March 9, 2024

HOMEWORK 2 — Tree-based Models

1 Math Questions

1.1 Information Gain (20 points)

NOTE: This is not a programming assignment, so you may NOT use programming tools to help solve this problem. Show your work.

.

Suppose you are given 6 training points as seen below, for a classification problem with two binary attributes X_1 and X_2 and three classes $Y \in {1, 2, 3}$. You will use a decision tree learner based on information gain

X_1	X_2	Y
1	1	1
1	1	1
1	1	2
1	0	3
0	0	$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 2 \\ 3 \end{bmatrix}$
0	0	3

1. Calculate the conditional entropy for both X_1 and X_2 .

First, I will calculate the conditional probabilities for X_1 and X_2 on Y.

$P(X_1 Y)$	$P(X_2 Y)$
$P(X_1 = 1 Y = 1) = \frac{2}{3}$	$P(X_2 = 1 Y = 1) = \frac{3}{3}$
$P(X_1 = 0 Y = 1) = \frac{1}{3}$	$P(X_2 = 0 Y = 1) = \frac{0}{3}$
$P(X_1 = 1 Y = 2) = \frac{1}{1}$	$P(X_2 = 1 Y = 2) = \frac{0}{1}$
$P(X_1 = 0 Y = 2) = \frac{0}{1}$	$P(X_2 = 0 Y = 2) = \frac{1}{1}$
$P(X_1 = 1 Y = 3) = \frac{0}{1}$	$P(X_2 = 1 Y = 3) = \frac{0}{1}$
$P(X_1 = 0 Y = 3) = \frac{1}{1}$	$P(X_2 = 0 Y = 3) = \frac{1}{1}$

Secondly, we compute the entropy H(Y)

$$H(Y) = \sum_{y_i=1}^{n=3} P(Y = y_i) \log_2 P(Y = y_i)$$

$$= \sum_{y_i=1}^{n=3} \frac{1}{3} \log_2(\frac{1}{3})$$

$$= \log_2(3)$$

$$= 1.58496$$

Next we compute the conditional entropy for the X_1 split:

$$\begin{split} H(X_1|Y) &= -\sum P(X_1|Y) \times log_2(P(X_1|Y)) \\ &= -\left[\frac{2}{3}log_2\left(\frac{2}{3}\right) + \frac{1}{3}log_2\left(\frac{1}{3}\right) + \frac{1}{1}log_2\left(\frac{1}{1}\right) + \frac{0}{1}log_2\left(\frac{0}{1}\right) + \frac{0}{1}log_2\left(\frac{0}{1}\right) + \frac{1}{1}log_2\left(\frac{1}{1}\right)\right] \\ &= -\left(-\frac{2}{6} - 1\right) \\ &= \frac{4}{3} \end{split}$$

Finally we compute the conditional entropy for the X_2 split:

$$\begin{split} H(X_2|Y) &= -\sum P(X_2|Y) \times log_2(P(X_2|Y)) \\ &= -\left[\frac{3}{3}log_2\left(\frac{3}{3}\right) + \frac{0}{3}log_2\left(\frac{0}{3}\right) + \frac{0}{1}log_2\left(\frac{0}{1}\right) + \frac{1}{1}log_2\left(\frac{1}{1}\right) + \frac{0}{1}log_2\left(\frac{0}{1}\right) + \frac{1}{1}log_2\left(\frac{1}{1}\right)\right] \\ &= -\left(-\frac{2}{3} - \frac{19}{12}\right) \\ &= \frac{11}{12} \end{split}$$

2. Calculate the information gain if we split based on 1) X_1 or 2) X_2

$$IG(X_1) = H(Y) - H(Y|X_1)$$

$$= 1.58496 - \frac{4}{3}$$

$$= 0.251629$$

$$IG(X_2) = H(Y) - H(Y|X_2)$$

$$= 1.58496 - \frac{11}{12}$$

$$= 0.6682958$$

3. Report which attribute is used for the first split. Draw the decision tree using this split. Since the information gain for splitting based on X_2 (0.668) is greater than the information gain for splitting based on X_1 (0.251), the first split in the decision tree will be based on X_2 .

4. Conduct classification for the test example $X_1 = 0$ and $X_2 = 1$. Following the above decision tree, we predict that Y = 1 given $X_1 = 0$ and $X_2 = 1$.

2 Programming Questions

Answers for these are located in the attached Casey Pei HW2.ipynb file.