$C_6-C_{12} \text{ haloaryl and substituted and unsubstituted } C_7-C_{24} \text{ aralkyl}, \ R^1 \text{ and } R^2 \text{ or } R^3 \text{ and } R^4 \text{ can be taken together to represent a } C_1-C_{10} \text{ alkylidenyl group, } -(CH_2)_nC(O)NH_2, -(CH_2)_nC(O)Cl, -(CH_2)_nC(O)OR^5, -(CH_2)_n-OC(O)R^5, -(CH_2)_n-C(O)R^5, -(CH_2)_n-OC(O)OR^5, -(CH_2)_nSi(OR^5)_3, -(CH_2)_nC(O)OR^6, \text{ and the group:}$

$$\hbox{-CH}_2\hbox{OCH}_2 {\ensuremath{\bigvee}} O$$

wherein n independently represents an integer from 0 to 10 and R^5 independently represents hydrogen, linear and branched C_1 - C_{10} alkyl, linear and branched, C_2 - C_{10} alkenyl, linear and branched C_2 - C_{10} alkynyl, C_5 - C_{12} cycloalkyl, C_6 - C_{14} aryl, and C_7 - C_{24} aralkyl; R^6 represents a radical selected from - $C(CH_3)_3$, - $Si(CH_3)_3$, - $CH(R^7)OCH_2CH_3$, - $CH(R^7)OC(CH_3)_3$, dicyclopropylmethyl, dimethylcyclopropylmethyl, or the following cyclic groups:

wherein R^7 represents hydrogen or a linear or branched (C_1 - C_5) alkyl group; R^1 and R^4 together with the two ring carbon atoms to which they are attached can represent a substituted or unsubstituted cycloaliphatic group containing 4 to 30 ring carbon atoms, a substituted or unsubstituted aryl group containing 6 to 18 ring carbon atoms and combinations thereof; R^1 and R^4 can be taken together to form the divalent bridging group, -C(O)-Q-(O)C-, which when taken together with the two ring carbon atoms to which they are attached form a pentacyclic ring, wherein Q represents an oxygen atom or the group $N(R^8)$, wherein R^8 is selected from hydrogen, halogen, linear and branched C_1 - C_{10} alkyl, and C_6 - C_{18} aryl.

(59. (Amended) The reactant composition of claim 33, wherein said composition further comprises a rate moderator selected from the group consisting of water, tetrahydrofuran, 2-methyltetrahydrofuran, diethyl ether, methyl-tert-butyl ether, dimethoxyethane, diglyme, trimethylphosphine, triethylphosphine, tributylphosphine, tri(ortho-tolyl)phosphine, tri-tertbutylphosphine, tricyclopentylphosphine, tricyclohexylphosphine, triisopropylphosphine, trioctylphosphine, triphenylphosphine, tri(pentafluorophenyl)phosphine, methyldiphenylphosphine, dimethylphenylphosphine, trimethylphosphite, triethylphosphite, triisopropylphosphite, ethyl diphenylphosphinite, tributylphosphite, triphenylphosphite, diethylphenylphosphonite, and tribenzylphosphine, 2-cyclohexenone, triphenylphosphine oxide, and mixtures thereof. T

74. (Amended) The multifunctional polycycloolefin monomer set forth in claims 55, wherein said monomer is selected from a composition of the formula:

Ü

wherein "a" independently represents a single or double bond, m independently is an integer from 0 to 5, R⁹ is a divalent radical selected from divalent hydrocarbyl radicals and divalent ether radicals.

٠ إن

The following is a **marked** version of the prior pending claims with all changes shown in conventional comparison:

56. (Amended) The reactant composition claim [32,] 33, [43, 44, 48, or 55] wherein said polycycloolefin comprises a monomer selected from a compound of the formula:

$$\begin{array}{c|c}
R^1 \\
R^2 \\
R^3 \\
R^4
\end{array}$$

wherein "a" represents a single or double bond; m is an integer from 0 to 5; when "a" is a double bond one of R^1 , R^2 and one of R^3 , R^4 is not present; and R^1 to R^4 independently represent hydrogen, substituted and unsubstituted linear and branched C_1 - C_{10} alkyl, linear and branched C_2 - C_{10} alkenyl, linear and branched C_2 - C_{10} haloalkenyl, substituted and unsubstituted linear and branched C_2 - C_{10} alkenyl, linear and branched C_2 - C_{10} haloalkenyl, substituted and unsubstituted linear and branched C_2 - C_{10} alkynyl, substituted and unsubstituted C_4 - C_{12} cycloalkyl, substituted and unsubstituted C_4 - C_{12} halocycloalkenyl, substituted and unsubstituted C_4 - C_{12} halocycloalkenyl, substituted and unsubstituted C_6 - C_{12} halocycloalkenyl, substituted and unsubstituted C_6 - C_{12} aryl, substituted and unsubstituted C_6 - C_{12} haloaryl and substituted and unsubstituted C_7 - C_{24} aralkyl, C_8 and C_8 or C_8 and C_8 and C_8 and C_8 are to represent a C_8 - C_8 -C

wherein n independently represents an integer from 0 to 10 and R^5 independently represents hydrogen, linear and branched C_1 - C_{10} alkyl, linear and branched, C_2 - C_{10} alkenyl, linear and branched C_2 - C_{10} alkynyl, C_5 - C_{12} cycloalkyl, C_6 - C_{14} aryl, and C_7 - C_{24} aralkyl; R^6 represents a

٠.,

radical selected from -C(CH₃)₃, -Si(CH₃)₃, -CH(R⁷)OCH₂CH₃, -CH(R⁷)OC(CH₃)₃, dicyclopropylmethyl, dimethylcyclopropylmethyl, or the following cyclic groups:

wherein R⁷ represents hydrogen or a linear or branched (C₁-C₅) alkyl group; R¹ and R⁴ together with the two ring carbon atoms to which they are attached can represent a substituted or unsubstituted cycloaliphatic group containing 4 to 30 ring carbon atoms, a substituted or unsubstituted aryl group containing 6 to 18 ring carbon atoms and combinations thereof; R¹ and R⁴ can be taken together to form the divalent bridging group, -C(O)-Q-(O)C-, which when taken together with the two ring carbon atoms to which they are attached form a pentacyclic ring, wherein Q represents an oxygen atom or the group N(R⁸), wherein R⁸ is selected from hydrogen, halogen, linear and branched C₁-C₁₀ alkyl, and C₆-C₁₈ aryl.

59. The reactant composition of claim [32,] 33, [43, 44, 48, 55 or 56] (Amended) wherein said composition further comprises a rate moderator selected from the group consisting of water, tetrahydrofuran, 2-methyltetrahydrofuran, diethyl ether, methyl-tert-butyl ether, dimethoxyethane, diglyme, trimethylphosphine, triethylphosphine, tributylphosphine, tri(orthotolyl)phosphine, tri-tert-butylphosphine, tricyclopentylphosphine, tricyclohexylphosphine, triisopropylphosphine, trioctylphosphine, triphenylphosphine, tri(pentafluorophenyl)phosphine, methyldiphenylphosphine, dimethylphenylphosphine, trimethylphosphite, triethylphosphite, triisopropylphosphite, ethyl diphenylphosphinite, tributylphosphite, triphenylphosphite, diethylphenylphosphonite, and tribenzylphosphine, 2-cyclohexenone, triphenylphosphine oxide, and mixtures thereof.

wherein "a" independently represents a single or double bond, m independently is an integer from 0 to 5, R⁹ is a divalent radical selected from divalent hydrocarbyl radicals and divalent ether radicals.