

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

# Измерение интенсивности радиационного фона

Работа №1.1.4; дата: 06.09.21

Семестр: 1

### 1. Аннотация

**Цель работы:** применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.

**В работе используются:** счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

# 2. Теоретические сведения

Пусть  $n \bigcirc$  число срабатываний за один интервал измерений,  $\overline{n}$  - среднее число срабатываний, N - общее количество срабатываний, k - индекс, причем для  $\tau=10\,\mathrm{c}$  -  $1,~\tau=20\,\mathrm{c}$  -  $2,~\tau=40\,\mathrm{c}$  - 3. Для определения среднего числа срабатываний счетчика  $\overline{n}_k$  будем использовать формулу:

$$\overline{n}_k = \frac{1}{N} \sum_{i=1}^N n_i \tag{1}$$

Среднеквадратичные ошибки отдельных измерений  $\sigma_k$  определим как:

Приблизительную среднеквадратичную ошибку обозначим как  $\tilde{\sigma_k}$ . Она определяется формулой:

$$ilde{\sigma_k} = \sqrt{\overline{n}_k}$$
 . Let  $ext{popp} ext{prop} ext{min}$ 

Среднеквадратичную ошибку среднего  $\sigma_{\overline{n}_k}$  вычислим по формуле:

$$\sigma_{\overline{n}_k} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (n_i - \overline{n}_i)^2}$$
(4)

И, наконец, относительную ошибку измерений  $\varepsilon_{\overline{n}_k}$  определим по формуле:

$$\varepsilon_{\overline{n}_k} = \frac{\sigma_{\overline{n}_k}}{\overline{n}_k} \cdot 100\% \tag{5}$$

## 3. Проведение измерений и обработка данных

#### 3.1 Установка

Установка представляет собой компьютер с интерфейсом связи со счетчиком. Счетчик Гейгера-Мюллера регистрирует количество частиц, проходящих через него.

#### 3.2 Качественный анализ полученных данных

- (3.2.1)На основе графика, измеряемая величина флуктуирует.
- 3.2.2 Вначале среднее значение измеряемой величины сильно флуктуирует, но позже приходит к постоянному значению.

  3.2.3 Флуктуации величины погрешности отдельного измерения уменьшаются, а сама она приходит
- 3.2.3 Флуктуации величины погрешности отдельного измерения уменьшаются, а сама она приходит к постоянному значению.
- 3.2.4 Флуктуации величины погрешности среднего значения измеряемой величины уменьшаются, как и сама эта величина.

#### 3.3 Данные со счетчика

Составим таблицу данных, выданных компьютером для  $N_1=200$  и  $\tau=20\,\mathrm{c}$  (Таблица 1).

| № опыта | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|---------|----|----|----|----|----|----|----|----|----|----|
| 0       | 21 | 24 | 24 | 26 | 25 | 25 | 32 | 19 | 19 | 25 |
| 10      | 14 | 21 | 26 | 30 | 23 | 25 | 22 | 18 | 28 | 20 |
| 20      | 26 | 22 | 30 | 25 | 29 | 27 | 28 | 23 | 16 | 27 |
| 30      | 24 | 22 | 33 | 19 | 26 | 19 | 24 | 30 | 25 | 31 |
| 40      | 26 | 21 | 22 | 14 | 26 | 26 | 27 | 32 | 31 | 22 |
| 50      | 30 | 32 | 23 | 22 | 18 | 29 | 19 | 20 | 19 | 17 |
| 60      | 16 | 19 | 31 | 31 | 25 | 21 | 23 | 29 | 20 | 25 |
| 70      | 37 | 23 | 30 | 29 | 26 | 19 | 17 | 21 | 23 | 23 |
| 80      | 23 | 16 | 31 | 29 | 29 | 21 | 15 | 26 | 24 | 21 |
| 90      | 15 | 26 | 23 | 18 | 36 | 24 | 19 | 19 | 15 | 28 |
| 100     | 28 | 23 | 19 | 27 | 8  | 17 | 15 | 33 | 29 | 24 |
| 110     | 24 | 19 | 24 | 20 | 25 | 22 | 17 | 21 | 19 | 25 |
| 120     | 27 | 24 | 28 | 20 | 24 | 30 | 25 | 16 | 20 | 20 |
| 130     | 22 | 20 | 32 | 22 | 18 | 22 | 20 | 19 | 30 | 22 |
| 140     | 27 | 19 | 27 | 18 | 22 | 29 | 32 | 23 | 28 | 24 |
| 150     | 17 | 28 | 33 | 23 | 19 | 20 | 20 | 29 | 31 | 27 |
| 160     | 21 | 15 | 30 | 32 | 21 | 25 | 20 | 11 | 26 | 20 |
| 170     | 20 | 32 | 28 | 20 | 21 | 24 | 21 | 19 | 20 | 17 |
| 180     | 27 | 16 | 28 | 27 | 16 | 30 | 24 | 21 | 26 | 32 |
| 190     | 39 | 25 | 16 | 21 | 15 | 20 | 25 | 26 | 16 | 25 |

**Таблица 1.** Число срабатываний счетчика при  $\tau = 20\,\mathrm{c}$ 

Разобъем результаты таблицы 1 по двое, получим таблицу для  $N_2=100$  и  $\tau=40\,\mathrm{c}$  (Таблица 2):

| № опыта | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|---------|----|----|----|----|----|----|----|----|----|----|
| 0       | 45 | 50 | 50 | 51 | 44 | 35 | 56 | 48 | 40 | 48 |
| 10      | 48 | 55 | 56 | 51 | 43 | 46 | 52 | 45 | 54 | 56 |
| 20      | 47 | 36 | 52 | 59 | 53 | 62 | 55 | 47 | 39 | 36 |
| 30      | 35 | 62 | 46 | 52 | 45 | 60 | 59 | 45 | 38 | 46 |
| 40      | 39 | 60 | 50 | 41 | 45 | 41 | 41 | 60 | 38 | 43 |
| 50      | 51 | 56 | 25 | 48 | 53 | 43 | 44 | 47 | 38 | 44 |
| 60      | 51 | 48 | 54 | 41 | 40 | 42 | 54 | 40 | 39 | 52 |
| 70      | 46 | 35 | 51 | 55 | 52 | 45 | 56 | 39 | 49 | 58 |
| 80      | 36 | 62 | 46 | 31 | 46 | 52 | 48 | 45 | 40 | 37 |
| 90      | 43 | 55 | 46 | 45 | 58 | 64 | 37 | 35 | 51 | 41 |

**Таблица 2.** Число срабатываний счетчика при  $\tau = 40\,\mathrm{c}$ 

#### 3.4 Построение гистограмм

Приведем данные для построения гистограмм при интервалах  $\tau = 10\,\mathrm{c}$  и  $\tau = 40\,\mathrm{c}$  (Таблицы 3, 4).

| Число импульсов $n_i$   | 4      | 5     | 6      | 7      | 8      | 9      | 10     |
|-------------------------|--------|-------|--------|--------|--------|--------|--------|
| Число случаев           | 1      | 2     | 12     | 18     | 35     | 47     | 40     |
| Доля случаев $\omega_i$ | 0.0025 | 0.005 | 0.03   | 0.045  | 0.0875 | 0.1175 | 0.1    |
| Число импульсов $n_i$   | 11     | 12    | 13     | 14     | 15     | 16     | 17     |
| Число случаев           | 45     | 48    | 40     | 26     | 30     | 18     | 12     |
| Доля случаев $\omega_i$ | 0.1125 | 0.12  | 0.1    | 0.065  | 0.075  | 0.045  | 0.03   |
| Число импульсов $n_i$   | 18     | 19    | 20     | 22     | 23     | 24     | 25     |
| Число случаев           | 8      | 4     | 9      | 1      | 1      | 1      | 1      |
| Доля случаев $\omega_i$ | 0.02   | 0.01  | 0.0225 | 0.0025 | 0.0025 | 0.0025 | 0.0025 |

**Таблица 3.** Данные для построения гистограммы распределения числа срабатываний датчика при  $au=10\,\mathrm{c}$ 

| Число импульсов $n_i$   | 31   | 35   | 36   | 37   | 38   | 39   | 40   |
|-------------------------|------|------|------|------|------|------|------|
| Число случаев           | 1    | 4    | 3    | 2    | 3    | 4    | 4    |
| Доля случаев $\omega_i$ | 0.01 | 0.04 | 0.03 | 0.02 | 0.03 | 0.04 | 0.04 |
| Число импульсов $n_i$   | 41   | 42   | 43   | 44   | 45   | 46   | 47   |
| Число случаев           | 5    | 1    | 4    | 3    | 8    | 7    | 3    |
| Доля случаев $\omega_i$ | 0.05 | 0.01 | 0.04 | 0.03 | 0.08 | 0.07 | 0.03 |
| Число импульсов $n_i$   | 48   | 49   | 50   | 51   | 52   | 53   | 54   |
| Число случаев           | 6    | 1    | 3    | 6    | 6    | 2    | 3    |
| Доля случаев $\omega_i$ | 0.06 | 0.01 | 0.03 | 0.06 | 0.06 | 0.02 | 0.03 |
| Число импульсов $n_i$   | 55   | 56   | 58   | 59   | 60   | 62   | 64   |
| Число случаев           | 4    | 5    | 2    | 2    | 3    | 3    | 5    |
| Доля случаев $\omega_i$ | 0.04 | 0.05 | 0.02 | 0.02 | 0.03 | 0.03 | 0.05 |

**Таблица 4.** Данные для построения гистограммы распределения числа срабатываний датчика при  $\tau = 40\,\mathrm{c}$ 

На основании полученных данных построим гистограммы:



#### 3.5 Рассчет средних значений и ошибок

Воспользуемся формулой (1) для рассчета средних значений числа срабатываний, а также формулами (2-4) для ошибок. На их основе составим таблицу (Таблица 5).

| k | $\overline{n}_k$ | $\sigma_k$ | $\widetilde{\sigma_k}$ | $\sigma_{\overline{n}_k}$ | $\varepsilon_{\overline{n}_k}$ , % |
|---|------------------|------------|------------------------|---------------------------|------------------------------------|
| 1 | 11.77            | 3.47       | 3.43                   | 0.17                      | 1.4                                |
| 2 | 23.47            | 5.18       | 4.84                   | 0.37                      | 1.6                                |
| 3 | 46.99            | 7.83       | 6.85                   | 0.78                      | 1.7                                |

Таблица 5. Ошибки и средние

Определим также долю случаев, когда отклонения не превышают  $\sigma_k$  и  $2\sigma_k$ , результат занесем в таблицу 6.

| Среднее                  | Ошибка                                        | Число случаев | Доля случаев, % | Теоретическая оценка, % |
|--------------------------|-----------------------------------------------|---------------|-----------------|-------------------------|
| $\overline{n}_1 = 11.77$ | $\pm \sigma_1 = 3.47$                         | 276           | 69.0            | 68.0                    |
| $n_1 = 11.77$            | $\pm 2\sigma_1 = 6.94$                        | 381           | 95.3            | 95.0                    |
| = 02.47                  | $\pm \sigma_2 = 5.18$                         | 133           | 66.5            | 68.0                    |
| $\overline{n}_2 = 23.47$ | $\pm 2\sigma_2 = 10.36$                       | 195           | 97.5            | 95.0                    |
| $\overline{n}_3 = 46.99$ | $\pm \sigma_3 = 7.83$ $\pm 2\sigma_3 = 15.66$ | 78            | 78.0            | 68.0                    |
| 113 - 40.99              | $\pm 2\sigma_3 = 15.66$                       | 99            | 99.0            | 95.0                    |

Таблица 6. Процент попадания точек в промежуток среднего значения

# Итоги эксперимента

В ходе эксперимента были получены такие значения количества частиц, создающих радиационный C ~ 10% фон:

$$n_1 = 11.77 \pm 0.17$$
 при  $\varepsilon_{n_1} = 1.4\%$ 

$$n_2 = 23.47 \pm 0.37$$
 при  $arepsilon_{n_2} = 1.6\%$ 

$$n_1 = 46.99 \pm 0$$
 При  $\varepsilon_{n_3} = 1.7\%$  ИР. О  $\pm$  О  $\pm$ 

В соответствии с данными таблицы 5, среднеквадратичная ошибка отдельного измерения близка к теоретической оценке  $\sqrt{n}$ . Таким образом, данная оценка в самом деле верна для случайных процессов.

На основании полученных гистограмм экспериментально подтверждено подчинение случайного процесса распределению Гаусса. Центральный пик гистограмм совпадает с полученным средним значением, общий контур по верхам пиков ложится на кривую Гаусса. Отдельно отметим, что доли случаев попадания количества срабатываний в  $\sigma$  и  $2\sigma$  - окрестности среднего значения близки к теоретической оценке.

Разница между теоретическими оценками и экспериментальными результатами может быть обусловлена погрешностью метода (работа счетчика) и недостаточным количеством проведенных измерений. Притом относительная погрешность определенных величин удовлетворительна (< 2%).