1.

Proof. Suppose X is a compact topological space and $f: X \to \mathbb{R}$ is as described. As X is compact we have the open cover $\{U_x\}_{x \in X}$ where for each $U_x \in \{U_x\}_{x \in X}$ we have that there exists a constant M_x such that for all $z \in U_x$ that $|f(z)| \leq M_x$.

Then as X is compact we have that the collection has a finite subcover $\{U_{x_1},...,U_{x_n}\}$. Each of these in the finite subcover has a corresponding constant $\{M_{x_1},...,M_{x_n}\}$ with the property that for all $z \in U_{x_i}$ that $|f(z)| \leq M_{x_i}$ where i=1,...,n. Let $M=\max\{M_{x_1},...,M_{x_n}\}$ then for any $z \in X$ we have that $z \in U_{x_i}$ for some i=1,...,n. Hence $|f(z)| \leq M_{x_i} \leq M$ so this choice of M works for all $z \in X$.

2.

Proof. Suppose that X is a topological space C is a connected subset of X and C_{α} is a connected subset of X. With for all αA that $C_{\alpha} \cap C \neq \emptyset$. Suppose that $C \cup (\cup_{\alpha \in A} C_{\alpha})$ is not connected. Then there exists a separation $U \cup V$ of $C \cup (\cup_{\alpha \in A} C_{\alpha})$.

Then as C is connected we have either $C \subset U$ with $C \cap V = \emptyset$ or $C \subset V$ with $C \cap U = \emptyset$. If C wasn't fully contained in only one then $(C \cap U)$, $(C \cap V)$ would be a separation of C but C is connected. For each $\alpha \in A$ we get that C_{α} is contained in exactly one U or V.

WLOG suppose $C \cup U$ then as $C \cap C_{\alpha} \neq \emptyset$ we get that $C_{\alpha} \subset U$. Hence we get $C \bigcup (\bigcup_{\alpha \in A} C_{\alpha}) \subset U$ and $(C \bigcup (U_{\alpha \in A} C_{\alpha})) \cap V = \emptyset$ hence $V = \emptyset$ so this separation can not exist. So we have $C \bigcup (\bigcup_{\alpha \in A} C_{\alpha})$ is connected.