Packet Capture Wireshark

Fakrul Alam and Yoshinobu Matsuzaki

Why we need to capture packet & how it's related to security?

- Hosts send and receive packets to communicate with each others. When you have network related issues, sometimes it's necessary to see the actual packets to troubleshoot.
- And also it helps to understand protocols and devices' behaviors

tcpdump Definition

- tcpdump is a utility used to capture and analyze packets on network interfaces.
- Details about these packets can either be displayed to the screen or they can be saved to a file for later analysis.
- tcpdump utilizes the libpcap library for packet capturing.
- And there are variant of the software
 - Wireshark

What you can see

Packets arrived on your network interface Packets to/from the host Unicast, Multicast, Broadcast

You might not see others' communication

tcpdump command example

host = specifies host

port = specifies a port

proto = protocol ie tcp or udp

```
# tcpdump -nni eth0
# tcpdump -nni eth0 host 10.10.10.10
# tcpdump -nni eth0 dst host 10.10.10.10 and tcp
# tcpdump -nni eth0 src net 10.10.10.0/24 and tcp and portrange 1-1024
-nn = don't use DNS to resolve IPs and display port no
-i = interface to watch
    dst = watch only traffic destined to a net, host or port
    src = watch only traffic whose src is a net, host or port
    net = specifies network
```

tcpdump command example

```
# tcpdump -nni eth0 -s0
# tcpdump -nni eth0 not port 22 -s0 -c 1000 -v
# tcpdump -nni eth0 not port 22 and dst host 10.10.10.10 and not src
net 10.20.30.0/24
```

- -s = packet length to be captured
- -s0 = setting samples length to 0 means use the required length to catch whole packet
- -c = number of packets
- -v = print a more verbose description

tcpdump pcaps

```
# tcpdump -nni eth0 -w capture.pcap -vv -c 1000
# tcpdump -nni eth0 -r capture.pcap port 80

-w capture.pcap = save capture packet to capture.pcap
-vv = display number of packet captured
-r capture.pcap = read capture file
-c = number of packets
```

tcpdump Output

```
IP 199.59.148.139.443 > 192.168.1.8.54343: Flags [P.], seq 53:106,
ack 1, win 67, options [nop,nop,TS val 854797891 ecr 376933204],
length 53

IP 192.168.1.8.54343 > 199.59.148.139.443: Flags [.], ack 106, win
4092, options [nop,nop,TS val 376934736 ecr 854797891], length 0

IP 199.59.148.139.443 > 192.168.1.8.54343: Flags [P.], seq 106:159,
ack 1, win 67, options [nop,nop,TS val 854797891 ecr 376933204],
length 53
IP 192.168.1.8.54343 > 199.59.148.139.443: Flags [.], ack 159, win
```

4091, options [nop,nop,TS val 376934736 ecr 854797891], length 0

What is Wireshark?

- Wireshark is a network packet/protocol analyzer.
 - A network packet analyzer will try to capture network packets and tries to display that packet data as detailed as possible.
- Wireshark is perhaps one of the best open source packet analyzers available today for **UNIX** and **Windows**.

Wireshark

- Yet another packet capturing and analysis software
- GUI
- It can handle the tcpdump file format (pcap)
- You can analyze packets which is captured on a remote server using tcpdump

About Wireshark

- Formerly known as "Ethereal"
 - Author, Gerald Combs quit Network Integration Services
 - Free
- https://www.wireshark.org/

Packages for Windows and MacOS are available Most UNIX system has own package of Wireshark

- Requirement on windows
 - Need to install winpcap
 - Latest wireshark installer contains winpcap, don't worry
 - (On Windows Vista) Need Administrator Privilege to capture

Why Wireshark

- network administrators use it to troubleshoot network problems
- network security engineers use it to examine security problems
- developers use it to debug protocol implementations
- people use it to learn network protocol internals
- Wireshark isn't an intrusion detection system.
- Wireshark will not manipulate things on the network, it will only "measure" things from it.

How to Install

- Very straight forward
- Just double-click and follow the instructions.

Capture

Dashboard

Filters

- Capture filter
 - Capture Traffic that match capture filter rule
 - save disk space
 - prevent packet loss
- Display filter
- Tweak appearance

Apply Filters

- ip.addr == 10.0.0.1 [Sets a filter for any packet with 10.0.0.1, as either the source or dest]
- ip.addr==10.0.0.1 && ip.addr==10.0.0.2 [sets a conversation filter between the two defined IP addresses]
- http or dns [sets a filter to display all http and dns]
- tcp.port==4000 [sets a filter for any TCP packet with 4000 as a source or dest port]
- tcp.flags.reset==1 [displays all TCP resets]
- http.request [displays all HTTP GET requests]
- tcp contains rviews [displays all TCP packets that contain the word 'rviews'. Excellent when searching on a specific string or user ID]
- !(arp or icmp or dns) [masks out arp, icmp, dns, or whatever other protocols may be background noise. Allowing you to focus on the traffic of interest]

Follow TCP Stream

Follow TCP Stream

- Build TCP Stream
 - Select TCP Packet -> Follow TCP Stream

Use "Statistics"

- What protocol is used in your network
 - Statistics -> Protocol Hierarchy

● ○ ○ X Wireshark: Protocol Hierarchy Statistics								
Display filter: none								
Protocol	% Packets	Packets	% Bytes	Bytes	Mbit/s	End Packets	End Bytes	End Mbit/s
▼ Frame	100.00 %	188	100.00 %	37971	0.009	0	0	0.000
→ Ethernet	100.00 %	188	100.00 %	37971	0.009	0	0	0.000
¬ Internet Protocol Version 4	100.00 %	188	100.00 %	37971	0.009	0	0	0.000
▼ Transmission Control Protocol	89.89 %	169	88.84 %	33732	0.008	83	13802	0.003
Secure Sockets Layer	17.02 %	32	35.20 %	13747	0.003	32	13747	0.003
Telnet	27.66 %	52	14.58 %	5536	0.001	52	5536	0.001
→ Hypertext Transfer Protocol	1.06 %	2	1.70 %	647	0.000	1	402	0.000
Line-based text data	0.53 %	1	0.65 %	245	0.000	1	245	0.000
□ User Datagram Protocol	10.11 %	19	11.16 %	4239	0.001	0	0	0.000
Canon BJNP	5.32 %	10	1.53 %	580	0.000	10	580	0.000
Session Initiation Protocol	2.13 %	4	8.17 %	3103	0.001	4	3103	0.001
Simple Traversal of UDP Through NAT	1.06 %	2	0.53 %	200	0.000	2	200	0.000
Data	0.53 %	1	0.12 %	46	0.000	1	46	0.000
Dropbox LAN sync Discovery Protocol	1.06 %	2	0.82 %	310	0.000	2	310	0.000
<u>₩</u> Help								X Close

Use "Statistics"

- Which host most chatty
 - Statistics -> Conversations

Need CLI?

- If you stick to character based interface, try tshark.exe
- C:\program files\wireshark\tshark.exe

Tcpdump & Wireshark

- tcpdump -i <interface> -s 65535 -w <some-file>
 - -s <snaplen>: amount of bytes captures for each packet
 - -w <some-file>: write the raw packets to a file

Exercise

- Install Wireshark into your PC
- Or, you can use VM (tcpdump)

\$ ssh workshop@10.0.0.x

Note: x is your group#

Note: password is iij/2497

- Run wireshark and Capture inbound/outbound traffic
- Download capture files from https://github.com/randyqx/apricotsec2019
 - 2-2-2.WiresharkExerciseData.zip

Exercise 1: Good Old Telnet

- File
 - telnet.pcap
- Question
 - Reconstruct the telnet session.
- Q1: Who logged into 192.168.0.1
 - Username ______, Password ______.
- Q2: After logged in what did the user do?
 - Tip
 - telnet traffic is not secure

Exercise 2: Massive TCP SYN

- File
 - massivesyn1.pcap and massivesyn2.pcap
- Question
 - Point the difference between them.
- Q1: massivesyn1.pcap is a _____ attempt.
- Q2: massivesyn2.pcap is a _____ attempt.
- Tip
 - Pay attention to Src IP

Exercise 3: Chatty Employees

- File
 - chat.dmp
- Question
- Q1: What kind of protocol is used?
- Q3: What do they say about you(sysadmin)?
- Tip
 - Your chat can be monitored by network admin.

Exercise 4: Suspicious FTP activity

- File
 - ftp1.pcap
- Question
 - Q1: 10.121.70.151 is FTP _____.
 - Q2: 10.234.125.254 is FTP _____.
 - Q3: FTP Err Code 530 means ______.
 - Q4: 10.234.125.254 attempt _____.
- Tip
 - How many login error occur within a minute?

Exercise 5: Unidentified Traffic

- File
 - Foobar.pcap
- Question
 - Q1: see what's going on with wireshark gui
 - Statistics -> Conversation List -> TCP (*)
 - Q2: Which application use TCP/6346? Check the web.

Exercise 6: Covert channel

- File
 - covertinfo.pcap
- Question
 - Take a closer look! This is not a typical ICMP Echo/Reply...
 - Q1: What kind of tool do they use? Check the web.
 - Q2: Name other application which tunnel user traffic.

Exercise 7: Analyze Malware

- File
 - malware.pcap
- Questions:
 - Q1: Find the bad HTTP traffic
 - Q2: Is there any malware in the HTTP traffic?
 - Q3: Upload one sample malware to https://www.virustotal.com/
 - Does all antivirus detect the malware?
- Tips
 - Filter with http contains "in DOS mode"
 - Export all the files

Exercise 8: SIP

- File
 - sip_chat.pcap
- Questions:
 - Q1: Can we listen to SIP voice?
 - Q2: How!!

Exercise 9: Your telnet

- Capture your telnet session to VM
 - PuTTY can telnet
 - Host Name: 10.0.0.x
 - Select Telnet
- Login: workshop
- Password: iij/2497
- Look at the captured data

Exercise 10: Your ssh

- Capture your ssh session to VM
 - \$ ssh workshop@10.0.0.x
 - password is iij/2497 (or key-based authentication)
- Look at the captured data