Satélites de comunicaciones

Adaptación de fuentes bibliográficas para la asignatura (ver referencias)

Juan Felipe Muñoz Fernández

Introducción

- 1950 1960 sistemas de comunicación mediante el rebote de señales.
 - Usando globos climáticos
- Artur C. Clarke calculó satélite a altura de 35800 Km en órbita ecuatorial aparentaría estar inmóvil
 - Período orbital: $r^{\frac{3}{2}}$ ley de Kepler.
 - Satélite cerca de la superficie de la tierra: 90 minutos
 - Satélite a 35800 Km: 24 horas.
- ¿Dónde ponerlo?
 - Período orbital
 - Cinturón de Van Allen (capas de partículas altamente cargadas)

Órbita geoestacionaria

Aunque hay deriva: efecto de la gravedad del

sol, la luna y planetas.

Corrección de deriva: motores

Vida útil: depende de combustible en motores

Fuente: https://es.wikipedia.org/wiki/%C3%93rbita_geoestacionaria

Frecuencias de operación GEO

L y S: nuevas bandas estrechas y saturadas

Banda	Enlace descendente	Enlace ascendente	Ancho de banda	Problemas
L	1.5 GHz	1.6 GHz	15 MHz	Bajo ancho de banda; saturada.
S	1.9 GHz	2.2 GHz	70 MHz	Bajo ancho de banda; saturada.
C	4.0 GHz	6.0 GHz	500 MHz	Interferencia terrestre.
Ku	11 GHz	14 GHz	500 MHz	Lluvia.
Ka	20 GHz	30 GHz	3500 MHz	Lluvia, costo del equipo.

Primera en ser asignada para satélites comerciales: saturada, interfiere con comunicaciones de microondas terrestres

Ku, Ka: no saturadas, sensibles a tormentas eléctricas, costos de instalación de estación base

Propiedades de los satélites GEO

- Transmisiones en enlaces descendentes interfieren con usuarios de microondas para ciertas bandas de operación.
 - Enlace descendente: el que viene del satélite
 - Enlace ascendente: el que va al satélite
- Usualmente más ancho de banda para el enlace descendente
 - Incluso en el enlaces terrestres. P. Ej.: su servicio de conexión a Internet en casa.
- Un haz que "ilumina" una porción de la tierra
 - Aproximadamente 1/3 de la superficie
 - Satélites modernos con varios haces

VSAT (Terminal de apertura muy pequeña)

- Antenas GEO: 10m diámetro
- Antenas VSAT: 1m 3m diámetro
- Armar redes de comunicaciones con satélites GEO
 - Áreas rurales
 - Áreas de difícil acceso para tendido de cable
 - Distancias muy grandes para cubrir con cable
- RTT Usuario: ~600+ms
- Microondas: D = 3 μseg/km
- Cable coaxial F.O: D = 5 μseg/km

Satélites MEO (órbita media)

- Tiempo orbital aproximado de 6 horas
- Requieren rastreo conforme se mueven
- Producen una huella más pequeña
 - Haz que "ilumina" la porción terrestre
- Requieren menos potencia para transmitir
 - Ya que están más cerca que los GEO
- Sistemas de navegación GPS
 - Altura aproximada de 20200 Km

Satélites de órbita baja (LEO)

- Se necesitan un gran número de ellos para la implementación de una red completa de comunicaciones
- RTT es bajo ya que están más cerca
- No requieren tanta potencia para transmitir la señal
- Costo de lanzamiento más económico
- Múltiples usos
 - Voz, datos, radiolocalización, navegación aire, tierra y mar
- Redes
 - Iridium: Inicialmente pensada para comunicaciones celular
 - Globalsat

Iridium y globalsat

Iridium

Señal retransmite a satélites vecinos

Globalsat

Bajar la señal a una estación de tierra

Satélites vs fibra óptica

- Nichos de mercado diferentes
- Instalación de satélite más simple que la fibra óptica
 - Tanto para el usuario: una antena
 - Tanto para el proveedor: satélite + antenas
 - F.O requiere tendido y múltiples equipos
- Comunicación móvil: sin cables
 - La fibra óptica es un cable
 - Comunicación mientras se hacen otras actividades

- Amplitud de la difusión
 - Mensaje se recibe en miles de dispositivos terrestres al tiempo
- Áreas de difícil acceso
 - Más barato un satélite que tender cable de fibra
- Despliegue rápido
 - Aplicaciones militares
- Futuro: híbrido

Referencias

• Tanenbaum, Andrew S., and D. Wetherall. *Redes De Computadoras*. 5th ed., Pearson Educación De México, 2012.