CPU Kernen (HW)

Hvilke basale elementer består en CPU af?

- Central Processing Unit.
- Central regneenhed/computerens hjerne. Alle beregninger foregår her.
- Basale elementer:
 - Control Unit:
 - Fetch: Henter instruktion fra memory
 - Decode: Afkodning af instruktionen
 - Transfer: Overførslen af data
 - Execute: Udfører til sidst instruktionen.
 - **Instruction Memory:** Holder styr på instruktioner. Henter instruktion fra hukommelse og inkrementer PC.
 - Program Counter: Indeholder adressen på den næste instruktion
 - **ALU:** Står på beregningen af data (add,sub,or osv.)

Hvordan afkodes en instruktion?

- Afkodes således:
 - **Hent** instruktion fra memory (fra PC)
 - Inkrementér PC: Add 4 til -> næste instruktion
 - **Dekod** instruktionen (hvilke registre og hvor skal gemmes)
 - Instruktionen bliver eksekveret.
 - Alt efter hvad instruktionen er blevet dekodet til. (Memory Access/Write back)
- 2 måder:
 - CISC (Complex Instruction Set Computer):
 - Mange komplekse instruktioner som udfører store opgaver
 - En enkelt operation kan tage flere clock cycles
 - Giver mindre programkode og kræver mindre compiler -> Run-time
 - RISC (Reduced Instruction Set Computer):
 - Enkelte instruktioner, som udføres på én clock cycle
 - Flere instruktioner -> Én pr. clock cycle
 - Kræver mere kompliceret compiler

Hvilken funktion har kontrol logikken?

- Fungerer som en tilstandsmaskine
- Alt efter hvilke instruktion der kommer ind, håndterer kontrol mekanismen kontrolsignaler
- Der findes 3 typer kontrolsignaler:
 - Aritmetic: RegDst, ALUSrc, ALUOp, MemToReg, RegWrite (Regning)
 - Branch: PCSrc, ALUOp, ALUSrc (Beslutninger / logik)
 - Memory: ALUSrc, MemRead/Write, MemToReg, ALUOp (Hukommelse)

Forklar hvordan en "branch"/"add" instruktion udføres?

- ADD:
- Afkodning af instruktion
- Registerværdi hentes og sendes til ALU
- Control har sat ALU til "add" og register til "write"
- ALU result sendes tilbage til register memory
- BRANCH:
 - Register hentes
 - ALU sættes til at trække 0 fra register
 - Control sætter MUX til at hente fra en AND gate med 1 til det ene ben (fra control) og ALU zero ben

CPU Kernen (HW)

