Programming Assignment 2 Finite Element Method

Team:

Tejal Ladage 210010026 Dhrutika Kalidindi 210010021 Ashwin Waghmare 210010060

Instructor: **Prof. Nikhil Hegde**

CS601: Software Development for Scientific Computing
Indian Institute of Technology Dharwad

November 10, 2023

Contents

1	Methodology															2								
	1.1	Subpr	obl	em 1	l .																			2
	1.2	Subpr																						
2	Experimental Results Plots															6								
	2.1	Subpr	obl	em1																				6
	2.2	Subpr	obl	em2																				8
3	Apr	Appendix 10															10							
	3.1	Snippe	ets	of ex	xecı	utio	n	ti	mε	٠.														10
		3.1.1																						
		3.1.2	S_1	ubpr	obl	em:	2																	11
	3.2	Snippe	ets	of co	ode																			13
		3.2.1	fe	m.h																				13
		3.2.2	fe	m.cp	р																			14
		3.2.3	m	ain.	cpp																			15
		324	m	akef	ile																			16

1 Methodology

Given a rod with cross sectional area A(x) and length L. The rod is subjected to a constant load P=5000N at x=0. At x=L the rod is fixed. The length of the rod is 0.5 m and the Young's modulus of the material of the rod is 70 GPa. Below are two subproblems:

1.1 Subproblem 1

The cross section of the rod is uniform with area $A(x) = A = (12.5 * 10^{-4})m^{2}$

Here we are finding displacements at nodes for 2 elements.

Element 1 and element 2 have same cross section, same young's modulus and same length which is equal to half of length of rod.

Element1 stiffness matrix

$$\frac{AE}{l} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u1 \\ u2 \end{bmatrix} = \begin{bmatrix} F1 \\ F2 \end{bmatrix}$$

u1=Node displacement at x=0 u2=Node displacement at $x=\frac{L}{2}$ F1=External force at x=0

F2=External force at $x = \frac{L}{2}$

Element2 stiffness matrix

$$\frac{AE}{l}\begin{bmatrix}1 & -1\\ -1 & 1\end{bmatrix}\begin{bmatrix}u2\\ u3\end{bmatrix} = \begin{bmatrix}F2\\ F3\end{bmatrix}$$

u2=Node displacement at $x=\frac{L}{2}$

u3=Node displacement at x = L

F2=External force at $x = \frac{L}{2}$

F3=External force at $x = \hat{L}$

Combining Elemental Stiffness Matrix(ESM) and Force Vector Matrix of element 1 and element 2 to form Global Stiffness Matrix(GSM) and Combined Force Vector Matrix.

$$\frac{AE}{l} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1+1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} u1 \\ u2 \\ u3 \end{bmatrix} = \begin{bmatrix} F1 \\ F2 \\ F3 \end{bmatrix}$$

Applying boundary conditions and substituting values:

u3=0

F1=5000

F2 = 0

$$35*10^{7}\begin{bmatrix}1 & -1 & 0\\ -1 & 1+1 & -1\\ 0 & -1 & 1\end{bmatrix}\begin{bmatrix}u1\\ u2\\ 0\end{bmatrix} = \begin{bmatrix}5000\\ 0\\ F3\end{bmatrix}$$

Deleting last row and last column because value of u3(node displacement at x=L) is zero.

$$35*10^7 \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} u1 \\ u2 \end{bmatrix} = \begin{bmatrix} 5000 \\ 0 \end{bmatrix}$$

On solving the matrices we get below equations

$$35 * 10^7 (u1 - u2) = 5000$$

 $35 * 10^7 (-u1 + 2u2) = 0$

On solving the equations we get

$$u1 = 0.2857 * 10^{-4}$$

$$u2 = 0.1428 * 10^{-4}$$

1.2 Subproblem 2

The cross sectional area is given by the formula

$$A(x) = A0(1 + \frac{x}{L})$$

Here the cross section is not uniform, it increases linearly with x.

Here we are finding displacements at nodes for 2 elements.

Element 1 and element 2 have same young's modulus and same length which is equal to half of length of rod but different cross sectional areas.

Element 1 cross sectional area
$$A1 = A(1 + \frac{0}{L}) = A = 12.5 * 10^-4$$

Element 1 cross sectional area
$$A1 = A(1 + \frac{0}{L}) = A = 12.5 * 10^{-4}$$

Element 2 cross sectional area $A2 = A(1 + \frac{L/2}{L}) = A * \frac{3}{2} = 18.75 * 10^{-7}$

Element1 stiffness matrix

$$\frac{A1E}{l} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u1 \\ u2 \end{bmatrix} = \begin{bmatrix} F1 \\ F2 \end{bmatrix}$$

u1=Node displacement at x=0

u2=Node displacement at $x = \frac{L}{2}$

F1=External force at x = 0

F2=External force at $x = \frac{L}{2}$

Element2 stiffness matrix

$$\frac{A2E}{l} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u2 \\ u3 \end{bmatrix} = \begin{bmatrix} F2 \\ F3 \end{bmatrix}$$

u2=Node displacement at $x = \frac{L}{2}$

u3=Node displacement at x = L

F2=External force at $x = \frac{L}{2}$

F3=External force at $x = \hat{L}$

Combining Elemental Stiffness Matrix(ESM) and Force Vector Matrix of element 1 and element 2 to form Global Stiffness Matrix(GSM) and Combined Force Vector Matrix.

$$\underbrace{\frac{E}{l}}_{l} \begin{bmatrix} A1 & -A1 & 0 \\ -A1 & A1 + A2 & -A2 \\ 0 & -A2 & A2 \end{bmatrix} \begin{bmatrix} u1 \\ u2 \\ u3 \end{bmatrix} = \begin{bmatrix} F1 \\ F2 \\ F3 \end{bmatrix}$$

Applying boundary conditions and substituting values:

u3 = 0

F1=5000

F2 = 0

$$10^{7} \begin{bmatrix} 35 & -35 & 0 \\ -35 & 35 + 52.5 & -52.5 \\ 0 & -52.5 & 52.5 \end{bmatrix} \begin{bmatrix} u1 \\ u2 \\ 0 \end{bmatrix} = \begin{bmatrix} 5000 \\ 0 \\ F3 \end{bmatrix}$$

Deleting last row and last column because value of u3(node displacement at x=L) is zero.

$$10^7 \begin{bmatrix} 35 & -35 \\ -35 & 87.5 \end{bmatrix} \begin{bmatrix} u1 \\ u2 \end{bmatrix} = \begin{bmatrix} 5000 \\ 0 \end{bmatrix}$$

On solving the matrices we get below equations

$$10^7(35u1 - 35u2) = 5000$$
$$10^7(-35u1 + 87.5u2) = 0$$

On solving the equations we get

$$u1 = 0.2380 * 10^{-4}$$

$$u2 = 0.9523*10^-4$$

2 Experimental Results Plots

2.1 Subproblem1

• PROB=1 N=2

• PROB=1 N=8

• PROB=1 N=32

• PROB=1 N=128

2.2 Subproblem 2

• PROB=2 N=2

• PROB=2 N=8

• PROB=2 N=32

• PROB=2 N=128

3 Appendix

3.1 Snippets of execution time

3.1.1 Subproblem1

• PROB=1 N=2

```
[cs601user6@hip cs601pa2]$ make PROB=1 N=2
Team Members:

1. Kalidindi Dhrutika-210010021
2. Tejal Ladage-210010026
3. Ashwin Waghmare-210010060
g++ -I /home/resiliente/cs601software/eigen-3.3.9 -o main main.cpp fem.cpp
./main 1 2
Number of elements: 2
The reaction force at fixed end= -5000N
Execution time: 3.5076e-05 seconds
```

• PROB=1 N=8

```
[cs601user6@hip cs601pa2]$ make PROB=1 N=8
Team Members:
1. Kalidindi Dhrutika-210010021
2. Tejal Ladage-210010026
3. Ashwin Waghmare-210010060
./main 1 8
Number of elements: 8
The reaction force at fixed end= -5000N
Execution time: 9.1758e-05 seconds
```

• PROB=1 N=32

```
[cs601user6@hip cs601pa2]$ make PROB=1 N=32
Team Members:
1. Kalidindi Dhrutika-210010021
2. Tejal Ladage-210010026
3. Ashwin Waghmare-210010060
./main 1 32
Number of elements: 32
The reaction force at fixed end= -5000N
Execution time: 0.000865376 seconds
```

• PROB=1 N=128

[cs601user6@hip cs601pa2]\$ make PROB=1 N=128
Team Members:
1. Kalidindi Dhrutika-210010021
2. Tejal Ladage-210010026
3. Ashwin Waghmare-210010060
./main 1 128
Number of elements: 128
The reaction force at fixed end= -5000N
Execution time: 0.0284917 seconds

3.1.2 Subproblem2

• PROB=2 N=2

[cs601user6@hip cs601pa2]\$ make PROB=2 N=2 Team Members:
1. Kalidindi Dhrutika-210010021
2. Tejal Ladage-210010026
3. Ashwin Waghmare-210010060
./main 2 2
Number of elements: 2
The reaction force at fixed end= -5000N
Execution time: 4.3863e-05 seconds

• PROB=2 N=8

[cs601user6@hip cs601pa2]\$ make PROB=2 N=8
Team Members:
1. Kalidindi Dhrutika-210010021
2. Tejal Ladage-210010026
3. Ashwin Waghmare-210010060
./main 2 8
Number of elements: 8
The reaction force at fixed end= -5000N
Execution time: 9.3097e-05 seconds

• PROB=2 N=32

[cs601user6@hip cs601pa2]\$ make PROB=2 N=32
Team Members:
1. Kalidindi Dhrutika-210010021
2. Tejal Ladage-210010026
3. Ashwin Waghmare-210010060
./main 2 32
Number of elements: 32
The reaction force at fixed end= -5000N
Execution time: 0.000867626 seconds

• PROB=2 N=128

[cs601user6@hip cs601pa2]\$ make PROB=2 N=128
Team Members:
1. Kalidindi Dhrutika-210010021
2. Tejal Ladage-210010026
3. Ashwin Waghmare-210010060
./main 2 128
Number of elements: 128
The reaction force at fixed end= -5000N
Execution time: 0.0283756 seconds

3.2 Snippets of code

3.2.1 fem.h

3.2.2 fem.cpp

```
#include"../inc/fem.h"
#includeccstdio
#include cvector>
#include cistream>
#include
```

```
MatrixXd FiniteElementRod::assembleStiffnessMatrix(int type) {
    MatrixXd K(num_elements_ + 1, num_elements_ + 1);
    K.setZenO();
    //uniform cross-section area
    if(type==1){
        double A =12.5e-4;
        for (int i = 0; i < num_elements_; ++i) {
            int x1 = elements_[i].first;
            int x2 = elements_[i].second;
            double L = nodes_[x2] - nodes_[x1];
        Matrix2d ke;//Local stiffness matrix
            ke << 1, -1, -1, 1;
            ke *= A*material_nodulus / L;
            K.block(x1, x1, 2, 2) += ke; //combining local stiffness matrices
        }
        //non-uniform cross-section area
    else{
        for (int i = 0; i < num_elements_; ++i) {
            int x1 = elements_[i].first;
            int x2 = elements_[i].second;
            double L = nodes_[x2] - nodes_[x1];
            double Aa-Ba*(1+nodes_[x1]/length);
            Matrix2d ke;
            ke <= 1, -1, -1, 1;
            ke *= A*material_modulus / L;
            K.block(x1, x1, 2, 2) += ke;
        }
    }
    return K;
}</pre>
```

3.2.3 main.cpp

```
| Infocused customeror | Fincided "customeror | Fincided "customeror
```

3.2.4 makefile

```
PROB ?= 2
N ?= 2
EXECUTABLE=bin/main
all: team main run
main: src/main.cpp src/fem.cpp
    g++ -I /home/resiliente/cs601software/eigen-3.3.9 -o $(EXECUTABLE) src/main.cpp src/fem.cpp
run: main
    ./$(EXECUTABLE) $(PROB) $(N)
    @echo "Team Members:"
    @echo "1. Kalidindi Dhrutika-210010021"
    @echo "2. Tejal Ladage-210010026"
@echo "3. Ashwin Waghmare-210010060"
    rm -f $(EXECUTABLE)
    git status
    git add .
git commit -m "auto git"
    git push
    git tag -a -f cs601pa2submission -m "Turnin PA1"
    git push -f --tags
.PHONY: all run team clean
```