partitions-leanblueprint

Carter Hastings

Quinn Oveson

October 29, 2025

0.1 Definitions

Definition 1 (Modular Form). In lean, A modular form of weight $k \in \mathbb{N}$ is a function $f : \mathbb{C} \to \mathbb{C}$ such that :

- (1) f is holomorphic on \mathbb{H}
- (2) For all $z \in \mathbb{H}$, f(z+1) = f(z)
- (3) For all $z \in \mathbb{H}$, $f(-1/z) = z^k f(z)$
- (4) f is bounded as $\text{Im}(z) \to \infty$

Definition 2 (Integer Modular Form). An integer modular form of weight $k \in \mathbb{N}$ is a sequence $a : \mathbb{N} \to \mathbb{Z}$ such that $\sum_{n=0}^{\infty} a(n)q^n$ is a modular form of weight k, where $q = e^{2\pi i z}$.

Definition 3 (ModularFormMod ℓ). A modular form mod ℓ of weight $k \in \mathbb{Z}/(\ell-1)\mathbb{Z}$ is a sequence $a : \mathbb{N} \to \mathbb{Z}/\ell\mathbb{Z}$ such that there exists an integer modular form b of weight k' where $b \equiv a \mod \ell$ and $k' \equiv k \mod (\ell-1)$.

Definition 4 (Theta). Θ sends modular forms mod ℓ of weight k to weight k+2 by $(\Theta a)n = na(n)$.

Definition 5 (U Operator). The operator U sends modular forms mod ℓ of weight k to weight k by

 $(a|U)n = a(\ell n).$

Definition 6 (hasWeight). A modular form mod ℓ called a has weight $j \in \mathbb{N}$ if there exists an integer modular form b of weight j such that $b \equiv a \mod \ell$.

Definition 7 (Filtration). Let a be a of a modular form mod ℓ . The filtration of $a, \omega(a)$, is defined as the minimum natural number j such that a has weight j. The filtration of the zero function is 0.

Definition 8 (multiplication and exponentiation). It's worth stated how multiplication and exponentiation are defined here, because they are not defined in the normal way. The multiplication of two modular forms mod ℓ called a and b is defined as

$$(a \cdot b)n = \sum_{x+y=n} a(x)b(y).$$

The exponentiation of a modular form mod ℓ called a to the power of $j \in \mathbb{N}$ is defined as

$$(a^j)n = \sum_{x_1+\ldots+x_j=n} \prod_{i=1}^j a(x_i).$$

0.2 PowPrime

Definition 9 (permutational equivalence). Two functions $a, b : \text{Fin } n \to \mathbb{N}$, which can be thought of as tuples of n natural numbers, are permutationally equivalent if there exists a bijective function $\sigma : \text{Fin } n \to \text{Fin } n$ such that $a = b \circ \sigma$. This is an equivalence relation.

Lemma 10. If $x = (x_1, ..., x_k)$ is not constant (i.e not all x_i are equal) then for any $n \in \mathbb{N}$,

$$k \mid \#\{y = (y_1, ..., y_k) : \sum_{i=1}^k y_i = n \text{ and } x \text{ and } y \text{ are permutationally equivalent}\}$$

Proof.

Lemma 11. If x and y are permutationally equivalent then $\prod_{i=1}^k a(x_i) = \prod_{i=1}^k a(y_i)$.

Lemma 12. Let $x = (x_1, x_2, ..., x_k)$ and $n \in \mathbb{N}$. Suppose that $\sum_{i=1}^k x_i = n$.

(1) If $k \nmid n$ then x is not constant.

(2) If $k \mid n$ and $x \neq (n/k, ..., n/k)$ then x is not constant.

Theorem 13 (Pow Prime). Let ℓ be a prime and a a modular form mod ℓ of any weight. Then

$$a^{\ell}(n) = egin{cases} a(n/\ell) & \textit{if } \ell \mid n \\ 0 & \textit{otherwise} \end{cases}$$

Proof.

0.3 Theorems

Theorem 14. Let a be a modular form mod ℓ . Then $(a|U)^{\ell} = a - \Theta^{\ell-1}a$.

Lemma 15. Let a be a modular form mod ℓ . If $\omega(a) = 0$ then a is constant, i.e. for all n > 0, a(n) = 0.

Theorem 16. Let a be a modular form mod ℓ and $i \in \mathbb{N}$. Then $\omega(a^i) = i\omega(a)$.

Theorem 17. Let a be a modular form mod ℓ of weight k. Then $(\omega(a) \equiv k \mod (\ell-1)$.

Definition 18 (Delta).

 Δ is the sequence obtained from $q(\prod_{n=1}^{\infty}(1-q^n))^{24}$. It is an integer modular form of weight 12. The modular form mod ℓ , also called Δ , is defined to the reduction of Δ .

Definition 19. For a prime $\ell \geq 5$, we define $\delta_{\ell} = \frac{\ell^2 - 1}{24} \in \mathbb{N}$. We define $f_{\ell} = \Delta^{\delta_{\ell}}$, which is an integer modular form of weight $12\delta_{\ell}$. We also define the reduction of fl as an modular form mod

Lemma 20. $\omega(f_{\ell}) = 12\delta_{\ell} = \frac{\ell^2 - 1}{2}$.

Theorem 21. This is part (1) of Lemma 2.1.

Let a be a modular form mod ℓ . Then $\omega(\Theta a) \leq \omega(a) + \ell + 1$.

Theorem 22. This is part (2) of Lemma 2.1.

Let a be a modular form mod ℓ . Then $\omega(\Theta a) = \omega(a) + \ell + 1$ if and only if $\ell \nmid \omega(a)$.

Theorem 23. This is Lemma 3.2. For all $m \in \mathbb{N}$, $\omega(\Theta^m f_\ell) \ge \omega(f_\ell) = \frac{\ell^2 - 1}{2}$.

Theorem 24. This is part (1) of Lemma 3.3.

If $\ell \nmid \omega(\Theta^{\ell-1}f_{\ell})$ then $\omega(\Theta^{\ell-1}f_{\ell}) = \frac{\ell^2-1}{2}$.

Proof.

Theorem 25. This is part (2) of Lemma 3.3. If $\ell \mid \omega(\Theta^{\ell-1}f_{\ell})$ then $\omega(f_{\ell} U) > 0$.	
Proof.	
Lemma 26. Let a be a modular form mod ℓ . If $\ell \mid \omega(a)$ then there exists an $\alpha \in \mathbb{N}$ so $\omega(\Theta a) = \omega(a) + \ell + 1 - (\alpha + 1)(\ell - 1)$.	uch that
Proof.	
Theorem 27. If $(f_{\ell} U) = 0$ then $\ell \mid \omega(\Theta^{\ell-2}f_{\ell})$.	
Proof.	
Lemma 28. For all $m \in \mathbb{N}$ with $m \leq \frac{\ell+1}{2}$, $\omega(\Theta^m f_\ell) = \frac{\ell^2-1}{2} + m(\ell+1)$.	
Proof. Induction.	
Theorem 29. $\ell \mid \omega(\Theta^{\frac{\ell+1}{2}}f_{\ell}).$	
Proof.	
Definition 30. We define α to be the natural number such that $\omega(\Theta^{\frac{\ell+3}{2}}f_{\ell})=\frac{\ell^2-1}{2}+1)-(\alpha+1)(\ell-1).$ Such an α exists, because $\ell\mid\omega(\Theta^{\frac{\ell+1}{2}}f_{\ell})=\frac{\ell^2-1}{2}+\frac{\ell+1}{2}(\ell+1).$	$\frac{\ell+3}{2}(\ell+1)$
Definition 31. We define j to be the least natural number such that $\ell \mid \omega(\Theta^{\frac{\ell+3}{2}+j}f_{\ell})$. Sexists, because $\ell \mid \omega(\Theta^{\ell-2}f_{\ell})$.	Such a j
Note : This definition requires that $(f_{\ell} U)=0$. We will assume this fact from now on.	
Lemma 32. $\alpha \leq \frac{\ell+3}{2}$.	
Proof.	
Lemma 33. $j \leq \frac{\ell-7}{2}$.	
Proof.	
Lemma 34. For all $m \leq j$, $\omega(\Theta^{\frac{\ell+3}{2}+m}f_{\ell}) = \frac{\ell^2-1}{2} + (\frac{\ell+3}{2}+m)(\ell+1) - (\alpha+1)(\ell-1)$.	
Proof.	
Lemma 35. $\ell \mid (j+1) + (\alpha+1)$.	
Proof.	
Lemma 36. $\alpha + 1 = \frac{\ell + 5}{2}$.	
Proof.	
Theorem 37. $\omega(\Theta^{\frac{\ell+3}{2}}f_{\ell}) = \frac{\ell^2-1}{2} + 4.$	
Proof.	
Lemma 38. $f_{\ell}(\delta_{\ell}+1)=1.$	
Proof.	

Theorem 39. $(\Theta^{\frac{\ell+3}{2}}f_{\ell}) (\delta_{\ell}+1) = 241(\delta_{\ell}+1)^{\frac{\ell+3}{2}}.$

Theorem 40. If $\ell \geq 13$ is prime, then $(f_{\ell}|U) \neq 0$.

Proof.

Definition 41. Let p be the partion function. We say that there is a Ramanujan congruence mod a prime ℓ if $\forall n \in \mathbb{N}, \ell \mid p(\ell n - \delta_{\ell})$.

Theorem 42. If n > 0 and $m \ge n$, then p(n) is equal to the nth coefficient in the product exapansion of

$$\prod_{i=0}^{m} (1 - X^{i+1})^{-1}$$

Note: In lean, p(0) = 0.

Proof. This proof is almost entirely due to Archive. Wiedijk 100 Theorems. Partition \Box

Definition 43. Let α be a field, and let $f,g:\mathbb{N}\to\alpha[[X]]$ be two sequences of power series with coefficients in α . We say that f and g are eventually equal, and write $f\longrightarrow g$, if $\forall n\in\mathbb{N}, \exists m\in\mathbb{N}, \forall k\leq n, \forall j\geq m$, the kth coefficient of f(j) is equal to the kth coefficient of g(j). This is an equivalence relation.

Theorem 44. If $f \longrightarrow f'$ and $g \longrightarrow g'$, then $fg \longrightarrow f'g'$.

Lemma 45. Let $n, N, \ell \in \mathbb{N}$ with n < N and $\ell > 0$. Let $a : \mathbb{N} \to \alpha$ be a sequence with coefficients in a field α . Then the nth coefficient of

$$\sum_{i=0}^{N} a(n)X^{\ell i} = \begin{cases} a(n/\ell) & \text{if } \ell \mid n, \\ 0 & \text{otherwise.} \end{cases}$$

Proof.

Lemma 46. Let $j, \ell, N, M \in \mathbb{N}$ with $\ell > 0$ and $N, M > \ell j$. Let $a, b : \mathbb{N} \to \alpha$. Then the ℓj th coefficient of

$$\sum_{i=0}^{N} a(i) X^{i} \sum_{i=0}^{M} b(i) X^{\ell i} = \sum_{x+y=j} a(\ell x) b(y)$$

Proof.

Lemma 47. Let $m, N \in \mathbb{N}$. Let $f : \mathbb{N} \to \alpha[[X]]$ be a sequence with f(0) = 0, the zero power series. Then

$$X^{m} \sum_{i=0}^{N} f(i)X^{i} = \sum_{i=0}^{N+m} f(i-m)X^{i}$$

 \square

Lemma 48. Let $M, \ell, k \in \mathbb{N}$ with $\ell \nmid k$. Then the kth coefficient of

$$\prod_{i=0}^{M} (1 - X^{\ell(i+1)})^{\ell} = 0$$

Proof.

Lemma 49. Let $\ell, K \in \mathbb{N}$ with $\ell > 0$. Then there exists a $c : \mathbb{N} \to \alpha$ and $M \in \mathbb{N}$ such that

$$\prod_{i=0}^K (1-X^{\ell(i+1)})^\ell = \sum_{i=0}^M c(i) X^{\ell i}$$

Proof.

Theorem 50. The coefficients of the Delta product are eventually equal to the coefficients of the Delta function. In other words,

$$X \prod_{i \, \leq \, \cdot} (1 - X^{i+1})^{24} \longrightarrow \sum_{i \, \leq \, \cdot} \Delta(i) X^i$$

Theorem 51. If $\ell \geq 5$ is prime, then the coefficients of the f_{ℓ} product are eventually equal to the coefficients of the f_{ℓ} function. In other words,

$$(X\prod_{i\leq \cdot}(1-X^{i+1})^{24})^{\delta_\ell}\longrightarrow \sum_{i\leq \cdot}f_\ell(i)X^i$$

Proof.

Theorem 52. Let $\ell \geq 5$ be prime. If there is a ramanujan congruence mod ℓ , then $(f_{\ell}|U) = 0$.

Proof.

Theorem 53. If $\ell \geq 13$ is prime, then there does not exists a ramanujan congruence mod ℓ .

Proof.