LABORATORIO 5 JULIANA TORRES AARÓN

Objetivos del Laboratorio:

1. Comprender y aplicar los principios de los modelos OSI y TCP/IP mediante la configuración

y análisis de una red simulada en Cisco Packet Tracer.

2. Identificar y analizar el flujo de datos a través de las capas del modelo OSI y TCP/IP,

utilizando herramientas de simulación de red y captura de paquetes como Wireshark

dentro de Packet Tracer.

3. Demostrar la relación entre los dispositivos de red y los protocolos en diferentes capas

de los modelos OSI y TCP/IP, correlacionando la teoría con la simulación práctica.

1. Configuración Básica de la Red en Packet Tracer

1.1. Diseño de la red, agregando los dispositivos y conectando cada uno

1.2. Configuracion de las IPs:

DISPOSITIVO	IP asignada
Router	192.168.1.1
PC1	192.168.1.2
PC2	192.168.1.3
PC3	192.168.1.4
PC4	192.168.1.5
PC5	192.168.1.6
PC6	192.168.1.7

1.3. Verificación de conectividad:

Verifica que los PCs puedan hacer ping entre sí. En PC1, abre la terminal y usa el comando: ping 192.168.1.3.

```
C:\>ping 192.168.1.3 with 32 bytes of data:

Reply from 192.168.1.3: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.1.3:

Packets: Sent = 4, Recivate = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

```
:\>ping 192.168.1.4
Pinging 192.168.1.4 with 32 bytes of data:
Reply from 192.168.1.4: bytes=32 time<lms TTL=128
Ping statistics for 192.168.1.4:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
 C:\>ping 192.168.1.5
Pinging 192.168.1.5 with 32 bytes of data:
Reply from 192.168.1.5: bytes=32 time<lms TTL=128
Ping statistics for 192.168.1.5:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 192.168.1.6
Pinging 192.168.1.6 with 32 bytes of data:
Reply from 192.168.1.6: bytes=32 time<lms TTL=128
Ping statistics for 192.168.1.6:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 192.168.1.7
Pinging 192.168.1.7 with 32 bytes of data:
Reply from 192.168.1.7: bytes=32 time<lms TTL=128
Reply from 192.168.1.7: bytes=32 time<lms TTL=128
Reply from 192.168.1.7: bytes=32 time=lms TTL=128
Reply from 192.168.1.7: bytes=32 time<lms TTL=128
Ping statistics for 192.168.1.7:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

Asegúrate de que las respuestas sean exitosas.(Respuestas exitosas)

- 2. Análisis de tráfico con Packet Tracer (Modelo OSI)
 - 2.1. Simulación del trafico
 - 2.2. Análisis del tráfico a través del modelo OSI:
 - 2.3. Captura de un paquete:

Completa la siguiente tabla con la información del análisis del tráfico:

N° de paquete	Protocolo	Capa OSI	Fuente IP	Destino IP	Descripción
1	ICMP	3 (Red)	192.168.1.2	192.168.1.3	Ping desde PC 1 a PC 2
2	ICMP	3 (Red)	192.168.1.2	192.168.1.4	Ping desde PC 1 a PC 3
3	ICMP	3 (Red)	192.168.1.2	192.168.1.5	Ping desde PC 1 a PC 4
4	ICMP	3 (Red)	192.168.1.2	192.168.1.6	Ping desde PC 1 a PC 5
5	ICMP	3 (Red)	192.168.1.2	192.168.1.7	Ping desde PC 1 a PC 6

3. Modelo TCP/IP en Packet Tracer

3.1. Comparación de capas entre los modelos OSI y TCP/IP

MODELO OSI	MODELO TCP/IP	PROTOCOLOS/DISPOSITIVOS
Capa 7 – Aplicación	Capa 4 – Aplicación	HTTP, STP, DNS
Capa 6 – Presentación	Capa 4 – Aplicación	SSL/TLS
Capa 5 – Sesión	Capa 4 – Aplicación	NetBIOS, RPC
Capa 4 – Transporte	Capa 3 – Transporte	TCP, UDP
Capa 3 – Red	Capa 2 – Internet	IP, ICMP, ARP
Capa 2 – Enlace de datos	Capa 1 – Red	Ethernet, Wi-Fi
Capa 1 – Física	Capa 1 – Red	Cables, Hubs, NICS

3.2. Verificación de la funcionalidad del modelo TCP/IP

Todos los paquetes de ICMP generados pueden mapearse a las
capas TCP/IP sin ningún tipo de perdida de información, todo
correcto.

4. Evaluación de conocimientos

- 4.1. ¿Qué dispositivos operan en la capa de enlace de datos en la simulación?
 - Operan Switches, Bridges, NICs, Access Points.
- 4.2. ¿Qué protocolos de la capa de transporte observaste en el tráfico?

TCP, UDP

4.3. ¿Cómo se dividen las capas de los modelos OSI y TCP/IP al analizar un paquete ICMP?

OSI: Capas 1 a 3 (Física, Enlace de datos, Red

TCP/IP: Capas Acceso a red e Internet.