Guida Approfondita

Parte 1: Rappresentazione dell'Informazione

1.1 Concetti Fondamentali

L'informazione in un sistema informatico deve essere rappresentata in forma digitale, utilizzando sequenze di bit (0 e 1). Questa rappresentazione binaria è alla base di qualsiasi elaborazione digitale.

La digitalizzazione è il processo di conversione di un'informazione analogica (continua) in formato digitale (discreto). Questo processo si applica a diversi tipi di informazione:

- Testi
- Numeri
- Immagini
- Suoni
- Video

1.2 Sistemi di Numerazione

I principali sistemi di numerazione utilizzati in informatica sono:

Sistema Binario (base 2)

- Utilizza solo le cifre 0 e 1
- Ogni posizione rappresenta una potenza di 2
- È il linguaggio nativo dei computer
- Esempio: $1010_2 = 10_{10}$

Sistema Ottale (base 8)

- Utilizza le cifre da 0 a 7
- Facilmente convertibile da/verso il binario (ogni cifra ottale = 3 bit)
- Esempio: 12₈ = 10₁₀

Sistema Esadecimale (base 16)

- Utilizza cifre da 0 a 9 e lettere da A a F
- Molto usato in programmazione
- Facilmente convertibile da/verso il binario (ogni cifra esadecimale = 4 bit)
- Esempio: $A_{16} = 10_{10}$

1.3 Codifica dei Caratteri

ASCII (American Standard Code for Information Interchange)

- Codifica a 7 bit
- 128 caratteri totali
- Include lettere maiuscole e minuscole, numeri, segni di punteggiatura
- Non supporta caratteri accentati o simboli speciali

ISO 8859

- Estensione dell'ASCII a 8 bit
- 256 caratteri totali
- Diverse varianti per supportare caratteri di lingue specifiche
- ISO 8859-1 (Latin-1) per lingue dell'Europa occidentale

Unicode

- Standard moderno per la codifica dei caratteri
- Supporta tutti i sistemi di scrittura del mondo
- Utilizza fino a 31 bit per carattere
- UTF-8, UTF-16 e UTF-32 sono le implementazioni più comuni

Parte 2: Il Livello Fisico delle Reti

2.1 Fondamenti dei Segnali

Un segnale è una variazione di una grandezza fisica nel tempo che trasporta informazione. Nel contesto delle reti, lavoriamo con:

Segnali Analogici:

- Variano in modo continuo nel tempo
- Possono assumere infiniti valori
- Esempi: onde radio, segnali audio
- Caratterizzati da:
 - Ampiezza (intensità del segnale)
 - Frequenza (cicli al secondo)
 - Fase (spostamento temporale dell'onda)

Segnali Digitali:

- Variano in modo discreto
- Assumono solo valori predefiniti (tipicamente 0 e 1)
- Più resistenti al rumore

Più facili da elaborare e rigenerare

2.2 Mezzi Trasmissivi

La trasmissione dei dati avviene attraverso diversi mezzi fisici:

1. Cavi in Rame

Doppino Intrecciato (Twisted Pair):

- Il più comune nelle reti locali
- Due conduttori intrecciati per ridurre le interferenze
- Tipi:
 - UTP (Unshielded Twisted Pair): non schermato
 - STP (Shielded Twisted Pair): schermato
- Categorie da 5e a 8, con prestazioni crescenti
- Velocità fino a 10 Gbps
- Economico e facile da installare

Cavo Coassiale:

- Migliore schermatura dalle interferenze
- Maggiore larghezza di banda
- Due tipi principali:
 - Baseband: per trasmissione digitale
 - Broadband: per trasmissione analogica
- Usato principalmente per TV via cavo

2. Fibra Ottica

- Trasmissione mediante impulsi luminosi
- Altissima larghezza di banda
- Immune alle interferenze elettromagnetiche
- Tipi:
 - Monomodale: per lunghe distanze
 - Multimodale: per distanze più brevi
- Vantaggi:
 - Bassissima attenuazione
 - Alta sicurezza
 - Grandi distanze senza ripetitori

3. Wireless

Non richiede collegamenti fisici

- Utilizza onde radio elettromagnetiche
- Bande di frequenza:
 - 2.4 GHz: maggiore copertura
 - 5 GHz: maggiore velocità
- Soggetto a:
 - Interferenze
 - Attenuazione
 - Problemi di sicurezza

2.3 Problematiche della Trasmissione

Nel livello fisico si devono affrontare diverse problematiche:

Attenuazione:

- Riduzione dell'ampiezza del segnale con la distanza
- Richiede l'uso di amplificatori o ripetitori
- Più significativa alle alte frequenze

Distorsione:

- Alterazione della forma del segnale
- Causata da ritardi differenziali delle componenti in frequenza
- Gestita mediante equalizzazione

Rumore:

- Interferenze elettromagnetiche
- Rumore termico
- Cross-talk tra cavi adiacenti
- Mitigato mediante schermatura e tecniche di filtraggio

2.4 Tecniche di Trasmissione

Banda Base:

- Segnale digitale trasmesso direttamente
- Utilizzata per distanze brevi
- Tipica delle reti locali

Banda Traslata:

- Segnale modulato su una portante
- Permette trasmissioni su lunghe distanze
- Supporta multiple comunicazioni simultanee

Multiplazione:

- TDM (Time Division Multiplexing): divisione temporale
- FDM (Frequency Division Multiplexing): divisione in frequenza
- WDM (Wavelength Division Multiplexing): per fibre ottiche

Considerazioni Pratiche e Suggerimenti per lo Studio

1. Approccio alla Rappresentazione dell'Informazione:

- Esercitarsi nelle conversioni tra sistemi numerici
- Comprendere i principi della codifica dei caratteri
- Fare pratica con esempi concreti

2. Comprensione del Livello Fisico:

- Visualizzare i segnali e le loro caratteristiche
- Comprendere i vantaggi e svantaggi di ogni mezzo trasmissivo
- Analizzare casi reali di problemi di trasmissione

3. Collegamenti tra i Concetti:

- Come la rappresentazione digitale influenza la trasmissione
- Relazione tra codifica e capacità del canale
- Impatto delle scelte di progettazione sulle prestazioni

Glossario dei Termini Chiave

Termine	Definizione
Bit	Unità fondamentale dell'informazione digitale (0 o 1)
Banda Passante	Intervallo di frequenze che un mezzo può trasmettere
Attenuazione	Perdita di potenza del segnale con la distanza
Modulazione	Tecnica per adattare un segnale al mezzo trasmissivo
Multiplexing	Condivisione di un mezzo tra più comunicazioni

Ricorda: questi concetti sono fondamentali e interconnessi. È importante comprenderli bene prima di passare a livelli più avanzati di networking.