This Jupyter Notebook is pepared by Brantely Deines

1 - Load Data and Perform Basic EDA

▼ I - Imopri Libraries

```
import numpy as np
import pandas as pd
import matplotlib as mpt
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msn
from sklearn.preprocessing import StandardScaler
```

```
from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call

II - Import Data and Show Count of Rows and Rolumns

▼ III - Show First and Last 5 rows

data.head()

	enrollee_id	city_development_index	experience	company_size	last_new_jok
1	29725	0.776	15	2	Ē
4	666	0.767	21	2	۷
6	28806	0.920	5	2	1

		✓ 1s completed at 6:24 PM			• ×
8	27107	0.920	7	2	1

data.tail()

	enrollee_id	<pre>city_development_index</pre>	experience	company_size	last_ne
19149	251	0.920	9	2	
19150	32313	0.920	10	3	
19152	29754	0.920	7	1	
19155	24576	0.920	21	2	
19156	5756	0.802	0	4	

IV - Show Count of Null Values

data.isnull().sum().sort_values(ascending = False)

enrollee_id	0
city_development_index	0
experience	0
company_size	0
last_new_job	0
training_hours	0
target	0
dtype: int64	

V - Ensure All Columns are Numeric

data.dtypes

enrollee_id	int64
city_development_index	float64
experience	int64
company_size	int64
last_new_job	int64
training_hours	int64
target	float64
dtype: object	

drype: object

VI - Plot Heatmap

correlation = data.corr()
sns.heatmap(correlation)

2 - Feature Selection and Pre-Processing

I - Put All Data Except 'enrollee_id' and 'target' into X

[] 4 1 cell hidden

II - Scale X with StandardScaler and Show Sample Data

[] 41 cell hidden

3 - KMeans Clustering

I - Import Related Libraries and Perform KMeans on X W/ random_state = 47

```
[ ] 4 2 cells hidden
```

II - Show Cluster Centers as is Then Inverse and Show Again.

Explain The Centers as Related to the Columns of the Data Set

```
modelScale.cluster centers
    array([[-0.31364817, -0.63941844, -0.15207764, -0.55076921, 0.01170319],
           [ 0.44177356, 0.90062111, 0.21420141, 0.77575864, -0.01648395]])
scaler.inverse transform(modelScale.cluster centers )
    array([[ 0.7987756 , 6.62300698, 2.9252866 , 1.32309922, 66.4026881 ],
           [ 0.88943708, 16.75426875, 3.72717149, 3.49907201, 64.69413512]])
```

Double-click (or enter) to edit

III - Show Distance Matrix

```
[ ] 41 cell hidden
```

IV - Show Labels

```
[ ] 41 cell hidden
```

V - Add 'cluster_label' Column to the DataFrame and Assign it the KMean Label

```
scaledX['cluster label'] = pd.Series(modelScale.labels , index=data.index)
X['cluster label'] = pd.Series(modelScale.labels_, index=data.index)
```

4/19/22, 6:28 PM

VI - Add 'target' Column as a Floating-Point Value Map the 'target' Column to a 'target_int' Column

```
scaledX['target'] = data['target'].astype(float)
scaledX['target_int'] = scaledX['target'].astype(int)

X['target'] = data['target'].astype(float)
X['target int'] = X['target'].astype(int)
```

VII - Show Top 5 Rows of DataFrame

scaledX.head(10)

	city_development_index	experience	company_size	last_new_job	training_l
1	-0.503422	0.633957	-0.574723	1.690762	-0.30
4	-0.578413	1.546009	-0.574723	1.081137	-0.95
6	0.696434	-0.886130	-0.574723	-0.747739	-0.68
7	-0.620075	0.329940	-1.488268	1.690762	-0.78
8	0.696434	-0.582112	-0.574723	-0.747739	-0.32
9	0.696434	0.937974	1.709140	1.690762	0.94
11	0.696434	-0.886130	1.252367	-0.747739	0.69
12	0.638108	1.546009	0.795595	0.471512	-0.70
15	0.746428	0.785966	-1.031496	1.690762	-0.78
16	0.696434	-1.494164	-0.574723	-1.357364	0.66

VIII - Print Confusion Matrix Comparing 'target_int' and 'cluster_label' Show classification report and Total Misclasifications

```
confusion_matrix(scaledX['target_int'], scaledX['cluster_label'])
    array([[5835, 4860],
```

[1747, 535]])

IX - Discuss	Numbers	From	3 -	VIII
--------------	---------	------	-----	------

X - Show Inertial of the Cluster

[] 41 cell hidden

XI - What is the Elbow Method and What is it's Purpose is KMeans

4 1 cell hidden

XII - Plot the Inertias for KMeans With Clusters of 2 - 20

[] 4 2 cells hidden

XIII - Show Scatter Plot with 'training_hours' Vs 'experience' with the points colored based on 'cluster_label'. Write thoughts on the plot

[] 43 cells hidden

XIV - Show Scatter Plot with Any Other 2 Attributes Similar to 3 - XIII. Write Thoughts on the Plot

[] 4 2 cells hidden

4 - AgglomerativeClustering

from scipy.cluster.hierarchy import dendrogram, linkage from sklearn.cluster import AgglomerativeClustering

I - Plot Dendogram
[] 41 cell hidden
II - Perform AgglrmerativeClustering with 2 Clusters Using Euclidean Distarge fro Affinity and Linkage = 'ward'
[] 41 cell hidden
III - Plot 'training_hours' Vs 'experience'. Write Toughts on the Plot
[] 4 2 cells hidden
IV - Increase Clusters to 4 or 5 and Build Clusters Again. Plot Them to See Difference
[] b3 calle hidden