## Computational Physics Assignment 5

This assignment dealt with the implementation of the Lax-Wendroff method to solve the Burgers' equation using second-order differences for the time derivative and Burgers' equation itself to relate derivatives.

Tasks a) through d) were implemented in the code attached with this report.

For part e):





For Part f):

Beta =1

## Initial wave in blue, numerical solution in green



Beta = 2

## Initial wave in blue, numerical solution in green



Beta = 8

## Initial wave in blue, numerical solution in green



Beta = 25



As seen above, the stability condition  $\beta$  < 1 is correct for this nonlinear problem since the solutions get distorted when  $\beta$  increases and when the  $\beta$  is too high, there is no solution to be seen.