

Fakultät Informatik

Forschungsprojekt

Visualisierung von erweiterten Geodaten in der PrioBike-App

Markus Wieland // Dresden, 20.09.2022

verantwortlicher Hochschullehrer: Dr.-Ing. Thomas Springer

Betreuer: Dipl.-Inf. Philipp Matthes

Gliederung

- Daten
 - OpenStreetMap
 - Geo-Webservices
 - WMS / WFS / WCS
 - Multi-Criteria Decision Analysis
- Einbindung in die PrioBike App
 - GeoJSON
 - WMS
 - Kommunikation mit dem Server

Begriffe

Feature ... Geoobjekt

- Abstrahiertes Objekt der realen Welt
- Immer ein Geometrie Attribut (Punkt, Polylinie, Polygon, ...)
- Zusätzlich nicht-räumliche Attribute (Fachdaten wie Farbe, Name, Anzahl, ...)

Feature Class ... Sammlung von Features

- Selbe räumliche Repräsentation
- Gemeinsame Attribute
- In GeoJSON "FeatureCollection"

OpenStreetMap

- Von Community erstellt
- Frei zugänglich für alle
- Keine Lizenz
- Große Anzahl umfangreicher Datensätze

- Fehlerhafte Daten
- Keine Garantie für Vollständigkeit

Datengrundlage Attribute

OBJECTID Index innerhalb der FeatureClass

osm_id ID aus dem OpenStreetMap Datensatz

shape Geometrie Attribut

fclass Art des Features (parking_bicycle, ...)

name Name des Ortes sofern vorhanden (Name

eines Fahrradladens)

Datengrundlage

Quelle https://download.geofabrik.de/europe/germany/hamburg.html

- gis_osm_pois_free.shp / gis_osm_pois_a_free.shp
- gis_osm_traffic_free.shp / gis_osm_traffic_a_free.shp

Koordinatensystem WGS84

Verarbeitung export_osm_data.py

- Liest Daten aus .shp-Datei
- Filtert nach *fclass* Wert
- Exportiert gefilterte Features als .geojson-Datei

		fclass post_office	name
22	205	playground	
29	907	camera_surveillance	Shell
20	006	telephone	
25	501	supermarket	Marktkauf Wilhelmsburg
25	542	bicycle_shop	Radsport Wulff
26	501	bank	Hamburger Sparkasse
20	04	post_box	
29	907	camera_surveillance	
20	04	post_box	
26	501	bank	Hamburger Sparkasse

Fahrradständer

/data/generated/osm/bicycle_parking.geojson

- ~ 2.600 Punktdaten
- ~ 1.200 Polygondaten

Fahrradleihstationen

/data/generated/osm/bicycle_rental.geojson

- 11 Polygone
- 298 Punktdaten
- An Endpunkten / Startpunkten von Route
- Informationsansicht Stationen im Umkreis

Fahrradläden

/data/generated/osm/bicycle_shop.geojson

- 11 Polygondaten
- 145 Punktdaten
- Mögliche Reparatur? -> Ansicht wenn benötigt

Geo-WebservicesGeoportal Hamburg, Deutscher Wetterdienst, OpenData Portal Hamburg

Geo-Webservices

Standardisierte Bereitstellung von Geodaten

WMS ... Web Map Service

- Fertige Karten (Bilder)
- GetMap-Request

WFS ... Web Feature Service

- Features
- GetFeature-Request

WCS ... Web Coverage Service

- Rasterdaten
- GetCoverage-Request

GetCapabilities

- XML
- Übersicht über Fähigkeiten des Services
 - Verfügbare Datenformate
 - Boundingbox
 - Features/Raster/Map
 - Mögliche Stylings

Anmerkung: Nach WFS Spezifikation, werden Felder deren Wert "null" ist gar nicht zurückgegeben. Um eine Übersicht über alle Möglichen Attribute zu bekommen, führt man eine "DescribeFeatureType" Request aus.

Deutscher Wetter Dienst

https://maps.dwd.de/geoserver/wms?SERVICE=WMS&VERSION=2.0.0&REQUEST=GetCapabilities

https://maps.dwd.de/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=dwd%3ANiedersch lagsradar&bbox=-543.462%2C-4808.645%2C556.538%2C-

3608.645&width=703&height=768&srs=EPSG%3A1000001&styles=&format=image%2Fpng&time=2022-09-18T12:00:00.000Z

18.09.2022 12:00

19.09.2022 12:00

StadtRAD Stationen

/data/generated/wfs/stadt_rad.geojson

Beachte Koordinatensystem! Hier wird EPSG:4326 verwendet!

https://geodienste.hamburg.de/HH_WFS_Stadtrad?SERVICE=WFS&REQUEST=GetCapabilities

https://geodienste.hamburg.de/HH_WFS_Stadtrad?SERVICE=WFS&VERSION=2.0.0&REQUEST=GetFeature&typename=de.hh.up:stadtrad_stationen&outputFormat=application/geo%2bjson&srsname=EPSG:4326

StadtRAD Stationen

/data/generated/wfs/stadt_rad.geojson

Geometrie Punkt

Quelle HH_WFS_Stadtrad

Anzahl 289

anzahl_raeder	Anzahl verfügbarer Räder
anzahl_pedelec	Anzahl verfügbarer Pedelecs
uid	ID der Station
stand	Letztes Update der Daten dieser Station
art_der_station	Art der Station
anzahl_bike	Siehe anzahl_raeder nur als String?
anzahl_cargobike_electric	Anzahl verfügbarer elektrischer Lastenräder
name	Name der Station

StadtRAD Station / Fahrradleihstationen (OSM)

Vergleich

Gelb ... OpenStreetMap Daten

Visualisierung von erweiterten Geodaten in der PrioBike-App Markus Wieland Forschungsprojekt

Fahrradzählstationen

/data/generated/wfs/bike_count.geojson

Geometrie Punkt

Quelle HH_WFS_Harazaen

Anzahl 133

Fahrradzählstationen

/data/generated/wfs/bike_count.geojson

radfahrende_seit_jahresbeginn	Anzahl Radfahrender seit Beginn des Jahres
tageslinie	Anzahl Radfahrender pro Stunde pro Tag (konfigurierbar)
radfahrende_insgesamt	Anzahl Radfahrender seit Beginn der Zählung
radfahrende_vorjahr	Anzahl Radfahrender im Vorjahr
max_radfahrende_woche_jahr	Woche, mit den meisten Radfahrenden in diesem Jahr (+ Anzahl)
typ	Typ der Zählstation
link_download	Link zu Download dieser Daten
max_radfahrende_monat_jahr	Monat, mit den meisten Radfahrenden in diesem Jahr (+ Anzahl)
in_betrieb_seit	Datum der Inbetriebnahme der Station
max_radfahrende_tag_jahr	Tag, mit den meisten Radfahrenden in diesem Jahr (+ Anzahl)
jahrgangslinie	Anzahl Radfahrender pro Woche in diesem Jahr
name	Name der Station

Bike & Ride Stationen

/data/generated/wfs/bike_and_ride.geojson

Geometrie Punkt

Quelle HH_WFS_Bike_und_Ride

Anzahl ~ 1.300

Bike & Ride Stationen

/data/generated/wfs/bike_and_ride.geojson

haltestelle	Haltstelle die zu der B+R Anlage gehört
symbol	?
adresse	Adresse der B+R Anlage
davon_nicht_ueberdachte_stellplaetze	Anzahl nicht überdachter Stellplätze
davon_gesicherte_mietstellplaetze	Anzahl gesicherter Mietstellplätze
stand	Letzte Aktualisierung
email	Email-Adresse für Kontakt
davon_ueberdachte_stellplaetze	Anzahl überdachter Stellplätze
schliessfaecher	Anzahl Schließfächer
internet	Internet Seite der B+R

Fahrradluftstationen/Fahrradladestationen

/data/generated/wfs/bike_air_station.geojson

Geometrie Punkt

Quelle HH_WFS_Fahrradluftstationen

Anzahl 49

Attribute

betreiber Betreiber der Station

name Name der Station

kontakt Email / Telefonnummern

anmerkungen Art der Pumpe, Anzahl Verfügbarer Ladestationen

Baustellen

/data/generated/wfs/construction_sides.geojson

Geometrie Punkt

Quelle HH_WFS_Baustellen

Anzahl Variabel

Baustellen

/data/generated/wfs/construction_sides.geojson

```
<element name="gml identifier" minOccurs="0" type="string"/>
<element name="gml identifier attr codespace" min0ccurs="0" type="string"/>
<element name="titel" minOccurs="0" type="string"/>
<element name="organisation" minOccurs="0" type="string"/>
<element name="anlass" minOccurs="0" type="string"/>
<element name="umfang" minOccurs="0" type="string"/>
<element name="baubeginn" minOccurs="0" type="string"/>
<element name="bauende" minOccurs="0" type="string"/>
<element name="letzteaktualisierung" minOccurs="0" type="dateTime"/>
<element name="istzugangeingeschraenkt" minOccurs="0" type="boolean"/>
<element name="einschraenkungsbegruendung" minOccurs="0" type="string"/>
<element name="koordinate attr nilreason" minOccurs="0" type="string"/>
<element name="koordinate attr gml remoteschema" min0ccurs="0" type="string"/>
<element name="koordinate attr owns" min0ccurs="0" type="boolean"/>
<element name="iststoerung" min0ccurs="0" type="boolean"/>
<element name="isthotspot" minOccurs="0" type="boolean"/>
<element name="istfreigegeben" min0ccurs="0" type="boolean"/>
<element name="mehrwert" minOccurs="0" type="string"/>
<element name="istoepnveingeschraenkt" minOccurs="0" type="boolean"/>
<element name="oevnveinschraenkungen" minOccurs="0" type="string"/>
<element name="hatinternetlink" minOccurs="0" type="boolean"/>
<element name="internetlink" minOccurs="0" type="string"/>
<element name="hatumleitungsbeschreibung" minOccurs="0" type="boolean"/>
<element name="umleitungsbeschreibung" minOccurs="0" type="string"/>
<element name="istparkraumeingeschraenkt" minOccurs="0" type="boolean"/>
<element name="parkraumeinschraenkung" minOccurs="0" type="string"/>
<element name="einsatzkraefte" minOccurs="0" type="string"/>
<element name="tns koordinate value" minOccurs="0" type="gml:GeometryPropertyType"/>
```


Verkehr

/data/generated/wfs/traffic.geojson

Geometrie Polylinie

Quelle HH_WFS_Verkehrslage

Anzahl Variabel

Strassenklasse Art der Straße

Zeitstempel_utc Zeitstempel in UTC

Zustandsklasse Auslastung der Straße

zeitstempel Zeitstempel in CET/CEST

Multi-Criteria Decision Analysis Ermittlung von Unfallschwerpunkten in Hamburg

Kriterien/Daten

Suchbereich Hamburg

Kriterien

- Anzahl der Unfälle
- Schwere der Unfälle
- Dichte der Unfälle
- Stärke des Verkehrs

Unfälle

- Quelle https://unfallatlas.statistikportal.de/
- Beteiligte Verkehrsteilnehmer, Schwere des Unfalls

Straßen

- Quelle OpenStreetMap
- Art der Straße (viel befahrene Straßen)

Verwaltungsgrenzen Hamburg

http://opendatalab.de/projects/geojson-utilities/

Skript generate_accident_black_spots.py

- Führt bei Bedarf Download aus (get_accidents Funktion) (~ 15-20 Minuten)
- Alle Scores und Variablen sind konfigurierbar
- Ausführungszeit Berechnung ~2 Minuten
- Beliebig erweiterbar auf andere Gebiete (benötigt neue Straßendaten & Boundary)

Unfalldaten herunterladen

Grenzen von Hamburg

VorgehensweiseGrenzen von Hamburg

Puffern von Punktdaten zur "Gruppierung"

Zusammenführen überlappender Puffer (Dissolve)

Straßendaten (gefiltert nach Hauptverkehrsadern)

Vorgehensweise Score Berechnung Straßen

- Verschneiden von Straßen mit Unfallpufferobjekte
 - Motorway ... 1
 - Primary road ... 1.2
 - Secondary road ... 1.5
 - Keine ... 2

score_road

Maximum Wert der verschnittenen Straßen

VorgehensweiseScore Berechnung Dichte

• Referenzwert: Radius Buffer * 3.1415

score_area

• Referenzwert – (Fläche Unfallpuffer / Anzahl Unfall)

VorgehensweiseScore Berechnung Verletzlichkeit

- Verschneiden von Unfalldaten mit Unfallpufferobjekte
 - Leichtverletzte … 1
 - Schwerverletzte ... 2
 - Tote ... 3

score_vulnerabilty

Summe Schwere Unfall / Anzahl Unfälle

Ergebnis

total_score

score_road * score_vulnerabilty * score_area

Score kann nicht in mit anderen Scores verglichen werden:

- Extremer Unfallschwerpunkt würde alle anderen validen Unfallschwerpunkte "klein" wirken lassen
- Fester Grenzwert

Koordinatensystem WGS84

= 6 Unfallschwerpunkte

Diskussion

Reicht pure Anzahl der Unfälle nicht aus?

11 Unfälle Unfallschwerpunkt Kein Unfallschwerpunkt

Einbindung in die AppMapbox GL, PostGIS, GeoServer

Einbindung von GeoJSONFlutter Mapbox GL per Layer

MapboxMapController

- addSource(name_source, GeojsonSourceProperties)
 - Fügt Datenquelle hinzu
 - Link zu GeoJSON Datei
 - Konfiguration von Clustern (cluster, clusterMaxZoom, clusterRadius, ...)
- addLayer(name_source, name_layer, LayerProperties)
 - Baut aus Datenquelle Layer
 - Fügt diesen zum Controller hinzu
 - Konfiguration des Layers

Einbindung von GeoJSONFlutter Mapbox GL per Symbol

Ungeeignet für große Anzahl von Features

MapboxMapController

addSymbol(SymbolOptions(geometry, iconImage))

Einbindung von WMS

MapboxController

- addSource(name_source, RasterSourceProperties/ImageSourceProperties)
 - url, tiles, ...
 - Anfrage an WMS mit BoundingBox
- addLayer(name_source, name_layer, RasterLayerProperties)
 - Baut aus Datenquelle Layer
 - Fügt diesen zum Controller hinzu
 - Konfiguration des Layers

Kommunikation mit ServerPostGIS

Kommunikation mit Server

Geo-Webservice

Update der Daten

Variante 1

Update der Daten

Variante 2

Fragen?

Quellen

https://geoportal-hamburg.de/verkehrsportal/#

https://geoportal-hamburg.de/geo-online/

https://transparenz.hamburg.de/

https://unfallatlas.statistikportal.de/

https://download.geofabrik.de/europe/germany/hamburg.html

https://maps.dwd.de/geoserver/wms?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities

http://opendatalab.de/projects/geojson-utilities/

