

Synthetic Aperture Radar Interferometry (InSAR)

basic concepts

N. d'Oreye^{1,2}

European Center for Geodynamics and Seismology, Luxembourg
 National Museum of Natural History, Luxembourg

Plan

- What is a radar image (SAR) ?
- Radar interferometry (InSAR)
- Time series (PSI or [M]SBAS)
- Amplitude Time series

- \rightarrow Hyperspectral (1mm < λ < 1m) => All weather
- Own illumination source => night & day

- \triangleright Hyperspectral (1mm < λ < 1m) => All weather
- Own illumination source => night & day
- Radar image => Amplitude and phase

Fogo Island (Cape Verde), Aug. 9th 2005, Envisat ASAR

To increase the spatial resolution: Simulate larger antenna by taking advantage of satellite displacement (Synthetic Aperture Radar)

ENVISAT: 1 pixel = $5 \times 25 \text{m}$

= resolution of a 2.2 km long antenna!

Phase => information about distance, thought needs oblique viewing geometry

A and B at same distance from the sensor = same on image

Side view \rightarrow image distorsions

Optical imagery: measures angles Radar: measures distances

Image time-range (or slant-r ange)

Image ground-range

Side view→ shadowing

Area invisible from satellite

Topography => Shortening

Topography => Layover

The speckle in radar images

The signal backscattered by a pixel is formed by the ensemble of the elementary and random reflectors

Plan

- What is a radar image (SAR)?
- Radar interferometry (InSAR)
- Time series (PSI or [M]SBAS)
- Amplitude Time series

InSAR method

Interferometry between 2 RADAR signals

1 fringe = $\lambda / 2 \sim 3$ cm (in C-band)

InSAR method

2 RADAR images => deformations

Coherence

Interferometry:

Mandatory to compare « similar » images, i.e. same geometry (Ascending/Descending, incidence angle, wavelength etc...).

Not only!

- ⇒ InSAR does not work if:
- ➤ The signal is not backscattered toward the satellite (specular reflexion on water)
- The backscattering surfaces/properties have changed (vegetation, snow, anthropogenic activities...)
 - => Max temporal Baseline (Bt)
- If the point of view has changed=> Max spatial Baseline (Bp). Cfr orbital tube.

Plan

- What is a radar image (SAR)?
- Radar interferometry (InSAR)
- Time series (PSI or [M]SBAS)
- Amplitude Time series

Track displacement through « all » compatible pairs, i.e. same satellite, same geometry, same polarisation...

Two type of methods

- Permanent Scatterer Interferometry (PSI):
 - Search for "worst" Bp to keep only good scatterers (usually man-made structures)
 - Better for urban regions
- Small Baseline Subsets (SBAS)
 - Keep only the most favourable (shortests)
 Bt and Bp to ensure the best coherence
 - Appropriate for natural targets

SBAS:

- < Max Bt (eg. max 70 days)
- < Max Bp (eg. max 400 m)

Provides with mean linear velocity map and time series of ground displacements in satellite Line Of Sight

Date

Bt

n images => m interferograms (maximum $(n-n^2)/2$)

Taker Parket IV

For a given geometry (look angle, wave length, polarity...): The Small Baseline Subset (SBAS) method (Berardino et al. 2002; Usai, 2003).

n images => m interferograms

A: time matrix

V: Unknown velocities

Φ: Observed interferograms

$$V_{\rm los} = A^+ \Phi_{\rm obs}$$

Singular Value Decompos. is used for finding a solution of under-/over-determined problem (A+).

$$d_{\text{los}}^{i+1} = d_{\text{los}}^i + V_{\text{los}}^{i+1} \Delta t^{i+1}$$

d: LOS displacements

Combining all geometries: The Multidimensional Small Baseline Subset (MSBAS) method.

(Samsonov and d'Oreye, 2012, 2017)

Subpolar Orbits => Usually not sensitive to motion in NS direction (OK if V_N not >> V_E)

Combining all geometries: The Multidimensional Small Baseline (MSBAS) method.

(Samsonov and d'Oreye, 2012, 2017)

For each of the k=1,2,... K datasets:

$$A^k V_{\rm los}^k = \Phi_{\rm obs}^k$$

 \Rightarrow

 $||S_N^k A, S_E^k A, S_U^k A|| \cdot ||V_N, V_E, V_U||^T = \Phi_{obs}^k$

 $V_{los} = VS = S_N V_N + S_E V_E + S_U V_U,$

A: time matrix

V: Unknown velocities

Φ: Observed interferograms

where V_{los} = line-of-sight scalar velocity

 $V = \text{velocity vector } V (V_N, V_E, V_U)$

S = unit vector **S** (S_N , S_F , S_U) pointing to the satellite

For all K datasets:

or $\hat{A}\hat{V}_{\mathrm{los}} = \hat{\Phi}_{\mathrm{obs}}$

3D Capabilities

(Samsonov et al., Eng. Geol. 2020)

MSBAS operates with all type of SAR

Several existing SAR satellites and constellations of satellites (and more to come !) Several type of geometries (Ascending, Descending, incidence angle, λ , polarisation, resolution etc...)

Limitations:

Mandatory conditions:

- Coherence:
 - → limited vegetation, same ground conditions
- Diversity of looking angle for 2D/3D decomposition
 - → Ascending and Descending
- Appropriate selection of processing parameters, reference points for MSBAS inversion...
- Appropriate pair selection (no gaps, balanced use of images as Primary and Secondary...)

Н

Plan

- What is a radar image (SAR)?
- Radar interferometry (InSAR)
- Time series (PSI or [M]SBAS)
- Amplitude Time series

Information from the amplitude images

(Barrière et al. 2018, 2019)

Nyiragongo

- Lava lake depth
- Crater depth

=> Accumulated volume, pressure changes...

SATELLITE MONITORING

Monitoring of Nyiragongo's lava lake levels using ESA Sentinel-S1

