Eine Woche, ein Beispiel 6.2. Roof structure for moduli of pairs

Setting C: category e.g. Top

Def A roof in C is a diagram

 $X, Y, Z \in \mathcal{E}$ $f \in Mor_{\mathcal{E}}(Z, X), g \in Mor_{\mathcal{E}}(Z, Y)$

"Equivalently", this can be written as when $\times \times Y \exists$

$$Z \xrightarrow{f} X \times Y$$

Z is called as "incidence space" in some references, and a roof is also called as a incidence structure or a correspondence.

Roofs are used in many different areas.

- construct derived category by "quotienting out quasi-isos"
- define Corr (C.E) in abstract 6-fctor formalism

- define Fourier - Mukai transformation

$$\Phi_{\mathcal{F}} = g_! \circ (\mathcal{F} \otimes -) \circ f^*$$

- 777

In most cases, roofs are used in understanding the moduli of pairs.

E.g. $X = \{x's\}$ $Y = \{y's\}$ $Z = \{(x,y) \in X \times Y \mid \phi(x,y) = True\}$ $Z = \{(x,y) \in X \times Y \mid \phi(x,y) = True\}$

Then the figure
$$\{y \mid \phi(x,y)\}$$
 $\{x \mid \phi(x,y)\}$ $\{x,y\}$ $\{y\}$

f-'(x.) g-'(y.)

presents many moduli spaces in a clear way.

E.p., one can describe Z by stratifications through f and g.

1. (B,N)-pair & buildings.

 ϕ : Fix $C \in C$, $A \in A$, then $B := Stab_{C}(G), \quad N := Stab_{A}(G)$ ϕ is usually not inj/surj. see wiki: Building (math)

There are some problems in wiki: -How to define the parabolic subgpt of $GL_2(\mathbb{Q}_p)$? $I \subsetneq \{A \in GL_2(\mathbb{Q}_p) | \nu(\det A) = 0\} \subsetneq GL_2(\mathbb{Q}_p)$

- In the (B,N)-pair case (of $SL_2(\mathbb{F}_2)$), is $SL_2(\mathbb{F}_2) \subset SL_2(\mathbb{F}_2)$ a maximal parabolic subgp? - If true, then the building X has only 1 vertice; - If false, then $A_{T_0} = S^{\circ}$, $\mathcal{B} = V$

E.g. For
$$G = SL_n(F)$$
, $T = T(O_F)$,

$$\begin{cases} (I,T) \mid I \in T \end{cases} \qquad G/T$$

$$\begin{cases} G/T \qquad G/N \end{cases}$$

$$I/T$$
 Wext G/T G/I $G/N_G(T)$

In many cases, the (B,N)-pair can't give us a building.

Roadnap: $\begin{cases} (I, T(\mathcal{O}_{F})) & \text{in } G(\mathcal{O}_{F}) \\ (I, N_{G(\mathcal{O}_{F})}(T(\mathcal{O}_{F}))) - \text{pair} \end{cases}$ $\begin{cases} (B(x_{F}), T(x_{F})) & \text{in } G(x_{F}) \\ (B(x_{F}), N_{G(x_{F})}(T(x_{F}))) - \text{pair} \end{cases}$ $\begin{cases} (I, T(\mathcal{O}_{F})) & \text{in } G(F) \end{cases}$

 $G(\mathcal{O}_{F})/T(\mathcal{O}_{F})$ $G(\mathcal{O}_{F})/T(\mathcal{O}_{F})$ $G(\mathcal{O}_{F})/N_{G(\mathcal{O}_{F})}(T(\mathcal{O}_{F}))$ $G(\mathcal{F})/T(\mathcal{O}_{F})$ $G(\mathcal{F})/T(\mathcal{O}_{F})$ $G(\mathcal{F})/T(\mathcal{O}_{F})$ $G(\mathcal{F})/T(\mathcal{O}_{F})$ $G(\mathcal{F})/T(\mathcal{O}_{F})$ $G(\mathcal{F})/T(\mathcal{O}_{F})$