Human Activity Recognition Using Smartphones Dataset: Feature description

- Two instruments : Accelerometer and Gyroscope
- Two types of measurements: Acceleration and Frequency
- Acceleration: measured directly from the instruments.
- Frequency: derived by applying Fast Fourier Transform(FFT) to some of the signals from the instruments.
- Signals: 3-axial time domain signals from each instrument: Time domain Accelerator signal on X,Y,Z-axis and Time domain Accelerator signal.
- Acceleration signals further split into two types: Body acceleration and Gravity.
- Jerk signals: obtained from derived linear acceleration and angular velocity in time of the accelerometer and gyroscope signals of each of the 3-axial dimensions.
- Magnitude signals: magnitudes of the 3-axial signals are estimated using Euclidean norm.
- For each of these signals 17 measurements are done. For this project we focus on only the mean and standard derivation.
- There are additional vectors obtained by averaging the signals in a signal window sample. These are used to obtain the 'angle' variable.

DATA DICTIONARY - Getting and Cleaning Data Course Project USING Human
Activity Recognition Using Smartphones Dataset

Feature no.	Column Name	Description
1	"Activity"	6 activities observed. Factor with 6 levels: "LAYING", "SITTING", "STANDING", "WALKING", "WALKING_DOWNSTAIRS", "WALKING_UPSTAIRS"
2	"UserID"	30 subjects of the study. Coded as numbers from 1 to 30.
3	"TimeBodyAccXMean"	Mean of time domain Body Acceleration signal in X-axial direction.
4	"TimeBodyAccYMean"	Mean of time domain Body Acceleration signal in Y-axial direction.
5	"TimeBodyAccZMean"	Mean of time domain Body Acceleration signal in Z-axial direction.
6	"TimeBodyAccXStd"	Standard deviation of time domain Body Acceleration signal in X-axial direction.
7	"TimeBodyAccYStd"	Standard deviation of time domain Body Acceleration signal in Y-axial direction.
8	"TimeBodyAccZStd"	Standard deviation of time domain Body Acceleration signal in Z-axial direction.

9	"TimeGravityAccXMean	Mean of time domain Gravity Acceleration signal in X-axial direction.
10	"TimeGravityAccYMean	Mean of time domain Gravity Acceleration signal in Y-axial direction.
11	"TimeGravityAccZMean	Mean of time domain Gravity Acceleration signal in Z-axial direction.
12	"TimeGravityAccXStd"	Standard deviation of time domain Gravity Acceleration signal in X-axial direction.
13	"TimeGravityAccYStd"	Standard deviation of time domain Gravity Acceleration signal in Y-axial direction.
14	"TimeGravityAccZStd"	Standard deviation of time domain Gravity Acceleration signal in Z-axial direction.
15	"TimeBodyAccJerkXMe an"	Mean of time domain body's derived linear acceleration - X-axis
16	"TimeBodyAccJerkYMe an"	Mean of time domain body's derived linear acceleration - Y-axis
17	"TimeBodyAccJerkZMe an"	Mean of derived time body's derived linear acceleration - Z-axis
18	"TimeBodyAccJerkXStd	Standard deviation of time domain body's derived linear acceleration - X-axis
19	"TimeBodyAccJerkYStd	Standard deviation of time domain body's derived linear acceleration - Y-axis
20	"TimeBodyAccJerkZStd	Standard deviation of derived time domain body's linear acceleration - Z-axis
21	"TimeBodyGyroXMean"	Mean of time domain Body Gyroscope signal in X-axial direction.
22	"TimeBodyGyroYMean"	Mean of time domain Body Gyroscope signal in Y-axial direction.
23	"TimeBodyGyroZMean"	Mean of time domain Body Gyroscope signal in Z-axial direction.
24	"TimeBodyGyroXStd"	Standard deviation of time domain Body Gyroscope signal in X-axial direction.
25	"TimeBodyGyroYStd"	Standard deviation of time domain Body Gyroscope signal in Y-axial direction.
26	"TimeBodyGyroZStd"	Standard deviation of time domain Body Gyroscope signal in Z-axial direction.
27	"TimeBodyGyroJerkXM ean"	Mean of time domain body's derived angular velocity - X-axis
28	"TimeBodyGyroJerkYM ean"	Mean of time domain body's derived angular velocity - Y-axis
29	"TimeBodyGyroJerkZM ean"	Mean of time domain body's derived angular velocity - Z-axis

30	"TimeBodyGyroJerkXSt d"	Standard deviation of time domain body's derived angular velocity - X-axis
31	"TimeBodyGyroJerkYSt d"	Standard deviation of time domain body's derived angular velocity - Y-axis
32	"TimeBodyGyroJerkZSt d"	Standard deviation of time domain body's derived angular velocity - Z-axis
33	"TimeBodyAccMagMea n"	Mean of the magnitude of time domain body's acceleration signal.
34	"TimeBodyAccMagStd"	Standard deviation of the magnitude of time domain body's acceleration signal.
35	"TimeGravityAccMagM ean"	Mean of the magnitude of time domain gravity's acceleration signal.
36	"TimeGravityAccMagSt d"	Standard deviation of the magnitude of time domain body's acceleration signal.
37	"TimeBodyAccJerkMag Mean"	Mean of the magnitude of time domain body's linear acceleration.
38	"TimeBodyAccJerkMag Std"	Standard deviation of the magnitude of time domain body's acceleration signal.
39	"TimeBodyGyroMagMe an"	Mean of the magnitude of time domain body's gyroscope signal.
40	"TimeBodyGyroMagStd	Standard deviation of the magnitude of time domain body's acceleration signal.
41	"TimeBodyGyroJerkMa gMean"	Mean of the magnitude of time domain body's angular velocity.
42	"TimeBodyGyroJerkMa gStd"	Standard deviation of the magnitude of time domain body's acceleration signal.
43	"FrequencyBodyAccXM ean"	Mean of frequency of time domain Body Acceleration signal in X-axial direction.
44	"FrequencyBodyAccYM ean"	Mean of frequency of time domain Body Acceleration signal in Y-axial direction.
45	"FrequencyBodyAccZM ean"	Mean of frequency of time domain Body Acceleration signal in Z-axial direction.
46	"FrequencyBodyAccXS td"	Standard deviation of frequency of time domain Body Acceleration signal in X-axial direction.
47	"FrequencyBodyAccYS td"	Standard deviation of frequency of time domain Body Acceleration signal in Y-axial direction.
48	"FrequencyBodyAccZSt d"	Standard deviation of frequency of time domain Body Acceleration signal in Z-axial direction.
49	"FrequencyBodyAccJer kXMean"	Mean of frequency of time domain body's derived linear acceleration - X-axis
50	"FrequencyBodyAccJer kYMean"	Mean of frequency of time domain body's derived linear acceleration - Y-axis

51	"FrequencyBodyAccJer kZMean"	Mean of frequency of time domain body's derived linear acceleration - Z-axis
52	"FrequencyBodyAccJer kXStd"	Standard deviation of frequency of time domain body's derived linear acceleration - X-axis
53	"FrequencyBodyAccJer kYStd"	Standard deviation of frequency of time domain body's derived linear acceleration - Y-axis
54	"FrequencyBodyAccJer kZStd"	Standard deviation of frequency of time domain body's derived linear acceleration - Z-axis
55	"FrequencyBodyGyroX Mean"	Mean of frequency of time domain Body Gyroscope signal in X-axial direction.
56	"FrequencyBodyGyroY Mean"	Mean of frequency of time domain Body Gyroscope signal in Y-axial direction.
57	"FrequencyBodyGyroZ Mean"	Mean of frequency of time domain Body Gyroscope signal in Z-axial direction.
58	"FrequencyBodyGyroX Std"	Standard deviation of frequency of time domain Body Gyroscope signal in X-axial direction.
59	"FrequencyBodyGyroY Std"	Standard deviation of frequency of time domain Body Gyroscope signal in Y-axial direction.
60	"FrequencyBodyGyroZ Std"	Standard deviation of frequency of time domain Body Gyroscope signal in Z-axial direction.
61	"FrequencyBodyAccMa gMean"	Mean of the frequency of magnitude of time domain body's acceleration signal.
62	"FrequencyBodyAccMa gStd"	Standard deviation of the frequency of magnitude of time domain body's acceleration signal.
63	"FrequencyBodyAccJer kMagMean"	Mean of the frequency of magnitude of time domain body's linear acceleration.
64	"FrequencyBodyAccJer kMagStd"	Standard deviation of the frequency of magnitude of time domain body's linear acceleration.
65	"FrequencyBodyGyroM agMean"	Mean of the frequency of magnitude of time domain body's gyroscope signal.
66	"FrequencyBodyGyroM agStd"	Standard deviation of the frequency of magnitude of time domain body's gyroscope signal.
67	"FrequencyBodyGyroJe rkMagMean"	Mean of the frequency of magnitude of time domain body's angular velocity.
68	"FrequencyBodyGyroJe rkMagStd"	Standard deviation of the frequency of magnitude of time domain body's angular velocity.