

Computing Precise Control Interface Specifications

Eric Hayden Campbell Hossein Hojjat Nate Foster

The Unknown

How do we verify programs with unknown code?

AVerification Myth

Program Spec

Libraries

Source code is incomplete!

Modules

System Calls


```
from unknown import foo,bar

def code(x): \lambda x. \theta x FF

y = foo(x)
z = bar(x)

assert y \mid z \neq \theta x \theta \theta
```

Which implementations?

import unknown as foo,bar

def code(x):
 y = foo(x)
 z = bar(x)
 assert y|z ≠ 0x00

Necessary [SIGCOMM '20]

true

Which implementations satisfy the spec?

Independent Specs [POPL '16, SIGCOMM '20]

 φ (foo) $\wedge \psi$ (bar)

Eliminates no "good runs" [VMCAI '13]

Not Safe!!!

Safe

Unsafe!

Overly Restrictive!

Permissive

[POPL '16]

[SIGCOMM '20]


```
import unknown as foo,bar

def code(x):
    y = foo(x)
    z = bar(x)
    assert y | z ≠ 0x00
```

Goal:Compute
precise i-specs

foo(x) | bar(x)
$$\neq$$
 0x00

Safe

Weakest

Efficient

How to use computed i-specs?

Computer Network

Capisce

computes control interface specs (ci-specs)

Precise
Safe Weakest

Efficient

Step 1:

Model Pipeline Programs

GCL(F)

```
c ::= assume φ
| x := e
| c ; c
| c [] c
```

```
F : 2^{W} \rightarrow 2^{1}
```

$$\varphi \in QFBV$$

Control Flow in GCL(F)

```
if \varphi c_1 c_2
```

```
assume \varphi; \mathbf{c}_1 [] assume \neg \varphi; \mathbf{c}_2
```

Step 2:

Symbolic Compilation

GCL(F)

Lifting

assume $\vartheta(\mathbf{F}, \mathbf{cfg})$:

```
c[F,pkt]
```

c'[cfg,pkt]

GCL

assume $\vartheta(\mathbf{F}, \mathbf{cfg});$

c'[pkt,cfg]

Symbolic Compilation

 $\vartheta(\mathsf{F},\mathsf{cfg})$

 $\forall pkt.\varphi(pkt,cfg)$

ci-spec

Step 3:

Quantifier Elimination

$\vartheta(\mathsf{F},\mathsf{cfg}) \Longrightarrow \forall \mathsf{pkt}.\varphi(\mathsf{pkt},\mathsf{cfg})$

 $\vartheta(\mathsf{F},\mathsf{cfg}) \implies$

 ψ (cfg)

CI-spec

$$\vartheta(\mathsf{F},\mathsf{y}) \Rightarrow$$

$$\psi(y)$$

Theorem. Precise

=> *safe*

=> weakest

Theorem. Efficiently monitorable

Efficiently Control-Monitorable Sentences

Theorem. *Terminates*

... have polynomial expression complexity

Quantifier Elimination is *Intractable*

 ψ (cfg)

Evaluation

Survey of Industrial and Academic P4 Programs

Ensure Invalid
Data is not
Read

Program	Program Paths	Resul	Time (s)	Explored Paths	Spec AST Size	Explored Ratio
		Ав	JRD PROGRA	5		
ts-switching	21		0.160	2	1	0.095
mc-nat	39	\perp	0.089	1	1	0.026
		Fixes To	Absurd Pro	RAMS		
ts-switching-fixed	21	Т	0.030	0	1	0.0
mc-nat-fixed	39	Т	0.027	0	1	0.0
		Tra	IAL PROGRA	5		
resubmit	9	Т	0.028	0	1	0.0
netpaxos-acceptor	0.116	Т	30.0	0	1	0.0
ecmp	102	T	0.030	0	1	0.0
hula	3629	Т	0.068	0	1	0.0
ndp-router	3843	Т	2.9	0	1	0.0
		Non	IVIAL PROGI	MS		
arp	95	φ	5.0	0.016	349	0.17
heavy-hitter-2	267	φ	0.29	3	26	0.011
heavy-hitter-1	327	φ	0.60	7	90	0.021
flowlet	649	φ	1.8	9	127	0.014
simple_nat	66531	φ	5.2	54	1421	0.00081
07-multiprotocol	54459	φ	16	143	3138	0.0026
netchain	26726780	φ	2.9×10^{3}	264	11658	9.9×10^{-6}
linearroad	54477696		timeout			
fabric	133365047559893		timeout			
		Spec Sa	ELL PROGRAM	TIXES		
heavy-hitter-1-fixed	327	φ	0.63	7	107	0.021
linearroad-fixed	54477696	φ	5.9×10^4	3236	179885	5.9×10^{-5}
fabric-fixed	133365047559893	φ	1.2×10^{3}	653	41140	4.9×10^{-12}

Program Survey

Ensure Invalid
Data is not
Read

Program	Program Paths	Result	Time (s)	Explored Paths	Spec AST Size	Explored Ratio
		Absu	RD PROGRAI	MS		
ts-switching	21	\perp	0.160	2	1	0.095
mc-nat	39	上	0.089	1	1	0.026
		Fixes to A	Absurd Pro	GRAMS		
ts-switching-fixed	21	T	0.030	0	1	0.0
mc-nat-fixed	39	T	0.027	0	1	0.0
		Triv	IAL PROGRAI	MS		
resubmit	9	T	0.028	0	1	0.0
netpaxos-acceptor	0.116	Т	30.0	0	1	0.0
естр	102	Т	0.030	0	1	0.0
hula	3629	T	0.068	0	1	0.0
ndp-router	3843	Т	2.9	0	1	0.0
		Nontr	IVIAL PROGR	RAMS		
arp	95	φ	5.0	0.016	349	0.17
heavy-hitter-2	267	φ	0.29	3	26	0.011
heavy-hitter-1	327	φ	0.60	7	90	0.021
flowlet	649	φ	1.8	9	127	0.014
simple_nat	66531	φ	5.2	54	1421	0.00081
07-multiprotocol	54459	φ	16	143	3138	0.0026
				264	11658	9.9×10^{-6}
linearroad	54477696		timeout			
fabric	133365047559893		timeout			
		SPEC SME	ll Program	Fixes		
linearroad-fixed	54477696	φ	5.9×10^4	3236	179885	5.9×10^{-5}
fabric-fixed	133365047559893	φ	1.2×10^{3}	653	41140	4.9×10^{-12}

Program Survey

Defined Forwarding

Program	Program Paths	Result	Time (s)	Explored Paths	ci-spec Size	Explored Ratio
		ABS	rd Progra	S		
e cmp	102	T	0.320	4	1	0.039
fabric	133365047559893		7.3	5	1	3.7×10^{-14}
netchain	26726780		27	7	1	2.6×10^{-7}
		Triv	al Progra	s		
arp	95	Т	0.027	0	1	0.0
linearroad	54477696	Т	0.054	0	1	0.0
simple-nat	5548	Т	0.034	0	1	0.0
		Nonti	VIAL PROGE	LMS		
resubmit	9	φ	0.016	2	17	0.22
ts-switching	21	φ	0.10	1	4	0.048
mc-nat	39	φ	0.27	3	21	0.077
netpaxos-acceptor	116	φ	0.12	1	4	0.0086
heavy-hitter-2	267	φ	88	15	233	0.056
heavy-hitter-1	327	φ	0.10	11	187	0.034
flowlet	649	φ	79	15	490	0.023
hula	3629	φ	0.39	1	9	0.00028
ndp-router	3843	φ	40	36	824	0.0094
07-multiprotocol	54459	φ	30	232	5034	0.0043
		Spec	mells & Fi	ES		
ecmp-fixed	102	φ	0.28	3	34	0.029
mc-nat-fixed	27	Т	0.029	0	1	0.0

Guarded Pipeline Language (GPL)

```
p ::= \mathbf{t}(e) table
| c \in GCL
```

$$t : 2^{w} \rightarrow \{a_{1},...,a_{n}\}$$

a ::=
$$\lambda x$$
. c c $\in GCL$

Declaration

```
fwd : 2^{32} → {
 (\lambdap:2<sup>9</sup>. port := p),
 (\lambda_:2<sup>0</sup>. drop := 1)
}
```

Program

fwd(ipv4_dst)

Unknown Implementation

 \mathbf{F} : Tbl \rightarrow BV \rightarrow Act x BV

Variable Store

 $pkt : Var \rightarrow BV$

Table Semantics

t(e)

GPL

GCL(F)

```
fwd : 2^{32} → {
  (\lambdap:2<sup>9</sup>. port := p),
  (\lambda_:2<sup>0</sup>. drop := 1)
}

fwd(ipv4_dst)
```

```
Fwd : 2<sup>32</sup> → 2<sup>1</sup> x 2<sup>9</sup>
i, p := Fwd(ipv4_dst);
if i = 0 {
   port := p
} else {
   drop := 1
}
```

```
hdr.ipv4.ttl
              sult := 0;
zombie.parse
hdr.ethernet
              sValid :
if (var hdr.
 hdr.ipv4.i
               lid := 1;
 if (hdr.ipv
```