

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS DE CRATEÚS

CURSOS: CIÊNCIA DA COMPUTAÇÃO E SISTEMAS DE INFORMAÇÃO

DISCIPLINA: MATEMÁTICA DISCRETA

PROFESSORA: LÍLIAN DE OLIVEIRA CARNEIRO

ALUNO(A):_

LISTA DE EXERCÍCIOS

1. Identifique o erro na demonstração da conjectura abaixo.

Conjectura: A soma de quaisquer dois inteiros pares é igual a 4k para algum inteiro k.

Prova: Suponha que m e n são dois inteiros pares quaisquer. Pela definição de par m = 2k para algum inteiro k e n = 2k para algum inteiro k. Por substituição, m + n = 2k + 2k = 4k, o que devia ser provado.

- 2. Demonstre ou contrarie a conjectura do item anterior.
- 3. Usando uma demonstração direta, mostre que:
 - (a) O quadrado de um número par é um número par.
 - (b) O inverso aditivo de um número par é um número par.
 - (c) O produto de dois números ímpares é ímpar.
 - (d) Todo número inteiro ímpar é a diferença de dois quadrados.
- 4. Usando uma demonstração por contraposição, mostre que:
 - (a) Se $x + y \ge 2$, então $x \ge 1$ ou $y \ge 1$.
 - (b) Se $x^2 + x + 1$ é par, então x é impar.
- 5. Usando uma demonstração por contradição, mostre que:
 - (a) Se x é positivo, então x + 1 também é positivo.
 - (b) A soma de dois inteiros pares é par.
 - (c) $1+3\sqrt{2}$ é irracional.
 - (d) Se x é irracional, então 1/x é irracional.

- 6. Demonstre ou contrarie que o produto de dois números irracionais é irracional.
- 7. Demonstre que se m e n são números inteiros e mn é par, então m é par ou n é par.
- 8. Mostre que se n é um número inteiro e $n^3 + 5$ é ímpar, então n é par, usando:
 - (a) uma demonstração por contraposição.
 - (b) uma demonstração por contradição.
- 9. Mostre que se n é um número inteiro e 3n+2 é par, então n é par, usando:
 - (a) uma demonstração por contraposição.
 - (b) uma demonstração por contradição.
- 10. Prove que se a|b e a|c, então a|(b+c).

Definição. Sejam a e b números inteiros, com $a \neq 0$. Dizemos que a|b (**a divide b**) se existe $c \in \mathbb{Z}$ tal que b = ac.

- 11. Demonstre que se $n \in \mathbb{Z}_+^*$, então n é impar se, e somente se, 5n+6 é impar.
- 12. Demonstre que $m^2 = n^2$ se, e somente se, m = n ou m = -n.
- 13. Mostre que as proposições sobre o número inteiro *x* são equivalentes:
 - (i) 3x + 2 é par;
 - (ii) x + 5 é ímpar;
 - (iii) x^2 é par.
- 14. Demonstre que $n^2 + 1 \ge 2^n$ quando n é um inteiro positivo com $1 \le n \le 4$.
- 15. Demonstre que se x e y são números reais, então $\max(x,y) + \min(x,y) = x + y$. [*Dica:* Use uma demonstração por casos: $x \ge y$ e x < y].
- 16. Mostre que se a,b e c são números reais e $a \neq 0$, então há uma única solução para a equação ax + b = c.