

Limites da função integral

Dada
$$f(x) = e^{-x}$$
, com $x \in D_f = \mathbb{R}$, seja $F(b) = \int_0^b f(x) dx$

$$D_F=\left]-\infty,+\infty
ight[,\quad F(b)=1-e^{-b},\quad \lim_{b o +\infty}F(b)=1,\quad \lim_{b o -\infty}F(b)=-\infty$$

$$D_{F} =]-\infty, +\infty[, \quad F(b) = 1 - e^{-b}, \quad \lim_{b \to +\infty} F(b) = 1, \quad \lim_{b \to -\infty} F(b) = -\infty$$

$$\text{Dada } g(x) = \frac{1}{\sqrt{1-x}} - \frac{1}{1+x}, \text{ com } x \in D_{g} =]-\infty, -1[\cup] - 1, 1[, \text{ seja } G(b) = \int_{0}^{b} g(x) \, dx$$

$$D_G =]-1,1[, G(b) = 2-2\sqrt{1-x}-\ln(1+x), \lim_{b\to 1^-} G(b) = 2-\ln 2, \lim_{b\to -1^+} G(b) = +\infty$$

Integrais impróprios ('simples') 2

f integrável em qualquer subintervalo fechado de [a, b] (mas não em [a, b])

- $b \notin D_f$ ou
- $b = +\infty$ (integral impróprio 'simples' de 1^a espécie) ou
- há uma assíntota x = b (integral impróprio 'simples' de 2^a espécie)

Em todos os casos, define-se
$$\int_a^b f(x) dx = \lim_{\beta \to b^-} \int_a^\beta f(x) dx$$

O limite determina a natureza do integral: convergente ou divergente

Se o *problema* for no extremo inferior, $\int_a^b f(x) dx = \lim_{\alpha \to a^+} \int_\alpha^b f(x) dx$

Um integral impróprio 'simples' é um limite de uma função integral:

calcula-se sempre apenas UM limite em UM dos extremos

3 Integrais impróprios ('gerais')

Em geral, um integral impróprio pode apresentar mais que um problema

- obtêm-se integrais impróprios simples dividindo o intervalo ('aditividade')
- o integral converge se e só se cada integral impróprio simples converge

Exemplo: para estudar o integral impróprio
$$\int_0^{+\infty} \frac{1}{(x+4)(x-3)^3 \ln x} dx$$

- 1) determinam-se os *problemas* no intervalo de integração: $0, 1, 3, +\infty$
- 2) a função integranda f é integrável em qualquer [a, b] subintervalo de

$$]0, \frac{1}{2}], [\frac{1}{2}, 1[,]1, 2], [2, 3[,]3, 5] e [5, +\infty[(\frac{1}{2}, 2, 5 \text{ escolhidos livremente!})]$$

3) analisam-se os integrais impróprios simples $\int_0^{\frac{1}{2}} f(x) dx$, $\int_{\frac{1}{2}}^{1} f(x) dx$, ...

4 Critérios de convergência

Sejam f, g e h integráveis em [a, x] e $f(x) \ge 0$ e $g(x) \ge 0$ para $x \in [a, b] = I$.

Critério de comparação: se $f(x) \le g(x)$ para $x \in I$,

$$\int_{a}^{b} g(x) dx \text{ CONV.} \Rightarrow \int_{a}^{b} f(x) dx \text{ CONV.} \quad \text{e} \quad \int_{a}^{b} f(x) dx \text{ DIV.} \Rightarrow \int_{a}^{b} g(x) dx \text{ DIV.}$$

Critério do limite 'simplificado' (facultativo): se
$$g(x) > 0$$
 para $x \in I$,
$$\lim_{x \to b^-} \frac{f(x)}{g(x)} \in \mathbb{R}^+ \implies \int_a^b f(x) \, dx \in \int_a^b g(x) \, dx \text{ têm a mesma natureza}$$

Convergência absoluta

$$\int_a^b |h(x)| dx$$
 CONV. $\Rightarrow \int_a^b h(x) dx$ CONV. (neste caso, a conv. é 'absoluta')

Se o integral de |h| diverge e o de h converge, a convergência é 'simples'

Alguns integrais úteis na aplicação dos critérios:

$$\int_0^1 \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{1-\alpha} & \text{se } \alpha < 1 \\ \frac{1}{\text{DIV}} & \text{se } \alpha \ge 1 \end{cases} \qquad \int_1^{+\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{\alpha - 1} & \text{se } \alpha > 1 \\ \frac{1}{\text{DIV}} & \text{se } \alpha \le 1 \end{cases}$$

Exemplos 5

Considere-se o integral de $f(x) = \frac{1}{(x+4)(x-3)^3 \ln x}$ apresentado no slide 3.

• $\int_0^{\frac{1}{2}} f(x) dx$ é CONV: g definida por g(x) = f(x) em $\left[0, \frac{1}{2}\right]$ e g(0) = 0 é contínua $\lim_{\alpha \to \infty} \int_{\alpha}^{\frac{1}{2}} f(x) dx = \lim_{\alpha \to \infty} \int_{\alpha}^{\frac{1}{2}} g(x) dx = \int_{0}^{\frac{1}{2}} g(x) dx \in \mathbb{R}$ (função integral de g contínua)

• $\int_{\frac{1}{2}}^{1} f(x) dx$ é DIV: $g(x) = \frac{1}{1-x} > 0$ e $f(x) \ge 0$ para $x \in [\frac{1}{2}, 1[$; pelo cr. do limite, $\lim_{x \to 1^{-}} \frac{f(x)}{g(x)} = \frac{1}{40} \Rightarrow \int_{\frac{1}{2}}^{1} f(x) dx \quad \text{tem a natureza de} \quad \int_{\frac{1}{2}}^{1} g(x) dx = \int_{\frac{1}{2}}^{1} \frac{1}{1-x} dx \stackrel{(t=1-x)}{=} \int_{0}^{\frac{1}{2}} \frac{1}{t} dt \quad \text{DIV}$

• $\int_{-\infty}^{+\infty} f(x) dx$ é CONV: se $x \ge 5$, $0 \le x^2 \le (x+4)(x-3)^3 \le (x+4)(x-3)^3 \ln x$ e, por comparação, $\int_{5}^{+\infty} f(x) dx = \int_{5}^{+\infty} \frac{1}{(x+4)(x-3)^3 \ln x} dx \le \int_{5}^{+\infty} \frac{1}{x^2} dx \le \int_{1}^{+\infty} \frac{1}{x^2} dx \text{ CONV}$

Um integral simplesmente convergente (mas absolutamente facultativo!!)

 $\int_0^{+\infty} \frac{\sin x}{x} dx$ converge simplesmente (para $\frac{\pi}{2}$). Vamos analisar $\int_{\frac{\pi}{2}}^{+\infty} \frac{\sin x}{x} dx$

Convergência: tem o valor de um integral absolutamente convergente. Por partes ...

$$\int_{\frac{\pi}{2}}^{+\infty} \frac{\sin x}{x} \, dx = \left[-\frac{\cos x}{x} \right]_{\frac{\pi}{2}}^{+\infty} - \int_{\frac{\pi}{2}}^{+\infty} \frac{\cos x}{x^2} \, dx = -\int_{\frac{\pi}{2}}^{+\infty} \frac{\cos x}{x^2} \, dx \quad \text{CONV}$$

$$\text{porque } \int_{\frac{\pi}{2}}^{+\infty} \left| \frac{\cos x}{x^2} \right| \, dx = \int_{\frac{\pi}{2}}^{+\infty} \frac{|\cos x|}{x^2} \, dx \leq \int_{\frac{\pi}{2}}^{+\infty} \frac{1}{x^2} \, dx \quad \text{CONV}$$

Divergência (do *módulo*): repare-se que $|\sin x| \ge |\sin x|^2 = \sin^2 x$

$$\int_{\frac{\pi}{2}}^{+\infty} \frac{\sin^2 x}{x} \, dx = \left[\frac{\frac{1}{2}x - \frac{1}{4}\sin(2x)}{x} \right]_{\frac{\pi}{2}}^{+\infty} - \int_{\frac{\pi}{2}}^{+\infty} - \frac{\frac{1}{2}x - \frac{1}{4}\sin(2x)}{x^2} \, dx = \int_{\frac{\pi}{2}}^{+\infty} \frac{1}{2x} - \frac{\sin(2x)}{x^2} \, dx \quad \text{DIV}$$

$$\text{porque } \int_{\frac{\pi}{2}}^{\beta} \frac{1}{2x} - \frac{\sin(2x)}{x^2} \, dx = \frac{1}{2} \ln \frac{2\beta}{\pi} - \int_{\frac{\pi}{2}}^{\beta} \frac{\sin(2x)}{x^2} \, dx \xrightarrow{\beta \to +\infty} \text{"} + \infty - K \text{"} = +\infty$$

pois o integral de $\frac{\text{sen}(2x)}{x^2}$ converge abs. e tende para um numero real K

Logo, por comparação, o integral de $\left|\frac{\operatorname{sen} x}{x}\right| \ge \frac{\operatorname{sen}^2 x}{x} \ge 0$ diverge.

Desafio: verifica que $\int_0^{+\infty} \left(\frac{\sin x}{x}\right)^2 dx = \int_0^{+\infty} \frac{\sin x}{x} dx$