INFERENCIA FILOGENÉTICA

INFERENCIA BAYESIANA

Probabilidad *a priori* de la hipótesis = 0.5

- Mitad monedas normales (50% chance cara o sello)
- Mitad monedas sesgadas (75% chance sello, 25% chance cara)

Hipótesis I: La moneda es normal

Hipótesis 2: La moneda es sesgada

Datos

Verosimilitud

• Normal: 0.5¹⁰

• Sesgada: 0.75¹⁰

Probabilidad posterior de que la moneda está sesgada

Probabilidad posterior de que la moneda está sesgada

INFERENCIA BAYESIANA EN FILOGENÉTICA

INFERENCIA BAYESIANA EN FILOGENÉTICA

¿Como obtener la probabilidad de los datos bajo todas la hipótesis posibles?

Pr(Datos)

Probabilidad *a priori* de los datos

Cadena de Markov Monte Carlo (MCMC)

Permite estimar la distribución de probailidades posteriores sin importar el punto de inicio en un paisaje de parámetros (topologías, ramas, parámetros de modelos) multidimensional

- I. Comenzamos en un punto arbitrario de parámetros (θ)
- 2. Se hace un movimiento aleatorio hacia θ '
- 3. Se calcula la relación (r) entre θ ' y θ
 - Si r > 1, aceptamos el nuevo estado θ '
 - Si r < I, aceptamos el nuevo estado θ ' con probabilidad r. Si se rechaza, nos quedamos con θ
- 4. Volvemos al paso 2 y repetimos millones de veces (generaciones)
- 5. Guardar árbol y parámetros cada n generaciones

Cadena de Markov Monte Carlo (MCMC)

de generaciones

Complicaciones del MCMC

1. Seleccion a priori de un modelo de sustitución de caracteres

SOLUCIÓN: Salto entre modelos (reverse-jump MCMC)

Complicaciones del MCMC

2. La cadena del MCMC necesita alcanzar estacionalidad

SOLUCIÓN: Burn-in

de generaciones

Complicaciones del MCMC

- 3. Es necesario garantizar que durante el periodo de estacionalidad la cadena haya explorado todo el espacio de parámetros ("mixing").
- Estrategia I: Varias corridas independientes
- Estrategia 2: Modificar la forma en que nuevos puntos de parámetros son propuestos: Cadenas calientes y cadena fría (Metropolis-Coupled)

¿Cómo entender los resultados de MCMC?

En la zona estacionaria hay muchos árboles con longitudes de ramas y topología similares

Opción I: observar todos los árboles

Opción 2: Árbol de máxima credibilidad

¿Cómo entender los resultados de MCMC?

En la zona estacionaria hay muchos árboles con longitudes de ramas y topología similares

Opción 3: Árbol de 50% consenso de mayoría

¿Cómo entender los resultados de MCMC?

3. Probabilidad Posterior de los clados como medida de soporte

CONFIANZA EN HIPÓTESIS FILOGENÉTICAS

1. Bootstrap No Paramétrico

Original data set

	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
A	Т	Т	Т	С	С	Т	Т	Т	С	Α	G	G	Т	A	т	Т	Α	Т	G	Α	G	Α	Т	Α	С	G	Т	Α	С	Т	G	Α	A	A	A	Α	G	Т	С	C
В	Т	Т	Т	С	С	Т	Т	Т	Т	Α	G	G	Т	Т	т	G	A	Т	G	Α	G	A	Т	Α	С	Α	Т	Т	Α	С	G	Α	A	A	G	Α	G	Т	С	A
C	Т	Т	т	G	С	Т	Т	С	Т	С	G	G	Т	Α	С	Т	Α	С	A	Α	Т	Α	Т	A	Т	Α	Т	Α	С	С	Α	G	A	Α	A	Α	G	Т	С	A
D	Т	Т	Т	G	С	Т	Т	С	С	G	Α	С	Т	A	С	Α	Α	A	G	G	С	Α	Т	A	С	G	Т	Α	G	С	Т	G	A	Α	A	A	G	G	С	G
E	С	Т	т	G	С	С	Т	Α	С	Т	G	Т	T	G	С	Α	Α	Т	Α	Α	Т	Α	Т	A	С	G	A	Α	G	С	Т	Α	A	A	A	A	G	Т	С	G
F	Т	Т	С	G	т	C	С	С	С	G	G	C	Т	Α	С	Α	Α	Т	G	G	Т	Α	Т	Α	Т	G	Т	A	С	Т	С	G	A	A	A	A	G	A	Т	G
G	G	Т	Т	G	т	Т	Т	С	С	G	G	C	Т	A	C	Α	G	Т	G	Α	Т	Α	Т	A	С	G	Т	Α	С	С	С	G	A	G	A	A	С	Т	T	G
Н	т	Т	т	А	т	Т	т	С	С	G	G	С	Т	Α	С	Α	G	Т	G	Α	Т	Α	Т	Α	С	G	Т	G	С	С	С	G	A	G	А	A	G	Т	Т	G

Bootstrap data set

	02	39	35	22	36	31	40	05	16	23	15	35	35	40	03)6	24	33	06	07	14	20	35	01	36	09	13	22	11	25	26	33	03	09	16	20	08	18	17	32
A	Т	С	Α	A	А	G	С	C	Т	Т	Т	A	A	С	Т	т	A	A	Т	т	Α	Α	Α	Т	A	С	т	А	G	С	G	Α	Т	С	T	Α	Т	Т	A	A
В	Т	С	G	A	Α	G	A	С	G	Т	Т	G	G	Α	т	т	A	А	Т	Т	Т	Α	G	Т	A	Т	Т	A	G	С	Α	Α	Т	Т	G	Α	Т	Т	A	A
C	Т	С	Α	Α	A	A	Α	С	Т	Т	С	A	A	A	т	т	A	A	Т	Т	A	Α	Α	Т	A	Т	Т	A	G	T	Α	Α	Т	Т	Т	Α	С	C	А	G
D	Т	C	Α	A	Α	Т	G	С	A	Т	С	A	A	G	Т	Т	A	A	Т	Т	Α	G	A	Т	A	С	Т	А	Α	С	G	Α	Т	С	Α	G	С	Α	A	G
E	Т	C	Α	A	A	Т	G	С	A	Т	С	A	A	G	т	C	A	A	С	Т	G	А	A	С	Α	С	Т	Α	G	С	G	Α	Т	С	Α	Α	Α	Т	A	A
F	Т	Т	Α	Α	Α	С	G	Т	A	Т	С	А	A	G	С	C	A	A	С	С	A	G	A	Т	Α	С	Т	А	G	Т	G	Α	С	С	Α	G	С	т	A	G
G	Т	T	Α	Α	Α	С	G	Т	Α	Т	С	Α	A	G	Т	т	Α	Α	т	Т	Α	Α	A	G	A	C	Т	А	G	С	G	Α	Т	С	А	Α	C	Т	G	G
Н	т	Т	А	A	Α	С	G	Т	A	Т	С	А	А	G	Т	Т	A	Α	Т	Т	А	А	Α	Т	Α	С	Т	Α	G	С	G	Α	Т	С	Α	А	С	т	G	G

1. Bootstrap No Paramétrico

1. Bootstrap No Paramétrico

1. Bootstrap No Paramétrico

CONFLICTO EN HIPÓTESIS FILOGENÉTICAS

Particiones a veces generan hipótesis conflictivas

- Morfología vs. molecular
- Genomas diferentes
- Genes codificadores y no codificadores
- Posiciones en codón
- Intrón vs. exón
- Proteína intra vs. extracelular

CONFLICTO EN HIPÓTESIS FILOGENÉTICAS

Razones de conflicto

- Metodológicas
 - Contaminación
 - Mala identificación
 - Errores de laboratorio/computacional
 - Genes parálogos
- Biológicas:
 - Separación incompleta de linajes
 - > Introgresión
 - Transferencia Horizontal de genes

SEPARACIÓN INCOMPLETA DE LINAJES

SEPARACIÓN INCOMPLETA DE LINAJES

Separación completa

Gorilla

Chimp

Human-Chimp-Gorilla
Ancestor

Human-Chimp
Ancestor

Chimp

Gorilla
Human

Human

Separación incompleta

INTROGRESIÓN

TRANSFERENCIA HORIZONTAL DE GENES

PUESTA A PRUEBA DE HIPÓTESIS FILOGENÉTICAS

Comparación de conjuntos de datos

- Métodos para árboles de especies
 - Análisis Bayesiano de Concordancia (no limitado a sorteo incompleto de linajes)

Analisis Bayesiano de Concordancia

