WHAT IS CLAIMED:

 $1. \quad \text{A platinum group metal-free (PGM-free)} \\ \\ \text{regenerable catalyst composition for entrapping SO_x, the } \\ \\ \text{composition comprising a component having formula I;} \\ \\$

Cu/(A oxide) I

wherein A oxide is selected from the group consisting of SiO_2 , $Zr-SiO_2$, Al_2O_3 , $TiO_2-Al_2O_3$, ZrO_2 , In_2O_3 , and mixtures thereof.

10

5

- 2. The platinum group metal-free regenerable catalyst of claim 1 wherein the Cu loading is from about 10 mol% to about 60 mol%.
- 15 3. The platinum group metal-free regenerable catalyst of claim 1 wherein the Cu loading is about 25 mol%.
- 4. The platinum group metal-free regenerable catalyst composition of claim 1 wherein the A oxide is selected from the group consisting of SiO₂, Zr-SiO₂, TiO₂-Al₂O₃, ZrO₂, In₂O₃, and mixtures thereof.
 - 5. The platinum group metal-free regenerable catalyst composition of claim 1 wherein the A oxide is selected from the group consisting of SiO_2 , $Zr-SiO_2$, and mixtures thereof.
- 6. The platinum group metal-free regenerable catalyst composition of claim 1 wherein the A oxide comprises30 SiO₂.
 - 7. The platinum group metal-free regenerable catalyst composition of claim 1 wherein the A oxide comprises $Zr-SiO_2$.

35

25

- 8. A method of adsorbing SO_x as metal sulfate in a temperature range of 200°C to 500°C under lean fuel conditions using the catalyst composition of claim 1.
- 9. A method of desorbing metal sulfates at a temperature range of 250°C to 450°C under rich fuel conditions using the catalyst composition of claim 1.
- 10. A platinum group metal free catalyst composition for entrapping SO_x , the catalyst composition comprising an oxide selected from the group consisting of praseodymia, zirconia-praseodymia and mixed manganese-yttria and mixtures thereof.
- 15 11. The catalyst composition of claim 10 comprising praseodymia.

20

- 12. The catalyst composition of claim 10 comprising zirconia-praseodymia.
- 13. The catalyst composition of claim 10 comprising mixed manganese-yttria.
- 14. A method of adsorbing SO_x as metal sulfate in 25 a temperature range of 200°C to 500°C under lean fuel conditions using the catalyst composition of claim 10.
- 15. A method of desorbing metal sulfates at a temperature range of 250°C to 450°C under rich fuel conditions using the catalyst composition of claim 10.
 - 16. A vehicle exhaust system comprising: a nitrogen oxide trap; and
- a SO_x adsorbing component located upstream of the nitrogen trap in the vehicle exhaust system, the SO_x

adsorbing material comprising a catalyst selected from the group consisting of:

a) a platinum group metal-free (PGM-free) regenerable catalyst composition for entrapping $SO_{\rm x}$ comprising a component having formula I;

5

35

Cu/(A oxide)

wherein A oxide is selected from the group consisting of SiO_2 , $Zr-SiO_2$, Al_2O_3 , $TiO_2-Al_2O_3$, ZrO_2 , In_2O_3 , and mixtures thereof; or

- b) a platinum group metal free regenerable catalyst composition for entrapping SO_x comprising an oxide selected from the group consisting of praseodymia, zirconia-praseodymia and mixed manganese-yttria and mixtures thereof.
- 17. The vehicle exhaust system of claim 16 wherein the SO_x adsorbing material comprises a platinum group metalfree (PGM-free) regenerable catalyst composition for entrapping SO_x comprising a component having formula I;

Cu/(A oxide) I

- wherein A oxide is selected from the group consisting of SiO_2 , $Zr-SiO_2$, Al_2O_3 , $TiO_2-Al_2O_3$, ZrO_2 , In_2O_3 , and mixtures thereof;
- 18. The vehicle exhaust system of claim 17 wherein the A oxide is selected from the group consisting of SiO_2 , $Zr-SiO_2$, $TiO_2-Al_2O_3$, ZrO_2 , In_2O_3 , and mixtures thereof.
- 19. The vehicle exhaust system of claim 17 wherein the A oxide is selected from the group consisting of SiO_2 , 30 $Zr-SiO_2$, and mixtures thereof.
 - 20. The vehicle exhaust system of claim 16 wherein the SO_x adsorbing material comprises an oxide selected from the group consisting of praseodymia, zirconia-praseodymia and mixed manganese-yttria, and mixtures thereof;

- \$21.\$ The vehicle exhaust system of claim 16 wherein the SO_{x} adsorbing component is a diesel oxidation catalyst.
- 5 22. The vehicle exhaust system of claim 16 wherein the SO_{κ} adsorbing component is a catalyzed soot filter.