Problem 1: Description of the Problem, Subscribe a ML/NN Based

	Solution
	Process:
	Definition:
	Example:
2	Problem 2: Prescribe a strategy to optimize the NN.
	Process:
	Definition:
	Example:
3	Problem 3: Explain step by step inference for basic algorithms (MLP, CNN, GNN, attention mechanism) in terms of numpy or basic tensor operations.
	Process:
	Definition:
	Example:
4	Problem 4: Be able to explain why such a solution might work or fail.
	Process:
	Definition:
	Example:
5	$L2~\mathrm{ML}$
	 Summary: What does it mean when a computer program learns? What is a neural network? What is something that a AI model CANNOT do right now?

6 L3 Neural Networks

Summary:

- What is a neural network (NN)?
- How is a GLM and a neural network related?
- What is a representation? Other names for this?
- How do NN make predictions?
- How do NN learn?

7 L4 Neural Network Engineering

Summary:

- What is a MLP?
- What is an inductive bias and why might they be useful?
- What is the difference between hyperparameters and parameters?
- How do we optimize all parameters in a model?

8 L5 Optimizing Hyperparameters

Summary:

- What stategies can help a NN converge when traing?
- What hyperparameters does a NN architecture have?
- How can we optimize parameters without gradients?
- DL requires a lot of data, what can we do wehn data is scarce?

8.1 Learning representations of data

8.1.1 AI/MI/ML/DL

8.1.2 Learning algorithms

Definition: "A computer program M is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E "

• experience E ~ Data

- performance measure $P \sim Loss$ function, evaluation metric
- tasks T ~ "Prediction problem"
- computer program $M \sim Model$
- learn \sim Optimize

8.1.3 Linear models

Definition: Linear Regression

$$W \cdot x = y \tag{1}$$

- **E?** (x and y)
- P? mean squared error
- T? Predict y from x
- M? Linear model (W)
- learn? Analytical solution or gradient descent

Definition: Generalized Linear models in equations

$$Link(W \cdot x) = y \tag{2}$$

- x: Input features
- \bullet W: Linear transformation
- y: Output / target
- Link(x): Warping function

Example:

- 1. If x has dim 50 and W projects to dimension 100, what is the shape of W?
 - W is a 100×50 matrix
- 2. If W is learnable, how many parameters does W have?
 - $100 \times 50 = 5000$ parameters

Notes: How does a generalized linear model make a prediction? By either mapping to a line or separating data by a line (hyperplane)

Figure 2:

Notes: What can we do when the data cannot be separated by a line? Resort to different decision surfaces.

8.1.4 Representations

Definition: Representation is a way of encoding data.

$$x \xrightarrow{\text{Representation}} z$$
 (3)

ullet z: Feature vectors, embeddings, latent codes, intermediate activations, etc.

Notes:

Figure 4:

8.2 Neural networks

Definition: Learnable (optimizable) transformations of data.

$$x \stackrel{\text{Model}}{\mapsto} y \tag{4}$$

8.2.1 2-layer MLP

Definition: By stacking linear transforms with activation functions.

$$\operatorname{Link}(W_2 \cdot \operatorname{relu}(W_1 \cdot x)) = y \tag{5}$$

- x: Input features.
- W_1, W_2 : Linear transformations or Weight Matrices.
- relu(x) = max(0, x): Non-linear activation function, s.t. f'(x) = 1 if x > 0 and 0 otherwise.
- y: Output / target.
- **E?** (x and y)
- P? mean squared error

- T? Predict y from x
- M? Neural net (W1, W2)
- learn? gradient descent

Example:

- 1. What purpose does relu serve?
 - Introduces non-linearity into the model, allowing it to learn more complex functions.
- 2. If x has dim 50 and y dim 10, we have layer size of 50, how many parameters do we have?
 - W_1 is a 50×50 matrix, so it has $50 \times 50 = 2500$ parameters.
 - W_2 is a 10×50 matrix, so it has $10 \times 50 = 500$ parameters.
 - Total parameters: 2500 + 500 = 3000 parameters. IS THIS CORRECT?

8.2.2 Geometric intuition

Notes: Decision surfaces Different ways of cutting up space to make predictions.

Figure 5:

Notes: Linear Transformation Transform data from one vector space to another

$$W \cdot x$$
 (6)

Notes: SVD of Linear Transformation Factorizing matrices into geometrical transformations.

$$W = U\Sigma V^T \tag{7}$$

- U, V: Rotation
- Σ : Scaling

Notes: Affine Transformation

$$W \cdot x + b \tag{8}$$

- b: Bias vector
- Translate (b)
- Rotate (W-SVD)
- Reflect (W-SVD)
- Scale (W-SVD)
- Project up or down (dimensionality of Wx)

Notes: ReLU Rectified linear unit, which has a geometric effect of "gating", some info passes, some doesn't.

Notes: Neural nets Learn to warp space to make better predictions.

Figure 7:

Figure 8:

8.2.3 Encoder-Decoder view

Definition: $x \overset{\text{Encoder}}{\mapsto} z \overset{\text{Decoder}}{\mapsto} y \tag{9}$ • z: Embeddings, latent vectors, learned representations.

Example: Supervised Learning
$$x \overset{\text{Model}}{\mapsto} y \tag{10}$$

$$\bullet \ \text{Model}(x) = \text{Decoder}\big(\text{Encoder}(x)\big)$$

$$\bullet \ \ \text{Decoder}(z) = \text{Pred}(z)$$

Example: PCA

$$x \xrightarrow{\text{Encoder}} z \xrightarrow{\text{Decoder}} y \tag{11}$$

• Encoder $(x) = W \cdot x$

• Decoder $(z) = W^{-1} \cdot z$

• **E**? x

• P? Reconstruction loss

• T? Reduce dimension

• **M**? W

• learn? Eigendecompositions

Example: Neural Networks

$$x \xrightarrow{\text{Encoder }} z \xrightarrow{\text{Decoder }} y \tag{12}$$

• $\operatorname{Encoder}(x) = \operatorname{Neural Network}$

• Decoder(z) = Neural Network

8.2.4 Typical ML Pipeline

Notes:

- Setup data (x, y)
- Define a model: $y = f(x, \theta)$
- Training algorithm to find θ
- Evaluate the model.

8.3 Recap

Summary:

- What is a MLP? Vector-in vector-out optimizable, learnable transformation of data.
- What is an inductive bias and why might they be useful? Set of assumptions that the learner puts on a model for a task, makes an algorithm learn one pattern over another.
 - Let certain patterns be learnable (restricting the hypothesis space).
 - Last layer in the GLM: Restricting output values to 0 and 1.
- What is the difference between hyperparameters and parameters? Hyperparameters are set before training (usually discrete), parameters are learned during training (continuous to learn).
- How do we optimize all parameters in a model? Back propagation.

8.4 Optimizing Hyperparameters

Summary: