終対象はいつ有限表示か

Yuto Kawase

2024年12月5日

概要

終対象が有限表示になるための条件を調べます. 本稿は圏論 Advent Calendar 2024 の 5 日目の記事です.

目次

Termino	Terminology 1		
1	はじめに	2	
2	終対象の表示可能性: 前層圏の場合	2	
3	終対象の表示可能性: 局所表示可能圏の場合	2	
付録/Appendix			
Α	局所表示可能圏	3	

Terminology

Set	小さい集合と写像の圏
1	終圏 (terminal category)
1	1 点集合,終対象
$\mathscr{C}^{\mathrm{op}}$	圏 ピの反対圏
$\mathscr{B}^{\mathscr{A}}$	圏 🛭 から圏 🕉 への関手圏
$\mathrm{Ob}\mathscr{C}$	圏 $\mathscr C$ の対象のなすクラス
$C\in\mathscr{C}$	$C\in \mathrm{Ob}\mathscr{C}$ の意
$\mathrm{Mor}\mathscr{C}$	圏 $\operatorname{\mathscr{C}}$ の射のなすクラス
$\mathscr{C}(X,Y)$	圏 \mathscr{C} の Hom クラス
$X \xrightarrow{f} Y \text{ in } \mathscr{C}$	$f\in\mathscr{C}(X,Y)$ の意
D/F	関手 $1 \xrightarrow{D} \mathscr{D} \xleftarrow{F} \mathscr{C}$ についてのコンマ圏 $(D \Rightarrow F)$
よ	米田埋め込み
$\pi_0(\mathscr{C})$	圏 $\operatorname{\mathscr{C}}$ の連結成分のなすクラス
\mathscr{A}_{\kappap}	κ -表示可能対象のなす $\mathscr A$ の充満部分圏

1 はじめに

Categories in Tokyo 第1回集会で行われた未解決問題セッションにて、次のような問題が提示された:

"代数の圏の終対象はいつ有限表示か?"

本稿ではこの問題を少し一般化し、"代数の圏"として局所 κ -表示可能圏 (特に前層圏) を考え、終対象が κ -表示可能 になるための条件を調べる。また、本稿では [Kaw24] の用語をいくつか流用している。

2 終対象の表示可能性: 前層圏の場合

Set において κ -極限と κ -フィルター余極限は可換であり, 更にこの可換性は κ -フィルター余極限を特徴づけること が知られている.*1 次の定理は, 双対的に κ -フィルター余極限との可換性が κ -極限を特徴づけると主張している.

Theorem 2.1. *2 小圏 I について次は同値.

- (i) 終対象 $1 \in \mathbf{Set}^{\mathbf{I}^{\mathrm{op}}}$ が κ -表示可能.
- (ii) Set において \mathbf{I}^{op} 型極限と κ -フィルター (小) 余極限が可換.
- (iii) ある κ -小圏 \mathbf{J} と終関手 $\mathbf{J} \to \mathbf{I}$ が存在する.

Proof. $[(i) \iff (ii)]$ 終対象が表現する関手 $\mathbf{Set}^{\mathbf{I}^{\mathrm{op}}}(1,-)$ は、 \mathbf{I}^{op} 型極限をとる関手 $\mathrm{Lim}_{\mathbf{I}^{\mathrm{op}}}$ と自然同型である.よって主張が従う.

$$\mathbf{Set}^{\mathbf{I}^{\mathrm{op}}} \xrightarrow[\text{Lim}_{\mathbf{I}^{\mathrm{op}}}]{\mathbf{Set}}^{\mathbf{Set}^{\mathbf{I}^{\mathrm{op}}}(1,-)} \mathbf{Set}$$

 $[(iii) \Longrightarrow (ii)]$ 仮定より \mathbf{I}^{op} 型極限は κ -極限へ帰着されるので, **Set** において κ -極限と κ -フィルター (小) 余極限が可換であることから従う.

 $[(i) \Longrightarrow (iii)]$ Fact A.7 より, 終対象 $1 \in \mathbf{Set}^{\mathbf{I}^{\mathrm{op}}}$ は表現可能関手の κ -余極限で書くことができる. すなわち, ある κ -小圏 \mathbf{J} と関手 $\mathbf{J} \xrightarrow{F} \mathbf{I}$ が存在して.

$$\operatorname{Colim}(\mathbf{J} \xrightarrow{F} \mathbf{I} \xrightarrow{\sharp} \mathbf{Set}^{\mathbf{I}^{\operatorname{op}}}) \cong 1 \quad \text{in } \mathbf{Set}^{\mathbf{I}^{\operatorname{op}}}$$

$$\tag{1}$$

が成り立つ. 一方で、各 $I \in I$ に対し

$$(\operatorname{Colim}\, {\sharp}\, \circ F)(I) \cong \operatorname{Colim}_{J \in \mathbf{J}} \mathbf{I}(I, FJ) \cong \pi_0(I/F) \quad \text{in } \mathbf{Set}$$

と計算できるので、(1) より $\pi_0(I/F) \cong 1$ を得る. したがって F は終関手である.

3 終対象の表示可能性: 局所表示可能圏の場合

Lemma 3.1. 局所小圏の間の随伴

$$\mathscr{A} \xrightarrow{F} \mathscr{B}$$

を考え, G が $\mathcal B$ に存在する任意の κ -フィルター (小) 余極限を保つと仮定する. このとき, 任意の $A\in\mathscr A_{\kappa\mathsf p}$ について $FA\in\mathscr B_{\kappa\mathsf p}$ が成立する.

^{*1} このことは、例えば [Kaw24] で扱われている.

^{*&}lt;sup>2</sup> 同様の主張が [Par90, Proposition 7] に書かれているが、その証明にギャップがあるため、本稿では別の証明を付けた.

Proof. 随伴から $\mathscr{B}(FA,-)\cong\mathscr{A}(A,G-)$ であり、これは \mathscr{B} に存在する任意の κ -フィルター (小) 余極限を保つ. \square

Theorem 3.2. 局所 κ -表示可能圏 \mathscr{A} について, 次は同値.

- (i) 終対象 $1 \in \mathcal{A}$ が κ -表示可能.
- (ii) A_{κp} が終対象を持つ.
- (iii) ある κ -小圏 **J** と終関手 **J** $\rightarrow \mathscr{A}_{\kappa p}$ が存在する.
- (iv) **Set** において $\mathscr{A}_{\kappa p}^{\text{op}}$ 型極限と κ -フィルター (小) 余極限が可換.

Proof. [(i) \Longrightarrow (ii)] 明らか.

 $[(ii) \Longrightarrow (iii)]$ 終対象 $1 \in \mathscr{A}_{\kappa p}$ を選択する、終圏からの関手 $\mathbf{1} \xrightarrow{\lceil 1 \rceil} \mathscr{A}_{\kappa p}$ を考える. 任意の $A \in \mathscr{A}_{\kappa p}$ についてコンマ 圏 $A/\lceil 1 \rceil \cong \mathbf{1}$ は連結なので、 $\mathbf{1} \xrightarrow{\lceil 1 \rceil} \mathscr{A}_{\kappa p}$ は終関手である.

 $[(iii) \Longrightarrow (iv)]$ 仮定より $\mathscr{A}_{\kappa p}^{\text{op}}$ 型極限は κ -極限へ帰着されるので, **Set** において κ -極限と κ -フィルター (小) 余極限 が可換であることから従う.

[(iv) ⇒ (i)] Fact A.6 より, 随伴

$$\mathbf{Set}^{\mathscr{A}_{\kappa\mathfrak{p}}^{\mathrm{op}}} \overset{R}{\overset{R}{\longleftarrow} \overset{}{\bot}} \mathscr{A}$$

であって, I が充満忠実かつ κ -フィルター (小) 余極限を保つものが存在する.終対象 $1 \in \mathscr{A}$ を考える. $I(1) \in \mathbf{Set}^{\mathscr{A}_{\kappa\rho}^{\mathrm{op}}}$ は終対象であり, Theorem 2.1 より κ -表示可能である.したがって Lemma 3.1 より, $1 \cong RI(1) \in \mathscr{A}$ も κ -表示可能である.

付録/Appendix

A 局所表示可能圏

以下, 正則無限基数 κ を固定する.

Definition A.1. 局所小圏 \mathscr{A} の対象 $A \in \mathscr{A}$ が κ -表示可能 (κ -presentable) であるとは、関手

$$\mathscr{A} \xrightarrow{\mathscr{A}(A,-)} \mathbf{Set}$$

が、 Ø に存在する任意の κ-フィルター (小) 余極限を保つことを言う.

Notation A.2. κ -表示可能対象のなす \mathscr{A} の充満部分圏を $\mathscr{A}_{\kappa p} \subseteq \mathscr{A}$ と書く.

Definition A.3. 局所小圏 \mathscr{A} が**局所** κ **-表示可能** (locally κ -presentable) であるとは, 以下を満たすことを言う.

- ৶ は (小) 余完備.
- 小さい集合 $G \subseteq \mathscr{A}_{\kappa p}$ が存在して、 \mathscr{A} の任意の対象が G の対象の κ -フィルター (小) 余極限で書ける.

Definition A.4. 圏 \mathscr{C} が κ -小 (κ -small) であるとは, 射のクラス Mor \mathscr{C} の濃度が κ 未満であることをいう. 図式圏 が κ -小な (余) 極限を κ -(余) 極限という.

Notation A.5. κ -極限を持つ圏 $\mathscr C$ に対し, κ -極限を保つ関手 $\mathscr C$ \to Set と自然変換のなす圏を $\operatorname{Cts}_{\kappa}(\mathscr C,\operatorname{Set})$ と書く.

Fact A.6. 局所 κ -表示可能圏 \mathscr{A} に対し, 以下が成立する.

(i) A は (小) 完備.

- (ii) $\mathscr{A}_{\kappa p}$ は本質的小、すなわち、ある小圏と圏同値.
- (iii) $\mathscr{A}_{\kappa p} \subseteq \mathscr{A}$ は κ -余極限で閉じる.
- (iv) 圏同値 $\mathscr{A} \simeq \mathbf{Cts}_{\kappa}(\mathscr{A}_{\kappa p}{}^{\mathrm{op}}, \mathbf{Set})$ が存在する.
- (v) 包含関手 $\mathbf{Cts}_{\kappa}(\mathscr{A}_{\kappa\mathsf{p}}{}^{\mathrm{op}},\mathbf{Set}) \subseteq \mathbf{Set}^{\mathscr{A}_{\kappa\mathsf{p}}{}^{\mathrm{op}}}$ は左随伴を持ち, さらに κ -フィルター (Λ) 余極限で閉じている.

Proof. [AR94] を参照すると良い. 日本語で読める [サクラ 24] も参考になる.

Fact A.7. 小圏 I について前層圏 $\mathbf{Set}^{\mathbf{I}^{\mathrm{op}}}$ は局所 κ -表示可能である. さらに, 前層 $P \in \mathbf{Set}^{\mathbf{I}^{\mathrm{op}}}$ について次は同値.

- (i) $P \in \mathbf{Set}^{\mathbf{I}^{\mathrm{op}}}$ が κ -表示可能.
- (ii) $\mathbf{Set}^{\mathbf{I}^{\mathrm{op}}}$ において, P が表現可能関手の κ -余極限で書ける.

Proof. [AR94] が参考になる.

References

- [AR94] J. Adámek and J. Rosický. Locally presentable and accessible categories. Vol. 189. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994. DOI: 10.1017/CB09780511600579 (cit. on p. 4).
- [Kaw24] Y. Kawase. 極限と余極限の交換. 圏論 Advent Calendar 2024 4 日目. 2024. URL: https://ykawase5048.github.io/yutokawase/notes/CommLimColim.pdf (cit. on p. 2).
- [Par90] R. Paré. "Simply connected limits". In: Canad. J. Math. 42.4 (1990), pp. 731–746. DOI: 10.4153/CJM-1990-038-6 (cit. on p. 2).
- [サクラ 24] サクラ. **到達可能圏・局所表示可能圏の一と**. 圏論 Advent Calendar 2024 1 日目. 2024. URL: https://drive.google.com/file/d/1y9m5x4ssa0Y_iu2NQamUJTjv_bGa21NF (cit. on p. 4).