Control Tema 6 de Redes - Grupo 2F - 18 de Abril de 2013

- 1) **(2 puntos)** Una organización dispone de un bloque de direcciones /24, que desea dividir en subredes. Indica cuál sería la máscara necesaria para obtener las subredes siguientes (justifica la respuesta brevemente):
 - a. Dos subredes iguales.

Solución:

/25. Se requiere ampliar la máscara con 1 bits adicional que permitirá 2 combinaciones distintas (0 y 1).

b. Cuatro subredes.

Solución:

/26. Se requiere ampliar la máscara con 2 bits adicionales que permitirán 4 combinaciones distintas (00, 01, 10 y 11).

c. Tres subredes, una de las cuales es el doble de las otras dos (en este caso se pueden emplear máscaras de diferente tamaño).

Solución:

Requiere utilizar dos máscaras de distinto tamaño, una máscara para las dos redes más pequeñas, /26, y otra máscara /25 para la red mayor. Es equivalente a dividir primero la red original por 2 (ampliar la máscara en 1 bit) y después dividir por 2 una de las 2 subredes obtenidas (extender la máscara /25 en 1 bit más).

NOTA: en el examen no se requería una solución tan detallada.

2) **(2 puntos)**

a. Divide el bloque de direcciones 200.30.0.0/16 en 4 subredes iguales. Indica los nuevos bloques obtenidos (IP de red y máscara).

Solución: 200.30.0.0/18, 200.30.64.0/18, 200.30.128.0/18 y 200.30.192.0/18.

b. Calcula el número de conexiones disponibles en cada una de ellas.

Solución: Como la máscara de red es /18 quedan 14 bits para el identificador de host, por lo que el número de conexiones disponibles es 2¹⁴-2

c. Indica el rango de direcciones asignables en una de las subredes, especifica cuál has elegido.

Solución: se muestran los valores posibles para las 4 subredes.

Subred/18	Rango de direcciones asignables	Dirección de difusión (no se pide)
200.30.0.0	desde 200.30.0.1 hasta 200.30.63.254	200.30.63.255
200.30.64.0	desde 200.30.64.1 hasta 200.30.127.254	200.30.127.255
200.30.128.0	desde 200.30.128.1 hasta 200.30.191.254	200.30.191.255
200.30.192.0	desde 200.30.192.1 hasta 200.30.255.254	200.30.255.255

d. Calcula la dirección de difusión de la red 200.100.30.0/23.

Solución: 200.100.31.255

3) **(2 puntos)** Dada la red de la figura, asigna direcciones IP a los elementos que lo necesiten e indica la tabla de encaminamiento del router R1. El número de entradas de la tabla debe ser el mínimo.

Solución:

Nota: el enunciado de la pregunta sólo incluía los bloques de direcciones para cada una de las redes, pero no los valores específicos para las interfaces del router.

Destino	Máscara	Siguiente salto	Interfaz
10.10. 2.0	/23	0.0.0.0	10.10.2.1
10.10.0.0	/23	0.0.0.0	10.10.0.1
10.10.12.0	/22*	10.10.0.2	10.10.0.1
0.0.0.0	/0	a.b.c.d	x.y.z.w

* Esta entrada agrupa a las redes C y D en un único bloque.

4) **(1 punto)** ¿Qué tipo de servicio proporciona IP? ¿Qué características tiene?

Solución:

IP proporciona un tipo de servicio sin garantías ("best effort"), donde ni siquiera se garantiza que el paquete llegue a su destino. Otras características adicionales son: servicio sin conexión, sin control de flujo y sin garantía de entrega ordenada.

5) **(1 punto)** ¿Por qué es necesario limitar el tiempo de vida de un datagrama IP?

Solución:

Para garantizar que un datagrama que llega excesivamente retrasado no provoca problemas en el receptor. Podría provocar una entrega incorrecta de datos a la aplicación destino.

4) **(2 puntos)** Considera la siguiente red. Aplicando el algoritmo de Dijkstra obtén la tabla de encaminamiento para el nodo "x".

Solución:

N'	D(y), p(y)	D(v), p(v)	D(w), p(w)	D(t), p(t)	D(u), p(u)
x	6,x	3,x	4,x	∞	∞
x, v	6, x	-	4,x	9,v	7,v
x, v, w	6, x*	-	-	9,v	6, w*
x, v, w, y	-	-	-	7,y	6, w
x, v, w, y, u	-	-	-	7,y	-
x, v, w, y, u, t	-	-	-	-	_

^{*}Empate, elegir cualquiera de los 2 es válido. Aplicamos precedencia alfabética, elegimos el de la letra más al comienzo del alfabeto.

Tabla de encaminamiento del nodo x

Destino	Siguiente salto (tiene que ser un router vecino de x)
y	У
u	w
v	v
W	w
t	у