Отчет по заданию 3

Выполнил: Нозимов Дилшодхон Зафарович

В данном задании предлагалось найти решение задачи при помощи

метода конечных элементов. В таблице 1 приведены результаты численных

экспериментов при различных N. На рисунках 1, 2, 3 приведены точное и

приближенное решение задачи.

Задание:

Найти точное решение задачи, заполнить таблицу по образцу, привести

рисунки.

Задача:

1. Задача о растяжении стержня постоянного сечения,

где C(x) = EA, $f(x) = \rho gA$. Здесь L = 5 м — длина балки, g = 9.81

 $_{
m M}/{
m c}^2$ — ускорение свободного падения, $P=30000\,{
m H}$ — сила, $E=30\,$

 $\Gamma\Pi a$ — модуль упругости, $\rho = 2150 \ \text{кг/м}^3$ — плотность, A = 0.0341

 ${\rm M}^2$ — постоянная площадь поперечного сечения. Краевые условия:

 $u(0) = 0, \frac{du}{dx}(L) = -P/(EA).$

Точное решение задачи:

 $u(x) = \frac{\rho g A}{2EA} x^2 - \left(\frac{P}{EA} + \frac{\rho g A L}{EA}\right) x$

Характеристики компьютера:

Процессор: 1,1 GHz 2-ядерный процессор Intel Core m3

Память: 8 ГБ 1867 MHz LPDDR3

Графика: Intel HD Graphics 515 1536 МБ

Таблица 1: Результаты численных экспериментов

N	$ E_r _{\infty}$	R	$ E_r _{L}$	R	Время	$\mu[K]$
	1 100		' ' <i>L</i>		расчетов, с	
2	3.49e-03	_	4.40e-03	-	1.36e-01	8.34e+00
4	8.73e-04	2.00e+00	1.10e-03	2.00e+00	2.42e-01	3.03e+01
8	2.18e-04	2.00e+00	2.75e-04	1.99e+00	4.69e-01	1.14e+02
16	5.45e-05	1.99e+00	6.87e-05	2.00e+00	8.73e-01	4.38e+02
32	1.36e-05	2.00e+00	1.72e-05	2.00e+00	1.69e+00	1.71e+03
64	3.41e-06	1.99e+00	4.29e-06	1.99e+00	3.55e+00	6.74e+03
128	8.52e-07	2.09e+00	1.07e-06	2.00e+00	7.05e+00	2.68e+04

Рис. 1. Метод МКЭ для N=8

Рис. 2. Метод МКЭ для N=32

Рис. 3. Метод МКЭ для N=128

Ответы на вопросы:

- **1.** Оцените арифметическую сложность полученного алгоритма. Решение СЛАУ с трёхдиагональной матрицей производится за O(N). Правая часть считается путём умножения трёхдиагональной матрицы на вектор известных значений тоже за O(N).
 - 2. Влияет ли способ нумерации элементов на вычислительную эффективность алгоритма?

Да. Например, в данном конкретном примере матрица К трёхдиагональная, что существенно упрощает подсчёты. В общем виде это не так.

3. Оцените, во сколько раз увеличится глобальная СЛАУ, если вместо п линейных элементов использовать п квадратичных.

В квадратичном случае к узлам на краях элементов добавятся узлы в серединах элементов, то есть число переменных вырастет вдвое. Соответственно увеличится и глобальная СЛАУ — из (n+1)x(n+1) до (2n+1)x(2n+1)

4. Каким образом найти локальную матрицу жёсткости и вектор правой части, если нет возможности провести интегрирование аналитически?

Численно, например, метод трапеций.