5

Notice of Use and Disclosure

Copyright © LoRa Alliance, Inc. (2017). All Rights Reserved.

The information within this document is the property of the LoRa Alliance™ ("The Alliance") and its use and disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership Agreements.

Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance). The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

This document and the information contained herein are provided on an "AS IS" basis and THE ALLIANCE DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOTLIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION HEREINWILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITHOUTLIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.

IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that are made.

LoRa Alliance, Inc. 2400 Camino Ramon, Suite 375

San Ramon, CA 94583

Note: All Company, brand and product names may be trademarks that are the sole property of their respective

The LoRa Alliance and LoRaWAN are marks used under license from the LoRa Alliance.

LoRaWAN™ 1.0.2 Regional Parameters

This document is a companion document to the LoRaWAN 1.0.2 protocol specification

Authors:

LoRa Alliance Technical committee

Revision: B Date: 2017 Feb Status: Final

Contents

66		duction	
67	2 LoRa	WAN Regional Parameters	8
68	2.1 EU	J 863-870MHz ISM Band	8
69	2.1.1	EU863-870 Preamble Format	8
70	2.1.2	EU863-870 ISM Band channel frequencies	8
71		EU863-870 Data Rate and End-device Output Power encoding	
72		EU863-870 JoinAccept CFList	
73		EU863-870 LinkAdrReg command	
74		EU863-870 Maximum payload size	
75	2.1.7		
76		EU863-870 Class B beacon and default downlink channel	
77		EU863-870 Default Settings	
78		S 902-928MHz ISM Band	
79		US902-928 Preamble Format	
80		US902-928 Channel Frequencies	
81		US902-928 Data Rate and End-device Output Power encoding	
82		US902-928 JoinAccept CFList	
83		US902-928 LinkAdrReq command	
84		US902-928 Maximum payload size	
85		US902-928 Receive windows	
86		US902-928 Class B beacon	
87		US902-928 Default Settings	
88		ina 779-787MHz ISM Band	
89		CN779-787 Preamble Format	
90			
90 91		CN779-787 ISM Band channel frequencies	
92		CN779-787 Data Rate and End-device Output Power encoding	
		CN779-787 JoinAccept CFList	
93 94		CN779-787 LinkAdrReq command	
		CN779-787 Maximum payload size	
95 06		CN779-787 Receive windows	
96		CN779-787 Class B beacon and default downlink channel	
97		CN779-787 Default Settings	
98		J 433MHz ISM Band	
99		EU433 Preamble Format	
100		EU433 ISM Band channel frequencies	
101		EU433 Data Rate and End-device Output Power encoding	
102		EU433 JoinAccept CFList	
103		EU433 LinkAdrReq command	
104		EU433 Maximum payload size	
105		EU433 Receive windows	
106		EU433 Class B beacon and default downlink channel	
107		EU433 Default Settings	
108		stralia 915-928MHz ISM Band	_
109		AU915-928 Preamble Format	
110		AU915-928 Channel Frequencies	
111		AU915-928 Data Rate and End-point Output Power encoding	
112		AU915-928 JoinAccept CFList	
113		AU915-928 LinkAdrReq command	
114		AU915-928 Maximum payload size	
115		AU915-928 Receive windows	
116		AU915-928 Class B beacon	
117	2.5.9	AU915-928 Default Settings	32

118	2.6 Ci	N 470-5 TUMHZ Band	33
119	2.6.1	CN470-510 Preamble Format	33
120	2.6.2	CN470-510 Channel Frequencies	33
121	2.6.3	CN470-510 Data Rate and End-point Output Power encoding	34
122	2.6.4	CN470-510 JoinResp CFList	34
123		CN470-510 LinkAdrReg command	
124		CN470-510 Maximum payload size	
125		CN470-510 Receive windows	
126		CN470-510 Class B beacon	
127		CN470-510 Default Settings	
128		S923MHz ISM Band	
129		AS923 Preamble Format	
130		AS923 ISM Band channel frequencies	
131	2.7.3	AS923 Data Rate and End-point Output Power encoding	39
132	2.7.4	AS923 JoinAccept CFList	40
133		AS923 LinkAdrReg command	
134		AS923 Maximum payload size	
135		AS923 Receive windows	
136		AS923 Class B beacon and default downlink channel	
137		AS923 Default Settings	
138		outh Korea 920-923MHz ISM Band	
139	2.8.1	KR920-923 Preamble Format	
140		KR920-923 ISM Band channel frequencies	
141	2.0.2	KR920-923 Data Rate and End-device Output Power encoding	43 11
142		KR920-923 JoinAccept CFList	
143		KR920-923 LinkAdrReq command	
144	2.8.6	KR920-923 Maximum payload size	
145		KR920-923 Receive windows	
146	2.8.8	KR920-923 Class B beacon and default downlink channel	
147		KR920-923 Default Settings	
148		dia 865-867 MHz ISM Band	
149	2.9.1	INDIA 865-867 Preamble Format	
150		INDIA 865-867 ISM Band channel frequencies	
151		INDIA 865-867 Data Rate and End-device Output Power Encoding	
152		INDIA 865-867 JoinAccept CFList	
153		INDIA 865-867 JoinAccept Craist	
154		INDIA 865-867 Maximum payload size	
15 4 155	2.9.0	INDIA 865-867 Receive windows	
156	2.9.7	INDIA 865-867 Class B beacon and default downlink channel	
157	2.9.0	INDIA 865-867 Default Settings	
158		sions	
150		evision A	
160		evision B	
161		ography	
162		eferencesICE OF USE AND DISCLOSURE	
163 164	5 NOT	ICE OF USE AND DISCLOSURE	55
165	Tables		
166		U863-870 synch words	O
167		U863-870 default channels	
168		U863-870 JoinReq Channel List	
100	i abic J. E	OUOO OTO OUITINGY OFICIFICI LIST	9

169	Table 4: TX Data rate table	9
170	Table 5: TX power table	9
171	Table 6: ChMaskCntl value table	10
172	Table 7: EU863-870 maximum payload size	11
173	Table 8 : EU863-870 maximum payload size (not repeater compatible)	11
174	Table 9: EU863-870 downlink RX1 data rate mapping	
175	Table 10: EU863-870 beacon settings	
176	Table 11: TX Data rate table	
177	Table 12: TX power table	
178	Table 13: ChMaskCntl value table	
179	Table 14: US902-928 maximum payload size (repeater compatible)	
180	Table 15 : US902-928 maximum payload size (not repeater compatible)	16
181	Table 16: US902-928 downlink RX1 data rate mapping	
182	Table 17: US902-928 beacon settings	
183	Table 18: CN779-787 synch words	
184	Table 19: CN780 JoinReq Channel List	
185	Table 20: Data rate and TX power table	
186	Table 21: ChMaskCntl value table	
187	Table 22: CN780 maximum payload size	
188	Table 23 : CN780 maximum payload size (not repeater compatible)	
189	Table 24: CN780 downlink RX1 data rate mapping	
190	Table 25: CN780 beacon settings	
191	Table 26: EU433 synch words	
192	Table 27: EU433 JoinReq Channel List	
193	Table 28: Data rate and TX power table	
194	Table 29: ChMaskCntl value table	
195	Table 30: EU433 maximum payload size	
196	Table 31 : EU433 maximum payload size (not repeater compatible)	
197	Table 32 : EU433 downlink RX1 data rate mapping	
198	Table 33 : EU433 beacon settings	
199	Table 34: AU915-928 Data rate table	
200	Table 35 : AU915-928 TX power table	
201	Table 36: ChMaskCntl value table	
202	Table 37: AU915-928 maximum payload size	
203	Table 38: AU915-928 maximum payload size (not repeater compatible)	
204		31
205	Table 40 : AU915-928 beacon settings	
206	Table 41: CN470 Data rate and TX power table	
207	Table 42: CN470 ChMaskCntl value table	
208	Table 43: CN470-510 maximum payload size	
209	Table 44 : CN470-510 maximum payload size (not repeater compatible)	
210	Table 45: CN470-510 downlink RX1 data rate mapping	
211	Table 46 : CN470-510 beacon settings	
212	Table 47: AS923 synch words	
213	Table 48: AS923 default channels	
214	Table 49: AS923 JoinReq Channel List	
215	Table 50: Data rate table	
216	Table 51: TxPower table	
217	Table 52: ChMaskCntl value table	
218	Table 53: AS923 maximum payload size	
219	Table 54: AS923 maximum payload size (not repeater compatible)	
220	Table 55 : AS923 beacon settings	
221	Table 56: Center frequency, bandwidth, maximum EIRP output power table	

222	Table 57: KR920-923 default channels	43
223	Table 58: KR920-923 JoinReq Channel List	44
224	Table 59: TX Data rate table	
225	Table 60: TX power table	44
226	Table 61: ChMaskCntl value table	45
227	Table 62: KR920-923 maximum payload size	
228	Table 63: KR920-923 maximum payload size (not repeater compatible)	46
229	Table 64: KR920-923 downlink RX1 data rate mapping	46
230	Table 65: KR920-923 beacon settings	47
231	Table 66: India 865-867 synch words	
232	Table 67: INDIA 865-867 default channels	
233	Table 68: INDIA 865-867 JoinReq Channel List	
234	Table 69: TX Data rate table	
235	Table 70: TxPower table	
236	Table 71: ChMaskCntl value table	
237	Table 72: INDIA 865-867 maximum payload size	
238	Table 73: INDIA 865-867 maximum payload size (not repeater compatible)	51
239		
240	Figures	
241	Figure 1: US902-928 channel frequencies	13
242	Figure 2: AU915-928 channel frequencies	
243 244	Figure 3: CN470-510 channel frequencies	33

1 Introduction

246247248

249

250

245

This document describes the LoRaWAN™ regional parameters for different regulatory regions worldwide. This document is a companion document to the LoRaWAN 1.0.2 protocol specification [LORAWAN]. Separating the regional parameters from the protocol specification allows addition of new regions to the former without impacting the latter document.

251252

253 254

2 LoRaWAN Regional Parameters

2.1 EU 863-870MHz ISM Band

2.1.1 EU863-870 Preamble Format

The following synchronization words should be used:

259
260

256

257

258

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 1: EU863-870 synch words

261

262

263

264265

2.1.2 EU863-870 ISM Band channel frequencies

This section applies to any region where the ISM radio spectrum use is defined by the ETSI [EN300.220] standard.

The network channels can be freely attributed by the network operator. However the three following default channels must be implemented in every EU868MHz end-device. Those channels are the minimum set that all network gateways should always be listening on.

267268

266

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	868.10 868.30 868.50	DR0 to DR5 / 0.3-5 kbps	3	<1%

269

Table 2: EU863-870 default channels

In order to access the physical medium the ETSI regulations impose some restrictions such

270271272

273

maximum time the transmitter can be on or the maximum time a transmitter can transmit per hour. The ETSI regulations allow the choice of using either a duty-cycle limitation or a so-called **Listen Before Talk Adaptive Frequency Agility** (LBT AFA) transmissions management. The current LoRaWAN specification exclusively uses duty-cycled limited transmissions to comply with the ETSI regulations.

274275276

277

278

EU868MHz end-devices should be capable of operating in the 863 to 870 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

279 280

281 282

283

The first three channels correspond to 868.1, 868.3, and 868.5 MHz / DR0 to DR5 and must be implemented in every end-device. Those default channels cannot be modified through the **NewChannelReq** command and guarantee a minimal common channel set between end-devices and network gateways.

284 285 286 The following table gives the list of frequencies that should be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle shall follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	868.10 868.30 868.50	DR0 – DR5 / 0.3-5 kbps	3

Table 3: EU863-870 JoinReg Channel List

289

290291

292293

2.1.3 EU863-870 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the EU863-870 PHY layer. The *TxParamSetupReq* MAC command is not implemented in EU863-870 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the EU863-870 band:

294295

DataRate Configuration		Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3 LoRa: SF9 / 125 kHz		1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
815	RFU	

296

297 298

299

300

EIRP¹ refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

Table 4: TX Data rate table

TXPower	Configuration (EIRP)	
0 MaxEIRP		
1	MaxEIRP – 2dB	
2	MaxEIRP – 4dB	
3	MaxEIRP – 6dB	
4	MaxEIRP – 8dB	
5	MaxEIRP – 10dB	
6	MaxEIRP – 12dB	
7	MaxEIRP – 14dB	
815	RFU	

Table 5: TX power table

305

306

307

By default MaxEIRP is considered to be +16dBm. If the end-device cannot achieve 16dBm EIRP, the Max EIRP should be communicated to the network server using an out-of-band channel during the end-device commissioning process.

¹ ERP = EIRP – 2.15dB; it is referenced to a half-wave dipole antenna whose gain is expressed in dBd

2.1.4 EU863-870 JoinAccept CFList

 The EU 863-870 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels four to eight whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single RFU octet for a total of 16 octets.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	RFU

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.1.5 EU863-870 LinkAdrReq command

The EU863-870 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to		
0	Channels 1 to 16		
1	RFU		
4	RFU		
5 RFU			
6	All channels ON		
	The device should enable all currently defined		
	channels independently of the ChMask field		
	value.		
7	RFU		

Table 6: ChMaskCntl value table

If the ChMaskCntl field value is one of values meaning RFU, the end-device should reject the command and unset the "**Channel mask ACK**" bit in its response.

2.1.6 EU863-870 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	M	N
----------	---	---

340

341

342

343

344

345

346 347

348 349

350

351 352

353 354

355 356

0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	230	222	
5	230	222	
6	230	222	
7	230	222	
8:15	Not defined		

Table 7: EU863-870 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

DataRate	M	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250	242	
6	250	242	
7	250	242	
8:15	Not defined		

Table 8 : EU863-870 maximum payload size (not repeater compatible)

2.1.7 EU863-870 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

RX1DROffset Upstream data rate	0	1 Dow	2 vnstream data	3 a rate in RX1	4 slot	5
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

Table 9: EU863-870 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 869.525 MHz / DR0 (SF12, 125 kHz)

2.1.8 EU863-870 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW

CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses inverted	
		signal polarity	

Table 10: EU863-870 beacon settings

357358359

The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

The beacon default broadcast frequency is 869.525MHz.

The class B default downlink pingSlot frequency is 869.525MHz

362

363

361

2.1.9 EU863-870 Default Settings

The following parameters are recommended values for the EU863-870MHz band.

365 RECEIVE_DELAY1 366 RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s) 367 JOIN_ACCEPT_DELAY1 5 s 368 JOIN ACCEPT DELAY2 6s369 MAX FCNT GAP 16384 370 ADR_ACK_LIMIT 64 371 ADR ACK DELAY 32

372 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 and RECEIVE_DELAY2 latency), those parameters must be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

377 378

373

374

381

382 383

384

385 386

387 388

389 390

391 392

393

394 395

396

397 398

399

400

401

402

403

404

405

406

407

408 409

410

411 412

413 414

415 416

2.2 US 902-928MHz ISM Band

This section defines the regional parameters for the USA, Canada and all other countries adopting the entire FCC-Part15 regulations in 902-928 ISM band.

2.2.1 US902-928 Preamble Format

The following synchronization words should be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

LoRaWAN does not make use of GFSK modulation in the US902-928 ISM band.

2.2.2 US902-928 Channel Frequencies

The 915 MHz ISM Band shall be divided into the following channel plans.

- Upstream 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR3, using coding rate 4/5, starting at 902.3 MHz and incrementing linearly by 200 kHz to 914.9 MHz
- Upstream 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR4 starting at 903.0 MHz and incrementing linearly by 1.6 MHz to 914.2 MHz
- Downstream 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13, starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

Figure 1: US902-928 channel frequencies

915 MHz ISM band end-devices are required to operate in compliance with the relevant regulatory specifications, to include.

- Frequency-Hopping, Spread-Spectrum (FHSS) mode, which requires the device transmit at a measured conducted power level no greater than +30 dBm, for a period of no more than 400 msec and over at least 50 channels, each of which occupy no greater than 250 kHz of bandwidth.
- Digital Transmission System (DTS) mode, which requires that the device use channels greater than or equal to 500 kHz and comply to a conducted Power Spectral Density measurement of no more than +8 dBm per 3kHz of spectrum. In practice, this limits the conducted output power of an end-device to +26 dBm.
- Hybrid mode, which requires that the device transmit over multiple channels (this
 may be less than the 50 channels required for FHSS mode, but is recommended to
 be at least 4) while complying with the Power Spectral Density requirements of DTS
 mode and the 400 msec dwell time of FHSS mode. In practice this limits the
 measured conducted power of the end-device to 21 dBm.
- Devices which use an antenna system with a directional gain greater than +6 dBi, but reduce the specified conducted output power by the amount in dB of directional gain over +6 dBi.

US902-928 end-devices MUST be capable of operating in the 902 to 928 MHz frequency band and MUST feature a channel data structure to store the parameters for 72 channels. This channel data structure contains a list of frequencies and the set of data rates available for each frequency.

If using the over-the-air activation procedure, it is recommended that the end-device transmit the JoinRequest message alternatively on a random 125 kHz channel amongst the 64 channels defined using **DR0** and a random 500 kHz channel amongst the 8 channels defined using **DR4**. The end-device SHALL change channel for every transmission. For rapid network acquisition in mixed channel plan environments, it is further recommended that the device follow a channel selection sequence (still random) which efficiently probes the groups of nine (8 + 1) channels which are typically implemented by smaller gateways (channel groups 0-7+64, 8-15+65, etc.).

Personalized devices shall have all 72 channels enabled following a reset and shall use the channels for which the device's default data-rate is valid.

2.2.3 US902-928 Data Rate and End-device Output Power encoding

FCC regulation imposes a maximum dwell time of 400ms on uplinks. The *TxParamSetupReq* is not implemented by US902-928 devices.

The following encoding is used for Data Rate (**DR**) and End-device conducted Power (**TXPower**) in the US902-928 band:

435 436

434

421

422

423

424

425 426

427

428

431

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF10 / 125 kHz	980
1	LoRa: SF9 / 125 kHz	1760
2	LoRa: SF8 / 125 kHz	3125
3	LoRa: SF7 / 125 kHz	5470
4	LoRa: SF8 / 500 kHz	12500
5:7	RFU	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500
13	LoRa: SF7 / 500 kHz	21900
14:15	RFU	

437

Table 11: TX Data rate table

438 439 440 Note: DR4 is purposely identical to DR12, DR8..13 must be implemented in end-devices and are reserved for future applications

TXPower	Configuration (conducted power)	
0	30 dBm – 2*TXpower	
1	28 dBm	
2	26 dBm	
3:9		
10	10 dBm	
11:15	RFU	

 Table 12: TX power table

442 2.2.4 US902-928 JoinAccept CFList

The US902-928 LoRaWAN does not support the use of the optional **CFlist** appended to the JoinAccept message. If the **CFlist** is not empty it is ignored by the end-device.

2.2.5 US902-928 LinkAdrReg command

For the US902-928 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

ChMaskCntl	ChMask applies to	
0	Channels 0 to 15	
1	Channels 16 to 31	
4	Channels 64 to 71	
5	RFU	
6	All 125 kHz ON	
	ChMask applies to	
	channels 64 to 71	
7	All 125 kHz OFF	
	ChMask applies to	
	channels 64 to 71	

Table 13: ChMaskCntl value table

If **ChMaskCntl** = 6 then 125 kHz channels are enabled, if **ChMaskCntl** = 7 then 125 kHz channels are disabled. Simultaneously the channels 64 to 71 are set according to the **ChMask** bit mask. The DataRate specified in the command need not be valid for channels specified in the ChMask, as it governs the global operational state of the end-device.

Note: FCC regulation requires hopping over at least 50 channels when using maximum output power. It is possible to have end-devices with less channels when limiting the end-device conducted transmit power to 21 dBm

Note: A common network server action may be to reconfigure a device through multiple LinkAdrReq commands in a contiguous block of MAC Commands. For example to reconfigure a device from 64 channel operation to the first 8 channels could contain two LinkAdrReq, the first (ChMaskCntl = 7) to disable all 125kHz channels and the second (ChMaskCntrl = 0) to enable a bank of 8 125kHz channels.

2.2.6 US902-928 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate M N

0	19	11	
1	61	53	
2	133	125	
3	250	242	
4	250	242	
5:7	Not defined		
8	41	33	
9	117	109	
10	230	222	
11	230	222	
12	230	222	
13	230 222		
14:15	Not defined		

Table 14: US902-928 maximum payload size (repeater compatible)

475 476

477

478

474

The greyed lines correspond to the data rates that may be used by an end-device behind a repeater.

If the end-device will never operate under a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

479 480

DataRate	M	N	
0	19	11	
1	61	53	
2	133	125	
3	250	242	
4	250	242	
5:7	Not de	efined	
8	61	53	
9	137	129	
10	250	242	
11	250	242	
12	250	242	
13	250	242	
14:15	Not defined		

Table 15: US902-928 maximum payload size (not repeater compatible)

481

482

2.2.7 US902-928 Receive windows

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 - o RX1 Channel Number = Transmit Channel Number modulo 8
- The RX1 window data rate depends on the transmit data rate (see Table 16 below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency.
 Default parameters are 923.3MHz / DR8

Upstream data rate		Downstream	n data rate	
RX1DROffset	0	1	2	3
DR0	DR10	DR9	DR8	DR8
DR1	DR11	DR10	DR9	DR8
DR2	DR12	DR11	DR10	DR9
DR3	DR13	DR12	DR11	DR10
DR4	DR13	DR13	DR12	DR11

493

494

495

496

497

498 499

500 501

502

503

504 505 506

507 508 509

510

511

Table 16: US902-928 downlink RX1 data rate mapping

The allowed values for RX1DROffset are in the [0:3] range. Values in the range [4:7] are reserved for future use.

2.2.8 US902-928 Class B beacon

The beacons are transmitted using the following settings:

DR	8	Corresponds to SF12 spreading factor with 500kHz	
		bw	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses	
		inverted signal polarity	
frequencies	923.3 to 927.5MHz	Beaconing is performed on the same channel that	
	with 600kHz steps	normal downstream traffic as defined in the Class A	
		specification	

Table 17: US902-928 beacon settings

The downstream channel used for a given beacon is:

Channel =
$$\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$$
 modulo 8

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
- whereby beacon_period is the periodicity of beacons, 128 seconds
- whereby floor(x) designates rounding to the integer immediately inferior or equal to x

Example: the first beacon will be transmitted on 923.3Mhz, the second on 923.9MHz, the 9th beacon will be on 923.3Mhz again.

Beacon channel nb	Frequency [MHz]
0	923.3
1	923.9
2	924.5
3	925.1
4	925.7
5	926.3
6	926.9
7	927.5

The beacon frame content is:

Size (bytes)	5	4	2	7	3	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

2.2.9 US902-928 Default Settings

The following parameters are recommended values for the US902-928 band.

513 RECEIVE_DELAY1 1 s

514 RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)

515 JOIN_ACCEPT_DELAY1 5 s 516 JOIN_ACCEPT_DELAY2 6 s 517 MAX_FCNT_GAP 16384

518	ADR_ACK_LIMIT	64
519	ADR_ACK_DELAY	32
520	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)
521 522 523 524 525 526	values (for example the end-device parameters must be communicated	emented in the end-device are different from those default e uses a longer RECEIVE_DELAY1 & 2 latency), those to the network server using an out-of-band channel during ocess. The network server may not accept parameters

528 529

530

531

532

533

536

537

538 539

540

541 542

543 544

545 546

547

548

549

550

551 552

553

554

555

556

557 558

2.3 China 779-787MHz ISM Band

2.3.1 CN779-787 Preamble Format

The following synchronization words should be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 18: CN779-787 synch words

2.3.2 CN779-787 ISM Band channel frequencies

The LoRaWAN can be used in the Chinese 779-787MHz band as long as the radio device EIRP is less than 12.15dBm.

The end-device transmit duty-cycle should be lower than 1%.

The LoRaWAN channels center frequency can be in the following range:

Minimum frequency: 779.5MHzMaximum frequency: 786.5 MHz

CN780MHz end-devices should be capable of operating in the 779 to 787 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 779.5, 779.7 and 779.9 MHz with DR0 to DR5 and must be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and gateways of all networks. Other channels can be freely distributed across the allowed frequency range on a network per network basis.

The following table gives the list of frequencies that should be used by end-devices to broadcast the JoinReq message The JoinReq message transmit duty-cycle shall follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
	125	779.5	DR0 – DR5	6	<0.1%
LoRa		779.7	/ 0.3-5 kbps		
		779.9			
		780.5			
		780.7			
		780.9			

Table 19: CN780 JoinReq Channel List

2.3.3 CN779-787 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the CN779-787 PHY layer. The *TxParamSetupReq* MAC command is not implemented by CN779-787 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the CN780 band:

OI 17 00 band.				
DataRate	Configuration	Indicative physical bit rate [bit/s]		
0	LoRa: SF12 / 125 kHz	250		
1	LoRa: SF11 / 125 kHz	440		
2	LoRa: SF10 / 125 kHz	980		
3	LoRa: SF9 / 125 kHz	1760		
4	LoRa: SF8 / 125 kHz	3125		
5	LoRa: SF7 / 125 kHz	5470		
6	LoRa: SF7 / 250 kHz	11000		
7	FSK: 50 kbps	50000		
815	RFU			

TXPower	Configuration (EIRP)
0	MaxEIRP
1	MaxEIRP – 2dB
2	MaxEIRP – 4dB
3	MaxEIRP – 6dB
4	MaxEIRP – 8dB
5	MaxEIRP – 10dB
615	RFU

Table 20: Data rate and TX power table

 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MAxEIRP is considered to be +12.15dBm. If the end-device cannot achieve 12.15dBm EIRP, the Max EIRP should be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.3.4 CN779-787 JoinAccept CFList

The CN780 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels four to eight whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single RFU octet for a total of 16 octets.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	RFU

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels.

The newly defined channels are immediately enabled and usable by the end-device for communication.

2.3.5 CN779-787 LinkAdrReq command

The CN780 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to
0	Channels 1 to 16
1	RFU
••	
4	RFU
5	RFU
6	All channels ON
	The device should enable all currently defined
	channels independently of the ChMask field
	value.
7	RFU

Table 21: ChMaskCntl value table

592 593 594

595

596

597

598 599

587 588

589 590

591

If the ChMask field value is one of values meaning RFU, then end-device should reject the command and unset the "Channel mask ACK" bit in its response.

2.3.6 CN779-787 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

600
601
602

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6	250	242
7	230	222
8:15	Not d	efined

603 604 Table 22: CN780 maximum payload size

605 606 607 If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242
8:15	Not d	efined

Table 23: CN780 maximum payload size (not repeater compatible)

2.3.7 CN779-787 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use

614

608

609

610 611

612

613

RX1DROffset	0	1	2	3	4	5
	Downstream data rate in RX1 slot					
Upstream data rate						
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

Table 24: CN780 downlink RX1 data rate mapping

615 616

617

618

620

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 786 MHz / DR0.

2.3.8 CN779-787 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which
		uses inverted signal polarity

Table 25: CN780 beacon settings

621 The beacon frame content is:

Size (bytes)	2	2 4 2 7		7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

- The beacon default broadcast frequency is 785MHz.
- The class B default downlink pingSlot frequency is 785MHz

624

625

2.3.9 CN779-787 Default Settings

The following parameters are recommended values for the CN779-787MHz band.

627	RECEIVE_DELAY1	1 s
000	DEOENTE DEL ANO	_

628 RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)

 629
 JOIN_ACCEPT_DELAY1
 5 s

 630
 JOIN_ACCEPT_DELAY2
 6 s

 631
 MAX_FCNT_GAP
 16384

 632
 ADR_ACK_LIMIT
 64

 633
 ADR_ACK_DELAY
 32

634 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

636

637

638 639 If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 and RECEIVE_DELAY2 latency), those parameters must be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

2.4 EU 433MHz ISM Band

2.4.1 EU433 Preamble Format

The following synchronization words should be used:

642 643

640

641

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

644

645

648 649

650

651 652

653

654 655

656

657

658 659

660

661 662

663

Table 26: EU433 synch words

2.4.2 EU433 ISM Band channel frequencies

The LoRaWAN can be used in the ETSI 433-434 MHz band as long as the radio device EIRP is less than 12.15dBm.

The end-device transmit duty-cycle should be lower than 1%¹

The LoRaWAN channels center frequency can be in the following range:

Minimum frequency: 433.175 MHzMaximum frequency: 434.665 MHz

EU433 end-devices should be capable of operating in the 433.05 to 434.79 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 433.175, 433.375 and 433.575 MHz with DR0 to DR5 and must be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and gateways of all networks. Other channels can be freely distributed across the allowed frequency range on a network per network basis.

The following table gives the list of frequencies that should be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle shall follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

664 665

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	433.175 433.375 433.575	DR0 – DR5 / 0.3-5 kbps	3	<1%

666 667

669

670

Table 27: EU433 JoinReq Channel List

668 **2**.

2.4.3 EU433 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the EU433 PHY layer. The *TxParamSetupReq* MAC command is not implemented by EU433 devices.

¹ The EN300220 ETSI standard limits to 10% the maximum transmit duty-cycle in the 433MHz ISM band. The LoRaWAN requires a 1% transmit duty-cycle lower than the legal limit to avoid network congestion.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the EU433 band:

Table 28: Data rate and TX power table

power referenced to an isotropic antenna radiating power equally in all directions and whose

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output

By default MAxEIRP is considered to be +12.15dBm. If the end-device cannot achieve 12.15dBm EIRP, the Max EIRP should be communicated to the network server using an out-

6	7	2
6	7	3

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
815	RFU	

of-band channel during the end-device commissioning process.

TXPower	Configuration (EIRP)
0	MaxEIRP
1	MaxEIRP – 2dB
2	MaxEIRP – 4dB
3	MaxEIRP – 6dB
4	MaxEIRP – 8dB
5	MaxEIRP – 10dB
615	RFU

2.4.4 EU433 JoinAccept CFList

gain is expressed in dBi.

The EU433 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels four to eight whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125 kHz LoRa modulation. The list of frequencies is followed by a single RFU octet for a total of 16 octets.

Size	3	3	3	3	3	1
3126	3	3	3	3	3	•
(bytes)						
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	RFU

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels.

The newly defined channels are immediately enabled and usable by the end-device for communication.

703

704 705

706

707

708

709710

711

712

713

714 715

716

717 718

719 720

2.4.5 EU433 LinkAdrReq command

The EU433 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to	
0	Channels 1 to 16	
1	RFU	
4	RFU	
5	RFU	
6	All channels ON	
	The device should enable all currently defined	
	channels independently of the ChMask field	
	value.	
7	RFU	

Table 29: ChMaskCntl value table

If the ChMask field value is one of the values meaning RFU, then end-device should reject the command and unset the "**Channel mask ACK**" bit in its response.

2.4.6 EU433 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6	230	222
7	230	222
8:15	Not d	efined

Table 30: EU433 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242
8:15	Not d	efined

Table 31 : EU433 maximum payload size (not repeater compatible)

721 722

723

724

725 726

727

2.4.7 EU433 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

728

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Dow	nstream data	a rate in RX1	slot	
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

Table 32: EU433 downlink RX1 data rate mapping

729 730

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 434.665MHz / DR0 (SF12, 125kHz).

731 732

733

734

2.4.8 EU433 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125	
		kHz BW	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which	
		uses inverted signal polarity	

Table 33: EU433 beacon settings

735736

The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

The beacon default broadcast frequency is 434.665MHz.

738 The class B default downlink pingSlot frequency is 434.665MHz

739

740

2.4.9 EU433 Default Settings

741 The following parameters are recommended values for the EU433band.

742 RECEIVE DELAY1 1 s

743 RECEIVE DELAY2 2 s (must be RECEIVE DELAY1 + 1s)

744 JOIN_ACCEPT_DELAY1 5 s 745 JOIN_ACCEPT_DELAY2 6 s 746 MAX_FCNT_GAP 16384

747 ADR_ACK_LIMIT 64 748 ADR_ACK_DELAY 32 749 ACK_TIMEOUT 2 +

ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

750 751

752 753

754

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those parameters must be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

755 756

757

758

2.5 Australia 915-928MHz ISM Band

2.5.1 AU915-928 Preamble Format

The following synchronization words should be used:

759 760

762 763

764

765

766 767

768

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

761 LoRaWAN does not make use of GFSK modulation in the AU915-928 ISM band.

2.5.2 AU915-928 Channel Frequencies

The AU ISM Band shall be divided into the following channel plans.

- Upstream 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 915.2 MHz and incrementing linearly by 200 kHz to 927.8 MHz
- Upstream 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR6 starting at 915.9 MHz and incrementing linearly by 1.6 MHz to 927.1 MHz
- Downstream 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13) starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

769 770 771

772 773

774

775

776 777

778

779

780

781 782

Figure 2: AU915-928 channel frequencies

AU ISM band end-devices may use a maximum EIRP of +30 dBm.

AU915-928 end-devices should be capable of operating in the 915 to 928 MHz frequency band and should feature a channel data structure to store the parameters of 72 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

If using the over-the-air activation procedure, the end-device should broadcast the JoinReq message alternatively on a random 125 kHz channel amongst the 64 channels defined using **DR0** and a random 500 kHz channel amongst the 8 channels defined using **DR6**. The end-device should change channel for every transmission.

783 Personalized devices shall have all 72 channels enabled following a reset.

2.5.3 AU915-928 Data Rate and End-point Output Power encoding

The *TxParamSetupReq* MAC command is not implemented by AU915-928 devices.

The following encoding is used for Data Rate (**DR**) and End-point EIRP (**TXPower**) in the AU915-928 band:

787	
788	

784

785

786

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF8 / 500 kHz	12500
7	RFU	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500
13	LoRa: SF7 / 500 kHz	21900
14:15	RFU	

Table 34: AU915-928 Data rate table

789 790

DR6 is identical to DR12, DR8...13 must be implemented in end-devices and are reserved for future applications.

791 792 793

TXPower Configuration (EIRP)		
0	MaxEIRP	
1:10	0 MaxEIRP – 2*TXPower	
11:15 RFU		
Table 35 : AU915-928 TX power table		

794 795

•

796 797 798 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

801 802

799 800

By default MaxEIRP is considered to be +30dBm. If the end-device cannot achieve 30dBm EIRP, the Max EIRP should be communicated to the network server using an out-of-band channel during the end-device commissioning process.

803

804

805

806

2.5.4 AU915-928 JoinAccept CFList

The AU915-928 LoRaWAN does not support the use of the optional **CFlist** appended to the JoinAccept message. If the **CFlist** is not empty it is ignored by the end-device.

2.5.5 AU915-928 LinkAdrReq command

For the AU915-928 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

810

807 808

809

811

ChMaskCntl	ChMask applies to	
0	Channels 0 to 15	
1	Channels 16 to 31	
4	Channels 64 to 71	
5	RFU	
6	All 125 kHz ON	
	ChMask applies to	
	channels 64 to 71	
7	All 125 kHz OFF	
	ChMask applies to	
	channels 64 to 71	

812

815

816

817

818

819 820 Table 36: ChMaskCntl value table

813 If **ChMaskCntl** = 6 (resp 7) then 125 kHz channels are enabled (resp disabled). 814 Simultaneously the channels 64 to 71 are set according to the **ChMask** bit mask.

2.5.6 AU915-928 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (*N*) is also given for information only. The value of *N* might be smaller if the **FOpt** field is not empty:

821

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6	230	222
7	Not defined	
8	41	33
9	117	109
10	230	222
11	230	222
12	230	222
13	230	222
14:15	Not de	efined

822 823 Table 37: AU915-928 maximum payload size

The greyed lines correspond to the data rates that may be used by an end-device behind a repeater.

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

826 827

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	Not defined	
8	61	53
9	137	129
10	250	242
11	250	242
12	250	242
13	250	242
14:15	Not de	efined

Table 38: AU915-928 maximum payload size (not repeater compatible)

2.5.7 AU915-928 Receive windows

828

829 830

831

832 833

834

835 836

837

838 839

840 841

842843

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 - o RX1 Channel Number = Transmit Channel Number modulo 8
- The RX1 window data rate depends on the transmit data rate (see Table 16 below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency.
 Default parameters are 923.3Mhz / DR8

Upstream data rate	Downstream data rate					
RX1DROff set	0	1	2	3	4	5
DR0	DR8	DR8	DR8	DR8	DR8	DR8
DR1	DR9	DR8	DR8	DR8	DR8	DR8
DR2	DR10	DR9	DR8	DR8	DR8	DR8
DR3	DR11	DR10	DR9	DR8	DR8	DR8
DR4	DR12	DR11	DR10	DR9	DR8	DR8
DR5	DR13	DR12	DR11	DR10	DR9	DR8
DR6	DR13	DR13	DR12	DR11	DR10	DR9

Table 39: AU915-928 downlink RX1 data rate mapping

The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

2.5.8 AU915-928 Class B beacon

The beacons are transmitted using the following settings:

DR	10	Corresponds to SF10 spreading factor with	
		500kHz bw	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which	
		uses inverted signal polarity	

frequencies	923.3 to 927.5MHz with 600kHz steps	Beaconing is performed on the same channel that normal downstream traffic as
	'	defined in the Class A specification

Table 40 : AU915-928 beacon settings

The downstream channel used for a given beacon is:

Channel =
$$\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$$
 modulo 8

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
- whereby beacon_period is the periodicity of beacons, 128 seconds
- whereby floor(x) designates rounding to the integer immediately inferior or equal to x

Example: the first beacon will be transmitted on 923.3Mhz, the second on 923.9MHz, the 9th beacon will be on 923.3Mhz again.

Beacon channel nb	Frequency [MHz]
0	923.3
1	923.9
2	924.5
3	925.1
4	925.7
5	926.3
6	926.9
7	927.5

857

856

858

844

845

846

847 848

849

850 851

852 853

854 855

The beacon frame content is:

Size (bytes)	3	4	2	7	1	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

859

860

2.5.9 AU915-928 Default Settings

The following parameters are recommended values for the AU915-928 band.

862 RECEIVE_DELAY1 1 s

863 RECEIVE DELAY2 2 s (must be RECEIVE DELAY1 + 1s)

 864
 JOIN_ACCEPT_DELAY1
 5 s

 865
 JOIN_ACCEPT_DELAY2
 6 s

 866
 MAX_FCNT_GAP
 16384

 867
 ADR_ACK_LIMIT
 64

 868
 ADR_ACK_DELAY
 32

869 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those parameters must be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

874 875

870

871 872

877 878

879

880 881

882 883

884 885

886 887 888

889

890 891 892

893 894

895

898 899

900 901

902903904905

906

907

908

909

910

911

2.6 CN 470-510MHz Band

2.6.1 CN470-510 Preamble Format

The following synchronization words should be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

2.6.2 CN470-510 Channel Frequencies

In China, this band is defined by SRRC to be used for civil metering applications.

The 470 MHz ISM Band shall be divided into the following channel plans:

 Upstream – 96 channels numbered 0 to 95 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 470.3 MHz and incrementing linearly by 200 kHz to 489.3 MHz.

Channel Index 6 to 38 and 45 to 77 are mainly used by China Electric Power. In the areas where these channels are used by China Electric Power, they should be disabled.

 Downstream – 48 channels numbered 0 to 47 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 500.3 MHz and incrementing linearly by 200 kHz to 509.7 MHz

Figure 3: CN470-510 channel frequencies

The LoRaWAN can be used in the Chinese 470-510MHz band as long as

- The radio device EIRP is less than 19.15dBm
- The transmission never lasts more than 5000 ms.

CN470-510 end-devices should be capable of operating in the 470 to 510 MHz frequency band and should feature a channel data structure to store the parameters of 96 uplink channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

If using the over-the-air activation procedure, the end-device should broadcast the JoinReq message on a random 125 kHz channel amongst the 96 uplink channels defined using **DR5** to **DR0**.

912 Personalized devices shall have all 96 channels enabled following a reset.

913

914

915

916 917

918

2.6.3 CN470-510 Data Rate and End-point Output Power encoding

There is no dwell time limitation for the CN470-510 PHY layer. The *TxParamSetupReq* MAC command is not implemented by CN470-510 devices.

The following encoding is used for Data Rate (**DR**) and End-point EIRP (**TXPower**) in the CN470-510 band:

919

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa:SF7 / 125 kHz	5470
6:15	RFU	

Configuration (EIRP)	
MaxEIRP	
MaxEIRP – 2dB	
MaxEIRP – 4dB	
MaxEIRP – 6dB	
MaxEIRP – 8dB	
MaxEIRP – 10dB	
MaxEIRP – 12dB	
MaxEIRP – 14dB	
RFU	

Table 41: CN470 Data rate and TX power table

920 921 922

923 924 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

925 926

927

By default MaxEIRP is considered to be +19.15dBm. If the end-device cannot achieve 19.15dBm EIRP, the Max EIRP should be communicated to the network server using an out-of-band channel during the end-device commissioning process.

928 929

930

2.6.4 CN470-510 JoinResp CFList

The CN470-510 LoRaWAN does not support the use of the optional **CFlist** appended to the JoinAccept message. If the **CFlist** is not empty it is ignored by the end-device.

2.6.5 CN470-510 LinkAdrReq command

For the CN470-510 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

935936

933

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	Channels 16 to 31
2	Channels 32 to 47
3	Channels 48 to 63
4	Channels 64 to 79
5	Channels 80 to 95
6	All channels ON

ChMaskCntl	ChMask applies to
	The device should enable all currently defined
	channels independently of the ChMask field value.
7	RFU

Table 42: CN470 ChMaskCntl value table

If the ChMask field value is one of the values meaning RFU, then end-device should reject the command and unset the "**Channel mask ACK**" bit in its response.

2.6.6 CN470-510 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	М	N		
0	59	51		
1	59	51		
2	59	51		
3	123	115		
4	230	222		
5	230	222		
6:15	Not defined			

Table 43: CN470-510 maximum payload size

947 948

946

949

937

938

939

940

941 942

943 944

945

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6:15	Not do	efined

Table 44 : CN470-510 maximum payload size (not repeater compatible)

950951952

953

954 955

956 957

958

959 960

2.6.7 CN470-510 Receive windows

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 - RX1 Channel Number = Uplink Channel Number modulo 48, for example, when transmitting channel number is 49, the rx1 channel number is 1.
- The RX1 window data rate depends on the transmit data rate (see Table below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 505.3 MHz / DR0

RX1DROffset	0	1	2	3	4	5
Upstream data rate	Downstream data rate in RX1 slot					
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0

RX1DROffset	0	1	2	3	4	5
Upstream data rate	Downstream data rate in RX1 slot					
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0

Table 45: CN470-510 downlink RX1 data rate mapping

961 962 963

964

965 966 The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

2.6.8 CN470-510 Class B beacon

The beacons are transmitted using the following settings:

DR	2	Corresponds to SF10 spreading factor with 125kHz
		bw
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
		inverted signal polarity
frequencies	508.3 to 509.7MHz with 200kHz steps	

Table 46: CN470-510 beacon settings

967 968

969

970

971 972 973

974

975

976

977 978 979 The downstream channel used for a given beacon is:

BeaconChannel =
$$\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$$
 modulo 8

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
- whereby beacon_period is the periodicity of beacons, 128 seconds
- whereby floor(x) designates rounding to the integer immediately inferior or equal to x

Example: the first beacon will be transmitted on 508.3Mhz, the second on 508.5MHz, the 9th beacon will be on 508.3Mhz again.

Beacon channel nb	Frequency [MHz]
0	508.3
1	508.5
2	508.7
3	508.9
4	509.1
5	509.3
G	E00 E

509.7

980 981

982

The beacon frame content is:

Size (bytes)	3	4	2	7	1	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

2.6.9 CN470-510 Default Settings

The following parameters are recommended values for the CN470-510 band. 985

RECEIVE_DELAY1 986

987 RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)

JOIN ACCEPT DELAY1 988 989 JOIN_ACCEPT_DELAY2 6 s 16384 990 MAX_FCNT_GAP 64 991 ADR_ACK_LIMIT 992 ADR ACK DELAY 32

993 **ACK_TIMEOUT** 2 +/- 1 s (random delay between 1 and 3 seconds)

994 If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those 995

parameters must be communicated to the network server using an out-of-band channel during 996

997 the end-device commissioning process. The network server may not accept parameters

different from those default values. 998

2.7 AS923MHz ISM Band

2.7.1 AS923 Preamble Format

The following synchronization words should be used:

1001 1002

1003

999

1000

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 47: AS923 synch words

2.7.2 AS923 ISM Band channel frequencies 1004

1005 This section applies to regions where the frequencies [923...923.5MHz] are comprised in the 1006 ISM band, which is the case for the following countries:

- 1007 ❖ Brunei [923-925 MHz]
- Cambodia [923-925 MHz] 1008
- ❖ Indonesia [923-925 MHz] 1009
- ❖ Japan [920-928 MHz] 1010
- ❖ Laos [923-925 MHz] 1011
- ❖ New Zealand [915-928 MHz] 1012
- ❖ Singapore [920-925 MHz] 1013
- 1014 ❖ Taiwan [922-928 MHz]
- ❖ Thailand [920-925 MHz] 1015
- 1016 ❖ Vietnam [920-925 MHz]

The network channels can be freely attributed by the network operator. However the two following default channels must be implemented in every AS923MHz end-device. Those channels are the minimum set that all network gateways should always be listening on.

1019 1020

1025

1026

1027

1028 1029

1017

1018

	Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
	LoRa	125	923.20 923.40	DR0 to DR5 / 0.3-5 kbps	2	< 1%
1021			Table 48: AS923	default channels		

1022 Those default channels must be implemented in every end-device and cannot be modified 1023 through the NewChannelReq command and guarantee a minimal common channel set 1024 between end-devices and network gateways.

AS923MHz ISM band end-devices should use the following default parameters

Default EIRP: 16 dBm

AS923MHz end-devices should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The following table gives the list of frequencies that should be used by end-devices to broadcast the JoinReq message.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	923.20 923.40	DR2	2	< 1%

Table 49: AS923 JoinReg Channel List

The default JoinReq Data Rate is DR2 (SF10/125KHz), this setting ensures that end-devices are compatible with the 400ms dwell time limitation until the actual dwell time limit is notified to the end-device by the network server via the MAC command "TxParamSetupReq".

The JoinReq message transmit duty-cycle shall follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

2.7.3 AS923 Data Rate and End-point Output Power encoding

The "TxParamSetupReq/Ans" MAC command MUST be implemented by the AS923 devices.

The following encoding is used for Data Rate (DR) in the AS923 band:

DataRate Configuration Indicative physical bit rate [bit/s] 250 0 LoRa: SF12 / 125 kHz 1 LoRa: SF11 / 125 kHz 440 2 LoRa: SF10 / 125 kHz 980 LoRa: SF9 / 125 kHz 1760 3 4 LoRa: SF8 / 125 kHz 3125 5 LoRa: SF7 / 125 kHz 5470 LoRa: SF7 / 250 kHz 11000 6 7 FSK: 50 kbps 50000 8..15 RFU

Table 50: Data rate table

The TXPower table indicates power levels relative to the Max EIRP level of the end-device, as per the following table:

TXPower	Configuration (EIRP)
0	MaxEIRP
1	MaxEIRP – 2dB
2	MaxEIRP – 4dB
3	MaxEIRP – 6dB
4	MaxEIRP – 8dB
5	MaxEIRP – 10dB
6	MaxEIRP – 12dB
7	MaxEIRP – 14dB
815	RFU

Table 51: TxPower table

1032

1033

1034

1035

1036 1037

1038

1039

1040

1041

1042

1043

1044 1045

1046

1050 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output 1051 power referenced to an isotropic antenna radiating power equally in all directions and whose 1052 gain is expressed in dBi.

By default Max EIRP shall be 16dBm. The Max EIRP can be modified by the network server through the *TxParamSetupReq* MAC command and should be used by both the end-device and the network server once *TxParamSetupReq* is acknowledged by the device via *TxParamSetupAns*.

1057

1058

1064

1065

1066

1067 1068

1069 1070

1071 1072

1053

1054

1055 1056

2.7.4 AS923 JoinAccept CFList

The AS923 LoRaWAN implements an optional channel frequency list (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125 KHz LoRa modulation.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	RFU

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 915 and 928MHz in 100 Hz steps. Unused channels have a frequency value of 0. The CFList is optional and its presence can be detected by the length of the join-accept message. If present, the CFList replaces all the previous channels stored in the end-device apart from the two default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.7.5 AS923 LinkAdrReq command

The AS923 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

1	073	
1	074	

ChMaskCntl	ChMask applies to					
0	Channels 1 to 16					
1	RFU					
••	••					
4	RFU					
5	RFU					
6	All channels ON					
	The device should enable all currently					
	defined channels independently of the					
	ChMask field value.					
7	RFU					

1075

Table 52: ChMaskCntl value table

1076 1077 If the ChMask field value is one of values meaning RFU, the end-device should reject the command and unset the "Channel mask ACK" bit in its response.

2.7.6 AS923 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table for both dwell time configurations: No Limit and 400ms. It is derived from the PHY layer limitation depending on the effective modulation rate used taking into account a possible repeater encapsulation layer.

1082 1083

1079

1080

1081

DataRate	Uplink MAC Pa	ayload Size (M)	Downlink MAC Payload Size (M)			
	UplinkDwellTime UplinkDwellTime		DownlinkDwellTime	DownlinkDwellTime		
	= 0	= 1	= 0	= 1		
0	59	N/A	59	N/A		
1	59	N/A	59	N/A		
2	59	19	59	19		
3	123	61	123	61		
4	230	133	230	133		
5	230	250	230	250		
6	230	250	230	250		
7	230	250	230	250		
8:15	RF	₹U	RF	-U		

1084

Table 53: AS923 maximum payload size

1085 1086 If the end-device will never operate with a repeater then the maximum MAC payload length should be:

DataRate	Uplink MAC Pa	ayload Size (M)	Downlink MAC F	Payload Size (M)	
	UplinkDwellTime UplinkDwellTime		DownlinkDwellTime	DownlinkDwellTim	
	= 0	= 1	= 0	e = 1	
0	59	N/A	59	N/A	
1	59	N/A	59	N/A	
2	59	19	59	19	
3	123	61	123	61	
4	250	133	250	133	
5	250	250	250	250	
6	250	250	250	250	
7	250	250	250	250	
8:15	RF	₹U	RF	·U	

1087 1088 Table 54: AS923 maximum payload size (not repeater compatible)

1089 1090 1091

1092

1093

1094

1097

1098

1099

1100

The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is eight bytes lower than the MACPayload value in the above table. The value of N might be smaller if the **FOpt** field is not empty.

2.7.7 AS923 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as following:

1095 Downstream data rate in RX1 slot = *MIN* (5, *MAX* (MinDR, Upstream data rate – 1096 Effective_RX1DROffset))

MinDR depends on the DownlinkDwellTime bit sent to the device in the *TxParamSetupReq* command:

- Case DownlinkDwellTime = 0 (No limit): MinDR = 0
- Case DownlinkDwellTime = 1 (400ms): MinDR = 2

1101 The allowed values for RX1DROffset are in the [0:7] range, encoded as per the below table:

RX1DROffset	0	1	2	3	4	5	6	7

(Coded value)								
Effective_RX1DROffset	0	1	2	3	4	5	-1	-2

Values in the [6:7] range allow setting the Downstream RX1 data rate higher than Upstream data rate.

1104 The RX2 receive window uses a fixed frequency and data rate. The default parameters are 1105 923.2 MHz / DR2 (SF10/125KHz).

1106

1107

2.7.8 AS923 Class B beacon and default downlink channel

1108 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which
		uses inverted signal polarity

Table 55: AS923 beacon settings

11091110

The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

- 1111 The beacon default broadcast frequency is 923.4MHz.
- 1112 The class B default downlink pingSlot frequency is 923.4MHz

1113

1114 2.7.9 AS923 Default Settings

1115 The following parameters are recommended values for the AS923MHz band.

1116	RECEIVE_DELAY1	1 s
_	RECEIVE DELAY2	2 s (must be RECEIVE_DELAY1 + 1s)
1118	JOIN_ACCEPT_DELAY1	5 s ` /
1119	JOIN_ACCEPT_DELAY2	6 s
1120	MAX_FCNT_GAP	16384
1121	ADR_ACK_LIMIT	64
1122	ADR_ACK_DELAY	32
1123	ACK TIMEOUT	2 +/- 1 s (random delay between 1 and 3

1123 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1124 If the actual parameter values implemented in the end-device are different from those default 1125 values (for example the end-device uses a longer RECEIVE_DELAY1 and

1126 RECEIVE_DELAY2 latency), those parameters must be communicated to the network server

using an out-of-band channel during the end-device commissioning process. The network

server may not accept parameters different from those default values.

2.8 South Korea 920-923MHz ISM Band

2.8.1 KR920-923 Preamble Format

The following synchronization words should be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

2.8.2 KR920-923 ISM Band channel frequencies

The center frequency, bandwidth and maximum EIRP output power for the South Korea RFID/USN frequency band are already defined by Korean Government. Basically Korean Government allocated LPWA based IoT network frequency band from 920.9 to 923.3MHz.

Center frequency	Bandwidth	Maximum EIRP output power (dBm)		
(MHz)	(kHz)	For end-device	For gateway	
920.9	125	10	23	
921.1	125	10	23	
921.3	125	10	23	
921.5	125	10	23	
921.7	125	10	23	
921.9	125	10	23	
922.1	125	14	23	
922.3	125	14	23	
922.5	125	14	23	
922.7	125	14	23	
922.9	125	14	23	
923.1	125	14	23	
923.3	125	14	23	

Table 56: Center frequency, bandwidth, maximum EIRP output power table

The three following default channels (922.1, 922.3 and 922.5MHz / DR0 to DR5) determined by the network operator from the set of available channels as defined by the South Korean regulation must be implemented in every KR920-923MHz end-device, and cannot be alterable by the *NewChannelReq* command. Those channels are the minimum set that all network gateways should always be listening on to guarantee a minimal common channel set between end-devices and network gateways.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	922.10 922.30 922.50	DR0 to DR5 / 0.3-5 kbps	3

Table 57: KR920-923 default channels

In order to access the physical medium the South Korea regulations impose some restrictions. The South Korea regulations allow the choice of using either a duty-cycle limitation or a so-called Listen Before Talk Adaptive Frequency Agility (LBT AFA) transmissions management. The current LoRaWAN specification for the KR920-923 ISM band exclusively uses LBT channel access rule to maximize MACPayload size length and comply with the South Korea regulations.

1153 KR920-923MHz ISM band end-devices should use the following default parameters

- Default EIRP output power for end-device(920.9~921.9MHz): 10 dBm
- Default EIRP output power for end-device(922.1~923.3MHz): 14 dBm
- Default EIRP output power for gateway: 23 dBm

1157 KR920-923MHz end-devices should be capable of operating in the 920 to 923MHz frequency 1158 band and should feature a channel data structure to store the parameters of at least 16 1159 channels. A channel data structure corresponds to a frequency and a set of data rates usable 1160 on this frequency.

The following table gives the list of frequencies that should be used by end-devices to broadcast the JoinReq message.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	922.10	DR0 to DR5	3
		922.30	/ 0.3-5 kbps	
		922.50	·	

Table 58: KR920-923 JoinReq Channel List

1163

1164 1165

1166

1167

1154

1155

1156

2.8.3 KR920-923 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the KR920-923 PHY layer. The *TxParamSetupReq* MAC command is not implemented in KR920-923 devices.

The following encoding is used for Data Rate (DR), and EIRP Output Power (TXPower) in the KR920-923 band:

11681169

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
615	RFU	

1170 1171

Table 59: TX Data rate table

TXPower	Configuration (EIRP)
0	MaxEIRP
1	MaxEIRP – 2dB
2	MaxEIRP – 4dB
3	MaxEIRP – 6dB
4	MaxEIRP – 8dB
5	MaxEIRP – 10dB
6	MaxEIRP – 12dB
7	MaxEIRP – 14dB
0 15	DELL

Table 60: TX power table

1172 1173

1174 1175

1176

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

1184

1187

1188

1189

1190

1178 By default MaxEIRP is considered to be +14dBm. If the end-device cannot achieve 14dBm 1179

EIRP, the MaxEIRP should be communicated to the network server using an out-of-band

1180 channel during the end-device commissioning process.

When the device transmits in a channel whose frequency is <922MHz, the transmit power 1181

SHALL be limited to +10dBm EIRP even if the current transmit power level set by the 1182

1183 network server is higher.

2.8.4 KR920-923 JoinAccept CFList

1185 The KR920-923 ISM band LoRaWAN implements an optional channel frequency list (CFlist) 1186 of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels four to eight whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single RFU octet for a total of 16 octets.

1191

1192 1193

1194 1195

1196

1197 1198

1199

1200

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	RFU

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the CFList replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.8.5 KR920-923 LinkAdrReq command

The KR920-923 LoRaWAN only supports a maximum of 16 channels. When ChMaskCntl field is 0 the ChMask field individually enables/disables each of the 16 channels.

1201 1202

ChMaskCntl	ChMask applies to	
0	Channels 1 to 16	
1	RFU	
4	RFU	
5	RFU	
6	All channels ON	
	The device should enable all currently defined	
	channels independently of the ChMask field value.	
7	RFU	

1203 1204

Table 61: ChMaskCntl value table

1205

1206

If the ChMaskCntl field value is one of values meaning RFU, the end-device should reject the command and unset the "Channel mask ACK" bit in its response.

2.8.6 KR920-923 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table for the regulation of dwell time; less than 4 sec with LBT. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

1	21	3
1	21	4

1207

1208

1209

1210

1211 1212

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6:15	Not defined	

Table 62: KR920-923 maximum payload size

1215 1216

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

1217 1218

DataRate	M	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250 242		
6:15	Not defined		

1219 1220 Table 63 : KR920-923 maximum payload size (not repeater compatible)

1221

1222

1223 1224

2.8.7 KR920-923 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

12251226

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Dow	nstream data	a rate in RX1	slot	
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0

1227

Table 64 : KR920-923 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 921.90MHz / DR0 (SF12, 125 kHz).

2.8.8 KR920-923 Class B beacon and default downlink channel

1231 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which	
		uses inverted signal polarity	

Table 65: KR920-923 beacon settings

12331234

1232

1230

The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

1235 The beacon default broadcast frequency is 923.1MHz.

The class B default downlink pingSlot frequency is 923.1MHz

1237

1238

1236

2.8.9 KR920-923 Default Settings

1239 The following parameters are recommended values for the KR920-923Mhz band.

RECEIVE DELAY1 1240 1241 RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s) 1242 JOIN ACCEPT DELAY1 5 s JOIN_ACCEPT_DELAY2 1243 6 s 1244 MAX_FCNT_GAP 16384 1245 ADR_ACK_LIMIT 64 1246 ADR ACK DELAY 32

1247 ACK TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1248 If the actual parameter values implemented in the end-device are different from those default 1249 values (for example the end-device uses a longer RECEIVE_DELAY1 and 1250 RECEIVE_DELAY2 latency), those parameters must be communicated to the network server 1251 using an out-of-band channel during the end-device commissioning process. The network 1252 server may not accept parameters different from those default values.

2.9 India 865-867 MHz ISM Band

2.9.1 INDIA 865-867 Preamble Format

The following synchronization words should be used:

1	256
1	257

1254

1255

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

1258

1259

1261

1262

Table 66: India 865-867 synch words

2.9.2 INDIA 865-867 ISM Band channel frequencies

1260 This section applies to the Indian sub-continent.

The network channels can be freely attributed by the network operator. However the three following default channels must be implemented in every India 865-867MHz end-device. Those channels are the minimum set that all network gateways should always be listening on.

1263 1264

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	865.0625 865.4025	DR0 to DR5 / 0.3-5 kbps	3
		865.985		

12651266

Table 67: INDIA 865-867 default channels

1267 1268 End-devices should be capable of operating in the 865 to 867 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

1269 1270 1271

1272

The first three channels correspond to 865.0625, 865.4025, and 865.985 MHz / DR0 to DR5 and must be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and network gateways.

1273 1274 1275 The following table gives the list of frequencies that should be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle shall follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

1276 1277

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
	125	865.0625	DR0 – DR5	3
LoRa		865.4025	/ 0.3-5 kbps	
		865.9850		

1278

Table 68: INDIA 865-867 JoinReq Channel List

1279 2.9.3 INDIA 865-867 Data Rate and End-device Output Power Encoding

There is no dwell time or duty-cycle limitation for the INDIA 865-867 PHY layer. The TxParamSetupReq MAC command is not implemented by INDIA 865-867 devices.

The following encoding is used for Data Rate (DR) and End-device Output Power (TXPower) in the INDIA 865-867 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	RFU	RFU
7	FSK: 50 kbps	50000
815	RFU	

Table 69: TX Data rate table

1285 1286

The TXPower table indicates power levels relative to the Max EIRP level of the end-device, as per the following table:

1287 1288 1289

TXPower Configuration (EIRP)	
0	MaxEIRP
1	MaxEIRP – 2dB
2	MaxEIRP – 4dB
3	MaxEIRP – 6dB
4	MaxEIRP – 8dB
5	MaxEIRP – 10dB
6	MaxEIRP – 12dB
7	MaxEIRP – 14dB
8	MaxEIRP – 16dB
9	MaxEIRP – 18dB
10	MaxEIRP – 20dB
1115	RFU

1290 1291

Table 70: TxPower table

1292 1293 1294 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

1295 1296 1297 By default MaxEIRP is considered to be 30dBm. If the end-device cannot achieve 30dBm EIRP, the Max EIRP should be communicated to the network server using an out-of-band channel during the end-device commissioning process.

1298

1299

2.9.4 INDIA 865-867 JoinAccept CFList

The India 865-867 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels four to eight whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single RFU octet for a total of 16 octets.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	RFU

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.9.5 INDIA 865-867 LinkAdrReq command

The INDIA 865-867 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to	
0	Channels 1 to 16	
1	RFU	
4	RFU	
5	RFU	
6	All channels ON	
	The device should enable all currently defined channels independently of the ChMask field	
	value.	
7	RFU	

Table 71: ChMaskCntl value table

If the ChMaskCntl field value is one of values meaning RFU, the end-device should reject the command and unset the "**Channel mask ACK**" bit in its response.

2.9.6 INDIA 865-867 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6	230	222
7	230	222
8:15	Not d	efined

Table 72: INDIA 865-867 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

1345

1349

1350

1352

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242
8:15	Not d	efined

Table 73: INDIA 865-867 maximum payload size (not repeater compatible)

1333 **2.9.7 INDIA 865-867 Receive windows**

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:7] range. Values in the [6:7] range allow setting the Downstream RX1 data rate higher than Upstream data rate.

1338 The allowed values for RX1DROffset are in the [0:7] range, encoded as per the below table:

RX1DROffset (Coded value)	0	1	2	3	4	5	6	7
Effective_RX1DROffset	0	1	2	3	4	5	-1	-2

1339 Downstream data rate in RX1 slot = *MIN* (5, *MAX* (0, Upstream data rate – 1340 Effective_RX1DROffset))

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 866.550 MHz / DR2 (SF10, 125 kHz).

1343 2.9.8 INDIA 865-867 Class B beacon and default downlink channel

1344 The beacons are transmitted using the following settings

The beacons are transmitted using the following settings					
DR	4	Corresponds to SF8 spreading factor with			
		125 kHz BW			
CR	R 1 Coding rate = 4/5				
Signal polarity	Signal polarity Non-inverted As opposed to normal downlink traff				
		uses inverted signal polarity			

1346 The beacon frame content is:

Size (bytes)	1	4	2	7	3	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

1347 The beacon default broadcast frequency is 866.550MHz.

1348 The class B default downlink pingSlot frequency is 866.550MHz

2.9.9 INDIA 865-867 Default Settings

1351 The following parameters are recommended values for the INDIA 865-867MHz band.

1353 RECEIVE_DELAY1 1 s

1354 RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)

1355	JOIN_ACCEPT_DELAY1	5 s
1356	JOIN_ACCEPT_DELAY2	6 s
1357	MAX_FCNT_GAP	16384
1358	ADR_ACK_LIMIT	64
1359	ADR_ACK_DELAY	32
1360	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)
		·
1361	If the actual parameter values imple	emented in the end-device are different from those default
1361 1362	•	emented in the end-device are different from those default d-device uses a longer RECEIVE_DELAY1 and
	values (for example the end	
1362	values (for example the end RECEIVE_DELAY2 latency), those	d-device uses a longer RECEIVE_DELAY1 and
1362 1363	values (for example the end RECEIVE_DELAY2 latency), those	d-device uses a longer RECEIVE_DELAY1 and parameters must be communicated to the network server ng the end-device commissioning process. The network

1368 3 Revisions

1369 1370 1371 1372 1373 1374 1375	 3.1 Revision A Initial revision, the regional parameters were extracted from the LoRaWANV1.0.1 and the Asia/PAC regional cluster definition was added The ADR command for the US902-928 physical layer was amended to include ADR MAC command blocks Added KR920-923 frequency band support Modified EU868 PHY layer power limit from 14dBm EIRP to 1dBm ERP
1376	3.2 Revision B
1377	 expressed all powers either as EIRP or as conducted power depending on regions
1378	Modified SF of US900 classB beacon to SF12/500kHz
1379	 Added for each region whether TxParamSetupReq must be supported or not
1380	Added India frequency plan
1381	 Added precision regarding FCC profiles that must be supported by US900 devices
1382	 Added missing table in 2.6.6
1383	 Specified that device must limit power to 10dBm EIRP at frequencies lower than
1384	922MHz in KR920 2.8.4
1385	 Added signal polarity in india classB beacon definition
1386	 Corrected Missing field names in classB beacon of EU433
1387	 Update of the AU915 available data rates: SF12 and SF11 are now allowed
1388	 Update of INDIA865 available data rate and TX power definition
1389	

1390 4 Bibliography

1391 **4.1 References**

1392

1393 [LORAWAN] LoRaWAN Specification, V1.0.2, the LoRa Alliance, October 2016.

NOTICE OF USE AND DISCLOSURE 1394

- 1395 Copyright © LoRa Alliance, Inc. (2015). All Rights Reserved.
- 1396 The information within this document is the property of the LoRa Alliance ("The Alliance") and its use and disclosure
- 1397 are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership
- 1398 Agreements.
- 1399 Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without
- 1400 limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance).
- 1401 The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify
- 1402 any or all such third party intellectual property rights.
- 1403 This document and the information contained herein are provided on an "AS IS" basis and THE ALLIANCE
- 1404 DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO (A) ANY
- 1405 WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD
- 1406 PARTIES (INCLUDING WITHOUT LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING
- 1407 PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.
- 1408
- 1409 IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS
- 1410 OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR
- 1411 EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR
- 1412 IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF
- 1413 ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.
- 1414 The above notice and this paragraph must be included on all copies of this document that are made.
- 1415 LoRa Alliance, Inc.
- 1416 2400 Camino Ramon, Suite 375
- 1417 San Ramon, CA 94583
- 1418 Note: All Company, brand and product names may be trademarks that are the sole property of their respective
- 1419 owners.