Robotics

Exercise 10

Lecturer: Jim Mainprice

TAs: Philipp Kratzer, Janik Hager, Yoojin Oh

Machine Learning & Robotics lab, U Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany

July 9, 2021

1 Kalman Localization (8 Points)

We consider the same car example as for the last exercise, but track the car using a Kalman filter. Access the code as usual:

- 1. To make sure you have an updated version of the repository, run 'git pull' and 'git submodule update'
- 2. For python run: 'jupyter-notebook course1-Lectures/08-kalman/kalman.ipynb'
- 3. For C++ run: 'cd course1-Lectures/08-kalman', 'make', './x.exe'

The motion of the car is described by the following:

$$\begin{aligned} \mathbf{State} & \overset{\chi_t}{\gamma_t} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} & \mathbf{Controls} \ u = \begin{pmatrix} v \\ \varphi \end{pmatrix} \\ \mathbf{Sytem \ equation} & \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} = f(\overset{}{\gamma_t} u) = \begin{pmatrix} v & \cos \theta \\ v & \sin \theta \\ (v/L) & \tan \varphi \end{pmatrix} \\ |\varphi| < \Phi & \end{aligned}$$

(In the following, we will denote the state with x_t (instead of q_t), such that it is consistent with the lecture slides.)

a) To apply a Kalman filter (slide 10:26) we need Gaussian models for $P(x_t | x_{t-1}, u_{t-1})$ as well as $P(y_t | x_t)$. We assume that the dynamics model is given as a local Gaussian of the form

$$P(x_{t+1} | x_t, u_t) = \mathcal{N}(x_{t+1} | x_t + B(x_t)u_t), \sigma_{\text{dynamics}})$$

where the matrix $B(x_t) = \frac{\partial f(x_t, u_t)}{\partial u_t}$ gives the local linearization of the car dynamics. What is $B(x_t)$ (the Jacobian of the state change w.r.t. u) for the car dynamics? (2P)

- b) Implement the linearized dynamics model in the function 'getControlJacobian()'. (2P)
- c) Concerning the observation likelihood $P(y_t|x_t)$ we assume

$$C = RC^{W} + t$$
 $C^{W} = R^{-1}(C^{-1} - t) = R^{-1}C^{-1} + t$

 $P(y_t|x_t, \theta_{1:N}) = \mathcal{N}(y_t \mid C(x_t)x_t + c(x_t), \sigma_{\text{observation}})$

What is the matrix $C(x_t)$ (the Jacobian of the landmark positions w.r.t. the car state) in our example? (2P)

$$T_{W \to C} = \begin{pmatrix} R & T \\ \hline 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos \theta - \sin \theta & x \\ \sin \theta & \cos \theta & y \\ \hline 0 & 1 & 1 \end{pmatrix}$$

Hints:

- Assume there is only one landmark in the world.

 The car observes this landmark in its own coordinate frame $u = l^{Q} \in \mathbb{R}$
- The car observes this landmark in its own coordinate frame, $y = l^C \in \mathbb{R}^2$.
- Write down the transformations between world and car coordinates $T_{W\to C}$ and the inverse $T_{C\to W}$.
- Use them to define a mapping $y = g(x_t)$ that maps the state x_t to the observation y.
- Compute the local linearization $C = \frac{\partial g(x_t)}{\partial x_t}$.
- d) Implement the Kalman filter (slide 10:26) to track the car (this does not require a solution to question part c). Note that $c(s) = \hat{y}_t C(s)s$, where \hat{y}_t is the mean observation in the estimated state s. The variables C, A, Q, W, \hat{y}_t of the Kalman filter are already provided in the code. (2P)

2 Bayes Smoothing (4 points)

In the lecture we derived the Bayesian filter: given information on the past (observations $y_{0:t}$ and controls $u_{0:t-1}$) it estimates the current state x_t . However, we can use the available information on $y_{0:T}$ and $u_{0:T}$ also to get a Bayes-optimal estimate of a past state x_t at a previous time t < T. This estimate should be "better" than the forward filtered $P(x_t | y_{0:t}, u_{0:t-1})$ because it uses the additional information on $y_{t+1:T}$ and $y_{t:T}$. This is called Bayes smoothing (slides $y_{0:t} = y_{0:t} = y_{0:t}$).

Derive the backward recursion $\beta_t(x_t) := P(y_{t+1:T}|x_t, u_{t:T})$ (the likelihood of all future observations given x_t and knowledge of all subsequent controls) of Bayes smoothing on slide 10:31. Explain in each step which rule/transformation you applied.

Definition of Bayes Smoothing.

Post observation $P:= y_{o:t}$ Observation model $P(y_t|x_t)$ future observation $P:= y_{o:t}$ Dynamic model $P(y_t|x_t)$ First order Morkey. $P(x_t|P,F,U_{o:t}) = P(F|x_t,F,U_{o:t}) \cdot P(x_t|P,U_{o:t})$ — unrelevant to x_t , considered as constant. $P(x_t|P,V_{o:t}) \cdot P(x_t|P,V_{o:t}) = P(x_t|P,V_{o:t}) \cdot P(x_t|P,V_{o:t}) \cdot P(x_t|P,V_{o:t})$ Prove: $P(x_t|P,V_{o:t}) \cdot P(x_t|P,V_{o:t}) \cdot P(x_t|P,V_{o:t}) \cdot P(x_t|P,V_{o:t})$ $P(x_t|P,F,V_{o:t}) \cdot P(y_{t+1}|X_t,V_{t+1}) \cdot P(x_t|P,V_{o:t}) \cdot P(x_t|P,V_{o:t})$ $P(x_t|P,F,V_{o:t}) \cdot P(y_{t+1}|X_t,V_{t+1}) \cdot P(x_t|P,V_{o:t}) \cdot P(x_t|$