

1 of 57 Page:

FCC Radio Test Report FCC ID: VON-M1-S

Original Grant

TB-FCC160823 Report No.

Applicant DIMTON CO., LTD.

Equipment Under Test (EUT)

Bluetooth helmet headset **EUT Name**

M1-s EVO Model No.

M1-s Series Model No.

Brand Name BlueRider

2018-08-02 **Receipt Date**

Test Date 2018-08-13 to 2018-08-24

2018-08-27 **Issue Date**

FCC Part 15: 2017, Subpart C(15.247) **Standards**

ANSI C63.10: 2013 **Test Method**

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Engineer Supervisor

: DVAN SV : Loy Lai. **Engineer Manager**

Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Page: 2 of 57

Contents

COL	NIENIS	
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	<i>.</i>
	1.4 Description of Support Units	
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	11
3.	TEST EQUIPMENT	12
4.	CONDUCTED EMISSION TEST	13
	4.1 Test Standard and Limit	13
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	14
	4.5 Test Data	14
5.	RADIATED EMISSION TEST	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	
	5.3 Test Procedure	17
	5.4 EUT Operating Condition	17
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	
	6.5 Test Data	19
7.	NUMBER OF HOPPING CHANNEL	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	20
8.	AVERAGE TIME OF OCCUPANCY	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	

Report No.: TB-FCC160823
Page: 3 of 57

	8.3 Test Procedure	21
	8.4 EUT Operating Condition	21
	8.5 Test Data	
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	
	9.1 Test Standard and Limit	22
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	22
	9.5 Test Data	
10.	PEAK OUTPUT POWER TEST	23
	10.1 Test Standard and Limit	23
	10.2 Test Setup	23
	10.3 Test Procedure	
	10.4 EUT Operating Condition	23
	10.5 Test Data	23
11.	ANTENNA REQUIREMENT	
	11.1 Standard Requirement	24
	11.2 Antenna Connected Construction	
	11.3 Result	24
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	25
ATT	ACHMENT B RADIATED EMISSION TEST DATA	33
	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	
	ACHMENT D NUMBER OF HOPPING CHANNEL TEST DATA	
	ACHMENT E AVERAGE TIME OF OCCUPANCY TEST DATA	
ATT	ACHMENT G PEAK OUTPUT POWER TEST DATA	56

Page: 4 of 57

Revision History

Report No.	Version	Description	Issued Date
TB-FCC160823	Rev.01	Initial issue of report	2018-08-27
	W W W	TO THE REAL PROPERTY.	
3	000	THE REAL PROPERTY.	(133)
MOIN			400
THE CHILL			10 33
THE STATE OF		Dis Miles	OT THE
	MOBA	The state of the s	
60033			B m
	0000 T		6000
TUUS		WILLIAM WORK	THE PERSON NAMED IN
THE REAL PROPERTY.	- mi	1000	
	3 6		

Page: 5 of 57

1. General Information about EUT

1.1 Client Information

Applicant		IMTON CO., LTD.		
Address : 1F., NO. 137, Xingfu W, Rd. Taiwan		1F., NO. 137, Xingfu W, Rd., Xingzhuang Dist., New Taipei City, Taiwan		
Manufacturer	Manufacturer : Dimfeng Electronic Technology(Shenzhen) Co., Ltd			
Address		Rm.1906, Commercial Building, Yonghuayuan A, No.6, Baotian Second Road, Xixiang Street, Baoan District, Shenzhen City, Guangdong Province, China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Bluetooth helmet headset	Bluetooth helmet headset		
Models No.	:	M1-s EVO, M1-s			
Model Difference	:	The battery parameters, appearance size and color are different, of models are in the same PCB layout interior structure and electricults.			
		Operation Frequency:	Bluetooth V4.1: 2402~2480 MHz		
Due due d		Number of Channel:	Bluetooth: 79 Channels see Note 2		
Product Description		Max Peak Output Power:	Bluetooth: 16.161dBm(GFSK)		
		Antenna Gain:	3dBi dipole Antenna		
2 Mins		Modulation Type:	GFSK (1 Mbps)		
Power Supply		DC Voltage Supply from A DC Voltage supplied by Li-			
Power Rating		Input: DC 5.0V 1A by Adapter DC 3.7V by 900mAh Li-ion battery(M1-s EVO) DC 3.7V by 600mAh Li-ion battery(M1-s)			
Software Version		BT 2.4G			
Hardware Version	:	V4.1			
Connecting I/O Port(S)		Please refer to the User's Manual			

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 57

(2) Channel List:

	Bluetooth Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
00	2402	27	2429	54	2456		
01	2403	28	2430	55	2457		
02	2404	29	2431	56	2458		
03	2405	30	2432	57	2459		
04	2406	31	2433	58	2460		
05	2407	32	2434	59	2461		
06	2408	33	2435	60	2462		
07	2409	34	2436	61	2463		
08	2410	35	2437	62	2464		
09	2411	36	2438	63	2465		
10	2412	37	2439	64	2466		
11	2413	38	2440	65	2467		
12	2414	39	2441	66	2468		
13	2415	40	2442	67	2469		
14	2416	41	2443	68	2470		
15	2417	42	2444	69	2471		
16	2418	43	2445	70	2472		
17	2419	44	2446	71	2473		
18	2420	45	2447	72	2474		
19	2421	46	2448	73	2475		
20	2422	47	2449	74	2476		
21	2423	48	2450	75	2477		
22	2424	49	2451	76	2478		
23	2425	50	2452	77	2479		
24	2426	51	2453	78	2480		
25	2427	52	2454				
26	2428	53	2455				

⁽³⁾ The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Charging + TX Mode

Page: 7 of 57

	TX Mode				
8					
		EUT			

1.4 Description of Support Units

Equipment Information						
Name	Model	FCC ID/VOC	Manufacturer	Used "√"		
ADAPTER	1		1.00	V		
	Cable Information					
Number	Shielded Type	Ferrite Core	Length	Note		
Cable 1	NO	NO	1M	A William		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test			
Final Test Mode Description			
Mode 1	Charging + TX Mode		

For Radiated Test				
Final Test Mode	Description			
Mode 1	TX GFSK Mode			
Mode 2	TX Mode(GFSK) Channel 00/39/78			
Mode 3	Hopping Mode(GFSK)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest,

Page: 8 of 57

middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	BlueTest3.exe		
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	110 10	110 10	110 10

Page: 9 of 57

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 10 of 57

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

11 of 57 Page:

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2					
Standard Section		Total No. or	1 1	B	
FCC	IC	Test Item	Judgment	Remark	
15.203	<u> </u>	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	N/A	
15.205	RSS-Gen 7.2.3	Restricted Bands	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	PASS	N/A	
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	PASS	N/A	
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	PASS	N/A	
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	PASS	99%OBW: GFSK: 832.55kHz	

Page: 12 of 57

3. Test Equipment

Conducted Emiss	ion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar.15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar.15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar.15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar.15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar.15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar.15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar.15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018
DE Davis - Oan	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Oct. 26, 2017	Oct. 25, 2018

Page: 13 of 57

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Eroguanov	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 14 of 57

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

 ${\tt Report\ No.:\ TB-FCC160823}$

Page: 15 of 57

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 16 of 57

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 17 of 57

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 57

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)		
Band (MHz)	Peak	Average	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

Note: All restriction bands have been tested, only the worst case is reported.

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: TB-FCC160823 Page: 19 of 57

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with AVG Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.

Please refer to the Attachment C.

Page: 20 of 57

7. Number of Hopping Channel

7.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 57

8. Average Time of Occupancy

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit
15.247(a)(1)	Average Time of Occupancy	0.4 sec

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

8.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

 $\{Total \ of \ Dwell\} = \{Pulse \ Time\} * (1600 / X) / \{Number \ of \ Hopping \ Frequency\} * \{Period\} = 0.4s * \{Number \ of \ Hopping \ Frequency\}$

Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2, 3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 57

9. Channel Separation and Bandwidth Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=100 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 57

10. Peak Output Power Test

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW ≥ RBW for bandwidth more than 1MHz.

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

10.5 Test Data

Please refer to the Attachment G.

Page: 24 of 57

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 3dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result

The EUT antenna is a Dipole Antenna. It complies with the standard requirement.

Antenna Type				
DE CO	⊠Permanent attached antenna			
	☐Unique connector antenna			
	☐Professional installation antenna			
		_		

25 of 57 Page:

Attachment A-- Conducted Emission Test Data

The following is M1-s EVO test plot.

Page: 26 of 57

Temperature:	25 ℃	61	Relative Hu	ımidity:	55%	
Test Voltage:	AC 120V/60 Hz	20 0	(mm)	1379		
Terminal:	Neutral		A C	- (MI	
Test Mode:	USB Charging+ TX Mode					
Remark:	Only worse case	is reported		3	A 1	The same
90.0 dBuV					QP:	
					AVG:	_
40						
2000	X					
1 A A A A A A A A A A A	m. Maranangan	WALL MAYOU TO NOW IN	\mar\d\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Addon	. *	
~~\^\^\^\	White Morning in the	م دره المعدد المالية	ሚፈላቸዉል ስ ከ	THE PROPERTY OF THE PROPERTY O	HAN MANAPH - LAKANAPAPAPA	peak
, , , , , , , , , , , ,	May Augh Lawred	day And Against	A.	WWWW	and the state of t	AVG
-10						
0.150	0.5	(MHz)	5			30.000
No. Mk. Fr	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over	
M	Hz dBuV	dB	dBuV	dBuV	dB	Detector
1 0.4	580 21.61	9.58	31.19	56.73	-25.54	QP
2 * 0.4	580 16.55	9.58	26.13	46.73	-20.60	AVG
3 1.33	260 8.42	9.60	18.02	56.00	-37.98	QP
4 1.33	260 -1.93	9.60	7.67	46.00	-38.33	AVG
5 2.03	300 3.22	9.61	12.83	56.00	-43.17	QP
6 2.03	300 -1.44	9.61	8.17	46.00	-37.83	AVG
7 4.09	939 5.36	9.74	15.10	56.00	-40.90	QP
8 4.09	939 0.69	9.74	10.43	46.00	-35.57	AVG
9 9.88	580 1.04	10.24	11.28	60.00	-48.72	QP
10 9.8	580 -4.38	10.24	5.86	50.00	-44.14	AVG
11 19.03	220 2.29	10.64	12.93	60.00	-47.07	QP
12 19.03	220 -2.75	10.64	7.89	50.00	-42.11	AVG
Emission Level	= Read Level+ Coi	rect Factor	,			

27 of 57 Page:

25℃ 55% Temperature: **Relative Humidity:** AC 240V/60 Hz **Test Voltage:** Terminal: Neutral Test Mode: USB Charging+ TX Mode Remark: Only worse case is reported 90.0 dBuV QP: AVG: -10 0.150 0.5 (MHz) 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dΒ Detector 13.88 9.58 -33.12 QΡ 1 0.4661 23.46 56.58 2 0.4661 5.02 9.58 14.60 46.58 -31.98 AVG 3 15.76 9.59 25.35 56.00 -30.65 QΡ 0.6980 4.97 9.59 14.56 46.00 -31.44 4 0.6980 AVG 5 1.3060 13.16 9.60 22.76 56.00 -33.24 QΡ 6 46.00 -36.74 1.3060 -0.349.26 AVG 9.60 7 2.0500 14.49 9.61 24.10 56.00 -31.90 QΡ 8 2.0500 4.72 9.61 14.33 46.00 -31.67 AVG 9 3.7420 4.06 9.71 13.77 56.00 -42.23 QΡ 46.00 -38.66 10 3.7420 -2.379.71 7.34 AVG 11 21.9460 6.70 10.67 17.37 60.00 -42.63 QΡ 12 50.00 -39.34 21.9460 -0.01 10.67 10.66 AVG

Emission Level= Read Level+ Correct Factor

29 of 57 Page:

The following is M1-s test plot.

30 of 57 Page:

Temperature: 25 °C **Relative Humidity:** 55% **Test Voltage:** AC 240V/50Hz Terminal: Line **Test Mode:** Normal working with TX B Mode Remark: Only worse case is reported 90.0 dBuV QP: AVG: 0.5 30.000 0.150 (MHz) Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dΒ Detector 15.80 -38.31QΡ 1 0.19809.58 25.38 63.69 -42.83 2 0.1980 1.28 53.69 9.58 10.86 AVG 56.00 -26.48 QΡ 3 0.6940 19.91 9.61 29.52 46.00 -26.97 4 0.6940 9.42 9.61 19.03 AVG 5 1.3140 0.08 56.00 -46.32QΡ 9.60 9.68 6 1.3140 -4.88 9.60 4.72 46.00 -41.28 AVG 7 1.7740 18.57 56.00 -27.82 QΡ 9.61 28.18 8 1.7740 8.46 9.61 18.07 46.00 -27.93 AVG 9 2.3340 0.72 9.62 10.34 56.00 -45.66 QΡ 10 2.3340 -4.639.62 4.99 46.00 -41.01 AVG 11 2.9219 19.04 9.64 28.68 56.00 -27.32 QΡ 12 2.9219 4.18 9.64 13.82 46.00 -32.18 AVG

Emission Level= Read Level+ Correct Factor

32 of 57 Page:

Page: 33 of 57

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

The following M1-s EVO test plot.

30MHz~1GHz

emperature:	25℃			Relative H	lumidity:	55%				
est Voltage:	AC 12									
nt. Pol.	Horizo	ontal	11111		30	A	1 8			
est Mode:	MILE									
emark:	Only	vorse case	is reported		000		600			
80.0 dBuV/m										
					(RF)FCC 15C	3M Radiation Margin -6	" L			
						Malylii -6				
30			1 2 3 X X X X	5			wrzh.			
			_X^^\		6 ************************************	andrew M	W. 7 m			
Monday	~\ .~\	/\\	wr\	holyward						
	the signal	~~~~								
-20										
30.000 40	50 60 70	80	(MHz)	300	400 500	600 700	1000.000			
		Reading	Correct	Measure-						
No. Mk.	Freq.	Level	Factor	ment	Limit	Over				
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto			
1 1	147.4036	45.61	-21.71	23.90	43.50	-19.60	QP			
2 ′	157.0074	45.49	-21.04	24.45	43.50	-19.05	QP			
3 * ′	175.6516	45.39	-20.32	25.07	43.50	-18.43	QP			
4	193.7728	42.64	-19.87	22.77	43.50	-20.73	QP			
	218.3085	40.37	-18.94	21.43	46.00	-24.57	QP			
5 2										
	349.2500	34.13	-14.61	19.52	46.00	-26.48	QP			

Page: 34 of 57

Page: 35 of 57

The following M1-s test plot.

30MHz~1GHz

Temp	Temperature: 2			25 ℃ Relative Humidity						ity:	<i>y</i> : 55%					
Test \	Volta	ge:	A	AC 120V/60HZ												
Ant. F	Pol.		Н	orizo	ntal											
Test I	Mode) :	T	TX B Mode 2412MHz												
Rema	ark:		0	nly w	orse	e cas	se is reported	I W								
80.0	dBuV/r	n														7
										O	RFJFCC	15C 3			г	
													Marc	gin -6	18	1
-						#			3							
30								2	Ĭ	Ţ	5 ቾ			۸.	, Mark	
1	1 Y					$\perp \perp$	100		$M_{\rm M}$	/₩\	$\mathbb{N}^{\mathbb{N}}$	4	W	/\v/	Ante ∨A	4
W	M	mn-1				met.	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ייגע	v y	N/W					
		,	My	who	MAN	744 A	' V									
-20																
30.00	00 4	40 5	50 €	60 70)		(MHz)		300	-	100	500	600	700	1000.	.000
					Rea	adin	a Correct	Measu	ıre-							
No.	Mk	. F	req			evel	Factor	men		Lir	nit	(Ove	r		
		N	ИНz		dl	BuV	dB/m	dBuV/	/m	dB	uV/m		dB		Detec	to
1		32.	405	1059 33.69		-14.81	18.8	8	4(-	21.	QI	Р			
2		207	.850	8501		3.93	-19.52	24.41		43.50		_	-19.09		QP	
3	*					3.59		32.17		46.00			-13.83		QP	
4		361				4.25		30.2			3.00		15.7		QI	
5		472	.176	50	38	3.21	-11.38	26.8	3		6.00		19.′	17	QI	P
6		900	147	74	33	3.30	-3.60	29.7	0	46	3.00	_	16.3	30	QI	Ρ

Page: 36 of 57

1000.000 3550.00

6100.00

8650.00

Report No.: TB-FCC160823

Page: 37 of 57

Above 1GHz(Only worse case is reported)

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		THU:
Ant. Pol.	Horizontal	1	13.9
Test Mode:	TX GFSK Mode 2402MHz		
Remark:	No report for the emission wh prescribed limit.	ich more than 10 dB be	elow the

No.	Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4803.988	36.81	14.43	51.24	54.00	-2.76	AVG
2		4804.342	47.87	14.43	62.30	74.00	-11.70	peak

11200.00 13750.00 16300.00 18850.00

21400.00

26500.00 MHz

Page: 38 of 57

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX GFSK Mode 2402MHz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No.	Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4803.928	38.04	14.43	52.47	54.00	-1.53	AVG
2		4804.232	46.87	14.43	61.30	74.00	-12.70	peak

Page: 39 of 57

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX GFSK Mode 2441MHz	THE PARTY NAMED IN				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.970	37.56	14.91	52.47	54.00	-1.53	AVG
2		4882.222	44.89	14.91	59.80	74.00	-14.20	peak

Page: 40 of 57

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	WW.	NAME OF THE PARTY				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX GFSK Mode 2441MHz						
Remark:	k: No report for the emission which more than 10 dB below the prescribed limit.						

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.888	36.78	14.91	51.69	54.00	-2.31	AVG
2		4881.908	45.95	14.91	60.86	74.00	-13.14	peak

Page: 41 of 57

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	4000	THU.
Ant. Pol.	Horizontal	TO THE REAL PROPERTY.	13.0
Test Mode:	TX GFSK Mode 2480MHz		
Remark:	No report for the emission will prescribed limit.	nich more than 10 dB b	elow the
100.0 40.344			

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.910	36.71	15.39	52.10	54.00	-1.90	AVG
2		4960.330	46.17	15.40	61.57	74.00	-12.43	peak

Page: 42 of 57

Temperature:	25℃	Relative Humidity:	55%	
Test Voltage:	DC 3.7V	400	MILL	
Ant. Pol.	Vertical	4	133	
Test Mode:	TX GFSK Mode 2480MHz			
Remark: No report for the emission which more than 10 dB below the prescribed limit.				

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.872	45.86	15.39	61.25	74.00	-12.75	peak
2	*	4959.992	37.19	15.39	52.58	54.00	-1.42	AVG

Page: 43 of 57

Attachment C-- Restricted Bands Requirement Test Data

(1) Radiation Test

Page: 44 of 57

Page: 45 of 57

emp	eratu	re:	25℃					Re	lative	Humidity	y: 55%	
est \	/oltag	je:	DC 3	3.7V		10				N. Carlot		Man
Ant. F	ol.		Hori	zontal						TI	11.30	
Test N	/lode:		TX	SFSK N	/lode	2480 N	/Hz					ATTA
Rema	rk:		Only	worse	case	is repo	orted	6	Mills		a V	A LANGE
100.0	dBuVŽm											
50	2	3 ×									C PART 15C (PE	-
2472.	500 248	2.50 2	492.50	2502.50	251	2.50 2	522.50	2532	.50 2	2542.50 255	2.50	2572.50
				Read	ding	Corr	ect	Mea	sure-	_		
	Mk	Fre	eq.	Lev	el	Fac	tor	me	ent	Limit	Over	
No.	IVIN.		-									
No.	IVIN.	MH	<u> </u>	dBu	ıV	dB/r	n	dBı	uV/m	dBuV/n	n dB	Detec
No.	X		· Iz	dBu		dB/r			uV/m 3.77		n dB al Frequency	
		MH	1z 700		.39		8	103		Fundamenta		pea
1	X	MH 2479.	700 900	100	.39	3.3	8	103 93	3.77	Fundamenta	al Frequency	pea

Page: 46 of 57

47 of 57 Page:

(2) Conducted Test

48 of 57 Page:

Page: 49 of 57

Attachment D-- Number of Hopping Channel Test Data

Page: 50 of 57

Attachment E-- Average Time of Occupancy Test Data

Temper	ature:	25°	C	W	Relative Humidity:	55%	Million
Test Vo	Itage:	DC	3.7V		a form		
Test Mo	de:	Hop	oping Mode (C	GFSK)			
Test	Chan	nel	Pulse	Total of Dwo	ell Period Time	Limit	Result
Mode	(MH	z)	Time (ms)	(ms)	(s)	(ms)	Resuit
1DH1	244	1	0.390	124.80	31.60	400	PASS
1DH3	244	1	1.642	262.72	31.60	400	PASS
1DH5	244	1	2.890	308.27	31.60	400	PASS

1DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

1DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

1DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

GFSK Hopping Mode 1DH1

51 of 57 Page:

GFSK Hopping Mode 1DH5

Page: 52 of 57

Attachment F-- Channel Separation and Bandwidth Test Data

emperature:	25℃		R	elative Humid	dity:	55%
est Voltage:	DC 3.	.7V				
est Mode:	TX M	ode (GFSK)		MULTINE THE		1
hannel freque (MHz)		99% OBW (kHz)	:	20dB Bandwi (kHz)	dth	20dB Bandwidth *2 (kHz)
2402		832.55		864.4		
2441		830.47		862.6		
2480		832.07		871.5		
	1	GFS	K TX Mo	de	L	
		2	402 MHz			
Center Fred	m Analyzer - Occupi RF 75 Ω Q 2.4020000 Ref 20.000	AC SENS 000 GHz #IFGain:Low	SE:INT Center Freq: 2.40200 Trig: Free Run #Atten: 30 dB	ALIGN AUTO 0000 GHz Avg Hold:>10/10	Radio S	2:11:59PM Sep 14, 2018 Std: None
Center Fred	RF 75Ω q 2.402000 0	AC SENS 000 GHz #IFGain:Low	Center Freq: 2.40200 Trig: Free Run	0000 GHz	Radio S	2:11:59 PM Sep 14, 2018 Std: None
Center Fred 15 dB/div Log 5.00 -10.0 25.0 -40.0 -65.0 -70.0 -85.0 -100 -115	Ref 20.00 e	AC SENS 000 GHz #IFGain:Low	Center Freq: 2.40200 Trig: Free Run	0000 GHz	Radio S	2:11:59PM Sep 14, 2018 Std: None Device: BTS
Center Fred 15 dB/div Log 5.00 -10.0 -25.0 40.0 65.0 -70.0 65.0 -100	Ref 20.00 e	AC SENS 000 GHz #IFGain:Low	Center Freq: 2.40200 Trig: Free Run	Avg Hold:>10/10	Radio D	2:11:59 PM Sep 14, 2018 Std: None
Center Fred 15 dB/div Log 500 -100 -250 -40.0 -55.0 -70.0 -115 Center 2.40 #Res BW 30	Ref 20.00 e	AC SENS ##FGain:Low ##Bm	Center Freq: 2.40200 Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10	Radio D	Span 2 MHz
Center Fred 15 dB/div Log 5.00 -10.0 25 0 -40.0 -55.0 -70.0 -85.0 -1105 Center 2.40 #Res BW 3t Occupie	Ref 20.00 c	dBm dBm sac Sensitive Se	#VBW 100 Total Power	Avg Hold:>10/10 KHz 15.6 dBm	Radio D	Span 2 MHz
Center Fred 15 dB/div Log 5.00 -10.0 -25.0 -40.0 -56.0 -70.0 -85.0 -1100 -115 Center 2.40 #Res BW 30	Ref 20.00 c	dBm dBm sac Sensitive Se	#VBW 100 Total Power	Avg Hold:>10/10 KHz 15.6 dBm	Radio D	Span 2 MHz

Report No.: TB-FCC160823 Page: 53 of 57

GFSK TX Mode

Page: 54 of 57

Temperature:	25℃		Relative Hur	nidity:	55%
Test Voltage:	DC 3.7V				
Test Mode:	Hopping I	Mode (GFSK)		MA	
Channel frequ	uency	Separation Re	ad Value	Sep	aration Limit
(MHz)		(kHz)			(kHz)
2402		1010			864.4
2441		980			862.6
2480		990			871.5
		GFSK Hoppin	g Mode		

55 of 57 Page:

Center 2.402000 GHz #Res BW 3.0 MHz Page: 56 of 57

Attachment G-- Peak Output Power Test Data

Temperature:	25℃		Re	lative Humid	ity:	55%
Гest Voltage:	DC 3.7V	CALL		6300	-	21
Test Mode:	TX Mode	(GFSK)	1111053		die	
Channel freque	ncy (MHz)	Test R	esult (dBr	m)	Lin	nit (dBm)
2402		1	3.005			
2441		1	6.161			30
2480		1	5.979			
		GFSk	C TX Mode	9		
		24	02 MHz			
Keysight Spectrum	Analyzer - Swept SA F 75 Ω AC	SENSE:	INT A	ALIGN AUTO	12:1	1:46 PM Sep 14, 2018
Center Freq						
Gorino, 1104	2.402000000 GHz	Z Tri	n: Free Dun	Avg Type: Log-Pwr		TRACE 1 2 3 4 5 6
o o i i o o	2.402000000 GHz	PNO: Fast 🕟 Tri	g: Free Run tten: 30 dB			TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN
		PNO: Fast Iri		Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNNN
	2.402000000 GHz f Offset 3.61 dB f 23.61 dBm	PNO: Fast Iri		Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNN
10 dB/div Re		PNO: Fast Iri		Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNNN
Re 10 dB/div Re		PNO: Fast Iri	tten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNNN
10 dB/div Re		PNO: Fast Iri	tten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNNN
10 dB/div Re		PNO: Fast Iri	tten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNN
10 dB/div Re Log 13.6 3.61		PNO: Fast Iri	tten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNN
10 dB/div Re Log 13.6		PNO: Fast Iri	tten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNN
10 dB/div Re Log 13.6 3.61		PNO: Fast Iri	tten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNN
10 dB/div Re 13.6 3.61 -16.4		PNO: Fast Iri	tten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNN
10 dB/div Re 10 dB/div Re 13.6 13.6 14.39 16.39 16.4 17.4 18.4		PNO: Fast Iri	tten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNN
10 dB/div Re 13.6 13.6 16.4		PNO: Fast Iri	tten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNN
10 dB/div Re 10 dB/div Re 13.6 13.6 14.39 16.39 16.4 17.4 18.4		PNO: Fast Iri	tten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNN
10 dB/div Re 13.6 13.6 146.39 15.4 16.4		PNO: Fast Iri	tten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	/lkr1 2.40	DET P NNNNN

#VBW 8.0 MHz

Report No.: TB-FCC160823 Page: 57 of 57

----END OF REPORT----