Тема. Прямокутна система координат на площині. Синус, косинус, тангенс кутів від 0 до 180

<u>Мета:</u> відновити та розширити знання про прямокутну систему координат на площині та основні тригонометричні функції кута, навчитись визначати синус, косину, тангенс кута від 0° до 180° у прямокутній системі координат за допомогою одиничного півкола

Пригадайте

• Як задати прямокутну систему координат на площині?

9 клас

- Що таке одиничний відрізок?
- Як визначити координати точки в прямокутній системі координат?
- Дайте означення синуса, косинуса і тангенса гострого кута в прямокутному трикутнику.

Ознайомтеся з інформацією

Декартова система координат на площині задається двома взаємно перпендикулярними осями (вісь ОХ — вісь абсцис, вісь ОУ — вісь ординат), які мають спільний початок О (початок координат) і однаковий масштаб осей. Кожній точці площини за певним правилом ставиться у відповідність пара чисел — абсциса та ордината (х;у), ці числа називаються декартовими координатами точки.

Декартові координати точки записують у дужках поруч із буквеним позначенням точки A(x;y), причому першою в дужках стоїть абсциса, другою – ордината.

Початок координат О розподіляє кожну вісь на дві піввісі, одна з яких вважається додатною, а інша — від'ємною.

Наприклад: точка А має координати 3 і 2, точка В — координати -2 і -2. Будь-якій парі чисел х і у відповідає лише одна точка площини A(x;y).

Синус, косинус, тангенс кутів від 0 до 180

У прямокутному трикутнику маємо співвідношення:

$$\sin \alpha = \frac{a}{c}$$
, $\cos \alpha = \frac{b}{c}$, $\tan \alpha = \frac{a}{b}$, $\cot \alpha = \frac{b}{a}$.

Дамо означення тригонометричних функцій для будь-якого кута від 0° до 180° . Для цього в прямокутній системі координат, з якою ви добре знайомі, побудуємо коло радіуса 1 з центром у початку координат (рис. 2). Таке коло називають тригонометричним. Від додатної півосі осі 0 х відкладемо у напрямі проти ходу годинникової стрілки гострий кут α . Нехай M(x; y) — точка, у якій сторона цього кута перетинає дане коло (рис. 2, a). Проведемо перпендикуляр MN до осі 0 х. Утворився прямокутний трикутник 0 х гострим кутом a, гіпотенузою 0 = 1 і катетами, довжини яких дорівнюють координатам точки M: 0 = x, 0 = x трикутника 0 маємо:

$$\sin \alpha = \frac{MN}{OM} = \frac{y}{1} = y, \quad \cos \alpha = \frac{ON}{OM} = \frac{x}{1} = x,$$

$$tg\alpha = \frac{MN}{ON} = \frac{y}{x}, \quad ctg\alpha = \frac{ON}{MN} = \frac{x}{y}.$$

Рис. 2. До означення тригонометричних функцій

Отже, в тригонометричному колі синус і косинус гострого кута дорівнюють, відповідно, ординаті й абсцисі точки, у якій сторона цього кута перетинає коло, а тангенс і котангенс цього кута дорівнюють відношенням ординати до абсциси й абсциси до ординати, відповідно:

$$\sin \alpha = y$$
, $\cos \alpha = x$, $\tan \alpha = \frac{y}{x}$, $\cot \alpha = \frac{x}{y}$.

Визначмо значення тригонометричних функцій кутів 0°, 90°, 180° (рис. 3). Якщо α = 0°, то точка М1 має координати (1; 0). Звідси sin 0° = 0, cos 0° = 1, tg 0° = 0. Оскільки ділення на нуль не визначене, то ctg 0° не існує.

Якщо α = 90°, то точка M_2 має координати (0; 1). Звідси sin 90° = 1, cos 90° = 0, ctg 90° = 0. Оскільки ділення на нуль не визначене, то tg 90° не існує.

I, нарешті, якщо α = 180°, то точка M_3 має координати (–1; 0). Звідси sin 180° = 0, cos 180° = –1, tg 180° = 0. Оскільки ділення на нуль не визначене, то ctg 180° не існує.

Зауважимо також, що абсциси точок М для кутів від 0° до 180° змінюються в межах від -1 до 1, тобто $-1 \le \cos \alpha \le 1$, а ординати — в межах від 0 до 1, тобто $0 \le \sin \alpha \le 1$.

Рис. 3. Для означення кутів 0° , 90° , 180°

Перегляньте відеоурок за посиланням:

https://youtu.be/SM3U7XaSuTk

Робота в зошиті

Запишіть приклади розв'язування задач:

Задача 1

Чи існує кут α , де $0^{\circ} \le \alpha \le 180^{\circ}$, для якого: 1) $\cos \alpha = \frac{2}{5}$; 2) $\sin \alpha = -\frac{2}{5}$; 3) $\cos \alpha = -\frac{2}{5}$;

1)
$$\cos \alpha = \frac{2}{5}$$
;

$$2) \sin \alpha = -\frac{2}{5};$$

3)
$$\cos \alpha = -\frac{2}{5}$$
;

Розв'язання

Для довільного а такого, що 0° ≤ а ≤ 180°, виконуються нерівності:

$$0 \le \sin \alpha \le 1$$
, $-1 \le \cos \alpha \le 1$. Отже, кути, для яких $\cos \alpha = \frac{2}{5}$, $\cos \alpha = -\frac{2}{5}$, $\sin \alpha = -\frac{2}{5}$ існують.

Задача 2

Розв'язання

Обчисліть значення тригонометричної функції $tg90\degree$

$$tg90^\circ=rac{\sin 90^\circ}{\cos 90^\circ}=rac{1}{0}-$$
 вираз не має змісту, отже $tg90^\circ$ не існує

Задача 3

За допомогою одиничного кола запишіть розрахунок функцій синуса, косинуса і тангенса кута α , якщо $x=\frac{\sqrt{3}}{2}$, $y=\frac{1}{2}$.

Розв'язання

$$\sin \alpha = y = \frac{1}{2}$$

$$\cos \alpha = x = \frac{\sqrt{3}}{2}$$

$$tg\alpha = \frac{y}{x} = \frac{1}{2} : \frac{\sqrt{3}}{2} = \frac{1}{2} \cdot \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

Домашнє завдання

- Опрацювати параграф 1 та 2 (ст. 12, 13) підручника.
- Розв'язати задачі (письмово):
- Nº 6,8
- 1. Чи існує кут α , де 0° ≤ α ≤ 180° , для якого:

4)
$$\sin \alpha = \frac{2}{5}$$
;

5)
$$\cos \alpha = 1,2;$$

5)
$$\cos \alpha = 1,2;$$
 6) $\sin \alpha = 1,2?$

2. За допомогою одиничного кола запишіть розрахунок функцій синуса, косинуса і тангенса кута α , якщо $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$.

Фото виконаних робіт надсилайте у HUMAN або на електронну пошту