Algoritmos y Estructuras de Datos I

Primer Cuatrimestre 2020

Guía Práctica 5 Demostración de corrección de ciclos en SmallLang

Teorema del invariante: corrección de ciclos

Ejercicio 1. *\psi Consideremos el problema de sumar los elementos de un arreglo y la siguiente implementación en SmallLang, con el invariante del ciclo.

Especificación Implementación en SmallLang proc sumar (in s: $seq\langle \mathbb{Z} \rangle$, out result: \mathbb{Z}) { result := 0;Pre {true} i := 0;Post $\{result = \sum_{j=0}^{|s|-1} s[j]\}$ while (i < s.size()) do } result := result + s[i]; i := i + 1endwhile

Invariante de Ciclo

$$I \equiv 0 \le i \le |s| \land_L result = \sum_{j=0}^{i-1} s[j]$$

- a) Escribir la precondición y la postcondición del ciclo.
- b) ¿Qué punto falla en la demostración de corrección si el primer término del invariante se reemplaza por $0 \le i < |s|$?
- c) ¿Qué punto falla en la demostración de corrección si el límite superior de la sumatoria (i-1) se reemplaza por i?
- d) ¿Qué punto falla en la demostración de corrección si se invierte el orden de las dos instrucciones del cuerpo del ciclo?
- e) Demostrar formalmente la corrección parcial del ciclo, usando los primeros puntos del teorema del invariante.
- f) Proponer una función variante y demostrar formalmente la terminación del ciclo, utilizando la función variante.

Ejercicio 2. * Dadas la especificación y la implementación del problema sumarParesHastaN, escribir la precondición y la postcondición del ciclo, y demostrar formalmente su corrección a través del teorema del invariante.

Especificación Implementación en SmallLang proc sumarParesHastaN (in n: \mathbb{Z} , out result: \mathbb{Z}) { result := 0;i := 0;Post $\{result = \sum_{j=0}^{n-1} (\text{if } j \bmod 2 = 0 \text{ then } j \text{ else } 0 \text{ fi})\}$ while (i < n) do } result := result + i; i := i + 2endwhile

Invariante de ciclo

$$I \equiv 0 \leq i \leq n+1 \wedge i \ mod \ 2 \ = \ 0 \wedge result = \sum_{j=0}^{i-1} (\text{if} \ j \ mod \ 2 = 0 \ \text{then} \ j \ \text{else} \ 0 \ \text{fi})$$

Ejercicio 3. Supongamos que se desea implementar la función exponenciacion, cuya especificación es la siguiente:

```
proc exponenciacion (in m: \mathbb{Z}, in n: \mathbb{Z}, out result: \mathbb{Z}) { Pre \{n \geq 0 \land \neg (m=0 \land n=0)\} Post \{result=m^n\} }
```

Consideremos además el siguiente invariante: $I \equiv 0 \leq i \leq n \wedge result = m^i$

- a) Escribir un programa en SmallLang que resuelva este problema, y que incluya un ciclo que tenga a I como invariante. Demostrar formalmente la corrección de este ciclo.
- b) La siguiente implementación en SmallLang es trivialmente errónea. ¿Qué punto del teorema del invariante falla en este caso?¹

```
i := 0;
result := 0;
while( i < m ) do
  result := result * n;
  i := i + 1
endwhile</pre>
```

c) ¿Qué puede decir de la siguiente implementación en SmallLang? En caso de que sea correcta, proporcione una demostración. En caso de que sea incorrecta, explique qué punto del teorema del invariante falla.

```
 \begin{array}{l} i \; := \; 0; \\ result \; := \; 1; \\ \textbf{while}(\;\; i \; < \; n \;\;) \;\; \textbf{do} \\ i \; := \; i \; + \; 1; \\ result \; := \; result \; * \; m \\ \textbf{endwhile} \\ \end{array}
```

d) ¿Qué puede decir de la siguiente implementación? En caso de que sea incorrecta, ¿se puede reforzar la precondición del problema para que esta especificación pase a ser correcta?

```
i := 2;
result := m*m;

while( i < n ) do
  result := result * m;
  i := i + 1
endwhile</pre>
```

Ejercicio 4. ★ Considere el problema sumaDivisores, dado por la siguiente especificación:

```
proc sumaDivisores (in n: \mathbb{Z}, out result: \mathbb{Z}) { Pre \{n \geq 1\} Post \{result = \sum_{j=1}^n (\text{if } n \bmod j = 0 \text{ then } j \text{ else } 0 \text{ fi})\} }
```

- a) Escribir un programa en SmallLang que satisfaga la especificación del problema y que contenga exactamente un ciclo.
- b) El ciclo del programa propuesto, ¿puede ser demostrado mediante el siguiente invariante?

$$I \equiv 1 \leq i \leq n \wedge result = \sum_{j=1}^{i} (\text{if } n \ mod \ j = 0 \ \text{then } j \ \text{else } 0 \ \text{fi})$$

Si no puede, ¿qué cambios se le deben hacer al invariante para que se corresponda con el ciclo propuesto?

¹Recordar que para mostrar que una implicación $A \to B$ no es cierta alcanza con dar valores de las variables libres que hagan que A sea verdadero y que B sea falso. Para mostrar que una tripla de Hoare $\{P\}S\{Q\}$ no es válida, alcanza con dar valores de las variables que satisfacen P, y tales que luego de ejecutar S, el estado final no satisface Q.

Ejercicio 5. Considere la siguiente especificación de la función sumarPosicionesImpares.

```
proc sumarPosicionesImpares (in s: seq\langle\mathbb{Z}\rangle, out result: \mathbb{Z}) { Pre \{\text{true}\} Post \{result = \sum_{i=0}^{|s|-1} (\text{if } i \bmod 2 = 1 \text{ then } s[i] \text{ else } 0 \text{ fi})\}}
```

a) Implementar un programa en SmallLang para resolver este problema, que incluya exactamente un ciclo con el siguiente invariante:

```
I\equiv 0\leq j\leq |s|\wedge_L result=\sum_{i=0}^{j-1} (\text{if }i\ mod\ 2=1\ \text{then }s[i]\ \text{else}\ 0\ \text{fi})
```

b) Demostrar formalmente la corrección del ciclo propuesto.

Ejercicio 6. Considere la siguiente especificación e implementación del problema maximo.

- a) Escribir la precondición y la postcondición del ciclo.
- b) Demostrar que el ciclo es parcialmente correcto, utilizando el siguiente invariante:

$$I \equiv (0 \le i < |s| \land 1 \le j \le |s|) \land_L (\forall k : \mathbb{Z}) (0 \le k < j \longrightarrow_L s[k] \le s[i])$$

c) Proponer una función variante que permita demostrar que el ciclo termina.

Ejercicio 7. * Considere la siguiente especificación e implementación del problema copiarSecuencia.

- a) Escribir la precondición y la postcondición del ciclo.
- b) Proponer un invariante y demostrar que el ciclo es parcialmente correcto.
- c) Proponer una función variante que permita demostrar que el ciclo termina.

Ejercicio 8. Considere la siguiente especificación e implementación del problema llenarSecuencia.

a) Escribir la precondición y la postcondición del ciclo.

- b) Proponer un invariante y demostrar que el ciclo es parcialmente correcto.
- c) Proponer una función variante que permita demostrar que el ciclo termina.

Ejercicio 9. ★ Sea el siguiente ciclo con su correspondiente precondición y postcondición:

```
while (i >= length(s) / 2) do

suma := suma + s[length(s)-1-i];

i := i - 1

endwhile
```

$$\begin{split} P_c: \{|s| \ mod \ 2 = 0 \land i = |s| - 1 \land suma = 0\} \\ Q_c: \{|s| \ mod \ 2 = 0 \land i = |s|/2 - 1 \ \land_L \ suma = \sum_{j=0}^{|s|/2 - 1} s[j]\} \end{split}$$

- a) Especificar un invariante de ciclo que permita demostrar que el ciclo cumple la postcondición.
- b) Especificar una función variante que permita demostrar que el ciclo termina.
- c) Demostrar formalmente la corrección y terminación del ciclo usando el Teorema del invariante.

Ejercicio 10. Considere la siguiente especificación del problema reemplazarTodos.

```
\begin{array}{l} \operatorname{proc\ reemplazarTodos\ (inout\ s:\ } seq\langle\mathbb{Z}\rangle,\ \operatorname{in\ a:\ }\mathbb{Z},\ \operatorname{in\ b:\ }\mathbb{Z}) \quad \{ \\ \operatorname{Pre}\ \{s=S_0\} \\ \operatorname{Post}\ \{|s|=|S_0|\wedge_L \\ (\forall j:\mathbb{Z})((0\leq j<|s|\wedge_L S_0[j]=a)\rightarrow_L s[j]=b)\wedge \\ (\forall j:\mathbb{Z})(d\leq j<|s|\wedge_L S_0[j]\neq a)\rightarrow_L s[j]=S_0[j])\} \\ \} \end{array}
```

- a) Dar un programa en SmallLang que implemente la especificación dada.
- b) Escribir la precondición y la postcondición del ciclo.
- c) Proponer un invariante y demostrar que el ciclo es parcialmente correcto.
- d) Proponer una función variante que permita demostrar que el ciclo termina.

Demostración de correctitud: programas completos

Ejercicio 11. *\precedent Demostrar que el siguiente programa es correcto respecto a la especificación dada.

Especificación

```
\begin{array}{l} \text{proc indice (in s: } seq\langle\mathbb{Z}\rangle, \text{ in e: } \mathbb{Z}, \text{ out r: } \mathbb{Z}) \quad \{ \\ \text{Pre } \{True\} \\ \text{Post } \{r=-1\rightarrow\\ (\forall j:\mathbb{Z})(0\leq j<|s|\rightarrow_L s[j]\neq e) \\ \land \\ r\neq -1\rightarrow\\ (0\leq r<|s|\land_L s[r]=e) \} \\ \} \end{array}
```

Implementación en SmallLang

```
i := s.size()-1;
j := -1;
while (i>=0) do
   if (s[i]=e) then
        j:=i
   else
        skip
   endif;
   i:=i-1
endwhile;
r := j;
```

Ejercicio 12. ★ Demostrar que el siguiente programa es correcto respecto a la especificación dada.

Especificación

Implementación en SmallLang

```
proc existeElemento (in s: seq\langle \mathbb{Z} \rangle, in e: \mathbb{Z}, out r: Bool) {
                                                                     i := 0;
       Pre \{True\}
                                                                     j := -1;
       Post \{r = True \leftrightarrow
                                                                     while (i < s.size()) do
       ((\exists k : \mathbb{Z})(0 \le k < |s|) \land_L s[k] = e)\}
                                                                        if (s[i] = e) then
}
                                                                          j := i
                                                                         skip
                                                                      endif;
                                                                      i := i + 1
                                                                     endwhile;
                                                                     if (j != -1)
                                                                        r := true
                                                                     else
                                                                        r := false
                                                                     endif
```

Ejercicio 13. Demostrar que el siguiente programa es correcto respecto a la especificación dada.

Especificación

Implementación en SmallLang

```
proc esSimetrico (in s: seq(\mathbb{Z}), out r:Bool) {
                                                                 i := 0;
       Pre \{True\}
                                                                 j := s.size() - 1;
       Post \{r = True \leftrightarrow (\forall i : \mathbb{Z}) (0 \le i < |s| \rightarrow_L
                                                                 r := true;
       s[i] = s[|s| - (i+1)])
                                                                 while (i < s.size()) do
}
                                                                    if (s[i]!=s[j]) then
                                                                      r := false
                                                                    else
                                                                      skip
                                                                    endif;
                                                                    i := i + 1;
                                                                    j := j - 1;
                                                                 endwhile
```

Ejercicio 14. * Demostrar que el siguiente programa es correcto respecto a la especificación dada.

Especificación

Implementación en SmallLang

```
proc concatenarSecuencias (in a: seq\langle \mathbb{Z} \rangle,
                                                                                   i := 0;
in b: seq\langle \mathbb{Z} \rangle,
                                                                                   while (i < a.size()) do
inout r:seq\langle \mathbb{Z}\rangle) {
                                                                                       r [i] := a[i];
         Pre \{|r| = |a| + |b| \land r = R_0\}
                                                                                       i := i + 1
         Post \{|r| = |R_0| \land (\forall j : \mathbb{Z})(0 \le j < |a| \rightarrow_L r[j] = a[j]) \land \mathbf{endwhile};
         (\forall j : \mathbb{Z})(0 \le j < |b| \to_L r[j + |a|] = b[j])
                                                                                   i := 0;
}
                                                                                   while (i < b.size()) do
                                                                                       r[a.size()+i]:=b[i];
                                                                                       i := i + 1
                                                                                   endwhile
```

Ejercicio 15. Dar dos programas en SmallLang que satisfagan la siguiente especificación, y demostrar que ambos son correctos.

```
\begin{array}{l} \operatorname{proc\ buscarPosicionUltimoMaximo\ (in\ s:\ } seq\langle\mathbb{Z}\rangle, \ \operatorname{out\ r:}\mathbb{Z}) \ \ \left\{ \begin{array}{l} \operatorname{Pre}\ \{|s|>0\} \\ \operatorname{Post}\ \{0\leq r<|s|\wedge_L \\ (\forall j:\mathbb{Z})(0\leq j< r\rightarrow_L s[r]\geq s[j]) \wedge \\ (\forall j:\mathbb{Z})(r< j<|s|\rightarrow_L s[r]>s[j])\} \end{array} \right\} \end{array}
```

RESOLUCIONES.

Ejercicio 1

a)

$$P_c: \{result = 0 \land i = 0\}$$

$$Q_c: \{result = \sum_{j=0}^{|s|-1} s[j]\}$$

- b) Si le sacas el igual a la segunda desigualdad no te agarra el ultimo elemento la sumatoria.
- c) Si le sacas el -1 al supraindice de la sumatoria entonces va a tratar de sumar la posicion del tamaño de la secuencia, como la secuencia no posee esta posicion se va a indefinir el resultado.
- d) Si invertis de lugar las instrucciones del cuerpo del ciclo entonces no te agarra el primer elemento de la secuencia.
- e) Vamos a demostrar los primeros 3 puntos del teorema del invariante. Esto nos permite afirmar que el ciclo, si termina entonces es correcto respecto a su especificacón. Especificacion del ciclo:
 - $P_c: result = 0 \land i = 0$
 - $Q_c : result = \sum_{j=0}^{|s|-1} s[j]$
 - $I \equiv 0 \le i \le |s| \wedge_L result = \sum_{j=0}^{i-1} s[j]$

 $P_c \Rightarrow I$

Tenemos que vale P_c como hipótesis. Queremos probar que vale I. Vamos a probarlo por partes:

• Queremos ver que vale $0 \le i \le |s|$

Sabemos que i=0 (es información que nos da P_c). Entonces reemplazando, lo que queremos ver es que 0 < 0 < |s|. La primera parte, $0 \le 0$, es una tautología. Nos resta ver si $0 \le |s|$. Pero si la lista es vacia entonces $0 \le 0$, caso contrario si la lista fuera no vacia entonces |s| > 0 y la desigualdad $0 \le |s|$ se cumple.

■ Queremos ver que $result = \sum_{j=0}^{i-1} s[j]$ Como i = 0, entonces $\sum_{j=0}^{i-1} s[j] = 0 = result$.

$$(I \land \neg B) \Rightarrow Q_c$$

Queremos demostrar que vale Q_c , asumiendo que valen tanto I como $\neg B$. Es decir, queremos probar que $result = \sum_{j=0}^{|s|-1} s[j]$

Como sabemos que vale I, podemos afirmar que $0 \le i \le |s|$.

Además sabemos que vale $\neg B \equiv i \geq |s|$.

Luego $|s| \le i \le |s|$, entonces el unico valor que cumple esta condición es i = |s|. Analicemoslo.

i = |s|

En este caso, podemos reemplazar i por |s| en la sumatoria del invariante y llegamos a $result = \sum_{j=0}^{|s|-1} s[j]$, exactamente lo que queríamos probar. $\{I \wedge B\}$ ciclo $\{I\}$

Queremos ver que vale la siguiente tripla de Hoare $\{I \land B\}$ ciclo $\{I\}$.

Llamemos S1 a la primer instrucción del cuerpo del ciclo, S2 a la segunda:

S1: result := result + s[i];

S2: i := i + 1

Lo primero que haremos es calcular wp(ciclo, I).

$$wp(S1; S2, I) \stackrel{Ax3}{\equiv} wp(S1, wp(S2, I))$$
 (1)

Antes de seguir, debemos calcular wp(S2, I). Para eso usaremos el axioma 1:

$$wp(S2, I) \stackrel{Ax1}{\equiv} def(i+1) \wedge_L I^i_{i+1}$$

$$true \wedge_L (0 \leq i+1 \leq |s| \wedge_L result = \sum_{j=0}^{i+1-1} s[j])$$

$$(0 \leq i+1 \leq |s| \wedge_L result = \sum_{j=0}^{i+1-1} s[j])$$

Volviendo a (1), reemplazamos wp(S2, I) y nos queda:

$$wp(S1; S2, I) \stackrel{Ax3}{\equiv} wp(S1, wp(S2, I)) \equiv wp(S1, 0 \leq i + 1 \leq |s| \land_L result = \sum_{j=0}^{i+1-1} s[j])$$

$$\stackrel{Ax1}{\equiv} def(result + s[i]) \land_L 0 \leq i + 1 \leq |s| \land_L result + s[i] = \sum_{j=0}^{i} s[j]$$

$$\equiv 0 \leq i < |s| \land_L 0 \leq i + 1 \leq |s| \land_L result + s[i] = \sum_{j=0}^{i} s[j]$$

$$\equiv 0 \leq i \land i + 1 \leq |s| \land_L result = \sum_{j=0}^{i} s[j] - s[i]$$

$$\equiv 0 \leq i \land i + 1 \leq |s| \land_L result = \sum_{j=0}^{i-1} s[j]$$

Una vez calculada la precondición más débil, debemos ver si $(I \wedge B)$ implican dicha precondición. Probamos cada parte por separado:

- $0 \le i \land i + 1 \le |s|$ Sabemos por I que $i \le 0$, entonces la primera parte ya esta demostrada, ahora AAAAAAHHHHHH
- $result = \sum_{j=0}^{i-1} s[j]$ Este result es igual al del I.