FMCOMMS5

November 22, 2024

Jay Convertino

Contents

1	Usage	2
	1.1 Introduction	2
	1.2 Dependencies	
	1.2.1 fusesoc_info Depenecies	2
2	Architecture	3
3	Building	3
	3.1 fusesoc	4
	3.2 Source Files	
		4
	3.3 Targets	5
	3.3.1 fusesoc_info Targets	5
	3.4 Directory Guide	
4	Simulation	6
5	Module Documentation	7
	5.1 ad9361x2 system pl	8
	5.2 zc702 system pl	19
	5.3 zc702 system	
	5.4 zc706 system pl	
	5.5 zc706 system	
	5.6 zcu102 system pl	
	5.7 zcu102 system	

1 Usage

1.1 Introduction

The fmcomms5 project builds a FPGA base system for the fmcomms5 Analog Devices development boards. Project targets are listed in 3.3. The base IP for the Analog Devices parts are from the Analog Devices HDL repo. They have been converted into fusesoc cores and some modifications have been made. Modifications include making the AD-C/DAC routes both use AXIS out of the DMAs. The Intel FPGA targets now uses ad_data/ad_clock cores, clock select, and DC filter to reach functionally on par with Xilinx targets.

1.2 Dependencies

The following are the dependencies of the cores.

- · fusesoc 2.X
- iverilog (simulation)
- cocotb (simulation)

1.2.1 fusesoc_info Depenecies

- zc706
 - AFRL:utility:xilinx_zc706_board_base:1.0.0
 - AFRL:utility:vivado_board_support_packages
 - AD:common:ad iobuf:1.0.0
- · zc706 bootgen
 - AFRL:utility:xilinx zc706 boot gen:1.0.0
- zc702
 - AFRL:utility:xilinx zc702 board base:1.0.0
 - AFRL:utility:vivado_board_support_packages
 - AD:common:ad iobuf:1.0.0
- zc702_bootgen
 - AFRL:utility:xilinx zc702 boot gen:1.0.0
- zcu102
 - AFRL:utility:xilinx zcu102 board base:1.0.0

- AFRL:utility:vivado_board_support_packages
- · zcu102_bootgen
 - AFRL:utility:xilinx_zcu102_boot_gen:1.0.0
- dep
 - AD:RF_Transceiver:axi_ad9361:1.0.0
 - AD:utility:tdd sync:1.0.0
 - AD:memory_controller:axi_dmac:1.0.0
 - AD:data_flow:util_cpack_axis:1.0.0
 - AD:data flow:util upack:2.0.0
 - AD:buffer:util rfifo:1.0.0
 - AD:buffer:util wfifo:1.0.0
 - AD:common:util_clkdiv:1.0.0
 - AD:common:ad rst:1.0.0
 - AFRL:utility:tcl helper check:1.0.0
 - zipcpu:axi lite:crossbar:1.0.0

2 Architecture

The project contains four wrappers

- system_wrapper Contains the top level project module and contains system_pl_wrapper and system_ps_wrapper.
- system_pl_wrapper Contains the AD9361 wrapper and any support IP's in the program logic.
- ad9361_pl_wrapper Contains all program logic IP's dealing with the AD9361x2.
- system_ps_wrapper Contains the processor system IP wrappers.

Please see 5 for more information per target.

3 Building

The all fmcomms5 core is written in Verilog 2001. They should synthesize in any modern FPGA software. The core comes as a fusesoc packaged core and can be included in any other core. Be sure to make sure you have meet the dependencies listed in the previous section.

3.1 fusesoc

Fusesoc is a system for building FPGA software without relying on the internal project management of the tool. Avoiding vendor lock in to Vivado or Quartus. These cores, when included in a project, can be easily integrated and targets created based upon the end developer needs. The core by itself is not a part of a system and should be integrated into a fusesoc based system. Simulations are setup to use fusesoc and are a part of its targets.

3.2 Source Files

3.2.1 fusesoc_info File List

- src ad9361x2 pl
 - 'common/ad9361x2_pl_wrapper.v': 'file_type': 'verilogSource'
- zc706
 - 'zc706/system constr.xdc': 'file type': 'xdc'
 - 'zc706/system_wrapper.v': 'file_type': 'verilogSource'
 - 'zc706/system pl wrapper.v': 'file type': 'verilogSource'
 - 'zc706/system pl gen.tcl': 'file type': 'tclSource'
 - 'zc706/system gen.tcl': 'file type': 'tclSource'

zc702

- 'zc702/system constr.xdc': 'file_type': 'xdc'
- 'zc702/system wrapper.v': 'file_type': 'verilogSource'
- 'zc702/system pl wrapper.v': 'file type': 'verilogSource'
- 'zc702/system_pl_gen.tcl': 'file_type': 'tclSource'
- 'zc702/system gen.tcl': 'file type': 'tclSource'

zcu102

- 'zcu102/system constr.xdc': 'file type': 'xdc'
- 'zcu102/system wrapper.v': 'file type': 'verilogSource'
- 'zcu102/system_pl_wrapper.v': 'file_type': 'verilogSource'
- 'zcu102/system pl gen.tcl': 'file type': 'tclSource'
- 'zcu102/system_gen.tcl': 'file_type': 'tclSource'

3.3 Targets

3.3.1 fusesoc_info Targets

default

Info: Default target, do not use.

zc706

Info: zc706 target.

zc706_bootgen

Info: zc706 build with boot.bin output in BOOTFS folder.

• zc702

Info: zc702 target.

zc702_bootgen

Info: zc702 build with boot.bin output in BOOTFS folder.

zcu102

Info: zcu102 target.

zcu102_bootgen

Info: zcu102 build with boot.bin output in BOOTFS folder.

3.4 Directory Guide

Below highlights important folders from the root of the directory.

- 1. **docs** Contains all documentation related to this project.
 - **manual** Contains user manual and github page that are generated from the latex sources.
- 2. **common** Contains source file wrapper for ad9361 core
- 3. **zc702** Contains source files for Xilinx zc702
- 4. zc706 Contains source files for Xilinx zc706
- 5. zcu102 Contains source files for Xilinx zcu102

4 Simulation

There is no simulation at the moment. This is dues to the AD9361 and ARM subsystems. Maybe a future addition with Vexriscv?

5 Module Documentation

There project has multiple modules. The targets are the top system wrappers.

- ad9361 system pl
- zc702 system pl
- zc702 system
- zc706 system pl
- zc706 system
- zcu102 system pl
- zcu102 system

The next sections document the module in great detail.

ad9361x2 pl wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2023/11/02

INFORMATION

Brief

AD9361x2 core and support core wrapper.

License MIT

Copyright 2023 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ad9361x2 pl wrapper

```
module ad9361x2_pl_wrapper #(
parameter
FPGA_TECHNOLOGY
=
0,
parameter
FPGA_FAMILY
=
0,
parameter
SPEED_GRADE
```

```
=
Θ,
 parameter
 DEV_PACKAGE
 parameter
ADC_INIT_DELAY
23,
 parameter
DAC_INIT_DELAY
 parameter
DELAY_REFCLK_FREQUENCY
 200,
 parameter
DMA_AXI_PROTOCOL_TO_PS
parameter
 AXI_DMAC_ADC_ADDR
 321h7C400000,
 parameter
 AXI_DMAC_DAC_ADDR
321h7C420000,
 parameter
AXI_AD9361_0_ADDR
 321h79020000,
 parameter
AXI_AD9361_1_ADDR
321h79040000
) ( input axi_aclk, input axi_aresetn, input s_axi_awvalid, input [31:0] s_a
```

AD9361x2 core and support core wrapper.

Parameters

FPGA_TECHNOLOGY Type of FPGA, such as Ultrascale, Arria 10. 1 is for 7 series.

parameter

FPGA_FAMILY Sub type of fpga, such as GX, SX, etc. 4 is for zynq.

parameter

SPEED_GRADE Number that corresponds to the ships recommended

parameter speed. 20 is for -2.

DEV_PACKAGE Specify a number that is equal to the manufactures

parameter package. 3 is for ff.

DELAY_REFCLK_FREQUENCY Reference clock frequency used for ad_data_in instances

parameter

ADC_INIT_DELAY Initial Delay for the ADC

paramete

DAC_INIT_DELAY Initial Delay for the DAC

parameter

DMA_AXI_PROTOCOL_TO_PS Select DMA AXI standard, 1 = AXI3, 0 = AXI4

paramete

AXI_DMAC_ADC_ADDR Set ADC AXI lite address.

parameter
AXI_DMAC_DAC_ADDR

Set DAC AXI lite address.

parameter

AXI_AD9361_0 ADDR Set AD9361_0 AXI lite address.

paramete

AXI_AD9361_1_ADDR Set AD9361 1 AXI lite address.

parameter

Ports

AXI Lite control bus axi aclk axi_aresetn AXI Lite control bus s_axi_awvalid AXI Lite control bus s axi awaddr AXI Lite control bus s_axi_awready AXI Lite control bus s axi awprot AXI Lite control bus s_axi_wvalid AXI Lite control bus s_axi_wdata AXI Lite control bus s_axi_wstrb AXI Lite control bus s_axi_wready AXI Lite control bus s_axi_bvalid AXI Lite control bus AXI Lite control bus s axi bresp s_axi_bready AXI Lite control bus s_axi_arvalid AXI Lite control bus s_axi_araddr AXI Lite control bus AXI Lite control bus s_axi_arready s_axi_arprot AXI Lite control bus s axi rvalid AXI Lite control bus s_axi_rready AXI Lite control bus s_axi_rresp AXI Lite control bus AXI Lite control bus s_axi_rdata adc_dma_irq fmcomms5 ADC irq dac_dma_irq fmcomms5 DAC irq delay clk fmcomms5 delay clock rx_clk_in_0_p fmcomms5 0 rx clk rx_clk_in_0_n fmcomms5 0 rx clk rx_frame_in_0_p fmcomms5 0 rx frame rx_frame_in_0_n fmcomms5 0 rx frame rx_data_in_0_p fmcomms5 0 rx data rx data in 0 n fmcomms5 0 rx data tx_clk_out_0_p fmcomms5 0 tx clk fmcomms5 0 tx clk tx clk out 0 n fmcomms5 0 tx frame tx_frame_out_0_p fmcomms5 0 tx frame tx_frame_out_0_n

tx_data_out_0_p fmcomms5 0 tx data tx data out 0 n fmcomms5 0 tx data txnrx_0 fmcomms5 0 txnrx enable_0 fmcomms5 0 enable up_enable_0 fmcomms5 0 enable input up txnrx 0 fmcomms5 0 txnrx select input tdd_sync_0_t fmcomms5 0 TDD sync i/o tdd_sync_0_i fmcomms5 0 TDD sync i/o tdd_sync_0_o fmcomms5 0 TDD sync i/o fmcomms5 1 rx clk rx_clk_in_1_p rx_clk_in_1_n fmcomms5 1 rx clk rx frame in 1 p fmcomms5 1 rx frame rx_frame_in_1_n fmcomms5 1 rx frame rx_data_in_1_p fmcomms5 1 rx data rx_data_in_1_n fmcomms5 1 rx data tx_clk_out_1_p fmcomms5 1 tx clk tx_clk_out_1_n fmcomms5 1 tx clk tx frame out 1 p fmcomms5 1 tx frame tx_frame_out_1_n fmcomms5 1 tx frame tx data out 1 p fmcomms5 1 tx data tx_data_out_1_n fmcomms5 1 tx data fmcomms5 1 txnrx txnrx_1 enable 1 fmcomms5 1 enable up_enable_1 fmcomms5 1 enable input up_txnrx_1 fmcomms5 1 txnrx select input tdd_sync_1_t fmcomms5 1 TDD sync i/o tdd_sync_1_i fmcomms5 1 TDD sync i/o tdd_sync_1_o fmcomms5 1 TDD sync i/o **DMA Clock** m_axi_aclk m_axi_aresetn DMA Negative Reset adc_m_dest_axi_awaddr fmcomms5 ADC DMA adc_m_dest_axi_awlen fmcomms5 ADC DMA fmcomms5 ADC DMA adc_m_dest_axi_awsize adc_m_dest_axi_awburst fmcomms5 ADC DMA adc m dest axi awprot fmcomms5 ADC DMA adc_m_dest_axi_awcache fmcomms5 ADC DMA adc_m_dest_axi_awvalid fmcomms5 ADC DMA adc_m_dest_axi_awready fmcomms5 ADC DMA adc_m_dest_axi_wdata fmcomms5 ADC DMA adc_m_dest_axi_wstrb fmcomms5 ADC DMA fmcomms5 ADC DMA adc m dest axi wready

fmcomms5 ADC DMA

adc m dest axi wvalid

adc_m_dest_axi_wlast fmcomms5 ADC DMA adc_m_dest_axi_bvalid fmcomms5 ADC DMA adc_m_dest_axi_bresp fmcomms5 ADC DMA adc_m_dest_axi_bready fmcomms5 ADC DMA dac_m_src_axi_arready fmcomms5 DAC DMA dac_m_src_axi_arvalid fmcomms5 DAC DMA $dac_m_src_axi_araddr$ fmcomms5 DAC DMA dac m src axi arlen fmcomms5 DAC DMA dac_m_src_axi_arsize fmcomms5 DAC DMA dac_m_src_axi_arburst fmcomms5 DAC DMA dac_m_src_axi_arprot fmcomms5 DAC DMA dac_m_src_axi_arcache fmcomms5 DAC DMA dac_m_src_axi_rdata fmcomms5 DAC DMA dac_m_src_axi_rready fmcomms5 DAC DMA dac_m_src_axi_rvalid fmcomms5 DAC DMA dac_m_src_axi_rresp fmcomms5 DAC DMA dac_m_src_axi_rlast fmcomms5 DAC DMA

INSTANTIANTED MODULES

inst_axi_ad9361_0

```
axi_ad9361 #(

ID(0),

MODE_1R1T(0),

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),

SPEED_GRADE(SPEED_GRADE),

DEV_PACKAGE(DEV_PACKAGE),

TDD_DISABLE(0),

PPS_RECEIVER_ENABLE(0),

CMOS_OR_LVDS_N(0),

ADC_INIT_DELAY(ADC_INIT_DELAY),

ADC_DATAPATH_DISABLE(0),

ADC_USERPORTS_DISABLE(0),

ADC_DATAFORMAT_DISABLE(0),

ADC_DCFILTER_DISABLE(0),
```

```
ADC_IQCORRECTION_DISABLE(0),
DAC_INIT_DELAY(DAC_INIT_DELAY),
DAC_CLK_EDGE_SEL(0),
DAC_IODELAY_ENABLE(0),
DAC_DATAPATH_DISABLE(0),
DAC_DDS_DISABLE(0),
DAC_DDS_TYPE(1),
DAC_DDS_CORDIC_DW(14),
DAC_DDS_CORDIC_PHASE_DW(13),
DAC_USERPORTS_DISABLE(0),
DAC_IQCORRECTION_DISABLE(0),
IO_DELAY_GROUP("dev_0_if_delay_group"),
MIMO_ENABLE(0),
USE_SSI_CLK(1),
DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY),
) inst_axi_ad9361_0 ( .rx_clk_in_p(rx_clk_in_0_p), .rx_clk_in_n(rx_clk_in_0_
```

Analog Devices ad9361 0 interface core

inst_axi_ad9361_1

```
axi_ad9361 #(

ID(1),

MODE_1R1T(0),

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),

SPEED_GRADE(SPEED_GRADE),

DEV_PACKAGE(DEV_PACKAGE),

TDD_DISABLE(0),

PPS_RECEIVER_ENABLE(0),

CMOS_OR_LVDS_N(0),

ADC_INIT_DELAY(ADC_INIT_DELAY),

ADC_USERPORTS_DISABLE(0),
```

```
ADC_DATAFORMAT_DISABLE(0),
ADC_DCFILTER_DISABLE(0),
ADC_IQCORRECTION_DISABLE(0),
DAC_INIT_DELAY(DAC_INIT_DELAY),
DAC_CLK_EDGE_SEL(0),
DAC_IODELAY_ENABLE(0),
DAC_DATAPATH_DISABLE(0),
DAC_DDS_DISABLE(0),
DAC_DDS_TYPE(1),
DAC_DDS_CORDIC_DW(14),
DAC_DDS_CORDIC_PHASE_DW(13),
DAC_USERPORTS_DISABLE(0),
DAC_IQCORRECTION_DISABLE(0),
IO_DELAY_GROUP("dev_1_if_delay_group"),
MIMO_ENABLE(0),
USE_SSI_CLK(0),
DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY),
) inst_axi_ad9361_1 ( .rx_clk_in_p(rx_clk_in_1_p), .rx_clk_in_n(rx_clk_in_1_
```

Analog Devices ad9361 1 interface core

inst_adc_axi_dmac

```
axi_dmac #(

ID(0),

DMA_DATA_WIDTH_SRC(128),

DMA_DATA_WIDTH_DEST(64),

DMA_LENGTH_WIDTH(24),

DMA_2D_TRANSFER(0),

ASYNC_CLK_REQ_SRC(1),

ASYNC_CLK_SRC_DEST(1),

ASYNC_CLK_DEST_REQ(1),

AXI_SLICE_DEST(0),

AXI_SLICE_SRC(1),
```

```
SYNC_TRANSFER_START(1),
CYCLIC(0),
DMA_AXI_PROTOCOL_DEST(DMA_AXI_PROTOCOL_TO_PS),
DMA_AXI_PROTOCOL_SRC(1),
DMA_TYPE_DEST(0),
DMA_TYPE_SRC(1),
DMA_AXI_ADDR_WIDTH(32),
MAX_BYTES_PER_BURST(128),
FIF0_SIZE(8),
AXI_ID_WIDTH_SRC(6),
AXI_ID_WIDTH_DEST(6),
DMA_AXIS_ID_W(8),
DMA_AXIS_DEST_W(4),
DISABLE_DEBUG_REGISTERS(0),
ENABLE_DIAGNOSTICS_IF(0),
ALLOW_ASYM_MEM(1),
CACHE_COHERENT_DEST(1)
) inst_adc_axi_dmac ( .s_axi_aclk(axi_aclk), .s_axi_aresetn(axi_aresetn), .s
```

Analog Devices DMA for AD9361 ADC

inst_dac_axi_dmac

```
axi_dmac #(
ID(0),

DMA_DATA_WIDTH_SRC(64),

DMA_DATA_WIDTH_DEST(128),

DMA_LENGTH_WIDTH(24),

DMA_2D_TRANSFER(0),

ASYNC_CLK_REQ_SRC(1),

ASYNC_CLK_SRC_DEST(1),

ASYNC_CLK_DEST_REQ(1),

AXI_SLICE_DEST(1),

AXI_SLICE_SRC(0),

SYNC_TRANSFER_START(0),
```

```
CYCLIC(1),
DMA_AXI_PROTOCOL_DEST(1),
DMA_AXI_PROTOCOL_SRC(DMA_AXI_PROTOCOL_TO_PS),
DMA_TYPE_DEST(1),
DMA_TYPE_SRC(0),
DMA_AXI_ADDR_WIDTH(32),
MAX_BYTES_PER_BURST(128),
FIF0_SIZE(8),
AXI_ID_WIDTH_SRC(6),
AXI_ID_WIDTH_DEST(6),
DMA_AXIS_ID_W(8),
DMA_AXIS_DEST_W(4),
DISABLE_DEBUG_REGISTERS(0),
ENABLE_DIAGNOSTICS_IF(0),
ALLOW_ASYM_MEM(1),
CACHE_COHERENT_DEST(0)
) inst_dac_axi_dmac ( .s_axi_aclk(axi_aclk), .s_axi_aresetn(axi_aresetn), ...
```

Analog Devices DMA for AD9361 DAC

inst_adc_cpack

Analog Devices Utility to take ad9361 data and pack it to a AXIS bus for the ADC

inst_dac_cpack

Analog Devices Utility to take ad9361 data and unpack from the AXIS bus to the DAC

inst_dac_fifo

```
util_rfifo #(
    .
NUM_OF_CHANNELS(8),
```

```
DIN_DATA_WIDTH(16),

DOUT_DATA_WIDTH(16),

DIN_ADDRESS_WIDTH(4)
) inst_dac_fifo ( .din_rstn(p_aresetn), .din_clk(d_clk), .din_enable_0(fife
```

Analog Devices FIFO for AD9361 DAC BUS

inst_adc_fifo

Analog Devices FIFO for AD9361 ADC BUS

inst_clkdiv

```
util_clkdiv #(
.
SIM_DEVICE(SIM_DEVICE)
) inst_clkdiv ( .clk(l_clk), .clk_sel(adc_r1_mode_0 & dac_r1_mode_0 & adc_r
```

Analog Devices Clock Divider with select

isnt_util_tdd_sync_0

```
util_tdd_sync #(

TDD_SYNC_PERIOD(100000000)
) isnt_util_tdd_sync_0 ( .clk(axi_aclk), .rstn(axi_aresetn), .sync_mode(tdo
```

Analog Devices tdd sync utility

isnt_util_tdd_sync_1

```
util_tdd_sync #(

TDD_SYNC_PERIOD(100000000)
) isnt_util_tdd_sync_1 ( .clk(axi_aclk), .rstn(axi_aresetn), .sync_mode(tdomain)
```

Analog Devices tdd sync utility

inst_ad_reset

```
ad_rst inst_ad_reset (
    rst_async(~axi_aresetn),
    clk(d_clk),
    rstn(p_aresetn),
    rst(p_reset)
)
```

Analog Devices reset sync

inst_axilxbar

```
axilxbar #(

C_AXI_DATA_WIDTH(32),

C_AXI_ADDR_WIDTH(32),

NM(1),

NS(4),

SLAVE_ADDR({{AXI_DMAC_ADC_ADDR}, {AXI_DMAC_DAC_ADDR}, {AXI_AD9361_1_ADDR}, {
SLAVE_MASK({{32'hFFFFF000}, {32'hFFFFF000}}, {32'hFFFF0000}})
) inst_axilxbar ( .S_AXI_ACLK(axi_aclk), .S_AXI_ARESETN(axi_aresetn), .S_AXI
```

AXI Lite crossbar for ADC DMA, DAC DMA, and AD9361 1/0 control registers.

system_pl_wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2023/11/02

INFORMATION

Brief

System wrapper for pl only for zc702 board.

License MIT

Copyright 2023 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

system_pl_wrapper

```
module system_pl_wrapper #(
parameter
FPGA_TECHNOLOGY
=
0,
parameter
FPGA_FAMILY
=
0,
parameter
SPEED_GRADE
```

```
Θ,
parameter
DEV_PACKAGE
parameter
ADC_INIT_DELAY
23,
parameter
DAC_INIT_DELAY
parameter
DELAY_REFCLK_FREQUENCY
200
) ( input axi_aclk, input axi_aresetn, input s_axi_awvalid, input [31:0] s_
```

System wrapper for pl only for zc702 board.

Parameters

FPGA_TECHNOLOGY Type of FPGA, such as Ultrascale, Arria 10. 1 is for 7 series.

FPGA_FAMILY Sub type of fpga, such as GX, SX, etc. 4 is for zynq.

parameter

SPEED GRADE Number that corresponds to the ships recommeneded

parameter speed. 10 is for -1.

DEV PACKAGE Specify a number that is equal to the manufactures

package. 14 is for cl.

DELAY_REFCLK_FREQUENCY Reference clock frequency used for ad data in instances parameter

ADC_INIT_DELAY Initial Delay for the ADC

parameter

DAC INIT DELAY Initial Delay for the DAC

Ports

AXI Lite control bus axi_aclk axi_aresetn AXI Lite control bus s_axi_awvalid AXI Lite control bus s_axi_awaddr AXI Lite control bus s_axi_awready AXI Lite control bus s_axi_awprot AXI Lite control bus s_axi_wvalid AXI Lite control bus s_axi_wdata AXI Lite control bus s_axi_wstrb AXI Lite control bus s_axi_wready AXI Lite control bus s_axi_bvalid AXI Lite control bus s_axi_bresp AXI Lite control bus AXI Lite control bus s_axi_bready

AXI Lite control bus s axi arvalid s axi araddr AXI Lite control bus s axi arready AXI Lite control bus s_axi_arprot AXI Lite control bus s_axi_rvalid AXI Lite control bus s_axi_rready AXI Lite control bus AXI Lite control bus s axi rresp s axi rdata AXI Lite control bus adc_dma_irq fmcomms5 ADC ira dac_dma_irq fmcomms5 DAC irq delay_clk fmcomms5 delay clock

rx clk in 0 p fmcomms5 0 rx clk rx_clk_in_0_n fmcomms5 0 rx clk rx frame in 0 p fmcomms5 0 rx frame rx_frame_in_0_n fmcomms5 0 rx frame rx_data_in_0_p fmcomms5 0 rx data fmcomms5 0 rx data rx_data_in_0_n tx clk out 0 p fmcomms5 0 tx clk tx_clk_out_0_n fmcomms5 0 tx clk tx_frame_out_0_p fmcomms5 0 tx frame fmcomms5 0 tx frame tx_frame_out_0_n fmcomms5 0 tx data tx_data_out_0_p tx_data_out_0_n fmcomms5 0 tx data txnrx_0 fmcomms5 0 txnrx enable 0 fmcomms5 0 enable up_enable_0 fmcomms5 0 enable input

up_txnrx_0 fmcomms5 0 txnrx select input
tdd_sync_0_t fmcomms5 0 TDD sync i/o
tdd_sync_0_i fmcomms5 0 TDD sync i/o
tdd_sync_0_o fmcomms5 0 TDD sync i/o

fmcomms5 1 rx clk rx clk in 1 p rx_clk_in_1_n fmcomms5 1 rx clk rx_frame_in_1_p fmcomms5 1 rx frame rx_frame_in_1_n fmcomms5 1 rx frame rx data in 1 p fmcomms5 1 rx data fmcomms5 1 rx data rx_data_in_1_n tx clk out 1 p fmcomms5 1 tx clk tx_clk_out_1_n fmcomms5 1 tx clk tx_frame_out_1_p fmcomms5 1 tx frame tx_frame_out_1_n fmcomms5 1 tx frame fmcomms5 1 tx data tx_data_out_1_p

tx_data_out_1_n fmcomms5 1 tx data txnrx_1 fmcomms5 1 txnrx enable 1 fmcomms5 1 enable up_enable_1 fmcomms5 1 enable input up_txnrx_1 fmcomms5 1 txnrx select input tdd_sync_1_t fmcomms5 1 TDD sync i/o tdd_sync_1_i fmcomms5 1 TDD sync i/o tdd sync 1 o fmcomms5 1 TDD sync i/o adc m dest axi awaddr fmcomms5 ADC DMA adc_m_dest_axi_awlen fmcomms5 ADC DMA adc_m_dest_axi_awsize fmcomms5 ADC DMA adc_m_dest_axi_awburst fmcomms5 ADC DMA adc_m_dest_axi_awprot fmcomms5 ADC DMA adc m dest axi awcache fmcomms5 ADC DMA adc_m_dest_axi_awvalid fmcomms5 ADC DMA adc m dest axi awready fmcomms5 ADC DMA adc_m_dest_axi_wdata fmcomms5 ADC DMA adc m dest axi wstrb fmcomms5 ADC DMA adc m dest axi wready fmcomms5 ADC DMA adc_m_dest_axi_wvalid fmcomms5 ADC DMA adc_m_dest_axi_wlast fmcomms5 ADC DMA adc m dest axi bvalid fmcomms5 ADC DMA adc_m_dest_axi_bresp fmcomms5 ADC DMA adc m dest axi bready fmcomms5 ADC DMA dac m src axi arready fmcomms5 DAC DMA dac_m_src_axi_arvalid fmcomms5 DAC DMA dac_m_src_axi_araddr fmcomms5 DAC DMA dac_m_src_axi_arlen fmcomms5 DAC DMA dac_m_src_axi_arsize fmcomms5 DAC DMA dac_m_src_axi_arburst fmcomms5 DAC DMA dac m src axi arprot fmcomms5 DAC DMA dac_m_src_axi_arcache fmcomms5 DAC DMA dac_m_src_axi_rdata fmcomms5 DAC DMA dac_m_src_axi_rready fmcomms5 DAC DMA dac_m_src_axi_rvalid fmcomms5 DAC DMA dac m src axi rresp fmcomms5 DAC DMA dac_m_src_axi_rlast fmcomms5 DAC DMA iic sda fmc i2c for fmc iic_scl_fmc i2c for fmc iic2intc irpt i2c for fmc

INSTANTIANTED MODULES

iic_sda_iobuf

```
ad_iobuf #(

DATA_WIDTH(1)
) iic_sda_iobuf ( .dio_t (sda_t), .dio_i (sda_o), .dio_o (sda_i), .dio_p (sda_i)
```

Tristate i2c sda

iic_scl_iobuf

```
ad_iobuf #(

DATA_WIDTH(1)
) iic_scl_iobuf ( .dio_t (scl_t), .dio_i (scl_o), .dio_o (scl_i), .dio_p (:
```

Tristate i2c scl

inst_dma_rstgen

```
dma_rstgen inst_dma_rstgen (
    slowest_sync_clk(delay_clk),
    ext_reset_in(axi_aresetn),
    aux_reset_in(1'b1),
    mb_debug_sys_rst(1'b0),
    dcm_locked(1'b1),
    mb_reset(),
    bus_struct_reset(),
    peripheral_reset(),
    interconnect_aresetn(),
    peripheral_aresetn(m_axi_aresetn)
)
```

Generate a new DMA reset based on delay clock.

inst_ad9361x2_pl_wrapper

```
ad9361x2_pl_wrapper #(

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),
```

```
SPEED_GRADE(SPEED_GRADE),

DEV_PACKAGE(DEV_PACKAGE),

ADC_INIT_DELAY(ADC_INIT_DELAY),

DAC_INIT_DELAY(DAC_INIT_DELAY),

DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY)

) inst_ad9361x2_pl_wrapper ( .axi_aclk(axi_aclk), .axi_aresetn(axi_aresetn)
```

Module instance of inst_ad9361x2_pl_wrapper for the fmcomms5 device.

inst_axi_crossbar_pl

```
axi_crossbar_pl inst_axi_crossbar_pl (
aclk(axi_aclk),
aresetn(axi_aresetn),
s_axi_awaddr(s_axi_awaddr),
s_axi_awprot(s_axi_awprot),
s_axi_awvalid(s_axi_awvalid),
s_axi_awready(s_axi_awready),
s_axi_wdata(s_axi_wdata),
s_axi_wstrb(s_axi_wstrb),
s_axi_wvalid(s_axi_wvalid),
s_axi_wready(s_axi_wready),
s_axi_bresp(s_axi_bresp),
s_axi_bvalid(s_axi_bvalid),
s_axi_bready(s_axi_bready),
s_axi_araddr(s_axi_araddr),
s_axi_arprot(s_axi_arprot),
s_axi_arvalid(s_axi_arvalid),
s_axi_arready(s_axi_arready),
s_axi_rdata(s_axi_rdata),
s_axi_rresp(s_axi_rresp),
s_axi_rvalid(s_axi_rvalid),
s_axi_rready(s_axi_rready),
m_axi_awaddr({iic_fmc_axi_awaddr, connect_axi_awaddr}),
m_axi_awprot({iic_fmc_axi_awprot, connect_axi_awprot}),
```

```
m_axi_awvalid({iic_fmc_axi_awvalid, connect_axi_awvalid}),
m_axi_awready({iic_fmc_axi_awready, connect_axi_awready}),
m_axi_wdata({iic_fmc_axi_wdata, connect_axi_wdata}),
m_axi_wstrb({iic_fmc_axi_wstrb, connect_axi_wstrb}),
m_axi_wvalid({iic_fmc_axi_wvalid, connect_axi_wvalid}),
m_axi_wready({iic_fmc_axi_wready, connect_axi_wready}),
m_axi_bresp({iic_fmc_axi_bresp, connect_axi_bresp}),
m_axi_bvalid({iic_fmc_axi_bvalid, connect_axi_bvalid}),
m_axi_bready({iic_fmc_axi_bready, connect_axi_bready}),
m_axi_araddr({iic_fmc_axi_araddr, connect_axi_araddr}),
m_axi_arprot({iic_fmc_axi_arprot, connect_axi_arprot}),
m_axi_arvalid({iic_fmc_axi_arvalid, connect_axi_arvalid}),
m_axi_arready({iic_fmc_axi_arready, connect_axi_arready}),
m_axi_rdata({iic_fmc_axi_rdata, connect_axi_rdata}),
m_axi_rresp({iic_fmc_axi_rresp, connect_axi_rresp}),
m_axi_rvalid({iic_fmc_axi_rvalid, connect_axi_rvalid}),
m_axi_rready({iic_fmc_axi_rready, connect_axi_rready})
```

Module instance of axi crossbar pl for the fmcomms5 device.

inst_axi_iic_fmc

```
axi_iic_fmc inst_axi_iic_fmc (
s_axi_aclk(axi_aclk),
s_axi_aresetn(axi_aresetn),
iic2intc_irpt(iic2intc_irpt),
s_axi_awaddr(iic_fmc_axi_awaddr[8:0]),
s_axi_awvalid(iic_fmc_axi_awvalid),
s_axi_awready(iic_fmc_axi_awready),
s_axi_wdata(iic_fmc_axi_wdata),
s_axi_wstrb(iic_fmc_axi_wstrb),
s_axi_wvalid(iic_fmc_axi_wvalid),
s_axi_wready(iic_fmc_axi_wready),
s_axi_wready(iic_fmc_axi_wready),
s_axi_bresp(iic_fmc_axi_bresp),
```

```
s_axi_bvalid(iic_fmc_axi_bvalid),
s_axi_bready(iic_fmc_axi_bready),
s_axi_araddr(iic_fmc_axi_araddr[8:0]),
s_axi_arvalid(iic_fmc_axi_arvalid),
s_axi_arready(iic_fmc_axi_arready),
s\_axi\_rdata(iic\_fmc\_axi\_rdata),
s_axi_rresp(iic_fmc_axi_rresp),
s_axi_rvalid(iic_fmc_axi_rvalid),
s_axi_rready(iic_fmc_axi_rready),
sda_i(sda_i),
sda_o(sda_o),
sda_t(sda_t),
scl_i(scl_i),
scl_o(scl_o),
scl_t(scl_t),
gpo()
```

Module instance of axi_iic_fmc for the fmcomms5 device.

system_wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2023/11/02

INFORMATION

Brief

System wrapper for pl and ps for zc702 board.

License MIT

Copyright 2023 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

system_wrapper

```
module system_wrapper #(
parameter
FPGA_TECHNOLOGY
=
1,
parameter
FPGA_FAMILY
=
4,
parameter
SPEED_GRADE
```

```
= 20, parameter DEV_PACKAGE = 3, parameter DELAY_REFCLK_FREQUENCY = 200, parameter ADC_INIT_DELAY = 20, parameter DAC_INIT_DELAY = 0) ( inout [14:0] ddr_addr, inout [ 2:0] ddr_ba, inout ddr_cas_n, inout ddr_c
```

System wrapper for pl and ps for zc702 board.

Parameters

FPGA TECHNOLOGY Type of FPGA, such as Ultrascale, Arria 10. 1 is for 7 series.

parameter

FPGA_FAMILY Sub type of fpga, such as GX, SX, etc. 4 is for zynq.

parameter

SPEED_GRADE Number that corresponds to the ships recommended

parameter speed. 10 is for -1.

DEV_PACKAGE Specify a number that is equal to the manufactures

package. 14 is for cl.

DELAY_REFCLK_FREQUENCY Reference clock frequency used for ad_data_in instances

arameter

ADC_INIT_DELAY Initial Delay for the ADC

parameter

DAC_INIT_DELAY Initial Delay for the DAC

oarameter

Ports

ddr_addr	DDR interface
ddr_ba	DDR interface
ddr_cas_n	DDR interface
ddr_ck_n	DDR interface
ddr_ck_p	DDR interface
ddr_cke	DDR interface
ddr_cs_n	DDR interface
ddr_dm	DDR interface
ddr_dq	DDR interface
ddr_dqs_n	DDR interface
ddr_dqs_p	DDR interface
ddr_odt	DDR interface
ddr_ras_n	DDR interface

ddr reset n DDR interface ddr we n DDR interface fixed_io_ddr_vrn DDR interface fixed_io_ddr_vrp DDR interface fixed_io_mio ps mio fixed_io_ps_clk ps clk fixed_io_ps_porb ps por fixed_io_ps_srstb ps rst

iic_scl_fmcfmcomms5 i2ciic_sda_fmcfmcomms5 i2c

gpio_bd gpio

fmcomms5 0 rx clk rx_clk_in_0_p rx clk in 0 n fmcomms5 0 rx clk rx_frame_in_0_p fmcomms5 0 rx frame rx_frame_in_0_n fmcomms5 0 rx frame rx_data_in_0_p fmcomms5 0 rx data rx_data_in_0_n fmcomms5 0 rx data tx_clk_out_0_p fmcomms5 0 tx clk fmcomms5 0 tx clk tx_clk_out_0_n tx_frame_out_0_p fmcomms5 0 tx frame tx frame out 0 n fmcomms5 0 tx frame tx_data_out_0_p fmcomms5 0 tx data

fmcomms5 0 tx data tx_data_out_0_n gpio_status_0 fmcomms5 0 gpio gpio_ctl_0 fmcomms5 0 gpio gpio_en_agc_0 fmcomms5 0 gpio gpio_resetb_0 fmcomms5 0 gpio gpio_debug_1_0 fmcomms5 0 gpio gpio_debug_2_0 fmcomms5 0 gpio gpio_calsw_1_0 fmcomms5 0 gpio fmcomms5 0 gpio gpio_calsw_2_0 gpio_ad5355_rfen fmcomms5 0 gpio gpio_ad5355_lock fmcomms5 0 gpio txnrx_0 fmcomms5 0 txnrx enable_0 fmcomms5 0 enable rx_clk_in_1_p fmcomms5 1 rx clk rx_clk_in_1_n fmcomms5 1 rx clk rx frame in 1 p fmcomms5 1 rx frame rx_frame_in_1_n fmcomms5 1 rx frame fmcomms5 1 rx data rx_data_in_1_p rx_data_in_1_n fmcomms5 1 rx data fmcomms5 1 tx clk tx_clk_out_1_p

```
tx_clk_out_1_n
                    fmcomms5 1 tx clk
tx_frame_out_1_p
                    fmcomms5 1 tx frame
tx_frame_out_1_n
                    fmcomms5 1 tx frame
tx_data_out_1_p
                    fmcomms5 1 tx data
tx_data_out_1_n
                    fmcomms5 1 tx data
gpio_status_1
                    fmcomms5 1 gpio
gpio_ctl_1
                    fmcomms5 1 gpio
                    fmcomms5 1 gpio
gpio_en_agc_1
gpio_resetb_1
                    fmcomms5 1 gpio
gpio debug 1 1
                    fmcomms5 1 gpio
gpio_debug_2_1
                    fmcomms5 1 gpio
gpio_calsw_1_1
                    fmcomms5 1 gpio
gpio_calsw_2_1
                    fmcomms5 1 gpio
gpio_ad5355_rfen
                    fmcomms5 1 gpio
gpio_ad5355_lock
                    fmcomms5 1 gpio
txnrx_1
                    fmcomms5 1 txnrx
enable 1
                    fmcomms5 1 enable
                    fmcomms5 sync
mcs_sync
spi_ad9361_0
                    fmcomms5 ad9361 0 spi select
spi_ad9361_1
                    fmcomms5 ad9361 1 spi select
spi_ad5355
                    fmcomms5 ad5355 spi select
spi_clk
                    fmcomms5 spi clock
spi_mosi
                    fmcomms5 spi master out
spi_miso
                    fmcomms5 spi master in
ref_clk_p
                    fmcomms5 ref clock p
ref_clk_n
                    fmcomms5 ref clock n
```

INSTANTIANTED MODULES

i_ref_clk_ibuf

```
IBUFGDS i_ref_clk_ibuf (

I

ref_clk_p),

IB

ref_clk_n),

(

ref_clk_s)
)
```

i ref clk rbuf

```
BUFR #(

BUFR_DIVIDE

("

BYPASS")
) i_ref_clk_rbuf ( .CLR (1'b0), .CE (1'b1), .I (ref_clk_s), .0 (ref_clk))
```

Module instance of BUFR for cmos clock to clock region.

i_iobuf

```
ad_iobuf #(

DATA_WIDTH(42)
) i_iobuf ( .dio_t ({gpio_t[59:46], gpio_t[43:16]}), .dio_i ({gpio_o[59:46]})
```

Module instance of ad_iobuf for tristate GPIO control.

i_gpio_bd

```
ad_iobuf #(

DATA_WIDTH(16)
) i_gpio_bd ( .dio_t (gpio_t[15:0]), .dio_i (gpio_o[15:0]), .dio_o (gpio_i
```

Module instance of ad_iobuf for tristate GPIO bd control.

inst_system_pl_wrapper

```
system_pl_wrapper #(

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),

SPEED_GRADE(SPEED_GRADE),

DEV_PACKAGE(DEV_PACKAGE),

ADC_INIT_DELAY(ADC_INIT_DELAY),

DAC_INIT_DELAY(DAC_INIT_DELAY),

DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY)

) inst_system_pl_wrapper ( .axi_aclk(s_axi_clk), .axi_aresetn(s_axi_aresetn))
```

Module instance of system_pl_wrapper for the fmcomms5 device.

inst_system_ps_wrapper

```
system_ps_wrapper inst_system_ps_wrapper (
GPIO_I(gpio_i),
GPIO_O(gpio_o),
GPIO_T(gpio_t),
SPI0_SCLK_I(1'b0),
SPI0_SCLK_0(spi_clk),
SPI0_MOSI_I(1'b0),
SPI0_MOSI_0(spi_mosi),
SPI0_MISO_I(spi_miso),
SPI0_SS_I(1'b1),
SPI0_SS_0(spi_ad9361_0),
SPI0_SS1_0(spi_ad9361_1),
SPI0_SS2_0(spi_ad5355),
SPI1_SCLK_I(1'b0),
SPI1_SCLK_0(),
SPI1_MOSI_I(1'b0),
SPI1_MOSI_O(),
SPI1_MISO_I(1'b0),
SPI1_SS_I(1'b1),
SPI1_SS_0(),
SPI1_SS1_0(),
SPI1_SS2_0(),
M_AXI_araddr(w_axi_araddr),
M_AXI_arprot(w_axi_arprot),
M_AXI_arready(w_axi_arready),
M_AXI_arvalid(w_axi_arvalid),
M_AXI_awaddr(w_axi_awaddr),
M_AXI_awprot(w_axi_awprot),
{\tt M\_AXI\_awready(w\_axi\_awready),}
M_AXI_awvalid(w_axi_awvalid),
M_AXI_bready(w_axi_bready),
M_AXI_bresp(w_axi_bresp),
```

```
M_AXI_bvalid(w_axi_bvalid),
M_AXI_rdata(w_axi_rdata),
M_AXI_rready(w_axi_rready),
M_AXI_rresp(w_axi_rresp),
M_AXI_rvalid(w_axi_rvalid),
M_AXI_wdata(w_axi_wdata),
M_AXI_wready(w_axi_wready),
M_AXI_wstrb(w_axi_wstrb),
M_AXI_wvalid(w_axi_wvalid),
S_AXI_HP0_arready(),
S_AXI_HP0_awready(adc_hp0_axi_awready),
S_AXI_HP0_bvalid(adc_hp0_axi_bvalid),
S_AXI_HP0_rlast(),
S_AXI_HP0_rvalid(),
S_AXI_HP0_wready(adc_hp0_axi_wready),
S_AXI_HP0_bresp(adc_hp0_axi_bresp),
S_AXI_HP0_rresp(),
S_AXI_HP0_bid(),
S_AXI_HPO_rid(),
S_AXI_HP0_rdata(),
S_AXI_HP0_ACLK(s_delay_clk),
S_AXI_HP0_arvalid(1'b0),
S_AXI_HP0_awvalid(adc_hp0_axi_awvalid),
S_AXI_HP0_bready(adc_hp0_axi_bready),
S_AXI_HP0_rready(1'b0),
S_AXI_HP0_wlast(adc_hp0_axi_wlast),
S_AXI_HP0_wvalid(adc_hp0_axi_wvalid),
S_AXI_HP0_arburst(2'b01),
S_AXI_HP0_arlock(0),
S_AXI_HP0_arsize(3'b011),
S_AXI_HP0_awburst(adc_hp0_axi_awburst),
S_AXI_HP0_awlock(0),
S_AXI_HP0_awsize(adc_hp0_axi_awsize),
```

```
S_AXI_HP0_arprot(0),
S_AXI_HP0_awprot(adc_hp0_axi_awprot),
S_AXI_HP0_araddr(0),
S_AXI_HP0_awaddr(adc_hp0_axi_awaddr),
S_AXI_HP0_arcache(4'b0011),
S_AXI_HP0_arlen(0),
S_AXI_HP0_arqos(0),
S_AXI_HP0_awcache(adc_hp0_axi_awcache),
S_AXI_HP0_awlen(adc_hp0_axi_awlen),
S_AXI_HP0_awqos(0),
S_AXI_HP0_arid(0),
S_AXI_HP0_awid(0),
S_AXI_HP0_wid(0),
S_AXI_HP0_wdata(adc_hp0_axi_wdata),
S_AXI_HP0_wstrb(adc_hp0_axi_wstrb),
S_AXI_HP1_arready(dac_hp1_axi_arready),
S_AXI_HP1_awready(),
S_AXI_HP1_bvalid(),
S_AXI_HP1_rlast(dac_hp1_axi_rlast),
S_AXI_HP1_rvalid(dac_hp1_axi_rvalid),
S_AXI_HP1_wready(),
S_AXI_HP1_bresp(),
S_AXI_HP1_rresp(dac_hp1_axi_rresp),
S_AXI_HP1_bid(),
S_AXI_HP1_rid(),
S_AXI_HP1_rdata(dac_hp1_axi_rdata),
S_AXI_HP1_ACLK(s_delay_clk),
S_AXI_HP1_arvalid(dac_hp1_axi_arvalid),
S_AXI_HP1_awvalid(1'b0),
S_AXI_HP1_bready(1'b0),
S_AXI_HP1_rready(dac_hp1_axi_rready),
S_AXI_HP1_wlast(1'b0),
S_AXI_HP1_wvalid(1'b0),
```

```
S_AXI_HP1_arburst(dac_hp1_axi_arburst),
S_AXI_HP1_arlock(0),
S_AXI_HP1_arsize(dac_hp1_axi_arsize),
S_AXI_HP1_awburst(2'b01),
S_AXI_HP1_awlock(0),
S_AXI_HP1_awsize(3'b011),
S_AXI_HP1_arprot(dac_hp1_axi_arprot),
S_AXI_HP1_awprot(0),
S_AXI_HP1_araddr(dac_hp1_axi_araddr),
S_AXI_HP1_awaddr(0),
S_AXI_HP1_arcache(dac_hp1_axi_arcache),
S_AXI_HP1_arlen(dac_hp1_axi_arlen),
S_AXI_HP1_arqos(0),
S_AXI_HP1_awcache(4'b0011),
S_AXI_HP1_awlen(0),
S_AXI_HP1_awqos(0),
S_AXI_HP1_arid(0),
S_AXI_HP1_awid(0),
S_AXI_HP1_wid(0),
S_AXI_HP1_wdata(0),
S_AXI_HP1_wstrb(~0),
IRQ\_F2P(\{\{2\{1'b0\}\}, s\_adc\_dma\_irq, s\_dac\_dma\_irq, s\_iic2intc\_irpt, \{11\{1'b0\}\}, s\_adc\_dma\_irq, s\_iic2intc\_irpt, s\_iii
FCLK_CLK0(s_axi_clk),
FCLK_CLK1(s_delay_clk),
FIXED_IO_mio(fixed_io_mio),
DDR_cas_n(ddr_cas_n),
DDR_cke(ddr_cke),
DDR_ck_n(ddr_ck_n),
DDR_ck_p(ddr_ck_p),
DDR_cs_n(ddr_cs_n),
DDR_reset_n(ddr_reset_n),
DDR_odt(ddr_odt),
DDR_ras_n(ddr_ras_n),
```

```
DDR_we_n(ddr_we_n),

DDR_ba(ddr_ba),

DDR_addr(ddr_addr),

FIXED_IO_ddr_vrn(fixed_io_ddr_vrn),

FIXED_IO_ddr_vrp(fixed_io_ddr_vrp),

DDR_dm(ddr_dm),

DDR_dq(ddr_dq),

DDR_dqs_n(ddr_dqs_n),

FIXED_IO_ps_srstb(fixed_io_ps_srstb),

FIXED_IO_ps_clk(fixed_io_ps_clk),

FIXED_IO_ps_porb(fixed_io_ps_porb),

peripheral_aresetn(s_axi_aresetn)

.
```

Module instance of inst_system_ps_wrapper for the built in CPU.

system_pl_wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2023/11/02

INFORMATION

Brief

System wrapper for pl only for zc702 board.

License MIT

Copyright 2023 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

system_pl_wrapper

```
module system_pl_wrapper #(
parameter
FPGA_TECHNOLOGY
=
0,
parameter
FPGA_FAMILY
=
0,
parameter
SPEED_GRADE
```

```
parameter
DEV_PACKAGE

a

b,
parameter
ADC_INIT_DELAY

a

23,
parameter
DAC_INIT_DELAY

b,
parameter
DELAY_REFCLK_FREQUENCY

a

200
) ( input axi_aclk, input axi_aresetn, input s_axi_awvalid, input [31:0] s_axi_awvalid, input
```

System wrapper for pl only for zc702 board.

Parameters

FPGA TECHNOLOGY Type of FPGA, such as Ultrascale, Arria 10. 1 is for 7 series.

parameter

FPGA_FAMILY Sub type of fpga, such as GX, SX, etc. 4 is for zynq.

parameter

SPEED GRADE Number that corresponds to the ships recommended

parameter speed. 10 is for -1.

DEV_PACKAGE Specify a number that is equal to the manufactures

parameter package. 14 is for cl.

DELAY_REFCLK_FREQUENCY Reference clock frequency used for ad_data_in instances

parameter

ADC_INIT_DELAY Initial Delay for the ADC

parameter

DAC_INIT_DELAY Initial Delay for the DAC

arameter

Ports

AXI Lite control bus axi_aclk axi_aresetn AXI Lite control bus s_axi_awvalid AXI Lite control bus s_axi_awaddr AXI Lite control bus s_axi_awready AXI Lite control bus s_axi_awprot AXI Lite control bus s_axi_wvalid AXI Lite control bus s_axi_wdata AXI Lite control bus s_axi_wstrb AXI Lite control bus s_axi_wready AXI Lite control bus s_axi_bvalid AXI Lite control bus s_axi_bresp AXI Lite control bus AXI Lite control bus s_axi_bready

s_axi_arvalid AXI Lite control bus s axi araddr AXI Lite control bus s axi arready AXI Lite control bus s_axi_arprot AXI Lite control bus s_axi_rvalid AXI Lite control bus AXI Lite control bus s_axi_rready s axi rresp AXI Lite control bus s_axi_rdata AXI Lite control bus adc_dma_irq fmcomms5 ADC ira dac_dma_irq fmcomms5 DAC irq delay_clk fmcomms5 delay clock

fmcomms5 0 rx clk rx clk in 0 p rx_clk_in_0_n fmcomms5 0 rx clk rx frame in 0 p fmcomms5 0 rx frame rx_frame_in_0_n fmcomms5 0 rx frame rx_data_in_0_p fmcomms5 0 rx data fmcomms5 0 rx data rx_data_in_0_n tx clk out 0 p fmcomms5 0 tx clk tx_clk_out_0_n fmcomms5 0 tx clk tx_frame_out_0_p fmcomms5 0 tx frame fmcomms5 0 tx frame tx_frame_out_0_n fmcomms5 0 tx data tx_data_out_0_p tx_data_out_0_n fmcomms5 0 tx data txnrx_0 fmcomms5 0 txnrx enable 0 fmcomms5 0 enable up_enable_0 fmcomms5 0 enable input

up_txnrx_0 fmcomms5 0 txnrx select input
tdd_sync_0_t fmcomms5 0 TDD sync i/o
tdd_sync_0_i fmcomms5 0 TDD sync i/o
tdd_sync_0_o fmcomms5 0 TDD sync i/o

fmcomms5 1 rx clk rx clk in 1 p rx_clk_in_1_n fmcomms5 1 rx clk rx_frame_in_1_p fmcomms5 1 rx frame rx_frame_in_1_n fmcomms5 1 rx frame rx data in 1 p fmcomms5 1 rx data fmcomms5 1 rx data rx_data_in_1_n tx clk out 1 p fmcomms5 1 tx clk tx_clk_out_1_n fmcomms5 1 tx clk tx_frame_out_1_p fmcomms5 1 tx frame tx_frame_out_1_n fmcomms5 1 tx frame fmcomms5 1 tx data tx_data_out_1_p

tx_data_out_1_n fmcomms5 1 tx data txnrx_1 fmcomms5 1 txnrx enable 1 fmcomms5 1 enable up_enable_1 fmcomms5 1 enable input up_txnrx_1 fmcomms5 1 txnrx select input tdd_sync_1_t fmcomms5 1 TDD sync i/o tdd_sync_1_i fmcomms5 1 TDD sync i/o tdd sync 1 o fmcomms5 1 TDD sync i/o adc m dest axi awaddr fmcomms5 ADC DMA adc_m_dest_axi_awlen fmcomms5 ADC DMA adc_m_dest_axi_awsize fmcomms5 ADC DMA adc_m_dest_axi_awburst fmcomms5 ADC DMA adc_m_dest_axi_awprot fmcomms5 ADC DMA adc m dest axi awcache fmcomms5 ADC DMA adc_m_dest_axi_awvalid fmcomms5 ADC DMA adc m dest axi awready fmcomms5 ADC DMA adc_m_dest_axi_wdata fmcomms5 ADC DMA adc m dest axi wstrb fmcomms5 ADC DMA adc m dest axi wready fmcomms5 ADC DMA adc_m_dest_axi_wvalid fmcomms5 ADC DMA adc_m_dest_axi_wlast fmcomms5 ADC DMA adc m dest axi bvalid fmcomms5 ADC DMA adc_m_dest_axi_bresp fmcomms5 ADC DMA adc m dest axi bready fmcomms5 ADC DMA dac_m_src_axi_arready fmcomms5 DAC DMA dac_m_src_axi_arvalid fmcomms5 DAC DMA fmcomms5 DAC DMA dac_m_src_axi_araddr dac_m_src_axi_arlen fmcomms5 DAC DMA dac_m_src_axi_arsize fmcomms5 DAC DMA dac m src axi arburst fmcomms5 DAC DMA dac m src axi arprot fmcomms5 DAC DMA dac_m_src_axi_arcache fmcomms5 DAC DMA dac_m_src_axi_rdata fmcomms5 DAC DMA dac_m_src_axi_rready fmcomms5 DAC DMA dac_m_src_axi_rvalid fmcomms5 DAC DMA dac m src axi rresp fmcomms5 DAC DMA dac_m_src_axi_rlast fmcomms5 DAC DMA iic sda fmc i2c for fmc iic_scl_fmc i2c for fmc iic2intc irpt i2c for fmc

INSTANTIANTED MODULES

iic_sda_iobuf

```
ad_iobuf #(

DATA_WIDTH(1)
) iic_sda_iobuf ( .dio_t (sda_t), .dio_i (sda_o), .dio_o (sda_i), .dio_p (sda_i)
```

Tristate i2c sda

iic_scl_iobuf

```
ad_iobuf #(

DATA_WIDTH(1)
) iic_scl_iobuf ( .dio_t (scl_t), .dio_i (scl_o), .dio_o (scl_i), .dio_p (:
```

Tristate i2c scl

inst_dma_rstgen

```
dma_rstgen inst_dma_rstgen (
    slowest_sync_clk(delay_clk),
    ext_reset_in(axi_aresetn),
    aux_reset_in(1'b1),
    mb_debug_sys_rst(1'b0),
    dcm_locked(1'b1),
    mb_reset(),
    bus_struct_reset(),
    peripheral_reset(),
    interconnect_aresetn(m_axi_aresetn)
)
```

Generate a new DMA reset based on delay clock.

inst_ad9361x2_pl_wrapper

```
ad9361x2_pl_wrapper #(

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),
```

```
SPEED_GRADE(SPEED_GRADE),

DEV_PACKAGE(DEV_PACKAGE),

ADC_INIT_DELAY(ADC_INIT_DELAY),

DAC_INIT_DELAY(DAC_INIT_DELAY),

DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY)

) inst_ad9361x2_pl_wrapper ( .axi_aclk(axi_aclk), .axi_aresetn(axi_aresetn)
```

Module instance of inst_ad9361x2_pl_wrapper for the fmcomms5 device.

inst_axi_crossbar_pl

```
axi_crossbar_pl inst_axi_crossbar_pl (
aclk(axi_aclk),
aresetn(axi_aresetn),
s_axi_awaddr(s_axi_awaddr),
s_axi_awprot(s_axi_awprot),
s_axi_awvalid(s_axi_awvalid),
s_axi_awready(s_axi_awready),
s_axi_wdata(s_axi_wdata),
s_axi_wstrb(s_axi_wstrb),
s_axi_wvalid(s_axi_wvalid),
s_axi_wready(s_axi_wready),
s_axi_bresp(s_axi_bresp),
s_axi_bvalid(s_axi_bvalid),
s_axi_bready(s_axi_bready),
s_axi_araddr(s_axi_araddr),
s_axi_arprot(s_axi_arprot),
s_axi_arvalid(s_axi_arvalid),
s_axi_arready(s_axi_arready),
s_axi_rdata(s_axi_rdata),
s_axi_rresp(s_axi_rresp),
s_axi_rvalid(s_axi_rvalid),
s_axi_rready(s_axi_rready),
m_axi_awaddr({iic_fmc_axi_awaddr, connect_axi_awaddr}),
m_axi_awprot({iic_fmc_axi_awprot, connect_axi_awprot}),
```

```
m_axi_awvalid({iic_fmc_axi_awvalid, connect_axi_awvalid}),
m_axi_awready({iic_fmc_axi_awready, connect_axi_awready}),
m_axi_wdata({iic_fmc_axi_wdata, connect_axi_wdata}),
m_axi_wstrb({iic_fmc_axi_wstrb, connect_axi_wstrb}),
m_axi_wvalid({iic_fmc_axi_wvalid, connect_axi_wvalid}),
m_axi_wready({iic_fmc_axi_wready, connect_axi_wready}),
m_axi_bresp({iic_fmc_axi_bresp, connect_axi_bresp}),
m_axi_bvalid({iic_fmc_axi_bvalid, connect_axi_bvalid}),
m_axi_bready({iic_fmc_axi_bready, connect_axi_bready}),
m_axi_araddr({iic_fmc_axi_araddr, connect_axi_araddr}),
m_axi_arprot({iic_fmc_axi_arprot, connect_axi_arprot}),
m_axi_arvalid({iic_fmc_axi_arvalid, connect_axi_arvalid}),
m_axi_arready({iic_fmc_axi_arready, connect_axi_arready}),
m_axi_rdata({iic_fmc_axi_rdata, connect_axi_rdata}),
m_axi_rresp({iic_fmc_axi_rresp, connect_axi_rresp}),
m_axi_rvalid({iic_fmc_axi_rvalid, connect_axi_rvalid}),
m_axi_rready({iic_fmc_axi_rready, connect_axi_rready})
```

Module instance of axi crossbar pl for the fmcomms5 device.

inst_axi_iic_fmc

```
axi_iic_fmc inst_axi_iic_fmc (
    s_axi_aclk(axi_aclk),
    s_axi_aresetn(axi_aresetn),
    iic2intc_irpt(iic2intc_irpt),
    s_axi_awaddr(iic_fmc_axi_awaddr[8:0]),
    s_axi_awvalid(iic_fmc_axi_awvalid),
    s_axi_awready(iic_fmc_axi_awready),
    s_axi_wdata(iic_fmc_axi_wdata),
    s_axi_wstrb(iic_fmc_axi_wstrb),
    s_axi_wvalid(iic_fmc_axi_wvalid),
    s_axi_wready(iic_fmc_axi_wvalid),
    s_axi_wready(iic_fmc_axi_wready),
    s_axi_bresp(iic_fmc_axi_bresp),
    .
```

```
s_axi_bvalid(iic_fmc_axi_bvalid),
s_axi_bready(iic_fmc_axi_bready),
s_axi_araddr(iic_fmc_axi_araddr[8:0]),
s_axi_arvalid(iic_fmc_axi_arvalid),
s_axi_arready(iic_fmc_axi_arready),
s_axi_rdata(iic_fmc_axi_rdata),
s_axi_rresp(iic_fmc_axi_rresp),
s_axi_rvalid(iic_fmc_axi_rvalid),
s_axi_rready(iic_fmc_axi_rready),
sda_i(sda_i),
sda_o(sda_o),
sda_t(sda_t),
scl_i(scl_i),
scl_o(scl_o),
scl_t(scl_t),
gpo()
```

Module instance of axi_iic_fmc for the fmcomms5 device.

system_wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2023/11/02

INFORMATION

Brief

System wrapper for pl and ps for zc706 board.

License MIT

Copyright 2023 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

system_wrapper

```
module system_wrapper #(
parameter
FPGA_TECHNOLOGY
=
1,
parameter
FPGA_FAMILY
=
4,
parameter
SPEED_GRADE
```

```
parameter
DEV_PACKAGE

a

parameter
DELAY_REFCLK_FREQUENCY

a

200,
parameter
ADC_INIT_DELAY

a

20,
parameter
DAC_INIT_DELAY

a

0

) ( inout [14:0] ddr_addr, inout [ 2:0] ddr_ba, inout ddr_cas_n, inout ddr_c
```

System wrapper for pl and ps for zc706 board.

Parameters

FPGA TECHNOLOGY Type of FPGA, such as Ultrascale, Arria 10. 1 is for 7 series.

parameter

FPGA_FAMILY Sub type of fpga, such as GX, SX, etc. 4 is for zynq.

parameter

SPEED_GRADE Number that corresponds to the ships recommended

parameter speed. 10 is for -1.

DEV_PACKAGE Specify a number that is equal to the manufactures

package. 14 is for cl.

DELAY_REFCLK_FREQUENCY Reference clock frequency used for ad_data_in instances

arameter

ADC_INIT_DELAY Initial Delay for the ADC

parameter

DAC_INIT_DELAY Initial Delay for the DAC

arameter

Ports

ddr_addr	DDR interface
ddr_ba	DDR interface
ddr_cas_n	DDR interface
ddr_ck_n	DDR interface
ddr_ck_p	DDR interface
ddr_cke	DDR interface
ddr_cs_n	DDR interface
ddr_dm	DDR interface
ddr_dq	DDR interface
ddr_dqs_n	DDR interface
ddr_dqs_p	DDR interface
ddr_odt	DDR interface
ddr_ras_n	DDR interface

ddr reset n DDR interface ddr we n DDR interface fixed_io_ddr_vrn DDR interface fixed_io_ddr_vrp DDR interface fixed_io_mio ps mio fixed_io_ps_clk ps clk fixed_io_ps_porb ps por fixed_io_ps_srstb ps rst

iic_scl_fmcfmcomms5 i2ciic_sda_fmcfmcomms5 i2c

gpio_bd gpio

fmcomms5 0 rx clk rx_clk_in_0_p rx clk in 0 n fmcomms5 0 rx clk rx_frame_in_0_p fmcomms5 0 rx frame rx_frame_in_0_n fmcomms5 0 rx frame rx_data_in_0_p fmcomms5 0 rx data rx_data_in_0_n fmcomms5 0 rx data tx_clk_out_0_p fmcomms5 0 tx clk fmcomms5 0 tx clk tx_clk_out_0_n tx_frame_out_0_p fmcomms5 0 tx frame tx frame out 0 n fmcomms5 0 tx frame tx_data_out_0_p fmcomms5 0 tx data

fmcomms5 0 tx data tx_data_out_0_n gpio_status_0 fmcomms5 0 gpio gpio_ctl_0 fmcomms5 0 gpio gpio_en_agc_0 fmcomms5 0 gpio gpio_resetb_0 fmcomms5 0 gpio gpio_debug_1_0 fmcomms5 0 gpio gpio_debug_2_0 fmcomms5 0 gpio gpio_calsw_1_0 fmcomms5 0 gpio fmcomms5 0 gpio gpio_calsw_2_0 gpio_ad5355_rfen fmcomms5 0 gpio gpio_ad5355_lock fmcomms5 0 gpio txnrx_0 fmcomms5 0 txnrx enable_0 fmcomms5 0 enable rx_clk_in_1_p fmcomms5 1 rx clk rx_clk_in_1_n fmcomms5 1 rx clk rx frame in 1 p fmcomms5 1 rx frame rx_frame_in_1_n fmcomms5 1 rx frame fmcomms5 1 rx data rx_data_in_1_p rx_data_in_1_n fmcomms5 1 rx data fmcomms5 1 tx clk tx_clk_out_1_p

```
fmcomms5 1 tx clk
tx_clk_out_1_n
tx_frame_out_1_p
                    fmcomms5 1 tx frame
tx_frame_out_1_n
                    fmcomms5 1 tx frame
tx_data_out_1_p
                    fmcomms5 1 tx data
tx_data_out_1_n
                    fmcomms5 1 tx data
gpio_status_1
                    fmcomms5 1 gpio
gpio_ctl_1
                    fmcomms5 1 gpio
gpio_en_agc_1
                    fmcomms5 1 gpio
gpio_resetb_1
                    fmcomms5 1 gpio
gpio debug 1 1
                    fmcomms5 1 gpio
gpio_debug_2_1
                    fmcomms5 1 gpio
gpio_calsw_1_1
                    fmcomms5 1 gpio
gpio_calsw_2_1
                    fmcomms5 1 gpio
gpio_ad5355_rfen
                    fmcomms5 1 gpio
gpio_ad5355_lock
                    fmcomms5 1 gpio
txnrx_1
                    fmcomms5 1 txnrx
enable 1
                    fmcomms5 1 enable
                    fmcomms5 sync
mcs_sync
spi_ad9361_0
                    fmcomms5 ad9361 0 spi select
spi_ad9361_1
                    fmcomms5 ad9361 1 spi select
spi_ad5355
                    fmcomms5 ad5355 spi select
spi_clk
                    fmcomms5 spi clock
spi_mosi
                    fmcomms5 spi master out
spi_miso
                    fmcomms5 spi master in
ref_clk_p
                    fmcomms5 ref clock p
ref_clk_n
                    fmcomms5 ref clock n
```

INSTANTIANTED MODULES

i_ref_clk_ibuf

```
IBUFGDS i_ref_clk_ibuf (

I

ref_clk_p),

IB

ref_clk_n),

0

ref_clk_s)
```

i ref clk rbuf

```
BUFR #(

BUFR_DIVIDE

("

BYPASS")
) i_ref_clk_rbuf ( .CLR (1'b0), .CE (1'b1), .I (ref_clk_s), .0 (ref_clk))
```

Module instance of BUFR for cmos clock to clock region.

i iobuf

```
ad_iobuf #(

DATA_WIDTH(57)
) i_iobuf ( .dio_t ({gpio_t[59:46], gpio_t[43:16], gpio_t[14:0]}), .dio_i
```

Module instance of ad_iobuf for tristate GPIO control.

inst_system_pl_wrapper

```
system_pl_wrapper #(

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),

SPEED_GRADE(SPEED_GRADE),

DEV_PACKAGE(DEV_PACKAGE),

ADC_INIT_DELAY(ADC_INIT_DELAY),

DAC_INIT_DELAY(DAC_INIT_DELAY),

DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY)
) inst_system_pl_wrapper ( .axi_aclk(s_axi_clk), .axi_aresetn(s_axi_aresetn))
```

Module instance of system_pl_wrapper for the fmcomms5 device.

inst_system_ps_wrapper

```
system_ps_wrapper inst_system_ps_wrapper (
    GPIO_I(gpio_i),
    GPIO_0(gpio_o),
    GPIO_T(gpio_t),
    SPIO_SCLK_I(1'b0),
```

```
SPI0_SCLK_0(spi_clk),
SPI0_MOSI_I(1'b0),
SPI0_MOSI_O(spi_mosi),
SPI0_MISO_I(spi_miso),
SPI0_SS_I(1'b1),
SPI0_SS_0(spi_ad9361_0),
SPI0_SS1_0(spi_ad9361_1),
SPI0_SS2_0(spi_ad5355),
SPI1_SCLK_I(1'b0),
SPI1_SCLK_0(),
SPI1_MOSI_I(1'b0),
SPI1_MOSI_0(),
SPI1_MISO_I(1'b0),
SPI1_SS_I(1'b1),
SPI1_SS_0(),
SPI1_SS1_0(),
SPI1_SS2_0(),
M_AXI_araddr(w_axi_araddr),
M_AXI_arprot(w_axi_arprot),
M_AXI_arready(w_axi_arready),
M_AXI_arvalid(w_axi_arvalid),
M_AXI_awaddr(w_axi_awaddr),
M_AXI_awprot(w_axi_awprot),
M_AXI_awready(w_axi_awready),
M_AXI_awvalid(w_axi_awvalid),
M_AXI_bready(w_axi_bready),
M_AXI_bresp(w_axi_bresp),
M_AXI_bvalid(w_axi_bvalid),
M_AXI_rdata(w_axi_rdata),
M_AXI_rready(w_axi_rready),
M_AXI_rresp(w_axi_rresp),
M_AXI_rvalid(w_axi_rvalid),
M_AXI_wdata(w_axi_wdata),
```

```
M_AXI_wready(w_axi_wready),
M_AXI_wstrb(w_axi_wstrb),
M_AXI_wvalid(w_axi_wvalid),
S_AXI_HP0_arready(),
S_AXI_HP0_awready(adc_hp0_axi_awready),
S_AXI_HP0_bvalid(adc_hp0_axi_bvalid),
S_AXI_HP0_rlast(),
S_AXI_HPO_rvalid(),
S_AXI_HP0_wready(adc_hp0_axi_wready),
S_AXI_HP0_bresp(adc_hp0_axi_bresp),
S_AXI_HPO_rresp(),
S_AXI_HP0_bid(),
S_AXI_HP0_rid(),
S_AXI_HP0_rdata(),
S_AXI_HP0_ACLK(s_delay_clk),
S_AXI_HP0_arvalid(1'b0),
S_AXI_HP0_awvalid(adc_hp0_axi_awvalid),
S_AXI_HP0_bready(adc_hp0_axi_bready),
S_AXI_HP0_rready(1'b0),
S_AXI_HP0_wlast(adc_hp0_axi_wlast),
S_AXI_HP0_wvalid(adc_hp0_axi_wvalid),
S_AXI_HP0_arburst(2'b01),
S_AXI_HP0_arlock(0),
S_AXI_HP0_arsize(3'b011),
S_AXI_HP0_awburst(adc_hp0_axi_awburst),
S_AXI_HP0_awlock(0),
S_AXI_HP0_awsize(adc_hp0_axi_awsize),
S_AXI_HP0_arprot(0),
S_AXI_HP0_awprot(adc_hp0_axi_awprot),
S_AXI_HP0_araddr(0),
S_AXI_HP0_awaddr(adc_hp0_axi_awaddr),
S_AXI_HP0_arcache(4'b0011),
S_AXI_HP0_arlen(0),
```

```
S_AXI_HP0_arqos(0),
S_AXI_HP0_awcache(adc_hp0_axi_awcache),
S_AXI_HP0_awlen(adc_hp0_axi_awlen),
S_AXI_HP0_awqos(0),
S_AXI_HP0_arid(0),
S_AXI_HP0_awid(0),
S_AXI_HP0_wid(0),
S_AXI_HP0_wdata(adc_hp0_axi_wdata),
S_AXI_HP0_wstrb(adc_hp0_axi_wstrb),
S_AXI_HP1_arready(dac_hp1_axi_arready),
S_AXI_HP1_awready(),
S_AXI_HP1_bvalid(),
S_AXI_HP1_rlast(dac_hp1_axi_rlast),
S_AXI_HP1_rvalid(dac_hp1_axi_rvalid),
S_AXI_HP1_wready(),
S_AXI_HP1_bresp(),
S_AXI_HP1_rresp(dac_hp1_axi_rresp),
S_AXI_HP1_bid(),
S_AXI_HP1_rid(),
S_AXI_HP1_rdata(dac_hp1_axi_rdata),
S_AXI_HP1_ACLK(s_delay_clk),
S_AXI_HP1_arvalid(dac_hp1_axi_arvalid),
S_AXI_HP1_awvalid(1'b0),
S_AXI_HP1_bready(1'b0),
S_AXI_HP1_rready(dac_hp1_axi_rready),
S_AXI_HP1_wlast(1'b0),
S_AXI_HP1_wvalid(1'b0),
S_AXI_HP1_arburst(dac_hp1_axi_arburst),
S_AXI_HP1_arlock(0),
S_AXI_HP1_arsize(dac_hp1_axi_arsize),
S_AXI_HP1_awburst(2'b01),
S_AXI_HP1_awlock(0),
S_AXI_HP1_awsize(3'b011),
```

```
S_AXI_HP1_arprot(dac_hp1_axi_arprot),
S_AXI_HP1_awprot(0),
S_AXI_HP1_araddr(dac_hp1_axi_araddr),
S_AXI_HP1_awaddr(0),
S_AXI_HP1_arcache(dac_hp1_axi_arcache),
S_AXI_HP1_arlen(dac_hp1_axi_arlen),
S_AXI_HP1_arqos(0),
S_AXI_HP1_awcache(4'b0011),
S_AXI_HP1_awlen(0),
S_AXI_HP1_awqos(0),
S_AXI_HP1_arid(0),
S_AXI_HP1_awid(0),
S_AXI_HP1_wid(0),
S_AXI_HP1_wdata(0),
S_AXI_HP1_wstrb(~0),
IRQ_F2P(\{\{2\{1'b0\}\}, s_adc_dma_irq, s_dac_dma_irq, s_iic2intc_irpt, \{11\{1'b0\}\}, s_dac_dma_irq, s_iic2intc_irpt, \{11\{1'b0\}\}, s_dac_dma_irq, s_dac_dma_irq, s_iic2intc_irpt, \{11\{1'b0\}\}, s_dac_dma_irq, s_
FCLK_CLK0(s_axi_clk),
FCLK_CLK1(s_delay_clk),
FIXED_IO_mio(fixed_io_mio),
DDR_cas_n(ddr_cas_n),
DDR_cke(ddr_cke),
DDR_ck_n(ddr_ck_n),
DDR_ck_p(ddr_ck_p),
DDR_cs_n(ddr_cs_n),
DDR_reset_n(ddr_reset_n),
DDR_odt(ddr_odt),
DDR_ras_n(ddr_ras_n),
DDR_we_n(ddr_we_n),
DDR_ba(ddr_ba),
DDR_addr(ddr_addr),
FIXED_IO_ddr_vrn(fixed_io_ddr_vrn),
FIXED_IO_ddr_vrp(fixed_io_ddr_vrp),
DDR_dm(ddr_dm),
```

Module instance of inst_system_ps_wrapper for the built in CPU.

system_pl_wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2023/11/02

INFORMATION

Brief

System wrapper for pl only for zcu102 board.

License MIT

Copyright 2023 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

system_pl_wrapper

```
module system_pl_wrapper #(
parameter
FPGA_TECHNOLOGY

=
0,
parameter
FPGA_FAMILY
=
0,
parameter
SPEED_GRADE
```

```
Θ,
parameter
DEV_PACKAGE
parameter
ADC_INIT_DELAY
23,
parameter
DAC_INIT_DELAY
parameter
DELAY_REFCLK_FREQUENCY
200
) ( input axi_aclk, input axi_aresetn, input s_axi_awvalid, input [31:0] s_
```

System wrapper for pl only for zcu102 board.

Parameters

FPGA_TECHNOLOGY Type of FPGA, such as Ultrascale, Arria 10. 1 is for 7 series.

FPGA_FAMILY Sub type of fpga, such as GX, SX, etc. 4 is for zynq.

parameter

SPEED GRADE Number that corresponds to the ships recommeneded

parameter speed. 10 is for -1.

DEV PACKAGE Specify a number that is equal to the manufactures

package. 14 is for cl.

DELAY_REFCLK_FREQUENCY Reference clock frequency used for ad data in instances parameter

ADC_INIT_DELAY Initial Delay for the ADC

parameter

DAC INIT DELAY Initial Delay for the DAC

Ports

AXI Lite control bus axi_aclk axi_aresetn AXI Lite control bus s_axi_awvalid AXI Lite control bus s_axi_awaddr AXI Lite control bus s_axi_awready AXI Lite control bus s_axi_awprot AXI Lite control bus s_axi_wvalid AXI Lite control bus s_axi_wdata AXI Lite control bus s_axi_wstrb AXI Lite control bus s_axi_wready AXI Lite control bus s_axi_bvalid AXI Lite control bus s_axi_bresp AXI Lite control bus AXI Lite control bus s_axi_bready

AXI Lite control bus s_axi_arvalid s axi araddr AXI Lite control bus s axi arready AXI Lite control bus s_axi_arprot AXI Lite control bus s_axi_rvalid AXI Lite control bus AXI Lite control bus s_axi_rready s axi rresp AXI Lite control bus s_axi_rdata AXI Lite control bus adc_dma_irq fmcomms5 ADC ira dac_dma_irq fmcomms5 DAC irq delay_clk fmcomms5 delay clock

fmcomms5 0 rx clk rx clk in 0 p rx_clk_in_0_n fmcomms5 0 rx clk rx frame in 0 p fmcomms5 0 rx frame rx_frame_in_0_n fmcomms5 0 rx frame rx_data_in_0_p fmcomms5 0 rx data fmcomms5 0 rx data rx_data_in_0_n tx clk out 0 p fmcomms5 0 tx clk tx_clk_out_0_n fmcomms5 0 tx clk tx_frame_out_0_p fmcomms5 0 tx frame fmcomms5 0 tx frame tx_frame_out_0_n fmcomms5 0 tx data tx_data_out_0_p tx_data_out_0_n fmcomms5 0 tx data txnrx_0 fmcomms5 0 txnrx enable 0 fmcomms5 0 enable up_enable_0 fmcomms5 0 enable input

up_txnrx_0 fmcomms5 0 txnrx select input
tdd_sync_0_t fmcomms5 0 TDD sync i/o
tdd_sync_0_i fmcomms5 0 TDD sync i/o
tdd_sync_0_o fmcomms5 0 TDD sync i/o

fmcomms5 1 rx clk rx clk in 1 p rx_clk_in_1_n fmcomms5 1 rx clk rx_frame_in_1_p fmcomms5 1 rx frame rx_frame_in_1_n fmcomms5 1 rx frame rx_data_in_1_p fmcomms5 1 rx data fmcomms5 1 rx data rx_data_in_1_n tx clk out 1 p fmcomms5 1 tx clk tx_clk_out_1_n fmcomms5 1 tx clk tx_frame_out_1_p fmcomms5 1 tx frame tx_frame_out_1_n fmcomms5 1 tx frame fmcomms5 1 tx data tx_data_out_1_p

tx_data_out_1_n fmcomms5 1 tx data txnrx_1 fmcomms5 1 txnrx enable 1 fmcomms5 1 enable up_enable_1 fmcomms5 1 enable input up_txnrx_1 fmcomms5 1 txnrx select input tdd_sync_1_t fmcomms5 1 TDD sync i/o tdd_sync_1_i fmcomms5 1 TDD sync i/o tdd sync 1 o fmcomms5 1 TDD sync i/o m axi aclk DMA Clock adc_m_dest_axi_awaddr fmcomms5 ADC DMA adc_m_dest_axi_awlen fmcomms5 ADC DMA adc_m_dest_axi_awsize fmcomms5 ADC DMA adc_m_dest_axi_awburst fmcomms5 ADC DMA adc m dest axi awprot fmcomms5 ADC DMA adc m dest axi awcache fmcomms5 ADC DMA adc_m_dest_axi_awvalid fmcomms5 ADC DMA adc_m_dest_axi_awready fmcomms5 ADC DMA adc_m_dest_axi_wdata fmcomms5 ADC DMA adc_m_dest_axi_wstrb fmcomms5 ADC DMA adc_m_dest_axi_wready fmcomms5 ADC DMA adc m dest axi wvalid fmcomms5 ADC DMA adc_m_dest_axi_wlast fmcomms5 ADC DMA adc_m_dest_axi_bvalid fmcomms5 ADC DMA adc_m_dest_axi_bresp fmcomms5 ADC DMA adc_m_dest_axi_bready fmcomms5 ADC DMA dac_m_src_axi_arready fmcomms5 DAC DMA dac_m_src_axi_arvalid fmcomms5 DAC DMA fmcomms5 DAC DMA dac m src axi araddr dac_m_src_axi_arlen fmcomms5 DAC DMA fmcomms5 DAC DMA dac m src axi arsize dac_m_src_axi_arburst fmcomms5 DAC DMA dac m src axi arprot fmcomms5 DAC DMA dac_m_src_axi_arcache fmcomms5 DAC DMA dac_m_src_axi_rdata fmcomms5 DAC DMA dac_m_src_axi_rready fmcomms5 DAC DMA fmcomms5 DAC DMA dac_m_src_axi_rvalid fmcomms5 DAC DMA dac_m_src_axi_rresp dac m src axi rlast fmcomms5 DAC DMA

INSTANTIANTED MODULES

inst_dma_rstgen

```
dma_rstgen inst_dma_rstgen (
    slowest_sync_clk(m_axi_aclk),
    ext_reset_in(axi_aresetn),
    aux_reset_in(1'b1),
    mb_debug_sys_rst(1'b0),
    dcm_locked(1'b1),
    mb_reset(),
    bus_struct_reset(),
    peripheral_reset(),
    interconnect_aresetn(),
    peripheral_aresetn(m_axi_aresetn)
    )
```

Generate a new DMA reset based on delay clock.

system_wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2023/11/02

INFORMATION

Brief

System wrapper for pl and ps for zcu102 board.

License MIT

Copyright 2023 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

system_wrapper

```
module system_wrapper #(
parameter
FPGA_TECHNOLOGY
=
3,
parameter
FPGA_FAMILY
=
4,
parameter
SPEED_GRADE
```

```
parameter
DEV_PACKAGE

a,
parameter
DELAY_REFCLK_FREQUENCY

= 500,
parameter
ADC_INIT_DELAY

= 8,
parameter
DAC_INIT_DELAY

= 0
) ( input [12:0] gpio_bd_i, output [ 7:0] gpio_bd_o, input rx_clk_in_0_p, in
```

System wrapper for pl and ps for zcu102 board.

Parameters

FPGA_TECHNOLOGY Type of FPGA, such as Ultrascale, Arria 10. 3 is for

rameter ultrascale+.

FPGA_FAMILY Sub type of fpga, such as GX, SX, etc. 4 is for zynq.

parameter

SPEED_GRADE Number that corresponds to the ships recommended

parameter speed. 20 is for -2.

DEV_PACKAGE Specify a number that is equal to the manufactures

parameter package. 3 is for ff.

DELAY_REFCLK_FREQUENCY Reference clock frequency used for ad_data_in instances

parameter

ADC_INIT_DELAY Initial Delay for the ADC

paramete

DAC_INIT_DELAY Initial Delay for the DAC

fmcomms5 0 rx clk

parameter

rx_clk_in_0_p

Ports

gpio_bd_i gpio gpio_bd_o gpio

tx_clk_out_0_n fmcomms5 0 tx clk
tx_frame_out_0_p fmcomms5 0 tx frame
tx_frame_out_0_n fmcomms5 0 tx frame

fmcomms5 0 tx data tx_data_out_0_p tx data out 0 n fmcomms5 0 tx data gpio_status_0 fmcomms5 0 gpio gpio_ctl_0 fmcomms5 0 gpio gpio_en_agc_0 fmcomms5 0 gpio gpio_resetb_0 fmcomms5 0 gpio gpio_debug_1_0 fmcomms5 0 gpio gpio debug 2 0 fmcomms5 0 gpio gpio_calsw_1_0 fmcomms5 0 gpio gpio_calsw_2_0 fmcomms5 0 gpio gpio_ad5355_rfen fmcomms5 0 gpio gpio_ad5355_lock fmcomms5 0 gpio txnrx_0 fmcomms5 0 txnrx enable 0 fmcomms5 0 enable rx clk in 1 p fmcomms5 1 rx clk fmcomms5 1 rx clk rx_clk_in_1_n rx_frame_in_1_p fmcomms5 1 rx frame rx_frame_in_1_n fmcomms5 1 rx frame rx_data_in_1_p fmcomms5 1 rx data fmcomms5 1 rx data rx_data_in_1_n tx_clk_out_1_p fmcomms5 1 tx clk fmcomms5 1 tx clk tx_clk_out_1_n tx_frame_out_1_p fmcomms5 1 tx frame fmcomms5 1 tx frame tx_frame_out_1_n tx_data_out_1_p fmcomms5 1 tx data tx_data_out_1_n fmcomms5 1 tx data gpio_status_1 fmcomms5 1 gpio fmcomms5 1 gpio gpio_ctl_1 gpio_en_agc_1 fmcomms5 1 gpio gpio_resetb_1 fmcomms5 1 gpio gpio_debug_1_1 fmcomms5 1 gpio gpio debug 2 1 fmcomms5 1 gpio gpio_calsw_1_1 fmcomms5 1 gpio gpio_calsw_2_1 fmcomms5 1 gpio txnrx_1 fmcomms5 1 txnrx enable 1 fmcomms5 1 enable mcs_sync fmcomms5 sync spi_ad9361_0 fmcomms5 ad9361 0 spi select spi_ad9361_1 fmcomms5 ad9361 1 spi select spi_ad5355 fmcomms5 ad5355 spi select spi_clk fmcomms5 spi clock spi_mosi fmcomms5 spi master out

```
spi_misofmcomms5 spi master inref_clk_pfmcomms5 ref clock pref_clk_nfmcomms5 ref clock n
```

INSTANTIANTED MODULES

i_ref_clk_ibuf_ds

```
IBUFDS i_ref_clk_ibuf_ds (

I

ref_clk_p),

IB

ref_clk_n),

(

ref_clk_s_ds)
)
```

Module instance of IBUFGDS for LVDS to cmos clock

i_ref_clk_ibuf

Module instance of BUFG for cmos clock

i_ref_clk_rbuf

```
BUFR #(

BUFR_DIVIDE

("

BYPASS")
) i_ref_clk_rbuf ( .CLR (1'b0), .CE (1'b1), .I (ref_clk_s), .0 (ref_clk))
```

Module instance of BUFR for cmos clock

inst_system_pl_wrapper

```
system_pl_wrapper #(

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),

SPEED_GRADE(SPEED_GRADE),

DEV_PACKAGE(DEV_PACKAGE),

ADC_INIT_DELAY(ADC_INIT_DELAY),

DAC_INIT_DELAY(DAC_INIT_DELAY),

DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY)

) inst_system_pl_wrapper ( .axi_aclk(s_axi_clk), .axi_aresetn(s_axi_aresetn))
```

Module instance of system_pl_wrapper for the fmcomms2-3 device.