Assignment 7

- 1. The inverting amplifier circuit is shown below.
 - (a) If the input resistiancce of the op amp $R_i=100~k\Omega$, the output resistnace of the op amp $R_o=100~\Omega$, and the open loop gian of the op amp $A=100,\!000$, find the differential voltage $v_d=v_p-v_n$ and the output voltage v_o .
 - (b) If the input resistiancce of the op amp $R_i=\infty$, the output resistnace of the op amp $R_o=0$ Ω , and the open loop gian of the op amp $A=\infty$, find the differential voltage $v_d=v_p-v_n$ and the output voltage v_o .
 - (c) From the solutions from the above a and b, what can you conclude?

(Round the solutions to 2 decimal places)

Answers: (a) $v_d \approx -100~nV$, $v_o \approx -10~mV$. (b) $v_o = -10~mV$.

2. The op amp in the following circuit is ideal. Find the closed loop gain (v_o/v_s) of the following circuit.

Answer: $v_o/v_s = 2$

3. The op amp in the following circuit is ideal. Determine the output voltage v_0 in the following circuit.

Answer: $v_o = -2.5 V$

- 4. The op amp in the difference amplifier circuit below is ideal.
 - (a) Find v_0 and CMRR given that $v_1=1\,V$, $v_2=2v$, and $R=20\,k\Omega$.
 - **(b)** Find v_0 and CMRR given that $v_1=1$ V, $v_2=2v$, and R=19 $k\Omega$.
 - (c) Which circuit in (a) and (b) is better? Why?

(Round the solutions to 2 decimal places)

Answers (a) $v_0=10~V$, $CMRR=\infty$. (b) $v_0=9.59~V$, CMRR=211.56