Package 'r.blip'

October 14, 2022

Title Bayesian Network Learning Improved Project
Version 1.1
Description Allows the user to learn Bayesian networks from datasets containing thousands of variables. It focuses on score-based learning, mainly the 'BIC' and the 'BDeu' score functions. It provides state-of-the-art algorithms for the following tasks: (1) parent set identification - Mauro Scanagatta (2015) http://papers.nips.cc/paper/5803-learning-bayesian-networks-with-thousands-of-variables ; (2) general structure optimization - Mauro Scanagatta (2018) http://papers.nips.cc/paper/62018/scanagatta17a.html ; (3) bounded treewidth structure optimization - Mauro Scanagatta (2016) http://papers.nips.cc/paper/6232-learning-treewidth-bounded-bayesian-networks-with-thousands-of-variables ; (4) structure learning on incomplete data sets - Mauro Scanagatta (2018) https://papers.nips.cc/paper/6232-learning-treewidth-bounded-bayesian-networks-with-thousands-of-variables ; (4) structure learning on incomplete data sets - Mauro Scanagatta (2018) https://papers.nips.cc/paper/6232-learning-treewidth-bounded-bayesian-networks-with-thousands-of-variables ; (4) structure learning on incomplete data sets - Mauro Scanagatta (2018) https://papers.nips.cc/paper/6232-learning-treewidth-bayesian-networks-with-thousands-of-variables ; (4) structure learning on incomplete data sets - Mauro Scanagatta (2018)

2 blip.learn

olip.learn.tw .																											
olip.scorer		•	•	•		•	•	•		•	•	•	•	•	•			 •	•		•	•	•	•	•	•	4
olip.solver																											5
olip.solver.tw																											6
child																											7
child.jkl																		 									7
ead.jkl																		 									8
ead.str																		 									8
write.jkl																		 									9
																											10

blip

Index

Bayesian Learning Package - Main function.

Description

Used by most of the functions in the r.blip binding, provides access to the included jar file.

Usage

blip(args)

Arguments

args

Vector of arguments to be passed to the jar

Details

The arguments vector is formatted in a system call to the included jar file. Should not be called directly by the user, unless you know exactly what you are doing. In that case, call directly the blip jar.

blip.learn

Learns a BN

Description

Fully learns a Bayesian networks.

Usage

```
blip.learn(dat, scorer.method = "is", solver.method = "winasobs",
  indeg = 6, time = 3600, allocated = 80, scorefunction = "bic",
  alpha = 1, cores = 1, verbose = 0)
```

3 blip.learn.tw

Arguments

dat dataframe from which to learn the parent sets.(required)

scorer.method Method to be used for scoring the parent sets. Possible values: "is" (indepen-

dence selection), "sq" (sequential selection). (default: is)

solver.method Method to be used for structure exploration. Possible values: "winasobs", "winobs",

"asobs", "obs". (default: winasobs)

indeg Maximum number of parents (default: 6)

time Execution time (default: 3600)

allocated Percentage of the total execution time dedicated to parent set exploration (de-

fault: 80)

Chosen score function. Possible choices: BIC, BDeu (default: bic) scorefunction (if BDeu is chosen) equivalent sample size parameter (default: 1.0) alpha cores Number of machine cores to use. If 0, all are used. (default: 1)

Verbose level (default: 0)

Details

verbose

The input data is required to be complete and discrete. Accordingly missing values in the input data.frame will be ignored, and all numeric values will be converted to integers.

Value

The learned Bayesian network in the bnlearn format.

Examples

```
bn <- blip.learn(child, time=3)</pre>
```

blip.learn.tw

Learns a BN with a treewidth bound

Description

Fully learns a Bayesian networks with a treewidth bound.

Usage

```
blip.learn.tw(dat, scorer.method = "is", solver.method = "kmax",
  treewidth = 5, time = 3600, allocated = 80,
  scorefunction = "bic", alpha = 1, cores = 1, verbose = 0)
```

blip.scorer

Arguments

data frame from which to learn the parent sets.(required)

scorer.method Method to be used for scoring the parent sets. Possible values: "is" (indepen-

dence selection), "sq" (sequential selection). (default: is)

solver.method Method to be used for bounded-treewidth structure exploration. Possible values:

"kmax", "kg", "ka". (default: kmax)

treewidth Maximum treewidth (default: 4)
time Execution time (default: 3600)

allocated Percentage of the total execution time dedicated to parent set exploration (de-

fault: 80)

scorefunction Chosen score function. Possible choices: BIC, BDeu (default: bic) alpha (if BDeu is chosen) equivalent sample size parameter (default: 1.0)

cores Number of machine cores to use. If 0, all are used. (default: 1)

verbose Verbose level (default: 0)

Details

The input data is required to be complete and discrete. Accordingly missing values in the input data.frame will be ignored, and all numeric values will be converted to integers.

Value

The learned Bayesian network in the bnlearn format.

Examples

```
bn <- blip.learn.tw(child, treewidth=4, time=3)</pre>
```

blip.scorer Parent set exploration

Description

Generates the cache of parent sets from a given data source

Usage

```
blip.scorer(dat, method = "is", indeg = 6, time = 3600,
    scorefunction = "bic", alpha = 1, cores = 1, verbose = 0)
```

blip.solver 5

Arguments

dataframe from which to learn the parent sets.(required)

method Method to be used. Possible values: "is" (independence selection), "sq" (se-

quential selection). (default: is)

indeg Maximum number of parents (default: 6)
time Maximum Execution time (default: 3600)

scorefunction Chosen score function. Possible choices: BIC, BDeu (default: bic) alpha (if BDeu is chosen) equivalent sample size parameter (default: 1.0) cores Number of machine cores to use. If 0, all are used. (default: 1)

verbose Verbose level (default: 0)

Details

Usually the first step in the learning of a Bayesian network.

The input data is required to be complete and discrete. Accordingly missing values in the input data.frame will be ignored, and all numeric values will be converted to integers.

Value

Cache of parent sets

Examples

```
jkl <- blip.scorer(child, time=3)</pre>
```

blip.solver Structure Optimization

Description

Find an optimal structure from the cache of parent sets

Usage

```
blip.solver(jkl, method = "winasobs", time = 3600, cores = 1,
  verbose = 0)
```

Arguments

jkl cache of pre-computed parent sets.(required)

method Method to be used. Possible values: "winasobs", "winobs", "asobs", "obs".

(default: winasobs)

time Maximum Execution time (default: 3600)

cores Number of machine cores to use. If 0, all are used. (default: 1)

verbose Verbose level (default: 0)

6 blip.solver.tw

Details

The input data is required to be complete and discrete. Accordingly missing values in the input data.frame will be ignored, and all numeric values will be converted to integers.

Value

Structure

Examples

```
bn <- blip.solver(child.jkl, time=3)</pre>
```

blip.solver.tw

Structure Optimization - treewidth bound

Description

Find an optimal structure from the cache of parent sets

Usage

```
blip.solver.tw(jkl, method = "kmax", treewidth = 4, time = 3600,
  cores = 1, verbose = 0)
```

Arguments

jkl cache of pre-computed parent sets.(required)

method Method to be used. Possible values: "kmax", "kg", "ka". (default: kmax)

treewidth Maximum treewidth (default: 4)

time Maximum Execution time (default: 3600)

cores Number of machine cores to use. If 0, all are used. (default: 1)

verbose Verbose level (default: 0)

Details

The input data is required to be complete and discrete. Accordingly missing values in the input data.frame will be ignored, and all numeric values will be converted to integers.

Value

Structure

Examples

```
bn <- blip.solver.tw(child.jkl, time=3)</pre>
```

child 7

child

Child dataset

Description

Dataset generated from the famous "child" network. Provided as an example of input data for learning a Bayesian network.

Usage

```
data("child")
```

Format

The format is: chr "child"

Details

Space separeted, integer values for each variable.

Source

http://www.bnlearn.com/bnrepository/discrete-medium.html#child

Examples

data(child)

child.jkl

Parent set cache for the child dataset

Description

Parent set cache, taken from the "child" dataset.

8 read.str

read.jkl

Jkl reader

Description

Read a Jkl file (parent sets cache)

Usage

```
read.jkl(path, names)
```

Arguments

path Path of the file to load names List of variable names

Value

the cache of parent sets

read.str

Structure reader

Description

Reads a str file (BN structure)

Usage

```
read.str(path, names)
```

Arguments

path Path of the file to load names List of variable names

Value

the BN structure

write.jkl 9

write.jkl

Jkl writer (with names)

Description

Write a Jkl file (parent sets cache)

Usage

```
write.jkl(path, jkl)
```

Arguments

path Path of the file to write jkl parent sets cache to write

Index

```
* datasets
child, 7
* parentset
child.jkl, 7

blip, 2
blip.learn, 2
blip.learn.tw, 3
blip.scorer, 4
blip.solver, 5
blip.solver.tw, 6

child, 7
child.jkl, 7

read.jkl, 8
read.str, 8

write.jkl, 9
```