Chapitre 3 : Généralités sur les vecteurs

Définition: Vecteurs

Toute translation du plan est associée à un **vecteur**, qui représente le déplacement des points occasionné par la translation. Un vecteur est entièrement déterminé par :

- Sa direction.
- Son sens.
- Sa longueur, qu'on appelle sa norme.

Exemple

Sur la figure ci-contre, le triangle \mathcal{T}' est l'image du triangle \mathcal{T} par la translation de vecteur \vec{v} .

Définition : Égalité de vecteurs

Deux vecteurs sont **égaux** si ils ont la même direction, le même sens et la même norme. Dans ce cas, ils correspondent à la même translation.

Exemple

Les vecteurs \vec{v}_1 et \vec{v}_2 sont *égaux*.

Les vecteurs $\vec{v}_{\rm 1}$ et $\vec{v}_{\rm 2}$ sont $\it différents$: leur direction n'est pas la même.

Les vecteurs \vec{v}_1 et \vec{v}_2 sont différents : leur $\underline{\text{sens}}$ n'est pas le même.

Les vecteurs $\vec{v}_{\rm 1}$ et $\vec{v}_{\rm 2}$ sont $\it différents$: leur norme n'est pas la même.

Définition: Vecteurs opposés

Si deux vecteurs ont la même direction, la même norme, mais des sens différents, on dit qu'ils sont **opposés**.

Vocabulaire

Si une translation envoie le point A sur le point B, on peut appeller le vecteur de cette translation $\overline{\overline{AB}}$

Définition: Somme de vecteurs

Soient deux vecteurs \vec{u} et \vec{v} . Si on enchaîne les translations correspondant à \vec{u} et à \vec{v} , on obtient une nouvelle translation.

Le vecteur qui lui est associé est appelé la **somme de** \vec{u} **et de** \vec{v} . On la note $\vec{u} + \vec{v}$

Exemple

Remarque

L'ordre de la somme n'importe pas : $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.

Propriété: Relation de Chasles

Soient A, B et C trois points. On a

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$