Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

Example 2.

no j-intercepts.

d(0) = 320 d-intercept.

However there is a d-intercept.

∆=0

Casel: $\Delta > 0$ $j_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the j-intercepts of multiplicity 1.

Given a quadratic $d(j) = a j^2 + b j + c$ compute its discriminant \triangle :

$$j_{1,2}=rac{-b\pm\sqrt{b^2-4\,ac}}{2a}$$
 computes the j-intercepts of multiplicity 1. d $(0)=c$ computes the single d-intercept.

Example 1.

 $d(j) = -3j^2 + 13j + 56$ compute its discriminant \triangle :

$$\triangle = 841 > 0$$

$$j_{1,2} = -\frac{8}{3}, 7$$

$$d(0) = 56 \quad d-intercept.$$

$$j-intercept 1$$

$$-10$$

$$-5$$

$$d-intercept$$

$$5$$

$$10$$

Case2:
$$\triangle = 0$$

$$j_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a} \text{ single j-intercept of multiplicity 2.}$$

 $d(j) = 3j^2 + 18j + 27$ compute its discriminant \triangle :

Example 3. $d(j) = 4 j^2 - 64 j + 320 \text{ compute its discriminant } \triangle:$ $\triangle = -1024 < 0$

1000 - 500 d-intercept 5 5 10