# Реализация программы передвижения по закрытым комнатам

СТУДЕНТ: СУЧКОВ А.Д.

ГРУППА: ИУ7-52Б

РУКОВОДИТЕЛЬ: КОСТРИЦКИЙ А.С.

#### Цель работы

**Целью** курсового проекта является разработка программы для визуализации трёхмерной сцены, которое наполнено статичными объектами — элементами декора, динамичными элементами — моделями в виде спрайтов и источниками света.

#### Задачи работы

В рамках курсового проекта должны быть решены следующие задачи:

- изучение и анализ алгоритмов компьютерной графики, использующихся для создания реалистичной модели взаимно перекрывающихся объектов, и выбор наиболее подходящего для решения поставленной задачи;
- проектирование архитектуры программного обеспечения;
- 🔲 реализация выбранных алгоритмов и структур данных;
- разработка программного обеспечения, которое позволит отобразить и собрать трехмерную сцену;
- 🔲 разработка игровой механики в виде подвижной камеры от первого лица.

#### Формализация объектов сцены

#### Сцена состоит из следующих объектов

- Трёхмерные объекты объекты, имеющие произвольную форму, которые заданы файлами в формате .obj;
- ❖ Спрайты подвижные объекты, которые представлены в виде плоскости;
- № Источники света материальная точка в пространстве, из которой исходят лучи света во все стороны



Пример трёхмерного объекта



Пример спрайта

## Алгоритмы удаления невидимых линий и поверхностей

| Алгоритмы удаления невидимых линий и поверхностей | Критерии оценивания |                 |                            |  |  |  |
|---------------------------------------------------|---------------------|-----------------|----------------------------|--|--|--|
|                                                   | Простота реализации | Скорость работы | Возможность<br>оптимизации |  |  |  |
| Алгоритм Робертса                                 |                     |                 | <b>▼</b>                   |  |  |  |
| Алгоритм обратной<br>трассировки лучей            | ×                   | ×               | ✓                          |  |  |  |
| Алгоритм Варнока                                  | 7                   | X               |                            |  |  |  |
| Алгоритм,<br>использующий Z-буфер                 | $\checkmark$        | ✓               |                            |  |  |  |

#### Алгоритм, использующий Z-буфер



#### Закраска по Гуро



Без закраски

Закраска по Гуро

#### Модель освещения Ламберта

Моделирует идеальное диффузное освещение. Свет падающий в точку, одинаково рассеивается по всем направлениям.





#### Диаграмма классов



### Интерфейс программы





## Эксперимент по анализу зависимости времени отрисовки от количества вершин объектов

Эксперименты проводились на компьютере с характеристиками:

- ❖ OC Windows 10, 64 бит;
- Процессор Intel Core i5 7300HQ (2500 МГц, 4 ядра, 4 логических процессоров);
- Объём ОЗУ 8 Гб.

| Количество<br>вершин на сцене                 | 88 | 264 | 473 | 1258 | 2516 | 3774 | 4528 |
|-----------------------------------------------|----|-----|-----|------|------|------|------|
| Среднее время<br>отрисовки в<br>миллисекундах | 39 | 44  | 50  | 59   | 77   | 101  | 114  |



#### СПАСИБО ЗА ВНИМАНИЕ!