THE SLICE, REDUCTION, AND GAP THEOREMS

HOWARD BECK

Abstract

We wish to show that after localizing at a certain element D in its $\mathrm{RO}(C_8)$ -graded homotopy groups, $\mathrm{MU}^{((C_8))}$ satisfies the gap property - its homotopy groups vanish at non-equivariant degrees -1, -2, and -3. This fact - the Gap Theorem - was one of the three key developments Hill-Hopkins-Ravenel used to show maps of spectral sequences involving MU , $\mathbb S$, and $D^{-1}\mathrm{MU}^{((C_8))}$ put enough algebraic constraints in order to settle the Kervaire Invariant One problem. We have previously constructed a refinement of homotopy A that approximates $\mathrm{MU}^{((C_8))}$. In fact, after taking a relative smash product with the sphere spectrum $\mathbb S$ over A, we get back the familiar Mackey-functor-valued Eilenberg-MacLane spectrum $H\mathbb Z$ - this is the Reduction Theorem. We use this to characterize the homotopy fibers of the slice tower of $\mathrm{MU}^{((C_8))}$ through the Slice Theorem. The Gap Theorem will quickly follow from these and previous results.

References.

- Sections 6-8 of HHR
- Sections 7-8 of Haynes Miller's Seminaire Bourbaki report on HHR
- Doug Ravenel's notes from a talk on the problem at Tokyo City University

1. Introduction

A framed k-dim manifold in Ω^{fr} corresponds to a stable homotopy class $\pi_k(\mathbb{S})$. The Kervaire invariants are defined at dimensions 4k+2. Maps between spectral sequences will give us restrictions on $\pi_k(\mathbb{S})$. HHR create a spectrum that has enough nice properties that we can say a lot more about what elements in $\pi_*(\mathbb{S})$ have Kervaire invariant one. This spectrum is $almost \ \mathrm{MU}^{((C_8))}$ - we just need to flip some homotopy class. One of the desired properties is the gap property:

Theorem 1.1 (Gap Theorem). Let $G = C_{2^n}$, ρ_G be its regular representation, and ℓ arbitrary. For any choice of:

$$D \in \pi_{\ell \rho_G} \mathrm{MU}^{(\!(G)\!)}$$

We have, for -4 < i < 0:

$$\pi_i(D^{-1}\mathrm{MU}^{((G))}) = 0$$

Remark 1.2. Really, all we need is the i = -2 case.

We start by the following intermediate result:

Theorem 1.3 (Slice Theorem). $MU^{((G))}$ is isotropic and pure

There's another big intermediate result we will prove that deserves to be called a theorem. Earlier, we developed a refinement of homotopy A of $\mathrm{MU}^{((G))}$, given by a wedge of slice cells. Relative to the refinement, $\mathrm{MU}^{((G))}$ is "close to" the standard equivariant Eilenberg-MacLane spectrum:

Theorem 1.4 (Reduction Theorem). By smashing over the refinement, we get:

$$\mathrm{MU}^{((G))} \wedge_A \mathbb{S} \simeq H\mathbb{Z}$$

The Slice Theorem will follow from the Reduction Theorem, and the Gap Theorem will quickly follow from the Slice Theorem and results we've already developed. The Reduction Theorem is a very technical result, and will require a "converse" to the Slice Theorem. I will conveniently push it to the end to spend as little time talking about it as I can.

Date: December 3rd, 2024.

1

2 HOWARD BECK

Avoiding problems.

Note 1.5. We will implicitly use fibrant or cofibrant replacement of spectra when needed.

Note 1.6. We will fix some finite, abelian group G, usually C_{2^n} .

Note 1.7. Spectra will be assumed to be G-spectra.

Note 1.8. All representations will be real and orthogonal

Note 1.9. We will pretend $0 \in \mathbb{N}$. In this paper, I have redefined my usual \mathbb{N} command to be \mathbb{N}_0 , so this doesn't matter if you're reading these notes. I will certainly forget the subscript in the presentation.

Reminders. Some notation:

• $\operatorname{Res}_H^G(-)$ has a left adjoint $\operatorname{Ind}_H^G(-)$. HHR call this $G_+ \underset{H}{\wedge} X$.

Definition 1.10. For ρ_K the regular representation of $K \subset G$, we write, for any m

$$\widehat{S}(m,K) = \operatorname{Ind}_K^G S^{m\rho_K}$$

A slice cell is a G-spectrum (weakly) of the form $\widehat{S}(m,K)$ (regular) or $\Sigma^{-1}\widehat{S}(m,K)$ (irregular).

Definition 1.11. The dimension of $\widehat{S}(m,K)$ is m|K| and of $\Sigma^{-1}\widehat{S}(m,K)$ is m|K|-1.

Definition 1.12. A slice cell is called induced if it is also $\operatorname{Ind}_H^G \widehat{S}$ if \widehat{S} is a slice cell for H. An induced cell is free if H=1 and isotropic otherwise.

Recall the slice tower, with n-slices being the homotopy fibers on the right:

Definition 1.13. We say a *n*-slice is cellular if it is of the form $H\underline{\mathbb{Z}} \wedge \widehat{W}$ where \widehat{W} is a wedge of slice cells of dimension n.

Definition 1.14. A cellular *n*-slice is isotropic if the slice cells in \widehat{W} are isotropic. It is pure if the slice cells in \widehat{W} can be made to be regular.

Definition 1.15. A spectrum is cellular if all its *n*-slices are cellular.

Definition 1.16. A cellular spectrum is isotropic (resp., pure) if all its n-slices are isotropic (resp., pure)

Reminder, for $G = C_{2^n}$:

$$\mathbf{MU}^{((G))} = N_{C_2}^{C_2n} \mathbf{MU}_{\mathbb{R}}$$

Using twisted monoid ring nonsense, we had a refinement of homotopy

$$A = \mathbb{S}[G \cdot \bar{r}_1, G \cdot \bar{r}_2, \ldots] \to \mathrm{MU}^{((G))}$$

This is some wedge of slice cells at some dimensions. The "sub-wedge" of dimension k cells, A_k , has isomorphisms in dimension k homotopy of the underlying spectra:

$$\pi_k^u(A_k) \xrightarrow{\sim} \pi_k^u(\mathrm{MU}^{((G))})$$

Remark 1.17. We will implicitly replace $MU^{((G))}$ with a cofibrant A-module.

Let $R(\infty)$ denote the relative smash product of $\mathrm{MU}^{(G)}$ and $\mathbb S$ over A:

$$R(\infty) = \mathrm{MU}^{((G))} \wedge_A \mathbb{S}$$

Remark 1.18 (Might be lies). A is an (equivariant) \mathbb{E}_{∞} spectrum/commutative algebra object in G-Sp. Norm functors descend onto the CAlg subcategories, and $\mathrm{MU}_{\mathbb{R}}$ is \mathbb{E}_{∞} (much the same argument as the non-equivariant case - you use the Thom spectrum construction). \mathbb{S} is also \mathbb{E}_{∞} like the non-equivariant case. Since A is \mathbb{E}_{∞} , we are allowed to smash relative to it. I believe the relative smash product should literally be a pushout

$$\begin{array}{ccc} A & \xrightarrow{\operatorname{triv}} & \mathbb{S} \\ \stackrel{\mathbb{F}}{\underset{\mathbb{F}}{\text{obs}}} & & \downarrow \\ & & \downarrow \\ \operatorname{MU}^{((G))} & ---- & \operatorname{MU}^{((G))} \wedge_A \mathbb{S} \end{array}$$

Recall the structure of A. We let J be the (left) G-set:

$$J = \coprod_{i=1}^{\infty} G/C_2$$

with a bunch of copies.

$$A = \bigvee_{f: J \to \mathbb{N}_0} \mathbb{S}^{\rho_f}$$

where $G \curvearrowright J$ induces the G-action on the indices. ρ_f is a multiple of the regular representation of the stabilizer in G of f. We will force it to have dimension

$$\dim f = 2\sum_{j \in J} j f(j)$$

(it really should be $\dim(\rho_f)$ but I digress)

2. The Slice Theorem

Our goal is to prove the following:

Theorem 2.1 (Slice Theorem). $MU^{((G))}$ is isotropic and pure

Proof. Let $M_d \subset A$ be the monomial ideal that has \mathbb{S}^{ρ_f} when $\dim(f) \geq d$. Obviously this thing grows as d gets larger. We force the dimensions to be even, so $M_{2k} = M_{2k-1}$. Clearly,

$$M_{2d}/M_{2d-2} = \bigvee_{\dim(f)=2d} \mathbb{S}^{\rho_f} = \widehat{W}_{2d}$$

This is a wedge of regular isotropic cells. Now, we define:

$$K_{2d} = \mathrm{MU}^{((G))} \wedge_A M_{2d}$$

We have a sequence:

$$\cdots \hookrightarrow K_{2d} \hookrightarrow K_{2d-2} \hookrightarrow \cdots$$

Basically, the ρ_f s fit into bigger representations.

Fact 2.2.

$$\underbrace{K_{2d+2} \hookrightarrow K_{2d} \to K_{2d}/K_{2d+2}}_{} \to \mathrm{MU}^{((G))}/K_{2d+2} \to \mathrm{MU}^{((G))}/K_{2d}$$

are weakly equivalent to cofibration sequences.

Notice:

$$R(\infty) \wedge \widehat{W}_{2d} \simeq \mathrm{MU}^{(\!(G)\!)} \wedge_A \mathbb{S} \wedge \widehat{W}_{2d} \simeq \mathrm{MU}^{(\!(G)\!)} \wedge_A (M_{2d}/M_{2d+2}) \simeq K_{2d}/K_{2d+2}$$

We are entitled to the last bit via the cofibration sequence.

We have a fibration sequence:

$$K_{2d+2} \to \mathrm{MU}^{((G))} \to \mathrm{MU}^{((G))}/K_{2d+2}$$

4 HOWARD BECK

Fact 2.3. K_{2d+2} is slice 2d-positive

Fact 2.4. Reduction
$$\implies$$
 $MU^{((G))}/K_{2d+2} \le 2d$

Then, we get that in fact, we have a weak equivalence to the fiber sequence of P^n in the slice tower:

$$\begin{array}{c} \operatorname{hofib}(\xrightarrow{\operatorname{bous}}) \\ \\ \downarrow \\ 2d \leq P_{2d}\operatorname{MU}^{((G))} \longrightarrow \operatorname{MU}^{((G))} \xrightarrow{\operatorname{bous}} P^{2d}\operatorname{MU}^{((G))} \leq 2d \\ \\ \downarrow \\ \downarrow \\ 2d \leq K_{2d+2} \longrightarrow \operatorname{MU}^{((G))} \longrightarrow \operatorname{MU}^{((G))}/K_{2d+2} \leq 2d \end{array}$$

Therefore,

$$P^{2d+1}\mathrm{MU}^{(\!(G)\!)}\simeq P^{2d}\mathrm{MU}^{(\!(G)\!)}\simeq \mathrm{MU}^{(\!(G)\!)}/K_{2k+2}$$

Upshot 2.5. The odd slices of $\mathrm{MU}^{((G))}$ are contractible. The earlier cofibration sequence meant the even fibers are equivalent to $R(\infty) \wedge \widehat{W}_{2d}$. Reduction tells us this is just $H\underline{\mathbb{Z}}$ smashes with a bunch of slice cells. We already knew \widehat{W}_{2d} just had regular isotropic cells. Therefore, $\mathrm{MU}^{((G))}$ is pure and isotropic by definition.

3. The Gap Theorem

6 HOWARD BECK

4. The Reduction Theorem