COMPUTER SCIENCE 349A

Handout Number 22

USE OF THE ERROR TERM OF POLYNOMIAL INTERPOLATION

PROBLEM: produce a table of values of e^x for x = 0, h, 2h, 3h, ..., 1, such that linear interpolation between successive values in the table will yield an approximation with an absolute error $< 10^{-6}$.

Let $x_k = kh$, let $\tilde{x} \in [0,1]$ and suppose that j is such that $x_j \leq \tilde{x} \leq x_{j+1}$.

So, our problem can be stated as follows: if we estimate $e^{\tilde{x}}$ by $P(\tilde{x})$, determine a value of h so that the error in this approximation, which is $\left|e^{\tilde{x}} - P(\tilde{x})\right|$, is $< 10^{-6}$ for all values of \tilde{x} in [0,1].

Solution: The error term for polynomial interpolation with n = 1 (linear interpolation) gives

$$f(\widetilde{x}) - P(\widetilde{x}) = \frac{f''(\xi)}{2} (\widetilde{x} - x_j) (\widetilde{x} - x_{j+1}),$$

and for our problem we have $f(x) = e^x$, $x_j = jh$ and $x_{j+1} = (j+1)h$. From above,

$$|f(\widetilde{x}) - P(\widetilde{x})| \le \frac{1}{2} \max_{x_j \le \xi \le x_{j+1}} |e^{\xi}| \max_{jh \le \widetilde{x} \le (j+1)h} |(\widetilde{x} - jh)(\widetilde{x} - (j+1)h)|.$$

The right-hand side of this expression is an upper bound for the absolute value of the error of the linear interpolation, and we need to determine h so that this upper bound is $< 10^{-6}$ for all choices of \tilde{x} and ξ . To do this, we need to determine the values of the two maximums above.

Clearly,

$$\max_{x_j \le \xi \le x_{j+1}} \left| e^{\xi} \right| = e ,$$

since for $\tilde{x} \in [0,1]$, the value of ξ can be any value in [0,1].

To determine the other maximum, use calculus: let

$$g(\widetilde{x}) = (\widetilde{x} - jh)(\widetilde{x} - (j+1)h)$$
$$= \widetilde{x}^2 - (2j+1)h\widetilde{x} + j(j+1)h^2,$$

and set $g'(\tilde{x}) = 0$, which gives

$$g'(\tilde{x}) = 2\tilde{x} - (2i+1)h = 0$$

which implies that

$$\tilde{x} = \left(j + \frac{1}{2}\right)h$$
.

Alternatively (without using calculus), clearly the maximum of this quadratic in \tilde{x} must occur at the midpoint between its two zeros, and the midpoint between $\tilde{x} = jh$ and

$$\tilde{x} = (j+1)h$$
 is $\tilde{x} = \left(j + \frac{1}{2}\right)h$.

So $\max_{jh \le \tilde{x} \le (j+1)h} |g(\tilde{x})|$ occurs when $\tilde{x} = \left(j + \frac{1}{2}\right)h$, which gives a maximum of

$$\left| g\left((j+\frac{1}{2})h \right) \right| = \left| \frac{-h^2}{4} \right| .$$

Therefore, from (*) above,

$$|f(\widetilde{x}) - P(\widetilde{x})| \le \frac{1}{2} (e) \left(\frac{h^2}{4}\right) = \frac{eh^2}{8}.$$

As we want this upper bound on the error of the linear interpolation to be $<10^{-6}$, we require that $\frac{eh^2}{8} < 10^{-6}$, which implies that h < 0.00172. Thus, for example, a good choice for h would be 0.001.

Conclusion: if you generated and stored a table of 1001 values of e^x and did linear interpolation between any two adjacent values in the table to determine an approximation to e^x for any value of x that is not in this table, then this approximation is guaranteed to have an absolute error $< 10^{-6}$.

X	e^x
0	1.00000000
0.001	1.00100050
0.002	1.00200200
:	
0.123	1.13088442
0.124	1.13201587
:	
0.999	2.71556491
1	2.71828183