DEVOIR SURVEILLÉ 1

Calculatrice autorisée Lundi 7 octobre

EXERCICE 1 (4 POINTS)

Résoudre les équations suivantes.

1.
$$10x - 12 = 3x + 4$$

2.
$$(21x-3)(4-18x)=0$$

CORRECTION

1.

$$10x - 12 = 3x + 4$$
$$7x = 16$$
$$x = \frac{16}{7}$$

2.

$$(21x-3)(4-18x) = 0$$

$$21x = 3 \text{ ou } -18x = -4$$

$$x = \frac{3}{21} \text{ ou } x = \frac{-4}{-18}$$

$$x = \frac{1}{7} \text{ ou } x = \frac{2}{9}$$

EXERCICE 2 (6 POINTS)

- 1. Donner la définition d'une suite arithmétique.
- 2. Donner un exemple d'une suite qui n'est pas arithmétique.
- **3.** On considère (u_n) une suite arithmétique de raison 4,25 et de premier terme $u_0 = -1,75$. Calculer u_{10} et u_{100} .

CORRECTION

- **1.** Une suite (u_n) est dite arithmétique si elle vérifie la relation de récurrence $u_{n+1} = u_n + r$ avec r un nombre réel.
- **2.** 1;2;4;8;16;... sont les premiers termes d'une suite qui n'est pas arithmétique puisque $u_1 u_0 = 1$ et $u_2 u_1 = 2$.
- **3.** La forme explicite de (u_n) est, pour tout $n \in \mathbb{N}$:

$$u_n = u_0 + r \times n = -1,75 + 4,25n.$$

Ainsi,

- $u_{10} = -1.75 + 4.25 \times 10 = 40.75$
- $u_{100} = -1.75 + 4.25 \times 100 = 423.25$.

EXERCICE 3 (5 POINTS)

La réserve de noisettes d'une famille d'écureuils diminue chaque jour de l'hiver. Elle débute à 1560 noisettes, puis atteint 1492 noisettes au bout d'un mois, 1424 au bout de deux mois, et ainsi de suite... On note u_n le nombre de noisettes à la fin du n^e mois, u_0 étant égal à 1560.

- 1. Donner la nature de la suite (u_n) en précisant ses paramètres.
- **2.** Exprimer u_n en fonction de n.
- **3.** Calculer et interpréter u_3 puis u_{12} .
- **4.** Combien de jours pourront tenir les écureuils avant d'être à court de noisettes? La réserve était-elle suffisante?

CORRECTION

1. Chaque mois, la réserve diminue de 68 noisettes. Ainsi, (u_n) vérifie la relation de récurrence :

$$u_{n+1} = u_n - 68.$$

 (u_n) est arithmétique de premier terme $u_0 = 1560$ et de raison r = -68.

2. La forme explicite de (u_n) est, pour tout $n \in \mathbb{N}$:

$$u_n = u_0 + r \times n = 1560 - 68n$$
.

3.
$$u_3 = 1560 - 68 \times 3 = 1356$$

 $u_{12} = 1560 - 68 \times 12 = 744$.

4. Cherchons n tel que $u_n = 0$.

$$u_n = 0$$

$$\Leftrightarrow 1560 - 68n = 0$$

$$\Leftrightarrow 1560 = 68n$$

$$\Leftrightarrow \frac{1560}{68} = n$$

Ainsi, $n \simeq 23$.

Les écureuils pourront tenir environ 23 mois, soit presque 2 ans, avec leurs noisettes, ce qui est largement suffisant pour l'hiver.

EXERCICE 4 (5 POINTS)

Un escargot part à l'aventure et parcourt chaque jour 2,5 m. On note v_n la distance totale qu'il a parcourue, en m, à la fin du jour n, où n est un entier naturel.

- **1.** Exprimer v_{n+1} en fonction de v_n .
- **2.** Quelle est la nature de (v_n) ? Préciser ses paramètres.
- 3. Calculer la distance totale parcourue les quatre premiers jours.
- 4. Combien de jours lui faut-il pour parcourir une distance de 915 m?

CORRECTION

- 1. $v_{n+1} = v_n + 2.5$ puisque l'escargot ajoute 2m50 à sa distance totale chaque jour.
- 2. On reconnait la relation de récurrence d'une suite arithmétique de raison 2,5 et premier terme 0.
- **3.** Pendant quatre jours, l'escargot a parcouru une distance totale égale à $v_4 = 2.5 \times 4 = 10$ m.

4. Cherchons n tel que $v_n = 915$.

$$u_n = 915$$

$$\Leftrightarrow 2,5n = 915$$

$$\Leftrightarrow n = \frac{915}{2,5}$$

$$\Leftrightarrow n = 366$$

Ainsi, il lui faudra 366 jours pour parcourir 915 m.