帕金森氏症 語言障礙治療追蹤

國立台北大學 統計學系四年級 陳庭安

Outline

- 介紹Parkinson's Disease LSVT
- 資料變數、EDA
- 分析目的、分析
- ⊙ 結論

66

Introduction

帕金森氏症

Parkinson's Disease (PD)

- ▷全球800萬人
- ▷慢性中樞神經退化疾病
- ▷肢體、認知、言語
- ▷30%-言語障礙

Lee Silverman Voice Treatment (LSVT)

- ▷常被實施、最具效果
- ▷訓練肌肉
- ▷音量加大、音調變化、誇張的發音

66

Data

資料背景

- ▷14位PD患者
- ▷LSVT療程
- ▷美國愛荷華大學國家語音中心
- ▷9種聲音(低中高音調、音量),共126筆
- ▷聲音評估-7位專家
- ▷309種臨床語音信號處理演算法

變數說明

- ▷ Sheet1. Data
 - ▷訊號處理演算法 x 309 *
 - ▷資料長度 (Data_length)
- Sheet2. Binary response
 - ▷專家判斷結果 (1=acceptable, 2=unacceptable)
- Sheet3. Subject demographics
 - ▷編號
 - ▷年齡
 - ▷性別 (0=Male, 1=Female)

訊號處理演算法*309

A. 聲帶振動週期偏離性	B. 信號噪音比(信噪比)
Jitter-週期/頻率 (RPDE, PPE) Shimmer-振幅 OQ-發聲持續時間	HNR-振幅 IMF-振幅/頻率 DFA, GNE-聲帶閉合不全 VFER-聲帶閉合不全/咬合位置
C. 小波衡量	D. 語音訊號能量
F0-series Ea Ed coef entropy_shannon entropy_log det_TKEO_mean, std	Log energy MFCC delta log energy delta delta delta log energy delta delta

- 1. 受測者基本資料
- ▷8位男性,6位女性
- ▷51至69歳

- 2. 聲音治療結果
- ▷1/3有改善, 2/3無改善

Phonation

- 3. 基本資料 v.s. 治療結果
- ▷1/3有改善, 2/3無改善

(X) 不同性別/年齡 治療狀況的差異

治療結果性別	有改善	無改善
男性	33%	67%
女性	33%	67%

治療結果年齡	有改善	無改善
51,52,58,62~69	33%	67%

治療結果性別(年齡)	有改善	無改善
男性 (51,58,63,67~69)	33%	67%
女性 (52,62,64,65,68)	33%	67%

4. 演算法 v.s. 治療結果

Top10 correlated algorithm Density Estimates

4. 演算法 v.s. 治療結果

10 Least correlated algorithm Density Estimates

66

Objects

- 1. 預測錯誤率
- 2. 聲音不合格的原因(特徵)
- 3. 易誤判聲音的特徵

Unacceptable 3

66

Analysis

維度縮減、分類預測方法

- SVM (Leave-one-out)
- PCA, MDS, ISOMAP

變數篩選原則

▷選擇具區辨力的變數

- Acceptable
- Unacceptable

ISOMAP Classification Error Rate (Leave-one-out SVM)

- ▷ 40個最具區辨力的演算法
- ▷ ISOMAP前6個維度

90%

V.s. Unacceptance in Probability

ISOMAP維度的意義

維度	Dim.1		Dim.2		Dim.3
方向	+	-	+	-	-
演算	MFCC_1st,	entropy_log	Shimmer	IMF	VFER
法	2 nd ,3 rd	_1,3	->Ampl	DFA	
	VFER	Jitter	prc25		
		->F0/pitch			
說明	信號能量	小波波段1、	低音量振	信號噪音	信號噪音比
	的穩定性、	3波動、	幅偏離	比	
	信號噪音	 聲帶振動頻			
	比	率偏離			
		一			
意義	波動	穩定性	噪音含量 低音量不穩定		 噪音含量(
	# #	穩定性			 聲帶閉合不
					全、咬合)
	週期性	生(音調)			± WH)
維度			幅立/設世明今てる\		噪音(聲帶
定義	能量、音調	問持續穩定性	噪音(聲帶閉合不全) 		閉合、咬合
7632			低音量	不穩定	問題)

預測錯誤率

*不合格聲音的特徵:

1. 能量、音調不穩定 2. 高比例的噪音 3. 難以維持低音量

預測錯誤率

19/22

20/22

Dim.1

能量、音調 持續穩定

噪音(聲帶)、 低音量波動

Dim.2

不合格

不合格

噪音(聲帶、 咬合)異常多

66

Conclusion

- ▷1. 預測錯誤率
 - **⊳ SVM**
 - ▷錯誤率9%
- ▷ 2. 聲音不合格的原因 -> 未來治療的調整方向
 - ▷能量、音調不穩定
 - ▷ 噪音(聲帶)多、低音量不穩定
 - ▷噪音(聲帶、咬合)異常多
- ▷ 3. 易誤判的聲音 -> 專家判斷
 - ▷能量、音調穩定性偏低 -> 預測不合格
 - ▷噪音(聲帶)不多、低音量較穩定 -> 預測合格

Reference

部落格-語言、障礙、神經疾病

2015年7月18日 星期六

LSVT LOUD:一個針對帕金森氏症的言語障礙療程

http://chenyuwen512.blogspot.tw/2015/07/lsvt-loud.html

Objective automatic assessment of rehabilitative speech treatment in Parkinson's disease

Athanasios Tsanas, Max A. Little, Cynthia Fox, Lorraine O. Ramig, "Objective automatic assessment of rehabilitative speech treatment in Parkinson's disease", TNSRE-2013-00129.R1, pp. 1-6.

https://people.maths.ox.ac.uk/tsanas/Preprints/TNSRE2013.pdf

Accurate telemonitoring of Parkinson's disease-symptom severity using nonlinear speech signal processing and statistical machine learning

Athanasios Tsanas, Dr. M.A. Little and Dr. P.E. McSharry, "Accurate telemonitoring of Parkinson's disease-symptom severity using nonlinear speech signal processing and statistical machine learning", Summary of thesis for the degree of Doctor of Philosophy, University of Oxford, St. Cross College, pp. 56-95.

https://people.maths.ox.ac.uk/tsanas/Preprints/DPhil%20thesis.pdf