Server-side Data Reduction and Analysis with Script Workflow Analysis for MultiProcessing (SWAMP)

Daniel L. Wang, Charles S. Zender, and Stephen F. Jenks
University of California, Irvine

http://dust.ess.uci.edu/~wangd/pub/sld_WZJ07b.pdf

{wangd, zender, sjenks}@uci.edu

Motivation

How can we make this task easy?

SRESA1B 720ppm Stabilization Scenario

Problem

- Analysis lags simulation/generation
 - Bulk: 1TB of data is non-trivial to manage
 - Locality: Bandwidth ≪ ∞

Data manipulation granularity

Approach

- Appropriately distribute computation load
- Leverage existing scripted interfaces
- (Exploit available parallelism)

The "Normal" Way

```
models='cccma cgcm3 1 cccma cgcm3 1 t63 cnrm cm3 csiro mk3 0 \
      qfdl cm2 0 qfdl cm2 1 qiss aom qiss model e h qiss model e r \
      iap fgoals1 0 g inmcm3 0 ipsl cm4 miroc3 2 hires miroc3 2 medres \
      miub echo q mpi echam5 mri cqcm2 3 2a ncar ccsm3 0 ncar pcm1 \
      ukmo hadcm3 ukmo hadgem1'
variables='tas pr'
scenarios='sresalb sresa2 sresb1'
for scn in $scenarios; do
   for mdl in $models; do
     ncwa -0 -v $variables -w area -a lat,lon \
       -p http://user:password@climate.llnl.gov/cgi-bin/dap-cgi.py/ipcc4/$scn/$mdl \
       pcmdi.ipcc4.$mdl.$scn.run1.atm.mo.xml $scn $mdl 200001 209912.nc
     ncwa -F -d time, 1,12 $scn $mdl 200001 209912.nc $scn $mdl 2000.nc
     ncdiff $scn $mdl 200001 209912.nc $scn $mdl 2000.nc $scn $mdl anm.nc
   done # end loop over model
   ncea * 200001 209912.nc $scn avg 200001 209912.nc
   ncwa -F -d time, 1, 12 $scn avg 200001 209912.nc $scn avg 2000.nc
   ncdiff $scn avg 200001 209912.nc $scn avg 2000.nc $scn avg anm.nc
done # end loop over scenario
```

SWAMP

Script Workflow Analysis for Multiprocessing

- Specialized netCDF data handler for OPeNDAP
 - Use constraint expression to signal computation

- ~sh-script syntax accepts netCDF Operators (NCO) command lines
 - ncwa -v WIND -d time %tempf_cam1999.nc%\
 %outf_winds1999.nc%

Server-side parallelizing and optimizing execution engine

Engine implementation

- Replaces the netCDF data handler (dap_nc_handler)
 - Passes non-SWAMP requests to original
- Written in python

- Parses script to generate workflow
- Locates temporary files in ramdisk, 'live file' analysis to reclaim space
- "Persistent" job tracking via database
 - SQLite for speed and simplicity

Engine Parallelization

- Peer worker parallelization model
 - server-configurable # of slots
 - shared state via DB updates
 - ready list, file status, command state
- Script-line-level parallelization
 - thread-level built-in to NCO (OpenMP)
- I/O concurrency a problem for n>2
 - Use Linux tmpfs ramdisk

Experimental Setup

- Case: Subsample 10 years of global T42 data at Δt =20m into Δt =12h
 - ~ 14,000 script lines
 - ~ 8GB input data (120 files)
 - ~ 26GB intermediate results
 - ~ 230MB result data (10 files)

26GB

8GB

- System:
 - Dual Opteron 270 (4 cores total), 16GB memory
- Compare 9 cases:
 - Traditional vs. SWAMP (1,2,4,8-wide, I/O opt)

SWAMP Parses, Optimizes and Schedules


```
near 1. Ownstrough of common last complete (complete the past the year into a single series of local terms of the past the past the past the past into a single series (10.000 terms (10.000 terms (10.000 terms (10.000 terms) terms (10.000 terms) terms (10.000 terms (10.000 terms) terms (10.000 terms (10.000 terms) terms (10
```

~14,000 line script
1 line ~ 1 NCO command

dependency-aware workflow

SWAMP Performance

SWAMP Parallelization

Conclusions

- High computational performance potential with tested workflow
 - Parallelism
 - Optimization
- Large speedup through bandwidth optimization
- Viability of shell-script interface

Room for optimization above existing NCO optimization

Would you like to know more?

Questions?

offline: wangd@uci.edu

Want to poke at the code?

(please be gentle)

 See NCO CVS source tree on sourceforge: (nco/src/ssdap)

Want to try it?

Probably need my help to make it work