ENIGMA - Linux File System

Miller Raycell, Acadêmico de Ciência da Computação, UFRR e Rodrigo Andrade, Acadêmico de Ciência da Computação, UFRR

Resumo—Sistema de arquivos é uma parte crucial de qualquer sistema operacional, ele é responsável pela manipulação dos arquivos, sem o mesmo, a organização e gerenciamento dos arquivos não seria possível, o seguinte relatório apresentará a implementação de um sistema de arquivo simples para Linux.

Abstract—File system is a crucial part of any Operation System, the file system is in charge of manipulate the archives, without it, files organization would not be capable, this article shows how to implement a simple file system for Linux.

I. Introdução

SISTEMAS de arquivos são implementados em larga escala, cada sistema operacional possui um sistema de arquivos que satisfaz a sua necessidade, Windows utiliza o NFTS, Linux em geral usa da família EXT, o supracitado ENIGMA é um sistema de arquivos para Linux.

Boa Vista, Roraima 27 de Julho de 2019

II. O QUE É UM SISTEMA DE ARQUIVOS

Primeiramente deve-se fazer a definição de arquivos, segundo [1] um arquivo é uma unidade lógica criada por processos, os arquivos são necessários quando se necessita realizar a persistência de dados.

A manipulação dos arquivos é responsabilidade específica do sistema operacional, e é tão importante que ganhou um nome específico, que é conhecido como sistema de arquivos.

Um sistema de arquivos é projetado para armazenar dados de forma não volátil, possui características obrigatórias como um namespace (uma metodologia de organização), metadados (fornece a base lógica), API (fornece acesso a chamadas de sistemas que manipulam arquivos e diretórios), segurança (garante que usuários acessem somente seus arquivos) e um software (sistema de arquivos virtual do linux e os drivers de dispositivo específicos) para implementar o sistema de arquivos.

A. Esquema dos sistemas de arquivos

Discos podem ser particionados e armazenar diversos sistemas de arquivos em cada uma de suas partições. Ao iniciar o computador é ativado o MBR que contém no seu fim uma tabela de partição que informa o início e fim de cada partição, a bios lê e executa o MBR que por sua vez localiza a partição ativa e lê o bloco de inicialização e inicia o SO. Cada partição além do bloco de inicialização possui um superbloco que contêm parâmetros chaves do sistema de arquivos que incluem um número mágico para determinar qual o tipo do sistema de arquivos, também encontramos informações de blocos disponíveis por meio de mapa de bits ou lista de

ponteiros, seguido de i-nodes um arranjo estruturado para cada arquivo com informações sobre o mesmo, depois temos o diretório raiz e por fim os demais diretórios e arquivos.

B. I-nodes

I-nodes associam arquivos a uma estrutura index-node que lista os atributos e endereços dos blocos no disco. O uso do i-node é vantajoso pois precisa estar na memória apenas quando o arquivo correspondente estiver aberto, sendo assim se cada i-node ocupa n bytes e k arquivos estiverem abertos, então o espaço total de memória é kn bytes. A utilização de i-nodes requer um arranjo na memória cujo tamanho tamanho é proporcional ao número máximo de arquivos que podem estar abertos ao mesmo tempo.

Figura 1. Representação de um sistema de arquivos

C. Diretórios

Ao abrir um arquivo para que possa ser realizada a leitura o SO utiliza o caminho informado pelo usuário para encontrar a entrada de diretório de disco, a partir dessa informação é possível localizar os blocos de disco por meio do número do i-node. De toda maneira a principal função do sistema de diretórios é mapear o nome do arquivo em ASCII na informação necessária para que os dados sejam encontrados.

III. ENIGMA

O ENIGMA file system, é uma implementação simples de um sistema de arquivos com funcionalidades básicas para Linux, o mesmo foi desenvolvido usando a linguagem C e

1

utilizando as bibliotecas próprias do Linux para sistemas de arquivos.

Para realizar a incorporação do ENIGMA se recomenda kernel versão 4, gcc versão 7.4.0 e make versão 4.1, os testes do sistema foram realizados no Ubuntu 18.04 com versão do kernel 4.18.

IV. IMPLEMENTAÇÃO DO ENIGMA

As operações desenvolvidas para o ENGIMA foram, criação de diretórios, criação de um usuário root, criação, leitura e escrita de arquivos. A função de criação de usuário implementadas foram baseadas na estrutura I-NODE, ou seja, o usuário root é um modelo de um I-NODE, pois através dessa representação para se fazer a manipulação das estrutura de usuários.

A função que realiza a criação de diretórios também usa a estrutura I-NODE, na própria função são feitas as verificações de estabilidade da criação de pastas, as verificações analisam se os espaços de endereçamento estão corretos, se há espaço suficiente para realizar a dita criação no diretório especificado, essas analises são importantes para se ter certeza da corretude das operações, manipular arquivos de forma errada pode desencadear inúmeros problemas no sistema operacional.

A função de escrita no arquivo realiza a escrita de uma variável atômica, para evitar problemas de sincronização, no arquivo, para que dessa forma se verifique a quantidade de vezes que ocorreu a operação de escrita no arquivo.

A leitura de arquivos é uma operação simples, cada linha é armazenada em um vetor e se após os testes que realizam a verificação se o arquivo é válido, se a informação é correta, se o arquivo pode ser lido tiverem todos dado resultados positivos, um contador que identifica a quantidade de linhas é incrementado.

Quando se cria um sistema de arquivos, há a necessidade de se incorporar um superbloco de memória, no qual terá as indicações do que o sistema opera, quais os usuários, entre outros. No ENIGMA foi criado apenas um usuário que é o root, logo ele possui todas as permissões dentro do sistema de arquivos, e através do superbloco o kernel terá as informações que necessita para executar as operações desejadas.

Devido o ENIGMA ser uma simplificação de um sistema de arquivos real, como o EXT, suas funcionalidades são reduzidas a implementação própria no código, que foi apresentado. Dentro do próprio código se realiza a criação de um diretório exemplo e dois arquivos contendo a quantidade de vezes que ambos foram acessados.

Assim que o módulo do ENIGMA for retirado do kernel, todas as informações criadas no mesmo serão escoadas junto com o sistema de arquivos. O ENIGMA não possui suporte a Journaling, que seria a criação de um arquivo log, com todas as operações que foram realizadas dentro do sistema de arquivos, a vantagem do Journaling é a certeza das operações realizadas.

V. CONCLUSÃO

Através deste trabalho podemos reafirmar a importância da utilização do sistema de arquivos no sistema operacional, pois somente por meio deste é possível localizar e manipular dados. O enigma mostrou-se como um sistema de arquivos funcional e simples que cumpre seu papel, permitindo que os dados sejam acessados e manipulados.

Também pode foi constatado que realizar a implementação de um sistema de arquivos é deveras simplória dado que o próprio sistema operacional oferece recursos suficientes aos seus usuários realizarem melhoras no corpo do SO.

AGRADECIMENTOS

Os autores gostariam de agradecer primeiramente ao Prof. Dr. Herbert Rocha pela oportunidade de realizar esse trabalho e pela paciência ao nos acompanhar durante a execução do mesmo. Também gostaríamos de agradecer aos nossos colegas de laboratório André Leandro e Markus Kaul, pelo apoio e suporte enquanto necessitávamos de tempo para realizar o trabalho.

REFERÊNCIAS

- Tanenbaum, Andrew S and Bos, Herbert Modern operating systems, Pearson, 2015.
- [2] Tweedie, Stephen C and others Journaling the Linux ext2fs filesystem, Durham, North Carolina, 1998