&ᲔᲡᲢᲔᲑᲘ ᲡᲐᲛᲔᲓᲘᲪᲘᲜᲝ ᲥᲘᲛᲘᲐᲨᲘ

- 1. ჩამოთვლილებიდან რომელია გამოსხივების ერთ აქტში გამოთავისუფლებული ენერგიის უმცირესი რაოდენობა?
- 1) სპინი; 2) ქვანტი; 3) იმპულსი; 4) კვარკი.
- 2. მოყვანილი ფორმულებიდან რომელი შეესაბამება დე-ბროილის განტოლებას?
- 1) $E=mc^2$; 2) $mv = h/\lambda$; 3) E=hv; 4) $mc = h/\lambda$.
- ჩამოთვლილი მახასიათებლებიდან რომელი იცვლება ტალღის გავრცელების კანონზომიერებით?
- 1) ელექტრონის მასა; 2) ელექტრონის ენერგია;
- 3) ატომბირთვის გარშემო ელექტრონის ყოფნის ალბათობა;
- 4) ელექტრონის იმპულსი.
- 4. ჩამოთვლილი კანონზომიერებიდან რომლის მიხედვით არის შეუძლებელი მიკრონაწილაკების იმპულსისა და მდებარეობის ერთდროულად განსაზღვრა?
- 1) დე-ბროილის პრინციპი; 2) უმცირესი ენერგიის პრინციპი;
- 3) ჰუნდის წესი; 4) ჰეიზენბერგის პრინციპი.
- 5. ჩამოთვლილი მოსაზრებებიდან რომელია არასწორი?
- 1) ერთ ენერგეტიკულ დონეზე ერთი ფორმის ორბიტალებია;
- 2) ერთ ენერგეტიკულ დონეზე შესაძლებელია სხვადასხვა ენერგიის ორბიტალების არსებობა;
- ენერგეტიკულ ქვედონეზე ორბიტალების ელექტრონებით შევსება ექვემდებარება ჰუნდის წესს;
- 4) პერიოდული სისტემის ელემენტებში ქვედონეების მაქსიმალური რიცხვი არის ოთხი.
- 6. რომელი ფორმულა გამოხატავს ელექტრონის ორბუნებოვნებას?
- h პლანკის მუდმივა, E ენერგია, c სინათლის სიჩქარეა ვაკუუმში).
- 1) $E=mc^2$; 2) $mv = h/\lambda$; 3) E=hv; 4) $mc = h/\lambda$.
- 7. რომელი პერიოდის ელემენტებს აქვთ გარე ენერგეტიკული შრის ელექტრონებისათვის მნიშვნელობა n+l=5?
 - 1) 5; 2) 4, 5; 3) 3,4,5; 4) 3,4.
 - 8. ჩამოთვლილი მოსაზრებებიდან რომელია სწორი?
 - 1) ლითონური თვისებები მცირდება იონიზაციის ენერგიის ზრდასთან ერთად;

- 2) ატომური ნომრის ზრდასთან ერთად ელექტროუარყოფითობა მონოტონურად იზრდება;
- 3) ნაწილობრივ შევსებული ქვედონე უფრო მდგრადია, ვიდრე ნახევრად შევსებული;
- 4) ელექტროუარყოფითობა ახასიათებს ატომს იზოლირებულ მდგომარეობაში.
- 9. ჩამოთვლილი კვანტური რიცხვების რომელი ოთხეული შეიძლება ჰქონდეს ელექტრონს ატომში?
- 1) n=4, l=4, m=2, s=-1/2;
- 2) n=2, l=1, m=0, s=-1/2;
- 3) n=0, l=0, m=0, s=-1/2;
- 4) n=2, l=1, m=2, s=+1/2.
- 10. ჩამოთვლილი კვანტური რიცხვების რომელი ოთხეული შეიძლება ჰქონდეს ელექტრონს ატომში?
- 1) n=4, l=3, m=2, s=-1/2;
- 2) n=2, l=2, m=0, s=-1/2;
- 3) n=1, l=0, m=1, s=-1/2;
- 4) n=2, l=2, m=2, s=+1/2.
- 11. ქვემოთმოტანილთაგან კვანტური რიცხვების რომელი ოთხეული არ შეიძლება ჰქონდეს ელექტრონს ატომში?
- 1) n=4, l=3, m=2, s=-1/2;
- 2) n=2, l=1, m=0, s=-1/2;
- 3) n=1, l=1, m=2, s=-1/2;
- 4) n=2, l=1, m=1, s=+1/2.
- 12. ქვემოთმოტანილთაგან კვანტური რიცხვების რომელი ოთხეული არ შეიძლება ჰქონდეს ელექტრონს ატომში?
- 1) n=4, l=4, m=2, s=-1/2;
- 2) n=5, l=3, m=0, s=-1/2;
- 3) n=4, l=2, m=-2, s=-1/2;
- 4) n=2, l=1, m=1, s=+1/2.
- 13. ჩამოთვლილი მოსაზრებებიდან რომელია არასწორი?
- 1) მიკრონაწილაკების ტალღის სიგრძის გაზომვა შესაძლებელია;
- 2) შეუძლებელია ერთდროულად მიკრონაწილაკების როგორც იმპულსის, ისე მდებარეობის განსაზღვრა;
- 3) ტალღურ ფუნქციას აქვს მხოლოდ დადებითი მნიშვნელობა;
- 4) ტალღური განტოლება ყოველ მოცემულ მომენტში ელექტრონის ზუსტი ადგილმდებარეობისა და მისი სიჩქარის განსაზღვრის საშუალებას არ იძლევა.
- 14. ჩამოთვლილი ქვანტური რიცხვებიდან რომელი განსაზღვრავს ენერგეტიკულ დონეს:
- 1) მთავარი ქვანტური რიცხვი; 2) ორპიტალური ქვანტური რიცხვი;
- 3) მაგნიტური ქვანტური რიცხვი; 4) სპინური ქვანტური რიცხვი.
- 15. ჩამოთვლილი ქვანტური რიცხვებიდან რომელი განსაზღვრავს ელექტრონული ორბიტალის სივრცით ორიენტაციას?

- 1) მთავარი რიცხვი; 2) ორპიტალური ქვანტური რიცხვი;
- 3) მაგნიტური ქვანტური რიცხვი; 4) სპინური ქვანტური რიცხვი.
- 16. ჩამოთვლილი კანონზომიერებებიდან რომელი განსაზღვრავს ენერგეტიკული დონეების შევსების თანმიმდევრობას?
- 1) პაულის პრინციპი; 2) კლეჩკოვსკის წესი;
- 3) ჰუნდის წესი; 4) ჰეიზენბერგის პრინციპი.
- 17. ჩამოთვლილი კანონზომიერებებიდან რომლის მიხედვით არის ერთ ორბიტალზე მხოლოდ ანტიპარალელური სპინების მქონე ორი ელექტრონის არსებობა შესაძლებელი?
- 1) პაულის პრინციპი; 2) უმცირესი ენერგიის პრინციპი;
- 3) ჰუნდის წესი; 4) ჰეიზენბერგის პრინციპი.
- 18. ენერგეტიკულ დონეებზე ელექტრონების განაწილება არ ექვემდებარება:
- 1) პაულის პრინციპს; 2) კლეჩკოვსკის წესს;
- 3) ჰუნდის წესს; 4) ჰეიზენბერგის პრინციპს.
- 19. რისი ტოლია ელექტრონების მაქსიმალური რიცხვი ენერგეტიკულ დონეზე?
- 1) n^2 ; 2) $2n^2$; 3) 2l+1; 4) 2(2l+1).
- 20. რისი ტოლია ელექტრონების მაქსიმალური რიცხვი ქვედონეზე?
- 1) n^2 ; 2) 2l; 3) 2l+1; 4) 2(2l+1).
- 21. f-ბლოკის ელემენტებისათვის ვალენტურია :
- 1) (n-1) ენერგეტიკული დონის f-ელექტრონები;
- 2) (n-2) ენერგეტიკული დონის f-ელექტრონები;
- 3) n ენერგეტიკული დონის f-ელექტრონები;
- 4) (n-2) ენერგეტიკული დონის d-ელექტრონები.
- 22. p-ბლოკის ელემენტებისათვის ვალენტურია :
- 1) მხოლოდ n ენერგეტიკული დონის p-ელექტრონები;
- 2) მხოლოდ n ენერგეტიკული დონის s-ელექტრონები;
- 3) n-1 ენერგეტიკული დონის p-ელექტრონები;
- 4) n ენერგეტიკული დონის s- და p-ელექტრონები.
- 23. როგორია მეოთხე, მეხუთე და მეექვსე ენერგეტიკული დონის ელექტრონული აღნაგობა ოქროს ატომში?
 - 1) $4s^24p^64d^{10}4f^{14}5s^25p^65d^96s^2$;
 - 2) $4s^24p^64d^{10}5s^25p^65d^{10}6s^26p^36d^{10}$;
 - $3)\ 4s^24p^64d^{10}5s^25p^65d^{10}6s^16p^66d^8;$
 - $4) \ 4s^24p^64d^{10}4f^{14}5s^25p^65d^{10}6s^1.$

- 24. რომელია იოდიდ-იონის (I⁻) ელექტრონული კონფიგურაცია? ([Kr]= $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$)
- 1) $[Kr]4d^{10}4d^{14}5s^25p^5$; 2) $[Kr]3d^{14}4d^{10}5s^25p^6$; 3) $[Kr]4d^{10}5s^25p^6$; 4) $[Kr]5s^25p^5$.
- 25. რომელია იოდის ატომის (I) ელექტრონული კონფიგურაცია?

 $([Kr]=1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6)$

- 1) $[Kr]4d^{10}5s^25p^5$; 2) $[Kr]3d^{14}4d^{10}5s^25p^6$; 3) $[Kr]4d^{10}5s^25p^6$; 4) $[Kr]5s^25p^5$.
- 26. რომელია დარიშხანის ატომის (As) ელექტრონული კონფიგურაცია? ([Ar]= $1s^2 2s^2 2p^6 3s^2 3p^6$)
- 1) $[Ar]3d^{10}4s^24p^6$; 2) $[Ar]3d^{10}4s^24p^3$; 3) $[Ar]3d^{14}4s^24p^6$; 4) $[Ar]3d^{10}4s^24p^5$.
- 27. რომელია არსენიდ-იონის (As^{3-}) ელექტრონული კონფიგურაცია? ([Ar]= $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$)
- 1) $[Ar]3d^{10}4s^24p^3$; 2) $[Ar]3d^{14}4s^24p^5$; 3) $[Ar]3d^{14}4s^24p^6$; 4) $[Ar]3d^{10}4s^24p^6$.
- 28. რომელია ბრომის ატომის (Br) ელექტრონული კონფიგურაცია? $([Ar] = 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\)$
- 1) $[Ar]3d^{10}4s^24p^6$; 2) $[Ar]3d^{14}4s^24p^5$; 3) $[Ar]3d^{14}4s^24p^6$; 4) $[Ar]3d^{10}4s^24p^5$.
- 29. რომელია ბრომიდ-იონის (Br $^-$) ელექტრონული კონფიგურაცია? ([Ar]= $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6$)
- 1) $[Ar]3d^{10}4s^24p^6$; 3) $[Ar]3d^{14}4s^24p^5$; 3) $[Ar]3d^{14}4s^24p^6$; 4) $[Ar]3d^{10}4s^24p^5$.
- 30. რომელია სელენის ატომის (Se) ელექტრონული კონფიგურაცია? $([Ar]=1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\)$
- $1) \ [Ar] 3d^{10} 4s^2 4p^4; \qquad 2) \ [Ar] 3d^{14} 4s^2 4p^5; \qquad 3) \ [Ar] 3d^{14} 4s^2 4p^6; \qquad 4) \ [Ar] \ 3d^{10} 4s^2 4p^5.$
- 31. რომელია სელენიდ-იონის (Se^{2-}) ელექტრონული კონფიგურაცია? ([Ar]= $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6$)
- $1) \ [Ar] 4d^{10} 4s^2 4p^6; \qquad 2) \ [Ar] 3d^{14} 4s^2 4p^5; \qquad 3) \ [Ar] 3d^{10} 4s^2 4p^6; \qquad 4) \ [Ar] \ 3d^{10} 4s.$
- 32. ჩამოთვლილი ქვედონეებიდან რომელი ივსება ყველაზე ადრე?
- 1) 5s; 2) 4d; 3) 4f; 4) 4p.
- 33. ჩამოთელილი ელემენტებიდან რომლის იონიზაციის ენერგიაა ყველაზე მცირე?
- 1) Mg; 2) Ca; 3) Sr; 4) Ba.
- 34. ჩამოთვლილი ელემენტებიდან რომლის პირველი იონიზაციის პოტენციალია ყველაზე დიდი?
- 1) Li; 2) Na; 3) K; 4) Rb.
- 35. ჩამოთვლილი ელემენტებიდან რომლის პირველი იონიზაციის პოტენციალია ყველაზე დიდი?

- 1) B; 2) C; 3) N; 4) Ne.
- 36. ჩამოთვლილი ელემენტებიდან რომლის რადიუსია ყველაზე დიდი?
- 1) H; 2) He; 3) Li; 4) C.
- 37. ჩამოთვლილი ელემენტებიდან რომლის რადიუსია ყველაზე დიდი?
- 1) Na; 2) Mg; 3) Al; 4) Si.
- 38. ჩამოთვლილი ნაწილაკებიდან რომლის რადიუსია ყველაზე მცირე?
- 1) Fe; 2) Fe⁺; 3) Fe²⁺; 4) Fe³⁺.
- 39. ჩამოთვლილი ნაწილაკებიდან რომლის რადიუსია ყველაზე მცირე?
- 1) S; 2) S⁻; 3) S²⁻; 4) S³⁻.
- 40. რომელი თვისება არ ახასიათებს იონურ ბმას?
- 1) პოლარობა; 2) გაჯერებულობა; 3) ბმის ენერგია; 4) ბმის სიგრძე.
- 41. რომელი მოსაზრებაა სამართლიანი ვალენტური ბმების მეთოდით?
- 1) კოვალენტური ბმის წარმოქმნისას სისტემის ენერგია იზრდება;
- 2) კოვალენტურ ბმას წარმოქმნის ორი ელექტრონი პარალელური სპინებით;
- 3) კოვალენტური ბმა ლოკალიზებულია ორ ატომს შორის;
- 4) მოლეკულური ორბიტალები წარმოადგენს ატომური ორბიტალების შეკრებისადა გამოკლების შედეგს.
- 42. მოყვანილი მოსაზრებებიდან რომელია სწორი?
- 1) ვალენტური ბმების მეთოდით ბმის ჯერადობა განისაზღვრება მაკავშირებელ და ანტიმაკავშირებელ ორბიტალებზე ელექტრონების სხვაობის ნახევრით;
- 2) ვალენტური ბმების მეთოდის უპირატესობა მისი თვალსაჩინოებაა;
- 3) მოლეკულური ორბიტალების მეთოდით ქიმიური ბმა ყოველთვის ორცენტრიანი და ორელექტრონიანია;
- 4) იონური ბმა მიმართულია ატომური ორბიტალების მაქსიმალური გადაფარვის მხარეს.
- 43. ჩამოთვლილი ნაწილაკებიდან რომელი არ შეიძლება არსებობდეს მდგრად მდგომარეობაში მომ-ის თანახმად:
- 1) H_2^+ ; 2) HHe; 3) He₂; 4) H_2^- .
- 44. როგორია ბმის ჯერადობა N_2^+ მოლეკულა-იონში?
- 1) 1; 2) 2,5; 3) 2; 4) 3.
- 45. რომელი მოსაზრება არის სწორი O₂-ის დახასიათებისას:
- მოლეკულა დიამაგნიტურია, ვინაიდან მოლეკულაში ელექტრონების წყვილი რიცხვია;

- 2) მოლეკულა პარამაგნიტურია, ვინაიდან მოლეკულის ჯამური სპინი ნულისაგან განსხვავდება;
- 3) მოლეკულაში ბმის ჯერადობა 1,5-ის ტოლია, რადგან მოლეკულა პარამაგნიტურია;
- 4) მოლეკულაში ბმის ჯერადობა 3-ის ტოლია.
- 46. ჩამოთვლილი იონებიდან რომელს აქვს ყველაზე მცირე მაპოლარიზებელი უნარი?
- 1) Na^+ ; 2) Ca^{2+} ; 3) Mg^{2+} ; 4) Al^{3+} .
- 47. გალენტურ ბმათა მეთოდით შესაძლებელია აიხსნას:
- $1)\ H_2{}^+,\ O_2{}^+,\ F_2{}^+$ მოლეკულა-იონების არსებობა;
- 2) ჟანგბადის მოლეკულის პარამაგნიტური თვისებები;
- 3) ზოგიერთი მოლეკულიდან ელექტრონის მოწყვეტისას ბმის სიმტკიცის გაზრდა;
- 4) მოლეკულის სივრცითი აღნაგობა.
- 48. ჩამოთვლილი მოსაზრებებიდან რომელია არასწორი?
- 1) მოლეკულური ორბიტალი არის ტალღური ფუნქცია, რომელიც განსაზღვრავს ელექტრონის ყველაზე საალბათო მდებარეობასა და მის ენერგიას მოლეკულაში;
- 2) რეალური ჰიბრიდიზაცია, როგორც მექანიზმი, არ შეიძლება გამოვლინდეს ელემენტებში;
- 3) ელექტრონის ტალღური განტოლების ამონახსნები აღწერენ დასაშვებ ენერგეტიკულ მდგომარეობებს;
- 4) იონურ ბმას ახასიათებს მაღალი სიმტკიცე.
- 49. ჩამოთვლილი მოსაზრებებიდან რომელია არასწორი?
- პიბრიდიზაცია არის განსხვავებული ფორმისა და ენერგიებით ახლოს მდგომი ატომური ორბიტალების შერწყმა ერთმანეთთან ერთნაირი ფორმისა და ენერგიის ორბიტალების წარმოქმნით.
- იონიზაციის ენერგიით რაოდენობრივად ფასდება ელემენტების ქიმიური ბუნება;
- ელექტრონისადმი სწრაფვა არააღგზნებულ თავისუფალ ატომთან ელექტრონის მიერთების პროცესის ენერგეტიკული ეფექტია;
- 4) ჰიბრიდული ორბიტალები შემოტანილია არალოკალური ბმების აღწერისათვის, რომლებიც სივრცეში გარკვეული მიმართულებით არ არის ორიენტირებული.

- 50. როდესაც ატომთა ვალენტური ორბიტალების ჰიბრიდიზაციის ტიპია sp³d, მოლეკულას აქვს:
 - 1) ბრტყელი ტრიგონალური ფორმა; 2) ტეტრაედრული ფორმა;
 - 3) ტრიგონალური ბიპირამიდის ფორმა; 4) ოქტაედრული ფორმა.
 - 51. მოყვანილი მოსაზრებებიდან რომელია არასწორი?
 - ელექტრონის ტალღური განტოლების ამონახსნები აღწერს დასაშვებ ენერგეტიკულ მდგომარეობებს;
 - ატომური ორბიტალების გამოკლებით მიიღება ანტიმაკავშირებელი მოლეკულური ორბიტალი;
 - 3) ანტიმაკავშირებელი და არამაკავშირებელი მოლეკულური ორბიტალი განსხვავებული ცნებებია.
 - 4) ჰიბრიდიზაცია არის ერთნაირი ფორმისა და ენერგიებით ახლოს მდგომი ატომური ორბიტალების შერწყმა ერთმანეთთან ერთნაირი ფორმისა და ენერგიის ორბიტალების წარმოქმნით.
 - 52. მოყვანილი მოსაზრებებიდან რომელია არასწორი?
 - 1) რეალური ჰიბრიდიზაცია, როგორც მექანიზმი, ვლინდება მეორე პერიოდის ელემენტებში;
 - 2) არამაკავშირებელი მოლეკულური ორბიტალის ენერგია ნაკლებია ანტიმაკავშირებელი ორბიტალის ენერგიაზე;
 - პიბრიდიზაცია არის განსხვავებული ფორმისა და ენერგიებით ახლოს მდგომი ატომური ორბიტალების შერწყმა ერთმარეთთან ერთნაირი ფორმისა და ენერგიის ორბიტალების წარმოქმნით;
 - 4) მაკავშირებელი მოლეკულური ორბიტალის ენერგია მისი წარმომქმნელი ატომური ორბიტალების ენერგიაზე მეტია.
 - 53. CO-ს მოლეკულის მოლეკულური ორბიტალების ენერგეტიკული დიაგრამაა: $[(\sigma_{2s})^2(\sigma^*_{2s})^2(\pi_{2p})^4(\sigma_{2p})^2]$, რომლის მიხედვითაც შეიძლება დავასკვნათ, რომ ბმის რიგი ტოლია:
 - 1) 3-ob; 2) 1-ob; 3) 2-ob; 4) 2,5-ob.
 - 54. NO-ს მოლეკულის მოლეკულური ორბიტალების ენერგეტიკული დიაგრამაა: $[(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^2(\pi_{2p}^*)^4(\pi_{2p}^*)^1]$, რომლის მიხედვითაც შეიძლება დავასკვნათ, რომ ბმის რიგი ტოლია:
 - 1) 1,5-ob; 2) 2,5-ob; 3) 3-ob; 4) 2-ob.
 - 55. როგორია ბმის რიგი ${
 m O_2}^+$ მოლეკულურ იონში?
 - 1) 1; 2) 1,5; 3) 2; 4) 2,5.

- 56. NO-ს მოლეკულის მოლეკულური ორბიტალების ენერგეტიკული დიაგრამაა: $[(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^2(\pi_{2p}^*)^4(\pi_{2p}^*)^1], \ \text{რომლის მიხედვითაც შეიძლება დავასკვნათ, რომ:}$
- 1) აზოტის გალენტობა არის 2-ის ტოლი;
- 2) ხორციელდება აზოტის სავალენტო ორბიტალების ${
 m sp}^2$ ჰიბრიდიზაცია;
- 3) მოლეკულა დიამაგნიტურია; 4) მოლეკულა პარამაგნიტურია.
- 57. ჩამოთვლილი ძალებიდან რომელი არის განპირობებული მუდმივი დიპოლების არსებობით?
- 1) ორიენტაციული; 2) ინდუქციური;
- 3) დისპერსიული; 4) ყველა.
- 58. პიოსისტემებში არ ვხვდებით:
- 1) პეპტიდურ ბმას, 2) წყალბადურ ბმას,
- 3) მაკროერგულ ბმას, 4) ლითონურ ბმას;
- 59. რომელი ნივთიერებების მოლეკულებში არ გვხვდება შიგამოლეკულური წყალბადური ბმა:
- 1) სალიცილმჟავას; 2) ო–ნიტროფენოლის; 3) წყლის; 4) ცილების.
- 60. რომელი პირობაა არასწორი ატომური ორბიტალების წრფივი კომბინაციით მოლეკულური ორბიტალების წარმოქმნისას დასაცავი პირობებიდან?
- 1) ატომურ ორპიტალებს უნდა გააჩნდეთ თითქმის ერთნაირი ენერგიები;
- 2) ორბიტალების გადაფარვა უნდა მოხდეს მნიშვნელოვანი ხარისხით;
- 3) უნდა გააჩნდეთ ერთნაირი სიმეტრია მოლეკულაში ბმის ხაზის მიმართ;
- 4) ატომური ორბიტალები უნდა იყოს ჰიბრიდული.
- 61. ბირთვებს შორის მანძილი იზრდება:
- მაკაგშირებელ მოლეკულურ ორბიტალებზე ელექტრონების რიცხვის
 ზრდასთან ერთად:
- 2) ანტიმაკავშირებელ ორბიტალებზე ელექტრონების რიცხვის ზრდასთან ერთად;
- 3) ელექტრონების მოწყვეტისას ანტიმაკავშირებელი ორბიტალიდან;
- 4) ქიმიური ბმის ენერგიის ზრდასთან ერთად.
- 62. ქიმიური ბმის ენერგია მცირდება:
- 1) მაკავშირებელ მოლეკულურ ორბიტალებზე ელექტრონების რიცხვის ზრდასთან ერთად:
- 2) ანტიმაკავშირებელ ორბიტალებზე ელექტრონების რიცხვის ზრდასთან ერთად;
- 3) ელექტრონების მოწყვეტისას ანტიმაკავშირებელი ორბიტალიდან;

- 4) ბირთვებს შორის მანძილის შემცირებასთან ერთად.
- 63. ჟანგბადის მოლეკულის პარამაგნეტიზმი აიხსნება:
- 1) მაკავშირებელ ორბიტალებზე ორი გაუწყვილებელი ელექტრონის არსებობით;
- 2) ანტიმაკავშირებელ ორბიტალებზე ორი გაუწყვილებელი ელექტრონის არსებობით;
- ანტიმაკავშირებელ ორბიტალებზე ერთი გაუწყვილებელი ელექტრონის არსებობით;
- 4) მაკავშირებელ ორბიტალებზე ერთი გაუწყვილებელი ელექტრონის არსებობით.
- 64. მოყვანილი მოსაზრებებიდან რომელია სწორი?
- დიპოლ-დიპოლური ურთიერთქმედება დამოკიდებულია მოლეკულის პოლარიზებადობაზე;
- 2) ქიმიური გარდაქმნების დროს აღგზნებისას შთანთქმული ენერგია საკმარისია ელექტრონის ერთი ენერგეტიკული დონიდან მეორეზე გადასასვლელად;
- 3) რეალური მოლეკულის ენერგია მეტია რეზონანსული სტრუქტურის ენერგიაზე;
- 4) ბენზოლის რეზონანსულ ჰიბრიდში ბმის ჯერადობა 1,5-ის ტოლია.
- 65. მოყვანილი განმარტებებიდან რომელია სწორი კარბონატ-იონისთვის?
- 1) ბმის ჯერადობა 3/4-ის ტოლია;
- 2) თითოეულ ჟანგბადის ატომზე მუხტი -2-ის ტოლია;
- 3) სამივე C-O ბმას აქვს ერთნაირი სიგრძე;
- 4) ელექტრონული სიმკვრივის განაწილება გამოისახება ოთხი რეზონანსული ფორმულით.
- 66. მოყვანილი განმარტებებიდან რომელია სწორი ჰიდროფოსფატ-იონისთვის?
- 1) ბმის ჯერადობა 5/4-ის ტოლია;
- 2) თითოეულ ჟანგბადის ატომზე მუხტი -3/2-ის ტოლია;
- ოთხივე ბმას ფოსფორისა და ჟანგბადის ატომებს შორის აქვს ერთნაირი სიგრძე;
- 4) ელექტრონული სიმკვრივის განაწილება გამოისახება ოთხი რეზონანსული ფორმულით.
- 67. მოყვანილი მოსაზრებებიდან რომელია სწორი?
- ბმის წარმოქმნისას ატომებს შორის ელექტრონული სიმკვრივის ზრდა სისტემის ენერგიის ზრდას განაპირობებს;

- ლითონური ბმა წარმოიქმნება ვალენტური ელექტრონების სრული დელოკალიზაციით;
- 3) კულონურ ძალებს აქვთ გაჯერებულობის თვისება;
- 4) მოლეკულური ორბიტალი არის ტალღური ფუნქცია, რომელიც განსაზღვრავს ელექტრონის ყველაზე საალბათო მდებარეობას მოცემულ ენერგეტიკულ დონეზე მოლეკულაში.
- 68. ჩამოთვლილი მოლეკულებიდან რომელს აქვს რეზონანსული სტრუქტურები?
- 1) H₂O; 2) SO₃; 3) CH₄; 4) CS₂.
- 69. კომპლექსურია ნაერთი, რომელშიც არის თუნდაც ერთი:
- 1) იონური ბმა; 2) არაპოლარულ-კოვალენტური ბმა; 3) მეტალური ბმა;
- 4) დონორულ-აქცეპტორული მექანიზმით დამყარებული ბმა.
- 70. ლიგანდის დენტატობა განისაზღვრება:
- 1) ლიგანდის დონორულ ატომთა რიცხვით;
- 2) ლიგანდის მუხტით;
- 3) ლიგანდის მჟავურობით ან ფუძიანობით;
- 4) შიგა სფეროში არსებული ლიგანდების რიცხვით.
- 71. ლიგანდის კოორდინაციული ტევადობა განისაზღვრება:
- იმ აღგილების რიცხვით, რომელსაც ლიგანდი იკავებს საკოორდინაციო სფეროში;
- 2) ლიგანდების რაოდენობით საკოორდინაციო სფეროში;
- 3) ლიგანდის მიერ მიკავშირებული კომპლექსწარმომქმნელის რიცხვით;
- 4) ლიგანდის მოცულობით.
- 72. ქვემოთ ჩამოთვლილი კოორდინაციული ნაერთებიდან რომელ რიგ შია მხოლოდ ნეიტრალური კომპლექსნაერთები?
- 1) $[Cr(H_2O)_5Cl]Cl_2$, $[Pt(NH_3)_2(H_2O)OH]NO_2$, $K_2[BeF_4]$;
- 2) $[Ag(NH_3)_2]Cl$, $[Ag(NH_3)_2]OH$, $K_2[Zn(OH)_4]$;
- 3) $[Ni(CO)_4]$, $[Fe(CO)_5]$, $[Cr(NH_3)_3(SCN)_3]$;
- 4) $[Fe(CO)_5]$, $K_3[Fe(CN)_6]$, $[Pt(NH_3)_2Cl_2]$.
- 73. ქვემოთ ჩამოთვლილ რომელ რიგშია მხოლოდ კომპლექსური მჟავები?
- 1) $Li[AlH_4]$, $H[AuCl_4]$, $H_2[BeF_4]$;
- 2) $H_2[BeF_4]$, $H_2[SiF_6]$, $H[AuCl_4]$;
- 3) H[AuCl₄], K₃[Fe(CN)₆], Li[AlH₄];
- 4) H[AuCl₄], Li[AlH₄], [Ag(NH₃)₂]OH.

- 74. ქვემოთ მოყვანილი განტოლებებიდან რომელ შემთხვევაში გამოიყოფა ნალექი - AgCl?
- 1) $[Cr(OH_2)_2(NH_3)_2Cl_2]NO_2+AgNO_3 \rightarrow$
- 2) Na₃ [CrCl₆] +AgNO₃ \rightarrow
- 3) $[Cr(H_2O)_4Cl_2](NO_2)+AgNO_3 \rightarrow$
- 4) $[Cr(H_2O)_2Cl_2(NH_3)_2]Cl+AgNO_3 \rightarrow$
- 75. ქვემოთ მოყვანილ რომელ რიგშია მხოლოდ მონოდენტატური ლიგანდები?
- 1) NO_3 ; Br; NH_3 ; OH_2 ;
- 2) NO_2 ; OH; Cl; en;
- 3) OH_2 ; CN^- ; NH_3 ; $C_2O_4^{2-}$;
- 4) OH_2 ; CN^- ; en; OH^- .
- 76. მხოლოდ ბიდენტატურ ლიგანდებს შეიცავს რიგი:
- 1) H_2O , $NH_2-CH_2-CH_2-NH_2$; SO_4^{2-} ; $C_2O_4^{2-}$; CO_3^{2-} ;
- 2) SO₄²⁻; C₂O₄²⁻; CO₃²⁻; SCN⁻; NH₂-(CH₂)₂-COOH;
- 3) NH₂-CH₂-CH₂-NH₂; NH₂-CH₂-COOH; NO₂⁻; SO₄²⁻; C₂O₄²⁻;
- 4) en, NH₂-CH₂-COOH; C₂O₄²⁻; NH₂-(CH₂)₂-COOH; NH₂-(CH₂)₄-NH₂.
- 77. რა განსაზღვრავს კომპლექსის გეომეტრიას?
- 1) შიგა სფეროში ლიგანდების რიცხვი;
- 2) ცენტრალური ატომის ორპიტალების რიცხვი;
- 3) კომპლექსწარმომქმნელის პიბრიდიზაციის ტიპი.
- 4) კომპლექსწარმომქმნელის მუხტის მნიშვნელობა.
- 78. ლიგანდის ბუნების მიხედვით არ არჩევენ:
- 1) აქვაკომპლექსებს; 2) პიდროქსოკომპლექსებს;
- 3) აციდოკომპლექსებს; 4) კატიონურ კომპლექსებს.
- 79. დაასახელეთ ნივთიერება: [Pt(NH₃)₃Cl]NO₃
- 1) ქლორონიტრატოტრიამინპლატინა;
- 2) პლატინა(IV)-ის ტრიამინქლორონიტრატი;
- 3) ტრიამინქლოროპლატინა(II)-ის ნიტრატი;
- 4) ტრიამინპლატინა(II)-ის ქლორიდ-ნიტრატი.
- 80. დაასახელეთ ნივთიერება: $[Cr(H_2O)_2(OH)_2]Cl$:
- 1) დიაქვადიპიდროქსიქლოროქრომი;
- 2) დიაქვადიპიდროქსიქრომ(III)-ის ქლორიდი;
- 3) ქლოროდიპიდროქსიდიაქვაქრომი(III);

- 4) დიაქვადიპიდროქსიქლოროქრომატი(III).
- 81. დაასახელეთ ნივთიერება: Na[Co(NH₃)₂(NO₂)₄]:
- 1) ტეტრანიტროდიამინოკობალტ(II)-ის ნატრიუმის მარილი;
- 2) ნატრიუმის დიამინტეტრანიტროკობალტი(III);
- 3) ნატრიუმის ტეტრანიტროდიამინკობალტი(III);
- 4) ნატრიუმის დიამინტეტრანიტროკობალტატი(III).
- 82. დაასახელეთ ნივთიერება: $Na_2[Co(CN)_3Cl]$
- 1) ნატრიუმის ქლოროტრიციანოკობალტი(II);
- 2) ნატრიუმის ქლოროტრიციანოკობალტატი(II);
- 3) ნატრიუმის ტრიციანოკობალტ(II)-ის ქლორიდი;
- 4) ქლოროტრიციანონატრიუმის კობალტატი(II).
- 83. ფორმულა კომპლექსური ნივთიერებისა, რომლის სახელწოდებაა კალციუმის პენტანიტროქლოროპლატინატი(IV), არის:
- 1) $Ca[PtCl(NO_2)_5];$ 2) $Ca_2[PtCl(NO_2)_5];$ 3) $Pt[CaCl(NO_2)_5];$ 4) $Pt[Ca(ClNO_2)_5].$
- 84. ფორმულა კომპლექსური ნივთიერებისა, რომლის სახელწოდებაა ტრიამინაქვადიქლოროკობალტ(III)-ის ქლორიდი, არის:
- 1) [Co(NO₂)₃ (H₂O)Cl]Cl₂; 2) [Co(NH₃)₃ (H₂O)Cl]Cl₂;
- 3) [Co(NO₂)₃ (H₂O)Cl₂]Cl; 4) [Co(NH₃)₃ (H₂O)Cl₂]Cl.
- 85. ფორმულა კომპლექსური ნიგთიერებისა, რომლის სახელწოდებაა კალიუმის ოქტაციანომოლიბდატი(IV), არის:
- 1) $K_4[Mo(CN)_6]$; 2) $K_4[Mo(CN)_8]$; 3) $K_2[Mo(CN)_4]$; 4) $K_2[Co(CN)_8]$.
- 86. [Co(NH₃) $_5$ H₂O]Br₃ კომპლექსური ნაერთის სახელ%ოდებაა:
- 1) პენტაამინჰიდროკობალტ(II)-ის ბრომიდი
- 2) პენტაამინაქვაკობალტ(III)-ის ბრომიდი
- 3) პენტაამინაქვაკობალტ(II)-ის ბრომიდი
- 4) პენტაამინჰიდროკობალტ(III)-ის ბრომიდი
- 87. $K[Fe(CN)_4(H_2O)_2]$ კომპლექსური ნაერთის სახელ%ოდებაა:
- 1) კალიუმის დიაქვატეტრაციანოფერატი(II);
- 2) კალიუმის დიაქვატეტრაციანორკინა(II);
- კალიუმის დიაქვატეტრაციანოფერატი(III);
- 4) კალიუმის დიაქვატეტრაციანორკინა(III)
- 88. [CuCl₄]³- კომპლექსური იონის სახელწოდებაა:
- 1) ტეტრაქლოროკუპრატი(II); 2) ტეტრაქლოროსპილენძი(II);

- 3) ტეტრაქლოროკუპრატი(I); 4) ტეტრაქლოროსპილენძი(I).
- 89. Na₂[Zn(CN)₄NH₃H₂O] კომპლექსური ნაერთის სახელწოდებაა:
- 1) ნატრიუმის ამინაქვატეტრაციანოთუთია;
- 2) ნატრიუმის ამინაქვაციანოცინკატი;
- 3) დინატრიუმის ამინაქვაციანოცინკატი;
- 4) ნატრიუმის ამინაქვატეტრაციანოცინკატი.
- 90. $[Co(NH_3)_4(H_2O)_2]Cl_3$ კომპლექსური ნაერთის სახელ%ოდებაა:
- 1) ტეტრაამინდიაქვაკობალტ(III)-ის ქლორიდი;
- 2) პენტაამინაქვაკობალტ(III)-ის ქლორიდი;
- 3) ტეტრაამინაქვაკობალტ(II)-ის ქლორიდი;
- 4) ტეტრაამინდიაქვაკობალტ(III)-ის ქლორიდი.
- 91. Na₂[Fe(CN) $_5$ (H₂O)] კომპლექსური ნაერთის სახელ%ოდებაა:
- 1) ნატრიუმის აქვაპენტაციანოფერატი(II);
- 2) ნატრიუმის აქვაპენტაციანოფერატი(III);
- 3) ნატრიუმის აქვაპენტაციანორკინა(II);
- 4) ნატრიუმის აქვაპენტაციანორკინა(III).
- 92. $[CuCl_4]^{2-}$ კომპლექსური იონის სახელ%ოდებაა:
- 1) ტეტრაქლოროკუპრატი(II); 2) ტეტრაქლოროსპილენძი(II);
- 3) ტეტრაქლოროკუპრატი(I); 4) ტეტრაქლოროსპილენძი(I).
- 93. $K[Zn(CN)_3NH_3(H_2O)_2]$ კომპლექსური ნაერთის სახელ \S ოდებაა:
- 1) კალიუმის ამინდიაქვატრიციანოთუთია;
- 2) კალიუმის ამინაქვატრიაციანოთუთია;
- 3) კალიუმის ამინდიაქვატრიციანოცინკატი;
- 4) კალიუმის ამინაქვატრიციანოცინკატი.
- 94. ქვემოთ ჩამოთვლილ რომელ იონში გვხვდება ${
 m sp}^3{
 m d}^2$ ტიპის ჰიბრიდიზაცია?
- 1) $[BeF_4]^{2-}$; 2) $[Co(en)_3]^{3+}$; 3) $[CuCl_4]^{2-}$; 4) $[Ag(NH_3)_2]^+$.
- 95. როგორი ჰიბრიდიზაციის მდგომარეობაში იმყოფება Be^{2+} იონი [BeCl_4] 2 -კომპლექსურ ანიონში?
- 1) sp^2 ; 2) sp; 3) sp^3d^2 ; 4) sp^3 .
- 96. ოქტაედრული კონფიგურაცია არ ხორციელდება:
- 1) $[Co(NH_3)_6]^{2+}$ იონში; 2) $[Co(CN)_3Cl]^{2-}$ იონში;
- $3) \ \, [Co(NH_3)_4(H_2O)_2]^{2+} \ \, \text{ombdo}; \qquad 4) \ \, [Co(en)_3]^{3+} \, \text{ombdo}.$
- 97. კომპლექსის მდგრადობის დასახასიათებელად შემოტანილია \mathbf{K}_{lip} მდგრადობის მუდმივა, რომელიც:

- 1) წარმოადგენს კომპლექსნაერთის დისოციაციის პროცესის წონასწორობის მუდმიგას;
- 2) წარმოადგენს კომპლექსნაერთის წარმოქმნის პროცესის წონასწორობის მუდმიგას;
- 3) გვიჩვენებს ლიგანდებს შორის კავშირის არარსებობას; лфиыы
- 4) განსაზღვრავს კომპლექსის დაშლის დროს.
- 98. ქვემოთ ჩამოთვლილი რიგებიდან რომელშია მოცემული ჰიდრატული იზომერიის მაგალითი?
- 1) $[Cr(H_2O)_4(NH_3)_2]Cl_3;$ $[Cr(H_2O)_3(NH_3)_3]Cl_3;$
- 2) $[Co(NO_2)(H_2O)_5]Cl_2;$ $[Co(NO_2)(H_2O)_4Cl]Cl\cdot H_2O;$
- 3) $[Zn(NH_3)_2(H_2O)_2)]Cl_2;$ $[Zn(NH_3)(H_2O)_3)]Cl_2;$
- 4) $[Cr(H_2O)_2(NH_3)_2]Cl_3;$ $[Cr(H_2O)_2(NH_3)_2Cl_2]Cl\cdot 2H_2O.$
- 99. ქვემოთ ჩამოთვლილი ლიგანდებიდან რომელია პექსადენტატური?
- 1) პორფინი; 2) en; 3) C₂O₄²⁻; 4) EDTA⁴⁻.
- 100. პორფირინის დიანიონი არის:
- 1) ბიდენტატური ლიგანდი; 2) ტრიდენტატური ლიგანდი;
- 3) ტეტრადენტატური ლიგანდი; 4) პექსადენტატური ლიგანდი.
- 101. ეთილენდიამინტეტრააცეტატი არის:
- 1) ბიდენტატური ლიგანდი; 2) ტრიდენტატური ლიგანდი;
- 3) ტეტრადენტატური ლიგანდი; 4) ჰექსადენტატური ლიგანდი.
- 102. რომელი ნაერთებია ერთმანეთის იზომერულები?
- 1) $[Co(NH_3)_3(H_2O)_3]Cl_3$; $[Co(NH_3)_4Cl_2]Cl\cdot 3H_2O$;
- 2) $[Co(OH_2)_5 NO_3]Cl_2 \cdot H_2O$; $[Co(NO_3)_3(H_2O)_2Cl]Cl \cdot 3H_2O$;
- 3) $[Co(NH_3)_2(H_2O)Cl_2]NO_3 \cdot 3H_2O;$ $[Co(NH_3)_2(H_2O)_2Cl(NO_3)]Cl \cdot 3H_2O;$
- 4) $[C_0(NH_3)_2(H_2O)_5Cl]NO_3\cdot 2H_2O;$ $[C_0(H_2O)_3(NH_3)_2NO_3]Cl\cdot 2H_2O.$
- 103. რისი ტოლია ჰემის შემადგენლობაში შემავალი Fe²⁺იონის კოორდინაციული რიცხვი?
- 1) 4; 2) 6; 3) 8; 4) 2.
- 104. კომპლექსწარმომქნელის კოორდინაციული რიცხვი განისაზღვრება:
- 1) კომპლექსწარმომქმნელთან კოორდინირებული ლიგანდების რიცხვით;
- 2) კომპლექსწარმომქმნელთან კოორდინირებული ლიგანდების მუხტების ჯამით;
- 3) გარე კოორდინაციული სფეროს მუხტის სიდიდით;
- 4) კომპლექსწარმომქმნელთან კოორდინირებული ლიგანდების ატომების საერთო რაოდენობით.

- 105. რომელი ლიგანდები წარმოქმნის კომპლექსწარმომქმნელთან ყველაზე მდგრად კავშირებს?
- 1) მონოდენტატური ლიგანდები; 2) ბიდენტატური ლიგანდები;
- 3) შერეული დენტატობის ლიგანდები; 4) პოლიდენტატური ლიგანდები.
- 106. კოორდინაციულ ნაერთში $Ca_3[Co(S_2O_3)_3]_2$ რას უდრის Co(III)-ის კოორდინაციული რიცხვი?
- 1) 3; 2) 6; 3) 4; 4) 8.
- 107. ანიონურია კოორდინაციული ნაერთი, რომელშიც:
- 1) კომპლექსწარმომქმნელთან კოორდინირებულია ნეიტრალური ლიგანდები;
- 2) კომპლექსწარმომქმნელის ირგვლივ კოორდინირებულია ანიონური ლიგანდები;
- 3) კათიონური კომპლექსწარმომქნელის მუხტისა და ანიონური ლიგანდების მუხტების ჯამი დადებითი სიდიდეა;
- 4) კომპლექსწარმომქმნელის მუხტისა და ანიონური ლიგანდების მუხტების ჯამი უარყოფითი სიდიდეა.
- 108. იონში [Co(NH₃)₂(H₂O)₂Cl(NO₃)]⁺ კომპლექსწარმომქნელის უანგვის ხარისხი და კოორდინაციული რიცხვია:
- 1) +2, 4; 2) +2, 6; 3) +3, 4; 4) +3, 6;
- 109. იონში [Cr(H₂O)₂(NH₃)₂Cl₂]⁺ კომპლექსწარმომქნელის ჟანგვის ხარისხი და კოორდინაციული რიცხვია:
- 1) +2, 4; 2) +2, 2; 3) +3, 4; 4) +3, 6.
- 110. იონში [Fe(CN)₆]⁴ კომპლექსწარმომქნელის ჟანგვის ხარისხი და კოორდინაციული რიცხვია:
- 1) +2, 4; 2) +2, 6; 3) +3, 4; 4) +3, 6.
- 111. იონში [Fe(CN)₆]^{3–} კომპლექსწარმომქნელის ჟანგვის ხარისხი და კოორდინაციული რიცხვია:
- 1) +2, 3; 2) +2, 6; 3) +3, 3; 4) +3, 6.
- 112. კომპლექსურ ნაერთში [Pt(NH₃)₂Cl₂] კომპლექსწარმომქნელის ჟანგვის ხარისხი და კოორდინაციული რიცხვია:
- 1) +2, 2; 2) +1, 2; 3) +2, 4; 4) +4, 4.
- 113. კომპლექსურ ნაერთში [Cd(en)₂(CN)₂] კომპლექსწარმომქნელის ჟანგვის ხარისხი და კოორდინაციული რიცხვია:
- 1) +2, 2; 2) +2, 4; 3) +2, 6; 4) +4, 6.

- 114. კომპლექსურ ნაერთში [Co(NH₃)₃(H₂O)₃]Cl₃ კომპლექსწარმომქნელის ჟანგვის ხარისხი და კოორდინაციული რიცხვია:
- 1) +2, 2; 2) +2, 4; 3) +3, 6; 4) +4, 6.
- 115. კომპლექსურ ნაერთში K[Fe(CN)₄(H₂O)₂] კომპლექსწარმომქნელის ჟანგვის ხარისხი და კოორდინაციული რიცხვია:
- 1) +2, 2; 2) +2, 4; 3) +2, 6; 4) +3, 6.
- 116. კომპლექსები ქელატურია, თუ:
- 1) ლიგანდები მონოდენტატურია;
- 2) კომპლექსწარმომქმნელი ბი- ან პოლიდენტატურ ლიგანდთან ციკლს წარმოქმნის;
- 3) ლიგანდები ელექტრონული წყვილებით ამყარებენ ბმას;
- 4) კომპლექსწარმომქმნელი განსხვავებულ ლიგანდებს უკავშირდება.
- 117. რა არის ქელატოთერაპიის არსი?
- 1) ქელატური კომპლექსების წარმოქმნა;
- 2) ტოქსიკურ ლითონებთან მდგრადი, წყალში ხსნადი კომპლექსების წარმოქმნა;
- 3) ბიოლიგანდებით კომპლექსწარმოქმნა;
- 4) ბიომეტალებით კომპლექსწარმოქმნა.
- 118. რომელიღაც რეაქციისათვის მოქმედ მასათა კანონი ჩაიწერება, როგორც $v=kC_A{}^2C_B{}^{2,5}$. ქვემოთჩამოთვლილთაგან რომელი დებულებაა სამართლიანი ამ რეაქციისათვის?
- პირველი რეაგენტის ყოველი 2 მოლეკულა ერთდროულად ურთიერთქმედებს
 მეორე რეაგენტის 2,5 მოლეკულასთან;
- 2) პირველი რეაგენტის ყოველი 4 მოლეკულა ერთდროულად ურთიერთქმედებს მეორე რეაგენტის 5 მოლეკულასთან;
- 3) რეაგენტებს არ შეიძლება ჰქონდეთ წილადური რიგი;
- 4) ეს რეაქცია რთული მექანიზმით მიმდინარეობს.
- 119. ქვემოთჩამოთვლილთაგან რომელი დებულებაა სამართლიანი?
- 1) რეაქციის სიჩქარის კონსტანტა არაა დამოკიდებული რეაქციის პირობებზე;
- 2) რეაგენტების მოლეკულებს შორის ყოველი შეჯახება არ იწვევს პროდუქტის წარმოქმნას;
- 3) ელემენტარული რეაქციები უფრო გავრცელებულია, ვიდრე მრავალსტადიანი;
- 4) კატალიზატორი არ ცვლის ჰომოგენური რეაქციის მექანიზმს.
- 120. ქვემოთჩამოთვლილთაგან რომელი დებულებაა არასამართლიანი?
- 1) რეაქციის სიჩქარის კონსტანტა დამოკიდებულია რეაქციის პირობებზე;

- 2) რეაგენტების მოლეკულებს შორის ყოველი შეჯახება არ იწვევს პროდუქტის წარმოქმნას;
- 3) ელემენტარული რეაქციები უფრო გავრცელებულია, ვიდრე მრავალსტადიანი;
- 4) კატალიზატორი ცვლის ჰომოგენური რეაქციის მექანიზმს.
- 121. ქვემოთჩამოთვლილთაგან რომელი დებულებაა არასამართლიანი?
- 1) რეაქციის სიჩქარის კონსტანტა არაა დამოკიდებული რეაქციის პირობებზე;
- 2) რეაგენტების მოლეკულებს შორის ყოველი შეჯახება არ იწვევს პროდუქტის წარმოქმნას;
- 3) ელემენტარული რეაქციები ნაკლებ გავრცელებულია, ვიდრე მრავალსტადიანი;
- 4) კატალიზატორი რეგენერირდება ჰომოგენური რეაქციის დასკვნით სტადიაზე.
- 122. ქვემოთჩამოთვლილთაგან რომელი დებულებაა არასამართლიანი?
- 1) რეაქციის სიჩქარის კონსტანტა არაა დამოკიდებული რეაქციის პირობებზე;
- 2) რეაგენტების მოლეკულებს შორის თითოეული შეჯახება იწვევს პროდუქტის წარმოქმნას;
- 3) მრავალსტადიანი რეაქციები უფრო გავრცელებულია, ვიდრე ელემენტარული;
- 4) კატალიზატორი ცვლის ჰომოგენური რეაქციის მექანიზმს.
- 123. რომელიღაც ჰომოგენური რეაქცია ნელა წარიმართება ოთახის ტემპერატურაზე, მაგრამ მაღალ ტემპერატურებზე მისი სიჩქარე იზრდება. რა არის მიზეზი?
- 1) მაღალ ტემპერატურებზე წონასწორობის დამყარება აღარ ხდება;
- 2) მაღალ ტემპერატურებზე მოლეკულების ქაოტური შეჯახებების ალბათობა მცირდება, ხოლო მოწესრიგებული შეჯახებებისა იზრდება;
- 3) მაღალ ტემპერატურებზე მოლეკულების კინეტიკური ენერგია მცირდება;
- 4) მაღალ ტემპერატურებზე მოლეკულების კინეტიკური ენერგია და შეჯახებების ალბათობა იზრდება.
- 124. განვიხილოთ ჰიპოთეტური ჰომოგენური რეაქცია: A+B→C+Q (სადაც Q გამოყოფილი სითბოს რაოდენობაა). რას შეცვლის კატალიზატორი?
- 1) როგორც სითბოს რაოდენობას, ისე რეაქციის სიჩქარეს;
- 2) არც სითბოს რაოდენობას და არც რეაქციის სიჩქარეს;
- 3) არც სითბოს რაოდენობას და არც აქტივაციის ენერგიას;
- 4) მხოლოდ აქტივაციის ენერგიას, მაგრამ არა სითბოს რაოდენობას.

- 125. განვიხილოთ ჰიპოთეტური ჰომოგენური რეაქცია: A+B→C; როგორია რეაქციის რიგი, თუ მოქმედ მასათა კანონი მოცემული რეაქციისათვის ჩაიწერება, როგორც v=kC_A?
- 1) პირველი რიგის; 2) ნულოვანი რიგის; 3) ფსევდოპირველი რიგის;
- 4) მოქმედ მასათა კანონის ჩანაწერი მოცემული რეაქციისათვის მცდარია.
- 126. განვიხილოთ ჰიპოთეტური ჰომოგენური რეაქცია: A+2B→C; როგორია რეაქციის რიგი, თუ მოქმედ მასათა კანონი მოცემული რეაქციისათვის ჩაიწერება, როგორც v=kC_AC_B?
- 1) მეორე რიგის; 2) ნულოვანი რიგის; 3) ფსევდოპირველი რიგის;
- 4) მოქმედ მასათა კანონის ჩანაწერი მოცემული რეაქციისათვის მცდარია.
- 127. განვიხილოთ ჰიპოთეტური ჰომოგენური რეაქცია: 2A+B→C; როგორია რეაქციის რიგი A რეაგენტისათვის, თუ მოქმედ მასათა კანონი მოცემული რეაქციისათვის ჩაიწერება, როგორც v=kC_AC_B?
- 1) პირველი რიგის; 2) ნულოვანი რიგის; 3) ფსევდოპირველი რიგის;
- 4) მოქმედ მასათა კანონის ჩანაწერი მოცემული რეაქციისათვის მცდარია.
- 128. განვიხილოთ ჰიპოთეტური ჰომოგენური ელემენტარული რეაქცია: A+B→C; რა შეიძლება ითქვას რეაქციის რიგის თაობაზე, თუ მოქმედ მასათა კანონი მოცემული რეაქციისათვის ჩაიწერება, როგორც v=kC_A²C_B?
- 1) პირველი რიგის; 2) მეორე რიგის; 3) მესამე რიგის;
- 4) მოქმედ მასათა კანონის ჩანაწერი მოცემული რეაქციისათვის მცდარია.
- 129. განვიხილოთ ჰიპოთეტური ჰომოგენური რეაქცია: $A+2B\to C$; როგორია რეაქციის რიგი B რეაგენტისათვის, თუ მოქმედ მასათა კანონი მოცემული რეაქციისათვის ჩაიწერება, როგორც $v=kC_A{}^2C_B$?
- 1) პირველი რიგის; 2) მეორე რიგის; 3) მესამე რიგის;
- 4) მოქმედ მასათა კანონის ჩანაწერი მოცემული რეაქციისათვის მცდარია.
- 130. განვიხილოთ ჰიპოთეტური ჰომოგენური რეაქცია: $A+2B\to C$; მოქმედ მასათა კანონი მოცემული რეაქციისათვის ჩაიწერება, როგორც $v=kC_A{}^2C_B$. ამ რეაქციის მსვლელობის შესახებ ქვემოთმოტანილ მოსაზრებათაგან რომელია მცდარი?
- 1) ეს მრავალსტადიანი რეაქციაა;
- 2) ამ რეაქციას გააჩნია შუალედური პროდუქტები;
- 3) ამ რეაქციისათვის მოქმედ მასათა კანონი უნდა ჩაიწეროს, როგორც $v=kC_AC_B^2$;
- 4) ეს მესამე რიგის რეაქციაა.

- 131. განვიხილოთ პიპოთეტური პომოგენური რეაქცია: $A+2B\to C$; მოქმედ მასათა კანონი მოცემული რეაქციისათვის ჩაიწერება, როგორც $v=kC_AC_B^2$. ამ რეაქციის მსვლელობის შესახებ ქვემოთმოტანილ მოსაზრებათაგან რომელია მცდარი?
- 1) ეს შეიძლება იყოს მრავალსტადიანი რეაქცია;
- 2) ამ რეაქციას შეიძლება გააჩნდეს შუალედური პროდუქტები;
- 3) გადაჭრით შეიძლება ითქვას, რომ ეს ელემენტარული რეაქციაა;
- 4) ეს მესამე რიგის რეაქციაა.
- 132. განვიხილოთ ჰიპოთეტური ჰომოგენური რეაქცია: A+2B→C; მოქმედ მასათა კანონი მოცემული რეაქციისათვის ჩაიწერება, როგორც v=kC_AC_B. ამ რეაქციის მსვლელობის შესახებ ქვემოთმოტანილ მოსაზრებათაგან რომელია მცდარი?
- 1) ეს მრავალსტადიანი რეაქცია;
- 2) ამ რეაქციას შეიძლება გააჩნდეს შუალედური პროდუქტები;
- 3) გადაჭრით შეიძლება ითქვას, რომ ეს არაა ელემენტარული რეაქციაა;
- 4) ეს მესამე რიგის რეაქციაა.
- 133. განვიხილოთ ჰიპოთეტური ჰომოგენური რეაქცია: $A+B \rightarrow C$; რომელიღაც T_1 ტემპერატურაზე მოქმედ მასათა კანონი მოცემული რეაქციისათვის ჩაიწერება, როგორც $v=kC_AC_B$, ხოლო რომელიღაც T_2 ტემპერატურაზე ($T_1<T_2$) $v=kC_A^{0.75}C_B$. ამ რეაქციის მსვლელობის შესახებ ქვემოთმოტანილ მოსაზრებათაგან რომელია მცდარი?
- 1) T2 ტემპერატურაზე ეს მრავალსტადიანი რეაქციაა;
- 2) გადაჭრით შეიძლება ითქვას, რომ ეს რეაქცია საერთოდ არაა ელემენტარული;
- 3) T_1 ტემპერატურაზე ეს შეიძლება იყოს ელემენტარული რეაქGია;
- 4) ტემპერატურა გავლენას ახდენს რეაქციის მექანიზმზე.
- 134. განვიხილოთ ჰიპოთეტური სამეტაპიანი რეაქცია. პირველი ეტაპის აქტივაციის ენერგიაა 1566 კჯ/მოლი, მეორე ეტაპის 200 კჯ/მოლი, მესამე ეტაპის 192 კჯ/მოლი. რომელია მალიმიტებელი სტადია?
- 1) პირველი ეტაპი; 2) მეორე ეტაპი; 3) მესამე ეტაპი;
- 4) ამ რეაქციას არ აქვს მალიმიტებელი სტადია.
- 135. განვიხილოთ ჰიპოთეტური სამეტაპიანი რეაქცია. პირველი ეტაპის აქტივაციის ენერგიაა 176 კჯ/მოლი, მეორე ეტაპის – 185 კჯ/მოლი, მესამე ეტაპის
- 179 კჯ/მოლი. რომელია მალიმიტებელი სტადია?
- 1) პირველი ეტაპი; 2) მეორე ეტაპი; 3) მესამე ეტაპი;
- 4) ამ რეაქციას არ აქვს მალიმიტებელი სტადია.

- 136. განვიხილოთ ჰიპოთეტური სამეტაპიანი რეაქცია. პირველი ეტაპის აქტივაციის ენერგიაა 156 კჯ/მოლი, მეორე ეტაპის 2000 კჯ/მოლი, მესამე ეტაპის 182 კჯ/მოლი. რომელია მალიმიტებელი სტადია?
- 1) პირველი ეტაპი; 2) მეორე ეტაპი; 3) მესამე ეტაპი;
- 4) ამ რეაქციას არ აქვს მალიმიტებელი სტადია.
- 137. განვიხილოთ ჰიპოთეტური სამეტაპიანი რეაქცია. პირველი ეტაპის აქტივაციის ენერგიაა 566 კჯ/მოლი, მეორე ეტაპის 700 კჯ/მოლი, მესამე ეტაპის 1922 კჯ/მოლი. რომელია მალიმიტებელი სტადია?
- 1) პირველი ეტაპი; 2) მეორე ეტაპი; 3) მესამე ეტაპი;
- 4) ამ რეაქციას არ აქვს მალიმიტებელი სტადია.
- 138. განვიხილოთ ჰიპოთეტური სამეტაპიანი რეაქცია. პირველი ეტაპის აქტივაციის ენერგიაა 166 კჯ/მოლი, მეორე ეტაპის 172 კჯ/მოლი, მესამე ეტაპის 175 კჯ/მოლი. რომელია მალიმიტებელი სტადია?
- 1) პირველი ეტაპი; 2) მეორე ეტაპი; 3) მესამე ეტაპი;
- 4) ამ რეაქციას არ აქვს მალიმიტებელი სტადია.
- 139. განვიხილოთ ჰიპოთეტური სამეტაპიანი რეაქცია. პირველი ეტაპის აქტივაციის ენერგიაა 4523 კჯ/მოლი, მეორე ეტაპის 2000 კჯ/მოლი, მესამე ეტაპის 1192 კჯ/მოლი. რომელია მალიმიტებელი სტადია?
- 1) პირველი ეტაპი; 2) მეორე ეტაპი; 3) მესამე ეტაპი;
- 4) ამ რეაქციას არ აქვს მალიმიტებელი სტადია.
- 140. განვიხილოთ ჰიპოთეტური სამეტაპიანი რეაქცია. პირველი ეტაპის აქტივაციის ენერგიაა 66 კჯ/მოლი, მეორე ეტაპის 200 კჯ/მოლი, მესამე ეტაპის 12 კჯ/მოლი. რომელია მალიმიტებელი სტადია?
- 1) პირველი ეტაპი; 2) მეორე ეტაპი; 3) მესამე ეტაპი;
- 4) ამ რეაქციას არ აქვს მალიმიტებელი სტადია.
- 141. განვიხილოთ ჰიპოთეტური სამეტაპიანი რეაქცია. პირველი ეტაპის აქტივაციის ენერგიაა 1122 კჯ/მოლი, მეორე ეტაპის 1200 კჯ/მოლი, მესამე ეტაპის 1292 კჯ/მოლი. რომელია მალიმიტებელი სტადია?
- 1) პირველი ეტაპი; 2) მეორე ეტაპი; 3) მესამე ეტაპი;
- 4) ამ რეაქციას არ აქვს მალიმიტებელი სტადია.
- 142. განვიხილოთ ჰიპოთეტური სამეტაპიანი რეაქცია. რა შეიძლება ითქვას პირველი ეტაპის აქტივაციის ენერგიაზე, თუ მეორე ეტაპის აქტივაციის ენერგიაა 200 კჯ/მოლი, მესამე ეტაპის – 192 კჯ/მოლი და მალიმიტებელი სტადიაა პირველი ეტაპი?

- 1) პირველი ეტაპის აქტივაციის ენერგია მნიშვნელოვნად უნდა აღემატებოდეს 200 კჯ/მოლს;
- 2) პირველი ეტაპის აქტივაციის ენერგია დაახლოებით უნდა უდრიდეს 200 კჯ/მოლს;
- პირველი ეტაპის აქტივაციის ენერგია მნიშვნელოვნად მცირე უნდა იყოს, ვიდრე 200 კჯ/მოლი;
- 4) პირველი ეტაპის აქტივაციის ენერგია მცირედ უნდა აღემატებოდეს 200 კჯ/მოლს.
- 143. თერმოდინამიკა არ იძლევა შესაძლებლობას განისაზღვროს:
- 1) სპონტანური (თვითმიმდინარე) პროცესების მიმართულება.
- 2) პროცესის წარმართვის ზღვარი;
- 3) პროცესის მიმდინარეობის მექანიზმი.
- 4) პროცესის ენერგეტიკული ბალანსი.
- 144. ჩამოთვლილი სიდიდეებიდან რომელი არ არის მდგომარეობის ფუნქცია?
- 1) ენთალპია; 2) შიგა ენერგია; 3) ენტროპია;
- 145. წარმოქმნის ენთალპია ეწოდება:
- 1) მარტივი ნივთიერებებიდან 1 მოლი ნივთიერების წარმოქმნის რეაქციის ენთალპიას;
- 2) რეაქციის ენთალპიას, რომელიც 1 მოლი რეაქციის პროდუქტების წარმოქმნის ენთალპიების ჯამის ტოლია;
- რთული ნიგთიერებიდან 1 მოლი მარტივი ნიგთიერებების წარმოქმნის რეაქციის ენთალპიას;
- 4) ნებისმიერი რეაქციით ნივთიერებების წარმოქმნის ენთალპიას.
- 146. ჩამოთვლილი აირებიდან რომლის წარმოქმნის სტანდარტული ენთალპიაა ნულის ტოლი?
- 1) ჟანგბადის; 2) ნახშირბადის დიოქსიდის;
- 3) ამიაკის; 4) ნახშირბადის მონოქსიდის.
- 147. როგორი გამოსახულება აქვს იზობარული პროცესებისათვის თერმოდინამიკის I საწყისს?
- 1) $Q_p = \Delta H$; 2) $Q_p = \Delta E$; 3) $Q_p = W$; 4) $Q_p = p\Delta V$.
- 148. როგორი გამოსახულება აქვს თერმოდინამიკის I კანონს იზოქორული პროცესებისათვის?
- $1) \; Q_p \!\! = \!\! \Delta H; \qquad 2) \; Q_v \!\! = \!\! \Delta E; \qquad 3) \; Q_v \!\! = \!\! \Delta E \!\! + \!\! A; \qquad 4) \; Q_v = \!\! \Delta E \!\! + \!\! p \Delta V.$

4) სითბო.

- 149. რომელი ფორმულით გამოისახება ანალიზურად თერმოდინამიკის II კანონი ისოლირებული სისტემისათვის?
- 1) $\Delta S > 0$; 2) $Q = \Delta E + A$; 3) $\Delta G = \Delta E T \Delta S$; 4) $Q = \Delta E + p \Delta V$.
- 150. ეგზოთერმულია პროცესი, რომლისთვისაც:
- 1) $\Delta G > 0$; 2) $\Delta H = 0$; 3) $\Delta H > 0$; 4) $\Delta H < 0$.
- 151. როგორ არის დაკავშირებული სისტემის ენტროპია თერმოდინამიკურ ალბათობასთან?
- 1) S=K/lnW 2) S=KlnW; 3) S=lnW; 4) K=S lnW.
- 152. თანაბარი რაოდენობით აღებული ქვემოთ ჩამოთვლილი ნივთიერებებიდან რომელს აქვს ყველაზე მეტი ენტროპია?
- 1) $SO_3(s)$; 2) $SO_2(s)$; 3) $P_4(\partial_9)$; 4) $H_2(s)$.
- 153. თანაბარი რაოდენობით აღებული ქვემოთ ჩამოთვლილი ნივთიერებებიდან რომელს აქვს ყველაზე მეტი ენტროპია?
- 1) $O_3(s)$; 2) $NH_3(s)$; 3) O(s), 4) $I_2(\partial_{4})$.
- 154. თანაბარი რაოდენობით აღებული ქვემოთ ჩამოთვლილი ნივთიერებებიდან რომელს აქვს ყველაზე მეტი ენტროპია?
- 1) $S_8(\partial_9)$; 2) $SO_2(\delta)$; 3) $Br_2(\sigma b)$; 4) $CH_4(\delta)$.
- 155. მოცემული პირობებიდან რომელია აუცილებელი იმისათვის, რომ შექცევადი რეაქცია პირდაპირი მიმართულებით წარიმართოს?
- 1) $\Delta S > 0$; 2) $\Delta H < 0$; 3) $\Delta G < 0$; 4) $\Delta H > 0$.
- 156. პროცესის თვითნებური მიმდინარეობის შესაძლებლობა არ არსებობს, როცა:
- 1). $\Delta H > 0$; 2) $|\Delta H| > |T\Delta S|$; 3) $\Delta S > 0$; 4) $\Delta G > 0$;
- 157. ქვემოთ მოცემული პირობებიდან, რომლის დროს არის რეაქცია შეუქცევადი:
- 1) $\Delta G > 0$, $\Delta H > 0$; 2) $\Delta H > 0$, $\Delta S > 0$; 3) $\Delta H < 0$, $\Delta S < 0$; 4) $\Delta H < 0$, $\Delta S > 0$.
- 158. რომელ შემთხვევაში წარიმართება რეაქცია ნებისმიერ ტემპერატურაზე?
- 1) $\Delta H^0 < 0$, $\Delta S^0 > 0$; 2) $\Delta H^0 < 0$, $\Delta S^0 < 0$; 3) $\Delta H^0 > 0$, $\Delta S^0 > 0$; 4) $\Delta H^0 > 0$, $\Delta S^0 < 0$.
- 159. პროცესის თვითნებური წარმართვის შესაძლებლობა არ არსებობს, როცა:
- 1) $\Delta H^0 < 0$, $\Delta S^0 > 0$; 2) $\Delta H^0 < 0$, $\Delta S^0 < 0$; 3) $\Delta H^0 > 0$, $\Delta S^0 > 0$; 4) $\Delta H^0 > 0$, $\Delta S^0 < 0$.
- 160. ქვემოთ მოცემული რომელი რეაქციისთვისაა $\Delta S > 0$?
- 1) $SO_{3(mb)}+H_2O_{(mb)}=H_2SO_{4(mb)};$ 2) $2Hg_{(m)}+O_{2(\delta)}=2HgO_{(\partial g)};$
- 3) $2HgO(\partial_{3})=2Hg(\omega)+O_{2}(\delta);$ 4) $S(\partial_{3})+O_{2}(\delta)\rightarrow SO_{2}(\delta).$
- 161. მოცემულ ქიმიურ რეაქციაში: $1/2C(a_{\theta}) + 1/2CO_{2(\delta)} = CO_{(\delta)}$ როგორ იცვლება ენტროპია?

- 2) დასაწყისში მცირდება, შემდეგ უცვლელი რჩება; 1) არ იცვლება.;
- 3) მცირდება; 4) იზრდება.
- 162. მოცემულ ქიმიურ რეაქციაში: $C_{(\theta_9)} + O_{2}$ $_{(\delta)} = CO_{2}$ $_{(\delta)}$ როგორ იცვლება ენტროპია?
- 1) იზრდება; 2) მცირდება; 3) არ იცვლება;
- 4) დასაწყისში იზრდება, შემდეგ მცირდება;
- 163. ქვემოთ ჩამოთვლილი პროცესებიდან რომელ შემთხვევაში აქვს ადგილი ენტროპიის მაქსიმალურ დადებით ცვლილებას?
- 1) $CH_3OH(\partial_9) \rightarrow CH_3OH(\delta)$;
- 3) CH₃OH (∂_{3}) \rightarrow CH₃OH (σ b);
- 3) $3H_2(\delta) + N_2(\delta) \rightarrow 2NH_3(\delta)$;
- 4) $2 \text{ NH}_3(s) \rightarrow 3\text{H}_2(s) + \text{N}_2(s)$;
- 164. ქვემოთ მოცემული რომელი რეაქციისთვისაა $\Delta S > 0$?
- 1) $2Hg(\omega) + O_2(\delta) = 2HgO(\partial g)$;
- 2) $2H_{2(s)}+O_{2(s)}=2H_2O(\sigma b)$;
- 3) $4P(\theta_9) + 5O_2(s) = 2P_2O_5(\theta_9)$;
- 4) $H_2SiO_3(\partial_9) = H_2O(\omega_b) + SiO_2(\partial_9)$
- 165. რომელი პროცესი მიმდინარეობს ენტროპიის შემცირებით?
- 1) $2NH_3(\partial_9) \rightarrow N_2(\partial_9) + 3H_2(\delta)$;
- 2) CH₃OH (∂_9) \rightarrow CH₃OH (ω b);
- 3) $2KMnO_4(\partial_4) \rightarrow MnO_2(\partial_4) + K_2MnO_4(\partial_4) + O_2(\delta);$
- 4) $Ca(\partial_9) + 0.5O_2(\delta) \rightarrow CaO(\partial_9)$;
- 166. როგორ იცვლება ენტროპია რეაქციაში: $B_2O_3 + Al \rightarrow Al_2O_3 + 2B$?
- 1) უმნიშვნელოდ იცვლება; 2) მკვეთრად მცირდება; 3) მკვეთრად იზრდება;
- 4) პასუხისათვის აუცილებელია გიბსის ენერგიის ცვლილების ცოდნა.
- 167. რომელი პირობა არ ითვლება სისტემათა სტანდარტულ მდგომარეობად ქიმიაში?
- 1) T=298K; 2) P=101,333s;
- 3) pH = 7;
- 4) ნივთიერების რაოდენობა 1 მოლი.
- 168. რომელი პირობები არ შეესაბამება თერმოდინამიკურ წონასწორობას?
- 1) სისტემის თვისებები უცვლელია დროში გარემოსთან ნივთიერების, ენერგიისა და ინფორმაციის გაცვლის ხარჯზე;
- 2) სისტემაში არ არსებობს ნივთიერების ნაკადი;
- 3) სისტემაში არ არსებობს ენერგიის ნაკადი;
- 4) ენტროპია მაქსიმალურია.
- 169. ექსტენსიური თერმოდინამიკური პარამეტრი არ არის:
- 1) მოცულობა; 2) მოლური ენთალპია; 3) ენერგია; 4) ენტროპია.
- 170. ინტენსიური თერმოდინამიკური პარამეტრია:
- 1) მოცულობა;
- 2) მასა;
- 3) ენერგია; 4) კონცენტრაცია.

- 171. სისტემა შეიძლება იყოს: 1) ექსტენსიური; 2) გარდამავალი; 3) ღია; 4) ციკლური. 172. ქვემოთჩამოთვლილთაგან რომელია ინტენსიური პარამეტრი ან ფუნქცია? 1) ენტროპია; 2) მასა; 3) წნევა; 4) მოცულობა. 173. ქვემოთჩამოთვლილთაგან რომელია ინტენსიური პარამეტრი ან ფუნქცია? 1) ენტროპია; 2) ტემპერატურა; 3) ენთალპია; 4) მოცულობა. 174. ქვემოთჩამოთვლილთაგან რომელია ინტენსიური პარამეტრი ან ფუნქცია? 3) ენთალპია; 1) სიმკვრივე; 2) მოცულობა; 4) შინაგანი ენერგია. 175. ქვემოთჩამოთვლილთაგან რომელია ინტენსიური პარამეტრი ან ფუნქცია? 1) თავისუფალი ენერგია; 2) მოცულობა; 3) ენთალპია; 4) კონცენტრაცია. 176. ქვემოთჩამოთვლილთაგან რომელია ექსტენსიური პარამეტრი ან ფუნქცია? 4) სიმკვრივე. 1) ენტროპია; 2) ტემპერატურა; 3) წნევა; 177. ქვემოთჩამოთვლილთაგან რომელია ექსტენსიური პარამეტრი ან ფუნქცია? 1) წნევა; 2) მოცულობა; 3) ტემპერატურა; 4) კონცენტრაცია. 178. ქვემოთჩამოთვლილთაგან რომელია ექსტენსიური პარამეტრი ან ფუნქცია? 2) ტემპერატურა; 3) ენთალპია; 4) წნევა. 1) სიმკვრივე; 179. ქვემოთჩამოთვლილთაგან რომელია ექსტენსიური პარამეტრი ან ფუნქცია? 1) ნივთიერების რაოდენობა; 2) წნევა; 3) ტემპერატურა; 4) კონცენტრაცია. 180. ქვემოთჩამოთვლილთაგან რომელი არაა მდგომარეობის ფუნქცია? 1) შინაგანი ენერგია; 2) სითბო; 3) ენთალპია; 4) ენტროპია. 181. ქვემოთჩამოთვლილთაგან რომელი არაა მდგომარეობის ფუნქცია? 2) გიბსის თავისუფალი ენერგია 1) შინაგანი ენერგია; 3) ენთალპია; 4) მუშაობა. ქვემოთჩამოთვლილთაგან რომელია თერმოდინამიკის კანონის ფორმულირება ჩაკეტილი სისტემისათვის? 1) სისტემის შინაგანი ენერგია არ იცვლება;
- 2) სისტემასა გარემოს შორის ენერგიის მიმოცვლა მიმდინარეობს და
- 3) სითბო თავისთავად გადაეცემა თბილი სხეულიდან ცივს;
- 4) აბსოლუტურ ნულზე ენტროპია მუდმივია;

თბოგადაცემითა და შესრულებული მუშაობით;

- 183. ქვემოთჩამოთვლილთაგან რომელია თერმოდინამიკის I კანონის ფორმულირება იზოლირებული სისტემისათვის?
- 1) სისტემის შინაგანი ენერგია არ იცვლება;

- 2) სისტემასა და გარემოს შორის ენერგიის მიმოცვლა მიმდინარეობს სითბოგადაცემითა და შესრულებული მუშაობით;
- 3) სითბო თავისთავად გადაეცემა თბილი სხეულიდან ცივს;
- 4) აბსოლუტურ ნულზე ენტროპია მუდმივია.
- 184. ქვემოთჩამოთვლილთაგან რომელია თერმოდინამიკის II კანონის ფორმულირება?
- 1) სისტემის შინაგანი ენერგია არ იცვლება;
- სისტემასა და გარემოს შორის ენერგიის მიმოცვლა მიმდინარეობს თბოგადაცემითა და შესრულებული მუშაობით;
- 3) სითბო თავისთავად გადაეცემა თბილი სხეულიდან ცივს;
- 4) აბსოლუტურ ნულზე ენტროპია მუდმივია.
- 185. რა ეწოდება თერმოდინამიკურ ფუნქციას, რომელიც გამოითვლება ფორმულით E+pV, სადაც E შინაგანი ენერგიაა, p წნევა, V მოცულობა?
- 1) ენტროპია; 2) გიბსის თავისუფალი ენერგია; 3) ენთალპია; 4) მუშაობა.
- 186. რა ეწოდება თერმოდინამიკურ ფუნქციას, რომელიც გამოითვლება ფორმულით H–TS, სადაც H ენთალპიაა, T აბსოლუტური ტემპერატურა, S ენტროპია?
- 1) შინაგანი ენერგია; 2) გიბსის თავისუფალი ენერგია;
- 3) ენთალპია; 4) მუშაობა.
- 187. მიმდინარეობს თუ არა პროცესი თავისთავად, თუ $\Delta H^0_m = +193$ კ%/მოლ და $\Delta S^0_m = +200$ კ%/ $K\cdot$ მოლ?
- 1) გარკვეულ ტემპერატურამდე არის, შემდეგ აღარ;
- 2) არ მიმდინარეობს თავისთავად ნებისმიერ ტემპერატურაზე;
- 3) გარკვეულ ტემპერატურამდე არ არის, შემდეგ კი არის;
- 4) თავისთავად მიმდინარეობს ნებისმიერ ტემპერატურაზე.
- 188. მიმდინარეობს თუ არა პროცესი თავისთავად, თუ $\Delta H^0_m = -163$ კ%/მოლი და $\Delta S^0_m = +20$ კ%/ $K\cdot$ მოლი?
- 1) გარკვეულ ტემპერატურამდე არის, შემდეგ აღარ;
- 2) არ მიმდინარეობს თავისთავად ნებისმიერ ტემპერატურაზე;
- 3) გარკვეულ ტემპერატურამდე არ არის, შემდეგ კი არის;
- 4) თავისთავად მიმდინარეობს ნებისმიერ ტემპერატურაზე.
- 189. მიმდინარეობს თუ არა პროცესი თავისთავად, თუ $\Delta H^0_{
 m m} = -123$ კ%/მოლი და $\Delta S^0_{
 m m} = -120$ კ%/ $K\cdot$ მოლი?
- 1) გარკვეულ ტემპერატურამდე არის, შემდეგ აღარ;

- 2) არ მიმდინარეობს თავისთავად ნებისმიერ ტემპერატურაზე;
- 3) გარკვეულ ტემპერატურამდე არ არის, შემდეგ კი არის;
- 4) თავისთავად მიმდინარეობს ნებისმიერ ტემპერატურაზე;
- 190. მიმდინარეობს თუ არა პროცესი თავისთავად, თუ $\Delta H^0_m = +165$ კ%/მოლი და $\Delta S^0_m = -147$ კ%/ $K\cdot$ მოლი?
- 1) გარკვეულ ტემპერატურამდე არის, შემდეგ აღარ;
- 2) არ მიმდინარეობს თავისთავად ნებისმიერ ტემპერატურაზე;
- 3) გარკვეულ ტემპერატურამდე არ არის, შემდეგ კი არის;
- 4) თავისთავად მიმდინარეობს ნებისმიერ ტემპერატურაზე.
- 191. მიმდინარეობს თუ არა პროცესი თავისთავად, თუ $\Delta H^0_{m} = +22 \chi \%$ მოლ და $\Delta S^0_{m} = +2000 \chi \%/ K \cdot$ მოლ?
- 1) გარკვეულ ტემპერატურამდე არის, შემდეგ აღარ;
- 2) არ მიმდინარეობს თავისთავად ნებისმიერ ტემპერატურაზე;
- 3) გარკვეულ ტემპერატურამდე არ არის, შემდეგ კი არის;
- 4) თავისთავად მიმდინარეობს ნებისმიერ ტემპერატურაზე.
- 192. მიმდინარეობს თუ არა პროცესი თავისთავად, თუ $\Delta H^0_m = -13$ კ%/მოლი და $\Delta S^0_m = +300$ კ%/ $K\cdot$ მოლი?
- 1) გარკვეულ ტემპერატურამდე არის, შემდეგ აღარ;
- 2) არ მიმდინარეობს თავისთავად ნებისმიერ ტემპერატურაზე;
- 3) გარკვეულ ტემპერატურამდე არ არის, შემდეგ კი არის;
- 4) თავისთავად მიმდინარეობს ნებისმიერ ტემპერატურაზე.
- 193. მიმდინარეობს თუ არა პროცესი თავისთავად, თუ $\Delta H^0_m = -183$ კ χ /მოლი და $\Delta S^0_m = -10$ კ χ /K:მოლი?
- 1) გარკვეულ ტემპერატურამდე არის, შემდეგ აღარ;
- 2) არ მიმდინარეობს თავისთავად ნებისმიერ ტემპერატურაზე;
- 3) გარკვეულ ტემპერატურამდე არ არის, შემდეგ კი არის;
- 4) თავისთავად მიმდინარეობს ნებისმიერ ტემპერატურაზე.
- 194. მიმდინარეობს თუ არა პროცესი თავისთავად, თუ $\Delta H^0_m = +115$ კ χ /მოლი და $\Delta S^0_m = -12$ კ χ / $K\cdot$ მოლი?
- 1) გარკვეულ ტემპერატურამდე არის, შემდეგ აღარ;
- 2) არ მიმდინარეობს თავისთავად ნებისმიერ ტემპერატურაზე;
- 3) გარკვეულ ტემპერატურამდე არ არის, შემდეგ კი არის;
- 3) თავისთავად მიმდინარეობს ნებისმიერ ტემპერატურაზე.

- 195. თერმოდინამიკის II კანონის მიხედვით, შინაგანი ენერგიის რა ნაწილია ხელმისაწვდომი მუშაობის შესასრულებლად?
- 1) ხელმისაწვდომია მთლიანად;
- 2) შინაგანი ენერგია არ შეიძლება მოხმარდეს მუშაობის შესრულებას;
- 3) ბმული ენერგია;
- 4) თავისუფალი ენერგია.
- 196. თერმოდინამიკის II კანონის მიხედვით, შინაგანი ენერგიის რა ნაწილია ხელმიუწვდომელი მუშაობის შესასრულებლად?
- 1) ხელმისაწვდომია მთლიანად;
- 2) შინაგანი ენერგია არ შეიძლება მოხმარდეს მუშაობის შესრულებას;
- 3) ბმული ენერგია;
- 4) თავისუფალი ენერგია.
- 197. როგორ არის დაკავშირებული თავისუფალი ენერგიის ცვლილება პროცესის თავისთავად მიმდინარეობასთან?
- 1) პროცესი თავისთავად მიმდინარეობს, თუ თავისუფალი ენერგია არ იცვლება;
- 2) პროცესი თავისთავად მიმდინარეობს, თუ თავისუფალი ენერგია მცირდება;
- 3) პროცესი თავისთავად მიმდინარეობს, თუ თავისუფალი ენერგია იზრდება;
- 4) თავისუფალი ენერგიის ცვლილება პროცესის თავისთავად მიმდინარეობასთან დაკავშირებულია მხოლოდ ენტროპიის მუდმივობისას.
- 198. შინაგანი ენერგია არ მოიცავს:
- 1) სისტემის სივრცეში მდებარეობის პოტენციურ ენერგიას;
- 2) შიგამოლეკულურ, შიგაატომურ და ბირთვულ ენერგიას;
- 3) სისტემის ყველა ნაწილაკის გადატანითი, ბრუნვითი და რხევითი მოძრაობის ენერგიას.
- 4) ნივთიერების შემადგენელი ატომების, მოლეკულების, იონებისა და ელემენტარული ნაწილაკების ყველა სახის ურთიერთქმედებათა ენერგიების ჯამს.
- 199. რომელი ფორმულირებაა სწორი?
- რეაქციის სითბური ეფექტი არაა დამოკიდებული პროცესის გზაზე
 (შუალედურ სტადიებზე) და განისაზღვრება სისტემის საწყისი და საბოლოო მდგომარეობით;
- 2) რეაქციის სითბური ეფექტი აღებულ ნივთიერებათა წარმოქმნის ენთალპიების ჯამსა და რეაქციის პროდუქტების წარმოქმნის ენთალპიების ჯამს შორის სხვაობის ტოლია;

- 3) რეაქციის სითბური ეფექტი მიღებულ ნივთიერებათა წვის ენთალპიების ჯამსა და აღებული ნივთიერებების წვის ენთალპიების ჯამს შორის სხვაობის ტოლია;
- 4) იზოლირებულ სისტემაში შინაგანი ენერგია არ იცვლება.
- 200. იზობარულ და იზოქორულ სითბურ ეფექტებს შორის სხვაობა ტოლია:
- 1) სისტემის მიერ შესრულებული მუშაობის; 2) ნულის;
- 3) სისტემის ენტროპიის ცვლილების; 4) გიბსის ენერგიის ცვლილების.
- 201. ენტროპიის ცვლილების მიხედვით შესაძლებელია პროცესის მიმართულების განსაზღვრა, თუ სისტემა არის :
- 1) ღია; 2) ჩაკეტილი; 3) იზოლირებული; 4) ნებისმიერი.
- 202. ჩაკეტილ სისტემაში პროცესის მიმართულებისა და წონასწორობის კრიტერიუმია:
- 1) შინაგანი ენერგია; 2) ენთალპია; 3) გიბსის ენერგია; 4) ენტროპია.
- 203. ჩამოთვლილი მოსაზრებებიდან რომელია არასწორი?
- გიბსის თავისუფალი ენერგია დამოკიდებულია პროცესში მონაწილე ნივთიერებების ბუნებაზე;
- 2) ჩაკეტილ სისტემაში პროცესის მიმართულებისა და წონასწორობის კრიტერიუმია ენტროპია;
- გიბსის თავისუფალი ენერგიის ცვლილება ტოლია მაქსიმალური მუშაობის,
 რომელიც სისტემას შეუძლია შეასრულოს იზოთერმულ-იზობარულ პროცესში;
- 4) გიბსის თავისუფალი ენერგია დამოკიდებულია პროცესში მონაწილე ნივთიერებების რაოდენობებზე.
- 204. ენტროპიის მნიშვნელობა დამოკიდებული არ არის:
- 1) ნივთიერების ბუნებაზე; 2) მოცულობაზე;
- 3) სისტემის სირთულეზე; 4) ტემპერატურაზე;
- 205. რომელი მოსაზრებაა მცდარი?
- სისტემის მდგომარეობა სტაციონალურია, თუ მისი თვისებები უცელელია დროში და მუდმივობის შენარჩუნება ხდება სისტემასა და გარემოს შორის ნივთიერების, ენერგიისა და ინფორმაციის გაცვლის ხარჯზე;
- 2) ნებისმიერ სისტემაში შინაგანი ენერგია მუდმივია;
- ენთალპია მდგომარეობის ფუნქციაა, რომლის ცვლილება იზობარულ
 პროცესში სისტემის მიერ მიღებული სითბოს ტოლია;
- 4) იზობარულ-იზოთერმულ პირობებში მაქსიმალური მუშაობა გიბსის ენერგიის დანაკარგზე (- ΔG) ნაკლებია, თუ პროცესი შეუქცევადია.
- 206. რომელი მოსაზრებაა მცდარი?

- 1) შინაგანი ენერგია მდგომარეობის ფუნქციაა, რომლის ცვლილება იზობარულ პროცესში სისტემის მიერ მიღებული სითბოს ტოლია;
- 2) თერმოდინამიკური წონასწორობისას სისტემის ენტროპია მუდმივი და მაქსიმალურია;
- თავისთავად მიმდინარე რეაქციებისათვის თავისუფალი ენერგიის ცვლილება უარყოფითია;
- 4) სისტემებს შორის ურთიერთქმედებისას ექსტენსიური პარამეტრების მნიშვნელობები იკრიბება, ხოლო ინტენსიური – გასაშუალდება.
- 207. რომელი მოსაზრებაა მცდარი?
- სისტემა ჩაკეტილია, თუ იგი გარემოსთან ახორციელებს მხოლოდ ენერგიის გაცვლას;
- სისტემას, რომლის ყველა ნაწილის ქიმიური შედგენილობა და ფიზიკური თვისებები ერთნაირია და მათ შორის არსებობს გამყოფი ზედაპირი, ჰომოგენური ეწოდება;
- სისტემის ენთალპიის აბსოლუტური მნიშვნელობის განსაზღვრა შეუძლებელია;
- 4) ენთალპია დამოკიდებულია ნივთიერების რაოდენობაზე, ტემპერატურასა და წნევაზე.
- 208. რას უდრის კალციუმის ჰიდროქსიდის (M=74 გ/მოლი) ეკვივალენტის მოლური მასა (გ/მოლი ეკვ), თუ იგი მარილმჟავასთან ურთიერთქმედებისას ფუძე მარილს წარმოქმნის?
- 1) 74; 2) 37; 3) 18,5; 4) 20.
- 209. რას უდრის მაგნიუმის ჰიდროქსიდის (M=58 გ/მოლი) ეკვივალენტის მოლური მასა (გ/მოლი ეკვ), თუ იგი მარილმჟავასთან ურთიერთქმედებისას ფუძე მარილს წარმოქმნის?
- 1) 58; 2) 29; 3) 19,3; 4) 14,5.
- 210. რას უდრის ფოსფორმჟავას (M=98 გ/მოლი) ეკვივალენტის მოლური მასა (გ/მოლი ეკვ), თუ იგი ნატრიუმის პიდროქსიდთან ურთიერთქმედებისას ნატრიუმის პიდროფოსფატს წარმოქმნის?
- 1) 98; 2) 49; 3) 32,7; 4) 24,5.
- 211. რას უდრის ფოსფორმჟავას (M=98 გ/მოლი) ეკვივალენტის მოლური მასა (გ/მოლი ეკვ), თუ იგი ნატრიუმის პიდროქსიდთან ურთიერთქმედებისას ნატრიუმის ფოსფატს წარმოქმნის?
- 1) 98; 2) 49; 3) 32,7; 4) 24,5.

- 212. რას უდრის კალიუმის დიქრომატის (M= 294 გ/მოლი) ეკვივალენტის მოლური მასა (გ/მოლი ეკვ), თუ იგი აღმდგენელთან ურთიერთქმედებს მჟავა არეში?
- 1) 294; 2) 98; 3) 49; 4) 73,5.
- 213. რას უდრის კალიუმის პერმანგანატის (M=158 გ/მოლი) ეკვივალენტის მოლური მასა (გ/მოლი ეკვ), თუ იგი აღმდგენელთან ურთიერთქმედებს მჟავა არეში?
- 1) 158; 2) 79; 3) 52,7; 4) 31,6.
- 214. ქვემოთ ჩამოთვლილი სიდიდეებიდან აირჩიეთ ჟანგბადისა და წყალბადის ეკვივალენტის მოლური მოცულობების სწორი მნიშვნელობები:
- 1) 11,2 m O₂, 22,4 m H₂; 2) 11,2 m O₂, 11,2 m H₂;
- 3) 5,6 cm O₂, 11,2 cm H₂; 4) 22,4 cm O₂; 22,4 cm H₂.
- 215. ერთნაირია თუ განსხვავებული ნაერთებში $CrCl_3$ და $Cr_2(SO_4)_3$:
- ა) ქრომის ეკვივალენტობის რიცხვების; ბ) ამ ნაერთთა ეკვივალენტობის რიცხვების მნიშვნელობები?
- 1) ა) ერთნაირია, ბ) ერთნაირია; 2) ა) ერთნაირია, ბ) განსხვავებულია;
- 3) ა) განსხვავებულია, ბ) ერთნაირია; 4) ა) განსხვავებულია, ბ) განსხვავებულია.
- 216. ლითონის ეკვივალენტის მოლური მასა ტოლია 12 გ/მოლი ეკვ. როგორია ლითონის ოქსიდის ეკვივალენტის მოლური მასის მნიშვნელობა (გ/მოლი ეკვ)?
- 1) 24; 2) 28; 3) 20; 4) 40.
- 217. ლითონის ოქსიდის ეკვივალენტის მოლური მასა ტოლია 20 გ/მოლი ეკვ. როგორია ლითონის ეკვივალენტის მოლური მასის მნიშვნელობა (გ/მოლი ეკვ)?
- 1) 28; 2) 14; 3) 12; 4) 40.
- 218. რომელი ტოლობით გამოისახება ეკვივალენტების კანონი?

1)
$$\frac{m_1}{m_2} = \frac{M_{333.2}}{M_{333.1}};$$
 2) $m_1 M_{333.1} = m_2 M_{333.2};$ 3) $\frac{m_1}{m_2} = \frac{M_{333.1}}{M_{333.2}};$

- 4) $m_1 \cdot m_2 = M_{333.1} \cdot M_{333.2}$.
- 219. რომელი რეაქციისათვის ემთხვევა ეკვივალენტობის წერტილი ნეიტრალიზაციის წერტილს?
- 1) ძმარმჟავას გატიტვრის დროს ნატრიუმის ტუტით;
- 2) აზოტმჟავას გატიტვრის დროს ნატრიუმის ტუტით;
- 3) ამიაკის წყალხსნარის გატიტვრის დროს მარილმჟავათი;
- 4) ფოსფორმჟავასა და ნატრიუმის ტუტის ურთიერთქმედებით საშუალო მარილის წარმოქმნის დროს.

- 220. რას უდრის ნატრიუმის დიპიდროფოსფატის ეკვივალენტობის რიცხვი რეაქციაში: NaH₂PO₄ + NaOH → Na₂HPO₄ + H₂O ?
- 1) 1; 2) 2; 3) 3; 4) 1/3.
- 221. რას უდრის ფოსფორმჟავას (M=98 გ/მოლი) ეკვივალენტის მოლური მასა (გ/მოლი ეკვ), თუ იგი კალიუმის ტუტესთან ურთიერთქმედებს კალიუმის დიპიდროფოსფატის წარმოქმნით?
- 1) 49; 2) 98; 3) 32,7; 4) 31.
- 222. რას უღრის ნატრიუმის ბრომატისა და კალიუმის იოდიდის ეკვივალენტობის ფაქტორები რეაქციაში: NaBrO $_3$ + KI + H $_2$ SO $_4$ \longrightarrow NaBr + I $_2$ + K $_2$ SO $_4$ + H $_2$ O ?
- 1) 5, 1; 2) 6, 1; 3) 1/6, 1; 4) 1/6, 2.
- 223. რას უდრის ნატრიუმის ჰიდროკარბონატის (M= 84 გ/მოლი) ეკვივალენტის მოლური მასა (გ/მოლი ეკვ), თუ იგი კალციუმის ტუტესთან ურთიერთქმედებს კალციუმის კარბონატის წარმოქმნით?
- 1) 84; 2) 24; 3) 42; 4) 168.
- 224. რას უღრის წყალბადის პეროქსიდისა და გოგირდწყალბადის ეკვივალენტობის ფაქტორები რეაქციაში: $H_2O_2 + H_2S \longrightarrow H_2SO_4 + H_2O$?
- 1) 1, 1/4; 2) 1/2, 1/8; 3) 2, 8; 4) 1/2, 1/4.
- 225. ელემენტის ოქსიდის ეკვივალენტის მოლური მასაა 31. დაადგინეთ ელემენტი.
- 1) Na; 2) P; 3) N; 4) Cu.
- 226. რას უდრის ქრომის სულფატის ეკვივალენტობის ფაქტორი რეაქციაში:

 $Cr_2(SO_4)_3 + H_2O_2 + KOH \longrightarrow K_2CrO_4 + K_2SO_4 + H_2O$?

- 1) 3; 2) 1/3; 3) 6; 4) 1/6.
- 227. მოლეკულური კრისტალური სტრუქტურის მქონე მყარი ნიგთიერებების ან სუსტი მოლეკულათაშორისი ბმების მქონე სითხეების გახსნის პროცესი ეგზოთერმულია, რადგან:
- $1) \left| \Delta H_{\text{J}\text{M},\partial_{\theta}\cup\theta_{\theta}\cup\theta_{\theta}} \right| > \left| \Delta H_{\text{limegg}} \right|; \qquad 2) \left| \Delta H_{\text{J}\text{M},\partial_{\theta}\cup\theta_{\theta}} \right| < \left| \Delta H_{\text{limegg}} \right|;$
- 228. როგორ იცვლება ენთალპია და ენტროპია სითხეებში მყარი და თხევადი ნივთიერებების გახსნისას?
- 1) ენთალპია შეიძლება შემცირდეს ან გაიზარდოს, ენტროპია მცირდება;
- 2) ენთალპია იზრდება, ენტროპია იზრდება;
- 3) ენთალპია შეიძლება შემცირდეს ან გაიზარდოს, ენტროპია იზრდება;

- 4) ენთალპია შეიძლება შემცირდეს ან გაიზარდოს, ენტროპია არ იცვლება.
- 229. როგორ იცვლება ენთალპია და ენტროპია სითხეებში აირების გახსნისას?
- 1) ენთალპია მცირდება, ენტროპია მცირდება;
- 2) ენთალპია მცირდება, ენტროპია იზრდება;
- 3) ენთალპია იზრდება, ენტროპია მცირდება;
- 4) ენთალპია იზრდება, ენტროპია იზრდება.
- 230. ჩამოთვლილი მოსაზრებებიდან რომელია არასწორი?
- 1) თერმოდინამიკური თვალსაზრისით გახსნა თვითმიმდინარე პროცესია;
- 2) ხსნარის წარმოქმნის თერმოდინამიკური პირობაა გიბსის ენერგიის შემცირება;
- ელექტროლიტთა ხსნარებში გამხსნელი ის ნივთიერებაა, რომელიც მეტი რაოდენობით არის ხსნარში;
- 4) თუ გახსნის პროცესი ენდოთერმულად მიმდინარეობს, $T\Delta S$ მეტი უნდა იყოს ΔH -ზე.
- 231. ჩამოთვლილი მოსაზრებებიდან რომელია არასწორი?
- 1) აირთა ხსნადობა ტემპერატურის გაზრდით იზრდება;
- 2) ჰენრის კანონი არ სრულდება, თუ გახსნილი აირის მოლეკულები გამხსნელთან ურთიერთქმედებს;
- 3) ჰენრის კანონის გამოვლინებაა კესონური დაავადება;
- 4) ჰენრის კანონი მხოლოდ განზავებული ხსნარებისათვის არის სამართლიანი.
- 232. სეჩენოვის კანონის თანახმად, აირთა ხსნადობა სითხეებში:
- 1) ელექტროლიტების დამატებისას არ იცვლება;
- 2) ელექტროლიტების დამატებისას იზრდება;
- 3) ელექტროლიტების დამატებისას მცირდება;
- 4) დამოკიდებული არ არის ნარევის საერთო წნევასა და სხვა კომპონენტების ინდივიდუალობაზე.
- 233. წყლის მოლეკულას არ ახასიათებს:
- 1) მაღალი სითბოტევადობა; 2) აორთქლების მცირე სითბო;
- 3) მაღალი დიელექტრიკული შეღწევადობა; 4) პოლარობა.
- 234. ხსნარი იდეალურია, თუ:
- 1) კომპონენტებს შორის ხორციელდება ქიმიური ურთიერთქმედება;
- 2) შერევისას გვაქვს სითბური ეფექტი;
- 3) კომპონენტებს შორის არსებობს ურთიერთქმედების ძალები;
- 4) შერევისას არ იცვლება ჯამური მოცულობა.

- 235. ჩამოთვლილი მოსაზრებებიდან რომელია არასწორი?
- 1) ებულიოსკოპური და კრიოსკოპული მუდმივების სიდიდე დამოკიდებულია გახსნილი ნივთიერების ბუნებაზე;
- ნივთიერების მოლური მასის გამოთვლის მეთოდს, გაყინვის ტემპერატურის დაწევის მნიშვნელობის განსაზღვრით, კრიოსკოპური მეთოდი ეწოდება;
- 3) სუფთა გამხსნელთან შედარებით ხსნარის დუღილის ტემპერატურის აწევა და გაყინვის ტემპერატურის დაწევა გახსნილი ნივთიერების მოლალური კონცენტრაცის პროპორციულია;
- 4) განზავებული ხსნარებისათვის გამხსნელის ნაჯერი ორთქლის ფარდობითი შემცირება გახსნილი ნივთიერების მოლური წილის ტოლია.
- 236. ქვემოთ მოყვანილი დებულებებიდან რომელია სწორი?
- 1) ებულიოსკოპური და კრიოსკოპული მუდმივების სიდიდე დამოკიდებულია გამხსნელის ბუნებაზე;
- 2) მუდმივი ტემპერატურის დროს ხსნარის ზემოთ გამხსნელის ნაჯერი ორთქლის წნევის ფარდობითი დაწევა გახსნილი არააქროლადი ნივთიერების მასის ტოლია;
- სუფთა გამხსნელთან შედარებით ხსნარის დუღილის ტემპერატურის აწევა და გაყინვის ტემპერატურის დაწევა გახსნილი ნივთიერების მასის პროპორციულია;
- 4) ნივთიერების მოლური მასის გამოთვლის მეთოდს, გაყინვის ტემპერატურის დაწევის მნიშვნელობის განსაზღვრით, ებულიოსკოპური მეთოდი ეწოდება.
- 237. ქვემოთ მოყვანილი დებულებებიდან რომელია არასწორი?
- 1) ნახევრადშეღწევადი მემბრანის გავლით გამხსნელის მოლეკულების თავისთავად დიფუზიას ოსმოსი ეწოდება;
- 2) ოსმოსური წნევა გამოითვლება ფორმულით: π=c(x)RT;
- 3) ელექტროლიტებისათვის ოსმოსური წნევა დაკავშირებულია მის მოლურ კონცენტრაციასთან დიფუზიის კოეფიციენტით;
- 4) უჯრედის დრეკადობა განპირობებულია ოსმოსური წნევით.
- 238. რამდენჯერ აღემატება რკინის (111) ქლორიდის 1 მოლი/ლ კონცენტრაციის ხსნარის ოსმოსური წნევა იმავე კონცენტრაციის შაქრის წყალხსნარის ოსმოსურ წნევას?
- 1) 3-ჯერ; 2) 4-ჯერ; 3) 2-ჯერ; 3) ერთნაირია.

- 239. რამდენჯერ აღემატება რკინის (111) სულფატის 1 მოლი/ლ კონცენტრაციის ხსნარის ოსმოსური წნევა იმავე კონცენტრაციის შაქრის წყალხსნარის ოსმოსურ წნევას?
- 1) 3-ჯერ; 2) 4-ჯერ; 3) 5-ჯერ; 3) ერთნაირია.
- 240. რამდენჯერ აღემატება კალციუმის ნიტრატის 1 მოლი/ლ კონცენტრაციის ხსნარის ოსმოსური წნევა იმავე კონცენტრაციის შაქრის წყალხსნარის ოსმოსურ წნევას?
- 1) 3-ჯერ; 2) 4-ჯერ; 3) 5-ჯერ; 3) ერთნაირია.
- 241. რამდენჯერ აღემატება ალუმინის ქლორიდის 1 მოლი/ლ კონცენტრაციის ხსნარის ოსმოსური წნევა იმავე კონცენტრაციის შაქრის წყალხსნარის ოსმოსურ წნევას?
- 1) 3-ჯერ; 2) 4-ჯერ; 3) 5-ჯერ; 3) ერთნაირია.
- 242. ჩამოთვლილი ფაქტორებიდან რომელზეა დამოკიდებული ოსმოსური წნევა?
- 1) მოცულობის ერთეულში გახსნილი ნივთიერების მასაზე;
- 2) მოცულობის ერთეულში გახსნილი ნივთიერების ნაწილაკთა მოცულობაზე;
- 3) გახსნილი ნივთიერების ბუნებაზე;
- 4) ტემპერატურაზე.
- 243. ქვემოთ ჩამოთვლილი ნივთიერებების ერთნაირი მოლური კონცენტრაციის ხსნარების რომელი განლაგება შეესაბამება ოსმოსური წნევის შემცირებას?
- 1) CH₃COOH NaCl C₆H₁₂O₆ CaCl₂;
- 2) C₆H₁₂O₆ CH₃COOH NaCl CaCl₂;
- 3) CaCl₂ NaCl CH₃COOH C₆H₁₂O₆,
- 4) $CaCl_2$ CH_3COOH $C_6H_{12}O_6$ NaCl.
- 244. ქვემოთ ჩამოთვლილი ნივთიერებების ერთნაირი მოლური კონცენტრაციის ხსნარების რომელი განლაგება შეესაბამება ოსმოსური წნევის გაზრდას?
- 1) CH₃COOH NaCl C₆H₁₂O₆ CaCl₂;
- 2) C₆H₁₂O₆ CH₃COOH NaCl CaCl₂;
- 3) CaCl₂ NaCl CH₃COOH C₆H₁₂O₆,
- 4) $CaCl_2$ CH_3COOH $C_6H_{12}O_6$ NaCl.
- 245. ხსნარებს ეწოდება იზოტონური, თუ მათ აქვთ:
- 1) გახსნილი ნივთიერების ერთნაირი მასური წილი;
- 2) ერთნაირი მოლალური კონცენტრაცია;
- 3) გახსნილი ნივთიერების ერთნაირი მოლური წილი;
- 4) ერთნაირი ოსმოსური წნევა.

- 246. ჩამოთვლილი მოსაზრებებიდან რომელია არასწორი?
- დიფუზია მიმდინარეობს მაღალი კონცენტრაციიდან დაბალი კონცენტრაციის მიმართულებით;
- 2) თვითმიმდინარე დიფუზიას მაღალი კონცენტრაციის ხსნარიდან დაბალი კონცენტრაციის ხსნარში, ნახევრადშეღწევადი მემბრანის გავლით, ოსმოსი ეწოდება;
- 3) ვანტ-ჰოფის კანონი ამყარებს დამოკიდებულებას ოსმოსურ წნევასა და გახსნილი ნივთიერების მოლურ კონცენტრაციას შორის;
- 4) გამხსნელის ნაჯერი ორთქლის წნევის ფარდობითი შემცირება არააქროლადი არაელექტროლიტის ხსნარის ზედაპირზე გახსნილი ნივთიერების მოლური წილის ტოლია.
- 247. განტ-ჰოფის კანონი ელექტროლიტებისათვის შემდეგნაირად ჩაიწერება:
- 1) $\pi = c(x)RT$; 2) $\pi = mRT/Mv$; 3) $\pi = imRT/Mv$; 4) $\pi = ic(x)RT$.
- 248. ჩამოთვლილი მოსაზრებებიდან რომელია სწორი?
- 1) ოსმოსური წნევა ტოლია იმ წნევისა, რომელსაც შექმნიდა გახსნილი ნივთიერება, თუ იგი იდეალური აირის სახით დაიკავებდა ხსნარის მოცულობას იმავე ტემპერატურაზე;
- 2) თუ ხსნარი სისხლის მიმართ ჰიპერტონულია, ადგილი აქვს ჰემოლიზს;
- 3) არააქროლადი ნივთიერების ხსნარის ზედაპირზე ნაჯერი ორთქლის წნევა მეტია, ვიდრე სუფთა გამხსნელის ზედაპირზე;
- 4) გამხსნელის ნაჯერი ორთქლის ფარდობითი შემცირება არააქროლადი არაელექტროლიტის ხსნარის ზედაპირზე გახსნილი ნივთიერების მასური წილის ტოლია.
- 249. პროტოლიტური თეორიით წყალხსნარში ამფოლიტებს მიეკუთვნება:
- 1) HCO₃⁻; 2) H₃PO₄; 3) SO₄²⁻ 4) SO₃²⁻.
- 250. ქვემოთ ჩამოთვლილი ნაწილაკებიდან: HSO_4^- , CH_3COOH , OH^- , $H_2PO_4^-$, HCl წყალხსნარში პროტოლიტური თეორიით რამდენია ამფოლიტი? .
- 1) 1; 2) 2; 3) 3; 4) 4.
- 251. ქვემოთ ჩამოთვლილი ნაწილაკებიდან: H_2SO_4 , HCOOH, OH^- , HPO_4^{2-} , NH_4CI წყალხსნარში პროტოლიტური თეორიით რამდენია ამფოლიტი?
- 1) 1; 2) 2; 3) 3; 4) 0.
- 252. ქვემოთ დასახელებული იონებიდან რომელს შეუძლია გამოვიდეს როგორც ბრენსტედ-ლოურის ფუძის, ისე ბრენსტედ-ლოურის მჟავას როლში?
- 1) HSO_4^- ; 2) NH_4^+ ; 3) H_3PO_4 ; 4) S^{2-} .

- 253. პრენსტედ-ლოურის თეორიის მიხედვით, ჩამოთვლილი ნაწილაკებიდან რომელი ავლენს ერთდროულად როგორც მჟავას, ისე ფუძის თვისებებს? 2) S^{2-} : 3) HCl; 1) HS⁻: 4) H₃O⁺. 254. პრენსტედ-ლოურის თეორიის მიხედვით, ჩამოთვლილი ნაწილაკებიდან რომელი ავლენს ერთდროულად როგორც მჟავას, ისე ფუძის თვისებებს? 1) H₂S; 2) S^{2-} : 3) HCl: 4) H₂O. თეორიის მიხედვით, ჩამოთვლილი ნაწილაკებიდან ბრენსტედ-ლოურის რომელი ავლენს ერთდროულად როგორც მჟავას, ისე ფუძის თვისებებს? 1) OH⁻; 2) S^{2-} ; 3) HCO₃⁻; 4) H₃O⁺. 256. პრენსტედ-ლოურის თეორიის მიხედვით, ჩამოთვლილი ნაწილაკებიდან რომელი ავლენს ერთდროულად როგორც მჟავას, ისე ფუძის თვისებებს? 1) OH⁻; 2) HSO₄⁻; 3) H₂CO₃; 4) H₃O⁺. 257. H₂AsO₄--ის შეუღლებული ფუძეა: 1) H_3AsO_4 ; 2) $HAsO_4^-$; 3) $HAsO_4^{2-}$; 4) AsO_4^{3-} ; 258. $H_2PO_4^-$ -ის შეუღლებული ფუძეა: 1) H₃PO₄; 2) HPO₄⁻; 3) HPO₄²⁻; 4) PO₄³⁻; 259. ჩამოთვლილი ნაერთებიდან რომელია ლუისის მჟავა? 1) H₃BO₃; 2) BF₃; 3) NH₃; 4) NaCl; 260. ჩამოთვლილი ნაერთებიდან რომელია ლუისის მჟავა? 1) H₃BO₃; 2) AlCl₃; 3) NH₃; 4) NaCl; 261. ჩამოთვლილი ნაერთებიდან რომელია არენიუსის მჟავა? 1) H₃BO₃; 2) BF₃; 3) NH₃; 4) NaCl; 262. ჩამოთვლილი ნაერთებიდან რომელია ბრენსტედის მჟავა? 1) K₃BO₃; 2) BF₃; 3) H₃O⁺; 4) NaCl; 263. ჩამოთვლილი ნაერთებიდან რომელია ლუისის ფუძე? 1) H₃BO₃; 2) BF₃; 3) NH₃; 4) NaCl; 264. ჩამოთვლილი ნაერთებიდან რომელია ბრენსტედის ფუძე? 1) H₃BO₃; 2) BF₃; 3) NH₃; 4) NaCl;
- 1) ხისტი მჟავა; 2) რბილი მჟავა; 3) ხისტი ფუძე; 4) რბილი ფუძე. 266. H⁻ არის:

265. H⁺ არის:

1) ხისტი მჟავა; 2) რბილი მჟავა; 3) ხისტი ფუძე; 4) რბილი ფუძე						
267. OH ⁻ არის:						
1) ხისტი მჟავა; 2) რბილი მჟავა; 3) ხისტი ფუძე; 4) რბილი ფუძე						
268. ჩამოთვლილი ნაწილაკებიდან რომელია ანიონური მჟავა?						
1) OH ⁻ ; 2) H ₂ CO ₃ ; 3) HS ⁻ ; 4) NH ₄ ⁺ ;						
269. ჩამოთვლილი იონებიდან რომელია ანიონური მჟავა?						
1) OH ⁻ ; 2) H ₂ PO ₄ ⁻ ; 3) NH ₄ ⁺ ; 4) NH ₂ -NH ₃ ⁺ ;						
270. ჩამოთვლილი იონებიდან რომელია კატიონური ფუძე?						
1) OH^- ; 2) $H_2PO_4^-$; 3) NH_4^+ ; 4) $NH_2-NH_3^+$;						
271. თუ $[\mathrm{H^{+}}]$ = 10^{-3} მოლ/ლ, $[\mathrm{OH^{-}}]$ იონთა კონცენტრაცია ტოლი იქნება:						
1) 10^{-11} ; 2) 10^{-7} ; 3) 10^{-12} ; 4) 10^{-3} .						
272. თუ [H^+]= 10^{-2} მოლ/ლ, [OH^-] იონთა კონცენტრაცია ტოლი იქნება:						
1) 10^{-11} ; 2) 10^{-7} ; 3) 10^{-12} ; 4) 10^{-3} .						
273. თუ $[OH^-]=10^{-5}$ მოლ/ლ, $[H^+]$ იონთა კონცენტრაცია ტოლი იქნება:						
1) 10^{-11} ; 2) 10^{-7} ; 3) 10^{-12} ; 4) 10^{-9} .						
274. თუ $[OH^-]=10^{-4}$ მოლ/ლ, $[H^+]$ იონთა კონცენტრაცია ტოლი იქნება:						
1) 10^{-11} ; 2) 10^{-7} ; 3) 10^{-10} ; 4) 10^{-3} .						
275. ხსნარს აქვს ძლიერი ტუტე რეაქცია თუ მისი рН არის:						
1) 12,4; 2) 7,9; 3) 6,2; 4) 1,7.						
276. ხსნარს აქვს ძლიერი მუავა რეაქცია თუ მისი рН არის:						
1) 11,2; 2) 7,3; 3) 6,5; 4) 1,0.						
277. ხსნარს აქვს სუსტი ტუტე რეაქცია თუ მისი pH არის:						
1) 11,2; 2) 7,4; 3) 6,9; 4) 1,1.						
278. ხსნარს აქვს სუსტი მჟავა რეაქცია თუ მისი pH არის:						
1) 11,2; 2) 7,3; 3) 6,8; 4) 1,4.						
279. თუ ხსნარის pH=4, მისი pOH ტოლი იქნება:						
1) 10; 2) 11; 3) 6; 4) 4.						
280. თუ pH=5, OH- იონთა კონცენტრაცია ტოლი იქნება:						
1) 10^{-11} ; 2) 10^{-9} ; 3) 10^{-5} ; 4) 10^{-7} .						
281. თუ pH=2, OH ⁻ იონთა კონცენტრაცია ტოლი იქნება:						
1) 10^{-11} ; 2) 10^{-7} ; 3) 10^{-12} ; 4) 10^{-2} .						

	282. თუ pH=11, [OH ⁻] იონთა კონცენტრაცია ტოლი იქნება:				
	1) 10^{-11} ; 2) 10^{-3} ; 3) 10^{-4} ; 4) 10^{-10} .				
	283. შეურიეს ტოლი მოცულობის ${ m A}$ ხსნარი, რომელშიც ${ m [H^+]=2\cdot 10^{-4}}$ მოლ/ლ და				
	B ხსნარი, რომელშიც $[H^+]=2\cdot 10^{-8}$ მოლი/ლ. მიღებული ხსნარის pH ტოლია:				
	1) 4; 2) 8; 3) 12; 4) 6.				
	284. ჩამოთვლილი ბიოლოგიური სითხეებიდან რომლის pH არის ყველაზე				
	ღაბალი?				
	1) პანკრეატული წვენი; 2) კუჭის წვენი;				
	3) წვრილი ნაწლავის წვენი; 4) ზურგის ტვინის სითხე.				
	285. ხისტი მუავაა:				
	1) Mg^{2+} ; 2) Ag^{+} ; 3) Pt^{2+} ; 3) Ba^{2+} .				
	286. ხისტი ფუძეა:				
	1) SO_4^{2-} ; 2) I^- ; 3) NH_3 ; 4) PH_3 .				
	287. ქვემოთ მოყვანილი ნაწილაკებიდან რომელია ლუისის მჟავა?				
	1) H ₂ O; 2) F ⁻ ; 3) NH ₃ ; 4) BCl ₃ .				
	288. რა ახასიათებს რბილ ფუძეებს?				
1) დონორული ატომების მცირე ზომები; 2) მაღალი პოლარობა;					
	3) მაღალი ელექტროუარყოფითობა; 4) მაღალი პოლარიზებადობა.				
	289. რა ახასიათებს რბილ მჟავებს?				
	1) აქცეპტორული ატომების მცირე ზომები; 2) აქცეპტორული ატომების მათალი ილიქტროუარულილობა;				
	 აქცეპტორული ატომების მაღალი ელექტროუარყოფითობა; აქცეპტორული ატომების მაღალი ჟანგვის ხარისხი; 				
	 მაღალი პოლარიზებადობა. 				
	290. რა ახასიათებს ხისტ ფუძეებს?				
	1) დონორული ატომების მცირე ზომები;				
	2) მაღალი ელექტროუარყოფითობა;				
	3) მაღალი პოლარობა; 4) მაღალი პოლარიზებადობა.				
	291. რა ახასიათებს ხისტ მჟავებს?				
	1) აქცეპტორული ატომების მცირე ზომები;				
2) აქცეპტორული ატომების დაბალი ელექტროუარყოფითობა;					
	3) აქცეპტორული ატომების დაბალი ჟანგვის ხარისხი;				
	4) მაღალი პოლარიზებადობა.				
	292. ბუფერული სისტემების კომპონენტები არ შეიძლება იყოს?				

- 1) სუსტი მჟავა და მისი ანიონი;
- 2) სუსტი ფუძე და მისი კატიონი;
- 3) სუსტი ფუძე და მისი ანიონი;
- 4) ამფოლიტების იონები ან მოლეკულები.
- 293. ბუფერული სისტემების კომპონენტები არ შეიძლება იყოს?
- 1) ძლიერი მჟავა და მისი ანიონი;
- 2) სუსტი მჟავა და მისი ანიონი;
- 3) სუსტი ფუძე და მისი კატიონი;
- 4) ამფოლიტების იონები ან მოლეკულები.
- 294. პროტოლიზურ რეაქციებს არ მიეკუთვნება:
- 1) ნეიტრალიზაციის რეაქციები;
- 2) ელექტრონების გადატანით მიმდინარე რეაქციები;
- 3) ბუფერულ სისტემებში მიმდინარე რეაქციები;
- 4) სოლვოლიზის (პიდროლიზის) რეაქციები.
- 295. ქვემოთ ჩამოთვლილი ბუფერული სისტემებიდან ორგანიზმში არ გვხვდება:
- 1) ფოსფატური; 2) აცეტატური;
- 3) ცილოვანი ბუფერი; 4) პიდროკარბონატული.
- 296. რომელი მახასიათებლის მუდმივობას უზრუნველყოფს ორგანიზმში ბუფერული ხსნარი:
- 1) ოსმოსური წნევის; 2) ტემპერატურის;
- 3) პიდროსტატიკური წნევის; 4) pH-ის.
- 297. მჟავა ბუფერული სისტემა არ არის:
- 1) აცეტატური; 2) ჰიდროკარბონატული;
- 3) ჰიდროფოსფატური; 4) ამიაკური.
- 298. ფუძე ბუფერული სისტემაა:
- 1) პიდროკარბონატული; 2) პიდროფოსფატური;
- 3) ამიაკური; 4) ჰემოგლობინური.
- 299. მოყვანილი დებულებებიდან რომელია არასწორი?
- ბუფერული ხსნარი ეს არის ხსნარი, რომელიც შეიცავს მისი განზავებისას ან მასზე მცირე რაოდენობით ძლიერი მჟავის ან ტუტის დამატებისას pH-ის მუდმივი მნიშვნელობის შენარჩუნების უნარის მქონე წონასწორულ პროტოლიტურ სისტემას;

- 2) პროტოლიტური ბუფერული ხსნარის კომპონენტებს წარმოადგენს ელექტრონის დონორი (ლუისის ფუძე) და ელექტრონის აქცეპტორი (ლუისის მჟავა);
- 3) ფუძე ბუფერულ სისტემებს უწოდებენ ხსნარებს, რომლებიც შეიცავს სუსტ ფუძეს (პროტონის აქცეპტორი) და მის მარილს ძლიერ მჟავასთან (პროტონის დონორი);
- 4) ბუფერული ტევადობა ეწოდება ძლიერი მჟავის ან ძლიერი ტუტის მოლიეკვივალენტების რიცხვს, რომელიც უნდა დაემატოს 1 ლ ბუფერულ ხსნარს, რათა მისი pH ერთი ერთეულით შეიცვალოს.
- 300. ბუფერული ტევადობა დამოკიდებულია:
- 1) ხსნარში კომპონენტთა კონცენტრაციაზე;
- 2) ხსნარში კომპონენტთა მასაზე;
- 3) ხსნარში კომპონენტთა მასურ თანაფარდობაზე;
- 4) ხსნარში კომპონენტთა მოცულობაზე.
- 301. სისხლის შრატში თანაფარდობა (HCO_3^-/H_2CO_3) ნორმაში ტოლია:
- 1) 20:1;
- 2) 1:20;
- 3) 4:1;
- 4) 1:4.
- 302. ფოსფატური ბუფერული სისტემა (HPO₄^{2–}/H₂PO₄[–]) მოქმედებს ფიზიოლოგიურ არეებში, რომელთათვისაც:
- 1) pH<6; 2) pH>9; 3) pH=9,3-11,3; 4) pH=6,2-8,2.
- 303. ჰიდროკარბონატული ბუფერული სისტემა (HCO₃⁻/H₂CO₃) მოქმედებს ფიზიოლოგიურ არეებში, რომელთათვისაც:
- 1) pH=8,2-10,2; 2) pH= 5,4-7,4;
- 3) pH=9,3-11,3;
- 4) pH=6,2-8,2.

- 304. ბუფერული ტევადობა მით დიდია:
- 1) რაც მეტია კომპონენტთა მასები;
- 2) რაც ნაკლებია კომპონენტთა კონცენტრაცია;
- 3) კომპონენტების კონცენტრაციათა ფარდობა რაც უფრო ახლოსაა ერთთან;
- 4) კომპონენტების კონცენტრაციათა ფარდობა რაც უფრო განსხვავებულია ერთისაგან.
- 305. ბუფერული ხსნარის განზავებისას:
- 1) ბუფერული ტევადობა არ იცვლება; 2) ბუფერული ტევადობა მცირდება;
- 3) pH მცირდება; 4
 - 4) pH იზრდება.
- 306. ფოსფატურ ბუფერულ სისტემაში ($H_2PO_4^{-}/HPO_4^{2-}$) დიპიდროფოსფატ-იონი:
- 1) პროტონის დონორია; 2) პროტონის აქცეპტორია;
- 3) მჟანგავია;
- 4) აღმდგენია.

307. ფო1	სფატურ ბუფე	ერულ სისტვ	ემაში (H ₂ PO ₄ ⁻ /HPO ₄ ²⁻) პიდროფოსფატ-იონი:						
1) პროტ	ონის დონორ	ია; 2) პროტ	ონის აქცეპტორია;						
3) მჟანგ	აგია;	4) აღმდგ	ენია.						
308. პი <u>დ</u>	ღროკარბონატ	ეულ პუფერ	ულ სისტემაში (HCO ₃ ⁻ /H ₂ CO ₃) ჰიდროკარბონატ						
იონი:									
1) პროტ	ონის დონორ	ია; 2) პროტ	ონის აქცეპტორია;						
3) მჟანგ	ავია;	4) აღმდგ	ენია.						
309. პიდ	როკარპონა <u>ტ</u>	ულ ბუფერუ	ლ სისტემაში (HCO ₃ ⁻ /H ₂ CO ₃) ნახშირმჟაგა:						
1) პროტ	ონის დონორ	ია; 2) პროტ	ონის აქცეპტორია;						
3) მჟანგ	ავია;	4) აღმდგ	ენია.						
310. ფუი	მე-მჟავური წი	ინასწორობი	ს რეგულირება ორგანიზმში არ ხდება:						
1) ჟანგვ	ა-აღდგენითი	რეაქციებით	e; 2) ბუფერული სისტემებით;						
3) თირკ	მელების საშ	უალებით; 4	4) ფილტვების საშუალებით.						
311. რა	ა სიდიდის	გამოთვლა	არის შეუძლებელი ჰენდერსონ-ჰასელბახი						
განტოლ	ღების საფუძვ	ელზე?							
1) ნებისმიერი მჟავას p \mathbf{K}_{a} ან ფუძის p \mathbf{K}_{b} ; 2) სსნარის p \mathbf{H} ;									
3) კომპონენტების თანაფარდობა; 4) ბუფერული ტევადობა .									
312. როგორც მჟანგავი, ისე აღმდგენი შეიძლება იყოს:									
1) Mn; 2) TiCl ₄ ; 3) H ₂ O ₂ ; 4) H ₂ CrO ₄ . 313. როგორც მჟანგავი, ისე აღმდგენი შეიძლება იყოს: 1) Zn; 2) FeSO ₄ ; 3) NH ₃ ; 4) HNO ₃ .									
						314. აღმ	დგენი არ შეი	იძლება იყოს	5:
						1) F ₂ ; 2) NH_3 ; 3) M	nSO_4 ; 4) H_2	O_2 .
315. კალ	ღიუმის პერმან	აგანატში (K	MnO4) მანგანუმის ჟანგვის ხარისხია:						
1) +5;	2) +6;	3) +7;	4) +8.						
316. კალ	ღიუმის მანგან	ნატში (K ₂ Mn	O ₄) მანგანუმის ჟანგვის ხარისხია:						
1) +5;	2) +6;	3) +7;	4) +8.						
317. კალ	ღიუმის დიქრი	იმატში (K ₂ C:	r ₂ O ₇) ქრომის ჟანგვის ხარისხია:						
1) +5;	2) +6;	3) +7;	4) +8.						
) ქრომის ჟანგვის ხარისხია:						
-	2) +6;								
319. რეა	ქცია Cl ₂ + H ₂ 0	O → HCl +	HClO არის:						

- 1) შიგამოლეკულური ჟანგვა-აღდგენის;
- 2) მოლეკულათშორისი ჟანგვა-აღდგენის;
- 3) დისპროპორციის;
- 4) ეს რეაქცია არ არის ჟანგვა-აღდგენის.
- 320. რეაქცია 2P₂O₃ + 6H₂O → PH₃ + 3H₃PO₄ არის:
- 1) შიგამოლეკულური ჟანგვა-აღდგენის;
- 2) მოლეკულათშორისი ჟანგვა-აღდგენის;
- 3) დისპროპორციის;
- 4) ეს რეაქცია არ არის ჟანგვა-აღდგენის.
- 321. რეაქცია NH₄NO₂ →N₂ + 2H₂O არის:
- 1) შიგამოლეკულური ჟანგვა-აღდგენის;
- 2) მოლეკულათშორისი ჟანგვა-აღდგენის;
- 3) დისპროპორციის;
- 4) ეს რეაქცია არ არის ჟანგვა-აღდგენის.
- 322. ელექტრული პოტენციალი არ შეიძლება იყოს:
- 1) ჟანგვა-აღდგენითი; 2) მემბრანული;
- 3) ფუძე-მჟავური; 4) ელექტროდული.
- 323. დაადგინეთ, რომელი მიმართულებით წარიმართება რეაქცია:

CdCl₂+Pb → PbCl₂+Cd სტანდარტულ პირობებში, თუ:

$$Cd^{2+} + 2e \longrightarrow Cd \quad \phi^o = -0.40_3; \quad Pb^{2+} + 2e \longrightarrow Pb \quad \phi^o = -0.13_3.$$

- 1) მარჯვნივ; 2) არც ერთი მიმართულებით;
- 3) მარცხნივ; 4) დამოკიდებულია კონცენტრაციაზე.
- 324. დაადგინეთ, რომელი მიმართულებით წარიმართება რეაქცია:
- 2 Fe(NO₃)₃ +2KCl ⇒ 2Fe(NO₃)₂ +Cl₂ +2KNO₃ სტანდარტულ პირობებში, თუ:

$$Fe^{3+} + e \longrightarrow Fe^{2+}$$
 $\phi^{o} = 0.77_{3}$; $Cl_{2} + 2e \longrightarrow 2Cl^{-}$ $\phi^{o} = 1.33_{3}$.

- 1) მარჯვნივ; 2) არც ერთი მიმართულებით;
- 3) მარცხნივ; 4) დამოკიდებულია კონცენტრაციაზე.
- 325. რომელ პროდუქტებამდე შეიძლება წყალი დაიჟანგოს?
- 1) $OH^- + H_2$; 2) $O_2 + H^+$; 3) $2OH^-$; 4) $O_2 + H_2$
- 326. რაც უფრო მეტია ოქსრედ-პოტენციალის მნიშვნელობა, მით უფრო:
- 1) ძლიერია მჟანგავი; 2) სუსტია მჟანგავი;
- 3) ძლიერია მჟანგავის შეუღლებული აღმდგენი.
- 4) მდგრადია სისტემა.

327. რომელ ნივთიერებასთან: NaI, NaBr შევა რეაქციაში რკინა(III)-ის სულფატი წყალხსნარში, თუ: $Fe^{3+}+e\longrightarrow Fe^{2+}$ $\phi^\circ=0.773;$

$$I_2(_3)+2e \longrightarrow 2I^- \qquad \varphi^\circ=0,54_3;$$

$$Br_{2 \text{ (orb)}}+2e \longrightarrow 2Br^{-} \qquad \phi^{\circ}=1,07_{3}.$$

- 1) NaI; 2) NaBr; 3) არც ერთთან; 4) ორივესთან;
- 328. დაადგინეთ ქვემოთ მოყვანილი რეაქციების მიმდინარეობის მიმართულება:
- $\delta) H₃PO₄+2Hl \longrightarrow H₃PO₃+I₂+H₂O$
- ∂) 2HCl+Sn+H₃PO₄ \rightleftharpoons H₃PO₃+SnCl₂, σ σ:

$$\begin{split} I_2 + 2e & \longrightarrow 2I^- & \phi^\circ = 0,54_3 \ ; & H_3PO_4 + 2H^+ + 2e & \longrightarrow H_3PO_3 + H_2O \ \phi^\circ = -0,28_3; \\ Sn^{2+} + 2e & \longrightarrow Sn & \phi^\circ = -0,14_3. \end{split}$$

- 1) ა)რეაქცია მიმდინარეობს მარცხნიდან მარჯენივ, ბ)რეაქცია მარჯენიდან მარცხნივ;
- 2) ა)რეაქცია მიმდინარეობს მარჯვნიდან მარცხნივ, ბ)რეაქცია მარცხნიდან მარჯვნივ;
- 3) ორივე რეაქცია მიმდინარეობს მარცხნიდან მარჯვნივ;
- 4) ორივე რეაქცია მიმდინარეობს მარჯვნიდან მარცხნივ.
- 329. დაადგინეთ ქვემოთ მოყვანილი რეაქციების მიმდინარეობის მიმართულება:
- s) $2Fe^{3+}+2I^{-} \Longrightarrow 2Fe^{2+}+I_{2};$ s) $2Fe^{3+}+2Br^{-} \Longrightarrow 2Fe^{2+}+Br_{2},$ or \mathfrak{J} :
- $\phi^{\circ}(I_2/2I^{-}) = 0.54_{3}; \qquad \phi^{\circ}(Br_2/2Br^{-}) = 1.01_{3}; \qquad \phi^{\circ}(Fe^{3+}/Fe^{2+}) = 0.77_{3}$
- 1) ა)რეაქცია მიმდინარეობს მარცხნიდან მარჯვნივ, ბ) რეაქცია მარჯვნიდან მარცხნივ;
- 2) ა)რეაქცია მიმდინარეობს მარჯენიდან მარცხნივ, ბ)რეაქცია მარცხნიდან მარჯენივ;
- 3) ორივე რეაქცია მიმდინარეობს მარცხნიდან მარჯვნივ;
- 4) ორივე რეაქცია მიმდინარეობს მარჯვნიდან მარცხნივ.
- 330. სტანდარტულ პირობებში ტემპერატურაა:
- 1) 273 K; 2) 288 K; 3) 298 K; 4) 300 K.
- 331. რომელი მეტალის სილიკატი გვხვდება მინის ელექტროდის მინის შემადგენლობაში?
- 1) Zn; 2) Na; 3) Al; 4) Fe.
- 332. რომელი მჟავას ხსნარითაა შევსებული მინის ელექტროდის ბურთულა?
- 1) H₂SO₄; 2) HCl; 3) H₃PO₄; 4) HNO₃.
- 333. სითხის ზედაპირული დაჭიმულობა არ არის დამოკიდებული:

- 1) ტემპერატურაზე; 2) გამყოფი ზედაპირის ბუნებაზე;
- 3) გახსნილი ნივთიერების კონცენტრაციაზე; 4) ზედაპირის ფართობზე.
- 334. პეტეროგენური სისტემა თავისი ენერგიის შემცირებას აღწევს:
- გამყოფი ზედაპირის ფართობის შემცირებით ან ზედაპირული დაჭიმულობის გაზრდით;
- 2) გამყოფი ზედაპირის ფართობის გაზრდით ან ზედაპირული დაჭიმულობის შემცირებით;
- გამყოფი ზედაპირის ფართობის გაზრდით ან ზედაპირული დაჭიმულობის გაზრდით;
- 4) გამყოფი ზედაპირის ფართობის შემცირებით ან ზედაპირული დაჭიმულობის შემცირებით.
- 335. ზედაპირულად აქტიური ნივთიერებები გამხსნელის ზედაპირულ დაჭიმულობას:
- 1) ამცირებს; 2) ზრდის; 3) არ ცვლის;
- 4) ზრდის ან ამცირებს სხვადასხვა ფაქტორებზე დამოკიდებულებით.
- 336. ზედაპირულად არააქტიური ნიგთიერებები გამხსნელის ზედაპირულ დაჭიმულობას:
- 1) ამცირებს; 2) არ ცვლის; 3) არ ცვლის ან ამცირებს;
- 4) ზრდის ან ამცირებს სხვადასხვა ფაქტორებზე დამოკიდებულებით.
- 337. ზედაპირულად ინაქტიური ნივთიერებები გამხსნელის ზედაპირულ დაჭიმულობას:
- 1) ამცირებს; 2) არ ცვლის; 3) ზრდის;
- 4) ზრდის ან ამცირებს სხვადასხვა ფაქტორებზე დამოკიდებულებით.
- 338. ზედაპირულად აქტიური ნივთიერებებია:
- 1) არაორგანულ მჟავათა მარილები; 2) კარბონმჟავები;
- 3) არაორგანული ფუძეები; 4) არაორგანული მჟავები
- 339. ზედაპირულად ინაქტიური ნიგთიერებებია:
- 1) ცილები; 2) ფოსფოლიპიდები;
- 3) ცხიმოვანი მჟავები; 4) არაორგანული მჟავები.
- 340. ზედაპირულად არააქტიური ნივთიერებებია:
- 1) ამინები; 2) ნახშირწყლები;
- 3) სპირტები; 4) ცხიმოვანი მჟავების მარილები.
- 341. მოყვანილი დებულებებიდან რომელია არასწორი?

- 1) ალიფატური მჟავების ზედაპირული აქტივობა ნახშირწყალბადოვანი ჯაჭვის ერთი CH2-ის ჯგუფით გაზრდისას 3-3,5-ჯერ იზრდება;
- 2) ალიფატური მჟავების აღსორბცია მაღალი კონცენტრაციებისას აღწევს ზღვრულ მნიშვნელობას;
- მყარ ადსორბენტებზე უპირატესად ადსორბირდება ის აირები, რომლებიც უფრო ძნელად კონდენსირდება სითხეებად;
- 4) ტემპერატურის გაზრდისას ფიზიკური ადსორბცია მცირდება.
- 342. თუ სორბციული პროცესი იწყება ფაზათა გამყოფ ზედაპირზე, რის შემდეგ ხდება სორბატის მოლეკულების თავისთავადი დიფუზია სორბენტის მთელ მოცულობაში, პროცესს ეწოდება:
- 1) ქემოსორბცია; 2) ზედაპირული სორბცია;
- 3) აბსორბცია; 4) ადსორბცია.
- 343. თუ სორბციულ პროცესს თან ახლავს სორბატის მოლეკულების კონცენტრაციის თავისთავადი შეცვლა ფაზათა გამყოფ საზღვარზე, პროცესს ეწოდება:
- 1) მოცულობითი სორბცია; 2) ქემოსორბცია;
- 3) აბსორბცია; 4) ადსორბცია.
- 344. $\frac{\Delta\sigma}{\Delta c}$ გამოსახულებას უწოდებენ:
- 1) ზედაპირულ დაჭიმულობას; 2) ზედაპირულ ენერგიას;
- 3) ზედაპირულ აქტივობას; 4) ზედაპირულ ადსორბციას.
- 345. თუ გიბსის ადსორბციის იზოთერმის განტოლებაში $\frac{\Delta\sigma}{\Delta c}$ <0, მაშინ:
- 1) ადსორბცია დადებითია; 2) ადგილი აქვს ქემოსორბციას;
- 3) ადსორბცია უარყოფითია; 4) ადგილი აქვს აბსორბციას.
- 346. თუ გიბსის ადსორბციის იზოთერმის განტოლებაში $\frac{\Delta \sigma}{\Delta c}$ >0, მაშინ:
- 1) ადსორბცია დადებითია; 2) ადგილი აქვს ქემოსორბციას;
- 3) ადსორბცია უარყოფითია; 4) ადსორბცია არ ხორციელდება.
- 347. ფიზიკური ადსორბციისათვის დამახასიათებელი არ არის:
- 1) შექცევადობა; 2) სპეციფიკურობა; 3) ეგზოთერმულობა;
- 4) ადსორბენტის ადსორბატთან მოლეკულათშორისი ურთიერთქმედება.
- 348. ქემოსორბცია ხასიათდება:
- 1) ლოკალიზებით; 2) არასპეციფიკურობით; 3) შექცევადობით;
- 4) ადსორბენტის ადსორბატთან მოლეკულათშორისი ურთიერთქმედებით.

- 349. ადსორბცია დამოკიდებული არ არის:
- 1) ტემპერატურაზე; 2) ადსორბენტისა და ადსორბატის ბუნებაზე;
- 3) ადსორბენტის ხვედრით ზედაპირზე;
- 4) კონცენტრაციაზე, ზღვრული აღსორბციის მიღწევის შემდეგ.
- 350. მოყვანილი დებულებებიდან რომელია არასწორი?
- 1) ადსორბცია არის გახსნილი ნივთიერების კონცენტრაციის ცვლილება მშთანმთქმელის ზედაპირულ ფენაში მოცულობით ფაზასთან შედარებით;
- 2) ადსორბცია შეიძლება იყოს როგორც დადებითი, ისე უარყოფითი;
- 3) ადსორბცია თავისთავად მიმდინარე პროცესია;
- 4) ნივთიერებას, რომელიც შთანთქმულია ჰეტეროგენურ ფაზაში, სორბენტი ეწოდება.
- 351. ადსორბციას მყარ ადსორბენტზე რაოდენობრივად ახასიათებენ ხვედრითი ადსორბციის სიდიდით, რომელიც ტოლია:
- 1) ადსორბატის მასისა ადსორბენტის ერთეულ მასაზე;
- 2) ადსორბატის მოცულობისა ადსორბენტის ერთეულ მასაზე;
- 3) ადსორბატის რაოდენობისა ადსორბენტის ერთეულ მასაზე;
- 4) ადსორბატის მასისა ადსორბენტის ერთეულ მოცულობაზე.
- 352. გიბსის ადსორბციის იზოთერმის განტოლებაა:

1)
$$A = A_{\text{max}} \frac{Kc}{Kc+1}$$
; 2) $A = -\frac{c}{RT} \frac{d\sigma}{dc}$;

3) A =
$$-\frac{RT}{c} \frac{d\sigma}{dc}$$
; 4) A= $-\frac{c}{RT} \frac{dc}{d\sigma}$

353. ლენგმიურის ადსორბციის იზოთერმის განტოლებაა:

1)
$$A = A_{\text{max}} \frac{Kc}{Kc + 1}$$
; 2) $A = \frac{x}{m} = Kc^n$;

1)
$$A = \frac{x}{m} = Kp^n$$
; 4) $A = A_{max} \frac{Kc + 1}{Kc}$.

354. ფრეინდლიხის ადსორბციის იზოთერმის განტოლება არ არის:

1)
$$A = \frac{x}{m} = Km^n$$
; 2) $A = \frac{x}{m} = Kc^n$;

3)
$$A = \frac{x}{m} = Kp^{n}$$
; 4) $\lg A = \lg K + n \lg c$.

- 355. ფრეინდლიხის ადსორბციის იზოთერმა კარგ შესაბამისობაშია ექსპერიმენტულ მონაცემებთან, რომლებიც მიღებულია:
- 1) დაბალი წნევების პირობებში; 2) ნებისმიერი წნევების პირობებში;

- 3) მაღალი წნევების პირობებში; 4) მუდმივი წნევის პირობებში.
- 356. ლენგმიურის ადსორბციის იზოთერმა კარგ შესაბამისობაშია ექსპერიმენტულ მონაცემებთან:
- 1) დაბალი წნევების პირობებში; 2) ნებისმიერი წნევების პირობებში;
- 3) საშუალო წნევების პირობებში; 4) მუდმივი წნევის პირობებში.
- 357. პანეტ-ფაიანსის წესის თანახმად, მყარ ადსორბენტზე უპირატესად ადსორბირდება:
- 1) ანიონები; 2) კატიონები; 3) ნებისმიერი იონი;
- 4) ადსორბენტის კრისტალურ სტრუქტურაში არსებული და მათი იზომორფული იონები.
- 358. ქვემოთ მოყვანილ რომელ რიგშია იონები განლაგებული ადსორბციის უნარის შემცირების მიმართულებით?
- 1) Th^{4+} ; Mg^{2+} ; Fe^{3+} ; K^+ ; 2) Th^{4+} ; K^+ ; Ca^{2+} ; Fe^{3+} ;
- 3) Th⁴⁺; Fe³⁺; Mg²⁺; Na⁺; 4) Ca²⁺; K⁺; Th⁴⁺; Fe³⁺.
- 359. ერთმუხტიანი იონების შემთხვევაში ადსორბციული უნარი მით მეტია:
- 1) რაც უფრო ნაკლებია იონის რადიუსი;
- 2) რაც უფრო ნაკლებია სოლვატირებული იონის რადიუსი;
- 3) რაც მაღალია მაპოლარიზებელი უნარი;
- 4) რაც მეტია იონის პიდრატაციის ხარისხი.
- 360. ლიოფილურ სისტემებს არ ახასიათებს:
- 1) დისპერსიული ფაზის ნაწილაკების სოლგატაციის მაღალი ხარისხი;
- 2) თერმოდინამიკური არამდგრადობა;
- 3) თვითდისპერგირების უნარი;
- 4) დისპერსიული ფაზის ნაწილაკების მაღალი სწრაფვა გამხსნელის მოლეკულებისადმი.
- 361. ლიოფობური სისტემებისათვის დამახასიათებელია:
- დისპერსიული ფაზის ნაწილაკებსა და დისპერსიული არის მოლეკულებს
 შორის ძლიერი ურთიერთქმედება;
- 2) დისპერსიული ფაზის ნაწილაკების სოლვატაციის დაბალი ხარისხი;
- 3) თერმოდინამიკური მდგრადობა;
- 4) თვითდისპერგირების უნარი.
- 362. რომელი პირობა არის არასწორად მითითებული კოლოიდური ხსნარის მისაღებად?
- 1) დისპერსიული ფაზის ცუდი ხსნადობა დისპერსიულ არეში;

- 2) ნაწილაკთა კოლოიდური დაწილადების ხარისხის მიღწევა (10^{-7} - 10^{-9} მ);
- 3) სტაბილიზატორის არსებობა;
- 4) ორი კომპონენტის არსებობა, რომლებიც ერთმანეთში კარგად იხსნება.
- კოლოიდური სისტემების მიღების ქვემოთ ჩამოთვლილი ხერხებიდან რომელი მიეკუთვნება ფიზიკური კონდენსაციის მეთოდს?
- 1) პიდროლიზი;
- 2) გამხსნელის შეცვლის მეთოდი;
- 3) ულტრაბგერითი მეთოდი;
- 4) ადსორბციული პეპტიზაცია.
- 364. სინათლის გაბნევის ინტენსივობა ტოლია:

1)
$$I = I_0 k \frac{c_v r^6}{\lambda^4}$$
 2) $I = I_0 k \frac{c_v r^3}{\lambda^4}$ 3) $I = I_0 k \frac{c_v r^6}{\lambda^2}$ 4) $I = I_0 k \frac{c_v \lambda^6}{r^4}$

3)
$$I = I_0 k \frac{c_v r^6}{\lambda^2}$$

4)
$$I = I_0 k \frac{c_v \lambda^6}{r^4}$$

365. რომელი არ მიეკუთვნება ელექტროკინეტიკურ მოვლენებს:

- 1) ელექტროფორეზი;
- 2) გადინების პოტენციალი
- 3) ელექტროოსმოსი;
- 4) დიფუზიურ-სედიმენტაციური წონასწორობა;
- 366. დისპერსიული ფაზის გადაადგილება დისპერსიული არის მიმართ ელექტრული დენის მოქმედებით არის:
- 1) ელექტროფორეზი; 2) ელექტროოსმოსი;
- 367. დისპერსიული არის გადაადგილებას ფაზის მიმართ, ელექტრული დენის მოქმედებით, ეწოდება:
- 1) ელექტროფორეზი; 2) ელექტროოსმოსი;
- 3) სედიმენტაციის პოტენციალი; 4) გადინების პოტენციალი
- 368. ღრუბელში:
- 1) დისპერსიული ფაზა სითხეა, სადისპერსიო არე კი აირი;
- 2) დისპერსიული ფაზა აირია, სადისპერსიო არე კი სითხე;
- 3) როგორც დისპერსიული ფაზა, ისე სადისპერსიო არე აირია;
- 4) როგორც დისპერსიული ფაზა, ისე სადისპერსიო არე სითხეა.
- 369. კვამლში:
- 1) დისპერსიული ფაზა მყარია, სადისპერსიო არე კი სითხე;
- 2) დისპერსიული ფაზა მყარია, სადისპერსიო არე კი აირი;
- 3) დისპერსიული ფაზა, სადისპერსიო არე კი მყარი;
- 4) დისპერსიული ფაზა სითხეა, სადისპერსიო არე კი აირი.
- 370. კოლოიდური ნაწილაკი (გრანულა) ეწოდება:
- 1) აგრეგატს;
- 2) მიცელას;
- 3) აგრეგატს ადსორბციულ შრესთან ერთად;
- 4) ბირთვსა და დიფუზიურ შრეს.

- 371. მიცელური თეორიის თანახმად, კოლოიდურ ნაწილაკზე მუხტი წარმოიქმნება:
- 1) ნაწილაკის ზედაპირზე იონების შერჩევითი ადსორბციით;
- 2) ოსმოსური წნევის გავლენით;
- 3) მყარი ფაზის ზედაპირიდან იონების დიფუზიით;
- 4) ბროუნის მოძრაობით.
- 372. იონური სტაბილიზატორების შემცველი კოლოიდური ხსნარები აგრეგატულად არამდგრადებია, როდესაც მათი მიცელების ξ-პოტენციალია:
- 1) 25 θ_3 ; 2) 35 θ_3 ; 3) 45 θ_3 ; 4) 55 θ_3 .
- ელექტრული პოტენციალი ელექტრულ ველში მოძრაობის უნარის მქონე ნაწილაკსა და გარემომცველ სითხეს შორის;
- 2) გრანულის პოტენციალი;
- 3) პოტენციალი ადსორბციულ და დიფუზიურ ფენებს შორის;
- 4) მაქსიმალური პოტენციალთა სხვაობა მყარ ზედაპირსა და ყველა ანტიიონს შორის.
- 374. ელექტროკინეტიკური პოტენციალი წარმოიქმნება:
- 1) პოტენციალგანმსაზღვრელი იონისა და ანტიიონის საზღვარზე;
- 2) გრანულასა და დიფუზიური შრის საზღვარზე;
- 3) მიცელისა და ინტერმიცელარული არის საზღვარზე;
- 4) აგრეგატისა და ადსორბციული შრის საზღვარზე.
- 375. ჩამოთვლილი მოსაზრებებიდან რომელია არასწორი მიცელური თეორიის თანახმად?
- 1) მიცელა შედგება გრანულასა და დიფუზიური შრისაგან;
- 2) გრანულა შედგება ბირთვისა და ანტიიონების დიფუზიური შრისაგან;
- 3) ბირთვი შედგება აგრეგატისა და პოტენციალგანმსაზღვრელი იონებისაგან;
- 4) ადსორბციული ფენა შედგება პოტენციალგანმსაზღვრელი იონებისაგან და ანტიიონებისაგან.
- 376. BaSO₄–ის ზოლის მიცელას ფორმულა, თუ ის მიღებულია Na₂SO₄–ზე BaCl₂-ის მოქმედებით, ამ უკანასკნელის საჭარბის პირობებში, არის:
- 1) { $[m(BaSO_4) nBa^{2+} \cdot 2(n-x) Cl^{-1}]^{2x+} \cdot 2x Cl^{-}$ };
- 2) { $[m(BaSO_4) 2nCl^- \cdot (n-x) Ba^{2+}]^{2x-} \cdot x Ba^{2+}$ };
- 3) { $[m(BaSO_4) nBa^{2+} \cdot (n-x) SO_4^{2-}]^{2x+} \cdot x SO_4^{2-}$ };

- 4) { $[m(BaSO_4) nSO_4^{2-} \cdot 2(n-x) Na^+]^{2x-} \cdot 2x Na^+$ }.
- 377. BaSO₄–ის ზოლის მიცელას ფორმულა, თუ ის მიღებულია Na₂SO₄–ზე BaCl₂-ის მოქმედებით, ნატრიუმის სულფატის საჭარბის პირობებში, არის:
- 1) { $[m(BaSO_4) nBa^{2+} \cdot 2(n-x) Cl^{-}]^{2x+} \cdot 2x Cl^{-}$;
- 2) { $[m(BaSO_4) 2nCl^- \cdot (n-x) Ba^{2+}]^{2x-} \cdot x Ba^{2+}$ };
- 3) { $[m(BaSO_4) nBa^{2+} \cdot (n-x) SO_4^{2-}]^{2x+} \cdot x SO_4^{2-}$ };
- 4) { $[m(BaSO_4) nSO_4^{2-} \cdot 2(n-x) Na^+]^{2x-} \cdot 2x Na^+$ }.
- 378. ელექტროფორეზი არ გამოიყენება:
- 1) მაკრომოლეკულების ნარევის დაყოფისა და ანალიზისათვის;
- 2) ორგანიზმში სამკურნალო პრეპარატების შესაყვანად;
- 3) დისპერსიული სისტემების მისაღებად;
- 4) დიაგნოსტიკისა და დაავადებების მიმდინარეობის დასახასიათებლად.
- 379. კოაგულაცია არ წარმოადგენს დისპერსიული ფაზის ნაწილაკების:
- 1) გამსხვილების პროცესს; 2) შეერთების პროცესს;
- 3) შეწებების პროცესს; 4) გამოლექვის პროცესს.
- 380. იონთა მაკოაგულირებელი უნარი დამოკიდებული არ არის:
- 1) იონის მუხტზე; 2) იონის პიდრატაციის ხარისხზე;
- 381. დისპერსიული სისტემების უმდგრადობის ფაქტორია:
- 1) ელექტრული მუხტის არსებობა დისპერსიულ ნაწილაკებზე;
- 2)კოლოიდური ნაწილაკების სოლვატაციის უნარი;
- 3) ჭარბი ზედაპირული ენერგია;
- 382. დადგენილია, რომ ნატურალური ლატექსის გლობულებს აქვს უარყოფითი ელექტრული მუხტი. რომელი ელექტროლიტის მოქმედება არის მაქსიმალურად ეფექტური ლატექსიდან კაუჩუკის გამოსაყოფად?
- 1) Na₂SO₄; 2) K₄[Fe(CN)₆]; 3) MgSO₄; 4) Al₂(SO₄)₃.
- 383. ყველა ელექტროლიტს შეუძლია გამოიწვიოს ლიოფობური ზოლის კოაგულაცია. მაკოაგულირებელი უნარით ხასიათდება ის იონები, რომელთა მუხტი:
- 1) ისეთივეა, როგორიც გრანულას მუხტი;
- 2) დიფუზიური შრის იონების მუხტის საპირისპიროა;
- 3) პოტენციალგანმსაზღვრელი იონის მუხტის ნიშნისაა;

- 4) გრანულას მუხტის საპირისპიროა.
- 384. მმნ-ის მიერ ზოლების კოაგულაციისაგან დაცვის უნარი რაოდენობრივად გამოისახება "ოქროს" რიცხვით, რომელიც ტოლია დამცავი მმნ-ის მილიგრამების მინიმალური რაოდენობისა, რომელიც 10 მლ ოქროს ზოლს იცავს კოაგულაციისაგან მასზე ხსნარის დამატებისას:
- 1) 1 მლ 10%-იანი NaCl-ის; 2) 10 მლ 0,85%-იანი NaCl-ის;
- 3) 1 მლ 0,9%-იანი CaCl2-ის; 4) 10 მლ 10%-იანი NaCl-ის.
- 385. ექსპერიმენტული მონაცემები ადასტურებენ, რომ შეჩვევის დროს ზოლის კოაგულაცია ხორციელდება ელექტროლიტი-კოაგულანტის:
- 1) უფრო დაბალი კონცენტრაციის დროს, ვიდრე კოაგულაციის ზღურბლია;
- 2) კოაგულაციის ზღურბლის ტოლი კონცენტრაციის დროს;
- 3) უფრო მაღალი კონცენტრაციის დროს, ვიდრე კოაგულაციის ზღურბლია;
- 4) შეჩვევის დროს ზოლის კოაგულაცია არ ხორციელდება.
- 386. კოაგულაციის ზღურბლი დროის გარკვეულ მონაკვეთში კოაგულაციის დასაწყებად საჭირო ელექტროლიტის ის მინიმალური რაოდენობაა (მოლებში), რომელიც უნდა დაემატოს:
- 1) 1 მლ ზოლს; 2) 100 მლ ზოლს; 3) 100 გ ზოლს; 4) 1000 მლ ზოლს.
- 387. ბიოგენური ეწოდება:
- 1) ორგანულ ნივთიერებებში შემავალ ნებისმიერ ელემენტს;
- 2) ელემენტებს, რომლებიც მონაწილეობენ ორგანიზმის აგებაში და არა ფუნქციონირებაში;
- ელემენტებს, რომლებიც მონაწილეობენ ორგანიზმის ფუნქციონირებაში და არა მის აგებაში;
- 4) ელემენტებს, რომლებიც მონაწილეობენ ორგანიზმის აგებასა და მის ფუნქციონირებაში;
- 388. ქიმიური ელემენტების რომელ რიგშია მხოლოდ "10 სიცოცხლის ლითონის" შემადგენლობაში შემავალი ელემენტი?
- 1) Li, Na, K, Ca, Mg; 2) Mg, Ca, Cr, Fe, Cu;
- 3) Mg, Ca, Fe, Ni, Cu; 4) Mg, Fe, Cu, Mo, Co.
- 389. "10 სიცოცხლის ლითონი" ორგანიზმში არის:
- 1) მხოლოდ პიდრატირებული იონების სახით;
- 2) მხოლოდ ბიოლიგანდებთან კომპლექსების სახით.
- 3) მარტივი ნივთიერების სახით;
- 4) პიდრატირებული იონებისა და ბიოლიგანდებთან კომპლექსების სახით.

- 390. ქიმიური ელემენტების რომელ რიგშია მხოლოდ ორგანიზმისათვის საჭირო მაკროელემენტები?
- 1) Li, Na, Mg, Ca; 2) Na, Mg, Ca, Fe; 3) Na, Mg, Ca, I; 4) Na, Mg, Ca, Cl.
- 391. მიკროელემენტის მინიმალური რაოდენობა ადამიანის ორგანიზმში შეიძლება იყოს:
- 1) $10^{-20}\%$; 2) $10^{-40}\%$; 3) $10^{-50}\%$; 4) $10^{-60}\%$;
- 392. ორგანიზმში მაკროელემენტების ფუნქცია არ არის:
- 1) ოსმოსური წნევის მუდმივობის შენარჩუნება;
- 2) ფუძე-მჟავური შედგენილობის მუდმივობის შენარჩუნება;
- 3) ქსოვილის აგება;
- 4) ლითონ-ლიგანდური პომეოსტაზის შენარჩუნება.
- 393. რომელ პროცესში არ მონაწილეობს მიკროელემენტები?
- 1) ქსოვილურ სუნთქვაში; 2) ტოქსიკური ნივთიერებების გაუვნებლობაში;
- 3) ქსოვილების აგებაში; 4) ჟანგვა-აღდგენით პროცესებში.
- 394. ქიმიური ელემენტების რომელ რიგშია მხოლოდ ტოქსიკური ელემენტები?
- 1) Be, Mg, Cs; 2) Hg, Pb, Zn; 3) Be, Hg, Mo; 4) Be, Tl, Hg;
- 395. მოყვანილი მოსაზრებებიდან რომელია მცდარი?
- 1) ორგანიზმში წყალბადი არსებობს როგორც \mathbf{H}^+ , ისე \mathbf{H}^- იონის სახით;
- 2) H+ საკმაოდ ძლიერი მჟანგავია;
- 3) ორგანიზმში \mathbf{H}^+ არ ამჟღავნებს მჟანგავ ბუნებას;
- 4) H^+ -ს აქვს ძლიერი მაპოლარიზებელი ბუნება;
- 396. ჟანგბადის არეში წვისას ოქსიდს წარმოქმნის:
- 1) Li⁺; 2) Na⁺; 3) K⁺; 4) Rb⁺.
- 397. რომელ ნივთიერებასთან არ ურთიერთქმედებს წყალბადი უშუალოდ?
- 1) Na; 2) Cl₂; 3) Si; 4) O₂.
- 398. ჩამოთვლილი ელემენტებიდან რომელი არ წარმოქმნის ჰიპეროქსიდებს?
- 1) K; 2) Na; 3) Rb; 4) Ca.
- 399. ჩამოთვლილი ნაწილაკებიდან რომელი შეესაბამება პეროქსიდ-იონს?
- 1) O^{2-} ; 2) O_2^- ; 3) O_2^{2-} ; 4) O^- .
- 400. ჩამოთვლილი ნაერთებიდან რომელი გამოიყენება ოზონის აღმოსაჩენად?
- 1) KF; 2) KCl; 3) KBr; 4) KI.
- 401. აზოტი უშუალოდ არ ურთიერთქმედებს:
- 1) ქლორთან; 2) წყალბადთან; 3) კალციუმთან; 4) ჟანგბადთან.

- 402. ჩამოთვლილებიდან რომელ ლითონთან არ რეაგირებს კონცენტრირებული აზოტმჟავა:
- 1) Ag; 2) Au; 3) Cu; 4) Hg.
- 403. ქვემოთჩამოთვლილთაგან რომელი ოქსიდია რადიკალი?
- 1) ნახშირბად(II)-ის ოქსიდი; 2) აზოტ(II)-ის ოქსიდი;
- 3) გოგირდ(IV)-ის ოქსიდი; 4) ნახშირბად(IV)-ის ოქსიდი.
- 404. ჩამოთვლილებიდან რომელ ლითონთან არ რეაგირებს კონცენტრირებული აზოტმჟავა ოთახის ტემპერატურაზე:
- 1) Fe; 2) Mg; 3) Cu; 4) Pb
- 405. ზოგიერთ მეტალთან აზოტის ურთიერთქმედებისას მიიღება:
- 1) ნიტრატები; 2) ნიტრიტები; 3) ნიტრიდები; 4) ნიტროზილქლორიდი.
- 406. მეტალებთან ფოსფორის ურთიერთქმედებისას მიიღება:
- 1) ფოსფატები; 2) ფოსფიტები; 3) ფოსფიდები; 4) პიროფოსფატები.
- 407. მეტაფოსფორმჟავას ფორმულაა:
- 1) H₃PO₃; 2) H₃PO₄; 3) HPO₃; 4) H₄P₂O₇.
- 408. პიროფოსფორმჟავას ფორმულაა:
- 1) H₃PO₃; 2) H₃PO₄; 3) HPO₃; 4) H₄P₂O₇.
- 409. ფოსფოროვანმჟავას ფორმულაა:
- 1) H₃PO₃; 2) H₃PO₄; 3) HPO₃; 4) H₄P₂O₇.
- 410. ორთოფოსფორმჟავას ფორმულაა:
- 1) H₃PO₃; 2) H₃PO₄; 3) HPO₃; 4) H₄P₂O₇.
- 411. ჩამოთვლილი მარილებიდან არ არსებობს:
- 1) Na₄P₂O₇; 2) NaH₂PO₄; 3) K₃HP₂O₇; 4) KH₂PO₃.
- 412. ჩამოთვლილი ნივთიერებებიდან რომელი არ იხსნება მარილმჟავაში?
- 1) CaCO₃; 2) BaSO₄; 3) BaSO₃; 4) Ag₃PO₄.
- 413. მაღალ ტემპერატურაზე პეროქსიდების წარმოქმნით ჟანგბადთან რეაგირებს:
- 1) ლითიუმი; 2) ნატრიუმი; 3) თუთია; 4) რკინა.
- 414. ჩამოთვლილებიდან რომელი იონია სულფიდების აღმომჩენი?
- 1) Ag^+ ; 2) Ba^{2+} ; 3) Pb^{2+} ; 4) K^+ .
- 415. პიროფოსფორმჟავა:

- 1) ერთფუძიანია; 2) ორფუძიანია; 3) სამფუძიანია; 4) ოთხფუძიანია.
- 416. ჩამოთვლილი მჟავებიდან რომელია სამფუძიანი?
- 1) H₂S₂O₇; 2) H₃PO₃; 3) H₄P₂O₇; 4) არცერთი.
- 417. კალიუმის სულფიდი წარმოიქმნება გოგირდმჟავას ურთიერთქმედებისას:
- 1) კონცენტრირებულ გოგირდმჟავასთან; 2) კონცენტრირებულ აზოტმჟავასთან;
- 3) განზავებულ გოგირდმჟავასთან; 4) ტუტის ცხელ ხსნართან.
- 418. მოყვანილი მჟავებიდან რომელია ყველაზე სუსტი?
- 1) H₂SO₄; 2) H₂CO₃; 3) H₂S; 4) HNO₃.
- 419. აზოტის ოქსიდებიდან რომელია თხევად მდგომარეობაში ოთახის ტემპერატურაზე?
- 1) N_2O_3 ; 2) N_2O ; 3) N_2O_4 ; 4) N_2O_5 .
- 420. რომელ ლითონთან რეაგირებს აზოტი ოთახის ტემპერატურაზე?
- 1) Li; 2) K; 3) Na; 4) Ca.
- 421. რკინასთან ურთიერთქმედებისას ნახშირბადის მონოქსიდი წარმოქმნის:
- 1) დიკარბონილს; 2) ტრიკარბონილს;
- 3) ტეტრაკარბონილს; 4) პენტაკარბონილს.
- 422. ჩამოთვლილი ოქსიდებიდან რომელია სუნთქვის ცენტრის ფიზიოლოგიური სტიმულატორი?
- 1) CO; 2) CO₂; 3) N₂O; 4) NO₂.
- 423. რომელი ნიგთიერება გამოიყენება კუჭის წვენის მჟავიანობის გაზრდისას ანტაციდურ საშუალებად?
- 1) NaHSO₄; 2) Na₂HPO₄; 3) NaOH; 4) NaHCO₃.
- 424. ნახშირბადის მონოქსიდის მოლეკულაში ნახშირბადსა და ჟანგბადს შორის:
- 1) ერთმაგი ბმაა; 2) ორმაგი ბმაა; 3) სამმაგი ბმაა; 4) ოთხმაგი ბმაა.
- 425. ქვემოთჩამოთვლილთაგან რომელია საჭმელი სოდა?
- 1) Na₂SO₄; 2) NaHSO₃; 3) Na₂CO₃; 4) NaHCO₃.
- 426. რას წარმოქმნის ნახშირბადი მეტალებთან რეაგირებისას?
- 1) კარბორუნდს; 2) კარბონატებს; 3) სულფიდებს; 4) კარბიდებს.
- 427. პირველი ჯგუფის ჩამნაცვლებლებს მიეკუთვნება:
- 1) -COOH; 2) -OH; 3) $-OCH_3$; 4) $-NH_2$.

- 428. პირველი ჯგუფის ჩამნაცვლებლებს მიეკუთვნება:
- 1) –COOH;
- 2) CH₃;
- 3) –OH;
- 4) $-NH_2$.
- 429. მეორე ჯგუფის ჩამნაცვლებლებს მიეკუთვნება:
- 1) –SCH₃;
- 2) $-NO_2$;
- 3) –CHO;
- 4) $-OC_2H_5$.
- 430. მეორე ჯგუფის ჩამნაცვლებლებს მიეკუთვნება:
- 1) $-SO_3H$;
- 2) $-NO_2$;
- 3) $-CH_3$;
- 4) $-OC_2H_5$
- 431. რომელი ჯგუფის სახელწოდების მითითება ხდება მხოლოდ პრეფიქსების სახით IUPAC-ის ნომენკლატურით ორგანული ნაერთის დასახელებისას?
- 1) $-OC_2H_5$; 2) -SH;
- 3) –OH;
- 4) $-NH_2$.
- რომელი ჯგუფის სახელწოდების მითითება ხდება მხოლოდ პრეფიქსების სახით IUPAC-ის ნომენკლატურით ორგანული ნაერთის დასახელებისას?
- 1) -COOH; 2) -NO₂; 3) -NH₂; 4) -OH.
- რომელი ჯგუფის სახელწოდება არ გვხვდება დაბოლოებაში IUPAC-ის ნომენკლატურით ორგანული ნაერთის დასახელებისას?
- 1) -NH₂; 2) -OH; 3) $-C_2H_5$; 4) -SH.
- 434. რომელი ჯგუფის სახელწოდება გვხვდება დაბოლოებაში IUPAC-ის ნომენკლატურით ორგანული ნაერთის დასახელებისას?
- 1) ნიტროზო-ჯგუფი; 2) ნიტრო-ჯგუფი; 3) ჰიდროქსი-ჯგუფი; 4) დიაზო-ჯგუფი.
- 435. რომელი ჯგუფის სახელწოდების მითითება ხდება სუფიქსების სახით IUPAC-ის ნომენკლატურით ორგანული ნაერთის დასახელებისას?
- 1) –SCH₃; 2) $-OCH_3$; 3) $-NH_2$; 4) $-NO_2$.
- 436. ნაერთის ფუძემდებლური სტრუქტურა არ შედგება რომელი 5 ნახშირბადატომისაგან?

$$\begin{array}{c} \text{CH}_{3} \\ \text{1) CH}_{3} - \text{CH} - \text{CH} - \text{CH}_{2} - \text{CH}_{3} \\ \text{CH}_{3} - \text{C} - \text{CH}_{3} \\ \text{CH}_{3} \end{array}$$

$$\begin{array}{c} \text{CH}_{2} = \text{CH} - \text{C} - \text{CH} - \text{CH}_{2} - \text{CH}_{3} \\ \text{CH} - \text{CH}_{3} \\ \text{CH}_{3} \end{array}$$

$$CH_{2}NH_{2}$$
3) $CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}$
4) $CH_{3}-CHOH-C-C=C=C-CH_{3}$

$$CH_{2}NH_{2}$$

$$CH_{2}NH_{2}$$

$$CH_{2}$$

- 437. რომელი ნაერთის ფუძემდებლური სტრუქტურა შედგება ექვსი ნახშირბადატომისაგან?
 - C₃H₇
 1) CH₃-CH₂-CH₂-CH₂-CH₂-CH₂OH 2) CH₃-CH₂-CH₂-CH₂-COOH

438. დაასახელეთ ნაერთი IUPAC-ის ნომენკლატურით

$$\begin{array}{c} OH \\ CH_3-CH_2-CH-CH-COOH \\ C_3H_7 \end{array}$$

- 1) 3-პროპილ-2-პიდროქსიპენტანმჟავა;
- 2) 3-ეთილ-2-ჰიდროქსიპექსანმჟავა;

OH

- 3) 3-პროპილ-4-პიდროქსიპენტანმჟავა;
- 4) 4-ეთილ-5-ჰიდროქსიპექსანმჟავა.
- 439. დაასახელეთ ნაერთი IUPAC-ის ნომენკლატურით:

- 1) 4-ამინო-5-ვინილ-6-მეთილჰეპტანალი;
- 2) 4-ამინო-3-ვინილ-2-მეთილჰეპტანალი;
- 3) 4-ამინო-5-ვინილ-6-მეთილ-2-ჰეპტენალი;
- 4) 4-ამინო-5-იზოპროპილ-2,6-ჰეპტადიენალი.
- 440. როგორი თანმიმდევრობით იზრდება ნ-ბუტანის იმ კონფორმაციათა ენერგია, რომელთა პროექციული ფორმულები გამოსახულია ქვემოთ?

- 1) 4<1<3<5<2;
- 2) 4<3=5<1<2;
- 3) 4<1<3=5<2;
- 4) 4<2<3=5<1.
- 441. როგორი თანმიმდევრობით მცირდება ნ-ბუტანის იმ კონფორმაციათა ენერგია, რომელთა პროექციული ფორმულები გამოსახულია ქვემოთ?

442. ნ-ბუტანის პროექციული ფორმულებიდან რომელი შეესაბამება აცდენილ კონფორმაციას?

443. ნ-ბუტანის პროექციული ფორმულებიდან რომელი შეესაბამება დამუხრუჭებულ კონფორმაციას?

444. მინიმალურ ტორსიულ კუთხედ, რომლიდანაც იწყება ათვლა, მიჩნეულია:

- 1) 30^0 ;
- $2) 45^0;$
- 3) 60° ;
- 4) 900;

4)

445. როგორი თანმიმდევრობით იზრდება ქვემოთმოყვანილი ციკლოჰექსანის ნაწარმების სავარძლის კონფორმაციათა ენერგია?

$$CH(CH_3)_2$$
 C_2H_5 C_2H_5

- 1) 1,3,2,4;
- 2) 1,2,3,4;
- 3) 4,3,2,1;
- 4) 4,2,3,1.

57

446. როგორი თანმიმდევრობით მცირდება ქვემოთმოყვანილი ციკლოჰექსანის ნაწარმების სავარძლის კონფორმაციათა ენერგია?

3)
$$C_2H_5$$
 4) H_3C $CH(CH_3)_2$

CH_3

1) 1,3,2,4;

2) 1,2,3,4; 3) 4,3,2,1; 4) 4,2,3,1.

447. რომელი მოყვანილი მტკიცებაა არასამართლიანი ენანტიომერთათვის?

- 1) აქვთ ერთნაირი ფიზიკური თვისებები, გარდა სინათლის პოლარიზაციის სიპრტყის პრუნვის ნიშნისა;
- 2) აქვთ ხვედრითი ბრუნვის ერთნაირი აბსოლუტური სიდიდე;
- 3) მოლეკულები აქირალურია;
- 4) აქვთ ერთნაირი ქიმიური თვისებები.
- 448. რომელი ნაერთი არ შეიცავს ქირალურ ნახშირბადატომს?

1) (CH₃)₂CHCH₂CH(OH)CH₃;

3) HOOCCH₂CH(OH)CHO;

2) HOOC-CH₂CH(OH)COOH;

4) CH₃-CH₂-CHBrC₂H₅.

- 449. რომელი ნაერთი არ შეიცავს ქირალურ ნახშირბადატომს?
- 1) HOOCCHOHCOOH;
- 2) HOOCCHOHCHOHCOOH;
- 3) CH₃CHOHCOOH;
- 4) CH₂ClCHClCH₃.
- 450. რომელი ნაერთი მიეკუთვნება D-სტერეოქიმიურ რიგს?

451. რომელი ნაერთი მიეკუთვნება L-სტერეოქიმიურ რიგს?

452. რომელ ნაერთში აქვს ქირალურ ცენტრს R-კონფიგურაცია?

453. რომელ ნაერთში აქვს ქირალურ ცენტრს S-კონფიგურაცია?

- 454. მიმდევრობის წესის თანახმად ქირალურ ცენტრთან დაკავშირებული რომელი ჩამნაცვლებელია ყველაზე უფროსი?
- 1) -CH₂SH; 2) -CH₂OH; 3) -CH₂CH₃; 4) -CH₂COOH.
- 455. მიმდევრობის წესის თანახმად ქირალურ ცენტრთან დაკავშირებული რომელი ჩამნაცვლებელია ყველაზე უფროსი?
- 1) -CHO; 2) -CH₂OH; 3) -CH₂CH₃; 4) -COOH.
- 456. ენენტიომერებს არ აქვს:
- 1) ერთნაირი ფიზიკური თვისებები;
- 2) ერთნაირი ქიმიური თვისებები;
- 3) ხვედრითი ბრუნვის ერთნაირი აბსოლუტური სიდიდე;
- 4) სიმეტრიის სიპრტყე.
- 457. L-რიგის ნაერთები სინათლის პოლარიზაციის სიბრტყეს:
- 1) აბრუნებს მხოლოდ მარჯვნივ; 2) აბრუნებს მხოლოდ მარცხნივ;
- 3) აბრუნებს ან მარცხნივ, ან მარჯვნივ; 4) არ აბრუნებს.
- 458. ფიშერის პროექციებში ჩამნაცვლებლის უფროსობა განისაზღვრება ქირალურ ცენტრთან უშუალოდ დაკავშირებული ელემენტის:
- 1) ვალენტობით; 2) ელექტროუარყოფითობით;
- 3) ატომური ნომრის სიდიდით; 4) იონიზაციის ენერგიით.
- 459. ჰექსანისაგან განსხვავებით რომელი დაძაბულობა გვხვდება ციკლოჰექსანში?
- 1) ბაიერის; 2) პიტცერის; 3) ვან-დერ-ვაალსური; 4) ტორსიული.
- 460. რაცემატი ეწოდება რომელიმე ნაერთის:
- 1) ენანტიომერების თანაბარი რაოდენობის ნარევს;
- 2) დიასტერეომერების თანაბარი რაოდენობის ნარევს;
- 3) ენანტიომერისა და დიასტერეომერის თანაბარი რაოდენობის ნარევს;
- 4) ენანტიომერებისა და დიასტერეომერის განსხვავებული რაოდენობის ნარევს.
- 461. შეუღლების შედეგად სისტემის ენერგია:
- 1) იზრდება; 2) მცირდება;
- 3) ჯერ იზრდება, შემდეგ კი მცირდება; 4) არ იცვლება.
- 462. ჩამოთვლილი ნაერთებიდან რომელი წარმოადგენს π -ჭარბ სისტემას?
- 1) ბენზოლი; 2) პიროლი; 3) პირიდინი; 4) პიპერიდინი.
- 463. ჩამოთვლილი ნაერთებიდან რომელი წარმოადგენს π -გარბ სისტემას?
- 1) ფურანი; 2) პირაზოლი; 3) პირიდინი; 4) პიპერიდინი.
- 464. ჩამოთვლილი ნაერთებიდან რომელი წარმოადგენს π -ნაკლულ სისტემას?

- 1) ფურანი; 2) ბენზოლი; 3) პირიდინი; 4) პიროლი;
- 465. ჰიუკელის წესის თანახმად, ორი ციკლის შემცველი არომატული ნაერთის ერთიან დელოკალიზებულ π-სისტემაში ელექტრონების საერთო რაოდენობა უნდა იყოს:
- 1) 6; 2) 8; 3) 10; 4) 12.
- 466. ჰიუკელის წესის თანახმად, სამი ციკლის შემცველი არომატული ნაერთის ერთიან დელოკალიზებულ π-სისტემაში ელექტრონების საერთო რაოდენობა უნდა იყოს:
- 1) 20; 2) 18; 3) 16; 4) 14.
- 467. ჩამოთვლილი ნაერთებიდან რომლის ერთიან შეუღლებულ π-სისტემაშია 10 ელექტრონი?
- 1) ანორაცენი; 2) პიროლი; 3) ნაფთალინი; 4) ფენანთრენი.
- 468. ჩამოთვლილი ნაერთებიდან რომლის ერთიან შეუღლებულ π-სისტემაშია 14 ელექტრონი?
- 1) ანთრაცენი; 2) პურინი; 3) პიროლი; 4) ნაფთალინი.
- 469. მოყვანილი განმარტებებიდან რომელია სწორი?
- **7)** D-რიგის ყველა ნაერთი სინათლის პოლარიზაციის სიბრტყეს აბრუნებს მარჯვნივ;
- *2)* ენანტიომერების ქიმიური თვისებები ერთნაირია, ისინი განსხვავდებიან მხოლოდ ფიზიკური თვისებებით;
- 3) D- და L-ღვინომჟავების თანაბარი რაოდენობის ნარევი ცნობილიამეზოღვინომჟავას სახელწოდებით;
- 4) ჩამნაცვლებლის უფროსობა განისაზღვრება ქირალურ ცენტრთან დაკავშირებული ელემენტის ატომური ნომრის სიდიდით.
- 470. მოყვანილი განარტებებიდან რომელია სწორი?
- აციკლურ ნაერთებში გგხვდება დაძაბულობის ორი ტიპი: ტორსიული და პიტცერის;
- 2) ციკლის ინვერსიის შედეგად ჩანაცვლებული ციკლოპექსანის ორი სავარძლის კონფორმაციიდან წონასწორობა გადაინაცვლებს იმ ფორმისკენ, რომელშიც ჩამნაცვლებელი აქსიალურ მდგომარეობაშია;
- 3) დიასტერეომერების თანაბარი რაოდენობის ნარევს რაცემატი ეწოდება;
- 4) არცერთი.

- 471. მოყვანილი განმარტებებიდან რომელია სწორი?
- 1) კონფიგურაციულ სტანდარტად მიღებულ იქნა რძემჟავა;
- 2) სინათლის პოლარიზაციის სიპრტყის ბრუნვის ნიშანი უშუალოდ დაკავშირებულია კონფიგურაციასთან;
- 3) ენანტიომერებს გააჩნია მსგავსი ფიზიკურ-ქიმიური თვისებები.
- 4) არცერთი.
- 472. ჩამოთვლილი მჟავებიდან რომელი არ წარმოადგენს Z-იზომერს:
- 3) არაქიდონმჟავა; 2) მალეინმჟავა; 3) ლინოლმჟავა; 4) ფუმარმჟავა.
- 473. ჩამოთვლილი მჟავებიდან რომელი არსებობს π -დიასტერეომერების სახით?
- 1) მალონმჟავა; 2) ფუმარმჟავა; 3) ლიმონმჟავა; 4) ქარვამჟავა.
- 474. ჩამოთვლილი ნაერთებიდან რომელი ურთიერთქმედებს ოპსინთან როდოპსინის წარმოქმნით?
- 1)β-კაროტინი; 2)11-ცის-რეტინალი; 3)11-ცის-რეტინოლი; 4)11-ტრანს-რეტინალი.
- 475. მოყვანილი განმარტებებიდან რომელია არასწორი?
- 1) პიროლი წარმოადგენს π-ჭარბ სისტემას;
- 2) ჰიუკელის წესის გამოყენება შეიძლება ნებისმიერი ბრტყელი, კონდენსირებული სისტემისათვის, რომელიც არ შეიცავს ორზე მეტი ციკლისათვის საერთო ატომებს;
- 3) პურინი არომატული ნაერთია;
- 4) შეუღლების შედეგად სისტემის ენერგია იზრდება.
- 476. მოყვანილი ნაერთებიდან რომელი ექვემდებარება ჰიუკელის წესს:

477. მოყვანილი ნაერთებიდან რომელი ექვემდებარება პიუკელის წესს:

- 478. რომელი ჩამნაცვლებელი ამჟღავნებს ელექტრონდონორულ თვისებებს ბენზოლის ბირთვში ჩანაცვლებისას?
 - 1) OCH₃; 2) NO₂; 3) CHO; 4) COOH.
- 479. რომელი ჩამნაცვლებელი ამჟღავნებს ელექტრონდონორულ თვისებებს ბენზოლის ბირთვში ჩანაცვლებისას?

- 1) -CHO; 2) -SO₃H; 3) -NO₂; 4) -OH.
- 480. რომელი ჩამნაცვლებელი ამჟღავნებს ელექტრონაქცეპტორულ თვისებებს ბენზოლის ბირთვში ჩანაცვლებისას?
- 1) -CH₃; 2) -OH; 3) -SH; 4) -COOH.
- 481. რომელი ჩამნაცვლებელი ამჟღავნებს ელექტრონაქცეპტორულ თვისებებს ბენზოლის ბირთვში ჩანაცვლებისას?
- 1) -CHO; 2) -OCH₃; 3)-NH₂; 4) -CH₃.
- 482. ფენოლის მოლეკულაში:
- 1) ხდება მხოლოდ p,π -შეუღლება; 2) ხდება მხოლოდ π,π -შეუღლება;
- 3) ხდება როგორც p,π -, ისე π,π -შეუღლება; 4) შეუღლება არ ხდება.
- 483. რამდენი ელექტრონია ფენოლის ერთიან შეუღლებულ სისტემაში?
- 1) 6; 2) 8; 3) 10; 4) 14.
- 484. რამდენი ელექტრონია ანილინის ერთიან შეუღლებულ სისტემაში?
- 1) 6; 2) 8; 3) 10; 4) 14.
- 485. მოყვანილი განმარტებებიდან რომელი არასწორი?
- მეზომერული ეფექტი არის ჩამნაცვლებლის ელექტრონული გავლენის გადაცემა π-ბმებიანი სისტემის გასწვრივ;
- 2) მეზომერული ეფექტი "ქრება" 3-4 π-ბმის შემდეგ;
- 3) კარბოქსილის ჯგუფი წარმოადგენს ელექტრონაქცეპტორს;
- 4) მეთილის რადიკალი ამჟღავნებს დადებით ინდუქციურ ეფექტს.
- 486. ნაერთთა რომელ წყვილში იქნება ეთოქსი-ჯგუფის ელექტრონული ეფექტები ერთნაირი?
- 1) C₂H₅O-CH₂NH₂; CH₂=CH-OC₂H₅; 2) CH₃-CH₂-OC₂H₅; CH₂=CH-OC₂H₅;
- 3) CH₂=CH-CH₂-OC₂H₅; CH₂=CH-OC₂H₅; 4) არცერთში.
- 487. ნაერთთა რომელ წყვილში იქნება ამინოჯგუფის ელექტრონული ეფექტები ერთნაირი?
- 1) მეთილამინი; მესამ-ბუტილამინი; 2) ვინილამინი; იზობუტილამინი;
- 3) ვინილამინი; ალილამინი; 4) ფენილამინი; ეთილამინი.
- 488. ნაერთთა რომელ წყვილში იქნება ჰიდროქსილის ჯგუფის ელექტრონული ეფექტები ერთნაირი?
- 1) მეთილის სპირტი; ვინილის სპირტი; 2) იზოპროპილის სპირტი; ფენოლი;
- 3) ეთილის სპირტი; ალილის სპირტი; 4) ალილის სპირტი; ფენოლი.

- 489. ნაერთთა რომელ წყვილში იქნება კარბოქსილის ჯგუფის ელექტრონული ეფექტები ერთნაირი?
- 1) აკრილმჟავა; ძმარმჟავა;
- 2) ბენზომჟავა; ჭიანჭველმჟავა;
- 3) სალიცილმჟავა; აკრილმჟავა; 4) ლიმონმჟავა; მალეინმჟავა.
- 490. მოყვანილი ჩამნაცვლებლებიდან რომელს აქვს უარყოფითი მეზომერული ეფექტი?
- 1) -CH₃; 2) -NH₂; 3) -OR; 4) -COOH.
- 491. რომელ ნაერთებში ავლენს ყველა ჩამნაცვლებელი ელექტრონდონორულ თვისებებს?

1)
$$C_2H_5O$$
 \leftarrow \bigcirc \rightarrow COOH

492. რომელ ბირთვშია არომატული ბირთვის ელექტრონული სიმკვრივე ნაკლები ბენზოლთან შედარებით?

- 493. რომელი პროდუქტი მიიღება, უპირატესად, ბენზომჟავას ქლორირებით?
- 1) ო-ქლორბენზომჟავა;
- 2) პ-ქლორბენზომჟავა;
- 3) მ-ქლორბენზომჟავა;
- 4) 2,4,6-ტრიქლორბენზომჟავა.
- 494. რომელი ნაერთი მიიღება, უპირატესად, ბენზალდეპიდის ნიტრირებით?
- 1) ო-ნიტრობენზალდეჰიდი;
- 2) პ-ნიტრობენზალდეჰიდი;
- 3) მ-ნიტრობენზალდეპიდი;
- 4) 2,4,6-ტრინიტრობენზალდეპიდი.
- 495. რომელი ნაერთი მიიღება, უპირატესად, ბენზოსულფომჟავას ნიტრირებით?
- 1) ო-ნიტრობენზოსულფომჟავა;
- 2) მ-ნიტრობენზოსულფომჟავა;
- 3) პ-ნიტრობენზოსულფომჟავა;
- 4) 2,4,6-ტრინიტრობენზოსულფომჟავა.
- 496. რომელი მსჯელობაა ფენოლისათვის არასამართლიანი?
- 1) ნახშირბადის ყველა ატომი sp^2 -პიბრიდიზაცის მდგომარეობაშია;
- 2) ნახშირბადის ყველა ატომი ერთ სიბრტყეშია;

- 3) მოლეკულაში გვხვდება р,π- და π,π- შეუღლებები;
- 4) ერთიანი შეუღლებული სისტემა შეიცავს 6 ელექტრონს.
- 497. რომელ რიგშია განლაგებული ნაერთები მჟავიანობის ზრდის მიხედვით?
- 1) CH₄, CH₃OH, CH₃NH₂, CH₃SH; 2) CH₄, CH₃SH, CH₃OH, CH₃NH₂;
- 3) CH₄, CH₃NH₂, CH₃OH, CH₃SH; 4) CH₄, CH₃NH₂, CH₃SH, CH₃OH.
- 498. რომელ რიგშია განლაგებული სპირტები მჟავიანობის ზრდის მიხედვით აირად ფაზაში?
- **7)** CH₃OH, (CH₃)₂CHOH, C₂H₅OH, (CH₃)₃COH;
- **2)** (CH₃)₃COH, (CH₃)₂CHOH, C₂H₅OH, CH₃OH;
- **3)** (CH₃)₃COH, C₂H₅OH, (CH₃)₂CHOH, CH₃OH;
- **4)** CH₃OH, C₂H₅OH, (CH₃)₂CHOH, (CH₃)₃COH;
- 499. ჩამოთვლილი ნაერთებიდან რომლის მჟავიანობაა ყველაზე მაღალი აირად ფაზაში?
- 1) ნ-ბუტილის სპირტი; 2) მეორ-ბუტილის სპირტი;
- 3) იზობუტილის სპირტი; 4) მესამ-ბუტილის სპირტი.
- 500. ჩამოთვლილი ნაერთებიდან რომლის საკუთარი ფუძიანობაა ყველაზე მაღალი?
- 1) ამიაკი; 2) ფენილამინი; 3) დიფენილამინი; 4) ტრიფენილამინი.
- 501. ჩამოთვლილი ნაერთებიდან რომელი მიეკუთვნება ოქსონიურ ფუძეებს?
- 1) მეთილამინი; 2) მეთილბენზოლი; 3) მეთანთიოლი; 4) მეთანოლი.
- 502. ჩამოთვლილი ბრენსტედის მჟავებიდან რომელია ყველაზე ძლიერი?
- 1) მეთანოლი; 2) მეთილამინი; 3) მეთანთიოლი; 4) მეთანი.
- 503. მოყვანილი ნაერთებიდან რომელი მიეკუთვნება n-ფუძეებს?
- 1) ტოლუოლი; 2) ფენოლი; 3) 1,3-ბუტადიენი; 4) ბენზოლი.
- 504. ჩამოთვლილი ნაერთებიდან რომელი მიეკუთვნება π -ფუძეებს?
- 1) ქსილოლი; 2) აცეტონი; 3) რძემჟავა; 4) ეთანოლი.
- 505. მოყვანილი განმატებებიდან რომელია სწორი?
- 1) რაც უფრო დიდია იონის რადიუსი, მით უფრო ძლიერად ხდება სოლვატაცია;

- დაახლოებით ერთნაირი ზომის რადიკალების შემცველ მოლეკულებში სოლვატაციის ეფექტის გავლენით იცვლება აირად ფაზაში არსებული მჟავიანობის თანმიმდევრობა;
- 3) ერთნაირი რადიკალების შემცველი OH-მჟავები უფრო ძლიერია, ვიდრე SHმჟავები;
- 4) ბრენსტედის მჟავებიდან ყველაზე ძლიერია SH-მჟავები;

506. მოყვანილი ნაერთებიდან რომელი მიეკუთვნება n-ფუძეებს?

1) CH₃-CH₃ 2) CH₃-CH=CH-CH₃ 3) CH₂=CH-CH=CH₂ 4) CH₃-CO-CH₃

507. ჩამოთვლილი ნაერთებიდან რომელი მიეკუთვნება π-ფუძეებს?

- 1) ეთანოლი; 2) მეთილამინი; 3) რძემჟავა; 4) ტოლუოლი.
- 508. D-2-ქლორპროპანმჟავას პიდროლიზის შედეგად მიიღება:
- 1) D-რძემჟავა; 2) L-რძემჟავა;
- 3) რძემჟავას D- და L-ფორმების ნარევი ამ უკანასკნელის სიჭარბით;
- 2) რაცემული რძემჟავა.
- 509. ეთანალის ურთიერთქმედებით ციანწყალბადმჟავასთან მიიღება:
- 1) პიდროქსინიტრილი D-კონფიგურაციის ქირალური ცენტრით;
- 2) პიდროქსინიტრილი L-კონფიგურაციის ქირალური ცენტრით;
- 3) პიდროქსინიტრილების რაცემული ნარევი;
- 4) არცერთი ზემოთ ჩამოთვლილი ნაერთი არ წარმოიქმნება.
- 510. ფენოლზე აზოტოვანმჟავას მოქმედებით მიიღება ნიტროზოფენოლი. როგორია ამ რეაქციის მექანიზმი?
- 1) S_R ; 2) S_E ; 3) S_N ; 4) A_E .
- 511. 2-მეთილ-2-მეთოქსიბუტანზე იოდწყალბადმუავას მოქმედებისას წარმოიქმნება 2-იოდ-2-მეთილბუტანი. როგორი მექანიზმით მიმდინარეობს ეს რეაქცია?
- 1) E1; 2) E2; 3) S_N1 ; 4) S_N2 .
- 512. 2-ფენილეთანოლის გოგირდმჟავასთან გახურებით წარმოიქმნება სტიროლი. როგორია ამ რეაქციის მექანიზმი?
- 1) E1; 2) E2; 3) S_N1 ; 4) S_N2 .
- 513. ნატრიუმის მეთილატის მეთილპრომიდთან რეაგირეპისას წარმოიქმნეპა დიმეთილეთერი. როგორი მექანიზმით მიმდინარეობს ეს რეაქცია?

- 1) A_N ; 2) A_E ; 3) S_N 1; 4) S_N 2.
- 514. ცოცხალ ორგანიზმში არომატული ბირთვების აცილირება ხორციელდება ზოგიერთი კოფერმენტის ან ვიტამინის სინთეზის დროს. როგორი მექანიზმით მიმდინარეობს აღნიშნული რეაქცია?
- 1) S_N ; 2) A_N ; 3) S_R ; 4) S_E .
- 515. როგორი მექანიზმით მიმდინარეობს ძმარმჟავადან ეთილაცეტატის სინთეზი?
- 1) S_R ; 2) S_E ; 3) S_N ; 4) A_N .
- 516. როგორი მექანიზმით წავა 2-ბრომპროპანზე ნატრიუმის მეთილატის ურთიერთქმედების რეაქცია, თუ პროტონი ხისტი მჟავაა, ხოლო მეთოქსი-იონი ხისტი ფუძე?
- 1) S_N ; 2) S_E ; 3) A_E ; 4) E.
- 517. ჩამოთვლილი რადიკალებიდან რომელია მეორეული?
- 1) ეთილის; 2) იზოპროპილის; 3) იზობუტილის 4) არცერთი.
- 518. ჩამოთვლილი რეაგენტებიდან რომელთან არ ურთიერთქმედებს ეთანი?
- 1) აზოტმჟავა; 2) მარილმჟავა; 3) ქლორი; 4) ჟანგბადი.
- 519. ქვემოთ მოყვანილი სახელწოდებებიდან რომელია არასწორად მითითებული?
- 1) 2-პროპილოქტანი; 2) 2-მეთილპენტანი; 3) 2,2-დიმეთილპროპანი; 4) ყველა.
- 520. ჩამოთვლილი ნახშირწყალბადებიდან რომლის დუღილის ტემპერატურაა ყველაზე მაღალი?
- 1) ნ-ჰექსანი; 2) 2,2-დიმეთილბუტანი;
- 3) 2,3-დიმეთილბუტანი; 4) 2-მეთილპენტანი.
- 521. როგორი მექანიზმით მიმდინარეობს იზობუტანის ქლორირება?
- 1) ელექტროფილური ჩანაცვლების; 2) რადიკალური ჩანაცვლების;
- 3) ნუკლეოფილური ჩანაცვლების; 4) ელექტროფილური მიერთების.
- 522. ჩამოთვლილი ნაერთებიდან რომელი არ რეაგირებს ქლორწყალბადთან?
- 1) იზობუტანი; 2) პროპენი; 3) ბუტადიენი; 4) ეთინი.
- 523. ჩამოთვლილი ნაერთებიდან რომელი არ რეაგირებს წყალთან?
- 1) იზობუტანი; 2) პროპენი; 3) ბუტადიენი; 4) ეთინი.
- 524. როგორი მექანიზმით მიმდინარეობს 2-მეთილ-2-ბუტენის პიდრობრომირება?
- 1) ელექტროფილური მიერთების; 2) რადიკალური ჩანაცვლების;
- 3) ნუკლეოფილური მიერთების; 3) ელექტროფილური ჩანაცვლების.

- 525. როგორია ალკენის აღნაგობა, თუ მჟავა არეში კალიუმის ბიქრომატით მისი დაჟანგვისას წარმოიქმნება მხოლოდ ძმარმჟავა?
- 1) 2-ბუტენი; 2) 2-მეთილ-2-ბუტენი;
- 3) 2,3-დიმეთილ-1-ბუტენი; 4) 2,3-დიმეთილ-2-ბუტენი.
- 526. როგორი მექანიზმით მიმდინარეობს 2-ბუტენის პიდროქლორირება?
- 1) ელექტროფილური მიერთების; 2) რადიკალური ჩანაცვლების;
- 3) ნუკლეოფილური მიერთების; 4) ელექტროფილური ჩანაცვლების.
- 527. ჩამოთვლილი ნაერთებიდან რომელი არსებობს π -დიასტერეომერების სახით?
- 1) 2-პენტენი; 2) 2-მეთილ-1-ბუტენი; 3) 2-მეთილ-2-ბუტენი; 4) 1-პენტენი.
- 528. ჩამოთვლილებიდან რომელი ჰალოგენწყალბადი რეაგირებს ყველაზე აქტიურად პროპენთან?
- 1) HF; 2) HCl; 3) HBr; 4) HI.
- 529. ჩამოთვლილებიდან რომელი ჰალოგენწყალბადი რეაგირებს ყველაზე აქტიურად 2-მეთილპროპენთან?
- 1) HI; 2) HBr; 3) HCl; 4) HF.
- 530. როგორია ალკენის აღნაგობა, თუ ქრომ(VI)-ის ოქსიდით მისი დაჟანგვისას მიიღება მხოლოდ ძმარმჟავა?
- 1) 1-ბუტენი; 2) 2-ბუტენი; 3) 2-მეთილპროპენი; 4) პროპენი.
- 531. ოზონით რომელი ალკინის დაჟანგვისას მიიღება მხოლოდ ნახშირბადის დიოქსიდი?
- 1) ეთინი; 2) პროპინი; 3) 1-ბუტინი; 4) 2-ბუტინი.
- 532. რომელი ნაერთი არ რეაგირებს ვერცხლის ოქსიდის ამიაკურ ხსნართან?
- 1) 1-ბუტინი; 2) 2-ბუტინი; 3) 3-მეთილ-1-პენტინი; 4) მეთილაცეტილენი.
- 533. ოზონით რომელი ნაერთის დაჟანგვისას არ მიიღება ნახშირბადის დიოქსიდი?
- 1) 2-ბუტინი; 2) პროპინი; 3) ეთინი; 4) 3-მეთილ-1-ჰექსინი.
- 534. პროპინში ნახშირბადატომების გალენტური ორბიტალების ჰიბრიდიზაციის ტიპია:
- 1) sp^3 go sp; 2) sp^3 go sp^2 ; 3) sp^2 go sp^3 ; 4) ϑ begging sp^3 ;
- 535. რომელი ნაერთის ამიაკურ ხსნარში გატარებისას წარმოიქმნება აცეტილენიდები?
- 1) მხოლოდ სპილენძ(II)-ის ქლორიდის;
- 2) მხოლოდ სპილენძ(I)-ის ქლორიდის;
- 3) მხოლოდ ვერცხლის ოქსიდის;

- 4) როგორც ვერცხლის ოქსიდის, ისე სპილენძ(I)-ის ქლორიდის. 536. ბენზოლიდან ტოლუოლის მიღება შესაძლებელია: 1) კუჩეროვის რეაქციით; 2) ფრიდელ-კრაფტსის რეაქციით; 3) ჩიჩიბაბინის რეაქციით; 4) კონოვალოვის რეაქციით. 537. ორიენტაციის წესის მიხედვით I რიგის ჩამნაცვლებლებს მიეკუთვნება: 2) კარბოქსილის ჯგუფი; 1) მეთილის ჯგუფი; 3) სულფო-ჯგუფი; 4) ალდეპიდის ჯგუფი. 538. ორიენტაციის წესის მიხედვით I რიგის ჩამნაცვლებლებს მიეკუთვნება: 2) კარბოქსილის ჯგუფი; 1) პიდროქსილის ჯგუფი; 3) სულფო-ჯგუფი; 4) ალდეპიდის ჯგუფი. 539. ორიენტაციის წესის მიხედვით II რიგის ჩამნაცვლებლებს მიეკუთვნება: 1) დიმეთილამინო-ჯგუფი; 2) ეთილის ჯგუფი; 3) ბრომის ატომი; 4) ნიტრო-ჯგუფი. 540. ორიენტაციის წესის მიხედვით II რიგის ჩამნაცვლებლებს მიეკუთვნება: 1) მეთილის ჯგუფი; 2) კარბოქსილის ჯგუფი; 3) ამინო-ჯგუფი; 4) ქლორის ატომი. ვანადიუმ(V)-ის ოქსიდის თანაობისას მაღალ ტემპერატურაზე ჟანგბადით რომელი არენას დაჟანგვისას მიიღება მალეინის ანჰიდრიდი? 2) ტოლუოლის; 1) ბენზოლის; 3) ეთილბენზოლის; 4) ქსილოლის. ჩამოთვლილებიდან რომელ რეაქციას იყენებენ არომატული ბირთვის რომელიმე მდგომარეობის დასაცავად? 1) ნიტრირებას; 2) პალოგენირებას; 3) სულფირებას; 4) ჰიდრირებას. ჩამოთვლილებიდან რომელი ბენზოლის მჟავას ანჰიდრიდი მიიღება დაჟანგვისას მაღალ ტემპერატურაზე კატალიზატორის თანაობისას? 1) მალონმჟავას; 2) ბენზომჟავას; 3) ჰექსანმჟავას; 4) არცერთის.
- 544. ჩამოთვლილი ჩამნაცვლებლებიდან რომელი ახდენს შემდგომი ჩამნაცვლებლის ორიენტირებას მეტა-მდგომარეობაში?
- 1) -NH₂; 2) -OH; 3) -NO₂; 4) -CH₃.
- 545. კარბონმჟავათა ანჰიდრიდების სპირტებთან ურთიერთქმედების დროს მიიღება:
- 1) ალკანები; 2) მარტივი ეთერები; 3) რთული ეთერები; 4) ალკოქსიდები.
- 546. რომელი სპირტი შედის უფრო აღვილად რეაქციაში ქლორწყალბადმჟავასთან?
- 1) პროპანოლი; 2) 2-მეთილ-2-პროპანოლი;

3) 2-პროპანოლი; 4) სამივე ზემოთ ჩამოთვლილი ერთნაირად რეაგირებს. 547. ჩამოთვლილი სპირტებიდან რომელია მესამეული? 1) 3-პენტანოლი; 2) 2-პენტანოლი; 3) 2-მეთილ-3-პენტანოლი; 4) 2-მეთილ-2-პენტანოლი. 548. ჩამოთვლილი სპირტებიდან რომელია მეორეული? 1) 3-პენტანოლი; 2) 1-პენტანოლი; 3) 3-მეთილ-3-პენტანოლი; 4) 2-მეთილ-2-პენტანოლი. 549. რომელი გლიკოლების აღმოჩენა შეიძლება სპილენძ(II)-ის პიდროქსიდით? 1) მხოლოდ გემინალურის; 2) მხოლოდ ვიცინალურის; 3) მხოლოდ იზოლირებულის; 4) ნებისმიერის. 550. პრეპარატ ნიტროგლიცერინში გლიცეროლის ტრინიტრატის მასური წილია: 3) 25%; 4) 40%. 1) 1%; 2) 5%; ჩამოთვლილი სპირტებიდან რომელი შედის ყველაზე ძნელად რეაქციაში ჰალოგენწყალბადებთან? 2) მესამ-ბუტილის სპირტი; 1) ალილის სპირტი; 4) იზობუტილის სპირტი. 3) ბენზილის სპირტი; 552. მესამეული სპირტები მჟანგავების მიმართ არამდგრადია: 1) მხოლოდ ტუტე არეში; 2) მხოლოდ მჟავა არეში; 3) მხოლოდ ნეიტრალურ არეში; 4) ნებისმიერ არეში. 553. 3-მეთილ-1-ბუტანოლის დეპიდრატაციითა და შემდგომი პიდრატაციით მიიღება: 2) პირველადი სპირტი; 1) მესამეული სპირტი; 3) მეორეული სპირტი; 4) ალდეპიდი. 554. რამდენატომიანი სპირტია ერითრიტი? 1) 1; 2) 2; 3) 3; 4) 4. 555. ჩამოთვლილი სპირტებიდან რომლის დეპიდრატაციითა და შემდგომი ჰიდრატაციით მიიღება მესამეული ბუტილის სპირტი? 1) 2-მეთილ-1-პროპანოლის; 2) 1-ბუტანოლის; 3) 2-ბუტანოლის; 4) არცერთის. 556. ნახევარაცეტალი მიიღება ეთანოლის ურთიერთქმედებით: 1) პროპანოლთან; 2) პროპანალთან; 3) პროპანონთან; 4) აცეტილენთან. 557. კალიუმის ბისულფატთან გლიცეროლის გახურებისას მიიღება: 1) პროპანალი; 2) პროპანოლი; 3) პროპენალი; 4) პროპანონი.

- 558. ჩამოთვლილებიდან რომელ შემთხვევაშია შესაძლებელი მესამეული სპირტების დაჟანგვა?
- 1) მხოლოდ მჟავა არეში; 2) მხოლოდ ტუტე არეში;
- 3) მხოლოდ ნეიტრალურ არეში; 4) არცერთში.
- 559. რომელი ნაერთის დაჟანგვით მიიღება გლიოქსალი?
- 1) ეთილენგლიკოლის; 2) გლიცეროლის; 3) ეთანოლის; 4) ეთანალის.
- 560. რომელი ნაერთი არ ურთიერთქმედებს იოდმჟავასთან?
- 1) 3,4-ჰექსანდიოლი;
 - 2) 2,3-ბუტანდიოლი;
- 3) 1,2,3-პროპანტრიოლი; 4) 2,4-ჰექსანდიოლი.
- 561. რომელი პროდუქტების მიიღება ეთილენგლიკოლის შიგამოლეკულური დეჰიდრატაციით?
- 2) ეთილენის ოქსიდი; 3) დიოქსანი; 4) გლიოქსალი. 1) აცეტალდეჰიდი;
- 562. "ხილის ესენციების" მისაღებად ახდენენ სპირტების:
- 1) ალკილირებას; 2) აცილირებას; 3) დეპიდრირებას; 4) დეპიდრატაციას.
- 563. ჩამოთვლილი ფენოლებიდან რომელის სამატომიანი?
- 1) რეზორცინი; 2) ნაფთოლი; 3) ჰიდროქინონი; 4) პიროგალოლი.
- 564. ჩამოთვლილი ნაერთებიდან რომელია ყველაზე სუსტი მჟავა?
- 1) ჭიანჭველმჟავა; 2) პიკრინმჟავა; 3) კარბოლმჟავა; 4) ძმარმჟავა.
- 565. ტყვიის რომელ მარილს იყენებენ სხვადასხვა ნაერთებში კატექოლური ფრაგმენტის აღმოსაჩენად?
- 2) სულფიდს; 3) ნიტრატს; 4) კარბონატს. 1) აცეტატს;
- 566. ფენოლის პიდროქსიმეთილირებას ახდენენ:
- 1) მეთანოლით; 2) მეთანმუავათი; 3) მეთანალით; 4) პიდროქსილამინით.
- 567. ბენზოლის მოლეკულაში რომელი რადიკალით ჩანაცვლების პროდუქტია კუმოლი?
- 1) მეორ-ბუტილის; 2) იზობუტილის; 3) იზოპროპილის 4) მესამ-ბუტილის.
- 568. ჩამოთვლილი ნაერთებიდან რომლის მოლეკულის შედგენილობაში გვხვდება ჰიდროქსილის ჯგუფი?
- 2) კარბოლმჟავას; 1) ერბომჟავას; 3) ქსილოლის; 4) არცერთის.
- 569. ჩამოთვლილი ნაერთებიდან რომელთან არ რეაგირებს ფენოლი?
- 2) ნატრიუმის პიდროქსიდი; 1) მარილმჟავა;
- 3) ბრომიანი წყალი; 4) აზოტმჟავა.
- 570. ჩამოთვლილი ნაერთებიდან რომელთან არ რეაგირებს ფენოლი?
- 1) ნატრიუმის პიდროკარბონატი; 2) ნატრიუმის პიდროქსიდი;

- 3) ბრომიანი წყალი;
- 4) აზოტმჟავა.
- 571. რომელი ნაერთის დაჟანგვისას წარმოიქმნება ორთო-ქინონი?
- 1) ბენზოლი; 2) პიდროქინონი; 3) რეზორცინი;
- 4) პიროკატექინი.
- 572. რომელი ნაერთის ნიტრონაწარმია პიკრინმჟავა?
- 1) პიროლის;
- 2) პირიდინის;
- 3) ნაფთოლის;
- 4) ფენოლის.

- 573. პიკრინმჟავა მიიღება ფენოლის:
- 1) სულფირებით;
- 2) ნიტრირებით;
- 3) ბრომირებით;
- 4) აცეტილირებით.
- 574. რომელი ნაერთის მონომეთილეთერია გვაიაკოლი?
- 1) ფენოლის; 2) გლიცეროლის; 3) ეთილენგლიკოლის; 4) პიროკატექინის.
- 575. პიროკატექინის მონომეთილეთერია:
- 1) გვაიაკოლი;
- 2) გერატროლი;
- 3) პინაკონი;
- 4) ცელოზოლვი.
- 576. რომელი ნაერთის დიმეთილეთერია ვერატროლი?
- 1) ტოლუოლის; 2) პიდროქინონის; 3) პიროკატექინის; 4) ფლოროგლუცინის.
- 577. უროტროპინის მისაღებად ფორმალდეპიდზე მოქმედებენ:
- 1) აზოტმჟავათი; 2) აზოტოვანმჟავათი; 3) ამიაკით; 4) მეთილამინით.
- 578. ჩამოთვლილი ნაერთებიდან რომლის მოლეკულა შეიცავს თუნდაც ერთ ნახშირბადატომს sp²-ჰიბრიდიზაციის მდგომარეობაში არსებული ორბიტალებით?
- 1) პროპანოლი; 2) პროპინი; 3) პროპანალი; 4) არცერთი.
- 579. მოყვანილი განმარტებებიდან რომელია სწორი?
- კარბონილის ჯგუფში ნახშირბადის ატომის ვალენტური ორბიტალები
 sp²-პიბრიდიზაციის მდგომარეობაშია;
- ალდეპიდებსა და კეტონებში გეხვდება მხოლოდ ნახშირბადული ჯაჭვის იზომერია;
- 3) ალდეჰიდები მიიღება აცეტილენის პომოლოგების ჰიდრატაციით.
- 4) კეტონების ჰომოლოგიური რიგის პირველი წევრი აირია.
- 580. ალღეპიღების დაჟანგვისას ახლადდალექილი სპილენძ(II)-ის პიდროქსიდით წარმოიქმნება წითელი შეფერილობის:
- 1) Cu₂O; 2) CuOH; 3) CuO; 4) Cu₂O₂.
- 581. მოყვანილი განმარტებებიდან რომელია არასწორი?
- კარბონილურ ნაერთებში მიერთების რეაქცია იწყება კარბონილურ
 ნახშირბადის ატომზე ნუკლეოფილური ნაწილაკის შეტევით;
- 2) კეტონებში, ალდეჰიდებთან შედარებით, მიერთების რეაქციები უფრო ძნელად წარიმართება;

3) განსაკუთრებით სტაბილურია ხუთ- და ექვსწევრიანი ციკლური						
ნახევარაცეტალები;						
4) დაბალ ტემპერატურაზე აცეტალდეჰიდიდან წარმოიქმნება პარალდეჰიდი.						
582. ჩამოთვლილი ნაერთებიდან რომელი შედის ყველაზე ძნელად მიერთების						
რეაქციებში?						
1) ბუტანალი; 2) ბუტანონი; 3) პროპენი; 4) ბუტენი.						
583. ჩამოთვლილი ნაერთებიდან რომელი რეაგირებს ვერცხლის ოქსიდის						
ამიაკურ ხსნართან?						
1) ეთანოლი; 2) ეთანმჟავა; 3) ეთანალი; 4) არცერთი.						
584. ძმრის ალდეპიდის კონდენსაციით მიიღება:						
1) 3-ბუტენალი; 2) 2-ბუტენოლი; 3) 2-ბუტენალი; 4) 1-ბუტანოლი.						
585. კარბონილური ნაერთების მოლეკულებში არსებობს:						
1) მხოლოდ ნუკლეოფილური შეტევის ცენტრი;						
2) მხოლოდ ელექტროფილური შეტევის ცენტრი;						
3) როგორც ნუკლეოფილური, ისე ელექტროფილური შეტევის ცენტრი;						
4) არცერთი ზემოთ ჩამოთვლილი.						
586. რისთვის გამოიყენება ჰექსამეთილენტეტრამინი?						
1) ბიოპოლიმერის მისაღებად; 2) გამაყუჩებლად;						
3) გამხსნელად; 4) ანტისეპტიკად.						
587. რომელი ნახშირბადატომია მჟავური ცენტრი ალდეჰიდებში?						
1) α; 2) β; 3) γ; 4) კარბონილის ჯგუფის.						
588. ქვემოთჩამოთვლილთაგან, რომელია 3-ჰიდროქსიბუტანალის ტრივიალური						
სახელწოდება?						
1) ალილი; 2) ალდოლი; 3) კროტონის ალდეჰიდი; 4) თიმოლი;						
589. რამდენი ნახშირბადატომის შემცველი ერითრიტის ტეტრანიტრატს						
ახასიათებს ნიტროგლიცერინის მსგავსი ფარმაკოლოგიური თვისებები?						
1) 4; 2) 5; 3) 6; 4) 7.						
590. კარბონილური ნაერთების გასუფთავებისა და გამოყოფისათვის გამოიყენება						
რეაქცია:						
1) ციანწყალბადმჟავასთან; 2) ნატრიუმის პიდროსულფიტთან;						

3) ნატრიუმის ჰიდროსულფატთან; 4) სპირტთან.

2) ნიტრილები;

1) ციანიდები;

591. ალდეპიდებთან ციანწყალბადმჟავას მოქმედებით მიიღება:

3) ჰიდროქსინიტრილები; 4) არცერთი ზემოთ ჩამოთვლილი.

72

592. ოქსიმები მიიღება კარბონილური ნაერთების ურთიერთქმედებით: 1) პიდრაზინთან; 2) პიდროქსილამინთან; 3) ჟანგბადთან; 4) ამინებთან. 593. შიფის ფუძეები მიიღება კარბონილური ნაერთების ურთიერთქმედებით: 1) პიდრაზინთან; 2) პიდროქსილამინთან; 3) ჟანგბადთან; 4) ამინებთან. 594. რომელი ნაერთის ტეტრამერია "მშრალი სპირტი"? 1) მეთანოლის; 2) მეთანალის; 3) ეთანოლის; 4) ეთანალის. 595. რომელი ნაერთის დეპოლიმერიზაციითაა შესაძლებელი ფორმალდეპიდის მიღება? 1) ქლოროფორმი; 2) იოდოფორმი; 3) პარაფორმი; 4) ფენოლ-ფორმალდეპიდური ფისის. 596. სპირტების ურთიერთქმედებით ალდეპიდებთან მიიღება: 2) მარტივი ეთერები; 1) რთული ეთერები; 3) ნახევარაცეტალები; 4) ლაქტიდები. კეტალი მიიღება ეთანოლის ურთიერთქმედებით: 1) პროპანოლთან; 2) პროპანალთან; 3) პროპანონთან; 4) აცეტილენთან. კარბონილის ჯგუფში ნახშირბადის, ისე ჟანგბადის ატომის ვალენტური 598. ორბიტალების პიბრიდიზაციის ტიპია: 3) sp^2 ; 1) sp^3 ; 2) sp^3d ; 4) sp. 599. ჩამოთვლილი ციკლური ნახევარაცეტალებიდან რომელია ყველაზე სტაბილური? 1) სამწევრიანი; 2) ხუთწევრიანი; 3) შვიდწევრიანი; 4) რვაწევრიანი. 600. მჟავების თანაობისას რომელი ნაერთი წარმოქმნის პარალდეჰიდს? 1) მეთანალი; 2) ეთანალი; 3) პროპანალი; 4) პროპანონი. 601. მჟავების თანაობისას რომელი ნაერთი წარმოქმნის მეტალდეპიდს? 1) მეთანალი; 2) ეთანალი; 3) პროპანალი; 4) პროპანონი. 602. ძმრის ალდეპიდის კონდენსაციით მიიღება: 1) 3-ბუტენალი; 2) 2-ბუტენოლი; 3) 2-ბუტენალი; 4) 1-ბუტანოლი. 603. რომელი ნაერთის კონდენსაციით მიიღება 2-ბუტენალი? 1) ბუტანალი; 2) პროპანალი; 3) ეთანალი; 4) მეთანალი. 604. აცეტონის გასუფთავებისა და გამოყოფისათვის გამოიყენება რეაქცია: 1) ციანწყალბადმჟავასთან; 2) ნატრიუმის პიდროსულფიტთან; 3) ნატრიუმის პიდროსულფატთან; 4) სპირტთან. 605. ჩამოთვლილი რეაგენტებიდან რომლით შეიძლება ეთანალის აღმოჩენა? 1) ნატრიუმის პიდროქსიდით; 2) კალიუმის პიდროქსიდით;

3) სპილენძ(II)-ის პიდროქსიდით; 4) ამონიუმის პიდროქსიდით; 606. ალდეპიდების ურთიერთქმედება პიდროქსილამინთან მიეკუთვნება: 1) მიერთების რეაქციებს; 2) ჩანაცვლების რეაქციებს; 3) მოხლეჩის რეაქციებს; 4) მიერთება-მოხლეჩის რეაქციებს. 607. კეტონების ურთიერთქმედება პიდრაზინთან მიეკუთვნება: 1) მიერთების რეაქციებს; 2) ჩანაცვლების რეაქციებს; 2) მოხლეჩის რეაქციებს; 4) მიერთება-მოხლეჩის რეაქციებს. 608. ოქტადეკატრიენ-9,12,15-მჟავას ტრივიალური სახელწოდებაა: 1) ლინოლმჟავა; 2) პალმიტოლეინმჟავა; 3) ოლეინმჟავა; 4) ლინოლენმჟავა. 609. პექსადეცენ-9-მჟავას ტრივიალური სახელწოდებაა: 2) პალმიტოლეინმჟავა; 1) ლინოლმჟავა; 3) ოლეინმჟავა; 4) ლინოლენმჟავა. 610. იზომერიის რომელი სახე გვხვდება არაქიდონმჟავაში? 1) ოლ-ცის-იზომერია; 2) ოლ-ტრანს-იზომერია; 3) ოპტიკური იზომერია; 4) ტაუტომერია. 611. იზომერიის რომელი სახე გვხვდება ლინოლენმჟავაში? 1) ოლ-ცის-იზომერია; 2) ოლ-ტრანს-იზომერია; 3) ოპტიკური იზომერია; 4) ტაუტომერია. 612. ჩამოთვლილი მჟავებიდან რომელია უჯერი? 1) პალმიტინმჟავა; 2) ქარვამჟავა; 3) გლუტარმჟავა; 4) ფუმარმჟავა. 613. ბუტენდიმჟავას ტრანს-იზომერია: 1) მალონმჟავა; 2) მალეინმჟავა; 3) ქარვამჟავა; 4) ფუმარმჟავა. 614. ბუტენდიმჟავას ცის-იზომერია: 1) მალონმჟავა; 2) მალეინმჟავა; 3) ქარვამჟავა; 4) ფუმარმჟავა. 615. რომელ მარილთან რეაგირებს ძმარმჟავა? 1) Na₂SO₄; 2) Na₂CO₃; 3) NaNO₃; 4) სამივე ზემოთ ჩამოთვლილთან. 616. ჩამოთვლილი მჟავებიდან რომელი აუფერულებს ბრომიან წყალს? 1) ძმარმჟავა; 2) ერბომჟავა; 3) აკრილმჟავა; 4) ყველა. 617. ჩამოთვლილი მჟავებიდან რომელია ყველაზე ძლიერი? 1) მეთანმჟავა; 2) ეთანმჟავა; 3) პროპანმჟავა; 4) პენტანდიმჟავა. 618. ჩამოთვლილი მჟავებიდან რომელი წარმოქმნის ანპიდრიდს წყალწამრთმევ ნივთიერებათა გარეშე გახურებისას? 1) ჭიანჭველმჟავა; 2) მჟაუნმჟავა; 3) ქარვამჟავა; 4) ძმარმჟავა. 619. კარბონმჟავათა კალციუმის მარილების გახურებისას წარმოიქმნება:

- 1) ანჰიდრიდები; 2) ალდეპიდები; 3) კეტონები; 4) სპირტები. 620. ჩამოთვლილი მჟავებიდან რომელი წარმოქმნის ძმრის ანპიდრიდის თანაობისას გახურებით ციკლურ კეტონს? 1) მჟაუნმჟავა; 2) ძმარმჟავა; 4) ადიპინმჟავა. 3) ქარვამჟავა; 621. რომელი მჟავას ანიონია გლუტარატი? 1) HOOC-COOH; 2) HOOC-CH₂-CH₂-COOH; 3) HOOC-CH₂-CH₂-CH₂-COOH; 4) CH₃-CO-COOH. 622. რომელი მჟავას ანიონია სუქცინატი? 1) HOOC-COOH; 2) HOOC-CH₂-CH₂-COOH; 3) HOOC-CHOH-CHOH-COOH; 4) CH₃-CO-COOH. 623. რომელი მჟავას ანიონია ოქსალატი? 1) HOOC-COOH; 2) HOOC-CH₂-CH₂-COOH; 3) HOOC- CHOH-CHOH-COOH; 4) CH₃-CO-COOH. 624. რომელი მჟავას ანიონია მალეატი? 1) CH₂=CH-COOH; 2) HOOC-CH₂-CHOH-COOH; 3) HOOC-CH=CH-COOH; 4) HOOC-CH₂- COOH. 625. რომელი გარდაქმნის დროს წარმოქნის განსხვავებული კლასის ნაერთებს მალონმჟავა და ქარვამჟავა? 1) +NaOH; 2) გახურება; 3) + CH₃OH;4) +NaHCO₃. 626. რომელი გარდაქმნის დროს წარმოქნის განსხვავებული კლასის ნაერთებს მჟაუნმჟავა და ქარვამჟავა? 4) + CH₃OH. 1) გახურება; 2) +NaOH; 3) + Na;627. რომელი რეაქციის გამოყენებით შეიძლება მალეინმჟავასა და ფუმარმჟავას ერთმანეთისგან განსხვავება? 1) +NaOH: 2) + CH₃OH;3) $+NH_3$; 4) დეჰიდრატაცია. 628. მოყვანილი განმარტებებიდან რომელია არასწორი? 1) დიამინები მონოამინებზე უფრო ძლიერი ფუძეებია;
- 3) დიამინები, ამიაკის მსგავსად, ადვილად წარმოქმნის კომპლექსნაერთებს;

2) დიამინებზე აზოტოვანმჟავას მოქმედებით მიიღება გლიკოლები;

4) ყველა დიამინი ორგანიზმში წარმოიქმნება ცილების ლპობის შედეგად.

- 629. გგამის შხამებს მიეკუთვნება:
- 1) ეთილენდიამინი; 2) პროპილენდიამინი;
- 3) ტეტრამეთილენდიამინი; 4) ჰექსამეთილენდიამინი.
- 630. რომელი ნაერთის ამინონაწარმია ანიზიდინი?
- 1) ბენზოლის; 2) ტოლუოლის;
- 3) მეთოქსიბენზოლის; 4) ეთოქსიბენზოლის.
- 631. რომელი ნაერთის ამინონაწარმია ფენეტიდინი?
- 1) ბენზოლის; 2) ტოლუოლის;
- 3) მეთოქსიბენზოლის; 4) ეთოქსიბენზოლის.
- 632. ჩამოთვლილი ამინებიდან რომლის ჰიდრატაცია ხდება ყველაზე ძნელად?
- 1) მეთილამინი; 2) ეთილამინი; 3) დიმეთილამინი; 4) ტრიმეთილამინი.
- 633. არომატული ამინების ნიტრონაწარმების მისაღებად საწყის ეტაპზე ახდენენ ამინების არომატული ბირთვის:
- 1) პალოგენირებას; 2) ალკილირებას; 3) აცილირებას; 4) პიდრირებას.
- 634. რა მიიღება კოლამინის ურთიერთქმედებით აზოტოვანმჟავასთან?
- 1) ეთანოლი; 2) 1,2-ეთანდიოლი; 3) 1,2,3-პროპანტრიოლი; 4) ნიტროეთანი.
- 635. რომელი ნაერთის გლუკოზიდია არბუთინი?
- 1) პიდროქინონი; 2) რეზორცინი; 3) პიროკატექინი; 4) ფენოლი.
- 636. მოყვანილი განმარტებებიდან რომელია სწორი?
- 1) ქოლინი ზრდის წნევას;
- 2) კოლამინი ორგანიზმში სინთეზირდება ამინომჟავა სერინისგან;
- 3) ნეირინი წარმოადგენს მეთილის ჯგუფების წყაროს ორგანიზმში მიმდინარე ტრანსმეთილირების რეაქციებში;
- 4) კოლამინს ვიტამინისმაგვარ ნივთიერებებს მიაკუთვნებენ.
- 637. ორგანულ მჟავებთან რეაგირებისას რთულ ეთერს არ წარმოქმნის:
- 1) ეთილენგლიკოლი; 2) კოლამინი; 3) გლიცეროლი; 4) რეზორცინი.
- 638. რომელი მჟავას ანიონია ტარტრატი?
- 1) HOOC-COOH; 2) HOOC-CH₂-CH₂-COOH;
- 3) HOOC-CHOH-CHOH-COOH; 4) CH₃-CO-COOH.
- 639. რომელი მჟავას ანიონია მალატი?
- 1) HOOC-COOH; 2) HOOC-CH₂-CHOH-COOH;

640. რომელი მჟავას ანიონია პირუვატი? 1) HOOC-COOH; 2) HOOC-CH₂-CHOH-COOH; 3) HOOC- CHOH-CHOH-COOH; 4) CH₃-CO-COOH. 641. რომელი მჟავას მარილებს იყენებენ ჰემატოლოგიაში? 1) HOOC-CHOH-CH(COOH)-CH₂-COOH; 2) HOOC-CH₂-CHOH-COOH; 3) HOOC- CHOH-CHOH-COOH; 4) HOOC-CH₂-C(OH)(COOH)-CH₂-COOH. 642. რომელი მჟავას გახურებით მიიღება აკონიტმჟავა? 1) HOOC-CHOH-CH(COOH)-CH₂-COOH; 2) HOOC-CH₂-CHOH-COOH; 3) HOOC-CHOH-CHOH-COOH; 4) HOOC-CH₂-C(OH)(COOH)-CH₂-COOH. 643. რომელი პიდროქსიმჟავები წარმოქმნის მინერალური მჟავების თანაობისას გახურებით ჭიანჭველმჟავას? 1) α -; 2) β-; 3) γ-; 4) δ -. 644. რომელი პიდროქსიმჟავები წარმოქმნის გახურებით ხაზოვან პოლიეთერს? 3) δ -.; 4) λ-. 1) α -; 2) γ-; 645. მინერალური მჟავების თანაობისას ჩამოთვლილი პიდროქსიმჟავებიდან რომლის გახურებით მიიღება კეტონი? 1) 2-მეთილ-2-ჰიდროქსიპექსანმჟავა; 2) 3-მეთილ-2-პიდროქსიპექსანმჟავა; 3) 4-მეთილ-2-პიდროქსიპექსანმჟავა; 2) 3-მეთილ-3-პიდროქსიპექსანმჟავა; 646. მოყვანილი განმარტებებიდან რომელია სწორი? 1) α-პიდროქსიმჟავები გახურებისას წარმოქმნის ლაქტიდებს; 2) ინტენსიური მუშაობის შედეგად რძემჟავას რაოდენობა კუნთებში მკვეთრად ეცემა, რაც იწვევს ტკივილის შეგრძნებას; 3) ვაშლმჟავას მარილები მალეატების სახელწოდებითაა ცნობილი; 4) ციტრატები ხელს უწყობს სისხლის შედედებას. 647. რძემჟავას გახურებისას წარმოიქმნება: 1) დიოქსანი; 2) დიკეტოპიპერაზინი; 3) ლაქტონი; 4) ლაქტიდი. 648. რომელი პროდუქტი მიიღება ფუმარმჟავას დაჟანგვისას კალიუმის პერმანგანატის ხსნარით? 1) გაშლმჟავა; 2) ქარვამჟავა; 3) ღვინომჟავა; 4) ლიმონმჟავა. 649. რომელი ნაერთი მიიღება ფუმარმჟავას პიდრატაციით? 77

3) HOOC- CHOH-CHOH-COOH; 4) HOOC-CH₂- COOH.

1) რძემჟავა; 2) ღვინომჟავა; 3) მალონმჟავა; 4) ვაშლმჟავა. 650. მოყვანილი განმარტებებიდან რომელია სწორი? 1) პიდროქსიმჟავები ჩვეულებრივ კარბონმჟავებთან შედარებით უფრო ძლიერი მჟავური თვისებებით ხასიათდება; 2) ყველა პიდროქსიმჟავას მოლეკულა შეიცავს ქირალურ ნახშირბადატომს; 3) ინტენსიური მუშაობის ძორდ რძემჟავა ორგანიზმში იჟანგება პიროყურძენმჟავად; 4) ციტრატები ღვინომჟავას მარილებია. 651. ჩამოთვლილი მჟავებიდან რომელია პიდროქსიმჟავა? 1)პიროყურძენმჟავა; 2)გლიკოლმჟავა; 3)მჟაუნძმარმჟავა; 4)გლიოქსილმჟავა. 652. რომელი პიდროქსიმჟავა არ შეიცავს ქირალურ ნახშირბადატომს? 1) რძემჟავა; 2) ვაშლმჟავა; 3) გლიკოლმჟავა; 4) ღვინომჟავა. 653. რომელი ნაერთი მიიღება გლიკოლმჟავას გახურებით? 1) ლაქტონი; 2) ლაქტამი; 3) უჯერი მჟავა; 4) ლაქტიდი. 654. კუნთებში რომელი მჟავას დაგროვება იწვევს ტკივილის შეგრძნებას? 4) ღვინომჟავა 1) რძემჟავა; 2) ვაშლმჟავა; 3) გლიკოლმჟავა; 655. უ-ჰიდროქსიმჟავები გახურებისას წარმოქმნის: 3) უჯერ კარბონმჟავებს; 1) ლაქტონებს; 2) ლაქტიდებს; 4) ლაქტამებს. 656. ბ-ჰიდროქსიმჟავები გახურებისას წარმოქმნის: 1) ლაქტონებს; 2) ლაქტიდებს; 3) უჯერ კარბონმჟავებს; 4) ლაქტამებს. 657. λ-პიდროქსიმჟავები გახურებისას წარმოქმნის: 1) ხაზოვან პოლიეთერს; 2) ლაქტიდებს; 3) უჯერ კარბონმჟავებს; 4) ლაქტამებს. 658. σ-ჰიდროქსიმჟავები გახურებისას წარმოქმნის: 1) ხაზოვან პოლიეთერს; 2) ლაქტიდებს; 3) უჯერ კარბონმჟავებს; 4) ლაქტამებს. 659. რომელი მარილები უშლის ხელს სისხლის შედედებას? 2) ლაქტატები; 3) მალატები; 1) ციტრატები; 4) ტარტრატები. 660. ჩამოთვლილი მჟავებიდან რომელი არსებობს ჰიდრატის სახით? 1) გლიოქსილმჟავა; 2) ფორმილძმარმჟავა; 3) გლიკოლმჟავა; 4) რძემჟავა. 661. რომელი ნაერთი წარმოიქმნება გლიკოლმჟავას გახურებით მინერალურ მჟავებთან ერთად? 1) ეთილის სპირტი; 2) ფორმალდეპიდი; 3) ეთილენგლიკოლი; 4) აცეტალდეჰიდი.

662. რომელი ნაერთი წარმოიქმნება ლიმონმჟავას გახურებით მინერალურ
მჟავებთან ერთად?
1) აცეტონდიკარბონმჟავა; 2) ფორმალდეჰიდი;
3) ეთილენგლიკოლი; 4) აცეტალდეჰიდი.
663. რომელი ჰიდროქსიმჟავების თვისებაა ლიმონმჟავადან აკონიტმჟავას
მიღება?
1) α ; 2) β ; 3) γ ; 4) δ .
664. ლაქტონი არის:
1) ციკლური მარტივი ეთერი; 2) ციკლური მარტივი დიეთერი;
3) ციკლური რთული ეთერი; 4) ციკლური რთული დიეთერი;
665. ჩამოთვლილი მჟავებიდან რომელია უჯერი?
1) ლიმონმჟავა; 2) ვაშლმჟავა; 3) აკონიტმჟავა; 4) ღვინომჟავა.
666. რომელი მჟავა წარმოქმნის მინერალურ მჟავებთან ერთად გახურებისას
აცეტალღეპიღს?
1) გლიკოლმჟავა; 2) ღვინომჟავა; 3) რძემჟავა; 4) ლიმონმჟავა.
667. რომელი ჰიდროქსიმჟავების თვისებაა ლიმონმჟავადან
აცეტონდიკარბონმჟავას მიღება?
1) α ; 2) β ; 3) γ ; 4) δ .
668. რომელი ნაერთი წარმოიქმნება ლიმონმჟავას გახურებისას მინერალური
მჟავების თანაობისას?
1) ძმარმჟავა; 2) ვაშლმჟავა; 3) ჭიანჭველმჟავა; 4) ღვინომჟავა.
669. რომელი პიდროქსიმჟავების გახურებით მიიღება ხაზოვანი პოლიეთერი?
1) α ; 2) β ; 3) γ ; 4) σ .
670. გახურებისას ლაქტონს წარმოქმნის:
1) ლიმონმჟავა; 2) გაშლმჟავა; 3) იზოლიმონმჟავა; 4) არცერთი ჩამოთვლილი.
671. რომელი მჟავას ენანტიომერების თანაბარი რაოდენობის ნარევს უწოდებენ
ყურძენმჟავას?
1) ღვინომჟავას; 2) ლიმონმჟავას; 3) ვაშლმჟავას; 4) ვალერიანმჟავას.
672. ჩამოთვლილი მჟავებიდან რომელია ოქსომჟავა?
1) ლიმონმჟავა; 2) პიროყურძენმჟავა; 3) რძემჟავა; 4) გაშლმჟავა.
673. რომელი ნაერთისთვის არ არის დამახასიათებელი კეტო-ენოლური
ტაუტომერია?
1) აცეტოძმარმჟავა; 2) ბარბიტურმჟავა; 3) მჟაუნძმარმჟავა; 4) ლიმონმჟავა.

674. რომელი ნაერთი წარმოქმნის რკინა (III)-ის ქლორიდის ხსნართან იისფერ შეფერვას? 1) პიროკატექინი; 2) აცეტოძმარმჟავაეთერი; 3) პიდროქინონი; 4) ქინონი. 675. რომელი ენოლური ფორმაა წონასწორობაში 2,4-პენტანდიონთან? 1) CH₃-CH₂-C(OH)=CH-CH₃; 2) CH₃COCH=C(OH)-CH₃; 3) $CH_3C(OH)=CHCH_2CH_3$; 4) CH₂=C(OH)CH₂COCH₃. 676. რომელი რეაგენტი არ ურთიერთქმედებს აცეტოძმარმჟავასთან? 1) პიდრაზინი; 2) ეთანოლი; 3) პიდროქსილამინი; 4) მარილმჟავა. 677. რომელი რეაგენტი არ ურთიერთქმედებს მჟაუნძმარმჟავასთან? 2) ფოსფორმჟავა; 1) მეთანოლი; 3) ნატრიუმის პიდროქსიდი; 4) ციანწყალბადმჟავა. 678. რომელი ნაერთი მიიღება პიროყურძენმჟავას აღდგენით? 2)ყურძენმჟავა; 3) ლიმონმჟავა; 1) გაშლმჟაგა; 4) რძემჟავა. 679. რომელი ნაერთისთვისაა შეუძლებელი კეტო-ენოლური ტაუტომერია? 1) HOOC-CH₂-CO-COOH 2) CH₃-CH₂-CO-CH₂- COOH CH_3 4) CH₃-CO-C-COOC₂H₅ 3) CH₃-CO-CH₂-COOC₂H₅ CH_3 680. რომელი მჟავას დაჟანგვით მიიღება მჟაუნძმარმჟავა? 1) HOOC-CHOH-CH(COOH)-COOH; 2) HOOC-CH₂-CHOH-COOH; 3) HOOC-CHOH-CHOH-COOH; 4) HOOC-CH₂-CH₂-CO-COOH. 681. ჩამოთვლილი ნაერთებიდან რომლის ენოლური ფორმაა უფრო სტაბილური? 1) პიროყურძენმჟავა; 2) აცეტოძმარმჟავა; 3) მჟაუნძმარმჟავა; 4) β-კეტოგლუტარმჟავა. 682. ჩამოთვლილი მჟავებიდან რომელი არ გამოყოფს გახურებისას ნახშირბადის დიოქსიდს? 1) აცეტოძმარმჟავა; 2) გლიოქსილმჟავა; 3) აცეტონდიკარბონმჟავა; 4) არცერთი. 683. რომელი ენოლური ფორმაა წონასწორობაში 3-მეთილპენტან-2,4-დიონთან? 1) CH₃COCH₂C(OH)=CH₂; 2) CH₃C(OH)=CHCH₂CH₃; 3) $CH_2=C(OH)CH_2COCH_3$; 4) $CH_3COC(CH_3)=C(OH)CH_3$. 684. ჩამოთვლილი ნაერთებიდან რომელია α-ოქსომჟავა? 2) აცეტოძმარმჟავა; 1) აცეტონდიკარბონმჟავა;

3) ფორმილძმარმჟავა; 4) გლიოქსილმჟავა. 685. რომელი ნაერთი შეიძლება განხილულ იქნას როგორც ისე α-, β-ჰიდროქსიმჟავად? 4) გაშლმჟავა. 2) გლიკოლმჟავა; 1) რძემჟავა; 3) აკონიტმჟავა; 686. რომელი ნაერთი შეიძლება განხილულ იქნას როგორც α-, ისე β-ჰიდროქსიმჟავად? 3) აკონიტმჟავა; 1) ლიმონმჟავა; 2) რძემჟავა; 4) გლიკოლმჟავა. 687. რომელი ნაერთი შეიძლება განხილულ იქნას როგორც α-, ისე β- და γ-ჰიდროქსიმჟავად? 1) ლიმონმჟავა; 2) იზოლიმონმჟავა; 3) აკონიტმჟავა; 4) ვაშლმჟავა. 688. რომელი ნაერთი - არ ამჟღავნებს აციდოფობურ თვისებებს? 1) პიროლი; 2) ინდოლი; 3) ფურანი; 4) პირაზოლი. 689. რომელი ნაერთის სულფირებისთვისაა აუცილებელი პირიდინსულფოტრიოქსიდის გამოყენება 1) ბენზოლი; 2) პირიდინი; 3) თიოფენი; 4) ფურანი. 690. რომელი ნაერთის ნიტრირებისთვისაა აუცილებელი აცეტილნიტრატის გამოყენება? 1) პირიდინი; 2) იზოქინოლინი; 3) ბენზოლი; 4) პიროლი. 691. რომელი მეტალის იონია კომპლექსწარმომქმნელი B12 ვიტამინში? 2) რკინის; 3) მანგანუმის; 1) თუთიის; 4) კობალტის. 692. რომელი ნივთიერება შედის პემოდეზის შემადგენლობაში? 1) ვინილპიროლიდინი; 2) პოლივინილაცეტატი; 3) პოლივინილპიროლიდონი; 4) პოლივინილპიროლიდინი. 693. საერთაშორისო ნომენკლატურით ნაერთებში <u>პეტეროციკლურ</u> გოგირდშემცველი ნაჯერი ხუთწევრიანი ციკლის არსებობაზე მიგვითითებს დაბოლოება: 3) –ოლანი; 1) $-\infty$ 05; 2) –ოლიდინი; 4) -mgmo. ნაერთს ენიჭება დეპრესიული მდგომარეობის 694. რომელ დიდი როლი პათოგენეზში? 1) 2-პიდროქსიტრიპტოფანი; 2) 5-პიდროქსიტრიპტოფანი; 3) 2-პიდროქსიტრიპტამინი; 4) 5-პიდროქსიტრიპტამინი; 695. ჩამოთვლილთაგან რომელი ნაერთის ნაწარმია ფუროსემიდი?

2) მეტა-ამინობენზომჟავასი;

1) ორთო-ამინობენზომჟავასი;

3) პარა-ამიხობენზომჟავასი; 4) სალიცილმჟავასი.
696. რომელი ნაერთის ნაშთი გვხვდება კლოფელინის შედგენილობაში?
1) პიროლიდინის; 2) პიროლინის; 3) იმიდაზოლინის; 4) პირაზოლინის.
697. რომელი ჰეტეროციკლური ნაერთის ნაწარმია პირაცეტამი?
1) პირაზოლის; 2) პიპერიდინის; 3) პიროლიდინის; 4) პირიმიდინის.
698. რომელი ჰეტეროციკლური ნაერთის ბირთვი გვხვდება პირიდოქსალში?
1) პირანის; 2) პირაზოლის; 3) პირიდინის; 4) პირიმიდინის.
699. რომელი მჟავას ნაწარმია ლუმინალი?
1) ანთრანილმჟავასი; 2) ბარბიტურმჟავასი;
3) შარდმუავასი; 4) ოროტმუავასი.
700. ორგანიზმში B ₁ ვიტამინის მოქმედი ფორმაა მისი:
1) მონოფოსფატი; 2) დიფოსფატი; 3) ტრიფოსფატი; 4) ტეტრაფოსფატი.
701. ნიტროფურფუროლის რომელ ნაწარმს აქვს ძლიერი ბაქტერიოციდული
თვისებები?
1) ოქსიმს; 2) ფენილპიდრაზონს; 3) პიდრაზონს; 4) სემიკარბაზონს.
702. რომელ მდგომარეობაში ხდება იზოქინოლინის ნიტრირებისას
ნიტროჯგუფის ჩანაცელება?
1) 2; 2) 3; 3) 4; 4) 5.
703. რომელ მდგომარეობაში ხდება ქინოლინის ნიტრირებისას ნიტროჯგუფის
ჩანაცვლება?
1) 3; 2) 4; 3) 5; 4) 6.
704. რომელ მდგომარეობაში ხდება იზოქინოლინის სულფირებისას სულფო-
ჯგუფის ჩანაცვლება? 1) 7;
1) 7; 2) 6; 3) 4; 4) 2. 705. რომელ მდგომარეობაში ხდება ქინოლინის სულფირებისას სულფო-ჯგუფის
- 705. ტომელ მდერმარერმა ირ მდება ქიმოლითა მელფირებიმან მელფო-გექფინ - ჩანაცვლება?
1) 7; 2) 8; 3) 3; 4) 5.
706. რომელი ჰეტეროციკლის ნაწარმია ენტეროსეპტოლი?
1) პიროლიდინის; 2) იზოქინოლინის; 3) ქინოლინის; 4) იმიდაზოლინის.
707. რომელი ჰეტეროციკლის ნაწარმია 5-NOK?
1) პიროლიდინის; 2) იზოქინოლინის; 3) ქინოლინის; 4) იმიდაზოლინის.
708. ქინოლინის დაჟანგვისას მიიღება:
1) ნიკოტინმჟავა; 2) იზონიკოტინმჟავა;
3) ბენზომჟავა; 4) პირიდინდიკარბონმჟავა.

709. პიპოქსანთინისთვის დამახასიათებელია:

- 1) კეტო-ენოლური ტაუტომერია;
- 2) ლაქტიმ-ლაქტამური ტაუტომერია;
- 3) ამინო-იმინური ტაუტომერია; 4) ციკლო-ოქსო ტაუტომერია.

710. ორგანიზმში ნუკლეინმჟავათა მეტაბოლიზმის შედეგად წარმოიქმნება:

- 1) სფინგოზინი;
- 2) ქსანთინი;
- 3) თრეონინი;
- 4) ქინჰიდრონი.

711. რომელი პეტეროციკლური ნაერთის ფრაგმენტი შედის კოკარბოქსილაზის შემადგენლობაში?

- 1) ოქსაზოლი; 2) პირიდინი; 3) თიაზოლი; 4) იმიდაზოლი.
- 712. რომელი ჰეტეროციკლური ნაერთის ფრაგმენტი შედის თიამინის შემადგენლობაში?

1)

713. რომელი ნაერთი მიიღება პირიდინის სრული პიდრირებით?

- 1) პიპერაზინი;
- 2) პიროლინი;
- 3) პერპიდროაზინი;
- 4) პიროლიდინი.

714. რომელ მდგომარეობაში ხდება ელექტროფილური ჩანაცვლება ქინოლინის ნიტრირებისას?

- 1) 2;
- 2) 4;
- 3) 5;
- 4) 6.

715. მოყვანილი განმარტებებიდან რომელია არასწორი?

- 1) იზოქინოლინის ნიტრირებისას ნიტროჯგუფის ჩანაცვლება ხდება 5- და 7მდგომარეობებში;
- ქინოლინის კატალიზური პიდრირებისას პირველ რიგში ხდება მისი ბენზოლის ბირთვის აღდგენა;
- ელექტროფილური ჩანაცვლების რეაქციებში უფრო აღვილად შედის იზოქინოლინის ბენზოლის ბირთვი;;
- 4) იზოქინოლინის მოლეკულაში დაჟანგვას, ძირითადად, ბენზოლის ბირთვი ექვემდებარება.

716. ორი ჰეტეროატომის შემცველი ჰეტეროციკლი არ არის:

- 1) პირაზოლი; 2) თიაზოლი; 3) პირიმიდინი; 4) პურინი.
- 717. ბიციკლური ჰეტეროციკლია:
- 1) პირიმიდინი; 2) იზოქინოლინი;
 - 3) პურინი; 4) ინდოლი.

718. მოყვანილი განმარტებებიდან რომელია სწორი?

1) თიამინის წყალხსნარი ნებისმიერ არეში მდგრადია ტემპერატურისადმი;

- 2) ვიტამინი B_1 ცნობილია რიბოფლავინის სახელ \S ოდებით;
- 3) ორგანიზმში B_1 ვიტამინის მოქმედი ფორმაა მისი ტრიფოსფატი;
- 4) თიამინის შედგენილობაში გვხვდება პირიმიდინის ბირთვი.
- 719. რომელი ჰეტეროციკლური ნაერთის ბირთვი გვხვდება თიამინის შედგენილობაში?
- 1) იმიდაზოლი; 2) თიაზოლი; 3) პირიდაზინი; 4) პირიდინი.
- 720. პურინის ნაწარმი არ არის:
 - 1) პიკრინმჟავა; 2) ქსანთინი; 3) გუანინი; 4) შარდმჟავა.
- 721. შარდმჟავას სრული მარილის აღნაგობაა:
- 722. ჰეტეროციკლურ ნაერთთა დანომვრის მოყვანილი ვარიენტებიდან რომელი შეესაბამება IUPAC-ის ნომენკლატურას?
- 723. პურინის ბირთვის დანომვრის მოყვანილი ვარიანტებიდან რომელი შეესაბამება IUPAC-ის ნომენკლატურას?

- 724. რომელი ჰეტეროციკლური ნაერთის ბირთვის შემცველი ნივთიერებების აღმოსაჩენად იყენებენ მურექსიდულ სინჯს?
- 1) იმიდაზოლის; 2) პირიმიდინის; 3) პურინის; 4) პირაზოლის.
- 725. ჩამოთვლილი ნაერთებიდან რომლისთვის არ არის დამახასიათებელი ლაქტიმ-ლაქტამური ტაუტომერია?
- 1) ურაცილი;
- 2) ქსანთინი;
- 3) გუანინი;
- 4) ადენინი.

726. მოყვანილი განმარტებებიდან რომელია სწორი?

- ორგანიზმში ნუკლეინმჟავათა მეტაბოლიზმის შედეგად წარმოიქმნება
 პირიმიდინის პიდროქსიწარმოებულები: პიპოქსანთინი, ქსანთინი, შარდმჟავა;
- 2) ჰიპოქსანთინისათვის დამახასიათებელია კეტო-ენოლური ტაუტომერია;
- 3) შარდმჟავა სამფუძიანი მჟავაა; 4) შარდმჟავას მარილებს ურატები ეწოდება.
- 727. მოყვანილი განმარტებებიდან რომელია არასწორი?
- 1) ადენინისა და აზოტოვანმჟავას მოქმედებით მიიღება ჰიპოქსანთინი;
- პტერიდინი შედგება პირიმიდინისა და პირიდაზინის კონდენსირებული
 ბირთვებისგან;
 პტერიდინი ამჟღავნებს ფუძე თვისებებს;
- 4) ბარბიტურატებისათვის დამახასიათებელია ტაუტომერია.
- 728. რომელი ნაერთის მარილებია ცნობილია ურატების სახელწოდებით?

1) OH H N N OH

OH H N NON NON

OH H

- 729. პტერიდინის შემადგენლობაში შედის:
 - 1) პირაზოლი;
- 2) პირიდაზინი;
- 3) იმიდაზოლი;
- 4) პირაზინი.
- 730. მოყვანილი განმარტებებიდან რომელია სწორი?
 - 1) ვიტამინი B2 ცნობილია თიამინის სახელწოდებით;
 - 2) კიტამინი B2 ალოქსაზინის ნაწარმია;
 - 3) B2 ვიტამინის დაჟანგული ფორმა ყვითელი შეფერილობისაა;
 - 4) B2 კიტამინის ფრაგმენტი შედის NADH-ის შედგენილობაში.

731. რომელი ფორმულითაა გამოსახული იზოალოქსაზინის აღნაგობა?

- 732. რომელი ნაერთის დაჟანგვით არ მიიღება ნიკოტინმჟავა?
- 1) β-პიკოლინი; 2) ნიკოტინი; 3) ანაბაზინი; 4) ქინოლინი.
- 733. ჩამოთვლილი ამინომჟავებიდან რომელი არ ხასიათდება ოპტიკური აქტივობით?
- 1) ალანინი; 2) პისტიდინი; 3) სერინი; 4) გლიცინი.
- 734. ჩამოთვლილი ამინომჟავებიდან რომელი არ არის არაპოლარული?
- 1) ალანინი; 2) თრეონინი; 3) ფენილალანინი; 4) ტრიპტოფანი.
- 735. ჩამოთვლილი ამინომჟავებიდან რომელია არაპოლარული?
- 1) გლიცინი; 2) ლეიცინი; 3) ლიზინი; 4) ტიროზინი.
- 736. ჩამოთგლილი ამინომჟავებიდან რომელი არ მიეკუთვნება პოლარულ უმუხტო ამინომჟავებს?
- 1) სერინი; 2) გლიცინი; 3) ცისტეინი; 4) გლუტამინმუავა.
- 737. ჩამოთვლილი ამინომჟავებიდან რომელი მიეკუთვნება პოლარულ უმუხტო ამინომჟავებს
- 1) ტრიპტოფანი; 2) ასპარაგინი; 3) არგინინი; 4) ლეიცინი.
- 738. pH-ის ფიზიოლოგიურ მნიშვნელობის დროს რომელი ამინომჟავაა დადებითად დამუხტული?
- 1) ასპარაგინი; 2) ასპარაგინმუავა; 3) ლიზინი; 4) გლუტამინი.
- 739. pH-ის ფიზიოლოგიური მნიშვნელობის დროს რომელი ამინომჟავაა დადებითად დამუხტული?
- 1) თრეონინი; 2) ჰისტიდინი; 3) ტრიპტოფანი; 4) ლეიცინი.
- 740. რომელ ამინომჟავას გააჩნია იზოელექტრული წერტილი მჟავა არეში?
- 1) ლიზინი; 2) ასპარგინმუავა; 3) არგინინი; 4) გლუტამინი.

- 741. რომელ ამინომჟავას გააჩნია იზოელექტრული წერტილი ტუტე არეში?
- 1) ასპარაგინი;
- 2) ასპარაგინმჟავა; 3) ტრიპტოფანი; 4) არგინინი.
- 742. ჩამოთვლილი ამინომჟავებიდან რომელი არ არის შეუცვლელი?
 - $\begin{array}{ccc} 1) & CH_3-CH-CH_2-CH-COOH \\ & & & | \\ & & CH_3 & NH_2 \end{array}$

HO
$$\leftarrow$$
 CH₂ - CH - COOH NH₂

- 743. ჩამოთვლილი ამინომჟავებიდან რომელია შეუცვლელი?
- 1) CH₂ CH₂ CH₂ CH₂ CH COOH NH₂ NH₂ 2) CH₃ CH COOH NH₂ NH₂ NH₂

3)
$$CH_2 - (CH_2)_2 - CH - COOH$$
 4) $HN = C - NH - CH_2 -$

- 744. ჩამოთვლილი ამინომჟავებიდან რომელია შეუცვლელი?
 - CH_2 –CH COOH1) OH NH₂

- 3)
- 745. ჩამოთვლილი ამინომჟავებიდან რომელია შეუცვლელი?
- CH₂ CH₂ CH₂ CH COOH
 NH₂

 2) CH₃ CH COOH
 NH₂

 NH₂ 1)

3)
$$CH_2 - (CH_2)_2 - CH - COOH$$
 4) $HN = C - NH - CH_2 -$

- 746. რომელი განმარტებაა სწორი?
- 1) ზოგიერთი თანდაყოლილი დაავადების დროს შეუცვლელ ამინომჟავათა რიცხვი იზრდება;
- 2) α-ამინომჟავები დაბალი ლღობის ტემპერატურის მქონე ნივთიერებებია;
- 3) α-ამინომჟავები კარგად იხსნება პოლარულ ორგანულ გამხსნელებში;

- 4) ამინომჟავათა ლღობის ტემპერატურასთანაა დაკავშირებული მათი შეწოვა და ტრანსპორტი.
- 747. რომელ შემთხვევაში შეესაბამება ამინომჟავას სახელწოდება ფორმულას?
- 1) CH₃ CH CH₂ CH COOH CH₃ NH₂ 35 сстобо

 CH₂ CH COOH NH₂

 4) CH₃ CH CH COOH CH₃ NH₂

 CH₃ NH₂ ტრიპტოფანი

ლეიცინი

- 748. რომელ შემთხვევაში შეესაბამება ამინომჟავას სახელწოდება ფორმულას?
- 1) $CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 COOH$ 2) $CH_3 CH_2 COOH_1$ NH_2 NH_2 NH_2 NH_2 NH_2 NH_2 NH_2 NH_2

- 3) $CH_2 (CH_2)_2 CH COOH$ 4) $HN = C NH CH_2 CH_2 CH_2 CH_2 CH_2 COOH$ NH_2 ეთიონინი NH_2 ასპარაგინი
- 749. რომელ შემთხვევაში შეესაბამება ამინომჟავას სახელწოდება ფორმულას?
 - CH₂ CH COOH 2) OH NH₂ თრეონინი
- HO CH₂ CH COOH NH₂ ფენილალანინი 4) CH₂ CH COOH SH NH₂
- 3) პისტიდინი

ცისტეინი

- 750. რომელ შემთხვევაში შეესაბამება ამინომჟავას სახელწოდება ფორმულას?
- $\begin{array}{cccc} CH_2-CH_2-CH_2-CH-COOH & 2) & CH_3-CH-COOH \\ NH_2 & NH_2 & \text{cools} & NH_2 & \text{lgss} \\ \end{array}$

3)
$$CH_2 - CH_2 - CH - COOH$$
 4) $HN = C - NH - CH_2 - CH$

- 751. რომელ შემთხვევაში შეესაბამება სახელწოდებას ამინომჟავას არ ფორმულა?
- 1) CH₃ CH CH COOH CH₃ NH₂
- 3) CH₂ CH₂ CH COOH S CH₃ NH₂ ცისტეინი 4) CH₃ CH₂ CH CH COOH CH₃ NH₂ იზოლეიცინი
- 752. რომელ შემთხვევაში შეესაბამება სახელწოდებას ამინომჟავას ფორმულა?
- 3) O=C CH₂ CH COOH NH₂ NH₂ გლუტამინი 4) CH₂ CH₂ CH₂ CH₂ CH COOH NH₂ NH₂ NH₂ ოიზინი NH2 ლიზინი
- 753. რომელ შემთხვევაში არ შეესაბამება სახელწოდებას ამინომჟავას ფორმულა?
- 1) HO—CH2-CH-COOH NH2 ტიროზინი
 2) O=C-CH2-CH2-CH-COOH NH2 ΝΗ2 ΝΗ2 ΝΗ2 λιδιδικόδησοδο
 3) HN = C-NH (CH2)3 CH COOH NH2 δηδισοδοδο
 4) NH2 δηδισοδοδο
- 754. ჩამოთვლილი ამინომჟავებიდან რომელს აქვს იზოელექტრული წერტილი მჟავა არეში?
- 1) ვალინი; 2) ასპარაგინმჟავა; 3) მეთიონინი; 4) ლიზინი.
- 755. ჩამოთვლილი ნაერთებიდან რომელია იმინომჟავა?
- 1) Lys; 2) Ser: 3) Pro; 4) Trp.
- 756. ჩამოთვლილი ამინომჟავებიდან რომელს აქვს იზოელექტრული წერტილი ტუტე არეში?
- 1) გლუტამინმჟავა; 2) ლეიცინი; 3) ალანინი; 4) არგინინი.
- 757. ასპარაგინმჟავას რომელი ფორმა იქნება ჭარბად pH=12 პირობებში?
- 1) HOOC CH_2 CH COOH NH_2 2) HOOC - CH_2 - CH - $COO^ NH_2$

3) HOOC - CH_2 - CH - $COO^ ^+NH_3$

4) OOC-CH₂-CH -COONH₂ NH₂

758. რომელი ნაერთის გახურებით შეიძლება უჯერი მჟავას მიღება?

- 1) 2-პიდროქსიერბომჟავა;
- 2) 2-ამინოერბომჟავა;
- 3) 4-ამინოერბომჟავა; 4) 3-ამინოერბომჟავა.
- 759. რომელი ამინომჟავას აღმოჩენა შეიძლება ქსანთოპროტეინის რეაქციით?
- 1) ტიროზინი;
- 2) თრეონინი;
- 3) ვალინი;
- 4) ცისტეინი.

760. რომელ რეაგენტს იყენებენ სიორენსენის მეთოდით ამინომჟავების რაოდენობრივი განსაზღვრისას?

1) HCHO; 2) CH₃CHO; 3) CH₃OH; 3) C₂H₅OH.

761. რომელი მჟავა გამოიყენება ვან-სლაიკის მეთოდში?

1) H₂SO₄; 2) H₂SO₃; 3) HNO₂; 4) HNO₃.

762. რომელი ამინომჟავა არ მონაწილეობს ტრანსამინირების რეაქციაში?

1) Lys; 2) Trp; 3) Leu; 4) Phe.

763. რომელი მჟავა მიიღება ასპარაგინმჟავას ჟანგვითი დეზამინირებით?

- 1) პიროყურძენმჟავა;
- 2) აცეტოძმარმჟავა;
- 3) მჟაუნძმარმჟავა;
- 4) α-კეტოგლუტარმჟავა.

764. რომელი მჟავა მიიღება ალანინის აღდგენითი დეზამინირებით?

- 1) რძემჟაგა;
- 2) პროპიონმჟავა;
- 3) ძმარმჟაგა;
- 4) პიროყურძენმჟავა.

765. რომელი მჟავადან მიიღება ტრანსამინირების რეაქციით ასპარაგინმჟავა?

- 1) აცეტოძმარმჟავა;
- 2) α-კეტოგლუტარმჟავა;
- 3) მჟაუნძმარმჟავა;
- 4) პიროყურძენმჟავა.

766. რომელი მჟავის მიღებაა შეუძლებელი გლიცინის დეზამინირებით?

- 1) ძმარმჟავა;
- 2) გლიოქსილმჟავა;
- 3) გლიკოლმჟავა;
- 4) ოძეძჟავა.

767. რომელი ამინომჟავას მეტაბოლიზმით ხორციელდება ორგანიზმში სეროტონინის სინთეზი?

- 1) არგინინი;
- 2) თრეონინი;
- 3) პისტიდინი;
- 4) ტრიპტოფანი.

768. რომელი ამინომჟავას დეკარბოქსილირებით მიიღება ეთილამინი?

1) ლიზინი; 2) ალანინი; 3) გლუტამინი; სერინი. 769. მოყვანილი განმარტებებიდან რომელია არასწორი? 1) α-ალანინის ურთიერთქმედებით აზოტოვანმჟავასთან მიიღება რძემჟავა; 2) λ-ამინომჟავები გახურებისას წარმოქმნიან ლაქტამებს; 3) ასპარაგინმჟავას დეკარბოქსილირებისას მიიღება β-ალანინი; 4) ცხოველური ორგანიზმისათვის უპირატესად დამახასიათებელია აღდგენითი დეზამინირება; 770. რომელი ამინომჟავას აღმოჩენა შეიძლება აზოტმჟავათი? 2) ტრიპტოფანი; 3) ალანინი; 4) თრეონინი. 1) ცისტეინი; 771. ზოგიერთი α-ამინომჟავას აღმოსაჩენად შეიძლება გამოვიყენოთ: 1)ნატრიუმის ჰიდროქსიდი; 2)აზოტმჟავა; 3)მარილმჟავა; 4)აზოტოვანმჟავა. 772. რომელი ამინომჟავა წარმოქმნის დეკარბოქსილირებითა და მიღებული პროდუქტის აზოტოვანმჟავასთან ურთიერთქმედებით ეთილენგლიკოლს? 2) ტიროზინი; 3) სერინი; 1) თრეონინი; 4) ლეიცინი. 773. რომელი ამინომჟავასაგან წარმოიქმნება ორგანიზმში ქოლინი? 1) თრეონინი; 2) გლიცინი; 3) სერინი; 4) ლეიცინი. 774. რომელი აირი გამოიყოფა α-ამინომჟავას აზოტოვანმჟავასთან რეაგირებისას? 1) NO; 2) NO₂; 3) N_2 ; 4) NH₃. 775. რომელი რეაგენტის გამოყენება შეიძლება ფენილალანინისა და ტიროზინის ერთმანეთისაგან განსასხვავებლად? 1) HNO₂; 2) NaCl; 3) FeCl₃; 4) HCl. 776. რომელი ოქსომჟავა მიიღება α-ალანინის ტრანსამინირების რეაქციით? 1) CH₃-CO-COOH; 2) CH₃-CO-CH₂-COOH; 3) CH₃-CH₂-CO-COOH; 4) HOOC-CH₂-CHO. გლუტამინმჟავას მონოდეკარბოქსილირების 777. რომელი მჟავა მიიღება შედეგად? 1) 3-ამინობუტანმჟავა; 2) 4-ამინობუტანმჟავა; 2-ამინობუტანმჟავა; 4) 3-ამინოპროპანმჟავა.

1) $CH_3 - COOH \xrightarrow{t}$ 2) $CH_3 - CO - COOH \xrightarrow{t}$
3) $H_2N - CH_2 - CH_2 - COOH \xrightarrow{t^\circ}$ 4) $(CH_3)_2CH - CH - CH_2 - COOH \xrightarrow{Ba(OH)_2, t^\circ}$ NH_2
779. რომელი ამინომჟავას დეკარბოქსილირებით მიიღება ეთილამინი?
1) Ala; 2) Ser; 30 Gly; 4) Thr.
780. შიფის ფუძეები მიღება α-ამინომჟავების ურთიერთქმედებით:
1) სპირტებთან; 2) ალდეჰიდებთან;
3) ფენოლებთან; 4) ახლადდალექილ Cu(OH) ₂ -თან.
781. რომელ ამინომჟავას გააჩნია იზოელექტრული წერტილი ტუტე არეში?
1) Leu; 2) Met; 3) Phe; 4) His.
782. რომელი მჟავა მიიღება ასპარაგინმჟავას მონოდეკარბოქსილირები
შედეგად?
1) 3-ამინობუტანმჟავა; 2) 2-ამინობუტანმჟავა;
3) 2-ამინოპროპანმჟავა; 4) 3-ამინოპროპანმჟავა.
783. რომელი ამინომჟავა გადაადგილდება ანოდისკენ ელექტროფორეზის
ჩატარებისას pH=6 პირობებში (ფრჩხილებში მითითებულია ამინომჟავას
იზოელექტრული წერტილი)?
1) Gly (6); 2) Val (6); 3) Glu (3,2); 4) Lys (9,7).
784. რომელი ამინომჟავა გადაადგილდება კათოდისკენ ელექტროფორეზი
ჩატარებისას pH=6 პირობებში?
1) Asp (3); 2) Arg (10,8); 3) Gly (6); 4) Leu (6) 785. ჩამოთვლილი ამინომჟავებიდან რომელი წარმოქმნის ქელატურ კომპლექსს
აპილენძ(II)-ის პიდროქსიდთან ურთიერთქმედების შედეგად?
1) α -; 2) λ -; 3) γ -; 4) δ
786. ჩამოთვლილი ამინომჟავებიდან რომელი წარმოქმნის გახურებისას უჯერ
მჟავას?
1) α-; 2) β-; 4) δ
787. ჩამოთვლილი ამინომჟავებიდან რომელი წარმოქმნის გახურებისას ლაქტამს?
1) მხოლოდ α -; 2) მხოლოდ β -; 3) მხოლოდ γ -; 4) α - და β
788. რომელი მჟავით შეიძლება ტრიპტოფანის ამოჩენა?
1) მარილმჟავათი; 2) გოგირდმჟავათი; 3) აზოტმჟავათი; 4) ფოსფორმჟავათი.

778. რომელი ნაერთი განიცდის დეკარბოქსილირებას აღნიშნულ პირობებში?

- 789. ჩანაცვლებული იმინები მიიღება ამინომჟავების ურთიერთქმედებით:
- 1) სპირტებთან; 2) მინერალურ მჟავებთან; 3) ალდეპიდებთან; 4) ფენოლებთან. 790. პეპტიდური ბმა წარმოადგენს:
- 1) სამცენტრიან π,π-შეუღლებულ სისტემას;
- 2) სამცენტრიან p,π-შეუღლებულ სისტემას;
- 3) ოთხცენტრიან π,π-შეუღლებულ სისტემას;
- 4) ოთხცენტრიან p,π-შეუღლებულ სისტემას.
- 791. რომელი განმარტებაა არასწორი პეპტიდური ბმისათვის?
- 1) პიდროლიზდება როგორც ტუტე, ისე მჟავა არეში;
- C-N ბმის გარშემო ბრუნვა გაძნელებულია;
- 3) პეპტიდური ჯგუფი წარმოადგენს სამცენტრიან p,π-შეუღლებულ სისტემას;
- 4) C=O ბმა მოკლდება 0,121 ნმ-მდე (ჩვეულებრივ იგი 0,124 ნმ-ის ტოლია);
- 792. რომელი პროდუქტი მიიღება დიპეპტიდის Ala-Gly სრული მჟავური ჰიდროლიზის შედეგად მარილმჟავა არეში?
- 1) CH₃ CH COOH 2) CH₃ CH COOH 3) H₃N CH₂ COO-NH₂
- 4) H₂N CH₂ COOH
- 793. მოყვანილი განმარტებებიდან რომელია სწორი?
- პეპტიდების წარმოქმნა დაკავშირებულია α-ამინომჟავების პოლიმრიზაციის უნართან;
- 2) პეპტიდური სინთეზი მიმდინარეობს მხოლოდ ლაბორატორიულ პირობებში;
- 3) პეპტიდური ბმა პრაქტიკულად ბრტყელია;
- 4) პირობითად მიღებულია, რომ პეპტიდები შეიცავს ათამდე ამინომჟავურ ნაშთს. 794. მოყვანილი განმარტებებიდან რომელია სწორი?
- 1) ჩვეულებრივ, პეპტიდურ ბმას გააჩნია ცის-კონფიგურაცია;
- 2) პეპტიდური ბმის გარშემო ბრუნვა გაადვილებულია;
- პეპტიდებში ამინომჟავური ნაშთების გვერდითი რადიკალები სივრცეში
 მაქსიმალურად უახლოვდება ერთმანეთს;
- 4) პოლიპეპტიდური ჯაჭვის ჩაწერა ხდება N-ბოლოდან.
- 795. რომელ დიპეპტიდში შეუძლია პეპტიდური ბმის გაწყვეტა პეპსინს?
- 1) Ala-Val; 2) Gly-Phe; 3) Asp-Met; 4) Ile-Gln.

796. რომელ დიპეპტიდში შეუძლია პეპტიდური ბმის გაწყვეტა ტრიპსინს?

- 1) Arg-Leu; 2) Trp-Asp; 3) Lys-Pro; 4) Ala-Ser.
- 797. რომელ დიპეპტიდში შეუძლია პეპტიდური ბმის გაწყვეტა ქიმოტრიპსინს?
- 1) Glu-Ser; 2) Gly-Ile; 3) Val-Trp; 4) Pro-Arg.

798. რომელი ამინომჟავას განსაზღვრისათვის იყენებენ ტუტე ჰიდროლიზს?

- 1) ალანინი; 2) პროლინი; 3) ლიზინი; 4) ტრიპტოფანი.
- 799. რომელი ამინომჟავა წარმოიქმნება ტრიპეპტიდის Lys-Ser-Asn სრული მჟავური ჰიდროლიზის დროს?
- 1) CH₃ CH CH COOH OH NH₂

3) CH₂ - (CH₂)₂ - CH - COOH NH₂ NH₂

3) $O = C - CH_2 - CH - COOH$ NH_2 NH_2 4) CH₂ - CH - COOH OH NH₂

800. რომელი ფორმულა შეესაბამება α-D-მანოპირანოზას?

801. რომელი ფორმულა შეესაბამება β-L-გალაქტოპირანოზას?

802. რომელი ფორმულა შეესაბამება α-L-გლუკოპირანოზას?

803. რომელი ფორმულა გამოსახავს β-D-ფრუქტოფურანოზის აღნაგობას?

804. რომელი განმარტებაა არასწორი α- და β-ანომერებისათვის?

- 1) არსებობენ ციკლურ ფორმაში;
- 2) წარმოადგენენ დიასტერეომერებს;
- 3) განსხვავდებიან ალდოზებში C-1 ატომის კონფიგურაციით, ხოლო კეტოზებშიC-2 ატომის კონფიგურაციით;
- 4) განსხვავდებიან იმ ნახშირბადატომის კონფიგურაციით, რომელიც განსაზღვრავს მონოსაქარიდის რიგს.

805. რომელი განმარტებაა არასწორი მონოსაქარიდებისათვის:

- ეპიმერები დიასტერეომერებია, რომლებიც ერთმანეთისგან განსხვავდება
 მხოლოდ ერთი ქირალური ნახშირბადატომის კონფიგურაციით;
- ფიშერის პროექციული ფორმულებით კეტოზების გამოსახვისას მაღლა ათავსებენ პირველად სპირტულ ჯგუფს, რომელსაც მოსდევს კეტონური ჯგუფი;
- მონოსაქარიდის D- ან L- სტერეოქიმიური რიგისადმი მიეკუთვნება ხორციელდება ოქსოჯგუფიდან უახლოესი ქირალური ნახშირბადატომის კონფიგურაციის შედარებით D- ან L- გლიცერალდეპიდის ქირალური ცენტრის კონფიგურაციასთან;
- 4) სინათლის პოლარიზაციის სიბრტყის ბრუნ<mark>ვ</mark>ის ნიშანი არაა დამოკიდებული მონოსაქარიდის რიგზე.

806. მოყვანილი განმარტებებიდან რომელია არასწორი?

- 1) გალაქტოზის აღდგენით მიიღება სორბიტი;
- 2) განზ. HNO3-ით გლუკოზის დაჟანგვისას მიიღება გლუკარმჟავა;
- 3) მონოსაქარიდების ეპიმერიზაცია ხორციელდება ოთახის ტემპერატურაზე, სუსტ ტუტე არეში;

- 4) ასკორბინმჟავას აქვს ძლიერი აღმდგენი თვისებები.
- 807. რომელი ნაერთი წარმოიქმნება შემდეგი რეაქციით?

- მხოლოდ მეთილ-β-D-გალაქტოპირანოზიდი;
- 2) მეთილ-2,3,4,6-ტეტრა-O-მეთილ-β-D-გალაქტოპირანოზიდი;
- 3) მეთილ-α-D- და მეთილ-β-D-გალაქტოპირანოზიდების ნარევი;
- 4) მხოლოდ მეთილ-α-D-გალაქტოპირანოზიდი.
- 808. რომელი ტაუტომერი არ მიიღება მეთილ-α-D-მანოპირანოზიდის ჰიდროლიზით?
- 1) D-მანოზა (ოქსოფორმა);
- 2) β-D-მანოპირანოზა და β-D-მანოფურანოზა;
- 3) α-D-მანოპირანოზა და α-D-მანოფურანოზა;
- 4) მეთილ-β-D-მანოპირანოზიდი.
- 809. რომელი ნაერთი მიიღება მეთილ-2,3,4,6-ტეტრა-O-მეთილ-α-Dგლუკოპირანოზიდის პიდროლიზით?
- 1) D-გლუკოზა (ოქსოფორმა);
- 2) β-D-გლუკოპირანოზა;

1) ეთანოლი;

- 3) α-D-გლუკოპირანოზა;
- 4) 2,3,4,6-ტეტრა-O-მეთილ- α -D-გლუკოპირანოზა.
- 810. მოყვანილი განმარტებებიდან რომელია სწორი?
- ჰექსოზებიდან პენტოზების მიღება შეიძლება შესაბამისი გლიკონმჟავების დეკარბოქსილირებით;
- 2) გლუკოზის აღდგენით მიღება დულციტი;
- 3) ალდოპექსოზის აღდგენით შესაძლებელია ორი დიასტერეომერის სინთეზი;

3) ფენოლი;

4) მმარმჟავა.

- 4) ბრომიანი წყლით გლუკოზის დაჟანგვით მიიღება გლუკონმჟავა.
- 811. გლიკოზიდებში აგლიკონის როლში არ შეიძლება იყოს:
- 010 0 4 0 7 0 5 0 1 4 4 10 7

2) მანოზა;

- 812. მარტივი ეთერი მიიღება მანოზის ურთიერთქმედებით:
- 1) მეთანოლთან; 2) მეთილიოდიდთან; 3) ფენოლთან; 4) მეთანალთან.

813. ძლიერ მინერალურ მჟავებთან გახურებისას ფურფუროლს წარმოქმნის:
1) გლუკოზა; 2) რიბოზა; 3) მანოზა; 4) გალაქტოზა.
814. ბრომიანი წყლით გლუკოზის დაჟანგვისას მიიღება:
1) გლუკონმჟავა; 2) გლუკარმჟავა; 3) გლუკურონმჟავა; 4) სორბიტი.
815. რომელი ნაერთის დეკარბოქსილირებითაა შესაძლებელი პენტოზის მიღება?
1) სორბიტოლი; 2) გლუკურონმჟავა; 3) გლიკარმჟავა; 4) გლიკონმჟავა.
816. რომელი ნაერთი გარდაიქმნება მჟავე არეში შესაბამის ლაქტონად?
1) სორბიტოლი; 2) გლუკურონმჟავა; 3) გლუკარმჟავა; 4) გლუკონმჟავა.
817. მუავა არეში მანონმჟავა გარდაიქმნება:
1) γ-ლაქტონად; 2) δ-ლაქტონად; 3) δ-ლაქტამად; 4) γ-ლაქტამად.
818. ჩამოთვლილი ნაერთებიდან რომელი მიიღება ფრუქტოზის აღდგენისას?
1) დულციტოლი; 2) სორბიტოლი; 3) ქსილიტოლი; 4) ინოზიტოლი.
819. ძლიერ მინერალურ მჟავებთან გახურებისას ფურფუროლს წარმოქმნის:
1) ქსილოზა; 2) გლუკოზა; 3) მანოზა; 4) გალაქტოზა.
820. ძლიერი მინერალური მჟავას თანაობისას მანოზის გახურებით მიიღება:
1) ფურფუროლი; 2) ჰიდროქსიმეთილფურფუროლი;
3) გლუკოზა; 4) ფრუქტოზა.
821. D-ფუკოზა არის:
1) 2-დეზოქსი-D-გალაქტოზა; 2) 3-დეზოქსი-D-გალაქტოზა;
3) 5-დეზოქსი-D-გალაქტოზა; 4) 6-დეზოქსი-D-გალაქტოზა.
822. რომელი ჰექსოზის ნაწარმია ფუკოზა?
1) ფრუქტოზის; 2) გლუკოზია; 3) გალაქტოზის; 4) მანოზის.
823. რომელი მონოსაქარიდის ნაწარმია ვიტამინი C?
823. რომელი მონოსაქარიდის ნაწარმია ვიტამინი C? 1) გლუკოზის; 2) გალაქტოზის; 3) მანოზის; 4) გულოზის.
1) გლუკოზის; 2) გალაქტოზის; 3) მანოზის; 4) გულოზის.
1) გლუკოზის; 2) გალაქტოზის; 3) მანოზის; 4) გულოზის. 824. მონოსაქარიდების ეპიმერიზაცია მიმდინარეობს:
1) გლუკოზის; 2) გალაქტოზის; 3) მანოზის; 4) გულოზის. 824. მონოსაქარიდების ეპიმერიზაცია მიმდინარეობს: 1) სუსტ მჟავა არეში; 2) ძლიერ მჟავა არეში;
1) გლუკოზის; 2) გალაქტოზის; 3) მანოზის; 4) გულოზის. 824. მონოსაქარიდების ეპიმერიზაცია მიმდინარეობს: 1) სუსტ მჟავა არეში; 2) ძლიერ მჟავა არეში; 3) სუსტ ტუტე არეში; 4) ნეიტრალურ არეში.
1) გლუკოზის; 2) გალაქტოზის; 3) მანოზის; 4) გულოზის. 824. მონოსაქარიდების ეპიმერიზაცია მიმდინარეობს: 1) სუსტ მჟავა არეში; 2) ძლიერ მჟავა არეში; 3) სუსტ ტუტე არეში; 4) ნეიტრალურ არეში. 825. რომელი მონოზა შედის გლუკოზის ეპიმერიზაციის შედეგად მიღებულ
1) გლუკოზის; 2) გალაქტოზის; 3) მანოზის; 4) გულოზის. 824. მონოსაქარიდების ეპიმერიზაცია მიმდინარეობს: 1) სუსტ მჟავა არეში; 2) ძლიერ მჟავა არეში; 3) სუსტ ტუტე არეში; 4) ნეიტრალურ არეში. 825. რომელი მონოზა შედის გლუკოზის ეპიმერიზაციის შედეგად მიღებულნარევში?

- 827. რომელი ნაერთი გამოიყენება თავის ტვინის შეშუპებისა და თავის ქალის შიგა წნევის შესამცირებლად?
- 1) რიბიტოლი; 2) გლუციტოლი; 3) გალაქტიტოლი; 4) მანიტოლი.
- 828. რომელი რეაგენტი გამოიყენება გლუკოზიდან გლუკურონმჟავას მიღებისას?
- 1) R₂SO₄, 2) RI, 3) ROH, 4) (RCO)₂O.
- 829. რომელი ნაერთი გამოიყენება შაქრის შემცვლელად დიაბეტის დროს?

830. რომელი ფორმულა გამოსახავს N-აცეტილ-D-გალაქტოზამინის აღნაგობას?

831. რომელი ფორმულა გამოსახავს N-აცეტილ-D-გლუკოზამინის აღნაგობას?

832. რომელი ფორმულითაა გამოსახული D-ფუკოზა?

- 833. ზურგის ტვინის შემადგენლობაში შედის:
- 1) ბარბიტურმჟავა; 2) ოროტმჟავა; 3) ასკორბინმჟავა; 4) ნეირამინმჟავა.

834. რომელი ფორმულითაა გამოსახული D-დიგიტოქსოზა?

835. რომელი ფორმულითაა გამოსახული 6-დეზოქსი-D-მანოზა?

836. რომელი ფორმულითაა გამოსახული 6-დეზოქსი-D-გლუკოზა?

837. ნეირამინმჟავას ფორმულაა:

838. რომელი განმარტება არ შეესაბამება მალტოზას?

- 1) შედგება D-გლუკოპირანოზის ორი ნაშთისაგან;
- 2) შეიცავს α -(1 \rightarrow 4)-გლიკოზიდურ ბმას;
- 3) არ გააჩნია აღდგენითი თვისებები;
- 4) პიდროლიზდება მჟავა არეში.
- 839. რომელი დისაქარიდის სრული სახელ \S ოდებაა β -D-გლუკოპირანოზილ-(1ightarrow 6)-
- β-D-გლუკოპირანოზა?
- 1) მალტოზის; 2) ლაქტოზის; 3) ცელობიოზის; 4) გენციობიოზის.
- 840. რომელ ბიოზას არ გააჩნია მუტაროტაციის უნარი?

- 1) მალტოზას; 2) ცელობიოზას; 3) ლაქტოზას; 4) საქაროზას.
- 841. საქაროზის სახელწოდებაა:
- 1) α -D-გლუკოპირანოზილ-(1 \rightarrow 4)- β -D-ფრუქტოფურანოზა;
- 2) α -D-გლუკოპირანოზილ-(1 \rightarrow 2)- β -D-ფრუქტოფურანოზა;
- 3) α -D-გლუკოპირანოზილ-(1 \rightarrow 4)- β -D-ფრუქტოფურანოზიდი;
- 4) α -D-გლუკოპირანოზილ-(1 \rightarrow 2)- β -D-ფრუქტოფურანოზიდი.
- 842. ჩამოთვლილი დისაქარიდებიდან რომელი არ არის აღმდგენი?
- 1) მალტოზა; 2) ლაქტოზა; 3) ცელობიოზა; 4) საქაროზა.
- 843. მოყვანილი გამარტებებიდან რომელია სწორი?
- მალტოზა ანუ ალაოს შაქარი β-ამილაზით სახამებლის ჰიდროლიზის ძირითადი პროდუქტია;
- 2) მალტოზაში D-გლუკოპირანოზის ორი მოლეკულა ერთმანეთთან შეერთებულია β-(1→4)-გლიკოზიდურ ბმებით;
- 3) ცელობიოზის ჰიდროლიზი შესაძლებელია α-გლუკოზიდაზით;
- 4) ლაქტოზაში შემავალი D-გლუკოპირანოზის ნაშთის ანომერულ ნახშირბადს შეიძლება ჰქონდეს როგორც α-, ისე β-კონფიგურაცია.
- 844. მოყვანილი განმარტებებიდან რომელია სწორი?
- 1) საქაროზისგან განსხვავებით ინვერტული შაქარი სინათლის პოლარიზაციის სიბრტყეს აბრუნებს მარჯვნივ;
- 2) α-გლიკოზიდური ბმა მალტოზაში ეკვატორიალურია;
- 3) საქაროზაში თავისუფალი ნახევარაცეტალური ჰიღროქსილის ჯგუფის შემცველ ანომერულ ნახშირბადატომს შეიძლება გააჩნდეს α- ან βკონფიგურაცია;
- 4) ამიგდალინი გენციობიოზის ნაწარმია.
- 845. საქაროზის ინვერსიის შედეგად მიღებული ნარევი სინათლის პოლარიზაციის სიბრტყეს:
- 1) აბრუნებს მარცხნივ; 2) აბრუნებს მარჯვნივ; 3) არ აბრუნებს;
- 4) კონცენტრაციისაგან დამოკიდებულებით ბრუნვის მიმართულება განსხვავებულია.
- 846. რომელი დისაქარიდის ნაწარმია ამიგდალინი?
- 1) საქაროზის; 2) ცელობიოზის; 3) ლაქტოზის; 4) გენციობიოზის.

847. რომელი ფორმულა გამოსახავს α-ლაქტოზის აღნაგობას?

848. რომელი ფორმულა გამოსახავს ცელობიოზის აღნაგობას?

849. რომელი ფორმულა გამოსახავს β-ლაქტოზის აღნაგობას?

850. რომელი ფორმულა შეესაბამება საქაროზის აღნაგობას?

- 851 სახამებლის მოლეკულაში ამილოზა შეიძლება იყოს:
- 1) 5%;
- 2) 15%;
- 3) 30%;
- 4) 50%.
- 852. ჩამოთვლილი პოლისაქარიდებიდან რომელია ბაქტერიული წარმოშობის?
- 1) დექსტრანები;
- 2) დექსტრინები;
- 3) ამილოპექტინი;
- 4) ამილოზა.
- 853. პომოპოლისაქარიდებს არ მიეკუთვნება:
- 1) ამილოპექტინი; 2) დექსტრანი;
- 3) გლიკოგენი;
- 4) ჰეპარინი.
- 854. მოყვანილი განმარტებებიდან რომელია სწორი?
- 1) პოლიოზები ადვილად პიდროლიზდება როგორც მჟავა, ისე ტუტე არეში;
- 2) პოლიოზებისათვის დამახასიათებელია მხოლოდ პირველადი სტრუქტურა;
- 3) სახამებელი ცხელ წყალში ჯირჯვდება;
- 4) სახამებლის სწრაფი გაცხელების შედეგად წარმოიქმნება დექსტრანი.
- 855. მოყვანილი განმარტებებიდან რომელია სწორი?
- 1) დექსტრინები ბაქტერიული წარმოშობის პოლისაქარიდებია;
- 2) ნატრიუმის ქლორიდის იზოტონურ ხსნარში ნაწილობრივ პიდროლიზებული დექსტრანის 60%-იანი ხსნარი ცნობილია პრეპარატ პოლიგლუკინის სახელწოდებით;
- 3) ამილოპექტინში განშტოების ადგილებში β - $(1\rightarrow 6)$ -გლიკოზიდური ბმებია;
- 4) ამილოზის მაკრომოლეკულა სპირალურადაა დახვეული.
- 856. როგორი გლიკოზიდური ბმებითაა ერთმანეთთან დაკავშირებული მონომერულ მოლეკულათა ნაშთები ქიტინის შედგენილობაში?
- 1) α -(1 \to 4)-;
- 2) β -(1 \rightarrow 3)-; 3) β -(1 \rightarrow 4)-;
- $4)\beta (1 \rightarrow 6) .$

- 857. როგორი გლიკოზიდური ბმებითაა ერთმანეთთან დაკავშირებული α-D-გლუკოპირანოზული ნაშთები ერთმანეთთან დექსტრანების ძირითად ჯაჭვში?
- 1) $\alpha (1 \rightarrow 4) ;$ 2) $\alpha (1 \rightarrow 3) ;$ 3) $\alpha (1 \rightarrow 2) ;$ 4) $\alpha (1 \rightarrow 6) .$
- 858. რომელი ცხიმოვანი მჟავას მოლეკულა შეიცავს 20-ზე მეტ ნახშირბადატომს?
- 1) ეიკოზანმჟავა; 2) ლინოლენმჟავა;
- 3) არაქიდონმჟავა; 4) ლიგნოცერინმჟავა.
- 859. რომელი ცხიმოვანი მჟავა არ შედის F ვიტამინის შემადგენლობაში?
- 1) ლაურინმჟავა; 2) ლინოლმჟავა; 3) ლინოლენმჟავა; 4) არაქიდონმჟავა.
- 860. რომელ მჟავას შეესაბამება ციფრობრივი სიმბოლო: 18:3 (9, 12, 15)?
- 1) პალმიტოლეინმჟავას; 2) ოლეინმჟავას;
- 3) ლინოლმჟავას; 4) ლინოლენმჟავას.
- 861. ოქტადეკადიენ-9,12-მჟავას ტრივიალური სახელწოდებაა:
- 1) ლინოლმჟავა; 2) პალმიტოლეინმჟავა;
- 3) ოლეინმჟავა; 4) ლინოლენმჟავა.
- 862. ოქტადეკანმჟავას ტრივიალური სახელწოდებაა:
- 1) პალმიტინმჟავა; 2) პალმიტოლეინმჟავა;
- 3) სტეარინმუავა; 4) ლინოლენმუავა.
- 863. ლინეტოლის შემადგენლობაში არ შედის:
- 1) ლინოლმჟავა; 2) ოლეინმჟავა; 3) ლინოლენმჟავა; 4) არაქიდონმჟავა.
- 864. ლინეტოლის შემადგენლობაში არ შედის:
- 1) ლინოლმჟავა; 2) ელაიდინმჟავა; 3) ლინოლენმჟავა; 4) ოლეინმჟავა.
- 865. რომელი ცხიმოვანი მჟავას მოლეკულა შეიცავს ჯერად ბმას?
- 1) კაპრონმჟავა; 2) კაპრილმჟავა; 3) ნერვონმჟავა; 4) სტეარინმჟავა.
- 866. რომელი ცხიმოვანი მჟავას მოლეკულა არ შეიცავს ჯერად ბმას?
- 1) არაქიდონმჟავა; 2) ლინოლმჟავა; 3) პალმიტოლეინმჟავა; 4) სტეარინმჟავა.
- 867. რომელი ცხიმოვანი მჟავა შედის F ვიტამინის შემადგენლობაში?
- 1) ლაურინმჟავა; 2) ლინოლმჟავა; 3) არაქიდმჟავა; 4) სტეარინმჟავა.
- 868. რომელი ცხიმოვანი მუავა შედის F ვიტამინის შემადგენლობაში?
- 1) პალმიტოლეინმჟავა; 2) კაპრილმჟავა; 3) არაქიდონმჟავა; 4) სტეარინმჟავა.

869. რომელი ცხიმოვანი მჟავა შედის F ვიტამინის შემადგენლობაში? 1) პალმიტინმჟავა; 2) ბეჰენმჟავა; 3) არაქიდმჟავა; 4) ლინოლენმჟავა. 870. მოყვანილი ცხიმოვანი მჟავებიდან რომელში გვხვდება ოლ-ცის-იზომერია? 1) არაქიდმჟავა; 2) ლაურინმჟავა; 3) ლინოლენმჟავა; 4) პალმიტინმჟავა. 871. რომელ მჟავას შეესაბამება ციფრობრივი სიმბოლო: 18:2 (9,12)? 1) პალმიტოლეინმჟავა; 2) ოლეინმჟავა; 3) ლინოლმჟავა; 4) ლინოლენმჟავა. 872. რომელ მჟავას შეესაბამება ციფრობრივი სიმბოლო: 20:4 (5,8,11,14)? 1) არაქიდონმჟავა; 2) ოლეინმჟავა; 3) ლინოლმჟავა; 4) ლინოლენმჟავა; 873. მოყვანილი ნაერთებიდან რომელში არ გვხვდება ოლ-ცის-იზომერია? 2) ლინოლენმჟავა; 1) არაქიდონმჟავა; 3) არაქიდმჟავა; 4) არცერთში. 874. კარბონმჟავების მოლეკულებში ცხიმოვანი პირველი ორმაგი გმა, ჩვეულებრივ, მდებარეობს: 1) C5-C6 ატომებს შორის; 2) C₆-C₇ ატომებს შორის; 3) C₈-C₉ ატომებს შორის; 4) С9-С10 ატომებს შორის. 875. ცხიმოვანი კარბონმჟავების მოლეკულებში ორმაგი ბმები ერთმანეთისგან გამოყოფილია: 1) მეთილის ჯგუფით; 2) მეთილენის ჯგუფით; 3) მეთინის ჯგუფით; 4) ეთილის ჯგუფით. 876. რამდენი მეთილენის ჯგუფითაა გამოყოფილი ერთმანეთისაგან ორმაგი ბმები არაქიდონმჟავას მოლეკულაში? 3) 3; 4) 4. 1) 1; 2) 2; 877. რამდენი მეთილენის ჯგუფითაა გამოყოფილი ერთმანეთისაგან ორმაგი ბმები ლინოლენმჟავას მოლეკულაში? 2) 2; 3) 3; 4) 4. 1) 1; 878. 1,2-დიაცილ-sn-გლიცეროფოსფოკოლამინების სახელწოდებაა: 1) კეფალინები; 2) ლეციტინები; 3) პლაზმალოგენები; 4) ფოსფატიდილსერინები. 879. უმაღლეს ცხოველთა ქსოვილებში შემავალი ფოსფოლიპიდებიდან რომელი გვხვდება ყველაზე დიდი რაოდენობით? 1) კეფალინები; 2) ლეციტინები; 3) პლაზმალოგენები; 4) ფოსფატიდილსერინები. 880. პლაზმალოგენების წარმომადგენელია: 1) L-ფოსფატიდალეთანოლამინები; 2) L-ფოსფატიდილსერინები; 3) L-ფოსფატიდილქოლინები; 4) ტრიაცილგლიცეროლები.

881. რამდენი გრამი ცხიმის ჰიდროლიზისას წარმოქმნილი ცხიმოვანი მჟავას განეიტრალებაზე დახარჯული კალიუმის ტუტის მილიგრამების რაოდენობაა გასაპვნის რიცხვი?

- 1) 1; 2) 10; 3) 100; 4) 1000.
- 882. იოდური რიცხვი არის იოდის გრამების რაოდენობა, რომელიც უერთდება:
- 1) 1 გ ცხიმს; 2) 10 გ ცხიმს; 3) 100 გ ცხიმს; 4) 1000 გ ცხიმს.
- 883. რამდენატომიანი ამინოსპირტია სფინგოზინი?
- 1) ერთატომიანი; 2) ორატომიანი; 3) სამატომიანი; 4) ოთხატომიანი;
- 884. მოყვანილი ნაერთებიდან რომელში გვხვდება ოლ-ტრანს-იზომერია?
- 1) არაქიდონმჟავა; 2) ლინოლმჟავა;
- 3) ლინოლენმჟავა; 4) არცერთში.
- 885. რომელი განმარტებაა სწორი ცხიმოვანი კარბონმჟავებისთვის?
- 1) ისინი, როგორც წესი, ნახშირბადატომთა კენტ რიცხვს შეიცავენ;
- 2) მათში ერთი ან რამდენიმე ტრანს-კონფიგურაციის ორმაგი ბმაა;
- მათ მოლეკულებში პირველი ორმაგი ბმა, ჩვეულებრივ, C₉-C₁₀ ატომებს
 შორის მდებარეობს;
- 4) ორმაგი ბმები ერთმანეთისგან რამდენიმე მეთილენის ჯგუფითაა გამოყოფილი.

ტრიაცილგლიცეროლის სახელწოდებაა:

- 1) 1-პალმიტოილ-2-ოლეინოილ-3-სტეაროილ- sn-გლიცეროლი;
- 2) 1-პალმიტოილ-2-ლინოლენოილსტეარინი;
- 3) 1-პალმიტოილ-2-ლინოლოილ-3-სტეაროილ- sn-გლიცეროლი;
- 4) 1-პალმიტოილ-2-ლინოლენოილ-3-სტეაროილ- sn-გლიცეროლი.

ტრიაცილგლიცეროლის სახელწოდებაა:

- 1) 1-პალმიტოილ-2-ოლეოილ-3-სტეაროილ- sn-გლიცეროლი;
- 2) 1-პალმიტო-2-ლინოლენოსტეარინი;
- 3) 1-პალმიტოლეოილ-2-ლინოლენოილ-3-ოლეოილ- sn-გლიცეროლი;

- 4) 1-პალმიტოილ-2-ლინოლენოილ-3-ოლეოილ- sn-გლიცეროლი.
- 888. როგორია ცეტილის სპირტის შედგენილობა?
- 1) C₃₀H₆₁OH; 2) C₁₅H₃₁OH; 3) C₃₀H₆₁CH₂OH; 4) C₁₅H₃₁CH₂OH.
- 889. სპერმაცეტის შემადგენლობაში შედის:
- 1) $C_{15}H_{31}COOC_{31}H_{63}$;
- 2) C₁₅H₃₁COOC₁₆H₃₃;
- 3) $C_{15}H_{31}COOC_{31}H_{61}$;
- 4) C₁₅H₃₁COOC₁₆H₃₁.
- 890. როგორია მირიცილის სპირტის შედგენილობა?
- 1) C₃₀H₆₁OH; 2) C₁₅H₃₁OH; 3) C₃₀H₆₁CH₂OH; 4) C₁₅H₃₁CH₂OH.
- 891. მოყვანილი განმარტებებიდან რომელია სწორი?
- გასაპვნის რიცხვი არის კალიუმის ტუტის მილიგრამების რაოდენობა,
 რომელიც იხარჯება 1 გ ცხიმის პიდროლიზისას წარმოქმნილი ცხიმოვანი
 მჟავების განეიტრალებაზე;
- 2) იოდური რიცხვი არის იოდის გრამების რაოდენობა, რომელიც უერთდება 1 გ ცხიმს;
- 3) ცეტილისა და მირიცილის სპირტები ძირთადად გავრცელებულია სტეარინმჟავას რთული ეთერების სახით;
- 4) ცვილები მიეკუთვნება რთულ ლიპიდებს.
- 892. რომელი ნაერთის სახელწოდებაა სწორად მითითებული?

2)
$$CH_2OCOR$$
 $R'COO + H O + OCH_2-CH_2NH_3$
 O^-

L-ფოსფატიდმჟავა

L-ფოსფატიდალეთანოლამინები

3)
$$CH_2OCOR$$
 $R'COO \longrightarrow H$
 O
 $CH_2O-P-OCH_2-CH_2N(CH_3)_3$
 O

4)
$$CH_2OCOR$$
 $R'COO H_{O}$
 $CH_2O-P-OCH_2-CH-NH_3$
 $O^ COO^-$

კეფალინები

ფოსფატიდილსერინები

- 893. 1,2-დიაცილ-sn-გლიცეროფოსფოქოლინების სახელწოდებაა:
- 1) კეფალინები; 2) ლეციტინები;
- 3) პლაზმალოგენები; 4) ფოსფატიდილსერინები.

894. რომელი ნაერთის სახელწოდებაა სწორად მითითებული?

895. რომელი ნაერთის სახელწოდებაა სწორად მითითებული?

1) CH₂OH

CH₂OCH=CHR

896. რომელი ნაერთის ნაშთი არ გვხვდება პემატოზიდის შედგენილობაში?

- 1) სიალმჟავა; 2) ცერამიდი; 3) გალაქტოზა; 4) მანოზა.
- 897. რომელი ნაერთის სახელწოდებაა სწორად მითითებული?

4) CH₃-(CH₂)₁₂-CH=CH-CH-CH-NH₂OH სფინგოზინი OH NH₂

898. რომელი ნაერთის სახელწოდებაა სწორად მითითებული?

3) CH₃-(CH₂)₁₂-CH=CH-CH-NH-COR გლუკოცერებროზიდი OH CH₂
CH₂OH
HOHHH
H OH

4) CH₃-(CH₂)₁₂-CH=CH-CH-CH-NH₂OH სფინგოზინი OH NH₂

899. პრეგნანის ნაწარმია:

- 1) პიდროკორტიზონი; 2) ქოლესტეროლი; 3) ტესტოსტერონი; 4) ესტრონი. 900. მოყვანილი განმარტებებიდან რომელია სწორი?
- 1) უმაღლეს ცხოველთა ქსოვილებში შემავალი ფოსფოლიპიდებიდან კეფალინების რაოდენობა დაახლოებით ორჯერ ჭარბობს ლეციტინებისას;
 2) ბუნებრივ ფოსფოლიპიდებში გლიცეროლის ჯაჭვის sn-2-მდგომარეობაში, როგორც წესი, ნაჯერი მჟავას ნაშთებია ჩანაცვლებული;

- 3) პლაზმალოგენები L-ფოსფატიდილეთანოლამინებია;
- 4) ორგანიზმში ფოსფოლიპიდების ყველა იონოგენური დაჯგუფება იონიზებულია
- 901. რომელი ნაერთის სახელწოდებაა სწორად მითითებული?

- 902. ჩამოთვლილი სტეროიდებიდან რომელია ქოლესტანის ნაწარმი?
- 1) პიდროკორტიზონი; 2) ტესტოსტერონი;
- 3) ესტრონი; 4) ერგოსტეროლი.
- 903. რომელი ფორმულა შეესაბამება ჰიდროკორტიზონის აღნაგობას?

904. რომელი ფორმულა შეესაბამება ესტრონის აღნაგობას?

905. რომელი ნაერთის სახელწოდებაა სწორად მითითებული?

906. რომელი ფორმულა შეესაბამება პროგესტერონის აღნაგობას?

906. რომელი ფორმულა შეესაბამება პროგესტერონის აღნაგობას?
$$\begin{array}{c} \text{OH} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{H} \end{array}$$
 $\begin{array}{c} \text{CH}_3 \\ \text{H} \end{array}$ $\begin{array}{c} \text{CH}_3 \\ \text{H} \end{array}$

3)
$$CH_2OH$$
 $CH_3C=O$
 CH_3
 H
 H
 H
 H
 H
 H

907. რომელი ფორმულა შეესაბამება დეზოქსიკორტიკოსტერონის აღნაგობას?

CH₂OH
$$CH_3C=O$$

$$CH_3$$

$$H$$

$$H$$

$$H$$

$$H$$

$$H$$

$$H$$

$$H$$

908. რომელი ფორმულა შეესაბამება რეტაბოლილის აღნაგობას?

CH₃ CCO(CH₂)₈CH₃

$$CH_3 C=0$$

$$CH_3 H$$

$$H$$

$$H$$

$$H$$

$$H$$

$$CH_3 COCO(CH2)8CH3
$$CH_3 H$$

$$H$$

$$H$$$$

- 909. ჩამოთვლილი სტეროიდებიდან რომელია პრეგნანის ნაწარმი?
- 1) ქოლესტეროლი; 2) ესტრონი; 3) ანდროსტერონი; 4) პროგესტერონი.
- 910. ჩამოთვლილი სტეროიდებიდან რომელია პრეგნანის ნაწარმი?
- 2) ესტრონი; 1) ქოლესტეროლი; 3) ერგოსტეროლი; 4) პრედნიზოლონი;
- 911. ჩამოთვლილი სტეროიდებიდან რომელია ანდროსტანის ნაწარმი?
- 3) ესტრონი; 3) ტესტოსტერონი; 1) ქოლესტეროლი; 4) პროგესტერონი.
- 912. ჩამოთვლილი ნახშირწყალბადებიდან ნაწარმია რომლის დეზოქსიკორტიკოსტერონი?
- 2) პრეგნანი; 3) ქოლესტანი; 1) ქოლანი; 4) ესტრანი.
- 913. ჩამოთვლილი ნაერთებიდან რომელი არ არის პრეგნანის ნაწარმი:
- 1) პიდროკორტიზონი; 2) ანდროსტერონი;
- 4) პროგესტერონი. 3) პრედნიზოლონი;
- 914 რომელი სტეროიდი რეაგირებს ნატრიუმის პიდროქსიდთან?
- 1) ქოლესტეროლი; 2) ერგოსტეროლი; 3) პროგესტერონი; 4) ესტრიოლი.
- 915. რომელი სტეროიდი რეაგირებს ნატრიუმის პიდროქსიდთან?
- 1) ქოლესტეროლი; 2) ერგოსტეროლი; 3) პროგესტერონი; 4) ესტრადიოლი.
- 916. რომელი სტეროიდი რეაგირებს ნატრიუმის პიდროქსიდთან?
- 1) დეზოქსიკორტიკოსტერონი; 2) ტესტოსტერონი;
- 3) ანდროსტერონი; 4) ესტრონი.

917. რომელი სტეროიდი არ რეაგირებს ნატრიუმთან? 2) ტესტოსტერონი; 3) პროგესტერონი; 1) ესტრონი; 4) ერგოსტეროლი. 918. რომელი სტეროიდი არ რეაგირებს ბრომიან წყალთან? 1) ტესტოსტერონი; 2) ქოლმჟავა; 3) პიდროკორტიზონი; 4) ესტრონი. 919. რომელი სტეროიდი არ აუფერულებს კალიუმის პერმანგანატის ხსნარს? 1) ანდროსტერონი; 2) ტესტოსტერონი; 3) ჰიდროკორტიზონი; 4) პრედნიზოლონი. 920. რომელი სტეროიდი არ აუფერულებს კალიუმის პერმანგანატის ხსნარს? 1) ერგოსტეროლი; 2) ქოლმჟავა; 3) პროგესტერონი; 4) დეზოქსიკორტიკოსტერონი. 921. რომელი განმარტებაა არასამართლიანი ქოლესტეროლისათვის? 1) რეაგირებს მეტალურ ნატრიუმთან; 2) რეაგირებს ნატრიუმის პიდროქსიდთან; 3) აუფერულებს KMnO4-ის ხსნარს; 4) რეაგირებს ბრომიან წყალთან. 922. რომელი განმარტებაა არასამართლიანი ქოლესტეროლისათვის? 1) რეაგირებს მეტალურ ნატრიუმთან; 2) რეაგირებს პიდროქსილამინთან; 3) აუფერულებს KMnO₄-ის ხსნარს; 4) რეაგირებს ბრომიან წყალთან. 923. რომელი განმარტებაა არასამართლიანი ქოლესტეროლისათვის? 1) რეაგირებს მეტალურ ნატრიუმთან; 2) რეაგირებს პიდრაზინთან; 3) აუფერულებს KMnO4-ის ხსნარს; 4) რეაგირებს ბრომიან წყალთან. 924. რომელი განმარტებაა არასამართლიანი ქოლესტეროლისათვის? 1) რეაგირებს მეტალურ ნატრიუმთან; 2) რეაგირებს სემიკარბაზიდთან; 3) აუფერულებს KMnO4-ის ხსნარს; 4) რეაგირებს ბრომიან წყალთან. 925. რომელი განმარტებაა არასამართლიანი ერგოსტეროლისათვის? 1) რეაგირებს მეთანოლთან; 2) რეაგირებს ძმარმჟავასთან; 3) რეაგირებს ნატრიუმის პიდროსულფიტთან; 4) რეაგირებს ნატრიუმთან. 926. რომელი განმარტებაა არასამართლიანი ერგოსტეროლისათვის? 1) რეაგირებს მეთანოლთან; 2) რეაგირებს ძმარმჟავასთან; 3) რეაგირებს ჰიდროქსილამინთან; 4) რეაგირებს ნატრიუმთან. 927. რომელი განმარტებაა არასამართლიანი ერგოსტეროლისათვის? 1) რეაგირებს ტუტე ლითონებთან; 2) რეაგირებს ჰიდრაზინთან; 3) რეაგირებს ბრომიან წყალთან; 4) რეაგირებს ეთანოლთან. 928. რომელი განმარტებაა არასამართლიანი ერგოსტეროლისათვის?

2) რეაგირებს კალიუმთან;

3) რეაგირებს პიდროქსილამინთან; 4) რეაგირებს ქლორწყალბადთან.

1) რეაგირებს ეთანოლთან;

- 929. რომელი განმარტებაა არასამართლიანი ქოლმჟავასათვის?
- 1) რეაგირებს მეთანოლთან;
- 2) რეაგირებს მეტალურ ნატრიუმთან;
- 3) აუფერულებს პრომიან წყალს; 4) რეაგირებს ნატრიუმის პიდროქსიდთან.
- 930. რომელი განმარტებაა არასამართლიანი ქოლმჟავასათვის?
- 1) რეაგირებს მეთანოლთან;
- 2) რეაგირებს მეტალურ ნატრიუმთან;
- 3) რეაგირებს პიდროქსილამინთან;
- 4) რეაგირებს ნატრიუმის პიდროქსიდთან.
- 931. რომელი განმარტებაა არასამართლიანი ქოლმჟავასათვის?
- 1) რეაგირებს მეთანოლთან;
- 2) რეაგირებს მეტალურ ნატრიუმთან;
- 3) რეაგირებს პიდრაზინთან;
- 4) რეაგირებს ნატრიუმის პიდროქსიდთან.
- 932. რომელი განმარტებაა არასამართლიანი ქოლმჟავასათვის?
- 1) რეაგირებს მეთანოლთან;
- 2) რეაგირებს სემიკარბაზიდთან;
- 3) რეაგირებს მეტალურ ნატრიუმთან; 4) რეაგირებს ნატრიუმის პიდროქსიდთან.
- 933. რომელი განმარტებაა არასამართლიანი ქოლმჟავასათვის?
- 1) რეაგირებს მეთანოლთან;
- 2) რეაგირებს მეტალურ ნატრიუმთან;
- 3) აუფერულებს KMnO4-ის ხსნარს; 4) რეაგირებს ნატრიუმის პიდროქსიდთან.
- 934. რომელი განმარტებაა არასამართლიანი გლიკოქოლმჟავასათვის?
- 1) რეაგირებს მეთანოლთან;
- 2) რეაგირებს მეტალურ ნატრიუმთან;
- 3) აუფერულებს KMnO4-ის ხსნარს; 4) რეაგირებს ნატრიუმის პიდროქსიდთან.
- 935. რომელი განმარტებაა არასამართლიანი ტაუროქოლმჟავასათვის?
- 1) რეაგირებს მეთანოლთან;
- 2) რეაგირებს მეტალურ ნატრიუმთან;
- 3) აუფერულებს KMnO4-ის ხსნარს; 4) რეაგირებს ნატრიუმის პიდროქსიდთან.
- 936. რომელი განმარტებაა არასამართლიანი გლიკოქოლმჟავასათვის?
- 1) რეაგირებს მეთანოლთან;
- 2) რეაგირებს მეტალურ ნატრიუმთან;
- 3) აუფერულებს ბრომიან წყალს; 4) რეაგირებს ნატრიუმის პიდროქსიდთან.
- 937. რომელი განმარტებაა არასამართლიანი ტაუროქოლმჟავასათვის?
- 1) რეაგირებს მეთანოლთან;
- 2) რეაგირებს მეტალურ ნატრიუმთან;
- 3) აუფერულებს ბრომიან წყალს; 4) რეაგირებს ნატრიუმის პიდროქსიდთან.
- 938. რომელი განმარტებაა არასამართლიანი ესტრონისთვის?
- 1) რეაგირებს ნატრიუმის პიდროსულფიტთან; 2) რეაგირებს ძმარმჟავასთან;
- 3) რეაგირებს პიდროქსილამინთან; 4) რეაგირებს ბრომიან წყალთან.
- 939. რომელი განმარტებაა არასამართლიანი ესტრონისთვის?
- 1) რეაგირებს ნატრიუმის პიდროსულფიტთან;
- 2) რეაგირებს ციანწყალბადმჟავასთან;
- 3) რეაგირებს პიდროქსილამინთან;

4) რეაგირებს მარილმჟავასთან. 940. რომელი სტეროიდის სტრუქტურული ანალოგის ეთერს წარმოადგენს ძლიერი ანაბოლური აქტივობის მქონე პრეპარატი რეტაბოლილი? 1) ანდროსტერონის; 2) ტესტოსტერონის; 3) პროგესტერონის; 4) დეზოქსიკორტიკოსტერონის. 941. რომელი განმარტებაა არასამართლიანი ტესტოსტერონისთვის? 1) რეაგირებს ეთანოლთან; 2) რეაგირებს ციანწყალბადმჟავასთან; 3) აუფერულებს KMnO4-ის ხსნარს; 4) რეაგირებს ტუტეებთან. 942. რომელი განმარტებაა არასამართლიანი ანდროსტერონისთვის? 1) რეაგირებს პიდრაზინთან; 2) რეაგირებს მეთანოლთან; 3) აუფერულებს ბრომიან წყალს; 4) რეაგირებს ძმარმჟავასთან. 943. რომელი სტეროიდი რეაგირებს ჰიდროქსილამინთან? 1) ერგოსტეროლი; 2) ესტრადიოლი; 3) გლიკოქოლმჟავა; 4) ტესტოსტერონი. 944. რომელი სტეროიდი რეაგირებს პიდროქსილამინთან? 1) ესტრონი; 2) ესტრადიოლი; 3) ქოლმჟავა; 4) ქოლესტეროლი. 945. რომელი სტეროიდი რეაგირებს პიდროქსილამინთან? 1) ერგოსტეროლი; 2) ესტრადიოლი; 3) პრედნიზოლონი; 4) ქოლმჟავა. 946. რომელი სტეროიდი რეაგირებს ჰიდრაზინთან? 1) პრედნიზოლონი; 2) ქოლმჟავა; 3) ქოლესტეროლი; 4) ესტრიოლი. 947. რომელი სტეროიდი რეაგირებს ჰიდრაზინთან? 1) ერგოსტეროლი; 2) ესტრადიოლი; 3) ქოლმჟავა; 4) ტესტოსტერონი. 948. ჩამოთვლილი ნაერთებიდან რომელთან რეაგირებს ესტრონი? 1) ქლორწყალბადმჟავა; 2) ბრომწყალბადმჟავა; 3) იოდწყალბადმჟავა; 4) ციანწყალბადმჟავა. 949. ჩამოთვლილი ნაერთებიდან რომელთან რეაგირებს პრედნიზოლონი? 1) ნატრიუმის პიდროსულფიტი; 2) ნატრიუმის ქლორიდი; 3) ნატრიუმის კარბონატი; 4) ნატრიუმის პიდროკარბონატი. 950. რომელი ნახშირწყალბადის ნაწარმებია გესტაგენები? 3) პრეგნანი; 1) ქოლანი; 2) ესტრანი; 4) ქოლესტანი. 951. რომელი ნახშირწყალბადის ნაწარმებია ქალის სასქესო ჰორმონები? 1) ქოლანი; 2) ესტრანი; 3) ანდროსტანი; 4) ქოლესტანი. 952. რომელი სტეროიდი არ რეაგირებს ნატრიუმის პიდროქსიდთან? 1) ქოლესტეროლი; 2) ესტრონი; 3) ესტრიოლი; 4) ქოლმჟავა. 953. რომელი სტეროიდი არ რეაგირებს ბრომიან წყალთან?

2) ანდროსტერონი; 1) ქოლესტეროლი; 3) პრედნიზოლონი; 4) დეზოქსიკორტიკოსტერონი. 954. რომელი განმარტებაა არასამართლიანი ქოლესტეროლისათვის? 1) რეაგირებს მეთანოლთან; 2) რეაგირებს ძმარმჟავასთან; 3) აუფერულებს KMnO₄-ის ხსნარს; 4) რეაგირებს ჰიდროქსილამინთან. 955. რომელი განმარტებაა არასამართლიანი ერგოსტეროლისათვის? 1) რეაგირებს ძმარმჟავასთან; 2) რეაგირებს ნატრიუმის პიდროქსიდთან; 3) აუფერულებს KMnO4-ის ხსნარს; 4) რეაგირებს ეთანოლთან. 956. რომელი განმარტებაა არასამართლიანი ქოლმჟავასათვის? 1) რეაგირებს ძმარმჟავასთან; 2) რეაგირებს ნატრიუმის ჰიდროქსიდთან; 3) აუფერულებს ბრომიან წყალს; 4) რეაგირებს ეთანოლთან. 957. რომელი განმარტებაა არასამართლიანი გლიკოქოლმჟავასთვის? 1) რეაგირებს მეტალურ ნატრიუმთან; 2) აუფერულებს KMnO4-ის ხსნარს; 3) რეაგირებს ჭიანჭველმჟავასთან; 4) განიცდის პიდროლიზს;. 958. რომელი განმარტებაა არასამართლიანი დეზოქსიკორტიკოსტერონისათვის? 1) რეაგირებს ციანწყალბადმჟავასთან; 2) აუფერულებს ბრომიან წყალს; 3) რეაგირებს ძმარმჟავასთან; — 4) რეაგირებს ნატრიუმის პიდროქსიდთან. 959. რომელი განმარტებაა არასამართლიანი პრედნიზოლონისათვის? 1) აუფერულებს ბრომიან წყალს; 2) რეაგირებს ციანწყალბადმუავასთან; 3) რეაგირებს აცეტამიდთან; 4) რეაგირებს პიდრაზინთან. 960. რომელი განმარტებაა არასამართლიანი პროგესტერონისთვის? 1) რეაგირებს ნატრიუმის პიდროსულფიტთან; 2) აუფერულებს ბრომიან წყალს; 3) რეაგირებს პიდროქსილამინთან; 4) რეაგირებს ნატრიუმის პიდროქსიდთან. 961. რომელი განმარტებაა არასამართლიანი ესტრონისთვის? 1) რეაგირებს ძმარმჟავასთან; 2) რეაგირებს ციანწყალბადმჟავასთან; 3) რეაგირებს ნატრიუმის პიდროქსიდთან; 4) რეაგირებს ბრომიან წყალთან. 962. რომელი განმარტებაა არასამართლიანი ესტრადიოლისთვის? 2) რეაგირებს პრომიან წყალთან; 1) რეაგირებს ძმარმჟავასთან; 3) რეაგირებს ფენილჰიდრაზინთან; 4) რეაგირებს ნატრიუმის ჰიდროქსიდთან. 963. რომელი განმარტებაა არასამართლიანი ტესტოსტერონისთვის?

1) რეაგირებს მეთანოლთან;

2) რეაგირებს ძმარმჟავასთან;

3) აუფერულებს KMnO₄-ის ხსნარს; 4) რეაგირებს კალიუმის ჰიდროქსიდთან. 964. რომელი განმარტებაა არასამართლიანი ანდროსტერონისთვის? 1) რეაგირებს პიდროქსილამინთან; 2) რეაგირებს ეთანოლთან; 3) აუფერულებს ბრომიან წყალს; 4) რეაგირებს ძმარმჟავასთან. 965. რომელი სტეროიდი რეაგირებს პიდროქსილამინთან? 1) ერგოსტეროლი; 2) ესტრადიოლი; 3) ქოლმჟავა; 4) ტესტოსტერონი. 966. რომელი ნახშირწყალბადის ნაწარმებია კორტიკოიდები? 1) ქოლესტანი; 2) ესტრანი; 3) პრეგნანი; 4) ქოლანი. 967. რომელი ნახშირწყალბადის ნაწარმებია ნაღვლის მჟავები? 1) ქოლესტანი; 2) ანდროსტანი; 3) პრეგნანი; 4) ქოლანი. 968. საერთაშორისო ნომენკლატურით რომელი სტეროიდის სახელწოდებაა 1,3,5(10)-ესტრატრიენ-3,17β-დიოლი? 1) პროგესტერონი; 2) ესტრონი; 3) ქოლესტეროლი; 4) ესტრადიოლი;. 969. საერთაშორისო ნომენკლატურით რომელი სტეროიდის სახელწოდებაა $11\beta,17\alpha,21$ -ტრიპიდროქსი-1,4-პრეგნადიენ-3,20-დიონი? 1) დეზოქსიკორტიკოსტერონი; 2) პიდროკორტიზონი; 4) პროგესტერონი. 3) პრედნიზოლონი; 970. საერთაშორისო ნომენკლატურით რომელი სტეროიდის სახელწოდებაა 11β , 17α ,21-ტრიპიდროქსი-4-პრეგნენ-3,20-დიონი? 1) დეზოქსიკორტიკოსტერონი; 2) პიდროკორტიზონი; 4) პროგესტერონი. 3) პრედნიზოლონი; 971. საერთაშორისო ნომენკლატურით რომელი სტეროიდის სახელწოდებაა 21-პიდროქსი-4-პრეგნენ-3,20-დიონი? 1) დეზოქსიკორტიკოსტერონი; 2) პიდროკორტიზონი; 4) პროგესტერონი. 3) პრედნიზოლონი; 972. საერთაშორისო ნომენკლატურით რომელი სტეროიდის სახელწოდებაა 3-პიდროქსი-1,3,5(10)-ესტრატრიენ-17-ონი? 1) ერგოსტეროლი; 2) პრედნიზოლონი; 3) ესტრონი; 4) პროგესტერონი. 973. საერთაშორისო ნომენკლატურით რომელი სტეროიდის სახელწოდებაა

24-მეთილქოლესტა-5,7,22-ტრიენ-3β-ოლი?

- 1) ესტრიოლი;
- 2) ერგოსტეროლი;
- 3) პროგესტერონი;
- 4) ქოლესტეროლი.
- 974. საერთაშორისო ნომენკლატურით რომელი სტეროიდის სახელწოდებაა
- 17β-ჰიდროქსი-4-ანდროსტენ-3-ონი?
- 1)პროგესტერონი; 2)პრედნიზოლონი; 3)ანდროსტერონი; 4)ტესტოსტერონი.
- 975. რომელი მჟავას ეთერის სახით შეჰყავთ ვენაში სტროფანტიდინი გულის მწვავე უკმარისობის დროს?
- 1) გალერიანმჟავა; 2) ერბომჟავა; 3) პროპიონმჟავა; 4) ძმარმჟავა.
- 976. მოყვანილი შემოკლებული აღნიშვნებიდან რომელი შეესაბამება თიმიდინს?
- 1) Thd;
- 2) dThd;

2)

- 3) Thy;
- 4) dThy.
- 977. რიბონუკლეინმუავათა შემადგენლობაში შეიძლება შეგგხვდეს:

H CH

3) HOH₂C O OH⁴

- 978. დეზოქსირიბონუკლეინმჟავათა შემადგენლობაში შეიძლება შეგვხვდეს:
- O H O N H
- HOH₂C O OH H H H
- H₂C O OH H_H H^H OH OH
- 979. ნუკლეოზიდთა 5'-ფოსფატების გამოსახვისათვის იყენებენ აღნიშვნას:
 - 1) Np;
- 2) N(5')p;
- 3) pN;
- 4) p(5')N.
- 980. ნუკლეოზიდთა 3′-ფოსფატების გამოსახვისათვის იყენებენ აღნიშვნას:
 - 1) N(3')p;
- 2) p(3') N;
- 3) pN;
- 81. რომელი აღნიშვნაა სამართლიანი შემდეგი ნაერთისათვის?
- 1) A>p

4) Np

- 2) A(3',5')p
- 3)dA(3',5')p
- 4) A(3',5')>p

982. რომელი აღნიშვნაა სამართლიანი შემდეგი ნაერთისათვის?

HOH₂C O H H H H H

- 1) A>p
- 2) dA>p
- 3) A(2',3')p
- 4) cAMP

983. რომელი ნაერთის ნაშთი არ გეხვდება როგორც დნმ, ისე რნმ შემდგენილობაში?

1) NH₂

HO NH2

4) OH N HO N

984. რომელი ნაერთის ნაშთი არ გვხვდება როგორც დნმ, ისე რნმ შემდგენილობაში?

1) NH₂ N

HO NH2

OH CH₃

985. რომელი ნაერთის ნაშთი არ შედის როგორც დნმ, ისე რნმ შემადგენლობაში?

- 1) Ura;
- 2) Gua;
- 3) Ade;
- 4) Cyt.

986. რომელი ნაერთის ნაშთი არ შედის როგორც დნმ, ისე რნმ შემადგენლობაში?

- 1) Gua;
- 2) Thy;
- 3) Ade;
- 4) Cyt.

987. ადენინის კომპლემენტარული ფუძეა:

- 1) Gua;
- 2) Thy;
- 3) Ura;
- 4) Cyt.

988. გუანინის კომპლემენტარული ფუძეა:

1) Ura; 2) Thy; 3) Ade; 4) Cyt. 989. თიმინის კომპლემენტარული ფუძეა: 2) Thy; 1) Gua; 3) Ade; 4) Cyt. 990. ციტოზინის კომპლემენტარული ფუძეა: 1) Gua; 2) Thy; 3) Ura; 4) Cyt. 991. რამდენი წყალბადური ბმა შეიძლება დამყარდეს კომპლემენტარულ ფუძეებს შორის? 2) 3; 3) 4; 4) 5. 1) 1; 992. კოფერმენტი A ააქტიურებს: 1) ალღეპიდებს; 2) სპირტებს; 3) კარბონმჟავებს; 4) თიოლებს; 993. კოფერმენტი A-ს რთული ეთერებიდან რომელი მჟავას ეთერია ყველაზე უფრო გავრცელებული? 1) მეთანმჟავასი; 2) ეთანმჟავასი; 3) პროპანმჟავასი; 4) პანთოტენმჟავასი. 994. კოფერმენტ ${
m A}$ -ში პიროფოსფატური ჯგუფით ერთმანეთს უკავშირდება პანტოთენმჟავა და: 2) გუანილმჟავა; 3) ურიდილმჟავა; 1) ადენილმჟავა; 4) ციტიდილმჟავა. 995. რომელი შემოკლებული აღნიშვნა შეესაბამება რიბოთიმიდინს? 1) Thd; 2) dThd; 3) Thy; 4) dThy. 996. FAD ჟანგვა-აღდგენით პროცესებში მონაწილეობს: 1) რიბიტოლის ნაშთის ხარჯზე; 2) ადენინის ნაშთის ხარჯზე; 3) ნიკოტინამიდის ნაშთის ხარჯზე; 4) იზოალოქსაზინის ნაშთის ხარჯზე. 997. NAD⁺ ჟანგვა-აღდგენით პროცესებში მონაწილეობს: 1) ადენინის ნაშთის ხარჯზე; 2) ნიკოტინამიდის ნაშთის ხარჯზე; 3) რიბიტოლის ნაშთის ხარჯზე; 4) იზოალოქსაზინის ნაშთის ხარჯზე. 998. მოყვანილი განმარტებებიდან რომელია არასწორი? 1) კომპლემენტარული ფუძეებია: ადენინი და გუანინი, თიმინი და ციტოზინი; 2) კომპლემენტარულ ფუძეებს შორის ორი ან სამი წყალბადური ბმაა; 3) ჩარგაფის წესი სამართლიანია დეზოქსირიბონუკლეინმჟავასათვის; 4) რიბონუკლეინმჟავა მრავალ მინორულ ფუძეს შეიცავს. 999. რომელი მჟავას ნაშთი გვხვდება კოფერმენტ A-ს შემდგენილობაში? 1)ბარბიტურმჟავასი; 2)გუანილმჟავასი; 3)ლიმონმჟავასი; 4)პანტოთენმჟავასი.

1000. რომელი ფორმულითაა გამოსახული თიმიდინი?

1001. რომელი ფორმულითაა გამოსახული რიბოთიმიდინი?

1002. მოყვანილი ფორმულებიდან რომელი შეესაბამება FADH2-ის იზოალოქსაზინურ ფრაგმენტს?

1003. მოყვანილი ფორმულებიდან რომელი შეესაბამება FAD-ის იზოალოქსაზინურ ფრაგმენტს?

1)
$$R H H O$$
 2) $R H R O$ 3) $H_3C H_3C O$ $H_3C O$ H_3C H_3C

1004. მოყვანილი განმარტებებიდან რომელია სწორი?

- კოფერმენტ A-ში აღენილმჟავასა და პანტოთენმჟავას ნაშთები ერთმანეთთან
 დაკავშირებულია ფოსფატური ჯგუფით;
- კოფერმენტი A ააქტიურებს თიოლების რთულ ეთერებს;
- აცეტილკოფერმენტი A ახდენს აცეტილური ჯგუფის გადატანას ელექტროფილურ სუბსტრატზე;
- 4) ჭარბად ღასინთეზებული აცეტილკოფერმენტი A ღვიძლში მიმდინარე გარდაქმნების შედეგად წარმოქმნის პროპანონს.
- 1005. რომელი აზოტოვანი ფუძის არაბინოზიდი გამოიყენება მწვავე ლეიკოზიების დროს?
- 1) ურაცილის; 2) ციტოზინის; 3) თიმინის; 4) ადენინის.

1006. რომელი ფორმულითაა გამოსახული NADH-ის ნიკოტინამიღური ფრაგმენტი?

<u> პ</u>ასუხეგე

1	2	33	4	65	3	97	2	129	1	161	4	193	1	225	1	257	3	289	4
2	2	34	1	66	1	98	2	130	3	162	3	194	2	226	4	258	3	290	1
3	3	35	4	67	4	99	4	131	3	163	2	195	4	227	2	259	2	291	1
4	4	36	3	68	2	100	3	132	4	164	4	196	3	228	3	260	2	292	3
5	1	37	1	69	4	101	4	133	2	165	4	197	2	229	1	261	1	293	1
6	2	38	4	70	1	102	3	134	1	166	1	198	1	230	3	262	3	294	2
7	2	39	1	71	1	103	2	135	4	167	3	199	4	231	1	263	3	295	2
8	1	40	2	72	3	104	4	136	2	168	1	200	1	232	3	264	3	296	4
9	2	41	3	73	2	105	4	137	3	169	2	201	3	233	2	265	1	297	4
10	1	42	2	74	4	106	2	138	4	170	4	202	3	234	4	266	4	298	3
11	3	43	3	75	1	107	4	139	1	171	3	203	2	235	1	267	3	299	2
12	1	44	2	76	4	108	4	140	2	172	3	204	2	236	1	268	3	300	1
13	3	45	2	77	3	109	4	141	4	173	2	205	2	237	3	269	2	301	1
14	1	46	1	78	4	110	2	142	1	174	1	206	1	238	2	270	4	302	4
15	3	47	4	79	3	111	4	143	3	175	4	207	2	239	3	271	1	303	2
16	2	48	2	80	2	112	3	144	4	176	1	208	1	240	1	272	3	304	3
17	1	49	4	81	4	113	3	145	1	177	2	209	1	241	2	273	4	305	2
18	4	50	3	82	2	114	3	146	1	178	3	210	2	242	4	274	3	306	1
19	2	51	4	83	1	115	4	147	1	179	1	211	3	243	3	275	1	307	2
20	4	52	4	84	4	116	2	148	2	180	2	212	3	244	2	276	4	308	2
21	2	53	1	85	2	117	2	149	1	181	4	213	4	245	4	277	2	309	1
22	4	54	2	86	2	118	4	150	4	182	2	214	3	246	2	278	3	310	1
23	4	55	4	87	3	119	2	151	2	183	1	215	2	247	4	279	1	311	4
24	3	56	4	88	3	120	3	152	1	184	3	216	3	248	1	280	2	312	3
25	1	57	1	89	4	121	1	153	2	185	3	217	3	249	1	281	3	313	2
26	2	58	4	90	4	122	2	154	4	186	2	218	3	250	2	282	2	314	1
27	4	59	3	91	2	123	4	155	3	187	3	219	2	251	1	283	1	315	3
28	4	60	4	92	1	124	4	156	4	188	4	220	1	252	1	284	2	316	2
29	1	61	2	93	3	125	3	157	4	189	1	221	1	253	1	285	1	317	2
30	1	62	2	94	2	126	1	158	1	190	2	222	3	254	4	286	3	318	2
31	3	63	2	95	4	127	1	159	4	191	3	223	3	255	3	287	4	319	3
32	4	64	4	96	2	128	4	160	3	192	4	224	2	256	2	288	4	320	3
	1	Ì	l	l	1			l		1	1	l		Î				l	

321	1	354	1	387	4	420	1	453	1	486	4	519	1	552	2	585	3	618	3
322	3	355	3	388	4	421	4	454	1	487	1	520	1	553	3	586	4	619	3
323	3	356	1	389	4	422	2	455	4	488	3	521	2	554	4	587	1	620	4
324	3	357	4	390	4	423	4	456	4	489	3	522	1	555	1	588	2	621	3
325	2	358	3	391	3	424	3	457	3	490	4	523	1	556	2	589	2	622	2
326	1	359	2	392	4	425	4	458	3	491	4	524	1	557	3	590	2	623	1
327	1	360	2	393	3	426	4	459	1	492	4	525	1	558	1	591	3	624	3
328	4	361	2	394	4	427	3	460	1	493	3	526	1	559	1	592	2	625	2
329	1	362	4	395	1	428	2	461	2	494	3	527	1	560	4	593	4	626	1
330	3	363	2	396	1	429	3	462	2	495	2	528	4	561	1	594	4	627	4
331	2	364	1	397	3	430	1	463	1	496	4	529	1	562	2	595	3	628	4
332	2	365	4	398	4	431	1	464	3	497	3	530	2	563	4	596	3	629	3
333	4	366	1	399	3	432	2	465	3	498	4	531	1	564	3	597	3	630	3
334	4	367	2	400	4	433	3	466	4	499	4	532	2	565	1	598	3	631	4
335	1	368	1	401	1	434	3	467	3	500	4	533	1	566	3	599	2	632	4
336	2	369	2	402	2	435	3	468	1	501	4	534	1	567	3	600	2	633	3
337	3	370	3	403	2	436	4	469	4	502	3	535	4	568	2	601	2	634	2
338	2	371	1	404	1	437	4	470	4	503	2	536	2	569	1	602	3	635	1
339	4	372	1	405	3	438	2	471	4	504	1	537	1	570	1	603	3	636	2
340	2	373	4	406	3	439	4	472	4	505	4	538	1	571	4	604	2	637	4
341	3	374	2	407	3	440	3	473	2	506	4	539	4	572	4	605	3	638	3
342	3	375	2	408	4	441	3	474	2	507	4	540	2	573	2	606	4	639	2
343	4	376	1	409	1	442	1	475	4	508	2	541	1	574	4	607	4	640	4
344	3	377	4	410	2	443	3	476	2	509	3	542	3	575	1	608	4	641	4
345	1	378	3	411	3	444	3	477	1	510	2	543	4	576	3	609	2	642	4
346	3	379	4	412	2	445	4	478	1	511	3	544	3	577	3	610	1	643	1
347	2	380	4	413	2	446	1	479	4	512	1	545	3	578	3	611	1	644	4
348	1	381	3	414	3	447	3	480	4	513	4	546	2	579	1	612	4	645	1
349	4	382	4	415	4	448	4	481	1	514	4	547	4	580	1	613	4	646	1
350	4	383	4	416	4	449	1	482	3	515	3	548	1	581	4	614	2	647	4
351	3	384	1	417	4	450	4	483	2	516	4	549	2	582	2	615	2	648	3
352	2	385	3	418	3	451	1	484	2	517	2	550	1	583	3	616	3	649	4
353	1	386	4	419	1	452	3	485	2	518	2	551	4	584	3	617	1	650	1

651	2	687	2	723	3	759	1	795	1	831	2	867	2	903	4	939	4	975	4
652	3	688	4	724	3	760	1	796	1	832	3	868	3	904	4	940	2	976	2
653	4	689	4	725	4	761	3	797	3	833	4	869	4	905	2	941	4	977	1
654	1	690	4	726	4	762	1	798	4	834	4	870	3	906	1	942	3	978	1
655	1	691	4	727	2	763	3	799	4	835	2	871	3	907	1	943	4	979	3
656	1	692	3	728	2	764	2	800	3	836	4	872	1	908	2	944	1	980	4
657	1	693	3	729	4	765	3	801	2	837	4	873	3	909	4	945	3	981	4
658	1	694	4	730	3	766	4	802	4	838	3	874	4	910	4	946	1	982	1
659	1	695	1	731	4	767	4	803	3	839	4	875	2	911	3	947	4	983	4
660	1	696	3	732	4	768	2	804	4	840	4	876	1	912	2	948	4	984	4
661	2	697	3	733	4	769	4	805	3	841	4	877	1	913	2	949	1	985	1
662	1	698	3	734	2	770	2	806	1	842	4	878	1	914	4	950	3	986	2
663	2	699	2	735	2	771	2	807	3	843	4	879	2	915	4	951	2	987	2
664	3	700	2	736	4	772	3	808	4	844	4	880	1	916	4	952	1	988	4
665	3	701	4	737	2	773	3	809	4	845	1	881	1	917	3	953	2	989	3
666	3	702	4	738	3	774	3	810	4	846	4	882	3	918	2	954	4	990	1
667	1	703	4	739	2	775	3	811	4	847	4	883	2	919	1	955	2	991	2
668	3	704	1	740	2	776	1	812	2	848	1	884	4	920	2	956	3	992	3
669	4	705	2	741	4	777	2	813	2	849	2	885	3	921	2	957	2	993	2
670	3	706	3	742	2	778	4	814	1	850	2	886	4	922	2	958	4	994	1
671	1	707	3	743	2	779	1	815	2	851	2	887	3	923	2	959	3	995	1
672	2	708	4	744	3	780	2	816	4	852	1	888	4	924	2	960	2	996	4
673	4	709	2	745	3	781	4	817	1	853	4	889	2	925	3	961	1	997	2
674	2	710	2	746	1	782	4	818	2	854	3	890	3	926	3	962	3	998	1
675	2	711	3	747	3	783	3	819	1	855	4	891	1	927	2	963	4	999	4
676	4	712	1	748	1	784	2	820	2	856	3	892	4	928	3	964	3	1000	2
677	2	713	3	749	4	785	1	821	4	857	4	893	2	929	3	965	4	1001	3
678	4	714	4	750	3	786	2	822	3	858	4	894	1	930	3	966	3	1002	4
679	4	715	2	751	3	787	3	823	4	859	1	895	2	931	3	967	4	1003	2
680	2	716	4	752	4	788	3	824	3	860	4	896	4	932	2	968	4	1004	4
681	3	717	3	753	2	789	3	825	2	861	1	897	3	933	3	969	3	1005	2
682	2	718	4	754	2	790	2	826	1	862	3	898	2	934	3	970	2	1006	3
683	4	719	2	755	3	791	4	827	4	863	4	899	1	935	3	971	1		
684	4	720	1	756	4	792	1	828	3	864	2	900	4	936	3	972	3		
685	4	721	4	757	4	793	3	829	4	865	3	901	3	937	3	973	2		
686	1	722	3	758	4	794	4	830	4	866	4	902	4	938	2	974	4		