Notebook in Algebraic Geometry

Setup and the first examples

1 Notations

All schemes are assumed to be separated. For a "scheme" which is not separated, we will use the term "prescheme".

Let A be a ring. We denote by Spec A the spectrum of A. For an ideal $I \subset A$, we use V(I) to denote the closed subscheme of Spec A defined by I.

Let S be Spec K, Spec \mathcal{O}_K or an algebraic variety. An S-variety is an integral scheme X which is of finite type and flat over S. For an algebraic variety, we mean a K-variety.

We will use k, K to denote fields, and k, K to denote their algebraically closure relatively.

Let X be an integral scheme. We denote by $\mathcal{K}(X)$ the function field of X. For a closed point $x \in X$, we denote by $\kappa(x)$ the residue field of x.

We denote the category of S-varieties by \mathbf{Var}_S . We denote by X(T) the set of T-points of X, that is, the set of morphisms $T \to X$.

Let X be an algebraic variety over k. A geometrical point is referred a morphism $\operatorname{Spec} \mathbf{k} \to X$.

When refer a point (may not be closed) in a scheme, we will use the notation $\xi \in X$. We use Z_{ξ} to denote the Zariski closure of $\{\xi\}$ in X. When we talk about a closed point on an algebraic variety, we will use the notation $x \in X(\mathbf{k})$.

1.1 Separated and proper morphisms

2 Examples

Example 1. Let **k** be an algebraically closed field and A the localization of $\mathbf{k}[x]$ at (x). Let $S = \operatorname{Spec} A$ and $X = \operatorname{Spec} A[y]$. There are three types of points in X:

- (i) closed points with residue field **k**, like p = (x, y a);
- (ii) closed points with residue field $\mathbf{k}(y)$, like P = (xy 1);
- (iii) non-closed points, like $\eta_1 = (x), \eta_2 = (y), \eta_3 = (x y)$.

3 Preparation in commutative algebra

3.1 Nakayama's Lemma Yang: To be completed

Theorem 2 (Nakayama's Lemma). Let A be a ring and \mathfrak{M} be its Jacobi radical. Suppose M is a finitely generated A-module. If $\mathfrak{a}M = M$ for $\mathfrak{a} \subset \mathfrak{M}$, then M = 0.

Proof. Suppose M is generated by x_1, \dots, x_n . Since $M = \mathfrak{a}M$, formally we have $(x_1, \dots, x_n)^T = \Phi(x_1, \dots, x_n)^T$ for $\Phi \in M_n(\mathfrak{a})$. Then $(\Phi - \mathrm{id})(x_1, \dots, x_n)^T = 0$. Note that $\det(\Phi - \mathrm{id}) = 1 + a$ for $a \in \mathfrak{a} \subset \mathfrak{M}$. Then $\Phi - \mathrm{id}$ is invertible and then M = 0.

Proposition 3 (Geometric form of Nakayama's Lemma). Let $X = \operatorname{Spec} A$ be an affine scheme, $x \in X$ a closed point and \mathcal{F} a coherent sheaf on X. If $a_1, \dots, a_k \in \mathcal{F}(X)$ generate $\mathcal{F}|_x = \mathcal{F} \otimes \kappa(x)$, then there is an open subset $U \subset X$ such that $a_i|_U$ generate $\mathcal{F}(U)$.

Proof. Yang: To be completed.

Corollary 4.

Proof. Yang: To be completed.

3.2 Associated prime ideals

This part refers to [Mat70].

Definition 5 (Associated prime ideals). Let A be a noetherian ring and M an A-module. The associated prime ideals of M are the prime ideals $\mathfrak p$ of form $\mathrm{Ann}(x)$ for some $x \in M$. The set of associated prime ideals of M is denoted by

Ass(M).

Example 6. Let $A = \mathbf{k}[x, y]/(xy)$ and M = A. First we see that $(x) = \operatorname{Ann} y$, $(y) = \operatorname{Ann} x \in \operatorname{Ass} M$. Then we check other prime ideals. For (x, y), if xf = yf = 0, then $f \in (x) \cap (y) = (0)$. If $(x - a) = \operatorname{Ann} f$ for some f, note that $y \in (x - a)$ for $a \in \mathbf{k}^*$, then $f \in (x)$. Hence f = 0. Therefore $\operatorname{Ass} M = \{(x), (y)\}$.

Example 7. Let $A = \mathbf{k}[x,y]/(x^2,xy)$ and M = A. The underlying space of Spec A is the y-axis since $\sqrt{(x^2,xy)} = (x)$. First note that $(x) = \operatorname{Ann} y, (x,y) = \operatorname{Ann} x \in \operatorname{Ass} M$. For (x,y-a) with $a \in \mathbf{k}^*$, easily see that xf = (y-a)f = 0 implies f = 0 since $A = \mathbf{k} \cdot x \oplus \mathbf{k}[y]$ as \mathbf{k} -vector space. Hence $\operatorname{Ass} M = \{(x), (x,y)\}$.

Let A be a noetherian ring and M an A-module. Note that $S^{-1}M = 0$ if and only if $S \cap \text{Ann } M \neq \emptyset$. Then the set $\{\mathfrak{p} \in \text{Spec } A \colon M_{\mathfrak{p}} \neq 0\}$

is equal to $V(\operatorname{Ann} M)$.

Definition 8. Let A be a noetherian ring and M an A-module. The *support* of M is the closed subset $V(\operatorname{Ann} M)$ of Spec A, denoted by Supp M.

Lemma 9. Let A be a noetherian ring and M an A-module. Then the maximal element of the set

$$\{\operatorname{Ann} x \colon x \in M_{\mathfrak{p}}, x \neq 0\}$$

belongs to $\operatorname{Ass} M$.

Proof. We just need to show that such Ann x is prime. Otherwise, there exist $a, b \in A$ such that $ab \in A$ nn x but $a, b \notin A$ nn x. It follows that Ann $x \subseteq A$ nn ax since $b \in A$ nn $ax \setminus A$ nn $ax \cap A$ nn ax

An element $a \in A$ is called a zero divisor for M if $M \to aM, m \mapsto am$ is not injective.

Corollary 10. Let A be a noetherian ring and M an A-module. Then

$$\{\text{zero divisors for } M\} = \bigcup_{\mathfrak{p} \in \operatorname{Ass} M} \mathfrak{p}.$$

Lemma 11. Let A be a noetherian ring and M an A-module. Then $\mathfrak{p} \in \operatorname{Ass}_A M$ iff $\mathfrak{p} A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$.

Proof. Suppose $\mathfrak{p}A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$. Let $\mathfrak{p}A_{\mathfrak{p}} = \operatorname{Ann} y_0/c$ with $y_0 \in M$ and $c \in A \setminus \mathfrak{p}$. For $a \in \operatorname{Ann} y_0$, $ay_0 = 0$. Then $a/1 \in \mathfrak{p}A_{\mathfrak{p}}$. It follows that $a \in \mathfrak{p}$. Hence $\operatorname{Ann} y_0 \subset \mathfrak{p}$.

Inductively, if Ann $y_n \subseteq \mathfrak{p}$, then there exists $b_n \in A \setminus \mathfrak{p}$ such that $y_{n+1} := b_n y_n$, Ann $y_{n+1} \subset \mathfrak{p}$ and Ann $y_n \subseteq A$ nn y_{n+1} . To see this, choose $a_n \in \mathfrak{p} \setminus A$ nn y_n . Then $(a_n/1)y_n = 0$ since $a_n/1 \in \mathfrak{p} A_\mathfrak{p}$. By definition, there exist $b_n \in A \setminus \mathfrak{p}$ such that $a_n b_n y_n = 0$. This process must terminate since A is noetherian. Thus Ann $y_n = \mathfrak{p}$ for some n. Hence $\mathfrak{p} \in A$ ss_A M.

Conversely, suppose $\mathfrak{p} = \operatorname{Ann} x \in \operatorname{Ass} M$. If $(a/s)(x/1) = 0 \in M_{\mathfrak{p}}$, there exist $t \in A \setminus \mathfrak{p}$ such that tax = 0. It follows that $ta \in \mathfrak{p}$ and then $(a/s) \in \mathfrak{p}A_{\mathfrak{p}}$. Hence $\mathfrak{p}A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$.

Proposition 12. We have Ass $M \subset \operatorname{Supp} M$. Moreover, if $\mathfrak{p} \in \operatorname{Supp} M$ satisfies $V(\mathfrak{p})$ is an irreducible component of $\operatorname{Supp} M$, then $\mathfrak{p} \in \operatorname{Ass} M$.

Proof. For any $\mathfrak{p} = \operatorname{Ann} x \in \operatorname{Ass} M$, we have $A/\mathfrak{p} \cong A \cdot x \subset M$. Tensoring with $A_{\mathfrak{p}}$ gives $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \hookrightarrow M_{\mathfrak{p}}$ since $A_{\mathfrak{p}}$ is flat. Hence $M_{\mathfrak{p}} \neq 0$ and $\mathfrak{p} \in \operatorname{Supp} M$.

Now suppose $\mathfrak{p} \in \operatorname{Supp} M$ and $V(\mathfrak{p})$ is an irreducible component of $\operatorname{Supp} M$. First we show that $\mathfrak{p} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$. Let $x \in M_{\mathfrak{p}}$ such that $\operatorname{Ann} x$ is maximal in the set

$$\{\operatorname{Ann} x \colon x \in M_{\mathfrak{p}}, x \neq 0\}.$$

Then we claim that $\operatorname{Ann} x = \mathfrak{p} A_{\mathfrak{p}}$. First, $\operatorname{Ann} x$ is prime by Lemma 9. If $\operatorname{Ann} x \neq \mathfrak{p}$, then $V(\operatorname{Ann} x) \supset V(\mathfrak{p})$. This implies that $\operatorname{Ann} x \notin \operatorname{Supp} M_{\mathfrak{p}}$ since $\operatorname{Supp} M_{\mathfrak{p}} = \operatorname{Supp} M \cap \operatorname{Spec} A_{\mathfrak{p}}$. This is a contradiction. Thus $\mathfrak{p} A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$. By Lemma 11, we have $\mathfrak{p} \in \operatorname{Ass} M$.

Remark 13. The existence of irreducible component is guaranteed by Zorn's Lemma.

Definition 14. A prime ideal $\mathfrak{p} \in \operatorname{Ass} M$ is called *embedded* if $V(\mathfrak{p})$ is not an irreducible component of Supp M.

Example 15. For $M = A = \mathbf{k}[x, y]/(x^2, xy)$, the origin (x, y) is an embedded point.

Proposition 16. If we have exact sequence $0 \to M_1 \to M_2 \to M_3$, then Ass $M_2 \subset \text{Ass } M_1 \cup \text{Ass } M_3$.

Proof. Let $\mathfrak{p} = \operatorname{Ann} x \in \operatorname{Ass} M_2 \setminus \operatorname{Ass} M_1$. Then the image [x] of x in M_3 is not equal to 0. We have that $\operatorname{Ann} x \subset \operatorname{Ann}[x]$. If $a \in \operatorname{Ann}[x] \setminus \operatorname{Ann} x$, then $ax \in M_1$. Since $\operatorname{Ann} x \subsetneq \operatorname{Ann} ax$, there is $b \in \operatorname{Ann} ax \setminus \operatorname{Ann} x$. However, it implies $ba \in \operatorname{Ann} x$, and then $a \in \operatorname{Ann} x$ since $\operatorname{Ann} x$ is prime, which is a contradiction.

Corollary 17. If M is finitely generated, then the set Ass M is finite.

Proof. For $\mathfrak{p}=\mathrm{Ann}\,x\in\mathrm{Ass}\,M$, we know that the submodule M_1 generated by x is isomorphic to A/\mathfrak{p} . Inductively, we can choose M_n be the preimage of a submodule of M/M_{n-1} which is isomorphic to A/\mathfrak{q} for some $\mathfrak{q}\in\mathrm{Ass}\,M/M_{n-1}$. We can take an ascending sequence $0=M_0\subset M_1\subset\cdots\subset M_n\subset\cdots$ such that $M_i/M_{i-1}\cong A/\mathfrak{p}_i$ for some prime \mathfrak{p}_i . Since M is finitely generated, this is a finite sequence. Then the conclusion follows by Proposition 16.

Definition 18. An A-module is called *co-primary* if Ass M has a single element. Let M be an A-module and $N \subset M$ a submodule. Then N is called *primary* if M/N is co-primary. If Ass $M/N = \{\mathfrak{p}\}$, then N is called \mathfrak{p} -primary.

Remark 19. This definition coincide with primary ideals in the case M = A. Recall an ideal $\mathfrak{q} \subset A$ is called *primary* if $\forall ab \in \mathfrak{p}, a \notin \mathfrak{q}$ implies $b^n \in \mathfrak{q}$ for some n.

Let \mathfrak{q} be a \mathfrak{q} -primary ideal. Since Supp $A/\mathfrak{q} = \{\mathfrak{p}\}$, $\mathfrak{p} \in \operatorname{Ass} A/\mathfrak{q}$. Suppose $\operatorname{Ann}[a] \in \operatorname{Ass} A/\mathfrak{q}$. Then $\mathfrak{p} \subset \operatorname{Ann}[a]$ since $V(\mathfrak{p}) = \operatorname{Supp} A/\mathfrak{q}$. If $b \in \operatorname{Ann}[a]$, then $ab \in \mathfrak{q}$ and $a \notin \mathfrak{q}$. Hence $b^n \in \mathfrak{q}$, and then $b \in \mathfrak{p}$. This shows that $\operatorname{Ass} A/\mathfrak{q} = \{\mathfrak{p}\}$ and \mathfrak{q} is \mathfrak{p} -primary as an A-submodule.

Let $\mathfrak{q} \subset A$ be a \mathfrak{p} -primary A-submodule. First we have $\mathfrak{p} = \sqrt{\mathfrak{q}}$ since $V(\mathfrak{p})$ is the unique irreducible component of Supp A/\mathfrak{q} . Suppose $ab \in \mathfrak{q}$ and $a \notin \mathfrak{q}$. Then $b \in \mathrm{Ann}[a] \subset \mathfrak{p}$ since \mathfrak{p} is the unique maximal element in $\{\mathrm{Ann}[c] : c \in A \setminus \mathfrak{q}\}$. This implies that $b^n \in \mathfrak{q}$.

Definition 20. Let A be a noetherian ring, M an A-module and $N \subset M$ a submodule. A minimal primary decomposition of N in M is a finite set of primary submodules $\{Q_i\}_{i=1}^n$ such that

$$N = \bigcap_{i=1}^{n} Q_i,$$

no Q_i can be omitted and Ass M/Q_i are pairwise distinct. For Ass $M/Q_i = \{\mathfrak{p}\}$, Q_i is called belonging to \mathfrak{p} .

Indeed, if $N \subset M$ admits a minimal primary decomposition $N = \bigcap Q_i$ with Q_i belonging to \mathfrak{p} , then $\mathrm{Ass}(M/N) = \{\mathfrak{p}_i\}$. For given i, consider $N_i := \bigcap_{j \neq i} Q_j$, then $N_i/N \cong (N_i + Q_i)/Q_i$. Since $N_i \neq N$, $\mathrm{Ass}\,N_i/N \neq \emptyset$. On the other hand, $\mathrm{Ass}\,N_i/N \subset \mathrm{Ass}\,M/Q_i = \{\mathfrak{p}\}$. It follows that $\mathrm{Ass}\,N_i/N = \{\mathfrak{p}_i\}$, whence $\mathfrak{p}_i \in \mathrm{Ass}\,M/N$. Conversely, we have an injection $M/N \hookrightarrow \bigoplus M/Q_i$, so $\mathrm{Ass}\,M/N \subset \bigcup \mathrm{Ass}\,M/Q_i$. Due to this, if Q_i belongs to \mathfrak{p} , we also say that Q_i is the \mathfrak{p} -component of N.

Proposition 21. Suppose $N \subset M$ has a minimal primary decomposition. If $\mathfrak{p} \in \operatorname{Ass} M/N$ is not embedded, then the \mathfrak{p} component of N is unique. Explicitly, we have $Q = \nu^{-1}(N_{\mathfrak{p}})$, where $\nu : M \to M_{\mathfrak{p}}$.

Proof. First we show that $Q = \nu^{-1}(Q_{\mathfrak{p}})$. Clearly $Q \subset \nu^{-1}(Q_{\mathfrak{p}})$. Suppose $x \in \nu^{-1}(Q_{\mathfrak{p}})$. Then there exists $s \in A \setminus \mathfrak{p}$ such that $sx \in Q$. That is, $[sx] = 0 \in M/Q$. If $[x] \neq 0$, we have $s \in \text{Ann}[x] \subset \mathfrak{p}$. This contradiction enforces $Q = \nu^{-1}(Q_{\mathfrak{p}})$.

Then we show that $N_{\mathfrak{p}} = Q_{\mathfrak{p}}$. Just need to show that for $\mathfrak{p}' \neq \mathfrak{p}$ and the \mathfrak{p}' component Q' of N, $Q'_{\mathfrak{p}} = M_{\mathfrak{p}}$. Since \mathfrak{p} is not embedded, $\mathfrak{p}' \not\subset \mathfrak{p}$. Then $\mathfrak{p} \notin V(\mathfrak{p}) = \operatorname{Supp} M/Q'$. So $M_{\mathfrak{p}}/Q'_{\mathfrak{p}} = 0$.

Example 22. If \mathfrak{p} is embedded, then its components may not be unique. For example, let $M = A = \mathbf{k}[x,y]/(x^2,xy)$. Then for every $n \in \mathbb{Z}_{>1}$, $(x) \cap (x^2,xy,y^n)$ is a minimal primary decomposition of $(0) \subset M$.

Let A be a noetherian ring and $\mathfrak{p} \subset A$ a prime ideal. We consider the \mathfrak{p} component of \mathfrak{p}^n , which is called n-th symbolic

power of \mathfrak{p} , denoted by $\mathfrak{p}^{(n)}$. We have $\mathfrak{p}^{(n)} = \mathfrak{p}^n A_{\mathfrak{p}} \cap A$. In general, $\mathfrak{p}^{(n)}$ is not equal to \mathfrak{p}^n ; see below example.

Example 23. Let $A = \mathsf{k}[x, y, z, w]/(y^2 - zx^2, yz - xw)$ and $\mathfrak{p} = (y, z, w)$. We have $z = y^2/x^2, w = yz/x \in \mathfrak{p}^2 A_{\mathfrak{p}}$, whence $\mathfrak{p}^2 A_{\mathfrak{p}} = (z, w) \neq \mathfrak{p}^2$.

Theorem 24. Let A be a noetherian ring and M an A-module. Then for every $\mathfrak{p} \in \mathrm{Ass}\,M$, there is a \mathfrak{p} -primary submodule $Q(\mathfrak{p})$ such that

$$(0) = \bigcap_{\mathfrak{p} \in \operatorname{Ass} M} Q(\mathfrak{p})$$

Proof. Consider the set

$$\mathcal{N} := \{ N \subset M \colon \mathfrak{p} \notin \mathrm{Ass}\, N \}.$$

Note that $\operatorname{Ass}\bigcup N_i=\bigcup\operatorname{Ass} N_i$ by definition of associated prime ideals. Then it is easy to check that $\mathcal N$ satisfies the conditions of Zorn's Lemma. Hence $\mathcal N$ has a maximal element $Q(\mathfrak p)$. We claim that $Q(\mathfrak p)$ is $\mathfrak p$ -primary. If there is $\mathfrak p'\neq\mathfrak p\in\operatorname{Ass} M/Q(\mathfrak p)$, then there is a submodule $N'\cong A/\mathfrak p$. Let N'' be the preimage of N' in M. We have $Q(\mathfrak p)\subsetneq N''$ and $N''\in\mathcal N$. This is a contradiction. By the fact $\operatorname{Ass}\bigcap N_i=\bigcap\operatorname{Ass} N_i$, we get the conclusion.

Corollary 25. Let A be a noetherian ring and M a finitely generated A-module. Then every submodule of M has a minimal primary decomposition.

3.3 Length of modules

Definition 26. Let A be a ring and M an A module. A simple module filtration of M is a filtration

$$M = M_0 \supsetneq M_1 \supsetneq \cdots \supsetneq M_n = 0$$

such that M_i/M_{i-1} is a simple module, i.e. it has no submodule except 0 and itself. If M has a simple module filtration as above, we define the length of M as n and say that M has finite length.

The following proposition guarantees the length is well-defined.

Proposition 27. Suppose M has a simple module filtration $M = M_{0,0} \supseteq M_{1,0} \supseteq \cdots \supseteq M_{n,0} = 0$. Then for any other filtration $M = M_{0,0} \supset M_{0,1} \supset \cdots \supset M_{0,m} = 0$ with m > n, there exist k < m such that $M_{0,k} = M_{0,k+1}$.

Proof. We claim that there are at least $0 \le k_1 < \cdots < k_{m-n} < m$ satisfies that $M_{0,k_i} = M_{0,k_i+1}$. Let $M_{i,j} := M_{i,0} \cap M_{0,j}$. Inductively on n, we can assume that there exist k_1, \cdots, k_{n-m+1} such that $M_{1,k} = M_{1,k+1}$. Consider the sequence

$$M_{0,0}/M_{1,0} \supset (M_{0,1}+M_{1,0})/M_{1,0} \supset \cdots \supset (M_{0,m}+M_{1,0})/M_{1,0} = 0$$

in $M_{0,0}/M_{1,0}$. Since $M_{0,0}/M_{1,0}$ is simple, there is at most one k_i with $M_{0,k_i}+M_{1,0}\neq M_{0,k_i+1}+M_{1,0}$. And note that if $M_{0,k_i}+M_{1,0}=M_{0,k_i+1}+M_{1,0}$ and $M_{0,k_i}\cap M_{1,0}=M_{0,k_i}\cap M_{1,0}$, then $M_{0,k_i}=M_{0,k_i+1}$ by the Five Lemma. \square

Example 28. Let A be a ring and $\mathfrak{m} \in \mathrm{mSpec}\,A$. Then A/\mathfrak{m} is a simple module.

Proposition 29. Let A be a ring and M an A-module. Then M is of finite length iff it satisfies both a.c.c and d.c.c.

Proof. Note that if M has either a strictly ascending chain or a strictly descending chain, M is of infinite length. Conversely, d.c.c guarantee M has a simple submodule and a.c.c guarantee the sequence terminates.

Proposition 30. The length l(-) is an additive function for modules of finite length. That is, if we have an exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$ with M_i of finite length, then $l(M_2) = l(M_1) + l(M_3)$.

Proof. The simple module filtrations of M_1 and M_3 will give a simple module filtration of M_2 .

Proposition 31. Let (A, \mathfrak{m}) be a local ring. Then A is artinian iff $\mathfrak{m}^n = 0$ for some $n \geq 0$.

Proof. Suppose A is artinian. Then the sequence $\mathfrak{m} \supset \mathfrak{m}^2 \supset \mathfrak{m}^3 \supset \cdots$ will stable. It follows that $\mathfrak{m}^n = \mathfrak{m}^{n+1}$ for some n. By the Nakayama's Lemma 2, $\mathfrak{m}^n = 0$.

Conversely, we have

$$\mathfrak{m}\subset\mathfrak{N}\subset\bigcap_{ ext{minimal prime ideal}}\mathfrak{p}_{}$$

whence \mathfrak{m} is minimal.

Proposition 32. Let A be a ring. Then A is artinian iff A is of finite length.

Proof. First we show that A has only finite maximal ideal. Otherwise, consider the set $\{\mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_k\}$. It has a minimal element $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n$ and for any maximal ideal \mathfrak{m} , $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n \subset \mathfrak{m}$. It follows that $\mathfrak{m} = \mathfrak{m}_i$ for some i. Let $\mathfrak{M} = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n$ be the Jacobi radical of A. Consider the sequence $\mathfrak{M} \supset \mathfrak{M}^2 \supset \cdots$ and by Nakayama's Lemma, we have $\mathfrak{M}^k = 0$ for some k. Consider the filtration

$$A \supset \mathfrak{m}_1 \supset \cdots \supset \mathfrak{m}_1^k \supset \mathfrak{m}_1^k \mathfrak{m}_2 \supset \cdots \supset \mathfrak{m}_1^k \cdots \mathfrak{m}_n^k = (0).$$

We have $\mathfrak{m}_1^k \cdots \mathfrak{m}_i^j/\mathfrak{m}_1^k \cdots \mathfrak{m}_i^{j+1}$ is an A/\mathfrak{m}_i -vector space. It is artinian and then of finite length. Hence A is of finite length.

Proposition 33. Let A be a ring. Then A is artinian iff A is noetherian and of dimension 0. For definition of dimension, see $\frac{37}{4}$.

Proof. Suppose A is artinian. Then A is noetherian by Proposition 32. Let $\mathfrak{p} \in \operatorname{Spec} A$. Then A/\mathfrak{p} is an artinian integral domain. If there is $a \in A/\mathfrak{p}$ is not invertible, consider $(a) \supset (a^2) \supset \cdots$, we see a = 0. Hence \mathfrak{p} is maximal and dim A = 0.

Suppose that A is noetherian and of dimension 0. Then every maximal ideal is minimal. In particular, A has only finite maximal ideal $\mathfrak{p}_1, \dots, \mathfrak{p}_n$. Let \mathfrak{q}_i be the \mathfrak{p}_i -component of (0). Then we have $A \hookrightarrow \bigoplus_i A/\mathfrak{q}_i$. We just need to show that A/\mathfrak{q}_i is of finite length as A-module. If $\mathfrak{q}_i \subset \mathfrak{p}_j$, take radical we get $\mathfrak{p}_i \subset \mathfrak{q}_j$ and hence i = j. So A/\mathfrak{q}_i is a local ring with maximal ideal $\mathfrak{p}_i A/\mathfrak{q}_i$. Then every element in $\mathfrak{p}_i A/\mathfrak{q}_i$ is nilpotent. Since \mathfrak{p}_i is finitely generated, $(\mathfrak{p}_i A/\mathfrak{q}_i)^k = 0$ for some k. Then A/\mathfrak{q}_i is artinian and then of finite length as A/\mathfrak{q}_i -module. Then the conclusion follows.

3.4 Noether's Normalization Lemma and Hilbert's Nullstellensatz Yang: To be completed.

Theorem 34 (Noether's Normalization Lemma). Let A be a k-algebra of finite type. Then there is an injection $\mathsf{k}[T_1,\cdots,T_d]\hookrightarrow A$ such that A is finite over $\mathsf{k}[T_1,\cdots,T_d]$.

Remark 35. Here A does not need to be integral. For example,

Theorem 36 (Hilbert's Nullstellensatz). Let A be a

Normal, Cohen-Macaulay and regular schemes

1 Height, Depth and Dimension Yang: To be completed

Krull dimension and height of prime ideals Algebraically, we have the following definitions.

Definition 37. Let A be a noetherian ring. The *height of a prime ideal* \mathfrak{p} in A is defined as the maximum length of chains of prime ideals contained in \mathfrak{p} , that is,

$$\operatorname{ht}(\mathfrak{p}) := \sup\{n \mid \exists \text{ a chain of prime ideals } \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n = \mathfrak{p}\}.$$

The $Krull\ dimension$ of A is defined as

$$\dim A := \max_{\mathfrak{p} \in \operatorname{Spec} A} \operatorname{ht}(\mathfrak{p}).$$

Geometrically, we have the corresponding definition.

Definition 38. Let X be a noetherian scheme. The *codimension of an irreducible subscheme* Y in X is defined as the length of the longest chain of irreducible closed subsets containing Y, that is,

$$\operatorname{codim}_X(Y) := \sup\{n \mid \exists \text{ a chain of irreducible closed subsets } Y = Y_0 \subsetneq Y_1 \subsetneq \cdots \subsetneq Y_n\}.$$

The dimension of X is defined as

$$\dim X := \max_{\xi \in X} \operatorname{codim}_X Z_{\xi}.$$

For an affine scheme $X = \operatorname{Spec} A$, above two definitions coincide by the correspondence of prime ideals and irreducible closed subsets.

Proposition 39. Let A be a noetherian ring and $\mathfrak{p} \in \operatorname{Spec} A$. Then

$$ht(\mathfrak{p}) = \operatorname{codim}_{\operatorname{Spec} A} V(\mathfrak{p}) = \dim A_{\mathfrak{p}}.$$

Lemma 40. Let $A \subset B$ be noetherian rings such that B is finite over A. Then the induced morphism Spec $B \to \operatorname{Spec} A$ is surjective.

Proof. For $\mathfrak{p} \in \operatorname{Spec} A$, let $S := A - \mathfrak{p}$ and denote $S^{-1}B$ by $B_{\mathfrak{p}}$. Then we have $A_{\mathfrak{p}} \hookrightarrow B_{\mathfrak{p}}$ and $B_{\mathfrak{p}}$ is finite over $A_{\mathfrak{p}}$. Let $\mathfrak{P}B_{\mathfrak{p}}$ be a maximal ideal of $B_{\mathfrak{p}}$. We claim that $\mathfrak{P}B_{\mathfrak{p}} \cap A_{\mathfrak{p}}$ is maximal. Indeed, consider $A_{\mathfrak{p}}/(\mathfrak{P} \cap A_{\mathfrak{p}}) \hookrightarrow B_{\mathfrak{p}}/\mathfrak{P}B_{\mathfrak{p}}$, the latter is finite over the former. This enforces $A_{\mathfrak{p}}/(\mathfrak{P}B_{\mathfrak{p}} \cap A_{\mathfrak{p}})$ be a field. Hence $\mathfrak{P}B_{\mathfrak{p}} \cap A_{\mathfrak{p}} = \mathfrak{p}A_{\mathfrak{p}}$, and then $\mathfrak{P} \cap A = \mathfrak{p}$.

Proposition 41. Let $A \subset B$ be noetherian rings such that B is finite over A. Then dim $A = \dim B$.

Proof. If we have a sequence $\mathfrak{P}_1 \subsetneq \mathfrak{P}_2$ of prime ideals in B, then there exists $f \in \mathfrak{P}_2 \setminus \mathfrak{P}_1$. Since B is finite over A, there exist $a_1, \dots, a_n \in A$ such that

$$f^n + a_1 f^{n-1} + \dots + a_n = 0.$$

Then $a_n \in \mathfrak{P}_2 \cap A$. If $a_n \in \mathfrak{P}_1$, $f^{n-1} + \cdots + a_{n_1} \in \mathfrak{P}_1$ since $f \notin \mathfrak{P}_1$. Then $a_{n-1} \in \mathfrak{P}_2$. Repeat the process, it will terminate, whence $\mathfrak{P}_1 \cap A \subsetneq \mathfrak{P}_2 \cap A$. Otherwise, we have $f^n \in a_1B + \cdots + a_nB \subset \mathfrak{P}_1$.

Conversely, suppose we have $\mathfrak{p}_1, \mathfrak{p}_2 \in \operatorname{Spec} A$ with $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2$. Choose $\mathfrak{P}_1 \in \operatorname{Spec} B$ such that $\mathfrak{P}_1 \cap A = \mathfrak{p}_1$, then we have $A/\mathfrak{p}_1 \subset B/\mathfrak{P}_1$. Let \mathfrak{P}_2 be the preimage of the prime ideal in B/\mathfrak{P}_1 which is over image of \mathfrak{p}_2 in A/\mathfrak{p}_1 . Proposition 40 guarantees that such \mathfrak{P}_2 exists. Then we get $\mathfrak{P}_1 \subsetneq \mathfrak{P}_2$. Repeat this progress, we get $\dim B \geq \dim A$.

Theorem 42 (Krull's Principal Ideal Theorem). Let A be a noetherian ring. Suppose $f \in A$ is not a unit. Let \mathfrak{p} be a minimal prime ideal among those containing f. Then $\operatorname{ht}(\mathfrak{p}) \leq 1$.

Proof. By replacing A by $A_{\mathfrak{p}}$, we may assume A is local with maximal ideal \mathfrak{p} . Note that A/(f) is artinian since it has only one prime ideal $\mathfrak{p}/(f)$.

Let $\mathfrak{q} \subseteq \mathfrak{p}$. Consider the sequence $\mathfrak{q}^{(1)} \supset \mathfrak{q}^{(2)} \supset \cdots$, its image in A/(f) is stationary. Then there exists $n \in \mathbb{Z}_{\geq 0}$ such that $\mathfrak{q}^{(n)} + (f) = \mathfrak{q}^{(n+1)} + (f)$. For $x \in \mathfrak{q}^{(n)}$, we may write x = y + af for $y \in \mathfrak{q}^{(n+1)}$. Then $af \in \mathfrak{q}^{(n)}$. Since $\mathfrak{q}^{(n)}$ is \mathfrak{q} -primary and $f \notin \mathfrak{q}$, $a \in \mathfrak{q}^{(n)}$. Then we get $\mathfrak{q}^{(n)} = \mathfrak{q}^{(n+1)} + f\mathfrak{q}^{(n)}$. That is, $\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)} = f\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)}$. Note that $f \in \mathfrak{p}$, by Nakayama's Lemma, $\mathfrak{q}^{(n)} = \mathfrak{q}^{(n+1)}$. That is, $\mathfrak{q}^n A_{\mathfrak{q}} = \mathfrak{q}^{n+1} A_{\mathfrak{q}}$. By Nakayama's Lemma again, $\mathfrak{q}^n A_{\mathfrak{q}} = 0$. It follows that $\mathfrak{q} A_{\mathfrak{q}}$ is minimal, whence $A_{\mathfrak{q}}$ is artinian. Therefore, \mathfrak{q} is minimal in A.

Corollary 43. Let A be a noetherian local ring. Suppose $f \in A$ is not a unit. Then $\dim A/(f) \ge \dim A - 1$. If f is not contained in a minimal prime ideal, the equality holds.

Proof. Let $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ be a sequence of prime ideals. By assumption, $f \in \mathfrak{p}_n$. If $f \in \mathfrak{p}_0$, we get a sequence of prime ideals in A/(f) of length n. Now we suppose $f \notin \mathfrak{p}_0$. Then there exists $k \geq 0$ such that $f \in \mathfrak{p}_{k+1} \setminus \mathfrak{p}_k$.

Choose \mathfrak{q} be a minimal prime ideal among those containing (\mathfrak{p}_{k-1}, f) and contained in \mathfrak{p}_{k+1} . Then by Krull's Principal Ideal Theorem 42, $\mathfrak{q}_k \subsetneq \mathfrak{p}_{k+1}$. Replace \mathfrak{p}_k by \mathfrak{q}_k , we have $f \in \mathfrak{q}_k \setminus \mathfrak{p}_{k-1}$

Repeat this process, we get a sequence $\mathfrak{p}'_0 \subsetneq \cdots \subsetneq \mathfrak{p}'_n$ such that $f \in \mathfrak{p}'_1$. This gives a sequence $\mathfrak{p}'_1 \subsetneq \cdots \subsetneq \mathfrak{p}'_n$ in A/(f). Hence we get $\dim A/(f) \geq \dim A - 1$.

Since f is not contained in minimal prime ideal, preimage of a minimal prime ideal in A/(f) has height 1. Hence a sequence of prime ideals in A/fA can be extended by a minimal prime ideal in A. It follows that $\dim A/(f) + 1 \le \dim A$.

For varieties, the Krull dimension behaves well by follows.

Lemma 44. Let X be an algebraic variety over k. Then for every closed point $x \in X(\mathbf{k})$, we have

$$\dim X = \dim \mathcal{O}_{X,x} = \operatorname{trdeg}(\mathscr{K}(X)/\mathsf{k}).$$

By Noether's Normalization Lemma 34, there is an injective and finite homomorphism $A_0 = \mathsf{k}[T_1, \cdots, T_d] \hookrightarrow A$. Let \mathfrak{M} be the corresponding maximal ideal of x in A and $\mathfrak{m} = \mathfrak{M} \cap \mathsf{k}[T_1, \cdots, T_d]$. Denote the image of T_i in $I := A_0/\mathfrak{m}$ by t_i . The extension I/k is finite by Nullstellensatz 36. Let $f_i \in \mathsf{k}[T]$ be the minimal polynomial of t_i and $g_i := f_i(T_i) \in A_0$. Then $g_i \in \mathfrak{m}$ and $\mathfrak{m} = g_1A_0 + \cdots, g_dA_0$. In particular, $g_1, \cdots, g_d \in \mathfrak{M}$.

We have $A/g_1A + \cdots + g_dA$ is finite over A_0/\mathfrak{m} , whence it is artinian. This implies that $A_{\mathfrak{M}}/g_1A_{\mathfrak{M}} + \cdots + g_dA_{\mathfrak{M}}$ is also artinian. Since g_{k+1} is not a zero divisor in $A_0/g_1A_0 + \cdots + g_kA_0$, g_{k+1} is not contained in any minimal prime ideal of $A_0/g_1A_0 + \cdots + g_kA_0$. Then g_{k+1} is also not contained in any minimal prime ideal of $A/g_1A_0 + \cdots + g_kA$. By Corollary 43, dim $A_{\mathfrak{M}} = \dim(A_{\mathfrak{M}}/g_1A_{\mathfrak{M}} + \cdots + g_dA_{\mathfrak{M}}) + d = d$.

Theorem 45. Let S be spectrum of a field k or an algebraic integer ring \mathcal{O}_K and X an integral S-variety. Then we have the follows:

- (i) For every point $\xi \in X$, dim $X = \dim \mathcal{O}_{X,\xi} + \operatorname{codim} Z_{\xi}$.
- (ii) For every non-empty open subset $U \subset X$, dim $U = \dim X$.
- (iii) $\dim X = \operatorname{trdeg}(\mathcal{K}(X)/\mathcal{K}(S)) + \dim S$.

Proof. Yang: To be continued.

Example 46. For general noetherian schemes, Theorem 45 may not hold. Let $A = \mathsf{k}[t]$, $\mathfrak{m} = (t)$, $B = A_{\mathfrak{m}}[x]$ and $X = \operatorname{Spec} B$. Then we have $\dim X = 2$ since Yang: To be added.

Depth For a noetherian local ring (A, \mathfrak{m}) , we can define the depth of an A-module M. Somehow the Krull dimension is "homological" and the depth is "cohomological".

Definition 47. Let A be a noetherian ring, $I \subset A$ an ideal and M a finitely generated A-module. A sequence $t_1, \dots, t_n \in \mathfrak{m}$ is called an M-regular sequence in I if t_i is not a zero divisor on $M/(t_1, \dots, t_{i-1})M$ for all i.

Example 48. Let $A = k[x, y]/(x^2, xy)$ and I = (x, y). Then depth_I A = 0.

Definition 49. The *I-depth* of M is defined as the maximum length of M-regular sequences in I, denoted by depth_I M. When A is a local ring with maximal ideal \mathfrak{m} , we write depth M for depth_{\mathfrak{m}} M.

Regular and Serre's conditions Up to now, there are three numbers measuring the "size" of a local ring (A, \mathfrak{m}) :

- $\dim A$: the Krull dimension of A.
- depth A: the depth of A.
- $\dim_{\kappa(\mathfrak{m})} T_{A,\mathfrak{m}}$: the dimension of Zariski tangent space $T_{A,\mathfrak{m}} := (\mathfrak{m}/\mathfrak{m}^2)^{\vee}$ as a $\kappa(\mathfrak{m})$ -vector space.

These three numbers are related by the following inequalities.

Proposition 50. Let (A, \mathfrak{m}) be a local noetherian ring with residue field k. Then the following inequalities hold:

$$\operatorname{depth} A \leq \dim_{\mathsf{k}} T_{A,\mathfrak{m}}.$$

Proof. The first inequality is a direct corollary of Corollary 43.

Let t_1, \dots, t_n be a $\kappa(\mathfrak{m})$ -basis of $\mathfrak{m}/\mathfrak{m}^2$. Then we have $\mathfrak{m}/(t_1, \dots, t_n) + \mathfrak{m}^2 = 0$, whence $\mathfrak{m}/(t_1, \dots, t_n) = \mathfrak{m}(\mathfrak{m}/(t_1, \dots, t_n))$. It follows that $\mathfrak{m} = (t_1, \dots, t_n)$ by Nakayama's Lemma. By Corollary 43,

$$n + \dim A/(t_1, \dots, t_n) \ge n - 1 + \dim A/(t_1, \dots, t_{n-1}) \ge \dots \ge 1 + \dim A/(t_1) \ge \dim A.$$

We conclude the result.

Definition 51. Let X be a locally noetherian scheme and $k \in \mathbb{Z}_{\geq 0}$. We say that X verifies property (R_k) or is regular in codimension k if $\forall \xi \in X$ with codim $Z_{\xi} \leq k$,

$$\dim_{\kappa(\xi)} T_{X,\xi} = \dim \mathcal{O}_{X,\xi}.$$

We say that X verifies property (S_k) if $\forall \xi \in X$ with depth $\mathcal{O}_{X,\xi} < k$,

$$\operatorname{depth} \mathcal{O}_{X,\mathcal{E}} = \dim \mathcal{O}_{X,\mathcal{E}}.$$

Lemma 52. Let A be a ring and $\mathfrak{a} \subset \bigcup_i \mathfrak{p}_i$. Then $\mathfrak{a} \subset \mathfrak{p}_i$ for some i.

Example 53. Let A be a noetherian ring. Then A verifies (S_1) iff A has no embedded point.

Suppose A verifies (S_1) . If $\mathfrak{p} \in AssA$, every element in \mathfrak{p} is a zero divisor. Then depth $A_{\mathfrak{p}} = 0$. It follows that $\dim A_{\mathfrak{p}} = 0$ and then \mathfrak{p} is minimal.

Suppose A has no embedded point. Let $\mathfrak{p} \in \operatorname{Spec} A$ with depth $A_{\mathfrak{p}} = 0$. This means every element in $\mathfrak{p}A_{\mathfrak{p}}$ is a zero divisor. Then

$$\mathfrak{p} \subset \{\text{zero divisors in } A\} = \bigcup_{\text{minimal prime ideals}} \mathfrak{q}.$$

By Lemma 52, $\mathfrak{p} = \mathfrak{q}$ for some minimal \mathfrak{q} , whence dim $A_{\mathfrak{p}} = 0$.

Example 54. Let A be a noetherian ring verifies (S_1) . Then A verifies (S_2) iff for any nonzero divisor $f \in A$, Ass_A A/fA has no embedded point.

Suppose A verifies (S_2) . Let $f \in A$ be a nonzero divisor and $\mathfrak{p} \in \mathrm{Ass}_A A/fA$. There exist $g \in A \setminus fA$ such that $\mathfrak{p} = (f : g)$. For any $t_1, t_2 \in \mathfrak{p}$, there exist s_1, s_2 with $s_i \notin (t_i)$ and $t_i g = f s_i$. Then $t_1 t_2 g = f s_1 t_2 = f s_2 t_1$. Since f is not a zero divisor, $s_1 t_2 = s_2 t_1$. Then t_2 is a zero divisor in $A_{\mathfrak{p}}/t_1 A_{\mathfrak{p}}$ since $s_1 \notin (t_1)$. Since $f \in \mathfrak{p}$, depth $A_{\mathfrak{p}} = 1$ and then ht $\mathfrak{p} = 1$. This show that \mathfrak{p} is not embedded in $\mathrm{Ass}_A A/fA$.

Conversely, suppose $\operatorname{Ass}_A A/fA$ has no embedded point. Let $\mathfrak{p} \in \operatorname{Spec} A$ with depth $A_{\mathfrak{p}} = 1$. Then there exists $f \in A_{\mathfrak{p}}$ which is not a zero divisor. We have depth $A_{\mathfrak{p}}/fA_{\mathfrak{p}} = 0$ and $\operatorname{Ass}_A A/fA$ has no embedded point, whence \mathfrak{p} is minimal in A/fA. Then ht $\mathfrak{p} = 1$ by Krull's Principal Ideal Theorem 42 and the fact f is not a zero divisor.

Example 55. Let X be a locally noetherian scheme. Then X is reduced iff it verifies (R_0) and (S_1) .

The properties are local, whence we can assume $X = \operatorname{Spec} A$. Suppose A is reduced. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be all minimal prime ideals of A. We have $\bigcap \mathfrak{p}_i = \mathfrak{N} = (0)$, where \mathfrak{N} is the nilradical of A. Hence A has no embedded point. Since $A_{\mathfrak{p}}$ is artinian, local and reduced, $A_{\mathfrak{p}}$ is a field and hence regular.

Conversely, let Ass A be equal to $\{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$. Then every \mathfrak{p}_i is minimal by (S_1) . Let f be in \mathfrak{N} . Then the image of f in $A_{\mathfrak{p}_i}$ is 0 since by (R_0) , $A_{\mathfrak{p}_i}$ is a field. It follows that $f \in \mathfrak{q}_i$, where \mathfrak{q}_i is the \mathfrak{p}_i component of (0) in A. Hence $f \in \bigcap \mathfrak{q}_i = (0)$. That is, A is reduced.

2 Normal schemes Yang: To be completed

Definition 56. An integral domain A is called *normal* if it is integrally closed in its field of fractions Frac(A).

Lemma 57. Let $A \subset C$ be rings and B the integral closure of A in C, S a multiplicatively closed subset of A. Then the integral closure of $S^{-1}A$ in $S^{-1}C$ is $S^{-1}B$.

Proof. For every $b \in B$ and $\forall s \in S$, there exists $a_i \in A$ s.t.

$$b^n + a_1 b^{n-1} + \dots + a_n = 0.$$

Then

$$\left(\frac{b}{s}\right)^n + \frac{a_1}{s^1} \left(\frac{b}{s}\right)^{n-1} + \dots + \frac{a_n}{s^n} = 0.$$

Hence b/s is integral over $S^{-1}A$, $S^{-1}B$ is integral over $S^{-1}A$. If $c/s \in S^{-1}C$ is integral over $S^{-1}A$, then $\exists a_i \in S^{-1}A$ s.t.

$$\left(\frac{c}{s}\right)^n + a_1 \left(\frac{c}{s}\right)^{n-1} + \dots + a_n = 0.$$

Then

$$c^{n} + a_{1}sc^{n-1} + \dots + a_{n}s^{n} = 0 \in S^{-1}C$$

Then $\exists t \in S \text{ s.t.}$

$$t(c^{n} + a_{1}sc^{n-1} + \dots + a_{n}s^{n}) = 0 \in C.$$

Then

$$(ct)^n + a_1 st(ct)^{n-1} + \dots + a_n s^n t^n = t^n (c^n + a_1 sc^{n-1} + \dots + a_n s^n) = 0.$$

Hence ct is integral over A, then $ct \in B$. Then $c/s = (ct)/(st) \in S^{-1}B$. This completes the proof.

Proposition 58. Normality is a local property. That is, for an integral domain A, TFAE:

- (i) A is normal.
- (ii) For any prime ideal $\mathfrak{p} \in \operatorname{Spec} A$, the localization $A_{\mathfrak{p}}$ is normal.
- (iii) For any maximal ideal $\mathfrak{m} \in \mathrm{mSpec}\,A$, the localization $A_{\mathfrak{m}}$ is normal.

Proof. When A is normal, $A_{\mathfrak{p}}$ is normal by Lemma 57.

Assume that $A_{\mathfrak{m}}$ is normal for every $\mathfrak{m} \in \mathrm{mSpec}\,A$. If A is not normal, let \tilde{A} be the integral closure of A in Frac A, \tilde{A}/A is a nonzero A-module. Suppose $\mathfrak{p} \in \mathrm{Supp}\,\tilde{A}/A$ and $\mathfrak{p} \subset \mathfrak{m}$. We have $\tilde{A}_{\mathfrak{m}}/A_{\mathfrak{m}} = 0$ and $\tilde{A}_{\mathfrak{p}}/A_{\mathfrak{p}} = (\tilde{A}_{\mathfrak{m}}/A_{\mathfrak{m}})_{\mathfrak{p}} \neq 0$. This is a contradiction.

Definition 59. A scheme X is called *normal* if the local ring $\mathcal{O}_{X,\xi}$ is normal for any point $\xi \in X$. A ring A is called *normal* if Spec A is normal.

Remark 60. For a general ring A, let $S := A \setminus (\bigcup_{\mathfrak{p} \in \operatorname{Ass} A} \mathfrak{p}) = \bigcap_{\mathfrak{p} \in \operatorname{Ass} A} A \setminus \mathfrak{p}$. Then S is a multiplicative set. The localization $S^{-1}A$ is called the total ring of fractions of A.

Suppose A is reduced and Ass $A = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_n\}$. Denote its total ring of fractions by Q. Note that elements in Q are either unit or zero divisor. Hence any maximal ideal \mathfrak{m} is contained in $\bigcup \mathfrak{p}_i Q$, whence contained in some $\mathfrak{p}_i Q$. Thus $\mathfrak{p}_i Q$ are maximal ideals. And we have $\bigcap \mathfrak{p}_i Q = 0$. By the Chinese Remainder Theorem, we have $Q = \prod Q/\mathfrak{p}_i Q = \prod A_{\mathfrak{p}_i}$. Let A be a reduced ring with total ring of fractions Q. Then A is normal iff A is integral closed in Q. If A is normal, then for every $\mathfrak{p} \in \operatorname{Spec} A$, $A_{\mathfrak{p}}$ is integral. Then there is unique minimal prime ideal $\mathfrak{p}_i \subset \mathfrak{p}$. In particular, any two minimal prime ideal are relatively prime. By the Chinese Remainder Theorem, $A = \prod A/\mathfrak{p}_i$. Just need to check A/\mathfrak{p}_i is integral closed in $A_{\mathfrak{p}_i}$. This is clear by check pointwise.

Conversely, suppose A is integral closed in Q. Let e_i be the unit element of $A_{\mathfrak{p}_i}$. It belongs to A since $e_i^2 - e_i = 0$. Since $1 = e_1 + \cdots + e_n$ and $e_i e_j = \delta_{ij}$, we have $A = \prod A e_i$. Since $A e_i$ is integral closed in $A_{\mathfrak{p}_i}$, it is normal. Hence A is normal.

Definition 61. Let X be a scheme. The *normalization* of X is an X-scheme X^{ν} with the following universal property: for any normal X-scheme Y with dominant structure morphism, its structure morphism $Y \to X$ factors through X^{ν} .

Proposition 62. Let X be an integral scheme. Then the normalization X^{ν} of X exists. Moreover, $X^{\nu} \to X$ is birational.

Proof. Suppose there is a dominant morphism $Y \to X$ with Y normal. Since Y is normal, it is reduced. Then it factors through X_{red} . Hence we can assume that X is reduced by replacing X by X_{red} .

Suppose $X = \operatorname{Spec} A$ is affine. Let A^{ν} be the integral closure of A in it total ring of fractions and $X^{\nu} := \operatorname{Spec} A^{\nu}$. It gives a homomorphism $A \to \mathcal{O}_Y(Y)$. We claim that it is injective. Otherwise, it factors through $A \to A/I$ and then $Y \to \operatorname{Spec} A$ factors through $\operatorname{Spec} A/I \to \operatorname{Spec} A$. It contradicts that $Y \to X$ is dominant. Since Y is normal, $\mathcal{O}_Y(Y)$ is integral closed in its total ring of fraction. Then $\mathcal{O}_Y(Y)$ contains A^{ν} . This shows that X^{ν} is the normalization of X.

In general case, take an affine cover $\{U_i\}$ of X and clue these U_i^{ν} by universal property.

Lemma 63. Let A be a normal ring. Then A verifies (R_1) and (S_2) .

Proof. Since all properties are local, we can assume A is integral and local.

For (S_2) , by Example 54, we only need to show that $\operatorname{Ass}_A A/f$ has no embedded point. Let $\mathfrak{p}=(f:g)=\in \operatorname{Ass}_A A/fA$ and $t:=f/g\in\operatorname{Frac} A$. After Replacing A by $A_{\mathfrak{p}}$, we can assume that \mathfrak{p} is maximal. By definition, $t^{-1}\mathfrak{p}\subset A$. If $t^{-1}\mathfrak{p}\subset\mathfrak{p}$, suppose \mathfrak{p} is generated by (x_1,\cdots,x_n) and $t^{-1}(x_1,\cdots,x_n)^T=\Phi(x_1,\cdots,x_n)^T$ for $\Phi\in M_n(A)$. There is a monic polynomial $\chi(T)\in A[T]$ vanishing Φ . Then $\chi(t^{-1})=0$ and $t^{-1}\in A$. This is impossible by definition of t. Then $t^{-1}\mathfrak{p}=A$, and $\mathfrak{p}=(t)$ is principal. By Krull's Principal Ideal Theorem 42, $\operatorname{ht}(\mathfrak{p})=1$.

Now we show that A verifies (R_1) . Suppose (A, \mathfrak{m}) is local of dimension 1. Choosing $a \in \mathfrak{m}$, A/a is of dimension 0. Then by 31, $\mathfrak{m}^n \subset aA$ for some $n \geq 1$. Suppose $\mathfrak{m}^{n-1} \not\subset aA$. Choose $b \in \mathfrak{m}^{n-1} \setminus aA$ and let t = a/b. By construction,

 $t^{-1} \notin A$ and $t^{-1}\mathfrak{m} \subset A$. After similar argument, we see that $\mathfrak{m} = tA$, whence A is regular.

Lemma 64. Let (A, \mathfrak{m}) be a noetherian local ring of dimension 1. Then A is normal iff A is regular.

Proof. By lemma 63, we just need to show that regularity implies normality.

Let $t \in \mathfrak{m} \setminus \mathfrak{m}^2$. Since A is regular, $\mathfrak{m} = (t)$. First we show that A is an integral domain.

Let $I \subset A$ be a nonzero ideal of A. Then $\mathfrak{m}^n \subset I$ for some $n \geq 1$. Yang: To be completed.

Proposition 65. Let A be a noetherian integral domain of dimension ≥ 1 verifying (S_2) . Then

$$A = \bigcap_{\mathfrak{p} \in \operatorname{Spec} A, \operatorname{ht}(\mathfrak{p}) = 1} A_{\mathfrak{p}}.$$

Proof. Clearly $A \subset \bigcap A_{\mathfrak{p}}$. Let $t = f/g \in \bigcap A_{\mathfrak{p}}$. Since $f \in gA_{\mathfrak{p}}$ and we have $gA = \bigcap (gA_{\mathfrak{p}} \cap A), f \in gA$. It follows that $t \in A$.

Theorem 66 (Serre's criterion for normality). Let X be a locally noetherian scheme. Then X is normal if and only if it verifies (R_1) and (S_2) .

Proof. One direction has been proved in Lemma 63. Suppose X verifies (R_1) and (S_2) . Again we can assume $X = \operatorname{Spec} A$ is affine and A is local. By Remark 60, we just need to show that A is integral closed in its total ring of fractions Q. Suppose we have

$$\left(\frac{a}{b}\right)^n + c_1 \left(\frac{a}{b}\right)^{n-1} + \dots + c_n = 0 \in Q.$$

Since A verifies (S_2) , $bA = \bigcap \nu_{\mathfrak{p}}^{-1}(b_{\mathfrak{p}}A_{\mathfrak{p}})$. So it is sufficient to show that $a_{\mathfrak{p}} \in b_{\mathfrak{p}}A_{\mathfrak{p}}$ with $\operatorname{ht}(\mathfrak{p}) = 1$. Note that $A_{\mathfrak{p}}$ is regular and hence normal by Lemma 64. Then above equation gives us desired result.

Theorem 67. Let X be a normal and locally noetherian scheme. Let $F \subset X$ be a closed subset of codimension ≥ 2 . Then the restriction $H^0(X, \mathcal{O}_X) \to H^0(X \setminus F, \mathcal{O}_X)$ is an isomorphism.

Proof. By the exact sequences

$$0 \to \mathcal{F}(X) \to \prod_i \mathcal{F}(U_i) \to \prod_{i,j} \mathcal{F}(U_i \cap U_j),$$

where $\{U_i\}$ is an affine open cover of X, we can reduce to the case that X is affine. Then $X = \operatorname{Spec} A$ for some normal noetherian ring A. For any prime ideal $\mathfrak{p} \in \operatorname{Spec} A$ with $\operatorname{ht}(\mathfrak{p}) = 1$, we have $\mathfrak{p} \in X \setminus F$. By Proposition 65, the conclusion follows.

Theorem 68 (Valuation criterion for properness). Let $f: X \to Y$ be a morphism of finite type between noetherian schemes. Then f is proper iff for any valuation ring A, $K = \operatorname{Frac} A$ and commutative diagram

$$\operatorname{Spec} \mathsf{K} \longrightarrow X \\
\downarrow \qquad \qquad \downarrow f \\
\operatorname{Spec} A \longrightarrow Y$$

the morphism Spec $A \to Y$ factors through f.

Proposition 69. Yang: To be completed. Let X,Y be noetherian S-schemes with S noetherian. Suppose X is normal and of finite type over S, and Y is proper over S. Let $\xi \in X$ be a generic point and $\eta \in Y$ a point such that there exists a morphism Spec $\mathcal{K}(\xi) \to Y$. Then there exists an open subset $U \subset X$ containing ξ such that the morphism extends to a morphism $U \to Y$.

Theorem 70. Let X, Y be noetherian S-schemes with S noetherian. Suppose X is normal and of finite type over S, and Y is proper over S. Let $f: X \dashrightarrow Y$ be a rational map. Then f is well-defined on an open subset $U \subset X$ whose complement has codimension ≥ 2 .

Proof. Yang: To be completed.

Remark 71. Theorem 67 and Theorem 70 are very similar. However, they are base on different properties. Theorem 67 is based on (S_2) , while Theorem 70 is based on (R_1) . Philosophically, the (S_k) conditions are used to control the "bad part of codimension larger than k". The (R_k) conditions are used to control the "bad part of codimension smaller than or equal to k". We will see more examples in the next section. Yang: To be completed.

3 Cohen-Macaulay schemes

Definition 72 (Cohen-Macaulay). A noetherian local ring (A, \mathfrak{m}) is called *Cohen-Macaulay* if dim $A = \operatorname{depth} A$. A locally noetherian scheme X is called *Cohen-Macaulay* if $\mathcal{O}_{X,\xi}$ is Cohen-Macaulay for any point $\xi \in X$.

By definition, it is easy to see that X is Cohen-Macaulay if and only if it verifies (S_k) for all k > 0.

Example 73 (Non Cohen-Macaulay rings).

Definition 74. An ideal I of a noetherian ring A is called *unmixed* if

$$ht(I) = ht(\mathfrak{p}), \quad \forall \mathfrak{p} \in Ass(A/I).$$

We say that the unmixedness theorem holds for a noetherian ring A if any ideal $I \subset A$ generated by $\operatorname{ht}(I)$ elements is unmixed. We say that the unmixedness theorem holds for a locally noetherian scheme X if $\mathcal{O}_{X,\xi}$ is unmixed for any point $\xi \in X$.

Proposition 75. Yang: To be completed.

Theorem 76. Let X be a locally noetherian scheme. Then the unmixedness theorem holds for X if and only if X is Cohen-Macaulay.

Theorem 77. Let X be a locally noetherian scheme. Suppose that X is Cohen-Macaulay. Let $F \subset X$ be a closed subset of codimension $\geq k$. Then the restriction $H^i(X, \mathcal{O}_X) \to H^i(X \setminus F, \mathcal{O}_X)$ induced by the is an isomorphism.

4 Regular schemes

Proposition 78. Let (A, \mathfrak{m}) be a regular local ring. Then A is integral.

Proposition 79. If X verifies (R_k) , then $\operatorname{codim}_X X_{\operatorname{sing}} \geq k + 1$.

Proposition 80. A regular scheme is Cohen-Macaulay.

Corollary 81. A regular scheme is normal.