EXPANSIONS OF FINITE ALGEBRAS AND THEIR CONGRUENCE LATTICES

William DeMeo

joint work with

Ralph Freese, Peter Jipsen, Bill Lampe, J.B. Nation

University of Hawai'i at Mānoa

AMS Western Sectional Meeting March 4, 2012

THE PROBLEM

There is essentially no restriction on the shape of a congruence lattice of an arbitrary algebra.

THEOREM (GRÄTZER-SCHMIDT, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

What if the algebra is finite?

Problem: Given a finite lattice L, does there exist a *finite* algebra A such that $\operatorname{Con} A \cong L$?

THE PROBLEM

There is essentially no restriction on the shape of a congruence lattice of an arbitrary algebra.

THEOREM (GRÄTZER-SCHMIDT, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

What if the algebra is finite?

Problem: Given a finite lattice L, does there exist a *finite* algebra A such that $Con A \cong L$?

DEFINITION

We call a finite lattice *representable* if it is (isomorphic to) the congruence lattice of a finite algebra.

THEOREM (PÁLFY AND PUDLÁK, 1980)

The following statements are equivalent:

- (I) Every finite lattice is isomorphic to the congruence lattice of a finite algebra.
- (II) Every finite lattice is isomorphic to an interval in the subgroup lattice of a finite group.

HOW TO FIND A REPRESENTATION OF A FINITE LATTICE

METHOD 0

Write the given lattice in terms of other representable lattices.

- If L is representable, so is
 - · the dual of L
 - · any interval sublattice of L
- If L_1 and L_2 are representable, so is
 - the direct product of L_1 and L_2
 - · the ordinal sum of L_1 and L_2
 - · the parallel sum of L_1 and L_2

HOW TO FIND A CONCRETE REPRESENTATION OF A FINITE LATTICE

METHOD 1 (CLOSURE)

Find a "closed" representation of L in Eq(X).

For $L \leq Eq(X)$ define

$$\lambda(L) = \{ f \in X^X : (\forall \theta \in L) \ f(\theta) \subseteq \theta \}$$

For $F \subseteq X^X$ define

$$\rho(F) = \{ \theta \in \mathsf{Eq}(X) : (\forall f \in F) \ f(\theta) \subseteq \theta \}$$

For every $L \leq Eq(X)$ we have $L \subseteq \rho \lambda(L)$.

The map $\rho\lambda$ is a *closure operator* on Sub[Eq(X)]. (idempotent, extensive, order preserving)

If a lattice $L \leq Eq(X)$ is *closed*, i.e. $\rho \lambda(L) = L$, then

$$L = \operatorname{Con} \langle X, \lambda(L) \rangle$$

HOW TO FIND A CONCRETE REPRESENTATION OF A FINITE LATTICE

METHOD 2 (SUBGROUP LATTICE INTERVAL)

Find *L* as an interval in a subgroup lattice of a finite group.

If H < G are finite groups, then the interval above H in Sub(G),

$$[H,G]:=\{K:H\leqslant K\leqslant G\},$$

is isomorphic to $Con \langle G/H, G \rangle$.

METHOD 3 (FILTER+IDEAL)

Find *L* as the union of a filter and ideal in a representable lattice.

LEMMA

Suppose $L_0 \cong \operatorname{Con} \langle A, F \rangle$, and $\alpha, \beta \in L_0 \setminus \{0, 1\}$.

LEMMA

 $\textit{Suppose $L_0 \cong \operatorname{Con} \langle A, F \rangle$, \ and $\alpha, \beta \in L_0 \setminus \{0,1\}$.} \ \ \textit{Consider $L = \alpha^{\uparrow} \cup \beta^{\downarrow}$.}$

LEMMA

 $\textit{Suppose $L_0 \cong \operatorname{Con} \langle A, F \rangle$, \ and $\alpha, \beta \in L_0 \setminus \{0, 1\}$.} \ \ \textit{Consider $L = \alpha^{\uparrow} \cup \beta^{\downarrow}$.}$

There exists a set $F' \subset A^A$ such that $L \cong \operatorname{Con} \langle A, F \cup F' \rangle$.

LEMMA

Suppose $L_0 \cong \operatorname{Con} \langle A, F \rangle$, and $\alpha, \beta \in L_0 \setminus \{0, 1\}$. Consider $L = \alpha^{\uparrow} \cup \beta^{\downarrow}$.

There exists a set $F' \subset A^A$ such that $L \cong \operatorname{Con} \langle A, F \cup F' \rangle$.

Proof:

Fix $\theta \in L_0 \setminus L$. Then $\alpha \nleq \theta \nleq \beta$, so

- $\exists (a,b) \in \alpha \setminus \theta$,
- $\exists (u, v) \in \theta \setminus \beta$.

Define $f_{\theta}: A \rightarrow A$ by

$$f_{\theta}(x) = \begin{cases} a & x \in u/\beta, \\ b & x \notin u/\beta. \end{cases}$$

Then

- $(f_{\theta}(u), f_{\theta}(v)) = (a, b) \notin \theta$, so $f_{\theta}(\theta) \nsubseteq \theta$,
- $\ker f_{\theta} \geqslant \beta$, so $f_{\theta}(\gamma) \subseteq \gamma$ for all $\gamma \leqslant \beta$,
- $f_{\theta}(A) \subseteq \{a, b\}$, so $f_{\theta}(\gamma) \subseteq \gamma$ for all $\gamma \geqslant \alpha$.

Let
$$F' = \{ f_{\theta} : \theta \in L_0 \setminus L \}$$
.

LATTICES WITH AT MOST 6 ELEMENTS ARE REPRESENTABLE.

Theorem: Every lattice with at most 6 elements is an interval in the subgroup lattice of a finite group.

LATTICES WITH AT MOST 6 ELEMENTS ARE REPRESENTABLE.

Theorem: Every lattice with at most 6 elements is an interval in the subgroup lattice of a finite group.

ARE ALL LATTICES WITH AT MOST 7 ELEMENTS REPRESENTABLE?

ARE ALL LATTICES WITH AT MOST 7 ELEMENTS REPRESENTABLE?

...AS INTERVALS IN SUBGROUP LATTICES

SmallGroup (288, 1025)

SmallGroup (960,11358

$$|G:H| = 8$$

- The group $G = (A_4 \times A_4) \rtimes C_2$ has a subgroup $H \cong S_3$ such that $[H, G] \cong L_{17}$.
- ...so the dual L_{16} is also representable.
 - L_{16} can be embedded above diagonal of the direct power of a simple group,

$$L_{16} \hookrightarrow [\Gamma, S^{48}] \cong \operatorname{Eq}(48)^{dual}$$
.

Add the group operations G which closed L_{17} , and L_{16} appears as an upper interval in $S^{48} \times G$.

• The group $G = (C_2 \times C_2 \times C_2 \times C_2) \rtimes A_5$ has a subgroup $H \cong A_4$ such that $[H, G] \cong L_{13}$.

...AS INTERVALS IN SUBGROUP LATTICES

SmallGroup (288, 1025)

$$|G:H|=48$$

SmallGroup(960,11358

$$|G:H| = 80$$

- The group $G = (A_4 \times A_4) \times C_2$ has a subgroup $H \cong S_3$ such that $[H, G] \cong L_{17}$.
- ...so the dual L_{16} is also representable.

 L_{16} can be embedded above diagonal of the direct power of a simple group,

$$L_{16} \hookrightarrow [\Gamma, S^{48}] \cong \text{Eq}(48)^{dual}.$$

Add the group operations G which closed L_{17} , and L_{16} appears as an upper interval in $S^{48} \rtimes G$.

• The group $G = (C_2 \times C_2 \times C_2 \times C_2) \rtimes A_5$ has a subgroup $H \cong A_4$ such that $[H, G] \cong L_{13}$.

...AS INTERVALS IN SUBGROUP LATTICES

SmallGroup(288,1025)

$$|G:H|=48$$

- The group $G = (A_4 \times A_4) \times C_2$ has a subgroup $H \cong S_3$ such that $[H, G] \cong L_{17}$.
- ...so the dual L_{16} is also representable.

 L_{16} can be embedded above diagonal of the direct power of a simple group,

$$L_{16} \hookrightarrow [\Gamma, S^{48}] \cong \text{Eq}(48)^{dual}.$$

Add the group operations G which closed L_{17} , and L_{16} appears as an upper interval in $S^{48} \rtimes G$.

• The group $G = (C_2 \times C_2 \times C_2 \times C_2) \times A_5$ has a subgroup $H \cong A_4$ such that $[H, G] \cong L_{13}$.

...USING SUBGROUP LATTICE INTERVALS AND THE FILTER+IDEAL LEMMA.

SmallGroup(288,1025)

- Let $G = (A_4 \times A_4) \rtimes C_2$.
- G has a subgroup $H \cong C_6$ with $[H, G] \cong N_5$.
- Let $[H, G] = \{H, \alpha, \beta, \gamma, G\} \cong N_5$.
- Sub(G) is a congruence lattice, so if there exists a subgroup K > 1, below β and not below γ, then

$$L_{11} \cong K^{\downarrow} \cup H^{\uparrow}$$
.

- Sub(A₄) is a congruence lattice (of A₄ acting regularly on itself).
- Therefore

$$L_{17}\cong V_4^{\downarrow}\cup P^{\uparrow}$$

is a congruence lattice

...USING SUBGROUP LATTICE INTERVALS AND THE FILTER+IDEAL LEMMA.

SmallGroup(288,1025)

- Let $G = (A_4 \times A_4) \rtimes C_2$.
- G has a subgroup $H \cong C_6$ with $[H, G] \cong N_5$.
- Let $[H, G] = \{H, \alpha, \beta, \gamma, G\} \cong N_5$.
- Sub(G) is a congruence lattice, so if there exists a subgroup K > 1, below β and not below γ, then

$$L_{11}\cong K^{\downarrow}\cup H^{\uparrow}.$$

- Sub(A₄) is a congruence lattice (of A₄ acting regularly on itself).
- Therefore

$$L_{17}\cong V_4^{\downarrow}\cup P^{\uparrow}$$

is a congruence lattice

...USING SUBGROUP LATTICE INTERVALS AND THE FILTER+IDEAL LEMMA.

SmallGroup(288,1025)

• Let
$$G = (A_4 \times A_4) \rtimes C_2$$
.

- G has a subgroup $H \cong C_6$ with $[H, G] \cong N_5$.
- Let $[H, G] = \{H, \alpha, \beta, \gamma, G\} \cong N_5$.
- Sub(G) is a congruence lattice, so if there exists a subgroup K > 1, below β and not below γ, then

$$L_{11}\cong K^{\downarrow}\cup H^{\uparrow}.$$

- Sub(A₄) is a congruence lattice (of A₄ acting regularly on itself).
- Therefore

$$L_{17}\cong V_4^{\downarrow}\cup P^{\uparrow}$$

is a congruence lattice

...USING SUBGROUP LATTICE INTERVALS AND THE FILTER+IDEAL LEMMA.

SmallGroup(288,1025)

• Let
$$G = (A_4 \times A_4) \rtimes C_2$$
.

- G has a subgroup $H \cong C_6$ with $[H, G] \cong N_5$.
- Let $[H, G] = \{H, \alpha, \beta, \gamma, G\} \cong N_5$.
- Sub(G) is a congruence lattice, so if there exists a subgroup K > 1, below β and not below γ, then

$$L_{11}\cong K^{\downarrow}\cup H^{\uparrow}.$$

- Sub(A₄) is a congruence lattice (of A₄ acting regularly on itself).
- Therefore,

$$L_{17}\cong V_4^{\downarrow}\cup P^{\uparrow}$$

is a congruence lattice.

ARE ALL LATTICES WITH AT MOST 7 ELEMENTS REPRESENTABLE?

ARE ALL LATTICES WITH AT MOST 7 ELEMENTS REPRESENTABLE?

STEP 1 Take a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice $\operatorname{Con} \mathbf{B} \cong M_4$.

Example

- Let $B = \{0, 1, ..., 5\}$ index the elements of S_3 and consider the right regular action of S_3 on itself.
- $g_0 = (0,4)(1,3)(2,5)$ and $g_1 = (0,1,2)(3,4,5)$ generate this action group, the image of $S_3 \rightarrow S_6$
- Con $\langle B, \{g_0, g_1\} \rangle \cong M_4$ with congruences
- $\alpha = |012|345|, \ \beta = |03|14|25|, \gamma = |04|15|23|, \ \delta = |05|13|24|$

Goal: expand B to an algebra A that has \(\alpha \) "doubled" in Con A.

STEP 2 Since $\alpha = Cg^B(0,2)$, we let $A = B_0 \cup B_1 \cup B_2$ where

STEP 3 Define unary operations e_0 , e_1 , e_2 , s, g_0e_0 , and g_1e_0 .

STEP 1 Take a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice Con $\mathbf{B} \cong M_4$.

Example:

- Let $B = \{0, 1, ..., 5\}$ index the elements of S_3 and consider the right regular action of S_3 on itself.
- $g_0 = (0, 4)(1, 3)(2, 5)$ and $g_1 = (0, 1, 2)(3, 4, 5)$ generate this action group, the image of $S_3 \hookrightarrow S_6$
- Con $\langle B, \{g_0, g_1\} \rangle \cong M_4$ with congruences

$$\alpha = |012|345|, \ \beta = |03|14|25|, \gamma = |04|15|23|, \ \delta = |05|13|24|$$

Goal: expand **B** to an algebra **A** that has α "doubled" in Con **A**.

STEP 2 Since $\alpha = Cg^{B}(0,2)$, we let $A = B_0 \cup B_1 \cup B_2$ where

STEP 3 Define unary operations e_0 , e_1 , e_2 , s, g_0e_0 , and g_1e_0 .

STEP 1 Take a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice Con $\mathbf{B} \cong M_4$.

Example:

•
$$g_0 = (0, 4)(1, 3)(2, 5)$$
 and $g_1 = (0, 1, 2)(3, 4, 5)$ generate this action group, the image of $S_3 \hookrightarrow S_6$.

ullet Con $\langle \mathit{B}, \{\mathit{g}_{\mathsf{0}}, \mathit{g}_{\mathsf{1}}\}
angle \cong \mathit{M}_{\mathsf{4}}$ with congruences

$$\alpha = |012|345|, \ \beta = |03|14|25|, \gamma = |04|15|23|, \ \delta = |05|13|24|.$$

Goal: expand **B** to an algebra **A** that has α "doubled" in Con **A**.

Con B

STEP 2 Since $\alpha = \operatorname{Cg}^{\mathsf{B}}(0,2)$, we let $A = B_0 \cup B_1 \cup B_2$ where

STEP 3 Define unary operations e_0 , e_1 , e_2 , s, g_0e_0 , and g_1e_0

STEP 1 Take a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice Con $\mathbf{B} \cong M_4$.

Example:

•
$$g_0 = (0, 4)(1, 3)(2, 5)$$
 and $g_1 = (0, 1, 2)(3, 4, 5)$ generate this action group, the image of $S_3 \hookrightarrow S_6$.

ullet Con $\langle B, \{g_0,g_1\} \rangle \cong \mathit{M}_4$ with congruences

$$\alpha = |012|345|, \ \beta = |03|14|25|, \gamma = |04|15|23|, \ \delta = |05|13|24|.$$

Goal: expand **B** to an algebra **A** that has α "doubled" in Con **A**.

Con B

STEP 2 Since $\alpha = Cg^{\mathbf{B}}(0,2)$, we let $A = B_0 \cup B_1 \cup B_2$ where

$$B_0 = \{0, 1, 2, 3, 4, 5\} = B$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 2, 13, 14, 15\}$$

STEP 3 Define unary operations e_0 , e_1 , e_2 , s, g_0e_0 , and g_1e_0 .

STEP 1 Take a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice Con $\mathbf{B} \cong M_4$.

Example:

•
$$g_0 = (0, 4)(1, 3)(2, 5)$$
 and $g_1 = (0, 1, 2)(3, 4, 5)$ generate this action group, the image of $S_3 \hookrightarrow S_6$.

ullet Con $\langle B, \{g_0,g_1\}
angle \cong extit{M}_4$ with congruences

$$\alpha = |012|345|, \ \beta = |03|14|25|, \gamma = |04|15|23|, \ \delta = |05|13|24|.$$

STEP 2 Sir

STEP 2 Since $\alpha = Cg^{B}(0,2)$, we let $A = B_0 \cup B_1 \cup B_2$ where

$$B_0 = \{0, 1, 2, 3, 4, 5\} = B$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 2, 13, 14, 15\}.$$

STEP 3 Define unary operations e_0 , e_1 , e_2 , s, g_0e_0 , and g_1e_0 .

Con B

CONTRUCTION OF AN ALGEBRA **A** WITH Con $\mathbf{A} \cong \mathbf{L}_{\mathbf{Q}}$.

STEP 1 Take a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice Con $\mathbf{B} \cong M_4$.

Example:

- Let $B = \{0, 1, \dots, 5\}$ index the elements of S_3 and consider the right regular action of S_3 on itself.
- $g_0 = (0,4)(1,3)(2,5)$ and $g_1 = (0,1,2)(3,4,5)$ generate this action group, the image of $S_3 \hookrightarrow S_6$.
- Con $\langle B, \{g_0, g_1\} \rangle \cong M_4$ with congruences

$$\alpha = |012|345|, \ \beta = |03|14|25|, \gamma = |04|15|23|, \ \delta = |05|13|24|.$$

Goal: expand **B** to an algebra **A** that has α "doubled" in Con **A**.

STEP 2 Since $\alpha = Cg^B(0,2)$, we let $A = B_0 \cup B_1 \cup B_2$ where

$$B_0 = \{0, 1, 2, 3, 4, 5\} = B$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 2, 13, 14, 15\}.$$

STEP 3 Define unary operations e_0 , e_1 , e_2 , s, g_0e_0 , and g_1e_0 .

$$\operatorname{Con}\langle B,\{g_0,g_1\}\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

 $\delta = [0, 5|1, 3|2, 4]$

$$\widehat{\alpha} \qquad \beta^* \qquad \delta^* \qquad \delta^*$$

$$\operatorname{Con}\left\langle A,F_{A}\right\rangle$$

$$\widehat{\alpha} = |0, 1, 2, 6, 7, 11, 12|3, 4, 5|8, 9, 10, 13, 14, 15|$$

$$\alpha^* = |0, 1, 2, 6, 7, 11, 12|3, 4, 5|8, 9, 10|13, 14, 15|$$

$$\beta^* = |0, 3, 8|1, 4|2, 5, 15|6, 9|7, 10|11, 13|12, 14|$$

$$\gamma^* = |0, 4, 9|1, 5|2, 3, 13|6, 10|7, 8|11, 14|12, 15|$$

$$\delta^* = |0, 5, 10|1, 3|2, 4, 14|6, 8|7, 9, 11, 15|12, 13|$$

CONTRUCTION OF AN ALGEBRA **A** WITH Con $\mathbf{A} \cong L_9$.

$$\operatorname{Con}\langle B,\{g_0,g_1\}\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

Con $\langle A, F_A \rangle$

$$\widehat{\alpha} = |0, 1, 2, 6, 7, 11, 12|3, 4, 5|8, 9, 10, 13, 14, 15|$$

$$\alpha^* = |0, 1, 2, 6, 7, 11, 12|3, 4, 5|8, 9, 10|13, 14, 15|$$

$$\beta^* = |0, 3, 8|1, 4|2, 5, 15|6, 9|7, 10|11, 13|12, 14|$$

$$\gamma^* = |0, 4, 9|1, 5|2, 3, 13|6, 10|7, 8|11, 14|12, 15|$$

$$\delta^* = |0, 5, 10|1, 3|2, 4, 14|6, 8|7, 9, 11, 15|12, 13|$$

$$\alpha = \alpha^* \cap B^2 = \widehat{\alpha} \cap B^2, \quad \beta = \beta^* \cap B^2, \quad \dots$$

$$\text{Con}\,\langle \textbf{\textit{B}}, \{\textbf{\textit{g}}_0, \textbf{\textit{g}}_1\}\rangle$$

$$\begin{split} \alpha &= |0,1,2|3,4,5| \\ \beta &= |0,3|1,4|2,5| \\ \gamma &= |0,4|1,5|2,3| \\ \delta &= |0,5|1,3|2,4| \end{split}$$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\text{Con}\,\langle B,\{g_0,g_1\}\rangle$$

$$\begin{split} \alpha &= |0,1,2|3,4,5| \\ \beta &= |0,3|1,4|2,5| \\ \gamma &= |0,4|1,5|2,3| \\ \delta &= |0,5|1,3|2,4| \end{split}$$

$$\bullet \ A=B_0\cup B_1\cup B_2$$

Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\text{Con}\,\langle B,\{g_0,g_1\}\rangle$$

$$\begin{split} \alpha &= |0,1,2|3,4,5| \\ \beta &= |0,3|1,4|2,5| \\ \gamma &= |0,4|1,5|2,3| \\ \delta &= |0,5|1,3|2,4| \end{split}$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0:A\stackrel{e_0}{\to}B_0\stackrel{g}{\to}B_0$$

$$\text{Con}\,\langle \textbf{\textit{B}}, \{\textbf{\textit{g}}_0, \textbf{\textit{g}}_1\}\rangle$$

$$\begin{split} \alpha &= |0,1,2|3,4,5| \\ \beta &= |0,3|1,4|2,5| \\ \gamma &= |0,4|1,5|2,3| \\ \delta &= |0,5|1,3|2,4| \end{split}$$

$$\bullet \ A=B_0\cup B_1\cup B_2$$

Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\text{Con}\,\langle \textbf{\textit{B}}, \{\textbf{\textit{g}}_0,\textbf{\textit{g}}_1\}\rangle$$

$$\begin{split} \alpha &= |0,1,2|3,4,5| \\ \beta &= |0,3|1,4|2,5| \\ \gamma &= |0,4|1,5|2,3| \\ \delta &= |0,5|1,3|2,4| \end{split}$$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0:A\stackrel{e_0}{\to}B_0\stackrel{g}{\to}B_0$$

$$\text{Con}\,\langle \textbf{\textit{B}},\{\textbf{\textit{g}}_0,\textbf{\textit{g}}_1\}\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$
$$\beta = |0, 3|1, 4|2, 5|$$
$$\gamma = |0, 4|1, 5|2, 3|$$
$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$ge_0: A \xrightarrow{e_0} B_0 \xrightarrow{g} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$
 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$
 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

10 }

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

 $B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$
 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$B_{1} = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$B_{0} = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$B_{2} = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$
 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$

 $B_2 = \{ 11 \ 12 \ 2 \ 13 \ 14 \ 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$
 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$B_{1} = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$B_{0} = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$B_{2} = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$

 $B_2 = \{ 11 \ 12 \ 2 \ 13 \ 14 \ 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0$$
: $A woheadrightarrow B_0$
 e_1 : $A woheadrightarrow B_1$
 e_2 : $A woheadrightarrow B_2$
 s : $A woheadrightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 S : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 S : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0$$
: $A woheadrightarrow B_0$
 e_1 : $A woheadrightarrow B_1$
 e_2 : $A woheadrightarrow B_2$
 s : $A woheadrightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$
 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$B_{1} = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$B_{0} = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$B_{2} = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

 $B_2 = \{ 11 \ 12 \ 2 \ 13 \ 14 \ 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$
 $\beta = |0, 3|1, 4|2, 5|$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

•
$$A = B_0 \cup B_1 \cup B_2$$

Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con}\langle B, \{g_0, g_1\}\rangle$$

$$\begin{split} \alpha &= |0,1,2|3,4,5| \\ \beta &= |0,3|1,4|2,5| \\ \gamma &= |0,4|1,5|2,3| \\ \delta &= |0,5|1,3|2,4| \end{split}$$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

$$\begin{split} \alpha &= |0,1,2|3,4,5| \\ \beta &= |0,3|1,4|2,5| \\ \gamma &= |0,4|1,5|2,3| \\ \delta &= |0,5|1,3|2,4| \end{split}$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 S : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

 $ae_0: A \xrightarrow{e_0} B_0 \xrightarrow{g} B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$

 $B_2 = \{ 11 \ 12 \ 2 \ 13 \ 14 \ 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$

 $B_2 = \{ 11 \ 12 \ 2 \ 13 \ 14 \ 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$

 $B_2 = \{ 11 \ 12 \ 2 \ 13 \ 14 \ 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$

 $B_2 = \{ 11 \ 12 \ 2 \ 13 \ 14 \ 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $S: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$

 $B_2 = \{ 11 \ 12 \ 2 \ 13 \ 14 \ 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$

 $\delta = [0, 5|1, 3|2, 4]$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$

 $\delta = [0, 5|1, 3|2, 4]$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0\colon A\stackrel{e_0}{\twoheadrightarrow} B_0\stackrel{g}{\to} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$

 $\delta = [0, 5|1, 3|2, 4]$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$

 $B_2 = \{ 11 \ 12 \ 2 \ 13 \ 14 \ 15 \}$

$$ge_0\colon A\stackrel{e_0}{\twoheadrightarrow} B_0\stackrel{g}{\to} B_0$$

$$\operatorname{Con}\langle B,\{g_0,g_1\}\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$

$$e_2$$
: $A woheadrightarrow B_2$

$$s: A \rightarrow B_0$$

$$ge_0\colon A\stackrel{e_0}{\twoheadrightarrow} B_0\stackrel{g}{\to} B_0$$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$\operatorname{Con}\langle B,\{g_0,g_1\}\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$\operatorname{Con}\langle B, \{g_0, g_1\}\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

 $\delta = [0, 5|1, 3|2, 4]$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- B_1
- 10
- 7

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$B_0 = \{ 0 \ 1 \}$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$
 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0,3|1,4|2,5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

 $\beta = |0, 3|1, 4|2, 5|$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha=|\mathbf{0},\mathbf{1},\mathbf{2}|\mathbf{3},\mathbf{4},\mathbf{5}|$$

$$\beta = |0,3|1,4|2,5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0,3|1,4|2,5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta=|0,5|1,3|2,4|$$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\begin{split} \alpha &= |0,1,2|3,4,5| \\ \beta &= |0,3|1,4|2,5| \\ \gamma &= |0,4|1,5|2,3| \\ \delta &= |0,5|1,3|2,4| \end{split}$$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

 $\delta = |0, 5|1, 3|2, 4|$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\text{Con}\,\langle B,\{g_0,g_1\}\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0,3|1,4|2,5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

Con $\langle A, F_A \rangle$

Why don't the β classes of B_1 and B_2 mix?

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A=B_0\cup B_1\cup B_2$$
 where

$$B_0 = \{0, 1, 2, 3, 4, 5\}$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 13, 3, 14, 15\}.$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

B₀

- Suppose we want $\beta = \operatorname{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2 \quad \text{where}$$

$$B_0 = \{0, 1, 2, 3, 4, 5\}$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 13, 3, 14, 15\}.$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathtt{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathtt{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathtt{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathtt{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$B_0 = \{0, 1, 2, 3, 4, 5\}$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 13, 3, 14, 15\}.$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A=B_0\cup B_1\cup B_2$$
 where

$$B_0 = \{0, 1, 2, 3, 4, 5\}$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 13, 3, 14, 15\}.$$

VARIATIONS ON THE SAME EXAMPLE...

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A=B_0\cup B_1\cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

VARIATIONS ON THE SAME EXAMPLE...

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

RESIDUATION LEMMA

• Define $\widehat{\ }$: Con ${f B}
ightarrow {
m Con}\, {f A}$ by

$$\widehat{\beta} = \{(x, y) \in A^2 : (ef(x), ef(y)) \in \beta \text{ for all } f \in \text{Pol}_1(\mathbf{A})\}.$$

• For each $\beta \in \text{Con } \mathbf{B}$, let $\beta^* = \text{Cg}^{\mathbf{A}}(\beta)$. That is,

$*$
: Con **B** \rightarrow Con **A**

is the congruence generation operator restricted to Con B.

LEMMA

- (I) * : Con $\mathbf{B} \to \operatorname{Con} \mathbf{A}$ is a residuated mapping with residual $|_{\mathbf{B}}$.
- (II) $|_{B} : \operatorname{Con} \mathbf{A} \to \operatorname{Con} \mathbf{B}$ is a residuated mapping with residual $\hat{\ }$.
- (III) For all $\alpha \in \text{Con } \mathbf{A}, \beta \in \text{Con } \mathbf{B}$,

$$\beta = \alpha|_{\mathcal{B}} \quad \Leftrightarrow \quad \beta^* \leqslant \alpha \leqslant \widehat{\beta}$$

In particular, $\beta^*|_{_B} = \beta = \widehat{\beta}|_{_B}$.

RESIDUATION LEMMA

• Define $\widehat{}$: Con ${\bf B} \to {\rm Con}\, {\bf A}$ by

$$\widehat{\beta} = \{(x, y) \in A^2 : (ef(x), ef(y)) \in \beta \text{ for all } f \in \text{Pol}_1(\mathbf{A})\}.$$

• For each $\beta \in \operatorname{Con} \mathbf{B}$, let $\beta^* = \operatorname{Cg}^{\mathbf{A}}(\beta)$. That is,

$*$
: Con $\mathbf{B} \to \operatorname{Con} \mathbf{A}$

is the congruence generation operator restricted to ${\operatorname{Con}}\, {\boldsymbol B}.$

LEMMA

- (I) * : Con $\mathbf{B} \to \operatorname{Con} \mathbf{A}$ is a residuated mapping with residual $|_{\mathbf{B}}$.
- (II) $|_{B} : \operatorname{Con} \mathbf{A} \to \operatorname{Con} \mathbf{B}$ is a residuated mapping with residual $\hat{\ }$.
- (III) For all $\alpha \in \text{Con } \mathbf{A}, \beta \in \text{Con } \mathbf{B}$,

$$\beta = \alpha|_{\mathcal{B}} \quad \Leftrightarrow \quad \beta^* \leqslant \alpha \leqslant \widehat{\beta}.$$

In particular, $\beta^*|_{B} = \beta = \widehat{\beta}|_{B}$

RESIDUATION LEMMA

• Define $\widehat{\ }$: Con ${f B}
ightarrow {
m Con}\, {f A}$ by

$$\widehat{\beta} = \{(x,y) \in A^2 : (ef(x), ef(y)) \in \beta \text{ for all } f \in \text{Pol}_1(\mathbf{A})\}.$$

• For each $\beta \in \operatorname{Con} \mathbf{B}$, let $\beta^* = \operatorname{Cg}^{\mathbf{A}}(\beta)$. That is,

$$^*:\operatorname{Con}\mathbf{B}\to\operatorname{Con}\mathbf{A}$$

is the congruence generation operator restricted to $\operatorname{Con} \boldsymbol{B}$.

LEMMA

- (I) * : Con $\mathbf{B} \to \operatorname{Con} \mathbf{A}$ is a residuated mapping with residual $|_{\mathbf{B}}$.
- (II) $|_{B} : \operatorname{Con} \mathbf{A} \to \operatorname{Con} \mathbf{B}$ is a residuated mapping with residual $\hat{\ }$.
- (III) For all $\alpha \in \operatorname{Con} \mathbf{A}$, $\beta \in \operatorname{Con} \mathbf{B}$,

$$\beta = \alpha|_{\mathcal{B}} \quad \Leftrightarrow \quad \beta^* \leqslant \alpha \leqslant \widehat{\beta}.$$

In particular, $\beta^*|_{B} = \beta = \widehat{\beta}|_{B}$.

The structure of the interval $[\beta^*, \widehat{\beta}] \leq \mathbf{Con} \mathbf{A}$.

• If $\beta \in \operatorname{Con} \mathbf{B}$ is a coatom of $\operatorname{Con} \mathbf{B}$ with m congruence classes then the interval $[\beta^*, \widehat{\beta}]$ in $\operatorname{Con} \mathbf{A}$ is 2^{m-1} .

More generally...

- Suppose $\beta \in \text{Con } \mathbf{B}$ has transversal $b_{\beta(1)}, \dots, b_{\beta(m)}$.
- Denote by T_r the set of intersection points in the r-th block of β :

$$T_r = \bigcup_{k=1}^K B_k \cap b_{\beta(r)}/\beta$$

The structure of the interval $[\beta^*, \widehat{\beta}] \leq \mathbf{Con} \, \mathbf{A}$.

• If $\beta \in \operatorname{Con} \mathbf{B}$ is a coatom of $\operatorname{Con} \mathbf{B}$ with m congruence classes then the interval $[\beta^*, \widehat{\beta}]$ in $\operatorname{Con} \mathbf{A}$ is $\mathbf{2}^{m-1}$.

More generally...

- Suppose $\beta \in \text{Con } \mathbf{B}$ has transversal $b_{\beta(1)}, \dots, b_{\beta(m)}$.
- Denote by T_r the set of intersection points in the r-th block of β:

$$T_r = \bigcup_{k=1}^K B_k \cap b_{\beta(r)}/\beta$$

The structure of the interval $[\beta^*, \widehat{\beta}] \leq \mathbf{Con} \, \mathbf{A}$.

• If $\beta \in \operatorname{Con} \mathbf{B}$ is a coatom of $\operatorname{Con} \mathbf{B}$ with m congruence classes then the interval $[\beta^*, \widehat{\beta}]$ in $\operatorname{Con} \mathbf{A}$ is 2^{m-1} .

More generally...

- Suppose $\beta \in \text{Con } \mathbf{B}$ has transversal $b_{\beta(1)}, \ldots, b_{\beta(m)}$.
- Denote by T_r the set of intersection points in the r-th block of β :

$$T_r = \bigcup_{k=1}^K B_k \cap b_{\beta(r)}/\beta$$

Then
$$[\beta^*, \widehat{\beta}] = \{\theta \in \mathsf{Eq}(A) : \beta^* \subseteq \theta \subseteq \widehat{\beta}\} \cong \prod_{r=1}^m (\mathsf{Eq}|T_r|)^{m-1}.$$

SLIGHTLY MORE GENERAL EXAMPLES...

Returning to our original example, the base algebra ${\bf B}$ is the right regular S_3 -set, and the nontrivial relations in Con ${\bf B}$ are

$$\alpha = |0, 1, 2|3, 4, 5|$$
 $\beta = |0, 3|1, 4|2, 5|$ $\gamma = |0, 4|1, 5|2, 3|$ $\delta = |0, 5|1, 3|2, 4|$

LIMITATIONS

Two limitations of the foregoing construction:

• The sizes $|T_r|$ of the partition lattice factors in

$$[eta^*, \widehat{eta}] \cong \prod_{r=1}^m (\mathsf{Eq}|T_r|)^{m-1}$$

are limited by the size of the blocks of β .

a If β is not principal, $[\theta^*, \widehat{\theta}]$ may be non-trivial for some $\theta \ngeq \beta$.

A GENERALIZATION

THEOREM

Let $\mathbf{B} = \langle B, F \rangle$ be a finite algebra. Suppose

$$\beta = \mathrm{Cg}^{\mathbf{B}}((a_1, b_1), \ldots, (a_{K-1}, b_{K-1}))$$

has m blocks and fix $N < \infty$.

There exists an overalgebra $\langle A, F_A \rangle$ such that the interval $\beta|_B^{-1} \leqslant \operatorname{Con} \mathbf{A}$ is

$$[\beta^*, \widehat{\beta}] \cong (Eq(N))^{m-1}.$$

Moreover, we can arrange it so that $\theta^* = \widehat{\theta}$ for all $\theta \ngeq \beta$ in Con **A**.

A GENERALIZATION

THEOREM

Let $\mathbf{B} = \langle B, F \rangle$ be a finite algebra. Suppose

$$\beta = \mathrm{Cg}^{\mathbf{B}}((a_1, b_1), \ldots, (a_{K-1}, b_{K-1}))$$

has m blocks and fix $N < \infty$.

There exists an overalgebra $\langle A, F_A \rangle$ such that the interval $\beta|_B^{-1} \leqslant \operatorname{Con} \mathbf{A}$ is

$$[\beta^*, \widehat{\beta}] \cong (Eq(N))^{m-1}.$$

Moreover, we can arrange it so that $\theta^* = \widehat{\theta}$ for all $\theta \ngeq \beta$ in Con **A**.

HAS ANYONE SEEN THIS LATTICE?

mathoverflow Questions Tags

Given a lattice L with n elements, are there finite groups H < G such that $L \cong$ the lattice of subgroups between H and G?

If there is no restriction on n, this is a famous open problem. I'm wondering if any recent work has been done for small n > 6. I believe the question is answered (positively) for n = 6 by Watatani (1996) $\frac{MR1409040}{MR1409040}$ and Aschbacher (2008) $\frac{MR2393428}{MR239428}$. I also believe we can answer it for n = 7, with one possible exception. The exceptional case is shown below.

So my two questions are these:

- 1) Does anyone know of recent work on this special case of the problem (specifically for n=7 or n=8)?
- 2) Has anyone found a finite group ${\cal G}$ with a subgroup ${\cal H}$ such that the interval

$$[H,G]=\{K:H\leq K\leq G\}$$

is the lattice shown above?

Welcome to MathOverflow

A place for mathematicians to ask and answer questions.

tagged finite-groups × 262 open-problem × 190

universal-algebra × 51

congruences × 5

1 month ago

358 times

asked

- L₁₀ cannot be obtained using the overalgebra construction.
- A minimal representation of L₁₀ must come from a transitive G-set.
- If $[H, G] \cong L_{10}$ with H core-free in G then
 - G is a non-solvable primitive permutation group.
 - If N is a minimal normal subgroup of G, then N is nonabelian.

- L₁₀ cannot be obtained using the overalgebra construction.
- A minimal representation of L₁₀ must come from a transitive G-set.
- If $[H, G] \cong L_{10}$ with H core-free in G then
 - G is a non-solvable primitive permutation group.
 - If N is a minimal normal subgroup of G, then N is nonabelian.

- L₁₀ cannot be obtained using the overalgebra construction.
- A minimal representation of L₁₀ must come from a transitive G-set.
- If $[H, G] \cong L_{10}$ with H core-free in G then
 - *G* is a non-solvable primitive permutation group.
 - If N is a minimal normal subgroup of G, then N is nonabelian.

- L₁₀ cannot be obtained using the overalgebra construction.
- A minimal representation of L₁₀ must come from a transitive G-set.
- If $[H, G] \cong L_{10}$ with H core-free in G then
 - G is a non-solvable primitive permutation group.
 - If N is a minimal normal subgroup of G, then N is nonabelian.

