Ay190 – Worksheet 2

Xiangcheng Ma Date: January 11, 2014

1 An Unstable Calculation

I tabulate the x_n calculated from recurrence relation, the accurate values $(1/3)^n$, absolute errors and relative errors in Table 1.

n	x_n	$(1/3)^n$	absolute error	relative error
0	1.0	1.0	0.0	0.0
1	0.333333	0.333333333333	9.93410748107e-09	2.98023224432e-08
2	0.111111	0.111111111111	5.29819064732e-08	4.76837158259e-07
3	0.0370373	0.037037037037	2.16342784749e-07	5.84125518823e-06
4	0.0123466	0.0123456790123	8.71809912319e-07	7.06166028978e-05
5	0.00411871	0.00411522633745	3.48814414362e-06	0.0008476190269
6	0.00138569	0.00137174211248	1.39522571909e-05	0.0101711954921
7	0.000513056	0.000457247370828	5.58089223023e-05	0.122054113075
8	0.000375651	0.000152415790276	0.000223235614917	1.46464886947
9	0.000943748	5.08052634253e-05	0.000892942551319	17.5757882376
10	0.00358871	1.69350878084e-05	0.00357177023583	210.909460655
11	0.0142927	5.64502926948e-06	0.0142870812639	2530.91358466
12	0.0571502	1.88167642316e-06	0.0571483257835	30370.9634027
13	0.228594	6.27225474386e-07	0.228593318278	364451.584977
14	0.914374	2.09075158129e-07	0.914373307961	4373419.18641
15	3.65749	6.96917193763e-08	3.6574932832	52481030.9737

Table 1: An Unstable Calculation

2 Finite Difference Approximation and Convergence

I plot the results in FIgure 1, with the left panel forward differencing and the right panel central differencing. I adopt $h_1 = 0.01$ and $h_2 = 0.005$. The absolute error is (i) of order O(h) in forward differencing and (ii) of order $O(h^2)$ in central differencing. The error using step h_2 is (i) a half and (ii) a quater of that using step h_1 , as we expected. Note that I am using datatype float64 in this problem.

3 Second Derivative

Given that

$$f(x_0 + h) = f(x_0) + f'(x_0) h + \frac{1}{2!} f''(x_0) h^2 + \frac{1}{3!} f'''(x_0) h^3 + O(h^4)$$
 (1)

and that

$$f(x_0 - h) = f(x_0) - f'(x_0) h + \frac{1}{2!} f''(x_0) h^2 - \frac{1}{3!} f'''(x_0) h^3 + O(h^4),$$
 (2)

Figure 1: Finite Difference

summing over these two equations, we have

$$f''(x_0) = \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2} + O(h^2).$$
(3)

This is an epression for second derivative at x_0 to the second order.

4 Interpolation: Cepheid Lightcurve

For this problem, I do not intend to bother myself writing the code on my own. Instead, I would rather use scipy library routines, as I guess the philosophy of this question is to observe the difference between different interpolation methods.

For Lagrange polynomial interpolation, there is a python routine scipy.interpolate.lagrange. As piecewise linear and quadratic interpolation, I use the routine scipy.interpolate.interpld, with keyword kind='linear' and 'quadratic', respectively. I plot the results in Figure 2 and I zoom in the plot on the right panel in order to show the difference of other methods beside Lagrange interpolation.

5 More Cepheid Lightcurve Interpolation

Regarding cubic Hermite interpolation, I will insist use python routine <code>scipy.interpolate.interpld</code>, with keyword <code>kind='cubic'</code>. For the natural cubic spline interpolation, there are two python routines <code>scipy.interpolate.splrep</code> and <code>scipy.interpolate.splev</code> combined can do this job, with keyword k=3 for a cubic spline. I plot the result in Figure 2 as well as a comparison.

Appendix

For a full description of the files here, find the "README" file. My team partner is Daniel Kong.

Figure 2: Different Interpolation