

Randomized Algorithms

Yannic Maus

Outline

Part I: Randomized algorithms:

Las Vegas algorithms (LV), Monte Carlo algorithms (MC)

Part II: Karger's min-cut algorithm

Part III: Small toolbox:

Probability boosting, Turn MC to LV

Linearity of expectation, Markov's inequality, with high probability

Part IV: Randomized Approximation algorithm for max-cut

A glimpse at the computational model

Det. Algorithm = Function(Input)

Rand. Algorithm = Function (Input, Random Bits)

Computational model (randomized algorithm)

- High level: Your algorithm can flip coins
- Example Quicksort:

The algorithm flips a coin to decide which element to take as the pivot element.

Expected Runtime: $O(n \cdot \log n)$

Worst case runtime: $O(n^2)$

- The output of a randomized algorithm is a random variable
- The execution path of a randomized algorithm is a random variable

Computational model (randomized algorithm)

- The output of a randomized algorithm is a random variable
- The execution path of a randomized algorithm is a random variable

Think of input x as fixed:

- 1. Flip coins $r_1, r_2, ... \in \{Heads, Tails\}$
- 2. Do some computation
- 3. Output $Alg(x, r_1, r_2, ...)$

Possible Statements:

```
For all inputs x:
```

$$\mathbb{E}[Running\ Time\ (Alg(x, r_1, r_2, ...))] \le 10|x|$$
 (expected running time)

For all inputs x:

$$Pr(Alg(x, r_1, r_2, ...) \text{ is correct}) \ge 0.3$$

(error probability)

Las Vegas and Monte Carlo Algorithms

Las Vegas (LV): Always correct, but may be slow

- output always correct
- running time is a random variable (one demands $E[\text{runtime}] < \infty$)

Monte Carlo (MC): Always fast, but may be incorrect

- output is a random variable, may be false
- runtime is bounded by something deterministically

memory aid: *MC* = *Mostly correct*

Main focus of this lecture: Monte Carlo Algorithms (MC)

The question that we're asking: \forall inputs x:

- Fix runtime upper bound deterministically as asymptotic function f(|x|)
- Provide a lower bound for $Pr(Alg(x, r_1, r_2, ...) = correct output for x))$

Typical statement on a MC algorithm:

The algorithm has runtime $O(n^3)$ and its output is correct with probability 0.9.

Karger's min-cut algorithm

Karger's Min-Cut algorithm

Definition: A **cut** of a graph G = (V, E) is a partition of its vertices into two disjoint sets $U, W = V \setminus U \subseteq V$. E(U, W) are the edges crossing the cut.

A minimum cut (min-cut) is a cut that minimizes the number of edges crossing the cut among all cuts.

Karger's Min-Cut algorithm

Definition: A **cut** of a graph G = (V, E) is a partition of its vertices into two disjoint sets $U, W = V \setminus U \subseteq V$. E(U, W) are the edges crossing the cut.

A minimum cut (min-cut) is a cut that minimizes the number of edges crossing the cut among all cuts.

There may be several minimum cuts.

Remark:

The max-flow min-s-t-cut theorem yields a deterministic (involved) algorithm to compute a min-s-t-cut. E.g., in $O(|E|^2|V|) = O(n^5)$, via the Edmonds-Karp Algorithm.

But this is an min-s-t-cut ... not a min-cut. What's the difference?

Karger's contraction algorithm

Input: Graph G=(V,E)

Output: Cut (U,W) of G

While |V|>2
 pick a random edge e in E
 contract e
 remove self-loops

Output the cut induced by the two remaining vertices

(remove no self loops)

(the probability for remaining edges to become selected increases)

Karger's algorithm: Intuition

- After i steps, we have n i vertices remaining
- We repeat this for n-2 steps, until we have exactly 2 vertices remaining
- The remaining 2 "super" vertices induce a cut

We want to show the following seemingly weak lemma:

Lemma: Karger contraction algorithm outputs a min-cut with probability at least 2/((n-1)n).

Remark: This seems horrible, but indeed it is pretty good as we will see. It is much better than picking a random cut. There are exponentially $(2^{|V|} = 2^n)$ many different cuts. **Intuitively** Karger's algorithm is better than picking a random cut, because it is unlikely that we contract an edge of a minimum cut, simply because there are few such edges.

Karger's contraction algorithm: Proof

Lemma: Karger contraction algorithm outputs a min-cut with probability at least 2/((n-1)n).

Proof:

Consider an arbitrary min cut $(U, W = V \setminus U)$ with C = E(U, W)

- $e_1, e_2, e_3, \dots, e_{n-2}$: the edges contracted by Karger's algorithm
- E_i : event that e_i does not cross the cut C.

$$\Pr(\mathsf{Karger\ returns\ cut\ } C) = \Pr(E_1 \land E_2 \land E_3, ..., \land E_{n-2})$$

$$= \Pr(E_1) \cdot \Pr(E_2 | E_1) \cdot ... \Pr(E_{n-2} | E_1 \land ... \land E_{n-3})$$

$$... (\text{we will show}) ... \geq \frac{2}{n(n-1)}$$

Bounding $Pr(E_i | E_1 \land \cdots \land E_{i-1})$

$$\Pr(\overline{E_i}|E_1 \land .. \land E_{i-1}) \leq \frac{\#edges \ in \ cut \ C}{\#remaining \ edges \ after \ i-1 \ contractions} \leq \frac{2}{n-i+1}$$

The event that we contract an edge of C in the i-th step, given that we have not contracted any edge of C before

$$\Pr(E_i \mid E_1 \land \dots \land E_{i-1}) = 1 - \Pr(\overline{E_i} \mid E_1 \land \dots \land E_{i-1}1) \ge (n-i-1)/(n-i+1)$$

#remaining edges
$$\geq$$
 #remainingVertices $\cdot \frac{minDegree}{2}$

$$\geq (n - (i - 1)) \cdot \frac{minDegree}{2}$$

$$\geq (n - i + 1) \cdot (\# edges \ in \ cut \ C)/2$$

Karger contraction algorithm: Finalizing the proof

Lemma: Karger's contraction algorithm outputs a min-cut with probability at least 2/(n-1)n.

Proof:

$$\Pr(E_i \mid E_1 \land \dots \land E_{i-1}) = 1 - \Pr(\overline{E_i} \mid E_1 \land \dots \land E_{i-1}1) \ge (n-i-1)/(n-i+1)$$

$$\begin{aligned} \Pr(\text{Karger returns cut } C) &= \Pr(E_1 \land E_2 \land E_3, ..., \land E_{n-2}) \\ &= \Pr(E_1) \cdot \Pr(E_2 | E_1) \cdot ... \ \Pr(E_{n-2} | E_1 \land ... \land E_{n-3}) \\ &= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot ... \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} \ge \frac{2}{n(n-1)} \end{aligned}$$

end of proof

Theorem: Karger's algorithm

Theorem (Karger): $T = \frac{n(n-1)}{2} \cdot \log 1 / \delta$ repetitions of Karger's contraction algorithm and returning the smallest cut you see during the process computes a min-cut with probability at least $1 - \delta$.

min-cut=∞
Repeat for T times
 min-cut=min(min-cut, Karger-Contraction-Alg)
Return min-cut

One iteration correct with prob. $p = \frac{2}{n(n-1)}$

Pr(output is not a min – cut) $\leq (1-p)^T \stackrel{(C^{r})}{\leq} e^{-T \cdot p} = \delta$.

Remark: This algorithm only outputs the value of a min-cut.

Of course we can also output a min-cut by remembering the best cut found.

Karger's algorithm: Implementation

There are many ways to actually implement Karger's algorithm with varying influence on the complexity.

One Option: Interpret Karger's algorithm as running Kruskal's MST algorithm with random edge weights.

 Recall that Kruskal with a union-find data structure maintains connected components of nodes that have been merged by a spanning tree. These components form the role of a super node in Karger's algorithm.

(the implementation is not the focus of this lecture)

A small Toolbox

For analyzing randomized algorithms

MC: Probability boosting (very important!)

Given: MC algorithm A, correct with probability p>0New MC algorithm B, correct with probability $\geq 1-\delta>0$

Algorithm B: Repeat algorithm A for $p^{-1}\log\left(\frac{1}{\delta}\right)$ iterations Return "best solution"

Probability that none of the iterations is correct: $(1-p)^i \le e^{-p \cdot i} = \delta$

$$1-x \leq e^{-x}, x \in \mathbb{R}$$

MC: Probability boosting (very important!)

If you have an MC that is correct with probability 1%. Repeat it often enough and return the best solution, and you will have an MC algorithm that is correct with probability 99.9%.

Caveat: How to decide which solution is best?

In Karger's algorithm we saw an approach for probability boosting for maximization/minimization problems [return the largest/smallest solution].

From MC to LV

If you can check whether an output is correct, one can transfer an MC algorithm into an LV algorithm:

Repeat MC algorithm until correct solution is found

This will always produces a correct solution (LV algorithm)

- Expected runtime depends on:
 - error probability of your MC (correct with probability p),
 - the runtime f(n) of the MC algorithm, and
 - the runtime h(n) of the checking procedure

If the correctness check is deterministic, **expected runtime** = $x \cdot (f(n) + h(n))$, where x is the expected number of p-biased coin flips until you see heads (x = 1/p) (geometric random variable)

Linearity of Expectation

Linearity of expectation: Let $X_1, ..., X_n$ be random variables and $a_1, ..., a_n$ real values. Then we have:

$$E[\sum a_i X_i] = \sum a_i E[X_i]$$

- Extremely powerful and important tool
- It does not matter whether the random variables X_i are dependent or not

(should be known from probability theory)

Markov inequality

Markov inequality: If X is a nonnegative random variable and a > 0, then the probability that X is at least a is at most the expectation of X divided by a:

$$\Pr(X \ge a) \le \frac{E[X]}{a} \, .$$

One prime application:

Consider an algorithm that should minimize some value X, and we have designed an algorithm that computes a small value for X, in expectation. Then, we obtain:

$$Pr(X \ge 3 E[X]) \le E[X]/(3E[X]) = 1/3$$

We obtain:
$$Pr(X < 3 E[X]) = 1 - Pr(X \ge 3E[X]) \ge 2/3$$

*of course this works with other values than 3 as well

With high probability

Definition (with high probability): An algorithm is correct with high probability if its output on an instance of size n is correct with probability $\geq 1 - \frac{1}{n}$.

(Typically, we want that algorithms that are correct w.h.p.)

In other words, the probability that the output is incorrect is at most 1/n. E.g., for an instance with 100 nodes we require that the input is false with probability at most 1%. On an input with 1000 nodes, we require that the input is false with probability at most 0.1%, etc.

Max-Cut

colors, but not a proper graph coloring

Max-cut

Definition: A maximum cut (max-cut) is a cut that maximizes the number of edges crossing the cut among all cuts.

Max-cut is NP-complete (in contrast to min-cut), not proven in this lecture

Size of the cut?

Max-cut

Definition: A maximum cut (max-cut) is a cut that maximizes the number of edges crossing the cut among all cuts.

Max-cut is NP-complete (in contrast to min-cut), not proven in this lecture

Size of the cut?

10 cut edges

Randomized Max-Cut

Randomized Algorithm: Color each vertex randomly red/blue

How many cut-edges do we expect?

What is the probability for an edge to be a cut-edge?

$$Pr(v = blue \land u = red) = Pr(v = blue) \cdot Pr(u = red) = 1/4$$

$$Pr(v = red \land u = blue) = Pr(v = red) \cdot Pr(u = blue) = 1/4$$

$$Pr(edge \{u, v\} is cut edge) = 1/4 + 1/4 = 1/2$$

Randomized Max-Cut

Randomized Algorithm: Color each vertex randomly red/blue

For each edge $e \in E$: random variable $X_e = 1$, iff e is cut edge, $X_e = 0$, otherwise

$$E[X_e] = 1 \cdot \Pr(X_e = 1) + 0 \cdot \Pr(X_e = 0) = 1 \cdot \frac{1}{2} = \frac{1}{2}$$

$$X = \sum_{e \in E} X_e$$
 Total number of cut edges

$$E[X] = E[\sum X_e] = \sum E[X_e] = |E|/2$$

Very good cut in expectation, w/ const. prob. still good

Lemma: Randomly assigning nodes to the partitions of a cut, in expectation produces |E|/2 cut edges.

How to produce a Monte Carlo algorithm?

(for which problem do we get a MC algorithm)

Lemma: Randomly assigning nodes to the partitions of a cut produces at least |E|/4 cut edges, with probability at least 1/3.

Proof:

Let Y = |E| - X be the number of monochromatic (non-cut edges). E[Y] = |E| - E[X] = |E|/2.

$$Pr\left(X \le \frac{|E|}{4}\right) = \Pr\left(Y \ge \frac{3|E|}{4}\right) \le \frac{E[Y]}{\frac{3|E|}{4}} = \frac{2}{3}$$
. (Markov inequality)

Probability boosting

Theorem: For $\delta > 0$, there is a randomized MC algorithm that outputs a cut with at least |E|/4 cut edges with probability at least $1 - \delta$ in $O((|V| + |E|) \cdot \log_3 1/\delta)$ time.

Proof:

We repeat the previous algorithm $T = \log_{\frac{3}{2}}(1/\delta)$ times and output the largest cut that we see throughout. We obtain

$$\Pr\left(output\ cut < \frac{|E|}{4}\right) = \left(\frac{2}{3}\right)^T \le \delta.$$

Runtime: The randomized flipping takes O(|V|) steps. Checking the size of the cut in one iteration takes O(|E|) steps.

W.h.p. algorithm for large cuts

Corollary: There is a randomized algorithm that w.h.p. outputs a cut with |E|/4 cut edges and has runtime $O((|V| + |E|) \cdot \log n)$.

Proof:

Use the previous theorem and set $\delta = 1/n$ to obtain that the error probability is at most 1/n.

Remark on the approximation guarantee

- Max-cut is NP-complete
- Our algorithm usually does not output an optimal solution
- Still, we get a constant approximation
- There is no PTAS for max-cut unless P=NP

Exercise: Show that the presented algorithm provides a 4-approximation.

Concluding remarks

Randomization is (a) great (tool)

- often simple algorithms
- often difficult analysis