Scaling Tricks

Learning a large scale model, Step 0

Large scale: costly and difficult to train.

First try to downsize the dataset and train on a single machine.

- → Gives you a better understanding of the task
- → Model learned might be good enough!
- → These tricks will still be interesting when going distributed

My data does not fit in RAM!

df = pd.read_csv("my_big_file.csv")

- Pandas is quite memory inefficient
- One issue is that at column type inference time, it casts them to the largest possible type
- Pandas types
 - int8 / uint8 : consumes 1 byte of memory, range between -128/127 or 0/255
 - **bool**: consumes 1 byte, true or false
 - float16 / int16 / uint16: consumes 2 bytes of memory, range between -32768 and 32767 or 0/65535
 - float32 / int32 / uint32 : consumes 4 bytes of memory, range between 2147483648 and 2147483647
 - float64 / int64 / uint64: consumes 8 bytes of memory

- Categorical columns
 - If you have some categorical columns in your dataset (with strings inside for instance) they are stored as objects
 - If the number of possible categories is limited you can force pandas to use a virtual mapping table where all unique values are mapped via an integer instead of a pointer. This is done using the **category datatype**.

- So what can we do?
- You can:
 - Inspect a representative number of lines of your dataset
 - Downcast or convert into categorical the appropriate columns
 - Use this new schema to load your whole dataset

• Don't forget to only load the subset of columns you are going to use

df_optimized = pd.read_csv("my_big_file.csv", dtype=column_types, usecols=["float_col", "int_col", "cat_col"])

My data still does not fit in RAM!

Maybe we can rely on a smaller version of the dataset
Uniform Sampling
Maybe we can do better

Stratified Sampling

You can use a different sampling ratio for each group

Grouping criterion?

Each individual of the group should look alike!

Should I go for clustering technique?

Maybe, but it may be costful. In practice (advertising, fraud detection, cheminformatics) we can do simpler:

- Use the Label
- Use a given column of the dataset
- Sometimes the criterion may be dictated by your infra

But ideally make sure that you:

- don't remove individuals from the 'long tail'
- don't degrade your loss

Don't forget to correct your loss

Sampling Ratio

Group	Sampling Ratio
А	1 (unchanged)
В	1/10
С	1/30

Loss

Emptying the drawers

Condensend nearest neighbours: stream through the examples, keep example if it cannot be correctly classified by the content of the added examples so far (using nearest neighbour methods)

Tomek links: remove element from pair of closest elements, with different label (remove element from majority class)

My data still does not fit in RAM!

No need to fit whole dataset into RAM to build your model

```
Dataset \{(x_i,y_i)_{i=1..N}\} grouped into batches \{(X_b,Y_b)_{b=1..B}\}
Differentiable predictor f_w(X)
Cost function J(f(X),Y)
```

Repeat until some stopping criterion is met:

```
w := w - \alpha \nabla_w J(X_b, Y_b)
update \alpha
```

Batch Gradient Descent

Toy example

Simple linear regression example:

```
x = np.array(range(1000)) / 100
y = 6 * x + 3 + np.random.normal(0, 16, x.shape)
```


Compromise memory/speed/optimization error

Mini batch, what's the deal?

Smoother convergence ?

Vectorization (SIMD, GPU) speed-up?

Faster convergence (smoother gradient)?

Operations, not iterations (lines processed + vectorization)

Scikitlearn

All algorithms with a partial fit method sklearn.linear_model.SGDClassifier sklearn.linear_model.SGDRegressor

• • •

SGD without mini batch

```
model = linear_model.SGDRegressor()
for (X, y) in chunks:
    model.partial_fit(X, y)
```

Learning rate updated at each row

By the way, don't forget to normalize your data

Are we good to go?

Why should I care about shuffling?

Training set

•••

210cm	48

Validation set

What happens?

Why should I care about shuffling?

Batches should be representative of dataset Otherwise, risk of overfitting:

- on last batches of the training

In theory, you need to shuffle the dataset after each epoch.

In non-convex optimization, helps to hop from one local optimum to another.

How do you shuffle a file that does not fit in RAM?

One solution

One or multiple files		Multiple files			One or mu	ltiple files	
			random			random	•••
	Row 1		261136629	Row 1		2	Row 42
						***	•••
	Row 42	Add random	2	Row 42	External sort	261136629	Row 1
		column				**	•••
	Row 123	O(n)	988215456	Row 123	O(n log(n))	535215832	Row n
	Row n		535215832	Row n		988215456	Row 123

Pick numbers from a large set so that probability that any two lines have same random number is small. Some versions of the UNIX utility sort already have this:

cat -n myfile.csv | sort --random-sort | cut -f 2

How do you shuffle a file that does not fit in RAM?

Better solution : don't sort because it's too expensive Multiple files Shuffled files One or multiple files Row 1 In-memory **Row 42** Assign to shuffles Random file O(n) O(n) **Row 123** • • • Row n

Pick amount of files so that each file can be processed in-memory

Need to know big file size

Unix: no simple one-liner for the first operation!

Conclusion

Model Performance limited by training cost/time, not number of samples.

More data will increase **model breadth.** What is your *task*?

Some task require manual data annotation that will not scale. Sometimes some cheap ways to generate labels exist.

We need to **decrease training costs/time**:

- Use sampling
- Replace polynomial algorithms by linear algorithms
- Out of core algorithms (some kind of divide and conquer strategy)
- Optimize RAM usage (avoids I/O)
- Parallelize computations, use dedicated hardware (not covered)