Série 1

David Wiedemann, Nino Courtecuisse, Matteo Mohammedi

15 mars 2022

1

On montre la double implication.

 \leftarrow

Pour montrer que p est une application quotient, il suffit de montrer que $F \subset B$ est fermé si et seulement si $p^{-1}(F)$ est fermé .

Puisque p est continue (c'est la composition de q avec l'inclusion $A \hookrightarrow X$), si F est fermé alors $p^{-1}(F)$ est fermé.

De plus, si $p^{-1}(F)$ est fermé, alors c'est un ensemble fermé saturé et par hypothèse il existe un fermé saturé $E \subset X$ tel que $E \cap A = p^{-1}(F)$ d'ou $q(E) \cap B = F$. Dès que E est un fermé saturé, q(E) est un fermé et ainsi F est fermé .

 \Longrightarrow

Supposons maintenant que p est un quotient, soit $F \subset A$ un fermé p-saturé. Lorsque qu'on restreint $p = q_{|A} : A \to B$ on a les topologies de sous-espace sur A et B. Donc si on suppose que p est un quotient, alors la topologie quotient de p sur B coincide avec la topologie de sous-espace $B \subset Y$.

Ainsi si $F \subset A$ est un fermé p-saturé, on a $F = p^{-1}(p(F))$ qui est fermé et donc par définition de la topologie quotient $p(F) \subset B$ est fermé. Comme la topologie de sous-espace $B \subset Y$ coincide, il existe un fermé $E \subset Y$ tel que $p(F) = B \cap E$.

Ainsi $F = p^{-1}(B \cap E) = A \cap q^{-1}(E)$ et $q^{-1}(E) \subset X$ est fermé car q est continue et q-saturé car q est surjective.

 $\mathbf{2}$

Comme indiqué sur piazza, on supposera que l'application p est un quotient, sinon l'énoncé est faux en prenant le contre exemple $X = \mathbb{R}, A = [0, 1)$ et $x \sim y \iff x - y \in \mathbb{Z}$.

Soit $A \subset X$ comme dans l'énoncé.

Soit \sim la relation d'équivalence sur X, on notera \sim' la relation d'équivalence induite sur A.

On notera $\iota: A \hookrightarrow X$ l'inclusion et $q_A: A \to A/_{\sim}$, $q_X: X \to X/_{\sim}$ les applications canoniques.

On montre le resultat en deux temps, on montrera que

- $q_X \circ \iota$ passe au quotient de q_A et induit une application $g: A/_{\sim} \to X/_{\sim}$
- L'application q_A passe au quotient de $q_X \circ \iota$ et on conclura.

$q_X \circ \iota$ passe au quotient de q_A

En effet, si $a \sim' b \in A$, on a que $q_X \circ \iota(a) = q_X(a) = q_X(b)$ car \sim' est la restriction de \sim , ainsi on a une application induite

$$\begin{array}{c}
A \xrightarrow{q_X \circ \iota} X/\sim \\
\downarrow q_A \downarrow & \exists !f \\
A/\sim & \downarrow \uparrow
\end{array}$$

q_A passe au quotient de $q_X \circ \iota$

Remarquons que $q_X \circ \iota = p$ et est donc par hypothese une application quotient.

On a bien que si p(a) = p(b), alors $a \sim b \iff a \sim' b \iff q_A(a) = q_A(b)$ et on a une deuxieme application induite

$$\begin{array}{ccc}
A & \xrightarrow{q_A} & A / \sim \\
\downarrow q_X \circ \iota & & & \\
X / \sim & & & \\
\end{array}$$

Finalement, en composant les diagrammes, on obtient

$$\begin{array}{ccc}
A & \xrightarrow{q_A} & A / \sim \\
\downarrow & \downarrow & \downarrow & \downarrow \\
Q_A \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim & \downarrow & \downarrow & \downarrow \\
A / \sim &$$

Dès que $Id_{A_{\nearrow \sim'}}$ et $Id_{A_{\nearrow \sim'}}$ font aussi respectivement commuter les diagrammes, on a par l'unicité de la propriété universelle, que $g\circ f=Id_{A_{\nearrow \sim'}}$ et $f\circ g=\mathrm{Id}_{X_{\nearrow \sim}}$.

3

Soit $q: \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ le quotient considéré où ici \mathbb{Z} agit par translation sur \mathbb{R} , ie $\mathbb{R}/\mathbb{Z} = \mathbb{R}/\sim$ avec \sim la relation définie par $x \sim y \iff x-y \in \mathbb{Z}$ pour $x,y \in \mathbb{R}$.

On note \sim' la relation restreinte a I et $p=q_{|I}:I\to\mathbb{R}/\sim$ la restriction de q. On a clairement que \sim' identifie les points 0 et 1 et donc \sim' est la même relation d'équivalence que décrite dans l'énoncé.

On vérifie donc les deux hypotheses de la partie 2 de l'exercice :

- D'abord $q_{|_I}$ est bien surjectif. En effet, soit $x\in\mathbb{R},$ alors $x-\lfloor x\rfloor\in I$ et $x-|x|\sim x$.
- Montrons que p est une application quotient en appliquant le critère de la partie 1.

Soit $F \subset I$ un fermé p-saturé, on prétend que la q-saturation de F dans $\mathbb R$ reste un fermé. On aura alors $F = q^{-1}(q(F)) \cap I$ avec $q^{-1}(q(F)) \subset \mathbb R$ un fermé q-saturé, ce qui impliquera par la partie 1. que p est un quotient.

On distingue deux cas:

Si $0 \in F$

Alors $1 \in F$ car F est p-saturé et $1 \sim' 0$.

Soit $x \in q^{-1}(q(F))^c$. Alors par surjectivité de p, il existe $a \in I$ tel que $a \sim x$. Alors en particulier, $a \notin F$ et, dès que $F \subset I$ est fermé, il existe un ouvert $U \subset I$ tel que $a \in U \subset F^c$.

Dès que $0, 1 \notin F^c$ on a $U \subset (0,1)$ et donc U est aussi ouvert dans \mathbb{R} . Comme q est un quotient par action de groupe, q est ouverte et donc q(U) est ouvert et $q^{-1}(q(U)) \subset \mathbb{R}$ aussi par continuité. Or $a \sim x$ implique $x \in q^{-1}(q(U))$ et par construction $q^{-1}(q(U)) \subset q^{-1}(q(F))^c$. Donc $q^{-1}(q(F))^c$ est ouvert et $q^{-1}(q(F)) \subset \mathbb{R}$ est fermé.

Si $0 \notin F$

Soit $b \in q^{-1}(q(F))^c$, si $b \notin \mathbb{Z}$, on considère le même ouvert U que ci-dessus et on le choisit disjoint de 0 et de 1 (ce qui est toujours possible puisque $F \cup \{0,1\}$ reste un fermé).

Si $b \in \mathbb{Z}$, alors on choisit deux ouverts U et V de I disjoints de F tel que $0 \in U$ et $1 \in V$.

Il est alors clair que la saturation de $U \cup V$ dans $\mathbb R$ reste un ouvert qui sera disjoint de F.

Ainsi par la partie 1, on deduit que p est un quotient et ainsi on peut appliquer le critère établi en 2 pour conclure que $\mathbb{R}/\sim = I/\sim = I/\{0,1\} = S^1$.