

Descriptif:

Backpropagation (Rétropropagation)

Encadrant: Hugo Bolloré

Par: Aicha Maaoui

Date: 03/01/2022

Problématique

Le but de cette partie est la description des étapes de rétropropagation (Backpropagation) utilisée dans les classes *Convolution_layer*, *Pooling_layer* et *Softmax_layer* du project Réseau de Neurones Convolutifs.

Backpropagation

Generalités et définitions:

1. Définition de la Rétropropagaion (Backpropagation):

la rétropropagation du gradient est utilisée pour entraîner un réseau de neurones. Elle met à jour les poids de chaque neurone, en allant de la dernière couche vers la première [1], comme illustré dans la figure (1).

Figure 1: Forward-/ Back-propagation du réseau de neurones utilisé.

2. Rétropropagaion pour la couche Softmax:

La couche de Softmax permet de quantifier les prédictions d'appartenance d'une image donnée en entrée à une classe c parmi les 5 classes de sortie. On introduit ainsi la fonction de perte "Cross-Entropy Loss", caracterisée par l'évquation dans [2]:

$$L_{cross-entropy}(\hat{y}, y) = -\sum_{i=1}^{n_{classes}} y_i \times log(\hat{y}_i)$$
 (1)

avec:

 $\begin{cases}
n_{classes}: & \text{le nombre de classes,} \\
y_i & \text{la probabilité de choisir une classe (0 ou 1),} \\
\hat{y}_i & \text{la probabilité prédite pour la classe i (par exemple 0.6).}
\end{cases}$

On se place dans le cas où i = c, la classe correcte qui doit être choisie. Alors $y_i = 0$ pour tous, sauf la classe correcte. Soit dans ce cas la fonction de perte réduite suivante pour i = c:

$$L_{cross-entropy}(\hat{y}_c) = -log(\hat{y}_c) \tag{2}$$

où c est la classe correcte et \hat{y}_c est la probabilité prédite pour la classe c.

Le cas idéal sera pour la probabilité $\hat{y}_c = 1$, la fonction de perte $L_{cross-entropy}(\hat{y}_c)$ sera alors nulle.

La phase d'apprentissafe d'un réseau de neurones se compose de deux phases:

- Phase "Forward-propagation", où l'entrée passe par les couches du réseau,
- Phase "Back-propagation", où les gradients sont rétropropagés pour mettre à jour les poids.

En se passant d'une couche à une autre dans la phase de "Forward-propagation", chaque couche cache ses données, qui seront utilisés dans la phase "Back-propagation". Ainsi, cette phase doit obligatoirement être précédée par une phase "Forward-propagation".

Par conséquent, au cours de la phase "Back-propagation", on aura:

- Chaque couche reçoit le gradient de perte par rapport à ses sorties $\frac{\partial L}{\partial out}$,
- Chaque couche renvoie le gradient de perte par rapport à ses entrées $\frac{\partial L}{\partial in}$

Appendix:

On considère un noeud z d'un réseau de neurones [2].

Règle de la chaîne (Chain Rule):

Il s'agit d'une règle de dérivation, qui permet de calculer les dérivées des fonctions composées.

• On pose dans le cas où z ne dépend que de a:

$$\begin{cases} a(t) = \text{fonction } (t) & \text{diff\'erentiable en } t \\ z(a(t)) = \text{fonction } (a(t)) & \text{diff\'erentiable en } a \end{cases}$$
 (3)

Alors la derivée de z par rapport à t dans le cas d'une dépendence unique de Z en t est:

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial a} \times \frac{\partial a}{\partial t} \tag{4}$$

Cette procédure est illustrée dans la figure (1).

Figure 2: Règle de la chaîne appliquée à une fonction composée de dépendence simple.

• On pose dans le cas où z dépend que de a_1 et a_2 :

$$\begin{cases} a_1(t), a_2(t) = \text{fonction } (t) & \text{diff\'erentiable en } t \\ z(a_1(t), a_2(t)) = \text{fonction } (a_1(t), a_2(t)) & \text{diff\'erentiable en } a \end{cases}$$
 (5)

Alors la derivée de z par rapport à t dans le cas d'une dépendence unique de Z en t est:

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial a_1} \times \frac{\partial a_1}{\partial t} + \frac{\partial z}{\partial a_2} \times \frac{\partial a_2}{\partial t}$$
 (6)

Cette procédure est illustrée dans la figure (2).

Figure 3: Règle de la chaîne appliquée à une fonction composée de dépendence multiple.

Gradient:

D'après [2], on définit:

- Gradient Amont (Upstream gradient): C'est le gradient que le noeud z reçoit lors de la rétropropagation (Backpropagation),
- \bullet Gradients locaux (Local gradients): C'est les gradients calculés par rapport aux entrées de z,
- Gradients Aval (Downstream gradients): C'est le produit entre le Gradient Amont et Gradients Locaux .

Figure 4: Formes de Gradients.

Règle de Quotient (Quotient Rule):

Soit deux fonctions f et g dépendantes de t. Alors, on a la dérivée du quotient suivant:

$$\frac{\partial}{\partial t} \left(\frac{f(t)}{g(t)} \right) = \frac{f'(t) \times g(t) - f(t) \times g'(t)}{g(t)^2} \tag{7}$$

References:

- [1] "Rétropropagation du gradient", Wikipedia, 2021, "https://fr.wikipedia.org/wiki/R%C3% A9tropropagation_du_gradient".
- [2] "BA Friendly Introduction To Cross-Entropy For Machine learning", Pianalytix, 2021, "https://pianalytix.com/a-friendly-introduction-to-cross-entropy-for-machine-learning/".
- [1] "Multi-Layer Neural Networks with Sigmoid Function", Nahua Kang, Towards Data Science, 2017, "https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f".
- [2] "Backpropagation in Fully Convolutional Networks", Giuseppe Pio Cannata, Towards Data Science, 2021, "https://towardsdatascience.com/backpropagation-in-fully-convolutional-networks-fcns-1a13b75fb56a".