Bagging and Boosting

Bagging and Random Forests

Bagging: Sampling With Replacement

- Instead of training one classifier, train K with K different samples-with-replacement (of the same size as original data)
 - If original dataset had N points, draw N points for each new dataset but draws are with replacement

Bagging: Voting

- Instead of training one classifier, train K with K different samples-with-replacement (of the same size as original data)
 - If original dataset had N points, draw N points for each new dataset but draws are with replacement
- Once trained, each trained classifier votes on new examples

Bagging

- Overall, bagging tends to reduce variance in classifier accuracy, and also helps with overfitting
 - In both cases, classification can't depend as heavily on a single attribute

Random Forests

- Decision trees are often still highly correlated in their responses, even after bagging
- To further vary decision tree structure, some fraction of the attributes are used for potential splits
 - Common choice is \sqrt{F} if there were f features before
 - The feature sampling happens at every point in the tree
 - The most informative feature is still selected from these

Random Forests are efficient

- Random forests may sound inefficient...
 - Train K trees instead of one
 - Extra work randomly sampling attributes to split on
- But a few things work to make them fast
 - \sqrt{F} attributes to try instead of F, per node
 - No need to prune the trees the voting in the end mitigates overfitting
 - · Highly parallelizable, since the trees can be trained apart from each other

Out-of-bag error

- One way to measure the error of the forest is:
 - For each training example,
 - Classify the example using the trees that weren't trained with it.
 - Find the average accuracy over all examples
- This is called the *out-of-bag* error, and it efficiently makes use of data points without need for a separate validation set

Random forests are a popular ML solution

- They have high accuracy, but we can also ask for the whole forest what attributes are most important
- Random forests have been used for (list from R&N 4e):
 - Credit card default prediction
 - Household income prediction
 - Option pricing
 - Remote sensing
 - Cancer prediction
 - Protein interaction prediction
 - And more

Boosting

From a weak learner to a strong learner

- A "weak learner" is one that does even a tiny amount better than chance
 - Probability $0.5 + \epsilon$ of correct on Boolean labels
 - Common example: "decision stump," depth 1 decision tree
- Boosting can create an ensemble of weak learners that votes on a correct classification with high accuracy

High-level idea

- After training a classifier, weight the examples it got wrong more heavily
 - In decision trees, add example_weight to the label count instead of 1 when calculating entropy
- Train the next classifier on the reweighted examples
- Reweight again for the next classifier
- Weight classifiers proportionally to the weight of the examples they get right

Boosting illustration from Russell and Norvig

AdaBoost Algorithm - Pseudocode sketch

Initialize weights to equal For each learner h_k to be trained, train classifier h_k on weighted examples error = sum of incorrect example weights downgrade the weights of correctly classified examples give learner a weight learnerWeight based on its error return all h_k with weights learnerWeight_k

AdaBoost Algorithm - Pseudocode

```
for all weights
   weights_i = 1/N (where N is the number of examples)
for k = 1 to max_learners do
   train classifier hk on examples with weights
   error = 0
   for j = 1 to N do
       if h<sub>k</sub>(example<sub>i</sub>) incorrect,
          error += weight<sub>i</sub>
   if error > 1/2 break
   for j = 1 to N do
       if h<sub>k</sub>(example<sub>i</sub>) correct,
          weight<sub>i</sub> = weight<sub>i</sub> * error/(1-error)
   Normalize(weights)
   learnerWeight<sub>k</sub> = 1/2 \log ((1-error)/error)
return all hk with weights learnerWeightk
```

Test set error improves after training set error reaches zero

 Common effect with boosting - fitting after training set is perfect continues to improve test set performance

Calling from scikit-learn

```
from sklearn.datasets import fetch_lfw_people
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split

faces = fetch_lfw_people(min_faces_per_person = 100)
face_f_train, face_f_test, face_l_train, face_l_test = \
    train_test_split(faces['data'],faces['target'], test_size=0.1, random_state=110)

clf = AdaBoostClassifier(n_estimators=200)
clf.fit(face_f_train, face_l_train)
print(clf.score(face_f_train,face_l_train))
print(clf.score(face_f_test,face_l_test))
```