SKIT, Jaipur

AOA Assignment

Name: Prachi Munot

Roll No: 18 ESKIT 304

91 for binary Search in an array of Size n.

 $T(n) = T(\frac{n}{2^{k}}) + 1 + \dots + 1$ Since T(1) = 1 where $n = 2^{k}$ $T(n) = T(1) + k = 1 + \log_{2}(n)$ $\log_{2}(n) \le 1 + \log_{2}(n) \le 2\log_{2}(n) \quad \forall n \ge 2$ $T(n) = \Theta(\log_{2}(n))$

03 F3 / F2 < F4 < F,

nuogn < n^(3/2) < n^(logn) < 2^n

Oynamic programming approach is Similar to divide and conquer in breaking down the problem into Smaller.

Dynamic programming is used where we have problems which can be divided into similar sub-problems, so that their result can be used mostly these are used for optimization.

25

Master's theoram

This theorem is also known as Cook Book theorem.It is used for particular form of recovering relations $T(n) = aT(\frac{n}{b}) + f(n)$

= aT(n) + g(nk logen)

where n is the Size of the problem

a is the no of subproblems in the Hecursian in h/b is the Size of each Subproblem.

If n) is the act of work done outside the Hecursive Cells.

and a & b are constants Such that az 1 and 6>1

If (n) is asymptotically the functions.

If & D & P is Head Number

9+ State that-

T(n) = aT(n) + g(nk logpn)

96
Ans den(i, j) = den(i-1, j-1)+131 3, j > 0 4 ai = bj

98

Ans Dynamic potoquamming is the Algorithm design technique.

used in chained matrix multiplication algorithm.

Strassen in 1969 which gives an overview that how we can find the multiplication of two 2+2 dimension. Matrix by brute force algorithm

For multiplying the two 2 × 2 dimension incutrices

8 transen's used some formula in which there are

8 even multiplication and eighteem addition, subtraction and in

Brute force algorithm there is eight multiplication and four

addition. The unflitty of stravsen's formula is shown

by its asymptotic superiority when order n of matrix

eleaches infinity. Let us consider two matrices A and B.

having n * n dimension where n is power of 2. It can

be deserved that we can contain four n/2 + n/2

Submatrices from A, B and their product c. Cis Heswant

matrix of A and B.

Porocedure of Strawson matrix multiplication.

> Divide a matrix of order of 2 * 2 recursivery till we get
the matrix of 2 * 2

7	Use the poperious set of formulas to carry out 2 × 2
	trating multiplication
->	In this eight multiplication and four additions, subtraction
	MUA DOLLANTER
7	combine the susual of two matrixes to good the final
	product of final matrix.
	The said the continues of the primary the security
	Algorithm.
	heain
	uf n = thrushold then compute
on	c = a * b us a Conventional matrix.
	Else Black British Bri
	Partition a sinto four sub marrices all, a 12, 021, a22
Shall !	Parcition b into four sub matrices 611, 612, 621, 622
2-90	Strassen (n/2, all + a22, b11 + b22, d1)
10 13	Strassen (n/2, a21 + a22, b11, d2)
	Strausen (1/2, 911, 612-622, d3)
-	Strassen (n/2,022,621-611,044)
	straisen (n/2, all + al2, b22, d5)
1 2 3 3	Strawer (n/2, a21 -a11, b11 + 622, d6)
	Strassen (n/2, a12-a22, 621+622, d7)
	$C = a_1 + a_4 - a_5 + a_7$ $a_5 + a_5$
APLI	d2 td4 d1 + d3 -d2 -d6
	- 1 .91
	end of
196.5	Hetwin (C)
	erd.

Ans. The Complexity of an algorithm is a function describing the efficiency of the algorithm in terms of amount of data the algorithm must process. There are two main complexity measured of the efficiency of an Algorithm. Time complexity * Space Complexity

Time complexity: It is a function describing the amount of time an algorithm takes in terms of amount of the amount of input to the Algorithm. "Time" can mean the number of memory access performed, the number of comparisons between integers, the Number of times some inner loop is executed. the Algorithm will take Space Complexity: It is a function describing the amount of memory (space) an algorithm takes in terms of amount of input to the algorithm. We use nutural but fixed length

units to measure this. It sometime ignored because the space used us minimal and obvious but 8 ometime it becomes

as important an issue as time.

10 Total Computing time for simple matrix multiplication Ans using Hecuronce

$$Th = \begin{cases} b & \text{forn} < 2 \\ 8T(\frac{n}{2}) + an^2 & \text{forn} < 2 \end{cases}$$

where a = count

Their recurrence can be solved to obtain T(n) = O(n3)

cusing master method.

Strausen's matrix multiplication algorithm was only 7 multiplication and 18 additional subtractions the recurrence for this will be

$$T(h) = \begin{cases} b & n \in 2 \\ \exists T(\frac{h}{2}) + 18h^2 & n \geq 2 \end{cases}$$

801Win & 0 (n 109,7) = 0 (n2.81)

Dength (x) = m = 6Dength (y) = n = 10Two Tables den $[0 - M_10 - n] \neq 0 = [1 - n - n]$

1:	30	e	b.	d	3	e	9	h	1	8	a
0	0	0	0	0	0	0	0	0	0	0	0
a	0	0	0	0	0	0	0	0	0	0	1
ь	0	0	1	1	1	1	1	1	1	1	1
d	0	0	1	2	2	2	2	2	2	2	2
9	0	0	1	2	2	2	3	3	3	3	3
K	0	0	1	2	2	2	3	3	4	4	4
S	0	0	1	2	3	3	3	3	4	5	5

	ů\	5 1	2	3	4	5	6	7	8	9	10	0057
I	1	1	1	1	1	1	1	1	1	1	K	
ı	2	1	K	4	-	4	4	-	-	4	1	The LCS is of
	3	1	1	K	+	+	~	←	2	←	4	length 3
	4	1	1	1	1	1	K	_	(+	4	9
	5	1	1	1	1	1	1	1	4	<	4	
	6	1	1	1	17	4	1	1	1	K	<	
			3019						M			

stood from D[6,10] = ← OP LCS (D, A, 6, 9) (D, A, G, 10) D[6,9] = 7 Point 96 = 8, cau (D,A,5,8) D[5,8] = 7 Point 98 = 4, cau (D,A,4,7) Print 98 = { 1. Call [D, A, 4, 7) Prunt 94=9, call (D, A, 3, 5) D[4,7]= -D[4,6] = 1 D[3,5] = ← Coul [D,A,3,4] Cou [D, A, 3,3] D [3,4] = -Print az = d, call [D, A, 2,2) D[3,3]= K D[2/2]= K Print a = b, coll (D,A,1,1) D[1,1] = 1 Coul (D, A, 0, 1) exit.

LCS z'bdgfs'

M

 $\frac{12}{T(n-1)+1} = \begin{cases} 1 & \text{if } n=0 \\ 1 & \text{not tree } \end{cases}$ Recovering

	Parameter	Bachtracking	Branch &	bound.			
3	Traversal	Traverses the sta	le Travelsus the	Tociversus the tree! Ph			
		space tree by DFS	s. any manney	any manney DFS or BFS.			
4	Function	Involves geassbillity		sounding			
-	02431	guration	function.				
5	Problems	solve decision prob	slem Solve optimis	zation problem			
		Hore efficient	less off				
7	Application	N-Quean problem,		trapsack Problem,			
9	021	8um of Subset		Travelling Salesman problem.			
			J				
914		P -					
Solo	Jobs to be a	vearged in increase	sing order of t	heir profile			
	J? J4	J2 J6 J1	J3 J5	· · · · · · · · · · · · · · · · · · ·			
	Pi lo	20 30 40	50 90				
	Di 4	2 6 1	3 5				
	T.	J ₂ 2 J ₃ J ₄ 4	J5 J6				
	0 31 1	- 2 - 3 - 4	5-6				
5	Johs Slot	assigned	Sol" (seg)	Profit			
	JI [0,1]	assigned	71	40			
	J2 (0,1)[1/2	2]	丁 元	40 +20 = 60			
	J3 [0,1] (1,2	2][2,3]	J1 J2 J3	60 +50 = 110			
	Ja [011][112]	[2,3][3,4]	J1 J2 J3 J4	110 +10 = 120			
	J5 [0,1][112][2,3][3,4][4,5]	J1 J2 J3 J4 J5	110+90 2210			
	Je [[0,1][1,2][2,3] [3,4] [4,5][5,6]	J, J2 J3 J4 J5 J6	1210+30 20 Pgo			

Total Profit = 240

Jor given pile, girst we will average files
in inversing coder of their size | lengths

fr < 11 < 24 < f2 < f3 < f7 < f6 < f6

2 < 10 < 15 < 19 < 30 < 34 < 37 < \$50 In this Sequence we will Select minimum two every time to merge 30 2 10 15 19 34 Total operations = 12+27+46+84+83+114+197=543. same no of operations can be determined by

16	Divide and conquer Algorithm can be divided into
-	govouing there parks
1)	V
	some sub problem
2)	Conquer: Sub problem by Calling securitiely will
-	Sub problem solved.
_ 3)	- 0 - 1 0- 4-4 100 . 50 04
300	Ginal optimal Solution
	jable de 8 9 Problèmes
	Divide a b c B c b g sub product
	Conquer [A] B] [C] D] [E] [F] & Sub- Solutions
	7 1 1
	merge. ABCDEFFOT Solutions.
0	The fallowing Computer algorithm are based on divide
	1) murge Sost
	3 Quick Boxt
	2) Birayy Search
	4) Strawoch's Matin Hullip 18 cation
	5) crosest pair (points.
	3) 2011 (201

It The terminal solution has the complexity of O(K)
The problem can be solved by separing and
multiplying

P^K = p^x * p^y, 3/ x+y=K

or p^K = (p^a) ^b, 3/ a+b=K

for even value of K, Choosing a = 2 and b = k/2, thus having $p^{2} \mid x = (p^{2}) \land (k \mid 2)$ will reduce the no of required multiplications almost in a half.

for an oad value of k, choosing a = 2 and b = k/2 thus having $p^n k = (p^n 2) \wedge (k/2)$ will deduce the no of dequired multiplications almost in half.

for an odd value of k, choosing met and we can thus having will sesut in y being ever and we can simply repeat the same process as for the even care this allows us to define a recursive function.

functions pow (base, exponent)

al exponent =0

Else if exponent us over outuin pow (base + base, exponent/2)

else vieturn bouse * pow (base + base, (exponent -1/2).

end if

This boution seguls in a complexity of o (109 K).

\$18 Advantages

- 1 Insertion Sorts: The main advantage of the insertion 30st is its simplicity. It also exitibits at good performance when dealing with Small list
- 2 Quick sort: It is in-place since it uses only a small auxiliary stack.
 - It requires only n (logn) time to Sort n iteams.

 It has an extremely short unner loop.
- 3 Menge Sost: It is quicken for larger vists because unlike insertion and bubble Sort. It doesn't go thorough the whole list Several Himes.
 - It has consistent running time, coowies out different bits with Similar Himes in a Stage.
- 4 Heap Sort: 19ke insertion sort, the heap sort algorithm sorts in place
 - This algorithm is simple, past and stable Sorting algorithm which can be used to Sort large Sets of data doesn't sequire any extra buffer space.
 - It is useful In software that econises reliable speed over optimal average runtime and has dimited memory. to operate with the data. Thus , Systems with real time sequirements and memory Constraints benefit must guom - this algorithm.

Non-fractional Knapsack 19 Knapsack is basically means bag. A bag of given capacity We want to pack 9 team 90 your suggage In 0/1 Knapsack peroblem sem connot be broken sinto pieces which means their should take the Item as a whole or cleave it that's why it is called of knapsack · Cannot take a gractional amount of an 9tem taken or take an Hem more than once. · It cannot be solved by the Coveredy Approach because It is enable to yill the knapsach to capacity. because greedy approach doesn't ensure an Optimal Solution The maximum weight the knapsack can shold is Wis 11. There are give iteams to choose from their weight and values are presented as. Weight limit (i) 3 4 17 0 V1=1 V1=1 6 Wo=2 V2=6 0 18 25 $W_3 = 5 V_3 = 18$ 24 29 G 22 40 Wy = 6 V4 = 22 W5 = 7 V5 = 28 The [i, j] entry here will be v[i, j] the best value obtainedle using the first "i" rows of iteams if the maximum. capacity were is we bigis by intalization and first sow

V[, j] = max {V[i-1, j], vi + V[i] 1, j-wi]

The maximum value of cikans in a Knapsack is 40 the bottom oright entry. The dynamic Programming approach can now be coded as following algorithm for weo W do V [0, w] = 0 40r 1=0, n 0 → [0,i]v ob for w=0, W (wi=1) v + iv & w > iw) Je ob then v (i, w] + v;+ v (i-1, w-wi) else V[i, W] + V[i-1, W]