CS5296 February 11, 2025

CS 5296 Spring 2025 Assignment 1 (2 questions, 5 marks)

1.Measure EC2 CPU and Memory performance

Size	CPU performance total time (s)	Memory performancetransfer speed MB/s
t2. micro	10.0006s	536.94 MB/sec
t2.medium	10.0008s	900.67 MB/sec
t2.large	10.0009s	941.87 MB/sec

CPU performance measurement command:

Memory performance measurement command:

"sysbench memory --threads=4 --memory-total-size=10G --memory-oper=write --memory-scope=global run"

Measurement Analysis:

This analysis evaluates the CPU and memory performance of EC2 t2.micro, t2.medium, and t2.large instances using sysbench.

CPU Performance: Execution time remains around 10s across all instances due to t2 burstable CPU limits. No significant improvement with larger instances.

Memory performance improves with instance size, but gains diminish at higher tiers.

CityU HK

[&]quot;sysbench cpu --threads=4 --cpu-max-prime=10000 run"

2.Measure EC2 **network** performance

1) The network performance is experienced between instances of the same type and different types

Туре	TCP bandwidth(Mbps)	Average RTT (ms)	
t2.micro -	447 Mbps	1.237 ms	
t2.micro	447 Mbps		
t2.micro -	542 Mbps	1.282 ms	
t2.medium	342 Mops	1.282 IIIS	
t2.medium -	676 Mhns	1 015 mg	
t2.medium	676 Mbps	1.015 ms	
t2.medium -	919 Mbns	0.072 mg	
t2.large	818 Mbps	0.973 ms	
t2.large -	010 Mbms	0.642 ms	
t2.large	910 Mbps	0.042 IIIS	

2) The network performance (bandwidth) with different window sizes

Window Size		TCP bandwidth (Mbps)
Q2(2)-(5) 2 marks	128K	387Mbps
	256K	465Mbps
	512K	545Mbps

For RTT, ping from different instances (clients) to the same instance (server) simultaneously

Number of	Client1	Client2	Client3
Clients	Average RTT (ms)	Average RTT (ms)	Average RTT (ms)
2	1.245ms	1.347ms	none
3	1.412ms	1.664ms	1.842ms

CITYU HK

i 製造大學 CS5296 February 11, 2025

3) The network performance with one server and multiple clients

Number of	Client1	Client2	Client3
	TCP bandwidth	TCP bandwidth	TCP bandwidth
Clients	(Mbps)	(Mbps)	(Mbps)
2	556Mbps	553Mbps	none
3	413Mbps	389Mbps	376Mbps

4) The network performance for instances deployed in different regions

Туре	TCP bandwidth (Mbps)	Average RTT (ms)
N. Virginia - Oregon (I)	15.1Mbps	74.126ms
N. Virginia - Oregon (II)	26.8Mbps	68.482ms
Oregon - N. Virginia (III)	36.7Mbps	65.237ms

5) The network performance in diffierent time

Time(HKT)	TCP bandwidth (Mbps)	Average RTT (ms)
Morning (~10:00am)	812Mbps	1.128ms
Afternoon (~4:00pm)	758Mbps	1.321ms
Evening (~10:00pm)	672Mbps	1.786ms

CityU HK

CS5296 February 11, 2025

- 6) Open-ended question: so far you have measured network performance in different scenarios. Observe the values in each table, and try to explain why network performance varies under different scenarios?
 - Q2(6), 0.5
- (1) Larger instances, such as t2.large, have higher allocated network bandwidth compared to smaller instances like t2.micro. AWS assigns more network resources to larger instances, leading to better performance.
- (2) Intra-region communication (within the same AWS region) has significantly lower latency (~1-2ms) and higher bandwidth. Inter-region communication requires routing through AWS backbone infrastructure, increasing latency (~65-75ms) and reducing throughput.
- (3) When multiple clients communicate with a single server, available bandwidth is shared among them. More clients result in lower per-client bandwidth due to the fixed network resources allocated to the instance.
- (4) Network performance fluctuates throughout the day. Mornings generally provide the best bandwidth and lowest latency, while afternoons see moderate network load. Evenings often experience the highest congestion, leading to reduced throughput and increased latency.
- (5) Larger TCP window sizes improve bandwidth utilization by reducing the number of acknowledgments required, optimizing performance. Smaller window sizes limit throughput due to increased protocol overhead.

CITYU HK 4