WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵: C07D 498/18, C07K 5/06 A61K 31/395, 37/02 // (C07D 498/18, 311/00, 273/00)

(11) International Publication Number:

WO 92/05179

(43) International Publication Date:

2 April 1992 (02.04.92)

(21) International Application Number:

PCT/US91/06824

(22) International Filing Date:

19 September 1991 (19.09.91)

(30) Priority data:

584,833 589,878 657,294 19 September 1990 (19.09.90) US 28 September 1990 (28.09.90) US

19 February 1991 (19.02.91) US

(71) Applicant: AMERICAN HOME PRODUCTS CORPORATION [US/US]; 685 Third Avenue, New York, NY 10017 (US).

(72) Inventors: CAUFIELD, Craig, Eugene; 30-08 Raven's Crest Drive, Plainsboro, NJ 08536 (US). FAILLI, Amedeo, Arturo; 14 Landing Lane, Princeton Junction, NJ 08550 (US). STEFFAN, Robert, John; 263 Wheat-sheaf Lane, Langhorne, PA 19047 (US). (74) Agents: ALICE, Ronald, W. et al.; American Home Products Corporation, 685 Third Avenue, New York, NY 10017 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GB (European patent), GR (European patent), HU, IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent), SU⁺.

Published

With international search report.

A compound of structure (I), wherein R^1 , R^2 , and R^3 are each, independently, hydrogen, or R^4 ; R^4 is (a), (b), or (c); R^5 is hydrogen, alkyl, aralkyl, -(CH₂)_qCO₂ R^8 , -(CH₂)_rNR⁹EO₂R¹⁰,-carbamylalkyl, aminoalkyl, hydroxyalkyl, guanylalkyl, mercaptoalkyl, alkylthioalkyl, indolylmethyl, hydroxypehnylmethyl, imidazoylmethyl or phenyl which is optionally mono-, di-, or tri-substituted with a substituent selected from alkyl, alkoxy, hydroxy, cyano, halo, nitro, carbalkoxy, trifluoromethyl, amino, or a carboxylic acid; R^6 and R^9 are each, independently, hydrogen, alkyl, or aralkyl; R^7 , R^8 , and R^{10} are each, independently, alkyl, aralkyl, fluorenylmethyl, or phenyl which is optionally mono-, di-, or tri-substituted; R^{11} and R^{12} are each, independently, alkyl, aralkyl, or phenyl which is optionally mono-, di-, or tri-substituted; R^{11} and R^{12} are each, independently, hydrogen or alkyl; Y is CH or N; R^8 , R^8 , R^8 , R^8 , R^8 , R^8 , R^8 , and R^{10} are each of (e) subunits when R^8 , R^8 , R

+ DESIGNATIONS OF "SU"

Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gahon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Notherlands
BJ	Benîn	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	J₽	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
Cl	Côte d'Ivoire	KR	Republic of Korea	รบ+	Soviet Union
CM	Cameroon	LI	Liechtenstein	TD	Chad "
CS	Czechoslovakia	ŁK	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Монасо		

10

15

20

25

30

CARBOXYLIC ACID ESTERS OF RAPAMYCIN

BACKGROUND OF THE INVENTION

This invention relates to novel esters of rapamycin and a method for using them in the treatment of transplantation rejection, host vs. graft disease, autoimmune diseases, diseases of inflammation, and fungal infections.

Rapamycin is a macrocyclic triene antibiotic produced by <u>Streptomyces</u> <u>hygroscopicus</u>, which was found to have antifungal activity, particularly against <u>Candida albicans</u>, both <u>in vitro</u> and <u>in vivo</u> [C. Vezina et al., J. Antibiot. 28, 721 (1975); S.N. Seghal et al., J. Antibiot. 28, 727 (1975); H. A. Baker et al., J. Antibiot. 31, 539 (1978); U.S. Patent 3,929,992; and U.S. Patent 3,993,749].

Rapamycin alone (U.S. Patent 4,885,171) or in combination with picibanil (U.S. Patent 4,401,653) has been shown to have antitumor activity. R. Martel et al. [Can. J. Physiol. Pharmacol. 55, 48 (1977)] disclosed that rapamycin is effective in the experimental allergic encephalomyelitis model, a model for multiple sclerosis; in the adjuvant arthritis model, a model for rheumatoid arthritis; and effectively inhibited the formation of IgE-like antibodies.

The immunosuppressive effects of rapamycin have been disclosed in FASEB 3, 3411 (1989), rapamycin has been shown to be effective in inhibiting transplant rejection (U.S. Patent Application Ser. No. 362,544 filed June 6, 1989). Cyclosporin A and FK-506, other macrocyclic molecules, also have been shown to be effective as immunosuppressive agents, therefore useful in preventing transplant rejection [FASEB 3, 3411 (1989); FASEB 3, 5256 (1989); and R. Y. Calne et al., Lancet 1183 (1978)].

Mono- and diacylated derivatives of rapamycin (esterified at the 28 and 43 positions) have been shown to be useful as antifungal agents (U.S. Patent 4,316,885) and used to make water soluble prodrugs of rapamycin (U.S. Patent 4,650,803). Recently, the numbering convention for rapamycin has been changed; therefore according to Chemical Abstracts nomenclature, the esters described above would be at the 31- and 42- positions.

DESCRIPTION OF THE INVENTION

This invention provides derivatives of rapamycin which are useful as immunosuppressive, anti-inflammatory, and antifungal agents having the structure

wherein R¹, R², and R³ are each, independently, hydrogen, or R⁴;

$$R^4$$
 is $-[C(CH_2)_mCH(CH_2)_nN]_pCO_2R^7$, $-C-(CH_2)_tX(CH_2)_uCO_2R^{11}$, or R^5 R^6

10

5

R⁵ is hydrogen, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms,

-(CH₂)_qCO₂R⁸, -(CH₂)_rNR⁹CO₂R¹⁰, carbamylalkyl of 2-3 carbon atoms, aminoalkyl of 1-4 carbon atoms, hydroxyalkyl of 1-4 carbon atoms, guanylalkyl of 2-4 carbon atoms, mercaptoalkyl of 1-4 carbon atoms, alkylthioalkyl of 2-6 carbon atoms, indolylmethyl, hydroxyphenylmethyl, imidazolylmethyl or phenyl which is optionally mono-, di-, or tri-substituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid:

20

15

R⁶ and R⁹ are each, independently, hydrogen, alkyl of 1-6 carbon atoms, or aralkyl of 7-10 carbon atoms;

10

R⁷, R⁸, and R¹⁰ are each, independently, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms, fluorenylmethyl, or phenyl which is optionally mono-, di-, or trisubstituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

R¹¹ and R¹² are each, independently, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms, or phenyl which is optionally mono-, di-, or tri-substituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

R¹³ and R¹⁴ are each, independently, hydrogen or alkyl of 1-6 carbon atoms;

15 Y is CH or N;

m is 0 - 4;

n is 0 - 4;

p is 1 - 2;

q is 0 - 4;

20 r is 0 - 4;

t is 0 - 4;

u is 0 - 4;

wherein R^5 , R^6 , m, and n are independent in each of the $[C(CH_2)_mCH(CH_2)_nN]$

subunits when p = 2;

or a pharmaceutically acceptable salt thereof, with the proviso that R¹, R², and R³ are not all hydrogen, further provided that R¹, R², and R³ are not all

O | |
$$-[C(CH_2)_mCH(CH_2)_nN]_pCO_2R^7$$
, and still further provided that t and u are not | | R^5 R^6

both 0 when X is O or S.

Of the compounds when
$$R^4$$
 is $-[C(CH_2)_mCH(CH_2)_nN]_pCO_2R^7$,
$$\begin{vmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

preferred members are those in which m = 0, n = 0, and p = 1; m = 0, n = 0, and p = 2; n = 0, and p = 0,

members in which
$$R^4$$
 is $-C-(CH_2)_tX(CH_2)_uCO_2R^{11}$.

5

10

15

20

25

The pharmaceutically acceptable salts may be formed from inorganic cations such as sodium, potassium, and the like; mono-, di-, and trialkyl amines of 1-6 carbon atoms, per alkyl group and mono-, di-, and trihydroxyalkyl amines of 1-6 carbon atoms per alkyl group; and organic acids such as acetic, lactic, citric, tartaric, succinic, maleic, malonic, gluconic, and the like. Preferred basic salts are formed from sodium cations and tris(hydroxymethyl)methylamine.

The compounds of this invention can be prepared by acylating rapamycin with an acylating agent having the general structures

$$\begin{array}{c} O \\ \parallel \\ Z - [C(CH_2)_m CH(CH_2)_n N]_p CO_2 R^7 \\ \parallel \\ Z - C - (CH_2)_t X(CH_2)_u CO_2 R^{11} \\ \parallel \\ Z - C - (CH_2)_t X(CH_2)_u CO_2 R^{11} \\ \parallel \\ Q \end{array} , \text{ or }$$

where Z is OH in the presence of a coupling reagent, such as dicyclohexyl-carbodiimide. The compounds of this invention also can be prepared using an anhydride or a mixed anhydride of the above described carboxylic acid as the acylating species. Alternatively, the acylating species can be an acid halide, where Z can be Cl, Br, or I. The acylating groups used to prepare the compounds of this invention are commercially available or can be prepared by methods that are disclosed in the literature.

Where it is desired to prepare acyl derivatives having two or three different R⁴ groups then sequential acylation may be performed using appropriate acylating agents as defined above, if necessary isolating the desired product by appropriate purification

Ŷ

- 5 -

techniques. In general the 42-position is acylated first and such a monoacylated product may be isolated prior to the second acylation and so forth. Appropriate protecting groups may be used to block any position where acylation is not required.

Immunosuppressive activity was evaluated in an <u>in vitro</u> standard pharmacological test procedure to measure lymphocyte proliferation (LAF) and in two <u>in vivo</u> standard pharmacological test procedures. The first <u>in vivo</u> procedure was a popliteal lymph node (PLN) test procedure which measured the effect of compounds of this invention on a mixed lymphocyte reaction and the second <u>in vivo</u> procedure evaluated the survival time of a pinch skin graft.

5

10

15

20

25

30

35

The comitogen-induced thymocyte proliferation procedure (LAF) was used as an in vitro measure of the immunosuppressive effects of representative compounds. Briefly, cells from the thymus of normal BALB/c mice are cultured for 72 hours with PHA and IL-1 and pulsed with tritiated thymidine during the last six hours. Cells are cultured with and without various concentrations of rapamycin, cyclosporin A, or test compound. Cells are harvested and incorporated; radioactivity is determined. Inhibition of lymphoproliferation is assessed in percent change in counts per minute from non-drug treated controls. The results are expressed by the following ratio, or as the percent inhibition of lymphoproliferation of 1 μ M.

³H-control thymus cells - H³-rapamycin-treated thymus cells ³H-control thymus cells - H³-test compound-treated cells

A mixed lymphocyte reaction (MLR) occurs when lymphoid cells from genetically distinct animals are combined in tissue culture. Each stimulates the other to undergo blast transformation which results in increased DNA synthesis that can be quantified by the incorporation of tritiated thymidine. Since stimulating a MLR is a function of disparity at Major Histocompatibility antigens, an <u>in vivo</u> popliteal lymph node (PLN) test procedure closely correlates to host vs. graft disease. Briefly, irradiated spleen cells from BALB/c donors are injected into the right hind foot pad of recipient C3H mice. The drug is given daily, p.o. from Day 0 to Day 4. On Day 3 and Day 4, tritiated thymidine is given i.p., b.i.d. On Day 5, the hind popliteal lymph nodes are removed and dissolved, and radioactivity counted. The corresponding left PLN serves as the control for the PLN from the injected hind foot. Percent suppression is calculated using the non-drug treated animals as allogenic control. Rapamycin at a dose of 6 mg/kg, p.o. gave 86% suppression, whereas cyclosporin A at the same dose gave 43% suppression. Results are expressed by the following ratio:

³H-PLN cells control C3H mouse - ³H-PLN cells rapamycin-treated C3H mouse ³H-PLN cells control C3H mouse - ³H-PLN cells test compound-treated C3H mouse

5

10

15

The second in vivo test procedure is designed to determine the survival time of pinch skin graft from male DBA/2 donors transplanted to male BALB/c recipients. The method is adapted from Billingham R.E. and Medawar P.B., J. Exp. Biol. 28:385-402, (1951). Briefly, a pinch skin graft from the donor is grafted on the dorsum of the recipient as a homograft, and an autograft is used as control in the same region. The recipients are treated with either varying concentrations of cyclosporin A as test control or the test compound, intraperitoneally. Untreated recipients serve as rejection control. The graft is monitored daily and observations are recorded until the graft becomes dry and forms a blackened scab. This is considered as the rejection day. The mean graft survival time (number of days \pm S.D.) of the drug treatment group is compared with the control group.

The following table summarizes the results of representative compounds of this invention in these three standard test procedures.

TABLE 1 20 LAF* PLN* Skin Graft Compound (ratio) (ratio) (davs + SD)Example 1 1.8 0.61 12.0 ± 1.6 Example 2 0.33 0.62 11.5 ± 0.6 25 Example 3 0.20 + 9.0 ± 0.9 Example 4 4.9 0.18 12.3 ± 0.5 Example 5 0.006 + 8.8 ± 0.9 Example 6 5.4 0.33 11.5 ± 3.5 Example 7 3% at 1µM** 7.7 ± 1.5 + 30 Example 8 0.03 0.41 + Example 9 0.96 1.34 10.3 ± 0.8 Example 10 2.0 0.96++ 12.7 ± 1.2 Example 11 0.004 + 10.5 ± 1.3 Example 12 19.8 -2.87 12.0 ± 2.0 35 Example 13 22% at 1µM** 7.0 ± 0.6 + Example 14 0.37 + 8.2 ± 1.2 Example 15 0.9 0.69 10.7 ± 1.2

PCT/US91/06824

TABLE 1 (Continued)

	Compound	LAF* (ratio)	PLN* (ratio)	Skin Graft (days + SD)
5	Example 16	3.27	1.04##	12.7 <u>+</u> 0.9
	Example 17	0.56	1.68###	10.2 ± 1.7
	Example 18	0.02	1.11##	8.0 ± 1.7
	Example 19	0.01	0.48	8.0 <u>+</u> 0.9
	Example 20	0.97	0.70	9.3 <u>+</u> 1.6
10	Example 21	0.22	-1.93	12.0 <u>+</u> 1.7
	Example 22	0.22	0.41	10.2 ± 1.2
	Example 23	0.18	0.39	10.8 <u>+</u> 0.8
	Example 24	0.00	0.09	7.8 <u>+</u> 1.7
	Rapamycin	1.0	1.0	12.0 ± 1.7

15

20

30

35

- * Calculation of ratios was described supra.
- ** Result expressed as percent inhibition of lymphoproliferation at 1 μ M.
- + Not evaluated
- ++ Results obtained using cremophore/ethanol as a vechicle for administration.

 Ratios of 0.33 and 1.07 were also obtained using carboxymethyl cellulose as a vehicle for administration.
- ## Results obtained using cremophore/ethanol as a vechicle for administration.

 Ratios of 0.20 and 1.08 also were obtained using carboxymethyl cellulose as a vehicle for administration.
- 25 ### A ratio of 0.42 also was obtained for this compound.

The results of these standard pharmacological test procedures demonstrate immunosuppressive activity both in vitro and in vivo for the compounds of this invention. Positive ratios in the LAF and PLN test procedures indicate suppression of T cell proliferation. As a transplanted pinch skin grafts are typically rejected within 6-7 days without the use of an immunosuppressive agent, the increased survival time of the skin graft when treated with the compounds of this invention further demonstrates their utility as immunosuppressive agents. While it appears that the compound disclosed by Examples 12 and 21 may cause T cell proliferation in the PLN test procedure, it is believed a negative ratio in this test procedure coupled with an increased survival time observed in the skin graft test procedure indicates a proliferation of T_{suppressor} cells,

which are implicated in suppressing the immune response. (see, I. Roitt et al. Immunology, C.V.Moseby Co. 1989, p 12.8-12.11).

Antifungal activity of the compounds of this invention was measured against 5 strains of <u>Candida albicans</u> using a plate test procedure for measurement of inhibition. The following represents the typical procedure used. Compound to be tested was placed on sterile dried 1/4" plate disks, and allowed to dry. Agar plates were seeded with fungi and allowed to solidify. The impregnated disks were placed on the seeded Agar surface and incubated for the time required for the particular culture. Results are expressed in MIC (μ g/ml) to inhibit growth. The results of this test procedure showed that the compounds of this invention have antifungal activity; however, it was surprising that the compounds of this invention were less active than the parent compound, rapamycin.

Table 2*
Strain of Candida albicans

5

10

	Compound	ATCC 10231	ATCC 38246	ATCC 38247	ATCC 38248	<u> 3669</u>
20	Example 1	> 0.4	> 0.4	> 0.4	>0.4	>0.4
	Example 2	0.1	0.2	0.2	0.2	0.1
	Example 3	0.4	> 0.4	> 0.4	>0.4	0.4
	Example 4	0.1	0.4	0.1	0.1	0.2
	Example 5	> 0.4	> 0.4	> 0.4	>0.4	>0.4
25	Example 6	0.1	> 0.4	0.2	0.4	>0.4
	Example 7	+	+	+	+	+
	Example 8	> 0.4	> 0.4	> 0.4	>0.4	>0.4
	Example 9	0.4	> 0.4	0.4	>0.4	>0.4
	Example 10	0.2	> 0.4	0.2	0.4	0.4
	Example 11	> 0.4	> 0.4	> 0.4	>0.4	>0.4
	Example 12	0.2	> 0.4	0.1	0.2	0.4
30	Example 13	> 0.4	> 0.4	> 0.4	>0.4	>0.4
	Example 14	> 0.4	> 0.4	> 0.4	>0.4	>0.4
	Example 15	> 0.4	0.4	> 0.4	0.4	0.4
35	Example 16	0.2	0.1	0.4	0.1	0.1
	Example 17	> 0.4	0.2	> 0.4	0.2	0.4
	Example 18	0.4	> 0.4	> 0.4	>0.4	>0.4
	Example 19	0.4	> 0.4	0.4	>0.4	>0.4

PCT/US91/06824

Table 2* (Continued)
Strain of Candida albicans

Compound	ATCC 10231	ATCC 38246	ATCC 38247	ATCC 38248	<u>3669</u>
Example 20	0.1	0.4	0.1	0.1	0.2
Example 21	0.4	> 0.4	0.4	>0.4	>0.4
Example 22	0.2	> 0.4	0.2	0.4	>0.4
Example 23	0.1	> 0.4	0.2	0.4	>0.4
Example 24	> 0.4	> 0.4	>0.4	>0.4	>0.4
Rapamycin	0.003	0.025	0.003	0.006	0.025

10

15

20

25

30

35

5

Based on the results of these standard pharmacological test procedures, the compounds are useful in the treatment of transplantation rejection such as, heart, kidney, liver, bone marrow, and skin transplants; autoimmune diseases such as, lupus, rheumatoid arthritis, diabetes mellitus, myasthenia gravis, and multiple sclerosis; and diseases of inflammation such as, psoriasis, dermatitis, eczema, seborrhea, inflammatory bowel disease; and fungal infections.

The compounds may be administered neat or with a pharmaceutical carrier to a mammal in need thereof. The pharmaceutical carrier may be solid or liquid.

A solid carrier can include one or more substances which may also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders or tablet-disintegrating agents; it can also be an encapsulating material. In powders, the carrier is a finely divided solid which is in admixture with the finely divided active ingredient. In tablets, the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain up to 99% of the active ingredient. Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.

Liquid carriers are used in preparing solutions, suspensions, emulsions, syrups, elixirs and pressurized compositions. The active ingredient can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats. The liquid carrier

^{*} expressed as MIC (µg/ml)

⁺ not evaluated

can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators. Suitable examples of liquid carriers for oral and parenteral administration include water (partially containing additives as above, e.g. cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols, e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil). For parenteral administration, the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate. Sterile liquid carriers are useful in sterile liquid form compositions for parenteral administration. The liquid carrier for pressurized compositions can be halogenated hydrocarbon or other pharmaceutically acceptable propellent.

Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. The compound can also be administered orally either in liquid or solid composition form.

Preferably, the pharmaceutical composition is in unit dosage form, e.g. as tablets or capsules. In such form, the composition is sub-divided in unit dose containing appropriate quantities of the active ingredient; the unit dosage forms can be packaged compositions, for example, packeted powders, vials, ampoules, prefilled syringes or sachets containing liquids. The unit dosage form can be, for example, a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form. The dosage to be used in the treatment must be subjectively determined by the attending physician.

In addition, the compounds of this invention may be employed as a solution, cream, or lotion by formulation with pharmaceutically acceptable vehicles containing 0.1-5 percent, preferably 2%, of active compound which may be administered to a fungally affected area.

30

5

10

15

20

25

The following examples illustrate the preparation of representative compounds of this invention.

10

15

20

Example 1

Rapamycin-42-ester with N-[(1,1-dimethylethoxy)carbonyl]-glycylglycine

Under anhydrous conditions, a solution of rapamycin (3 g, 3.28 mmole) and N-[(1,1-dimethylethoxy)carbonyl]-glycylglycine (3.04 g, 13.1 mmole) in 40 mL of anhydrous dichloromethane was treated with dicyclohexylcarbodiimide (1.35 g, 6.56 mmole) followed by 4-dimethylaminopyridine (0.8 g, 6.56 mmole). After stirring at ambient temperature for 48 hours, the precipitated solid was collected and washed with dichloromethane. The combined filtrates were absorbed directly onto silica gel Merck 60 by adding the gel and evaporation to dryness. Flash chromatography of the preabsorbed material (using a gradient elution with ethylacetate-toluene from 2:1 to 1:0 v/v) afforded 1.05 g (28.3 %) of the title compound isolated as a three quarter toluene solvate, along with the 31,42-diester of Example 2. HPLC analysis showed that the monoester is a 8.3:1 mixture of two conformers.

 1 H NMR (CDCl₃, 400 MHz): δ 1.46 (m, 9H, COOBu^t), 1.654 (s, 3H, CH₃C=C), 1.751 (s, 3H, CH₃C=C), 3.14 (s, 3H, CH₃O), 3.33 (s, 3H, CH₃O), 3.36 (s, 3H, CH₃O), 4.18 (d, 1H, CHOH), 4.75 (m, 1H, 42-CHO), 4.79 (s, 1H, OH); High Res. MS (neg. ion FAB) Calcd for C₆₀H₉₃N₃O₁₇: 1127.6504, measured mass 1127.6474.

Anal. Calcd for C₆₀H₉₃N₃O₁₇ · 0.75 PhCH₃: C, 65.45; H, 8.33; N, 3.51 Found: C, 65,23; H, 8.32; N, 3.86

25

The following representative compounds can be prepared from rapamycin and the appropriate terminally-N-substituted amino acid by employing the method used to prepare the title compound in Example 1.

- 30 Rapamycin-42-ester with N-[(fluorenylmethoxy)carbonyl]-alanylserine
 Rapamycin-42-ester with N-[(fluorenylmethoxy)carbonyl]-glycylglycine
 Rapamycin-42-ester with N-[(ethoxy)carbonyl]-arginylmethionine
 Rapamycin-42-ester with N-[(d'-chlorophenoxy)carbonyl]-histidylarginine
 Rapamycin-42-ester with N-[(phenoxy)carbonyl]-tryptophanylleucine
 35 Rapamycin-42-ester with N-[(phenylmethoxy)carbonyl)]-N-methylglycyl-N
- 35 Rapamycin-42-ester with N-[(phenylmethoxy)carbonyl)]-N-methylglycyl-N-ethylalanine

- 12 -

Rapamycin-42-ester with N-[(phenylmethoxy)carbonyl]-N-methyl- β -alanylphenylalanine Rapamycin-42-ester with N-[(1,1-dimethylethoxy)carbonyl]-cysteinylglycine

5

Example 2

Rapamycin-31,42-diester with N-[(1,1-dimethylethoxy)carbonyl]-glycylglycine

The title compound (1.85 g, 42%) was separated from the 42-monoester as described in Example 1 and isolated as a three quarter toluene solvate. HPLC analysis showed that the diester is a 8.1:1 mixture of conformers.
1H NMR (CDCl3, 400 MHz): δ 1.452 (m, 18H, COOBut), 1.6612 (s, 3H, CH3C=C), 1.7815 (s, 3H, CH3C=C), 3.14 (s, 3H, OCH3), 3.34 (s, 3H, OCH3), 3.35 (s, 3H, OCH3), 4.52 (s, 1H, OH), 4.79 (m, 1H, 42-CHO); High Res. MS (neg.

ion FAB): Calcd for C69H107N5O21 1341.7458, measured mass: 1341.7463.

Anal. Calcd for $C_{69}H_{107}N_{5}O_{21} \cdot 0.75$ PhCH3: C, 63.17; H, 8.06; N, 4.96 Found: C, 62.83; H, 8.09; N, 5.00

20

The following representative compounds can be prepared from rapamycin and the appropriate terminally-N-substituted amino acid by employing the method used to prepare the title compound in Example 2.

- Rapamycin-31,42-diester with N-[(fluorenylmethoxy)carbonyl]-alanylserine Rapamycin-31,42-diester with N-[(fluorenylmethoxy)carbonyl]-glycylglycine Rapamycin-31,42-diester with N-[(ethoxy)carbonyl]-arginylmethionine Rapamycin-31,42-diester with N-[(4'-chlorophenoxy)carbonyl]-histidylarginine Rapamycin-31,42-diester with N-[(phenoxy)carbonyl]-tryptophanylleucine
- Rapamycin-31,42-diester with N-[(phenylmethoxy)carbonyl)]-N-methylglycyl-N-ethyl-alanine

Rapamycin-31,42-diester with N-[(phenylmethoxy)carbonyl]-N-methyl-β-alanylphenyl- alanine

Rapamycin-31,42-diester with N-[(1,1-dimethylethoxy)carbonyl]-cysteinylglycine

35

10

15

20

25

Example 3

Rapamycin-31,42-diester with N-[(1,1-dimethylethoxy)carbonyll-N-methylglycine

Under anhydrous conditions, an ice cold solution of rapamycin (2 g, 2.18 mmole) and N\$\alpha\$-Boc sarcosine (1.65 g, 8.75 mmole) in 20 ml of anhydrous dichloromethane was treated with dicyclohexylcarbodiimide (1.8 g, 8.7 mmole) followed by 4-dimethylaminopyridine (1 g, 8.7 mmole). After stirring overnight at ambient temperature, the precipitated solid was collected and washed with dichloromethane. The combined filtrates were evaporated to dryness to give an amorphous amber solid (3 g). The crude product was purified by flash chromatography (on silica Merck 60, elution with hexane-ethylacetate 1:1, v/v) to provide the title compound (0.75 g, 27.4%) along with the 42-monoester of Example 4. HPLC analysis showed that the diester is a 19.8:1 mixture of two conformers. The multiplicity of the NMR peaks suggests the presence of amide rotamers.

 1 H NMR (CDCl₃, 400 MHz): δ 1.411, 1.438, 1.448 and 1.474 (m, 18 H, COOBu^t), 2.91 (m, 6H, NCH₃), 3.14 (s, 3H, CH₃O), 3.34 (s, 3H, CH₃O), 3.37 (s, 3H, CH₃O), 4.73 (broad, 1H, 42-CHO), 4.82 (2s, 1H, OH); High Res. MS (neg. ion FAB): Calcd. for C67H₁05N₃O₁9 1255.7342, measured mass 1255.7289.

Anal. Calcd for C67H105N3O19: C, 64.04; H, 8.42; N, 3.34 Found: C, 64.14; H, 8.74; N, 3.63

The following representative compounds can be prepared from rapamycin and the appropriate terminally-N-substituted amino acid by employing the method used to prepare the title compound in Example 3.

Rapamycin-31,42-diester with N-[(ethoxy)carbonyl]-tyrosine
Rapamycin-31,42-diester with N-[(fluorenylmethoxy)carbonyl]-phenylalanine
Rapamycin-31,42-diester with N-[(3',4',5'-trihydroxyphenoxy)carbonyl]-isoleucine
Rapamycin-31,42-diester with N-[(1,1-dimethylethoxy)carbonyl)-glutamine
Rapamycin-31,42-diester with N-[(phenoxy)carbonyl]-N-methylalanine
Rapamycin-31,42-diester with N-[(propyloxy)carbonyl]-4-aminobutryic acid
Rapamycin-31,42-diester with N-[(phenylmethoxy)carbonyl]-7-aminoheptanoic acid
Rapamycin-31,42-diester with N-[(fluorenylmethoxy)carbonyl]-serine

10

15

20

Example 4

Rapamycin-42-ester with N-[(1,1-dimethylethoxy)carbonyl]-N-methylglycine

Under anhydrous conditions, an ice cold solution of rapamycin (0.95 g, 1.02 mmole) and N^{\alpha}-Boc sarcosine (0.21 g, 1.1 mmole) in 20 mL of anhydrous dichloromethane was treated with dicyclohexylcarbodiimide 0.21 g, 1 mmole) followed by 4-dimethylaminopyridine (0.12 g, 1 mmole). After stirring for 4 hours at ambient temperature, the precipitated solid was collected and washed with dichloromethane. The combined filtrates were concentrated *in vacuo* to give an amorphous amber solid. Flash chromatography of the crude product (on silica Merck 60, elution with hexane-ethylacetate 1:1 v/v to remove the diester of Example 3, followed by chloroform-ethylacetate-methanol 75:25:1 v/v) provided partially purified title compound (0.38 g, 35%). Pure product was obtained by preparative HPLC (Waters Prep 500, silica gel, chloroform-ethylacetate-methanol 75:25:1 v/v, flow rate 250 mL/min). HPLC analysis showed that the ester is a 6.6:1 mixture of two conformers. The multiplicity of NMR peaks suggests the presence of amide rotamers.

¹H NMR (CDCl₃, 400 MHz): δ 1.42-1.46 (ds, 9H, COOBu^t), 2.91 (ds, 3H, NCH₃), 1.644 (s, 3H, CH₃C=C), 1.738 (s, 3H, CH₃C=C), 3.12 (s, 3H, CH₃O), 3.32 (s, 3H, CH₃O), 3.35 (s. 3H, CH₃O), 4.18 (d, 1H, CHOH), 4.71 (broad, 1H, 42-CHO), 4.78 (broad s, 1H, OH); High Res. MS (neg. ion FAB): Calcd for C₅9H₉2N₂O₁₆ 1084.6446, measured mass 1084.6503.

Anal. Calcd for C59H92N2O16: C, 65.29; H, 8.54; N, 2.58 Found: C, 65.25; H, 8.52; N, 2.42

25

The following representative compounds can be prepared from rapamycin and the appropriate terminally-N-substituted amino acid by employing the method used to prepare the title compound in Example 4.

Rapamycin-42-ester with N-[(ethoxy)carbonyl]-tyrosine
 Rapamycin-42-ester with N-[(fluorenylmethoxy)carbonyl]-phenylalanine
 Rapamycin-42-ester with N-[(3',4',5'-trihydroxyphenoxy)carbonyl]-isoleucine
 Rapamycin-42-ester with N-[(1,1-dimethylethoxy)carbonyl)-glutamine
 Rapamycin-42-ester with N-[(phenoxy)carbonyl]-N-methylalanine
 Rapamycin-42-ester with N-[(propyloxy)carbonyl]-4-aminobutryic acid
 Rapamycin-42-ester with N-[(phenylmethoxy)carbonyl]-7-aminoheptanoic acid

Rapamycin-31,42-diester with N-[(fluorenylmethoxy)carbonyl]serine

Example 5

5 Rapamycin-31,42-diester with 5-(1,1-dimethylethoxy)-2-[[(1,1-dimethylethoxy)-carbonyllaminol-5-oxopentanoic acid

Under anhydrous conditions, an ice cold solution of rapamycin (4 g, 4.37 mmole) and L-glutamic acid Nα-Boc-γ-tert-butylester (4.9 g, 16.1 mmole) in 40 mL of dry dichloromethane was treated with dicyclohexylcarbodiimide (1.8 g, 8.7 mmole) followed by 4-dimethylaminopyridine (1 g, 8.7 mmole). After stirring overnight at room temperature, the precipitated solid was collected and washed with dichloromethane. The combined filtrates were concentrated *in vacuo* to provide 11 g of an amorphous amber solid. The crude product was purified by flash chromatography (on silica Merck 60, gradient elution with hexane-ethylacetate from 2:1 to 1:1, v/v) to yield 4.52 g (69.6%) of the title compound along with the 42-monoester of Example 6. HPLC analysis showed that the diester consists of a 6.6:1 mixture of two conformers.

¹H NMR (CDCl₃, 400 MHz): δ 1.42 (m, 36 H, COOBu^t), 1.646 (s, 3H, CH₃C=C), 1.701 (s, 3H, CH₃C=C), 3.13 (s, 3H, CH₃O), 3.34 (s, 3H, CH₃O), 3.36 (s, 3H, CH₃O), 4.735 (m, 2H, OH+42-CH-O); High Res. MS (neg. ion FAB): calc. for C₇9H₁₂5N₃O₂₃ 1483.8715, measured mass 1483.8714.

Anal. Calcd for C₇₉H₁₂₅N₃O₂₃: C, 63.90; H, 8.49; N, 2.83 Found: C, 63.63; H, 8.41; N, 2.44

25

20

10

15

The following representative compounds can be prepared from rapamycin and the appropriately terminally-N-substituted amino diacid monoester by employing the method used to prepare the title compound in Example 5.

- Rapamycin-31,42-diester with 6-(phenylmethoxy)-2-[[fluorenylmethoxy)carbonyl]amino]-6-oxohexanoic acid
 Rapamycin-31,42-diester with 6-(4'-methylphenoxy)-3-[[(phenylmethoxy)carbonyl]amino-6-oxohexanoic acid
 Rapamycin-31,42-diester with 6-(ethoxy)-4-[[(phenoxy)carbonyl]amino]-6-oxo-
- 35 hexanoic acid

Rapamycin-31,42-diester with 6-(methoxy)-5-[[(ethoxy)carbonyl]amino]-6-oxo-hexanoic acid

Rapamycin-31,42-diester with 4-(phenoxy)-2-[N-[(1,1-dimethylethoxy)carbonyl]-N-methylamino]-4-oxobutanoic acid

5 Rapamycin-31,42-diester with 4-(phenylmethoxy)-3-[N-[(methoxy)carbonyl]-N-methylamino]-4-oxobutanoic acid

Example 6

10

Rapamycin-42-ester with 5-(1,1-dimethylethoxy)-2-[[(1,1-dimethylethoxy)-carbonyllaminol-5-oxopentanoic acid

The title compound (1.14 g, 20.6%) was separated from the 31,42-diester as described in Example 5 and isolated as the quarter hydrate/mono-ethyl acetate solvate. HPLC analysis showed that the monoester is a 11.5:1 mixture of two conformers.

¹H NMR (CDCl₃, 400 MHz): δ 1.425 (m, 18H, COOBu^t), 1.643 (s, 3H, CH₃C=C), 1.737 (s, 3H, CH₃C=C), 3.13 (s, 3H, CH₃O), 3.32 (s, 3H, CH₃O), 3.36 (s, 3H, CH₃O), 4.17 (d, 1H, CHOH), 4.71 (M, 1H, 42-CHO), 4.785 (s, 1H, OH); High Resolution MS (neg. ion FAB): Calc. for $C_{65}H_{102}N_2O_{18}$ 1198.7127, measured mass 1198.7077.

Anal. Calcd for C65H102N2O18 · CH3COOEt · 0.25 H2O:

25

30

20

C, 64.13, H, 8.60; N, 2.17

Found:

C, 64.18; H, 8.52: N, 2.01

The following representative compounds can be prepared from rapamycin and the appropriately terminally-N-substituted amino diacid monoester by employing the method used to prepare the title compound in Example 6.

Raparnycin-42-ester with 6-(phenylmethoxy)-2-[[fluorenylmethoxy)carbonyl]-amino]-6-oxohexanoic acid

Rapamycin-42-ester with 6-(4'-methylphenoxy)-3-[[(phenylmethoxy)carbonyl]-amino-6-oxohexanoic acid

- 17 -

Rapamycin-42-iester with 6-(ethoxy)-4-[[(phenoxy)carbonyl]amino]-6-oxo- hexanoic acid

Rapamycin-42-ester with 6-(methoxy)-5-[[(ethoxy)carbonyl]amino]-6-oxo- hexanoic acid

Rapamycin-42-ester with 4-(phenoxy)-2-[N-[(1,1-dimethylethoxy)carbonyl]-N-methylamino]-4-oxobutanoic acid
Rapamycin-42-ester with 4-(phenylmethoxy)-3-[N-[(methoxy)carbonyl]-N-methylamino]-4-oxobutanoic acid

10 Example 7

30

Rapamycin-31.42-diester with 2-[[(1.1-dimethylethoxy)carbonyl]amino]-4-oxo-4-(phenylmethoxy) butanoic acid

Under anhydrous conditions, 295mg (1.21mmol) of 2,4,6 trichlorobenzoyl chloride was added to a solution of 391mg(1.21mmol) of Nα-Boc-L-aspartic acid-β-benzyl ester and 170μL (1.21mmol) of Et₃N in 1 mL of THF at room temperature. After stirring for 30 minutes, 500 mg (0.55mmol) of rapamycin and 295 mg (2.42 mmol) of dimethylaminopyridine was added and the reaction was left to stir overnight.

The reaction mixture was then filtered and the filtrate concentrated *in vacuo*. Pure product (200 mg, 25%) was obtained by preparative HPLC (5 cm column, 40 % ethyl acetate-hexane). The product was isolated as the heptahydrate.

¹H NMR (CDCl₃, 400 MHz) δ 7.347 (s, 10 H, Ar), 6.223, 5.126 (s, 4 H, CH₂Ph), 4.698 (m, 1 H, CH-CO₂), 4.587 (m, 2 H, NH), 3.353 (s, 3 H, CH₃O), 3.301 (s, 3 H, CH₃O), 2.775 (m, 4 H, CH₂CO₂); IR (KBr) 3420 (OH), 2935 (CH), 2920 (CH), 1730 (C=O), 1650, 1500, 1455, 1370, 1170 cm⁻¹; MS (neg. ion FAB) 1523 (M⁻), 1433, 297, 248, 205, 148, 44, 25 (100).

Anal. Calcd for C₈₃H₁₁₇N₃O₂₃·7H₂O C, 60.40; H, 7.09; N, 2.54 Found: C, 60.54; H, 7.28; N, 2.56

Example 8

Rapamycin-31,42-diester with 3-[[(1,1-dimethylethoxy)carbonyl]amino]-4-oxo-4-(phenylmethoxy) butanoic acid

5

10

15

20

25

30

35

Under anhydrous conditions, 532 mg (2.18 mmol) of 2,4,6 trichlorobenzoyl chloride in 1 mL THF was added to a solution of 704 mg (2.18 mmol) of Nα-Boc-Laspartic acid-α-benzyl ester and 303 μL (2.18 mmol) of Et₃N in 5 mL of THF at room temperature. After stirring for 20 minutes, the reaction mixture was filtered over sintered glass, and the precipitate was washed with THF. The filtrate was concentrated in vacuo to give a thick oil. The oil was dissolved in 5 mL of benzene and 1.00 g (1.09 mmol) of rapamycin and 532 mg (4.36 mmol) of dimethylaminopyridine in 1 mL of benzene was added dropwise. The reaction was stirred for 2 hr, poured into ethyl acetate, and washed consecutively with 0.5 N HCl and brine. The solution was dried over sodium sulfate, decanted, concentrated in vacuo to give a white foamy solid, which was purified via flash chromatography on a 60 mm x 100 mm silica column (20-40 % ethyl acetate/hexane as eluant) to give 532 mg (33 %) of the title compound which was isolated as the hydrate.

¹H NMR (CDCl₃, 400 MHz) δ 7.362 (s, 10 H, Ar), 5.193 (s, 4 H, CH₂Ph), 4.596 (m, 1 H, CH-CO₂), 4.586 (m, 2 H, NH), 3.336 (s, 3 H, CH₃O), 3.306 (s, 3 H, CH₃O), 3.145 (s, 3 H, CH₃O); IR (KBr) 3410 (OH), 2950 (CH), 2920 (CH), 1735 (C=O), 1710 (C=O), 1640, 1490, 1445, 1350, 1150 cm ⁻¹; MS (neg. ion FAB) 1524 (M⁻), 1434, 297, 248, 232, 214, 205, 167, 148, 42 (100), 26.

Anal. Calcd for $C_{83}H_{117}N_3O_{23} \cdot H_2O$: C, 65.38; H, 7.73; N, 2.76 Found: C, 64.85; H, 7.67; N, 2.56

Example 9

Rapamycin-42-ester with 3-[[(1,1-dimethylethoxy)carbonyl]amino]-4-oxo-4-(phenylmethoxy) butanoic acid

The title compound (374 mg, 23%) was prepared by the method described in the previous Example and separated from the compound described in the previous Example by flash chromatography (20-40% ethyl acetate/hexane as the eluant) and isolated as the sesquihydrate.

¹H NMR (CDCl₃, 400 MHz) δ 7.356 (s, 5 H, Ar), 5.185 (s, 2 H, CH_2 Ph), 4.635 (m, 1 H, CH_2 CO₂), 4.582 (m, 1 H, NH), 3.330 (s, 6 H, CH_3 O), 3.135 (s, 3 H, CH_3 O); IR (KBr) 3410 (OH), 2950 (CH), 2920 (CH), 1735 (C=O), 1710 (C=O), 1640, 1490, 1445, 1350, 1150 cm ⁻¹; MS (neg. ion FAB) 1218 (M⁻), 1127, 590, 168, 42, 25, 17 (100).

Anal. Calcd for C₆₇H₉₈N₂O₁₈ · 1.5 H₂O: C, 63.64; H, 8.21; N, 2.22 Found: C, 63.64; H, 7.51; N, 2.13

Example 10

10

15

20

5

Rapamycin-42-ester with 5-(1,1-dimethyloxy)-4-[[(1,1-dimethylethoxy)carbonyl] aminol-5-oxopentanoic acid

Under anhydrous conditions, an ice cold solution of rapamycin (4 g, 4.37 mmole) and L-glutamic acid Nα-Boc-α-tert-butylester (4.9 g, 16.1 mmole) in 40 mL of anhydrous dichloromethane was treated with dicyclohexylcarbodiimide (1.8 g, 8.7 mmole) followed by 4-dimethylamino pyridine (1 g, 8.7 mmole). After stirring overnight at ambient temperature, the precipitated solid was collected and washed with dichloromethane. The combined filtrates were concentrated *in vacuo* to give 9 g of an amorphous amber solid. The crude product was purified by flash chromatography (on silica Merck 60, gradient elution with hexane-ethylacetate from 2:1 to 3:2, v/v) to provide 1.35 g (25.7%) of the title compound along with the 31,42-diester of Example 11. HPLC analysis showed that the monoester is a 7.5:1 mixture of two conformers.

25

30

¹H NMR (CDCl₃, 400 MHz): δ 1.43 (s, 9H, COOBu^t) and 1.46 (s, 9H, COOBu^t), 1.65 (s, 3H, CH₃C=C), 1.75 (s, 3H, CH₃C=C), 3.14 (s, 3H, CH₃O), 3.34 (s, 3H, CH₃O), 3.38 (s, 3H, CH₃O), 4.18 (d, 1H, CH-OH), 4.65 (m, 1H, 42-CHO), 4.80 (s, 1H, OH);

High Res. MS (neg. ion FAB): Calc. for $C_{65}H_{102}N_2O_{18}$: 1198.7126, measured mass 1198.7135.

Anal. Calcd for C₆₅H₁₀₂N₂O₁₈: C, 65.09; H, 8.57; N, 2.34 Found C, 65.04; H, 8.33; N, 2.64

Example 11

Rapamycin-31,42-diester with 5-(1,1-dimethylethoxy)-4-[[(1,1-dimethylethoxy)-carbonyll-aminol-5-oxopentanoic acid

5

The title compound was prepared (0.83 g, 12.8%) along with the 42-monoester as described in Example 10. HPLC analysis showed that the diester is a 7.7:1 mixture of two conformers.

10

15

¹H NMR (CDCl₃, 400 MHz): δ 1.43 (s, 18H, COOBu^t), 1.46 (s, 18H, COOBu^t), 1.659 (s, 3H, CH₃C=C), 1.759 (s, 3H, CH₃C=C), 3.14 (s, 3H, CH₃O), 3.34 (s, 3H, CH₃O), 3.38 (s, 3H, CH₃O), 4.66 (m, 1H, 42-CHO), 4.72 (s, 1H, OH); High Res. MS (neg. ion FAB): Calcd for C₇9H₁₂5N₃O₂3: 1483.8704, measured mass 1483.8636.

Anal. Calcd for C79H125N3O23: C, 63.90; H, 8.49; N, 2.83 Found: C, 63.68; H, 8.60; N, 3.20

20

Example 12

Rapamycin-42-ester with No. NE-bis[(1,1-dimethylethoxy)carbonyl]-L-lysine

Under anhydrous conditions, a solution of rapamycin (3 g, 3.28 mmole) and Nα, Nε-bis-Boc-L-lysine (4.5 g, 13 mmole) in 40 mL of anhydrous dichloromethane was treated with dicyclohexylcarbodiimide (1.35 g, 6.56 mmole) followed by 4-dimethylaminopyridine (0.8 g, 6.56 m mole). After stirring overnight at ambient temperature, the precipitated solid was collected and washed with dichloromethane. The combined filtrates were concentrated *in vacuo* to give an amorphous amber solid. Flash chromatography of the crude product (on silica Merck 60, elution with hexane-ethylacetate 1:1 v/v) gave partially purified title compound. Pure product (0.8 g, 19.6%) was obtained by preparative HPLC (Waters Prep 500, silica gel, hexane-ethylacetate 3:2 v/v, flow rate 250 mL/min). HPLC analysis showed that the monoester is a 9:1 mixture of two conformers.

¹H NMR (CDCl₃, 400 MHz): δ 1.438 (m, 9H, COOBu^t), 1.455 (s, 9H, COOBut), 1.652 (s, 3H, CH₃C=C), 1.752 (s, 3H, CH₃C=C), 3.14 (s, 3H, CH₃O), 3.33(s, 3H, CH₃O), 3.37 (s, 3H, CH₃O), 4.18 (d, 1H, CHOH), 4.72 (m, 1H, 42-CHO), 4.79 (s, 1H, OH); High Res. MS (neg. ion FAB): Calcd for C₆₇H₁₀₇N₃O₁₈: 1241.7549, measured mass 1241.7604.

Anal. Calcd for C₆₇H₁₀₇N₃O₁₈: C, 64.76; H, 8.68; N, 3.38

Found:

C, 64.58; H, 9.01; N, 3.10

Example 13 10

Rapamycin-31,42-diester with NQ, NE-bis[(1,1-dimethylethoxy)carbonyl]-L-lysine

Under a nitrogen atmosphere, a solution of N^{α} , N^{ϵ} bis-Boc-L-lysine (1.038 g, 15 3 mmole) and triethylamine (0.42 mL, 3 mmmole) in 10 mL of anhydrous THF was treated in one portion with 2,4,6-trichlorobenzoyl chloride (0.73 g, 3 mmole). After stirring for 20 minutes at ambient temperature, the precipitated solid was collected and the filtrate was concentrated in vacuo. The resulting mixed anhydride was dissolved in 5 mL of benzene and added to a stirred solution of rapamycin (1 g, 1.09 mmole) 20 containing 4-dimethylamino pyridine (0.59 g, 4.8 mmole) in 10 mL of benzene. After stirring at ambient temperature overnight, the precipitated solid was collected and the filtrate was evaporated to dryness (yellow foam). The crude product was purified by flash chromatography (on silica Merck 60, elution with hexane-ethylacetate 1:1) to provide title compound (1.15 g, 67%). HPLC analysis shows that the diester is a 9:1 25 mixture of two conformers. ¹H NMR (CDCl₃, 400 MHz): δ 1.426 (m, 9H, COOBu^t), 1.438 (s, 9H, COOBu^t), 1.443 (s, 9H, COOBut), 1.446 (s, 9H, COOBut), 3.141 (s, 3H, CH₃O), 3.36 (s, 3H, CH₃O), 3.378 (s, 3H, CH₃O), 4.68-4.76 (m, 2H, OH and 42-CHO); High res. MS (neg. ion FAB): Calcd. for C83H135N5O23 1569.9526, measured mass 1569.9537.

30 Anal. Calcd. for C83H135N5O23: C, 63.46; H, 8.66; N, 4.46 C, 63.06; H, 8.84; N, 4.09 Found:

10

15

20

Example 14.

Rapamycin-14,31,42-tris(monobenzylsuccinate)

To a solution of 5.0 g (5.47 mmol) of rapamycin, 3.41 g (16.41 mmol) of monobenzylsuccinate, and 3.15 g (16.41 mmol) of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in 20 mL of dry dichloromethane was added 200 mg of 4-dimethylaminopyridine. The solution was stirred at room temperature for 3 days. The reaction mixture was poured into 2 N HCl and extracted three times with ethyl acetate. The organic layers were combined, washed with brine, dried over anhydrous sodium sulfate, decanted, and concentrated in vacuo to give a light yellow foam. Flash chromatography on a 60 mm x 150 mm silica gel column eluting with 20 % ethyl acetate/hexane to 75 % ethyl acetate/hexane gave three fractions. Fraction #1, upon concentration, gave 330 mg (4.1 %) of pure rapamycin-14,31,42-tris-(monobenzylsuccinate).

¹H NMR (CDCl₃, 400 MHz) δ 7.353 (bs, 15 H, arom), 5.168 (d, J = 2.0 Hz, 1 H, CH-O₂C), 5.148 (m, 6 H, CH₂Ph), 4.672 (m, 1 H, CO₂CH-CHOMe), 3.355 (s, 3 H, CH₃O-), 3.337 (s, 3 H, CH₃O-), 3.327 (s, 3 H, CH₃O-), 2.697 (m, 12 H, O₂CCH₂CH₂CO₂CH₂Ph), 1.745 (s, 3 H, CH₃C=C), 1.655 (s, 3 H, CH₃C=C);

IR (KBr) 3450 (OH), 2950 (CH), 1745 (C=O), 1650, 1460, 1385, 1360, 1160, 1105, 995 cm⁻¹.

Analysis Calcd for C₈₄H₁₀₉NO₂₁ · 3 H₂0 C 66.27; H 7.56; N 0.92 Found C 65.96; H 7.24; N 1.00

The following representative compounds can be prepared from rapamycin and the appropriate half acid-ester by employing the method used to prepare the title compound in Example 14.

Rapamycin-14,31,42-tris (monomethylsuccinate)
Rapamycin-14,31,42-tris (monophenyl-3',3'-dimethylglutarate)
Rapamycin-14,31,42-tris (mono t-butyl-3'-methylglutarate)
Rapamycin-14,31,42-tris (monobenzylthiodiglycolate)
Rapamycin-14,31,42-tris (monopropylphthalate)
Rapamycin-14,31,42-tris (monoethyl-2',6'-pyridinedicarboxylate)

Example 15.

Rapamycin-31,42-bis(monobenzylsuccinate)

Fraction # 2, obtained from the procedure employed in Example 14, gave 1.25 g (17.7 %) of pure rapamycin-31,42-bis(monobenzylsuccinate) upon concentration.

¹H NMR (CDCl₃, 400 MHz) δ 7.351 (bs, 10 H, arom), 5.168 (d, J = 2.0 Hz, 1 H, CH-O₂C), 5.125 (m, 4 H, CH₂Ph), 4.680 (m, 1 H, CO₂CH-CHOMe), 3.356 (s, 3 H, CH₃O-), 3.329 (s, 3 H, CH₃O-), 3.146 (s, 3 H, CH₃O-), 2.639 (m, 8 H, O₂CCH₂CH₂CO₂CH₂Ph), 1.748 (s, 3 H, CH₃C=C), 1.654 (s, 3 H, CH₃C=C); IR (KBr) 3450 (OH), 2940 (CH), 1740 (C=O), 1650, 1455, 1380, 1355, 1160, 1105, 995 cm⁻¹; MS (neg. ion FAB) 1294 (M-), 1202, 1103, 1012, 590, 511, 475, 297, 207, 167, 148, 99 (100); High Res. MS (neg. ion FAB) Calcd for C₇₃H₉₉NO₁₉ 1293.68108, found 1293.6811.

Analysis Calcd for C₇₃H₉₉NO₁₉ · H₂0 C 66.82; H 7.70; N 1.07 Found C 67.17; H 7.67; N 1.23

The following representative compounds can be prepared from rapamycin and the appropriate half acid-ester by employing the method used to prepare the title compound in Example 15.

Rapamycin-31,42-bis (monomethylsuccinate)
Rapamycin-31,42-bis (monophenyl-3',3'-dimethylglutarate)
Rapamycin-31,42-bis (mono t-butyl-3'-methylglutarate)
Rapamycin-31,42-bis (monobenzylthiodiglycolate)
Rapamycin-31,42-bis (monopropylphthalate)
Rapamycin-31,42-bis (monoethyl-2',6'-pyridinedicarboxylate)

Example 16.

35

Rapamycin-42-(monobenzylsuccinate)

Fraction # 3, obtained from the procedure employed in Example 14, gave 930 mg (15.4 %) of pure rapamycin-42-monobenzylsuccinate upon concentration.

¹H NMR (CDCl₃, 400 MHz) δ 7.355 (bs, 5 H, arom), 5.141 (m, 2 H, CH_2 Ph), 4.680 (m, 1 H, CO₂CH-CHOMe), 3.364 (s, 3 H, CH_3 O-), 3.333 (s, 3 H, CH_3 O-), 3.141 (s, 3 H, CH_3 O-), 2.698 (m, 4 H, O₂CCH₂CH₂CO₂CH₂Ph), 1.751 (s, 3 H, CH_3 C=C), 1.655 (s, 3 H, CH_3 C=C); IR (KBr) 3450 (OH), 2940 (CH), 1740 (C=O), 1645, 1455, 1380, 1165, 1105, 990 cm⁻¹; MS (neg. ion FAB) 1103 (M-), 1045, 1012, 624, 590, 167, 99 (100); High Res. MS (neg. ion FAB) Calcd for C₆₂H₈₉NO₁₆ 1103.6181, found 1103.6048.

Analysis Calcd for $C_{62}H_{89}NO_{16} \cdot H_{20}$ C 66.36; H 8.02; N 1.24 Found C 66.02; H 7.69; N 1.26

10

The following representative compounds can be prepared from rapamycin and the appropriate half acid-ester by employing the method used to prepare the title compound in Example 16.

15 Rapamycin-42-(monomethylsuccinate)
Rapamycin-42-monophenyl-3',3'-dimethylglutarate)
Rapamycin-42-(mono t-butyl-3'-methylglutarate)
Rapamycin-42-(monobenzylthiodiglycolate)
Rapamycin-42-(monohexyldiglycolate)
Rapamycin-42-(monopropylphthalate)
Rapamycin-42-(monoethyl-2',6'-pyridinedicarboxylate)

Example 17.

25

30

35

Rapamycin-31,42-bishemiglutarate

To a solution of 2.0 g (2.2 mmol) of rapamycin in 10 mL of dry dichloromethane was added 1.24 g (10.9 mmol) of glutaric anhydride followed by 881 uL (861 mg, 10.9 mmol) of pyridine. To this was added 200 mg of 4-dimethylaminopyridine and the reaction mixture was allowed to reflux for 8 h. The solution was cooled to room temperature, poured into 2 N HCl, and extracted three times with dichloromethane. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, decanted, and concentrated in vacuo to give a yellow foam. The crude product was purified via reverse phase HPLC on a C₁₈ column eluting starting with 60 % acetonitrile/water. Collected, after, concentration, 586 mg (24 %) of rapamycin-31,42-bishemiglutarate.

10

¹H NMR (CDCl₃, 400 MHz) δ 5.398 (m, 1 H, -CO₂CHCHOMe), 4.683 (m, 1 H, -CO₂CHCHOMe), 3.364 (s, 3 H, CH_3 O-), 3.362 (s, 3 H, CH_3 O-), 3.106 (s, 3 H, CH_3 O-), 2.407 (m, 8 H, -O₂C CH_2 CH₂CH₂CO₂H), 1.960 (m, 4 H, -O₂CCH₂CH₂CH₂CO₂H), 1.770 (s, 3 H, CH_3 C=C), 1.653 (s, 3 H, CH_3 C=C); ¹³C NMR (CDCl₃, MHz) 211.45 (C=O), 206.84 (C=O), 200.44 (C=O), 177.83 (C=O), 177.04 (C=O), 172.43 (C=O), 171.20 (C=O), 165.27 (C=O), 159.08 (C=O); IR (KBr) 3430 (OH), 2940 (CH), 2880 (CH), 1745 (C=O), 1685, 1625, 1580, 1450, 1385, 1330, 1200, 1140, 1100, 990 cm⁻¹; MS (neg. ion FAB) 1140 (M-H), 1122, 1026, 990, 946, 913, 590, 475, 435, 321, 167, 148, 131 (100), 113; High Res. MS (neg. ion FAB) Calcd for C₆₁H₉₀O₁₉N (M-H) 1140.6107, Found 1140.6106. Analysis Calcd for C₆₁H₉₁O₁₉N · H₂O C 63.15; H 8.02; N 1.20

C 63.35;

H 7.88;

N 1.40

The following representative compounds can be prepared from rapamycin and the appropriate anhydride by employing the method used to prepare the title compound in Example 17.

Rapamycin-31,42-bishemi-3'-methylglutarate
Rapamycin-31,42-bishemi-3',3'-dimethylglutarate
20 Rapamycin-31,42-bishemi-3'-oxoglutarate
Rapamycin-31,42-bishemi-3'-thioglutarate
Rapamycin-31,42-bishemi-phthalate
Rapamycin-31,42-bishemi-2',3'-pyridine dicarboxylate

25

Example 18.

Found

Rapamycin-31,42-hemiglutarate bissodium salt

Purified bis-31,42-hemiglutarate of rapamycin (740 mg, 649 umol), prepared as described in Example 17, was dissolved in 5 mL of 95 % ethanol and 107 mg (1.27 mmol) of sodium bicarbonate was added. Water (1 mL) was added to completely dissolve the salt. Once dissolved, the light yellow solution was concentrated in vacuo to give a foamy yellow solid. The foam was dried in a drying pistol for 24 h, refluxing over acetone at reduced pressure to give 520 mg of the bissodium salt.

¹H NMR (d₆-DMSO, 400 MHz) δ 5.235 (m, 1 H, -CHO₂C), 4.498 (m, 1 H, MeOCHCHO₂C-), 3.287 (s, 6 H, 2 CH₃O-), 3.236 (s, 3 H, CH₃O-), 2.245 (m, 8 H, O₂CCH₂CH₂CH₂CO₂-), 1.712 (s, 3 H, CH₃C=C), 1.593 (s, 3 H, CH₃C=C); IR (KBr) 3420 (OH), 2920 (CH), 1725 (C=O), 1675, 1620, 1560, 1450, 1400, 1375, 1230, 1195, 1130, 1090, 980 cm⁻¹; MS (neg. ion FAB) 1112 (M-1, free acid), 994, 589, 475, 297, 167, 148, 117, 99 (100); High Res. MS (neg. ion FAB) Calcd for C₆₁H₈₉O₁₉NNa (M-Na) 1162.5926, Found 1162.5899.

Analysis Calcd for $C_{61}H_{89}O_{19}NNa_2 \cdot H_2O$ C 60.85; H 7.56; N 1.16 Found C 60.67; H 7.36; N 1.58

10

Example 19.

Rapamycin-31,42-bishemiglutarate bistromethamine salt

15

20

30

Purified bis-31,42 hemiglutarate of rapamycin (950 mg, 833 umol), prepared as described in Example 17, was dissolved in 5 mL of 95 % ethanol and 197 mg (1.63 mmol) of tris(hydroxymethyl)methylamine was added. Water (1 mL) was added to completely dissolve the amine. Once dissolved, the yellow solution was concentrated in vacuo to give a foamy yellow solid. The very hygroscopic foam was dried in a drying pistol for 24 h, refluxing over acetone at reduced pressure to give 900 mg (78 %) of the bistromethamine salt.

¹H NMR (d₆-DMSO, 400 MHz) δ 5.253 (m, 1 H, -CHO₂C), 4.523 (m, 1 H, MeOCHCHO₂C-), 3.347 (s, 6 H, 2 CH₃O-), 3.276 (s, 3 H, CH₃O-), 2.289 (m, 8 H, O₂CCH₂CH₂CO₂-), 1.681 (s, 3 H, CH₃C=C), 1.595 (s, 3 H, CH₃C=C);

IR (KBr) 3400 (OH), 2920 (CH), 1730 (C=O), 1620, 1555, 1450, 1400, 1370, 1185, 1060, 980 cm⁻¹; MS (neg. ion FAB) 1140 (M-H, free acid), 1028, 167, 148, 131 (100), 113; High Res. MS (neg. ion FAB) Calcd for $C_{61}H_{90}O_{19}N$ (M-H, free acid)

1140.6107, Found 1140.6069.

Analysis Calcd for $C_{69}H_{103}O_{25}N_3 \cdot 2 H_2O$ C 58.77; H 7.58; N 2.98 Found C 58.47; H 7.94; N 3.58

10

15

20

25

- 27 -

Example 20.

Rapamycin-42-hemi-3'-oxoglutarate

To a solution of 3.0 g (3.3 mmol) of rapamycin in 20 mL of dry dichloromethane was added 1.90 g (16.4 mmol) of diglycolic anhydride followed by 1.32 mL (1.29 g, 16.4 mmol) of pyridine. To this was added 200 mg of 4-dimethylaminopyridine and the reaction mixture was allowed to stir at room temperature for 2 days. The solution was cooled to room temperature, poured into 2 N HCl, and extracted three times with dichloromethane. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, decanted, and concentrated in vacuo to give a yellow foam. The crude product was purified via reverse phase HPLC on a C₁₈ column eluting starting with 60 % acetonitrile/water. After concentration, 870 mg (26 %) of rapamycin-42-hemi-3'-oxoglutarate and 500 mg (13 %) of rapamycin-31,42-bishemi-3'oxoglutarate were isolated.

¹H NMR (CDCl3, 400 MHz) δ 4.768 (m, 1 H, CO₂CH-CHOMe), 4.250 (m, 4 H, O₂CCH₂OCH₂CO₂), 3.356 (s, 3 H, CH₃O-), 3.331 (s, 3 H, CH₃O-), 3.139 (s, 3 H, CH₃O-), 1.759 (s, 3 H, CH₃C=C), 1.653 (s, 3 H, CH₃C=C); IR (KBr) 3420 (OH), 2920 (CH), 2875 (CH), 1740 (C=O), 1720 (C=O), 1640, 1625, 1445, 1370, 1320, 1200, 1135, 1095, 980 cm⁻¹; MS (neg. ion FAB) 1028 (M - H), 327, 167 (100), 148, 133, 115; High Res. MS (neg. ion FAB) Calcd for C₅₅H₈₂O₁₇N (M - H) 1028.5597, Found 1028.5599.

Analysis Calcd for $C_{55}H_{83}O_{17}N \cdot 3 H_2O$ C 60.97; H 8.22; N 1.29 Found C 61.33; H 7.74; N 1.69

The following representative compounds can be prepared from rapamycin and the appropriate half acid-ester by employing the method used to prepare the title compound in Example 20.

30 Rapamycin-42-hemi-3'-methylglutarate
Rapamycin-42-hemi-3',3'-dimethylglutarate
Rapamycin-42-hemi-3'-thioglutarate
Rapamycin-42-hemi-phthalate
Rapamycin-42-hemi-2',3'-pyridine dicarboxylate

10

15

20

35

Example 21.

Rapamycin-31,42-bishemi-3'-oxoglutarate

To a solution of 5.0 g (5.47 mmol) of rapamycin in 20 mL of dry dichloromethane was added 3.17 g (27.3 mmol) of diglycolic anhydride followed by 2.17 mL (2.12 g, 27.3 mmol) of pyridine. To this was added 400 mg of 4-dimethylaminopyridine and the reaction mixture was allowed to stir at reflux for 24 h. The solution was cooled to room temperature, poured into 2 N HCl, and extracted three times with dichloromethane. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, decanted, and concentrated in vacuo to give a yellow foam. The crude product was purified via reverse phase HPLC on a C18 column eluting starting with 60 % acetonitrile/water. After concentration, 1.75 g (28 %) of rapamycin-31,42-bishemi-3'-oxoglutarate was isolated.

¹H NMR (CDCl3, 400 MHz) δ 4.785 (m, 1 H, CO₂CHCHOMe), 4.260 (m, 8 H, O₂CCH₂OCH₂CO₂), 3.360 (s, 3 H, CH₃O-), 3.343 (s, 3 H, CH₃O-), 3.143 (s, 3 H, CH₃O-), 1.775 (s, 3 H, CH₃C=C), 1.656 (s, 3 H, CH₃C=C); ¹³C NMR (CDCl₃, MHz) 211.12 (C=O), 207.73 (C=O), 193.11 (C=O), 171.90 (C=O), 171.59 (C=O), 170.15 (C=O), 169.35 (C=O), 168.83 (C=O), 166.63 (C=O); IR (KBr) 3420 (OH), 2920 (CH), 2850 (CH), 1740 (C=O), 1645, 1625, 1440, 1370, 1190, 11300, 980 cm⁻¹; MS (neg. ion FAB) 1140 (M-H), 1122, 1026, 990, 946, 913, 590, 475, 435, 321, 167, 148, 131 (100), 113; High Res. MS (neg. ion FAB) Calcd for C₅₉H₈₆O₂₁N (M - H) 1144.5701, Found 1144.5702.

Analysis Calcd for C₅₉H₈₇O₂₁N C 61.82; H 7.65; N 1.22 25 Found C 61.59; H 7.36; N 1.84

Example 22.

30 Rapamycin-31.42-bishemi-3'-oxoglutarate disodium salt

Purified bis-31,42 hemi-3'-oxoglutarate of rapamycin (720 mg, 629 umol), prepared by the procedure employed in Example 21, was dissolved in 10 mL of 95 % ethanol and 106 mg (1.26 mmol) of sodium bicarbonate was added. Water (1 mL) was added to completely dissolve the salt. Once dissolved, the light yellow solution was concentrated in vacuo to give a foamy yellow solid. The foam was dried in a drying

pistol for 48 h, refluxing over dichloromethane at reduced pressure to give 435 mg (58 %) of the disodium salt.

¹H NMR (d₆-DMSO, 400 MHz) δ 4.975 (m, 1 H, -CHO₂C), 4.593 (m, 1 H, MeOCHCHO₂C-), 4.135 (s, 2 H, -O₂CCH₂OCH₂CO₂R), 3.617 (s, 2 H, -O₂CCH₂OCH₂CO₂R), 3.299 (s, 6 H, 2 CH₃O-), 3.232 (s, 3 H, CH₃O-), 1.614 (s, 3 H, CH₃C=C), 1.553 (s, 3 H, CH₃C=C); IR (KBr) 3420 (OH), 2920 (CH), 1735 (C=O), 1615, 1445, 1395, 1380, 1320, 1220, 1130, 1090, 980 cm⁻¹; MS (neg. ion FAB) 1188 (M-1), 1166 (M-Na), 1144, 1051, 1028, 590, 459, 167, 155 (100), 148, 133, 115.

Analysis Calcd for C₅₉H₈₅O₂₁NNa₂ · 2H₂O C 57.79; H 7.26; N 1.14 Found C 57.94; H 7.11; N 1.26

Example 23.

15

20

10

Rapamycin-31.42-bishemi-3'-oxoglutarate bistromethamine salt

Purified bis-31,42 hemi-3'-oxoglutarate of rapamycin (1.01 g, 882 umol), prepared by the procedure employed in Example 21, was dissolved in 10 mL of 95 % ethanol and 213 mg (1.76 mmol) of tris(hydroxymethyl)- methylamine was added. Water (1 mL) was added to completely dissolve the amine. Once dissolved, the yellow solution was concentrated in vacuo to give a foamy yellow solid. The very hygroscopic foam was dried in a drying pistol for 48 h, refluxing over dichloromethane at reduced pressure to give 805 mg (66 %) of the bistromethamine salt.

25

30

¹H NMR (d₆-DMSO, 400 MHz) δ 4.955 (m, 1 H, -CHO₂C), 4.600 (m, 1 H, Me O C H C H O ₂C-), 4.149 (s, 2 H, $^{-}$ O₂C C H₂O C H₂C O₂R), 3.770 (s, 2 H, $^{-}$ O₂C C H₂O C H₂C O₂R), 3.407 (s, 6 H, 2 C H₃O-), 3.257 (s, 3 H, C H₃O-), 1.806 (s, 3 H, C H₃C=C), 1.614 (s, 3 H, C H₃C=C); IR (KBr) 3400 (O H), 2920 (C H), 1730 (C=O), 1620, 1550, 1450, 1395, 1370, 1200, 1060, 985 cm⁻¹; MS (neg. ion FAB) 1144 (M-H, free acid), 1028, 167, 148, 133 (100), 115.

Analysis Calcd for $C_{67}H_{109}O_{27}N_3 \cdot H_2O$ C 57.22; H 7.90; N 2.98 Found C 57.26; H 7.90; N 3.15

- 30 -

Example 24.

Rapamycin-31,42-bishemisuccinate.

To a solution of 2.0 g (2.2 mmol) of rapamycin in 10 mL of dry dichloromethane was added 1.19 g (10.9 mmol) of succinic anhydride followed by 881 uL (861 mg, 10.9 mmol) of pyridine. To this was added 200 mg of 4-dimethylaminopyridine and the reaction mixture refluxed for 24 h. The solution was cooled to room temperature, poured into 2 N HCl, and extracted three times with dichloromethane. The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, decanted, and concentrated in vacuo to give a yellow foam. The crude product was purified via reverse phase HPLC on a C₁₈ column gradient eluting starting with 20 % acetonitrile/water to 60 % acetonitrile/water. Collected, after, concentration, 770 mg (31 %) of rapamycin-31,42-bishemisuccinate.

15

20

10

5

The purified bis-31,42 hemisuccinate of rapamycin (770 mg, 686 umol) was dissolved in 10 mL of 95 % ethanol and 166 mg (1.37 mmol) of tris(hydroxymethyl)-methylamine was added. Water (1 mL) was added to completely dissolve the amine. Once dissolved, the yellow solution was concentrated in vacuo to give a foamy yellow solid. The very hygroscopic foam was dried in a drying pistol for 24 h, refluxing over acetone at reduced pressure to give 890 mg (95 %) of the bistromethamine salt. The bistromethane salt was evaluated in the standard pharmacological test procedures.

¹H NMR (d₆-DMSO, 400 MHz) 5.231 (m, 1 H, -CHO₂C), 4.554 (m, 1 H, MeOCHCHO₂C-), 3.426 (s, 6 H, 2 CH₃O-), 3.249 (s, 3 H, CH₃O-), 2.431 (m, 8 H, O₂CCH₂CH₂CO₂-), 1.700 (s, 3 H, CH₃C=C), 1.554 (s, 3 H, CH₃C=C); ¹³C NMR (d₆-DMSO,) 211.28 (C=O), 205.23 (C=O), 199.59 (C=O), 174.86 (C=O), 173.62 (C=O), 171.72 (C=O), 171.50 (C=O), 166.56 (C=O), 166.53 (C=O); IR (KBr) 3420 (OH), 2940 (CH), 1735 (C=O), 1630, 1580, 1460, 1400, 1380, 1170, 1070, 990 cm⁻¹; MS (neg. ion FAB) 1112 (M-1, free acid), 994, 589, 475, 297, 167, 148, 117, 99 (100).

Analysis Calcd for $C_{67}H_{109}O_{25}N_3 \cdot 2 H_2O$ C 57.80; H 8.12; N 3.01 Found C 57.91; H 8.21; N 2.37

- 31 -

CLAIMS

What is claimed is:

5

10

15

20

1. A compound of the structure

OR1
OMe
OMe
OMe
OMe
OMe
OMe

wherein R¹, R², and R³ are each, independently, hydrogen, or R⁴;

-C-4, CO₂R¹²;

 ${\rm R}^5$ is hydrogen, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms,

-(CH₂)_qCO₂R⁸, -(CH₂)_rNR⁹CO₂R¹⁰, carbamylalkyl of 2-3 carbon atoms, aminoalkyl of 1-4 carbon atoms, hydroxyalkyl of 1-4 carbon atoms, guanylalkyl of 2-4 carbon atoms, mercaptoalkyl of 1-4 carbon atoms, alkylthioalkyl of 2-6 carbon atoms, indolylmethyl, hydroxyphenylmethyl, imidazoylmethyl or phenyl which is optionally mono-, di-, or tri-substituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

c

R⁶ and R⁹ are each, independently, hydrogen, alkyl of 1-6 carbon atoms, or aralkyl of 7-10 carbon atoms;

R⁷, R⁸, and R¹⁰ are each, independently, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms, fluorenylmethyl, or phenyl which is optionally mono-, di-, or trisubstituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

R¹¹ and R¹² are each, independently, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms, or phenyl which is optionally mono-, di-, or tri-substituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

$$X \text{ is } \overset{R^{13}}{\underset{R}{\overset{\cdot}{\leftarrow}}}, \text{ O, or S;}$$

15

5

10

R¹³ and R¹⁴ are each, independently, hydrogen or alkyl of 1-6 carbon atoms;

Y is CH or N;

m is 0 - 4;

n is 0 - 4;

20 p is 1 - 2;

q is 0 - 4;

r is 0 - 4;

t is 0-4;

u is 0 - 4;

wherein R^5 , R^6 , m, and n are independent in each of the $[C(CH_2)_mCH(CH_2)_nN]$ | R^5 R^6

subunits when p = 2;

or a pharmaceutically acceptable salt thereof, with the proviso that R^1 , R^2 , and R^3 are not all hydrogen, further provided that R^1 , R^2 , and R^3 are not all

both 0 when X is O or S.

- 2. A compound of claim 1 where R^4 is $-[C(CH_2)_mCH(CH_2)_nN]_pCO_2R^7$, R^5
- 5 m = 0, n = 0, and p = 1 or a pharmaceutically acceptable salt thereof.

m = 0, n = 0, and p = 2 or a pharmaceutically acceptable salt thereof.

n=0, and R^5 is $-(CH_2)_qCO_2R^8$ or a pharmaceutically acceptable salt thereof.

5. A compound of claim 1 where R^4 is $-[C(CH_2)_mCH(CH_2)_nN]_pCO_2R^7$, $R^5 R^6$

m=0, n=0, and R^5 is $-(CH_2)_rNR^9CO_2R^{10}$ or a pharmaceutically acceptable salt thereof.

m = 0, n = 0, and R^5 is hydrogen or a pharmaceutically acceptable salt thereof.

20

- 7. A compound of claim 1 where R^4 is $-C^{-1}(CH_2)_tX(CH_2)_uCO_2R^{11}$ or a pharmaceutically acceptable salt thereof.
- 5 8. A compound of claim 1 which is rapamycin-42-ester with N-[(1,1-dimethylethoxy)carbonyl]-glycylglycine or a pharmaceutically acceptable salt thereof.
 - 9. A compound of claim 1 which is rapamycin-31,42-diester with N-[(1,1-di-methyl-ethoxy)carbonyl]-glycylglycine or a pharmaceutically acceptable salt thereof.
- 10. A compound of claim 1 which is rapamycin-31,42-diester with N-[(1,1-dimethylethoxy)carbonyl]-N-methylglycine or a pharmaceutically acceptable salt thereof.
- 11. A compound of claim 1 which is rapamycin-42-ester with N-[(1,1-dimethylethoxy)carbonyl]-N-methylglycine or a pharmaceutically acceptable salt thereof.
 - 12. A compound of claim 1 which is rapamycin-31,42-diester with 5-(1,1-dimethylethoxy)-2-[[(1,1-dimethylethoxy)carbonyl]amino]-5-oxopentanoic acid or a pharmaceutically acceptable salt thereof.
 - 13. A compound of claim 1 which is rapamycin-42-ester with 5-(1,1-dimethylethoxy)-2-[[(1,1-dimethylethoxy)carbonyl]amino]-5-oxopentanoic acid or a pharmaceutically acceptable salt thereof.
- 25 14. A compound of claim 1 which is rapamycin-31,42-diester with 2-[[(1,1-dimethylethoxy)carbonyl]amino]-4-oxo-4-(phenylmethoxy) butanoic acid or a pharmaceutically acceptable salt thereof.
- 15. A compound of claim 1 which is rapamycin-31,42-diester with 3-30 [[(1,1-dimethylethoxy)carbonyl]amino]-4-oxo-4-(phenylmethoxy) butanoic acid or a pharmaceutically acceptable salt thereof.
- 16. A compound of claim 1 which is rapamycin-42-ester with 3-[[(1,1-dimethylethoxy)carbonyl]amino]-4-oxo-4-(phenylmethoxy) butanoic acid or a 35 pharmaceutically acceptable salt thereof.

- 35 -

17. A compound of claim 1 which is rapamycin-42-ester with 5-(1,1-dimethyloxy)-4-[[(1,1-dimethylethoxy)carbonyl]amino]-5-oxopentanoic acid or a pharmaceutically acceptable salt thereof.

5

15

- 18. A compound of claim 1 which is rapamycin-31,42-diester with 5-(1,1-dimethylethoxy)-4-[[(1,1-dimethylethoxy)carbonyl]amino]-5-oxopentanoic acid or a pharmaceutically acceptable salt thereof.
- 10 19. A compound of claim 1 which is rapamycin-42-ester with N^{α} , N^{ϵ} -bis[(1,1-dimethylethoxy)carbonyl]-L-lysine or a pharmaceutically acceptable salt thereof.
 - 20. A compound of claim 1 which is rapamycin-31,42-diester with N^{α} , N^{ϵ} bis[(1,1-dimethylethoxy)carbonyl]-L-lysine or a pharmaceutically acceptable salt thereof.
 - 21. A compound of claim 1 which is rapamycin-14,31,42-tris(monobenzyl-succinate) or a pharmaceutically acceptable salt thereof.
- 22. A compound of claim 1 which is rapamycin-31,42-bis(monobenzylsuccinate)
 20 or a pharmaceutically acceptable salt thereof.
 - 23. A compound of claim 1 which is rapamycin-42-(monobenzylsuccinate) or a pharmaceutically acceptable salt thereof.
- 25 24. A compound of claim 1 which is rapamycin-31,42-bishemiglutarate or a pharmaceutically acceptable salt thereof.
 - 25. A compound of claim 1 which is rapamycin-31,42-hemiglutarate bissodium salt.

30

- 26. A compound of claim 1 which is rapamycin-31,42-bishemiglutarate bistromethamine salt.
- 27. A compound of claim 1 which is rapamycin-42-hemi-3'-oxoglutarate or a pharmaceutically acceptable salt thereof.

- 36 -

- 28. A compound of claim 1 which is rapamycin-31,42-bishemi-3'-oxoglutarate or a pharmaceutically acceptable salt thereof.
- 29. A compound of claim 1 which is rapamycin-31,42-bishemi-3'-oxoglutarate disodium salt.
 - 30. A compound of claim 1 which is rapamycin-31,42-bishemi-3'-oxoglutarate bistromethamine salt.
- 10 31. A compound of claim 1 which is rapamycin-31,42-bishemisuccinate or a pharmaceutically acceptable salt thereof.
 - 32. A compound of claim 1 which is rapamycin-31,42-bishemisuccinate bistromethane salt.

15

33. A method of treating transplantation rejection, host vs. graft disease, autoimmune diseases, and diseases of inflammation in a mammal by administering an immunosuppressive amount of a compound having the structure

20

wherein R1, R2, and R3 are each, independently, hydrogen, or R4;

PCT/US91/06824

5

10

25

R⁵ is hydrogen, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms,

-(CH₂)_qCO₂R⁸, -(CH₂)_rNR⁹CO₂R¹⁰, carbamylalkyl of 2-3 carbon atoms, aminoalkyl of 1-4 carbon atoms, hydroxyalkyl of 1-4 carbon atoms, guanylalkyl of 2-4 carbon atoms, mercaptoalkyl of 1-4 carbon atoms, alkylthioalkyl of 2-6 carbon atoms, indolylmethyl, hydroxyphenylmethyl, imidazoylmethyl or phenyl which is optionally mono-, di-, or tri-substituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

R⁶ and R⁹ are each, independently, hydrogen, alkyl of 1-6 carbon atoms, or aralkyl of 7-10 carbon atoms;

- 15 R⁷, R⁸, and R¹⁰ are each, independently, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms, fluorenylmethyl, or phenyl which is optionally mono-, di-, or trisubstituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;
- 20 R¹¹ and R¹² are each, independently, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms, or phenyl which is optionally mono-, di-, or tri-substituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

 R^{13} and R^{14} are each, independently, hydrogen or alkyl of 1-6 carbon atoms; Y is CH or N;

30 m is 0 - 4;

p is 1 - 2;

q is 0 - 4;

r is 0 - 4;

5 t is 0-4;

u is 0 - 4;

subunits when p = 2;

or a pharmaceutically acceptable salt thereof, with the proviso that R^1 , R^2 , and R^3 are not all hydrogen, further provided that R^1 , R^2 , and R^3 are not all

10 O $\| -[C(CH_2)_mCH(CH_2)_nN]_pCO_2R^7 \quad \text{, and still further provided that t and u are not}$

both 0 when X is O or S.

34. A method of treating fungal infections which comprises administering an antifungal amount of a compound having the structure

wherein R¹, R², and R³ are each, independently, hydrogen, or R⁴;

- 39 -

5 R⁵ is hydrogen, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms,

-(CH₂)_qCO₂R⁸, -(CH₂)_rNR⁹CO₂R¹⁰, carbamylalkyl of 2-3 carbon atoms, aminoalkyl of 1-4 carbon atoms, hydroxyalkyl of 1-4 carbon atoms, guanylalkyl of 2-4 carbon atoms, mercaptoalkyl of 1-4 carbon atoms, alkylthioalkyl of 2-6 carbon atoms, indolylmethyl, hydroxyphenylmethyl, imidazoylmethyl or phenyl which is optionally mono-, di-, or tri-substituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

R⁶ and R⁹ are each, independently, hydrogen, alkyl of 1-6 carbon atoms, or aralkyl of 7-10 carbon atoms;

R⁷, R⁸, and R¹⁰ are each, independently, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms, fluorenylmethyl, or phenyl which is optionally mono-, di-, or trisubstituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

R¹¹ and R¹² are each, independently, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms, or phenyl which is optionally mono-, di-, or tri-substituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

$$X \text{ is } \begin{array}{c}
R^{13} \\
C-, O, \text{ or S;} \\
R^{14}
\end{array}$$

10

15

20

25

30

R¹³ and R¹⁴ are each, independently, hydrogen or alkyl of 1-6 carbon atoms; Y is CH or N;

m is
$$0-4$$
;
n is $0-4$;
p is $1-2$;
q is $0-4$;
t is $0-4$;
u is $0-4$;
wherein \mathbb{R}^5 , \mathbb{R}^6 , m, and n are independent in each of the $[\mathbb{C}(\mathbb{CH}_2)_m\mathbb{C}\mathbb{H}(\mathbb{CH}_2)_n\mathbb{N}]$

subunits when p = 2;

or a pharmaceutically acceptable salt thereof, with the proviso that R¹, R², and R³ are not all hydrogen, further provided that R¹, R², and R³ are not all

O | |
$$-[C(CH_2)_mCH(CH_2)_nN]_pCO_2R^7 \quad \text{, and still further provided that t and u are not} \\ | \qquad | \qquad \qquad |$$
 $R^5 \qquad R^6$

both 0 when X is O or S.

15

35. A pharmaceutical composition for the use in treating transplantation rejection, host vs. graft disease, autoimmune diseases, and diseases of inflammation in a mammal which comprises, an immunosuppressive amount of a compound having the structure

-41 -

OR²

wherein R¹, R², and R³ are each, independently, hydrogen, or R⁴;

$$-C_{\frac{1}{2}}$$

$$-C_{\frac{1}{2}}$$

$$-C_{\frac{1}{2}}$$

$$-C_{\frac{1}{2}}$$

$$-C_{\frac{1}{2}}$$

5

R⁵ is hydrogen, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms,

-(CH₂)_qCO₂R⁸, -(CH₂)_rNR⁹CO₂R¹⁰, carbamylalkyl of 2-3 carbon atoms, aminoalkyl of 1-4 carbon atoms, hydroxyalkyl of 1-4 carbon atoms, guanylalkyl of 2-4 carbon atoms, mercaptoalkyl of 1-4 carbon atoms, alkylthioalkyl of 2-6 carbon atoms, indolylmethyl, hydroxyphenylmethyl, imidazoylmethyl or phenyl which is optionally mono-, di-, or tri-substituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

R⁶ and R⁹ are each, independently, hydrogen, alkyl of 1-6 carbon atoms, or aralkyl of 7-10 carbon atoms;

R⁷, R⁸, and R¹⁰ are each, independently, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms, fluorenylmethyl, or phenyl which is optionally mono-, di-, or trisubstituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy

ź

of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

R¹¹ and R¹² are each, independently, alkyl of 1-6 carbon atoms, aralkyl of 7-10 carbon atoms, or phenyl which is optionally mono-, di-, or tri-substituted with a substituent selected from alkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, hydroxy, cyano, halo, nitro, carbalkoxy of 2-7 carbon atoms, trifluoromethyl, amino, or a carboxylic acid;

$$X \text{ is } \overset{R^{13}}{\underset{R}{\overset{-} {\stackrel{-} {\stackrel{-} {\sim}}}}{\overset{-} {\stackrel{-} {\stackrel{-} {\stackrel{-} {\sim}}}}}} O, \text{ or } S;$$

10

5

R¹³ and R¹⁴ are each, independently, hydrogen or alkyl of 1-6 carbon atoms;

Y is CH or N;

m is 0 - 4;

n is 0 - 4;

p is 1 - 2; 15

q is 0 - 4;

r is 0 - 4;

t is 0 - 4;

u is 0 - 4;

wherein R⁵, R⁶, m, and n are independent in each of the [C(CH₂)_mCH(CH₂)_nN]

subunits when p = 2; 20

> or a pharmaceutically acceptable salt thereof, with the proviso that R1, R2, and R3 are not all hydrogen, further provided that R1, R2, and R3 are not all

25 both 0 when X is O or S.