EJOI Ημέρα 1 Πρόβλημα **Particles** (Greek)

Δύο γραμμικοί επιταχυντές σωματιδίων **A** και **B**, τοποθετημένοι αντίθετα ο ένας προς τον άλλον σε απόσταση **L** μεταξύ τους, εκτοξεύουν στοιχειώδη σωματίδια. Ο **A** εκτοξεύει **x**-σωματίδια, ενώ ο **B** εκτοξεύει **y**-σωματίδια. Τα δύο είδη σωματιδίων πετούν αντίθετα το ένα προς το άλλο, και όταν ένα **x**-σωματίδιο συναντά ένα **y**-σωματίδιο, συγκρούονται και καταστρέφονται. Θα πρέπει να έχετε υπόψη σας ότι ένα **x**-σωματίδιο μπορεί να προσπεράσει άλλα **x**-σωματίδια, όπως επίσης και ένα **y**-σωματίδιο μπορεί να προσπεράσει **y**-σωματίδια χωρίς καμία συνέπεια για τα σωματίδια.

Έτσι, σε μια δεδομένη χρονική στιγμή, την οποία ορίζουμε να είναι μηδέν, μια εκτόξευση **N** x-σωματιδίων και **N** y-σωματιδίων ξεκινάει από τους δύο επιταχυντές. Κάθε σωματίδιο κινείται με την δική του σταθερή ταχύτητα. Τόσο τα x-σωματίδια όσο και τα y-σωματίδια αριθμούνται σύμφωνα την σειρά εκτόξευσής τους από το 1 έως το **N**.

Σημείωση: Για χρόνο t, ένα σωματίδιο με ταχύτητα v ταξιδεύει απόσταση s = vt.

Οι χρονικές στιγμές εκτόξευσης για τα \mathbf{x} -σωματίδια είναι $0=t\mathbf{x}_1 < t\mathbf{x}_2 < t\mathbf{x}_3 < < t\mathbf{x}_N$, και οι ταχύτητες τους είναι $\mathbf{v}\mathbf{x}_1$, $\mathbf{v}\mathbf{x}_2$, $\mathbf{v}\mathbf{x}_3$, ..., $\mathbf{v}\mathbf{x}_N$.

Αντίστοιχα για τα y-σωματίδια οι χρονικές στιγμές εκτόξευσης είναι $0=ty_1 < ty_2 < ty_3 < ... < ty_N$, και οι ταχύτητες τους είναι vy_1 , vy_2 , vy_3 , ..., vy_N .

Η εκτόξευση εκτελείται με τέτοιο τρόπο ώστε να εγγυάται την ικανοποίηση των παρακάτω συνθηκών:

- Κάθε σωματίδιο θα συγκρουστεί με ένα σωματίδιο του αντίθετου τύπου.
- Όταν δύο σωματίδια συγκρούονται, όλα τα υπόλοιπα σωματίδια θα είναι σε απόσταση μεγαλύτερη ή ίση του 1 από το σημείο σύγκρουσης. Αυτό ισχύει για τις πρώτες **Κ** συγκρούσεις.

Πρόβλημα

Γράψτε ένα πρόγραμμα particles που βρίσκει τις πρώτες $\textbf{\textit{K}}$ συγκρούσεις μεταξύ των δύο ειδών σωματιδίων.

Είσοδος

Οι τρεις θετικοί ακέραιοι **N**, **L**, και **K**, οι οποίοι είναι διαχωρισμένοι με κενό διάστημα, θα διαβαστούν από την πρώτη γραμμή του standard input.

Καθεμία από τις επόμενες **N** γραμμές περιέχουν δύο μη αρνητικούς ακέραιους tx_i και vx_i διαχωρισμένους με κενό διάστημα και αντιστοιχούν: στην χρονική στιγμή εκτόξευσης και στην ταχύτητα του αντίστοιχου x-σωματιδίου.

Οι τελευταίες **Ν** γραμμές—εισόδου περιέχουν αντιστοίχως: την χρονική στιγμή εκτόξευσης **ty** και την ταχύτητα **vy**; του εν λόγω **y**-σωματιδίου στην ίδια μορφή.

Έξοδος

Το πρόγραμμά σας πρέπει να τυπώσει στο standard output $\textbf{\textit{K}}$ γραμμές, καθεμία από τις οποίες θα περιέχει δύο θετικούς ακεραίους διαχωρισμένους με κενό διάστημα: τους αριθμούς του $\textbf{\textit{x}}$ -σωματιδίου και $\textbf{\textit{y}}$ -σωματιδίου, που συμμετέχουν στην εν λόγω σύγκρουση. Οι γραμμές πρέπει να τυπώνονται με αύξουσα διάταξη ως προς την σειρά των συγκρούσεων – από την πρώτη ως την $\textbf{\textit{K}}^{\text{οστή}}$.

Πρόβλημα Particles Σελίδα **1** από **2**

EJOI Ημέρα 1 Πρόβλημα **Particles** (Greek)

Περιορισμοί

- $1 \le N \le 50000$
- Στο 30% των αρχείων εισόδου θα είναι: $N \le 1000$
- $1 \le L \le 10^9$
- $1 \le K \le 100, K \le N$
- $0 \le tx_i, ty_i \le 10^9$
- $1 \le vx_i, vy_i \le 10^9$

Παράδειγμα

Παράδειγμα εισόδου	Παράδειγμα εξόδου
4 100 2	4 2
01	2 4
2 3	
3 2	
6 10	
05	
3 10	
51	
7 20	

Πρόβλημα Particles Σελίδα **2** από **2**