

Beyond Pairwise Reasoning in Multi-Agent Path Finding

Bojie Shen¹, Zhe Chen¹, Jiaoyang Li², Muhammad Aamir Cheema¹, Daniel D.Harabor¹, Peter J. Stuckey¹ ¹Monash University

²Carnegie Mellon University

Background Multi-Agent Path Finding (MAPF)

- Multi-Agent Path Finding:
 - Application:
 - Automated warehouse.

Background Multi-Agent Path Finding (MAPF)

Multi-Agent Path Finding:

- Application:
 - Automated warehouse.
- Environment:
 - 4-connected grid map.
 - Discretized timesteps.

Background Multi-Agent Path Finding (MAPF)

Multi-Agent Path Finding:

- Application:
 - Automated warehouse.
- Environment:
 - 4-connected grid map.
 - Discretized timesteps.
- Objectives:
 - Given a set of agents with source and destination.
 - Find a collision-free plan that minimizes the Sum of Individual Cost (SIC).

Related Work Conflict-Based Search (CBS)

Conflict-Based Search [1]:

Related Work

Conflict-Based Search (CBS)

Conflict-Based Search [1]:

- High-level search:
 - Best-first search on a CT tree.
 - g-value: SIC of a CT node.
 - h-value: Estimated Increasing cost.
- Low-level search:
 - Space-time A* search.

Related Work

Conflict-Based Search (CBS)

Conflict-Based Search [1]:

- High-level search:
 - Best-first search on a CT tree.
 - g-value: SIC of a CT node.
 - h-value: Estimated Increasing cost.
- Low-level search:
 - Space-time A* search.
- Recent enhancements:
 - Pairwise heuristics:
 - Cardinal [2] and WDG [3] heuristic.
 - Pairwise symmetry reasoning:
 - Rectangle, Target, Corridor [4,5] and Mutex [6] reasoning.
 - Pairwise conflict prioritization:
 - F-aware prioritization [7].

CT nodes:

- N.constraints: a set of constraints.
- N.P: a set of cost-minimal paths that satisfy N.constraints.
- N.cost: the SIC of N.P.

CT nodes:

- N.constraints: a set of constraints.
- N.P: a set of cost-minimal paths that satisfy N.constraints.
- N.cost: the SIC of N.P.

Conflict clusters:

 A conflict cluster C is a set of agents such that, considering every agent a ∈ C with a set of cost-minimal paths that satisfy N.constraints, there exist no conflict-free assignments of paths for these agents.

CT nodes:

- N.constraints: a set of constraints.
- N.P: a set of cost-minimal paths that satisfy N.constraints.
- N.cost: the SIC of N.P.

Conflict clusters:

- A conflict cluster C is a set of agents such that, considering every agent a ∈ C with a set of cost-minimal paths that satisfy N.constraints, there exist no conflict-free assignments of paths for these agents.
- How can we detect conflict clusters?

- Detecting conflict clusters
 - Mutex propagation:

- Detecting conflict clusters
 - Mutex propagation:
 - Build MDDs of a pair of agents.

Detecting conflict clusters

- Mutex propagation:
 - Build MDDs of a pair of agents.
 - Identify MDD nodes are mutex.

Detecting conflict clusters

- Mutex propagation:
 - Build MDDs of a pair of agents.
 - Identify MDD nodes are mutex.
- Incompatible nodes:
 - Given a pair of MDD_i and MDD_j for agents a_i and a_j , a MDD node n_i at level t from MDD_i is incompatible with MDD_j iff n_i is mutex with all MDD nodes at level t from MDD_i .

Cluster Heuristic and Bypass (CHBP)

Detecting conflict clusters

- Mutex propagation:
 - Build MDDs of a pair of agents.
 - Identify MDD nodes are mutex.
- Incompatible nodes:
 - Given a pair of MDD_i and MDD_j for agents a_i and a_j , a MDD node n_i at level t from MDD_i is incompatible with MDD_j iff n_i is mutex with all MDD nodes at level t from MDD_i .
- Naïve approach:
 - Select a random agent a_i and its MDD_i .
 - Exhaustively perform mutex propagation with other agent a_j , and remove the incompatible MDD_i nodes.
 - Until *MDD*_i become empty.

- Cluster Heuristic and Bypass
 - Given a CT node:

- Cluster Heuristic and Bypass
 - Given a CT node:
 - Exclude the agents that are involved in pairwise heuristic (e.g., WDG).

- Cluster Heuristic and Bypass
 - Given a CT node:
 - Exclude the agents that are involved in pairwise heuristic (e.g., WDG).
 - Iteratively select an agent a_m with minimal number of conflicts:

- Given a CT node:
 - Exclude the agents that are involved in pairwise heuristic (e.g., WDG).
 - Iteratively select an agent a_m with minimal number of conflicts:
 - Use current path p_m as an indicator:
 - » Perform the mutex propagation with other agent a_c that conflicts with p_m , and remove the incompatible nodes.

- Given a CT node:
 - Exclude the agents that are involved in pairwise heuristic (e.g., WDG).
 - Iteratively select an agent a_m with minimal number of conflicts:
 - Use current path p_m as an indicator:
 - » Perform the mutex propagation with other agent a_c that conflicts with p_m , and remove the incompatible nodes.
 - » If p_m becomes unavailable in MDD_m , Switch p_m to anther path in MDD_m with minimal number of conflicts.

- Given a CT node:
 - Exclude the agents that are involved in pairwise heuristic (e.g., WDG).
 - Iteratively select an agent a_m with minimal number of conflicts:
 - Use current path p_m as an indicator:
 - » Perform the mutex propagation with other agent a_c that conflicts with p_m , and remove the incompatible nodes.
 - » If p_m becomes unavailable in MDD_m , Switch p_m to anther path in MDD_m with minimal number of conflicts.
 - If MDD_m becomes empty:
 - » We find a conflict cluster!
 - » Exclude these agents in a cluster.

- Given a CT node:
 - Exclude the agents that are involved in pairwise heuristic (e.g., WDG).
 - Iteratively select an agent a_m with minimal number of conflicts:
 - Use current path p_m as an indicator:
 - » Perform the mutex propagation with other agent a_c that conflicts with p_m , and remove the incompatible nodes.
 - » If p_m becomes unavailable in MDD_m , Switch p_m to anther path in MDD_m with minimal number of conflicts.
 - If MDD_m becomes empty:
 - » We find a conflict cluster!
 - » Exclude these agents in a cluster.
 - Even if MDD_m are not empty:
 - » We can adapt p_m as a bypass!

- Given a CT node:
 - Exclude the agents that are involved in pairwise heuristic (e.g., WDG).
 - Iteratively select an agent a_m with minimal number of conflicts:
 - Use current path p_m as an indicator:
 - » Perform the mutex propagation with other agent a_c that conflicts with p_m , and remove the incompatible nodes.
 - » If p_m becomes unavailable in MDD_m , Switch p_m to anther path in MDD_m with minimal number of conflicts.
 - If MDD_m becomes empty:
 - » We find a conflict cluster!
 - » Exclude these agents in a cluster.
 - Even if MDD_m are not empty:
 - » We can adapt p_m as a bypass!

- Given a CT node:
 - Exclude the agents that are involved in pairwise heuristic (e.g., WDG).
 - Iteratively select an agent a_m with minimal number of conflicts:
 - Use current path p_m as an indicator:
 - » Perform the mutex propagation with other agent a_c that conflicts with p_m , and remove the incompatible nodes.
 - » If p_m becomes unavailable in MDD_m , Switch p_m to anther path in MDD_m with minimal number of conflicts.
 - If MDD_m becomes empty:
 - » We find a conflict cluster!
 - » Exclude these agents in a cluster.
 - Even if MDD_m are not empty:
 - » We can adapt p_m as a bypass!

Cluster Heuristic and Bypass (CHBP)

- Given a CT node:
 - Exclude the agents that are involved in pairwise heuristic (e.g., WDG).
 - Iteratively select an agent a_m with minimal number of conflicts:
 - Use current path p_m as an indicator:
 - » Perform the mutex propagation with other agent a_c that conflicts with p_m , and remove the incompatible nodes.
 - » If p_m becomes unavailable in MDD_m , Switch p_m to anther path in MDD_m with minimal number of conflicts.
 - If MDD_m becomes empty:
 - » We find a conflict cluster!
 - » Exclude these agents in a cluster.
 - Even if MDD_m are not empty:
 - » We can adapt p_m as a bypass!

Cluster Heuristic and Bypass (CHBP)

- Given a CT node:
 - Exclude the agents that are involved in pairwise heuristic (e.g., WDG).
 - Iteratively select an agent a_m with minimal number of conflicts:
 - Use current path p_m as an indicator:
 - » Perform the mutex propagation with other agent a_c that conflicts with p_m , and remove the incompatible nodes.
 - » If p_m becomes unavailable in MDD_m , Switch p_m to anther path in MDD_m with minimal number of conflicts.
 - If MDD_m becomes empty:
 - » We find a conflict cluster!
 - » Exclude these agents in a cluster.
 - Even if MDD_m are not empty:
 - » We can adapt p_m as a bypass!

Cluster Heuristic and Bypass (CHBP)

- Given a CT node:
 - Exclude the agents that are involved in pairwise heuristic (e.g., WDG).
 - Iteratively select an agent a_m with minimal number of conflicts:
 - Use current path p_m as an indicator:
 - » Perform the mutex propagation with other agent a_c that conflicts with p_m , and remove the incompatible nodes.
 - » If p_m becomes unavailable in MDD_m , Switch p_m to anther path in MDD_m with minimal number of conflicts.
 - If MDD_m becomes empty:
 - » We find a conflict cluster!
 - » Exclude these agents in a cluster.
 - Even if MDD_m are not empty:
 - » We can adapt p_m as a bypass!

Cluster Heuristic and Bypass (CHBP)

- Given a CT node:
 - Exclude the agents that are involved in pairwise heuristic (e.g., WDG).
 - Iteratively select an agent a_m with minimal number of conflicts:
 - Use current path p_m as an indicator:
 - » Perform the mutex propagation with other agent a_c that conflicts with p_m , and remove the incompatible nodes.
 - » If p_m becomes unavailable in MDD_m , Switch p_m to anther path in MDD_m with minimal number of conflicts.
 - If MDD_m becomes empty:
 - » We find a conflict cluster!
 - » Exclude these agents in a cluster.
 - Even if MDD_m are not empty:
 - » We can adapt p_m as a bypass!

- Cluster Heuristic and Bypass
 - Given a CT node:
 - Enhancement:
 - Speed up technique for CHBP.

- Cluster Heuristic and Bypass
 - Given a CT node:
 - Enhancement:
 - Speed up technique for CHBP.
 - Solving each cluster C.

- Given a CT node:
- Enhancement:
 - Speed up technique for CHBP.
 - Solving each cluster C.
 - Memoization:
 - Caching the results of each cluster.
 - Caching the results of mutex propagation.

Experimental Results

- Dataset (selected):
 - Empty map (empty-32-32): The number of agents is set to 50,70,...,150.
 - Warehouse map (warehouse-10-20-10-2-1): The number of agents is set to 30,50,...,130.

Experimental Results

- Dataset (selected):
- Success rate:

Experimental Results

- Dataset (selected):
- Success rate:
- Runtime:

36

Experimental Results

- Dataset (selected):
- Success rate:
- Runtime:
- Node expansion:

37

Experimental Results

- Dataset (selected):
- Success rate:
- Runtime:
- Node expansion:
- $-\Delta f_{min}$ in the open list:

Reference

- [1] Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015). Conflict-based search for optimal multi-agent pathfinding. Artificial Intelligence, 219, 40-66.
- [2] Felner, A., Li, J., Boyarski, E., Ma, H., Cohen, L., Kumar, T. S., & Koenig, S. (2018). Adding heuristics to conflict-based search for multi-agent path finding. In *ICAPS* (Vol. 28, pp. 83-87).
- [3] Li, J., Felner, A., Boyarski, E., Ma, H., & Koenig, S. (2019). Improved Heuristics for Multi-Agent Path Finding with Conflict-Based Search. In *IJCAI* (Vol. 2019, pp. 442-449).
- [4] Li, J., Harabor, D., Stuckey, P. J., Ma, H., & Koenig, S. (2019). Symmetry-breaking constraints for grid-based multi-agent path finding. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 33, No. 01, pp. 6087-6095).
- [5] Li, J., Gange, G., Harabor, D., Stuckey, P. J., Ma, H., & Koenig, S. (2020). New techniques for pairwise symmetry breaking in multi-agent path finding. In *ICAPS* (Vol. 30, pp. 193-201).
- [6] Zhang, H., Li, J., Surynek, P., Kumar, T. S., & Koenig, S. (2022). Multi-agent path finding with mutex propagation. *Artificial Intelligence*, *311*, 103766.
- [7] Boyarski, E., Felner, A., Le Bodic, P., Harabor, D. D., Stuckey, P. J., & Koenig, S. (2021). f-Aware Conflict Prioritization & Improved Heuristics For Conflict-Based Search. In *AAAI* (Vol. 35, No. 14, pp. 12241-12248).

Thank you for listening