

RICHIAMI

- Spazi Vettoriali, Algebra Lineare
- Matrici
- Numeri Complessi
- Equazioni differenziali lineari
- Esempi

1.
$$\frac{dy}{dx} + x^2y = x$$
2.
$$\frac{1}{x}\frac{d^2y}{dx^2} - y^3 = 3x$$
3.
$$\frac{dy}{dx} - \ln y = 0$$
4.
$$\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = 2\sin x$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

$$\frac{35 \angle 65^{\circ}}{10 \angle -12^{\circ}} = 3.5 \angle 77^{\circ}$$

$$\frac{124 \angle 250^{\circ}}{11 \angle 100^{\circ}} = 11.273 \angle 150^{\circ}$$

$$\frac{3 \angle 30^{\circ}}{5 \angle -30^{\circ}} = 0.6 \angle 60^{\circ}$$

Riferimenti

Analisi e Algebra Lineare

- Fisica
- Appendice A testo di Bolzern
- Appendici A e B testo di Lewis (download)
- Richiami di Sistemi (download)

Introduzione

Richiami

Modellistica

Descrizione

Prop. Strut.

Analisi 1

Analisi 2

Sintesi Prelim.

Con. Avanzati

Con. Standard

Definizione: Si definisce spazio vettoriale V, un set chiuso di elementi (vettori), per cui valgono le operazioni (assiomi):

$$\bullet \quad v_{_1} \in V, v_{_2} \in V \Rightarrow v_{_1} + v_{_2} \in V$$

$$\bullet \quad v_{\scriptscriptstyle 1} \in V, v_{\scriptscriptstyle 2} \in V \Rightarrow v_{\scriptscriptstyle 1} + v_{\scriptscriptstyle 2} = v_{\scriptscriptstyle 2} + v_{\scriptscriptstyle 1}$$

$$v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3$$

Definizione: Si definisce sottospazio vettoriale W, un sottoinsieme di uno spazio vettoriale V, per cui valgono le stesse operazioni dello spazio vettoriale:

$$\bullet \quad \text{Esempio:} \quad v = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \Re^3, w = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} \in \Re^1 \qquad \quad W \subset V$$

- Esempio: $r_1, r_2 \in \Re^n Spazio Vettoriale sui reali$ $\alpha_{_{1}}, \alpha_{_{2}}$ Scalari arbitrari $v = \alpha_1 r_1 + \alpha_2 r_2 = v_1 + v_2 \Rightarrow V(v) Sottospazio Vettoriale sui reali$
- **Combinazione Lineare**: Dato un set di n vettori v_i ed un set di n scalari α_i , il set si dice linearmente indipendente se e solo se:

$$\alpha_{\scriptscriptstyle 1} v_{\scriptscriptstyle 1} + ... \alpha_{\scriptscriptstyle n} v_{\scriptscriptstyle n} = 0 \Rightarrow \alpha_{\scriptscriptstyle 1} = \alpha_{\scriptscriptstyle 2} = .. = \alpha_{\scriptscriptstyle n} \doteq 0$$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \qquad \alpha_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0 \Rightarrow \alpha_1 = \alpha_2 = \alpha_3 \doteq 0$$

$$\begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 8 \\ 0 \end{bmatrix} \qquad \qquad \alpha_1 \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 2 \\ 8 \\ 0 \end{bmatrix} = 0 \Rightarrow \alpha_2 = -2\alpha_1$$

$$v = \alpha \begin{bmatrix} R \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ G \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 0 \\ B \end{bmatrix}, \alpha, \beta, \gamma \in [0, 255]$$

Copertura Lineare (Span): sia dato un numero di vettori: v_1, \dots, v_p Si dice copertura lineare, il sottospazio generato da tali vettori e si indica con:

$$span\left(v_{\scriptscriptstyle 1},\ldots,v_{\scriptscriptstyle p}\right)$$

- □ Dimensione di un (sotto)spazio vettoriale: La dimensione di un sottospazio vettoriale è data dal numero massimo di vettori linearmente indipendenti appartenenti al sottospazio.
- Il numero massimo di vettori linearmente indipendenti si dice BASE del sottospazio.
- lacktriangle Se n vettori costituiscono la base di un sottospazio, tutti gli altri vettori sono ottenibili come combinazione lineare degli elementi della base stessa.

$$v_1, ..., v_n = base(\Re^n)$$
 $\forall v^* \in \Re^n \Leftarrow v^* = \alpha_1 v_1 + ... \alpha_n v_n$

■ Base di un sottospazio \mathbb{R}^2 di uno spazio \mathbb{R}^3

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

☐ Definizione – Vettori Ortogonali: Due vettori si dicono ortogonali se il loro prodotto scalare (prodotto interno) è uguale a 0.

$$\langle v_{_{\! 1}}, v_{_{\! 2}}\rangle \triangleq v_{_{\! 1}}^{^T} \cdot v_{_{\! 2}} = 0 = \left|v_{_{\! 1}}\right| \left|v_{_{\! 2}}\right| \cos \alpha$$

■ Base Ortogonale in \mathbb{R}^2 $\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}$

☐ Definizione – Vettori Ortonormali: un vettore si dice ortonormale se ha modulo unitario (due vettori ortonormali sono anche ortogonali):

$$v \triangleq \frac{v}{\|v\|_2} = 1$$

■ Base Ortonormale in \mathbb{R}^2 $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Matrici

☐ Matrici (2D): Un insieme di elementi dati dal prodotto esterno di due vettori

$$A(p\rangle\langle q) = v_1^{\;(p\times 1)} \cdot v_2^{\;(1\times q)}$$

$$\begin{bmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \end{bmatrix} \qquad A \quad (n \times n) \qquad \qquad \mathsf{quadrata}$$

$$\begin{bmatrix} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix} A \quad (n \times m) \quad , \quad \begin{bmatrix} \cdots & \cdots \\ \cdots & \cdots \\ \cdots & \cdots \end{bmatrix} B \quad (p \times q) \qquad \textbf{rettangolari}$$

Definizioni

■ Matrice Trasposta: Data una matrice A (nxm), si dice trasposta la matrice A^T ottenuta scambiando le righe con le colonne

$$A^{T} = [a_{ji}]_{n}^{m} = [a_{ij}]_{m}^{n}$$

■ Matrice Simmetrica/Antisimmetrica: Data una matrice quadrata A (nxn), si dice simmetrica (antisimmetrica) se vale:

$$A^{T} = A$$
$$A^{T} = -A$$

Matrici (esempi)

$$A = \begin{bmatrix} 6 & 1 \\ 1 & 4 \end{bmatrix} = A^T$$
 Matrice Simmetrica

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = -A^{T}$$
 Matrice Antisimmetrica

Nota:

$$T = A - A^{T}$$

 $T = A - A^T$ $oldsymbol{T}$ = Antisimmetrica

$$S = A + A^T$$
 $S = Simmetrica$

$$\Rightarrow A = \frac{1}{2}(S+T)$$

$$A = \begin{bmatrix} 5 & 6 & 2 \\ 0 & 4 & 1 \\ 3 & 3 & -1 \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} 5 & 0 & 3 \\ 6 & 4 & 3 \\ 2 & 2 & -1 \end{bmatrix}$$

$$T = A - A^{T} = \begin{bmatrix} 0 & 6 & -1 \\ -6 & 0 & -2 \\ 1 & 2 & 0 \end{bmatrix}; S = A + A^{T} = \begin{bmatrix} 10 & 6 & 5 \\ 6 & 8 & 4 \\ 5 & 4 & -2 \end{bmatrix} \Rightarrow \frac{1}{2}(S+T) = A$$

Matrici

Inversa di una Matrice: Data una matrice quadrata A (nxn), si dice inversa di A una matrice A^{-1} tale che:

$$A^{-1}A = AA^{-1} = I_n$$

Determinante: Data una matrice A ($n \times n$), si dice determinante di A, uno scalare calcolato mediante una formula ric $q_{\overline{a}}$

$$\hat{a}_{ij} = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 6 & -4 \\ 0 & -4 & 10 \end{pmatrix}$$

$$\det(A) \Rightarrow \det(A)$$

$$\text{ans} = \begin{pmatrix} -46 \\ \text{aggiunti:} \end{pmatrix}$$

$$A \, dj(A) = \begin{pmatrix} A \, dj(A) = \begin{pmatrix} -0.956521739130435 & 0.652173913043478 & 0.26086956521739130 \\ 0.652173913043478 & -0.217391304347826 & -0.086956521739130 \\ 0.2608695652173913 & 0.086956521739130 & 0.0652173913043488 \end{pmatrix}$$

NOTA: Una matrice quadrata è invertibile se e solo se il suo determinante è diverso da 0. In tal caso la matrice si dice NON SINGOLARE.

Matrici (esempi)

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix} \quad adj(A) = \begin{bmatrix} 4 & -2 \\ 0 & 1 \end{bmatrix} \quad \det(A) = 4 \quad A^{-1} = \frac{adj(A)}{\det(A)} = \frac{1}{4} \begin{bmatrix} 4 & -2 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 4 & -1 & 4 \\ 2 & 2 & 1 \end{bmatrix}; \det(A) = 11 \qquad adj(A) = \begin{bmatrix} -9 & 4 & 2 \\ 4 & -3 & 4 \\ 10 & -2 & -1 \end{bmatrix}$$

$$A^{-1} = \frac{adj(A)}{\det(A)} = \frac{1}{11} \begin{bmatrix} -9 & 4\\ 4 & -3\\ 10 & -2 \end{bmatrix}$$

11

Matrici

- **Definizione**: Data una matrice rettangolare A (nxm), si definisce **Rango** di A, il numero di righe (colonne) linearmente indipendenti. Per il rango valgono le seguenti proprietà:
 - 1. Rango(A) = massimo numero di righe linearmente indipendenti (n < m).
 - Rango(A) = massimo numero di colonne linearmente indipendenti (n>m).
 - 3. Rango(A) = Rango(A^T).
 - 4. Rango(A) \leq min(n, m).
 - 5. Una matrice quadrata A(n, n), ammette un'inversa A^{-1} , se e solo se Rango(A) = n.
 - 6. Una matrice quadrata A(n, n) ha determinante diverso da zero, se e solo se è di rango massimo = n. In tal caso la matrice A è non singolare.
 - Rango(A) è invariante rispetto a pre- post moltiplicazioni per matrici quadrate non singolari.
 - 8. Date due matrici A_1 e A_2 aventi rango n1 ed n2, si ha: Rango(A_1A_2) = min (n1, n2).

Matrici (pseudo inversa)

A) Consideriamo una matrice rettangolare alta A (n, m) con n > m. Nel caso in cui A abbia rango massimo (m), vale la seguente relazione:

$$(A^T A)^{-1} (A^T A) = I$$

Si definisce matrice pseudo inversa sinistra di A, la matrice:

$$A^{+S} = (A^T A)^{-1} A^T \qquad A^{+S} \cdot A = I_{m \times m}$$

B) Consideriamo una matrice rettangolare piatta A (n, m) con n < m. Nel caso in cui A abbia rango massimo (n), vale la seguente relazione:

$$(AA^T)(AA^T)^{-1} = I$$

Si definisce matrice pseudo inversa destra di A, la matrice:

$$A^{+D} = A^{T} (A A^{T})^{-1}$$
 $A \cdot A^{+D} = I_{n \times n}$

- Una matrice A può essere pensata come un elemento di trasmissione di segnale x in y, la trasmissione di segnale è lineare ed algebrica, nel caso di matrice con elementi costanti nel tempo.
 - lacktriangle Definizione (Geometria): Si associ una matrice A^{mxn} a due vettori $m{x}$ ed $m{y}$, tale che:

$$oldsymbol{y} = Aoldsymbol{x}, oldsymbol{x} \in V^n, oldsymbol{y} \in V^m$$

la matrice A si dice operatore lineare del vettore $oldsymbol{x}$ in $oldsymbol{y}$

- **Definizione (Algebra)**: Dal punto di vista algebrico, y = Ax rappresenta un sistema algebrico per cui significa calcolare il vettore x dati il vettore y e la matrice A. si dice sistema omogeneo se y = 0, non omogeneo se $y \neq 0$
- Un sistema algebrico y=Ax definisce il <u>Teorema fondamentale di Algebra Lineare</u>, ovvero: l'esistenza e la correlazione tra i 4 sottospazi fondamentali introdotti da una matrice rettangolare A

name of subspace	definition	containing space	dimension	basis
column space, range or image	$\operatorname{im}(A)$ or $\operatorname{range}(A)$	\mathbf{R}^m	r (rank)	The first r columns of U
nullspace or kernel	$\ker(A)$ or $\operatorname{null}(A)$	\mathbb{R}^n	n-r (nullity)	The last $(n-r)$ columns of V
row space or coimage	$\operatorname{im}(A^T)$ or $\operatorname{range}(A^T)$	\mathbb{R}^n	r (rank)	The first r columns of V
left nullspace or cokernel	$\ker(A^T)$ or $\operatorname{null}(A^T)$	\mathbf{R}^m	m-r (corank)	The last $(m-r)$ columns of U

- lacksquare Interpretations of: $m{y} = A m{x}, m{x} \in V^n, m{y} \in V^m$
 - ullet y is measurement or observation; x is unknown to be determined
 - ullet x is 'input' or 'action'; y is 'output' or 'result'
 - y = Ax defines a function or transformation that maps $x \in \mathbf{R}^n$ into $y \in \mathbf{R}^m$

 $lue{}$ Interpretation of a_{ij}

 a_{ij} is gain factor from jth input (x_j) to ith output (y_i)

thus, e.g.,
$$y_i = \sum_{j=1}^n a_{ij} x_j$$

- *i*th *row* of *A* concerns *i*th *output*
- *j*th *column* of *A* concerns *j*th *input*
- $a_{27} = 0$ means 2nd output (y_2) doesn't depend on 7th input (x_7)
- $|a_{31}| \gg |a_{3j}|$ for $j \neq 1$ means y_3 depends mainly on x_1

• Consideriamo il caso di sistema non omogeneo: $A \boldsymbol{x} = \boldsymbol{y}, A(m \times n)$ (1)

$$a_1 x_1 + a_2 x_2 + ... + a_n x_n = y$$

Quindi, \boldsymbol{y} è una combinazione lineare delle colonne di A, ovvero:

$$oldsymbol{y} \in V := span\left\{oldsymbol{a}_{\!\scriptscriptstyle 1}, oldsymbol{a}_{\!\scriptscriptstyle 2}, ..., oldsymbol{a}_{\!\scriptscriptstyle n}
ight\}$$

- Richiamo della definizione: SPAN = Copertura Lineare (sottospazio generato da tutti i vettori della copertura)
- **Definizione**: Il sottospazio formato dalle colonne di A si dice <u>Spazio Immagine</u> (Range Space) = $\mathbf{R}(A)$. Essendo n il numero delle colonne di A, lo Spazio Immagine è descritto dalle n colonne di A aventi m righe per cui è un sottospazio in \mathbf{R}^m

the range of
$$A \in \mathbf{R}^{m \times n}$$
 is defined as
$$\mathcal{R}(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$$

- □ **Domande:** Consideriamo il sistema (1):
 - a. Quando ammette soluzione?
 - b. Quante sono le soluzioni?
 - c. Quali sono le soluzioni?

Teorema: Il sistema non omogeneo ha soluzione (non banale) se e soltanto se y è una combinazione lineare di una base dello spazio immagine di A:

$$Rank(A) = Rank(A \mid \boldsymbol{y})$$

Esempio: Il sistema seguente ha soluzione?

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} \Rightarrow Ax = y$$

$$\Rightarrow Ax = y$$
Le colonne di A sono vettori in \mathbb{R}^4

$$= \text{Le colonne di } A$$
 sono linearmente dipendenti in quanto $a_3 = a_1 + a_2$

$$= \text{Ci sono 2 colonne linearmente indipendenti, quindi lo spazio immagine (spazio colonna)}$$

- Le colonne di A sono vettori in \mathbb{R}^4
- quindi lo spazio immagine (spazio colonna, range space) è un sottospazio in R² di R⁴
- Il sistema ha soluzione per un qualsiasi vettore $oldsymbol{y}$ combinazione lineare di una base del sottospazio immagine, ovvero:

$$span(egin{bmatrix}1\\0\\0\\0\end{bmatrix},egin{bmatrix}1\\1\\0\\0\end{bmatrix}$$

$$\forall \boldsymbol{y} = \alpha \boldsymbol{a}_{\!\scriptscriptstyle 1} + \beta \boldsymbol{a}_{\!\scriptscriptstyle 2} \Rightarrow \boldsymbol{x} \neq 0$$

$$egin{aligned} oldsymbol{y} = egin{bmatrix} 0 \ 1 \ 2 \ 3 \end{bmatrix} \Rightarrow oldsymbol{x} = egin{bmatrix} x_1 = 1 - x_3 = \mathbf{0} \ x_2 = -x_1 - 2x_3 = -\mathbf{2} \ x_3 = \mathbf{1} \end{bmatrix}$$

Il sistema non ha soluzione se non soddisfa il teorema precedente

$$\forall \boldsymbol{y} = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \gamma \neq 0$$

$$\forall \boldsymbol{y} = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \delta \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \delta \neq 0$$

$$\forall \boldsymbol{y} = \alpha \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \end{vmatrix} + \beta \begin{vmatrix} 0 \\ 1 \\ 0 \\ 0 \end{vmatrix} + \gamma \begin{vmatrix} 0 \\ 0 \\ 1 \\ 0 \end{vmatrix}, \gamma \neq 0 \qquad \forall \boldsymbol{y} = \alpha \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{vmatrix} + \beta \begin{vmatrix} 0 \\ 1 \\ 0 \\ 0 \end{vmatrix} + \delta \begin{vmatrix} 0 \\ 0 \\ 1 \\ 0 \end{vmatrix}, \delta \neq 0 \qquad \boldsymbol{y} = \begin{vmatrix} 0 \\ 0 \\ 1 \\ 0 \end{vmatrix} \Rightarrow \boldsymbol{x} = \begin{bmatrix} x_1 = -x_3 = \boldsymbol{0} \\ x_2 = -x_1 - 2x_3 = \boldsymbol{0} \\ x_3 = 1 - x_1 = \boldsymbol{0} \end{bmatrix}$$

Generalizzazione

 $Rango\ massimo = n \le m$ Più equazioni che incognite

- il Rango è $r \le n$. Il sistema ha soluzione per ogni y combinazione lineare di r colonne di A linearmente indipendenti (oppure di una sua base)
- Il vettore $oldsymbol{y}$ è costituito da una base che definisce un sottospazio di dimensioni pari al Rango della matrice A

	n
m	Α

Rango massimo = $m \le n$ Più incognite che equazioni

- Se il Rango è massimo (= m), il sistema ha sempre soluzione, in quanto \boldsymbol{y} è sempre combinazione lineare di m colonne di A
- lacktriangle Se il Rango è minore di m, il sistema ha soluzione se e solo se $m{y}$ è combinazione lineare di una base del sottospazio immagine di A

- Il Rango è = n . Il sistema ha una sola soluzione y combinazione lineare delle n colonne di A. A è non singolare, A^{-1} esiste.
- Il Rango è r < n. La soluzione y è una combinazione lineare di una base delle colonne di A linearmente indipendenti e appartenenti ad un sottospazio di dimensioni r

Nel caso in cui il vettore y sia il vettore nullo, il sistema algebrico si dice omogeneo ed ammette sempre soluzione:

$$Ax = 0$$

Definizione: La soluzione x_h del sistema omogeneo appartiene ad un sottospazio chiamato Nullo di A (Kernel) = N(A). Il Nullo di A (mxn) ha dimensioni n e contiene sempre almeno il vettore nullo.

the *nullspace* of $A \in \mathbf{R}^{m \times n}$ is defined as

$$\mathcal{N}(A) = \{ x \in \mathbf{R}^n \mid Ax = 0 \}$$

$$A\boldsymbol{x} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \cdot \boldsymbol{x} = 0 \quad \text{Rango(A): } \boldsymbol{\gamma} = \boldsymbol{2} \qquad \boldsymbol{x}_h = \alpha \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \text{Rango(A): } \boldsymbol{\gamma} = \boldsymbol{1} \qquad \boldsymbol{x}_h = \alpha \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$A \boldsymbol{x} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \cdot \boldsymbol{x} = 0 \qquad \text{Rango(A): } \boldsymbol{\gamma} = \boldsymbol{2} \qquad \boldsymbol{x}_h = 0 \qquad \text{Rango(A): } \boldsymbol{\gamma} = \boldsymbol{1} \qquad \boldsymbol{x}_h = \begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix}$$

Esempio: Esistenza della soluzione non banale del vettore $oldsymbol{x}$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

- ☐ Lo spazio Nullo è uno spazio vettoriale in quanto soddisfa le definizioni assiomatiche
- ☐ Lo spazio Nullo è un sottospazio in R³
- lacksquare Il Nullo di A consiste di tutti i multipli del vettore

$$oldsymbol{x}_{\!\scriptscriptstyle h} = lpha egin{bmatrix} 1 \ 1 \ -1 \end{bmatrix}$$

lacksquare Il Nullo di A è quindi una retta in ${\bf R}^3$

- ☐ Lo spazio Nullo è uno spazio vettoriale
- ☐ Lo spazio Nullo è un sottospazio in R²
- ☐ Il Nullo di A consiste nel vettore nullo, unico elemento nel sottospazio

$$oldsymbol{x}_{\!\scriptscriptstyle h} = \! egin{bmatrix} 0 \ 0 \end{bmatrix}$$

 $lue{lue}$ Il Nullo di A contiene soltanto l'origine

Teorema del Rango: Fornisce la relazione tra Rango γ , dimensione dello spazio immagine dim $\mathbf{R}(A)$ e dimensione dello spazio nullo dim $\mathbf{N}(A)$.

$$\gamma + \dim[\mathbb{N}(A)] = \dim[\mathbb{R}(A)]$$

- Dato il sistema y = Ax, con m equazioni ed n incognite e rango della matrice A uguale a γ . Il sistema ammette $\infty^{(n-\gamma)}$ soluzioni che si ottengono sommando ad una soluzione particolare tutte le soluzioni del sistema omogeneo
- **Esempio:** Supponiamo per semplicità che la matrice A sia quadrata di ordine n.
 - Rango(A) = γ = dim $\mathbf{R}(A)$
 - γ + dim N(A) = n
 - Se γ = n, $\mathbf{N}(A)$ è un insieme vuoto quindi La matrice A è non singolare, ovvero det $(A) \neq 0$. $\boldsymbol{x}_h = 0$
- Conclusioni: La soluzione esiste se e solo se $y \in \mathbf{R}(A)$ ed ha la forma: $x = x_p + x_h = x_p + \mathbf{N}(A)$. La soluzione è unica se e solo se $\mathbf{N}(A)$ è vuoto (a parte il vettore nullo), ovvero $\gamma = n$.

$$y = Ax, z \in \mathbb{N}(A) \Rightarrow y = A(x + z)$$

$$y = Ax, y = A\tilde{x} \Rightarrow x = \tilde{x} + z, \forall z \in \mathbb{N}(A)$$

Esempi:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \boldsymbol{x} = \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \boldsymbol{x} = \boldsymbol{x}_h + \boldsymbol{x}_p = \begin{bmatrix} -x_3 \\ -x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \boldsymbol{x} = \boldsymbol{y} \Rightarrow \boldsymbol{x}_h + \boldsymbol{x}_p = 0 + \boldsymbol{x}_p = A^{-1} \boldsymbol{y}$$

$$\begin{cases} \dim(\operatorname{Im}) = 2 \\ \dim(N) = 0 \\ \gamma = 2 \end{cases}$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \boldsymbol{x} = \boldsymbol{y} \Rightarrow \boldsymbol{x}_h + \boldsymbol{x}_p = \boldsymbol{x}_h = \alpha_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{cases} \dim(\operatorname{Im}) = 2 \\ \dim(N) = 2 \\ \gamma = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \boldsymbol{x} = \boldsymbol{y} \Rightarrow \boldsymbol{x}_h + \boldsymbol{x}_p = 0 + \begin{bmatrix} y_1 \\ y_2 \\ y_1 + y_2 \end{bmatrix} \qquad \begin{cases} \dim(\operatorname{Im}) = 2 \\ \dim(N) = 0 \\ \gamma = 2 \end{cases}$$

Algebra Lineare (esempi)

 $f \Box$ Dato il sistema: Ax=y, quale è la relazione tra la soluzione e problemi di interesse in Automatica?

$$A = m \times n$$

m > n: more equations than unknowns, the system is overconstrained. Happens in, e.g., estimation problems, where one tries to estimate a small number of parameters from a lot of experimental measurements. In such cases the problem is typically inconsistent, i.e., $y \notin \mathcal{R}(A)$. So one is interested in finding the solution that minimizes some error criterion.

• m < n: more unknown than equations, the system is underconstrained. Happens in, e.g., control problems, where there may be more than one way to complete a desired task. If there is a solution x_p (i.e., $Ax_p = y$), then typically there are many other solutions of the form $x = x_p + x_h$, where $x_h \in \mathcal{N}(A)$ (i.e., $Ax_h = 0$). In this case it is desired to find the solution than minimizes some cost criterion.

Esempio: Coppie e Forze applicate ad un corpo rigido

$$oldsymbol{x} \in \Re^4$$

$$oldsymbol{y} \in \Re^6$$

Moto in 2D

- ullet x_j is external force/torque applied at some point/direction/axis
- $y \in \mathbb{R}^6$ is resulting total force & torque on body $(y_1, y_2, y_3 \text{ are } \mathbf{x}\text{-}, \mathbf{y}\text{-}, \mathbf{z}\text{-} \text{ components of total force}, y_4, y_5, y_6 \text{ are } \mathbf{x}\text{-}, \mathbf{y}\text{-}, \mathbf{z}\text{-} \text{ components of total torque})$
- we have y = Ax
- ullet A depends on geometry (of applied forces and torques with respect to center of gravity CG)
- jth column gives resulting force & torque for unit force/torque j

Boyd Stanford

Esempio: Movimento di una struttura elastica

$$egin{aligned} A^{^{m imes n}}oldsymbol{x} &= oldsymbol{y} \ oldsymbol{x} &\in \Re^6 \ oldsymbol{y} &\in \Re^4 \end{aligned}$$

- ullet x_i is external force applied at some node, in some fixed direction
- y_i is (small) deflection of some node, in some fixed direction

Esempio: Potenza del segnale e dell'interferenza in un sistema wireless

- *n* transmitter/receiver pairs
- ullet transmitter j transmits to receiver j (and, inadvertantly, to the other receivers)
- p_j is power of jth transmitter
- s_i is received signal power of ith receiver
- ullet z_i is received interference power of ith receiver
- ullet G_{ij} is path gain from transmitter j to receiver i
- we have s = Ap, z = Bp, where

$$a_{ij} = \begin{cases} G_{ii} & i = j \\ 0 & i \neq j \end{cases} \qquad b_{ij} = \begin{cases} 0 & i = j \\ G_{ij} & i \neq j \end{cases}$$

 \bullet A is diagonal; B has zero diagonal (ideally, A is 'large', B is 'small')

Esempio: Traffico e flusso in un network

- n flows with rates f_1, \ldots, f_n pass from their source nodes to their destination nodes over fixed routes in a network
- t_i , traffic on link i, is sum of rates of flows passing through it
- flow routes given by flow-link incidence matrix

$$A_{ij} = \begin{cases} 1 & \text{flow } j \text{ goes over link } i \\ 0 & \text{otherwise} \end{cases}$$

ullet traffic and flow rates related by t=Af

Bottleneck = rows with ones Column with ones = Large traffic

link delays and flow latency

- let d_1, \ldots, d_m be link delays, and l_1, \ldots, l_n be latency (total travel time) of flows
- $l = A^T d$
- $f^T l = f^T A^T d = (Af)^T d = t^T d$, total # of packets in network

Matrici Simili – Trasformazione di Similitudine

Esempio da un problema di guida e navigazione

Esempio: Dato un vettore V che esprime la misura di una grandezza fisica, esso può essere espresso in diversi sistemi di riferimento (per comodità di calcolo, per migliore comprensione fisica, ecc.)

$$\begin{bmatrix} V_{x2} \\ V_{y2} \end{bmatrix} \neq \begin{bmatrix} V_{x1} \\ V_{y1} \end{bmatrix} \Rightarrow \begin{bmatrix} V_{x2} \\ V_{y2} \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} V_{x1} \\ V_{y1} \end{bmatrix}$$

$$y = Ax, A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

Domanda: Come possiamo collegare le componenti dello stesso vettore nei due sistemi di riferimento?

$$\begin{bmatrix} V_{x1} \\ V_{y1} \end{bmatrix} = \begin{bmatrix} V \cos \alpha \\ V \sin \alpha \end{bmatrix} \qquad \begin{bmatrix} V_{x2} \\ V_{y2} \end{bmatrix} = \begin{bmatrix} V \\ 0 \end{bmatrix}$$

Nota: Il vettore è lo stesso in assoluto, ma le componenti ovviamente no.

$$\begin{bmatrix} V_{x2} \\ V_{y2} \end{bmatrix} \neq \begin{bmatrix} V_{x1} \\ V_{y1} \end{bmatrix} \Rightarrow \begin{bmatrix} V_{x2} \\ V_{y2} \end{bmatrix} = \begin{bmatrix} ? & ? \\ V_{x1} \\ ? & ? \end{bmatrix} \begin{bmatrix} V_{x1} \\ V_{y1} \end{bmatrix} \qquad \qquad \begin{bmatrix} V \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} V \cos \alpha \\ V \sin \alpha \end{bmatrix} = \begin{bmatrix} V \\ 0 \end{bmatrix}$$

$$y = Ax, A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \quad \det A = 1$$

$$A^{-1} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = A^{T} \quad \begin{bmatrix} V\cos \alpha \\ V\sin \alpha \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} V\cos \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Trasformazioni di Similitudine

Definizione: Date due matrici quadrate A (n,n) e B (n,n), esiste una matrice quadrata T (n,n), non singolare tale che:

$$B = T^{-1}AT \Leftrightarrow A = TBT^{-1}$$

La trasformazione da $A \rightarrow B$ (e viceversa) si dice Trasformazione di Similitudine

- La trasformazione di similitudine è una trasformazione lineare ed ha importanti proprietà di invarianza (endomorfismo)
- La matrice di trasformazione esegue in sostanza un cambio di base dello spazio immagine .

$$oldsymbol{y} = A oldsymbol{x} \Leftrightarrow oldsymbol{y}' = B oldsymbol{x}' \qquad egin{array}{c} oldsymbol{y}' = T^{-1} oldsymbol{y} \\ oldsymbol{x} = T oldsymbol{x}' \end{array}$$

Particolari Trasformazioni di interesse nella teoria dei sistemi lineari dinamici sono:

1
$$\Lambda = M^{-1}AM$$
 $\Lambda = Matrice Diagonale$

$$2 \quad J = P^{-1}AP$$
 J = Matrice quasi Diagonale (Forma di Jordan)

Autovalori e Autovettori (Altro caso di applicazione di y=Ax)

Eigenvalues Eigenvectors

lacktriangle Problema: Data una matrice quadrata $A\ (n \mathbf{x} n)$, determinare il valore dello scalare λ e del vettore v, tale che valga la relazione:

$$A\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow A\mathbf{v} = (\lambda I)\mathbf{v} \Leftrightarrow (\lambda I - A)\mathbf{v} = 0 \Leftrightarrow (A - \lambda I)\mathbf{v} = 0$$

- λ si dice autovalore di A
- v si dice autovettore (destro) associato a λ

 \square Interpretazione geometrica: La matrice A è un operatore lineare che trasforma il vettore v in se stesso a meno di un fattore di scala λ

R1=4, B1=5
R2=6, B2=2.5
$$\lambda$$
1=1.5, λ 2=0.5

$$\begin{vmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -3 \end{vmatrix} \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 3 \\ 3 \\ -3 \end{vmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

 \square Soluzione: Calcolo del vettore v non banale del sistema omogeneo:

$$(\lambda I - A)\boldsymbol{v} = 0$$

$$\gamma + \dim[\mathbb{N}(A)] = \dim[\mathbb{R}(A)]$$

■ La matrice $(\lambda I - A)$ deve avere rango < n, ovvero il suo determinante deve essere uguale a 0, ovvero il nullo di $(\lambda I - A)$ deve contenere una soluzione non banale.

$$\det(\lambda I - A) = \left|\lambda I - A\right| = \Delta(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0 = 0$$

$$\Delta(\lambda)=\lambda^n+a_{n-1}\lambda^{n-1}+...,a_1\lambda+a_0 \quad \text{ Si chiama Polinomio Caratteristico di } A$$

La soluzione fornisce n radici che prendono il nome di autovalori

$$\left\{ \lambda_{_{1}},...,\lambda_{_{n}}=\left\{ \lambda_{_{i}}
ight\}$$

- Gli autovalori costituiscono un <u>set di numeri autoconiugati</u> (ovvero reali e complessi e coniugati)
- Gli autovalori possono essere quindi:
 - Reali e distinti (molteplicità algebrica = 1)
 - Reali e ripetuti m volte (molteplicità algebrica = m)
 - Coppie di numeri complessi e coniugati (magari con molteplicità algebrica ≠ 1)
- ☐ **Definizione**: Si definisce Molteplicità algebrica il numero delle volte che un autovalore è ripetuto

Esempi:

$$\begin{vmatrix} A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix} \Rightarrow (\lambda I - A) = \begin{bmatrix} \lambda - 1 & -2 \\ 1 & \lambda - 4 \end{bmatrix}$$
$$\lambda^2 - 5\lambda + 6 = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = 3$$

$$A = \begin{bmatrix} -1 & -2 \\ 1 & -1 \end{bmatrix} \Rightarrow (\lambda I - A) = \begin{bmatrix} \lambda + 1 & 2 \\ -1 & \lambda + 1 \end{bmatrix}$$
$$\lambda^2 + 2\lambda + 3 = 0 \Rightarrow \lambda_1 = -1 + j\sqrt{2}, \lambda_2 = -1 - j\sqrt{2}$$

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix} \qquad A = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{bmatrix} \qquad \text{Nota 1: Gli autovalori sono gli elementi della diagonale principale}$$

$$\lambda_1 = 2, \lambda_2 = 4, \lambda_3 = 6 \qquad \lambda_1 = -2, \lambda_2 = -2, \lambda_3 = -2$$

$$\begin{bmatrix} A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 8 & -12 & 6 \end{bmatrix} \Rightarrow \lambda^3 - 6\lambda^2 + 12\lambda - 8$$
$$\lambda_1 = 2, \lambda_2 = 2, \lambda_3 = 2$$

Nota 2: L'ultima riga contiene i coefficienti del polinomio caratteristico in ordina arracaratteristico in ordine crescente e cambiati di segno

- Per ogni autovalore λ_v esiste un autovettore \boldsymbol{v} (almeno uno) in quanto $(\lambda_i I A)$ perde di rango
- ☐ Gli autovettori costituiscono un set di vettori <u>linearmente indipendente</u>
- ☐ Gli autovettori associati ad autovalori reali sono reali
- ☐ Gli autovettori associati ad autovalori complessi e coniugati sono anch'essi complessi e coniugati

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \Rightarrow \lambda I - A = \begin{bmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{bmatrix} \Rightarrow \Delta(\lambda) = \lambda^2 - 4\lambda + 3 = 0$$

$$\lambda_1 \to \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \boldsymbol{v} = 0 \Rightarrow \boldsymbol{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\lambda_1 = 1; \lambda_2 = 3$$

$$\lambda_2 \to \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \boldsymbol{v} = 0 \Rightarrow \boldsymbol{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -4 \\ 1 & 1 \end{bmatrix} \Rightarrow \lambda I - A = \begin{bmatrix} \lambda - 1 & 4 \\ -1 & \lambda - 1 \end{bmatrix} \Rightarrow \Delta(\lambda) = \lambda^2 - 2\lambda + 5 = 0$$

$$\lambda_1 \rightarrow \begin{bmatrix} 2j & 4 \\ -1 & 2j \end{bmatrix} \mathbf{v} = 0 \Rightarrow \mathbf{v} = \begin{bmatrix} 2 \\ -j \end{bmatrix}$$

$$\lambda_{1,2} = 1 \pm 2j$$

$$\lambda_2 \rightarrow \begin{bmatrix} -2j & 4 \\ -1 & -2j \end{bmatrix} \mathbf{v} = 0 \Rightarrow \mathbf{v} = \begin{bmatrix} 2 \\ j \end{bmatrix}$$


```
>> A=[10,1,0;0,10,0;0,0,-13];

>> [V,D]=eig(A)

V =

1.0000 -1.0000 0

0 0.0000 0

0 0 1.0000

D =

10 0 0

0 10 0

0 0 -13
```

```
A =
   2 3 4
    6 7 8
   7 6
          5
  4
    3 2 1
>> rank(A)
ans =
  2
>> rref(A)
ans =
  1 0 -1 -2
    1 2 3
    0 0
         0
  0 0 0 0
```

```
>> A=[1,2,3,4;5,6,7,8;8,7,6,5;4,3,2,1];
>> [V,D]=eig(A)
V =
 -0.2538 -0.5000 0.5194 -0.1718
 -0.6600 -0.5000 -0.8221 0.6168
 -0.6600 0.5000 0.0859 -0.7180
 -0.2538  0.5000  0.2168  0.2731
D =
 18.0000
                  0
                       0
            0
    0 -4.0000
                  0
                       0
         0.0000
               0 -0.0000
```


- Per ogni autovalore di molteplicità algebrica uguale a 1 esiste un solo autovettore linearmente indipendente
- Gli autovettori complessi e coniugati sono linearmente indipendenti per definizione (essendo ortogonali)
- Definizione: (Molteplicità geometrica) Il numero di autovettori linearmente indipendenti corrispondenti ad uno stesso autovalore si dice molteplicità geometrica ed è uguale a dim $N(\lambda I - A)$
 - **Domanda:** Cosa succede nel caso di calcolo di autovettori associati ad autovalori di molteplicità algebrica m > 1?

$$A = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \Rightarrow \lambda I - A = \begin{bmatrix} \lambda - 1 & 0 \\ 2 & \lambda - 1 \end{bmatrix} \Rightarrow \Delta(\lambda) = (\lambda - 1)^2 = 0; \lambda_{1,2} = 1$$
 Molteplicità algebrica = 2

$$\begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \boldsymbol{v} = 0 \Rightarrow \boldsymbol{v} = \alpha \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 $\begin{vmatrix} 0 & 0 \\ 2 & 0 \end{vmatrix} v = 0 \Rightarrow v = \alpha \begin{vmatrix} 0 \\ 1 \end{vmatrix}$ Molteplicità geometrica = 1. Un solo autovettore linearmente indipendente

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ (\lambda I - A) = \begin{bmatrix} \lambda - 1 & 0 \\ 0 & \lambda - 1 \end{bmatrix}, \ \Delta(\lambda) = (\lambda - 1)^2 = 0 \qquad \lambda_1 = \lambda_2 = 1$$

Molteplicità algebrica = 2

$$(\lambda I - A) = \begin{bmatrix} \lambda - 1 & 0 \\ 0 & \lambda - 1 \end{bmatrix} \mathbf{v} = 0 \Rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \mathbf{v} = 0 \qquad \mathbf{v} = \begin{cases} v_1 = \alpha \begin{vmatrix} 1 \\ 0 \end{vmatrix} \\ v_2 = \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{cases} \qquad \mathbf{v} = \begin{cases} v_1 = \alpha \begin{vmatrix} 1 \\ 0 \end{vmatrix} \\ v_2 = \beta \begin{bmatrix} \neq 0 \\ \neq 0 \end{bmatrix} \end{cases} \qquad \mathbf{v} = \begin{cases} v_1 = \alpha \begin{vmatrix} \neq 0 \\ \neq 0 \end{bmatrix} \end{cases}$$

Molteplicità geometrica = 2

• In questo caso vi sono 2 autovettori linearmente indipendenti ed il sottospazio degli autovettori (eigenspace) associato all'autovalore 1 ha dimensione 2.

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \ (\lambda I - A) = \begin{bmatrix} \lambda - 1 & -1 \\ 0 & \lambda - 1 \end{bmatrix}, \ \Delta(\lambda) = (\lambda - 1)^2 = 0 \qquad \lambda_1 = \lambda_2 = 1 \qquad \bullet \qquad \text{Molteplicità algebrica = 2}$$

$$(\lambda I - A) = \begin{bmatrix} \lambda - 1 & -1 \\ 0 & \lambda - 1 \end{bmatrix} \boldsymbol{v} = 0 \Rightarrow \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \boldsymbol{v} = 0 \quad \boldsymbol{v} = \begin{cases} v_1 = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ v_2 = ? \end{cases}$$
 • Molteplicità geometrica = 1

Trasformazioni di Similitudine

Proprietà di Invarianza di cui gode una Trasformazione di Similitudine (https://it.wikipedia.org/wiki/Similitudine_fra_matrici):

$$B = T^{-1}AT \Leftrightarrow A = TBT^{-1}$$

- Proprietà commutativa e transitiva
- det(A) = det(B)
- Rango(A) = Rango(B)
- Traccia(A) = Traccia(B)=somma degli elementi della diagonale
- eig(A) = eig(B)
- •
- Example: $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}; B = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$

matlab.exe

- Trasformazione Modale: Una particolare trasformazione di similitudine (A < -> B) dove la matrice di similitudine T è formata dagli autovettori della matrice di partenza. La matrice risultante è diagonale (ovvero quasi diagonale)
 - Una matrice è diagonalizzabile, mediante trasformazione di similitudine, se la molteplicità algebrica e geometrica sono le stesse.

☐ Caso 1: Gli autovalori di A sono distinti (Molteplicità algebrica = 1)

$$A^{n imes n} \Rightarrow egin{cases} \lambda_1,...,\lambda_n \ oldsymbol{v}_1,...,oldsymbol{v}_n \end{cases}$$

$$T = M \triangleq \begin{bmatrix} \boldsymbol{v}_1 & \dots & \boldsymbol{v}_n \end{bmatrix} \qquad B = M^{-1}AM = \Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \dots & \dots \\ \dots & \dots & 0 \\ 0 & \dots & 0 & \lambda_n \end{bmatrix} \qquad A = M\Lambda M^{-1}$$

Esempio:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \Rightarrow \lambda_1 = 1; \lambda_2 = 3$$

$$oldsymbol{v}_{_1} = egin{bmatrix} 1 \ -1 \end{bmatrix}, oldsymbol{v}_{_2} = egin{bmatrix} 1 \ 1 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, M^{-1} = \begin{bmatrix} 0.5 & -0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\Lambda = M^{-1}AM = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

Esempio:

$$A = \begin{bmatrix} 1 & -4 \\ 1 & 1 \end{bmatrix} \Rightarrow (\lambda, v) = 1 \pm 2j, \begin{bmatrix} 2 \\ -j \end{bmatrix}; 1 - 2j, \begin{bmatrix} 2 \\ j \end{bmatrix} \qquad M = \begin{bmatrix} 2 & 2 \\ -j & j \end{bmatrix}, M^{-1} = \begin{bmatrix} .5 & j \ / \ 2 \\ .5 & -j \ / \ 2 \end{bmatrix}$$

$$\Lambda = \begin{bmatrix} .5 & j/2 \\ .5 & -j/2 \end{bmatrix} \cdot \begin{bmatrix} 1 & -4 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 2 \\ -j & j \end{bmatrix} = \begin{bmatrix} 1+2j & 0 \\ 0 & 1-2j \end{bmatrix}$$

• Un'alternativa per avere una matrice reale e non complessa è quella di costruire la matrice di similitudine con la parte reale e la parte immaginaria di uno degli autovettori complessi:

$$M = \begin{bmatrix} \operatorname{Re}(v_{\scriptscriptstyle 1}) & \operatorname{Im}(v_{\scriptscriptstyle 1}) \end{bmatrix} \Rightarrow M^{\scriptscriptstyle -1}AM = \begin{bmatrix} \sigma_{\scriptscriptstyle 1} & \omega_{\scriptscriptstyle 1} \\ -\omega_{\scriptscriptstyle 1} & \sigma_{\scriptscriptstyle 1} \end{bmatrix}; \lambda_{\scriptscriptstyle 1} = \sigma_{\scriptscriptstyle 1} + j\omega_{\scriptscriptstyle 1}$$

$$M = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}, M^{-1} = \begin{bmatrix} .5 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} .5 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -4 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} = \tilde{\Lambda}$$

☐ Caso 2: Gli autovalori di A sono ripetuti (molteplicità algebrica > 1)

- ☐ **Definizione**: si dice matrice difettiva, una matrice quadrata di ordine n che non possiede una base completa di autovettori e quindi non è diagonalizzabile
- Definizione: si dicono autovettori generalizzati i vettori che costituiscono una base completa di autovettori per una matrice difettiva. Essi sono in numero pari alla differenza tra la molteplicità algebrica e la molteplicità geometrica
- Teorema: una matrice quadrata A avente un autovalore λ_i con molteplicità algebrica r, può essere trasformata per similitudine in una forma quasi diagonale detta forma di Jordan J. J ha l'autovalore sulla diagonale principale ed unità (1) sulla diagonale superiore, in numero pari alla differenza tra molteplicità algebrica e geometrica.
 - Consideriamo la matrice modale di trasformazione di similitudine P formata da tutti gli autovettori ed eventuali autovettori generalizzati.

$$J = P^{-1}AP \Leftrightarrow A = PJP^{-1}$$

- Se e solo se le due molteplicità sono le stesse, si ha una diagonalizzazione
- Teorema: Data una matrice A avente un autovalore di molteplicità k, allora dim $N(\lambda I A)^k$ è k e una base di $N(\lambda I A)^k$ è il set di autovettori generalizzati associati all'autovalore.

Calcolo degli autovettori generalizzati mediante la formula ricorsiva:

$$(\lambda_i I - A) \mathbf{v}_i = 0$$

$$(\lambda_i I - A) \mathbf{v}_i^1 = -\mathbf{v}_i$$

$$(\lambda_i I - A) \mathbf{v}_i^2 = -\mathbf{v}_i^1$$

$$(\lambda_i I - A) \mathbf{v}_i^3 = -\mathbf{v}_i^2$$

Esempio:

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 8 & -12 & 6 \end{pmatrix}, \quad \Delta(\lambda) = (\lambda - 2)^3 \qquad \lambda_i = 2 \qquad \blacksquare \quad \text{Molteplicità algebrica} = 3$$

$$(\lambda, I - A) = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & -1 \\ -8 & 12 & -4 \end{pmatrix} \implies \begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & 8 & -4 \end{pmatrix} \implies \begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix} :$$

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{v} = 0 \Rightarrow \alpha \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

 $\begin{bmatrix} 2 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix} v = 0 \Rightarrow \alpha \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$ Molteplicità geometrica = 1 (quindi 1 autovettore e 2 autovettori generalizzati

$$(2I - A)\boldsymbol{v}_{i}^{1} = -\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \Rightarrow \boldsymbol{v}_{i}^{1} = \beta \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} \qquad (2I - A)\boldsymbol{v}_{i}^{2} = -\begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} \Rightarrow \boldsymbol{v}_{i}^{2} = \gamma \begin{bmatrix} \frac{3}{4} \\ \frac{1}{2} \\ 0 \end{bmatrix}$$

$$P = \begin{bmatrix} \mathbf{v}_i & \mathbf{v}_i^1 & \mathbf{v}_i^2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & .75 \\ 2 & -1 & .5 \\ 4 & 0 & 0 \end{bmatrix} \quad P^{-1} = \begin{bmatrix} 0 & 0 & .25 \\ 2 & -3 & 1 \\ 4 & -4 & 1 \end{bmatrix}$$

☐ A seconda della molteplicità geometrica, vi possono essere diverse forme di Jordan:

$$J_1 = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}, \qquad J_2^1 = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ \hline 0 & 0 & 2 \end{pmatrix}, \qquad J_2^2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ \hline 0 & 0 & 2 \end{pmatrix}, \qquad J_3 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Definizione : data una matrice A quadrata di ordine n, si definiscono autovettori destri gli autovettori v_i per cui vale:

$$(\lambda_i I - A) \mathbf{v}_i = 0$$

ed autovettori sinistri, gli autovettori μ_i per cui vale:

$$(\lambda_i I - A^T)\boldsymbol{\mu}_i = \boldsymbol{\mu}_i^T(\lambda_i I - A) = 0$$

Nota che vale:

$$M = egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & ... & oldsymbol{v}_n \end{bmatrix} \Leftrightarrow M^{-1} = egin{bmatrix} oldsymbol{\mu}_1^T \ oldsymbol{\mu}_2^T \ ... \ oldsymbol{\mu}_n^T \end{bmatrix}$$

• Nota: Data la matrice quadrata: Se A_{12} e/o $A_{21}=0$, vale:

$$A = \begin{bmatrix} A_{11} & | & A_{12} \\ A_{21} & | & A_{22} \end{bmatrix} \qquad eig(A) = eig(A_{11}) \cup eig(A_{22})$$

Teorema di Cayley-Hamilton

lacktriangle Enunciato: Ogni matrice quadrata A soddisfa la propria equazione caratteristica

$$\det(\lambda I-A) = \left|\lambda I-A\right| = \Delta(\lambda) = -(\lambda^n+a_{n-1}\lambda^{n-1}+\ldots+a_1\lambda+a_0) = 0$$

$$\Delta(A) = A^n+a_{n-1}A^{n-1}+\ldots+a_1A+a_0I = 0$$

- Nota: dalla teoria delle matrici, $a_{_0}=\det(A)$
- Nota: nel caso di matrice A non singolare, il teorema di Cayley-Hamilton fornisce un metodo per il calcolo della matrice inversa A^{-1} .

$$\begin{split} A^{-1}\left[\Delta(A)\right] &= A^{-1}\left[A^n + a_{n-1}A^{n-1} + \ldots + a_1A + a_0I\right] = 0 \\ A^{-1}\left[\Delta(A)\right] &= A^{n-1} + a_{n-1}A^{n-2} + \ldots + a_1I + a_0A^{-1} = 0 \\ \hline A^{-1} &= -\frac{1}{a_0}\Big[A^{n-1} + a_{n-1}A^{n-2} + \ldots + a_1I\Big] \\ a_0 \neq 0 \end{split}$$

Teorema di Cayley-Hamilton

■ **Esempio:**
$$A = \begin{bmatrix} 8 & -0.1 & 2 \\ 1 & 2 & 1 \\ -3.4 & 6 & 12.5 \end{bmatrix}$$

$$(\lambda I - A) = \begin{bmatrix} \lambda - 8 & 0.1 & -2 \\ -1 & \lambda - 2 & -1 \\ 3.4 & -6 & \lambda - 12.5 \end{bmatrix}, \det(\lambda I - A) = \lambda^3 - 22.5\lambda^2 + 141.9\lambda - 179.19$$

$$\Delta(A) = A^3 - 22.5A^2 + 141.9A - 179.19I = 0$$

$$179.19A^{-1}A = (A^2 - 22.5A + 141.9I)A$$

$$A^{-1} = \frac{1}{179.19}(A^2 - 22.5A + 141.9I)$$

>> B=(A*A-22.5*A+141.9*eve(3))/179.19

Numeri Complessi

☐ Rappresentazioni nel piano Cartesiano complesso

$$v = \alpha + j\beta$$

$$v = \begin{cases} \left| v \right| = \sqrt{\alpha^2 + \beta^2} & \bullet \text{ Modulo} \\ \angle v = \theta = \tan^{-1} \left(\frac{\beta}{\alpha} \right)^* & \bullet \text{ Fase} \end{cases}$$

$$v = |v|(\cos\theta + j\sin\theta)$$

☐ Formule di Eulero

$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$e^{j\theta} = \cos\theta + j\sin\theta$$
 $e^{-j\theta} = \cos\theta - j\sin\theta$

$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j} \qquad \cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

☐ Disuguaglianza di Schwartz

$$\left|v_{\scriptscriptstyle 1}+v_{\scriptscriptstyle 2}\right| \leq \left|v_{\scriptscriptstyle 1}\right| + \left|v_{\scriptscriptstyle 2}\right|$$

Numeri Complessi

Operazioni algebriche

$$v_{\scriptscriptstyle 1} \cdot v_{\scriptscriptstyle 2} = z = \begin{cases} |z| = \left|v_{\scriptscriptstyle 1}\right| \cdot \left|v_{\scriptscriptstyle 2}\right| & z = \alpha + j\beta = \sqrt{\alpha^2 + \beta^2} e^{j\tan^{-1}(\frac{\beta}{\alpha})} = \left|z\right| e^{j\theta} \\ \angle z = \angle v_{\scriptscriptstyle 1} + \angle v_{\scriptscriptstyle 2} & e^z = e^{(\alpha + j\beta)} = e^{\alpha} \cdot e^{j\beta} \end{cases}$$

$$v_{_{1}} \, / \, v_{_{2}} = z = \begin{cases} \left|z\right| = \left|v_{_{1}}\right| \, / \, \left|v_{_{2}}\right| \\ \\ \angle z = \angle v_{_{1}} - \angle v_{_{2}} \end{cases}$$

$$\begin{cases} \lambda_{1,2} = \alpha \pm j\beta \\ c_{1,2} = \delta \pm j\gamma \end{cases} \Rightarrow z = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} = ?$$

$$z = (\delta + j\gamma)e^{(\alpha + j\beta)t} + (\delta - j\gamma)e^{(\alpha - j\beta)t} =$$

$$= \delta e^{\alpha t} \left[e^{+j\beta t} + e^{-j\beta t} \right] + j\gamma e^{\alpha t} \left[e^{+j\beta t} - e^{-j\beta t} \right] =$$

$$= 2\delta e^{\alpha t} \cos(\beta t) - 2\gamma e^{\alpha t} \sin(\beta t) =$$

$$= 2e^{\alpha t} \left[\delta \cos(\beta t) - \gamma \sin(\beta t) \right]$$

☐ Esponenziale complesso

$$z = \alpha + j\beta = \sqrt{\alpha^2 + \beta^2} e^{j \tan^{-1}(\frac{\beta}{\alpha})} = |z| e^{j\theta}$$

$$e^z = e^{(\alpha + j\beta)} = e^{\alpha} \cdot e^{j\beta}$$

Numeri Complessi

$$\begin{cases} |c_1| = |c_2| = |c| = \sqrt{\delta^2 + \gamma^2} \\ \angle c_1 = \phi = \tan^{-1} \left(\frac{\gamma}{\delta}\right); \angle c_2 = -\phi = \tan^{-1} \left(\frac{-\gamma}{\delta}\right) \end{cases} \qquad z = |c| e^{j\phi} e^{(\alpha + j\beta)t} + |c| e^{-j\phi} e^{(\alpha - j\beta)t} = |c| e^{\alpha t} \left[e^{-j\phi} e^{(\alpha + j\beta)t} + e^{-j(\beta t + \phi)} \right] = |c| e^{\alpha t} \left[e^{\alpha t} \left[e^{-j\phi} e^{(\alpha + j\beta)t} + e^{-j(\beta t + \phi)} \right] = |c| e^{\alpha t} \left[e^{-j\phi} e^{(\alpha + j\beta)t} + e^{-j(\beta t + \phi)} \right] = |c| e^{\alpha t} \left[e^{-j\phi} e^{(\alpha + j\beta)t} + e^{-j(\beta t + \phi)} \right] = |c| e^{\alpha t} \left[e^{-j\phi} e^{(\alpha + j\beta)t} + e^{-j(\beta t + \phi)} \right] = |c| e^{\alpha t} \left[e^{-j\phi} e^{(\alpha + j\beta)t} + e^{-j(\beta t + \phi)} \right] = |c| e^{\alpha t} \left[e^{-j\phi} e^{(\alpha + j\beta)t} + e^{-j(\beta t + \phi)} \right] = |c| e^{\alpha t} \left[e^{-j\phi} e^{(\alpha + j\beta)t} + e^{-j(\beta t + \phi)} \right] = |c| e^{-j\phi} e^{(\alpha + j\beta)t} = |c| e^{-j\phi} e^$$

$$z = (\delta + j)\gamma e^{(\alpha + j\beta)t} + (\delta - j\gamma)e^{(\alpha - j\beta)t} = 2e^{\alpha t} \left[\delta\cos\left(\beta t\right) - \gamma\sin\left(\beta t\right)\right]$$

$$z = (\delta + j)\gamma e^{(\alpha + j\beta)t} + (\delta - j\gamma)e^{(\alpha - j\beta)t} = 2\sqrt{\delta^2 + \gamma^2}e^{\alpha t}\sin\left(\beta t + \tan^{-1}\left(\frac{\gamma}{\delta}\right) + \frac{\pi}{2}\right)$$

Equazioni Differenziali Lineari

☐ Consideriamo un'equazione differenziale lineare del primo ordine a coefficienti costanti.

■ Moltiplicando ambo i membri per $e^{-at} \neq 0$, per ogni t > 0

$$e^{-at}\dot{x}(t) = e^{-at}ax(t) + e^{-at}bu(t) \qquad \Rightarrow \qquad e^{-at}\dot{x}(t) - ae^{-at}x(t) = e^{-at}bu(t) \qquad \Rightarrow$$

$$\Rightarrow \frac{d[e^{-at}x(t)]}{dt} = e^{-at}bu(t)$$

• Integrando tra $[t_0, t]$ si ha:

$$e^{-at}x(t)\Big|_{t_0}^t = \int_{t_0}^t e^{-a\tau}bu(\tau)d\tau \implies e^{-at}x(t) = e^{-at_0}x(t_0) + \int_{t_0}^t e^{-a\tau}bu(\tau)d\tau$$

• Moltiplicando ambo i membri per $e^{at} \neq 0$, per ogni t > 0

$$x(t) = e^{a(t-t_0)} x_0 + \int_{t_0}^t e^{a(t-\tau)} bu(\tau) d\tau$$

Equazioni Differenziali Lineari

$$\left| x(t) = e^{a(t-t_0)} x(t_0) + \int_{t_0}^t e^{a(t-\tau)b} u(\tau) d\tau = x_h(t) + x_p(t) \right|$$

- $x_h(t)$ \Box Il primo termine del secondo membro rappresenta <u>l'evoluzione libera</u>. Ovvero la <u>soluzione dell'omogenea</u> associata.
- $x_p(t)$ Il secondo termine del secondo membro rappresenta <u>l'evoluzione forzata</u>. Ovvero la <u>soluzione particolare</u> dipendente da u(t).
 - Essendo l'equazione differenziale lineare, la soluzione globale è una combinazione lineare delle due soluzioni.

Esempio

$$\begin{split} \dot{x}(t) &= -2x(t) + 6u(t) \\ x(0) &= 1; u(t) = 1 \end{split} \qquad x_h(t) = ce^{-2t}; x_p(t) = k \\ 0 &= -2k + 6 \Rightarrow k = 3 \\ x(0) &= 1 = ce^{-20} + 3 \Rightarrow c = -2 \qquad x(t) = -2e^{-2t} + 3 \end{split} \qquad x(t) = e^{at}x(0) + \int_0^t e^{-2(t-\tau)} 6u(\tau) d\tau \\ &= e^{-2t} + 6 \left[\frac{e^{-2(t-\tau)}}{2} \right]_0^t = e^{-2t} + 3 - 3e^{-2t} \\ x(t) &= -2e^{-2t} + 3 \end{split}$$

Equazioni Differenziali Lineari

☐ Equazioni Differenziali Lineari a Coefficienti Costanti – 2º Ordine

$$\ddot{x}(t) + a\dot{x}(t) + bx(t) = 0$$

$$x_0, \dot{x}_0$$

☐ Dalla teoria delle equazioni differenziali è sempre possibile trovare due soluzioni linearmente indipendenti

$$x_{h1}(t); x_{h2}(t)$$

☐ Due soluzioni sono linearmente indipendenti se e solo se il determinante Wronskiano *W* è diverso da zero

$$W = \begin{vmatrix} x_{1h} & x_{2h} \\ \dot{x}_{1h} & \dot{x}_{2h} \end{vmatrix} = x_{1h}\dot{x}_{2h} - \dot{x}_{1h}x_{2h} \neq 0$$

☐ Se due soluzioni sono indipendenti, esiste una coppia non nulla di parametri tale che:

$$x_{3h}(t) = c_1 x_{1h}(t) + c_2 x_{2h}(t)$$

Quindi, date due soluzioni, anche la loro combinazione lineare è soluzione

Equazioni Differenziali Lineari a Coefficienti Costanti – 2º Ordine

Assumiamo come soluzione generale <u>dell'equazione omogenea</u> una funzione esponenziale:

$$x_{h}(t) = ce^{\lambda t}$$

Da cui:
$$\ddot{x}(t) + a\dot{x}(t) + bx(t) = (\lambda^2 + a\lambda + b)ce^{\lambda t} = 0$$

Deve essere quindi soddisfatta l'equazione Algebrica $\Rightarrow (\lambda^2 + a\lambda + b) \triangleq 0$ associata

- $\qquad \text{Radici } \lambda_{\mathbf{1}} \text{ e } \lambda_{\mathbf{2}} \text{ reali e distinte } \ x_{\mathbf{h}}(t) = c_{\mathbf{1}} e^{\lambda_{\mathbf{1}} t} + c_{\mathbf{2}} e^{\lambda_{\mathbf{2}} t} \\ \Rightarrow W = c_{\mathbf{1}} c_{\mathbf{2}} \left(\lambda_{\mathbf{2}} \lambda_{\mathbf{1}} \right) e^{(\lambda_{\mathbf{1}} + \lambda_{\mathbf{2}}) t} \neq 0$
- $\qquad \text{Radici } \lambda_{\mathbf{1}} = \lambda_{\mathbf{2}} = \lambda \text{ reali e ripetute} \quad x_{\mathbf{h}}(t) = c_{\mathbf{1}}e^{\lambda t} + c_{\mathbf{2}}te^{\lambda t} = (c_{\mathbf{1}} + c_{\mathbf{2}}t)e^{\lambda t} \Rightarrow W = c_{\mathbf{1}}c_{\mathbf{2}}e^{2\lambda t} \neq 0$
- Radici λ_1 e λ_2 complesse e coniugate

$$\begin{cases} \lambda_{\scriptscriptstyle 1,2} = \alpha \pm j\beta \\ c_{\scriptscriptstyle 1,2} = \delta \pm j\gamma \end{cases} \qquad x_{\scriptscriptstyle h}(t) = c_{\scriptscriptstyle 1} e^{\lambda_{\scriptscriptstyle 1} t} + c_{\scriptscriptstyle 2} e^{\lambda_{\scriptscriptstyle 2} t}$$

Equazioni Differenziali Lineari a Coefficienti Costanti – 2º Ordine

Nel caso di radici complesse e coniugate, la soluzione può essere espressa in forma <u>REALE</u> usando le formule di Eulero:

$$z = c_{\scriptscriptstyle 1} e^{\lambda_{\!\scriptscriptstyle 1} t} + c_{\scriptscriptstyle 2} e^{\lambda_{\!\scriptscriptstyle 2} t} = 2 e^{\alpha t} \left[\delta \cos \left(\beta t \right) - \gamma \sin \left(\beta t \right) \right] = 2 \left| c \right| e^{\alpha t} \sin \left(\beta t + \phi + \frac{\pi}{2} \right)$$

$$x_{\scriptscriptstyle h}(t) = \begin{cases} c_{\scriptscriptstyle 1} e^{\lambda_{\scriptscriptstyle 1} t} + c_{\scriptscriptstyle 2} e^{\lambda_{\scriptscriptstyle 2} t} \\ c_{\scriptscriptstyle 1} e^{\lambda_{\scriptscriptstyle 1} t} + c_{\scriptscriptstyle 2} t e^{\lambda_{\scriptscriptstyle 2} t} \\ a_{\scriptscriptstyle 1} e^{\alpha t} \sin(\beta t + a_{\scriptscriptstyle 2}) \end{cases}$$

2. Equazione differenziale del secondo ordine non omogenea:

$$\ddot{x}(t) + a\dot{x}(t) + bx(t) = f(t)$$

$$x_0, \dot{x}_0$$

☐ La soluzione è somma delle soluzioni dell'omogenea associata e della soluzione particolare.

$$x(t) = c_1 x_{h1}(t) + c_2 x_{h2}(t) + x_p(t)$$

Equazioni Differenziali Lineari – 2º Ordine

Esempio 1:

$$\ddot{x}(t) + 3\dot{x}(t) - 10x(t) = 1$$

$$\lambda^2 + 3\lambda - 10 = 0$$

$$\lambda_{_{\! 1}}=-5, \lambda_{_{\! 2}}=2$$

$$x(t) = c_1 e^{-5t} + c_2 e^{2t} + k$$

Esempio 2:

$$\ddot{x}(t) + 2\dot{x}(t) + x(t) = 2$$

$$\ddot{x}(t) + 2\dot{x}(t) + x(t) = 2 \qquad \qquad \lambda^2 + 2\lambda + 1 = 0 \Rightarrow \lambda_1 = \lambda_2 = -1$$

$$x(t) = c_1 e^{-t} + c_2 t e^{-t} + k$$

Equazioni Differenziali Lineari – 2º Ordine

Esempio 3:

$$\ddot{x}(t) + x(t) = e^{-3t} \qquad \lambda^2 + 1 = 0 \Rightarrow \lambda_{1,2} = \pm j$$

$$x(t) = (\delta + j\gamma)e^{(\alpha + j\beta)t} + (\delta - j\gamma)e^{(\alpha - j\beta)t} + ke^{-3t}$$

$$x(t) = \delta e^{\alpha t}[e^{j\beta t} + e^{-j\beta t}] + j\gamma[e^{j\beta t} - e^{-j\beta t}] + ke^{-3t}$$

$$\alpha = 0; \beta = 1$$

$$x(t) = 2\delta \cos t - 2\gamma \sin t + ke^{-3t}$$

Equazioni Differenziali Lineari di Ordine Superiore

☐ La forma generale è data da:

$$\begin{cases} \frac{d^{n}y}{dt^{n}} + a_{n-1} \frac{d^{n-1}y}{dt^{n-1}} + \dots + a_{0}y = u \\ y_{0}, \dot{y}_{0}, \dots \end{cases}$$

☐ La soluzione è :

$$\begin{cases} y(t) = y_h(t) + y_p(t) \\ \\ y(t) = y_p(t) + \sum_{i=1}^{n} c_i e^{\lambda_i t} \end{cases}$$

- L'equazione algebrica associata è : $\lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_0 = 0$
 - Per ogni soluzione λ_i reale e distinta si ha il contributo:

$$c_{_i}e^{\lambda_i t}$$

• Per ogni soluzione λ_i reale e di molteplicità m si ha il contributo:

$$c_{j}e^{\lambda_{j}t} + c_{j+1}te^{\lambda_{j}t} + ... + c_{j+m}t^{m-1}e^{\lambda_{j}t}$$

• Per ogni soluzione λ_h , λ_k complessa e coniugata si ha il contributo:

$$\begin{split} c_{\boldsymbol{h}} e^{\lambda_{\boldsymbol{h}} t} + c_{\boldsymbol{k}} e^{\lambda_{\boldsymbol{k}} t} &= \left(\delta + j\gamma\right) e^{\left(\alpha + j\beta\right) t} + \left(\delta - j\gamma\right) e^{\left(\alpha - j\beta\right) t} \\ c e^{\alpha t} \sin\left(\beta t + d\right) \end{split}$$

Equazioni Differenziali Lineari di Ordine Superiore

Un'equazione differenziale di ordine n (lineare o nonlineare) può essere sempre trasformata in un sistema equivalente di equazioni differenziali del primo ordine

$$\frac{d^{n}y}{dt^{n}} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_{0}y = u$$

Definiamo il vettore:

$$oldsymbol{x}(t) \in \Re^n$$
 $oldsymbol{x} = [x_1, x_2, x_3, ... x_n]^T$

2. Si può riscrivere:

$$x_1 = y, x_2 = \dot{y}, x_3 = \ddot{y}, ... x_n = \frac{d^{n-1}y}{dt^{n-1}}$$

$$\dot{x}_1 = \dot{y} = x_2, \dot{x}_2 = \ddot{y} = x_3, ... \dot{x}_n = \frac{d^n y}{dt^n}$$

Si può riscrivere l'equazione differenziale di ordine n come un sistema di equazioni differenziali del primo ordine più un sistema algebrico che identifica la soluzione:

$$egin{aligned} \dot{oldsymbol{x}}(t) &= A_{nxn} oldsymbol{x}(t) + B_{nx1} u(t) \ oldsymbol{y}(t) &= C_{1xn} oldsymbol{x}(t) \end{aligned}$$

Equazioni Differenziali Lineari: Esempi

Modello di Carro Ponte

$$\begin{cases} x_m = x - L sen \theta \cong x - L\theta \\ y_m = -L cos \theta \cong -L \end{cases}$$

Equazioni del moto per piccoli spostamenti (linearizzate)

$$\begin{cases} (M+m)\ddot{x} - mL\ddot{\theta} + c\dot{x} + kx = f(t) \\ mL^2\ddot{\theta} - mL\ddot{x} + mLg\theta = 0 \end{cases}$$

$$x_{1} = x, x_{2} = \dot{x}, x_{3} = \theta, x_{4} = \dot{\theta}$$

$$\begin{cases}
\dot{x}_{1} = x_{2} & a = \frac{1}{M}, b = \frac{1}{ML} \\
\dot{x}_{2} = \frac{mL}{M+m} \dot{x}_{4} - \frac{c}{M+m} x_{2} - \frac{k}{M+m} x_{1} + \frac{1}{M+m} f(t) \\
\dot{x}_{3} = x_{4} & \dot{x}_{4} = \frac{\dot{x}_{2}}{L} - \frac{g}{L} x_{3}
\end{cases}$$

$$\begin{vmatrix}
\dot{x}_{1} = x_{2} & a = \frac{1}{M}, b = \frac{1}{ML} \\
\dot{x}_{1} = \frac{1}{M}, b = \frac{1}{ML} \\
\dot{x}_{2} = \frac{1}{M}, b = \frac{1}{ML} \\
\dot{x}_{3} = x_{4} & \dot{x}_{2} = \frac{1}{M}, b = \frac{1}{ML} \\
\dot{x}_{4} = \frac{1}{M}, b = \frac{1}{ML} \\
\dot{x}_{4} = \frac{1}{M}, b = \frac{1}{ML} \\
\dot{x}_{4} = \frac{1}{M}, b = \frac{1}{ML} \\
\dot{x}_{5} = \frac{1}{M}, b = \frac{1}{ML} \\
\dot{x}_{7} = \frac{1}{M}, b = \frac{1}{M}, b = \frac{1}{ML} \\
\dot{x}_{8} = \frac{1}{M}, b = \frac{1}{M}, b = \frac{1}{ML} \\
\dot{x}_{8} = \frac{1}{M}, b = \frac{1}{M$$

$$a = \frac{1}{M}, b = \frac{1}{ML}$$

$$\frac{\dot{x}}{x} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
-ak & -ac & -amg & 0 \\
0 & 0 & 0 & 1 \\
-bk & -bc & -b(M+m)g & 0
\end{pmatrix} x + \begin{pmatrix}
0 \\ a \\ 0 \\ b
\end{pmatrix} f(t)$$

Equazioni Differenziali Lineari: Esempi

Equilibrio dinamico

$$m\ddot{x} = F_1 \cos \theta - F_2 \sin \theta - c\dot{x},$$

$$m\ddot{y} = F_1 \sin \theta + F_2 \cos \theta - mg - c\dot{y},$$

$$J\ddot{\theta} = rF_1.$$

 Assumendo piccoli spostamenti rispetto alla posizione verticale

$$\begin{split} m\ddot{x} &= F_{_{\! 1}} - c\dot{x} \\ m\ddot{y} &= F_{_{\! 2}} - mg - c\dot{y} \\ J\ddot{\theta} &= rF_{_{\! 1}} \end{split}$$

$$\dot{\boldsymbol{x}} = \begin{bmatrix} \dot{x}_1 = \dot{x} \\ \dot{x}_2 = \ddot{x} \\ \dot{x}_3 = \dot{y} \\ \dot{x}_4 = \ddot{y} \\ \dot{x}_5 = \dot{\theta} \\ \dot{x}_6 = \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 1 & | & 0 & 0 & | & 0 & 0 \\ 0 & -\frac{c}{m} & | & 0 & 0 & | & 0 & 0 \\ 0 & 0 & | & 0 & -\frac{c}{m} & | & 0 & 0 \\ 0 & 0 & | & 0 & -\frac{c}{m} & | & 0 & 0 \\ 0 & 0 & | & 0 & 0 & | & 0 & 1 \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 & 0 \\ \frac{1}{m} & 0 \\ 0 & -\frac{1}{m} \\ 0 & -\frac{m}{0} \\ -\frac{m}{0} \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ -\frac{m}{0} \\ -\frac{m}{0} \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ -\frac{m}{0} \\ -\frac{m}{0} \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ -\frac{m}{0} \\ -\frac{m}{0} \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\frac{m}{0} \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\frac{m}{0} \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\frac{m}{0} \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\frac{m}{0} \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\frac{m}{0} \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\frac{m}{0} \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\frac{m}{0} \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \boldsymbol{x$$

- ☐ Il processo di linearizzazione è molto importante per la costruzione di una classe di modelli approssimati di largo uso in campo ingegneristico: I sistemi lineari dinamici
- La linearizzazione è una procedura che consiste nell'approssimare una funzione non lineare nell'intorno di un punto particolare definito, con la tangente in tale punto, ovvero sostituire la variazione Δf della funzione con il suo differenziale df.

$$\begin{split} \Delta f &= f(x_2) - f(x_1) = f(x_1 + \Delta x) - f(x_1) \\ \left\{ \begin{aligned} \Delta f &= df + g(x, \Delta x) \Big| \Delta x \Big| \\ df &= \frac{df}{dx} dx \approx k \Delta x \end{aligned} \right. &\qquad \lim_{\Delta x \to 0} g(x, \Delta x) = 0 \Rightarrow \Delta f = df \end{split}$$

- lacktriangle Con questa approssimazione, la retta secante che passa tra i punti x_1 e x_2 , tende a coincidere con la retta tangente alla curva nel punto x_1 , via via che Δx tende a zero
- ☐ La linearizzazione si può applicare a funzioni algebriche e/o differenziali continue e con derivata continua della forma:

$$y = f(x)$$
 $y = \frac{dx}{dt} = \dot{x} = f(x)$

Definizione: Data una funzione y = f(x), si definisce <u>punto stazionario</u> x_0 , il valore che annulla la derivata prima

$$\left. \frac{dy}{dx} \right|_{x_0} = f'(x_0) = 0$$

Definizione: Dato un sistema descritto da un'equazione differenziale del tipo $\dot{x}=f(x)$ si definisce <u>punto di equilibrio</u> x_0 , il valore che annulla la derivata prima, ovvero:

$$\dot{x}_0 = f(x_0) = 0$$

In assenza di agenti esterni (forzanti, condizioni iniziali), un sistema che si trova al punto di equilibrio vi rimane indefinitamente.

Le due definizioni coincidono nel caso di equazione $f\!\left(x\right)$ omogenea e non necessariamente nel caso di equazione non omogenea

 Nel seguito consideriamo soltanto funzioni che descrivono sistemi dinamici della forma:

$$\dot{x}(t) = f(x(t))$$

• Con x(t) scalare oppure vettore

$$\dot{x} = f(x)$$
 $x(t) = x_0 + \delta x \implies f(x) = f(x_0 + \delta x)$

☐ Strumento per la linearizzazione: Sviluppo in Serie di Taylor nell'intorno di un punto stazionario/equilibrio x_0

$$f(x) = f(x_0) + \frac{df(x)}{dx} \Big|_{x_0} \delta x + \frac{1}{2} \frac{d^2 f(x)}{dx^2} \Big|_{x_0} \delta x^2 + \dots$$

$$\dot{x} = \dot{x}_0 + \delta \dot{x} \cong f(x_0) + \frac{df(x)}{dx} \Big|_{x_0} \delta x + \dots$$

$$\dot{x} = \dot{x}_0 + \delta \dot{x} \cong f(x_0) + \frac{df(x)}{dx} \Big|_{x_0} \delta x + \dots$$

La parte che interessa è costituita dall'evoluzione dovuta a 'piccoli' spostamenti δx rispetto all'equilibrio, quindi:

$$f(x) = f(x_0) + \frac{df(x)}{dx} \bigg|_{x_0} \delta x + g(x, \delta x)$$

Essendo x_0 un punto di equilibrio, per definizione: $\dot{x}_0 = f(x_0) = 0$

Da cui, sostituendo, si ricava:

$$\delta \dot{x} = \frac{df}{dx} \bigg|_{x_0} \delta x = a \delta x$$

La soluzione approssimata lineare è quindi: $\dot{x} = f(x) \Rightarrow x(t) \approx x_0 + \delta x(t)$

Linearizzazione (esempio)

$$\dot{x} = x^3 + 2x^2 - x - 2 = f(x)$$

$$f(x_0) = x_0^3 + 2x_0^2 - x_0 - 2 = (x_0^2 - 1)(x_0 + 2) = 0$$

$$\Rightarrow x_{01} = -1, x_{02} = 1, x_{03} = -2$$

$$\frac{\partial f}{\partial x} = 3x^2 + 4x - 1$$

$$\begin{cases} \frac{\partial f}{\partial x}\Big|_{x_{01}} = -2 \\ \frac{\partial f}{\partial x}\Big|_{x_{02}} = 6 \end{cases}$$

$$\begin{cases} \dot{x}_{1L} = -2(x+1) \\ \dot{x}_{2L} = 6(x-1) \\ \dot{x}_{3L} = 3(x+2) \end{cases}$$

☐ Linearizzazione di una funzione scalare differenziale di più variabili: il Gradiente

$$\dot{y} = f(x), x = [x_1, x_2, ..., x_n]^T$$

$$f(x_1, x_2) = \frac{6x_1}{2 + x_1^2 + x_2^2}$$

Definizione: Data una funzione scalare di n variabili $f(x_1,...,x_n)$ differenziabile, ad ogni punto x è possibile associare un campo vettoriale detto gradiente e definito dal vettore di derivate parziali nel punto:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1}, & \frac{\partial f}{\partial x_2}, & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

Lo sviluppo in serie di Taylor di tale funzione vale:

$$\begin{split} f(\boldsymbol{x}) &= f(\boldsymbol{x}_0) + \left[\frac{\partial f}{\partial x_1} \bigg|_{\boldsymbol{x}_0} \delta x_1 + \ldots + \frac{\partial f}{\partial x_n} \bigg|_{\boldsymbol{x}_0} \delta x_n \right] + \frac{1}{2!} \left[\frac{\partial^2 f}{\partial x_1^2} \bigg|_{\boldsymbol{x}_0} \delta x_1^2 + \ldots + \frac{\partial^2 f}{\partial x_n^2} \bigg|_{\boldsymbol{x}_0} \delta x_n^2 + \ldots \right] \\ & 2 \sum_{\substack{i=1,n \\ j=1,n}}^{i \neq j} \frac{\partial^2 f}{\partial x_i \partial x_j} \bigg|_{\boldsymbol{x}_0} \delta x_i \delta x_j \right] + \frac{1}{3!} \left\{ \sum_{i=1}^n \frac{\partial^3 f}{\partial x_i^3} \bigg|_{\boldsymbol{x}_0} \delta x_i^3 + 3 \left[\sum_{\substack{i=1,n \\ j=1,n \\ k=1,n}}^{i \neq j \neq k} \frac{\partial^3 f}{\partial x_i \partial x_j \partial x_k} \bigg|_{\boldsymbol{x}_0} \delta x_i \delta x_j \delta x_k \right] \right\} + \ldots \end{split}$$

 Da cui, mantenendo i termini lineari (termini del primo ordine nella perturbazione e termini relativi all'equilibrio) si ha:

$$\boxed{f(\boldsymbol{x}) \simeq f(\boldsymbol{x}_{\scriptscriptstyle 0}) + f(\delta \boldsymbol{x}) = f(\boldsymbol{x}_{\scriptscriptstyle 0}) + (\nabla f \Big|_{\boldsymbol{x}_{\scriptscriptstyle 0}})^T \delta \boldsymbol{x}}$$

$$\Box$$
 Esempio: $f(\mathbf{x}) = z = x_1^2 + x_2^2 + 4x_1 - x_2$

Calcolo punti di equilibrio:

$$f(\mathbf{x}_0) = 0 \Rightarrow x_1(x_1 + 4) + x_2(x_2 - 1) = 0$$
 $\Rightarrow \begin{cases} \mathbf{x}_{01} = (0, 0) \\ \mathbf{x}_{02} = (-4, 1) \end{cases}$

$$\frac{\partial f}{\partial x_1} = 2x_1 + 4 \qquad \frac{\partial f}{\partial x_1}\Big|_{x_{01}} = 4 \qquad \frac{\partial f}{\partial x_1}\Big|_{x_{02}} = -4$$

$$\frac{\partial f}{\partial x_2} = 2x_2 - 1 \qquad \frac{\partial f}{\partial x_2}\Big|_{x_{01}} = -1 \qquad \frac{\partial f}{\partial x_2}\Big|_{x_{02}} = 1$$

$$z_{_{LIN}} = \begin{bmatrix} 2x_{_1} + 4 & 2x_{_2} - 1 \end{bmatrix} \cdot \begin{bmatrix} x_{_1} - x_{_{10}} \\ x_{_2} - x_{_{20}} \end{bmatrix} \qquad \begin{aligned} z_{_{LIN1}} &= 4x_{_1} - x_{_2} \\ z_{_{LIN2}} &= -4(x_{_1} + 4) + (x_{_2} - 1) \end{aligned}$$

☐ Linearizzazione di una funzione vettoriale di più variabili: Matrici Jacobiana ed Hessiana

$$\dot{x} = f(x)$$

Matrice Jacobiana contiene le derivate prime

$$\begin{split} \boldsymbol{x} &= [x_1, ..., x_n]^T \\ \dot{\boldsymbol{x}} &= [\dot{x}_1, ..., \dot{x}_n]^T \\ \boldsymbol{f} &= [f_1, ..., f_n]^T \end{split}$$

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

Matrice Hessiana contiene le derivate seconde

$$\begin{aligned} \boldsymbol{x} &= [x_1, \dots, x_n]^T \\ \boldsymbol{\dot{x}} &= [\dot{x}_1, \dots, \dot{x}_n]^T \\ \boldsymbol{f} &= [f_1, \dots, f_n]^T \end{aligned} \qquad \boldsymbol{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

$$\boldsymbol{H} = \begin{bmatrix} \frac{\partial^2 f_1}{\partial x_1^2} & \frac{\partial^2 f_1}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f_1}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f_2}{\partial x_2 \partial x_1} & \frac{\partial^2 f_2}{\partial x_2^2} & \dots & \frac{\partial^2 f_2}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f_n}{\partial x_n \partial x_1} & \frac{\partial^2 f_n}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f_n}{\partial x_n^2} \end{bmatrix}$$

$$\dot{\boldsymbol{x}} = \dot{\boldsymbol{x}}_{0} + \delta \boldsymbol{x} = f(\boldsymbol{x}_{0}) + \boldsymbol{J}\Big|_{\boldsymbol{x}_{0}} \delta \boldsymbol{x} + \frac{1}{2!} \delta \boldsymbol{x}^{T} \boldsymbol{H}\Big|_{\boldsymbol{x}_{0}} \delta \boldsymbol{x} + \dots$$

$$\dot{\boldsymbol{x}}_{0} = \boldsymbol{f}(\boldsymbol{x}_{0}) = 0$$

 $\dot{m{x}}_{_{\!\!0}} = m{f}(m{x}_{_{\!\!0}}) = 0$ Il calcolo della condizione di equilibrio implica La soluzione di un sistema algebrico nonlineare (problema complesso in generale)

$$\delta \dot{\boldsymbol{x}} = J \Big|_{\boldsymbol{x}_{\circ}} \delta \boldsymbol{x}$$
 \longrightarrow

Il sistema, se quadrato, è costituito da n equazioni differenziali lineari, a coefficienti costanti, con n Incognite della forma generale:

$$\delta \dot{\boldsymbol{x}} = A \delta \boldsymbol{x}$$

Esempio:

$$\dot{\boldsymbol{x}} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 4x_1^2 - 6x_2 \\ 6x_1x_2 + 9x_1^2 - 3\sin x_1 \end{bmatrix} \qquad J = \begin{bmatrix} 8x_1 \\ 18x_1 + 6x_2 - 3\cos x_1 \end{bmatrix} - \frac{6}{6x_1}$$

$$\delta \dot{\boldsymbol{x}} = \begin{bmatrix} 0 & -6 \\ 0 & 0 \end{bmatrix} \delta \boldsymbol{x}$$

$$H = \begin{bmatrix} 8 & 0 \\ 6 & 0 \end{bmatrix}$$

Esempio Applicativo - Linearizzazione

- Modello lancio razzo mediante pendolo inverso.
- In questo caso, si usa la forza u per mantenere il pendolo verticale

$$\begin{split} \ddot{\theta} &= \frac{mgl}{J_{_T}} \sin \theta - \frac{\gamma}{J_{_T}} \dot{\theta} + \frac{l}{J_{_T}} \cos \theta \cdot u \\ J_{_T} &= J + ml^2 \end{split}$$

$$\frac{d}{dt} \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{\dot{\theta}}{mgl} \\ \frac{mgl}{J_t} \sin \theta - \frac{\gamma}{J_t} \dot{\theta} + \frac{l}{J_t} \cos \theta u \end{bmatrix}, \qquad y = \theta, \qquad \begin{bmatrix} x_1 = \theta \\ x_2 = \dot{\theta} \end{bmatrix}$$

$$\frac{dx}{dt} = F(x) \qquad \frac{dx}{dt} = \begin{bmatrix} x_2 \\ \sin x_1 - cx_2 + u \cos x_1 \end{bmatrix}$$

Esempio Applicativo - Linearizzazione

Calcolo dei punti di Equilibrio:

$$\dot{x}_{e} = F(x_{e}) = 0 \Rightarrow x_{e} = \begin{bmatrix} \pm n\pi, n = 0, 1, 2, \dots \\ 0 \end{bmatrix}, u = 0$$

Piano delle fasi della soluzione per $u=\theta$. (soltanto 5 punti di equilibrio)

$$\begin{split} x &= x_{e} + \delta x \\ \dot{x} &= \dot{x}_{e} + \delta \dot{x} = F(x_{e}) + J \Big|_{x_{e}} \cdot \delta x \Rightarrow \\ &\Rightarrow \delta \dot{x} = J \Big|_{x_{e}} \cdot \delta x \end{split}$$

$$J\Big|_{x_{e}} = \begin{bmatrix} \frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{1}}{\partial x_{2}} \\ \frac{\partial F_{2}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{2}} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \cos x_{1} - u \sin x_{1} & -c \end{bmatrix}_{\bar{x}_{e}} = \begin{bmatrix} 0 & 1 \\ 1 & -c \end{bmatrix} \qquad \ddot{\theta} = \theta - c\dot{\theta}$$

Linearizzazione (esercizio)

Linearizzare il sistema:

$$m\ddot{x} = F_1 \cos \theta - F_2 \sin \theta - c\dot{x},$$

$$m\ddot{y} = F_1 \sin \theta + F_2 \cos \theta - mg - c\dot{y},$$

$$J\ddot{\theta} = rF_1.$$

Intorno alla posizione di hover data dal seguente punto di equilibrio:

$$\begin{aligned} x_{_{0}} &= 0 \\ \dot{x}_{_{0}} &= 0 \\ y_{_{0}} &= r_{_{0}} \\ \dot{y}_{_{0}} &= 0 \\ \theta_{_{0}} &= 0 \\ \dot{\theta}_{_{0}} &= 0 \\ F_{_{1}} &= 0 \\ F_{_{2}} &= mg \end{aligned}$$