55 E 55	Cambridge Assessment
	Cambridge Assessment International Education

experiments 1 and 2: doubling [ClO ₂] quadruples the rate, so se	cond order			ļ	1
experiments 2 and 3: doubling [OH $\bar{\ }$] doubles the rate, so first or	rder			ı <u></u>	1
rate equation = $k[ClO_2]^2[OH^-]$				1	1
from experiment t 2: $9.34 \times 10^{-4} = k(2.50 \times 10^{-2})^2 \times 1.30 \times 10^{-3}$ $k = 1.15 \times 10^3$					1
units: mol ⁻² dm ⁶ s ⁻¹				· 	1
heterogeneous catalysts are in different physical state from the physical state as the reactants	reactants AND homo	geneous catalysts are i	n the same		1
catalysed reaction	heterogeneous	homogeneous	1		2
manufacture of ammonia in the Haber process	✓ ·				
removal of nitrogen oxides from car exhausts	✓				
oxidation of sulfur dioxide in the atmosphere		✓	1		
$2MnO_4^- + 6H^+ + 5(CO_2H)_2 \rightarrow 2Mn^{2+} + 10 CO_2 + 8 H_2O$ correct Mn : $(CO_2H)_2$ ratio rest of equation				1 1	2
first section: flatter second section: steeper, before flattening				1	2
Concately weed exactions Contary and products Reaction constraines					•
diagram catalyst lowers E _a for both the forward and reverse reactions so the process requires less energy/can occur at a lower temper	erature			1 1 1	
$K_p = (pNH_3)^2/(pN_2)(pH_2)^3$					
$1.45 \times 10^{-5} = (\rho NH_3)^2 / 20 \times 60 \times 60 \times 60$					1

]	M1 ΔH_{latt} and ΔH_{hyd} decrease / both become less exothermic / less negative	3		
	M2 ΔH_{latt} decreases / changes less/becomes less exothermic by a smaller extent OR ΔH_{hyd} decreases / changes more / dominant factor			
	M3 ΔH_{sol} becomes less exothermic / less negative OR ΔH_{sol} becomes (more) endothermic / (more) positive OR $\Delta H_{sol} = \Delta H_{hyd} - \Delta H_{latt}$ expression AND reaction becomes less exothermic			
	Mg: fizzing Ba: (fizzing and) white solid/ppt forms			
	M1 solubility of BaSO ₄ = $\sqrt{1.08 \times 10^{-10}}$ = 1.04 × 10 ⁻⁵ (mol dm ⁻³)	2		
	$M2 = 1.04 \times 10^{-5} \times 233.4 / 10 = 2.43 \times 10^{-4}$ (g per 100 cm ³ of solution) min 2sf			
	$-1473 = 180 + 503 + 965 + \Delta H^{e}_{f} - 2469$	3		
	ΔH^{e}_{f} of SO ₄ ²⁻ (g) = -652 kJ mol ⁻¹			
	M1 correct five values used [1] M2 only correct five values used [1] M3 correct signs and evaluation [1]			
	 BaSO₄ is more negative/bigger as Ba²⁺ is smaller OR Ba²⁺ has a larger charge stronger force of attraction between the ions 	2		
	One mark for two correct Two marks for all three correct			
	M1 $\Delta G^{\circ} = 0$ so T = $\Delta H_r^{\circ} / \Delta S^{\circ}$	2		
	M2 T = 132 / 0.616 = 214.3 K T = -58.7 °C min 2sf			
	M1 $\Delta S^{\circ} = (203 + (70 \times 8) + (2 \times 192)) - (427 - (2 \times 95)) = +530 \text{ J K}^{-1} \text{ mol}^{-1}$	3		
	M2 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$			
]	M3 ΔG° = 133 – (298 × 0.530) = –24.9 kJ mol ⁻¹ ecf 1dp min M1 solubility decreases (down the Group) [1] M2 because lattice energy and hydration energy decreases OR lattice energy and hydration energy become less exothermic / more endothermic [1] M3 because hydration energy decreases to a greater extent (than does ΔH_{Latt}) [1]	3		
	$(K_{\rm w} =) [{\rm H}^{\dagger}][{\rm OH}^{-}]$	1		

effect of increasing temperature decreases stay the same increase
pH ✓
ratio of [H ⁺]:[OH ⁻] ✓
H^{\dagger}] = $10^{-13.25}$ = 5.62×10^{-14} [1] DH^{-}] = $K_w/[H^{\dagger}]$ = $1.0 \times 10^{-14}/5.62 \times 10^{-14}$ DH^{-}] = 0.18 (0.178) (mol dm ⁻³) [1] ecf correct answer scores [2]
$CO_3^- + H^+ \rightarrow H_2CO_3 \mathbf{OR} HCO_3^- + H^+ \rightarrow CO_2 + H_2O [1]$ $_2CO_3 + OH^- \rightarrow HCO_3^- + H_2O [1]$
$H_3COOH + H_2O \Rightarrow CH_3COO^- + H_3O^+[1]$ cid + base \Rightarrow base + acid [1]
1 moles NaOH = 0.15 × 20/1000 = 0.0030 AND initial moles CH ₃ COOH = 0.25 × 30/1000 OR 0.0075 [1]
2 equilibrium moles CH ₃ COOH = 0.0045 AND equilibrium moles CH ₃ COONa = 0.0030 [1]
3 [CH ₃ COOH] = 0.0045/0.05 = 0.090 AND [CH ₃ COONa] = 0.003/0.05 = 0.060 [H ⁺] = $K_a \times$ [CH ₃ COOH]/[CH ₃ COONa] = 2.625 × 10 ⁻⁵ [1]
4 pH = −log[H ⁺] = 4.6 [1] correct answer scores [4]
nd point = 28 cm ³
1 reaction M bromothymol (blue) / bromocresol (green) AND reaction N bromothymol (blue) / thymolphthalein [1]
2 (both indicators have) a pH range / colour change within / in end-point / vertical region / sharp fall of the graph [
$K_{w} = [H^{+}][OH^{-}][1]$
H ⁺] = $1 \times 10^{-14} / 0.027 = 3.7037 \times 10^{-13}$ H = $-\log(3.7037 \times 10^{-13}) = $ 12.4 [1] min 3sf
H ⁺] = $\sqrt{3.72 \times 10^{-8} \times 0.010}$ = 1.9287 × 10 ⁻⁵ H = -log(1.9287 × 10 ⁻⁵)= 4.7 [1] min 2sf
pc = (0.935 / 50) / (0.065 / 50) pc = 14.4 (14.38) [1] min 3sf
1: 14.4 = ((0.935 – x) / 50) / (x / 100) [1] ecf from 4(c)(i) 2: x = 0.114 g [1] min 2sf ecf from M1
11 ΔH_{latt} and ΔH_{hyd} both decrease OR ΔH_{latt} and ΔH_{hyd} both become less exothermic / more endothermic
2 ΔH_{latt} decreases more than ΔH_{hyd} (as OH ⁻ being smaller than M ²⁺)
3 ΔH_{sol} becomes more exothermic/more negative
or MCO ₃) change / decrease in ΔH_{hyd} is larger than decrease in ΔH_{latt}
1 Sr and Ba could be used AND Mg could not be used

$= 3.2 \times 10^{-31}$ M1 (white) pt./ solid (of BaCO ₂) will appear M2 due to the common ion effect OR the BaCO ₂ (s) \Rightarrow Ba²'(aq) + CO₂²-(aq) equilibrium shifts to the left $\frac{1}{2} \sum_{\substack{\text{Climinits}}} \frac{1}{2} \sum_{\text{Climini$	The final of the first of the f	
	$K_{\text{sn}} = [Mq^{2+}(aq)][OH^{-}(aq)]^2 OR K_{\text{so}} = (2.0 \times 10^{-4})(4.0 \times 10^{-4})^2$	2
M2 due to the common ion effect OR the BaCO ₂ (s) \Rightarrow Ba ^{2*} (aq) + CO ₂ **(aq) equilibrium shifts to the left AHr		
elements $M_{\rm g}^{2^{*}}(\underline{s}) + 20\Pi^{*}(\underline{s})$ $M_{\rm g}^{2^{*}}(\underline{s}) + 20$	M1 (white) ppt. / solid (of BaCO ₃) will appear	2
elements LE $AH_{1} = AH_{2} + 2OH(g)$ elements LE $AH_{2} = AH_{3} + 736 + 1450 + 2AH_{3}(OH^{-}(g)) = -925$ $2AH_{4}(OH^{-}(g)) = -266$ $AH_{4}(OH^{-}(g)) = -236$ $AH_{4}(OH^{-}(g)) = -326$ $AH_{4}(OH^{-}(g)) = -236$ $AH_{4}(OH^{-}(g)) = -326$ $AH_{4}(OH^{-}($	M2 due to the common ion effect OR the BaCO ₃ (s) \rightleftharpoons Ba ²⁺ (aq) + CO ₃ ²⁻ (aq) equilibrium shifts to the left	
	elements	3
lattice energy or hydration energy decrease lattice energy decreases more than hydration energy enthalpy change of solution becomes more negative / exothermic $ K_{sp} = [Sr^2][OH]^2 $ 1 $ K_{sp} = (3.37 \times 10^{-2}) \times (6.74 \times 10^{-2})^2 = 1.5 \times 10^{-4} $ 2 units: mol³ dm³ 2 $ 2 SrO_2 \longrightarrow 2SrO + O_2 $ 1 temperature will increase (down the group) charge density of cation decreases (down the group) this means less polarisation of the O_2^{sc} ion or weakens the O-O bond less $ BaC_2O_4 \longrightarrow)BaO + CO + CO_2 $ 1 the KMnO ₄ would decolourise bubbles (gas evolution would be seen $ K_{sp} = [Ag^*]^2[S^2] $ 1 $ [S^2] = 1.16 \times 10^{-17} $ $ [Ag^*] = 2.32 \times 10^{-17} $ $ [Ag^*] = 2.32 \times 10^{-17} $ $ [Ag^*] = 6.2(4) \times 10^{-61} \text{ minimum 2 sig. fig.} $ 2 $ M1: \text{moles } Ag_2S = 1/247.9 = 0.00403 \text{ moles } [1] \text{ 2sf min} $ 2 $ M2: 1.16 \times 10^{-17} = 0.0040 / V \text{ so} V = 3.5 \times 10^{14} \text{ (dm³)} [1] \text{ 2sf min} $ 2 $ M1: [H^*] = \sqrt{2.0 \times 10^{-6} \times 0.20} $ $ [H^*] = 2.0 \times 10^{-6} (1.9976 \times 10^{-6}) $ 3 minimum 2 sig. fig. min	$2\Delta H_f(OH^-(g)) = -266$ $\Delta H_f(OH^-(g)) = -133 \text{ (kJ mol}^{-1})$	1
lattice energy decreases more than hydration energy enthalpy change of solution becomes more negative / exothermic $ K_{sp} = (Si^2^2 \text{IOH}^2 ^2) \times (6.74 \times 10^{-2})^2 = 1.5 \times 10^{-4} $ 2 units: moi³ dm³ 2 2 SrO2 \longrightarrow 2SrO + O2 1 1 temperature will increase (down the group) this means less polarisation of the O2² ion or weakens the O-O bond less $ BaC_xO_4 \longrightarrow)BaO + CO + CO_2 $ 1 1 the KMnO4 would decolourise bubbles / gas evolution would be seen $ K_{sp} = [Rg^2]^2[S^2] $ 1 1 $ [S^2] = 1.16 \times 10^{-17} $ 2 $ [Rg^2] = 2.32 \times 10^{-17} $ 2 $ K_{sp} = 6.2(4) \times 10^{-51} \text{ minimum 2 sig. fig.} $ 2 correct answer scores 2 marks Award 1 mark for two points, award 2 marks for three points $ M1: \text{ min lose } Ag_2S = 1/247.9 = 0.00403 \text{ moles } [1] \text{ 2sf min ecf on M1} $ 2 $ (H^2) = \sqrt{2.0 \times 10^{-5} \times 0.20} $ 3 $ (H^2) = 2.02 \times 10^{-5} \times 0.20 $ 3 $ (H^2) = 2.02 \times 10^{-5} \times 0.20 $ 3 $ (H^2) = 2.02 \times 10^{-5} \times 0.20 $ 3 $ (H^2) = 2.0 \times 10^{-5} \times 0.20 $ 3 $ (H^2) = 2.0 \times 10^{-5} \times 0.20 $ 3 $ (H^2) = 2.0 \times 10^{-5} \times 0.20 $ 3 $ (H^2) = 2.0 \times 10^{-5} \times 0.20 $ 3 minimum 2 sig. fig. min minimum 2 sig. fig. min	down the group:	3
$\begin{array}{c} K_{\rm sp} = (3.37 \times 10^{-2}) \times (6.74 \times 10^{-2})^2 = 1.5 \times 10^{-4} \\ & \text{units: mol}^3 \text{dm}^{-9} \\ & \\ 2 \text{SrO}_2 \longrightarrow 2 \text{SrO} + \text{O}_2 \\ & \\ 1 \\ \text{temperature will increase (down the group)} \\ & \text{charge density of cation decreases (down the group)} \\ & \text{this means less polarisation of the O}_2^{-5} \text{ion } \text{or weakens the O-O bond less} \\ & \text{BaC}_2 \text{O}_4 \longrightarrow) \text{BaO} + \text{CO} + \text{CO}_2 \\ & \\ 1 \text{the KMnO}_4 \text{would decolourise} \\ & \text{bubbles} / \text{gas evolution would be seen} \\ & K_{\rm sp} = [\text{Ag}]^3 [2]^2 \\ & \\ \text{I} \text{1} \text{(Ag)}^3 = 2.32 \times 10^{-17} \\ & (Ag)$	lattice energy decreases more than hydration energy	
$ 2 \operatorname{SrO}_2 \longrightarrow 2 \operatorname{SrO} + \operatorname{O}_2 $ 1 temperature will increase (down the group)	$K_{\rm sp} = [{\rm Sr}^{2+}][{\rm OH}^{-}]^2$	1
temperature will increase (down the group) charge density of cation decreases (down the group) this means less polarisation of the O_2^{2-} ion or weakens the O-O bond less $BaC_2O_4 \longrightarrow)BaO + CO + CO_2 $ 1 the KMnO ₄ would decolourise bubbles / gas evolution would be seen $K_{sp} = [Ag^4]^2[S^2] $ 1 • $[S^2] = 1.16 \times 10^{-17}$ 2 • $[Ag^4] = 2.32 \times 10^{-17}$ 2 • $[Ag^4] = 2.32 \times 10^{-17}$ 5 • $K_{sp} = 6.2(4) \times 10^{-51}$ minimum 2 sig. fig. correct answer scores 2 marks Award 1 mark for two points, award 2 marks for three points $M1: \text{moles } Ag_2S = 1/247.9 = 0.00407 \text{ V so } V = 3.5 \times 10^{14} \text{ (dm}^3) \text{ [1] 2sf min ecf on M1}$ correct answer scores 2 marks $M1: [H^4] = \sqrt{2.0 \times 10^{-9} \times 0.20} \text{ [H^4]} = 2.0 \times 10^{-5} \text{ (1.9976} \times 10^{-5})$ M2: pH = 4.7 (4.699) minimum 2 sig. fig. min	$K_{\rm sp} = (3.37 \times 10^{-2}) \times (6.74 \times 10^{-2})^2 = 1.5 \times 10^{-4}$ units: mol ³ dm ⁻⁹	2
charge density of cation decreases (down the group) this means less polarisation of the $O_2^{2^-}$ ion or weakens the O-O bond less $BaC_2O_4 \longrightarrow)BaO + CO + CO_2$ 1 the KMnO ₄ would decolourise bubbles / gas evolution would be seen $K_{sp} = [Ag^*]^2[S^2]$ $[S^2] = 1.16 \times 10^{-17}$ $[Ag^*] = 2.32 \times 10^{-17}$ $K_{sp} = 6.2(4) \times 10^{-51} \text{minimum 2 sig. fig.}$ correct answer scores 2 marks Award 1 mark for two points, award 2 marks for three points $M1: \text{moles } Ag_2S = 1/247.9 = 0.00403 \text{ moles } [1] 2\text{sf min}$ $M2: 1.16 \times 10^{-17} = 0.0040 / V \text{ so} V = 3.5 \times 10^{14} (\text{dm}^3) [1] 2\text{sf min ecf on M1}$ correct answer scores 2 marks $M1: [H^*] = \sqrt{2.0 \times 10^{-9} \times 0.20} [H^*] = 2.0 \times 10^{-5} (1.9976 \times 10^{-5})$ $M2: pH = 4.7 (4.699) \text{minimum 2 sig. fig. min}$	2 SrO ₂	1
the KMnO ₄ would decolourise bubbles / gas evolution would be seen $K_{\rm sp} = [{\rm Ag^{+}}]^{2}[{\rm S^{2-}}]$ 1 • $[{\rm S^{2-}}] = 1.16 \times 10^{-17}$ 2 • $[{\rm Ag^{+}}] = 2.32 \times 10^{-17}$ 9. $[{\rm Ag^{+}}] = 2.32 \times 10^{-18}$ minimum 2 sig. fig. correct answer scores 2 marks Award 1 mark for two points, award 2 marks for three points 1 M1: moles ${\rm Ag_{2}S} = 1/247.9 = 0.00403$ moles [1] 2sf min 2 M2: $1.16 \times 10^{-17} = 0.0040 / {\rm V}$ so ${\rm V} = 3.5 \times 10^{14} ({\rm dm^{3}})$ [1] 2sf min ecf on M1 correct answer scores 2 marks 1 M1: $[{\rm H^{+}}] = \sqrt{2.0 \times 10^{-9} \times 0.20}$ 2 $[{\rm H^{+}}] = 2.0 \times 10^{-5} (1.9976 \times 10^{-5})$ 1 M2: pH = 4.7 (4.699) minimum 2 sig. fig. min	temperature will increase (down the group) charge density of cation decreases (down the group) this means less polarisation of the ${\rm O_2}^{2-}$ ion <i>or</i> weakens the O-O bond less	3
bubbles / gas evolution would be seen $K_{\rm sp} = [{\rm Ag^+}]^2[{\rm S}^{2-}]$ 1 • $[{\rm S}^{2-}] = 1.16 \times 10^{-17}$ 2 • $[{\rm Ag^+}] = 2.32 \times 10^{-17}$ 9 • $K_{\rm sp} = {\bf 6.2(4)} \times 10^{-51}$ minimum 2 sig. fig. 2 correct answer scores 2 marks Award 1 mark for two points, award 2 marks for three points 3 M1: moles ${\rm Ag_2S} = 1/247.9 = 0.00403$ moles $[1]$ 2sf min 3 M2: $1.16 \times 10^{-17} = 0.0040 / {\rm V}$ so ${\rm V} = 3.5 \times 10^{14} ({\rm dm^3})$ $[1]$ 2sf min ecf on M1 3 correct answer scores 2 marks 3 M1: $[{\rm H^+}] = \sqrt{2.0 \times 10^{-9} \times 0.20}$ 2 $[{\rm H^+}] = 2.0 \times 10^{-6} (1.9976 \times 10^{-6})$ 3 M2: pH = 4.7 (4.699) minimum 2 sig. fig. min 3	$BaC_2O_4 \longrightarrow BaO + CO + CO_2$	1
• $[S^2-] = 1.16 \times 10^{-17}$ • $[Ag^4] = 2.32 \times 10^{-17}$ • $K_{sp} = 6.2(4) \times 10^{-51}$ minimum 2 sig. fig. correct answer scores 2 marks Award 1 mark for two points, award 2 marks for three points M1: moles $Ag_2S = 1 / 247.9 = 0.00403$ moles [1] 2sf min 2 M2: $1.16 \times 10^{-17} = 0.0040 / V$ so $V = 3.5 \times 10^{14} (dm^3)$ [1] 2sf min ecf on M1 correct answer scores 2 marks M1: $[H^+] = \sqrt{2.0 \times 10^{-9} \times 0.20}$ $[H^+] = 2.0 \times 10^{-5} (1.9976 \times 10^{-5})$ M2: pH = 4.7 (4.699) minimum 2 sig. fig. min	bubbles / gas evolution would be seen	2
Award 1 mark for two points, award 2 marks for three points M1: moles $Ag_2S = 1 / 247.9 = 0.00403$ moles [1] 2sf min M2: $1.16 \times 10^{-17} = 0.0040 / V$ so $V = 3.5 \times 10^{14} (dm^3)$ [1] 2sf min ecf on M1 correct answer scores 2 marks M1: $[H^+] = \sqrt{2.0 \times 10^{-9} \times 0.20}$ $[H^+] = 2.0 \times 10^{-5} (1.9976 \times 10^{-5})$ M2: pH = 4.7 (4.699) minimum 2 sig. fig. min	• $[S^2-] = 1.16 \times 10^{-17}$ • $[Ag^+] = 2.32 \times 10^{-17}$	2
M2 : $1.16 \times 10^{-17} = 0.0040 / \text{V}$ so $V = 3.5 \times 10^{14} (\text{dm}^3)$ [1] 2sf min ecf on M1 correct answer scores 2 marks M1 : $[H^+] = \sqrt{2.0 \times 10^{-9} \times 0.20}$ [H ⁺] = $2.0 \times 10^{-5} (1.9976 \times 10^{-5})$ M2 : pH = 4.7 (4.699) minimum 2 sig. fig. min		
correct answer scores 2 marks M1: $[H^+] = \sqrt{2.0 \times 10^{-9} \times 0.20}$ $[H^+] = 2.0 \times 10^{-5} (1.9976 \times 10^{-5})$ M2: pH = 4.7 (4.699) minimum 2 sig. fig. min	M1 : moles Ag ₂ S = 1 / 247.9 = 0.00403 moles [1] 2sf min	2
M1: $[H^+] = \sqrt{2.0 \times 10^{-9} \times 0.20}$ $[H^+] = 2.0 \times 10^{-5} (1.9976 \times 10^{-5})$ M2: $pH = 4.7 (4.699)$ minimum 2 sig. fig. min	M2 : $1.16 \times 10^{-17} = 0.0040 / V$ so $V = 3.5 \times 10^{14} (dm^3)$ [1] 2sf min ecf on M1	
M1. $[H] = \sqrt{2.0 \times 10^{-5} \times 0.20}$ $[H^+] = 2.0 \times 10^{-5} (1.9976 \times 10^{-5})$ M2: pH = 4.7 (4.699) minimum 2 sig. fig. min	correct answer scores 2 marks	
		2
correct answer scores 2 marks	M2 : pH = 4.7 (4.699) minimum 2 sig. fig. min	
	correct answer scores 2 marks	

9.

M1: Both equilibria correctly stated 2 moles KOH = $0.005 \times 0.2 = 1 \times 10^{-3}$ moles HOBr(initial) = $0.020 \times 0.2 = 4 \times 10^{-3}$ moles HOBr(eqm) = $4 \times 10^{-3} - 1 \times 10^{-3} = 3 \times 10^{-3}$ moles BrO-(eqm) = 1×10^{-3} **M2:** ratio [OBr⁻]/[HOBr] = 1/3 $[H^+] = 3 \times 2.0 \times 10^{-9} = 6 \times 10^{-9}$ pH = 8.2(2)correct answer scores 2 marks $Ca_3N_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2NH_3$ 2 products are Ca(OH)2 and NH3 [1] rest of the equation, balanced [1] 3 M1: solubility increases (down the Group) [1] M2: because lattice energy and hydration energy decreases or lattice energy and hydration energy become less exothermic / (more) endothermic[1] M3: because lattice energy decreases to a greater extent (than does ΔH_{hyd}) [1] 3 ΔH_{hyd} gaseous ions aqueous ions $\Delta H_{\rm sol}$ ΔH_{latt} ionic solid arrow label and direction correct [1] x 3 $K_{sp} = [Ca^{2+}][F^{-}]^{2}[1]$ units = mol³ dm⁻⁹ [1] 2 $K_{\rm sp} = 4x^3 = 3.45 \times 10^{-11}$ 1 $x = 2.05 \times 10^{-4} \text{ (mol dm}^{-3}\text{)}$ $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$ 1 moles of $Mg_3N_2 = 2.52 / 100.9 = 0.025 (0.0249)$ 1 1 (moles of $Mg(OH)_2 = 0.075 (0.0749)$) mass of Mg(OH)₂ = (0.075×58.3) = 4.37 g or 4.4 g 1 solubility increases (down the group) 1 ΔH_{latt} and ΔH_{hyd} both decrease / less exothermic / more endothermic 1 but ΔH_{latt} decreases more (than ΔH_{hyd} decreases) 1 ΔH_{sol} becomes more negative / more exothermic / less endothermic $K_{\rm sp} = [{\rm Mg}^{2+}] [{\rm OH}^{-}]^2$ 1 $K_{\rm sp} = (1.7 \times 10^{-4}) \times (2 \times 1.7 \times 10^{-4})^2 = 2.0 \times 10^{-11} \ (1.97 \times 10^{-11})$ 1 mol³ dm⁻⁹ 1 1 cations become bigger / ionic radius increases 1 polarisation/distortion of anion / hydroxide ion decreases

10	M1: using expt 2 and 3, [NH ₃] × 2, rate	\times 4 so order with respect to [NH ₃] = 2		2
	M2 : using expt 1 and 2, [C <i>l</i> O⁻] × 2 and	$[NH_3] \times 2$, as rate \times 8 (=2 2 * x) so order with respect to $[CiO^-]$ = 1		
	$rate = k[NH_3]^2[ClO^-]$			1
	M1 : $k = 0.256 / (0.200 \times 0.100^2)$	k = 128		2
	M2: Units	$dm^6 mol^{-2} s^{-1}$		
	curve / line showing k increasing as temperature increases			1
	M1: plot a graph of [I ⁻] against time			2
	M2: constant half-lives $C lO^- + I^- \rightarrow IO^- + C l^-$ $step 2 \text{ and } C l \text{ is reduced / oxid no. decreases / oxid no. } +1 \rightarrow -1$			
				1
				1
	step 2 and I is oxidised / oxid no. incre	·		