MATH 4581: Fall 2018 PRACTICE PROBLEMS FOR TEST 1

1). Find the moment generating functions for the random variables with the following distributions:

(a)
$$P(X = k) = \frac{16}{37} \left(\frac{3}{4}\right)^k$$
 for $k = 0, 1, 2$

(b)
$$f_X(x) = \frac{1}{4} \quad \text{for } 1 \le x \le 5$$

2). The moment generating function for X is $M_X(t) = e^{5t}(1 - 4t^2)^{-1}$. Find E[X].

3).

	X	19	22	25	26	28	29	29	30
Ĭ	У	47	37	38	40	36	33	39	31

- a) Test at the 5% level to see if the slope of the regression line is zero. Give the p-value and decide if you accept or reject the null hypothesis. Give the equation of the regression line and the value of s, the sample standard deviation.
- **b)** Find a 99% confidence interval for the mean value of y when x = 28. Show your work.

4). Below are three groups of data (notice that the numbers in groups A, B are the same as those in Problem (3)):

			\ //							
			22							L
	В	47	37	38	40	36	33	39	31	
ĺ	С	25	36	31	28	37	29			

- a) Test at the 5% level to see if the means are the same for all three groups. Give the p-value and the pooled standard deviation s_p , and decide if you accept or reject the null hypothesis.
- **b)** Use the Bonferroni method to test at the 3% level of significance if the first and third groups have the same mean (note that the sample means are $\bar{x}_A = 26, \bar{x}_C = 31$). Show your work.
- c) Use the contrast with $H_0: 2\mu_B = \mu_A + \mu_C$ to test at the 5% level of significance whether the second group is different from the first and third groups.
- **5).** A random number generator is supposed to have the distribution given in Problem (1), part (a). A sample from the generator finds these values:

X	0	1	2
Observed	25	15	10
Expected			

- a) Fill in the expected numbers.
- **b)** Find the value of χ^2 for a goodness of fit test. Decide at the 5% level of significance if the data has the supposed distribution. Show your work (either with a *p*-value or a critical value).

6).

		a	b	Total
	С	60	30	
	d	40	70	
ĺ	Total			

	a	b	Total
c			
d			
Total			

- a) The first table gives the observed joint values for two variables. Fill in the expected numbers in the second table assuming independence.
- **b)** Find the value of χ^2 . Decide at the 5% level of significance if the variables are independent. Show your work (either with a *p*-value or a critical value).
- 7). The joint pdf of X and Y is

$$f_{X,Y}(x,y) = \frac{3}{2}xy$$
 for $0 \le x \le 2, \ 0 \le y \le 2x$

- a) Find the conditional pdf $f_Y(y|x)$.
- **b)** Set up the integral for the regression equation of Y on X. Do not evaluate the integral.
- 8). The following transition matrix describes a Marlov chain on the states $\{1, 2, 3, 4\}$:

$$P = \begin{pmatrix} 0.4 & 0.3 & 0.2 & 0.1 \\ 0 & 1 & 0 & 0 \\ 0.3 & 0.2 & 0.3 & 0.2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- a) Rewrite the matrix in canonical form and give Q and R.
- **b)** Find the fundamental matrix N.
- c) Find the probability to get absorbed in state 4 given that the chain starts in state
- 3. Show your work.

- d) Find the expected number of steps to get absorbed given that the chain starts in state 3.
- 9). Suppose we move around the grid $\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ according to the following scheme: at each step we roll a fair die; if we roll 1 then we stay where we are; if we roll 2 or 3 then we move one space clockwise; else we move two spaces counter-clockwise.
- a) Find the transition matrix of the chain.
- **b)** Find the probability to move from 1 to 3 in three steps.
- c) Find the stationary vector of the chain.
- d) Find the mean first return time if we start in state 1.
- e) Find the mean time to go from state 2 to state 1 for the first time.