Циклы динамической системы

Мироненко Фома 431

19.10.21

Утверждение. Пусть задающая одномерную динамическую систему функция f(x) непрерывна и динамическая система имеет цикл периода 2. Тогда динамическая система имеет неподвижную точку.

Лемма. Пусть задающая одномерную динамическую систему функция f(x) непрерывна и динамическая система имеет цикл периода 2^k . Тогда динамическая система имеет циклы периодов 2^m где $m \in \overline{0}: k-1$.

Доказательство

Воспользуемся индукцией по k. В качестве базы уже имеется Утверждение. Пусть k>1 и Лемма доказана для меньших степеней. У функции f есть цикл длины 2^k , то есть $\exists x_0: f^{2^k}(x_0)=x_0$. Рассмотрим функцию $f_1(x)=f^{2^{k-1}}(x)$. Она также непрерывна, и $f_1^2(x_0)=(f^{2^{k-1}})^2(x_0)=f^{2^k}(x_0)=x_0$. Тогда по индукционному предположению $\exists x_1: f^{2^{k-1}}(x_1)=f_1(x_1)=x_1$. Таким образом, f имеет цикл длины 2^{k-1} , и по индукционному предположению, также и длины 2^m для всех $m\in \overline{0:k-2}$.

Лемма доказана