ZADANIA 15/12/2022

Zadanie 1

- (a) uzasadnij, że $7 | (2222^{5555} + 5555^{2222}),$
- (b) $n = 3 \cdot 7 \cdot 11 \cdot 15 \cdot 19 \cdot \ldots \cdot 2023$, wyznacz ostatnie trzy cyfry liczby n,
- (c) wyznacz ostatnie dwie cyfry liczby 14^{14¹4}.
- (d) wyznacz resztę z dzielenia $(257^{33} + 46)^{26}$ przy dzieleniu przez 50.

Zadanie 2 W trójkącie ABC punkty D i E leżą odpowiednio na BC i AC, odcinki AD i BE przecinają się w punkcie F. Wiedząc, że $\frac{BD}{DC}=\frac{2}{3}, \ \frac{AE}{EC}=\frac{3}{4}$ wyznacz $\frac{AF}{FD}\cdot\frac{BF}{FE}$.

Zadanie 3 Karty z talii 52 zostały umieszczone w tablicy 4×13 . Udowodnij, że można z każdej kolumny wybrać jedną kartę w ten sposób, że wśród wybranych 13 kart znajdzie się każdy rodzaj karty, tzn. jedna 2, jedna 3 itd.

Zadanie 4 Rozważmy zbiór liczb 5–cyfrowych o różnych cyfrach ze zbioru $\{1,2,3,4,5\}$. Czy da się rozbić ten zbiór na dwa rozłączne zbiory A i B, aby suma kwadratów elementów w jednym zbiorze była równa sumie kwadratów elementów w drugim zbiorze?

Zadanie 5 Rozwiąż układ równań:

$$\begin{cases} x + \frac{3x - y}{x^2 + y^2} = 3\\ y - \frac{x + 3y}{x^2 + y^2} = 0 \end{cases}$$

Zadanie 6 Dany jest trójkąt ostrokątny ABC, punkty O i H oznaczają odpowiednio środek okręgu opisanego na trójkącie ABC, punkt przecięcia wysokości tego trójkąta. Niech A_1 , B_1 , C_1 – środki odpowiednio boków BC, CA i AB. proste HA_1 , HB_1 , HC_1 przecinają okrąg opisany na trójkącie ABC odpowiednio w punktach A_0 , B_0 i C_0 . Udowodnij, że punkty O, H i H_0 są współliniowe (punkt przecięcia wysokości w trójkącie $A_0B_0C_0$).

(01/12/2022) Zadanie 1 Stosując tożsamość $a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2+b^2+c^2-ab-ac-bc)$: (c) uzasadnij, że jeśli $x=a^3+b^3+c^3-3abc$ oraz $y=a_1^3+b_1^3+c_1^3-3a_1b_1c_1$ dla pewnych a,b,c,a_1,b_1,c_1 , to także $x\cdot y=a_2^3+b_2^3+c_2^3-3a_2b_2c_2$ dla pewnych a_2,b_2,c_2

(24/11/2022) Zadanie 2 Rozwiąż równanie $\sqrt{5-x} = 5 - x^2$.