

SZAKDOLGOZAT

S-gráf alapú várható profit maximalizálás sztochasztikus környezetben

Dunár Olivér

Mérnök Informatikus BSc szak

Nyilatkozat

Alulírott, Dunár Olivér (BOUE9E), Mérnök Informatikus BSc szakos hallgató kijelentem, hogy az S-gráf alapú várható profit maximalizálás sztochasztikus környezetben című szakdolgozat feladat kidolgozása a saját munkám, abban csak a megjelölt forrásokat, és a megjelölt mértékben használtam fel, az idézés szabályainak megfelelően, a hivatkozások pontos megjelölésével.

Eredményeim saját munkán, számításokon, kutatáson, valós méréseken alapulnak, és a legjobb tudásom szerint hitelesek.

Győr, [beadás dátuma]	
	hallgató

Kivonat

S-gráf alapú várható profit maximalizálás sztochasztikus környezetben

[1 oldalas, magyar nyelvű tartalmi kivonat]

Abstract

S-graph based expected profit maximization in stochastic environment [1 oldalas, angol nyelvű kivonat]

Tartalomjegyzék

1.	Beve	ezetés	1
2.	Irod	almi áttekintés	2
	2.1.	Szakaszos gyártórendszerek ütemezése	2
	2.2.	Megoldó módszerek	2
	2.3.	Sztochasztikus ütemezés	2
	2.4.	Az ütemtervek vizualizációja	2
3.	Az S	5-gráf modell	3
	3.1.	Profit maximalizálás S-gráffal	3
4.	Prob	olémadefiníció	4
	4.1.	A probléma csoportosítása	4
	4.2.	A probléma paraméterei	5
5.	Az S	S-gráf keretrendszer	8
	5.1.	A solver felépítése	8
	5.2.	Az általános throughput maximalizáló	8
6.	A pr	robléma megvalósítása	9
	6.1.	A felhasznált módszerek	9
		6.1.1. Preventív ütemezés fix batch mérettel	9
		6.1.2. Preventív ütemezés változó batch mérettel	10
		6.1.3 Two stage (két léncsős ütemezés)	11

		6.1.4.	Következtetés	12
	6.2.	A Brok	xenLine osztály	12
		6.2.1.	Koordináta pár hozzáadása	14
		6.2.2.	Kezdeti-, és vég meredekség kiszámítása	15
		6.2.3.	A függvény skalár értékkel való szorzása	16
		6.2.4.	A függvény <i>x</i> helyen vett értékének lekérdezése	16
		6.2.5.	Két függvény összeadása	16
		6.2.6.	A függvény horizontális nyújtása	17
		6.2.7.	A függvény maximális értékéhez tartozó koordináták lekérdezése	18
	6.3.	Az új p	paraméterek implementációja	18
		6.3.1.	Új kapcsoló definiálása	19
		6.3.2.	Új input fájl definiálása	19
		6.3.3.	A fájl beolvasása, beolvasott paraméterek tárolása	19
	6.4.	Szüksé	ges változtatások az S-gráf keretrendszerben	20
		6.4.1.	A meglévő kód refaktorálása	21
		6.4.2.	A GetRevenue metódus	21
		6.4.3.	A GetProductRevenue metódus	23
		6.4.4.	A ThroughputUI osztály kiegészítése	24
	6.5.	Multip	roduct receptek esete	28
7.	Tesz	teredmo	ények	29
	7.1.	A teszt	elés menete	29
	7.2.	Alapes	etek tesztelése (1:1)	29
	7.3.	Multip	roduct receptek tesztelése	29
8.	Össz	zefoglalá	ás	30
Iro	odaloi	mjegyzé	ik	31
- \		J-8/		
A.	Jelm	nagyará	zat	32
B.	Inpu	ıt fájlok		33

C. CD melléklet tartalma

36

Bevezetés

Irodalmi áttekintés

- 2.1. Szakaszos gyártórendszerek ütemezése
- 2.2. Megoldó módszerek
- 2.3. Sztochasztikus ütemezés
- 2.4. Az ütemtervek vizualizációja

Az S-gráf modell

3.1. Profit maximalizálás S-gráffal

Problémadefiníció

A probléma lényege abban keresendő, hogy a korábban kidolgozott általános throughput maximalizáló algoritmus [1] valódi ipari környezetben nem minden esetben állja meg a helyét, ugyanis sok esetben a probléma megoldásához használt paraméterek nem determinisztikusak. Változó piaci környezetben ilyen sztochasztikus paraméternek számítanak például a termék iránti kereslet, illetve a piaci ár, amin a terméket értékesíteni lehet. Belátható az is, hogy ezek a paraméterek sokban befolyásolják a maximalizálandó profitot. Vegyünk például egy olyan esetet, amelyben a keresletnél többet termeltünk, ez esetben a keletkező többletet nem tudjuk értékesíteni, ez akár további kiadásokkal is járhat a többlet termék esetleges tárolási költsége miatt. Szakdolgozatom célja a 6.1 pontban bemutatott, Hegyháti által kidolgozott [1] matematikai módszerek segítségével az S-gráf keretrendszer felkészítése a különböző sztochasztikus paraméterek kezelésére, oly módon, hogy az általános throughput maximalizáló algoritmus sértetlen maradjon, a probléma típusától függően kompatibilis használat lehetséges legyen.

4.1. A probléma csoportosítása

A megoldandó problémák a sztochasztikus esetben is az általános throughput maximalizálásnál használt paraméterekkel adottak, pl.: minden terméket a receptje azonosít be, ezen kívül adott a termékek előállítására használható berendezések halmaza, illetve a termelésre rendelkezésre álló időhorizont. Az általános paramétereken kívül azonban sztochasztikus esetben különböző bizonytalan paraméterek is adottak minden termékre, amelyek valószínűségeit különböző sce-

nariokba, forgatókönyvekbe csoportosítjuk. Ezáltal minden forgatókönyvre adott:

- A forgatókönyv valószínűsége
- A termék ára (1 batch ára)
- A termék iránti kereslet
- A túltermelés, az alul termelés költsége

A feladat az, hogy döntést hozzunk a termelt batch-ek darabszámát illetően, miközben egy olyan kivitelezhető ütemtervet biztosítunk, amelyet követve maximális várható profitot érhetünk el. A batch méretekkel kapcsolatos döntések alapján 3 eset különböztethető meg:

- Preventív ütemezés fix batch mérettel Ebben az esetben minden termékhez adott egy batch méret, az egyetlen preventív döntés amit hoznunk kell, hogy hány darab batch-et gyártunk az adott termékből.
- Preventív ütemezés változó batch mérettel Ebben az esetben nem csak a batch darabszám ,de annak a mérete is kiválasztható, de csak preventív módon a bizonytalan események bekövetkezése előtt.
- Two stage (kép lépcsős ütemezés) Ebben az esetben a batch darabszámot előre ki kell választanunk, azonban annak a méretéről a bizonytalan események bekövetkezése után is döntést hozhatunk.

Kezdetben feltételezzük, hogy a receptek és a termékek között 1:1 reláció van, azaz egy recept sem eredményez több terméket, illetve egyetlen termék sem állítható elő több fajta recepttel. A 6.5 pontban azonban kitérek azokra az esetekre, amelyekben ez a feltételezés nem állja meg a helyét.

4.2. A probléma paraméterei

A 4.1 pontban bevezetett sztochasztikus esetek kezeléséhez az általános throughput maximalizáló algoritmus jelentős része felhasználható változtatások nélkül (vagy csak minimális

változtatások árán, lsd. 6.4 pont). Az egyetlen meghatározó különbség az un. "revenue" függvényben figyelhető meg, amely célja, hogy az adott konfigurációra nézve kiszámítsa a várható profitot. A porbléma megoldása során használt paraméterek:

P a termékek halmaza

b_p a legyártott batch-ek darabszáma az adott konfigurációban

 s_p a termék batch mérete (fix batch méret esetén)

 s_p^{min}, s_p^{max} adott termékhez tartozó lehetséges legkisebb, legnagyobb batch méret (válzotó batch méret esetén)

S a forgatókönyvek halmaza

 $prob_s$ s forgatókönyv valószínűsége $s \in S$

 $dem_{s,p}$ p termék iránti kereslet az s forgatókönyvben $s \in S, p \in P$

 $price_{s,p}$ p termék ára az s forgatókönyvben $s \in S, p \in P$

 $oc_{s,p}, uc_{s,p}$ p termék túl-, és alul termelési költsége s forgatókönyvben $s \in S, p \in P$

Ezenkívül adott még a $Profit_{s,p}(x)$ jelölés, amely megadja x mennyiségű p termék bevételét az adott s forgatókönyvben:

$$Profit_{s,p}(x) = \begin{cases} price_{s,p} \cdot x - (dem_{s,p} - x) \cdot uc_{s,p} & \text{ha } x < dem_{s,p} \\ price_{s,p} \cdot dem_{s,p} - (x - dem_{s,p}) \cdot oc_{s,p} & \text{egy\'ebk\'ent} \end{cases}$$

Nyilvánvalóan adott termék bevétele akkor lesz maximális, ha a kereslettel egyező darabszámot gyártunk az adott termékből (zöld pont a 4.1 ábrán), ha ennél kevesebbet gyártunk a termékből, akkor a kereslet kielégítéséből eredő profit is elmarad, illetve további többlet költség kerül levonásra a profit összegéből az esetleges alul termelési plusz költségek miatt (pl. sárga pont a 4.1 ábrán), abban az esetben pedig, ha a keresletet meghaladó mennyiséget gyártunk adott termékből, a kereslet kielégítődik ugyan, és bevételünk maximális lenne az adott piaci keresletet figyelembe véve, azonban a túltermelés következtében létrejött többlet tárolási költségét

4.1. ábra. A profit függvény szemléltetése a következő paraméterekkel:

$$s_p = 1$$
, $dem_{s,p} = 3$, $oc_{s,p} = 1$, $uc_{s,p} = 1$

le kell vonjuk a profit értékéből (pl. piros pont a 4.1 ábrán). Arra kell törekedni tehát, hogy a lehetőségeket mérlegelve minden termékből annyit gyártsunk, hogy az az adott forgatókönyvben szereplő keresletet kielégítse, vagy azt a legkedvezőbb módon megközelítse valamelyik irányból, ügyelve az alul-, és túltermelési költségekre. Extrém esetekben előállhat olyan helyzet is, hogy a rendelkezésre álló determinisztikus paraméterek (pl. gépek száma), az aktuális időhorizont, illetve a sztochasztikus paraméterek aktuális értéke miatt a profit függvény x-ben felvett értéke negatív szám lesz, ez esetben inkább a veszteségek minimalizálásáról beszélhetünk, mintsem profit maximalizálásról, azonban könnyen belátható, hogy a definiált matematikai modellekben amelyeket használunk a profit kiszámítására, ez semmiféle változást nem eredményez, csupán arra kell figyelni, hogy az implementáció során felkészüljünk a negatív számok a programnyelvben történő kezelésére.

Az S-gráf keretrendszer

- 5.1. A solver felépítése
- 5.2. Az általános throughput maximalizáló

A probléma megvalósítása

6.1. A felhasznált módszerek

A probléma megoldására a következő, Hegyháti által kidolgozott [1] módszerek adottak. Feladatom ezen módszerek tanulmányozása, és megértése után, ezek implementációja volt az Sgráf keretrendszerben.

6.1.1. Preventív ütemezés fix batch mérettel

Ebben az esetben az egyetlen döntés, amit meg kell hozni, hogy az egyes termékekből hány darab batch-et gyártsunk, a várható profit a következőképpen számítható ki:

$$\sum_{p \in P} \left(\sum_{s \in S} prob_s \cdot profit_{s,p} (s_p \cdot b_p) \right)$$

Érdemes még bevezetni adott *p* termék *x* értékben vett várható profit értékére a következő jelölést:

$$ExpProfit_p(x) = \sum_{s \in S} prob_s \cdot profit_{s,p}(x)$$

 $ExpProfit_p(x)$ kiszámításához tehát nincs másra szükségünk, mint hogy az összes forgatókönyvre sorban felépítsünk az adott forgatókönyvre vonatkozó sztochasztikus paraméterekből a $profit_{s,p}$ függvényt, majd ezt a függvény beszorozzuk az aktuális $prob_s$ értékkel, amely lényegében a függvény "összenyomását" jelenti. Miután minden forgatókönyvre előállítottuk a 6.1 ábrához hasonlóan ezt az "összenyomott" profit függvényt, ezen függvények

összeadásával előáll az $ExpProfit_p$, ha ezt minden termékre megtesszük, az adott p termékek $ExpProfit_p(x)$ (ahol $x = s_p \cdot b_p$) értékének összegeként előáll a várható profit.

6.1. ábra. A profit függvény szorzásának szemléltetése

6.1.2. Preventív ütemezés változó batch mérettel

Az előző esettel ellentétben, változó batch méret esetén a batch darabszám nem határozza meg egyértelműen az adott termékből termelt mennyiséget. Ebben az esetben a batch méretről való döntés is a megoldó algoritmus feladata úgy, hogy p termék batch mérete s_p^{min} és s_p^{max} között legyen. Mivel ezt a döntést előre meg kell hozni, ezért minden forgatókönyvben azonos méretű lesz minden p termékhez tartozó batch. Ezután, már csak arról kell döntést hozni, hogy adott termékből mennyit gyártsunk, ez az x_p érték a következő intervallumból kerül kiválasztásra: $[s_p^{min} \cdot b_p, s_p^{max} \cdot b_p]$. Az ExpProfit függvény maximális értékét az egyik keresleti értékben veszi

6.2. ábra. Az optimális x_p érték kiválasztásának szemléltetése

fel, legyen ez $dem_{s'}$. Az optimális x_p érték kiválasztása a következőképpen tehető meg:

$$x_p(b_p) = \begin{cases} b_p \cdot s_p^{max} & \text{ha } b_p \cdot s_p^{max} < dem_{s'} \\ dem_{s'} & \text{ha } b_p \cdot s_p^{min} \le dem_{s'} \le b_p \cdot s_p^{max} \\ b_p \cdot s_p^{min} & \text{ha } b_p \cdot s_p^{min} > dem_{s'} \end{cases}$$

A 6.2 ábra szemlélteti a fentieket. Látható, hogy ez esetben a $dem_{s'}$ érték beleesik a $[s_p^{min} \cdot b_p, s_p^{max} \cdot b_p]$ tartományba, ezért itt $x_p = 3$ lenne az optimális választás.

6.1.3. Two stage (két lépcsős ütemezés)

Ebben az esetben p termék gyártandó mennyiségét illető döntés egy bizonytalan esemény bekövetkezése után is meghozható, például, ha egy forgatókönyv már bekövetkezett. Éppen ezért a termék mennyisége az adott forgatókönyvtől függ, legyen ez: $x_{s,p}$. E mennyiség

kiválasztása a következőképpen zajlik:

$$x_{s,p}(b_p) = egin{cases} b_p \cdot s_p^{max} & \operatorname{ha} b_p \cdot s_p^{max} < dem_s \ \\ dem_s & \operatorname{ha} b_p \cdot s_p^{min} \leq dem_s \leq b_p \cdot s_p^{max} \ \\ b_p \cdot s_p^{min} & \operatorname{ha} b_p \cdot s_p^{min} > dem_s \end{cases}$$

Látható, hogy a képlet hasonló a 6.1.2 pontban bemutatott képlethez, azonban míg ott az ExpProfit függvényből kerül kiválasztásra az optimális x_p mennyiség (azaz, minden forgatókönyv esetén ez az érték ugyan annyi lesz), addig a két lépcsős ütemezés esetén minden egyes forgatókönyv Profit függvényéből egyenként kerül kiválasztásra az optimális mennyiség. Ezzel megoldható az, hogy egy bizonyos forgatókönyv bekövetkezése után annak elvárásaihoz igazítsuk a termelt batch-ek méretét, jobb várható profitot elérve ezzel a legtöbb esetben. A várható profit két lépcsős ütemezés esetén a következőképpen számítható ki:

$$\sum_{p \in P} \left(\sum_{s \in S} (prob_s \cdot Profit(x_{s,p}(b_p))) \right)$$

6.1.4. Következtetés

Az előzőekben bemutatott módszerek ismerete arra enged következtetni, hogy a probléma megoldásához elengedhetetlen az S-gráf keretrendszerben egy olyan osztály definiálása, amely képes folytonos, szakaszos, lineáris függvények modellezésére, tárolására, azokon történő műveletek végrehajtására. Ezen osztály részletes leírása a 6.2 pontban olvasható.

6.2. A BrokenLine osztály

Ahogy az már korábban, a 6.1.4 pontban említésre került, a probléma implementációjához elengedhetetlen egy olyan osztály definiálása, amely kezelni képes folytonos, szakaszos, lineáris függvényeket. Erre hivatott az általam megalkotott **BrokenLine** osztály, amelynek forráskódja **brokenline.h**, illetve **brokenline.cpp** fájlokban található a solver **src\base** mappájában. Az általunk használt függvények tárolásához elegendő, ha kezdetben három pont koordinátái adottak, hiszen ezek elhelyezkedéséből a többi pont koordinátái később, ha valami-

lyen okból kifolyólag ez szükségessé válik, könnyen kiszámíthatóak, hiszen folytonos, lineáris függvényekről beszélünk. Ez a három pont a $profit_{s,p}$ függvények esetében nem más, mint:

- $Profit_{s,p}(x)$, ahol $x = dem_{s,p} 1$
- $Profit_{s,p}(x)$, ahol $x = dem_{s,p}$
- $Profit_{s,p}(x)$, ahol $x = dem_{s,p} + 1$

E három pont koordinátái minden esetben kiszámíthatók, minden forgatókönyv-termék párosra már az input fájl beolvasását követően, hiszen minden sztochasztikus paraméter adott ehhez a fájlban. Az ehhez szükséges képlet a 6.1.2 pont szerint:

$$Profit_{s,p}(x) = \begin{cases} price_{s,p} \cdot x - (dem_{s,p} - x) \cdot uc_{s,p} & \text{ha } x < dem_{s,p} \\ price_{s,p} \cdot dem_{s,p} - (x - dem_{s,p}) \cdot oc_{s,p} & \text{egy\'ebk\'ent} \end{cases}$$

Miután ennek a három pontnak a pontos koordinátái beazonosításra kerültek, már csak annyit kell tenni, hogy kiszámítunk két arány számot, amelyek a függvény kezdeti-, és vég meredekségét hivatottak letárolni. Ezen paraméterek ismeretében később a függvény bármely *x* pontjában felvett értéke számítható lesz. Ezek alapján a **BrokenLine** osztály adattagjai a következőek:

```
class BrokenLine{
private:
    std::vector <Coordinate> coordinates;
    double angle_begin;
    double angle_end;
```

6.3. ábra. A *BrokenLine* osztály adattagjai

A 6.3 ábrán látható **Coordinate** osztály a függvények pontjainak *x* és *y* koordinátáinak egyszerű tárolására, lekérdezésére, és összehasonlítására szolgál a megvalósított *setter*, *getter* és felültöltött egyenlőség operátorral.

Ahhoz, hogy a **BrokenLine** osztállyal a matematikai modellek minden szükséges művelete elvégezhető legyen, a következő funkcionalitást kell megvalósítani az osztálynak:

- Koordináta pár hozzáadása
- Koordináta párok rendezése x szerint növekvő sorrendbe
- Kezdeti-, és vég meredekség kiszámítása
- A függvény skalár értékkel való szorzása
- A függvény x helyen vett értékének lekérdezése
- Két függvény összeadása
- A függvény horizontális nyújtása (a 6.5 pontban tárgyalt esetekhez)
- A függvény maximális értékéhez tartozó koordináták lekérdezése

6.2.1. Koordináta pár hozzáadása

Egy új koordináta pár hozzáadásat végző metódus az **addCoordinate(const Coordinate& c)**. Egy új koordináta pár hozzáadása esetén először is meg kell győződnünk, hogy adott koordináta pár szerepel-e már a koordináták tárolására szolgáló vectorban, hiszen ha már szerepel, nem adhatjuk hozzá újra. Ha nem szerepel még ilyen koordináta pár, hozzáadjuk, majd rendezzük a vectort *x* szerint növekvő sorrendbe. Ha ez megtörtént, meg kell vizsgálni, hogy a kezdeti-, és vég meredekségeket frissíteni kell-e. Abban az esetben, ha a most hozzáadott koordináta pár szerepel a rendezett vector első, vagy második helyén, a kezdeti meredekséget frissíteni kell. Hasonlóan, ha az új koordináta pár a vector utolsó, vagy utolsó előtti eleme, a vég meredekség frissítésre szorul. Mivel kezdetben akár mindkét feltétel igaz lehet, ezért ezek teljesülését két külön *bool* változóban kell tárolni. Miután megállapításra került, hogy melyik meredekségeket kell frissíteni, meghívásra kerül az ezeket kiszámító függvény.

6.2.2. Kezdeti-, és vég meredekség kiszámítása

A kezdeti-, és vég meredekség kiszámítására és frissítésére hivatott metódus a **calculateAng-**le(bool begin,bool end), melynek két paramétere a 6.2.1 pontban említett két *bool* változó, amelyek megadják, hogy kell e frissíteni adott meredekségeket. A meredekségek kiszámítása roppant egyszerű a koordináták ismeretében:

$$Angle_{begin} = (y_{second} - y_{first}) / (x_{second} - x_{first})$$

$$Angle_{end} = (y_{penultimate} - y_{last}) / (x_{last} - x_{penultimate})$$

A 6.4 ábrán látható három pont koordinátái alapján a meredekségek például a következőképpen alakulnak:

$$Angle_{begin} = (4-3)/(3-2)$$
, azaz $Angle_{begin} = 1$

$$Angle_{end} = (4-2)/(6-3)$$
, azaz $Angle_{end} = 2/3$

6.4. ábra. Példa a meredekségek kiszámítására

Ha egyik meredekség sem szorul frissítésre, a metódus semmiféle változtatást nem tesz.

6.2.3. A függvény skalár értékkel való szorzása

A függvény skalárral való szorzását a **multiplyByScalar(double s)** metódus végzi. Ahhoz, hogy megkapjuk a függvény skalárral való szorzatát, csupán be kell szorozni a vectorban tárolt összes pont y koordinátáját, valamint a kezdeti-, és vég meredekséget a paraméterként kapott *s*-el. A függvény szorzását szemléltető példa a 6.1 ábrán látható.

6.2.4. A függvény x helyen vett értékének lekérdezése

A függvény x helyen vett értékének lekérdezésére a **getValue**(**double x**) metódus hivatott. A metódus először is megnézi, hogy a vectorban tárolt koordináta párok között található-e olyan, amelynek x koordinátája egyezik a paraméterként kapott x-el. Ha talál ilyet, egyszerűen visszaadja a megfelelő koordináta párost tartalmazó **Coordinate** objektumot. Ha nem található ilyen pont, akkor annak ki kell számítani a koordinátáit, és hozzá kell adni a vectorhoz, majd csak ezután lehet visszaadni a keresett **Coordinate** objektumot. Az x értékhez tartozó y érték kiszámítása a keresett x értéke és a vectorban tárolt pontok alapján háromféleképpen történhet:

- Ha a keresett x értéke kisebb mint a vectorban tárolt első pont x koordinátájának értéke, akkor: $y = y_{First} (x_{First} x) \cdot Angle_{begin}$, ahol x_{First} és y_{First} a vectorban tárolt első pont koordinátái.
- Ha a keresett x érték két a vectorban tárolt pont x koordinátájának értéke közé esik, akkor: $y = \left((x x_{LastSmaller}) \cdot \left((y_{FirstBigger} y_{LastSmaller}) / (x_{FirstBigger} x_{LastSmaller}) \right) + y_{LastSmaller}$, ahol $x_{LastSmaller}$ és $y_{LastSmaller}$ a keresett x értéket megelőző pont koordinátái, míg $x_{FirstBigger}$ és $y_{FirstBigger}$ a keresett x értéket követő pont koordinátái.
- Ha a keresett x értéke nagyobb, mint a vectorban tárolt utolsó pont x koordinátájának értéke, akkor: $y = y_{Last} (x x_{Last}) \cdot Angle_{end}$, ahol x_{Last} és y_{Last} a vectorban tárolt utolsó pont koordinátái.

6.2.5. Két függvény összeadása

Két függvény összeadását az **addBrokenLine**(**BrokenLine b**) metódus végzi, melynek visszatérési értéke az összegként kapott függvényt tároló új **BrokenLine** objektum. Mivel a

függvények tárolásához elegendő három pont tárolása, ezért gyakran előfordul olyan eset, hogy a két összeadni kívánt **BrokenLine** objektum nem tartalmazza a szükséges koordinátákat, ezért a hiányzó koordináta párokat először hozzá kell adni, ezt azonban megkönnyíti a 6.2.4 pontban bemutatott **getValue** metódus, hiszen elég, ha lekérdezzük az aktuális x értékét mindkét függvény esetén, és ha az valamelyiknél nem található, automatikusan hozzá lesz adva annak pontjaihoz. Ennek következtében a két függvény összeadása már jóval egyszerűbb feladat, egyetlen *for* ciklussal megtehető.

```
BrokenLine BrokenLine::addBrokenLine(BrokenLine b){
    BrokenLine c = BrokenLine();
    std::vector<Coordinate> coordinates_b=b.getCoordinates();
    for(int i=0;i<coordinates_b.size();i++){
        this->getValue(coordinates_b.at(i).getX());
    }

std::vector<Coordinate> coordinates_a=this->getCoordinates();
    for(int i=0;i<coordinates_a.size();i++){
        Coordinate current = Coordinate();
        current.setX(coordinates_a.at(i).getX());
        current.setY(coordinates_a.at(i).getY()+b.getValue(current.getX()).getY());
        c.addCoordinate(current);
    }
    return c;
}</pre>
```

6.5. ábra. Az AddBrokenLine metódus

6.2.6. A függvény horizontális nyújtása

A függvény a 6.5 pontban használt, a 6.6 ábrán bemutatott horizontális nyújtását (illetve összenyomását, s értéktől függően) a **stretchHorizontally(double s)** metódus végzi. A metódus egyszerűen egy *for* ciklus segítségével a függvény összes pontjának *x* koordinátáját, valamint a kezdeti-, és vég meredekséget beszorozza a paraméterként kapott *s* értékkel, illetve a meredekségek esetén annak reciprokával.

6.6. ábra. Példa a függvény horizontális nyújtására s = 0.5 értékkel

6.2.7. A függvény maximális értékéhez tartozó koordináták lekérdezése

A függvény maximumának lekérdezését a **getMaximum**() metódus végzi, mely egy egyszerű maximum keresést valósít meg y koordinátára nézve. A metódusnak a 6.1.2 pontban bemutatott változó batch méretű esetben van nagy jelentősége, ezt használjuk ugyanis $dem_{s'}$ meghatározására.

6.3. Az új paraméterek implementációja

Ahhoz, hogy az általános throughput maximalizáló használható legyen a 4.2 pontban bemutatott új sztochasztikus paraméterekkel, fel kell készíteni a megfelelő osztályokat ezen paraméterek kezelésére, be kell olvasni először is ezeket a paramétereket egy input fájlból, majd valamilyen formában le is kell őket tárolni, hogy később a 6.1 pontban bemutatott műveletek végrehajthatóak legyenek a várható profit kiszámítására.

6.3.1. Új kapcsoló definiálása

Mivel a sztochasztikus throughput maximalizáló működhet preventív, illetve két lépcsős módon, ezért szükségessé vált egy új parancssori kapcsoló bevezetése:

--stages [single/twostage] : specifies the number of stages in case of stochastic throughput maximization, variable batch size input needed for Two-stage to work (default: single)

6.7. ábra. Az új kapcsoló leírása a readme fájlban

Abban az esetben, ha nem adjuk meg a kapcsoló értékét, vagy azt single-re állítjuk, preventív módban fog futni az ütemező, ha twostage-t állítunk be, két lépcsős ütemezés fog lefutni, feltéve, hogy a bemeneti fájlban változó batch méretű adatokat adtunk meg.

6.3.2. Új input fájl definiálása

Az általam definiált új input fájl a **stochastic.ods** a solver **input** mappájában található. A fájl lényegében a **multipurpose.ods** kibővítése a sztochasztikus paraméterekkel, éppen ezért az utóbbi **equipment**, és **proctime** tábláit változtatás nélkül tartalmazza, hiszen ezek tartalmazzák a gépekre, illetve a recept gráfra vonatkozó determinisztikus paramétereket, amelyeket az új esetekben is fel kell használnia a megoldó algoritmusnak. Ezzel szemben a **product** tábla a sztochasztikus esetekben nem fogja megállni a helyét, hiszen a batch méretekre vonatkozó adatok hiányoznak belőle, ezeket hozzá kell adni a product táblához. Ezenkívül a forgatókönyvek adatait is tárolnunk kell, ezért bevezetésre kerültek a **scenario**, és a **scenario_data** táblázatok, melyek a 4.2 pontban leírt, forgatókönyvekre vonatkozó sztochasztikus adatokat tartalmazzák. A példa input fájlok megtekinthetőek a **B** függelékben.

6.3.3. A fájl beolvasása, beolvasott paraméterek tárolása

Az input fájl beolvasását a **RelationalProblemReader** osztály végzi, melynek feladata a fájlban található paraméterek alapján a recept gráf felépítése, annak visszaadása a **MainSolver** osztály számára. A RelationalProblemReader először is meggyőződik az input fájl típusáról, majd az alapján sorban beolvassa a megfelelő mezőket az input fájlból. Éppen azért szükséges egy

metódus definiálása, mely képes a sztochasztikus típusú input fájlt megkülönböztetni a többi fajtától. Ez a metódus az IsStochastic(), illetve a 6.5 pontban használt extended input fájl esetén az **IsExtendedStochastic()**. Miután meggyőződtünk a fájl sztochasztikus mivoltáról, meghívásra kerül a **ReadStochastic()** metódus, amely beolvassa, majd eltárolja az **equipment**, product, scenario, scenario_data, proctime táblák paramétereit a recept gráfot reprezentáló **SGraph** objektum **Recipe** objektumában. Nyilvánvalóan ahhoz, hogy az új sztochasztikus paramétereket le lehessen tárolni, a **Recipe**, és az **SGraph** osztályokban szükséges volt létrehozni a megfelelő adattagokat, azok eléréséhez szükséges metódusokat. A termékek batch méretére vonatkozó új paraméterek kezelésére a **Product** osztály kiegészítésre került egy batch_size, batch_size_min, batch_size_max adattagokkal, valamint ide kerülnek letárolásra a scenario_data tábla adatai is, az erre definiált ScenarioDataEntry objektumokból álló vectorba. A ScenarioDataEntry osztály tartalmazza a scenario_data táblázatban egy sorában található adatokat, például az adott forgatókönyv azonosítóját, a termék iránti keresletet az adott forgatókönyvben, valamint itt tároljuk le a sztochasztikus paraméterek alapján a 6.2 pontban bemutatott módon létrehozott **BrokenLine** objektumot, amely a $Profit_{s,p}$ függvényt reprezentálja. A fent említett műveleteket, a szükséges objektumok létrehozását a RelationalProblemReader osztály ParseScenarioData metódusa végzi el. Ezenkívül bevezetésre került még három boolean változó a **Recipe** osztályba, amelyek flag-ként szolgálnak, hogy a throughput maximalizáló könnyen, csupán a **Recipe** objektum segítségével meg tudja különböztetni a fix-, változó batch méretű, és a two stage eseteket.

6.4. Szükséges változtatások az S-gráf keretrendszerben

A sztochasztikus paraméterek letárolása után nincs más hátra, mint felkészíteni a throughput maximalizálást végző **ThroughputSolver** osztályt ezek kezelésére. Azonban ahhoz, hogy egységesen használható legyen az osztály általános, illetve sztochasztikus esetben is, némi refaktorálásra van szükség, ugyanis jelen állapotában a **ThroughputSolver** osztályban találhatóak olyan megoldások, melyek megkövetelik, hogy a profit egyszerűen a $b_p \cdot price_p$ képlettel megkapható legyen, azonban ez a sztochasztikus esetben korántsem ilyen egyszerű.

6.4.1. A meglévő kód refaktorálása

A Throughputsolver osztály jelenlegi állapotában, általános esetben kétféleképpen számítja ki a profitot, egyrészt az **SGraph** osztály **GetRevenue**() metódusát használva, másrészt az egyes termékek adatait az SGraph osztály Recipe objektumában letárolt Product objektumoktól közvetlenül lekérdezve, majd azokat a fent említett $b_p \cdot price_p$ képlettel kiszámítva, és összegezve. Habár általános esetben ezek a módszerek megállják a helyüket, ezek jelen állapotban nem túl elegánsak, hiszen a GetRevenue() metódus lényegében ugyan azt a működést éri el, mint az utóbbi közvetlen elérés, és összegzés. A sztochasztikus esetek bevezetésével ráadásul az adatok közvetlenül a **Product** objektumoktól való elérése nem lesz működő módszer, ugyanis ezekben az esetekben a termék paraméterei, ahogy azt már korábban tárgyaltuk, forgatókönyv függőek. Éppen ezért a sztochasztikus esetekben használt GetRevenue() metódus a Recipe osztályban kell helyet kapjon, hogy a termék és a forgatókönyv adatok elérése egyaránt lehetséges legyen a metódus számára. Mivel a duplikált kódot jó lenne elkerülni, ezért célszerű lenne az általános-, és a sztochasztikus esetben használt **GetRevenue()** metódusok összevonása, mégpedig a Recipe osztályban, ennek az összevont metódusnak a részletes leírása a 6.4.2 pontban olvasható. Az összevont GetRevenue() metódus megalkotásának köszönhetően a Throughputsolver osztály immáron egységes módon kérdezheti le a várható profitot, a probléma milyenségéről való döntés, valamint a profit kiszámítása pedig a **Recipe** osztály feladata.

6.4.2. A GetRevenue metódus

A **GetRevenue**() metódus arra szolgál, hogy adott konfiguráció várható összbevételét kiszámítsa, majd visszaadja azt. A metódus először döntést hoz a probléma típusát illetően a recept objektumban tárolt *boolean* flag segítségével. Általános esetben a profit kiszámítása meglehetősen egyszerűen, a 6.8 ábrán látható módon megtehető.

```
double toRet = 0.;
uint prodNum = GetProductCount();
for(uint i = 0; i < prodNum; i++)
     toRet += GetProduct(i).GetBatches() * GetProduct(i).GetRevenue();
return toRet;</pre>
```

6.8. ábra. A GetRevenue() metódus lefutása általános esetben

Sztochasztikus esetben is a fenti ábrához hasonló a ciklus, azonban szükség van egy metódusra, amely x számú p termék profitját képes kiszámítani, ez a függvény a **GetProductRe**venue(uint product_id, uint batches). A metódus megvalósítása közben kiderült továbbá az is, hogy ezenkívül további változtatásokra is szükség van a solver bizonyos karakterisztikái miatt. A probléma akkor jelentkezik, ha egy adott termékből (legyen ennek neve a példa kedvéért "A") többet termelünk egy batch-nél, ebben az esetben nem az általam várt módon történik a konfiguráció adatainak tárolása. Ideális számomra az lenne, ha például a konfigurációban két darab "A" batch termelése esetén egy darab "A" termék jelenne meg, és ennek a batch száma 2 lenne. Azonban nem ez történik. A konfigurációban egy "A" és egy "A_2" nevű termék van jelen egyaránt 1 batch számmal. Erre az ütemterv elkészítéséhez van szükség, hogy egyértelműen beazonosíthatóak legyenek az egyes termékek, illetve azok részfolyamatai. Ez a fajta működés nyilván általános esetben nem okoz gondot, hiszen ott ekvivalens az, ha két ugyan olyan termékből gyártunk egy-egy darabot, vagy egy termékből kettőt, hiszen a profit értékek nem függenek egymástól, azonban sztochasztikus esetben az alul-, és túl termelési költségek miatt a két eset nem ekvivalens. Éppen ezért ezt a működést valamilyen formában orvosolni kell. Erre a problémára nyújt megoldást a Recipe osztály ReduceToBase() metódusa. A metódus működéséhez elengedhetetlen, hogy az inputfájlban specifikált termékek neveit elmentsük a **Recipe** osztály egy vectorába, a fájl beolvasásakor. Ezen *vector* terméknevei reprezentálják az úgynevezett "base product"-okat, azaz a kezdeti termékeket. Ennek a vectornak a birtokában a ReduceToBase() metódus képes az aktuális konfiguráció termékeinek nevét összevetni a kezdeti termékek nevekkel, visszavezetni a konfiguráció termékeit a kezdeti termékekre. A metódus egy map-el tér vissza, amely tartalmazza a kezdeti termékeknek megfeleltetett termékneveket és a hozzájuk tartozó mennyiségeket. Ha például a konfigurációban a fent említett "A" és "A_2"

termékek szerepelnek egy-egy batch-el, a metódus által visszaadott map tartalma "A" termék lesz kettő batch-el, ezzel kiküszöbölve az említett problémát.

A GetRevenue() metódusnak azonban egy másik, a sztochasztikus esetekkel kapcsolatos problémát is orvosolnia kell. Ez a probléma a úgynevezett "axial revenue", azaz a tengelyeken számított várható profit értékével kapcsolatos. Axial revenue-ról akkor beszélünk, ha az adott konfigurációban csupán egy fajta terméket gyártunk, a többi termékből (ha léteznek) ez esetben 0 darabot termelünk. Ez a sztochasztikus esetekben azért okoz problémát, mert a nem gyártott termékek esetleges alul termelési költségeit le kell vonni az összes profitból, így tehát hiába gyártunk csak egy terméket, a többi termék paraméteri is befolyásolják a várható profitot. Az alul termelésből eredendő költségek számítása alapvetően nem okozna problémát, hiszen csak ki kellene számolni adott termékek x = 0 helyen vett $ExpProfit_p(x)$ értékét, és összegezni a kapott értékeket. Mivel azonban ebben az esetben csak egy fajta terméket termelünk, ezért a konfigurációban csak a termelt termék adatai találhatóak meg, ezért a többi termék $ExpProfit_p(x)$ értékének számítása jelen helyzetben lehetetlen. Erre azonban megoldást nyújt, ha a korábban említett módon, az inputfájl beolvasását követően a RelationalProblemReader osztályban nem csak a kezdeti termékek neveit tároljuk el, hanem azok x = 0 helyen vett $ExpProfit_p(x)$ értékeit is (felhasználva a 6.4.3 pontban bemutatott GetProductRevenue metódust). Ezen értékek tudatában a nem termelt termékekből származó esetleges veszteség immáron levonható az várható profit értékéből, az axial revenue hibátlanul megkapható.

Ezen változtatások segítségével a **GetRevenue**() függvény ezentúl egységesen használható a **ThroughputSolver** osztály számára egy adott konfiguráció összprofitjának kiszámítására, függetlenül a probléma típusától.

6.4.3. A GetProductRevenue metódus

A **GetProductRevenue** metódus hivatott p termék x helyen vett várható profit értékének, azaz $ExpProfit_p(x)$ kiszámítására. Mivel a metódusnak kezelnie kell a különböző eseteket, ezért szerkezete a következőképpen alakul:

procedure GETPRODUCTREVENUE

if not stochastic then return non stochastic profit

if not variable batch size then return fixed batch size profit

if variable batch size and not two stage then return variable batch size profit

if variable batch size and two stage then return two stage profit

return 0

- Általános (nem sztochasztikus) esetben a számítás meglehetősen egyszerűen, a $price_p \cdot b_p$ képlettel elvégezhető.
- Fix batch méretű sztochasztikus esetben a várható profit számítása a 6.1.1 pontban bevezetett módon, az *ExpProfit(x)* képlet segítségével lehetséges.
- Változó batch méretű sztochasztikus esetben a várható profit számítása a 6.1.2 pontban leírtak alapján $x_p(b_p)$ meghatározásával, majd $ExpProfit(x_p)$ kiszámításával tehető meg.
- Két lépcsős ütemezés esetén a várható profit számítása a 6.1.3 pontban ismertetett módon $x_{s,p}(b_p)$ meghatározása után, a következő képlettel lehetséges:

$$\sum_{s \in S} (prob_s \cdot Profit(x_{s,p}(b_p)))$$

Ezen módszerek implementációját tartalmazza tehát a **GetProductRevenue** metódus, amely segítségével ezentúl adott termék profitja, függetlenül a probléma típusától egységesen megkapható.

6.4.4. A ThroughputUI osztály kiegészítése

A **ThroughputUI** osztály feladata a **ThroughputSolver** osztály által kiszámított eredmények megjelenítése a felhasználó számára. Általános (nem sztochasztikus) esetben a Throughput maximalizáló egy példa lefutását a 6.9 ábra szemlélteti.

```
ne input file is input.ods
ne output will be directed to: output.txt
thread(s) was requested.
First phase: finding axial solutions
!Time (s)!
                    Product
                                    |Count | Feas |
        0.11
                                  A I
                                           0:
                                                NO:
        0.11
                                  A I
                                           Ø
                                                NO!
        0.11
                                  AI
                                                 NO!
        0.11
                                  A I
                                           0:
                                                 NO!
        0.11
                                  A !
                                                 NO!
                                           0:
Best axial revenue: 2
Biggest possible configuration: (2,1)
Number of subproblems: 0
Second phase: non-axial feasibility tests
|Time (s)| Obj <= Upper |Gap (%)|All tests| Feasible | Inf nodes |Mem (MiB)|
        0.21
                  3.0 <=
                                            0.01
                                                                              01
                                                                                     2/
                                                                                                0:
                                                                                                           1.51
                                 3.01
Solution's objective value is: 3
Solution is optimal.
Total execution time: 0.179 s
```

6.9. ábra. Példa a *ThroughputUI* szerkezetére általános esetben

Nyilvánvaló, hogy a **ThroughputUI** osztály is kiegészítésre szorul a sztochasztikus esetek kezeléséhez a következőkkel:

- Optimális batch darabszámok és méretek minden termékre (fixed batch méret és változó batch méret esetén)
- Optimális batch darabszámok minden termékre, batch méretek minden termék forgatókönyv párosra (két lépcsős ütemezés esetén)
- Forgatókönyvek, és a hozzájuk tartozó valószínűségek
- A várható összprofit értéke forgatókönyvenként

Ezen adatok tárolását a **ThroughputSolver** osztály általam létrehozott metódusa a **SaveStochasticStatistics** végzi el felhasználva a **ThroughputSolver** osztály **Statistics** típusú objektumát, melynek feladata a futás közben a **ThroughputUI** osztály számára szükséges statisztikai adatok tárolása. A **SaveStochasticStatistics** metódus minden alkalommal lefut, mikor egy új konfiguráció kerül hozzáadásra a **NewSolution** metódus által. A sztochasztikus esetek lefutását a 6.10, és a 6.11 ábra szemlélteti.

```
Best axial revenue: 99
Biggest possible configuration: (2,1)
Number of subproblems: 0
Second phase: non-axial feasibility tests
|Time (s)| Obj <= Upper |Gap (%)|All tests| Feasible | Inf nodes |Mem (MiB)|
         0.1: 166.0 <= 166.0:
                                               0.01
                                                                  71
                                                                         5/
                                                                                   0:
                                                                                          2/
                                                                                                     0:
                                                                                                                 3.41
Solution's objective value is: 166
Solution is optimal.
Optimal batch amounts and batch sizes:
Product: A number of batches: 2 batch size: 8
Product: B number of batches: 1 batch size: 10
Expected revenues for each scenario:
Scenario: S1 probability: 50% expected revenue: 195
Scenario: S2 probability: 50% expected revenue: 137
Total execution time: 0.138 s
```

6.10. ábra. Példa a *ThroughputUI* szerkezetére fixed, és változó batch méret esetén

6.11. ábra. Példa a *ThroughputUI* szerkezetére két lépcsős ütemezés esetén

Mivel az S-Gráf keretrendszer throughput maximalizálója alapvetően többszálas működésre lett tervezve, ezért a **ThroughputSolver** osztály által használt **Statistics** osztály általam bevezetett új adattagjait, illetve azok *getter*, *setter* metódusait fel kell készíteni a párhuzamos

használatra. A C++ programnyelven történő párhuzamos programozás megértéséhez, a szükséges változtatások bevezetéséhez nagy segítségnek bizonyult Anthony A. Williams a témában íródott könyve. [2] A primitív adattagok esetében az **AtomicVariable**<**T**> osztályt használtam fel, melynek definíciója a solver *base* mappájában található **parallel.h** fájlban olvasható. Az osztály megvalósítja T típusú változó párhuzamos elérését, azon végzett műveletek biztonságos lekezelését **Lock** objektumok használatával. A bonyolultabb adatszerkezetek (például map-ek) párhuzamos elérését a **Statistics** osztály *getter*, *setter* metódusaiba implementált **Lock** objektumokkal oldottam meg. A **Statistics** osztály általam bevezetett adattagjai a 6.12 ábrán láthatóak.

```
AtomicVariable<br/>
AtomicVariable<br/>
AtomicVariable<br/>
stochastic;<br/>
map <string,map <string,double>> product_scenario_batchSize_map;<br/>
map <string,int> product_amount_map;<br/>
map <string,double> scenario_revenue_map;<br/>
map <string,double> scenario_probability_map;<br/>
mutable Lock product_scenario_batchSize_map_lock;<br/>
mutable Lock product_amount_map_lock;<br/>
mutable Lock scenario_revenue_map_lock;<br/>
mutable Lock scenario_probability_map_lock;<br/>
mutable Lock scenario_probability_map_lock;
```

Mivel a *map* típusú adattagok *getter* metódusai konstans metódusok, ezzel szemben a solverben definiált **Lock** osztály **Set**, és **Unset** metódusai nyilvánvalóan nem konstansok, ezért elengedhetetlen volt ez esetben a **Lock** típusú objektumok *mutable* kulcsszóval történő definiálása a **Statistics** osztályban.. Az általam létrehozott, **Lock** objektummal védett *getter*, és *setter* metódusokra példa a 6.13 ábrán látható.

6.12. ábra. A Statistics osztály új adattagjai

```
const map <string,double>& GetScenario_probability_map() const{
    scenario_probability_map_lock.Set();
    return this->scenario_probability_map;
    scenario_probability_map_lock.Unset();
}

void SetScenario_probability_map(const map <string,double>& map){
    scenario_probability_map_lock.Set();
    this->scenario_probability_map=map;
    scenario_probability_map_lock.Unset();
}
```

6.13. ábra. Példa a *Lock* objektummal védett *getter*, *setter* metódusokra

6.5. Multiproduct receptek esete

Ebben a részben tárgyalt esetekben az eddigi feltételezés, miszerint a receptek és a termékek között 1:1 kapcsolat áll fenn, nem teljesül. Egy recept akár több különböző terméket is előállíthat, illetve egy bizonyos terméket akár több különböző recept is előállíthat.

Teszteredmények

- 7.1. A tesztelés menete
- 7.2. Alapesetek tesztelése (1:1)
- 7.3. Multiproduct receptek tesztelése

Összefoglalás

Irodalomjegyzék

- [1] Máté Hegyháti. *Batch Process Scheduling: Extensions of the S-graph Framework*. PhD thesis, Doctoral School of Information Science and Technology University of Pannonia, 2015.
- [2] Anthony A. Williams. *C++ Concurrency in Action: Practical Multithreading*. Manning Publications Co., 20 Baldwin Road, Shelter Island, NY 11964, 1st edition, 2012.

A. függelék

Jelmagyarázat

P a termékek halmaza

 b_p a legyártott batch-ek darabszáma az adott konfigurációban

 s_p a termék batch mérete (fix batch méret esetén)

 s_p^{min}, s_p^{max} adott termékhez tartozó lehetséges legkisebb, legnagyobb batch méret (válzotó batch méret esetén)

S a forgatókönyvek halmaza

 $prob_s$ s forgatókönyv valószínűsége $s \in S$

 $dem_{s,p}$ p termék iránti kereslet az s forgatókönyvben $s \in S, p \in P$

 $price_{s,p}$ p termék ára az s forgatókönyvben $s \in S, p \in P$

 $oc_{s,p}, uc_{s,p}$ p termék túl-, és alul termelési költsége s forgatókönyvben $s \in S, p \in P$

 $ExpProfit_p(x) = \sum_{s \in S} prob_s \cdot profit_{s,p}(x) \ p$ termék x értékben vett várható profit értéke

$$Profit_{s,p}(x) = \begin{cases} price_{s,p} \cdot x - (dem_{s,p} - x) \cdot uc_{s,p} & \text{ha } x < dem_{s,p} \\ price_{s,p} \cdot dem_{s,p} - (x - dem_{s,p}) \cdot oc_{s,p} & \text{egy\'ebk\'ent} \end{cases}$$

B. függelék

Input fájlok

B.1. ábra. A multipurpose.ods fájl

S2	S2	S1	S1	<scenario.name>roduct.name></scenario.name>	sc name	scenario data	В	В	В	A	Α	A	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	pr name	proctime			S2	S1		<u>name</u>	scenario	В	Α	<u>name</u>	product
В	Α	В	Α	product.name	pr name		E4	E1	E2	E4	E3	E1	quipment.nan	eq name				0.5	0.5		probability		သ	2	no_stages	
	1			V	product_price		3	2	1	2	1	1		<u>stage</u>								•			batch_size	
1	1 2	1	1		demand		2	4	6	5	3	5	infty	time		E4	E3	E2	E1		<u>name</u>	equipment	1		batch_size_min	
1	1	1	1		over_production_cost				•							1	1	1	1	1	number		2	2	batch_size_max	
	4	1	4		under_production_cost																	1				•

B.2.ábra. A ${\bf stochastic.ods}$ fájl

B.3. ábra. A stochastic_extended.ods fájl

35

C. függelék

CD melléklet tartalma