

$$\frac{\text{Audjabe 3}}{c_{g_{1}}} \xrightarrow{w_{1}} c_{g_{1}} \xrightarrow{w_{1}} c_{g_{1}} = \begin{pmatrix} w_{1} \\ w_{2} \\ w_{m} \\ w_{m} \end{pmatrix} + \eta \cdot 2(t_{g_{1}} - c_{g_{2}}) \cdot f'(not_{g_{2}}) \cdot \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ c_{g_{2}} \end{pmatrix} = \begin{pmatrix} c_{g_{1}} \\ w_{1} \\ w_{2} \\ w_{m} \end{pmatrix} = \begin{pmatrix} c_{g_{1}} \\ w_{2} \\ w_{2} \\ w_{m} \end{pmatrix} = \begin{pmatrix} c_{g_{1}} \\ w_{2} \\ w_{2} \\ w_{m} \end{pmatrix} = \begin{pmatrix} c_{g_{1}} \\ w_{2} \\ w_{3} \\ w_{4} \end{pmatrix} + \eta \cdot 2 \cdot \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ v_{4} \\ w_{5} \end{pmatrix} = \begin{pmatrix} c_{g_{1}} \\ v_{4} \\ w_{5} \\ w_{6} \end{pmatrix} + \eta \cdot 2 \cdot \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ v_{6} \\ v_{6} \end{pmatrix} \cdot \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ c_{g_{2}} \\ v_{6} \end{pmatrix} = \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ v_{6} \\ v_{6} \end{pmatrix} + \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ v_{6} \\ v_{6} \end{pmatrix} \cdot \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ v_{6} \\ v_{6} \end{pmatrix} = \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ c_{g_{2}} \\ v_{6} \\ v_{6} \end{pmatrix} + \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ c_{g_{2}} \\ v_{6} \\ v_{6} \end{pmatrix} + \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ c_{g_{2}} \\ v_{6} \\ v_{6} \end{pmatrix} + \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ v_{6} \\ v_{6} \\ v_{6} \\ v_{6} \end{pmatrix} + \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ c_{g_{2}} \\ v_{6} \\ v_{6} \\ v_{6} \\ v_{6} \end{pmatrix} + \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ c_{g_{2}} \\ v_{6} \\ v_{6} \\ v_{6} \\ v_{6} \\ v_{6} \end{pmatrix} + \begin{pmatrix} c_{g_{1}} \\ c_{g_{2}} \\ c_{g_{2}} \\ v_{6} \\ v_{6}$$

Segmer Sgrup Bewer-	pe 🖊	ab 5	abe 4	b bc 2 1	bcet 3	2	cd 5	d/ 2	e 0	ef 0,	f/ 2	fg/	fgh	g/ 2	gh 3	ghi 4	hr 2	_	j 2	
tung																				
		5		3	<	5	sl.				5	\times	<u> </u>	3	1	5	7			
	2 a	2) <u>2</u>	5 2	7/1	2	10	28	10	2 8	12	2	15) <mark>2</mark>	17) <mark>ک</mark> ے (20)		
		4	_	1				_	0_	X	_	3	\times	\leq	<u>-</u> -					
	n ۱		<u> </u>				. 1)				0				,	
	Besl	، ع	Sog	ueu	2 ;		a b	-	~	Co	(- (e	_	ð	9 -		h	V	

Aufgabe 6

$$x^2 + y^2 + ax + by + c = 0$$

Auf der Kreiskontur werden folgende Koordinaten gemessen:

Punkt	x	y
P1	1	4
P2	3	1
P3	3	4
P4	1	2

$$a) a \times + b y + c = -x^2 - y^2$$

$$\begin{pmatrix} 1 & 4 & 1 \\ 3 & 1 & 1 \\ 3 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = -\begin{pmatrix} 17 \\ 10 \\ 25 \\ 5 \end{pmatrix} \qquad A \cdot \overline{\S} = \overline{L}$$

$$\underline{A}^{T} \cdot \underline{A} = \begin{pmatrix} 1 & 3 & 3 & 1 \\ 4 & 1 & 4 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 4 & 1 \\ 3 & 1 & 1 \\ 3 & 4 & 1 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 20 & 21 & 8 \\ 21 & 37 & 11 \\ 8 & 11 & 4 \end{pmatrix}$$

$$\underline{A}^{T} \cdot \underline{L} = \begin{pmatrix} 1 & 3 & 3 & 1 \\ 4 & 1 & 4 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -17 \\ -10 \\ -25 \\ -57 \end{pmatrix} = \begin{pmatrix} -127 \\ -188 \\ -57 \end{pmatrix}$$

Angabe 7:

1:
$$r_1 = 60$$
 $\Theta_1 = 0^{\circ}$
2: $r_2 \approx 37$ $\Theta_2 = 45^{\circ}$

Geneinsame Grade:

b)
$$35 = \times \frac{1}{2} + y 0.866$$

