Assignment Week 3-4 Data Wrangling with Python: Activity 5 &6

" Name: Karthikeyan Chellamuthu

Date: 04-10-2022 ""

1. Data Wrangling with Python: Activity 5 -- Boston Housing Dataset

```
In [1]:
          # Load the necessary libraries
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import math
In [2]:
          # Create df of Boston housing dataset.
          bs housing = pd.read csv('Boston housing.csv')
In [3]:
          # verify the first 10 records of df.
          bs housing.head(10)
              CRIM
                      ZN INDUS CHAS
                                         NOX
                                                 RM
                                                      AGE
                                                              DIS
                                                                   RAD
                                                                         TAX PTRATIO
                                                                                             B LSTAT P
Out[3]:
         0 0.00632
                     18.0
                             2.31
                                        0.538
                                               6.575
                                                       65.2 4.0900
                                                                          296
                                                                                   15.3 396.90
                                                                                                  4.98
            0.02731
                      0.0
                             7.07
                                        0.469
                                               6.421
                                                       78.9 4.9671
                                                                      2
                                                                          242
                                                                                   17.8 396.90
                                                                                                  9.14
            0.02729
                      0.0
                             7.07
                                        0.469
                                               7.185
                                                       61.1 4.9671
                                                                          242
                                                                                   17.8
                                                                                       392.83
                                                                                                  4.03
            0.03237
                                        0.458
                                               6.998
                                                       45.8 6.0622
                                                                      3
                                                                          222
                                                                                   18.7 394.63
                                                                                                  2.94
                      0.0
                             2.18
            0.06905
                      0.0
                             2.18
                                        0.458
                                               7.147
                                                       54.2 6.0622
                                                                          222
                                                                                   18.7
                                                                                        396.90
                                                                                                  5.33
            0.02985
                             2.18
                                        0.458
                                               6.430
                                                       58.7 6.0622
                                                                      3
                                                                          222
                                                                                   18.7 394.12
                                                                                                  5.21
                      0.0
            0.08829
                     12.5
                             7.87
                                        0.524
                                               6.012
                                                       66.6 5.5605
                                                                      5
                                                                          311
                                                                                   15.2
                                                                                        395.60
                                                                                                 12.43
            0.14455
                     12.5
                             7.87
                                        0.524
                                               6.172
                                                       96.1 5.9505
                                                                      5
                                                                          311
                                                                                   15.2 396.90
                                                                                                 19.15
            0.21124
                     12.5
                             7.87
                                        0.524
                                               5.631
                                                      100.0 6.0821
                                                                      5
                                                                          311
                                                                                   15.2 386.63
                                                                                                 29.93
            0.17004 12.5
                             7.87
                                      0 0.524 6.004
                                                       85.9 6.5921
                                                                      5
                                                                         311
                                                                                   15.2 386.71
                                                                                                 17 10
In [4]:
          # Find the number of records
          print('Total number of records in the Boston Housing dataframe: ', len(bs_housing.in
         Total number of records in the Boston Housing dataframe:
In [6]:
          # Create a mini dataframe with columns that do not include CHAS, NOX, B, and LSTAT
          bs_housing_sml = bs_housing.drop(['CHAS', 'NOX', 'B', 'LSTAT'], axis=1)
          bs_housing_sml.head()
```

Out[6]:

	CRIM	ZN	INDUS	RM	AGE	DIS	RAD	TAX	PTRATIO	PRICE
0	0.00632	18.0	2.31	6.575	65.2	4.0900	1	296	15.3	24.0
1	0.02731	0.0	7.07	6.421	78.9	4.9671	2	242	17.8	21.6
2	0.02729	0.0	7.07	7.185	61.1	4.9671	2	242	17.8	34.7
3	0.03237	0.0	2.18	6.998	45.8	6.0622	3	222	18.7	33.4
4	0.06905	0.0	2.18	7.147	54.2	6.0622	3	222	18.7	36.2

In [7]:

verify the last 7 records of the new dataframe you just created.

bs_housing_sml.tail(7)

```
Out[7]:
```

	CRIM	ZN	INDUS	RM	AGE	DIS	RAD	TAX	PTRATIO	PRICE
499	0.17783	0.0	9.69	5.569	73.5	2.3999	6	391	19.2	17.5
500	0.22438	0.0	9.69	6.027	79.7	2.4982	6	391	19.2	16.8
501	0.06263	0.0	11.93	6.593	69.1	2.4786	1	273	21.0	22.4
502	0.04527	0.0	11.93	6.120	76.7	2.2875	1	273	21.0	20.6
503	0.06076	0.0	11.93	6.976	91.0	2.1675	1	273	21.0	23.9
504	0.10959	0.0	11.93	6.794	89.3	2.3889	1	273	21.0	22.0
505	0.04741	0.0	11.93	6.030	80.8	2.5050	1	273	21.0	11.9

```
In [8]:
```

Draw the histograms of all the variables(columns) in the new dataframe. Plot them

```
for x in bs_housing_sml.columns:
    plt.title("Plot - "+x,fontsize=15)  # Name the title of the plot
    plt.hist(bs_housing_sml[x])  # Build hostogram of column
    plt.show()  # Show the plot
```



```
In [9]: # Plot scatter plot of crime versus price.

bs_housing_sml.plot.scatter('CRIM', 'PRICE', s=50, c='orange', edgecolor='k')
plt.grid(True)
plt.title('Scatter plot - Crime vs Price', fontsize=18)
plt.show()
```



```
In [10]: # Plot using log10(crime) vs price.

CRIM_lg = np.log10(bs_housing_sml['CRIM'])

plt.scatter(CRIM_lg, bs_housing_sml['PRICE'], s=50, c='orange', edgecolor='k')
plt.grid(True)
plt.title('Scatter plot - Crime_log10 vs Price', fontsize=18)
plt.show()
```



```
In [11]: # Calculate some useful statistics.
    print('mean of room per dwelling: ', bs_housing_sml['RM'].mean())
    mean of room per dwelling: 6.284634387351787
In [12]: print('median of age: ', bs_housing_sml['AGE'].median())
    median of age: 77.5
In [13]: print('mean of distance to five Boston employment center: ', bs_housing_sml['DIS'].m
    mean of distance to five Boston employment center: 3.795042687747034
In [14]: # Percentage of houses with Low price(<20,000)
```

```
Count_low = bs_housing_sml[bs_housing_sml['PRICE'] < 20].count()['PRICE'] # cou
Count_all = bs_housing_sml['PRICE'].count() # cou
print('percentage of houses with low price(<20k): ', Count_low*100/Count_all)</pre>
```

percentage of houses with low price(<20k): 41.50197628458498

2. Data Wrangling with Python: Activity 6 -- Adult Income Dataset

```
In [15]: # All necessary libraries are loaded under Activity 5.

# Read Adult Income Dataset from URL/CSV file

adult_inc = pd.read_csv('adult_income_data.csv')
adult_inc.head()
```

```
Out[15]:
                    State-
                                                       Never-
                                                                     Adm-
                                                                              Not-in-
                                                                                                               United-
               39
                             77516 Bachelors 13
                                                                                         Male 2174 0 40
                      gov
                                                      married
                                                                    clerical
                                                                               family
                                                                                                                 States
                      Self-
                                                      Married-
                                                                                                                United-
                                                                      Exec-
                     emp-
            0
               50
                             83311
                                      Bachelors
                                                 13
                                                          civ-
                                                                             Husband
                                                                                         Male
                                                                                                       0
                                                                                                          13
                      not-
                                                                managerial
                                                                                                                 States
                                                       spouse
                       inc
                                                                 Handlers-
                                                                                                                United-
                                                                              Not-in-
               38
                   Private 215646
                                       HS-grad
                                                      Divorced
                                                                                         Male
                                                                                                       0
                                                                                                           40
                                                                               family
                                                                                                                 States
                                                                   cleaners
                                                      Married-
                                                                 Handlers-
                                                                                                                United-
               53 Private 234721
                                                  7
                                                                                                       0
                                                                                                          40
                                           11th
                                                          civ-
                                                                             Husband
                                                                                         Male
                                                                   cleaners
                                                                                                                 States
                                                       spouse
                                                      Married-
                                                                      Prof-
               28
                   Private
                           338409
                                      Bachelors
                                                          civ-
                                                                                 Wife Female
                                                                                                      0
                                                                                                          40
                                                                                                                  Cuba
                                                                   specialty
                                                       spouse
                                                      Married-
                                                                      Exec-
                                                                                                                United-
               37 Private 284582
                                        Masters
                                                 14
                                                                                 Wife Female
                                                                                                      0
                                                                                                          40
                                                          civ-
                                                                managerial
                                                                                                                 States
                                                       spouse
```

```
In [16]: # Read txt file line by line and create list of coulumn names

names = []
with open('adult_income_names.txt', 'r') as t: # Open txt file for read
    for line in t:
        t.readline() # read line by line
        var=line.split(":")[0] # end reading when encountering
        names.append(var) # add column name into name lis

Out[16]: ['age',
```

```
'workclass',
'fnlwgt',
'education',
'education-num',
'marital-status',
'occupation',
'relationship',
'sex',
'capital-gain',
```

```
'capital-loss',
            'hours-per-week',
            'native-country']
In [17]:
            # Add a name of Income into list of column names.
            names.append('Income')
            names
           ['age',
Out[17]:
            'workclass',
            'fnlwgt',
            'education',
            'education-num',
            'marital-status',
            'occupation',
            'relationship',
            'sex',
            'capital-gain',
            'capital-loss',
            'hours-per-week',
            'native-country',
            'Income']
In [18]:
            # read the csv file again, with column with list of names as column
            adult_inc1 = pd.read_csv('adult_income_data.csv', names=names)
            adult_inc1.head()
Out[18]:
                                                 education-
                                                             marital-
                                                                                                        capit
                              fnlwgt education
              age workclass
                                                                       occupation
                                                                                  relationship
                                                                                                   sex
                                                               status
                                                       num
                                                                                                          ga
                                                                            Adm-
                                                                                       Not-in-
                                                               Never-
           0
               39
                               77516
                                       Bachelors
                                                         13
                                                                                                          21
                    State-gov
                                                                                                  Male
                                                              married
                                                                           clerical
                                                                                        family
                                                             Married-
                    Self-emp-
                                                                            Exec-
           1
               50
                               83311
                                                         13
                                                                                      Husband
                                                                                                  Male
                                       Bachelors
                                                                  civ-
                      not-inc
                                                                       managerial
                                                               spouse
                                                                        Handlers-
                                                                                       Not-in-
           2
               38
                      Private
                              215646
                                        HS-grad
                                                          9
                                                             Divorced
                                                                                                  Male
                                                                          cleaners
                                                                                        family
                                                             Married-
                                                                        Handlers-
           3
               53
                      Private 234721
                                            11th
                                                                                      Husband
                                                                                                  Male
                                                                  civ-
                                                                          cleaners
                                                               spouse
                                                             Married-
                                                                             Prof-
                      Private 338409
                                                                                          Wife Female
               28
                                       Bachelors
                                                         13
                                                                  civ-
                                                                         specialty
                                                               spouse
In [19]:
            # Find missing value
            adult_inc1.isnull().sum()
                               0
           age
Out[19]:
                               0
           workclass
           fnlwgt
                               0
                               0
           education
           education-num
                               0
```

```
marital-status
                   0
                   0
occupation
relationship
                   0
                   0
sex
capital-gain
                   0
capital-loss
                   0
hours-per-week
                   0
native-country
                   0
Income
                   0
dtype: int64
```

"I do not see any missing values"

```
# Create dataframe with only age, education, and occupation by using subsetting
adult_inc2 = adult_inc1[['age', 'education', 'occupation']]
adult_inc2.head()
```

```
Out[20]:
                     education
                                       occupation
               age
            0
                39
                      Bachelors
                                      Adm-clerical
            1
                 50
                      Bachelors
                                   Exec-managerial
            2
                38
                       HS-grad
                                Handlers-cleaners
            3
                53
                           11th Handlers-cleaners
                28
                      Bachelors
                                     Prof-specialty
```

```
In [21]: # Plot histogram of age wih a bin size of 20.

plt.title("Plot of age",fontsize=15) # Name the title of the plot
    plt.hist(adult_inc2['age'], bins=20) # Build hostogram of column
    plt.show() # Show the plot
```



```
In [22]: # Create a function to strip whitespace characters.

def strip_wt_spc(var):
    var.strip() # strip function to remove whitespace
    return
```

```
In [23]: # Apply above function to all columns with string values.
```

```
def strip col(var):
                                                                # Function to create new col and
               adult_inc2['newcol'] = var.apply(strip_wt_spc)
               adult_inc2.var = adult_inc2['newcol']
                                                                # Replace old col with new col
               return
          # Strip whitespace from 'education' column
          strip_col(adult_inc2['education'])
          # Strip whitespace from 'occupation' column
          strip_col(adult_inc2['occupation'])
          adult inc2 = adult inc2.drop(['newcol'], axis=1)
          adult inc2.head()
         C:\Users\LENOVO\AppData\Local\Temp/ipykernel 9660/3264325673.py:4: SettingWithCopyWa
         rning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
          ser_guide/indexing.html#returning-a-view-versus-a-copy
           adult_inc2['newcol'] = var.apply(strip_wt_spc)
            age education
                                occupation
Out[23]:
                               Adm-clerical
          n
             39
                  Bachelors
          1
             50
                  Bachelors
                            Exec-managerial
             38
          2
                   HS-grad Handlers-cleaners
          3
             53
                      11th Handlers-cleaners
          4
             28
                  Bachelors
                              Prof-specialty
In [24]:
          # Find number of people who are gaed between 30 and 50
          Count = adult_inc2[(30 < adult_inc2['age']) & (adult_inc2['age'] < 50)].count()['age']</pre>
          print('There are ', Count, ' people aged between 30 and 50.')
          There are 14927 people aged between 30 and 50.
In [25]:
          # Group the records based on age and education to find how the mean age is distribut
          adult_inc3 = adult_inc2.groupby(['education'])['age'].mean()
          # Display mean of age by education
          adult inc3
         education
Out[25]:
          10th
                           37.429796
          11th
                           32.355745
          12th
                           32.000000
          1st-4th
                           46.142857
          5th-6th
                           42.885886
          7th-8th
                           48.445820
          9th
                           41.060311
          Assoc-acdm
                           37.381443
          Assoc-voc
                           38.553546
          Bachelors
                           38.904949
```

Doctorate 47.702179
HS-grad 38.974479
Masters 44.049913
Preschool 42.764706
Prof-school 44.746528
Some-college 35.756275
Name: age, dtype: float64

```
In [26]: # Plot series of mean
adult_inc3.plot(kind='line', figsize=(10,5))
```

Out[26]: <AxesSubplot:xlabel='education'>

Group by occupation and show the summary statistics of age.
adult_inc2.groupby(['occupation'])['age'].describe()

Out[27]:		count	mean	std	min	25%	50%	75 %	max
	occupation								
	?	1843.0	40.882800	20.336350	17.0	21.0	35.0	61.0	90.0
	Adm-clerical	3770.0	36.964456	13.362998	17.0	26.0	35.0	46.0	90.0
	Armed-Forces	9.0	30.222222	8.089774	23.0	24.0	29.0	34.0	46.0
	Craft-repair	4099.0	39.031471	11.606436	17.0	30.0	38.0	47.0	90.0
	Exec-managerial	4066.0	42.169208	11.974548	17.0	33.0	41.0	50.0	90.0
	Farming-fishing	994.0	41.211268	15.070283	17.0	29.0	39.0	52.0	90.0
	Handlers-cleaners	1370.0	32.165693	12.372635	17.0	23.0	29.0	39.0	90.0
	Machine-op-inspct	2002.0	37.715285	12.068266	17.0	28.0	36.0	46.0	90.0
	Other-service	3295.0	34.949621	14.521508	17.0	22.0	32.0	45.0	90.0
	Priv-house-serv	149.0	41.724832	18.633688	17.0	24.0	40.0	57.0	81.0
	Prof-specialty	4140.0	40.517633	12.016676	17.0	31.0	40.0	48.0	90.0
	Protective-serv	649.0	38.953775	12.822062	17.0	29.0	36.0	47.0	90.0

	count	mean	std	min	25%	50%	75%	max
occupation								
Sales	3650.0	37.353973	14.186352	17.0	25.0	35.0	47.0	90.0
Tech-support	928.0	37.022629	11.316594	17.0	28.0	36.0	44.0	73.0
Transport-moving	1597.0	40.197871	12.450792	17.0	30.0	39.0	49.0	90.0

[&]quot;Exec-managerial" occupation has oldest workers with average of 42 years.

Armed-Forces occupation has least count of '9' and its very low as compared to other occupations. Hence, this group can be considered as outlier

```
In [28]: # Plot values on bar chart

summary = adult_inc2.groupby(['occupation'])['age'].describe() # Write summary into
plt.barh(summary.index, summary['count']) # Plot horizontal ba
```

Out[28]: <BarContainer object of 15 artists>


```
In [29]: # Merge the data using common key
# Create 2 test datasets with one common variable.

adult_inc4 = adult_inc1[['age', 'education', 'occupation']].sample(5, random_state=1 adult_inc4.head()
```

Out[29]:		age	education	occupation
	22357	51	HS-grad	Machine-op-inspct
	26009	19	11th	Sales
	20734	40	HS-grad	Exec-managerial
	17695	17	10th	Handlers-cleaners
	27908	61	7th-8th	Craft-repair

```
adult_inc5 = adult_inc1[['age', 'marital-status', 'native-country']].sample(5, rando
adult_inc5.head()
```

[&]quot;?" has lagest share of the workforce above 75th percentile.

```
Week 3-4 Exercise Assignment Karthikeyan Chellamutu
Out[30]:
                            marital-status native-country
                   age
           22357
                    51
                        Married-civ-spouse
                                              United-States
           26009
                                              United-States
                    19
                             Never-married
           20734
                    40 Married-civ-spouse
                                              United-States
                                             United-States
           17695
                    17
                             Never-married
           27908
                    61 Married-civ-spouse
                                                    Poland
In [31]:
            # Merge above 2 dataframes using age column
            adult_mrg = pd.merge(adult_inc4, adult_inc5, on='age', how='inner')
            adult_mrg
Out[31]:
              age education
                                      occupation
                                                      marital-status native-country
           0
               51
                      HS-grad
                               Machine-op-inspct Married-civ-spouse
                                                                       United-States
           1
               19
                         11th
                                            Sales
                                                      Never-married
                                                                       United-States
           2
               40
                      HS-grad
                                  Exec-managerial Married-civ-spouse
                                                                       United-States
                                Handlers-cleaners
           3
                17
                         10th
                                                      Never-married
                                                                       United-States
               61
                       7th-8th
                                      Craft-repair Married-civ-spouse
                                                                             Poland
          3. Create a series and practice basic arithmetic steps
```

```
In [32]:
          # series 1
          data1 = [7.3, -2.5, 3.4, 1.5]
          label1 = ['a', 'c', 'd', 'e']
          series1 = pd.Series(data=data1, index=label1)
                                                         # Create series
          print(series1)
              7.3
             -2.5
              3.4
              1.5
         dtype: float64
In [33]:
          # Series 2
          data2 = [-2.1, 3.6, -1.5, 4, 3.1]
          label2 = ['a', 'c', 'e', 'f', 'g']
          series2 = pd.Series(data=data2, index=label2)
                                                         # Create series
          print(series2)
             -2.1
         а
              3.6
             -1.5
         Р
              4.0
              3.1
         dtype: float64
In [34]:
          # Add both series
```

```
series_sum = series1 + series2
          print(series_sum)
              5.2
         а
              1.1
         С
         d
              NaN
              0.0
         e
              NaN
              NaN
         dtype: float64
In [35]:
          # Substract series1 from series2
          series_sub = series2 - series1
          print(series_sub)
            -9.4
         a
              6.1
         С
              NaN
         d
         e
            -3.0
              NaN
              NaN
         dtype: float64
In [ ]:
```