

-2023上粉笔教资-

《信息技术》

数据库技术 3/3

▶讲师:孙珍珍

更多干货关注 贪 粉笔教师教育 🦚 粉笔教师

※ 复习一下

本页目的:了解出题方式即可

(2019下·初中)在Access中,与图所示查询执行结果相同的SQL语句是()。

A.SELECT 作品名称 FROM hj

B.SELECT 作品名称,评审得分 FROM hj

C.SELECT 作品名称 FROM hj WHERE 评审得分 >=60

Q.SELECT 作品名称,评审得分 FROM hj WHERE 评审得分 >=60

(2019上·高中)根据关系模型Stu(学号,姓名,性别,出生年月)。统计学生平均年龄应使用的SQL语句是()。

A.SELECT AVG(YEAR(DATE())) AS 平均年龄 FROM Stu

B.SELECT AVG(YEAR(出生年月())) AS 平均年龄 FROM Stu

C.SELECT AVG(YEAR(DATE()) + YEAR(出生年月)) AS 平均年龄 FROM Stu

D.SELECT AVG(YEAR(DATE()) - YEAR(出生年月)) AS 平均年龄 FROM Stu

本页目的:了解出题方式即可

(2021下·高中)SQL的查询语句 "SELECT 员工姓名,所属部门,工资 FROM 员工数据库ORDER BY 所属部门 COMPUTE SUM (工资)BY 所属部门"的含义为()。

- A. 把员工数据库按照员工姓名排序后,计算每个部门的工资总和
- B. 把员工数据库按照所属部门排序后, 计算每个部门的工资总和
- C. 把员工数据库按员工姓名排序后, 计算每个部门的平均工资
- D. 把员工数据库按照所属部门排序后, 计算每个部门的平均工资

·				
SNo (学号)	SN (姓名)	Sex (性别)	Dept (系别)	Age (年龄)
11001	冯明	男	计算机	18
11002	陈月	女	通信	19
12001	褚共	男	计算机	18
12002	卫潮	男	自动化	20
12003	蒋生	女	通信	20

CNo (课程编号)	CN (课程名称)	Credit (学分)
C0201	数据库原理及应用	5
P0101	高等数学	6
C0203	数据结构	6
C0204	计算机网络	5
C0302	算法设计与分析	4
D0101	信息安全基础	4
C0103	计算机组成原理	4

学生表S

选课表SC

SNo (学号)	CNo (课程编 号)	Grade (成绩)
11001	C0201	85
11001	C0204	80
11002	C0302	65
12001	C0201	70
12001	D0101	76
12002	C0203	80
12003	C0201	85
12003	D0101	95

课程表C

【格式】	【说明】
SELECT [ALL DISTINCT] <列名> [AS <列别名>] FROM <表名> [WHERE <条件1>] [GROUP BY <列名1> [HAVING <条件2>]] [ORDER BY <列名2> [ASC DESC]]	①DISTINCT 代表在结果中,去除重复值②若查询全部列,<列名>可以用*代替③可以通过AS给列名和表起别名④GROUP BY进行分组,HAVING根据条件进行分组⑤ORDER BY进行排序;ASC升序(可省)、DESC降序

1.无条件查询【格式】	【实例】
SELECT [ALL DISTINCT] <列名> [AS <列别名>] FROM <表名>	【例7-1】从学生表S中查询所有学生的学号、姓名和性别。 ************************************
说明: ①DISTINCT 代表在结果中,去除重复值 ②若查询全部列,<列名>可以用*代替 ③可以通过AS给列名和表起别名	SNo SN Sex 11001 冯明 男 11002 陈月 女 12001 褚共 男 12002 卫潮 男 12003 蒋生 女

1.无条件查询【格式】	【实例】
SELECT [ALL DISTINCT] <列名> [AS <列别名>] FROM <表名>	【例7-2】从学生表S中查询所有学生信息。 ***********************************
说明: ①DISTINCT 代表在结果中,去除重复值 ②若查询全部列,<列名>可以用*代替 ③可以通过AS给列名和表起别名	SNo SN Sex Dept Age 11001 冯明 男 计算机 18 11002 陈月 女 通信 19 12001 褚共 男 计算机 18 12002 卫潮 男 自动化 20 12003 蒋生 女 通信 20

SELECT [ALL|DISTINCT] <列名> [AS <列别名>]

FROM <表名>

WHERE <条件1>

说明:

- ①若查询全部列, <列名>可以用*代替
- ②查询条件及运算符对应表格

查询条件	运算符
比较	> , < , = , >= , <= , <>
多重条件	AND , OR , NOT
确定范围	BETWEEN AND , NOT BETWEEN AND
确定集合	IN , NOT IN
字符匹配	LIKE, NOT LIKE
空值	IS NULL, IS NOT NULL

(1)比较查询【实例】

【例8-1】从选课表 SC 中查询成绩大于80的学生选课信息。

SELECT *

FROM SC

WHERE Grade>80

Ē	【例8-1】				
4	SNo	Ŧ	CNo	*	Grade
	11001		C0201		85
	12003		C0201		85
	12003		D0101		95

SELECT [ALL|DISTINCT] <列名> [AS <列别名>]

FROM <表名>

WHERE <条件1>

说明:

- ①若查询全部列, <列名>可以用*代替
- ②查询条件及运算符对应表格

查询条件	运算符
比较	> , < , = , >= , <= , <>
多重条件	AND , OR , NOT
确定范围	BETWEEN AND , NOT BETWEEN AND
确定集合	IN , NOT IN
字符匹配	LIKE, NOT LIKE
空值	IS NULL, IS NOT NULL

(2)多重条件查询【实例】

【例8-2】从选课表 SC 中查询选修了课程 "C0201"并且成绩高于80分的学生的学号与成绩。

SELECT SNo, Grade

FROM SC

WHERE CNo='C0201' AND Grade>80

1	【例8-2】		
4	SNo	*	Grade -
	11001		85
	12003		85

SELECT [ALL|DISTINCT] <列名> [AS <列别名>]

FROM <表名>

WHERE <条件1>

说明:

- ①若查询全部列, <列名>可以用*代替
- ②查询条件及运算符对应表格

查询条件	运算符
比较	> , < , = , >= , <= , <>
多重条件	AND, OR, NOT
确定范围	BETWEEN AND, NOT BETWEEN AND
确定集合	IN, NOT IN
字符匹配	LIKE, NOT LIKE
空值	IS NULL, IS NOT NULL

(3)确定范围查询【实例】

【例8-3】从学生表 S 中查询年龄在[16,19]之间的学生学号、姓名和年龄。

SELECT SNo, SN, Age

FROM S

WHERE Age BETWEEN 16 AND 19

1	[例8-3]					
	SNo	¥	SN	¥	Age	~
	11001		冯明			18
	11002		陈月			19
	12001		褚共			18

SELECT [ALL|DISTINCT] <列名> [AS <列别名>]

FROM <表名>

WHERE <条件1>

说明:

- ①若查询全部列, <列名>可以用*代替
- ②查询条件及运算符对应表格

查询条件	运算符
比较	> , < , = , >= , <= , <>
多重条件	AND , OR , NOT
确定范围	BETWEEN AND , NOT BETWEEN AND
确定集合	IN, NOT IN
字符匹配	LIKE, NOT LIKE
空值	IS NULL, IS NOT NULL

(4)确定集合查询【实例】

【例8-4】从选课表 SC 中查询选修了课程 "C0204"或 "D0101"的学生的选课信息。

SELECT *

FROM SC

WHERE CNo IN ('C0204','D0101')

	【例8-4】				
4	SNo	Ŧ	CNo	¥	Grade -
	11001		C0204		80
	12001		D0101		76
	12003		D0101		95

2	2.条件查询【格式】			(5)字符匹配查询【实例】		
SELECT [ALL DISTINCT] <列名> [AS <列别名>] FROM <表名> WHERE <条件1>			【例8-5】从课程表C中查询课号以"C"开头的的所有课号及课程名。 ************************************			
	说明: ①若查询全部列,<列名>可以用*代替 ②查询条件及运算符对应表格		SELECT Cno, CN FROM C WHERE CNo like 'C*'			
查询条件	运算符	100	*************************************	*********	******	
多重条件	> , < , = , >= , <= , <> AND , OR , NOT		Cno C0103	CN 计算机组成原理		
确定范围 确定集合	BETWEEN AND , NOT BETWEEN AND IN , NOT IN		C0201	数据库原理及应用		
字符匹配 空值	LIKE , NOT LIKE IS NULL , IS NOT NULL		C0203 C0204	数据结构 计算机网络		
			C0302	算法设计及分析		

SELECT [ALL|DISTINCT] <列名> [AS <列别名>]

FROM <表名>

WHERE <条件1>

说明:

- ①若查询全部列, <列名>可以用*代替
- ②查询条件及运算符对应表格

查询条件	运算符
比较	> , < , = , >= , <= , <>
多重条件	AND , OR , NOT
确定范围	BETWEEN AND , NOT BETWEEN AND
确定集合	IN, NOT IN
字符匹配	LIKE, NOT LIKE
空值	IS NULL, IS NOT NULL

(6)空值查询【实例】

【例8-6】从表 SC中查询考试成绩有效的学生选课信息。

SELECT *

FROM SC

WHERE Grade IS NOT NULL

	[例8-6]				
4	SNo	*	CNo	*	Grade -
	11001		C0201		85
	11001		C0204		80
	11002		C0302		65
	12001		C0201		70
	12001		D0101		76
	12002		C0203		80
	12003		C0201		85
	12003		D0101		95

「练习一下」

(2019下·初中)在Access中,与图所示查询执行结果相同的SQL语句是()。

譚 查询2 : 选择查询 字段 作品名称 评审得分 排序 显示: 条件: >=60

A.SELECT 作品名称 FROM hj

B.SELECT 作品名称,评审得分 FROM hj

C.SELECT 作品名称 FROM hj WHERE 评审得分 >=60

D.SELECT 作品名称,评审得分 FROM hj WHERE 评审得分 >=60

3.聚集函数【格式】

SELECT [ALL|DISTINCT] <列名>[AS <列别名>]

FROM <表名>

WHERE <条件1>

说明:

- ①可以通过AS给列名和表起别名
- ② 函数及功能对应表格

函数名称	功能
AVG	计算列值平均值
SUM	计算列值的总和
MAX	求列值中的最大值
MIN	求列值中的最小值
COUNT(*)	统计元组个数

【实例】

【例9】从学生表 S 中查询计算机系学生的人数,以及这些学生年龄的总和及平均值。

SELECT COUNT(*), SUM(Age), AVG(Age)

FROM S

WHERE Dept='计算机';

[例9]			
∠ Exp	r10	Expr10	Expr10
	2	36	18
- Finle			

「练习一下」

(2019上·高中)根据关系模型Stu(学号,姓名,性别,出生年月)。统计学生平均年龄应使用的SQL语句是()。

A.SELECT AVG(YEAR(DATE())) AS 平均年龄 FROM Stu

B.SELECT AVG(YEAR(出生年月())) AS 平均年龄 FROM Stu

C.SELECT AVG(YEAR(DATE()) + YEAR(出生年月)) AS 平均年龄 FROM Stu

D.SELECT AVG(YEAR(DATE()) - YEAR(出生年月)) AS 平均年龄 FROM Stu

4.分组查询【格式】	【实例】			
SELECT [ALL DISTINCT] <列名> [AS <列别名>]	【例-书上无】统计不同性别的学生人数。			
FROM <表名>	*************			
[WHERE <条件1>]	SELECT Sex, COUNT(*) AS 人数			
GROUP BY <列名1>	FROM S			
[HAVING <条件2>]	GROUP BY Sex			
说明:	**************************************			
①GROUP BY进行分组				
②分组之前有条件进行过滤,用WHERE ③分组之后有条件进行过滤,用HAVING	∠ Sex → 人数 → 3			
	女 2			

4.分组查询【格式】	【实例】
SELECT [ALL DISTINCT] <列名> [AS <列别名>] FROM <表名> [WHERE <条件1>] GROUP BY <列名1> [HAVING <条件2>] 说明: ①GROUP BY进行分组 ②分组之前有条件进行过滤,用WHERE ③分组之后有条件进行过滤,用HAVING	【例-书上无】查询至少有2名男同学所在的系名。 ************************************

5.排序查询【格式】	【实例】
SELECT [ALL DISTINCT] <列名> [AS <列别名>] FROM <表名> [WHERE <条件1>] ORDER BY <列名2> [ASC DESC]	【例11】从学生表S中查询学生的学号、姓名和年龄,并 按年龄降序排列。 ************************************
说明: • ORDER BY进行排序; • ASC升序(可省)、DESC降序	ORDER BY Age DESC; ***********************************

「练习一下」

(2021下·高中)SQL的查询语句 "SELECT 员工姓名, 所属部门, 工资 FROM 员工数据库ORDER BY 所属部门 COMPUTE SUM (工资) BY 所属部门"的含义为()。

- A. 把员工数据库按照员工姓名排序后, 计算每个部门的工资总和
- B. 把员工数据库按照所属部门排序后,计算每个部门的工资总和
- C. 把员工数据库按员工姓名排序后,计算每个部门的平均工资
- D. 把员工数据库按照所属部门排序后, 计算每个部门的平均工资

1.使用单表查询的SQL命令-【格式】	查询【实例】		
SELECT [ALL DISTINCT] <列名> [AS <列别名>] FROM <表名1>,<表名2> [WHERE <条件1>] [GROUP BY <列名1> [HAVING <条件2>]]	【例12-1】查询学生冯明的学号、姓名、课号和成绩。 ************************************		
[ORDER BY <列名2> [ASC DESC]]	WHERE S.SNO=SC.SNO AND SN='冯明'		
说明: ①FROM子句,需要连接多个表 ②SELECT后列名,如果两个表中均有,需要指明表名 ③WHERE子句,需要指明两表建立联系的条件	*************************************		

P258

2.使用JOIN子句-【格式】	查询【实例】			
SELECT [ALL DISTINCT] <列名> [AS <列别名>]	【例12-2】查询学生冯明的学号、姓名、课号和成绩。			
FROM <表名1> INNER JOIN <表名2>	**************			
ON <连接条件>	SELECT S.SNo, SN, CNo, Grade			
[WHERE <条件1>]	FROM S INNER JOIN SC			
[GROUP BY <列名1> [HAVING <条件2>]]	ON S.SNO=SC.SNO			
[ORDER BY <列名2> [ASC DESC]]	WHERE SN='冯明'			
说明:	**************			
①两表之间用INNER JOIN进行连接	[例12-2]			
) ②两表建立连接的条件,使用ON子句	Z SNo SN CNo Grade			
	11001 冯明 C0201 85			
	11001 冯明 C0204 80			

Fb粉筆教师

0000

第六节关系数据的设计

设计步骤	主要功能
需求分析	准确了解和分析用户的需求 ,是 <mark>基础</mark> 环节
概念结构设计	对用户需求进行归纳与抽象,并形成概念模型
逻辑结构设计	将概念模型转化成数据库管理系统所支持的 <mark>逻辑模型</mark>
物理结构设计	为逻辑模型选取合适的物理结构
数据库实施	用数据库语言和宿主语言,建立数据库,编写与调试应用程序
数据库运行和维护	投入运行并不断对其进行评估、调整

1.基于E-R模型的数据库设计方法

学生表

学号	姓名	性别	系别

课程表

课程编号	课程名称	学分

选课表

学号	课程编号	成绩

2.基于3NF的数据库设计方法

▶ 单一关系模式 → 投影 → 若干关系模式

学号	姓名	性别	系别	课程编号	课程名称	学分	成绩

学生表

学号	姓名	性别	系别

课程表

课程编号	课程名称	学分

选课表

学号	课程编号	成绩

- ◆某教学信息管理数据库的关系模式 SI (SNo, SN, Sex, Age, CNo, CN, Grade)
 - ▶ 根据实际情况,这些属性之间具有如下语义设定。
 - (1)一个学号对应一名学生,一个课程号对应一门课程。

主键:

- (2)一名学生可以选修多门课程,每门课程可被若干名学生选修。
- (3)每名学生学习的每门课程都有一个成绩,但不一定立即给出。

SNo	SN	Sex	Age	CNo	CN	Grade
11001	冯明	男	18	C0201	数据库原理及应用	85
11001	冯明	男	18	C0204	计算机网络	80
11002	陈月	女	19	C0302	算法设计与分析	65
12001	褚共	男	18	C0201	数据库原理及应用	70
12001	褚共	男	18	D0101	信息安全基础	76

二、规范化的重要性

P261

SNo	SN	Sex	Age	CNo	CN	Grade
11001	冯明	男	18	C0201	数据库原理及应用	85
11001	冯明	男	18	C0204	计算机网络	80
11002	陈月	女	19	C0302	算法设计与分析	65
12001	褚共	男	18	C0201	数据库原理及应用	70
12001	褚共	男	18	D0101	信息安全基础	76
12002	卫潮	男	20	C0203	数据结构	80
12003	蒋生	女	20	C0201	数据库原理及应用	85
12003	蒋生	女	20	D0101	信息安全基础	95

数据冗余高

插入异常

更新异常

删除异常

二、规范化的重要性

- ◆将关系模式 SI 分解为3个关系模式
 - ▶学生关系S (SNo, SN, Sex, Age)
 - ➤课程关系 C (CNo, CN)
 - ➤ 选课关系 SC (SNo, CNo, Grade)

SNo	SN	Sex	Age
11001	冯明	男	18
11002	陈月	女	19
12001	褚共	男	18
12002	卫潮	男	20
12003	蒋生	女	20

CNo	CN			
C0201	数据库原理及应用			
C0204	计算机网络			
C0302	算法设计与分析			
D0101	信息安全基础			
C0203	数据结构			

CNo	Grade	
C0201	85	
C0204	80	
C0302	65	
C0201	70	
D0101	76	
C0203	80	
C0201	85	
D0101	95	
	C0201 C0204 C0302 C0201 D0101 C0203 C0201	C0201 85 C0204 80 C0302 65 C0201 70 D0101 76 C0203 80 C0201 85

本页目的:了解出题方式即可

(2021下·高中)关系模式R(A,B,C,D,E),根据语义有如下函数依赖集:

F={A→C, BC→D, CD→A, AB→E}。关系模式R的规范化程度最高达到()

- A. 1NF
- B. 2NF
- C. 3NF
- D. BCNF

(一) 定义

学生(学号、身份证号、姓名、身高、年龄)

- ▶设关系模式R(U),U是属性集,X和Y是U的子集。
- \triangleright X确定Y,Y依赖于X,记作 $X \rightarrow Y$ 。X为决定因子,Y为依赖因子。
- ▶当Y不依赖于X时,记作X→Y;
- → 当 X→Y 且 Y → X时,则记作 X ↔ Y。

(二)推理规则

IR1(自反规则): 如果 $X \supseteq Y$, 那么 $X \rightarrow Y$ 。

IR2 (传递规则): $\{X \rightarrow Y, Y \rightarrow Z\} = X \rightarrow Z_{\circ}$

1.完全函数依赖

 \blacktriangleright X → Y , 且对于 X 的<mark>任何一个真子</mark>集 X' , 都有 X' → Y , 记为X $\stackrel{f}{\rightarrow}$ Y

【例】关系模式S1(SNo, SN, Sex, Age, CNo, CN, Grade)中

(SNo , CNo)
$$\stackrel{f}{\rightarrow}$$
 Grade

SNo	SN	Sex	Age	CNo	CN	Grade
11001	冯明	男	18	C0201	数据库原理及应用	85
11001	冯明	男	18	C0204	计算机网络	80
11002	陈月	女	19	C0302	算法设计与分析	65
12001	褚共	男	18	C0201	数据库原理及应用	70
12001	褚共	男	18	D0101	信息安全基础	76

2.部分函数依赖

 \triangleright X → Y , 且对于 X 的某一个真子集 X' , 有 X' → Y , 记为X $\stackrel{p}{\rightarrow}$ Y

【例】关系模式S1(SNo, SN, Sex, Age, CNo, CN, Grade)中

$$(SNo,CNo)\stackrel{p}{\rightarrow}SN$$

SNo	SN	Sex	Age	CNo	CN	Grade
11001	冯明	男	18	C0201	数据库原理及应用	85
11001	冯明	男	18	C0204	计算机网络	80
11002	陈月	女	19	C0302	算法设计与分析	65
12001	褚共	男	18	C0201	数据库原理及应用	70
12001	褚共	男	18	D0101	信息安全基础	76

(三)类型

3.传递函数依赖

$$\triangleright$$
 X \rightarrow Y , Y \rightarrow Z , 且X不包含Y , Y不包含Z , Y \nrightarrow X则X \rightarrow Z , 记为X $\stackrel{t}{\rightarrow}$ Z

【例】关系模式学生(学号,姓名,系号,系主任)中

学号 t 系主任

SNo	SN	系号	系主任
11001	冯明	JSJ01	张三
11002	陈月	JSJ01	张三
12001	褚共	RJ02	李四

◆F 中所有 $X \to A$ 的A 的集合称为 X 的闭包,记为 X^+

【例】设有关系模式 R(M,N,X,Y,Z),其 $F=\{M\to X,X\to Z,Y\to Z,N\to Y,Z\to M\}$ 。计算M和N属性的闭包。

设有关系模式 R(U), F是函数依赖集,可将其中的属性分为以下四类。

(1)L类:仅出现在函数依赖左边的属性。

(2)R类:仅出现在函数依赖右边的属性。

(3)N类:在函数依赖左右两边均未出现的属性。

(4) LR 类:在函数依赖左右两边均出现的属性。

【例】关系模式 R(M,N,X,Y,Z), F={M→X,X→Z,Y→Z,N→Y,Z→M}。求分类。

- ①L类 UL
- ②R类 UR
- ③N类
- ④LR类

(五)候选码的求解

(五)候选码的求解

「练习一下」

- ◆5种范式的包含关系:5NF ⊂ 4NF ⊂ BCNF ⊂ 3NF ⊂ 2NF ⊂ 1NF
- (一)第一范式 1NF
 - ▶如果关系模式 R 的所有属性均为<mark>原子属性</mark>(不可再分),则称 R 属于第一范式。最起码条件

TNo	TN	Sex	Prof	Sal	
				Basic	Bonus
01001	赵乾	女	讲师	6000	500
01002	钱坤	男	讲师	6000	1000
01003	孙震	女	副教授	7000	1200
02011	李离	女	教授	8000	800
02013	周巽	男	教授	8000	2000

TNo	TN	Sex	Prof	Basic	Bonus
01001	赵乾	女	讲师	6000	500
01002	钱坤	男	讲师	6000	1000
01003	孙震	女	副教授	7000	1200
02011	李离	女	教授	8000	800
02013	周巽	男	教授	8000	2000

(二)第二范式 2NF

▶如果关系模式 R ∈ 1NF, 且每个非主属性都完全依赖于 R 的主码/候选码,则称 R 属于第二范式

【例】将关系模式选课(学号,课程号,姓名,成绩)规范化为 2NF

学生(学号,姓名)

选课(学号,课程号,成绩)

(三)第三范式 3NF

▶如果关系模式 R ∈ 2NF, 且每个非主属性都不传递依赖于 R 的主码/候选码,则称 R 属于第三范式

【例】将关系模式学生(学号,姓名,系号,系主任)规范化为 3NF

学生(学号,姓名,系号)

系管理(系号,系主任)

(四) BC范式 BCNF

➤如果关系模式 R ∈ 3NF,且不存在主属性对非主属性的函数依赖,则称 R 属于 BC范式,简称 BCNF

【例】假设该学校中每名教师只讲授一门课程,但一门课程可由多个教师讲授;每名学生可以选修多门课程,每门课程可由多名学生选修,且每次选课都会有一条成绩记录。

要求:将关系模式学生(学号,课号,教师,成绩)规范化为 BCNF

学生(学号,课号,成绩)

授课(教师,课号)

「练习一下」

(2021下·高中)关系模式R(A,B,C,D,E),根据语义有如下函数依赖集:

F={A→C, BC→D, CD→A, AB→E}。关系模式R的规范化程度最高达到()。

- A. 1NF
- B. 2NF
- C. 3NF
- D. BCNF

第一范式-1NF	不存在合并列
第二范式-2NF	非主属性不部分依赖于候选码
第三范式-3NF	非主属性不传递依赖于候选码
BC范式-BCNF	主属性不依赖于非主属性

下节内容

学 六音	数据结构与管注		260
か/ \早	対点には一分		209
		P269 ~ P279	
第一节	算法基础		269

Fb 粉笔 數师

