1	(a)	Mass, length and time are all SI base quantities.
		State two other SI base quantities.
		1

(b) A wire hangs between two fixed points, as shown in Fig. 1.1.

Fig. 1.1 (not to scale)

A child's swing is made by connecting a car tyre to the wire using a rope and a hook. The system is in equilibrium with the wire hanging at an angle of 17° to the horizontal. The tension in the wire is 150 N. Assume that the rope and hook have negligible weight.

(i) Determine the weight of the tyre.

[2]

(ii)	The 2.1	e wire has a cross-sectional area o × 10 ¹¹ Pa. The wire obeys Hooke's	f 7.5 mm ² and is made of metal of Young modulus law.
	Cal	culate, for the wire,	
	1.	the stress,	
			stress = Pa [2]
	2.	the strain.	
			strain =[2]
			[Total: 8]

2	(a)	Stat	e what is meant by <i>kinetic energy</i> .
			[1]
	(b)	and	annon fires a shell vertically upwards. The shell leaves the cannon with a speed of $80\mathrm{ms^{-1}}$ a kinetic energy of $480\mathrm{J}$. The shell then rises to a maximum height of $210\mathrm{m}$. The effect ir resistance is significant.
		(i)	Show that the mass of the shell is 0.15 kg.
		(ii)	[2] the movement of the shell from the cannon to its maximum height, calculate
		(11)	 the gain in gravitational potential energy,
			gain in gravitational potential energy =
			2. the work done against air resistance.
			work done =J [1]
		(iii)	Determine the average force due to the air resistance acting on the shell as it moves from the cannon to its maximum height.
			force = N [2]

(iv) The shell leaves the cannon at time t = 0 and reaches maximum height at time t = T.

On Fig. 2.1, sketch the variation with time t of the velocity v of the shell from time t = 0 to time t = T. Numerical values of v and t are not required.

Fig. 2.1

[2]

(v) The force due to the air resistance is a vector quantity.

Compare the force due to the air resistance acting on due to the air resistance as it falls.	the shell as it rises with the force
	[2]
	[Total: 12]

3 (a) State Newton's second law of motic	ion	n	tio	mo	of	٧	lav	second	ewton's	State N	(a)	3
--	-----	---	-----	----	----	---	-----	--------	---------	---------	-----	---

				[4]

(b) A toy rocket consists of a container of water and compressed air, as shown in Fig. 3.1.

Fig. 3.1

Water is pushed vertically downwards through a nozzle by the compressed air. The rocket moves vertically upwards.

The nozzle has a circular cross-section of radius $7.5\,\mathrm{mm}$. The density of the water is $1000\,\mathrm{kg}\,\mathrm{m}^{-3}$. Assume that the water leaving the nozzle has the shape of a cylinder of radius $7.5\,\mathrm{mm}$ and has a constant speed of $13\,\mathrm{m}\,\mathrm{s}^{-1}$ relative to the rocket.

(i) Show that the mass of water leaving the nozzle in the first 0.20s after the rocket launch is 0.46kg.

Calculate
1. the change in the momentum of the mass of water in (b)(i) due to leaving the nozzle
change in momentum =
force =
State and explain how Newton's third law applies to the movement of the rocket by the water.
[2
The container has a mass of 0.40 kg. The initial mass of water before the rocket is aunched is 0.70 kg. The mass of the compressed air in the rocket is negligible. Assume that the resistive force on the rocket due to its motion is negligible.
the rocket at a time of 0.20s after launching,
1. show that its total mass is 0.64 kg,
2. calculate its acceleration.
acceleration = ms ⁻²

[Total: 11]

4 (a) On Fig. 4.1, complete the two graphs to illustrate what is meant by the amplitude A, the wavelength λ and the period T of a progressive wave.

Ensure that you label the axes of each graph.

Fig. 4.1

[3]

(b) A horizontal string is stretched between two fixed points X and Y. A vibrator is used to oscillate the string and produce a stationary wave. Fig. 4.2 shows the string at one instant in time.

Fig. 4.2

The speed of a progressive wave along the string is $30\,\mathrm{m\,s^{-1}}$. The stationary wave has a period of $40\,\mathrm{ms}$.

(i)	Explain how the stationary wave is formed on the string.	

(ii)		article on the string oscillates with an amplitude of $13\mathrm{mm}$. At time t , the particle has o displacement.
	Cal	culate
	1.	the displacement of the particle at time ($t + 100 \mathrm{ms}$),
	2.	$\mbox{displacement} = \mbox{mm}$ the total distance moved by the particle from time t to time (t + 100 ms).
		distance = mm [3]
(iii)	Det	rermine
	1.	the frequency of the wave,
		frequency = Hz [1]
	2.	the horizontal distance from X to Y.
		distance = m [3]
		[Total: 12]

		The of mass m and charge q is in a lation a due to the field.	uniform electric field of strength E. The particle has
(a)	Sho	ow that $\frac{q}{n}$	$a_{\overline{b}} = \frac{a}{E}$.
			[2]
(b)		e particle has a charge of $4e$ where $8.5 \times 10^4 \text{V m}^{-1}$. The acceleration of t	e is the elementary charge. The electric field strength ne particle is $1.5 \times 10^{12} \text{m s}^{-2}$.
		the expression in (a) to show that t	he mass of the particle is 9.0 u.
			[2]
(c)		e particle is a nucleus. State the nucleus.	[2] imber of protons and the number of neutrons in the
(c)		cleus.	
(c)		rleus.	of protons =
	nuc	number number o	of protons =
(c)	nuc A se	number number of econd nucleus that is an isotope of t	of protons =
	nuc A se Sta	number number of econd nucleus that is an isotope of t	of protons =
	nuc A se Sta	number on number of the condition of the	of protons =
	A se	number on number of the condition of the	of protons =
	A se	number of number of the condition of the	of protons =
	A se	number of number of the condition of the	of protons =
	A se Sta mae	number of number of the condition of the	of protons =

5

6 (a) Define the coulomb.

______[1

(b) An electric current is a flow of charge carriers.

In the following list, underline the possible charges for a charge carrier.

$$8.0 \times 10^{-19}$$
C 4.0×10^{-19} C 1.6×10^{-19} C 1.6×10^{-20} C [1]

(c) The diameter of a wire ST varies linearly with distance along the wire as shown in Fig. 6.1.

Fig. 6.1

There is a current I in the wire. At end S of the wire, the diameter is d and the average drift speed of the free electrons is v_s . At end T of the wire, the diameter is 2d.

On Fig. 6.2, sketch a graph to show the variation of the average drift speed with position along the wire between S and T.

Fig. 6.2

[2]

7	(a)	State Kirchhoff's first law.

(b) A potentiometer is connected to a battery of electromotive force (e.m.f.) 9.6 V and negligible internal resistance, as shown in Fig. 7.1.

Fig. 7.1

The maximum resistance of the potentiometer is $800\,\Omega$. A resistor R of resistance $400\,\Omega$ is connected between the slider and end X of the potentiometer.

- (i) State the potential difference across resistor R when the slider is positioned
 - 1. at end X of the potentiometer,

2. at end Y of the potentiometer.

(ii) Calculate the potential difference across resistor R when the slider is positioned half between X and Y.	i-way
potential difference =[Tot	V [3]