Leçon n° 8

ECHANGES RADIATIFS AVEC MULTIREFLEXIONS DANS UNE ENCEINTE CONSTITUEE DE SURFACES GRISES

Méthode de GEBHART

Le facteur dit de GEBHART permet d'évaluer la fraction du flux émis par S_i et absorbé par S_j après toutes réflexions possibles.

Le facteur dit de GEBHART permet d'évaluer la fraction du flux émis par S_i et absorbé par S_j après toutes réflexions possibles.

Une partie de ce flux (mais une partie seulement) est constitué du flux direct émis par S_i et absorbé par S_i:

 $\alpha_j F_{ij} \phi_i$,

Comment chiffrer la contribution des réflexions ?

Mise en place du facteur de GEBHART : Bki

Notons que ϕ_i F_{ik} est incident sur S_k

• Dès lors, $\rho_k F_{ik} \phi_i$ est réfléchi par S_k dans tout l'espace.

Après l'ensemble de toutes les réflexions possibles, la fraction B_{ki} de ce flux réfléchi par S_k est absorbée par S_i .

Le facteur de GEBHART relatif à S_i et S_j admet donc la définition récursive suivante :

$$B_{ij} = \alpha_j F_{ij} + \sum_k \rho_k F_{ik} B_{kj}$$
(1)

Ce facteur dit de GEBHART va permettre d'évaluer le flux émis par S_i et absorbé par S_j après toutes réflexions possibles.

8.2 - Flux net échangé

$$(+ \rightarrow gagné par S_i)$$

Menant le bilan sur i, il vient :

$$Q_{i}^{+} = \sum_{i} \varepsilon_{j} S_{j} B_{ji} \sigma T_{j}^{4} - \varepsilon_{i} S_{i} \sigma T_{i}^{4}$$
 (2)

a) Premier cas particulier:
$$Q_i^+ = \sum_j \varepsilon_j S_j B_{ji} \sigma T_j^4 - \varepsilon_i S_i \sigma T_i^4$$

$$Q_{i}^{+} = \sum_{j} \varepsilon_{j} S_{j} B_{ji} \sigma T_{j}^{4} - \varepsilon_{i} S_{i} \sigma T_{i}^{4}$$

Considérons le cas où tous les éléments, sont à T_0 : $Q_i^+ = 0$

$$\varepsilon_{i}S_{i} = \sum_{j} \varepsilon_{j}S_{j}B_{ji}$$

D'où la nouvelle écriture du flux net global :

$$Q_i^+ = \sum_j \varepsilon_j S_j B_{ji} \sigma \left(T_j^4 - T_i^4 \right)$$
 (3)

et celle du flux net échangé entre i et j, compté positif sur i s'il est gagné par cette surface.

$$Q_{ij}^{+} = \varepsilon_i S_i B_{ij} \sigma \left(T_j^4 - T_i^4 \right) \tag{4}$$

net \rightarrow gagné par i.

b) A l'échelle de l'enceinte, dans le cas général :

$$\sum_{i} Q_{i}^{+} = 0 \qquad \qquad Q_{i}^{+} = \sum_{j} \varepsilon_{j} S_{j} B_{ji} \sigma T_{j}^{4} - \varepsilon_{i} S_{i} \sigma T_{i}^{4}$$

D'où, nous en déduisons :

$$\sum_{i} \sum_{j} \varepsilon_{j} S_{j} B_{ji} \sigma T_{j}^{4} = \sum_{i} \varepsilon_{i} S_{i} \sigma T_{i}^{4}$$

$$\sum_{j} \varepsilon_{j} S_{j} \sigma T_{j}^{4} \sum_{i} B_{ji} = \sum_{j} \varepsilon_{j} S_{j} \sigma T_{j}^{4}$$

D'où:
$$\sum_{i} B_{ji} = 1$$

ou encore:
$$\sum_{j} B_{ij} = 1$$
 (5)

C'est ici l'écriture de la conservation du flux.

c) Cas particulier de l'échange net en i et j :

Le bilan de flux net échangé entre i et j s'écrit (cf. 4) :

$$Q_{ij}^{+} = \varepsilon_{j} S_{j} B_{ji} \sigma \left(T_{j}^{4} - T_{i}^{4}\right)$$

Mais:
$$Q_{ji}^+ = \varepsilon_i S_i B_{ij} \quad \sigma (T_i^4 - T_j^4)$$

et

$$Q_{ij}^{+} = -Q_{ji}^{+}$$
, d'où:

$$\varepsilon_i S_i B_{ij} = \varepsilon_j S_j B_{ji} \tag{6}$$

Cette relation 6 généralise aux facteurs de GEBHART la **loi de réciprocité** établie entre facteurs de forme.

d) Résumé:

•
$$\varepsilon_i S_i B_{ij} = \varepsilon_i S_j B_{ji}$$
 réciprocité (7)

•
$$\sum_{j} B_{ij} = 1$$
 conservation du flux (8)

•
$$Q_{i}^{+} = \sum_{j} Q_{ij}^{+}$$
 (10)

8.3 - Applications simples

8.3.1 - Augmentation des transferts par les multiréflexions :

Partons de l'expression du facteur de GEBHART entre les deux surfaces S₁ et S₂ :

$$B_{12} = \alpha_2 F_{12} + \sum_{k} \rho_k F_{1k} B_{k2}$$

On en déduit le bilan de flux net entre S₁ et S₂ :

$$Q_{12}^{+} = \left[\alpha_{2}F_{12} + \sum_{k} \dots \right] \epsilon_{1}S_{1}\sigma(T_{2}^{4} - T_{1}^{4})$$

En conclusion, les multiréflexions :

- * augmentent les couplages.
- * nivellent les gradients.

8.3.2 - Décomposition d'une enceinte en 2 surfaces :

$$B_{12} = \alpha_2 F_{12} + \rho_1 F_{11} B_{12} + \rho_2 F_{12}^{\downarrow} B_{22}^{\downarrow}$$

$$\begin{cases} \varepsilon_1 S_1 B_{12} = \varepsilon_2 S_2 B_{21} \\ B_{11} + B_{12} = 1 \end{cases}$$

D'où:

$$B_{12} = \frac{\varepsilon_2 F_{12}}{\varepsilon_1 \varepsilon_2 + (1 - \varepsilon_1) \varepsilon_2 F_{12} + (1 - \varepsilon_2) \varepsilon_1 F_{21}}$$
(12)

Cas de 2 plans parallèles :

$$F_{12} = F_{21} = 1$$

$$B_{12} = \frac{\varepsilon_2}{\varepsilon_1 \varepsilon_2 + (1 - \varepsilon_1)\varepsilon_2 + (1 - \varepsilon_2)\varepsilon_1}$$
 (13)

$$=\frac{\varepsilon_2}{\varepsilon_1+\varepsilon_2-\varepsilon_1\varepsilon_2}$$

d'où le flux net:

$$Q_{12}^{+} = \varepsilon_{1} S_{1} B_{12} \sigma (T_{2}^{4} - T_{1}^{4})$$

$$=\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2 - \varepsilon_1 \varepsilon_2} S_1 \sigma \left(T_2^4 - T_1^4 \right)$$

$$= \frac{S_1 \sigma \left(T_2^4 - T_1^4\right)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1} \tag{14}$$

cf. radiosités.

8.3.3 - Facteur apparent d'émission

Soit une cavité de longueur L, de rayon R, de surface interne S, d'ouverture s, d'émissivité ϵ . On peut admettre que tout rayon s'échappant par s n'a aucune chance d'y retourner et donc que pour cette surface s, $\epsilon = \alpha = 1$

On peut montrer que la cavité émet avec un facteur apparent d'émission:

$$\varepsilon_a = \frac{\varepsilon}{\frac{s}{S} + \varepsilon \left(1 - \frac{s}{S}\right)}$$

8.3.4 - Cas de deux demi-cylindres

D'où:
$$F_{12} = \frac{2}{\pi} = 0,636$$

*: Multiréflexions : ε_1 B₁₂.

• : Transfert direct. : $\varepsilon_1 \ \varepsilon_2 \ F_{12}$

ϵ_1	0,1	0,5	0,8	0,9
B ₁₂	0,51	0,56	0,603	0,62
* ϵ_1 B_{12}	0,05	0,28	0,48	0,55
ϵ_1 ϵ_2 F_{12}	0,006	0,16	0,41	0,52

Les deux exemples numériques traités montrent que l'on peut conserver la formulation du transfert direct pour $\epsilon \geq 0.9$, et ce à quelques % près