Detección de anomalías en los registros de tráfico ofrecidos por IPFIX

Agustín Walabonso Lara Romero

Universidad de Sevilla

2019

Índice

- Introducción
 - Definición del problema
 - Motivación y objetivos
- Marco teórico
 - Arquitecturas comunes en ciberseguridad
 - solución de arquitectura propuesta
- Oiseño del sistema
 - Tecnologías
 - Exportación IPFIX
 - Cálculo de indicadores

- Almacenamiento de los indicadores
- Detectores
- Pruebas y resultados
 - Escenario de pruebas
 - Indicador aplicaciones desconocidas
 - Indicador puertos destinos
 - Indicador icmp destinos
 - Clasificación del tráfico
 - Fiabilidad del sistema
- **5** Conclusiones y líneas futuras
 - Conclusiones
 - Líneas futuras

Introducción

Definición del problema

Patrones de comportamiento

Detecciones de anomalías

Introducción

Motivación y objetivos

Gran volumen de información

Sistema de detección

Escalabilidad

Marco teórico

Arquitecturas comunes en ciberseguridad

Basadas en sistemas HIDS

No protege a los usuarios

Basadas en sistemas NIDS

Sobrecarga al sistema de detección

Marco teórico

Solución de arquitectura propuesta

Arquitectura híbrida

Protección a los usuarios Enriquecimiento de la información

Tecnologías

Exportación IPFIX

Cálculo de indicadores

Cálculo de indicadores por franja horaria

a) Media móvil

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

b) Media móvil exponencial

$$\mathit{EMA}(t) = \begin{cases} x_1, & t = 1 \\ \alpha \times x_i + (1 - \alpha) \times \mathit{EMA}(t - 1), & t > 1 \end{cases}$$

Almacenamiento de los indicadores

Detectores

Media móvil

$$|x_i - \mu| > \mu \pm K \times \sqrt{\sigma^2} \tag{1}$$

Media móvil exponencial EMA

$$|x_i - \mu_{exp}| > \mu_{exp} \pm K \times \sqrt{\sigma_{exp}^2}$$
 (2)

Escenario de pruebas

Agustín Walabonso Lara Romero

10 Octubre: Sondeo de red14 Octubre: Virus troyano

Indicador aplicación desconocidas

Detecciones: 7 y 14

Detecciones: 3, 7 y 14

Indicador puertos destinos

Detecciones: 7 y 16

Detecciones: 7 y 16

Indicador icmp destinos

Detecciones: 4 y 16

Detecciones: 4

Clasificación del tráfico

Día	Tráfico	App-Unknown	Puertos_destino	Icmp_destino
1	Bueno			
2	Bueno			
3	Bueno	Alerta		
4	Malo			Alerta
5	Bueno			
6	Bueno			
7	Malo	Alerta	Alerta	
8	Bueno			
9	Bueno			
10	Malo	-	-	-
11	Bueno			
12	Bueno			
13	Bueno			
14	Malo	Alerta		
15	Bueno			
16	Bueno		Alerta	Alerta
17	Bueno			
18	Bueno			
19	Bueno			

Fiabilidad del sistema

Indicador	Unknown	Puertos_destino	lcmp_destino
CD(Tasa detección)	50	25	25
TFP(Tasa falsos positivos)	7,14	7,14	7,14
Accuracy (3)	84,21	78,95	78,95

Table: Resultados de la fiabilidad del sistema

Accuracy:

$$Accuracy(\%) = \frac{\sum_{i} Acierto_{i}}{N^{\circ} \ Total \ de \ muestras}$$
 (3)

Conclusiones y líneas futuras

Conclusiones

- DPI
- Sistema escalable y configurable
- Buenos resultados
- Posibilidad de monitorizar la red

Conclusiones y líneas futuras

Líneas futuras

Redes neuronales

Fusión con firewall

Dashboard

