

EchoView.ai

Preliminary Design Review

Team 03:

Nicholas Hardy, Hassan Hijazi, Marybel Boujaoude, Riya Deokar, Jazmyn Walker

Problem Statement:

 About 2 to 4 of every 1,000 people in the United States are "functionally deaf"

more than half became deaf relatively late in life;

- 90-95% of deaf children are born to hearing parents
 who don't often know sign language
 - There is no one size fits all sign language for people to learn
- Existing solutions lack a universal, practical, and affordable fit for the Deaf and hard of hearing community

Solution:

Design a device capable of real-time speech-to-text transcription with a built-in display system that shows the user the text in the form of glasses.

Final Deliverables:

- Real-time speech-to-text transcription, integrating AI driven language processing
- Displaying transcribed text into user's field of vision in a readable manner
- Transparent lens with magnification of display and anti-reflective coating
- Seamlessly pair with an iOS compatible mobile application through BLE
- Store transcription data on the app to allow users to reference previous conversations up to 48 hours
- Minimum of 2-3 hours battery life

System Block Diagram:

Hardware:

- Adafruit ESP32 C3 QTPY:
 - WiFi, BLE, UART, GPIO
- Teensy 4.1:
 - o ARM Cortex-M7, GPIO, UART, I2C, I2S
- WaveShare 1.5in Transparent OLED
 - Display text through I2C
- Bifocal lens:
 - scale the text on the display for readability
- Dual MEMs microphones:
 - Great directional capabilities and audio quality, in addition to being very small and lightweight.

Glasses Hardware:

Glasses Firmware:

Open Source!

Software: Front End

- We will be using IOS frameworks in order to do live transcription, as it is very lightweight and powerful.
- Phone application will be coded completely in Swift, as this goes hand-in-hand with the IOS frameworks used.

User Flow

Software: Embedded Systems

- ESP32-C3 functionality will be implemented using C as this is the native language for the microcontroller.
- ESPRESSIF libraries will also be used in order to program our ESP32-C3 microcontroller, and the interacting microphones.

Software Backend:

For our back end we elected to use
 Cloud Firestore for its scalability to
 accommodate a growing user base,
 and its seamless integration with
 swift code. Additionally it has real
 time synchronization and powerful
 offline capabilities making it a perfect
 fit for storing transcription history.

- In order to connect the phone to the ESP32-C3 we will use B.L.E connections as it is made for low power devices designed to last for a long time.
- The server logic for the B.L.E connections will be done in C

Testing:

- Tests for live transcription was done using a 100 word paragraph that contained numbers, homophones, uncommon words, and proper nouns.
- Results are based on the accuracy of the live transcription app,
 in outputting the correct transcription out of 100.
- We ran the same test in a silent room, and in a consistently loud environment of 70 decibels which is the average noise of a crowded room.

Testing:

Testing Round:	Quiet Room:	Noisy Room (~70 Decibels)
1	98%	96%
2	100%	98%
3	100%	95%
4	99%	93%
5	100%	95%
Average:	99.4%	95.4

Gantt Chart:

https://docs.google.com/spreadsheets/d/1p4gv2rEuFxZHB539TNdgT8H865Gg2BvP1Qfjbd2tv70/edit#gid=0

Future Progress

- Testing magnification lens for optimal readability.
- Continued development of Al-driven language processing for enhanced transcription and translation accuracy.
- Testing of directional microphones to ensure effective noise reduction in noisy environments.
- Minimum 2-3 hours of battery life.
- Touch on stretch goals such as ability to respond to transcribed conversations, gesture recognition for hands-free control and exploring multi-language translation.

Thank You

Comments/Questions?

