Titanic ship case study

▼ Import necessary libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

1. Download the dataset:

titanic.csv dataset downloaded and placed in the working directory

2. Load the dataset.

```
data = pd.read_csv("titanic.csv")
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	а
0	0	3	male	22.0	1	0	7.2500	S	Third	man	
1	1	1	female	38.0	1	0	71.2833	С	First	woman	
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	
3	1	1	female	35.0	1	0	53.1000	S	First	woman	
4	0	3	male	35.0	0	0	8.0500	S	Third	man	

data.info()

data.head()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	int64
1	pclass	891 non-null	int64
2	sex	891 non-null	object
3	age	714 non-null	float64

```
sibsp
                  891 non-null
                                   int64
 4
 5
     parch
                  891 non-null
                                   int64
     fare
                  891 non-null
                                   float64
 7
     embarked
                                   object
                  889 non-null
 8
     class
                  891 non-null
                                   object
 9
     who
                  891 non-null
                                   object
                  891 non-null
 10 adult_male
                                   bool
 11
     deck
                  203 non-null
                                   object
 12
     embark_town 889 non-null
                                   object
 13
     alive
                  891 non-null
                                   object
 14
                                   bool
     alone
                  891 non-null
dtypes: bool(2), float64(2), int64(4), object(7)
memory usage: 92.4+ KB
```

3. Perform Below Visualizations.

- Univariate Analysis
- Bi Variate Analysis
- Multi Variate Analysis

Univariate Analysis

Distribution plot

```
sns.distplot(data['fare'], color = 'b')
```

/var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/1361863019.py:1

'distplot' is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(data['fare'], color = 'b')
<Axes: xlabel='fare', ylabel='Density'>
```


▼ Box plot

▼ Scatter plot

→ Joint plot

```
sns.jointplot(data['fare'])
```

→ Bar plot

```
x = data.sex.value_counts()
sns.barplot(x=x.index, y=x.values)

<Axes: >
600
500 -
400 -
```

▼ Pie plot

▼ Bivariate analysis

▼ Bar plot

```
sns.barplot(x=data.sex, y=data.fare)
```

<Axes: xlabel='sex', ylabel='fare'>

▼ Pair plot

```
sns.pairplot(data)
```

```
<__array_function__ internals>:180: RuntimeWarning: Converting input from bool
<__array_function__ internals>:180: RuntimeWarning: Converting input from bool
<seaborn.axisgrid.PairGrid at 0x11d19a440>
```


Multivariate Analysis

sns.heatmap(data.corr(), annot=True)

4. Perform descriptive statistics on the dataset.

▼ Measure of central tendency - Mean, Median and Mode

```
data.mean()
     /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/531903386.py:1:
       data.mean()
     survived
                     0.383838
     pclass
                    2.308642
     age
                   29.699118
     sibsp
                    0.523008
     parch
                    0.381594
                   32,204208
     fare
     adult_male
                    0.602694
                    0.602694
     alone
     dtype: float64
data.median()
     /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/4184645713.py:1
       data.median()
     survived
                    0.0000
     pclass
                    3.0000
                   28.0000
     age
                    0.0000
     sibsp
     parch
                    0.0000
                   14.4542
     fare
     adult_male
                    1.0000
     alone
                     1.0000
     dtype: float64
data.mode()
         survived pclass
                           sex age sibsp parch fare embarked class who adult_m
      0
                0
                        3 male 24.0
                                          0
                                                    8.05
                                                                     Third man
```

- Measure of variability
- ▼ Kurtosis

```
data.kurt()
       /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/2907027414.py:1
         data.kurt()
       survived
                      -1.775005
       pclass
                      -1.280015
                       0.178274
       age
       sibsp
                      17.880420
                      9.778125
       parch
       fare
                      33.398141
       adult_male
                      -1.827345
       alone
                      -1.827345
       dtype: float64
▼ Range
 data.max()
       /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/2904433368.py:1
         data.max()
       survived
                             1
                             3
       pclass
                          male
       sex
                          80.0
       age
       sibsp
                             8
                             6
       parch
       fare
                      512.3292
       class
                         Third
       who
                         woman
       adult_male
                          True
       alive
                           yes
       alone
                          True
       dtype: object
 data.min()
       /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/927168777.py:1:
         data.min()
                           0
       survived
```

1

0

0

0.0

First child

False

no False

female

0.42

pclass

sex

age

sibsp

parch fare

class

alive

alone

adult_male

dtype: object

who

▼ Skewness

```
data.skew()
     /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/1188251951.py:1
       data.skew()
     survived
                   0.478523
     pclass
                   -0.630548
                   0.389108
     age
                   3.695352
     sibsp
                   2.749117
     parch
     fare
                   4.787317
     adult_male
                  -0.420431
     alone
                   -0.420431
     dtype: float64
```

▼ Interquartile range

```
quantiles = data[['age', 'fare']].quantile(q=[0.75, 0.25])
quantiles
```

```
age fare0.75 38.000 31.00000.25 20.125 7.9104
```

```
#Q3
quantiles.iloc[0]

    age    38.0
    fare    31.0
    Name: 0.75, dtype: float64

#Q1
quantiles.iloc[1]
```

20.1250

age

```
fare 7.9104
Name: 0.25, dtype: float64

IQR = quantiles.iloc[0]-quantiles.iloc[1]
IQR

age 17.8750
fare 23.0896
dtype: float64
```

▼ Upper extreme

```
Q3 + 1.5*IQR

quantiles.iloc[0] + (1.5*IQR)

age 64.8125

fare 65.6344

dtype: float64
```

▼ Lower extreme

```
Q1-1.5*IQR

quantiles.iloc[1] - (1.5*IQR)

age          -6.6875
fare          -26.7240
dtype: float64
```

→ Standard deviation

```
data.std()
     /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/2723740006.py:1
       data.std()
     survived
                     0.486592
     pclass
                     0.836071
                    14.526497
     age
                    1.102743
     sibsp
                     0.806057
     parch
     fare
                    49.693429
     adult_male
                     0.489615
                     0.489615
     alone
     dtype: float64
```

▼ Variance

data.var()

/var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/445316826.py:1:
 data.var()

survived0.236772pclass0.699015age211.019125sibsp1.216043parch0.649728fare2469.436846adult_male0.239723alone0.239723

dtype: float64

data.describe()

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

5. Handle the Missing values.

data.isnull().sum()

survived	0
pclass	0
sex	0
age	177
sibsp	0
parch	0
fare	0
embarked	2
class	0
who	0
adult_male	0
deck	688
embark_town	2

alive (alone dtype: int64

→ Handling missing value

```
data['age'].fillna(data['age'].mean(), inplace=True)
data['embarked'].fillna(data['embarked'].mode()[0], inplace=True)
data['deck'].fillna(data['deck'].mode()[0], inplace=True)
data['embark_town'].fillna(data['embark_town'].mode()[0], inplace=True)
data.isnull().sum()
     survived
                      0
     pclass
                      0
                      0
     sex
     age
                      0
                      0
     sibsp
     parch
                      0
     fare
                      0
                      0
     embarked
     class
                      0
                      0
     who
                      0
     adult_male
                      0
     deck
     embark_town
                      0
                      0
     alive
     alone
                      0
     dtype: int64
```

6. Find the outliers and replace the outliers

▼ Removing outliers

```
sns.boxplot(data.fare)
```


7. Check for Categorical columns and perform encoding.

Encoding techniques

▼ Label encoding

le = LabelEncoder()

from sklearn.preprocessing import LabelEncoder

data.head()

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	а
0	0	3	male	22.0	1	0	7.2500	S	Third	man	
1	1	1	female	38.0	1	0	71.2833	С	First	woman	
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	
3	1	1	female	35.0	1	0	53.1000	S	First	woman	
4	0	3	male	35.0	0	0	8.0500	S	Third	man	

```
<class 'pandas.core.frame.DataFrame'>
      Int64Index: 882 entries, 0 to 890
     Data columns (total 15 columns):
           Column
                         Non-Null Count
                                           Dtype
           _____
                         _____
                                           ____
       0
           survived
                         882 non-null
                                           int64
       1
                         882 non-null
                                           int64
           pclass
       2
           sex
                         882 non-null
                                           object
       3
                         882 non-null
                                           float64
           age
       4
           sibsp
                         882 non-null
                                           int64
       5
           parch
                         882 non-null
                                           int64
       6
           fare
                         882 non-null
                                           float64
       7
           embarked
                         882 non-null
                                           object
       8
           class
                         882 non-null
                                           object
       9
           who
                         882 non-null
                                           object
       10 adult_male
                         882 non-null
                                           bool
           deck
                         882 non-null
                                           object
       11
       12 embark_town 882 non-null
                                           object
                                           object
       13
           alive
                         882 non-null
       14 alone
                         882 non-null
                                           bool
      dtypes: bool(2), float64(2), int64(4), object(7)
     memory usage: 130.5+ KB
columns = ['sex', 'embarked', 'class', 'who', 'deck', 'alive']
for col in columns:
 data[col] = le.fit_transform(data[col])
      /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/462314644.py:3:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/sta">https://pandas.pydata.org/pandas-docs/sta</a>
        data[col] = le.fit_transform(data[col])
      /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/462314644.py:3:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/sta">https://pandas.pydata.org/pandas-docs/sta</a>
        data[col] = le.fit_transform(data[col])
      /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/462314644.py:3:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/sta">https://pandas.pydata.org/pandas-docs/sta</a>
        data[col] = le.fit_transform(data[col])
      /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/462314644.py:3:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/sta">https://pandas.pydata.org/pandas-docs/sta</a>
        data[col] = le.fit_transform(data[col])
      /var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/462314644.py:3:
     A value is trying to be set on a copy of a slice from a DataFrame.
```

```
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/sta data[col] = le.fit_transform(data[col])

/var/folders/03/k1p5_v6d69bg7b999gdktlgw0000gn/T/ipykernel_3411/462314644.py:3: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/sta data[col] = le.fit_transform(data[col])

data.head()

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_
0	0	3	1	22.0	1	0	7.2500	2	2	1	
1	1	1	0	38.0	1	0	71.2833	0	0	2	
2	1	3	0	26.0	0	0	7.9250	2	2	2	
3	1	1	0	35.0	1	0	53.1000	2	0	2	
4	0	3	1	35.0	0	0	8.0500	2	2	1	

One Hot Encoding

data = pd.get_dummies(data, columns=['embark_town'])

data

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who
0	0	3	1	22.000000	1	0	7.2500	2	2	1
1	1	1	Λ	38 000000	1	Λ	71 2833	Λ	Λ	2

8. Split the data into dependent and independent variables.

▼ Dependent variable

```
y = data.loc[:, 'alive':'alive']
y
```

	alive
0	0
1	1
2	1
3	1
4	0
•••	
886	0
887	1
888	0
889	1
890	0

882 rows × 1 columns

▼ Independent variablea

```
X = data.drop(columns=['alive'], axis=1)
X
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who
0	0	3	1	22.000000	1	0	7.2500	2	2	1
1	1	1	0	38.000000	1	0	71.2833	0	0	2
2	1	3	0	26.000000	0	0	7.9250	2	2	2
3	1	1	0	35.000000	1	0	53.1000	2	0	2
4	0	3	1	35.000000	0	0	8.0500	2	2	1
•••										
886	0	2	1	27.000000	0	0	13.0000	2	1	1
887	1	1	0	19.000000	0	0	30.0000	2	0	2
888	0	3	0	29.699118	1	2	23.4500	2	2	2

9. Scale the independent variables

→ Scaling

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	wh
0	0.0	1.0	1.0	0.271174	0.125	0.000000	0.029290	1.0	1.0	0.
1	1.0	0.0	0.0	0.472229	0.125	0.000000	0.287989	0.0	0.0	1.
2	1.0	1.0	0.0	0.321438	0.000	0.000000	0.032018	1.0	1.0	1.
3	1.0	0.0	0.0	0.434531	0.125	0.000000	0.214527	1.0	0.0	1.
4	0.0	1.0	1.0	0.434531	0.000	0.000000	0.032523	1.0	1.0	0.
•••										i
877	0.0	0.5	1.0	0.334004	0.000	0.000000	0.052521	1.0	0.5	0.
878	1.0	0.0	0.0	0.233476	0.000	0.000000	0.121202	1.0	0.0	1.
879	0.0	1.0	0.0	0.367921	0.125	0.333333	0.094740	1.0	1.0	1.
880	1.0	0.0	1.0	0.321438	0.000	0.000000	0.121202	0.0	0.0	0.

10. Split the data into training and testing

→ Train-Test Split

```
from sklearn.model_selection import train_test_split
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

X_train

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	wh
222	1.0	0.0	1.0	0.472229	0.125	0.000000	0.363606	1.0	0.0	0.
200	0.0	1.0	1.0	0.421965	0.000	0.000000	0.026243	1.0	1.0	0.

y_train

	alive
224	1
202	0
164	0
582	0
850	0
•••	•••
844	0
194	1
635	1
565	0
691	1

705 rows × 1 columns

X_test

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	wh
150	0.0	1.0	1.0	0.692134	0.000	0.000000	0.032523	1.0	1.0	0.
406	0.0	1.0	1.0	0.367921	0.000	0.000000	0.027708	0.5	1.0	0.

y_test

	alive
152	0
411	0
519	0
103	0
590	0
•••	
367	1
372	0
267	1
324	0
472	1

177 rows × 1 columns

Colab paid products - Cancel contracts here