1 Finding the Area Between Two Curves

- 1. Find the area bounded by $y = 5x x^2$ and y = x.
- 2. Find the area bounded by $x = y^2 4y$ and $x = 2y y^2$.
- 3. Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle, then find the area of the region.

Date: Term 1, Fall '23

Notes: A.L. Maagma

3.1.
$$y = x + 1$$
, $y = 9 - x^2$, $x = -1$, $x = 2$

3.2.
$$y = x, y = x^2$$

3.3.
$$y = x^2 - 2x$$
, $y = x + 4$

3.4.
$$y = x^2, y^2 = x$$

3.5.
$$y = x^2$$
, $y = 4x - x^2$

3.6.
$$y = 12 - x^2$$
, $y = x^2 - 6$

3.7.
$$y = 8 - x^2$$
, $y = x^2$, $x = -3$, $x = 3$

3.8.
$$x = 2y^2$$
, $x = 4 + y^2$

3.9.
$$4x + y^2 = 12$$
, $x = y$

3.10.
$$y = |x|, y = x^2 - 2$$

4. Find the area of the region enclosed by the curves.

4.1.
$$y = 2x - 8x + 10$$
, $y = \frac{x^2}{2} - 2x - 1$, $x = 1$, $x = 3$

4.2.
$$x = 2y^2 + 12y + 19$$
, $x = -\frac{y^2}{2} - 4y - 10$, $y = -3$, $y = -2$

4.3.
$$y = \frac{x^2}{2} - 3x - \frac{1}{2}, y = 3$$

4.4.
$$y = -\frac{x^3}{2} + 2x^2$$
, $y = -x^2 + 4x$