AQ077-3-2-PSMOD Final Exam Page 1 of 9

Answer ALL questions in this section.

QUESTION 1 (20 marks)

(a) The following hypotheses are to be tested at significance level of 0.05 (i.e. $\alpha = 0.05$). A random sample of 400 observations shows the sample proportion p = 0.40.

 $H_0: \pi = 0.30$

 $H_1: \pi \neq 0.30$

Where π is the population proportion.

(i) Find the value of test statistic.

(3 marks)

(ii) Find the critical statistic from standard normal table.

(2 marks)

- (b) With the recently introduced new processing method, a project manager claims that the mean project completion time can be shorten. The mean completion time used to be 20 days. A sample of 60 recently completed projects gives sample mean time of 19.5 days with standard deviation of 0.9 day.
 - (i) State the null and alternative hypotheses.

(2 marks)

(ii) Find the value of test statistic.

(3 marks)

(c) An experienced lecturer claims that he managed to improve the mean exam mark of the students, with the hypotheses as below:

$$H_0: \mu = 55$$

$$H_1: \mu > 55$$

The exam mark follows normal distribution. In order to confirm whether his claim is acceptable, a random sample of 10 students' recent exam marks was obtained. The sample mean exam mark was 59 marks, and the sample standard deviation was 5 marks. Use $\alpha = 0.05$, perform an appropriate hypothesis test to determine whether his claim is acceptable, as below:

(i) find the critical statistics.

(2 marks)

(ii) calculate the test statistics.

(3 marks)

(iii) state the decision rule.

(1 mark)

(iv) state the conclusion of the hypothesis test.

(2 marks)

(v) For this question, you have used a certain hypothesis test, give your justification why it was chosen.

(2 marks)

QUESTION 2 (20 marks)

(a) ABC Capital is considering investing \$15 million in two different projects, **Housing** and **Manufacturing**. The return on housing is dependent on the state of the economy as shown below:

Housing	State of Economy					
	Good	Average	Poor			
Profit	25%	20%	-15%			

The probability of each state of economy is 0.1, 0.6 and 0.3 respectively. **Manufacturing**'s profit is fixed at 15% of investment, regardless of the state of the economy.

(i) Draw a decision tree to represent the alternative courses of action and show each of the payoffs.

(12 marks)

(ii) Determine the best project for ABC Capital using expected value approach.

(4 marks)

(b) A big corporation has short-listed three possible industries for investment purposes. The following shows the projected payoff (profit in \$ million) according to the decision alternatives and state of nature.

Payoff (\$ million) table

Dagisian Alternativa	State of Nature							
Decision Alternative	S_1	S ₂	S 3					
Industry A	5.5	4.2	-1.4					
Industry B	4.0	2.8	-1.1					
Industry C	2.8	2.5	1.8					

By using the equal likelihood approach, determine which industry is the best to invest in.

4 marks)

OUESTION 3 (30 marks)

(a) A study was carried out to investigate the relationship between gender and course selection of students. The data collected were as shown in the contingency table below:

Candan	Course selection							
Gender	Management	Law	Economics	Science				
Female	50	40	20	10				
Male	30	10	25	15				

Conduct an appropriate hypothesis test to confirm whether the course selection is independent of gender. Use $\alpha = 0.01$ in your hypothesis testing.

(14 marks)

(b) The exam mark of PSMOD used to follow normal distribution, and the head of school claims that its real mean mark is 60. In order to ascertain whether the head's claim is acceptable, the exam department obtains a sample of 5 students' marks as below:

Conduct an appropriate hypothesis test to confirm whether the head's claim is acceptable. Use significance level of 0.05.

(16 marks)

QUESTION 4 (30 marks)

An economist wants to evaluate the feasibility of three development options. The following payoff table shows the profit (\$mil) of each development option under various future economic environments:

Payoff (profit) table

	Economic environment					
Development option	Good	Fair	Poor			
Construction	200	150	-30			
Plantation	150	50	20			
Mining	120	100	-40			

According to expert's predictions the probability of economic environments are as below: 0.20 for **good** economic environment, 0.50 for **fair** economic environment, and 0.30 for **poor** economic environment.

Answer all the questions below by showing your workings where necessary.

- (a) Determine the best development option using the following decision approach.
 - (i) Maximin

(2 marks)

(ii) Maximax

(2 marks)

- (iii) Briefly describe the personality of:
 - (A) a decision maker who prefers Maximin approach.
 - (B) a decision maker who prefers Maximax approach.

(4 marks)

(iv) Hurwicz: when coefficient of optimism $\alpha = 0.9$

(3 marks)

(v) Without further calculation, what would will be the best development option for case $\alpha = 0$.

(2 marks)

(b) (i) By using the payoff table above, construct an opportunity loss (regret) table.

(4 marks)

(ii) Determine the best development option by using Minimax regret approach.

(3 marks)

(iii) Determine the best development option by using Expected Opportunity Loss approach.

(3 marks)

(c) By using the best expected value approach, find the development option which will give the best expected profits?

(3 marks)

(d) Without further calculation, write down the expected value of perfect information (EVPI)? Interpret the meaning of EVPI.

(4 marks)

FORMULAE AND TABLES

(a) Binomial Distribution

$$P(X = x) = {^{n}C_{x}(p)^{x}(1-p)^{n-x}}$$

Where

p is the probability of success in single trial

n is the number of trials

Mean of a Binomial distribution, E(X) = np

Standard deviation of a Binomial distribution, $\sigma = \sqrt{np(1-p)}$

(b) Poisson Distribution

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, x = 0, 1, ...$$

λ

represents the mean

Mean of a Poisson distribution, $E(X) = \lambda$

Standard deviation of a Poisson distribution, $\sigma = \sqrt{\lambda}$

(c) Normal Distribution

$$Z = \frac{X - \mu}{\sigma}$$

Where

Z is the number of standard deviation from the mean

X is the value of interest

Mean of a Normal distribution, $E(X) = \mu$

Standard deviation of a Normal distribution, $sd(X) = \sigma$

(d) Sampling Distribution

(i) Standard error of mean

$$se(\overline{X}) = \frac{\sigma}{\sqrt{n}}$$

Where

o is the standard deviation for the population

n represent the sample size

OR

$$se(\overline{X}) = \frac{s}{\sqrt{n}}$$

Where

s is the standard deviation for the sample

n represent the sample size

(ii) Standard error of proportion

$$se(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

(e) Confidence Interval

(i) Confidence interval for
$$\mu := \overline{X} \pm Z \left(\frac{\sigma}{\sqrt{n}} \right)$$
Confidence interval for $\mu := \overline{X} \pm Z \left(\frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} \right)$
Confidence interval for $\mu := \overline{X} \pm t_{\frac{\alpha}{2}, n-1} \left(\frac{s}{\sqrt{n}} \right)$

Sample size:
$$n = \left(\frac{Z_{\alpha/2} \times \sigma}{e}\right)^2$$

(ii) Confidence interval for
$$\pi$$
: $\pi = p \pm Z \left(\sqrt{\frac{p(1-p)}{n}} \right)$
Sample size, $n = \frac{\left(Z_{\alpha/2} \right)^2 \times p(1-p)}{e^2}$

(f) **Hypothesis Testing:**

(i) Hypothesis testing for
$$\mu$$
: $t = \frac{\overline{X} - \mu}{\sqrt[s]{\sqrt{n}}}$

(ii) Hypothesis testing for
$$\pi$$
: $Z = \frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}$

(iii) Non-parametric testing:
$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

(g) Decision Making Techniques

(i) Expected Value:

$$EV(i) = \sum_{j=1}^{N} P_j X_{ij}$$

(ii) Expected Opportunity Loss:

$$EOL(i) = \sum_{i=1}^{N} P_{j} L_{ij}$$

(iii) Expected Value of Perfect Information: EVPI = Expected value under certainty – expected value under uncertainty

(h) Standard Deviation,
$$\sigma = \sqrt{\frac{\sum x^2}{N} - \left(\frac{\sum x}{N}\right)^2}$$
 or $s = \sqrt{\frac{\sum x^2}{n-1} - \frac{\left(\sum x\right)^2}{n(n-1)}}$

STANDARD NORMAL CUMULATIVE PROBABILITY TABLE

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Cumulative probabilities for POSITIVE z-values are shown in the following table:

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9352	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
0.5		0.0040	0.0044	0.0040	0.0045	0.0040	0.0040	0.0040	0.0054	0.0050
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8 2.9	0.9974	0.9975 0.9982	0.9976 0.9982	0.9977	0.9977	0.9978	0.9979 0.9985	0.9979 0.9985	0.9980	0.9981 0.9986
2.9	0.9981	0.9902	0.9902	0.9983	0.9984	0.9984	0.9900	0.9900	0.9986	0.9900
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
	'									

t-DISTRIBUTION

t Table

lable												
cum. prob	t.50	t.75	t .80	t .85	t _{.90}	t .95	t .975	t.99	t .995	t .999	t.9995	
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005	
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001	
df												
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62	
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599	
2	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924	
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610	
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869	
6 7	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959	
	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408	
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041	
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781	
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587	
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437	
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318	
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221	
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140	
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073	
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015	
17 18	0.000	0.689 0.688	0.863	1.069 1.067	1.333 1.330	1.740 1.734	2.110 2.101	2.567 2.552	2.898 2.878	3.646 3.610	3.965 3.922	
19	0.000	0.688	0.862 0.861	1.067	1.328	1.729	2.101	2.532	2.861	3.579	3.883	
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850	
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819	
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792	
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768	
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745	
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725	
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707	
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690	
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674	
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659	
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646	
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551	
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460	
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416	
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390	
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300	
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291	
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%	
	Confidence Level											

$\underline{CHI\text{-}SQUARED}(\chi^2) \ \ DISTRIBUTION \ TABLE$

	Level of significance (α)												
df	.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005			
1	-	-	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879			
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597			
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838			
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860			
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750			
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548			
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278			
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955			
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589			
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188			
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757			
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300			
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819			
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319			
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801			
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267			
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718			
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156			
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582			
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997			
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401			
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796			
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181			
24	9.886	10.856	12.401	13.848	15.659	33.196	36.145	39.364	42.980	45.559			
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928			
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290			
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645			
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993			
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336			
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672			
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766			
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490			
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952			
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215			
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321			
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299			
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169			