Credit Risk Analysis Report

Objective

The aim of this project is to build a machine learning model to **assess the creditworthiness of loan applicants** and **flag high-risk customers** who are likely to default. This system helps financial institutions reduce default rates by taking proactive action on risky loan profiles.

Dataset Overview

Dataset Name: credit_risk_dataset.csv

• Rows: 32,581

• **Columns**: 12

• Target Variable: loan_status (1 = default, 0 = non-default)

Dataset Preprocessing Steps

1. Missing Value Handling:

o person_emp_length: Filled with median.

o loan_int_rate: Filled with mean.

2. Categorical Encoding:

- o One-hot encoded the following columns:
 - person_home_ownership
 - loan_intent
 - loan_grade
 - cb_person_default_on_file

3. Class Imbalance Handling:

 Applied SMOTE (Synthetic Minority Over-sampling Technique) to balance the target classes.

4. Feature Scaling:

o Standardized numerical features using **StandardScaler**.

5. Train-Test Split:

o 80/20 split using train_test_split with stratify=y to preserve class proportions.

Model Selection & Rationale

Model Chosen: XGBoost Classifier

Why XGBoost?

- · Handles tabular and imbalanced datasets effectively.
- Provides feature importance.
- Built-in regularization reduces overfitting.
- Fast training with good generalization.

We also considered **Random Forest** and **Gradient Boosting**, but XGBoost consistently performs better for structured data with imbalance.

▲ Challenges Faced & Solutions

Challenge	Solution
Imbalanced Dataset	Used SMOTE to synthetically oversample minority class (defaulters).
Missing Values in loan_int_rate and person_emp_length	Applied mean/median imputation.
High cardinality in categorical data	Used One-Hot Encoding with drop_first=True to
Risk of overfitting	reduce dimensionality. Chose a model with built-in regularization
C	(XGBoost) and tuned parameters conservatively.

Results & Evaluation

