Punë Laboratori nr 2

Tema: Vetia e zgjerimit në kohë, frekuencë (veti të transformimit Furie); modulimi në amplitudë, analiza analitike dhe realizimi.

Lënda: Teoria e Sinjaleve

Punoi: Piro Gjikdhima Pranoi: Donatela Osmenaj

Në këtë punë laboratorike do të studiojmë transformimin Furie, vetinë e zgjerimit në kohë dhe frekuencë për dy sinjalet e dhënë, formën e sinjaleve pas transformimit dhe modulimit në amplitudë. Kjo punë, ka si qëllim nxitjen e studentëve në praktikimin e njohurive të tyre mbi metodat analitike te përcaktimit të këtyre vetive dhe metodave simuluese me anë të gjenerimit të kodeve në Matlab mbi format e sinjaleve. Në përfundim të relacionit studentët do të jenë njohur me komanda të reja të programit të cilat do të ndihmojnë ata në paraqitjen grafike të funksioneve që do të trajtohen.

Trasformimi Furie:

Transformimi i Furie është një mjet që kthen një formë vale (një funksion ose sinjal) në një formë përfaqësuese alternative.

Figura 1. Transformimi Furie

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt \qquad \Rightarrow \quad Tranformimi Furie. \tag{1}$$

Transformimi Furie është në vetvete një funksion kompleks, ndaj shprehet si shumë e komponentëve të tij real dhe atyre imagjinarë, ose ne formën eksponenciale:

$$F(\omega) = \text{Re } \{F(\omega)\} + j\text{Im}\{F(\omega)\} = |F(\omega)| e^{j\varphi(\omega)}$$
(2)

Transformimi i kundërt (Invers) Furie përshkruhet si:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega \qquad \Rightarrow Transformimi \ i \ kundërt \ Furie. \tag{3}$$

Simbolikisht, shprehja e tyre shënohet:

$$\mathscr{F}\{f(t)\} = F(\omega) \tag{4}$$

$$\mathscr{F}^{-1}\{F(\omega)\} = f(t) \tag{5}$$

Përmendim disa nga vetitë e Transformimit Furie:

- 1. Lineariteti
- 2. Simetria
- 3. Zhvendosja në kohë
- 4. Zhvendosja në frekuencë
- 5. Diferencimi në kohë
- 6. Diferencimi në frekuencë
- 7. Integrimi në kohë
- 8. Konvolucioni në kohë
- 9. Konvolucioni në frekuencë etj.

Ushtrimi 1

Vetia e zgjerimit në kohë, frekuencë. Modulimi në Amplitudë

Le të jetë f(t) – funksioni i Gausit dhe forma e sinjalit të tij do të ishte si më poshtë:

$$f(t)=e^{-\frac{t^2}{2\sigma^2}}$$

$$\begin{split} &\int_{-\infty}^{+\infty} e^{-\frac{t^2}{2\sigma^2}} e^{-j\omega t} dt = \int_{-\infty}^{+\infty} e^{-\frac{1}{2\sigma^2} (t^2 + 2\sigma^2 j\omega t + \sigma^4 \omega^2 - \sigma^4 \omega^2)} dt = \\ &\int_{-\infty}^{+\infty} e^{-\frac{1}{2\sigma^2} [(t^2 + 2\sigma^2 j\omega t - \sigma^4 \omega^2) + \sigma^4 \omega^2]} dt = \int_{-\infty}^{+\infty} e^{-\frac{1}{2\sigma^2} (t + \sigma^2 j\omega)^2} e^{-\frac{\sigma^4 \omega^2}{2\sigma^2}} dt \end{split}$$

Duke u nisur nga trajta e mëposhtme :

$$\int_{-\infty}^{+\infty} e^{-\frac{(t+b)^2}{a}} dt = \sqrt{a\pi}$$

bëjmë zëvendësimin për pjesën e parë të integralit:

$$\sqrt{a\pi} = \sqrt{2\sigma^2\pi} = \sigma\sqrt{2\pi}$$

dhe në përfundim do të kishim:

$$F(\omega) = \sigma\sqrt{2\pi} e^{-\frac{\sigma^2\omega^2}{2}}$$

Le të jetë g(t) –funksioni kosinusoidal dhe forma e të cilit të shprehet e tillë: g(t)= $cos\omega_0 t$

Figura 2. Transformimi Furie i funksionit kosinus

Transformimi i këtij sinjali do të ishte:

$$g(t) = \frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right) \iff G(\omega) = \int_{-\infty}^{+\infty} \frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right) e^{-j\omega t} dt =$$

$$\frac{1}{2} \left[\int_{-\infty}^{+\infty} e^{j\omega_0 t} e^{-j\omega t} dt + \int_{-\infty}^{+\infty} e^{-j\omega_0 t} e^{-j\omega t} dt \right] = \frac{1}{2} [2\pi\sigma(\omega - \omega_0) + 2\pi\sigma(\omega + \omega_0)] = \pi\delta(\omega - \omega_0) + \pi\delta(\omega + \omega_0).$$

Transformimi i tij Furie është: $G(\omega) = \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$

Nëse shumëzojmë të dy sinjalet në kohë do të kishim një modulim në amplitudë.

Spektri i sinjalit të modulit është spektri i $F(\omega)$ i zhvendosur në ω_0 dhe $-\omega_0$ (ne rastin kur shumezojme f(t) me $\cos \omega_0 t$.

Në matlab do të shohim modulimin në amplitudë, ndryshimin e frekuencës ω_0 dhe zhvendosjen e spektrit, po ashtu zgjerimin në kohë dhe në frekuencë të sinjalit.

• Kodi 1: Ndërtimi i sinjalit f

```
t=-15:10^-4:15;
f0=1;
omega0=2*pi*f0;
sigma=3;
f=exp(-t.^2/(2*sigma^2));
plot(t,f);
```


• Kodi 2: Ndertimi i sinjalit g

```
g=cos(omega0*t);
plot(t,g);
```


• Kodi 3: Shumëzimi i sinjaleve f dhe g

fg=f.*g;
plot(t,fg);

• Kodi 4 : Ndërtimi i tre sinjaleve në një figurë

```
subplot(5,1,1);
plot(t,f);
axis([-15 15 -1.5 1.5]);
grid on;
                                          0
subplot(5,1,2);
                                           -15
                                                        -10
                                                                      -5
                                                                                   0
                                                                                                5
                                                                                                             10
                                                                                                                           15
plot(t,g);
axis([-15 15 -1.5 1.5]);
grid on;
                                          -1
subplot(5,1,3);
                                           -15
                                                                      -5
                                                                                                             10
plot(t,g);
axis([-15 15 -1.5 1.5]);
grid on;
hold on;
plot(t,f,'LineWidth',2,'Color','r');
hold off;
                                           -15
                                                        -10
                                                                      -5
                                                                                                             10
                                                                                                                           15
subplot(5,1,4);
plot(t,fg);
                                          0
axis([-15 15 -1.5 1.5]);
                                          -1
grid on;
                                           -15
                                                        -10
                                                                      -5
                                                                                   0
                                                                                                 5
                                                                                                             10
                                                                                                                           15
subplot(5,1,5); plot(t,fg);
axis([-15 15 -1.5 1.5]);
                                          0
grid on;
hold on;
                                           -15
                                                        -10
                                                                      -5
                                                                                                              10
                                                                                                                           15
plot(t,f,'LineWidth',2,'Color','r');
plot(t,-f,'LineWidth',2,'Color','r');
hold off;
```

Kodi 5: Shumëzimi i sinjaleve F dhe G

```
% boshti i frekuencave nga -15 deri ne 15 Hz me
                                                      subplot(3,1,1);
ndarje prej 0.1 Mhz
                                                      plot(omega, F);
f=-15:10^-5:15;
                                                      axis([-20 20 0 10]);
omega=2*pi*f;
                                                      subplot(3,1,2);
%frekuenca e sinjalit ne Hz
                                                      k=-15:15;
f0=1;
                                                      shifted_delta=(k>=omega0)-(k>=omega0+1);
omega0=2*pi*f0;
                                                      stem(k, shifted delta);
sigma=3;
                                                      hold on;
% sinjali i impulsit te Gaus ne Frekuence
                                                      shifted_delta=(k<=-omega0)-(k<=(-omega0-1));
F=sigma*sqrt(2*pi)*exp(-omega.^2*sigma^2/2);
                                                      stem(k, shifted_delta);
%G=zeros(1,length(omega));
                                                      axis([-15 15 0 2]);
%G(omega==omega0)=1;
                                                      subplot(3,1,3);
%G(omega==-omega0)=1;
                                                      FG=1/2*sigma*sqrt(2*pi)*exp(-
                                                      (omega+omega0).^2*sigma^2/2)+1/2*sigma*sqrt
%shumezimi i dy sinjaleve ne frekuence:
                                                      (2*pi)*exp(-(omega-omega0).^2*sigma^2/2);
FG=1/2*sigma*sqrt(2*pi)*exp(-
(omega+omega0).^2*sigma^2/2)+1/2*sigma*sqrt
                                                      plot(omega, FG);
(2*pi)*exp(-(omega-omega0).^2*sigma^2/2);
                                                      axis([-20 20 0 10]);
```

Rezultatet e kodit 5:

Pyetje

1. Çfarë tregojnë komandat e mëposhtme?

- plot (t,f); vizaton grafikun e t dhe f.
- subplot(m,n,p); krijon nje grid të vogël të grafikëve brenda një figure të madhe. Ku:
 - m dhe n janë numrat e rreshtave dhe kolonave të gridit, respektivisht.
 - p është numri i pozicionit të grafikut brenda gridit.
- axis([xmin xmax ymin ymax]); përdoret për të përcaktuar kufijtë e aksëve të një grafiku.
- pause / pause(n) ; përdoret për të ndaluar ekzekutimin e programit për një kohë të caktuar.
- hold; përdoret për të kontrolluar sjelljen e funksionit plot në lidhje me figurën aktuale.
- hold on; përdoret për të shpallur se do të vazhdojë të shtojë grafika në figurën aktuale pa fshirë atë që tashmë është vizatuar.
- hold off; përdoret për të ndaluar gjendjen e "hold on" te figurës aktuale dhe lejon fshirjen e grafikëve.
- stem; përdoret për të vizatuar një grafik stilizuar me shkallë të vlerave diskrete, pra grafik me vija vertikale.

2. Çfarë nënkupton transformimi Furie?

Transformimi i Furie është një mjet që kthen një formë vale (një funksion ose sinjal) në një formë përfaqësuese alternative. Ky transformim ndihmon në shndërrimin e një sinjali nga domeni i kohës në domenin e frekuencës, duke treguar komponentët e frekuencës që përbëjnë sinjalin dhe anasjelltas.

3. Çfarë vëzhgohet nga grafikët në secilin rast?

Nga grafikët e parë dallojmë se çfarë ndodh prej shumëzimit të dy sinjaleve në boshtin e kohës. Ajo që krijohet është modulimi në amplitudë i sinjalit. Pra në grafik vëzhgojmë se amplituda ruhet. Nga grafikët e tjerë, vëzhgojmë modulimin në frekuencë. Grafikët paraqesin sinjalin në rrafshin e frekuencave, pra paraqitja e transformimit Furie te sinjaleve fillestare. Grafiku i parë i Gausit ruan formën në rrafshin e frekuencave, kurse sinjali kosinusoidal shprehet si shumë e sinjaleve impulsive të zhvendosura në " ω " dhe "- ω ". Shumëzimi i dy sinjaleve paraqitet si spektri i $F(\omega)$ të sinjalit gausian në " ω " dhe "- ω ". Ky është dhe spektri i frekuencës së produktit të sinjaleve.