THEORETICAL PART:

Properties of logarithms:

Let a (the logarithmic base) be a positive real number not equal to 1, let x and y be positive real numbers, and let r be any real number.

$$1. \log_a(xy) = \log_a x + \log_a y$$

$$2. \log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

3.
$$\log_a(x^r) = r \log_a x$$

Formula (Change of Base Formula):

Let *a* and *b* be positive real numbers, neither of them equal to 1, and let *x* be a positive real number. Then

$$\log_b x = \frac{\log_a x}{\log_a b}$$

Definition (The pH Scale):

The **pH** of a solution is defined to be $-\log[H_3O^+]$, where $[H_3O^+]$ is the concentration of hydronium ions in units of moles/liter. Solutions with a pH less than 7 are said to be acidic, while those with a pH greater than 7 are basic.

Definition (The Richter Scale):

Earthquake intensity is measured on the **Richter Scale**:

$$R = \log\left(\frac{I}{I_0}\right),\,$$

where I_0 is the intensity of a just-discernible earthquake, I is the intensity of an earthquake being analyzed, and R is its ranking on the Richter scale.

Scale: R < 4 – minor, $4 \le R < 5$ – light, $5 \le R < 6$ – moderate, $6 \le R < 7$ – strong, $7 \le R < 8$ – major, $8 \le R$ – great.

Definition (The Decibel Scale):

$$D = 10 \log \left(\frac{I}{I_0}\right),\,$$

where I_0 is the intensity of a just-discernible sound, I is the intensity of the sound being analyzed, and D is its decibel level.

Scale: 0 < D < 60 – normal conversation, 60 < D < 80 – heavy traffic, 80 < D < 120 – loud rock concert, 120 < D < 160 – eardrum is likely to rupture.

PRACTICAL PART:

- 1. Use properties of logarithms to expand the following expressions as much as possible.
 - (a) $\log_4 (64x^3 \sqrt{y})$
 - (b) $\log_a \left(\sqrt[3]{\frac{xy^2}{z^4}} \right)$
 - (c) $\log \left(\frac{2.7 \times 10^4}{x^{-2}} \right)$

- 2. Use the properties of logarithms to condense the following expressions as much as possible.
 - (a) $2\log_3\left(\frac{x}{3}\right) \log_3\left(\frac{1}{y}\right)$
 - (b) $\ln(x^2) \frac{1}{2} \ln y + \ln 2$
 - (c) $\log_b 5 + 2\log_b(x^{-1})$

- 3. Evaluate the following logarithmic expressions, using the base of your choice.
 - (a) $\log_7 15$
 - (b) $\log_{\frac{1}{2}} 3$
 - (c) $\log_{\pi} 5$

4. If a sample of orange juice is determined to have a $[H_3O^+]$ concentration of 1.58×10^{-4} moles/liter, what is its pH?

5. Given that $I_0 = 10^{-12} \ watts/meter^2$, what is the decibel level of jet airliner's engines at a distance of 45 meters, for which the sound intensity is 50 watts/meter²?