

第五节 固体比热

- ▶ 本节所指为: 等容比热C_V
- > 主要内容:
 - 经典比热理论的问题
 - 固体量子比热理论的基本处理方法
 - 两个典型模型
 - (Einstein模型, Debye模型)

1、经典的固体比热理论

等容比热的定义:

$$C_{V} = \left(\frac{\partial \overline{E}}{\partial T}\right)_{V}$$

其中, \overline{E} 为固体的平均内能。

经典理论的核心:

能量均分定律。

能量按自由度均分,每个自由度

的平均能量为 $k_B T$ 。

30 U

导体: $\overline{E} = \overline{E}_{\text{价电子}} + \overline{E}_{\text{晶格振动}}$

半导体: $\overline{E} = \overline{E}_{\text{价电子}} + \overline{E}_{\text{晶格振动}}$

绝缘体: $\overline{E} = \overline{E}_{\text{晶格振动}}$

按照经典理论:

不同固体材料的热容不一样

(1)、室温及高温下,几乎所有单原子

固体的热容量值都接近 $3Nk_B$,

即: 室温及高温下,几乎所有单

原子固体的摩尔热容量值都接近

 $3R = cons \tan t$

(2)、在低温下,热容量显著下降。

对于绝缘体,其等容比热以 T^3 规律趋近于0。

对于导体,其等容比热以T规律趋近于0。

• 经典理论在解释固体比热时遇到困难

(1)、金属中自由电子的自由度比晶格的自由度多得多,而高温下,自由电子对金属的比热贡献不大。

----经典理论无法解释。

(2)、经典理论不能解释固体低温比热的

实验事实。

根据实验事实,低温下,经典的能

量均分定律不再适用于固体比热理论。

固体比热理论必须用量子理论处理

二、晶格比热的量子理论

晶格振动是量子化的,即:晶格

振动的能量是量子化的, 频率为 ω 的

声子的能量为
$$E_n = (n + \frac{1}{2})\hbar\omega$$

 $\frac{1}{2}\hbar\omega$ 为零点能。

讨论固体比热时,可将零点能忽略,

频率为 ω 的声子能量 E_n 改写为:

$$E_n = n\hbar\omega$$

声子是玻色子, 服从Bose分布:

$$n = \frac{1}{e^{\hbar\omega/k_BT} - 1}$$

频率α的声子平均能量

$$\overline{E}_{(\omega)} = \frac{\hbar \omega}{e^{\hbar \omega / k_B T} - 1}$$

由N个原子组成的三维晶体平均能量为:

$$\overline{E} = \sum_{i=1}^{3N} \overline{E}_{(\omega_i)} = \sum_{i=1}^{3N} \frac{\hbar \omega_i}{e^{\hbar \omega_i / k_B T} - 1}$$

借助频率分布函数用积分来代替求和:

用 $\rho(\omega)d\omega$ 表示角频率在 $\omega \to \omega + d\omega$ 之间的频率数(即:格波数),而且:

$$\int_0^{\omega_m} \rho(\omega) d\omega = 3N$$

 ω_m 为最大角频率, $\rho(\omega)$ 为频率分布函数

晶体的平均能量为:

$$\overline{E} = \int_0^{\omega_m} \frac{\hbar \omega}{e^{\frac{\hbar \omega}{k_B T}} - 1} \rho(\omega) d\omega$$

晶格比热Cv为:

$$C_{V} = \int_{0}^{\omega_{m}} k_{B} \left(\frac{\hbar\omega}{k_{B}T}\right)^{2} \frac{e^{\hbar\omega/k_{B}T}}{\left[e^{\hbar\omega/k_{B}T} - 1\right]^{2}} \rho(\omega)d\omega$$

$$C_V \longleftarrow \rho(\omega) \longleftarrow \omega(q)$$

$$\rho_{(\omega)} = \frac{dZ}{d\omega} = \frac{dZ}{d\vec{q}} \frac{d\vec{q}}{d\omega}$$

一维单原子链
$$\omega = 2\sqrt{\frac{\beta}{m}} \left| \sin(\frac{qa}{2}) \right|$$

$$C_V \longleftarrow \rho(\omega) \longleftarrow \omega(q)$$

$$\rho_{(\omega)} = \frac{dZ}{d\omega} = \frac{dZ}{d\vec{q}} \frac{d\vec{q}}{d\omega}$$

$$\omega_{-}^{2} = \frac{\beta}{Mm} \left\{ [m^{2} + M^{2} + 2mM \cos(2qa)]^{1/2} \right\}$$

$$\omega_{+}^{2} = \frac{\beta}{Mm} \left\{ \frac{(m+M)+}{[m^{2}+M^{2}+2mM\cos(2qa)]^{1/2}} \right\}$$

$$C_V \longleftarrow \rho(\omega) \longleftarrow \omega(q)$$

本课程介绍两个常见的模型:

爱因斯坦(Einstein)模型

德拜(Debye)模型

1. Einstein模型

所有原子都以相同频率 ω_E 振动。

晶格振动的频率分布函数为:

$$\rho(\omega) = 3N\delta(\omega - \omega_E)$$

晶格振动的平均能量为:

$$\overline{E} = \int_0^{\omega_m} \frac{\hbar \omega}{e^{\frac{\hbar \omega}{k_B T}} - 1} \rho(\omega) d\omega$$

$$=\int_{0}^{\infty} \frac{\hbar\omega}{e^{\hbar\omega/k_{B}T}-1} 3N\delta(\omega-\omega_{E})d\omega$$

$$=\frac{3N\hbar\omega_{E}}{e^{\hbar\omega_{E}/k_{B}T}-1}$$

*UE

晶格振动的平均能量为 $E = \frac{3N\hbar\omega_E}{e^{\hbar\omega_E/k_BT}-1}$

晶格比热为

$$C_{V} = 3Nk_{B} \left(\frac{\hbar\omega_{E}}{k_{B}T}\right)^{2} \frac{e^{\hbar\omega_{E}/k_{B}T}}{\left(e^{\hbar\omega_{E}/k_{B}T} - 1\right)^{2}}$$

$$C_{V} = 3Nk_{B} \left(\frac{\theta_{E}}{T}\right)^{2} \frac{e^{\theta_{E}/T}}{\left(e^{\theta_{E}/T} - 1\right)^{2}}$$

 θ_E ----- Einstein温度。

(1)、高温极限

当温度比较高的时候, $T>> \theta_E$

在这种高温极限下,

利用: $x \to 0$ 时, $e^x \approx 1 + x$

 $\left(e^{\theta_E/T}-1\right)^2 \quad \left(e^{\theta_E/2T}-e^{-\theta_E/2T}\right)^2$

$$\approx \frac{1}{\left(\frac{\theta_E}{2T} + \frac{\theta_E}{2T}\right)^2} = \left(\frac{T}{\theta_E}\right)^2$$

$$C_{V} = 3Nk_{B} \left(\frac{\theta_{E}}{T}\right)^{2} \frac{e^{\theta_{E}/T}}{\left(e^{\theta_{E}/T} - 1\right)^{2}}$$

$$\frac{e^{\theta_E/T}}{\left(e^{\theta_E/T}-1\right)^2} \approx \left(\frac{T}{\theta_E}\right)^2$$

$$C_{V} = 3Nk_{B} \left(\frac{\theta_{E}}{T}\right)^{2} \frac{e^{\theta_{E}/T}}{\left(e^{\theta_{E}/T} - 1\right)^{2}}$$

$$C_V \approx 3Nk_B$$
, 与实验符合。

(2)、低温极限

当
$$T << \theta_E$$
 时, $e^{\theta_E/T} >> 1$,

$$C_{V} = 3Nk_{B} \left(\frac{\theta_{E}}{T}\right)^{2} \frac{e^{\theta_{E}/T}}{\left(e^{\theta_{E}/T} - 1\right)^{2}}$$

(2)、低温极限

当
$$T << \theta_E$$
 时, $e^{\theta_E/T} >> 1$,

$$C_V \approx 3Nk_B \left(\frac{\theta_E}{T}\right)^2 e^{-\left(\frac{\theta_E}{T}\right)}$$

根据Einstein模型,在低温下,晶格比热是以指数规律衰减的。

实验结果: 在低温下, 晶格比热与 T^3 成正比。

2. Debye模型

Debye模型:

将Bravaise晶格视为各向同性的 连续介质,将格波视为连续介质弹性 波,并且,还假设:纵、横弹性波的 波速是相等的,用 V_n 表示。

对每一支格波,频率分布函数为

$$\rho_{(\omega)} = \frac{V_C}{(2\pi)^3} \frac{d\vec{q}}{d\omega} \qquad d\vec{q} = 4\pi q^2 dq$$

$$\rho_{(\omega)} = \frac{V_C}{2\pi^2} q^2 \frac{dq}{d\omega}$$

 V_C 为晶体的体积

USS

根据Debye模型,三支格波具有相

同的色散关系
$$\omega = qv_p$$

晶体的频率分布函数为:

$$\rho(\omega) = 3 \cdot \frac{V_C}{(2\pi)^3} \cdot 4\pi \frac{\omega^2}{v_p^3} = \frac{3V_C}{2\pi^2} \cdot \frac{\omega^2}{v_p^3}$$

晶体的平均内能为:

$$\overline{E} = \int_0^{\omega_m} \frac{\hbar \omega}{e^{\hbar \omega/k_B T} - 1} \rho(\omega) d\omega$$

$$=\frac{3}{2\pi^2}\cdot\frac{V_C}{v_p^3}\int_0^{\infty}\frac{\hbar\omega^3}{e^{\hbar\omega/k_BT}-1}d\omega$$

$$C_V = \left(\frac{\partial E}{\partial T}\right)_V$$

$$=\frac{3}{2\pi^{2}}\cdot\frac{V_{C}}{v_{p}^{3}}\int_{0}^{\omega_{m}}k_{B}\left(\frac{\hbar\omega}{k_{B}T}\right)^{2}\frac{e^{\hbar\omega/k_{B}T}\omega^{2}}{\left[e^{\hbar\omega/k_{B}T}-1\right]^{2}}d\omega$$

$x = \frac{\hbar \omega}{k_T}$, 则对应于 ω_m 的

$$x_m = \frac{\hbar \omega_m}{k_D T} = \frac{\theta_D}{T}$$
 θ_D 被称为Debye温度

$$\overline{E} = 9Nk_B T \left(\frac{T}{\theta_D}\right)^{3} \int_{0}^{\theta_D/T} \frac{x^3}{e^x - 1} dx$$

$$C_V = 9Nk_B \left(\frac{T}{\theta_D}\right)^3 \int_0^{\theta_D/T} \frac{e^x \cdot x^4}{\left(e^x - 1\right)^2} dx$$

Uestc 42

(1)、低温极限

低温下, $\theta_D >> T$, 积分上限变为 ∞ ,

$$\int_{0}^{\infty} \frac{x^{3}}{e^{x} - 1} dx = \int_{0}^{\infty} e^{-x} \frac{x^{3}}{1 - e^{-x}} dx = \frac{\pi^{4}}{15}$$

$$\overline{E} = \frac{3\pi^4 N k_B}{5\theta_D^3} T^4$$

$$C_V = \frac{12\pi^4 N k_B}{5} \left(\frac{T}{\theta_D}\right)^3$$

课堂练习

- 1. 求一维单原子晶体的比热
- 2. 用Einstein模型求一维单原子晶体的比热
- 3. 用Debye模型求一维单原子晶体的比热
- 4. 用Einstein模型求二维单原子晶体的比热
- 5. 用Debye模型求二维单原子晶体的比热

1. 求一维单原子晶体的比热

$$E = \int_{0}^{\omega_{m}} \left(\frac{1}{e^{\hbar\omega/k_{B}T} - 1} + \frac{1}{2}\right)\hbar\omega\rho(\omega)d\omega$$

$$C_{V} = \int_{0}^{\omega_{m}} k_{B} \left(\frac{\hbar\omega}{k_{B}T}\right)^{2} \frac{e^{\hbar\omega/k_{B}T}}{\left[e^{\hbar\omega/k_{B}T} - 1\right]^{2}} \rho(\omega)d\omega$$

$$\rho(\omega) = \frac{2L}{\pi a} \left[\omega_m^2 - \omega^2 \right]^{-\frac{1}{2}}$$

$$C_{V} = \frac{2L}{\pi a} \times k_{B} \int_{0}^{\omega_{m}} \left(\frac{\hbar \omega}{k_{B}T}\right)^{2} \frac{e^{\frac{\hbar \omega}{k_{B}T}}}{\left[e^{\frac{\hbar \omega}{k_{B}T}} - 1\right]^{2}} \left(\omega_{m}^{2} - \omega^{2}\right)^{-\frac{1}{2}} d\omega$$

2. 用Einstein模型求一维单原子晶体的比热

$$E = \int_{0}^{\omega_{m}} \left(\frac{1}{e^{\hbar\omega/k_{B}T} - 1} + \frac{1}{2}\right)\hbar\omega\rho(\omega)d\omega$$

$$C_{V} = \int_{0}^{\omega_{m}} k_{B} \left(\frac{\hbar\omega}{k_{B}T}\right)^{2} \frac{e^{\hbar\omega/k_{B}T}}{\left[e^{\hbar\omega/k_{B}T} - 1\right]^{2}} \rho(\omega)d\omega$$

■根据Einstein模型,一维单原子晶体晶格振

动的频率分布函数为 $\rho(\omega) = N\delta(\omega - \omega_E)$

$$C_{V} = Nk_{B} \left(\frac{\hbar\omega_{E}}{k_{B}T}\right)^{2} \frac{e^{\hbar\omega_{E}/k_{B}T}}{\left(e^{\hbar\omega_{E}/k_{B}T} - 1\right)^{2}}$$

3. 用Debye模型求一维单原子晶体的比热

根据Debye模型,一维单原子晶格振动的

色散关系为
$$\omega = qv_p$$

频率分布函数为:

$$\rho(\omega) = \frac{L}{\pi} \frac{dq}{d\omega} = \frac{L}{\pi v_P}$$

$$C_V =$$

$$\frac{L}{\pi v_P} \int_0^{\omega_m} k_B \left(\frac{\hbar \omega}{k_B T}\right)^2 \frac{e^{\hbar \omega/k_B T}}{\left[e^{\hbar \omega/k_B T} - 1\right]^2} d\omega$$

4. 用Einstein模型求二维单原子晶体的比热

$$E = \int_{0}^{\omega_{m}} \left(\frac{1}{e^{\hbar\omega/k_{B}T} - 1} + \frac{1}{2}\right)\hbar\omega\rho(\omega)d\omega$$

$$C_{V} = \int_{0}^{\omega_{m}} k_{B} \left(\frac{\hbar\omega}{k_{B}T}\right)^{2} \frac{e^{\hbar\omega/k_{B}T}}{\left[e^{\hbar\omega/k_{B}T} - 1\right]^{2}} \rho(\omega)d\omega$$

根据Einstein模型,一维单原子晶体晶格振 -

动的频率分布函数为

$$\rho(\omega) = 2N\delta(\omega - \omega_E)$$

$$C_{V} = 2Nk_{B} \left(\frac{\hbar\omega_{E}}{k_{B}T}\right)^{2} \frac{e^{\hbar\omega_{E}/k_{B}T}}{\left(e^{\hbar\omega_{E}/k_{B}T} - 1\right)^{2}}$$

5. 用Debye模型求二维单原子晶体的比热

根据Debye模型,一维单原子晶格振动的

色散关系为
$$\omega = qv_p$$

频率分布函数为:

$$\rho_{(\omega)} = \frac{S}{2\pi} q \frac{dq}{d\omega} = \frac{S}{2\pi v_p^2} \omega$$

$$C_V =$$

$$\frac{S}{2\pi v_p^2} \int_0^{\omega_m} \frac{k_B^2 T}{\hbar} \left(\frac{\hbar \omega}{k_B T}\right)^3 \frac{e^{\hbar \omega/k_B T}}{\left[e^{\hbar \omega/k_B T} - 1\right]^2} d\omega$$