We Claim:

1. A compound of formula I:

where:

5

15

A is a C₃-C₈ cycloalkyl, optionally substituted 1-3 times with a C₁-C₄ alkyl;

het is a five (5) membered heterocyclic ring comprising N and a second heteroatom selected from N, O, or S;

wherein the non-fused carbon atom of the heteroaryl ring may be optionally substituted with R^b: C₁-C₆ alkyl, optionally substituted aryl, optionally substituted heterocycle, an amino acid ester, CH₂OH, CH₂O-heterocycle, halo, CH₂N₃, CH₂SR¹, CH₂NR⁴R⁶, OR¹, SR¹³, S(CH₂)_k-phenyl, or NR⁴R⁶; provided that when het is pyrazole or imidazole, the saturated nitrogen of the het ring may be optionally substituted with R^a: C₁-C₄ alkyl;

20 k is 0, 1, 2, 3, or 4; n is 0, 1, or 2; p is 0 or 1; q is 0, 1, or 2; r is 0, 1, or 2; t is 0, 1, 2, 3, or 4; u is 0, 1, 2, 3, or 4;

Y is $-E-C(O)R^3$, $-E-CH=CHR^{13}$, $-E-C(OH)R^{13}$, $-E-NR^4R^5$, $-E-OR^2$, $-E-SO_2NR^4R^6$, $-C(R^{11})=NR^6$, or an optionally substituted heterocycle;

E is a bond or $-C(R^{11})(R^{11})$ -;

 R^1 is independently at each occurrence hydrogen or ${10} \quad C_1\text{-}C_6 \text{ alkyl};$

 R^2 is independently at each occurrence hydrogen, C_1 - C_6 alkyl, optionally substituted C_3 - C_8 cycloalkyl, optionally substituted (C_1 - C_4 alkyl)-aryl, optionally substituted aryl, or optionally substituted heterocycle, C(O)-aryl, or $(CH_2)_2NR^4R^5$;

15

 R^3 is independently at each occurrence hydrogen, C_1 - C_6 alkyl, optionally substituted C_3 - C_8 cycloalkyl, optionally substituted (C_1 - C_4 alkyl)-aryl, optionally substituted aryl, optionally substituted heterocycle, OR^{13} , or NR^4R^6 ;

20

 R^4 is independently at each occurrence hydrogen, C_1 - C_6 alkyl, optionally substituted (C_1 - C_6 alkyl)-aryl, optionally substituted aryl, or R^4 and R^5 , R^6 , R^6 ' combine to form = CR^1R^{14} ;

R⁵ is independently at each occurrence hydrogen, C₁-C₆ alkyl, C₁-C₄ alkoxy, optionally substituted heterocycle, optionally substituted C₃-C₈ cycloalkyl, optionally substituted C₆-C₁₀ bicycloalkyl, optionally substituted (C₁-C₄ alkyl)-aryl, optionally substituted aryl, optionally substituted (C₁-C₄ alkyl)-heterocycle, C(O)C(O)R¹³,

 $C(O)R^7$, CH_2R^7 , SO_2R^8 , a moiety of the formula , or R^4 and R^5 , together with the nitrogen to which they are attached, combine to form an optionally substituted N-heterocycle;

R⁶ is independently at each occurrence hydrogen, C₁-C₆ alkyl, C₁-C₄ alkoxy, optionally substituted C₃-C₈ cycloalkyl, optionally substituted C₆-C₁₀ bicycloalkyl, optionally substituted (C₁-C₄ alkyl)-aryl, optionally substituted aryl, optionally substituted (C₁-C₄ alkyl)-heterocycle, optionally substituted heterocycle, or R⁴ and R⁶, together with the nitrogen to which they are attached, combine to form an optionally substituted N-heterocycle;

 R^{6} ' is independently at each occurrence hydrogen, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, optionally substituted C_3 - C_8 cycloalkyl, optionally substituted C_6 - C_{10} bicycloalkyl, optionally substituted (C_1 - C_4 alkyl)-aryl, optionally substituted aryl, optionally substituted (C_1 - C_4 alkyl)-heterocycle, optionally substituted heterocycle, (C_1 - C_4 alkyl)- C_8 - C_8 -

wherein the $(C_1-C_4 \text{ alkyl})$ of the $(C_1-C_4 \text{ alkyl})$ -OR¹³ may be optionally substituted from 1 to 2 times with C_1 -C₄ alkyl, optionally substituted aryl, optionally substituted heterocycle;

or R⁴ and R⁶, together with the nitrogen to which they are attached, combine to form an optionally substituted N-heterocycle;

R⁷ is independently at each occurrence optionally substituted C₁-C₆ alkyl, C₁-C₆ alkoxy, (C₁-C₄ alkoxy)-aryl, (C₁-C₄ alkoxy)-heterocycle, (C₁-C₄ alkoxy)-SiCH₃, optionally substituted (C₃-C₈ cycloalkyl), optionally substituted (C₁-C₄ alkyl)-(C₃-C₈ cycloalkyl), optionally substituted aryl,

diphenylmethyl, optionally substituted (C_1 - C_4 alkyl)-CO-aryl, optionally substituted CO-aryl, optionally substituted (C_1 - C_4 alkyl)-heterocycle, optionally substituted CH=CH-heterocycle, optionally substituted phenoxy, optionally substituted heterocycle, optionally substituted (C_1 - C_4 alkyl)-phenoxy, (CH_2)_t $S(O)_tR^1$, (CH_2)_t $C(R^{12})(R^9)N(R^{16})(R^{15})$, (CH_2)_t $C(R^{12})(R^9)O(R^{17})$, (CH_2)_t $C(R^{12})(R^9)S(R^{17})$, or NR^4R^6 ;

R⁸ is independently at each occurrence optionally substituted C₁-C₆ alkyl, optionally substituted aryl, optionally substituted (C₁-C₄ alkyl)-aryl, optionally substituted (C₁-C₄ alkyl)-heterocycle, or optionally substituted heterocycle;

10

5

 R^9 is independently at each occurrence hydrogen, optionally substituted C_1 - C_6 alkyl, optionally substituted C_3 - C_8 cycloalkyl, optionally substituted $(C_1$ - C_4 alkyl)-aryl, optionally substituted aryl, optionally substituted heterocycle, $(CH_2)_u$ - $(C_1$ - C_6 alkoxy), optionally substituted $(CH_2)_u$ - $(C_3$ - C_8 cycloalkyl), optionally substituted $(CH_2)_u$ - $(C_1$ - C_4 alkoxy)-aryl, optionally substituted $(CH_2)_u$ - $(C_1$ - C_4 alkyl)-aryl, optionally substituted $(C_1$ - C_4 alkyl)- $(C_2$ - $(C_1$ - $(C_3$ -

20

15

 R^{10} is 0 to 4 substituents from the aryl ring independently at each occurrence hydrogen, halo, $C(O)R^3$, cyano, optionally substituted heterocycle, optionally substituted aryl, $C=C-R^1$, C_1-C_4 alkoxy, $(C_1-C_4$ alkyl)-phenyl, $NR^{19}R^{20}$, or C_2-C_6 alkenyl;

25

 R^{11} is independently at each occurrence hydrogen, C_1 - C_6 alkyl, optionally substituted heterocycle, optionally substituted (C_1 - C_4 alkyl)-heterocycle, optionally substituted aryl, or optionally substituted (C_1 - C_4 alkyl)-aryl;

10

15

20

25

R¹² is independently at each occurrence hydrogen, optionally substituted C₁-C₆ alkyl, optionally substituted C₃-C₈ cycloalkyl, optionally substituted (C₁-C₄ alkyl)-aryl, optionally substituted aryl, optionally substituted (C₁-C₄ alkyl)-heterocycle or optionally substituted heterocycle;

 R^{13} is independently at each occurrence hydrogen, optionally substituted C_1 - C_6 alkyl, optionally substituted C_3 - C_8 cycloalkyl, optionally substituted (C_1 - C_4 alkyl)-aryl, optionally substituted aryl, $CO_2CH_2CO_2CH_2CH_3$, or optionally substituted heterocycle;

 R^{14} is independently at each occurrence C_1 - C_6 alkyl or optionally substituted (C_1 - C_4 alkyl)-aryl;

R¹⁵ is independently at each occurrence hydrogen, C₁-C₆ alkyl, optionally substituted C₃-C₈ cycloalkyl, optionally substituted C₆-C₁₀ bicycloalkyl, optionally substituted (C₁-C₄ alkyl)-aryl, optionally substituted aryl, optionally substituted (C₁-C₄ alkyl)-heterocycle, optionally substituted heterocycle, C(O)OR¹³, SO₂R⁸, C(O)R¹⁸, or a

moiety of the formula

 R^{16} is independently at each occurrence hydrogen, optionally substituted C_1 - C_6 alkyl, optionally substituted aryl, optionally substituted heterocycle, or -COR⁸; or R^{16} and R^{15} , together with the nitrogen to which they are attached, combine to form an optionally substituted N-heterocycle;

R¹⁷ is independently at each occurrence hydrogen, optionally substituted C₁-C₆ alkyl, optionally substituted C₃-C₈ cycloalkyl, optionally substituted (C₁-C₄ alkyl)-aryl,

optionally substituted aryl, COR^{18} , optionally substituted heterocycle, optionally substituted (C_1 - C_4 alkyl)-heterocycle, optionally substituted C_1 - C_6 alkoxy, optionally substituted (C_1 - C_4 alkoxy)-aryl, optionally substituted (C_1 - C_4 alkoxy)-heterocycle, (C_1 - C_4 alkyl)- $N(R^1)(R^1)$, or an amino acid ester;

5

 R^{18} is independently at each occurrence hydrogen, optionally substituted C_1 - C_6 alkyl, optionally substituted C_3 - C_8 cycloalkyl, optionally substituted (C_1 - C_4 alkyl)-aryl, optionally substituted aryl, optionally substituted heterocycle, (C_1 - C_4 alkyl)-NHCO₂-(C_1 - C_4 alkyl), or optionally substituted (C_1 - C_4 alkyl)-heterocycle;

10

 R^{19} is independently at each occurrence hydrogen, or optionally substituted C_1 - C_6 alkyl;

R²⁰ is independently at each occurrence hydrogen, optionally substituted C₁-C₆

alkyl, CH₂OH, CO-(C₁-C₄ alkyl); or a pharmaceutical salt thereof.

2. The compound of Claim 1 where het is

3. The compound of Claim 1 where het is

- 4. The compound of any one of Claims 1-3 where A is 1,3-cyclohexyl.
- 5. The compound of any one of Claims 1-4 where n is 0.

- 6. The compound of any one of Claims 1-5 where o is 0 or 1.
- 7. The compound of any one of Claims 1-6 where Y is $E-NR^4R^5$.

- 8. The compound of Claim 7 where \mathbb{R}^5 is \mathbb{COR}^7 .
- 9. The compound of Claim 8 where R⁷ is optionally substituted heterocycle.
- 10. The compound of Claim 8 where R⁷ is optionally substituted CO-aryl.
 - 11. The compound of Claim 8 where R⁷ is optionally substituted CO-heteroaryl.
- 15 The compound of Claim 8 where R^7 is $(CH_2)_{t} C(R^{12})(R^9)N(R^{16})(R^{15})$.
 - 13. The compound of any one of Claims 1-12 where Rb is C1-C6 alkyl.
 - 14. The compound of Claim 13 where R^b is methyl.

- 15. The compound of any one of Claims 1-14 where R¹⁰ is halo.
- 16. The compound of Claim 15 where R¹⁰ is chloro.
- 25 17. The compound of Claim 16 where R¹⁰ is 9-chloro.
 - 18. The compound of Claim 17 selected from the group consisting of N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-piperidylacetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-

c]quinolin-5-yl))cyclohexyl]-2-(2-chloro(4-pyridyloxy))acetamide, N-{[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-imidazolo[5,4-c]quinolin-5-yl))cyclohexyl]methyl}benzamide, N-{[(1S,3R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]methyl}benzamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-hydroxy-2-phenylacetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(4-fluorophenyl)-2-hydroxyacetamide, N-{[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]methyl}-3-pyridylcarboxamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(4-acetylpiperazinyl)-2-phenylacetamide, and N-[(1S,3R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(4-acetylpiperazinyl)-2-phenylacetamide.

- 19. A method of inhibiting MRP1 in a mammal which comprises administering to a mammal in need thereof an effective amount of a compound of formula I, as defined in Claim 1, or a pharmaceutical salt thereof.
 - 20. The method according to Claim 19 where the mammal is a human.

21. The method of any one of Claims 19-20 where het is

20

- 15

- 22. The method of any one of Claims 19-20 where het is
- 23. The method of any one of Claims 19-22 where A is 1,3-cyclohexyl.
- 25 24. The method of any one of Claims 19-23 where n is 0.

15

- 25. The method of any one of Claims 19-24 where o is 0 or 1.
- 26. The method of any one of Claims 19-25 where Y is E-NR⁴R⁵.
- 27. The method of Claim 26 where R⁵ is COR⁷.
- 28. The method of Claim 27 where R⁷ is optionally substituted heterocycle.
- The method of Claim 27 where R⁷ is optionally substituted CO-aryl.
 - 30. The method of Claim 27 where R⁷ is optionally substituted CO-heteroaryl.
 - 31. The method of Claim 27 where R^7 is $(CH_2)_t C(R^{12})(R^9)N(R^{16})(R^{15})$.
 - 32. The method of any one of Claims 19-31 where R^b is C_1 - C_6 alkyl.
 - 33. The method of Claim 32 where Rb is methyl.
- 20 34. The method of any one of Claims 19-33 where R¹⁰ is halo.
 - 35. The method of Claim 34 where R¹⁰ is chloro.
 - 36. The method of Claim 35 where R¹⁰ is 9-chloro.
 - 37. The method of Claim 36 selected from the group consisting of N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-piperidylacetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(2-chloro(4-pyridyloxy))acetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(2-chloro(4-pyridyloxy))acetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(2-chloro(4-pyridyloxy))acetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(2-chloro(4-pyridyloxy))acetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(2-chloro(4-pyridyloxy))acetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(2-chloro(4-pyridyloxy))acetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(2-chloro(4-pyridyloxy))acetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(2-chloro(4-pyridyloxy))acetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl)

25

chloro-3-methyl-4-oxo-5H-imidazolo[5,4-c]quinolin-5-yl))cyclohexyl]methyl}benzamide, N-{[(1S,3R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]methyl}benzamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-hydroxy-2-phenylacetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(4-fluorophenyl)-2-hydroxyacetamide, N-{[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]methyl}-3-pyridylcarboxamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(4-acetylpiperazinyl)-2-phenylacetamide, and N-[(1S,3R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(4-acetylpiperazinyl)-2-phenylacetamide.

- 38. A method of inhibiting a resistant neoplasm, or a neoplasm susceptible to resistance, in a mammal which comprises administering to a mammal in need thereof an effective amount of a compound of formula I, as defined in Claim 1, or a pharmaceutical salt thereof; in combination with an effective amount of one or more oncolytic agents.
 - 39. The method according to Claim 38 where the mammal is a human.
- 40. The method according to Claim 39 where the oncolytic(s) is selected from:
 camptosar, melphalan, paclitaxel, vinorelbine, mitoxantrone, doxorubicin, daunorubicin,
 epirubicin, vincristine, and etopsoside.
 - 41. The method according to Claim 39 where the neoplasm is of the Wilm's type, bladder, bone, breast, lung(small-cell), testis, or thyroid or the neoplasm is associated with acute lymphoblastic and myeloblastic leukemia, neuroblastoma, soft tissue sarcoma, Hodgkin's and non-Hodgkin's lymphomas, and bronchogenic carcinoma.

42. The method of any one of Claims 39-41 where het is

15

25

N N R

- 43. The method of any one of Claims 39-41 where het is
- 44. The method of any one of Claims 39-43 where A is 1,3-cyclohexyl.
- 45. The method of any one of Claims 39-44 where n is 0.
- 46. The method of any one of Claims 39-45 where o is 0 or 1.
- 10 47. The method of any one of Claims 39-46 where Y is E-NR⁴R⁵.
 - 48. The method of Claim 47 where R⁵ is COR⁷.
 - 49. The method of Claim 48 where R⁷ is optionally substituted heterocycle.
 - 50. The method of Claim 48 where R⁷ is optionally substituted CO-aryl.
 - 51. The method of Claim 48 where R⁷ is optionally substituted CO-heteroaryl.
- 20 52. The method of Claim 48 where R^7 is $(CH_2)_t C(R^{12})(R^9)N(R^{16})(R^{15})$.
 - 53. The method of any one of Claims 39-52 where R^b is C_1 - C_6 alkyl.
 - 54. The method of Claim 53 where R^b is methyl.
 - 55. The method of any one of Claims 39-54 where R¹⁰ is halo.

WO 01/46199 PCT/US00/32443

- 374 -

- 56. The method of Claim 55 where R¹⁰ is chloro.
- 57. The method of Claim 56 where R¹⁰ is 9-chloro.
- 5 58. The method of Claim 57 selected from the group consisting of N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2piperidylacetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3c]quinolin-5-yl))cyclohexyl]-2-(2-chloro(4-pyridyloxy))acetamide, N-{[(3S,1R)-3-(9chloro-3-methyl-4-oxo-5H-imidazolo[5,4-c]quinolin-5-yl))cyclohexyl]methyl}benzamide, 10 $N-\{[(1S,3R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5$ yl))cyclohexyl]methyl}benzamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5Hisoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-hydroxy-2-phenylacetamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(4fluorophenyl)-2-hydroxyacetamide, N-{[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-15 isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]methyl}-3-pyridylcarboxamide, N-[(3S,1R)-3-(9-chloro-3-methyl-4-oxo-5H-isoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(4acetylpiperazinyl)-2-phenylacetamide, and N-[(1S,3R)-3-(9-chloro-3-methyl-4-oxo-5Hisoxazolo[4,3-c]quinolin-5-yl))cyclohexyl]-2-(4-acetylpiperazinyl)-2-phenylacetamide.
- 20 59. A pharmaceutical formulation comprising a compound of formula I, as defined in Claim 1, or a pharmaceutical salt thereof; in combination with one or more pharmaceutical carriers, diluents, or excipients therefor.
 - 60. A pharmaceutical formulation comprising:

25

- (a) a compound of formula I, as defined in Claim 1, or a pharmaceutical salt thereof:
 - (b) one or more oncolytic agents; and

30

(c) one or more pharmaceutical carriers, diluents, or excipients therefor.

WO 01/46199 PCT/US00/32443

61. The formulation according to Claim 60 where the oncolytic(s) is selected from: camptosar, melphalan, paclitaxel, vinorelbine, mitoxantrone, doxorubicin, daunorubicin, epirubicin, vincristine, and etopsoside.

5

62. A use of a compound of formula I, as defined in Claim 1, or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for inhibiting a resistant neoplasm, or a neoplasm susceptible to resistance in a mammal.

10

- 63. A use of a compound of formula I, as defined in Claim 1, or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for inhibiting MRP1.
- 64. A use of a compound of formula I, as defined in Claim 1, or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for inhibiting MRP1 conferred MDR in a resistant neoplasm, or a neoplasm susceptible to resistance in a mammal.
 - 65. A use of a compound of formula I, as defined in Claim 1, in therapy.

20

66. A pharmaceutical composition for inhibiting MRP1 in a mammal which comprises an effective amount of a compound of formula I, as defined in Claim 1, or a pharmaceutical salt thereof.

25

- 67. The composition according to Claim 66 where the mammal is a human.
- 68. A pharmaceutical composition for inhibiting a resistant neoplasm, or a neoplasm susceptible to resistance, in a mammal which comprises administering to a mammal in need thereof an effective amount of a compound of formula I, as defined in Claim 1, or a pharmaceutical salt thereof; in combination with an effective amount of one or more oncolytic agents.

- 69. The composition according to Claim 68 where the mammal is a human.
- 70. The composition according to Claim 69 where the oncolytic(s) is selected from: camptosar, melphalan, paclitaxel, vinorelbine, mitoxantrone, doxorubicin, daunorubicin, epirubicin, vincristine, and etopsoside.
- 71. The composition according to Claim 69 where the neoplasm is of the Wilm's type, bladder, bone, breast, lung(small-cell), testis, or thyroid or the neoplasm is associated with acute lymphoblastic and myeloblastic leukemia, neuroblastoma, soft tissue sarcoma, Hodgkin's and non-Hodgkin's lymphomas, and bronchogenic carcinoma.