

Semester II Examinations 2022/2023

Exam Codes $1EM1, 1OA1, 2BA1, 2BCW$	1, 2BCT1,	
-------------------------------------	-----------	--

2BPT1, 2BS1, 2EH1, 3BS9

Exam Second Year Arts and Science

Third Year Science

Module LINEAR ALGEBRA

Module Code MA203

External Examiner Prof. Colva Roney-Dougal

Internal Examiners Prof. Goetz Pfeiffer

Dr Kevin Jennings \star

<u>Instructions</u>	Answer	al.	l question	ıs.
			-	

Duration 2 hours

No. of Pages 4 pages including this page

School Mathematical and Statistical Sciences

Requirements:

Release in Exam venue Yes \square No \square MCQ Yes \square No \square Statistical / Log Tables Yes \square No \square

Q1. (a) [13 marks] Consider the following system of equations

$$4x_1 - 3x_2 + 4x_3 - 2x_4 = 11$$

$$x_1 - x_2 + x_3 - x_4 = 3$$

$$x_1 + x_3 + x_4 = 2$$

- (i) Write down the augmented matrix for this system of equations.
- (ii) Using elementary row operations, convert the augmented matrix to reduced row echelon form.
- (iii) Write down the general solution of the system of equations.
- (b) [12 marks] For each of the following statements, declare with justification whether the statement is true or false.
 - (i) A system of four linear equations in three unknowns cannot have a solution.
 - (ii) 4x + 2y 2z = 0 is the equation of a plane through the origin in \mathbb{R}^3 , with normal vector (2, 1, -1)
 - (iii) It is possible to determine if two lines in \mathbb{R}^3 intersect by solving an appropriate system of linear equations.

Q2. (a) [8 marks] Let

$$A = \begin{pmatrix} 1 & 1 \\ 4 & 3 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 5 & 6 \end{pmatrix}.$$

Of the products AB, BA, A^2 and B^2 , compute all those that are defined.

(b) [11 marks] Use elementary row operations to find the inverse (if it exists) of the matrix A below. Determine the rank of A and the kernel of A.

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 4 & 1 & 5 \\ 4 & 1 & 4 \end{array}\right).$$

- (c) [6 marks] For each of the following statements, declare with justification whether the statement is true or false.
 - (i) Elementary row operations do not change the determinant of a matrix.
 - (ii) Any set of three linearly independent vectors in \mathbb{R}^3 is a basis for \mathbb{R}^3 .
 - (iii) If the rows of a square matrix A are linearly dependent, then A is not invertible.

- **Q3.** (a) [10 marks] Express the vector (-1,4,7) as a linear combination of the vectors (1,-1,0),(1,0,2) and (0,1,1). What is the span of the set of vectors $\{(1,-1,0),(1,0,2),(0,1,1)\}$?
 - (b) [6 marks] Let $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$ be the standard basis vectors in \mathbb{R}^3 and consider the linear map $L : \mathbb{R}^3 \to \mathbb{R}^3$ which describes an anticlockwise rotation by an angle θ in the $e_1 e_3$ plane about the e_2 -axis. Find the matrix for L (w.r.t. the standard basis for \mathbb{R}^3).
 - (c) [9 marks] For each of the following statements, declare with justification whether the statement is true or false.
 - (i) If 0 is an eigenvalue of a square matrix A, then A has no inverse matrix.
 - (ii) If the characteristic polynomial of a 3×3 matrix A is $P(\lambda) = \lambda^3 6\lambda^2 + 11\lambda 6$, then 2 is an eigenvalue of A.
 - (iii) A 3×3 matrix can have four distinct eigenvalues.
- **Q4.** The town of Ballymarcove has three mobile phone providers ONE, TWO and THREE and every resident of Ballymarcove is a customer of exactly one provider.
 - Every year 10% of ONE customers switch to TWO and 20% switch to THREE (with 70% remaining with ONE).
 - Every year 30% of TWO customers switch to ONE and 20% switch to THREE (with 50% remaining with TWO).
 - Every year 30% of THREE customers switch to ONE and 30% switch to TWO (with 40% remaining with THREE).
 - (a) [9 marks] Write down the transition matrix for this Markov process.
 - (b) [8 marks] Explain why the transition matrix has 1 as an eigenvalue.
 - (c) [8 marks] TWO is a relative newcomer to Ballymarcove and in the long term it aims to have a third of the market. Currently ONE has 60% of the market, TWO has 10% and THREE has 30%. If current trends continue, can TWO expect to achieve their aim?