Autonomous Robotics Ex0 - GNSS Raw Measurements

Submitter: Shlomit Ashkenazi 323024034

Summery:

In this project I have built an Python script that processes Raw Measurements GNSS log files to compute the receiver's position and outputs the results in both CSV and KML formats.

Sources:

https://www.johnsonmitchelld.com/2021/03/14/least-squares-gps.html

https://github.com/johnsonmitchelld/gnss-analysis/tree/main/notebooks

Environment:

Anaconda, Jupyter Notebook.

Requirements:

Jupyter notebook

Python Navpy

Python Pandas

Python Numpy

Python unlzw3

Python georinex

Python simplekml

Note: you can ensure all requirements on Jupyter Notebook terminal using this command:

pip install pandas numpy navp unlzw3 georinex

Example:

```
PS C:\Users\israe> pip install pandas numpy navpy
Requirement already satisfied: pandas in c:\users\israe\anaconda3\lib\site-packages (2.0.3)
Requirement already satisfied: numpy in c:\users\israe\anaconda3\lib\site-packages (1.26.4)
Requirement already satisfied: navpy in c:\users\israe\anaconda3\lib\site-packages (1.0)
Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\israe\anaconda3\lib\site-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in c:\users\israe\anaconda3\lib\site-packages (from pandas) (2023.3.post1)
Requirement already satisfied: tzdata>=2022.1 in c:\users\israe\anaconda3\lib\site-packages (from pandas) (2023.3)
Requirement already satisfied: six>=1.5 in c:\users\israe\anaconda3\lib\site-packages (from python-dateutil>=2.8.2->panda
```

GitHub repo:

https://github.com/slomit1234/Ex0 GNSS Raw Measurement s/tree/main

AutoRun:

Extract my GitHub repo to your computer and do a quick test run just to see that everything is working properly.

Make sure:

- 1. You have all the packages that mentioned under "requirements".
- 2. All of the GNSS log data are in the same repository as the script (if you extracted all of the repo properly that this is a no-brainer).
- 3. Run the script "FinalScript.ipynb"

4. It will generate an output file for each log:

Driving (gnss_log_2024_04_13_19_53_33.txt):

4gnss_log_2024_04_13_19_53_33.kml

#gnss_log_2024_04_13_19_53_33.csv

Fixed (gnss_log_2024_04_13_19_51_17.txt):

#gnss_log_2024_04_13_19_51_17.kml

#gnss_log_2024_04_13_19_51_17.csv

Walking(gnss_log_2024_04_13_19_52_00.txt):

4 gnss_log_2024_04_13_19_52_00.kml

#gnss_log_2024_04_13_19_52_00.csv

It should look like this:

INATITE	Date mounied	type	Size
∨ Today			
ipynb_checkpoints	5/22/2024 11:52 AM	File folder	
adata	5/22/2024 11:53 AM	File folder	
FinalScript.ipynb	5/22/2024 2:12 PM	Jupyter Source File	28 KB
gnss_log_2024_04_13_19_51_17.csv	5/22/2024 2:27 PM	Microsoft Excel Com	109 KB
gnss_log_2024_04_13_19_51_17.kml	5/22/2024 2:27 PM	KML File	8 KB
gnss_log_2024_04_13_19_52_00.csv	5/22/2024 2:27 PM	Microsoft Excel Com	301 KB
gnss_log_2024_04_13_19_52_00.kml	5/22/2024 2:27 PM	KML File	22 KB
gnss_log_2024_04_13_19_53_33.csv	5/22/2024 2:27 PM	Microsoft Excel Com	894 KB
gnss_log_2024_04_13_19_53_33.kml	5/22/2024 2:27 PM	KML File	65 KB
a output_partA.csv	5/22/2024 10:42 AM	Microsoft Excel Com	2 KB

Final Solution:

After doing each task (1) - (4) separately, I incorporated everything into a single final script.

The Script implemented the following steps (as required):

- 1. Parse the GNSS Log File
- 2. Compute Satellite Positions and Pseudoranges
- 3. Positioning Algorithm
- 4. Output Files

Part A – the parsing tool

This part included the following steps:

- 1. Read the txt log file an reads each line.
- 2. Then we need to separate "Fix" and "Raw" data into respective lists.
- 3. Create the DataFrame so we will convert lists into pandas DataFrames for easier manipulation.
- 4. Ensures satellite IDs are consistent in length and format.
- 5. Removes non-GPS measurements.
- 6. Converts columns to appropriate numeric types for further calculations.
- 7. Time Handling we compute the GPS time and split the data into measurement epochs.

The output of part (1), should look like that:

SatPRN	Sat.X	Sat.Y	Sat.Z	Pseudo-Ra	CN0	Doppler
G02	14573207	-5239568	22040176	22948159	43	-505.605
G03	23187581	-1.2E+07	4011163	24058778	42	-504.386
G08	24906736	4694271	8528082	21133596	47.8	165.7996
G10	-1329165	17148086	20352420	22788508	39	355.6266
G21	15699709	1536361	21913664	21707764	44.3	-348.52
G27	23150795	13293206	-2593026	22142539	45.2	533.8138
G28	5200268	25758890	-3885489	23880923	35.5	-510.615
G32	8094502	17964730	18113975	21445039	45.6	236.6739
	G02 G03 G08 G10 G21 G27 G28	G02 14573207 G03 23187581 G08 24906736 G10 -1329165 G21 15699709 G27 23150795 G28 5200268	G02 14573207 -5239568 G03 23187581 -1.2E+07 G08 24906736 4694271 G10 -1329165 17148086 G21 15699709 1536361 G27 23150795 13293206 G28 5200268 25758890	G02 14573207 -5239568 22040176 G03 23187581 -1.2E+07 4011163 G08 24906736 4694271 8528082 G10 -1329165 17148086 20352420 G21 15699709 1536361 21913664 G27 23150795 13293206 -2593026 G28 5200268 25758890 -3885489	G02 14573207 -5239568 22040176 22948159 G03 23187581 -1.2E+07 4011163 24058778 G08 24906736 4694271 8528082 21133596 G10 -1329165 17148086 20352420 22788508 G21 15699709 1536361 21913664 21707764 G27 23150795 13293206 -2593026 22142539 G28 5200268 25758890 -3885489 23880923	G02 14573207 -5239568 22040176 22948159 43 G03 23187581 -1.2E+07 4011163 24058778 42 G08 24906736 4694271 8528082 21133596 47.8 G10 -1329165 17148086 20352420 22788508 39 G21 15699709 1536361 21913664 21707764 44.3 G27 23150795 13293206 -2593026 22142539 45.2 G28 5200268 25758890 -3885489 23880923 35.5

you can see the partA code at the last box of the file "FinalScript":

Running this in the same matter of will produce the part A files for each log file:

These file also attached in the solution.

Part B – the Positioning algorithm

This part's code is incorporated in "FinalScript.ipynb" under "calculate_satellite_position", "least_squares" functions.

<u>Function: calculate_satellite_position(ephemeris,</u> transmit_time):

The purpose of this function is to compute the satellite positions based on ephemeris data and transmit times.

Details:

- 1. Orbital Parameters: Uses Keplerian elements to calculate the position of satellites.
- 2. Corrections: Applies necessary corrections for precise satellite positioning.

Function: least_squares(xs, measured_pseudorange, x0, b0)

The purpose of this function is to compute the receiver's position using an iterative least squares algorithm.

Details:

- 1. Initial Guesses: Uses initial estimates for receiver's position and clock bias.
- 2. Iterations: Iteratively adjusts the position and clock bias to minimize the pseudorange errors.

- 3. Matrix Setup: Constructs the design matrix G and solves for the adjustments.
- 4. Termination: Continues until the adjustments are sufficiently small or a maximum number of iterations is reached.

Part C – the final solution

As I mentioned before, this part was all about incorporating everything together, and fine-tuning (like converting from ECEF to LLA).

You can find this part's code under "FinalScript.ipynb" on the GitHub repo.

```
# the final solution (Part c on readme)

In [1]:

from ftplib import FTP_TLS, FTP
import ftplib
import gzip
import shutil
import os
from datetime import datetime, timedelta, timezone
import georinex
import varray
import varray
import nummy as np

# Took it from https://github.com/johnsonmitchelld/gnss-analysis/tree/main/notebooks
class EphemerisManager():
    def __init__(self, data_directory_os.path.join(os.getcwd(), 'data', 'ephemeris')):
        self.data_directory = data_directory,
        nasa_dir = os.path.join(data_directory, 'nasa')
        ig_dir = os.path.join(data_directory, 'igs')
        os.makedirs(nasa_dir, exist_ok=True)

os.makedirs(igs_dir, exist_ok=True)
```

This solution contains to boxes at Jupyter Notebook.

- The "EphemerisManager" class (https://github.com/johnsonmitchelld/gnss-analysis/tree/main/notebooks)
- 2. My solution

Testing:

In this part, I will show you all the steps I did to ensure my solution.

First, if you didn't perform a quick test run, look at "AutoRun" above and do it.

After running the scripts, let's test the results.

The csv files:

The csv files contains the computed positions with additional columns Pos.X, Pos.Y, Pos.Z, Lat, Lon, Alt.

Those files contain the full info on each record.

Example:

AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	ВН
k	delT_sv	x_k	y_k	z_k	Pos.X	Pos.Y	Pos.Z	Lat	Lon	Alt
096.341	-0.00045	14573207	-5239568	22040176	4436877	3085279	3376311	32.1688	34.81366	38.1373
096.337	0.000309	23187581	-1.2E+07	4011163	4436877	3085279	3376311	32.1688	34.81366	38.1373
096.347	0.00012	24906736	4694271	8528082	4436877	3085279	3376311	32.1688	34.81366	38.1373
112.341	-8.49E-06	-1329165	17148086	20352420	4436877	3085279	3376311	32.1688	34.81366	38.1373
096.345	0.000127	15699709	1536361	21913664	4436877	3085279	3376311	32.1688	34.81366	38.1373
096.343	-1.84E-05	23150795	13293206	-2593026	4436877	3085279	3376311	32.1688	34.81366	38.1373
096.338	-0.0002	5200268	25758890	-3885489	4436877	3085279	3376311	32.1688	34.81366	38.1373
096.346	-0.00062	8094502	17964730	18113975	4436877	3085279	3376311	32.1688	34.81366	38.1373
097.341	-0.00045	14573637	-5236918	22040556	4436883	3085280	3376316	32.16881	34.81364	46.073
097.337	0.000309	23187259	-1.2E+07	4014343	4436883	3085280	3376316	32.16881	34.81364	46.073
097.347	0.00012	24907622	4694947	8525202	4436883	3085280	3376316	32.16881	34.81364	46.073
113.341	-8.49E-06	-1331334	17149414	20351116	4436883	3085280	3376316	32.16881	34.81364	46.073
097.345	0.000127	15700126	1538994	21913270	4436883	3085280	3376316	32.16881	34.81364	46.073
097.343	-1.84E-05	23150430	13293291	-2596155	4436883	3085280	3376316	32.16881	34.81364	46.073
097.338	-0.0002	5200042	25759406	-3882363	4436883	3085280	3376316	32.16881	34.81364	46.073
097.346	-0.00062	8092415	17963877	18115754	4436883	3085280	3376316	32.16881	34.81364	46.073
098.341	-0.00045	14574068	-5234268	22040936	4436875	3085279	3376308	32.16878	34.81367	36.1290
098.337	0.000309	23186937	-1.2E+07	4017523	4436875	3085279	3376308	32.16878	34.81367	36.1290
098.347	0.00012	24908507	4695624	8522322	4436875	3085279	3376308	32.16878	34.81367	36.1290
114.341	-8.49E-06	-1333503	17150741	20349812	4436875	3085279	3376308	32.16878	34.81367	36.1290
098.345	0.000127	15700544	1541626	21912875	4436875	3085279	3376308	32.16878	34.81367	36.1290
098 343	-1 84F-05	23150065	13293376	-2599284	4436875	3085279	3376308	32 16878	34 81367	36 1290

The KML files:

Let's overview this results using Google Earth.

Upload the KML file to Google Earth.

The driving Log data results:

The fixed Log data results:

The walking log data results:

The results match with what I expected them to be In terms of change between Drive, Walk and Fixed:

- 1. **In the Drive log** we see a continuous path with long straight segments, we can also see the points on a road. Low variance (a more stable movement).
- 2. **In the Fixed log** we see minimal changes in coordinates indicating a stationary state. Very low variance in latitude and longitude values.
- 3. **In the Walking log** we see shorter movements indicative of walking. Higher variance in coordinates due to frequent changes in position.