Bankruptcy Forecasting: A Predictive Analysis with SAS Enterprise Miner

Fall 2023 – MGMT 57100

Team: Data Jedi

Abhishek Krovvidi

Sai Teja Devalla

Sathwik Kanukuntla

Problem Objective

Project Overview:

Introduction of a predictive model aimed at forecasting **bankruptcy** risks in companies.

Key Features:

Utilization of 64 financial indicators.

Focus on profitability, liabilities, and asset management metrics.

Objective:

To offer a critical decision-making tool for stakeholders and financial analysts.

Impact:

Enhancing the identification of potential financial distress.

Assessing long-term viability of companies in the current economic environment.

Approach

Objective

Best Model

Interpret

Our approach to evaluate different models

Statistics	Selected Model	Variable (Selection Criterion: Valid: Roc Index	Valid: Misclassifica tion Rate	Valid: Cumulative Lift	Valid: Gini Coefficient	
	Υ	Ensmbl	class	0.942	0.014845	7.211335	0.884	
끒		Neural	class	0.935	0.016194	6.787139	0.871	
_		Reg	class	0.927	0.019343	7.635531	0.854	
		Boost	class	0.915	0.015295	7.423433	0.83	
		HPDMForest	class	0.849	0.021143	5.95053	0.697	
		Tree	class	0.723	0.019343	5.155114	0.447	

Objective

Filtering outliers after exploring data through Multiplot

Variable Transformation based on Skewness

Model comparison of different models

Tried Ensemble models with various combos

Assessed through various Cutoff values

Tuning model specific parameters across all the trials

Approach

Best Model Modelling techniques

Interpret

What is the best model we identified?

"Ensemble of Gradient Boosting and Neural Network models is our best predictive model"

Objective Approach

Best Model

Interpret

What is the best model we identified?

Approach

Objective

Best Model

Interpret

How do we interpret the output?

Gradient Boost - Model Output (Sample)

Scree Plot – Interpret import variables

Variable Importance >= 0.9 (Top 6)

Sales Profitability - Profit on sales / sales - Attr39

Sales Efficiency - (Sales - cost of products sold) / sales - Attr56

Operational Leverage - Operating expenses / total liabilities - Attr34

Profitability Ratio - (Gross profit + depreciation) / sales - Attr13

Asset Profitability - Net profit / total assets - Attr1

Cost to Sales Ratio - Total costs / total sales - Attr58

Event Classification Table

	Model Node	Model Description	Data Role	Target	Target Label	False Negative	True Negative	False Positive	True Positive
1	Neural	Neural Network	TRAIN	class		71	7332	8	88
l	Neural	Neural Network	VALIDATE	class		26	2440	8	27
1	Boost	Gradient Boosting	TRAIN	class		56	7340	0	103
l	Boost	Gradient Boosting	VALIDATE	class		47	2448	0	6
	Ensmbl	Ensemble	TRAIN	class		41	7332	8	118
1	Ensmbl	Ensemble	VALIDATE	class		24 🗸	2440	8	29 🗸

Other Scope

Adjust Cutoff values to minimize False positives

Try using more models in ensemble for better interpretability

Objective

Approach

Best Model

Interpret

What have we learnt from this project?

Objective >> Approach

Best Model

Interpret

Thank you!

