2. Natürliche Zahlen

Definition (Induktionsmengen)

Sei $M \subseteq \mathbb{R}$. M heißt eine **Induktionsmenge** (IM) : \iff

- $(1) \ 1 \in M$
- (2) Aus $x \in M$ folgt stets $x + 1 \in M$

Beispiel

 \mathbb{R} , $[1, \infty)$, und $\{1\} \cup [2, \infty)$ sind Induktionsmengen.

 $J:=\{A\subseteq\mathbb{R}:A \text{ ist eine IM }\};\,\mathbb{N}:=\bigcap_{A\in J}A$ heißt die Menge der natürlichen Zahlen.

Satz 2.1 (Induktionsmengen)

- (1) $\mathbb{N} \in J$
- (2) $\mathbb{N} \subseteq A \ \forall A \in J$
- (3) \mathbb{N} ist *nicht* nach oben beschränkt.
- (4) $\forall x \in \mathbb{R} \ \exists n \in \mathbb{N} : n > x$
- (5) Prinzip der vollständigen Induktion: Ist $A \subseteq \mathbb{N}$ und $A \in J \implies A = \mathbb{N}$

Beweis

- $(1) \ 1 \in A \ \forall A \in J \implies x+1 \in A \ \forall xinA \ \forall A \in J \implies x+1 \in \mathbb{N} \ \forall xin\mathbb{N}$
- (2) folgt aus der Definition von N
- (3) Annahme: \mathbb{N} ist nach oben beschränkt. (A15): $s := \sup \mathbb{N}$. 1.3 $\Longrightarrow \exists n \in \mathbb{N} : n > s 1$; (1) $\Longrightarrow n + 1 \in \mathbb{N} \Longrightarrow n + 1 > s$; Widerspruch
- (4) folgt aus (3)

(5)
$$A \subseteq \mathbb{N} \subseteq A \implies A = \mathbb{N}$$

Satz 2.2 (Beweisverfahren durch vollständige Induktion)

Für jedes $n \in \mathbb{N}$ sei eine Aussage A(n) gemacht. Es gelte: (I) A(1) ist wahr und (II) aus $n \in \mathbb{N}$ und A(n) wahr folgt stets A(n+1) ist wahr.

Behauptung: A(n) ist wahr für jedes $n \in \mathbb{N}$.

Beweis

 $A := \{n \in \mathbb{N} : A(n) \text{ ist wahr}\}$. Dann: $A \subseteq \mathbb{N}$, aus (I) und (II) folgt $A \in J$.

Beispiele:

- (1) $A(n) := n \ge 1$. $A(n) \ \forall n \in \mathbb{N}$. Beweis (induktiv): Induktionsanfang (IA): $1 \ge 1$, also ist A(1) wahr. Induktionsvorausseztung (IV): Sei $n \in \mathbb{N}$ und A(n) wahr (also $n \ge 1$) Induktionsschritt (IS, $n \curvearrowright n+1$): $n+1 \ge 1+1 \ge 1$, also A(n+1) wahr.
- (2) Für $n \in \mathbb{N}$ sei $A_n := (\mathbb{N} \cap [1, n]) \cup [n + 1, \infty)$. Behauptung: $\underbrace{A_n \text{ ist eine Induktionsmenge}}_{A(n)} \forall n \in \mathbb{N}$
- (3) Sei $n \in \mathbb{N}, x \in \mathbb{R}$ und n < x < n+1. Behauptung: $x \notin \mathbb{N}$. Beweis: Annahme: $x \in \mathbb{N}$. Sei A_m wie im oberen Beispiel (2) $\Longrightarrow A_m \in J \Longrightarrow \mathbb{N} \subseteq A_m \Longrightarrow x \in A_m \Longrightarrow x \le m$ oder $x \ge m+1$, Widerspruch!
- (4) Behauptung: $\underbrace{1 + 2 + \dots + n = \frac{n(n+1)}{2}}_{A(n)} \forall n \in \mathbb{N}$

Beweis: (induktiv)

IA: $\frac{1+1}{2} = 1 \implies A(1)$ ist wahr.

IV: Sei $n \in \mathbb{N}$ und $1 + 2 + \dots + n = \frac{n(n+1)}{2}$.

IS: $(n \curvearrowright n+1)$

$$1+2+\cdots+n+(n+1)\stackrel{(IV)}{=}\frac{n(n+1)}{2}+(n+1)(IV)=(n+1)(\frac{n}{2}+1)=\frac{(n+1)(n+2)}{2}\Longrightarrow A(n+1)$$
 ist wahr

Definition (Summen- und Produktzeichen)

(1) Seien $a_1, a_2, \ldots, a_n \in \mathbb{R}, n \in \mathbb{N}$.

$$\sum_{k=1}^{n} a_k := a_1 + a_2 + \ldots + a_n$$

$$\prod_{k=1}^{n} a_k := a_1 \cdot a_2 \cdot \ldots \cdot a_n$$

(2) $\mathbb{N}_0 := \mathbb{N} \cup \{0\},$ $\mathbb{Z} := \mathbb{N}_0 \cup \{-n : n \in \mathbb{N}\} \ (ganze \ Zahlen),$ $\mathbb{Q} = \{\frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}\} \ (rationale \ Zahlen).$

Satz 2.3 (Ganze Zahlen)

Sei $\emptyset \neq M \subseteq \mathbb{R}$.

- (1) Ist $M \subseteq \mathbb{N}$, so existient min M
- (2) Ist $M \subseteq \mathbb{Z}$ nach oben beschränkt, so existiert $\max M$; ist $M \subseteq \mathbb{Z}$ nach unten beschränkt, so existiert $\min M$.
- (3) Ist $a \in \mathbb{R}$, so existiert genau ein $k \in \mathbb{Z}$: $k \leq a < k+1$. Bezeichnung: [a] := k.

Beweis

- (1) $1 \le n \ \forall n \in M \implies M$ ist nach unten beschränkt. $1.2 \implies \exists \alpha = \inf M \ \text{mit} \ \alpha + 1$ ist keine untere Schranke von $M. \implies \exists m \in M : m < \alpha + 1$. Sei $n \in M$. Annahme: $n < m \implies n < m < \alpha + 1 \le n + 1 \implies n < m < n + 1$. Da $n \in \mathbb{N}$: Widerspruch.
- (2) Zur Übung
- (3) $M:=\{z\in\mathbb{Z}:z\leq a\}$. Annahme: $M=\emptyset\implies z>a\;\forall z\in\mathbb{Z}\implies -n>a\;\forall n\in\mathbb{N}\implies n<-a\;\forall n\in\mathbb{N}.$ Widerspruch zu 2.1(3); also: $M\neq\emptyset$. (2) \Longrightarrow $\exists k:=\max M.$

Satz 2.4 (Zwischen zwei reellen Zahlen liegt stets eine rationale)

Sind $x, y \in \mathbb{R}$ und x < y, so existiert ein $r \in \mathbb{Q}$: x < r < y.

Beweis

$$y - x > 0$$
 2.1(4) \Longrightarrow $\exists n \in \mathbb{N} : n > \frac{1}{y - x} \Longrightarrow \frac{1}{n} < y - x \Longrightarrow x + \frac{1}{n} < y$

$$m := [nx] \in \mathbb{Z} \implies m < nx < m+1 \implies \frac{m}{n} \le x < \frac{m+1}{n} = \frac{m}{n} + \frac{1}{n} \le x + \frac{1}{n} \implies x < \frac{m+1}{n} < y$$