Comp305

Biocomputation

Lecturer: Yi Dong

Comp305 Module Timetable

There will be 26-30 lectures, thee per week. The lecture slides will appear on Canvas. Please use Canvas to access the lecture information. There will be 9 tutorials, one per week.

Lecture/Tutorial Rules

Questions are welcome as soon as they arise, because

- Questions give feedback to the lecturer;
- 2. Questions help your understanding;
- 3. Your questions help your classmates, who might experience difficulties with formulating the same problems/doubts in the form of a question.

Comp305 Part I.

Artificial Neural Networks

Topic 5.

Multilayer Perceptron

Forward Propagation

l: the number of layers,

 n^h : the number of neurons in the h-th layer

 $n = n^0$: the number of input neurons (0-th layer).

 $m=n^l$: the number of output neurons (l-th layer).

 X^h : the output value of the h-th layer.

 $a = X^0$: the input value of the MLP.

 $X = X^{l}$: the output value of the MLP.

 $f^h:\mathbb{R}^{n_h}\to\mathbb{R}^{n_h}$: activation function of the h-th layer

Similarly, we can derive the relation for the following layers:

$$X^1 = F^1(w^1, X^0)$$

$$X^2 = F^2(w^2, X^1)$$

$$X^3 = F^3(w^3, X^2)$$

• ...

$$X^l = F^l(w^l, X^{l-1})$$

The output error function E^k for the k-th input pattern is:

$$E^{k} = \frac{1}{2} \sum_{j=1}^{m} (t_{j}^{k} - X_{j}^{k})^{2}$$
,

The MLP error function E is :

$$E = \frac{1}{2} \sum_{k=1}^{r} \sum_{j=1}^{m} \left(t_j^k - F_j(w^l, w^{l-1}, \dots, w^1, a^k) \right)^2$$

One of the most popular techniques is called

error backpropagation,

where the error of output neurons is propagated back to derive the weight adjustment of a given hidden neuron, based on how much the neuron contributes to the output error.

The <u>backpropagation</u> algorithm looks for the minimum of the error function E in the space of weights of connections w using the **method of** gradient descent.

The MLP error function E is :

$$E = \frac{1}{2} \sum_{k=1}^{r} \sum_{j=1}^{m} \left(t_j^k - F_j(w^l, w^{l-1}, \dots, w^1, a^k) \right)^2$$

Gradient descent method: a differentiable F(x) decreases fastest if one goes from a in the direction of the negative gradient of F at a, $-\nabla F(a)$. It follows that, if

$$a' = a + \gamma(-\nabla F(a)) = a - \gamma \nabla F(a)$$

For a $\gamma \in \mathbb{R}_+$ small enough, then $F(a) \geq F(a')$

The *gradient* of E is:

$$\nabla E = \left(\frac{\partial E}{\partial w_{11}^1}, \cdots, \frac{\partial E}{\partial w_{n^1 n^0}^1}, \frac{\partial E}{\partial w_{11}^2}, \cdots, \frac{\partial E}{\partial w_{n^2 n^1}^2}, \cdots, \frac{\partial E}{\partial w_{n^l n^{l-1}}^1}\right)$$

So based on the Gradient descent method, the weight updating policy should be

$$w = w - C\nabla E(w)$$

The MLP error function E is :

$$E = \frac{1}{2} \sum_{k=1}^{r} \sum_{j=1}^{m} \left(t_j^k - F_j(w^l, w^{l-1}, \dots, w^1, a^k) \right)^2$$

Following calculus, a local minimum of a function of two or more variables is defined by equality to zero of its *gradient:*

$$\nabla E = \left(\frac{\partial E}{\partial w_{11}^1}, \cdots, \frac{\partial E}{\partial w_{n^1 n^0}^1}, \cdots, \frac{\partial E}{\partial w_{11}^l}, \cdots, \frac{\partial E}{\partial w_{n^l n^{l-1}}^l}\right)$$

Therefore, during the *iterative process* of *gradient descent* each weight of connection, including the hidden ones, is updated:

$$w_{ji}^h = w_{ji}^h + \Delta w_{ji}^h$$
, where $\Delta w_{ji}^h = -C \frac{\partial E}{\partial w_{ji}^h}$

Here C represents the learning rate as before.

This provides a powerful motivation for using continuous and differentiable activation functions f.

Generic sigmoidal activation function:

$$f(S) = \frac{\alpha}{1 + e^{-\beta S + \gamma}} + \lambda$$

Its derivative is:

$$f'(S) = \frac{df}{dS} = \frac{\beta}{\alpha} \cdot (f(S) + \lambda) (\alpha + \lambda - f(S))$$

Update rule:

$$w_{ji}^h = w_{ji}^h + \Delta w_{ji}^h,$$

where $\Delta w_{ji}^h = -C \frac{\partial E}{\partial w_{ji}^h}$

If all activation functions f(S) in the network are differentiable then, according to the *chain rule* of calculus, differentiating the error function E with respect to the weight of connection in consideration we can express the corresponding partial derivative of the error function.

Topic of Today's Lecture

Calculation of the partial derivative of the error function with respective to a specific weight.

Update rule:

$$w_{ji}^h = w_{ji}^h + \Delta w_{ji}^h$$
,
where $\Delta w_{ji}^h = -C \frac{\partial E}{\partial w_{ji}^h}$

The MLP error function E is:

$$E = \frac{1}{2} \sum_{k=1}^{r} \sum_{j=1}^{m} \left(t_j^k - F_j(w^l, w^{l-1}, \dots, w^1, a^k) \right)^2$$

The **error function** *E* **for a single input:**

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

In practice, during the training,

- if we use the results of all the inputs within the data set to update weights, it is called <u>batch gradient decent</u>;
- if we use the result of a single input to update weights, it is called **stochastic gradient decent**.

Update rule:

$$w_{ji}^h = w_{ji}^h + \Delta w_{ji}^h$$
,
where $\Delta w_{ji}^h = -C \frac{\partial E}{\partial w_{ji}^h}$

The MLP error function E is:

$$E = \frac{1}{2} \sum_{k=1}^{r} \sum_{j=1}^{m} \left(t_j^k - F_j(w^l, w^{l-1}, \dots, w^1, a^k) \right)^2$$

The **error function** *E* **for a single input:**

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

In practice, during the training,

- if we use the results of all the inputs within We focus on Stochastic gradient ed decent in this module.
- if we use the result of a single input to update weights, it is called <u>stochastic gradient decent</u>.

Topic of Today's Lecture

Recall the learning rule:

$$w_{ji}^h = w_{ji}^h + \Delta w_{ji}^h$$
, where $\Delta w_{ji}^h = -C \frac{\partial E}{\partial w_{ji}^h}$

Here C represents the learning rate as before.

We consider the **error function** E **for a single input:**

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

The key issue is apparently how to compute the partial derivative $\frac{\partial E}{\partial w_{ii}^{h}}$.

We consider the **error function** E **for a single input:**

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

Now, assume we are interested to compute the partial derivative of a specific weight $w_{i_0 i_0}^{l_0}$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}}$$

of the connection between the j_0 -th neuron in the l_0 -th layer and the i_0 -th neuron in the (l_0-1) -th layer.

The detailed deduction will be given in the following slides.

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

We consider the **error function** E **for a single input:**

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2}{\partial w_{j_0 i_0}^{l_0}}$$

There are two difference cases:

- 1. Output layer: $l = l_0$.
- 2. Otherwise: $l \neq l_0$.

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2}{\partial w_{j_0 i_0}^{l_0}} \quad \text{When } l = l_0$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} (t_j - X_j^l)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_{j_0} - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2}{\partial w_{j_0 i_0}^{l_0}} \quad \text{When } l = l_0$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} (t_j - X_j^l)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_{j_0} - X_{j_0}^{l_0} \right)^2 \right)}{\partial X_{j_0}^{l_0}} \cdot \frac{\partial X_{j_0}^{l_0}}{\partial w_{j_0 i_0}^{l_0}}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2}{\partial w_{j_0 i_0}^{l_0}} \quad \text{When } l = l_0$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 \right) \cdot \frac{\partial X_{j_0}^{l_0}}{\partial S_{j_0}^{l_0}} \cdot \frac{\partial S_{j_0}^{l_0}}{\partial w_{j_0 i_0}^{l_0}}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2}{\partial w_{j_0 i_0}^{l_0}} \quad \text{When } l = l_0$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2}{\partial w_{j_0 i_0}^{l_0}} \quad \text{When } l = l_0$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} (t_j - X_j^l)^2 \right)}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 \right) \cdot \left(X_{j_0}^{l_0} \right)^2}{\partial X_{j_0}^{l_0}}$$

$$= \left(X_{j_0}^{l_0} - t_{j_0} \right) \cdot \left(\left(f_{j_0}^{l_0} \right)' \left(S_{j_0}^{l_0} \right) \cdot X_{i_0}^{l_0 - 1}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\begin{split} \frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} &= \frac{\partial \frac{1}{2} \sum_{j=1}^m (t_j - X_j^l)^2}{\partial w_{j_0 i_0}^{l_0}} \quad \text{When } l = l_0 \\ &= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 + \sum_{j \neq j_0} \left(t_j - X_j^l \right)^2 \right)}{\partial w_{j_0 i_0}^{l_0}} \\ &= \frac{\partial \frac{1}{2} \left(\left(t_{j_0} - X_{j_0}^{l_0} \right)^2 \right) \cdot \frac{\partial X_{j_0}^{l_0}}{\partial S_{j_0}^{l_0}} \cdot \frac{\partial S_{j_0}^{l_0}}{\partial w_{j_0 i_0}^{l_0}} \\ &= \left(X_{j_0}^{l_0} - t_{j_0} \right) \cdot \left(f_{j_0}^{l_0} \right)' \left(S_{j_0}^{l_0} \right) \cdot X_{i_0}^{l_0 - 1} \\ &= \frac{\partial S_{j_0}^{l_0}}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial \sum_{i=1}^{l_0 - 1} w_{j_0 i}^{l_0} X_i^{l_0 - 1}}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial \left(w_{j_0 i_0}^{l_0} X_{i_0}^{l_0 - 1} + \sum_{i \neq i_0} w_{j_0 i}^{l_0} X_i^{l_0 - 1} \right)}{\partial w_{j_0 i_0}^{l_0}} \end{split}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2}{\partial w_{j_0 i_0}^{l_0}} \qquad \text{When } l \neq l_0$$

$$= \sum_{j=1}^{m} \frac{\partial \frac{1}{2} (t_j - X_j^l)^2}{\partial w_{j_0 i_0}^{l_0}}$$
Sum rule

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2}{\partial w_{j_0 i_0}^{l_0}} \quad \text{When } l \neq l_0$$

$$= \sum_{j=1}^{m} \frac{\partial \frac{1}{2} (t_j - X_j^l)^2}{\partial X_j^l} \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$
Sum rule Chain rule

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2}{\partial w_{j_0 i_0}^{l_0}} \quad \text{When } l \neq l_0$$

$$= \sum_{j=1}^{n^l} \frac{\partial \frac{1}{2} (t_j - X_j^l)^2}{\partial X_j^l} \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$
Sum rule Chain rule

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2}{\partial w_{j_0 i_0}^{l_0}} \quad \text{When } l \neq l_0$$

$$= \sum_{j=1}^{n^l} \frac{\partial \frac{1}{2} (t_j - X_j^l)^2}{\partial X_j^l} \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$= \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{\partial X_{j}^{l}}{\partial w_{j_{0}i_{0}}^{l_{0}}} = \frac{\partial X_{j}^{l}}{\partial S_{j}^{l}} \cdot \frac{\partial S_{j}^{l}}{\partial w_{j_{0}i_{0}}^{l_{0}}} \qquad \text{When } l \neq l_{0}$$

$$= \frac{\partial X_{j}^{l}}{\partial S_{j}^{l}} \cdot \frac{\partial \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} X_{i}^{l-1}}{\partial w_{j_{0}i_{0}}^{l_{0}}}$$

$$= \frac{\partial X_{j}^{l}}{\partial S_{j}^{l}} \cdot \sum_{i=1}^{n^{l-1}} \frac{\partial w_{ji}^{l-1} X_{i}^{l-1}}{\partial w_{i_{0}i_{0}}^{l_{0}}}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{\partial X_{j}^{l}}{\partial w_{j_{0}i_{0}}^{l_{0}}} = \frac{\partial X_{j}^{l}}{\partial S_{j}^{l}} \cdot \frac{\partial S_{j}^{l}}{\partial w_{j_{0}i_{0}}^{l_{0}}} \qquad \text{When } l \neq l_{0}$$

$$= \frac{\partial X_{j}^{l}}{\partial S_{j}^{l}} \cdot \frac{\partial \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} X_{i}^{l-1}}{\partial w_{j_{0}i_{0}}^{l_{0}}}$$

$$= \frac{\partial X_{j}^{l}}{\partial S_{j}^{l}} \cdot \sum_{i=1}^{n^{l-1}} \frac{\partial w_{ji}^{l-1} X_{i}^{l-1}}{\partial w_{i,i}^{l_{0}}}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{\partial X_{j}^{l}}{\partial w_{j_{0}i_{0}}^{l_{0}}} = \frac{\partial X_{j}^{l}}{\partial S_{j}^{l}} \cdot \frac{\partial S_{j}^{l}}{\partial w_{j_{0}i_{0}}^{l_{0}}} \qquad \text{When } l \neq l_{0}$$

$$= \frac{\partial X_{j}^{l}}{\partial S_{j}^{l}} \cdot \frac{\partial \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} X_{i}^{l-1}}{\partial w_{j_{0}i_{0}}^{l_{0}}}$$

$$= \frac{\partial X_{j}^{l}}{\partial S_{j}^{l}} \cdot \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} \frac{\partial X_{i}^{l-1}}{\partial w_{i_{0}i_{0}}^{l_{0}}}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial X_j^l}{\partial S_j^l} \cdot \frac{\partial S_j^l}{\partial w_{j_0 i_0}^{l_0}} \qquad \text{When } l \neq l_0$$

$$= \frac{\partial X_j^l}{\partial S_j^l} \cdot \frac{\partial \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} X_i^{l-1}}{\partial w_{j_0 i_0}^{l_0}}$$

$$= (f_j^l)'(S_j^l) \cdot \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} \frac{\partial X_i^{l-1}}{\partial w_{i_0 i_0}^{l_0}}$$

We consider the error function E for a single input:

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{\partial X_{j}^{l}}{\partial w_{j_{0}i_{0}}^{l_{0}}} = \frac{\partial X_{j}^{l}}{\partial S_{j}^{l}} \cdot \frac{\partial S_{j}^{l}}{\partial w_{j_{0}i_{0}}^{l_{0}}} \qquad \text{When } l \neq l_{0}$$

$$= \frac{\partial X_{j}^{l}}{\partial S_{j}^{l}} \cdot \frac{\partial \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} X_{i}^{l-1}}{\partial w_{j_{0}i_{0}}^{l_{0}}}$$

$$= (f_{j}^{l})'(S_{j}^{l}) \cdot \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} \frac{\partial X_{i}^{l-1}}{\partial w_{j_{0}i_{0}}^{l_{0}}}$$

Induction.

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{l \text{ layer}}{\partial w_{j_0 i_0}^{l_0}} = (f_j^l)'(S_j^l) \cdot \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} \frac{\partial X_i^{l-1}}{\partial w_{j_0 i_0}^{l_0}}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{l \text{ layer}}{\partial w_{j_0 i_0}^{l_0}} = (f_j^l)'(S_j^l) \cdot \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} \frac{\partial X_i^{l-1}}{\partial w_{j_0 i_0}^{l_0}}$$

We consider the error function E for a single input:

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{l \text{ layer}}{\partial w_{j_0 i_0}^{l_0}} = (f_j^l)'(S_j^l) \cdot \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} \frac{\partial X_i^{l-1}}{\partial w_{j_0 i_0}^{l_0}}$$

 l_0 layer, $j \neq j_0$ Base case.

$$\frac{\partial X_{j}^{l_{0}}}{\partial w_{j_{0}i_{0}}^{l_{0}}} = \frac{\partial X_{j}^{l_{0}}}{\partial S_{j}^{l_{0}}} \cdot \frac{\partial \sum_{i=1}^{n^{l_{0}-1}} w_{ji}^{l_{0}} X_{i}^{l_{0}-1}}{\partial w_{j_{0}i_{0}}^{l_{0}}}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{l \text{ layer}}{\partial w_{j_0 i_0}^{l_0}} = (f_j^l)'(S_j^l) \cdot \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} \frac{\partial X_i^{l-1}}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{\partial X_{j}^{l_{0}}}{\partial w_{j_{0}i_{0}}^{l_{0}}} = \frac{\partial X_{j}^{l_{0}}}{\partial S_{j}^{l_{0}}} \cdot \frac{\partial \sum_{i=1}^{n^{l_{0}-1}} w_{ji}^{l_{0}} X_{i}^{l_{0}-1}}{\partial w_{j_{0}i_{0}}^{l_{0}}}$$
Base case.

We consider the error function E for a single input:

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{l \text{ layer}}{\partial w_{j_0 i_0}^{l_0}} = (f_j^l)'(S_j^l) \cdot \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} \frac{\partial X_i^{l-1}}{\partial w_{j_0 i_0}^{l_0}}$$

 l_0 layer, $j \neq j_0$ Base case.

$$\frac{\partial X_{j}^{l_{0}}}{\partial w_{j_{0}i_{0}}^{l_{0}}} = \frac{\partial X_{j}^{l_{0}}}{\partial S_{j}^{l_{0}}} \cdot \frac{\partial \sum_{i=1}^{n^{l_{0}-1}} w_{ji}^{l_{0}} X_{i}^{l_{0}-1}}{\partial w_{j_{0}i_{0}}^{l_{0}}} = 0$$

We consider the **error function** E **for a single input:**

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{l \text{ layer}}{\partial w_{j_0 i_0}^{l_0}} = (f_j^l)'(S_j^l) \cdot \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} \frac{\partial X_i^{l-1}}{\partial w_{j_0 i_0}^{l_0}}$$

 l_0 layer, $j = j_0$ Base case.

$$\frac{\partial X_{j}^{l_0}}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial X_{j_0}^{l_0}}{\partial S_{j_0}^{l_0}} \cdot \frac{\partial S_{j_0}^{l_0}}{\partial w_{j_0 i_0}^{l_0}} = \frac{\partial X_{j}^{l_0}}{\partial S_{j}^{l_0}} \cdot X_{i_0}^{l_0 - 1}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n^l} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{l \text{ layer}}{\partial w_{j_0 i_0}^{l_0}} = (f_j^l)'(S_j^l) \cdot \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} \frac{\partial X_i^{l-1}}{\partial w_{j_0 i_0}^{l_0}}$$

$$l_0$$
 layer, $j = j_0$ Base case.

$$\frac{\partial X_{j}^{l_0}}{\partial w_{j_0 i_0}^{l_0}} = \left(f_{j_0}^{l_0}\right)' \left(S_{j}^{l_0}\right) \cdot X_{i_0}^{l_0 - 1}$$

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$
$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 i_0}^{l_0}} = \sum_{j=1}^{n} (X_j^l - t_j) \cdot \frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}}$$

$$\frac{l \text{ layer}}{\partial X_j^l} \quad \text{Induction.}$$

$$\frac{\partial X_j^l}{\partial w_{j_0 i_0}^{l_0}} = (f_j^l)'(S_j^l) \cdot \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} \frac{\partial X_i^{l-1}}{\partial w_{j_0 i_0}^{l_0}}$$

$$l_0$$
 layer Base case.

$$\frac{\partial X_{j}^{l_{0}}}{\partial w_{j_{0}i_{0}}^{l_{0}}} = \begin{cases} \left(f_{j_{0}}^{l_{0}}\right)' \left(S_{j}^{l_{0}}\right) \cdot X_{i_{0}}^{l_{0}-1}, & j = j_{0} \\ 0, & j \neq j_{0} \end{cases}$$

Partial Derivative: Conclusion

$$E = \frac{1}{2} \sum_{j=1}^{m} e_j^2 = \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j)^2$$

$$= \frac{1}{2} \sum_{j=1}^{m} (t_j - X_j^l)^2$$

$$\frac{\partial E}{\partial w_{j_0 l_0}^{l_0}} = \begin{cases} \left(X_{j_0}^{l_0} - t_{j_0}\right) \cdot \left(f_{j_0}^{l_0}\right)' \left(S_{j_0}^{l_0}\right) \cdot X_{i_0}^{l_0 - 1} & \text{When } l = l_0 \\ \sum_{j=1}^{n^l} \left(X_{j}^{l} - t_{j}\right) \cdot \left(\left(f_{j}^{l}\right)' \left(S_{j}^{l}\right) \cdot \sum_{i=1}^{n^{l-1}} w_{ji}^{l-1} \left(\cdots \left(f_{j_0}^{l_0}\right)' \left(S_{j_0}^{l_0}\right) \cdot X_{i_0}^{l_0 - 1}\right) & \text{When } l \neq l_0 \end{cases}$$

A Running Example

A Running Example

a_1	a_2	t_1
0.5	0.4	0.5

$$\frac{\partial E}{\partial w_{11}^3} = (X_1^3 - t_1) \cdot (sig)'(S_1^3) \cdot X_1^2$$

a_1	a_2	t_1
0.5	0.4	0.5

$$\frac{\partial E}{\partial w_{11}^3} = \frac{(X_1^3 - t_1) \cdot (sig)'(S_1^3) \cdot X_1^2}{0.19 \quad 0.69 \times (1 - 0.69)} = 0.02763$$

a_1	a_2	t_1
0.5	0.4	0.5

$$\frac{\partial E}{\partial w_{11}^2} = (X_1^3 - t_1) \cdot (sig)'(S_1^3) \cdot w_{11}^3 \cdot (sig)'(S_1^2) \cdot X_1^1$$

a_1	a_2	t_1
0.5	0.4	0.5

$$\frac{\partial E}{\partial w_{11}^2} = \underbrace{(X_1^3 - t_1) \cdot (sig)'(S_1^3) \cdot w_{11}^3}_{0.19} \cdot \underbrace{(sig)'(S_1^2) \cdot X_1^1}_{0.69 \times (1 - 0.69)} \cdot \underbrace{0.31}_{0.68 \times (1 - 0.68)} \cdot \underbrace{X_1^1}_{0.35} = 0.0009$$