Přírodovědecká fakulta Masarykovy univerzity

PRAKTIKUM Z FYZIKY PLAZMATU

Diagnostika plazmatu doutnavého výboje pomocí jednoduché sondy

Zpracovali: Radek Horňák, Lukáš Vrána Naměřeno: 1. 3. 2022

1 Teorie

1.1 Elektrostatická Langmuirova sonda

Langmuirova sonda je vodič malých rozměrů zavedený do plazmatu, pomocí nějž lze měřit nejdůležitější parametry plazmatu jako elektronovou hustotu $n_{\rm e}$, teplotu elektronů $T_{\rm e}$, rozdělovací funkci elektronů f(v) a prostorové rozdělení potenciálu a elektrického pole. Napětí sondy $V_{\rm S}$ určujeme vzhledem k referenční elektrodě. Potenciál plazmatu v místě sondy vůči stejné referenční elektrodě označme $V_{\rm p}$. Pokud je vůči ní plocha sondy velmi malá, můžeme sondu nazvat jednoduchou. Podle tvaru lze dále sondy dělit na válcové, kulové a rovinné. Závislost proudu protékajícího sondou $I_{\rm S}$ na napětí přiloženém na sondu $V_{\rm S}$ tvoří voltampérovou (VA) charakteristiku sondy. Napětí sondy $U_{\rm S}$ získáme pomocí vztahu

$$U_{\rm S} = V_{\rm S} - V_{\rm p} \tag{1}$$

Pokud sonda není připojena k vnějšímu obvodu a proud elektronů i iontů na ni se ustálí, je výsledný proud nulový a sonda se ustálí na napětí $V_{\rm fl}$, tedy na plovoucím potenciálu.

VA charakteristiku jednoduché sondy můžeme rozdělit na tři části. Tou první je oblast saturovaného iontového proudu označená na obr. 1 jako A. Sonda je záporně nabita vzhledem k potenciálu plazmatu, elektrony jsou odpuzovány a ionty naopak přitahovány. Vizuálně se to projevuje temným prostorem obalujícím sondu.

Druhou část charakteristiky tvoří přechodová oblast, pro kterou lze $U_{\rm S}$ vymezit jako $-2(V_{\rm p}-V_{\rm fl}) \leq U_{\rm S} \leq 0$. Na obr. 1 se jedná o oblast B. Celkový proud sondou $I_{\rm S}$ můžeme vyjádřit jako

$$I_{\rm S} = I_{\rm i} + I_{\rm e} \tag{2}$$

kde $I_{\rm i}$ je iontový proud a $I_{\rm e}$ elektronový proud, který je dán vztahem

$$I_{\rm e} = Sen_{\rm e}\sqrt{\frac{kT_{\rm e}}{2\pi m_{\rm e}}}\exp\left(\frac{-eU_{\rm S}}{kT_{\rm e}}\right) \tag{3}$$

kde S je povrch sondy, e elementární náboj, $n_{\rm e}$ koncentrace elektronů, k Boltzmanova konstanta a $m_{\rm e}$ hmotnost elektronu.

Oblast saturovaného elektronového proudu je na obr. 1 označená jako C. Sonda je vzhledem k potenciálu plazmatu na kladném napětí a přitahuje tak elektrony. U válcové sondy nejeví tato oblast nasycení, nýbrž parabolicky narůstá.

Obrázek 1: VA charakteristika jednoduché rovinné sondy [1].

2 Měření a výsledky

Měření provádíme na aparatuře, jejíž schéma je vidět na obr. 2. Výbojka je čerpaná rotační olejovou vývěvou. Tlak nastavujeme změnou průtoku argonu a měříme jej Piraniho manometrem. Do výbojky je zavedená jednoduchá válcová sonda, jejíž délku jsme odhadli na 8 mm a průměr 0,1 mm. Povrch podstavy válcové sondy je k povrchu jejího pláště S zanedbatelný, po zaokrouhlení dostáváme $S=2,5\cdot 10^{-6}$ m².

Při měření vždy nejprve nalezneme plovoucí potenciál, abychom měli jistotu, že naměříme oblast nalevo i napravo od něj. Napětí přiložené na sondu $V_{\rm S}$ se mění automaticky pomocí potenciometru, který je poháněn elektrickým motorkem, kde stačí zařadit rychlostní stupeň v jednom ze směrů chodu. Data jsou ukládána na počítač. Při vyhodnocování jsme je museli synchronizovat.

Obrázek 2: Schéma aparatury.

Provedli jsme měření za konstantního tlaku 160 Pa pro tři hodnoty výbojového proudu $I_{\rm v}$. Výsledné VA charakteristiky jsou v grafu na obr. 3. Z nich lze určit plovoucí potenciál, který se s rostoucím výbojovým proudem zvětšuje, viz tab. 1. Dále jsme provedli měření za konstantního výbojového proudu 40 mA pro pět hodnot tlaku. Odpovídající VA charakteristiky jsou v grafu na obr. 4. Pro tlak 320 Pa je plovoucí potenciál nejmenší, v oblasti 8–80 Pa však nevykazuje žádný trend, viz tab. 1.

Obrázek 3: Naměřené VA charakteristiky za konstantního tlaku 160 Pa.

Obrázek 4: Naměřené VA charakteristiky za konstantního výbojového proudu 40 mA.

Nyní je potřeba od charakteristik odečíst i
ontový proud, oblast kde saturuje jsme proložili přímkou. Názorné proložení pro VA charakterist
ku za podmínek p=160 Pa a $I_{\rm v}=40$ mA je na obr. 5. Ve zbylých pří
padech jsme postupovali obdobně. VA charakteristiky s takto odečteným i
ontovým proudem jsou v grafech na obr. 6 a 7.

Obrázek 5: Lineární fit saturovaného i
ontového proudu, p=160 Pa a $I_{\rm v}=40$ mA.

Obrázek 6: VA charakteristiky s odečteným i
ontovým proudem pro měření s konstantním tlakem $p=160\ \mathrm{Pa}.$

Obrázek 7: VA charakteristiky s odečteným i
ontovým proudem pro měření s konstantním proudem $I_{\rm v}=40~{\rm mA}.$

Potenciál plazmatu $V_{\rm p}$ přibližně určíme ze zlomu VA charakteristik jako průsečík asymptot k lineárním částem zlogaritmovaných závislostí. Postup je vidět na obrázcích 8 až 15 vlevo a výsledné $V_{\rm p}$ jsou uvedeny v tab. 1. Vždy platí, že $V_{\rm p}$ je větší než $V_{\rm fl}$. Stejně jako $V_{\rm fl}$, potenciál plazmatu s rostoucím výbojovým proudem roste, při změně tlaku nevykazuje žádný trend. Nyní můžeme ze vztahu (1) dopočítat $U_{\rm S}$. Pokud následně vyneseme do grafů závislosti $\ln I_{\rm e} = -\frac{e}{kT_{\rm e}}U_{\rm S} + C$ pro oblasti $-2(V_{\rm p}-V_{\rm fl}) \leq U_{\rm S} \leq 0$, můžeme z elektronového proudu pro $U_{\rm S}=0$ dle vztahu (3) dopočítat koncentraci elektronů. Závislosti $\ln I_{\rm e}=f(U_{\rm S})$ proložené přímkou jsou na obrázcích 8 až 15 vpravo. Výsledné elektronové teploty a koncentrace elektronů jsou v tab. 2. S rostoucím výbojovým proudem roste i koncentrace elektronů a jejich teplota klesá. S rostoucím tlakem pozorujeme stejnou závislost, tedy klesající teplotu a rostoucí koncentrace elektronů.

Tabulka 1: Plovoucí a plazmové potenciály

p = 160 Pa			$I_{\rm v}=40~{\rm mA}$		
$I_{\rm v} [{\rm mA}]$	$V_{\rm fl}$ [V]	$V_{\rm p}$ [V]	p [Pa]	$V_{\rm fl}$ [V]	$V_{\rm p}$ [V]
30	-48,0	-47,7	8	-45,3	-44,8
40	-43,8	-43,4	16	-45,8	-45,2
50	-42,2	-41,6	32	-45,0	-44,6
			80	-44,4	-43,9
			200	-50,9	-49,9

Tabulka 2: Teploty a koncentrace elektronů

p = 160 Pa			$I_{\rm v}=40~{\rm mA}$		
$I_{\rm v} [{ m mA}]$	T [eV]	$n_{\rm e}[10^{14}{\rm m}^{-3}]$	p [Pa]	T [eV]	$n_{\rm e}[10^{14}{\rm m}^{-3}]$
30	3,3	1,0	8	4,6	0,8
40	2,8	1,6	16	4,3	1,1
50	2,6	2,3	32	4,0	1,2
			80	3,7	1,4
			200	2,2	1,7

Obrázek 8: Stanovení potenciálu plazmatu a elektronové teploty, p=160 Pa a $I_{\rm v}=30$ mA.

Obrázek 9: Stanovení potenciálu plazmatu a elektronové teploty, p=160 Pa a $I_{\rm v}=40$ mA.

Obrázek 10: Stanovení potenciálu plazmatu a elektronové teploty, p=160 Pa a $I_{\rm v}=50$ mA.

Obrázek 11: Stanovení potenciálu plazmatu a elektronové teploty, p=320 Pa a $I_{\rm v}=40$ mA.

Obrázek 12: Stanovení potenciálu plazmatu a elektronové teploty, p=80 Pa a $I_{\rm v}=40$ mA.

Obrázek 13: Stanovení potenciálu plazmatu a elektronové teploty, p=32 Pa a $I_{\rm v}=40$ mA.

Obrázek 14: Stanovení potenciálu plazmatu a elektronové teploty, p = 16 Pa a $I_v = 40$ mA.

Obrázek 15: Stanovení potenciálu plazmatu a elektronové teploty, p=8 Pa a $I_{\rm v}=40$ mA.

3 Závěr

V této úloze jsme se seznámili s měřením pomocí Langmuirovy jednoduché válcové sondy. Naměřili jsme osm VA charakteristik pro různé podmínky. Určili jsme plovoucí potenciál sondy, který se zvětšuje s rostoucím výbojovým proudem, při změnách tlaku za konstantního proudu nevykazoval žádný trend. Dále jsme určili potenciál plazmatu, ten je vždy větší než plovoucí potenciál a při změnách výbojového proudu a tlaku se chová obdobně jako plovoucí potenciál. Nakonec jsme získali elektronové teploty a spočítali elektronovou koncentraci. S rostoucím výbojovým proudem roste i koncentrace elektronů a jejich teplota klesá. S rostoucím tlakem jsme pozorovali stejnou závislost, tedy rostoucí koncentraci elektronů a klesající elektronovou teplotu.

Reference

[1] Návod k praktiku: $Diagnostika\ plazmatu\ doutnavého\ výboje\ pomocí\ elektrostatických\ sond:\ jednoduchá\ sonda.$