Appello - 25 Giugno 2022	Appello -	25 Giugn	o 2022
--------------------------	-----------	----------	--------

Cognome	
Nome	
Matricola	

Tempo complessivo a disposizione per lo svolgimento: 2 <u>ore</u> Si usi lo spazio bianco dopo ogni esercizio per la risoluzione

E1 E2 E3 Quesiti Lab

1 - Esercizio (6 punti)

La rete di un ISP è riportata in figura. L'ISP possiede lo spazio di indirizzamento: 200.21.136.0/21. Definire un piano di indirizzamento in grado di supportare il numero di *host* indicato nella figura.

- a) Indicare le sottoreti IP graficamente nella figura, mettendo in evidenza i confini tra le reti IP ed assegnando una lettera identificativa a ciascuna rete. Assegnare le lettere in ordine alfabetico iniziando dalla rete più grande e procedendo per dimensione decrescente (# indirizzi rete A ≤ # indirizzi rete B ≤). Per ciascuna sottorete definire l'indirizzo di rete, la *netmask* (in formato decimale puntato), e l'indirizzo di broadcast diretto, usando la tabella 1.
- b) Scrivere nella tabella 2 la tabella di instradamento del router R1 nel modo più compatto possibile dopo aver assegnato opportunamente degli indirizzi ai router a cui R1 è connesso direttamente (si ignorino le reti punto punto nelle tabelle di routing).

SOLUZIONE

Tabella 1: Piano di indirizzamento

Rete	Indirizzo di rete	Netmask	Ind. broadcast diretto
A	200.21.136.0	/23	200.21.137.255
В	200.21.138.0	/24	200.21.138.255
C	200.21.139.0	/24	200.21.139.255
D	200.21.140.0	/24	200.21.140.255
Е	200.21.141.0	/24	200.21.141.255
F	200.21.142.0	/25	200.21.142.127
G	200.21.142.128	/25	200.21.142.255
Н	200.21.143.0	/26	200.21.143.63
I	200.21.143.64	/26	200.21.143.127
L	200.21.143.128	/27	200.21.143.159
M	200.21.143.160	/27	200.21.143.191
N	200.21.143.192	/27	200.21.143.223
PP1	200.21.143.224	/30	200.21.143.227
PP2	200.21.143.228	/30	200.21.143.231
PP3	200.21.143.232	/30	200.21.143.235
PP4	200.21.143.236	/30	200.21.143.239
PP5	200.21.143.240	/30	200.21.143.243
PP6	200.21.143.244	/30	200.21.143.247
PP7	200.21.143.248	/30	200.21.143.251

Tabella 2: Tabella di routing di R1

Rete	Netmask	Next hop
200.21.136.0	255.255.252.0	200.21.143.237
200.21.140.0	255.255.252.0	200.21.143.233
0.0.0.0	0.0.0.0	default

Esercizio 2 (6 punti)

Si consideri la rete in figura. Il server S1 deve trasferire un file di F=180 kB al client A usando una connessione TCP. Si assuma che la connessione viene aperta dal client, MSS=1500 B, SSTHRESH=12 kB, segmenti apertura di connessione e ACK di lunghezza trascurabile, RCVWND=18 kB.

- a) Si valuti se la connessione diventa mai continua su qualcuno dei link ed eventualmente si indichi su quale link e in quanto tempo dall'istante di inizio dell'apertura della connessione
- b) Si calcoli il tempo complessivo di trasferimento (fino alla ricezione dell'ultimo riscontro) in assenza di errori.
- c) Si calcoli il tempo di trasferimento complessivo (fino alla ricezione dell'ultimo riscontro) assumendo che vada perso l'ottavo segmento, che il time out sia pari a 5 ms (avviato all'inizio della trasmissione di ciascun pacchetto), e che il ricevitore accetti anche pacchetti fuori sequenza ricevuti correttamente.

SOLUZIONE

$$MSS = 1500 \, B$$

$$F = 180 \, KB = 120 \, MSS$$

$$SSTHRES = 12 \, KB = 8 \, MSS$$

$$RWND = 18 \, KB = 12 \, MSS$$

$$T_{out} = 5 \, ms$$

$$T_{1} = \frac{MSS}{C_{1}} = \frac{1500 \cdot 8}{10^{9}} = 12 \, \mu s$$

$$T_{2} = \frac{MSS}{C_{2}} = \frac{1500 \cdot 8}{200 \cdot 10^{6}} = 60 \, \mu s$$

$$T_{3} = \frac{MSS}{C_{3}} = \frac{1500 \cdot 8}{10^{9}} = 12 \, \mu s$$

$$T_{4} = \frac{MSS}{C_{4}} = \frac{1500 \cdot 8}{100 \cdot 10^{6}} = 120 \, \mu s$$

$$RTT = T_{1} + T_{2} + T_{3} + T_{4} + 2\tau_{1} + 2\tau_{2} + 2\tau_{3} + 2\tau_{4} = 12 + 60 + 12 + 120 + 200 + 400 + 200 + 400 = 1404 \, \mu s$$
a)
$$W_{c} = \begin{bmatrix} RTT \\ T_{4} \end{bmatrix} = \begin{bmatrix} 1404 \\ 120 \end{bmatrix} = 12$$

$$(T_{open})(1)(2)(4)(8)(9)(10)(11)(75 \, in \, continua)$$

$$T_{c} = T_{open} + 7RTT = 1200 + 7 \cdot 1404 = 11.028 \, ms$$
b)
$$T_{tot}^{a} = T_{open} + 8RTT + 74T_{4} = 21.312 \, ms$$

 $(T_{open})(1)(2)(4)(T_{out} + 7)(1)(2)(4)(5)(6)(7)(8)(9)(10)(11)(43 in continua)$

 $T_{tot}^b = T_{open} + 14RTT + T_{out} + 42T_4 = 30.896 \, ms$

Esercizio 3 (5 punti)

Si consideri la rete in figura dove le interfacce sono indicate con le lettere maiuscole e MAC-x e IP-x, x = [A, B, C, D, E, F, G], sono gli indirizzi MAC e IP rispettivamente. Si assuma che la tabella ARP del *Client* sia vuota, mentre quelle degli altri nodi abbiano già tutte le righe necessarie. Nel Client c'è un http client con il Proxy configurato come http *proxy*. Il Client vuole inviare una richiesta http al *Server* dove c'è un http *server* attivo; il *Server* successivamente risponde al *Client*. Si assuma che il proxy non abbia una copia valida del contenuto web richiesto dal *Client*. Si indichino graficamente i pacchetti trasmessi sulla rete sui segmenti (a), (b), (c) e (d) e per ciascuno di essi gli indirizzi/porte contenuti nelle PDU di livello 2, 3, e 4 (si usi la porta 80 per il server http e la porta 8080 per il proxy).

SOLUZIONE

Da A a BROADCAST: ARP Request (messaggio ARP)
Da Proxy a A: ARP Reply (messaggio ARP)
Da A a Proxy: segmento TCP SYN (L4)

IP: IP-A, IP-B (L3)

L2: MAC-A, MAC-B (L2)

Da Proxy a A: segmento TCP SYN/ACK (L4)

IP: IP-B, IP-A (L3) L2: MAC-B, MAC-A

Da A a Proxy: GET HTTP per www.server.xxx (L5)

TCP: segmento ACK, TCP porte: 21462 - 8080

IP: IP-A, IP-B

L2: MAC-A, MAC-B

Ricerca DNS per indirizzo www.server.xxx da parte del proxy

Si assume connessione TCP Proxy-Server già aperta

Da Proxy a R1 GET HTTP per www.server.xxx (L5)

TCP: segmento TCP porte: 32672 - 80

IP: IP-B, IP-G

L2: MAC-B, MAC-C

Da R1 a R2: inoltro indiretto pacchetto IP precedente

GET HTTP per www.server.xxx (L5)

TCP: segmento TCP porte: 32672 - 80

IP: IP-B, IP-G L2: MAC-D, MAC-E

4-Domande (9 punti)

01

Un sistema di accesso multiplo a divisione di tempo (TDMA) è caratterizzato da un rate trasmissivo sul canale di W=5 Mb/s e da una velocità netta per ciascun sotto-canale (tributario) V=100 kb/s. Sapendo che in ciascuno slot vengono trasmessi D=200 bit di dati e H=50 bit di overhead, e che il tempo di guardia $T_{\rm g}$ è di 12.5 μ s, calcolare il tempo di slot $T_{\rm s}$, il tempo di trama $T_{\rm T}$, e il numero N di sotto-canali.

Solution Canalis.
$$T_T = \frac{D}{V} = \frac{200 \text{ bit}}{100 \text{ kb/s}} = 2 \text{ ms}$$

$$T_D = \frac{D+H}{W} = \frac{250 \text{ bit}}{5 \text{ Mb/s}} = 50 \text{ }\mu\text{s}$$

$$T_S = T_D + T_g = 62.5 \text{ }\mu\text{s}$$

$$N = \frac{T_T}{T_S} = \frac{2000}{62.5} = 32$$

 $\mathbf{Q2}$

Un segnale video analogico viene campionato e convertito in un segnala digitale con una risoluzione di 640x480 pixel e una frequenza di immagine (frame rate) di $F_F = 60$ Hz, e utilizzando una codifica RGB a tre colori con b = 12 bit per pixel per colore. Calcolare la frequenza di campionamento F_c e frequenza del segnale digitale. Assumendo che il segnale venga trasmesso usando pacchetti lunghi 500 B e con 100 B di overhead protocollare, calcolare la velocità del flusso di pacchetti generato (in bit/s).

```
P = 640 \cdot 480 = 307200
F_c = P \cdot F_F = 18.432 \, MHz
R_v = F_c \cdot b \cdot 3 = 663.552 \, Mb/s
R_p = R_v \cdot \frac{500 + 100}{500} = 796.2624 \, Mb/s
```

Q3

Nella rete in figura i router R1 e R2 implementano un meccanismo NAPT utilizzando come unico indirizzo pubblico quello della loro interfaccia verso internet. Il router R2 implementa anche un meccanismo di port forwarding per il server web S sulla porta standard 80. Per i pacchetti inviati dal client web A verso il server S indicare gli indirizzi IP di sorgente e di destinazione quando viaggiano nella Intranet 1, in Internet e nella Intranet 2.

Intranet 1

S: 192.168.25.37 D: 135.75.240.22

Internet

S: 200.21.45.1 D: 135.75.240.22

Intranet 2

S: 200.21.45.1 D: 192.168.120.15

6 -Laboratorio (6 punti)

Si vedano fogli separati.