Dual Learning for Machine Translation

Presented by: Sreeja R Thoom Jayavardhan Reddy Peddamail

Overview

- What
 - Introduce an autoencoder-like mechanism, "Dual learning", to utilize monolingual datasets

- Results
 - Dual Learning with 10% data ≈ Baseline model with 100% data

^{1) &}quot;Dual Learning: A New Learning Paradigm", https://www.youtube.com/watch?v=HzokNo3g63E&feature=youtu.be

Difficulty in getting large bilingual data

- Solution: utilization of monolingual data
 - Train a language model of the target language, and then integrate it with the MT model¹⁾²⁾
 - <- does not fundamentally address the shortage of parallel data.
 - Generate pesudo bilingual data from monolingual data³⁾⁴⁾
 - <- no guarantee on the quality of the pesudo bilingual data

¹⁾ T. Brants et al., "Large language models in machine translation", EMNLP 2007

²⁾ C. Gucehre et al., "On using monolingual corpora in neural machine translation", arix 2015

³⁾ R. Sennrich et al., "Improving neural machine translation models with monolingual data", ACL 2016

⁴⁾ N. Ueffing et al., "Semi-supervised model adaptation for statistical machine translation", Machine Translation Journal 2008

Neural machine translation

• Learn conditional probability $P(y|x;\Theta)$ from a input $x=\{x_1,x_2,...,x_{T_x}\}$ to an output $y=\{y_1,y_2,...,y_{T_y}\}$

· Maximize the log probability

$$\Theta^* = \operatorname{argmax} \sum_{(x,y) \in D} \sum_{t=1}^{2y} \log P(y_t | y_{< t}, x; \Theta)$$

Hidden Vectors(Encoder):

$$h_i = f(h_{i-1}, x_i)$$

Decoder Portion:

$$P(y_t|y_{< t}, x) \propto \exp(y_t; r_t, c_t)$$

 $r_t = g(r_{t-1}, y_{t-1}, c_t)$
 $c_t = q(r_{t-1}, h_1, \dots, h_{T_x})$

Figure 1: An illustration of the proposed RNN Encoder–Decoder.

- Use monolingual datasets to train translation models through dual learning
- Things required

 D_A : corpus of language A

 D_B : corpus of language B (not necessarily aligned with D_A)

 $P(.|s;\Theta_{AB})$: translation model from A to B

 $P(.|s; \Theta_{BA})$: translation model from B to A

 $LM_A(.)$: learned language model of A

 $LM_B(.)$: learned language model of B

1. Generate *K* translated sentences

 $S_{mid,1}, S_{mid,2}, \dots, S_{mid,K}$ from $P(.|s; \Theta_{AB})$ based on beam search

1. Generate K translated sentences

 $S_{mid,1}, S_{mid,2}, \ldots, S_{mid,K}$

from $P(.|s;\Theta_{AB})$ based on beam search

2. Compute intermediate rewards

from
$$LM_B(s_{mid,k})$$
 for each sentence as $r_{1,k} = LM_B(s_{mid,k})$

3. Get communication rewards

for each sentence as $r_{2,k} = \ln P(s|s_{mid,k}; \Theta_{BA})$

3. Get communication rewards

$$r_{2,1}, r_{2,2}, \dots, r_{2,k}$$
 for each sentence as $r_{2,k} = \ln P(s|s_{mid,k}; \Theta_{BA})$

4. Set the total reward of k-th sentence as

$$r_k = \alpha r_{1,k} + (1 - \alpha) r_{2,k}$$

5. Compute the stochastic gradient of Θ_{AB} and Θ_{AB}

$$\nabla_{\Theta_{AB}} E[r] = \frac{1}{K} \sum_{k=1}^{K} [r_k \nabla_{AB} \ln P(s_{mid,k}|s; \Theta_{AB})]$$

$$\nabla_{\Theta_{BA}} E[r] = \frac{1}{K} \sum_{k=1}^{K} [(1 - \alpha) \nabla_{BA} \ln P(s_{mid,k}|s; \Theta_{BA})]$$

5. Compute the stochastic gradient of Θ_{AB} and Θ_{AB}

$$\nabla_{\Theta_{AB}} E[r] = \frac{1}{K} \sum_{k=1}^{K} [r_k \nabla_{AB} \ln P(s_{mid,k}|s; \Theta_{AB})]$$

$$\nabla_{\Theta_{BA}} E[r] = \frac{1}{K} \sum_{k=1}^{K} [(1 - \alpha) \nabla_{BA} \ln P(s_{mid,k}|s; \Theta_{BA})]$$

6. Update model parameters

$$\begin{aligned} \Theta_{AB} &\leftarrow \Theta_{AB} + \gamma_1 \nabla_{\Theta_{AB}} E[r] \\ \Theta_{BA} &\leftarrow \Theta_{BA} + \gamma_2 \nabla_{\Theta_{BA}} E[r] \end{aligned}$$

Stochastic gradient of models

Beam Search

$$\nabla_{\Theta_{BA}} E[r] = \sum_{s_{mid}} \left[\nabla_{\Theta_{BA}} P(s_{mid}|s;\Theta_{AB}) \cdot r + P(s_{mid}|s;\Theta_{AB}) \cdot \nabla_{\Theta_{BA}} r \right]$$

$$= \sum_{s_{mid}} P(s_{mid}|s;\Theta_{AB}) \cdot \nabla_{\Theta_{BA}} (1-\alpha) \ln P(s|s_{mid};\Theta_{BA})$$

$$pprox rac{1}{K} \sum_{i}
abla_{\Theta_{BA}} (1 - lpha) \ln P(s|s_{mid,k};\Theta_{BA})$$

$$\nabla_{\theta} \mathbb{E}[f(x)] = \nabla_{\theta} \int p_{\theta}(x) f(x) dx$$

$$= \int \frac{p_{\theta}(x)}{p_{\theta}(x)} \nabla_{\theta} p_{\theta}(x) f(x) dx$$

$$= \int p_{\theta}(x) \nabla_{\theta} \log p_{\theta}(x) f(x) dx$$

$$= \mathbb{E} \Big[f(x) \nabla_{\theta} \log p_{\theta}(x) \Big]$$

1: **Input**: Monolingual corpora D_A and D_B , initial translation models Θ_{AB} and Θ_{BA} , language

Compute the stochastic gradient of Θ_{AB} :

Compute the stochastic gradient of Θ_{BA} :

Go through line 6 to line 14 symmetrically.

2: repeat

3:

5:

8:

10: 11:

12:

13:

14:

15:

t = t + 1.

Set $s = s_A$.

for $k = 1, \ldots, K$ do

 $\log P(s|s_{mid,k};\Theta_{BA}).$

Model updates:

Set $s = s_B$.

17: until convergence

 $P(.|s;\Theta_{AB}).$

end for

Sample sentence s_A and s_B from D_A and D_B respectively.

Algorithm 1 The dual-learning algorithm

models LM_A and LM_B , α , beam search size K, learning rates $\gamma_{1,t}, \gamma_{2,t}$.

Set the total reward of the kth sample as $r_k = \alpha r_{1,k} + (1-\alpha)r_{2,k}$.

 $abla_{\Theta_{AB}} \hat{E}[r] = \frac{1}{K} \sum_{k=1}^{K} [r_k \nabla_{\Theta_{AB}} \log P(s_{mid,k}|s;\Theta_{AB})].$

 $\nabla_{\Theta_{BA}} \hat{E}[r] = \frac{1}{K} \sum_{k=1}^{K} [(1 - \alpha) \nabla_{\Theta_{BA}} \log P(s|s_{mid,k};\Theta_{BA})].$

 $\Theta_{AB} \leftarrow \Theta_{AB} + \gamma_1 \star \nabla_{\Theta_{AB}} \hat{E}[r], \Theta_{BA} \leftarrow \Theta_{BA} + \gamma_2 \star \nabla_{\Theta_{BA}} \hat{E}[r].$

Generate K sentences $s_{mid,1}, \ldots, s_{mid,K}$ using beam search according to translation model

Set the language-model reward for the kth sampled sentence as $r_{1,k} = LM_B(s_{mid,k})$.

Set the communication reward for the kth sampled sentence as $r_{2,k}$

▶ Model update for the game beginning from A.

 \triangleright Model update for the game beginning from B.

Dataset:

- WMT'14
- 12M sentence pairs
- English -> French, French -> English

Data usage (for dual learning):

- Small
 - Train translation models with 10% bilingual data.
 - Train translation models with 10% bilingual data and monolingual data through dual learning algorithm.
- Large:
 - Train translation models with 100% bilingual data.
 - Train translation models with 100%
 bilingual data and with monolingual data through dual learning algorithm.

Evaluation

• BLEU: geometric mean of n-gram precision

$$\begin{aligned} \text{BLEU} &= \text{BP} \times \left(\prod_{n}^{4} \text{n-gram precision} \right)^{\frac{1}{4}} \\ \text{BP} &= \left\{ \begin{array}{ll} 1 & \text{if |pred|} > |\text{true}| \\ e^{\frac{1-|\text{true}|}{|\text{pred}|}} & \text{if |pred|} \leq |\text{true}| \end{array} \right. \end{aligned}$$

$$Precision = \exp(\sum_{n=1}^{N} w_n \log p_n), \text{ where } w_n = 1/n$$

Experiment settings

- Baseline models
 - Bahdanau et al., "Neural Machine Translation by Jointly Learning to Align and Translate"
 - Sennrich et al., "Improving Neural Machine Translation Models with Monolingual Data"

Results

	En→Fr (Large)	Fr→En (Large)	En→Fr (Small)	Fr→En (Small)
NMT	29.92	27.49	25.32	22.27
pseudo-NMT	30.40	27.66	25.63	23.24
dual-NMT	32.06	29.78	28.73	27.50

- Outperform the base line models
- In Fr->En, dual learning with 10% data ≈ baseline models with 100% data.
- Dual learning is effective especially in a small dataset.

Results

- For different source sentence length
 - Improvement is significant for long sentences.

Results

	$En \rightarrow Fr \rightarrow En (L)$	$Fr \rightarrow En \rightarrow Fr (L)$	$En \rightarrow Fr \rightarrow En(S)$	$Fr \rightarrow En \rightarrow Fr(S)$
NMT	39.92	45.05	28.28	32.63
pseudo-NMT	38.15	45.41	30.07	34.54
dual-NMT	51.84	54.65	48.94	50.38

- Reconstruction performance (BLEU)
 - Huge improvement from baseline models, especially in En->Fr-En(S)

How is Reconstruction BLEU score higher than Translation BLEU Score?

Results

Reconstruction examples

	Translation-back-translation results	Translation-back-translation results		
	before dual-NMT training	after dual-NMT training		
Source (En)	The majority of the growth in the years to come will come from its			
	liquefied natural gas schemes in Australia.			
	La plus grande partie de la crois-	La majorité de la croissance dans		
En→Fr	-sance des années à venir viendra	les années à venir viendra de ses		
	de ses systèmes de gaz naturel	régimes de gaz naturel liquéfié		
	liquéfié en Australie .	en Australie .		
	Most of the growth of future	The majority of growth in the		
$En \rightarrow Fr \rightarrow En$	years will come from its liquefied	coming years will come from its		
	natural gas systems in Australia .	liquefied natural gas systems		
		in Australia .		
Source (Fr)	Il précise que " les deux cas identifiés en mai 2013 restent donc			
	les deux seuls cas confirmés en France à ce jour ".			
	He noted that " the two cases	He states that " the two cases		
Fr→En	identified in May 2013 therefore	identified in May 2013 remain the		
	remain the only two two confirmed	only two confirmed cases in France		
	cases in France to date ".	to date "		
	Il a noté que " les deux cas	Il précise que " les deux cas		
Fr→En→Fr	identifiésen mai 2013 demeurent	identifiés en mai 2013 restent les		
	donc les deux seuls deux deux cas	seuls deux cas confirmés en France		
	confirmés en France à ce jour "	à ce jour ".		
	commines on France a ce jour	a co jour .		

Future extensions & words

Application in other domains

Application	Primal task	Dual task	
Speech processing	Speech recognition	Text to speech	
Image understanding	Image captioning	Image generation	
Conversation engine	Question	Response	
Search engine	Search	Query/Keyword suggestion	

- Generalization of dual learning
 - Dual -> Triple -> ··· -> n-loop
- · Learn from scratch
 - only with monolingual data

Summary

- What
 - Introduce "Dual learning algorithm" to utilize monolingual data
- Results
 - With 100% data, the model outperforms the baseline models
 - With 10% data, the model shows the comparable result with the baseline models
- Future
 - Dual learning mechanism can be applied to other domains
 - Learn from scratch

Questions:

- Removing all Monolingual sentences with out of vocabulary terms.
- Reconstruction BLEU score> Translation BLEU Score