EECS 376: Foundations of Computer Science

Chris Peikert
13 February 2023

Agenda

- * Recognizability and Unrecognizability
- * Proving unrecognizability
- * Data compression and Kolmogorov complexity

Quote of The Day

"Recognizing isn't at all like seeing; the two often don't even agree."

Sten Nadolny

Decidability and Recognizability

- * Definition (Recall): A program/TM M decides a language A if:
 - * $x \in A \Longrightarrow M$ accepts x
 - * $x \notin A \Longrightarrow M$ rejects x
 - * M is called a decider.
- * Consequence: A decider halts on any input.
- * **Definition (Recall):** L is **decidable** if some TM decides L.
- * **Definition (Recall):** The *language* of M, $L(M) = \{x : M \text{ accepts } x\}$
- * Definition: M recognizes a language A if A = L(M). That is:
 - * $x \in A \Longrightarrow M$ accepts x
 - * $x \notin A \Longrightarrow M$ does not accept x (i.e., rejects or loops)
 - * *M* is called a *recognizer*.
- st Observation: $L_{
 m ACC}$ is ${\it undecidable},$ but ${\it recognizable}.$ (Why?)

Why is Recognizability Useful?

- * A "one-sided" notion: recognizer for L must accept any $x \in L$, and not accept any $x \notin L$, but need not answer in the latter case.
- * $L_{GOOD-IDEA} = \{x : x \text{ is ASCII for a good idea}\}$
 - * x="Chris should go to Cedar Point this summer"
 - * x="Chris should learn to skateboard"
 - * x="Chris should be a contestant on Survivor"
 - * Recognizer: let me think about it...

- * **Definition:** A language A is *recognizable* if there exists a program M (a "recognizer") that recognizes it: L(M)=A.
- * Warm-up: Let A_1, A_2 be <u>recognizable</u> languages. Must $B = A_1 \cup A_2 = \left\{ x : x \in A_1 \text{ or } x \in A_2 \right\}$ be recognizable?
- * Answer: Some programs M_1 and M_2 recognize A_1 and A_2 , resp'ly. We describe a program M for B.
- * *M*(*x*):
 - * Run M_1 on x (as a "subroutine")
 - * Run M_2 on x (as a "subroutine")
 - * Accept if at least one of the above accepts, else <u>reject</u>
- * Problem: This does not work! (Why?)
- * (Recall) listing $\mathbb Z$ Attempt 1: 0,1,2,3, ..., -1, -2, -3, Does not work.
- * Attempt 2: Alternate between positive and negative: 0,1,-1,2,-2,...

- * M(x):
 - * Alternate between executions of M_1 on x and M_2 on x, one step at a time
 - * Accept if (and as soon as) either of the programs accepts
 - * Reject if both programs reject
- * Analysis:
 - * If $x \in A_1 \cup A_2$ then one of the programs accepts x, so M accepts x
 - * If $x \notin A_1 \cup A_2$ then neither program ever accepts x, so M does not accept x
 - * Both programs reject $x \Longrightarrow M$ rejects x
 - * At least one of the programs loops on $x \Longrightarrow M$ loops on x
- * Conclusion: The class of recognizable languages is closed under union (and intersection—why?).

- * Q: Is the class of recognizable languages closed under complement?
- * In other words: Let A be recognizable. Is $\bar{A} = \Sigma^* \backslash A$ recognizable?
- * Theorem: If a language A and its complement \bar{A} are both <u>recognizable</u>, then A is <u>decidable</u>.
- * Proof: Suppose programs M_1 and M_2 <u>recognize</u> A and $ar{A}$, respectively.
- * Since M_1 recognizes A:
 - * $x \in A \Longrightarrow M_1$ accepts x
 - * $x \notin A \Longrightarrow M_1$ rejects or loops on x
- * Since M_2 recognizes \bar{A} :
 - * $x \in A \Longrightarrow M_2$ rejects or loops on x
 - * $x \notin A \Longrightarrow M_2$ accepts x

- * Q: Is the class of recognizable languages closed under complement?
- * In other words: Let A be recognizable. Is $\bar{A} = \Sigma^* \backslash A$ recognizable?
- * Theorem: If a language A and its complement \bar{A} are both <u>recognizable</u>, then A is <u>decidable</u>.
- * Proof: Suppose programs M_1 and M_2 recognize A and \bar{A} , respectively. We describe a program that decides A. M(x):
 - * Alternative between executions of $M_1(x)$ and $M_2(x)$
 - * If $M_1(x)$ accepts, accept.
 - * If $M_2(x)$ accepts, <u>reject</u>.
- * Analysis:
 - * $x \in A \Longrightarrow M_1$ accepts $x \Longrightarrow M$ accepts x
 - * $x \notin A \Longrightarrow x \in \overline{A} \Longrightarrow M_2$ accepts $x \Longrightarrow M$ rejects x

Proving Unrecognizability

- * Theorem: If A and its complement \bar{A} are both $\underline{recognizable}$, then A is $\underline{decidable}$.
- * Contrapositive: If A is undecidable, then at least one of A or \bar{A} is unrecognizable.
- * Corollary: If A is undecidable but recognizable, then A is unrecognizable.
- * Theorem: $\overline{L_{ACC}} = \{\langle M, x \rangle : M \text{ does not accept } x\}$ is unrecognizable:
 - * $L_{
 m ACC}$ is undecidable (last week)
 - * $L_{
 m ACC}$ is recognizable ('interpreter' TM U recognizes $L_{
 m ACC}$)
 - $* \implies \overline{L_{\mathrm{ACC}}}$ is unrecognizable

Another Example

- * Theorem: Let $L_{\rm GOOD} = \left\{ \langle M \rangle : {\rm OSU} \not\in L(M) \right\}$. $L_{\rm GOOD}$ is unrecognizable.
- * Proof: We show that $L_{\rm GOOD}$ is undecidable via $L_{\rm ACC} \leq_T L_{\rm GOOD}$, and that $L_{\rm GOOD}$ is recognizable.
- * Step 1: Let G be a membership oracle for $L_{\rm GOOD}$. We construct a decider C for $L_{\rm ACC}$ as follows:
- * $C(\langle M, x \rangle)$:
 - 1. Construct a new program M'(w) = "ignore w, run M(x) and answer as M does."
 - 2. Call $G(\langle M' \rangle)$ and output the <u>opposite</u> of G's output.
- * Analysis: C halts since G does. Moreover:
 - * M acc $x \iff M'$ acc OSU $\iff G$ rej $\langle M' \rangle \iff C$ acc

Another Example

- * Theorem: Let $L_{\rm GOOD}=\left\{\langle M\rangle: {\rm OSU}\not\in L(M)\right\}.$ $L_{\rm GOOD}$ is unrecognizable.
- * Proof: We show that $L_{\rm GOOD}$ is undecidable via $L_{\rm ACC} \leq_T L_{\rm GOOD}$, and that $L_{\rm GOOD}$ is recognizable.
- * Step 2: Build recognizer R for $\overline{L_{\mathrm{GOOD}}} = \big\{ \langle M \rangle : \mathrm{OSU} \in L(M) \big\}$:
 - 1. Run M on OSU and answer as M does.
- * Analysis:
 - * $\langle M \rangle \in \overline{L_{\text{GOOD}}} \Rightarrow M \text{ accepts OSU } \Longrightarrow R \text{ accepts } \langle M \rangle$
 - * $\langle M \rangle \notin \overline{L_{\mathrm{GOOD}}} \Rightarrow M$ doesn't accept OSU $\implies R$ doesn't accept $\langle M \rangle$
- * Conclusion: $L_{\rm GOOD}$ is recognizable but undecidable, so $L_{\rm GOOD}$ is unrecognizable.

L_{\emptyset} is Unrecognizable

- * Claim: $L_{\emptyset} = \big\{ \langle M \rangle : L(M) = \emptyset \big\}$ is unrecognizable.
- * Proof: We show that L_{\varnothing} is undecidable ($L_{\mathrm{ACC}} \leq_T L_{\varnothing}$) and L_{\varnothing} is recognizable.
- st Step 1: Let N be an oracle for $L_{f arphi}.$ Construct a decider C for $L_{
 m ACC}$:
- * $C(\langle M, x \rangle)$:
 - 1. Construct a program "M'(w): run M on x and answer as M does"
 - 2. Call N on $\langle M' \rangle$ and return the *opposite* output
- st Analysis: C halts since N does. Moreover:
 - * M acc $x \iff L(M') \neq \emptyset \iff N$ rej $\langle M' \rangle \iff C$ acc $(\langle M \rangle, x)$

L_{\emptyset} is Unrecognizable

- * Claim: $L_{\emptyset} = \big\{ \langle M \rangle : L(M) = \emptyset \big\}$ is unrecognizable.
- * Proof: We show that L_{\varnothing} is undecidable ($L_{\mathrm{ACC}} \leq_T L_{\varnothing}$) and L_{\varnothing} is recognizable.
- * Step 2: We need to construct a recognizer for $\overline{L_\emptyset} = \left\{ \langle M \rangle : L(M) \neq \emptyset \right\}$.
- * Observation: We just need to find a single input that M accepts (if any). But there are (countably) infinitely many inputs $s_j \in \Sigma^*$, and M can loop!
- * Idea: Do step i of $M(s_j)$ in "block" i+j (like in proof that Q^+ is countable).

"Dovetailing"

- * Claim: $L_{\emptyset} = \left\{ \langle M \rangle : L(M) = \emptyset \right\}$ is unrecognizable.
- * Proof: We show that L_{\emptyset} is undecidable $(L_{ACC} \leq_T L_{\emptyset})$ and L_{\emptyset} is recognizable.
- * Step 2: We need to construct a recognizer for $\overline{L_{\emptyset}}=\left\{ \langle M \rangle : L(M) \neq \emptyset \right\}.$
- * Idea: Do step i of $M(s_i)$ in "block" i+j (like in proof that Q^+ is countable).
- * $R(\langle M \rangle)$:
 - 1. For $t = 1, 2, 3, \dots$:
 - 2. For j = 1, 2, ..., t:
 - 3. Run one (additional) step of $M(s_i)$
 - 4. If $M(s_i)$ accepts, accept.
- * Analysis:
 - $*\langle M \rangle \in \overline{L_{\varnothing}} \Rightarrow \exists j, k . M \text{ accepts } s_j \text{ in } k \text{ steps } \Longrightarrow R \text{ accepts } \langle M \rangle.$
 - * $\langle M \rangle \notin \overline{L_{\varnothing}} \Rightarrow L(M) = \varnothing \Longrightarrow R \text{ loops on } \langle M \rangle.$

Summary: Recognizability

- * Summary: We can show that a language L is unrecognizable by showing that L is undecidable and that \overline{L} is recognizable.
- st **Definition:** L is **co-recognizable** if L is recognizable.
- * Observation 1: Decidable languages are exactly those that are recognizable and co-recognizable. (Why?)
- * Observation 2: There are countably infinitely many languages that are recognizable or co-recognizable. (Why?)
- * Conclusion: "Almost all" languages are neither recognizable nor co-recognizable!
 - * Example: $L_{\rm EQ}$. (Prove this!)

Data Compression

- * Problem: Encode some given data D using fewer bits.
- * Lossless: compress so that D is recoverable exactly
- * Example: GIF, PKZIP
- * Lossy: some "small deviations" are acceptable
- * Example: JPEG, MPEG

Kolmogorov Complexity

- * Let w be a binary string and let U be FPL (e.g., TMs).
- * **Definition:** The *Kolmogorov Complexity* of w:

$$K_U(w) = \min \{ |\langle M \rangle| : M \text{ outputs } w, \text{ on empty input } \epsilon \}.$$

That is, the size of the shortest U-program that outputs w.

- * Claim 1: For every U and every $w \in \{0,1\}^*$: $K_U(w) = O(|w|)$.
- * Examples:
 - * C++: "cout << w": |w| + |<iostream>| + 8*8
 - * **Python:** "print(w)" : |w| + 7*8
 - * TMs: a state for every symbol of w:|w|+|7-tuple|.

Thought Experiment

- * **Definition:** Let 0^m denote the string consisting of m zeros.
- * Question 1: Is "cout << 00...0" a shortest program to output 0^m ?
- * Question 2: What is the size | "cout $<<0^{m}$ " | as a function of m?
- * Answer: $\Theta(m)$
- * **Definition:** For each m define a new program P_m :
 - * int main() { for (int i=0; i<m; ++i) putchar('0'); }</pre>
- * Question: What is the size $|P_m|$ as a function of m?
- * Answer: $O(\log m)$: m is hardcoded in binary.

Kolmogorov Complexity

- * Claim 2: For every U and n, $\exists w \in \{0,1\}^n$ s.t. $K_U(w) \geq n$.
- * Proof: Counting argument (details left as an exercise)
- * Implication: For every n, every lossless compression program has an "uncompressible" string (file) of size n.
- * Claim 3: $K_U(w)$ is uncomputable (for any "expressive enough" U)
- * **Definition:** A function f is **computable** if there exists a program that, given w as input, halts and outputs f(w).
 - * For a TM, outputting a value means writing it on its tape.
- * Reworded: No program can compute the function $K_U(w)$ (correctly on <u>every</u> binary string w)

Berry's Paradox

- * Aside (Berry's Paradox): "The first positive integer that cannot be defined in <70 characters."
- * Let $S \subset \mathbb{Z}^+$ be the set of positive integers that cannot be defined in <70 characters. Let $x = \min(S)$. Then:
 - * x cannot be defined in <70 characters, since $x \in S$
 - * x can be defined by the sentence "The first positive integer that cannot be defined in <70 characters.", which has 68 characters

Paradox!

$\overline{K_U(w)}$ is Uncomputable

- * Berry's Paradox: "The first positive integer that cannot be defined in <70 characters."
- * Strategy:
 - * Assume $K_U(w)$ is computable by some program M.
 - * Recall: There is a length-n string x s.t. $K_U(x) \ge n$.
 - * Define a program Q_n that uses M to output the *first* string w_n of length n for which $K_U(w_n) \ge n$.
 - * But $|Q_n| = O(\log n) < n$, and since Q_n outputs w_n , we have $K_U(w_n) \le |Q_n| < n$.

Paradox!

$K_U(w)$ is Uncomputable

* Proof: Pick the language U. Suppose M is a program that computes $K_U(w)$.

 \widehat{n} encoded in

binary

- * **Definition:** For every n define new program Q_n :
 - * const int LENGTH = n; (n is "hardcoded")
 - * Iterate over all $x \in \{0,1\}^{\text{LENGTH}}$:
 - * Compute $K_U(x)$ (using M as a black-box)
 - * Output the first x such that $K_U(x) \geq \text{ LENGTH}$
- * Observation: For every n the size of the program Q_n is $O(\log n)$.
- * Analysis: Let w_n be the output of Q_n . What is $K_U(w_n)$?
- * By definition: $K_U(w_n) \ge n$, since Q_n outputs an x such that $K_U(x) \ge n$.
 - On the other hand, Q_n outputs w_n , so Q_n is a program that outputs w_n ; by definition of Kolmogorov complexity, $K_U(w_n) \leq \left|Q_n\right|$.
- * Therefore: $K_U(w_n) \ge n$ and $K_U(w_n) \le O(\log n)$
- * Contradiction: Conditions cannot be fulfilled simultaneously!
- * Conclusion: No such M exists.

Applications

- * Full Employment Theorem for Compiler Writers:
 There does not exist a perfect size-optimizing compiler.
- * Alternate Version: There is no perfect program analysis.
- * Why:
 - 1. Will produce the shortest program
 - 2. Can detect infinite loops and replace them with one line
- * Conclusion: Many fundamental problems in CS are undecidable!
- * Industry Implications: Intel, Google, IBM have entire divisions dedicated to tackling these problems in important special cases. But there are no general perfect solutions!

