

Transformers

Julio Waissman

Antes de los transformers

El artículo que cambió todo

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

¿Cómo funciona todo?

¿Cómo funciona todo?

Decoding time step: 1 2 3 4 5 6 OUTPUT

¿Cómo funciona todo?

Decoding time step: 1 2 3 4 5 6 OUTPUT

Autoatención

Queries, keys and values come from the same sentence

Attention vs MultiHead Attention

Scaled Dot-Product Attention

Self Attention

Multi-head Self Attention

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads.
 We multiply X or
 R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Thinking Machines

W₀K W₀V

 W_0^Q

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Mo

Z

Positional encoding

RNNs vs Transformer: Positional Encoding

Deep Residual Learning for Image Recognition

Add & Normalize

Encode-Decoder Self-Attention

Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax Kencdec Vencdec **ENCODERS DECODERS EMBEDDING** WITH TIME **SIGNAL EMBEDDINGS PREVIOUS** étudiant suis Je INPUT **OUTPUTS**

Encoder-Decoder Attention

Queries from one sentence, keys and values from another

Masked Self-Attention

Queries, keys and values come from the same sentence. Queries don't

attend to future positions.

¿Y cómo se hace el Masked Self-Attention?

Capa final de los decoders

