Limited Dependent Variable Models

BS1802 Statistics and Econometrics

Jiahua Wu

382 Business School j.wu@imperial.ac.uk

Roadmap

- Regression analysis with cross-sectional data
 - The multiple regression analysis
 - Basics: estimation, inference, analysis with dummy variables
 - More technically involved: asymptotics, heteroskedasticity, specification and data issues
- Advanced topics
 - Limited dependent variable models
 - Panel data analysis
 - Regression analysis with time series data

Outline (Wooldridge, Ch. 17.1)

• Binary response models: Logit and Probit models

Binary Dependent Variables

Recall the linear probability model (LPM)

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u,$$

where y either equals 0 or 1

• Interpretation of the LPM

$$P(y=1|\mathbf{x}) = E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

- Drawbacks of LPM
 - Predicted values are not constrained to be between 0 and 1
 - Violation of homoskedasticity
- An alternative is to model the probability as a function, $G(\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k)$, where 0 < G(z) < 1

The Logit Model

 The Logit model uses the logistic function, which is the cumulative distribution function (cdf) for a standard logistic random variable

$$G(z) = \frac{\exp(z)}{1 + \exp(z)}$$

The Probit Model

 The Probit model uses the standard normal cumulative distribution function

$$G(z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{v^2}{2}\right) dv$$

- Both functions have similar shapes they are increasing in z, most quickly around 0
- Both models are nonlinear, and require maximum likelihood estimation (MLE)
- No real reason to prefer one over the other
 - Traditionally we saw more of the logit, mainly because the logistic function leads to a more easily computed model
 - Today, the probit is also easy to compute with standard packages

Maximum Likelihood Estimation of Logits and Probits

• Recall the interpretation of binary response models, where

$$P(y=1|\mathbf{x}) = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

and

$$P(y=0|\mathbf{x}) = 1 - G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

• Conditional on the explanatory variables, the density of y_i is given by

$$f(y|\mathbf{X}_i;\beta) = [G(z_i)]^{y_i} \cdot [1 - G(z_i)]^{1-y_i},$$

where $z_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_k x_{ik}$, and y_i is either 0 or 1.

Maximum Likelihood Estimation of Logits and Probits

• The log-likelihood function for observation i is obtained by taking the log of $f(y|\mathbf{x}_i;\beta)$,

$$I_i(\beta) = y_i \log[G(z_i)] + (1 - y_i) \log[1 - G(z_i)]$$

- The log-likelihood for a sample is obtained by summing $I_i(\beta)$ across all observations: $L(\beta) = \sum_{i=1}^n I_i(\beta)$
- The MLE of β , denoted as $\hat{\beta}$, maximizes $L(\beta)$
- MLE is asymptotically normal and asymptotically efficient

$$\frac{\hat{\beta}_j - a_j}{se(\hat{\beta}_j)} \sim N(0, 1),$$

under the null $H_0: \beta_i = a_i$.

Interpretation of Logits and Probits

- What is the effect of x_j on $P(y=1|\mathbf{x})$?
 - For the linear case, this is just the coefficient on x_i
 - For the nonlinear logit and probit models, β_j can no longer be interpreted as the marginal effect of x_j on y
 - To see this, differentiate $P(y=1|\mathbf{x})$ with respect to x_j , we have

$$\frac{\partial P(y=1|\mathbf{x})}{\partial x_j} = g(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)\beta_j,$$

where g(z) is dG/dz

 Since we are bounding the dependent variable using a non-linear function, the marginal effect depends on all the estimates and their values

Interpretation of Logits and Probits

• The effects of x_i on the response probability is roughly

$$\Delta \widehat{P}(y=1|\mathbf{x}) \approx [g(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k)\hat{\beta}_j]\Delta x_j$$

- It is usually handy to have a single scale factor $g(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k)$ that can used to multiply each $\hat{\beta}_j$
 - If each explanatory variable is replaced with its sample average, the partial effect becomes

$$g(\hat{\beta}_0 + \hat{\beta}_1\bar{x}_1 + \cdots + \hat{\beta}_k\bar{x}_k)\hat{\beta}_i$$

and we obtain the partial effect at the average (PEA)

• Alternatively, we can average the individual partial effects across the sample, i.e.,

$$n^{-1} \sum_{i=1}^{n} g(\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_k x_{ik}) \hat{\beta}_j$$

and we obtain the average partial effect (APE)

The Likelihood Ratio Test

- In the LPM, we can compute F stat to test exclusion restrictions $(H_0: \beta_{k-q+1} = 0, \dots, \beta_k = 0)$
- In the logit and probit models, F test is no longer valid we need the likelihood ratio test
 - Maximum likelihood estimation (MLE), will always produce a log-likelihood, $\mathsf{L}(\hat{\beta})$
 - Just as in an F test, we estimate the restricted and unrestricted model, then form the likelihood ratio statistics

$$LR = 2(\mathsf{L}_{ur} - \mathsf{L}_r) \sim \chi_q^2$$

• Reject the null $H_0: \beta_{k-q+1} = 0, \dots, \beta_k = 0$ if LR > c (χ_q^2 critical value)

Goodness of Fit

- In the LPM, R^2 is a measure for goodness of fit
- Common goodness-of-fit measures for logit and probit models
 - Pseudo R-squared: is based on the log likelihood and defined as

$$1 - \mathsf{L}_{ur}/\mathsf{L}_r$$

where L_{ur} is the log-likelihood for the estimated model, and L_r is the log-likelihood in the model with only an intercept

- Percent correctly predicted: an observation i is correctly predicted if either
 - $y_i = 1$ and $G(\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_k x_{ik}) \ge .5$ or
 - $y_i = 0$ and $G(\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_k x_{ik}) < .5$.
 - The percentage observations that are correctly predicted is used as the measure

Goodness of Fit

- Common goodness-of-fit measures for logit and probit models
 - AIC: a measure of the relative quality of statistical models
 - For maximum likelihood estimators, it is defined as

$$AIC = 2k - 2L,$$

where k is the number of regressors and L is the log-likelihood for the model

- Given a set of candidate models, the preferred model is the one with the minimum AIC value
- BIC: ln(n)k 2l
- AICc: $AIC + \frac{2(k+2)(k+3)}{n-k-3}$

Estimating Logit and Probit Models in R

- We use the glm command to estimate logit and probit models glm(formula, family(link), data, ...)
 - Three common choices of family (and link functions)

Family	Link	Model
gaussian	identity	linear regression model
binomial	logit, probit	logit, probit models
poisson	log	poisson model

- **Family** indicates the conditional distribution of the dependent variable *y*
- A **link** function $f(\cdot)$ is defined as

$$f(E(y|\mathbf{x})) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

Understanding glm Output

- Deviance of the estimated model
 - It is the counterpart of sum of squared residuals in the multiple regression models
 - It is defined as

$$-2\mathsf{L}(\hat{\beta})+c,$$

where c is a constant

- Test for overall significance $(H_0: \beta_1 = 0, \dots, \beta_k = 0)$
 - The restricted model is a model with only an intercept, and its deviance is given by null deviance
 - The deviance of the unrestricted model is given by residual deviance
 - The likelihood ratio statistics

$$LR = 2(L_{ur} - L_r) = \text{null deviance} - \text{residual deviance} \sim \chi_k^2$$
.

Reject the null if LR > c (χ_k^2 critical value)

Logit and Probit Models: An Example

• Example 17.1: Labour Force Participation (mroz.RData)

inlf =
$$\beta_0 + \beta_1$$
nwifeinc + β_2 educ + β_3 exper
+ β_4 exper² + β_5 age + β_6 kidslt6 + β_7 kidsge6,

where

- inlf: a binary variable indicating labor force participation by a married woman
- nwifeinc: husband's earnings (in thousands of dollars)
- educ: years of education
- exper: past years of labor market experience
- age: age
- kidslt6: # of children less than 6 years old
- kidsge6: # of kids between 6 and 18 years old

Logit and Probit Models: An Example

Dependent Variable: inlf					
Independent	LPM	Logit	Probit (MLE)		
Variables	(OLS)	(MLE)			
nwifeinc	0034	021	012		
	(.0015)	(.008)	(.005)		
educ	.038	.221	.131		
	(.007)	(.043)	(.025)		
exper	.039	.206	.123		
	(.006)	(.032)	(.019)		
exper ²	00060	0032	0019		
	(.00018)	(.0010)	(.0006)		
age	016	088	053		
	(.002)	(.015)	(.008)		
kidslt6	262	-1.443	868		
	(.032)	(.204)	(.119)		
kidsge6	.013	.060	.036		
	(.013)	(.075)	(.043)		
constant	.586	.425	.270		
	(.151)	(.860)	(.509)		
Percentage correctly predicted Log-likelihood value Pseudo <i>R</i> -squared	73.4	73.6	73.4		
	—	-401.77	-401.30		
	.264	.220	.221		