Basic statistical modelling in R GLMs (Generalised Linear Models)

Clarke van Steenderen
Department of Zoology and Entomology
Rhodes University
South Africa

Clarke.vansteenderen@ru.ac.za

Generalised Linear Models (GLMs)

Linear models assume normality in residuals/error terms \rightarrow i.e. a constant relationship between mean and variance. But what if this is not met?

We can apply different error structures to a linear model to account for deviations from normality. This means that we can use a GLM, and specify the "family" type depending on the type of data in question

Common families are:

- Binomial → two-state data
- Negative binomial -> count data that is overdispersed
- Poisson → count data
- Gaussian → normally-distributed; essentially a LM or ANOVA
- Exponential/beta → proportions

An ANOVA is a LM or GLM (Gaussian)
ANOVAs have one or more categorical predictors (1 or 2-way) and a continuous response variable

NB: offsets in GLMS → factors that are not strictly predictors, but are used to correct the model (e.g. sampling effort, population size and structure)

Sum-of-square tests assess the significance of each parameter in the model \rightarrow use anova (model) or car::Anova (model, type = x)

Where type = I, II, or III

I: One predictor variable

II: Two or more predictors with no interaction terms

III: Two or more predictors with interaction terms

GLM: Gaussian

Growth rates (continuous) across different parasite species (categorical) GLMs with a Beta distribution are sometimes used for rate data, but a Gaussian GLM is simpler, if it meets all the assumptions

daphnia.glm.gaus = glm(data = daphnia.data,
growth.rate ~ parasite,
family = gaussian)


```
anova(daphnia.glm.gaus, test = "LR")
```

Analysis of Deviance Table

Model: gaussian, link: identity

Response: growth.rate

Terms added sequentially (first to last)

```
Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 39 4.3028

parasite 3 3.1379 36 1.1649 < 2.2e-16 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

- The control group is the first "level" alphabetically, and is used as the base category for comparison → this is the (Intercept), and represents the baseline level for the control (1.21391). This is only the case when there is a single categorical predictor, and here, this value is then also the mean
- The other Estimate values show how far each other category is from the Control, relative to the baseline level of the Control category

```
Call:
glm(formula = growth.rate ~ parasite, family = gaussian, data = daphnia.data)
Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                  1.21391
                                            0.05688 21.340 < 2e-16 ***
parasiteMetschnikowia bicuspidata -0.41275
                                            0.08045 -5.131 1.01e-05 ***
                                           0.08045 - 1.710 0.0959
parasitePansporella perplexa
                                 -0.13755
                                           0.08045 -9.096 7.34e-11 ***
                                 -0.73171
parasitePasteuria ramosa
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

M. bicuspidata is 0.41275 units less than the control: i.e. 1.21391 – 0.41275 = 0.80116, which is significant (p < 0.001)

```
Call:
glm(formula = growth.rate ~ parasite, family = gaussian, data = daphnia.data)
Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)
                                  1.21391
                                             0.05688 21.340 < 2e-16 ***
(Intercept)
                                             0.08045 -5.131 <mark>1.01e-05 ***</mark>
parasiteMetschnikowia bicuspidata -0.41275
                                  -0.13755 0.08045 -1.710 0.0959.
parasitePansporella perplexa
parasitePasteuria ramosa
                                  -0.73171 0.08045 -9.096 7.34e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 0.03235768)
   Null deviance: 4.3028 on 39 degrees of freedom
Residual deviance: 1.1649 on 36 degrees of freedom
AIC: -17.935
```


What if we had another variable, in addition to parasite?

```
glm(formula = growth.rate ~ parasite + temperature,
family = gaussian, data = daphnia.data)
```

Hypothetical output:

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)

parasiteMetschnikowia bicuspidata parasitePansporella perplexa
parasitePasteuria ramosa
temperature

Estimate Std. Error t value Pr(>|t|)

0.20000 7.500 < 2e-16 ***

0.08000 -3.750 0.0002 ***

0.08500 -1.176 0.2417

0.09000 -5.556 < 2e-16 ***

0.05000 0.01000 5.000 5.6e-06 ***
```

Here, the baseline for the Control would be a mean growth rate of $\frac{1.5}{1.5}$ when temperature = 0

M. bicuspidata, at 0 degrees, would have a growth rate 0.3 units less → i.e. 1.5 – 0.3 = 1.2

The temperature coefficient (β_1 = 0.05) means that for every 1 degree increase, growth rate increases by 0.05 across all parasites

We know that growth rates vary significantly across parasites, but which parasites exactly?

Post-hoc tests show comparisons between all our variables, and highlight which ones are significant. The Tukey test is a very popular choice

```
posthoc.daphnia = emmeans::emmeans(daphnia.glm.gaus, pairwise ~ parasite, adjust
= "tukey")
```

```
estimate SE df lower.CL upper.CL t.ratio p.value
contrast
control - Metschnikowia bicuspidata
                                                   0.413 0.0804 36 0.1961
                                                                             0.6294
                                                                                      5.131
                                                                                             0.0001
                                                                                     1.710
control - Pansporella perplexa
                                                   0.138 \ 0.0804 \ 36 \ -0.0791 \ 0.3542
                                                                                             0.3335
control - Pasteuria ramosa
                                                  0.732 0.0804 36 0.5150 0.9484
                                                                                     9.096
                                                                                             < .0001
Metschnikowia bicuspidata - Pansporella perplexa
                                                  -0.275 0.0804 36 -0.4919 -0.0585 -3.421
                                                                                             0.0082
                                                                             0.5356
                                                                                     3.965
                                                                                             0.0018
Metschnikowia bicuspidata - Pasteuria ramosa
                                                 0.319 0.0804 36
                                                                    0.1023
                                                                             0.8108
                                                                                     7.386
                                                                                             < .0001
Pansporella perplexa - Pasteuria ramosa
                                                  0.594 0.0804 36
                                                                    0.3775
```

Confidence level used: 0.95
Conf-level adjustment: tukey method for comparing a family of 4 estimates
P value adjustment: tukey method for comparing a family of 4 estimates

The estimate values (magnitude and sign) indicate differences in size – compare to the plot

contrast	estimate	SE df	f lower.CL	upper.CL t	ratio p	.value
control - Metschnikowia bicuspidata	0.413	0.0804 3	36 0.1961	0.6294	5.131	0.0001
control - Pansporella perplexa	0.138	0.0804 3	36 -0.0791	0.3542	1.710	0.3335
control - Pasteuria ramosa	0.732	0.0804 3	36 0.5150	0.9484	9.096	<.0001
Metschnikowia bicuspidata - Pansporella perplexa	-0.275	0.0804 3	36 -0.4919	-0.0585	-3.421	0.0082
Metschnikowia bicuspidata - Pasteuria ramosa	0.319	0.0804 3	36 0.1023	0.5356	3.965	0.0018
Pansporella perplexa - Pasteuria ramosa	0.594	0.0804 3	36 0.3775	0.8108	7.386	<.0001

Confidence level used: 0.95

Conf-level adjustment: tukey method for comparing a family of 4 estimates P value adjustment: tukey method for comparing a family of 4 estimates

GLM: binomial

Schluter & Smith (1986) had a look at whether different morphological traits of song sparrows had an effect on survival. We'll focus on tarsal length:

```
> head(sparrow.data)
  mass wing tarsus blength bdepth bwidth year sex survival predictions
1 23.7 67.0 17.7 9.1 5.9 6.8 1978 f 1 0.9147634
2 23.1 65.0 19.5 9.5 5.9 7.0 1978 f 0 0.5272762
3 21.8 65.2 19.6 8.7 6.0 6.7 1978 f 0 0.4958586
4 21.7 66.0 18.2 8.4 6.2 6.8 1978 f 1 0.8512375
```


What relationship do you notice? Is it good for these sparrows to have small or large feet? Why?

Since we have binomial data (dead or alive), we'll use a binomial GLM using the glmmTMB package

```
sparrow.glm = glmmTMB::glmmTMB(survival ~ tarsus,
family = binomial(link = "logit"),
data = sparrow.data)
```

Check the model diagnostics using the DHARMa package

```
DHARMa::plotResiduals(sparrow.glm)
```

DHARMa::plotQQunif(sparrow.glm)

Looks like a good model

Plot our binomial GLM:

Check for significance using a Wald Chi-square test:

Tarsus length has a significant effect on survival $(\chi^2 = 13.4, d.f. = 1, p < 0.001)$

Let's look at the beta coefficients:

>summary(sparrow.glm)

```
Family: binomial (logit)
Formula: survival ~ tarsus
Data: sparrow.data
    AIC BIC logLik deviance df.resid
  189.0 195.0 -92.5 185.0 143
Conditional model:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 24.6361 \beta_0 6.7454 3.652 0.000260 ***
           -1.2578 \ \beta_1 0.3437 -3.659 \ 0.000253 ***
tarsus
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
```

Since this was a logistic regression, we need to get the exponentiated value for the β_1 coefficient (log odds):

exp(-1.2578) = 0.28 (this is now the odds ratio. Note the - sign)
For every mm ↑ in tarsus length, the odds of survival ↓ by a factor of 0.28

As a percentage: $(0.28 - 1) \times 100 = -72\%$ (i.e. a 72% decrease in the odds of survival)

95% confidence interval:

Lower = exp(-1.97) = 0.14

Upper = exp(-0.58) = 0.56

Characteristic	exp(Beta)	95% CI ¹	p-value				
tarsus	0.28	0.14, 0.56	<0.001				
¹ CI = Confidence Interval							

95 out of 100 times, we will get an odds ratio between 0.14 and 0.56

What would happen if we tried running a standard LM, rather than a binomial GLM?

sparrow.lm = lm(survival ~ tarsus, data = sparrow.data)
DHARMa::plotResiduals(sparrow.lm)

Residual vs. predicted No significant problems detected

GLM

BINOMIAL

QQ plot residuals

