Introduction Tools Data Met hodology Implementation Result Conclusion

BUILDING LOD-1

Supervisor: Vincent Chabannes

- Introduction
- 2 Tools
- O Data
- Methodology
- 5 Implementation
- 6 Result
- Conclusion

Introduction

Introduction Tools Data Met hodology Implementation Result Conclusion

Context

Energetic simulation on City

Objectives

- Generation of a surface mesh representing the building's external envelope.
- Addition of internal walls delimiting exterior walls and any slabs for each floor.
- Roof modeling.
- Creation of a 3D building volume mesh (structure and/or indoor air).
- Mesh adaptation: quality control of the produced meshes.
- Complexifying building shape.

Introduction
Tools
Data
Methodology
Implementation
Result
Conclusion

Polygon Mesh Processing

Straight Skeleton

simple skeleton

Introduction
Tools
Tools
Data
Met hodology
Implementation
Result
Conclusion

3D Mesh Generation

Multilabel Mesh

Introduction Tools Data Met hodology Implementation Result Conclusion

Data

schiltigheim district

Workspace Methodology

Collaborative Development Environment:

- Version Control: We use GitHub as a shared repository.
- Team Structure: 4 interns collaborate on the same repository with a different goal.
- **Issue Tracking:** Work is organized by creating issues, each associated with a specific branch.
- Test: To avoid creation of bug we implement test.
- Pull Requests:
 - Development is done by submitting pull requests for new features and bug fixes.
 - Code reviews ensure quality and catch potential conflicts.

Methodology

Building Creation Steps:

- Surface Mesh: Creation of the surface mesh of every building
- Building Merging: merge every building in one object
- Volume Meshing: Create a volume mesh from a surface mesh
- Qualtiy check: Check the proprietes of the final object

MultipleBuilding Class

MultipleBuilding main method;

- Data loading method: The 'loadFromJsonGis' and 'loadFromJsonDat' method load the data needed for the building creation.3
- Building creation method:
 - extrudeWalls
 - addFloors
 - generateRoof
 - mergeWallRoof
 - mergeAllMeshes
 - meshing3D

Parameters

MultipleBuilding Parameters:

- Input File: This option is to input gis or dat file for the building creation
- Debug: This option enable everythings that permit debug
- Roof: This option enable the creation of the roof of buildings
- Union: This option change the merge of floor and roof to a volume union
- Volume: This option enable the volume meshing of the resulted surface mesh

Volume Mesh

Functionality Implemented:

- meshToPolyhedron: This function convert ktirio mesh to a cgal polyhedron.
- polyhedronTo3DMesh: This function convert polyhedron to a volume mesh.
- mesh 3d: This function convert a surface mesh to a volume mesh.

Test

Test Implemented:

- Marker: This test verify the handling of markers within meshes.
- Polyhedron: This test verify the creation of a valid polyhedron from a mesh.

Surface Mesh

Surface Mesh of 2 buildings

Introduction Tools Data Methodology Implementation Result Conclusion

Volume Mesh

Surface Mesh of district

Introduction Tools Data Met hodology Implementation Result Conclusion

Complexity analysis

Perspectives

- **Enhanced Features:** Expand 'MultipleBuilding' class capabilities to support complex structures and custom elements.
- Optimization: Improve mesh processing efficiency, especially for large models.
- **Volume Meshing Tests**: Develop tests to ensure accurate and efficient 3D mesh generation.
- Improving Floor Creation: Enhance flexibility in floor creation with custom heights and different floor shape.
- **Feel++ Integration**: Use 'Feel++' for extensive mesh validation.

Conclusion

- Project Goal: Developed a geometric reconstruction tool for LOD1 buildings, aiding energy simulations and urban planning.
- Key Contributions: Implemented the 'MultipleBuilding' class, converted meshes to CGAL polyhedrons, and generated 3D volume meshes.
- **Collaboration:** Utilized GitHub for structured workflow, focusing on issues, branches, and pull requests.
- Testing: Ensured robustness through rigorous testing and validation of new features
- Future Perspectives: Expand features, optimize performance, and integrate advanced tools to further improve the Ktirio library.

reference I

CGAL User and Reference Manual.

CGAL Editorial Board, 5.6.1 edition, 2024.

Finding Good Configurations of Planar Primitives in Unorganized Point Clouds.

In CVPR 2022 - IEEE Conference on Computer Vision and Pattern Recognition, La Nouvelle-Orléans, United States, June 2022.

Meshlab. open source system for processing and editing 3d triangular meshes.

reference II

- Irma. institute for advanced mathematical research.
- Hidalgo2. hpc and big data technologies for global challenges.
- Cemosis. innovation through modeling, simulation, optimisation and high performance computing.
- Numpex. french program dedicated to exascale.
- Paraview. open source post-processing visualization engine.
- Json , file format.
- Modeling energy efficiency block by block | energy technologies area.