Analysis Notes

Cruz Godar

Math 412, 413, and 414, taught by Emily Hamilton

I — A Construction of \mathbb{R}

Definition 1.1: A **Dedekind cut** is a set $A \subseteq \mathbb{Q}$ such that

- 1. $A \neq \emptyset$ and $A \neq \mathbb{Q}$.
- 2. If $r \in A$, then $q \in A$ for all $q \in \mathbb{Q}$ with q < r.
- 3. A does not have a maximum element that is, if $r \in A$, then r < s for some $s \in A$.

Definition 1.2: The **real numbers**, \mathbb{R} , are the set of all Dedekind cuts.

Definition 1.3: Let $A, B \in \mathbb{R}$. A is less than B, written $A \leq B$, if $A \subseteq B$.

Proposition 1.4: \leq is a total order on \mathbb{R} .

Proof: Clearly, \leq is reflexive, antisymmetric, and transitive, since \subseteq is. Thus \leq is a partial order on \mathbb{R} . To show that it is a total order, suppose $A \nleq B$. Then $A \nsubseteq B$, so there is an $a \in A$ with $a \notin B$. Let $b \in B$. Since $a \notin B$, $b \in B$, and B is a cut, a > b (where \leq here is the standard order on \mathbb{Q}), and since A is a cut, $b \in A$. Thus $B \subseteq A$, so $B \leq A$.

Definition 1.5: Let $A, B \in \mathbb{R}$. The sum of A and B is A + B $\{a + b \mid a \in A, b \in B\}$.

Theorem 1.6: \mathbb{R} is closed under addition.

Proof: Let $A, B \in \mathbb{R}$. To show $A + B \in \mathbb{R}$, we need to verify each of the three Dedekind cut axioms.

- (1) Since $A \neq \emptyset$ and $B \neq \emptyset$, $A + B \neq \emptyset$. Since $A \neq \mathbb{Q}$ and $B \neq \mathbb{Q}$, there is an $s \in \mathbb{Q} \setminus A$ and a $t \in \mathbb{Q} \setminus B$, and since A and B are cuts, a < s and b < t for all $a \in A$ and $b \in B$. Thus a + b < s + t for all $a \in A$ and $b \in B$, or, equivalently, for all $a + b \in A + B$. Thus $s + t \notin A + B$, so $A + B \neq \mathbb{Q}$.
- (2) Let $a+b \in A+B$ and let $s \in \mathbb{Q}$ such that s < a+b. Then s-b < a, so $s-b \in A$, since A is a cut. Thus

 $(s-b)+b=s\in A+B.$

(3) Let $a+b \in A+B$. Since A and B are cuts, there is an $s \in A$ and a $t \in B$ such that a < s and b < t. Then $s+t \in A+B$ and a+b < s+t.

Proposition 1.7: Let $A, B, C \in \mathbb{R}$. Then A + B = B + A and (A + B) + C = A + (B + C).

Definition 1.8: The real numbers **zero** and **one** are defined as $\mathbf{0} = \{q \in \mathbb{Q} \mid q < 0\}$ and $\mathbf{1} = \{q \in \mathbb{Q} \mid q < 1\}$.

Proposition 1.9: For all $A \in \mathbb{R}$, $A + \mathbf{0} = A$.

Proof: (\subseteq) Let $a + x \in A + \mathbf{0}$. Since x < 0, a + x < a, and since A is a cut, $a + x \in A$. Thus $A + \mathbf{0} \subseteq A$.

(⊇) Let $a \in A$. Since A is a cut, there is an $s \in A$ such that s > a. Then a - s < 0, so $a - a \in \mathbf{0}$. Thus $a = s + (a - s) \in A + \mathbf{0}$, so $A \subset A + \mathbf{0}$.

Definition 1.10: Let $A \in \mathbb{R}$. The additive inverse of A is $-A = \{r \in \mathbb{Q} \mid r < -t \text{ for some } t \notin A\}$.

Proposition 1.11: Let $A \in \mathbb{R}$. Then $-A \in \mathbb{R}$.

Proposition 1.12: Let $A \in \mathbb{R}$. Then A + (-A) = 0.

Proof: (\subseteq) Let $a + n \in A + (-A)$. Since $n \in -A$, there is a $t \notin A$ such that n < -t, and since $a \in A$ and $t \notin A$, a < t < -n, so a + n < 0. Thus $a + n \in \mathbf{0}$, so $A + (-A) \subseteq \mathbf{0}$.

(2) Let $x \in \mathbf{0}$, let $\varepsilon = \frac{|x|}{2} = -\frac{x}{2}$, and let $t \in \mathbb{Q}$ such that $t \notin A$ but $t - \varepsilon \in A$. Since $t \notin A$, $-(t + \varepsilon) \in -A$, since $t < -(-(t + \varepsilon))$ and therefore $-(t + \varepsilon) < -t$. Then $x = -2\varepsilon = -(t + \varepsilon) + (t - \varepsilon) \in A + (-A)$, so $\mathbf{0} \subseteq A + (-A)$.

Definition 1.13: Let $A, B \in \mathbb{R}$. If $A \ge 0$ and $B \ge 0$, then the **product** of A and B is

$$AB = \{ab \mid a \in A, b \in B, a \ge 0, b \ge 0\} \cup \mathbf{0}.$$

If $A \ge \mathbf{0}$ and $B < \mathbf{0}$, then AB = -(A(-B)), if $A < \mathbf{0}$ and $B \ge \mathbf{0}$, then AB = -((-A)B), and if $A < \mathbf{0}$ and $B < \mathbf{0}$, then AB = (-A)(-B).

Theorem 1.14: Let $A, B, C \in \mathbb{R}$. Then $AB \in \mathbb{R}$, AB = BA, (AB)C = A(BC), 1A = A, and if $A \neq \mathbf{0}$, then there is an $A^{-1} \in \mathbb{R}$ with $AA^{-1} = \mathbf{1}$.

Definition 1.15: A set $U \subseteq \mathbb{R}$ is bounded above if there is a $B \in \mathbb{R}$ such that $A \leq B$ for all $A \in U$. We call B

an upper bound for U, and define bounded below and lower bound similarly.

Definition 1.16: Let $U \in \mathbb{R}$ such that $U \neq \emptyset$ and U is bounded above. We define $S(U) = \bigcup_{A \in U} A$.

Theorem 1.17: Let $U \subset \mathbb{R}$ be nonempty and bounded above. Then S(U) is a cut.

Proof: (1) Since $U \neq \emptyset$ and $U \subseteq S(U)$, $S(U) \neq \emptyset$. Since U is bounded above, there is a $B \in \mathbb{R}$ such that $A \leq B$ for all $A \in U$. Then $A \subseteq B$ for all $A \in U$, so $S(U) = \bigcup A \subseteq B$. Since $B \neq \mathbb{Q}$, $S(U) \neq \mathbb{Q}$.

- (2) Let $a \in S(U)$ and g < a. Then $a \in A$ for some $A \in U$, and since A is a cut and g < a, $g \in A \subseteq S(U)$.
- (3) Let $a \in S(U)$. Then $a \in A$ for some $A \in U$, and since A is a cut, there is a $q \in A \subseteq S(U)$ with a < q.

Proposition 1.18: Let $U \subseteq \mathbb{R}$ be nonempty and bounded above. Then S(U) is an upper bound for U.

Proof: For all $A \in U$, $A \subseteq \bigcup A = S(U)$, so $A \le S(U)$.

Definition 1.19: A set $U \subseteq \mathbb{R}$ has a **supremum**, or least upper bound, if there is a $B \in \mathbb{R}$ such that B is an upper bound for U and $B \leq C$ for any upper bound C for U. We define the **infimum**, or greatest lower bound, similarly, and write $\sup U$ and $\inf U$ for the supremum and infimum.

Proposition 1.20: Let $U \subseteq \mathbb{R}$ be nonempty and bounded above. Then $S(U) = \sup U$.

Proof: Let C be an upper bound for U. Then $A \leq C$ for all $A \in U$, so $A \subseteq C$ for all $A \in U$. Then $S = \bigcup A \subset C$, so $S \leq C$.

Theorem 1.21: (The Completeness of the Reals) Every nonempty, bounded above subset of \mathbb{R} has a supremum in \mathbb{R} .

II — The Reals

Proposition 2.1: Let $A \subseteq \mathbb{R}$. If $\sup A \in A$, then $\sup A = \max A$.

Proposition 2.2: If $A, B \subseteq \mathbb{R}$ such that $A \subseteq B$, then $\sup A \le \sup B$.

Proof: Since $A \subseteq B$, $a \in B$ for all $a \in A$, and so since $\sup B \ge b$ for all $b \in B$, $\sup B \ge a$ for all $a \in A$. Then $\sup B$ is an upper bound for A, so $\sup A \le \sup B$.

Theorem 2.3: Let s be an upper bound for $A \subseteq \mathbb{R}$. Then $s = \sup A$ if and only if for all $\varepsilon > 0$, there is an $a \in A$ with $s - \varepsilon < a$.

Proof: (\Rightarrow) Assume $s = \sup A$ and let $\varepsilon > 0$. Since $s - \varepsilon < s = \sup A$, $s - \varepsilon$ cannot be an upper bound for A. Thus there must be an $a \in A$ with $a > s - \varepsilon$.

Assume s is an upper bound for A and that for every $\varepsilon > 0$, there is an $a \in A$ such that $a > s - \varepsilon$. Let b be an upper bound for A and suppose b < s. Let $\varepsilon = \frac{s-b}{2}$. Since a < b for all $a \in A$, there is no $a \in A$ such that $a > s - \varepsilon$, since $s - \varepsilon$ is the midpoint of s and b, and is therefore greater than b. \sharp

Theorem 2.4: (The Nested Interval Theorem) For each $n \in \mathbb{N}$, let $I_n = [a_n, b_n]$ be an interval such that $I_n \subseteq I_{n-1}$. Then

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$

Proof: Let $A = \{a_n \mid n \in \mathbb{N}\}$. Since A is nonempty and bounded above (by b_1 , for instance), A has a least upper bound. In fact, each b_i is an upper bound for A, since otherwise the intervals would not be nested.

Let $s = \sup A$ and let $n \in \mathbb{N}$. Since s is an upper bound for A, $s \ge a_n$, and since b_n is an upper bound for A, $s \le b_n$. Thus $s \in I_n$ for all $n \in \mathbb{N}$, so $s \in \cap I_n$.

Theorem 2.5: (The Well-Ordering Principle) Every nonempty subset of N has a minimum element.

Proposition 2.6: (The Archimedean Property) Let $x \in \mathbb{R}$. Then there is a $y \in \mathbb{N}$ with y > x.

Corollary 2.6.1: Let $x \in \mathbb{R}^+$. Then there is a $y \in \mathbb{N}$ with $\frac{1}{y} < x$.

Theorem 2.7: (The Density of \mathbb{Q} in \mathbb{R}) Let $a, b \in \mathbb{R}$ with a < b. Then there is a $q \in \mathbb{Q}$ with a < q < b.

Proof: First, suppose $a \ge 0$. By the Archimedean property, let $n \in \mathbb{N}$ such that $\frac{1}{n} < b-a$. Let m be the smallest natural greater than na. Then $m-1 \le na < m$, so $m \le na+1 < m+1$. Since na < m, $a < \frac{m}{n}$, and since $m \le na+1$ and $\frac{1}{n} < b-a$, $m < n\left(b-\frac{1}{n}\right)+1=nb$. Thus $\frac{m}{n} < b$, and so $a < \frac{m}{n} < b$.

If a < 0 and b > 0, then $a < \frac{0}{1} < b$, and if a < 0 and $b \le 0$, then since -b < -a (and -b, -a > 0), there is a $q \in \mathbb{Q}$ with -b < q < -a, so a < -q < b.

Theorem 2.8: There is an $\alpha \in \mathbb{R}$ with $\alpha^2 = 2$.

Proof: Let $T = \{t \in \mathbb{R} \mid t^2 < 2\}$, which is is nonempty and bounded above, and let $\alpha = \sup T$. Suppose $\alpha < 2$. By the Archimedean principle, there is an $n \in \mathbb{N}$ such that $\frac{1}{n} < \frac{2-\alpha^2}{2\alpha+1}$, or, equivalently, $\frac{2\alpha+1}{n} < 2-\alpha^2$. Then

$$\left(\alpha + \frac{1}{n}\right)^2 = \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n^2}$$

$$< \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n}$$

$$= \alpha^2 + \frac{2\alpha + 1}{n}$$

$$< \alpha^2 + (2 - \alpha^2)$$

$$= 2,$$

so $\alpha + \frac{1}{n} \in T$, but $\alpha + \frac{1}{n} > \alpha = \sup T$. \nleq Similarly, $\alpha > 2$ gives a contradiction.

III — Sequences and Series

Definition 3.1: Let $S \subseteq \mathbb{R}$. A sequence in S is a function $f : \mathbb{N} \longrightarrow S$. We write x_n instead of f(n) and (x_n) to refer to the whole sequence.

Definition 3.2: Let $(a_n) \subseteq \mathbb{R}$. (a_n) **converges** to $a \in \mathbb{R}$ if for all $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that if $n \ge N$, then $|a_n - a| < \varepsilon$. A sequence **diverges** if it does not converge.

Example: Show that $\left(\frac{1}{n}\right) \longrightarrow 0$.

Let $\varepsilon > 0$. We want $\left|\frac{1}{n} - 0\right| < \varepsilon$, so $n \ge \frac{1}{\varepsilon}$. Therefore, let N be the first natural number greater than ε . Then if $n \ge N$, $\left|\frac{1}{n} - 0\right| < \varepsilon$.

Example: Show that $\left(\frac{\sqrt{n^2+1}}{n!}\right) \longrightarrow 0$.

Let $\varepsilon > 0$. Since $\frac{\sqrt{n^2+1}}{n!} \le \frac{\sqrt{n^2+n^2}}{n!} = \sqrt{2}\left(\frac{n}{n!}\right) = \sqrt{2}\left(\frac{1}{(n-1)!}\right) \le \frac{2}{n-1}$, let $N > \frac{2+\varepsilon}{\varepsilon}$. Then if $n \ge N$, $\frac{2}{n-1} < \varepsilon$, so $\frac{\sqrt{n^2+1}}{n!} < \frac{2}{n-1} < \varepsilon$.

Definition 3.3: A sequence $(a_n) \subseteq \mathbb{R}$ is **bounded** if there is an $M \in \mathbb{R}^+$ such that $|a_n| < M$ for all $n \in \mathbb{N}$.

Proposition 3.4: Every convergent sequence in \mathbb{R} is bounded.

Proof: Let $(a_n) \subseteq \mathbb{R}$ and suppose $(a_n) \longrightarrow a$. With $\varepsilon = 1$, there is an $N \in \mathbb{N}$ such that if $n \ge N$, then $|a_n - a| < 1$. Thus $|a_n| < |a| + 1$. Let $M = \max\{|a_1|, |a_2|, ..., |a_{N-2}|, |a_{N-1}|, |a| + 1\}$. Then $|a_n| < M$ for all $n \in \mathbb{N}$.

Theorem 3.5: (The Algebraic Limit Theorem) Let $(a_n), (b_n) \subseteq \mathbb{R}$ such that $(a_n) \longrightarrow a$ and $(b_n) \longrightarrow b$. Then

- 1. For all $c \in \mathbb{R}$, $(ca_n) \longrightarrow ca$.
- 2. $(a_n + b_n) \longrightarrow a + b$.
- 3. $(a_nb_n) \longrightarrow ab$.
- 4. If $b \neq 0$, then $\left(\frac{a_n}{b_n}\right) \longrightarrow \frac{a}{b}$.

Proof: We will prove parts 2 and 3. Part 1 is a simple exercise, and part 4 proceeds similarly to part 3.

- 2. Let $\varepsilon > 0$. Since $(a_n) \longrightarrow a$, there is an $N_1 \in \mathbb{N}$ such that if $n \ge N_1$, then $|a_n a| < \frac{\varepsilon}{2}$, and since $(b_n) \longrightarrow a$, there is an $N_2 \in \mathbb{N}$ such that if $n \ge N_2$, then $|b_n b| < \frac{\varepsilon}{2}$. Let $N = \max\{N_1, N_2\}$. Then if $n \ge N$, $|(a_n + b_n) (a + b)| = |a_n a + b_n b| \le |a_n a| + |b_n b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.
- 3. Let $\varepsilon > 0$ and suppose that $a \neq 0$. Since (b_n) converges, it is bounded, so there is an M > 0 such that $|b_n| < M$ for all $n \in \mathbb{N}$. Since $(a_n) \longrightarrow a$, there is an $N_1 \in \mathbb{N}$ such that if $n \geq N_1$, then $|a_n a| < \frac{\varepsilon}{2M}$. Since $(b_n) \longrightarrow b$, there is an $N_2 \in \mathbb{N}$ such that if $n \geq N_2$, then $|b_n b| < \frac{\varepsilon}{2|a|}$. Let $N = \max\{N_1, N_2\}$. Then if $n \geq N$,

6

$$\begin{aligned} |a_nb_n - ab| &= |a_nb_n - ab_n + ab_n - ab| \\ &\leq |a_nb_n - ab_n| + |ab_n - ab| \\ &= |b_n||a_n - a| + |a||b_n - b| \\ &< M\left(\frac{\varepsilon}{2M}\right) + |a|\left(\frac{\varepsilon}{2|a|}\right) \\ &= \varepsilon. \end{aligned}$$

Thus $(a_n b_n) \longrightarrow ab$. If a = 0, the proof is very similar.

Theorem 3.6: (The Order Limit Theorem) Let $(a_n), (b_n) \subseteq \mathbb{R}$ with $(a_n) \longrightarrow a$ and $(b_n) \longrightarrow b$. Then

- 1. If $a_n \ge 0$ for all $n \in \mathbb{N}$, then $a \ge 0$.
- 2. If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $a \leq b$.
- 3. If there is a $c \in \mathbb{R}$ such that $a_n \leq c$ for all $n \in \mathbb{N}$, then $a \leq c$, and similarly, if $c \leq b_n$ for all $n \in \mathbb{N}$, then $c \leq b$.

Proof:

- 1. Suppose $a_n \ge 0$ for all $n \in \mathbb{N}$, but a < 0. Let $\varepsilon = \frac{|a|}{2}$. Then there is an $N \in \mathbb{N}$ such that if $n \ge N$, then $|a_n a| < \varepsilon = \frac{|a|}{2}$. Then $a_N \in (\frac{a}{2}, \frac{3a}{2})$, so $a_N < 0$.
- 2. If $a_n \le b_n$ for all $n \in \mathbb{N}$, then $b_n a_n \ge 0$, and $(b_n a_n) \longrightarrow b a$. By part 1, $b a \ge 0$, so $a \le b$.
- 3. Let $c_n = c$. Then we are done by part 2.

Definition 3.7: A sequence $(a_n) \subseteq \mathbb{R}$ is **monotone increasing** if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$, and **monotone decreasing** if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$.

Definition 3.8: A sequence $(a_n) \subset \mathbb{R}$ is **monotone** if it is either increasing or decreasing.

Theorem 3.9: (The Monotone Convergence Theorem) Let $(a_n) \subseteq \mathbb{R}$. If (a_n) is monotone increasing and bounded above, then it converges.

Proof: Let $\varepsilon > 0$ and let $A = \{a_n \mid n \in \mathbb{N}\}$. Since A is nonempty and bounded above, $\sup A$ exists. Let $s = \sup A$. Then there is an $a_N \in A$ such that $s - \varepsilon < a_N$, so $s - \varepsilon < a_n$ for all $n \ge N$, since (a_n) is increasing. Thus $s - \varepsilon < a_n \le s < s + \varepsilon$, so $|a_n - s| < \varepsilon$. Thus $(a_n) \longrightarrow s$.

Definition 3.10: Let (a_n) be a sequence. A subsequence of (a_n) is a sequence (a_{n_k}) , where $n_1 < n_2 < \cdots$ is a strictly increasing sequence of natural numbers.

Proposition 3.11: Subsequences of a convergent sequence converge to the limit.

Theorem 3.12: (The Bolzano-Weierstrass Theorem) Every bounded sequence in \mathbb{R} contains a convergent subsequence.

Proof: Let $(a_n) \subseteq \mathbb{R}$ be bounded (above and below). Define a *peak index* of (a_n) to be a value of $m \in \mathbb{N}$ such that $a_m \ge a_n$ for all $n \ge m$. Either there are finitely many peak indices or infinitely many.

If there are only finitely many peak indices, then there is an $N \in \mathbb{N}$ such that there are no peak indices greater than N. Let $n_1 = N + 1$. Since n_1 is not a peak index, there is an $n_2 \ge n_1$ such that $a_{n_2} \ge a_{n_1}$. Repeat this inductively to create a sequence (a_{n_k}) that is monotone increasing. Since it is bounded above, it must converge.

If there are infinitely many peak indices, then let n_k be the kth peak index. Then (a_{n_k}) is monotone decreasing, and since it is bounded below, it converges.

Definition 3.13: A sequence $(a_n) \subseteq \mathbb{R}$ is **Cauchy** if for all $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that if $m, n \ge N$, then $|a_n - a_m| < \varepsilon$.

Proposition 3.14: Every convergent sequence in \mathbb{R} is Cauchy.

Proof: Suppose $(a_n) \subseteq \mathbb{R}$ with $(a_n) \longrightarrow a$ and let $\varepsilon > 0$. Then there is an $N \in \mathbb{N}$ such that if $n \ge N$, then $|a_n - a| \le \frac{\varepsilon}{2}$. Now if $m, n \ge N$, $|a_m - a_n| = |a_n - a + a - a_m| \le |a_n - a| + |a_m - a| < \varepsilon$. Thus (a_m) is Cauchy.

Proposition 3.15: Every Cauchy sequence in \mathbb{R} is bounded.

Proof: Let $(a_n) \subseteq \mathbb{R}$ be Cauchy. With $\varepsilon = 1$, there is an $N \in \mathbb{N}$ such that if $m, n \ge N$, then $|a_n - a_m| < 1$. Thus $|a_n| \le |a_N| + 1$ for all $n \ge N$, so $\max\{|a_1|, |a_2|, ..., |a_{N-1}|, |a_N| + 1\}$ is a bound for (a_n) .