

EA Stephen

Data scientist

Anticipez les besoins en consommation électrique de bâtiments

SOMMAIRE

Présentation de la problématique, de son interprétation et des pistes de recherche envisagées.

Présentation du cleaning effectué, du feature engineering et de l'exploration.

Présentation des différentes pistes de modélisation effectuées.

Présentation du modèle final sélectionné ainsi que des améliorations effectuées.

La mission

Vous travaillez pour la **ville de Seattle**. Pour atteindre son objectif de ville neutre en émissions de carbone en 2050, votre équipe s'intéresse de près aux émissions des bâtiments non destinés à l'habitation.

Des relevés minutieux ont été effectués par vos agents en 2015 et en 2016. Cependant, ces relevés sont coûteux à obtenir, et à partir de ceux déjà réalisés, **vous voulez tenter de prédire les émissions de CO2 et la consommation totale d'énergie** de bâtiments pour lesquels elles n'ont pas encore été mesurées.

Vous cherchez également à **évaluer l'intérêt de l'**"<u>ENERGY STAR Score</u>" **pour la prédiction d' émissions**, qui est fastidieux à calculer avec l'approche utilisée actuellement par votre équipe.

Les variables par types

Identification	OSE Building ID PropertyName Taxe Parcel Identification Number		Site EUI(kBtu/sf) SiteEUIWN(kBtu/sf) SourceEUI(kBtu/sf) SourceEUIWN(kBtu/sf)
Localisation	Address City State ZipCode Council District Code Neighborhood Latitude Longitude	Relevés énergétiques	Site Energy Use(kBtu) Site Energy Use(kBtu) Steam Use(kBtu) Electricity(kWh) Electricity(kBtu) Natural Gas(therms) Natural Gas(kBtu)
	Building Type Primary Property Type YearBuilt Number of Buildings	Performance éner du bâtiment	gétique Certified ENERGYSTAR Score
Les données déclaratives du permis d'exploitation	Number of Floors Property GFA Total Property GFA Parking Property GFA Building(s) List Of All Property Use Types	Calcul des émissions CO2	Total GHG Emissions GHG Emissions Intensity
commerciale	Largest Property Type Largest Property Use Type GFA Second Largest Property Use Type Second Largest Property Use Type GFA Third Largest Property Use Type	Info data	Data Year Comments DefaultData Outlier Compliance Status

Third Largest Property Use Type GFA

Objectif

Prédire les émissions de CO2 et la consommation totale d'énergie

- Les targets: Total GHG Emissions, Site Energy Use(kBtu)
- Data cleaning afin de modéliser le phénomène le plus représentatif et ne pas sensibiliser les modèles
- Evaluer l'intérêt de l'"<u>ENERGY STAR Score</u>" pour la prédiction d'émissions
- Les modèles se baseront sur les fonctionnalitées Identification, Localisation, Les données déclaratives du permis d'exploitation commerciale et des variables produites à l'aide de features engineering

Data leakage

Méthodologie suivie afin de ne pas fournir des modèles trop optimiste et invalide en production

- Features leakage
- Vérifier relation avec la target une forte relation peut indiquer un problème de target leakage
- Vérifier que le modèle ne fournit pas des performances trop optimiste cela peut etre indication.
- Pour éviter ce type de fuite de données, toute variable mise à jour (ou créée) après la réalisation de la valeur cible doit être exclue.
- Data leakage
- Utiliser pipeline
- 2. Incohérence data (effectuer m transformation
- 3. Ne pas faire transformation sur le dataset (fit, fit transform)
- Faire des transformations uniquement sur le train set. 4.
- 5. Séparer le dataset en train set et test set avant l'exploration

Description du dataset 2016

- Les dimensions du dataset 2016: (3376, 46)
- Le types des colonnes du dataset : dtypes: bool(1), float64(22), int64(8), object(15)
- Memory usage; 1.2+ MB
- 12.85 % NaN dans le dataset soit (19 9552 NaN)

	Count_NaN	%_NaN_col	Total_NaN_in_dataset	%_NaN_in_dataset	Туре
Comments	3376	100.0	19952	12.85	float
Outlier	3344	99.05	19952	12.85	objec
YearsENERGYSTARCertified	3257	96.48	19952	12.85	objec
ThirdLargestPropertyUseType	2780	82.35	19952	12.85	objec
ThirdLargestPropertyUseTypeGFA	2780	82.35	19952	12.85	float
SecondLargestPropertyUseType	1697	50.27	19952	12.85	obje
SecondLargestPropertyUseTypeGFA	1697	50.27	19952	12.85	floa
ENERGYSTARScore	843	24.97	19952	12.85	floa
LargestPropertyUseTypeGFA	20	0.59	19952	12.85	floa
LargestPropertyUseType	20	0.59	19952	12.85	obje
ZipCode	16	0.47	19952	12.85	floa
ListOfAllPropertyUseTypes	9	0.27	19952	12.85	obje
SourceEUIWN(kBtu/sf)	9	0.27	19952	12.85	floa
SourceEUI(kBtu/sf)	9	0.27	19952	12.85	floa
Electricity(kWh)	9	0.27	19952	12.85	floa
Electricity(kBtu)	9	0.27	19952	12.85	floa
NaturalGas(therms)	9	0.27	19952	12.85	floa
NaturalGas(kBtu)	9	0.27	19952	12.85	floa
TotalGHGEmissions	9	0.27	19952	12.85	floa
SteamUse(kBtu)	9	0.27	19952	12.85	floa
GHGEmissionsIntensity	9	0.27	19952	12.85	floa
NumberofBuildings	8	0.24	19952	12.85	floa
SiteEUI(kBtu/sf)	7	0.21	19952	12.85	floa
SiteEUIWN(kBtu/sf)	6	0.18	19952	12.85	floa
SiteEnergyUseWN(kBtu)	6	0.18	19952	12.85	floa
SiteEnergyUse(kBtu)	5	0.15	19952	12.85	floa
TaxParcelIdentificationNumber	0	0.0	19952	12.85	obje
BuildingType	0	0.0	19952	12.85	obje
PrimaryPropertyType	0	0.0	19952	12.85	obje
ComplianceStatus	0	0.0	19952	12.85	obje
PropertyName	0	0.0	19952	12.85	obje
DefaultData	0	0.0	19952	12.85	boo
Address	0	0.0	19952	12.85	obje
City	0	0.0	19952	12.85	obje
State	0	0.0	19952	12.85	obje
PropertyGFABuilding(s)	0	0.0	19952	12.85	int
CouncilDistrictCode	0	0.0	19952	12.85	int
PropertyGFAParking	0	0.0	19952	12.85	int
Neighborhood	0	0.0	19952	12.85	obje
Latitude	0	0.0	19952	12.85	floa
Longitude	0	0.0	19952	12.85	floa
YearBuilt	0	0.0	19952	12.85	int
NumberofFloors	0	0.0	19952	12.85	int
PropertyGFATotal	0	0.0	19952	12.85	int
DataYear	0	0.0	19952	12.85	int
OSEBuildingID	0	0.0	19952	12.85	int

Data cleaning train_set (80%)

> Filtrer les bâtiments non habitations

'NonResidential','Nonresidential COS','SPS-District K-12', 'Nonresidential WA', 'Campus'

> Filtrer les bâtiments non habitations

Compliance Status = compliant

Supprimer OSbuildingID 4978

Valeur aberrante sur Total GHG Emissions (-0.8)

Supprimer OSbuildingID 700

Valeurs aberrantes Total GHG Emissions(0) et SiteEnergie kBtu (12525174)

- Supprimer OSbuildingID 19445, Supprimer OSbuildingID 21481, Supprimer OSbuildingID 25674 Low-Rise Multifamily (PrimaryPropertyType)
- Supprimer les Number of Buildings == 0
- Transformation lower

La colonne Neighborhood car mélange en majuscules et minuscules qui ne fait pas correspondre les catégories entre elles

Fillna 'not outlier'

Après le data clean, il n'y a plus de 'High outlier' 'Low outlier'

Supprimer les colonnes:

'City', 'State', 'Comments', 'Outlier', 'DefaultData', 'NaturalGas(therms)', 'Electricity(kWh)',

 $\label{lem:control} \begin{tabular}{ll} \beg$

Feature engineering

Création nouvelles variables pct énergie

% Electricity, % Steam, % Natural Gas

Création variable booléen pour usage oui ou non de l'énergie

Bool Electricity, Bool Steam, Bool Natural Gas

Création variable superficie par étages

GFAperFloor

pct surface parking du bâtiments pct surface du bâtiment hors parking

% Property GFA Parking, % Property GFA Building(s)

Création âge du bâtiment

BuildingAge

Création colonnes targets en Log

Total GHG Emissions LOG, Site Energy Use kBtu LOG

Les variables conservées pour la modélisation

- % Electricity
- % Steam
- % Natural Gas
- BuildingAge
- Total GHG Emissions LOG,
- Site Energy Use kBtu LOG

Features

leakage

Sélections des variables sur le train_set (80%)

1117

Les variables supprimées

	Non conservées	Datarear	U
ш		Address	0
	dans le modèle	ZipCode	7
	final	TaxParcelIdentificationNumber	0
		CouncilDistrictCode	0
		Latitude	0
	Redondance et	Longitude	0
	non conservées	YearBuilt	0
	dans le modèle	NumberofBuildings	0
	final	NumberofFloors	0
		PropertyGFAParking	0
		PropertyGFABuilding(s)	0
	Redondance et	ListOfAllPropertyUseTypes	0
		LargestPropertyUseType	3
	non conservées	LargestPropertyUseTypeGFA	3
	dans le modèle	SecondLargestPropertyUseType	560
	final	SecondLargestPropertyUseTypeGFA	560
	IIIIai	ThirdLargestPropertyUseType	937
		ThirdLargestPropertyUseTypeGFA	937

YearsENERGYSTARCertified

GHGEmissionsIntensity

SiteEUI kBtu/sf

SourceEUI kBtu/sf SteamUse_kBtu Electricity kBtu NaturalGas kBtu

DataVaar

Les variables conservées

PrimaryPropertyType	
PropertyName	
Neighborhood	
PropertyGFATotal	
ENERGYSTARScore	4 (
BuildingAge	
TotalGHGEmissions LOG	
SiteEnergyUse_kBtu_LOG	
SiteEnergyUse_kBtu	
TotalGHGEmissions	
%_Electricity	
% Steam	
% NaturalGas	

Data exploration des targets

TotalGHGEmissions

Test Shapiro stat=0.178, p=0.000 Probablement pas Gaussien Test normaltest stat=2782.591, p=0.000 Probablement pas Gaussien

Test Shapiro stat=0.997, p=0.006 Probablement pas Gaussien Test normaltest stat=8.508, p=0.014

Data exploration quantitatives

Data exploration catégorielle

Data exploration bivariées quantitatives

VIF

Plan procédure d'évaluation de la meilleur pipeline

Méthodologie preprocessing pipeline

Les variables quantitatives

Les variables quantitatives NaN

Les variables catégorielles

1 Feature engineering

- avec Polynomial Features ou sans
 - 2 Scaling
- StandardScaler, RobustScaler, QuantileTransformer, PowerTransformer
 - 3 Feature selection ou réduction dimensions
- SelectKBest(f_regression, mutual_info_regression),
 VarianceThreshold, ACP, Isomap

1 Imputation

- SimpleImpute (mean, median, constant, most_fréquent)
- DropNa
- KNN imputer
- Iterative imputer
 - 2 Scaling
 - 3 Feature selection ou réduction dimensions

Encodage

OneHotEncoder, OrdinalEncoder,

Les algorithmes choisis pour les pipelines

Bagging

BaggingRegressor

Base_estimator =

KernelRidge

BaggingRegressor

Base_estimator =

RandomForrest

Boosting

GradientBoostingRegressor

AdaBoostRegressor

XGBRegressor

Améliorer les modèles

Améliorer le modèle

- Collecte de données : Augmenter le nombre d'exemples de formation
- 2. Traitement des entités : Ajouter d'autres variables et un meilleur traitement des entités
- 3. Vérifier l'importance des fonctionnalités afin de supprimer les variables qui n'ont pas d'importance
- Réglage des hyperparamètres du modèle : Considérez d'autres valeurs pour les paramètres de formation utilisés par les algorithmes d'apprentissages

Overfitting

- Ajouter des données d'entraînements
- Retirer des features (multicolinéarité, pas de variance)
- Méthodes de régularisations
- Réglage hyperparamètres
- 5. Choix algorithme faible variance

Procédure d'évaluation consommation totale énergie

Best score R2: 0.7984

Best score R2: 0.7911

Best score R2: 0.7783

Procédure d'évaluation consommation totale énergie

Best score R2: 0.7835

Best score R2: 0.7421

Best score R2: 0.5323

Procédure d'évaluation consommation totale énergie

Best score R2: 0.7911

Best score R2: 0.7878

Best score R2: 0.7754

Comparaison des pipelines energie totale

Le modèle final sélectionné

Le score R2 sur le test set la pipeline Lasso: 0.8079505288519834

train MAE: 0.3903179126898014 train MSE: 0.29612299244936696 train RMSE: 0.5441718409191778 train R2: 0.823815795731122

test MAE: 0.3903179126898014 test MSE: 0.36933292489162584 test RMSE: 0.6077276732975271 test R2: 0.8079505288519834

Interprétation du modèle consommation energie total

Procédure d'évaluation émissions de CO2

Best score R2: 0.8053

Best score R2: 0.7871

Best score R2: 0.8116

Procédure d'évaluation émissions de CO2

Best score Rcarré: 0.8494

Best score Rcarré: 0.8500

Learning curve pipeline KRR CO2 ESS

Training examples

Best score Rcarré: 0.8290

Procédure d'évaluation émissions de CO2

Best score Rcarré: 0.7867

Best score Rcarré: 0.8499

Best score Rcarré: 0.8306

Comparaison des pipelines avec ESS et sans

Le modèle final sélectionné

Le score R2 sur le test set CO2 la pipeline KernelRidge avec Energie star score : 0.8579029162025882

train MAE: 0.3452452265391251 train MSE: 0.23116702729050984 train RMSE: 0.4807983228865403 train R2: 0.8957916689361856

test MAE: 0.3452452265391251 test MSE: 0.3727221389657137 test RMSE: 0.6105097369950079 test R2: 0.8579029162025882

Interprétation du modèle CO2

Conclusion

Prédiction consommation totale d'énergie

- Les courbes d'apprentissage montrent qu'une augmentation de la data améliorerait les modèles.
- Le modèle choisi Lasso a un meilleur score sur le test_set(0.7984 (CV) = > 0.8079(Test_set)).

Prédiction émissions de CO2

- Les courbes d'apprentissage montrent qu'une augmentation de la data améliorerait les modèles.
- Le modèle choisi KernelRidge a un meilleur score sur le test_set(0.8500 (CV) = > 0.8579(Test_set)).

La localité du bâtiment

- Oui les modèles indiquent que la localité à un pouvoir prédictif malgrés un faible poids.

Evaluation de Energie Star score

- La variable améliore les modèles lorsqu'elle est utilisée en input
- C'est une mesure que je recommande à récolter afin d'améliorer les modèles.