Національний технічний університет України «КПІ ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра інформаційних систем та технологій

Спеціальні розділи математики-2. Чисельні методи

Лабораторна робота № 5 Розв'язання нелінійних рівнянь

3міст

1 Теоретичні відомості	2
2 Завдання	4
3 Варіанти завдань	4
4 Вимоги до звіту	

1 Теоретичні відомості

Знаходження коренів рівнянь за допомогою чисельних методів складається з двох етапів:

- 1) Відокремлення коренів: знаходження сукупності проміжків, кожен з яких містить один з коренів рівняння.
- 2) Уточнення коренів: знаходження приблизного значення коренів із заданою точністю ε .

Розглядається рівняння

$$f(x)=0, (1)$$

де $f(x) = P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$, та $a_n > 0$, для якого потрібно знайти його дійсні корені x^* .

Перший етап виконується із використанням теорем, які допомагають виділити межі розташування додатніх та від'ємних коренів та знайти проміжки, що містять ці корені.

Теорема про границі усіх (комплексних) коренів рівняння.

Нехай
$$A = \max |a_i|$$
, i=0,...,n-1; $B = \max |a_i|$, i=1,...,n.

Тоді всі (комплексні) корені рівняння (1) лежать у кільці

$$\frac{\left|a_{0}\right|}{B+\left|a_{0}\right|} \leq \left|x^{*}\right| \leq \frac{\left|a_{n}\right|+A}{\left|a_{n}\right|}$$

Теорема про верхню межу додатніх коренів.

Нехай $A = \max_{i} |a_{i}|, a_{i} < 0;$

$$m = \max i : a_i < 0.$$

Тоді $R = 1 + n - m \frac{A}{a_n}$ - верхня межа додатних коренів :

$$\forall x^* \leq R, f(x^*) = 0.$$

Цю ж теорему можна застосувати для визначення нижньої межи додатніх коренів

заміною $x := \frac{1}{y}$; тоді $\forall x^* \ge \frac{1}{R_y}$. Заміна знаку x := - у дозволяє обмежити від'ємні корені.

Теорема (теорема Гюа про необхідну умову дійсності всіх коренів алгебраїчного рівняння).

Якщо алгебраїчне рівняння (1) має дійсні коефіцієнти та всі його корені є дійсними, то квадрат кожного некрайнього коефіцієнта більше добутку двох його сусідніх коефіцієнтів, тобто виконуються нерівності

$$a_k^2 > a_{k-1} \cdot a_{k+1}$$
 $(k = 1, 2, ..., n-1)$.

Наслідок (про наявність комплексних коренів). Якщо при якому-небудь k виконано нерівність

$$a_k^2 \le a_{k-1} \cdot a_{k+1},$$

 $a_k^2 \leq a_{k-1} \cdot a_{k+1},$ то рівняння (1) має принаймні одну пару комплексних коренів.

Теорема Штурма про чередування коренів.

 $f(x)=P_n(x)$ – поліном без кратних коренів. Утворимо послідовність многочленів:

$$f_0 = f(x)$$
;

$$f_1 = f'(x);$$

 $f_{i+1} = -[f_{i-1} \text{ mod } f_i], i=1,...,n-1$

- кожен наступний многочлен ϵ залишком від ділення двох попередніх многочленів, взятим з протилежним знаком.

Стверджується, що кількість дійсних коренів полінома $f_0(x)$ на довільному відрізку [a; b] дорівнює різниці між кількістю змін знаку у цій послідовності при x = a та x = b.

Другий етап передбачає застосування одного з нижченаведених методів до кожного з проміжків, отриманих на першому етапі.

Метод бісекції

Дано: кінці інтервалу ${\bf a}$ та ${\bf b}$, точність ${\bf \epsilon}$. На кожному кроці інтервал ділять навпіл:

$$c := (a + b) / 2$$
,

та залишають той підінтервал, до якого належить корінь.

Метод хорд

Вхідні дані аналогічні тим, що використовуються методом бісекції. Проводиться січна до графіку функції. Точкою перетину її з віссю абсцис ділять інтервал:

$$c := (a*f(b) - b*f(a)) / (f(b) - f(a)),$$

та залишають той підінтервал, до якого належить корінь.

Рис.1. Графічна інтерпретація методу хорд.

Метод Ньютона (дотичних)

Дано: початкове наближення \mathbf{x}_{o} та точність $\boldsymbol{\epsilon}$. Проводять дотичні до графіку функції, що дає формулу

$$x_{k+1} := x_k - f(x_k) / f'(x_k)$$
.

Рис.2. Графічна інтерпретація методу дотичних.

Перевірка існування кореня на відрізку [a,b] здійснюється так: корінь належить відрізку, якщо $f(a)\cdot f(b) < 0$, якщо $f(a)\cdot f(b) > 0$, то відрізок не містить коренів.

2 Завдання

- 1. Допрограмовий етап: визначити кількість дійсних коренів рівняння, відокремити корені рівняння (письмово) (див. теореми про верхню та нижню границі, Гюа, метод поліномів Штурма). Результатом ε висновок: перший корінь належить проміжку [...], другий корінь належить проміжку [...] і т.д.
 - 2. Програмний етап: уточнити корені рівняння:
 - 2.1. методом бісекції;
 - 2.2. методом хорд;
 - 2.3. методом Ньютона (дотичних).

Критерієм закінчення ітераційного процесу мають бути нерівності:

- для методу бісекції (інтервальний метод; а та b - кінці інтервалу)

$$|\mathbf{b} - \mathbf{a}| < \varepsilon \text{ Ta} |\mathbf{f}(\mathbf{x}_k)| < \varepsilon$$

- для методів хорд та дотичних

$$\mid x_k$$
 - $x_{k-1} \mid < \epsilon$ Ta $\mid f(x_k) \mid < \epsilon$.

3. Порівняти отримані результати, зробити висновки, який метод приводить до меншої кількості ітерацій і чим це зумовлено.

3 Варіанти завдань

Номер варіанту — це молодша цифра порядкового номеру у списку групи. Параметр ${\bf k}$ — це молодша цифра номера групи. Параметр ${\bf \alpha}$ — старша цифра порядкового номеру у списку групи.

Вигляд рівняння:

$$a_5(1+\alpha) x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x^1 + k a_0 = 0.$$

Примітка 1: поліноми, що розглядаються в даній роботі, обов'язково повинні містити дійсні корені.

Таблиця 1. Варіанти завдань

№ вар.	Коефіцієнти поліному						
	a_5	a ₄	a_3	a_2	a_1	a_0	
1	1	-2	-4	0	2	1	
2	1	-3	0	7	0	-3	
3	0	1	-3	1	-2	-2	
4	0	-1	3	0	-2	1	
5	2	-3	-1	0	0	3	
6	0	0	2	-4	-1	1	
7	2	-3	1	2	-4	1	
8	1	0	0	3	-2	-1	
9	0	1	-2	-9	-3	-1	
10	0	-2	1	5	-2	1	

4 Вимоги до звіту

Звіт має містити:

- постановку задачі у вигляді вихідного рівняння;
- виконання допрограмового етапу, результатом якого повинні бути проміжки, щодо яких проводиться уточнення;
- розв'язок уточнення коренів за методами бісекції, хорд, дотичних у Mathcad;
- висновки;
- лістинг програми (вхідними даними для цієї програми є координати проміжків $[a_i,b_i]$ та коефіцієнти поліному).

Примітка 2: при виконанні лабораторних робіт потрібно намагатися створювати універсальні процедури, які можуть бути використані для нелінійних рівнянь будь-якого порядку. Методи рекомендовано реалізувати у вигляді методів класу (об'єкту) «поліном», або у вигляді процедури, до якої передаються

- посилання на функцію, корінь якої потрібно знайти,
- межі інтервалу, до якого належить корінь, та точність, з якою треба його знайти.