Основания алгебраического подхода к синтезу корректных алгоритмов

Лектор — Рудаков К.В. Наборщик — Старожилец В.М.

Оглавление

1	Лекция 1	2
	Введение	2
	Поиск решения задачи	3

Лекция 1

Введение

Данные лекции рассматривают общую задачу машинного обучения без привязки к конкретным методам и подход к синтезу корректных алгоритмов для её решения. Они являются чем-то сродни взгляда сверху.

В первую очередь следует сформулировать задачу машинного обучения в общем виде. По сути это задача построения такого алгоритма, который реализует отображение из множества начальных информаций в множество конечных информаций.

Определение. Символом \mathfrak{I}_{i} (читается «И инишл») будем обозначать множество начальных информаций, например, симптомы болезни.

Определение. Символом $\mathfrak{I}_{\mathfrak{f}}$ (читается «И файнал») будем обозначать множество конечных информаций, например, диагноз.

Таким образом, на формальном языке нам требуется найти такой алгоритм A, что он осуществляет отображение $\mathfrak{I}_{\mathfrak{i}} \stackrel{A}{\to} \mathfrak{I}_{\mathfrak{f}}$. Пока что задача стоит так, что нам нужно просто найти отображение, реализуемое некоторым алгоритмом, из одного множества в другое, причём абсолютно неважно какое. В такой постановке у нас нет каких-либо ограничений на искомый алгоритм и даже просто случайный выбор решает эту задачу. Поэтому вводятся дополнительные ограничения на допустимые алгоритмы. Итак,

Определение. $\mathfrak{M}^* = \{A | A : \mathfrak{I}_{\mathfrak{i}} \xrightarrow{A} \mathfrak{I}_{\mathfrak{f}} \}$ множество всех алгоритмов, осуществляющих отображение из $\mathfrak{I}_{\mathfrak{i}}$ в $\mathfrak{I}_{\mathfrak{f}}$.

Определение. I_{str} — cmpyкmypная информация, Условия/требования, накладываемые на A.

Определение. $\mathfrak{M}(I_{str})$ — некоторое подмножество \mathfrak{M}^* , удовлетворяющее I_{str} .

Теперь у нас есть некоторый механизм (I_{str}) , позволяющий накладывать дополнительные ограничения на нашу задачу.

Определение (Допустимое отображение). Любое отображение из множества $\mathfrak{M}(I_{str})$ является допустимым.

Определение (Задача Z). Построить алгоритм, реализующий допустимое отображение.

Определение (Корректный алгоритм). Любой *алгоритм реализующий* любое *допусти*мое отображение называется корректным.

В такой формулировке очевидно, что необходимое и достаточное условие разрешимости задачи — это $\mathfrak{M}(I_{str}) \neq \emptyset$, а единственности решения: $|\mathfrak{M}(I_{str})| = 1$. Заметим также, что в данной формулировке корректный алгоритм — это алгоритм, не допускающий ни одной ошибки ($\mathfrak{M}(I_{str})$ — множество алгоритмов не допускающих ошибок)! Однако, можно поставить условия несколько мягче, и дать возможность алгоритмам ошибаться.

Поиск решения задачи

Корректный алгоритм надо как-то искать, в связи с этим введем ещё одно понятие.

Определение. $\mathfrak{M}(\pi)$ — некоторое параметрическое семейство отображений.

После того, как мы выбрали некоторое $\mathfrak{M}(\pi)$ и впоследствии взяв там какое-нибудь отображение за начальное попытаться попасть в $\mathfrak{M}(I_{str})$. Это возможно если данные семейства пересекаются. Тут нас ждёт дилемма - с одной стороны чем сложнее наше семейство тем выше шанс что оно пересекается с семейством $\mathfrak{M}(I_{str})$, но попасть в это пересечение если $\mathfrak{M}(\pi)$ сложное может быть очень затратно, причём всегда остаётся вероятность, что мы с $\mathfrak{M}(I_{str})$ не пересекаемся. Тут используют идею расширения множества.

Определение. Пусть f — некоторая операция над множеством \mathfrak{M}^* . Тогда $f(\mathfrak{M}(\pi))$ — расширение множества $\mathfrak{M}(\pi)$.

Таким образом, мы стараемся расширить некоторое простое множество до пересечения с $\mathfrak{M}(I_{str})$. Однако, не любая функция f нам подходит ведь может получиться, что мы расширились до «сложного» множества. Важным является то, что f мы выбираем сами и можем выбрать его так, чтобы искать нужный алгоритм было не слишком сложно. (какая то ересь получилась. особенно в конце)