Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

 $\operatorname{Git} \operatorname{Hub}$ проекта

Автор в ВК

Содержание

1 Teop		рия вероятности		
	1.1	.1 Основные понятия. Испытание (опыт, эксперимент), событие		Ç
	1.2	Вероя	тность	4
		1.2.1	Классическая формула вычисления вероятности	4
		1.2.2	Статистическое определение вероятности	4
		1.2.3	Геометрическое определение вероятности	2

(Екатерина Викторовна, 234 или 236 аудитория) E-mail: ekaterina.shevkoplyas@gmail.com ДОСРОКА НЕ БУДЕТ.

1 Теория вероятности

1.1 Основные понятия. Испытание (опыт, эксперимент), событие

Определение 1.1. Теория вероятности — наука, изучающая закономерности случайных явлений.

Определение 1.2. Опыт, испытание, эксперимент — некоторая воспроизводиная совокупность условий, в рамках которых может произойти то или иное явление, тот или иной факт.

Пример 1.1.

- 1) Подбрасывание одной монеты;
- 2) Двух;
- 3) Выстрел по мишени;
- 4) Подбрасывание игрального кубика-кости (да, берцовой);
- 5) Рождение ребенка и тому подобное.

Определение 1.3. Событие — любой факт, который может произойти либо не произойти в результате испытания. Обычно обозначаются заглавными латинскими буквами: A, B.

Пример 1.2.

- 1) Событие A выпадение герба. $\Omega = \{\Gamma, P\}$;
- 2) Выпали все решки;
- 3) Попали по мишени;
- 4.1) Выпало шесть точек;
- 4.2) Выпало четное число точек;
- 5) Родился мальчик.

Событие 4.2 является составным.

Определение 1.4. Элементарное событие (или исход) — событие, которое не может являться объединением более мелких событий. Неопределяемое понятие.

 $\it 3ame$ чание 1.1. ω_i — обозначение элементарного исхода.

 $\Omega = \{\omega_i\}$ — пространство элементарных исходов.

Определение 1.5. Случайное событие $A\subseteq\Omega$. Лежит между \varnothing и Ω .

Определение 1.6. Событие, которое обязательно произойдет, называется достоверным. Так как оно состоит из всех элементов пространства элементарных исходов, оно обозначается Ω .

Определение 1.7. Событие, которое никогда не произойдет в результате испытаний, называется невозможным. Оно обозначается \varnothing .

Определение 1.8. Вероятность события A — число, характеризующее степень возможности этого события. Обозначается p(A). Данное определение не является классическим.

Вероятность невозможного события $p(\emptyset) = 0$

Вероятность достоверного события $p(\Omega)=1.$

Таким образом, $0 \le p(A) \le 1$.

1.2 Вероятность

1.2.1 Классическая формула вычисления вероятности

Пусть относительно Ω выполнены условия:

- $1) |\Omega| = n.$
- 2) «Равные шансы»: все элементарные исходы равновозможны.

Тогда

$$p(A) = \frac{|A|}{|\Omega|}$$

где |A| — мощность множества элементарных исходов, составляющих множество благоприятных исходов.

1.2.2 Статистическое определение вероятности

Если не выполнено второе условие, то формула приобретает вид:

$$p(A) = \frac{m_A}{n}$$

где m_A — число появлений события A, а n — число экспериментов.

1.2.3 Геометрическое определение вероятности

Выполнено второе условие, но не выполнено первое (конечность множества). В этом случае формула приобретет вид:

$$p(A) = \frac{l}{L}$$

где l — площадь (n-мерная) области, удовлетворяющей условию, L — площадь всей области.