```
from google.colab import files
upload=files.upload()
     Choose Files Company_Data.csv

    Company Data.csv(text/csv) - 17023 bytes, last modified: 2/25/2023 - 100% done

     Saving Company_Data.csv to Company_Data.csv
import pandas as pd
import numpy as np
df=pd.read_csv("Company_Data.csv")
df.head()
₽
          Sales CompPrice Income
                                       Advertising Population Price
                                                                            ShelveLoc Age
                                                                                               Education
                                                                                                            Urban
                                                                                                                     US
                                                                                                                            1
           9.50
                                                               276
                                                                                           42
                                                                        120
                                                                                    Bad
                                                                                                               Yes
                                                                                                                    Yes
      1
          11.22
                         111
                                   48
                                                   16
                                                               260
                                                                        83
                                                                                   Good
                                                                                           65
                                                                                                        10
                                                                                                               Yes
                                                                                                                    Yes
      2
          10.06
                         113
                                   35
                                                   10
                                                                269
                                                                         80
                                                                                Medium
                                                                                           59
                                                                                                        12
                                                                                                               Yes
                                                                                                                    Yes
      3
           7.40
                         117
                                  100
                                                    4
                                                                466
                                                                         97
                                                                                Medium
                                                                                           55
                                                                                                        14
                                                                                                               Yes
                                                                                                                    Yes
           4.15
                         141
                                   64
                                                    3
                                                               340
                                                                        128
                                                                                    Bad
                                                                                           38
                                                                                                        13
                                                                                                               Yes
                                                                                                                     No
df.dtypes
     Sales
                       float64
     CompPrice
                          int64
                          int64
     Income
     Advertising
                         int64
     Population
                         int64
                         int64
     Price
     ShelveLoc
                        object
                         int64
     Education
                         int64
     Urban
                        object
                        object
     US
     dtype: object
mean=df["Sales"].mean()
for i in range(0,400):
  if df["Sales"][i] <= mean:</pre>
    df["Sales"][i]="No"
  else:
    df["Sales"][i]="Yes"
     <ipython-input-82-56281154fe9b>:6: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc</a>
        df["Sales"][i]="Yes"
      /usr/local/lib/python3.8/dist-packages/pandas/core/indexing.py:1732: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc</a>
        self._setitem_single_block(indexer, value, name)
df.dtypes
     Sales
                       object
     CompPrice
                        int64
     Income
                        int64
     Advertising
                        int64
                        int64
     Population
     Price
                        int64
     ShelveLoc
                       object
                        int64
     Age
     Education
                        int64
     Urban
                       object
     US
                       object
     dtype: object
```

df_cat=df.select_dtypes("object")

df_cat

	, ,		,				
on	CompPrice	Income	Advertising	Population	Price	Age	Education
0	138	73	11	276	120	42	17
1	111	48	16	260	83	65	10
2	113	35	10	269	80	59	12
3	117	100	4	466	97	55	14
4	141	64	3	340	128	38	13
395	138	108	17	203	128	33	14
396	139	23	3	37	120	55	11
397	162	26	12	368	159	40	18
398	100	79	7	284	95	50	12
399	134	37	0	27	120	49	16

400 rows × 7 columns

from sklearn.preprocessing import StandardScaler
SS = StandardScaler()
df_con_SS = SS.fit_transform(df.con)
df_con_SS=pd.DataFrame(df_con_SS)
df_con_SS

	0	1	2	3	4	5	6	7
0	0.850455	0.155361	0.657177	0.075819	0.177823	-0.699782	1.184449	
1	-0.912484	-0.739060	1.409957	-0.032882	-1.386854	0.721723	-1.490113	
2	-0.781896	-1.204159	0.506621	0.028262	-1.513719	0.350895	-0.725953	
3	-0.520720	1.121336	-0.396715	1.366649	-0.794814	0.103677	0.038208	
4	1.046337	-0.166631	-0.547271	0.510625	0.516132	-0.947000	-0.343872	
395	0.850455	1.407551	1.560513	-0.420131	0.516132	-1.256023	0.038208	
396	0.915749	-1.633482	-0.547271	-1.547909	0.177823	0.103677	-1.108033	
397	2.417512	-1.526151	0.807733	0.700853	1.827078	-0.823391	1.566529	
398	-1.630719	0.370022	0.054953	0.130170	-0.879391	-0.205346	-0.725953	
399	0.589279	-1.132606	-0.998939	-1.615848	0.177823	-0.267150	0.802369	

400 rows × 7 columns

from sklearn.preprocessing import LabelEncoder
LE = LabelEncoder()
for i in range(0,4):
 df_cat.iloc[:,i]=LE.fit_transform(df_cat.iloc[:,i])
df_cat

/usr/local/lib/python3.8/dist-packages/pandas/core/indexing.py:1773: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc self._setitem_single_column(ilocs[0], value, pi)

	Sales	ShelveLoc	Urban	US	1
0	1	0	1	1	
1	1	1	1	1	
2	1	2	1	1	
3	0	2	1	1	
4	0	0	1	0	

df1 = pd.concat([df_cat,df_con_SS],axis=1)
df1.head()

	Sales	ShelveLoc	Urban	US	0	1	2	3	4	5	6	2
0	1	0	1	1	0.850455	0.155361	0.657177	0.075819	0.177823	-0.699782	1.184449	
1	1	1	1	1	-0.912484	-0.739060	1.409957	-0.032882	-1.386854	0.721723	-1.490113	
2	1	2	1	1	-0.781896	-1.204159	0.506621	0.028262	-1.513719	0.350895	-0.725953	
3	0	2	1	1	-0.520720	1.121336	-0.396715	1.366649	-0.794814	0.103677	0.038208	
4	0	0	1	0	1.046337	-0.166631	-0.547271	0.510625	0.516132	-0.947000	-0.343872	

y=df1["Sales"] x=df1.iloc[:,1:11]

	ShelveLoc	Urban	US	0	1	2	3	4	5	6	1
0	0	1	1	0.850455	0.155361	0.657177	0.075819	0.177823	-0.699782	1.184449	
1	1	1	1	-0.912484	-0.739060	1.409957	-0.032882	-1.386854	0.721723	-1.490113	
2	2	1	1	-0.781896	-1.204159	0.506621	0.028262	-1.513719	0.350895	-0.725953	
3	2	1	1	-0.520720	1.121336	-0.396715	1.366649	-0.794814	0.103677	0.038208	
4	0	1	0	1.046337	-0.166631	-0.547271	0.510625	0.516132	-0.947000	-0.343872	
395	1	1	1	0.850455	1.407551	1.560513	-0.420131	0.516132	-1.256023	0.038208	
396	2	0	1	0.915749	-1.633482	-0.547271	-1.547909	0.177823	0.103677	-1.108033	
397	2	1	1	2.417512	-1.526151	0.807733	0.700853	1.827078	-0.823391	1.566529	
398	0	1	1	-1.630719	0.370022	0.054953	0.130170	-0.879391	-0.205346	-0.725953	
399	1	1	1	0.589279	-1.132606	-0.998939	-1.615848	0.177823	-0.267150	0.802369	

400 rows × 10 columns

from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(x,y,test_size=0.3)

from sklearn.tree import DecisionTreeRegressor
DT=DecisionTreeRegressor(max_depth=5)
DT.fit(X_train,Y_train)
Y_pred_train=DT.predict(X_train)
Y_pred_test=DT.predict(X_test)

```
/usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:1688: FutureWarning: Feature names only support names that are all st
      warnings.warn(
    /usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:1688: FutureWarning: Feature names only support names that are all st
      warnings.warn(
    /usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:1688: FutureWarning: Feature names only support names that are all st
      warnings.warn(
from sklearn.metrics import mean_squared_error
mse1 = mean_squared_error(Y_train,Y_pred_train)
RMSE1 = np.sqrt(mse1)
print("Training Error: ",RMSE1.round(2))
mse2 = mean_squared_error(Y_test,Y_pred_test)
RMSE2 = np.sqrt(mse2)
print("Test Error: ",RMSE2.round(2))
    Training Error: 0.3
    Test Error: 0.43
from sklearn.ensemble import BaggingRegressor
BG=BaggingRegressor(max_features=0.5)
BG.fit(X_train,Y_train)
Y_pred_train=BG.predict(X_train)
Y_pred_test=BG.predict(X_test)
    /usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:1688: FutureWarning: Feature names only support names that are all st
      warnings.warn(
     /usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:1688: FutureWarning: Feature names only support names that are all st
      warnings.warn(
    /usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:1688: FutureWarning: Feature names only support names that are all st
      warnings.warn(
    4
from sklearn.metrics import mean_squared_error
mse1 = mean_squared_error(Y_train,Y_pred_train)
RMSE1 = np.sqrt(mse1)
print("Training Error: ",RMSE1.round(2))
mse2 = mean_squared_error(Y_test,Y_pred_test)
RMSE2 = np.sqrt(mse2)
print("Test Error: ",RMSE2.round(2))
    Training Error: 0.22
    Test Error: 0.51
```