LEADS SCORING CASE STUDY

CASSADY MCDONALD & MANICKAVEL

BUSINESS OBJECTIVES

X Education needs a model to select the most promising leads, i.e. the leads that are most likely to convert into paying customers. The company requires to build a model wherein a lead score will be assigned to each of the leads such that the customers with higher lead score have a higher conversion chance and the customers with lower lead score have a lower conversion chance. The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%.

HANDLING MISSING VALUES

- NAN (missing value) which if below 50% was imputed based on median value if its continuous variable. For categorical values mode was used to replace the missing value
- 'Select' Option was grouped as Other/Unknown based on the column details

HANDLING MISSING VALUES (CONT.)

Missing Value Analysis

```
In [196]: (Leads.isnull().sum().sort values(ascending = False)/len(Leads.index))*100
Out[196]: What is your current occupation
                                                    29.112554
                                                    26.634199
          Country
          Specialization
                                                    15.562771
          City
                                                    15.367965
          Page Views Per Visit
                                                     1.482684
          TotalVisits
                                                     1.482684
          Lead Source
                                                     0.389610
          A free copy of Mastering The Interview
                                                     0.000000
          Total Time Spent on Website
                                                     0.000000
          Converted
                                                     0.000000
          Lead Origin
                                                     0.000000
          dtype: float64
```

SPECIALIZATION

```
# Specialization with NAN and its corresponding current occupation

Leads[Leads['Specialization'].isnull()] ['What is your current occupation'].value_counts(dropna=False)

NaN 1420
Student 13
```

Businessman 1

Working Professional

Name: What is your current occupation, dtype: int64

- When 'Specialization' is with NAN and its corresponding 'current occupation' is also NAN then we can replace those with Other.
- For 'Specialization' with NAN and has value in 'current occupation' then we can find mode in such a way that- Specialization which has higest count for that 'current occupation'.

```
# Specialization with Select and its corresponding current occupation

Leads[Leads['Specialization'] == "Select"] ['What is your current occupation'].value_counts(dropna=False)
```

Unemployed	1828
Student	72
Working Professional	27
NaN	13
Businessman	1
Other	1

Name: What is your current occupation, dtype: int64

- Unemployed & Student arent employed and hence they dont have work specalization. They can be gropued under new name 'entry level'.
- When 'Specialization' is with Select and its corresponding 'current occupation' is also NAN then we can replace those with Other.
- For 'Specialization' with Select and has value in 'current occupation' then we can find mode in such a way that- filter data for that occupation and then find mode for Specialization.

SPECIALIZATION

As few category item count are very low and to avoid model bias, we could club catgory as mentioned below

- Finance = ['Finance Management', 'Banking, Investment And Insurance']
- ECOMMERCE = ['E-COMMERCE', 'Retail Management', 'Supply Chain Management', 'E-Business',. 'Services Excellence']
- Business/Administration = ['Business Administration', 'International Business', 'Travel and Tourism', 'Rural and Agribusiness', 'Healthcare Management', 'Hospitality Management']
- Media/Marketing = ['Marketing Management', 'Media and Advertising']

WHAT IS YOUR CURRENT OCCUPATION

#Check specalization for NAN value of current occupation to see if we could get more information on missing value Leads[Leads['What is your current occupation'].isnull()].Specialization.value_counts(dropna=False)

Other	1433		
Finance Management			
Human Resource Management	172		
Marketing Management	160		
Operations Management	108		
Business Administration	89		
IT Projects Management	88		
Supply Chain Management	71		
Banking, Investment And Insurance	69		
Travel and Tourism	53		
Media and Advertising	41		
International Business	40		
Healthcare Management	34		
E-COMMERCE	31		
Retail Management	22		
Hospitality Management	21		
Rural and Agribusiness	15		
Services Excellence	15		
E-Business	14		
Name: Specialization, dtype: int64			

- NAN Occupation for which has some Specialization as 'Other' can be grouped into new category Other
- current occupation which NAN and have some in 'Specialization' then we can find mode in such a way that- filter data for that Specialization and then find mode for current occupation.

CURRENT OCCUPATION

CITY

```
Leads['City'].value_counts( dropna=False)*100
Mumbai
                                322200
Select
                                224900
NaN
                                142000
Thane & Outskirts
                                 75200
Other Cities
                                 68600
Other Cities of Maharashtra
                                 45700
Other Metro Cities
                                 38000
Tier II Cities
                                  7400
Name: City, dtype: int64
```

- Select & NAN can be grouped as 'Unknown City'
- Tier II City can be combined with other cities as count is very low

PAGE VIEWS PER VISIT

This looks to be right skewed and median can be used

#Replace the missing value with median
Leads['Page Views Per Visit'].fillna(value=Leads['Page Views Per Visit'].median(),inplace=True)

TOTAL VISITS

TotalVisits

```
sns.histplot(data =Leads, x = "TotalVisits" )
plt.title("Total Visits")
plt.show()
```


This looks to be right skewed and median can be used

```
#Replace the missing value with median
Leads['TotalVisits'].fillna(value=Leads['TotalVisits'].median(),inplace=True)
```

LEAD SOURCE

DUMMIES FOR CATEGORICAL VARIABLES

```
#Create Dummy variable for occupation
current occupation Dummy = pd.get dummies(Leads['What is your current occupation'], prefix = 'Curr Occ', drop first = True)
Leads = pd.concat([Leads, current occupation Dummy], axis = 1)
#Create Dummy variable for Specialization
Specialization Dummy = pd.get dummies(Leads['Specialization'],prefix = 'Spec', drop first = True)
Leads = pd.concat([Leads, Specialization Dummy], axis = 1)
#Create Dummy variable for City
City Dummy = pd.get dummies(Leads['City'],prefix = 'City', drop first = True)
Leads = pd.concat([Leads, City Dummy], axis = 1)
#Create Dummy variable for Lead Source
LeadSource Dummy = pd.get dummies(Leads['Lead Source'], prefix = 'LS', drop first = True)
Leads = pd.concat([Leads, LeadSource Dummy], axis = 1)
Leads['Lead Origin'] = Leads['Lead Origin'].apply(lambda x: 'NON-API' if x not in 'API' else x)
#Create Dummy variable for Lead Origin
LeadOrigin_Dummy = pd.get_dummies(Leads['Lead Origin'],prefix = 'LO_', drop_first = True)
Leads = pd.concat([Leads, LeadOrigin Dummy], axis = 1)
```

HANDLING OUTLIERS – TOTAL VISITS

```
# Handling Outliers in Total Visits
Q3 = Leads['TotalVisits'].quantile(0.99)
Leads = Leads[(Leads['TotalVisits'] <= Q3)]</pre>
Q1 = Leads['TotalVisits'].quantile(0.01)
Leads = Leads[(Leads['TotalVisits'] >= Q1)]
sns.boxplot(y=Leads['TotalVisits'])
plt.show()
   17.5
   15.0
   12.5
DtalVisits
7.5
    5.0
    2.5
    0.0
```

HANDLING OUTLIERS - PAGE VIEWS PER VISIT

```
# Handling Outliers in Page Views Per Visit
Q3 = Leads['Page Views Per Visit'].quantile(0.99)
Leads = Leads[(Leads['Page Views Per Visit'] <= Q3)]
Q1 = Leads['Page Views Per Visit'].quantile(0.01)
Leads = Leads[(Leads['Page Views Per Visit'] >= Q1)]
sns.boxplot(y=Leads['Page Views Per Visit'])
plt.show()
```


HANDLING OUTLIERS - TOTAL TIME SPENT ON WEBSITE

MULTIVARIATE ANALYSIS

CORRELATION ANALYSIS FOR NUMERICAL VALUE

- Page view per visit and Total Visits have good correlation
- Total Time spent have better correlation with targetr variable when compared to Page view per visit and Total Visits

TOP 8 FEATURE WHICH WILL BE USED FOR MODEL BUILDING

Dep. Variable:	Converted	No. Observations:	6363
Model:	GLM	Df Residuals:	6353
Model Family:	Binomial	Df Model:	9
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-3043.8
Date:	Wed, 21 Jul 2021	Deviance:	6087.6
Time:	18:18:23	Pearson chi2:	6.79e+03
No. Iterations:	6		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	-0.8618	0.523	-1.646	0.100	-1.888	0.164
Total Time Spent on Website	4.3095	0.155	27.786	0.000	4.006	4.614
Curr_OccStudent	-1.4903	0.555	-2.684	0.007	-2.578	-0.402
Curr_OccUnemployed	-1.3546	0.520	-2.606	0.009	-2.373	-0.336
Curr_OccWorking Professional	1.3427	0.546	2.458	0.014	0.272	2.413
SpecOther	-3.1574	0.532	-5.930	0.000	-4.201	-2.114
LSGoogle	0.5182	0.082	6.292	0.000	0.357	0.680
LS_Olark Chat	1.5267	0.112	13.577	0.000	1.306	1.747
LSOrganic Search	0.3104	0.109	2.861	0.004	0.098	0.523
LS_Other	3.0478	0.130	23.411	0.000	2.793	3.303

ROC CURVE

PROBABILITY DISTRIBUTION OF ACCURACY, SENSITIVITY, AND SPECIFICITY

0.0 0.1 0.2 0.3 0.4	probability 0.0 0.1 0.2 0.3 0.4	accuracy 0.381581 0.505422 0.687412 0.761590 0.789565 0.779664	sensitivity 1.000000 0.978583 0.899506 0.842257 0.711285 0.635914	specificity 0.000000 0.213469 0.556544 0.711817 0.837865 0.868361
• • •			01711100	
0.6 0.7 0.8	0.6 0.7 0.8	0.763005 0.709571 0.692755	0.546540 0.336079 0.237232	0.896569 0.940025 0.973825
0.9	0.9	0.679554	0.172158	0.992630

looks to be right before 0.3 is good as it has good sensitivity rate and decent accuracy & specificity

TRAIN DATASET VALIDATION

```
# confusion Matrix
confusion2 = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final.final_Predicted )
confusion2
array([[2897, 1038],
        [ 412, 2016]], dtype=int64)
new cutoff yielded a slightly less accurate model, increased sensitivity, and decreased specificity
 accuracy = 0.77 (rounded)
sensitivity = 0.83 (rounded)
specificity = 0.74 (rounded)
 FPR = 0.26 (rounded)
 PPR = 0.66 (rounded)
 NPV = 0.88 (rounded)
precision = 0.73 (rounded)
recall = 0.71 (rounded)
```

TEST DATASET VALIDATION

```
## Confusion matrix
confusion = metrics.confusion_matrix(y_pred_final.Converted, y_pred_final.Predicted )
print(confusion)
[[1211 449]
 [ 195 872]]
accuracy = 0.76 (rounded)
sensitivity = 0.81 (rounded)
specificity = 0.72 (rounded)
FPR = 0.27
PPR = 0.66 (rounded)
NPV = 0.86 (rounded)
precision = 0.66 (rounded)
recall = 0.81 (rounded)
Both in Traning and Test dataset Model have predicted almost with same accuracy, sensitivity, specificity
```