Университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Вычислительная математика»

Отчёт

Лабораторная работа №4 Вариант 9

Выполнил:

Прокофьев Арсений Александрович P3213

Преподаватель:

Машина Екатерина Алексеевна

Санкт-Петербург, 2024 г.

Цель работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов. Лабораторная работа состоит из двух частей: вычислительной и программной. № варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

Вычислительная часть:

$$9 y = \frac{4x}{x^4 + 9} x \in [0, 2] h = 0,2$$

Введем обозначения:

$$SX = \sum_{i=1}^{n} x_i$$
, $SXX = \sum_{i=1}^{n} x_i^2$, $SY = \sum_{i=1}^{n} y_i$, $SXY = \sum_{i=1}^{n} x_i y_i$

Получим систему уравнений для нахождения параметров а и b:

$$\begin{cases} aSXX + bSX = SXY \\ aSX + bn = SY \end{cases},$$

Таблица табулирования:

n = 11

Х	0	0.2	0.4	0.6	8.0	1.0	1.2	1.4	1.6	1.8	2.0
У	0	0.088	0.177	0.263	0.340	0.4	0.433	0.436	0.411	0.369	0.320

Линейная аппроксимация:

$$SX = 0 + 0.2 + 0.4 + 0.6 + 0.8 + 1.0 + 1.2 + 1.4 + 1.6 + 1.8 + 2.0 = 11$$

 $SXX = 0^2 + 0.2^2 + 0.4^2 + 0.6^2 + 0.8^2 + 1.0^2 + 1.2^2 + 1.4^2 + 1.6^2 + 1.8^2 + 2.0^2 = 15.4$
 $SY = 0 + 0.088 + 0.177 + 0.263 + 0.340 + 0.4 + 0.433 + 0.436 + 0.411 + 0.369 + 0.320 = 3.237$
 $SXY = 0 * 0 + 0.2 * 0.088 + 0.4 * 0.177 + 0.6 * 0.263 + 0.8 * 0.340 + 1.0 * 0.4 + 1.2 * 0.433 + 1.4 * 0.436 + 1.6 * 0.411 + 1.8 * 0.369 + 2.0 * 0.320 = 4.01$

$$a*15.4 + b*11 = 4.01$$

 $a*11 + b*11 = 3.237$

P1(x) = 0.1757*x + 0.1186

X	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
у	0	0.088	0.177	0.263	0.340	0.4	0.433	0.436	0.411	0.369	0.320
P: (x	0.1186	0.1537	0.1889	0.224	0.2592	0.2943	0.3294	0.3646	0.3997	0.4349	0.47
3	0.1186	0.0657	0.0119	-0.039	-0.0808	-0.1057	-0.1036	-0.0714	-0.0113	0.0659	0.15

Вывод: исследуемая функциональная зависимость может быть приближенно описана линейной моделью P1(x) = 0.1757x + 0.1186, т. к. $P1(xi) \approx Yi$, $\varepsilon i \rightarrow min$

Определим меру отклонения: $S = \text{sum}(\varepsilon i^2) = 0.0805$

Квадратичная аппроксимация:

КВАДРАТИЧНАЯ АППРОКСИМАЦИЯ

Сумма квадратов отклонений запишется следующим образом:

$$S = \sum_{i=1}^{n} (a_0 + a_1 x_i + a_2 x_i^2 - y_i)^2 \to min$$

SX = 11.0

SXX = 15.4

SXXX = 24.2

SXXXX = 40.5328

SY = 3.237

SXY = 4.01

SXXY = 5.74992

$$\begin{cases} a_0n + a_1 \sum_{i=1}^n x_i + a_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 + a_2 \sum_{i=1}^n x_i^3 = \sum_{i=1}^n x_i y_i \\ a_0 \sum_{i=1}^n x_i^2 + a_1 \sum_{i=1}^n x_i^3 + a_2 \sum_{i=1}^n x_i^4 = \sum_{i=1}^n x_i^2 y_i \end{cases}$$

11A0 + 11A1 + 15.4A2 = 3.237

11A0 + 15.4A1 + 24.2A2 = 4.01

15.4A0 + 24.2A1 + 40.5328A2 = 5.74992

A0 = -0.0247

A1 = 0.6533

A2 = -0.2388

 $P_2(x) = -0.2388 \times x^2 + 0.6533 \times x - 0.0247$

X	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
Y	0	0.088	0.177	0.263	0.340	0.4	0.433	0.436	0.411	0.369	0.320
P2	-0.025	0.096	0.198	0.281	0.345	0.39	0.415	0.422	0.409	0.378	0.327
(x)											
Е	-0.025	0.008	0.021	0.018	0.005	-0.01	-0.018	-0.014	-0.002	0.009	0.007

Вывод: исследуемая функциональная зависимость может быть приближенно описана выбранной моделью, т. к. $P2(xi) \approx Yi$, εi —min

Определим меру отклонения: $S = \text{sum}(\varepsilon i^2) = 0.002233$

Среднеквадратичные отклонения:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}}$$

Для линейной: $\delta = 0.0855$

Для квадратичной: $\delta = 0.01425$

Программная реализация задачи:

https://github.com/MakeCheerfulInstall/Computational-Math-2024/tree/main/P3213/Prokofiev 367502/lab4

Вывод:

В результате выполнения данной лабораторной работы были изучены методы для нахождения аппроксимирующих функций, приближающим функцию, заданную множеством её точек.