NMS Izlases nodarbības: Skaitļu teorija. Sk. http://www.dudajevagatve.lv/nt/index.html **Definīcijas:** Veseliem a un d ($d \neq 0$) rakstām $d \mid a$, ja a dalās ar d. Atlikumu, a dalot ar b, apzīmē ar $a \mod b$. Ja veseli skaitļi a un b dod vienādus atlikumus, dalot ar m, raksta $a \equiv b \pmod{m}$: a un b ir kongruenti pēc moduļa m. Aritmētikas pamatteorēma: Katru $n \in \mathbb{N}$ var tieši vienā veidā izteikt $2016 = 2^5 \cdot 3^2 \cdot 7$; **2017** = 2017^1 ; $2018 = 2^1 \cdot 1009^1$; $2019 = 3^1 \cdot 673^1$; $2020 = 2^2 \cdot 5^1 \cdot 101^1$ kā pirmskaitļu pakāpju reizinājumu: $n=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$. $60 = 2^2 \cdot 3^1 \cdot 5^1$ ir $(2+1) \cdot (1+1) \cdot (1+1) = 12$ Dalītāju skaits: Katram $n=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$ pozitīvo dalītāju skaits, ieskaitot 1 un *n*, ir $d(n) = (a_1 + 1) \cdot \cdot \cdot (a_k + 1)$. dalītāji. **Dalītāju skaits:** Skaitlis $n \in \mathbb{N}$ ir pilns kvadrāts tad un tikai tad, ja tam Piemēri: 100 ir pilns kvadrāts, tam ir 9 dalītāji. ir nepāru skaits pozitīvu dalītāju. 1000 nav pilns kvadrāts, tam ir 16 dalītāji. BW.2016.11 Kopa A sastāv no 2016 dažādiem skaitļiem, visi šo skaitļu pirmreizinātāji ir mazāki par 30. Pierādīt, ka kopā A var atrast tādus 4 dažādus skaitļus $a,\,b,\,c$ un $d,\,$ ka abcd ir naturāla skaitļa kvadrāts. Pirmskaitļu pārbaudes algoritms (ļoti lēns lieliem n) Ja n = 2017, tad $\sqrt{2017} \approx 44.91$. Apakšējā veselā

```
ISPRIME(n)
                                                                            daļa ir 44. 2017 nedalās ar 2, 3, \dots, 44 \Rightarrow 2017 ir
1. for d=2 to \lfloor \sqrt{n} \rfloor
                                                                            pirmskaitlis. (Varētu nedaudz uzlabot, izlaižot pāru
2.
        if n \mod d == 0 // n \mod d apzīmē atlikumu, n dalot ar d
                                                                            dalītājus d > 2 vai dalot tikai ar pirmskaitļiem. Bet
3.
                                                                            lieliem skaitļiem izmanto Miller-Rabin (1980.g.) vai
            return FALSE
                                                                            Agrawal–Kayal–Saxena (2002.g.) algoritmus.)
4. return TRUE
Eiklīda algoritms LKD atrašanai:
                                                                            Funkcijas, kuras izsauc pašas sevi, bet ar citiem
Euclid(a, b)
                                                                            argumentiem, sauc par rekursīvām. Eiklīda algo-
1. if b == 0
                                                                            ritms ir rekursīvs. Piemēram, Euclid (30, 21) =
2.
        {\bf return}\ a
                                                                            Euclid(21,9) = Euclid(9,3) = Euclid(3,0) = 3.
3. else return Euclid(b, a \mod b)
```

Bezū (Bézout) lemma: Ja naturālu skaitļu a un b lielākais kopīgais dalītājs ir d, tad eksistē veseli skaitļi x un y, kuriem ax + by = d. Visi citi skaitļi, ko var izteikt formā ax + by, dalās ar d.

Ja a un b ir savstarpēji pirmskaitļi, tad eksistē tādi veseli x, y, kam ax + by = 1; citiem vārdiem, ar a un b centu monētām var nomaksāt jebkuru naudas summu. "Bezū koeficientus" x, y var atrast ar pielāgotu Eiklīda algoritmu. Piemērs: a = 99, b = 78, LKD(a, b) = 3. Meklējam x, y, kam ax + by = 3.

LV.VO.2014.10.2 Atrast visas tādas vesela skaitļa n vērtības, kurām gan $\frac{n^3+3}{n+3}$, gan $\frac{n^4+4}{n+4}$ ir veseli skaitļi.

Apgalvojums par polinomu dalīšanu ar atlikumu: Jebkuriem polinomiem A(x) un B(x) eksistē to "dalījums" Q(x) un "atlikums" R(x), t.i. tādi polinomi, kam $A(x) = Q(x) \cdot B(X) + R(x)$ un R(x) pakāpe ir mazāka par B(x) pakāpi.

Polinomos A(x), B(x) atrod vecākos locekļus un dala tos — iegūst Q(x) kārtējo locekli. Pēc tam pārveido: $\frac{n^3+3}{n+3} = \frac{n^2(n+3)-3n^2+3}{n+3} = n^2 + \frac{-3n^2+3}{n+3} = n^2 + \frac{-3n(n+3)+9n+3}{n+3} = n^2 - 3n + \frac{9n+3}{n+3} = n^2 - 3n + 9 + \frac{-24}{n+3}$. Iegūstam, ka $A(n) = n^3 + 3$ un B(n) = n+3 dalījums ir $Q(n) = n^2 - 3n + 9$, bet atlikums R(n) = -24. (Tā kā B(n) = n+3 ir 1.pakāpes polinoms, tad R(n) ir 0.pakāpes polinoms: konstante -24. Iegūstam, ka $\frac{-24}{n+3}$ ir vesels jeb n+3 ir kāds no skaitļa 24 dalītājiem.

BW.TST.2016.16 Kāda ir izteiksmes LKD $(n^2 + 3, (n+1)^2 + 3)$ lielākā iespējamā vērtība naturāliem n?

Eiklīda algoritmu lieto, dalot polinomus ar atlikumu: LKD $(n^2+3,n^2+2n+4) = \text{LKD}(n^2+3,2n+1) = \text{LKD}(2n^2+6,2n+1) = \text{LKD}(-n+6,2n+1) = \text{LKD}(n-6,13)$. Ja n-6 dalās ar 13, tad LKD $(n^2+3,(n+1)^2+3) = 13$. Citos gadījumos LKD ir 1.

Teorēma par inverso elementu: Ja p ir pirmskaitlis, tad katram $a \not\equiv 0 \pmod{p}$ eksistē tāds a^{-1} , ka $a^{-1} \cdot a \equiv 1 \pmod{p}$ $Ja p = 7, \text{ tad } 1^{-1} = 1, 2^{-1} = 4, 3^{-1} = 5, 4^{-1} = 2, 5^{-1} = 3, 6^{-1} = 6.$

Ķīniešu atlikumu teorēma: Ja n_1, \ldots, n_k ir pa pāriem savstarpēji pirmskaitļi, tad jebkuriem atlikumiem x_1, \ldots, x_k eksistē atrisinājums x, kurš dod vajadzīgos atlikumus x_i , dalot ar n_i . T.i. $0 \le x < n_1 n_2 \cdots n_k$ un $x \equiv x_i \pmod{n_i}$ katram $i = 1, \ldots, n$.

Aplūkojam savstarpējus pirmskaitļus 2, 3, 5: $\begin{cases} x \equiv 1 \pmod{2} \\ x \equiv 2 \pmod{3} & \Leftrightarrow x \equiv 23 \pmod{30}. \end{cases}$

Apgalvojums par pirmskaitļu bezgalīgo skaitu. Pirmskaitļu 2,3,5,... ir bezgalīgi daudz. (Pierādījums no pretējā: ja būtu galīgs skaits, tad $p_1p_2\cdots p_k+1$ nedalītos ne ar vienu no tiem.)

Eksistē cik patīk garas $\mathbb N$ apakšvirknes bez pirmskaitļiem. (Piemēram, m!+2, m!+3, m!+m satur m-1 saliktu skaitli.)

Ir bezgalīgi daudzi tādi pirmskaitļi p, kam $p \equiv 3 \pmod 4$. (Līdzīgi, ir bezgalīgi daudzi pirmskaitļi p, kam $p \equiv 5 \pmod 6$)

Pierādījums no pretējā: Ja to ir galīgs skaits, tad apzīmē visu to reizinājumu ar P un aplūko 4P-1. 4P-1 dod atlikumu 3, dalot ar 4 — tātad nevar sastāvēt tikai no pirmreizinātājiem, kas visi dod atlikumu 1, dalot ar 4.

USA.MO.2008.1 Pierādīt, ka jebkuram naturālam n eksistē n+1 savstarpēji pirmskaitļi k_0,k_1,\ldots,k_n , kas visi lielāli par 1 un kuriem $k_0k_1\cdots k_n-1$ ir divu pēc kārtas sekojošu naturālu skaitļu reizinājums.

Ja sekojoši naturāli skaitļi ir t, t+1, vai starp P(t) = t(t+1)+1 vērtībām var būt tādas, kurām ir patvaļīgi daudz dažādu pirmreizinātāju?

Definīcija: Skaitļus formā $M_n = 2^n - 1$ sauc par Mersena (Mersenne) skaitļiem. Ja turklāt M_n ir pirmskaitlis, tad to sauc par Mersena pirmskaitli.

Apgalvojums par Mersena pirmskaitļiem: Lai $M_n = 2^n - 1$ būtu pirmskaitlis, ir nepieciešami, lai pats n būtu pirmskaitlis. ($Pavisam\ zināmi\ 51\ Mersena\ pirmskaitļi.\ Lielākais\ ir\ 2^{82,589,933} - 1$, ko atrada 2018.g. $decembr\bar{\imath}$. $Tas\ ir\ ar\bar{\imath}\ lielākais\ šobr\bar{\imath}d\ zināmais\ pirmskaitlis$.)

Ja n dalās reizinātājos, tad arī pakāpju starpība 2^n-1 dalās reizinātājos. Piemēram, $2^{15}-1=(2^5)^3-1^3=(2^5-1)((2^5)^2+2^5+1)$. Arī, piemēram, $2^{11}-1=2047=23\cdot 89$.

Definīcija: Skaitļus formā $F_n = 2^{2^n} + 1$ sauc par $Ferm\bar{a}$ skaitļiem. Ja Šobrīd zināmi pieci Fermā pirmskaitļi: $F_0 = 2^1 +$ 1 = 3, $F_1 = 2^2 + 1 = 5$, $F_2 = 2^4 + 1 = 17$, $F_3 = 2^8 + 1 = 257$, $F_4 = 2^{16} + 1 = 65537$. Bet $F_5 = 2^{16} + 1 = 65537$. turklāt F_n ir pirmskaitlis, tad to sauc par $Ferm\bar{a}$ pirmskaitli. (Ja m ir kāds nepāru dalītājs d > 1, tad $2^m + 1$ nevar būt pirmskaitlis. Teiksim, $2^{24} + 1 = (2^8)^3 + 1^3$ dalās reizinātājos pēc $a^3 + b^3 = (a+b)(a^2 - 1)^3$ $2^{32} + 1 = 4,294,967,297 = 641 \cdot 6,700,417$ $ab + b^2$) identitātes.) **Andreescu.2006.1.78** Dažādiem naturāliem m un n, Fermā skaitļi F_m Atkārtoti lietojot kvadrātu starpības formulu a^2 – b^2 , var pamatot, ka $F_m - 2$ dalās ar F_n , ja m >un F_n ir savstarpēji pirsm
kaitļi. (Piemēram, tā kā F_5 dalās ar 641, tad neviens cits Fermā skaitlis ar 641 n. Tādēļ pēc Eiklīda algoritma. LKD $(F_m, F_n) =$ $LKD((F_m - 2) + 2, F_n) = LKD(2, F_n) = 1.$ $1^6 \equiv 2^6 \equiv 3^6 \equiv 4^6 \equiv 5^6 \equiv 6^6 \equiv 1 \pmod{7}$. Mazā Fermā teorēma: Ja p ir pirmskaitlis un gcd(a, p) = 1, tad $a^{p-1} \equiv$ $1 \pmod{p}$. **BW2016.3** Kuriem naturāliem $n = 1, \dots 6$ vienādojumam $a^n + b^n = c^n + n$ eksistē atrisinājums veselos skaitļos? Teorēma par primitīvo sakni: Katram pirmskaitlim p eksistē Ja p = 7, tad 3^k pienem visus iespējamos atlikumus, tāds a, kuram kongruenču klases a^1, a^2, \dots, a^{p-1} pieņem visas vērtības dalot ar 7 (izņemot pašu 7): $3^k \equiv 3, 2, 6, 4, 5, 1 \pmod{7}$ ja $k = 1, \dots, 6$. $1, 2, \ldots, p-1.$ **BW.2016.5** Dots pirmskaitlis p > 3, kuram $p \equiv 3 \pmod{4}$. Dotam naturālam skaitlim a_0 virkni a_0, a_1, \ldots definē kā $a_n = a_{n-1}^{2^n}$ visiem $n=1,2,\ldots$ Pierādīt, ka a_0 var izvēlēties tā, ka apakšvirkne $a_N,a_{N+1},a_{N+2},\ldots$ nav konstanta pēc moduļa p nevienam naturālam N. **Definīcija:** Eilera funkcija $\varphi(n)$ apzīmē, cik ir veselu skaitļu $x \in [1, n]$, Pirmskaitļiem $\varphi(p)=p-1$. Pirmskaitļu pakāpēm $\varphi(p^k) = p^k - p^{k-1}$ kas ir savstarpēji pirmskaitļi ar n. **Definīcija:** Funkciju f(n), kas definēta naturāliem skaitļiem sauc par Eilera funkcija ir multiplikatīva. $multiplikat\bar{\imath}vu$, ja jebkuriem diviem savstarpējiem pirmskaitliem a,b: $\varphi(100) = \varphi(4)\varphi(25) = (4-2)(25-5) = 2 \cdot 20 = 40.$ f(ab) = f(a)f(b).Eilera teorēma: Ja a un n ir savstarpēji pirmskaitli, tad $a^{\varphi(n)} \equiv$ Jaanedalās ar 2 un 5, tad a^k decimālpieraksta $1 \pmod{n}$. pēdējie divi cipari ir tādi paši kā $a^{k+\varphi(100)} = a^{k+40}$. **Apgalvojums:** Ja q nedalās ar 2 un 5, tad racionāla skaitļa p/q ir tīri 1/41 = 0.(02439). $\varphi(41) = 40$ dalās ar 5. periodiska decimāldala (bez priekšperioda). Eilera funkcija $\varphi(q)$ dalās ar 1/13 = 0.(076923). $\varphi(13) = 12$ dalās ar 6. Bet ciparu skaitu periodā. 1/12 = 0.08(3) satur priekšperiodu. Ja $n = p_1^{a_1} p_2^{a_2}$, tad $d(n) = (a_1 + 1)(a_2 + 1)$, $\sigma(n) = (1 + p_1^1 + \dots + p_1^{a_1}) (1 + p_2^1 + \dots + p_2^{a_2})$. **Definīcija:** Naturāla skaitļa n pozitīvo dalītāju skaitu apzīmē ar d(n), pozitīvo dalītāju summu - ar $\sigma(n)$, pozitīvo dalītāju kvadrātu summu - ar $\sigma_2(n)$. d(n), $\sigma(n)$, $\sigma_2(n)$ ir multiplikatīvas funkcijas. **Apgalvojums:** $d(1) + d(2) + \cdots + d(n) = \lfloor \frac{n}{1} \rfloor + \lfloor \frac{n}{2} \rfloor + \cdots + \lfloor \frac{n}{n} \rfloor$. $\sigma(1) + \sigma(2) + \cdots + \sigma(n) = 1 \cdot \left| \frac{n}{1} \right| + 2 \cdot \left| \frac{n}{2} \right| + \cdots + n \cdot \left| \frac{n}{n} \right|.$ **Definīcija:** Ja p ir pirmskaitlis, tad par naturāla skaitla n p-valuāciju sauc lielāko pakāpi p^a , ar kuru dalās n. Apzīmē $\nu_n(n) = a$. Skaitlim 0 valuācijas nedefinētas, tas dalās ar jebko. Grieķu burtu ν lasa "nī" (angl. "nu" [nju:]). Augstākā pakāpe 5^k , ar ko dalās 100! ir |100/5| + Ležandra (Legendre) formula: Ja p ir pirmskaitlis, tad jebkuram naturālam $n \nu(n!) = \left| \frac{n}{p^1} \right| + \left| \frac{n}{p^2} \right| + \left| \frac{n}{p^3} \right| + \cdots$ |100/25| = 24. Tādēl 100! decimālpieraksts beidzas ar 24 nullēm. Kummera (Ernst Kummer) teorēma: Ja p ir pirmskaitlis un $n \geq 1$ C_8^2 dalās ar 2^2 , bet ne ar 2^3 , jo $2 = 10_2$ un $6 = 110_2$ saskaitīšanā $10_2 + 110_2 = 1000_2$ ir divi pārnesumi. $m \geq 0$, tad $\nu_p\left(C_n^m\right) = \nu_p\left(\frac{n!}{m!(n-m)!}\right)$ vienāds ar pārnesumu skaitu, stabiņā saskaitot m un n-m, pierakstī́ti skaitīšanas sistēmā ar bāzi p. $\nu_3(10^9 - 1^9) = \nu_3(10 - 1) + \nu_3(9) = 2 + 2 = 4.$ Kāpinātāja pacelšanas (Lifting the exponent, LTE) lemma 1: Ja

Kāpinātāja pacelšanas (Lifting the exponent, LTE) lemma 1: Ja x un y ir veseli skaitļi (ne obligāti pozitīvi), n ir naturāls skaitlis un p ir nepāru pirmskaitlis, kuram x-y dalās ar p, bet ne x, ne y nedalās ar p, tad $\nu_p(x^n-y^n)=\nu_p(x-y)+\nu_p(n)$.

 $\nu_3(10^5 - 1^5) = \nu_3(10 - 1) + \nu_3(9) = 2 + 2 = 4$. Pārbaudām: 999999999 = 1001001 · 111 · 9. Skaitlis 999999999 dalās ar 3^4 , bet ne ar 3^5 .

BW.2015.16 Ar P(n) apzīmējam lielāko pirmskaitli, ar ko dalās n. Atrast visus naturālos skaitļus $n \ge 2$, kam $P(n) + \lfloor \sqrt{n} \rfloor = P(n+1) + \lfloor \sqrt{n+1} \rfloor$.

LTE lemma 2: Ja x un y ir veseli skaitļi (ne obligāti pozitīvi), n ir nepāru naturāls skaitlis un p ir nepāru pirmskaitlis tāds, ka $p \mid x+y$, bet ne x ne y nedalās ar p, tad $\nu_p\left(x^n+y^n\right)=\nu_p(x+y)+\nu_p(n)$.

 $\nu_{11}(10^{121}+1) = \nu_{11}(10+1) + \nu_{11}(121) = 1+2=3.$ Skaitlis $1\underbrace{0...0}_{120}1$ dalās ar 11^3 , bet ne ar 11^4 .

LTE lemma 3: Ja x un y ir nepāru skaitļi, kam x - y dalās ar 4, tad $\nu_2(x^n - y^n) = \nu(x - y) + \nu_2(n)$.

 $\nu_2(5^{128} - 1) = 2 + 7 = 9$

LV.TST.1993.2 Dots naturāls skaitlis a > 2. Pierādīt, ka eksistē tikai galīgs skaits tādu naturālu n, ka $a^n - 1$ dalās ar 2^n . **BW2015.17** Atrast visus naturālos skaitļus n, kuriem $n^{n-1}-1$ dalās ar 2^{2015} , bet nedalās ar 2^{2016} .

LTE lemma 4: Ja x un y ir divi nepāru veseli skaitļi un m ir pāru naturāls skaitlis. Tādā gadījumā: $\nu_2(x^m-y^m)=\nu_2(x-y)+\nu_2(x+y)+\nu_2(m)-1$.

 $\nu_2(3^{16} - 1) = 1 + 2 + 4 - 1 = 6.$

LV.TST.1979.10.2 Pierādīt, ka eksistē tāds naturāls skaitlis n, ka $n^2 + 1$ dalās ar 5^{1979} .

Henzela (Hensel) lemma: Ja polinomam P(x) ir vienkārša sakne pēc kāda pirmskaitļa moduļa p, tad P(x) būs vienkārša sakne arī pēc jebkuras šī pirmskaitļa pakāpes p^k , kuru var iegūt, pakāpeniski "paceļot" pakāpi. (P(x) ir vienkārša sakne x_0 pēc moduļa p, ja $P(x_0) \equiv 0 \pmod{p}$, bet polinoma atvasinājuma vērtība $P'(x_0)$ ar p vairs nedalās.)