Instructions:

- 1. Create a Jupyter Notebook file named <id>.ipynb .
- 2. Generate 1000 amplitude values, $A_0, A_1, \ldots, A_{999}$, evenly spaced between 0 and 5 (in increasing order).
- 3. Generate 1000 frequency values, $f_0, f_1, \ldots, f_{999}$, evenly spaced between 0 and 10 (in increasing order).
- 4. Construct a composite signal using sine waves: $S_0(A_0,f_0), S_1(A_1,f_1), \ldots, S_{999}(A_{999},f_{999}),$ where each S_i represents a sine wave with amplitude A_i and frequency f_i .
- 5. Plot the composite signal in both the time domain and frequency domain.