CD4033BMS

December 1992

CMOS Decade Counter/Divider

Features

- · High Voltage Types (20V Rating)
- Decoded 7 Segment Display Outputs and Ripple Blanking
- Counter and 7 Segment Decoding in One Package
- Easily Interfaced with 7 Segment Display Types
- Fully Static Counter Operation DC to 6MHz (typ.) at VDD = 10V
- · Ideal for Low-Power Displays
- · "Ripple Blanking" and Lamp Test
- 100% Tested for Quiescent Current at 20V
- Standardized Symmetrical Output Characteristics
- 5V, 10V and 15V Parametric Ratings
- Schmitt-Triggered Clock Inputs
- Meets All Requirements of JEDEC Tentative Standards No. 13B, "Standard Specifications for Description of "B" Series CMOS Device's

Applications

- Decade Counting 7 Segment Decimal Display
- Frequency Division 7 Segment Decimal Displays
- Clocks, Watches, Timers (e.g. ÷ 60, ÷ 60, ÷12 Counter/ Display
- Counter/Display Driver For Meter Applications

Description

CD4033BMS consists of a 5 stage Johnson decade counter and an output decoder which converts the Johnson code to a 7 segment decoded output for driving one stage in a numerical display.

This device is particularly advantageous in display applications where low power dissipation and/or low package count is important.

A high RESET signal clears the decade counter to its zero count. The counter is advanced one count at the positive clock signal transition if the CLOCK INHIBIT signal is low. Counter advancement via the clock line is inhibited when the CLOCK INHIBIT signal is high. The CLOCK INHIBIT signal can be used as a negative-edge clock if the clock line is held high. Antilock gating is provided on the JOHNSON counter, thus assuring proper counting sequence. The CARRY-OUT (Cout) signal completes one cycle every ten CLOCK INPUT cycles and is used to clock the succeeding decade directly in a multi-decade counting chain.

The seven decoded outputs (a, b, c, d, e, f, g) illuminate the proper segments in a seven segment display device used for representing the decimal numbers 0 to 9. The 7 segment outputs go high on selection.

CD4033BMS

The CD4033BMS has provisions for automatic blanking of the non-significant zeros in a multi-digit decimal number which results in an easily readable display consistent with normal writing practice. For example, the number 0050.0700 in an eight digit display would be displayed as 50.07. Zero suppression on the integer side is obtained by connecting the RBI terminal of the CD4033BMS associated with the most significant digit in the display to a low-level voltage and connecting the RBO terminal of that stage to the RBI terminal of the CD4033BMS in the next-lower significant position in the display. This procedure is continued for each succeeding CD4033BMS on the interger side of the display.

On the fraction side of the display the RBI of the CD4033BMS associated with the least significant bit is connected to a low-level voltage and the RBO of that CD4033BMS is connected to the RBI terminal of the CD4033BMS in the next more-significant-bit position. Again, this procedure is continued for all CD4033BMS's on the fraction side of the display.

In a purely fractional number the zero immediately preceding the decimal point can be displayed by connecting the RBI of that stage to a high level voltage (instead of to the RBO of the next more-significant-stage). For example: optional zero \rightarrow 0.7346. Likewise, the zero in a number such as 763.0 can be displayed by connecting the RBI of the CD4033BMS associated with it to a high-level voltage.

Ripple blanking of non-significant zeros provides an appreciable savings in display power.

The CD4033BMS has a LAMP TEST input which, when connected to a high-level voltage, overrides normal decoder operation and enables a check to be made on possible display malfunctions by putting the seven outputs in the high state.

The CD4033BMS are supplied in these 16 lead outline packages:

Braze Seal DIP H4W
Frit Seal DIP H2R
Ceramic Flatpack H6W

Logic Diagram

Reliability Information Absolute Maximum Ratings Thermal Resistance nermal Resistance θ_{ja} Ceramic DIP and FRIT Package 80° C/W DC Supply Voltage Range, (VDD) -0.5V to +20V $_{20^{o}\text{C/W}}^{\theta_{jc}}$ (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V Flatpack Package 70°C/W 20°C/W Maximum Package Power Dissipation (PD) at +125°C DC Input Current, Any One Input±10mA Operating Temperature Range.....-55°C to +125°C For TA = -55°C to +100°C (Package Type D, F, K) 500mW For TA = $+100^{\circ}$ C to $+125^{\circ}$ C (Package Type D, F, K) Derate Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Linearity at 12mW/°C to 200mW Lead Temperature (During Soldering) +265°C Device Dissipation per Output Transistor 100mW At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for For TA = Full Package Temperature Range (All Package Types) 10s Maximum

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A	UP A		IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μΑ
		VDD = 18V, VIN = VDD or GND		3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND VDD = 20		1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	VDD = 15V, No Load		+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	/DD = 15V, No Load (Note 3)		+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V		1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V		1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	VDD = 15V, VOUT = 1.5V		+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V		1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	VDD = 5V, VOUT = 2.5V		+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	4	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2 VDD/2		
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	VDD = 5V, VOH > 4.5V, VOL < 0.5V		+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	VDD = 15V, VOH > 13.5V, VOL < 1.5V		+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

implemented.

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	500	ns
Clock To Carry Out	TPLH1		10, 11	+125°C, -55°C	-	675	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	700	ns
Clock To Decode Out	TPLH2		10, 11	+125°C, -55°C	-	945	ns
Propagation Delay	TPLH3	VDD = 5V, VIN = VDD or GND	9	+25°C	-	550	ns
Reset To Carry Out			10, 11	+125°C, -55°C	-	743	ns
Propagation Delay	TPHL4	VDD = 5V, VIN = VDD or GND	9	+25°C	-	600	ns
Reset To Decode Out	TPLH4		10, 11	+125°C, -55°C	-	810	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	2.5	-	MHz
Frequency			10, 11	+125°C, -55°C	1.85	-	MHz

NOTES:

- 1. VDD = 5V, CL = 50pF, RL = 200K
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	٧
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-2.6	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	+7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	200	ns
Clock To Carry Out	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	150	ns
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	250	ns
Clock To Decode Out	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	180	ns
Propagation Delay	TPLH3	VDD = 10V	1, 2, 3	+25°C	-	240	ns
Reset To Carry Out		VDD = 15V	1, 2, 3	+25°C	-	160	ns
Propagation Delay	TPHL4	VDD = 10V	1, 2, 3	+25°C	-	250	ns
Reset To Decode Out	TPLH4	VDD = 15V	1, 2, 3	+25°C	-	180	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	50	ns
Maximum Clock Input	FCL	VDD = 10V	1, 2, 3	+25°C	5.5	-	MHz
Frequency		VDD = 15V	1, 2, 3	+25°C	8	-	MHz
Minimum Reset Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	120	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	100	ns
		VDD = 15V	1, 2, 3	+25°C	-	50	ns
Minimum Reset Removal	TREM	VDD = 5V	1, 2, 3	+25°C	-	30	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	15	ns
		VDD = 15V	1, 2, 3	+25°C	-	10	ns
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	220	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	100	ns
		VDD = 15V	1, 2, 3	+25°C	-	80	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND VDD = 3V, VIN = VDD or GND	1	+25°C	VOH > VDD/2	VOL < VDD/2	V

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (P	re Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9(Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V ± -0.5V	50kHz	25kHz
PART NUMBER				:		
Static Burn-In 1 (Note 1)	4 - 7, 9 - 14	1 - 3, 8, 15	16			
Static Burn-In 2 (Note 1)	1, 2, 14, 15	3 - 6, 8, 10 - 13	7, 9, 16			
Dynamic Burn- In (Note 1)	-	2, 8, 15	3, 16	4 - 7, 9 - 13	1	
Irradiation (Note 2)	4 - 7, 9 - 14	8	1 - 3, 15, 16			
PART NUMBER	CD4033BMS			•		

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	4 - 7, 9 - 13	1 - 3, 8, 14, 15	16			
Static Burn-In 2 Note 1	4 - 7, 9 - 13	8	1 - 3, 14 - 16			
Dynamic Burn- In Note 1	-	2, 3, 8, 14, 15	16	4 - 7, 9 - 13	1	
Irradiation Note 2	4 - 7, 9 - 13	8	1 - 3, 14 - 16			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Timing Diagram

FIGURE 2. CD4033BMS TIMING DIAGRAM

FIGURE 3. DETAIL OF TYPICAL FLIP-FLOP STAGE

Typical Performance Characteristics

FIGURE 4. TYPICAL N-CHANNEL OUTPUT LOW (SINK)
CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM N-CHANNEL OUTPUT LOW (SINK)
CURRENT CHARACTERISTICS

FIGURE 6. TYPICAL P-CHANNEL OUTPUT HIGH (SOURCE)
CURRENT CHARACTERISTICS

FIGURE 7. MINIMUM P-CHANNEL OUTPUT HIGH (SOURCE)
CURRENT CHARACTERISTICS

FIGURE 8. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE FOR DECODED OUTPUTS

FIGURE 9. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE FOR CARRY-OUT OUTPUTS

Typical Performance Characteristics (Continued)

FIGURE 10. TYPICAL MAXIMUM CLOCK INPUT FREQUENCY
AS A FUNCTION OF SUPPLY VOLTAGE

FIGURE 11. TYPICAL POWER DISSIPATION AS A FUNCTION OF CLOCK INPUT FREQUENCY

Light Emitting Diode Displays

FIGURE 12. INTERFACING THE CD4033BMS WITH COMMERCIALLY AVAILABLE LIGHT EMITTING DIODE DISPLAYS

7-Segment Display Devices

INCANDESCENT READOUTS

Numitron DR2000 Series TUBE REQUIREMENTS VT = 3.5 - 5V IT = 24mA Segment

TRANSISTOR CHARACTERISTICS at VCC = 10V (min) Vo "0" \leq 2V β dc (min) \geq 25 IT = 8mA (min) VCE (sat) \leq 0.5V Δ VDD = 8V (min)

VDD = 8V (min)
IB = 1mA (min)
IT = 24mA (min)

ASSUMED

CD4049UB

CD4049UB

at VCC = 10V (min) Vo "0" \leq 0.6V IT = 8mA (min)

LOW-POWER INCANDESCENT READOUTS

PINLITES INC-Series O and R

ASSUMED TRANSISTOR CHARACTERISTICS at VCC = 6V (min) Vo "0" \leq 1V IT = 5mA (min) VT \approx 1.5V to 3.5V

TUBE REQUIREMENTS	VT(V)	mA/Segment	βdc (min) ≥ 30
0-03-15	1.5	8	VCE (sat) ≤ 0.5V
0-04-30	3	8	
0-06-30	3	8	$VCC \ge 3.5V \text{ (min)}$
R-R3-20	2	4.3	IB ≥ 0.25 mA (min)
R-R4-30	3	4.3	IT \leq 7.5mA (min)

^{*}The interfacing buffers shown, while a necessity with the CD4033A, are not required when using the "B" devices; the "B" outputs (≈ 10 times the "A" outputs) can drive most display devices directly especially at voltages above 10V.

VDD **CD4033BMS** CLOCK INHIBIT 13.5V LOGIC RESET **SEGMENTS VOLTAGE** VSS ≈ 4.5V 1.6V WITH VON = 18V MEDIUM BRIGHTNESS AC OR DC IN LOW AMBIENT LIGHT BACKGROUND WILL RESULT. THE POINT OF NO

NEON READOUT (NIXIE TUBE)**

- 1. Alco Electronics MG19
- 2. Burroughs B5971, B7971, B8971

TUBE REQUIREMENTS	VT(Vdc)	mA/Segment
Alco MG19	180	0.5
Burroughs B5971	170	3
Burroughs B7971, B8971	170	6
**(Trademark) Burroughs Corp. TRANSISTOR CHARACTERISTICS		

V(BR)CER >VT $\beta dc (min) \ge 30$

Leakage with transistor cutoff - 0.05mA

LOW VOLTAGE VACUUM FLORESCENT READOUTS

- 1. Tung-Sol DIGIVAC S/G ‡ Type DT1704A or DT1705C
- Nippon Electric (NEC): Type DG12E or LD915
 TUBE REQUIREMENTS: 100 to 300 μA/segment at tube voltages of 12V
 to 25V depending on required brightness Filament requirement 45mA at
 1.6V, ac or dc.

NOTICEABLE GLOW IS VOFF ≈ 4.5V

FIGURE 13. INTERFACING THE CD4033BMS WITH COMMERCIALLY AVAILABLE 7-SEGMENT DISPLAY DEVICES*

^{‡ (}Trademark) Wagner Electric Co.

Chip Dimensions and Pad Layouts

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch)

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000

FAX: (321) 724-7000 FAX: (321) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310

FAX: (886) 2 2716 9310 FAX: (886) 2 2715 3029

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.