Algorithms and Data Structures Part 4

Lecture 9: Minimum Spanning Trees

George Mertzios

george.mertzios@durham.ac.uk

Input: a graph G = (V, E) with a weight (or a cost) w(u, v) for each edge (u, v).

Input: a graph G=(V,E) with a weight (or a cost) w(u,v) for each edge (u,v).

Input: a graph G=(V,E) with a weight (or a cost) w(u,v) for each edge (u,v).

Input: a graph G=(V,E) with a weight (or a cost) w(u,v) for each edge (u,v).

Minimum Spanning Tree Problem

Find a tree that spans the vertices and has minimum cost.

Minimum Spanning Tree Problem

Find a tree that spans the vertices and has minimum cost.

Basic properties of MSTs:

- have |V| 1 edges;
- have no cycles;
- might not be unique.

$$A = \begin{pmatrix} 0 & 5 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 10 & 3 & 9 & 0 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 & 5 & 7 & 0 & 0 & 0 \\ 4 & 3 & 0 & 0 & 8 & 0 & 7 & 0 & 0 \\ 0 & 9 & 5 & 8 & 0 & 7 & 6 & 7 & 0 \\ 0 & 0 & 7 & 0 & 7 & 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 7 & 6 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 & 2 & 5 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 4 & 0 & 3 & 0 \end{pmatrix}$$

Be careful with the adjacency matrix *A*:

■ An entry A(i,j) = 0 means "the edge (v_i, v_j) does not exist"; this is not the same as "edge (v_i, v_j) has weight 0".

$$A = \begin{pmatrix} 0 & 5 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 10 & 3 & 9 & 0 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 & 5 & 7 & 0 & 0 & 0 \\ 4 & 3 & 0 & 0 & 8 & 0 & 7 & 0 & 0 \\ 0 & 9 & 5 & 8 & 0 & 7 & 6 & 7 & 0 \\ 0 & 0 & 7 & 0 & 7 & 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 7 & 6 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 & 2 & 5 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 4 & 0 & 3 & 0 \end{pmatrix}$$

Be careful with the adjacency matrix *A*:

- An entry A(i,j) = 0 means "the edge (v_i, v_j) does not exist"; this is not the same as "edge (v_i, v_j) has weight 0".
- As we are looking for a minimum-cost spanning tree, we could think of "A(i,j) = 0" as " $w(i,j) = \infty$ "

$$A = \begin{pmatrix} 0 & 5 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 10 & 3 & 9 & 0 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 & 5 & 7 & 0 & 0 & 0 \\ 4 & 3 & 0 & 0 & 8 & 0 & 7 & 0 & 0 \\ 0 & 9 & 5 & 8 & 0 & 7 & 6 & 7 & 0 \\ 0 & 0 & 7 & 0 & 7 & 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 7 & 6 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 & 2 & 5 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 4 & 0 & 3 & 0 \end{pmatrix}$$

Be careful with the adjacency matrix *A*:

- An entry A(i,j) = 0 means "the edge (v_i, v_j) does not exist"; this is not the same as "edge (v_i, v_j) has weight 0".
- As we are looking for a minimum-cost spanning tree, we could think of "A(i,j) = 0" as " $w(i,j) = \infty$ "

$$\begin{pmatrix} \infty & 5 & \infty & 4 & \infty & \infty & \infty & \infty & \infty \\ 5 & \infty & 10 & 3 & 9 & \infty & \infty & \infty & \infty \\ \infty & 10 & \infty & \infty & 5 & 7 & \infty & \infty & \infty \\ 4 & 3 & \infty & \infty & 8 & \infty & 7 & \infty & \infty \\ \infty & 9 & 5 & 8 & \infty & 7 & 6 & 7 & \infty \\ \infty & \infty & 7 & \infty & 7 & \infty & \infty & 2 & 4 \\ \infty & \infty & \infty & 7 & 6 & \infty & \infty & 5 & \infty \\ \infty & \infty & \infty & \infty & 7 & 2 & 5 & \infty & 3 \\ \infty & \infty & \infty & \infty & \infty & 4 & \infty & 3 & \infty \end{pmatrix}$$

- I Sort the edges by weight.
- 2 Let $A = \emptyset$.
- 3 Consider edges in increasing order of weight. For each edge *e*, add *e* to *A* unless this would create a cycle.

(Running time is $O(E \log V)$.)

Prim's Algorithm

- Let $U = \{u\}$ where u is some vertex chosen arbitrarily.
- 2 Let $A = \emptyset$.
- 3 Until *U* contains all vertices: find the least-weight edge *e* that joins a vertex *v* in *U* to a vertex *w* not in *U* and add *e* to *A* and *w* to *U*.

(Running time is $O(V \log V + E)$.)

Both Kruskal's and Prim's are special cases of a generic (greedy) MST-algorithm:

■ We iteratively build a vertex set *A* such that:

A is a subset of some minimum spanning tree (MST)

Both Kruskal's and Prim's are special cases of a generic (greedy) MST-algorithm:

We iteratively build a vertex set A such that:A is a subset of some minimum spanning tree (MST)

Some necessary definitions:

- Let *A* be a subset of an MST. If the set $A \cup \{(u, v)\}$ is also a subset of an MST, then (u, v) is a safe edge for *A*.
- A cut (S, V S) of G = (V, E) is a partition of V.
- An edge $(u, v) \in E$ crosses the cut (S, V S) if $u \in S$ and $v \in V S$ (or vice-versa).
- An edge $(u, v) \in E$ is a light edge crossing a cut if its weight is smallest among all edges crossing the cut.
- A cut respects a set A of edges if no edge of A crosses the cut.

Both Kruskal's and Prim's are special cases of a generic (greedy) MST-algorithm:

```
GENERIC-MST(G, w)
1 A \leftarrow \emptyset
2 while A does not form a spanning tree
3 do find an edge (u, v) that is safe for A
4 A \leftarrow A \cup \{(u, v)\}
5 return A
```

Both Kruskal's and Prim's are special cases of a generic (greedy) MST-algorithm:

```
GENERIC-MST(G, w)

1 A \leftarrow \emptyset

2 while A does not form a spanning tree

3 do find an edge (u, v) that is safe for A

4 A \leftarrow A \cup \{(u, v)\}

5 return A
```

Theorem

Let G = (V, E) be a connected undirected graph with a real-valued weight function w defined on the edges E. Let $A \subseteq E$ such that A is included in some MST of G, let (S, V - S) be any cut of G that respects A, and let (u, v) be a light edge crossing (S, V - S). Then the edge (u, v) is safe for A.

Both Kruskal's and Prim's are special cases of a generic (greedy) MST-algorithm:

```
GENERIC-MST(G, w)

1 A \leftarrow \emptyset

2 while A does not form a spanning tree

3 do find an edge (u, v) that is safe for A

4 A \leftarrow A \cup \{(u, v)\}

5 return A
```

Theorem

Let G = (V, E) be a connected undirected graph with a real-valued weight function w defined on the edges E. Let $A \subseteq E$ such that A is included in some MST of G, let (S, V - S) be any cut of G that respects A, and let (u, v) be a light edge crossing (S, V - S). Then the edge (u, v) is safe for A.

■ This theorem implies correctness for Prim's algorithm.

Corollary

Let G = (V, E) be a connected undirected graph with a real-valued weight function w defined on the edges E. Let $A \subseteq E$ such that A is included in some MST of G, and let $C = (V_C, E_C)$ be a connected component (tree) in the forest $G_A = (V, A)$. If (u, v) is a light edge that connects C to some other component in G_A , then the edge (u, v) is safe for A.

Proof.

The cut $(V_C, V - V_C)$ respects A, and (u, v) is a light edge for this cut. Therefore (u, v) is safe for A by the above theorem.

Corollary

Let G = (V, E) be a connected undirected graph with a real-valued weight function w defined on the edges E. Let $A \subseteq E$ such that A is included in some MST of G, and let $C = (V_C, E_C)$ be a connected component (tree) in the forest $G_A = (V, A)$. If (u, v) is a light edge that connects C to some other component in G_A , then the edge (u, v) is safe for A.

Proof.

The cut $(V_C, V - V_C)$ respects A, and (u, v) is a light edge for this cut. Therefore (u, v) is safe for A by the above theorem.

■ This corollary implies correctness for Kruskal's algorithm.