NAME:	Om Bhutki
LUD.	2022201002
UID:	2022301003
SUBJECT	DAA
EXPERIMENT NO:	1A
AIM:	To implement the various functions e.g. linear, non-linear, quadratic, exponential etc.
ALGORITHM	Step 1: Start. Step 2: Declare the variables which are required to perform operations on the functions. Step 3: Start the loop which starts from 0 th number to 100 th number. Step 4: i. perform the operation: 3/2^n using pow() ii. Print the result. Step 5: i. Perform the operation: n^3 using simple multiplication ii. Print the result. Step 6: i. Perform the operation: n.lg(n) using in built log function in math.h ii. Print the result. Step 7: i. Perform the operation: lg(n) using in built log function in math.h ii. Print the result. Step 8: i. Perform the operation: 2^lg(n) using in built log function in math.h and pow() ii. Print the result. Step 9: i. Perform the operation lg(lg(n)) using in built log function in math.h

```
ii. Print the result.
                      Step 10: i. Perform the operation:
                      lg(n)^2 using in built log function in math.h and pow()
                      ii. Print the result.
                      Step 11: i. Perform the operation:
                      ii. Print the result.
                      Step 12: i. Perform the operation:
                      2<sup>n</sup> using pow()
                      ii. Print the result.
                      Step 13: i. Perform the operation:
                      n.2<sup>n</sup> using pow()
                      ii. Print the result.
                      Step 14: End the loop
                      Step 15: End.
                      Algorithm for Factorial of numbers from 1 to 20:
                      Step 1: Start.
                      Step 2: Declare the variables n, fact
                      Step 3: Initialize the values n = 20 and fact = 1.
                      Step 4: Start the loop from 1 to n
                      Step 5: calculate, fact = fact *i
                      Step 6: print the value of fact
                      Step 7: End.
PROGRAM:
                      #include <stdio.h>
                      #include <math.h>
                      int main()
                         int i;
                         long double a,b,c,d,g,k;
                         float e,f,h;
```

```
for(i = 1; i <= 100; i++){
     a = pow(1.5,i);
     printf("%f\n",a);
      b = i * i * i;
     printf("%f\n",b);
      printf("%d\n",i);
      c = pow(2,i);
      printf("\%f\n",c);
      d = i*log2(i);
      printf("%Lf\n",d);
      e = pow(2,log2(i));
      printf("%f\n",e);
       f = log 2(i);
       printf("%f\n",f);
      g = i*pow(2,i);
       printf("%Lf\n",g);
       h = log10(log10(i));
       printf("%f\n",h);
        k = pow(log2(i),2);
        printf("%Lf\n",k);
   }
  return 0;
#include<stdio.h>
void fact(int num){
  int i;
  long f=1;
```

```
for(i=1;i<=num;i++)
    f=f*i;

printf("%d %ld\n",num,f);
}

int main(){
    int i;
    for(i = 1; i<=20;i++){
        fact(i);
    }
    return 0;
}</pre>
```

Graph:

Inference: We see that there is a slow increase between 0 and 1 and after that there is a uniform increase till the 100th value.

Inference: The graph doesn't have a huge increase for a few iterations after which the values suddenly rises rapidly, going over millions.

Inference: There is a linear increase in the graph since we are simply printing values from 1 to 100.

Inference: For N³ there is a gradual slope where are similar till 19 after which they increase gradually.

Inference: For 2ⁿ the graph doesn't have a huge increase for a few iterations after which the values suddenly rises rapidly, going over millions.

Inference: For n*2^n the graph doesn't have a huge increase for a few iterations after which the values suddenly rises rapidly, going over millions.

Inference: We can see a slope where the angle of slop is gradually decreasing.

Inference: We can see a slope where the angle of slop is gradually decreasing lesser than lgn^2

Inference: We can see a slope which is increasing with the same angle i.e a graph which is linear.

Inference: Since log(log(1)) is -inf the graph starts from the negative quadrant and makes its way up after which we observe normal logarithmic graph behaviour which is linear increase over a few values followed by slow increase.

Inference: We see that there is not much increase around the starting numbers but the graph takes a sudden increase around the ending numbers basically going to really high numbers.

Conclusion:	Thus, after running 10 functions on numbers from 1 to 100 We conclude that: -Functions with power increase rapidly after some slow growthFunctions with log have linear increase for some values after which we observe slow growth.