Applied Statistics and Data Analysis

Part I Statistical Process and Quality Control

Introduction

Quality and Process Control

Definition of Quality

- Quality means fitness for use. and
- Quality is inversely proportional to variability.
- My definition: Is and should are the same.

Statistical Process Control (SPC)

- Statistical process control is, first and foremost, a way of thinking which happens to have some tools attached.

The Magnificent Seven

1. histogram 2. check sheet 3. Pareto chart 4. defect concentration diagram 5. cause-and-effect diagram 6. control chart 7. scatter diagram

Control Charts

Control Charts versus Hypothesis Testing

$$\bar{X} \approx \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
 (1)

Arithmetic mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{2}$$

Question: is $|\bar{x} - \mu_0|$ significant - μ_0 target value

- \bar{x} Arithmetic mean of the measurements Given: Level of significantce $\alpha=0.0027$

The Control Chart

No.	sample values						mean	sd	range
1	X ₁₁	X ₁₂		X _{1j}		X _{1n}	\bar{x}_1	s_1	R_1
2	X ₂₁	X22		X2j		x_{2n}	\bar{x}_2	<i>s</i> ₂	R_2
:	:	:		:		:	:	:	:
i	x _{i1}	Xi2		×ij		Xin	\bar{x}_i	s _i	R _i
:	:	:		:		:	:	:	:
k	x_{k1}	x_{k2}		X _{kj}		X _{kn}	\bar{x}_k	s _k	R_k

Figure 1: Data Set with Mean, Standard Deviation and Range

Mean values

$$\bar{x}_i = \frac{1}{n} \sum_{i=1}^n x_{ij} \tag{3}$$

Standard deviations

$$s_i = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_i)^2}$$
 (4)

Ranges

$$R_i = \max \left\{ x_{ij} | j \in \{1,...,n\} \right\} - \min \left\{ x_{ij} | j \in \{1,...,n\} \right\} \tag{Some all } i \in \{1,...,k\}$$

Control Chart with R and \bar{x}

R Chart Mean Range

$$\bar{R} = \frac{1}{k} \sum_{i=1}^{k} R_i \tag{6}$$

Control limits

$$UCL = D_4 \bar{R}; \quad LCL = D_3 \bar{R} \tag{7}$$

 \bar{x} Chart Mean Range

$$\bar{R} = \frac{1}{k} \sum_{i=1}^{k} R_i \tag{8}$$

Control limits

$$UCL = \mu + 3\frac{\sigma}{\sqrt{n}}; \quad LCL = \mu - 3\frac{\sigma}{\sqrt{n}}$$
 (9)

 μ : Process mean

 σ : Process standard deviation

Problem: We don't know μ and σ so we have to estimate them:

We know that for an independent sample $x_1,...,x_n$ from a normal distribution with parameters μ and σ the mean

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j \tag{10}$$

satisfies

$$E\left(\bar{x}\right) = \mu \quad and \quad Var\left(\bar{x}\right) = \frac{\sigma^2}{n}$$
 (11)

The mean is an unbiased estimator with the standard error

$$SE\left(\bar{x}\right) = \frac{\sigma}{\sqrt{n}}$$
 (12)

Assumption: R chart is under statistical control.

- The value \bar{R} is a reliable estimate for the mean range.
- The value \bar{R} is a reliable estimate for the process standard deviation

$$\hat{\sigma} = \frac{\bar{R}}{dz} \tag{13}$$

Any samples excluded for construction of the R chart should also be disregarded for construction of the \bar{x} chart. This results in a sample of k^{\star} valid samples, (where k^{\star} denotes the reduced number of samples). Mean values of $\bar{x}_1,...,\bar{x}_{k^{\star}}$ provide an estimate of μ , i.e

$$\hat{\mu} = \bar{\bar{x}} = \frac{1}{k^{\star}} \sum_{i=1}^{k^{\star}} \bar{x_i} \tag{14}$$

Control limits

$$UCL = \bar{\bar{x}} + 3\frac{\bar{R}}{d_2}\frac{1}{\sqrt{n}} \approx \bar{\bar{x}} + A_2\bar{R}$$

$$UCL = \bar{\bar{x}} - 3\frac{\bar{R}}{d_2}\frac{1}{\sqrt{n}} \approx \bar{\bar{x}} - A_2\bar{R}$$
(15)

Control Chart with \bar{x} and s

s Chart

The centreline of the s chart is denoted by \bar{s} and is calculated from the arithmetic mean of the standard deviations

$$\bar{s} = \frac{1}{k} \sum_{i=1}^{k} s_i \tag{16}$$

Control limits

$$UCL = B_4\bar{s}; \quad LCL = B_3\bar{s} \tag{17}$$

\bar{x} Chart

Using an s chart of a process that is under control, the process standard deviation can be estimated by

$$\hat{\sigma} = \frac{\bar{s}}{c_4} \tag{18}$$

Any samples excluded for construction of the s chart should also be disregarded for construction of the \bar{x} chart. This results in a sample of k^* valid samples, (where k^* denotes the reduced number of samples). Mean values of $\bar{x}_1, ..., \bar{x}_{k^*}$ provide an estimate of μ , i.e

$$\hat{\mu} = \bar{\bar{x}} = \frac{1}{k^{\star}} \sum_{i=1}^{k^{\star}} \bar{x_i} \tag{19}$$

Control limits

$$UCL = \bar{\bar{x}} + 3\frac{\bar{s}}{c_4} \frac{1}{\sqrt{n}} \approx \bar{\bar{x}} + A_3 \bar{s}$$

$$UCL = \bar{\bar{x}} - 3\frac{\bar{s}}{c_4} \frac{1}{\sqrt{n}} \approx \bar{\bar{x}} - A_3 \bar{s}$$
(20)

Individual Control Charts

Individual control charts have exactly one measurement per sample. Problem: You cannot estimate variability from a single measurement. Idea: Use variation of two adjacent measurements. **Moving ranges**

$$MR_i = |x_{i+1} - x_i| (21)$$

for all $i \in \{1, ..., n-1\}$.

Arithmetic mean of the moving ranges

$$\bar{MR} = \frac{1}{n-1} \sum_{i=1}^{n-1} MR_i \tag{22}$$

Estimated process standard deviation

$$\hat{\sigma} = \frac{\overline{MR}}{d_2} = \frac{\overline{MR}}{1.128} \tag{23}$$

Since two neighboring measurements were used to calculate the moving ranges we have $d_2 = 1.128$.

Centerline The centerline for the individuals control chart is the arithmetic mean of the measured values.

$$\bar{x} = \frac{1}{k} \sum_{i=1}^{k} x_i \tag{24}$$

Control limits

$$UCL = \overline{x} + 3\frac{\overline{MR}}{1.128}; \qquad LCL = \overline{x} - 3\frac{\overline{MR}}{1.128} \tag{25}$$

Control Charts for Attributes Data – p Chart

Number of defectives under number tested is a discrete random variable. Given: Random sample of size n, of which D parts are defective We know: The number of defective D under n examined parts follows a binomial distribution with the unknown probability p of success. **Estimated probability**

$$\hat{p} = \frac{D}{n} \tag{26}$$

Variance

$$Var(\hat{p}) = \frac{p(1-p)}{p} \tag{27}$$

Given: - k random samples with $n_1,...,n_k$ values. - Each of these samples contains $d_1,...,d_k$ defective products. k relative frequencies

$$p_1 = \frac{d_1}{n_1}, ..., p_k = \frac{d_k}{n_k} \tag{28}$$

Centerline The centreline and the control limits of a p chart are again determined from a stable trial run with k^* valid samples.

Again $k^{\star} \leq k$ is the reduced number of samples.

Distinguish 2 cases: 1. The sample sizes $n_1, ..., n_k$ are all equal to n. 2. The sample sizes are not all equal.

Case 1 Centerline

$$\bar{p} = \frac{1}{k^{\star}} \sum_{i=1}^{k^{\star}} p_i \tag{29}$$

Control limits

$$UCL = \bar{p} + 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}; \qquad LSL = \bar{p} - 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$$
 (30)

Case 2 Centerline

$$\bar{p} = \frac{d_1 + \dots + d_{k^*}}{n_1 + \dots + n_{k^*}} \tag{31}$$

Control limits

$$UCL_{i} = \bar{p} + 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n_{i}}}; \quad LSL_{i} = \bar{p} - 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n_{i}}}$$
 (32)

The control limits now depend on the index i.

Part II

Multiple Regression

Part III

Design of Experiment