Lecture 7

Solving systems of linear equations III Dr. Zhiguo Long

Zonghelou 718

Please contact me via QQ or Email

Contents

- The cost of Gaussian Elimination
- LU factorisation

The cost of Gaussian Elimination

- Gaussian elimination (GE) is unnecessarily expensive when it is applied to many systems of equations with the same matrix A but different right-hand sides \vec{b} .
 - The forward elimination process is the most computationally expensive part at $O(n^3)$ but is exactly the same for any choice of \vec{b} .
 - In contrast, the solution of the resulting upper triangular system only requires $O(n^2)$ operations.
- We can use this information to improve the way in which we solve multiple systems of equations with the same matrix A but different right-hand sides \vec{b} .

Elementary row operations (EROs)

Note that the EROs discussed in the last lecture can be produced by left multiplication with a suitable matrix:

Row swap:

$$egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} egin{pmatrix} a & b & c \ d & e & f \ g & h & i \end{pmatrix} = egin{pmatrix} a & b & c \ g & h & i \ d & e & f \end{pmatrix}$$

Row swap:

$$egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} egin{pmatrix} a & b & c & d \ e & f & g & h \ i & j & k & l \ m & n & o & p \end{pmatrix} = egin{pmatrix} a & b & c & d \ i & j & k & l \ e & f & g & h \ m & n & o & p \end{pmatrix}$$

Elementary row operations (cont.)

• Multiply row by α :

$$egin{pmatrix} lpha & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} a & b & c \ d & e & f \ g & h & i \end{pmatrix} = egin{pmatrix} lpha a & lpha b & lpha c \ d & e & f \ g & h & i \end{pmatrix}$$

• $\alpha \times \text{row } p + \text{row } q$:

$$egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ lpha & 0 & 1 \end{pmatrix} egin{pmatrix} a & b & c \ d & e & f \ g & h & i \end{pmatrix} = egin{pmatrix} a & b & c \ d & e & f \ lpha + g & lpha b + h & lpha c + i \end{pmatrix}$$

LU factorisation

- Recall from the last lecture that Gaussian elimination (GE) is just a sequence of EROs.
- \bullet Each of these EROs is equivalent to (left) multiplication by a suitable matrix, E say.
- \bullet Hence, forward elimination applied to the system $A\vec{x}=\vec{b}$ can be expressed as

$$(E_m \cdots E_1) A \vec{x} = (E_m \cdots E_1) \vec{b}, \tag{1}$$

where m is the number of EROs required to reduce to the upper triangular form.

ullet Let $U=(E_m\cdots E_1)A$ and $L=(E_m\cdots E_1)^{-1}$.

LU factorisation (cont.)

ullet Now the original system $Aec{x}=ec{b}$ is equivalent to

$$LU\vec{x} = b \tag{2}$$

where U is *upper triangular* (by construction) and L may be shown to be lower triangular (provided the EROs do not include any row swaps).

- Once L and U are known it is easy to solve (2):
 - Solve $L\vec{z} = \vec{b}$ in $O(n^2)$ operations.
 - Solve $U\vec{x} = \vec{z}$ in $O(n^2)$ operations.
- L and U may be found in $O(n^3)$ operations by performing GE and saving the E_i matrices, however it is more convenient to find them directly (also $O(n^3)$ operations).

Computing L and U

Consider a general 4×4 matrix A and its factorisation LU:

$$egin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 & 0 \ l_{21} & 1 & 0 & 0 \ l_{31} & l_{32} & 1 & 0 \ l_{41} & l_{42} & l_{43} & 1 \end{pmatrix} egin{pmatrix} u_{11} & u_{12} & u_{13} & u_{14} \ 0 & u_{22} & u_{23} & u_{24} \ 0 & 0 & u_{33} & u_{34} \ 0 & 0 & 0 & u_{44} \end{pmatrix}$$

For the first column,

$$egin{array}{lll} a_{11} &= (1,0,0,0)(u_{11},0,0,0)^T &= u_{11} &
ightarrow u_{11} = a_{11} \ a_{21} &= (l_{21},1,0,0)(u_{11},0,0,0)^T &= l_{21}u_{11} &
ightarrow l_{21} = a_{21}/u_{11} \ a_{31} &= (l_{31},l_{32},1,0)(u_{11},0,0,0)^T &= l_{31}u_{11} &
ightarrow l_{31} = a_{31}/u_{11} \ a_{41} &= (l_{41},l_{42},l_{43},1)(u_{11},0,0,0)^T &= l_{41}u_{11} &
ightarrow l_{41} = a_{41}/u_{11} \end{array}$$

The second, third and fourth columns follow in a similar manner, giving all the entries in L and U.

Notes

- ullet L is assumed to have 1's on the diagonal, to ensure that the factorisation is unique.
- The process involves division by the diagonal entries u_{11}, u_{22} , etc., so they **must** be non-zero.
- In general the factors l_{ij} and u_{ij} are calculated for each column j in turn, i.e.,

```
for j in range(n):
    for i in range(j+1):
        # Compute factors u_{ij}
        ...
    for i in range(j+1, n):
        # Compute factors l_{ij}
        ...
```

Use LU factorisation to solve the linear system of equations given by

$$egin{pmatrix} 2 & 1 & 4 \ 1 & 2 & 2 \ 2 & 4 & 6 \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = egin{pmatrix} 12 \ 9 \ 22 \end{pmatrix}.$$

This can be rewritten in the form A=LU where

$$egin{pmatrix} 2 & 1 & 4 \ 1 & 2 & 2 \ 2 & 4 & 6 \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ l_{21} & 1 & 0 \ l_{31} & l_{32} & 1 \end{pmatrix} egin{pmatrix} u_{11} & u_{12} & u_{13} \ 0 & u_{22} & u_{23} \ 0 & 0 & u_{33} \end{pmatrix}.$$

$$egin{pmatrix} 2 & 1 & 4 \ 1 & 2 & 2 \ 2 & 4 & 6 \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ l_{21} & 1 & 0 \ l_{31} & l_{32} & 1 \end{pmatrix} egin{pmatrix} u_{11} & u_{12} & u_{13} \ 0 & u_{22} & u_{23} \ 0 & 0 & u_{33} \end{pmatrix}.$$

$$egin{pmatrix} 2 & 1 & 4 \ 1 & 2 & 2 \ 2 & 4 & 6 \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ l_{21} & 1 & 0 \ l_{31} & l_{32} & 1 \end{pmatrix} egin{pmatrix} u_{11} & u_{12} & u_{13} \ 0 & u_{22} & u_{23} \ 0 & 0 & u_{33} \end{pmatrix}.$$

Column 1 of A gives

$$egin{array}{lll} A_{11}=2=&u_{11}
ightarrow&u_{11}=2\ A_{21}=1=&l_{21}u_{11}
ightarrow&l_{21}=0.5\ A_{31}=2=&l_{31}u_{11}
ightarrow&l_{31}=1. \end{array}$$

$$egin{pmatrix} 2 & 1 & 4 \ 1 & 2 & 2 \ 2 & 4 & 6 \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ l_{21} & 1 & 0 \ l_{31} & l_{32} & 1 \end{pmatrix} egin{pmatrix} u_{11} & u_{12} & u_{13} \ 0 & u_{22} & u_{23} \ 0 & 0 & u_{33} \end{pmatrix}.$$

Column 2 of A gives

$$egin{array}{lll} A_{12}=1&&u_{12}
ightarrow&u_{12}=1\ A_{22}=2=&l_{21}u_{12}+u_{22}
ightarrow&u_{22}=1.5\ A_{32}=4=&l_{31}u_{12}+l_{32}u_{22}
ightarrow&l_{32}=2. \end{array}$$

$$egin{pmatrix} 2 & 1 & 4 \ 1 & 2 & 2 \ 2 & 4 & 6 \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ l_{21} & 1 & 0 \ l_{31} & l_{32} & 1 \end{pmatrix} egin{pmatrix} u_{11} & u_{12} & u_{13} \ 0 & u_{22} & u_{23} \ 0 & 0 & u_{33} \end{pmatrix}.$$

Column 3 of A gives

$$egin{array}{lll} A_{13}=4=&u_{13}
ightarrow&u_{13}=4\ A_{23}=2=&l_{21}u_{13}+u_{23}
ightarrow&u_{23}=0\ A_{33}=6=&l_{31}u_{13}+l_{32}u_{23}
ightarrow&u_{33}=2. \end{array}$$

Solve the lower triangular system $L \vec{z} = \vec{b}$:

$$egin{pmatrix} 1 & 0 & 0 \ 0.5 & 1 & 0 \ 1 & 2 & 1 \end{pmatrix} egin{pmatrix} z_1 \ z_2 \ z_3 \end{pmatrix} = egin{pmatrix} 12 \ 9 \ 22 \end{pmatrix}
ightarrow egin{pmatrix} z_1 \ z_2 \ z_3 \end{pmatrix} = egin{pmatrix} 12 \ 3 \ 4 \end{pmatrix}$$

Solve the upper triangular system $U\vec{x} = \vec{z}$:

$$egin{pmatrix} 2 & 1 & 4 \ 0 & 1.5 & 0 \ 0 & 0 & 2 \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} egin{pmatrix} 12 \ 3 \ 4 \end{pmatrix}
ightarrow egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = egin{pmatrix} 1 \ 2 \ 2 \end{pmatrix}.$$

Rewrite the matrix A as the product of lower and upper triangular matrices where

$$A = egin{pmatrix} 4 & 2 & 0 \ 2 & 3 & 1 \ 0 & 1 & 2.5 \end{pmatrix}.$$

The link

The first example gives

$$egin{pmatrix} 2 & 1 & 4 \ 1 & 2 & 2 \ 2 & 4 & 6 \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ 0.5 & 1 & 0 \ 1 & 2 & 1 \end{pmatrix} egin{pmatrix} 2 & 1 & 4 \ 0 & 1.5 & 0 \ 0 & 0 & 2 \end{pmatrix}$$

Note that

- ullet the matrix U is the same as the fully eliminated upper triangular form produced by Gaussian elimination;
- ullet L contains the multipliers that were used at each stage to eliminate the rows.

Further reading

- Wikipedia: LU decomposition
- Wikipedia: Matrix decomposition (Other examples of decompositions).
- Nick Higham: What is an LU factorization? (a very mathematical treatment with additional references)

Note that these implementations use additional pivoting to achieve better results. We tackle this in the next section.

- LAPACK: dgetrf(). (Implementation of LU factorisation from LAPACK).
- Scipy: scipy.linalg.lu