Arquitetura de Redes Locais

Arquiteturas Locais

- Compreender os conceitos básicos, características e protocolos.
- Ethernet 802.3
- WIFI 802.11

LLC - Logical Link Control

- Subcamada da camada de Enlace do Modelo OSI
- Interface entre a camada de Redes e a Subcamada MAC (Media Access Control).
- Organiza e direciona o tráfego dentro da camada de Enlace.

MAC – Media Access Control

- Subcamada da camada de Enlace do Modelo OSI
- Controle do acesso ao meio físico.
 Como os dispositivos compartilham o meio e evita colisão.
- Decide quem acessa o meio e quando.

LLC

Logical Link Control (LLC)

Media Access Control (MAC)

802.2 Standards

802.3 Standards

IEEE 802.3 Ethernet

IEEE 802.3u FastEthernet
IEEE 802.3z GigabitEthernet
IEEE 802.3af Power over Ethernet

- Garantir que os dados sejam entregues ao protocolo de rede.
- Controle de Fluxo controla a quantidade de quadros transmitidos para evitar sobrecarga.
- Multiplexação multiplos protocolos da camada de rede compartilhem o mesmo meio físico.
- Controle de Erros Detecta erros e pode em alguns casos corrigí-los.
- Fornece serviços orientados ou não a conexão.
- Protocolo 802.2

Application
Presentation
Session
Transport
Network
Data Link

Physical

MAC

- Endereçamento físico endereços MAC, únicos no mundo.
- Controle de acesso ao Meio Protocolos CSMA/CD (Ethernet) e CSMA/CA (Wi-Fi) para evitar colisões.
- Topologia de rede como os dispositivos se conectam.
- Encapsula os dados em quadros para transmissão.
- Protocolos 802.3 (Ethernet) e 802.11 (Wi-Fi)

Application Presentation Session Transport Network Data Link

Logical Link Control (LLC) 802.2 Standards

Media Access Control (MAC) 802.3 Standards

Physical

IEEE 802.3 Ethernet IEEE 802.3u FastEthernet IEEE 802.3z GigabitEthernet IEEE 802.3af Power over Ethernet Ethernet

MAC

- Endereço MAC 48 bits
- Os 24 primeiros bits identificam os fabricantes
- Bit 40
 - 0 único (global)
 - 1 administrado localmente
- Bit 41
 - 0 unicast
 - 1 multicast
- FF Broadcast

Application

Presentation

Session

Transport

Network

Data Link

Logical Link Control (LLC) 802.2 Standards

Media Access Control (MAC) 802.3 Standards

Physical

IEEE 802.3 Ethemet IEEE 802.3u FastEthernet IEEE 802.3z GigabitEthernet IEEE 802.3af Power over Ethemet Ethernet

Unicast, Multicast e Broadcast

Unicast

One source, one destination

Broadcast

One source, many receivers

Multicast

One source, a group of interested receivers

LLC - Logical Link Control

MAC – Media Access Control

 Lida com a parte lógica da comunicação. • Lida com o acesso ao meio físico.

- Trabalham juntas para garantir uma comunicação eficiente e confiável.
- A separação das subcamadas permite que tecnologias distintas compartilhem a mesma interface lógica com a camada de rede.

CSMA/CD

CSMA/CA

CSMA/CD

- Detecta colição em um meio compartilhado.
- Protocolo de detecção de colisão.
- Usado em redes cabeadas.
- Usa sinais de colisão para reenviar dados.
- Minimiza o tempo de recuperação.
- Mais popular que o CSMA/CA

CSMA/CA

- Evita colisão em um meio compartilhado.
- Protocolo de prevenção de colisão.
- Usado em redes wireless.
- Usa timer para reenviar dados.
- Minimiza os riscos de colisão.
- Menos popular que o CSMA/CD

- É a arquitetura mais utilizada em redes locais.
- Camadas 1 e 2 do modelo OSI.
- Função de receber os dados das camadas superiores e inserí-los em quadros.
- Enviar / receber os quadros através da rede.
- Definição de como os dados serão transmitidos fisicamente.

- Década de 70 criação nos laboratórios da Xerox.
- Robert Metcalfe pai da Ethernet comunicação rápida e eficiente em redes locais.
- 2.94 Mpbs, cabo coaxial 10BASE5

- Década de 80 popularidade.
- Uso de cabos coaxiais finos –
 10BASE2 mais fácil de trabalhar e instalar.
- IEEE padronizou o Ethernet através do 802.3 – interoperabilidade
- Uso de par trançado sem blindagem
 UTP

- Década de 90 Fast Ethernet (100BASE-TX).
- Predominante uso de cabo UTP.
- Substituição de HUBs por Switches.

NOMENCLATURA

- Velocidade + BASE + Meio
- 10BASE2, 10BASE5
- 10BASE-T, 10BASE-TX, 1000BASE-T, 10GBASE-T
- 10BASE-FL, 100BASE-FX, 1000BASE-SX, 1000BASE-LX, 10GBASE-SR, 10GBASE-LR, 40GBASE-SR4, 100GBASE-LR4

CODIFICAÇÃO

- Depende da taxa de transferência e do meio.
- 10 Mbps (Todos os meios) Manchester.
- 100 Mbps (Todos os meios) 4B/5B.
- 1 Gbps 4D-PAM-5 (UTP) e 8B/10B (Fibras)
- 10 Gbps 64B/66B (Fibras) e DSQ128/PAM-16 (UTP)

CODIFICAÇÃO

- 4B/5B grupo de 4 bits é convertido em um grupo de 5 bits (pré-definido)
- 4D-PAM-5 dados codificados são transmitidos simultâneamente nos 4 pares do cabo UTP, cada par transmite com 5 amplitudes diferentes.
- 8B/10B cada grupo de 8 bits são convertidos em grupos de 10 bits.
- 64B/66B dados são agrupados em grupos de 64 bits e são adicionados 2 bits de cabeçalho.
- **DSQ128/PAM-16** 16 níveis de amplitude são usados para representar os dados, cada 4 bits representa um símbolo. DSQ (Double Square Quadrature) compensa a distorção e o ruído no cabo de par trançado.

NIC - Network Interface Card

- Transmitir / receber através do meio físico os quadros recebidos pela subcamada MAC.
- É na placa de rede que acontece a codificação dos sinais.

- Década de 90 Complemento para redes cabeadas
- IEEE Criação do padrão 802.11 padronização da tecnologia.
- Baseada na tecnologia de espectro espalhado, utilizada na Segunda Guerra.
- Fundamental para o desenvolvimento de dispositivos móveis - IoT
- Revolução na forma de conexão através da mobilidade.

- Rádios 2.4 GHz e 5.8 GHz;
- Abertos não exigindo licença;
- Métodos de Transmissão:
 - Evolução através dos anos para melhorar o alcance, velocidade e eficiência;
 - Spread Spectrum;
 - FHSS Frequency Hopping Spread
 - DSSS Direct Sequence Spread Scpectrum;
 - OFDM Orthogonal Frequency-Division Multiplexing;
 - MIMO Multiple-Input Multiple-Output);
 - OFDMA Orthogonal Frequency-Division Multiple Access;

Spread Spectrum

- Espalha o sinal por uma ampla faixa de frequência;
- Resistência à interferências e ruídos;
- Utilizado em padrões antigos, 802.11b por exemplo.
- FHSS Frequency Hopping Spread
 - Sinal vai "saltando" entre as frequências dentro da faixa disponível;
 - Infravermelho e Bluetooth;
- DSSS Direct Sequence Spread Scpectrum
 - Sinal utiliza um Código de sequência direta (é multiplicado por) e é espalhado pela faixa de frequências disponível.
 - 802.11b;

OFDM – Orthogonal Frequency-Division Multiplexing

- Divide o sinal em vários subcanais de frequência;
- Transmite os sinais em paralelo;
- Melhor utilização (eficiência) no uso do espectro de frequência;
- Maior resistência à interferências;
- 802.11a, 802.11g, 802.11n, 802.11ac, 802.11ax e 802.11be

MIMO - Multiple-Input Multiple-Output

- Utiliza multiplas antenas no transmissor e no receptor;
 - Aumenta a capacidade de transmissão e a confiabilidade;
- Transmissão simultânea de dados aumentando a velocidade e o alcance;
- 802.11n, 802.11ac, 802.11ax e 802.11be;

OFDMA – Orthogonal Frequency-Division Multiple Access

- Variação do OFDM;
- Permite a alocação de subcanais de frequência para multiplos usuários simultaneamente;
- Ambientes com alta densidade são beneficiados com o uso do OFDMA;
- 802.11ax e 802.11be;

60 GHz - 802.11ad e 802.11ay

- Alguns padrões utilizam a faixa de frequência de 60 GHz;
- Alcance limitado porém com alta velocidade e largura de banda;
- 802.11ad e 802.11ay

PADRONIZAÇÃO

IEEE Standard	WiFi Gen	Year	Frequency	Max PHY Data Rate	Max Range
802.11	-	1997	2.4 GHz	2 Mbps	20m (indoor) 100m (outdoor)
802.11 a	-	1999	5 GHz	54 Mbps	35m (indoor) 120m (outdoor)
802.11 b	-	1999	2.4 GHz	11 Mbps	35m (indoor) 140m (outdoor)
802.11 g	-	2003	2.4 GHz	54 Mbps	38m (indoor) 140m (outdoor)
802.11 n	WiFi 4	2009	2.4/5 GHz	600 Mbps	70m (indoor) 250m (outdoor)
802.11 ac	WiFi 5	2013	5 GHz	6.9 Gbps	35m (indoor)
802.11 ad	-	2012	60 GHz	8.1 Mbps	3.3m (indoor)
802.11 ah	-	2017	Sub 1 GHz	347 Mbps	1km
802.11 ax	WiFi 6	2021	2.4/5/6 GHz	9.6 Gbps	30m (indoor) 120m (outdoor)
802.11 ay	-	2021	60 GHz	303 Gbps	10m (indoor) 100m (outdoor)
802.11 be	WiFi 7	2024	2.4/5/6 GHz	46.1 Gbps	30m (indoor) 120m (outdoor)

AD-HOC

- Conecta um pequeno número de hosts.
- Não possui um WAP.
- Compartilhamento de redes.

BSS (Basic Service Set)

- Um WAP.
- SSID (Service Set Identification).
- BSSID MAC do SSID.

ESS (Extended Service Set)

- Vários WAP.
- Mesmo SSID entre todos os WAP.
- 10% da área da próxima célula.
- Autenticação
- Desautenticação
- **Privacidade** WEP, WPA, WPA2, WPA-Enterprise

ESS (Extended Service Set)

- Associação conexão entre a estação e o AP.
- Desassociação tanto o AP quando a estação podem requisitar.
- **Reassociação** roaming entre APs.
- Distribuição acesso a outras estações.
- Integração troca de dados entre 802.11 e 802.3.

Beamforming

- Objetiva melhorar qualidade, velocidade e alcance;
- Direciona o sinal para o dispositivo receptor ao invés de irradiar (spread);
- Auxilia os WAP ou roteadores a encontrar seus clientes;
- Fortalece o sinal do WiFi em uma direção específica;

Funcionamento:

- Detecta a direção do dispositivo que está se conectando a rede;
- Realiza o cálculo da rota ideal considerando distância, interferências e obstáculos;
- Ajusta o sinal em cada antenna (amplitude e fase) para direcionar o sinal para o dispositivo receptor;
- Através desse processo o sinal chega ao receptor com menos interferência e maior amplitude;
- Conexão estável e com maior qualidade;