Rozvrhovanie – 2.časť

- Operatívny manažment výrobného procesu
 - Plánovanie vs. rozvrhovanie
- Rozvrhovanie hlavné a doplnkové charakteristiky, typy úloh
 - Rozvrh, optimálny rozvrh, používané kriteriálne funkcie
 - Príklad úlohy rozvrhovania a tvorby rozvrhu (Ganttov diagram)
- Typy rozvrhovacích úloh a ich riešenie
 - 1. Rozvrhovanie na paralelných strojoch/procesoroch
 - A. Rozvrhovanie na jednom stroji/procesore
 - S povoleným prerušením úloh
 - Bez prerušenia úloh
 - B. Rozvrhovanie na viacerých strojoch/procesoroch
 - 2. Rozvrhovanie na dedikovaných (špecializovaných) strojoch
 - A. Open shop
 - B. Flow shop
 - C. Job shop

Typy rozvrhovacích úloh

1. Paralelné procesory (stroje)

- A. Rozvrhovanie na jednom procesore (jednostupňová výroby) s prerušením, alebo bez prerušenia
- B. Rozvrhovanie na viacerých procesoroch (viacstupňová výroba)

2. Dedikované (špecializované) procesory (stroje)

- úlohy sa rozdeľujú do skupín, tzv. zákaziek: $J_k = [T_{1,k}, \ldots, T_{nk,k}]$
- každá úloha v rámci zákazky J_k beží na inom stroji
- Rozlišujeme 3 základné typy týchto úloh –
 A) open shop, B) flow shop a C) job shop
 (podrobnosti sú uvedené na ďalšej strane)

1. Rozvrhovanie na paralelných procesoroch (strojoch)

A. Rozvrhovanie na jednom stroji/procesore – s prerušením

- JACKSONOV ALGORITMUS:
 - Máme n úloh, rôzne r_i a d_i . Potom algoritmus pre nájdenie optimálneho rozvrhu v zmysle kritéria L_{max} funguje takto:
- 1. Vždy aktivuj úlohu s najskoršou dobou ukončenia (d_i).
- 2. Akonáhle začne byť úloha T_i pripravená a procesor je obsadený úlohou T_j , pozastav úlohu T_j v prospech úlohy T_i práve vtedy, ak čas ukončenia i-tej úlohy je skorší ako čas ukončenia j-tej úlohy, inak ponechaj bežať úlohu T_j .

Príklad – jednostupňová výroba

Úloha	t_i	ri	d_i
Α	6	4	32
В	8	0	27
С	4	9	22
D	5	15	43
Е	8	20	38
F	8	21	36

t (čas)

Príklad – jednostupňová výroba

Úloha	t_i	r_i	d_i
Α	6	4	32
В	8	0	27
С	4	9	22
D	5	15	43
Е	8	20	38
F	8	21	36

 Vypočítajte rôzne typy kriteriálnych funkcií pre výsledný rozvrh (typu C, F, L, T)

$$c_{i}(R) = [, , , , , ,]$$
 $l_{i}(R) = [, , , , , ,]$
 $t_{i}(R) = [, , , , , ,]$
 $f_{i}(R) = [, , , , , ,]$
 $C_{max}(R) = [, , , , , ,]$

$$L_{max}(R) = L(R) = T_{max}(R) = T(R) = n_T(R) = n_T(R) = n_T(R)$$

A. Rozvrhovanie na jednom stroji/procesore – bez prerušenia (1)

- Zložitejšia úloha ako v prípade s prerušením, nakoľko ide o permutačnú úlohu (n! možných rozvrhov), ktorú až na špeciálne prípady nemožno riešiť v polynomiálnom čase.
- Niektoré špeciálne prípady:
- 1. Úlohy T_i (i = 1, ..., n), $r_i = 0$ (pre všetky i = 1, ..., n), bez zadaných d_i , bez precedencií, bez priorít
 - Z hľadiska kriteriálnej funkcie C_{max} sú všetky rozvrhy rovnako dobré
 - Z hľadiska kriteriálnej funkcie C je optimálne usporiadanie úloh podľa neklesajúcej postupnosti ich dĺžok trvania, tj.: $t_{(1)} \le t_{(2)} \le \ldots \le t_{(n)}$ čiže od najkratšej úlohy po najdlhšiu

A. Rozvrhovanie na jednom stroji/procesore – bez prerušenia (2)

- 2. Presne ako v predchádzajúcom prípade, ale s prioritami w_i
 - Z hľadiska kriteriálnej funkcie C_w je optimálne usporiadanie úloh podľa nerastúcej postupnosti ich priorít, tj.: $w_{(1)} \ge w_{(2)} \ge \dots \ge w_{(n)}$ čiže od najvyššej priority po najnižšiu
- 3. Úlohy T_i (i = 1, ..., n), $r_i = 0$ (pre všetky i = 1, ..., n), ale rôzne d_i , bez precedencií, bez priorít
 - Z hľadiska kriteriálnej funkcie L_{max} existuje viacero heuristík, napr. Moorov algoritmus vychádza z neklesajúcej postupnosti požadovaných časov ukončenia úloh, t.j. $d_{(I)} \le d_{(2)} \le ... \le d_{(n)}$

A. Rozvrhovanie na jednom stroji/procesore – bez prerušenia (3)

 Všetky ostatné úlohy vedú na permutačné rozvrhy a je možné ich riešiť napríklad metódou vetvenia a medzí, ktorá sa snaží efektívne prehľadať nasledujúci priestor prehľadávania:

n! listových uzlov

B. Rozvrhovanie na viacerých paralelných procesoroch

- Úlohy sa najprv **usporiadajú podľa zvolenej heuristiky** a potom sa priraďujú zaradom vždy na ten procesor, ktorý sa najskôr uvoľní. Pritom sa používajú rôzne heuristiky, napr.:
 - LPT (Longest Processing Time) vyber úlohu s najdlhším trvaním (t_i)
 - SPT (Shortest Processing Time) ... s najkratším trvaním (t_i)
 - EST (Earliest Starting Time) ... s najskorším časom začiatku (r_i)
 - LST (Latest Starting Time) ... s najneskorším časom začiatku (r_i)
 - **EFT** (Earliest Finishing Time) ... s najskorším časom ukončenia (d_i)
 - LFT (Latest Finishing Time) ... s najneskorším časom ukončenia (d_i)
 - MWR (Most Work Remaining) vyber úlohu s najdlhšou zvyškovou prácou (súčet trvaní úloh, ktoré ešte musia byť vykonané za vybranou úlohou) možno uplatniť ak sú zadané precedencie, resp. usporiadanie v zákazkách

Príklad algoritmu s použitím heuristiky LPT

begin

vytvor usporiadaný zoznam úloh

Pri inej heuristike stačí zmeniť tento riadok (spôsob usporiadania)

```
od najdlhšej po najkratšiu, t.j.: t_1 \ge t_2 \ge ... \ge t_n
   for j = 1 to m S_i = 0;
  i := 1
   repeat
        urči také k, že S_k = min\{S_i\}
                                   1 \le i \le m
        priraď úlohu T_i (prvá v aktuálnom zozname) na procesor k
        S_k := S_k + t_i;
        j := j + 1;
   until j = n;
end;
```

Príklad (1)

Majme 3 paralelné procesory, na ktorých je potrebné rozvrhnúť 7 úloh s takýmito dĺžkami trvania: t_1 =5, t_2 =5, t_3 =4, t_4 =4, t_5 =3, t_6 =3, t_7 =3, pričom r_i =0 $\forall i$ =1..7 Pri tvorbe rozvrhu použite heuristiku LPT.

Vzdialenosť LPT rozvrhov od optima

 Ale optimálny rozvrh v zmysle kritéria C_{max} je nasledovný:

 Dá sa dokázať, že rozvrh vygenerovaný podľa LPT nie je od optimálneho horší o viac ako:

$$Q_{LPT} = \frac{4}{3} - \frac{1}{3m}$$
 (*m* je počet strojov)
t.j. pre $m = 3$: $Q_{LPT} = \frac{4}{3} - \frac{1}{9} = \frac{12 - 1}{9} = \frac{11}{9}$

Príklad (2)

Hodnoty kriteriálnych funkcií pre rozvrh LPT:

$$c_i(R) = [5, 5, 4, 8, 8, 8, 11]$$

$$C_{max}(R) = 11$$

$$C(R) = 49$$

$$\bar{C} = 7$$

Hodnoty kriteriálnych funkcií pre optimálny rozvrh:

$$c_i(R) = [5, 5, 9, 9, 3, 6, 9]$$

$$C_{max}(R) = 9$$

$$C(R) = 46$$

$$\bar{C} = 6.8$$

Príklad (3)

Pre rovnako zadané úlohy: t_1 =5, t_2 =5, t_3 =4, t_4 =4, t_5 =3, t_6 =3, t_7 =3, pričom r_i =0 $\forall i$ =1..7 zostrojte rozvrh podľa heuristiky SPT a porovnajte ho podľa zvolených kriteriálnych funkcií s LPT rozvrhom.

Úloha zo 6. prednášky

- Definujte si vlastnú úlohu rozvrhovania na jednom procesore, pričom je prípustné prerušenie úloh. Zadajte si 7 úloh s nasledovnými údajmi pre každú úlohu:
 - rôzne časy trvania úloh t_i (dĺžka úlohy),
 - rôzne (aj nenulové) časy pripravenosti do výroby r_i (release time),
 - rôzne časy kedy by mali byť úlohy hotové d_i (due date),
- Zostrojte pre Vami zadanú úlohu rozvrh vo forme Ganttovho diagramu podľa Jacksonovho algoritmu.
- 3. Pre zostavený rozvrh vypočítajte hodnoty nasledovných kriteriálnych funkcií: C, C_{max} , L, L_{max} , F, F_{max} , T, T_{max} , n_T