Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

Growth Of Immature Stands

Of Ponderosa Pine In . OF AGRICULTURE The Black Hills

OCT 1 6 1361

1.9622 R2St2

by Clifford A. Myers, James L. Van Deusen Research Foresters

Station Paper No. 61

United States Department of Agriculture

National Agricultural Library

Advancing Access to Global Information for Agriculture

GROWTH OF IMMATURE STANDS OF PONDEROSA PINE

IN THE BLACK HILLS Y

by

Clifford A. Myers, and James L. Van Deusen, Research Foresters

Rocky Mountain Forest and Range Experiment Station 1

JUN 0 3 2008

CATALOGING PREP CONTENTS Page Introduction . 1 Methods used Results . Diameters Basal areas . Total cubic volumes Merchantable cubic volumes Cordwood volumes Periodic mortality Application . Literature cited . Growth tables Stand in 10 years . 8 Stand in 20 years . 12

¹ Central headquarters is maintained in cooperation with Colorado State University at Fort Collins; research reported here was conducted in cooperation with South Dakota School of Mines and Technology at Rapid City.

GROWTH OF IMMATURE STANDS OF PONDEROSA PINE

IN THE BLACK HILLS

bv

Clifford A. Myers and James L. Van Deusen

INTRODUCTION

Expanded precommercial thinning and harvest of roundwood in the Black Hills have increased interest in the effects of density and other stand characteristics on the growth of immature stands. Available information, however, is limited. Meyer (1938) stated that his regional yield tables are probably not applicable to Black Hills conditions. Normally stocked young stands stagnate, hence stand age is not a good indicator of tree size or volume. Also, the yield tables do not indicate possible changes in growth through reduction of stand density. The required information cannot yet be obtained from permanent plots. Data from thinned plots represent only a narrow range of sites, stand diameters, and other characteristics (Myers, 1958). Growth and mortality plots on the Black Hills National Forest were established too recently to provide data for periods of 10 or 20 years.

Until data from permanent plots or yield tables become available, approximate methods of estimating growth must be used. One rapid approximation is a comparison in which past stand measurements and subsequent growth are reconstructed from present stand measurements and increment cores. These values are used to predict the growth of stands now similar to what the reconstructed stands were in the past. Such a method has been developed for immature ponderosa pine (Pinus ponderosa Laws.) in the Black Hills of South Dakota and Wyoming. Changes in diameter, basal area, and volume can be estimated for 10- and 20-year periods by the use of conventional stand measurements.

METHODS USED

Fifty-seven temporary plots were selected in the Black Hills of South Dakota and Wyoming and the Bear Lodge Mountains of Wyoming. Plot sizes varied with tree size and stand density; most had about 150 trees. Even-aged (range 20 years or less) thinned and unthinned stands averaging 3 to 12 inches d.b.h. were sampled in a wide range of site indexes and stand densities and reconstructed to conditions 20 years before measurement, as shown in the following tabulation:

Range measured

ractor	Range measured
Site index	37 to 73 feet (base 100 years)
Age	31 to 148 years
Trees	202 to 5,575 per acre
Basal area	23 to 234 square feet per acre
Average d.b.h.	1.9 to 10.8 inches
Total cubic feet	Il5 to 5,210 cubic feet per acre
Merchantable cubic feet	0 to 5,000 cubic feet per acre

Factor

Combinations of the variables sampled can be determined by noting the locations of the entries in tables 4 to 9 (see pages 8 to 14). Each plot was carefully checked for uniformity of density, age, and site index. None of the plots had been thinned or otherwise disturbed during the 20-year period preceding measurement.

A complete inventory was made on each plot, and data were obtained for computing the past stand. All trees were bored to determine radial growth at breast height for the past 10 and 20 years. Heights were measured on a sample of the trees and past height growth was determined by boring. The site index of each plot was computed from soil and topography (Myers and Van Deusen, 1960b) to avoid errors due to the effect of stand density on tree height. Average age of the main stand on each plot was determined; occasional small invaders in stands of low density were omitted. Dead trees were measured and classed as having died 0-10, 11-20, or 21+ years ago. Dead trees on permanent plots and in stands thinned at known dates were used as guides in estimating time of death.

Stand tables and height-over-diameter curves were prepared for the present stand and for the stand 10 and 20 years previously. Past diameters outside bark were determined from radial growth, with adjustments for bark growth (Myers and Van Deusen, 1958). Dead trees were included in the appropriate past stand tables. The tables and curves were used to compute current and past basal areas and volumes by 0.1-inch d.b.h. classes.

Total (Myers, 1957) and merchantable (Myers and Van Deusen, 1960a) volumes in cubic feet were computed. Total volumes were the volumes inside bark from ground to tip of all trees. Merchantable volumes were the volumes inside bark from the top of 0.5-foot stumps upward to where diameter inside bark was 4.0 inches. Merchantable volumes were computed for trees 6.0 inches d.b.h. and larger. All stand measures were converted to amounts per acre before further analysis.

Equations for estimating average d.b.h. and other stand variables 10 and 20 years after date of measurement were computed by linear multiple regression with transformation of variables where necessary. The coefficients were tested by analysis of variance and only significant variables were included in the final equations.

RESULTS

Six equations with six tables for predicting diameters, basal areas, and total cubic-foot volumes were computed. Three of each were for stands after 10 years and three for stands after 20 years. Reliability of each regression is indicated by a standard error of estimate (Sy) and a multiple correlation coefficient (R). Conversion factors are presented for computing merchantable cubic-foot and cord volumes from total cubic-foot volumes. Present and future values are for present and future live trees only; mortality is not included. Net periodic increments can be estimated by subtracting present from future diameters, basal areas, or volumes.

DIAMETERS

Average stand d.b.h. in 10 or 20 years can be estimated from present d.b.h., present basal area, and site index (tables 4, 7). Future d.b.h. increases with increase in present d.b.h. and site index. It decreases with increase in present basal area. For this study, a tree of average d.b.h. is a tree of average basal area.

The tables give future diameters for site index 55, the average for the Black Hills. Diameters for other site indexes can be obtained by adding or subtracting the amounts indicated in the table footnotes. Straight-line interpolation for intermediate values of all independent variables will give satisfactory results.

The distribution of diameters in 10 or 20 years can be estimated from the coefficient of variation of diameter. It averages 29 percent in thinned and unthinned stands within the range of average diameters measured. Thus, about 68 percent of the trees will have diameters within + 29 percent of average d.b.h. About 95 percent of the tree diameters will be within + 58 percent of the average.

BASAL AREAS

Basal area per acre 10 years in the future can be estimated from present basal area, site index, and number of trees per acre (table 5). Stand age should also be used for estimating basal areas 20 years in the future (table 8). Future basal area increases with present basal area, site index, and number of trees per acre. It decreases with increased stand age during a 20-year period.

The tables give future basal areas for site index 55 feet. Basal areas for other site indexes can be determined by using the values given in the table footnotes. Straight-line interpolation may be used for intermediate values of all independent variables.

Although age was not a significant variable for estimating basal areas after 10 years, it is probably a significant factor in basal area growth. Age proved highly significant (1 percent level) for estimating basal area after 20 years. Similar results have been reported for other species.

TOTAL CUBIC VOLUMES

Total cubic-foot volumes after 10 or 20 years can be estimated from present cubic-foot volume, site index, and number of trees per acre (tables 6, 9) Present basal area improves the estimates for periods of 10 years. Future total volume increases with present volume, site index, and number of trees. It decreases with increase in basal area.

Tables 6 and 9 are more complex than the other growth tables because logarithmic values had to be used for three variables. Straight-line interpolation for intermediate values of independent variables will be satisfactory for most purposes. The equations must be solved if greater accuracy is desired.

MERCHANTABLE CUBIC VOLUMES

Present and future merchantable cubic-foot volumes can be computed from present and future total cubic-foot volumes. To do this, determine present and future average d.b.h. and total volume of the stand and obtain the proper ratios from table 1. These ratios express plot volumes in merchantable cubic feet divided by the corresponding volumes in total cubic feet. Multiply the measured or computed total volume by the appropriate ratio to obtain merchantable volume. For example, total volume of a stand averaging 7.0 inches d.b.h. is 3,500 cubic feet per acre. The ratio from table 1 for 7.0 inches is 0.735. The product of 3,500 times 0.735 is 2,572 cubic feet.

Table 1. --Ratios of merchantable cubic-foot to cubic-foot volumes for immature Black Hills ponderosa pine 1

Average stand d.b.h.	Ratio	Average stand d.b.h.	Ratio
Inches		Inches	
3.0	0.037	8.0	.823
3,5	. 085	8.5	.853
4.0	.148	9.0	.881
4.5	. 228	9.5	.906
5.0	. 335	10.0	. 925
5.5	. 467	10.5	. 942
6.0	. 578	11.0	. 956
6.5	. 671	11.5	. 967
7.0	.735	12.0	. 976
7.5	.788		

¹ Basis: Plot volumes computed from merchantable (Myers and Van Deusen, 1960a) and total (Myers, 1957) cubic-foot volume tables.

Accuracy of the ratios varies with average d.b.h. of the stand. In stands averaging 3.5 inches or less the ratios may indicate the presence of merchantable volume where none actually exists. This is because the largest tree in one stand may be 5.9 inches, while in a similar stand it is 6.1 inches. One stand has merchantable volume while the other does not, yet both stands can have the same average d.b.h. In the sample plots with trees averaging more than 3.5 inches, the difference between actual and computed merchantable volume was often 1 percent or less of actual volume.

Future merchantable volumes can be computed from equations similar to those presented for total volume. Present merchantable volume, number of trees, and total volume in trees that are expected to grow to 6.0 inches d.b.h. during the period are significant independent variables. Equations solved with these variables, however, gave less accurate estimates of future volumes than the ratios.

CORDWOOD VOLUMES

Present and future cordwood volumes can be computed from corresponding merchantable cubic-foot volumes. Conversion factors have been developed for use with the merchantable cubic-foot volume table used in this study (Woodfin and Landt, 1960). The factors convert cubic volume to standard peeled or unpeeled cords.

To illustrate, let us assume that a stand has an average volume of 2,572 merchantable cubic feet per acre. The conversion factor for unpeeled cords is 76.92. The stand therefore has 2,572 ÷ 76.92 or 33.4 standard cords of unpeeled pulpwood per acre. The factor for peeled wood is 98.39, so the stand has 26.1 peeled cords per acre.

PERIODIC MORTALITY

The number of trees that died in 10 or 20 years was related to the initial number of trees (table 2). The mortality reported represents averages for all plots measured. Some plots differed considerably from the averages.

Table 2. -- Decrease in number of trees per acre after 10 and 20 years

Original stand (trees per acre, number)	: After 10 years	: After 20 years
	Number	Number
200	196	193
300	287	283
400	385	380
600	583	576
800	780	765
1,000	975	950
1,500	1,455	1, 345
2,000	1,850	1,670
3,000	2, 480	2, 165
4,000	2, 950	2,520
5,000	3, 330	2,815
6,000	3,580	3, 065

Mortality was mostly limited to death by suppression of trees in the smallest size classes. The largest measured loss in merchantable volume in 20 years was 209 cubic feet per acre, less than 3 cords. On most of the plots on which the trees averaged 5.4 inches d.b.h. or larger, loss was less than 1 cord in 20 years. No merchantable cubic-foot volume was lost on plots where the trees averaged less than 5.4 inches d.b.h.

Determination of mortality is an important source of error in studies of this type. The slow rate of decay in the Black Hills aided mortality estimation. Numerous areas thinned at known dates were available as study plots or to provide guides for dating time of death of trees on the study plots. Cut living and dead stems had been piled or laid perpendicular to the contour so trees that died and fell over after thinning were readily located. Suitable reconstructions of past stand tables could therefore be made.

APPLICATION

This method can be used to estimate the future characteristics of a stand or to compare potential results from alternate methods of treatment. For example, a stand now has the measurements given in column 2 of table 3. The stand may be thinned or left unthinned. If left unthinned, the stand after 10 years will have the measurements given in column 4 of the table. Thinning to 80 square feet of basal area might convert the present stand to one having the values shown in column 3. After 10 years the thinned stand would have the characteristics shown in column 5. With this information a land manager is in a better position to decide whether or not to thin to produce the product desired.

Table 3. -- Present and future stands per acre with two alternative methods of treatment

Marana	: Present a	mounts	Amounts	in 10 years
Measure	Unthinned	Thinned	Unthinned	Thinned
Site index	55	55	55	55
D.b.h., inches	5.0	6.5	5.7	7.5
Basal area, square feet	170	80	187	104
Number of trees	1,250	347	1,220	335
Total cubic feet	2,000	1,000	2,464	1,528
Merchantable cubic feet	670	670	1,269	1, 204
Unpeeled cords	8.7	8.7	16.5	15.7

The characteristics of a stand after cutting can be determined by marking the stand for cutting and measuring the unmarked trees. Data from thinning studies (Myers, 1958) can be used to estimate changes due to thinning if information based on local practice is available. Better initial data will be obtained if thinnings are subtracted from present stand tables and diameters, basal areas, and volumes are computed from the adjusted tables.

The equations and other prediction aids are intended for use only with existing stands within the range of variables sampled. Black Hills stands have suffered periods of suppression during their development. It is not known how well the equations will apply to stands that have not suffered similar periods of suppression. Extension of the results beyond the ranges of the variables sampled could result in errors. The possible magnitude of the errors cannot be foretold.

LITERATURE CITED

- Meyer, Walter H.
 - 1938. Yield of even-aged stands of ponderosa pine. U. S. Dept. Agr. Tech. Bul. 630, 59 pp., illus.
- Mvers. Clifford A.
 - 1957. Cubic-foot volume table for immature ponderosa pine in the Black Hills. U. S. Forest Serv., Rocky Mountain Forest and Range Expt. Sta. Res. Note 25, 2 pp. [Processed.]
 - 1958. Thinning improves development of young stands of ponderosa pine in the Black Hills. Jour. Forestry 56: 656-659, illus.
 - and Van Deusen, James L.
 - 1958. Estimating past diameters of ponderosa pines in the Black Hills.
 U. S. Forest Serv., Rocky Mountain Forest and Range Expt.
 Sta. Res. Note 32, 2 pp. [Processed.]
- and Van Deusen, James L.
 1960a. Merchantable cubic-foot volume table for immature Black Hills
 ponderosa pine. U. S. Forest Serv., Rocky Mountain Forest
 and Range Expt. Sta. Res. Note 44, 2 pp. [Processed.]
 - and Van Deusen, James L.
 - 1960b. Site index of ponderosa pine in the Black Hills from soil and topography. Jour. Forestry 58: 548-555, illus.
- Woodfin, R. O., Jr., and Landt, E. F.
 - 1960. Conversion of cubic-foot volumes of Black Hills ponderosa pine to cords. U. S. Forest Serv., Rocky Mountain Forest and Range Expt. Sta. Res. Note 31 (Revised), 2 pp. [Processed.]

Tables for estimating average d.b.h., basal areas, and total cubic-foot volumes after 10 and 20 years.

Table 4. -- Average d.b.h. after 10 years, immature Black Hills ponderosa pine, 1 site index 55 feet²

D.b.h. at beginning	:		Basa	al area	at beginn	ning of p	eriod, s	quare fe	et per ac	re
of period (Inches)	:	30	:	50	80	110	140	: 170 :	200	230
					D.b.h.	after 10	years,	inches		
2.0		3.3		3.1	2.9	2.7	2.6	2.5	2.5	2.4
3.0		4.3		4.1	3.9	3.8	3.7	3.6	3.5	3.5
4.0		5.4		5.2	5.0	4.8	4.7	4.7	4.6	
5.0				6.2	6.0	5.9	5.8	5.7	5.6	
6.0		- ~		7.2	7.0	6.9	6.8	6.7		
7.0				8.2	8.0	7.9	7.8	7.7		
8.0				9.2	9.0	8.8	8.7	8.6		
9.0		`		10.1	9.9	9.8	9.7	9.6		
10.0				11.0	10.8	10.7	10.6	10.5		
11.0	_			11.9	11.7	11.6	11.5	11.4	·	

¹ From equation:

$$Y = 1.57 + 1.131 X_1 - 0.011 X_1^2 - 0.966 \log X_2 + 0.016 X_3$$

Where: Y = Average d.b.h. in 10 years

X₁ = Present average d.b.h.

X₂ = Present basal area per acre

 X_3 = Site index

R = 0.9952

Sy = 0.1941 inch

² Add 0.1 inch for each 5 feet above 55, subtract 0.1 inch for each 5 feet below.

Table 5. --Basal area per acre after 10 years, immature Black Hills ponderosa pine, ¹ site index 55 feet²

Number	:	•	Basal	ar	ea at	beg	inni	ng o	ре	riod,	sq	uare	fee	t per	acı	re
trees at	:		:		:		:		:		:		:		:	
beginning	:	30	:	50	:	80	:	110	:	140	:	170	:	200	:	230
of period	:		:		:		:		:		:		:		:	
				-	Basa	lare	a a	fter	10 у	ears,	s	quare	fe	e t		
200		54		70		94		118								
400		65		82]	06		130		155		179				
600		69		85]	10		134		158		183				
800		71		87]	12		136		160		185				
1,000		72		89]	13		137		162		186				
1,500		74		90	1	14		139		163		187				
2,000				91]	15		140		164		188		213		
3,000]	16		140		165		189		213		
4,000								~ ~		165		189		214		
5,000										165		190		214		238
6,000								-		166		190		214		238

¹ From equation:

$$Y = 26.51 + 0.811 X_1 + 0.477 X_2 - 4709.26/X_3$$

Where: Y = Basal area in 10 years

 X_1 = Present basal area

 X_2 = Site index

 X_3 = Number of trees per acre

R = 0.9833

Sy = 8.07 square feet

² Add 2.4 square feet for each 5 feet above 55, subtract 2.4 square feet for each 5 feet below.

Table 6. -- Total cubic feet per acre after 10 years, immature Black Hills ponderosa pine

230	acre	\$ 5000	1 1	ı	ŀ	ŧ	;	ì	1	ł	ŀ	!	1	ł	1	1	1	1711	1362	1647	2122	2602	3086
Basal area 230	Trees per	3000	Cubic feet	1	1	1	l	ł	1	1	1	1	1	1	578	779	973	1164	1353	1637	2110	2586	3067
	Tre	1000	। ।	ł	1	ł	!	ł	1	ŧ	1	i	:	1	1	1	1	;	1	ŀ	1	1	1
		5000	1	1	ł	ł	ŀ	1211	1408	1703	2195	2690	3191	ł	1	ı	1	1316	1530	1861	2386	2924	3469
		3000		ł	865	805	9001	1203	1399	1692	2181	2674	3172	1	650	875	1093	1308	1551	1840	2372	2907	3448
ea 180	r acre	1000	feet -	365	580	781	926	1168	1358	1643	211.7	2595	3078	397	631	849	1901	1270	7741	1786	2302	2821	3347
Basal area 180	Trees per	100	Cubic feet	358	695	992	958	971	1332	1611	ł	ł	:	390	619	833	τήστ	1246	1449	1752	2258	2768	3283
m	4	7,00	1	ı	;	}	!	i	ł	ł	ı	:	ł	371	280	794	992	1187	1381	1670	2152	ŀ	ł
		200	1	1	1	+	;	1	1	1	ŧ	1	1	ŀ	528	710	887	1901	ł	1	ŀ	1	;
		5000 \$	1	1	;	ł	1	1361	1583	4161	2467	302h	3587	1	ł	ł	ł	1479	1720	2081	2682	3287	3899
		3000	1	ŀ	672	906	1130	1353	1573	1902	2452	3006	3565	ł	731	186	1229	1470	1710	2068	5666	3268	3876
ea 130	r acre	1000	feet -	נוק	653	878	1097	1313	1527	1846	2380	2917	37760	744	402	956	1193	1427	1660	2007	2587	31,71	3762
Basal area 130	Trees per	700	Cubic feet	403	01/9	862	1076	1288	1498	181	2335	2862	3395	438	969	937	1170	1700	1628	1969	2538	3111	3690
m	÷	1,00		384	019	821	1026	1228	1428	1726	2225	2728	3236	747	699	893	3115	133h	1552	1877	2419	2965	3517
		200	1,1	ı	545	734	917	1097	1276	1544	ŀ	i	ì	ŧ	593	798	266	1193	1387	1678	2163	2651	3145
- "	50 CT	5000	:	- }	ł	1	ł	1530	1779	2151	2773	3399	4032	ł	ł	l	ł	1663	1934	2339	3014	3695	4383
		3000		ł	773	1017	1271	1551	1768	2138	2756	3379	4008	ļ	822	9011	1381	1653	1922	2325	5662	3673	4357
агеа 80	r acre	1000	feet -	7162	733	987	1233	11/16	1716	2076	5675	3279	3890	505	797	1073	1341	1604	1866	2256	2908	3565	4229
Basal ar	Trees per acre	700	Cubic feet	453	720	896	1210	1448	1684	2036	2624	3217	3816	1,92	782	1053	1315	1574	1830	2214	2853	3497	8414
"	-	1,00	1 1	432	989	923	1153	1380	1605	1941	2501	3066	3637	69η	746	1001	1254	1500	1744	2110	2719	3333	3954
		200	1	1	613	825	1031	1234	1435	1735	2236	2741	3252	ł	299	897	1121	1341	1560	1886	2431	2980	3535
"	"	5000	-	1	ļ	ŀ	1	1719	2000	8145	3117	3821	4532	ŀ	ŧ	1	ł	1869	2174	5629	3388	4214	4927
		3000		ł	849	1143	1428	1709	1988	2404	3098	3798	4505	1	923	1243	1553	1858	2161	2613	3368	4129	4897
ea 30	er acre	700 1 1000 1	feet -	519	824	0111	1386	1659	1929	2333	3007	3686	4372	795	896	1206	1507	1803	2097	2536	3269	4007	4753
Basal area	Trees per	700	- Cubic feet	509	809	1089	1360	1627	1892	2289	2950	3616	4289	553	879	1183	11/129	1769	2057	2488	3207	3931	1663
		004		485	177	1038	1296	1551	1804	2181	2812	3447	1,088	528	838	1128	1409	1686	1961	2372	3057	3747	4444
		200	-	;	689	928	1159	1387	1613	1950	2514	3081	3655	ł	47	1008	1260	1508	1753	2120	2733	.3350	3973
Present	total	feet		200	700	900	800	1000	1200	1500	2000	2500	3000	200	700	009	800	1000	1200	1500	2000	2500	3000
	Site :	** **	Feet	70								- 3	10 -	50									

619		834	Lilot	1246 1253	1449 1458	1752 1763	2259 2272	2769 2785	3284 3304	1	959	883	6011	1320 1328	1535 1544	1856 1868	2393 240 7	2933 2951	3479 3500	:	!	
2	109	809	101	1209 13	1,06	1701	2192 23	2687 27	3187 33	, LOJ	637 6	857 8	1. 1701	1281 13	1690 19	1802 18	2322 23	2847 29	3377 31			
	1	-)(1409 12	1639 1	1982	2554 23	3131 26	37.14 31	-		1	10	1493 12	1736 1	2099 18	2706 23	3317 26	3934 3.	· 		
	- 969	- 256	. 1711	11 10/1	91 6291	1970 19	2539 29	3112 31	3692 37		737	- 666	12ho -	11 1/8/11	1725 17	2087 20	2690 21	3297 33	3911 39	:		
. C2h	9 929	6 606	1136 11	1359 11	1581 16	1912 19	21,64, 25	3021 31	3583 36	- 0517	7 917	963 9	1204 12	JL 01/11	1675 17	2025 20	2610 26	3200 32	3796 35			
1	9 699	892 9	ננ יוננו	1334 13	1551 15	1876 19	24.1 7 24	2963 30	3515 35	गगड ग	702 7	945 9	181	לנ בנוו	1643 16	1987 20	2561 26	3139 32	3724 37	1		
320	632 6	850 8	1062	1271	1478 15	1788 18	2304 24	2824 29	3350 35	421 4	669	901 9	1125 11	1346 14	1566 16	1894 19	25 1,412	2992 31	3549 37	- 1891	- 2847	
` !	9 595	8 092	950 10	1136 12	J322 14	1598 17	2060 23	28	33	7		805 9	11 9001	1204 13	1,000 15	1693 18	2182 24	2675 29	3173 35	97 2817	5228 56	
:	1		6	1584 11	1842 13	222 7 15	2871 20	- 6158	- 7217			8	10	1678 12	1951	2360 16	304,1 23	3728 26	1,422 33	7	1 22	
!	782	1053	. 9161	1574 19	1831	2214 23	2854 26	34,98 39	rn 05th	1	829	. 9111	1394	1 8991	1940	2346 2	3023 30	3706 3	4 9664		1	
. 0/17	. 652	1022 10	1277	1528 19	31 7771	27 6712	2770 28	3395 31	1027 LT	206	804	1083	1353 1.)[6191	1882 19	2277 2.	2934 30	3597 3	4267 L	1	1	
7 697	74.5	1003 10	1253 13	1,99 19	1743	2108 21	2717	3331 33	3951 40	5 L64	789	1062 10	1327 13	1588 16	1847 18	2233 23	2879 29	3529 39	77 98 TT			
147	012	956 10	1194 13	lt 65#1	1662 1	2009 2:	2590 2	31.75 3.	3766 39	727	. 252	1013 10	1265 1	1514 1	1760 1	2129 23	2744 21	3363 3	3989 1	5264	6572	
-	, 569	8514	1068 1	1277	1485	1796 20	2315 2	2838 3:	3367 3	1	673	905 10	1131	1353	1574 1	1903 2	2453 2	3007 3	3567 3	1,707	5876 6	
1		1	j.	1780	2070	2504 1	3227 2.	3956 2	4692 3		1	1	1	1886	2193	2653 1	3419 2	3 روتا	1,971	17	; ,	
	. 088	1184	. 6271	1 021	2058 2	2489 2	3208 3	3932 3	1799T		932	1254	1567	1875	2180 2	2637 2	3398 3	1 991	4 1464	1	1	
537	854	1 6711	1436 1	1718 1	2 2661	2 91712	3114 3	3817 3	4527 4	695	706	1217	1521	1820 1	2 9112	2559 2	3298 3	μομ3 μ	4796 u	ł	:	
527	837	1 2211	1,408	1685 1	1960	2370 2	3054 3	3744 3	יו בקקיק	558	887	ι η6ιι	1492 1	1785	2076 2	2510 2	3236 3	3967 ₺	1,705	6509	1222	
502	198	1074	1342 1	1606	1868 1	2259 3	2911	3569	4233 L	532	9718	1138 1	1422	1701	2 6261	2393 2	3084	3781	144844	5918 (7388	
1	717	196	1200	1436	1670	2019	2603	3191	3784	1	156	1018	. 1721	1551	1769	2139	2757	3380	1 6007	5291	, 5097	
:	1	1	1	2001	2327	2814	3628	7777	5275	1	ł	ı	1	2120	2465	2982	3843	1174	5588	1	1	
1	686	1331	1662	1989	2313	2798	3606	Lb20	5243	1	1047	οτήτ	1921	2107	2451	2964	3820	1683	5554	;	ŀ	
709	096	1292	ήτ9τ	1931	2245	2715	3500	η530	5089	640	1017	1368	1709	2045	2379	2877	3708	4545	5391	1	ł	
593	14/6	1267	1583	1894	2203	1992	3433	4209	1992	628	766	1342	1677	2006	2333	2822	3637	6544	5289	6269	8713	
265	897	1208	1509	1805	5099	2539	3272	τιοη	4758	598	950	1279	1598	1912	2224	2690	3467	4250	5041	6652	8305	
i	802	1080	1349	1614	1877	2270	9262	3586	4254	1	850	1144	1429	1710	1988	2405	3099	3799	1,507	2947	7425	
200	007	009	800	1000	1200	1500	2000	2500	3000	200	700	009	800	1000	1200	1500	2000	2500	3000	7000	5000	
														,	,							

1 From equation:

Log Y = 1.444 + 0.136 (log X_1)² + 0.374 log X_2 - $\frac{19,456}{X_3}$ - 0.001 X_4 . Where: Y = Cubic feet in 10 years

 $X_1 = Present cubic feet$

 X_2 = Site index

 $X_3 = Number of trees$

X4 = Basal area

R = 0, 9924 Sy = 8 percent at mean cubic feet

70

9

Table 7. -- Average d.b.h. after 20 years, immature Black Hills ponderosa pine, 1 site index 55 feet²

D.b.h. at beginning	:_		Bas	sal ar	ea	at beg	ginn	ing of	pe	riod,	sq	uare	feet	per a	cre	2
of period (Inches)	:	30	:	50	:	80	:	110	:	140	:	170	:	200	:	230
					•	D.b.1	1. a	fter 2	0 у	ears,	in	ches	-		-	
2.0		4.1		3.8		3.5		3.3		3.1		3.0		2. 9		2.8
3.0		5.3		5.0		4.7		4.4		4.3		4.2		4.0		3.9
4.0		6.4		6.1		5.8		5.5		5.4		5.3		5.1		
5.0				7.2		6.9		6.6		6.5		6.4		6.2		
6.0		**		8.2		7.9		7.7		7.5		7.4				
7.0				9.2		8.9		8.7		8.5		8.4				
8.0				10.1		9.8		9.6		9.4		9.3				
9.0				11.0		10.7		10.5		10.3		10.2				
10.0				11.9		11.6		11.4		11.2		11.1		- ~		
11.0				12.8		12.4		12.2		12.0		11.9				

¹ From equation:

$$Y = 2.431 + 1.268 X_1 - 0.021 X_1^2 - 1.540 \log X_2 + 0.028 X_3$$

Where: Y = Average d.b.h. in 20 years

X₁ = Present average d.b.h.

X₂ = Present basal area per acre

 $X_3 = Site index$

R = 0.9855

Sy = 0.3482 inch

 $^{^2}$ Add 0.3 inch for each 10 feet above 55, subtract 0.3 inch for each 10 feet below.

Table 8. --Basal area per acre after 20 years, immature Black Hills ponderosa pine, ¹ site index 55 feet²

e feet	170	et -	175	193	199	201	203	902		169	187	192	195	197	199			,/X4							
d, squar	140	square feet	152	169	175	178	180	;		146	163	169	172	174	;			- 48.592 log X ₃ - 6971.52/X ₄							
of perio	110		1 28	146	151	154	;	:		122	139	145	148	}	;			og X ₃ -							
ginning	80	fter 20 y	105	122	128	131	;	:		86	116	122	1	1	;			48.5921					cre		
Basal area at beginning of period, square feet	50	Basal area after 20 years,	8 1	86	;	;	;	;		75	6	;	:	:	;				0 years	area			es per a		eet
Basal a	30 :	- Basa	;	;	1	1	;	;		;	1	;	1	;	;			= $132.14 + 0.786 X_1 + 0.715 X_2$	= Basal area in 20 years	= Present basal area	ndex		X4 = Number of trees per acre		= 10.73 square feet
. jo .	ng pc																	+ 0.786	= Basal		= Site index	= Age	= Numb	× 0.9690	= 10.73
Number of	beginning of period		200	400	009	800	1,000	1,500		200	400	009	800	1,000	1,500		From equation:	: 132, 14	Where: Y	\mathbf{x}_{1}	X_2	X ₃	X ₄	R	Sy
	age rs)																From e	¥	Wh						
i	(Years)		06							120															
feet	170													Γ											
re		eet -	;	;	1	;	1	1	;	;	;	;	;		1		;	210	212	214	215	216	217	217	218
d, square	140 : 1		;	;	;	:	:	;	1	;	:	!	1		:	178	184	186 210	188 212	190 214	192 215	193 216	193 217	194 217	194 218
of period, square		, square feet																							
eginning of period, square	140	20 years, square feet	1	;	;	1	;	:	;	1	1	;	;		1	178	184	186	188	190	192	193	193	194	194
rea at beginning of period, square feet	110 : 140 :	area after 20 years, square feet	1	:	:	:	:	182	183	184	184	185	185		:	154 178	160 184	163 186	165 188	167 190	168 192	193	193	194	194
Basal area at beginning of period, square	0 : 80 : 110 : 140 :	after 20 years, square feet	:	:	:	154	156	158 182	159 183	160 184	161 184	161 185	161 185		113	131 154 178	136 160 184	139 163 186	141 165 188	143 167 190	144 168 192	193	193	194	194
of Basal area	30 50 80 110 140	area after 20 years, square feet		106 122	112 127	115 130 154	116 132 156	119 134 158 182	136 159 183	137 160 184	137 161 184	138 161 185	138 161 185		90 113	107 131 154 178	113 136 160 184	116 139 163 186	102 117 141 165 188	104 120 143 167 190	121 144 168 192	193	193	194	194
of Basal area	50 80 110 140	area after 20 years, square feet	1	122	127	130 154	132 156	134 158 182	136 159 183	137 160 184	137 161 184	138 161 185	138 161 185		90 113	107 131 154 178	113 136 160 184	116 139 163 186	117 141 165 188	120 143 167 190	121 144 168 192	193	193	194	194
Number of Basal area	30 50 80 110 140	area after 20 years, square feet		106 122	112 127	115 130 154	116 132 156	119 134 158 182	136 159 183	137 160 184	137 161 184	138 161 185	138 161 185		74 90 113	91 107 131 154 178	97 113 136 160 184	100 116 139 163 186	102 117 141 165 188	104 120 143 167 190	121 144 168 192	193	193	194	194

 2 Add 7 square feet for each 10 feet above 55, subtract 7 square feet for each 10 feet below.

Table 9. --Total cubic feet per acre after 20 years, immature Black Hills ponderosa pine¹

Site index	Present		Preser	Present number of trees	of trees	per acre		Site index	Present		Presen	t number	Present number of trees per	per acre	
(Feet)	per acre	200	. 400	. 700	1,000	3,000	5,000	(Feet)	per acre	200	400	002	1,000	3,000	5,000
			1	Cubic feet	t per acre	9				I I	1	Cubic fee	Cubic feet per acre		
40	200	1	883	914	927	;	-	09	200	;	1,144	1, 185	1,202	!	;
	400	1,080	1, 172	1,214	1,231	1,258	1		400	1,400	1,519	1,573	1,595	1,630	-
	009	1, 295	1,405	1,455	1,476	1,509	1		009	1,679	1,822	1,887	1,913	1,955	1
	800	1,484	1,610	1,668	1,691	1,729	1		800	1,923	2,087	2, 162	2, 192	2, 241	1
	1,000	1,656	1,797	1,861	1,888	1,929	1,938		1,000	2, 147	2,330	2, 413	2, 447	2,501	2,512
	1,200	1,816	1,971	2,041	2,070	2, 116	2, 125		1,200	2,354	2,555	2,646	2,684	2,743	2,755
	1,500	2,040	2, 214	2, 293	2, 325	2,377	2,387		1,500	2,645	2,870	2,972	3,014	3,081	3,094
	2,000	2,383	2,586	2,678	2,716	2,776	2,788		2,000	3,089	3, 352	3,472	3,521	3, 598	3,614
	2,500	}	2,929	3,033	3,076	3, 144	3, 158		2,500	3,498	3,797	3, 932	3,988	4,076	4,093
									3,000	3,884	4, 215	4,365	4,427	4,524	4,544
50	200	;	1,018	1,055	1,070	;	1								
	400	1,245	1,352	1,400	1,420	1,451	1	7.0	200	}	1,263	1,308	1,327	i i	;
	009	1,494	1,621	1,679	1,703	1,740	1		400	1,545	1,676	1,736	1,761	1,800	;
	800	1,712	1,858	1,924	1,951	1,994	1		009	1,853	2,010	2,082	2, 112	2, 158	1
	1,000	1,910	2,073	2, 147	2, 177	2, 225	2, 235		800	2, 123	2,304	2,386	2,420	2,473	;
	1,200	2,095	2,274	2,355	2, 388	2, 441	2, 451		1,000	2,369	2,571	2,663	2,700	2,760	2,772
	1,500	2,353	2,554	2,645	2,682	2,742	2,754		1,200	2,598	2,820	2,920	2,962	3,027	3,040
	2,000	2,749	2,983	3,089	3, 133	3, 202	3, 216		1,500	2,919	3, 168	3, 281	3, 327	3,400	3,415
	2,500	3, 113	3,379	3,499	3,549	3,627	3,643		2,000	3,409	3,700	3,832	3,886	3, 971	3,989
	3,000	3,456	3,750	3,884	3, 939	4,026	4,044		2,500	3,861	4, 190	4,340	4,401	4,498	4,518
									3,000	4,286	4,652	4,818	4,886	4,993	5,015
1 From	From equation:				,				4,000	5,079	5,512	;	1	1	1
i ş	Log Y = 1,515 + 0.083 (log X ₁) ² + 0.640 log X ₂ Where: V - Total only 6000	0, 083 (log	$(x_1)^2 + 0$), 640 log X ₂	X ₂ - 14. 212 X ₃	717			2,000	5,817	6, 313	1	* 1	1	;
	HELE. I - LOUR	TI CHINT TE	er her ar	cre in zo	Vears										

Sy = 13 percent at mean cubic feet

 X_2 = Site index X_3 = Number of trees

R = 0.9669

