

Numerical Stability

James Balamuta

Department of Informatics, Statistics University of Illinois at Urbana-Champaign

June 29, 2017

CC BY-NC-SA 4.0, 2016 - 2017, James J Balamuta

J Balamuta (UIUC) **Numerical Stability**

Administrative

- HW1 grades should be released tomorrow (Wednesday)
- HW2 is due on Sunday, July 2nd @ 11:59 PM
- Extra OH on Thursday in IH 122 from 12 1 PM.

On the Agenda

- Numerical Stability
 - Variance Estimation
 - Overflows
 - Theory of Estimators

- Variance Implementations
- Comparing Numbers
 - Precision
 - Case Study: Decimal Index

Computational Statistics and the Variance Estimator

- Computational Statistics, the red-headed step child between statistics and computer science, has worked time and time again to obtain an algorithm for calculating *variance*.
- Yes, variance given by:

$$\sigma^{2} = E \left[(X - E[X])^{2} \right]$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} *$$

*Discrete Case Representation

Why is the algorithm for variance complicated?

Consider the definitions of Mean and the Variance:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Note that the algorithm for the variance relies upon a version of the "Sum of Squares", e.g.

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
$$\sigma^2 = \frac{1}{n} S_{xx}$$

History of the Sum of Squares

- **Sum of Squares** (*SS*) provides a measurement of the total variability of a data set by squaring each point and then summing them.
- As we have seen, SS appears during linear regression and ANOVA with the forms of TSS, FSS, and RSS.

(Uncorrected) Sum of Squares

 In an "uncorrected" ANOVA table, where the intercept is considered a source, we have the Total Sum of Squares (TSS) given as:

$$TSS = \sum_{i=1}^{n} y_i^2$$

Table 1: Uncorrected ANOVA Table

Source	DF	SS
Intercept	1	$nar{Y}^2$
Fitted	p-1	$\sum_{i=1}^n (\hat{y}_i - \bar{y})^2$
Residual	n-p	$\sum_{i=1}^n (y_i - \hat{y}_i)^2$
Total	n	$\sum_{i=1}^{n} y_i^2$

(Corrected) Sum of Squares

 More often, we use the Corrected Sum of Squares, which compares each data point to the mean of the data set to obtain a deviation and then square it.

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Table 2: Corrected ANOVA Table

Source	DF	SS
Fitted	p – 1	$\sum_{i=1}^n (\hat{y}_i - \bar{y})^2$
Residual	n-p	$\sum_{i=1}^n (y_i - \hat{y}_i)^2$
Total	n-1	$\sum_{i=1}^{n} (y_i - \bar{y})^2$

Why do we use the corrected Sum of Squares?

- In any case, when we talk about Sum of Squares it will always be the corrected form.
- The question for today:

Why is this approached preferred computationally?

Calculating Sum of Squares for One Point

Using the Uncorrected vs. the Corrected Sum of Squares definition would yield:

```
(x = (1.0024e6)^2) # Uncorrected
```

```
## [1] 1.004806e+12
```

```
(y = (1.0024e6 - 1.0000156e6)^2) # Corrected
```

```
## [1] 5685363
```

Imagine There's More than One Point

Now, consider applying both of the definitions over a sequence of n points and summing the results.

• Which definition might lead to a computational issue?

Arithmetic Overflow

In the case of the uncorrected version, it is sure to cause an **arithmetic overflow** when working with large numbers.

If we were to add to x, we would hit R's 32-bit integer limit (see ?integer):

```
.Machine$integer.max # Maximum integer in memory
```

```
## [1] 2147483647
```

Arithmetic Overflow - Behind the Scenes

R > 3.0, will try to address this behind the scenes by automatically converting the integer to a numeric with precision:

```
.Machine$double.xmax # Maximum numeric in memory
```

```
## [1] 1.797693e+308
```

Arithmetic Overflows and Big Data

- Within Big Data this problem may be more transparent as the information summarized is larger.
- Thus, you may need to use an external package for very big numbers. I would recommend the following:
 - Rmpfr
 - gmp
 - bit64

Forms of the Variance Estimator

• Two-Pass Algorithm Form:

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Naive Algorithm Form:

$$\sigma^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2} / n}{n}$$

Sum of Squares Manipulation for Naive version

I'm opting to simply show the S_{xx} modification instead of working with σ^2 since it just scales the term by 1/n.

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 Definition
$$= \sum_{i=1}^{n} (x_i^2 - 2x_i \bar{x} + \bar{x}^2)$$
 Expand the square
$$= \sum_{i=1}^{n} x_i^2 - 2\bar{x} \sum_{i=1}^{n} x_i + \bar{x}^2 \sum_{i=1}^{n} 1$$
 Split Summation
$$= \sum_{i=1}^{n} x_i^2 - 2\bar{x} \sum_{i=1}^{n} x_i + \underbrace{n\bar{x}^2}_{i=1}$$
 Separate the summation

Sum of Squares Manipulation for Naive version - Cont.

$$S_{xx} = \sum_{i=1}^{n} x_i^2 - 2\bar{x} \left[n \cdot \frac{1}{n} \right] \sum_{i=1}^{n} x_i + n\bar{x}^2 \qquad \text{Multiple by 1}$$

$$= \sum_{i=1}^{n} x_i^2 - 2\bar{x}n \cdot \underbrace{\left[\frac{1}{n} \sum_{i=1}^{n} x_i \right]}_{=\bar{x}} + n\bar{x}^2 \qquad \text{Group terms for mean}$$

$$= \sum_{i=1}^{n} x_i^2 - 2\bar{x}n\bar{x} + n\bar{x}^2 \qquad \text{Substitute the mean}$$

$$= \sum_{i=1}^{n} x_i^2 - 2n\bar{x}^2 + n\bar{x}^2 \qquad \text{Rearrange terms}$$

$$= \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 \qquad \text{Simplify}$$

J Balamuta (UIUC)

Numerical Stability

Implementing Naive Variance

```
var_naive = function(x) {
 n = length(x)
                          # Obtain the length
  sum x = 0
                          # Storage for Sum of X
  sum x2 = 0
                          # Storage for Sum of X^2
  for(i in seq along(x)) {# Calculate sums
    sum x = sum x + x[i]
    sum x2 = sum x2 + x[i]^2
  # Compute the variance
  v = (sum_x2 - sum_x*sum_x/n)/n
  return(v)
```

Implementing Two-Pass Variance

```
var_2p = function(x) {
  n = length(x)
                           # Length
  mu = 0; v = 0
                            # Storage for mean and var
  for(i in seq_along(x)) { # Calculate the Sum for Mean
    mu = mu + x[i]
  mu = mu / n
                            # Calculate the Mean
  for(i in seq_along(x)) { # Calculate Sum for Variance
    v = v + (x[i] - mu)*(x[i] - mu)
  v = v/n
                            # Calculate Variance
  return(v)
                            # Return
```

Calculations

```
set.seed(1234) # Set seed for reproducibility
x = rnorm(2e6, mean = 1e20, sd = 1e12)
(method1 = var_naive(x))
## [1] 1.318357e+27
(method2 = var_2p(x))
## [1] 1.001425e+24
(baser = var(x)*((2e6)-1)/(2e6))
## [1] 1.001425e+24
all.equal(method2, baser)
```

[1] TRUE

R's Implementation

R opts to implement this method using a two-pass approach.

- Check out the source here
- There are quite a few papers on this topic going considerably far back. See Algorithms for Computing the Sample Variance: Analysis and Recommendations (1983)

On the Agenda

- Numerical Stability
 - Variance Estimation
 - Overflows
 - Theory of Estimators

- Variance Implementations
- Comparing Numbers
 - Precision
 - Case Study: Decimal Index

$1 + 1 \neq 2$

Computers in all their infinite wisdom and ability are not perfect. One of the limiting areas of computing is handling **numeric** or **float** data types.

```
x = 0.1
x = x + 0.05
X
## [1] 0.15
if(x == 0.15) {
  cat("x equals 0.15")
} else {
  cat("x is not equal to 0.15")
}
```

x is not equal to 0.15

Enter: Numerical Stability

In essence, R views the two numbers differently due to rounding error during the computation:

```
sprintf("%.20f", 0.15) # Formats Numeric
```

```
## [1] "0.1499999999999999445"
```

```
sprintf("%.20f", x)
```

```
## [1] "0.15000000000000002220"
```

ϵ neighborhood

Rounding error exists due to tolerance fault given by an ϵ neighborhood.

The value of the ϵ is given by:

.Machine\$double.eps

[1] 2.220446e-16

This gives us the ability to compare up to 1e-15 places accurately.

$$sprintf("%.15f", 1 + c(-1,1)*.Machine$double.eps)$$

[1] "1.00000000000000" "1.00000000000000"

Discrete Solution Check

To get around rounding error between two objects, we add a tolerance parameter to check whether the value is in the ϵ neighborhood or not.

```
all.equal(x, 0.15, tolerance = 1e-3)
```

```
## [1] TRUE
```

If we disable the ϵ neighborhood, we return to beginning with a problem:

```
all.equal(x, 0.15, tolerance = 0)
```

```
## [1] "Mean relative difference: 1.850372e-16"
```

Discrete Solution Check

Since all.equal may not strictly return TRUE or FALSE, it is highly advisable to wrap it in isTRUE(), e.g.

```
isTRUE(all.equal(x, 0.15))
```

```
## [1] TRUE
```

Thus, in an if statement, you would use:

```
if(isTRUE(all.equal(x, 0.15))) {
  cat("In threshold")
} else {
  cat("Out of threshold")
}
```

In threshold

Bad Loop

To magnify the issue consider a loop like so:

After 14 iterations, the loop should complete, but it does *not*! In fact, this loop will go onto infinity.

Good Loop

To fix the looping issue, we opt to always stick with integer values as counters

```
## [1] 14
```

Summary

- Statistics and Computer Science rely on each other greatly in this Brave New World of Data Science.
- When working with big numbers, understand that arithmetic overflow is a reality and must be accounted for.
- Never, ever, ever use a floating-point representation as an incrementor for a loop.
 - Always use an integer for an incrementor and then convert it to a numeric within a function.
- This topic will come up again when we switch to using Rcpp.