HOMEWORK #4

BY: BEN CRANE

Due 02/16

1. From the book

1.1. **2.3** Page 44: even.

- (2) For a function to be continuous, it is sufficient that it is differentiable.
 - P: A function f is differentiable
 - Q: the function f is continuous.

If P then Q. If A function f is differentiable, then the function f is continuous.

- (4) A function is rational if it is a polynomial.
 - P: a function is a polynomial
 - Q: the function is rational.

If P then Q. If a function is a polynomial, then the function is rational.

- (6) Whenever a surface has only one side, it is non-orientable.
 - P: A surface has only one side
 - Q: The surface is non-orientable

If P then Q. If a surface has only one side, then the surface is non-orientable.

- (8) A geometric series with ratio r converges if $|\mathbf{r}| < 1$.
 - P: |r| < 1
 - Q: the geometric series with ratio r converges

If $|\mathbf{r}| < 1$, then the geometric series with ratio r converges.

- (10) The discriminant is negative only if the quadratic equation has no real solutions.
 - P: the discriminant is negative
 - Q: the quadratic equation has no real solution
 - IF P then Q. If the discriminant is negative then the quadratic equation has no real solution.
- (12) People will generally accept facts as truth only if the facts agree with what they already believe. (Andy Rooney)
 - P: the facts agree wi what they already believe. Q: the people will generally accept facts as truth. if P then Q. If the facts agree with what they already believe then the people will generally accept the facts as truth.

,

1.2. **2.5** Page 48: evens.

$$(2) (Q \vee R) \Leftrightarrow (R \wedge Q)$$

(4)
$$(\sim P \vee Q) \vee (\sim P)$$

P	Q	$ (P \lor Q) $	$\sim (P \lor Q)$	$\sim P$	$\sim (P \vee Q) \vee (\sim P)$
Τ	Т	T	F	F	F
Τ	F	Τ	${ m F}$	F	F
\mathbf{F}	Τ	Γ	F	Γ	m T
\mathbf{F}	F	F	Τ	Τ	m T

(6)
$$(P \land (\sim P) \land Q)$$

$$F \mid F \mid F \mid T \mid T \mid T$$

$$(6) (P \land (\sim P) \land Q)$$

$$P \mid Q \mid \sim P \mid (P \land (\sim P) \mid (P \land (\sim P)) \land Q)$$

$$T \mid T \mid F \mid F \mid F$$

$$T \mid F \mid F \mid F \mid F$$

$$F \mid T \mid T \mid F \mid F$$

$$F \mid F \mid T \mid F \mid F$$

$$(8) $P \lor (Q \land \sim R)$$$

(8)
$$P \vee (Q \wedge \sim R)$$

P	Q	R	\sim R	$Q \land \sim R$	$P \vee (Q \wedge \sim R))$
Т	Т	Т	F	F	Τ
T	Τ	F	Τ	Τ	${ m T}$
T	F	Τ	F	F	Τ
\mathbf{T}	F	F	Τ	F	${ m T}$
\mathbf{F}	Т	Τ	F	F	F
\mathbf{F}	Т	F	Τ	Τ	Τ
\mathbf{F}	F	Τ	F	F	F
F	F	F	Τ	F	F

(10) Suppose the statement $((P \land Q) \lor R) \Rightarrow (R \lor S)$ is false. Find the truth values of P,Q,R and S. (This can be done without a truth table.)

$$\begin{array}{c|c|c}
(P \land Q) \lor R & R \lor S & (\sim (P \land Q) \lor R) \Rightarrow (R \lor S) \\
\hline
T & F & F
\\
\hline
\frac{R \mid S \mid R \lor S}{F \mid F \mid F}
\\
\underline{P \land Q \mid R \mid (P \land Q) \lor R}
\\
\hline
T \mid F \mid T
\\
\underline{P \mid Q \mid P \land Q}
\\
\hline
F \mid F \mid F
\end{array}$$

So P is True, Q is True, R is False, and S is False

2. Worksheet

(1)

P	Q	$\sim (P \Rightarrow Q)$	$\sim (P \Leftrightarrow Q)$	$(\sim (P \lor Q) \Rightarrow (\sim P) \land Q$	$(P \Rightarrow Q) \lor (P \Rightarrow (\sim Q)$	$(P \Rightarrow Q) \land (P \land (\sim Q))$
Т	Т	F	F	F	T	F
Τ	F	Т	Τ	${ m F}$	${ m T}$	F
\mathbf{F}	Т	F	T	${ m F}$	${ m T}$	\mathbf{F}
F	F	F	F	F	${ m T}$	F

(2) Write a logical statement for the sentence P or Q but not both. Justify your answer using a truth table. $(P \lor Q) \land \sim (P \land Q)$ This is the same as $\sim (P \Leftrightarrow Q)$

P	Q	$(\sim Q)$	$(\sim P)$	$\sim (P \Leftrightarrow Q)$
\overline{T}	Т	F	F	F
Τ	F	Т	F	${ m T}$
\mathbf{F}	Т	F	Τ	T
F	F	Γ	Т	F

(3) Write a tautology and a contradiction in one variable P using $\land, \lor, \Rightarrow, and \Leftrightarrow$

$$P \vee \sim \!\! P \top$$

$$P \Rightarrow P \top$$

$$P \Rightarrow \sim P \perp$$

(4) Write a logical statement equivalent to $P \Rightarrow Q$ that uses only \vee , \wedge and \sim . Use your conclusion to do the same exercise for $P \Leftrightarrow Q$. Conclude that the logical connectors \Rightarrow and \Leftrightarrow are redundant. Are > and \perp redundant?

$$P \Rightarrow Q = \sim P \vee Q$$

While the logical connectors might seem redundant \Rightarrow and \Leftrightarrow , there actually does remain some distinction between the two. But that is more of a set theory distinction.

(5) Write a truth table for the following statement $(Q \Rightarrow (\sim R) \land (\sim P)) \land (P \lor R)$.

P	Q	$\mid R$	$(\sim R)$	$ (\sim P) $	$(Q \Rightarrow (\sim R) \land (\sim P))$	$(P \vee R)$	$(Q \Rightarrow (\sim R) \land (\sim P)) \land (P \lor R).$
Т	Т	F	Т	F	F	Т	F
T	F	Τ	F	F	${ m F}$	Τ	F
F	Т	F	Τ	Т	${ m T}$	F	F
F	F	Т	F	Т	F	Т	F

(6) i. What is the number of possible logical statements in two variables P and Q up to logical equivalence (i.e., how many possible truth tables are there)? Can each possibility in terms of a basic logical statement? Justify your answer.

3

 2^{2^2} or 16 truth tables which is the same as 2^{2^n} where n=2. This makes sense for all of the logical ways of arranging the possible different micro-states without repeating.

ii. How many rows are there in a truth table for a statement in n variables? Justify your answer.

For n variables there would be 2^n rows, if there are three variables then $2^3 = 8$ rows would be needed. This is because there is a truth and a false for each option.

iii. What is the number of possible logical statements in n variables up to logical equivalence? Justify your answer.

There are 2^{2^n} boolean functions of n variables.

3. PROOFS

(a)

Lemma 3.1. Let x and y be integers. If x and y are odd, then x^*y is odd.

Proof. Given that x and y are integers, x is odd and y is odd implies that x^*y is also an odd number. x is an odd number if x = 2n+1 and x is an integer, so n is also an integer. Since y is an odd number implies that y = 2m+1 and y is an integer which implies that m is also an integer. So $x^*y = (2n+1)(2m+1) = 4n^*m+2n+2m+1 = 2(2n^*m+n+m)+1 = 2k+1$. where $k = 2n^*m+n+m$. Since n and m are integers, therefore k is also an integer. This all implies that x^*y is an odd number; supposing x is an odd number and y is an odd number.

(b)

Lemma 3.2. Let x be an integer. If x is odd, then x^3 is odd.

Proof. Since x is an odd number then $x^2=x^*x$ is also an odd number, as proven by Lemma 3.1, then $(x^2)*x=x^3$ must be an odd number, still following the logic of Lemma 3.1.