$$Z = \frac{\hat{p} - p_0}{\sqrt{p_0 U + p_0}/n} = \frac{82/150 - 0.4}{\sqrt{0.4 \cdot 0.6} / 156} = 3.6667 > Z_{\alpha/\alpha}$$
.

14.7 Ho: P= 025, P= 0.25, P= 0.25, P4=0.25 Ha: Otherwise. Q=0.01

136114 = 340.25

 $\chi^{2} = \frac{(328 - 340.25)^{2} + (334 - 340.25)^{2} + (372 - 340.25)^{2} + (372 - 340.25)^{2}}{(372 - 340.25)^{2}}$

= 4. 0345 = 4.03

X201,3 = 11,349 > 4.03. Do not regert Ho.

P-value = P(x3 > 4.03) >0.1 > x.

Do not rejeur Ho

Assume a test at Q =0.01

Ha: Otherwise

16+2.16+3.18+4.15+5.9+6.6+7.5+8.3+9.9+10.3+11.0+2 =380 $\hat{\lambda} = \hat{\mu} = \frac{380}{120} = 3.167$

$$\frac{7}{0}$$
 $\frac{3}{0}$ $\frac{1}{0}$ $\frac{1}$

$$\chi^{2} = \sum_{i=0}^{7} \frac{(0i-Ei)^{2}}{Ei} = 103.9959$$
. $K = 8$, $d = 1$

$$\chi^{2}_{0.01,6} = 16.87a < \chi^{2}$$
Régert Ho

The distribution is not poisson

$$\begin{aligned} & (\mathcal{U}, [Q] - \varphi(h) = \theta_1 - P(L) = \theta_2 - P(N) = [-\theta_1 - \theta_2] \\ & P_1 = \theta_1^{-2} - P_2 = \theta_2^{-2} - P_2 = (I - \theta_1 - \theta_2)^{-2} - P_2 = 2\theta_1 \theta_2 - P_2 = 2\theta_1 \theta_2 - P_2 = 2\theta_1 \theta_2 - P_2 = 2\theta_1 (I - \theta_1 - \theta_2) - P_2 = 2\theta_2 (I - \theta_1 - \theta_2) - P_3 = 53 - P_4 = 38 - P_2 = 20 - P_3 = 53 - P_4 = 38 - P_4 = 200 - P_3 = 53 - P_4 = 38 - P_4 = 200 - P_3 = 53 - P_4 = 38 - P_4 = 200 - P_3 = 53 - P_4 = 38 - P_4 = 200 - P_3 = 53 - P_4 = 38 - P_4 = 200 - P_3 = 53 - P_4 = 38 - P_4 = 200 - P_4 = 200 - P_3 = 200 - P_4 = 20$$

$$\frac{\theta_{1}}{k_{1}} = \frac{1-\theta_{1}-\theta_{2}}{k_{3}} \qquad k_{1} = 2n_{1}+n_{1}+n_{5} = 171$$

$$k_{2} = 2n_{2}+n_{1}+n_{5} = 110$$

$$\theta_{2} = \frac{1-\theta_{1}-\theta_{2}}{k_{2}} \qquad k_{3} = 2n_{3}+n_{5}+n_{5} = 119$$

$$\hat{\theta}_{1} = \frac{171}{20} = \frac{171}{400} = 0.4275$$

$$\hat{\theta}_{2} = \frac{110}{400} = 0.2750$$

$$\chi^2 = \sum \frac{(0,-\epsilon_1)^2}{\epsilon_1} = 29.3033$$

9.50 a)
$$P_1 = \frac{35}{50}$$
. $P_2 = \frac{66}{80}$ $P = \frac{35+66}{160}$

$$H_0: P_1 = P_2$$

$$H_a = P_1 \neq P_2$$
 $x = 0.21$

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_1 - \hat{p}_2}} = -5.0797 \quad |Z| > Z_{0/2}$$

14. 2b	Treatment	S Number of Fruits Matured	Number of Fruits Aborted	
Observed	Control	141	206	347
	Two leaves removed	28	69	57
	Four leaves removed	25	73	98
	Six leaves removed	24	78	102
	Eight leaves removed	20	82	15
		238	508	701

Ha: otherwise.

$$\hat{p} = \frac{38}{238+568} = 0.319 \quad |-\hat{p} = 0.681$$

d=010)

Experted table

5 f
$$\chi^2 = \sum \left(\frac{O_5 - E_1}{E_1}\right)^2 = 24.8206$$
 30.7469 66.0536 $\chi_{0.01,4} = 13.2767$ $<\chi^2$
 31.2659 66.7346
 32.5416 69.4589
 32.5416 69.4589

14.32

	,	•	Usage Le	evel		
	, V	Never	Rarely	Frequently	ni.	
D 4 4	Liberal	479	173	119	771	
Political Views	Conservative 2	214	47	15	276	n = 1349
	Other 3	172	45	85	302	
	nj	865	એડ	219		

Ha: Otherwise

$$\hat{P}_{1.} = \frac{771}{1349} = 0.5715$$

$$\hat{P}_{.1} = \frac{88T}{1349} = 0.6412$$

$$\hat{P}_{2.} = \frac{276}{1349} = 0.046$$

$$\hat{P}_{2.} = \frac{26T}{1349} = 0.064$$

$$\hat{P}_{3.} = \frac{302}{1349} = 0.2239$$

$$\hat{P}_{1.3} = \frac{8T}{1349} = 0.1623$$

Experted take!

Pditical
$$\chi^2 = 5 \frac{(Nij - \hat{e}_{ij})^2}{\hat{e}_{ij}}$$

Pditical $\chi^2 = 5 \frac{(Nij - \hat{e}_{ij})^2}{\hat{e}_{ij}}$
 $\chi^2 = 5 \frac{(Nij - \hat{e}_{ij})^2}{\hat{e}_{ij}}$

14.36

1 0.13 0.15 0.28 0.6

2 0.07 0.11 0.22 0.9

$$\hat{P}_{ij}$$
 0.2 0.3 0.5 1

a)

Ha: otherwise.

$$n_{ij} \mid 1 = 2$$

Observed table: 1 13 19 28

 $2 \mid 7 \mid 11 \mid 22$

$$\chi^2 = \sum_{i=1}^{N} \frac{(N_{ij} - \hat{e}_{ij})^2}{\hat{e}_{ij}}$$

Expected table:

$$\frac{\hat{c}_{1}}{1}$$
 | $\frac{2}{1}$ | $\frac{3}{1}$ | $\frac{3}{1}$ | $\frac{2}{1}$ | $\frac{3}{1}$ | $\frac{3}{1}$