Notas sobre pushouts

Edmundo Martins

21 de janeiro de 2023

Resumo

Estas notas contêm uma exposição básica do conceito categórico de pushout. O foco principal de estudo são pushouts na categorias de espaços e funções contínuas, mas isso naturalmente requer o estudo de algumas propriedades gerais de pushouts, assim como o estudo de propriedades particulares de pushouts na categoria de conjuntos. Após isso, aplicamos os resultados obtidos para obter propriedades de algumas construções topológicas que aparecem com frequência na Topologia Algébrica.

Sumário

1 Pushouts gerais

1

1 Pushouts gerais

Seja ${\sf C}$ uma categoria arbitrária. Dizemos que um quadrado comutativo em ${\sf C}$ da forma

$$\begin{array}{ccc}
w & \xrightarrow{\alpha} & x \\
\beta \downarrow & & \downarrow g \\
y & \xrightarrow{f} & z
\end{array} \tag{1}$$

é um **pushout** se ele satisfaz a seguinte propriedade universal: se z' é outro objeto, e $g': x \to z$ e $f': y \to z'$ são morfismos tais que $g' \circ \alpha' = f' \circ \beta'$, ou seja, tais que o diagrama abaixo seja comutativo;

então existe um *único* morfismo $\theta: z \to z'$ que satisfaça as igualdades $\theta \circ g = g'$ e $\theta \circ f = f'$, ou seja, que faça o diagrama abaixo comutar.

Por vezes, diremos também que o diagrama

$$\begin{array}{c}
w \xrightarrow{\alpha} x \\
\beta \downarrow \\
y
\end{array} \tag{2}$$

é um diagrama de pré-pushout, e que a tripla (z, g, f) é um pushout do diagrama (2).

Sendo definido por meio uma propriedade universal, pushouts satisfazem uma certa propriedade de unicidade a menos de isomorfismos.

1.1 Proposição. Suponha que os dois diagramas abaixo sejam pushouts em uma categoria C.

$$\begin{array}{cccc} w & \stackrel{\alpha}{\longrightarrow} x & & w & \stackrel{\alpha}{\longrightarrow} x \\ \beta \downarrow & & \downarrow g & & \beta \downarrow & & \downarrow g' \\ y & \stackrel{f}{\longrightarrow} z & & y & \stackrel{f'}{\longrightarrow} z' \end{array}$$

Então existe um único isomorfismo $\theta: z \to z'$ satisfazendo as igualdades $\theta \circ g = g'$ e $\theta \circ f = f'$.

Demonstração. Começamos com uma observação simples mas de extrema importância. Note que o morfismo id $z:z\to z$ faz o diagrama abaixo comutar.

A propriedade universal do pushout no entanto garante que idz é na verdade o *único* morfismo do tipo $z \to z$ que faz tal diagrama comutar. Assim, se $\varphi : z \to z$ é um morfismo que satisfaz as igualdades $\varphi \circ g = g$ e $\varphi \circ f = f$, então necessariamente devemos ter $\varphi = \mathrm{id}_z$.

Vamos agora obter o isomorfismo em questão. A propriedade universal do pushout garante a existência de um único morfismo $\theta: z \to z'$ fazendo o diagrama abaixo comutar.

Veja que θ satisfaz as duas igualdades impostas pelo enunciado. Resta então mostrarmos que esse morfismo é na verdade um isomorfismo, e para isso vamos exibir explicitamente o morfismo inverso. Usando novamente a propriedade universal do pushout obtemos o único morfismo θ' : $z' \to z$ fazendo o diagram abaixo comutar.

Vamos mostrar que θ e θ' são inversos. O truque para mostrarmos a igualdade $\theta' \circ \theta = \mathrm{id}_z$ é usar a caracterização do morfismo idêntico id $_z$ dada no primeiro parágrafo. Por um lado,

$$\theta' \circ \theta \circ f = \theta' \circ f' = f,$$

e analogamente,

$$\theta' \circ \theta \circ g = \theta' \circ g' = g.$$

S Segue então da conclusa
o do primeiro parágrafo que $\theta' \circ \theta = \mathrm{id}_z$. A demonstração da validade da igualdade $\theta \circ \theta' = \mathrm{id}_{z'}$ é similar, pois, analogamente ao que ocorre com id_z , o morfismo $\mathrm{id}_{z'}$ é caracterizado unicamente por satisfazer as igualdades $\mathrm{id}_{z'} \circ g' = g'$ e $\mathrm{id}_{z'} \circ f' = f'$. Assim, as sequências de igualdades

$$\theta \circ \theta' \circ g' = \theta \circ g = g'$$

e

$$\theta \circ \theta' \circ f' = \theta \circ f = f'$$

implicam imediatamente a igualdade desejada.