PHY2004: Electromagnetism and Optics

Lecture 9:

Magnetic properties of materials

Electric properties of materials

We have seen that materials react to an external electric fields in different ways: **conductors and dielectrics**

CONDUCTORS

Fig 31

- Free charges on the surface
- no field inside
- field always perpendicular to the surface

DIELECTRICS

$$\underline{p} = Ze\underline{\ell}$$

$$\underline{\mathbf{D}} = \varepsilon \underline{\mathbf{E}} = \varepsilon_0 \underline{\mathbf{E}} + \underline{\mathbf{P}}$$

Can we have a similar behaviour for magnetic fields?

The magnetic moment

Molecules within the material will react to an external magnetic field by setting a magnetic moment (compare with the electric dipole in electrostatics)

This is equivalent to having a current circulating within the molecule.

The magnetic moment is defined by the current times the area over which it circulates m = SI. Each molecule will have its own moment and the density of magnetic moment will be the product between m and the density of molecules: M = nm

Magnetic properties of materials

M plays the same role as P in electrostatics. It tells you how the material reacts to the external field.

The total field will then be made of two contributions: the external field (H) and the field induced in the material (M):

$$\underline{\mathbf{B}} = \mu_0 (\underline{\mathbf{H}} + \underline{\mathbf{M}})$$

Similar to the electrostatic case, we can define a relative permittivity of the material (μ_r) and the magnetic susceptibility $(\chi_m = \mu_r - 1)$.

$$\underline{\mathbf{M}} = \chi_{\mathrm{m}} \underline{\mathbf{H}}$$

$$\underline{\mathbf{B}} = \mu_0 (1 + \chi_{\mathrm{m}}) \underline{\mathbf{H}}$$

Magnetic properties of materials

However, magnetic materials do not always act the same way (remember in the electrostatic case $\varepsilon_r > 1$).

$$\chi_{\rm m} > 0$$
 paramagnetic material $\chi_{\rm m} < 0$ diamagnetic material

A paramagnetic material responds by enhancing the field in the medium whereas a diamagentic material counteracts it.

Ferromagnetic materials

Field lines

We have seen that the field B has continuous lines that always go in loops. However, M is clearly discontinuous (zero in vacuum, non-zero in the material). Hence, also H must be discontinuous

Fig 66 Solenoid with a paramagnetic rod

Boundary conditions for B

What are the boundary conditions for B (or, how does B change whenever it passes through a different material?)

Going from material 2 to 1, the magnetic field must change direction but how?

$$\int_{B} \underline{B} \cdot \underline{dS} = \int_{V} \nabla \cdot \underline{B} \, dV = 0 \quad (\nabla \cdot \underline{B} = 0)$$

$$\underbrace{B_{1} \cdot \underline{A}}_{1} = \underline{B_{2} \cdot \underline{A}}_{2}$$

$$\vdots B_{1n} = \underline{B_{2n}}_{2n}$$

The normal component of the field B is always continuous.

Boundary conditions for H

What are the boundary conditions for H (or, how does H change whenever it passes through a different material?)

The tangential component of H is continuous as long as there are no surface currents

Example

A wire made from a conducting magnetic material of relative permeability μ_r , carries a current I, uniformly distributed across its circular cross section of radius R. Determine expressions for B,H and M inside the wire.

$$\oint \vec{H} \cdot d\vec{\ell} = I \qquad \therefore H = I \frac{r}{2\pi R^2}$$

$$H.2\pi r = I \frac{\pi r^2}{\pi R^2}$$

$$\therefore B = \mu_0 \mu_r H = \mu_0 \mu_r I \frac{r}{2\pi R^2}$$

$$M = \frac{B}{\mu_0} - H \quad \therefore M = I \frac{r}{2\pi R^2} (\mu_r - 1)$$

