Content in this Notebook

Assignment 4: Exploratory Data Analysis

REGex Software Services (https://www.linkedin.com/company/regexsoftware.

- 1. Introduction
- 2. Impoting Libraries
- 3. Loading and Reading Data
- 4. Data Description and initial cleaning
 - 4.1 Cleaning Strings in Column and Values
 - 4.2 Making List of Categorical Columns
 - 4.3 Cleaning Categorical Data in our data set
- <u>5. Missing Values</u>
 - 5.1 Treating Missing Values
- 6. Checking duplicates in our data set.
 - 6.1 Dropping the duplicates
- 7. Checking Correlation
- 8. Checking Relation between all variables
 - 8.1 Distribution and relationship of Numerical Variables with dependent variable
 - 8.1.1 Distribution and relationship of Numerical Variables with dependent variable
 - 8.1 Distribution and relationship of Numerical Variables with dependent variable

EDA on European hotel reviews data set from

kaggle

back to top

2. Importing Libraries

```
In [45]: import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams['figure.figsize'] = (16, 8)
plt.style.use('fivethirtyeight')

import warnings
warnings.filterwarnings('ignore')
```

back to top

3. Loading and Reading Data

	id	Gender	Age	purpose_of_travel	Type of Travel	Type Of Booking	Hotel wifi service	Departure/Arrival convenience	Ease of Online booking
0	70172	Male	13	aviation	Personal Travel	Not defined	3	4	3
1	5047	Male	25	tourism	Group Travel	Group bookings	3	2	3
2	110028	Female	26	tourism	Group Travel	Group bookings	2	2	2
3	24026	Female	25	tourism	Group Travel	Group bookings	2	5	5
4	119299	Male	61	aviation	Group Travel	Group bookings	3	3	3
4									>

Shape of the Data: (103904, 17)

back to top

4. Data Description and initial cleaning

In [47]: df.describe()

Out[47]:

	id	Age	Hotel wifi service	Departure/Arrival convenience	Ease of Online booking	Hotel locatic
count	103904.000000	103904.000000	103904.000000	103904.000000	103904.000000	103902.00000
mean	64924.210502	39.379706	2.729683	3.060296	2.756901	2.97690
std	37463.812252	15.114964	1.327829	1.525075	1.398929	1.2776′
min	1.000000	7.000000	0.000000	0.000000	0.000000	0.00000
25%	32533.750000	27.000000	2.000000	2.000000	2.000000	2.00000
50%	64856.500000	40.000000	3.000000	3.000000	3.000000	3.00000
75%	97368.250000	51.000000	4.000000	4.000000	4.000000	4.00000
max	129880.000000	85.000000	5.000000	5.000000	5.000000	5.00000
4						•

back to top

4.1 Cleaning Strings in Column and Values

In [48]:	df.head() id gender age purpose_of_travel type_of_travel type_of_booking hotel_wifi_service dep 0 70172 Male 13 aviation Personal Travel Not defined 3 1 5047 Male 25 tourism Group Travel Group bookings 3											
Out[48]:		id	gender	age	purpose_of_travel	type_of_travel	type_of_booking	hotel_wifi_service	dep			
	0	70172	Male	13	aviation		Not defined	3				
	1	5047	Male	25	tourism	Group Travel	Group bookings	3				
	2	110028	Female	26	tourism	Group Travel	Group bookings	2				
	3	24026	Female	25	tourism	Group Travel	Group bookings	2				
	4	119299	Male	61	aviation	Group Travel	Group bookings	3				
	4								•			

back to top

4.2 Making List of Categorical Columns

back to top

4.3 Cleaning Categorical Data in our data set

```
In [50]:
           Cleaning Categorical Data in our data set
           for col in categorical:
                df[col] = df[col].str.lower().str.replace(" ", " ")
           df.head()
Out[50]:
                    id
                       gender age
                                     purpose_of_travel
                                                        type_of_travel type_of_booking hotel_wifi_service
                70172
                                 13
                                                                             not defined
                                                                                                        3
                          male
                                               aviation
                                                        personal travel
                 5047
                                 25
                                                                                                        3
                          male
                                                tourism
                                                           group_travel
                                                                         group_bookings
               110028
                                                                                                        2
                        female
                                 26
                                                tourism
                                                           group_travel
                                                                         group bookings
                                                                                                        2
                24026
                        female
                                 25
                                                tourism
                                                           group_travel
                                                                         group_bookings
                                                                                                        3
               119299
                          male
                                 61
                                               aviation
                                                           group_travel
                                                                         group_bookings
```

Unique values and numbers

```
"""Printing out First 5 Unique Values."""
In [51]:
         for col in df.columns:
             print(col)
             print(df[col].unique()[:5])
             print(df[col].nunique())
             print('\n')
         id
         70172
                   5047 110028 24026 119299]
         103904
         gender
         ['male' 'female']
         age
         [13 25 26 61 47]
         75
         purpose_of_travel
         ['aviation' 'tourism' 'business' 'academic' 'personal']
         5
         type_of_travel
         ['personal_travel' 'group_travel']
         type_of_booking
         ['not_defined' 'group_bookings' 'individual/couple']
         hotel wifi service
         [3 2 4 1 5]
         6
         departure/arrival__convenience
         [4 2 5 3 1]
         6
         ease_of_online_booking
         [3 2 5 4 1]
         6
         hotel location
         [1. 3. 2. 5. 4.]
         6
```

```
food_and_drink
[5 1 2 4 3]
stay_comfort
[5. 1. 2. 3. 4.]
common_room_entertainment
[5 1 2 3 4]
6
checkin/checkout_service
[4. 1. 3. 5. 2.]
6
other_service
[5 4 3 1 2]
6
cleanliness
[5 1 2 3 4]
6
satisfaction
['neutral_or_dissatisfied' 'satisfied' nan]
```

back to top

5. Missing Values

Number of Missing Values in our data set

	Variable	Missing Values
0	id	0
1	gender	0
2	age	0
3	purpose_of_travel	0
4	type_of_travel	0
5	type_of_booking	0
6	hotel_wifi_service	0
7	departure/arrivalconvenience	0
8	ease_of_online_booking	0
9	hotel_location	2
10	food_and_drink	0
11	stay_comfort	1
12	common_room_entertainment	0
13	checkin/checkout_service	6
14	other_service	0
15	cleanliness	0
16	satisfaction	2

Percentage of Missing Values in our data set

	Count
id	0.000000
gender	0.000000
age	0.000000
purpose_of_travel	0.000000
type_of_travel	0.000000
type_of_booking	0.000000
hotel_wifi_service	0.000000

	Count
departure/arrival_convenience	0.000000
ease_of_online_booking	0.000000
hotel_location	0.001925
food_and_drink	0.000000
stay_comfort	0.000962
common_room_entertainment	0.000000
checkin/checkout_service	0.005775
other_service	0.000000
cleanliness	0.000000
satisfaction	0.001925

- Observation
 Above tables and plot shows frequency and percentage of missing values in our data set.
 - Variable market_category has the highest missing values and engine_fuel_type has the least missing values count.

• I will use mode to compute missing values in categorical columns and mean to compute missing values in numerical columns.

back to top

5.1 Treating Missing Values

```
In [53]: #We will use Mode to fill up missing values in Categorical columns"""
    df['satisfaction'].fillna(df['satisfaction'].mode()[0], inplace = True)

#We will use mean to fill up missing values in Numerical columns"""
    #df['engine_hp'].fillna(df['engine_hp'].mean(), inplace = True)

#We will use median to fill up missing values in Ordinal Numerical columns"""
    df['hotel_location'].fillna(df['hotel_location'].median(), inplace = True)
    df['stay_comfort'].fillna(df['stay_comfort'].median(), inplace = True)
    df['checkin/checkout_service'].fillna(df['checkin/checkout_service'].median(), in
    #Checking Missing Values after imputing """
    display(df.isnull().sum().to_frame().reset_index().rename({'index' : 'Variables', index' : 'Variables'
```

	Variables	Missing Values
0	id	0
1	gender	0
2	age	0
3	purpose_of_travel	0
4	type_of_travel	0
5	type_of_booking	0
6	hotel_wifi_service	0
7	departure/arrivalconvenience	0
8	ease_of_online_booking	0
9	hotel_location	0
10	food_and_drink	0
11	stay_comfort	0
12	common_room_entertainment	0
13	checkin/checkout_service	0
14	other_service	0
15	cleanliness	0
16	satisfaction	0

6 checking duplicates

In [54]:

#Creating for duplicates display("Total number of of Duplicates present in data: %s"%df.duplicated().sum()

'Total number of of Duplicates present in data: 0'

6.1 Dropping the duplicates

In [55]: #Dropping the Duplicates""" df.drop duplicates(inplace = True) #Checking the Duplicates again"""

print("Total number of of Duplicates present in data: %s"%df.duplicated().sum())

Total number of of Duplicates present in data: 0

Observation
• We had total 0 duplicated values.

back to top

7. Checking Correlation

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

r = correlation coefficient

 x_i = values of the x-variable in a sample

 \bar{x} = mean of the values of the x-variable

 y_i = values of the y-variable in a sample

 \bar{y} = mean of the values of the y-variable

In [56]: #Correlation Matrix of Data""" df.corr().style.background_gradient('copper_r')

Out[56]:		id	age	hotel_wifi_service	departure/arrivalconvenienc
	id	1.000000	0.022857	-0.021276	-0.0021
	age	0.022857	1.000000	0.017859	0.03812
	hotel_wifi_service	-0.021276	0.017859	1.000000	0.34384
	departure/arrival_convenience	-0.002110	0.038125	0.343845	1.00000
	ease_of_online_booking	0.014163	0.024842	0.715856	0.43696
	hotel_location	-0.000603	-0.001341	0.336244	0.44474
	food_and_drink	0.001063	0.023000	0.134718	0.00490
	stay_comfort	0.052902	0.160270	0.122659	0.0113
	common_room_entertainment	0.002300	0.076444	0.209321	-0.0048€
	checkin/checkout_service	0.079291	0.035472	0.043191	0.09328
	other_service	0.079346	-0.049427	0.110441	0.0733
	cleanliness	0.024965	0.053611	0.132698	0.01429

<pre>In [57]: sns.heatmap(df.corr(), cmap = 'copper_r', annot = True, lw = 5);</pre>														
	id	1	0.023	-0.021	-0.0021	0.014	-0.0006	0.0011	0.053	0.0023	0.079	0.079	0.025	1.0
	age	0.023	1	0.018	0.038	0.025	-0.0013	0.023	0.16	0.076	0.035	-0.049	0.054	
	hotel_wifi_service	-0.021	0.018	1	0.34	0.72	0.34	0.13	0.12	0.21	0.043	0.11	0.13	0.8
	departure/arrival_convenience	-0.0021	0.038	0.34	1	0.44	0.44	0.0049	0.011	-0.0049	0.093	0.073	0.014	
	ease_of_online_booking	0.014	0.025	0.72	0.44	1	0.46	0.032	0.03	0.047	0.011	0.035	0.016	0.6
	hotel_location	-0.0006	-0.0013	0.34	0.44	0.46	1	-0.0012	0.0037	0.0035	-0.035	0.0017	-0.0038	
	food_and_drink	0.0011	0.023	0.13	0.0049	0.032	-0.0012	1	0.57	0.62	0.087	0.034	0.66	0.4
	stay_comfort	0.053	0.16	0.12	0.011	0.03	0.0037	0.57	1	0.61	0.19	0.069	0.68	
	common_room_entertainment	0.0023	0.076	0.21	-0.0049	0.047	0.0035	0.62	0.61	1	0.12	0.4	0.69	
	checkin/checkout_service	0.079	0.035	0.043	0.093	0.011	-0.035	0.087	0.19	0.12	1	0.24	0.18	0.2
	other_service	0.079	-0.049	0.11	0.073	0.035	0.0017	0.034	0.069	0.4	0.24	1	0.089	
	cleanliness	0.025	0.054	0.13	0.014	0.016	-0.0038	0.66	0.68	0.69	0.18	0.089	1	0.0
		<u>'D</u>	age	wifi_service	convenience	line_booking	otel_location	od_and_drink	stay_comfort	ntertainment	kout_service	other_service	cleanliness	

Observation
• stay_comfort is the dependent variable.

checkin/check

common_room_en

 Variables cleanliness, common_room_entertainment and food_and_drink has the highest correlation with dependent variable.

back to top

8. Checking Relation between all variables

8.1 Distribution and relationship of Numerical Variables with dependent variable


```
In [59]:
          categorical, numerical
Out[59]: (['gender',
            'purpose_of_travel',
            'type_of_travel',
            'type of booking',
            'satisfaction'],
           ['id',
            'age',
            'hotel_wifi_service',
            'departure/arrival convenience',
            'ease of online booking',
            'hotel location',
            'food and drink',
            'stay comfort',
            'common_room_entertainment',
            'checkin/checkout_service',
            'other service',
            'cleanliness'])
```

Observarion

 Numerical column distribution shows that some variables has skewed data: msrp, highway_mpg, year. Log transformation of data may be useful before using the data for prediction.

 There are certain numerical variables which are ordinal in nature e.g. number_of_doors and engine_cylinders. They can be converted into categorical columns and then transformed for the prediction by using One Hot Encoding etc.

• Variable popularity shows multimodal distribution.

back to top

8.1.1 Distribution and relationship of Numerical Variables with dependent variable

```
In [60]: nrows = 2
ncols = 4
i = 0
fig, ax = plt.subplots(nrows, ncols, figsize = (16,8),)
for row in range(nrows):
    for col in range(ncols):
        sns.scatterplot(df[numerical].iloc[:, i],df['stay_comfort'],ax = ax[row, plt.tight_layout()
        i += 1
```


Observation: every numerical variable distributed perfectly

back to top

8.2. Checking Relation between all categorical variables and dependent variables (msrp)

```
In [61]: #Creating a function for ordering the groups in a column as per their frequency"'
def sort_order(column):
    orders = (df.groupby([column]).mean().sort_values(by ='stay_comfort', ascending the groups in a column as per their frequency"'
    def sort_order(column):
```

```
In [62]: #Looping over categorical variables to check the hospitality rating over differer
for i in categorical:
    if df[i].nunique() < 10:
        sns.barplot(df[i],df['stay_comfort'], order = sort_order(i), palette='complt.title("Bar Plot of %s" %i, fontsize = 20)
        plt.xticks(fontsize = 12)
        plt.xlabel("%s"%i)
        plt.ylabel("Hospitality Rating in restaurent")
        plt.xticks(fontsize = 15, rotation = 90)
        plt.show();
        print('\n')</pre>
```

