PHD2 Best Practices

Bruce Waddington
Andy Galasso

Getting Started

- Use the new-profile wizard to specify connections
- Enter correct values for camera pixel size and *guide scope* focal length
- Build and use a dark library for the camera
 the wizard will help you do that
- Use a separate profile for each gear combination

Gear Connections

- Use ASCOM pulse-guiding instead of ST-4 guiding if mount supports it
- Get the benefits of one less cable and better logging/diagnostics
- If you do use ST-4 guiding, use ASCOM for the PHD2 'aux mount' connection

Looping

- Use guide exposure times in the 2-4 sec range if possible
 - You can't correct for seeing ignore the siren's song of rapid, short exposures
 - Longer exposures average out seeing and make guiding easier
 - Keep the exposure short enough to react to the steepest tracking error – but not below 1 sec

1 sec guide exposures

4 sec guide exposures

Looping

- Choose a suitable guide star
 - You can let PHD2 auto-select the star (<alt>s)
 - Adjust the gamma-slider to see all the stars
 - Don't pick a bright, saturated star
 - Increase the guide exposure if necessary
 - Use the star-profile tool to confirm focus and shape – you want a pointed top

Calibrating

- Get a good calibration, then re-use it
 - Within +/- 10 degrees of celestial equator(Dec=0)
 - Within an hour of celestial meridian
 - Don't ignore calibration alerts use the help file to fix or work around mount problems

Calibration

- Set the 'Auto Restore Calibration' option in the Guiding tab of the Brain dialog
- Re-do calibration only when necessary
 - Equipment change in existing profile (don't do this)
 - Change in mount guide speed settings
 - Rotation of guide camera or OAG by more than a few degrees
- Note: recalibration is still required if no ASCOM 'mount' or 'aux-mount' connection is used

Polar Alignment

- Get a good polar alignment, but don't be obsessive-compulsive about it
 - Use the drift alignment tool to get within a few arc-minutes of the pole
 - Check for field rotation when imaging near the pole
 - Online field rotation calculator

Polar Alignment Calculator

Field rotation of < 1 px for common set-ups

Scenario 1: Portable Setup

- Attach guide camera in same position painter's tape marks will work
- Position mount in same location using marks on ground
- Reload profile with existing calibration
- Drift align when stars are first visible
- Start guiding

Scenario 2: Permanent Setup

- Reload profile with existing calibration
- Run the GA for 1-2 minutes if you want to check seeing conditions
- Start guiding!

Mount Settings

- Use periodic error correction if the mount supports it
 - Use an app, don't try to do it manually
 - Run through several worm cycles to get a more accurate correction curve
- Use guide speeds in the range of 0.5x 1.0x sidereal

Mount Settings

- Don't use backlash settings in the mount
- Stay away from all the "tuning" and correction features in EQASCOM

Deal with Backlash

- Less-expensive mounts often have substantial Dec backlash
 - Adjust the gear mesh if you can
 - Use uni-directional Dec guiding if you can't improve the mount
- Ignore RA backlash it's irrelevant if guide speed is <= 1x sidereal

Use the Guiding Assistant

- Better understand your mount's behavior
- Get a sense of your seeing conditions
- Measure the backlash at least once
- Pay attention to the GA recommendations

Guide Parameter Adjustments

- Always start with default settings use 'Reset' buttons if you're not sure
- Be conservative with adjustments
- Keep min-moves larger than the typical seeing fluctuations
- Remember that under-correction is better than over-correction

Remember What Guiding Can Handle

- "Slow and steady" errors
 - Tracking rate errors
 - Atmospheric refraction
 - Some kinds of flexure (not differential)
 - Residual periodic error
 - Drift from polar alignment error

And What It Can't...

- High-frequency, random star movement
 - Most seeing effects
 - Poorly-behaved hardware
 - Sudden shifts/deflections
 - Vibration
- Differential flexure
- Large Dec backlash
- Field rotation

What If You Have Basic Problems

- Use the help resources
 - Interactive Help in PHD2, including index
 - HTML and PDF versions here:http://openphdguiding.org/documentation/
 - Basic questions are quite likely answered in the Help content

What If You Have Basic Problems

- Ask for help on the PHD2 forum
 - Be specific about what you did and what you saw
 - Submit both the guide and debug log files (yes, you have them)

What If the Guiding Looks Bad

- Be sure to look at the numbers
 - Reset to the default guiding parameters
 - Use the guiding graph or review the log afterward:
 http://adgsoftware.com/phd2utils/
 - Judge performance in arc-sec, not pixels
 - Don't just react to a "spiky" graph
 - Try initially for guiding RMS of 1 arc-sec
 - Distinguish between unusual incidents and longer-term performance

What If the Guiding Looks Bad

- Read the log analysis tutorial: http://openphdguiding.org/tutorial-analyzing-phd2-guiding-results/
- Ask for help on the PHD2 forum always with a guide log

Improving the Guiding Performance

- Be systematic and methodical when trying to improve performance
 - Don't thrash the guiding parameters!
 - Experiment only on a night of average to good seeing for your site
 - Look at long guiding intervals don't get fooled by randomness
 - Make single, small adjustments for a specific purpose – then look at the results

Judging the Results

- Let your main-camera images be the final word on guiding performance
 - Look at star size and elongation compared to 10-sec samples
 - Look for evidence of differential flexure in long exposures (good guiding but elongated stars)
 - Guiding may not be your limiting factor it only has to be good enough

Extra Credit: Dealing with a Cranky Mount

Repeated Calibration Alerts

- Check the help file Tools/Calibration Details
- Dec backlash is a common problem
 - Alerts happen often but not always
 - Move the mount north at guide speed for 20 seconds before starting the calibration

Look at the Mount's Behavior

- Guiding software can't tame a bad mount
- Get over the "I don't really want to know" feeling
- Try the star-cross test for the most basic form of testing

Star-Cross Test

Start 45-sec exposure At guide speed:

5 sec west

10 sec east

5 sec west

5 sec north

10 sec south

5 sec north

Look at the Mount's Behavior

- Disable guiding and watch what happens for 10-15 minutes
- Use the Guiding Assistant
 - Declination backlash
 - RA and Dec drift and peak-to-peak ranges
 - Periodic error
 - Polar alignment error

Guiding Assistant Results

Other Star Motion	
Right ascension, Peak	3.39 px (1.43 arc-sec)
Declination, Peak	2.51 px (1.05 arc-sec)
Right ascension, Peak-Peak	13.98 px (5.89 arc-sec)
Right ascension Drift Rate	0.78 px/min (0.33 arc-sec/min)
Right ascension Max Drift Rate	0.40 px/sec (0.17 arc-sec/sec)
Drift-limiting exposure	1.0 s
Declination Drift Rate	-2.42 px/min (-1.02 arc-sec/min)
Declination Backlash	
Polar Alignment Error	4.3 arc-min

Spikes in RA Tracking – Corrected with re-mesh and clean-up

Dec and RA Drift Rates – Polar alignment and flexure

Measuring Dec Backlash With The Guiding Assistant

Right ascension, Peak	0.40 px (1.32 arc-sec)
Declination, Peak	0.27 px (0.89 arc-sec)
Right ascension, Peak-Peak	0.40 px (1.32 arc-sec)
Right ascension Drift Rate	2.51 px/min (8.27 arc-sec/min)
Right ascension Max Drift Rate	0.04 px/sec (0.12 arc-sec/sec)
Drift-limiting exposure	2.9 s
Declination Drift Rate	-0.15 px/min (-0.49 arc-sec/min)
Declination Backlash	1.3 px (289 ms)
Polar Alignment Error	1.9 arc-min

GA Backlash Graph

Perspective

Don't go crazy about this stuff – it's a hobby!