Devoir à la maison n° 12

À rendre le 1 février

On cherche dans ce problème à calculer la limite suivante 1 :

$$\zeta(2) = \lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k^2} \right), \text{ notée } \sum_{k=1}^{+\infty} \frac{1}{k^2}.$$

Pour tout entier naturel n non nul, on définit le polynôme

$$P_n = \frac{1}{2i} [(X+i)^n - (X-i)^n].$$

On identifiera un polynôme à sa fonction polynomiale associée et l'on rappelle la définition de la fonction cotangente:

$$\cot x : \mathbb{R} \setminus \pi \mathbb{Z} \to \mathbb{R}$$
$$x \mapsto \frac{\cos(x)}{\sin(x)}$$

- 1) a) Déterminer P_1 , P_2 et P_3 .
 - **b)** Montrer que, pour tout entier $n \in \mathbb{N}^*$, $P_n \in \mathbb{R}[X]$.
 - c) Déterminer, pour tout entier $n \in \mathbb{N}^*$, le degré de P_n et montrer que le coefficient dominant de P_n vaut n.
 - d) Déterminer, pour tout entier $n \in \mathbb{N}^*$, la parité de P_n .
- 2) Soit $n \in \mathbb{N}^*$.
 - a) Montrer, sans les calculer explicitement, que toutes les racines de P_n sont réelles.
 - **b)** Déterminer les racines de P_n , que l'on écrira sous la forme cotan $\left(\frac{k\pi}{n}\right)$, pour des valeurs de k à déterminer.
 - c) Écrire la factorisation de P_n en produit de polynômes irréductibles dans $\mathbb{R}[X]$.
- 3) On considère les suites $u=(u_n)_{n\in\mathbb{N}^*}$ et $v=(v_n)_{n\in\mathbb{N}^*}$ définies, pour tout entier naturel n non nul, par :

$$u_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $v_n = u_n + \frac{1}{n}$.

^{1.} le symbole ζ est la lettre grecque zêta (ζ, Z) , à ne pas confondre avec le xi (ξ, Ξ) .

- a) En s'aidant de la suite v, montrer que u converge. On notera $\zeta(2)$ sa limite.
- **b)** Majorer, pour tout entier $n \in \mathbb{N}^*$, $|\zeta(2) u_n|$.
- c) Écrire une fonction Python zeta2(eps) qui, à un flottant eps > 0 donné, renvoie une valeur approchée de $\zeta(2)$ à eps près.
- 4) a) Soit $S \in \mathbb{R}[X]$. Montrer que S est pair si et seulement si tous ses coefficients impairs sont nuls.
 - **b)** Montrer que, pour tout entier naturel n, il existe un polynôme $R_n \in \mathbb{R}[X]$ tel que $P_{2n+1} = R_n(X^2)$.
 - c) Soit $n \in \mathbb{N}$. Quel est le degré, noté d, de R_n ? Calculer les coefficients de X^d et de X^{d-1} dans R_n .
 - d) Soit $n \in \mathbb{N}$. Déterminer les racines de R_n et en déduire sa factorisation en produit de polynômes irréductibles dans $\mathbb{R}[X]$.
 - e) En déduire que, pour tout entier naturel n non nul,

$$\sum_{k=1}^{n} \cot^2 \left(\frac{k\pi}{2n+1} \right) = \frac{n(2n-1)}{3} .$$

- 5) Soit $n \in \mathbb{N}^*$. On pose désormais, pour tout $k \in \mathbb{N}$, $\theta_k = \frac{k\pi}{2n+1}$.
 - a) Montrer que, pour tout θ vérifiant $0 < \theta < \frac{\pi}{2}$, on a :

$$0 < \sin(\theta) \le \theta \le \tan(\theta)$$
.

b) En déduire que, pour tout p dans $\{1, \ldots, n\}$,

$$\cot^2(\theta_p) \leqslant \frac{1}{\theta_p^2} \leqslant 1 + \cot^2(\theta_p).$$

c) En déduire un encadrement de u_n puis la valeur de $\zeta(2)$.

— FIN —