

Objetivos

- Utilización de herramientas para desarrollo app
- Análisis y diseño de estructura de datos.
- Estudio de algoritmos para segmentar imágines
- Planificación

Recursos

- App Inventor 2
- Firebase
- MatLab
- Personal Image Classifier
- Virtual Paradign Online

Organización

- Análisis de aplicaciones similares
- Planificación, análisis, diseño, implementación y pruebas
- Conclusiones

REVISION DE APLICACIONES DE AVISTAMIENTO DE AVES

Aves de España

PLANIFICACIÓN Y ANÁLISIS DE REQUISITOS.

CASOS DE USO

DIAGRAMAS DE ACTIVIDAD

CREAR UNA OBSERVACIÓN

Especificación de un caso de uso

Nombre	Crear Observación
Autor	José Luis Campero Romero
Descripción	El sistema deberá mostrar la pantalla de añadir una observación cuando el
	usuario pulse la opción de cuaderno de campo y a continuación Añadir
	Observación.
Precondición	Estar identificado con su usuario y contraseña y seleccionado la opción de
	cuaderno de campo.
Secuencia	 El actor pulsa el botón de Añadir Observación
	El sistema solicita al usuario una serie de datos relacionados con el
	avistamiento, además de poder capturar una foto, audio y
	localización.
	 El actor introduce los datos solicitados y almacena la observación.
	 El sistema almacena los datos y avisa al usuario que la operación se
	ha llevado con éxito.
Excepciones	 Si se olvidan algunos datos, el sistema los validará y solicitará al
	usuario que rellene algunos datos obligatorios.
	Este caso de uso continúa con nuevas observaciones.
Postcondición	Se ha añadido una nueva observación.

Diseño y Arquitectura

BASE DE DATOS RELACIONAL

Diseño de la Base de Datos: Relacional versus JSON.

BASE DE DATOS JSON

Realtime DataBase y Storage

REGLAS DE REALTIME DATABASE

1

REGLAS STORAGE

PRIMER NIVEL DE DATOS

2

PRIMER NIVEL STORAGE

4

⊖	gs://marshbirds-7f263.appspot.com
	Name
	AvesHuelva/
	Observaciones/

Prototipos e interacción de pantallas

Página Inicial

Menú BirdWatching

Menú Cuaderno de Campo

Crear una Observación

Flamenco común Phoenicopterus roseus Greater Flamingo

Elegante ave de gran tamaño. En las salinas es frecuente observarlo en grandes grupos con sus picos sumergidos a la vez que "taconean". El color rosado de sus plumas lo obtiene alimentándose de un pequeño crustáceo, la Artemia salina . Desde el año 2008 cría en el Paraje Natural Marismas del Odiel, siendo la única colonia de Andalucía cuando los años son muy secos.

Consulta de Aves

IDENTIFICACIÓN DE AVES

Para la identificación de aves se han contemplado el uso de dos herramientas:

GoogLeNet

Clasificador de imágenes que utiliza una red neuronal convolucional profunda que se ejecutará desde MatLab donde se modificará el tamaño de la imágen para poder realizar la clasificación e identificación.

Personal Image Classifier

Herramienta de Machine Learning, la cual hace uso de Tensorflow.js

GOOGLENET

Cargar la red GoogLeNet previamente entrenada.

Este paso requiere el paquete de soporte del modelo Deep Learning Toolbox para la red GoogLeNet en MatLab.

Modificación del tamaño de la imagen.

La imagen que se desea clasificar debe tener el mismo tamaño que el tamaño de entrada en la red.

Capa de entrada de imagen.

El tamaño de entrada de la red es la propiedad InputSize de la imagen. La propiedad ClassNames de esta capa contiene los nombres de las clases aprendidas por la red

RECONOCIMIENTO DE AVE CON GOOGLENET

PERSONAL IMAGE CLASSIFIER

Creación de etiquetas para crear el modelo

El primer paso es la creación de etiquetas a las cuales les añadimos imágenes para crear nuestro modelo.

Training

Una vez creadas las etiquetas con sus rtespectivas imágenes se procede al entrenamiento del modelo.

Exportación del modelo

Finalizado el entrenamiento, se crea y se exporta el modelo para poder utilizarlo con una extensión específica que se integra con nuestra app desarrollada con App Inventor.

PERSONAL IMAGE CLASSIFIER

IMPLEMENTACIÓN APP INVENTOR

Diseño de Pantallas

Las pantallas se diseñan en la parte gráfica designer donde tenemos una paleta de herramientas dividido en: user interface, layout, Media, sensores, social, storage, conctivity y extensiones.

Desarrollo con Bloques

Es el lugar donde se desarrolla la lógica de cada pantalla, de forma intuitiva podemos conexionar bloques utilizando lenguaje de control..

Extensiones

Software que se puede integrar para utilizar en el desarrollo de bloques como por ejemplo la de FireBase o la de Personal image Classsifier.

TECNOLOGIA UTILIZADA

MatLab y PCI

App BirdWatching en las Marismas de Huelva

PRUEBAS

Se han realizado pruebas de todos los requisitos mencionados en el proyecto junto a sus casos de uso:

- El usuario se puede registrar e iniciar en la aplicación.
- El usuario puede consultar las aves y buscarlas según determinados criterios.
- Consultas de descripción y características del ave.
- Grabar observaciones en el cuaderno de campo.

CONCLUSIONES

- Dificultad al interpretar una base de datos noSql.
- Utilización nuevas tecnologías.
- Nueva fase en la que se incluyan otros idiomas para formar parte de un proyecto con la EOI Huelva referente a ecoTurismo.

BIBLIOGRAFIA

- https://firebase.google.com/
- https://console.firebase.google.com/project/marshbirds-7f263/database/marshbirds-7f263/data
- https://www.qrcode-monkey.com/es/
- https://online.visualparadigm.com/app/diagrams/#diagram:proj=0&type=UseCaseDiagram&gallery=/repository/b92c57a8-fe64-40ed-8d29-f990c60442ba.xml&name=ATM
- https://sourceforge.net/projects/ganttproject/
- https://es.mathworks.com/solutions/image-video-processing/object-recognition.html
- http://appinventor.mit.edu/explore/resources/ai/image-classification-look-extension
- https://www.tensorflow.org/overvie
- https://classifier.appinventor.mit.edu/oldpic/