Examen Parcial 2

Reglas:

- El examen es individual. Si detecto que hay colaboración, no pregunto y automáticamente el examen está reprobado para las partes detectadas.
- Cualquier duda sobre el examen, tiene que preguntarse directamente a MI correo personal: jorge.delavegagongora@gmail.com. No garantizo respuesta inmediata, pero estaré al pendiente.
- La entrega del examen es vía mi correo electrónico, en formato pdf, antes de la medianoche. No hay extensiones ni prórrogas. No es tarea, es un examen.
- De los seis problemas expuestos, se pide seleccionar sólo cuatro. Todos los problemas pesan lo mismo.

Preguntas

1. • Aplicar el algoritmo de Metropolis-Hastings para simular 500 observaciones de la distribución doble exponencial con densidad:

$$f(x) = \frac{\lambda}{2}e^{-\lambda|x|}, \quad x \in \mathbb{R}$$

Usar la distribución normal como distribución propuesta.

- Comprobar estadísticamente con un nivel de confianza del 95 % que la muestra obtenida proviene de las distribución indicada.
- 2. Supongan que $V \sim \exp(1)$ y consideren que dado $V = v, W \sim \exp(1/v)$ (entonces, $\mathbf{E}(W|V=v)=v$). Describir un algoritmo para estimar $P(VW\leq 3)$, que solo requiera generar una variable aleatoria por muestra. Programar el algoritmo y mostrar que funciona, generando 100 muestras.
- 3. Probar que si se elige a la distribución candidata como una caminata aleatoria en el algoritmo de Metropolis-Hastings, entonces $\frac{q(y|x)}{q(x|y)}$ es de la forma h(|y-x|) para alguna función h.
- 4. Si $\hat{\theta}_1$ y $\hat{\theta}_2$ son cualesquiera dos estimadores insesgados de θ , encontrar el valor de c^* que minimiza la varianza del estimador $\hat{\theta}_c = c\hat{\theta}_1 + (1-c)\hat{\theta}_2$.

5. Encontrar dos funciones de importancia f_1 y f_2 que tengan soporte en $(1,\infty)$ y estén 'cerca' de

$$g(x) = \frac{x^2}{\sqrt{2\pi}} \exp(-x^2/2) dx, \quad x > 1$$

6. Consideren una distribución Poisson con parámetro $\lambda=3$ condicionada a que no sea 0. Implementar un algoritmo MCMC para simular de esta distribución, usando una distribución propuesta que sea geométrica con parámetro p=1/3. Usar la simulación para estimar la media y la varianza.