q	⊢ <i>R</i> 1,4,⊃E
6. Γ, P	$\vdash Q \supset R$ 5, \supset I
7. Г	$\vdash P \supset (Q \supset R)$

- 8. We noted earlier that the conditional (⊃) has some odd features. The oddities show up in our proof system as well.
 - (a) Derive from $\Gamma \vdash P$ to $\Gamma \vdash Q \supset P$. (Hint: remember you can add anything you want to the datum of a sequent).

Answer Key	
1. Γ	$\vdash P$ premise
2. Γ, Q	⊢ <i>P</i> 1
3. Г	$\vdash Q \supset P$
L	

(b) Derive from $\Gamma \vdash \neg P$ to $\Gamma \vdash P \supset Q$. (Hint: assume P, and remember you can add anything you want, in particular $\neg Q$ to the datum—see also the problem at the top of these exercises.)

Answer Key	
1. Γ	$\vdash \neg P$ premise
2. P	⊢ <i>P</i>
3. $P, \neg Q$	⊢ <i>P</i> 2
4. $\Gamma, \neg Q$	$\vdash \neg P$
5. Γ, <i>P</i>	$\vdash \neg \neg Q$ 3,4, $\neg I$
6. Γ, <i>P</i>	$\vdash Q \qquad \dots \dots$
7. Г	$\vdash P \supset Q$ 6, \supset I

(c) Derive from $\Gamma \vdash P$ to $\Gamma \vdash \neg P \supset Q$. (Hint: assume $\neg P$; and don't forget the point about being able to add things to the datum.)

Answer Key		
1. Γ	$\vdash P$	premise
2. $\neg P$	$\vdash \neg P$	A
3. $\Gamma, \neg Q$	$\vdash P$	1
4. $\neg P, \neg Q$	$\vdash \neg P$	
5. $\Gamma, \neg P$	$\vdash \neg \neg Q$	3,4,¬I
6. $\Gamma, \neg P$	$\vdash Q$	5,¬E
7. Γ	$\vdash \neg P \supset$	Q6,⊃I

9. Derive from $\Gamma \vdash P \supset (Q \lor R)$ and $\Delta \vdash \neg Q$ to $\Gamma, \Delta \vdash P \supset R$. (Hint: First derive $\Gamma, P \vdash Q \lor R$. Then adapt the derivation in the first problem of the previous set of exercises.)

Answer Key	
1. Γ	$\vdash P \supset (Q \lor R)$ premise
2. Δ	$\vdash \neg Q$ premise
3. P	⊢ <i>P</i> A
4. Γ, P	$\vdash Q \lor R$
5. Q	⊢ <i>Q</i> A
6. Δ, ¬R	$\vdash \neg Q$
7. <i>Q</i> , ¬ <i>R</i>	$\vdash Q$ 5
8. Δ, Q	⊢ ¬¬R6,7,¬I
9. Δ, Q	⊢ <i>R</i>
10. R	⊢ <i>R</i> A
11. Γ, Δ, P	$\vdash R$ 4,9,10, \lor E
12. Γ,Δ	$\vdash P \supset R$ 11, \supset I