GP2D02

■ Features

- 1. Impervious to color and reflectivity of reflective object
- 2. High precision distance measurement output for direct connection to microcomputer
- 3. Low dissipation current at OFF-state $(\mbox{dissipation current at OFF-state}: TYP.~3~\mu A)$
- 4. Capable of changing of distance measuring range through change the optical portion (lens)

■ Applications

- 1. Sanitary sensors
- Human body sensors for consumer products such as electric fans and air conditioners
- 3. Garage sensors
 - * PSD: Position Sensitive Detector

Compact, High Sensitive Distance Measuring Sensor

■ Outline Dimensions

(Unit: mm)

■ Absolute Maximum Ratings

 $(Ta=25^{\circ}C, V_{CC}=5V)$

Parameter	Symbol	Rating	Unit	
Supply voltage	V_{CC}	- 0.3 to + 10	V	
*1Input terminal voltage	V_{in}	- 0.3 to + 3	V	
Output terminal voltage	BVo	- 0.3 to + 10	V	
Operating temperature	T opr	- 10 to + 60	°C	
Storage temperature	T stg	- 40 to + 70	°C	

^{*1} Open drain operation input

■ Operating Supply Voltage

Symbol	Rating	Unit
V_{CC}	4.4 to 7	V

■ Electro-optical Characteristics

(Ta=25°C,Vcc=5V)

Parameter Symbol Conditions		MIN.	TYP.	MAX.	Unit			
Distance measuring range		ΔL	*1		10	-	80	cm
Output terminal voltage		V _{OH}	Output voltage at High	L= 20cm	Vcc - 0.3	-	-	V
		V_{OL}	Output voltage at Low	*1	-	-	0.3	V
Distance characteristics of output		D	L= 80cm, *1		-	75	-	DEC
		ΔD	Output change at L=80 cm to 20 cm,*1		48	58	68	DEC
Dissipation current	at operating	I_{CC}	L= 20cm, *1,*2		-	22	35	mA
	at OFF-state	$I_{ m off}$	L= 20cm, *1		-	3	8	μΑ
Vin terminal current		I_{vin}	Vin= 0V		-	- 170	- 280	μΑ

Note) L : Distance to reflective object

DEC: Decimalized value of sensor output (8-bit serial)

Conditions : Vin terminal current at Vin OFF-state : -1 μ A Vin terminal current at Vin ON-state : 0.3V

■ Test Circuit

1. Test circuit

2. Vin input signal for measurement

^{*1} Reflective object : White paper (reflectivity : 90%)

^{*2} Average dissipation current value during distance measuring operation when detecting of input signal, Vin as shown in the timing chart

^{*3} Vin terminal : Open drain drive input.

■ Timing Chart

Fig. 1 Distance Measuring Output vs.
Distance to Reflective Object

Fig. 2 Detection Distance vs. Sensing Range

Fig. 3 Detection Distance vs. Illuminance

Test Method for Sensing Range Characteristics

Test Method for Anti External Disturbing Light Characteristics

