

What are clusters?

- Samples of the same cluster must have something in common, and those of different clusters must have some differences.
- Parametric approach

Generative models, Probabilistic Inference

- A cluster is a probabilistic density function
- Mixture Models
- → "model-based" methods
- Nonparametric approach

Deterministic Learning

- A cluster is a region in the sample space
- → "distance-based", "model-free" methods

Model-free methods:
Dynamic Clustering

Basic idea:

- Divide samples into clusters according to some similarity/distance measure
 - Samples of same clusters are similar; Samples of different clusters are dissimilar.
 - · Similarity or distance measure on the features
 - Should be relevant for some question of interest
 - Define an objective function, and divide samples into clusters to optimize the objective function
 - · 3 Key Points
 - Distance/similarity measure
 - Objective function
 - Dividing/clustering algorithm

The C-means (K-means) Algorithm

@ 消華大学

- Euclidean distance (can be replaced by others)
- Objective function: minimal mean square error

$$J_e = \sum_{i=1}^{c} \sum_{y \in \Gamma_i} ||y - m_i||^2 = \sum_{i=1}^{c} J_i$$

 Γ_i : cluster i; sample counts: N_i , $i=1,\cdots,c$; cluster means: $m_i=\frac{1}{N_i}\sum_{y\in\Gamma_i}y$

- Intuition:
 - Use c (or k) means to represent all samples
 - Find the means to give minimal representation error
 - aka. *Vector Quantization*: using a code-book of length c (or k) to encode all samples with minimal error

How to optimize the objective function?

◎游客大学

- For existing set of clusters, take sample $y \in \Gamma_k$,
- If y is movefrom Γ_k to Γ_i , Γ_k becomes $\widetilde{\Gamma_k}$, Γ_i becomes $\widetilde{\Gamma_i}$, and

$$\widetilde{m}_k = m_k + \frac{1}{N_k - 1} [m_k - y], \quad \widetilde{J}_k = J_k - \frac{N_k}{N_k - 1} ||y - m_k||^2$$

$$\widetilde{m}_j = m_j + \frac{1}{N_j + 1} [y - m_j], \quad \widetilde{J}_j = J_j + \frac{N_j}{N_j + 1} ||y - m_j||^2$$

Since

$$J_e = \sum_{i=1}^{c} \sum_{y \in \Gamma_i} ||y - m_i||^2 = \sum_{i=1}^{c} J_i$$

lf

$$\frac{N_j}{N_j + 1} \|y - m_j\|^2 < \frac{N_k}{N_k - 1} \|y - m_k\|^2$$

moving y from Γ_k to Γ_j will decrease J_e .

--- A greedy algorithm.

13

C-means (K-means) Algorithm

◎诸苯大学

- (1) Initialize Γ_i , $i=1,\dots,c$, calculate m_i , $i=1,\dots,c$ and J_e
- (2) Pick up a sample y, e.g., $y \in \Gamma_i$
- (3) If $N_i = 1$ go to step (2), otherwise continue
- (4) Compute ρ_i :

$$\rho_{j} = \frac{N_{j}}{N_{j} + 1} \|y - m_{j}\|^{2}, \quad j \neq i$$

$$\rho_{i} = \frac{N_{i}}{N_{i} - 1} \|y - m_{i}\|^{2}$$

- (5) Find the minimal ρ_j , say ρ_k . If $\rho_k < \rho_i$, move y from Γ_i to Γ_k
- (6) Update m_i , $i = 1, \dots, c$ and J_e
- (7) If J_e has not changed in N iterations, stop; otherwise go to step (2).

C-means (K-means) Algorithm initialize $m_i, i=1,\cdots,c$ Do assign samples to clusters with nearest $m_i, i=1,\cdots,c$ recompute $m_i, i=1,\cdots,c_i$ until (no change in $m_i, i=1,\cdots,c$) return $m_i, i=1,\cdots,c$ and the cluster assignments of all samples

end

100 11 苯大学

Initialization

- Usually by setting initial representative points and form initial clusters around them, e.g.,
 - Arbitrarily/randomly choose c points or set c centers
 - Randomly divide samples into c groups and use the means to start
 - Choose points with high local "density" (say, roughly estimated as the number of samples in a small neighborhood)
 - Find c-1 clusters and use the sample with the largest distance to all cluster centers as the cth representative. Start with 1 cluster.
 - Select according to domain knowledge/experience
 - ...

17

- c = ? (k = ?)
 - Given based on domain knowledge
 - Try different choices and check the results
 - Decide through pre-experiments
 - Do clustering for $c=1,2,3,\cdots$, draw the curve of $J_e(c)$ with regard to c, find the knee point (if any) and set it as the c.

--- This may not work, but it always worth looking at.

ISODATA algorithm

◎诸苯大学

Iterative Self-Organizing Data Analysis Technique A

G.H. Ball & D.J. Hall, : ISODATA, a novel method of data analysis and pattern classification (Stanford Research Institute, 1965)

With apologies for adding another acronym to the growing list, we have coined ISODATA to represent Iterative Self-Organizing Data Analysis Techniques A. (The "A" was added to make ISODATA pronouncable.) The classically-oriented can derive it from ISO, meaning "the same" or "like + Data.)

Modified C-means

- Batch correction
- Allow for cluster splitting/merging
 → Provide some flexibility on the initial setting of number of clusters

Algorithm ISODATA:

- (1) Initialization: starting number of clusters c, cluster centers m_i , $i=1,\cdots,c$, expected number of clusters k, lower limit on number of samples in a cluster θ_N , upper limit on iteration I, standard deviation threshold θ_S , merging threshold θ_C
- (2) Assign all samples to their closest clusters Γ_i , $i = 1, \dots, c$
- (3) If $N_j < \theta_N$ for cluster Γ_j , remove this cluster and assign its samples to other close clusters, set c=c-1
- (4) Update the cluster centers $m_j = \frac{1}{N_i} \sum_{y \in \Gamma_j} y$, $j = 1, \dots, c$
- (5) Calculate the average distance of samples in a cluster to the cluster center

$$\overline{\delta_j} = \frac{1}{N_j} \sum_{y \in \Gamma_j} \|y - m_j\|, j = 1, \dots, c$$

and the overall average distance of all clusters $\bar{\delta} = \frac{1}{N} \sum_{j=1}^{c} N_j \bar{\delta_j}$

圆浦華大学

(6) If this is the last iteration (decided by parameter I), then stop; otherwise

if $c \le k/2$, go to (7) for dividing;

if $c \ge 2k$ or the number of iteration is even, go to (8) for merging.

(7) Dividing:

7-1 For each cluster, compute standard deviation of each dimension $\sigma_i = \left[\sigma_{i1}, \sigma_{i2}, \cdots, \sigma_{id}\right]^T$

$$\sigma_{ji} = \sqrt{\frac{1}{N} \sum_{y_k \in \Gamma_j} (y_{ki} - m_{jk})^2}, j = 1, \dots, c; i = 1, \dots, d$$

- 7-2 For each cluster j, find the dimension with largest deviation σ_{imax}
- 7-3 If for σ_{jmax} , $j=1,\cdots,c$, there exist a $\sigma_{jmax}>\theta_s$ (standard deviation threshold),

and
$$\bar{\delta}_i > \bar{\delta}$$
, $N_i > 2(\theta_N + 1)$, or $c \le k/2$,

then divide Γ_i to two new clusters with means m_j^+ and m_j^- , and set c=c+1

$$m_j^+ = m_j + \gamma_j, \ m_j^- = m_j - \gamma_j$$

where $\gamma_j = k \sigma_{jmax}$, 0 < k < 1.

23

(1) / (1) / (1)

- (8) Merging
 - 8-1 Compute distances between clusters

$$\delta_{ij} = ||m_i - m_j||, i, j = 1, \dots, c, i \neq j$$

8-2 Compare δ_{ij} with θ_c (merging threshold), order those smaller than θ_c

$$\delta_{i_1j_1} < \delta_{i_2j_2} < \dots < \theta_c$$

8-3 Merge clusters m_{i_l} and m_{j_l} :

$$m_{l} = \frac{1}{N_{i_{l}} + N_{j_{l}}} [N_{i_{l}} m_{i_{l}} + N_{j_{l}} m_{j_{l}}]$$

$$set c = c - 1$$
.

(9) If this is the last iteration, stop; Otherwise go to (2). Threshold parameters can be adjusted if necessary.

Clustering methods based on kernel similarities Shortcoming of C-means: Using means to represent clusters, so only works for hypersphereshaped clusters Solution: Use kernels (instead of means) to represent clusters K_j = k(y, V_j) for cluster Γ_j V_j is a set of parameters K_j can be a function, a set of points, or a distribution model C-means clustering → "C-kernels" clustering

◎消華大学

• Define $\Delta(y, K_j)$ to be the distance of sample y to cluster Γ_j (kernel K_j), the objective function becomes

$$J_k = \sum_{i=1}^c \sum_{y \in \Gamma_i} \Delta(y, K_i)$$

Algorithm:

- (1) Initialization: K_j , $j = 1, \dots, c$
- (2) Assign samples to clusters according to the rule:

if
$$\Delta(y, K_j) = \min_{k=1,\dots,c} \Delta(y, K_k)$$
, then $y \in \Gamma_j$

- (3) Update K_i , $j = 1, \dots, c$. Stop if K_i does not change, otherwise go to (2).
- C-means can be seen as a special case of this algorithm with K_j being m_j and Δ being the Euclidean distance.

(1) / (1) / (1)

· Examples of kernels

$$\begin{split} - \text{ Gaussian kernel: } V_j &= \{m_j, \widehat{\Sigma}_j\} \\ k_k(y, V_j) &= \frac{1}{(2\pi)^{d/2} \big|\widehat{\Sigma}_j\big|^{1/2}} \exp\Big\{ -\frac{1}{2} (y - m_j)^T \widehat{\Sigma}_j^{-1} (y - m_j) \Big\} \\ \Delta(y, k_j) &= \frac{1}{2} (y - m_j)^T \widehat{\Sigma}_j^{-1} (y - m_j) + \frac{1}{2} \log \big|\widehat{\Sigma}_j\big| \end{split}$$

Mahalanobis distance

$$k(y, V_j) = U_j^T y$$

$$U_j^T = [u_1, u_2, \cdots, u_{d_j}] \text{: Principle components of } \widehat{\Sigma}_j$$

$$\Delta(y, k_j) = [(y - m_j) - U_j U_i^T (y - m_j)]^T [(y - m_j) - U_j U_i^T (y - m_j)]$$

Fuzzy Sets

L.A. Zadeh, Fuzzy sets, Information & Control, v.8, pp.338-353, 1965

- · Crisp sets:
 - · Elements either belong to or does not belong to a set
- Fuzzy sets:
 - Elements belong to a set with a degree of membership
 - · Proper for expressing concepts in natural languages
- Membership function $\mu_A(x)$:
 - the degree that x belongs to set A
 - $0 \le \mu_A(x) \le 1$
- Fuzzy set A: $A = \{(\mu_A(x_i), x_i)\}\ \text{or}\ A = \bigcup_i \mu_i/x_i$

Xuegong Zhang

3

• Example: "boiled water"

Fuzzy set operations:

- Union $C = A \cup B$: $\mu_c(x) = \max\{\mu_A(x), \mu_B(x)\}$
- Intersection $C = A \cap B$: $\mu_C(x) = \min\{\mu_A(x), \mu_B(x)\}$

MA(X) MB(X)

FCM (Fuzzy C-Means)

圆消華大学

- What C-means does:
 - Assign n samples to c clusters, so that their average square errors to cluster means are minimal:

$$\min \quad J_e = \sum_{i=1}^c \sum_{y \in \Gamma_i} ||y - m_i||^2$$

• FCM is to replace crisp clusters by fuzzy clusters:

min
$$J_f = \sum_{j=1}^{c} \sum_{i=1}^{n} [\mu_j(x_i)]^b ||x_i - m_j||^2$$

 $\{x_i, i=1,\cdots,n\}$: the sample set, $m_j, j=1,\cdots,c$: cluster centers:

 $\mu_j(x_i)$: membership of x_i to cluster j

b>1 is a parameter controlling the degree of fuzziness

33

圆指苯大学

• FCM

min
$$J_f = \sum_{j=1}^{c} \sum_{i=1}^{n} [\mu_j(x_i)]^b ||x_i - m_j||^2$$

$$\sum_{j=1}^{c} \mu_j(x_i) = 1, \quad i = 1, \dots, n$$

Let $\partial J_f/\partial \mathbf{m}_i = 0$ and $\partial J_f/\partial \mu_i(\mathbf{x}_i) = 0$

we have

$$\mathbf{m}_{j} = \frac{\sum_{i=1}^{n} [\mu_{j}(x_{i})]^{b} \mathbf{x}_{i}}{\sum_{i=1}^{n} [\mu_{i}(x_{i})]^{b}}, \quad j = 1, \dots, c$$

and

$$\mu_{j}(\mathbf{x}_{i}) = \frac{\left(1/\|\mathbf{x}_{i} - \mathbf{m}_{j}\|^{2}\right)^{1/(b-1)}}{\sum_{k=1}^{c} (1/\|\mathbf{x}_{i} - \mathbf{m}_{k}\|^{2})^{1/(b-1)}}, \ j = 1, \dots, c, \ i = 1, \dots, n$$

- FCM algorithm
- (0) Set c and parameter b
- (1) Initialize m_i , $i = 1, \dots, c$
- (2) Repeat till $\mu_i(x_i)$ stablized

2.1 Use current
$$\mathbf{m}_{j}$$
 to compute $\mu_{j}(x_{i})$:
$$\mu_{j}(\mathbf{x}_{i}) = \frac{\left(1/\|\mathbf{x}_{i} - \mathbf{m}_{j}\|^{2}\right)^{1/(b-1)}}{\sum_{k=1}^{c} (1/\|\mathbf{x}_{i} - \mathbf{m}_{k}\|^{2})^{1/(b-1)}}$$

2.2 Use current $\mu_j(x_i)$ to compute m_j :

$$\mathbf{m}_{j} = \frac{\sum_{i=1}^{n} [\mu_{j}(x_{i})]^{b} \mathbf{x}_{i}}{\sum_{i=1}^{n} [\mu_{j}(x_{i})]^{b}}$$

- (3) Defuzzify the clusters if necessary
 - Since FCM requires $\sum_{j=1}^{c} \mu_j(x_i) = 1$, noisy samples that should not belong to any cluster (or should belong to a new cluster) cannot get very small memberships, e.g., →

AFC

• Change the condition to $\sum_{j=1}^{c} \sum_{i=1}^{n} \mu_{j}(x_{i}) = n$

$$\mathbf{m}_{j} = \frac{\sum_{i=1}^{n} [\mu_{j}(x_{i})]^{b} \mathbf{x}_{i}}{\sum_{i=1}^{n} [\mu_{j}(x_{i})]^{b}}, \quad j = 1, \dots, c$$

$$\mu_{j}(\mathbf{x}_{i}) = \frac{n(1/\|\mathbf{x}_{i} - \mathbf{m}_{j}\|^{2})^{1/(b-1)}}{\sum_{k=1}^{c} \sum_{l=1}^{n} (1/\|\mathbf{x}_{l} - \mathbf{m}_{k}\|^{2})^{1/(b-1)}}, \ j = 1, \dots, c, \ i = 1, \dots, n$$

- AFC has the same algorithm procedures with FCM
 - Since $\mu_i(x_i)$ may be >1 in AFC, it's not a membership function in the strict sense, normalization can be taken if necessary.

(1) / (1) / (1)

What are the key factors in hierarchical clustering?

- Distance / similarity measure
 - Distance between samples
 - e.g. Euclidean distance, correlation, City Block distance, ...
 - Distance between clusters (linkage)
 - Single-linkage $\Delta(\Gamma_i, \Gamma_j) = \min_{\substack{y \in \Gamma_i \\ \tilde{y} \in \Gamma_j}} \delta(y, \tilde{y})$
 - Complete-linkage $\Delta(\Gamma_i, \Gamma_j) = \max_{\substack{y \in \Gamma_i \\ \tilde{y} \in \Gamma_j}} \delta(y, \tilde{y})$
 - Average-linkage $\Delta(\Gamma_i, \Gamma_j) = \delta(m_i, m_j)$
- The bottom-up algorithm (agglomerative algorithm)
 - (1) Initialization, every sample as one cluster
 - (2) Merge the two clusters with smallest distance
 - (3) Repeat (2), until all samples are merged into one reservoir

Xuegeng Zhang

Validating Unsupervised Learning Results

- External measures
 - · According to some external knowledge
 - · Caution for bias and subjectivity
- Internal measures
 - Quality of the clusters according to the data
 - · Compactness and separation
 - Stability
 - ...

J. Handl, J. Knowles, D.B. Kell, Computational cluster validation in post-genomic data analysis, *Bioinformatics*, **21**(15): 3201-3212, 2005

5

Comparing Clustering Results

Confusion Matrix

Partition 1 Partition 2	C1	C2	С3	C4
S1	23	38	122	0
S2	309	12	0	13
S3	0	0	3	98

• F-measure (the larger the closer)

$$F(C) = \sum_{t=1,\dots,T} \frac{N_t}{N} \max_{k=1,\dots,K} F(S_t, C_k)$$

$$F(S_t, C_k) = \frac{2P(S_t, C_k)R(S_t, C_k)}{P(S_t, C_k) + R(S_t, C_k)} \quad \text{or} \quad F(S_t, C_k) = \frac{(b^2 + 1)P(S_t, C_k)R(S_t, C_k)}{b^2 P(S_t, C_k) + R(S_t, C_k)}$$

 $P(S_t, C_k) = \frac{N_{tk}}{N_k}, R(S_t, C_k) = \frac{N_{tk}}{N_t}$

If the comparison is equal

If S_t is regarded as the correct answer

Comparing Clustering Results

R

• Rand Index (the larger the closer)

$$R(U,V) = \frac{a+b}{a+b+c+d} = \frac{a+b}{\binom{n}{2}}$$

a, b, c, d: Numbers of pairs in the same/different clusters in partition U and in the same/different clusters in partition V.

a: same-same, b: diff-diff, c: same-diff, d: diff-same

• Adjusted Rand Index (ARI) (the larger the closer)

$$ARI = \frac{\text{Actual Index} - \text{Expected Index}}{\text{Max Index} - \text{Expected Index}}$$

$$R(U, V) = \frac{\sum_{lk} \binom{n_{lk}}{2} - \left[\sum_{l} \binom{n_{l.}}{2} \sum_{k} \binom{n_{.k}}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{l} \binom{n_{l.}}{2} + \sum_{k} \binom{n_{.k}}{2}\right] - \left[\sum_{l} \binom{n_{l.}}{2} \sum_{k} \binom{n_{.k}}{2}\right] / \binom{n}{2}}$$

53

Comparing Clustering Results

• Minkovski Score (the smaller the closer)

$$M(U,V) = \frac{\|C_U - C_V\|}{\|C_U\|}$$

 C_U , C_V : cophenetic matrixes of partition U and V

	X1	X2	Х3	٠	•	•	
X1	1	0	1				
X2	0	1	0				
Х3	1	0	1				
				1			
		X			1		
						1	

- Stability (the larger the better)
 - · Data split into two halves, and both clustered
 - Check the agreement between the partitioning and prediction

Internal measures

Compactness (homogeneity)

$$V(C) = \sqrt{\frac{1}{N} \sum_{C_k \in C} \sum_{i \in C_k} \delta(i, \mu_k)}$$

Connectedness (connectivity)

$$Conn(C) = \sum_{i=1}^{N} \sum_{j=1}^{L} x_{i,nn_{i(j)}}$$

- Separation
 - Silhouette value:

$$S(i) = \frac{b_i - a_i}{\max(b_i, a_i)}$$

- Dunn Index

$$D(C) = \min_{C_k \in C} \left(\min_{C_l \in C} \frac{dist(C_k, C_l)}{\max_{C_m \in C} diam(C_m)} \right)$$

- Intra-cluster variance
- Smaller better
- Degree that nearest L neighbors not clustered together
- · Smaller better
- Confidence for sample i be in the cluster comparing to closest other cluster
- · Larger better
- Ratio between the smallest intercluster distance and the largest intra-cluster distance
- · Larger better

J. Handl, J. Knowles, D.B. Kell, Bioinformatics, 2005

55

Discussion

- · Need to justify whether there are clusters in the data
- Usually unknown cluster numbers
- · Clustering results need to be annotated afterwards
 - "Pretended" unsupervised tasks → with expected truth
 - "Real" unsupervised tasks → no grand truth
- · Scaling factor
- A distribution vs. a closed region
 - → fuzzy clustering
 - →→ mixture models

