Estatística aplicada à epidemiologia II Modelos para desfecho binário

Leo Bastos - leonardo.bastos@fiocruz.br

PROCC - Fundação Oswaldo Cruz

https://github.com/lsbastos/eae2

Regressão logística múltipla

- O modelo logístico multivariado múltiplo
- Seja Y um desfecho binário, e X_1, X_2, \ldots, X_p , p variáveis explicativas.
- O modelo de regressão logística é dado por

$$Y_i \sim Bernoulli(\theta_i)$$

onde

$$logit(\theta_i) = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi}$$

 Exponencial dos coeficientes pode ser interpretado como razão de chances da variável associada ao coeficiente fixada todas as outras em um mesmo valores (independente qual for esse valor).

A função de ligação *logit*

Função logit

$$\log\left(\frac{\theta_i}{1-\theta_i}\right) = \mathbf{x}_i^T \boldsymbol{\beta} = \eta_i \Rightarrow \mu_i = \frac{e^{\eta_i}}{1+e^{\eta_i}}$$

 Suponha que dois cenários serão comparados, onde a única diferença entre eles é a variável x_k, que assume valor a em um cenário e b no outro.

$$\log\left(\frac{\theta_{(x_k=x)}}{1-\theta_{(x_k=x)}}\right) = \mathbf{x}_{-k}^T \boldsymbol{\beta}_k + x \boldsymbol{\beta}_k \Rightarrow \frac{\theta_{(x_k=x)}}{1-\theta_{(x_k=x)}} = \exp\{\mathbf{x}_{-k}^T \boldsymbol{\beta}_k + x \boldsymbol{\beta}_k\}$$

Logo a razão de chances de interesse é

$$OR = \frac{\frac{\theta(\mathbf{x}_k = a)}{1 - \theta(\mathbf{x}_k = a)}}{\frac{\theta(\mathbf{x}_k = b)}{1 - \theta(\mathbf{x}_k = b)}} = \frac{\exp\{\mathbf{x}_{-k}^T \boldsymbol{\beta}_k + a\boldsymbol{\beta}_k\}}{\exp\{\mathbf{x}_{-k}^T \boldsymbol{\beta}_k + b\boldsymbol{\beta}_k\}} = \exp\{\beta_k(a - b)\}$$

• Se a=1 e b=0 então

$$OR = \exp\{\beta_1\}$$

Exemplo: Sífilis em usuários de drogas

- Seja um estudo transversal que recrutou aleatoriamente 605 usuários de drogas (heavy drug users)
- Heavy drug user: É aquele usuário que: usou droga injetável nos últimos 6 meses e/ou usou droga da pasta base da cocaína pelo menos 25 vezes nos ultimos 6 meses.
- Tem-se o interesse em quantificar, entre outras coisas, a associação entre a infecção de sífilis com sexo e idade dos participantes do estudo.

Exemplo: Sífilis em usuários de drogas

Primeiro modelo

Sifilis ∼ Sexo

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.7975	0.1703	-4.68	0.0000
sexomasculino	-0.5443	0.2067	-2.63	0.0084

• $OR_{Sexo:Masc} = 0.58$. (Qual a interpretação?)

Mudando a referência

- Eu gostaria de interpretar como aumento na OR, olhar a OR com a mulher no numerador.
- Solução rápida, inverter o sinal do β . Pois $OR_{Sexo:Masc} = 1/OR_{Sexo:Fem}$ (É mesmo?)
- E portanto, $OR_{Sexo:Fem} = 1/OR_{Sexo:Masc} = 1/e^{\beta} = e^{-\beta}$
- No exemplo: $OR_{Sexo:Fem} = 1/OR_{Sexo:Masc} = 1.72$
- Um outro caminho, mudar a categoria de base no R usando a função relevel().

Controlando pela idade

• Sifilis \sim Sexo + Idade

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.0659	0.2463	-8.39	0.0000
sexofeminino	0.7422	0.2183	3.40	0.0007
faixaetaria25 a 34 anos	0.6171	0.2781	2.22	0.0265
faixaetaria35 a 49 anos	1.0353	0.2858	3.62	0.0003
faixaetaria50 anos ou mais	1.1607	0.3646	3.18	0.0015

• $OR_{Sexo:Fem} = 2.1$

Analise da deviance

	Df	Deviance	Resid. Df	Resid. Dev	Pr(>Chi)
NULL			604	659.34	
sexo	1	6.76	603	652.58	0.0093
faixaetaria	3	16.95	600	635.63	0.0007

Efeitos e intervalos

	OR	2.5 %	97.5 %
sexo	1.72	1.15	2.58
sexo + faixaetaria	2.10	1.37	3.22

Estatística de bondade de ajuste

- A deviance é uma medida de bondade de ajuste.
- Hosmer e Lemeshow (1980) e Lemeshow e Hosmer (1982) propuzeram uma medida de bondade de ajuste mais apropriada para dados binários.
- Ideia:
 - Particionar os possíveis valores de probabilidade em g grupos (Ex. decis).
 - Para cada grupo, contar quantos casos foram observados cujo valor predito deveria pertencer àquele grupo.
 - Dessa forma, tem-se um tabela $g \times 2$,
 - Se o valor predito representar as frequências das tabelas, então tem-se um bom modelo.

Estatística de Bondade de ajuste Hosmer-Lemeshow

ullet Estatística de bondade de ajuste de Hosmer-Lemeshow, $\hat{\mathcal{C}}$

$$\hat{C} = \sum_{k=1}^{g} \frac{(o_k - n'_k \bar{\pi}_k)^2}{n'_k \bar{\pi}_k (1 - \bar{\pi}_k)}$$

onde g é o número de grupos, n_k' número de observações no grupo k, o_k número de casos observados no grupo k, e $\bar{\pi}_k$ é média das probabilidade estimada no grupo k.

$$\hat{\mathcal{C}} \rightarrow \chi^2_{g-2}$$

Exemplo: Teste Hosmer-Lemeshow

Para o exemplo da sífilis, sexo e faixa etária geram 8 grupos, entao g=8

	Grupo	O_k	n'_k	$\hat{ heta}_{m{k}}$	E_k
1	masculino: 18 a 24 anos	13	105	0.11	11.81
2	masculino: 25 a 34 anos	24	143	0.19	27.20
3	masculino: 35 a 49 anos	37	138	0.26	36.29
4	masculino : 50 anos ou mais	18	58	0.29	16.70
5	feminino: 18 a 24 anos	11	58	0.21	12.19
6	feminino: 25 a 34 anos	25	66	0.33	21.80
7	feminino: 35 a 49 anos	13	32	0.43	13.71
8	feminino: 50 anos ou mais	1	5	0.46	2.30

$$\hat{\mathcal{C}} = 3.03
ightarrow \text{p-valor} = 0.806$$

Resíduos'

- Quais são as suposições?
 - Independência
- A análise de resíduos para dados binários não é tão natural quanto para outros tipos de variáveis.
- Como o desfecho assume somente dois valores, a visualização de padrões é mais difícil.
- Análises para procurar de pontos de alavanca e outliers continuam válidas.

17 / 19

Outliers ou pontos influentes

• Leverage (pontos de alavanca): h_{ii} (hatvalues(modelo))

$$H = X^T (X^T X)^{-1} X^T$$

Valores h_{ii} maiores que 2 ou 2 vezes p/n merecem uma olhada.

- Leave-one-out measures:
 - DFFIT: Diferença nos ajustes: $\hat{y}_i \hat{y}_{i(-i)}$
 - DFBETA: Diferença no ajuste de cada coeficiente: $\hat{eta}_k \hat{eta}_{k(-i)}$
 - Distância de Cook: Diferença no ajuste em todos coeficientes

Outliers: Medidas de influência

```
> summary(influence.measures(m1Sex))
Potentially influential observations of
       glm(formula = sifilis ~ sexo + faixaetaria, family = binomial(),
                                                                     data
   dfb.1 dfb.sxfm dfb.fa3a dfb.fa4a dfb.faom dffit cov.r
                                                     cook.d hat.
103 -0.05
          0.12
                  0.01
                          0.02
                                  0.16
                                          0.21 1.03_* 0.01
                                                            0.03_*
    0.05 -0.11 -0.01 -0.02 -0.14 -0.19 1.03 * 0.01
104
                                                            0.03 *
143
    0.05 -0.11 -0.01 -0.02 -0.14 -0.19 1.03_* 0.01
                                                            0.03_*
   0.05 -0.11 -0.01 -0.02 -0.14 -0.19 1.03_* 0.01
384
                                                            0.03_*
```

0.05 -0.11 -0.01 -0.02 -0.14 -0.19 1.03 * 0.01

0.03 *

560