Exerice 9

Soit
$$R > 0$$

 $P_n : x \mapsto \sum_{k=0}^{n} \frac{x^k}{k!}$

On sait que $\lim_{n\to\infty} P_n$ est la série entière de e^x qui a pour Rayon de convergence $R=+\infty$

Donc P_n converge uniformément sur \mathbb{R} vers la fonction e^x

On a donc que $\exists n_R \in \mathbb{N}$ tq pour tout les entiers $n \geq n_R$, les fonctions $P_n - e$ soit bornée sur [-R, R]

Càd: soit
$$\epsilon = \exp\left(\frac{-R}{2}\right) > 0$$
 on a que $\exists n_R \in \mathbb{N}, \forall n \geq n_R$ on a $||P_n - e||_{\infty, [-R,R]} < \epsilon$
Or e est strictement croissant sur \mathbb{R} , donc $\forall x \in [-R,R], e^x \geq e^{-R}$

$$\epsilon > ||P_n - e||_{\infty} \ge ||P_n - e^{-R}||_{\infty}$$

$$\Rightarrow \forall x \in [-R, R] \text{ on a que } |P_n(x) - e^{-R}| < \epsilon$$

$$\Rightarrow e^{-R} - \epsilon < P_n(x) < e^{-R} + \epsilon$$

$$\Rightarrow e^{-R} - e^{-R/2} < P_n(x) < e^{-R} + e^{-R/2}$$

Or
$$e^{-R} - e^{-R/2} > 0$$
, donc:

$$\Rightarrow 0 < P_n(x) < e^{-R} + e^{-R/2}$$

Donc $P_n(x)$ n'admet pas de racine réelle sur $[-R,R] \ \forall n \geq n_R$