Υλοποίηση Μονάδας Γενικού Ασύγχρονου Δέκτη Αποστολέα (UART)

Εργαστήριο Ψηφιακών Συστημάτων (2023-24)

Ιωάννης Αθανασιάδης 03491

15/11/2023

Μέρος A – Ελεγκτής Baud Rate

Το module αυτό το μοιράζονται ο Δέκτης και Αποστολέας και ο στόχος του είναι να παρέχει στο κύκλωμα τον κατάλληλο παλμό δειγματοληψίας ανάλογα με τον επιλεγμένο **Baud Rate**.

Δεδομένου ότι έχουμε συχνότητα ρολογιού στα 100 MHz πρέπει να βρούμε τις μέγιστες τιμές του μετρητή μας για να πετύχουμε το σωστό **Baud Rate**.

BAUD_SEL	Baud Rate	T _{Baud Rate} / 16 (ns)	Τιμή Counter	Σχετικό Σφάλμα
000	300	208333.3	20833	20 ns
001	1200	52083.3	5208	20 ns
010	4800	13020.8	1302	13 ns
011	9600	6510.4	651	6 ns
100	19200	3255.2	325	83 ns
101	38400	1627.6	163	39 ns
110	57600	1085.1	108	81 ns
111	115200	542.5	54	40 ns

Παρατηρούμε ότι η μέγιστη τιμή του **counter** είναι το 20833 επομένως για να βρούμε το μέγεθος του μετρητή σε bit βρίσκουμε το άνω φράγμα του log_220833 , δηλαδή **15 bit.**

<u>Σημείωση:</u> Το *σχετικό σφάλμα* αν και σημαντικό υπό τις ιδανικές καταστάσεις του εργαστηρίου δεν δημιουργεί μεγάλο πρόβλημα γιατί ο *Αποστολέας* και *Δέκτης* έχουν το ίδιο σφάλμα στην παραγωγή του *Baud Rate*.

Μέρος Β – Υλοποίηση UART Αποστολέα (Transmitter)

Movάδα *uart_transmitter*

Χρησιμοποιούμε αυτή την μονάδα για **top-level** module και αποτελεί ότι έχει να κάνει με την **μετάδοση** δεδομένων μέσω *UART*.

Movάδα sync_reset_module

Μονάδα για να συγχρονίζει το σήμα του *reset* στο *clock*.

Movάδα transmitter_baud

Το module αυτό χρησιμοποιείτε για να βρούμε το **σωστό** baud rate για τον Αποστολέα, δηλαδή για να το κάνουμε **16 φορές** γρηγορότερο από την έξοδο του baud_controller.

Πρακτικά αποτελείται από έναν *μετρητή* των **4-bit** που παράγει έναν **παλμό**, *με διάρκεια ενός κύκλου*, με περίοδο του *baud rate*.

Moνάδα Trasmitter_WR_module

Η μονάδα αυτή είναι υπεύθυνη για την λήψη των δεδομένων από το σύστημα.

Εσωτερικά του *module* ελέγχουμε αν ο αποστολέας είναι σε *κατάσταση αποστολής* δεδομένων και αν είναι *ανενεργό* μεταφέρουμε το *Tx_DATA* στο κομμάτι της μνήμης *data* όταν είναι ενεργό το σήμα Tx_WR.

Movάδα transmit_module

Αυτή η μονάδα αναλαμβάνει την **αποστολή δεδομένων** στην ενεργοποίηση του *Tx_EN*.

Εσωτερικά έχουμε έναν μετρητή καταστάσεων, **stages**, με την αλλαγή του οποίου μεταβάλλουμε τις τιμές του **TxD** και **Tx_BUSY**. Η ανενεργή κατάσταση του αποστολέα χαρακτηρίζεται από την 0xA τιμή του μετρητή.

