Facit til prøve-eksamen2 i Diskret Matematik

Opgave 1

Når x > 1 er $\log(x) > 0$ og $|f(x)| = |3x + 4 + \log(x)| = 3x + 4 + \log(x) > 3x = 3|x|.$ Altså: for K = 1, C = 3 er |f(x)| > C|x| for alle x > K. Dermed er f(x) $\Omega(x)$.

Opgave 2

 $5^{19} \mod 19 = 5$, ifølge Fermats lille sætning (3.7.5), da 19 er primtal.

Opgave 3

$$i \in \mathbb{N} \wedge i \le n \wedge x = 2^i \wedge s = 1 - \frac{1}{x}.$$
 (1)

Før første gennemløb er s = 0, i = 0, x = 1 og (1) er sand (da $n \ge 0$).

1. Antag (1) er sand før et gennemløb. Da løkken udføres er betingelsen i < n sand.

Efter gennemløbet:

 $i_{ny} = i + 1$. Da i < n og $i \in \mathbb{N}$ er $i_{ny} \le n$ og $i_{ny} \in \mathbb{N}$.

 $x_{\text{ny}} = 2x = 2 \cdot 2^{i} = 2^{i_{\text{ny}}}.$ $s_{\text{ny}} = s + \frac{1}{x_{\text{ny}}} = 1 - \frac{2}{2x} + \frac{1}{2x} = 1 - \frac{1}{2x} = 1 - \frac{1}{x_{\text{ny}}}.$

(1) er altså sand efter gennemløbet af løkken og (1) er en invariant.

2. Når while-løkken standser er betingelsen i < n falsk, men (1) er sand. Dermed er i = n og $s = 1 - \frac{1}{x} = 1 - \frac{\tilde{1}}{2^i} = 1 - \frac{1}{2^n}$. Og så er $t = 1 - s = \frac{1}{2^n}$.

Opgave 4

1. Lad $T_1 = \emptyset \cdot \emptyset$, $T_2 = \emptyset \cdot \emptyset$ og $T_3 = \emptyset \cdot \emptyset$ (træer med et punkt). Så er $\ell(T_1) = \ell(T_2) = \ell(T_3) = 1.$

Lad $T_4 = T_2 \cdot T_3$. Så er $\ell(T_4) = \ell(T_2) + \ell(T_3) = 2$.

Nu er $T = T_1 \cdot T_4$ og $\ell(T) = \ell(T_1) + \ell(T_4) = 3$.

2. For ethvert udvidet binært træ T er $\ell(T) \le 2^{h(T)}$

Bevis ved strukturel induktion.

Basisskridt $T = \emptyset$: $\ell(T) = 0 < 2^{h(T)} = 2^{-1}$.

Rekursionsskridt: Lad T_1 og T_2 være udvidede binære træer som opfylder (*).

Lad $T = T_1 \cdot T_2$.

Hvis T_1 og T_2 begge er tomme træer så er $h(T) = 1 + \max(h(T_1), h(T_2)) = 0$ og $\ell(T) = 1 = 2^0 = 2^{h(T)}$.

Hvis enten T_1 eller T_2 (eller begge) er ikke-tom kan vi antage at $h(T_1) \ge h(T_2)$ (da $h(T_2) \ge h(T_1)$ er tilsvarende) og så er:

$$h(T) = 1 + \max(h(T_1), h(T_2)) = 1 + h(T_1).$$

$$\ell(T) = \ell(T_1) + \ell(T_2) \le 2^{h(T_1)} + 2^{h(T_2)} \le 2^{h(T_1)} + 2^{h(T_1)} = 2 \cdot 2^{h(T_1)} = 2^{h(T_1)}.$$

T opfylder altså også (*), som dermed er sand for ethvert udvidet binært træ.

Opgave 5

Afhænger numerering af punkterne. F.eks.:

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Opgave 6

	p	q	$q \rightarrow p$	$p \to (q \to p)$
	Т	Т	Т	Τ
1.	Γ	\mathbf{F}	${ m T}$	Τ
	F	T	F	${ m T}$
	F	F	Τ	${ m T}$

2. $p \to (q \to p)$ er en tautologi, da der er T i alle rækker.

Opgave 7

En talfølge a_0, a_1, a_2, \ldots er defineret rekursivt ved

- $a_0 = 4, a_1 = 0,$
- $a_n = 2a_{n-1} + 3a_{n-2}$, for alle $n \ge 2$.
- 1. $a_2 = 2a_1 + 3a_0 = 12$, $a_3 = 2a 2 + 3a_1 = 24$
- 2. $3 \mid a_n \text{ for alle } n \geq 1.$

Bevis ved induktion.

Basisskridt n = 1: $3 \mid a_1 = 0$

Induktionsskridt: Lad $k \geq 1$ og antag $3 \mid a_k$. Så er

 $a_{k+1} = 2a_k + 3a_{k-1}$. Da 3 går op i a_k går 3 også op i a_{k+1} .

Dermed er $3 \mid a_n$, for alle $n \geq 1$.

Opgave 8

Find alle hele tal x der opfylder

$$x \equiv 0 \pmod{2} \land x \equiv 3 \pmod{7} \land x \equiv 2 \pmod{9}.$$

Sæt $m_1 = 2, m_2 = 7, m_3 = 9, m = 2 \cdot 7 \cdot 9 = 126, a_1 = 0, a_2 = 3, a_3 = 2, M_1 = 63, M_2 = 18, M_3 = 14.$

Så er følgende en løsning:

 $x=a_1M_1y_1+a_2M_2y_2+a_3M_3y_3=a_2M_2y_2+a_3M_3y_3,$ hvor y_i er invers til M_i modulo $m_i.$

$$\gcd(m_2,M_2)=\gcd(7,18)=1=2\cdot 18-5\cdot 7,$$
altså $y_2=2,$ da

$$18 = 2 \cdot 7 + 4 \qquad \qquad 4 = 18 - 2 \cdot 7.$$

$$7 = 1 \cdot 4 + 3$$
 $3 = 7 - 4 = 7 - (18 - 2 \cdot 7) = 3 \cdot 7 - 18$

$$4 = 1 \cdot 3 + 1$$
 $1 = 4 - 3 = (18 - 2 \cdot 7) - (3 \cdot 7 - 18) = 2 \cdot 18 - 5 \cdot 7.$

Tilsvarende $gcd(m_3, M_3) = gcd(9, 14) = 1 = 2 \cdot 14 - 3 \cdot 9$, altså $y_3 = 2$.

En løsning: $x = a_2 M_2 y_2 + a_3 M_3 y_3 = 3 \cdot 18 \cdot 2 + 2 \cdot 14 \cdot 2 = 164$.

Anden løsning: x = 164 - 126 = 38.

Generelt: x er løsning hvis og kun hvis $x \equiv 38 \pmod{126}$.

Opgave 9

Løsning

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Opgave 10

- 1. Længden af kortest vej fra a til g er 9.
- 2. a, b, d, e, f, c, g.

Opgave 11

$$(2x+y)^4 = \binom{4}{0}(2x)^4 + \binom{4}{1}(2x)^3y + \binom{4}{2}(2x)^2y^2 + \binom{4}{3}(2x)^1y^3 + \binom{4}{0}y^4 = 16x^4 + 32x^3y + 24x^2y^2 + 8xy^3 + y^4.$$