

CS230: Digital Logic Design and Computer Architecture

Lecture 12: Instruction Pipelining

https://www.cse.iitb.ac.in/~biswa/courses/CS230/autumn23/main.html

Phones (smart/non-smart) on silence plz, Thanks

Computer Architecture 2

Single to Multi Cycle

Single/multi-cycle (COVID19 vaccine schedule)

Single cycle (Worst case)

One shot will take 60 minutes one slot = 60 minutes

Multi cycle (average case kinda)

One shot: five to 60 minutes one slot = 15 minutes

Can We Have Both?

Faster clock rate and also CPI=1?

Single cycle: one hour per person

verification: 25 minutes

COVID19
Vaccination
Schedule

5 minutes for vaccination

20 minutes post-vaccination

10 minutes, certificate ©

Single cycle: Three hour, three persons

verification: 25 minutes

COVID19 Vaccination Schedule

5 minutes for vaccination

20 minutes post-vaccination

10 minutes, certificate ©

Single cycle: one hour per person

Stage 1 verification: 15 minutes

Stage 2 verification: 10 minutes

Stage 3: 5 minutes for vaccination

Stage 4: 20 minutes post-vaccination

Single cycle: one hour per person

Stage 1 verification: 15 minutes

Stage 2 verification: 10 minutes

Stage 3: 5 minutes for vaccination

Stage 4: 20 minutes post-vaccination

Single cycle: one hour per person

Stage 1 verification: 15 minutes

Stage 2 verification: 10 minutes

Stage 3: 5 minutes for vaccination

Stage 4: 20 minutes post-vaccination

Single cycle: one hour per person

Stage 1 verification: 15 minutes

Stage 2 verification: 10 minutes

Stage 3: 5 minutes for vaccination

Stage 4: 20 minutes post-vaccination

COVID19 Vaccination Pipelined

Schedule

Single cycle: one hour per person

Stage 1 verification: 15 minutes

Stage 2 verification: 10 minutes

Stage 3: 5 minutes for vaccination

Stage 4: 20 minutes post-vaccination

Pipelined: One hour: Three persons

Stage 1 verification: 15 minutes

Stage 2 verification: 10 minutes

Stage 3: 5 minutes for vaccination

Stage 4: 20 minutes post-vaccination

Stage 5: 10 minutes, certificate ©

COVID19
Vaccination
Pipelined
Schedule

Pipelined: One hour: ? Persons, first person: 100 minutes ②, after a while throughput= 3 persons/hr

Stage 1 (20 mins): verification

COVID19
Vaccination
Pipelined
Schedule

Stage 2 (20 mins): verification

Stage 3 (20 mins): 5 minutes for vaccination

Stage 4 (20 mins): 20 minutes post-vaccination

Stage 5 (20 mins):10 minutes, certificate ©

Let's pause a bit

Single cycle: CPI: 1, Cycle time: long

Multi cycle: CPI: >1, Cycle time: short

Pipelined: CPI: 1, Cycle time: short (improves throughput but not latency)

Latency and Bandwidth (throughput)

- Latency
 - time it takes to complete one instance

- Throughput
 - number of computations done per unit time

Pipelining and Richard Feynman

https://www.youtube.com/watch?v=9miKIWIYi4w

Jump to 1:25

Multi-cycle vs Pipelined

Real World

Vanilla 5-stage pipeline

The slide shows a vanilla 5-stage pipeline if we just take a single cycle datapath and divide it into five stages.

Computer Architecture

20

Resource Utilization

Visualizing Pipeline

Visualizing Pipeline: Execution time

For a k-stage pipeline executing N instructions

first instruction: K cycles

fillingext N-1 instructions: Netropsteringtal = K + (N-1) cycles

Computer Architecture 23

Pipelined versus Single cycle CPU design

Instruction	Ifetch	Decode	Execute	Memory	Writeback	Total time
LOAD	200ns	100	200	200	100	800ns
STORE	200	100	200	200		700ns
ADD	200	100	200		100	600ns
BRANCH	200	100	200			500ns

Total latency in single cycle CPU: 3200 ns

Total latency in pipelined CPU (200ns clock cycle):

1000ns (1st instruction) + 3 X 200 ns (for next three) = 1600 ns

What's the big deal

Speedup = 3200ns/1600ns = 2X

What if we have a billion instructions?

Single cycle = 1 billion X 800ns = 800 seconds

Pipelined = 1000ns + (1 billion -1) X 200ns ~ 200 seconds

Speedup = 4X ☺

Let's include latch latency too

Inter-stage latch = 10ns

New clock cycle time in the pipelined design = 210ns

First instruction will get completed by 1040ns (five stages X 200 ns + four inter-stage latches X 10ns)

New Speedup = 800s/210s ~ 3.8X

How to Divide the Datapath?

Suppose memory is significantly slower than other stages. For example, suppose

```
t M = 10 units

t M = 10 units

t M = 5 units

t M = 1 unit

t M = 1 unit
```

Since the slowest stage determines the clock, it may be possible to combine some stages without any loss of performance

#Stages and Speedup

Assumptions

1.
$$t_{IM} = t_{DM} = 10$$
,
 $t_{ALU} = 5$,
 $t_{RF} = t_{RW} = 1$
4-stage pipeline

2.
$$t_{IM} = t_{DM} = t_{ALU} = t_{RF} = t_{RW} = 5$$

4-stage pipeline

3.
$$t_{IM} = t_{DM} = t_{ALU} = t_{RF} = t_{RW} = 5$$

5-stage pipeline

Unpipelined	Pipelined Speedup
t_C	t_C

Stage-1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Memory Stage

Stage 5: Write-back

The Complete Picture

Coffee Credits

Aditya Agarwal