



# **Bayesian Non-Parametrics**

Advanced Machine Learning for NLP Jordan Boyd-Graber

# Clustering as Probabilistic Inference

- GMM is a probabilistic model (unlike *K*-means)
- There are several latent variables:
  - Means
  - Assignments
  - (Variances)

### Clustering as Probabilistic Inference

- GMM is a probabilistic model (unlike K-means)
- There are several latent variables:
  - Means
  - Assignments
  - (Variances)
- Corresponds to representation in unbounded space

# **Nonparametric Clustering**

- What if the number of clusters is not fixed?
- · Nonparametric: can grow if data need it
- Probabilistic distribution over number of clusters

- Distribution over distributions
- Parameterized by:  $\alpha$ , G

- Distribution over distributions
- Parameterized by:  $\alpha$ , G
- · Concentration parameter

- Distribution over distributions
- Parameterized by:  $\alpha$ , G
- Concentration parameter
- Base distribution

- Distribution over distributions
- Parameterized by: α, G
- Concentration parameter
- Base distribution
- You can then draw observations from  $x \sim DP(\alpha, G)$ .

### **Defining a DP**

### Break off sticks

$$V_1, V_2, \dots \sim_{\mathsf{iid}} \mathsf{Beta}(1, \alpha)$$
 (1)

$$C_k \equiv V_k \prod_{j=1}^{k-1} (1 - V_k)$$
 (2)

### **Defining a DP**

Break off sticks

$$V_1, V_2, \dots \sim_{\mathsf{iid}} \mathsf{Beta}(1, \alpha)$$
 (1)

$$C_k \equiv V_k \prod_{j=1}^{k-1} (1 - V_k)$$
 (2)

Draw atoms

$$\Phi_1, \Phi_2, \dots \sim_{\mathsf{iid}} G \tag{3}$$

### Defining a DP

Break off sticks

$$V_1, V_2, \dots \sim_{\mathsf{iid}} \mathsf{Beta}(1, \alpha)$$
 (1)

$$C_k \equiv V_k \prod_{j=1}^{k-1} (1 - V_k)$$
 (2)

Draw atoms

$$\Phi_1, \Phi_2, \dots \sim_{\mathsf{iid}} G \tag{3}$$

Merge into complete distribution

$$\Theta = \sum_{k} C_k \delta_{\Phi_k} \tag{4}$$

### Properties of a DPMM

Expected value is the same as base distribution

$$\mathbb{E}_{\mathsf{DP}(\alpha,G)}[x] = \mathbb{E}_G[x] \tag{5}$$

- As  $\alpha \to \infty$ ,  $DP(\alpha, G) = G$
- Number of components unbounded
- Impossible to represent fully on computer (truncation)
- You can nest DPs

# Effect of scaling parameter $\alpha$



### **DP** as mixture Model













To generate an observation, you first sit down at a table. You sit down at a table proportional to the number of people sitting at the table.



**But this is just Maximum Likelihood** 

Why are we talking about Chinese Restaurants?

# Always can squeeze in one more table ...

- The posterior of a DP is CRP
- A new observation has a new table / cluster with probability proportional to  $\alpha$
- But this must be balanced against the probability of an observation given a cluster

$$\Theta = \sum_{k} C_k \delta_{\Phi_k} \tag{6}$$

- We want to know the cluster assignment of each observation
- Take a random guess initially

- We want to know the cluster assignment of each observation
- Take a random guess initially
- This provides a mean for each cluster

- We want to know the cluster assignment of each observation
- Take a random guess initially
- This provides a mean for each cluster
- Let the number of clusters grow

- We want to know the cluster assignment of each observation (tables)
- Take a random guess initially
- This provides a mean for each cluster
- Let the number of clusters grow

- We want to know  $\vec{z}$
- Compute  $p(z_i | z_1 ... z_{i-1}, z_{i+1}, ... z_m, x, \alpha, G)$
- Update  $z_i$  by sampling from that distribution
- Keep going . . .

- We want to know  $\vec{z}$
- Compute  $p(z_i | z_1 ... z_{i-1}, z_{i+1}, ... z_m, x, \alpha, G)$
- Update  $z_i$  by sampling from that distribution
- Keep going . . .

### **Notation**

$$p(z_i = k \mid z_{-i}) \equiv p(z_i \mid z_1 \dots z_{i-1}, z_{i+1}, \dots z_m)$$
 (7)

$$p(z_i = k \mid \vec{z}_{-i}, \vec{x}, \{\theta_k\}, \alpha) \tag{8}$$

(9)

$$p(z_i = k \mid \vec{z}_{-i}, \vec{x}, \{\theta_k\}, \alpha) \tag{8}$$

$$=p(z_i=k\,|\,\vec{z}_{-i},x_i,\vec{x},\theta_k,\alpha) \tag{9}$$

(10)

Dropping irrelevant terms

$$p(z_i = k \mid \vec{z}_{-i}, \vec{x}, \{\theta_k\}, \alpha) \tag{8}$$

$$=p(z_i=k\,|\,\vec{z}_{-i},x_i,\vec{x},\theta_k,\alpha) \tag{9}$$

$$=p(z_i=k\,|\,\vec{z}_{-i},\alpha)p(x_i\,|\,\theta_k,\vec{x}) \tag{10}$$

(11)

#### Chain rule

$$p(z_i = k \mid \vec{z}_{-i}, \vec{x}, \{\theta_k\}, \alpha) \tag{8}$$

$$=p(z_i=k\,|\,\vec{z}_{-i},x_i,\vec{x},\theta_k,\alpha) \tag{9}$$

$$=p(z_i=k\,|\,\vec{z}_{-i},\alpha)p(x_i\,|\,\theta_k,\vec{x})\tag{10}$$

$$= \begin{cases} \left(\frac{n_k}{n+\alpha}\right) \int_{\theta} p(x_i \mid \theta) p(\theta \mid G, \vec{x}) & \text{existing} \\ \frac{\alpha}{n+\alpha} \int_{\theta} p(x_i \mid \theta) p(\theta \mid G) & \text{new} \end{cases}$$
 (11)

(12)

Applying CRP

$$p(z_i = k \mid \vec{z}_{-i}, \vec{x}, \{\theta_k\}, \alpha) \tag{8}$$

$$=p(z_i=k\,|\,\vec{z}_{-i},x_i,\vec{x},\theta_k,\alpha) \tag{9}$$

$$= p(z_i = k \mid \vec{z}_{-i}, \alpha) p(x_i \mid \theta_k, \vec{x})$$
(10)

$$= \begin{cases} \left(\frac{n_k}{n+\alpha}\right) \int_{\theta} p(x_i | \theta) p(\theta | G, \vec{x}) & \text{existing} \\ \frac{\alpha}{n+\alpha} \int_{\theta} p(x_i | \theta) p(\theta | G) & \text{new} \end{cases}$$
 (11)

$$= \begin{cases} \left(\frac{n_k}{n+\alpha}\right) \mathcal{N}\left(x, \frac{n\bar{x}}{n+1}, \mathbb{1}\right) & \text{existing} \\ \frac{\alpha}{n+\alpha} \mathcal{N}(x, 0, \mathbb{1}) & \text{new} \end{cases}$$
 (12)

Scary integrals assuming G is normal distribution with mean zero and unit variance. (Derived in optional reading.)

# Algorithm for Gibbs Sampling

- Random initial assignment to clusters
- **2** For iteration i:
  - $\bullet$  "Unassign" observation n
  - Choose new cluster for that observation