

Read-across the targetome

CHARME

KRANKENHAUS

Binding site comparison

Group meeting

Dominique Sydow 30.04.2019

Intro: Read-across the targetome

Intro: USR method for ligand encoding

Ultrafast shape recognition (USR) - Ballester et al. 2006

Intro: USR method for ligand encoding

Idea: USR method for binding site encoding?

Methods: Binding site dimensionality

Molecule

Representatives

Reference points

Distances

Moments

How many dimensions per data point?

Methods: Binding site dimensionality

Representatives

Molecule

How many dimensions per data point?

descriptors

molecular weight (g/mol) TLC % migration on silication

TLC % migration on silica gel, ethanol/water (70/30)^a

TLC, silica gel, 1-butanol/acetic acid/water (40/10/10)

TLC, silica gel, phenol/water (75/25)

TLC, silica gel, butanone/pyridine/acetic acid/water (70/15/2/15)

TLC, cellulose, ethanol/water (70/30)

TLC, cellulose, pyridine/isoamyl alcohol/water (35/30/30)

TLC, kiselguhr, butanone/water/phenol/acetone/ethanol (1/1)

side chain van der Waals volume (cm³/mol)

NMR α -proton shift at pD = 2 (ppm) NMR α -proton shift at pD = 7 (ppm)

NMR α -proton shift at pD = 12.5 (ppm)

¹⁰log(octanol/water) partition coefficient

energy of highest occupied molecular orbital (eV)

energy of lowest unoccupied molecular orbital (eV)

heat of formation (kcal)

α-polarizability (Å³) absolute electronegativity (eV)

absolute hardness (eV)

total accessible molecular surface area (log Å2)

polar accessible molecular surface area (log Å²)

nonpolar accessible molecular surface area (log Ų)

number of hydrogen bond donors

number of hydrogen bond acceptors

indicator of positive charge in side chain

indicator of negative charge in side chain

		Z ₁	z_2	Z_3	Z ₄	Z 5
\	alanine	0.24	-2.32	0.60	-0.14	1.30
	arginine	3.52	2.50	-3.50	1.99	-0.17
	asparagine	3.05	1.62	1.04	-1.15	1.61
	aspartic acid	3.98	0.93	1.93	-2.46	0.75
	cysteine	0.84	-1.67	3.71	0.18	-2.65
S	glutamine	1.75	0.50	-1.44	-1.34	0.66
<u>@</u>	glutamic acid	3.11	0.26	-0.11	-3.04	-0.25
	glycine	2.05	-4.06	0.36	-0.82	-0.38
Ca	histidine	2.47	1.95	0.26	3.90	0.09
	isoleucine	-3.89	-1.73	-1.71	-0.84	0.26
	leucine	-4.28	-1.30	-1.49	-0.72	0.84
ဟု	lysine	2.29	0.89	-2.49	1.49	0.31
N	methionine	-2.85	-0.22	0.47	1.94	-0.98
	phenylalanine	-4.22	1.94	1.06	0.54	-0.62
	proline	-1.66	0.27	1.84	0.70	2.00
	serine	2.39	-1.07	1.15	-1.39	0.67
	threonine	0.75	-2.18	-1.12	-1.46	-0.40
	tryptophan	-4.36	3.94	0.59	3.44	-1.59
	tyrosine	-2.54	2.44	0.43	0.04	-1.47
	valine	-2.59	-2.64	-1.54	-0.85	-0.02

- z₁ Lipophilicity
- z₂ Steric bulk/ polarisability
- z₃ Polarity

Methods: Binding site dimensionality

Molecule

Representatives

6 dimensions per atom

X₁ X₂ X₃ Z₁ Z₂ Z₃

Spatial property

Physicochemical property

How many dimensions per data point?

Methods: Number of reference points?

Molecule

Representatives

Reference points

Distances

Moments

Number of reference points?

Methods: Number of reference points?

Reference points

Number of reference points?

Methods: Binding site fingerprints

Molecule

Representatives

Reference points

Distances

Moments

Binding site fingerprint

Methods: Binding site fingerprints

Methods: Binding site fingerprints

Outlook: Calculate cross product in 6 dimensions?

Methods: Binding site similarity measure

 $\vec{M}^{q} = (4.44, 2.98, 1.04, 4.55, 4.70, 0.23, 8.30, 16.69, -22.97, 7.37, 15.64, 0.51)$

$$S_{qi} = \frac{1}{1 + \frac{1}{12} \sum_{l=1}^{12} \left| M_l^q - M_I^t \right|} \in (0,1]$$

$$S_{qi} = 0.812$$

 $\vec{M} = (4.39, 3.11, 1.36, 4.50, 4.44, 0.09, 8.34, 16.78, -23.20, 7.15, 16.52, 0.13)$

Similarity measure

Inverse of the translated and scaled **Manhattan distance**

Methods: Binding site similarity measure

Inverse of the translated and scaled

Manhattan distance

769 pairs of non-redundant similar binding sites

769 pairs of non-redundant dissimilar binding sites

Data set generation

- Cluster scPDB by UniProt name (911 clusters and 1204 singletons)
- All-against-all comparison of all active sites within each cluster (SiteAlign)
- 3. Define *cutoff* for similarity measure discriminating between similar/dissimilar binding sites
- 4. Choose pairs
 - Similar pairs: select randomly two entries per cluster (considering cutoff)
 - Dissimilar pairs: select two entries from clusters differering at the first level of their EC numbers

VS.

Ca atoms

Pseudocenter atoms

Pseudocenter atoms

Evaluation: Moment distribution in 6D

Outlook

- Set reference points based on 6 dimensions
 - Cross product in 6 dimensions
- Instead of Z-scales (per residue) use
 - AutoDock partial charges (per atom) and/or
 - Flexibility information via normal mode analysis (per atom)
- Introduce subpockets/regions
 - Calculate fingerprints for overlapping regions
 - All-against-all fingerprint comparison between binding site regions
 - Find maximal neighboring matches
- Use more information from distance histograms than moments for fingerprint
- Apply method to benchmarking datasets other than FuzCav dataset
 - TOUGH-M1 dataset (Govindaraj et al. 2018)
 - ProSPECCTs datasets (Ehrt et al. 2018)

Code review sessions?

Questions I have...

- How to initialize global variables at start of full program and how to pass them to all associated scripts?
- How to store complex data structures?
 - Dict of dict of Pandas DataFrames
 - O Database?
- How to note functions that are only called within other functions (but will not be called by themselves)?
- What is the advantage of Docker over conda and when is what good to use?
- ...

The end.

scPDB

Benchmarking dataset: TOUGH-M1

Benchmarking datasets: ProSPECCTs

goal	number of comparisons (similar or active / dissimilar or inactive pairs)	resolution (mean ± stddev, minimum, maximum) [Å]	R _{work} (mean ± stddev, minimum, maximum)	average overall G-factor (mean ± stddev, minimum, maximum)
structures with identical sequences (data set 1)				
sensitivity with respect to the binding site definition, score range for active and inactive pairs	13,430 / 92,846 (12 groups of structures with identical sequences)	1.79 ± 0.37, 0.8, 2.71	0.174 ± 0.027, 0.091, 0.264	0.023 ± 0.23, -1.27, 0.6
structures with identical sequences and similar lig	ands (data set 1.2)			
impact of ligand diversity on binding site comparison	241 / 1,784	1.73 ± 0.37, 0.92, 2.5	0.171 ± 0.025, 0.104, 0.232	0.019 ± 0.22, -0.57, 0.6
NMR structures (data set 2)				
sensitivity with respect to the binding site flexibility	7,729 / 100,512 (17 structural ensembles of diverse proteins)	n.d.	n.d.	-0.279 ± 0.705, -2.8, 0.21
decoy set 1 (data set 3)				
differentiation between binding sites with different physic ochemical properties	13,430 / 67,150 (complete data set) 13,430 / 13,430 (data set with five residue variants)	n.d.	n.d.	n.d.
decoy set 2 (data set 4)			r e	
differentiation between binding sites with different physicochemical and shape properties	13,430 / 67,150 (complete data set) 13,430 / 13,430 (data set with five residue variants)	n.d.	n.d.	n.d.
Kahraman data set[63] without phosphate binding	g sites (data set 5)			
classification of proteins binding to identical ligands and cofactors	920 / 5,480	2.02 ± 0.37, 0.88, 2.9	0.202 ± 0.033, 0.089, 0.265	0.166 ± 0.228, -0.56, 0.47
Kahraman data set[63] (data set 5.2)				
original data set	1,320 / 8,680	2.02 ± 0.4, 0.88, 2.9	0.201 ± 0.031, 0.089, 0.265	0.162 ± 0.218, -0.56, 0.47
Barelier data set[64] (data set 6) including cofacto	rs (data set 6.2)			
dentification of distant relationships between protein binding sites with identical ligands which "observe" a similar environment	19 / 43	2.16 ± 0.44, 0.93, 3.1	0.196 ± 0.027, 0.104, 0.25	0.117 ± 0.23, -1.46, 0.53
data set of successful applications (data set 7)				<i>III</i>
recovery of known binding site similarities within a set of diverse proteins	115 / 56,284 (49 query structures)	1.98 ± 0.43, 0.8, 3.25	0.191 ± 0.029, 0.101, 0.284	0.13 ± 0.208, -2.8, 1.35

https://doi.org/10.1371/journal.pcbi.1006483.t002

Binding site encoding: representatives

Point number

- Cg atoms
- Pseudocenters

Point dimensions *n*

- Spatial information
 - \circ $x_1, x_2, \text{ and } x_3$
- Physicochemical information
 - Z-scales z₁, z₂, and z₃
 (lipophilicity, steric bulk/polarisability, and polarity)
 - Physicochemical atom subsets (based on pseudocenters: aliphatic, donor, acceptor, aromatic, or donor/acceptor)

Pseudocenters

Side-chain	Amino acid	Pseudocenter (type)	Origin atoms
H ₃ € ×	Ala	Aliphatic	СВ
H ₂ N N	Arg	Aliphatic Donor Donor Donor	CB, CG, CD NE NH1 NH2
† †		Acceptor	OD1
H ₂ N \	Asn	Donor	ND2
†	Asp	Acceptor	OD1
rio X		Acceptor	OD2
(R,H)S ** a	Cys	Aliphatic	CB, SG
H ₂ N	Gln	Acceptor Donor	OE1 NE2
	Glu	Acceptor Acceptor	OE1 OE2
	His	PI DON_ACC DON_ACC	CG, ND1, CD2, CE1, NE2 NE1 NE2

Schmitt et al. 2002 (Cavbase)

Data set: Residue composition (scPDB)

Overall - how often are standard amino acids and other residues?

Mod. aa in scPDB & z-scales	# in scPDB
NLE	6
ISE	1
ORN	8

Data set: Residue composition (scPDB)

Per binding site - are standard amino acids somewhat equally distributed?

Moments

Moment number	Name	Measure of	Formula
1	Mean	Central tendency	$\bar{X} = \frac{\sum_{i=1}^{N} X_i}{N}$
2	Variance (Volatility)	Dispersion	$\sigma^2 = \frac{\sum_{i=1}^N (X_i - \bar{X})^2}{N}$
3	Skewness	Symmetry (Positive or Negative)	$Skew = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{(X_i - \bar{X})}{\sigma} \right]^3$
4	Kurtosis	Shape (Tall or flat)	$Kurt = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{(X_i - \bar{X})}{\sigma} \right]^4$

Where X is a random variable having N observations (i = 1,2,...,N).

Binding site "fingerprints" (implemented)

m1 First moment

m2 Second moment

m3 Third moment

3D

12

Binding site "fingerprints" (implemented)

Binding site "fingerprints" (implemented)

Binding site "fingerprints" (points with 4 dimensions)

Points

ElectroShape (x_1, x_2, x_3, q)

ElectroShape for z_1 (x_1 , x_2 , x_3 , z_1)

c1 geometric centre,
$$\mathbb{R}^4$$

- **c2** atom furthest from $c1, \mathbb{R}^4$
- c3 atom furthest from $c2, \mathbb{R}^4$

$$\mathbf{a} = \mathbf{c2} - \mathbf{c1}$$
 $\mathbf{a_s}$ only spatial part, \mathbb{R}^3 $\mathbf{b} = \mathbf{c3} - \mathbf{c1}$ $\mathbf{b_s}$ only spatial part, \mathbb{R}^3

$$\mathbf{c_s} = \left(\frac{\|\mathbf{a}\|}{2}\right) \frac{\mathbf{a_s} \times \mathbf{b_s}}{\|\mathbf{a_s} \times \mathbf{b_s}\|}$$

$$\mathbf{c4} = \mathbf{c1_s} + \mathbf{c_s} + (0, 0, 0, \mu q_+)$$

 $\mathbf{c5} = \mathbf{c1_s} + \mathbf{c_s} + (0, 0, 0, \mu q_-)$

 μ scaling factor

 $q_{+/-}$ highest/lowest value of 4th dimension in molecule

4D

15

Cross product

$$\begin{pmatrix} a_{x} \\ a_{y} \\ a_{z} \end{pmatrix} \times \begin{pmatrix} b_{x} \\ b_{y} \\ b_{z} \end{pmatrix} = \begin{pmatrix} a_{y}b_{z} - b_{y}a_{z} \\ a_{z}b_{x} - b_{z}a_{x} \\ a_{x}b_{y} - b_{x}a_{y} \end{pmatrix}$$

Number of binding site representatives Full SCPDB

Reference points distances Full SCPDB

Encoding: PCA for binding sites (FuzCav: 2061 structures)

Evaluation: similar vs. dissimilar pairs Weill et al. 2010 (FuzCav)

Outlook: Introduce subpockets/regions

Ideas

- Overlapping/sliding window
 - Adapting von Behren et al. 2013 (TrixP)
- Overlapping subgraphs
 - Adapting Konc et al. 2010 (ProBis)
- Triangulation/Voronoi
 - Adapting Lindow et al. 2011
- Density-based clustering of binding site atoms
 - Adapting Oliver Lempke (group of Bettina Keller)