

Jaewon Chung

(he/him) - NeuroData lab Johns Hopkins University - Biomedical Engineering

gj1c (Twitter)

Motivation

- Observe several time series evolving simultaneously
- Analyzing each component individually can lead to wrong inference.

Independence Testing

Let
$$(X_i,Y_i)\sim F_{XY}, i\in [n]=\{1,2,\ldots,n\}$$

We want to test:

$$H_0: F_{XY} = F_X F_Y$$

$$H_A:F_{XY}
eq F_XF_Y$$

Indepdence Testing in Time-series data

- ullet Let $(X_t,Y_t)\sim F_{XY},\;t\in[n]=\{1,2,\ldots,n\}$
- Maximum lag M.

$$egin{aligned} H_0: F_{X_t,Y_{t-j}} &= F_{X_t} F_{Y_{t-j}} ext{ for each } j \in \{0,1,\ldots,M\} \ H_A: F_{X_t,Y_{t-j}}
eq F_{X_t} F_{Y_{t-j}} ext{ for some } j \in \{0,1,\ldots,M\} \end{aligned}$$

Assymetric test

Stationary Process

A time series $\{X_t\}$ is **strictly stationary** if the joint distribution of $(X_{t_1}, X_{t_2}, \dots, X_{t_n})$ is the same as that of $(X_{t_{1+\tau}}, X_{t_{2+\tau}}, \dots, X_{t_{n+\tau}})$.

ullet $t, au\in\mathbb{R}$, $n\in\mathbb{N}_{>0}$

Consquently,

- ullet $\mathbb{E}(X_t)$ is constant, does not depend on t
- ullet If $\mathbb{E}(X_t^2)<\infty$, $Cov(X_t,X_{t- au})$ only depends on au

Above two conditions form the weakly stationary.

Auto-covariance/correlation (ACVF/ACF)

Let $\{X_i\}_1^t$, $X_i \in \mathbb{R}$ be stationary time-series.

- Auto-covariance function (ACVF)
 - Time dependent covariance with itself

$$ACVF(j) = Cov(X_t, X_{t-j})$$

- Auto-correlation function (ACF)
 - Time dependent correlation with itself

$$egin{aligned} ACF(j) &= rac{Cov(X_t, X_{t-j})}{\sqrt{Var(X_t)Var(X_{t-j})}} \ &= rac{ACVF(j)}{ACVF(0)} \end{aligned}$$

(Stationarity of X_t)

Cross-covariance/correlation (CCVF/CCF)

Let $\{(X_i,Y_i)\}_1^t$, $X_i,Y_i\in\mathbb{R}$ stationary time-series.

- Cross-covariance function (CCVF)
 - Time dependent covariance between two time series

$$CCVF(j) = Cov(X_t, Y_{t-j})$$

- Cross-correlation function (CCF)
 - Time dependent correlation between two time series

$$egin{aligned} CCF(j) &= rac{Cov(X_t, Y_{t-j})}{\sqrt{Var(X_t)Var(Y_{t-j})}} \ &= rac{CCF(j)}{\sqrt{ACVF_{X_t}(0)ACVF_{Y_t}(0)}} \end{aligned}$$

Ljung-Box Test (pronounced Yoong)

- ullet Max lag M
- Originally for autocorrelated time-series data.

$$T=n(n+2)\sum_{j=1}^{M}rac{ACF^{2}(j)}{n-j}$$

Modified for cross-correlated time-series data.

$$T=n(n+2)\sum_{j=1}^{M}rac{CCF^{2}(j)}{n-j}$$

Distance Based Test

- ullet Max lag M
- Distance cross correlation

$$egin{aligned} DCorr(j) &:= DCorr(X_t, Y_{t-j}) \ DCorrX &= \sum_{j=1}^{M} rac{n-j}{n} \cdot DCorr(j) \end{aligned}$$

Multiscale graph cross correlation

$$MGC(j) := MGC(X_t, Y_{t-j}) \ MGCX = \sum_{j=1}^{M} rac{n-j}{n} \cdot MGC(j)$$

Optimal Lag

• Lag j that exhibits the strongest dependence.

$$\hat{M}^* = rg \max_j \left(rac{n-j}{n}
ight) \cdot T(j)$$

Block Permutation Test

Dependent data → cannot use standard permutation.

Procedure: Given number of blocks size b < n,

1. For each block $i \in {1, 2, \ldots, \lceil n/b \rceil}$, produce block:

$$B_i = (Y_{b(i-1)+1}, Y_{b(i-1)+2}, \dots, Y_{b(i-1)+b})$$

- 2. Choose $\lceil n/b \rceil$ blocks from $B_0, B_1, \ldots, B_{\lceil n/b \rceil}$ with replacement.
- 3. Concatenate the chosen blocks to form a new time series Y'.
- 4. Compute $T_n^{(r)}$ on the series $\{(X_t,Y_t')\}_1^n$. Repeat r times.
- 5. Compute p-value as:

$$p=rac{1}{r}\sum_{i=1}^r \mathbb{I}\{T_n^{(r)}\geq T_n\}$$

Block Permutation Visualization

•
$$n = 6, b = 3$$

Simulations

1. Independent data

$$egin{bmatrix} X_t \ Y_t \end{bmatrix} = egin{bmatrix} \phi & 0 \ 0 & \phi \end{bmatrix} egin{bmatrix} X_{t-1} \ Y_{t-1} \end{bmatrix} + egin{bmatrix} \epsilon_t \ \eta_t \end{bmatrix}$$

2. Linear dependence

$$egin{bmatrix} X_t \ Y_t \end{bmatrix} = egin{bmatrix} 0 & \phi \ \phi & 0 \end{bmatrix} egin{bmatrix} X_{t-1} \ Y_{t-1} \end{bmatrix} + egin{bmatrix} \epsilon_t \ \eta_t \end{bmatrix}$$

3. Non-linear dependence

$$egin{bmatrix} X_t \ Y_t \end{bmatrix} = egin{bmatrix} \epsilon_t Y_{t-1} \ \eta_t \end{bmatrix}$$

Visualizations

Results

Optimal lag estimation

• Data dependent on lag 3.

$$egin{bmatrix} X_t \ Y_t \end{bmatrix} = egin{bmatrix} \epsilon_t Y_{t-3} \ \eta_t \end{bmatrix}$$

Real world data

- Resting state(?) fMRI data
- n=1200 frames, \approx 0.75 second per frame.
- 22 brain regions, each part of some large-scale brain network.
 - Default Mode Network (DMN)
 Dorsal Attention Network (dAtt)
 Ventral Attention Network (vAtt)
 Visual Network (Visual)
 FrontoParietal Network (FP)
 Limbic Network (Limbic)
 Somatomotor Network (SM)

Network	Shorthand	Activation?
Default Mode	DMN	When resting
Dorsal Attention	dAtt	Selecting stimuli relevant to a goal
Ventral Attention	vAtt	Detecting and redirecting attention to relevant stimuli
Visual	Visual	Analyzing the various components of the visual scene
FrontoParietal	FP	Making decisions in the context of goal-driven behaviour
Limbic	Limbic	Emotion, consciousness, motivation and long-term memory
Somatomotor	SM	Detecting somatosensory stimuli, movement

Network	Shorthand	Activation?
Default Mode	DMN	When resting
Dorsal Attention	dAtt	Selecting stimuli relevant to a goal
Ventral Attention	vAtt	Detecting and redirecting attention to relevant stimuli
Visual	Visual	Analyzing the various components of the visual scene
FrontoParietal	FP	Making decisions in the context of goal-driven behaviour
Limbic	Limbic	Emotion, consciousness, motivation and long-term memory
Somatomotor	SM	Detecting somatosensory stimuli, movement

Optimal Lag

TODO

Multivariate simulations