UFC/DC CK0255|TIP8244 2018.2

Content

Deterministic
Markov functions
Stochastic Markov

ogistic

Evaluation

Linear systems Advanced topics in machine learning

Francesco Corona

Department of Computer Science Federal University of Ceará, Fortaleza

Linear systems

UFC/DC CK0255|TIP8244 2018.2

Content

Markov functions Stochastic Markov

Logisti

Evaluatio

General content

Linear systems and ATML

Linear systems

UFC/DC CK0255|TIP8244 2018.2

Content

Deterministic Markov functions Stochastic Markov functions

Logistic

Evaluation

General content

Consider the general problem of system analysis and controller design

- We have at our disposal a wealth of knowledge
- Deterministic analysis and control theory

We can investigate the system structure and modes of its response

• We can design compensators that alter these characteristics

We can design controllers that provide appropriate inputs

• To generate desired system responses

Linear systems

UFC/DC CK0255|TIP8244 2018.2

Content

Deterministic Markov functions Stochastic Markov functions

Logistic

Evaluation

General content (cont.)

Why do we need to go beyond these results?

• Why stochastic models?

UFC/DC CK0255|TIP8244 2018.2

Content

Deterministic
Markov functions
Stochastic Markov

Logistic

Evaluation

General content (cont.)

To observe the actual system behaviour, we construct measurement devices

• They output data signals, proportional to variables of interest

These signals and the known inputs are the only available information

• Information discernible about the system

If we design a controller, these signals are the only available inputs

• Direct inputs to the controller

Linear systems

UFC/DC CK0255|TIP8244 2018.2

Content

Deterministic Markov functions Stochastic Markov functions

Logistic

Evaluation

General content (cont.)

We cannot assume perfect knowledge of all quantities or perfect control

We must develop a system model that accounts for uncertainties

- → How to optimally estimate the quantities of interest?
- → How to optimally control the system to perform?

How to evaluate the performance of these estimates and control?

Linear systems

$^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

Content

Deterministic Markov functions Stochastic Markov

Logistic

Evaluation

General content (cont.)

No mathematical system model is considered perfect

- Only dominant/critical modes are modelled
- Computationally feasible (light)

Systems are not only driven by our control inputs

- Disturbances that we cannot control
- Disturbances that we cannot model

Sensors are not perfect nor they are complete

- Not all interesting information
- No exact readings and noise
- Own system dynamics

Linear systems

$^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

Content

Markov functions
Stochastic Markov
functions

Logistic

Evaluation

General content (cont.)

The course is an introduction to modelling of dynamic processes

- Deterministic and stochastic state-space models
- Deterministic and random Markov functions

We overview dynamic system analysis and probability theory

UFC/DC CK0255|TIP8244 2018.2

Content

Deterministic Markov functions

Evaluation

Deterministic Markov functions

General content

Linear systems

UFC/DC CK0255|TIP8244 2018.2

Content

Deterministic Markov functions

Stochastic Marke functions

Evaluation

Deterministic Markov functions

Deterministic Markov systems/models and their classification

- Input-output and state-space representations
- → Focus on state-space models (a richer class)

General properties of deterministic systems

- Dynamical/Instantaneous
- Linear/Nonlinear
- Stationary/Nonstationary
- Proper/improper
- With/Without delay

Linear systems

UFC/DC CK0255|TIP8244 2018.2

Content

Deterministic Markov functions

Evaluation

Deterministic Markov functions (cont.)

The analysis of state-space models only in the time-domain

→ Linear and stationary models

A general scheme to determine the state transition matrix

→ The Sylvester expansion

A general procedure to solve the analysis problem

→ The Lagrange formula

Similarity transformations and canonical forms

- → Diagonalisation
- → Jordan's form

The system modes and their interretation

Linear systems

 $^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

Content

Markov functions Stochastic Markov functions

Logistic

Evaluatio:

Stochastic Markov functions

General content

UFC/DC CK0255|TIP8244 2018.2

Content

Deterministic
Markov functions
Stochastic Markov
functions

ogistic

Evaluation

Stochastic Markov functions

Stochastic Markov system/models, their classification and their properties

- Continuous-time continuous-state Markov processes
- Continuous-time discrete-state Markov processes
- Discrete-time discrete-state Markov processes

Main focus on discrete-time discrete-state processes

Linear systems

UFC/DC CK0255|TIP8244 2018.2

Content

Markov functions Stochastic Markov functions

Logistic

Stochastic Markov functions (cont.)

Analysis of continuous-time discrete-state Markov processes

- General concepts and definitions
- Transition probabilities
- Transition rates

Some important distributions

Linear systems

$^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

Content

Deterministic
Markov functions
Stochastic Markov

Logistic

Evaluation

Stochastic Markov functions (cont.)

Analysis of discrete-time discrete-state Markov processes (chains)

- General concepts and definitions
- Classification of states
- Irreducibility

Some important matrices

- Fundamental matrix
- Reachability matrix
- Potential matrix

Some important distributions

- Steady-state distribution
- Stationary distribution
- Limiting distribution

Linear systems

$^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

Conter

Markov functions
Stochastic Markov
functions

Stochastic Markov functions (cont.)

Continuous-time continuous-space (general) Markov processes

- General Markov state density function
- Chapman-Kolmogorov equations
- Kramers-Moyal equations
- The Markov propagator

Time-integral and time-evolution of Markov processes

• General moment evolution equations

UFC/DC CK0255|TIP8244 2018.2

Content

Deterministic
Markov functions
Stochastic Markov
functions

Logistic

Evaluation

Stochastic Markov functions (cont.)

The continuous propagator and its characterising functions

• Time-evolution equations

Three important continuous Markov processes

- The Liouville process
- The Weiner process
- Ornstein-Uhlenbeck process

The Fokker-Planck equation and the Langevin equation

Logistics

Linear systems and ATML

Linear systems

UFC/DC CK0255|TIP8244 2018.2

Content

Markov functions
Stochastic Markov
functions

Logistic

Evaluation

Logistic

SIGAA doesn't know the course location

• Here, mostly

Timetable, as you have known it

- Wednesdays afternoons
- $14:00 \rightarrow 18:00$

I do not care about presence

- If you deliver
- → fkorona.github.io/ATML

Linear systems

Linear systems

 $^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

Logistic

UFC/DC CK0255|TIP8244 2018.2

Content

Deterministic Markov functions Stochastic Markov functions

Logistic

Evaluation

Evaluation

Linear systems and ATML

UFC/DC CK0255|TIP8244 2018.2

Content

Deterministic Markov functions Stochastic Markov

Logistic

Evaluation

Evaluation

Two, maybe three, intermediate tests (AP) here in the classroom (70%)

• Train by exercising and participating

One, maybe two, home assignment/project (30%)

To pass the course you need a 5, with 7 you pass earlier (8, I am happy)

• You can have a final test (AF), if you ask