Bumblebee

A pre-trained representation from a transformers model for inference on insect DNA barcoding data.

Note: If you have been here before, you will note that the code is not a mess anymore. Shoutout to Niousha and Monireh. We do not need Hugging-Face as the entire architecture was implemented from scratch by them

- 0. Download the data
- 1. Make sure you have all the required libraries before running (remove the --no-index flags if you are not training on CC)

pip install -r requirements.txt

Progress on the Bioscan transformers projects so far:

1. Describe the original data 1.5M barcodes dataset and report them.

phylum_name	processid	sampleid	bin_uri	class_name	order_name	family_name	genus_name	species_name	nucleotides
Annelida	3086	3086	520	2	17	49	152	335	2121
Arthropoda	1.49283e+06	1.49283e+06	64082	15	68	933	6246	16733	1.06563e+06
Brachiopoda	23	23	3	1	2	2	2	3	20
Bryozoa	6	6	4	4	4	4	3	3	5
Chordata	479	479	103	5	19	38	68	90	290
Cnidaria	206	206	47	4	11	25	26	25	113
Echinodermata	422	422	79	5	17	26	43	74	276
Hemichordata	4	4	2	1	1	1	2	2	4
Mollusca	3251	3251	373	7	31	98	163	272	1931
Nematoda	33	33	9	2	5	11	6	3	24
Nemertea	81	81	22	4	3	6	6	6	56
Platyhelminthes	1	1	1	1	1	1	1	1	1
Porifera	7	7	6	1	3	4	5	4	7
Priapulida	1	1	1	1	1	1	1	1	1
Tardigrada	1	1	1	1	1	1	1	1	1

2. Pre-processing steps:

- Remove empty entries in the "Nucleotides" column.
- $\circ~$ Replace all non-ACGT symbols including gaps for 'N's
- Remove sequence duplicates
- Find inconsistent labels at the species level
- Remove trailing 'N's
- Remove all the sequences shorter than 200.
- Remove all sequences with more than 50% as 'N'

phylum_name	processid	sampleid	bin_uri	class_name	order_name	family_name	genus_name	species_name	nucleotides	sequence_l
Annelida	2102	2102	516	2	16	48	150	329	2102	
Arthropoda	969247	969247	64067	14	67	932	6244	16661	969247	4:
Brachiopoda	20	20	2	1	2	2	2	2	20	
Bryozoa	5	5	4	3	3	3	2	2	5	
Chordata	289	289	102	5	18	37	67	89	289	
Cnidaria	112	112	46	4	10	24	25	24	112	
Echinodermata	276	276	79	5	17	26	43	74	276	
Hemichordata	4	4	2	1	1	1	2	1	4	
Mollusca	1912	1912	372	6	30	97	162	271	1912	
Nematoda	24	24	8	2	5	10	5	2	24	
Nemertea	56	56	22	3	2	5	5	5	56	
Platyhelminthes	1	1	1	0	0	0	0	0	1	
Porifera	7	7	5	1	3	4	4	3	7	
Priapulida	1	1	1	1	1	1	1	1	1	
Tardigrada	1	1	1	1	1	1	0	0	1	

NOTE: There are 119 species for which at least one of its sequences is duplicated and labeled with another species' name. All the sequences in those species are in the pre-processing dataset.

3. Split the dataset into:

- Supervised Seen: Dataset for evaluating the capacity of the model to learn the species label, contains 50 barcodes for all the species with at least 50 specimens. This will be split into training (70%), testing(20%), and validation (10%). (1390 species and 50 barcodes per species)
- Unseen: Dataset for evaluating the quality of the learned embeddings (50 barcodes from 100 selected species).
- **Unsupervised Pretraining:** Dataset containing the rest of the sequences, here we will have sequences with incomplete taxonomic annotations or sequences in the problematic species.
- 4. Script to test the 1D-CNN architecture 1D_CNN_supervised.py for supervised and 1D_CNN_metric.py for testing the metric learning on the unseen dataset.

```
| end of epoch 199 | time: 20.77s | Test accuracy 0.976
```

Representation of the Latent Space 25 20 15 10 JMAP₂ 5 0 -5-10**-**5 15 20 -100 5 10 25 UMAP 1

```
Best Metric: manhattan
Accuracy 1-kNN: 0.87020000000004
```

5. Script to test the BERT-Like architecture for supervised and metric learning. BERT_supervised.py for supervised and BERT_metric.py for testing the metric learning on the unseen dataset.

```
Using GAP
[0.9895999999998, 0.866400000000003, 0.98999999999998]
Best Metric: minkowski Accuracy: 0.9899999999998

Using CLS token
[0.98779999999999, 0.883400000000001, 0.9873999999999]
Best Metric: manhattan Accuracy: 0.987799999999999
```


6. Script to train the Bert-like architecture as an MLM.

• MLM_train.py contains vainilla code with non-overlapping kmers and only the masked component of the loss. I am using a lr scheduler, but the loss drops to zero after the first step of the scheduler.

```
GAP
[0.8103999999998, 0.561800000000002, 0.8084]
Best Metric: manhattan Accuracy: 0.8103999999999
```


 $[\]bullet \ \ \, \text{train.py contains } \textbf{Hugging-Face model} \ \text{with the following characteristics:-overlapping k-mers}$

⁻ Two components of the loss.

- Multi-GPU support