Introduction to Machine Learning

Lab 2 Block 2

Rasmus Holm

2016-11-30

Contents

ssignment 1a	
ssignment 1b	
ssignment 2a	
1	
2	
3	
ssignment 2b	
ssignment 3a	
1	
2	
ssignment 4a	
ppendix	
Code for Assignment 1a	
Code for Assignment 1b	
Code for Assignment 2a	
Code for Assignment 2b	
Code for Assignment 3a	
Code for Assignment 4a	

Assignment 1a

Assignment 1b

Assignment 2a

Assignment 2b

Assignment 3a

Assignment 4a

Appendix

Code for Assignment 1a

Code for Assignment 1b

Code for Assignment 2a

Code for Assignment 2b

Code for Assignment 3a

Code for Assignment 4a

```
library(mboost)
library(randomForest)
library(ggplot2)
library(reshape2)
data <- read.csv2("../data/spambase.csv")</pre>
data$Spam <- as.factor(data$Spam)</pre>
set.seed(1234567890)
train_idx <- sample(nrow(data), floor(nrow(data) * (2 / 3)))</pre>
train <- data[train_idx,]</pre>
test <- data[-train_idx,]</pre>
tree_counts <- seq(10, 100, by=10)</pre>
test_errors <- rep(0, length(tree_counts))</pre>
train_errors <- rep(0, length(tree_counts))</pre>
for (i in 1:length(tree_counts)) {
    fit <- blackboost(Spam ~ ., data=train, family=AdaExp(),</pre>
                        control=boost_control(mstop=tree_counts[i]))
    test_error <- 1 - (sum(predict(fit, test, type="class") == test$Spam) / nrow(test))</pre>
    train_error <- 1 - (sum(predict(fit, train, type="class") == train$Spam) / nrow(train))</pre>
    test errors[i] <- test error</pre>
    train_errors[i] <- train_error</pre>
plot_data <- data.frame(Trees=tree_counts, test=test_errors, train=train_errors)</pre>
plot data <- melt(plot data, id="Trees", value.name="Error", variable.name="Data")</pre>
ggplot(plot_data) +
    xlab("Number of Regression Trees") +
    ylab("Misclassification Rate") +
    geom_line(aes(x=Trees, y=Error, color=Data)) +
    scale_x_discrete(limits=tree_counts)
test_errors <- rep(0, length(tree_counts))</pre>
train_errors <- rep(0, length(tree_counts))</pre>
for (i in 1:length(tree_counts)) {
    fit <- randomForest(Spam ~ ., data=train, ntree=tree_counts[i])</pre>
    test_error <- 1 - (sum(predict(fit, test, type="class") == test$Spam) / nrow(test))</pre>
```

```
train_error <- 1 - (sum(predict(fit, train, type="class") == train$Spam) / nrow(train))
    test_errors[i] <- test_error
    train_errors[i] <- train_error
}

plot_data <- data.frame(Trees=tree_counts, test=test_errors, train=train_errors)

plot_data <- melt(plot_data, id="Trees", value.name="Error", variable.name="Data")

ggplot(plot_data) +
    xlab("Number of Regression Trees") +
    ylab("Misclassification Rate") +
    geom_line(aes(x=Trees, y=Error, color=Data)) +
    scale_x_discrete(limits=tree_counts)</pre>
```