DAT630 **Retrieval Evaluation**

Search Engines, Chapter 8

12/10/2016

Krisztian Balog | University of Stavanger

Today

Evaluation

- Evaluation is key to building *effective* and *efficient* search engines
 - Measurement usually carried out in controlled laboratory experiments
 - Online testing can also be done
- Effectiveness, efficiency and cost are related
 - E.g., if we want a particular level of effectiveness and efficiency, this will determine the cost of the system configuration
 - Efficiency and cost targets may impact effectiveness

Evaluation Corpus

- To ensure repeatable experiments and fair comparison of results from different systems
- Test collections consist of
 - Documents
 - Queries
 - Relevance judgments
 - (Evaluation metrics)

Text REtrieval Conference (TREC)

- Organized by the US National Institute of Standards and Technology (NIST)
- Yearly benchmarking cycle
- Development of test collections for various information retrieval tasks
- Relevance judgments created by retired CIA information analysts

TREC Assessors at Work

Example Test Collections

- CACM: Titles and abstracts from the Communications of the ACM from 1958-1979. Queries and relevance judgments generated by computer scientists.
- AP: Associated Press newswire documents from 1988-1990 (from TREC disks 1-3). Queries are the title fields from TREC topics 51-150. Topics and relevance judgments generated by government information analysts.
- GOV2: Web pages crawled from websites in the .gov domain during early 2004. Queries are the title fields from TREC topics 701-850. Topics and relevance judgments generated by government analysts.

Example Collections

Collection	Number of	Size	Average number			
	documents		of words/doc.			
CACM	3,204	2.2 Mb	64			
AP	242,918	$0.7~\mathrm{Gb}$	474			
GOV2	25,205,179	$426~\mathrm{Gb}$	1073			

Collection	Number of	Average number of	Average number of		
	queries	words/query	relevant docs/query		
CACM	64	13.0	16		
$^{\mathrm{AP}}$	100	4.3	220		
GOV2	150	3.1	180		

ClueWeb09/12 collections

- ClueWeb09

- 1 billion web pages in 10 languages
- 5TB compressed, 25TB uncompressed
- http://lemurproject.org/clueweb09/

- ClueWeb12

- 733 million English web pages
- http://lemurproject.org/clueweb12/

TREC Topic Example

<top>

<num> Number: 794

<title> pet therapy

<desc> Description:

How are pets or animals used in therapy for humans and what are the benefits?

<narr> Narrative:

Relevant documents must include details of how pet- or animal-assisted therapy is or has been used. Relevant details include information about pet therapy programs, descriptions of the circumstances in which pet therapy is used, the benefits of this type of therapy, the degree of success of this therapy, and any laws or regulations governing it.

</top>

TREC Topic Example

<top>

<num> Number: 794

<title> pet therapy | Short query (like in web search)

<desc> Description:

How are pets or animals used in therapy for humans and what are the benefits?

<narr> Narrative

Relevant documents must include details of how pet- or animal-assisted therapy is or has been used. Relevant details include information about pet therapy programs, descriptions of the circumstances in which pet therapy is used, the benefits of this type of therapy, the degree of success of this therapy, and any laws or regulations governing it.

</top>

TREC Topic Example

<top>

<num> Number: 794

<title> pet therapy

Longer (more precise) version of the query

<desc> Description:

How are pets or animals used in therapy for humans and what are the benefits?

<narr> Narrative:

Relevant documents must include details of how pet- or animal-assisted therapy is or has been used. Relevant details include information about pet therapy programs, descriptions of the circumstances in which pet therapy is used, the benefits of this type of therapy, the degree of success of this therapy, and any laws or regulations governing it.

</top>

TREC Topic Example

<top>

<num> Number: 794

<title> pet therapy

<desc> Description:

How are pets or animals used in therapy for humans and what are the

benefits?

Description of the criteria for relevance

<narr> Narrative:

Relevant documents must include details of how pet- or animal-assisted therapy is or has been used. Relevant details include information about pet therapy programs, descriptions of the circumstances in which pet therapy is used, the benefits of this type of therapy, the degree of success of this therapy, and any laws or regulations governing it.

</top>

Relevance Judgments

- Obtaining relevance judgments is an expensive, time-consuming process
 - Who does it?
 - What are the instructions?
 - What is the level of agreement?
- TREC judgments
 - Depend on task being evaluated
 - Generally binary
 - Agreement is good because of "narrative"

Pooling

- Exhaustive judgments for all documents in a collection is not practical
- Pooling technique is used in TREC
 - Top k results (for TREC, k varied between 50 and 200) from the rankings obtained by different search engines (or retrieval algorithms) are merged into a pool
 - Duplicates are removed
 - Documents are presented in some random order to the relevance judges
- Produces a large number of relevance judgments for each query, although still incomplete

Pooling

Crowdsourcing

- Obtain relevance judgments on a crowdsourcing platform
 - "Microtasks", performed in parallel by large, paid crowds
- Platforms
 - Amazon Mechanical Turk (US)
 - Crowdflower (EU)
 - https://www.crowdflower.com/use-case/search-relevance/

Query Logs

- Used for both tuning and evaluating search engines
 - Also for various techniques such as query suggestion
- Typical contents
 - User identifier or user session identifier
 - Query terms stored exactly as user entered
 - List of URLs of results, their ranks on the result list. and whether they were clicked on
 - Timestamp(s) records the time of user events such as query submission, clicks

Query Logs

- Clicks are not relevance judgments
 - Although they are correlated
 - Biased by a number of factors such as rank on
- Can use clickthough data to predict preferences between pairs of documents
 - Appropriate for tasks with multiple levels of relevance, focused on user relevance
 - Various "policies" used to generate preferences

Example Click Policy

- Skip Above and Skip Next
 - Given a set of results for a query and a clicked result at rank position p
 - all unclicked results ranked above p are predicted to be less relevant than the result at p
 - unclicked results immediately following a clicked result are less relevant than the clicked result

click data	generated preferences				
d_1	$d_3 > d_2$				
d_2	$d_3 > d_1$				
d_3 (clicked)	$d_3 > d_4$				
d_A	-				

Query Logs

- Click data can also be aggregated to remove noise
- Click distribution information
 - Can be used to identify clicks that have a higher frequency than would be expected
 - High correlation with relevance
 - E.g., using click deviation to filter clicks for preference-generation policies

Filtering Clicks

- Click deviation CD(d, p) for a result d in position p:

$$CD(d, p) = O(d, p) - E(p)$$

- O(d,p): observed click frequency for a document in a rank position p over all instances of a given query
- E(p): expected click frequency at rank p averaged across all queries

Filtering Clicks

- Click deviation CD(d, p) for a result d in position p:

$$CD(d, p) = O(d, p) - E(p)$$

- O(d,p): observed click frequency for a document in a rank position p over all instances of a given query
- E(p): expected click frequency at rank p averaged across all queries

Effectiveness Measures

A is the set of relevant documents, B is the set of retrieved documents

	Relevant	Non-Relevant
Retrieved	$A \cap B$	$\overline{A}\cap B$
Not Retrieved	$A\cap \overline{B}$	$\overline{A}\cap \overline{B}$

$$Recall = \frac{|A \cap B|}{|A|}$$
 $Precision = \frac{|A \cap B|}{|B|}$

F-measure

- Harmonic mean of recall and precision

$$F=\frac{1}{\frac{1}{2}(\frac{1}{R}+\frac{1}{P})}=\frac{2RP}{(R+P)}$$

- harmonic mean emphasizes the importance of small values, whereas the arithmetic mean is affected more by outliers that are unusually large
- More general form

$$F_{\beta} = (\beta^2 + 1)RP/(R + \beta^2 P)$$

 β is a parameter that determines relative importance of recall and precision

Evaluating Rankings

- Precision and Recall are set-based metrics
- How to evaluate a ranked list?
 - Calculate recall and precision values at every rank position

Ranking Effectiveness

Evaluating Rankings

- Precision and Recall are set-based metrics
- How to evaluate a ranked list?
 - Calculate recall and precision values at every rank position
 - Produces a long list of numbers (see previous slide)
 - Need to summarize the effectiveness of a ranking

Summarizing a Ranking

- Calculating recall and precision at fixed rank positions
- Calculating precision at standard recall levels, from 0.0 to 1.0
 - Requires interpolation
- Averaging the precision values from the rank positions where a relevant document was retrieved

Fixed Rank Positions

- Compute precision/recall at a given rank position p
 - E.g., precision at 20 (P@20)
 - Typically precision at 10 or 20
- This measure does not distinguish between differences in the rankings at positions 1 to p

Example

Example

Standard Recall Levels

- Calculating precision at standard recall levels, from 0.0 to 1.0
 - Each ranking is then represented using 11 numbers
 - Values of precision at these standard recall levels are often not available, for example:

- Interpolation is needed

Recall-Precision Graph

Interpolation

- To average graphs, calculate precision at standard recall levels:

$$P(R) = \max\{P': R' \ge R \land (R', P') \in S\}$$

- where S is the set of observed (R,P) points
- Defines precision at any recall level as the maximum precision observed in any recallprecision point at a higher recall level
 - Produces a step function

Interpolation

Average Precision

- Average the precision values from the rank positions where a relevant document was retrieved
 - If a relevant document is not retrieved (in the top K ranks, e.g, K=1000) then its contribution is 0.0
 - Single number that is based on the ranking of all the relevant documents
 - The value depends heavily on the highly ranked relevant documents

Average Precision

Average Precision

Ranking #1: (1.0 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6)/6 = 0.78

Ranking #2: (0.5 + 0.4 + 0.5 + 0.57 + 0.56 + 0.6)/6 = 0.52

Averaging Across Queries

- So far: measuring ranking effectiveness on a single query
- Need: measure ranking effectiveness on a set of queries
- Average is computed over the set of queries

Mean Average Precision (MAP)

- Summarize rankings from multiple queries by averaging average precision
- Very succinct summary
- Most commonly used measure in research papers
- Assumes user is interested in finding many relevant documents for each query
- Requires many relevance judgments

MAP

average precision query 1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62average precision query 2 = (0.5 + 0.4 + 0.43)/3 = 0.44

mean average precision = (0.62 + 0.44)/2 = 0.53

Recall-Precision Graph

- Give more detail on the effectiveness of the ranking algorithm at different recall levels
- Graphs for individual queries have very different shapes and are difficult to compare
- Averaging precision values for standard recall levels over all queries

Recall	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Ranking 1	1.0	1.0	1.0	0.67	0.67	0.5	0.5	0.5	0.5	0.5	0.5
Ranking 2	0.5	0.5	0.5	0.5	0.43	0.43	0.43	0.43	0.43	0.43	0.43
Average	0.75	0.75	0.75	0.59	0.47	0.47	0.47	0.47	0.47	0.47	0.47

Average Recall-Precision Graph

Graph for 50 Queries

Other Metrics

- Focusing on the top documents
- Using graded relevance judgments
 - E.g., web search engine companies often use a 6-point scale: bad (0) ... perfect (5)

Focusing on Top Documents

- Users tend to look at only the top part of the ranked result list to find relevant documents
- Some search tasks have only one relevant document
 - E.g., navigational search, question answering
- Recall is not appropriate
 - Instead need to measure how well the search engine does at retrieving relevant documents at very high ranks

Focusing on Top Documents

- Precision at Rank R
 - R typically 5, 10, 20
 - Easy to compute, average, understand
 - Not sensitive to rank positions less than R
- Reciprocal Rank
 - Reciprocal of the rank at which the first relevant document is retrieved
 - Mean Reciprocal Rank (MRR) is the average of the reciprocal ranks over a set of queries
 - Very sensitive to rank position

Mean Reciprocal Rank

Ranking #1

Reciprocal rank (RR) = 1/1 = 1.0

Ranking #2

Reciprocal rank (RR) = 1/2 = 0.5

Mean reciprocal rank (MRR) = (1.0 + 0.5)/2 = 0.75

Discounted Cumulative Gain

Exercise

- Uses graded relevance as a measure of the usefulness, or gain, from examining a document
- Gain is accumulated starting at the top of the ranking and may be reduced, or discounted, at lower ranks
- Typical discount is 1/log (rank)
- With base 2, the discount at rank 4 is 1/2, and at rank 8 it is 1/3

Discounted Cumulative Gain

- Popular measure for evaluating web search and related tasks
- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant document
 - The lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined

Discounted Cumulative Gain

 DCG is the total gain accumulated at a particular rank p:

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

- rel_i is the graded relevance level of the document retrieved at rank *i*
- Alternative formulation:

$$DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{log(1+i)}$$

- used by some web search companies
- emphasis on retrieving highly relevant documents

DCG Example

 10 ranked documents judged on 0-3 relevance scale:

3, 2, 3, 0, 0, 1, 2, 2, 3, 0

- discounted gain:

3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0 = 3, 2, 1.89, 0, 0, 0.39, 0.71, 0.67, 0.95, 0

- DCG:

3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61

Normalized DCG

- DCG numbers are averaged across a set of queries at specific rank values
 - Typically at rank 5 or 10
 - E.g., DCG at rank 5 is 6.89 and at rank 10 is 9.61
- DCG values are often normalized by comparing the DCG at each rank with the DCG value for the perfect ranking
 - Makes averaging easier for queries with different numbers of relevant documents

NDCG Example

- Perfect ranking:

3, 3, 3, 2, 2, 2, 1, 0, 0, 0

- ideal DCG values:

3, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 10.88, 10.88

- NDCG values (divide actual by ideal):

1, 0.83, 0.87, 0.76, 0.71, 0.69, 0.73, 0.8, 0.88, 0.88

- NDCG ≤ 1 at any rank position

Exercise

Significance Testing

- Given the results from a number of queries, how can we conclude that ranking algorithm A is better than algorithm B?
- A significance test enables us to reject the *null hypothesis* (no difference) in favor of the *alternative hypothesis* (B is better than A)
 - The power of a test is the probability that the test will reject the null hypothesis correctly
 - Increasing the number of queries in the experiment also increases power of test

Recipe

- 1. Compute the effectiveness measure for every query for both rankings.
- 2. Compute a test statistic based on a comparison of the effectiveness measures for each query. The test statistic depends on the significance test, and is simply a quantity calculated from the sample data that is used to decide whether or not the null hypothesis should be rejected.
- 3. The test statistic is used to compute a P-value, which is the probability that a test statistic value at least that extreme could be observed if the null hypothesis were true. Small P-values suggest that the null hypothesis may be false.
- 4. The null hypothesis (no difference) is rejected in favor of the alternate hypothesis (i.e., B is more effective than A) if the P-value is $\leq \alpha$, the significance level. Values for α are small, typically .05 and .1, to reduce the chance of a Type I error.

Performance Analysis

- Typically, system A (baseline) is compared against system B (improved version)
- Average numbers can hide important details about the performance of individual queries
- Important to analyze which queries were helped and which were hurt

Distribution of query effectiveness improvements

Query-level performance differences

Efficiency Metrics

- Elapsed indexing time

- Amount of time necessary to build a document index on a particular system

- Indexing processor time

- CPU seconds used in building a document index
 - Similar to elapsed time, but does not count time waiting for I/O or speed gains from parallelism

- Query throughput

- Number of gueries processed per second

Efficiency Metrics

- Query latency

- The amount of time a user must wait after issuing a query before receiving a response, measured in milliseconds
- Often measured with the median

- Indexing temporary space

- Amount of temporary disk space used while creating an index
- Index size
 - Amount of storage necessary to store the index files

Summary

- No single measure is the correct one for any application
 - Choose measures appropriate for task
 - Use a combination
 - Shows different aspects of the system effectiveness
- Use significance tests
- Analyze performance of individual queries