Zustandsänderungen idealer Gase (reversibel ($ds_{irr} = 0$), potentielle und kinetische Energie vernachlässigt, $c_n = const.$)

	Isotherme $dT = 0$	Isobare dp = 0	Isochore dv = 0	Isentrope (reversibel adiabat) $ds = 0 (dq = 0)$		Polytrope $\frac{dT/T}{dp/p} = \frac{n-1}{n} = const$	
Vergleichsprozess für	sperfekt%gekühlter Verdichter, sperfekt%beheizte Turbine	reib.freies Kolben. Zylinder Syst. WÜ mit reib.freier Strömung	fest verschlossener Behälter	wärmedichtes System adiabate Turbine/Verdichter		allgenmein alle Zustandsänderungen (oft: gekühlter Verdichter, beheizte Turbine)	
Polytropenexponent n	n=1	n = 0	$n=\pm\infty$	$n = \kappa$		$0 < n < \infty \text{(off: 1 < } n < \kappa \text{)}$	
$p v^n = const.$	pv = const.	p = const.	$p^{1/\infty}v = v = const.$	$p v^{\kappa} = const.$		$p v^n = const.$	
spez. Wärmekapazität C_n $(R_k = c_\rho - c_v)$	$C_T = \infty$	$C_p = \left(\frac{\partial h}{\partial T}\right)_p$	$\mathbf{c}_{v} = \left(\frac{\partial \mathbf{u}}{\partial \mathbf{T}}\right)_{v}$	$c_s = 0$ $\left[\kappa = \frac{c_p}{c_v} \right]$		$c_n = c_v \frac{n - \kappa}{n - 1} = \frac{c_p}{\kappa} \frac{n - \kappa}{(n - 1)}$	
thermische Zustandsgleichung ideales Gas $p \ V = R_k T$	$\frac{p_1}{p_2} = \frac{v_2}{v_1}$	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$	$\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^{\kappa}$	$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{\kappa-1}$	$\frac{V_2}{V_1} = \left(\frac{p_1}{p_2}\right)^{\frac{1}{n}}$	$\frac{v_2}{v_1} = \left(\frac{T_1}{T_2}\right)^{\frac{1}{n-1}}$
$[p V = m R_k T]$ $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$	$p_1 \ v_1 = p_2 \ v_2$				$\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\kappa}{\kappa-1}}$		$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}}$
spez. physikalische Arbeit $W_{12} = -\int \rho dV$	$w_{12} = -R_k T \ln \left(\frac{v_2}{v_1} \right)$	$w_{12} = -p(v_2 - v_1)$	$W_{12} = 0$	$w_{12} = C_{v}(T_{2} - T_{1}) = \Delta u$ $w_{12} = \frac{1}{\kappa - 1}(\rho_{2}V_{2} - \rho_{1}V_{1})$ $w_{12} = \frac{R_{K}T_{1}}{\kappa - 1}\left(\left(\frac{V_{1}}{V_{2}}\right)^{\kappa - 1} - 1\right)$		$w_{12} = \frac{1}{n-1} R_K (T_2 - T_1)$ $w_{12} = \frac{1}{n-1} (p_2 v_2 - p_1 v_1)$	
$W_{12} = \frac{W_{t12}}{n}$	$w_{12} = -p_1 v_1 \ln \left(\frac{v_2}{v_1} \right)$	$W_{12} = -R_k(T_2 - T_1)$				$w_{12} = \frac{p_1 v_1}{n - 1} \left(\left(\frac{v_1}{v_2} \right)^{n - 1} - 1 \right)$ $w_{12} = \frac{\kappa - 1}{n - \kappa} q_{12}$	
spez. technische Arbeit $W_{t12} = \int v dp$	$W_{t12} = W_{12}$	$W_{t12} = 0$	$W_{t12} = V(p_2 - p_1)$	$W_{t12} = \kappa W_{12}$ $W_{t12} = c_P(T_2 - T_1) = \Delta h$		$W_{t12} = n W_{12}$ $W_{t12} = \frac{n}{n-1} R_K (T_2 - T_1)$	
$w_{t12} = n w_{12}$	$W_{t12} = R_k T \ln \left(\frac{p_2}{p_1} \right)$		$W_{t12}=R_k(T_2-T_1)$	$w_{\text{r12}} = c_{p} T_{1} \left(\left(\frac{p_{2}}{p_{1}} \right)^{\frac{\kappa-1}{\kappa}} - 1 \right)$		$w_{\text{rl2}} = \frac{n}{n-1} R_K T_1 \left(\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right)$	
spez . Wärme	$q_{12} = \infty 0 = -w_{12}$	$q_{12} = c_{p} \Delta T$	$q_{12} = c_V \Delta T$	$q_{12} = 0$		$q_{12} = c_n \Delta T$	
$q_{12} = c_n (T_2 - T_1)$	$q_{12} = -w_{t12}$	$q_{12} = \frac{\kappa}{\kappa - 1} p \left(V_2 - V_1 \right)$	$q_{12} = \frac{1}{\kappa-1} v \left(p_2 - p_1 \right)$			$q_{12} = \frac{n-\kappa}{\kappa-1} w_{12} = \frac{n-\kappa}{\kappa-1} \frac{w_{t12}}{n}$	
spez. Änderung innere Energie $\Delta u = q_{12} + w_{12} = c_v (T_2 - T_1)$	$\Delta u = 0$	$\Delta u = q_{12} + w_{12} = c_v \Delta T$	$\Delta u = q_{12} = c_v \Delta T$	$\Delta u = w_{12} = c_{\nu} \Delta T$		$\Delta u = q_{12} + w_{12} = c_v \Delta T$	
spez. Enthalpieänderung $\Delta h = q_{12} + w_{t12} = c_p(T_2 - T_1)$	$\Delta h = 0$	$\Delta h = q_{12} = c_{p} \Delta T$	$\Delta h = q_{12} + W_{t12} = C_{p} \Delta T$	$\Delta h = W_{t12} = C_{p} \Delta T$		$\Delta h = q_{12} + W_{t12} = C_p \Delta T$	
spez. Entropieänderung $ds = \frac{dq}{r} + ds_{irr} \text{ hier: } (ds_{irr} = 0)$	$\Delta s = -R_k \ln \left(\frac{p_2}{p_1} \right) = \frac{q_{12}}{T}$	$\Delta s = c_{\rho} \ln \left(\frac{T_2}{T_1} \right)$	$\Delta s = c_v \ln \left(\frac{T_2}{T_1} \right)$	$\Delta s = 0$ $\Delta s =$		$\Delta s = c_n \ln \left(\frac{T_2}{T_1} \right)$	
$ds = \frac{dh - vdp}{T} = \frac{du + pdv}{T}$	$\Delta \mathcal{S} = c_p \ln \left(\frac{T_2}{T_1} \right) - R_k \ln \left(\frac{p_2}{p_1} \right) = c_v \ln \left(\frac{T_2}{T_1} \right) + R_k \ln \left(\frac{v_2}{v_1} \right) \text{(gilt auch für irreversible ZÄ id. Gase)}$						
Besonderheiten für <u>reale</u> Gase (auch Flüssigkeiten und Feststoffe)	isotherm-isobare ZÄ. $\Delta h = \Delta^a$ mit Phasenänderung	$^{eta}h=q_{_{12}}$ $\Delta^{^{lphaeta}}h$ Enthalpieänd.beim Verdampfen, Erstarren u.s.w					
$dh = c_p \ dT + \left[v - T \left(\frac{\partial v}{\partial T} \right)_p \right] dp$	$\Delta^{LV} h = h'' - h'$	$h_x = h' + x(h'' - h')$					
$\left[\begin{array}{ccc} a_{p} & a_{r} & \left[\begin{array}{c} a_{r} \\ \end{array} \right] & \left[\begin{array}{c} a_{r} \\ \end{array} \right] & \left[\begin{array}{c} a_{r} \\ \end{array} \right] \right]$	inkompressible ($ extit{d} v$ = 0) Flüssigkeiten und Feststoffe ohne Phasenänderung $ extit{C}_p pprox extit{C}_V extit{V} = 1/ ho$						
	$W_{t12} = V\Delta p$	$\Delta h \approx \Delta u \approx c \ \Delta T$		$\Delta h = W_{t12} = v \Delta p; \Delta T \approx 0$			