Numara:

PAMUKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ CENG 306 BİÇİMSEL DİLLER ve OTOMATA TEORİSİ DERSİ VİZE SINAV SORULARI

SORU-1	SORU-2	SORU-3	SORU-4	SORU-5	TOPLAM
20	20	20	20	20	100

SORU 1) $F = \{w \in \{0,1\}^* \mid |w| \ge 0 \text{ olan ve tek sayıda sembol ile ayrılmış 1 çifti içermeyen tüm katarlar} dili verilmiştir. <math>F$ dilini tanıyan DFA'nın durum diyagramını en fazla 5 durum ile tasarlayınız.

SORU 2) $L = \{w \in \{0,1\}^* \mid \text{Tek sayıda sembolle ayrılmış 1 çifti içeren tüm katarlar.} dili verilmiş olsun. <math>L$ dilini tanıyan NFA'nın durum diyagramını en fazla 5 durum ile tasarlayınız. (NFA olarak tasarlayınız. DFA tasarımı için puan verilmeyecektir.)

Numara:

SORU 3) $M=(K, \Sigma, s, \delta, F)$ makinesi için $K=\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$, $s=q_0$, $\Sigma=\{0, 1\}$, $F=\{q_5\}$ ve geçiş fonksiyonu $\delta(.)$ aşağıdaki tablo ile verilmiştir. Durum sayısında indirgeme yapılabiliyorsa durum indirgenmiş yeni otomatı elde ediniz.

State/ \(\sum_{\text{\tinit}\text{\ti}\text{\tex{\tex	0	1
$\rightarrow q_0$	91	92
q_1	q ₃	94
92	95	96
93	93	94
94	95	96
* 9 ₅	93	94
96	9 ₅	96

Numara:

SORU 4) $M=(K, \Sigma, s, \Delta, F)$ makinesi için $K=\{q_0, q_1, q_2, q_3\}$, $s=q_0, \Sigma=\{a, b\}$, $F=\{q_2, q_3\}$ ve geçiş ilişkisi $\Delta=\{(q_0, a, q_1), (q_0, e, q_1), (q_0, b, q_2), (q_1, b, q_3), (q_1, e, q_3), (q_2, b, q_2), (q_2, e, q_3), (q_3, a, q_3))\}$ olarak tanımlıdır. DFA makinesini elde ediniz.

Numara:

SORU 5) Durum indirgeme (state elimination) yöntemi ile tüm adımları göstererek düzenli ifadeyi elde ediniz.

