ΠΡΟΓΡΑΜΜΑ

по дисциплине: Многомерный анализ, интегралы и ряды

по направлению

подготовки: 01.03.02 «Прикладная математика и информатика»,

03.03.01 «Прикладные математика и физика»,

09.03.01 «Информатика и вычислительная техника»,

10.05.01 «Компьютерная безопасность»,

16.03.01 «Техническая физика»,

19.03.01 «Биотехнология»,

27.03.03 «Системный анализ и управление»

физтех-школы: ФАКТ, ФЭФМ, ФБМФ, ФРКТ

кафедра: высшей математики

 $\begin{array}{ccc} \text{курс:} & & \underline{1} \\ \text{семестр:} & & \underline{2} \end{array}$

практические (семинарские)

занятия — 60 часов

лабораторные занятия — нет

ВСЕГО АУДИТОРНЫХ ЧАСОВ — 120 Самостоятельная работа:

 $\underline{\text{теор.}}$ курс — 30 часов

Программу составили:

д. ф.-м. н., профессор Л. Н. Знаменская д. ф.-м. н., профессор Я. М. Дымарский

к. ф.-м. н., доцент Г.Б. Сизых

к. $\dot{\Phi}$.-м. н., доцент Е. Ю. Редкозубова к. $\dot{\Phi}$.-м. н., доцент Н. Γ . Павлова к. $\dot{\Phi}$.-м. н., доцент М. О. Голубев

Программа принята на заседании кафедры высшей математики 17 ноября 2022 г.

Заведующий кафедрой д. ф.-м. н., профессор

Г. Е. Иванов

- 1. Точечное *п*-мерное пространство. Расстояние между точками, его свойства. Предел последовательности точек в *п*-мерном евклидовом пространстве. Теорема Больцано-Вейерштрасса и критерий Коши сходимости последовательности. Внутренние, предельные, изолированные точки множества, точки прикосновения. Открытые и замкнутые множества, их свойства. Внутренность, замыкание и граница множества.
- 2. Предел числовой функции нескольких переменных. Определения в терминах окрестностей и в терминах последовательностей. Предел функции по множеству. Пределы по направлениям. Повторные пределы. Исследование предела функции двух переменных при помощи перехода к полярным координатам.
- 3. Непрерывность функции нескольких переменных. Непрерывность по множеству. Непрерывность сложной функции. Свойства функций, непрерывных на компакте ограниченность, достижимость (точных) нижней и верхней граней, равномерная непрерывность. Теорема о промежуточных значениях функции, непрерывной в области.
- 4. Частные производные функции нескольких переменных. Дифференцируемость функции нескольких переменных в точке, дифференциал. Необходимые условия дифференцируемости, достаточные условия дифференцируемость сложной функции. Инвариантность формы дифференциала относительно замены переменных. Градиент, его независимость от выбора прямоугольной системы координат. Производная по направлению.
- 5. Частные производные высших порядков. Независимость смешанной частной производной от порядка дифференцирования. Дифференциалы высших порядков, отсутствие инвариантности их формы относительно замены переменных. Формула Тейлора для функций нескольких переменных с остаточным членом в формах Лагранжа и Пеано.
- 6. Мера Жордана в n-мерном евклидовом пространстве. Критерий измеримости. Измеримость объединения, пересечения и разности измеримых множеств. Конечная аддитивность меры Жордана.
- 7. Определенный интеграл Римана. Суммы Римана, суммы Дарбу, критерий интегрируемости. Интегрируемость непрерывной функции, интегрируемость монотонной функции, интегрируемость ограниченной функции с конечным числом точек разрыва. Свойства интегрируемых функций: аддитивность интеграла по отрезкам, линейность интеграла, интегрируемость произведения функций, интегрируемость модуля интегрируемой функции, интегрирование неравенств, теорема о среднем. Свойства интеграла с переменным верхним пределом непрерывность, дифференци-

- руемость. Формула Ньютона–Лейбница. Интегрирование подстановкой и по частям в определенном интеграле.
- 8. Геометрические приложения определенного интеграла площадь криволинейной трапеции, объем тела вращения, длина кривой, площадь поверхности вращения.
- 9. Криволинейный интеграл первого рода и его свойства. Ориентация гладкой кривой. Криволинейный интеграл второго рода и его свойства.
- 10. Несобственный интеграл (случай неограниченной функции и случай бесконечного промежутка интегрирования). Критерий Коши сходимости интеграла. Интегралы от знакопостоянных функций. Признаки сходимости. Интегралы от знакопеременных функций: сходимость и абсолютная сходимость. Признаки Дирихле и Абеля сходимости интегралов.
- 11. Числовые ряды. Критерий Коши сходимости ряда. Знакопостоянные ряды: признаки сравнения сходимости, признаки Даламбера и Коши, интегральный признак. Знакопеременные ряды: сходимость и абсолютная сходимость. Признаки Дирихле и Абеля. Независимость суммы абсолютно сходящегося ряда от порядка слагаемых. Теорема Римана о перестановке членов сходящегося, но не абсолютно сходящегося ряда (без доказательства). Произведение абсолютно сходящихся рядов.
- 12. Равномерная сходимость функциональных последовательностей и рядов. Критерий Коши равномерной сходимости. Признак Вейерштрасса равномерной сходимости функциональных рядов. Непрерывность суммы равномерно сходящегося ряда из непрерывных функций. Почленное интегрирование и дифференцирование функциональных последовательностей и рядов. Признаки Дирихле и Абеля.
- 13. Степенные ряды с комплексными членами. Первая теорема Абеля. Круг и радиус сходимости. Характер сходимости степенного ряда в круге сходимости. Формула Коши–Адамара для радиуса сходимости. Непрерывность суммы комплексного степенного ряда.
- 14. Степенные ряды с действительными членами. Сохранение радиуса сходимости степенного ряда при почленном дифференцировании и интегрировании ряда. Бесконечная дифференцируемость суммы степенного ряда на интервале сходимости. Единственность разложения функции в степенной ряд, ряд Тейлора. Формула Тейлора с остаточным членом в интегральной форме. Пример бесконечно дифференцируемой функции, не разлагающейся в степенной ряд. Разложение в ряд Тейлора основных элементарных функций. Разложение в степенной ряд комплекснозначной функции e^z .

Литература

Основная

- 1. Иванов Г. Е. Лекции по математическому анализу. Ч. 1. Москва : МФТИ, 2011.
- 2. $\mathit{Петрович}\ A.\ M$. Лекции по математическому анализу. Ч. 2. Многомерный анализ. Интегралы и ряды. Москва : МФТИ, 2017.
- 3. *Ильин В. А.*, *Позняк Э. Г.* Основы математического анализа. Т 1, 2. Москва : Наука-Физматлит, 1998.
- 4. Зорич В. А. Математический анализ. Т. 1. Москва: МЦНМО, 2012.

Дополнительная

- 5. Кудрявцев Л. Д. Курс математического анализа. 5-е изд. Москва : Дрофа, 2004.
- 6. $Ky \partial p \pi e u e e J$. Д. Краткий курс математического анализа. Т. 1. Москва : Наука, 2004.
- 7. Никольский С. М. Курс математического анализа. Т. 1. Москва: Наука, 2000.
- 8. Бесов О. В. Лекции по математическому анализу. Москва: ФИЗМАТЛИТ, 2020.
- 9. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. 8-е изд. Москва: Физматлит, 2007.
- 10. Tep-Крикоров A. M., Шабунин М. И. Курс математического анализа. Москва: МФТИ, 2007.
- 11. Яковлев Г. Н. Лекции по математическому анализу. Ч. 1. Москва : Физматлит, 2004.

ЗАДАНИЯ

Литература

- 1. Сборник задач по математическому анализу. Интегралы. Ряды: учебное пособие/под ред. Л.Д. Кудрявцева. Москва: Физматлит, 2012. (цитируется C2)
- 2. Сборник задач по математическому анализу. Функции нескольких переменных: учебное пособие/под ред. Л.Д. Кудрявцева. Москва: Физматлит, 2003. (цитируется C3)

Замечания

- 1. Задачи с подчёркнутыми номерами рекомендовано разобрать на семинарских занятиях.
- 2. Задачи, отмеченные *, являются необязательными для всех студентов.

ПЕРВОЕ ЗАДАНИЕ

(срок сдачи 01-07 марта)

І. Неопределённый интеграл

C2, §1: 2(4); 2(15); 13(10); 8(8); 12(4); 21(4); 23(5); 24(3); $18(2)^*$; 10(7).

C2, §2: 1(5); 3(3); 5(1); 7(4); $8(5)^*$.

C2, §3: 2(1); $2(7)^*$; 4(3); 18(3); 5(2); 8(1); 9(1); $14(2)^*$; $19(3)^*$.

C2, §4: 1(3); 4(2); 10(1); 16(1); 18(4); 21(2); $40(2)^*$.

C2, **§5**: 105; 144; 131*; 176; 182.

II. Функции многих переменных

А) Множества в конечномерных евклидовых пространствах.

Т.1. Для множества $E = [1;2) \cup \{3\} \cup ((4,5] \cap \mathbb{Q}) \subset \mathbb{R}$ найдите все: а) изолированные точки; б) граничные точки; в) внутренние точки; г) предельные точки; д) точки прикосновения.

C3, §2: 9(2,3) (a, 6, r, e*); 20(6)*.

C3, §1: <u>14</u>; 15; 18; 36; 39(4); 24*.

Т.2. Является ли множество

$$A = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 < 1 + x_4^2\}$$

в пространстве \mathbb{R}^4 : а) открытым; б) замкнутым; в) областью?

Б) Предел и непрерывность.

Т.3. Для функции "плитка" исследовать наличие двойного и обоих повторных пределов в нуле

$$f(x,y) = \begin{cases} 1, & xy \neq 0 \\ 0, & xy = 0. \end{cases}$$

Т.4. Для функции "круговой забор" исследовать наличие двойного предела в нуле, а также пределов по каждому лучу в нуле

$$f(x,y) = \begin{cases} 1, & x^2 + (y-1)^2 = 1\\ 0, & x^2 + (y-1)^2 \neq 1. \end{cases}$$

C3, §2: 37(2, 7); 48(4, 6); 54; 62(5); 77(3).

В) Частные производные, дифференциал.

C3, §3: 3(6); 12; 15(1); $19(1^*, 5)$; 20(3, 6); 21(9); 39(1); $40(4)^*$.

C3, §4: 4; 7(2); <u>15(5)</u>; 39(6).

Г) Формула Тейлора.

C3, §4: 71(2); 74(5); $70(1)^*$.

Рекомендации по решению

первого домашнего задания по неделям

1 неделя	C2 , §1: 2(4); 2(15); 13(10); 8(8); 12(4); 21(4); 23(5); 24(3);
	$18(2)^*; \frac{10(7)}{}.$
	C2 , §2: $1(5)$; $3(3)$; $5(1)$; $7(4)$; $8(5)^*$.
	C2 , §3: $2(1)$; $2(7)^*$; $4(3)$; $18(3)$; $5(2)$; $8(1)$; $9(1)$; $14(2)^*$; $19(3)^*$.
2 неделя	C2 , §4: $1(3)$; $4(2)$; $10(1)$; $16(1)$; $18(4)$; $21(2)$; $40(2)^*$.
	C2 , §5 : 105; 144; 131*; 176; 182; T.1.
	C3, §2: $9(2,3)(a,6,r,e^*); 20(6)^*$.
3 неделя	C3 , §1: <u>14</u> ; 15; 18; 36; 39(4); 24*.
	C3, §2: T2; T3; T4; 37(2, 7); 48(4, 6); 54; 62(5); 77(3).
4 неделя	C3 , §3: $3(6)$; 12 ; $15(1)$; $19(1^*, 5)$; $20(3, 6)$; $21(9)$; $39(1)$; $40(4)^*$.
	C3 , §4: 4; 7(2); <u>15(5)</u> ; 39(6).
	C3, §4: $71(2)$; $74(5)$; $70(1)^*$.

 $60 + 12^*$

ВТОРОЕ ЗАДАНИЕ

(срок сдачи 05–11 апреля)

І. Мера Жордана

C3, §7: 21; 22; 24; 40.

- **Т.1.** а) Доказать, что мера Жордана графика непрерывной на отрезке функции равна нулю.
 - б) Доказать, что для неотрицательной непрерывной функции f на отрезке [a,b] подграфик $\mathrm{hyp} f = \{(x,y): 0 \leq y \leq f(x), a \leq x \leq b\}$ измерим по Жордану.
 - в*) Пусть f неотрицательна на [a,b]. Верно ли, что если множество hyp f измеримо, то график f измерим и имеет нулевую меру? Верно ли обратное?
- Т.2. Измеримо ли множество нулей функции

$$f(x,y) = \sin\left(\frac{1}{x^2 + y^2}\right)$$

в круге $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < R^2\}$ радиуса R > 0?

II. Определенный интеграл

А) Свойства определенного интеграла и его вычисление.

C2, §6: 4(2); <u>24</u>; 11; 30; 32*; 54(5); 96; 112(1); 117; 153; 193*.

Т.3. Доказать, что
$$\left| \int\limits_a^b \frac{\sin x}{x} \, dx \right| \leqslant \frac{2}{a}$$
, где $b > a > 0$.

Т.4*. а) Пусть точки a, x принадлежат промежутку I. Пусть $f \in C^{n+1}(I)$. Доказать формулу Тейлора с остаточным членом в интегральной форме

$$f(x) - f(a) = f'(a)(x - a) + \ldots + \frac{1}{n!}f^{(n)}(a)(x - a)^n + r_n(x),$$

где
$$r_n(x) = \frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^n dt$$

- б) Вывести из предыдущего соотношения формулу Тейлора с остаточным членом в форме Лагранжа, т.е. показать, что $\exists \xi \in (a,x)$ т.ч. $r_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x-a)^{n+1}$.
- **Т.5.** а) Функция f имеет первообразную F на отрезке [a, b]. Верно ли, что f интегрируема на отрезке [a, b]?
 - б) Функция f интегрируема на отрезке [a, b]. Верно ли, что f имеет первообразную на отрезке [a, b]?
 - в) Пусть функция f интегрируема на $[a,\,b]$ и имеет первообразную F на отрезке $[a,\,b]$. Доказать, что верно равенство $\int_a^b f(x)\,dx = F(b) F(a)$.
- **Т.6*.** Докажите, что разрывная функция $f(x) = \mathrm{sign}\Big(\sin\frac{\pi}{x}\Big)$ интегрируема на отрезке [0,1].

C2, $\S 10: \underline{50(3)}$.

Б) Геометрические приложения определенного интеграла.

C2, §7: 4(2); 26; 33(5); 69(7); 72(3); 82(2).

C2, §8: 12(1); 10(5); 82(3).

Т.7*. Вычислить

$$\int_{\sqrt{\pi/6}}^{\sqrt{\pi/2}} \sin(x^2) dx + \int_{1/2}^{1} \sqrt{\arcsin(x)} dx.$$

III. Криволинейный интеграл

C3, §10: 4*; 9; 19(3); 34(1); 28(2); 43, 45, 81*.

- IV. Несобственный интеграл
 - **С2, §11:** 76 (верхний предел интегрирования $\frac{1}{2}$); 85; 94; <u>98;</u> 63.
 - **С2, §12:** 92; 87; <u>91; 104;</u> 131; <u>139;</u> 185; 141; <u>120;</u> 121; 227; 232 (можно ли всю функцию заменить на эквивалентную $\frac{\sin x}{\sqrt{x}}$?).

Рекомендации по решению

второго домашнего задания по неделям

1 неделя	C3, §7: 21; <u>22;</u> 24; 40; T.1; T.2.
	C2 , §6: $4(2)$; $\underline{24}$; 11; 30; 32^* ; $54(5)$; 96; 112(1); 117; 153; 193^* ;
	$\underline{\text{T.3}};\ \underline{\text{T.4}};\ \underline{\text{T.5}};\ \text{T.6}^*.$
2 неделя	$C2, \S 10: \underline{50(3)}$.
	C2 , §7: $4(2)$; 26 ; $33(5)$; $69(7)$; $72(3)$; $82(2)$.
	C2 , §8: 12(1); 13(2); 82(3); T7*.
3 неделя	C3 , §10: 4^* ; 9; 19(3); 34(1); 28(2); $\underline{43}$, 45, 81*.
	C2 , §11: 76; 85; 94; <u>98</u> ; 63.
4 неделя	C2, §12: 92; 87; 91; 104; 131; 139; 185; 141; 120; 121; 227; 232.
	51 + 7*

 $51 + 7^*$

ТРЕТЬЕ ЗАДАНИЕ

(срок сдачи 10—16 мая)

І. Числовые ряды

А) Ряды с неотрицательными членами.

C2, §13: 1(4); 3(1); $\underline{10}$; 11(6); $\underline{13(2)}$; 14(3).

C2, §14: $\underline{25(9)}$; 2(3); 5(4); 14(6); $\underline{9(8)}$; 12(2); 18(4); 19(9); $\underline{21(12)}$; 38*.

- **Т.1.** Является ли сходящимся ряд $\sum_{n=1}^{\infty} a_n$, если для любого $p \in \mathbb{N}$ выполняется $\lim_{n \to \infty} (a_{n+1} + a_{n+2} + \ldots + a_{n+p}) = 0$?
- Б) Знакопеременные ряды.

C2, §15: $3(2, \underline{5}); 4(5)^*; 8(\underline{3}, 4); \underline{9(2)}.$

Во всех задачах $\S15$ исследовать также абсолютную сходимость рядов.

C2, §16: 26*, 33*.

- **Т.2.** Пусть $\{a_n\}_{n=1}^\infty\subset\mathbb{R}$ и ряд $\sum_{n=1}^\infty a_n$ сходится. Верно ли, что сходятся ряды
 - a) $\sum_{n=1}^{\infty} a_n^2$; 6) $\sum_{n=1}^{\infty} a_n^3$?
- **Т.3.** Верно ли, что если ряд $\sum_{n=1}^{\infty} a_n$ сходится, а ряд $\sum_{n=1}^{\infty} b_n$ сходится абсолютно, то ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится?
- II. Функциональные последовательности и ряды

C2, §17: 5(3); 7(5); 11(6); 9(10); 12(5); 8(5); 13(7).

- **Т.4.** Исследовать на поточечную и равномерную сходимость на отрезке E = [0, 1] функциональные последовательности:
 - a) $f_n(x) = x^n x^{n+1}, n \in \mathbb{N}$; 6) $f_n(x) = x^n x^{2n}, n \in \mathbb{N}$.
 - C2, §18: 20(4); 33(5); $36(12)^*$; 22(1,3); 36(5);.
- **Т.5.** Исследовать на поточечную и равномерную сходимость на множествах $E_1=(0,\,1)$ и $E_2=(1,\,+\infty)$ функциональные последовательность

$$\{f_n(x)\}_{n=1}^{\infty}$$
 и ряд $\sum_{n=1}^{\infty} f_n(x)$, если

a)
$$f_n(x) = x \sin \frac{1}{(xn)^2};$$
 6) $f_n(x) = \frac{\sin \frac{xn}{x^2 + n^2}}{1 + \ln^2 n}.$

C2, §19: 2; 5; <u>14</u>; 18; 22.

III. Степенные ряды

- C2, §20: 1(6); 3(1); 5(2); 9(5).
- **C2**, §21: 6(4); 9(3); 11(4); 19(3); 30(4); 56(2); 80; $31(2)^*$.
- **Т.6.** Найдите радиус сходимости ряда $\sum_{n=1}^{\infty} \frac{x^{2^n}}{n^3}$.

Рекомендации по решению

третьего домашнего задания по неделям

C2, §14: $25(9)$; 2(3); 5(4); 14(6); $9(8)$; 12(2); 18(4); 19(9); $21(12)$ 38*; T.1.	_);
· · · · · · · · · · · · · · · · · · ·	
2 неделя С2 , §15: $3(2, \underline{5})$; $4(5)^*$; $8(\underline{3}, 4)$; $\underline{9(2)}$; T.2; Т.3.	
$\mathbf{C2}, \S 16 : 26^*, 33^*.$	
C2 , §17: $5(3)$; $7(5)$; $11(6)$; $9(10)$; $12(5)$; $8(5)$; $13(7)$; T.5.	
3 неделя С2 , §18 : 20(4); <u>33(5)</u> ; 36(12)*; 22(1,3);; <u>36(5)</u> ; Т.б.	
C2 , §19: 2; 5; <u>14</u> ; 18; 22.	
4 неделя С2 , §20 : 1(6); 3(1); <u>5(2)</u> ; 9(5).	
C2 , §21: $6(4)$; $9(3)$; $11(4)$; $19(3)$; $30(4)$; $56(2)$; 80 ; $31(2)^*$; T.7.	

 $54 + 5^*$