2강 표본조사의 기본개념

정보통계학과 이기재교수

1. 모집단 분포

2. 표본분포

3. 추정

4. 엑셀을 활용한 실습

가상의 모집단 예

모집단의 분포

모집단 분포의 히스토그램

가상의 모집단 예

1. 모수

- ▶ 모집단의 특성값(예) 모평균, 모분산, 모비율, 모총계 등
- 2. 모평균
 - ▶ 모집단의 중심위치의 척도
 - $\blacktriangleright \mu = E(y)$
- 3. 모분산
 - ▶ 모집단에서 각 단위들이 모평균으로부터 흩어진 정도

$$V(y) = E(y-\mu)^2$$

$$= \sum_{y} (y-\mu)^2 \cdot p(y)$$

$$= \sum_{y} y^2 p(y) - \mu^2$$

$$= \sigma^2$$

가상의 모집단 예

♣ 예제

$$E(y) = \sum_{y} y \cdot p(y)$$

$$= 0 \cdot p(0) + 1 \cdot p(1) + \dots + 9 \cdot p(9)$$

$$\sigma^2 = \sum_y y^2 p(y) - \mu^2$$

$$= \frac{1}{10} (0^2 + 1^2 + \dots + 9^2) - (4.5)^2$$

$$= 8.25$$

모수추정

표본조사의 목적은 표본의 데이터로 모수(모집단 특성치)를 추론하는 것

모수

추정량

모평균
$$\mu$$
)

표본평균
$$\overline{y}=\sum_{i=1}^n y_i/n$$
)

모분산
$$(\sigma^2)$$

표본분산
$$(\quad s^2 = \sum_{i=1}^n (y_i - \bar{y})^2/(n-1) \quad)$$

모수추정

♣예제 1-1

▶ 6개의 표본 데이터 : 3 0 9 8 5 2

▶ 표본평균:
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$= \frac{1}{6} (3+0+9+8+5+2)$$

$$= 4.5$$

▶ 표본분산 :
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2$$
$$= \frac{1}{6-1} \left[(3-4.5)^2 + (0-4.5)^2 + \dots + (2-4.5)^2 \right]$$
$$= 12.3$$

1 모집단 분포

2. 표본분포

3. 추정

4. 엑셀을 활용한 실습

표본분포

1. 표본추출변동

▶ 동일한 모집단에서 같은 표본추출방법으로 같은 크기의 표본을 추출할지라도 각 표본에서 계산된 추정량의 값은 표본마다 달라지는 것

2. 표본분포

▶ 같은 크기의 확률표본을 무한 반복해서 추출할 때 각 표본으로부터 계산되는 추정량이 이루는 분포

표본분포

〈참고〉 중심극한정리(central limit theorem)

표본크기가 커지면 표본평균은 근사적으로 정규분포를 따름

무한집단에서 표본평균의 분포

1. 모집단 분포

2. 표본 분포

3. 추정

4. 엑셀을 활용한 실습

추정의 핵심내용

- ▶ 추정량 유도
- ▶ 추정량의 정도(precision) 파악을 위한 추정량 분산 계산

표본추출과 추정량

바람직한 추정량의 성질

1. 비편향성(unbiasedness)

▶ 반복해서 표본을 추출할 때 표본으로부터 계산된 통계치가 모수를 과대 또는 과소 추정하는 경향이 없는 것

2. 효율성(efficiency)

▶ 추정량 $\hat{\theta_1}, \hat{\theta_2}$ 을 비교할 때 만약 $\hat{\theta_1}$ 의 분산이 $\hat{\theta_2}$ 의 분산보다 작다면 $\hat{\theta_1}$ 이 $\hat{\theta_2}$ 보다 효율적이라고 함 (추정량의 정확도 평가 척도)

바람직한 추정량의 성질

일반적으로 두 추정량이 모두 비편향 추정량이거나 편향을 무시할 수 있는 경우에는 두 추정량 중에서 분산이 작은 추정량을 사용해야 함

어떤 추정량의 분산이 작다는 의미는 같은 크기의 표본을 다시 반복해서 추출하여 통계치를 구한다고 할 때 구해진 통계치는 현재 구한 통계치와 유사한 값을 나타낼 것이라는 확률적 보증이라고 할 수 있음

표본오차 (sampling error)

표본에서 구한 결과와 센서스의 결과(모수)의 차이

- ▶ 표본오차
 - = \mid 모집단의 참값(모수) 모수에 대한 추정치 \mid = $\mid \hat{ heta} heta \mid$

모집단의 일부를 표본추출하여 조사하여 추정함으로써 발생하는 우연적 오차

표본오차의 통계적 표현

- 추정량의 표준오차(standard error)
 - ightharpoons $\sqrt{V(\hat{\theta})}$
- 추정량의 $100(1-\alpha)$ % 신뢰구간(confidence interval)
 - $\qquad \hat{\theta} \pm z_{\alpha/2} \sqrt{V(\hat{\theta})}$
- ■오차의 한계(bound of error)

$$B = z_{\alpha/2} \sqrt{V(\hat{\theta})}$$

- 추정량의 상대표준오차
 - : 추정량의 정도(精度)를 나타내는 상대적 기준

$$RSE(\hat{\theta}) = \frac{\sqrt{V(\hat{\theta})}}{\theta} \times 100$$

〈참고〉 추정량의 변동계수(coefficient of variation: CV)라고도 함

표본오차의 통계적 표현

- ♣ 예제 1-1
 - 2명 조사하여 1명 지지한 경우와 2,000명 조사하여 1,000명 지지한 경우 모두 지지율은 50%인가?
 - ▶ 2명 조사 : 오차의 한계 50%, 오차가 너무 커서 현재 추정값은 정보로서 가치 없음
 - ▶ 2,000명 조사 : 오차의 한계 2%, 현재 추정값은 가치 있는 정보라고 할 수 있음
 - ▶ 오차의 한계 계산: 여론조사 정확도에 대한 통계학적 근거

표본오차의 통계적 표현

- ♣ 예제 1-2
 - 도시가구들의 월평균 소득액 추정을 위한 표본조사

▶ 상대표준오차
$$\widehat{RSE}(\hat{\theta}) = \frac{\sqrt{\widehat{V}(\hat{\theta})}}{\theta} \times 100 \ (\%)$$
$$= \frac{10}{150} \times 100 \ (\%) = 6.67 \ (\%)$$

목표정도 (target precision)

표본조사를 기획할 때 설정하는 오차의 수준

달성정도 (attained precision)

표본조사 결과 얻어진 데이터로부터 계산한 오차의 수준

1. 모집단 분포

2. 표본분포

3. 추정

4. 엑셀을 활용한 실습

다음 페이지 〈실습하기〉에서 자세히 다룸