Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

Compito del 20 febbraio 2020			
Studente:			
1. Assegnati i nodi			
$x_0 = -1$, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$, $x_4 = 3$			
e la funzione $f(x) = \log(x+3) - \frac{1}{2}\sin(x-1), x \in [-1,3]$			
crivere lo script es1.m in cui:			
a) si determina il polinomio $p(x)$, nella forma di Lagrange, che interpola la fe			
f(x) nei nodi assegnati; 5 punti			
b) si determina il polinomio $p(x)$, nella forma di Newton, che interpola la funzione $f(x)$ nei nodi assegnati; $\boxed{5 \text{ punti}}$			
c) si disegnano			
c.1) in una prima finestra, il grafico della funzione $f(x)$ e del polinomio interpolante $p(x)$ (nella forma di Lagrange e di Newton) insieme ai punti di interpolazione;			
c.2) in una seconda finestra, il grafico di $ r(x) $, dove $r(x)$ denota il resto dell'interpolazione, e il punto di ordinata $ r(x) _{\infty}$.			
4 punti			
) C:: d: 1- f:			

 $\mathbf{2}$. Si consideri la funzione

$$f(x) = x^5 + \frac{23}{12}x^4 - \frac{95}{12}x^3 - \frac{173}{16}x^2 + \frac{115}{24}x + \frac{325}{48}, \qquad x \in [-2, 2].$$

Scrivere lo script es2.m in cui:

a) si plotti il grafico della f nell'intervallo [-2, 2];

1	punti	
1	punti	

b) dopo aver osservato il grafico di f , si spieghi se è possibile approssimare i suoi zeri con il metodo di bisezione; in caso affermativo, si implementi il metodo di bisezione e lo si utilizzi settando la tolleranza $tol=10^{-8}$; [5 punti]				
c) si stimi il numero N di sottointervalli equispaziati che servono per approssimare $\int_{-2}^{2} f(x) dx$ (il cui valore esatto è $-\frac{121}{20}$) con la formula di Simpson composita nel rispetto della tolleranza 10^{-5} . Quanto vale l'integrale calcolato? Quanto vale N ? [5 punti]				
3. Domanda teorica: parlare del condizionamento di un problema e soffermarsi in modo particolare sullo studio del condizionamento di un sistema lineare. [8 punti]				
Tempo a disposizione: 2 ore e 30 minuti.				
Punti totali: 33 (Per un punteggio totale maggiore di 30, la valutazione sarà 30 e lode)				
Totale ottenuto:				