Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

<u>∧</u> Método da substituição

1. Calcule a integral fazendo a substituição u = g(x) e du = g'(x)dx.

(a)
$$\int 2(2x+4)^5 dx$$
, $u = 2x+4$

(b)
$$\int 7\sqrt{7x-1}dx$$
, $u = 7x - 1$

(c)
$$\int \frac{dt}{(1-6t)^4}, \quad u = 1 - 6t$$
(d)
$$\int \cos 3x \, dx, \quad u = 3x$$

(e)
$$\int 2x(x^2+5)^{-4}dx$$
, $u=x^2+5$

(f)
$$\int \frac{4x^3}{(x^4+1)^2} dx$$
, $u = x^4 + 1$

(g)
$$\int \frac{(1+\sqrt{x})^{1/3}}{\sqrt{x}} dx$$
, $u = 1 + \sqrt{x}$

(h)
$$\int x \operatorname{sen}(2x^2) \, dx, \quad u = 2x^2$$

(i)
$$\int \sec(2t)\tan(2t)dt$$
, $u = 2t$

(j)
$$\int \frac{9r^2dr}{\sqrt{1-r^3}}$$
, $u = 1 - r^3$

(k)
$$\int \sqrt{x} \operatorname{sen} \left(x^{3/2} - 1 \right) dx$$
, $u = x^{3/2} - 1$

(1)
$$\int \cos^3 \theta \sin \theta d\theta, \quad u = \cos \theta$$

(m)
$$\int \frac{\sec^2(1/x)}{x^2} dx$$
, $u = \frac{1}{x}$

2. Determine as integrais usando a regra da substituição.

(a)
$$\int x^2 \sin x^3 dx$$

(b)
$$\int_0^1 x^3 \sqrt{1-x^4} \ dx$$

(c)
$$\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$$

(d)
$$\int \sqrt[3]{3x-1} dx$$

(e)
$$\int \cos(5x+2)dx$$

(f)
$$\int \frac{x}{\sqrt{x^2 + 4}} dx$$

(g)
$$\int \frac{\ln x}{x} dx$$

(h)
$$\int \cot x \ dx \ \left[\text{Dica: } \cot x = \frac{\cos x}{\sin x} \right]$$

(i)
$$\int_0^2 \frac{x^2}{x^3 + 1} dx$$

(j)
$$\int_{1}^{2} \frac{3dx}{x \ln^2 3x}$$

(k)
$$\int_{1}^{2} xe^{3x^2} dx$$

(1)
$$\int_0^3 2x \ 3^{x^2} dx$$

(m)
$$\int \frac{1}{x^2} \sqrt{2 - \frac{1}{x}} dx$$

(n)
$$\int \sec x \, dx$$
[Dica: $\sec x = \sec x \frac{(\sec x + \tan x)}{(\sec x + \tan x)}$]

(o)
$$\int \frac{1}{\sqrt{t}} \cos\left(\sqrt{t} + 3\right) dt$$

(p)
$$\int_{1}^{4} \frac{(1+\sqrt{u})^{1/2}}{\sqrt{u}} du$$

(q)
$$\int_0^{\pi/2} 3 \sin x \cos x \sqrt{1 + 3 \sin^2 x} dx$$

(r)
$$\int_0^{\pi/2} e^{\sin^2 \theta} \sin 2\theta \ d\theta$$

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. **Data máxima de entrega: 18/04/2024 até 14:00 horas**

Ciência da Computação

Prof. Tiago J. Arruda

3. Calcule a área assinalada nas figuras abaixo.

∧ Integração por partes

4. Calcule a integral usando a integração por partes com as escolhas de u e dv indicadas, de forma que $\int u dv = uv - \int v du$.

(a)
$$\int \ln x \, dx$$
; $u = \ln x$, $dv = dx$

(a)
$$\int \ln x \, dx$$
; $u = \ln x$, $dv = dx$
 (c) $\int t^2 \ln t \, dt$; $u = \ln t$, $dv = t^2 dt$
 (b) $\int x \sin x \, dx$; $u = x$, $dv = \sin x dx$
 (d) $\int \theta \cos \theta d\theta$; $u = \theta$, $dv = \cos \theta d\theta$

(b)
$$\int x \sin x \, dx; \quad u = x, \, dv = \sin x dx$$

(d)
$$\int \theta \cos \theta d\theta$$
; $u = \theta$, $dv = \cos \theta d\theta$

5. Use a integração por partes para resolver as integrais abaixo.

(a)
$$\int x \ln x \ dx$$

(e)
$$\int t \sec^2 2t \ dt$$

(i)
$$\int_0^1 (x^2+1)e^{-x}dx$$

(b)
$$\int_0^1 x e^x dx$$

(f)
$$\int_0^{\pi/2} (x+1)\cos 2x \ dx$$

(a)
$$\int x \ln x \, dx$$
 (e) $\int t \sec^2 2t \, dt$ (i) $\int_0^1 (x^2 + 1)e^{-x} dx$ (b) $\int_0^1 xe^x dx$ (f) $\int_0^{\pi/2} (x+1)\cos 2x \, dx$ (j) $\int_0^{\pi} \sin^3 x \, dx$ [Dica: $\sin^3 x = \sin^2 x \sin x$] (d) $\int (x^2 + 2x)\cos x \, dx$ (h) $\int_1^3 r^3 \ln r \, dr$ [Dica: $t = \sqrt{x}$]

(c)
$$\int x \cos 5x \ dx$$

(g)
$$\int_0^{\pi} e^x \cos x \ dx$$

(k)
$$\int \sqrt{x}e^{\sqrt{x}}dx$$

(h)
$$\int_{1}^{3} r^{3} \ln r \ dr$$

[Dica:
$$t = \sqrt{x}$$
]

6. Uma força de amortecimento, causada pelo amortecedor representado na figura abaixo, desacelera o movimento oscilatório de uma massa acoplada a uma mola sob a ação da gravidade.

Sabendo que a posição da massa no tempo t é

$$y = 2e^{-t} \operatorname{sen} t$$

para $t \geq 0$, onde y = 0 é a posição de equilíbrio, encontre o valor médio de y sobre o intervalo $0 \le t \le 2\pi.$