Chap 8: Compact Operator

- Def let E, F normed vector space let T: E F linear. Ter compact if T{x & E: ||x|| \le 1} it relatively compact set of F.
 - Ex) I_{E} , E nomed rectar space.

 If E finite dim, E compact, I_{E} identity so mayor is itself.

 If E infinite dim, I_{E} not compact.
 - Ex) finite ranks operator. The ranks of an operator is defined to be the dimension of range. So $T \in \mathcal{L}(E,F)$ in finite ranks if dim $Ran(T) < \infty$.

 All finite ranks operators are compact.

Lets consider T {xeE: ||x|| <|} < V = Ran(T), which is finite dim vector space of F. WTS W = T {xeE: ||x|| <|} bounded.

W c {yeV: | ly11 & || T || . ||x|| } = {yeV: |ly11 & ||T||}
binded, closed => compact ret.

"Finite rank openhar are like matricer".

The let E, F Banach space. Take (Tn) of , Tn & L(E, F), Tn compact.

Assume ||Tn-T1| == 0 (operator norm) with Te L(E, F), Then T

ir compact. (compact op. closed in operator norm).

Prints The proof it by standard dragonal (8E) argument.

let (Xn) = , Xn E boundedie. ||Xn|| < 1.

Show $(T_{X_n})_{n=1}^{\infty}$ has a convenient subsequence.

Since Ti compact , we can take (Tixn) and find a convergent

subsequence: $(T_i \times_{i,k}) \subset F$. Next consider $(X_{i,k})_{n=1}^{\infty} \subset (X_n)_{n=1}^{\infty}$ bounded. Then ar T_a compact, \exists convergent rubby $(T_a \times_{a,k})_{n=1}^{\infty} \subset F$. Continue this procedure: we get $(X_{q-i,k})_{k=1}^{\infty}$ s.t. $(T_q \times_{q+k})_{k=1}^{\infty}$ convergences in F.

Diagonal argument: consider diagonal elements, $(x_q, y_q)_{q=1}^{\infty} c(x_q, k)_{(cc)}^{\infty}$. For this require, we know $(T_p x_q, y_q)_{q=1}^{\infty}$, $(T_p x_q, y_q)_{q=1}^{\infty}$, $(T_p x_q, y_q)_{q=1}^{\infty}$ when $(T_p x_q, y_q)_{q=1}^{\infty}$ when $(T_p x_q, y_q)_{q=1}^{\infty}$ where $(T_p x_q, y_q)_{q=1}^{\infty}$

 $3 \frac{e}{c} \frac{c}{c} \frac{c}{c} \frac{c}{c} > 0$, $\| T_{xq,q} - T_{x,r} \| \le \| T_{xq,q} - T_{p} x_{q,q} + T_{p} x_{q,r} - T_{p} x_{r,r} + T_{p} x_{r,r} - T_{x,r} \|$

For this p, choose N>O sit. II Tp xqiq - Tp xm II < & for gir > N.

€ 3 €

so $(T_{x_{q,q}})_{q=1}^{\infty}$ cauchy. By completeness (Banach), it converges.

The Approximation result for Compact operator. Let H be a septrable Hilbert space. let ke d(H) be compact. YEDD, I finite rank operator ke s.b. ||k-ke|| < E. (compact operator are like the limits of finite rank operator)

Print: let (ln) of be complete orthonormal system.

Intuition: $x = \sum_{n=1}^{\infty} (x,e_n)e_n \Rightarrow k_x = \sum_{n=1}^{\infty} (x,e_n)ke_n \Rightarrow k_x = \sum_{n=1}^{\infty} (x,e_n)ke_n$ Lut remains to show this approx. Is good.

we see that $\| k l_N x \| < \mu_N \| x \|$ blo $l_N | l_N | l_N |$ $< \epsilon | | | x | |$

Let's prove claim: (*). Notice that $(\mu_N)_{N=1}^{\infty}$ bounded, described.

Let's prove claim: (*). Notice that $(\mu_N)_{N=1}^{\infty}$ bounded, described.

Let's prove claim: (*). Notice that $(\mu_N)_{N=1}^{\infty}$ bounded in that $\mu=0$. Assume we know $\lim_{N\to\infty} \mu_N = \mu_N > 0$. Prove by contradiction that $\mu=0$. Assume $\mu>0$. For any $\mu>0$, $\mu>0$,