Tarea 3

Álgebra lineal

Espacios vectoriales

- 1. Sea $V = \mathbb{R}^+$ y $\mathbb{K} = \mathbb{R}$, es decir, el campo de escalares son los números reales. Se define sobre V las siguientes operaciones:
- Definimos la suma $x \oplus y = xy$ para todo $x, y \in V$.
- Y la multiplicación por escalar como $\alpha \odot x = x^{\alpha}$ para todo $\alpha \in \mathbb{R}, x \in V$.

Averiguar si con estas operaciones, (V, \oplus, \odot) es un espacio vectorial. En su defecto indicar que axioma no se cumple con un ejemplo.

- 2. Explicar por que el plano cartesiano \mathbb{R}^2 con la suma usual de vectores y el producto escalar definido como sigue
- $x \oplus y = x + y$ (suma usual en \mathbb{R}^n), $\alpha \cdot (x, y) := (\alpha y, \alpha x)$
- $x \oplus y = x + y$ (suma usual en \mathbb{R}^n), $\alpha \cdot (x, y) := (x^{\alpha}, y)$ Es un espacio vectorial o no lo es.
- 3. Sea $V = \mathbb{R}^2$ y definimos las siguientes operaciones en V: suma: $(a_1, a_2) \oplus (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$ (suma usual en \mathbb{R}^2) y producto escalar: $\alpha \odot (a_1, a_2) = (\alpha a_1, a_2)$ para todo $\alpha \in \mathbb{R}$. ¿Es V con estás operaciones un espacio vectorial real?
- 4. Verificar que $\mathbb{R}[X] = \{p : p(x) = a_4x^4 + a_3x^2 + a_2x^2 + a_1x + a_0, a_i \in \mathbb{R}\}$ el conjunto de polinomios de grado ≤ 3 . Con las operaciones
- (p+q)(x) = p(x) + q(x) para todo $x \in \mathbb{R}$ y $c \cdot p(x) = ca_3x^3 + ca_2x^2 + ca_1x + ca_0$ forma un espacio vectorial.
- 5. En $V = \mathbb{R}^n$ define 2 operaciones, $\alpha \oplus \beta = \alpha \beta$, $c \cdot \alpha = -c\alpha$. ¿Qué axiomas de los espacios vectoriales cumplen las operaciones (\oplus,\cdot) ?
- 6. Definimos a $C^2(\mathbb{R};\mathbb{R})$ como el conjunto de funciones con segundas derivadas definimos a W como

$$W = \{ y \in C^2(\mathbb{R}; \mathbb{R}) : y''(x) + 2y'(x) + y(x) = 0 \}$$

- a) Demostrar que W es un subespacio vectorial.
- b) Verificar si $f(x) = e^{-x}$ está en W.

Subespacios vectoriales

- 7. ¿Cuál de los siguientes subconjuntos de \mathbb{R}^3 son realmente subespacios, verificar las 3 propiedades o bien, dar un contraejemplo:
- a) El plano de los vectores $\mathbf{v} = (x_1, x_2, x_3)$ con $x_1 = 0$.
- b) Los vectores \mathbf{v} con $\mathbf{v}_1\mathbf{v}_2 = 0$.
- c) El plano en \mathbb{R}^3 dado por la ecuación x + 2y + z = 6.
- 8. Sea V el espacio vectorial de funciones continuas, $V = C([0,1];\mathbb{R})$ ¿Qué conjuntos son un subespacio de V.
- a) $U_1 = \{ f \in V : f(0) = f(1) \}$
- b) $U_2 = \{ f \in V : f(3) = 1 + f(-5) \}$
- c) $U_3 = \{ f \in V : f(-1) = 0 \}$ \$

- d) $I = \{ f \in V : f \text{ es par} \}.$
- 9. Sea W el espacio de vectores $(x_1, x_2, x_3, x_4) \in \mathbb{R}^5$ el cual cumple. Explica por que es un subespacio

$$\begin{array}{rclrcrcr}
2x_1 & -x_2 & +\frac{4}{3}x_3 & -x_4 & = 0 \\
x_1 & +\frac{2}{3}x_3 & -x_5 & = 0 \\
9x_1 & -3x_2 & +6x_3 & -3x_4 & -3x_5 & = 0
\end{array} \tag{1}$$

- 10. Sea $V = \mathcal{M}^{n,n}(\mathbb{R})$ el espacio vectorial de todas las matrices con entradas reales. Determinar y explicar si W es un subespacio vectorial o en su defecto explicar que propiedad no se cumple.
- a) Sea B una matriz fija, $B \in \mathcal{M}^{n,n}(\mathbb{R})$, considera a $W = \{A \in V : AB = BA\}$
- b) $W = \{A \in V : A^2 = A\}.$
- 11. Explica por que si W_1 y W_2 son dos subespacios de V tal que V es **suma directa** de W_1 y W_2 , entonces todo vector $\alpha \in V$ se puede expresar de manera única como $\alpha = w_1 + w_2$ con $w_1 \in W_1$ y $w_2 \in W_2$.
- 12. Probar que el conjunto

$$S = \left\{ ax^3 + bx^2 + cx + d \in P_3(\mathbb{R}) : a = 2b \text{ y } c = -d \right\}$$

es un subespacio.

13. Probar que el conjunto de matrices

$$\mathcal{U} = \left\{ A \in \mathcal{M}^{2,2}(\mathbb{R}) : |A| = 0 \right\}$$

no es un subespacio vectorial

- 14. Describir al subespacio $W \subset \mathbb{R}^3$ generado por el conjunto de vectores $\mathbf{v}_1 = (1, 2, 3), \mathbf{v}_2 = (-1, 1, -1), \mathbf{v}_3 = (2, 1, 4)$
- 15. Sea \mathcal{S}^n el conjunto de matrices simétricas de tamaño $n \times n$ y $\mathcal{A}^n(\mathbb{R})$ el conjunto de matrices antisimétricas.
- a) Probar que el conjunto de matrices simétricas y el conjunto de matrices antisimétricas $n \times n$ son subespacios vectoriales de $\mathcal{M}^n(\mathbb{R})$ son subespacios vectoriales.
- b) Probar que toda matriz se puede expresar como suma de dos matrices $S \in \mathcal{S}^n(\mathbb{R}), A \in {}^n(\mathbb{R})$. (Sugerencia: Probar que $S = \frac{1}{2}(A + A^T)$ es una matriz simétrica, $\Lambda = \frac{1}{2}(A A^T)$).
- 16. Sea $V = \mathcal{F}(\mathbb{R}; \mathbb{R})$. Y sea g(x), una función fija, mostrar que el conjunto E de todas las funciones $f : \mathbb{R} \to \mathbb{R}$ tales que f(g(x)) = f(x) es un subespacio vectorial de E.
- 17. Definimos a la traza de una matriz como $tr(A) = \sum_{i=1}^{n} a_{i,i}$, es decir la suma de la diagonal principal. Verificar que el conjunto

$$W = \left\{ A \in \mathcal{M}^n(\mathbb{R}) : tr(A) = 0 \right\}$$

es un subespacio del espacio vectorial $\mathcal{M}^n(\mathbb{R})$.

- 18. Sea $\mathbb{R}[x]$ la colección de todos los polinomios con coeficientes reales, sea $W \subset \mathbb{R}[x]$ tal que
- a) $W = \{ f \in \mathbb{R}[x] : grado(f) = 3 \}$
- b) $W = \{ f \in \mathbb{R}[x] : 2f(0) = f(1) \}$
- c) $W = \{ f \in \mathbb{R}[x] : f(t) \ge 0 \ t \in [0, 1] \}$
- d) $W = \{ f \in \mathbb{R}[x] : f(t) = f(1-t) \text{ para todo } t \in \mathbb{R} \}$
- 19. En $V = (\mathbb{R}^4, +, \cdot)$ determinar cual de los siguientes conjuntos son un subespacio vectorial. (Se puede usar los ejemplos vistos en clase).
- a) $\{(x, y, z, t) \in \mathbb{R}^4 : x = y, z = t\}.$
- b) $\{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0\}.$
- c) $\{(x, y, z, t) \in \mathbb{R}^4 : x = 1\}.$

- d) c) $\{(x, y, z, t) \in \mathbb{R}^4 : xt = yz\}.$
- 20. En $V=C^2([0,1];\mathbb{R})$ el espacio vectorial de funciones continuas. Considere al siguiente conjunto

$$\{f \in C([0,1];\mathbb{R}) : f'' + f' = 0\}$$

- 21. Analiza y explica si los siguientes subconjuntos de \mathbb{R}^3 son subespacios de \mathbb{R}^3 :
- a) $U = \{(x, y, z) : 2x + y = z\}$
- b) $U = \{(x, y, z) : x \ge 0\}$
- c) $U = \{(x, y, z) : x = 0\}$
- 22. Consideremos a \mathbb{R}^n con las operaciones usuales y definamos
- a) $U = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n x_i = 0\}$
- b) $W = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1\}$

Son U y W subespacios

- 23. Sea $\mathcal{F}(\mathbb{R};\mathbb{R})$ y sean
- a) $M = \{ f \in \mathcal{F}(\mathbb{R}; \mathbb{R}) : f(x) = 0 \text{ para } x \in (-\infty, 0) \}$
- b) $N = \{ f \in \mathcal{F}(\mathbb{R}; \mathbb{R}) : f(x) = 0 \text{ para } x \in (0, \infty) \}$

Verificar si M y N son subespacios vectoriales. Calcular $M \cap N$

24. Sea V el espacio vectorial de funciones continuas, $C(\mathbb{R}; \mathbb{R})$. Decimos que una función y(t) es par si y(-t) = y(t) para todo $t \in \mathbb{R}$. Decimos que una función z(t) es impar si z(-t) = -z(t) para todo $t \in \mathbb{R}$.

Sea $M = \{ y \in C(\mathbb{R}; \mathbb{R}) : y \text{ es par } \}$ y $N = \{ z \in C(\mathbb{R}; \mathbb{R}) : z \text{ es impar } \}.$

- a) Probar que M y N son subespacios
- b) Probar que $V = M \oplus N$ (considere $y(t) = \frac{1}{2}(y(t) + y(-t))$ y $z(t) = \frac{1}{2}(z(t) z(-t))$)
- c) Encontrar la descomposición de $f(t) = e^t$ como suma de una función par e impar. Encontrar la descomposición de f(x) = x+1 como suma de una función par e impar.
- 25. Sea $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ es función } \}$
- a) $U = \{ f \in V : f(x^2) = (f(x))^2 \text{ para todo } x \}$
- b) $U = \{ f \in V : f(0) = f(1) \}$
- c) $U = \{ f \in V : f(3) = 1 \}$
- 26. Si $\vec{a}_1, \vec{a_2} \in \mathbb{R}^n$, mostrar que el conjunto de vectores \vec{b} tales que \vec{b} es perpendicular a \vec{a}_1 y \vec{a}_2 es un subespacio vectorial.
- 27. Mostrar que los siguientes conjuntos en \mathbb{R}^3 forman un subespacio vectorial
 - El conjunto de vectores $\{(x, y, z) \in \mathbb{R}^3 : x + y = 3z\}$
 - El conjunto de vectores $\{(x, y, z) \in \mathbb{R}^3 : x = y, 2y = z\}$
- 28. Demostrar que una línea recta que no pasa por el origen, no puede ser un subespacio vectorial.

Combinaciones lineales, independencia lineal y generadores de subespacios

29. Expresar al vector \vec{x} como combinación lineal de los vectores \vec{u} y \vec{v} (y \vec{w} si es el caso) o explicar por qué no es posible.

- $\vec{x} = (1,0), \vec{u} = (1,1), \vec{v} = (0,1).$
- $\vec{x} = (1,1), \vec{u} = (2,1), \vec{v} = (-1,0).$
- $\vec{x} = (4,3), \ \vec{u} = (2,1), \ \vec{v} = (-1,0).$
- $\vec{x} = (1, 1, 1), \vec{u} = (0, 1, -1), \vec{v} = (1, 1, 0), \vec{w} = (1, 0, 2).$
- $\vec{x} = (0, 0, 1), \vec{u} = (1, 1, 1), \vec{v} = (-1, 1, 0), \vec{w} = (1, 0, -1).$
- 30. ¿Para que valores de k el vector $\mathbf{u}=(1,k,5)\in\mathbb{R}^3$ será una combinación lineal de los vectores $\mathbf{v}=(1,-3,2)$ y $\omega=(2,-1,1)$.
- **3** ¿Es (1,2) ó (0,1) una combinación lineal de los vectores (1,1) y (1,2) en \mathbb{R}^2 . Calcular $\mathcal{S}(\{(1,1),(1,2)\})$, el espacio generado por los dos vectores.
- f 4 Encontrar a y b números reales tales que
 - u = (1, a, b, 8) sea una combinación lineal de $\mathbf{v}_1 = (1, 0, -3, 4), \mathbf{w}_1 = (-2, 1, 3, -5)$
- 4 a) Demostrar que u, v es linealmente independiente si y sólo si u + v, u v es linealmente independiente.
 - b) Demostrar que u, v, w es linealmente independiente si y solo si u + v, u + w, v + w sea linealmente independiente.
- **5** ¿Cual es el subespacio generado en \mathbb{R}^3 del conjunto $\mathcal{S}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\})$?
 - $\mathbf{v}_1 = (1, 1, 1), \ \mathbf{v}_2 = (0, 1, 1), \ \mathbf{v}_3 = (0, 0, 1).$
 - $\mathbf{v}_1 = (2, 1, 0), \ \mathbf{v}_2 = (0, 1, 1), \ \mathbf{v}_3 = (0, 0, 1).$
- 31. ¿Qué valores de k hace que el siguiente conjunto de vectores sea linealmente independiente?

$$\{(1,2,3),(-1,k,1),(1,1,0)\}$$

7 Para qué valores de k, los siguientes vectores generan i) una recta, ii) un plano o iii) todo \mathbb{R}^3

$$A = \{(0, 1, -1), (1, 2, 1), (k, -1, 4)\} \qquad A = \{(1, 2, 3), (3, k, k + 3), (2, 4, k)\}$$

- 32. Sea $p(x) = -4x^3 + 2ax^2 + x + b$ sea combinación lineal de los polinomios $q(x) = x^3 x^2 + 2$, $r(x) = 2x^2 + x 3$ y $s(x) = 2x^3 + x + 1$
- 33. Mostrar que las matrices $A_1 A_2 A_3$ son linealmente independientes

$$A_1 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 (2)

34. Probar que los polinomios siguientes son linealmente independientes

$$p(x) = x^3 - 5x^2 + 1$$
 $q(x) = 2x^4 + 5x - 6$ $r(x) = x^2 - 5x + 2$ (3)

35. En el espacio de polinomios \mathcal{P}^3 de los polinomios con grado ≤ 3 verificar si los polinomios son linealmente dependientes o linealmente independientes.

$$p(x) = x^3 - 3x^2 + 5x + 1$$
 $q(x) = x^3 - x^2 + 6x + 2$ $r(x) = x^3 - 7x^2 + 4x$ (4)

36. Hallar una solución no trivial para el sistema homógeneo

A partir de ahí, obtener una combinación lineal de los vectores $\mathbf{v}_1 = (1, 2, 3)$, $\mathbf{v}_2 = (2, 1, -2)$, $\mathbf{v}_3 = (3, 1, 1)$, $\mathbf{v}_4 = (4, -1, -2)$ nula y en la cual no todos los coeficientes no son todos iguales a cero.

37. Mostrar que el vector $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$ pertenece al espacio generado por

$$\left\{ \mathbf{v}_1 = \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$

- 38. Como se menciona en clase, para verificar que $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ es un generador de \mathbb{R}^3 , sea $\mathbf{x} = (x, y, z)^T$ un vector arbitrario, se tiene que verificar que \mathbf{x} es una combinación lineal de $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- a) Determinar si $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 0 \\ -1 \\ 5 \end{pmatrix}$ y $\mathbf{v}_4 = \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix}$, generan a \mathbb{R}^3 .
- 39. Determinar si los conjuntos de vectores son linealmente independientes. Si no lo son, escribir a uno de los vectores como combinación lineal de los otros

a)
$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\5\\9 \end{pmatrix} \right\}$$

b)
$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 0\\4\\5 \end{pmatrix}, \begin{pmatrix} 0\\0\\6 \end{pmatrix}, \begin{pmatrix} 1\\1\\6 \end{pmatrix} \right\}$$

c)
$$\left\{ \begin{pmatrix} 3\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}$$

d)
$$\{(2,2,2,2),(2,2,0,2),(2,0,2,2)\}$$

40. Determinar si el siguiente conjunto de matrices es linealmente independiente

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

- 41. Si $\mathcal{S} = \{u_1, u_2, \dots, u_n\}$ es un conjunto de \mathbb{R}^m y \mathbf{P} es una matriz no singular $m \times m$, demostrar que $\mathbf{P}\mathcal{S} = \{\mathbf{P}u_1, \mathbf{P}u_2, \dots, \mathbf{P}u_n\}$ es un conjunto linealmente independiente. Dar un ejemplo que falle si la matriz es singular.
- 42. Usar el ejemplo anterior o bien de otra forma demostrar que si $\{u_1, u_2, \dots, u_n\}$ son linealmente independientes entonces los vectores $\{u_1, u_1 + u_2, \sum_{i=1}^3 u_i, \dots, \sum_{i=1}^n u_i\}$ son linealmente independientes.
- 43. Determinar si los polinomios $p_1(t) = t + t^3$, $p_2(t) = -1 + t^2$, $p_3(t)$ generan $\mathbb{R}_3[x]$
- 44. Mostrar si los siguientes conjuntos de vectores generan el espacio vectorial correspondiente

$$\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}, V = \mathbb{R}^2 \qquad \qquad \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}, \quad V = \mathbb{R}^3$$

b)

45. Sean $\mathbf{v}_1 = (1, 2, 0), \mathbf{v}_2 = (3, 1, 1)$ y $\mathbf{w} = (4, -7, 3)$. Determinar el espacio generado por $\mathbf{v}_1, \mathbf{v}_2$. Luego, explicar si \mathbf{w} pertenece a dicho subespacio

Bases de subespacios vectoriales

1. ¿Cual de los siguientes conjuntos de vectores forman una base de \mathbb{R}^2 ?

- $\{(0,1),(1,0)\}$
- {(1,1),(2,2)}
- $\{(1,0),(2,3)\}$
- 2. Del siguiente conjunto

$$\mathcal{A} = \{(1, -3, 2), (2, 4, 1), (3, 1, 3), (1, 1, 1)\}$$

- a) Elige una base de \mathbb{R}^3 .
- b) Expresa los vectores de la base canónica de \mathbb{R}^3
- **3.** Determinar si el siguiente conjunto de matrices es una base para $\mathcal{M}^{2,2}(\mathbb{R})$.

$$\mathcal{S} = \left\{ \begin{pmatrix} 1 & 3 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 3 & -3 \\ -1 & 1 \end{pmatrix} \right\}$$

4. Demostrar que cada uno de los conjuntos de vectores es una base

- $\mathbf{u}_1 = (1, 1, 1), \ \mathbf{u}_2 = (1, 2, 1) \ y \ \mathbf{u}_3 = (2, 1, 2)$
- $\mathbf{u}_1 = (1, 0, -1), \ \mathbf{u}_2 = (2, 5, 1) \ y \ \mathbf{u}_3 = (0, 4, -3)$
- $\mathbf{u}_1 = (2, -4, 1), \ \mathbf{u}_2 = (0, 3, -1) \ y \ \mathbf{u}_3 = (6, 0, -1)$
- $\mathbf{u}_1 = (1, -3, -2), \ \mathbf{u}_2 = (-3, 1, 3) \ y \ \mathbf{u}_3 = (-2, -10, -2)$
- 5. Sean

$$A = \mathcal{G}((1,0,0),(0,1,1),(1,1,1))$$
 y $B = \mathcal{G}((1,1,1),(2,1,1),(1,0,0))$

Encontrar una base de cada subespacio y la dimensión de A, B y $A \cap B$.

6. Describir a

$$\mathcal{G}\left\{ \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\-3\\2 \end{pmatrix} \right\}$$

7. Determinar si alguno de los conjuntos de polinomios es una base para $\mathcal{P}^2(\mathbb{R})$, el conjunto de polinomios de grado menor o igual a 2.

a)
$$\{1-x-2x^2, 2+x-2x^2, 1-2x+4x^2\}.$$

b)
$$\{1+2x+x^2, 3+x^2, x+x^2\}.$$

c)
$$\{1+4x-2x^2, -2+3x-x^2, -3-12x+6x^2\}$$

- 8. Mostrar que los polinomios $1, x, x^2 3x + 1$ forman una base de \mathcal{P}^2 . Exprese al polinomio $2x^2 5x + 6$ como combinación lineal de los elementos de esa base.
- **9.** Sean v y w vectores l.i. de V. Si $\alpha \neq 0$ probar que el conjunto de los elementos $\{v, v + \alpha \cdot u\}$ es una base del subespacio generado por los vectores $v, v + u, v + 2u, \dots, v + nu \dots$
- **10.** Sea $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ son linealmente independientes, probar que $\mathbf{v}_1, \mathbf{v}_2 \mathbf{v}_1, \dots, \mathbf{v}_m \mathbf{v}_1$ también son linealmente independientes.
- 11. Determinar si el conjunto \mathcal{B} es una base para el espacio vectorial V

a)
$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \right\}, V = \mathcal{M}^{2,2}(\mathbb{R})$$
(5)

b)
$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \right\}, V = \mathcal{M}^{2,2}(\mathbb{R})$$
 (6)

c)
$$\mathcal{B} = \left\{ x, 1 + x, x - x^2 \right\}, V = \mathbb{R}^2[x]$$
 (7)

d)
$$\mathcal{B} = \left\{ 1, 2 - x, 3 - x^2, x + 2x^2 \right\}, V = \mathbb{R}^2[x] \tag{8}$$

12 Sea $V = \mathbb{R}^4$ considere los subespacios vectoriales

$$U = \mathcal{S}\left\{ \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\2\\0 \end{pmatrix} \right\}, V = \left\{ \begin{pmatrix} x\\y\\z\\t \end{pmatrix} : 3x + y - z - 3t = 0\\ y - t = 0 \right\}$$
 (9)

Determinar una base para $U \cap V$ y U + V.

13 Sea $V = \mathbb{R}_2[x]$ el espacio de polinomios con grado ≤ 2 . Mostrar $\mathcal{B}' = \{v_1(t) = 1, v_2(t) = t - 1, v_3(t) = t(t - 1)\}$ forma una base de V.