

C interfaces to GALAHAD SHA

Jari Fowkes and Nick Gould STFC Rutherford Appleton Laboratory Sun Apr 2 2023

GALAHAD C package sec	1
1.1 Introduction	1
1.1.1 Purpose	1
1.1.2 Authors	1
1.1.3 Originally released	1
File Index	3
2.1 File List	3
File Documentation	5
3.1 galahad_sec.h File Reference	5
3.1.1 Data Structure Documentation	5
3.1.1.1 struct sec_control_type	5
3.1.1.2 struct sec_inform_type	6

C interfaces to GALAHAD SHA GALAHAD 4.0

Chapter 1

GALAHAD C package sha

1.1 Introduction

1.1.1 Purpose

Find an approximation to a sparse Hessian using componentwise secant approximation.

Currently, only the control and inform parameters are exposed; these are provided and used by other GALAHAD packages with C interfaces.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

April 2013, C interface January 2022.

GALAHAD 4.0 C interfaces to GALAHAD SHA

Chapter 2

File Index

2 1	Fi	le	li	et
Z . I	ГΙ	ıe	L	31

Here is a list of all files with brief descriptions:	
galahad_sha.h	??

4 File Index

GALAHAD 4.0 C interfaces to GALAHAD SHA

Chapter 3

File Documentation

3.1 galahad_sha.h File Reference

```
#include <stdbool.h>
#include <stdint.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
```

Data Structures

- struct sha_control_type
- struct sha_inform_type

3.1.1 Data Structure Documentation

3.1.1.1 struct sha_control_type

control derived type as a C struct

Data Fields

bool	f_indexing	use C or Fortran sparse matrix indexing
int	error	error and warning diagnostics occur on stream error
int	out	general output occurs on stream out
int	print_level	the level of output required. <= 0 gives no output, = 1 gives a one-line summary for every iteration, = 2 gives a summary of the inner iteration for each iteration, >= 3 gives increasingly verbose (debugging) output
int	approximation_algorithm	which approximation algorithm should be used? • 0 : unsymmetric (alg 2.1 in paper)
		• 1 : symmetric (alg 2.2 in paper)
		• 2 : composite (alg 2.3 in paper)
		• 3 : composite 2 (alg 2.2/3 in paper)

6 File Documentation

Data Fields

int	dense_linear_solver	which dense linear equation solver should be used?	
		• 1 : Gaussian elimination	
		2 : QR factorization	
		3 : singular-value decomposition	
		4 : singular-value decomposition with divide-and-conquer	
int	max_sparse_degree	the maximum sparse degree if the combined version is used	
int	extra_differences	if available use an addition extra_differences differences	
bool	space_critical	if space is critical, ensure allocated arrays are no bigger than needed	
bool	deallocate_error_fatal	exit if any deallocation fails	
char	prefix[31]	all output lines will be prefixed by .prefix(2:LEN(TRIM(.prefix))-1) where .prefix contains the required string enclosed in quotes, e.g. "string" or 'string'	

3.1.1.2 struct sha_inform_type

inform derived type as a C struct

Data Fields

int	status	return status. See SHA_solve for details
int	alloc_status	the status of the last attempted allocation/deallocation
int	max_degree	the maximum degree in the adgacency graph
int	differences_needed	the number of differences that will be needed
int	max_reduced_degree	the maximum reduced degree in the adgacency graph
char	bad_alloc[81]	the name of the array for which an allocation/deallocation error ocurred

GALAHAD 4.0 C interfaces to GALAHAD SHA