Notes on truncated convolution. The goal is to prove a theorem that would:

- (1) Imply a theorem of Bonnafé–Dudas–Rouquier [BDR]: roughly, by extending to the half-twist $\Delta(w_{\circ})$ what they establish for the full twist $\Delta(w_{\circ})^{*2}$.
- (2) Prove, and in fact refine, a conjecture of Deligne–Lusztig about the structure of $H_c^*(X_{w_0})$ as a representation of G^F [DL25].
- 1.1. Fix an algebraically closed field **k**. Fix a connected reductive algebraic group G over **k**. Let \mathcal{B} be the flag variety of G. Let W be the Weyl group of G, and for each $w \in W$, let $j_w : \mathcal{O}_W \to \mathcal{B} \times \mathcal{B}$ be the inclusion of the corresponding G-orbit. We write e for the identity element of W, and w_o for the longest element.
- 1.2. Suppose that either (I) $\mathbf{k} = \mathbf{C}$, or (II) $\mathbf{k} = \bar{\mathbf{F}}$ for a finite field \mathbf{F} whose characteristic is a good prime for G. In the latter case, we fix a split \mathbf{F} -form of G in order to work with Frobenius weights. Let $\mathbf{D} = \mathbf{D}_{G,m}(\mathcal{B} \times \mathcal{B})$ be the G-equivariant, bounded, mixed, constructible derived category of $\mathcal{B} \times \mathcal{B}$, defined in terms of either (I) mixed Hodge modules, or (II) mixed complexes of $\bar{\mathbf{Q}}_{\ell}$ -sheaves, for a fixed prime ℓ invertible in \mathbf{F} . Recall that \mathbf{D} is endowed with a convolution operation *. We write $\langle 1 \rangle$ for the shift-twist $[1](\frac{1}{2})$, where $(\frac{1}{2})$ is a formal half-Tate twist.

Let C_w be the constant sheaf over \mathcal{O}_w . For each $w \in W$, form the objects

$$L(w) = j_{w,!*} \mathbf{C}_w \langle \dim \mathcal{O}_w \rangle, \qquad \Delta(w) = j_{w,!} \mathbf{C}_w \langle \dim \mathcal{O}_w \rangle$$

- in D. Observe that we have normalized L(w), $\Delta(w)$ to be perverse and pure of weight 0. The simple perverse sheaves in D are precisely the objects L(w).
- 1.3. Let \leq be Kazhdan–Lusztig's partial order on two-sided cells of W in which $\{e\}$ is maximal and $\{w_o\}$ is minimal. Fix a two-sided cell \mathbf{c} . Let $\mathsf{D}^{\leq \mathbf{c}}$, resp. $\mathsf{D}^{<\mathbf{c}}$, be the thick (additive) subcategory of D generated by objects K such that for all integers i, the composition factors of the perverse sheaf ${}^p\mathscr{H}^i(K)$ are objects L(w) with $w \in \mathbf{c}'$ for some $\mathbf{c}' \leq \mathbf{c}$, resp. $\mathbf{c}' < \mathbf{c}$. Form the Serre quotient category

$$D^{\mathbf{c}} := D^{\leq \mathbf{c}}/D^{<\mathbf{c}}$$
.

and let $E \mapsto E : \mathsf{D}^{\leq \mathbf{c}} \to \mathsf{D}^{\mathbf{c}}$ denote the quotient functor.

Lusztig showed (*e.g.*, in [L15, Lemma 1.4(b)]) that $D^{\leq c}$ and $D^{\leq c}$ are stable under left and right convolution with any object of D. Thus, D^c forms a bimodule category over D with respect to actions induced by convolution. For instance, the left action by an object $K \in D$ sends $E \mapsto K * E$ for all $E \in D^{\leq c}$.

Let a_c be Lusztig's a-invariant for c, a nonnegative integer. We are interested in the (invertible) endofunctor $\Xi_c: D^c \to D^c$ defined by

$$\Xi_{\mathbf{c}}(E) = (\Delta(w_{\circ}) * E)[a_{\mathbf{c}}].$$

¹We hope to generalize to nonsplit forms later.

Mathas proved [M96] at the level of the triangulated, graded Grothendieck group—i.e., the Hecke algebra—that there is a left-cell-preserving involution $w \mapsto w^!$ such that

$$[\Xi_{\mathbf{c}}(\underline{L}(w))] = [\underline{L}(w^!)\langle a_{w_0\mathbf{c}}\rangle]$$
 for all $w \in \mathbf{c}$.

Moreover, as explained in [BDR], it follows from [BFO12, Remark 4.3] that Ξ_c^2 is involutive: *i.e.*, isomorphic to the identity functor on D^c .

1.4. Let $SBim_W$ be the category of Soergel bimodules for (W, V), where V is the representation of W on the cocharacter lattice in the root datum of G.

Via the weight realization functor from K^bSBim_W into D, recent work of Elias–Hogancamp in [EH24] implies that $\Delta(w_\circ)$ lifts to a twisted Drinfeld center of D, in the following sense. First, [EH24] defines a monoidal involution of K^bSBim_W . An analogous construction yields an involution of D, which we again denote by Φ . We assume $\Phi \circ \Phi = id$ from now on. The arguments of [EH24] show that there is an isomorphism of functors

$$\tau: \Delta(w_\circ) * (-) \xrightarrow{\sim} \Phi(-) * \Delta(w_\circ)$$

such that if τ_K is its value at $K \in D$, then we have

$$(id_{\Phi(K)} * \tau_L) \circ (\tau_K * id_L) = \tau_{K*L}$$
 for all $K, L \in D$.

Loosely, we will refer to τ or similar data on related categories as Φ -central structures. Since Φ preserves the thick subcategories $D^{\leq c}$, $D^{< c}$ and commutes with the shift $[a_c]$, we obtain Φ -central structures on the involutions Ξ_c .

Note that if w_0 is central in W, then Φ is the identity map on objects. This occurs, for instance, in types B, C, D, E_7, E_8 .

1.5. Let C^c be the full subcategory of $D^{\leq c}$ whose objects are direct sums of the objects L(w) for $w \in c$. By construction, C^c is a semisimple abelian category. Moreover, any morphism in C^c that factors through $D^{< c}$ is already zero, so the composition of functors $C^c \to D^{\leq c} \to D^c$ is fully faithful. When convenient, we will identify C^c with its essential image in D^c . We expect to prove:

Conjecture 1.1. Ξ_c is exact in the perverse t-structure that D^c inherits from $D^{\leq c}$. Equivalently, C^c is stable under Ξ_c .

Let \otimes be the truncated convolution operation on objects of C^c defined by

$$E' \circledast E := {}^{p} \mathscr{H}^{a_{\mathfrak{C}}}(E' * E).$$

In [L97], Lusztig showed that the associativity constraint on ∗ descends to one on ⊗. In this way, C^c forms a tensor category. We see that if Conjecture 1.1 holds, then

for all
$$E \in \mathbb{C}^{\mathbf{c}}$$
, we have $\Xi_{\mathbf{c}}(\underline{E}) \simeq {}^{\underline{p}} \mathscr{H}^0(\Delta(w_\circ) * \underline{E}[a_{\mathbf{c}}]) \simeq {}^{\underline{p}} \mathscr{H}^{a_{\mathbf{c}}}(\Delta(w_\circ) * \underline{E}).$

This leads us to speculate:

Conjecture 1.2. There exist a \circledast -invertible object $J_c \in C^c$ and an isomorphism

$$\Xi_{\mathbf{c}}|_{\mathbf{C}^{\mathbf{c}}} \simeq (J_{\mathbf{c}} \circledast -)\langle a_{w_{\circ}\mathbf{c}}\rangle$$

in the category of endofunctors of C^c . Moreover, this endofunctor categorifies Mathas's involution in the sense that $J_c \otimes \underline{L(w)} \simeq \underline{L(w^!)}$ for all $w \in c$.

If Conjecture 1.2 holds, then the Φ -central structure on Ξ_c can be transported to a Φ -central structure on J_c , where we again write Φ for the induced involution on C^c .

- 1.6. For any finite group \mathscr{G} , acting (from the left) on a finite set \mathscr{X} , we write $\mathsf{Coh}_{\mathscr{G}}(\mathscr{X})$ to denote the category of \mathscr{G} -equivariant coherent \mathbf{K} -sheaves on \mathscr{X} , where either (I) $\mathbf{K} = \mathbf{C}$, or (II) $\mathbf{K} = \bar{\mathbf{Q}}_{\ell}$. Recall that an object of this category is a \mathbf{K} -vector space V equipped with:
 - (1) A grading $V = \bigoplus_{x \in \mathcal{X}} V_x$.
 - (2) A (left) action $G \to GL(V)$ such that $g \cdot V_x = V_{gx}$ for all $x \in \mathcal{X}$ and $g \in G$.

Assume for now that \mathbf{c} is not an exceptional cell. Let $\mathcal{G}_{\mathbf{c}}$ be the finite group that Lusztig attaches to \mathbf{c} . Then by [BFO09, Theorem 4], there exist a finite $\mathcal{G}_{\mathbf{c}}$ -set $\mathbf{X}_{\mathbf{c}}$ and an equivalence of tensor categories

$$(\mathsf{Coh}_{\mathscr{G}_c}(X_c\times X_c),*)\stackrel{\widetilde{\ \ }}{\to} (\mathsf{C}^c,\circledast).$$

In what follows, we write Φ for any endofunctor induced by Φ via an equivalence of tensor categories. We then get an isomorphism of twisted centers:

$$\mathsf{Z}_{\Phi}(\mathsf{Coh}_{\mathscr{G}_c}(\mathbf{X}_c \times \mathbf{X}_c)) \xrightarrow{\sim} \mathsf{Z}_{\Phi}(\mathsf{C}^c).$$

If Conjecture 1.2 holds, then J_c lifts to an object of $Z_{\Phi}(C^c)$, hence defines an object of $Z_{\Phi}(Coh_{\mathscr{C}_c}(X_c \times X_c))$. We expect that in many situations, we can simplify the above Z_{Φ} 's to Z's:

Conjecture 1.3. If w_o commutes with all of \mathbf{c} , then Φ is the identity functor on $\mathbb{C}^{\mathbf{c}}$.

1.7. Henceforth, we assume that w_o commutes with all of **c**. By Morita equivalence for module categories over tensor categories, as explained in [EGNO, Example 7.12.19 and Corollary 7.16.2], we have a tensor equivalence

$$(1.2) \qquad \operatorname{Coh}_{\mathscr{G}_{\mathbf{c}}}(\mathscr{G}_{\mathbf{c}}) \xrightarrow{\sim} \operatorname{Z}(\operatorname{Coh}_{\mathscr{G}_{\mathbf{c}}}(\mathbf{X}_{\mathbf{c}} \times \mathbf{X}_{\mathbf{c}})).$$

We can now make contact with the recent preprint [DL25] of Deligne-Lusztig.

Let $\{-, -\}$ be the exotic Fourier transform on the Grothendieck group $K_{0,\mathcal{G}_{\mathbf{c}}}(\mathcal{G}_{\mathbf{c}})$. To describe it explicitly, recall that the isomorphism classes of simple objects in $\mathsf{Coh}_{\mathcal{G}_{\mathbf{c}}}(\mathcal{G}_{\mathbf{c}})$ are indexed by conjugacy classes of pairs (g,η) , where $g \in \mathcal{G}_{\mathbf{c}}$ and η is a **K**-valued irreducible character of the centralizer $Z(g) = Z_{\mathcal{G}_{\mathbf{c}}}(g)$. In this indexing,

$$\{[g,\eta],[g',\eta']\} = \frac{1}{|Z(g)||Z(g')|} \sum_{\substack{h \in \mathcal{G}_{\mathbf{c}} \\ h^{-1}ghg'=g'h^{-1}gh}} \eta(hg'h^{-1})\eta'(h^{-1}g^{-1}h).$$

Lusztig previously observed that

$$\{[g,\eta],[g',\eta']*[g'',\eta'']\} = \frac{|Z(g)|}{\eta(1)}\{[g,\eta],[g',\eta']\}\{[g,\eta],[g'',\eta'']\}.$$

That is, for fixed $[g, \eta]$, the linear map $K_{0,\mathscr{G}_{\mathbf{c}}}(\mathscr{G}_{\mathbf{c}}) \to \mathbf{K}$ defined by

$$[g', \eta'] \mapsto \frac{|Z(g')|}{\eta'(1)} \{ [g, \eta], [g', \eta'] \}$$

is a ring homomorphism.

Theorem 1.4 (Deligne–Lusztig). For any W and two-sided cell $\mathbf{c} \subseteq W$, there is an invertible simple object $m_{\mathbf{c}}$ of $\mathsf{Coh}_{\mathscr{G}_{\mathbf{c}}}(\mathscr{G}_{\mathbf{c}})$ such that, for any $\chi \in \mathsf{Irr}^{\mathbf{c}}(W)$ corresponding to $[g,\eta] \in \mathsf{K}_{0,\mathscr{G}_{\mathbf{c}}}(\mathscr{G}_{\mathbf{c}})$, we have

$$\{[g,\eta],[m_{\mathbf{c}}]\}=(-1)^{b_{\chi}-a_{\mathbf{c}}}\frac{\eta(1)}{|Z(g)|}$$
 for all $[g,\eta],$

where b_{χ} is the valuation of the fake degree of χ . If W is irreducible and \mathbf{c} is not exceptional, then $j_{\mathbf{c}}$ is unique up to isomorphism.

One checks that tensoring with m_c is involutive on $Coh_{\mathscr{G}_c}(\mathscr{G}_c)$. Since m_c is simple and invertible, we get an involution of the set of isomorphism classes of simple objects of $Coh_{\mathscr{G}_c}(\mathscr{G}_c)$.

Let $j_c \in \mathsf{Z}(\mathsf{Coh}_{\mathscr{G}_c}(\mathbf{X}_c \times \mathbf{X}_c))$ be the image of m_c . Then tensoring with j_c defines an involution of $\mathsf{Coh}_{\mathscr{G}_c}(\mathbf{X}_c \times \mathbf{X}_c)$. As before, we get an involution of the set of isomorphism classes of simple objects of $\mathsf{Coh}_{\mathscr{G}_c}(\mathbf{X}_c \times \mathbf{X}_c)$.

At the same time, recall that under Conjecture 1.2, J_c defines an object of $Z(C^c)$, and tensoring with J_c is an involution of C^c .

Conjecture 1.5. Assume that w_o commutes with all of \mathbf{c} . Then (1.1) takes $j_{\mathbf{c}}$ (with its central structure) to $J_{\mathbf{c}}$ (with its central structure), up to isomorphism.

1.8. Finally, we explain the application to Deligne–Lusztig's conjecture at the end of [DL25]. Henceforth, we assume that we are in setting (II), so that $\mathbf{k} = \bar{\mathbf{F}}$ for a finite field \mathbf{F} , and $\mathbf{K} = \bar{\mathbf{Q}}_{\ell}$, and D is defined in terms of mixed complexes of $\bar{\mathbf{Q}}_{\ell}$ -sheaves relative to a split Frobenius $F: G \to G$.

Let $\mathsf{Rep}^{\mathbf{c}}_{u}(G^F)$ be the full additive subcategory of $\mathsf{Rep}(G^F)$ generated by the unipotent representations in the family indexed by \mathbf{c} . The Harish-Chandra transform

$$\mathsf{HC}_F : \mathsf{Rep}(G^F) = \mathsf{D}^b_G(GF, \bar{\mathbf{Q}}_\ell) \to \mathsf{D}^b_{G,m}(\mathscr{B} \times \mathscr{B}, \bar{\mathbf{Q}}_\ell) =: \mathsf{D}$$

restricts to a functor $HC_F : Rep_u^c(G^F) \to D^{\leq c}$. As explained in [BDR], the essential image of the latter is right-orthogonal to $D^{< c}$, in the sense that $Hom_D(K, HC_F(\rho)) = 0$ for all $\rho \in Rep_u^c(G^F)$ and $K \in D^{< c}$. Moreover, Lusztig showed that the composition

$$\underline{\mathsf{HC}}_F: \mathsf{Rep}^{\mathbf{c}}_u(G^F) \xrightarrow{\mathsf{HC}_F} \mathsf{D}^{\leq \mathbf{c}} \to \mathsf{D}^{\mathbf{c}}$$

factors through a tensor equivalence

$$\operatorname{\mathsf{Rep}}^{\mathbf{c}}_{u}(G^{F}) \xrightarrow{\sim} \operatorname{\mathsf{Z}}(\mathsf{C}^{\mathbf{c}})$$

for a certain monoidal product on $\mathsf{Rep}^{\mathbf{c}}_u(G^F)$, introduced in [L15] by means of weight filtrations. Altogether, we get tensor equivalences

$$\mathsf{Rep}^{\mathbf{c}}_{u}(G^{F}) \xleftarrow{[\mathsf{L}15]} \mathsf{Z}(\mathsf{C}^{\mathbf{c}}) \xleftarrow{(\mathsf{1}.1)} \mathsf{Z}(\mathsf{Coh}_{\mathscr{G}_{\mathbf{c}}}(\mathbf{X}_{\mathbf{c}} \times \mathbf{X}_{\mathbf{c}})) \xleftarrow{(\mathsf{1}.2)} \mathsf{Coh}_{\mathscr{G}_{\mathbf{c}}}(\mathscr{G}_{\mathbf{c}}).$$

Let $\operatorname{Uch}^{\mathbf{c}}(G^F)$ be the set of unipotent irreducible characters of G^F in the family indexed by \mathbf{c} . We then get a bijection between $\operatorname{Uch}^{\mathbf{c}}(G^F)$ and the set of $\mathscr{G}_{\mathbf{c}}$ -conjugacy classes of pairs (g,η) with $g \in \mathscr{G}_{\mathbf{c}}$ and $\eta \in \operatorname{Irr} Z(g)$. This is precisely the bijection described by Lusztig in [L84].

Recall that tensoring with m_c induces an involution of the set of classes $[g, \eta]$. The corresponding involution on Uch^c(G^F) is denoted (-)! in [DL25].

If all of our conjectures above hold, then for any $\rho \in \mathrm{Uch}^{\mathbf{c}}(G^F)$, we have

$$(1.3) \quad \Xi_{\mathbf{c}}(\underline{\mathsf{HC}}_F(\rho)) = (\underline{J_{\mathbf{c}}} \otimes \underline{\mathsf{HC}}_F(\rho)) \langle a_{w_{\circ} \mathbf{c}} \rangle \simeq \underline{\mathsf{HC}}_F(\rho^!) \langle a_{w_{\circ} \mathbf{c}} \rangle = \underline{\mathsf{HC}}_F(\rho^!) \langle a_{w_{\circ} \mathbf{c}} \rangle.$$

To give the applications of this identity, let

$$CH_F: D \to Rep(G^F)$$

denote the left adjoint to HC_F . For any sequence $\vec{w} = (w^{(1)}, w^{(2)}, \dots, w^{(k)})$ of elements of W, let $X(\vec{w})$ be the associated Deligne–Lusztig variety over \mathbf{k} , and let

$$\Delta(\vec{w}) = \Delta(w^{(1)}) * \Delta(w^{(2)}) * \cdots * \Delta(w^{(k)})$$

in D. We get

$$\begin{split} (\mathsf{H}^i_c(X(\vec{w})),\rho)_{G^F} &= \mathsf{Hom}_{G^F}(\mathsf{CH}_F(\Delta(\vec{w}))[i],\rho) \\ &\simeq \mathsf{Hom}_{\mathsf{D}}(\Delta(\vec{w})[i],\mathsf{HC}_F(\rho)) \qquad \text{by adjunction} \\ &\simeq \mathsf{Hom}_{\mathsf{D}^c}(\Delta(\vec{w})[i],\mathsf{HC}_F(\rho)) \qquad \text{by orthogonality of } \mathsf{HC}_F \text{ to } \mathsf{D}^{< c}. \end{split}$$

If (1.3) holds, then

$$\begin{split} \operatorname{Hom}_{\mathsf{D^c}}(\underline{\Delta(\vec{w})[i]}, \underline{\mathsf{HC}}_F(\rho)) &\simeq \operatorname{Hom}_{\mathsf{D^c}}(\underline{\Delta(w_\circ, \vec{w})[i]}, \underline{\Delta(w_\circ)} * \mathsf{HC}_F(\rho)) \\ &\simeq \operatorname{Hom}_{\mathsf{D^c}}(\underline{\Delta(w_\circ, \vec{w})[i]}, \Xi_{\mathbf{c}}(\underline{\mathsf{HC}}_F(\rho))[-a_{\mathbf{c}}]) \\ &\simeq \operatorname{Hom}_{\mathsf{D^c}}(\underline{\Delta(w_\circ, \vec{w})[i]}, \underline{\mathsf{HC}}_F(\rho^!) \langle a_{w_\circ \mathbf{c}} \rangle [-a_{\mathbf{c}}]) \\ &\simeq \operatorname{Hom}_{\mathsf{D^c}}(\Delta(w_\circ, \vec{w}) \langle -a_{w_\circ \mathbf{c}} \rangle [i + a_{\mathbf{c}}], \mathrm{HC}_F(\rho^!)). \end{split}$$

Altogether, writing W for weight filtrations on cohomology, we would get

$$(\operatorname{gr}^{\mathsf{W}}_{i}\operatorname{H}^{i}_{c}(X(\vec{w})),\rho)_{G^{F}}\simeq (\operatorname{gr}^{\mathsf{W}}_{i-a_{w,c}}\operatorname{H}^{i+a_{\mathbf{c}}}_{c}(X(w_{\circ},\vec{w})),\rho^{!})_{G^{F}}.$$

This would imply both Theorem B of [BDR] (by applying the identity twice, the second time with (w_{\circ}, \vec{w}) in place of \vec{w}), and the conjecture in [DL25] (by taking \vec{w} empty).