$\mathcal{H}_{Cr-Cr} =$	$\begin{pmatrix} 0 \\ t_{A,Cr}e^{i(-k_1+k_2)} \\ t_{A,Cr}e^{-ik_1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$t_{A,Cr}e^{i(k_1-k_2)} \\ 0 \\ t_{A,Cr}e^{-ik_2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$t_{A,Cr}e^{ik_2} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	0 $t_{in,Cr}e^{ik_2}$ $t_{in,Cr}e^{ik_2}$	$t \sim e^{i\kappa_3}$	$0 \\ 0 \\ t_{in,Cr}e^{-ik_2} \\ t_{in,Cr} \\ 0 \\ t_{out,Cr}e^{i(-k_2+k_3)} \\ t_{out,Cr}e^{ik_3} \\ t_{z,Cr}e^{ik_3} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{matrix} 0 \\ 0 \\ 0 \\ t_{z,Cr}e^{-ik_3} \\ t_{out,Cr}e^{i(k_2-k_3)} \\ t_{out,Cr}e^{i(k_2-k_3)} \\ 0 \\ t_{in,Cr}e^{ik_2} \\ t_{in,Cr}e^{ik_2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix}$	$0 \\ 0 \\ t_{out,Cr}e^{-i(k_2+k_3)} \\ t_{z,Cr}e^{-ik_3} \\ t_{out,Cr}e^{-ik_3} \\ t_{in,Cr}e^{-ik_2} \\ 0 \\ t_{in,Cr} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$egin{array}{c} 0 \\ 0 \\ t_{out,Cr}e^{-i(k_2+k_2)} \\ t_{out,Cr}e^{-ik_3} \\ t_{z,Cr}e^{-ik_3} \\ t_{in,Cr}e^{-ik_2} \\ t_{in,Cr} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0	$\begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ t_{in,Cr}e^{ik_1} \\ 0 \\ t_{in,Cr}e^{ik_1} \\ t_{out,Cr}e^{i(k_1+k_3)} \\ t_{out,Cr}e^{i(k_1+k_3)} \\ t_{out,Cr}e^{i(k_1+k_3)} \end{matrix}$	$t_{cont} c_n e^{i(-\kappa_1 + \kappa_3)}$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ t_{out,Cr}e^{i(k_1-k_3)} \\ t_{z,Cr}e^{-ik_3} \\ t_{out,Cr}e^{i(k_1-k_3)} \\ t_{in,Cr}e^{ik_1} \\ 0 \\ t_{in,Cr}e^{ik_1}$	$t \cdot \alpha e^{-\iota(n_1)}$
								$\psi_{Cr} = \begin{pmatrix} d_{R_{+,1}} \\ d_{R_{+,2}} \\ d_{R_{+,3}} \\ d_{R_{-,1}} \\ d_{R_{-,2}} \\ d_{R_{-,3}} \\ d_{L_{+,1}} \\ d_{L_{+,2}} \\ d_{L_{+,3}} \\ d_{L_{-,1}} \\ d_{L_{-,3}} \\ d_{z_{-,1}} \\ d_{z_{-,2}} \\ d_{z_{-,3}} \end{pmatrix}$							
	\mathcal{H}_{Fe}	$_{-Fe}=\left(egin{array}{c} t_{out,.} \\ \end{array} ight)$	$egin{array}{c} 0 \\ 0 \\ 0 \\ t_{z,Fe}e^{ik_3} \\ t_{out,Fe}e^{ik_3} \\ Fee^{i(k_1+k_2+k_3)} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$egin{array}{c} 0 \\ 0 \\ t_{out,Fe}e^{ik_3} \\ t_{z,Fe}e^{ik_3} \\ t_{out,Fe}e^{i(k_1+k_2)} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$t = e^{i(-\kappa_1 - \kappa_1)}$	$(2+k_3)$ ($(2+k_3)$	$F_{e}e^{ik_{3}}$ $F_{e}e^{ik_{3}}$ $F_{out,F}$ F_{o	$t = e^{i\kappa_3}$ $t = t$	$t_{z,Fe}e^{i(-k_1-k_2+k_3)}$ $t_{z,Fe}e^{ik_3}$ $t_{z,Fe}e^{ik_3}$ $t_{z,Fe}e^{ik_3}$ $t_{z,Fe}e^{ik_3}$ $t_{z,Fe}e^{ik_3}$	$egin{array}{ccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ t_{in,Fe}e^{-ik_1} \\ t_{in,Fe} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$egin{array}{cccc} 0 & & & & & & & & & & & & & & & & & & $	$egin{array}{ccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	0 0 0 0 0 0	
								$\psi_{Fe} = \begin{pmatrix} d_{z_{+,1}} \\ d_{z_{+,2}} \\ d_{z_{+,3}} \\ d_{z_{-,1}} \\ d_{z_{-,2}} \\ d_{z_{-,3}} \\ d_{R_1} \\ d_{R_2} \\ d_{R_3} \\ d_{L_1} \\ d_{L_2} \\ d_{L_3} \\ d_{\pi,1} \\ d_{\pi,2} \\ d_{\pi,3} \end{pmatrix}$							
			$\mathcal{H}_{Cr-Fe}=$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ t_{Cr-Fe} \end{bmatrix}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{matrix} 0 & & & & & & & & & & & & & & & & & & $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$t'_{Cr-Fe}e^{i(k_1+k_3)} \ t'_{Cr-Fe}e^{i(k_1+k_3)} \ t'_{Cr-Fe}e^{ik_1} \ t'_{Cr-Fe}e^{ik_1} \ t'_{Cr-Fe}e^{ik_1} \ t'_{Cr-Fe}e^{ik_1} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	t_{Cr-Fe}	$t'_{Cr-Fe}e^{ik_3}$ 0 $t'_{Cr-Fe}e^{ik_3}$ 0 $t'_{Cr-Fe}e^{ik_3}$ 0 $t'_{Cr-Fe}e^{ik_3}$ 0 t'_{Cr-Fe} 0 t'_{Cr-Fe} 0 0 0 0 t'_{Cr-Fe} 0 0 0 t'_{Cr-Fe} 0 0 0 t'_{Cr-Fe} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccc} & & & & & & & & & & & & \\ & & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

 $\mathcal{H}_{NM} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \bigotimes \mathcal{H}_{Cr-Cr} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \bigotimes \mathcal{H}_{Cr-Fe} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigotimes \mathcal{H}_{Cr-Fe}^{\dagger} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \bigotimes \mathcal{H}_{Fe-Fe}^{\dagger}$