DFA Minimization

DFA Minimization using Myphill-Nerode Theorem

Algorithm

Input - DFA

Output - Minimized DFA

Step 1 – Draw a table for all pairs of states (Q_i, Q_j) not necessarily connected directly [All are unmarked initially]

Step 2 – Consider every state pair (Q_i, Q_j) in the DFA where $Q_i \in F$ and $Q_j \notin F$ or vice versa and mark them. [Here F is the set of final states]

Step 3 – Repeat this step until we cannot mark anymore states –

If there is an unmarked pair (Q_i, Q_j) , mark it if the pair $\{\delta (Q_i, A), \delta (Q_i, A)\}$ is marked for some input alphabet.

Step 4 – Combine all the unmarked pair (Q_i, Q_j) and make them a single state in the reduced DFA.

Example

Let us use Algorithm 2 to minimize the DFA shown below.

Step 1 - We draw a table for all pair of states.

a b c d e f	
-------------	--

а			
b			
С			
d			
е			
f			

Step 2 – We mark the state pairs.

	а	b	С	d	е	f
а						
b						
С	✓	✓				
d	✓	✓				
е	√	✓				
f			✓	✓	✓	

Step 3 – We will try to mark the state pairs, with green colored check mark, transitively. If we input 1 to state 'a' and 'f', it will go to state 'c' and 'f' respectively. (c, f) is already marked, hence we will mark pair (a, f). Now, we input 1 to state 'b' and 'f'; it will go to state 'd' and 'f' respectively. (d, f) is already marked, hence we will mark pair (b, f).

	а	b	С	d	е	f
a						
b						
С	✓	✓				
d	√	✓				
е	✓	✓				
f	√	√	√	√	√	

After step 3, we have got state combinations $\{a, b\}$ $\{c, d\}$ $\{c, e\}$ $\{d, e\}$ that are unmarked.

We can recombine {c, d} {c, e} {d, e} into {c, d, e}

Hence we got two combined states as $-\{a, b\}$ and $\{c, d, e\}$

So the final minimized DFA will contain three states {f}, {a, b} and {c, d, e}

DFA Minimization using Equivalence Theorem

If X and Y are two states in a DFA, we can combine these two states into $\{X,Y\}$ if they are not distinguishable. Two states are distinguishable, if there is at least one string S, such that one of δ (X, S) and δ (Y, S) is accepting and another is not accepting. Hence, a DFA is minimal if and only if all the states are distinguishable.

Algorithm 3

Step 1 – All the states \mathbf{Q} are divided in two partitions – **final states** and **non-final states** and are denoted by $\mathbf{P_0}$. All the states in a partition are 0^{th} equivalent. Take a counter \mathbf{k} and initialize it with 0.

Step 2 – Increment k by 1. For each partition in P_k , divide the states in P_k into two partitions if they are k-distinguishable. Two states within this partition X and Y are k-distinguishable if there is an input **S** such that $\delta(X, S)$ and $\delta(Y, S)$ are (k-1)-distinguishable.

Step 3 – If $P_k \neq P_{k-1}$, repeat Step 2, otherwise go to Step 4.

Step 4 – Combine $k^{\mbox{th}}$ equivalent sets and make them the new states of the reduced DFA.

Example

Let us consider the following DFA -

q	δ(q,0)	δ(q,1)
a	b	С
b	а	d
С	е	f
d	е	f
е	е	f
f	f	f

Let us apply the above algorithm to the above DFA -

- $P_0 = \{(c,d,e), (a,b,f)\}$
- $P_1 = \{(c,d,e), (a,b),(f)\}$
- $P_2 = \{(c,d,e), (a,b),(f)\}$

Hence, $P_1 = P_2$.

There are three states in the reduced DFA. The reduced DFA is as follows -

Q	δ(q,0)	δ(q,1)
(a, b)	(a, b)	(c,d,e)
(c,d,e)	(c,d,e)	(f)
(f)	(f)	(f)