

CURSO DE CIÊNCIA DA COMPUTAÇÃO CE3512 – LABORATÓRIO DE SISTEMAS DIGITAIS PROJETO 1 - 1° SEMESTRE DE 2021

Roteiro do Projeto 1: Apresentação do Número de Matrícula

1. Introdução

O objetivo do projeto 1 do Laboratório de Sistemas Digitais é desenvolver um sistema digital combinacional que a partir do acionamento de três chaves apresenta o código da disciplina e o número da matrícula do aluno em um par de displays de sete segmentos.

Esse laboratório tem como objetivo exercitar a metodologia de desenvolvimento de projetos de engenharia apoiada em computador (CAE). Esse processo envolve a compreensão do problema, seu planejamento, desenvolvimento da solução lógica, integração dos subsistemas, implementação no ambiente computacional, simulação, testes, depuração do projeto, implementação física e registro dos resultados.

2. Planejamento do Projeto

O processo de elaboração do projeto consiste nas seguintes etapas:

Projeto Lógico (preparatório ao laboratório – antes da aula):

➤ Análise do projeto lógico do sistema digital para a elaboração das Tabelas Verdade, considerando as especificações do problema.

Aula 5 (AVA):

➤ Desenvolvimento do projeto lógico do sistema digital (tabelas verdade, mapas de Karnaugh e expressões lógicas simplificadas), considerando **duas formas de implementação**: com portas lógicas padrão (AND, OR, NOT) e com multiplexadores comercialmente disponíveis (**Avaliação Formativa**);

Aula 6 (AVA):

- ➤ Elaboração do diagrama esquemático da lógica principal do projeto (decodificador do aluno) utilizando os recursos de edição gráfica (*Block Diagram*) na ferramenta Quartus Prime Lite;
- ➤ O projeto lógico deve ser elaborado utilizando duas formas de implementação: com portas lógicas e com multiplexadores;
- Apresentação individual do diagrama esquemático do projeto do decodificador ao professor (1 ponto);

Aula 7 (AVA):

- > Simulação funcional do decodificador do aluno na ferramenta Quartus Prime Lite;
- Apresentação individual da simulação funcional ao professor para comprovar o correto funcionamento do decodificador, utilizando as duas formas de implementação (2 pontos);
- > Incorporação dos outros módulos que complementam o projeto lógico.

Aula 8 (CGI):

- Atribuição de pinos e preparação para configuração do dispositivo lógico programável (FPGA);
- ➤ <u>Apresentação individual</u> do projeto completo e teste projeto na placa **DE10-Lite** para avaliação da implementação pelo professor (1 ponto*);
- Entrega do relatório do projeto (conforme instruções no final do roteiro) (1 ponto).
- *Observação: Na impossibilidade da realização da configuração do FPGA (por indisponibilidade do acesso ao CGI) o relatório passará a valer 2 pontos.

Nas aulas de apresentação o aluno deverá estar preparado para responder às seguintes questões:

- ✓ Demonstrar que a lógica de controle desenvolvida opera de acordo com a especificação;
- ✓ Descrever e exemplificar o funcionamento da lógica de controle (casos de teste considerados);
- ✓ Descrever a função dos componentes utilizados.

PROJETO 1 - 1° SEMESTRE DE 2021

3. Descrição Funcional do Projeto

Deseja-se implementar um sistema digital que, a partir do acionamento de três chaves (S2, S1, S0), apresente o código da disciplina e o número da matrícula do aluno em dois displays de sete segmentos conforme a **Tabela 1.**

Os displays são do tipo LED (*Light Emitting Diode*) de sete segmentos com ligação em ânodo comum (todos conectados em Vcc). Esse tipo de display pode ser acionado por um decodificador comercialmente disponível (**74247**). A tabela funcional do decodificador **74247** é fornecida no final deste roteiro.

Devem ser utilizadas **duas formas de implementação** da lógica do **Decodificador_do_Aluno**: para o display **HEX0** devem ser utilizadas portas lógicas padrão (AND, OR, NOT); para o display **HEX1** devem ser utilizados multiplexadores (**74151**). A tabela funcional de um multiplexador **7151** é fornecida no final deste roteiro.

O número de matrícula do aluno possui nove dígitos, no formato: **D8 D7 D6 D5 D4 D3 D2 D1 – D0**, onde **D0** é o dígito de controle. Os dígitos devem ser apresentados sequencialmente nos displays conforme comutam-se as chaves de seleção (**S2 S1 S0**), conforme representado na **Tabela 1**. Observe que em algumas combinações das chaves os displays devem ficar apagados, essa condição é obtida com o código "1111" nas entradas DCBA do decodificador **74247**.

Tabela 1: Valor numérico que cada display deve apresentar conforme o número de matrícula do aluno

S2	S1	S0	DISPLAY HEX1	DISPLAY HEXO
0	0	0	Apagado	Apagado
0	0	1	3	5
0	1	0	1	2
0	1	1	Apagado	D8
1	0	0	D7	D6
1	0	1	D5	D4
1	1	0	D3	D2
1	1	1	D1	D0

Fonte: Autor.

Por exemplo: caso o aluno tenha número de matrícula: **22118059-4**, seu projeto deve ter a seguinte tabela verdade:

S2	S1	S0	DISPLAY 1	DISPLAY 0
0	0	0		
0	0	1	3	5
0	1	0	1	2
0	1	1		2
1	0	0	2	1
1	0	1	1	8
1	1	0	0	5
1	1	1	9	4

PROJETO 1 - 1° SEMESTRE DE 2021

O diagrama de blocos completo do sistema digital para a apresentação do código da disciplina e do número da matrícula do aluno é representado na **Figura 1.**

Figura 1: Diagrama de blocos do sistema de apresentação do código da disciplina e número da matrícula

Fonte: Autor.

4. Requisitos de Implementação de Projeto (Aula 5 no AVA)

O sistema de controle digital deve ser totalmente implementado utilizando o FPGA da família **MAX10** – modelo: **10M50DAF484C7G** existente na placa de desenvolvimento **DE10-Lite**.

Cada aluno deve desenvolver <u>individualmente o projeto lógico</u> (**Tabelas Verdade** e **equações lógicas minimizadas**) para representar o sistema de controle de apresentação do seu número de matrícula. Esse projeto deve ser **desenvolvido** e **discutido** com o professor na primeira aula de projeto (**Aula 5**).

Os requisitos específicos desse sistema digital são os seguintes:

- ➤ Conforme a **Figura 1** o projeto é constituído por quatro decodificadores: dois que devem ser projetados pelo aluno (**Decodificador_do_Aluno_0 e Decodificador_do_Aluno_1**) e outros dois que serão utilizados componentes comerciais para executar a conversão BCD Sete Segmentos (neste caso o **74247** é apropriado para o display de ânodo comum da placa **DE10-Lite**).
- O Decodificador_do_Aluno_0 deve ser projetado utilizando portas lógicas padrão (AND, OR, NOT);
- ➤ O **Decodificador_do_Aluno_1** deve ser projetado utilizando multiplexadores 8x1, neste caso o Quartus Prime possui o modelo **74151**. A tabela funcional do multiplexador **7151** é fornecida no final deste roteiro.

CURSO DE CIÊNCIA DA COMPUTAÇÃO CE3512 – LABORATÓRIO DE SISTEMAS DIGITAIS PROJETO 1 - 1° SEMESTRE DE 2021

- ➤ O Decodificador_do_Aluno_0 deve fornecer como saída um código (D0 C0 B0 A0) que deve ser apresentado nos LED's: L3, L2, L1, L0 da placa DE10-Lite. Esse código deve ser tal que o display hexadecimal HEX0 da placa DE10-Lite apresente o número desejado e permanecer apagado para a primeira combinação das chaves, conforme a Tabela 1
- ➢ O Decodificador_do_Aluno_1 deve fornecer como saída um código (D1 C1 B1 A1) que deve apresentar no display hexadecimal HEX1 da placa DE10-Lite os números desejados e permanecer apagado para a primeira e última combinação das chaves, conforme a Tabela 1.
- ➤ Os sinais de entrada (S2, S1 e S0) devem ser conectados às chaves deslizantes SW2, SW1 e SW0 da placa DE10-Lite, como mostrado na Figura 2.

Figura 2: Interfaces do sistema de apresentação do número da matrícula na placa DE10-Lite.

Fonte: TERASIC, 2020 (adaptado).

5. Apresentação da Implementação do Projeto Lógico (Aula 6 no AVA)

Na **Aula 6** o aluno deve apresentar a **realização do projeto lógico** do sistema, incluindo os decodificadores **Decodificador_do_Aluno_0** e **Decodificador_do_Aluno_1** implementados técnicas de projeto diferentes (portas lógicas padrão e multiplexadores). O circuito com esses dois componentes deve ser **implementado no ambiente da ferramenta Quartus Prime Lite**. Veja os procedimentos do arquivo: **Tutorial_Quartus_Prime_Captura_de_Esquemático** (PRATES, 2019), disponível no Moodle.

6. Apresentação da Simulação (Aula 7 no AVA)

A apresentação das formas de onda da simulação do Projeto 1 no ambiente do Quartus Prime Lite (Aula 7) pode restringir-se à simulação funcional dos circuitos: Decodificador_do_Aluno_0 e Decodificador_doAluno_1 (circuitos com contorno em vermelho na Figura 1), portanto não precisam ser incluídos os outros elementos do projeto (os decodificadores 74247 e respectivos pinos).

A simulação da lógica do **Decodificador_do_Aluno_0** e **Decodificador_do_Aluno_1** deve ser realizada **no modo funcional**, utilizando o editor de vetor de formas de onda. Nessa simulação devem ser apresentadas **todas as oito possíveis combinações dos sinais de entrada** para <u>demonstrar a correta operação do sistema</u>.

PROJETO 1 - 1° SEMESTRE DE 2021

7. Conclusão do Projeto (Aula 8 no CGI)

Na **Aula 8** (no **CGI** o aluno deve incluir todos os componentes (decodificadores **74247** e respectivos pinos), assim como a atribuição da numeração dos pinos do FPGA para cada sinal de entrada e saída do projeto na placa **DE10-Lite**. A associação dos sinais do projeto de apresentação do código da disciplina e do número da matrícula do aluno com os pinos do FPGA da placa DE10-Lite é apresentada na **Tabela 2.**

Tabela 2: Numeração dos pinos para os sinais de entrada e saída do FPGA da placa **DE10-Lite**.

SINAL	PINO	DISPLAY HEX0	PINO	DISPLAY HEX1	PINO	LED	PINO
SW[2] - S2	D12	HEX0 – Seg_g	C17	HEX1 – Seg_g	B17	LD3 – D0	B10
SW[1] – S1	C11	HEX0 - Seg_f	D17	HEX1 – Seg_f	A18	LD2 – C0	A10
SW[0] - S0	C10	HEX0 - Seg_e	E16	HEX1 – Seg_e	A17	LD1 – B0	A9
		HEX0 – Seg_d	C16	HEX1 – Seg_d	B16	LD0 – A0	A8
		HEX0 - Seg_c	C15	HEX1 – Seg_c	E18		
		HEX0 – Seg_b	E15	HEX1 – Seg_b	D18		
		HEX0 – Seg_a	C14	HEX1 – Seg_a	C18		

Fonte: TERASIC, 2020 (adaptado).

Os procedimentos para a execução da atribuição de pinos do **FPGA** da família MAX10 - modelo: **10M50DAF484C7G** a um projeto lógico no ambiente do Quartus Prime Lite estão apresentados na **seção 7.3** do arquivo: **Tutorial_Quartus_Prime_Captura_de_Esquemático** (PRATES, 2019), disponível no Moodle.

Os demais pinos disponíveis para chaves e LED's da placa **DE10-Lite** estão disponíveis no arquivo: **Associação de Pinos do FPGA da Placa DE10-Lite** (disponível nas referências de laboratório no Moodle).

<u>Atenção</u>: Não deixe conectores de saída (OUTPUT) **sem atribuição de pino**. O Quartus Prime associa automaticamente todos os conectores de saída a algum pino de I/O, <u>podendo ocorrer conflito</u> de um pino escolhido pela ferramenta com um sinal já utilizado na placa **DE10-Lite**.

O aluno pode utilizar a **Sala de Projetos (sala D3-07 ou D3-09)** para testar seu projeto antes da aula de apresentação (a chave da sala e a placa **DE10-Lite** podem ser solicitadas no almoxarifado do **CLE**).

CURSO DE CIÊNCIA DA COMPUTAÇÃO CE3512 – LABORATÓRIO DE SISTEMAS DIGITAIS PROJETO 1 - 1° SEMESTRE DE 2021

8. Critérios de Elaboração do Relatório do Projeto

O projeto deve ser desenvolvido **individualmente**. Projetos copiados, **total ou parcialmente**, **não serão considerados válidos**, **sendo atribuído zero para todos os projetos copiados**;

As avaliações das **apresentações e os relatórios serão individuais**, sendo que cada aluno deve **demonstrar o perfeito conhecimento de todas** as etapas do projeto e teste;

O relatório deve ser entregue no formato de **arquivo em PDF** (**enviado pelo MOODLE**) e deve conter a documentação detalhada do projeto, <u>permitindo que este seja entendido e executado por um outro projetista</u>. O relatório deve apresentar, <u>no mínimo</u>, os seguintes itens:

1. Capa com o nome, número do aluno e turma;

2. Parte 1: Descrição do Problema:

A introdução deve apresentar um resumo dos objetivos do projeto com a especificação das características particulares da implementação realizada pelo aluno (tabela verdade preenchida com o código da disciplina e do número da matrícula do aluno).

3. Parte 2: Descrição da Realização do Projeto:

Devem ser descritos os vários elementos que compõem o projeto. Devem ser apresentados **em detalhe no mínimo** os seguintes elementos:

- <u>Tabela Verdade</u>: com as <u>condições das saídas</u> D0 C0 B0 A0 e D1 C1 B1 A1 necessárias para a apresentação os números do aluno;
- Mapas de Karnaugh: com as expressões resultantes da lógica de decodificação para os números do aluno:
- <u>Diagrama Esquemático-Lógico</u> completo do projeto do sistema, mostrando a interligação entre todos os elementos do projeto (portas lógicas, multiplexadores) e os pinos dos sinais de entrada e saída (gerada com "*Print Screen*" do editor de blocos do Quartus Prime arquivo.bdf);
- Formas de onda da simulação funcional apresentadas na Aula 7 de projeto (geradas com "Print Screen" do simulador do Quartus Prime arquivo.vwf);

4. Conclusão:

Na conclusão do relatório podem ser comentados: os objetivos do Projeto 1; as dificuldades encontradas e como foram superadas; o que o aluno faria de diferente se tivesse que executar esse projeto novamente.

<u>ATENÇÃO</u>: O *upload* de arquivos no Moodle é de <u>inteira responsabilidade do aluno</u>, que <u>deve verificar</u> se os arquivos foram efetivamente postados após o *upload*. <u>Não serão aceitos</u> arquivos postados <u>fora do horário</u> especificado para *upload* da atividade.

PROJETO 1 - 1° SEMESTRE DE 2021

9. Especificação Funcional do Decodificador 74247

Figura 3: Tabela funcional e símbolo lógico do decodificador BCD para display de sete segmentos (74247).

FUNCTION TABLE

DECIMAL OR	INPUTS						BI/RBO [†]	OUTPUTS						
FUNCTION	LT	RBI	D	С	В	Α	ылсьо	OA	OB	ОС	OD	OE	OF	OG
0	Н	Н	L	L	L	L	Н	ON	ON	ON	ON	ON	ON	OFF
1	Н	Χ	L	L	L	Н	Н	OFF	ON	ON	OFF	OFF	OFF	OFF
2	Н	Χ	L	L	Н	L	Н	ON	ON	OFF	ON	ON	OFF	ON
3	Η	Χ	┙	L	Н	Н	Н	ON	ON	ON	ON	OFF	OFF	ON
4	Н	Χ	L	Н	L	L	Н	OFF	ON	ON	OFF	OFF	ON	ON
5	Н	Χ	L	Н	L	Н	Н	ON	OFF	ON	ON	OFF	ON	ON
6	Н	Χ	L	Н	Н	L	Н	ON	OFF	ON	ON	ON	ON	ON
7	Η	Χ	L	Н	Н	Н	H	ON	ON	ON	OFF	OFF	OFF	OFF
8	Н	Χ	Н	L	L	L	Н	ON	ON	ON	ON	ON	ON	ON
9	Н	Χ	Н	L	L	Н	Н	ON	ON	ON	ON	OFF	ON	ON
10	Н	Χ	Н	L	Н	L	Н	OFF	OFF	OFF	ON	ON	OFF	ON
11	Ι	Χ	Ι	L	Н	Н	Η	OFF	OFF	ON	ON	OFF	OFF	ON
12	Н	Χ	Н	Н	L	L	Н	OFF	ON	OFF	OFF	OFF	ON	ON
13	Н	Χ	Н	Н	L	Н	Н	ON	OFF	OFF	ON	OFF	ON	ON
14	Н	Χ	Н	Н	Н	L	Н	OFF	OFF	OFF	ON	ON	ON	ON
15	Ι	Χ	Ι	Н	Н	Н	Η	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Bl	Χ	Χ	Χ	Χ	Χ	Χ	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF
RBI	Н	L	L	L	L	L	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF
LT	L	Χ	Χ	Χ	Χ	Χ	Н	ON	ON	ON	ON	ON	ON	ON

Fonte: TEXAS (A), 2020 (adaptado).

PROJETO 1 - 1° SEMESTRE DE 2021

10. Especificação Funcional do Multiplexador 74151

Figura 4: Tabela funcional e símbolo lógico do multiplexador de oito entradas (74151).

Fonte: TEXAS (B), 2020 (adaptado).

11. Referências Bibliográficas

TOCCI, Ronald J; WIDMER, Neal S.; MOSS, Gregory L. **Sistemas Digitais:** Princípios e Aplicações. Revisão técnica: Renato Giacomini. Tradução: Jorge Ritter. 11. Ed. São Paulo: Pearson Prentice Hall, 2011.

QUARTUS – Intel Quartus Prime – Lite, Version 16.1. Intel-FPGA (©Intel Corporation). Disponível em: (https://fpgasoftware.intel.com/?edition=lite). Acesso em: 07/07/2020.

PRATES, R. R. – Tutorial de Quartus Prime para Projeto de CPLD/FPGA (baseado em Captura de Esquemático). Programa de Iniciação Didática – Centro Universitário FEI, 2019.

TERASIC - DE10-LITE Board - User Manual. (©Terasic Inc). Disponível em: (https://www.terasic.com.tw/cgibin/page/archive.pl?Language=English&CategoryNo=234&No=1021&PartNo=4). Acesso em: 06/07/2020.

TEXAS (A) — SN74LS247 — BCD-To-Seven-Segment Decoders/Driver datasheet. (©Texas Instruments Inc). Disponível em: (https://www.ti.com/product/SN74LS247). Acesso em 16/07/2020

TEXAS (B) – SN74LS151 – 8-Line To 1-Line Data Selectors/Multiplexers datasheet. (©Texas Instruments Inc). Disponível em: (https://www.ti.com/product/SN74LS151). Acesso em 16/07/2020