Departamento de Matemática

uf □ Iniversidade Federal de São Carlos

Cálculo Numérico - P3.3 - Turma G - 18/07

Questão. As seguintes funções de iteração foram propostas com o objetivo de determinar aproximações para as raízes $f(x^*) = 0$ da função f(x) = sen(x) + 2x - 2.

- $\varphi_1(x) = 1 \frac{1}{2}\operatorname{sen}(x)$
- $\varphi_2(x) = \frac{-\sin(x) + x\cos(x) + 2}{2 + \cos(x)}$
- $\varphi_3(x) = 2 \operatorname{sen}(x) x$
- i) [valor 7] Assumindo uma boa escolha de x_0 , para qual das três funções de iteração a convergência será mais rápida? E mais demorada? Justifique.

A derivada da função f(x) é a função $f'(x) = \cos(x) + 2$, que nunca se anula. Na verdade, $f'(x) \ge 1$ e, portanto, f é crescente. Como f(0) = -2 < 0 e $f(\pi/2) = \pi - 1 > 0$ segue que f tem seu único zero em $[0, \pi/2]$. Nesse intervalo, 3 > f'(x) > 2.

Temos

$$\varphi_1(x) = x - \frac{1}{2} \cdot f(x)$$
 , $\varphi_2(x) = x - \frac{f(x)}{f'(x)}$, $\varphi_3(x) = x - 1 \cdot f(x)$

Como $\varphi_2(x)$ é a função de iteração pelo Método de Newton e f'(x) nunca se anula, sua convergência é quadrática e a mais rápida.

Por outro lado,

$$\varphi'_1(x) = 1 - \frac{1}{2}f'(x)$$
 , $\varphi'_3(x) = 1 - f'(x)$

e no intervalo $[0, \pi/2]$ temos $-1/2 < \varphi_1'(x) < 0$ e $-2 < \varphi_3'(x) < 1$. Logo a convergência será mais lenta (na verdade divergente) para φ_3 , que possui maiores derivadas em valor absoluto.

ii) [valor 3] Faça duas iterações com a função que você escolheu no item anterior, a partir de $x_0 = 1$.

$$x_1 = \varphi_2(x_0) = 0.668751635$$

$$x_2 = \varphi_2(x_1) = 0.68401048$$