

Edu PCT/DE 99/00561

BUNDESREPUBLIK DEUTSCHLAND

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Eu

DE 39/561

REC'D	29 APR 1999
WIPO	
PCT	

Bescheinigung

Die Siemens Aktiengesellschaft in München/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Verfahren zum Ersatzschalten von Baugruppen in 1:N Redundanz"

am 17. April 1998 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole H 05 K, H 04 M und H 04 L der Internationalen Patentklassifikation erhalten.

München, den 12. April 1999

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Dzierzon

Aktenzeichen: 198 17 158.7

37 CFR 1.85 - DRAFTING

THIS PAGE BLANK (USPTO)

17.04.1998

1

Beschreibung

Verfahren zum Ersatzschalten von Baugruppen in 1:N Redundanz.

5 Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff von Patentanspruch 1.

Je nach der geforderten Ausfallsicherheit einer Kommunikationseinrichtung können für die dieser zugehörigen peripheren Leitungsbaugruppen unterschiedliche Redundanzstrukturen vorgesehen sein. Beispiele hierfür sind die "1+1"- oder die "1:N"-Leitungsbaugruppen-Redundanz, wie es in "IEEE Journal on Selected Areas in Communications" VOL. 15, N.5, Juni 1997, Seiten 795 bis 806 beschrieben ist. Bei einer "1+1"-Redundanzstruktur werden zwei Leitungsbaugruppen parallel betrieben, um darüber Nachrichtensignalströme redundant zu übertragen. Dabei wird von diesen redundanten Nachrichtensignalströmen jedoch lediglich einer für die Weiterbehandlung berücksichtigt.

Bei einer "1:N"-Leitungsbaugruppen-Redundanz wird zusätzlich zu einer Mehrzahl N von Leitungsbaugruppen eine einzige Ersatz-Leitungs-Baugruppe oder Ersatzschaltebaugruppe vorgesehen. Bei Auftreten eines Fehlers auf einer der N-Leitungsbaugruppen wird anstelle dieser dann die Ersatz-Leitungs-Baugruppe benutzt.

Beim Stand der Technik wird für die Ersatzschaltung von Baugruppen in 1:N Redundanz eine Einrichtung benötigt, die alle Informationen über aktuelle Zustände und Ereignisse innerhalb einer Redundanzgruppe führt. Damit ist diese Einrichtung in der Lage, über notwendige Ersatzschaltungsmaßnahmen zu entscheiden. Diese übergeordneten Einrichtung ist in der Regel die maintenance-technisch übergeordnete Einrichtung der peripheren Baugruppen. Diese Einrichtung muß ferner in der Lage sein, notwendige Ersatzschaltungen in kürzester Zeit (<1 s) auszuführen bzw. störungsfreie Rückschaltungen zu steuern und

zu kontrollieren, damit die Ausfallzeit bzw. der Datenverlust der betroffenen Leitungen minimiert wird. Der Ausfall einer peripheren Leitungsbaugruppe wird bei diesem Stand der Technik durch die jeweils benachbarte periphere Baugruppe er-

5 kannt.

In Fig. 2 sei zum besseren Verständnis die beim Stand der Technik verwendete Konfiguration aufgezeigt. Demgemäß ist eine "1:N"-Leitungsbaugruppen-Redundanz verwendet. Beispielhaft sind lediglich die peripheren Leitungsbaugruppen BG_1 , BG_2 aufgezeigt, die jeweils paarweise einander zugeordnet sind. Beide Baugruppen weisen Verbindungen V_1 untereinander auf, über die eine gegenseitige Überwachung durchgeführt wird. Weiterhin sind den peripheren Leitungsbaugruppen $BG_1 \dots BG_n$ interne und externe Interfaces zugeordnet. Die internen Interfaces dienen als Schnittstelle zu den Baugruppen AMX des ATM-Koppelfeldes, während die externen Interfaces Schnittstellen zu den hier angeschlossenen Verbindungsleitungen zu den weiteren Koppelfeldeinrichtungen darstellen. Die Baugruppen $BG_1 \dots BG_n$ weisen ferner Verbindungen V_2 zu den Baugruppen AMX des ATM-Koppelfeldes auf, wobei hier lediglich die Verbindung V_2 der Baugruppen BG_1 zu den Baugruppen AMX aufgezeigt ist. Alle Baugruppen $BG_1 \dots BG_n$ sowie die zugeordneten internen und externen Interfaces werden von einer übergeordneten Einrichtung MPSA überwacht und gesteuert.

Im folgenden sei nun davon ausgegangen, daß eine der peripheren Leitungsbaugruppen z.B. BG_1 ausfällt. Im folgenden wird dann eine entsprechende Meldung M_A an die übergeordnete Maintenance-Einrichtung MPSA abgesetzt. Diese startet daraufhin eine Diagnose, um den Fehler einzuschränken und gegebenenfalls zu verifizieren.

In einem ersten Schritt wird versucht, die ausgefallene Einrichtung BG_1 direkt anzusprechen. In dem hier angenommenen Fall, daß die betreffende periphere Baugruppe BG_1 einen Totalausfall hat, wird dies von der übergeordneten Einrichtung

MPSA erst nach Ablauf mehrerer Überwachungsvorgänge erkannt. Erst dann kann mit Sicherheit davon ausgegangen werden, daß die Einrichtung BG₁ nicht mehr angesprochen werden kann und somit nicht mehr erreichbar ist. Daraufhin wird zur Verifi-
5 kation des Fehlers eine Diagnose der betreffenden peripheren Baugruppe angestoßen. Erst im Vorfeld dieser Diagnose wird die betroffene periphere Baugruppe konfiguriert, womit die eigentliche Ersatzschaltung erst durchgeführt wird. Hierzu sind die internen und externen Interfaces noch umzuschalten
10 und die Ersatzschaltebaugruppe entsprechend zu aktivieren.

Dies bedeutet im Detail, daß von der übergeordneten Einrich-
15 tung MPSA eine Mitteilung an die Ersatzschaltebaugruppe gesen-
det wird, das Umschalten der externen und internen Interfaces zur Ersatzschaltebaugruppe BG_E gesteuert sowie Informationen an die betroffenen Applikationen gesendet wird.

Damit ist aber die übergeordnete Einrichtung MPSA vorwiegend mit Ersatzschaltemaßnahmen beschäftigt, was einen Dynamikver-
20 lust des Systems zur Folge hat. Weiterhin sind in den Um-
schalteprozeß eine Reihe weiterer Baugruppen integriert, die am Umschalteprozeß selbst eigentlich nicht beteiligt sind.
Hierbei geht weitere wertvolle Zeit verloren. Letztendlich wi-
derspricht eine derartige Konfiguration dem Prinzip von de-
25 zentral angeordneter Maintenance, wo die Ersatzschaltung Auf-
gabe der peripheren Einrichtungen selbst ist.

Der Erfindung liegt die Aufgabe zugrunde, einen Weg aufzuzei-
gen, wie Ersatzschaltungen für periphere Baugruppen schneller
30 und effizienter ausgeführt werden können, ohne die Dynamik des Systems einzuschränken.

Die Aufgabe wird ausgehend von den im Oberbegriff des Patent-
anspruch 1 angegebenen Merkmalen durch die im kennzeichnenden
35 Teil angegebenen Merkmale gelöst.

Vorteilhaft an der Erfindung ist insbesondere, daß die Ersatzschaltung bzw. Rückschaltung einer defekten Baugruppe durch die peripheren Baugruppen selbst unter Steuerung der Ersatzschaltebaugruppe unabhängig von einer übergeordneten Einrichtung vorgenommen wird. Dabei finden die Grundprinzipien der 1+1 Baugruppenredundanz Anwendung. Dabei werden die prinzipiellen Abläufe der 1+1 Baugruppenredundanz für die 1:N Redundanz weitgehend übernommen. Dies hat den Vorteil, daß Synergien genutzt werden und Leistungsmerkmale, welche für die 1+1 Redundanz bereits zur Verfügung stehen, auch für die 1:N Redundanz nutzbar gemacht werden. Beispiel hierfür ist die weiche Umschaltung zwischen einzelnen peripheren Baugruppen und der Ersatzschaltebaugruppe in beiden Richtungen ohne Verbindungsunterbrechung mit dem Retten von Gebührendaten. Der erfinderische Schritt liegt darin, dass für die 1:N Redundanz mit Hilfe der Ersatzschaltebaugruppe die Prinzipien der dezentralen Maintenance konsequent umgesetzt werden, die Umschaltezeiten erheblich verbessert werden und die Qualität der Redundanz verbessert wird.

20

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels näher erläutert.

Es zeigen

30 FIG 1 eine Konfiguration, auf der das erfindungsgemäße Verfahren zum Ablauf gelangt,

FIG 2 die Verhältnisse beim Stand der Technik,

35 Fig. 1 ist eine Konfiguration aufgezeigt, auf der das erfindungsgemäße Verfahren zum Ablauf gelangt. Demgemäß sind periphere Leistungsbaugruppen BG₁..BG_n vorgesehen, wobei lediglich

2 dieser peripheren Leitungsbaugruppen BG_1 , BG_2 aufgezeigt sind. Beide Baugruppen sind jeweils paarweise einander zugeordnet und weisen Verbindungen V_1 untereinander auf, über die eine gegenseitige Überwachung durchgeführt wird. Weiterhin 5 sind den peripheren Leitungsbaugruppen $BG_1 \dots BG_n$ interne und externe Interfaces zugeordnet. Die internen Interfaces dienen als Schnittstelle zu den Baugruppen AMX des ATM-Koppelfeldes, während die externen Interfaces Schnittstellen zu den hier angeschlossenen Verbindungsleitungen zu den weiteren Vermittlungseinrichtungen darstellen. Die Baugruppen $BG_1 \dots BG_n$ weisen ferner Verbindungen V_2 zu den Baugruppen AMX des ATM-Kop-10 pelfeldes auf, wobei hier lediglich die Verbindung V_2 der Baugruppen BG_1 zu den Baugruppen AMX aufgezeigt ist. Alle Baugruppen $BG_1 \dots BG_n$ sowie die zugeordneten internen und ex-15 ternen Interfaces werden von einer übergeordneten Einrichtung MPSA überwacht und gesteuert. Weiterhin ist in dieser 1:N Redundanzgruppe eine Ersatzschaltebaugruppe BG_E vorgesehen, die bei Ausfall einer Baugruppe an die Stelle dieser ausgefallenen Baugruppe treten soll. Letztendlich sind Schalter 20 LPS und SB vorgesehen, die die ATM-Zellenströme zwischen den internen bzw. externen Interfaces und den peripheren Leitungsbaugruppen umleiten.

35 Voraussetzung für das erfindungsgemäße Verfahren ist, daß Verbindungen zwischen der Ersatzschaltebaugruppe BG_E und allen peripheren Leitungsbaugruppen vorgesehen sind, so daß eine ständige Kommunikationsbeziehungen herrscht. Ebenso muß die Ersatzschaltebaugruppe BG_E in der Lage sein, die internen Interfaces von einer peripheren Leitungsbaugruppe zur Ersatzschaltebaugruppe BG_E zu schalten. Ferner muß die Ersatzschaltebaugruppe BG_E in der Lage sein, die externen Interfaces einer peripheren Leitungsbaugruppen zur Ersatzschaltebaugruppe BG_E zu schalten. Letztendlich muß jede periphere Leitungsbaugruppe den Ausfall ihrer benachbarten peripheren Leitungsbaugruppe erkennen, um eine entsprechende Meldung an die Ersatzschaltebaugruppe BG_E melden zu können.

Im folgenden wird davon ausgegangen, daß eine der peripheren Leitungsbaugruppen ausfällt. Dieses soll die Baugruppe BG₁ sein. Der Ausfall wird von der paarweise zugeordneten Baugruppe BG₂ über die Verbindungsleitung V₁ ermittelt. Daraufhin wird von der Baugruppe BG₂ eine entsprechende Meldung M_E an die Ersatzschaltebaugruppe BG_E übertragen. Ferner wird die übergeordnete Einrichtung MPSA ebenfalls über eine Meldung M_A über den Ausfall informiert, so daß hier nach wie vor ein aktuelles Abbild der Systemkonfiguration gespeichert ist.

10

Der Ausfall der peripheren Leitungsbaugruppe BG₁ wird weiterhin von der Baugruppe AMX erkannt, die als Teil des Koppelfeldes eine Verbindung V₂ zu der ausgesunkenen peripheren Leitungsbaugruppe BG₁ aufweist. Der Ausfall wird der übergeordneten Einrichtung MPSA über eine Meldung M_{LPS} mitgeteilt.

Auf die Meldung M_E hin führt die Ersatzschaltebaugruppe BG_E die Ersatzschaltung durch. Zunächst werden die internen Interfaces umgeschaltet. Dies erfolgt durch Ansteuerung eines Schalters LPS, der einen Schaltvorgang S₁ bewerkstellt. Danach erfolgt das Umschalten der externen Interfaces durch Ansteuerung eines Schalters SB, der einen Schaltvorgang S₂ bewirkt. Erst danach wird die Ersatzschaltebaugruppe BG_E aktiviert, die jetzt die Funktion der ausgesunkenen Baugruppe BG₁ hat und die über diese vor dem Ausfall geleiteten ATM-Nachrichtenzellenströme behandelt.

Die Fehlerbehandlung auf der übergeordneten Einrichtung MPSA läuft völlig unabhängig davon. Am vorliegenden Ausführungsbeispiel wird für die Ersatzschaltung einer peripheren Leitungsbaugruppe in 1:N Redundanz die Trennung zwischen der Ersatzschaltung, die durch die Esatzschaltebaugruppe gesteuert wird und der Ausfallbehandlung durch die übergeordnete Maintenancebaugruppe deutlich.

Patentansprüche

1. Verfahren zum Ersatzschalten von Baugruppen in 1:N Redundanz, mit
- 5 peripheren Leitungsbaugruppen ($BG_1 \dots BG_n$), die jeweils paarweise einander zugeordnet sind, und die Verbindungen (V_i) untereinander aufweisen, über die eine gegenseitige Überwachung stattfindet,
wenigstens einer Ersatzschaltebaugruppe (BG_E), die im Falle
10 des Ausfalls einer der peripheren Leitungsbaugruppen (z.B. BG_1) an die Stelle der ausgefallenen peripheren Leitungsbaugruppe tritt, sowie
mit internen und externen Interfaces, die in Wirkverbindung mit den peripheren Leitungsbaugruppen ($BG_1 \dots BG_n$) stehen, und
15 mit einer übergeordneten Einrichtung (MPSA), die alle Einrichtungen überwacht und steuert,
dadurch gekennzeichnet,
daß der Ausfall einer der peripheren Leitungsbaugruppen (z.B. BG_1) von der verbleibenden der paarweise zugeordneten peripheren Leitungsbaugruppe (z.B. BG_2) ermittelt wird,
20 daß daraufhin eine Meldung (M_E) von der den Ausfall ermittelnden peripheren Leitungsbaugruppe (z.B. BG_2) zu der Ersatzschaltebaugruppe (BG_E) gesendet wird, woraufhin diese durch Ansteuern von Schaltern (S_1, S_2) die internen und externen
25 Interfaces umschaltet und erst dann sich selbst aktiviert.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
30 daß zusätzlich von der den Ausfall ermittelnden peripheren Leitungsbaugruppe (z.B. BG_2) eine Ausfallmeldung (M_A) an die übergeordnete Einrichtung (MPSA) gesendet wird.
- 35 3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,

daß der Ausfall einer der peripheren Leitungsbaugruppen (z.B.
BG₁) zusätzlich von einer dem Koppelfeld zugehörigen Inter-
faces (AMX) erkannt wird, woraufhin von dieser eine ent-
sprechende Meldung (M_{LPS}) an die übergeordnete Einrichtung
5 (MPSA) gesendet wird.

Zusammenfassung

Verfahren zum Ersatzschalten von Baugruppen in 1:N Redundanz.

5 Beim Stand der Technik steuert eine übergeordnete Einrichtung das Ersatzschalten von Baugruppen in 1:N Redundanz. Damit geht aber Dynamik im System verloren. Die Erfindung löst dieses Problem, indem die für die Ersatzschaltevorgänge in der übergeordnete Einrichtung verantwortlichen Einrichtungen in eine
10 für Ersatzschaltungszwecke vorgesehene Ersatzschaltebaugruppe der 1:N Redundanz verlagert werden. Die Ersatzschaltevorgänge werden damit von der Ersatzschaltebaugruppe selbst gesteuert und überwacht, womit die übergeordnete Einrichtung von diesen Aufgaben entlastet ist.

15

Fig. 1

Fig. 1

Fig. 2