0.1 Déterminer la loi de mouvement dans le cas où les efforts extérieurs sont connus - TEC

Exercice 1 - Pompe à palettes *

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} =$ $\lambda(t) \overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre 0 et 2 en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe). De plus, on note:

- $G_1 = A$ le centre d'inertie du solide 1, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\Re_1}$ sa matrice d'inertie;
- G_2 le centre d'inertie du solide **2** tel que $\overrightarrow{BG} = -\ell \overrightarrow{i_1}$, m_1 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$ sa ma-

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1, $F_h \overrightarrow{i_1}$ l'action du fluide sur 2 (le fluide agissant sur les solides 1 et 2).

trice d'inertie.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures.

Question 3 Déterminer l'ensemble des puissances extérieures.

Question 4 *Déterminer* $\mathcal{E}_c(1+2/0)$.

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir 1.

Exercice 2 - Pompe à pistons radiaux * Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} =$ $R\overrightarrow{j_0}$ et $\overrightarrow{AC} = \lambda(t)\overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre 1 et 2 en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre 0 et 2.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 On note S la section du piston **2**. Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, tracer le débit instan $tané de la pompe pour un tour de pompe pour <math>e = 10 \,\mathrm{mm}$ $et R = 10 \, \text{mm}$ ainsi que pour $e = 20 \, \text{mm}$ et $R = 5 \, \text{mm}$. La fréquence de rotation est $\dot{\theta}(t) = 100 \,\mathrm{rad}\,\mathrm{s}^{-1}$, la section du $piston\ est = S = 1\ cm^2$.

Corrigé voir 2.

Exercice 3 - Système bielle manivelle ** C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$, $\overrightarrow{CB} = L \overrightarrow{i_2}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer la vitesse du piston en fonction du temps. La fréquence de rotation est $\dot{\theta}(t) = 100 \, \text{rad s}^{-1}$, on prendra $R = 10 \, \text{mm}$ et $L = 10 \, \text{mm}$, puis $L = 20 \,\mathrm{mm}$ et $L = 30 \,\mathrm{mm}$.

Question 5 En utilisant Python, tracer l'accélération du piston en fonction du temps en utilisant les mêmes valeurs que dans la question précédente. On utilisera une dérivation numérique.

Corrigé voir 3.

Exercice 4 - Pompe oscillante * C2-09

Xavier Pessoles 1 B- Modéliser

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, R = 10 mm et H = 60 mm. Par ailleurs, on note $\overrightarrow{CB} = \lambda(t) \overrightarrow{i_2}$

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour un piston de diamètre D = 10 mm.

Corrigé voir 4.

Exercice 5 - Barrière Sympact *

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\varphi(t)$ en fonction de $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 5.

Exercice 6 – Barrière Sympact avec galet ** C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\varphi(t)$ en fonction de $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 5 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 6.

Exercice 7 - Poussoir *

C2-09

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L\overrightarrow{i_0} + H\overrightarrow{j_0}$, $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. De plus, $H = 120\,\mathrm{mm}$, $L = 40\,\mathrm{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\mu(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 7.

Exercice 8 - Système 4 barres **

C2-09 Pas de corrigé pour cet exercice.

On a

- $\overrightarrow{OA} = a \overrightarrow{x_1} f \overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec d = 89.5 mm et e = 160 mm;

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\theta_1(t)$ en fonction de $\theta_4(t)$.

Question 3 Exprimer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$.

Question 4 En utilisant Python, tracer $\dot{\theta}_1(t)$ en fonction de $\theta_4(t)$. On considérera que la fréquence de rotation de la pièce 1 est de 10 tours par minute.

Corrigé voir 8.

Exercice 9 - Maxpid ***

Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a = 107.1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\theta(t)$ *en fonction de* $\lambda(t)$.

Question 3 *Exprimer* $\dot{\theta}(t)$ *en fonction de* $\dot{\lambda}(t)$.

Question 4 Exprimer $\dot{\theta}(t)$ en fonction de $\omega(t)$, vitesse de rotation du rotor moteur 2 par rapport au stator 1.

Question 5 En utilisant Python, tracer $\dot{\theta}(t)$ en fonction de $\omega(t)$. On considérera que la fréquence de rotation de la pièce **2** par rapport à **1** est de 500 tours par minute.

Corrigé voir 9.

Exercice 10 - Variateur de Graham 1 * * *

D'après ressources de Michel Huguet.

Pas de corrigé pour cet exercice.

Soit le schéma suivant.

On note
$$\overrightarrow{AJ} = -L \overrightarrow{i_0} + \frac{d_3}{2} \overrightarrow{j_2}$$
 et $\overrightarrow{KJ} = -\ell \overrightarrow{i_2} + \frac{d_2}{2} \overrightarrow{j_2}$.

Soit $\mathcal{R} = (A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$ un repère lié au bâti **0** du variateur. L'arbre moteur 1 et l'arbre récepteur 3 ont une liaison pivot d'axe $(A, \overrightarrow{i_0})$ avec le bâti **0**. On pose $\Omega(1/0) = \omega_1 \overrightarrow{i_0}$ et $\overrightarrow{\Omega(3/0)} = \omega_3 \overrightarrow{i_0}$.

Soit $\mathcal{R}_1 = \left(A; \overrightarrow{i_0}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$ et $\mathcal{R}_2 = \left(B; \overrightarrow{i_2}, \overrightarrow{j_2}, \overrightarrow{k_1}\right)$ deux repères liés respectivement à $\mathbf{1}$ et $\mathbf{2}$ tels que \overrightarrow{AB} ait même direction que $\overrightarrow{j_1}$. On pose $\alpha = (\overrightarrow{i_1}, \overrightarrow{i_2})$ constant.

Le satellite **2** a une liaison pivot d'axe $(\overline{B}, \overline{i_2})$ avec 1. 2 est un tronc de cône de révolution d'axe $(\overline{B}, \overline{i_2})$ de demi angle au sommet α . On pose $\overrightarrow{\Omega(S_2/S_1)} = \omega \overrightarrow{i_2}$.

La génératrice de **2** du plan $(O, \overrightarrow{i_0}, \overrightarrow{j_1})$ la plus éloignée de l'axe $(O, \overrightarrow{i_0})$ est parallèle à $\overrightarrow{i_0}$. Notons d sa distance à l'axe (O, i_0)

2 roule sans glisser au point I, sur une couronne 4, immobile par rapport à 0 pendant le fonctionnement. Le réglage du rapport de variation s'obtient en déplaçant 4 suivant l'axe (O, i_0) .

Soit *K* le centre de la section droite du tronc de cône passant par *I*. On pose $\overrightarrow{BI} = \lambda j_2$. À l'extrémité de **2** est fixée une roue dentée de *n* dents, d'axe $(B, \overline{i_2})$, qui engrène avec une couronne dentée intérieure d'axe (A, i_0) , de n_2 dents, liée à 3.

Question 1 Tracer le graphe des liaisons.

Question 2 En exprimant que **2** roule sans glisser sur **4** au point I, déterminer ω en fonction de ω_1 , d et λ .

1. Les éventuelles erreur de texte font partie intégrante de la difficulté :).

Question 3 Quelle relation obtient-on entre ω_1 , ω_3 et ω en exprimant l'engrènement des deux roues dentées? (c'est à dire que **2** et **3** roulent sans glisser l'un sur l'autre en I).

Question 4 En déduire le rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , d_2 , d_3 et d.

Question 5 Tracer la courbe représentative du rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , sachant que $\frac{n}{n_3} = \frac{d_1}{d_3}$, $d = 55\,\mathrm{mm}$ et que λ varie entre $\lambda_{mini} = 12\,\mathrm{mm}$ et la valeur $\lambda_{maxi} = 23\,\mathrm{mm}$.

Corrigé voir 11.

Exercice 11 - Variateur à billes *****

C2-09 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Question 1 *Tracer le graphe des liaisons.* **Question 2** *Déterminer la loi entrée – sortie.*

Corrigé voir 11.