Math 10350 – Example Set 04C

1. If
$$f'(a) = \lim_{h \to 0} \frac{(3+h)^{10} - 3^{10}}{h}$$
, what is a possible $f(x)$ and the value of a ?

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x) = \lim_{h \to 0} \frac{(x+h)^{10} - x^{10}}{h}$$

$$f(x) = \lim_{h \to 0} \frac{(x+h)^{10} - x^{10}}{h}$$

$$f(x) = \lim_{h \to 0} \frac{(x+h)^{10} - (x^{10})}{h}$$

$$f(x) = \lim_{h \to 0} \frac{(x+h)^{10} - (x^{10})}{h}$$

my second quess would have been: f(x)=3x, a=10 $f'(x) = \lim_{n \to \infty} \frac{x}{3^{x+h} - 3^{x}}$ f'(10) = lim 310+h-310

not the same

2.

The figure above describes the graph of y = f(x) and its tangent line at x = 3. Answer the problems below:

a. Estimate the average rate of change of f(x) over the interval [0,5].

a. Estimate the average rate of change of
$$f(x)$$
 over the interval $[0, 3]$.

average rate of change: $\frac{f(x)-f(a)}{b-a}$

$$f(5) = \frac{1}{2}, f(0) = \frac{3}{2} : \frac{f(5)-f(0)}{5-0} = \frac{\frac{1}{2}-\frac{7}{2}}{5-0} = \frac{-\frac{1}{2}}{5} = \frac{-3}{5}$$
 slope of gray line

b.
$$f(3) \stackrel{?}{=} 1$$
 and $f'(3) \stackrel{?}{=} 3$ slope of red line

c. Find the equation of the tangent line at x=3. Give your answer in slope-intercept form.

$$y-1=-\frac{2}{3}(x-3) \Rightarrow y-1=-\frac{2}{3}x+2 \Rightarrow y=-\frac{2}{3}x+3$$

3. The slope of the curve $y = ax^2 + bx$ at the point (2,4) is -8. Calculate the values of a and b.

4. Find the values of x for which both the graphs of the functions $f(x) = x^3 - 3x^2 + 7x + 8$ and $g(x) = x^3 - 3x^2 + 7x + 8$ $\frac{1}{3}x^3 - \frac{1}{2}x^2 + 5x - 3$ have parallel tangent lines at x. Pick one such location on the graph of f(x) and find the equation of the tangent line there.

3. The slope of the curve $y = ax^2 + bx$ at the point (2,4) is -8. Calculate the values of a and b. derivative at x=2 is -8: f'(x) = Zax +b = -8 f'(z) = 2a(z)+b= -8 4a+b= -8 this is unsolvable w/o: a(z)2+b(z)=4 solve the system of equations: (i) 4atb=-8 Check answers: (ii) 4a+2b=4 method of cancellation: -(4a+2b = 4) substitute into eq (i): 4a+ 12 = -8 **4.** Find the values of x for which both the graphs of the functions $f(x) = x^3 - 3x^2 + 7x + 8$ and $g(x) = x^3 - 3x^2 + 7x + 8$ $\frac{1}{3}x^3 - \frac{1}{2}x^2 + 5x - 3$ have parallel tangent lines at x. Pick one such location on the graph of f(x) and find the equation of the tangent line there. parallel tangent lines means f'(x)=g'(x) 3x2-6x+7+0==:3x2-2x+5-0 power rule Note: Since f'(x)=q'(x), I can use either to find the slope of the tangent line. I choose

g'(x) as it's simpler. But $(x,F(x)) \neq (x,g(x))$ so the Fangent line of f(x) at $x = \frac{1}{2}$ is parallel but not equal to the tangent line of g(x) at $x = \frac{1}{2}$.

tangent line at x=2