Set Theory HW #3

Ozaner Hansha

September 26, 2019

Problem 1

Exercises 1,2,3,4,5 from pages 38-39 in the textbook.

Exercise 1: Suppose that we attempted to generalize the Kuratowski definitions of ordered pairs to ordered triples by defining:

$$\langle x, y, z \rangle^* = \{ \{x\}, \{x, y\}, \{x, y, z\} \}$$

Show that this definition is unsuccessful by giving an example of objects u, v, w, x, y, z with $\langle x, y, z \rangle^* = \langle u, v, w \rangle^*$ but with either $y \neq v$ or $z \neq w$.

Solution: Consider the following 'triplet' under the proposed definition:

$$\begin{split} \langle 1,2,1\rangle^* &= \{\{1\},\{1,2\},\{1,2,1\}\} \\ &= \{\{1\},\{1,2\},\{1,2\}\} \\ &= \{\{1\},\{1,2\},\{1,2,2\}\} \\ &= \langle 1,2,2\rangle^* \end{split}$$

As we can see this triplet definition fails since the last elements of both triplets do not equal each other (i.e. $1 \neq 2$).

Exercise 2: Prove the following:

a)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

b) $(A \times B = A \times C \& A \neq \emptyset) \implies B = C$

Solution: For a) considering an arbitrary ordered pair $\langle x, y \rangle$ gives us following chain of logical equivalences:

$$\langle x,y\rangle \in A \times (B \cup C) \iff x \in A \ \& \ y \in B \cup C \\ \iff x \in A \ \& \ (y \in B \ \text{or} \ y \in C) \\ \iff (x \in A \ \& \ y \in B) \ \text{or} \ (x \in A \ \& \ y \in C) \\ \iff \langle x,y\rangle \in (A \times B) \ \text{or} \ \langle x,y\rangle \in (A \times C) \\ \iff \langle x,y\rangle \in (A \times B) \cup (A \times C)$$
 (def. of Cartesian product)
$$\iff \langle x,y\rangle \in (A \times B) \cup (A \times C)$$
 (def. of Cartesian product)

And so, by extensionality, we have that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

For **b**) consider an arbitrary set x:

$$x \in B \implies (\exists a \in A) \langle a, x \rangle \in A \times B$$
 (Assuming $A \neq \emptyset$)

$$\iff (\exists a \in A) \langle a, x \rangle \in A \times C$$
 (Assuming $A \times B = A \times C$)

$$\implies x \in C$$
 (def. of ordered pair)

And so, by the definition of subset, $B \subseteq C$. A symmetric argument where B and C are switched gives us $C \subseteq B$ and so we have B = C.

Exercise 3: Prove the following:

$$A \times \bigcup B = \bigcup \{A \times X \mid X \in B\}$$

Solution: Consider an arbitrary ordered pair $\langle x, y \rangle$:

$$\langle x,y\rangle \in A \times \bigcup B \iff y \in \bigcup B \& x \in A \qquad \qquad \text{(def. of ordered pair)}$$

$$\iff (\exists X \in B) \ y \in X \& x \in A \qquad \qquad \text{(def. of arbitrary union)}$$

$$\iff (\exists X \in B) \ \langle x,y\rangle \in A \times X \qquad \qquad \text{(def. of ordered pair)}$$

$$\iff \langle x,y\rangle \in \bigcup \{A \times X \mid X \in B\} \qquad \qquad \text{(def. of arbitrary union)}$$

And so by extensionality $A \times \bigcup B = \bigcup \{A \times X \mid X \in B\}$. Also note that since the LHS is a Cartesian product and the RHS is the union of Cartesian products, we are justified in denoting an arbitrary element of these sets in the form of an ordered pair $\langle x, y \rangle$ and using the axiom of extensionality.

Exercise 4: Show that there is no set to which every ordered pair belongs.

Solution: Let us assume that such a set P exists that contains all ordered pairs. Now let us consider an arbitrary x:

$$\langle x, x \rangle \in P$$
 (assumption)
 $\Rightarrow \{\{x\}\} \in P$ (def. of ordered pair)
 $\Rightarrow \{x\} \in \bigcup P$ (def. of arbitrary union)
 $\Rightarrow x \in \bigcup \bigcup P$ (def. of arbitrary union)

And so we have shown that the set $\bigcup \bigcup P$ (which exists because the arbitrary union of any set exists) contains all sets. The existence of a set that contains all sets has already been shown to be a contradiction (Russel's paradox, etc.) and so our assumption that the set P exists was false.

Exercise 5: a) Assume A and B are given sets, and show that there exists a set C such that for any y:

$$y \in C \iff (\exists x) y = \{x\} \times B$$

In other words, show that the set $C = \{\{x\} \times B \mid x \in A\}$ exists. b) With A, B and C as above, show that $A \times B = \bigcup C$.

Solution: For a) consider an arbitrary set x:

$$x \in A \implies \left[(\forall b \in B) \ x \in \{x\} \ \& \ b \in B \implies x \in A \ \& \ b \in B \right]$$

$$\implies \left[(\forall b \in B) \ \langle x, b \rangle \in \{x\} \times B \implies \langle x, b \rangle \in A \times B \right] \qquad \text{(def. of ordered pair)}$$

$$\implies \{x\} \times B \subset A \times B \qquad \text{(def. of subset)}$$

$$\implies \{x\} \times B \in \mathfrak{P}(A \times B) \qquad \text{(def. of powerset)}$$

$$\implies \{\{x\} \times B\} \subseteq \mathfrak{P}(A \times B) \qquad \text{(def. of powerset)}$$

And so we have shown that the set $\{\{x\} \times B\}$ is a subset of $\mathfrak{P}(A \times B)$ for any $x \in A$. Since the union of subsets of a set is still a subset we have:

$$\{\{x\} \times B \mid x \in A\} \subseteq \mathfrak{P}(A \times B)$$

And since we know that 1) given sets A and B, their Cartesian product $A \times B$ exists and 2) the power set of any set exists due to the powerset axiom, the subset axiom implies that the set $C = \{\{x\} \times B \mid x \in A\}$ must exist as well.

For **b**) consider an arbitrary set c:

$$c \in A \times B \iff (\exists x \in A, \exists y \in B) \ c = \langle x, y \rangle$$
 (def. of Cartesian product)
$$\iff c \in \bigcup \{\{x\} \times B \mid x \in A\}$$
 (def. of arbitrary union)
$$\iff c \in \bigcup C$$
 (def. of C)

And so for any set c we have $c \in A \times B \iff c \in C$ which, by extensionality, implies that $A \times B = \bigcup C$.

Problem 2

Consider the following theorem and its proof:

Theorem: If A, B are sets and $A \times B = B \times A$ then A = B.

Proof: If $x \in A$ and $y \in B$ then $\langle x, y \rangle \in A \times B$; since $A \times B = B \times A$, it follows that $\langle x, y \rangle \in B \times A$; so $x \in B$ and $y \in A$. This shows that if $x \in A$ then $x \in B$, so $A \subseteq B$, and that if $y \in B$ then $y \in A$, so $B \subseteq A$. Hence A = B.

As it turns out, the theorem, as stated, is false. And so the proof must be wrong.

Part i: Prove that the theorem is false, by giving a counterexample.

Solution: Consider $A = \emptyset$ and $B = {\emptyset}$, this gives us:

$$A \times B = \emptyset \times \{\emptyset\}$$
$$= \emptyset$$
$$= \{\emptyset\} \times \emptyset$$
$$= B \times A$$

Yet we clearly have $A = \emptyset \neq \{\emptyset\} = B$. Thus, the theorem presented is false.

Part ii: Explain why the proof is wrong, that is, find the step or steps that are invalid.

Solution: We can rephrase the given proof in the following way: Consider arbitrary sets x and y:

$$x \in A \& y \in B \implies \langle x, y \rangle \in A \times B$$
 (def. of ordered pair)
 $\implies \langle x, y \rangle \in B \times A$ (assume $A \times B = B \times A$)
 $\implies x \in B \& y \in A$ (def. of ordered pair)

And so we have shown that for arbitrary x and y, $x \in A$ implies that $x \in B$ and the revserse for y meaning $A \subseteq B$ and $B \subseteq A$ giving us A = B.

This proof, however, breaks down at the assumption that:

$$(\forall x, y) \quad x \in A \& y \in B \implies x \in B \& y \in A$$

entails the following:

$$(\forall x, y) (x \in A \implies x \in B) \& (y \in B \implies y \in A)$$

Since, for instance, $x \in a \implies x \in B$ only if there exists a $y \in B$ for the ordered pair (x, y) to be created with. But this is not the case $B = \emptyset$. The same problem goes for the other direction when $A = \emptyset$.

Part iii: Fix the theorem, by adding an extra condition to the hypotheses of the theorem that makes it true.

Solution: The theorem should instead be stated as:

$$(A \times B = B \times A \& A \neq \emptyset \& B \neq \emptyset) \implies A = B$$

That is to say, the theorem given is correct if we add the assumption that neither A nor B is the empty set.

Part iv: Give a correct proof of the true theorem.

Solution: Consider an arbitrary set x:

$$x \in A \& (\exists y \in B) \qquad (assume B \neq \varnothing)$$

$$\implies (\exists y \in B) \ \langle x, y \rangle \in A \times B \qquad (def. of ordered pair)$$

$$\implies (\exists y \in B) \ \langle x, y \rangle \in B \times A \qquad (assume A \times B = B \times A)$$

$$\implies x \in B \& (\exists y \in B) \ y \in A \qquad (def. of ordered pair)$$

$$\implies x \in B$$

And so we have shown that, by assuming that $B \neq \emptyset$, that for an arbitrary set $x \in A \implies x \in B$ and thus $A \subset B$. A symmetric argument holds for the other direction under the assumption that $A \neq \emptyset$, giving us $B \subseteq A$. Along with the previous result, this implies that A = B.

As a side note, our theorem says nothing about the special case where $A = \emptyset = B$. In this case, we do indeed have $A \times B = \emptyset = B \times A$ and A = B.