FEUILLE D'EXERCICE 1

Exercice 1 - $\Sigma = \{Nil : liste, Cel : \mathbb{N} \times liste \rightarrow liste\}$

1.

$$longueur(l) = \begin{cases} longueur(Nil) = 0 \\ longueur(Cel(x, l)) = 1 + longueur(l) \end{cases}$$

2.

$$concat(l1, l2) = \begin{cases} concat(Nil, l2) = l2\\ concat(Cel(x, l), l2) = Cel(x, concat(l, l2)) \end{cases}$$

3.

$$\forall l_1, l_2 \in lists, \quad longueur(concat(l_1, l_2)) = longueur(l_1) + longueur(l_2)$$

On résone par récurrence sur $l_1\,$

• Cas de base $l_1 = Nil$

$$longueur(l_1, l_2) = longueur(l_2)$$

$$= longueur(Nil) + longueur(l_2)$$

$$= longueur(l_1) + longueur(l_2)$$

• Cas récursif $l_1 = Cel(x, l'_1)$

Hypothèse de récurence : $longueur(concat(l'_1, l_2)) = longueur(l'_1) + longueur(l_2)$

$$\begin{split} longueur(concat(Cel(x, l_1'), l_2)) &= longueur(Cel(x, concat(l_1', l_2))) \\ &= 1 + longueur(concat(l_1', l_2)) \\ &= 1 + longueur(l_1') + longueur(l_2) \\ &= longueur(Cel(x, l_1')) + longueur(l_2) \\ &= longueur(l_1) + longueur(l_2) \end{split}$$

4.

$$\forall l_1, l_2, l_3 \in lists, \quad concat(l_1, concat(l_2, l_3)) = concat(concat(l_1, l_2), l_3)$$

On résonne par récurence sur l_1

• Cas de base $l_1 = Nil$

$$concat(l_1, concat(l_2, l_3)) = concat(l_2, l_3)$$
$$= concat(concat(Nil, l_2), l_3)$$

• Cas récursif $l_1 = Cel(x, l'_1)$

Hypothèse de récurence : $concat(l_1, concat(l_2, l_3)) = concat(concat(l_1, l_2), l_3)$

$$concat(l_1, concat(l_2, l_3)) = concat(Cel(x, l'_1), concat(l_2, l_3))$$

$$= Cel(x, concat(l'_1, concat(l_2, l_3)))$$

$$= Cel(x, concat(concat(l'_1, l_2), l_3))$$

$$= concat(Cel(x, concat(l'_1, l_2), l_3))$$

$$= concat(concat(Cel(x, l'_1), l_2), l_3)$$

$$= concat(concat(l_1, l_2), l_3)$$

Exercice 2 -

 $rev: list \rightarrow list$

$$rev(l) = \begin{cases} rev(Nil) &= Nil \\ rev(Cel(x,l)) &= concat(rev(l), Cel(x, Nil)) \end{cases}$$

1.

$$\forall l \in lists, \quad longueur(rev(l)) = longueur(l)$$

Par récurence sur l

• Cas de base l = Nil

$$longueur(rev(Nil)) = longueur(Nil)$$

• Cas récursif l = Cel(x, l')

Hypothèse de récurence : longueur(rev(l')) = longueur(l')

$$\begin{split} longueur(rev(l)) &= longueur(rev(Cel(x,l'))) \\ &= longueur(concat(rev(l'),Cel(x,Nil))) \\ &= longueur(rev(l')) + longueur(Cel(x,Nil)) \\ &= longueur(rev(l')) + 1 \\ &= longueur(l') + 1 \\ &= longueur(l) \end{split} \qquad \text{par HP}$$

2.

$$\forall l_1, l_2 \in lists, \quad rev(concat(l_1, l_2)) = concat(rev(l_2), rev(l_1))$$

Par récurence sur \mathcal{l}_1

• Cas de base $l_1 = Nil$

$$rev(concat(l_1, l_2)) = rev(l_2) = concat(rev(l_2), Nil)$$
$$= concat(rev(l_2), rev(l_1))$$

• Cas récursif $l_1 = Cel(x, l'_1)$

Hypothèse de récurence : $rev(concat(l'_1, l_2)) = concat(rev(l_2), rev(l'_1))$

$$rev(concat(l_1, l_2)) = rev(concat(Cel(x, l'_1), l_2))$$

$$= rev(Cel(x, concat(l'_1, l_2)))$$

$$= concat(rev(concat(l'_1, l_2)), Cel(x, Nil))$$

$$= concat(concat(rev(l_2), rev(l'_1), Cel(x, Nil)))$$

$$= concat(rev(l_2), concat(rev(l'_1)), Cel(x, Nil))$$

$$= concat(rev(l_2), rev(Cel(x, l'_1)))$$

$$= concat(rev(l_2), rev(l_1))$$

$$\forall l \in lists, \quad rev(rev(l)) = l$$

Par récurence sur l

• Cas de base l = Nil

$$rev(rev(l)) = Nil = l$$

• Cas récursif l = Cel(x, l')

Hypothèse de récurence : rev(rev(l')) = l'

$$\begin{split} rev(rev(l)) &= rev(rev(Cel(x,l'))) \\ &= rev(concat(rev(l'),Cel(x,Nil))) \\ &= concat(rev(Cel(x,Nil)),rev(rev(l'))) \\ &= concat(rev(Cel(x,Nil)),l') \\ &= concat(Cel(x,Nil),l') \\ &= l \end{split}$$

Exercice 3 – rev $rt: list \rightarrow list$

1.

$$\begin{split} rev_acc(l,acc) = \begin{cases} rev_acc(Nil,acc) &= acc \\ rev_acc(Cel(x,l),acc) &= rev_acc(l,Cel(x,acc)) \end{cases} \\ rev_rt(l) = rev_acc(l,Nil) \end{split}$$

2.

$$\forall l \in lists, rev_rt(l) = rev(l)$$

Pour cela nous allons montrer par récurence :

$$rev \ acc(l, acc) = concat(acc, rev(l))$$

• Cas de base l = Nil

$$rev_acc(l, acc) = acc = concat(Nil, acc)$$

= $concat(rev(l), acc)$

• Cas récursif l = Cel(x, l')

Hypothèse de récurence : $rev_acc(l', acc) = concat(rev(l'), acc)$

$$\begin{split} rev_acc(l,acc) &= rev_acc(Cel(x,l'),acc) \\ &= rev_acc(l',Cel(x,acc)) \\ &= concat(rev(l'),Cel(x,acc)) \\ &= concat(rev(l'),concat(Cel(x,Nil),acc)) \\ &= concat(concat(rev(l'),Cel(x,Nil),acc)) \\ &= concat(concat(rev(Cel(x,l')),acc)) \\ &= concat(rev(l),acc) \end{split}$$

Exercice 4 – varaible locales définies par la signature $\{n, x, Add, Mul, Let\}$

- 1. Montrons que, si $x \notin fv(e)$, alors pour tout v on a e[x := v] = eOn va donc procédé par récurence sur e
 - Cas de base $-e = n \Rightarrow e[x := v] = e$ $-e = (y \neq x) \Rightarrow e[x := v] = e$ -e = x impossible
 - Cas récursif Supossons $x \notin fv(e_1) \land x \notin fv(e_2) \Rightarrow (e_1[x:=v]=e_1) \land (e_2[x:=v]=e_2)$

On sait que $x \notin fv(e)$

— $e = Add(e_1, e_2)$ Par definition de Add: $fv(e) = fv(e_1) \cup fv(e_2)$ donc $x \notin fv(e) \Rightarrow x \notin fv(e_1) \land x \notin fv(e_2)$

On a donc :

$$e[x := v] = Add(e_1, e_2)[x := v]$$

= $Add(e_1[x := v], e_2[x := v])$
= $Add(e_1, e_2)$ Par HP

 $-e = Mul(e_1, e_2)$ Même méthode que pour Add

$$e[x := v] = Mul(e_1, e_2)[x := v]$$

= $Mul(e_1[x := v], e_2[x := v])$
= $Mul(e_1, e_2)$ Par HP

 $- e = (\text{let } y = e_1 \text{ in } e_2), y \neq x$

$$fv(e) = fv(e_1) \cup (fv(e_2) \setminus \{x\})$$

Si y = x: On peut dir :

$$x \notin fv(e) \Rightarrow x \notin fv(e_1) \text{ car } y = x \ (\nabla)$$

Par definition

(let
$$y = e_1$$
 in e_2)[$x := v$] = (let $y = e_1[x := v]$ in e_2)
= (let $y = e_1$ in e_2) Par HP et ∇

Si $y \neq x$: On peut dir :

$$x \notin fv(e) \Rightarrow x \notin fv(e_1) \land x \notin fv(e_2) \text{ car } y \neq x \ (\triangle)$$

Par definition

(let
$$y = e_1$$
 in e_2)[$x := v$] = (let $y = e_1[x := v]$ in $e_2[x := v]$)
= (let $y = e_1$ in e_2) Par HP et \triangle

2. $Let(x, e_1, e_2) \Leftrightarrow Let(y, e_1, e_2[x := y])$

On va modifier cette propriété pour qu'elle soit vrai

(a) On prend $Let(x, Add(1, 2), Add(x, y)) \rightarrow 3 + y$

Si on subsitue x par y on aurra $Let(y, Add(1, 2), Add(y, y)) \rightarrow 6$

- (b) Pour que les expressions soit équivalentes il faut que $x \notin fv(e_2)$
- (c) Montrons:

$$x \notin fv(e_2) \Rightarrow Let(x, e_1, e_2) \Leftrightarrow Let(y, e_1, e_2[x := y])$$

Autrement dit en notant $v_1 = eval(e_1, \rho)$:

$$x \notin fv(e_2) \Rightarrow eval(e_2, \rho[x \mapsto v_1]) = eval(e_2[x := y], \rho[y \mapsto v_1])$$

Supossons que $x \notin fv(e_2)$

Par récurence sur n_2

```
— Cas n: immédiat
— Cas z : Si
    -z = x : Alors \ eval(x, \rho[x \mapsto v1]) = v_1 \ et \ eval(x[x := y], \rho[y \mapsto v1]) = eval(y, \rho[y \mapsto v1]) = v_1
    -z = y: interdit car y \in fv(e_2)
    — Sinon : résultat immédiat
— Cas Add(e'_1, e'_2): Alors:
            eval(Add(e'_1,e'_2),\rho[x\mapsto v_1]) = eval(e'_1,\rho[x\mapsto v_1]) + eval(e'_2,\rho[x\mapsto v_1])
                                                  = eval(e'_1[x := y], \rho[x \mapsto v_1]) + eval(e'_2[x := y], \rho[x \mapsto v_1])
    avec y \notin fv(e_1') \land y \notin fv(e_2')
                                                  = eval(Add(e'_1[x := y], e'_2[x := y]), \rho[y \mapsto v_1])
                                                  = eval(Add(e'_1, e_2)[x := y], \rho[y \mapsto v_1])
— Cas Mul: similaire
— Cas Let(z, e'_1, e'_2): On note v'_1 = eval(e'_1, \rho[x \mapsto v_1])
    On a aussi y \notin fv(e_1') donc v_1' = eval(e_1'[x := y], \rho[y \mapsto v_1])
    — Si z = x:
                     eval(Let(z, e'_1, e'_2)[x := y], \rho[y \mapsto v_1]) = eval(Let(z, e'_1[x := y], e'_2), \rho[y \mapsto v_1])
                                                                       = eval(Let(e'_2, (\rho[y \mapsto v_1])[z \mapsto v'_1]))
    — Si z \neq x et z \notin fv(y), on a
         eval(Let(z, e'_1, e'_2)[x := y], \rho[y \mapsto v_1]) = eval(Let(z, e'_1[x := y], e'_2[x := y]), \rho[y \mapsto v_1])
                                                           = eval(e'_{2}[x := y], (\rho[y \mapsto v_{1}])[z \mapsto v'_{1}])
                                                           = eval(e_2'[x:=y], (\rho[z\mapsto v_1])[y\mapsto v_1'])
                                                                                                                             (y \neq z)
                                                           = eval(e'_2, (\rho[z \mapsto v_1])[x \mapsto v'_1])
                                                                                                                                 H.P
```

 $= eval(e'_2, (\rho[x \mapsto v_1])[z \mapsto v'_1])$

 $= eval(Let(z, e'_1, e'_2), \rho[x \mapsto v_1])$

 $(z \neq y)$

Exercice 5 – $\Sigma = \{F : arbre, N : arbre \times \mathbb{N} \times arbre \rightarrow arbre\}$

1. in fixe : arbre \rightarrow arbre

$$infixe(a) = \begin{cases} infixe(F) = Nil \\ infixe(N(a_1, x, a_2)) = concat(infixe(a_1)Cel(x, infixe(a_2))) \end{cases}$$

2. appartient : $\mathbb{N} \times arbre \to \mathbb{B}$

$$appartient(n, a) = \begin{cases} appartient(n, F) = False \\ appartient(n, N(a_1, x, a_2)) = (x = n) \lor appartient(n, a_1) \lor appartient(n, a_2) \end{cases}$$

- 3. (a) N(N(F,1,F),2,N(F,3,F)) Vrai
 - (b) N(F, 2, N(N(F, 1, F), 3, F)) Faux
- $\begin{array}{ll} 4. \ \ a_1 = N(F,1,N(F,2,N(F,3,N(F,4,F)))) & infixe(a_1) = Cel(1,Cel(2,Cel(3,Cel(4)))) \\ a_2 = N(N(F,1,F),2,N(F,3,N(F,4,F))) & infixe(a_2) = Cel(1,Cel(2,Cel(3,Cel(4)))) \end{array}$
- 5. Montrons que si a est un ABR alors infixe(a) est trié
 - Cas de base a = F

On a donc infixe(a) = Nil or la liste est vide est bien trié

• Cas récursif $a = N(a_1, n, a_2)$ et a un ABR

Hypothèse de récurence : $infixe(a_1) \wedge infixe(a_2)$ sont triées

$$infixe(a) = concat(infixe(a_1), Cel(n, infixe(a_2)))$$

Par HP on sait que $infixe(a_1)$ et $infixe(a_2)$ sont bien triées or comme a un ABR n est plus grand que n'importe quel éléments de $infixe(a_1)$ et est plus petit que n'importe quel éléments de $infixe(a_2)$.

On peut donc dir que $l = Cel(n, infixe(a_2))$ est triée et que $concat(infixe(a_2), l)$ est triée aussi donc infixe(a) est triée aussi.

- 6. Il faut chercher dans t_1 quand m < n sinon si m > n dans t_2 sinon m = n fini.
- 7. appartient_abr : $\mathbb{N} \times arbre \to \mathbb{B}$

$$appartient_abr(n,a) = \begin{cases} appartient_abr(F) = False \\ appartient_abr(N(a_1, m, a_2)) = True & \text{si } n = m \\ appartient_abr(N(a_1, m, a_2)) = appartient_abr(a_2) & \text{si } x < n \\ appartient_abr(N(a_1, m, a_2)) = appartient_abr(a_1) & \text{si } x > n \end{cases}$$

8. Montrons: appartient $abr(n,t) \Rightarrow appartient(n,t)$

Par récurrence sur t.

- Cas $F: appartient \ abr(n, F) = False$ rien à montrer.
- Cas $N(t_1, m, t_2)$ on regarde quand appartient $abr(n, N(t_1, m, t_2))$ est vrai.
 - Cas n = m. Alors appartient $(n, N(t_1, m, t_2)) = true$
 - Cas $n < m \land appartient_abr(n, t_1)$. En particulier $appartient_abr(n, t_1)$ donc par H.R $appartient(n, t_1) = True$, donc $appartient(n, N(t_1, m, t_2)) = true$.
 - Cas $m < n \wedge \dots$ similaire.
- 9. Montrons: $t \in ABR \land appartient(n,t) \Rightarrow appartient \ abr(n,t)$

Par récurrence sur \mathbf{t} .

- Cas F: appartient(n, F) = False rien à faire.
- Cas $N(t_1, m, t_2)$. Par disjonction de cas appartient $(n, N(t_1, m, t_2))$.
 - Cas n = m. Alors appartient $abr(n, N(t_1, m, t_2)) = true$

- Cas $appartient(n,t_1) = true$. Par H.R, $appartient_abr(n,t_1) = true$. En outre $N(t_1,m,t_2)$ étant un ABR et n étant déjà présent dans le sous-arbre gauche, on a $n \leq m$. Or n=m a déjà été traité. Donc $appartient_abr(n,N(t_1,m,t_2)) = true$
- Cas $appartient(n, t_2) = true$ similaire.
- 10. verif: $\mathbb{N} \times \mathbb{N} \times arbre \to \mathbb{B}$

$$verif(m,M,t) = \begin{cases} verif(m,M,F) = true \\ verif(m,M,N(t_1,n,t_2)) = m \le n \le M \land verif(m,n,t_1) \land verif(n,M,t_2) \end{cases}$$

- 11. Montrons que $verif(m,M,t) \Rightarrow t \in ABR \land \max(t) \leq M \land \min(t) \geq m$ fonctionne Récurence sur t
 - Cas F: correcte car F est bien un ABR
 - Cas $N(t_1, n, t_2)$. Si $verif(m, M, N(t_1, n, t_2)) = true$ alors on a $m \le n \le Nverif(m, M, t_1), verif(m, M, t_2)$. Par H.R on a t_1 et t_2 des ABR avec pour tous éléments n_1 de t_1 $m \le n_1 \le n$ et pour tous éléments n_2 de t_2 $n \le n_2 \le M$. Donc $N(t_1, n, t_2)$ est bien un ABR de min m et de max M
- 12. voir fichier $ex5_12.ml$