METALLICITY

OCTOBER 26, 2010

1. MIXTURE MODEL

Given n observed $(\frac{\alpha}{\text{Fe}}, \frac{\text{Fe}}{\text{H}})$ metallicities as $\{(x_i, y_i)\}_{i=1}^n$, or as (\mathbf{x}, \mathbf{y}) , each of which is drawn from one of m known model densities. We model the density of observations using the mixture model

(1)
$$f(x,y) = \sum_{j=1}^{m} \pi_j f_j(x,y)$$

where

$$\sum_{j=1}^{m} \pi_j = 1 \qquad \pi_j \ge 0, \quad j = 1, \dots, m$$

From the summation constraint, π has m-1 free parameters:

$$\boldsymbol{\pi} = (\pi_1, \dots, \pi_{m-1}, 1 - \pi_1 - \dots - \pi_{m-1})$$

Thus the likelihood of (1) is

$$L(\boldsymbol{\pi}) = \prod_{i=1}^{n} f(x_i, y_i)$$

$$= \prod_{i=1}^{n} \left\{ \sum_{j=1}^{m} \pi_j f_j(x_i, y_i) \right\}$$

$$\log L(\boldsymbol{\pi}) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} \pi_j f_j(x_i, y_i) \right)$$

Maximizing $\log L(\boldsymbol{\pi})$ with respect to $\boldsymbol{\pi}$ will yield $\hat{\boldsymbol{\pi}}_{\text{MLE}}$, but this arduous task can be avoided by adding a latent indicator, z, to the observed data (\mathbf{x}, \mathbf{y}) , representing the model group from which that observation was generated. Let G_j be the j^{th} model group, and let

$$z_{ij} = \mathbf{1}\big\{(x_i, y_i) \mapsto G_j\big\}$$

The complete data likelihood is defined over the complete data $\{(x_i, y_i, \mathbf{z}_i)\}_{i=1}^n$ as

$$L(\boldsymbol{\pi}) = \prod_{i=1}^{n} \prod_{j=1}^{m} \left\{ f_{j}(x_{i}, y_{i}) \right\}^{z_{ij}} \pi_{j}^{z_{ij}}$$

(2)
$$l(\boldsymbol{\pi}) = \sum_{i=1}^{n} \sum_{j=1}^{m} z_{ij} \log \left\{ \pi_{j} f_{j}(x_{i}, y_{i}) \right\}$$

2. Expectation Maximization

One way to estimate $\boldsymbol{\pi}$ is to use a maximum likelihood estimate, $\hat{\boldsymbol{\pi}}$, computed using expectation maximization. Starting from an initial set of guesses, $\boldsymbol{\pi}^{(0)}$, we iteratively find the expected value of the likelihood, (2), conditional on the data, and then find the $\operatorname{argmax}_{\boldsymbol{\pi}}$ of this expectation. The maximizing value the t^{th} iteration, $\hat{\boldsymbol{\pi}}^{(t)}$, is then used as the starting value for the next run, and we continue until the likelihood changes by less than 10^{-3} over twenty five iterations.

2.1. **Expectation step.** First we find the expected value of the log likelihood, (2), conditional on the data. Note that since z_{ij} is an indicator function, its expected value is equal to the probability that data point i comes from model j.

$$E_{\boldsymbol{\pi}}\Big[l(\boldsymbol{\pi})\big|\mathbf{x},\mathbf{y}\Big] = \sum_{i=1}^{n} \sum_{j=1}^{m} E_{\boldsymbol{\pi}}\Big[z_{ij}|x_i,y_i\Big] \Big\{\log f_j(x_i,y_i) + \log \pi_j\Big\}$$

Since we're ultimately maximizing, the non-constant component is of primary interest, and can be analytically specified by applying Bayes' rule:

$$E_{\pi} \left[z_{ij} | x_i, y_i \right] = \text{Probability} \left((x_i, y_i) \mapsto G_j | x_i, y_i \right)$$

$$= \Pr_{\pi} \left(z_{ij} | x_i, y_i \right)$$

$$= \frac{p(x_i, y_i | z_{ij} = 1) p(z_{ij} = 1)}{p(x_i, y_i)}$$

Thus the expected value of the indicator variable, z_{ij} , given the data and the parameters, $\boldsymbol{\pi}$, of the data's distribution defined by (1) is

(3)
$$E_{\pi} \left[z_{ij} | x_i, y_i \right] = \frac{\pi_j f_j(x_i, y_i)}{\sum_{j=1}^m \pi_j f_j(x_i, y_i)}$$

To iteratively evaluate this expectation, we let $w_{ij}^{(t)}$ be (3) at the t^{th} step:

$$w_{ij}^{(t+1)} = \begin{cases} \frac{\pi_j^{(t)} f_j(x_i, y_i)}{\sum_{k=1}^m \pi_k^{(t)} f_k(x_i, y_i)} & j = 1, \dots, m-1\\ \sum_{k=1}^m \pi_k^{(t)} f_k(x_i, y_i) & \\ 1 - w_{i1} - \dots - w_{i,m-1} & j = m \end{cases}$$

Since π is not defined for the first evaluation, we use a random initialization to generate $\mathbf{w}_{j}^{(0)}$. Convergence is not sensitive to the choice of values in this case, but may be if the likelihood is riddled with local maxima.

2.2. Maximizing with respect to π .

$$0 = \frac{\partial}{\partial \pi_k} \mathbf{E}_{\pi} \left[l(\pi) | \mathbf{x}, \mathbf{y} \right]$$

$$= \sum_{i=1}^{n} \left\{ w_{ij}^{(0)} \frac{1}{\pi_k} - w_{im}^{(0)} \frac{1}{1 - \pi_1 - \dots - \pi_{m-1}} \right\}, k = 1, \dots, m-1$$

as $\pi_m = 1 - \pi_1 - \ldots - \pi_{m-1}$.

$$\frac{1}{\pi_1} \sum_{i=1}^n w_{i1}^{(0)} = \dots = \frac{1}{\pi_{m-1}} \sum_{i=1}^n w_{i,m-1}^{(0)} = c$$

$$\hat{\pi}_k = \frac{\sum_{i=1}^n w_{ik}^{(0)}}{c}$$

$$\pi_j^{(1)} = \frac{\sum_{i=1}^n w_{ij}^{(0)}}{n}$$

And in general,

$$\pi_j^{(t+1)} = \frac{\sum_{i=1}^n w_{ij}^{(t)}}{n}$$

3. Covariance

The asymptotic covariance matrix of $\hat{\boldsymbol{\pi}}$ can be approximated by the inverse of the observed Fisher information matrix. Since there are only m-1 free parameters, let $\boldsymbol{\pi}'=(\pi_1,\ldots,\pi_{m-1})$. The likelihood can then be expressed as:

(4)
$$l(\boldsymbol{\pi'}) = \sum_{i=1}^{n} \log \left\{ \left(\sum_{j=1}^{m-1} \pi_j f_j \right) + (1 - \pi_1, \dots, \pi_{m-1}) f_m \right\}$$

The observed information matrix, $I(\boldsymbol{\pi}'|\mathbf{x},\mathbf{y})$, is given by the $m-1\times m-1$ negative hessian of (4):

$$I(\boldsymbol{\pi}|\mathbf{x},\mathbf{y}) = -\frac{\partial^2 l(\boldsymbol{\pi'})}{\partial \boldsymbol{\pi'} \partial \boldsymbol{\pi'}^T} = -\begin{bmatrix} \frac{\partial^2 l(\boldsymbol{\pi'})}{\partial^2 \pi_1} & \frac{\partial^2 l(\boldsymbol{\pi'})}{\partial \pi_1 \partial \pi_2} & \dots & \frac{\partial^2 l(\boldsymbol{\pi'})}{\partial \pi_1 \partial \pi_{m-1}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial^2 l(\boldsymbol{\pi'})}{\partial \pi_{m-1} \partial \pi_1} & \frac{\partial^2 l(\boldsymbol{\pi'})}{\partial \pi_{m-1} \partial \pi_2} & \dots & \frac{\partial^2 l(\boldsymbol{\pi'})}{\partial^2 \pi_{m-1}} \end{bmatrix}$$

where

$$\frac{\partial l(\boldsymbol{\pi'})}{\partial \pi_k} = \sum_{i=1}^n \frac{f_k - f_m}{\sum_{j=1}^m \pi_j f_j}$$
$$\frac{\partial^2 l(\boldsymbol{\pi'})}{\partial \pi_k \partial \pi_r} = -\sum_{i=1}^n \frac{(f_k - f_m)(f_r - f_m)}{(\sum_{j=1}^g \pi_j f_j)^2 f_r}$$

The inverse of $I(\pi'|\mathbf{x}, \mathbf{y})$ provides estimates of the variance, covariance, and correlation of $\hat{\boldsymbol{\pi}}$ as

$$Cov(\hat{\pi}_{p}, \hat{\pi}_{q}) = \begin{cases} \left[I^{-1}(\hat{\pi})\right]_{pq} & p, q < m \\ -\sum_{j=1}^{m-1} Cov(\hat{\pi}_{j}, \hat{\pi}_{q}) & p = m, q < m \\ \sum_{j=1}^{m-1} \sum_{k=1}^{m-1} Cov(\hat{\pi}_{j}, \hat{\pi}_{q}) & p, q = m \end{cases}$$

$$\operatorname{Var}(\hat{\pi}_j) = \sigma_j^2 = \left\{ \operatorname{Cov}(\hat{\boldsymbol{\pi}}) \right\}_{jj}$$

$$Corr(\hat{\pi}_p, \hat{\pi}_q) = \frac{Cov(\hat{\pi}_p, \hat{\pi}_q)}{\sqrt{\sigma_p^2 \sigma_q^2}}$$

METALLICITY 5

Table 1. Covariance, in percent, of $\hat{\pi}$ overlaid on $\hat{\pi}_i + \hat{\pi}_j$. Larger dots are covariances; negative covariances are red.

0.0001	0.001	-	-	-0.0004	-0.0001	-	-	0.0001	-	-	-	-	-	-	0.0007
-0.001	-0.0009	-	-0.0002	0.0015	-0.0004	-	-	-	-	-	-	-	-	-	-0.001
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-0.0002	0.0003	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_	-0.0001	-	-	0.0001	-	-	-	-	-	-	-	-	-	-	-
0.0003	-0.0001	-	0.0001	-0.0004	0.0002	-	-	-	-	-	-	-	-	-	-
-0.0001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-0.0011	-0.0001	-	-0.0013	0.0053	-0.0021	-	-	-	-	-	-	-	0.0001	-	0.001
0.0023	0.0013	-0.0001	0.0008	-0.002	-	-0.0001	0.0001	-	-	-	-	-	-	-	0.0023
-	-	-	-	-0.0001	0.0001	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.0003	-0.0003	-	-	-0.0001	0.0001	-	-	-	-	-	-	-	-	-	-
-0.0058	0.0041	0.0001	-0.0019	0.003	-0.0011	0.0002	0.0001	0.0003	-	-	-0.0001	-0.0001	-0.0001	-	-0.0012
0.0076	-0.0053	-0.0001	0.0019	-0.0086	0.0045	-0.0003	0.0002	-0.0003	-	-	-	-	-0.0001	-	-0.0005
0.0025	-0.0001	-0.0001	-0.0005	-0.0018	0.0011	-0.0001	0.0003	-	-	-	-	-	-	-	0.0012

FIGURE 1. Variance of $\hat{\boldsymbol{\pi}}$, true $\boldsymbol{\pi}$, in percent, and z-scores.

$$Z\text{-score} = \frac{\hat{\pi}_j - \pi}{\sigma_{\hat{\pi}_j}}$$

4. Likelihood ratio test

Given certain conditions

$$H_0: \boldsymbol{\pi} = \boldsymbol{\pi}_{\mathrm{true}}$$

 $H_1: \boldsymbol{\pi} \neq \boldsymbol{\pi}_{\mathrm{true}}$

$$\Lambda = -2\log \frac{\sup_{\boldsymbol{\pi} = \boldsymbol{\pi}_{\text{true}}} l(\boldsymbol{\pi})}{\sup_{\boldsymbol{\pi}} l(\boldsymbol{\pi})} = -2\{l(\boldsymbol{\pi}_{\text{true}}) - l(\hat{\boldsymbol{\pi}})\} \sim \chi_{m-1}^2$$

$$\begin{split} \Lambda_{\rm Halo~3} &= 25.025 \sim \chi_{15}^2 \\ \text{p-value}~ 10\text{k} &= 4.961\% \\ \text{p-value}~ 30\text{k} &= 1.3 \times 10^{-5}\% \\ \text{p-value}~ 50\text{k} &= 1.4 \times 10^{-12}\% \end{split}$$

Thus we accept H_0 when requiring 95% or less confidence; there is only a 4.961% chance we would see a value this extreme or more given H_0 is true. This holds for 400 to 1600 EM iterations.