

A group of bikers start at the same time at unit speed. If a biker runs into the tracks of another biker it stops. Tiebreaks (right-hand rule).

Find which riders get to ride forever.

Department of Computer Science

$$M = (m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8, m_9, m_{10})$$

$$M = (m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8, m_9, m_{10})$$

- \bullet Classical Dynamic programming approach leads to $O(n^2)$ time algorithm.
- For longest increasing subsequence however, there is an $O(n \log n)$ time algorithm to solve the problem.

M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)

L1

L2

L3

L4

L5

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

L2

L3

L4

L5

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

L1 0

L2 8

L3

L4

L5

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

L1 0

L2 8

L3

L4

L5

L6

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0\% \ 4$

L3

L4

L5

L6

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \quad 0 \quad 4$

L3

L4

L5

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \quad 0 \quad 4$

L3 0412

L4

L5

L6

We search the first subsequence than ends with a number larger than the current number.

12 Increases the length of all previous subsequences, so we have a new longer increasing subsequence.

$$M = (0, 8, 4, 12 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

L1 0

 $L2 \quad 0 \not A \qquad 2$

L3 0412

L4

L5

L6

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

L1 0

 $L2 \quad 02$

 $L3 \quad 0 \quad 4 \quad 12 \quad 10$

L4

L5

L6

$$M = (0, 8, 4, 12, 2, 10 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

L1 0

 $L2 \quad 02$

L3 0410 6

L4

L5

L6

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \quad 02$

L3 046

 $L4 \ 0 \ 4 \ 6 \ 14$

L5

L6

We search the first subsequence than ends with a number larger than the current number.

14 increases the length of all previous subsequences, so we create a new one.

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \quad 02 \qquad 1$

L3 046

L4 04614

L5

L6

L6

Largest increasing subsequence

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 19, 5, 13, 3, 11, 7, 15)$$

```
L1 \quad 0
L2 \quad 01
L3 \quad 046
L4 \quad 046 \quad 14 \quad 9
L5
```

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \quad 01$

 $L3 \quad 0.4\% \qquad 5$

L4 0469

L5

L6

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \quad 01$

L3 045

L4 0469

L5 046913

L6

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

```
L1 0

L2 01

L3 043

L4 0469

L5 0469 13 11

L6
```

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

```
L1 \quad 0
```

$$L2 \quad 01$$

$$L4 \ 046$$
 7

$$L5 \quad 0 \ 4 \ 6 \ 9 \ 13$$

L6

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \quad 01$

L3 043

L4 0467

 $L5 \quad 0 \ 4 \ 6 \ 9 \ 13$

L6 0 4 6 9 13 15

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

```
L1 \quad 0
```

 $L2 \quad 01$

L3 043

L4 0467

 $L5 \quad 0 \ 4 \ 6 \ 9 \ 13$

L6 04691315

We search the first subsequence than ends with a number larger than the current number.

The algorithm performs a binary search for each element of the original vector. Thus, the running time is $O(n \log n)$.

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

The first biker passed more than f time ago, so the second must stop.

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

The first biker passed NO more than f time ago, so the second can keep riding.

We are allowed to modify the starting time s_i of each bike b_i .

The first biker passed NO more than f time ago, so the second can keep riding.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f = 0.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f = 0.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f = 0.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f = 0.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f = 0.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f = 0.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f=0.

What are the variables?

What are the variables?

The unknowns of the problem are the starting times s_i of each biker and the frustration tolerance f.

What are the variables?

The unknowns of the problem are the starting times s_i of each biker and the frustration tolerance f.

From the specifications, we know that there are at most 101 variables, which is OK to use linear programming.

• It starts with a line that contains a single integer n so that $1 \le n \le 10^2$. Here n denotes the number of bikers.

What are the variables?

The unknowns of the problem are the starting times s_i of each biker and the frustration tolerance f.

What are the constraints?

What are the variables?

The unknowns of the problem are the starting times s_i of each biker and the frustration tolerance f.

What are the constraints?

For each pair b_i , b_j such that their paths cross, we get a constraint.

What are the variables?

The unknowns of the problem are the starting times s_i of each biker and the frustration tolerance f.

What are the constraints?

For each pair b_i , b_j such that their paths cross, we get a constraint.

What are the variables?

The unknowns of the problem are the starting times s_i of each biker and the frustration tolerance f.

What are the constraints?

For each pair b_i , b_j such that their paths cross, we get a constraint.

• b_i is at position q at time $s_i + ||b_i - q||$.

What are the variables?

The unknowns of the problem are the starting times s_i of each biker and the frustration tolerance f.

What are the constraints?

For each pair b_i , b_j such that their paths cross, we get a constraint.

- b_i needs $||b_i q||$ time to reach q.
- b_i is at position q at time $s_i + ||b_i q||$.

Thus, the difference between $s_1 + ||b_1 - q||$ and $s_2 + ||b_2 - q||$ can be at most f.

What are the variables?

The unknowns of the problem are the starting times s_i of each biker and the frustration tolerance f.

What are the constraints?

For each pair b_i , b_j such that their paths cross, we get a constraint.

- b_i needs $||b_i q||$ time to reach q.
- b_i is at position q at time $s_i + ||b_i q||$.

Thus, the difference between $s_1 + ||b_1 - q||$ and $s_2 + ||b_2 - q||$ can be at most f.

$$|s_1 + ||b_1 - q|| \le |s_2 + ||b_2 - q|| + f,$$

$$|s_2 + ||b_2 - q|| \le |s_1 + ||b_1 - q|| + f$$

What are the variables?

The unknowns of the problem are the starting times s_i of each biker and the frustration tolerance f.

What are the constraints?

For each pair b_i , b_j such that their paths cross, we get a constraint.

- b_i needs $||b_i q||$ time to reach q.
- b_i is at position q at time $s_i + ||b_i q||$.

Thus, the difference between $s_1 + ||b_1 - q||$ and $s_2 + ||b_2 - q||$ can be at most f.

$$|s_1 + ||b_1 - q|| \le |s_2 + ||b_2 - q|| + f,$$

$$|s_2 + ||b_2 - q|| \le |s_1 + ||b_1 - q|| + f$$

There are $O(n^2)$ constraints, which is at most 10,000.

paths cross, we get a constraint. What are these terms? $\leq s_2 +$ b_2

For each pair b_i, b_j such that their

Solving it with Linear Programming

 b_2

For each pair b_i , b_j such that their paths cross, we get a constraint.

What are these terms?

$$|s_1 + ||b_1 - q|| \le |s_2 + ||b_2 - q|| + f$$

$$|s_2 + ||b_2 - q|| \le |s_1 + ||b_1 - q|| + f$$

One needs square roots to compute these constants.

Solving it with Linear Programming

In addition, we need all variables to be non-negative. Then, we minimize f subject to these constraints.

For each pair b_i, b_j such that their paths cross, we get a constraint.

What are these terms?

$$s_1 + ||b_1 - q|| \le s_2 + ||b_2 - q|| + f,$$

 $s_2 + ||b_2 - q|| \le s_1 + ||b_1 - q|| + f$

One needs square roots to compute these constants.

 b_2

o a_2

Department of Computer Science

Department of Computer Science

Working with a single segment

Luis Barba Algolab, Nov. 22, 2017

Working with a single segment 0 0 Which Antenna will 0 cover x first? Department of Computer Science Luis Barba Algolab, Nov. 22, 2017

Department of Computer Science

Luis Barba Algolab, Nov. 22, 2017

Luis Barba Algolab, Nov. 22, 2017

Department of Computer Science

Algorithm:

- \bullet Find all intersections of $VD(\mathcal{A})$ with the segment.
- For each intersection, compute distance to a closest antenna.
- Maintain the maximum distance considered, and report it.
- Repeat for each segment.

0

0

- n, the number of bikers $(1 \le n \le 3 \cdot 10^3)$;
- m, the number of antennas $(1 \le m \le 3 \cdot 10^3)$;
- w, the width of the strip $(0 \le w \le 2^{51})$.

S

Algorithm:

- \bullet Find all intersections of $VD(\mathcal{A})$ with the segment.
- For each intersection, compute distance to a closest antenna.
- Maintain the maximum distance considered, and report it.
- Repeat for each segment.

0

0

- n, the number of bikers $(1 \le n \le 3 \cdot 10^3)$;
- m, the number of antennas $(1 \le m \le 3 \cdot 10^3)$;
- w, the width of the strip $(0 \le w \le 2^{51})$.

- $O(m \log m)$ time to Compute VD(A).
- \bullet O(m) time per segment.
- O(nm) time in total.

0

Algorithm:

- Find all intersections of $VD(\mathcal{A})$ with the segment.
- For each intersection, compute distance to a closest antenna.
- Maintain the maximum distance considered, and report it.
- Repeat for each segment.

