Solutions to Problem Set 1 (Due Wednesday, 9/13)

1. A competitive market has n buyers, each one with the same downward-sloping demand function d(p). Thus, the market demand function is nd(p). The market supply function is S(p), an upward-sloping function. Assume the functions d and S are both differentiable. Let $p^*(n)$ and $x^*(n)$ be the equilibrium price and quantity given a fixed n. Determine their comparative static properties. What further assumptions do you need to make?

Soln: We make two more assumptions.¹ The first is that at the particular n we are interested in, an equilibrium price exists, i.e., there is a price $p^*(n)$ that equates demand and supply:

$$nd(p^*(n)) - S(p^*(n)) = 0.$$
 (1)

Second, we assume that the derivatives of the given functions are not zero at $p^*(n)$:

$$d^{*'}(p^*(n)) \neq 0$$
 and $S^{*'}(p^*(n)) \neq 0$.

This, together with the fact that d is downward sloping and S is upward sloping, implies $d^{*'}(p^*(n)) < 0$ and $S^{*'}(p^*(n)) > 0$. For later use, let's note that we now have

$$nd^{*\prime}(p^{*}(n)) - S^{*\prime}(p^{*}(n)) < 0.$$
 (2)

The question asks us to find the signs of $p^{*\prime}(n)$ and $x^{*\prime}(n)$. We find $p^{*\prime}(n)$ by using the chain rule to differentiate the identity shown in (1) with respect to n:

$$d(p^*(n)) + \left[nd'(p^*(n)) - S'(p^*(n)) \right] p^{*\prime}(n) = 0.$$

Since (2) implies the term in square brackets is not zero, we can divide by it to find

$$p^{*\prime}(n) = \frac{-d(p^*(n))}{nd'(p^*(n)) - S'(p^*(n))}.$$

Because the denominator is negative by (2), and $d(p^*(n)) \ge 0$ (this is an implicit assumption too – it should have been made explicit), we have determined the comparative statics properties of the equilibrium price:

$$p^{*\prime}(n) > 0$$
 if $d(p^{*}(n)) > 0$, and $p^{*\prime}(n) = 0$ if $d(p^{*}(n)) = 0$.

Lastly, since the quantity of the good sold is $x^*(n) = S(p^*(n))$, we have

$$x^{*\prime}(n) = S'(p^*(n))p^{*\prime}(n),$$

and so

$$x^{*\prime}(n) > 0$$
 if $d(p^{*}(n)) > 0$, and $p^{*\prime}(n) = 0$ if $d(p^{*}(n)) = 0$.

From (1) we see that $x^*(n) > 0$ iff $d(p^*(n)) > 0$, so we can write the comparative statics properties more transparently as

$$x^*(n) > 0 \implies p^{*\prime}(n), x^{*\prime}(n) > 0,$$

 $x^*(n) = 0 \implies p^{*\prime}(n), x^{*\prime}(n) = 0.$

¹Actually, we should also make a third assumption, that the functions d and S are continuously differentiable. This allows us to use the implicit function theorem.

²We are told that S(p) is an upward-sloping and differentiable function, but this does not imply that its derivative is everywhere positive. For example, the function $S(p) = 1 + (p-1)^3$ is strictly increasing and differentiable, but has a zero derivative at p = 1. Similarly, the properties of d that are stated in the problem do not imply its derivative is negative everywhere.

JR1.2 Soln

- (a) This asks you to prove that the set ≿ is a subset of itself, which is silly every set is a subset of itself.
- (b) Let $(x,y) \in \sim$. We must show that $(x,y) \in \succeq$. This is trivial: the definition of $x \sim y$ alone implies $x \succeq y$, i.e., that $(x,y) \in \succeq$.
- (c) To prove $\succ \cup \sim = \succeq$, we have to show (i) $\succ \cup \sim \subset \succeq$ and (ii) $\succeq \subset \succ \cup \sim$.
- Proof of (i): Let $(x,y) \in \succ \cup \sim$. Then, either $x \succ y$ or $x \sim y$. Case $x \succ y$: Then we have $x \succsim y$ and $not y \succsim x$. $x \succsim y$ implies $(x,y) \in \succsim$. Case $x \sim y$: Then we have $x \succsim y$ and $y \succsim x$. $x \succsim y$ implies $(x,y) \in \succsim$. Therefore, $\succ \cup \sim \subset \succsim$.
- Proof of (ii) Let $(x,y) \in \mathbb{Z}$, i.e., $x \succeq y$. By completeness of \mathbb{Z} , we have either $y \succeq x$ or not $y \succeq x$.

Case $y \succeq x$.: In this case we have $x \sim y$, that is, $(x, y) \in \sim$.

Case not $y \succsim x$: In this case we have $x \succ y$, that is, $(x, y) \in \succ$.

Therefore, $(x,y) \in \succ \cup \sim$.

(d) Suppose $(x,y) \in \succ$. Then, by the definition of \succ , $x \succeq y$ and not $y \succeq x$. Therefore, by the definition of \sim , not $x \sim y$, i.e., $(x,y) \notin \sim$. We conclude that $\succ \cap \sim = \emptyset$.

JR1.4 Soln

- **Proof that** \succ **is transitive:** Suppose $\mathbf{x}^1 \succ \mathbf{x}^2$ and $\mathbf{x}^2 \succ \mathbf{x}^3$. Then, $\mathbf{x}^1 \succsim \mathbf{x}^2$ and $\mathbf{x}^2 \succsim \mathbf{x}^3$, and so the transitivity of \succsim implies $\mathbf{x}^1 \succsim \mathbf{x}^3$. Now we want to show not $\mathbf{x}^3 \succsim \mathbf{x}^1$. Suppose instead that $\mathbf{x}^3 \succsim \mathbf{x}^1$. This and $\mathbf{x}^1 \succsim \mathbf{x}^2$ imply $\mathbf{x}^3 \succsim \mathbf{x}^2$ by transitivity, which contradicts $\mathbf{x}^2 \succ \mathbf{x}^3$. So it must be that not $\mathbf{x}^3 \succsim \mathbf{x}^1$. This and $\mathbf{x}^1 \succsim \mathbf{x}^3$ imply $\mathbf{x}^1 \succ \mathbf{x}^3$. We conclude that \succ is transitive.
- **Proof that** \sim is transitive: Suppose $\mathbf{x}^1 \sim \mathbf{x}^2$ and $\mathbf{x}^2 \sim \mathbf{x}^3$. Then, $\mathbf{x}^1 \succsim \mathbf{x}^2$ and $\mathbf{x}^2 \succsim \mathbf{x}^1$, and $\mathbf{x}^2 \succsim \mathbf{x}^3$ and $\mathbf{x}^3 \succsim \mathbf{x}^2$. Hence, by transitivity, we have $\mathbf{x}^1 \succsim \mathbf{x}^3$ and $\mathbf{x}^3 \succsim \mathbf{x}^1$. Thus, $\mathbf{x}^1 \sim \mathbf{x}^3$. This proves that \sim is transitive.
- **Proof that** $\mathbf{x}^1 \sim \mathbf{x}^2$ and $\mathbf{x}^2 \succeq \mathbf{x}^3$ implies $\mathbf{x}^1 \succeq \mathbf{x}^3$: Suppose $\mathbf{x}^1 \sim \mathbf{x}^2$ and $\mathbf{x}^2 \succeq \mathbf{x}^3$. From the former we have $\mathbf{x}^1 \succeq \mathbf{x}^2$. From this and $\mathbf{x}^2 \succeq \mathbf{x}^3$, we have $\mathbf{x}^1 \succeq \mathbf{x}^3$ by transitivity.
- **JR1.7** Soln: We want to show that Axiom 5' implies that $\geq (\mathbf{x}^0)$ is a convex set.

So, suppose $\mathbf{x}^1, \mathbf{x}^2 \in \succeq (\mathbf{x}^0)$. Without loss of generality (w.l.o.g.), we can assume $\mathbf{x}^1 \succeq \mathbf{x}^2$. By Axiom 5', $t\mathbf{x}^1 + (1-t)\mathbf{x}^2 \succeq \mathbf{x}^2$. Since $\mathbf{x}^2 \in \succeq (\mathbf{x}^0)$, we also have $\mathbf{x}^2 \succeq \mathbf{x}^0$. Hence, by transitivity, $t\mathbf{x}^1 + (1-t)\mathbf{x}^2 \succeq \mathbf{x}^0$, and so $t\mathbf{x}^1 + (1-t)\mathbf{x}^2 \in \succeq (\mathbf{x}^0)$. This proves that $\succeq (\mathbf{x}^0)$ is a convex set.

JR1.9 Soln: Note that the described preferences \succeq are those represented by the Leontief function $u(x_1, x_2) = \min\{x_1, x_2\}$.

Proof that \succeq satisfies Axiom 5': Suppose $\mathbf{x}^1 \succeq \mathbf{x}^0$. Then

$$\min\{x_1^1, x_2^1\} \ge \min\{x_1^0, x_2^0\}. \tag{3}$$

Hence, for any $t \in [0, 1]$,

$$\min\{tx_1^1 + (1-t)x_1^0, \ tx_2^1 + (1-t)x_2^0\} \ge \min\{\min\{x_1^1, x_1^0\}, \ \min\{x_2^1, x_2^0\}\}$$

$$= \min\{x_1^1, x_1^0, x_2^1, x_2^0\}$$

$$= \min\{x_1^0, x_2^0\},$$

where the last equality follows from (3). Hence, $t\mathbf{x}^1 + (1-t)\mathbf{x}^0 \succsim \mathbf{x}^0$, and so Axiom 5' holds.

Proof that \succeq satisfies **Axiom 4:** If $\mathbf{x}^0 \ge \mathbf{x}^1$, then $\min\{x_1^0, x_2^0\} \ge \min\{x_1^1, x_2^1\}$, and so $\mathbf{x}^0 \succeq \mathbf{x}^1$. Similarly, if $\mathbf{x}^0 \gg \mathbf{x}^1$, then $\min\{x_1^0, x_2^0\} > \min\{x_1^1, x_2^1\}$, and so $\mathbf{x}^0 \succeq \mathbf{x}^1$.

Proof that \succeq **does not satisfy Axiom 5:** Let $\mathbf{x}^1 = (1, 2)$, and $\mathbf{x}^0 = (1, 1)$. Note that $\mathbf{x}^1 \neq \mathbf{x}^0$ and $\mathbf{x}^1 \succeq \mathbf{x}^0$. However, for any $t \in [0, 1]$,

$$\min\{tx_1^1 + (1-t)x_1^0, \ tx_2^1 + (1-t)x_2^0\} = \min\{1, 2t + (1-t)\}$$

$$= 1$$

$$= \min\{x_1^0, x_2^0\}.$$

Hence, not $t\mathbf{x}^1 + (1-t)\mathbf{x}^0 \succ \mathbf{x}^0$.

2. For n = 1, 2, define \succeq_n on \mathbb{R}^n_+ by $x \succeq y$ iff $x \geq y$. Determine whether \succeq_1 and \succeq_2 are complete, transitive, continuous, convex, and strictly convex.

Soln

Completeness: Since \geq on \mathbb{R}_+ is complete, \succsim_1 is complete. But \succsim_2 is not complete because \geq on \mathbb{R}_+^2 is not complete. (For example, $(1,2) \ngeq (2,1)$ and $(2,1) \ngeq (1,2)$.)

Transitivity: \succeq_n for both n=1 and n=2 is transitive, because \geq on \mathbb{R}^n_+ is transitive.

Continuity: \succeq_1 is continuous, since for all $x \in \mathbb{R}_+$, the contour sets

$$\lesssim_1 (x) = [x, \infty) \text{ and } \lesssim_1 (x) = (-\infty, x]$$

are closed. Similarly, \succeq_2 is continuous, since for all $x \in \mathbb{R}^2_+$, the contour sets

$$\succeq_{2} (x) = [x_1, \infty) \times [x_2, \infty)$$
 and $\preceq_{2} (x) = (-\infty, x_1] \times (-\infty, x_2]$

are closed.

Convexity: \succsim_1 and \succsim_2 are both convex binary relations, since their upper contour sets are either intervals or the Cartesian product of intervals, and so are convex sets.

Strict Convexity: \succsim_1 is strictly convex. To see why, suppose $y, z \in \succsim_1 (x)$ and $y \neq z$. Then $y \geq x$ and $z \geq x$. Moreover, because $y \neq z$, at least one of them are strictly larger than x. Without loss of generality, assume y > x. This and $z \geq x$ imply that ty + (1-t)z > x for all $t \in (0,1)$. Hence, $ty + (1-t)z \succ_1 x$ for all $t \in (0,1)$. This proves that \succsim_1 is strictly convex.

However, \succeq_2 is not strictly convex. To prove this, let x = (1,1), y = (2,1), and z = (3,1). Then $y \succeq_2 x$, $z \succeq_2 x$ and $y \neq z$. But for any $t \in (0,1)$,

$$ty + (1-t)z = (3-t,1),$$

which is not strictly greater in each component than x = (1, 1). Hence, not $ty + (1-t)z \succ_2 x$.