Utilice la conclusión del inciso b) para probar la observación del inciso c). [Sugerencia: Dada la columna de Q seleccione un vector adecuado x tal que Qx sea igual a la columna dada.]

2.6 Matrices elementales y matrices inversas

Considere que A es una matriz de $m \times n$. Entonces, como se muestra a continuación, se pueden realizar operaciones elementales con renglones en A multiplicando A por la izquierda por una matriz adecuada. Recordando de la sección 1.2, las operaciones elementales con renglones son:

- i) Multiplicar el renglón i por un número c diferente de cero $R_i \rightarrow cR_i$
- ii) Sumar un múltiplo del renglón i al renglón j $R_i \rightarrow R_i + cR_i$
- iii) Permutar (intercambiar) los renglones i y j $R_i \rightleftharpoons R_j$

Definición 2.6.1

Matriz elemental

Matriz elemental

Una matriz (cuadrada) E de $n \times n$ se denomina una **matriz elemental** si se puede obtener a partir de la matriz identidad, I_n , de $n \times n$ mediante $una \ sola$ operación elemental con renglones.

Notación. Una matriz elemental se denota por E, o por cR_i , $R_j + cR_i$, o por P_{ij} de acuerdo con la forma en que se obtuvo de I. En este caso, P_{ij} (la matriz de permutación) es la matriz obtenida a partir del intercambio de los renglones de i y j de I.

EJEMPLO 2.6.1 Tres matrices elementales

Obtenga tres matrices elementales de 3×3 .

i)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $\xrightarrow{R_2 \to 3R_2}$ $\Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 3R_2$ Matriz obtenida multiplicando el segundo renglón de I por 3

ii)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 \to R_3 - 2R_1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} = R_3 - 2R_1$$
 Matriz obtenida multiplicando el primer renglón de *I* por -2 y sumándolo al tercer renglón

iii)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $\xrightarrow{R_2 \rightleftarrows R_3}$ \Rightarrow $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = P_{23}$ Matriz obtenida permutando el segundo y tercer renglones de I

La prueba del siguiente teorema se deja como ejercicio (vea los problemas 2.6.79 a 2.6.81).