

Final Smart Contract Audit Report for

Audited by, Kratos Innovation Labs, Singapore

Approval Date: 20th August, 2024

Copyright © 2016 Kratos Innovation Labs. All rights reserved. This Audit Report, including its content, ideas, and findings, is the intellectual property of Kratos Innovation Labs. Unauthorized reproduction, distribution, or disclosure of any part of this document, in any form, is strictly prohibited without the express written consent of the author. This document is confidential and is intended solely for the use of the individual or entity to whom it is addressed. If you have received this document in error, please notify the author immediately and delete this document from your system. Unauthorized use, disclosure, or reproduction is prohibited and may be unlawful. For permissions or inquiries, please contact: satheesh.kumar@kratosinnovationlabs.com

Table Of Contents

Audit Report Summary	3
Audit Overview	
Executive Summary	4
Vulnerability Summary	5
Audit Scope	6
Methodologies	6
Security Considerations and Recommendations	
Formal Verification Results	
Detailed Findings	
AITECHGuardian.sol	
AITECHLPGuardian.sol	
AITECHGasFees.sol	
Referral.sol, LPAchievement.sol, LPNotes.sol	8
Appendix	
Tools Used	11

Executive Summary

The audit aimed to evaluate the security, functionality, and overall quality of the AI-Tech smart contracts deployed on the Binance Smart Chain (BSC). It included an extensive review of 11 contract files covering various functionalities such as token distribution, liquidity management, vesting, and rewards. The audit utilized manual review, automated static analysis, and formal verification techniques to ensure the contracts are secure, optimized, and aligned with industry standards.

Project Scope

Ecosystem: DeFi, Binance Smart Chain (BSC)

Contract Files: 11

Review Methods: Manual Review, Automated Static Analysis, Formal Verification

Timeframe: Completed on August 19, 2024

Key Results: No critical vulnerabilities were detected. Minor and informational issues were identified and resolved, ensuring that the AITECH contracts are secure, gas-efficient, and ready for deployment.

Audit Report Summary

Sr. No.	Key	Values	
1.	Project Name	AITECH Smart Contracts	
2.	Audit Approval Date	August 20, 2024	
3.	Audited By	Kratos Innovation Labs, Singapore	
4.	Smart Contract Type	BEP-20 Token and Utility Contracts	
5.	Programming Language	Solidity (Version: 0.8.x)	
6.	Framework	OpenZeppelin Contracts	
7.	Reference Standards	BEP-20 Standard, Solidity Documentation	
8.	Version	Summary 1.0	
9.	Codebase URL	GitHub Repository	

Audit Overview

The AITECH Smart Contracts Security Audit Report has been meticulously prepared by Kratos Innovation Labs, Singapore to provide an extensive analysis of the AITECH project's smart contracts. This report adheres to global audit standards and practices, offering a complete review of the code's security, correctness, and adherence to best practices.

The audit includes:

- Formal Verification: Using mathematical proofs to ensure contract correctness.
- Manual Code Review: Line-by-line inspection by security experts.
- Static Analysis: Automated tools for vulnerability detection and gas optimization.

Our methodology focuses on identifying security vulnerabilities, ensuring compliance with standards, and optimizing performance to create a robust, efficient, and scalable DeFi ecosystem.

Executive Summary

- Ecosystem: DeFi, Binance Smart Chain (BSC)
- Language: Solidity (0.8.x)
- Assessment Methodologies: Formal Verification, Manual Review, Static Analysis
- Timeline: Audit completed on August 19, 2024
- Audited Contracts:
 - ★ AITECHGuardian.sol
 - ★ AITECHLPGuardian.sol
 - ★ StrategicPartnerships.sol
 - ★ TeamAndAdvisory.sol
 - ★ TeamProsperity.sol
 - ★ Referral.sol
 - ★ VestingAllocation.sol
 - ★ Milestone.sol
 - ★ LPAchievement.sol
 - ★ LPNotes.sol
 - ★ AITECHGasFees.sol
- Primary Objectives:
 - ★ Identify and mitigate potential vulnerabilities.
 - ★ Ensure the contracts are gas-efficient and secure.
 - ★ Verify decentralized control mechanisms and token distribution procedures.

Key Findings:

No critical or major vulnerabilities were found. Minor and informational issues were detected and resolved by the team. The overall codebase is well-structured and follows best practices, ensuring the security and integrity of the AITECH ecosystem.

Critical Issues: None
Major Issues: None
Medium Issues: 1 (Resolved)
Minor Issues: 2 (Resolved)
Informational Issues: 3 (Resolved)

Vulnerability Summary

Severity	Total Findings	Resolved	Mitigated	Partially Resolved	Acknowledged	Declined
Critical	0	0	0	0	0	0
Major	0	0	0	0	0	0
Medium	1	1	0	0	0	0
Minor	2	2	0	0	0	0
Informational	3	3	0	0	0	0

Critical, Major, Medium, Minor and Informational

AITech Smart contract Severity Audit Report

Audit Scope

This audit covers the following smart contracts, which manage the core functionality of the AITECH ecosystem, including token distribution, liquidity management, strategic partnerships, and team allocations:

- 1. AITECHGuardian.sol
 - BEP-20 token implementation with custom logic for transfers, vesting schedules, and community participation.
- 2. AITECHLPGuardian.sol
 - Manages liquidity provision on PancakeSwap and associated liquidity interactions.
- 3. StrategicPartnerships.sol
 - Handles strategic investor relationships with token vesting and withdrawals.
- 4. TeamAndAdvisory.sol, TeamProsperity.sol
 - Vesting contracts for team and advisors with monthly release mechanisms.
- 5. Referral.sol, LPAchievement.sol, LPNotes.sol
 - Community participation and reward structures for liquidity providers and other contributors.
- 6. VestingAllocation.sol
 - Vesting schedules and allocation mechanisms for investors and contributors.
- 7. Milestone.sol
 - Structured milestone payments for strategic partnerships and development efforts.
- 8. AITECHGasFees.sol
 - Manages operational gas fees with deposit and withdrawal functionality.

Methodologies

- Formal Verification: This ensures that the smart contracts behave as expected under all conditions. Key ERC-20 functions such as transfer(), transferFrom(), and balanceOf() were formally verified to prevent overflow, state corruption, and ensure correct balances.
- Manual Code Review: Manual inspection of the entire codebase was conducted by experienced auditors, focusing on security vulnerabilities, optimization potential, and code quality. This includes checks for reentrancy, access control, proper usage of libraries, and adherence to Solidity best practices.
- 3. Static Analysis: Automated tools were used to detect common vulnerabilities such as unchecked arithmetic, gas inefficiencies, and reentrancy attacks. These tools include:
 - Slither: For Solidity static analysis.
 - Mythril: For detecting smart contract vulnerabilities.
 - Remix IDE: For contract interaction and deployment testing.

Security Considerations and Recommendations

1. Gas Optimization:

- o Finding Type: Minor
- Recommendation: Review batch transfers and optimize for high-volume transactions.
 Implement optimized loops to reduce gas costs in bulk operations (e.g., liquidity provision, vesting transfers).

2. Centralization Risks:

- Finding Type: Informational
- Recommendation: Initial token allocation was transferred to a multi-signature wallet, reducing centralization risks. We recommend extending multi-signature functionality to other critical operations, such as liquidity and vesting management.

3. Privileged Operations:

- Finding Type: Informational
- Recommendation: Privileged functions should have additional transparency mechanisms. Consider requiring public timelocks or community approvals for key operations (e.g., token minting or burning).

4. Documentation and Code Comments:

- Finding Type: Informational
- Recommendation: While the code is generally well-documented, adding further comments to explain complex logic would improve clarity for future developers, particularly regarding vesting and strategic partnership mechanisms.

5. Unit Testing and Coverage:

- Finding Type: Informational
- Recommendation: Expand unit testing to cover more edge cases, including boundary conditions in vesting schedules and reward mechanisms. Aim for 100% test coverage.

Formal Verification Results

ERC-20 Compliance Verification

All critical ERC-20 functions were formally verified, ensuring compliance with the BEP-20 standard:

Function	Result
transfer()	Passed: No transfers to zero addresses; state changes verified.
transferFrom()	Passed: Allowances handled correctly; overflow checks in place.
approve()	Passed: Allowances accurately managed.
balanceOf()	Passed: User balances are accurately reflected.
totalSupply()	Passed: Total supply remains consistent.

No overflow, underflow, or reentrancy issues (as per business logic and explanation) were detected during verification.

Detailed Findings

AITECHGuardian.sol

- Severity: Minor
- Description: Centralization risk identified in the deployer's control of the initial token supply.
- Resolution: Transferred tokens to a multi-signature wallet to mitigate risk.

AITECHLPGuardian.sol

- Severity: Minor
- Description: Insufficient input validation for liquidity provision functions.
- Resolution: Improved validation to ensure token amounts and slippage are handled securely.

AITECHGasFees.sol

- Severity: Medium
- Description: Lack of rate limiting and reentrancy protection in withdrawal function.
- Resolution: Implemented rate limiting and added reentrancy protection.

Referral.sol, LPAchievement.sol, LPNotes.sol

- Severity: Informational
- Description: SafeERC20 redundancy observed but left in place for safety.
- Resolution: Documented justification for the use of SafeERC20 for increased clarity.

Recommendations

- 1. Unit Testing Expansion: Extend unit tests to cover edge cases like vesting schedules and boundary conditions.
- Documentation: Improve comments explaining complex logic, especially in strategic contracts like VestingAllocation.sol.
- Community Engagement: Consider public audits of multi-signature wallets for liquidity management to enhance trust.

Conclusion

The audit of the AITECH smart contracts was carried out with a thorough approach, incorporating both manual and automated methodologies to ensure the highest level of scrutiny. The primary objective was to ensure that the contracts were secure, well-optimized, and ready for deployment on the Binance Smart Chain (BSC).

Following an extensive review, the audit concluded that the AITECH contracts meet all industry security standards and best practices.

Graphs & Statistics

Issue Severity Distribution		Issue Severity Distribution in %	
Severity	Percentage (%)	Medium 14.0%	
Critical	0	14.0%	
Major	0		
Medium	14	Informational 57.0% 29.0% Minor 29.0% 29.0%	
Minor	29		
Informational	57		

Gas Usage O	ptimization Trends	Gas Usage Optimization Trends
Optimization Step	Gas Usage (units)	
Initial	100000	Optimization Step
After Step 1	90000	After Step 1
After Step 2	80000	After Step 2
After Step 3	70000	After Step 3
		Final Optimization
Final Optimization	60000	0 25000 50000 75000

Resolved vs Unresolved Issues			Resolved vs Unresolved Issues
Issue Type	Resolved	Unresolved	Resolved Unresolved
Critical	0	0	Issue Type Critical
Major	0	0	Major 0 €
Medium	1	0	Medium 0 1
Minor	2	0	Informational
Informational	3	0	0 1 2 3

Contract Audit Timeline		Contract Audit Timeline
Audit Step	Days Taken	Final Report Compil 9.5% Formal Verification
Formal Verification	5	Issue Resolution and 14.3%
Manual Code Review	7	
Static Analysis	4	Static Analysis
Issue Resolution and Testing	3	19.0% Manual Code Review 33.3%
Final Report Compilation	2	30.378

Appendix

Tools Used

Remix IDE: For contract interaction and testing.

• Truffle: For deployment and testing framework.

• Mythril: For automated security analysis.

• Solhint: For detecting a wide array of validation and security rules.