# Holistic Influence Maximization: Combining Scalability and Efficiency with Opinion-Aware Models

Sainyam Galhotra<sup>1</sup>, Akhil Arora<sup>1</sup>, Shourya Roy

Sainyam@cs.umass.edu, aarora@cse.iitk.ac.in
Text & Graph Analytics Group
Xerox Research Centre India, Bangalore

29<sup>th</sup> June, 2016 ACM SIGMOD Conference, San Francisco, California

<sup>&</sup>lt;sup>1</sup>The first two authors have contributed equally to this work.

# Information Propagation<sup>2</sup>: Need for Modelling??

- Many real-world processes can be interpreted using concepts from information propagation
- For example: Spread of Diseases

<sup>&</sup>lt;sup>2</sup>Propagation/Flow/Spread/Diffusion, would be used interchangeably

# Need for Modelling??

Traffic Congestion and its propagation



# Need for Modelling??

Traffic Congestion and its propagation



- Independent Cascade (IC) and Weighted Cascade (WC) Models
- Linear Threshold (LT) Model
- Other models Heat Diffusion etc.

- Independent Cascade (IC) and Weighted Cascade (WC) Models
- Linear Threshold (LT) Model
- Other models Heat Diffusion etc.









## The Influence Maximization (IM) Problem



- Input: A graph G, an information-diffusion model  $\mathcal{I}$
- Constraints: The budget (k = |S|) defining the size of the seed-set

## The Influence Maximization (IM) Problem



- Input: A graph G, an information-diffusion model  $\mathcal{I}$
- Constraints: The budget (k = |S|) defining the size of the seed-set
- Task: Identify the set of most-influential nodes in a network
  - Maximize  $\sigma(S) = \mathbb{E}[\mathbb{F}(S)]$ : Expected number of nodes active at the end, if set S is targeted for initial activation

## The Influence Maximization (IM) Problem



- Input: A graph G, an information-diffusion model  $\mathcal{I}$
- Constraints: The budget (k = |S|) defining the size of the seed-set
- Task: Identify the set of most-influential nodes in a network
  - Maximize  $\sigma(S) = \mathbb{E}[\mathbb{F}(S)]$ : Expected number of nodes active at the end, if set S is targeted for initial activation
- Tractability: The IM problem is NP-hard. Need for Approximate Solutions!
- The spread function  $\sigma$  is Monotone and Submodular, thus, a simple GREEDY algorithm provides the best possible (1 1/e) approximation

# Real-world Applications<sup>3</sup>



Using the word-of-mouth effect for:

<sup>&</sup>lt;sup>3</sup>All applications are practical only under a budget constraint

# Real-world Applications<sup>3</sup>



- Using the word-of-mouth effect for:
  - Viral Marketing: Product/Topic/Event promotion
  - Managing Celebrity/Political campaigns

<sup>&</sup>lt;sup>3</sup>All applications are practical only under a budget constraint

# Real-world Applications<sup>3</sup>



- Using the word-of-mouth effect for:
  - Viral Marketing: Product/Topic/Event promotion
  - Managing Celebrity/Political campaigns
- Detect and Prevent Outbreaks/Epidemics/Rumours
- Many more . . .

<sup>&</sup>lt;sup>3</sup>All applications are practical only under a budget constraint

- We propose a holistic solution to the Influence Maximization problem
- Why do we term our solution holistic?

- We propose a holistic solution to the Influence Maximization problem
- Why do we term our solution holistic?
- Answer: We address various aspects of IM
- Diffusion Model:
  - Classical diffusion models [KKT03] fail to capture real-world phenomena. Too simplistic! Results

- We propose a holistic solution to the Influence Maximization
   Contribution 1: Novel, generic and close to real-world OI model
- Why do we term our solution holistic?
- Answer: We address various aspects of IM
- Diffusion Model:
  - Classical diffusion models [KKT03] fail to capture real-world phenomena. Too simplistic! Results

- We propose a holistic solution to the Influence Maximization
   Contribution 1: Novel, generic and close to real-world OI model
- Why do we term our solution hylistic?
- Answer: We address various aspects of IM
- Diffusion Model:
  - Classical diffusion models [KKT03] fail to capture real-world phenomena. Too simplistic! Results
- Seed Selection Algorithm:
  - Run-time efficiency and efficacy attributes have been extensively studied [KKT03, LKG+07, GLL11, BBCL14, TXS14, CDPW14]
  - However, scalable solutions (catering to both running-time and memory-consumption) are non-existent

- We propose a holistic solution to the Influence Maximization
   Contribution 1: Novel, generic and close to real-world OI model
- Why do we term our solution holistic?
- Answer: We address various aspects of IM
- Diffusion Model:
  - Classical diffusion models [KKT03] fail to capture real-world phenomena. Too simplistic! Results
- Seed Selection Algorithm:
  - Contribution 2: Scalable algorithms EaSyIM and OSIM W14]
  - memory-consumption) are non-existent



Figure: A sample representation of the Twitter network.

- Perform IM with k = 1
- Nodes A and C follow B, while D follows A and C



Figure: A sample representation of the Twitter network.

- Perform IM with k=1
- Nodes A and C follow B, while D follows A and C
- IC model:
  - Since  $p_{CD}=$  0.9, the expected spread of C under the IC model  $\sigma(\mathbf{C})=$  **0.9**
  - Similarly for other nodes:  $\sigma(A) = 0.8$ ,  $\sigma(B) = 0.3628$  and  $\sigma(D) = 0$



Figure: A sample representation of the Twitter network.

- Perform IM with k = 1
- Nodes A and C follow B, while D follows A and C
- IC model:
  - Since  $p_{CD}=$  0.9, the expected spread of C under the IC model  $\sigma(\mathbf{C})=$  **0.9**
  - Similarly for other nodes:  $\sigma(A) = 0.8$ ,  $\sigma(B) = 0.3628$  and  $\sigma(D) = 0$
  - Thus, C is selected as the seed node



Figure: A sample representation of the Twitter network.

- Perform IM with k = 1
- Nodes A and C follow B, while D follows A and C
- IC model:
  - Since  $p_{CD}=0.9$ , the expected spread of C under the IC model  $\sigma(\mathbf{C})=\mathbf{0.9}$
  - Similarly for other nodes:  $\sigma(A) = 0.8$ ,  $\sigma(B) = 0.3628$  and  $\sigma(D) = 0$
  - Thus, C is selected as the seed node
- OI model:
  - Since D agrees with A with a probability of  $\varphi_{AD}$  and disagrees otherwise, the expected opinion-spread of A under the OI model is expressed as

$$\sigma^{\mathbf{o}}(\mathbf{A}) = p_{AD}(\varphi_{AD}(o_D + o_A)/2 + (1 - \varphi_{AD})(o_D - o_A)/2) = \mathbf{0.136}$$

• Similarly:  $\sigma^o(B) = -0.022564$ ,  $\sigma^o(C) = -0.351$  and  $\sigma^o(D) = 0$ 



Figure: A sample representation of the Twitter network.

- Perform IM with k = 1
- Nodes A and C follow B, while D follows A and C
- IC model:
  - Since  $p_{CD}=$  0.9, the expected spread of C under the IC model  $\sigma(\mathbf{C})=$  **0.9**
  - Similarly for other nodes:  $\sigma(A) = 0.8$ ,  $\sigma(B) = 0.3628$  and  $\sigma(D) = 0$
  - Thus, C is selected as the seed node
- OI model:
  - Since D agrees with A with a probability of  $\varphi_{AD}$  and disagrees otherwise, the expected opinion-spread of A under the OI model is expressed as

$$\sigma^{\mathbf{o}}(\mathbf{A}) = p_{AD}(\varphi_{AD}(o_D + o_A)/2 + (1 - \varphi_{AD})(o_D - o_A)/2) = \mathbf{0.136}$$

- Similarly:  $\sigma^o(B) = -0.022564$ ,  $\sigma^o(C) = -0.351$  and  $\sigma^o(D) = 0$
- Thus, A is selected as the seed node

## Opinion-cum-Interaction (OI) Model

- Second layer on the top of IC/WC and LT to model the propagation and change of opinion
- Models Opinion Spread The contribution of a newly activated node can be signed
- Two components opinion ( $o_v \in [-1, 1]$ ) and interaction ( $\varphi_{(u,v)} \in [0, 1]$ )

## Opinion-cum-Interaction (OI) Model

- Second layer on the top of IC/WC and LT to model the propagation and change of opinion
- Models Opinion Spread The contribution of a newly activated node can be signed
- Two components opinion ( $o_v \in [-1, 1]$ ) and interaction ( $\varphi_{(u,v)} \in [0, 1]$ )
- Opinion of a node can be estimated using its own opinions on similar events in the past
- Interaction probabilities (directed), between two nodes, can be estimated by accounting for all of their possible interactions in the past

## Opinion-cum-Interaction (OI) Model

- Second layer on the top of IC/WC and LT to model the propagation and change of opinion
- Models Opinion Spread The contribution of a newly activated node can be signed
- Two components opinion ( $o_v \in [-1, 1]$ ) and interaction ( $\varphi_{(u,v)} \in [0, 1]$ )
- Opinion of a node can be estimated using its own opinions on similar events in the past
- Interaction probabilities (directed), between two nodes, can be estimated by accounting for all of their possible interactions in the past
- Effective opinion  $(o'_v)$  of an activated node v is dependent upon both, its personal opinion  $o_v$  and the effective opinion  $(o'_u)$  of all the nodes  $u \in V_{(a)}$  (set of nodes activated at previous steps)

## The Opinion Maximization (MEO) Problem

### **Opinion Spread**

Sum of opinions of the users in the activated set, when S is the chosen seed set

#### Effective Opinion Spread

Weighted difference between the opinion spread of the users with positive polarity and the opinion spread of negatively polarised users, in the set of activated nodes.

- Task: Identify the set of most-influential nodes
  - Maximize  $\sigma^o(S) = \mathbb{E}[\mathbb{F}^o(S)]$ : Expected effective opinion spread obtained at the end, if set S is targeted for initial activation

## The Opinion Maximization (MEO) Problem

### **Opinion Spread**

Sum of opinions of the users in the activated set, when S is the chosen seed set

#### Effective Opinion Spread

Weighted difference between the opinion spread of the users with positive polarity and the opinion spread of negatively polarised users, in the set of activated nodes.

- Task: Identify the set of most-influential nodes
  - Maximize  $\sigma^o(S) = \mathbb{E}[\mathbb{F}^o(S)]$ : Expected effective opinion spread obtained at the end, if set S is targeted for initial activation
- Result: The opinion spread function  $\sigma^o$  is neither monotonous nor submodular, thus, approximating MEO within any constant ratio is not possible (Proof in the paper)

## Outline of our approach



Figure: Overview of our algorithm

## Seed Selection Algorithms: Intuition

• Observation: Probability of v to get activated by u is dependent on the number of all possible simple paths from u to v in G.



## Seed Selection Algorithms: Intuition

 Observation: Probability of v to get activated by u is dependent on the number of all possible simple paths from u to v in G.



- EaSyIM assigns a score to each node (u) of the graph
- Paths of length / from a node u can be calculated as the sum of all paths of length / - 1 from its neighbors
- $\Delta^{I}(u)$  ( $\forall u \in V$ ) is defined as the weighted sum of the number of simple paths of length at most (I) starting from u
- Path length  $I \le \mathcal{D}$  (diameter) of the graph is a parameter to control accuracy
- The weight for each path is defined as the product of probabilities  $p_{(u,v)}$  of the edges composing that path

## Seed Selection Algorithms: Intuition

• Observation: Probability of v to get activated by u is dependent on the number of all possible simple paths from u to v in G.



This algorithm can easily be extended to opinion-aware settings (OSIM)



- EaSyIM assigns a score to each node (u) of the graph
- Paths of length I from a node u can be calculated as the sum of all paths of length I-1 from its neighbors
- $\Delta^{I}(u)$  ( $\forall u \in V$ ) is defined as the weighted sum of the number of simple paths of length at most (I) starting from u
- Path length  $l \le \mathcal{D}$  (diameter) of the graph is a parameter to control accuracy
- The weight for each path is defined as the product of probabilities  $p_{(u,v)}$  of the edges composing that path

## **Analysis**

- Time Complexity for score assignment O((m+n)I)
- Time taken by EaSyIM/OSIM for selecting k seeds O(k(m+n)l)
- Memory Complexity O(n)
- Approximation Guarantee same as [KKT03] for trees under the IC/WC model and DAGs under the LT model

# Quality





# Efficiency: Running Time





# Scalability: Memory Consumption



(e) EaSyIM: Medium Data



(f) EaSyIM: Large Data

# Scalability: SNAP Datasets - Challenges

| Dataset        | n    | m    | Type       | Avg. Degree | Diameter |  |
|----------------|------|------|------------|-------------|----------|--|
| NetHEPT        | 15K  | 62K  | Undirected | 4.13        | 10       |  |
| HepPh          | 12K  | 118K | Undirected | 9.87        | 5.8      |  |
| DBLP           | 317K | 1M   | Undirected | 3.3         | 8        |  |
| YouTube        | 1M   | 3M   | Undirected | 2.63        | 6.5      |  |
| SocLiveJournal | 5M   | 65M  | Directed   | 14.23       | 6.5      |  |

| Dataset | Running Time (min) |         |        | Memory (MB) |        |       |
|---------|--------------------|---------|--------|-------------|--------|-------|
|         | CELF++             | EaSylM  | Gain   | CELF++      | EaSylM | Gain  |
| NetHEPT | 5352.25            | 118     | 45.35x | 23.26       | 3.39   | 6.86x |
| HepPh   | 9746.74            | 230     | 41x    | 24.60       | 3.47   | 7.08x |
| DBLP    | NA                 | 5071.67 | 8      | NA          | 44.73  | ω     |

| Dataset | Run   | ning Time (ı | min)  | Memory (MB) |        |      |
|---------|-------|--------------|-------|-------------|--------|------|
| TIM+    |       | EaSylM       | Gain  | TIM+        | EaSylM | Gain |
| DBLP    | 783.1 | 2183         | 0.36x | 35234.75    | 46.5   | 758x |
| YouTube | NA    | 5089.5       | ω     | NA          | 158.3  | 8    |
| socLive | NA    | 15433.33     | ω     | NA          | 974.94 | 8    |

#### **Conclusions**

- Previous works mostly in the context of opinion-oblivious settings
- First work to propose a holistic solution
  - Realistic and generic information propagation models and optimization objectives
  - Efficient yet Scalable algorithms

#### **Conclusions**

- Previous works mostly in the context of opinion-oblivious settings
- First work to propose a holistic solution
  - Realistic and generic information propagation models and optimization objectives
  - Efficient yet Scalable algorithms

THANK YOU!

#### Conclusions

- Previous works mostly in the context of opinion-oblivious settings
- First work to propose a holistic solution
  - Realistic and generic information propagation models and optimization objectives
  - Efficient yet Scalable algorithms

THANK YOU! Questions? Answers!

- Maximizing the total spread in a network is not enough
- What about the negative spread? Can hamper product promotion

- Maximizing the total spread in a network is not enough
- What about the negative spread? Can hamper product promotion
- Answer: Maximize the positive spread

- Maximizing the total spread in a network is not enough
- What about the negative spread? Can hamper product promotion
- Answer: Maximize the positive spread
- Even maximizing the positive spread alone is not enough
- Election/Celebrity campaigns can get affected

- Maximizing the total spread in a network is not enough
- What about the negative spread? Can hamper product promotion
- Answer: Maximize the positive spread
- Even maximizing the positive spread alone is not enough
- Election/Celebrity campaigns can get affected
- Why not maximize the difference?
- More specifically, Maximize  $|\mathbb{F}^+(S) \lambda \times \mathbb{F}^-(S)|$ ,  $\lambda \in [-1, 1]$

# **Optimization Objectives**



### Information Propagation in the Real-World — Challenges



Figure: Comparing opinion-spreads under OI, OC and IC with the real-world opinion-spread.

### Motivation: Opinion-Aware IM — Motivation: OI



Figure: Comparing OI with OC and IC: Opinion spread vs k.

#### References I



Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier.

Maximizing social influence in nearly optimal time.

In SODA, pages 946-957, 2014.



Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck.

Sketch-based influence maximization and computation: Scaling up with guarantees. In CIKM, pages 629–638, 2014.



Amit Goval, Wei Lu, and Laks V.S. Lakshmanan.

Celf++: Optimizing the greedy algorithm for influence maximization in social networks.

In WWW (Companion Volume), pages 47-48, 2011.



David Kempe, Jon Kleinberg, and Éva Tardos.

Maximizing the spread of influence through a social network.

In KDD, pages 137-146, 2003.



Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie Glance.

Cost-effective outbreak detection in networks.

In KDD, pages 420-429, 2007.



Youze Tang, Xiaokui Xiao, and Yanchen Shi.

Influence maximization: Near-optimal time complexity meets practical efficiency. In *SIGMOD*, pages 75–86, 2014.