Machine Learning

What is Artificial Intelligence

Machine Learning

"Hey computer, here are the rules for identifying a cat in a picture."

"Hey computer, here are 10,000 pictures of cats. Figure it out yourself!"

AI | ML

Deep Learning

Deep Learning utilizes **artificial neural networks** with multiple layers (hence "**deep**") to learn and represent complex patterns in data.

Deep learning has revolutionized fields like **computer vision**, **natural language processing**, and **speech recognition**.

AI | ML | DL

AI | ML | DL | GenAI

Learning

Supervised Unsupervised Learning

Reinforcement Learning

Types of Machine Learning

Machine learning

Let's start with...

Supervised

Unsupervised

Supervised Machine Learning

A supervised learning method uses labeled data to predict outcomes guided by specific input-output pairs.

Here, both inputs and outputs are known.

Unsupervised Machine Learning

Unsupervised Machine Learning

Objective: Predicting number of customer complaints based on % of on-time arrival based on a sample data.

	On-Time Performance (%)	Customer Complaints
0	75.0	210.0
1	76.0	195.0
2	76.0	209.0
3	77.0	224.0
4	77.0	187.0
5	78.0	185.0
6	78.0	219.0
7	79.0	201.0
8	79.0	174.0
9	80.0	192.0
10	80.0	170.0
11	81.0	168.0
12	81.0	180.0
13	82.0	135.0
14	82.0	137.0
15	83.0	158.0
16	83.0	147.0

Objective: Predicting number of customer complaints based on % of on-time arrival based on a sample data.

Customer Complaints = -4.46 * (On-Time Performance) + 536.08

Customer Complaints = -4.46 * (On-Time Performance) + 536.08

Is this a universal relationship?

Supervised ML - Types

Target Variable – Continuous - Regression

Example – How much delay in arrival?

Target Variable – Categorical - Classification

Example – Whether On-time(yes/no)?

Let's do some work in python.

Bias Variance Trade-off

