

287. Find the Duplicate Number

Given an array of integers nums containing n + 1 integers where each integer is in the range [1, n] inclusive.

There is only **one repeated number** in nums, return this repeated number.

You must solve the problem **without** modifying the array nums and uses only constant extra space.

Example 1:

```
Input: nums = [1,3,4,2,2]
Output: 2
```

Example 2:

```
Input: nums = [3,1,3,4,2]
Output: 3
```

Constraints:

- $1 <= n <= 10^5$
- nums.length == n + 1
- 1 <= nums[i] <= n
- All the integers in nums appear only once except for precisely one integer which appears two or more times.

Follow up:

- How can we prove that at least one duplicate number must exist in nums?
- Can you solve the problem in linear runtime complexity?

OutPlace Algo

OutPlace Algo

Time Complexity: O(n)

Excepted Output: 2

Space Complexity: O(n)

41. First Missing Positive

Given an unsorted integer array nums, return the smallest missing positive integer.

You must implement an algorithm that runs in O(n) time and uses constant extra space.

Example 1:

```
Input: nums = [1,2,0]
Output: 3
```

Example 2:

```
Input: nums = [3,4,-1,1]
Output: 2
```

Example 3:

```
Input: nums = [7,8,9,11,12]
Output: 1
```

Constraints:

- 1 <= nums.length <= $5 * 10^5$
- $-2^{31} \le nums[i] \le 2^{31} 1$