GS543 (Tutorial 7)

Assignment-Write a Fortran program to compute apparent resistivity for schlumberger array for Nlayer resistivity model using subroutine program.

Note: Name of the subroutine program will be: DCyourfirstname

Theory- First, for a particular value of electrode separation ' s_i , i=1,ns (s is half of current electrode separation), determine Resistivity transform $T_1(\lambda_i)$, j=1, M using the relation (M number of filter coefficients) $\lambda_j = 10^{(a_j - \log_{10} s_i)}$ where a_j are the base 10 abscissa values of filter coefficients in given table below.

The resistivity transform for a N layer case for a particular value of λ_i is given by the recurrence relation

$$T_{k-1}(\lambda_j) = \frac{T_k + \rho_{k-1} \tanh(\lambda_j h_{k-1})}{1 + \frac{T_k \tanh(\lambda_j h_{k-1})}{\rho_{k-1}}}$$

 $T_{k-1}(\lambda_j) = \frac{T_k + \rho_{k-1} \tanh(\lambda_j h_{k-1})}{1 + \frac{T_k \tanh(\lambda_j h_{k-1})}{\rho_{k-1}}}$ $k=N,N-1,\dots 2. \quad \rho_k \text{ and } h_k \text{ are resistivity and thickness of } k^{th} \text{ layers. Resistivity transform}$ $T_N = \rho_N$

The Schlumberger apparent resistivity is then given by

$$\rho_a(s_i) = \sum_{j=1}^M f_j T_1(\lambda_j)$$

 f_j , j=1, M are filter coefficients.

Table: Nineteen point filter

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 00 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1 -0.980685 0.00097112 2 -0.771995 -0.00102152 3 -0.563305 0.00906965 4 -0.354615 0.01404316 5 -0.145925 0.09012 6 0.062765 0.30171582 7 0.271455 0.99627084 8 0.480145 1.3690832 9 0.688835 -2.99681171 10 0.897525 1.65463068 11 1.106215 -0.59399277 12 1.314905 0.22329813 13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463		Abscissa of filter	Filter coefficients
2 -0.771995 -0.00102152 3 -0.563305 0.00906965 4 -0.354615 0.01404316 5 -0.145925 0.09012 6 0.062765 0.30171582 7 0.271455 0.99627084 8 0.480145 1.3690832 9 0.688835 -2.99681171 10 0.897525 1.65463068 11 1.106215 -0.59399277 12 1.314905 0.22329813 13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463		coefficients (a_j)	(f_j)
3 -0.563305 0.00906965 4 -0.354615 0.01404316 5 -0.145925 0.09012 6 0.062765 0.30171582 7 0.271455 0.99627084 8 0.480145 1.3690832 9 0.688835 -2.99681171 10 0.897525 1.65463068 11 1.106215 -0.59399277 12 1.314905 0.22329813 13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	1	-0.980685	0.00097112
4 -0.354615 0.01404316 5 -0.145925 0.09012 6 0.062765 0.30171582 7 0.271455 0.99627084 8 0.480145 1.3690832 9 0.688835 -2.99681171 10 0.897525 1.65463068 11 1.106215 -0.59399277 12 1.314905 0.22329813 13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	2	-0.771995	-0.00102152
5 -0.145925 0.09012 6 0.062765 0.30171582 7 0.271455 0.99627084 8 0.480145 1.3690832 9 0.688835 -2.99681171 10 0.897525 1.65463068 11 1.106215 -0.59399277 12 1.314905 0.22329813 13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	3	-0.563305	0.00906965
6 0.062765 0.30171582 7 0.271455 0.99627084 8 0.480145 1.3690832 9 0.688835 -2.99681171 10 0.897525 1.65463068 11 1.106215 -0.59399277 12 1.314905 0.22329813 13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	4	-0.354615	0.01404316
7 0.271455 0.99627084 8 0.480145 1.3690832 9 0.688835 -2.99681171 10 0.897525 1.65463068 11 1.106215 -0.59399277 12 1.314905 0.22329813 13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	5	-0.145925	0.09012
8 0.480145 1.3690832 9 0.688835 -2.99681171 10 0.897525 1.65463068 11 1.106215 -0.59399277 12 1.314905 0.22329813 13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	6	0.062765	0.30171582
9 0.688835 -2.99681171 10 0.897525 1.65463068 11 1.106215 -0.59399277 12 1.314905 0.22329813 13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	7	0.271455	0.99627084
10 0.897525 1.65463068 11 1.106215 -0.59399277 12 1.314905 0.22329813 13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	8	0.480145	1.3690832
11 1.106215 -0.59399277 12 1.314905 0.22329813 13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	9	0.688835	-2.99681171
12 1.314905 0.22329813 13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	10	0.897525	1.65463068
13 1.523595 -0.10119309 14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	11	1.106215	-0.59399277
14 1.732285 0.05186135 15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	12	1.314905	0.22329813
15 1.940975 -0.02748647 16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	13	1.523595	-0.10119309
16 2.149665 0.01384932 17 2.358355 -0.00599074 18 2.567045 0.00190463	14	1.732285	0.05186135
17 2.358355 -0.00599074 18 2.567045 0.00190463	15	1.940975	-0.02748647
18 2.567045 0.00190463	16	2.149665	0.01384932
	17	2.358355	-0.00599074
19 2.775735 -0.0003216	18	2.567045	0.00190463
	19	2.775735	-0.0003216

Flowchart-

Start

Read ns (ns is number of spacing or AB/2 values)

Read s_i , i=1, ns (s-half of current electrode separation)

Read, number of layers (N), their resistivity (N values) and thickness (N-1 values)

Read a_j, f_j , j=1, M (M is number of number of filter coefficients)

Loop over s_i , i=1,ns

Loop over a_i , j=1 to 19

Compute $\lambda_j = 10^{(a_j - \log_{10} s_i)}$

For each λ_i compute resistivity transform $T_1(\lambda_i)$ and keep in memory

(Start from $T_N = \rho_N$ and evaluate till T_1 , N is number of layers)

End Loop over a_j

Compute $\rho_a(s_i) = \sum_{j=1}^M f_j T_1(\lambda_j)$

Save s_i verses $\rho_a(s_i)$

End loop over si

stop

Use

s=1.5, 2, 3, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 500, 600, 800, 1000. m

Plot s verses ρ_a on log-log scale.