

WHAT IS CLAIMED IS:

1. A purified nucleic acid that is hybridizable under moderately stringent conditions to a nucleic acid having a nucleotide sequence corresponding to or complementary to the nucleotide sequence shown in Figure 2 (SEQ ID NO:1).
- 5 2. The nucleic acid of Claim 1 that is hybridizable under moderately stringent conditions to a nucleic acid having a nucleotide sequence corresponding to or complementary to a portion of the nucleotide sequence shown in Figure 2 (SEQ ID NO:1) that encodes a functionally active glycosyltransferase.
- 10 3. The nucleic acid of Claim 2 that encodes a functionally active glycosyltransferase.
4. The nucleic acid of Claim 1 that has a nucleotide sequence corresponding to or complementary to a portion of the nucleotide sequence shown in Figure 2 (SEQ ID NO:1) that encodes a functionally active glycosyltransferase.
- 15 5. The nucleic acid of Claim 4 that encodes a functionally active glycosyltransferase.
6. The nucleic acid of Claim 1 that has a nucleotide sequence corresponding to or complementary to the nucleotide sequence shown in Figure 2 (SEQ ID NO:1).
- 20 7. The nucleic acid of Claim 3, wherein the functionally active glycosyltransferase catalyzes a reaction selected from the group consisting of:
 - a) adding Gal $\beta 1 \rightarrow 4$ to GlcNAc or Glc;
 - b) adding GalNAc or GlcNAc $\beta 1 \rightarrow 3$ to Gal; and
 - c) adding Gal $\alpha 1 \rightarrow 4$ to Gal.

8. The nucleic acid of Claim 3 which encodes a glycosyltransferase having an amino acid sequence of SEQ ID NO:2.
9. The nucleic acid of Claim 3 which encodes a glycosyltransferase having an amino acid sequence of SEQ ID NO:3.
- 5 10. The nucleic acid of Claim 3 which encodes a glycosyltransferase having an amino acid sequence of SEQ ID NO:4.
11. The nucleic acid of Claim 3 which encodes a glycosyltransferase having an amino acid sequence of SEQ ID NO:5.
12. The nucleic acid of Claim 3 which encodes a glycosyltransferase having an 10 amino acid sequence of SEQ ID NO:6.
13. An expression vector comprising the nucleic acid of Claim 3 operatively associated with an expression control sequence.
14. A recombinant host cell transformed with the expression vector of Claim 13.
- 15 15. A method for producing a glycosyltransferase comprising:
 - a) culturing the recombinant host cell of Claim 14 under conditions that allow expression of the glycosyltransferase; and
 - b) recovering the expressed glycosyltransferase.
16. A glycosyltransferase having an amino acid sequence of SEQ ID NO:2, or 20 a functionally active fragment thereof.
17. A glycosyltransferase having an amino acid sequence of SEQ ID NO:3, or a functionally active fragment thereof.

18. A glycosyltransferase having an amino acid sequence of SEQ ID NO:4, or a functionally active fragment thereof.
19. A glycosyltransferase having an amino acid sequence of SEQ ID NO:5, or a functionally active fragment thereof.
- 5 20. A glycosyltransferase having an amino acid sequence of SEQ ID NO:6, or a functionally active fragment thereof.
21. A composition comprising a glycosyltransferase conjugated to a solid phase support, wherein the glycosyltransferase is selected from the group consisting of:
 - a) a glycosyltransferase having an amino acid sequence of SEQ ID NO:2, or a functionally active fragment thereof;
 - 10 b) a glycosyltransferase having an amino acid sequence of SEQ ID NO:3, or a functionally active fragment thereof;
 - c) a glycosyltransferase having an amino acid sequence of SEQ ID NO:4, or a functionally active fragment thereof;
 - d) a glycosyltransferase having an amino acid sequence of SEQ ID NO:5, or a functionally active fragment thereof; and
 - e) a glycosyltransferase having an amino acid sequence of SEQ ID NO:6, or a functionally active fragment thereof.
- 15 22. A method for adding GalNAc or GlcNAc β 1 \rightarrow 3 to Gal, comprising contacting a reaction mixture comprising an activated GalNAc or GlcNAc to an acceptor moiety comprising a Gal residue in the presence of the glycosyltransferase of Claim 16.
23. A method for adding Gal β 1 \rightarrow 4 to GlcNAc or Glc, comprising contacting a reaction mixture comprising an activated Gal to an acceptor moiety comprising a 25 GlcNAc or Glc residue in the presence of the glycosyltransferase of Claim 17.

24. A method for adding Gal $\alpha 1 \rightarrow 4$ to Gal, comprising contacting a reaction mixture comprising an activated Gal to an acceptor moiety comprising a Gal residue in the presence of the glycosyltransferase of Claim 18.

25. A method for adding GalNAc or GlcNAc $\beta 1 \rightarrow 3$ to Gal, comprising
5 contacting a reaction mixture comprising an activated GalNAc or GlcNAc to an acceptor moiety comprising a Gal residue in the presence of the glycosyltransferase of Claim 19.

26. A method for adding Gal $\beta 1 \rightarrow 4$ to GlcNAc or Glc, comprising contacting a reaction mixture comprising an activated Gal to an acceptor moiety comprising a
10 GlcNAc or Glc residue in the presence of the glycosyltransferase of Claim 20.

27. A method for preparing an oligosaccharide having the structure
Gal $\alpha 1 \rightarrow 4$ Gal $\beta 1 \rightarrow 4$ Glc, which comprises sequentially performing the steps of:
a) contacting a reaction mixture comprising an activated Gal to an
acceptor moiety comprising a Glc residue in the presence of a
15 glycosyltransferase having an amino acid sequence of SEQ ID NO:6, or a
functionally active fragment thereof; and
b) contacting a reaction mixture comprising an activated Gal to the
acceptor moiety comprising Gal $\beta 1 \rightarrow 4$ Glc in the presence of a
glycosyltransferase having an amino acid sequence of SEQ ID NO:4, or a
20 functionally active fragment thereof.

28. A method for preparing an oligosaccharide having the structure
Gal $\beta 1 \rightarrow 4$ Glc, which comprises contacting a reaction mixture comprising an
activated Gal to an acceptor moiety comprising a Glc residue in the presence of
the glycosyltransferase of Claim 20.

29. A method for preparing an oligosaccharide having the structure GlcNAc β 1 \rightarrow 3Gal β 1 \rightarrow 4Glc, which comprises contacting a reaction mixture comprising an activated GlcNAc to an acceptor moiety comprising a Gal β 1 \rightarrow 4Glc residue in the presence of the glycosyltransferase of Claim 16.

5 30. A method for preparing an oligosaccharide having the structure Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 3Gal β 1 \rightarrow 4Glc, which comprises contacting a reaction mixture comprising an activated Gal to an acceptor moiety comprising a GlcNAc β 1 \rightarrow 3Gal β 1 \rightarrow 4Glc residue in the presence of the glycosyltransferase of Claim 17.

10 31. A method for preparing an oligosaccharide having the structure GalNAc β 1 \rightarrow 3Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 3Gal β 1 \rightarrow 4Glc, which comprises contacting a reaction mixture comprising an activated GalNAc to an acceptor moiety comprising a Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 3Gal β 1 \rightarrow 4Glc residue in the presence of the glycosyltransferase of Claim 19.

'15 32. A method for preparing an oligosaccharide having the structure GalNAc β 1 \rightarrow 3Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 3Gal β 1 \rightarrow 4Glc, which comprises sequentially performing the steps of:

a) contacting a reaction mixture comprising an activated Gal to an acceptor moiety comprising a Glc residue in the presence of a glycosyltransferase having an amino acid sequence of SEQ ID NO: 6, or a functionally active fragment thereof;

20 b) contacting a reaction mixture comprising an activated GlcNAc to the acceptor moiety comprising a Gal β 1 \rightarrow 4Glc residue in the presence of a glycosyltransferase having an amino acid sequence of SEQ ID NO:2, or a functionally active fragment thereof;

c) contacting a reaction mixture comprising an activated Gal to the acceptor moiety comprising a GlcNAc β 1 \rightarrow 3Gal β 1 \rightarrow 4Glc residue in the

presence of a glycosyltransferase having an amino acid of SEQ ID NO:3; and

5 d) contacting a reaction mixture comprising an activated GalNAc to the acceptor moiety comprising a $\text{Gal}\beta 1\rightarrow 4\text{GlcNAc}\beta 1\rightarrow 3\text{Gal}\beta 1\rightarrow 4\text{Glc}$ residue in the presence of a glycosyltransferase having an amino acid sequenc of SEQ ID NO:5, or a functionally active fragment thereof.

33. A method for preparing an oligosaccharide having the structure $\text{Gal}\beta 1\rightarrow 4\text{GlcNAc}\beta 1\rightarrow 3\text{Gal}\beta 1\rightarrow 4\text{Glc}$, which comprises sequentially performing the steps of:

10 a) contacting a reaction mixture comprising an activated Gal to an acceptor moiety comprising a Glc residue in the presence of a glycosyltransferase having an amino acid sequence of SEQ ID NO: 6, or a functionally active fragment thereof;

15 b) contacting a reaction mixture comprising an activated GlcNAc to the acceptor moiety comprising a $\text{Gal}\beta 1\rightarrow 4\text{Glc}$ residue in the presence of a glycosyltransferase having an amino acid sequence of SEQ ID NO:2, or a functionally active fragment thereof; and

20 c) contacting a reaction mixture comprising an activated Gal to the acceptor moiety comprising a $\text{GlcNAc}\beta 1\rightarrow 3\text{Gal}\beta 1\rightarrow 4\text{Glc}$ residue in the presence of a glycosyltransferase having an amino acid of SEQ ID NO:3.

R&B
R&B