第七章作业

1. 解初值问题 y'(x) = f(x,y), $y(x_0) = y_0$ 的梯形格式 $y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, x_{n+1})]$ 是几阶方法?

参见p166,式(7-9)

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

$$R_{n+1} = y(X_{n+1}) - y(X_n) - \frac{h}{2} [f(X_n, y_n) + f(X_{n+1}, y(X_{n+1}))]$$

$$= -\frac{h^3}{12} y'''(\xi) = 0 (h^3) \qquad (X_n < \xi < X_{n+1})$$

二阶!

2. 解初值问题 y'(x) = f(x,y), $y(x_0) = y_0$ 的向后 Euler 方法(即后退 Euler 方法) $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$ 是几阶方法?

参考p165页式(7-7)可得:

$$R_{n+1} = y(x_{n+1}) - y(x_n) - hf(x_{n+1}, y(x_{n+1}))$$

= $y(x_{n+1}) - y(x_n) - hy'(x_{n+1})$

将 $y(x_n)$ 在 x_{n+1} 附近展开得:

$$y(x_n) = y(x_{n+1}) - hy'(x_{n+1}) + \frac{1}{2}h^2y''(x_{n+1}) - \frac{1}{3!}h^3y'''(x_{n+1}) + \dots$$

代入上式可得:

$$R_{n+1} = -\frac{1}{2}h^2y''(x_{n+1}) + \frac{1}{3!}h^3y'''(x_{n+1}) - \dots = O(h^2)$$

一阶!

5. 用改进的 Euler 方法解初值问题
$$\begin{cases} y' = x^2 + x - y & 0 < x < 1 \\ y(0) = 0 \end{cases}$$
 取步长 $h = x + x - y$

0.1 计算 y(0.5),并与准确解 $y = -e^{-x} + x^2 - x + 1$ 相比较。

参考p167页式(7-11)可得:

$$\begin{cases} y_p = y_n + 0.1 \cdot (x_n^2 + x_n - y_n) \\ y_q = y_n + 0.1 \cdot [(x_n + 0.1)^2 + (x_n + 0.1) - y_p] \\ y_{n+1} = (y_p + y_q)/2 \end{cases}$$

^	LX XI LUICI	丹大坦
0	0	0
0.1000	0.0055	0.0052
0.2000	0.0219	0.0213
0.3000	0.0501	0.0492
0.4000	0.0909	0.0897
0.5000	0.1450	0.1435

改讲Fular 首京信

6. 用梯形方法解初值问题 $\begin{cases} y'+y=0 \\ y(0)=1 \end{cases}$,证明其近似解为 $y_n = \left(\frac{2-h}{2+h}\right)^n$,并证明 趋近于 0 时,它收敛于原初值问题的准确解 $y=e^{-x}$ 。

参考p166页式(7-9)可得:

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$
 $y_{n+1} = y_n + \frac{h}{2} [-y_n - y_{n+1}]$

$$y_{n+1} = \frac{2-h}{2+h} y_n$$
 代入**y(0)=1**,即得 $y_n = \left(\frac{2-h}{2+h}\right)^n$

利用极限公式:
$$\lim_{x\to\infty} \left(1-\frac{1}{x}\right)^x = \frac{1}{e}$$

$$\lim_{h \to 0} \left(\frac{2-h}{2+h} \right)^{x/h} = \lim_{t \to \infty} \left(\frac{2t-1}{2t+1} \right)^{tx} = \lim_{t \to \infty} \left(1 - \frac{1}{t+1/2} \right)^{tx} = e^{-x}$$

基本要求

- 欧拉法;
- 改进的欧拉法;
- 龙格-库塔法及线性多步法的基本思想。