第三节 抽样分布

统计量的分布称为抽样分布.

统计中有四个常见分布:

正态分布 $N(\mu, \sigma^2)$ (在概率论中已经介绍),

 χ^2 分布,t分布,F分布(即将介绍).

一、 χ^2 分布

定义 1 设 $(X_1, X_2, ..., X_n)$ 为来自总体 $X \sim N(0,1)$ 的一个样本,就称统计量

$$\chi^2 = \sum_{i=1}^n X_i^2 = X_1^2 + X_2^2 + \dots + X_n^2$$

为服从自由度为n的 χ^2 分布,记作 $\chi^2 \sim \chi^2(n)$.

通俗地讲:自由度为n的 χ^2 分布随机变量是由n个相互独立的标准正态随机变量的平方和组成.

定理 1 设 $\chi^2 \sim \chi^2(n)$,则 χ^2 的密度函数为

$$f(x,n) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} & x > 0, \\ \frac{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}{0,} & x \leq 0, \end{cases}$$
 (淡化,不用记)

其中 $\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx (p > 0)$ 称为 Γ -函数.

(记住图形)

性质 1 设 $\chi^2 \sim \chi^2(n)$,则 $E(\chi^2) = n$, $D(\chi^2) = 2n$.

$$EX_i = EX = 0$$
, $DX_i = DX = 1$, $E(X_i^2) = DX_i + (EX_i)^2 = 1$,

$$E(X_i^4) = E(X^4) = \int_{-\infty}^{+\infty} x^4 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = -\int_{-\infty}^{+\infty} x^3 d(\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2})$$

$$=-x^{3}\cdot\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}\Big|_{-\infty}^{+\infty}+3\int_{-\infty}^{+\infty}x^{2}\cdot\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}dx=3E(X^{2})=3,$$

$$D(X_i^2) = E(X_i^4) - [E(X_i^2)]^2 = 3 - 1^2 = 2$$
, $i = 1, 2, \dots, n$,

所以
$$E(\chi^2) = E(\sum_{i=1}^n X_i^2) = \sum_{i=1}^n E(X_i^2) = \sum_{i=1}^n 1 = n$$
,

(记住结论,了

解证明以及

$$D(\chi^2) = D(\sum_{i=1}^n X_i^2) \stackrel{\text{decide}}{=} \sum_{i=1}^n D(X_i^2) = \sum_{i=1}^n 2 = 2n$$
.

例 1 设 (X_1, X_2, X_3) 为来自总体 $X \sim N(0,1)$ 的一个简单随

机样本, 求常数 a 和 b, 使得 $aX_1^2 + b(X_2 - 2X_3)^2 \sim \chi^2(2)$.

解 由于 $X_1 \sim N(0,1), X_1^2 \sim \chi^2(1);$ 又

$$X_2 - 2X_3 \sim N(0,5), \qquad \frac{X_2 - 2X_3}{\sqrt{5}} \sim N(0,1)$$
,

得
$$\frac{(X_2-2X_3)^2}{5} \sim \chi^2(1)$$
,并且 X_1^2 与 $\frac{(X_2-2X_3)^2}{5}$ 独立,

故
$$X_1^2 + \frac{(X_2 - 2X_3)^2}{5} \sim \chi^2(2)$$
,所以 $a = 1$, $b = \frac{1}{5}$.

性质 2 设 $X \sim N(0,1)$, 则 $X^2 \sim \chi^2(1)$.

证 在 χ^2 分布的定义中令 n=1 , 即可证明性质 2.

性质 3 设 $\chi_i^2 \sim \chi^2(n_i)$, i = 1, 2, 且 χ_1^2, χ_2^2 相互独立,则

$$\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$$
. (证明略)

推论 1 设 $\chi_i^2 \sim \chi^2(n_i)$, $i = 1, 2, \dots, k$, 且 $\chi_1^2, \chi_2^2, \dots, \chi_k^2$ 相互独立,则

$$\sum_{i=1}^{k} \chi_i^2 \sim \chi^2(\sum_{i=1}^{k} n_i) .$$

二、t分布

定义 2 设随机变量 $X \sim N(0,1)$, $Y \sim \chi^2(n)$,且 X 与 Y 相互独立,就称 $T = \frac{X}{\sqrt{Y/n}}$ 为服从自由度为n 的 t 分布,记作 $T \sim t(n)$.

定理 2 设 $T \sim t(n)$,则T的密度函数为

$$f(x,n) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} (1+\frac{x^2}{n})^{\frac{-n+1}{2}}, -\infty < x < +\infty.$$
(淡化,不用记)
$$y = f(x,n)$$
(记住图形)

性质 4 设 $T \sim t(n)$,则 ET = 0 (n > 1), $DT = \frac{n}{n-2}$ (n > 2).

性质 5 设 $T \sim t(n)$,则当 n 充分大时, $T \sim N(0,1)$.

(以上两个性质只作了解,不必记)

三、F分布

定义 3 设随机变量 $X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$, 且 X 与

Y相互独立,就称 $F = \frac{X/n_1}{Y/n_2}$ 为服从第一自由度为 n_1 ,第

二自由度为 n_2 的F分布,记作 $F \sim F(n_1, n_2)$.

定理 3 设 $F \sim F(n_1, n_2)$, 则 F 的密度函数为

$$f(x,n_1,n_2) = \begin{cases} \frac{\Gamma(\frac{n_1+n_2}{2})}{2} n_1^{\frac{n_1}{2}} n_2^{\frac{n_2}{2}} x^{\frac{n_1}{2}-1} (n_1x+n_2)^{\frac{-n_1+n_2}{2}}, & x > 0, \\ \Gamma(\frac{n_1}{2})\Gamma(\frac{n_2}{2}) & \\ 0, & (% \mathcal{U}, \ \pi \ \text{用记}) & x \leq 0. \end{cases}$$

性质 6 如果 $F \sim F(n_1, n_2)$,则 $\frac{1}{F} \sim F(n_2, n_1)$.

性质 7 如果 $T \sim t(n)$,则 $T^2 \sim F(1,n)$.

例2 设
$$T \sim t(n)$$
,则 $Y = \frac{1}{T^2} \sim (C)$.

(A)
$$\chi^2(n)$$
 (B) $\chi^2(n-1)$ **(C)** $F(n,1)$ **(D)** $F(1,n)$

例 3 设 (X_1, X_2, X_3, X_4) 为来自总体 $X \sim N(0, \sigma^2)$ 的一个样本,求 $\frac{X_1 - X_2}{|X_3 + X_4|}$ 所服从的分布.

解 由正态分布的性质, $X_1-X_2\sim N(0,2\sigma^2)$, $\frac{X_1-X_2}{\sqrt{2}\sigma}\sim N(0,1)$,

$$X_3 + X_4 \sim N(0, 2\sigma^2)$$
, $\frac{X_3 + X_4}{\sqrt{2}\sigma} \sim N(0, 1)$, $\frac{(X_3 + X_4)^2}{2\sigma^2} \sim \chi^2(1)$,

且
$$\frac{X_1 - X_2}{\sqrt{2}\sigma}$$
 与 $\frac{(X_3 + X_4)^2}{2\sigma^2}$ 独立,故 $\frac{\frac{X_1 - X_2}{\sqrt{2}\sigma}}{\sqrt{\frac{(X_3 + X_4)^2}{2\sigma^2}/1}} = \frac{X_1 - X_2}{|X_3 + X_4|} \sim t(1)$.

上侧分位点

定义 4 设 X 为随机变量, $0 < \alpha < 1$,如果点 x_{α} 满足

$$P\{X \ge x_{\alpha}\} = \alpha ,$$

就称 x_{α} 为 X 的上 α 分位点.

1. 标准正态分布 N(0,1) 的上侧分位点

设随机变量 $U \sim N(0,1)$, 称满足

$$P\{U \ge U_{\alpha}\} = \alpha$$

的 U_{α} 为N(0,1) 分布的上侧 α 分位点.

注 1: U_{α} 可以通过标准正态分布表查得.

例如, $U_{0.05} = 1.645$; $U_{0.025} = 1.96$.

例 4 设随机变量 $X \sim N(0,1)$, 对给定的 $\alpha (0 < \alpha < 1)$,

数 U_{α} 满足 $P\{X > U_{\alpha}\} = \alpha$.若 $P\{|X| < x\} = \alpha$,则x等于 ().

(A)
$$U_{\frac{\alpha}{2}}$$
 (B) $U_{1-\frac{\alpha}{2}}$ (C) $U_{\frac{1-\alpha}{2}}$ (D) $U_{1-\alpha}$

解 由 $P\{|X| < x\} = \alpha$ 可 得 $P\{X \ge x\} = \frac{1-\alpha}{2}$, 所 以

$$x = U_{\frac{1-\alpha}{2}}$$
. 选(C).

2. t 分布 t(n) 的上侧分位点

设随机变量 $T \sim t(n)$, 称满足

$$P\{T \ge t_{\alpha}(n)\} = \alpha$$

的 $t_{\alpha}(n)$ 为t(n)分布的上侧 α 分位点.

注 2: 利用 t 分布的对称性, $t_{1-\alpha}(n) = -t_{\alpha}(n)$.

3. χ^2 分布 $\chi^2(n)$ 的上侧分位点

设随机变量 $\chi^2 \sim \chi^2(n)$, 称满足

$$P\{\chi^2 \ge \chi_\alpha^2(n)\} = \alpha$$

的 $\chi_{\alpha}^{2}(n)$ 为 $\chi^{2}(n)$ 分布的上侧 α 分位点。

注 3: 由于 χ^2 分布为非对称的分布,因此,

$$P\{\chi^2 \ge \chi^2_{1-\alpha}(n)\} = 1-\alpha$$
, $\mathbb{P}\{\chi^2 \le \chi^2_{1-\alpha}(n)\} = \alpha$.

4. F 分布 $F(n_1, n_2)$ 的上侧分位点

设随机变量
$$F \sim F(n_1, n_2)$$
,称满
$$\mathbb{E} P\{F \geq F_{\alpha}(n_1, n_2)\} = \alpha \text{ 的 } F_{\alpha}(n_1, n_2)$$

为 $F(n_1,n_2)$ 分布的上 α 分位点.

注 4
$$F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)}$$
.

例如,
$$F_{0.99}(4,10) = \frac{1}{F_{0.01}(10,4)} = \frac{1}{14.55}$$
.

四、正态总体下几个重要统计量的分布

(本节为第七章和第八章的基础)

内容:

单正态总体样本均值和样本方差的分布(重点讲授)

双正态总体样本均值和样本方差的分布(简单介绍)

1. 单正态总体下样本均值和样本方差的分布 定理 4 设 (X_1, X_2, \dots, X_n) 为来自总体 $X \sim N(\mu, \sigma^2)$ 的一

个样本,则

(1)
$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
, 或 $U = \frac{\bar{X} - \mu}{\sigma \sqrt{n}} \sim N(0, 1)$, 差别

(2) $T = \frac{\bar{X} - \mu}{\sqrt[3]{\sqrt{n}}} \sim t(n-1)$, 不同

(3) $\chi^2 = \frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$, 差别

(4) $\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sigma^2} \sim \chi^2(n-1)$,

且 \overline{X} 与 S^2 相互独立.

例 5 设 X_1, X_2, \dots, X_n 为来自总体 $X \sim N(\mu, \sigma^2)$ 的一个样

本,求
$$P\left\{\left(\overline{X}-\mu\right)^2 \leq \frac{\sigma^2}{n}\right\}$$
.

解 因 $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$,则 $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$,故

$$P\left\{(\overline{X} - \mu)^2 \le \frac{\sigma^2}{n}\right\} = P\left\{\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^2 \le 1\right\} = P\left\{\left|\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right| \le 1\right\}$$

$$= P\left\{-1 \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le 1\right\} = \Phi(1) - \Phi(-1) = 2\Phi(1) - 1$$

$$=2\times0.8413-1=0.6826$$
.

例 6 设 (X_1, X_2, \dots, X_9) 为来自总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,求 $P\{-0.4656 < \frac{\overline{X} - \mu}{S} < 0.9655\}$.

解 因 $\frac{X-\mu}{S/\sqrt{9}} \sim t(8)$,所以

$$\begin{split} &P\{-0.4656<\frac{\overline{X}-\mu}{S}<0.9655\}=P\{-1.3968<\frac{\overline{X}-\mu}{S/\sqrt{9}}<2.8965\}\\ &=P\{-t_{0.10}(8)<\frac{\overline{X}-\mu}{S/\sqrt{9}}< t_{0.01}(8)\}=P\{t_{0.90}(8)<\frac{\overline{X}-\mu}{S/\sqrt{9}}< t_{0.01}(8)\}\\ &=0.90-0.01=0.89 \; . \end{split}$$

例 7 设 (X_1, X_2, \dots, X_n) 为来自总体 $X \sim N(\mu, \sigma^2)$ 的一个样

本,其中
$$n>1$$
. 令 $S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$,分别计算 $E(S_0^2)$, $D(S_0^2)$, $E(S^2)$ 和 $D(S^2)$.

解 由定理 4 知,

$$\frac{nS_0^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n) , \quad \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) ,$$

所以 $E(\frac{nS_0^2}{\sigma^2}) = n$, $D(\frac{nS_0^2}{\sigma^2}) = 2n$,

$$E[\frac{(n-1)S^2}{\sigma^2}] = n-1, \quad D[\frac{(n-1)S^2}{\sigma^2}] = 2(n-1),$$

故得
$$E(S_0^2) = \sigma^2, D(S_0^2) = \frac{2\sigma^4}{n}, E(S^2) = \sigma^2, D(S^2) = \frac{2\sigma^4}{n-1}.$$

2. 双正态总体下样本均值差和样本方差比的分布

定理 5 设 $(X_1, X_2, \dots, X_{n_1})$ 为来自总体 $X \sim N(\mu_1, \sigma_1^2)$ 的样本,

样本均值为
$$\bar{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$$
,样本方差为 $S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2$.

 (Y_1,Y_2,\cdots,Y_n) 为来自总体 $Y \sim N(\mu_2,\sigma_2^2)$ 的一个样本,样本均

值为
$$\overline{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$$
,样本方差为 $S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2$,且

 X_1, X_2, \dots, X_{n_1} 与 Y_1, Y_2, \dots, Y_{n_2} 相互独立. 则

(1)
$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$
;

(2) 当
$$\sigma_1^2$$
, σ_2^2 未知,但 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 时,

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

其中
$$S_{\omega} = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$
;

(3)
$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$
.

例 8 从总体 $X \sim N(1,3)$ 中分别抽取容量为 20,30 的两个独立样本,求其样本均值差的绝对值小于1的概率.

解 设两个样本均值分别为 \bar{X} 和 \bar{Y} ,由定理 5,可得

$$|\overline{X} - \overline{Y}| \sim N(0, \frac{1}{4})$$
,所以
$$P\{|\overline{X} - \overline{Y}| < 1\} = P\{\left|\frac{\overline{X} - \overline{Y}}{1/2}\right| < 2\}$$

$$= 2\Phi(2) - 1 = 2 \times 0,9772 - 1 = 0.9544$$

$$\Rightarrow D(\overline{X} - \overline{Y}) = D(\overline{X}) + D(\overline{Y}) = \frac{3}{20} + \frac{3}{30} = \frac{1}{4} .$$