Comments for Lecture 11 2.11.2010

We are continuing our study of the function that an $m \times n$ matrix C determinds from \mathbb{R}^n to \mathbb{R}^m . Again we view this functions as multiplication on the left by C:

$$\mathbf{x} \mapsto C\mathbf{x}$$

Where \mathbf{x} is some arbitary vector in \mathbb{R}^n . Today we showed that this function is indeed a linear transformation. This means that for any vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n , and for any scalar k in \mathbb{R}^n the following two things are satisfied:

- 1. $C(\mathbf{x} + \mathbf{y}) = C(\mathbf{x}) + C(\mathbf{y})$
- 2. $C(k\mathbf{x}) = kC(\mathbf{x})$

See Theorem 2.5.1 and Theorem 2.5.2.

So now we can say that if C is an $m \times n$ matrix, then $\mathbf{x} \mapsto C\mathbf{x}$ is a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

On Friday we will establish quite an amazing converse to this statement: suppose T is a linear transformation from \mathbb{R}^n to \mathbb{R}^m , then there is a unique $m \times n$ matrix B so that $T(\mathbf{x}) = B\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^n .