Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids

Dan Koschier Jan Bender Barbara Solenthaler Matthias Teschner

What is SPlisHSPlasH

- Open-source SPH library for the simulation of fluids and solids (MIT License) for Windows and Linux
- https://github.com/InteractiveComputerGraphics/SPlisHSPlasH

- Explicit Pressure Solvers
 - Weakly compressible SPH for free surface flows (WCSPH)
- Implicit Pressure Solvers
 - Predictive-corrective incompressible SPH (PCISPH)
 - Position based fluids (PBF)
 - Implicit incompressible SPH (IISPH)
 - Divergence-free smoothed particle hydrodynamics (DFSPH)
 - Projective Fluids (PF)

- Explicit Viscosity
 - XSPH
 - Laplacian formulation [Monaghan1992]

Implicit Viscosity

- Takahashi et al. Implicit Formulation for SPH-based Viscous Fluids. CGF 2015
- Peer et al. An Implicit Viscosity Formulation for SPH Fluids. TOG 2015
- Peer & Teschner. *Prescribed Velocity Gradients for Highly Viscous SPH Fluids with Vorticity Diffusion*. TVCG 2016.
- Bender & Koschier. Divergence-free SPH for incompressible and viscous fluids. TVCG 2017
- Weiler et al. A Physically Consistent Implicit Viscosity Solver for SPH Fluids. CGF 2018

Vorticity

- Macklin & Müller. Position based fluids. TOG 2013
- Bender et al. Turbulent Micropolar SPH Fluids with Foam. TVCG 2018

Multi-Phase Fluid Simulation

• Solenthaler & Pajarola. Density Contrast SPH Interfaces. SCA 2008

Drag Forces

- Macklin et al. Unified Particle Physics for Real-Time Applications. TOG 2014
- Gissler et al. Generalized Drag Force for Particle-based Simulations.
 CAG 2017

Surface Tension

- Becker & Teschner. Weakly compressible SPH for free surface flows.
 SCA 2007
- Akinci et al. Versatile surface tension and adhesion for SPH fluids. TOG 2013
- He et al. Robust simulation of sparsely sampled thin features in SPHbased free surface flows. TOG 2014

Elastic Forces

- Becker et al. Corotated SPH for deformable solids. Natural Phenomena 2009
- Peer et al. An Implicit SPH Formulation for Incompressible Linearly Elastic Solids. CGF 2017

- Miscellaneous
 - Rigid-fluid coupling with static and dynamic bodies
 - Fluid emitters
 - Adaptive time stepping (CFL)
 - A json-based scene file importer
 - Automatic surface sampling
 - Volume sampling of closed geometries
 - Partio file export of all particle data
 - Maya plugin to import partio data

Simulator Classes

Code Example: XSPH

```
void Viscosity_XSPH::initParameters()
{
    NonPressureForceBase::initParameters();
    VISCOSITY_COEFF = createNumericParameter("viscosity", "Viscosity coeff.", &m_viscosity);
    setGroup(VISCOSITY_COEFF, "Viscosity");
    setDescription(VISCOSITY_COEFF, "Coefficient for the viscosity force computation");
}
```

Code Example: XSPH

```
void Viscosity XSPH::step()
   #pragma omp parallel for
   for (int i = 0; i < numParticles; i++)</pre>
      const Vector3r &xi = m model->getPosition(i);
      const Vector3r &vi = m model->getVelocity(i);
      const Real density i = m model->getDensity(i);
      Vector3r &ai = m model->getAcceleration(i);
      forall fluid neighbors in same phase(
         const Vector3r &vj = m model->getVelocity(neighborIndex);
         const Real density j = m model->getDensity(neighborIndex);
         ai -= m viscosity/h * (m model->getMass(neighborIndex) / density j) *
              (vi - vj) * sim->W(xi - xj);
      );
```


Roadmap

- Available soon:
 - GPU neighborhood search
 - AVX support for the pressure solver
 - Foam generation tool
 - Boundary handling with density maps
- Work in progress
 - Tool for surface reconstruction
- Future
 - GPU-based pressure solver
 - Integration in Blender

Demo

