QUANTUM HARISH-CHANDRA BIMODULES AT ROOTS OF UNITY

TRUNG VU

Contents

1. Set up	2
1.1. Twisted construction	3
2. Rational Representation of $\check{U}_q(\mathfrak{g})$	5
2.1. Rational representations of $\check{U}_q(\mathfrak{g})$	5
2.2. Quantum Frobenious morphism	6
2.3. More on rational representations	7
2.4. Tilting modules	8
3. The even subalgebra $U_q^{ev}(\mathfrak{g})$	9
3.1. Harish-Chandra center Z_{HC}	10
3.2. The Frobenious center Z_{Fr}	10
3.3. Center Z	11
3.4. The locally finite parts $U_{\epsilon}^{fin}, U_{q}^{fin}$	11
4. Completion	13
4.1. Completion of Poisson algebra Z	14
4.2. Structural results of $U_q^{ev \wedge_{\chi}}, U_q^{ev \wedge_{\xi}}$	15
5. Quantum Harish-Chandra bimodules	16
5.1. Non-complete version	16
5.2. Complete version	18
6. Poisson bimodules	22
7. Quantum category O	24
8. Restriction functor	25
8.1. The functor $ullet_{\dagger}: HC_q(\vartheta, \vartheta') \to \mathrm{Pbim}^{\Lambda}(\mathcal{W}_q^{\xi, \xi'})$	25
8.2. Proof of Lemma 8.3	26
8.3. The functor $ullet_{\dagger}: O_q^{[0]} o \mathcal{W}_q^{\wedge_0}\operatorname{-mod}^{\Lambda}$	29
9. Soergel Bimodules	31
10. Some images of \bullet_{\dagger} , the first main result	31
11. Simple objects in HC_P	33
11.1. Left (right)-trivial Harish-Chandra bimodules	33
11.2. Heck action on $Rep(G_{\epsilon})$	34
11.3. Simple Harish-Chandra bimodules	34
11.4. The second main result	37
12. Non-commutative Springer resolution	39
13. Generalization	41
14. Appendices	42
References	43

1. Set up

In this section, we establish notations and recall various results in [14].

Let \mathfrak{g} be a semisimple Lie algebra with simple roots $\{\alpha_1,\ldots,\alpha_r\}$ and fundamental weights ω_1,\ldots,ω_r . Let $P:=\bigoplus_{i=1}^r\mathbb{Z}\omega_i$ be the weight lattice and $Q:=\bigoplus_{i=1}^r\mathbb{Z}\alpha_i$ be the root lattice. We fix a non-degenerate invariant bilinear form $(\ ,\)$ on the Cartan subalgebra $\mathfrak{h}\subset\mathfrak{g}$, and identify \mathfrak{h}^* with \mathfrak{h} using $(\ ,\)$. We set $\mathsf{d}_i:=\frac{(\alpha_i,\alpha_i)}{2}$. The choice of $(\ ,\)$ is such that $\mathsf{d}_i=1$ for short roots α_i , in partcular, $\mathsf{d}_i\in\{1,2,3\}$ for any i. Define $\omega_i^\vee:=\frac{\omega_i}{\mathsf{d}_i}$ and $\alpha_i^\vee:=\frac{\alpha_i}{\mathsf{d}_i}$ the fundamental coweights and coroots. We have the Cartan matrix $(a_{ij})_{i,j=1}^n$ and the symmetrized Cartan matrix $(b_{ij})_{i,j=1}^r$:

$$a_{ij} = (\alpha_i^{\vee}, \alpha_j) = 2(\alpha_i, \alpha_j)/(\alpha_i, \alpha_i), \qquad b_{ij} := (\alpha_i, \alpha_j)$$

Let v be a formal variable and

$$\mathcal{A} := \mathbb{Z}[v,v^{-1}] \left[\left\{ \frac{1}{v^{2k}-1} \right\} \right]_{1 \leq k \leq \max\{\mathsf{d}_i\}}$$

Let us define the elements in A:

2

$$[s]_v := \frac{v^s - v^{-s}}{v - v^{-1}}, \qquad [s]_v! = [1]_v \dots [s]_v, \qquad \begin{bmatrix} m \\ s \end{bmatrix}_v := \prod_{c=1}^s \frac{v^{m-c+1} - v^{-m+c-1}}{v^c - v^{-c}},$$
$$(s)_v := \frac{1 - v^{-2s}}{1 - v^{-2}}, \qquad (s)_v := (1)_v \dots (s)_v, \qquad \begin{pmatrix} m \\ s \end{pmatrix}_v := \prod_{c=1}^s \frac{1 - v^{-2(m+1-c)}}{1 - v^{-2c}}.$$

The quantum group $\mathbf{U}_v(\mathfrak{g})$ is the Hopf algebra over $\mathbb{Q}(v)$ generated by generators $\{E_i, F_i, K_i := K^{\alpha_i}\}_{1 \leq i \leq r}$ subject to relations:

$$\begin{split} K^{\mu}K^{\mu'} &= K^{\mu+\mu'}, \qquad K^{0} = 1, \\ K^{\mu}E_{i}K^{-\mu} &= v^{(\mu,\alpha_{i})}E_{i}, \qquad K^{\mu}F_{i}K^{-\mu} = v^{-(\mu,\alpha_{i})}F_{i}, \\ [E_{i},F_{j}] &= \delta_{i,j}\frac{K_{i}-K_{i}^{-1}}{v_{i}-v_{i}^{-1}}, \\ \sum_{m=0}^{1-a_{ij}}(-1)^{m}\begin{bmatrix}1-a_{ij}\\m\end{bmatrix}_{v_{i}}E_{i}^{1-a_{ij}-m}E_{j}E_{i}^{m} = 0 \quad (i \neq j) \\ \sum_{m=0}^{1-a_{ij}}(-1)^{m}\begin{bmatrix}1-a_{ij}\\m\end{bmatrix}_{v_{i}}F_{i}^{1-a_{ij}-m}F_{j}F_{i}^{m} = 0 \quad (i \neq j) \end{split}$$

here $v_i := v^{d_i}$, with the Hopf structure as follows:

$$\Delta: E_i \mapsto E_i \otimes 1 + K_i \otimes E_i, \quad F_i \mapsto F_i \otimes K_i^{-1} + 1 \otimes F_i, \quad K^{\mu} \mapsto K^{\mu} \otimes K^{\mu},$$

$$S: E_i \mapsto -K_i^{-1} E_i, \quad F_i \mapsto -F_i K_i, \quad K^{\mu} \mapsto K^{-\mu},$$

$$\varepsilon: E_i \mapsto 0, \quad F_i \mapsto 0, \quad K^{\mu} \mapsto 1.$$

There is a left adjoint action of $\mathbf{U}_{v}(\mathfrak{g})$ on itself defined by

(1.1)
$$\operatorname{ad}(x)(u) = \sum x_{(1)} u S(x_{(2)}), \quad \forall x, u \in \mathbf{U}_v(\mathfrak{g}),$$

here we use the Sweedler's notation for coproduct.

Let $E_i^{(n)} := \frac{E_i^n}{(n)_{v_i}!}$, $F_i^{(n)} := \frac{F_i^n}{(n)_{v_i}!}$. In $\mathbf{U}_v(\mathfrak{g})$, there are two \mathcal{A} -integral forms: the Lusztig form $\check{\mathcal{U}}_v(\mathfrak{g})$ and the De Concini-Kac form $\mathcal{U}_v(\mathfrak{g})$. The Lusztig form $\check{\mathcal{U}}_v(\mathfrak{g})$ is the \mathcal{A} -subalgebra

generated by $\{E_i^{(n)}, F_i^{(n)}, K^{\alpha_i}\}$ while the De Concini-Kac form $\mathcal{U}_v(\mathfrak{g})$ is the \mathcal{A} -algebra generated by $\{E_i, F_i, K^{\alpha_i}\}$. Both are Hopf \mathcal{A} -subalgebras of $\mathbf{U}_v(\mathfrak{g})$. However the adjoint action (1.1) does not restrict to an action of $\check{\mathcal{U}}_v(\mathfrak{g})$ on $\mathcal{U}_v(\mathfrak{g})$. One of the main construction in [14] is to remedy this issue. Roughly speaking, we will twist the coproduct of $\mathbf{U}_v(\mathfrak{g})$ so that the left adjoint action give a rise to an action of (twisted) Lusztig form $\check{\mathcal{U}}_v(\mathfrak{g})$ on the even subaglebra $U_v^{ev}(\mathfrak{g})$, which is a suitable alternative to the De Concini-Kac form.

1.1. Twisted construction.

Let us recall the construction in [14]. It starts with the standard twist construction in [11, Theorem 1]

Proposition 1.1. (a) For a (topological) Hopf algebra $(A, m, \Delta, S, \varepsilon)$ and $F \in A \widehat{\otimes} A$ satisfying (1.2) $(\Delta \otimes \operatorname{Id})(F) = F_{13}F_{23}$, $(\operatorname{Id} \otimes \Delta)(F) = F_{13}F_{12}$, $F_{12}F_{13}F_{23} = F_{23}F_{13}F_{12}$, $F_{12}F_{21} = 1$, the formulas

$$\Delta^{(F)}(a) = F\Delta(a)F^{-1}, \qquad S^{(F)}(a) = uS(a)u^{-1}, \qquad \varepsilon^{(F)}(a) = \varepsilon(a)$$

with $u := m(\operatorname{Id} \otimes S)(F)$, endow A with a new Hopf algebra structure $(A, m, \Delta^{(F)}, S^{(F)}, \varepsilon^{(F)})$. (b) If $(A, m, \Delta, S, \varepsilon)$ is a quasitriangular Hopf algebra with universal R-matrix $R \in A \otimes A$, then $(A, m, \Delta^{(F)}, S^{(F)}, \varepsilon^{(F)})$ is also a quasitriangular Hopf algebra with universal R-matrix:

$$R^{(F)} = F^{-1}RF^{-1}$$
.

Let $\mathbf{U}_v(\mathfrak{g}, P/2)$ be an Hopf algebra over $\mathbb{Q}(v^{1/2})$ obtained from $\mathbf{U}_v(\mathfrak{g})$ by extending the base ring to $\mathbb{Q}(v^{1/2})$ and adding elements $\{K^{\lambda}\}_{{\lambda}\in P/2}$.

Let $\operatorname{Dyn}(\mathfrak{g})$ denote the graph obtained from the Dynkin diagram of \mathfrak{g} by replacing all multiple edges by simple ones, e.g., $\operatorname{Dyn}(\mathfrak{sp}_{2r}) = \operatorname{Dyn}(\mathfrak{so}_{2r+1}) = \operatorname{Dyn}(\mathfrak{sl}_{r+1}) = A_r$. Let us fix an orientation Or of Dynkin diagram of \mathfrak{g} . We associate to such orientation a skew-symmetric matrix $(\epsilon_{ij})_{i,j=1}^r$ via

$$\epsilon_{ij} = \begin{cases} 0 & \text{if } a_{ij} \geq 0 \\ 1 & \text{if } a_{ij} < 0 \text{ and Or contains an oriented edge } i \rightarrow j \\ -1 & \text{if } a_{ij} < 0 \text{ and Or contains an oriented edge } i \leftarrow j \end{cases}$$

Let us consider the skew-symmetric matrix $(\phi_{ij})_{i,j=1}^r$ in which

$$\phi_{ij} = \epsilon_{ij} \frac{(\alpha_i, \alpha_j)}{2}.$$

The twist

(1.3)
$$\mathsf{F} = v^{\sum_{ij} \phi_{ij} \omega_i^{\vee} \otimes \omega_j^{\vee}}$$

satisfies the condition (1.2). To be more precise, this twist belongs to a topological completion of $\mathbf{U}_v(\mathfrak{g}, P/2)$ (May describe this topological completion). Nevertheless, it still gives a new coproduct on $\mathbf{U}_v(\mathfrak{g}, P/2)$ as follows:

$$\Delta'(K^{\mu}) = K^{\mu} \otimes K^{\mu},$$

$$\Delta'(E_{i}) = E_{i} \otimes K^{\sum_{j=1}^{r} \phi_{ij} \omega_{j}^{\vee}} + K^{\alpha_{i} - \sum_{j=1}^{r} \phi_{ij} \omega_{j}^{\vee}} \otimes E_{i},$$

$$\Delta'(F_{i}) = F_{i} \otimes K^{-\alpha_{i} - \sum_{j=1}^{r} \phi_{ij} \omega_{j}^{\vee}} + K^{\sum_{j=1}^{r} \phi_{ij} \omega_{j}^{\vee}} \otimes F_{i},$$

$$S'(K^{\mu}) = K^{-\mu}, \qquad S'(E_{i}) = -K^{-\alpha_{i}} E_{i}, \qquad S'(F_{i}) = -F_{i} K^{\alpha_{i}},$$

$$\varepsilon'(K^{\mu}) = 1, \qquad \varepsilon'(E_{i}) = \varepsilon'(F_{i}) = 0,$$

Let

$$\nu_i^{>} := -\alpha_i + \sum_{j=1}^r \phi_{ij} \omega_j^{\vee}, \qquad \qquad \nu_i^{<} := \sum_{j=1}^r \phi_{ij} \omega_j^{\vee},$$

$$\zeta_i^{>} := \alpha_i - 2 \sum_{j=1}^r \phi_{ij} \omega_j^{\vee}, \qquad \qquad \zeta_i^{<} := -\alpha_i - 2 \sum_{j=1}^r \phi_{ij} \omega_j^{\vee}.$$

Then set

$$\tilde{E}_i := E_i K^{\nu_i^>}, \qquad \tilde{F}_i := K^{-\nu_i^<} F_i.$$

Remark 1.2. These elements $\zeta_i^{<}, \zeta_i^{>}$ belong to 2P.

One can show that $\mathbf{U}_v(\mathfrak{g}, P/2)$ is generated by $\{\tilde{E}_i, \tilde{F}_i, K^{\lambda}\}_{1 \leq i \leq r}^{\lambda \in P/2}$ subjects to relations:

$$K^{\mu}K^{\mu'} = K^{\mu+\mu'}, \qquad K^{0} = 1,$$

$$K^{\mu}\tilde{E}_{i}K^{-\mu} = v^{(\alpha_{i},\mu)}\tilde{E}_{i}, \qquad K^{\mu}\tilde{F}_{i}K^{-\mu} = v^{-(\alpha_{i},\mu)}\tilde{F}_{i},$$

$$\tilde{E}_{i}\tilde{F}_{j} = v^{(\alpha_{i},-\zeta_{j}^{<})}\tilde{F}_{j}\tilde{E}_{i} \quad (i \neq j), \qquad \tilde{E}_{i}\tilde{F}_{i} - v_{i}^{2}\tilde{F}_{i}\tilde{E}_{i} = v_{i}\frac{1 - K_{i}^{-2}}{1 - v_{i}^{-2}},$$

$$\sum_{m=0}^{1-a_{ij}} (-1)^{m}v^{m\epsilon_{ij}b_{ij}} \begin{bmatrix} 1 - a_{ij} \\ m \end{bmatrix}_{v_{i}} \tilde{E}_{i}^{1-a_{ij}-m}\tilde{E}_{j}\tilde{E}_{i}^{m} = 0 \quad (i \neq j),$$

$$\sum_{m=0}^{1-a_{ij}} (-1)^{m}v^{m\epsilon_{ij}b_{ij}} \begin{bmatrix} 1 - a_{ij} \\ m \end{bmatrix}_{v_{i}} \tilde{F}_{i}^{1-a_{ij}-m}\tilde{F}_{j}\tilde{F}_{i}^{m} = 0 \quad (i \neq j),$$

here $K_i := K^{\alpha_i}$, $v_i = v^{\mathsf{d}_i}$ as usual. Moreover, we have

(1.6)
$$\Delta'(K^{\mu}) = K^{\mu} \otimes K^{\mu}, \quad \Delta'(\tilde{E}_{i}) = 1 \otimes \tilde{E}_{i} + \tilde{E}_{i} \otimes K^{-\zeta_{i}^{>}}, \quad \Delta'(\tilde{F}_{i}) = 1 \otimes \tilde{F}_{i} + \tilde{F}_{i} \otimes K^{\zeta_{i}^{<}},$$
$$S'(K^{\mu}) = K^{-\mu}, \qquad S'(\tilde{E}_{i}) = -\tilde{E}_{i}K^{\zeta_{i}^{>}}, \qquad S'(\tilde{F}_{i}) = -\tilde{F}_{i}K^{-\zeta_{i}^{<}}.$$

Definition 1.3. The (twist) Lusztig form $\check{U}_v(\mathfrak{g})$ is the \mathcal{A} -subalgebra of $\mathbf{U}_v(\mathfrak{g}, P/2)$ generated by $\{\tilde{E}_i^{(n)}, \tilde{F}_i^{(n)}, K^{\lambda}\}_{\lambda \in 2P}^{1 \le i \le r}$ with $\tilde{E}_i^{(n)} := \frac{\tilde{E}_i^n}{(n)_{v_i}!}$ and $\tilde{F}_i^{(n)} := \frac{\tilde{F}_i^n}{(n)_{v_i}!}$. The even subalgebra $U_v^{ev}(\mathfrak{g})$ is the \mathcal{A} -subalgebra of $\mathbf{U}_v(\mathfrak{g}, P/2)$ generated by $\{\tilde{E}_i, \tilde{F}_i, K^{\lambda}\}_{\lambda \in 2P}^{1 \le i \le r}$.

These algebras are Hopf \mathcal{A} -subalgebras of $\mathbf{U}_v(\mathfrak{g}, P/2)$ with the twisted Hopf structure. The name *even subalgebra* comes from the fact that we only use the lattice 2P for the Cartan part in the set of generators of $U_v^{ev}(\mathfrak{g})$. We have the left adjoint action ad'_l of $\mathbf{U}_v(\mathfrak{g}, P/2)$ on itself similar to (1.1). By Proposition in [14], we have

Proposition 1.4. The left adjoint action ad'_l of $\mathbf{U}_v(\mathfrak{g}, P/2)$ on itself restricts to an adjoint action of $\check{U}_v(\mathfrak{g})$ on $U_v^{ev}(\mathfrak{g})$.

To any algebra homomorphism $A \to R$, $v \mapsto q \in R^{\times}$, we define the specalizations

$$\check{U}_q(\mathfrak{g}) := \check{U}_v(\mathfrak{g}) \otimes_{\mathcal{A}} R, \qquad \qquad U_q^{ev}(\mathfrak{g}) := U_v^{ev}(\mathfrak{g}) \otimes_{\mathcal{A}} R.$$

Then we has the adjoint action $\operatorname{ad}'_{\iota}: \check{U}_{q}(\mathfrak{g}) \curvearrowright U_{q}^{ev}(\mathfrak{g})$. Furtheremore, the inclusion $\iota: U_{v}^{ev}(\mathfrak{g}) \hookrightarrow \dot{U}_{v}(\mathfrak{g})$ induces the morphism $\iota: U_{q}^{ev}(\mathfrak{g}) \to \check{U}_{q}(\mathfrak{g})$.

Let $\dot{U}_q(\mathfrak{g}, P)$ denote the idempotented Lusztig form defined similarly to [9, Chapter 23] with generators

$$\{\tilde{E}_i^{(n)}1_{\lambda}, \tilde{F}_i^{(n)}1_{\lambda}|1 \le i \le r, n \ge 0, \lambda \in P\}$$

We record the coproduct of $\dot{U}_q(\mathfrak{g}, P)$:

(1.7)
$$\Delta(\tilde{E}_{i}^{(r)}1_{\lambda}) = \sum_{c=0}^{r} \prod_{\lambda'+\lambda''=\lambda} q^{-(r-c)(\zeta_{i}^{>},\lambda'')} \tilde{E}_{i}^{(r-c)}1_{\lambda'} \otimes \tilde{E}_{i}^{(c)}1_{\lambda''},$$

$$\Delta(\tilde{F}_{i}^{(r)}1_{\lambda}) = \sum_{c=0}^{r} \prod_{\lambda'+\lambda''=\lambda} q_{i}^{2c(r-c)} q^{c(\zeta_{i}^{<},\lambda'')} \tilde{F}_{i}^{(c)}1_{\lambda'} \otimes \tilde{F}_{i}^{(r-c)}1_{\lambda''},$$

2. RATIONAL REPRESENTATION OF $\check{U}_{a}(\mathfrak{g})$

2.1. Rational representations of $\check{U}_q(\mathfrak{g})$.

Let N be such that $N(\frac{P}{2}, \frac{P}{2}) \in \mathbb{Z}$. Fix element $q^{1/N}$ in R such that $(q^{1/N})^N = q$. For any $\lambda \in P$, let $\chi_{\lambda} : \check{U}_{q}^{0}(\mathfrak{g}) \to R$ defined by

(2.1)
$$\chi_{\lambda}(K^{\mu}) = q^{(\mu,\lambda)}, \qquad \chi_{\lambda}\left(\binom{K_{i};0}{m}\right) = \binom{(\lambda,\alpha_{i}^{\vee})}{m}_{a_{i}},$$

for $\mu \in P$ and $m \in \mathbb{N}$.

Definition 2.1. A $\check{U}_q(\mathfrak{g})$ -module M is a rational representation (of type 1) if it satisfies the

- (i) M is a weight module meaning that there is a decomposition $M = \bigoplus_{\lambda \in P} M_{\lambda}$, where $u_0 m = \chi_{\lambda}(u_0) m$ for all $u_0 \in \check{U}_q^0, m \in M_{\lambda}$.
- (ii) For any $m\in M$, there is k>0 such that $\tilde{E}_i^{(s)}m=0$ for all s>k and all $1\leq i\leq r$. (iii) For any $m\in M$, there is k>0 such that $\tilde{F}_i^{(s)}m=0$ for all s>k and all $1\leq i\leq r$.

Let $\operatorname{Rep}(\check{U}_q(\mathfrak{g}))$ denote the category of rational representations of $\check{U}_q(\mathfrak{g})$. Let $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$ denote the full subcategory of $\text{Rep}(\check{U}_q(\mathfrak{g}))$ consisting of objects which are finitely generated over R.

Definition 2.2. (a) For any $\lambda \in P$, let R_{λ} denote the representation of \dot{U}_q^{\geqslant} defined via $\dot{U}_q^{\geqslant} \to \dot{U}_q^0 \xrightarrow{\chi_{\lambda}} R$. Then the Verma module $\Delta_q(\lambda) := \dot{U}_q(\mathfrak{g}) \otimes_{\dot{U}_q^{\geqslant}} R_{\lambda}$.

(b) For any $\lambda \in P_+$, the Weyl module $W_q(\lambda)$ is the maximal rational representation of the Verma module $\Delta_q(\lambda)$. Let 1_{λ} be the image of $1 \in \dot{U}_q(\mathfrak{g})$ in $\Delta_q(\lambda)$ then $W_q(\lambda)$ is the quotient of $\Delta_q(\lambda)$ by the left $\dot{U}_q(\mathfrak{g})$ -submodules generated by $\tilde{F}_i^{(s)}1_{\lambda}$ for $s > (\lambda, \alpha_i^{\vee})$ and $1 \leq i \leq r$.

The existence of the maximal rational quotient of $\Delta_q(\lambda)$ and the description of $W_q(\lambda)$, see [reference to the draft, APW]

Definition 2.3. A $\dot{U}_q(\mathfrak{g}, P)$ -module M is a unital rational representation if it satisfies

- (i) For any $m \in M$ then $1_{\lambda} m = 0$ for all but finitely many $\lambda \in P$.
- (ii) For any $m \in M$, there is k > 0 such that $\tilde{E}_i^{(s)} 1_{\lambda} m = 0$ for all s > k and all $1 \le i \le r$. (iii) For any $m \in M$, there is k > 0 such that $\tilde{F}_1^{(s)} 1_{\lambda} m = 0$ for all s > k and all $1 \le i \le r$.

Let $\operatorname{Rep}(\dot{U}_q(\mathfrak{g}, P))$ denote the category of unital rational representations of $U_q(\mathfrak{g}, P)$.

There is a natural equivalence of monoidal categories

$$\operatorname{Rep}(\check{U}_q(\mathfrak{g})) \cong \operatorname{Rep}(\dot{U}_q(\mathfrak{g}, P)).$$

Remark 2.4. Relate to the usual $\mathcal{U}_q(\mathfrak{g}, P)$.

2.2. Quantum Frobenious morphism.

Let $\ell_i := \gcd(2d_i, \ell)$ for $1 \le i \le r$. Let $\ell_\alpha := \gcd((\alpha, \alpha), \ell)$ for all positive roots $\alpha \in \Delta_+$ of \mathfrak{g} . Let us consider the following data:

- The lattices $P^* = \bigoplus_{i=1}^r \mathbb{Z}\omega_i^*$ and $Q^* = \bigoplus_{i=1}^r \mathbb{Z}\alpha_i^*$ in which $\omega_i^* := \ell_i \omega_i$, $\alpha_i^* := \ell_i \alpha_i$. Then set $\omega_i^{*\vee} := \omega_i^{\vee}/\ell_i$, $\alpha_i^{*\vee} := \alpha_i^{\vee}/\ell_i$.
- The new Cartan matrix with (i, j)-entry

(2.2)
$$a_{ij}^* = 2(\alpha_i^*, \alpha_i^*) / (\alpha_i^*, \alpha_i^*) = 2\ell_i(\alpha_i, \alpha_i) / \ell_i(\alpha_i, \alpha_i).$$

• The bilinear form on P^* induced from the bilinear form on P via the inclusion $P^* \subset P$. So that (a_{ij}^*) is the Cartan matrix of a semisimple Lie algebra \mathfrak{g}^d , see [9, §2.2.4]. Furtheremore, \mathfrak{g}^d is either \mathfrak{g} or the Langland dual \mathfrak{g}^{\vee} of \mathfrak{g} . Hence, $\mathrm{Dyn}(\mathfrak{g}^d)$ is the same graph as $\mathrm{Dyn}(\mathfrak{g})$. Let us fix the same orientation Or for $Dyn(\mathfrak{g}^d)$ as one of $Dyn(\mathfrak{g})$.

We form the $\mathbb{Q}(v^{1/2})$ -Hopf algebra $\mathbf{U}^*(\mathfrak{g}, P^*/2)$ with generators $\{\hat{e}_i, \hat{f}_i, K^{\mu}\}_{1 \leq i \leq r}^{\mu \in P^*/2}$ by the above data. We have the following twist with respect to the orientation Or of $Dyn(g^d)$:

$$\mathsf{F}^* := v^{\sum_{i,j} \phi_{ij}^* \omega_i^{*\vee} \otimes \omega_j^{*\vee}}, \qquad \text{here} \qquad \phi_{ij}^* = \epsilon_{ij} \frac{(\alpha_i^*, \alpha_j^*)}{2}.$$

As in Section 1.1, we consider the following twisted generators:

$$\tilde{e}_i := \hat{e}_i K^{\nu_i^*}, \qquad \tilde{f}_i := K^{-\nu_i^*} \hat{f}_i,$$

in which

$$\nu_i^{*>} := -\alpha_i^* + \sum_{1 \le j \le r} \phi_{ij}^* \omega_j^{*\vee} = \ell_i \nu_i^>, \qquad \nu_i^{*<} := \sum_{1 \le j \le r} \phi_{ij}^* \omega_j^{*\vee} = \ell_i \nu_i^<.$$

Finally, we obtain the idempotented Lusztig form $\dot{U}_{q}^{*}(\mathfrak{g}, P^{*})$ (after base change $\mathcal{A} \to R, v \mapsto$ $q \in R^{\times}$) with generators:

$$\{\tilde{e}_i^{(n)}1_\lambda, \tilde{f}_i^{(n)}1_\lambda | 1 \le i \le r, \lambda \in P^*\}.$$

The next proposition is a twisted version of [9, Theorem]. We refer the dicussion about it to $[14, \S 4].$

Proposition 2.5. There is a unique R-homomorphism

$$\tilde{\mathrm{Fr}}: \dot{U}_{\epsilon}(\mathfrak{g},P) \to \dot{U}_{\epsilon}^*(\mathfrak{g},P^*)$$

such that

- Fr(Ẽ_i⁽ⁿ⁾1_λ) equals ẽ_i^(n/ℓ_i)1_λ if λinP* and n is divisible by ℓ_i, and is zero otherwise.
 Fr(F̃_i⁽ⁿ⁾1_λ equals f̃_i^(n/ℓ_i)1_λ if λ ∈ P* and n is divisible by ℓ_i, and is zero otherwise.

Furthermore, this homomorphism is compatible with comultiplications.

Remark 2.6. This morphism gives a rise to a functor of monoidal categories:

(2.3)
$$\tilde{\operatorname{Fr}}^* : \operatorname{Rep}(\dot{U}_{\epsilon}^*(\mathfrak{g}, P^*) \to \operatorname{Rep}(\dot{U}_{\epsilon}(\mathfrak{g}, P)).$$

To the Lie algebra \mathfrak{g}^d , we have the Kostant \mathbb{Z} -form $\check{U}_{\mathbb{Z}}(\mathfrak{g}^d)$ of the universal enveloping algebra $\mathbf{U}_{\mathbb{Q}}(\mathfrak{g}^d)$ with generators $\{e_i, f_i, h_i\}_{1 \leq i \leq r}$, for details see [4] or [14, §4.3]. Let

$$\check{U}_R(\mathfrak{g}^d) := \check{U}_{\mathbb{Z}}(\mathfrak{g}^d) \otimes_{\mathbb{Z}} R.$$

The next proposition is [14, Proposition 4.17]:

Proposition 2.7. There is a unique R-homomorphism of Hopf algebras

$$\tilde{\mathrm{Fr}}: \check{U}_{\epsilon}(\mathfrak{g}) \to \check{U}_{R}(\mathfrak{g}^{d})$$

such that

$$\tilde{E}_i^{(n)} \mapsto (\epsilon_i^*)^{-n/\ell_i} e_i^{(n/\ell_i)}, \qquad \tilde{F}_i^{(n)} \mapsto f_i^{(n/\ell_i)}, \qquad K^{\lambda} = 1,$$

where $\lambda \in 2P$ and we set $e_i^{(n/\ell_i)} = f_i^{(n/\ell_i)} = 0$ if ℓ_i does not divide n.

2.3. More on rational representations.

In this section, we consider the following two cases: (Trung: May move it into the introduction. Say some results can be defined over general rings but we are mostly interested in the following cases)

- (A) $q = \epsilon \in \mathbb{C}$ a root of unity of order ℓ . We assume that $\ell_i \geq \max\{2, a_{ij}\}_{1 \leq i \leq r}$ for all $1 \leq i \leq r$. We use $\check{U}_{\epsilon}(\mathfrak{g})$ to denote the (twisted) Lusztig form.
- (B) $q = \epsilon e^{\hbar} \in \mathbb{C}[[\hbar]]$. We will still use $\check{U}_q(\mathfrak{g})$ to denote the (twisted) Lusztig form in this case.

So we have a natural short exact sequence: $0 \to \check{U}_q(\mathfrak{g}) \xrightarrow{h} \check{U}_q(\mathfrak{g}) \xrightarrow{/\hbar} \check{U}_{\epsilon}(\mathfrak{g}) \to 0$.

Definition 2.8. Let $\lambda_{\mathbf{St}} := \sum_{i} (\ell_i - 1)\omega_i$. The Steinberg representation $\mathbf{St}_{\epsilon} \in \operatorname{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$ is the Weyl module $W_{\epsilon}(\lambda_{\mathbf{St}})$. The Steinberg representation $\mathbf{St}_q \in \operatorname{Rep}(\check{U}_q(\mathfrak{g}))$ is the Weyl module $W_q(\lambda_{\mathbf{St}})$.

We have the equivalence of braided monoidal categories $\operatorname{Rep}(\check{U}_{\epsilon}(\mathfrak{g})) \cong \operatorname{Rep}(\dot{\mathcal{U}}_{\epsilon}(\mathfrak{g}, P))$, see Remark 2.4. Hence by [10], we have the following proposition:

Proposition 2.9. (a) The module St_{ϵ} is projective and injective in Rep($\check{U}_{\epsilon}(\mathfrak{g})$).

(b) The category $\operatorname{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$ has enough projectives and injectives. Any object M in $\operatorname{Rep}^{fd}(\check{U}_{\epsilon}(\mathfrak{g}))$ admits a surjective morphism from a projective object of the form $St_{\epsilon}\otimes_{\mathbb{C}}N$ with $N\in\operatorname{Rep}^{fd}(\check{U}_{\epsilon}(\mathfrak{g}))$.

Proposition 2.10. (a) For any $N_q \in \operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$ which is a free module of finite rank over $\mathbb{C}[[\hbar]]$, the object $St_q \otimes_{\mathbb{C}[[\hbar]]} N_q$ is projective in $\operatorname{Rep}(\check{U}_q(\mathfrak{g}))$.

- (b) Any object in $\operatorname{Rep}^{fd}(\check{\mathbf{U}}_q(\mathfrak{g}))$ admits a surjective morphism from some projective object of the form $\mathbf{St}_q \otimes_{\mathbb{C}[[h]]} N_q$ as in part (a).
- (c) The category $\operatorname{Rep}(\check{U}_q(\mathfrak{g}))$ has enough projectives.

Proof. (a) Since any object in $\operatorname{Rep}(\check{U}_q(\mathfrak{g}))$ is a union of objects in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$, it is enough to prove the statement in the category $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$. Then the statement follows by Proposition 2.9 and the following claim:

Claim: Suppose $V_q \in \operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$ such that V_q is a free module over finite rank over $\mathbb{C}[[\hbar]]$ and $V_q/\hbar V_q$ is a projective object in $\operatorname{Rep}^{fd}(\check{U}_{\epsilon}(\mathfrak{g}))$, then V_q is projective in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$.

Let us prove the claim.

Step 1: For $N \in \operatorname{Rep}^{fd}(\check{U}_{\epsilon}(\mathfrak{g}))$, we will show that $\operatorname{Ext}^1_{\operatorname{Rep}(\check{U}_q(\mathfrak{g}))}(V_q, N) = 0$.

Let $0 \to N \to M \to V_q \to 0$ be a short exact sequence in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$. Since V_q is free over $\mathbb{C}[[\hbar]]$, there is a short exact sequence in $\operatorname{Rep}^{fd}(\check{U}_{\epsilon}(\mathfrak{g}))$:

$$0 \to N \to M/\hbar M \to V_g/\hbar V_g \to 0$$
,

which is split since $V_q/\hbar V_q$ is projective in $\operatorname{Rep}^{fd}(\check{U}_{\epsilon}(\mathfrak{g}))$. Let $V_q/\hbar V_q \to M/\hbar M$ be a splitting and let V_1 denote the image of $V_q/\hbar V_q$ under that splitting map. Let M_1 denote the preimage of V_1 under the quotient map $M \twoheadrightarrow M/\hbar M$. One can show that the composition map $M_1 \hookrightarrow$

 $M \to V_q$ is surjective, the kernel N_1 is a submodule of N. So we have another short exact sequence in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g})): 0 \to N_1 \to M_1 \to V_q \to 0$. Since V_q is free over $\mathbb{C}[[\hbar]]$, if N is nonzero then M_1 is a proper submodule of M and N_1 is also a proper submodule of N.

Proceed this procedure iteriately, we get a decreasing sequence $M \supset M_1 \supset M_2 \ldots$ and $N \supset N_1 \supset N_2 \ldots$ such that $0 \to N_i \to M_i \to V_q \to 0$ is a short exact sequence for any i and N_{i+1} is always a proper submodule of N_i if N_i is nonzero. Because N is a finite dimensional vector space, the decreasing sequence $N \supset N_1 \supset N_2 \ldots$ must terminate. Hence, we can find some submodule $M' \subset M$ such that the composition $M' \hookrightarrow M \to V_q$ is an isomorphism in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$. As a result, the short exact sequence $0 \to N \to M \to V_q \to 0$ splits in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$.

Step 2: For $N \in \operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$ flat over $\mathbb{C}[[\hbar]]$, we will show that $\operatorname{Ext}^1_{\operatorname{Rep}(\check{U}_q(\mathfrak{g}))}(V_q, N) = 0$.

We have a short exact sequence $0 \to N \xrightarrow{\dot{h}} N \to N/\hbar N \to 0$ in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$, which give a long exact sequence of $\mathbb{C}[[\hbar]]$ -modules

$$\cdots \to \operatorname{Ext}^1_{\operatorname{Rep}(\check{U}_q(\mathfrak{g}))}(V_q, N) \xrightarrow{\cdot \hbar} \operatorname{Ext}^1_{\operatorname{Rep}(\check{U}_q(\mathfrak{g}))}(V_q, N) \to \operatorname{Ext}^1_{\operatorname{Rep}(\check{U}_q(\mathfrak{g}))}(V_q, N/\hbar N) \dots$$

This gives a surjective map $\operatorname{Ext}^1_{\operatorname{Rep}(\check{U}_q(\mathfrak{g}))}(V_q,N) \xrightarrow{\cdot \hbar} \operatorname{Ext}^1_{\operatorname{Rep}(\check{U}_q(\mathfrak{g}))}(V_q,N)$. On the other hand, $\operatorname{Ext}^1_{\operatorname{Rep}(\check{U}_q(\mathfrak{g}))}(V_q,N)$ is finitely generated over $\mathbb{C}[[\hbar]]$, one way to prove it is in [15, Proposition 5.15]. Therefore, by Nakayama lemma, $\operatorname{Ext}^1_{\operatorname{Rep}(\check{U}_q(\mathfrak{g}))}(V_q,N) = 0$.

Step 3: We will show that $\operatorname{Ext}^1_{\operatorname{Rep}(\check{U}_q(\mathfrak{g}))}(V_q,N)=0$ for any $N\in\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$. Let $N_{\operatorname{tor}}:=\{n\in N|\hbar^k n=0 \text{ for some } k>0\}$. Then N_{tor} is a subobject of N in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$. Since N_{tor} is finitely generated over $\mathbb{C}[[\hbar]]$, it admits a finite filtration whose subquotients are objects in $\operatorname{Rep}^{fd}(\check{U}_e(\mathfrak{g}))$. On the other hand N/N_{tor} is an object in $\operatorname{Rep}(\check{U}_q(\mathfrak{g}))$ which is flat over $\mathbb{C}[[\hbar]]$. Therefore by Step 1 and Step 2, we have $\operatorname{Ext}^1_{\operatorname{Rep}(\check{U}_q(\mathfrak{g}))}(V_q,N)=0$.

This completes the proof.

(b) For any $N \in \operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$, the quotient $N/\hbar N$ belongs to $\operatorname{Rep}^{fd}(\check{U}_{\epsilon}(\mathfrak{g}))$. Then there is a surjective map:

$$\mathbf{St}_{\epsilon} \otimes_{\mathbb{C}} \Big(\bigoplus_{\lambda_i} W_{\epsilon}(\lambda_i) \Big) \twoheadrightarrow N/\hbar N,$$

for a finite collection of dominant weights $\{\lambda_i\}$. Since $\mathbf{St}_q \otimes_{\mathbb{C}[[\hbar]]} W_q(\lambda_i)$ is projective in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$ by part (a), we have the following commutative diagram in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$:

$$\mathbf{St}_{q} \otimes_{\mathbb{C}[[\hbar]]} \left(\bigoplus_{\lambda_{i}} W_{q}(\lambda_{i}) \right) \xrightarrow{h} N$$

$$\downarrow / \hbar \qquad \qquad / \hbar \downarrow$$

$$\mathbf{St}_{\epsilon} \otimes_{\mathbb{C}} \left(\bigoplus_{\lambda_{i}} W_{\epsilon}(\lambda_{i}) \right) \xrightarrow{} N / \hbar N$$

By Nakayama lemma, the upper horizontal arrow is surjective. This finishes the proof.

(c) Since any object in $\operatorname{Rep}(\check{U}_q(\mathfrak{g}))$ is a union of objects in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$, this part follows by part (b).

Definition 2.11. Let \mathfrak{u}_{ϵ} be the Hopf subalgebra of $\check{U}_{\epsilon}(\mathfrak{g})$ generated by $\{\tilde{E}_{i}, \tilde{F}_{i}, K^{\lambda}\}_{1 \leq i \leq r}^{\lambda \in 2P}$

- 2.4. Tilting modules. Discuss about tilting modules on $\operatorname{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$ and $\operatorname{Rep}(\check{U}_{q}(\mathfrak{g}))$.
 - Learn about the highest weight category over complete local rings, for example $\mathbb{C}[[\hbar]]$.

- Show one-to-one correspondence between indecomposable tilting objects in $\text{Rep}(U_q(\mathfrak{g}))$ and $\text{Rep}(\dot{U}_{\epsilon}(\mathfrak{g}))$: use the lemma that for any V_q free of finite rank over $\mathbb{C}[[\hbar]]$, V_q has a good filtration iff $V_q/\hbar V_q$ has a good filtration, see [14, Lemma 6.25].
- Mention that projective objects in $\text{Rep}(\tilde{U}_{\epsilon}(\mathfrak{g}))$ are tilting. Deduce that projective objects in $\operatorname{Rep}(U_q(\mathfrak{g}))$ are tilting: Any projective object is the direct summand of $\mathbf{St} \otimes_{\mathbb{C}[[\hbar]]} W_q$ for some free of finite rank W_q . Then use the lemma in the second bullet point to conclude that $\mathbf{St} \otimes_{\mathbb{C}[[\hbar]]} W_q$ is tilting, hence so is its direct summands.

3. The even subalgebra $U_q^{ev}(\mathfrak{g})$

(Trung: various terminologies are needed to be defined. Need to think of how to present the results over various base changes)

In this section, $U_{\epsilon}^{ev}(\mathfrak{g})$ and $U_{q}^{ev}(\mathfrak{g})$ are referred to the base changes of $U_{v}^{ev}(\mathfrak{g})$ with respect to case (A) and (B), respectively.

There is the Lusztig's braided group action on $\mathbf{U}_v(\mathfrak{g}, P/2)$ defined as follows, see [9, Part VI and also [3, §4.9]

$$T_{i}(K^{\mu}) = K^{s_{\alpha_{i}}\mu}, \qquad T_{i}(E_{i}) = -F_{i}K^{\alpha_{i}}, \qquad T_{i}(F_{i}) = -K^{-\alpha_{i}}E_{i},$$

$$T_{i}(E_{j}) = \sum_{k=0}^{-a_{ij}} (-1)^{k} \frac{v_{i}^{-k}}{[-a_{ij} - k]_{v_{i}}![k]_{v_{i}}!} E_{i}^{-a_{ij} - k} E_{j}E_{i}^{k},$$

$$T_{i}(F_{j}) = \sum_{k=0}^{-a_{ij}} (-1)^{k} \frac{v_{i}^{k}}{[-a_{ij} - k]_{v_{i}}![k]_{v_{i}}!} F_{i}^{k} F_{j} F_{i}^{-a_{ij} - k}.$$

Let us pick a reduce expression of the longest element $w_0 = s_{i_1} s_{i_2} \dots s_{i_N}$ in the Weyl group W, here N is the cardinality of the positive root system Δ_+ . Then the set of roots β_k $s_{i_1} \dots s_{i_{k-1}} \alpha_{i_k} (1 \leq k \leq N)$ provides a labelling of all positive roots in Δ_+ . Using Lusztig's braid group action, we define the root vectors $\{E_{\beta}, F_{\beta}\}_{\beta \in \Delta_{+}}$ in a standard way:

$$(3.2) E_{\beta_k} = T_{i_1} \cdots T_{i_{k-1}} E_{i_k}, F_{\beta_k} = T_{i_1} \cdots T_{i_{k-1}} F_{i_k} = \tau(E_{\beta_k}) \forall 1 \le k \le N.$$

For positive root $\beta = \sum a_i \alpha_i$, let

$$\nu_\beta^> := \sum_i a_i \nu_i^>, \qquad \nu_i^< := \sum_i a_i \nu_i^<.$$

and

(3.3)
$$\tilde{E}_{\beta_k} := v^{b_{\beta_k}^{>}} E_{\beta_k} K^{\nu_{\beta_k}^{>}}, \qquad \tilde{F}_{\beta_k} := v^{b_{\beta_k}^{<}} K^{-\nu_{\beta_k}^{<}} F_{\beta_k},$$

here $b_{\beta_k}^>, \beta_{\beta_k}^< \in \mathbb{Z}/2$ are normalizer, see [14, §2.6], so that $\tilde{E}_{\beta_k}, \tilde{F}_{\beta_k} \in U_{\mathcal{A}}^{ev}(\mathfrak{g})$. We have the PBW-basis for $U_{\mathcal{A}}^{ev}(\mathfrak{g})$ by [14, Lemma 2.10], let

$$\tilde{E}^{\vec{k}} := \tilde{E}^{k_1}_{\beta_1} \dots \tilde{E}^{k_N}_{\beta_N} \,, \qquad \tilde{F}^{\vec{k}} := \tilde{F}^{k_1}_{\beta_1} \dots \tilde{F}^{k_N}_{\beta_N} \,, \quad \tilde{E}^{\vec{k}} := \tilde{E}^{k_N}_{\beta_N} \dots \tilde{E}^{k_1}_{\beta_1} \,, \qquad \tilde{F}^{\vec{k}} := \tilde{F}^{k_N}_{\beta_N} \dots \tilde{F}^{k_1}_{\beta_1} \,,$$

 $\textbf{Lemma 3.1.} \ \ (a) \ \ \textit{The sets} \ \{\tilde{E}^{\vec{k}}\}_{\vec{k} \in \mathbb{Z}_{>0}^{N}}, \{\tilde{E}^{\vec{k}}\}_{\vec{k} \in \mathbb{Z}_{>0}^{N}} \ \ \textit{are \mathcal{A}-bases of $U_{\mathcal{A}}^{ev>}$.}$

- (b) The sets $\{\tilde{F}^{\vec{k}}\}_{\vec{k}\in\mathbb{Z}_{\geq 0}^{N}}, \{\tilde{F}^{\vec{k}}\}_{\vec{k}\in\mathbb{Z}_{\geq 0}^{N}}$ are \mathcal{A} -bases of $U_{\mathcal{A}}^{ev<}$. (c) The set $\{K^{\mu}\}_{\mu\in 2P}$ is a \mathcal{A} -basis of $U_{\mathcal{A}}^{ev0}$.

Via base change, we have the corresponding PBW-bases for $U_{\epsilon}^{ev}(\mathfrak{g})$.

3.1. Harish-Chandra center Z_{HC} .

(Trung: the base ring is general R)

Definition 3.2. The Harish-Chandra center Z_{HC} of $U_q^{ev}(\mathfrak{g})$ is the $\check{U}_q(\mathfrak{g})$ -invariant part of $U_q^{ev}(\mathfrak{g})$.

It is not hard to show that Z_{HC} is central in $U_q^{ev}(\mathfrak{g})$, see [14, ...]. Let us consider the natural map:

$$\pi: Z_{HC} \hookrightarrow U_q^{ev}(\mathfrak{g}) \cong U_q^{ev}(\mathfrak{g}) \otimes_R U_q^{ev0}(\mathfrak{g}) \otimes_R U_q^{ev}(\mathfrak{g}) \rightarrow U_q^{ev0}(\mathfrak{g}) \cong R\langle K^{2\lambda} \rangle_{\lambda \in P},$$

here $R\langle K^{2\lambda}\rangle_{\lambda\in P}$ is the polynomial algebra of the lattice 2P. The following result is [14, Theorem 8.29]:

Proposition 3.3. The morphism π gives a rise to an isomorphism of algebras

$$\pi: Z_{HC} \xrightarrow{\sim} R\langle K^{2\lambda} \rangle_{\lambda \in P}^{W_{\bullet}},$$

where the dot-action of the Weyl group W on $R(K^{2\lambda})_{\lambda \in P}$ is defined via:

$$w_{\bullet}(K^{\mu}) = q^{(w^{-1}\rho - \rho, \mu)} K^{w(\mu)}$$
 for all $x \in W, \ \mu \in 2P$.

Remark 3.4. Let $\gamma_{-\rho}: R\langle K^{2\lambda}\rangle_{\lambda\in P} \to R\langle K^{2\lambda}\rangle_{\lambda\in P}$ is defined by $\gamma_{-\rho}(K^{2\lambda}) = \epsilon^{(-\rho,2\lambda)}K^{2\lambda}$ for all $\lambda\in P$. Then we have an isomorphism

$$\gamma_{-\rho} \circ \pi : Z_{HC} \xrightarrow{\sim} R \langle K^{2\lambda} \rangle_{\lambda \in P}^W.$$

3.2. The Frobenious center Z_{Fr} .

Definition 3.5. The Frobenious center Z_{Fr} of $U_{\epsilon}^{ev}(\mathfrak{g})$ is the subalgebra generated by

$$\{\tilde{E}_{\alpha}^{\ell_{\alpha}}, \tilde{F}_{\alpha}^{\ell_{\alpha}}, K^{\mu}\}_{\alpha \in \Delta_{+}}^{\mu \in 2P^{*}}.$$

Remark 3.6. In [14, §5], we gave a conceptual definition of Z_{Fr} . That definition requires a $\check{U}_{\epsilon}(\mathfrak{g})$ -adjoint invariant pairing $U_{\epsilon}^{ev}(\mathfrak{g}) \times \dot{U}_{\epsilon}(\mathfrak{g}, P) \to \mathbb{C}$ which is non-degenerate in the first argument. Then Z_{Fr} is defined to be the orthogonal complement of $\operatorname{Ker}(\tilde{\operatorname{Fr}})$ under this pairing. Since the construction of the pairing is involved and we will not need it in this paper, we refer the details to [14, §5] and decide to provide more hand-on definition of Z_{Fr} .

We will give some properties of Z_{Fr} .

Proposition 3.7. (a) The Frobenious center Z_{Fr} is stable under the adjoint action of $\check{U}_{\epsilon}(\mathfrak{g})$ on $U_{\epsilon}^{ev}(\mathfrak{g})$. Furthermore, the action of $\check{U}_{\epsilon}(\mathfrak{g})$ on Z_{Fr} factors through the morphism $\check{\mathrm{Fr}}: \check{U}_{\epsilon}(\mathfrak{g}) \to \check{U}_{\mathbb{C}}(\mathfrak{g}^d)$.

(b) We have an isomorphism $Z_{Fr} \cong \mathbb{C}[\tilde{E}_{\alpha}^{\ell_{\alpha}}]_{\alpha \in \Delta_{+}} \otimes_{\mathbb{C}} \left(\bigoplus_{\lambda \in 2P^{*}} \mathbb{C}K^{\lambda}\right) \otimes_{\mathbb{C}} \mathbb{C}[\tilde{F}_{\alpha}^{\ell_{\alpha}}]_{\alpha \in \Delta_{+}}$. Here $\mathbb{C}[\tilde{E}_{\alpha}^{\ell_{\alpha}}]_{\alpha \in \Delta_{+}}, \mathbb{C}[\tilde{F}_{\alpha}^{\ell_{\alpha}}]_{\alpha \in \Delta_{+}}$ are polynomial algebras in the corresponding variables.

Let us define two linear morphisms $\kappa, \gamma \in \text{End}(\mathfrak{h}^*)$ as follows:

(3.4)
$$\kappa(\alpha_i) := \alpha_i + \sum_{j=1}^r 2\phi_{ij}\omega_j^{\vee} = -\zeta_i^{<} \quad \text{and} \quad \gamma(\alpha_i) := \alpha_i - \sum_{j=1}^r 2\phi_{ij}\omega_j^{\vee} = \zeta_i^{>},$$

Let

$$\tilde{Z}^{>}_{Fr} := \mathbb{C}[\tilde{E}^{\ell_{\alpha}}_{\alpha}K^{\ell_{\alpha}\gamma(\alpha)}]_{\alpha \in \Delta_{+}}, \qquad \tilde{Z}^{<}_{Fr} := \mathbb{C}[\tilde{F}^{\ell_{\alpha}}_{\alpha}K^{\ell_{\alpha}\kappa(\alpha)}]_{\alpha \in \Delta_{+}}, \qquad \tilde{Z}^{0}_{Fr} := \bigoplus_{\lambda \in 2P^{*}} \mathbb{C}K^{\lambda}.$$

The next proposition is Proposition 5.10 in [14]:

Proposition 3.8. There is a $\check{U}_{\epsilon}(\mathfrak{g}^d)$ -linear algebra homomorphism:

$$\varphi \colon Z_{Fr} \xrightarrow{\sim} \mathbb{C}[G_0^d] \simeq \mathbb{C}[U_-^d] \otimes_{\mathbb{C}} \mathbb{C}[T^d] \otimes_{\mathbb{C}} \mathbb{C}[U_+^d].$$

Furthermore, under this isomorphism, we have $\tilde{Z}_{Fr}^> \cong \mathbb{C}[U_-^d], \ \tilde{Z}_{Fr}^0 \cong \mathbb{C}[U_0^d], \ \tilde{Z}_{Fr}^< \cong \mathbb{C}[U_+^d].$

3.3. Center Z.

In this section, we will study the whole center Z of $U_{\epsilon}^{ev}(\mathfrak{g})$. Let

$$\mathcal{A}' := \mathbb{C}[v, v^{-1}] \left[\frac{1}{v^{2k} - 1} \right]_{1 \le k \le \max\{d_i\}},$$

and we consider the algebra $U^{ev}_{\mathcal{A}'}(\mathfrak{g})$ via the base change $\mathcal{A} \to \mathcal{A}'$. We have the surjection map $\varphi_{\epsilon}: U^{ev}_{\mathcal{A}'}(\mathfrak{g}) \to U^{ev}_{\epsilon}(\mathfrak{g})$ corresponding the algebra homomorphism $\sigma: \mathcal{A}' \to \mathbb{C}$ sending v to ϵ . For any $a \in Z$, pick arbitrary lifts \hat{a} in $U^{ev}_{\mathcal{A}'}(\mathfrak{g})$, then define

$$\{a,b\} := \varphi_\epsilon \left(\frac{[\hat{a},\hat{b}]}{v-\epsilon}\right), \qquad \text{for all } a,b \in Z.$$

The following results are in [14, §9]

Proposition 3.9. (a) The Frobenius center Z_{Fr} is closed under the Poisson bracket. Moreover, Z_{Fr} is generated by $\{\tilde{E}_i^{\ell_i}, \tilde{F}_i^{\ell_i}, K^{\lambda}\}_{\lambda \in 2P^*}^{1 \le i \le r}$ as a Poisson algebra.

- (b) Recall the $\check{U}_{\mathbb{C}}(\mathfrak{g}^d)$ -equivariant isomorphism $Z_{Fr} \cong \mathbb{C}[G_0^d]$. Then the symplective leaves of Spec Z_{Fr} coincides with the intersection of conjugacy classes of G^d with the open Bruhat cell G_0^d .
- (c) The fiber of $U_{\epsilon}^{ev}(\mathfrak{g})$ over points in the same symplectic leave are isomorphic as algebras.

The last part follows by the general results about Poisson order in [2].

Let $Z_{\cap} := Z_{Fr} \cap Z_{HC}$.

Lemma 3.10. Under the isomorphism $\gamma_{-\rho} \circ \pi : Z_{HC} \xrightarrow{\sim} \mathbb{C}\langle K^{2\lambda} \rangle_{\lambda \in P}^W$, the algebra Z_{\cap} is identified with $\mathbb{C}\langle K^{2\lambda} \rangle_{\lambda \in P^*}^W$.

So the inclusion $Z_{\cap} \hookrightarrow Z_{HC}$ gives a rise to the finite morphism $\bullet^l: T/W \to T^d/W$. On the other hand, the inclusion $Z_{\cap} \hookrightarrow Z_{Fr}$ corresponding to the morphism $G_0^d \hookrightarrow G^d \to G^d \ \# \ G^d \cong T^d/W$. So we can form the fibered produce $G_0^d \times_{T^d/W} T/W$.

Proposition 3.11. $Z \cong Z_{Fr} \otimes_{Z_{\cap}} Z_{HC}$ so that Spec $Z \cong G_0^d \times_{T^d/W} T/W$.

Let $G^{d,reg}$ be the set of regular element in G^d . Let us consider the projection

$$\mathsf{p}_1:\operatorname{Spec} Z\cong G_0^d\times_{T^d/W}T/W\to G_0^d\hookrightarrow G^d.$$

Theorem 3.12. The Azumaya locus of $U_{\epsilon}^{ev}(\mathfrak{g})$ over Z contains $\mathsf{p}_1^{-1}(G^{d,reg})$. In the other word, the restriction of $U_{\epsilon}^{ev}(\mathfrak{g})$ on the open set $\mathsf{p}_q^{-1}(G^{d,reg}) \subset \operatorname{Spec} Z$ is a sheaf of Azumaya algebras.

Remark 3.13. (Check) The Poisson structure on Z_{HC} is trivial. Moreover, Z_{\cap} is the Poisson center of Z_{Fr} .

3.4. The locally finite parts $U_{\epsilon}^{fin}, U_{a}^{fin}$. Let

(3.5) $U_q^{fin}: \{u \in U_q^{ev}(\mathfrak{g}) | \operatorname{ad}'(\check{U}_q(\mathfrak{g}))(u) \text{ is a finitely generated } R\text{-module}\}$ then U_q^{fin} is a subalgebra of $U_q^{ev}(\mathfrak{g})$.

Let $O_q[G] \subset \operatorname{Hom}_R(\check{U}_q(\mathfrak{g}), R)$ consisting of all matrix coefficients of representation $V \in \operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$. On $O_q[G]$, we can equip an algebra structure so called *reflection equation algebra*, see [14, §7], so that we have:

Proposition 3.14. There is an isomorphism of $\check{U}_q(\mathfrak{g})$ -module algebras $O_q[G] \xrightarrow{\sim} U_q^{fin}$.

The proof is based on the adjoint invariant pairing $U_q^{ev}(\mathfrak{g}) \times \check{U}_q(\mathfrak{g}) \to R$, see [14, §8]. So the $\check{U}_q(\mathfrak{g})$ -module structure of U_q^{fin} can be understood via $\check{U}_q(\mathfrak{g})$ -module $O_q[G]$, which can be studied via properties of the category $\text{Rep}(\tilde{U}_q(\mathfrak{g}))$.

Now we focus on the case $U_{\epsilon}^{ev}(\mathfrak{g})$ with respect to (A). Let

$$Z_{Fr}^{fin} := U_{\epsilon}^{fin} \cap Z_{Fr}$$

Proposition 3.15. (a) Under the $\check{U}_{\mathbb{C}}(\mathfrak{g}^d)$ -equivariant isomorphism $Z_{Fr} \xrightarrow{\sim} \mathbb{C}[G_0^d]$, we have $Z_{Fr}^{fin}\cong \mathbb{C}[G^d].$

(b) The algebra U_{ϵ}^{fin} is a finitely generated projective Z_{Fr}^{fin} -module. Moreover, $U_{\epsilon}^{ev} \cong U_{\epsilon}^{fin} \otimes_{Z_{r}^{fin}}$ $Z_{Fr}, i.e., U_{\epsilon}^{ev}$ is obtained from U_{ϵ}^{fin} by pulling back via open embedding $G_0^d \hookrightarrow G^d$. (c) The center Z^{fin} of U_{ϵ}^{fin} is $Z_{Fr}^{fin} \otimes_{Z_{\cap}} Z_{HC}$.

Let us comment on the proof of part (b) which is $[14, \S 8.3, 8.5]$. The proof is based on the isomorphism $O_{\epsilon}[G] \cong U_{\epsilon}^{fin}$. Recall the Frobenious functor $\tilde{\operatorname{Fr}}^* : \operatorname{Rep}(\dot{U}_{\epsilon}(\mathfrak{g}, P^*) \to \operatorname{Rep}(\dot{U}_{\epsilon}(\mathfrak{g}, P))$. This functor induces an inclusion $O_{\epsilon}[G^d] \hookrightarrow O_{\epsilon}[G]$, here $O_{\epsilon}[G^d]$ is the reflection equation algebra for $\dot{U}_{\epsilon}(\mathfrak{g}, P^*)$. It turns out that $O_{\epsilon}[G^d] \xrightarrow{\sim} Z_{Fr}^{fin}$ under the isomorphism $O_{\epsilon}[G] \xrightarrow{\sim} U_{\epsilon}^{fin}$. We then prove $O_{\epsilon}[G]$ is a finitely generated projective $O_{\epsilon}[G^d]$ -module.

4. Completion

(For simplicity, we will assume the order of ϵ is an odd number ℓ which is coprime with the determinant of Cartan matrix. In this case, $\ell_i = \ell_\alpha = \ell$ for $1 \le i \le r$ and $\alpha \in \Delta_+$). We will comment about the general ℓ in Section 13.

To simplify the notations, we will denote $W_q := Z_{q,HC}$, the Harish-Chandra center of $U_q^{ev}(\mathfrak{g})$.

Lemma 4.1. The algebra $U_q^{ev}(\mathfrak{g})$ is Noetherian. Let \mathcal{W}_q^{\wedge} be any completion of \mathcal{W}_q then $U_q^{ev}(\mathfrak{g}) \otimes_{\mathcal{W}_q} \mathcal{W}_q^{\wedge}$ is also Noetherian.

Proof. $U_q^{ev}(\mathfrak{g})$ admits a $\mathbb{Z}_{\geq 0}^{2N+1}$ filtration so that the associated graded algebra is the twisted polynomial over the Noetherian ring R. The latter is Noetherian hence so is $U_q^{ev}(\mathfrak{g})$.

Since we have a surjective map $U_q^{ev}(\mathfrak{g}) \otimes_R \mathcal{W}_q^{\wedge} \to U_q^{ev}(\mathfrak{g}) \otimes_{\mathcal{W}_q} \mathcal{W}^{\wedge}$, it is enough to show that $U_q^{ev}(\mathfrak{g}) \otimes_R \mathcal{W}^{\wedge}$ is Noetherian. Tensoring $- \otimes_R \mathcal{W}^{\wedge}$ with the mentioned filtration of $U_q^{ev}(\mathfrak{g})$ gives us a filtration on $U_q^{ev}(\mathfrak{g}) \otimes_R \mathcal{W}_q^{\wedge}$ so that the associated graded algebra is a twisted polynomial over \mathcal{W}_q^{\wedge} , which is Noetherian.

Consider the natural map $\varphi_{\epsilon}: U_q^{ev}(\mathfrak{g}) \to U_{\epsilon}^{ev}(\mathfrak{g})$. We now describe the procedure to produce various completions of $U_q^{ev}(\mathfrak{g})$. Suppose I be an ideal of the center Z of $U_{\epsilon}^{ev}(\mathfrak{g})$. Let $J=\varphi^{-1}(I)$ then $U_q^{ev}(\mathfrak{g})J = JU_q^{ev}(\mathfrak{g}) = \phi^{-1}(U_\epsilon^{ev}(\mathfrak{g})I)$ which implies $U_q^{ev}(\mathfrak{g})J^k = J^kU_q^{ev}(\mathfrak{g}) = (U_q^{ev}(\mathfrak{g})J)^k$, particularly, $U_q^{ev}(\mathfrak{g})\hat{J}^k$ is a two-sided ideal for any $k \geq 1$. Let $U_q^{ev \wedge_J}$ denote the completion of $U_q^{ev}(\mathfrak{g})$ with respect to the two-sided ideal $U_q^{ev}(\mathfrak{g})J$.

The following lemma summarizes some properties of $U_q^{ev \wedge_J}$, some of them are proved via arguments to prove Artin-Ree lemma in commutative algebra.

Lemma 4.2. (a) $U_q^{ev \wedge_J}$ is a flat (left and right) $U_q^{ev}(\mathfrak{g})$ -module. (b) $U_q^{ev \wedge_J}$ is Noetherian.

- (c) $U_q^{ev \wedge_J}$ is complete and separated in the $U_q^{ev}J$ -adic topology. In particular, $U_q^{ev \wedge_J}$ is complete and seperated in the \hbar -topology.
- (d) The completion functor $M \mapsto M^{\wedge} := \varprojlim M/(U_q^{ev}J)^k M$ from the category of finitely generated left $U_q^{ev}(\mathfrak{g})$ -modules to the category of left $U_q^{ev \wedge_J}$ -modules is exact. Moreover, M^{\wedge} is canonically isomorphic to $U_q^{ev \wedge_J} \otimes_{U_q^{ev}(\mathfrak{g})} M$.
- (e) We have a natural short exact sequence $0 \to U_q^{ev \wedge_J} \xrightarrow{\cdot h} U_q^{ev \wedge_J} \to U_\epsilon^{ev \wedge_I} \to 0$, here $U_\epsilon^{ev \wedge_I} = 0$ $U_{\epsilon}^{ev}(\mathfrak{g}) \otimes_{Z} Z^{\wedge_{I}}$ is the completion of $U_{\epsilon}^{ev}(\mathfrak{g})$ at the two-sided ideal $U_{\epsilon}^{ev}(\mathfrak{g})I$. So $U_{q}^{ev\wedge_{J}}$ is a $\mathbb{C}[[\hbar]]$ -flat deformation of $U_{\epsilon}^{ev \wedge_I}$.

Proof. Write down the proof following [6]

- **Lemma 4.3.** (a) Let $U_q^{fin \wedge_{\hbar}} := \varprojlim U_q^{fin}/\hbar^k U_q^{fin}$. Then $U_q^{fin \wedge_{\hbar}}$ is complete and separated in the \hbar -adic topology. Furtheremore, $U_q^{fin \wedge_{\hbar}}$ is a $\mathbb{C}[[\hbar]]$ -flat deformation of U_{ϵ}^{fin} , hence $U_q^{fin \wedge_{\hbar}}$ is Noetherian.
- (b) Let $\phi_{f,\hbar}: U_q^{fin \wedge_{\hbar}} \to U_{\epsilon}^{fin}$. For any two-sided ideal $I \subset Z(U_{\epsilon}^{fin})$, let $J = \phi_{f,\hbar}^{-1}(I)$. Let $U_q^{fin \wedge_J}$ be the completion of $U_q^{fin \wedge_{\hbar}}$ with respect to the two-sided ideal $U_q^{fin \wedge_{\hbar}}J$. Then $U_q^{fin \wedge_J}$ has the desired properties as in Lemma 4.2. In particular $U_q^{fin \wedge_J}$ is a $\hat{\mathbb{C}}[[\hbar]]$ -flat deformation of $U_{\epsilon}^{fin} \otimes_{Z^{fin}} Z^{fin \wedge_I}$.
- **Remark 4.4.** (More details) Since the action of $U_{\epsilon}(\mathfrak{g})$ on Z factors through Fr : $U_{\epsilon}(\mathfrak{g}) \to$ $\check{U}_{\mathbb{C}}(\mathfrak{g}^d)$, the equivariant $\check{U}_{\epsilon}(\mathfrak{g})$ -action on $U_{\epsilon}^{ev}(\mathfrak{g})$ extends to an equivariant $\check{U}_{\epsilon}(\mathfrak{g})$ -action on $U_{\epsilon}^{ev \wedge I}$. Moreover, the equivariant $\check{U}_q(\mathfrak{g})$ -action on $U_q^{ev}(\mathfrak{g})$ extends to an equivariant $\check{U}_q(\mathfrak{g})$ -action on $U_a^{ev \wedge_J}$.

Lemma 4.5. For any \mathbb{C} -finite dimensional $V \in \operatorname{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$ then $\operatorname{Hom}_{\check{U}_{\epsilon}(\mathfrak{g})}(V, U_{\epsilon}^{fin})$ is finitely generated over Z_{\cap} and hence finitely generated over $Z_{\epsilon,HC}$.

Proof. Since U^{fin}_{ϵ} is finitely projective over Z^{fin}_{Fr} , it is an projective object in the category of Z^{fin}_{Fr} -mod $G^{G\epsilon}$. Therefore, there is a finite dimensional $V_1 \in \text{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$ such that U^{fin}_{ϵ} is a direct summand of $V_1 \otimes_{\mathbb{C}} Z^{fin}_{Fr}$ in the category Z^{fin}_{Fr} -mod $G^{G\epsilon}$. So it is enough to show that $\text{Hom}_{\check{U}_{\epsilon}(\mathfrak{g})}(V, Z^{fin}_{Fr})$ is finitely generated over Z_{Ω} . Note that

$$\operatorname{Hom}_{\check{U}_{\epsilon}(\mathfrak{g})}(V, Z_{Fr}^{fin}) = \left((V^*)^{\mathfrak{u}_{\epsilon}} \otimes_{\mathbb{C}} Z_{Fr}^{fin} \right)^{\check{U}_{\mathbb{C}}(\mathfrak{g}^d)}.$$

By standard argument in invariant theory, the right hand side is finitely generated over $(Z_{Fr}^{fin})^{\check{U}_{\mathbb{C}}(\mathfrak{g}^d)}$, which is just $Z_{\mathbb{C}}$.

4.1. Completion of Poisson algebra Z.

Recall the structure Spec $Z \cong G_0^d \times_{T^d/W} T/W$. Let χ be the regular point in G_0^d and $\xi = (\chi, \vartheta)$ be a point in Spec Z. Let us consider the following ideals in Z:

- \mathfrak{m}_{ξ} the maximal ideal of Z at ξ .
- $Z\mathfrak{m}_{\chi}$, here \mathfrak{m}_{χ} is the maximal ideal of Z_{Fr} at χ .

The completion $Z_{Fr}^{\wedge_{\chi}}$ is a naturally Poisson algebra. Let V be the tangent space at χ of the conjugacy class at χ , which is the symplectic leaf containing χ . Then V carries a natural non-degenerate 2-form. This 2-form induces a Poisson structure on $\mathbb{C}[[V]]$. Let $\underline{\chi}$ be the image of χ under the natural map $\operatorname{Spec} Z_{Fr} \to \operatorname{Spec} Z_{\cap}$, then we form the completion $Z_{\cap}^{\wedge_{\underline{\chi}}}$.

Lemma 4.6. There is an isomorphism of Poisson algebras $Z_{Fr}^{\wedge_{\chi}} \cong \mathbb{C}[[V]] \widehat{\otimes} Z_{\cap}^{\wedge_{\chi}}$.

Let $Z^{\wedge_{\chi}}$ and $Z^{\wedge_{\xi}}$ be the completions of Z at the ideals \mathfrak{m}_{ξ} and $Z\mathfrak{m}_{\chi}$, respectively. Then there is a natural isomorphism of Poisson algebras:

$$Z^{\wedge_{\chi}} \cong \prod_{\xi=(\chi,\vartheta)} Z^{\wedge_{\xi}},$$

note that there are only finitely many ξ of the form (χ, ϑ) . Let $\mathfrak{m}_{\underline{\chi}}$ be the maximal ideal of Z_{\cap} at $\underline{\chi}$ while \mathfrak{m}_{ϑ} be the maximal ideal of \mathcal{W}_{ϵ} at the point ϑ . Let $\mathcal{W}_{\epsilon}^{\wedge_{\underline{\chi}}}$ and $\mathcal{W}_{\epsilon}^{\wedge_{\vartheta}}$ be the completions of Harish-Chandra center \mathcal{W}_{ϵ} at the ideal $\mathcal{W}_{\epsilon}\mathfrak{m}_{\underline{\chi}}$ and \mathfrak{m}_{ϑ} , respectively. We have the following isomorphism of algebras:

$$(4.1) Z^{\wedge_{\chi}} \cong Z_{Fr}^{\wedge_{\chi}} \widehat{\otimes}_{Z_{\cap}^{\wedge_{\chi}}} \mathcal{W}_{\epsilon}^{\wedge_{\chi}}, Z^{\wedge_{\xi}} \cong Z_{Fr}^{\wedge_{\chi}} \widehat{\otimes}_{Z_{\cap}^{\wedge_{\chi}}} \mathcal{W}_{\epsilon}^{\wedge_{\vartheta}}.$$

Lemma 4.6 implies the following corollary:

Corollary 4.7. There is a decomposition of Poisson algebras $Z^{\wedge_{\chi}} \cong \mathbb{C}[[V]] \widehat{\otimes} \mathcal{W}_{\epsilon}^{\wedge_{\chi}}$. Fix one such decomposition, it gives rise a family of inclusions of Poisson algebras $\mathbb{C}[[V]] \hookrightarrow Z^{\wedge_{\xi}}$ and then a family of isomorphisms of Poisson algebras $Z^{\wedge_{\xi}} \cong \mathbb{C}[[V]] \widehat{\otimes} \mathcal{W}_{\epsilon}^{\wedge_{\vartheta}}$.

(More details)

4.2. Structural results of $U_q^{ev \wedge_{\chi}}, U_q^{ev \wedge_{\xi}}$. Let $U_{\epsilon}^{ev \wedge_{\chi}}$ and $U_{\epsilon}^{ev \wedge_{\xi}}$ be the completions of $U_{\epsilon}^{ev}(\mathfrak{g})$ with respect to the ideal $Z\mathfrak{m}_{\chi}$ and \mathfrak{m}_{ξ} , respectively. Then we have a natural isomorphisms:

$$U_{\epsilon}^{ev \wedge_{\chi}} \cong \prod_{\xi=(\chi,\vartheta)} U_{\epsilon}^{\wedge_{\xi}}.$$

Let us consider $\chi \in G_0^{d,reg} \subset \operatorname{Spec} Z_{Fr}$. By Theorem 3.12, there is an isomorphism of algebras $U_{\epsilon}^{ev \wedge_{\xi}} \cong \operatorname{Mat}_{\ell^N}(Z^{\wedge_{\xi}})$. Therefore, $U_{\epsilon}^{ev \wedge_{\chi}} \cong \operatorname{Mat}_{\ell^N}(Z^{\wedge_{\chi}})$. Moreover, if we fix an isomorphism $U_{\epsilon}^{ev \wedge_{\chi}} \cong \operatorname{Mat}_{\ell^{N}}(Z^{\wedge_{\chi}})$ then it induces a family of algebra isomorphisms $U_{\epsilon}^{ev \wedge_{\xi}} \cong \operatorname{Mat}_{\ell^{N}}(Z^{\wedge_{\xi}})$. We will now describe the structures of completion algebras $U_{q}^{ev \wedge_{\xi}}$ and $U_{q}^{ev \wedge_{\chi}}$. Consider the

natural map $\psi: \mathcal{W}_q \xrightarrow{/\hbar} \mathcal{W}_{\epsilon}$. Let

$$\mathfrak{J}_{\vartheta}:\psi^{-1}(\mathfrak{m}_{\vartheta}) \quad \text{and} \quad \mathfrak{J}_{\underline{\chi}}:=\psi^{-1}(\mathcal{W}_{\epsilon}\mathfrak{m}_{\underline{\chi}}).$$

Let $W_q^{\wedge_{\vartheta}}$ and $W_q^{\wedge_{\underline{\chi}}}$ denote the completions of W_q with respect to the ideal \mathfrak{J}_{ϑ} and $\mathfrak{J}_{\underline{\chi}}$, respectively. tively.

Lemma 4.8. The following natural maps are isomorphisms:

$$U_q^{ev \wedge_\chi} \stackrel{\sim}{\longrightarrow} \prod_{\xi = (\chi, \vartheta)} U_q^{ev \wedge_\xi}, \qquad \mathcal{W}_q^{\wedge_{\underline{\chi}}} \stackrel{\sim}{\longrightarrow} \prod_{\vartheta} \mathcal{W}_q^{\wedge_{\vartheta}},$$

here ϑ runs over all preimages of χ under the map $\operatorname{Spec} \mathcal{W}_{\epsilon} \to \operatorname{Spec} Z_{\cap}$.

$$\Gamma$$

With the non-degenerate 2-form on the cotangent space V at χ of sympletic leaf containing χ , we can form the formal Weyl algebra $\mathbb{C}[V,\hbar]$. Let $\mathcal{A}_q^{\wedge} := \mathbb{C}[[V,\hbar]]$ the completion of $\mathbb{C}[V,\hbar]$ at the maximal ideal generated by V and \hbar .

Proposition 4.9. Let $\chi \in G_0^{d,reg} \subset \operatorname{Spec} Z_{Fr}$. There are isomorphisms:

$$U_q^{ev \wedge_{\underline{\chi}}} \xrightarrow{\sim} \operatorname{Mat}_{\ell^N}(\mathbb{C}) \otimes_{\mathbb{C}} (\mathcal{A}_q^{\wedge} \widehat{\otimes}_{\mathbb{C}[[\hbar]]} \mathcal{W}_q^{\wedge_{\underline{\chi}}})$$
$$U_q^{ev \wedge_{\xi}} \xrightarrow{\sim} \operatorname{Mat}_{\ell^N}(\mathbb{C}) \otimes_{\mathbb{C}} (\mathcal{A}_q^{\wedge} \widehat{\otimes}_{\mathbb{C}[[\hbar]]} \mathcal{W}_q^{\wedge_{\vartheta}}).$$

Proof.

5. Quantum Harish-Chandra bimodules

To simplify the exposition, we will consider either (A) or (B). For any $\check{U}_q(\mathfrak{g})$ -module M, let M^{rat} be the maximal rational subrepresentation of $\check{U}_q(\mathfrak{g})$ in M.

5.1. Non-complete version.

Since $U_q^{ev}(\mathfrak{g})$ is a $\check{U}_q(\mathfrak{g})$ -module algebra, we can define:

Definition 5.1. Let U_q^{ev} -Rmod \check{U}_q^e , U_q^{ev} -Lmod \check{U}_q^e and U_q^{ev} -Bimod \check{U}_q^e be the categories of right $U_q^{ev}(\mathfrak{g})$ -modules, left $U_q^{ev}(\mathfrak{g})$ -modules and $U_q^{ev}(\mathfrak{g})$ -bimodules in the category of $\check{U}_q(\mathfrak{g})$ -mod, respectively.

Remark 5.2. Recall the natural map $\iota: U_q^{ev}(\mathfrak{g}) \to \check{U}_q(\mathfrak{g})$. For any $M \in U_q^{ev}\operatorname{-Rmod}^{\check{U}_q}$, there is a natural left $U_q^{ev}(\mathfrak{g})$ -module defined by

(5.1)
$$hm = \sum (\iota(h_{(1)}) \cdot m)h_{(2)},$$

here \cdot represents the action of $\check{U}_q(\mathfrak{g})$ on M. With this left $U_q^{ev}(\mathfrak{g})$ -action, M becomes an object in U_q^{ev} -Bimod \check{U}_q^e . Similarly, any $N \in U_q^{ev}$ -Lmod \check{U}_q^e is naturally an object in U_q^{ev} -Bimod \check{U}_q^e with the right U_q^{ev} -module defined by:

(5.2)
$$mh = \sum h_{(2)}(\iota(S^{-1}h_{(1)}) \cdot m).$$

Similarly, since U_q^{fin} is an algebra object in $\text{Rep}(\check{U}_q(\mathfrak{g}))$, we can define:

Definition 5.3. Let U_q^{fin} -Rmod^{G_q}, U_q^{fin} -Lmod^{G_q} and U_q^{fin} -Bimod^{G_q} be the categories of right U_q^{fin} -modules, left U_q^{fin} -modules and U_q^{fin} -bimodules in the category Rep($\check{U}_q(\mathfrak{g})$), respectively.

Example 5.4. For any $V \in \operatorname{Rep}(\check{U}_q(\mathfrak{g}))$, the object $V \otimes_R U_q^{fin}$ is naturally an object in U_q^{fin} -Rmod^{G_q}: the right U_q^{fin} -module structure comes from the right U_q^{fin} -action on U_q^{fin} while $\check{U}_q(\mathfrak{g})$ acts on $V \otimes_R U_q^{fin}$ via tensor product. Similarly, $U_q^{fin} \otimes_R V$ is naturally an object in U_q^{fin} -Lmod^{G_q}.

Lemma 5.5. (a) There are (fully faithful?) functors:

$$U_q^{fin}\operatorname{-Rmod}^{G_q} o U_q^{fin}\operatorname{-Bimod}^{G_q}, \qquad U_q^{fin}\operatorname{-Lmod}^{G_q} o U_q^{fin}\operatorname{-Bimod}^{G_q}.$$

(b) If $M \in U_q^{fin}\operatorname{-Rmod}^{G_q}$ is finitely generated as a right $U_q^{fin}\operatorname{-module}$ then M is also finitely generated as a left $U_q^{fin}\operatorname{-module}$. Similarly, if $M \in U_q^{fin}\operatorname{-Lmod}^{G_q}$ is finitely generated as a left $U_q^{fin}\operatorname{-module}$ then M is also finitely generated as a right $U_q^{fin}\operatorname{-module}$.

Proof. (a) Step 1: We define the left action of $V \otimes_R U_q^{fin}$, in which $V \in \operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$ projective over R. First, we have

$$V \otimes_R U_q^{fin} = (V \otimes_R U_q^{ev}(\mathfrak{g}))^{rat}.$$

Since V is finitely generated projective over R, we have

$$\begin{aligned} \operatorname{Hom}_{\check{U}_{q}(\mathfrak{g})}(V_{1}, V \otimes_{R} U_{q}^{ev}(\mathfrak{g})) &\cong \operatorname{Hom}_{R}(V_{1}, V \otimes_{R} U_{q}^{ev}(\mathfrak{g}))^{\check{U}_{q}(\mathfrak{g})}) \\ &\cong \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(V, R) \otimes_{R} V_{1}, U_{q}^{ev}(\mathfrak{g}))^{\check{U}_{q}(\mathfrak{g})} \\ &\cong \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(V, R) \otimes_{R} V_{1}, U_{q}^{fin})^{\check{U}_{q}(\mathfrak{g})} \\ &\cong \operatorname{Hom}_{\check{U}_{q}(\mathfrak{g})}(V_{1}, V \otimes_{R} U_{q}^{fin}), \end{aligned}$$

for all $V_1 \in \operatorname{Rep}(\check{U}_q(\mathfrak{g}))$. Here $\check{U}_q(\mathfrak{g})$ acts on $\operatorname{Hom}_R(M,N)$ by unusual action: (uf)(m) =

 $\sum u_{(2)} f(S^{-1}(u_{(1)})m) \text{ for all } m \in M, f \in \operatorname{Hom}_R(M,N) \text{ and } u \in \check{U}_q(\mathfrak{g}).$ By Remark 5.2, there is a left $U_q^{ev}(\mathfrak{g})$ -action on $V \otimes_R U_q^{ev}(\mathfrak{g})$ so that $V \otimes_R U_q^{ev}(\mathfrak{g}) \in U_q^{ev}(\mathfrak{g})$ U_q^{ev} -Bimod $^{\check{U}_q(\mathfrak{g})}$. The left U_q^{fin} -action on $V\otimes_R U_q^{ev}(\mathfrak{g})$ will preserves $(V\otimes_R U_q^{ev}(\mathfrak{g}))^{rat}$, hence we have a natural left U_q^{fin} -action on $V\otimes_R U_q^{fin}$ so that the object belongs to U_q^{fin} -Bimod G_q . Step 2: For any $M \in U_q^{fin}$ -Rmod^{G_q}, there is a set of objects $\{V_i\}_{i \in I}$ consisting of projective R-module objects in Rep^{fd}($\check{U}_q(\mathfrak{g})$) such that we have a surjective map $(\bigoplus V_i) \otimes_R U_q^{fin} \twoheadrightarrow M$. The case (A) is obvious while the case (B) follows by Proposition 2.10.

Hence any object M in U_q^{fin} -Rmod^{G_q} are presentable by objects of the form $(\bigoplus V_i) \otimes_R$ U_q^{fin} as above. Therefore, the construction in Step 1 extends to a functor U_q^{fin} -Rmod $G_q \to G_q$ U_q^{fin} -Bimod G_q .

(b) We will prove the first statement only since the proof for the second statement is the same. For any $V \in \operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$ then $V \otimes_R U_q^{fin}$ and $U_q^{fin} \otimes_R V$ are objects in U_q^{fin} -Bimod^{G_q} by part (a). The morphism $p_1: V \to V \otimes_R U_q^{fin}$ and $p_2: V \to U_q^{fin} \otimes_R V$ give a rise to morphism:

$$p_1: U_q^{fin} \otimes_R V \to V \otimes_R U_q^{fin}, \qquad p_2: V \otimes_R U_q^{fin} \to U_q^{fin} \otimes_R V.$$

One can see that p_1 and p_2 are mutually inverse hence $V \otimes_R U_q^{fin} \cong U_q^{fin} \otimes_R V$ in U_q^{fin} -Bimod^{G_q}. If $M \in U_q^{fin}$ -Rmod^{G_q} such that M is finitely generated as a right U_q^{fin} -module, then there is $V \in \operatorname{Rep}^{fd}(\dot{U}_q(\mathfrak{g}))$ with a surjective map $V \otimes U_q^{fin} \twoheadrightarrow M$ in U_q^{fin} -Rmod G_q . By above paragraph, $V \otimes_R U_q^{fin}$ is finitely generated as a left U_q^{fin} -module, hence M is also finitely generated as a left U_q^{fin} -module.

Definition 5.6. The category of quantum Harish-Chandra bimodules is the full subcategory U_q^{fin} -rmod U_q^{Gq} of the category U_q^{fin} -Rmod U_q^{Gq} consisting of all objects which are finitely generated over U_q^{fin} . We denote this category by HC_q .

Remark 5.7. It is not clear in the case (B) that U_q^{fin} is Noetherian so we are not sure if HC_q is an abelian category. Nevertheless, we will later be interested in some complete versions of HC_q which will be proved to be abelian categories.

Remark 5.8. Lemma 5.5 equips the category HC_q with a monoidal structure.

Let us consider the case (A).

Lemma 5.9. The left and right action of Z_{Fr}^{fin} on any object of U_{ϵ}^{fin} -Rmod^{G_{ϵ}} coincide. ¹

Proof. Note that $Z_{Fr}^{fin}=\bigoplus_{\lambda\in P_+^*}\operatorname{ad}'(\check{U}_{\mathbb{C}}(\mathfrak{g}^d))K^{-2\lambda}$. Let $M\in U_{\epsilon}^{fin}\operatorname{-Rmod}^{G_{\epsilon}}$. Let \cdot denote the action of $\check{U}_{\epsilon}(\mathfrak{g})$ on corresponding spaces.

Step 1: For any $m \in M$, by construction (5.1)

$$K^{-2\lambda}m = (K^{-2\lambda} \cdot m)K^{-2\lambda} = mK^{-2\lambda},$$

here by assumption on ℓ , for all $\lambda \in P_+^*$, the action of $K^{-2\lambda}$ on any rational representation in $\operatorname{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$ is trivial.

Step 2: Let $u \in \mathbb{Z}_{Fr}^{fin}$ such that um = mu for all $m \in M$. We will show that

$$(5.3) \hspace{1cm} (\tilde{E}_i^{(\ell_i)} \cdot u)m = m(\tilde{E}_i^{(\ell_i)} \cdot u), \hspace{0.5cm} (\tilde{F}_i^{(\ell_i)} \cdot u)m = m(\tilde{F}_i^{(\ell_i)} \cdot u),$$

¹The same is true for weight modules in U_{ϵ}^{ev} -rmod $\check{U}_{\epsilon}(\mathfrak{g})$: the left and right Z_{Fr} -action coincide. By the proof the left and right action of Z_{Fr}^{fin} , $K^{\lambda}(\lambda \in 2P^*)$ coincide but $Z_{Fr} = Z_{Fr}^{fin}[K^{\lambda_0}]$ where $\lambda_0 = 2 \sum \ell_i \omega_i$.

for all $1 \le i \le r$. Indeed, we have

$$\begin{split} \tilde{E}_i^{(\ell_i)} \cdot (um) &= (\tilde{E}^{(\ell_i)} \cdot u)(K^{\ell_i \zeta_i^>} \cdot m) + u(\tilde{E}_i^{(\ell_i)} \cdot m) = (\tilde{E}_i^{(\ell_i)} \cdot u)m + u(\tilde{E}^{(\ell_i)} \cdot m) \\ \tilde{E}_i^{(\ell_i)} \cdot (mu) &= (\tilde{E}_i^{(\ell_i)} \cdot m)(K^{\ell_i \zeta_i^<} \cdot m) + m(\tilde{E}_i^{(\ell_i)} \cdot u) = (\tilde{E}_i^{(\ell_i)} \cdot m)u + m(\tilde{E}_i^{(\ell_i)} \cdot u) \end{split}$$

then the first equality of (5.3) follows. The proof for the second equality is the same.

The lemma follows by using both steps and the decomposition $Z_{Fr}^{fin} = \bigoplus_{\lambda \in P_+^*} \operatorname{ad}'(\check{U}_{\mathbb{C}}(\mathfrak{g}^d))K^{-2\lambda}$.

5.2. Complete version.

Let us define the following algebras:

$$\begin{array}{ll} U^{fin,\underline{\chi}}_{\epsilon} := U^{fin}_{\epsilon} \otimes_{\mathcal{W}_{\epsilon}} \mathcal{W}^{\wedge\underline{\chi}}_{\epsilon}, & U^{fin,\underline{\chi}}_{q} := U^{fin}_{q} \otimes_{\mathcal{W}_{q}} \mathcal{W}^{\wedge\underline{\chi}}_{q} / \cap \hbar^{k} U^{fin}_{q} \otimes_{\mathcal{W}_{q}} \mathcal{W}^{\wedge\underline{\chi}}_{q}, \\ U^{fin,\vartheta}_{\epsilon} := U^{fin}_{\epsilon} \otimes_{\mathcal{W}_{\epsilon}} \mathcal{W}^{\wedge\vartheta}_{\epsilon} & U^{fin,\vartheta}_{q} := U^{fin}_{q} \otimes_{\mathcal{W}_{q}} \mathcal{W}^{\wedge\vartheta}_{q} / \cap \hbar^{k} U^{fin}_{q} \otimes_{\mathcal{W}_{q}} \mathcal{W}^{\wedge\vartheta}_{q}, \end{array}$$

Remark 5.10. We expect $U_q^{fin} \otimes_{\mathcal{W}_q} \mathcal{W}^{\wedge_?}$ to be separated in the \hbar -adic topology but cannot prove it. The quotient terms in the definition $U_q^{fin,\underline{\chi}}$ and $U_q^{fin,\vartheta}$ is to make sure that these algebras are separated in the \hbar -adic topology. These two algebras are flat over $\mathbb{C}[[\hbar]]$ and the maximal rational subrepresentations of the completions $U_q^{fin\wedge_{\underline{\chi}}}$ and $U_q^{fin\wedge_{\vartheta}}$ (to be shown), respectively.

Then

$$(5.4) U_{\epsilon}^{fin,\underline{\chi}} = \prod_{\vartheta} U_{\epsilon}^{fin,\vartheta} \text{and} U_{q}^{fin,\underline{\chi}} = \prod_{\vartheta} U_{q}^{fin,\vartheta},$$

where ϑ runs over the preimages of $\underline{\chi}$ under the map $\operatorname{Spec} \mathcal{W}_{\epsilon} \to \operatorname{Spec} Z_{\cap}$. Note that $U_{\epsilon}^{fin,\underline{\chi}} := U_{\epsilon}^{fin} \otimes_{Z_{\cap}} Z_{\cap}^{\wedge_{\underline{\chi}}}$.

Let us introduce several categories of interest.

Definition 5.11. Let $\mathsf{HC}_{\epsilon}(\vartheta,\vartheta')$ be the category consisting of all objects in $U_{\epsilon}^{fin,\vartheta'}$ -rmod^{G_{ϵ}} such that the left U_{ϵ}^{fin} -action factors through a left $U_{\epsilon}^{fin,\vartheta}$ -action.

Remark 5.12. Let $\underline{\chi}'$ be the image of ϑ' under the map $\operatorname{Spec} \mathcal{W}_{\epsilon} \to \operatorname{Spec} Z_{\cap}$. By Lemma 5.9, there is natural left $U_{\epsilon}^{fin,\underline{\chi}'}$ -action on any object of $U_{\epsilon}^{fin,\vartheta'}$ -rmod^{G_{ϵ}}. By decomposition (5.4), we have a natural functor

$$(5.5) U_{\epsilon}^{fin,\vartheta'}\operatorname{-rmod}^{G_{\epsilon}} \to \mathsf{HC}_{\epsilon}(\vartheta,\vartheta'),$$

by projecting to the direct summand corresponding to the left $U^{fin,\vartheta}_{\epsilon}$ -action. In particular, if the images of ϑ and ϑ' in Spec Z_{\cap} are different then the category $\mathsf{HC}_{\epsilon}(\vartheta,\vartheta')$ is zero.

Definition 5.13. Let $\mathsf{HC}_q(\vartheta,\vartheta')$ be the category consisting of all objects in $U_q^{fin,\vartheta'}$ -rmod^{G_q} such that the left U_q^{fin} -action factors through a left $U_q^{fin,\vartheta}$ -action.

Lemma 5.14. Let $\underline{\chi}'$ be the image of ϑ' under the map $\operatorname{Spec} \mathcal{W}_{\epsilon} \to \operatorname{Spec} Z_{\cap}$. Let $M \in U_q^{fin,\underline{\chi}'}\operatorname{-rmod}^{G_q}$.

- (a) For any $V_q \in \operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$ then $\operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q, M)$ is finitely generated over $\mathcal{W}^{\wedge_{\underline{\chi}'}}$.
- (b) Any $M \in U_q^{fin,\underline{\chi}'}$ -rmod^{G_q} is separated in the \hbar -adic topology.
- (c) The left action of W_q on M extends uniquely into a left action of $W_q^{\wedge_{\underline{\chi}'}}$. So that M is a naturaly an object in $U_q^{fin,\underline{\chi}'}$ -bimod^{G_q}.

Proof. (a) Since $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$ has enough projectives, we can assume V_q is projective in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$ and M is of the form $V_q' \otimes_{\mathbb{C}[[\hbar]]} U_q^{fin,\underline{\chi}'}$ for some V_q' is a free of finite rank over $\mathbb{C}[[\hbar]]$ in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$. Note that

$$\operatorname{Hom}_{\check{U}_{q}(\mathfrak{g})}(V_{q}, V'_{q} \otimes_{\mathbb{C}[[\hbar]]} U_{q}^{fin,\underline{\chi}'}) = \operatorname{Hom}_{\check{U}_{q}(\mathfrak{g})}((V'_{q})^{t} \otimes_{\mathbb{C}[[\hbar]]} V_{q}, U_{q}^{fin,\underline{\chi}'}),$$

here $(V_q')^t$ is the right dual of V_q' . Therefore, we reduce to prove that $\operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q, U_q^{fin,\underline{\chi}'})$ is finitely generated over $\mathcal{W}_q^{\wedge_{\underline{\chi}'}}$ for any $V_q \in \operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$.

We have a short exact sequence

$$0 \to \operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q, U_q^{fin,\underline{\chi}'}) \xrightarrow{\cdot h} \operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q, U_q^{fin,\underline{\chi}'}) \to \operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q, U_\epsilon^{fin,\underline{\chi}'}).$$

Note that

$$\operatorname{Hom}_{\check{U}_{q}(\mathfrak{g})}(V_{q},U_{\epsilon}^{fin,\underline{\chi}'}) = \operatorname{Hom}_{\check{U}_{\epsilon}(\mathfrak{g})}(V_{\epsilon},U_{\epsilon}^{fin,\underline{\chi}'}) \cong \operatorname{Hom}_{\check{U}_{\epsilon}(\mathfrak{g})}(V_{\epsilon},U_{\epsilon}^{fin}) \otimes_{\mathcal{W}_{\epsilon}} \mathcal{W}_{\epsilon}^{\wedge_{\underline{\chi}'}},$$

here $V_{\epsilon} := V_q/\hbar V_q$. By Lemma 4.5, $\operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q, U_{\epsilon}^{fin,\underline{\chi}'})$ is finitely generated over $\mathcal{W}_{\epsilon}^{\wedge\underline{\chi}'}$. Therefore

$$\operatorname{Hom}_{\check{U}_{q}(\mathfrak{g})}(V_{q},U_{q}^{fin,\underline{\chi}'})/\hbar\operatorname{Hom}_{\check{U}_{q}(\mathfrak{g})}(V_{q},U_{q}^{fin,\underline{\chi}'})$$

(b) Let V_q be a projective object in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$. Then

$$\operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q, \cap \hbar^k M) \stackrel{\sim}{\longrightarrow} \cap \hbar^k \operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q, M).$$

The right hand side is zero since by part (a), it is finitely generated over $\mathcal{W}_q^{\wedge_{\underline{\chi}'}}$ hence complete and separated in the \hbar -adic topology.

Since $\operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q, \cap \hbar^k M) = 0$ for all projective objects in $\operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$ and the later category has enough projectives, it follows that $\cap \hbar^k M = 0$.

(c) Recall $\mathfrak{J}_{\underline{\chi}'} = \phi_{\epsilon}^{-1}(W_{\epsilon}\mathfrak{m}_{\underline{\chi}'})$. Since $M/\hbar M \in U_{\epsilon}^{fin,\underline{\chi}'}$ -rmod^{G_{ϵ}}, it follows that $(\mathfrak{J}_{\underline{\chi}'})^k M = M(\mathfrak{J}_{\chi'})^k$ for all k.

Let $m \in M$ and let $V_q = \check{U}_q(\mathfrak{g})m \subset M$. We note that $\operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q, M)$ is a module over $\mathcal{W}_q \otimes \mathcal{W}_q^{\wedge_{\underline{\lambda}'}}$ and the natural map

$$V_q \otimes_{\mathbb{C}[[\hbar]]} \operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q, M) \to M,$$

is a morphism of $W_q \otimes W_q^{\wedge_{\underline{\lambda}'}}$ -module with the image containing m. Let the image of this morphism to be M'.

Any element of $\mathcal{W}_q^{\wedge \underline{\chi}'}$ is of the form $\sum_k x_k$ with $x_k \in (\mathfrak{J}_{\underline{\chi}'})^k$. By the first paragraph, we have $x_k m \in M(\mathfrak{J}_{\underline{\chi}'})^k$ for all k. On the other hand, by part (a), the subspace M' is finitely generated as a right $\mathcal{W}_q^{\wedge \underline{\chi}'}$ -module, hence complete in the $\mathfrak{J}_{\underline{\chi}'}$ -topology. Therefore, $\sum_k x_k m$ is a well-defined element in M'. This implies the first half of part (c). So M has a left $U_q^{fin} \otimes_{\mathcal{W}_q} \mathcal{W}_q^{\wedge \underline{\chi}'}$ -action, which then factors through $U_q^{fin,\underline{\chi}'}$ since M is separated in the \hbar -adic topology. This implies the second half of part (c).

Remark 5.15. By decomposition (5.4), we have a natural functor

$$(5.6) U_q^{fin,\vartheta'}\operatorname{-rmod}^{G_q} \to \mathsf{HC}_q(\vartheta,\vartheta'),$$

by projecting to the direct summand corresponding to the left $U_q^{fin,\vartheta}$ -action. In particular, if the image of ϑ and ϑ' in Spec Z_{\cap} are different then the category $\mathsf{HC}_q(\vartheta,\vartheta')$ is zero.

We see that

$$(5.7) \qquad U^{fin,\underline{\chi}}_{\epsilon}\text{-rmod}^{G_{\epsilon}} \cong \prod_{(\vartheta,\vartheta')} \mathsf{HC}_{\epsilon}(\vartheta,\vartheta'), \qquad U^{fin,\underline{\chi}}_{q}\text{-rmod}^{G_{q}} \cong \prod_{(\vartheta,\vartheta')} \mathsf{HC}_{q}(\vartheta,\vartheta'),$$

where (ϑ, ϑ') runs over all pairs such that images of ϑ, ϑ' under the map Spec $\mathcal{W}_{\epsilon} \to \operatorname{Spec} Z_{\cap}$ are χ

Lemma 5.16. The categories $HC_{\epsilon}(\vartheta, \vartheta')$ and $HC_{q}(\vartheta, \vartheta')$ are abelian.

Proof. It is obvious that $\mathsf{HC}_{\epsilon}(\vartheta, \vartheta')$ is abelian since $U_{\epsilon}^{fin,\vartheta'}$ is Noetherian. The proof for $\mathsf{HC}_q(\vartheta, \vartheta')$ is in several steps:

Definition 5.17. Any $\lambda \in P$ defines a point (by abuse notation) $\lambda \in \operatorname{Spec}(\mathcal{W}_{\epsilon})$. The integral blocks are $\operatorname{HC}_{\epsilon}(\lambda, \lambda')$ and $\operatorname{HC}_{q}(\lambda, \lambda')$.

Remark 5.18. By the assumption on ℓ , the image of $\lambda \in \operatorname{Spec} \mathcal{W}_{\epsilon}$ under the map $\operatorname{Spec} \mathcal{W}_{\epsilon} \to \operatorname{Spec} Z_{\cap}$ is the point $1 \in T/W \cong \operatorname{Spec} Z_{\cap}$.

Definition 5.19. For any $V_q \in \text{Rep}(\check{U}_q(\mathfrak{g}))$ which is free of finite rank over $\mathbb{C}[[\hbar]]$, let $P^{\vartheta,\vartheta'}(V_q)$ be the direct summand of $V_q \otimes_R U_q^{fin,\vartheta'}$ in $\mathsf{HC}_q(\vartheta,\vartheta')$. We call $P^{\vartheta,\vartheta'}(V_q)$, their direct sums and direct summands the diagonal bimodules.

Here (q, R) is either the case (\mathbf{A}) or the case (\mathbf{B}) .

Remark 5.20. Let $\underline{\chi}$ be the image of ϑ and ϑ' in Spec Z_{\cap} . The $P^{\vartheta,\vartheta'}(V_q)$ is also the direct summand of $U_q^{fin,\vartheta} \otimes_R V_q$ in $\mathsf{HC}_q(\vartheta,\vartheta')$, and also the direct summand of $V_q \otimes_R U_q^{fin,\underline{\chi}}$ in $\mathsf{HC}_q(\vartheta,\vartheta')$.

Let consider the \bullet_{ℓ} -action of the affine Weyl group $W_{aff} := W \ltimes Q$ on \mathfrak{h}^* and the corresponding alcoves on the real form $P \otimes_{\mathbb{Z}} \mathbb{R}$ of \mathfrak{h}^* . For $\lambda \in P$, let W_{λ} be the stabilizer of λ under the \bullet_{ℓ} -action of W_{aff} .

For any $\lambda, \mu \in P$, let $W_q(\mu - \lambda)$ be the Weyl module in $\text{Rep}(\check{U}_q(\mathfrak{g}))$ such that the highest weight of $W_q(\mu - \lambda)$ is in the W-orbit of $\mu - \lambda$.

Definition 5.21. For λ, μ in the closure of the fundamental alcove, let $P_q^{\mu,\lambda} := P^{\mu,\lambda}(W_q(\mu - \lambda))$. These are translation bimodules.

Remark 5.22. We get the same translation bimodule if we replace $W_q(\mu - \lambda)$ by the indecomposable tilting modules with the highest weight contained in the W-orbit of $\mu - \lambda$. (Need to check whether we need to assume $W_{\lambda} \subset W_{\mu}$, here W_{λ} is the stabilizer of λ under the W_{aff} -action.

Definition 5.23. The *Hilting bimodules* in $\mathsf{HC}_q(\mu, \lambda)$ are direct summands of direct sums of objects of the form $P^{\mu,\lambda}(V_q)$ for tilting modules V_q in $\mathsf{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$. Let $\mathsf{Hilt}_q(\mu, \lambda)$ denote the full additive subcategories of hilting modules.

Remark 5.24. We avoid to call *tilting bimodules* since $\mathsf{HC}_q(\mu, \lambda)$ has no highest weight structure. The projective objects in $\mathsf{HC}_q(\mu, \lambda)$ are hilting bimodules. Tensors of hilting bimodules are hilting.

Discuss the Krull-Schmidt property of $\mathsf{HC}_q(\mu,\lambda)$: later we will talk about the projective covers of simple modules in $\mathsf{HC}_q(\mu,\lambda)$.

6. Poisson bimodules

Definition 6.1. Let \mathcal{B} be an associative $\mathbb{C}[[\hbar]]$ -algebra. By the noncommutative Poisson structure on \mathcal{B} we mean a pair $(\mathcal{B}, \mathcal{P})$, here \mathcal{P} is a $\mathbb{C}[[\hbar]]$ -subalgebra of \mathcal{B} , along with a $\mathbb{C}[[\hbar]]$ -bilinear map $\mathcal{P} \otimes \mathcal{B} \to \mathcal{B}$ such that \mathcal{P} is closed with respect to $\{\ ,\ \}$ and

- (1) $\{z, z\} = 0$,
- (2) $\{hz, b\} = [z, b],$
- (3) $\{z, ab\} = \{z, a\}b + a\{z, b\},\$
- $(4) \{z_1z_2, a\} = \{z_1, a\}z_2 + z_1\{z_2, a\},\$
- (5) $\{\{z_1, z_2\}, a\} = \{z_1, \{z_2, a\}\} \{z_2, \{z_1, a\}\},\$

for all $z, z_1, z_2 \in \mathcal{P}$ and $z, b \in \mathcal{B}$.

Remark 6.2. By the condition $\{hz,b\} = [z,b]$, \mathcal{P} must satisfy that $[\mathcal{P},\mathcal{B}] \subset \hbar\mathcal{B}$. Moreover, if \mathcal{B} is flat over $\mathbb{C}[[\hbar]]$, the Poisson bracket is uniquely recovered by $\{z,a\}=\hbar^{-1}[z,a]$.

Definition 6.3. Let M be a \mathcal{B} -bimodule such that the left and right actions of $\mathbb{C}[[\hbar]]$ coincide. We say that M is a Poisson B-bimodule if it is equipped with a $\mathbb{C}[[\hbar]]$ -bilinear map $\mathcal{P} \otimes M \to M$ satisfying the following equalities:

- $\{\hbar z, m\} = [z, m],$
- $\{z, am\} = \{z, a\}m + a\{z, m\}, \{z, ma\} = \{z, m\}a + m\{z, a\},$
- $\{z_1z_2, m\} = \{z_1, m\}z_2 + z_1\{z_2, m\},$
- $\{\{z_1, z_2\}, m\} = \{z_1, \{z_2, m\}\} \{z_2, \{z_1, m\}\}$

for all $z, z_1, z_2 \in \mathcal{P}$ and $a \in \mathcal{B}, m \in M$.

Remark 6.4. If M is flat over $\mathbb{C}[[\hbar]]$ then the Poisson bracket is uniquely recovered by $\{z, m\} =$ $\hbar^{-1}[z,m]$. Morphisms between Poisson bimodules M_1,M_2 are morphisms of bimodules f: $M_1 \to M_2$ such that $f\{z,m\} = \{z,f(m)\}$ for any $z \in \mathcal{P}$ and $m \in M_1$. The tensor product $M_1 \otimes_{\mathcal{B}} M_2$ of two Poisson bimodules is naturally a Poisson bimodule with the bracket defined by $\{z, m \otimes n\} = \{z, m\} \otimes n + m \otimes \{z, n\}$. Denote Pbim(\mathcal{B}) the category of Poisson bimodules with respect to the pair $(\mathcal{B}, \mathcal{P})$. Then $Pbim(\mathcal{B})$ is a monoidal category.

Remark 6.5. For $M, N \in \text{Pbim}(\mathcal{B})$ such that M, N are flat over $\mathbb{C}[[\hbar]]$, the forgetful map

$$\operatorname{Hom}_{\operatorname{Pbim}(\mathcal{B})}(M,N) \to \operatorname{Hom}_{\mathcal{B}\text{--bimod}}(M,N)$$

is an isomorphism.

Let $\chi \in G_0^{d,reg} \subset \operatorname{Spec} Z_{Fr}$. Recall the formal \hbar -deformations:

$$\phi_{\chi}: U_q^{ev \wedge_{\chi}} \cong \operatorname{Mat}_{\ell^N}(R_{\hbar}) \twoheadrightarrow U_{\epsilon}^{ev \wedge_{\chi}} \cong \operatorname{Mat}_{\ell^N}(Z^{\wedge_{\chi}}), \qquad \psi_{\chi}: R_{\hbar} \to Z^{\wedge_{\chi}}.$$

here $R_{\hbar} \cong \mathcal{A}_{q}^{\wedge} \widehat{\otimes}_{\mathbb{C}[[\hbar]]} \mathcal{W}_{q}^{\wedge_{\underline{\chi}}}$ is a formal \hbar -deformation of $Z^{\wedge_{\chi}} \cong Z_{Fr}^{\wedge_{\chi}} \widehat{\otimes}_{Z_{c}^{\wedge_{\underline{\chi}}}} \mathcal{W}_{\epsilon}^{\wedge_{\underline{\chi}}} \cong \mathbb{C}[[V]] \widehat{\otimes}_{\mathbb{C}} \mathcal{W}_{\epsilon}^{\wedge_{\underline{\chi}}}$.

$$P_{\hbar} := \phi_{\chi}^{-1}(Z_{Fr}^{\wedge_{\chi}}), \qquad C_{\hbar} := \psi_{\chi}^{-1}(Z_{Fr}^{\wedge_{\chi}})$$

then $P_{\hbar} = C_{\hbar} + \hbar U_q^{ev \wedge_{\chi}}$, here C_{\hbar} is embedded into $U_q^{\wedge_{\chi}}$ via the diagonal matrices. Let consider the map $\pi : \mathcal{W}_q^{\wedge_{\chi}} \to \mathcal{W}_{\epsilon}^{\wedge_{\chi}}$ and let $B_{\hbar} := \pi^{-1}(Z_{\cap}^{\wedge_{\chi}})$. Then $C_{\hbar} = \mathcal{A}_q^{\wedge} \widehat{\otimes}_{\mathbb{C}[[\hbar]]} B_{\hbar}$. It is easy to see that

Lemma 6.6. $(U_q^{ev \wedge_{\chi}}, P_{\hbar}), (R_{\hbar}, C_{\hbar}), (\mathcal{W}_q^{\wedge_{\underline{\chi}}}, B_{\hbar})$ are noncommutative Poisson structures on the corresponding $\mathbb{C}[[\hbar]]$ -algebras.

Definition 6.7. Let $U_q^{ev \wedge_{\chi}}$ -Pbim be the category of left and right finitely generated Poisson $U_q^{ev \wedge_{\chi}}$ -bimodules. The categories R_{\hbar} -Pbim and $W_q^{\wedge_{\chi}}$ -Pbim are similarly defined.

Remark 6.8. Since $U_a^{ev \wedge_{\chi}}$, R_{\hbar} , and $W_a^{\wedge_{\chi}}$ are Noetherian, all these three categories are abelian.

Let $e = E_{11}$ be the idempotent of $U_q^{ev \wedge_{\chi}} \cong \operatorname{Mat}_N(R_{\hbar})$ then $eU_q^{\wedge_{\chi}} e \cong R_{\hbar}$ and $eP_{\hbar} e \cong C_{\hbar}$. For $M \in U_q^{ev \wedge_{\chi}}$ -Pbim, the space eMe is naturally a Poisson R_{\hbar} -bimodule with Poisson structure: $\{epe, eme\} = e\{p, eme\}e$ for $p \in P_{\hbar}$ and $m \in M$. One need to check that this Poisson bracket is well-defined but it is not hard. This construction gives us an equivalence of monoidal abelian categories:

$$\mathfrak{P}_1: U_q^{ev \wedge_{\chi}}\text{-Pbim} \xrightarrow{\sim} R_{\hbar}\text{-Pbim}.$$

Using arguments in [6], we have an equivalence of monoidal abelian categories:

(6.2)
$$\mathfrak{P}_2: R_{\hbar}\text{-Pbim} \xrightarrow{\sim} \mathcal{W}_q^{\wedge_{\underline{\chi}}}\text{-Pbim}.$$

We recall the decompositions:

(6.3)
$$U_q^{ev\wedge_{\chi}} \cong \prod_{\xi=(\chi,\vartheta)} U_q^{ev\wedge_{\xi}}, \qquad \mathcal{W}_q^{\wedge_{\underline{\chi}}} = \prod_{\vartheta \mapsto \underline{\chi}} \mathcal{W}_q^{\wedge_{\vartheta}},$$

here $\vartheta \mapsto \chi$ means the image of ϑ under the map $\operatorname{Spec} \mathcal{W}_{\epsilon} \to \operatorname{Spec} Z_{\cap}$ is χ . These two decom-

positions are resemble from the natural surjections $U_q^{ev\wedge_\chi} \twoheadrightarrow U_q^{ev\wedge_\xi}$ and $W_q^{\wedge_\chi} \twoheadrightarrow W_q^{\wedge_\xi}$. Let $\xi = (\chi, \vartheta)$ and $\xi' = (\chi, \vartheta')$ then any $(U_q^{ev\wedge_\xi}, U_q^{ev\wedge_{\xi'}})$ -bimodule can be viewed as a $U_q^{ev\wedge_\chi}$ bimodule, while any $(\mathcal{W}_q^{\wedge_{\vartheta}}, \mathcal{W}_q^{\wedge_{\vartheta'}})$ -bimodule can be viewed as a $\mathcal{W}_q^{\wedge_{\underline{\chi}}}$ -bimodule.

Definition 6.9. A $(U_q^{ev \wedge_{\xi}}, U_q^{ev \wedge_{\xi'}})$ -bimodule is called Poisson if it is a Poisson $U_q^{ev \wedge_{\chi}}$ -bimodule. A $(\mathcal{W}_q^{\wedge_{\vartheta}}, \mathcal{W}_q^{\wedge_{\vartheta'}})$ -bimodule is called Poisson if it is a Poisson $\mathcal{W}_q^{\wedge_{\underline{\chi}}}$ -bimodule.

Definition 6.10. Let $Pbim(U_q^{\xi,xi'})$ denote the categories of left and right finitely generated Poisson $(U_q^{ev \wedge_{\xi}}, U_q^{ev \wedge_{\xi'}})$ -bimodules. Let $\operatorname{Pbim}(\mathcal{W}_q^{\vartheta,\vartheta'})$ denote the categories of left and right finitely generated $(\mathcal{W}_{a}^{\wedge_{\vartheta}}, \mathcal{W}_{a}^{\wedge_{\vartheta'}})$ -bimodules.

The decompositions (6.3) come with complete systems of idempotents so that one maps into the other under the morphism $\mathcal{W}_q^{\wedge_{\underline{\chi}}} \hookrightarrow U_q^{ev \wedge_{\underline{\chi}}}$. Furthermore, $\mathfrak{P}_2 \circ \mathfrak{P}_1$ is also compatible with these two systems of complete idempotents, so that $\mathfrak{P}_2 \circ \mathfrak{P}_1$ gives a rise to a family of equivalences of monoidal abelian categories:

(6.4)
$$\mathfrak{P}: \operatorname{Pbim}(U_q^{\xi,\xi'}) \xrightarrow{\sim} \operatorname{Pbim}(\mathcal{W}_q^{\vartheta,\vartheta'})$$

Let $\Lambda := P/Q$. Then we have the Λ -grading version of the above discussions: the categories $\operatorname{Pbim}^{\Lambda}(U_{q}^{\xi,\xi'})$, $\operatorname{Pbim}^{\Lambda}(\mathcal{W}_{q}^{\vartheta,\vartheta'})$ and the functors between them.

7. Quantum category O

Let $U_q^{mix} := U_q^{ev} \check{U}_q^{\geqslant}$. Let $\mathsf{R} := \mathbb{C}[[\hbar, \mathfrak{h}^*]]$ with the maximal ideal \mathfrak{m} . As in [7], introduce

- the category O_{ϵ} over the mixed quantum group U_{ϵ}^{mix} ,
- the category O_q over U_q^{mix} ,
- the deformed category $O_{q,R}$ over $U_q^{mix} \otimes_{\mathbb{C}[[\hbar]]} R$.

The category O_{ϵ} is embedded into O_q via the quotient $U_q^{mix} \twoheadrightarrow U_{\epsilon}^{mix}$.

Definition 7.1. The Verma modules $\Delta_{\epsilon}(\lambda)$, $\Delta_{q}(\lambda)$ and $\Delta_{q,R}(\lambda)$ for $\lambda \in P$.

Lemma 7.2. The ℓ -shifted dot action of extended affine Weyl group $W_{ext} := W \ltimes P$ on P gives us block decomposition:

$$O_{\epsilon} = \bigoplus_{[\lambda] \in P/(W_{ext}, \bullet_{\ell})} O_{\epsilon}^{[\lambda]}, \qquad O_{q} = \bigoplus_{\lambda \in P/(W_{ext}, \bullet_{\ell})} O_{q}^{[\lambda]}, \qquad O_{q, \mathsf{R}} = \bigoplus_{[\lambda] \in P/(W_{ext}, \bullet_{\ell})} O_{q, \mathsf{R}}^{[\lambda]}$$

Let $\operatorname{\sf pr}_{[\lambda]}:O_\epsilon\to O_\epsilon^{[\lambda]}$ be the natural projection. We use the same notations for the projections of the other two decompositions.

Recall that each $\lambda \in P$ gives a point $\lambda \in \operatorname{Spec} \mathcal{W}_{\epsilon}$.

Lemma 7.3. Any object in $O_{q,\mathsf{R}}^{[\lambda]}$ carries a natural action of $U_q^{ev} \otimes_{\mathcal{W}_q} \mathcal{W}_q^{\wedge_{\lambda}}$, which gives a natural action of $U_q^{fin,\lambda}$ and $U_q^{ev,\lambda} := U_q^{ev} \otimes_{\mathcal{W}_q} \mathcal{W}_q^{\wedge_{\lambda}} / \cap \hbar^k U_q^{ev} \otimes_{\mathcal{W}_q} \mathcal{W}_q^{\wedge_{\lambda}}$.

Proof. Step 1: Let \mathfrak{m}_{λ} be the maximal ideal of $\lambda \in \operatorname{Spec} \mathcal{W}_{\epsilon}$. We will show that any object $M \in O_{\epsilon}^{[0]}$ is killed by some power of \mathfrak{m}_{λ} . Since $\tilde{E}_{\alpha}^{\ell_{\alpha}}$ acts as zero and $K^{\lambda}(\lambda \in 2P^{*})$ acts as 1 on any object in O_{ϵ} , any object in O_{ϵ} is kill by maximal ideal of $1 \in \operatorname{Spec} Z_{\cap}$. So $M = \bigoplus_{\vartheta \mapsto 1} M_{\vartheta}$, where $\vartheta \mapsto 1$ means the image of ϑ under the map $\operatorname{Spec} \mathcal{W}_{\epsilon} \to \operatorname{Spec} Z_{\cap}$ is 1, and M_{ϑ} is the component support at $\vartheta \in \operatorname{Spec} \mathcal{W}_{\epsilon}$. Since $O_{\epsilon}^{[\lambda]}$ is Serre spanned by Verma module $\Delta_{\epsilon}(\mu)$ with $\mu \in W_{ext} \bullet_{\ell} \lambda$, we must have $M = M_{\lambda}$.

Step 2: Let $M \in O_q^{[\lambda]}$. Let $\mathfrak{J}_{\lambda} : \phi^{-1}(\mathfrak{m}_{\lambda})$ in which $\phi : \mathcal{W}_q \to \mathcal{W}_{\epsilon}$. The Harish-Chandra center \mathcal{W}_q acts on each weight space M_{μ} of M. Since $M/M\mathfrak{m}^k$ has a finite filtration of subquotient contained in $O_{\epsilon}^{[0]}$, by Step 1, there is $s_k > 0$ such that $\mathfrak{J}_{\lambda}^{s_k} M \subset M\mathfrak{m}^k$. On the other hand, each weight space M_{μ} is finitely generated over R, hence complete and separated in the \mathfrak{m} -adic topology. Therefore, the action of \mathcal{W}_q on M_{μ} extends uniquely to an action of $\mathcal{W}_q^{\wedge_{\lambda}}$.

Step 3: Since each weight space M_{μ} is separated in the \hbar -adic topology, hence the second part of the lemma follows.

Let λ, μ in the closure of the fundamental alcove such that $W_{\lambda} \subset W_{\mu}$. Recall the Weyl module $W_q(\mu - \lambda)$.

 $\mathbf{Lemma~7.4.~pr}_{[\mu]}(W_q(\mu-\lambda)\otimes_{\mathbb{C}[[\hbar]]}\Delta_{\epsilon}(\lambda)) = \Delta_{\epsilon}(\mu),~\mathsf{pr}_{[\mu]}(\Delta_q(\lambda)) = \Delta_q(\mu)~and~\mathsf{pr}_{[\mu]}(\Delta_{q,\mathsf{R}}(\lambda)) = \Delta_{q,\mathsf{R}}(\mu).$

Proof. The functor $\operatorname{pr}_{[\mu]}$ is exact. Construct the filtration of Verma modules for $W_q(\mu - \lambda) \otimes_{\mathbb{C}[[\hbar]]} \Delta_{\epsilon}(\lambda) \cong W_{\epsilon}(\mu - \lambda) \otimes_{\mathbb{C}} \Delta_{\epsilon}(\lambda) \dots$

Remark 7.5. Note that $\operatorname{pr}_{[\mu]} \Big(W_q(\mu - \lambda) \otimes_{\mathbb{C}[[\hbar]]} \Delta_q(\lambda) \Big) \cong P^{\mu,\lambda} \otimes_{U_q^{fin,\lambda}} \Delta_q(\lambda)$. Same with the other two cases.

Remark 7.6. We also consider the right module versions O_{ϵ}^r, O_q^r and $O_{q,R}^r$.

8. Restriction functor

8.1. The functor $\bullet_{\dagger} : \mathsf{HC}_q(\vartheta, \vartheta') \to \mathsf{Pbim}^{\Lambda}(\mathcal{W}_q^{\xi, \xi'})$.

Let us define a functor:

$$\mathfrak{C}: U_q^{fin,\underline{\chi}}\operatorname{-rmod}^{G_q} \to U_q^{ev \wedge_{\underline{\chi}}}\operatorname{-Pbim}^{\Lambda}.$$

Let $M \in U_q^{fin,\underline{\chi}}$ -rmod^{G_q}.

- Construct the tensor $M_{loc} := M \otimes_{U_q^{fin,\underline{\chi}}} U_q^{ev,\underline{\chi}}$. We have a left $U_q^{ev} \otimes_{\mathcal{W}_q} \mathcal{W}_q^{\wedge_{\underline{\chi}}}$ -action on M_{loc} , this action factors through $U_q^{ev,\underline{\chi}}$. Indeed we have a surjective map $V_q \otimes_{\mathbb{C}[[\hbar]]}$ $U_q^{fin,\underline{\chi}} \twoheadrightarrow M$ for some finite $\mathbb{C}[[\hbar]]$ -free $V_q \in \operatorname{Rep}(\check{U}_q(\mathfrak{g}))$. This give us a surjective map $V_q \otimes_{\mathbb{C}[[\hbar]]} U_q^{ev,\underline{\chi}} \to M_{loc}$. The left action of $U_q^{ev} \otimes_{\mathcal{W}_q} \mathcal{W}_q^{\wedge_{\underline{\chi}}}$ on the domain factors through $U_q^{ev,\underline{\chi}}$ since $V_q \otimes_{\mathbb{C}[[\hbar]]} U_q^{ev,\underline{\chi}}$ is separated in the \hbar -adic topology.
- Let $\phi_{1,\hbar}: U_q^{ev,\underline{\chi}} \to U_q^{ev} \otimes_{\mathcal{W}_{\epsilon}} \mathcal{W}_{\epsilon}^{\wedge_{\underline{\chi}}}$. Let $P_{1,\hbar} = \phi_{1,\hbar}^{-1}(Z_{Fr}^{\wedge_{\underline{\chi}}})$. Then M_{loc} carries a natural structure of $U_q^{ev,\underline{\chi}}$ -Pbim $^{\Lambda}$. Then need to check that we have a right exact functor $\bullet_{loc}: U_q^{fin,\underline{\chi}}$ -rmod $^{G_q} \to U_q^{ev,\underline{\chi}}$ -Pbim $^{\Lambda}$.

 • The completion functor $\bullet^{\wedge_{\chi}}: U_q^{ev,\underline{\chi}}$ -Pbim $^{\Lambda} \to U_q^{ev,\underline{\chi}}$ -Pbim $^{\Lambda}$.
- The Λ -grading comes as follows: Any object in $U_q^{fin,\underline{\chi}}$ -rmod G_q comes with the default P-grading, which gives a $\Lambda = P/Q$ -grading. This Λ -grading passes through the construction of functors.

Then $\mathfrak{C} := \bullet^{\wedge_{\chi}} \circ \bullet_{loc}$.

Composing with the equivalence $\mathfrak{P}: U_q^{ev \wedge_{\chi}}\text{-Pbim}^{\Lambda} \xrightarrow{\sim} \mathcal{W}_q^{\wedge_{\underline{\chi}}}\text{-Pbim}^{\Lambda}$, we obtain

$$(8.1) \qquad \bullet_{\dagger}: U_q^{fin,\underline{\chi}}\text{-rmod}^{G_q} \xrightarrow{\mathfrak{C}} U_q^{ev,\underline{\chi}}\text{-Pbim}^{\Lambda} \xrightarrow{\mathfrak{P}} \mathcal{W}_q^{\Lambda_{\underline{\chi}}}\text{-Pbim}^{\Lambda}.$$

Decomposition of categories give us the functor $\bullet_{\dagger} : \mathsf{HC}_{a}(\vartheta, \vartheta') \to \mathsf{Pbim}^{\Lambda}(\mathcal{W}_{a}^{\xi, \xi'}).$

Proposition 8.1. The functor \bullet_{\dagger} in (8.1) is right exact, monoidal and $(\mathcal{W}_q^{\wedge_{\underline{\chi}}}, \mathcal{W}_q^{\wedge_{\underline{\chi}}})$ -linear.

Proposition 8.2. Assume the condition of χ as in Lemma 8.6. Then the functor \bullet_{\dagger} in (8.1) is fully faithful on the diagonal modules.

Proof. It is enough to show the following map is bijective

$$(8.2) \quad \operatorname{Hom}_{U_{q}^{fin,\underline{\chi}}\operatorname{-rmod}^{G_{q}}}(V_{q} \otimes_{\mathbb{C}[[\hbar]]} U_{q}^{fin,\underline{\chi}}, W_{q} \otimes_{\mathbb{C}[[\hbar]]} U_{q}^{fin,\underline{\chi}}) \\ \quad \rightarrow \operatorname{Hom}_{U_{q}^{ev \wedge_{\chi}}\operatorname{-Phim}^{\Lambda}}(V_{q} \otimes_{\mathbb{C}[[\hbar]]} U_{q}^{ev \wedge_{\chi}}, W_{q} \otimes_{\mathbb{C}[[\hbar]]} U_{q}^{ev \wedge_{\chi}})$$

for $V_q, W_q \in \text{Rep}(\check{U}_q(\mathfrak{g}))$ which are free of finite rank over $\mathbb{C}[[\hbar]]$.

 $[\]overline{\ ^2\text{Since}\ U_q^{ev,\underline{\chi}}} \text{ is Noetherian and } \mathfrak{J}_\chi \text{ is center and generated by finitely many elements (ensure the Noetherian of blow up algebra), hence the completion <math>U_q^{ev\wedge\underline{\chi}}$ satisfies the properties of Lemma 4.2. Then further complete $U_q^{ev \wedge \underline{\chi}}$ to get the completion $U_q^{ev \wedge \chi}$. Let $J_{\chi} := \phi_{1,\hbar}^{-1}(\mathfrak{m}_{\chi})$ under the map $\phi_{1,\hbar} : U_q^{ev,\underline{\chi}} \to U_{\epsilon}^{ev} \otimes_{\mathcal{W}_{\epsilon}} \mathcal{W}_{\epsilon}^{\wedge \underline{\chi}}$. Then $J_\chi^k U_q^{ev,\underline{\chi}}$ is finitely generated two-side ideal for all k (Need $J_\chi U = U J_\chi$). Since $U_q^{ev \wedge \underline{\chi}}$ satisfies the properties in Lemma 4.2, we have $U_q^{ev \wedge \underline{\chi}}/J_Y^k U_q^{ev \wedge \underline{\chi}} \cong U_q^{ev,\underline{\chi}}/U_q^{ev,\underline{\chi}}J_Y^k$. So two-step completion is the same as one step completion.

³One need to check for any $M \in U_q^{ev,\underline{\chi}}$ -Pbim^{Λ}, the completion $M^{\Lambda\chi}$ naturally carries a Poisson bimodule structure in $U_q^{ev \wedge \chi}$ -Pbim $^{\Lambda}$. One need to show that $P_{1,\hbar}$ is dense in P_{\hbar} in the J_{χ} -adic topology: the closure of $P_{1,\hbar}$ contains $\hbar U_q^{ev \wedge \chi}$ and one show that its image under $\phi_{\hbar}: U_q^{ev \wedge \chi} \to U_{\epsilon}^{ev \wedge \chi}$ is $Z_{F_r}^{\wedge \chi}$.

• Since both $V_q \otimes_{\mathbb{C}[[\hbar]]} U_q^{ev \wedge_{\chi}}$ and $W_q \otimes_{\mathbb{C}[[\hbar]]} U_q^{ev \wedge_{\chi}}$ are flat over $\mathbb{C}[[\hbar]]$, hence the right hand side of (8.2) is equal to

(8.3)
$$\operatorname{Hom}_{U_q^{ev \wedge_{\chi}} \operatorname{-bimod}^{\Lambda}}(V_q \otimes_{\mathbb{C}[[\hbar]]} U_q^{ev \wedge_{\chi}}, W_q \otimes_{\mathbb{C}[[\hbar]]} U_q^{ev \wedge_{\chi}}).$$

• $V_q \otimes_{\mathbb{C}[[\hbar]]} U_q^{ev \wedge_{\chi}}$ is also an object in $U_q^{ev \wedge_{\chi}}$ -rmod \check{U}_q^{Λ} . We claim that (8.3) is equal to

$$(8.4) \qquad \operatorname{Hom}_{U_q^{ev \wedge_{\chi}}\operatorname{-rmod}^{\check{U}_q, \Lambda}}(V_q \otimes_{\mathbb{C}[[\hbar]]} U_q^{ev \wedge_{\chi}}, W_q \otimes_{\mathbb{C}[[\hbar]]} U_q^{ev \wedge_{\chi}})$$

We have a forgeful map from (8.4) \to (8.3) which is injective. This map is also surjective as follows: Any bimodule map is equivariant under the adjoint $U_q^{ev}(\mathfrak{g})$ -action. Since both $V_q \otimes_{\mathbb{C}[[\hbar]]} U_q^{ev \wedge_{\chi}}$ and $W_q \otimes_{\mathbb{C}[[\hbar]]} U_q^{ev \wedge_{\chi}}$ are flat over $\mathbb{C}[[\hbar]]$, the adjoint $\check{U}_q(\mathfrak{g})$ -actions on these two modules are uniquely recovered from the adjoint $U_q^{ev}(\mathfrak{g})$ -actions.

• Now we transform the isomorphism (8.2) into

(8.5)
$$\operatorname{Hom}_{\check{U}_{q}(\mathfrak{g})}(V_{q}, U_{q}^{fin,\underline{\chi}}) \to \operatorname{Hom}_{\check{U}_{q}(\mathfrak{g})}(V_{q}, U_{q}^{ev \wedge_{\chi}})$$

for $V_q \in \text{Rep}(\check{U}_q(\mathfrak{g}))$ which is free of finite rank and has the weight space contained in the root lattice Q (the Λ -grading in $U_q^{ev \wedge_{\chi}}$ -rmod \check{U}_q^{Λ} is used here where $U_q^{ev \wedge_{\chi}}$ is viewed as in the degree $0 \in \Lambda$.)

• We assume Lemma 8.3 below whose proof is in the next section. Again since $\operatorname{Rep}(\check{U}_q(\mathfrak{g}))$ has enough projective, we can assume V_q is projective. Since both $U_q^{fin,\chi}$ and $U_q^{ev \wedge \chi}$ are flat over $\mathbb{C}[[\hbar]]$, we have

The last vertical arrow is the same as

$$\operatorname{Hom}_{\check{U}_{\epsilon}}(V_q/\hbar V_q, U^{fin,\underline{\chi}}_{\epsilon}) \to \operatorname{Hom}_{\check{U}_{\epsilon}}(V_q/\hbar V_q, U^{ev \wedge_{\chi}}_{\epsilon})$$

which is an isomorphism by Lemma 8.3. Therefore, the second row is also a short exact sequence. Both $\operatorname{Hom}_{\check{U}_q}(V_q,U_q^{fin,\underline{\chi}})$ and $\operatorname{Hom}_{\check{U}_q}(V_q,U_q^{ev\wedge_{\chi}})$ are finitely generated over $\mathcal{W}_q^{\wedge_{\underline{\chi}}}$. Hence (8.5) is surjective. Since $\operatorname{Hom}_{\check{U}_q}(V_q,U_q^{ev\wedge_{\chi}})$ is flat over $\mathbb{C}[[\hbar]]$, it then follows that (8.5) is injective. \square

Lemma 8.3. For any $V_{\epsilon} \in \operatorname{Rep}^{fd}(\check{U}_{\epsilon}(g))$ which has the weight space in the root lattice Q, the following natural map is bijective

(8.6)
$$\operatorname{Hom}_{\check{U}_{\epsilon}}(V_{\epsilon}, U_{\epsilon}^{fin, \underline{\chi}}) \to \operatorname{Hom}_{\check{U}_{\epsilon}}(V_{\epsilon}, U_{\epsilon}^{ev \wedge_{\chi}}).$$

8.2. Proof of Lemma 8.3.

Conjugacy classes in algebraic groups. Let G be a simply connected semisimple algebraic group. We give a non-exhaustive list of some geometric facts about the conjugacy action of G on itself from [13], note that some of those facts hold without simply connectedness.

Proposition 8.4. (recheck which parts require simply connectedness) Let G acts on itself via conjugation and consider the categorical quotient map $\pi: G \to G/\!\!/ G$. Let F be the (reduced) fiber of any closed point p in $G/\!\!/ G$.

a) Let T be a maximal torus of G then there is a natural isomorphism $\mathbb{C}[G]^G \cong \mathbb{C}[T]^W$. Furthermore, if G is simply connected then $G/\!\!/G \cong \mathbb{A}^r$, the affine space with dimension r equal to the rank of Lie algebra \mathfrak{g} .

- b) F is a closed, irreducible and normal subvariety of codimension r in G. Let \mathfrak{m}_p be the maximal ideal of $\mathbb{C}[G/\!\!/G]$ corresponding to p then the defining ideal of F is $\mathfrak{m}_p\mathbb{C}[G]$.
- c) F contains a unique class of regular elements. This class is open and dense in F and its complement has codimension ≥ 2 .
- d) There is a cross section S, which is called Steinberg section, that paramerizes the classes of regular elements. Moreover, S is contained in the regular locus of G, and the natural map $\pi(S) \to G/\!\!/ G$ is an isomorphism of varieties.

We need the following technical result from [6]: Let G be a simply connected semisimple algebraic group. Let H be a subgroup of G such that G/H is a quasi-affine and $\mathbb{C}[G/H]$ is finitely generated. Let $x \in G/H$ whose stablizer in G is H. Let H^0 be the identity component of H and denote by $C(x) = H/H^0$ the component group of H. Consider the natural map $\phi: G/H^0 \to G/H$. Let M be a G-equivariant vector bundle on G/H. The completion M^{\wedge_x} carries a natural actions of \mathfrak{g} and H. Let denote this H-action by ρ . Integrating the \mathfrak{g} -action on the locally \mathfrak{g} -finite part $M^{\wedge_x}_{\mathfrak{g}\text{-lf}}$ into G-action then restrict to H we get another H-action on $M^{\wedge_x}_{\mathfrak{g}\text{-lf}}$. We denote this action by ρ' . One can show that $\sigma(h) = \rho(h)\rho'(h^{-1})$ defines a new H-action on $M^{\wedge_x}_{\mathfrak{g}\text{-lf}}$ which commutes with G-action. Furthermore, $\sigma(H^0)$ acts trivially so that we have an action of C(x) on $M^{\wedge_x}_{\mathfrak{g}\text{-lf}}$, hence we can define the C(x)-invariant part $M^{\wedge_x, C(x)}_{\mathfrak{g}\text{-lf}}$. The following result is in [6, Proposition 3.2.3]

$$\textbf{Lemma 8.5.} \ \ M_{\mathfrak{g}\text{-lf}}^{\wedge_x} \cong \Gamma(G/H^0,\phi^*M), \qquad M_{\mathfrak{g}\text{-lf}}^{\wedge_x,C(x)} \cong \Gamma(G/H,M)$$

Let χ be a regular element in G and $\underline{\chi}$ be the image of χ under the quotient map $\pi: G \to G/\!\!/ G$. Let $\mathbb{C}[G]^{\wedge_{\chi}}$, $\mathbb{C}[G/\!\!/ G]^{\wedge_{\chi}}$ be the completion of $\mathbb{C}[G]$, $\mathbb{C}[G/\!\!/ G]$ at the closed points $\chi, \underline{\chi}$, respectively. Denote $I_{\chi} := \mathfrak{m}_{\underline{\chi}} \mathbb{C}[G]$ and $C[G]^{\wedge_{I_{\chi}}}$ the completions of C[G] with respect to the ideal I_{χ} .

The action of \mathfrak{g} on $\mathbb{C}[G]$ extends to an \mathfrak{g} -action on $\mathbb{C}[G]^{\wedge_{\chi}}$. Let $\mathbb{C}[G]^{\wedge_{\chi}}_{\mathfrak{g}\text{-lf}}$ be the locally finite part of this \mathfrak{g} -action. Integrate the \mathfrak{g} -action into the G-action on $\mathbb{C}[G]^{\wedge_{\chi}}_{\mathfrak{g}\text{-lf}}$, and let $\mathbb{C}[G]^{\wedge_{\chi}}_{\mathfrak{g}\text{-lf}}$ denote the Z(G)-invariant part. We have a natural map $\mathbb{C}[G] \otimes_{\mathbb{C}[G/\!\!/G]} \mathbb{C}[G/\!\!/G]^{\wedge_{\chi}} \to \mathbb{C}[G]^{\wedge_{\chi}}_{\mathfrak{g}\text{-lf}}$.

Lemma 8.6. Suppose the natural map $Z(G) \to C(\chi)$ is surjective. Then the natural map $\mathbb{C}[G] \otimes_{\mathbb{C}[G/\!\!/G]} \mathbb{C}[G/\!\!/G]^{\wedge_{\underline{\chi}}} \to \mathbb{C}[G]_{\mathfrak{g}\text{-}lf}^{\wedge_{\chi},Z(G)}$ is an isomorphism.

The surjectivity condition holds in the case of regular unipotent elements, indeed, in that case the natural map $Z(G) \to C(\chi)$ becomes an isomorphism

Proof. Since G is Cohen-Macaulay (indeed regular) and I_{χ} is generated by $\operatorname{codim}(I_{\chi})$ elements, $I_{\chi}^{k}/I_{\chi}^{k+1}$ is a free module of finite rank over $\mathbb{C}[G]/I_{\chi}=\mathbb{C}[\overline{G\chi}]$.

Let M be a G-equivariant coherent sheaf on $\overline{G\chi}$ such that Z(G) acts on M trivially. If the natural map $Z(G) \to C(\chi)$ is surjective then we have an isomorphism $M_{\mathfrak{g}\text{-lf}}^{\wedge_{\chi},Z(G)} \cong M_{\mathfrak{g}\text{-lf}}^{\wedge_{\chi},C(\chi)}$. By Lemma 8.5, we have $M_{\mathfrak{g}\text{-lf}}^{\wedge_{\chi},C(\chi)} \cong \Gamma(G\chi,M|_{G\chi})$. Note that $\overline{G\chi}$ is a normal variety. Therefore, if we assume further that M is a free sheaf then $M_{\mathfrak{g}\text{-lf}}^{\wedge_{\chi},Z(G)} \cong \Gamma(\overline{G\chi},M)$. Applying this analysis to the free $\mathbb{C}[\overline{G\chi}]$ -module $I_{\chi}^k/I_{\chi}^{k+1}$ whose Z(G)-action is trivial we have

$$I_{\chi}^{k}/I_{\chi}^{k+1} \rightarrow (I_{\chi}^{k}/I_{\chi}^{k+1})_{\mathfrak{q}\text{-lf}}^{\wedge_{\chi},Z(G)}$$

is an isomorphism of \mathfrak{g} -modules for all $k \geq 0$, in which $I_{\chi}^{0} = \mathbb{C}[G]$. Now consider the following commutative diagram in the category of ${\mathfrak g}\text{-modules}\colon$

This diagram allows us to inductively prove that the natural map

$$\mathbb{C}[G]/I_{\chi}^{k} \to (\mathbb{C}[G]/I_{\chi}^{k})_{\mathfrak{g}\text{-lf}}^{\wedge_{\chi},Z(G)}$$

is an isomorphism of \mathfrak{g} -modules for all k > 1.

Let V be any finite dimensional representation of \mathfrak{g} which is also representation of the adjoint group G_{ad} . Since $\mathfrak{m}_{\underline{\chi}} \subset \mathfrak{m}_{\chi}$, $\mathbb{C}[G]^{\wedge_{\chi}}$ is $\mathfrak{m}_{\underline{\chi}}$ -adically complete. Moreover, $\mathbb{C}[G]^{\wedge_{\chi}}/\mathfrak{m}_{\chi}^{k}\mathbb{C}[G]^{\wedge_{\chi}} \cong$ $(\mathbb{C}[G]/I_{\nu}^{k})^{\wedge_{\chi}}$. Therefore, we have

$$\begin{aligned} \operatorname{Hom}_{\mathfrak{g}}(V,\mathbb{C}[G]^{\wedge_{\chi}}) &\cong \varprojlim \operatorname{Hom}_{\mathfrak{g}}(V,(\mathbb{C}[G]/I_{\chi}^{k})^{\wedge_{\chi}}) \\ &\cong \varprojlim \operatorname{Hom}_{\mathfrak{g}}(V,(\mathbb{C}[G]/I_{\chi}^{k})_{\mathfrak{g}\text{-lf}}^{\wedge_{\chi},Z(G)}) \\ &\cong \varprojlim \operatorname{Hom}_{\mathfrak{g}}(V,\mathbb{C}[G]/I_{\chi}^{k}) \\ &\cong \operatorname{Hom}_{\mathfrak{g}}(V,\mathbb{C}[G]^{\wedge_{I_{\chi}}}), \end{aligned}$$

for any \mathfrak{g} -representation V as above. Hence, we have

$$\mathbb{C}[G]_{\mathfrak{g}\text{-lf}}^{\wedge_{I_{\chi}},Z(G)} \cong \mathbb{C}[G]_{\mathfrak{g}\text{-lf}}^{\wedge_{\chi},Z(G)},$$

but the former is just $\mathbb{C}[G] \otimes_{\mathbb{C}[G/\!\!/G]} \mathbb{C}[G/\!\!/G] \wedge_{\underline{\chi}}$ since $\operatorname{Hom}_{\mathfrak{g}}(V,\mathbb{C}[G])$ is finitely generated over $\mathbb{C}[G /\!\!/ G].$

Proof of Lemma 8.3. We note that $U_{\epsilon}^{ev \wedge_{\chi}} = U_{\epsilon}^{fin \wedge_{\chi}}$. So we need to show the following map is bijective:

$$(8.7) (V_{\epsilon}^{t} \otimes U_{\epsilon}^{fin,\underline{\chi}})^{\check{U}_{\epsilon}} \to (V_{\epsilon}^{t} \otimes U_{\epsilon}^{fin\wedge_{\chi}})^{\check{U}_{\epsilon}},$$

here V_{ϵ}^t is the right dual. Since $\operatorname{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$ has enough projective, we can assume V_{ϵ} is projective. Moreover, projective objects are also injective objects in $\operatorname{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$, so V_{ϵ}^t is also projective.

Let Z_{Fr}^{fin} -mod $^{G_{\epsilon},Q}$ be the category of finitely generated Z_{Fr}^{fin} -modules in the category $\operatorname{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$ whose weight spaces are contained in the weight lattice Q.

Step 1: Since V_{ϵ}^t is projective in $\operatorname{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$ and U_{ϵ}^{fin} is projective over Z_{Fr}^{fin} , one show that $V_{\epsilon}^t \otimes U_{\epsilon}^{fin}$ is a projective object in Z_{Fr}^{fin} -mod $G_{\epsilon,Q}$. So $V_{\epsilon}^t \otimes U_{\epsilon}^{fin}$ is a direct summand of some object of the form $W_{\epsilon} \otimes Z_{Fr}^{fin}$ with $W_{\epsilon} \in \operatorname{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$ whose weight space is contained in Q.

Step 2: We consider the following two functors:

$$A:\ Z_{Fr}^{fin}\text{-}\mathrm{mod}^{G_{\epsilon},Q}\rightarrow\mathrm{Vect}_{\mathbb{C}}, \qquad \qquad B:\ Z_{Fr}^{fin}\text{-}\mathrm{mod}^{G_{\epsilon},Q}\rightarrow\mathrm{Vect}_{\mathbb{C}}$$

Let $M \in Z_{Fr}^{fin}$ -mod^{G_{ϵ}}. Then $B(M) := (M \otimes_{Z_{\cap}} Z_{\cap}^{\wedge_{\underline{\chi}}})^{\mathfrak{u}_{\epsilon}}$.

Let us define A(M). First we taking the completion $M^{\wedge_{\chi}} = M \otimes_{Z_r^{fin}} Z_{Fr}^{fin \wedge_{\chi}}$. Then take the \mathfrak{u}_{ϵ} -invariant part of $M^{\wedge_{\chi}}$ so that $(M^{\wedge_{\chi}})^{\mathfrak{u}_{\epsilon}}$ is a module over $\check{U}_{\mathbb{C}}(\mathfrak{g}^d)$. Then take the \mathfrak{g}^d locally finite part whose weight space is contained in the root lattice Q^* of \mathfrak{g}^d and define $A(M) := (M^{\hat{\lambda}_{\chi}})^{\mathfrak{u}_{\epsilon}}_{\mathfrak{g}^{d}-fin,Z(G^{d})}.$

So we have a natural transformation $B(M) \to A(M)$.

Step 3: Let W_{ϵ} be a finite dimensional module in $\text{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$ whose weight space is contained in the root lattice Q. We will show that $B(W_{\epsilon} \otimes Z_{Fr}^{fin}) \to A(W_{\epsilon} \otimes Z_{Fr}^{fin})$. Indeed we have

$$B(W_{\epsilon} \otimes Z_{Fr}^{fin}) = (W_{\epsilon})^{\mathfrak{u}_{\epsilon}} \otimes Z_{Fr}^{fin,\underline{\chi}}, \qquad A(W_{\epsilon} \otimes Z_{Fr}^{fin}) = (W_{\epsilon})^{\mathfrak{u}_{\epsilon}} \otimes (Z_{Fr}^{fin,\chi})^{Z(G^{d})}_{\mathfrak{g}^{d}-fin},$$

here since the weight space of W_{ϵ} is contained in Q, hence the \mathfrak{u}_{ϵ} -invariant part $(W_{\epsilon})^{\mathfrak{u}_{\epsilon}}$ is a rational representation of \mathfrak{g}^d with a trivial action of $Z(G^d)$. Therefore,

$$((W_{\epsilon})^{\mathfrak{u}_{\epsilon}} \otimes (Z_{Fr}^{fin \wedge_{\chi}})_{\mathfrak{g}^{d}\text{-}fin})^{Z(G^{d})} \cong (W_{\epsilon})^{\mathfrak{u}_{\epsilon}} \otimes (Z_{Fr}^{fin \wedge_{\chi}})_{\mathfrak{g}^{d}\text{-}fin}^{Z(G^{d})}$$

By Lemma 8.6, we have $Z_{Fr}^{fin,\chi} \xrightarrow{\sim} (Z_{Fr}^{fin\wedge_{\chi}})_{\mathfrak{g}^d-fin}^{Z(G^d)}$. Therefore $B(W_{\epsilon} \otimes Z_{Fr}^{fin}) \xrightarrow{\sim} A(W_{\epsilon} \otimes Z_{Fr}^{fin})$. Step 4: By Step 1 and 3, we have

$$B(V_{\epsilon}^t \otimes U_{\epsilon}^{fin,\underline{\chi}}) \xrightarrow{\sim} A(V_{\epsilon}^t \otimes U_{\epsilon}^{fin,\underline{\chi}}).$$

Note that (8.7) is obtained from the above isomorphism via taking $\check{U}_{\mathbb{C}}(\mathfrak{g}^d)$ -invariant part, hence (8.7) is an isomorphism. This completes the lemma.

8.3. The functor $\bullet_{\dagger}: O_q^{[0]} \to \mathcal{W}_q^{\wedge_0}\text{-mod}^{\Lambda}$. Here $\mathcal{W}_q^{\wedge_0}\text{-mod}^{\Lambda}$ is the category of Λ -grading $\mathcal{W}_{q}^{\wedge_{0}}$ -modules.

Let us construct the functor $\bullet_{\dagger}: O_q \to \mathcal{W}_q^{\wedge_{\underline{\lambda}}}$ -mod^{Λ}. Then this gives us a family of functors $ullet_{\dagger}: O_q^{[\lambda]} o \mathcal{W}_q^{\wedge_{\lambda}}\operatorname{-mod}^{\Lambda}.$ Let us recall the identification:

$$Z_{Fr} = \mathbb{C}[\tilde{E}_{\alpha}^{\ell}K^{\ell\gamma(\alpha)}]_{\alpha\in\Delta_{+}} \otimes_{\mathbb{C}} \bigoplus_{\lambda\in\ell P} \mathbb{C}K^{2\lambda} \otimes_{\mathbb{C}} \mathbb{C}[\tilde{F}_{\alpha}^{\ell}K^{\ell\kappa(\alpha)}]_{\alpha\in\Delta_{+}} \cong \mathbb{C}[U_{-}] \otimes_{\mathbb{C}} \mathbb{C}[T] \otimes_{\mathbb{C}} \mathbb{C}[U_{+}]$$

Let χ be a regular unipotent element in $U_+ \subset G_0$ then $\{K^{2\ell\lambda-1}, \tilde{E}^\ell_\alpha\} \subset \mathfrak{m}_\chi$. Let us consider the map

$$\iota: \mathfrak{I}:= Z_{Fr} \langle K^{2\ell\lambda} - 1, \tilde{E}_{\alpha}^{\ell} \rangle \subset \mathfrak{m}_{\chi} \to \mathfrak{m}_{\chi}/\mathfrak{m}_{\chi}^2.$$

On $\mathfrak{m}_\chi/\mathfrak{m}_\chi^2$, we have the skew-symmetric form $\mathfrak{m}_\chi/\mathfrak{m}_\chi^2 \times \mathfrak{m}_\chi/\mathfrak{m}_\chi^2 \to Z_{Fr}/\mathfrak{m}_\chi \cong \mathbb{C}$ as follows: $\{f + \mathfrak{m}_{\chi}^2, g + \mathfrak{m}_{\chi}^2\} = \{f, g\} + \mathfrak{m}_{\chi}$

Lemma 8.7.
$$\{K^{2\ell\lambda}-1,\tilde{E}_{\alpha}^{\ell}\}=?K^{2\ell\lambda}\tilde{E}_{\alpha}^{\ell}\in\mathfrak{I}\ and\ \{\tilde{E}_{\alpha}^{\ell},\tilde{E}_{\beta}^{\ell}\}\subset Z_{Fr,\alpha+\beta}^{>}\subset\mathfrak{I}.$$

From this lemma, we see that the image of ι in $\mathfrak{m}_{\chi}/\mathfrak{m}_{\chi}^2$ is an isotopic subspace. Note that this space has at least of dimension N+r. On the other hand $\dim_{\mathbb{C}} \mathfrak{m}_{\chi}/\mathfrak{m}_{\chi}^2=2N+r$. Let Vbe a maximal symplectic subspace in $\mathfrak{m}_{\chi}/\mathfrak{m}_{\chi}^2$ which is a lift of the cotangent space of conjugacy classes at χ . Since χ is a regular element, the maximal symplectic subspace of $\mathfrak{m}_{\chi}/\mathfrak{m}_{\chi}^2$ is of dimension 2N. Therefore, the image of ι is the maximal isotropic subspace of $\mathfrak{m}_{\chi}/\mathfrak{m}_{\chi}^2$, and the intersection $\mathfrak{u}: \operatorname{Im}(\iota) \cap V$ is a Lagrangian subspace of V.

Proposition 8.8. Let (A, \mathfrak{m}) be a complete local Poisson algebra. Let the ideal $\mathfrak{n} \subset \mathfrak{m}$ such that

- n is closed under the Poisson bracket.
- The image of the map $\mathfrak{n} \to \mathfrak{m} \to \mathfrak{m}/\mathfrak{m}^2$ is a maximal isotropic subspace of $\mathfrak{m}/\mathfrak{m}^2$. Denote this image by b

Let $V \subset \mathfrak{m}/\mathfrak{m}^2$ be a maximal symplectic subspace of $\mathfrak{m}/\mathfrak{m}^2$ and $\mathfrak{u} := V \cap \mathfrak{b}$ is a Lagrangian subspace of V. Then we can lift $V \to A$ so that $u \hookrightarrow \mathfrak{n}$ and extends to a Poisson embedding $\mathbb{C}[[V^*]] \hookrightarrow A.$

Recall the $\mathbb{C}[[\hbar]]$ -flat deformation $\phi_{\hbar}: R_{\hbar} \to Z^{\wedge_{\chi}}$.

Lemma 8.9. We can find a lift $V \to R_{\hbar}$ such that $\mathfrak{u} \subset \phi_{\hbar}^{-1}(\mathfrak{I})$ and the lift gives us the decomposition $R_{\hbar} \cong \mathcal{A}_q \widehat{\otimes}_{\mathbb{C}[[\hbar]]} \mathcal{W}_q^{\wedge_{\underline{\chi}}}$.

Recall the decompositions $U_q^{ev \wedge_{\chi}} \cong \operatorname{Mat}_N(\mathbb{C}) \otimes R_{\hbar}$ and the idempotent element $e := E_{11}$. For any $M \in O_q$, let $M^{\wedge_{\chi}} := U_q^{ev \wedge_{\chi}} \otimes_{U_q^{ev}} M$ then $eM^{\wedge_{\chi}}$ is a finitely generated module over R_{\hbar} .

Lemma 8.10. (a) For any $M \in O_q$, we can define the natural bilinear map $\{ , \} : \mathfrak{u} \times eM^{\wedge_{\chi}} \to eM^{\wedge_{\chi}} \text{ such that } u \cdot m \text{ such that }$

- $\bullet \ \ \hbar\{u,m\} = um \ for \ u \in \mathfrak{u}, m \in eM^{\wedge_\chi}.$
- $\{u, xm\} = \{u, x\}m + x\{u, m\}$ for $u \in \mathfrak{u}, x \in R_{\hbar}, m \in eM^{\wedge_{\chi}}$.
- (b) For any $M \in O_q$, we have a decomposition of $R_{\hbar} := \mathcal{A}_q^{\wedge} \widehat{\otimes}_{\mathbb{C}[[\hbar]]} \mathcal{W}_q^{\wedge_{\underline{\chi}}}$ -module

$$eM^{\wedge_{\chi}} := \mathbb{C}[[\mathfrak{u}, \hbar]] \widehat{\otimes}_{\mathbb{C}[[\hbar]]} M_{\dagger},$$

here $M_{\dagger} := \{ m \in eM^{\wedge_{\chi}} | \{ u, m \} = 0 \ \forall \ u \in \mathfrak{u} \}.$

Proof. (a) For any $M \in O_q$, then $ueM^{\wedge_{\chi}} \in \hbar eM^{\wedge_{\chi}}$ for all $u \in \mathfrak{u}$.

For any $M \in O_q$, we can find a $\mathbb{C}[[\hbar]]$ -objects $N_1, N_2 \in O_q$ with an exact sequence $N_2 \to N_1 \to M \to 0$. This gives us an exact sequence

$$eN_2^{\wedge_\chi} \xrightarrow{\phi} eN_1^{\wedge_\chi} \xrightarrow{\pi} eM^{\wedge_\chi} \to 0.$$

Let us define $\{\ ,\ \}: \mathfrak{u} \times eM^{\wedge_{\chi}} \to eM^{\wedge_{\chi}}$ by $\{u,m\} = \pi(\hbar^{-1}un)$ for any $n \in eN^{\wedge_{\chi}}$ such that $\pi(n) = m$.

- This definition is well-defined: for n_1, n_2 such that $\pi(n_1) = \pi(n_2)$ then $\pi(\hbar^{-1}un_1) \pi(\hbar^{-1}un_2) = \pi(\hbar^{-1}u\phi(n')) = \pi(\phi(\hbar^{-1}un')) = 0$ for some $n' \in eN_2^{\wedge_{\chi}}$.
- This does not depend on the choice of the surjective map $N_1 \xrightarrow{\to} M$. Indeed let us consider the other surjective map $N_1' \xrightarrow{\to} M$. The fiber product $N_1 \times_M N_1' \subset N_1 \oplus N_1'$ is an object in O_q (it is equal to $\bigoplus_{\lambda} N_{1,\lambda} \times_{M_{\lambda}} N_{1,\lambda}'$). It is flat over $\mathbb{C}[[\hbar]]$. So both bilinear forms defined over N_1, N_1' can be obtained from $N_1 \times_M N_1'$, hence are identical.
- For any $f: M \to N$, then the map $f: eM^{\wedge_{\chi}} \to eN^{\wedge_{\chi}}$ satisfies $f\{u, m\} = \{u, f(m)\}$. The truncated category $O_q^{\leq \nu}$ has enough projectives, see [12, §2.3.2]. So in the category $O_q^{\leq \nu}$ with ν large enough, we can find a commutative diagram

$$\begin{array}{ccc} M' & \longrightarrow & N' \\ \downarrow & & \downarrow \\ M & \longrightarrow & N \end{array}$$

with M', N' are flat over $\mathbb{C}[[\hbar]]$. The the claim follows.

(b) Follows the proof of [5, Lemma 4.2] ⁵

Then we define the restriction functor $\bullet_{\dagger}: O_q \to \mathcal{W}_q^{\wedge_{\underline{\chi}}}$ -mod^{Λ} by $M \mapsto M_{\dagger}$. The Λ -grading comes from the Λ -grading on M.

Proposition 8.11. (a) The functor $\bullet_{\dagger}: O_q \to \mathcal{W}_q^{\wedge_{\underline{\chi}}}$ -mod^{Λ} is exact and $\mathcal{W}_q^{\wedge_{\underline{\chi}}}$ -linear. (b) For $(\Delta_{\epsilon}(\lambda))_{\dagger} \cong \mathbb{C}$ for all $\lambda \in P$.

 $^{{}^4\}mathbb{C}[[\mathfrak{u},\hbar]]$, should \mathfrak{u} be replaced by the Lagrangian complement \mathfrak{u}^* ?

⁵Since $\mathbb{C}[[\mathfrak{u},\hbar]]$ is topological free over $\mathbb{C}[[\hbar]]$, the complete tensor product $\mathbb{C}[[\mathfrak{u},\hbar]]\widehat{\otimes}_{\mathbb{C}[[\hbar]]}$ is exact and map nonzero object to nonzero object.

Proof. (a) Follows by the construction.

(b) For any $M \in O_{\epsilon} \subset O_q$, we see that $\ell^N \dim_{\mathbb{C}} M_{\dagger}$ is equal to the dimension of fiber of M at the point $\chi \in \operatorname{Spec} Z_{Fr}$. On the other hand, $\Delta_{\epsilon}(\lambda)$ is a free sheaf of rank ℓ^{N} .

9. Soergel Bimodules

The extend Weyl group $W_{aff} := W \ltimes P$ acts on $\mathsf{R} := \mathbb{C}[[\hbar, \mathfrak{h}^*]]$ and let $\Lambda := P/Q$, here P and Q are the weight and root lattice of \mathfrak{g} . It acts on $\mathfrak{h}^* \oplus \mathbb{C}\hbar$ as follows: $w.(\mu, z) = (w\mu, z)$ and $t_{\lambda}(\mu, z) = (\mu + z\lambda, z)$ for $wt_{\lambda} \in W_{aff}$ and $\mu \in \mathfrak{h}^*, z \in \mathbb{C}$.

Let us consider the category R--bimod $^{\Lambda}$ of Λ -grading R-bimodules. The (extended) affine Soergel bimodules SB_{\hbar} is the full Kroubian subcategory of R--bimod^{Λ} generated by Bott-Samelson bimodules $R \otimes_{R^s} R$ for $s \in I_a$ (in the degree 0) and the graph modules R_x for $x \in \Lambda$ (in the degree x).

Let SB be the category with the same set of objects as SB_{\hbar} but the set of morphism is replaced by

$$\operatorname{Hom}_{\mathsf{SB}}(M,N) = \operatorname{Hom}_{\mathsf{SB}_{\hbar}}(M,N)/\hbar \operatorname{Hom}_{\mathsf{SB}_{\hbar}}(M,N)$$

(Will need Abe's realization of SB later.)

• Talk about cells and the smallest two-sided cells in SB_{\hbar} and SB.

10. Some images of \bullet_{\dagger} , the first main result

Let us define the map $\iota: \mathfrak{h}^* \to \mathsf{R}$ via $\iota(\lambda) = (\lambda,) \in \mathfrak{h} \subset \mathsf{R}$. For each $\lambda \in P$, we define the $\operatorname{map}\, \varepsilon_{\lambda}: \mathcal{W}_q = Z_{q,HC} \subset \mathbb{C}[[\hbar]][K^{2\lambda}]_{\lambda \in P} \to \mathsf{R} \, \operatorname{via}\, K^{2\nu} \mapsto q^{(2\lambda,\nu)} e^{2\pi \sqrt{-1}(\iota(2\lambda))}$

Lemma 10.1. The map ϵ_{λ} extends to an isomorphism $W_q^{\wedge_{\lambda}} \to \mathsf{R}^{W_{\lambda}}$

Under identifications $\varepsilon_{\mu}: \mathcal{W}_{q}^{\wedge_{\mu}} \xrightarrow{\sim} \mathsf{R}^{W_{\mu}}$ and $\varepsilon_{\lambda}: \mathcal{W}_{q}^{\wedge_{\lambda}} \xrightarrow{\sim} \mathsf{R}^{W_{\lambda}}$, we have the functor $\bullet_{\dagger}:$ $\mathsf{HC}_{\sigma}(\mu,\lambda) \to (\mathsf{R}^{W_{\mu}},\mathsf{R}^{W_{\lambda}})\text{-bimod}^{\hat{\Lambda}}.$

Proposition 10.2. Let μ, λ be in the closure of the fundamental alcove. Assume $W_{\lambda} \subset W_{\mu}$.

- (a) We have isomorphisms in the category $(\mathsf{R}^{W_{\mu}},\mathsf{R}^{W_{\lambda}})$ -bimod^{Λ}: $P_{q,\dagger}^{\mu,\lambda} \cong \mathsf{R}^{W_{\lambda}}$, here the left $\mathsf{R}^{W_{\mu}}$ -action comes from the inclusion $\mathsf{R}^{W_{\mu}} \hookrightarrow \mathsf{R}^{W_{\lambda}}$ while the right $\mathsf{R}^{W_{\lambda}}$ -action comes from the right multiplication.
- (b) We have isomorphism in the category $(\mathsf{R}^{W_{\lambda}},\mathsf{R}^{W_{\mu}})$ -bimod^{Λ}: $P_{q,\dagger}^{\lambda,\mu} \cong \mathsf{R}^{W_{\lambda}}$, here the left $\mathsf{R}^{W_{\lambda}}$ action comes from the left multiplication while the right $R^{W_{\mu}}$ -action comes from the inclusion $\mathsf{R}^{W_{\mu}} \hookrightarrow \mathsf{R}^{W_{\lambda}}$.

Proof. (a) Step 1: Since \bullet_{\dagger} : $\mathsf{HC}_q(\mu, \lambda) \to (\mathsf{R}^{W_{\mu}}, \mathsf{R}^{W_{\lambda}})$ -bimod^{Λ} is right exact and $(\mathsf{R}^{W_{\mu}}, \mathsf{R}^{W_{\lambda}})$ linear, we have

$$(P_{q,\dagger}^{\mu,\lambda}/\mathfrak{J}_{\lambda}\cong (P_q^{\mu,\lambda}/P_q^{\mu,\lambda}\mathfrak{J}_{\lambda})_{\dagger},$$

here \mathfrak{J}_{λ} is the maximal ideal of $\mathcal{W}_{q}^{\wedge_{\lambda}} \xrightarrow{\sim} \mathsf{R}^{W_{\lambda}}$.

• Show that $(P_q^{\mu,\lambda}/P_q^{\mu,\lambda}\mathfrak{J}_{\lambda})_{\dagger} \otimes_{\mathbb{C}}^{\mathfrak{T}} \Delta_{\epsilon}(\lambda)_{\dagger} \cong \Delta_{\epsilon}(\mu)_{\dagger}$. Hence $(P_q^{\mu,\lambda}/P_q^{\mu,\lambda}\mathfrak{J}_{\lambda})_{\dagger} \cong \mathbb{C}$.

Since $P_{q,\dagger}^{\mu,\lambda}$ is torsion free over $\mathsf{R}^{W_{\lambda}}$ and finitely generated as a right $\mathsf{R}^{W_{\lambda}}$ -module, we have $P_{q,\dagger}^{\mu,\lambda} \cong \mathsf{R}^{W_{\lambda}}$ as right $\mathsf{R}^{W_{\lambda}}$ -modules.

Step 2: Since

$$\operatorname{Hom}_{\mathsf{HC}_q(\mu,\lambda)}(P_q^{\mu,\lambda},P_q^{\mu,\lambda}) \cong \operatorname{Hom}_{(\mathsf{R}^{W_{\mu}},\mathsf{R}^{W_{\lambda}})-\operatorname{bimod}^{\Lambda}}(P_{a,\dagger}^{\mu,\lambda},P_{a,\dagger}^{\mu,\lambda}),$$

The right multiplication of $\mathcal{W}_q^{\wedge_{\lambda}} \cong \mathsf{R}^{W_{\lambda}}$ must induce an isomorphism

$$\mathsf{R}^{W_{\lambda}} \xrightarrow{\sim} \mathrm{Hom}_{\mathsf{HC}_q(\mu,\lambda)}(P_q^{\mu,\lambda},P_q^{\mu,\lambda}).$$

Step 3: From isomorphism $P_q^{\mu,\lambda} \otimes_{U_q^{fin,\lambda}} \Delta_{\mathsf{R}}(\lambda) \cong \Delta_{\mathsf{R}}(\mu)$, we have a $(\mathcal{W}_q^{\wedge_{\mu}}, \mathcal{W}_q^{\wedge_{\lambda}})$ -linear morphism:

(10.1)
$$\operatorname{Hom}_{\mathsf{HC}_q(\mu,\lambda)}(P_q^{\mu,\lambda},P_q^{\mu,\lambda}) \to \operatorname{Hom}_{O_{q,R}}(\Delta_{\mathsf{R}}(\mu),\Delta_{\mathsf{R}}(\mu)).$$

The right multiplication of $W_q^{\wedge_{\lambda}} \xrightarrow{\sim} \mathsf{R}^{W_{\lambda}}$ on $P^{\mu,\lambda}$ maps to the right multiplication $\mathsf{R}^{W_{\lambda}}$ in $\Delta_{\mathsf{R}}(\mu)$. Combining with Step 2, we see that (10.1) is injective.

Therefore, the left multiplication of $\mathcal{W}^{\wedge_{\mu}}$ on $P_q^{\mu,\lambda}$ is maps to the left multiplication of $\mathcal{W}_q^{\wedge_{\mu}}$ on $\Delta_{\mathsf{R}}(\mu)$. Note that $\varepsilon_{\mu}: \mathcal{W}_q^{\wedge_{\mu}} \to \mathsf{R}^{W_{\mu}}$ identifies the left $\mathcal{W}_q^{\wedge_{\mu}}$ -action on $\Delta_{\mathsf{R}}(\mu)$ with the right $\mathsf{R}^{W_{\mu}}$ -action on $\Delta_{\mathsf{R}}(\mu)$. This impliest the left and right $\mathsf{R}^{W_{\mu}}$ -actions on $P_q^{\mu,\lambda}$ coincides, hence we obtain the isomorphism $P_{q,\dagger}^{\mu,\lambda} \cong \mathsf{R}^{W_{\lambda}}$ in $(\mathsf{R}^{W_{\mu}},\mathsf{R}^{W_{\lambda}})$ -bimod $^{\Lambda}$.

(b) The same proof as in part
$$(a)$$
 but involving the right versions $O_{\epsilon}^r, O_q^r, O_{q,R}^r$.

Theorem 10.3. There is a full embedding of additive categories $SB_{\hbar} \to Hilt_q(0,0)$.

Proof. For each $s \in I_a$, let λ_s be contained in the facet of the closure of the fundamental alcove associated to s. For each $x \in \Lambda$ which is in the decomposition $W_{ext} = \lambda \ltimes W_{aff}$, then $x \bullet_{\ell} 0$ is contained in the fundamental alcove. The following bimodules are contained in $\mathrm{Hilt}_q(0,0)$:

$$P_q^{x,0}:=P_q^{x\bullet_\ell 0,0}, \quad P_q^{0,x}:=P_q^{0,x\bullet_\ell 0}, \quad P_q^{0,\lambda_s}\otimes_{U_q^{fin,\lambda_s}}P_q^{\lambda_s,0}.$$

By Proposition 10.2, the images of these bimodules under $\bullet_{\dagger}: \mathsf{HC}_q(0,0) \to \mathsf{R}\text{-bimod}^{\Lambda}$ are

$$R_r$$
, R_{r-1} , $R \otimes_{R^s} R$,

in the degree $x, x^{-1}, 0$, respectively.

Combining with Proposition 8.1, we obtain the full embedding $SB_{\hbar} \to Hilt_{a}(0,0)$.

Corollary 10.4. There is a full embedding of additive categories $SB \to Hilt_{\epsilon}(0,0)$.

Proof. • There is one-to-one correspondence between hilting bimodules in $\mathrm{Hilt}_q(0,0)$ and hilting bimodules in $\mathrm{Hilt}_e(0,0)$ via $M_q\mapsto M_e:=M_q/\hbar M_q$.

• We will show that for any hilting bimodules $M_q, N_q \in \text{Hilt}_q(0,0)$ then

$$\operatorname{Hom}_{\mathsf{HC}_{\mathfrak{c}}(0,0)}(M_{\mathfrak{c}},N_{\mathfrak{c}}) \cong \operatorname{Hom}_{\mathsf{HC}_{\mathfrak{c}}(0,0)}(M_{\mathfrak{c}},N_{\mathfrak{c}})/\hbar \operatorname{Hom}_{\mathsf{HC}_{\mathfrak{c}}(0,0)}(M_{\mathfrak{c}},N_{\mathfrak{c}}).$$

It is enough to prove that for any V_q, W_q tilting modules in $\text{Rep}(\check{U}_q(\mathfrak{g}))$, then

$$\operatorname{Hom}_{U^{fin,\underline{\chi}}_{-\operatorname{rmod}^{G_{\epsilon}}}}(V_{\epsilon}\otimes_{\mathbb{C}}U^{fin,\underline{\chi}}_{\epsilon},W_{\epsilon}\otimes_{\mathbb{C}}U^{fin,\underline{\chi}}_{\epsilon})\cong$$

$$\operatorname{Hom}_{U_q^{fin,\underline{\chi}}\operatorname{-rmod}^{G_q}}(V_q\otimes_{\mathbb{C}[[\hbar]]}U_q^{fin,\underline{\chi}},W_q\otimes_{\mathbb{C}[[\hbar]]}U_q^{fin,\underline{\chi}})/\hbar$$
 the object

which is amount to prove the following for tilting module V_q

$$\operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_{\epsilon},U_{\epsilon}^{fin,\underline{\chi}}) \cong \operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q,U_q^{fin,\underline{\chi}})/\hbar\operatorname{Hom}_{\check{U}_q(\mathfrak{g})}(V_q,U_q^{fin,\underline{\chi}})$$

Let consider the following diagram

The first row is exact, i.e., the surjective map holds since U_q^{fin} has an exhausted good filtration and V_q is tilting. Therefore the second row is also exact, i.e., the surjective map holds.

Definition 10.5. Let \mathcal{H}_q denote the image of SB_h in $Hilt_q(0,0)$. Let \mathcal{H}_ϵ be the image of SBin $Hilt_{\epsilon}(0,0)$.

11. SIMPLE OBJECTS IN HC_P

Let HC_P denote the category $U^{fin,\underline{1}}_{\epsilon}$ -rmod G_{ϵ} , here $\underline{1} \in \operatorname{Spec} Z_{\cap}$. We are going to classify the simple objects in HC_P . To simplify the notation, we replace the tensor product $-\otimes_{U^{fin,?}}$ by $-\star$ -. We denote $\operatorname{Rep}(\check{U}_e^*(\mathfrak{g}))$ and $\operatorname{Rep}(\check{U}_{\epsilon}(\mathfrak{g}))$ by $\operatorname{Rep}(G_{\epsilon}^*)$ and $\operatorname{Rep}(G_{\epsilon})$, respectively

Lemma 11.1.
$$P_{\epsilon}^{\mu,\lambda} \star V_{\epsilon} = \operatorname{pr}_{[\mu]} \Big(W_q(\mu - \lambda) \big) \otimes_{\mathbb{C}} V_{\epsilon} \Big)$$
 as functors from $O_{\epsilon}^{[\lambda]} \to O_{\epsilon}^{[\mu]}$.

Proof. May need assumption on ℓ here.

Recall the Frobenious functor $\operatorname{Fr}^* : \operatorname{Rep}(G_{\epsilon}^*) \to \operatorname{Rep}(G_{\epsilon})$. Under the assumption on ℓ , $\operatorname{Rep}(U_{\epsilon}^*(\mathfrak{g}))$ is just $\operatorname{Rep}(G)$.

Lemma 11.2. For any diagonal bimodule $D \in \mathsf{HC}_{\epsilon}(\mu, \lambda)$ and $M \in \mathrm{Rep}_{[\lambda]}(\check{U}_{\epsilon}(\mathfrak{g})), V \in \mathrm{Rep}(G)$, we have

$$D \star (\operatorname{Fr}^*(V) \otimes M) \cong \operatorname{Fr}^*(V) \otimes (D \star M)$$

Proof. It is enough to prove for $P^{\mu,\lambda}(N)$ for some $N \in \text{Rep}(G_{\epsilon})$.

11.1. Left (right)-trivial Harish-Chandra bimodules. The action of $-w_0$ on P induce an action of w_0 on $P/(W_{ext}, \bullet_\ell)$ since if $\lambda = wt_\mu \bullet_\ell \lambda'$ then $-w_0\lambda = w_0ww_0t_{-w_0\mu} \bullet_\ell (-w_0\lambda')$. For any $\lambda \in P$ let $\lambda^* = -w_0 \lambda$

Let $\iota: U_{\epsilon}^{ev} \to \check{U}_{\epsilon}$ be the natural map from the even part to the Lusztig form. Let $\varepsilon: U_{\epsilon}^{ev} \to \mathbb{C}$ be the counit of U_{ϵ}^{ev} .

Definition 11.3 (Definition/Lemma). Let $V \in \text{Rep}_{[\lambda]}(G_{\epsilon})$

• V can be viewed as an object in $HC_{\epsilon}(\lambda,0)$ as follows:

$$uv = \iota(u)v, \qquad vu - \varepsilon(u)v,$$

here $u \in U_{\epsilon}^{fin} \subset U_{\epsilon}^{ev}$ and $v \in V$. We call this bimodules structure on V the right-trivial Harish-Chandra bimodule and denote it by V^r .

• V can be viewed as an object in $HC_{\epsilon}(0,\lambda)$ as follows:

$$uv = \varepsilon(u)v, \qquad vu = \iota(S^{-1}(u))v,$$

here $u \in U_{\varepsilon}^{fin}$ and $v \in V$. We call this bimodule structure on V is the left-trivial Harish-Chandra bimodule and denote it by V^l .

Lemma 11.4. (a) The following functors are fully faithful:

$$\bullet^r \; ; \; \operatorname{Rep}_{[\lambda]}(G_{\epsilon}) \to \operatorname{HC}_{\epsilon}(\lambda, 0) \qquad V \mapsto V^r$$

$$\bullet^l \; : \; \operatorname{Rep}_{[\lambda]}(G_{\epsilon}) \to \operatorname{HC}_{\epsilon}(0, \lambda^*) \qquad V \mapsto V^l$$

- (b) For $V_1^r \in \mathsf{HC}_\epsilon(\lambda,0)$ and $V_2^l \in \mathsf{HC}_\epsilon(0,\mu)$ then $V_1^r \star V_2^l \in \mathsf{HC}_\epsilon(\lambda,\mu)$. (c) For any $V \in \mathrm{Rep}(G)$ then $\mathrm{Fr}^*(V)^r \cong \mathrm{Fr}^*(V)^l$.

The next lemma consider concerns the action of translation bimodules on left (right)-trivial bimodules.

Lemma 11.5. (a) For any $V \in \text{Rep}(G_{\epsilon})$ and $V_1, V_2 \in \text{Rep}_{[\lambda]}(G_{\epsilon})$ we have

$$P^{\mu,\lambda}_\epsilon(V) \star V^r_i \cong (\mathrm{pr}_{[\mu]}(V \otimes V_1))^r, \qquad V^l_2 \star P^{\lambda^*,\mu}_\epsilon \cong \mathrm{pr}_{[\lambda^*]}(V \otimes V_2))^l.$$

(b) For any $V \in \text{Rep}_{[\lambda]}(G_{\epsilon})$, we have

$$P^{\mu,\lambda}_\epsilon \star V^r \cong (P^{\mu,\lambda}_\epsilon \star V)^r, \qquad V^l \star P^{\lambda^*,\mu^*}_\epsilon \cong (P^{\mu,\lambda}_\epsilon \star V)^l.$$

Proof.

11.2. Heck action on $Rep(G_{\epsilon})$.

Let H_e be the extended affine Hecke algebra. Let M^{asph} be the antispherical module of H_e . Let $\mathrm{Tilt}_{[0]}(G_{\epsilon})$ be the subcategory of tilting modules in $\mathrm{Rep}_{[0]}(G_{\epsilon})$. Recall the Steinberg module $\mathbf{St}_{\epsilon} = W_{\epsilon}((\ell-1)\rho)$.

Remark 11.6. (a) Any simple modules $L_{\epsilon}(\lambda)$ with $\lambda \in (P/\ell P)_{+}$ is tilting.

(b) The block $\operatorname{Rep}_{[-\rho]}(G_{\epsilon})$ is semisimple with simple objects $\operatorname{\mathbf{St}}_{\epsilon} \otimes \widetilde{\operatorname{Fr}}^*(V)$ for any irreducible module $V \in \operatorname{Rep}(G)$.

Lemma 11.7. We have $K_0(\mathrm{Tilt}_{[0]}(G_{\epsilon})) \cong M^{asph}$ as H_e -modules.

Proof. Known folklore but can not find the reference.

Corollary 11.8. (a) For any simple object $L_{\epsilon}(\lambda) \in \operatorname{Rep}_{[0]}(G_{\epsilon})$, there $P \in \mathcal{H}_{\epsilon}$ such that $P_{\epsilon}^{-\rho,0} \star P \star L_{\epsilon}(\lambda) \neq 0$.

- (b) For any simple object $L_{\epsilon}(\lambda) \in \operatorname{Rep}_{[0]}(G_{\epsilon})$, there $P \in \mathcal{H}_{\epsilon}$ such that $L_{\epsilon}(\lambda)$ is an composition factor of $P \star \mathbb{C}$, here \mathbb{C} is the trivial module.
- (c) For any $V \in \text{Rep}(G)$, there $P \in \mathcal{H}_{\epsilon}$ such that \mathbb{C} is a composition factor of $P \star \tilde{\text{Fr}}^*(V)$.

Proof. (a) First, we assume $\lambda \in W_{ext} \bullet_{\ell} 0 \cap (P/\ell P)_+$ then $L_{\epsilon}(\lambda)$ is tilting. By [16, §1.3], the lowest canonical right cell in M^{asph} contain elements of the form $\Omega_0 := \{\rho xw | x \in P_+, w \in W, R(w) \subset L(x)\}^{-7}$, here $R(x) = \{s \in W | xs \leq x\}$ and $L(x) := \{s \in W | sx \leq x\}$. Therefore we can find $P \in \mathcal{H}_{\epsilon}$ such that $P \star L_{\epsilon}(\lambda)$ contain tilting direct summand $T_{\epsilon}(\lambda')$ with $\lambda' = \rho xw \bullet_{\ell} 0$ for some $\rho xw \in \Omega_0$. Then $P_{\epsilon}^{-\rho,0} \star P \star L_{\epsilon}(\lambda)$ contains a composition factor $T_{\epsilon}(\rho xw \bullet_{\ell} (-\rho)) = T_{\epsilon}((\ell-1)\rho + \ell x) \neq 0$, hence $P_{\epsilon}^{-\rho,0} \star P \star L_{\epsilon}(\lambda) \neq 0$.

For general λ , let $\lambda = \lambda_0 + \ell \lambda_1$ with $\lambda_0 \in (P/\ell P)_+ \cap W_{ext} \bullet_{\ell} 0$, then $L_{\epsilon}(\lambda) \cong L_{\epsilon}(\lambda_0) \otimes \tilde{\operatorname{Fr}}^*(L(\lambda_1))$. Then choose P such that $P \star L_{\epsilon}(\lambda_0) \neq 0$ will work. (b) Since $[\mathbb{C}]$ generates H_{e} -module M^{asph} , there is $p \in \mathcal{H}_{\epsilon}$ such that $P \star \mathbb{C}$ contains a tilting summand $T_{\epsilon}(\lambda)$. This implies part (b).

(c) We can assume V is simple, then by part (b), there is $P \in \mathcal{H}_{\epsilon}$ such that $\tilde{\mathrm{Fr}}^*(V^*)$ is a composition factor of $P \star \mathbb{C}$. Then we see that $\tilde{\mathrm{Fr}}^*(V^*) \otimes \tilde{\mathrm{Fr}}^*(V)$ is a composition factor of $P \star \tilde{\mathrm{Fr}}^*(V)$. This implies that \mathbb{C} is a composition factor of $P \star \tilde{\mathrm{Fr}}^*(V)$.

11.3. Simple Harish-Chandra bimodules.

Recall the small quantum group $\dot{\mathfrak{u}}$ (notation conflict: use \mathfrak{u} for small quantum group above) as the Hopf subalgebra of $\check{U}_{\epsilon}(\mathfrak{g})$ generated by $\{\check{E}_i, \check{F}_i, K^{2\lambda}\}_{1 \leq i \leq r}^{\lambda \in P}$. Let \mathfrak{u} be the quotient algebra of $\check{U}_{\epsilon}^{ev}$ at the point $1 \in G_0^d \cong \operatorname{Spec} Z_{Fr}$, which is the same as the quotient of U_{ϵ}^{fin} at the point $1 \in G_0^d \cong \operatorname{Spec} Z_{Fr}$. Then we see that \mathfrak{u} is the quotient algebra of $\dot{\mathfrak{u}}$ by the two-sided ideal generated by $I := \{K^{2\ell\lambda} - 1\}_{\lambda \in P}$. Since I is also a Hopf ideal in $\dot{\mathfrak{u}}$, we see that \mathfrak{u} is also a Hopf algebra.

⁶Need to be a bit more careful with the extended affine Hecke algebra

⁷Need to double check it. Think about the equivariant sheaves on the Springer resolution of nilpotent cone.

Following [8, Proposition 5.11], and the assumption on ℓ , the irreducible u-modules are paramatrized by $P/\ell P$. Let

$$(P/\ell P)_+ := \{\lambda \in P \mid 0 \le (\lambda, \alpha_i^{\lor}) \le \ell - 1 \ \forall \ 1 \le i \le r\}$$

the bu restriction to u-action, irreducible $\check{U}_{\epsilon}(\mathfrak{g})$ -modules $L_{\epsilon}(\lambda), \lambda \in (P/\ell P)_{+}$ gives all irreducible u-modules.

Lemma 11.9. The Harish-Chandra center gives a decomposition of categories

$$\operatorname{Rep}(\mathfrak{u}) = \bigoplus_{[\lambda] \in P/(W_{ext}, \bullet_{\ell})} \operatorname{Rep}_{[\lambda]}(\mathfrak{u}).$$

Furthermore, all simple modules in $\operatorname{Rep}_{[\lambda]}(\mathfrak{u})$ can be obtained from simple modules $L_{\epsilon}(\lambda), \lambda \in$ $(P/\ell P)_+$, in $\operatorname{Rep}_{[\lambda]}(G_{\epsilon})$.

Definition 11.10. Let $\mathfrak{u} \otimes \mathfrak{u}^{op}$ -mod $^{G_{\epsilon}}$ be the category of \check{U}_{ϵ} -equivariant $\mathfrak{u} \otimes \mathfrak{u}^{op}$ -modules with the rational $U_{\epsilon}(\mathfrak{g})$ -action.

Note that we have the algebra morphism $\dot{\mathfrak{u}} \to \mathfrak{u}$ so any $\mathfrak{u} \otimes \mathfrak{u}^{op}$ -modules carries an adjoint action of $\dot{\mathfrak{u}}$.

Definition 11.11. Let $HC(\mathfrak{u})$ be the full subcategories of $\mathfrak{u} \otimes \mathfrak{u}^{op}$ -mod^{G_{ϵ}} consisting of all objects on which the adjoint action of $\dot{\mathfrak{u}}$ coincides with the adjoint action of $\dot{\mathfrak{u}}$ in \check{U}_{ϵ} .

Remark 11.12. Simple Harish-Chandra bimodules in HC_P are one-to-one correspondent to simple objects in $HC(\mathfrak{u})$. Let λ_1, λ_2 be two weights in $(P/\ell P)_+$. Let $V \in \operatorname{Rep}(G)$. Then the following objects belongs to $HC(\mathfrak{u})$:

$$L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l \otimes \operatorname{Fr}^*(V)$$

with \check{U}_{ϵ} -equivariant $\mathfrak{u} \otimes \mathfrak{u}^{op}$ -modules as follows:

- \check{U}_e acts via the action on tensor products.
- for $x_1, x_2 \in \mathfrak{u}$ and $v_1 \in L_{\epsilon}(\lambda_1)^l$, $v_2 \in L_{\epsilon}(\lambda_2)^l$, $v \in \operatorname{Fr} *(V)$ then

$$x_1(v_1 \otimes v_2 \otimes v)x_2 = (x_1v_1) \otimes (v_2x_2) \otimes v.$$

Lemma 11.13. The set $\{L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l \mid (\lambda_1, \lambda_2) \in (P/\ell P)_+^{\oplus 2}\}$ classifies all simple $\mathfrak{u} \otimes \mathfrak{u}^{op}$ modules up to isomorphism.

Lemma 11.14. The set

$$S := \left\{ L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_1)^l \otimes \tilde{\mathrm{Fr}}^*(V) \mid \lambda_1, \lambda_2 \in (P/\ell P)_+, V \in \mathrm{Irr}(G) \right\}$$

contains pair-wise non-isomorphism simple objects in HC(u). Any simple object in HC(u) is isomorphic to one objects in S.

Proof. Step 1: The object $L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l \otimes \tilde{\operatorname{Fr}}^*(V)$ is simple. Let M be its non-zero subobject and consider the injective map

$$M \hookrightarrow L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l \otimes \tilde{\operatorname{Fr}}^*(V)$$

This gives us an injective map of vector spaces:

(11.1)

$$\operatorname{Hom}_{\mathfrak{u}\otimes\mathfrak{u}^{\operatorname{op}}}(L_{\epsilon}(\lambda_{1})^{r}\otimes L_{\epsilon}(\lambda_{2})^{l},M)\hookrightarrow \operatorname{Hom}_{\mathfrak{u}\otimes\mathfrak{u}^{\operatorname{op}}}(L_{\epsilon}(\lambda_{1})^{r}\otimes L_{\epsilon}(\lambda_{2})^{l},L_{\epsilon}(\lambda_{1})^{r}\otimes L_{\epsilon}(\lambda_{2})^{l}\otimes \tilde{\operatorname{Fr}}^{*}(V))$$

Both components of (11.1) are naturally \check{U}_{ϵ} -modules so that (11.1) is a morphism of \check{U}_{ϵ} modules. Furthermore, the actions of U_{ϵ} on both components factor through the Frobenious morphism $\operatorname{Fr}: \check{U}_{\epsilon} \to \check{U}_{\mathbb{C}}(\mathfrak{g}).$

Since $L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l$ is a simple $\mathfrak{u} \otimes \mathfrak{u}^{\text{op}}$ -module, we have

(11.2) $M \cong L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l \otimes \operatorname{Hom}_{\mathfrak{u} \otimes \mathfrak{u}^{\operatorname{op}}}(L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l, M) \text{ as } \mathfrak{u} \otimes \mathfrak{u}^{\operatorname{op}}\text{-modules}$ and

$$\operatorname{Hom}_{\mathfrak{U} \otimes \mathfrak{U}^{\operatorname{op}}}(L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l, M) \neq 0$$

$$\operatorname{Hom}_{\mathfrak{u}\otimes\mathfrak{u}^{\operatorname{op}}}(L_{\epsilon}(\lambda_1)^r\otimes L_{\epsilon}(\lambda_2)^l, L_{\epsilon}(\lambda_1)^r\otimes L_{\epsilon}(\lambda_2)^l\otimes \widetilde{\operatorname{Fr}}^*(V))\cong \widetilde{\operatorname{Fr}}^*(V)$$
 as \check{U}_{ϵ} -modules

Moreover, V is an irreducible representation of G. Therefore, (11.1) is bijective. Combining with (11.2), we see that $M = L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l \otimes \tilde{\mathrm{Fr}}^*(V)$. So $L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l \otimes \tilde{\mathrm{Fr}}^*(V)$ is a simple object in $\mathsf{HC}(\mathfrak{u})$.

Step 2: The objects in S are pair-wise non-isomorphic. Let $(\lambda_1, \lambda_2) \neq (\lambda_1', \lambda_2') \in (P/\ell P)_+^{\oplus 2}$ and $V, V' \in Irr(G)$. We have

$$\operatorname{Hom}_{\mathsf{HC}(\mathfrak{u})}(L_{\epsilon}(\lambda_{1})^{r} \otimes L_{\epsilon}(\lambda_{2})^{l} \otimes \tilde{\operatorname{Fr}}^{*}(V), L(\lambda_{1}^{'})^{r} \otimes L(\lambda_{2}^{'})^{l} \otimes \tilde{\operatorname{Fr}}^{*}(V^{'}))$$

$$= \operatorname{Hom}_{\mathfrak{u} \otimes \mathfrak{u}^{\operatorname{op}}}(L_{\epsilon}(\lambda_{1})^{r} \otimes L_{\epsilon}(\lambda_{2})^{l} \otimes \tilde{\operatorname{Fr}}^{*}(V), L(\lambda_{1}^{'})^{r} \otimes L(\lambda_{2}^{'})^{l} \otimes \tilde{\operatorname{Fr}}^{*}(V^{'}))^{\check{U}_{\epsilon}}$$

$$= \begin{cases} 0 & \text{If } (\lambda_{1}, \lambda_{2}) \neq (\lambda_{1}^{'}, \lambda_{2}^{'}) \\ \operatorname{Hom}_{\mathbb{C}}(\tilde{\operatorname{Fr}}^{*}(V), \tilde{\operatorname{Fr}}^{*}(V^{'}))^{\check{U}_{\epsilon}} & \text{If } (\lambda_{1}, \lambda_{2}) = (\lambda_{1}^{'}, \lambda_{2}^{'}) \end{cases}$$

So $L_{\epsilon}(\lambda_2)^l \otimes \tilde{\operatorname{Fr}}^*(V) \cong L(\lambda_1')^r \otimes L(\lambda_2') \otimes \tilde{\operatorname{Fr}}^*(V')$ iff $(\lambda_1, \lambda_2) = (\lambda_1', \lambda_2')$ and $V \cong V'$ as G-representations.

Step 3: Any simple object in $HC(\mathfrak{u})$ is isomorphic to one object in S. Let M be a simple object in $HC(\mathfrak{u})$. Any simple $\mathfrak{u} \otimes \mathfrak{u}^{\mathrm{op}}$ -modules is isomorphic to simple object of the form

$$L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l$$
,

for $(\lambda_1, \lambda_2) \in (P/\ell P)_+^{\oplus 2}$. Therefore, we can find $(\lambda_1, \lambda_2) \in (P/\ell P)_+^{\oplus 2}$ such that

$$\operatorname{Hom}_{\mathfrak{u}\otimes\mathfrak{u}^{\operatorname{op}}}(L_{\epsilon}(\lambda_1)^r\otimes L_{\epsilon}(\lambda_2)^l,M)\neq 0.$$

Note that $\operatorname{Hom}_{\mathfrak{u}\otimes\mathfrak{u}^{\operatorname{op}}}(L_{\epsilon}(\lambda_1)^r\otimes L_{\epsilon}(\lambda_2)^l, M)$ is naturally \check{U}_{ϵ} -modules, furthermore, the \check{U}_{ϵ} -action factors through an action of $\check{U}(\mathfrak{g})$. Let consider the following object in $\mathsf{HC}(\mathfrak{u})$

$$A = L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l \otimes \operatorname{Hom}_{\mathfrak{u} \otimes \mathfrak{u}^{\operatorname{op}}}(L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l, M).$$

We have

$$\begin{aligned} &\operatorname{Hom}_{\mathsf{HC}(\mathfrak{u})}(A,M) \\ &= \operatorname{Hom}_{\mathfrak{u} \otimes \mathfrak{u}^{\operatorname{op}}}(A,M)^{\check{U}_{\epsilon}} \\ &= \Big(\operatorname{Hom}_{\mathfrak{u} \otimes \mathfrak{u}^{\operatorname{op}}}(L_{\epsilon}(\lambda_{1})^{r} \otimes L_{\epsilon}(\lambda_{2})^{l}, M) \otimes \operatorname{Hom}_{\mathfrak{u} \otimes \mathfrak{u}^{\operatorname{op}}}(L_{\epsilon}(\lambda_{1})^{r} \otimes L_{\epsilon}(\lambda_{2})^{l}, M)^{*} \Big)^{\check{U}_{\epsilon}} \\ &\neq 0 \end{aligned}$$

Therefore, there is a nonzero morphism $A \to M$, which must be surjective since M is simple. On the other hand, as in Step 1, we see that any quotient objects of A is of the form

$$L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_1)^l \otimes \tilde{\operatorname{Fr}}^*(V)$$

For some G-representation V. Therefore, M is isomorphic to an object in S.

Definition 11.15. Let M_1, M_2 be two simple objects in $\mathsf{HC}_{\epsilon}(0,0)$. We say $M_1 \prec M_2$ if there are bimodules in \mathcal{H}_{ϵ} such that M_1 is the composition factor of the object $P_1 \star M_2 \star P_2$. We say that $M_1 \sim M_2$ if $M_1 \prec M_2$ and $M_2 \prec M_1$.

Lemma 11.16. All simple objects in $HC_{\epsilon}(0,0)$ are equivalent to each other.

Proof. We will prove that any simple object M are equivalent to the trivial bimodules \mathbb{C} .

Step 1: We will show that $M \prec \mathbb{C}$. By Lemma 11.14, $M = L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l$ for some $\lambda_1, \lambda_2 \in W_{ext} \bullet_{\ell} 0$. Note that $\mathbb{C} \cong \mathbb{C}^r \otimes \mathbb{C}^l$. There $P_1, P_2 \in \mathcal{H}_{\epsilon}$ such that $L_{\epsilon}(\lambda_1)^r$ is a composition factor of $P_1 \star \mathbb{C}^r$ and $L_{\epsilon}(\lambda_2)^l$ is a composition factor of $\mathbb{C}^l \star P_2$. Therefore, M is a composition factor of $P_1 \star \mathbb{C}^r \star P_2$, equivalently, $M \prec \mathbb{C}$.

Step 2: We will show that $\mathbb{C} \prec M$. By Lemma 11.14, $M = L_{\epsilon}(\lambda_1)^r \otimes L_{\epsilon}(\lambda_2)^l \otimes \tilde{\mathrm{Fr}}^*(V)$ for $\lambda_1, \lambda_2 \in (P/\ell P)_+ \cap W_{ext} \bullet_{\ell} 0$ and $V \in \mathrm{Irr}(G)$. By Corollary 11.8, there are $P_1, P_2 \in \mathcal{H}_{\epsilon}$ such that

$$P_{\epsilon}^{-\rho,0} \star P_1 \star L_{\epsilon}(\lambda_1)^r, \qquad L_{\epsilon}(\lambda_2)^l \star P - 2 \star P_{\epsilon}^{0,-\rho} \neq 0.$$

Hence,

(11.3)
$$P_{\epsilon}^{\rho,0} \star P_1 \star M \star P_2 \star P_{\epsilon}^{0,-\rho} \neq 0.$$

Step 2': We will show that for any simple object N in $\mathsf{HC}_{\epsilon}(-\rho,\rho)$, there are $P_3,P_4 \in \mathcal{H}_{\epsilon}$ such that \mathbb{C} is the composition factor of $P_3 \star P_{\epsilon}^{0,\rho} \star N \star P_{\epsilon}^{-\rho,0} \star P_4$. By Corollary 11.8, we can assume $N := \mathbf{St}_{\epsilon}^r \otimes \mathbf{St}_{\epsilon}^l \otimes \tilde{\mathrm{Fr}}^*(V)$ for some $V \in \mathrm{Irr}(G)$. Then

$$P_{\epsilon}^{0,\rho} \star N \star P_{\epsilon}^{-\rho,0} \cong (T_{\rho \to 0} \mathbf{St}_{\epsilon})^r \otimes (T_{-\rho \to 0} \mathbf{St}_{\epsilon})^l \otimes \tilde{\mathrm{Fr}}^*(V)$$

Since $T_{-\rho\to 0}\mathbf{St}_{\epsilon}$ has a composition factor $L_{\epsilon}(\ell\rho)$, it follows that $L_{\epsilon}(\ell\rho)^r\otimes L_{\epsilon}(\ell\rho)^l\otimes \tilde{\mathrm{Fr}}^*(V)$ is a composition factor of $P_{\epsilon}^{0,-\rho}\star N\star P_{\epsilon}^{-\rho,0}$.

On the other hand,

$$L_{\epsilon}(\ell\rho)^r \otimes L_{\epsilon}(\ell\rho)^l \otimes \tilde{\operatorname{Fr}}^*(V) \cong \left(\tilde{\operatorname{Fr}}^*(L(\rho) \otimes L(\rho) \otimes V)\right)^r$$

By Corollary 11.8, there is $P_2 \in \mathcal{H}_{\epsilon}$ such that \mathbb{C} is a composition factor of $P_3 \star \tilde{\operatorname{Fr}}^*(L(\rho) \otimes L(\rho) \otimes V)$. Hence \mathbb{C} is a composition factor of $P_2 \star P_{\epsilon}^{0,-\rho} \star N \star P_{\epsilon}^{-\rho,0}$.

Now we can finish Step 2. Pick a composition factor N in (11.3) and P_3 as in Step 2', we see that \mathbb{C} is a composition factor of

$$P_3 \star P_{\epsilon}^{0,-\rho} \star P_{\epsilon}^{-\rho,0} \star P_1 \star M \star P_2 \star P_{\epsilon}^{0,-\rho} \star P_{\epsilon}^{-\rho,0}$$
.

This implies that $\mathbb{C} \prec M$.

11.4. The second main result.

Theorem 11.17. Under the full embedding

$$SB_{\hbar} \to Hilt_{a}(0,0), \qquad SB \to Hilt_{\epsilon}(0,0),$$

the smallest two-sided cell of SB_{\hbar} and SB maps to the full subcategories of projective objects in $HC_q(0,0)$ and $HC_{\epsilon}(0,0)$, respectively.

Proof. Step 1: Discuss about the Krull-Schmidt properties of $\mathsf{HC}_q(0,0)$ and $\mathsf{HC}_\epsilon(0,0)$. The goal: so that we can talk about projective cover of simple objects in $\mathsf{HC}_q(0,0)$ and $\mathsf{HC}_\epsilon(0,0)$. Note that the simple objects in $\mathsf{HC}_q(0,0)$ are simple objects in $\mathsf{HC}_\epsilon(0,0)$.

Step 2: Show that for any projective object Q_1, Q_2 in $\mathsf{HC}_q(0,0)$, there is $P_1, P_2 \in \mathcal{H}_q$ such that Q_2 is a direct summand of $P_1 \star Q_1 \star P_2$ by using Lemma 11.16. Same for projective objects in $\mathsf{HC}_{\epsilon}(0,0)$.

Step 3: Show that there is a projective object Q in $\mathsf{HC}_q(0,0)$ such that $Q_\dagger \in \mathsf{SB}_\hbar$. This is done by showing that $U_q^{fin,-\rho}$ is projective in $\mathsf{HC}_q(-\rho,-\rho)$ therefore $P_q^{0,-\rho} \star P_q^{-\rho,0}$ is projective in $\mathsf{HC}_q(0,0)$. On the other hand, $(P_q^{0,-\rho} \star P_q^{-\rho,0})_\dagger \cong \mathsf{R} \otimes_{\mathsf{R}^W} \mathsf{R}$ is contained in the smallest two-sided cell of SB_\hbar .

We show that $U_q^{fin,-\rho}$ is projective as follows. Let $R:=\mathbb{C}[[\hbar]]$.

• Recall the isomorphism $U_q^{fin} \cong O_q[G]$. For any $V \in \operatorname{Rep}^{fd}(\check{U}_q(\mathfrak{g}))$, we have a morphism $V \otimes_R V^* \to O_q[G]$ in $\operatorname{Rep}(\check{U}_q(\mathfrak{g}))$, here $V^* := \operatorname{Hom}_R(V,R)$, defined by $v \otimes f \mapsto c_{f,K^{-2\rho}v}$. For V free of finite rank over R with a basis $\{v_i\}$ and dual basis $\{v_i^*\}$, then the element $c_V := \sum_i c_{v_i^*,K^{-2\rho}v_i} \in O_q[G]^{\check{U}_q} \xrightarrow{\sim} \mathcal{W}_q \subset U_q^{fin}$.

 $c_V := \sum_i c_{v_i^*, K^{-2\rho_{v_i}}} \in O_q[G]^{\check{U}_q} \xrightarrow{\sim} \mathcal{W}_q \subset U_q^{fin}.$ Let $V = W_q(\lambda)$, then the representation of $c_{\lambda} := c_{W_q(\lambda)}$ under the Harish-Chandra morphism $\mathcal{W}_q \cong R\left[K^{\pm 2w_1}, \dots K^{\pm 2\omega_r}\right]^{W_{\bullet}}$ is

$$\sum_{\mu \in P_{+,\lambda}} \operatorname{rank} \left(W_q(\lambda)_{\mu} \right) \sum_{\mu' \in W \mu} q^{(\rho,2\mu')} K^{2\mu'},$$

here $P_{+,\lambda}$ is the set of dominant weights in $W_q(\lambda)$.

We see that the evaluation of c_{λ} at the point $-\rho \in \operatorname{Spec} \mathcal{W}_{\epsilon}$ is equal to $\operatorname{rank}(W_q(\lambda)) \neq 0$. Hence c_{λ} is an invetible element in $\mathcal{W}_q^{\wedge -\rho}$.

• Let $\{v_i\}$ be a basis of \mathbf{St}_q , then $\{v_i^*\}$ and $\{v_i^{**}\}$ be the dual basis in \mathbf{St}_q^* and \mathbf{St}_q^{**} , respectively. We have the following morphisms in $\text{Rep}(\check{U}_q(\mathfrak{g}))$:

$$\mathbf{St}_q^* \otimes_R \mathbf{St}_q^{**} \to O_q[G] \cong U_q^{fin}$$

$$R \xrightarrow{\operatorname{coev}_{\mathbf{St}_q^* \otimes_R \mathbf{St}_q}} (\mathbf{St}_q^* \otimes_R \mathbf{St}_q) \otimes_R (\mathbf{St}_q^* \otimes_R \mathbf{St}_q)^* \cong (\mathbf{St}_q^* \otimes_R \mathbf{St}_q) \otimes_R (\mathbf{St}_q^* \otimes_R \mathbf{St}_q^*)$$

Combining these two morphisms then using the evaluation map $\mathbf{St}_q^* \otimes_R \mathbf{St}_q \to R$, we get

$$R \to \mathbf{St}_q^* \otimes_R \mathbf{St}_q \otimes_R U_q^{fin} \xrightarrow{\operatorname{evst}_q \otimes \operatorname{Id}} U_q^{fin},$$

with the image of $1 \in R$ is $c_{\mathbf{St}_q^*} \in \mathcal{W}_q \subset U_q^{fin}$. So we have a composition in U_q^{fin} -rmod G_q

$$U_q^{fin} \to \mathbf{St}_q^* \otimes \mathbf{St}_q \otimes_R U_q^{fin} \to U_q^{fin},$$

which then gives us a composition in $U_q^{fin,-\rho}$ -rmod G_q

$$(11.4) U_q^{fin,-\rho} \to \mathbf{St}_q^* \otimes_R \mathbf{St}_q \otimes_R U_q^{fin,-\rho} \to U_q^{fin,-\rho},$$

with the image of $1 \in U_q^{fin,-\rho}$ is $c_{\mathbf{St}_q^*} \in \mathcal{W}_q^{\wedge -\rho} \subset U_q^{fin,-\rho}$. Since $c_{\mathbf{St}_q^*}$ is invertible in $\mathcal{W}_q^{\wedge -\rho}$, the composition (11.4) is identity, hence $U_q^{fin,-\rho}$ is a direct summand of $\mathbf{St}_q^* \otimes_R \mathbf{St}_q \otimes_R U_q^{fin,-\rho}$, but the latter is projective in $U_q^{fin,-\rho}$ -rmod^{G_q}, hence $U_q^{fin,-\rho}$ is projective in $U_q^{fin,-\rho}$ -rmod^{G_q}, hence projective in $\mathsf{HC}_q(-\rho,-\rho)$.

12. Non-commutative Springer resolution

Introduce the Non-commutative Springer resolution A. Let us recall the Grothendieck-Springer resolution

Then $\tilde{\mathfrak{g}}$ is a resolution of $\mathfrak{g} \times_{\mathfrak{h}/W} \mathfrak{h}$, which is an isomorphism over $\mathfrak{g}^{reg} \times_{\mathfrak{h}/W} \mathfrak{h}$.

Introduce the tilting bundle \mathcal{E} on $\tilde{\mathfrak{g}}$: $\mathcal{E} = \mathcal{O}_{\tilde{\mathfrak{g}}} \oplus \bigoplus \mathcal{R}_{i_1} \dots \mathcal{R}_{i_k} \mathcal{O}_{\tilde{\mathfrak{g}}}$, here \mathcal{R}_i are the reflection functors constructed in $[1, \S 2.3]$. Then $A := \operatorname{End}_{\mathcal{O}_{\tilde{\mathfrak{g}}}}(\mathcal{E})$, so A is an algebra over $\mathbb{C}[\mathfrak{g}] \otimes_{\mathbb{C}[\mathfrak{h}/W]} \mathbb{C}[\mathfrak{h}]$. Let

$$\mathsf{A}^{\wedge_0} := \mathsf{A} \otimes_{\mathbb{C}[\mathfrak{h}]} \mathbb{C}[\mathfrak{h}]^{\wedge_0}, \qquad \mathbb{C}[\mathfrak{g}[^{\wedge_0} := \mathbb{C}[\mathfrak{g}] \otimes_{\mathbb{C}[\mathfrak{h}/W]} \mathbb{C}[\mathfrak{h}/W]^{\wedge_0}.$$

Restricting to \mathfrak{g}^{reg} , then $\mathsf{A}^{\wedge_0} \otimes_{\mathbb{C}[\mathfrak{g}]^{\wedge_0}} \mathsf{A}^{op\wedge_0}$ is a sheaf of Azumaya algebras over

$$X := (\mathfrak{h} \times_{\mathfrak{h}/W} \times \mathfrak{g}^{reg} \times_{\mathfrak{h}/W} \mathfrak{h})^{\wedge_{0,0}}$$

with the splitting bundle $\mathcal{E} \otimes \mathcal{E}^{\vee}|_{X}$. Let \mathcal{S} be the Kostant section in \mathfrak{g}^{reg} . Let \mathbb{J} be the group scheme of centralizer of G on \mathfrak{g} and let $\mathbb{I} := \mathbb{J} \times_{\mathfrak{g}} \mathcal{S}$ be the restriction of \mathbb{J} on the Kostant section \mathcal{S} . We denote the pull back of \mathbb{I} under $(\mathfrak{h} \times_{\mathfrak{h}/W} \mathcal{S} \times_{\mathfrak{h}/W} \mathfrak{h})^{\wedge_{0,0}} \to \mathcal{S}$ by the same notation. So we have a composition of functors:

$$(12.1) \quad \mathfrak{R}: \mathsf{A}^{\wedge_0} \otimes_{\mathbb{C}[\mathfrak{g}]^{\wedge_0}} \mathsf{A}^{op \wedge_0}\text{-}\mathrm{mod}^G \to \mathsf{A}^{\wedge_0} \otimes_{\mathbb{C}[\mathfrak{g}]^{\wedge_0}} \mathsf{A}^{op \wedge_0}|_{X}\text{-}\mathrm{mod}^G \xrightarrow{\sim} X\text{-}\mathrm{mod}^G$$

$$\xrightarrow{\sim} (\mathfrak{h} \times_{\mathfrak{h}/W} \mathcal{S} \times_{\mathfrak{h}/W} \mathfrak{h})^{\wedge_{0,0}}\text{-}\mathrm{mod}^{\mathbb{I}}$$

- The first functor is the restriction to the open subset X.
- The second functor is obtained via the splitting of Azumaya algebras, hence is an equivalence.
- The third functor is obtained via restriction of the Kostant slice. Need to check/understand why it is an equivalence

Lemma 12.1. The functor \mathfrak{R} is fully faithful on the subcategories of projective objects

Proof. The projective objects are direct summand of object of the form $\mathsf{A}^{\wedge_0} \otimes_{\mathbb{C}[\mathfrak{g}]^{\wedge_0}} \mathsf{A}^{op \wedge_0} \otimes V$ for some $V \in \mathrm{Rep}(G)$

Theorem 12.2. There is an equivalence of abelian categories:

$$\mathsf{HC}_{\epsilon}(0,0) \cong \mathsf{A}^{\wedge_0} \otimes_{\mathbb{C}[\mathfrak{g}]^{\wedge_0}} \mathsf{A}^{op \wedge_0}\operatorname{-mod}^G.$$

Proof. Let $\mathcal{C} := \mathsf{A}^{\wedge_0} \otimes_{\mathbb{C}[\mathfrak{g}]^{\wedge_0}} \mathsf{A}^{op \wedge_0}\operatorname{-mod}^G$

Step 1: Show that the category of projective objects in $A^{\wedge_0} \otimes_{\mathbb{C}[\mathfrak{g}]^{\wedge_0}} A^{op \wedge_0}$ -mod^G is equivalent to the smallest two-sided cell in SB using the Abe's realization.

- Describe a collection of objects H in $\mathsf{A}^{\wedge_0} \otimes_{\mathbb{C}[\mathfrak{g}]^{\wedge_0}} \mathsf{A}^{op \wedge_0}$ -mod G that maps to generators of SB in terms of Abe's realization. \mathcal{R}_i is exact on the exotic t-structure.
- Show that tensor with these objects on the left or right preserves the categories of projective objects.

• The object Ω_0 corresponding to $\mathcal{O}_{\tilde{\mathfrak{g}}\times_{\mathfrak{g}}\tilde{\mathfrak{g}}}$ is projective and its image is contained in the smallest two-sided cell in SB (corresponding to element $R \otimes_{R^W} R$ in SB_{\hbar}). Use the description of \mathcal{E} to show that any projective objects can be obtained as follows: Apply tensor product of Ω_0 with elements in H then taking direct summand. This implies Step 1.

Step 2: Both abelian categories $\mathsf{HC}_{\epsilon}(0,0)$ and $\mathcal C$ have enough projective objects. Furthermore, there is an equivalence of additive categories of projective objects $\mathcal P_{\mathsf{HC}_{\epsilon}(0,0)} \cong \mathcal P_{\mathcal C}$ via the identification with the smallest two-sided cell in SB. Hence, this equivalence extends to an equivalence of abelian categories we want.

13. Generalization

- The case of even order roots of unity: Restrict to the root lattices.
- \bullet The block of Harish-Chandra bimodules with non-integral Harish-Chandra characters.
- \bullet Enhanced version of restriction functors with equivariant structures.

14. Appendices

REFERENCES 43

References

- [1] Roman Bezrukavnikov and Ivan Mirković. "Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution". In: Ann. of Math. (2) 178.3 (2013). With an appendix by Eric Sommers, pp. 835–919. ISSN: 0003-486X,1939-8980. DOI: 10.4007/annals.2013.178.3.2. URL: https://doi.org/10.4007/annals.2013.178.3.2.
- [2] Kenneth A. Brown and Iain Gordon. "Poisson orders, symplectic reflection algebras and representation theory". In: J. Reine Angew. Math. 559 (2003), pp. 193–216. ISSN: 0075-4102,1435-5345. DOI: 10.1515/crll.2003.048. URL: https://doi.org/10.1515/crll.2003.048.
- [3] Jens Carsten Jantzen. Lectures on quantum groups. Vol. 6. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1996, pp. viii+266. ISBN: 0-8218-0478-2. DOI: 10.1090/gsm/006. URL: https://doi.org/10.1090/gsm/006.
- [4] Bertram Kostant. "Groups over Z". In: Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965). Amer. Math. Soc., Providence, RI, 1966, pp. 90–98.
- [5] Ivan Losev. "Dimensions of irreducible modules over W-algebras and Goldie ranks". In: *Invent. Math.* 200.3 (2015), pp. 849–923. ISSN: 0020-9910,1432-1297. DOI: 10.1007/s00222-014-0541-0. URL: https://doi.org/10.1007/s00222-014-0541-0.
- [6] Ivan Losev. "Finite-dimensional representations of W-algebras". In: Duke Math. J. 159.1 (2011), pp. 99–143. ISSN: 0012-7094,1547-7398. DOI: 10.1215/00127094-1384800. URL: https://doi.org/10.1215/00127094-1384800.
- [7] Ivan Losev. Quantum category O vs affine Hecke category. 2023. arXiv: 2310.03153 [math.RT]. URL: https://arxiv.org/abs/2310.03153.
- [8] G. Lusztig. "Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra". In: J. Amer. Math. Soc. 3.1 (1990), pp. 257–296. ISSN: 0894-0347,1088-6834. DOI: 10.2307/1990988. URL: https://doi.org/10.2307/1990988.
- [9] George Lusztig. Introduction to quantum groups. Modern Birkhäuser Classics. Reprint of the 1994 edition. Birkhäuser/Springer, New York, 2010, pp. xiv+346. ISBN: 978-0-8176-4716-2. DOI: 10.1007/978-0-8176-4717-9. URL: https://doi.org/10.1007/978-0-8176-4717-9.
- [10] Cris Negron. "Revisiting the Steinberg representation at arbitrary roots of 1". In: Represent. Theory 29 (2025), pp. 394–442. ISSN: 1088-4165. DOI: 10.1090/ert/697. URL: https://doi.org/10.1090/ert/697.
- [11] N. Reshetikhin. "Multiparameter quantum groups and twisted quasitriangular Hopf algebras". In: Lett. Math. Phys. 20.4 (1990), pp. 331–335. ISSN: 0377-9017,1573-0530. DOI: 10.1007/BF00626530. URL: https://doi.org/10.1007/BF00626530.
- [12] Quan Situ. "On the category O of a hybrid quantum group". In: Represent. Theory 28 (2024), pp. 434–480. ISSN: 1088-4165. DOI: 10.1090/ert/676. URL: https://doi.org/10.1090/ert/676.
- [13] Robert Steinberg. Conjugacy classes in algebraic groups. Vol. Vol. 366. Lecture Notes in Mathematics. Notes by Vinay V. Deodhar. Springer-Verlag, Berlin-New York, 1974, pp. vi+159.
- [14] I. Losev, A. Tsymbaliuk and T. Vu. "On De Concini-Kac form of quantum groups". In: ().
- [15] Andersen. Henning Haahr;, Polo. Patrick, Kexin. Wen. "Representations of quantum algebras". In: *Invent. Math* 104.1 (1991). ISSN: 1432-1297. DOI: 10.1007/BF01245066. URL: https://doi.org/10.1007/BF01245066.

44 REFERENCES

[16] Nanhua Xi. Canonical Left Cells and the Lowest Two-sided Cell in an Affine Weyl Group. 2016. arXiv: 1106.3654 [math.QA]. URL: https://arxiv.org/abs/1106.3654.