Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

Mathematik 1 Übungsserie 13 (15.1.2024 - 19.1.2024)

Aufgabe 1:

- (*) Betrachtet wird die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \cos x$.
- (a) Geben Sie für $k \in \mathbb{N}$ die k-te Ableitung $f^{(k)}(x)$ von f an.
- (b) Stellen Sie für $n \in \mathbb{N}$ das n-te Taylorpolynom $T_{f,n,x_0}(x)$ von f an der Entwicklungsstelle $x_0 = 0$ auf.
- (c) Wie groß muss n gewählt werden, damit der Approximationsfehler $|f(x)-T_{f,n,x_0}(x)|$ für $x\in (-1,1)$ nicht größer als $\frac{1}{100}$ ist?
- (d) Zeigen Sie, dass für alle $x \in \mathbb{R}$ gilt $\lim_{n \to \infty} T_{f,n,x_0}(x) = f(x)$.

Aufgabe 2:

Betrachtet wird die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = 3x^3 - 2x^2 + x - 4$.

- (a) Bestimmen Sie das erste, zweite, dritte und vierte Taylorpolynom der Funktion f an den Entwicklungsstellen $x_0 = 0$ und $x_1 = 1$.
- (b) Bestimmen Sie das Restglied des dritten Taylorpolynoms von f an den Entwicklungsstellen $x_0 = 0$ und $x_1 = 1$.
- (c) Welche Beziehung besteht zwischen f und den dritten Taylorpolynomen von f an den Entwicklungsstellen $x_0 = 0$ bzw. $x_1 = 1$?

Aufgabe 3:

(*) Berechnen Sie die Taylorreihe der Funktion $f:(-1,1)\to\mathbb{R}$ mit $f(x)=\frac{1}{1-x}$ an der Entwicklungsstelle $x_0=0$.

Vergleichen Sie das Ergebnis mit der bereits bekannten geometrischen Reihe $\sum_{k=0}^{\infty} q^k$.

Für welche $x \in (-1,1)$ konvergiert die Taylorreihe von f gegen f(x)?

Aufgabe 4:

Verwenden Sie den Satz von Taylor, um $f(x_0)$ mit einer Genauigkeit von $\frac{1}{10}$ bzw. $\frac{1}{100}$ genau zu berechnen.

(a)
$$f(x_0) = \sin 3$$
, (b)^(*) $f(x_0) = \ln(1.1)$.

Aufgabe 5:

Zeigen Sie die folgenden Aussagen mit Hilfe des Mittelwertsatzes der Differenzialrechnung.

- (a) Eine differenzierbare Funktion $f:(a,b)\to\mathbb{R}$ ist genau dann konstant, wenn für alle $x\in(a,b)$ gilt f'(x)=0.
- (b) Für alle $a, b \in \mathbb{R}$ gilt $|\sin a \sin b| \le |a b|$.
- (c) Ist $f:(a,b) \to \mathbb{R}$ eine differenzierbare Funktion und gilt f(c) = f(d) = 0 für zwei Zahlen c,d mit a < c < d < b, so hat die Ableitung f' von f eine Nullstelle zwischen c und d.
- (d) Die Gleichung $x^3 3x + c = 0$ hat für kein reelles c zwei Lösungen zwischen 0 und 1.

Aufgabe 6:

Geben Sie für die folgenden Funktionen $f:D\subseteq\mathbb{R}\to\mathbb{R}$ jeweils eine Stammfunktion $F:D\subseteq\mathbb{R}\to\mathbb{R}$ an.

(a) $f(x) = x^a$, $a \in \mathbb{R}$, Hinweis: Fallunterscheidung nach $a \neq -1$ und a = -1.

(b)
$$f(x) = \sin x$$
,

(c)
$$f(x) = \cos x$$
,

(d)
$$f(x) = e^x$$
,

(e)
$$f(x) = \frac{1}{\sqrt{1-x^2}} (|x| < 1),$$

(f)
$$f(x) = \frac{1}{1+x^2}$$
,

(g)
$$f(x) = \sinh x$$
,

(h)
$$f(x) = \cosh x$$
,

(i)
$$f(x) = \frac{1}{\sqrt{1+x^2}}$$
,

(j)
$$f(x) = \frac{1}{\sqrt{x^2 - 1}}$$
,

$$(k)^{(*)} f(x) = \frac{1}{1-x^2} (|x| < 1).$$

Hinweis: Für die Teilaufgaben e, f, i, j und k verwende man die im Abschnitt über Umkehrfunktionen und deren Ableitungen erworbenen Erkenntnisse.