

Knowledge

Reasoning

Introduction to Artificial Intelligence

Chandra Gummaluru University of Toronto

Version W22.1

Acknowledgements

- The following is based on material developed by many individuals, including (but not limited to):
 - Sheila McIlraith
 - Bahar Aameri
 - Fahiem Bacchus
 - Sonya Allin

Representation versus Reasoning

- Part of being an intelligent agent involves being able to infer implicit facts based on known or assumed ones
- To achieve this ability artificially, we need to do things:
 - ① Develop a formal languages to represent statements (previous chapter).
 - Develop a reasoning mechanism for the formal system (this chapter).
- We developed a representation called first-order logic (FOL). We now develop a reasoning mechanism called resolution.

Resolution: Clausal Form

- Resolution assumes the knowledge base is a "clausal theory".
- A **clausal theory** is a conjunction of "clauses":
 - If c_1, \ldots, c_n are clauses, then $c_1 \wedge \cdots \wedge c_n$ is a clausal theory.
- A **clause** is a disjunction of "literals":
 - If l_1, \ldots, l_n are literals, then $l_1 \vee \cdots \vee l_n$ is a clause.
- A **literal** is an atomic formula, f, or its negation, $\neg f$.

Resolution: Inference Rules

- Resolution only uses one inference rule:
 - If $I_1 \vee I$ and $I_2 \vee \neg I$ are two clauses, then $I_1 \vee I_2$.
 - The logic here is that l and $\neg l$ cannot simultaneously hold. Therefore, at least one of l_1 or l_2 must hold.

Resolution by Refutation

- Suppose our knowledge base consists of the clauses, c_1, \ldots, c_n , and want to check if c is a logical consequence.
- We can add $\neg c$ to our knowledge base and show that we can prove a contradictory statement.
- Since we assume c_1, \ldots, c_n hold, we conclude that $\neg c$ cannot hold, i.e., c holds.
- This is called resolution by refutation.

• Example: Resolution by Refutation

Consider the following knowledge base:

- Clyde is an elephant or a giraffe: elephant(Cylde) ∨ giraffe(Clyde).
- ② Either Clyde is not an elephant or he likes peanuts: ¬elephant(Clyde) ∨ likes(peanuts, Clyde).
- Either Clyde is not an giraffe or he likes leaves:
 ¬giraffe(Clyde) ∨ likes(leaves, Clyde).

We want to show that Clyde is an elephant. Thus, we assume:

⑤ Clyde is not an elephant: ¬elephant(**Clyde**)

We perform resolution as follows:

- elephant(Clyde) \times giraffe(Clyde)
- ② ¬elephant(Clyde) ∨ likes(peanuts, clyde)
- ③ ¬giraffe(Clyde) ∨ likes(leaves, Clyde)
- ¬likes(leaves, Clyde)
- ⑤ ¬elephant(Clyde)
- 6 R[5a,1a] giraffe(Clyde)
- R[6a,3a] likes(leaves, Clyde)
- **8** R[7a,4a] {}

Converting an Assertion to Clausal Form

• Often, assertions in our knowledge base are not expressed in clausal form.

Example: Non-Clausal Assertion

- If Clyde is an elephant, then he likes peanuts: elephant(Clyde) → likes(peanuts, Clyde).
- We need a systemic way to convert any non-clausal assertion into a set of clauses.

Converting an Assertion to Clausal Form

- The following procedure can be used:
 - \bullet Eliminate \rightarrow
 - Move ¬ inward
 - Oistinguish quantified variables
 - Eliminate ∃
 - Move ∀ outward
 - ⑥ Distribute ∨ over ∧
 - ightharpoonup Flatten nested \land / \lor .
 - Remove ∀
 - \bigcirc Split on \land

- lacktriangledown Eliminate \rightarrow
 - A → B ≡ ¬A ∨ B
 E.g: If Clyde is an elephant, he likes peanuts. Equivalently, either Clyde likes peanuts, or he is not an elephant.

- Move ¬ inward and simplify:
 - ¬¬A ≡ A
 E.g: Clyde isn't not an elephant iff he's an elephant.
 - ¬(A ∨ B) ≡ ¬A ∧ ¬B
 E.g: Clyde is neither a tiger nor a giraffe iff he isn't a tiger and he isn't a giraffe.
 - $\neg(A \land B) \equiv \neg A \lor \neg B$ **E.g:** Clyde doesn't like both leaves and meat iff he dislikes leaves or meat.
 - $\neg \forall x A \equiv \exists x \neg A$ **E.g:** Not every person likes this class iff some people don't like it.
 - ¬∃xA ≡ ∀x¬A
 E.g: Not one person dislikes this class iff everyone likes this class.

- Oistinguish quantified variables:
 - $\forall x f(x) \equiv \forall y f(y)$
 - $\exists x f(x) \equiv \exists y f(y)$

■ Eliminate ∃:

- ∃x[f(x)] ≡ f(c), for some unique constant, c.
 E.g: If there is a friendly elephant, call him "Clyde". If "Clyde" is a friendly elephant, then there exists a friendly elephant.
- ∀x[∃yf(y)] ≡ ∀x[f(g(x))], for some g.
 E.g: Everyone likes someone (usually a different someone). If we use partnerOf(·) to denote that person, we can say, everyone likes their partner.
- **6** Move \forall outward:
 - $\forall x [f(x) \land \forall y g(y)] \equiv \forall x \forall y [f(x) \land g(y)]$

- **⑥** Distribute ∨ over ∧:
 - A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C).
 E.g: Clyde is either a giraffe, or he is an elephant and likes peanuts iff Clyde is either a giraffe or an elephant, and he is either a giraffe or likes peanuts.

- - $(A \wedge (B \wedge C)) \equiv (A \wedge B \wedge C)$
 - $(A \lor (B \lor C)) \equiv (A \lor B \lor C)$
- Remove ∀:
 - $\forall x f(x) \equiv f(x)$
- \odot Split on \wedge :
 - $f \wedge g \equiv f, g$.

• Consider the statement:

$$\forall x \left[P(x) \to \left(\left(\forall y [P(y) \to P(f(x,y))] \right) \land \neg \left(\forall y [\neg q(x,y) \land P(y)] \right) \right) \right]$$

- We can convert it to clausal form as follows:
 - lacktriangle Eliminate \rightarrow

$$\forall x \left[\neg P(x) \lor \left(\left(\forall y \left[\neg P(y) \lor P(f(x,y)) \right] \right) \land \neg \left(\forall y \left[\neg q(x,y) \land P(y) \right] \right) \right) \right]$$

Move ¬ inward

$$\forall x \left[\neg P(x) \lor \left(\left(\forall y \left[\neg P(y) \lor P(f(x,y)) \right] \right) \land \left(\exists y \left[q(x,y) \lor \neg P(y) \right] \right) \right) \right]$$

Move ¬ inward

$$\forall x \left[\neg P(x) \lor \left(\left(\forall y \left[\neg P(y) \lor P(f(x,y)) \right] \right) \land \left(\exists y \left[q(x,y) \lor \neg P(y) \right] \right) \right) \right]$$

Standardize variables

$$\forall x \left[\neg P(x) \lor \left(\left(\forall y \left[\neg P(y) \lor P(f(x,y)) \right] \right) \land \left(\exists z \left[q(x,z) \lor \neg P(z) \right] \right) \right) \right]$$

■ Eliminate ∃

$$\forall x \left[\neg P(x) \lor \left(\left(\forall y \left[\neg P(y) \lor P(f(x,y)) \right] \right) \land \left(\left[q(x,g(x)) \lor \neg P(g(x)) \right] \right) \right) \right]$$

⑤ Move ∀ outward

$$\forall x \forall y \left[\neg P(x) \lor \left(\left(\neg P(y) \lor P(f(x,y)) \right) \land \left(\left[q(x,g(x)) \lor \neg P(g(x)) \right] \right) \right) \right]$$

Move ∀ outward

$$\forall x \forall y \left[\neg P(x) \lor \left(\left(\neg P(y) \lor P(f(x,y)) \right) \land \left(\left[q(x,g(x)) \lor \neg P(g(x)) \right] \right) \right) \right]$$

⑥ Distribute ∨ over ∧

$$\forall x \forall y \left[\left(\neg P(x) \lor \left(\neg P(y) \lor P(f(x,y)) \right) \right) \land \left(\neg P(x) \lor \left[q(x,g(x)) \lor \neg P(g(x)) \right] \right) \right]$$

$$\forall x \forall y \bigg[\Big(\neg P(x) \lor \neg P(y) \lor P(f(x,y)) \Big) \land \Big(\neg P(x) \lor q(x,g(x)) \lor \neg P(g(x)) \Big) \bigg]$$

Flatten nested \land / \lor

$$\forall x \forall y \left[\left(\neg P(x) \lor \neg P(y) \lor P(f(x,y)) \right) \land \left(\neg P(x) \lor q(x,g(x)) \lor \neg P(g(x)) \right) \right]$$

Remove ∀

$$\left(\neg P(x) \lor \neg P(y) \lor P(f(x,y))\right) \land \left(\neg P(x) \lor q(x,g(x)) \lor \neg P(g(x))\right)$$

Split on ∧

$$\begin{cases} \neg P(x) \lor \neg P(y) \lor P(f(x,y)) \\ \neg P(x) \lor q(x,g(x)) \lor \neg P(g(x)) \end{cases}$$

Unification of Clauses

- In the previous example of resolution by refutation, none of the conflicting clauses had variables.
- Suppose instead that we had two conflicting clauses but at least one involves some variables such as $(p(x) \lor p'(y)...)$ and $(\neg p(\mathbf{a}) \lor ...)$.
 - Since x can be any constant, the clause $(p(x) \lor p'(y) \lor \dots)$ actually represents a family of clauses

$$(p(\mathbf{a}) \lor p'(y) \lor \dots)$$

$$\vdots$$

$$(p(\mathbf{z}) \lor p'(y) \lor \dots)$$

- Thus, we can still resolve the clauses by substituting $x = \mathbf{a}$, yielding $(p'(y) \vee \dots)$.
- We could have also made additional substitutions, like $y = \mathbf{b}$, however, this would reduce the generality of the resulting clause.

Unification of Clauses: Substitutions

- A **substitution** is a finite set of equations of the form, V = t, where V is a variable, and t is a term not containing V.
 - Applying the substitution, $\delta = \{V_1 = t_1, \dots, V_n = t_n\}$, to the formula f, is done by simultaneously replacing V_i with t_i .
 - The resulting formula is denoted $f\delta$.
 - **E.g:** If f = P(x, g(y, z)), and $\delta = \{x = y, y = f(a)\}$, then $f \delta = P(y, g(f(a), z))$.
- We can compose two substitutions, θ, δ to obtain a new substitution, $\theta\delta$.
 - Let $\theta = \{x_1 = s_1, \dots x_n = s_n\}$ and $\delta = \{y_1 = t_1, \dots, y_m = t_m\}$.
 - We compute $\theta\delta$ as follows:
 - ① For each equation, $x_i = s_i$ in θ , apply δ to its right side to yield $x_i = s_i \delta$.
 - ② If $x_i = s_i \delta$ is a not a tautology (e.g., V = V), include it in $\theta \delta$.
 - **3** If $y_i \neq x_j$ for any j, then include $y_i = t_i$ in $\theta \delta$.
 - Defining composition in this way means that applying $\theta \delta$ to a formula is equivalent to first applying θ , and then applying δ , i.e., $(f\theta)\delta = f(\theta\delta)$.

Unification of Clauses: Substitutions

- Example: Composing Substitutions
 - Let $\theta = \{x = f(y), y = z\}$ and $\delta = \{x = a, y = b, z = y\}$.
 - **1** Applying δ to the right side of x = f(y) and y = z yields x = f(b) and y = y, respectively.
 - ② Since y = y is a tautology, we do not include it.
 - **3** We also include z = y from δ .
 - 4 It follows that $\theta \delta = \{x = f(b), z = y\}.$

Unification of Clauses: Unifiers

- A **unifier** of two formulae, f and g, is a substitution, δ , that makes f and g syntactically identical.
- A unifier, δ , is **most general** iff for every other unifier, θ , there exists a third substitution, λ , such that

$$\theta = \delta \lambda$$
.

In other words, every other unifier is more specialized.

Unification of Clauses: Computing the Most General Unifier

- Procedure: Computing the Most General Unifier
 - Let f, g be two formulae we wish to unify.
 - Let δ denote the most general unifier, and $S = \{f, g\} \delta$.
 - ① Start with the empty substitution, $\delta_0 = \{\}$, and $S_0 = \{f, g\}$
 - ② In each iteration, k, find a disagreement set, $D_k = \{V, t\}$. If one does not exist, then $\delta = \delta_k$ is the most general unifier, and $S = S_k$.
 - 3 If D_k is unifiable (i.e., V is a variable, and t is a term not containing V):
 - a Let $\delta_{k+1} = \delta_k \{ V = t \}.$
 - **b** Let $S_{k+1} = S_k \{ V = t \}.$
 - 4 If D_k is not unifiable, then f and g cannot be unified.

Computing the Most General Unifier: Example 1

• Let us find the most general unifier of $P(\mathbf{a}, x, h(g(z)))$ and P(z, h(y), h(y)).

ltr	D_k 3	S _k	δ_{k}
0	$\{\mathbf{a},z\}$	$\left\{P(\mathbf{a},x,h(g(z))),P(z,h(y),h(y))\right\}$	{}
1	$\{x,h(y)\}$	$ \left\{P(\mathbf{a}, x, h(g(z))), P(z, h(y), h(y))\right\} \\ P(\mathbf{a}, x, h(g(\mathbf{a}))), P(\mathbf{a}, h(y), h(y))\right\} $	$\{z=\mathbf{a}\}$
2	$\{g(\mathbf{a}),y\}$	$\left\{P(\mathbf{a},h(y),h(g(\mathbf{a}))),P(\mathbf{a},h(y),h(y))\right\}$	$\{z=\mathbf{a},x=h(y)\}$
3	{}	$\left\{P(\mathbf{a},h(g(\mathbf{a})),h(g(\mathbf{a})))\right\}$	$\{z=\mathbf{a},x=h(g(\mathbf{a})),y=g(\mathbf{a})\}$

• The most general unifier is $\delta = \{z = \mathbf{a}, x = h(g(\mathbf{a})), y = g(\mathbf{a})\}.$

Computing the Most General Unifier: Example 2

• Let us find the most general unifier of $P(f(\mathbf{a}), g(x))$ and P(y, y).

	O		(()/ ()/	(3 / 3 /
ltr.	D_k	S_k		δ_{k}
0	$\{f(\mathbf{a}),y\}$	$P(f(\mathbf{a}), g($	(x), P(y,y)	{}
1	$\{g(x), f(\mathbf{a})\}$	$\left\{ P(f(\mathbf{a}), g($	$(x), P(f(\mathbf{a}), f(\mathbf{a}))$	$\left. \left\{ y = f(\mathbf{a}) \right\} \right.$

• The disagreement set, D_1 is not unifiable. Thus, there is no unifier.

Unification of Literals and Factors

- Just as we can sometimes unify multiple clauses, we can also sometimes unify multiple literals of the same clause.
- In the examples seen thus far, we either had clauses with a single literal, or multiple non-unifiable literals.
- If two or more literals from the same clause are unifiable, then it may not be possible to resolve it with a conflicting clause.
- **Example:** Conflicting Non-Resolvable Clauses
 - Consider the clauses: $c_1: p(x) \vee p(y)$ and $c_2: \neg p(u) \vee \neg p(v)$.
 - Each one consists of two unifiable literals.
 - Intuitively, c_1 and c_2 are conflicting, but it is impossible to generate an empty clause using the strict rules of resolution.

Unification of Literals and Factors

- If the most general unifier of two or more literals from the same clause, c, is θ , then $c\theta$ with all duplicates removed is called a **factor** of c.
- Example: Factor of a Clause
 - Consider the clause $c: p(x) \vee p(y)$.
 - Its two literals, p(x) and p(y) can be unified with $\theta = \{x = y\}$.
 - We have $c\theta = p(y)$, and so p(y) is a factor of c.

Resolution with Factoring

- During resolution, if we encounter a clause in which two more more literals can be unified, we can do so. We refer to this step as factoring.
- Example: Resolution with Factoring

 - $\bigcirc \neg p(u) \lor \neg p(v)$
 - **3** $f[1ab]\{x=y\}p(y)$
 - **4** $f[2ab]\{u=v\} \neg p(v)$
 - **6** $R[3a, 4a] \{y = v\} \{\}$

- Let us now consider a full example.
- At U of T, it is reasonable to assume that:
 - Some courses have exams.
 - no student likes anything with an exam.
- Can we show that no student likes all courses?

- Pick a vocabulary to represent the assertions:
 - isStudent(x), x is a student
 - isCourse(x), x is a course
 - hasExam(x), x has an exam
 - likes(x, y), y likes x

- Onvert each assertion (including the negation of the query) to a first-order formula:
 - Some courses have exams:

$$\exists x [\mathsf{isCourse}(x) \land \mathsf{hasExam}(x)]$$

no student likes anything that has an exam:

$$\forall x \forall y [\mathsf{isStudent}(x) \land \mathsf{hasExam}(y) \rightarrow \neg \mathsf{likes}(y, x)]$$

Some student likes all courses:

$$\exists x [\mathsf{isStudent}(x) \land \forall y [\mathsf{isCourse}(y) \to \mathsf{likes}(y, x)]]$$

- 3 Convert each first-order formula to clausal form:
 - $\exists x [isCourse(x) \land hasExam(x)]:$
 - CIF.4: isCourse(c) ∧ hasExam(c)
 - CIF.8: isCourse(c), hasExam(c)
 - \emptyset $\forall x \forall y [isStudent(x) \land hasExam(y) \rightarrow \neg likes(x, y)]:$
 - CIF.2: $\forall x \forall y [\neg (isStudent(x) \land hasExam(y)) \lor \neg likes(x, y)]$
 - CIF.3: $\forall x \forall y [\neg isStudent(x) \lor \neg hasExam(y) \lor \neg likes(x, y)]$
 - CIF.8: $\neg isStudent(x) \lor \neg hasExam(y) \lor \neg likes(x, y)$
 - $\exists x [isCourse(x) \land \forall y [isStudent(y) \rightarrow likes(x, y)]]:$
 - CIF.2: $\exists x [\mathsf{isStudent}(x) \land \forall y [\neg \mathsf{isCourse}(x) \lor \mathsf{likes}(x, y)]]$
 - CIF.4: $isStudent(s) \land \forall y [\neg isCourse(y) \lor likes(s, y)]$
 - CIF.5: $\forall y [isStudent(s) \land [\neg isCourse(y) \lor likes(s, y)]]$
 - CIF.8: $isStudent(s), (\neg isCourse(y) \lor likes(s, y))$

- Apply the inference rule of resolution to the clauses:
 - isCourse(c)
 - hasExam(c)
 - $(\neg \mathsf{isStudent}(x) \lor \neg \mathsf{hasExam}(y) \lor \neg \mathsf{likes}(x,y))$
 - isStudent(s)
 - $\neg isCourse(z), likes(s, z)$
 - **6** R[1a, 5a] $\{z = c\}$ likes(s, c)

 - 8 R[7a, 4a] \neg hasExam(c)
 - R[8a, 2a] {}

Resolution by Refutation: Answer Extraction

- So far, we can answer any query where the answer is yes/no.
- Queries often are more nuanced.
 - E.g: Harry and Ron are friends and Harry and Ginny are married. Assuming all married couples are friends, who are Harry's friends?
- To answer such a query, we can assume the answer, which we denote using an answer clause, answer(x).
 - **E.g**:Either x is the answer or x and Harry and x are not friends:

$$\neg$$
areFriends(**Harry**, x) \lor answer(x)

We then perform resolution until we obtain a clause of only answer literals.

Answer Extraction: Example

- We could perform resolution as follows:
 - areFriends(Harry, Ron)
 - areMarried(Harry, Ginny)

 - **4** ¬areFriends(**Harry**, x) \lor answer(x)
 - **5** $R[1a, 4a] \{x = \text{Ron}\} \text{ answer}(\text{Ron})$
 - **6** $R[2a, 3a] \{x = Harry, y = Ginny\} \text{ areFriends}(Harry, Ginny)$
 - $R[6a, 4a] \{x = Ginny\}$ answer(Ginny)
- Ron and Ginny are Harry's friends.