

Morphological Computation toward Self-Organizing Machines

Fumiya Iida
Bio-Inspired Robotics Lab
Institute of Robotics and Intelligent Systems
ETH Zurich, Switaerland

Robot vs. Animal

Characterization of Biological Locomotion

(as compared to engineered locomotion)

- No cable attached
 - Energetically autonomous!
- Many many tasks to do

Intrinsically general purpose systems!

Always in unstructured task-environment

Never visit the same state again!

No static components in the body

Everything is changing over time!

No human designers

Everything is self-organized!

The Principle of Self-Organization

Three time perspectives
Evolutionary
Developmental
Here and Now

Everything is continuously growing/adapting/changing Genetic components Musculoskeleton Nervous systems Sensory systems

George Lauder @ Harvard

Musculoskeletal Structure

Redundancy

Many muscles (muscle groups) are controlling one joint

Modularity

A similar component (e.g. muscle fibers) is used repeatedly

Diversity

Muscles are organized into any variations (e.g. cardiac-skeletal, monobiarticular)

Many sensors

Muscle spindles and golgi-tendon organs are "everywhere"

Building Bio-Inspired Robot

How to Replicate Biological Muscles?

Generating forces

(Electric, hydraulic motor, etc.)

Connecting Limbs

(Joint actuation, tensegrity, etc.)

Enhancing and protecting structures

(Spring-damper-mass systems, etc.)

Regulating motions

(Four bar mechanisms, etc.)

Comparing Biological and Man-Made Muscles?

Breaking Tension

Muscle	100-1000 kPa
Tendon	100 MPa
Steel wire	350 MPa

Power Density

Muscle	50-200 W/kg
Electic motors	100-200 W/kg
Car engines	400-1000 W/kg
Aircraft engines	1500-5500 W/kg
Pneumatic	10'000 W/kg
SMA	6 W/kg

More to come...

Case Studies of Bio-Inspired Robotics

- I. Self-Stability
- 2. Energy Efficiency
- 3. Behavioral Diversity
- 4. Adaptive Mechanics

Self-Stability

Simple Hopping Robot

Bio-Leg I (University of Jena) Rummel, J., Iida, F., Seyfarth, A. (2008) *ICRA2008*, 367-372.

Design Principle of Hopping Robot

Rummel-Seyfarth Model

Introduce a nonlinear spring in the SLIP model

Spring torque:

$$\tau(\Delta\beta) = c\Delta\beta$$

Natural length:

$$l_0(\beta_0) = \sqrt{\lambda_1^2 + \lambda_2^2 - 2\lambda_1\lambda_2\cos(\beta_0)}$$

Spring force:

$$F_{\text{leg}}(\tau) = \frac{l}{\lambda_1 \, \lambda_2} \, \frac{\tau}{\sin \beta}$$

Energy Efficiency

Energy Efficiency & Behavioral Diversity

Gabrielli- von Karman Diagram

Energy Efficiency & Behavioral Diversity

Gabrielli- von Karman Diagram

Energy Efficiency of Walking Systems

Energetic cost (J/Nm):

Velocity (m/s):

Human 0.2

≈2

ASIMO 3.2

≈0.5

Cornell Biped

0.2

0.4

Hopping with Free Vibration of Curved Beam

Reis and Iida, 2011

Locomotion with Curved Beams

Physics and Economy of Hopping

Cost of Transport = Cost of actuation

- + Cost of mechanical impact
- + Cost of mechanical damping

Free vibration can reduce all three of these!

Passive Hopping with a Curved Beam

Free Vibration of a Curved Beam

Design of Mechanical Dynamics

$$\omega_{\theta} = \sqrt{\frac{K_{\theta}}{I_{\theta}}} = \frac{1}{L} \sqrt{\frac{K_{\theta}}{M_{T}}}$$

$$\omega_r = \sqrt{\frac{K_r}{M_T}}$$

Locomotion Efficiency with Free Vibration

Gabrielli- von Karman Diagram

Behavioral Diversity?

More details in the poster by M. Reis!

Adaptive Mechanics

Morphing and Adhesion

Robots Made of Hot Melt Adhesives

Thermoplastic Polymer

- -Three distinctive phases: solid, plastic, and liquid
- -Repeatedly transform between them
- -Adhesive in liquid
- -Large tensile strength in solid

Autonomous Robot Body Extension

Autonomous Robot Body Extension

Autonomous Robot Body Extension

Conclusions

Morphological computation gives us many ideas for selforganization *in the real world*.

Challenges:

How can self-organization processes be **physically meaningful**?

- Self-stability in motion control
- > Energy-efficient (and rapid) motion control

How can we **scale up** real-world self-organization processes?

- ➤ Material, material, material, and material!
- > Self-organization in different timescales

Collaborators & Acknowledgement

Bio-Inspired Robotics Laboratory ETH Zurich, Switzerland

Liyu Wang

Nandan Maheshwari

Keith Gunura

Murat Reis

Derek Leach

Hugo Marques

Luzius Brodbeck

Xiaoxian Yu

Marc Osswald

Fabian Guenther

Cristian Montillo

Many thanks also to: Rolf Pfeifer (UZH), Andre Seyfarth (U Jena), Russ Tedrake (MIT)

Sponsors:

Thank you!

For publications, video, pictures:

Fumiya lida
Bio-Inspired Robotics Lab
Institute of Robotics and Intelligent Systems

Email: iidaf@ethz.ch

URL: http://www.birl.ethz.ch

