To,

IITD-AIA Foundation of Smart Manufacturing

Subject: Weekly Progress Report for Week 7

Dear Sir,

Based on my understanding and the topics covered, I have prepared the following progress report that addresses the relevant objectives of the project.

What happened last week – Week 6:

- Experiment with various hyperparameters
- Explored about Lazy Predict tool
- Implementation of YOLO Algorithm
- Object detection and its associated algorithms
- Annotated images using labelimg tool
- Learned about Neural Style Transfer
- Object detection with Faster R-CNN

What's happening this -week 7:

- Machine learning classification Methods
- Created a custom classifier and trained it
- Machine Learning Model Deployment With Flask
- Improve the model's accuracy
- Object detection and abject detection algorithms

Weekly Progress:

July 17:(Monday)

Learned about the different Machine learning classification Methods commonly used for Computer vision, including k nearest neighbours, Logistic regression, SoftMax Regression and Support Vector Machines.

July 18:(Tuesday)

Created a custom classifier and trained it and test it on the images.

Continued working on the project. Created a custom classifier and trained it and test it on the images.

Actual:Defected1,
Predicted:Defected1,
Confidence:77.22

Actual:Defected2,
Predicted:Defected2,
Confidence:96.65

July 19:(Wednesday)

Continuing with the model deployment part. Leaned about Deployment of Machine Learning Model Deployment With Flask.

July 20:(Thursday)

Today I have just learned more about model deployment.

Deployment Machine Learning Model With Flask.

July 21:(Friday)

Learned more about machine learning algorithms. Started the deployment of the model.

July 22:(Saturday)

Learned about how improve the model's accuracy. Due to ongoing exams, I have not been able to implement anything.

July 23:(Sunday)

I have learned more about object detection and abject detection algorithms.

Due to my ongoing exams, I haven't had the chance to implement anything at the moment.

GANTT CHART

ın	Name		Jun,	, 23			Jul	, 23		
ID	Name	3	04	11	18	25	02	09	16	23
1	Numpy/Pandas	П	1							
2	Basics of CNN Convoution Operation Padding	L	- 1							
3	PIL Library OpenCV	Г								
4	Image Manipulation with PIL	Г								
5	Tensorflow Data Input Pipeline CNN	Г								
6	Model Building using CNN	Г		I						
7	CNN Classifiers	Г								
8	KNN for Object Detection	Г		T						
9	Fundamental Concepts DL	Г								
10	Implementation DL Concepts	Г		- 1						
11	Build a Model Using CNN	Г								
12	Image Manipulation with OpenCV	Г			L					
13	Implemented various functionalities of OpenCV	Г			1					
14	Exploratory Data Analysis (EDA)	Г			1					
15	Tensorflow framework for deep learning.	Г			1					
16	YOLO algorithm for object detection.	Г			1					
17	Semantic segmentation U-Net architecture	Г			- 1					
18	Model Building	Г				ı				
19	Model Training using AC piston Dataset	Т				1				
20	Checked the accuracy and loss of the model.	Т				I				
21	Completed the abstract writing	Т				Т				
22	ResNet,AlexNet,MobileNet.	Г				1				
23	created model by using Resnet Pretrained mo					1				
24	object detection algorithms.	Г								
25	Fine-tuned the CNN model	Г								
26	Experiment with various hyperparameters and	Г					I			
27	Machine learning classification methods	Г					1			
28	Explored about Lazy Predict tool	Г					1			
29	Explored about implementation of YOLO Algori	Г					1			
30	Bounding box predictions, intersection over uni									
31	Annotated images									
32	Learned about Neural Style Transfer.	Г								
33	Object detection with Faster R-CNN	Г						I		
34	Different Machine learning classification Methods	L						1		
35	Created a custom classifier and trained it	L						1		
36	Started learning about model deployment	L						-1		
37	Started Deploying the model	L						-1		
38	Implementation of model deployement.									
39	Deployement With Flask									
40	Revised importnt machine learning concepts.								l	
41	Continued project work								1	
42	Improve the model's accuracy.								1	
43	object detection and abject detection algorithms.								-	
44	Created a custom classifier and trained it								-1	
45	Tried working on YOLO algorithm.								- 1	
46	Learned About the different Algorithm									