1. Funkcja f jest nieskończenie wiele razy różniczkowalna w otoczeniu punktu 0 i dla pewnego $n \in \mathbb{N}$ spełnia

$$\lim_{x \to 0} \frac{f(x)}{x^n} = 0.$$

Pokaż, że $f^{(k)}(0) = 0$ dla $0 \le k \le n$. (Można na przykład zastosować wzór Taylora, albo indukcję).

- **2.** Funkcja f jest ciągła na [a,b] i ma ciągła pochodną w (a,b). Udowodnij, że jeśli f ma k różnych pierwiastków w [a,b] to f' ma co najmniej k-1 pierwiastków w (a,b).
- 3. Załóżmy, że funkcja f jest nieskończenie wiele razy różniczkowalna w otoczeniu punktu 0. Rozważmy $g(x) = f(x^2)$. Udowodnij, że $g^{(2k)}(0) = 0$ dla wszystkich $k \in \mathbb{N}$.
- 4. Pokazać, że wielomian

$$p(x) = x^n + \sum_{j=0}^k a_j x^j, \quad k \le n-2,$$

ma co najwyżej k+2 różnych pierwiastków rzeczywistych.

5. Niech $r_1 < r_2 < ... < r_\ell$ oznaczają pierwiastki wielomianu

$$p(x) = x^n + \sum_{j=0}^k a_j x^j, \quad k \le n-2, \quad a_k \ne 0,$$

 $k(r_i)$ ich krotności. Pokaż, że

$$k(r_1) + k(r_2) + \dots + k(r_\ell) < k + 2.$$

6. Załóżmy, że szereg potęgowy $\sum_{n=1}^{\infty} c_n y^n$ jest zbieżny dla $y \in (-R, R)$. Niech $a \in (-R, R)$ i niech $x \in (a - r, a + r)$. Udowodnij, że

$$\sum_{n=0}^{\infty} \sum_{m=0}^{n} \left| c_n \binom{n}{m} a^{n-m} (x-a)^m \right| < \infty.$$

7. Udowodnij następujące twierdzenie. Szereg potęgowy

$$\sum_{n=0}^{\infty} c_n x^n$$

jest zbieżny w (-R,R) do funkcji f(x). Niech $a \in (-R,R)$ i niech r > 0 będzie takie że |a| + r < R. Wówczas f rozwija się w szereg potęgowy $\sum_{n=0}^{\infty} b_n (x-a)^n$ w przedziale (a-r,a+r).

8. Szereg potęgowy $f(x) = \sum_{n=0}^{\infty} c_n x^n$ jest zbieżny dla każdego $x \in \mathbb{R}$. Wykaż, że funkcja f może mieć skończoną liczbę miejsc zerowych w każdym przedziale [a, b]. Możesz skorzystać z poprzedniego zadania.

(1)
$$f(x) = \sum_{n=0}^{\infty} c_n [(x-a) + a]^n.$$

¹ Wskazówka: Wskazówka: $|a| + |x - a| \le |x|$

²Wskazówka: Wskazówka: użyj poprzedniego zadania i napisz

- 9. Podaj przykład szeregu potęgowego:
 - a) który nie ma miejsc zerowych;
 - b) którego miejscami zerowymi jest \mathbb{Z} .
- **ï0.** Niech $0 < r_1 < r_2 < \dots$ będą miejscami zerowymi szeregu potęgowego o promieniu zbieżności ∞ . Czy

$$\sum \frac{1}{r_j^2} < \infty?$$

Czy

$$\sum e^{-r_j^2} < \infty?$$

- **Ï1.** Rozważmy tablicę liczb $\{a_{n,m}\}_{n,m\in\mathbb{N}}$. Załóżmy, że przy ustalonym m granica $\lim_{n\to\infty}a_{n,m}=A_m$ istnieje, oraz, że zbieżność ta jest jednostajna (napisz co to znaczy). Załóżmy dodatkowo, że przy ustalonym n granica $\lim_{m\to\infty}a_{n,m}=B_n$ istnieje. Wykaż, że oba ciągi $\{A_m\}_{m\in\mathbb{N}}$ i $\{B_n\}_{n\in\mathbb{N}}$ są albo jednocześnie rozbieżne, albo jednocześnie zbieżne (wtedy do tej samej granicy).
- **12.** Rozważmy tablicę liczb $\{a_{n,m}\}, n, m \in \mathbb{N}$. Załóżmy, że

$$\sup_{N} \sum_{n=1}^{N} \sum_{m=1}^{N} |a_{n,m}| < \infty.$$

Uzasadnij, że szeregi

$$\sum_{n=1}^{\infty} a_{n,m} = A_m, \quad \sum_{m=1}^{\infty} a_{n,m} = B_n$$

są zbieżne. Ponadto szeregi

$$\sum_{m=1}^{\infty} A_m, \quad \sum_{n=1}^{\infty} B_n$$

są zbieżne i to do tej samej sumy.

- 13. Funkcja różniczkowalna $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ spełnia warunek $f'(x) = \frac{1}{x^2}$ dla każdego $x \in \mathbb{R} \setminus \{0\}$. Rozstrzygnij, czy z tego da się jednoznacznie wyznaczyć f(2). Rozstrzygnij, czy da się jednoznacznie wyznaczyć f(-1).
- 14. Wyznacz wszystkie funkcje 2022-krotnie różniczkowalne takie, że

$$f^{(2022)}(x) = e^{3x}.$$

15. Funkcja ciągła $f: \mathbb{R} \to \mathbb{R}$ jest dwukrotnie różniczkowalna na zbiorze $\mathbb{R} \setminus \{1\}$, a jej pochodna drugiego rzędu jest dana wzorem

$$f''(x) = 6x + 6$$
dla $x \in \mathbb{R} \setminus \{1\}.$

Ponadto wiadomo, że f(x) = x dla $x \in \{-1, 0, 2\}$. Wyznacz f(3).

Uwaga 1: Większość zadań pochodzi z list prof. R. Szwarca.

Uwaga 2: Zadania zielone są za 0,5 pkt (bez kropki nad numerem zadania), zdania pomarańczowe za 1 pkt (jedna kropka), zadania czerwone za 2 pkt (dwie kropki).