MEGR 3090/7090/8090: Advanced Optimal Control

$$V_{n}\left(\mathbf{x}_{n}\right) = \min_{\left\{\mathbf{u}_{n}, \mathbf{u}_{n+1}, \dots, \mathbf{u}_{N-1}\right\}} \left[\frac{1}{2} \sum_{k=n}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k}\right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N} \right]$$

$$\begin{aligned} V_n\left(\mathbf{x}_n\right) &= \min_{\left[\mathbf{u}_n, \mathbf{u}_{n+1}, \cdots, \mathbf{u}_{N+1}\right]} \left[\frac{1}{2} \sum_{k=n}^{N-1} \left(\mathbf{x}_k^T \mathbf{Q}_k \mathbf{x}_k + \mathbf{u}_k^T \mathbf{R} \mathbf{u}_k\right) + \frac{1}{2} \mathbf{x}_N^T \mathbf{Q}_N \mathbf{x}_N \right] \\ &= \min_{\mathbf{u}_n} \left[\frac{1}{2} \left(\mathbf{x}_n^T \mathbf{Q}_n \mathbf{x}_n + \mathbf{u}_n^T \mathbf{R} \mathbf{u}_n\right) + \min_{\left[\mathbf{u}_{n+1}, \cdots, \mathbf{u}_{N+1}\right]} \left[\frac{1}{2} \sum_{k=n+1}^{N-1} \left(\mathbf{x}_k^T \mathbf{Q}_k \mathbf{x}_k + \mathbf{u}_k^T \mathbf{R} \mathbf{u}_k\right) + \frac{1}{2} \mathbf{x}_N^T \mathbf{Q}_N \mathbf{x}_N \right] \right] \\ &= \min_{\mathbf{u}_n} \left[\frac{1}{2} \left(\mathbf{x}_n^T \mathbf{Q}_n \mathbf{x}_n + \mathbf{u}_n^T \mathbf{R} \mathbf{u}_n\right) + V_{n+1} \left(\mathbf{x}_{n+1}\right) \right] \end{aligned}$$

$$V_{n}\left(\mathbf{x}_{n}\right) = \min_{\mathbf{u}_{n}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + V_{n+1} \left(\mathbf{x}_{n+1} \right) \right]$$

Lecture 2 August 24, 2017

Optimal Control – General Continuous Time Framework

Whether the control trajectory is optimized offline or online, every continuous time optimal control problem will involve the following general framework:

$$u^*(t) = \arg\min_{u(t)} J(u(t); \mathbf{x}(0))$$
 where
$$J(u(t); \mathbf{x}(0)) = \int_0^{t_f} g(\mathbf{x}(t), u(t)) dt + h(\mathbf{x}(t_f))$$
Total cost Instantaneous cost Terminal cost

Subject to:

The dynamic model: $\dot{\mathbf{x}} = f(\mathbf{x}, u)$

Point-wise control constraints: $u(t) \in U, \forall t: 0 \le t \le t_f$

Point-wise state constraints: $\mathbf{x}(t) \in X$, $\forall t: 0 \le t \le t_f$

Terminal state constraints: $\mathbf{x}(t_f) \in X_f$

Optimal Control – General Continuous Time Framework

Optimal Control – General Continuous Time Framework

Optimal Control – General Discrete Time Framework

Whether the control trajectory is optimized offline or online, every continuous time optimal control problem will involve the following general framework:

$$\mathbf{u}^* = \arg\min_{\mathbf{u}} J(\mathbf{u}; \mathbf{x}(0))$$
 where
$$J(\mathbf{u}; \mathbf{x}(0)) = \sum_{i=0}^{\infty} g(\mathbf{x}(i), u(i)) + h(\mathbf{x}(N))$$
Total cost

Subject to:

The dynamic model: $\mathbf{x}(i+1) = f(\mathbf{x}(i), u(i))$

Point-wise control constraints: $u(i) \in U, i = 0 \dots N - 1$

Point-wise state constraints: $\mathbf{x}(i) \in X$, $i = 0 \dots N - 1$

Terminal state constraints: $\mathbf{x}(N) \in X_f$

Note: $\mathbf{u} = [u(0) \quad ... \quad u(N-1)]^T$...Key point: \mathbf{u} consists of a finite number of design variables!

Optimal Control – General Discrete Time Framework

Common Ingredients in Optimal Control

Decision variable/control input trajectory – Specified by \mathbf{u} ...note that \mathbf{u} comprises the *entire* sequence of u(t) between t=0 and $t=t_f$.

Objective function – A function that is to be **minimized** or **maximized** over some **time window** (from 0 to t_f)

• When the objective function is to be minimized, it is called a *cost function*; when it is to be maximized, it's called a *fitness function* or *reward function* (or just "objective function")

Initial condition – The value of the system states at the beginning of the time window over which the objective function is evaluated (given by $\mathbf{x}(0)$)

Dynamic model – A state space model that describes how the system evolves

Constraints – Limits on the states and control signals over the prescribed time window (when constraints are only imposed at time t_f , they are referred to as $terminal\ constraints$

Points, Sets, Equality Constraints, and Inequality Constraints

Equality constraints are equivalent to **point constraints**

Example:
$$\mathbf{x}(t) = \overline{\mathbf{x}} \iff \mathbf{x}(t) \in X$$
, where X is shown at right

Inequality constraints are equivalent to **set constraints**, where **closed sets** are almost always used to describe the constraint (you'll see why soon)

Example: $||\mathbf{x}(t)|| \le R \iff \mathbf{x}(t) \in X$, where X is shown at right

Points, Sets, Equality Constraints, and Inequality Constraints

Admissibility and Feasibility

A control trajectory (**u** in discrete time or u(t) in continuous time) is said to be **admissible** if it satisfies all constraints. Mathematically, the trajectory is admissible if $u(t) \in U$, $\forall t : 0 \le t \le t_f$.

Similarly, a state trajectory (\mathbf{x} in discrete time or $\mathbf{x}(t)$ in continuous time) is said to be *admissible* if it satisfies all constraints. Mathematically, the trajectory is admissible if $\mathbf{x}(t) \in X$, $\forall t : 0 \le t \le t_f$.

An optimization problem is said to be *feasible* if there exists at least one admissible control trajectory that leads to satisfaction of all constraints.

Admissibility and Feasibility

Suppose that a ballistic missile is modeled by: $\dot{\mathbf{x}} = f(\mathbf{x}, u)$

where $\mathbf{x} \in \mathbb{R}^3$ is the missile position and $u \in \mathbb{R}$ is the thrust input.

Suppose that we want the missile to reach a target position denoted by ${\bf r}$ at time t_f . In particular, we want to minimize the distance between the missile and ${\bf r}$ at that time. Furthermore, the missile is useless if its position at time t_f is outside a sphere of radius R around point ${\bf r}$. We don't care about the missile's position at any other time.

Choose a cost function and constraints that capture the requirements above.

Minimize
$$J(u(t), \underline{x}(0)) = ||\underline{x}(t_1) - \underline{c}||$$

Subj. to: $\underline{x} = f(\underline{x}, u)$

$$= |\underline{x}(t_1) \in X \quad \text{where } X = \{\underline{x}, ||\underline{x} - \underline{r}|| \in R\}$$

Suppose that $\exists J u(t) < t \cdot \underline{x}(t_1) \in X$

$$= ||\underline{x}(t_1) \in X ||\underline{x}(t_1) \in X||$$

Setting up Optimal Control Problems – Example (Kirk Ex. 2.2-1, modified)

Suppose that a satellite's rotational position (θ) and velocity (ω) are modeled by:

$$\dot{\theta} = \omega \\ \dot{\omega} = \frac{1}{J}u$$

u = control torque

Suppose the control objective is to keep the rotational position, velocity, and control signal as close to zero as possible, from time t=0 to $t=\infty$ (i.e., for all time), while respecting the saturation limit on the controller, which requires that $|u(t)| \le u_{max}$, $\forall t \ge 0$. Choose a cost function and constraints that capture these requirements.

Setting up Optimal Control Problems – Example (Kirk Ex. 2.2-1, modified)

Setting up Optimal Control Problems – Example (Kirk Ex. 2.2-1, modified)

Minimize
$$J(u(t); \underline{x}(0)) = \int_{X}^{\infty} \underbrace{(t)Q\underline{x}(t) + Ru(t)} dt$$

Subj. to model

Suppose that a system's dynamics are given by $\dot{\mathbf{x}} = f(\mathbf{x}, u)$, and our goal is to find a control trajectory, u(t), that transfers the system from an initial state, $\mathbf{x_0}$, to a target state, $\mathbf{x_t}$, as quickly as possible, under the condition that $||u(t)|| \le u_{max}$ at all times. Choose a cost function and constraints that capture these requirements.

Ex.3:
$$\dot{x} = f(x, u) \in model$$

Total time given by $\int_0^t f \int_0^t dt \left(-t_f\right)$

Minimite $J(u(t); x_o) = \int_0^t dt$

Sub; to : $model$
 $fu(t) | \leq u_{max}$, $0 \leq t \leq t_f$

Ill-Posed, Poorly Posed, and Well-Posed Optimal Control Problems

An **ill-posed** optimization problem is one for which **no optimal solution exists** (i.e., there does not exist an admissible control trajectory, $u^*(t)$, that minimizes the chosen cost function). This can arise for two reasons:

- Strict inequality constraints (e.g., |u(t)| < 5, rather than $|u(t)| \le 5$)
- Infeasible constraints

A poorly posed optimization problem is one for which the optimal solution is a trivial one that makes no sense in a real engineering application.

A well-posed optimization problem is one that is not poorly posed or ill-posed.

Example Ill-Posed Static Optimization

Minimize the following static objective function (where the decision variable is u):

$$J(u) = u^2$$

Subject to the constraint: 0 < u < 10

Why is this optimization problem ill-posed, and what can be done to make it well-posed?

Example Ill-Posed Static Optimization

Example Ill-Posed Static Optimization

Another Example of an Ill-Posed Optimal Control Problem

Suppose that the motion of a 1-dof system is modeled by: $\dot{x} = v$

 $\dot{v} = u$

where $x \in \mathbb{R}$ is the position, $v \in \mathbb{R}$ is the velocity, and $u \in \mathbb{R}$ is the acceleration input.

Subject to $x(t_f) = 1$

Another Example of an Ill-Posed Optimal Control Problem

Example Poorly Posed Optimal Control Problem

Suppose that a satellite's rotational position (θ) and velocity (ω) are modeled by:

$$\dot{\theta} = \omega$$

$$\dot{\omega} = \frac{1}{J}u$$

u = control torque

Suppose the control objective is to minimize the control effort through the following cost function: $\int_{-t_f}^{t_f}$

 $J(u(t); \theta(0), \omega(0)) = \int_0^{t_f} u(t)^2 dt \quad \text{subject to:} \quad |u(t)| \le u_{max}, \forall t \ge 0$

Example Poorly Posed Optimal Control Problem

Poorly posed ex:
$$J(u(t), x(0)) = \int_{t}^{t} u(t)^{2} dt$$

Subj to $J(u(t), x(0)) = \int_{t}^{t} u(t)^{2} dt$

Side Note

Minimizer of the following functionals is

the same:

1)
$$J(u(t); x(0)) = \int_0^t u(t)^2 dt$$

2) $J(u(t); x(0)) = \int_0^t Ru(t)^2 dt$ (REIR)

3) $J(u(t); x(0)) = C + \int_0^t Ru(t)^2 dt$

Preview of next lecture (and beyond)

Finite-dimensional optimal control problems in discrete time:

- Converting continuous time systems to discrete time models
- Equivalence between finite-dimensional design optimization and discrete time optimal control problems
- Convexity