D

Definición 6.3.3

Conjunto ortonormal

El conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es un **conjunto ortonormal** en V si

$$\langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0$$
 para $i \neq j$ (6.3.4)

У

$$||\mathbf{v}_i|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = 1 \tag{6.3.5}$$

Si sólo (6.3.4) se cumple, se dice que el conjunto es ortogonal.

Teorema 6.3.1

Cualquier conjunto finito de vectores ortogonales diferentes de cero en un espacio con producto interno es linealmente independiente.

Teorema 6.3.2

Cualquier conjunto finito linealmente independiente en un espacio con producto interno se puede convertir en un conjunto ortonormal mediante el proceso de Gram-Schmidt. En particular, cualquier espacio con producto interno tiene una base ortonormal.

EJEMPLO 6.3.8 Una base ortonormal $\mathbb{P}_2[0,1]$

Construya una base ortonormal para $\mathbb{P}_2[0,1]$.

SOLUCIÓN Se comienza con la base estándar $\{1, x, x^2\}$. Como $\mathbb{P}_2[0, 1]$ es un subespacio de C[0, 1], se puede usar el producto interno del ejemplo 6.3.4. Como $\int_0^1 1^2 dx = 1$, se hace $\mathbf{u}_1 = 1$. Después $\mathbf{v}_2' = \mathbf{v}_2 - \langle \mathbf{v}_2, \mathbf{u}_1 \rangle \mathbf{u}_1$. En este caso, $\langle \mathbf{v}_2, \mathbf{u}_1 \rangle = \int_0^1 (x \cdot 1) dx = \frac{1}{2}$. Así, $\mathbf{v}_2' = x - \frac{1}{2} \cdot 1 = x - \frac{1}{2}$. Luego se calcula

$$\left\| x - \frac{1}{2} \right\| = \left[\int_0^1 \left(x - \frac{1}{2} \right)^2 dx \right]^{\frac{1}{2}} = \left[\int_0^1 \left(x^2 - x + \frac{1}{4} \right)^2 dx \right]^{\frac{1}{2}} = \frac{1}{\sqrt{12}} = \frac{1}{2\sqrt{3}}$$

Entonces $\mathbf{u}_2 = 2\sqrt{3}x - \frac{1}{2} = \sqrt{3}(2x - 1)$. Así

$$\mathbf{v}_3' = \mathbf{v}_3 - \langle \mathbf{v}_3, \mathbf{u}_1 \rangle \mathbf{u}_1 - \langle \mathbf{v}_3, \mathbf{u}_2 \rangle \mathbf{u}_2$$

Se tiene $\langle \mathbf{v}_3, \mathbf{u}_1 \rangle = \int_0^1 x^2 dx = \frac{1}{3} \mathbf{y}$

$$\langle \mathbf{v}_3, \mathbf{u}_2 \rangle = \sqrt{3} \int_0^1 x^2 (2x - 1) dx = \sqrt{3} \int_0^1 (2x^3 - x^2) dx = \frac{\sqrt{3}}{6}$$

Así,

$$\mathbf{v}_3' = x^2 - \frac{1}{3} - \frac{\sqrt{3}}{6} [\sqrt{3}(2x-1)] = x^2 - x + \frac{1}{6}$$

Cálculo