

Computer Vision

CSC-455

Muhammad Najam Dar

Today's Lecture

- Image Enhancement
- Histogram
 Equalization
- Image filtering

Image Enhancement

Image Enhancement

Image Enhancement

Process an image so that the result is more suitable than the original image for a specific application

- Image Enhancement Methods
 - Spatial Domain: Direct manipulation of pixels in an image
 - Frequency Domain: Process the image by modifying the Fourier transform of an image

This Chapter - Spatial Domain

Types of image enhancement operations

Point/Pixel operations

Output value at specific coordinates (x,y) is dependent only on the input value at (x,y)

Local operations

The output value at (x,y) is dependent on the input values in the neighborhood of (x,y)

Global operations

The output value at (x,y) is dependent on all the values in the input image

Point Processing Example: Thresholding

Segmentation of an object of interest from a background

Point Processing Example: Intensity Scaling

$$s = T(r) = a.r$$

Original image

f(x,y)

Scaled image

 $a \cdot f(x,y)$

Point Processing Example: Negative Images

- Reverses the gray level order
- For L gray levels, the transformation has the form:

$$s = (L-1) - r$$

 Negative images are useful for enhancing white or grey detail embedded in dark regions of an image

Point Processing Example: Negative Images

Input image (X-ray image) Output image (negative)

The general form of the log transformation is

$$s = c \times \log(1+r)$$

- The log transformation maps a narrow range of low input grey level values into a wider range of output values
- The inverse log transformation performs the opposite transformation

Properties

- For lower amplitudes of input image the range of gray levels is expanded
- For higher amplitudes of input image the range of gray levels is compressed

Application

- This transformation is suitable for the case when the dynamic range of a processed image far exceeds the capability of the display device (e.g. display of the Fourier spectrum of an image)
- Also called "dynamic-range compression / expansion"

Fourier spectrum: image values ranging from 0 to 1.5x10⁶

The result of log transformation with c = 1

Power Law Transformations

Power law transformations have the following form

$$s = c \times r^{\gamma}$$

- Map a narrow range of dark input values into a wider range of output values or vice versa
- Varying γ gives a whole family of curves

Power Law Transformations

• For γ < 1:

Expands values of dark pixels, compress values of brighter pixels

For γ > 1:
 expand

Compresses values of dark pixels, values of brighter pixels

• If $\gamma=1$ & c=1: Identity transformation (s = r)

 A variety of devices (image capture, printing, display) respond according to a power law and need to be corrected

Power Law Transformations: Gamma Correction

a b c d

FIGURE 3.7

(a) Linear-wedge gray-scale image. (b) Response of monitor to linear wedge.

(c) Gammacorrected wedge. (d) Output of monitor.

The images to the right show a magnetic resonance (MR) image of a fractured human spine

$$y = 0.6$$

$$y = 0.4$$

$$y = 0.3$$

MR image of fractured human spine

Result after
Power law
transformation

$$c = 1, \gamma = 0.6$$

Result after
Power law
transformation

$$c = 1, \gamma = 0.4$$

Result after
Power law
transformation

$$c = 1, \gamma = 0.3$$

When the γ is reduced too much, the image begins to reduce contrast to the point where the image started to have very slight "wash-out" look.

Image has a washed-out appearance – needs γ > 1

Aerial Image

Result of Power law transformation $c = 1, \gamma = 3.0$ (suitable)

Result of Power law transformation $c = 1, \gamma = 4.0$ (suitable)

Result of Power law transformation c = 1, $\gamma = 5.0$ (high contrast, some regions are too dark)

Histogram of a Grayscale Image

Histogram of a Color Image

Histogram: Example

Dark image

Components of histogram are concentrated on the low side of the gray scale

Bright image

Components of histogram are concentrated on the high side of the gray scale

Contrast Stretching

Improve the contrast in an image by `stretching' the range of intensity values it contains to span a desired range of values, *e.g.* the the full range of pixel values

Contrast Stretching

Histogram Equalization

Histogram equalization re-assigns the intensity values of pixels in the input image such that the output image contains a uniform distribution of intensities

HISTOGRAM EQUALIZATION

AERIAL PHOTOGRAPH OF THE PENTAGON

Resulting image uses more of dynamic range. Resulting histogram almost, but not completely, flat.

Histogram Equalization

Histogram Equalization

$$J(r,c) = 255 \cdot P_I [I(r,c)].$$

Histogram Equalization: Example

An 8x8 image

Fill in the following table/histogram

Value	Count								
52		64		72		85		113	
55		65		73		87		122	
58		66		75		88		126	
59		67		76		90		144	
60		68		77		94		154	
61		69		78		104			
62		70		79		106			
63		71		83		109			

Image Histogram (Non-zero values)

Image Histogram (Non-zero values shown)

Value	Count								
52	1	64	2	72	1	85	2	113	1
55	3	65	3	73	2	87	1	122	1
58	2	66	2	75	1	88	1	126	1
59	3	67	1	76	1	90	1	144	1
60	1	68	5	77	1	94	1	154	1
61	4	69	3	78	1	104	2		
62	1	70	4	79	2	106	1		
63	2	71	2	83	1	109	1		

Cumulative Distribution Function (cdf)

Image Histogram/Prob Mass Function

Value	Count								
52	1	64	2	72	1	85	2	113	1
55	3	65	3	73	2	87	1	122	1
58	2	66	2	75	1	88	1	126	1
59	3	67	1	76	1	90	1	144	1
60	1	68	5	77	1	94	1	154	1
61	4	69	3	78	1	104	2		
62	1	70	4	79	2	106	1		
63	2	71	2	83	1	109	1		

- 1		cdf	Value	cdf	Value	cdf	Value	cdf	Value	cdf
n	52		64		72		85		113	
	55		65		73		87		122	
	58		66		75		88		126	
	59		67		76		90		144	
	60		68		77		94		154	
	61		69		78		104			
	62		70		79		106			
	63		71		83		109			

Cumulative Distribution Function (cdf)

Value	cdf								
52	1	64	19	72	40	85	51	113	60
55	4	65	22	73	42	87	52	122	61
58	6	66	24	75	43	88	53	126	62
59	9	67	25	76	44	90	54	144	63
60	10	68	30	77	45	94	55	154	64
61	14	69	33	78	46	104	57		
62	15	70	37	79	48	106	58		
63	17	71	39	83	49	109	59		

Original Image

Original Image

Image after histogram equalization

Corresponding histogram (red) and cumulative histogram (black)

histogram (black)

Dark image

Bright image

Low contrast **High Contrast**

IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN

a b

FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA's *Mars Global Surveyor.* (b) Histogram. (Original image courtesy of NASA.)

a b

FIGURE 3.21

(a) Transformation function for histogram equalization. (b) Histogram-equalized image (note the washedout appearance). (c) Histogram of (b).

Poorly illuminated CCTV image and the result of histogram equalisation.

Common Distance Definitions

D₄ distance (city-block distance)

D₈ distance (checkboard distance)

4	3	2	3	4
3	2	1	2	3
2	1	0	1	2
3	2	1	2	3
4	3	2	3	4

Euclidean distance (2-norm)

$$\mathrm{d}(\mathbf{p},\mathbf{q}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2}.$$

References

- Some Slide material has been taken from Dr M. Usman Akram Computer Vision Lectures
- CSCI 1430: Introduction to Computer Vision by <u>James Tompkin</u>
- Statistical Pattern Recognition: A Review A.K Jain et al., PAMI (22) 2000
- Pattern Recognition and Analysis Course A.K. Jain, MSU
- Pattern Classification" by Duda et al., John Wiley & Sons.
- Digital Image Processing", Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley,
 2002
- Machine Vision: Automated Visual Inspection and Robot Vision", David Vernon,
 Prentice Hall, 1991
- www.eu.aibo.com/
- Advances in Human Computer Interaction, Shane Pinder, InTech, Austria, October 2008
- Computer Vision A modern Approach by Frosyth
- http://www.cs.cmu.edu/~16385/s18/