CS 3.307: Intro to Stochastic Processes

Tejas Bodas

Assistant Professor, IIIT Hyderabad

Introduction to Stochastic processes

Introduction to Stochastic processes

- Stochastic process $\{X(t), t \in T\}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a collection of random variables defined such that for every $t \in T$ we have $X(t) : \Omega \to \mathcal{S}$.
- lacktriangleright T is the parameter space (often resembles time) and $\mathcal S$ is the state space.
- ▶ When *T* is countable, we have a discrete time process. If *T* is a subset of real line, we have a continuous time process.
- State space could be integers or real numbers
- ▶ State space could even be \mathbb{R}^n or \mathbb{Z}^n valued

Examples of Stochastic Processes

- Sequence of i.i.d random variables.
- ▶ General random walk: If $X_1, X_2, ...$ is a sequence i.i.d of random variables, then $S_n = \sum_{i=1}^n X_i$ is a random walk.
- ▶ Weiner process: $\{X(t), t \ge 0\}$ is a Weiner process if
 - 1. X(0) = 0
 - 2. $\{X(t), t \ge 0\}$ has stationary and independent increments
 - 3. for every t > 0, X(t) is normally distributed with mean 0 and variance t.
- ▶ $\{X(t), t \ge 0\}$ is a Markov process if for $t_1 < t_2 < \dots t_n < t$ we have

$$P(X(t) \le x | X(t_1) = x_1, \dots, X(t_n) = x_n) = P(X(t) \le x | X(t_n) = x_n)$$

Random walk and Weiner process are examples of Markov processes.

Introduction to Stochastic processes

A c.t.s.p. is called an <u>independent increment process</u> if for any choice of parameters $t_0 < t_1 < \ldots < t_n$, the *n* increment random variables $X(t_1) - X(t_0), X(t_2) - X(t_1), \ldots, X(t_n) - X(t_{n-1})$ are independent.

The c.t.s.p. is said to have stationary increments if in addition $X(t_2+s)-X(t_1+s)$ has the same distribution as $X(t_2)-X(t_1)$ for all $t_1, t_2 \in T$ and any s > 0.

Counting process

Stochastic process $\{N(t), t \geq 0\}$ is a counting process if it represents the total number of events upto time t.

It satisfies the following

- $ightharpoonup N(t) \geq 0$ and is integer valued
- For $s \le t$, we have $N(s) \le N(t)$. N(t) N(s) denotes the number of events in the interval (t,s)
- ► We will now look at some examples of couting processes that have independent and stationary increments.

Bernoulli/Binomial process

- Bernoulli(p) random variable represents an event.
- Bernoulli process is a sequence of independent r.v.'s $\{X_i, i = 1, 2, ...\}$ where X_i is a Bernoulli(p) random variable at time i.
- Let S_n counts the number of Bernoulli events by time n. S_n is essentially sum of n independent Bernoulli(p) variables.
- ► $S_n = \sum_{i=1}^n X_i$ which denotes the number of event by time n and $P(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k}$.
- $E[S_n]$? $Var(S_n)$?

Bernoulli/Binomial process

- ▶ ${S_n = \sum_{i=1}^n X_i, n = 1, 2, ...}$ is called as a Binomial process.
- Let $T := \{\text{smallest}(n) | S_n > 0.\}.$
 - ightharpoonup T is a geometric random variable with parameter p, i.e., $P(T = n_1) = p(1-p)^{(n_1-1)}$
 - Memoryless property: P(T > m + n/T > n) = P(T > m).

Poisson process

A Poisson process with rate $\lambda, \lambda \geq 0$ is a counting process $\{N(t), t \geq 0\}$ with the following properties

- N(0) = 0
- \triangleright N(t) has independent increments
- Number of events in an interval of length t is a Poisson distribution with mean λt . (Hence stationary increments)
- $F[N(t+s)-N(t)] = \sqrt{s}$

Condition 3 is difficult to verify! Hence ...

Poisson process – Alternative definition

A function f is said to be o(h) if $\lim_{h\to 0} \frac{f(h)}{h} = 0$.

A Poisson process with rate $\lambda, \lambda \geq 0$ is a counting process $\{N(t), t \geq 0\}$ with the following properties

- ightharpoonup N(0) = 0
- \triangleright N(t) has independent and stationary increments
- $P\{N(h) = 1\} = \lambda h + o(h)$
- ▶ $P{N(h) \ge 2} = o(h)$