COL351 Assignment 1

Mallika Prabhakar, 2019CS50440 Sayam Sethi, 2019CS10399

August 2021

Contents

1	Question 1
	1.a Unique MST
	1.b one point two
2	Question 2
	2.a two point one
	2.b two point two
3	Question 3
	3.a three point one
	3.b three point one

1 Question 1

Let G be an edge-weighted graph with n vertices and m edges satisfying the condition that all the edge weights in G are distinct.

1.a Unique MST

Question 1.a

Question. Prove that G has a unique MST.

Proof. We will prove this by induction on the size of G using an idea similar to Kruskal's algorithm discussed in the class.

Hypothesis:

$$h(n): \forall G = (V, E): |V| = n \implies MST(G) \text{ is unique}$$
 (1)

Base case: n=1 is true since there is no edge and $MST(G)=(V,\phi)$ is unique.

```
Induction Step: Assume h(n-1) is true for n \ge 2, now for h(n): (Note: This proof assumes each edge to be an unordered pair of vertices)
```

Consider Kruskal's algorithm,

Algorithm 1 Recursive MST Routine – Kruskal's algorithm

```
1: e_0 \leftarrow (x, y) be edge with least weight
 2: H \leftarrow G
 3: remove x, y from H and add new vertex z
 4: for all v such that v is neighbour of x or y do
        add (v,z) to H
 5:
        wt(v,z) \leftarrow \min(wt(v,x), wt(v,y))
 6:
        if wt(v,x) < wt(v,y) then
 7:
            map(v,z) \leftarrow (v,x)
 8:
        else
 9:
            map(v,z) \leftarrow (v,y)
10:
        end if
11:
12: end for
13: T_H \leftarrow MST(H)
14: T_G \leftarrow (V, \{e_0\})
15: for all e \in T_H do
        if e is not incident on z then
16:
            add e to T_G
17:
        else
18:
            add map(e) to T_G
19:
        end if
20:
21: end for
```

In the above algorithm, it is clear that H has n-1 vertices. Thus, by our assumption, h(n-1) is true and hence T_H is unique. Also, we know that T_G is a valid MST, from the correctness of Kruskal's algorithm. Now, assume by contradiction that T_G is not unique. Then there exists an MST, say $T' \neq T_G$.

Claim 1.1. e_0 cannot be in T'

This is because, if e_0 were in T', then $T \setminus \{e_0\} \neq T' \setminus \{e_0\}$ and thus, there would be two different MSTs for H which would be a contradiction to our assumption. Thus, $e_0 \notin T'$.

Consider the path from x to y in T'. Since $e_0 = (x, y)$ is not present in T', there exists a different path, say $P = (f_1, f_2 \cdots, f_k)$ where $f_i \in E(T'), 1 \le i \le k$. We know that $wt(f_i) > wt(e_0), 1 \le i \le k$.

Swap any of the f_i with e_0 and let the subgraph formed be T'', i.e., $T'' = T' \setminus \{f_i\} \cup \{e_0\}$. We know T'' is a spanning tree of G since V(T'') = V(G) and there are no cycles formed on performing the swap operation (this can be proven using contradiction as discussed

in the lecture).

Now, consider the weight of T'':

$$wt(T'') = wt(T') - wt(f_i) + wt(e_0)$$

$$\implies wt(T'') < wt(T')$$
(2)

We have shown that the total weight of T'' is lesser than the weight of T'. However, this is a contradiction to the fact that T' is the MST of G. Thus our assumption that T_G is not the unique MST of G was wrong. Therefore, h(n) is true.

This completes the induction and the proof that if all edges in a graph are distinct, then its MST is unique.

- 1.b one point two
- 2 Question 2
- 2.a two point one
- 2.b two point two
- 3 Question 3
- 3.a three point one
- 3.b three point one