Lecture 16: Oct 10, 2018

Grammar of Data

- Interrogating Data
- dplyr
- Split-Apply-Combine
- Resources

James Balamuta STAT 385 @ UIUC

Announcements

- hw06 is due Friday, Oct 12th, 2018 at 6:00 PM
- Office Hour Changes
 - John Lee's are now from 4 5 PM on WF
 - Hassan Kamil's are now from 2:30 3:30 PM on TR
- Quiz 07 covers Week 6 contents @ <u>CBTF</u>.
 - Window: Oct 9th 11th
 - Sign up: https://cbtf.engr.illinois.edu/sched
- Want to review your homework or quiz grades?
 Schedule an appointment.

Last Time

Designing a Graphic

- Emphasis the data's narrative.
- Be ware of Simpson's paradox, Apophenia, and lying with graphics.

CRAP

- Contrast, Repetition, Alignment, Proximity
- Tenets of Gestalt Design

Chart Junk

Useless embellishment on the plot that impacts clarity of plot

Modern Graphics

Ability to modify display or view data over time.

Lecture Objectives

- Deriving appropriate domain questions for data.
- Describe the three stages of Split-Apply-Combine.
- Explain and apply the grammar of data to manipulate data.

Interrogating Data

Example Data

... tidied version of enrollment figures ...

Year	Gender	Enrolled
Undergrad	Men	18,345
Undergrad	Women	15,267
Undergrad	Unknown	12
Professional	Men	352
Professional	Women	640
Professional	Unknown	0
Graduate	Men	7,173
Graduate	Women	6,028
Graduate	Unknown	9

9 x 3

enrolled_fa2017

Source: http://www.dmi.illinois.edu/stuenr/abstracts/FA17_ten.htm

Questions

... digging into the data ...

1. What variable holds admission figures / gender / class?

enrolled_fa2017\$Enrollment enrolled_fa2017[["Gender"]] enrolled_fa2017[, "Year"]

2. Are undergraduates **found** in the data?

enrolled_fa2017\$Year == "Undergraduate"

3. Who has **highest enrollment** amount?

enrolled_fa2017[enrolled_fa2017\$Enrollment == max(enrolled_fa2017\$Enrollment),]

What happened here?

Data Wrangling

Manipulating raw data through transformations to obtain a useful format

Underlying Grammar

... phrasing of questions using verbs ...

select: Retrieve a variable

A B C — A

mutate: Add a variable to the data

filter: Extracts cases based on values

arrange: Change the order of the data

summarise: Reduce multiple values to statistics

group_by: Split the data by trait

dplyr

... grammar for manipulating data ...

install.packages("dplyr") library("dplyr")

Function	Description
filter(.data,)	Extracts cases based on values
select(.data,)	Include or exclude variables (var / -var)
arrange(.data,)	Change the order of the data
mutate(.data,)	Add new variables to the data
summarise(.data,)	Reduce multiple values to statistics
group_by(data,)	Split the data by trait

Filter Data

... subset by **men** ...

Dataset

No quotes on variable! Non-standard evaluation (NSE)

							_
Year	Gender	Enrolled		Year	Gender	Enrolled	
Undergra	d Men	18,345		Undergrad	Men	18,345	
Undergra	d Women	15,267	A	Professional	Men	352	
Undergra	d Unknown	12		Graduate	Men	7,173	2 \
Profession	nal Men	352		1			3 ×
Profession	wal Women	640		enrolled_fa2017_men			
Profession	ual Unknown	0					
Graduate	Men	7,173					
Graduate	Women	6,028					

enrolled_fa2017

Unknown

Graduate

9 x 3

Filter Data

... subset by women ...

enrolled_fa2017_women = filter(enrolled_fa2017, Gender == "Women") # dplyr enrolled_fa2017_women = enrolled_fa2017[enrolled_fa2017\$Gender == "Women",] # base R

Year	Gender	Enrolled		Year	Gender	Enrolled	
Undergrad	Men	18,345	7	Undergrad	Women	15,267	
Undergrad	Women	15,267		Professional	Women	640	
Undergrad	Unknown	12		Graduate	Women	6,028	
Professional	Men	352		1			•
Professional	Women	640		enrolled_fa2017_women			
Professional	Unknown	0					
Graduate	Men	7,173					
Graduate	Women	6,028	/				
Graduate	Unknown	9					

enrolled_fa2017

9 x 3

Select Variables

... retrieve year and enrolled ...

enrolled_fa2017_women_info = select(enrolled_fa2017_women, Year, Enrolled)

enrolled_fa2017_women

enrolled_fa2017_women_info

Arrange Data

... changing order of data ...

enrolled_fa2017_women_ordered = arrange(enrolled_fa2017_women_info, Enrolled)

Year	Enrolled	Year	Enrolled
Undergrad	15,267	Professional	640
Professional	640	Graduate	6,028
Graduate	6,028	Undergrad	15,267

3 x 2

enrolled_fa2017_ordered_women

3 x 2

enrolled_fa2017_women_info

Source: http://www.dmi.illinois.edu/stuenr/abstracts/FA17 ten.htm

Arranging Data

... descending order ...

Year	Enrolled		Year	Enrolled
Undergrad	15,267		Undergrad	15,267
Professional	640		Graduate	6,028
Graduate	6,028		Professional	640

3 x 2

3 x 2

enrolled_fa2017_women_info

enrolled_fa2017_ordered_women

Source: http://www.dmi.illinois.edu/stuenr/abstracts/FA17_ten.htm

Summarise

... figuring out total enrollment across years ...

enrolled_fa2017_total_women = summarise(enrolled_fa2017_women_info,

Total_Enrolled = sum(Enrolled))

3 x 2

enrolled_fa2017_women_info

enrolled_fa2017_total_women

Mutating Data

... padding the women enrollment ...

enrolled_fa2017_women_add = mutate(enrolled_fa2017_women_info, Additional = Enrolled + 550)

Year	Enrolled
Undergrad	15,267
Professional	640
Graduate	6,028

Year	Enrolled	Additional
Undergrad	15,267	15,817
Professional	640	1190
Graduate	6,028	6,578

3 x 2

 3×3

enrolled_fa2017_women_info

enrolled_fa2017_women_add

Previously

Definition:

Piping is the act of taking one value and immediately placing it into another function to form a flow of results.

Left Function

Transmitting function result rnorm(10)

Pipe Operator

Facilitate moving left result to the function on right

Right Function

Receiving function result in first parameter abs(rnorm(10))

%>% is read as "and, then"

dplyr with Pipes

... piping together different chunks of code ...

```
enrolled_fa2017_total_women =
enrolled_fa2017 %>%  # Take the enrollment data and, then
filter(Gender == "Women") %>% # Retrieve all Women data and, then
select(Year, Enrolled) %>%  # Take Year and Enrolled variables and, then
arrange(Enrolled) %>%  # Order Enrolled in Ascending order and, then
summarise(Total_Enrolled = sum(Enrolled)) # Get total women enrollment
```

Your Turn

- 1. Select the Sepal.Length and Petal.Length variables in the **iris** data set
- 2. Retrieve all of the virginica **Species** observations from **iris**

Split-Apply-Combine

Split-Apply-Combine

... overview ...

1. Split Data into pieces, 2. Apply function to each piece, and 3. Combine result

Vectorization

... in the split-apply-combine framework ...


```
x = 1L:4L

(y = x^2)

= 11114916
```

Split-Apply-Combine

AKA

MapReduce

Summarise by Group

... summary statistics broken down by groups ...

enrolled_fa2017_grouped = **group_by**(enrolled_fa2017, **Gender**) enrolled_fa2017_gender = **summarise**(enrolled_fa2017_grouped,

Total_Enrollment = sum(Enrolled))

Year	Gender	Enrolled
Undergrad	Men	18,345
Undergrad	Women	15,267
Undergrad	Unknown	12
Professional	Men	352
Professional	Women	640
Professional	Unknown	0
Graduate	Men	7,173
Graduate	Women	6,028
Graduate	Unknown	9

Gender	Total_Enrollment
Men	25,870
Women	21,935
Unknown	21

 3×2

enrolled_fa2017_gender

9 x 3

enrolled_fa2017

Split Step

SPLIT by Gender

enrolled_fa2017_grouped = group_by(enrolled_fa2017, Gender)

Year	Gender	Enrolled	Men
Undergrad	Men	18,345	
Undergrad	Women	15,267	- Wa
Undergrad	Unknown	12	Women
Professional	Men	352	
Professional	Women	640	7/4
Professional	Unknown	0	74noun
Graduate	Men	7,173	1/2
Graduate	Women	6,028	
Graduate	Unknown	9	
er	9 x 3		

Year	Gender	Enrolled	
Undergrad	Men	18,345	
Professional	Men	352	
Graduate	Men	7,173	3 x 3
Year	Gender	Enrolled	
Undergrad	Women	15,267	
Professional	Women	640	
Graduate	Women	6,028	3 x 3
Year	Gender	Enrolled	
Undergrad	Unknown	12	
Professional	Unknown	0	
Graduate	Unknown	9	

enrolled_fa2017_grouped

3 x 3

Apply Step: Using a Function

APPLY sum on Enrolled

summarise(enrolled_fa2017_grouped, Total_Enrollment = sum(Enrolled))

Apply Step: Match to Group

APPLY sum on Enrolled

summarise(enrolled_fa2017_grouped, Total_Enrollment = sum(Enrolled))

Year	Gender	Enrolled	sum	Gender	Total_Enrollment	
Undergrad	Men	18,345		Men	25,870	
Professional	Men	352				1 x 2
Graduate	Men	7,173				–
			3 x 3			
Year	Gender	Enrolled	sum	Gender	Total_Enrollment	
Undergrad	Women	15,267	Sulli	Women	21,935	
Professional	Women	640				1 x 2
Graduate	Women	6,028				
			3 x 3			
Year	Gender	Enrolled	sum	Gender	Total_Enrollment	
Undergrad	Unknown	12		Unknown	12	
Professional	Unknown	0				1 x 2
Graduate	Unknown	9				
enrolled_fa2017_grouped SPLIT by Gender			3 x 3	Unassigned data		

Source: http://www.dmi.illinois.edu/stuenr/abstracts/FA17_ten.htm

Combine Step

COMBINE Total_Enrollment by Gender

enrolled_fa2017_gender = **summarise**(enrolled_fa2017_grouped, **Total_Enrollment** = **sum**(**Enrolled**))

APPLY sum on Enrolled

Your Turn

Provide the *mean*, *maximum*, *minimum* of the Sepal.Length for each of species of **iris** alongside a **count**.

Recap

Grammar of Data

- Pose question about the data
- Answer the questions through five verbs: select, filter, mutate, arrange, and summarise

Split-Apply-Combine

- Split Data into pieces
- Apply function to each piece, and
- Combine result

Resources

Cheatsheet

... dplyr cheat sheet ...

Data Transformation with dplyr:: cheat sheet

dplyr functions work with pipes and expect tidy data. In tidy data:

its own column

Each variable is in Each observation, or case, is in its own row

Summarise Cases

These apply summary functions to columns to create a new table of summary statistics. Summary functions take vectors as input and return one value (see back).

summarise(mtcars, avg = mean(mpg))

Manipulate Cases

EXTRACT CASES

Row functions return a subset of rows as a new table.

sample_n(tbl, size, replace = FALSE, weight = NULL, .env = parent.frame()) Randomly select size rows. sample_n(iris, 10, replace = TRUE)

Manipulate Variables

EXTRACT VARIABLES

Column functions return a set of columns as a new vector or table.

pull(.data, var = -1) Extract column values as a vector. Choose by name or index. pull(iris, Sepal.Length)

select(.data, ...) Extract columns as a table. Also select_if(). select(iris, Sepal.Length, Species)

Use these helpers with select (), e.g. select(iris, starts_with("Sepal"))

contains(match) ends with(match) matches(match)

num_range(prefix, range) one of(...) starts_with(match)

:, e.g. mpg:cyl -, e.g, -Species

https://github.com/rstudio/cheatsheets/raw/master/ data-transformation.pdf

Acknowledgements

Acknowledgements

- Style of the RStudio Cheatsheet for Data Transformations
- The Split-Apply-Combine Strategy for Data Analytics by Hadley Wickham

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

