Samtools and the SAM format

Alessandro Romanel CIBIO

Files

mkdir ~/Genomics cd ~/Genomics

wget https://github.com/aromanel/EthSEQ_Data/raw/master/Genomics/Normal.sam.gz wget https://github.com/aromanel/EthSEQ_Data/raw/master/Genomics/Tumor.sam.gz wget https://github.com/aromanel/EthSEQ_Data/raw/master/Genomics/samtools-1.4.tar.gz wget https://github.com/aromanel/EthSEQ_Data/raw/master/Genomics/samtools-1.4.tar.gz wget https://github.com/aromanel/EthSEQ_Data/raw/master/Genomics/CG100.bed

gunzip Normal.sam.gz gunzip Tumor.sam.gz tar -xvzf samtools-1.4.tar.gz

cd samtools-1.4 ./configure make

export PATH="~/Genomics/samtools-1.4/:\$PATH"

SAM and BAM files

SAM file

- Information on the alignment of each read
- optimized for readability and sequential access
- BAM (binary SAM):
 - Compression saves space (optimized for size)
 - May be sorted + indexed at location query (optimized for random access)
 - The file is not readable by eye
- Your default format should be BAM only turn it into SAM when viewing the file

SAM/BAM hierarchy

Some tools have certain requirements of what type of SAM/BAM they take. Your default data format should be a sorted, indexed BAM file!

```
romanel@silk:~/Desktop/samtools-1.4$ ./samtools
Program: samtools (Tools for alignments in the SAM format)
Version: 1.4 (using htslib 1.4)
        samtools <command> [options]
Usage:
Commands:
  -- Indexina
     dict
                   create a sequence dictionary file
                   index/extract FASTA
     faidx
     index
                   index alignment
  -- Editing
                   recalculate MD/NM tags and '=' bases
     calmd
     fixmate
                   fix mate information
     reheader
                   replace BAM header
     rmdup
                   remove PCR duplicates
     targetcut
                   cut fosmid regions (for fosmid pool only)
     addreplacerg
                   adds or replaces RG tags
  -- File operations
                   shuffle and group alignments by name
     collate
                   concatenate BAMs
     cat
                   merge sorted alignments
     merge
     mpileup
                   multi-way pileup
                   sort alignment file
     sort
                   splits a file by read group
     split
     quickcheck
                   quickly check if SAM/BAM/CRAM file appears intact
     fastq
                    converts a BAM to a FASTO
     fasta
                    converts a BAM to a FASTA
  -- Statistics
                   read depth per BED region
     bedcov
     depth
                   compute the depth
     flagstat
                   simple stats
     idxstats
                   BAM index stats
     phase
                   phase heterozygotes
                   generate stats (former bamcheck)
     stats
  -- Viewing
                    explain BAM flags
     flags
     tview
                   text alignment viewer
     view
                    SAM<->BAM<->CRAM conversion
     depad
                    convert padded BAM to unpadded BAM
```

```
romanel@silk:~/Desktop/samtools-1.4$ ./samtools view
Usage: samtools view [options] <in.bam>|<in.sam>|<in.cram> [region ...]
Options:
  -b
           output BAM
           output CRAM (requires -T)
  -C
           use fast BAM compression (implies -b)
  -1
           uncompressed BAM output (implies -b)
  -u
           include header in SAM output
  -h
  -H
           print SAM header only (no alignments)
           print only the count of matching records
  - C
  -o FILE output file name [stdout]
  -U FILE output reads not selected by filters to FILE [null]
  -t FILE FILE listing reference names and lengths (see long help) [null]
  -L FILE only include reads overlapping this BED FILE [null]
           only include reads in read group STR [null]
  -r STR
  -R FILE only include reads with read group listed in FILE [null]
  -a INT
           only include reads with mapping quality >= INT [0]
  -l STR
           only include reads in library STR [null]
           only include reads with number of CIGAR operations consuming
  -m INT
           query sequence >= INT [0]
           only include reads with all bits set in INT set in FLAG [0]
  -f INT
           only include reads with none of the bits set in INT set in FLAG [0]
  -F INT
  -s FLOAT subsample reads (given INT.FRAC option value, 0.FRAC is the
           fraction of templates/read pairs to keep; INT part sets seed)
           read tag to strip (repeatable) [null]
  -x STR
           collapse the backward CIGAR operation
  - B
           print long help, including note about region specification
  -?
  -S
           ignored (input format is auto-detected)
      --input-fmt-option OPT[=VAL]
               Specify a single input file format option in the form
               of OPTION or OPTION=VALUE
  -O, --output-fmt FORMAT[,OPT[=VAL]]...
               Specify output format (SAM, BAM, CRAM)
      --output-fmt-option OPT[=VAL]
               Specify a single output file format option in the form
               of OPTION or OPTION=VALUE
  -T, --reference FILE
               Reference sequence FASTA FILE [null]
  -@, --threads INT
               Number of additional threads to use [0]
```

SAM format

- Currently version 1.4
- Structure
 - Header
 - version, sort order, reference sequences, read groups, program/processing history
 - Alignments records

SAM header

COMMAND samtools view -H file.bam

```
Sorting
RESULT
@HD
                         SO:coordinate
       VN:1.4
              GO:none
@SQ
       SN:1
              LN:249250621
@SQ
       SN:2
              IN:243199373
                                  Reference sequences
@SQ
       SN:3
              LN:198022430
                                   Names with lengths
@SQ
              LN:191154276
      SN:4
@SQ
              LN:180915260
       SN:5
@SQ
      SN:6
              LN:171115067
                                                Read groups with platform
@SQ
      SN:7
              LN:159138663
                                              Library and sample information
@SQ
      SN:8
              LN:146364022
@RG
       ID:PM207 PL:Illumina
                                               FCID:H9CF5ADXX
                            I B:GA I NID:I 001
                                                                 DT:2014-05-
27T00:00:00-0400
                  BCID:ACAAGCTA
                                    SM:PM207 EBC5 1 Ctrl HALO
@PG
     ID:GATK PrintReads VN:2.5-2-gf57256b CL:readGroup=null platform=null
number=-1 downsample_coverage=1.0 sample_file=[] sample_name=[] simplify=false
no pg tag=false
```

Programs (analysis) history

Alignment record

```
HWI-D00163:119:H9CF5ADXX:1:1101:18401:36465
                                                           13314
                                                                                         13383
          GGATCTGAGCCCTGGTGGAGGTCAAAGCCACCTTTGGTTCTGCCATTGCTGTGTGGGAAGTTCACTCCTGCCTTTTCCTTT
  152
                                                                                            ΔΔΔ
{\sf ADEGEFECBCFBDFBCDBDEECCEECDDCDCCFCDCEDFECDDCGEDFFDFEGDGDECECCEEEEGDEGGFGFEEFDBBC}
D:Z:NNOOSRSSSTROORRONOOPOPPPNFMPPPNPNNFMOONNNOOOPPNNPOOOPONMMNPOONOOONPOPPOOOPPIIOPOOG
                                                                                        MD:Z:83
               XG:i:0 BI:Z:PPQQTTSSQTQOSSRSPPQONQQPOJNROONOPOHMQQNOPPPNPONNPQPPQPOOPPPQPNPOOPNONPRQ
RG:Z:PM207
                 AM:i:0 NM:i:0 SM:i:16 XM:i:0 XO:i:0 XT:A:U
POOPJJOPRPJ
                                            163
                                                           13314
HWI-D00163:119:H9CF5ADXX:1:1102:11031:63853
                                                                  16
                                                                          83M
                                                                                         13383
          152
                                                                                            AAA
ADEGEFECBCFBDGDDDBDFECCEECDDCDCCFCDCEDFECDDCFEDFEDFDGDGDECEDDFEEFGDEGGFGFEEFDBBC
                                                                               X0:i:1 X1:i:5
D:Z:NNOOSRSSSTROORRONOOPOPPPNFMPPPNPNNFMOONNNOOOPPNNPOOOPONMMNPOONOOONPOPPOOOPPIIOPOOG
                                                                                        MD:Z:83
RG:Z:PM207
               XG:i:0 BI:Z:PPQQTTSSQTQOSSRSPPQONQQPOJNROONOPOHMQQNOPPPNPONNPQPPQPOOPPPQPNPOOPNONPRQ
POOPJJOPRPJ
                 AM:i:0 NM:i:0 SM:i:16 XM:i:0 XO:i:0 XT:A:U
HWI-D00163:119:H9CF5ADXX:1:1102:11554:26103
                                            163
                                                           13314
                                                                  16
                                                                          83M
                                                                                         13383
  152
          AAA
ADEGEFECBEEBCEBEFBDEDCCEECDDCDCCFCDCEDFECDDCGEDFEDFDFCGDFCGDCEEEEFDEGGFGFEBEDBBC
                                                                               X0:i:1 X1:i:5
D:Z:NNOOSRSSSTROORRONOOPOPPPNFMPPPNPNNFMOONNNOOOPPNNPOOOPONMMNPOONOOONPOPPOOOPPIIOPOOG
                                                                                        MD:Z:83
               XG:i:0 BI:Z:PPQQTTSSQTQOSSRSPPQONQQPOJNROONOPOHMQQNOPPPNPONNPQPPQPOOPPPQPNPOOPNONPRQ
RG:Z:PM207
                 AM:i:0 NM:i:0 SM:i:16 XM:i:0 XO:i:0 XT:A:U
POOPJJOPRPJ
HWI-D00163:119:H9CF5ADXX:1:1105:13972:48206
                                            163
                                                           13314
                                                                  16
                                                                          83M
                                                                                         13383
  152
          GGATCTGAGCCCTGGTGGAGGTCAAAGCCACCTTTGGTTCTGCCATTGCTGCTGTGTGGAAGTTCACTCCTGCCTTTTCCTTT
                                                                                            AAA
ADEFEFECDEFDBFEDFDCEDDDCFDFDCDCCFCDCEEFECDDCGFEFEFGDGDGDECGEDFEEFGCFHGFGCEEFDBBC
                                                                              X0:i:1 X1:i:5
D:Z:NNOQSRSSSTROQRRQNQOPQPPPNFMPPPNPNNFMOONNNOOOPPNNPQOOPONMMNPOONQOOQNPOPPQQQPPIIQPOOG
                                                                                        MD:Z:83
               XG:i:0 BI:Z:PPQQTTSSQTQOSSRSPPQONQQPOJNROONOPOHMQQNOPPPNPONNPQPPQPOOPPPQPNPOOPNONPRQ
RG:Z:PM207
                 AM:i:0 NM:i:0 SM:i:16 XM:i:0 XO:i:0 XT:A:U
POOPJJOPRPJ
HWI-D00163:119:H9CF5ADXX:1:1106:19105:75254
                                            163
                                                           13314
                                                                          83M
                                                                                         13383
                                                    1
                                                                  16
```

Alignment record (essential fields)

QNAME: Query template NAME

HWI-D00163:119:H9CF5ADXX:1:1101:18401:36465

FLAG: bitwise FLAG

163

RNAME: Reference sequence NAME

1

POS: 1-based leftmost mapping POSition

13314

MAPO: MAPping Quality

16

CIGAR: CIGAR string

83M

RNEXT: Ref. name of the mate/next read

=

PNEXT: Position of the mate/next read

13383

TLEN: observed Template LENgth

152

SEQ: segment SEQuence

GGATCTGAGCCCTGGTGGAGGTCAAAGCCACCTTTGGTTCTGCCATTGCTGCTGTGTGGAAGTTCA

CTCCTGCCTTTTCCTTT

QUAL: ASCII of Phred-scaled base QUALity+33

AAAADEGEFECBCFBDFBCDBDEECCEECDDCDCCFCDCEDFECDDCGEDFFDFEGDGDECECCEE

EEGDEGGFGFEEFDBBC

FLAG

I	Bit	Description
1	0x1	template having multiple segments in sequencing
2	0x2	each segment properly aligned according to the aligner
4	0x4	segment unmapped
8	0x8	next segment in the template unmapped
16	0x10	SEQ being reverse complemented
32	0x20	SEQ of the next segment in the template being reverse complemented
64	0x40	the first segment in the template
128	0x80	the last segment in the template
256	0x100	secondary alignment
512	0x200	not passing filters, such as platform/vendor quality controls
1024	0x400	PCR or optical duplicate
2048	0x800	supplementary alignment

163 = 128+32+2+1

FLAG

```
2048 = 100000000000
1024 = 010000000000
 512 = 001000000000
 256 = 000100000000
 128 = 000010000000
  64 = 000001000000
  32 = 000000100000
  16 = 000000010000
   8 = 00000001000
   4 = 00000000100
   2 = 000000000010
   1 = 000000000001
```

```
128 = 000010000000
32 = 000000100000
2 = 000000000010
1 = 000000000001
```

163 = 000010100011

Op	BAM	Description
M	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
N	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
H	5	hard clipping (clipped sequences NOT present in SEQ)
P	6	padding (silent deletion from padded reference)
=	7	sequence match
X	8	sequence mismatch

Ref: TTACGTTGAACTAATTCGAGAGCGC

Target: ACGTAACTAACATT

Ref: TTACGTTGAACTAATTCGAGAGCGC

Target: ACGTAACTAACATT

Ref: TTACGTTGAACTAATTCGAGAGCGC

Target: ACGTAACTAACATT

Cigar = 4M2D6M2I2M

Alignment record (additional)

X0:i:1 X1:i:5

BD:Z:NNOQSRSSSTROQRRQNQOPQPPPNFMPPPNPNNFMOONNNOOOPPNN PQOOPONMMNPOONQOOQNPOPPQQQPPIIQPOOG

MD:Z:83

RG:Z:PM207

XG:i:0

BI:Z:PPQQTTSSQTQOSSRSPPQONQQPOJNIQPPQPOOPPPQPNPOOPNONPRQPOQPJJQ

AM:i:0

NM:i:0

SM:i:16

XM:i:0

XO:i:0

XT:A:U

Tag	Meaning		
NM	Edit distance		
MD	Mismatching positions/bases		
AS	Alignment score		
ВС	Barcode sequence		
ХΘ	Number of best hits		
X1	Number of suboptimal hits found by BWA		
XN	Number of ambiguous bases in the referenece		
XM	Number of mismatches in the alignment		
X0	Number of gap opens		
XG	Number of gap extentions		
XT	Type: Unique/Repeat/N/Mate-sw		
XA	Alternative hits; format: (chr,pos,CIGAR,NM;)*		
XS	Suboptimal alignment score		
XF	Support from forward/reverse alignment		
XE	Number of supporting seeds		

Default operations

By default samtools (not all operations)
 expects a BAM file as input and will produce
 a SAM file as output

 Alignment results are typically stored as a sorted and indexed BAM file

 Aligners produce SAM files so our first job is usually to convert those to BAM formats.

SAM to BAM

- Convert a SAM into a BAM
 - samtools view -Sbh Normal.sam > Normal.bam

- Sort a BAM file
 - samtools sort Normal.bam > Normal.sorted.bam
 - samtools sort Normal.bam Normal.sorted (v0.19)
- Create index
 - samtools index Normal.sorted.bam

Sorting

- Sorted so that read pairs are next to one another (typically the same order as the FastQ file)
- Sorted by alignment position
- Depending on the next analysis method your file has to be sorted a certain way

Sorting

- Compare the two sortings
 - samtools sort -n Normal.bam > Normal.sorted.rname.bam
 - samtools view Normal.sorted.bam | less
 - samtools view Normal.sorted.rname.bam | less

Filtering

- Required flag (keep if matches)
 - samtools view -f ...

- Filtering (remove if matches)
 - samtools view -F ...

Filtering

- Count reads in BAM file
 - samtools view -c Normal.sorted.bam

- Reads that map to reverse strand
 - samtools view -c -f 16 Normal.sorted.bam
- Reads that map to the forward strand
 - samtools view -c -F 16 Normal.sorted.bam
- Reads that have a mapping quality >30
 - samtools view -c -q 30 Normal.sorted.bam

Explore statistics

- General statistics
 - samtools flagstat Normal.sorted.bam

- Detailed statistics
 - samtools stats Normal.sorted.bam > Stats.txt
 - less Stats.txt

Explore coverage statistics

- Single base sum coverage per region
 - samtools bedcov CG100.bed Normal.sorted.bam > BEDCov.txt
 - less BEDCov.txt

- Single base depth
 - samtools depth -b CG100.bed Normal.sorted.bam > BEDDepth.txt
 - less BEDDepth.txt

mpileup

- Test mpileup
 - samtools mpileup Normal.sorted.bam | less

- Pileup of a region
 - samtools mpileup -r 1:3410684-3410690Normal.sorted.bam

- Control base and mapping quality
 - samtools mpileup -r 1:3410684-3410690 -q 60 -Q 60
 Normal.sorted.bam

Tasks

- Repeat previous commands on file Tumor.sam
- Check pileup of following positions
 - 1:196642233
 - 10:114192285
 - 17:7578265
 - 3:128204654

and comment results

- Test if results change by filtering reads on base and mapping quality
- Use bedcov command to further comment on position 17:7578265