Syllabus

- Topology and topological space
 - open sets and closed sets
 - closure of a set
 - interior, exterior and boundary
 - neighborhoods and neighborhoods systems
 - weak and strong topology
 - topology of the real line and plane
 - cofinite and cocountable topology
 - subspaces
 - relative topology
 - bases and subbases for a topology
 - continuity and topological equivalence
 - homeomorphic spaces
- Metric and normed spaces
 - Metric topologies
 - properties of metric spaces
 - metrizable space
 - Hilbert space
 - convergence and continuity in metric space
 - normed spaces
- Countability
 - First countable spaces
 - second countable spaces and related theorems
- Compactness
 - Covers
 - compact sets
 - subset of a compact space
 - finite intersection property
 - Bolzano-Weierstrass theorem
 - locally compact spaces
- Connectedness
 - Separated sets
 - connected sets
 - connected spaces

- components
- locally connected spaces and simply connected spaces
- Separation axioms
 - T1-spaces
 - Hausdorff spaces
 - regular spaces
 - normal spaces
 - completely normal spaces and completely regular spaces

Books Recommended:

- Simmons, G.F.: Introduction to Topology and Modern Analysis
- Gal, S.: Point Set Topology
- Lipschutz, S.: General Topology
- Kelley, J.L.: General Topology
- Hockling and Young: Topology