A

DICTIONARY

OF

CHEMICAL SOLUBILITIES

INORGANIC

FIRST EDITION .

RV

ARTHUR MESSINGER COMEY, Ph.D.

SECOND EDITION

ENLARGED AND REVISED

BY

ARTHUR MESSINGER COMEY, Ph.D.

AND

DOROTHY A. HAHN, Ph.D.

PROFESSOR OF CHEMISTRY, MT HOLYOKE COLLEGE

New York
THE MACMILLAN COMPANY
1921

COPYRIGHT, 1921 BY THE MACMILLAN COMPANY

Set up and printed Published February, 1921

PREFACE TO FIRST EDITION

For many years a need has been felt by chemists for a book which shall collect into convenient form for ready reference the various data concerning the solubility of chemical substances that have been published from time to time in chemical periodicals and elsewhere.

The first mention that can be found of such a plan was made in 1731, when Peter Shaw delivered Chemical Lectures in London, as may be seen from the following:—

EXTRACTS from Peter Shaw's Chemical Lectures, publickly read at London in 1731 and 1732. London. Second Edition, London 1755, 8vo.

Page 97 Experiment I.—That Water as a Menstruum dissolves more of one body and less of another.

[He shows that two ounces of water dissolve two ounces of Epsom salt, five drachms of common salt, and eight grains of cream of tartar. Only in the latter case much remained undissolved until boiled.]

"It might be proper for the further Improvement of Chemistry and Natural Philosophy to form a Table of the Time and Quantity wherein all the known Salts are dissolvable in Water. . . . Such a Table regularly formed might ease the Trouble of refining Salts, by shewing at once without future Trial or Loss of Time how much Water each Salt required to dissolve it for Clarification, Fitterston, or Crystallization. It would likewise supply us with a ready and commodous Way of separating any Mixture of Salts, by shewing which would first shoot out of the Mixture upon Crystallization. . . The same Table might also direct us to a ready and commodious Method of separating two Salts without waiting for Crystallization. . .

It was many years, however, before the scheme suggested by Peter Shaw was put into execution. Professor F. H. Storer published the first work that undertook to carry out the idea in its entirety, in 1864, in a book, which he entitled "First Outlines of a Dictionary of Solubilities of Chemical Substances." and which contained a compilation of nearly all the data on the subject published before 1860. It was at once recognized as a most valuable contribution to chemical literature; but for many years it has been difficult to obtain this work, as the limited edition which was published was soon wholly exhausted. Since then nothing has appeared on the subject except the brief tabulations found in various reference books, and no attempt has been made to cover the whole subject.

It is needless to state that the growth of chemical science since the publication of Professor Storer's book has been so enormous that that work has lost, at least to a great extent, the practical value it possessed thirty years ago. This growth has been indeed so great, and the data which have accumulated since 1860 so far surpass the earlier in volume, that a simple revision of Professor Storer's book was impracticable, and it therefore seemed best to start afresh.

With the facilities offered by the various scientific libraries at Harvard University, the Massachusetts Institute of Technology, and other libraries in Boston, it has been possible to collect nearly all the data relating to the subject. For the work before 1860 Professor Storer's work has been found invaluable.

The method pursued has been to form a preliminary list of compounds with more or less data by consulting the two most complete works on inorganic chemistry—Gmelin-Kraut's "Handbuch der anorganischen Chemie" and Grabam-Otto-Michaelis's "Lehrbuch." These statements have been verified and elaborated by consulting the original memoirs in all the periodicals devoted to chemical literature which were obtainable. The "Jahresbericht der Chemie" also has been used extensively in tracing references, but the original memoirs have always been consulted and references given to them when possible.

It has been found impracticable to draw any distinction as to roliability between the various data given by different observers. It was manifestly impossible to attempt to verify experimentally the statements of those who have carried on the researches, for the most assiduous labor of many could only cover a small portion of the attested facts. Therefore, even when two statements are directly contradictory, both have been given with the authority for each. The only exception to this has been made when more recent discoveries have shown beyond any reasonable doubt the falsity of previous work. In this way some of the older manifestly inaccurate work has been omitted. In a majority of cases the more recent work may be considered to be the more accurate, but this is not the invariable rule. A Synchronistic Table of the more common periodicals is given in the Appendix, whereby it is easy to determine the date of the publication of a research to which reference is made.

It may be objected by the practical chemist that most of the work previous to 1850 might well have been omitted, but a great deal of this work possesses at least a historical value, and often furnishes facts which have not since been verified. Much of the earlier work, when obviously of-less importance, has been printed in smaller type.

The aim has been to include in this volume all analyzed inorganic substances, that is, all substances which do not contain carbon, but exception has been made in the case of CO_5 , CO, CS_2 , the carbonates, cyanides, ferro-cyanides, etc., which are here included.

The work has been brought up to March, 1894, when this volume went to press, and the results of researches published since that time are not included in the present edition.

It is hoped that this book will fill to some extent the want that has been felt by chemists for a compilation of this nature. While it has been attempted to make the book as free from errors as possible, nevertheless it is naturally impossible to avoid many mistakes, and the compiler will be very grateful to those who may call his attention to any errors or omissions.

PREFACE TO SECOND EDITION

Dunns the twenty-five years which have elapsed since the publication of the first edition of this dictionary, a very large amount of work has been published in chemical periodicals, containing data concerning the solubility of morganic chemical compounds. As it was impossible for the compiler of the first edition to devote the time necessary for the collecting of the published data, it was necessary to employ assistance, and Dr. Dorothy A. Hahn, Professor of Chemistry, Mt. Holyoke College, was engaged for this work. Dr. Hahn has collected the larger part of the material in this book, which work in spite of its arduous and tedious nature, she has performed in a most anisataking manner.

The compilation and arrangement of the data collected by Dr. Hahn, which devolved upon the original author, took much time. This, together with difficulties in printing, caused by the general conditions after the war, has delayed the publication until the present year, although the work was begun in 1916, and it has only been brought up to January 1st of that year.

Since the publication of the first edition of this work, Dr. Atherton Seidell has brought out two editions of his book, entitled "Solubilities of Inorganic and Organic Substances," which covers quite a different field, as he considers only quantitative data and those only for the commoner substances. Dr. Seidell has followed the plan in most cases where there are several available solubility determinations of a substance, of selecting and averaging the more reliable results, and embodying them in tables. Although this undoubtedly facilitates ready reference, it has seemed better to adhere to the original plan of the first edition, and to publish all the data in the form of the original authorities with references and dates, so that the user may be at liberty to use his own judgment in selection. Some few of the tables arranged by Dr. Seidell, however, have seemed to possess decided advantages over any other published data and they have been incorporated in the present volume. It is desired also to acknowledge indebtedness to Dr. Seidell's work for certain other tables where the original sources were not available to the present compilers.

The same plan and arrangement used in the first edition has been followed with certain elaboration, however, of the arrangement of data on the solubility of two or more salts in a solvent, which is explained in the Explanatory Preface.

Data published since the first edition on the cobalt and chromfum ammonia compounds and those of the platinum group have been omitted, as it seemed that solubility data on those compounds possessed very little general interest.

As stated in the preface of the first edition, while every possible attempt has. been made to avoid errors, it is manifestly impossible to avoid many mistakes in a work of this nature, and the compiler will be glad to have his attention called to any errors or omissions.

Wilmington, Del., Jan., 1921. . .

EXPLANATORY PREFACE

In order to reduce this volume to a convenient size the subject-matter has been abbreviated and condensed as far as seemed compatible with clearness; but it has been the aim not touse any abbreviations which are not at once intelligible without consulting the explanatory table. The more common chemical formulae have been universally used, thereby saving a large amount of space without detracting from ready intelligibility to chemists.

The solubility of the substance in water is first given, the data being arranged chromologically in the longer articles. Then follow the specific gravities of the aqueous solutions, and also any data obtainable regarding their boiling-points; other physical data concerning solutions are not included. Following this is the solubility of the substance in other solvents—first the inorganic acids, then alkali and salt solutions, and finally organic substances.

Owing to the great increase of data, published during the last twenty years, on the simultaneous solubility of two or more salts in a given solvent, it has been found necessary to plan some arrangement, whereby such data can easily be found, and the plan adopted is as follows: The data for the solubility of two salts in a solvent is placed under the salt which comes first according to the alphabetical arrangement in this dictionary, and the order of the data on various salts under the same heading follows the alphabetical order of the salts considered. Thus the data on the solubility of NH.Cl+BaCl₂, NH.Cl+CaCl₃, and NH.Cl+PbCl₃, and NH.Cl+(NH₃)SO₄ are placed under Ammonium Chloride and arranged in the given order. Certain exceptions have been made to this rule, where the data directly concerns the solubility of a salt in a solution of another salt, in which ease, it is placed under the former. Numerous cross references, however, are given, which it is hoped will avoid confusion.

In many cases no definite distinction can be drawn betwean the phenomena of solution and decomposition. At present the theory of solution is in a confused state, and until what really takes place when a substance dissolves is thoroughly understood no distinct line can be drawn. The whole subject is unsettled at the present time; for while many chemists believe in the so-called "dissociation" theory, yet the "hydrate" theory is not without its supporters. It is not my intention to discuss the theoretical side of the question, which has been so well treated in many recent works. It is, however, obvious that the phenomena are essentially different, when, for example, sodium carbonate is dissolved in water, in which case the original salt is deposited on evaporation, and when iron is dissolved in sulphuric scid, although it would be much more accurate to say that the sulphuric acid, although it would be much more accurate to say that the sulphuric acid was decomposed by the iron. It has thus been found impracticable to draw a sharp line between solu-

tion and decomposition, and the term "soluble" has in general been used where a solution of some sort is formed by the action of the solvent

The matter of alphabetical arrangement of chemical compounds, in the present somewhat confused state of chemical nomenclature, has been a difficult question to decide. The plan followed has been practically that of the standard Dictionaries of Chemistry, whereby the compounds of metals with one of the non-metallic elements have been classified under the metals, while the salts of the other acids (the oxygen acids so called and some few others) have been arranged alphabetically under the acids. Thus barium chloride is found under barium, while barium chlorate is found under chloric acid. No exception has been made in the case of the rare metals, as is usually the custom in Dictionaries of Chemistry. Double salts are to be found under the word which comes first alphabetically: thus, "compon alum," potassium aluminum sulphate, is found under aluminum sulphate as aluminum potassium sulphate (under sulphurie acid), but ammonia chrome alum is found under ammonium sulphate as ammonium chromium sulphate. In the same way the double sulphate and chromate of notassium is found under potassium chromate (chromic acid), and not under notassium sulphate (sulphuric acid). The double chloride of ammonium and magnesium is found under ammonium chloride (ammonium), while the double chloride of notassium and magnesium is found under magnesium chloride (magnesium). An exception is made, however, in the case of double compounds of salts of oxygen acids with salts containing a single non-metallic element, in which case they are always found under the oxygen acid. Thus the double sulphate and chloride of lead, PbSO4, PbCl2, is found under lead sulphate (sulphuric acid), and not under lead chloride (lead).

The above method in some cases widely separates analogous compounds, but it was found to be the only practical way to a strictly alphabetical arrangement, which is no necessary in a book containing so many very short articles.

The ammonia addition-products furnished another difficulty. While their nature is more or less definitely understood in the cobalt, platinum, etc., compounds, and a definite nomenclature is in general use, there is an absolute lack of anything of the kind in the less definite compounds. It is good usage to speak of cuprammonium compounds, but how shall we designate the analogous cadmium compounds? "Cadmammonium" has not yet received the sanction of chemists, and AlCla, NH, is a still worse case for naming. I have, therefore, not attempted to name these compounds, but classified them all under the salts to which the ammonia is added, affixing the word ammonia, thus: aluminum chloride ammonia, cadmium chloride ammonia for the salt now almost universally known as cuprammonium chloride.

The ammonia compounds of cobalt, chromium, mercury, and the platinum metals are arranged alphabetically according to their universally accepted names, a list of which is given under each of those elements.

It has further been necessary to settle arbitrarily the question whether a substance should be considered as a double salt or a salt of a compound acid containing one of the metals. For example, "fluosilicates" (or silicofluorides, as some may prefer) is the general name for the double fluorides of SiIr, and a metal, but this unanisative in usage gradually disappears as the basic elements become more nearly alike, so that it is impossible to draw a line between such compounds and a compound such as the double chloride of magnesium and potassium, for which indeed the name "protassium chromagnesste" has been proposed. The aim has been in all these cases to follow the best usage rather than make an absolutely homogeneous system of nomenclature out of the existing confusion.

In the matter of formulæ no attempt at uniformity has been made. Thus in the case above some chemists write the formula of the double chloride of magnesium and potassium as KMgCl₃, others as KCl, MgCl₃. The form here used has been in most cases that of the author from whom the data are taken.

The prefixes mono, di, tri, ortho, pyro, etc., bave in general been disregarded in the alphabetical arrangement, and have been printed in italics. Exceptions to this have been made, however, in the cobalt, chronium, etc., ammonium compounds, and in a few others, as dithionic, perchloric, etc., acids. Cross references have been used, so as to prevent any confusion arising from lack of uniformity in this respect.

In the Appendix will be found formulæ and tables for the conversion of the degrees of various hydrometer scales into specific gravity, and a Synchronistic Table of the Periodicals to which references are most frequently made.

ABBREVIATIONS

abs.--absolute. atmos -atmosphere. b.-pt.--boiling-point. comp .-- compound. conc.-concentrated. corr.-corrected.

cryst.--crystallised, crystalline decomp -- decompose, decomposes, decomposition, etc.

dil -dilute. cutec .- eutectic. insol.-insoluble. M .- a univalent Metal. Min.-Mineral.

mol,--molecule.

m .- pt .- melting-point. ord .-- ordinary.

n.-normal.

ppt., pptd., etc.--precipitate, precipitated, etc. pt .- part.

sat --saturated. sl.-slightly.

sol.-soluble.

sp. gr.-specific gravity. supersat. -- supersaturated, t° = temperature in Centigrade degrees.

temp.-temperature. tr. pt .- transition point, vol.--volume.

ABBREVIATIONS OF REFERENCES

A —Annalen der Pharmacie, edited by Liebig and others, 1832–39; continued as Annalen der Chemie und Pharmacie, 1840–73; continued as Justus Liebig's Annalen der Chemie,

8th series, 1904–13, 30 vols.; 9th series, 1914+, 3 vols. Acta Lund.—Acta Universitatis Lundensis, or Lunds Universitats Års-skrift. Lund, 1864+

Am. Chemist—The American Chemist New York, 1870-77 7 vols.

Am. Ch. J.—The American Chemical Journal, edited by Remsen. Baltamore, 1879-1913.

50 vols.

Am. J Sci — American Journal of Science and Arts, edited by Silliman, Dana, and others. New Haven. 1st series, 1818-45, 50 vols; 2nd series, 1846-70, 50 vols; 3rd series, 1871-95, 50 vols; 4th series, 1896-1915+, 40 vols. Also numbered consecutively, 190 vols

Analyst.—The Analyst. London, 1876-1915+. 45 vols.

Ann chim, farm. -- Annali di chimica e di farmacologia, Milan, 1886-90, 5 vols. Ann. des Mines -Sec Ann. Min

Ann. Min.-Annales des Mines

Paris Ann. Phil - Annals of Philosophy. London. 1st series, 1813-20, 16 vols; new series, 1821-26, 12 vols.

Ann Phys.-See Pogg and W Ann

Apoth. Z.—Apotheker-Zeitung Berlin. Arb. Kais. Gesundheitsamt.—Arbeiten aus dem Kaiserlichen Gesundheitsamte.

Arb. Kais. Gesundheitsamt.—Arbetten aus dem Kaserinben u-esunonausmut.
Arch. Keir. S.—Archives Neferinadisse des Sanones exactées et naturelles.
Arch. Fharm.—Archiv der Pharmace, continued from Archiv des Apothekervereins in
Nordoutschland, which forms the ist ernes: Ist esrens; 1823–35, 50 vols.; 2nd series,
1835–72, 150 vols., 3rd series, 1875–944, 39 vols. Also numbered consecutively,
which system is exclusively used after 3rd series, vol. 233 (1915) Arch. sc Phys nat -Archives des sciences physiques et naturelles de la Bibhothèque

universelle de Génève A. Suppl.—Annalen der Chemie und Pharmacie Supplement-Bande. Vol. 1. 1861; vol 11.

1862-63; vol. us. 1864-65; vol. iv. 1865-66; vol. v. 1867, vol. vi. 1868; vol. vu. 1870;

B.—Berichte der deutschen chemischen Gesellschaft Berlin, 1868–1915+. 48 vols. Att. Acc. Linc.—Atti della reale accademia dei Lincei, rendconditi, etc.

B. A. B.—Sitzungsberichte der königlichen preussischen Akademie der Wissenschaften zu Berlin Belg. Acad. Bull —Bulletin de l'Académie Royale des Sciences, des Lettres, et des Beaux-

Arts de Belgique. Berz J B -- Jahresbericht über die Fortschritte der physischen Wissenschaften, edited by

Berzelius, 1822-47. 30 vols Br Arch.—Archiv des Apothekervereins im nördlichen Teutschland, etc., edited by Brandes. 1st series, 1822-31, 39 vols., corresponds to 1st series of Arch. Pharm.

Bull. Acad. Crac.—Bulletin international de l'Académie des Seisness de Cracoyie. Bull. Ac. St. Pétersb.—Bulletin de l'Académie Impériale des Sciences de St. Pétersbourg. Bull. Soc.—Bulletin des Séances de la Société chimque de Paris. 2nd series, 1884–88, 50 vols.; 3rd series, 1889–1906, 36 vols.; 4th series, 1907–15+, 18 vols. Bull. Soc. chim. Belg.—Bulletin de la Société chimique Belgique.

Bull. Soc ind Mulhouse.—Bulletin de la Société industrielle de Mulhouse. 1828-49. 22 vols. Dum, doc ma sumonus—bumean en la Sonete mutatrient de Mulhouse. 1828-49. 22.

Balll. Son, Mn.—Bulletin de la société française de Minfralogie 1878-1915 † 37 vols.

C. A.—Chemical Abstracts. American Chemical Society. New York.

C. C.—Chemisches Centralblatt, continued from Pharmaceutisches Centralblatt.

C. B. Miner.—Centralblatt für mineralogie, Geologie und Palæontologie. Berlin.

U. D. MIRIET — CERTIFICATE IN IMPRESSION, STORING UNIT PRESIDENCE DEFINIT.
Chem. Ind — Duc Chemische Industrie, eithet by Jacobsen. Berlin.
Chem. Soc.—Journal of the Chemical Society of London. 1st series, 1849—82, 15 vols.; 2nd series, 1845—78, 17 vols.; new series, 1878–1915+. The vols are numbered consecutively, from 1849. 1878—vol. 32. Total, 108 vols.

Chem -tech Centr-Anz.—Chemisch-technischer Central-Anzeiger.

Chem Weekbl.-Chemiker Weekblad Chem Z.-See Ch Z.

Chem, Zeitschr,-Chemische Zeitschrift.

Ch. Gaz - The Chemical Gazette. London, 1843-59 17 vols.

Ch. Kal.-Chemiker Kalender, edited by Biedermann.

Ch. Mr.—Curciana Associated and Ch. Mr. Chemker-Zeitung. Göthen Ch. Z. Ropert — Chemneshes Repertorium Berblatt zur Chemker-Zeitung. Göthen Ch. Z. Ropert — Chemneshes Repertorium Berblatt zur Chemker-Zeitung. Göthen Ch. — The Chemical News London, 1869—1915.† 12 vols. C. N.—The Chemical News London, 1869—1915.† 12 vols. Comm.—Commenter zur Phatmanopres germanica by Hager Berlin, 1889.

Compt. chim.—Comptes-rendus mensiels des Travaux chimiques, edited by Laurent and Gerhardt. 1845-51 7 vols. C. R.—Comptes-rendus hebdomadaires des Séances de l'Académie des Sciences. Paris,

1835-1915+. 161 vols. Crell Ann.—Chemische Annalen für die Freunde der Naturlehre, etc., edited by Crell,

1784–1803. 40 vols.

Dansk Vid. For.—Oversigt over det kgl danske Videnskabernes Selskabs Forhandlinger. Copenhagen.

Dingl.—Dingler's Polytechnisches Journal, edited by Dingler and others. 1820-1915+ 330 vols.

Edinb. Trans.—Transactions of the Royal Society of Edinburgh. 1788-1915+. 51 vols. Ed. J. Sci.—The Edinburgh Journal of Science 1st series, 1824-29, 10 vols.; 2nd series, 1st series, 1824-29, 10 vols.; 2nd series, 1829-32, 6 vols. Continued as Phil. Mag.

Electrochem. Ind—Electrochemola Industry. (Oct., 1902, to Dec., 1904) later Electrochem. Industry. (Oct., 1902, to Dec., 1904) later Electrochemola and Metallurgucal Industry. New York.
Elektrochem Z.—Elektrochemolac Zeisbarht. Berlin.
Eng Min. J.—The Engmeering and Mining Journal. New York.

Gazz ch. it.—Gazzeta chumica itahana. Palermo, 1871–1915+. 45 vols. Gilb. Ann.—Annalen der Physik, edited by Gilbert. 1st series, 1799–1808, 30 vols.; 2nd

series, 1809-18, 30 vols; 3rd series, 1819-24, 26 vols. Also numbered consecutively. 76 vols. Continued as Pogg.

Gm.-K.-Gmelin-Kraut's Handbuch der anorganischen Chemic, 6te Auflage. 1877-1905. 7te Auflage, 1907-1915+. Gr.-Ot.-Graham-Otto's ausführliches Lehrbuch der anorganischen Chemie, 5te Auflage, by

Michaelis. 1878-89. Jahrb, Miner — Jahrbuch für Mineralogie, Geologie und Palæontologie. Heidelberg. 1830–1832. Then. Neues Jahrbuch für Minerologie. Stuttgart.

Jahrb. d Pharm - Jahresbericht der Pharmacie. J. Am. Chem. Soc.—Journal of the American Chemical Society. New York, 1876-1915+.

37 vols. J. Anal. Appl. Ch.—The Journal of Analytical and Applied Chemistry, edited by Hart. 1887-93. 7 vols

J. B.—Jahresbericht über die Fortschritte der Chemie, u. s. w.

J. Chim. méd.—Journal de Chumia médicale, de Pharmanes, et de Toxicologie, 1st series, 1826-84, 10 vols; 2nd ceries, 1835-44, 10 vols; 5rd ceries, 1845-54, 10 vols; 5rd ceries, 1845-54, 10 vols; 5rd ceries, 1845-54, 10 vols; 1845-54, 10 vols; 5rd ceries, 1845-54, 10 vols; 5rd ceries, 1845-54, 10 vols; 5rd ceries, 1865-96, 10 vols;

Jena, Zeit — Jensephe Zeitschrift tur Medicion und Naturvissenschaften.

J. Pharm — Journal de Pharmanee et de Chume. Pars. 2nd series, 1815–41, 27 vola; 3rd series, 1826–69, 46 vola; 4th series, 1805–79, 30 vola; 5th series, 1879–84; 6th series, 1806–190, 30 vola; 7th series, 1905–19, 110 vola.

J. Phys. Ch.——The Journal of Physics Chemistry. Hanca, N. 19. contained as Gilb. Ann.

J. Phys. Ch.——The Journal of Physics Chemistry. Hanca, N. 19. and v. Meyer. Leipzig.

J. pr.—Journal für physics Chemistry. Scilid by Exchange, N. 19. and v. Meyer. Leipzig.

J. pr.—Journal für physics Chemistry. 1806–1916–192 vola;

J. Rieg, 1976. Chem. 2007–1916 by Society, 1976. Peterbolurg. 1809–1916-4.

J. Rieg, 1976. Chem. 1976. Peterbolurg. 1809–1916-4.

47 vols. J Soc. Chem. Ind.—Journal of the Society of Chemical Industry. London, 1882-1915+.

34 vols.

J. S. C I — See above.
J. Tok. Chem. Soc.—Journal of the Tokyo Chemical Society.

Kastn. Arch.—Archiv für die gesammte Naturlehre, edited by Kastner. Nuremberg, 1824-25 vols.

Listy Chemické.—Listy Chemické, edited by Preis and others. Prague. Lond. R. Soc. Proc.—See Roy. Soc. Proc.

Lund. Univ. Arsk.—Lunds Universitets Års-skrift. Lund.

M.—Monatshefte für Chemie und verwandter Theile der anderer Wissenschaften Vienna, 1880-1915+. 36 vols M. A. B—Sitzungsberichte der mathematisch-physikalischen Classe der kgl. bayerischen

Akademie der Wissenschaften zu München

Mag. Pharm.—Magazin der Pharmacie 1823-31 36 vols. Mém. Acad. St. Pétersb.—Mémoires de l'Académie Impériale des Sciences de Saint-Pétersbourg M. Ch -See M

Mem. Coll. Sci. Kvoto. - Memoirs of the College of Science, Kvoto.

Mem Coll. Sci. Kyoto.—Memoirs of the College of Science, Kyoto.
Metall.—Metallurgic. Halle.
Miner, Jahrb.—Neues Jahrbuch fra Mineralogie, etc. 1833-73. 40 vols.
Miner Mag.—Mineralogical Magazine. London.
Miner Mitt.—Mineralogische und petrographische Mitteilungen. Wien

Miner antit.—Minerangiscus und percographiscus anticalungen. Web Mont Senet.—Le Montteut Senethfique, edited by Quesaeville Paris. N. Arch. So ph nat.—Nouvelles Archives des Scences physiques et naturelles Geneva. N. Cim.—Il nuovo Cimento Pias, 1855-61 14 vols.
N. Edinb Phil J.—New Edinburgh Philosophical Journal, 1819-64. 90 vols.

N. Jahrb. Muser.—Neues Jahrbuch für Minesalogie. Stuttgart.
N. Jahrb Pharm.—Neues Jahrbuch der Pharmacie. 1796-1840.
N. Jahrb Pharm.—Neues Jahrbuch der Pharmacie für Aerzte. etc., edited by Trommsdorff.
N. J. Pharm.—Neues Jahrbuch der Pharmacie für Aerzte. etc., edited by Trommsdorff. 1817-34. 27 vols.

N. Rep. Pharm - Neues Repertorium für Pharmacie 1852-76. 25 vols Pharm Centralbl.—Pharmaceutisches Centralblatt 1830-49. 20 vols. Continued as

Pharm Era.—Pharmaceutical Era.

Pharm, J. Trans.—Pharmaceutical Journal and Transactions.

Pharm. Post.—Pharmaceutische Post Wien

Pharm. Vierteljb.—Pharmaceutische Vierteljahresberichte Pharm, Weekbl.—Pharmaceutisches Weekblad.

Pharm. Ztg —Pharmaceutische Zeitung Phil. Mag.—The Philosophical Magazine. London 1st series, 1814–26, 26 vols.; 2nd series, 1827-22, 11 vols.; 3rd series, 1832-50, 37 vols.; 4th series, 1851-75, 50 vols.; 5th series, 1876-1900, 50 vols.; 6th series, 1901-1915+, 30 vols.
Phil Mag, Ann.—The Philosophical Magazine and Annals of Chemistry, etc. Corresponds

to Phil Mag. 2nd series.

Phil Trans.—The Philosophical Transactions of the Royal Society of London. 1665–1915+.

Phys. Rev.—The Physical Roysew.

Pogg.—Annalen der Physik und Chemie, edited by Poggendorf. 1st series, 1824-43. 60 vols.; 2nd series, 1844-53, 30 vols., 3rd series, 1854-63, 30 vols; 4th series, 1864-73, 30 vols; 5th series, 1874-77, 10 vols. Continued as W. Ann

Polyt. Centralbl -- Polytechnisches Centralblatt. 1st series, 1835-46, 12 vols; 2nd series,

1847-73, 30 vols Proc. Am A A. S.-Proceedings of the American Association for the Advancement of

Proc. Am. Acad.—Proceedings of the American Academy of Arts and Sciences. Boston, 1846-1915+, 50 vols. Proc Am Phil. Soc.—Proceedings of the American Philosophical Society. Philadelphia.

Proc. Chem Soc.—Proceedings of the Chemical Society of London. Proc. K. Akad. Wet.—See Ver. K. Akad. Wet. Proc. Soc. Manchester —Proceedings of the Literary and Philosophical Society of Manchester

Proc. Roy Soc .- See Roy Soc. Proc.

Q. J. Sci.—Quarterly Journal of Science. London, 1816-26. 22 vols.

Rass, Min.—Rassegna mineraria, metallurgica e chimica. Real Ac. Linc.—Atti di Reale Accademia dei Lincei Rome.

Rend, Ac. Lanc. See Att. Ac Line

Rep. anal, Ch.-Repertorium der analytischen Chemie. 1881-87 7 vols Rep. Brit. Assn. Adv Sci -- Reports of the Meetings of the British Association for the Ad-

vancement of Science. Repert.—See Rep. Pharm. Répert. chun appl.—Répertoire de Chimie pure et appliquée. Paris, 1858-63. 9 vols. Rep. Pharm.—Repertorium für die Pharmacie, edited by Buchner. 1st series, 1815-34, 50

vols.; 2nd series, 1835-48, 50 vols.; 3rd series, 1849-51, 10 vols. Continued as N. Rep. Pharm.

Rev. gén. chim.—Revue génerale de chimie pure et appliquée. Rev. Mét -Revue de Métallurgie Paris

Rov. Soc. Proc — Proceedings of the Royal Society of London. 1832-1915+. 92 vols

Roy, Soc. Trans.—Abstracts of Philosophical Transactions of the Royal Society of London 1832-54. 6 vols Continued with Roy. Sor Proc.

R. t. c.—Recueil des Travaux chimiques des Pays-Bus. Leiden, 1892–1915+. 34 vols Russ. Zeit. Pharm.—Pharmaceutische Zeitschrift für Russland

Scheit Verhandel.—Scheikundige Verhandelingen en Onderzoekingen, edited by Mulder. Rotterdam, 1857-94 3 vols Scher, J.—Allgemenes Journal der Chemie, edited by Scherer. 1798-1810. 17 vols. Con-

tanued as Schw. J. Schw. J.—Journal für Chemie und Physik, edited by Schweigger. 1st series, 1811-20, 30

vols.; 2nd series, 1821-30, 30 vols , 3rd series, 1831-33, 9 vols Continued as J. pr. Sill Am. J.—American Journal of Soence, edited by Sillman, etc. See Am J. Sei Sitzungsb. böhms. Gesell.—Sitzungsberichte der könighehen böhmschen Gesellschaft der

Wissenschaften in Prag

Storer's Dict.—First (lutlines of a Dictionary of Solubilities of Chemical Substances, by F. H. Storer Boston, 1864. Sv. V A. F.—Ofversigt af kongl Svenska Vetenskaps-Akademien Förhandlingar. Stock-

holm. Sv. V A. H.—Kongliga Svenska Vetenskaps-Akademicus Handlingar. Stockholm.

Sv. V. A. H. Bih -Bihang till kongl. Svenska Vetenskaps-Akademiens Handlingar. Stockholm.

Techn J. B.—Jahresbericht über die Fortschritte der chemischen Technologie, edited by Wagner, Pischer, etc Trans. Am. Electrochem. Soc.—Transactions of the American Electrochemical Society.

Philadelphia Trans. Faraday Soc.—Transactions of the Faraday Society. London. Trans Roy Soc.—Philosophical Transactions of the Royal Society of London.

Ver. K. Akad. Wet.—Verslag Koninkle Akademie van Wettenschappen, Amsterdam.

W. A B -Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften zu Wien-

W. Ann.—Annalen der Physik und Chemie, edited by Wiedemann. Continuation of Pogg. 1877–1899. 69 vols. 4th series, 1900–1915+. 48 vols. W. Ann. Beibl.—Beiblitter zu Wiedemann's Annalen Leipzig.

Z. anal.—Zeitschrift für analytische Chemie, edited by Fiesenius. Wiesbaden 1862-1915-54 vols. Z. anorg —Zeitschrift für anorganische Chemie, edited by Krüss. 1892–1915+. 93 vols.
 Z. B. H. Sal —Zeitschrift für das Berg, Hütten, und Salnen-Wesen in dem preussischen

Staate Berlin. Zeit. angew. Ch.-Zeitschrift für angewandte Chemie. Berlin, 1887-1915+. 29 vols.

Zeit. Chem —Zeitschrift für Chemie und Pharmacie 1st series, 1858-64, 6 vols.; 2nd series, "N. F." 1866-71, 7 vols.

Zeit. d. allgemeinen öster Apothekerv.—Zeitschrift des allgemeinen österreichischen Apotheker-

vereins. Zeit. ges. Nat —Zeitschrift für die gesammten Naturwissenschaften. Zeit. Krist.—Zeitschrift für Krystallographie und Mineralogie. 1877–1915+ 51 vols.

Zeit Pharm.-See Russ. Zeit. Pharm.

Elektrochem.-Zertschrift für Elektrochemie. Halle

Z. Phys Ch.—Zeitschrift für physikalische Chemie, edited by Oswald and van't Hoff. 1887—

1915+. 90 vols Z. physiol. Chem — Zeitschrift für physiologische Chemie Strassburg. Z. Ver. Zuckerind.—Zeitschrift des Verein der deutschen Zuckerindustrie.

A DICTIONARY OF CHEMICAL SOLUBILITIES INORGANIC

DICTIONARY

OΡ

CHEMICAL SOLUBILITIES

INORGANIC

14 10

0 19.14 10

2 18.20 12

4 17.34 14

6 16 54 18

Actinium emanation.

Solubility coefficient of actinium emanation

in H₂O at room temp, is 2. If the solubility of actinium emanation in H₂O is made = 1, the relative solubility of the emanation in sat KCl+Aq=09; in cone. $H_sSO_s=0.95$; in ethyl alcohol=1.1, in amyl alcohol=1.6; in benzaldchyde=1.7; in benzaldchy

zene=1.8; in 'toluene=1.8, in petroleum= 1 9; in CS₂=2.1 at 18°. (Hevesy, Phys. Zeit 1911, 12, 1221.)

Air, Atmospheric.

and 0°

See also Nitrogen and Oxygen.

100 vols H₂O at 15° and 760 mm absorb about 5 vols atmospheric air (Saussure) 1 vol. H₂O at t° and 760 mm, pressure absorbs V vols atmospheric air reduced to 760 mm.

11. H₀O shorbs on N and O from air at to and 760 mm, pressure (dry),

to.	ce. N	ec. O	N+0	%0
10 15 20 25	15 47 13 83 12 76 11.78	7.87 7 09 6.44 5.91	23.34 20 92 19 20 17 69	33.74 33.86 33.55 33.40

(Roscoe and Lunt, Chem. Soc 55, 568.) 1 l. H₂O absorbs ec. N and O from air at to and 760 mm.

to. ec N ec. O %0 19.53 10.01 33.88 6.0 16.34 8 28 33.60 6.32 16 60 8 39 33.35 9.18 15 58 7.90 33.60 13.70 14.16 7.14 33 51

7.05 33.24

> 1263 20

> > 11.95

22 24 12.27

25 11.81

t°	v	to.	v	t°	v
0 1 2 3 4 5 6	0 02471 0 02406 0.02345 0.02287 0.02237 0.02179 0.02128	7 8 9 10 11 12 13	0 02080 0.02034 0.01192 0 01953 0 01916 0 01882 0.01851	14 15 16 17 18 19 20	0 01822 0 01795 0.01771 0.01750 0.01732 0 01717 0 01701
_	/B	ingon	a Gesomat	ev)	

1 l. H.O absorbs cc. N and O from air at t and 760 mm, pressure

t°	N	ő.	N+0
0	16.09	8 62	24 71
5 10	14.18 12.70	7.60 6.79	21 78 19.49
15	11.67	6.25	17,92
20	11.08	5.93	17:01

(Pettersson and Sondén, B. 22, 1439.) I. H₂O absorbs cc. N (0° and 760 mm.)

14 16

from atmospheric air at to and 760 mm. pressure (drv) oc. N ce N ec. N 15.14

14.53 13.98 12 48 15.81 18 13.03 (Hamberg, J. pr. (2) 33, 447.)

1 l. H₂O absorbs cc. N from air at to and

	19.29 10 15 36 20 12.80				
t°	00. N	t°	ec. N	t°	00. N
0 5	19.29 17.09	10 15	15 36 13.95	20 25	12.80 11.81

(Dittmar, Challenger Expedition, vol. 1, pt. 1.)

(Bunsen, Gasometr. Methoden, 2te Aufl. 299, 220.)

7 8 467

8 8.260

10 7.87321

8.063 20

11.	H ₂ O sat. v tauns cc. O	vith a (red	rat t° and , to 0° and	1 760 1 760	mm, co mm)
t°	ec. O	tº	ce O	to.	ec. 0
0 1 2 3 4 5	10.187 9 910 9.643 9.387 9.142 8.907 8 682	11 12 13 14 15 16	7.692 7.518 7.352 7.192 7.038 6.891 6.730	22 23 24 25 26 27 28	6.114 5 999 5.886 5 776 5 669 5 564 5.460

18

19

6 614 6.4826.356 (Winkler, B. 22, 1773)

29 5.357

30 5.255

1 vol. H₂O absorbs 0.01748 vol.-air at 24.05° and 760 mm. pressure (Winkler, B 21. 2851.)

2851.)
Composition of the absorbed air between 0° and 24° is 34.91% O and 05.00% N (Bunsen) between 15° and 16°, 32.17% O and 67.83% N (Romg and Kranch, Z. anal. 19. 259); 32° O and 68% N (Regnaul), at 0°, 35.1% O 10°, 34.8% O 20°, 34.3% O 20°, 35.3% O 10°, 34.8% O 20°, 34.3% O Lunt, and Pettersson and Sondén, page 1.

Solubility of atmos. oxygen and nitrogen in 1000 cc. H2O at 760 mm. pressure (calc.).

Temp	Oxygen	Nitroges	Temp	Oxygen	Nitroger
0° 1 2 3 4 5 6 7	ec. 10.19 9.91 9.64 9.39 9.14	ec 18.45 17.99 17.55 17.12 16.71	29° 30 31 32 33	5.33 5.24 5.15 5.07 4.99	cc. 10.30 10.15 9.99 9.83 9.67
5 6 7 8	8.91 8.68 8.47 8.26 8.06	16.71 16.30 15.91 15.54 15.18 14.83	34 35 36 37 38	4.91 4.83 4.76 4.69 4.62	9 52, 9.37 9.22 9.08 8 94
10 11 12 13 14	7.87 7.69 7.52 7.35 7.19	14.50 14.19 13.89 13.61 13.33	39 40 41 42 43	4 55 4,48 4,42 4,35 4,28	8.81 8.67 8.55 8.43 8.31
15 16 17 18 19	7.04 6.89 6.75 6.61 6.48	13.07 12.83 12.57 12.34 12.12	44 45 46 47 48	4.22 4.15 4.09 4.03 3.97	8.20 8.09 7.97 7.87 7.76
20 21 22 23 24 25 26	6.35 6.23 6.10 5.98 5.86 5.75	11.91 11.71 11.52 11.33 11.14 10.96	49 50 51 52 53 54	3.91 3.85 3.79 3.74 3.68 3.62	7.65 7.55 7.45 7.34 7.24 7.13
27 28	5.64 5.54 5.43	10.79 10.62 10.46	56 56 57	3.56 3.51 3.45	7.03 6 92 6.81

Solubility of atmos etc -Continued Temp Oxygen Nitrogen Temp Oxygen Nitrogen cc cc 0.71 1 07 2 20 4.09

	1 58	3 39	0.71	li ou	1 197	1 4.03
	59	3.34	6.60	81	1.89	3.88
	60	3.28	6.50	82	181	3 73
	61	3.22	6.39	83	173	3.57
	62	3.16	6.27	84	1.65	3.41
	63	3.10	6.16	85	1 57	3.24
	64	3 04	₿ 05	86	1.48	3 07
	65	2 98	5.94	87	1 39	2.89
	66	2.92	5.82	88	1.30	2.71
1	67	2.85	5.70	89	1 21	2.52
1	68	2.79	5,59	90	1.11	2.32
ı	69	2.73	5.47	91	1.02	2 12
ł	70	2.66	5 35	92	0.92	191
ı	71	2.60	5.23	93	0.81	1.70
Ì	72	2.53	5.10	94	0.71	148
ŧ	73	2.47	4.98	95	0.60	1,25
	74	2.40	4.85	96	0.48	1.01
	75	2 33	4.72	97	0.37	0.77
	76	2.26	4 59	98	0.27	0.52
	77	2.19	4 45	99	0.13	0 27
ĺ	78	2.12	4.32	100	0.00	0.00
ĺ	79	2.04	4.18	1		

(Winkler, B. 1901, 34, 1440)

Absorption of atmospheric air by H2O at to and 760 mm pressure. $\beta = coefficient$ of

-	absorption, $\beta_1 =$ "Solubility," under oxygen.)						
n.	t°	β	βι	to.	β	βι	
	0 5 10 15 20 25 30 35 40 45 50	0 02881 2543 2264 2045 1869 1724 1606 1503 1418 1351 1297	2237 2011 1826 1671 1539 1420	55 60 65 70 75 80 85 90 95 100	0 01253 1216 1182 1156 1137 1126 1119 1113 1109 1105	0 01059 0978 0892 0801 0705 0600 0481 0343 0185 0000	
	_	1977 1	1 - 2				

(Winkler, B 1901, 34, 1409.)

Sca-water absorbs less O and N from air than pure H₂O, but the ratio between O and N remsans constant. In sea-water sat, with an at 6.22° the oxygen was 33.50% of the total gas absorbed. (Pettersson and Sondén.)

1 L 8	at t° a	nd 760 m	Nand (m pressur) from air e,
t°	ce N	ee O	% 0	
0 5 10 15	14.41 13.22 12.08 11.01	7.77 6 93 6.29 5.70	22.18 20.15 18.37 16.71	35.03 34.39 34.24 34.11
(Torn	oe, Norw	gian No Chem.	rth Atlan 18.)	ac Exped.

1 l.	sea	water		rbs 760			from	air	at	ť°
t°	e	e N	t°	00	N	1	to	99	N	

t°	ec N	t°	ec N	t°	ce N
0 5	15 60 13.86	10 15	12 47 11.34	20 25	10 41 9.62
		-{.	Dittmat)		

1 I sea-water absorbs cc N (0° and 760 mm) from atmospheric air at to and 760 mm.

pı	essure (a	ry)			
to	ec N	t°	ce N	t°	ec N
0 2 4 6 8	14 85 14 20 13 60 13 04 12.53	10 12 14 16 18	12 06 11.62 11 23 10 87 10.54	20 22 24 25	10 25 9.98 9.73 9.62
_		/11			

(Hamberg.)

Absorption of an which is free from carbonic acid by H2SO4 at 18° and 760 mm. a= coefficient of solubility

H ₂ SO ₄	α	H ₂ 80 ₄	4
98% 90% 80%	0.0173 0.0107 0.0069	70% 60% 50%	0 0055 0 0059 0 0076

(Tower, Z. anorg 1906, 50, 388.)

Abrolute alcohol absorbs 0.11 vol gas from air, 1/s of which is 0 and 2/s. N On mixing with an equal vol Hy0, 2/s of the dissolved gas is given off. (Doberanor) 100 volv alcohol (95.1 %) absorb 141 vols air. (Robinet, C. R. 83. (603) absorb 8.8 vols air.

petroleum absorb 68 vols. au oil of lavender " 589 " " benzene " 140 " " 100 vols petroleum benzene

turpentine" 24.18 " "
(Robinet, Lc.)

1 vol. ether at 760 mm. pressure absorbs 0.290 vols air at 0°; 0.287 vols. at 10°; 0 286 vols, at 15°. (Christoff. Z phys Ch. 1912, 79, 459.)

Alcohol, C.H.OH.

Sp gr. of pure ethyl alcohol + Aq. at 25°.

alcohol	Sp. gr	alcohol	Sp gr.
0	0.997077	55	0.898502
2	0.993359	60	0 886990
2 5	0.988166	65	0 875269
6	0 986563	70	0.868399
10	0 980434	75	0 851336
15	0.973345	80	0.839114
20	0.966392	85	0.826596
25	0.958946	90	0.813622
30	0.950672	95	0.799912
35	0 941459	98	0.791170
40	0.931483	99	0.788135
45	0.920850	100	0.785058
EO	0.000050	ll.	

(Osborne, McKelvy and Bearce, Bureau of Standards, Sci. Paper No. 197.)

Alum, Ammonia.

See Sulphate, aluminum ammonium.

Alum, Chrome,

See Sulphate, aluminum chromium. Alum, Iron.

See Sulphate, aluminum ferric.

Alum, Potash.

See Sulphate, aluminum potassium.

Alumina. See Aluminum oxide.

Aluminic acid, $H_2Al_2O_4 = Al_2O_8$. H_2O_4

Aluminum hydroxide possesses acid properties, and salts corresponding to an acid of

the above formula exist. Sec Aluminum hydroxide.

Aluminates.

All aluminates are insol. in H2O except those of K and Na (Fremy) and Ba (Beckmann, J pr. (2) 26. 385)

Barium aluminate, BaAl₂O₄+4H₂O.

Sol in 10 pts H2O, can be recryst from alcohol. (Deville, J. pr 87. 299.)

+5H2O. Sl sol. in H2O with decomp. (Allen, Am. Ch J 1900, 24. 313) +7H₂O Sl. sol. in cold, not completely sol. in hot H₂O. Sol in cold dil. HCl+Aq

(Beckmann, J. pr. (2) 26. 385.) Ba2Al2O2+5H2O. Sol in 20 pts. H2O by boiling. (Beckmann, B. 14, 2151.)

Insol in alcohol Sl. sol. in H2O with decomp.; insol. in alcohol. (Allen, Am. Ch. J 1900, 24. 311) Ba_Al_1O_+7-11H_2O Sol in 15 pts. H_2O with decomp, into Ba₂Al₂O₄+5H₂O, insol, in alcohol. (Beckmann)

Barium aluminate bromide, BaAl₂O₄, BaBr₂ +11H₂O.

Sol. in H2O (Beckmann, J. pr. (2) 26. 385,

Barrum aluminate chloride, BaAl₂O₄, 3BaCl₂ +6H.O.

Sol. in H.O. (Beckmann, l.c.) BaAl₂O₄, BaCl₂+11H₂O Sol in H₂O. (Beckmann, I.c.)

Barium aluminate iodide, BaAl₂O₄, BaI₂, Sol, in H₂O. (Beckmann, Lc.) **

Calcium aluminate, CaO, Al₂O₂,

Decomp. by H₂O but does not "set." Sol. in HCl; insol in HNOs, H₂SO₄, and HF. (Dufau, C. R. 1900, **131**, 543.) Ca2Al2O5+7H2O. Slowly decomp. by

H₂O; sl. sol. in H₂O. (Allen, Am. Ch. J. 1900, 24. 316.) Ca₂Al₂O₃. Insol. in H₂O; not decomp. by KOH+Aq; sol. in acids. (Tissier, C. R. 48.

627.)

+6H₂O. Ppt, sl. sol. in H₂O; insol. in alcohol (Allen, Am. Ch. J. 1900, 24, 316.) 3Al₂O₂ 4CaO+3H₃O. Ppt. (Friedel, Bull Soc Min, 1903, 26, 121; C C 1904, I. 430.)

Cobalt aluminate.

"Thenard's or Leithner's blue." Insol. in H₂O. CoAl₂O₄ Insol in H₂O and acids. (Ebel-

CoAl₂O₄ Insol in H₂O and acids. (E.Oci men.)

Cobalt magnesium aluminate, [MgCo]Al₂O₄.

"Spinel Blue" Insol. in H₂O or HCl+Aq.
(Ebelmen.)

Glucinum alummate, GlAl₂O₄.

Min. Chrysoberyll Not attacked by acids, but decomp by KOH+Aq.

Iron (ferrous) aluminate, FeAl₂O₆

Min Hercynute. Not attacked by acids. Lithium aluminate, LiAlO₂.

Sol. in H₂O (Weyberg, C. C. **1906**, II. 1659.) Lithium hydrogen aluminate, LiHAl₂O₄+

5H₂O Sl. sol in H₂O; decomp. on boiling (Allen, Am. Ch. J. 1900. 24, 310.)

Magnesium aluminate, MgAl₂O₄.

Min. Spinel. Insol. in H₂O. Insol in HNO₄+Aq; very sl. sol. in HCl +Aq; partly sol. in H₂SO₄ at boiling temp. (Abich, Pogg. 23, 316.)

(Abich, Pogg. 23, 318.)
Sol. by standing 2 hours at 210° with a mixture of 3 pis H₂SO₄ and 1 pt. H₂O₂ or by boiling with this mixture together with HF. (Mitscherlich, J. pr. 81, 108.)
Sl. sol. in HCl, HF, and H₂SO₄; msol. in HNO₄. (Diffau, Bull. Soc. 1901, (3) 25, 669.)

Manganous aluminate.

Insol. in H₂O and acids. (Ebelmen, A. ch. (3) 22. 225.) MnAl₂O₄. Insol. in HCl+Aq; readily attacked by HF, HNO₄ and H₂SO₄. Decomp. by fusion with alkalı chlorate.

nutrate, oxide or carbonate. (Dufau, C. R. 1902, **135**. 963.)

Nickel aluminate.

Insol. in H₂O.

Potasssum aluminate, K₂Al₂O₄+3H₂O.
Decomp by dissolving in pure H₂O with separation of Al₂O₅. (Fermy, A. ch. (3), 12, 362.) Can be recrystallised from water containing a little alkali, without decomposition. (Fremy.)
Insol. in alcohol.

Sodium aluminate, Na₂Al₂O₄.

Easily and completely sol. in cold H₂O. (Schaffgotsch, Pogg 43, 117.) +4H₂O. Insol. in alcohol. (Allen, Am. och. J. 1900, 24, 308.)

Na₈Al₂O₆ Miscible with hot H₂O, and as sol. as NaOH in cold H₂O Insol. in alcohol but decomp. thereby. (Tisser, C. R. 43, 102.) Strongium aluminata, Str. Al₂O₂+6 H₂O.

Strontium aluminate, Sr₂Al₂O₄+6H₂O. Sl. sol. in H₂O (with slow decomp. in Aq.

solution) (Allen, Am. Ch J 1900, 24. 314.)

Thallium aluminate, Tl₄Al₂O₅+7H₂O.

Not completely sol in, but slowly hydrolysed by H₂O

Readily sol mr dil, acids and in the fixed alkalies. Insol, in abs. alcohol. (Hawley, J Am.

Chem. Soc 1907, 29. 303.)
Zinc aluminate, ZnAl₂O₄.

Insol in acids or alkalies
Min. Gahnite (Automolite).

+xH₂O. Sol. in KOH, and NH₄OH+Aq. (Berzelius)

Aluminicoantimoniotungstic acid.

Ammonium aluminicoantimoniotungstate, 6(NH₄)₂O, 2Al₂O₃, 3Sb₂O₄, 18WO₃+ 17H₂O
A shellse-like αum. (Daniels. J. Am Chem.

Soc. 1908, 30. 1856)

Barium aluminicoantimoniotungstate, 5BaO,

2Al₂O₂, 3Sb₂O₅, 18WO₃+6H₂O. Somewhat insol. in dil. HCl. (Daniels, J. Am. Chem. Soc 1908, **30**, 1857)

Silver aluminicoantimoniotungstate, 6Ag₂O, 2Al₂O₃, 3Sb₂O₅, 18WO₃+12H₂O

Ppt. Sol. in NH₄OH+Aq but requires HNO₃ (1:10) to dissolve it (Daniels, J. Am. Chem. Soc. 1908, **30**, 1857)

Aluminicoarseniotungstic acid.

Ammonium aluminicoarseniotungstate, 6(NH₄)₂O, 2Al₂O₅, 3As₂O₅, 18WO₅+

14H₂O.
Sparingly sol. in H₂O. (Daniels, J. Am. Chem. Soc. 1908, **30**, 1854.)

Barium aluminicoarseniotungstate, 4BaO, 2Al₂O₂, 3As₂O₅, 18WO₂+12H₂O.

Very sl. sol. in H₂O.
Sol. in very dil. HCl or HNO₃. (Daniels,

J. Am. Chem Soc. 1908, 30. 1855.)

Cadmium aluminicoarseniotungstate, 4CdO,

2Al₂O₂, 3As₂O₄, 18WO₄+17H₂O.
Sol, in dil mineral acids and in strong
NH₄OH+Aq. (Daniels, J. Am. Chem. Soc.
1908, **30**, 1855)

Aluminicomolybdic acid.

Ammonium aluminicomolybdate, 3(NH₄)₂O, Al₂O₅, 12MoO₂+19H₂O. Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 696.)

+20H₂O. More sol. in H₂O than potassium

aluminicomolybdate (Struve, Bull, Acad St. Petersb. 12, 147.

 $+22H_{2}O$ (Marckwald, Dissert, 1895.) Barium aluminicomolybdate, 4BaO, AlaOa, 12MoOs+14H2O

Ppt (Hall, J Am. Chem. Soc. 1907, 29. 712.)

Lead aluminicomolybdate, 4PbO, Al₂O₈, 12MoO₄+21H₂O.

Ppt (Hall, J Am. Chem. Soc 1907, 29. 712) Potassium aluminicomolybdate, 3K2O, Al2O3,

12MoOs+20H2O. 1 pt. of the salt is sol in 40 67 pts. H₂O at 17°. Very difficultly sol, in acids (Struve) H₂Al(MoO₄)₃, 2KHMoO₄. Sol in H₂O. (Parmentier, C. R. 94, 1713.)

Silver aluminicomolybdate, 4Ag₂O, Al₂O₅, Zinc aluminicotungstate, 1½ZnO, Al₂O₅, 12MoO₃+16H₂O.

Ppt. (Hall, J Am Chem Soc. 1907, 29. 712)

Sodrum aluminicomolybdate, 3Na,O. Al,O. 12MoO₃+22H₃O.

Efflorescent, Easily sol, in H₂O (Gentele J pr 81, 413)

Aluminicophosphotungstic acid.

Ammonium aluminicophosphotungstate. 9(NH₄)₂O, 2Al₂O₈, 4P₂O₄, 9WO₃+13H₂O. SI sol in cold and in hot H2O. (Daniels,

J. Am Chem Soc 1908, 30, 1851) Barium aluminicophosphotungstate, 4BaO, 2Al₂O₃, 4P₂O₅, 9WO₃+13H₂O.

(Daniels, J. Am. Chem Soc. 1908, 30, 1853

Silver aluminicophosphotungstate, 4Ag2O, 2Al₂O₄, 4P₂O₄, 9WO₂+6H₂O. Nearly msol, in H₂O. Sol in NH₄OH and

in dil. HNO3. Insol in acetic acid (Daniels, J Am Chem. Soc. 1908, 30, 1852.) aluminicophosphotungstate, 5ZnO.

2Al₂O₃, 4P₂O₄, 9WO₂+11H₂O. Sol in dil acids and in a large quantity of conc. ammonia when NH4Cl is present (Daniels, J. Am Chem Soc. 1908, 30.

Aluminicotungstic acid,

1853.)

Ammonium aluminicotungstate, 3(NH₄)₂O, Al₂O₂, 9WO₂+4H₂O. Sol in conc. HNO2 and in conc. HCl. When

the solution in cone HCl was boiled, a yellow colored ppt separated. (E. F. Smith, J Am. Chem. Soc 1903, 25, 1230) silver alumininicotungstate,

11Ag₂O, 21(NH₄)₂O, 4Al₂O₂. 36WÕ₃. The dry salt is insol in pure H2O, but

readily sol, in H2O containing NH3 or HNO (E. F Smith, J. Am. Chem. Sov 1903, 25. 1231.)

Barium aluminicotungstate, 8BaO, Al₂O₄, 9WO+7H+C

Not sol in acids when dry Somewhat decomp by boiling with cone. HCl, HNO; or (Daniels, J Am. Chem. Soc. aqua regia 1908, 30, 1848,)

Copper aluminicotungstate, 2CuO, Al₂O₄, 9WO₃+16½H₂O.

Sol in large quantities of H.O. (Daniels, J Am Chem. Soc. 1908, 30, 1847.)

Mercurous aluminicotungstate, 5Hg₂O, Al₂O₃, 9WO4.

Sl. sol. in H₂O. Sol in HNO₂(1.5) (Daniels, J. Am. Chem. Soc. 1908, 30. 1849)

9WO5+8H2O. Insol. in H2O. (Daniels, J Am., Chem. Soc. 1908, 30, 1850.) ZnO, Al₂O₃, 9WO₃+20H₂O. Sol. in H₂O.

(Daniels.) Aluminum, Al

Less easily attacked than ordinary metals (iron, copper, lead, zinc, tin) by air, H2O, wine, beer, coffee, milk, oil, butter, fats, etc. Vinegar dissolves 0.349 g. from a sq decimetre in 4 months, and 5 % NaCl+Aq, only 0.045 g. in the same time. (Ballaud, C. R. 114. 1536)

The action of various substances contained in foods and drinks on compact Al as it occurs in utensils is very slight. Hard or soft water, Sl, sol. in H₂O Sol, in very dil, HCl or whether cold or hot, showed no action in 8 days; 1 % solutions of tartaric, tannic, and acetic acids had no action in same time, also 5 % borne, carbolic, and salicylic acids. 4 % and 10 % acetic acid dissolved only 0 4 mg. of Al, while 10 % acetic acid dissolved 21 mg from a roughened piece of Al foil in 8 days. 1 % sods solution dissolved 15 mg in 8 days. (Rupp, Dingl 283, 119) Similar results were obtained by Arche.

(Dingl 284, 255) Liquids which are ordinarily contained in

foods and drinks do not attack sheet Al except in a very small degree. The following losses in weight in mg. by the action of the given liquids on 100 sq. contimetres sheet aluminum foi 6 days were obtained:

Liquids	Loss in mg
Claret Hock Brandy 5 % alcohol 5 % tartaric acid + Aq 1 % acetic acid + Aq 1 %	2.84 3.27 1.08 0.61 1.69 2.58 3.58 4.38

Liquids	Loss in mg.
5 % citrie acid + Aq 1 % lactic acid + Aq 5 % butyrie acid + Aq Coffee Tea Beer 4 % borie acid + Aq 1 % surbohe acid + Aq 1 % surbohe acid + Aq 1 % surbohe acid + Aq	· 2.15 1 90 4.77 1 31 0 50 0 0 1 77 0 23 0 49 6 35

(Lunge, C N. 65, 110.)

The apparent solubility of this metal in Absolutely pure 41 does not 1.4 (Tomans, Bull Sec 123 **1.4 (Tomans, Bull Sec 124 **1.

794-98; C. C 1896, I 193) Sl. attacked by H₂O at 80° (W. Smith, J. Soc Chem Ind 1904, 23. 475)

Easily sol. in dil or conc. HCl+Aq, whether hot or cold; also in HBr, HI, or HF+ Ao Insol m dil. H.SO. + Au (de la Rive); sl. attacked by cold, casily by hot conc H₂SO₄. Not attacked by HNO₃+Aq even when conc. and boiling (Wohler); easily sol. in dil H₂SO₄, or HNO₃+Aq in vacuo (Weeren, B **24**, 1798); slowly sol in 27 % HNO₃+Aq, 100 ccm HNO2+Aq requiring 2 months to dissolve 2 g. Al (Montemartini, Gazz, ch. it. 22, 397) very sl. sol in most organic acids, but solubility is increased by presence of NaC

Not attacked by dil. or conc. HNO; at ord. temp. but attacked by hot HNO₃ Attacked by H₂PO₄ (Smith, J. Soc. Chem. Ind. 1904.

23. 475.) Completely sol. at 100° in two hours in

HNO₄, sp. gr. 1 15-1 46, (Stillman, J. Am. Chem Soc. 1897, 19. 714.)
Very casely sol. in HNO, (contrary to the

usual statement in text-books). (Woy, C. C. 190 , II, 94.) Slowly attacked by HNO.+Aq (20-25 %

at 25-30°. (Deventer, Chem Weekbl 1907 4. 69.) Dil HNO, or H2SO4 does not attack Al

on account of formation of layer of gas. Action is increased by vacuum. Solutions of metallic chlorides, the metal of which is insol and attaches itself to the Al (Pt, Au, Cu, Hg) increase the solubility, but when metal is soluble in the and (Fe, Zn, etc.), there is no hot NoOH+An, but easily in moderately micrease of solubility (Ditte, C R. 1890, strong warm HNO)+Aq (Hampe, A. 183. ,110. 573.)

Violently attacked by dil. or cone IIsPO4+

Aq (Winteler)
Not attacked by solution of HCl in liquid (Kahlenberg, J. phys. Chem 1902, 6. 662.) Very easily sol, in conc or dil KOH, or Aluminum borocarbide, AlaCaBas,

NaOH+Aq. Slowly attacked by NH₄OH+ | Insol in H₂O, HCl+Aq, H₂SO₄+Aq, or

Aq (Wohler); sol m BaO₂H₂+Aq (Beckmann, J. pr. (2) 26. 385), slowly sol in CaO2H2 +Aa.

Sol in excess of 10 % KOH+Aq and in NaOH and LaOH+Aq; sol, in hot cone Ba(OH)₃, Sr(OH)₂ and Ca(OH)₂+Aq. (Allen,

Am., Ch. J 1900, 24, 304-331) Attacked by hot conc NII,OH+A (Smith, J. Soc Chem. Ind 1904, 23, 475.) pA+HO_iHZ

SI attacked by sulphates, or nitrates + Aq, but all chlorides, bromides, and iodides, except those of the alkalies and alkaline carths, even AlCl3+Aq, dissolve the metal Insol. in Alum, or in NaCl+Aq, but sol in alum+NaCl+Aq (Tissier, C. R. 41, 362), sol in NaCl+Aq (Deville, A ch. (3) 43, l4), sol, in neutral FeCl₃+Aq in vacuo (Weeren, B. 24, 1798.) Violently attacked by CuCl₂+

by NaNO₃+Aq or KNO₃+Aq at 100° (Smith, J. Soc Chem Ind. 1904, 23, 475.) Not affected by NH, NO3+Aq (Hodgkm-

son, C N. 1904, 90, 142) Attacked by POCh at 100°. (Renitzer, B. 13. 845)

Insol in liquid NH, (Gore, Am. Ch J. 1898, 20, 826) Insol, in liquid CO₁ (Büchner, Z. phys

Ch 1906, 54, 674) Attacked by NOCl. (Sudborough, Chem.

Soc. 1891, 59, 659, 92 %alcohol attrcks Al less than H₂O. Pure Al is attacked less than commercial (Hugouneng, J. Pharm. 1895, (6) 1, 537)
Sol. in organic acids containing chlorides

(Smith, J. Soc Chem. Ind 1904, 23, 475.) Acetic, tartaric and citric acids attack Al only at first. Metal is covered by layer of hydrox de but on addition of haloid salts, gradual solution ensues. (Ditte, C R 1898, 127, 919,)

Not attacked by sugar + Aq. (Klein, C. R. 102. 1170.)

Aluminum arsenide.

Decomp by H₂O with evolution of AsH₂, (Wohler, Pogg. 11, 160

Decomp, by H₂O (Fonzes-Diacon, C. R. 1900, 130, 1315)

Aluminum boride, Al₂B₄.

AlaBa Not attacked by HCl, or KOH+ Aq. Scarcely attacked by boiling H-SO4. Hot cone HNO2+Aq dissolves gradually but completely (Hampe, l. c.)

KOH+An: slowly sol in hot cone HNO.+1 Aq. (Hampe, l. c.)

Aluminum bromide, AlBra

Solvent

Benzo-

phenone 70

Anhydrous Dissolved by H₂O with great violence and evolution of much heat sol. in alcohol More sol. in CS2 than All2. (Weber, Pogg 103, 264) Sol. in SOCl. (Besson, C. R. 1896, 123,

884.) Sol in C. H. Br. (Plotnikoff, C. C. 1902. II. 617)

Sol in acetone. (Naumann, B. 1904, 37, 4328); (Eidmann, C C 1899, H. 1014)

Solubility of AlBr, in organic bounds No.

48°

42 13 8 142 50

38

50 21 130 |54.5||70

60

80

90

50

130° 43 2 50° 66.0

8 5 140 48 4 38

18 3 140 52 1160

23 4 120 56 7 80

25 7 110 58 6 85

[28 1][100 | 60 3][90

30 6 90 61 7 93

N N

67.2

70.7

74 2

78 3

83 3

90 7

94 8

Aluminum	perbromide	carbon bisulphide,					
AlBr ₂ ,	Br ₄ , CS ₂		•				

Sol in ether, ethyl bromide, ethylene bromide and benzene, decomp, by H₀O (Plot-

nikoff, J. Russ. phys. Chem. Soc 1901, 33. 91, C. C 1901, I. 1793) 2AlBr2, Br4, CS2. Sol, in ether and benzene;

insol in petroleum other. (Plotnikoff, l. c.) Aluminum bromochloride, AlCl2Br.

Deliquescent Somewhat less violently dissolved by H2O than is AlBr2 (v. Bartal,

Z anorg 1907, 55, 154, +6H₂O Deliquescent, Sol. in H₂O without evolution of heat (v. Bartal, Z. anorg. 1907, 55, 155)

Aluminum carbide, AlcCa.

Decomp. by fused KOH at 100°; msol. in fuming HNO, in the cold, decomp by H₂O, and dil. acids (Moissan, Bull. Soc. 1894, (3) 11. 1012; C. R 1894, 119. 16-20. Insol in acetone (Naumann, B. 1904, 37.

Aluminum chloride, basic, Al₀O₁₄H₁₀, HCl. Easily sol in H.O. (Schlumberger, Bull.

86.7 Soc. 1895, (3) 13. 56)

Aluminum chloride, AlCl-Anhudrous Very delignousent

	100 33	4 80 3 70	61 7 62 9 64.1 65 1	96		Anhydr H ₂ O with heat So	ous. Very a hissing n lution of AlC on, and AlCl	deliquesco oise and o in H ₂ O	evolution of loses HCl on
Ethylene biomide	10° 6 6 8 2 16 -2 22 10 28	4 30 0 40 9 50	40 1	70° 80 90 96	72 7 82 3 92 2 100	verted in Sol in AlCl ₁ + at 103 4°, boils at 1	to Al ₂ O ₈ . 1 432 pts H ₄ 0 Aq containin AlCl ₂ +Aq of 12.8° (Gerls Sp. gr. of AlC	at 15°. g 19 15 9 ontaining ich)	(Gerlach.) % AlCl ₃ boils 38.3 % AlCl ₃
	-0 5° (47	40°		%AICh	Sp gr.	%AICh	Sp gr.
Benzoyl chloride	-5 13 10 17 30 24 50 31 70 40	0 80 4 60 6 40 8 20 7	52 8 56 59.5	96	79 4 83 9 89 2 95 8 100	1 2 3 4 5 6	1.0072 1 0144 1 0216 1 0289 1 0361 1 0435	22 23 24 25 26 27	1 1709 1 1795 1 1881 1 1968 1 2058 1 2149
(Menschutk		Inst 1.1)	Pol.	P	le-Gr,	7 8 9	1 0510 1 0585 1 0659	28 29 30	1 2241 1 2331 1 2422
	Very sol (Panfilo			. 783	5)	10 11 12	1 0734 1.0812 1.0890	31 32 33	1 2518 1 2615 1 2711
Alummum a +24H; Hygrosco	antimony t O. pic Dec				iSbBr _s Wein-	13 14 15	1 0968 1 1047 1 1125	34 35 36	1 2808 1 2905 1 3007
land, B. 196	03, 36. 258	3)				16 17	1 1207 1 1290	37 38	1 3109 1 3211
Aluminum j Sol. in H	potassium ₂O. (Web					18 19 20	1 1372 1.1455 1 1537	39 40 41	1 3313 1 3415 1 3522
Aluminum i Decomp	bromide as by H ₂ O.					20	1 1632		
267)					•	I	(Gerlach, Z	anal. 8. 2	31.) (

Sp. gr. at 20° of AlCla+Ag containing mg. mols. AlCl. per liter.

M	Sp gr.
0 01 0 025 0 05 0 075 0 075 0 10 0 25 0 55 1 0 1 5 2 0	1 00104 1 00282 1 00588 1 00570 1 01158 1 02911 1 05706 1 11054 1 16308 1 .21378

(Jones & Pearce, Am. Ch. J. 1907, 38, 726.)

Sol. in 1 pt. strong alcohol at 12 5° (Wen-zel); easily sol. in ether; sl sol. in CS₂, insol. in ligroine or benzene Difficultly sol. in AsBrs. (Walden, Z. anorg. 1902, 29, 374) Sol in AlBra. (Isbekow, Z. anorg 1913,

84. 26.) Insol in bound NH (Franklin, Am. Ch. J. 1898, 20, 826.) Insol. in CS2 at ord, temp (Arctowski, Z. anorg, 1894, 6, 257.) Sol, in benzonitrile. (Naumann, B. 1914. 47, 1869.)

Difficultly sol in acctone. (Naumann, B 1904, 37, 4328.) Insol. in ethyl acetate. (Naumann, B. 1910. 43. 314.) Insol, in methylal. (Eidmann, C. C. 1899. II. 1014)

Solubility of AlCl2 in organic liquids,

							Deliquescent. Sol. in H ₂ O with decomp.
Solvent	t°	Mola. per 100	t°	Mola. per 100	t°	Mols per 100	Sol. in warm POCl ₃ , from which it separates on cooling. (Casselmann, A. 98, 220.) Aluminum platinum chloride, AlCl ₃ , PtCl ₃ +
Benzo- phenone	48° 44 39 5 50 60 70 80 90 110 1120 125	18.3 21 23.4 25.7 28.1 30.6 33.4 36.3	125 120 110 100 90 80 70 60 80 100	50 52 1 54.5 56.7 58 6 60 3	140 150 160 170 180 185 190 192 194	67 2 70 7 74 2 78 3 83 3 86 7 90.7 94 8	15HyO See Chioroplatinite, aluminum. Aluminum potassium chlorde, AlCl., KCl. Slowly dedugueeent. Sol in H ₂ O with evolution of best and decomp. (Degen, A. 18, 332.) Aluminum selenum chlorde, 2AlCl., 8cCl., Sol. in H ₂ O with evolution of heat and separation of taaces of selenium. (Weber, Fregg 164, 237.)
Benzoyl chloride	-0 5° -4 -7.5 0 20 40	0 7 9 12 7 14 1 18 8 25 0	70 80 90 93	33 0 37 5 42 2 47 1 48 7 50 6	70 60 40	52.9 55 1 57 2 61 0	Aluminum sodium chloride, AlCl ₃ , NaCl. Much less deliquescent than AlCl ₃ . Sol. in H ₃ C with evolution of heat. Upon evaporating, NaCl crystallises out (Wöhler.) Aluminum strontium chloride, 4AlCl ₃ , 3SrCl ₂ . · (Baud, A. ch. 1909, (8) 1, 52)

(Menschutkin, Ann Inst. Pol P.-le-Gr., 13. 1.)

+6H₂O. Very deliquescent; very sol in H₂O. Sol in 0.25 pt. H₂O. (Thomson.) Sol in 2 nts abs alcohol at ordinary temp ,

and 1.5 pts at b -pt (Thomson)

Completely insol, in a solution of other in H₂O sat, with HCl (Havens, Am J. Sci. 1898. (4) 6. 46

Aluminum ammonium chloride, AlCl., NH.Cl

(Baud, A. ch. 1904, (8) 1, 46) Aluminum antimony chloride.

See Chlorantimonate, aluminum.

Aluminum barium chloride, 2AlCl, BaCl, (Band. C R. 1901, 133, 869)

Aluminum calcium chloride, basic.

3CaO, CaCle, AlsOs+10HeO. (Steinmetz. phys. Ch 1905, 52, 466,) 10CaO, CaClo, 6Al-Oa Slowly decomp by boiling H.O. (Gorgeu, Bull. Soc 1887, (2)

48, 51.) Aluminum calcium chloride, 4AlCl., 3CaCl.

(Baud, A ch 1904, (8) 1, 51.) Aluminum nitrosyl chloride, AlCl₂, NOCl.

Deliquescent, and decomp. by H₂O. (Weber Pogg, 118, 471.)

Aluminum palladium chloride, AlCl., PdCl.+ 10H.O.

See Chloropalladite, aluminum.

Aluminum phosphorus pentachloride, AlCl., PCL. Decomp. violently by H2O. (Baudrimont.)

Aluminum phosphoryl chloride, AlCl₂, POCl₂, Deliquescent. Sol, in H₂O with decomp.

 (Baud, A ch. 1909, (8) 1, 52) Aluminum sulphur chloride, 2AlCl₃, SCl₄,

Decomp by H2O with evolution of much

heat and separation of some sulphur. (Weber, Pogg, 104, 421.) AlCl, SCl, Decomp. by H2O (Ruff, B. 1901, 34. 1757.)

Aluminum tellurium chloride, 2AlCl₃, TeCl₄ Very sol in dil H2SO4+Aq (Weber, J pr. 76.313)

Aluminum chloride ammonia, AlCl., NH.,

Sol. in H₂O (Rose, Pogg, 24. 248) Completely sol in H₂O (Baud, C R 1901, 132, 135.) AlCl, 2NH

AlCl₃, 2NH₁ Very hygroscopic. (Still-man, Am Ch J. 1895, 17, 750)

AlCl₃, 3NH₂. Decomp by H₂O. AlCl₃, 5NH₃. M pt 380°. (Baud, C. R 1901, **132**. 135)

AlCl, 6NH, Decomp. by H₂O (Still-man, Am Ch J. 1895, 17, 752) Somewhat hygroscopic (Baud, C. R. 1901, 132, 135.)

Aluminum chloride nitric oxide, 2AlCl₂, NO Very hygroscopic Decomp. 1 spidly in the Sol in KOH+Aq. (Thomas, C. R. 1895, 121, 130.)

Aluminum chloride phosphine, 3AlCl₃, PH₃ Decomp. by H₂O or NH₂OH+Aq (Rose Pogg, 24. 295.)

Aluminum chloride hydrogen sulphide. Deliquescent. Decomp. by H₂O or NH₄OH

+Aq (Wöhler.) Aluminum chloride sulphur dioxide, AlCla,

SO₂

Decomp by H2O, alcohol, or benzene (Adrianowski, B 12, 688) 2AlCl₃, SO₂. (Baud, A. ch 1904, (8) 1. 32.)

Aluminum cobalt, Co₃Al₃.

Sol in strong scals (Brunck, B. 1901, 34. 2734.)

Aluminum copper, Cu₄Al₉,

Sol. in aqua regia; decomp. by HCl (Brunck, B. 1901, 34, 2733)

Aluminum fluoride, AlF. Anhudrous Not attacked by H₂O or acids. and only very slightly by boiling cone H2SO4.

Insol, in boiling KOH+Aq. (Deville, C. R. 42, 49.) Insol. in ethyl acetate. (Naumann, B

1910, 43, 314,) Insol in acetone. (Naumann, B 1904, 37.

4328)+16H₂O. Insol in H₂O Sl. sol, in HF.

(Baud, C. R. 1902, 135, 1104.) +H₂O. Completely but only spaningly sol in H.O. (Mazzuchelli, Real, Ac Line, 1907 (S) 18, 1. 775; Chem Soc 1907, 92, (2), 549.)—
+31/2H,O. Two modifications: (1) Easily
sol. in H₂O. Sol in HF. (2) Insol. in H₂O.
Sl sol. m HF. (Baud, C R. 1902, 135, 1104)

61.329

+7H₂O Sol ₁₀ H₂O. (Deville, A. ch (3) Min Fluellate

+81/2H₂O. Very efflorescent Sat. soluton contains 3 85 g, AlF, per 100 g at 11° and 1.2 g at -0.2° (Mazzuechelli Real Ac. Line. 1907, (5) 16, I. 775, Chem Soc. 1907, (2), 92. 549)

Aluminum hydrogen fluoride, 3AlFa, 2HF+

Sol. in H2O; precipitated by alcohol, (Deville) 2AlF₃, HF+5H₂O. (Deville, A. ch. (6) 61. 329)

Aluminum ammonium fluoride, AlFa, NH4F. Somewhat sol. in H2O; msol. in H2O containing NHOH or NH4F (Berzelius, Pogg 1. 45.

AF₃, 2NH₄F+1 5H₂O. Sol. in 100 pts. H₂O at 16° (Baud, C. R. 1902, **135**. 1338.) AlF₃, 3NH₄F. Nearly insol in H₂O; easily sol. in dil acids. (Petersen, J pr. (2) 40.35) Quite ensily sol in H₂O, but insol in NH4F+Aq. (Helmholt, Z. anorg 3. 129)

Aluminum barium fluoride. Apparently not obtained in pure state. (Röder)

Aluminum calcium fluoride, AIF2, CaF2+H2O. Mm Evigtokute.

Aluminum calcium sodium fluoride, AlFa, CaF, NaF+HO. Min. Pachnolite

Aluminum cobaltous fluoride, AlFa, CoFa+ Sol in dil HF+Aq (Weinland, Z. anorg.

1899, 22, 272) Aluminum cupric fluoride, 2AlF2, CuF2.

Very slowly but completely sol in H₂O. (Berzelius)

AlF₂, 2CuF₂+11H₂O. Sol in dil HF+Aq. (Weinland, Z. anorg 1899, 22, 272-76) 2AlF₈, 3CuF₂+18H₂O. Sol in dil HF+ Aq (Weinland)

Aluminum cupric hydrogen fluoride, AlFs. uF2, HF+8H2O. Efflorescent in the sir. Sol. in dil HF+Aq.

(Weinland, Z anorg 1899, 22, 272

Aluminum iron (ferrous) fluoride, AlFa, FeF_*+7H_*O . Sl. sol, in dil, HF+Aq (Weinland, Z snorg, 1899, 22, 270.)

Aluminum lithium fluoride. Insol. in H₂O (Berzelius)

Aluminum magnesium fluoride. 2AlF₂, MgF₂ (?) (Röder.)

Aluminum nickel fluoride, AIF+, NiF++7H+O. Sl. sol. in dil. HF+Ao. (Weinland, Z. anoig, 1899, 22, 271.)

Aluminum potassium fluoride, AlF, 3KF. Very sl sol, in acid solutions, and still less in H.O (Gay-Lussac and Thénaid) AlFa, 2KF. As above

Aluminum silicon fluoride. See Fluosilicate, aluminum.

Aluminum sodium fluoride. 2AlF, 3NaF Min Chiolite AlFa 2NaF Min. Cryolite St sor. ... Decomp by Min. Chodneshte. AlFa, 3NaF Min. Cryolit H₂O Insol in HCl+Aq.

H-SO4, or by boiling with NaOH+Au

Aluminum strontium fluoride. As the Ba salt. (Röder)

Aluminum thallous fluoride, 2AlF1, 3TIF. Put Sl. sol in H.O. (Ephraim, Z anoig. 1909, 61. 243)

Aluminum zinc fluoride, AIF., ZnF.+7H.O Sol in dil. HF+Aq. (Weinland, Z. anorg 1899, 22, 272 2AIF2, ZnF2. Slowly but completely sol m H₂O (Berzelius)

Aluminum hydroxide, Al₂O₂, H₂O

 $=Al_2O_2(OH)_2$. Dehvdrated by cone, acids, without dissolv-

mg. (Becquerel, C. R., 67. 108)
Min. Diaspore. Insol in HCl+Aq, and not attacked by boiling conc. H-SO, unless it has been united

Al₂O₂, 2H₂O = Al₂O(OH)₄, Pptd Al hvdroxide, when boiled twenty hours with HaO is insol in acids and alkalies, and has the above composition. (St. Gilles, A ch. (3) 46, 57)

Min Bauxite. Soluble modifications—(a) Meta-aluminum ydroxide From basic Al acetate Sol. in H2O and more readily in HC2H2O2. The aqueous solution is coagulated by traces of alkalies, many acids, and salts, while other acids and salts have no effect. Thus, 1 pt H₂SO, in 1000 pts. H₂O, added to 7000 pts. of above solution containing 20 pts. AlsO2, converts the liquid into a nearly solid mass. Citric, tartaric, oxalic, chromic, molybdic, racemic, suberic, salicylic, benzoic, gallic, lactic, cinnamic, butyric, valeric, camphoric, pierie, urie, meconic, comenie, and hemipinic acids act in the same way. HCl and HNOs HsCOs+Aq Easily sol, in soids when freshly have far less action, 600 mols being necessary pptd , but solubility diminishes on standing. to produce the same effect as 1 mol H₂SO₄₀ while acetic, formic, boric, arsemous, pyro- penschein)

meconic, and opianic acids do not coagulate the solution, except when moderately cone. 1 pt KOH in 1000 pts H₂O coagulates 9000 pts. of the solution. NaOH, NH₄OH, and

Ca(OH)₁ have the same effect.

The solution is not coagulated by acetates, unless added in large quantity, and even then the ppt. is redissolved when treated with H₀O Nitrates and chlorides coagulate with difficulty; Na2SO4, MgSO4, and CaSO4+Aq. however, have as strong an action as a hound containing the same amount of H-SO. A teaspoonful of the solution introduced into the mouth solidines at once from the action of the saliva The ppt. formed by acids is not sol in an ecessis of the acid, but by the long continued action of cone H2SO4, especally if hot, the ppt. is dissolved; boiling conc HCl+Aq also dissolves it, but less readily than H₂SO₄. The ppt is sol. in boiling conc KOH+Aq. The residue, when the solution is evaporated at 100°, has composi-tion Al₂O₂, 2H₂O, and is insol in acids. (Crum, Chem. Soc 6. 225)

(b) By Dialusis. Sol. in H.O. from which it is separated by extremely small amounts of various substances, as acids, ammonia, salts (especially K₂SO₄), caramel, etc. An excess of acid dissolves the coagulum. If the solu-tion contains 0.5% Al₂O₃ or less, it may be boiled without change, but the hydroxide separates out suddenly when it is reduced to 1/2 its vol., and even very dil, solutions gelatimes spontaneously in a few days. The solution is not congulated by alcohol or sugar

(Graham, A. 121. 41.) Al₂O₃, 3H₂O = Al(OH)₄. Crystallised Difficultly sol. in acids and alkalies. (Cossa, N. Cim. (2) 3, 228) Insol in boiling HCl+Aq. (Wohler, A. 113. 249.) Sl. sol in KOH+Aq; nearly insol in cold H₂SO₄, HCl, HNO₃+Aq; very slowly sol in hot HCl+Aq, more readily in hot H₂SO₅. (v. Bonsdorff, Pogg. 27, 275.)

a-modification. Unstable Changes into a-modification. Unstable Changes into β-modification. Sol. in N-H₂SO₄ at ord. temp. Sol in N-NaOH and in hot NaOH of concentration 5Na₂O, 100H₂O. (Russ, Z.

anorg 1904, 41. 226) β-modification Insol in N-H₂SO₄ at ord temp Difficulty sol in warm N-NaOH, but easily sol, in hot NaOH of concentration 5Na₂O, 100H₂O. Its solubility in NaOH mcreases with increase in concentration of the

hydroxyl ions (Russ) 5-modification Easily sol, in conc. H₂SO₄, only sl. sol in HCl, HNO₂ or acete acids, or in alkah+Aq (Tommasi, C. C. 1905, II.

Min Gibbsite Sol. in HCl+Aq, and dil H2SO4+Aq Readily sol in conc. KOH, and

NaOH+Aq Precipitated Completely msol. in H2O or Easily sol, in KOH or NaOH+Aq. (Son-

Herz (Z. anorg 25. 155) found that aluminum hydroxide which has been dried in a vacuum dessicator requires for solution in NaOH+Aq. 3 atoms Na to 1 atom Al Slade (Z Elektrochem. 1911, 17. 261) was unable to obtain this result Herz says Slade's error is due to insufficient shaking of the solution. (Herz, Z. Elektrochem. 1911, 17. 403)

New solubility determinations verify the statement of Herz (Z. anorg 25, 155) that the solubility of Al(OH)_s in NaOH+Aq is proportional to the concentration of NaOH. They do not, however, verify his statement that the ratio Na Al in the solutions is always 3 1, for the author finds that the ratio Na Al varies from 2 · 1 to 10 : 1 depending on the conditions of precipitation and the method and duration of drying of the Al(OH); (Slade, Z Elektrochem, 1912, 18. 1)

SI sol in NH4OH+Aq when freshly pptd, but presence of NH4 salts dimmush its solubility, and it separates out completely after

long standing. (Fresenius)

Somewhat sol in NH4OH+Aq, the more readily the larger the vol. of H2O. Somewhat sol in (NH4)2CO2+Aq, but less than in NH₄OH+Aq Sl. sol. in dil NH₄Cl+Aq, unless that salt be in large excess It is finally wholly pptd if allowed to stand several days

18752 pts NH₄OH+Aq (4 % NH₄OH) dissolve an amt. of Al(OH), corresponding to one pt. Al₂O₃; NH₄Cl prevents this solubility almost comple cly (Hanamann, Phaim, Vierteli 12, 527)

Al(OH), prepared by ppt of a solution of Al(NO₃), with NH₄OH, filtered and washed, Al

is insol, in NH₄OH+Aq.

Al(OH); prepared by pptn, of a solution of potassium aluminate with NH4Cl, is sol. in a large excess of NH₄OH if this is added to the ppt at once. This modification which is sol, in NH₄OH is unstable and easily goes over into the modification which is insol, in NH₄OH (Renz, B. 1903, 36 2751)

Cone (NH₄)₂CO₁+Aq does not dissolve Al(OH), and not a trace is dissolved by boiling conc. NH4Cl+Aq. (Weeren, Pogg. 92. 97.)

With NH4F+Aq, it forms a double salt, AlF3, 3NH4F, which is sol in H2O, but not in (Helmholt, Z anorg 3. 127.) NH.F+Aa

Insol. in (NH₄)₂S+Aq (Malaguti and Durocher, A. ch. (3) 17. 421.) Fuchs found. on the contrary, that it is not wholly insol. in

(NH₄)₂S+Aq (Freenius, Quant.) Insol in FeCl₃+Aq (Béchamp.) Determinations of the solubility of aluminum hydroxide in AlCla+Aq show that part goes into solution to form a compound, while the greater part is in the colloidal form.

(Fischer, Z anorg. 1904, 40. 46) Only sl. sol. in cone Al2(SO4)8+Aq, but solubility increases with decrease in concentration of Al2(SO4); until it reaches a maximum at a concentration of 32 % Al₂(SO₄)₃ at 20°, 28 % at 40°, and 38 % at 60°. With

the solubility of Al(OH), in Al₂(SO₄), dimmishes (Kremann, C A. 1909, 2422.)

Sol in Ba(OH)2+Aq. (Rose.) Sol in boiling Fe(NO3)3,

B1(NO3)2, Hg(NO3)2, HgNO3, SnCl2, and SbCl_s+Aq (Persoz.) Insol m HCN or cold KCN+Aq, but sl.

sol. in hot KCN+Aq (Rose) Insol in KC₂H₂O₂+Aq. (Osann, 1821.)

When moist, sol in H2SO3+Aq, from which it is repptd. on boiling (Berthier, A. ch (3) 7.76)

Somewhat sol in NaC2H3O2+Aq (Mer-

Not pptd by NH₄OH+Aq in presence of

Na citrate. (Spiller.) Sol. in ethyl amine, amyl amine, sinkaline, ethyl picoline hydroxide, stabethylium hydroxide, triethyltoluenyl ammonium hydroxide+Aq (Friedlander.)

Sol in alkyl amines (Renz, B. 1903, 36.

Insol. in acetone (Naumann, B. 1904, 37.

Sol to a considerable extent in K₂C₄H₄O₆+

Very sl sol. in cane sugar + Aq. (Ramsey.) Solubility in glycerine+Aq containing about 60 % by vol of glycerine 100 cc of the solution contain 0 25 g Al₂O₈ (Müller, Z anoig 1905, 43. 322)

Al₂O₃, 5H₂O Aq and alcohol Insol in H₂O, NH₄OH+ Sol. in HCl and HNO,+ (Zunino, Gazz, ch. it 1900, 30 (1)

Al₀O₁₄H₁₀, "Trialuminum hydroxide." Not sol, in cone acids in the cold; not sol,

in KOH (cold) and only sl sol in hot KOH. Characterized by its solubility in exactly one mol dil HCl Dil. solutions do not gelatinize even on long standing Cone, solution of NH4Cl and other salts cause ppt, which re-

dissolves on addition of H₂O

Alkalies and alkali carbonates decomp the salt with HCl and ppt trialuminium hydroxide. H2SO4 and sol sulphates give insol compds with the hydrate HNO₃ like HCl gives soluble compds with the hydrate (Structural formula given) (Schlumberger Bull Soc. 1895, (5) 13. 41-65; C C 1895. I. 421.)

Aluminum iodide, AlIa. Anhudrous Fumes on air and deliquesces.

Sol. in H2O with evolution of much heat Sol. in CS2 and crystallizes from the hot sat. solution on cooling (Weber) Sol. in alcohol (Webei), ether and tetrachlormethane (Gustavson)

Sol in AlBrs. (Isbekow, Z. anorg 1913, 84.26)

+6H2O Very sol, in H2O.

Aluminum mercuric iodide, AlI₃, HgI₂+8H₂O. Very deliquescent; sol. in H₂O without defurther decrease in concentration of Al₂(SO₄); comp (Duboin, C. R. 1908, 146, 1028.)

Aluminum potassium iodide, AlI, KI Sol in H₄O with evolution of much heat, 1865, 600.) (Weber, Pogg. 101. 469)

Aluminum iodide ammonia, AlIs, 3NH. Decomp by H₂O (Weber, Pogg, 103, 263.)

Aluminum sodide mercuric oxysodide, 2AlIs. $HgO, 3HgI_2 + 15H_2O$ (Duboin, C R 1907, 145, 714.)

Aluminum iron, FeAla Readily sol. in strong HNO₃. (Brunck, B 1901, 34, 2734)

Aluminum manganese, Mn2Al2.

Sol in strong HCl. (Brunck, B. 1901, 34, 2735)

Aluminum molybdenum, Al₄Mo

Easily sol. in hot HNO, or HCl (Wohler, A 1860, 115, 103) Al₂Mo. (Guillet, C R. 1901, 133, 293) AlMo. (Guillet.) AlMo4. Not attacked by dil. HCl+Aq. (Guillet.) AlMon. Not attacked by HCl+Aq

Aluminum nickel, AlaNi.

(Gullet)

Sol. in strong acids (Brunck, B 1901, 34.

Aluminum nitride, Al₂N₂

Slowly attacked by hot or cold H₂O Decomp by acids and aqueous solutions of the alkalies, especially when they are concentrated. (Mallet, A. 186, 155) Easily decomp. H₄O when finely powdered.

(Rossil, C. R. 1895, 121, 942) Decomp by moist air and by boiling H2O and by alkalis+Aq. (Franck, Ch Z 1897

Aluminum oxide, Al₂O₃.

Crystalline. Min. Corundum, sapphire, ruby, emery. Insol in acids. Amorphous. Ignited Al₂O₂ is insol, in acids except that it dissolves slowly when heated with a mixture of 1 pt H₃SO₄ and 1 pt. H₂O. (Berzelius.) Slowly sol. in boiling HCl+AT. (Rose, Pogg 52, 505). Sol. in 22 pts. of a mixture of 8 pts. H₂SO₄ and 1 pt. H₂O. (Mitscherlich.) The lower

the temperature at which Al₂O₃ has been heated, the more sol, is it in acids and alkalies. Solubility in (calcium sucrate+sugar)+

34.3 g. CaO dissolves 1.35 g Al₂O₃; 1 l solu-

solves 0 19 g Al₂O₃. (Bodenbender, J B. Insol. in acetone (Naumann, B. 1904, 37. 4328)

See also Aluminum hydroxide,

Aluminum peroxide, Al₂O₄, Al₂O₄+10H₂O Ppt : sol in acids with decomp. (Terry, C. A 1912, 3068)

Aluminum oxybromide.

Basic aluminum bromides containing three equivalents or less of Al₂O₄ to one of AlBr₃ are sol in H2O. Those containing more than three equivalents are insol (Ordway, Am. J. Sci. (2) 26, 203.)

Aluminum oxychloride.

Sol. in dil acids or alkalies. Decomp. by H_2O (Hautefeuille and Perrey, C. R. 100. 1220.)

Basic aluminum chlorides containing two equivalents or less of Al₂O₃ to one of AlCl₃ are sol in H2O. Those containing more than two equivalents are insol. (Ordway) Al₂O₃, 3AlCl₃+3H₂O (Tomması, Buli

Al₂O₃, SAl₂O₃+3H₂O (Tomması) Al₂O₃, SAlCl₃+3H₂O (Tomması) 3Al₂O₃, AlCl₄+15H₂O. (Tomması)

Aluminum phosphide, Al.P.

Unstable (Franck, Ch. Z. 1898, 22, 240.) Al₂P₂ Decomp. by H₂O. (Fonzes-Diacon,

C R. 1900, 130, 1315.) Unstable. (Franck, Ch. Z. 1898, 22, 240.) Al₃P₇ Decomp by H₄O and acids. (Franck.)

Al₂P₇. Decomp. by H₂O and acids (Franck, Ch. Z 1898, 22, 288) Al.Pa. Unstable (Franck, Ch. Z. 1898, 22. 240)

Aluminum platinum, Pt3Al10. The Al is dissolved out by HCl. (Brunck,

B 1901, 34. 2735.) Aluminum selenide, Al₂Se₃.

Decomp. by H₂O. (Fonzes-Diacon, C. R. 1900, 130, 1315)

Aluminum silicide, Al₂S₁₄

More easily sol, in ands than Al. (Winkler, J. pr. 91. 193)

Aluminum chromium silicide, Al₂Cr₄Si₄

Insol in hot cone, HCl, HNO2, H2SO4 and aqua regia. Sol. in cold HF or in HF+HNO3. Solubility in (calcium sucrate+sugar)+
Sol in molten alkali. Insol in NaOH+Aq
1 l. solution containing 418.6 g sugar and
COCI+Aqor fused KCOlor or KRSO. (Manchot and Kieser, A. 1904, 337, 356.)

PAGE S. AND UNBAUTER LONG E. AUGUS, I. I SULL-tion containing 206 5 s. sugar and 242 g. H. HSO₄ and squa regin. Sol. in HF and in Lauring 1744 g. sugar and 141 g. CaO diss-1,004, 337, 358. (Manchot and Kieser, A.

Aluminum tungsten silicide.

Insol in most acids and aqua regia. Easily sol in HW HNOs and in moltan alkali. Not

sol in HF, HNO₃ and in molten alkali Not attacked by dil NaOH+Aq. (Manchot and Kieser, A 1904, 337, 360.)

Aluminum vanadium silicide, Al₂V₈S₁₁₈. Sol. in HF. Not attacked by hot con

Sol. in HF. Not attacked by hot cone HCl, HNO₃, H₂SO₄ or agua regna Decompby fusing with NaOH. Stuble toward fused KClO₃. (Manchot, A. 1907, **357**, 134.)

Aluminum sulphide, AlS.

Decomp. by H₂O Sol in acids and alkalis. (Regelsberger, Z. Elektrochem, 1898, 4. 548) Al₂S₁. Decomp in moist air and by H₂O. (Wohler) Insol in acetone. (Naumann, B. 1904, 37, 4328.)

Aluminum chromium sulphide, Al₂S₃,CrS. Sl. attacked by HCl+Aq. Gradually decomp. by HNO₃ (Houdard, C. R. 1907,

144. 1115)

Aluminum magnesium sulphide, Al₂S₂, MgS.

Decomp. by H₂O, alcohol and acids.
(Houdard, C R. 1907, 144. 1116.)

Aluminum potassitim sulphide.

Violently decomposed by H₂O (St Claire Deville, J. pr. 71, 293) Does not exist. (Gratama, R. t. c. 3, 4.)

Aluminum silver sulphide, 5Al₂S₅, 4Ag₂S. (Cambi, Real. Ac Line (5) 21, II, 838.)

Aluminum telluride.

Decomp by H2O (Wohler, Pogg 11. 160.)

Aluminum titanide, Al.Ti.

Not attacked by H₂O or by cold HNO₂. Sl. sol. in warm HNO₃. Sol. in cold cone. H₂SO₄ or HCl Sol. in warm KOH+Aq.

(Levy, A. ch. 1902, (6) 25. 449.) Sol. in HCl and in aqua regia. (Guillet.) Al₃Tı. Sol. in hot dil. H₂SO₄ and in hot KOH+aq Sol. in hot cone acids (Manchot, A. 1907, 357. 142.)

Al₃Ti₂. Aluminothermic product is sol, in HCl and aqua regia. (Guillet)

Aluminosulphuric acid, Ala(SO4H)6+ 7 HaO

Sol. in H₂O with decomp. into Al₄(SO₄)₃ and H₂SO₄ (Silberberger, M. 1904, **25**. 222.)

Diamide, N₂H₄. See Hydrazine.

Amidochromic acid.

Amidochromic acid.

Amidochromates.

Do not exist Those described by Darm-

städter and Lowenthal are impure bichromates (Wyrouboff, Bull. Soc 1894, (3) 11. 845-53; C. C 1894, II. 610)

Ammonium amidochromate, (NH4)NH2C1O4. Very sol in H2O. (Lowenthal, Z. anorg.

Is ammonium dichromate. (Wyrouboff, Bull Soc (3) 11, 845.)

Lithium amidochromate, LiNH, CrOs.

Very sol in H₂O and acids. (Löwenthal, Z. anorg. 1894, 6. 364.)

Potassium amidochromate, KCrO₂NH₂. Sol only in H₂O Sat. solution in H₂O

contains 13 % of the salt. (Heintze, J pr (2) 4. 214)

Amidophosphoric acid, HPO₂(NH₂) = PO(NH₂) (OH)₂.

Sol m H₂O, but decomp, on standing or by heat. (Stokes, Am. Ch. J. 15. 198)

Aluminum amidophosphate.

Ppt. Sol m NH₄OH+Aq. (Stokes)

Ammonium amidophosphate,

NH₄HPO₃(NH₂) Very sol. in H₂O. (Stokes)

Barium amidophosphate, BaPO₃(NH₂)+H₂O. Very al. sol in H₂O. (Stokes.) BaH₂(PO₃NH₂)₂+2½/H₂O. Quite difficultiy sol. in H₂O. (Stokes.)

Calcium amidophosphate, CaPO3(NH2).

Much less sol m H₂O than Ba salt, (Stokes.)

CaH₂(PO₃NH₂)₂. Much less sol, in H₂O than the Ba salt. (Stokes.)

Chromic amidophosphate.

Ppt. Sol. in warm NH₄OH+Aq. (Stokes.)

Cobalt amidophosphate.

Neutral. Ppt. Acid. Sl. sol. in H₂O; sol. in NH₄OH+Aq

Cupric amidophosphate.

Neutral, Sl. sol. in H₂O, Acid, Nearly insol. in H₂O.

Ferrous amidophosphate.

Neutral Sol. in much H₂O, and in HC₂H₂O₂, or NH₄OH+Aq.
Actd. Nearly msol. in H₂O or NH₄Cl+Aq.
Sol. in NH₄OH+Aq.

Ferric amidophosphate.

Neutral Ppt. Sol. in excess of alkali

Insol. in

amidophosphate and in NHOH+Au Insol. in HC.H.O.+Ac Acid. As the neutral salt.

Hydroxylamine amidonhosohate. (NH₂O)HPO₂(NH₂) SI sol in H.O. (Stokes)

Lithium amidophosphate, LiHPO3(NH2). Sl sol, m H₂O (Stokes,)

Magnesium amidophosphate, MgPOs(NH2)

+7H₂O. Very sl. sol. in H₂O: quite easily sol. in dil. NH₄Cl+Aq. Sol m HC₂H₂O₂+Aq (Stokes) MgH₂(PO₃NH₂)₂ + 3¹/₄H₂O. Insol. in

NH Cl+An (Stokes) Manganese amidophosphate. c

Neutral Ppt. Acid Sl. sol in H.O. Acid SI sol. in H₂O

Nickel amidophosphate. in HC.H.O. or H.O. (Stokes.) Neutral Ppt. Sol NH₄OH+Aq

Potassium amidophosphate, K₂PO₂(NH₂). Very sol, in H₂O and not decomp by boil-

ing. (Stokes)
KHPO₂(NH₂). Easily sol. in cold H₂O, insol, in alcohol, (Stokes)

Silver amidophosphate, Ag. PO. (NH.) Almost insol, in H₂O. Sol in HNO₂ or NH₄OH+Aa AgHPOs(NH2). Sl. sol. in H2O; easily sol dil. HNOs or HC,H,O,+Ao, also in

Sodium amidophosphate, Na.PO.(NH.) Not deliquescent, very sol, in HaO, pptd. from aqueous solution by alcohol. (Stokes.) NaHPO₄(NH₂)+½(?)H₄O Nearly msol. in cold, and decomp. by hot H2O Insol. in

Zinc amidophosphate.

NH4OH+Aa.

alcohol.

Neutral. Perceptibly sol, in HaO. Acad. Sl. sol. in H₂O; sol in NH₄OH or HC₂H₃O₂+Aq.

Diamidophosphoric acid, PO(NH2)2OH Sol. in cold H₅O; almost insol, in alcohol. stable in the air but decomp when heated and by boiling in aq. solution. (Stokes, Am. Ch. J. 1894, 16, 130.)

Barium diamidophosphate, [PO(NH2)2Ol2Ba Very sol. in HaO; msol. in alcohol; aq. solution decomp. slowly. (Stokes, Am. Ch. J. 1894, 16. 134)

Magnesium diamidophosphate, IPO(NH2). Ol-Mg. · Sol. in H.O. insol in alcohol. (Stokes.)

Potessium diamidophosphate, PO(NH2)2OK.

Sol. in H₂O; not deliquescent; insol. in alcohol. (Stokes.)

Silver diamidophosphate, PO(NH₀)₀OAg. Very stable, insol in H₂O. Very sol in NH₄OH+Aq. (Stokes.)

Sodium diamidophosphate, PO(NH2)2ONa, Sol, in H₂O; not deliquescent; insol, in alcohol (Stokes)

Diamidotrihydroxylphosphoric acid-

Silver diamido/rihydroxylphosphate. (AgO),P(NHAg),

(Stokes, Am. Ch. J. 1894, 16, 147) (AgO), P(NH,) (NHAg), Insol. Insol, in cold (AgO),P(NH2)2 Decomp, by cold H2O (Stokes.) +2H₂O Decomp by boiling H2O.

Amidoimidophosphoric acid.

(Stokes.)

Amidohezimidoheptuphosphoric acid, OH. PO (NH2) NH PO(OH) NH PO(OH) $=P_7N_7O_{18}H_{16}$

Known only in solution in H₂O. (Stokes, Am. Ch. J. 1898, **20.** 758)

Silver diamidovurimidophosphate. NH(PO.NH2.OAg)2. Almost insol, in H₀O; sol, in NH₀OH+A₀.

(Stokes, Am. Ch. J. 1894, 16, 136.) Silver amidotetrimido pentaphosphate, PaNaOnHaAga

Ppt. (Stokes, Am. Ch. J. 1898, 20, 752.)

Silver amidoheximidohevlanhosphate. PrNrO18HoAgr

Ppt., decomp. by acetic acal. (Stokes, Am Ch. J. 1898, 20, 759.)

Sodium amidodümidotriphosphate, PO ONa < NH. PO(ONa)2. NHPO(ONa)NH2.

 $=P_2N_4O_7H_4Na_4+H_9O$ Unstable; sol. in 'H₂O; insol. in, alcohol. (Stokes, Am. Ch. J. 1896, 18, 643.)

Sodium amidohezimidoheptaphosphate, PrNrOisHaNar.

Sol. in H2O; pptd by alcohol. (Stokes, Am. Ch. J. 1898, 20, 758.)

Amidophosphimic acid.

Silver amidophosphimate, P(NH) NH₂(OAg)₀. Decomp. by heat; decomp in contact with

 H₂O. (Stokes, Am Ch. J. 1894, 16. 139.)
 (AgO)₂P(NAg)(NHAg).(?) Sl sol. NH,OH+Aq. (Stokes, Am. Ch. J. 1894, 16. 149)

Amidosulphonic acid, HOSO2NH2-

Easily sol, in H₂O, less easily in alcohol. (Berglund, B. 9. 252 and 1896) Very stable, less easily sol in H₂O than its

K salt. (Raschig, A 241, 177.)
Stable in air. Non-deliquescent when cold
Sol in 5 pts H₂O at 0° and in 2½ pts. H₂O at 70° Solution in H2O can be boiled several minutes without decomp. Solubility is decreased by addition of H₂SO₄, so that if 1/5-1/4 pt H₂SO₄ is added to H₂O₂NH₂ of the liquid dissolve only 3 pts HOSO₂NH₂ in the cold. Pptd. from solution by HNO3 or glacial acetic acid, but not by HCl. 1649.) bility is decreased by presence of NaHSO4. (Divers and Haga, Chem. Soc 1896, 69. 1641.)

Amidosulphonates.

Easily sol. in H2O; sl sol in alcohol

Aluminum amidosulphonate. Very sol in H2O (Berglund, Bull Soc.

(2) 29, 422.)

Ammonium amidosulphonate, (NH4)NH2SO2 Deliquescent. Sol, in H₂O; insol, in alcohol.

Ammonium silver amidosulphonate, $NH_4SO_3(NH_2)$, $AgSO_3(NH_2)$.

(Ephram & Gurewitsch, B 1910, 43, 148)

Barium amidosulphonate, Ba(NM2SO3)2. Sol. in 3 pts. H₂O. (Berglund, l.e.)

Cadmium amidosulphonate, Cd(NH₂SO₂)₂+ 5H.O.

Very sol in H₂O (B.)

Calcium amidosulphonate, Ca(NH2SO2)2+ 4H.O. Verv sol. in H₂O (B)

Cobalt amidosulphonate, Co(NH2SO3)2+ 3H₂O

Sol, in H₂O, (B.)

Copper amidosulphonate, Cu(NH2SO2)2+ 2H.O.

Sol. in H₂O. (B.)

Gold (auric) potassium amidosulphonate, K, Au₂(NSO₂)₃ Very al. sol. in cold, more easily sol. in hot | Sol. in H₂O.

H₂O Sol. in dil. HCl+Aq (Hofmann, B 1912, 45. 1735.)

Lead amidosulphonate, Pb(NH₂SO₂)₂+H₂O. The most sol of all amidosulphonates. (B.)

Lithium amidosulphonate. LiNH2SO2 Deliquescent. (B.)

Magnesium amidosulphonate. Very sol, in H2O

Manganese amidosulphonate, Mn(NH2SO1)2 +3H₂O

Very sol in H₂O. (B) Mercuric amidosulphonate, basic,

 $Hg(HgOSO_3N\hat{H}_2)_2$. Insol. in 3.5 % HNO₄+Aq. Very sol. in 3 % HCl+Aq. (Hofmann, B. 1912, **45.** 1733. +2H2O. Insol. in hot H2O. Sol. in KOH+ (Divers and Haga, Chem Soc. 1896, 69.

Mercuric potassium amidosulphonate, KHgNSO₃.

Very sl. sol, in cold H₂O and cold dil KOH +Aq Sol. in 3 % HCl+Aq. (Hofmann, B 1912. 45, 1732)

Mercuric sodium amidosulphonate, NaHgNSO₃

Nearly completely sol, in hot H₂O (Hoffmann, B 1912, 45, 1734)

Nickel amidosulphonate, Ni(NH,SO,),+ 3H₂O Sol. in H₀O. (B)

Potassium amidosulphonate, KNH₂SO₂. Sol in H₂O. (Berglund.)

Potassium silver amidosulphonate, NHAgSO₃K+H₂O

Decomp. by H₂O, sol. in NH₄OH+Aq. (Hoffmann, B. 1912, 45, 1734.)

Silver amidosulphonate, AgNH2SO2. Sol. in 15 pts H₂O at 19° (B.)

Sodium amidosulphonate, NaNH2SO3. Sol. in H₂O.

Strontum amidosulphonate, Sr(NH2SO3)2+ 4H.0 Sol, in H₀O.

Thallium amidosulphonate, TlNH₂SO₂. Sol. in H₂O.

Uranyl amidosulphonate. Sol in H₂O.

Zinc amidosulphonate, Zn(NH₂SO₃)₂+4H₂O.

Amidosulphurous acid.

Ammonium amidosulphite, NH2 SO2 NH4. Very deliquescent. Decomp in the air with loss of NH₄ Sol. in H₂O with decomp Sol in anhydrous alcehol. Sl. sol. in div ether (Divers, Chem. Soc. 1900, 77 330.)

Ammonia, NH2.

Very sol, in H₂O, with evolution of much

1 vol. H:O absorbs 670 vols (½ pt. by weight) NH: +10° and 29.8 in. pressure, sp. gr. of solution =0 875. (Davy) ""-O sheerbe more than 1/2 its of solution =0 850. (Dalton.) pts NH2 at 24°, 5.96 pts. at

1 vol. H-9 obsorbs 780 vols NH₃, 6 vols H-9 increasing to 10 vols sat NH₄OH++q, 1 vol. sat NH₄OH++q, 1 vol. sat NH₄OH++q, 1 vol. sat NH₄OH+sat contains 488 vols NH₂ (Thornson) 1 vol. H-9 obsorbs 450 vols NH₃ at 15° (Dutnes) 1 vol. H-9 obsorbs 700 vols NH₃ at 1 ordinary temper-1 Vol. HaV abserbs 700 Vols. AH; at ordinary temper-ettire. (Otto) 100 pts H; O absorb in NH; gas 477 pts. NH; by weight (Berzelius.) 1 Vol. H; O absorbs 505 vols. NH; and vol. is in-creased to 15 vol. and sp. gr becomes 9 900. (Ore)

1 vol. H₂O at 0° and 760 mm, absorbs 1177.3 vols. NH₃. (Sims.) 1 vol H₂O at 0° and 760 mm absorbs 1146

	-6-	RD	S	f.	RD	S
•	0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34	0.875 0.833 0.792 0.751 0.7751 0.679 0.645 0.522 0.582 0.526 0.499 0.426 0.426 0.430 0.362	0.899 0.853 0.809 0.724 0.684 0.611 0.578 0.546 0.490 0.467 0.426 0.426 0.426 0.438 0.378	36 38 40 42 44 46 48 50 52 54 56 60 70 80 90 98 100	0.343 0.324 0.307 0.290 0.275 0.259 0.244 0.229 0.214 0.200 0.186	0 363 0 350 0 350 0 350 0 315 0 304 0 294 0 284 0 265 0 265 0 247 0 236 0 194 0 114 0 114 0 0 82 0 074

Solubility of NH₃ by vol in H₂O at 760 mm, and t°: 1 vol H₂O at 760 mm and t° dis-solves V vols NH₂ gas, vols reduced to 0° and 760 mm.

t°	V	t°	I.
0	1049 60	13	759 55
1	1020 78	14	743 11
2	993 26	15	727 22
3	966 98	16	711 82
3 4 5	941 88	17	696 85
5	917 90	18	682 26
6	894 99	19	667 99
6 7 8	873 09	20	653 99
8	852 14	21	640 19
9	831.98	22	626 54
10	812 76	23	612 98
11	794 32	24 25	599 46
12	776 60	25	585 94

(Canus, A 99. 144.)

Solubility of NH₂ in H₂O at P mm pressure and 0° 1 pt, H2O absorbs pts NH, at P mm pressure and 0°.

	NH ₃ .		1 200		1 1740	P	Pts NHs	P	Pts NII1
1 vol H.O. at 0° and 700 mm absorbs 11-60 vols. NHz. (Rosco and Ditturnar, absorbs 11-60 vols. NHz. (Rosco and Ditturnar, absorbs 11-70 vols. NHz. (Part and 700 mm. absorbs 1270 vols. NHz. (Berthelot) 1 vol. H.O. at 0° and 700 mm. absorbs 10:50 vols. NHz. (Bensen.) 100 cs. H.O. at 0. H						10 20 30 40 50 75 100 125 150 177 200 250	0 044 0 084 0 120 0 149 0 175 0 275 0 315 0 351 0 351 0 465 0 515 0 561	900 950 1000 1050 1150 1200 1250 1300 1350 1400 1450 1550	968 1 101 1 037 1,075 1 117 1 161 1 208 1 258 1 310 1 361 1,469 1 526 1 584
	and acco	rding to	Sms (A. 118. 8	345) (S).	400	0 607	1600	1.645
t°	g NH. RD	g. NH ₁	t°	g. NH:	g. NHa	450 500	0 646 0.690	1650 1700	1 707 1 770
0 2 4 6 8 10	0.875 0.833 0.792 0.751 0.713 0.679	0.899 0.853 0.809 0.765 0.724 0.684	36 38 40 42 44 46	0.343 0 324 0 307 0 290 0 275 0.259	0 363 0 350 0 338 0 326 0 315 0 304	550 600 650 700 750 800 850	0 731 0 768 0 804 0 840 0 872 0 906 0 937	1750 1800 1850 1900 1950 2000	1 835 1 906 1 976 2 046 2 120 2 195

(Roscoe and Dittmar, A. 112, 349.)

In proportion as the temperature is higher. so much the more nearly does the solubility of NH, in H,O conform to the law of Henry and Dalton, but only obeys it completely when the temperature is 100°, as is seen in the following table.

Solubility of NH_1 in $\mathrm{H}_2\mathrm{O}$ at various pressures and temperatures: P =parisal pressure, i. e. total pressure muots the tension of equicous vapour at the given temperature; G =grams NH_4 dissolved in 1 g. $\mathrm{H}_4\mathrm{O}$ at the given pressure; G at 760 = grams NH_4 that would be contained in 1 g. $\mathrm{H}_4\mathrm{O}$ if the solubility was proportional to the pressure.

be contained in 1 g. 1120 if the solubility was proportional to the pressure.									
P	00		20	°	40)° ,	10)°	
	G at P	G at 760	G at P	G at 760	G at P	G at 760	G at P	G at 760	
200 300 400 800 1200 1100 1100 1100 1100 1100 110	0 082 0 117 0 148 0 160 0 240 0 220 0 230 0 240 0 346 0 375 0 472 0 568 0 421 0 568 0 692 0 770 0 890 0 770 0 890 0 890 0 890 1 1.077 1 1.238 1 1.338 1 1.338 1 1.338 1 1.338	3 113 2.960 • 22 820 2 5290 1 780 1	0 119 0 141 0 148 0 178 0 197 0 207 0 207 0 206 0 296 0 296 0 396 0 396		0.0522 0.0644 0.0768 0.098 0.109 0.145 0.145 0.168 0.181 0.232 0.287 0.320 0.00 0.0	0 497 0 490 0 483 0 476 0 476 0 476 0 470 0 462 0 454 0 410 0 410 0 410 0 410 0 382 0 382 0 383 0 355 0 347 0 338 0 30 0 30	O at P	G at 760	
1600 1700 1800 1900 2000	1 656 1 758 1 861 1 966 2 070	0 839 0.835 0 832 0 830 0.828	0 801 0 842 0 881 0 919 0 955 0 992	0.400 0 400 0 394 0 388 0 382 0 377	0 493 0.511 0 530 0 547 0 565 0 579	0.250 0.242 0.237 0.231 0.226 0.220			
2100					0 594	0.215	-ن-نــ	· ·	

(Sims, A. 118, 346.)

9

)°. One gram H2O dissolves grams NH. Temp.

0.947		—3 9°	
1 115		10°	
1 768		50°	
2 781	•	-30°	
2 946		-40°	

(Mallet, Am. Ch. J. 1897, 19. 807
The solubility of NH₃ in H₄O does not follow Dalton's law at ord. temp, but does at temp. near 100°. (Knowaloff, J. Russ. Phys. Chem. Soc. 1894, 26. 48; Chem. Soc. 1896, 70 (2). 351.

Sp gr of NH-OH+Aq

%NH:	Sp gr	%NHa	Sp gr
32.3* 29.25 26 25.37* 22.07 19.54 17.52 15.88	0 8750 0 8857 0.9000 0.9054 0 9166 0 9255 0 9326 0 9385	14 53 13 46 12 40 11 56 10 82 10 17 9 6 9 5*	0 9435 0 9476 0 9513 0 9545 0 9573 0 9597 0 9616 0 9632

(H. Davy, Elements, 1. 241) *By direct experiment. The other numbers were obtained by calculation, making no allowance for com-

Sp. gr. of NH₄OH+Aq at 16°, according to Otto m his Lehrbuch.

pensation

% NHs	Sp gr.	% NH ₂	Sp. gr
12.000	0 9517	8.500	0 9650
11 875	0.9521	8 375	0 9654
11 750	0 9526	8 250	0 9659
11 625	0 9531	8 125	0 9664
11.500	0 9536	8.000	0 9669
11 375	0 9540	7 875	0 9673
11.250	0 9545	7 750	0 9678
11 125	0.9550	7 625	0.9683
11 000	0.9555	7 500	0 9688
10 950	0 9556	7 375	0 9692
10 875	0 9559	7.250	0 9697
10.750	0 9564	7 125	0 9702
10 625	0 9569	7 000	0.9707
10 500	0.9574	6 875	0 9711
10.375	0.9578	6 750	0 9716
10.250	0.9583	6.625	0 9721
10.125	0 9588	6 500	0 9726
10.000	- 4.9593	6 375	0.9730
9.875	0.9597	6.250	0 9735
9.750	0.9602	6 125	0 9740
9.625	0.9607	6 000	0 9745
9.500	0.9612	5 875	0 9749
9 375	0 9616	5 750	0 9754
9 250	0 9621	5 625	0.9759
9 125	0.9626	5 500	0 9764
9.000	0 9631	5 375	0 9768
8 875	0 9636	5 250	0 9773

Solubility of NH₂ in H₂O at temps, below Sp. gr. of NH₄OH+Aq, according to Ure in Diet of Arts

Dice of the					
% NH:	Sp. gr	%NH1	Sp. gr		
27 940 27 633 27 038 26 751 26 500 25 175 23 850 22 525 21 200 19 875 18 550 17 235	0 8914 0 8937 0 8967 0 8983 0 9000 0 9045 0 9990 0 9133 0 9177 0 9227 0 9320	15 900 14 575 13 250 11 925 10 600 9 275 7 950 6 625 5 300 3 975 2 650 1 325	0 9363 0.9410 0 9455 0 9510 0.9564 0 9662 0 9716 0.9768 0 9828 0.9887 0 9945		

Sp. gr , b.-pt , and vols. gas in NH4OH+Aq.

NH:	Sp gr	B -pt.	Vols gas in I vol. liquid
35 3	0.85	-3 3°	494
32 6	0.86	+3 3°	456
29 9	0 87	10°	419
27 3	0.88	16.6°	382
24 7	0.89	23 3°	346
22 2	0 90	30°	311
19 8	0 91	36 6°	277
17 4	0 92	43 3°	244
15 1	0 93	50°	211
12 8	0 94	56 6°	180
10 5	0 95	63 3°	147
8 3	0.96	70°	116
6 2	0 97	78 3°	87
4 1	0.98	QR 10	57
9 0	0 00	91.1°	28

(Dalton, in New System, 2. 422.)

	Sp. gr of	NH.	OH+Aq s	at. at	t°
ţ°	Sp. gr.	ţ°	Sp. gr.	tº	Sp. gr
0 1 2 3 4 5 6	0 8535 0.8561 0 8587 0 8611 0 8635 0.8658 0 8681 0 8703	9 10 11 12 13 14 15 16	0 8746 0 8766 0 8785 0 8804 0 8823 0 8841 0 8858 0 8874	18 19 20 21 22 23 24 25	0 8903 0.8916 0 8928 0 8940 0 8052 0.8963 0 8974 0 8984

(Carius, A. 99 141.)

Sp. gr. of NH4OH+Aq at 14°, according to

	Carius (A. 99, 148).				
% NH:	Sp. gr.	% NHa	Sp. gr		
36 0	0 8844	35 2	0.8860		
35 8	0 8848	35 0	0 8864		
, 35 6 35 4	0 8852 0 8856	34 8 34 6	0 8868 0 8872		

Sp	gr. of	NH ₂ OH+	Aq at 14°	, etc.—Cont.
2 9	% NH:	Sp gr	% NH:	Sp gr.
,	14 4.2 0 8 3 3 3 4 2 0 8 6 4 2 2 0 8 6 4 2 2 0 8 6 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sp #2 O 8877 O 8881 O 877 O 8881 O 8903 O 9033 O 9043 O 9043 O 9053 O 9053 O 9063 O 9063	22.2 22.2 22.1.8	\$9 E

Sp. gr. of	NH ₄ OH+	kg at 14°,	${\it etcCont}$
% NH:	Sp gr.	% NH:	Sp. gr.
10 0 9.8.6 9.4 2 9.0 8.8 8.4 2.0 8.8 8.4 2.7 7.4 2.0 6.6 6.4 2.0 6.5 8.4 2.0 8.5 7.7 6.6 6.6 6.5 8.5 7.7 6.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	0.9593 0.9601 0.9608 0.9616 0.9623 0.9631 0.9639 0.9654 0.9670 0.9670 0.9670 0.9685 0.9690 0.9717 0.9725 0.9717 0.9725 0.9731 0.	5 4 4 4 4 2 0 8 6 4 4 2 0 8 6 4 4 2 0 8 6 4 2 0 8 6 4 2 1 1 1 0 8	0 9790 0 9799 0 9807 0 9815 0 9823 0 9833 0 9839 0 9845 0 9873 0 9882 0 9873 0 9890 0 9890 0 9990 0 9990 0 9990 0 9932 0 9932 0 9940 0 9967
5 6 5 4 5.2	0 9765 0 9773 0.9781	0 6 0 4 0 2	0 9975 0 9983 0.9991

Hager also gives a table in his Commentar zur Pharmacopoen, which is practically identical with those here given.

Strength of NH4OH+Aq of certain sp. gr.

i			at 12°.		
l				1 htre c	consists of
-	Sp. gr	tains g NH ₂	taun con- tains g NHs	H ₂ O m	liquid NH
	0 870 0 880 0 890 0 900 0 910	384.4 347.2 311.6 277.3 244.9	334 5 305 5 277 3 249 5 222.8	535 5 574 5 612 7 650 5 687 2	464 5 425 5 387 3 349.5 312.8
	0.920 0 930 0 940 0 950 0 960 0 970	213 4 182 9 152 9 124.2 97 0 70 2	196.3 170.1 143.7 118 0 93 1 68 0	723 7 759.9 796 3 832 0 866 9 902 0 935 Z	276.3 240 1 203 7 168 0 133.1 98 0 64.3
	0 980	45 3 21 0	44 3 20.7	969 3	30 7

(Wachsmuth, Arch. Pharm (3) 8. 510.)

Sp. gr. of NH₄OH+Aq at 15° (Most careful experiments)

So gr	% NH1	Sp. gr	% NH:
0 990	2 15	0 926	19 50
0 974	6 10	0 916	22.50
0.950	12 54	0 910	24 40

.0.	-		AMM	ONIA			
Sp gr. of	NH ₄ OH+	Aq at 15°-	-Continued	Sp gr of M	A+HO ₂ H	q at 15°, etc	Continued
Sp. gr.	% NHa	Sp gr	% NH1	Sp gr	% NH:	1 i contains g. NH ₁	Correction for ats 10
0 900 0 890 0 885	27 70 31 40 33.5	0 882 0 880	34 8 35 5	0 966 0 964 0 962	.8 33 8 84 9 35	80 5 85 2 89 9	0.00026 0.00027 0.00028
The follo	neberg, Che wing table aterpolation	ıs calculate	ed from the	0 960 0 958 0 956 0 954 0 952 0 950	9 91 10 47 11 03 11 60 12 17 12 74	95.1 100 3 105 4 110.7 115 9 121 0	0 00029 0 00030 0 00031 0 00032 0 00033 0 00084
Sp. gr	% NH:	Sp. gr	% NH:	0 948	13 31	126.2	0.00035
0 995 0.990 0 985 0 980 0 975	1 05 2 15 3 30 4 50 5 75	0 935 0 930 0 925 0 929 0 915	16 90 18 35 19 80 21 30 22 85	0 946 0 944 0 942 0 940 0 938 0 936	13 88 14 46 15 04 15.68 16 22 16 82	131 3 136 5 141 7 146 9 152 1 157 4	0 00036 0.00037 0 00038 0 00039 0 00040 0.00041

0 934 17 42

0 932 18 03 168 1

0 930 18 64

0 928 19 25

0.928 19.87 184

0 924 20 49

0 922 21 12

0 920 21 75 200 1

0.916

0 914 23 68 216 3

0 912 24.33221 9

0.910 24 99

0.908

0.006 26.31 238 3

0 904 25 98 243.9

0 902 27 65 249 4

0 900 28 33 255.0

0.898 29 01 260 5

0 896

0 894 30.37 271 8

0.89231.05 277 0

0 890 31 75 282.6

18 59 75

24 49.50

22 39 23 03 0 918

> 25 65 232 9

29 69 266.0

32 50 0.888

12 60	0.890			
14.00	0.885			
15 45	0.880			
(Grüneberg.)				

0 910 24 40

0.890 31 40

29 50

33 40

35.50

7 05

0

õ 965 8.40 Ô 905 26 00

ŏ 960 9 80 ō 900 27 70

955 11 20 0 895

0.950

0 945

0.940

0.974

0.972

0.970

0 968

Sp gr. of NH ₁ OH+Aq at 14°				
% HN:	Sp. gr	% NH:	Sp. g1	
31 23.8 20 4	0 8933 0 9116 0 9246	15 6 11 7 5 1	0 9400 0.9536 0 9780	

(Lunge and Smith, B. 17. 777.)

Sp. gr. of NH4OH+Aq at 15°, according to Lunge and Wiernik (Zeit, f. angew, Ch. 1889, 183) (Most carefully worked out and calculated)

Sp. gr	% NH:	g, NHs	for # 10
1.000	0.00	0.0	0 00018
0.998	0 45	4.5	0 00018
0 996	0 91	9.1	0.00019
0.994	1 37	13 6	0.00019
0 992	1 84	18 2	0 00020
0.000	2.31	22 9	0 00020
0.988	2 80	27 7	0 00021
0.986	3.30	32 5	0 00021
0 984	3 80	37 4	0 00022
0 982	4 30	42 2	0 00022
0.980	4.80	47.0	0 00023
0.978	5 30	51.8	0 00023
0 976	5.80	56.6	0.00024

61.4

70 9

0.00024

0 00025

0 00025

0 00028

6 30

6 80 7 31 66 1

7 82 75.7 0.886 33,25 294.6 0.000680 884 34 10 301.4 0.00064 0.882 34 95 308 3 0 00068 NH2 is much less sol. in KOH, or NaOH+

162 7

173 4

178 6

189 3

194.7

205 (

210.9

227.4

288 6

0.00041

0 00042

0.00042

0.00043

0.00044

0.00045

0 00046

0.00047

0 00048

0.00049

0 00020

0.00051

0.00052

0.00053

0.00054

0.00055

0 00056

0.00057

0.00058

0 00059

0.00060

0.00060

0 00061

0.00063

28.50

21.75

Aq than in H2O. Solubility of NH2 in H2O, and KOH+Aq

abs	orbs g. NH	s at t°.	bear sorvene
t°	H ₂ O	KOH+Aq 11 25% K₁O	KOH +Aq 25.25% K ₂ O
0	90 00 72 75	72 00 57 00	49.50 37.50

59 75 49.50	Ì	46 00 37.25		2
(Pacult		-1-	(5) 4	000 \

100 pts. sat. KOH+Aq dissolve only 1 pt. NH₃.

NH₂.
Solubility in NaOH+Aq is the same as in
KOH+Aq of the same strength.

NH₄Cl+Aq absorbs slightly less NH₄ than the same vol. H₂O. NaNO₃, and NH₄NO₃+ Aq absorb almost the same amount NH₃ as the same vol H₂O. (Raoult, lc)

Solubility of NHa in 100 pts. $Ca(NO_0)_3 + Aq$						
t°	H ₁ O	Ca(NO ₂) ₂ +Aq 28 38%Ca(NO ₂) ₂	Ca(NO ₂) ₂ +Aq 59.03%Ca(NO ₂) ₂			

to.	H ₁ O	28 38% Ca(NO ₂):	59.03%Ca(NO
0 8 16	90 00 72.75 59.75	96 25 78 50 65 00	104 50 84 75 70 50
		(Recult La)	

Solubility in salt solutions at 25°C.

Mois NH2 soluble in

Salt 5-normal 1-normal solution 1 5-normal solution			1 liter of				
*****	Salt	5-normal solution		mal			
NG1	KI KOH	0 970 0 850 0 938 0 965 0 995 0 876 0 985 0 985 0 985 0 923 0 920 0 923 0 920 0 932 0 932 0 875 0 866 0 866 0 866 0 866 0 866 0 866 0 886 0 886 0 886 0 886	0 942 0 716 0 889 0 916 0 992 0 789 1 008 1 040 1 094 0 808 0 722 0 855 0 858 0 772 0 765 0 771 0 765 0 760 0 677 0 767	0.900 0 607 0 843 0 890 0 716 1 045 1 190 0 626 0 804 0 .798 0 802 0 814 0 675 0 675			

⁽Abegg & Riesenfeld, Z. phys. Ch. 1902, 40,

Solubility in salts+Aq at 35° C.

Salt	Concentration of the aq. solution	Mols NH; soluble in 1 liter of solution
KCl	0 5 normal	0 923
NaCl	16"	0.966
CH,COOK	- 61	0 902
KOH	- 4	0 902
KOH	- 6	0.870
NaOH	"	0.896
12K2CO3	0 426 normal	0 914
12Na ₂ CO ₃	· ·	0.932

(Riesenfeld, Z. phys. Ch. 1903, 45, 462.)

The solubility of NH₃ in NaNO₃, NH₄NO₃ and in AgNO₃, 2NH₂+Aq is nearly the same as in pure H₂O (Konowaloff, C. C. **1898**, II. 659)

Distribution-coefficient of NH₃ between water and CHCl₃=26.3 at 20°; 24.9 at 25°; 23 2 at 30°.

The distribution-coefficient of NH₃ between CHCl₃ and a number of salt solutions has been determined for the purpose of studying the nature of metal-ammonia compounds in aqueous solution. (Dawson, Chem. Soc. 1900, 77. 1242.)

Distribution of NH₀ between H₂O and CHCl₂ at 18°.

NH ₀ concentration in	NH; concentration in
aqueous solution.	CHCl; solution.
mols./litre	mols /litre
0 9280	0 03506
1 921	0 07703
2 064	0 08350
2 274	0 09317
2 590	0 1083
3 700	0 1639
4 333	0 1996

(Dawson, Z. phys. Ch. 1909, 69, 120)

Distribution of NH₃ between hydroxides+Aq and CHCl₂ at 18⁶

INTER

Aqueous solution	tration in the aqueous solution. mols /litre	tretion in the
0.2-N. KOH 0.5-N. KOH 0.2-N. NaOH 0.5-N. NaOH 0.5-N. NaOH 0.2-N. 1/4Ba(OH): 0.5-N. 1/2Ba(OH):	1 949 1 978 2.016 1 944 2 076 3 397	0 0841 0.0951 0.0869 0 0907 0 08905 0 1560

ť°

0

6

14.7

22

28 4

Distribution of NH2 between Cu(OH)2+Aq Solubility of NH2 in ethyl alcohol (absolute) and CHCl₃ at 18°

Cone of Cu(OH): equivalents/hire	NH: concentra- tion in aqueous solution. mols/litre	NHs concentra- tion in CHCls solution. mols /hire
0 041	2 014	0.07968
0 0705	2 653	0 1087
0.081	3 011	0 1247

Dawson, l c.)

Sol, in alcohol and ether.

Sol, in 3 pts. alcohol of 38° (Boullay) 1 vol. alcohol of 0 829 sp gr absorbs about 50 vols. NH₄. (Davy)

Much less sol. in ethyl, propyl, or amyl alcohol than in H₂O. (Pagliaho and Emo, 1 l methyl alcohol sat. with NH₂ contains 218 g. NH₂ at 0°; sp gr of solution = 0.770; coefficient of solubility = 425.0 (Delépine) Gazz, ch. 1t 13, 278)

Solubility of NH, in alcohol at to: weight NH, = weight NH, contained in a litre of solution

sat. at 760 mm. and to, sp gr. = sp. gr. of solution; C = coefficient of solubility.							
Temp	Degree of Alcohol	100°	90°	80°	70°	60°	50°
0°	Weight NH ₁ . Sp. gr C	130 5 0 782 209 5	146 0 0 783 245 0	206 5 0 808 390 0	: :	246 0 0.830 504 5	304 5 0 835 697 7
10°	Weight NHs . Sp gr . C	108 5 0 787 164 3	120 0 0 803 186 0	167 0 0 800 288 0		198 25 0 831 373 0	227 0 0 850 438.6
20°	Weight NH; . Sp gr C	75.0 0 791 106 6	97 5 0 788 147.8	119 75 0 821 190 5	137.5 0 829 223 0	152.5 0 842 260 8	182.7 0 869 338 2
30°	Weight NH ₄ Sp gr C	51 5 0 798 97 0	74 0 0 791 186 7	81 75 0 826 121 6	100.3	129 5 0 846 211 6	152 0 0 883 252 0

(Delépine, J. Pharm. (5) 25. 496.)

Solubility of NH, in methyl alcohol (absolute)

at to.

t°	% NHs	Pts. NH ₂ per 100 pts. alcohol
0	29.3	41 5
6	26 0	35 2
11.7	23 5	30 7
14.7	21.8	27 9
17	20 8	26 3
22	18 3	22 4
28 4	14 8	17 4

(de Bruyn, l.c.)

Readily sol, in ether.

Sol. in 04 vol. petroleum from Amiano, (Saussure)

1 vol. oil of turpentine absorbs 7.5 vols. NH, at 16°

1 vol. oil of rosemary absorbs 9.75 vols. NH₃ at 29°.

at to

. % NH:

19 7

17 1

14 1

13 2

12 6

10.9

9 2

(de Bruyn, R. t. c. 11, 112)

pressure absorbs 340 vols. NH a gas. (Muller, W. Ann. 1891, 43. 567.)

1 vol. abs. alcohol at 20° and 760 mm.

Pts. NH2 per 100 pts alcohol

94 5

20 6

16 4

15.2

14 7

12.2

10.1

1 vol oil of lavender absorbs 47 vols, NH, at 20° (Saussure.)

1 vol. caoutchine absorbs 3 vols, NH2. (Himly.)

Valerol absorbs much NH₈. (Gerhardt, A. ch (3) 7, 278.) 1 vol. ether at 760 mm, pressure absorbs

17.13 vols. NH, at 0°; 12.35 vols. at 10° and 10.27 vols. at 15°, (Christoff, Z, phys. Ch. 1912, 79, 459,

+H₂O. Colorless crystals. +½H₂O. Large transparent crystals. (Rupert, J. Am Chem. Soc. 1909, 31, 868.)

Ammonia, with metal salts.

For the ammonia addition-products of metal salts, see under the respective metal salts, except in the case of Co, Cr, Hg, and the 1.vol. oil of lemon absorbs 8.5 vols. NH₃ at Pt metals, for which see cobalt ammonium,

AMMONTA

further reference. New data on Co and Cr ammonium compounds and those of the Pt metals, published since the first edition, has not been included in the present edition

Ammonium amalgam, NH4, zHg. Decomp, by H2O, but more easily in pres-

ence of naphtha, alcohol, or ether. Ammonium azomide, N.H. = NH.N.

Easily sol. in H₂O, sl. sol. in absolute alcohol, easily in 80% alcohol. Insol. in ether

or benzene. (Curtius, B. 24. 3344) Ammonium cobalt azomide, NH₄N₃, CoN₆ Rather sol. in H₂O. (Curtus and Rissom,

J: pr. 1898, (2) 58. 302.)

Ammonium bromide, NH4Br. Easily sol, in H-O with absorption of much

heat.

1 pt. NH ₄ Dr dissolves in pts. H ₂ U at t					
ta	Pts H ₂ O	to.	Pts HrO	to.	Pts. H ₂ O
10 16	1 51 1 39	30 50	1 23 1 06	100	0 78
(Eder, W. A. B. 82. (2) 1284.)					

NH4Br+Aq containing 41.09% NH4Br is sat, at 15°, (Gerlach.)

Sp gr of NH₄Br+Ag at 15°. % NH₄Br % NH4Br Sp. gr. Sp gr. 0326 20 1 1285

1Ó 1 0652 30 1 1921 1 2920 15 1 0960 41 99 (Eder.)

(Hager, Comm. 1883.) 25 g. NH₄Br+50 g. H₂O lower the temp.

from 15.1° to -1.1°. (Rüdorff.)

Sol. in liquid NH₂ at -50°. C R, 1901, **133**. 713) (Moissan

23

Very sol. in liquid NH₂ (Franklin, Am. Ch. J. 1898, **20**, 826.) Sl. sol. in alcohol.

1 pt. NH4Br dissolves in 32.3 pts. alcohol (0.806 sp. gr.) at 15°; 9.5 pts. at 78°. (Eder,

La.) 100 pts. absolute methyl alcohol dissolve 12.5 pts. at 19°; 100 pts. absolute ethyl al-cohol dissolve 3.22 pts. at 19°. (de Bruyn, Z. phys. Ch. 10, 783)

Solubility in mixtures of methyl and ethyl alcohol at 25°.

P = % methyl alcohol in the solvent. G=g. NH₄Br in 10 cc. of the solution S = sp. gr of the sat. solution at 25°/4°

Р *	G	8
0 00 4 37 10 40 41 02 80 69 84 77	0 255 0.299 0.321 0.506 0.813 0.847	0 8065 0 8083 0.8117 0 8252 0.8501 0.8508
91 25	0 934	0 8551
100 00	0.983	0 8605

(Heiz, Z anorg, 1908, 60, 156.)

Solubility in mixtures of methyl and propyl alcohol at 25°

P = % propyl alcohol in the solvent. G = g NH_4Br m 10 cc. of the solution. S=Sp. gr. of the sat. solution at 25°/4°.

0 11 11 23 8 65 2 91.8 93 75	0 983 0 851 0 690 0 308 0 128 0 125 0.095	0 8605 0 8524 0 8426 0 8184 0 8097 0 8089 0 8059			
(H 1-)					

(Herz, L.c.)

Solubility in mixtures of propyl and ethyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g NH_4Br in 10 cc. of the solution. S=Sp. gr. of the sat solution at 25°/4°,

P	G.	S
0 8.1 17 85 56.6 88.6 91 2 95 2	0 255 0 251 0 237 0 163 0.111 0.105 0 104 0 095	0 8065 0.8062 0 8052 0 8048 0 8042 0 8049 0.8059 0 8059

(Herz, lc.)

Sol. in 809 pts. ether (0.729 sp. gr.). (Eder, l.c.) Sol, m acetone. (Eidmann, C. C. 1899. II, 1014); (Naumann, B 1904, 37. 4328.) Insol in benzonitrile (Naumann, B 1914,

47. 1370.) Insol, in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Insol. in ethylacetate. (Naumann, B. 1910, 43. 314.)

Ammonium tribromide, NH4Br2.

Gives off Br in air. Sol. in H2O. (Roozeboom, B. 14, 2398.) Decomp. in the air. Very sol. in H₂O. (Chattaway, Chem. Soc. 1915, 107, 106.)

Ammonium antimony bromide, 3NH,Br, 2SbBr: Easily sol in abs. alcohol. (Caven, C. C.

1905. II, 293.) 7NH₄Br, 3SbBr₈. Easily sol. in abs. alcohol. (Caven, C. C. 1905. II, 293.) See also Bromantimonate, ammonium.

Ammonium bismuth bromide, NH4Br, B1Br3 +H₂O.

Deliquescent. Decomp. by H2O. Sol. in alcohol. (Nicklès, C R. 51. 1097.)

Ammonium cadmium bromide, NH4Br, CdB12+12H2O.

Sol, in 0.73 pt. H₂O, 5.3 pts. abs. alcohol, 280 pts. ether (sp. gr. 0.729), and 24 pts alcohol ether (1:1). (Eder, Dingl. 221. 89) Sol. in H₂O without decomp. between 16 and 110.1°

100 pts. of the solution contain at:

100 pts. of the

solution contain

. 160.0 14.70 62.67 9.48

1° 14.8° 52.2° 110.1° 53 82 58.01 65 32 75.83 pts of the salt. (Rimbach, B. 1905, 38, 1555.)

4NH4Br, CdBr2. Sol. in 0.96 pt H4O, from which it is pptd. by alcohol or ether. (Eder.) Solubility in H₂O at t°. Below 160° the salt is decomp. by H₂O;

at 160° it is sol. in H2O without decomp

fo.				Solid phase
	Pts. Cd	Pts. Br	Pts. NH	Solid phase
0.8	14.72	50.46	6 67	Double salt+NH,Br
13.0	14.94	51.48	6 85	a
44.5	15.01	53.85	7.35	66
		55.28		
		50 50		

(Rambach, B. 1905, 38, 1558.)

Double salt

Not sol. in HBr+Aq without decomp. (Rimbach.) Not sol without decomp, in LiBr+Aq, CaBra+Aq, MgBra+Aq, NiBra+Aq, or mide.

CoBr2+Aq, even though very cone, solutions are used. Sol. without decomp. in ZnBr2+ A. (Rimbach, B. 1905, 38, 1571.) Ammonium chloromolybdenum bromide,

2NH.Br. Cl.Mo.Br. Decomp. by pure H2O. Can be crystallized from HBr+Aq Apparently sol without decomp. in alcohol. (Blomstrand.)

Ammonium cuprous bromide.

4NH₄Br, Cu₂Br₂. Fairly stable in air. 2NH4Br, Cu2Br2+H2O Fairly stable in air. (Wells, Z. anorg. 1895, 10. 159.)

Ammonium cuprous bromide ammonia, NH Br. Cu Br. 3NH

(Fleurent, C. R. 1891, 113, 1047.)

Ammonium cupric bromide, 2NH4Br, CuBr. $\pm 2H_*\Omega$. Very sol. in H2O. (de Koninck, B. 21.

777 R) Ammonium fridium bromide.

See Bromiridate, ammonium.

Ammonium iron (ferric) bromide, (NH4)FeBr4+2H2O.

Very deliquescent, sol. in H₂O. (Walden, Z. anorg, 1894, 7, 332.)

Ammonium lead bromide, 12NH, Br. 7 PbBr. $+7H_{2}O.$ Decomp. on air, or with cold H2O (André,

C. R. 96, 1502.) 6NH, Br. PbBr. +HO, Decomp, by cold

7NH₄Br. PbBr₂+11/2H₄O. Stable on air; decomp, by cold H.O. (A.) None of the above compounds exist. (Wells, Sill Am. J. 146, 25.)

2NH₄Br, PbBr₂. Decomp. by H₂O. Sol. in conc. KOH+Aq and in strong acids. (Fonzes-Diacon, Bull. Soc 1897, (3) 17.351.) NH₄Br, 3PbBr₂. (Wells)

Ammonium magnesium bromide, NH,Br. $MgBr_2+6H_2O$

Deliquescent. Sol. in H₂O. (Lerch, J. pr. (2) 28, 338)

Ammonium mercuric bromide. 2HgBr2, NH4Br

Decomp, by H₂O into its constituent salts. (Ray, Chem. Soc. 1902, 81, 648.)

Ammonium molybdenum bromide, 2NH Br. MoBrs+H.O.

Easily sol. in H₂O (Rosenheim, Z. anorg. 1905, 46, 322.)

Ammonium molybdenum bromide chloride. See Ammonium chloromolybdenum bro-

Ammonium osmium bromide. See Bromosmate, ammonium. Ammonium osmyl bromide, (NH4),O5O,Rr.

Sol. in H₂O. (Wintrebert, A. ch. 1903, (7) 28, 95)

Ammonium osmyl oxybromide. (NH4),O8O,Br2.

(Wintrebert, A. ch. 1903 (7) 28, 117) Ammonium palladium bromide.

See Bromopaliadate, ammonium, and Bromonalladite, ammonium,

Ammonium platinum bromide. See Bromoniatinate, ammonium. Ammonium rhodium bromide.

See Bromorhodite, ammonium.

Ammonium selenium bromide. See Bromoselenate, ammonium.

Ammonium tellurium bromide. See Bromotellurate, ammonium.

Ammonium thallic bromide, NH4Br, TlBr2+ 2H.O. Sol. in H₂O. (Willm.)

Efflorescent. +4H2O. Sol. in H₂O. (Nicklès.) +5H₂O. Sol. in H₂O. (Nicklès.)

Ammonium stannous bromide (ammonium bromostannite), NH.Br. SnBr.+H.O. Sol. in H.O. (Benas, C. C 1884, 958.) 2NH₄Br, SnBr₂. Sol. in H₂O. (Raymann and Preis, A. **223**. 323.)

+H₂O. Sol in H₂O (Benas, l.c.) 2H₂O. (Richardson, Am. Ch. J. 14. 96.) NH Br, 2SnBr2(?). (Benas)

Ammonium stannıc bromide, 2NH4Br, SnBr4 See Bromostannate, ammonium.

Ammonium uranvl bromide, 2NH4Br, UO2Br2 $+2H_{2}O.$ Very deliquescent, and sol. in H2O. (Sendt-

ner.)

Ammonium zinc bromide, 2NH₄Br, ZnBr₂. Deliquescent, and sol. in H2O. (Bödcker, J. B. 1860, 17.

+H₂O. Very deliquescent, and sol. in H₂O. (André, A. ch. (6) 3, 104.) +xH₂O. (Ephraim, Z. anorg, 1908, 59. 66.) 3NH₂Br, ZnBr₂. Sol. in H₂O. Decomp.

only by great dilution (Jones & Knight, Am. Ch. J 1899, 22. 136.) +H₂O. Not hygroscopic. (Ephraim, Z. anorg. 1908, 59, 66.

Ammonium bromide arsenic trioxide. See Arsenite bromide, ammonium. Ammonium bromide mercuric chloride, NH.Br. 2HgCla.

Ppt. (Råv. Chem. Soc. 1902, 81, 649.)

Ammonium bromide mercuric iodide. 2NH4Br, HgI2. .

Decomp. by H2O. Sol in alcohol without decomp. (Grossmann, B 1903, 36, 1602.) 3NH4Br, 2HgI2. Decomp by HgO. Sol. in alcohol without decomp. (Giossmann, B. 1903, 36, 1602.)

Ammonium lead bromochloride, NH,PhoBr,Cl.

Decomp. by H.O. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17. 350.) NH4Pb4Cl4Br Decomp by H2O. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17, 349)

Ammonium bromachloroiodide, NH-ClBrI

Very stable; sol in H₂O.' (Chattaway, Chem Soc. 1915, 107, 108.)

Ammonium lead bromoiodide, NH4PbBrI2+ 2H₂O and NH₄Pb₂BrI₄. Decomp, by H2O. Sol. in conc. KOH+Aq and in strong acids. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17. 352)

Ammonium bromiodobromide, NH.BrIBr. Decomp, in the air. Sol in ether. (Jackson, Am. Ch. J. 1900, 24, 28)

Ammonium chloride, NH.Cl

(Sal-ammoniac.) Not deliquescent Sol. in H₀O with reduction of temp

11 May WART FURUSERION OF SERIES

Sch. in 2.2 by fas. Ho (Wennel)

Sch. in 2 by fas. do in 2 by fas. ho (M. R. and F.)

Sch. in 3 bits of 3 ha 3 fr. in (M. R. and F.)

Sch. in 3 bits of 3 ha 3 fr. in (M. R. and F.)

Sch. in 3 bits of 3 ha 3 fr. in (M. R. and F.)

NEGO 1-4a gain at 10 poly. (M. R. 2)

Sch. in 12 by fas. ho (M. R. and F.)

Sch. in 12 by fas. ho (M. R. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and F.)

Sch. in 12 by fas. ho (M. and

(Riller

NH4Cl+Aq sat in the cold contains 14 3% NH4Cl. NH.Cll+AG 88. in the Cons.

(Fourtroy)
Soi in 1 pt. H₂O at 113 5°, b-pt. of sat. solution.
(Griffiths)
Soi. ln 2 7 pts. H₂O at 18 75°, forming a included of 1.08
sp. gr. (Karston, 1840)
Soi. ln 2.727 pts. H₂O at 10°. (Gron's Handbuch)

100 pts. H₂O at 718 mm pressure and t^o dissolve pts NH₄Cl.

	t°	Pts. NH ₄ Cl	t°	Pts. NH₄Cl	to	Pts NH ₄ Cl	t°	Pts. NH ₄ C
•	0 10 20	28 40 32.84 37 28	80 40 50	41 72 46 16 50.60	60 70 80	55 04 59 48 63 92	90 100 110	68.36 72.80 77.24
	-		CA	lunad C	D B	0 500)		

(Alluard, C R. 59. 500)

Solubility in 100 pts. H ₂ O at t°.						Sol	ubılıtı	of N	H₄Cl 1n	H_2O	at t	٠.			
t°	PES	40	Pts NH,CI	ŧ°	Pla	t°	NHC		t°		100 g	H ₄ Cl in of the ution	s	olid	phase
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	29 7 30.0 30 8 31 0 31 8 32 2 32 6 33 3 3 33 3 34 1 34 5 34 5 34 8 35 2 35 6 36 0	30 31 32 33 34 35 36 37 38 40 41 42 43 44 46 47	41 4 8 42 2 7 43 1 6 44 4 9 45 3 45 6 2 7 47 6 48 8 0 0	60 61 62 63 64 65 66 67 70 71 72 73 74 75 76	55 2 55 7 56 2 57 2 57 7 58 2 57 7 58 2 59 7 60 2 61 7 62 3 62 8 63 4 63 9	90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	71 3 71 9 72 5 1 73 7 74 3 74 3 75 5 1 76 7 77 8 6 7 79 9 80 5 81 2 81 8	#-	- 1 - 3 - 4 - 6 - 8 - 9 - 11 - 13 - 14 - 15 - 16 - 15 - 12 - 10 - 7	25 70 05 45 4 25 7 9 9 4 0 0 3	2 2 4 6 9 7 11 13 15 16 18	78 98 75 6 6 6 6 7 1 1 1 3 7 1 1 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7		Ice	TH ₄ Cl
18 19 20 21 22 23 24	36 4 36 8 37 2 37 6 38 0 38 4 38 8	48 49 50 51 52 53 54	49 5 49 9 50 4 50 9 51 3 51 8 52 3 52.8	78 79 80 81 82 83 84	64 5 65 1 65.6 66 2 66 7 67 3 67 8	108 109 110 111 112 113 114 115	82 5 83 1 83.8 84 4 85 1 85 7 86 4	100	2 : 1 : 0 : Mee	aburg	22 22 22 , Z. an	.3 .6	NH.	₄C1	3) at 30.°
26 27 28	39 3 39 7 40 1 40 5 40 9	55 56 57 58 59	53 2 53 7 54 2 54 7	85 86 87 88 89	68.4 69 0 69 6 70 2 70 7	115 65		Spec.	gra	vity o	f NH	Cl+Aq ° (Z. az ff at 19°	. G:	= aci	ording
(1)	Aulder	, cal	culate	l fro	m his	wn and lel 186	other	NH		Sp g	, '	NHC		Sp. 1	gr
ouse						lei 100 Dat t°	±. 3(.)	%	L	G .	S	%	G	_	s
to	N.	ets H ₄ Cl	to.	N	Pta. H ₄ C!	to	Pts NE ₄ Ct	1 2 3	1.0	0632 094 8	.0029 .0058 .0087	18 19	1 05 1.05	367 648	1.0495 1 0523 1 0551
6:	2 3		10.8 31 6	3 4	3 9 2 2	64 9 90 6	57 9 67 2	4 5 6 7	1 0				1 06 1 06		
(Lundstrom, Pogg 138, 315, NH,Cl.+A, sat, at 13-16° contains 26.16%, NH,Cl. 1v, Hause, J pr. 103, 114) 109, 239, 113, 72 pis HgC at 18°. (Sehnf, A. 109, 230, 113, 72 pis HgC at 18°. (Sehnf, A. Sat. NH,Cl.+Aq at 75° contains 38,23%, NH,Cl.+Aq at 15° contains 38,23%, NH,Cl.+Aq sat. at 20° contains 20,5%, NH,Cl. 40, 234, 240, 240, 240, 240, 240, 240, 240, 24					8 9 10 11 12 13 14 15 16	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	2481 2781 3081 3370 3658 3947 4325 4524 4805	0233 0263 0293 0322 0351 0380 0409 0438 0467	24 25 26 26 26 27 27 28 29 30	1 07 1 07 1 07 1 07 1 07	029 304 375 658	1 0687 1 0714 1 0741 1 0768 1 0794 1 0802 1 0846			
Sc	olubilı	ty 11	H ₂ O : 1000 n			100 a	п О	For				ions, se 4Cl+Ac			s Dict.
	t°			solv	e -	dissol g. NH	ve	% N			gr !gr	% NE			. gr
	$\begin{array}{c} 3.5 \\ 25 & 0 \\ 50 & 0 \end{array}$		10 15 16	$\frac{15.2}{19.7}$		31.2 38.8 49.6	5	1		1.	0142 0289 0430	20 25			0571 0710
	(Biltz	and	Mare	ıs, Z	. anorg	. 1911,	71. 169	.) •	(K	ohlra	ısch, V	V. Ann.	1879	1.)	

Sp. gr at 20°/4° of a normal solution of NH₄Cl = 1 01454 (Haigh, J. Am. Chem. Soc 1912, **34**. 1151.)

NH₂Cl+Aq contaming 6 52% NH₄Cl has sp gr. 20°/20° = 1 0195. (Le Blanc & Rohland, Z phys. Ch 1896, 19. 272.)

Temp of maximum	g mol. NH ₄ Cl ₁ n,
density of NH ₄ Cl+Aq	1000 g. H ₁ O
2 640°	0 1899
0 055°	• 0 5407

(de Coppet, C. R. 1900, 131, 178.)

Sp. gr. of dil NH₄Cl+Aq at 20.004° and 731 mm. (corr.) Conc =g. equiv NH₄Cl per l. at 20.004°.

Sp. gr.	1
1 000,000,0 1 000,001,8 1 000,003,7 1 000,009,3 1 000,018,5 1 000,036,9	-
	1 000,000,0 1 000,001,8 1 000,003,7 1 000,009,3 1 000,018,5

(Lamb and Lee, J Am. Chem. Soc. 1913, 35, 1688.)

1 000,180,3

Sp. sr of dil NH-Cl+Aq.

0 0100

NH ₄ Cl g in 1000 g.	Sp. gr
of solution	16°/16°
0	1 000000
0 4431	1 000150
0 9061	1 000304
1 8085	1 000606
3 5947	1 001196
7 7845	1 002562
15 3425	1 004994
31 2364	1 010018

(Dijken, Z. phys. Ch. 1897, 24. 107.)

B-pt. of NH₄Cl+Aq, containing pts. NH₄Cl to 100 pts. H₂O. G=according to Gerlach (Z, anal. 26, 439); L=according to Legrand (A, ch. (2) 59, 436)

Bpt.	G	L	B-pt	G	L					
101° 102 103 104 105 106 107 108	6 5 12 8 19 0 24 7 29 7 34 6 39 6 45 0	7.8 13 9 19 7 25 2 30.5 35 7 41 3 47 3	109° 110 111 112 113 114 114 2 114.8	50 6 56 2 61 9 67 8 74 2 81.3	53 5 59 9 66 4 73.3 80.5 88 1 88 9					

Sat NH₄Cl+Aq boils at 115.8° at 718 mm. pressure (Alluard, C. R. 59. 500.)

NH₄Cl+Aq containing 74.2 pts. NH₄Cl to 100 pts. H₂O forms a crust at 113°, highest temperature observed, 114 8° (Gerlach, Z anal 26, 426.)

NH,Cl+Ag containing 10% NH,Cl boils at 101 7°; 20% NH,Cl, at 104 4°. (Gerlach.) NH,Cl+Ag containing 10.6% NH,Cl gree off NH, at 37° (Leeds, Am. J. Sci. (3) 7. 197.)

When NH₄Cl+Aq is boiled, or even evap. on water bath, a little NH₃ is expelled. (Fresenius.)

30 pts. NH₄Cl mixed with 100 pts H₂O lower the temp from 13.3° to -51°, that is

18 4*. (Rudorff, B. 2. 68)

Freezing-point of sat. solution is —15.4°, the same temp which is caused by mixing 25

pts. NH_cCl with 100 pts. snow. (Rudorff, Pogg. 122, 337)

Cone. HCl+Aq precipitates part of NH_cCl from sat. NH_cCl+Aq. (Vogel. J. pr. 2, 199)

Solubility of NH₄Cl in HCl+Aq at 0° NH₄Cl = mols. NH₄Cl (in milligrammes) dissolved in 10 cc of the liquid; HCl = mols. HCl (in milligrammes) dissolved in 10 cc. of the liquid.

NH ₄ Cl	HCI	Sum of mols	Sp gr
46 125	0 0	46 125,	1 076
43.6	2 9	46 5	1 0695
41 0	5.5	46.5	1 0705
39 15	7 85	47.0	1 0715
36 45	10 85	47 30	1 078
27.37	21 4	48 77	1 078
10 875	53 0	63 875	1 106
8.8	61 0	69 8	1 114

(Engel, Bull. Soc. (2) 45, 655)

Solubility of NH₄Cl in HCl+Aq.

t.	HCl concentra- tion g mol per 100 g HsO	Weight NH ₄ Cl dissolved in 1000 g. H ₂ O	Molecular solubility
0° "" "" 25° "" ""	0 1/4 1/2 1 0 1/2 1/2 1	298 40 286 43 271 23 245 35 395 10 380 85 366 00 339 05	5.59 5 36 5.08 4 60 7 40 7 13 6 85 6 35

(Armstrong & Eyre, Proc R. Soc. (A.) 84,

Solubility in NH₄OH+Aq. NH₄Cl=mols. NH₄Cl (in mgs.) in 10 cc. solution; NH₅=mols. NH₅ (in mgs.) in 10 cc.

NH₄Cl+PbCl₂. Solubility of NH₄Cl and PbCl₂ in H₂O at 22°.

NH ₄ Cl (in NH ₄ = mole	n mgs.) in 10 s. NH _s (in mgs	cc. solution;	PþCl₂ í	in H	O a	t 22°.	лиыньу	of March and
solution		.,,	g.	equiv	nlen He	5 - 1	0.	did phase
NHICI	NHs	NH ₄ C		Pb			ntu phase	
46.125 45.8 45.5 45.125 44.5 44.0 43.625 43.125 44.0 44.375 49.75 60.0	0 5 37 12 025 23 4 38.0 47 54 5 80 0 90 0 95 5 130 169,75	1 076 1 067 1 054 1 054 1 044 1 031 1 025 1 017 0 993 0 992 0 983 0 953 0 993	0 0 0 1 0 2 0 3 0 4 0 5 0 5 2 0 . 5 5 0 6 5 0 7		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	325 194 153 158 130 127 123 113 105	PbCl₂+	PbCl ₂ NH4Cl,2PbCl ₂
	Bull Soc (3) 6.		0.8		0 0			11
NH ₄ Cl+BaC pts. NH ₄ Cl+11 Pogg. 148, 467, Solubility of	1 0 1 2 1 5 2 0 2.5 3 0		0.0 0.0 0.0 0.0 0.0	080 075 073 077 092 112		44 44 44		
	Wt. per 100	Solid phase	4 0 5 0 6 0		0 0 0 0 0.0	296 173		"
-16 2° 16 0 19 30 24 40 26.	-16 2° 16 10 8.07 0 19 26 8 22 NH ₄ Cl+ 30 24 89 8.19 BaCl, 2H 40 26.93 8 40			7 0 0 0774 7 29 0 0898 NH ₄ Cl+NH ₄ Cl ₂ Pb6 7 29 0 0000 NH ₄ Cl (Bronstedt, Z. phys. Ch. 1911, 77, 132.)				NH,Cl,2PbCl _s NH,Cl
(Schreinemaker See, also BaC)	s, Chem. Weekbl. l ₂ +NH ₄ Cl under	1910, 7 , 333.) BaCl ₂ .	Solubil	ıty o	f l	H ₄ Cl H ₂ O a	and 2P t 100°.	bCl ₂ ,NH ₄ Cl ın
CdCl _s .	Cl ₂ . Solubility o		NH4Cl PbClz g. equivalent g. equiva			Pb g. equ	Cl: ivalent	
NH ₄ Cl+CuC H ₂ O at 30° in p	m cadmium chlo Cl ₂ . Solubility resence of varying	of NH.Cl in	in 1000 g solution	п 1000 в.	H ₂ O	in 1000 g solution	in 1000 g H ₂ O	Solid phase
CuCl ₅ .	0.1.4.4		1 277	1.4	04	0.160	0 176	NH₄Cl +2PbCl₂ H₂O
CuCl. NH.Cl	Bolid ph	1.50			()	Bronste	dt, l. c.)
1.9 28 6 3.6 25 9 7.7 19.8 10.5 16.5	3.6 25 9 CuCh, 2NH, Cl. 2H ₂ O					. Soh	ubility	of NH ₄ Cl and
12.3 14 9 15 6 12.1 19 9 9.4	"		10	In 10 mols.		1	6.1	
. 24 0 7.1 29.4 4 9 35.1 3,4	24 0 7.1 29.4 4 9			NH'C	g. mols	N N	non	d phase
41.4 2.1	OuOls, 2NH4Cl 2Hs OuCls, 2		25	27.5 42.1 52.9	55 56	.7 NH	4Cl+NI	H ₄ MgCl ₃ .6H ₂ O
(Meerbur	g, Z. anorg. 190	5, 45. 3)	(Biltz	and l	Ma	cus, Z.	anorg.	1911, 71. 170.)

NH CLI NaCI

Solubility	of	NH ₄ MgCl ₃ 6H ₂ O.	6H ₂ O	and	MgC

	In 1000	mol H ₂ O	
£°	g. mol NH4Cl	g mol MgCl ₂	Solid phase
3 5° 25° 50°	0 5 0 5 0 8	99 5 103 8 111 2	MgCl ₂ . 6H ₂ O+ NH ₄ MgCl ₂ 6H ₂ O

(Biltz and Marcus, Z. anorg. 1911, 71. 170.)

NH₄Cl+NH₄NO₃ 100 pts H₂O dissolve 29.1 pts. NH₄Cl+173.8 pts. NH₄NO₃ at 19 5°. (Rüdorff, B. 6, 482)

NH₄Cl+Ba(NO₃)₂. 100 pts H₂O dissolve at 18.5°-

	1	1 2		4	5	
NH ₄ Cl Ba(NO ₃) ₂	36 7			39 18 17 02	8 9	

sat. Ba(NO₃)₂+Aq treated with NH₄Cl;
 sat. NH₄Cl+Aq treated with Ba(NO₃)₂;
 simultaneous treatment of both salts with H₄O (Karsten.)

NH₄Cl+KNO₃. 100 pts. H₂O dissolve at

	1		2	3	3	:	4	į.	5		6	_
KNO, NH,Cl		9	30 44							7	34 38	
			74	89	75	66	78	46			73	0

1 and 5, according to Mulder; 2, set KNCy. +Aq treated with NH.Cl; 3, set KH.Cl+Aq treated with KNO; 4, simultaneous treatment of NH.Cl and KNO; (Karsten); 6, by warming solution with excess vf both salts, and cooling to 148°. The amount of evcess of one or the other salt has no influence. (Rüdorff)

NH₄Cl+NaNO₃. Slowly sol. in sat. NaNO₃+Aq, at first to a clear solution, but afterwards NaCl separates out. (Kaisten)

NH₄Cl+KCl. 100 pts. H₂O dissolve—

		(Rüdorff) 15°	(Karsten) 18 75°		
KCl NH₄Cl	:	16 97 28 90	34 4 16.27 . 29 83 37 02		
		(Rüdorff)	(Mulder) At b-pt.		
KCl .		19.1	58 5 21.9 .		

100 pts sat. solution of NH₄Cl+KCl contain 30.61 pts of the two salts at 13-16°. (v. Hauer, J pr 103.114.)

	1 2 1 11 0 21	200 pu	, 1110	umbor i c
	10-20°	(Mulder) 10°	10°	(v Hauer) 13-16°
NH₄Cl. NaCl.	35 8	19 50 30.00	33.3	18 8-20 2 24.6-26
		49 50		43 4-46

100 per U O dissolu

	(Karsten) 18 75°		(Rüdorff) 18 7°		(Mulder) At b-pt			_			
NH₄Cl NaCl	22 26		02	22 23	9	87	3	78. 22		40	. 4
	48	44		46	8			100	8		

Sp gr of sat. solution of NH₄Cl+NaCl is 1.179. (Kkrsten.) NH₄Cl+(NH₄)₂SO₄. 100 pts H₂O dissolve 26 8 pts. NH₄Cl+46 5 pts. (NH₄)₂SO₄ at 21.5°. (Rudorff, B. 6. 484.)

Solubility in (NH₄),SO₄+Ag at 30°.

solu	on of the from	Solid phase
% by wt. NH ₄ Cl	% by wt (NH4):804	Sould phase
0 6.86 14.62 17.60 17.93 19.07 19.97 22.3 24.06 29.5	44 36 15 28 6 25 69 25 81 23 22 21.3 16 33 12.72	(NH ₄) ₂ SO ₄ (NH ₄) ₂ SO ₄ +NH ₄ Cl NH ₄ Cl ""

(Schreinemakers, Z. phys. Ch. 1909, 69. 562.)

NH.Cl+CuSO. Sol in sat. CuSO.+Ag, at first to a clear solution, but a double sulphate of NH. and Cu soon separates. (Karsten.) NH.Cl+MgSO.4 Slowly and difficultly sol

in sat. MgSO₄+Aq with subsequent separation of double sulphate. (Karsten.)

NH₄Cl+K₅O₄. 190 pts. H₅O dissolve, at

18 75°—					~~	
	П		a	ь	c	
K ₂ 80 ₄ NH ₄ Cl	:	10.8	11 1 38 2	13 26 37.94	13 28 37 92	36 7
			49 3	51 20	51 20	

In (a) NH₄Cl was added to sat K₂SO₄+Aq In (b) K₂SO₄ was added to sat. NH₄Cl+Aq. In (c) NH₄Cl and K₂SO₄ were treated together with H₂O. (Karsten.)

100 pts. H2O at 14° dissolve 14 1 pts K₂SO₄+36 8 pts. NH₄Cl=50 9 pts. K₂SO₄+ NH.Cl. under all conditions. (Rudorff, Pogg. 148, 565,)

100 mto	H-O	dissolve	at hent

100 pts H ₂ O dissolve at bpt						
K ₂ SO ₄ . NH ₄ Cl	26 75	33 3- 33 9 90 4-111 8	87 3			
		123.7-145 7				

(Mulder)

NH₄Cl+Na₂SO₄ 100 pts. H₂O dissolve 28 9 pts NH4C1+24.7 pts Na₂SO₄, if NH₄C1 +Aq sat. at 10° is sat with Na2SO4 at 11° 100 pts H2O dissolve 31 8 pts NH4Cl+ 9.0 pts. Na₂SO₄, if Na₂SO₄+Aq sat. at 10° is sat. with NH₄Cl at 11°. (Mulder, J. B 1866. 68)

Sol. in sat Na₂SO₄+Aq. (Karsten.) Sol, in sat ZnSO4+Aq (Karsten.)

Sl. sol. in liquid NH₃ at -50°. (Moissan. C. R. 1901, 133. 713) Very sol in liquid NH₂ (Franklin, Am.

Ch. J 1898, 20. 826.) Very sl sol, in absolute alcohol. 100 pts. alcohol of 0 939 sp. gr dissolve— at 4° 8° 27° 38° 56° 11.2 12.6 19 4 23 6 30.1 pts. NH₄Cl

(Gerardin, A ch. (4) 5. 129)

(Kirwan) Though somewhat sol in pure absolute

alcohol, NH Cl is absolutely insol. in alcohol in presence of methyl amine chlorides (Winkles, A. 93. 324) 100 pts absolute methyl alcohol dissolve

3 35 pts at 19° 100 pts. absolute ethyl alcohol dissolve 0.62 pt. at 19°. (de Bruyn, Z. phys. Ch. 10, 783)

Solubility of NH.Cl in methyl alcohol

t°	Alcohol concen- tration, mol g alcohol for 1000 g. H ₂ O	Solubility in 1000 g. H ₂ O	Molecular solubility
0°	_0_	298 40	5.59
**	74	297 35	5 57
	1 1/2 1	296 55	5 55
64	1	292 65	5 47
6.6	3	283.15	5 30
25°	0	395.10	7 40
44	1/4	394 75	7.39
**	12	393 85	7 37
64	1 1	392 90	7 36
64	3	386 20	7 23

(Armstrong and Eyre, Proc. R. Soc. Lond. (A) 84, 127.)

or in emiliance	onor at o .
Solubility in	Molecular
1000 g H ₂ O	solubility
298 40	5 59
295 50	5 53
291 95	5 47
286 40	5 37
	Solubility in 1000 g H ₂ O 298 40 295 50 291 95

-c NTT Cil -- -- thuil alaahal at O'

(Armstrong and Evre. lc)

See also ammonium cupric chloride. Solubulety of NH Cl in propel alcohol

1 5	continuity of 14114O1 in propyr atomor.					
t°	Alcohol concen- tration, mol g alcohol for 1000 g H ₂ O	Solubility in 1000 g H ₂ O	Molecular solubility			
0° "	0 1/4 1/2 1 1	298 46 295 40 291 30 284 00	5 59 5 53 5 45 5 33			
25°	0 14 12	395 10 393.50 390 80	7 40 7 37 7 32 7 31			

(A) mstrong and Eyre, lc)

Solubility in mixtures of methyl and ethyl alcohol at 25° P = % methyl alcohol in the solvent

G=g NH₄Cl in 10 cc. of the solution S=sp gr of the sat. solution at 25°/4°

r	G	
0 00	0 0533	0 7908
4 37	0 0583	0 7909
10 40	0 0658	0 7910
41 02	0 118	0 7957
80 69	0 217	0 8020
84.77	0 227	0 8026
91 25	0 247	0 8040
100 00	0 276	0 8062

(Herz, Z anorg, 1908, 60, 155.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P=% propyl alcohol in the solvent. G=g. NH₄Cl in 10 cc. of the solution S=Sp. gr of the sat. solution at 25°/4°

P	G	S
0	0 276	0 8062
11 11	0 231	0 8035
23 8	0 182	0 8008
65 2	0 071	0 8005
91 8	0 026	0 8002
93 75	0 023	0 8000
100 00	0 018	0 8009(?)

(Herz. Z. anorg 1908, 60, 157.)

Solubility in mixtures of propyl and ethyl alcohol at 25°.

P = % propyl alcohol in the solvent
G = g, NH₂Cl in 10 cc of the solution
AS = Sp gr of the sat solution at 25°/4°

P	G	S
0 8 1 17 85 56 6 88 6 91 2 95.2 100	0 0533 0 0505 0 0455 0 0312 0 0210 0 0203 0 0190 0 0.0177	0 7908 0 7910 0 7916 0 7963 0 7963 0 8001 0 8003 0 8009

(Herz, Z. anorg. 1908, 60, 160.) Insol, in ether and CS₂ (Fordos and Gélis.

A. ch. (3) 32, 393)
Very sl. sol. in acctone. (Krug and M'El-

roy, J anal. appl Ch 6. 184.)

Solubility of NH₄Cl in acetone+Aq at 25°
A=cc, acetone in 100 cc acetone+Aq.

A = co, acetone in 100 cc acetone+Aq. NH₄Cl = millimols. NH₄Cl in 100 cc of the solution

A	NH ₄ Cl	Sp. gr
0 10 20 30 40 46 5 lower to 2 phases	585 1 534 1 464 6 396 7 328 5 283 7	1 0793 1 0618 1 0451 1 0263 0 99984 0 97998
85 7 supper 90	18 9 9 4	0 8390 0 8274

(Herz, Z. anorg 1905, 45, 263.)
Solubility of NH₄Cl in glycerine+Aq at 25°.
G=g, glycerine in 100 g, glycerine+Aq
NH₄Cl = millimols. NH₄Cl in 100 cc. of the solution

G	NII4CI	Sp. gr
0 13 28 25 98 45 36 54 23 83 84	585 1 544 6 502 9 434 4 403 5 291 4 228 4	1 0793 1.0947 1 1127 1 1452 1 1606 1 2225 1 2617

(Herz, l c.)

Insol m acetone (Naumann, B. 1904, 37.
4328.); (Eidmann, C C 1899. 11, 1014.)
Insol m anhydrous pyridine Sol m 97%
pyridine+Aq, 95% pyridine+Aq and m 93%
pyridine+Aq. (Kahlenberg, J Am. Chem.
Soc. 1908, 30, 1107)

Insol, in CS₁ (Arctowski, Z. anorg. 1894, 6. 257.)
Very sol, in ethyl amine (Shinn, J. phys Chem 1907, 11. 538)

Insol. in methyl acetate. (Naumann, B-1909, 42, 3790.)

Insol. in ethyl acetate. (Naumann, B-1910, **43**. 314) Insol. in benzonitrile. (Naumann, B 1914,

47. 1370)
Sol in formic and. (Zanninovich-Tessarin, Z. phys Ch. 1896, 19. 251)

Ammonium antimony chloride, SbCl₆(NH₄)₂, SbCl₆(NH₄)₂.

SbCl₄(NH₄)₃.

Ppt Decomp. by H₄O (Weinland, B.

1905, 88. 1085.) SbCl₄(NH_d), SbCl₅, NH₄OH. Very deliquescent; al sol m H₂O with decomp. (Weinland, B. 1901, **34**. 2635)

Ammonium antimonous chloride, NH₄Cl, SbCl₂.

Deliquescent (Dehérain, C. R. 52, 734.) 2NH₄Cl, SbCl₃+2H₂O Permanent in dry au; decomp. by much H₂O (Poggiale) 3NH₄Cl, SbCl₃+3H₃O, As above

Ammonium antimonic chloride, 3NH₄Cl, SbCl₆.

Decomp by H₂O. (Dehérain, C. R. 52. 734.) 4NH.Cl. SbCls Decomp by H₂O. (D.)

4NH₄Cl, SbCl₅ Decomp by H₂O. (D See also Chlorantimonate, ammonium.

Ammonium antimony platinum chloride, (Sb, Pt)Cl₈(NH₄)₂ Ppt (Weinland, B 1905, 38, 1084)

Ammonium antimony tin chloride, (Sb,Sn)Cl₆(NH₄)₂.

Ppt. (Weinland, B. 1905, 38. 1085.)
Ammonium arsenyl chloride, 2NH₄Cl, AsOCl

+½H₂O. (Wallace, Phil. Mag (4) **16.** 358)

Ammonium bismuth chloride, NH₄Cl, 2B₁Cl₃. Deliquescent. (Dehéram, C R **54**, 724.) 2NH₄Cl, BrCl₃ Decomp. by H₂O. (Arppe.) Pogg. **54**, 237.)

+2½H₂O. (Rammelsberg) 3NH₄Cl, BiCl₂ Decomp. by H₂O (Arppe.) 5NH₄Cl, 2BiCl₃. (Rammelsberg)

Ammonium bismuth potassium chloride, 2NH₄Cl, BiCl₈, KCl. (Dehérain, C. R. **54**, 724.)

Ammonium cadmium chloride, NH₄Cl, CdCl₂ Solubility of NH₄Cl, CdCl₂ in H₂O at t°

Pts. by weight in

t°		100 pts of solution						m 2	oluti	100	8	sio a	nols.	
		7	1	Cd		NH		80.00		53		対策点		
										42				
16	0	15	07	15	82	2	56	33	45	50	26	3.	.83	
#1	2	17	46	18	61	2	89	38	96	63	83	4	86	
83	8	19	73	20	92	3	34	43	99	78	.54	5	98	
105	9	23	52	24	70	4	01	52	58	109	33	8	30	

(Rimbach, B 1897, 30, 3076.)

+1/2H₂O. Sl sol. in H₂O, alcohol, and wood spirit. (v. Hauer, W. A. B. 13, 449) 4NH,Cl, CdCl₂ Sol in II₂O. (v Hauer)

Decomp by H₂O to NH₄Cl, CdCl₂. Decomp. increases with decrease of temp. At 3 9° approximately wholly decomp to NH₄Cl, CdCl₂. At 113.9° very nearly all is 4NH₄Cl, CdCl₂ (Rimbach, B. 1897, 30. 3077)

Solubility of 4NH,Cl, CdCl₂ in H₂O at t°

t°	Pts dissolved in 100 pts hy weight of solution.						
	Cd	CI	NH4				
3 9 16 1 40 2 58 5 112 9 113 9	5 75 6 93 9 91 12 50 16 66 16 51	18 17 20 26 23 84 26 53 31 79 32 71	7 37 7 97 8 92 9 35 10 78 11 30				

(Rimbach, B 1897, 30, 3071) Sol, without decomp in 37.3% HCl(d= 1.19) and 24.8% HCl(d=1.125) (Rimbach,

B. 1905, 38, 1569)

Solubility of 4NH4Cl,CdCl2+NH4Cl in H4O at to.

t _o	In 100	pts. by w	Composition of the solid phase			
	Pts by wt. Cd	Pts by wt Cl	Pts, by wt NH;	Moi % NELCI	Mol % Tetra- salt	
1 0 13 2 40.1 58 2	2 82 2 76 3 16 3 51	17 11 18 84 22 56 25 21	7 82 8 71 10 49 11 72	59 0 74 0 71 0 69 0	41 0 26 0 29 0 31 0	
	/ D L	and D	1000 95	1200 \		

Solubility of 4NH4Cl, CdCl2+NH4Cl, CdCl2 Solubility of 2NH4Cl, CuCl2 in H2O at to.

m n ₂ o at t											
	'In 100 p	ts. by wt solution	Composition of the solid phase								
ţ°	Pts, by wt Cd	Pts. by wt Ci	Pts. by wt. NH.	Mol. % Mono- salt	Mol. % Tetra- salt						
1 1 14.0 40.7 58 5	5 34 7 12 10 24 12 50	17 62 19 86 23 82 26.53	7 27 7 84 8.85 9 35	49 6 47 0 77.0	50 4 53 0 23 0						

(Rimbach, B, 1902, 35, 1300.)

Sol. without decomp. in 50% LiCI+Aq, 33.3% CaCl2+Aq and 50% MgCl2+Aq. (Rimbach, B. 1905, 38, 1569.) Ammonium chloromolybdenum chloride,

2NH.Cl. Cl.MosCl.+2H.O Decomp by pure H.O; can be crystallised from HCI+Aq. (Blomstrand.)

Ammonium chromium chloride, 2NH₄Cl, CrCl₄+H₅O.

Sol. in H2O with decomp. (Neumann, A +6H₂O = 2NH₄Cl, [CrCl₂ 4H₂O]Cl+2H₂O.

Hygroscopic. Decomp by H₂O and by alcohol. (Weinland, B. 1907, 40, 3770) Ammonium cobaltous chloride, NH4Cl, CoCl2

+6H₂O • Deliquescent in moist air Very easily sot. in H₂O (Hautz, A, 66, 284) Ammonium cobaltous chloride ammonia,

NH4Cl, CoCl2, NH4. (F Rose) Ammonium cuprous chloride, 4NH4Cl Cu2Cl2.

Decomp. in the air. 4NH₄Cl, 3Gu₂Cl₂ Decomp by H₂O, not by alcohol. (Ritthausen, J. pr. 59, 369.) Fairly stable in air (Wells, Z. anorg. 1895, 10. 158.)

Ammonium cupric chloride. NH,Cl, CuCl2

Solubility of NH4Cl, CuCl2 in absolute alcohol at 25°.

	% CuCla	Solid phase	% CuCl	Solid phase
İ	4 65	NH,Cl+NH,Cl,	12 90	NH Cl, CuCl
	4.74	CuCl ₂ NH ₄ Cl+NH ₄ Cl, CuCl ₂	34 92	NH ₄ Cl, CuCl ₂ -
		Out 12		Ouoisi Ositigoi

6.45 NH Cl, CuCl₂ |34 50 (Foote and Walden, J. Am. Ch. Soc. 1911, 33.

1032) +2H₂O Sol in 2 pts. H₂O (Hautz, A. 66, 280,)

Does not exis t. (Meerburg, C C. 1904, II. 2NH2Cl, CuCl2+2II2O Easily sol. in H2O. also in alcohol, even when absolute. (Cap

and Henry, J pr 13. 184.)

	g. 2NH Cl. CuCle in 100 g. of the solution	t°	Solid phase
2	3 87 5.88 8 78	-1.5° -2 48 -3 95	100
	9 97 13.12	-4.60 -6.40	n u
	15.84 17.64 20 12	-8 04 -9 24 -10 80	# #
	≈20 3 20 46	±-11 0 -10	100 +2NH4Cl, CuCl2.2H2O 2NH4Cl, CuCl3.2H2O
	21.16 22 02 24 26	-5 0 +12	# #
ı	25 95 27 70	20 30	
,	30.47 33 24 36 13	40 50 60	a a
	39 25 43.36	70 80	
į.	(Mee	rburg, Z an	org. 1905, 45. 8.)

Somewhat sol, in liquid NH, and Kraus, Am. Ch. J 1898, 20, 827.) Is the only hydrate of 2NH₄Cl, CuCl₂ existing between -11° and +80°. (Meerburg, C. 1904. II, 1362.) +3H.O. (Bourgeois, Bull, Soc. 1898, (3) 19,786)

Ammonium cupric chloride ammonia. 2NH4Cl, CuCl2, 2NH2.

Decomp, by H₀O, less easily by alcohol. Decomp, by acids (Ritthausen)

Ammonium indium chloride, 2NH4Cl, InCla $+H_{2}O$

Easily sol in H2O. (Meyer)

Ammonium iodine chloride, NH,Cl. ICl. More sol. in H₂O than KCl, ICl₃. (Filhol, J. Pharm. **25**, 441; Berz J. B **20**, (2) 110)

Ammonium iridium trichloride. See Chloriridite, ammonium,

Ammonium iridium tetrachloride. See Chloriridate, ammonium.

Ammonium iron (ferrous) chloride, NH.Cl. FeCl₂. Easily sol in H₂O; msol m alcohol (Wink-

lea.) Ammonium iron (ferric) chloride, 2NH.Cl.

FeCl₃+H₂O Deliquescent. Sol. in H2() without decomp. (Fritzsche); sol, in 3 pts H₂O at 18.75° (Abl.) Sol. in H2O (Walden, Z. anorg, 1894, 1. 332.)

Ammonium iron (ferric) potassium chloride, NH₄Cl, FeCl₂, KCl+1½H₄O. Min. Kremersite. Deliquescent

Ammonium lead chloride, NH4Cl, 2PbCl1+

Sol. in H2O without decomp. (?) (André, C. R. 96, 1502.) 6NH₄Cl, PbCl₂+H₂O. 9NH₄Cl, PbCl₂+1½H₂O. 9NH₄Cl, 2PbCl₂+2½H₂O.

10NH₄Cl, PbCl₂+H₂O. 11NH₄Cl, 2PbCl₂+3½H₂O. 18NH₄Cl, PbCl₂+4H₂O

All these salts are decomp, by H₂O. (André A. ch. (6) 3. 104.) Of the salts prepared by André, only one

NH₄Cl, 2PbCl₂ exists. (Wells, Sill Am. J 146, 25.) Solubility determinations show that NH₄Cl, 2PbCl₂ is the only double salt formed at 25° (Foote, Am Ch J 1907, 37, 121.)

 NH_4Cl , $PbCl_2+1/2H_2O$. (Wells, l.c.) Ammonium lead tetrachloride.

See Chloroplumbate, ammonium.

(Franklin | Ammonium magnesium chloride, NH4MgCla $+6H_2O = NH_4Cl, MgCl_2 + 6H_2O.$ Deliquescent. Very sol. in H₂O. Sol. in 6 pts. cold H2O. (Foureroy.)

Solubility in NH-Cl+Ag at to.

Dec 1000 M | Tr O

	Let 1000 1101 HBO						
t°	Mol. NH ₄ Cl	Mol. MgCla					
3 5° 25 0 50 0	27 5 42 1 62 9	55 7 56.4 59 1					

(Biltz, Z. anorg, 1911, 71, 170.)

4NH4Cl,5MgCl2+33H2O. Sol. in H2O. (Berthelot and André, A. ch. (6) 11, 294.)

Ammonium manganous chloride, NH4Cl, MnCl+1/4H.O.

Sol. in 1½ pts. H₂O at ordinary temp. (Hautz, A. 66, 280), does not exist. (Saunders. Am. Ch. J. 14, 134 2NH₄Cl, MnCl₂+H₂O Sol. in H₂O (Ram-

melsberg), does not exist. (Saunders) +2H2O. Easily sol, in H2O, but with decomp. into NH Cl and MnCl, (Saunders.)

Ammonium manganic chloride, 2NH₄Cl, MnCl₁.

Sol. m H₄O; less sol. m NH₄Cl+Aq (Neuman, M 1894, 15, 490.) stable +H₂O. Decomp by H₂O Sol. in HCl apparently without decomp. (Rice, Chem. Soc. 1898, 73, 260)

Ammonium mercuric chloride, 2NH.Cl. HgCl₂+H₂O (sal alembroth). Sol. in 0 66 pt. H₂O at 10°, and in nearly

Sol. in 0 86 pt. H₂O at 10°, and in nearly werey proportion of hot H₂O. NH.Cl. HgCl₃. Easily sol. in H₂O. +½H₂O. Easily sol. in H₂O. (Kane.) 2NH.Cl. 3HgCl₃+4H₂O. Easily sol. in H₄O. (Holmes, C. N. 6. 361.) NH.Cl. 2HgCl₃. Very sol. in H₄O. (Rây, Chem. Soc 1902, 81. 648.) NH.Cl. 5HgCl₃. (Strömholm, J. pr. 1902, (2) 86. 441.) (2) 66. 441.)

Ammonium mercuric sodium chloride, NH.Cl. HgCl₂, 4NaCl (?).

Sol in H₂O. (Kossmann, A. ch. (3) 27.

Ammonium molybdenum chloride, 2NH,Cl. MoCl₂+H₂O. Very sol. in H₂O. Nearly insol. in alcohol and ether. (Chilesotti, C. C. 1903. II, 652.) See also Ammonium chloromolybdenum

chloride. Ammonium molybdenum chloride iodide. •

· See Ammonium chloromolybdenum iodide.

Ammonium molybdenyl chloride, 2NH4Cl, MaOaCla+2HaO. (Weinland, Z. anoig. 1905, 44. 98.)

2NH4Cl, MoOCl3 Sol, in H2O, msol. m HaO sat with HCl (Klason, B 1901, 34, 149.

Ammonium nickel chloride, NH₄Cl, N₁Cl₂+ 6H.O.

Dehouescent in moist air. Easily sol in HaO (Hautz.) 4NH,Cl. NiCl++7H₂O (?).

Ammonium osmium tetrachloride. See Chlorosmate, ammonium.

Ammonium osmium sesquichloride. Sec Chlorosmite, ammonium.

Ammonium osmyl chloride, (NH4),080,024. Sol, in H.O Decomp, by HCl (Wintrehert, A. ch. 1903, (7) 28, 92)

Ammonium osmyl oxychloride,

(NHL),OsO,Clo. Very sl sol, in H₂O Sol in KOH+Aq with decomp. (Wintrebert, A. ch. 1903, (7) 28, 116.)

Ammonium natladium chlorides. See Chloropalladate, ammonium and chloro-

palladite, ammonium. Ammonium rhodium dichloride, 4NH4Cl,

RhCl+316H4O Sol in H₂O, but decomp slowly (Willing B. 16, 3033.)

Does not-exist. (Leidié, A, ch. (6) 17. 277.) Ammonium rhodium trichloride.

See Chlororhodite, ammonium.

Ammonium rhodium chloride ammonium nitrate, Rh.Clo, 6NH4Cl, 2NH4NO3. See Chlororhodite nitrate, ammonium.

Ammonium ruthenium trachloride. See Chlororuthenite, ammonium.

Ammonium ruthenium tetrachloride. See Chlororuthenate, ammonium. Ammonium tellurium chloride.

See Chlorotellurate, ammonium,

Ammonium thallic chloride, 3NH,Cl, TICl, Easily sol. in H₂O. (Willm) +2H₂O. Easily sol. in H₂O and alcohol. (Nicklès, J. Pharm. (4) 1, 28.)

Ammonium thorium chloride, 8NH4Cl, ThCl4

4-8H₂O. Sol. in H2O. (Chydenius,)

Ammonium tin (stannous) chloride (ammonium chlorostannite), NH4Cl, SnCl2+H2O. Decomp. by H₂O. Resemble (Richardson, Am. Ch. J. 14, 93.) Resembles K salt.

2NH4Cl, SnClo+HoO, Sol in IIoO, but decomp by borling, (Rammelsberg) Contains 2H₂O. (Richardson) 4NH₄Cl, SnCl₂+3H₄O Decomp by H₂O.

(Poggale, C R 20, 1182) Does not exist (Richardson)

Ammonium tin (stannic) chloride.

See Chiorostannate, ammonium. Ammonium titanium chloride, 2NH, Cl. TiCl.

+2H₀O * Pot decomp in moist air, sol in fuming HCl, insol in ether (Rosenheim, Z. anoig.

1901, 26, 242.) Ammonium titanium chloride, 3NH,Cl, TiCl,

Sol in H.O. 6NH4Cl, T1Cl4 Sol in H2O. (Rose)

Ammonium tungsten chloride, (NH₄)₃W₉Cl₉ == 3NH4Cl, 2WCla

Easily sol in H₀O. Nearly insol in most organic solvents. (Olsson, P 1913, 46, 577)

Ammonium uranvi chloride. Very deliquescent, and sol, in H₀O (Peli-

2NH4Cl,(UOs)Cl2+2H2O Solution at 15° contains in 100 g. 3.51 g., NH₁, 40.67 g UO₂ and 19 15 g. Cl, hence there is considerable decomp. (Rumbach, B 1904, 37, 466)

Ammonium vanadium chloride, 2NH-Cl. VCl₁+II₂O Difficulty sol. in H2O and alcohol (Stahler,

B 1904, 37, 4492)

Ammonium zinc chloride, NH,Cl. ZnClo+ 2H₂O

Deliquescent. Very sol. in H₂O (Hautz, A 66, 287

2NH₄Cl. ZnCl₂. Sol. in H₂O. (Rammelsberg, Pogg 94, 507) +H₄O Deliquescent in moist air Sol. in 2/2 pt cold H4O with absorption of heat. Sol. in 0 28 pt hot H₂O (Golfier-Bassayre, A.

ch 70. 344), sol. in 1/2 pt. cold H2O. (Hautz, A. 66, 287) 3NH4Cl, ZnCl, Sol in H2O. (Marignac.) +H₄O. (Berthelot, A ch. (6) **11**. 294.) 4NH₄Cl, ZnCl₂ (Dehérain.)

6NH₄Cl, ZnCl₂+2/₃H₂O. (Berthelot, l.c.)

Ammonium chloride zinc oxychloride, 2ZnCl2,

8NH4Cl, ZnO Sol. in a little H2O, but decomp, by excess. (André)

3ZnCl₂, 10NH,Cl, ZnO. As above (André, A. ch. (6) 3, 88)

Ammonium chloride antimony fluoride, NH₄Cl, SbF₃.

Easily sol, in H₂O. (de Haen, B 21, 901 R.) Ammonium chloride arsenic trioxide. See Arsenite chloride, ammonium.

Ammonium chloride bismuth bromide. 3NH4Cl, BiBra+H2O

Deliquescent, decomp by H₂O (Muir.) Chem Soc. 31, 148.) 2NH4Cl, BiBr2+3H2O Decomp. by H.O

(Mur 5NH₄Cl, 2B₁Br₃+H₂O. Decomp. by H₂O (Muir.)

Ammonium chloride chromic oxychloride, 2NH₃Cl, CrOCl₃

Sol m cone HCl Decomp in the air without decomp (Weinland, B. 1906, 39 4045.)

Ammonium chloride cuprocupric thiosulphate. 2NH4Cl, Cu2O, CuO, 3S2O,

cuprocupric. Ammonium chloride lead iodide, 3NH4Cl.

PbI2. Decomp with H₂O (Behrens, Pogg, 62, 4NH₄Cl, PbI₂+2H₂O. Decomp. with H₂O.

(Poggiale, C R 20, 1180) Ammonium chloride mercuric bromide,

NH4Cl, HgBr2 (Edhem-Bev. Dissert 1885.)

Ammonium chloride platinum sulphite.

See Chloroplatosulphite, ammonium, Ammonium chloride tin (stannous) bromide,

2NH,Cl, SnBr_{*}+H_{*}O Sol in H₂O. (Raymann and Press, A. 223. 323)

Ammonium dichloroiodide, NH₄Cl₂I Slowly decomp when exposed to dry an

at ord temp Very sol in H2O. (Chattaway, Chem Soc. 1915, 107, 107)

Ammonium tetrachloroiodide, NH₂CLI Decomp, in the air. (Chattaway, Chem. Soc. 1915, 107, 107)

Ammonium lead chlorosodide, NH₁PbClI₂+ 2H₂O and (NH₄)₂PbCl₂I₂+2H₂O. Sol. in KOH+Aq and in strong acids; de-

comp. by H₂O. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17, 348.)

Ammonium fluoride, NH4F. Abundantly sol, in H₂O; sl. sol. in alcohol.

(Marigmac, Ann. Min (5) 15, 221) Insol in liquid NH₃ (Ruff and Geisel, B. 1903, 36, 820

Almost insol in liquid NH2 at 50°. (Moissan, C R, 1901, 133, 713) Sol. in methyl alcohol. (Carrara, Gazz.

ch. it 1896, 26, 119) Ammonium hydrogen fluoride, NH4F, HF. Deliquescent in moist air. Sol in H2O.

Ammonium antimony fluoride, 2NH, F. SbF. Deliquescent, sol. in 0.9 pt cold H2O Insol in alcohol or ether (Fluckinger, A. 84, 248.

NH4F, 4SbF; 3 pts sol in 2 pts H2O (Raad and Hauser, B. 1890, 23. R 125) NH4F, SbF4 Easily sol, in H2O (Marignac, A 145, 239)

Ammonium bismuth fluoride, 2NH4F, BiF3. Insol. in H₂O. Rather difficultly sol in acids. (Helmholt, Z anorg 3. 115)

Ammonium cadmium fluoride, NH₄F, CdF₂ Insol in H2O Sol in acids on boiling (Helmholt, Z anorg, 3, 115)

See Thiosulphate ammonium chloride, Ammonium chromium fluoride, 3NH4F, CrF, Easily sol in H₂O Sl sol in NH₄F+Aq.

(Petersen, J pr (2) 40. 52) 2NH₁F,CrF₃+H₂O. (Wagner, B. 19. 896)

Ammonium cobaltous fluoride, 2NH4F, CoF2 $+2H_{0}0$ Sl sol in H₂O (Wagner, B. 19, 896) Easily sol. in H₂O (Helmholt, Z. anorg. 3. 132)

Ammonium columbyl fluoride.

See Fluoxycolumbate, ammonium. Ammonium columbium fluoride oxyfluoride, 3NH4F, CbF4, CbOF2

See Fluoxycolumbate columbium fluoride, ammonium.

Ammonium copper fluoride, 2NH₄F, CuF₂+ 2H2O. Insol. in H2O (Helmholt, Z. anorg 3.

Nearly insol, in H2O but decomp, thereby (Haas, Ch Z. 1908, 32. 8.)

Ammonium glucinum fluoride, 2NH4F, GIF2. Sol. in H₂O. (Mangnac, A. ch. (4) 30. 51) Very sol in H₂O (Helmholt, Z. anorg. 3. Ammonium iron (ferrous) fluoride, 2NH4F,

FeF₂. (Wagner, B. 19. 896) NH₄F, FeF₂+2H₂O. (W.)

Ammonium iron (ferric) fluoride, 2NH_eF, FeF.

More sol, in H2O than the corresponding K compound Decomp. by boiling. (Nickles, J. Pharm. (4) 7. 15) 3NH₄F, FeF₃. Sl. sol in H₂O (Marignac, A. ch. (3) 60. 306.) Easily sol. in acids. (Helmholt, Z anorg. 3, 124.)

Ammonium manganic fluoride, 2NH.F.

More sol, than the K salt. (Nicklès, C. R. L65. 107)

True-composition is 4NH4F, Mn2F6. (Christensen, J. pr. (2) 34.41) See also Fluomanganate, ammonium.

Ammonium manganyl fluoride. See Fluoxymanganate, ammonium. Ammonium molybdenum fluoride.

Insol in H₂O Sol in HCl+Aq, (Berzelius.) See also Fiuomolybdate, ammonium.

Ammonium molybdenyl fluoride. See Fluoxymolybdate, ammonium.

Ammonium nickel fluoride, 2NH,F, N1F+ 2H,O. Sol. in H2O. (Wagner, B, 19, 896)

Easily sol. in H₂O (Helmholt, Z anorg 3. Ammonium scandium fluoride, (NH₄)₃ScF₄,

Easily sol in H₂O. Aqueous solution is not decomp. by boiling Decomp. by acids. (R. I. Meyer, Z anorg. 1914, 86, 275) Ammonium silicon fluoride.

See Fluosilicate, ammonium.

Ammonium silver fluoride, 2NH,F, AgF+ H_2O

Not hydroscopic. Sol in H2O; sol in cone. NH4F+Aq. Sol. m alcohol. (Grützner, Arch. Pharm 1900, 238. 3) I5NH₄F, AgF+4H₂O. More deliquescent than NH₄F. (Bohm, Dissert 1906.)

Ammonium tantalum fluoride. See Fluotantalate, ammonium,

Ammonium tantalyl fluoride. See Fluoxytantalate, ammonium. Ammonium tellurium fluoride, NH4F, TeF4.

Decomp. by H₂O. (Högbom, Bull. Soc. (2) 35, 60.) Ammonium tin (stannous) fluoride, 2NH,F.

 SnF_*+2H_*O Sol, in H₂O (Wagner, B. 19, 896.)

Ammonium tin (stannic) fluoride, 2NH,F.

See Fluostannate, ammonium. Ammonium titanium sesquifluoride. See Fluoutanate, ammonium.

Ammonium titanyl fluoride. See Fluoxypertitanate, ammonium. Ammonium tungstyl fluoride.

See Fluoxytungstate, ammonium. Ammonium uranyl fluoride.

See Fluoxyuranate, ammonium. Ammonium vanadium sesquefluoride.

See Fluovanadate, ammonium.

Ammonium vanadyl fluoride. See Fluoxyvanadate, ammonium.

Ammonium zinc fluoride, 2NH4F, ZnF2 Sol in H₂O (R Wagner.) +2H₂O. Very sl sol in H₂O Easily sol in dil. acids (Helmholt)

Ammonium zirconium fluoride. Sec Fluozirconate, ammonium,

Ammonium fluoride manganic oxyfluoride, 2NH4F, MnOF, Precipitate. (Nicklès.)

See also Fluoxymanganate, ammonium.

Ammonium fluoride molybdenum /roxide. 2NH4F, MoO2. Decomp. by H₂O. (Mauro, Gazz, ch. it.

18. 120.)

Ammonium fluoride tungsten oxyfluoride, See Fluoxytungstate, ammonium.

Ammonium fluoride tungsten oxyfluoride ammonium tungstate, 4NH4F, WO9F2, (NH₄)₂WO₄

See Fluoxytungstate tungstate, ammonium. Ammonium fluoride vanadium oxyfluoride. See Pluoxyvanadate, and fluoxyhypovanadate, ammonium.

Ammonium hydroselenide, NH. HSe Sol in H₂O with decomp. (Bineau, A. ch. (2) 67, 229.

Ammonium hydrosulphide, NH4SH. Sol. in H₂O and alcohol. Solutions decomp

Ammonium hydroxide, NH₂OH.

See Ammonia, Ammonium imidosulphamide. (SON HINH

(Hantzsch, B. 1905, 38, 1033.)

Ammonium sodide, NH.I. Very deliquescent. Sol. in 0.60 pt H₂O. (Eder, Dingl. 221. 89) Sp. gr. of aqueous solution of NH I at 18° containing

50%NH4I. 1 0652 1 1397 1 2260 1 3260 1.4415

(Kohlrausch, W. Ann 1879, 1.) NH.I+Aq containing 12.51% NH.I has

sp. gr. 20°/20° = 1 0846. NHJ + Ag containing 19.19% NH₄I has sp. gr 20°/20° = 1.1859. (Le Blanc and Rohland, Z. phys. Ch. 1896, 19, 279.)

19. 279.)
Very easily sol in liquid NH₂ (Franklin, Am. Ch. J. 1898, 20. 826.)
Very sol. in liquid NH₂ at -50°. (Moissan, C. R. 1901, 133, 713.)

Sol. in SOCl₂. (Walden, Z anoig 1900, 25, 216) Sol. in liquid SO₂. (Walden, Z. anorg 1902, 30, 160)

Sol. in 4 0 pts. abs alcohol (Eder, lc)
"210" ether (Eder, lc)
"20" alcohol-ether (1 1). (Eder,

lc.)
Sol. in acetone. (Eidmann, C.C. 1899, II.)
1014.); (Naumann, B. 1904, 37, 4328)

Insol. in ethyl acetate (Naumann, B. 1910, 43, 314)
Sl sol in benzonitrile (Naumann, B. 1914, 47, 1369)

Ammonium duodide, NH4I2

Sol. m alcohol, ether, CS₂, and KI+Aq, less sol. in chloroform. (Guthrie, Chem. Soc (2) 1. 239)

Ammonium truodide, NH4I2.

Sl. deliquescent. Sol in little H₂O, but decomp. by much H₂O. (Johnson, Chem Soc. 33, 397)

Ammonium antimony iodide, NH_4I , SbI_2+ $2H_2O$

Decomp. by H₂O (Nicklès, C. R 51, 1097)

3NH₄I, 4SbI₃+9H₂O Decomp by H₂O, with separation of SbOI. Sol. in HC₂H₃O₅, HCl, and H₂C₄H₄O₈+Aq Decomp. by CS₂. (Schaffer, Pogg 109. 611.) 3NH₄I, 8bI₃+3H₄O As above

3NH₄I, SbI₂+3H₂O As above 4NH₄I, SbI₁+3H₂O. As above

Ammonium bismuth iodide, NH₄I, BiI₃+ H₂O

Deliquescent; decomp. by H₂O. (Nicklès, C R 51, 1097.) 4NH.I. BiI₃+3H₂O. As above. (Lingu.

Pogg. 111. 240.) 2NH.J. Bil₃+2½H₂O. Decomp by H₂O, or MCl, MB₃, or MI+Aq (Nicklès, J. pr. (2) 39. 116.)

Ammonium cadmium iodide, 2NH₄I, CdI₂+ 2H₂O

Deliquescent. (Croft.) Sol. at 15° in 0 58 pt. H_zO, 0 70 pt abs. alcohol., 8 9 pts ether (sp. gr 0.729), and 1.8 pts alcohol-ether (1 . 1). (Eder, Dingl. 221, 89.)

100 pts. of the solution in H₂O contain 85 97 pts. of the salt at 14.5°. (Rimbach, B. 1905, 38. 1563.)

NH₄I, CdI₄+ $\frac{1}{2}$ H₂O Sol. at 15° in 0 90 pt H₄O, 0.88 pt. abs alcohol, and 2.4 pts. ether (sp. gr 0 729). (Eder, Lc) +H₄O (Grossmann, Z anorg 1902, 33. 154.)

Ammonium chloromolybdenum iodide, 2NH₄I, Cl₄Mo₅I₂+2H₂O

Decomp. by H₂O. Cryst, from HI+Aq. (Blomstrand)

Ammonium cuprous iodide, 2NH₄İ, Cu₂I₂+ H₂O

Decomp on the air, or by H₂O, or alcohol. (Sagher, C R 104, 1440) +½H₂O. Decomp, by H₂O with separation of Cu₂I₂ (Gossner, Zert. Kryst 1903, 38. 501)

Ammonium cupric iodide ammonia, 2NH₄I, CuI₂, 2NH₂+2H₂O.

Insol. in H₂O or alcohol, sl. sol in NH₄OH +Aq

+6H₂O. Unstable. (Saglier, C. R. 104. 1440) NH₄I, 2CuI₂, 3NH₃. (Fleurent, C. R. 1891. 113. 1047)

Ammonium iridium duodide, 2NH₄I, IrI₂.

Insol in cold or hot H₂O, and in alcohol.

Sol in warm dil. acids (Oppler)

Ammonium iridium sessusiodide.

See Iodiridite, ammonium.

Ammonium uridium tetraiodide. See Iodiridate, ammonium.

Ammonium lead sodide, NH₄I, PbI₂+2H₂O. Decomp by much H₂O. (Wells, Sill. Am. J. 146, 25) 4NH₄I,₃PbI₂+6H₂O. Sl sol. in H₂O. (Mosmer, C. R. 1895, 120, 444.)

20. Ap., 57. Di. 2+0.1.0. Sol. In H₂U. (Mosnier, C. R. 1895, 120. 444.)
Sol in H₂O with decomp Sol. in strong KOH+Aq and in strong acids. (Fonzes-Diacon, Bull. Soc 1897, (3) 17. 347.)

Ammonium magnesium iodide, NH₄I, MgI₂ +6H₂O. Very deliquescent. (Lerch, J. pr. (2) 28.

338.)
Antmonium mercuric iodide, NHJ, HgI-+

H₂O
Decomp. into its constituents by H₂O.
(Boullay, A ch. (2) 34. 345.)
Sol without decomp. in alcohol and ether.
NH₄I, 2HgI₂ Decomp. by H₂O. Sol. in

KI+Aq. Very sol. m alcohol, ether and nitrobenzol (Low, Zert Kryst, 51, 138)

Ammonium silver iodide, 2NH₄I, Agl
Deliquescent Decomp. by H₂O. (Pog-

Ammonium thallic iodide, NH₄I, Tii₃.

Sol in H₂O (Nicklès, J. Pharm. (4) 1. 32.)

Ammonium tin (stannous) iodide, NH₄I, SnI₄.

Decomp. by small aint H₂O but completely solution in a large aint (Boullay, A ch (2) 34.

376.)

+1½H₂O. (Personne.)

grale.)

Ammonium zinc iodide, 2NH₄I, ZnI₂ Extremely deliquescent, and sol in H₂O. (Rammelsberg, Pogg 43. 665.)

NH.I. ZnI.+41/3H.O Hydroscome (Ephraun, Z anong 1910, 67, 384)

Ammonum sodide arsenic /ssovide. See Arsenite jodide, ammonium.

Ammonium cohalt nitride.

See Ammonum cobalt azoimide.

Ammonium ruthenium dihvdronitrosobromide, NO Ru₂H₂(NH₃)₆Br₃ 2HBr Ppt. (Buzard, A. ch. 1900, (7) 21, 363)

Ammonium ruthenium nitrosochloride. 3NH,Cl 2HCl NOBusHsCls

Ppt (Brigard, A eb 1900, (7) 21, 354)

Ammonium ruthenium dahydronitrosochloride, NO RusHs(NHs)sCl, 2HCl Ppt (Brigaid, A eh. 1900, (7) 21, 358)

Ammonium peroxide, (NH4)2O2

M-pt -2° Sl. sol in ether without decomp (D'Ans, B 1913, 46, 3076) Sol. in alcohol; insol in ether, decomp slowly in aq solution. (Melikoff, B 1897, 30.

Ammonium hydrogen peroxide, (NH4),O2,

Decomp at ordinary temp. (Melikoff, B 1898, 31, 447)

+H₂O. Unstable, deliquesces at ordinary temp ; sol in alcohol; insol in light petroleum. (Mehkoff, B 1898, 31, 152)

Ammonium selenide, (NH4)2Se.

Sol, m H2O with decomp (Bineau, A. ch (2) 67, 229.)

Stable in the air. Sol, in H₂O; aq solution decomp, slowly (Lenher and Smith, J. Am. Chem. Soc 1898, 20, 277.)

Ammonium hydrogen selenide, NHiHSe. Sol. in H.O (Fabre, C. R. 103 269)

Ammonium monosulphide, (NH4)2S. Decomp. on air. Sol. in H₀O, but solution

decomposes rapidly Very sol in hquid NH, (Franklin, Am. Ch. J. 1898, 20, 826.)

Ammonium disulphide, (NH4)2S2

Sol_in_H_O with decomp. Does not exist (Bloxam, Chem. Soc 1895, 67, 293)

Ammonium tetrasulphide, (NH4)2S4.

Easily sol in H₂O. Cone solution is stable. dil solution decomp, on air. Easily sol in alcohol without decomp., but solution decomp, on the air more rapidly than the aqueous solution (Fritzsche, J. pr 32. 313.) +½H₂O. When dissolved in H₂O, it is at once dissociated with deposition of S. (Bloxam, Chem Soc. 1895, 67. 303)

Ammonium pentasulphide, (NH4)2S5

Decomp on air Sol in H.O with sensing tion of S Sol. in alcohol without decomp but solution decomposes quickly on standing (Fritzsche, J pr 32, 313.

Rapidly decomp. by H₂O with separation S (Bloxam, Chem Soc. 1895, 67, 298.) +H₂O. Decomp. by H₂O with separation of S (Bloxam, Chem Soc 1895, 67, 298)

Ammonium hentasulphide, (NH₄)₄S₇

More stable on air, and less easily decom-

posed by H₂O than (NH₄)₂S₄ +1'₁H₂O. Decomp by H₂O with separa-tion of S. Slowly attacked by dil. HCl+Aq. (Bloxam, Chem Soc. 1895, 67, 307)

Tetrammonium heptasulphide, (NH4)4S7+ 4H.O.

Sol. in H₂O. Solution can be kept for a long time without depositing S (Bloxam, Chem Soc 1895, 67, 298.)

Diammonium cnnegsulphide, (NH,) So+ 1/2H2O.

Decomposed by H₂O with separation of S. Not attacked by boiling dil HCl+Aq on account of formation of a hard crust of S on the crystals (Bloxam, Chem. Soc 1895. 67.306)

Tetrammonium enneasulphide, (NH_s)_sS_c. Solution in H₂O deposits crystals of

(NH₄)₂S₄ on standing. (Bloxam, Chem. Soc 1895, 67, 302.) +3½H₂O Decomp. by H₂O with separation of S (Bloxam, Chem. Soc. 1895, 67.

Ammonium polysulphides.

Cone NH₂+Aq dissolves H₂S to form (NH₄)₂S,2NH₄SH On dilution more H₂S is absorbed to form (NH₄)₂S,4NH₄SH, then (NH₄)₂S,8NH₄SH, then (NH₄)₂S,18NH₄SH and finally NH,SH. (Bloxam, Chem Soc. 1895, 67, 284)

Ammonium copper sulphide. (NH₄)₂S,

2CuS₂ (?). Sol. in warm H2O, but decomp, on standing, Warm KOH+Aq acts similarly; sl. sol. in NH₄OH+Aq, Na₂CO₄+Aq, or absolute al-

cohol. Insol in ether. Decomp. by dil. acids. (Priwoznik, B. 6, 1291, (Frincenik, B. 6, 1291.) Correct formula is NH₃CuS₄ Sl. sol. in H₂O Decomp by conc. and dil. ands. Easily sol in NaOH Sl sol. in alcohol. (Biltz, B 1907, 40, 976)

Ammonium gold polysulphide, AuSaNH.

Ppt (Hofmann, B 1903, 36, 3092; B. 1904, 37, 245)

Ammonium iridium pentadecasulphide, . IrS15(NH4)3.

Ppt. (Hofmann, B. 1904, 37, 247.)

Ammonium palladium undecasulphide, PdS₁₁(NH₄)₈+½H₂O

Ppt. (Hofmann, B. 1904, 37, 248)

Ammonium platmum pentadecasulphide, PtS₁₅(NH₄)₂+2H₂O.

Can be washed with CS₂ without decomp. Sol in alcohol Insol in ether (Hofmann, B 1903, 36, 3091)

Ammonium stannic sulphide.

See Sulphostannate, ammohium.

Ammonium telluride, NH₄HTe
Easily sol in H₄O. (Bincau, A. ch. (2) 67.

Easily 801 in H₄O. (Bineau, A. ch. (2) 67 229.)

Ammonium sulphide ammonia, (NH₄)₂S₃ 2NH₄ Very unstable (Bloxam, Chem Soc 1895, 67, 294)

Ammonium acssulphomelid, (NSO ONH₄)₃

(Hantzsch and Stuer, B. 1905, 38. 1039)

Ammonplatindiamine comps. See Platiniriamine comps.

Ammondisulphonic acid, NH₃(SO₂H)₂.

Known only in its salts (Claus, A 158.

Known only in its salts (Claus, A 158, 52 and 194)
Contains 2 at. H less, and is identical with imidosulphonic acid NH(SO₂H)₂, which see

(Raschig, A. 241, 161.)

Ammontrisulphonic acid, NH₂(SO₂H)₃

Known only in its salts. (Claus. A. 158.

52 and 194)
Contains 2 at H less, and is nitrilosulphonic
acid N(SO₂H)₁, which see (Raschig, A. 241,
161.)

Ammonietrasulphonic acid, NH(SO₂H)₄
Known only in its salts (Claus, A. 158, 52 and 194.)

Does not exist, but was impure nitrilosulphonic acid, which see. (Raschig, A. 241. 161)

Anhydroarseniotungstic acid, H₂AsW₆O₂₈. See under Arseniotungstic acid.

Anhydrooxycobaltamine chloride,

 $Co_2(NH_3)_{10}$ $\begin{bmatrix} Cl \\ O(OH) \end{bmatrix}$ Cl_4+H_2O .

Easily sol. in H₂O, but decomposes after a few minutes; can be recrystallized from dil HCl+Aq Precipitated from sat. H₂O solution by cone. HCl+Aq, or alcohol. (Vortmann, M. Ch. 6. 404)

 $\operatorname{Co}_2(\operatorname{NH}_4)_{10}$ $\left(\begin{array}{c} \operatorname{Cl} \\ \operatorname{OH} \end{array} \right) \operatorname{Cl}_4$ Sol. in $\operatorname{H}_2\operatorname{O}$. (Vortmann.)

Anhydrooxycobaltamine chloride mercuric chloride, Co₂(NH₂)₁₀(ClO₂H)Cl₄, 3HgCl₂. Can be recryst, from very dil hot HCl + Aq.

chloroplatinate, Co₂(NH₃)₁₀(ClO₂H)Cl₄,
 2PtCl₄.

Can be recrystallized from H₂O containing Cl

-chloronitrate,

Co₂(NH₂)₁₀Cl(O OH)(NO₄)₄+H₂O, Can be recrystallized from dil. HCl+Aq. Co₂(NH₂)₁₀Cl(O OH)Cl₂(NO₃)₂+H₄O. More easily sol. in H₂O than the preceding comp.

- chlorosulphate, Co₂(NH₂)₁₀Cl(O,OH)(SO₄)₂,

---- nitrate, Co₂(NH₃)₁₀(NO₃)(O.OH)(NO₂)₄ +H₂O

Sl sol in pure H₂O with immediate decomp. Can be recrystallized from H₂O containing HNO₃

— sulphate, [Co₂(NII₃)₁₀O . OH]₂(SO₄)₅, 2H₃SO₄+2H₄O SI sol. in cold H₂O. When crystallized from dil. H₃SO₄+Aq, is converted into— [Co₂(NH₃)₁₀O.OH]₁(SO₄)₄H₃SO₄+3H₃O,

which by further recrystallization from very dil H₂SO₄+Aq becomes—

 $[Co_3(N\dot{H}_4)_{10}\dot{O}.OH]_2(SO_4)_5+8H_2O.$ Sl sol. in cold $H_2O.$ (Vortmann.)

Anhydrophospholuteotungstic acid, H₂PW₃O₂₈ See under Phosphotungstic acid.

Antimonic Acid.

Metantimonic acid, HSbOs

Very sl. sol, in H₂O; sol in cone HCl+Aq; sl. sol in dil HNO₃+Aq; easily sol, in tartare sud+Aq; easily sol in hot KOH, or NaOH+Aq; completely insol in NH₂OH+Aq (Fremy, A. ch. (3) 23. 407.) Sl. sol in H₂O. Very sl. sol in KOH and K₂CO₂+Aq Insol, in NH₂OH+Aq. Insol.

in HNO₃ +H₃SO₄. Slowly sol. in cold, quekly in hot HCl+Aq. Sl sol in taitare and oxale seed and in KH_GO₄ +Aq. (Senderens, Bull Soc. 1899, (3) 21. 48.)

Bull Soc. 1899, (3) 21. 48.) Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Pyroantimonic acid, H₆Sb₂O₇

More sol. in H₂O and acids than H₂SbO₄, Sol. in cold NH₄OH, or KOH+Aq. (Fremy.) Slowly sol in cold H₂O.

5 88 g Sb₂O₅ in 1 l. H₂O at 15° 8.55 " " " 1 l " " 25° 21.30 " " " 1 l " " 60°

(Delacroix, J. Pharm. 1897, 6. 337-41.)

3043.)

Sl. sol in H₂O. Very sl. sol in KOH and Ppt (Beilstein and Blaese, Bull Ac St. K2CO2+Aq. Insol in NH4OH+Aq, and in HNO₄+H₂SO₄. Slowly sol in cold, quickly in hot HCl+Aq Sl. sol in tartaric acid, oxalic acid and KHC₂O₄+Aq. (Senderens, Bull. Soc. 1899, (3) 21, 48)

Orthogntimonic acid, HaSbO4

Sl sol, in H₂O Insol in NH₂OH+Aq Easily sol in KOH+Aq (Fremy)

Does not exist. (Raschig, B 18, 2745)
Has, however, been prepared by Daubrawa
(A. 186, 110), Conrad (C N. 40, 198), and Beilstein and Blaese (Bull. Ac St Petersb.

33.97). Very sol in H₂O (Delacroix, Bull Soc.

1899 (3) 21. 1049 Very sl. sol in H₂O, in KOH and K₂CO₃+ Aq. Slowly sol in cold, quickly in hot HCl+ Insol in NH OH+Aq, and in HNOs+ ILSO, SI sol. in tartaric acid, oxalic acid and KHC₂O₄+Aq (Senderens, Bull Soc. 1899, (3) 21, 52)

+1/2H₂O (Beilstein and Blaese.) According to Beilstein and Blaese only one antimonic acid, II3SbO4, exists

Tetrantimonic acid, $Sb_2O_3+4H_2O=H_8Sb_2O_4$. Slowly sol, in cold H₂O, Solution sat at to contains g Sb.O. per

litreg, Sb₂O₅ 5.88 8 3-8 75 21 30 53 89 Decomp in solution by heating to 100° or long standing in the cold to Sb2O6, 3H2O

(Delacroix, Bull Soc. 1899, (3) 21. 1049.) Insol. in H₂O. Very sl. sol in KOH and K₂CO₄+Aq. Slowly sol. in cold, quickly in hot HCl+Aq. Insol. in NH₄OH+Aq Insol. in HNO₃+H₂SO₄ Sl. sol in tartaric acid, oxalic acid and in KHC₂O₄+Aq (Senderens, Bull. Soc. 1899, (3) 21, 51)

Hezantimonic acid. $Sb_2O_4 + 6H_2O =$ $H_{12}Sb_2O_{11}$.

Sol in H2O to the extent of 22 g, Sb2Os per l, but on standing becomes turbed and a white powder is pptd. until finally only 3 g Sb₂O₈ are dissolved per l (Senderens, Bull Soc. 1899, (3) 21, 48-49,)

Antimonates.

a Antimonates From HSbO4. Some of the K and NH₄ salts are sol, in H₂O, the others are slightly sol, or insol Pyroantsmonales, Prom H_sSb₂O₂.

a class, insol. in H2O, but decomp, thereby except in presence of large excess of alkali (Fremy, A. ch. (3) 12. 499.) Probably do not exist (Beilstein and

Blaese.)

Aluminum antimonate, Al₂O₃, 3Sb₂O₄ (?), Ppt. Somewhat sol. in excess of Al salts

+Aq. Insol, in K₄Sb₂O₇+Aq

Petersb 33, 101 $AI(SbO_3)_3 + 7H_2O = AIH_0(SbO_4)_3 + 4H_2O$. Ppt. (B and B) Al₂O₃, Sb₂O₅+9H₂O. Ppt. (Ebel, B 22.

Ammonium antimonate, NH₂SbO₃+2H₂O₄ Insol to H₂O +21/2H2C. Insol. in H₀O (Senderens.

Bull, Soc. 1899, (3) 21. 56.) +6H₄O See (NH₄)₂H₂Sb₂O₇+5H₂O

Ammonium pyroantimonate, (NH4) Sb₂O₇ Known only in solution. (NH₄)₂H₂Sb₂O₇+5H₂O

Sol. in H₂O, but decomp, by standing or boiling into insol salt. Insol. in alcohol. (Fremy, J pr 45. 215). Composition is NH.SbO.+6H.O. according to Ruschig (B. 18. 2743)

Barium antimonate, Ba(SbO₃)₂.

Ppt Scarcely sol in H₂O. Slowly sol, in BaCl₂+Aq

+2H₂C Somewhat sol. in H₂O. Easily sol in HCl+Aq. (Delacroix, Bull. Soc. 1899, (3) 21. 1051

+5, or 6H₂O Ppt BaSb₄O₇+5H₂O. Sol in conc. HCl. (Delaeroix, Bull Soc. 1899, (3) 21. 1051,)

BaO, 38b₂O₂+5H₃O. Insol. in H₂O. In-completely sol. in HCl. (Delacroix, l.c.) BaO, 48b₂O₂+15H₂O. (Delacroix, l.c.) 9BaO, 108b₂O₂+18H₂O. Insol. in HCl+ Aq. (Delacrory, l.c.)

Bismuth antimonate, BiSbO4+H2O.

Ppt. Insol in H₂O, sol in HCl+Aq. (Cavazzi, Gazz ch. it 15. 37.) 3Bi₂O₂, Sb₂O₄+H₂O. Insol. in H₂O; sol in HCl+Aq. (Cavazzi)

2Bi₂O₄, Sb₂O₄ As above (Cavazzi.)

Cadmium antimonate, Cd(SbO₂) +2H₂O Insol. in H2O (Senderens, Bull. Soc. 1899, (3) 21. 56.)

+3½H₂0 Very sol, in H2O Sol. in HCl +Aq (Ebel, Dissert 1890.)

+5H2O. Insol, in H2O (Senderens, lc. +6H₂O Ppt, Insol in H₂O (Ebel, B. 22. 3043.)

Calcium antimonate, Ca(SbOa)2. Ppt

+5H₂O +5H₂O Ppt. (Heffter, Pogg. 86. 418.) +6H₂O Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) 21, 56. 3CaO, 2Sb2Os+6H2O. Min. Ullmanste.

Chromic antimonate, Cr/SbO₃)2+14H2O Ppt. (Beilstein and Blaese,)

Cobaltous antimonate, Co(Sb()₂)₂+5H₂O.

Insol in H₂O. Loses 3H₂O in the presence $Al(SbO_4)_1 + 15H_2O = AlH_4(SbO_4)_1 + 12H_2O$, of H_2SO_4 and passes into $Co(SbO_4)_2 + 2H_2O$, also insol in H₂O (Senderens, Bull Soc. 1899. (3) 21 55) +6H₂O Ppt. (Ebel, B. 22, 3043) +7H₂O SI sol in H₂O., Sl. sol in hoding +6H₂O

· solutions of cobalt salts +12H₂O Ppt (Heffter, Pogg 86, 448) Cobaltous hydrogen antimonate, CoH4(ShO4)2

 $+H_zO$ (Gorgeul, Ann Phys. Beibl 1897, 21, 198.)

Cupric antimonate, 3CuO, 28b₂O₅, Ppt (Beilstein and Blaese)

Cu(SbO₃)₂. Insol in H₂O, acids, or alkalies. (Berzehus) +2H₂O Insol in H₂O (Senderens, Bull

Soc. 1899, (3) 21. 55) +5H₂O. Ppt (Ebel. B. 22, 3043)

(Senderens, lc) Insol in H₂O CuO, 2Sb₂O₅+9H₂O Insol in H₂O. Sol in Sb₂O₅, 4H₂O+Aq. (Delacroix, Bull Soc.

1899, (3) 21, 1054.) 2CuC, 3Sb₂O₅+10H₂O Insol. in H₂O. Sol, in NH4OH and in triantimonic acid+Ag. (Delacroix, l. c.

CuO, 6Sb () + 16H O (Delacioix, lc) Cupric antimonate ammonia, Cu(SbO2)2,

 $4NH_a+4H_2O$ Insol. in H2O and NH4OH+Aq (Schiff,

A 123, 39 $CuSb_2N_3H_{23}O_{12} = Cu(ONH_4)OH$ 2(NH₄SbO₃+2II₂O) (Raschig, B. 18. 2743.) Cu(SbO₃)2,3NH₃+9H₂O (Delacroix, Bull. Soc 1901, (3) 25. 289)

Glucinum antimonate, Gl(SbOa) 2+6H2O. Somewhat sol. in hot H₂O Easily sol. in Nickel antimonate, Ni(SbO₈)₂+2H₂O. warm IICl. (Ebel, Dissert. 1890.)

Iron (ferrous) antimonate.

Sl sok m H₂O (Berzelius.)

Iron (ferric) antimonate.

Insol. in H₂O. (B.) Fe₂O₃, Sb₂O₃+7H₂O. Ppt. (Ebel, B. 22. 3043)

Fe₂O₄, 2Sb₂O₄+11H₂O. Ppt (Beilstein and Blaese) Fe(SbO₃)₃+6!:H₂O Ppt, (B, and B.)

Lead antimonate, basic, Ph3(SbO3)2(OH)4+ $2H_4O = Pb_4(SbO_4)_2 + 4H_2O_4$

Min. Bleinerite, Bindheimite. 2Pb(SbO₃)₂, PbO+11H₂O. Ppt. (B. and

Lead antimonate, Pb(SbOz)2.

Insol. in H₂O Incompletely decomp. by acids. (Berzelius.) Naples Yellow Insol in H₀O.

+2H₂O Insol m H₂O. (Senderens, Bull. Soc 1899, (3) 21. 57)

.+5H2O Ppt. (Ebel, B. 22. 3043) +6H₂O. Ppt. (Beilstein and Blaese)

+9H₂O. Insol. in H₂O. (Senderens, Lc.)

Lead antimonate chloride, Pb(SbOi);, PbCl2. Min. Nadorite. Sol. in HCl. HNO2, and tartane acal + Aq.

Lithium antimonate, LiSbOa

Si sol m cold, sol. m hot H.O, and crystallizes on cooling. Much more sol, than NaSbO: +3H2O. Ppt Sl sol in H2O. (Beilstein

and Blaese) Magnesium antimonate, $Mg(SbO_3)_2 + 12H_2O$.

Sol in hot, less sol in cold H2O (Heffter.) Sol in MgSO₄+Aq, insol, in KSbO₃+Aq (Berzelius)

Manganous antimonate, Mn(SbO₃)₂. Difficultly sol, in H₂O.

When heated, is sol. only in strong acids. +2H₂O Insol. in H₂O (Senderens, Bull Soc 1899, (3) 21. 56

+5H₂O Ppt (Ebel, B. 22, 3043) +6H₂O. Insol. in H₂O. (Senderens, l c) +7H₂O. Ppt (Beilstein and Blaese)

Mercurous antimonate.

Insol. in H₂O (Berzelius.)

Mercuric antimonate, Hg(SbOs).

Insol in H₂O, alkalies, and most acids. Sl. attacked by boiling H2SO4, and HC1+

+2H₂O Insol. in H₂O. (Senderens, Bull, Soc. 1899, (3) 21. 55.)

+5H₂O Insol. in H₂O (Senderens) +6H4O. Ppt. (Beilstein and Blaese)

Insol. in H₂O. (Senderens, Bull. Soc 1899, (3) 21. 54.) +5H₂O. Insol. in H₂O. (Senderens.)

+6H₂O Ppt. Insol in H₂O. (Heffter, Pogg 86, 446.) +12H₂O. Sl sol, in H₂O. (Heffter)

Potassium antimonate, KSbOs.

Insol in H₄O. Sol. in warm KOH+Aq. but separates nearly completely on cooling boiling with H2O, or by standing for a long time with cold H2O, it gradually dissolves as 2KSbO₃+5H₂O, or K₂H₂Sb₂O₇+4H₂O, or 2KH₂SbO₄+3H₂O Insol. in CS₂ (Arctowski, Z. anorg. 1894,

6. 257.)

+H2O. Insol. in H2O (Sengerent: Bull. Soc. 1899, (3) 21, 57,)

 $+1\frac{1}{2}H_2O$ (=2KSbO₂+5H₂O of Fremy). Easily sol. in H₂O, especially if warm. Solu-tion is pptd by NH₂Cl+Aq (Fremy, A. ch. (3) 12, 499.)

+21/2H₄O 100 pts. H₂O at 20° dissolve 2 81 pts. anhydrous salt, sp. gr. of solution sat at 18° = 1 0263 Composition is given as K1H2Sb1O1+4H4O (Knorre and Olschewsky, B 20, 3043.)

+3½H₂O, Insol. in H₂O. (Senderens, l.c.)

+4½H2O. Sol. in H2O (Delacroix, J Pharm 1897, (6) 6. 533.) 2K,O, 3Sb,O,+10H,O Sl. sol in H₂O (Delacroix, J Phaini, 1897, 6, 337) +10H₂O (Delacrorx, l.c.)

Potassium puroantimonate, KaSbaOz.

Deliquescent; decomp by boiling with H2O into KSbO2+5H2O, by cold H2O into K₂H₂Sb₂O₇+6H₂O. (Fremy)
Does not exist (Knorre and Olschewsky)

Insol in hquid NH3 (Franklin, Am. Ch J 1898, 20. 829)

Insol, m acetone (Naumann, B 1904, 37. 4329.)

Insol. in methyl acetate (Naumann, B 1909, 42, 3790) Insol in ethyl acetate. (Naumann, B.

1904, 37. 3601.) Potassium hydrogen purcantimonate.

K2H2Sb2O7 Insol in acetone (Eidmann, C C 1899, II. 1014.)

+21/2H2O. (Senderens, Bull Soc. 1899, (3) 21. 57) +31/H-O Very difficultly sol, in hot or cold H2O. (Knorre and Olschewsky, B. 18. 2358)

+6H₂O Quite difficultly sol in cold H₂O Not precipitated by NH,Cl+Aq Aqueous solution gradually decomposes (Fremy.) +4H₂O. See 2KSb()₁+5H₂O

Potassium antimonate sulphantimonate. KSbO2, K2SbS4+5H2O. Decomp on an, and with cold HaO Sol in hot H₂O. (Rammelsberg)

Silver antimonate.

Insol in H₂O. (Berzelius) $AgSbO_3+3H_3O=AgH_2SbO_4+2H_2O$ Easilv sol. in NH4OH+Aq, when freshly pptd (Beilstein and Blaese +112H2O. Ppt (Ebel, B. 22. 3043)

antimonate ammonia, AgH2SbO4, $2NH_2+H_2O$ (Beilstein and Blasse)

Sodium antimonate, NaSbOs

composed into Na2H2Sb2O2 +3½H₂O, composition of Na₂H₂Sb₂O₇+ 6H₂O, according to Beilstein and Blaese 1000 pts. H₂O dissolve 0 31 pt. NaSbO₄+

31/2H4O at 12.3° 1000 pts. alcohol of 15.8% dissolve 0.13 pt NaSbOs+312H2O at 12 3°. 1000 pts. alcohol of 25.6% dissolve 0.07 pt.

NaSbO1+31/2H2O at 12.30 Somewhat more sol, when freshly precapi-

Absolutely msol. in glacial HC2H2O2

Presence of NaOH or Na salts diminish sol-ubility, while NH₄OH or K salts increase it peau, C R 1896, 123. 1066.)

slightly. (Beilstein and Blaese, Bull Ac. St Petersb. 33, 201) +41/4H.O. Sol in H.O. (Delacroix, Bull Soc 1899, (3) 21, 1051) 2Na₂O, 3Sb₂O₄+10H₂O (Delacroix, l c.) Na₂O, 3Sb₂O₅+11H₂O. (Delacroix, l c)

pyroantimonate, Na₂H₂Sb₂O₇+ Sodium 6H₂O Boiling H₂O dissolves $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ pt. of this salt. (Fremy) 1000 pts H₂O dissolve 2 5 pts. salt

(Ebel, B 22. 3044) See also NaSbO₂+ 3½H₂O +5H₂O (Knorre and Olschewsky.)

Strontium antimonate, Sr(SbO₄)₂+6H₂O. Ppt, Less sol in II₂O than SrSO₄ (Heffter, Pogg. 86. 418.)

Thailous antimonate, TISbO3+2H2O= TIH-SbO4+H2O.

Somewhat sol. in H2O, when freshly precipitated; insol when dried (Beilstein and Blaese)

Tin (stannous) antimonate, 2SnO, Sb₂O₅, Ppt. (Lenssen, A 114. 113.) Sn(SbO2)2+2H2O Attacked with difficulty by acids or alkalies, most easily by hot cone. H₂SO₄ (Schiff, A 120. 55.)

2SnO, 3Sb₂O₅+4H₂O. SnO, 2Sb₂O₆. Tin (stannıc) antımonate.

Insol in H2O. (Levol, A ch. (3) 1. 504.)

Uranium antimonate, 5UO2, 3Sb2O1+15HO. Ppt Sol, in hot conc. HCl+Aq, and in UCls+Aq. (Rammelsberg)

Zinc antimonate, Zn(SbO₂),

Very slightly sol, in H₂O (Berzelius); sol. in solutions of Zn salts.

+2H₂O *Ebel, Dissert. 1890.) Insol in H₂O (Senderens, Bull. Soc 1899. +5H₂O. Not wholly msol. in cold, moderately sol. in hot H₂O (Ebel, Dissert. 1890.) +6H₂O Insol. in H₂O. (Senderens)

Antimoniomolybdic acid.

Sol. in much H2O, but soon becomes de- Ammonium antimoniomolybdate, 5(NH4)2O, 4Sb₂O₄, 7MoO₃+12H₂O

Readily sol, in hot H.O. (Gibbs, Am. Ch. J. 7. 392.

Antimoniotungstic acid, 3Sb₂O₆, 4WO₈+ 11H.O. Sol in H_{*}O. (Hallopeau, C. R. 1896, 123.

1068) Potassium antimoniotungstate, 3K2O, 3Sb2Os

4WOs+4Hs0. Much more sol. in hot than in cold H2O.

42

+16H2O. Much more casily sol in hot Potassium antimonite, K2O, 3Sb2O3 than cold H₄O Decomp by HCl, H₂SO₄.

and HNO₂ (Hallopeau, l.c.) 6K₂O, 4Sb₂O₅, 12WO₂+25H₄O St sol in H.O. (Gibbs, Am. Ch. J. 7, 392.)

Antimoniuretted hydrogen. See Antimony hydride.

Antimonosomolybdic acid.

Ammonium antimonosomolybdate, 6(NHa) of). 38b₂O₂, 17M₂O₂+21H₂O

Insol. in cold H_{*}O (Gibbs, Am Ch J 7. 313)

Antimonosophosphotungstic acid.

Potassium antimonosophosphotungstate. 12K.O. 5Sb.O. 6P.O. 22WO.+48H.O. Nearly msol in cold or warm H₂O. (Gibbs. Am. Ch. J. 7, 392.)

Antimonosotungstic acid.

Ammonium antimonosotungstate.

Sol. in H₂O Barum antimonosotungstate, 4BaO, 6Sh₀O₁,

22WO₃+36H₂O Precinitate: very sl. sol. in hot H₂O (Gibbs. Am Ch. J. 7, 313)

Antimonous acid, HSbO.

(Long. J Am. Chem Soc 1895, 17, 87) +112H2O Ppt. (Schaffner, A. 51, 182 H.SbO3. Ppt (Clarke and Stallo, B 13.

1793.) Does not exist (Guntz, C R. 102, 1472. H₄Sb₂O₅. When freshly pptd , is sol. in dil KOH, and NaOH+Aq. Scarcely sol ir Scarcely sol in NH,OH+Aq, or in (NH,)2CO, or KHCO+

Completely sol. in K2CO3, and Na2CO1+ Aq, especially if warm. When recently pptd is al. sol, in succinic acid+Aq.

Calcium antimonite, CaSh₂O₄ (?)

Min. Romeite Insol. in acids.

Cobaltous antimonite (9). Sl. sol. in H₀O. (Berzelius.)

Cuprous antimonite, Cu_e(SbO₃)₂,

Insol in H.O Sol, in acids, most easily in conc. HCl+Aq (Hausmann and Stromeyer, Schw J 19, 241)

Cupric antimonite (?) Insol. in H₂O. (Berzelius)

CuSb.O. Min. Ammiolite. Sol in IICl+Aq, tartane and CuSb₂O₄

citric acids (Harding, Z. anorg. 1899, 20. 238)

Iron (ferrous) antimonite (?).

More sol in H.O than the antimonate. (Dumas)

Easily decomp, by cold H.O. Not decomp. by KOH+Aq containing over 20 9% K₂O (Commimbeuf, C R 115, 1305.) +3H₂O As above

Potassium antimonite iodide, K.O. 8Sb.O.

Insol and not decomp, by cold or hot H.O. Not decomp by acids or alkalies Aqua regia decomp slowly. Tartaric acid dissolves gradually. (Gruhl, Dissert. 1897.)

Sodium antimonite, NaSbO++3H+O.

Difficultly sol, in H₂O (Terreil, A, ch (4) 7, 380.)

2Na₂O, 3Sb₂O₄+H₂O Decomp. by H₂O, but not by NaOH+Aq containing 94.3 g. NaOH per l (Corumimbœuf)

Na₂O, 2Sb₂O₃ Decomp by H₂O but not by NaOH+Aq containing 1886 g. NaOH per 1 (C.)

Na₂O, 3Sb₂O₃. Decomp. by H₂O, but not by NaOH+Aq containing 113.2 g. NaOH per l. (C.

 $+2H_2() = NaH_2(SbC_2)_2$ (Terrel)

Antimony, Sb.

Does not decomp H₂O Not attacked by HCl+Ag (Berzelius); slowly sol in conc. HCl +Aq (Debray), slowly sol in cone warm HCl +Aq (Troost). Attacked by very conc HCl +Aq only when finely divided (Schutzenberger, Willm); very si attacked by dil or cone. acid (Guntz) Not attacked by boiling HCl+Aq (Gmelin) By careful experiments, pure Sb is absolutely insol in dil. or conc., hot or cold HCl+Aq, except when in contact with oxygen. (Ditte and Metzner, A. ch (6) 29.

Insol in dil. or cold cone., but sol in hot cone H.SO. Oxidized but not dissolved by HNO₂+Aq Easily and completely sol in aqua regia. Very slowly attacked by pure HNOs+Aq of

1 51-1.42 sp gr , weaker acid has no marked action whether it contains NO2 or not HCl+ HNOs has no action if dil or at low temp, but when even very dil. and KNO₂ is added, the action will begin (Millon, A. ch. (3) 6. 101.) Not attacked in 10 months by 20° HNO3 +Aq. Sb is not dissolved by HNO2+Aq of any concentration, a white powder being always left, which is insol in HNO.+Ac or H.O (Montemartini, Gazz. ch. To 22, 884) Insol in alkalies+Aq

Somewhat sol, in distilled H2O. More or less sol in solutions of acids, alkalies and salts and in alcohol and ether Only sl sol in a mixture of alcohol and ether. (Ruff and Albert, B. 1905, 38, 54)

Alkaline H2O2 converts Sb into antimonic acid, but neutral H2O2 is without action (Clark, Chem. Soc 1893, 63, 886)

Insol in liquid NH₃ (Gore, Am Ch. J 1898, 20, 826

44	٠.				AN	TIM	ONY	ARSEN	TUE			-		
-	Easily	attack	d by	pyrosul	phury	chlo	Solubility of SbBr_{δ} in organic liquids — $Cont$							
(Heumann and Kochlin, B. 18. 479). Sb s sol, in a mature of HNO, and tartane and or other polybasic acids (Czerwek, Zanal 1900, 45. 507). Not attacked by anture of alcohol and ther (Cohen, Zubaseves 0,0007 g, Sb in 6 days. (Cates, J phys. Ch. 1914, 15, 143). There are turner modifications.								Solvent	t°	Mols per 100	ť°	Mols per 100	ţ°	Mols per 100
								Iod- benzene	-28 6° -30 5 -32 -20 -10 0	0 4 0 8 7 13 5 17 5 21 7	10° 20 30 40 50 60	26.3 31.5 37.3 43.7 50.7 58.5	70° 80 90 94	67 0 78 2 91 9 100
te	2. Bla emp. l aetallic	Sh	orphot ing w	is. Ui ith H₂C		nange	d to	Paradi- chlot- benzene	54 5° 51 5 48 5 55	6 3 12 8 18 7	65° 70 75 80	29 5 37 0 45 6 56 2	85° 90 91	68 9 85 2 100
- t	Stock, I	dly int ol. in (o the c CS ₂ at . 37 . 8	: a. htt: 98)	· black	ve –	.90°	Paradi- bront- benzene	88° 85 80 75 70	0 6 8 18 0 29 5 41 5	65° 70 75 80 85	52 0 50 1 66 5 74 4 83 0	90° 92 91	91 8 95 4 100
1	837.) Antimon (Desca	y arsen unps, C	ude, S C. R. 8	b₃As 6. 1065				Nitro- benzene	0° 1 - 4 - 9 -15 (-17)	8 6 17 0 24 0 20 7 (31 9)	-5° 5 15 25 35 45	32 3 35 3 38 8 42 8 47 4 52 8	55° 65 75 85 90 94	59 1 66 4 74 9 86 0 93 0 100
J	Very : I. 1898, Very :	tescent sol. in l 20. 826 sol. in r	decor	np by NH ₈ . iquid A	(Gore, .sBrs, t. 47°.	form (Ret	ng a	Metadi- nitro- benzone	90° 85 80 75 70 65 60	0 8 1 16 2 24 2 31 8 38 5 11 3	55° 50 47 5 50 55 60 63	49 1 53 0 54 4 56 1 58 8 62 2 66 2	70° 75 80 85 90 94	70 8 76 0 81 7 87 8 94 2 100
8	34. 27) Easily	AlBr	PCla	den, Z. bekow, and PB	Z an		1913,	Toluene	-93° -93 5 -70 -50 -30 -10 - 1	0 3 1 2 2 6 5 2 13 3 22 4	10° 20 30 (34) 40 50 60	28 8 36 7 47 5 (54 0) 51 5 56 3 62 3	70° 80 85 90 94	69 4 79 4 85 2 92 6 100
C	Sol. in Chem S	alcoho ether f	l and 0 ormina 2, 24 .	g two la:				Ethyl- bengene	-93° -60 -40 -20 -10	0 1 0 4 1 0 2 3 3 9 6 4	10° 20 25 29 40 50	9 8 19 5 28 6 37 8 44 6 51 6	60° 70 80 85 90 94	50 8 67 1 77 4 85 92 6 100
		bility o paren	theses	in org indicat um.	e labi	le eq	uilib-	Propyl- bensen	-80° -06 -40 -30 -20 -10 -5	0 4 1 2 3 4 5 5 9 5 17 2 24 3	(-1 5° (-20) 0 10 20 30 40	(33 3) (23 3) 25 8 27 8 30 5 34 1 38 6	50° 60 70 80 90 94	44 3 51 5 61 5 73 5 90 100
	Solvent	t°	Mols per 100	t°	Mols per 100	ţ°	Mols per 100		-70° -50 -40	1 9	(I3°)	(24_9)	50° 60 70	35 8 43 3 51 0
I	Benzene	5 6° 4 5 15 25 35	0 1 9 3 0 4 3 6 0 8 6 12.1	65° 75 80 85 90 91 5	17 1 24 9 30 7 38 4 48 2 58 1 66 6	91 5° 90 85 90 92 94	73 7 76 7 81 9 91 4 94 8	Isoamyl- benzeni (Menso	-30 -20 -17 (-15)	3 6 5 1 7 1 13 4 16 4 (19.4)	10 20 30 40 Inst. Po	18 2 19 9 22 5 25 9 30 3	80 90 94	90 100
	- 55 8 8 9 91 5 88 1 94 100 7							Antimo See E Also	ny broi Broman below	nide v timons	vith MB ate, M.	ir.		
3	Brom- benzene	-31° -32 -25 -15 -5 5	0 2.6 4.4 6.9 9.9 13.4	15° 25 35 45 55 65	17 4 22 2 22 7 34 4 42 6 52 6	75° 85 90 94	66 2 81 1 90 0 100	Very (Weinl	l₁O hygr and an	oscopi d Feig	bromid e De e, B 19 monic s	comp. 03, 36	by	H ₂ O.

Antimony caesium brom 2H ₂ O	ide, 28bBr ₃ , 3CsBr-	+
Loses Br2 in the air	(Wemland, B 190)	Э,
36 257)		

Antimony calcium bromide, SbBr₂, CaBr₂+ SH₂O.

Easily decomp. (Benedict, Proc. Am Arad 1895, 30.9)

Antimony glucinum bromide, 38bBrs, 2GlBrs +18Hz0. Hydroscopic. Easily decomp. (Weinland, B. 1903, 36, 258)

Antimony magnesium bromide, SbBr₃, MgBr₂ +8H₂O As Ca salt (Benedict, Proc. Am. Acad 1895, 30, 9)

Antimony potassium bromide, 10SbBr₃, 23KBr+27H₂O (Herty, Am. Ch. J. 1894, **16**, 496)

Antmony rubiduum bromide, 28bBr₂, 3RbBr. Decomp by H₂O; can be reeryst from di HBr+Aq (Whreler, Z. anorg **5**, 288) SBR₂Br₃, Slowly loses Br₃ in the air Decomp, by H₂O. (Wenland, B. 1903, **36**, 259.) 108bBr₃, 23RbBr (?) Cryst. from cone HBr+Aq. (Wheeler.)

The composition assigned to this salt by Wheeler (Z. anorg 5. 253) is incorrect. (Ephraim, B. 1903, 36. 1817.)

Antimony vanadium bromide, SbBr₈, VBr₄+ 7H₂O. Hydroscopic. Decomp. by H₂O Sol. in

dil HCl and in tartane and. (Weinland, I 1903, 36. 260.)

Antimony bromide potassium chloride, SbBr

Antimony bromide potassium chloride, SbBr 3KCl+1½H₂O. Slowly deliquescent. Very sol in H₂O.

Sat. solution contains 120.5 g. to 100 cc H₂O, and has sp. gr. = 1.9. Decomp. by much H₂O. (Atkinson, Chem. Soc 43, 290.) Does not exist (Herty, Am. Ch J 1894.

497.)
 See also Antimony chloride potassit bromide.

Antimony bromofisoride, SbF₆Br.

Decomp. by H₂O. (Ruff, B. 1906, 39.
4319.)

Antimony trichloride, SbCls.

Deliquescent. Decomp. by H₂O with precipitation of SbOCl This precipitation is prevented by tartaric, citric, or hydrochloric acid, or by cone solutions of chlorides of alkalies and alkaline earths.

Solubility in H ₂ O. 100 pts. SbCl ₃ sol in pts. H ₂ O at t°		
t°	Pts H ₂ O	
0° 15° 20° 25° 30° 35° 40° 50°	16 6 12 3 10 9 10 1 9 4 8 7 7 3 5 2 2 2	

(Meerburg, Z anorg, 1903, 33, 299.)

Solubility in HCl+Aq 100 mol, H₂O dissolve mol, SbCl₄ in presence of mol, HCl at 20°.

Mol. HCl	Mol SbCls
0 2 4 6.5 8 4 8 6 9 8 12 2	72 1-72.8 73.0 67 5 67 6 66 5 65 0 65 3
29.6	54 5

(Meerburg, Z. anorg, 1903, 33, 304)

Solubility in HCl+Aq

by		100 mol HrO dissolve at 20°					
ect.	Solid phase	1	2	3	4		
4+		Mol SbCla	Mol HCl	Mol SbOCI	Mol. HCl		
. in , B. Br ₂ ,	SbOCl	8.7 8.6 19 6 19 8	7 2 7 5 8 0 8.9	9 8 16 1 21 7 25.0 28 0	6.9 7.9 7.4 8 8 8 6		
cc. em. 894,	(SbOCl _{)k} ,(SbCl ₂)y	87 5 44.0 63 7 69.1 66 1 69 8	8 7 6 8 6 2 5 6 4 6 5 3	32 0 35 8 59 5 61 0 62 7	7 9 7 9 6 4 6 5 4.4		
ium	SbCl ₂ and (SbOCl) ₂ ,(SbCl ₂) ₂	69 3 68 3	4 3 3 6				

1 & 2 (Meerburg, Z. anorg. 1903, 33, 302.) 3 & 4. (Noodt, Z. anorg. 1903, 33, 302.)

Somewhat sol. in liquid (CN)₂. (Centnersswer, Bull Soc. 1901, (3) **28**. 405) Insol in liquid NH₂. (Gore, Am. Ch. J. 1898, **20**. 826.)

Easily sol. in PCl₂ and PBr₃. (Walden, Z. anorg. 1900, **25**. 211.) Sol. in S₂Cl₂. (Walden, Z. anorg. 1900, **25**. 217.) (Walden, Z. anorg | Solubility of SbCl₂ in organic liquids--Cont.

Mols per 100

Easily sol in AsBi.

Dasily Soi in ASD1, (Waden, Z. anorg 1902, 29, 374)
Sol m alcohol without decomp. Very sol. in hot CS₂, but solubility diminishes rapidly on cooling (Cooke, Proc Am Acad 13.

	oling	COOK	e, Pro	e An	ι Acε	td 13.	1			l		·	- A
Sp gr mann, Sol. 37. 36	SbCl ₃ is of sat B. 190 in ethy 01)	solut: 4, 37. l acet:	on 18°, 4332) ute (N	/4°=2 √auma	216 .nn, B	(Nau- 1904,	nitro- bengene	10	0 14 3 25 3 33 8 45 6 (53 6) (59 9) (§2 2)	(—10°) (27° 5) (28° 5) 27° 5 23° (20) (10)	(57 7) (62 4) (41 5) (50 0) 55 0 60 2 (66 2) (73 5)	(0°) 20 30 40 50 60 70 73	(78 1) 65 2 68 8 73 2 78 5 85 8 95 2 100
18°. (Naun Sol 47. 13	Spgr nann, B n ben 59) in met	of sat , 1910 zonitri	. soluti , 43. 32 le (N	on 18° 0) aumai	/4°=1	1968 1914, 1899,	Toluene	-93° -94 -70 -50 -40 -30 -20	0 0 5 1 4 3 3 5 1 7 2 10	-10° 0 6 11 (-8) 20 30	14 4 22 I 28 6 35 7 (27 0) 40 5 47 6	40° 42 5 40 50 60 70 73	59 3 66 6 71 1 77 1 83 8 91 7 100
Data	lubility in pare	nthese	Ol, in o s indic rium	ate Ia	lıquı bile e	quilıb-	Ethyl- benzene	-93° -50 -30 -10 0 10 20	0 1 0 6 1 1 3 6 5 6 9 4 16 8	35° 39 37 35 (33) (15) (25) 37	36 4 50 57 7 61 8 (65 7) (37 8) (47 5)	(36 8)° (33) 10 50 60 65 70	(68 1) (65 7) 70 3 77 3 85 5 90 3 95 6
Solvent	ţ°.	Mols per 100	t°	Mols per 100	£°	Mols per 100		30 (70°)	27 2	-70°	0 0 2	73 S 5°	53 2
Benzene	20 30 40	0 2 6 7 1 10 1 13 1 16 8 21 4	50° 60 70 75 77 5 79 77 5	27 2 34 7 45 2 53 1 58 7 66 6 73 1	75° 70 62 67 5 73	78 5 83 3 89 3 94 2 100	Propyl- bensene	(—50) (—40) (—30) (—20) (—10) (—5) (0) (1)	(0 0) (2 8) (5 2) (8 8) (14 8) (25 1) (32 4) (43 3) (50) (51 1)	-50 -40 -30 -20 -10 -5 0 5	1 5 3 0 5 5 9 7 16 2 20 5 20 2 35 6 41 6	10 20 30 40 50 60 63 70 73	53 6 56 9 60 6 65 5 72 81 86 8 95 1 100
Chlor- benzene	-15 26 -17 -10 -30 -20 -15	3 6 6 0 9 0 11 6	-10° -5 0 (4) 10 20	114 4 19 4 28 1 (41 1) 32 5 38 7	30° 40 50 60 70 73	47 1 56 2 66 6 78 7 94 3 100	Iso- amyl- benzene	-80° -70 -60 -50 -10 (-30)	5 4 8 4 12 4 17 9 (27 3)	(-45°) (-35) -25 -15 -5 (0)	(17 1) (22 8) 29 3 36 6 45 6 (52 3)	6° 10 20 30 40 50	16 3 18 8 52 5 57 3 63 4 71 4 81 7
Brom- benzene	-31° -32 5 (-45) -30 -25 -20 -15 -10	0 3 4 (6 4) 4 8 7 6 10 7 14 1 17 8	-5° 0 3 (6) (7) 10 20 30	21 7 26 6 31 8 (41 9) (50 0) 36 4 43 2 50 8	40° 50 60 65 70 73	59 2 68 8 80 6 87 2 95 0 100		(—25) (—22) (—20 5) (—22) hutkin,	Ann l	(7 8) (-21) (-10) Inst. Po		Gr,1	95 5 100 13.1)
Iod-	-28 6° -30 (-35) (-40) (-15) (-25) (-15)	0 2 4 (11 7) (20 8) (27 2) (30 9) (33 9) (37 2)	(-5)° -34 5 -25 -15 -5 (-3) 5 15	(40 7) 10 7 16 4 24 7 39 1 (47 2) 44 5 48 7	25° 35 45 55 65 70 73	53 9 60 4 67 5 76 2 87 4 95 0 100	Delic	2H₂O, quescen s in cry 97)	t. Dec	comp l O at 10	oy H ₄ (5°, (E)	
Paradi- chlor- benzene	54 5° 50 45	0 6 3 15 5 28 0	39 5° 45 50 55	29 5 37 5 46 1 56 0	60° 65 70 73	60 5 78 I 91.I 100	Delic crystall more H	nuesces lized ou l ₂ O into	to SbC t of a SbC ₂	Cl _s +4H little H Cl Se	12O, w 2O I I m a	Decom Jarge	p by amt.
Paradi- brotn- benzene	88° 85 80 75 70	0 5 9 15 8 25 7 35 7	65° 60 49 5 55 60	45 4 53.8 64 9 72 5 79 8	65° 70 73	87 1 95 2 100	of H ₂ O, tation l tartario +H ₂ (Ansch	oy H ₂ O e, or hy O De	is also irochle	hinder oric aci	ed by d	preser chloro	ice of
Nitro- benzene	6° 2 -2 -6 -10 -14 (-18) -16 5	0 7 0 12 1 16 5 20 3 23 5 (26 2) 25 2	-13 5° -10 5 -7 5 -6 5 -6 5 -5 5	27 3 29 8 35 2 40 7 50 0 52 8 53 0 55 8	15° 25 35 45 56 65 70 73	59 2 63 9 67 6 72 8 79 0 87 2 92 7 100	+4H and Ev Antimo	I ₂ O. In ans.)	sol in achlor imona	chloro	form.	(Anse	ehutz

Antimony hydrogen pentachloride, SbCl, Antimony glucinum chloride, SbCl, GlCl+ HCI+41/2H20

"Metachlorantimonic acid" according to Wenland and Schmid, (Z. anorg 1905, 44.

Very easily sol in H₂O, alcohol, acetone and glacial acetic acid. Aqueous solution decomp, on standing with separation of Sb₂O₈ but remains clear in presence of 10% HCl (Weinland and Schmid, Z anorg. 1905, 44.

SbCl₅, 5HCl+10H₂O Not deliquescent Decomp by H₂O Melts in crystal H₂O at about 55° (Engel, C. R. 106, 1797.)

Antimony antimonyl chloride, SbCl1, SbOCl More easily attacked by H₂O than SbOCl (Bemmelen, Z. anorg 1903, 33, 293.)

Antimony antimonyl potassium chloride, SbCl₈, SbOCl, 2KCl.

Not deliquescent. Immediately decomp by hot or cold H2O, sol. in hot glacial HC2H2O2. or in HCl, or tartaric acid+Aq Insol in KCl+Aq, hot or cold alcohol, CS:

or ligroine. (Benedikt, Proc Am Acad. 29. 217)

Antimony antimonyl rubidium chloride, SbCl₁, SbOCl, 2RbCl

Sol in very dil. HCl+Aq. (Wells, Am J Sei 1897, (4) 3. 463)

Antimony barium chloride, SbCl3, BaCl2+ 3/2H2O

Decomp by H2O

Antimony cassium chloride, SbCl, 6CsCl Decomp, by H₂O. Cryst from dil HCl+ Aq (Godeffroy, Arch Pharm (3) 12, 47.) 2SbCl₃, 3CsCl Decomp by H₂O, sl. sol. in cold, easily in hot dil. HCl+Aq This is identical with the above sult (Saunders, Am

Ch J 14, 152.) SbCl₄, 2CsCl Sol in boshing cone HCl+ Ag without decomp (Setterberg, Oef. Vet Akad. 1882, 6. 23) SbCl₅, CsCl. Cryst from HCl+Aq without decomp. Decomp. by H₂O (Setterberg,

Oef. Vet. Akad 1882, 6, 27.) Antimony calcium chloride, SbCl2, CaCl2+ 8H₂O

Easily decomp (Benedict, Proc. Am. Acad. 1895, 30. 9) SbCl.CaSbCl.OH+9H2O. Deliquescent; sl. sol. in H2O. (Weinland, B 1901, 34.2635)

Antimony chromium chloride, C₁Cl₃, 3SbCl₄+13H₂O. (Weinland)

should be [SbCl₆]₈[Cr(OH₂)₆]+7H₂O, and CrCls, SbCls+10H2O should be

[SbCl₄][C₁(OH₂)₄Cl₂]+6H₂O. (Pleaffer, Z. anorg. 1903, **36**. 349)

3H₂O Decomp by H₂O. Very hydroscopic

Very easily sol in HCl. (Ephraim, B 1903, +4H₂O Ppt Decomp by H₂O. Sol.

in HCl. (Ephraun, B. 1903, 36, 1822.) Antimony hydrazine chloride, SbCl2,

3N.H.Cl. Sol in conc HCl+Aq, decomp. by H₂O. (Ferratim, C A. 1912, 1613)

Antimony lithium chloride, SbCls, 2LiCl+

Hydroscopic Decomp. by H₂O. Very easily sol in HCl (Ephraim, B 1903, 36.

1821 +6H₂O Decomp by H₂O, easily sol. in HCl (Ephraim, B. 1903, 36 1822.)

Antimony magnesium chloride, SbCl3, MgCl2

+5H₂O Hydroscopic Decomp by H₂O Can be

cryst from HCl without decomp (Ephraim, B 1903, 36, 1823) 2SbCl₄, MgCl₂ Hygroscopic Decon by H₂O Very sol in HCl. (Ephraim.) Hygroscopic Decomp SbCl-MgSbCl,MgOH+17H2O Hydro-

scopic Sol. in H2O with decomp (Weinland, B. 1901, 34. 2635.)

Antimony nitrosyl chloride, SbCls, NOCL Very deliquescent; decomp by pure H_iO;

sol in H₂O containing tartaric acid. (Weber, Pogg. 123, 347) 2SbCl₅ 5NOCl. Decomp by H₂O. (Sud-

borough, Chem. Soc 59, 661) Antimony phosphorus chloride, SbCls, PCls

Deliquescent. (Weber, Pogg. 125, 78) Antimony phosphoryl chloride, SbCls, POCls. Deliquescent (Weber.)

Antimony platinum potassium chloride, (Sb. Pt)ClsK2 Ppt (Weinland, B. 1905, 38, 1086.)

Antimony potassium chloride, SbCl₃, 2KCl Sol, in H₂O without decomp (Jacquelain,

A ch. (2) 66, 128.) Immediately decomp. Not deliquescent by hot or cold H2O. Sol. in HCL or tertaric

acid + Aq. (Benedikt, Proc Am. Acad. 29. 219.)

+2H₂O Very efforescent SbCl₄, 3KCl Deliquescent Decomp. by

hot H₂O (Poggale.) +2H₂O (Romanis, C. N. 49, 273.)

Not obtained by Benedikt (l c.)
108bCl₃/23KCl. True composition of above salts. Sol. in H₂O (Herty, Am Ch. J. 1894, 16, 495.)

SbCla, 2KCl is the only true compound, all

others being isomorphous mixtures. (Jordis, Antimony pentuchloride cyanhydric acid, B. 1903, 36 2539) B. 1903, 36 2539)
2SbCl. 3KCl Deliquescent Decomp. by

H₂O. (Bosek, Chem Soc 1895, 67. 516)
SbCl₆KSbCl₄KOH Hydroscopic Sol in H₂O with decomp. (Weinland, B. 1901, 34.

See also Antimony antimonyl potassium chloride.

Antimony rubidium chloride, SbCl., RbCl. Decomp on air or with H₂O. (Saunders, Am. Ch. J. 14. 162)

2SbCl_RbCl+H₂O Decomp. on air (Wheeler, Z. anorg 5. 253) SbCl₃, 6RbCl. Decomp. by H₂O (Godef-

froy, Arch. Pharm (3) 9. 343) Formula is 10SbCl₁, 23RbCl (?). (Saunders Am. Ch. J. 14, 159)

10SbCl₂, 23RbCl (?). Decomp. by H₂O; sol in HCl+Aq (Saunders) Formula is 3SbCl₁,7RbCl. (Wells and

Foote, Am J Ser 1897, (4) 3. 461.)
Composition assigned to this salt by Saunders (Am. Ch J 14. 155) is incorrect. (Ephram, B 1903, 36. 1817)

(Saunders)
SSbCl₃, SRbCl. As above. (Saunders)
Formula is 2SbCl₃, SRbCl. (Wheeler.)
Rb₂SbCl₆ Ppt. Decomp by H₂O. (Weinland, B. 1905, 38. 1983)

Rb.SbCla, 2Rb.SbCla. Ppt. Decomp by H₂O (Weinland, B, 1901, 34. 2635.) Antimony selenium chloride, SbCl5, SeCl4.

Deliquescent. (Weber.) Antimony selenyl chloride, SbCl., SeOCl. Very deliquescent. (Weber, Pogg. 125.

Antimony sodium chloride, SbCl₃, 3NaCl (?).

Decomp. by much H₂O. (Poggiale) Antimony sulphur chloride, 2SbCls, 3SCls,

Decomp, by H2O.

SbCls. SCl4. Sol in dil, HNOs+Aq Mpt. 125-126° in an atmos. of chlorine. Violently decomp. by H2O. (Ruff, B. 1904, 37. 4515.)

Antimony thallium chloride, SbCls, 3TlCl. Ppt. (Ephram, Z anorg. 1909, 61, 249) SbCl., TlCl. (Ephram and Bartecsko, Z anorg 1909, 61, 251) 28bCl, 2TiCl, TiCl, Slowly decomp. by

cold H₂O. (Ephram and Barteczko, Z. anorg. 1909, 61, 253) Antimony trichloride ammonie, ShCls, NHs.

Not very deliquescent Decomp, by H₂O. Antimony pentachloride ammonia, SbCls. 6NHs

Decomp. by H2O (Persoz.)

* Deliquescent, decomp. by H₂O. (Klein, A 74. 85)

Antimony pentachloride nitric oxide, 2SbCls, Decomp by H₂O. (Besson, C. R. 108.

1012) Antimony pentachloride nitrogen peroxide, 3SbCl₁, 2NO₂

Decomp. by H₀O. (Besson.)

Antimony pentachloride nitrogen sulphide, SbCl_{in} N_oS₄

Easily decomp (Davis, Chem. Soc. 1906, 89, 1577.) Decomp by cold H2O, HCl, H2SO, and

warm alcohol, also by boiling with KOH +Aq. Almost insol, in organic solvents. (Wolbling, Z anorg 1908, 57 283)

Antimony chloride potassium bromide, SbCl₂,3KBr+1½H₂O.

Very deliquescent. Decomp. by much H₂O. (Atkinson, Chem. Soc. 43, 289.)

2SbCl₂,3KBr+2H₂O. (Atkinson.) SbCl, KBr+H,O (Atkinson,) Above are mixtures. (Herty, Am. Ch. J. 1894, 16. 497)

See Antimony bromide potassium chloride. Antimony chlorofluoride, SbCl₃F₂

(Swarts, Z. anorg, 1896, 12, 71.) Antimony fluorotide, SbFaI.

Slowly decomp by H2O. (Ruff, B. 1906, 39, 4321.) (SbFs)2I. Sol in H2O with pptn of Io. (Ruff, B, 1906, 39, 4321.)

Antimony trifluoride, SbF2. Deliquescent, Sol. in H₂O.

> Solubility in H₂O at to, 100 a =5 the

t°	solution con- tain g. SbF:	contain g SbF
0°	79 37	384 7
20	81,64	444 7
22 5	81 91	452 8
25	83 12	492 4
30	84.93	563 6

(Rosenheim, Z. anorg, 1909, 61, 189) Solubility in HF+Ao at 0°.

Normality of HF+Aq	100 g H ₂ O of the HF solu- tion dissolve g SbF ₃
2	474.9 432.5
0.5	404 0

(Rosenheim, Z anorg 1909, 61, 192.)

Solubility of SbF ₃ in salts+Aq at 0°.						
Salt	Normality of salt solution ,	100 g. H ₂ O of the sait solution dis- solve g. ShF ₂				
KCI	1 0 5 0 25 0 125	461 8 448 3 431 9 407 3				
KBr	1 0 5 0 25 0 125	448 7 450 0 455 6 417 2				
KNO ₃	1 0 5 0 25 0.125	458 2 451 9 418 3 401.4				
$\frac{1}{2}$ K ₂ SO ₄	1 0 5 0 25	419 9 408 5 406 6				
½K2C2O4	1 0 5 0 25 0.125	465 7 481 2 451 3 405 2				
½(NH ₄) ₂ C ₂ O ₄	0 5 0 25 0 125	431 9 442 3 433 3				
½K ₂ C ₄ H ₄ O ₆	1 0 5 0 25 0 125	461 4 430 5 430 8 435.2				
(Rosenheim, Z. anorg. 1909, 61, 192.)						

Insol, in liquid NH₃. (Gore, Am. Ch. J 1898, 20, 826.)

Antimony pentafluoride, SbFs Sol. m H.O. (Marignac, A. 145, 239.)

Very hydroscopic; bpt. 155°. Sol in H₂O with hissing. (Ruff, B. 1904, 37. 678.) +2H₄O. (Ruff, B. 1904, 37, 679)

Antimony pentafluoride diantimony trifluoride, Sb₂F₁₁=2SbF₄, SbF₅.

Hydroscopic; bpt. 390°. Easily sol in H₄O (Ruff, B. 1904, 37. 680.)

Antimony pentafluoride pentaantimony trifluoride, SbF., 5SbF. B pt. 384° (corr.). (Ruff, B. 1904, 37.681.)

Antimony cæsium fluoride,

CsF,2SbF. CsF,3SbF

4CsF.7SbF CsF,SbF ..

2CsF.SbF₃. (Wells, Am. J. Sci. 1901, (4) 11. 451) Antimony lithium fluoride, SbFs, 2LiF. Sol in more than 20 pts, H2O (Fluckinger,

Pogg. 87, 245.) SbF₈, L₄F. Eas Chem. Z. **13**, 357,) Easily sol. in H.O. (Stein,

Antimony potassium fluoride, SbF+, 2KF, Sol, in less than 2 pts boiling, and in 9 pts. cold H₂O Insol in alcohol or either SbF₂, KF. More sol than SbF₃, 2KF. Sol.

in 2.8 pts H₂O (Flückinger, Pogg. 87. 245.) SbF₅, KF. Easily sol, in H₂O. SbF₁, 2KF+2H₂O. Easily sol in H₂O. (Marignac, A 145, 239)

Antimony sodium fluoride, SbF4, 3NaF.

Sol. in 14 pts cold, and 4 pts boiling H₂O. Sol. in HF. (Fluckinger, Pogg. 87, 245.). SSF₁, NaF. 160 pts. cold H₂O deserver 39. Stem. Wagner J. B 1887, 1160.) 160 pts. (Stem. Wagner J. B 1887, 1160.) 485F₂, NaF As NH₄ salt. (Read and Hauser, B, 1880, 23. R. 125.) SSF₃, 2NaF Essaly sol. in H₂O. (Marig-mac, A 146. 329.) Sol. in 14 nts cold, and 4 nts boiling H.O.

Antimony thallium fluoride, TIF, SbF2.

Sol in H.O without decomp. (Enhraim, B. 1909, 42, 4458, TIF,28bF2. Sol. in H2O without decomp. (Ephraim. TIF.3SbFs. Sol in HsO without decomp.

Decomp. by cold cone. H-SO. (Ephraim.) Antimony trifluoride ammonia, SbF2, 2NHs.

Sl. sol. in liquid NHs. (Ruff, B. 1906, 39. 4326) Antimony trifluoride ammonium chloride.

SbF*, NH.Cl. Easily sol in H₂O (de Haen, B. 21, 901 R.)

Antimony trifluoride ammonium sulphate, SbF2, (NH4)2SO4.

More sol, than K or Na salt 1 pt H2O dissolves 1.4 pts. at 24° and 15 pts. at 100°. (de Haen, B 21. 902 R.)

Antimony fluoride lithium chloride, SbF1,

Sol in H2O. (Stein, Chem. Z. 13. 357.) Antimony pentaffuoride nitrosyl fluoride, SbFs, NOF.

Hydroscopic. Decomp. by H₂O Sol. in liquid NH₂ with decomp. Sl. sol. in NOCl, StCl₄, PCl₅₂ AsCl₄, SO₂Cl₂ and SOCl₂. (Ruff, Z. anorg 1908, 58. 334)

Antimony trifluoride potassium chloride, SbF, KCl

100 pts. H₂O dissolve 51 pts at 24°, and 300 pts. at 100°. (de Haen, B. 21. 901 R.)

Antimony trifluoride potassium sulphate, SbFs, KsSOs Sol. in H.O. (de Haen.)

2SbF1, K2SO4, Very sol in H2O (Mayer, B. 1894, 27, R. 922.)

Antimony trifluoride sodium chloride, SbF1. NaCl Easily sol in H₂O. (de Haen, B. 21, 901

Antimony trifluoride sodium sulphate, SbF₃, NasSO4.

Sol in H₂O. (de Haen)

Antimony fluosodide, SbF,I

Mpt. 80°, slowly decomp, by H₂O (Ruff. B. 1906, 39, 4321. (SbFs) I. Mpt 110-115°, decomp by H.O. (Ruff.)

Antimony fluosulphide, SbFaS.

Very hygroscopic. Decomp. by HeO Sol with decomp in alcohol. Sol, in CCl. (Ruff. B 1906, 39, 4332.)

Antimony gold, Au-Sh.

Insol in equal pts of HNC; and tartarie acids (Roessler, Z. anorg. 1895, 9, 72)

Antimony hydride, SbH₄.

Scarcely sol in H2O. 1000 ccm, H2O absorb 4.12 cc. SbH, at 10.5°. Decomp. by long contact with H2O; also by cone H2SO4 or KOH+Aq. (Jones, Chem. Soc 29, 641)

Antimony thihydroxide, Sb₂O₄, 2H₂O = Sb₂O(OH),

(Schaffner, A 51, 182.)

Sb(OH)3 Ppt. (Clarke and Stoila, B. 13. Does not exist. (Guntz, C. R. 102, 1472) See Antimonous acid and antimony tri-

Antimony traindide, SbI1.

Decomp. by H₂O or 80% alcohol Sol, in HI+Aq; sol. in boiling CS₂, and in boiling benzene, but separates out on cooling. Al-most mool. in CHCl₂ (Cooke, Proc. Am.

Acad (2) 5. 72.) Easily sol in AsBra. (Walden, Z anorg

1902 29, 874)

oxide.

Sol. in warm AsBi₈ Sp gr. of a solution sat. at 40°, which solidifies at 37°,=3.720. This dissolves further AsI, whereby the mpt. sinks to 31° and sp. gr. rises to 3 801. By mixing the latter solution with a solution of Antimony trioxide, Sb₂O₈. AsI, in CH2I2, a liquid can be obtained with a sp gr. of 3 702 at 20° (Retgers, Z. phys. pts. H₂O at 100°, 55,000-61,100 pts. at 15°. (Schulze, J. pr (2) 27. 320) Sol, in PCl₄. (Beckmann, Z. anorg 1906,

51.110. 25. 215)

Sol. in SOCl, and SoCl. (Walden, Z anorg 1900, 25, 216. Sol in AsCl., (Walden, Z anorg, 1900. 25, 214.) Sol. in SnCl4. (Walden, Z. anorg, 1900.)

25, 218) Sol, in POCls (Walden, Z anorg. 1900. 25, 212.)

Easily sol in PCl2 and PBr2 (Walden Z. anoig 1900, 25. 211.) Partly sol. in, and partly decomp. by al-cohol or other. (M'Ivoi, Chem. Soc. (2) 14.

Insol, in oil of turpentine and CCL 100 pts methylene iodide dissolve 11.3 pts SbI, at 12°; sp gr. of solution = 3 453. (Ret-

gers, Z anorg 3. 343) Sol, in CaHa (Retgers, Z phys. Ch. 1893. 11, 334.) Sol in acctone (Naumann, B. 1904, 37.

4328)

Antimony pentajodide, SbI.

Very unstable (Pendleton, C N. 48, 97.) Antimony barium iodide, SbI₂, BaI₂+9H₂O.

Decomp by H₂O. Sol. in HCl, HC₂H₃O₂, or H₂C₄H₄O₄+Aq. CS₂ dissolves out SbL₂. (Schaffer, Pogg. 109. 611.)

Antimony cæsium iodide, 2SbI1.3CsI.

Si sol, in HI+Aq Exists in two distinct forms (Wells, Am. J. Sci. 1901, (4) 11, 455.)

Antimony potassium iodide, 2SbI2, 3KI+ 3H.O. Decomp. by H₂O. Sol, in HCl, HC₂H₃O₂, or H₂C₄H₄O₆+Aq. CS₂ dissolves out SbI₃.

(Schäffer, Pogg 109, 611.) SbI, 2KI+21/4H,O Decomp. by H2O. (Nickles, J. Pharm, (3) 39, 116)

Antimony subidium iodide, 28bls, 3Rbl. Decomp by H2O. (Wheeler, Z. anorg, 5.

Antimony sodium rodide, 2SbIs. 3NaI+

12H₂O As 2SbI₂, 3KI (Schaffer, Pogg. 109, 611.)

Antimony thallous iodide, 28bIa, 3TIL. Decomp, by H₂O and by HCl+Aq, also by alcohol. (Ephraun, Z. anorg 1908, 58, 354.)

Antimony nitride, SbN.

Decomp. by heat. (Franz Fischer, B. 1910, 43, 1471.)

Very al sol, in H2O Sol in 8900-10,000

Sol in HCI+Aq. Insol. in HNOa+Aq, but

not as insol as metastannic acid. Sol. in cold Sol. in SO₂Cl₂. (Walden, Z. anorg. 1900, fuming HNO₂ or H₂SO₄ Insol. in dil , but sol. in conc. alkalies, or alkalı carbonates+

Ag Sol in cold NH4Cl, or NH4NO2+Ag. Sol. in 15 pts boiling SbCl3. (Schneider, Pogg 108. 407

Sol in HC2H4O2, or H2C4H4O4+Aq, and hot potd from these solutions by H2O. Easily sol, in benzoic acid. Insol, in pyrotestano acid Very sol in KHC, H,O, +Ag. Sol in

Somewhat sol in H₂PO₄+Aq. (Kohler Dingl. 1885, 258, 520.

Insol. in hquid NHa (Gore, Am. Ch. J 1898, 20, 826 Sol in lactic acid (Kietzschmar, Ch Z.

1888, 12. 943.) Sol in grape sugar solution to which Ca(OH)2 has been added. (Vogel, B. 1885.

18, R 38) Insol in acetone. (Naumann, B 1904, 37. 4329; Eidmann, C. C 1899, II. 1014. Sol in glycerine in presence of alkalies.

(Kohler, Dingl. 1885, 258. 520.) Exists in a sol colloidal modification. (Spring, B. 16, 1142.)

Min. Valentinite, Senarmontite +H2O. See Antimonous acid.

Antimony tetroxide, Sb2O4.

Insol in H₂O Slightly attacked by acids: hot cone. HCl+Aq acts only slightly (Fresenius)

Min Cervantite, Sl. sol, in HCl+An

Antimony pentoxide, Sb2O4 Insol in H2O. Easily sol in HCl+Aq. Sl.

sol in cone KOH+Ac "Antimonoxyd" is sol, in glycerine in presence of alkalies

100 g. glycerine, to which have been added 10 g. NaOH+Aq (1 1), dissolve 206 g. at b.-pt.. 20 g NaOH+Aq (1 · 1), dissolve 36.0 g, at b.-pt; 40 g NaOH+Aq (1.1), dissolve 68 5 g. at b -pt; 80 g NaOH+Ac (1 1), dissolve 93 0 g at b -pt., 120 g NaOH +Aq (1 · 1), dissolve 119.2 g, at b.-pt (Kohler, Dingl 258, 520.) See also Antimonic acid.

Antimony nitrogen pentoxide, 2Sb₂O₅, N₂O₅ Not decomp, by H.O. (Thomas, C. R. 1895, 120, 1116.)

Antimony oxybromide. See Antimonyl bromide.

Antimony oxychloride. See Antimonyl chloride.

Antimony oxyfluoride. See Antimonyl fluoride.

Antimony oxysulphide, Sb₂OS₂.

Min Antimony blende (kermesite) Insol, in H2O or dil, acids, except HCl+Aq. (Schneider, Pogg. 110. 147.)

Antimony palladium, Sh.Pd

Sl. sol. in equal pts. of HNOs and tartaric acids. (Roessler, Z. anoig, 1895, 9, 69.)

Antimony platinum, Sh.Pt.

Insol. in equal pts. of HNO₄ and tartaric acids. (Roessler, Z. anorg 1895, 9. 67)

Antimony phosphide, SbP. Insol in benzene, ether, or CS2. (M'Ivor,

B 6, 1362)

Antimony selenide, ShSe (Chrétien, C R. 1906, 142, 1341) Sb₂Se₄. (Chrétien, l.c.)

Sb₆Se₆. (Chrétien, l.c.) Sb₂Se₂, Sol. in KOH+Ag. (Hofacker, A. 107. 6.)

Sb₂Se₅ (Höfacker.)

Antimony selenide, with M selenide. See Selenoantimonates, M.

Antimony trisulphide, Sb₂S₂ (Kermes). Insol in H.O and dil. acids

1 l. H₂O dissolves 5 2 x 10-4 mols pptd. Sb₂S₄ at 18°. (Weigel, Z. phys Ch 1907, 58.

Decomp. by cone. HNO₃ or H₂SO₄ Sol, in cone. HCl+Aa Easily sol in dil, KOH, NaOH, (NH₄)₂S, and K₂S+Aq SI sol in NH₄OH+Aq, very sl sol in (NH₄)₂CO₂+ Aq, msol, in KSH+Aq (Fresenius Nol. in a mixture of 50 pts H₂O and 18 pts.

HCl (sp gr. 116) even when completely sat with H2S (Lang and Carson, J. Soc Chem. Ind. 1902, 21. 1018.) Sl. sol, in H₂SO₂+Aq. (Guerout, C. R.

1872, 75. 1276 Cryst Sb2S2 is only sl. sol in NH4OH+

Aq (Î pt. in about 2000 pts NH₃)
Pptd. amorphous Sb₂S₃ is appreciably more sol (I pt in 600 pts. NH4). (Garot, J pr. 1843, 29, 83.)

Sl sol, in hot 2% Na₂B₂O₇+Aq, still less sol in cold. (Materne, C. C. 1906, II, 557) Insol. in NII₄Cl+Aq.

Sol in 14-15 pts pure SbCl2. (Schneider, Pogg 108, 407

Slowly sol in H2C.H.O.+Aq.

Sol in boiling Na SbS4+Aq.

Sol in hot citric, tartane and oxalic acids. Sl sol in malic, benzoic, pierie and pyrogallie acids Insol. in formic and acetic acids "Especially easily sol in citric and ovalic acids with addition of KNO₃, KNO₂ or KClO₃. (Bolton, C N 1878, 37. 86 and 99.)

Sol in ethylamine sulphydrate+Aq. Min Stibnute Sol in cold citric acid+

q (Bolton, C. N. 37. 14.) Soluble modification Sb. Sb₂S₃ may be obtained in a colloidal state in aqueous solution containing 1 pt Sb₂S₄ to 200 pts. H₂O This can be boiled without decomp., but Sb₂S₃ is Lond do acids and salts.

				of solution	
	BRITTS WIL	ica ca	use j		120.12.
HCl				1.270	
H ₂ SO ₄				1.140	
H ₂ C ₂ O				1 : 45	
K.SO.	•			1 : 65	
(NH ₄)	en.			1 · 130	
(INTLA)	POG.			1 1500	
MgSO.				$1 \cdot 1720$	
MnSO				1 2060	
NaCl				1 135	
BaCl.				1.2050	
MgCl ₂				1 , 5800	
CoCl.				1 : 2500	
KNO_8				1:75	
Fe ₂ Cl _n				1.2500	
Ba(NC).).			1 1250	
K.Al.	ഭ്രീപ			1:35,000	ı
	Fe ₂ (SO ₄	١. '		1 800	
12 (14)	T GI(PO1	/4 -		€:40,000	
K ₂ Cr ₂ (1201)1				,
KSbO	J ₄ H ₄ O ₈			1.18	
(8)	hulze, J	pr (2) 27	. 320)	

Antimony trisulphide with M2S.

See Sulphantimonites, M.

Antimony pentusulphide, Sb₂S₃

Insol in H₂O, or H₂O containing H₂S. Sol in conc HCl+Aq Completely sol in NH₄OH+Aq, traces dissolve in (NH₄)₂CO₂+ Aq. Easily sol. in KOH, or NaOH+Aq, or in alkalı sulphides+Aq Sol. in 50 pts cold dil NH₄OH+Aq (Geiger) Insol. in (NH₄)₂CO₅+Aq

Insol, in cold, but sol in hot alkalı carbon-

ates+Aq (Berzelnis) Insol, in Na₃SbS₄+Aq,

When boiled with alcohol, ether, CS2, oil of turpentine, etc., portion of the S is dis-solved out. (Berzelius) CS, dissolves about 5% of the sulphur (Rammelsberg.)

Antimony pentasulphide with M1S.

See Sulphantimonates. M.

Antimony sulphochloride, SbSCl3 Decomp, by most air or H₂O (Cloez, A ch (3) 30. 374)

SbS₂Cl. Easily attacked by acids; insol. in CS₂ (Ouvrard, C. R. 116, 1516.) Sb₂S₄Cl. (Ouvrard.)

28bSCl, 38b₂S₄. Decomp. by dil. HCl+ Aq. (Schneider) SbSCl, 7SbCl₃. Deliquescent; decomp. by H₂O. (Schneider, Pogg. **108**. 407)

Antimony sulphofluoride, SbF_sS

See Antimony fluosulphide. Antimony sulphoiodide, SbSI.

Not attacked by H2O, and decomp, only Insol. in CS2. (Schneider, by cone acids Pogg. 110. 147)

Sb₂S₃I₄. (Henry and Garot.) Sb₂S₁I₃. Sol. in dry CS₂. Very easily de-comp. (Ouvrard, C. R. 117, 108.)

Antimony sulphur dioxide, SbSO... Ppt. (Faktor, C C, 1900, I 1211)

Antimony telluride, SbTe

Insol. in H₂O

Sb.Te. Insol. in H₀O (Oppenheim, J. pr 71. 277)

Antimonyl bromide, SbOBr.

Insol in CS2. (Cooke, Proc Am. Acad. 13. Sl sol in hound NH2 (Gore, Am. Ch. J. 1898, 20, 826)

Sb.O.Br. (M'Ivor, C. N. 29, 179.) 10Sb4O4Br4, SbBr4

Antimonyl chloride. From ShCl. ShOCl Insol in HaO De-

comp. by boiling with H2O; sol in HCl+Aq. Insol. in alcohol or ether; sol. in CS₂, CHCl₃, or C₂H₄. (Sabanajew, Zeit. Ch. **1871**. 204) Insol. in liquid NH₄ (Gore, Am. Ch. J. 1898, 20, 826.

Insel in acetone (Naumann, B. 1904, 37. 4329.) Sb.O.Cl. Algaroth powder. Decomp by

H₂O Sol in HCl+Aq (Cooke, Proc Am. Acad. 13. 1), tartaric acid+Aq (Schaffer, A. 152, 135 1

Sb₈O₁₁Cl₂. (Cooke.)

Sb₈OCl₂₂ Sb41OssCl

From SbCl5. SbOCl3. Deliquescent. Decomposed by H2O. Sol. in H2O. (Daubrawa, A 184 118.

Does not exist. (Anschutz and Evans, A 239, 285) Sb₄OCl₁₈ Deliquescent Insol. m CS2: easily sol in tartaric scid+Aq. (Williams, C. N. 24, 224.)

Sb₂O₄Cl₇. (Williams.) SbO2Cl. Decomp by hot H2O into HSbO3.

Antimonyl fluoride.

From SbF₃ Sb₄O₂F₄. Not deliquescent. (Fluckiger, Pogg. 87, 249.)

Antimonyl casium fluoride, SbF4OH, CsF. (Wells, Am. J. Sci. 1901, (4) 11, 456.)

Antimonyl sodium fluoride, SbOF2, NaF+ H20.

Deliquescent Easily sol. in H2O. (Marignac, A 145, 239)

Antimonyl 10dide, Sb4O6I2

Difficultly sol. in solution of tartaric acid or tartrates. Decomp. by HCl, HNOs, or H₂SO₄+Aq. Easily sol. in alkalies, or (NH₄)₂S+Aq SbOI Inso

Insol. in CS2. (Cooke, Proc. Am. Acad. (2) 5, 72.)

Antimonyl sulphide,

See Antimony oxysulphide.

Argon, A.

100 cc H2O dissolve 4 05 cc. argon at 13.9° Critical t -121 6° under 50.6 atmos Bpt. -186 9°. Sp gr 19 9. (Rayleigh, C. N. 1895, 11. 51-62, 299-302, C. C 1895, 467) Coefficient of absorption in HoO at 120 = 0.0394; at 13.9° = 0.0405 (Ramsay, Phil

Trans 1895, 186. A. 225) Absorption by H.O at to

modification by made as a .				
f.o.	Coefficient of absorption			
0° 10 20 30 40	0 0561 0 0438 0 0379 0 0348 0 0338			
50	0.0343			

(Antropoff, Roy Soc Proc. 1910, 83. A 480.)

Absorption of argon by H₂O at t° and 760 mm, pressure.

0° 0 65780 1 0 65780 1 0 65780 2 1 0 0 65780 2 1 0 0 60512 5 0 0 6050 1 1 0 0 4450 5 1 0 0 4450 5 1 0 0 4450 5 1 0 0 4450 5 1 0 0 0 4450 5 1 0 0 0 4450 5 1 0 0 0 4570 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	t°	Coefficient of absorption
00 0 02001	1 5 10 15 20 25 30 35 40	0 05612 0 05080 0 04525 0 04099 0 03790 0 03470 0 03256 0 03053 0 02865

(Estreicher, Z. phys. Ch. 1899, 31, 184.)

 H₂O at 38° absorbs 25.7 cc. A. 1 l, blood absorbs 25 3 cc. A. Regnard

and Schloesing, C. R. 1897, 124. 303.)
Not absorbed by members of the fatty series of organic compounds; with members of the aromatic series absorption was observed varying from 8% of the volume em-ployed for benzene to 1% for aniline. (Berthelot, C. R. 1899, 129. 71)

Arsenamide, As(NH2)2.

Insol, in liquid NH3. Decomp. by H2O. (Hugot, C R. 1904, 139, 55)

Arsenic, As.

Unaltered by pure H₂O Insol. in HCl+ Aq if air is excluded, but sl sol in presence of air Not attacked by dil H₂SO₄+Aq Oxidized by conc. H₂SO₄, HNO₅, or aqua regia. Not attacked at 20° by HNO₅, conc. or dil., or containing NO2; nor by HNO2+HCl, as dilute state, and a few drops of KNO2+Aq | H2O, or by boiling. (Gmelin.)

are added, the As is attacked at once. (Mil-

lon, A ch (3) 6, 101) Sol in sea water; 0 009 mg per liter off Brittany, 0 01 to 0.09 mg. per liter near Azores. (Gautier, C. R. 1903, 137, 232.) Insol. in liquid NH₈ (Franklin, Am. Ch.

J 1898, 20. 827 Insol. in liquid NH, (Hugot, A ch 1900. (7) 21, 31,)

Insol. in NaOH, KOH, or NH4OH+Aq.

Sol. in S₂Br₂. (Hannay, Chem. Soc. (2) 11.

Insol. in alcohol and ether Sol in certain fatty oils

Insol in methylene iodide. (Retgers, Z anorg, 3. 343.

1/2 ccm. oleic acad dissolves 0.0032 g. As in 6 days. (Gates, J phys. Ch. 1911, 15. 143)

Yellow modification. Very unstable (Mc-

Leod, C N. 1894, 70, 139 Fairly stable in liquid air. (Thomson, Chem Soc. 1906, 90, (2) 745.)

100 ccm. CS2 dissolve at. 46° 20° 12° 0° --15° 6 4 2 0-2.5 1.0 g. As. Less sol, in benzene and ethyl acetate,

(Erdmann, Z anorg. 1902, 32, 448.) Arsenic acid. See page 59.

Arsenic bromide, AsBr.

Decomp, by H₂O Completely sol, in about 3 pts. boiling H2O, and much less, in presence of HBr (Wallace, Phil. Mag. (4) 17. 261.)

Sol. in CS Sol in AlBr₃. (Isbekow, Z anorg. 1913, 84. 26.) Easily sol. in PCl₂ and PBr₃. (Walden,

Z. anorg. 1900, 25 211) Sol. in S.Cl., (Walden, Z. anorg, 1900, 25, 217.)

Arsenic cæsium bromide, 2AsBr₃, 3CsBr. Decomp by H₂O, can be recryst. from cone HBr+Aq (Wheeler, Z anorg, 4, 451.)

Arsenic rubidium bromide, 2AsBrs, 3RbCl As the corresponding Cs comp.

Arsenic bromide ammonia, AsBrs, 3NH2. Decomp by H₂O. (Besson, C R. 110.

Arsenic bromide copper, 2AsBr₃,7Cu. Stable toward hot H.O. Decomp, by KOH. (Hilpert and Herrman, B 1913, 46, 2224.)

Arsenic bromide silver, AsBr3, 3Ag. Scarcely decomp, by cold H₂O (Hilpert and Herrmann)

Arsenic chloride, AsCl₂.

long as they do not act on each other, but if Miscible with little H₂O, and with alcohol, treated with the above mixture in extremely ether, and volatile oils Decomp. by much

Muscible with oil of turpentine, and with Arsenic potassium fluoride, AsFz, KF+ive oil Somewhat sol in HCl+Aq olive oil Somewhat sol in HCl+Aq Easily sol in PCl2 and PBr2 (Walden, Z anorg 1900, 25, 211

Sol in liquid CN. (Centnerszwer, J. 1088

phys Ges 1901, 33. 545) Sol in S.Cl. (Walden, Z. anorg 1900, 25. 217)

Arsenic pentachloride, AsCla.

Fumes in the air with evolution of hydrogen chloride. Readily sol, in CS2, and absolute ether cooled to -30°. (Baskerville, J Am. Chem Soc 1902, 24. 1070.)

Arsenic cæsium chloride, 2AsCl₂, 3CsCl. Decomp by H₂O. 100 pts HCl+Aq (1.2 sp. gr.) dissolve 0 429 pt salt (Wheeler, Z anorg. 4. 451)

Arsenic midium phosphorus chloride. See Iridium phosphorus chloride arsenic chloride.

Arsenic rubidium chloride, 2AsCl₁, 3RbCl. Decump by H₂O. 100 pts HCl+Aq (sp. gr 1.2) dissolve 2 935 pts salt (Wheeler, Z anorg. 4, 451.)

Arsenic sulphur chloride, 2AsCl₂, 3SCl₂. Decomp. by H₂O (Rose.)

Above compound is a mixture. (Nilson, C. N 81. 81.)

Arsenic chloride ammonia, 2AsCls, 7NHs. Decomp, by cold H1O, with evolution of VH₃ From the solution crystallizes As₄Cl₂ N2H10O8 Sol in alcohol without decomp (Rose,

Pogg. 52. 62.) Composition is AsCl₃, 4NH₄, (Besson, C R. 110, 1258.)

Arsenic chloride copper, 2AsCl₃,7Cu.

Somewhat decomp, by H₀O. Decomp by KOH, or hot HCl. (Hilpert and Herrman, B. 1913, 46, 2224)

Arsenic chloride silver, 2AsCl., 7Ag H2O, NH3OH and KOH split off Ag. (Hil-

pert and Herrmann.)

Arsenic trifluoride, AsF a.

Sol. in H₂O with evolution of heat and decomposition. (Berzelius) Easily sol, in benzene (Moissan, C. R.

Miscible with alcohol and ether. (M'Ivor, C. N. 30, 169.)

Arsenic pentafluoride, AsF.

Sol. in H2O, alkalies+Aq and liquid AsF: AsOI. with evolution of heat. Absorbed by ether, altohol and benzene with evolution of heat, (Ruff, B 1906, 39, 67.)

AsF₅, 2KF+H₂O AsFs, AsOFs, 4KF+3H2O. (Marignac, A.

145, 237.)

Arsenic fluoride ammonia, 2AsF3, 5NH3. Easily decomp. by H2O. (Besson, C R. 110. 1258.)

Arsenic pentafluoride nitrosyl fluoride, Asl's, NOF

Decomp. by H₂O, furning HCl, NaOH+Aq, y ether and dry alcohol with evolution of NO. Sol. m cone. HNO, hot cone H2SO4, boiling NOCl and AsFa. Insol. in CCl, and CS₂ (Ruff, Z. anorg 1908, 58. 327.)

Arsenic teffuoride sulphur tetrachloride, 2AsFs, SCL.

Very hydroscopic. Decomp. by H₂O and NaOH. Decomp by through chloude, CCl4, CS., abs. alcohol and ether. Decomp by ligroin, benzene and toluene. (Ruff, B. 1904, 37, 4520.)

Arsenic hydride, AsH. SI sol in H₂O and alkali hydrates+Aq.

with subsequent decomposition. H2O absorbs 1/2 vol. AsH2. Decomp, by conc. acids Absorbed rapidly by oil of turpentine, slightly by fixed oils, and not at all by alcohol, ether, or KOH+Aq. (Gmelin) Insol in KOH+Alcohol. (Meissner.)

Not more sol, in alkaline solutions than in

pure H₂O. (Berzelius)
AsH. Solid. Insol in H₂O, alcohol, ether, and CS₂. (Wiederhold, Pogg. 118, 615) Insol in H2O, sol. in methylene iodide xylene, or in conc. KOH+Aq. (Retgers, Z. anorg. 4, 403.)

Arsenic hydride boron bromide, AsH₃, BBr₃,

Easily decomp Decomp by H₂O. Appreciably sol. in AsH₂ or BBr₂ Insol. in CS₂. (Stock, B. 1901, 34, 949.)

Arsenic diiodide, As₂I₄.

Decomp. by H2O or alkalies; easily sol in alcohol, ether, chloroform, or carbon disulphide. (Bamberger and Phillip, B. 14, 2643.)

Not attacked by cold cone H2SO4 or by cold fuming HNO, The latter oxidizes on warming Decomp by pyridine, Sol. in boiling acetic anhydride. (Hewitt and Win-mill, Chem. Soc 1907, 91, 962.)

Arsenic triiodide, AsIa

Sol. m 3 32 pts. boiling H2O, and solution if boiled down deposits pure AsIs, but if left to cool slowly, deposits crystals of As2Os and

Sl. sol. in HCl+Aq. Sol in POCl₃, PCl₃ and PBr₃. (Walden, Z. anorg 1900, 25. 212.)

51, 110)

Z anorg 1900, 25. 216) Sol. in SnCl4. (Walden, Lc)

Easily sol in AsBra. (Walden, Z anorg 1902, 29, 374)

Sol. in AsCl₃ (Walden, Z. anorg. 1900, 25. 214)

Sol, in alcohol without decomp

Sol in ether, benzene, chloroform, and CS2. 100 pts methylene iodide d'ssolve 17.4 pts. AsI, at 12°. (Retgers, Z anorg 3, 343.)

Arsenic pentaiodide, AsIs.

More or less sol. in H₂O, alcohol, CHCl₃, ether and CS₂. (Sloan, C N, 1882, 46, 194)

Arsenic cæsium iodide, 2AsI3, 3CsI Decomp. by H2O, sol in cone. HI+Aq (Wheeler, Z anorg 4, 451)

Arsenic rubidium iodide, 2AsIs, 3RhI

As the corresponding Cs comp

Arsenic sulphur iodide.

See Arseme sulphoiodide. Arsenic traiodide ammonia, 2AsIa, 9NHa,

Insol in benzeue. (Bamberger and Phillip. B. 14. 2643) AsL, 4NH₈ (Besson, C. R. 110, 1258)

Arsenic nitride, AsN.

Easily decomp. into As and N. (Hugot, C. R. 1904, 139, 56

Decomp by heat (Frans Fischer, B 1910, 43, 1471.)

Arsenic suboxide, AsiO (?)

Insol in H2O; decomp, by dil. acids of $NH_4OH + Aq$

Does not exist. (Geuther, A. 240, 208.)

Arsenic trioxide, AsoO.

"White arsenic" exists in two modificaaAs2O2,-crystalline, octahedral. opaque, porcelaneous, etc., βAs₂O₃,-amotphous, vitreous, "arsenie glass

The data concerning the solubility of AsiOs are very contradictory, the reasons being that (1) the solubility of the two modifications is different, (2) that the length of time necessary to effect solution differs in the two modifications; and (3) that there is a tendency of the amorphous As2O2 to go over into the crystalline state during the process of solution aAs2O2 is also not easily moistened, especially when in a pulverulent condition, which is not the case with the β modification. (Winkler, J. pr (2) 31, 247.)

The older data are very unreliable, but possess a certain historical interest.

1 pt. AscO: is sol. in: 10.55 pts. (Wensel), 11.26 pts (Encheri); 11.88 pts in: ½, hour (Klapcobl); 122 pts (Buchols), 15.0 pts. (Brandt, Bergman), 160 pts. (Yogg); 24 pts. (Lamethen), 40 pts. (Perner); 64 pts. (1y of βλs₂O₂, as this is converted into AscOo

ing at ordinary temperatures-

on coveras unys win cold Hist)—

1 pt. dissolves in 50 pts. (Buchols), in 66 pts.
(Fresher), in 80 pts. at 15° (Begmann), in 80 pts if a, and 104 pts if \$\text{6} (Gubort), \text{60 pts} is \$\text{6} (Gubort), \text{60 pts} is \$\text{10}^{\circ} (Spelman); \text{50 pts} at \$25 \text{6}^{\circ} (Hisbnermann), 320 pts. High at 20° (Aschol and Nasse, 1812) H₂O at 15 6° or below dissolves less than 1/2% AssOs

(Dalton) To dissolve 1 pt. AssOs in 12 pts H₂O, it is necessary to boil an excess of AssOs with H₂O, if 1 pt AssOs in boiled with 12 pts. H₂O, considerable remins under-solved, and even with 1 pt AssOs to 50-60 pts. H₂O owards, and even with 1 pt Asylo to 50-60 pts. H₂O long continued boiling is necessary to effort solution. If a clear solution saturated by long boiling with an excess of Asylo as poured off and ovaporated continuously to ½ its original bulk, no Asylo asparates out, and the solution contains 1 pt Asylo to 9ts. H₂O.

(Fischer)

100 pts aqueous solution of βAs₂O₂ sat at 1.5° contain 0.96 pt. As₂O₂, and 9.68 pts when sat at 100°. (Guibert) ten bin pr. Anch, and 0 66 pts whose set. at 100°. III 15 pt polycomed also he dispensed of down as 10–26 pts. III 15 pt polycomed also he dispensed of the present press HeA. A solution of since strength is obtained in 25 days by dispensed pts. MeA. II 100 pts. HeA. III 15 pts. HeA. II 16 pts. HeA. II

on HiO than the vitrous (RASSA) is much more solo confinency temperature dasolve 0.05 or BAseO and 1.25 Ho at confinency temperature dasolve 0.05 or BAseO and 1.25 EdisoO, and 1.47 pts adssO₂, and when the tempera-dasoO, and 1.47 pts adssO₂, and when the tempera-dasoO retains 1.78 pts, and that from aAssO₁ retains 2.9 pts (Berrelius Icsing Guibort).

βAs₂O₂ dissolves more quickly and abundantly than aAs₂O₃. The same amount H₂O
which will take up 36-38 pts βAs₂O₃ at 12-13° will dissolve only 12-14 pts. aAs₂O₃, or 100 pts. H₂O dissolve 4 pts βAs₂O₃ and 1.2-1.3 pts. aAs2O2. By long boiling with H₂O, «As₂O₃ is converted into βAs₂O₃, and thus acquires the solubility of the latter, so that 100 pts boiling H₂O can take up 11 pts. As₂O₂. But at low temperature βAs₂O₃ is converted into aAs2O3 when in contact with H₀O, so that the solution becomes weaker after a while, and retains only the proportion of As₂O₃ corresponding to the solubility of aAs₂O₃ Comminution, which hastens the by the friction or contact with H_4O . As_2O_2 , which has been rendered opaque by NH_4OH , and that which has been crystallized from an aqueous solution, are equally sol. in H_2O . (Bussy, C. R. 24, 774, A 64, 286)

100 pts. H₂O dissolve 1.707 pts βAs₂O₈ m 2½ years; 100 pts boiling H₂O dissolve 11 46 pts. βAc₂O₃ m 3 hours, and 11.86 pts. m 12 hours, 10 14 pts. αAs₂O₈ m 3 hours, and 10.18 pts m 12 hours. (Rose, Ann Phys. (1) 36.

494.)
A cold sat. solution which stood over excess of As₂O₂ for 10 months at 10–20° contains 1.2% As₂O₃, hot sat solution a few days after saturation contains 2.35–2.50% As₂O₃. If trace of HCl is present, the solution contains 3.8% As₂O₃. Hot sat. solution of porcelain mod. of As₂O₃ contains 4 days after saturation 2.4% As₂O₃ contains 4 days after saturation 2.4% As₂O₃ that 24°, after S2 days at 14°, 1.3% As₂O₃.

100 pts. H₂O dissolve pts αAs₂O₃ and βAs₂O₃

Time	aAssOs	βAnzOz
1 hour	0 023	1.589
3 hours	0.088	2.356
6 hours	0 353	3 666
12 hours	0 364	3.361
24 hours	0.956	3 306
2 days	1 627	2 629
4 days	1 814	2 429
1 week	1 673	.1 763
3 weeks	1.776	1 713
2½ years	1 712	1 707

In the solution of $\beta As_2 O_2$, octahedral crystals were deposited on the sides of the vessel after 12 hours, which continued to increase. There was no such deposit in the case of $\alpha As_2 O_3$.

From the maxima in the above table, 100 pts. 4L₂O can dissolve 3 7 pts βAs₂O₅ and 1.7 pts. αAs₂O₅ at ordinary temperature

100 pts. boiling H₂O dissolve 11.46 pts. 8A₅O₃ and 10.140 pts. «A₅O₃ in 3 hours; 11.86 pts \$A₅O₄ and 10.176 pts. «A₅O in 12 hours. (Cl Winkler, J. pr. (2) 31, 247.) 100 pts. H₂O dissolve 1.75 pts. of a third

modification (hexagonal crystalline) at ordinary temperature, and 2.75 pts. at 100°. (Claudet, Chem. Soc. (2) 6. 179.)

βAs₂O₃ dissolves more rapidly in HCl+Aq than αAs₂O₃. (Schultz-Sellac, B. 4. 109.)

While 100 ccm. H₂O dissolve 0.8507 g. βA₈₄O₃ at 18.5°, 100 ccm. H₂O containing 1.3195 g. HCl dissolve 1.1513 g. βA₈₄O₃; containing 6.09 g. HCl, 1.2724 g. βA₈₄O₃; (Chodounsky, Listy Chemické, 13. 114.) 100 ccm. H₂O dissolve 1.405 g. Δ8₂O₃ at

15°. (Wood, Chem. Soc. 1908, 93. 412) Solubility of crystalline As₂O₄ in H₂O. 1 I. of the sat. solution contains at:

11. of the sat. solution contains at: 2° 15° 25° 39 8° bpt. 12 006 16 566 20 384 29 302 60+g As₂O₄ (Bruner, Z. anorg. 1903, **37**, 456)

Much more easily sol. in many acids than in H₂O Easily sol in fuming H₂SO₄. (Schultz-Sellac.)

100 pts. dilute H₂SO₄+Aq of various strengths dissolve at t°.

ţ°	Pts. βAs ₂ O ₃	to.	Pts. βΛs ₂ O ₃	Ratios of amts dis- solved at 80° 18.5°	
80°	1 0195 1 3664 1 1933	18 5°	0 5422 0 7203 0 6522	1 88:1 1 89:1 1 84:1	

(Chodounsky, l.c.)

Decomp. by HNO₃ or aqua regia into As₂O₄. Sol. in H₂PO₄+Aq. (Bergman.) More sol. m HCl+Aq than in H₂SO₄, or HNO₃+Aq, and still less in HC₂H₃O₂+Aq. Solubility in HCl+A₃

contonity i	ii itor-raq.
Cone of HCl+Aq	Grams of As ₂ O ₂ per 100 c of solution
0 46N 0 98N 2 03N 3 13N 3 81N 5 32N 6 50N 7 85N 9 17N	1 52 1 41 1 .17 1 11 1 13 2 20 5 .11 12 28 18 16

As the concentration of the acid uncreases, the solubility of the oxide decreases, a minimum being reached when the concentration of the solvent is about 3.2N. Beyond this point, an increase in the concentration of the solvent leads to a corresponding increase in the solubility. (Wood, Chem. Soc. 1908, 93.

Insol in liquid CO₂. (Büchner, Z. phys. Ch. 1906, **54**. 674.)

Easily sol. in cold H₂C₂O₄+Aq. (Bergman.)

When pulverized, it dissolves in hot H₂C₂O₄

+Aq, but separates out on cooling.

Easily sol in hot benzoic acid+Aq.

Sol in tartaric acid+Aq.

Easily sol. in alkalı hydrates, or carbonates +Aq.

Easily sol. in NH, aisenite + Aq at 70-80°. erystallizing out on cooling, (Berzelius.)

Sol. in hot K₂C₂O₁+Aq.
Sol in AsCl₃. (Penney and Wallace.)
More sol. in Na₂B₄O₇+Aq than in H₂O Very sl. sol. in absolute alcohol (Vogel)

Sol, in S0 pts. highly rectified spirit (Wenzel.) When 1 pt powdered Asc0s is digested 30 days in 10–40 pts slocobl, a solution is formed containing 1 pt Asc0s to 60 pts slocobl, when 1 pt Asc0s is digested with 60–130 pts alcohol, when 1 pt Asc0s is digested 1 pt. Asc0s to 124–140 pts alcohol. (Fischer Sol in 70–88 pts alcohol. (Fischer)

Alcohol dissolves 0.446 pt. βAs₂O₃. (Rose, A Phys. (1) 52, 455.)

100 pts. alcohol dissolve pts As₂O₂:

Vol % of alcohol	aAs ₂ O ₂ at 15°	a AnsOs at b-pt of alcohol	βAs ₂ O ₂ at 15°				
56 79	1 680 1 430	4 895 4 551	0 504 0 540				
84 86	0 715	3 197	0 565				
88 100	0 025	3 402	0.717 1 060				

(Girardin, J. Pharm. (3) 46, 269.)

100 pts. absolute alcohol dissolve 0,446 pt βAs₂O₃ in 2½ years (Winkler, J. pr (2) 31.

Nearly insol. in ether

100 pts, ether dissolve 0.454 pt. βAs₂O₂ (Winkler.)

Ether extracts 1 mg. As2Os from sat. As2O1+Aq for every 15 cc. bther used, less is extracted when the solution is acidified with HCl, and almost none if acidified with H₂SO₄ or H₂C₄O₆. (Selmi, B. 13. 206.) aAs,Oa is sol, in 50 pts. boiling nitrobenzol

 $\beta A_{S_2}O_3$ is insol. in boiling nitrobenzol (Auerbach, Z. anorg. 1903, 37. 353)

BAs Oa dissolves in oil of turpentine, but aAs2O2 is insol. therein. aAs2O2 is very sl. sol, in benzene or petroleum ether, but more sol in methyl alcohol, ethyl alcohol, ether,

or chloroform. (Selmi) 100 pts. CS₂ dissolve 0.001 pt. βAs₂O₃ in

21/4 years. (Winkler.)

St. sol. in the fatty oils. 1000 pts, castor-oil dissolve 1.33 pts. As₂O₄ at ordinary temperature, and 9 pts at boiling temperature. 1000 pts. other oils dissolve 0.6-0.8 pt. As2O2 in the cold, and about 1.7

pts, on boiling. (Berzehus. Insol, in chinoline or ambne. (Hoffmann,

A. ch. (3) 9. 143, 169.) Moderately sol, in chinolin. (Beckmann and Gabel, Z anorg. 1906, 51. 236.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329), (Eidmann, C. C. 1899, II. 1014.) Sol, in amyl alcohol and is divided between it and H2O in the constant ratio of 1:547

Min. Arsenolite.

Arsenic traoxide pentoxide, 3As₂O₆, 2As₂O₅

Decomp. by H₂O. (Joly, C. R. 100, 1221.) 2As₂O₃, As₂O₅+H₂O. Decomp. by H₂O. (Joly.)

As₂O₃, As₂O₅+H₂O₅ (Joly.)

Arsenic tetroxide, As₂O₄.

Sl. sol in H₀O from which it is partially pptd. by alcohol. More easily sol in alkali carbonates or HCl+Aq Most easily sol in NaOH or KOH+Aq. (Herbst, Dissert, 1894.)

Arsenic pentoxide, As₁O₄

Deliquescent in moist air; slowly sol. in H₂O, forming H₂AsO₄, which see Easly sol in alcohol, much more sol, in alcohol than As₂O₄. Very sl. sol. in the fatty oils, 100 pts of oil dissolving 0 2 pt As2Os in the cold, and 1 pt with partial decomp, on boiling. (Berzelius.)

1000 pts. boiling poppy-oil dissolve 27 pts As₂O₄: 1000 pts, boiling castor-oil dissolve 34 pts. As2O4. (Heimpel and Grundner.)

+4H2O. Solubility in H2O at to.

t°	Pts HaAsO4 in100 pts solution	t°	Pts H ₂ AsO ₄ in 100 pts. solution
-55° -50 -45 -40 -35 -30 -25 -20 -15 -10	69 9 70.9 71 9 72 9 73 9 74.9 75 9 76 9 77 9 78 9	-5° 0 +5 10 15 20 25 30 35	80.0 81.0 82.1 83.3 84.7 86.3 88.0 90.1 92.8

(Menzies and Potter, J. Am Chem Soc. 1912, 34, 1464.)

±4/.H.O. Solubility in H.O. et to

T*/\$1120. Solut	mity in 1120 at t .
t°	Pts HaAsOs in 100 pts. of solution
+10° 20 30 40 50 60 70 80	88 4 89 1 89 8 90.5 91 9 92.0 93 2 93 8
100 110 120 130 140	94 4 95 0 95 6 96.2 96 8

at 25°. (Auerbach, Z. anorg. 1903, 37. 376.) (Menzies and Potter, J. Am. Chem. Soc. 1912, 34, 1464.)

As₂O₄+4H₂O and 3As₂O₅+5H₂O are the only hydrates that can be isolated (Menzies and Potter.)

See also Arsenic Acid.

Arsenic trioxide, with alkali haloid. See Arsenite, alkali haloid.

Arsenic sulphur trioxide, As₂O₃, SO₂
Dehousement, decome by H₂O, (Adie,

Chem. Soc. **55**. 157.) A₈₄O₄, 2SO₂. As above (Adie) A₅₂O₄, 3SO₃. (Weber, B **19**. 3186.) A₈₄O₃, 4SO₃. As above (Adie.)

As₂O₃, 4SO₃. As above (Adie.) As₂O₄, 6SO₅. (Weber) As₂O₄, 8SO₃ As above. (Adie.)

Arsenic oxychloride, etc. Sec Arsenvl chloride, etc.

Arsenic phosphide, AsP.

Decomp. by H₂O Not attacked by cold H₂SO₄ or HCl, and only sl. sol therein on warming Essaly decomp. by HNO₂, KOH, NaOH, BaO₂H₂+Aq. Insol. in alcohol, ether, chloroform, sl. sol. in CS₂.

P₂As₇O₂ Product of action of H₂O on above compound, which it resembles (Janowsky, B 6. 216.)

Arsenic monoselenide, As-Sc

Insol. in most organic and morganic solvents. Sol. very slowly in cone HCl and H₂SO₄. Sol in boiling alkali hydroxides+Aq (Szarvasy,B. 1897, **30**, 1245)

Arsenic triselenide, As₂S₂
Partially sol. in KOH+Aq if boiled with it for a long time. (Uelsmann, A. 116, 123)

Arsenic pentaselenide, As₂Se₃
Insol in most solvents, as conc. HCl. Sol in alkali hydrates and sulpho-hydrates+Ao

(Szarvasy, B 1895, 28. 2655–2656)
Insol. in H₂O, in dil cards and in conc. HCl.
Sl. sol. in warm HNO₃+Aq Oxdized by
cold furning HNO₂ Sol. in alkalies and in
hot alkali carbonates+Aq. Insol. in alcohol,
ether, CS₂ etc (Clever, Z anorg. 1895, 10.

Arsenic selenosulphide.

See Arsenic sulphoselenide.

Arsenic sulphide, AsıS

Pp# Insol. m NH₄OH or in colorless (NH₄)₅S+Aq Sol. in yellow NH₄SH+Aq. (Scott, Chem. Soc. 1900, 77, 652.)

Arsenic disulphide, As₂S₂

Min. Realgar. Difficultly sol. in alkali sulphides+Aq. Partly dissolved by KOH+ Aq with decomposition. Sol. at 150° in a sealed tube in NaHCO₂+Aq, and crystallizes out on cooling. (Senarmont, A. ch. (3) 32. 158) Arsenic trisulphide, As₂S₃

Insol in H₂O when prepared in the dry way, but when prepared most is very liable to go into the colloidal modification mentioned below. Insol. in H₂O containing H₂SO₂, HNO₃, HC, H₂C₂O₄, HC₂H₂O₅, H₂C₄H₄O₆, CO₂₅, NH₄C₄, KNO₃, (NH₄)SO₄, MgSO₄.

(Bontigny)
Insol. in H₂O Traces are dissolved by
H₂S+Aq. SI decomp. by boiling with H₂O,
or long contact with cold H₂O. (Fresenus)

1 1 H₂O dissolves 2 1 x 10⁻⁴ mols pptd. As₂S₄ at 18° (Weigel, Z phys Ch. 1907, **58**. 294)

Insol in the acids. Insol, in cold, and scarcely attacked by hot cone HCl+Aq.

Easily decomp by HNOs or aqua regia

Easily sol. in cold KOH, NaOH, or NH₄OH +Aq, also in alkalı carbonates, or sulphates+

Aq. Sol in hot KHSO₃+Aq. Sol in extracacid, and alkalı citrates+Aq.

(Schulze, J pr. (2) 25, 431)

(Spiller)
Slowly sol. in cold 2% Na₂B₄O₇+Aq.
Easily sol. on heating (Materne, C. C. 1908.

11 557.) Insol in CS.

LaI+Aq

NaCl+Aq

CaCl2+Aq

MgCl2+Ac

NH₄Ci+Aq .

BaCl₂+Aq .

Min Orponent As_2S_3 may also be obtained in a colloidal form, sol in H_2O Sat solution contains 34.46% As_2S_3 , it is decomp. by standing, but may be boiled without undergoing decomposition, most acids and many salts ppt As_2S_3 .

The following solutions cause pptn. of AsSi in a solution of the colloidal modification, when added in the given state of dilution—

n.	_					
- 1	HCl+	Aq			1:555	
- 1	HNO_{α}	+A.a			1:276	
- 1	H.SO.	+Aq			1 . 255	
- 1	H.SO.	+Aq			1:138	
- 1	H.C.O	+Aq			1 . 65	
	H ₈ PO.	+Aa			1:26	
- 1	HC.H	O2+A	.cı		1:0 18	
	K ₀ SO ₄	+Aa		-	1 76	
- 1	Na-SO	4+Aq			1 129	
- 1	(NHA)	80.+	Åα		1 . 188	
	CaSO,	+Aa			1:2780	1
1	MeSO	+Aq		•	1 . 2630	
- 1	ZnSO.	+Aq		•	1 . 3330	
- 1	MnSO	pA+	•		1 . 2860	
-	NiSO.	+Aq	•	•	1:3440	
-	FeSO,	+40	•		1:2380	
-	41480	4)3+A	n		1 . 5260	
- 7	Tl ₂ SO	1440	4		1 . 799	v
	KCl+	Δα			1 . 137	
-	KBr+	Aa			1:103	
-	KI + A				1 : 55	

1:127

1.212

1,207

1:2860

1:4370

1 10000

FeCl ₃ +Aq				1 . 50000	
AlCl ₃ +Aq				1 83000	
CrCl ₂ +Aq				1 20000	,
KNO ₃ +Aq				1 84	
NaNO ₃ +Aq			٠,	1:117	
NH4NO3+A	q			1 · 138	
Ba(NO ₃) ₂ +A	Lq			1 2080	
KClO ₄ +Aq				1.88	
CaH2(CO3)2-	⊢Aq			1 3120	
K2C2H4O6+4	λq			1.85	
K2C2O4+Aq				1 · 81	
NaC2H4O2+			•	1 78	
Urea+Aq				1 25	
(NH ₄) ₂ Fe(SC) ₄) ₂ +	Aq		1 · 1160	
K2Al2(SO4)4"	-Aq			1 · 50000	
K2Fe2(SO4)4	$+\Lambda q$			1.55500	
K2Cr2(SO4)4	+Aq			1:25000	
K4Fe(CN)6+	-Aq			1 · 67	
KaFe(CN)6+	-Aq			1 · 81	

Cold cone solutions of borre, assenious, tartaric, benzoic, and salicylic acids, also cane sugar, or chloral hydrate cause no noto. Alsolute alcohol and glycerine may also be mixed with the solutions without causing (Schulze, J pt (2) 25, 442.)

+6H.O. decomp completely into As-Sunder a pressure of 6000 to 7000 atmos (Spring, Z. anorg. 1895, 10, 186.)

Arsenic pentasulphide, As₂S₅ Insol, in H2O. Sol in NH4OH, KOH,

NaOH + Ag, and solutions of alkalı sulphides and carbonates Sol in BaO2H2, and CaO2H2 +AqSol in citric acid, and alkali citrates+Aq.

(Spiller) Alcohol dissolves out S on boiling. (Berzelius.) Sol. m alkalı arsenates+Ac (Nilson, J.

pr (2) 14, 155 +H₂O (Nilson, lc.)

Arsenic trisulphide, with MoS.

See Sulpharsenites, M. Arsenic pentasulphide, with MoS.

See Sulpharsenates, M. Arsenic sulphobromide, AsS₂Br₂=AsSBr+

Decomp, by H2O, (Hannay, Chem Soc.

Arsenic sulphochloride, As₂S₅Cl.

33, 284.)

Slowly decomp by boiling H.O. Sol, in hot AsCl₂ without decomp. (Ouvrard, C. R. 116. 1516.) Decomp. by H₂O. AsS₂Cl Sol. in NH₂OH, and alkali carbonates+Aq. (Ouvrard.)

Slowly decomp, by boiling H₂O AsS₂Cl. Sol in alkali carbonates and in NH₄OH+Aq (Ouvrard, C R 1893, 116. 1517)

Arsenic sulphoiodide, AsSI

sulphide. (Schneider, J. pr. (2) 23. 486.) Formula is probably As₂S₈, AsI₃.

Slowly attacked by HCl+Aq, somewhat more easily by HNO2+Aq Easily sol in KOH, or NHOH+Aq (Schneider, J. pr (2) 34, 505)

2AsI. SI. Decomp. on air (Schneider, J pr (2) 36. 509)

As₆S₅I₅ Less sol, in CS₈ than AsI₅. (Ouvrard, C. R. 117, 107.)

AssSL (Ouvraid) See also Arsenvl sulphoiodide.

Arsenic sulphoselenide, As₂SeS₂ Easily sol. in cold NH,SH+Aq. Nearly

completely sol in (NH4)2CO2+Aq (v Gerichten, B 7. 29) As SSe2 More difficultly sol than the pre-

ceding comp. in NH4SH+Aq. (v. Gerichten) $As_8Se_2S_3$. Sp. gr = 6 402 at ca. 750 Insol. in most solvents Easily sol in al-

kalı hydroxisles and sulphides+Aq. (Szarvasy, B. 1895, 28, 2661

As-Se₂S₂ Sp gr. = 11 35 at 550-600° Insol, in most solvents Fasily sol, in alkalı hydroxides and sulphides+Aq. (Szarvasy, B 1895, 28, 2659)

Arsenic telluride, AsoTco. Sol. in HNO₄ and HNO₄+HCl+Aq. (Oppenheim, J pr 71, 266 As₂Te₃. As above (Oppenheim.)

Arsenic acid. anhydrous. As₂O₅. See Arsenic pentoxide.

Metaarsenic acid, HAsO2.

Slowly sol, in cold, quite cestly sol, in hot. H₂O, with considerable evolution of heat. and conversion into H-AsO4. (Kopp. A ch. (3) 48, 196)

Orthoarsenic acid, H.AsO.

Sol. in H₂O, with absorption of heat 1 pt. As2Os dissolves in 0.405 pt. H2O at

12 5°, or 100 pts. H₂O dissolve 244.81 pts. As₂O₅ at 12 5° (Vogel) Sol. m 0.5 pt. H₂O (Thénard.)

Sol. in 6 pts cold H2O, and more quickly in 2 pts hot H.O. (Bucholz

100 pts. H₂O at 15 56° dissolve 150 pts As₂O₄. (Ure's Dict.) HaAsO4+Aq sat. at 15° contains 15% As_2O_5

Sp. gr. of H₂AsO₄+Aq at 15° a=sp gr. if

ы		C to Trul	/6 to 113-1004			
-	%	a	b	%	a	ъ
	5 10 15 20 25 30 35	1 042 1 085 1.134 1 187 1 245 1 306 1 378	1 0337 1 0690 1.1061 1 1457 1 1882 1 2342 1 2840	45 50 55 60 65 70 75	1 540 1 635 1.742	1 397; 1 461; 1 532; 1 608; 1 691; 1 782;
	40	1 450	1 2200			

Tinsol in alcohol, chloroform or carbon di-libhide. (Schneider, J. pr. (2) 23, 486.) Z. anal 27. 303.)

1 000						
2 1016 1013 48 1582 1485 1481	%	a	ò	%	G	6
Konn calculated by Corlech Z and 97	1 2 2 3 4 4 5 6 7 8 9 9 10 11 12 13 14 15 16 7 18 19 20 12 22 24 22 56 27 28 9 30 13 22 24 22 56 37 8 38 39 40 44 44 44 44 44 44 44 44 44 44 44 44	1 008 1 016 1 013 1 031 1 031 1 041 1 045 1 1 045 1 1 045 1 1 045 1 1 102 1 1 110 1 1 120 1 1 121 1 1 130 1 1 121 1 1 121 1 1 246 1 1 1 246 1 1 246 1 1 246 1 1 246 1 1 246 1 1 246 1 1 1 246 1 1 246 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 006 1 013 1 023 1 023 1 032 1 103 1 103	47 48 49 50 51 51 55 53 55 55 56 57 56 60 61 62 63 64 65 66 67 77 77 77 77 77 77 77 77 77 77 77	1 564 1 582 1 601 1 622 1 663 1 683 1 706 1 775 1 1.752 1 777 1 801 1 825 1 850 1 910 1 970 2 000 2 060 2 060 2 120	$\begin{array}{c} 1 \ 412 \\ 1 \ 425 \\ 1 \ 464 \\ 1 \ 464 \\ 1 \ 464 \\ 1 \ 467 \\$
	(Kopp	o, calcula	ated by	Gerla	ch, Z. az	nal. 27.

316)

See also Arsenic pentoxide.

Pyroarsenic acid, H.As.Or.

Very deliquescent; easily sol in H₂O with

Sp. gr. of H₂AsO₄+Aq at 15° · a = sp. gr. if % less sol in HC₂H₂O₂+Aq The neutral alis As₂O₅; b = sp. gr. if % is H₃AsO₄.
kaline-earth arsenates are less sol in NH₄OH +An than in H₂O, but more sol. in NH₄Cl+ Aq (Field) The alkalı aisenates are sol. in hot glycerine (Lefèvre, C R 108, 1058.)

> Aluminum arsenate, Al₂(AsO₄)₂. Ppt Insol. in H₂O, difficultly sol. in acids. (Colourno, C R 103. 273)

Insol in acetone (Naumann, B. 1904, 37. 2Al₂O₂, 3As₂Ō₄. Nearly unattacked by boiling H₂O; sol in dil. acids. (Lefèvre, A. ch. (6) 27. 5.)

Aluminum potassium arsenate, 2Al2O2, 3K2O. 3As₂O₆.

Aluminum sodium arsenate, 2Al₂O₂, 3Na₂O, 3As2O5. (Lefèvre)

Ammonium arsenate, (NH₄)₈AsO₄+3H₂O₄ Difficultly sol, in H₂O. Less sol, in H₂O than (NH₄)₂HA₈O₄ (Mitscherlich.) Insol in liquid NH₄. (Franklin, Am. Ch J. 1898, 20, 826.)

Ammonium hydrogen arsenate,

(Lefèvre.)

II. 1014)

(NH₄)₂HAsO₄ Effloresces, giving off NH₃; more sol. in H₂O than (NH₄)₂AsO₄. (Salkowsky, J. pr. 104. 129) Insol in acetone (Eidmann, C. C. 1899,

Ammonium dihydrogen arsenate,

NH₄H₂A₈O₄ Not efflorescent. Very sol, in H2O

Ammonium barium arsenate, NH4BaAsO4+ ½H₂0.

Sol. by 10 days' contact in 1391 pts H₂O; in 18,832 pts of a mixture of 1 pt. NH.OH+ Aq and 3 pts H₂O; in 227 pts of a solution of 1 pt NH₄Cl in 10 pts. H₂O, and in 2169 pts of a solution of 1 pt. NH Cl in 10 pts. NH₄OH+Aq and 60 pts H₂O. (Lefevre, A ch. 1892, (6) 27. 13)

NH4)2BaH2(AsO4)2. Efflorescent. Insol. in H₂O, easily sol. in dil. HNO₂+Aq (Baumann, Arch. Pharm. 36, 36.)

Ammonium calcium arsenate, NH,CaAsO.+

16H.O.

Arsenates.

Arsenates of the alkalı metals, and acid amenates of the MLD (Arsenates.)

H.D. (Arsenates.)

Arsenates of the alkalı metals, and acid amenates of the alkalı metals are sol. [5]

H.D. (Arsenates.)

easily sol. in mineral acids, including H1AsO4; at 15°; in 381 pts. NH4Cl+Aq (1:7); in

NH_Cl+NH_OH+Aq (1 10 60) (Lefèvre, A ch 1892, (6) 27. 13.) +6H₂O. Sol m hot, very sl sol m cold H₂O, sl sol. in NH₄Cl, and NH₄OH+Aq (Wach, Schw. J **12**. 285)

+7H₂O (Bloxam, C N 54, 163) (NH₄)₂CaH₂(AsO₄)₂ Efflorescent. Insol 1n H₂O, easily sol in dil. HNO₄+Aq (Bau-

mann, Arch. Pharm. 36. 36) (NH4)Ca2H2(AsO4)2+3H2O4 (NH₄)Ca₆H₅(AsO₄)₆+3H₂O. (Bloxam, C

N. 54, 163)

Ammonium glucinum arsenate, NH4GlAsO4 +41/2H2O.

More stable than the corresponding potassum salt. (Bleyer, Z anorg. 1912, 75, 291) Ammonium iron (ferric) dihydrogen arsenate,

NH4H2AsO4, FeAsO4 Hydrolyzed by H2O Sol, in cold cone HCl, hot HNOs, hot dil

H2SO4, and in hot arsenic acid+Aq containing 75% arsenic pentoxide Sol in hot conc. NH4OH+Ag. Completely

hydrolyzed by caustic alkalies Insol. in cone NH4Cl+Aq and in 50% 0.07 pt salt. (Field, Chem Soc. 11. 6 acetic acid (Curtman, J. Am. Chem. Soc. 1910, 32, 628.)

43478 pts NH₄OH+Aq (1 3); in 10570 pts. Ammonium magnesium arsenate, NH₄MgAsÖ.

Sl sol. in H₂O Sol m acids. Anhydrous salt is sol in 2784 pts H2O at 15°; m 15,904 pts. NH₄OH+Aq (1 · 3) (0.96 sp gr); in 1386 pts, NH₄Cl+Aq (1 . 70); in 886 7 pts NH₄Cl+Aq (1 7), in 3014 pts. NH₄Cl (1 pt.)+NH₄OH (0.96 sp gr.) (10 pts)+Aq (60 pts); in 32,827 pts magnesia mixture (Fresenius, Z anal. 3, 206.) Anhydrous salt is sol. in 4389 pts NH₄NO₃

+Aq (1:50), in 2561.5 pts. RCl+Aq (1: 165); in 1422 pts, ammoniacal solution of 3.5 g. tartane and in 250 cc H2O, in 933 5 pts. ammoniacal solution of 2.5 g citric acid in 250 cc H₂O. (Puller, Z. anal. 10. 62.)

791130.
Sol. in 2656 pts H₂O at 15°; in 15,038 pts.
NH,OH+Aq (1 '2) (0.96 sp gr.); in 844 pts.
NH,CH+Aq (1 '7), in 1315 pts. NH,CH+Aq (1 '7), in 1315 pts. NH,CH+QH (1 .70); in 2871 pts. NH,Cl (1 pt)+NH,OH (0.96 sp. gr.) (10 pts.) + Ag (60 pts.). (Fre-

senius 1000 pts. pure H₂O dissolve 0.14 pt. salt; 1000 pts. NH₄Cl+Aq (containing 100 pts. NH4Cl) dissolve 0.95 pt. salt; 900 pts. H4C +100 pts NH₄OH (sp. gr 0.880) dissolve +6H₂O Sl efflorescent Sl, sol, in H₂O. Very sl sol in NH,OH+Aq

Solubility of NH4MgAsO4+6H2O in H2O and NH4 salts+Aq. Grams salt dissolved in 100 g. solvent

t°	H ₂ O	NH4NO14Aq	NH-Cl+Aq	NH4OH+Aq 1 pt NH4OH+ Aq (0 96) +4 pts H ₂ O	4% NH4OH+ Aq+5% NH4CI+Aq	4% NH ₄ OH+ Aq +10% NH ₄ Cl+Aq
0° 20 30 40 50 60 70 80	0 03388 0 02066 0 02746 0 02261 0 02103 0 01564 0 02364	0.09216 0 11358 0.11758 0 13936 0 18945 0 21115 0 18880 0.18945	0 08397 0 12284 0 11264 0 19016 0 18889 0 21952 0 22092 0 23144	0 00874 0 00958 0 01173 0 01005 0 00902 0 00949 0 00912	0.01331 : : 0.04691	0 03165

(Wenger, Dissert, 1911.)

Ammonium manganous arsenate, of a mixture of 1 pt. NH₂Cl in 7 pts. H₂C NH₄MnAsO₄+6H₂O

Nearly insol in cold H₂O; easily sol, in dil. acids; insol. in alcohol (Otto, J. pr 2. 414.) Ammonium sodium arsenate, NH4NaHAsO4 Ammonium uranyl arsenate, NH4(UO2)AsO4

 $+4H_2O$ Sol m H2O (Uelsmann, Zeit. f ges. Nat 23, 347.)

Ammonium sodium hydrogen arsenate, (NH₄)₂Na₂H₄(AsO₁)₄+6H₂O Sol. in H₂O. (Filhol and Senderens, C R

94, 649) Ammonium strontium arsenate, NH₆SrAsO₄

+½H₂O Sol by 10 days' contact in 3229 pts. H₂O, Ammonium arsenate tellurate.

and in 1519 pts of a solution of 1 pt. NH.C. in 10 pts NH4OH+Aq and 60 pts H2O. (Lefèvre, A. ch. 1892, (6) 27. 13)

 $+xH_2O$ Insol. in H₂O, HC₂H₂O₂, and saline solu-

tions as NH₄Cl+Aq; sol. in mineral acids (Pullet, Z. anal. 10. 72) Ammonium vanadıum arsenate

NH4(VO2)2AsO4, and (NH4)2HAsO4+ 2(VO2)2H2A8O4

See Arseniovanadate, ammonium.

in 11.586 pts. dil. NH.OH+Ag, in 199 pts. . See Arseniotellurate, ammonium.

Antimony arsenate (?)

Insol. in H₂O; insol. in acids after ignition, but when fresh is sol. in cone boiling HCl+ Aq, and sl sol. in HNO₂+Aq (Dumas)

Barium arsenate, Ba₂(AsO₄)₂

1000 pts purc H₂O dissolve 0.55 pt. Ba₄(AsO₄)₂, 1000 pts NH₄Cl+Aq (containing 50 pts NH₄Cl) dissolve 1.95 pts Ba₂(AsO₄)₂; 900 pts H₂O+100 pts NH₄OH+Aq (sp gr = 0.88) dissolve 0.03 pt Ba₂(AsO₄)₂ (Field,

Chem. Soc 11. 6.)
Sol in cold HNO_s, and HCl+Aq (Berzelius), H₂C₄H₄O₅, and HC₂H₄O₂+Aq (Anthon)

Solubility in H₂O is not increased by presence of NH₄, Na, or K salts. (Lauguer) Not pptd in presence of Na citrate (Spiller)

H1/2H₂O. (Salkowsky, J pt. **104**. 129)

Barium hydrogen arsenate, BaHAsO₄+
11/3HAO.

Very sl. sol in H₂O, but decomp, thereby into Ba₃(AsO₄)₂ and BaH₄(AsO₁)₂. (Berzelius) Sl sol, in cold acids.

+H₂O Sl sol in either BaCl₂+Aq or Na₂HAsO₄+Aq (Maumené, J. B 1864. 237)

Barium tetrahydrogen arsenate, BaH₄(AsO₄)₂ +2H₂O. Easily sol. in H₂O. (Setterberg, Berz, J. B.

Easily sol, in H₂U. (Settleiberg, Berz. J. B. 26, 206.)

Difficultly sol in httle, but decomp. by much H₂O. Easily sol in HCl+Aq, less easily in HCj-H₂O-Aq (Hörmann, Dissert, 1879.)

Barium arsenate, acid, BaO, 2As₂O₆+4H₂O. Very sl. sol. in H₂O. (Mitscherlich.)

Barium pyroarsenate, Ba₂As₂O₇ Insol. in H₂O, but decomp thereby into

BaHAsO₄+H₂O. (Lefèvre, C R. 108 1058.)

Barium potassium arsenate, BaKAsO₄

Sl. decomp. by cold H₂O, rapidly sol in dil. acids (Lefèvre, A. ch. (6) 27. 1)

Barium sodium arsenate, BaNaAsO₄+ 9H₂O. (Joly, C R. 1887, 104, 1702)

Barium arsenate chloride, 3Ba₃(A₅O₄)₂, BaCl₂. Insol. in H₂O; sol in dil. HNO₂+Aq (Lechartier, C. R. **95**, 172.)

Bismuth arsenate, basic, BiAsO₄, 3Bi₂O₄ Insol. in H₂O. Sol. in mineral acids. (Cavazai, Gazz. ch. it. 14, 289.) 5Bi₂O₃, 2As₂O₂+8H₂O. Min. Rhagule Easily sol. in HCl+Aq; st. sol. in HNO₂+ Aq

| Bismuth arsenate, BiAsO₄+1₂H₃O | Insol. in H₂O. Insol in HNO₃+Aq in presence of H₃AsO₄, or alkali arsenates+Aq; sol in HCl+Aq (Salkowsky, J. pr 104., 129)

Note wholly insol. in HNO₂+Aq. (Schnedet, J pr (2) 20, 418.)

Very sol. in HASO₃+Aq. (Dumas.)

Insol. in Bi(NO₃)+Aq. (Dumas.)

Sol. in Bi(NO₃)+Aq. (Salkowsky.)

Insol. in cone. Bi(NO₂)+Aq containing a small quantity of HNO₃ (Schneder).

Bismuth copper arsenate, Bi₂Cu₃₀As₁₀H₄₀O₇₀
=Bi₂O₃, 20CuO, 5As₂O₈+22H₄O
Min. Mixate Decomp. by dil HNO₃+Aq
into insol. BiAsO₄, and Cu₃(AsO₄)₂, which

goes into solution. (Dana)

Bismuth uranyl arsenate, Bl₂(AsO₄)₂,
SB₂O₃H₃, (UO₂)₃(AsO₄)₂.

Min Walpurgits.

Cadmium arsenate, Cd₃(AsO₄)₂ Ppt. (Salkowsky, J pr **104**, 129) 2CdO, As₂O₃ (Lefèvre, C R. **110**, 405,) 5CdO, 2As₂O₄+5H₂O Ppt. (Salkowsky.)

Cadmium pyroarsenate, Cd₂As₂O₇ (de Schulten)

Cadmium hydrogen arsenate, CdHA₅O₄+ H₄O. Decomp by H₂O (Demel, B. **12**, 1279)

CdH₄(ÅsO₁)₁+2H₂O Decomp by excess of H₂O. (de Schulten, Bull. Soc. (3) 1. 473.) Cadmium potassium arsenate, 2CdO, K₂O, As₇O₃

(Lefèvre, C. R. 110. 405)

Cadmium sodium arsenate, CdO, 2Na₂O, As₂O₂≠ Slowly sol in dil. acids. (Lefèvre, C. R. 110, 405.)

2CdO, 4Na₂O, 3As₂O₅ (Lefèvre)

Cadmium arsenate bromide, 3Cd₂(AsO₄)₂,
CdBr₂.

Sol. in very dil. HNO₂+Aq (de Schulten,

Bull Soc (3) 1. 472.)

Cadmium arsenate chloride, 3Cd₂(AsO₄)₂,

CdCl₂, Sol in very dil. HNO₃+Aq. (de Schulten)

Cæsium arsenate, Cs₂O, 2As₂O₅+5H₂O Ppt. (Ephraum, Z. anorg. 1910, 65. 246.) Calcium arsenate, Ca₂(AsO₄)₂+3H₂O. Ppt. Insol. in H₂O; sol. in H₂AsO₄+Aq.

(Kotschoubey, J pr. 49. 182)

Calcium pyroarsenate, Ca₁As₂O₇.

Slowly decomp by cold H₂O into CaHAsO, +1½H₂O (Lefèvre.) Calcium hydrogen arsenate, CaHAsO4+ | Chromic arsenate, 2Cr2O3, 3As2O4 1/2H2C

Insol in H2O. (Debray, A, ch (3) 61. 419.) . +H1O. Min Haidingerite. Easily sol in acids

+232H2O Min. Pharmacolite Easily sol ın acids +3H₂O. Insol. in H₂O, sol. in HCl, HNO₃. or H₄AsO₄+Aq; also in (NH₁)₂SO₄, NH₄NO₅,

NH4C2H2O2, and NH4Cl+Aq (Pfaff)

Calcium tetrahydrogen arsenate, CaH₄(AsO₄)₂

Sol in H₂O. (Graham. +H₂O Sl sol in H₂O Decomp, by

much hot H2O into H2AsO4 and Cas(AsO4)1 (Hormann, Dissert. 1879.)

Calcium iron (ferric) arsenate, 6C:iO, 4Fe₂O₃ 5As₂O₅+15H₂O (?) Min Arseniosiderite. Sol in acids

Calcium magnesium arsenate, Ca₆H₂(AsO₄)₄,

Mg4H2(AsO4)4+10H2O Min Picrophanmacolite Easily sol in acids Ca₃(AsO₄)₂, Mg₃(AsO₄)₂ Sol. in HNO₄+

Aq. (Kuhn.) Mm. Berzeliste. Sol m HNO+Aq Mm. L49HaO. Min Ca₈Mg₆H₁₄(AsO₄)₁₄+49H₂O. Min

Calcium potassium arsenate, CaKAsO4.

(Lefèvre, A. ch. (6) 27, 5) Calcium sodium arsenate, CaNaAsO4

(Lefèvre, A ch. (6) 27. 1 4CaO, 2Na₂O, 3As₂O₅. Not attacked by boiling H2O; easily sol in dil. acids. (Lefèvre.)

Calcium uranyl arsenate, Ca(UO2)2(AsO4)2+ 8H2O.

Min. Uranospinite.

Calcium vanadium arsenate, CaHAsO4. 2(VO₂)H₂AsO₁+8H₂O. See Arseniovanadate, calcium.

Calcium arsenate chloride, Ca₃(AsO₁)₂, CaCl₂ Insol in H2O, sol. in dil HNO2+Aq (Lechartier, C. R 65, 172.) 3Ca₂(AsO₄)₂, CaCl₂, As above chartier.)

Cerous arsenate, CeHAs(),

Insol. in H2O. Sol. in arsenic acid+Aq. (Berzelius.)

Ceric hydrogen arsenate, Ce(HAsO₄)₂+ 6H₂O. Ppt Insol. in H2O and dil acids (Bar-

bieri, B. 1910, **43**. 2216.) Ceric dihydrogen arsenate, Ce(H:AsO4)4+ 4H.O.

Sol. in conc. HNO₁. (Barbiers l. c.)

Insol in H₂O and cone, boiling acids. (Lefèvre, A. ch (6) 27. 5)

Chromic potassium arsenate, 2C12O2, 3K2O, 3As₂O₄ (Lefèvie.)

Chromic sodium arsenate, 2Cr₂O₂, 3N₁₁₂O, 3As₂O₄ (Lefèvre)

Cobaltous arsenate, basic, 4CoO, As₂O₅. Easily sol in acids (Gentele, J. B. 1851,

Co(CoOH)AsO4 Insol m H2O, difficultly sol. in acids (Coloriano)

Cobaltous arsenate, Cos(AsO4)2+8H2O

Ppt Insol even in boiling H₂O; easily sol in HNO, HCl, and NH,OH+Aq; sol. in H₂AsO₄+Aq (Proust), sol. in dil. FeSO₄+Aq (Karsten, Pogg. 60. 266.) Min. Cobalt bloom, Erythrite. Easily sol. in

aculs 5CoO, 2As₂O₆+3H₂O Insol in H₂O; difficultly sol. in acids. (Coloriano, C. R. 103.

273) 2CoO, As2Os SI attacked by boiling H2O; easily sol. in dil. acids (Lefèvre.)

Cobaltous hydrogen arsenate, CoH4(AsO4); Sol in H₂C:

Cobaltous potassium arsenate, CoKAsO. (Lefèvre.)

Cobaltous sodium arsenate, CoNaAsO4. (Lefèvre.) 4CoO, 2Na₂O, 3As₂O₄. (Lefèvre.)

Cobaltous vanadium arsenate, Co(VO2)2H2(A8O4)2+8H2O See Arseniovanadate, cobaltous

Cobaltous arsenate ammonia, Co3(AsO4), NH1+7H2O. (Ducru, A ch. 1901, (7) 22, 185) Co₃(AsO₄)₂, 2NH₃+6H₂O. (Ducru, l c.)

Cos(AsO4)2, 8NH3+5H2O. (Dueru, l c.) Cuprous arsenate, 2Cu2O, AstOs.

(Hampe, Dissert, 1874.) 4Cu₂O, As₂O₄. (Hampe, l c.)

Cuprous pyroarsenate, Cu₄As₂O₇, Ppt. Sol. in NH4OH or KOH+Aq. (Reichard, B 1898, 31, 2166.)

Cupric arsenate, basic, 8CuO, AstOt+ 12H₂O

Min. Chalcophyllite Easily sol. in acids and NHOH+Aq. 6CuO, As₂O₄+3H₂O Min Aphanesite, Choclaste. Sol. in acids and ammonia. 5CuO, As2Os+2H2O. Min. Erinite. Sol an HNOs+Aq.

Min. Cornwallute Sol. in acids, Cupric arsenate +5H₂O. and NH₄OH+Aq. +9H₂O. Min. Tirolite. 4CuO, As₂O₅+H₂O Insol in II₂O (De-

bray, A. ch. (3) 61, 423) Min. Ohvenite Sol in acids, and NH4OH

+Aq, decomp by hot KOH+Aq +7H₂O, Min Euchroite. Sol in HNO₃+ +4½H₂O. (Hursch, C C. 1891, I. 15)

Cupric arsenate, Cu3(AsO4)2 Insol in H₂O. Easily sol. in HCl+Aq, sl. sol. in other acids; sol in NH₄OH+Aq (Colonano, C R. 103. 273)

Insol in methyl acetate. (Naumann, B. 1909, 42, 3790) Insol. m hound NH₄. (Franklin, Am. Ch.

J. 1898, 20, 827) +4H₂O Decomp by hot H₂O. (Debray) +5H₂O Mm. Trichalcite Easily sol, in cold HCl+Aq

Cupric arsenate, acid, 5CuO, 2As₂O₆. Sol in H2SO2+Aq (Vogel.)

+3H₂O. (Salkowsky) +8, 91/2, and 121/2H₂O (Hirsch) CuHAsO4+H2O. Insol m H2O. (Color-

+11/2H₂O. Insol. in H₂O (Debray, A. ch. (3) 61, 419.) 8CuO, 3As₂O₆+12H₂O. (Husch.)

Cupric lead arsenate, 3CuO, PbO, AspOs+

Min Bauldonite. Nearly insol in HNO,+ Aq.

Cupric potassium arsenate, CuKAsO4 Slowly sol in NH,OH+Aq, easily sol in acids. (Lefèvre, A. ch. (6) 27. 5.) SCuO, K2O, As2O5. Easily sol. in dil. acids.

(Lefèvre.) Cupric sodium arsenate, CuNaAsO.

(Lefèvie.) 3CuO, Na₂O, 2As₂O₅ Very sol in dil. acids. (Lefevre) 2Cu₂(AsO₄)₂, NaH₂AsO₄+5H₂O Ppt (Hirsch, C C. 1891, I. 15.) 6Cu₃(AsO₄)₂, 2NaH₂AsO₄, Na₂H. 13½ H₂O, or 16H₂O. Ppt. (Hirsch.) Na₂HAsO₄+ 3Cu (AsO4)2, Na HASO4+91/2H2O Ppt. (Hirsch.) 4Cu₂(AsO₄)₄, Na₅HA₈O₄+11H₅O₄ Ppt

Cupric uranyl arsenate, Cu(UO2)2(A8O4)2+ 8H2O. (Werther, A. 68, 312.) Min. Zeunerste.

Cupric vanadium arsenate Cu(VO₂)₂H₂(AsO₄)₂+3H₂O See Arseniovanadate, cupric.

 $3NH_3+4H_2O$ Insol. in cold or hot H2O (Damour, J. pr 37, 485) 2CuO, As₂O₆, 4NH₃+3H₂O. Decomp by

ammonia, Cu₃(AsO₄)₂,

H.O (Schiff, A. 123, 42.) Cupric arsenate calcium carbonate, 5CuO, As2O4, CaCO2+4H2O, or 9H2O. Easily sol, in acids, and Mm. Tyrolite.

NH OH + Aq Cupric arsenate sodium chloride, 2Cu₃(AsO₄)₂,

NaCl+7½H2O. Decomp by hot H₂O. (Hirsch, Dissert, 1891.)

3Cu₃(AsO₄)₂, 2NaCl+13½H₂O. +17½H₂O. (Hirsch, l.c.) 5Cu₃(AsO₄)₂, 3NaCl+23H₂O. (Hirsch.)

Didymum arsenate, D12Hs(AsO4)3. Ppt Insol, in H2O; sl. sol, in weak acids (Maugnac, A ch (3) 38. 164) 5D12(AsO4)2, As2O5+3H2O Ppt.

Glucinum arsenate, Gl₃(AsO₄)₂ Insol, in H₂O, sol, in H₃AsO₄+Aq. (Ber-

zelius) Glucinum hydrogen arsenate, GlHAsO4. Obtained in impure state by heating As₂O₄ with Gl(OH)2 in a scaled tube at 220°.

(Bleyer, Z anorg 1912, 75, 287.) Glucinum tetrahydrogen arsenate.

GlH (AsO4)2 Very hydroscopic, (Bleyer, Z. anorg, 1912, 75. 287)

Glucinum potassium arsenate, KGlAsO₄, ½GlO+5H₂O. Unstable. Amorphous Easily hydrolyzed. giving more basic salts. (Bleyer, Z. anorg,

1912, 75 289.) Glucinum sodium arsenate, NaGlAsO4,

1/4GIO+6H₂O Unstable Easily hydrolyzed, (Blever,

Z anorg, 1912, 75, 290.) Iron (ferrous) arsenate, Fea(AsO4):+

6H₂O (?) Ppt. Sl. sol m NH4OH+Aq. Insol m (NH4)2AsO4+Aq or other NH4 salts+Aq. (Wittstein) +8H₂O Min. Symplessie. Sol in HCl+ Aα

Iron (ferric) arsenate, basic, 16Fe₂O₄, As₃O₄ +24H.O.

Insol. in NH₄OH+Aq (Berzelius.) 2Fe₂O₅, As₂O₅+12H₂O. Insol. in NH₂OH +Aq

3Fe₂O₃, 2As₂O₃. 3Fe₂(AsO₄)₂, Fe₂O₄H₈+12H₂O. Min. Pharmacosiderite. Easily sol in acids;

decomp. by KOH+Aq

Tron (ferric) arsenate, Fe₀O₈, As₀O₈ Pnt Insol, in H2O. Decomp by hot HaO.

Sol in HCl, H2SO4 and HNO3 (Metzke. Z. anorg. 1898, 19, 473.)

+4H₄O Alin, Divisional HCl+Aq; insol in HNO₃+Aq When freshly pptd., sol in NH₄OH+Aq Sol, in HCl, or HNO₃+Aq Insol in HC₂H₄O₃, or NH₄

salts+Aq (Wittstem) Sol. in warm H₂SO₂+Aq or (NH₄)₂SO₂+ Aq. (Berthier, A ch. (3) 7, 79)

Iron (ferric) arsenate, acid, Fe₂O_{3.3A83}O₄ Ppt ; sl sol, in acids with a yellow color, and

m NH.OH+Aq with a red color. (Mctzke. Z anorg. 1898, 19, 476.) 2FeoOs, 3AsoOs+12HoO Insol in HoO or HC2H3O2+Aq

Sol in mineral acids Sol, only in cone, HaAsO. + Aa.

Sol. in (NH4)3AsO4, and other NH4 salts +Aq (Wittstein) Sol. in NH4OH+Aq.

+2216H2O. Ppt. Sl. sol. m acids with a vellow color, and in NH4OH+Aq with a red color. (Metzke, Z anorg 1898, 19, 475.)

Iron (ferroferric) arsenate, 6FeO, 3Fe₂O₂, 4As₁O₄+32H₂O.

Insol in II2O. Sol. in HCl+Aq Decomp by KOH+Aq (Wittstein, J. B. 1866, 243) Iron (ferric) lead arsenate, 5Fe₂(AsO₄)₂,

Pb.(AsO.). Min. Carmine Spar. Carminste. Sol. in acids, KOH+Aq dissolves out As2O4. (Sandberger.)

Iron (ferric) potassium arsenate, 2Fe₂O₄. 3K2O, 3A82O4

Not attacked by boiling H₀O; easily sol in dil. acids (Lefèvre) Fe₂G₃, K₂O, 2As₂O₅. (Lefèvre.)

Iron (ferric) sodium arsenate, Fe₂O₂, Na₂O. 2A8.0r. (Lefèvre.)

2Fe+O₃, 3Na₂O, 3As₂O₅, (Lefèvre,)

Lanthanum arsenate, La2H2(AsO4)3. (Frenchs and Smith.) Doubtful (Cleve, B. 11. 910.)

Lead arsenate, basic, 15PbO,2As₂O₅ (?) Ppt (Stromholm, Z. anorg. 1904. 38. 446.)

Lead arsenate, Pb₂(AsO₄)₂. Insol. in H₂O, NH₄OH, or NH₄ salts+Aq. (Wittstein) Sol. in 2703.5 pts HC.H.O.+Ag contain-

ing 38.94% HC₂H₃O₂. (Bertrand, Monit. Scient, (3) 10. 477.) Sol m sat. NaCl+Aq. (Becquerel, C. R.

20, 1523.)

Not pptd, in presence of Na citrate. (Spiller.

Lead pyroarsenate, Pb2As2O7

Insol, in H₂O or HC₂H₂O₂+Aq HCl, or HNO+Aq (Rose) Decomp. by cold H.O (Lefèvre.)

+H₂O = PbHAsO₄ Ppt. (Salkowsky, J. pr. 104, 109.)

Lead potassium arsenate, PhKAsO. (Lefèvre, A. ch. (6) 27, 5.)

Lead sodium arsenate, PbNaAsO4. (Lefèvre.)

4PbO, 2Na₂O, 3As₂O₅. Superficially decomp. by cold H2O (Lefèvre.)

Lead arsenate chloride, 3Pb.(AsO.), PbCl. Sol. in dil PNO+Aq. (Lechartier.) Min Munetite, Sol in HNOs, and KOH+

Lithium arsenate, L12AsO4.

Ppt. Sol. in dil acids and in HC:H:O:+ Aq. (de Schulten, Bull. Soc (o) 1. 2(0), LiH₂AsC₄+*/₂H₂O. Decomp. by H₂O into H₂AsO₄ and L₁₄AsO₄. (Rammelsberg, Pogg. 128. 311.)

Magnesium arsenate, Mgs(AsO4)2.

Insol in methyl acetate. (Naumann, B. 1909, 42, 3790. +7H₂O₁ +8H₂O₁ +10H₂O₂ and +22H₄O. (Gruhl, Dissert. 1897.)

+8H2O Min. Hörnesite. Insol. in H2O; easily sol, in acids.

Magnesium hydrogen arsenate, MgHAsO4. +1/2H2O. Insol. in H2O. (de Schulten, C. R. 100. 263.)

+5H₂O. (Schiefer) +61/2H₂O. Insol. in H₂O. 1000 pts. boiling H₂O dissolve 1.5 pts. (Thompson.) Sol. in HNO₂+Aq before ignition, but insol. in acids after ignition. (Graham, A. 29.

+7H₂O. Min Roesslerute. Sol. in HCl+ Aa.

Magnesium tetrahydrogen arsenate. MgH4(AsO4)2.

Very deliquescent; sol. in H₂O. (Schiefer.)

Magnesium potassium arsenate, MgKAsQ. Insol. in, but decomp. by cold H2O. (Rose.) Easily sol, in dil, acids (Lefèvre,

+7H₂O. (Kinkelin, Dissert, **1893**.) 4MgO, 2K₂O, 3As₂O₈ Not attac Not attacked by boiling H.O; slowly sol, in dil, acids. (Lefèvre.)

Magnesium potassium hydrogen arsenate, $KMgH(AsO_4)_2+xH_2O.$

Decomp. by H₂O (Kinkelin, D ssert. 1883.)

Mg₂KH₂(AsO₄)₃+5H₂O. (Chevron and Droixhe, J. B. **1888**, 523.)

Magnesium potassium sodium arsenate, Mg₂KNa(AsO₄)₂+10H₂O, (Kinkelm, Dissert, **1883**.)

Magnesium sodium arsenate, MgNaAsO₄.

Insol. in Π₂O Very sl. sol. in dil. acids.

(Lefèvre.) 4MgO, 2Na₂O, 3As₂O₅. (Lefèvre.)

Magnesium vanadium arsenate, $MgH_4(VO_2)_2(AsO_4)_2+9H_2O$ and $MgHASO_4$, $2(VO_2)H_2AsO_4+9H_2O$. See Arseniovanadate, magnesium.

Magnesium arsenate chloride, Mg3(AsO4)2, MgCl2

Insol. in H₂O; sol. m dil HNO₂+Aq (Leohartier, C. R 65, 172.)

Magnesium arsenate fluoride, Mg₂(AsO₄)₂.

MgF₂.

Insol. in H₂O; sol. in dil HNO₂+Aq.

(Lechartier.)

Manganous arsenate, basic, 6MnO, As₂O₅+

3H₂O (?).

Min. Chondroarsenste. Easily and com-

pletely sol. in dil. HCl, and HNO₃+Aq.

Manganous arsenate, Mn₂(AsO₄)₂+H₂O.

Insol. in H₂O, sl. sol. in acids. (Coloriano,

C.R. 103. 273.)
 5MnO, 2As₂O₅+5H₂O. Insol. in H₂O. (Coloriano.)
 2MnO, As₂O₅ Sl. decomp. by cold H₂O,

but rapidly on heating (Lefèvre)
MnHAsO₄+H₃O Decomp. by boiling
H₃O into 5MnO, 2As₂O₄+5H₂O. Sol in
HNO₃, H₃SO₄ or H₃SaSO₄+Aq.

Manganous tetrahydrogen arsenate, MnH₄(AsO₄)₂.

Deliquescent, Easily sol, in H₂O. (Schiefer.)

Manganous potassium arsenate, MnKAsO₄. (Lefèvre, A. ch. (6) 27. 5.)

Manganous sodium arsenate, MnNaAsO₄.

Very sol in dil. ands (Lefèvre.)

2MnO, 4Na₂O, 3As₂O₄ Not attacked by
boiling H₂O; very sol. in dil ands (Lefèvre.)

boiling H₂O; very sol. in dil acids (Lefèvre.)

Manganous arsenate chloride, Mn₂(AsO₄)₂,

MnCl₂

Insol. in H₂O; sol. in dil. HNO₃+Aa.

(Lechartier, A. 58, 259)
Manganic arsenate, Mn₂(AsO₄)₂+2H₂O.

Manganic arsenate, Mn₂(AsO₄)₂+2H₂O Insol. in H₂O; sol. m acids.

Mercurous arsenate, (Hg₃)₃(AsO₄)₁. Insol. in H₂O; difficultly sol. in acids. (Coloriano, C. R. 103. 273.) Ppt (Haack, C. C. 1890, II, 736.)

Hg₂(AsO₃)₂. Insol. in H₂O, HC₂H₃O₂, or alcohol. Decomp. by cold HCl+Aq. Sl sol. in cold HNO₁+Aq, from which it is precapitated by NH₄OH as Hg₂HAsO₄ (Simon, Pogg. 41, 424.)

Mercurous hydrogen arsenate, Hg₂HAsO₄.
Insol. in H₂O, HC₂H₂O₃, or NH₂OH+Aq.
Decomp. by cold HCl+Aq, sol. in cold HNO₅+Aq without decomp; very sl. sol. without decomp. in NH₄NO₃+Aq. (Simon, Pogg. 41, 424.)

Mercuric arsenate, Hg3(AsO4)2.

Ppt. Sol. in H₁AsO₄ or HNO₈+Aq. (Bergman) Very sl. sol. in H₂O. Easily sol. in HCl+Aq. Sl sol in HNO₈+Aq. Insol. in H₁AsO₄+Aq (Haack, C C 1890, II, 736.)

Mercurous silver arsenate, Hg₂AgAsO₄. Sol in hot cone HNO₃. (Jacobsen, Bull. Soc. 1909, (4) 5, 948)

Mercurous arsenate nitrate, Hg₃AsO₄, HgNO₂ +H₂O

Insol in H₂O or HC₂H₃O₅, sol. in HNO₅+ Aq (Simon, Pogg. 41, 424.) 3Hg₃AsO₄, 2HgNO₅, 2Hg₂O Ppt. (Haack.)

Molybdenum arsenate.

Ppt. Nickel arsenate, basic, 5NiO, As₂O₆

Mm — (Bergemann.) Ni(NiOH)AsO₄. Difficultly attacked by acids or alkaises. (Colonano, Bull. Soc. (2) 45, 241.)

5N₁O, 2As₂O₄+3H₂O. As above.

Nickel arsenate, $N_{13}(A_8O_4)_2$.

Mm — (Bergemann) +xH₂O. Insol in H₂O. Sol. in H₂AsO₄, and cone mineral acids. Easily sol in NH₄OH+Aq. +2H₂O. Insol. in H₂O; difficultly sol in

+2H₂O. Insol. in H₂O; difficultly sol in acids. (Coloniano, Bull. Soc 45, 241) +8H₂O. Min. Nickel-bloom, Annabergite. Easily sol. in acids.

NiHAsO₄+H₂O. Sol. in H₂O. Difficultly attacked by acids. (Coloriano, C. R. 103, 274.)

Nickel potassium arsenate, 12NiO, 3K₂O, 5A₂O₄ (Lefèvre) 2NiO, KaO, AseO₄, Rapudly sol, in dil

2NiO, K₂O, As₂O₄. Rapidly sol. in dil, acids. (Lefèvre.)

Nickel sodium arsenate, NiNaAsO₄.

Very slowly sol. in dil acids (Lefèvre.)

4NiO, 2Na₂O, 3As₄O₄. (Lefèvre.)

Nickel arsenate ammonia, Ni₈(AsO₄)₂,NH₈+7H₂O.

N₁₆(AsO₄)_{2,2}NH₃+1H₂O. N₁₅(AsO₄)_{2,2}NH₃+6H₂O. (Dueru, C. R.

N₁₃(AsO₄)_{2,3}NH₂+5H₂O. (Ducru, C. 1
 1900, 131, 703.)

Palladium arsenate (?). Pnt

Platinum arsenate (?) • Pot. Sol in HNOa+Aq

Potassium arsenate, KaAsO4.

Deliquescent Very sol. in H2O (Graham, Pogg. 32, 47) (Naumann, B Insol. in ethyl acetate

1904. 37, 3601.) Potassium hydrogen arsenate, K2HAsO4.

Sol. in H₀O

Potassium dihydrogen arsenate, KH2AsO4 Sol in 5.3 pts H₂O at 6°, forming a solution of sp. gr 1 1134. Much more sol, in hot H.O. Insol in alcohol

Sol, in 26,666 pts boiling cone alcohol. (Wenzel) Potassium sodium hydrogen arsenate,

KNaHAsO4+16H2O. Sol in H₂O.

KaNaaHa(A8Oa)a+9HaO. Sol. in HaO. and not easily decomp. thereby into its constitu-ents (Filhol and Senderens, C R 95. 343.) Potassium strontium arsenate, KSrAsO.

(Lefèvre, C. R. 108, 1058) Potassium vanadium arsenate, K(VOg)2AsO4

+21/4HO. See Arsemovanadate, notassium.

Potassium zinc arsenate, KZnAsO4.

(Lefèvre) Potassium arsenate sulphate. See Arseniosulphate, potassium.

Rhodium arsenate (?)

Rubidium melaarsenate, RbAsO₁. . Sol. in H₂O (Bouchonnet, C R 1907, 144, 642.)

Rubidium arsenate, Rb₃AsO₄+2H₂O Very hydroscopic; sol, in H₂O to give an alkaline solution. Absorbs CO2 from the au. (Bouchonnet, lc)

Rubidium pyroarsenate, Rb, As2O7 (Bouchonnet, l.c.)

Rubidium hydrogen arsenate, Rb2HAsO4+ $+H_{*}O$ Absorbs CO. from the air. Very hydroscopic, sol, in H2O. Insol, in alcohol. (Bouchonnet, l.c.)

Rubidium dihydrogen arsenate, RbH2AsO4. Not hydroscopic. Very sol. in H₂O, aq solution is acid to litmus (Bouchonnet, l.c.) Silver arsenate, AggAsO4.

Insol in H₂O. Sol, in acids; easily sol, in H₂AsO₄+Aq. (Joly, C. R. **103**, 1071.)

11 H₂O dissolves 0 0085 g Ag₂A₅O₄ at 20°. (Whitby, Z. anorg, 1910, 67, 108) Much less sol. in HaAsO4 than AgaPO4 (Graham.

Sol m NH₄OH+Aq. (Scheele.) Sol in (NH₄)₂CO₃+Aq Insol. in NH₄ sulphate, nitrate, or succenate + Ac (Wittstein)

Very sl. sol in NH,NO.+Aa, more easily in HC+H₄O₂+Aq. (Graham) Sol. in Na2S2O1+Aq, but not so easily as

Ag,PO, Not pptd. in presence of Na citrate.

(Spiller) Insol. in liquid NH4. (Gore, Am. Ch J 1898, 20, 829

Silver hydrogen arsenate, Ag₂HAsO₄.

Decomp by H₂O, with formation of Ag₁AsO₄ (Setterberg, Berg J. B. 26, 208) AgH₂AsO₄. Decomp. by H₂O (Joly, C. R. 103, 1071.)

Ag₂O, 2A₅O₅ Decomp by H₂O Rather sl sol in HNO₃+Aq Very casily sol, in NH4OH+Aq (Hurtzig and Geuther, A 111, 168)

Silver arsenate ammonia, AgaAsO4, 4NHa Easily sol, in H.O. (Widmann, Bull Soc. (2) 20, 64)

Silver arsenate sulphate, 3Ag2O, As2Os, SOs Decomp by H₂O, with separation of Ag, AsO4; decomp, by dil, H.SO4+Ag, (Setterberg, Berz J. B. 26, 209)

Sodium arsenate, Na₂A₅O₄+12H₂O Permanent in dry air Sol, in 3 57 pts. H₂O

remands to Gry air Soi, in 3 of pts. H₃O at 15.5° (Graham) 100 pts. H₂O ti.5.5° (dissolve 28 pts. Na₂AsO₄+12H₂O. (Berzelius) Soi in 3 75 pts. H₂O at 17°, or 100 pts. H₂O at 17° dissolve 26.7 pts; or sat. Na₂AsO₄+12H₂O or 10.4°, Na₂AsO₄, and has sp. gr. 11166 (Sobel A 113° Sobel A 110° Sobel A 1 1186. (Schiff, A. 113, 350.) Melts in crystal H₂O at 85 5°

Sp. gr. of Na₃AsO₄+Aq at 17° $% = %Na_8AsO_4 + 12H_2O_3$

%	Sp. gr.	%	Sp gr	%	Sp gr.
1 2 3 4 5 6	1 0053 1 0107 1 0161 1 0215 1 0270 1 0325	9 10 11 12 13 14	1 0490 1 0547 1 0603 1 0659 1 0716 1 0773	17 18 19 20 21 22	1 0945 1 1003 1 1061 1 1121 1 1179 1 1238
7 8	1 0380 1 0435	15 16	1 0830 1 0887		

(Schiff, calculated by Gerlach, Z. anal, 8, 286.) "Arseniate of soda" dissolves in 60 pts. boiling alcohol (Wenzel.)

+4½H₂O. (Hall, Chem. Soc. **51**. 93) +10H₂O. Efflorescent. (Hall.)

A table 18

(Curry, J Am Chem. Soc.

of the filtrate.

Sodium hydrogen arsenate, Na₂HAsO₄+ Sodium zinc arsenate, NaZnAsO₄ 7H2O. given which records the g of As2O; in 100 cc

Not efflorescent (Schiff) Solubility in Pb(NO₃)₂+Aq.

of the nitrate. (CHTY, J Am Chem. cov. 1915, 87, 885.)

1915, 87, 885.)

Lescoeup, C. R. 104, 1171.)

+12H₂O. Effloresent. Sol. in H₂O; sol 1171.)

+12H₂O. Effloresent. Sol. in H₂O; sol 14² dissolve 56 pts Ns₂HAsO₄+12H₂O status 59 W, Ns₂HAsO₄+ 12H₂O, or 16 5% SMHASO₄, and has pg. 1.

1722 (Schiff, A. 113, 350.)

100 pts H₂O at 7 2° dissolve 22,268 pts. (Thomp-100 pts H₂O dissolve 17 2 pts, Na₂HAsO₄+

12H₂O at 0°, and 140 7 pts at 30°. (Tilden, Chem. Soc. 45, 409) Melts in grystal H.O at 28°. (Tilden)

Sp. gr. of Na₂HAsO₄+Aq at 14°. % = %Na₂HAsO₄+12H₂O

76 - 701442HIRBO4-12HI						
%	Sp gr	%	Sp gr	%	Sp gr	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 0042 1 0084 1 0126 1 0168 1 0212 1 0256 1 0300 1 0344 1 0479 1 0425 1 0525 1 0525 1 0618	15 16 17 18 19 20 21 22 23 24 25 26 27 28	1 0865 1 0712 1 0759 1 0807 1 0855 1 0904 1 0953 1 1003 1 1052 1 1103 1 1153 1 1204 1 1255 1 1306	29 30 31 32 33 34 35 36 37 38 39 40	1 1358 1 1410 1 1463 1 1516 1 1569 1 1623 1 1677 1 1731 1 1786 1 1841 1 1896 1 1952	
				_		

(Schiff, calculated by Gerlach, Z. anal. 8, 280.)

Insol. in alcohol. +13½H₂O (Setterberg.)

Sodium dihydrogen arsenate, NaH2AsO4+

More sol, m H₂O than Na₂AsO₄ or Na₂HAsO₄. (Schrift.) +2H₂O Efflorescent. (Joly and Duffet,

C. R. 102, 1391.)

Sodium irihvdrogen drarsenate. Na₃H₃(AsO₄)₂+3H₂O.

Sol. in H2O. (Filhol and Senderens, C. R. 95, 343.)

Sodium strontium arsenate, NaSrAsO4. Not attacked by boiling H₂O. (Lcfèvre)

+9H₂O. Scarcely sol in H₂O. (Joly, C. R. 104, 905.) +18H₂O. (Joly)

Sódium uranyi arsenate, Na(UO+)AsO.

Ppt. (Werther, A, 68, 312.)

Slowly sol in dil. acids. (Lefèvre.)

Na₂ZnAs₂O₇. As above. (Lefèvre.)

Sodium arsenate fluoride, Na₂AsO₄, NaF+ 12H.O. Sol in 9.5 pts. H2O at 25°, and 2 pts at

75°. (Briegleb, A 97, 95.) Sodium arsenate stannate, 6Na₂O, 2A_{S2}O₅,

 $SnO_0 + 50M_0O_1$ More difficultly sol, than sodium stannate. (Haeffely, Phil Mag (4) 10 290.) 5Na₃AsO₄, Na₂SnO₃+60H₂O (Prandtl.

B. 1907, 40. 2133) Sodium arsenate Sulphate, Na₉As₆O₁₉, 2Na2SO4

Sol. in H2O (Mitscherlich) Na₄As₂O₇, Na₂SO₄, (Setterberg)

Sodium arsenate tungstate, Na₄As₂O₂, Na₂W₃O₁₀+20H₂O. See Arseniotungstate, sodium.

Strontium arsenate, Sr₂(AsO₄)₂ Not attacked by boiling H2O; easily sol in dil acids (Lefèvre, A. ch. (6) 27. 5.)

Strontium pyroarsenate, Sr2As2O7 Decomp, by cold H₀O into SrHAsO₄+

1½H₂O. (Lefèvre.) Strontium hydrogen arsenate, SrHAsO4+

11/6H₂O Insol in cold, but decomp. by hot H₂O into a basic, and a sol. acid salt. 100 pts H2O at 15 5° dissolve 0.284 pt. (Thompson, 1831.) Sol. in HC2H4O2, and very easily in HC1+ Aq. (Kotschoubey, J. pr. 49, 182) Sol. in HNOs+Aq

SrH₄(AsO₄)₂+2H₂O Partly sol in H₂O. (Hormann, Dissert. 1879)

Strontium vanadium arsenate, SrHAsO4, 2(VO₂)H₂AsO₄+7½H₂O. See Arseniovanadate, strontium.

Strontium arsenate chloride, 3Sr3(AsO4)2, SrCl2. Insol in H₂O, easily sol, in dil. HNO₈+Aq. (Lechartier, C. R. 65, 172.)

Thallous arsenate, Tl, AsO, Sol. in H₂O. (Willin, A. ch. (4) 5. 5.)

Thailous hydrogen arsenate, Tl₂HAsO₄ Very easily sol in H₂O. (Willm.)

Thallous dihydrogen arsenate, TlHcAsO4. Easily sol. in H₂O. (Willm)

Thallic arsenate, TlAsO4+2H2O. Insol. in H2O; sol. in HCl+Aq; decomp. by NH,OH, or KOH+Aq. (Willm)

Thorium hydrogen arsenate, Th(HAsOa)+ 6H₂O

Insol, in H₂O or H₄AsO₄+Aq (Berzelius) Ppt; msol. in H₂O (Barbieri, C. A 1911.

Th(H2AsO4)4+4H4O Decomp. by H4O (Barbieri, l. c)

Tin (stannous) arsenate, SnHAsO.+16HaO Insol in H₂O. (Lenssen, A. 114. 113)

Tin (stannic) arsenate, 2SnO2, As2O5

Pnt. Insol, in HoO and dil. HNO++An (Haeffely, Phil. Mag (4) 10. 290.) Sn₂(AsO₄)₄+6H₂O Insol. in F

Insol. in H2O, sol in cone. HCl+Aq, and in aqua regia; insol in HNO₈+Aq or H₂SO₄ (Williams, Proc. Soc Manchester, 15. 67.)

Colloidal. Very slowly sol. in H₂O, from

Cotobaca. Very slowly sol. In H₂O, from which it is pptd. by HCl, HNO₃, or H₂SO₄+ Aq, also by BaCl₃, CaCl₃, NH₂Cl₃ and FeCl₃+ Aq, and by AgNO₃ or KI+Aq. Not pptd. by alcohol, HC₃H₂O₅ HgCl₃, Na₂CO₃, K₂CO₃ or (NH₂)₂CO₃+Aq. The pptd jelly is readily sol. In conc. sects, and KOH, or NaOH+ An. (Williams, Lc)

Tin (stannous) arsenate chloride, Sn₃(AsO₄)2, SnCl+2H+O.

Decomp. on air (Lenssen, A. 114, 113,)

Titanium arsenate (?)

Insol, in H₂O Sol, in titanic acid, arsenic acid, or HCl+Aq. Sol in Ti salts+Aq (Rose)

Titanyl arsenate, 5TiO2, 2As2O2.

Sol, in acids without decomp. Scarcely attacked by KOH or by NH4OH+Aq. (Reichard, B. 1894, 27, 1026)

Uranous arsenate, U2(AsO4)2.

Uranous hydrogen arsenate, UH2(AsO4)2+

Ppt. Sol. in HCl+Aq.

Uranvi arsenate, (UO2)HAsO4+4H2O. Insol. in H2O, HC2H2O2, and saline solutions, as NH4C1+Aq, sol in the mineral

acids; sol. in K₂CO₂+Aq (Werther, A. 68. 313 $(\dot{U}O_2)H_4(AsO_4)_2+3H_2O_*$ (Werther)

(UO2)2AS2O7 Insol. in H2O, sol. in acids. (UO2)3(AsO4)2+12H2O. Min. Troegerate.

 $+4H_{2}O$ Eastly sol. in H.O. (Friedheim, B. 23.

2600) See Arseniovanadic acid.

Vanadium zinc arsenate, (VO2)2ZnH2(AsO4)2 +51/4H₂O, and 2(VO₂)H₂AsO₄+61/4H₂O See Arseniovanadate, zinc.

Vanadvi arsenate, (VO). HAsO. + H2O. Very slowly sol, in H₂O; insol in alcohol;

easily sol in HCl+Aq (Berzelius.) Composition given by Friedheim (B 23. 2600).

Yttrium arsenate, YtHAsO.

Ppt. Insol in acetic, easily sol, in mineral acids.

Zinc arsenate, basic, 4ZnO, As₂O₅+H₂O (Friedel, J. B. 1866, 949.)

Min. Adamste Easily sol in dil HCl+Aq, and is attacked by HC2H2O2 Zinc arsenate, Zn₂(AsO₄)₂.

(deSchulten, Bull Soc (3) 2. 300.) +3H₂O. Ppt Sol in HNO₃, and H₂AsO₄ +Aq. (Köttig, J. pr. 48, 182.)

+8H.0 Min. Köttiente.

Zinc arsenate, acid, Zn₅H₂(AsO₄)₄
Easily sol. in cold HCl+Aq, less easily in cold HNO₂. Sol. in KOH, or NaOH+Aq

(Gorguel, Dissert, 1894.) +3H₂O. Insol in H₂O; sol. in H₂AsO₄, or +5H₂O. Sol. in dil HCl+Aq. (Demel, B.

12. 1279.) Could not be obtained, (Coloriano, Bull. Soc. (2) 45. 709.) 2ZnO, As₂O₄. Very slowly decomp. by

cold, rapidly by boiling H₂O. (Lefèvre. ZnHAsO. +H.O Insol in H.O (Debray. Bull. Soc. (2) 2. 14.)

Decomp. by hot H₂O into 4ZnO, As₂O₅+ H₂O (Coloriano, C. R. 103. 273.) Zn(ZnOH) 2As2O7+7H2O (Gorgeul.)

Zinc arsenate ammonia, Zn_{*}(AsO_{*})_{*}, 2NH_{*}+ 3H₂O. Insol. in H.O: sol in acids. NH.OH. or KOH+Aq. (Bette, A 15, 141.)

Zirconium arsenate, $2ZrO_2$, $As_2O_4+5/_2H_2O =$ (ZrO)HAsO4+%H4O

Ppt, Insol, in H₂O or HCl+Aq. (Paykull, B 6, 1467.)

Perarsenic acid. See Perarsenic acid.

Arsenicotungstic Acid.

Ammonium vanadium arsenicotungstate

See Arsenicovanadicotungstate, ammorpum. Arsenicovanadicotungstic acid.

Vanadium dihydrogen arsenate, (VO₂)H₂AsO₄ Ammonium arsenicovanadicotungstate 16(NH₄)₂O, 5As₂O₃, 15V₂O₃, 26WO₃+

> Sl. sol. in cold, readily sol in hot HiO. (Rogers, J. Am. Chem Soc. 1903, 25. 308.)

Arsenimide, As₂(NH)₃ Decomp. by H.O. (Hugot, C. R. 1904. 139, 56)

Arsenicarsenic acid, 3As₂O₅, 2As₂O₆+

3As₂O₃, As₂O₃+H₂O Decomp by H₂O (Joly)

As₂O₃, As₂O₅+H₂O. Decomp. by H₂O. (July)

See also Arsenic trioxide pentoxide.

Arseniochromic acid.

Ammonium arseniochromate, 2(NH₄)₂O₃

As₂O₅, 4CrO₅+H₂O
Insol in H₂O. (Friedheim and Mozkin,
Z. anorg. 1894, 6, 280)

Z. anorg. 1894, 6. 280) 3(NH₁)₂O, As₂O₃, SCrO₃. Decomp. by recryst from H₂O. (Friedheim and Mozkin, Z. anorg. 1894, 6. 281)

Potassium arseniochromate, $2K_2O$, As_2O_4 , $4C_1O_4$

Decomp. by recryst. from H₂O (Friedheim and Mozkin, Z. anorg. 1894, **6**, 275) 2K₂O, As₂O₈, 4CrO₂+H₂O. Decomp. by recryst from H₂O. (Friedheim and Mozkin, l. c.)

Arseniomolybdic acid, As2Os, 6MoOs+

By recryst from H₂O the comp. with 18H₂O is formed (Pufahl, Dissert 1888.)

+16H₂O. Sol. in H₂O (Debray.) +18H₂O Completely sol. in H₂O Sp gr of sat. solution at 18 S^o 12 22 I. Easily sol. in abs. alcohol. Insol in CS₂, liq hydrocarbons

abs alcohol. Insol in CS₂, in hydrocarbons and CHCl₃. (Pufahl, le) As₁O_δ, 7MoO₃+14H₂O (Seyberth, B 7. 391.)

As;0₆, 18M₀O₂+28H₂O Very sol m H₂O Sp. gr of sat solution at 18.3°=2.45 and 1 cc contains 2.16 g. acid Easily sol in absolute alcohol; msol, in CS₂, liquid hydrocarbons and CHCl₂ (Pufahl, l.c.)

Sol. in ether with subsequent separation into two layers See Phosphotungstic acid. (Drechsel, B. 20. 1452.) +3814.0 Efforescent When recryst

+38H₂O Efforseent When recryst comp with 28H₂O is formed. (Pufall, le) As₂O₅, 20MoO₅+27H₂O. SI sol. in HNO₃ +Aq. (Debray, C. R. 78. 1408)

Ammonium arseniomolybdate, (NH₄)₂O, As₂O₄, 2M₂O₅+3H₂O.

(Eriedheim, Z. anorg. 1894, 6. 28.) +4II₂O. (Friedheim, lc)

(NH₄)₂O, As₂O₈, 6M₂O₃+2H₂O Sl sol in cold H₂O, sol, in acids (Debray.) +4H₂O. Sl, sol, in cold, very easily sol, in

hot H₂O. (Pufahl, l.c.) 2(NH₄)₂O, As₂O₅, 6MoO₂+6H₅O. SI sol. m H₂O. Cannot be recryst therefrom (Pufahl).

+12H₂O (Friedheim, Z. anorg. 1894, 6.

3(NH₄)₂O, As₂O₃, 6MoO₃+4H₂O. (Friedheim, *l.c.*) +8H₂O. (Friedheim, *l.c.*) (NH₂)₂O, 2H₂O, 7MO₂, As₂O₅+4H₂O. Sol in hot H₂O (Seyberth, B 7. 391) Not obtained. (Pufahl)

7(NH₄)₂O, 2As₂O₄, 14MoO₂+28H₂O. (Friedheim, l.c.)

(Friedmenn, t.c.) 5(NH₄)₂O, As₂O₄, 16MoO₃+5H₂O (Friedheim, Z. anorg 1894, 6. 31) 5(NH₄)₂O, As₂O₅, 16MoO₃+9H₂O. Nearly

insol in cold, sol in boiling H₂O. Easily sol, in NH₄OH+Aq. (Gibbs, Am. Ch. J. 3, 402.) +12H₂O. (Pufahl, *l.c.*)

2(NH₄)₂O, As₂O₅, 18MoO₅+17H₂O. (Pufahl, l c)

S(NH₄)₂O,As₂O₅,18MoO₃+14H₂O Very soi in H₂O and alcohol (Kehrmann, Z. anorg, 1894, 7, 421.)

3(NH_d)·Ō, λa₂O₁, 20MoO₂, Easily sol in H₂O (Debny, C. R. 78, 1408.) 3(NH_d)·Ō, λa₂O₃, 24MoO₂+12H_dO. Decomposed by H₂Ō, especially when boiling Easily sol, in NH_dOH+λa₄ less easily sol in warm H₂SO₂ and boiling H₂AsO₁+Aq. St. sol, in molybdic acad+Aq, HNO₃, and cone NH₃NO₂+Aq. (Pathh.l. et al., 2400.)

Barium arseniomolybdate, BaO, As₂O₅, 6MoO₂+10H₂O.

SI sol in H₂O. Partially decomp. by boiling (Pufahl, lc) 3BaO, As₂O₅ 6MoO₃. Sl. sol. in H₂O.

(Pufahl, l.e)
3BaO, As₂O₄, 7MoO₂ Ppt. (Scyberth.)
3BaO, As₂O₄, 18MoO₃. Decomp by H₂O.
(Pufahl, l.e)

Cadmium arseniomolybdate, CdO, 2H₁O, As₂O₁, 6MoO₁+11H₂O. (Pufahl.)

3CdO, 3H₂O, As₂O₅, 18MoO₄+33II₂O. (Pufahl)

Cæsium arseniomolybdate, Cs₂O, As₂O₅, 6MoO₂ Sl sol m H₂O (Pufahl, l c)

4Cs₂O, As₂O₃, 26MoO₃+15H₂O. Ppt. (Ephraim, Z anorg 1910, 65, 246) Calcium arseniomolybdate, CaO, As₂O₅,

6MoO₂+10H₂O Rather difficultly sol, in cold H₂O. (Puſahl, lc)

1c) 3CaO, As₂O₅, 6MoO₃ As Ba salt. (Pufahl, I.c.) 3CaO, As₇O₅, 18MoO₃+32H₂O. Very sol in H₂O. Solution sat. at 18° has sp. gr = 2 163. (Pufahl, I_c)

Cobalt arseniomolybdate, CoO, 2H₂O, A₈₂O₆, 6M₂O₃+11H₂O

(Pufahl.) 3CoO, 3H₂O, As₂O₆, 18MoO₃+33H₂O. (Pufahl.)

Cupric arseniomolybdate, CuO, 2H₂O, As₂O₅, 6M₀O₃+15H₂O. (Pufahl.)

3CuO, 3H₂O, As₂O₄, 18MoO₄+34H₂O. (Pufahl.) Sol. m

Lithium arseniomolybdate, LiO, AsoOt. 6MoO3+14HoO.

Very sol, in H2O. (Pufahl, I.c.)

Magnesium arseniomolybdate, MgO, AsiO, 12c) 6MoO+13HoO.

Very sol, in H₂O (Pufahl, lc) 3MgO, As₂O₅, 18MoO₄+36H₅O

H.O. (Pufahl, lc) Manganese arseniomolybdate, MnO, 2H2O, fshl. l.c.) AsoOs. 6MoOs+11HaO

(Pufahl) 3MnO, 3H₂O, As₂O₅, 18M₂O₈+33H₂O (Pufahl.)

Nickel arseniomolybdate, NiO, 2H₂O, As₂O₄, 6MoO+11HoO

(Pufahl) 3N1O. 3H2O, As2Os, 18M0Os+34H2O (Pufahl.)

Potassium arseniomolybdate, K2O, AscOs, 2MoOa+5H2O.

Sol. in H₂O. (Friedheim, Z. anorg. 2, 314.) K2O, A82O5, 6MoO3+5H3O, Sol, in hot H2O without decomp (Filedheim, Z. anorg 1892, 2. 330.)

K₂O, As₂O₅, 18M₀O₃+25H₂O. Easily sol. in cold H.O. Decomp. on dilution. (Pufahl. 3K.O. As.O., 18MoO.+26H.O. Essilv sol in H2O (Pufahl, l.c.)

3K₂O, As₂O₃, 20MoO₃ Insol in H₂O (Debray, C. R. 78. 1408.) 3K₂O, As₂O₄, 24M₂O₂ +12H₂O. Somewhat sol. in H.O acidified with HNOs. (Pufahl.

Rubidium arseniomolybdate, 3Rb₂O, 3As₂O₅, 5MoO₃+9H₂O

Easily sol. in H₂O. (Ephram, Z. anorg. 1910, 65, 241 Rb₂O, As₂O₅, 6MoO₈ SI sol. in H₂O. (Pufahl, lc.)

4Rb₂O, As₂O₅, 18MoO₃+40H₂O. Pptd (Ephraim, Z. anorg. 1910, 65, 241-4.)

Silver arseniomolybdate, 3Ag-0, As-0, 6MoO+2HoO

Pufahl, Leipzig, 1888.) 6Ag₂O, As₂O₅, 18MoO₃+22H₂O. SI sol. in H₂O Very sol in NH₄OH and in dil. HNO₃. (Pufahl, lc) 7Ag₂O, 2As₂O₅, 36MoO₂+30H₂O. Sl. sol

in cold, easily sol. in hot H2O strongly acidified with HNO2. (Pufahl, i.c.) Sodium arseniomolybdate, Na₂O, As₂O₅

2MoO+8H+O. (Friedheim, Z. anorg 1892, 2. 357.

Na₂O, Aa₂O₅, 6MoO₃+12H₂O Very sol. Solution sat. at 198° has sp. gr. = 1 678. (Friedheim, lc.)

3Na.O. As2Os. 6MoOa+11H2O.+12H2O. and +13H₂O. Sl sol. in cold H₂O. (Putahl. 1 c.

Very 801. in 11,0. (Cumant, i.e.)
31kg/0, kg/0, i, 18M0-j-743Hg/0, Solution sat at 15° has sp gr. of 2.481. (Pufahl, i.e.)
430kg/0, As₂O_b, 18M0-j+24H₂O. Easily sol. in H₂O. (Pufahl, i.e.)
430kg/0, As₂O_b, 18M0-j+24H₂O. Easily sol. in H₂O. (Pufahl, i.e.)

Strontium arseniomolybdate, SrO. As₀O₄, $6M_0O_3 + 10H_2O$.

As Ba salt. (Pufahl, Lc.) 3SrO, As₂O₅, 6MoO₂ As Ba salt, (Pu-3SrO. As₂O₅, 18MoO₂+32H₂O. Very sol.

in HaO. (Pufahl, Lc.) Thallum arseniomolybdate, 6Tl₂O. As₂O₄. 18MoO2+xH2O

Ppt. (Pu5ahl.) 3TI-O. 3H-O, As2Os, 18MoO2+3H2O, Ppt. (Pufahl)

Zinc arseniomolybdate, ZnO, 2H2O, As2O6 6MoOa+11HaO. (Pufahl.)

3ZnO, As₂O₅, 18MoO₂+37H₂O Very sol. in H₀O. (Pufahl)

Arseniophosphovanadicotungstic acid.

Ammonium arsenionhosphovapadicotungstate, 88(NH₄)₂O, 2As₂O₅, 12P₂O₅, 69V,O3, 148WO3+484H2O.

Sol. in H.O. Insol. in alcohol and ether. (Rogers, J. Am. Chem. Soc. 1903, 25, 313)

Arseniophosphovanadicovanadiotungstic acid.

Ammonium arseniophosphovanadicovanadiotungstate, 99(NH₄)₂O, 2As₂O₅, 12P₂O₅, 6V₂O₈, 66V₂O₄, 191WO₂+522H₂O. Sl, sol in cold H2O. (Rogers, J. Am, Chem.

Arseniophosphovanadiotungstic acid.

Ammonium arseniophosphovanadiotungstate, 82(NH4)2O, 3As2O4, 12P2O4, 52V2O4, 201WO₂+567H₂O.

Very sol in warm H2O. Insol. in organic solvents (Rogers, J. Am. Chem. Soc 1903, 25, 312.)

Arseniosulphuric acid.

Soc. 1903, 25, 314.)

Ammonium arseniosulphate, 2(NH₄):0. As₂O₅, 28O₃+3H₂O

Can be recryst from H₂O. (Friedheim and Mozkin, Z. anorg 1894, 6. 290.)

Potassium arseniosulphate, 2K2O, As2Os. 2SO₃+3H₂O

(Friedheim and Mozkin, Z. anorg. 1894, 6

5K2O, As2Os, SSOs+6II2O. (Friedheim and Mozkin, Z. anorg. 1894, 6. 291)

280.4-3H.O. (Friedheim and Mozkin, Z. anoig, 1894, 6. 290.)

Arseniotelluric acid.

Ammonium arseniotellurate, 2(NH₄)₂O₄

As₂O₅, TeO₂+4H₂O Sol m H₂O. (Weinland, Z anorg, 1901, 28, 65,) 4(NH₄)₂O, 3As₂O₅, 2TeO₇+11H₂O. Sol

in H.O. (Weinland.)

Sodium arseniotellurate, 2Na₂O, As₂O₅, 2TeO1+9H2O Ppt. (Weinland, Lc.)

Arseniotungstic acid, 3H.O. Asona 16WOs +32H₂O = H₂AsW₈O₂₈+16H₂O (g-8nhydroarsenioluteotungstic acid)

Sol in H₂O (Kehrmann, A 245, 45) 3H₂O, As₂O₅, 19WO₃ (?). Sp. gr of sat. solution in H₂O is 3 279. (Fremery, B. 17. 296.)

Is a mixture containing principally H2AsW3O23+16H2O (Kehrmann.) As2O1, 18WO1+xH2O. Sol n H₂O. (Kehrmann, Z. anorg. 1899, 22. 292.)

Aluminum ammonium arseniotungstate. See Aluminicoarseniotungstate, ammo-

nium.

Ammonium arseniotungstate, 4(NH₄)₀O. 2H4O, As2O6, 6WO4+3H2O. Sl. sol, in cold H₂O or HNO₂+Aq; easily

sol. in boiling HaO. (Gibbs, Proc. Am. Acad. 16. 135.)

10. 150.) 7(NH₄)₂O, As₄O₅, 14WO₅, +17H₂O. Very sl. sol. even in boiling H₂O. (Fiemery, l. c.) 3(NH₄)₂O, As₄O₅, 16WO₂+16H₂O = (NH₄)₂AsW₄O_{2s}+8H₂O. Sol in H₂O (Kehrmann

5(NH₄)₄O, As₂O₆, 17WO₃+8H₂O. Can be recryst from H₂O without decomp. Decomp by long boiling with H₂O. (Kehrmann, Z anorg 1899, 22, 294) 3(MH₂)₂O, As₂O₅, 18WO₃+14, or 18H₂O. Very sol. in cold H₂O. Can be recryst. from H₃O. (Kehrmann, l.c.)

3(NH₄)₂O, As₂O₄, 21WO₃+xH₂O. Easily sol. in H₂O. Easily decomp. on recryst. (Kehrmann, l.c) 3(NH4)2O, As2Os, 24WOs+12H2O. More

sol. in H2O than corresponding phosphotungstate. (Kehrmann, I.c.)

Barium arseniotungstate, 2BaO, As₂O₅, 16WO1+xH10

Sol. in H₂O. (Péchard, A. ch. (6) 22. 262.) 7BaO, Asoo, 22WO3+54H₂O Sol. in All basic arsenites are sol. in acids except H₂O. Can be recryst, therefrom. (Kehr-those that give an insol. salt with the bases. mann, l.c)

Sodium arseniosulphate, 2Na₂O, As₂O₅, Potassium arseniotungstate, 3K₂O, 3H₂O, As2O6, 6WO2.

Insol in H₀O. Readily sol, in alkali hvdroxides+Aa (Gibbs) 3K₂O, A₈O₅, 16WO₈+16H₂O = K₄A₈W₈O₅₈

+8H₂O Sol in H₂O. (Kehimann) 5K₂O, As₂O₅, 17WO₃+22H₂O Scarcely sol, in cold H₂O (Kehimann, Z anorg. 1899, 22, 295)

3KrO, AstO, 18WO+14HrO. Efflorescent. (Kehrmann, lc Y 3K.O. A8.O. 19WO.+16H.O (?), Sol. in

H₂O (Fremery.) Silver arseniotungstate, AgaAsWaO20.

Insol in H₂O (Kehrmann, A. 245, 55); perhaps identical with-6AgoO AgoOs 16WOs+11HoO Insol in H.O (Gibbs.)

Sodium arseniotungstate, 3Na.O. As.O. 3WOa+20H2O. Very sol, in H₂O. (Lefort, C. R. 92, 1461)

Arsenious acid, HAsO₂.

Solubility of HAsO, in amyl alcohol+Aq, at

aw = mol of HAsO2 in 1 l of H2O. as = mol, of HAsO in 1 l, of amvl alcohol. h = partition coefficient

8-W	n _B	p
0 0449	0 0082	5 48
0.0446	0 0083	5 38
0.0887	0 0164	5 41
0 0892	0 0161	5 53
0 1800	0 0324	5 55

(Auerbach, Z. anorg, 1903, 37, 356.)

Solubility of HAsO2 in sat. HaBO2+Aq and amyl alcohol $a_w = \text{mol. of HAsO}_0$ in 1 l. of H₀O.

aa = mol of HAsO2 in 1 l, of amyl alcohol, h = partition coefficient

- partition docinoient					
aw	88	h			
0 0859 0 1720	0 0161 0.0321	5 33 5.35			

(Auerbach, l.c.)

Insol, in ethyl acetate. (Naumann, B. 1904. 37. 3601.)

See Arsenic trioxide.

Arsenites.

All arsenites, except those of the alkali metals, are partially or wholly insol in H2O, but easily sol in acids; several are sol, in (NH4),SO4, NH4NOs, or NH4Cl+Aq.

Many are sol, in excess of As₂O₄+Aq

Aluminum arsenite, Al₂O₃, As₂O₃

Sl sol in boiling H2O. Easily sol in NaOH +Aq and in acids (Reichard, B 1894, 27. 1029)

Aluminum arsenite iodide, AlI3, 6As2O4+ 16H2O.

(Gruhl, Dissert 1897.)

Ammonium arsenite, NH4AsO4

Very sol in H₂O. (Luynes, J. pr. 72. 180.) Insol. in acetone. (Eidmann, C. C 1899. II. 1014); (Naumann, B. 1904, 37, 4328.) (NH4), AsO, (?) Sol. in H2O. (Staven-

hagen, J pr. 1895, (2) 51. 11.) (NH₄)₄As₂O₅. Very sol in H₂O Insol in alcohol or ether. (Stein, A 74, 218.) Could not be obtained. (Stavenhagen.)

Ammonium arsenite bromide, 2As₂O₃, NH₄Br. Sl sol in H₂O. (Rudorff, B. 19, 2679.)

Ammonium arsenite chloride, AsiO2. NH4Cl St sol in H₂O. Sol, in warm dil, NH₂OH +Aq (Rüdorff)

Ammonium arsenite iodide, 2AsiOs, NH.I. Sl sol in boiling H₂O Sol in warm dil. NH₄OH+Aq. (Rudorff.)

Antimony arsenite (?).

Ppt Sol in a small amount H₂O, but insol. in a large quantity. (Berzelius.) Completely sol, in KOH +Aq (Reynolds)

Barium arsenite, Ba(AsO2)2.

Easily sol, in H2O when recently pptd., but insol, after being dried. Pptd. from aqueous solution by boiling. (Filhol, A 68, 308) Only sl. sol. in H2O. (Stavenhagen, J pr. 1895, (2) 51. 18. Ba₈(AsO₄)₂. Sl sol in cold H₂@; sol, in

hot H₂O and dil. acids. (Stavenhagen, J. pr. 1895, (2) 51. 17.) BaH (AsO₃). Ppt. (Bloxam, Chem. Soc.

15. 281 +34H2O Moderately sol. in cold, more easily sol in hot H.O. Insol, in alcohol. (Perper, Dissert. 1894) $Ba_2As_2O_4+2H_2O$. Easily sol, in H₂O

(Stavenhagen, J. pr. 1895, (2) 51. 18.) +4H₂O. Sl. sol. in H₂O; also somewhat sol. in alcohol. (Stem, A. 74, 218.) St. sol. in H2AsO4+Aq and BaO2H2+Aq.

(Dumas.) Sol. in NH Cl+Ag. (Wackenroder, A. 41. 316.)

Not pptd from solutions containing Na citrate (Spiller.) BaAs₄O₇. Sol. in H₂O. Less sol. in alcohol. (Reichard, B. 1894, 27, 1033.)

Bismuth arsenite, BiAsOa+5H2O (?). Easily sol. in HNO₂+Aq. (Schneider, J. p. (2) 20, 419.)

Sl sol in H₂O (Stavenhagen, J. pr 1895, (2) 51. 35.)

Cadmium arsenite, Cd₃(AsO₄)₂

Sl. sol. in H₂O; easily sol. in NH₄OH+Aq and dil acids. (Stavenhagen, l.c.) Cd₂As₂O₅. Ppt (Reichard, B 1898, 31.

2168) Sol in acids without decomp ; insol, in

alkalıs. (Reichard, B 1894, 27. 1033) 5CdO, As₂O₂+12H₂O Not attacked by KOH, Ba(OH), or alkalı carbonates+Aq. Insol in KCN+Aq. (Reichard, Ch. Z. 1902, 26. 1145)

Cæsium arsenite bromide, As₂O₃, CsBr. Sol. in H₂O. (Wheeler, Z anorg. 4. 451.)

Casium arsenite chloride, As₂O₂, CsCl. As above.

Cæsium arsenite iodide, AsiO1, CsI. As above.

Calcium arsenite, Ca(AsO₀)₀

Somewhat sol. in H₂O, sol, in Ca(OH)₂+ Aq or As₂O₃+Aq. (Simon, Pogg 47. 417. Ca₃(AsO₃)₄. Ppt (Kühn, J. B **1852**, 379) Only sl. sol H₂O; readily sol in dil acids (Stavenhagen, l.c.)

Sol. in H2O, insol, in alcohol (Reichard, B 1894, 27. 1036.)

3CaO, 2As2Os+3H2O. Sl. sol. in H2O; easily sol in NH4Cl+Aq; sol, in As₂O₂+Aq. (Stein.) CaH₄(AsO₄)₂+xH₂O Moderately sol. in

H₂O. Insol in abs. alcohol. (Perper, Dissert. 1894.) Ca₂As₂O₅, Sl. sol. in H₂O; 1 pt. in 3000– 4000 pts H₂O. Alkalı chlorides increase sol-

Sl. sol. in HrO: msol in HrO containing CaOrH1. Si. sol. in H.O; mas! in H.O contaming CaOH;.

(Sharing an expression of 4000-000 pts Hz). (Hart *
ing. Lossingra) *
Nos ppd1 from in (University of the Caohada of the Cao

ubility slightly. (Stavenhagen, lc.)

Calcium arsenite iodide, CaI2, 3As2O1+ 12H₂O

Sl. sol in H₂O Decomp. on heating. (Gruhl, Dissert 1897.)

Chromic arsenite, CrAsOd.

Sol. in H₂O, but slowly decomp. by boiling. (Neville, C. N. **34**, 220.) Sol. m HCl; repptd, by NH4OH+Aq; sol. m KOH+Aq. (Reichard, B. 1894, 27. 1028.)

Cobaltous arsenite basic, 7CoO, As2O3. Very sol in dil, difficultly sol in conc. H2SO4. Sol. in cone. NaOH and in cone.

NH₄OH+Aq. (Reichard, Z. anal. 1903, 42. 19.)

Cobaltous arsenite, 3CoO, As2O2.

Sol KOH+An with decomp (Identical with salt of Gnard) (Reichard, B. 1894, 27. 1031

+4H₂O. St sol. in H₂O: easily sol. in acids. (Stavenhagen, J pr 1895, (2) 51.39) 3CoO, 2As₂O₂+4H₂O. Sol in HNO₂ (Girard, C R. 1852, 34. 918.)

Co₃H₆(AsO₃)₄. Insol in H₂O; sol. HNO₃, HCl, or NH₄OH+Aq. (Proust) Only sol, in KOH, or NaOH+Aq when formed in a solution containing an excess of those reagents. (Reynoso, C R. 31. 68) Co₂As₂O₅, Ppt (Reichard, B. 1898, 31.

2166.1 Sol, in HNO and HCl+Ag. (Proust)

Cunric arsenite, Cu(AsO2)2

(Avery, J. Am. Chem. Soc. 1906, 28, 1161.) Insol m hound NH₂ (Franklin, Am. Ch. J. 1898, 20, 827,) +H.O Sl. sol. in H.O. (Stavenhagen,

+2H₂O Sl. sol. in H₂O, msol. in alcohol.

(Stavenhagen, lc) 3CuO, As₂O₃. Ppt (Stavenhagen, lc.) (Scheele's green) Insol. m 2CuO.As.O. H₂O; sol. in KOH+Aq, NH₄OH+Aq, and in most acids. Formula is Cu₄(AsO₂)₂+ 2H₂O. (Sharples, C. N. 35, 89)

Sol, in NH OH+Aq without decomp. Sol in KOH+An with decomp (Reichard, B 1894, 27 1026)

Insol in pyridine, (Schroeder, Dissert, 1901.) 5CuO, As₁O₂. Insol. in H₂O, sol in acids.

NH OH + Ag and cone MOH + Ag (Reichard, Ch. Z 1902, 26, 1142 xCuO, yAs2O3 Min. Trippkeite. Easily sol in HNO, and in HCl+Ag

Didymium arsenite, DioHa(AsOs)s. Ppt. (Frerichs and Smith, A. 191, 355.)

Does not exist (Cleve, B. 11. 910)

Glucinum arsenite iodide, GIIs, 3As2Oa+ Decomp. by H₂O (Gruhl, Dissert 1897.)

Gold (aurous) arsenite, 3Au₂O, As₂O₃

Decomp by light, (Reichard, B. 1894. 27, 1027

Gold (auric) arsenite, AuAsO3+H3O. Very sol, in H.O. NH.OH+Ag and dil acids (Stavenhagen, J pr. 1895, (2) 51, 28.)

Iron (ferrous) arsenite, FeO.As.Oa

Decomp. in the air when moist; sol in NH,OH+Aq when freshly pptd. (Reichard, B. 1894, 27. 1029–30.)

FegAs₂O₄. Ppt Sol. in NH₄OH+Aq: insol, in NH4 arsenite, or other NH4 salts+ Aq. (Wittstein)

Iron (ferric) arsenite, basic, 4Fc2O2, As2O2+ Pnt. H₂O extracts As₂O₃. Sol. in cone

acids with sephiation of AsoOs. Acetic acid is without action. (Bunsen and Berthold Sol in KOH, or NaOH+Ag.

Insol in H2O; sol, in Iron (ferric) arsenite, Fe2O2, As2O2 Sol in NH₄OH+Aq when freshly pptd. (Reichard, B! 1894, 27, 1030)

Fe, As, O, Ppt. (Reichard, B 1898. 31.

+7H.O. Sol. in NaOH, and KOH+Aq. "Ferric argentte" is sl. sol. in Alz(SO4)3+ Aq. (Kynaston, Dingl 235, 326.)

Lanthanum arsenite, La2H2(AsO2)1.

Ppt. (Frenchs and Smith, A 191, 355) Does not exist. (Clove, B, 11, 910.)

Lead arsenite, Pb(AsO₀)₀+xH₀O

Sl sol, in H₂O. Insol, in KOH, but sol in NnOH+An (Berzelius.)

Pb₂As₂O₅. Insol. in H₂O, NH₄OH, NH₄ arsente, or other NH₄ salts+Ao (Witt-Pb₃(AsO₂)₂, Scarcely sol in H₂O, easily sol in HNOs, or HC2H2O2+Aq. Boiling H₂O dissolves some As₂O₂ Not completely msol. in KOH+Aq. (Streng, A. 129, 238)

Sol. in acetic acid: insol. in H₂O in the presence of ammonium salts; sol in NaOH+ Aq, sl sol. in KOH+Aq (Reichard, B.

Lead arsenite chloride, PbsAs2Os, 2PbCl2. Min, Ekdemite. Easily sol in HNOs+An. and warm HCl+Ag.

Magnesium arsenite, Mgs(AsOs):

Insol in NH₄OH+Aq, but sol in a large excess of NH₄Cl+Aq. (Rose.) Very sol in boiling H₂O and in dil. acids, Sol. in NH4Cl+Aq (Reichard, B. 1894, 27.

Very sol in H_{*}O and dil acids. (Stavenhagen, l c) Mg₂As₂O₅+4H₂O

Hydroscopic. sol in H.O and acids. (Stavenhagen, l.c.) 3MgO,2As₂O₂+3H₂O,+15H₂O, and +18H₂O. (Perper, Dissert. 1894.)

Magnesium arsenite iodide, MgI, 3As,O.+ 12H₂O Moderately sol in H₂O. (Gruhl, Dissert. 1897.)

Manganous arsenite, Mna(AsO₂),+3H₂O. Sol in H2O; insol in alcohol; easily oxidized by most air. (Stavenbagen, lc)

3MnO,2As2O2. (Reichard, B. 1894, 27. 1032.)

Mn. H. As. O. 10+4H2O. Sl sol in H2O. | Potassium arsenite chloride, 2As. O. KCl Very sol in acids and alkalı (Stavenhagen, l.c.) Mn₈As₂O₈ Ppt (Reichard, B 1898, **31.** 2165.)

Mercurous arsenite, Hg2O, As1O1.

Decomp by light Decor (Reichard, B 1894, 27, 1022) Decomp by H₂O. Hg₂AsO₃. Only sl sol in H₂O, sol. in dil ands (Stavenhagen, J pt 1895, (2) 51.

Gradually and completely decomposed by H.O (Reichard, Ch. Z. 1902, 26, 1143)

Mercuric arsenite, Hga(AsOa)2.

Sl sol. in H₂O (Stavenhagen, lc) Decomp more easily by H₂O than is the mercurous comp. (Reichard, Ch. Z. 1902, 26, 1143)

2HgO,As₂O₃ Not decomp. by boiling with H₂O Undecomp. by boiling acids Decomp by KOH+Aq, K₂CO₄+Aq and NH,OH+Aq (Reichard, B 1894, 27, 1021) Hg.As.O. Ppt. Decomp. by boiling II.O. Very sl. sol in H2SO4+HCl. (Reichard, B 1898, 31, 2170)

Nickel arsenite, Ni₂(AsO₃)₂

Insol in H₂O; easily sol, in NH₄OH+Aq (Proust.) Ppt. (Reichard, B. 1898, 31, 2165)

3NiO.2As₂O₃, Sol in NH₂OH+Aq (identical with salt of Girard) (Reichard, B 1894, 27, 1031. +4H₂O. Insol in H₂O, sol in NH₂OH+

Aq. (Proust.) Sol. in KOH+Aq (Gurard, C R 34. 918)

2N1O, As2O3 Insol. in H2O; sol. in NH4OH +Ag, sol, in KOH+Ag (Reynoso, C. R. 31.68)

Platinum arsenite, Pts(AsOs)s.

Sol, in H₂O and alcohol; very unstable (Stavenhagen, lc)

Potassium arsenite, KAsO₂.

Sol. m H₂O; sl sol. m alcohol (Pasteur, A 68, 309.) Insol. in ethyl acetate. (Naumann, B.

1904, 37, 3601) Does not exist. (Stavenhagen, l.c.) K₂A₈O₃ Very sol in H₂O, sol in alcohol.

(Stavenhagen, lc.) K.AsoOs+6HoO. Very sol in HoO; sol. in alcohol. (Stavenhagen, l.c.)

K2A84O7+2H2O. Sol. in H2O; sl sol in alcohol. (Pasteur, A. 68, 309)

Potassium arsenite bromide, 4As₂O₃, 2KBr More sol in H.O than iodide. (Schiff and Sestini, A. 228, 72.)

2A82O3, KBr. (Rudorff, B 19. 2675.)

Much more quickly sol, in hot H₂O than bromide or iodide. (Rüdorff, B 19. 2675.) As₂O₂, KCl. Decomp by H₂O

Potassium arsenite iodide, 3As2O2, 2KI+ H.O

Sl. sol in cold H2O; sol in 20 pts, boiling, and 40 pts cold H₂O. (Emmet, Sill. Am. J (2) 18, 583.)

6KAsO₂, 2KI+3H₂O. Sol. in H₂O and alcohol Decomp. by soids. (Harms) 2KH(AsO2)2, As2O3, 2KI. Sl. sol in H2O. (Harms, A. 91, 371)

2As₂O₃, KI. Very difficultly sol. even in boiling H₂O Very easily sol. in KOH+Aq, but much less so in K2CO3+Aq (Rudorff, B. 19, 2670) Sol in 40 pts cold, 20 pts hot H₂O; sol, in

alkalies. (Schiff and Sestim, A 228, 72) Potassium arsenite sulphate, K2A8O4,

10K.SO. (Stavenhagen, Zeit, angew. ch 1894, 8, 166.)

Rubidium arsenite, RbAsO_{*}. Sol. in H2O, aq. solution is alkaline to litmus, Insol, in alcohol (Bouchonnet, C. R.

1907, 144. 641.) Rubidium arsenite bromide, As₂O₃, RbBr Decomp by H2O. (Wheeler, Z. anorg, 4.

Rubidium arsenite chloride, As₂O₃, RbCl. As above

Rubidium arsenite iodide, As₂O₃, RbI As above.

Silver arsenite, Ag:AsO:

Insol. in H₂O Not pptd in presence of 20,000 pts. H₂O (Harting.) 11 H₂O dissolves 0.0115 g Ag₃AsO₃ at 20°.

(Whitby, Z. anorg 1910, 67, 108.) Only sl sol, in H₂O and in dil. acids; readily sol, in NH OH + Aq and cone acids. (Stavenhagen, lc.

Decomp by light, by KOH+Aq and by NH.OH+Aq (Reichard, B. 1894, 27, 1022-

Easily sol in HNO2+Aq and other acids, (Marcet) More casily sol. in HC2H2O2+Aq than Ag:PO4; sl. sol. in HC2H4O2+Aq (Santos.

C. N. 38, 94.) Insol. in KOH+Aq. (Kuhn, Arch. Pharm. (2) 69. 267 Easily sol in NH4OH+Aq. (Marcet.)

Insol, in NH4OH+Aq, but sol, therein in presence of alkalı nitrates. (Santos, l.c.) Incompletely sol. in (NH₄)₂CO₃, NH₄)₂SO₄, or NH₄NO₃+Aq (Wittstein,

Report. 51. 41.)

Decomp by NH₄Cl+Aq Sol in KAsO₂+ | Tin (stannous) arsenite, Sn₂(AsO₃)₂. (Kuhn, 1c)

Not pptd. in solutions containing sol citrates (Spiller) Sol, in methyl acctate (Naumann, B

1909, 42, 3790) Sl. sol in methyl acetate (Bezold, Dis-

sert 1908.) Insol in ethyl acetate, (Hamers, Dissert 1906); (Naumann, B 1910, 43. 314.)

+H₂O Very sol in H₂O, NH₄OH+Aq and in dil acids (Stavenhagen, J. pr. 1895, (2) 51. 29.) 2Ag₂O, As₂O₂. Ppt. (Pasteur, J. Pharm

(3) 13, 395) Could not be obtained (Stavenhagen, lc) 3Ag2O, 2As2O3. Sol. in cold HC2H3O2+

Ac. (Santos) Sol. in NH₄OH+Aq and in potassium ar-senite+Aq (Girard, C. R. 34, 918) Ppt. (Reichard, B. 1898, 31, 2167)

Could not be obtained. (Stavenhagen, lc)

Silver arsenite ammonia, 2Ag2O, As2O6 4NH_{*}. Insol in H₂O or alcohol. (Girard.)

Sodium arsenites.

Correspond to potassium arsenites, but have not been obtained in crystalline form All are very sol. in H₂O (Pasteur, A. 68. 308. Na₂AsO₃. Very sol. in H₂O. (Stavenhagen, lc) Insol in ethyl acetate (Naumann, B 1904, 37, 3602)

Sodium arsenite bromide, 2As2O2, NaBi Decomp. by warm H₂O. (Rudorff, B 21.

Sodium arsenite iodide, 2As₂O₂, NaI. Decomp. by hot H.O. (Rudorff.)

Strontium arsenite, Sr2(AsO2):

Sol in H.O. (Stavenhagen, Lc.) Sol. in H2O, insol in alcohol (identical with Stein), (Reichard, B. 1894, 27, 1036) Sr₂As₂O₄+2H₂O. Quite easily sol, in H₂O

(Stein.) Sl. sol. in H₂C, SrO₂H₂+Aq, or H₅AsO₄+ Aq (Dumas)
Very sl sol in alcohol (Stein.)

Easily sol. in H2O and in acids. (Stavenhagen, J pr. 1895, (2) 51. 17) SraAs,Oo. Moderately sol in H.O. (Reich-

ard, B. 1894, 27, 1036) Strontium arsenite iodide, SrI2, 3AsoO2+

12H₂O. As Ba comp. (Grühl, Dissert. 1897.)

Thallium arsenite, Tl.AsO.

Sl sol in H2O and alcohol, easily sol, in

acids, especially in dil H₂SO₄. (Stavenhager,

Ppt., decomp. by acids and alkali. (Reichard, B 1898, 31, 2169)

+2H₂O Sl sol in H₂O Easily sol in dia acids and alkalies (Stavenhagen, lc)

Tin (stannic) arsenite, Sn₅(AsO₂)₄+5½H₂O

SI sol in H₂O. (Stavenhagen, lc.) 5SnO₂, 2As₂O₂ Ppt Sol. in acids without decomp. (Rejchard, B. 1894, 27, 1025) Sn₂As₂O₁₇. Ppt (Reichard, B. 1898, 31, 2169)

Uranium arsenite, UO2, AsiO3. Insol in NH₂OH+Aq; only sl sol, KOH+

Ag. Sol in acids. (Reichard, B. 1894, 27, 1029) Zinc arsenite, ZnO, As₂O₂,

Ppt. (Avery, J. Am Chem. Soc. 1906, 28.

1163) 3ZnO, As₂O₃ Sol. in acids without decomp. Easily sol. in NH₄OH+Aq. (Reichard, B.

1894, 27, 1033.) Arseniovanadic acid, As2O6, V2O6+2H2O. Easily sol in H₀O, but solution easily decomposes; crystallizes from H2O with 10H2O.

Composition is vanadium dihydrogen arsenate (VO₂)H₂AsO₄. (Friedheim, B 23, 2600.) +14, and +18H₂O. (Ditte, C. R. 102, 757.) Could not be obtained (Friedheim.) 3As₂O₅, 2V₂O₅. (Berzelius.) Correct formula is as above. (Friedheim.)

3H₂O, 7As₂O₄, 6V₂O₄. (Gibbs, Am. Ch. J. 7. 209.) Could not be obtained. (Friedheim.)

3H₂O, 5As₂O₄, 8V₂O₄+24H₂O. (Gibbs.) Could not be obtained (Friedheim.)

Arseniovanadates.

According to Friedheim (Z. anorg, 1892. 319) the arseniovanadates are double ar-senates of VO₂ and NH₄.

Ammonium arseniovanadate, (NH₄)₂O, As₂O₅ 2V₂O₅,+5H₂O

Efflorescent in dry air, sl. sol. in cold, comp. by hot H₂O. Composition decomp. by hot ammonuum dıvanadıum arsenate =(VO₂)₂(NH₄)AsO₄+2½H₂O. (Friedheim,

B 23, 2600.) Sl. sol. in cold H2O Somewhat more easily sol. in hot H2O with separation of V2O4. (Schmitz-Dumont, Dissert 1891.)

2(NH₄)₂C, 3As₅O₅ 2V₃O₅, +4H₂O Can-not be crystallized from H₂C. Composition is (NH₄)₂HAsO₄+2(VO₅)₂H₂AsO₄. (Friedheim.)

Decomp. under H₂O to (NH₄)₂O, 2V₂O₄. As₂O₅+5H₂O. (Schmitz-Dumont, l.c.)

5(NH_d)₂O, 4As₂O₃, 2V₂O₃+18H'₂O. Sol. in H₂O. (Ditte, C R 102, 1019.) Does not exist (Friedhcim, B. 23, 2605.)

Calcium arseniovanadate, 2GaO, $3As_2O_3$, Arseniovanadicovanadiotungstic acid. $2V_2O_3+21H_2O=CaHAsO_4+2(VO_2)$ H-AsO4+8H-O

Can be crystallized in presence of vanadic acid without decomp (Friedheim) Sol in H₂O Efflorescent. (Schmitz-Dumont, lo)

Cobalt arseniovanadate, CoO, As2O5, V2O5+ $9H_2O = Co(VO_2)_2H_2(AsO_4)_2 + 8H_2O$. Sol, in H₂O (Friedheim)

Copper arseniovanadate, CuO, As2O5, V2O1+ $4H_2O = Cu(VO_2)_2H_2(AsO_4)_2 + 3H_2O$. Sol. in H₂O (Friedheim.)

Magnesium arseniovanadate, MgO, As₂O₅, $V_2O_4 + 10H_2O = (VO_2)_2MgH_2(AsO_4)_2 +$ 9H₂O.

Sol in H₂O (Friedheim.) Moderately sol. in H2O. Solution decomp. on standing. (Schmitz-Dumont, l.e.) 2MgO, 3As₂O₅ 2V₂O₅, +23H₂O = MgHAsO₄ +2(VO₂)H₂AsO₅+9H₂O Sol. in H₂O. (Friedheim.)

Sol. in H2O but solution decomp on evaporation. (Schmitz-Dumont, I.c.)

Potassium arseniovanadate, K2O, As2Ob. $2V_2O_5 + 5H_2O = (VO_2)_2KAsO_4 + 2\frac{1}{2}H_2O$. Sol. in H₂O '(Friedheim.) Sl. sol, in cold H2O Partially decomp. on heating. (Schmitz-Dumont.)

Strontum arseniovanadate, 2SrO, $3As_2O_8$, $2V_2O_3+20H_2O=SrHAsO_4+2(VO_2)_2H_2$

AsO. +716H2O. Sol in H₂O. (Friedheim.) +21H₂O. Easily sol. in H₂O. (Schmitz-Dumont)

Zinc arseniovanadate, ZnO. As2O5, V2O5+ $6\frac{1}{2}H_2O = Zn(VO_2)_2H_2(AsO_4)_2 + 5\frac{1}{2}H_2O$. Sol. in H_{*}O (Friedheim.) 2ZnO, 3As₂O₅, 2V₂O₅+5H₂O, and +18H₂O = ZnHAsO₄+2(VO₂)₂H₂AsO₄, and +6½H₂O. Sol. in H₂O. (Friedheim.)

Arseniovanadicotungstic acid.

Ammonium arseniovanadicotungstate, 17(NH₄)₂O,2As₂O₅,14½V₂O₃,29WO₃+ 98H₂O

Sl, sol, in cold H₂O Readily sol in boiling H₂O. Insol, in alcohol, ether, benzene, CS₂, CHCl₀, acetone, nitrobenzene, aniline and acetic anhydride. (Rogers, J. Am. Chem. Soc. 1903, 25, 307.)

Arseniovanadicovanadic acid.

Ammonium arsemovanadicovanadate, 5(NH₄)₂O, 12As₂O₅, 12VO₂, 6V₂O₅+

Sl sol, in cold, sol, in hot H2O, from which crystallizes-

4(NH4)2O, 9As2Os, 9VO2, 8V2Os+11H2O. Sol. in H₂O. (Gibbs, Am. Ch. J. 7. 209.)

Ammonium arseniovanadicovanadiotungstate.

17(NH₄)₂O,2As₂O₅,7V₂O₅,4V₂O₅,32WO₈ +73H₂O.

Sl. sol. in cold, readily sol, in boiling H₂O. (Rogers, J. Am Chem. Soc 1903, 25, 310.)

Arseniovanadiotungstic acid.

Ammonium arseniovanadiotungstate, 18(NH₄)₂O, 2As₂O₄, 13V₂O₄, 39WO₂+ 88H2O.

Sol. in H₂O. Insol, in organic solvents. (Rogers, J. Am., Chem. Soc. 1903, 25, 306.)

Arseniuretted hydrogen, AsHa. See Arsenic hydride.

Arsenochromic acid.

Potassium arsenochromate, K4Cr2As2O16+ 12H.O. Sol. in moderately conc. mineral acids, (Tarugi, C. C 1897, II 724.) $K_7Cr_2As_6O_{22}+24H_2O$. Ppt. Sol. in dil.

warm acids (Tarugi.) Potassium hydrogen arsenochromate,

K4H6Cr2As2O14. (Tarugi, C. C. 1897, II, 724.)

Arsenosoarseniotungstic acid.

Potassium arsenosoarseniotungstate, 10K2O, 4As2Os, As2Os, 21WOs+26H2O. Precipitate. Sol. in a large amount of hot

H₂O (G₁bbs, Am. Ch J. 7, 313.) Arsenosomolybdic acid.

Ammonium arsenosomolybdate, 3(NHs),O. 5As2O2, 12MoO2+24H2O. Sl. sol, in H₂O. (Gibbs, Am. Ch. J. 7, 313.)

Ammonium barium arsenosomolybdate. 3(NH4)2O, 2BaO, 5As2O8, 10MoO2+

50H2O. Ppt. (Ephraim, Z. anorg. 1910, 66, 57.)

Ammonium cupric arsenosomolybdate, (NH₄)₂O, CuO, 2As₂O₃, 4M₀O₃+2H₂O, and 2(NH4)20, CuO, 3As2O2, 6MoO2+ 13H₂O.

Ppts. (Ephraim, Z. anorg, 1910, 66, 58.) Barium arsenosomolybdate, 3BaO, 2As2Os, 8MoO2+13H2O.

Very sl sol in H₂O (Gıbbs.)

Copper arsenosomolybdate, 2CuO, 3As2O3, 6MoO3. Sol. in H₂O. (Gibbs.)

Manganese arsenosomolybdate, 3As2O2, 6MoO3+6H2O, and+15H2O. Insol. in H₂O. (Gibbs.)

Potassium arsenosomolybdate, 3K₂O₃, As₂O₃, Arsenyl iodide, As₈I₂O₁₁ = 2AsOI, 3As₂O₈+ $5M_0O_3 + 3H_2O$.

Easily sol. in H₂O. (Ephram, Z. anorg. 1910, 66. 54.) 3K2O, AsiOs, 8MoOs+18H2O. Easily sol in H₂O, (Ephraim)

Sodium arsenosomolybdate, Na₂O, As₂O₃,

2MoO₃+6H₂O. Easily sol. in H2O. (Ephraim, Z. anorg. 1910, 66, 56.) 2Na₂O, Ás₂O₂, 4M₀O₃+13H₂O. (Ephraum.)

Zinc arsenosomolybdate, 2ZuO, 3As₂O₂, 6MoO₃+6H₂O.

Sol. in H.O. (Gibbs.)

Arsenosophosphotungstic acid.

Potassium arsenosophosphotungstate, 10K2O. 14As₂O₄, 3P₂O₄, 32WO₃+28H₂O Moderately sol, in cold, very easily in hot

H₂O. (Gibbs.) 7K₂O, 2A₅₂O₅, 4P₂O₅, 60WO₃+55H₂O. Sol in hot H.O with decomp. (Gibbs.) Potassium sodium arsenosophosphotungstate,

5K2O, Na2O, 2As2O2, 2P2O5, 12WO2+ 15H₂O. (Gibbs, Am, Ch. J. 7. 313.)

Arsenosotungstic acid.

Ammonium arsenosotungstate, 7(NH₄)₂O, 2As2O2, 18WO2+18H.O. Sol. in H₂O. (Gibbs.)

Barium alsenosotungstate, 4BaO, AsiOs, 9WO2+21H2O.

Precapitate. 'Nearly insol in H₂O. (Gibbs.) Sodium arsenosotungstate, 9Na2O, 8As2O2, 16WO3+55H2O. Very sol. in H₂O. (Gibbs, Am. Ch. J. 7.

313.1 Arsenyl bromide, AsOBr.

H₂O dissolves out As₂O₈; insol. in alcohol (Sérullas.) +H2O. (Wallace, Phil. Mag. (4) 17, 122.)

 $As_4O_4Br_4 = 2AsBr_4$, $3As_1O_4 + 12H_4O_4$

Arsenyl bromide with MBr. See Arsenite bromide, M.

Arsenyl chloride, AsOCl,

Sol. in H₂O with decomp +H₂O. (Wallace, Phil. Mag. (4) **16.** 358.) As₂O₄Ci. (Wallace.)

Arsenyl chloride with MC1.

See Arsenite chloride, M.

Arsenyl potassium fluoride, AsOF, KF+ (Marignae, A. 145, 237.)

Decomp, by H2O. (Wallace, Phil. Mag. (4) 17, 122.) Sl. sol, in cold H₂O, less sol. in alcohol,

(Plisson, J. Pharm. 14. 46.) Arsenyl jodide with MI. See Arsenite iodide, M.

Arsenyl sulphojodide, As₁₃I₈S₆O₉
Scarcely attacked by cold H₂O. Boiling
H₂O extracts AsI₃ Decomp. by hot HNO₆ or
H₂SO₄. Easily sol m KOH, or NH₄OH +Aq. (Schneider, J. pr. (2) 36, 513)

Arsine.

See Arsenic hydride.

Atmospheric air. See Air, atmospheric.

Auriamine, Au(OH)2NH2 (Jacobsen, C. R. 1908, 146, 1214)

Diauriamine, Aug(OH), NH. (Jacobsen, C R 1908, 146, 1214.)

Scsquiauriamine, NAu₃, NH₂. Decomp, by H₂O into NAus. (Raschig, A.

235.341) Auric acid, HAu2O4.

Soi in HBr, or HCi+Aq. (Kruss, B. 19. 2546.) Ammonium aurate.

See Auroamidoimide. Barium aurate, BaAu₂O₄+5H₂O. Sl. sol. in H₂O. (Weigand, Zeit, angew. Ch.

1905, 19, 139. 1905, 19, 139.) +6H₂O. Sl sol in H₂O. Sol, in dil. H₂SO₄ and in dil. HNO₃. Sol in HCl Decomp. by alcohol. (Meyer, C. R. 1907, 145, 806.)

Calcium aurate (?).

Insol in H2O; sol. in CaCl2+Aq. (Fremy, A ch (3) 31. 485) CaAu₂O₄+6H₂O. As Ba salt. (Meyer, C. R. 1907, 145, 808.)

Magnesium aurate (?). Ppt. Insol in H₂O; sol. in MgCl₂+Aq.

(Pelletier.)

Potassium aurate, KAuO2+3H2O.

Very sol. in H₂O, and easily decomp. (Fremy, A ch. (3) 31, 483.) Sol in alcohol; the solution in alcohol does not decomp below 50°. (Figurer, A. ch. (3) 11. 364.)

Potassium aurate sulphite, KAuO2, 2K2SO4+ 5H₂O

Sol. in H2O with decomp Nearly insol. ın alkaline solutions. (Fremy, A. ch. (3) 31. 485)

Sodium aurate, NasAusO4+2HsO. Sol. m H₂O. Sol. m dil. H₂SO₄, dil. HNO₅,

and HCl with decomp Decomp by alcohol. (Meyer, C R 1907, 145, 806) Strontium aurate, SrAu₂O₄+6H₂O.

As Ba salt (Mever.)

Auriimide chloride, Au(NH)Cl.

(Raschig) Aurismide nitrate, Au₂N₂H₂O, 2HNO₂, or AuN. HNO₃+½H₂O, or Au₂O(NH)₂.

Not deliquescent Decomp by hot H₂O into Au₂O(NH)₂. (Schottlander, J. B 1884.

453.) Auroamidoimide, Au(HN)NH2+3H2O.

(Fulminating gold.) Insol. in H₂O, not attacked by dil. acids; sol in conc acids, and in moderately dil. acids, when freshly precontated. Insol in alkalies or alcohol. Sol m KCN+Ag

Triauroamine, Au₂N+5H₂O. Not decomp. by boiling dil. acetic acid

HNOs, or H.SO4. (Raschig, A. 1886, 235, Auricvanhydric acid, HAu(CN)4+11/6H00

Easily sol, in H₂O, alcohol, or ether, See also Bromauricyanides.

Chlorauricvanides. Iodauricvanides.

Ammonium auricyanide, NH₄Au(CN)₄. Easily sol. in H2O or alcohol. Insol. in Barium. Ba.

ether Cobaltous auricyanide, Co[Au(CN)4]2+9HaO.

Sl. sol. in cold, easily in hot H₂O , Sl sol in alcohol (Lindborn.) Potassium auricyanide, KAu(CN)4+11/2H2O

Efflorescent. SI sol in cold, easily in hot H₂O. Easily sol in alcohol.

Silver auricvanide, AgAuCN4. Insol m H2O or HNO+Aq

NH₄OH+A₀. Diagrodiamine nitrate.

See Auriimide nitrate.

Aurobromhydric acid. See Bromauric acid.

Aurobromic acid. See Bromauric acid

Aurochlorhydric acid.

See Chlorauric acid. Aurochloric acid.

See Chlorauric acid.

Aurocvanhydric acid.

Aurocvanides with MCN.

See Cvanide, aurous with MCN.

Azinosulphonic acid.

Ammonium azinosulphonate, NaSOaNHa. (Traube, B. 1914, 47, 944.)

Barium azinosulphonate, (NaSOa)oBa

(Traube, B. 1914, 47, 944) Potassium azinosulphonate, NaSOaK.

Easily sol, in H₂O. Can be cryst. from boiling abs. alcohol. (Traube, B. 1914, 47.

Sodium azinosulphonate, NaSOaNa. (Traube, B. 1914, 47, 944.)

Azoimide, HN2

Miscible with H₂O and alcohol (and Radershausen, J pr. (2) 43. 207

Stable in aq solution; decomp, slowly by dil. boiling HCl. (Curtius, J pr. 1898, (2) 58. 265) For salts of HNs, see azomide of metal

under metal.

Azoimide, hydroxylamine, N.H.2NH-OH. Sol in H₂O. Gradually volatilizes at ord temp (Dennis, J. Am. Chem. Soc 1907, 29,

Azophosphoric acid.

See Purophosphamic acid.

Deutazophosphoric acid. See Purophosphodiamic acid.

Decomp. by H2O and abs alcohol. (Guntz, R. 1901, 133. 874.)

Insol. m liquid NH3. (Gore, Am Ch. J. 1898, 20, 827.

Barium amalgam, BaHg₁₂.

Stable in contact with liquid amalgam up to 30°. Can be cryst, from Hg without decomp. if temp. does not exceed 30°. (Kerp,

Z. anorg 1900, 25. 68)

Sol. in

BaHg₁₂ Stable in contact with liquid amalgam from 30°-100°. Can be cryst from Hg without decomp. at any temp, within these limits. (Kerp.)

Barium amide, Ba(NH2)2.

B.-pt 280°. (Mentrel, C C. 1903, I. 276.) Decomp. by H2O (Guntz and Mentrel, Bull Soc 1903, (3) 29. 578)

Barium potassium amide.

See Potassium ammonobarate.

Barium ammonia, Ba(NHa)a.

Takes fire in the air. Only sl. sol. in liquid NH₄. Violently decomp. by H₂O. (Mentrel, C. R. 1902, 135, 740.)

Barium arsenide, Ba₄As₂

Decomp. by H₂O. (Lebeau, C R. 1899, 129, 48.)

Barum azoimide, Ba(Na).

Very sl. hydroscopic, explosave
13.5 pts. are sol. in 100 pts. H₂O at 0°
16 2 " " " 100 " H₂O " 10 5°
16 7 " " " " 100 " H₂O " 15°
17 3 " " " " 100 " H₂O " 17°
0 0172 pts are sol. in 100 pts. abs alcohol at

16°.
Insol. in ether. (Curtus, J. pr. 1898, (2)

58. 290) See also Barium nutride.

See also Barium nitri

Barium borde, BaB₆
Sol. in fused oxidizing agents, not decompby H₂O; msol. in aq acids; sl sol. in conc. H₂SO₆, sol. in dil and conc. HNO₂. (Moissan, C R 1897, 125, 634.)

Bar.um subbromide sodium bromide, BaBr.

NaBr Decomp. by H₂O. (Gunts, C. R 1903, 136, 750.)

Barrum bromide, BaBr₂, and +2H₂O 100 uts, H₂O dissolve—

at 0° 20° 40° 60° 80° 100° 98 104 114 123 135 149 pts. BaBra

Sat BaBra+Ac contains at.

-20° -9° +7° 16° 19° 40° 45 7 46 5 48 5 48 8 49 3 50 9%BaBr₂ 71° 76° 77° 104° 145° 160° 175° 55 1 55 5 55.6 56.6 60 5 59 4 60.3%BaBr₂

55 1 55 5 55 6 56 6 60 5 59 4 60 3% BaBr₂ (Étard, A ch. 1894, (7) **2.** 540.) Sp gr. of BaBr₂+Aq at 19.5° containing: 5 10 15 20 25 30% BaBr₂ 1 045 1 092 1 114 1 201 1 262 1 329

35 40 45 50 55%BaBr₂. 1.405 1 485 1.580 1.685 I 800 (Kremers, Pogg. 99, 444, calculated by

Gerlach, Z anal. 8, 285.)

BaBr₂+Aq containing 7.74% BaBr₂ has sp. gr. 20°/20° = 1 0716.

sp. gr. 20 /20 = 1 0/16. BaBr₂+Aq containing 16.76% BaBr₂ has sp. gr. 20 /20° = 1.1674.

(Le Blane and Rohland, Z. phys. Ch. 1896, 19. 279.) Sat. BaBr₂+Aq boils at 113°. (Kremers, Pogg. 99. 43)

Solubility in BaI2+Aq at to.

e	Sat. solution contains			
	% BaBrs	% BaI:		
16 16 +-60 135 135 170 210	4.7 5.0 5.5 9.3 9.0 11.0 14.9	57.9 59.0 66.0 67.3 67.2 67.4		
(Etard,	A. ch. 1894, (7	7) 3. 287.)		

Very sol in absolute alcohol (Hunefeld.) 100 pts. absolute methyl alcohol dissolve 50 pts BaBrs at 22 5°.

100 pts absolute ethyl alcohol dissolve 3 pts BaBr₁ at 22.5° (de Bruyn, Z. phys. Cu. 10, 783)

10.783)
Sat solution in 87% alcohol contains 6%
BaBl₁. (Richards, Z. anorg, 3, 455.)
100 pts. absolute methyl alcohol dissolve
458 pts. BaBl₁+2H₂O at 15°

45 8 pts. BaB₁₃+2H₂O at 15° 100 pts. 98 5% methyl alcohol dissolve 27.3 pts BaBr₂+2H₂O at 15°.

21.5 pts Bally-Park at a dead dissolve 4 pts. BaBr₁+2H₂O at 15° (de Bruyn, Z. phys. Ch. 10.787) 100 gt. BaBr₂+CH₄OH contain 0.4 gt. BaBr₂ at the critical temp. (Centnerszwer, Z. phys.

Ch. 1910, **72**. 437)

At 15°, 1 pt. by weight is sol in:
36 pts. methyl alcohol, sp. gr 0.709
207 " ethyl " " 0 8035

207 " ethyl " " " 0 8035 652 " propyl " " " 0 8085 (Rohland, Z. anorg. 1897, **15**. 413.)

Nearly meel in boiling amyl alcohol, 10 cem dissolving only an amt. equal to 13 mg BaO (Browning, Sill. Am J. 144, 459) Sol. in acctone. (Naumann, B 1904, 37. 4228; Eidmann, C. C. 1899, III 1014) Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Difficultly sol. in methyl acetate (Naumann, B 1909, 42, 3789) Insol. in ethyl acetate. (Naumann, B. 1910, 43, 314.)

Barium cadmium bromide, BaBr₂, CdBr₂+ 4H₂O.

Sol. in H₅O. (v. Hauer, W. A. B. **20**, 40.)

Barium rhodium bromide. See Bromorhodite, barium.

Barium bromide ammonia, BaBr₂,8NH₂.

Decomp. by H₂O. (Joannis, C. R. 1905, 140. 1244.)

Barium bromide hydrazine, BaBr₂, 2N₂H₄. Hydroscopic. Very sol. in H₂O. Insol in alcohol. (Franzen, Z. anorg 1908, **60**, 291.)

Barium bromofluoride, BaBr. BaF.

Insol. in and undecomp. by boiling alcohol. Sol. in HBr and in HNO₃. Decomp. by H₂O₃, hot H₂SO₄, dil. HCl, dil. HNO₃, or dil. acetic acid. (Defacqs, C. R. 1904, 138, 199)

Barrum carbide, BaCo.

Decomp. by H₂O. (Maquenne, C. R. 144. 360.)

Sp. gr. 3.75. Easily decomp. by H₂O and dil. acids (Moissan, Bull. Soc. 1894, (3) 11. 1008.) Barium carbonyl, Ba(CO)2. Sol. in H_{*}O. (Guntz and Mentrel, Bull. Soc. 1903, (3) 29. 586.)

Barium subchloride, BaCl

Decomp. by H₂O. (Guntz, C. R. 1903. 136. 751.)

Barium subchloride sodium chloride, BaCl. Decomp. by H₂O (Guntz, C. R. 1903. 136, 750)

Barium chloride, BaCl, and +2HO. Permanent in dry air.

100 pts H₂O at t° dissolve (a) pts BaCl₂ and (b) pts BaCl₂+2H₂O +0 X

> 74 80 | 50 04 65 51 77.89

15 64	34 86	43 50	74	89	59	94
49 31	43 84	55 63	105	48	59	58
	(Gay-L	ussan, A	ch (2	11.	309)

100 pts H₂O at t^o dissolve 32 62 +0 2711t pts. BaCle (Kopp)

100 pts H2O dissolve pts. BaClz+2II2O at to.

to.	Pts. BaCl ₂ +2H ₂ O	t°	Pts BaCls+2HsO
16 25 20 00 22 50 37 50 50 00	30.66 42.22 43.7 51.0 65.0	62 50 75 00 87 00 100	48 0 63 0 65 0 72 0

(Brandes.)

Sol. in 2 67 pts H₁O at 18 75°. (Abl.) 1 pt BaCl: as sol in 2 86 pts H₂O at 15 5°, and 1.67 pts, at boling temp (M. R. and P.) 100 pts H₂O at 15 3° dissolve 20 pts. BaCls, and 43 pts at 87.7°. (Ure's Dur.)

Solubility in 100 pts. H₂O at to

t°	Pts BaCl:	t°	Pts. BaCl ₂
0	31 1	77 5	51 9
12 2	33.9	95 65	57 7
38 4	41 2	102 5	58 9
62 75	47.7	105	59 7

(Nordenskiold, Pogg 186 316)

10	o bra 1130 masoine bra pacis se c.				
t°	Pts BaCls	t°	Pts. BsCl ₂		
9 30 37	33 2 38 1 40.0	50 58	43 7 45 9		

(Gerardin, A. ch. (4) 5. 143.)

1 pt BaCl₂+2H₂O is sol. in 2.18 pts. H₂O at 21.5°, and the solution has sp. gr. = 1 2878. (Schiff, A. 109, 326.) 1 pt anhydrous BaCl₂ is sol, in 2.86 pts. H2O at 15°. (Gerlach.)

Calababa - 100 - 1 - TT O - 1 10

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Solubility in 100 pts H ₂ O at t				
1 1 2 37 40.0 72 50.6 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 73 50.3 8 40.2 8 40.	t°	Pts BaClı	t°	Pts. BuCl ₂	t°	Pts BaCl ₂
34 39.2 70 49 4 104.1 60 3 35 39 5	1 2 3 4 4 5 6 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 24 25 27 28 29 30 13 22 33 34	31.25 31.79 32.24 32.66 32.33.35 33.	37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 66 66 66 66 66 67 68	40.0 40.5 40.5 40.5 40.5 41.3 41.3 41.3 42.5 42.5 43.3 43.4 43.4 44.5 45.5 46.4 47.7 48.5 48.8 48.8 48.8 48.8 48.8 48.8 48.8	72 73 74 75 76 77 77 78 80 81 82 83 84 85 88 89 91 92 93 94 95 96 97 98 99 100 101 102 103	50 0 0 50 6 50 6 50 6 50 6 50 6 50 6 50

(Mulder, calculated from his own and other observations. Scheik. Verhandel. 1864. 45.)

The saturated solution contains-60.3 pts. BaCl₂ to 100 pts. H₂O, and boils at 104.1°. (Mulder.) 60.1 pts. BaCl₂ to 100 pts. H₂O, and boils at

104.4°. (Legrand.) 61.8 pts. BaCl₂ to 100 pts. H₂O, and boils at 104.5°. (Griffith.)

59.58 pts BaCl₂ to 100 pts. H₂O, and boils at 105.48° (Gay-Lussac); at 106° (Kremers). 54.1 pts BaCl₂ to 100 pts. H₂O, and forms crust at 104 4°; highest temperature observed, 104 9°. (Gerlach, Z anal. 26. 426.)

Sat. BaCl₂+Aq contains at:

100° 130° 144° 160° 180° 215° 36 37 3 37 5 38.9 40.7 43.1%BaCl₂ (Étard, A. ch. 1894, (7) 2. 535.)

Aq. solution contains 27 6% BaCl₂ at 30°. (Shrememakers, C. C. 1910, I. 9.)

So gr

1 2245 1 2837

8

Solubility of BaCl ₂ +2H ₂ O in H ₂ O equals 1.745 mollitre at 30° . (Masson, Chem. Soc. 1911, 99. 1136)	
BaCl ₂ +Aq sat. at 8° has up gr 1 27 (Anthon) BaCl ₂ +Aq sat. at 15° has up gr 1 282 (Machel and	Ì

BaCl ₂ +Aq sat. at 8° has up gr 1 27 (Anthon) BaCl ₂ +Aq sat at 15° has up gr 1 282 (Michel an Krafft)
BaCl ₂ +Aq sat at 18 1° has up gr 1 285, and con tains 44 31 pts BaCl ₂ +2H ₂ O to 100 pts H ₂ O. (Kar aton)

Sp. gr. of BaCl₂+Aq at 19 5° I 65 ReOle

70 Dacis	op gr.	76 DWG12	
8 88	1 0760	27 53	Γ

(Kremers, Pogg. 99, 444)

Sp. gr. of BaCl2+Aq at 15°.

% BaCl ₂	Sp gr.	% BaQt	Sp gr
1 2 3 4 5 6 7 8	1 00917 1 01834 1 02750 1 03667 1 04584 1 05569 1 05554 1 07538	14 15 16 17 18 19 20 21	1.13778 1 14846 1 15999 1 17152 1 18305 1 19458 1 20681 1 21892
9 10 11 12 13	1.08523 1 09508 1.10576 1 11643 1 12711	22 23 24 25	1 23173 1 24455 1 25736 1 27017

(Gerlach, Z anal. 8, 283,)

Sp. gr. of BaCl ₂ +Aq at 21.5°			
% BaCl ₂ + 2H ₂ O	Sp. gi	% BnCls+ 2H ₂ O	Sp gr.
1 2 3 4 5 6 7 8	1.0073 1 0147 1.0222 1 0298 1.0374 1.0452 1 0530 1 0610	16 17 18 19 20 21 22 23	1 1302 1 1394 1 1488 1 1584 1 1083 1 1783 1 1884
9 10 11 12 13	1 0692 1 0776 1 0861 1 0947 1.1034	24 25 26 27 28	1.1986 1 2090 1 2197 1 2304 1 2413 1 2523

1 1122 1.1211 (Schiff, calculated by Gerlach, Lc.)

29

1 2636

1 2750

14

₱15

Sp. gr. of BaCl2+Ag at 18°. % BaCla Sp. gr

10 . 15	1.0445 1 0939 1 1473	20 24		1.2047 1.2559
(18	ohlransch W	Ann	1970	1.\

Sp gr. of BaCl ₂ +Aq at 20°.			
mols BaCl; per i	Sp gr.		
0 01 .	1 001878		
0 025	1 00475		
0 05	1 00929		
0 075	1.01369		
0 10	1 01766		
0 25	1 0456		
0 40	1 0726		

(Jones and Pearce, Am. Ch. J. 1907, 38. 701.) BaCl2+Aq containing 6 94% BaCl2 has sp. gr 20°/20°=1 0640

BaCl₂+Aq containing 11.38% BaCl₂ has sp gr. 20°/20° = 1 1086. (Le Blanc and Rohland, Z phys Ch 1896,

19. 279.) Sp. gr of BaCl2+Aq at 25°.

BaCl ₂ +Aq	Sp. gr
1-normsl 1/2- " 1/4- " 1/8- "	1 0884 1 0441 1 0226 1 0114
(Wagner, Z. phys	Ch. 1890, 5. 35.)

Sp. gr of BaCl₂+Aq. Concentration of BaCl2+Aq Sp gr 1 pt. BaCl₂ in 3 684 pts. H₂O 1. 2194 1 " " 52 597 " " 1 0145

1 0145

(Hittorf, Z. phys. Ch. 1902, 39, 628.)

1 emp of Maximum Density				
Weight of BaCls in 1000 grams H ₂ O	Temp of maximum density	Molecular reduc- tion of temp. of M D		
6 73 10 42 20 83 41 75	3 982° 3 207° 2 783° 1.572° 0.843°	23.94 23.88 24.04 24.04		

(De Coppet, C. R. 1897, 125, 533.)

BaCl₂+Aq containing 10% BaCl₂ boils at 100.6°, (Gerlach.) BaCl₂+Aq containing 20% BaCl₂ boils at 101.9°. (Gerlach.)

B.-pt of BaCl₂+Aq containing pts. BaCl₂ to 100 pts. H₂O. G=according to Gerlach (Z. anal 26, 443), L=according to Legrand (A, ch. (2) 59, 452).

Bpt	G	L
100 5° 101 0 101.5 102 0 102 5 103.0 103 5 104 0	6 4 12.7 19.0 25 3 . 31 6 37 7 43 7	11 0 19 6 26.2 32.5 38 6 44 5 50.3 56 0
104 4 104 5	55 2	60.1

Less sol in H₂O containing HCl than in pure H₂O, and scarcely sol, in conc. HCl+Aq. (Berzelius.)

Solubility of BaCl₂ in HGl+Aq at 0°.

BaCl₂=no, ½ mois, (in milligrammes) dissolved in 10 cc of the liquid, HGl=no, mois, (in milligrammes) contained in the same quantity of liquid.

BaCle	HCl	Sum of mole	Sp gr
29 45	0	29 45	1.250
27 8 26.075	1.1 2.8	28.9 28 875	1 242 1 228
23.4 14.0	5 0 14 36	28 4 28 36	1 210 1 143
10 2 6 67	18 775 22 75	28 975 29 42	1 118
2 74	92 10	34 74	1 070

(Engel, Bull, Soc. (2) 45, 653.)

50.79

1 088

0 29 | 50 5

Sol. in about 8000 pts. conc HCl+Aq Sol in about 20,000 pts conc HCl+Aq

through which HCl gas was passed. Practically insol in conc. HCl+Aq containing 4 vol ether. (Mar, Sill Am. J. 143. Solubility in HCl+Aq at 30°.

% by % by wt wt HCl BaCl;		Solid phase	

0	27 6	BaCl ₂ , 2H ₂ O	
5 94	12.97	11	
11.55	3.85	rr rr	
18 11	0 46		
32 35	0 00	и	
37.34	0 00	BaCl ₂ , 2H ₂ O+BaCl ₂ , H ₂ O	
38 63	0 00	BaCl ₂ , H ₂ O	
(Schreinemakers Z phys Ch 1909 68 80)			

Much less sol in HNO₃+Aq than in H₂O, because Ba(NO₃)₂ is nearly insol, therein.

BaCl₂ is sol in about-

(Wurtz.)

4 00 pts. H₂O. 5.00 pts. NH₄OH+Aq (conc.).

5 33 pts. NH₄OH+Aq (I vol. conc.. 3 vols H₄O). 5.33 pts. HCl+Aq (1 vol conc.: 4 vols.

H₂O). 8 00 pts. HC₂H₃O₂+Aq (1 vol commercial acid: 1 vol H₄O).

6 00 pts. NH₄Cl+Aq (1 pt. NH₄Cl . 10 pts H₂O).

6.00 pts. NH₄C₂H₂O₂+Ag (dil NH₄OH+ Aq neutralized by dil. HC₂H₃O₂+Aq) 6.67 pts. NaC₂H₂O₂+Aq (commercial HC₂H₃O₂ neutralized by Na₂CO₃, and dil.

with 4 vols, H₂O), 6 33 pts. Cu(C₂H₃O₂)₂+Aq. See Stolba (Z. anal, 2, 390).

5.67 pts, grape sugar (1 pt grape sugar: 10 pts H₂O). (Pearson, Zert. Chem 1869. 662.)

BaCl₂+NH₄Cl. Solubility of BaCl₂ in NH₄Cl+Aq at 30°

MILION-FAG at 50			
Composition of the		Solid phase	
% NH ₄ Cl	% BaClı		
0 5 71 10 06 13 84 20 00 24 69 25 79 26 06 27 47	27 6 22 16 18.36 15 42 10 89 8 33 7 95 7.99 3 56	BaCl ₂ 2H ₂ O " " " " " " BaCl ₂ 2H ₂ O+NH ₄ Cl	
29.5	ō ·	- 7	

(Schrememakers, Z. phys. Ch. 1909, 66. 688.) See also under Ammonium chloride. BaCl₂+Ba(OH)₂. Solubility of BaCl₂ in

BaO + Ag at 30 Composition of the solution Solid phase % by % by BaO BaCle 27 6 BaCl₂, 2H₂O 78 27 42 27 31 BaCl₂, 2H₂O+BaCl(OH), 2H₂O 79 75 27.412 33 2 50 BaCl(OH), 2H₂O 24 98 24 20 3 27 21.464.67 19 18 18 97 BaCl(OH), 2H.O+BaO, 9H2O 86 4 20 18 83 4 64 18 77 65 18 10 BaO, 9H₂O 62 18 04 60 17.0858 12.81 4 45 10.77

(Schreinemakers, Z. phys. Ch. 1909, 68. 88.) Sol. in CuCl₃,NH₄Cl+Aq at 30°. (Schreinemakers, Z. phys. Ch. 1909, 66. 688.)

4 99 0

The solubility data for the system BaCl₂+ CuCl₂+KCl+Aq have been determined at 40° and 60°. (Schrememakers, C. C. 1915, I 933.) BaCl₂+HgCl₂. Solubility of BaCl₂+

HgCl₂ in H₂C Gms per 100 g Solid phase BaCl: HgCl 10.4° 23.58BaCl₂,2H₂O+HgCl₂ 10.4 23.4450 74 22.5851.2310 4 BaCl_{0.3}HgCl₂, 6H₂O 22.48 51 41 10 4 22 10 51 66 10 4 64 51 74 10.4 BaCla2HaO+HgCl2

(Foote and Bristol, Am. Ch. J. 32. 248)

23 02 54 83

25 0

Solubility of BaCl₂+HgCl₂ in H₂O

Temp. =30		Temp ≈0°			
1% HgCh	° BaCl2	Solid phase	" HgCl2	Se BaCle	Solid phase
0 2 90 7 09 12 98 22 61 34 57 46 50 55 16 55 32 48 97 41 30 27 62 14 19	27 77 27 56 27 47 26 99 26 89 25 22 23 46 23 98 17 87 14 20 8 41 2 65	BaCl ₂ 2H ₂ O "" "" "" "" "" "" "" "" ""	0 14 25 36 20 46 12 46 05 46 07 46 59 47 78 48 43 48 49 44 33 29 0 16 36 3 95	23 70 24 0 24 89 24 07 24 03 24 05 23 28 21 05 20 64 20 71 18 50 11 59 6.11	BaCl ₂ ,2H ₂ O BaCl ₂ , 3H ₂ O ₊ BaCl ₂ , 3H ₂ O ₊ BaCl ₃ , 3H ₂ Cl ₂ 6H ₂ O BaCl ₃ , 3H ₂ Cl ₂ 6H ₂ O BaCl ₃ , 3H ₂ Cl ₂ 6H ₂ O HgCl ₄ ""
7 67	0	٠			Temp. =40°
			56 57	22 98	BaCl ₂ .2H ₂ O+HgCl ₂

(Schreinemakers, Ch. Weekbl, 1911, 7, 202.)

BaCl₂+KCl. Sol m sat KCl+Aq, at first | 1 without pptn. The KCl is pptd. after a time | until a state of equilibrium is reached 100 pts. It-20 at 16.6° dissolve 33.8-27 2 pts | KCl and 18.2-34 2 pts. BaCl₂. (Kopp, A. 34.)

100 g. sat. solution of BaCl₂+KCl contam 13.83 g. BaCl₂ and 18.97 g KCl at 25° (Foote, Am. Ch. J. **32**. 253)

 $BaCl_1+Ba(NO_3)_2$ $BaCl_2$ is sol. in sat. $Ba(NO_3)_2+Aq$.

,

Solubility of BuCl₂+Bu(NO₄)₂ in H₂O. Both salts present in solid phase.

ţ°	Gms, pe	r 100 gms	t _a	Gms, per 100 gms solution		
	BaCl ₂	Ba(NO ₂) ₂		BaCl ₂	Ba(NOs):	
0 20 40 60	22.5 24.5 26.5 28.5	4 3 6 0 7 5 9 5	100 140 180 210	31 32 33 32	14 20 26 32	

(Etard, A. Ch. (7) 2. 535)

Very slowly sol, in sat. NaNO₂+Aq with separation of Ba(NO₃)₂. Rapidly sol, in sat. KNO₃+Aq, forming

Ba(NO₂), which separates out. (Karsten.)
BaCl₂+NaCl BaCl₂ is sol. in NaCl+Aq
at first without separation of NaCl, which,
however, finally separates.

00	pts.	H_2O	dissolve,	when	both	salts	are

	1	2	3	4	5	6
NaCl BaCl ₂	1 .	4 1 34.5	35 0		35 3 19 4 54 7	60 3

1, 2, and 3 are at 17°. (Kopp, A. 34, 268.) 4, 5, and 6 are at b -pt. (Mulder.)

Solubility of BaCl₂+NaCl, 100 pts. H₂O dissolve pts. BaCl₂ and NaCl

to	Pts. BaCl ₂	Pts. NaCt	t°	Pts BaCl ₂	Pts NaCl
10 20 30 40 50	4 1 4e1 5 0 6 3 7 9	33.9 33.8 33.7 33.6 33.5	60 70 80 90 100	9 7 11 7 13 9 15 9 17 9	33 5 33 6 33 6 33 6 33 6

(Precht and Wittgen, B. 14, 1667.) Solubility of BaCl₂+NaCl in HCl+Ag at 30°.

Solid	phase, N	aC!	Solid plu	se, BaCl	+2H:O
Sp.gr	G. mol litre		Sp gr of sat.	G mo	l-litre
rolution	HCl	NaCl	solution	IICI	BaCl:
1 2018 1 1906 1 1801 1 1633 1 1512 1 1427 1 1289	0 0000 0 4575 0 969 1 786 2 412 3 052 4 152 5 050	4.932	1 2651	2 234 3 041 3 953	1 745 1 468 1 122 0 861 0 592 0 307 0 124

(Masson, Chem. Soc. 1911, 99, 1136.)

0 268 1 1024 6 234 0 00 1 1609 10 25 0 00

1 1258 7 205

66 02 2 83

"

Solubility	of BaCl ₂	+NaCl m	HCl+Aq	at 30°

%HCI	%NaCl	%BaCl ₂	Solid phase	ŀ
*0 4 84 12 02 17 20 23 16 28 66 36 51	23 85 18.07 9 55 4 65 1 54 0.47 0 12	3 8 2.27 0 82 0 29 0 00 0 00 0 00	NaCl, BaCl ₂ 2H ₂ O " " " " " " " " " " NuCl\+BaCl ₂ H ₂ O	3

(Schreinemakers, Arch. Néer. Sc. ex nat (2) 15, 91)

Insol in liquid NH₄ (Franklin, Am Ch. 6 J 1898, 20, 827.)

Solubility in alcohol 100 pts, alcohol of given sp gr dissolve pts of the anhydrous, and crystallized sall

Sp. gr.	Pts BaCl ₂	Pts. BaCl ₂ +2H ₂ O			
0 900 0 848 0 834 0 817	1 00 0 29 0 185 0 00	1 56 0 43 0 32 0 06			
(Kirwan)					

Insol. in abs. alcohol, or below 19° in alcohol of over 91%. Dil alcohol dissolves less BaCl₂ than corresponds to the amount of H₂O present. (Gerardin, A ch (4) 5. 142)

Solubility in 100 pts. alcohol at to. D = sp. gr. of alcohol: S = solubility.

D-0 9904		D =	9848	D=	0 9793	D=0 9726	
t°	a	t°	8	to.	8	ţ°	8
14	29 1	14	25 0	11	19 6	15	15 6
14 25 32	32 0 33.5	32 39	29 1 30 9	15 20	20 4	23 33	17 0 19 1
47 60	37 4	50	33 2	35	24 6	50 2	22 0
60	39 8	63	37 6	45	26 8		

D =	0.9573	D=0 9390		D=0 8967		D=0 8429	
£°	٩	to.	8	60	8	t°	
13 24 34 39 50	10 11 4 12 9 13 8 15 2	12 23 31 37 47	6.5 7 2 8 3 9 0 10 1	12 30 47	0 1 4.3 4 9	12 19 25 50 67	0 00 0 00 0 01 0 28 0 377

(Gerardin, A. ch. (4) 5. 142.)

Solubility in dil. alcohol of x% by weight at 15°. Pts BaCla, 2HaO 30,25 23 7 18 0 12 8 9 3 3 4 0.5

(Schiff, A. 118, 365.)

14.5°, and in 1857 pts. at ebullition. (Fresenus.)

Solubi	hty of	BaCl ₂ m	alcohol+Aq.
nicohol	% BaCls		Solid phase

₯	0	27.95	BaCl ₂ 2H ₂ O
	32 67	10 63	70
14	50 16	5 68	H
14	66 72	2 23	11
"	92 53	0 05	**
11	94 83	0 07	BaCl ₂ 2H ₂ O+BaCl ₂ H ₂ O
11	94 75	0.05	and and a
11	94 60	0 07	
п	97 14		BaCl ₂ H ₄ O
"	98 17	0.08	BaCl. H.O+BaCl.
"	99 41		BaCl ₂
-			
0°	0	31 57	BaCl ₂ 2H ₂ O
"	16.68	20.16	10
44	94 10	12 01	- 11

0 25 88 55 90 11 0 09 BaCl₂ 2H₂O+BaCl₂ H₂O 90 39 93 95 BaCl₂ H₂O

(Schreinemakers and Massink, Chem. Weekbl 1910, 7. 213)

100 pts absolute methyl alcohol dissolve 2 18 pts BaCl, at 15.5°, and 7 3 pts. BaCl, 2H₂O at 6°. (de Bruyn, Z. phys. Ch. 10. 783.)
At 15° C. 1 pt. by weight is sol. in:—

78 pts. methyl alcohol of sp. gr. 0 790 00 "ethyl " " 0 8035 7,000 " 100,000 " propyl " " " 0 8085

(Rohland, Z. anorg. 1897, 15. 413.) Absolutely insol. in boiling amyl alcohol. (Browning, Sill. Am. J. 144, 459)

Absolutely insol. in acetic ether. (Cann, R. 102, 363.) Very sl. sol in acetone (Krug and M'El-

J Anal. Ch. 6. 184.) 100 pts. by weight of glycerine dissolve 10 s. BaCl₂ at 15.58. (de Bruyn, Z. phys. Ch.

Insol in acctone. (Naumann, B. 1904, 37. 329.) (Eidmann, C. C 1899, II. 1014.) Insol, in benzonitrile (Naumann, B. 1914, 47. 1370.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Insol. in anhydrous pyridine, 97% pyridine+Aq. and 95% pyridine+Aq. Sl. sol. in 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc. 1908, 30. 1107.)

+H₂O Solution of monohydrate sat. at 6°, contains 31.57% BaCl₂ (Schreinemakers, Chem. Weekbl. 1910, 7. 213.) 2.5 grams of the monohydrate are sol. in

100 cc. of methyl alcohol at 14°. (Kirschner, Z. phys. Ch. 1911, 76, 176.) Exact solubility in methyl alcohol cannot be determined as BaCl₂+H₂O separates out from a sat. solution of the dihydrate. (Kirsch-

ner, Z. phys. ch. 1911, 76, 177.) Sol. m 6885-8108 pts, 99.3% alcohol at Barium cadmium chloride, BaCl2,CdCl2+. 4H.O.

Easily sol. in H₂O. (v. Hauer.)

Solubility in H₂O at t^o

		, Ju	montey in i	igo de e i		
ţo.	100 pts solution contain pts .			100 g of	100 g H ₂ O dissolve	100 mole H ₂ O
6.	CI	Ba	Cd	contain g salt g salt	anhydrous sait	
22 5	15 19	14 71	11 98	41 88	72 06	3 32
32 9	16 18	16 09	12 40	44 59	80 73	3 72
41 4	16 95	16 81	13 05	46 87	88 01	4 06
$\frac{53.4}{62.0}$	18 21	18 13	13 95	50.30	101 21	4.66
	18 8L	18 74	14 73	52.28	109 56	5.05
97 8	22 48	22 00	17 57	62 05#	163 50	7 53
108 3	23 51	22 79	18 53	64 83	184 33	8 49
109 2	23 69	29 95	18 67	65 31	188 27	8 67

(Rimbach, B. 1897, 30. 3083)

BaCl_{2.2}CdCl₂+5H₂O. Quite difficultly sol in H₂O. (v Hauer.)

Solubility in H₀O at t°.

r.o	100 pts. by wt	of solution cont	am pts by wt	100 g of 100 g H ₂ O dissolve di		100 mols H ₂ O dissolve mols o
	CI	Ba	Cd	contain g salt	g salt	anhydrous salt
22.6 41 3 53 9 62 2 69 5 107 2 107 2	16.89 18 15 18 78 19 06 20 18 23 31 23 16	11 00 11 77 12 41 12 83 13 09 14 87 14 93	17 71 19 22 19 85 20 59 21 20 24 11 24 39	45 60 49 14 51 04 53 08 54 47 62 29 62 48	83 82 96 62 104 25 113 13 119 64 165 18 166 53	2 63 3 03 3 27 3 55 3 76 5 19 5 23

(Rimbach, B. 1897, 30, 3083)

Decomp. by H₂O (André, C, R. 104. 431.)

Barium mercuric chloride, BaCl₂, 2HgCl₂+

Efflorescent in dry air, sol. in H₂O Bonsdorff, Pogg 17. 130)

The salt BaCl₂, 2HgCl₂+2H₂O described by Bonsdorff does not form under the conditions which he gives. (Foote, Am. Ch. J. 1904, 32.

BaCl₂,3HgCl₂+6H₂O. Solubility minations with mixtures of BaCl2 and HgCl2 show that these chlorides do not form a double salt at 25°, but that a transition temp. exists at about 17.2° below which the salt BaCls, 3HgCl2+6H2O forms, (Foote, Am Ch J 1904, 32, 251.) +8H2O. Less sol. in H2O than the Sr and

Mg double salts. (Swan, Am. Ch. J. 1898, 20. £33.) Barium rhodium chloride, 3BaCls, RhoCla,

See Chlororhodite, barium. Barium stannous chloride, BaCl₂, SnCl₂+

4H₂O. Sol. in II₂O. (Poggiale, C. R. 20, 1183.)

Barium stannic chloride. Sec Chlorostannate, barium.

Barium uranium chloride, BaCl2, UCl4. Decomp. by H2O. (Aloy, Bull. Soc 1899, (8) 21, 265,)

Barium mercuric chloride, basic, BaCl2, HgO | Barium zinc chloride, BaCl2, ZnCl2+4H2O. Deliquescent, and sol in H2O. (Warner, N. 27, 271)

Pptd. from warm solution only. (Ephraim, Z. anorg 1910, 67, 381) _+2½H₂O Pptd. from cold solution. (Ephram)

Barium chloride hydrazine, BaCl₂, 2N₂H₄ Hydroscopic, (Franzen, Z. anorg, 1908, **60**, 290)

Barium chloride hydroxylamine, BaCl₂, 2NH₂OH

Very sol. in H₂O. (Crismer, Bull. Soc. (3) 3.118) Barium chloride sulphuric anhydride, BaCl2,

2SO₃, Decomp by H₂O (Schultz-Sellack, B. 4. 113.)

Barium chlorofluoride, BaClF.

Difficultly sol. in H₂O, but much more sol. than BaF2. Decomp. by H2O, so that when washed on filter, the filtrate contains more BaCl₁ than BaF₂. (Berzelius, Pogg 1. 19.) Insol. in and undecomp, by boiling alcohol; sol. in cone HCl and HNO₃. Decomp. by hot H₂O, hot H₂SO₄, dil. acetic acid, dil. HCl or dil. HNO3. (Defacqz, C. R. 1904, 138. 198.)

Barium cyanamide, BaCN.

Decomp. by H2O. (Frank, C. C. 1902, II. 774.)

Barium subfluoride sodium fluoride, BaF, Barium hydroxide, BaO.H. NaF Decomp. by H₂O. (Guntz, C. R. 1903)

136, 750.) Barium fluoride, BaF.

Scarcely sol. in H2O (Berzelius); less sol. in H₂O than CaF₂ 1 liter H₂O dissolves 1630 mg, BaF₂ at 18°, (Kohlrausch, Z. phys. Ch 1904, 50, 356.)

1605 mg. are contained in 1 l of sat. solu-tion at 18°. (Kohlrausch, Z. phys Ch. 1908, 64, 168.) Insol. in molten MnCl₂, MnBr₂, MnI₂, MnCl₂+BaCl₂, MnBr₂+BaBr₂ and MnI₂+ Ball (Defacqz, A. ch. 1904, (8) 1. 350)
Easily sol. in HCl, HNOs, or HF+Aq.
(Gay-Lussac and Thénard.)

Si, sol in bound HF. (Franklin, Z anorg. 1905, 46, 2.) Insol, in ethyl acetate (Naumann, B.

1910. 43, 314 Sol, in an aqueous solution of sodium citrate. (Spiller.)

Barium tin (stannic) fluoride.

See Fluostannate, barium.

Barium tellurium fluoride, BaF., 2TeF. Decomp. by H.O. (Högbom, Bull, Soc (2) 35, 60.)

Rarium titanium fluoride.

See Fluotitanate, barium.

Barium titanvl fluoride, TiO.F., BaF., See Fluoxypertitanate and fluoxytitanate, barium.

Barium uranyl fluoride. See Fluoxvuranate, barium.

Barium vanadyl fluoride.

See Fluoxyvanadate, barium.

Barium zirconium fluoride, 3BaF2, 2ZrF4-2H.O.

Insoluble precipitate. (Mangnac) See also Fluozirconate, barium.

Barium fluoiodide, BaF2, BaI2.

Decomp. by H₂O, dil HCl, dil, HNO₂ o hot H2SO4 Sol. in HI and HNO4. Inso. in and undecomp by boiling alcohol. comp. by dil. acetic acid (Defacqz, C. R 1904. 138. 199)

Barium hydride, BaH.

Decomp. by H₂O or HCl+Aq. (Winkley B. 24. 1979.) Decomp. by H₂O. (Guntz, C. R. 1901, 132, 964)

Barium hydrosulphide, BaS₂H₂.

Easily sol, in H₂O. Insol, in alcohol, +4H2O. Sol in H2O, and the solution dissolves S (Veley, Chem. Soc. 49. 369.)

100 pts cold H₂O dissolve 5 pts. BaO₂H₂ boiling

(Davy) 100 pts H₂O at 20° dissolve 3 45 pts BaO (Bineau, C R. 41 509) 100 pts H₂O at 13° dissolve 2 86 pts BaO 47° " 13 3 " 70° " 17 9

(Osann) 100 min TT O donother or . Th. O at 49

	too bts. 1	120 als	sorve pts	Dau a	ττ.
t°	Pts BaO	to.	Pts BaO	to	Pts. BaC
0 5 10 15 20	1 5 1 75 2 22 2 89 3 48 4.19	30 35 40 45 50 55	5 0 6 17 7 36 9 12 11.75 14.71	60 65 70 75 80	18.76 24 67 31 9 56 85 90 77

(Rosenthiel and Rühlmann, J. B. 1870, 314,)

100 pts H₂O dissolve at 25° 55.08 millimols. BaO₂H₂ (Herz and Knoch, Z. anorg, 1904,

41, 315.) Sp. gr of BaO2H2+Aq

			Sp gr
30 19 2 6	1 6 1 3 1 03	1 8 0 9	1 02 1 01

(Dalton)

Sp gr. of BaO₂H₂+Aq at 18° containing 1.25% BaO₂H₂=10120; containing 2.5%= 1.0253. (Kohlrausch, W. Ann. 1879, 6, 41.)

Sp. gr. of BaO₂H₂+Ag at 80°.

	Sp. gr	BaOlH ₂ by volume	BaO ₂ H ₂ by weight	Sp gr	BaO:H: by volume	BaO ₂ H ₂ by weight
÷	1 514	58 22	38.45	1 219	24.53	20 12
	1 500	56 31	37.54	1.200	28 00	19.17
	1 479	54 14	36.60	1 195	22 15	18.53
	1.458	49 38	33.87	1.174	19 83	16.89
	1 450	48 90	33.72	1.152	17.78	15 43
	1.413	45 99	32.55	1.129	16.01	14.18
	1.400	45 00	32.14	1.125	15 80	14 04
1.	1 390	44.22	31 81	1.114	14 56	13 07
	1 375	42.40	30 84	1 100	13 06	11.87
	1 368	41.45	30 30	1.076	10 58	9.83
	1 350	38.60	28 59	1 062	9 16	8 62
	1 338	87.30	27 88	1.049	7 55	7 20
	1 312	35.02	26 69	1 040	6 51	6 26
	1 301	34.02	26 13	1 031	5 18	5 02
r,	1.278	31 48	24.67	1 022	4 78	4 67
	1.249	28 14	22.52	1 015	3 90	3 84
	1.236	26 41	21.36	1 009	3 37	3 34

(Haff, C. N. 1902, 86, 284.)

Insol, in liquid NH₂. (Franklin, Am. Ch. J. 1898, 20. 827.) More sol in NaCl+Aq, KNO4+Aq, or

NaNO++Ao than in H.O. (Kaisten.)

Not precipitated by alcohol

Sol. with combination in absolute alcohol B.-pt. of BaO2H28H2O+Aq, etc.-Continued and anhydrous methyl alcohol. Insol. in

ether (Naumann, B 1904, 37. Insol, in acetone. 4329; Eidmann, C. C. 1899, II. 1014)

Solubility in acctone +Aq at 25°. A=cc. acetone in 100 cc. acetone+Aq.

BaO₂H₂ =millimols, BaO.H. in 100 cc. of the solution.

S = sp. gr. of the solution

A	2		١
0 10 20 30 40 50 60	55 08 31 84 17 79 9 10 4 75 1 54 0 48	1 04790 1 01677 0 99268 0 97630 0 95605 0 93980 0 91790 0 89562	

(Herz, Z anorg. 1904, 41. 321.)

BaO₂H₂ is sol, in an aqueous solution of canc sugar (Hunton, Phil. Mag. (3) 11. 156); also in an aqueous sol of mannite (Favre, A. ch. (3) 11. 76), sorbine (Pelouze); hot solution of quercite, separating on cooling (Dessaignes).

Decomp by H₂O free from car-+3H₂O bome acid. Sl. sol. in alcohol and ether (Bauer, Z. anorg. 1905, 47, 416.)

Solubility in H2O the same as that of the omp, with 8H.O. Insol, in alcohol and ether. (Bauer, Zert. angew Ch. 1903, 17. 341.)

Nearly msol. in alcohol and ether. (Bauer, Zeit. angew. Ch. 1903, 16, 349.) +8H₂O. Sol. in 20 pts cold, and 3 pts. boiling H₂O (Graham); 17.5 pts. H₂O at 15.5°, and in all proportions of hot H₂O.

(Hope) Sol, in 19 pts. H.O at 15°, and 2 pts. (Wittstein. If BaOsHs+8HsO is heated it dissolves in the crystal H2O and the solution has the following bpts.

%BaO 49.05 50 05 52 43 53.72105° B.-pt. 103° 104° 106° %BaO 55 35 57 49 58 74 61 44 É,-pt. 107° 108° 108 5° 109°

BaO₂H₁+3H₂O separates at 109°. (Bauer, Zeic. angew. Ch. 1903, 17, 345.)

B.-pt, of BaO₂H₂.8H₂O+A₀ at 732 mm. Time %BaO 78° (mpt.) n 48.454 78 48.45 103 6' 30" 49.05 6' 45" 104 50.05 7' 30" 105 52.43 53.72 9' 25" 106 107 10' 45" 55.35

Bpt.	Time	%BaO
108 108 5 109 109 108 105 100	12' 13' 17' 40" 17' 50" 18' 18' 45"	57 49 58 74 61 44 63 65 66 53 67 51 68 17

(Bauer, Z. anorg 1905, 47, 407)

Solubility in Ba(NO₃)₂+Aq at 25° Solution sat, with respect to both Ba(NOs)2

and BaO ₂ H ₂ , 8E	I₄O.	
Sp. gr 25°/25°	g BaO as Ba(OH): in 100 g H:O	g Ba (NOs); m 100 g HsO
1.1448 1.1871 1.1288 1.1220 1.1133 1.1002 1.1013 1.1014 1.1010 1.0949 1.0937 1.0937 1.0835 1.0840 1.0840 1.0774 1.0773 1.0774 1.0773 1.	5.02 4 93 4 83 4 72 4 65 4 65 4 66 4 55 4 54 4 53 4 44 4 45 4 45 4 44 4 42 4 43 5	11 48 10 21 8 66 7 55 7 01 6 82 6 55 6 08 5 66 5 46 5 32 4 44 4 41 4 41 2 79 2 53 1 88
1.0626 1.0640 1.0538 1.0518	4 35 4.29 4.29	1 45 0 48 0

(Parsons and Corson, J. Am. Chem. Soc. 1910. 32. 1385.)

Solubility of Ba(OH)2+8H2O (solid phase) in MCl+Aq (mol. per litre of solution)

at 20 .		
Solution of	(Cl')	(OH')
LiCl " " KCl " NaCl "	0 0.75 1 42 2.30 0.86 1 75 3 40 0.73 1.43	0.555 0.745 0.937 1.336 0.645 0.660 0.676 0.555 0.630 0.699
RbCl	2 82 1.25	0.806 0.648

(Hers. Z. anorg. 1910, 67, 366.)

Solubility of BaO in NaOH+Aq at 30°				
°c Na ₂ O	%BaO	Solid phase ,	Į	
4 78 6 43 9 63 11.62 17.87 23.28 24 63 26 14	4 99 1 29 0 89 0 57 0 53 0 47 1 06 1 87 1 84	BaO 9H ₂ O " " " " " " " " " BaO 9H ₂ O+BaO 4H ₂ O BaO 4H ₂ O		
27 72 28 43 29 24 32.12 34 72 41 09 42	1 75 1.58 1.34 0 82 0 59 0.57 0	BaO 4H ₂ O+BaO.2H ₂ O BaO 2H ₂ O J BaO 2H ₂ O+NaOH H ₂ O NaOH H ₂ O		

(Schrememakers, Z. phys. Ch. 1909, 68, 84.) 50% alcohol dissolves less than 0.5% of its wt. of BaO2H2+8H2O. (Beckmann, J.

Barium subiodide sodium sodide, Bal. Nal. Decomp. by H₂O. (Guntz, C. R. 1903, 136, 750.)

Barium iodide, BaI2.

pr. 1883, (2) 27, 138.)

Not deliquescent. Very sol in H2O and alcohol. 100 pts. of anhydrous salt dissolve: at 0° 19 5° 30° 40° 60° 90° 106° m 59 48 44 43 41 37 35 pts. H₂O₂

(Kremers, Pogg. 103, 66.) Sp. gr of BaI2+Aq containing: 20

30%BaL 15 25 1 045 1 091 1 143 1 201 1 265 1 333 60%BaI. 1 412 1 495 1 596 1.704 1 825 1,970 (Kremers, Pogg. 111. 63, calculated by Ger- hydroxide. lach, Z. anal. 8, 279.)

Easily sol, in alcohol (Henry.)

Sl. sol. in benzonitrile. (Naumann, B. 1914, 47, 1369.) Sol m acetone (Naumann, B. 1904, 37. 4328; Eidmann, C. C. 1899, II 1014.)

Sol. in methyl acetate. (Naumann, B. 1909, 42, 3789.) +2H.O At 15°C., 1 pt, by weight in sol, in:

22 pts. methyl alcohol sp. gr. 0 790 0 8035 93 307 " " 0 8085 (Rohland, Z. anorg 1897, 15, 413.)

+7H₂O. (Thomson, B. 10. 1343.)

The composition of the hydrates formed by BaIs at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by BaI2 and of the conduc-tivity and sp. gr. of BaI2+Aq. (Jones, Am Ch. J. 1905, 34, 306.)

Barrum rodide, basic, Ba(OH)I+9HaO. See Barium oxviodide.

Barium bismuth iodide, BaI+, 2BiI+18H+O. Deliquescent; decomp by H₂O. (Linau, Pogg. 111, 240)

Barium cadmium iodide, BaI2, CdI2+5H2O.

Deliquescent, (Croft.)

Barium mercuric iodide, Bal., 2Hgl. Decomp by much H2O (Boullay.)

Bals, HgIs Sol. in H₂O (Boullay.)
Sp. gr. of sat. solution = 3.575-3 588.
(Rohrbach, W. Ann. 20. 169.)
+5H₂O. (Duboin, C. R. 1996, 143. 314.)
28als, 3HgI₂+16H₂O. (Duboin, C. R.

1906, 142, 888,

1906, 142. 888.)
Ball, 5Hgls+SH₂O As the corresponding
Ca salt. (Dubom, C. R. 1906, 142. 888.)
3Bal₂, 5Hgls+21H₂O. Very deliquescent.
(Duboin, C. R. 1906, 142. 889)

Ramum etannone indida Very sol in H₅O (Boullay)

Barium zinc iodide, BaIs, 2ZnIs,

Deliquescent, and sol, in H₂O. (Rammelsberg.)

₽4H₁O. Very hydroscopic. (Ephraim, Z. anorg, 1910, 67, 385.)

Barium nitride, BasNo. Decomp. H₂O violently, not alcohol. (Maquenne, A. ch. (6) 29. 219.) BaN.

See Barium azoimide

Barium oxide, BaO

Sol in H₂O with evolution of heat Easily sol. in dil HNO₂, or HCl+Aq. Solubility in NaOH+Aq. See Barium

Solubility in NagO, HCl, +HgO at 30° (Schleinemakers, Z. phys. Ch. 1909, 68. 98.) Solubility in Na2O, NaCl, BaCl2+Aq at (Schreinemakers.)

Insol. in liquid NH3. (Gore, Am Ch. J 1898, 20, 827.) Sol, with combination in absolute alcohol. and anhydrous wood-spirit. Insol in ether,

Easily sol. in absolute methyl alcohol 1 l. absolute ethyl alcohol sat, with BaO at 9° contains 213.8 g BaO. (Berthelot, B.M. Soc 8, 389.)

Sol. in methyl alcohol. (Neuberg and Neimann, Biochem Z. 1906, 1. 173.) Insol. in acetone (Eidmann, C. C. 1899, II. 1014, Naumann, B. 1904, 37, 4329)

Insol. in methyl acetate (Naumann, B. 1909, 42, 3790.)

See also Barium hydroxide.

Barium peroxide, BaO₂. Insol. in H₂O, decomp by boiling H₂O.

Sol. in acids with formation of hydrogen Barium sulphide, BaS. dioxide.

Forms hydrate with 8H2O; also 10H2O (Berthelot, A. ch. (5) 21. 157), also a compound BaO2, H2O2, which is very unstable, sl. sol, in cold H2O, and msol in alcohol or ether

(Schöne, A 192, 257)

+8H₂O. 100 cc pure H₄O dissolve 0 168 BaO₂+8H₂O; if H₂O contains 0.3 g Ba(OH)₂+8H₂O, only 0 102 g. BaO₂+8H₂O are dissolved; if 0 6 g Ba(OH)₂+8H₂O only 0.019 g. BaO2+SH2O are dissolved. (Schone.

A. 1878, 192, 266.) Insol. in acetone. (Eidmann, C C 1899, II. 1014, Naumann, B 1904, 37, 4329.)

Barium oxybromide, Ba(OH)Br+2H2O.

Decomp. by H₂O. (Beckmann, J. pr. (2) 27, 132) BaBr., BaO+5HaO Sl sol. in HaO (Tas-

silly, C R, 1895, 120, 1340)

Barium oxychloride, Ba(OH)Cl+2H₂O Decomp by H₂O (Beckmann, J. pr (2) 26, 388, 474.)

Barium mercury oxychloride, BaCls, HgO+ $6H_{2}O$

Decomp by H₂O (And16, C. R 104. 431.)

Barium oxyiodide, Ba(OH)I+9H2O Decomp, by H₂O and alcohol. (Beckmann,

B. 14. 2151 BaI₂,BaO+9H₂O Sl sol. in H₂O (Tassilly, C. R. 1895, 120, 1340)

Barium oxysulphides, BarO₄S₁+58H₂O₅ Ba₂OS+10H₂O, Ba₂OS₂+28H₂O.

Very unstable; decomp. by recrystallization into BaS2H2 and BaO2H2

Barium phosphide, BaP2

Decomp. by H.O. (Dumas, A. ch. 32, 364.)

Ba₁P₂. Crystallized. Sol. in dil. acids; insol. in conc. acids, decomp. by H₂O. Insol. in organic solvents at ord. temp. (Jahoin, C. R. 1899, 129, 765)

Barium selenide, BaSe,

Sol. in H₂O with decomp. Sl sol, m H₂O (Favre, C. R. 102, 1469.)

Barium silicide, Ba₂Si.

ch. mm. 1904, III. 680.)

Decomp. rapidly in both hot and cold H₂O A, ch. (6) 29. 397. (Bradley, C. N. 1900, 82, 150.)

Sol. in H2O with decomp. Crystallized Decomp. by H.O.

Attacked by cold cone. HNO, (Mourlot, A ch. 1899, (7) 17, 521.

Cryst modification is less readily acted on by an and other reagents than the amorphous modification, sol. in fuse oxidizing agents. (Mourlot, C. R. 1898, 126, 645.)

+H₂O. (Neuberg and Neimann, Biochem, Z. 1906, 1, 174.)

+6HaO Slowly sol. in boiling HaO, with decomp.; insol in, but decomp by boiling alcohol (Schone)

Barium sulphide, Ba₄S₇+25H₂O (?).

Sol in H.O. (Schone, Pogg. 112, 215)

Barium trisulphide, BaS. Sol in large amount of boiling HaO. (Schone, Pogg. 112, 215)

Barium ietrasulphide, BaS4+H2O.

Easily sol. in H₂O, especially if hot, sol. in 2 42 pts. H₂O at 15°; insol in CS₂ or alcohol. (Schone, Pogg. 112, 224) +2H₂O, (Veley, Chem. Soc 49, 369.)

Barium pentasulphide, BaSs. Known only in solution.

Barium mercuric sulphide, BaS, HgS+5H2O. Sol, in HeO (Wagner, J pr. 98, 23.)

Barium nickel sulphide, BaS. 4NiS. Sol in warfa cone, HCl (Bellucci, C. A.

1909, 293.)

Barium stannic sulphide. See Sulphostannate, barium.

Barium uranyl sulphide, 6BaS, UO2S+ xH₂O (?).

Decomp by HCl+Aq, (Remelé, Pogg. 124, 159.

Barvta.

See Barium oxide; BaO.

Beryllium, Be.

For beryllium and its salts, see Glucinum and the corresponding salts.

Bismuth, Bi.

Barium silidde, Ba,Si.

(Jüngst, C. C. 1906, I. 195.)
BaSSi. Slowly decomp. by H₂O, not by in cone. RCH-4a (Troost). Very al sol. in NiLOH+Ag. Rapidly decomp. by one. Not attacked by M₁O Very slowly at Nachol (Schutzenberger, Willim). NiLOH+Ag. Rapidly decomp. by one. Not attacked by M₁O. Very slowly at NiLOH+Ag. (Naquet and NiLOH+Ag.) with evolution of spontaneously inflammable +Aq (Godeffroy). According to very careful gas. Sol. in HF and HCl. Sol. in aceto acid experiments pure B is absolutely unattacked without evolution of gas. (Moissan, Trafé by hot or cold, dil. or conc. HCl+Aq except in presence of oxygen (Ditte and Metzner,

Not attacked by dil. H.SO4+Aq. Decomp.

by hot cone H2SO4. Easily sol, in dil or conc. HNO++Ag, or agua regia

Not attacked by pure HNO₁+Aq of 1.52 to 1.42 sp. gr. at 20°, violently attacked by a more dil. acid, but the acid becomes concenmore dil. acid, but the acid becomes concentrated thereby. Conc. HNO₂+Aq attacks Sp. gr. of sat. solution 18°/4°=0.9194 (Nauonly by heating or adding NO. (Millon, A

ch (3) 6. 95) Insol, in liquid NH, (Gore, Am, Ch. J. C. 1898, 20, 827.)

16 ccm, oleic acid dissolvet 0.0091 g. Bi in 6 days, (Gates, J. phys. Chem. 1911, 15.

Bismuth arsenide, Bi:As4

(Descamp, C. R. 86, 1065)

Bismuth dibromide, Bl2Br4. Not known in a pure state (Weber, Pogg. 107, 599.)

Bismuth tribromide, BiBr.

Very deliquescent. Decomp. by H2O. Sol. in alcohol or ether.

Sol. in AlBr₂ (Isbekow, Z anorg, 1913,

Bismuth hydrogen bromide, BiBrs, 2HBr+ 4H₂O.

Deliquescent. Decomp. in the air (Aloy, Bull Soc 1906, (3) 35, 398)

Bismuth cæsium bromide, 2B1Br2, 3CsBr.

Pot Insol in HBr. Sol in HCl and in HNO₈ (Hutchins, J. HCl+Aq (Godeffroy, B. 8. 9). Am. Chem. Soc 1907, 29, 33.)

Bismuth notassium bromide, BiBra2KBr. Decomp, by H2O. (Aloy, Bull Soc 1906, (3) 35, 398.)

Bismuth bromide ammonia, BiBrs, 3NHs.

Sol. in HCl+Ag BiBrs, 2NHs (?)

Not deliquescent; not de-2B1Br3, 5NH3 comp. by H₂O, easily sol. in dil. acids (Muir. Chem Soc 29, 144)

Bismuth bromide potassium chloride, K,BiCl,Br,+11/H,O.

Decomp, by H2O. (Atkinson, Chem. Soc. 43.289)

Bismuth dichloride, Bi₂Cl₄.

Very deliquescent. Decomp. by H.O. dil. acids, or conc NH4Cl+Aq. (Weber, Pogg. 107, 596.)

Bismuth trichloride, BiCl3.

Deliquescent. Decomp by H₂O. Sol. m dil. HCl+Aq, and alcohol. Not decomp. by H₂O in presence of citrates. (Spiller.)

0.08 g. sol. in 100 cem. liquid H-S (Aptony, C. C 1905, I. 1692.) Moderately sol in liquid NH₃. (Gore, Am.

Ch. J. 1898, 20, 827.)

mann, B 1904, 37, 4331 Sol in acetone and in methylal. (Eidmann,

C 1899, II, 1014) Sol in benzonitrile. (Naumann, B. 1914,

47. 1369.) Sol, in ethyl acetate. (Naumann, B. 1910, 43, 314.1

1 pt. is sol. in 60.36 pts. ethyl acetate at 18°. Sp. gr at 18°/40°=0 9106. (Naumann, B. 1910, 43.320) Sol in methyl acetate. (Naumann, B. 1909, 42, 3790)

Bismuth chloride, BigCls (?).

Decomp. by H₂O. (Dehérain, C. R. 54. 724)

Bismuth hydrogen chloride, 2BiCls, HCl+ 3H₂O Not deliquescent. Decomp. by H₂O.

(Engel, C R 106, 1797.) BiCl, 2HCl. (Jacquelain, A ch. (2) 62. 363)

Bismuth cæssum chloride, BiCla, 3CsCl. Decomp, by H2O. Sl. sol in cold dil. HCl+ Aq, but easily sol. on warming. (Brigham, Am Ch. J 14, 181.)

2B₁Cl₂, 3C₂Cl As above. (Brigham.) B₁Cl₂, 6C₃Cl Easily sol. in H₂O and dil. Does not exist. (Brigham.)

Bismuth hydrazine chloride, BiCla. 3N.H.HCl.

Sol in acids, from which it is potd, by H.O. (Ferratini, C. A. 1912, 1613)

Bismuth nitrosyl chloride, BiCls, NOCl. Very deliquescent Decomp. by H₂O. (Sudborough, Chem. Soc. 59, 662.)

Bismuth potassium chloride, BiCl, KCl+ H_{*}O.

Decomp. by H₂O Cannot be recryst. exot from cone BiCl₂+HCl Decomp. by HCl+Aq into BiCl₃, 2KCl+2H₂O. (Brigham, Am. Ch J. 14. 167) BiCl, 2KCl, Decomp. by H2O. (Arppe,

Pogg. 64. 37) Deliquescent

Sol. in H2O with decomp, into the oxychloride when excess H2O is used (Aloy, Bull. Soc. 1906, (3) 35. 397.) +2H2O. Decomp. by H2O. (Jacquelain,

J. pr 14. 1.) Sol. in moderately conc HCl+Aq.

BiCls, 3KCl Decomp. by HgO (Arppe.) Does not exist. (Brigham.)

Bishuth rubidium chloride, BiCl2, RbCl+ H.O.

Decomp. by H₂O; sol. in dil HCl+Aq, from which BiCl₃, 3RbCl crystallizes (Brig-ham, Am Ch. J. 14, 174.) BiCl₃, 3RbCl Decomp. by H₂O; sol. in dil.

HCl+Aq without decomp. (Brigham)
BiCl₄, 6RbCl, Decomp. by H₂O; sol. in HCl+Aq (Godeffrov, B, 8, 9); does not exist. (Brigham.)

10BiCl, 23RbCl (?). As above (Brig-

Bismuth sodium chloride, BiCls, 2NaCl+ +3H₂O. Decomp. by H₂O. (Arppe, Pogg.

64. 237.) BiCl₂, 3NaCl

Bismuth thallous chloride, BiCl2, 3TlCl. Ppt. (Ephram, Z. anorg 1909, 61, 254) BiCl, 6TiCl. Ppt. (Ephraim.)

Bismuth chloride ammonia, 2BiCl2, NH2. Stable (Dehéram, C. R. 54, 724.) B₁Cl₂, 2NH₃. (D.) B₁Cl₃, 3NH₃. (D.)

Bismuth chloride natric oxade, BaCls, NO. Very hygroscopic, (Thomas, C. R. 1895. 121. 129)

Bismuth chloride nitrogen peroxide, BiCla, Decomp by most air, but stable in dry air.

(Thomas, C. R. 1896, 122, 612.) Bismuth chloride selenide. See Bismuth selenochloride.

Bismuth trifluoride, BiF.

Insol in H2O or alcohol. (Gott and Muir, Chem. Soc. 53, 138.) Insol in liquid NH3. (Gore, Am Ch J. 1898, 20. 827.)

Bismuth hydrogen fluoride, BiF3, 3HF Deliquescent. Decomp. by boiling H2O. (Muir, Chem. Soc. 39, 21.)

Bismuth gold, Au,Bi.

Insol. in equal pts. of HNO2 and tartaric acids. (Roessler, Z. anorg. 1895, 9. 71.)

Bismuthous hydroxide, Bi(OH) a.

Sol. in strong acads. Insol. in solutions of BiO1 is formed. 100 pts. absolute alcohol addition, affects and the strong acads. Insolutions of BiO1 is formed. 100 pts. absolute alcohol addition, affects affe

Solubility of freshly pptd Bi(OH), in NaOH+Aq

NaOH per l.	g. Bi dissolved per l. at 20°	g Bi dissolved per l at 100°
400 320	0 16 0 11	1.70 1 20
240 200	0.11 0.10	0.5
160 120 80	7 0 08 0 07 0 04	0.5
40 20	trace	0 2 0 15

(Moser, Z. anorg 1909, 61. 386.)

Solubility of freshly pptd. Bi(OH)s in KOH+Ag

KOH per l. g	g Bi dissolved per l. at 20°	g Bi dissolved per l at 100°
560	0 14	1 65
448	0 11	1 20
336	0.11	
280	0.10	0.5
224	0.08	0.5
168	0.06	
112	0 03	0.3
56	trace	0.2
28	0	0.15

(Moser, Z. anorg 1909, 61, 386)

Bi₂O₂, 2H₂O. Bi₂O₃, H₂O. (Muir, Chem. Soc. 32, 131.) See also Bismuth trioxide.

Bi₂O₄, 2H₂O, (Wernicke, Pogg 141, 109.)

Bismuth tetrahydroxide, BisOs, HoO

Bismuthic hydroxide (Bismuthic acid), B12O6,

Insol, in H₂O; easily decomp. by acids. (Fremy, A. ch. (3) 12, 495.) Decomp. by HaSO; not attacked by SO:+Aq; neither dissolved nor decomp. by dil HNO+Aq, but slowly converted into an allotropic modification (?) Partially decomp by cone. HNO4. Slowly but wholly dissolved by hot cone. HNO₄. Sl sol in cone KOH+Aq (Arppe.) Sol in about 100 pts boiling KOH+Aq, so cone, that it solidifies on removing the lamp.

(Mur, Chem Soc. 51. 77.) Bi₂O_{*}, 2H₂O. (Bödeker, A. **123**, 61.)

Does not exist (Hoffmann and Geuther.)

Bismuth iodide, Bil.

Not attacked by cold H₂O, but by boiling

pptd. in presence of Na citrates (Spiller). or KOH+Aq. (Rammelsberg.)

Si. sol. in liquid NH1. (Franklin, Am. Ch. Bismuth trioxide, BisO2. J. 1898, 20, 827.) 100 g. absolute alcohol dissolve 3 5 g. Bil. at 20° (Gott and Mur, Chem Soc. 57, 138) Sol. in acetone (Naumann, B. 1904, 37.

4328)100 pts. methylene iodide dissolve 0 15 pt. Bil3 at 12°, and very little more at higher temperatures. (Retgers, Z. anorg 3, 343.) Sol. in methyl acetate (Naumann, B. 1909, 42, 3790.)

Bismuth hydrogen iodide, BiIs, HI+4H4O. (Arppe, Pogg. 44, 248.)

Bismuth cæsium iodide, 3CsI,2BiI3.

Very al. sol. in H₂O (Wells, Am. J. Sci. 1897, (4) 3, 464)

Bismuth calcium iodide, 2Bil2, Cal2+18H2O Deliquescent; decomp. by H₂O. (Linear, Pogg. 111. 240.)

Bismuth magnesium iodide, 2Bil, Mgl2+ Deliquescent; decomp. by H₂O. (Linau, Pogg. 111, 240.)

Bismuth potassium iodide, BiI3, 4KI. Ppt. (Arppe, Pogg 44, 237) Bils, 3KI (Astre, C. R 110, 1137) Bils, 2KI. Sol. in acetic ether. (Astre)

+4H2O. Sol. in small amt H2O without pptn , but decomp. by much H₂O. B_1I_5 , 2KI, HI (Arppe.) $2B_1I_5$, $3KI+2H_2O$. (Astre.), B_1I_5 , $KI+H_2O$. Decomp by H_2O (N₁cklès,

C. R 51, 1097) 2Bils, KI. Sol. in acetic ether. (Astre.)

Bismuth sodium iodide, BiI₂, NaI+H₂O. Deliquescent; decomp. by H₂O. (Nicklès, C. R. 51. 1097 2BiL, 3NaI+12H2O As above. (Linau, Pogg 111. 240.)

Bismuth zinc 10dide, 2BiI2, ZnI2+12H2O. Very deliquescent, (Linau, Pogg 111, 240.

Bismuth iodide ammonia, Bill, 3NH; Decomp by H₂O (Rammelsberg.)

Bismuth iodide zinc bromide.

Sol. in H.O (Linau, Pogg. 111, 240.)

Bismuth nitride.

Explosive. (Fischer, B 1910, 43, 1471) BiN. Ppt. Decomp. by H₂O or dil acids (Franklin, J. Am. Chem. Soc. 1905, 27. 847.

Bismuth droxide, B12O2. Sol. in conc. HNOa+Aq. Decomp by

strong acids, and boiling KOH+Aq. Decomp. by H₂O (Tanatar, Z. anorg 1901, 27, 438.)

Insol in H2O. Sol, in cone acids. Palubilian of D. O ... TIMO . . .

Solubi	hty of B ₁₂ C) _s m HNO₂+Aq at 20°.
In 100 hqui	g of the d phase	Solid phase
g. B1±O2	g. N ₂ O ₅	
0 321 0 337 3 54 6 37 13.67 14.87 14.87 23 50 23 50 27 15 28 11 29 50 30 19 31 48 32.93 32	0 963 0 982 4 68 7 17 12 50 13 31 15 90 19 21 19 29 20 96 21 25 53 22 90 24 83 24 70 24 68 25 13 25 30	B ₁₀ O ₃ N ₂ O ₅ 2H ₂ O "" B ₁₂ O ₄ N ₃ O ₆ H ₃ O "" "" B ₁₂ O ₄ N ₃ O ₆ H ₃ O "" [B ₁₄ O ₄ N ₃ O ₄ H ₅ O + B ₁₅ O ₅ 3N ₃ O ₅ 10H ₅ O B ₁₂ O ₅ 3N ₃ O ₅ 10H ₅ O
24 16 16 62 12 17 11.66 11.19 11.19 15 20 20 76 27 85 8 58 4 05	28 25 35 40 43 37 46 62 49 38 50 20 54 66 53 75 51 02 68 28 74 90	("""""""""""""""""""""""""""""""""""""

(Rutten, Z anorg, 1902, 30, 386.)

Solubility of Bi2O3 in HNO3+Aq at to. %B12O1 %N2O2 Solid phase

.)	9°	20 8 24 02	17 1 19 1	B12O3 N2O4 H2O
		31 09 31 2	23.8 23.9	Bi ₂ O ₄ N ₂ O ₆ H ₂ O + Bi ₂ O ₄ 3N ₂ O ₆ 10H ₂ O
	30°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.5 29 6 47 7	B ₁₂ O ₈ 3N ₂ O ₆ 10H ₂ O ₃
3)	65°	5.55 27 62 40.80 37 82 35 73 4 59	35 80	B ₁₂ O ₃ N ₂ O ₅ H ₂ O Bi ₂ O ₃ N ₄ O ₅ H ₂ O + B ₁₂ O ₅ 3N ₇ O ₅ , 10H ₂ O Bi ₂ O ₃ 3N ₅ O ₅ , 10H ₅ O (B ₁₂ O ₅ 3N ₅ O ₅ 3H ₂ O B ₁₂ O ₅ 3N ₅ O ₅ 3H ₂ O B ₁₂ O ₅ 3N ₅ O ₅ 3H ₂ O
١	-		(I	Rutten.)

200 27 85 51 02

50°

65°

Solubility of BigO ₃ in HNO ₃ +Aq at t°			
t°	%B1101	%N2O4	Solid phase
72° 75° 80°	37 23 36 74 39.75	47 76 47.91 45 16	BuO: 3N:05 4H:0
9° 20° 30° 50° 64° 65° 75 5° 72°	31.2 32.8 34.2 36.9 40.6 40.8 45.4 45.9	23 9 24 8 26 4 28 9 31 1 31 6 34.6 35 6	B ₁₀ O ₂ 3N ₂ O ₃ 10H ₂ O ₇ + B ₁₂ O ₂ N ₁₀ O ₂ H ₂ O " " " " " "
11 5°	25 36	59 57	BirOs 3N2Os 10H2O+

(Rutten.) Solubility in NaOTI LAG of 929

BisOs 3NsOs 3HsO

32 22 49 29 35 73 47 02

25 36 52 57

Combine	in theory I and no mo
Cone of NaOH	g BuOs in 100 cc of solution.
Mol/l.	Mean result
1.0	0 0013 ±0 0002
2 0	0 0026 ±0 0002
3 0	0 0049 ±0 0005

(Knox, Chem. Soc. 1909, 95, 1767)

Insol in acetone. (Eldmann, C C 1899. II. 1014. Min. Bismite Easily sol. in HNOs+Aq. See also Bismuthous hydroxide.

Bismuth tetroxide, Bi2O4.

Sol. in cone HCl+Aq, with evolution of Cl; in oxygen acids with evolution of O. Less easily sol, in conc. H2SO4 than in HNO2 or HCI+Aq.

Bismuth oxide, B1,O0 (?), (Hoffmann and Geuther.)

Bismuth pentoxide, BioOs Sol. in dil acids Combines with HaO to

form bismuthic hydroxide, which see (Hasebroek, B. 20, 213)

Bismuth oxybromide, etc. See Bismuthyl bromide, etc.

Bismuth palladium, PdB12.

Insol, in equal pts. HNO, and tartaric acids. (Roessler, Z anorg. 1895, 9. 70)

Bismuth platinum, PtBi₂.

Insol. equal pts. HNOs and tartaric acids. (Roessler, Z. anorg. 1895, 9. 69,)

Bismuth phosphide, BIP (Cavazzi)

Bismuth trusclenide, BisSes

Insol in H₂O, alkalies, or alkali sulphides. +Ag, sl, attacked by HCl+Ag; oxidized by HNOs+Aq. (Schneider, Pogg 94. 628.) Min. Frenzelite.

Bismuth potassium selenide. See Selenobis nuthite, notassium.

Bismuth selenochloride, BiSeCl.

Not attacked by H2O; very sl. sol. in HCl+ Ag, easily and completely sol, with decomp in HNOs+Aq (Schneider.)

Bismuth disulphide, Bi₂S₂+2H₂O (?). Insol. in H₂O. Decomp. by HCl+Aq

Bismuth trisulphide, Bi-Sa.

Insol. in H₂O. H₂O dissolves 0.35 x 10⁻⁴ moles Bi₂S₂ at 18°. (Weigel, Z. phys Ch. 1907, 58, 294.)

Easily sol. in moderately dil. HNO2+Aq. and cone. HCl+Aq, with separation of S. Insol. in alkalies, alkali sulphides, Na₂S₂O₃,

or KCN+Aq, msol. in NH4Cl, or NH4NOs+ Aq (Brett). Insol in potassium thiocarbonate+Aq (Rosenbladt, Z. anal. 26, 15.)

Insol in alkalı hydroxides or alkali hydrosulphides. Insol. in 2N-(NH₄)₂S+Aq.

0 0090 g. Bi₂S₃ is sol. in 100 cc. N—Na₂S₂+ Aq at 25°. (Knox, Chem. Soc. 1909, 95. 1764.)

Somewhat sol. in Na₂S+Aq. 75 cc. of Na₂S+Aq (sp. gr. 1.06) dissolve an amt. of B14S4 corresponding to 0.031 g B12O4. (Stillman, J. Am. Chem. Soc. 1896, 18, 683.)

CLILIUS AT CLIAT ONE C

Solubility in Na ₂ S+NaOH+Aq at 25°.			
Conc of NasS	Cone of NaOH	g BisSs in 100 cc.	
Mol./l	Mol/l	of solution	
0 5	1.0	0 0185	
1 0	1.0	0 0838	

(Knox, Chem Soc. 1909, 95, 1763.)

Bismuth sulphide pptd. from acid solution is not dissolved by subsequent treatment with K₂S+Aq. (Stone, J Am. Chem. Soc. 1896, 18, 1091,) Sol. m K₂S+Aq. (Ditte, C R. 1895, 120,

187.) Solubility in K S L KOK 1 A - - 4 ors

Databased in 1130 11011-1214 at 20 .				
Cone, of K ₂ S	Cone of KOH	g BisSa in 100 ce,		
Mol./l	Mol/l	of solution		
0.5	1 0	0.0240		
1 0	1.0	0.1230		
1 25	1.25	0.2354		

(Knox, Chem Soc. 1909, 95, 1763.)

Solubility in alkalı sulphides+Aq at 25°.			
Alkalı sulplade	Conc. of alkalı sulphide Mol /l	g Bt ₂ S ₂ in 100 ee of solution	
Na ₂ S	0 5 1 0 1 5	0 0040 0 0238 0 1023	
K ₂ S	0 5 1 0 - 1 25	0 0042 0 0337 0 0639	

(Knox, Chem. Soc. 1909, 95. 1762.)

Decomp. by FeCl₃+Aq (Cammerer, C. C. 1991, II, 525.)

Insol. in KCN+Aq (Hoffmann, A. 1884, 223, 134.) Min. Bismuthanite. Easily sol. in HNO₄+

Min. Bismuthinite. Easily sol. in HNO₂+ Aq Bismuth cuprous sulphide, Bi₂S₂, Cu₂S.

Bismuth cuprous suppnet, BisBis, CusS.
Insol, in H₂O. Sol. with decomp in HNOs
+Aq (Schneider, J. pr. (2) 40. 564.)
Min Emplectonite.

Bismuth potassium sulphide, B₁₂S₂, K₂S. (Schneider, Pogg. 136, 460) Insol. in ethyl scetate (Naumann, B

1910, **43**, 314)
B₁₂S_{3,4}K₂S+4H₂O Decomp. by H₂O.
Very sol. in K₂S+Aq Efflorescent in dry

air. (Ditte, C. R. 1895, 120. 186.)

See also Sulphobismuthite, potassium.

Bismuth silver sulphide, Bi₂S₃, Ag₂S.

Insol. in cold HCl, or HNO₂. Sol in warm
HNO₂ with separation of S. in boiling HCl

Min. Plenargyrite, Matildite (Schneider, J. pr. 1890, (2) 41, 414.)

Bismuth sodium sulphide, Bl₂S₂, Na₂S. (Schneider.)

Bismuth sulphide telluride, Bi₂S₃, 2Bi₂Te₃. Min. *Tetradymite*. Sol. in HNO₃ with separation of S.

B₁₂S₂, 2B₁₂Te. Min *Josetie*. As above.

with separation of H2S.

Bismuth sulphobromide, BiSBr₂.

(Mur and Eagles, Chem. Soc 1895, 67. 91.)

Bismuth sulphochloride, BiSCl Insol. in H₂O or dil. HCl+Aq Sol. in

cone HCl, or HNO₃+Aq Decomp. by alkalies+Aq. (Schneider, Pogg. 93, 464.)

Bismuth sulphoiodide, BiSI.

Not attacked by boiling H₂O, and dil. acids. Decomp by hot cone HCl+Aq, and HNO₂+ Aq. KOH+Aq dissolves out L₂ (Schneider, Pogg. 110. 114) Bismuth telluride, BiaTea

Mun. Tetradymute Sol in HNO₃+Aq See also Bismuth sulphide telluride.

Bismuthic acid, HB1O2

See Bismuthic hydroxide.

Potassium bismuthete, KBiO.

Sol in H₂O. (Arppe) KH(BiO₃)₂. Insol. in H₂O.

Not decomp by boiling H₂O (André, C. R. 113, 860.)

No salts of HB₁O₂ can exist. (Muir and

No salts of HBiO₂ can exist. (Carnegic, Chem. Soc. **51.** 77)

Bismuthicotungstic acid.

Ammonium bismuthicotungstate, 3(NH₄)₂O, 2Bi₂O₄, 11WO₂+10H₂O

A yellow oil which dries to a yellow glass. (E. F. Smith, J. Am. Chem. Soc. 1903, 25. 1232.)

Potassium bismuthicotungstate, 3K₂O, 2B₂O₃,11WO₂+15H₂O.

A yellow oil which died to a pale yellow glass. (E. F. Smith, J. Am. Chem. Soc. 1903, 25, 1233.)

Strontium bismuthicotungstate, 3SiO, 2Bi₂O₄,11WO₃+11H₂O.

A yellow wax, insol in pure H₂O, but sol in H₂O containing a few drops HNO₈ (E. F Smith, J. Am. Chem Soc. 1903, **25**. 1233)

Bismuthyl bromide, BiOBr.

Insol in H₂O, sol. in moderately conc. HBr+Aq.

Insol in H₂O (Herz, Z. anorg. 1903, **36**. 348)
B₁₈O₉Br₈ Insol in H₂O, easily sol in

cone HCl, or HNO₅+Aq; less sol. in dil. HNO₅+Aq Bi₂₁O₂₃Br₇ As the preceding comp. (Muir.)

Bismuthyl chloride, BiOCl

Insol, in H₂O or dil acids. Sol. in conc. HCl, or HNO₃+Aq

Insol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, **20**. 827.)

Insol. in acetone. (Naumann, B. 1904, 34. 4329.) +H_{*}O. (Heintz, Pogg. 63. 55.)

+H₂O. (Heintz, Pogg. 63, 55.) +3H₂O. (Phillips, Br. Arch. (1) 39, 41.)

BirOsCls. (Arppe.) BiOsCls Insol in H2O; sol. in hot HCl, or HNOs+Aq (Murr)

Bismuthyl fluoride, BiOF.

Insol. in H₂O; sol in HCl, HBr, or HI+Aq. (Gott and Mur, Chem Soc 33, 139.) _BiOF, 2HF. Insol. in H₂O.

Bismuthvl iodide, BiOI Not decomp, by H.O or alkaline solutions

Sol. in HCl+Aq. Decomp by HNO₂+Aq. (Schneider, J. pr. 79. 424) Insol. in KCl, or Kl+Aq.

3BiOI,7Bi2O3. Sol in dil HCl: decomp by HNO₂; msol. in boiling H₂O and alkali. (Blyth, C. N. 1896, 74, 200) BiI₃, 5B₁₂O₃. Ppt. Sl. sol. in HC₂H₂O₂+

Aq. Not decomp by H₄O, (Fletcher and Cooper, Pharm. J. (3) 13. 254.)
4Bil., 5Bi.O. Easily sol in HCl+Au. 4B1I3, 5B12O2

Decomp, by HNO₁+Aq Sl. attacked by · H₂SO₄, somewhat sol. in H₂C₄H₄O₆, and KHC₄H₄O₆+Aq.

Sol. in (NH4) S, and KOH+Aq. (Storer's Dict.)

Bismuthyl sulphide, BisOaS.

(Hermann, J. pr. 75. 452.) Bi+O₄S. Insol. in H_{*}O (Schernenberg, C. C 1889, II. 641.)

Min. Karelinite.

· Roracic acid. See Boric acid.

Borax.

See Tetraborate, sodium.

Boric acid, anhudrous, B2O2 See Boron traoxide.

Metaboric acid, HBOs.

Sol. in H₂O Sl. sol, in hot glacial acetic acid. (Holt. Chem. Soc 1911, 100, (2) 720.)

Orthoboric acid, H.BO.

Sol. in 20 pts H₂O at 18 75° (Abl.) 100 pts H₂O at 100° dissolve 2 pts (Urc's Dict.)

1 pt. crystallized acid dissolves in-

20 1	stq oo	H ₂ O	at	19".
14 8	88	44	ee	25°.
12 (56	44	æ	37 5°.
10.		44	**	50°.
6		44	ee	62 5°.
4 1	73	£¢	46	75°.
3 .	55	44	es	87.5°.

" 100°.

2 97 Or, 100 pts. H2O dissolve at-

19°	3 9	pts.	H ₂ BO ₂ .
25°	68		66
37 5°	78	ee	64
50°	98	66	16
62 5°	16.0		44
75°	21.0		11
87 5°	28 0	64	£s.
100°	34.0	66	44

Or sat aqueous solution contains at-10° 3 75%H2BO2. 25° 6.27 " 37 5°. . 50° 8 96 " 62.5 14 04 " 75° 17 44 " ..

87.5

21 95 " 25 17 " 100° (Brandes and Firnhaber, Arch Pharm. 7. 50.) 1 litre H2O cassolves at-

0° 19 47 g. H₂BO₂. 120 20° 39 92 " 40° 69.91 " 62° 114.16 " 168 15 " 80° 291 16 " 1024

(Ditte, C R. 85, 1069.) 1 l. H₀O dissolves 0.901 mol. H₂BO₂ at 25°.

(Herz, Z. anorg. 1910, 66. 359) 1 I H₂O dissolves 0.898 mol. H₂BO₂ at 25° Sp. gr. of the solution = 1 0168. (Müller, Z. phys. Ch. 1907, 57, 529. 1 l. H₂O dissolves 0 887 mol. H₂BO₃ at 25° and 1.025 mol. at 30°. (Ageno and Valla, Ist. Ven. (VIII) 14. II, 331.)

Solubility in H₂O at t°.

t°	g HaBOs in 100 g. of the sole	atac
0 12 2 21 31 40	2 59 3.69 4 90 6 44 8 02	
50 60 69 5 80	10 35 12 90 15 58 19 11	
90 99.5 108 115 120	23 30 28 10 36 7 45.0 52 4	

(Nasını and Ageno, Z. phys. Ch. 1909, 69.

Solubility curve for orthoboric acid in H₂O at various temp up to 120°. (Nasini and Ageno, Gazz. ch. it, 1911, 41. (1) 131 Sp gr of HaBOs+Aq sat at 8° = 1 014 (Anthon, A. 24, 241.) Sp gr of HaBO: +Aq sat at 15° = 1 024S (Stolba, J pr 90, 457.)

Sp. gr. of HaBOa+Aq at 15°.

%HaBOa	Sp. gs	%H1BO1	Sp gr
1 2 3	1 0034 1 0069 1 0106	Sat. sol.	1 0147 1.015

(Gerlach, Z. anal. 28, 473)

Sp gr. of HaBOa+Aq at 18° %H.BO: 0 776 1.02 2 88 3 612 1 0029 1 0073 1 0109 1 0131 (Bock, W. Ann. 1887, 30, 638)

Volatile with steam. More sol, in dil. HCl+Ag than in H.O.

Sol in waim conc. HaSO4, HCl, or HNO2+ Solubility in HCl+Aq at 25°

Millimols HCl in	Millimots H ₂ BO ₂ in 10 cem
10 ccm of the solution	of the sat. solution
7.0 13.7	9.01 7 69 6 66

(Herz. Z. anorg. 1910, 66, 359.) Solubility of HaBOs in HCl+Ac at 16°

Normality of HCl	Normality of H ₂ BO ₂	
0	0 907	
0 130	0 895	
0 260	0.870	
0 390	0 842	
1 30	0 645	
2 16	0 542	
4 32	0 308	
6 00	0 338	
7 08	0 327	
8 74	0 327	
9 51	0 338	

(Herz, Z. anorg 1902, 33, 354.)

Solubility in HF+Ac at 26°.

Titer of HF	(2) Titer after saturation with H ₂ BO ₂ at 25°	(3) Titer after addition of mannitol	(3)-(2) equals free bone acid	
3 21n.	1 61	2 36	0.75	

2.80n. | 1 25(1.40?) | 2 21 | 0 96(0.81?) The values 0.75 and 0.81 represent the solubility of HaBOs in the concentrations of fluorboric acid resulting from the original concentration of HF+Aq.

(Abegg, Z. anorg, 1903, 35, 145.)

Solubility of HaBOs in acids+Aq at 26°.

Actd	Normality of the seid	Normality of HaBOs
H ₂ SO ₄	0 548 2 74 5 48 8.75	0 746 0 518 0 312 0 092
HNO ₈	0.241 1.206 1.607 2.411 5.96 7.38	0 818 0 676 0 593 0 567 0 268 0 238

(Herz, Z. anorg. 1903, 34, 205.)

Solubility in KOH+Aq. See Borates, potassium. Solubility in NaOH+Aq. See Borates, sodium.

Millimols LiCl in

Solubility in LiCl+Ac at 25°.

m, or the solution	of the sat. solution
	9.01
7.1	8.13
10 3	7 65
22 3	6 42
27 0	5 02

Millimols HaBOs in 10 cem

(Herz, Z anorg, 1910, 66, 359.)

Solubility in KCl+Aq at 25°.

Millimols KCl In	Millimols HaBOs in 10 cc
0 cem of the solution	of the sat solution
1 9 7 9 15 6 30 6	9 01 9 20 9 44 9 80 10.75

(Herz.)

Solubility in RbCl+Aq at 25°. Millimols RbCl in Millimols HaBOs in 10 cem of the sat solution 10 cem of the solution

9 01 9 66 14 0 10 60 25 3 (Herz.)

Solubility in NaCl+Aq at 25°.

Milhmols NaCl m 10 ccm of the solution	of the sat. solution		
8 2 15.2 29 4	9.01 8.49 8.25 8.20		

(Herz)

Solubility in H₂O is increased by presence of KCl, KNO₈, K₂SO₄, NaNO₃ and Na₂SO₄. on NCs, MROS, Nasocs, Nascos and Nasocs, In general the solubility in H₂O is increased by the presence of both electrolytes and non-electrolytes. (Bogdan, C. C. 1903, II. 2.) Sol. in borax+Aq. (McLauchlan, Z. anorg.

1903, 37, 371.)

Sl. sol. in liquid NH2. (Franklin, Am. Ch. J. 1898, 20. 827.) Unattacked and undissolved by liquid NO₂.

(Frankland, Chem. Soc. 1901, 79. 1362.) Sol. in 6 pts. alcohol (Wittstein), 5 pts. boiling alcohol (Wenzel) Only traces dissolve in anhydrous ether. (Schiff) Sol. in 100 pts. ether. (Hager's Comm.) Sol. in

several essential oils 1 I. H₂O sat. with amyl alcohol dissolves 0.8952 mol. H.BO, at 25°. (Auerbach, Z. anorg. 1903, 37. 357.)

Solubility of H_4BO_3 in amyl alcohol+Aq at t°. $M = \text{millimols } H_4BO_3$ in 1 l. of H_2O	Sp gr. of amyl alcohol+Aq sat. with H2BO
$M = millimols H_1BO_3$ in 1 l. of H_2O	r mater in 1 L of identical +

	A⇒mıllin	iols H ₃ BO ₃ in 1	I. of alcohol	Aq ,	d25°/4°
_	t°	M	٨	32 481	0 82229
_	15°	607.2 589.3 588.0 586.0 427.4 425.8 289.1 894.0 372.0 371.8 301.2 180.8 49.15 51.04 26.02	176 4 177 4 177 1 173 4 127 6 127 6 128 0 84 9 264 0 110 8 85 7 - \$4 0 15 45 15 45 8 05	35 465 37 339 42 479 45 175 45 656 47 883 51 461 52 920 63 179 64 254 66 624 68 253 69 211 75 610	0 82324 0 82321 0 82392 0 82447 0 82456 0 82457 0 82527 0 82585 0 82699 0 82779 0 82779 0 82770 0 82856 0 82884 0 82899(?)
~	35°	146 3	44 27	(Mul	ler.)
-]	

(Müller, Z. phys. Ch. 1907, 57. 514)

Solubility of H₂BO₂ in amyl alcohol and NaCl+Aq at 25°.

Water phase		Amyl alcohol phase			
	mol H ₂ BO ₂	Sp gr 25°/4°	1 L contains		
NaCl normality			mol H ₂ O	mol amyl alcohol	mol H ₂ BO ₃
0 00 0 945 1.490 1 885 2 355 2 845 3 08 3.48 3 57 4.01 4.28	0.880 0.866 0.850 0.844 0.833 0.827 0.810 0.810 0.807 0.801 0.798	0 8296 0 8277 0 8268 0 8259 0 8254 0 8247 0 8241 0 8240 0 8236 0 8238 0 8229	4 10 3 55 3 27 3 03 2 86 2 62 2 39 2 32 2 .15 1 99 1 78	8 39 8 49 8 54 8 56 8 59 8 62 8 66 8 69 8 70 8 72 8 75	0 2640 0 2638 0 2689 0 2724 0 2850 0 .2877 0 2891 0 3006 0 3066 0 3162 0 .3210

(Müller)

Solubility in hydroxy-compounds + Ag at 25°

	Solubility in	nyaroxy-compound	is+Aq at 20	
Organic substance added	Mol of organic sub- stance in 100 mol. of the mixture	Mol. of bone seid sol in 1 l. of solution	Sp. gr of the pure mixture	Sp gr. of the mixtu
Lactic acid	2 321 6 819 18.77 36 33	1.07 1.61 1.86 2.08	1 0252 1 0722 1 1405 1 2023	1.0444 1.0986 1 1635 1 2254
Glycerine	24.64 46.75 67.71 90.58	1 208 2 132 2 96 3 78	1 1574 1 2370 1 2531	1 1707 1 2260 1.2526 1.2710

Solubility in hydroxy-compounds, etc.—Continued	Solubility in	hydroxy-compounds	ata -Continued
---	---------------	-------------------	----------------

Organic substance added	Mol of organic sub- stance in 100 mol of the mixture	Mol of bone and sol	Sp. gr. of the pure mixture	Sp gr of the mixture sat with boric acid
Mannitol	0 790 0 810 0 945 1 585	1 007 1 015 1 029 1 136	1 0244 1 0288 1 0475	1.0425 1.0433
Dulcitol	0 065 0 130 0 260	0 8876 0 9078 0 9360	0 9995 1 0018 1 0060	1 0686 1 0212 1 0260

(Muller)

Solubility of H_4BO_3 in alcohols+Aq at 25°. M = Mol, of alcohol in 100 mol of alcohol+Aq $H_3BO_3 = Mol$, of H_2BO_3 in 1 l, of the solution. $d_1 = Sp$, gr. of alcohol+Aq.

d2=Sp. gr. of alcohol+Aq sat. with H3BO Alcohol added H₅BO₃ 11 74 0 895 Methyl alcohol 1 012 28 64 36 02 1 098 43 95 1 161 52 31 307 2.900 100 0 7924 0.8904 Ethyl alcohol 8 996 * 0 829 22 2N 0 800 44 46 0 729 55 62 0 700 79 89 0 893 88 10 1 105 99 26 1 527 0 7860 0 8353 0 6437 0 9043 0 9192 n-Propyl alcohol 23 66 53 63 0 8231 0.45690 8570 0.5776 0 8133 83 65 0.8466 100 0.961 0.8010 0 8297 1-Butyl alcohol 0.70 0 884 0 9923 1 0124 2 15 0 857 0.9853 0.0038 2 18 0 857 0.9855 0 0046 0 323 0 8351 $71 \ 4$ 0 8173 0.8133 77.1 0.347 0 8220 85 6 0 4212 0.8081 0.8195100 0 6927 0.79840.81720 9943 1-Amyl alcohol 0.4480 883 1 0132 0 880 0 9936 0 520 1 0125 0 5251 0.880 0 9931 1.0123 67 262 0 2584 0 8232 0.829 0 2722 0 3190 0 8183 0 8258 75 54 0 8142 0 8068 83.40 0 8223 0 8220 100

¹ Water sat with alcohol

Tartane

the solution.

100

Easily sol in acetone. (Krug and M'Elrov. Solubility of HaBOa, etc .- Continued J. Anal Ch 6, 184.) Normality of Annel the and

8 06

Solubility in acetone+Ag at 20° A = com, acetone in 100 ccm, acetone + An. H.BO. = millimols H.BO. in 100 ccm. of

A	H ₂ BO ₃
0	79 15
20	81 71
30	83 35
40	82.74
50	81 61
60	76 40
70	67 62
90	55.05

(Herz, Z anorg 1904, 41, 319)

100 g, pure anhydrous ether dissolve 0.00775 g H.BO. 100 g. ether sat. with H₂O dissolve 0,2391 g.

H.BO. (J. A. Rose Dissert, 1902.)

Sol, in 10 pts glycerine. (Hager)

100 pts. glycerine (sp gr I 26 at 15 5°) dissolve pts H₂BO₁ at t°.

t°	Pts H ₃ BO ₃	t°	Pts H ₃ BO ₃	t°	Pts H ₁ BO ₁
0 10 20 30	20 24 28 33	40 50 60 70	38 44 50 56	80 90 100	61 67 72

(Hooper, Ph. J Trans. (3) 13. 258)

Solubility of HaBOa in glycerine+Aq at 25° G=g. glycerine in 100 g. glycerine+Aq. H₄BO₄=Milhmols H₄BO₃ in 100 cc, of the <olution.

	G	H ₁ BO ₂	Sp gr
•	0 7.15 20 44 31 55 40 95 48 7 69 2 100	90 1 90 1 90 6 92 9 97.0 103 0 140 2 390 3	1 0170 1 0379 1 0629 1 0897 1 1130 1 1328 1 1871 1 2719
	/TT	7	

(Herz, Z. anoig, 1905, 45, 268.)

Solubility of H2BO2 in organic acids+Ac at |

26°.			ш	0.5	1 071	
Acid	Normality of the acid	Normality of H ₅ BO,	45	0 6	1 102 1 142	44
Acetic	0 570 2 85 5 70	0.887 0.538 0.268	ee ee	0.8 1 043 1 409	1 173 1.244 1.404	**

0.955 1 000 2 51 0 962 3 316 1 07 (Herz, Z. aporg 1903, 34, 206.)

The solubility of H.BO, in H.O is increased by the presence of racemic acid Millimols racemic acid in 10 ccm of the solvent Millimols horic acid in 10 cem of the solution

Normality of H-BO

0.890

0.923

9 01 6.3 9 86 12.6 10 46 11 65 24 7

(Herz, Z. anorg, 1911, 70, 71.)

Solubility of H₂BO₃ in H₂O is increased by the presence of tartaric acid.

Millimole tartane acid a 10 ccm of the solvent	Milimals boric and in 10 ccm of the solution
0	9 01
7.5	10.00
15	10 70
30	12 07
(Herz, Z ano	rg. 1911, 70. 71)

Solubility in oxalic acid+Aq at 25°. Millimols oxalic acid Millimols H1BOs in 10 in 10 erm of the solution com, of the sat solution 9.01

2 97

5 95 10 80 13 77 11 98 (Herz, Z anorg 1910, 66, 93)

0 05

Solubility in H₂O is increased by the presence of urea, acetone or propyl alcohol. (Bogdan, C. C 1903, II. 2.) Readily sol, in hot glacial acetic acid. (Holt

Chem. Soc. 1911, 100 (2) 720.) Sol in 250 pts. benzene. (Hager.)

Solubility of H₃BO₂ in mannite+Aq at to. Solid phase D.BO

Contract 112002					
t°	Mg-mole in 11		40	Mg-mol	9 in 1 l
	Mannite	H ₂ BO ₂		Mannite	H ₂ BO ₂
25°	0 0 1 0 3 0 4 0 5 0 6	0.887 0.951 1 015 1 039 1 071 1 102	30°	0 0 1 0 2 0 3 0 4	1 025 1 056 1 086 1.118 1 157 0.193
ee ee	0.7	1 142 1 173	44	0.6	1 219

1 243

1 521

	Solid phase, mann	
to .	Mannite	H ₂ BO ₂
25°	1 075 1 1424	0 0 2646
"	1 259 1 265	0 463
"	1 354 1 409	0 559 0 794 0 927

1 536 1 781 (Ageno and Valla, Ist. Ven. (VIII) 14. 331,)

Distribution between H2O and amyl alcohol at 25

w=concentration of H2BO2 in H2O layer expressed in millimols a = concentration of H₂BO₂ in alcohol layer expressed in millimols

w	п
265 8	76 6
196 5	59 5
159 6	47 5
126	37 1
87 9	33 2
75.2	22 7
64 6	19.76

(Abegg, Z. anorg, 1903, 35, 130)

Partition of H₂BO₂ between water and

mixtures of amyl alcohol and CS2. W = Millimols H2BO2 in 10 cem of the Borates. aqueous laver.

amvl alcohol-CS, laver.

Composition of the solvent mixture	G	w	W, C
75% by vol. amyl alcohol+25% by vol. CS ₂	0.145 0 275 0.429 0 589	0 624 1.198 1 844 2.565	4 31 4 36 4 30 4 45
50% by vol. amyl alcohol+ 50% by vol. CS ₂	0 145 0.259 0.364 0 555	0 756 1.353 1.946 2.889	5 47 5.21 5 34 5 22
25% by vol. amyl alcohol+ 75% by vol. CS ₂	0 085 0.175 0 264 0 384	0.699 1 467 2.165 3 129	8 24 8 40 8 12 8 14

(Herz, Z. Elektrochem, 1910, 16, 870.)

Distribution between HF+Ao and amyl alcohol at 25

c=HF concentration (millimols)

a=H₃BO₂ concentration in alcohol layer (expressed in millimols) w=H₂BO₂ concentration in water layer (expressed in millimols).

c 71 500 71 2 14 3 19 2 99 2 25.3144 2 114 3 979 0 30.1 144 5 37 0 194 8 56 8 321.544 108.0 652.0 39 0 170.547 2 214.066 52.8 240 5 42 96 0 442 0 62.5 20 4 111 239 4 151 8 εc 65 (682) 272 8

90 0 (Abegg, Z. anorg. 1903, 35, 131)

362 2

See also Boron traoxide.

44

Puroboric (tetraboric) acid, H₂B₄O₇. Sol. in H2O. Sp. gr. of solutions of boric acid, calculated

as H.B.O., containing-1 27 1 91 2 54%H₂B₄O₂ 1 0034 1 0069 1 0106 1 0147 sp. gr.

Sat. solution at 15° has sp. gr. 1.015. (Geilach, Z. anal 28, 473 Insol, in hot glacial acetic acid. (Holt, Chem. Soc 1911, 100, (2) 720.)

queous layer.

No borate is quite insol. in H₂O, the alkali

G=Millimols H₂BO₂ in 10 ccm. of the borates are very sol. The less sol. borates are easily decomp by H2O; the easily sol. salts are also decomp., but less quickly. The less sol, borates are easily sol in HaBOs, HNOs. etc. They are more sol in HoO containing tartaric acid or potassium tartrate than in

pure H2O. (Souberain) The normal borates of the alkaline-earths are sol, to no inconsiderable extent in H₀O, and more readily in hot. than in cold H₂O. (Berzelius, Pogg. 34. 568.) All borates are insol, or sl. sol in alcohol.

Aluminum borate, 2Al₂O₃, B₂O₃ Min. Jeremciewile

+3H₂O. Ppt. (Rose, Pogg. **91**. 452.) 3Al₂O₂. B₂O₄. Crystallized Insol 3Al₂O₂, HNO₃+Aq. (Ebelmen, A. ch. (3) 33. 62.) 3Al₂O₂, 2B₂O₃+7H₂O. Ppt. (Rose, l. c.)

Ammonium borate.

The system (NH₄)₂O₃B₂O₃,H₂O at 60° has

been studied by Shorer (Real Ac. Linc. 1915 (5) 24. I, 1225.) 2(NH₄)₂O₄4B₂O₅+5H₂O. (Sborga.)

Ammonium diborate.

Difficultly sol, in acetone, (Naumann, B. 1904, 37, 4328)

Ammonium tetraborate, (NH4)2B4O7+4H2O, or perhaps NH4H(BO2)2+11/2H2O. Sol. in 12 pts cold H₂O; decomp by heat (Rammelsberg, Pogg 90, 21.) Sol. in acctone. (Eidmann, C C 1899,

II 1014) +H2O. (Arfvedson.)

Ammonium octoborate, (NH₄)₂B₈O₁₃+6H₂O. Sol in 8 pts, cold, decomp by boiling H₂O (Rammelsberg, Pogg 90. 21). +4H₂O

Min. Lurdeller de Sol in HaO with decomp.

Ammonium dekaborate, (NH₄)₂B₁₀O₁₆+ 6H₂O. Permanent. Sol. m II₂O (Rammelsberg.)

(Atterberg, Bull, Soc (2) 22. +8H₂O 350.) Ammonium dodekaborate, (NH₄)₂B₁₂O₁₂+

9H₂O. Sol, in hot HoO. (Becht, Sill Am J (2) 17. 129)

Ammonium ps: borate, NH4BOs

See Perborate, ammonium.

Ammonium calcium borate, (NH4)3CaB4O11 $-CaB_4O_7+4(NH_4)_2O$ (Ditte, C. R. 96, 1663.)

Ammonium magnesium borate. Sol. in H₂O, decomp, by boiling (Ram-

melsberg, Pogg 49, 451.) Ammonium zinc borate, 4(NH4)2B4O7,

 $Zn(BO_2)_2 + 5H_2O$. (Ditte, C. R. 96 1663)

Barium borate, Ba(BO2)2. Ppt. (Ouvrard, C. R. 1906, 142, 283)

+2H₂O (Atterberg) +4H₂O (Benedikt, B 7 703) Sol m 3,300 pts, 45% alcohol,

7,800 " 50 25,000 " 60 55,000 " 75

(Berg, Z. anal. 16. 25.) +10H2O. Sl. sol. in cold, more readily in hot H₂O, especially in presence of ammonium salts. (Berzelius, Pogg. 34, 568.) Sol. in

sodium citrate+Aq. (Spiller.) Insol, in wood spirit. (Ebelmen) 2BaO,B₂O₄

Decomp, by H.O forming BaO, B₂O₃+4H₂O (Ouvrard, C. R. 1906, 142, 283)

3BaO, B₂O₂. Easily sol in mineral acids. Sl attacked by dil acetic acid (Ouvrard, G R. 1901, 132, 258)

BaB₄O, Slowly sol in warm dilute HNO₃ +Aq (Dutte, C. R. 77. 892) +5H₂O Sol in 100 pts. cold, and more freely in hot H₂O. When freshly pptd. sol.

in cold NH Cl+Aq (Wackenroder, A. 41. 315); NH₄NO₃+Aq (Brett, Phil Mag. (3) 10. 96); and BaCl₂+Aq (Rose).

BaBaOss+13HaO, (Laurent, A. ch (2) 67. 215.)

Ba₂B₃O₅. (Bloxam, Chem. Soc 14, 143.) 5BaO, 2B₂O₄. Ba₂B₁₀O₁₈+6H₂O Sol. in 100 pts. cold

H₂O Easily sol in ammonium nitrate, or chloride, or barium chloride+Aq. (Rose, Pogg 87, 1.)

BaoBsO:. Essily sol in warm dilute acids. +6H₂O +7H₂O

+15H₂O. (Laureni, A ch. (2) 67, 215.)

Barium borate bromide, 3BaO, 5B2O3, BaBr2. (Ouvrard, C. R. 1906, 142, 283.)

Barium borate chloride, 3BaO,5B2O2,BaCl2. Unaffected by H₂O. Sol. in acids. (Ouvraid, C. R. 1906, 142, 283)

Bismuth borate, BiBO₄+2H₂O. Ppt. Sl. sol in H₂O. Decomp. by H₂S.

Not decomp by KOH+Aq (Vanino, J pr. 1906, (2) 74, 152.)

Cadmium borate, Cds(BOs); Insol, in HoO, easily sol, in dil. acids. (Ouv-

1ard, C. R. 1900, 130, 174) Cd(BO₂)₂ Difficultly sol in H₂O (Stromeyer); insol in H₂O, sol, in HCl+Aq (Odling); easily sol in warm NH₄Cl+Aq (Rose).

(Guertler, Z. anorg. 1904, 40. 242) 3CdO, 2B2O3+3H2O. Ppt. Sl sol in H₂O. (Rose, Pogg 88, 299) CdO, 2B₂O₂+2H₂O. (Ditte, A ch. 1883.

(5) 30. 255 CdO, 4B₂O₂+10H₂O, Sol in H₂O; decomp on heating. (Ditte, A. ch. 1883, (5) 30. 255)

Cadmium borate bromide, 6CdO, 8B2O2, CdBr.

Insol. in H₂O and fuming HCl or HBr+Aq. (Rousseau and Allaire, C. R. 1894, 119, 72)

Cadmium borate chloride, 6CdO, 8B,O3, (Rousseau and Allaire, C. R. 1894, 118.

1256.) Cadmium borate rodide, 6CdO, 8B2O2, CdI2, (Allaire, C. R. 1898, 127, 557.)

Cæsium borate, Cs2B6O10.

Very sol. in H2O, less in alcohol (Reischle, Z anorg. 4. 116.)

Calcium borate, Ca(BO₂)₂ SI sol. in H2O, insol in alkali chlorides, or

hoiling cone, acetic acid+Aq, sol, in cold er hot solutions of ammonium salts, especially ammonium nitrate, in CaCl₂+Aq, and also essily sol in dilute mineral acids at 50°. (Ditte, C. R. 80, 490, 561.)

+2H,O. +4H₀O, two modifications of which one

is very unstable (van't Hoff and Meyer-hoffer, A 1906, 351, 101.) +6H₂O. When warmed in H₂O it goes

over into CaB₂O₄+4H₂O. (van't Hoff and Meverhoffer.

Sol in H₂O without decomp., 1 l solution contains 2 g. salt (Ditte, C. R 96, 1663.) CaB₄O₇, Decomp. by H₂O (Blount, C. N. Insol in methyl acetate. (Naumann, B

1909, 42, 3790.) +3H₂O (Ditte, C. R 96, 1663,)

+4H₂O. Min. Bechalate.

+6H₂O. Min. Borocalcite. Sol. in acids CaB₆O₁₀,+4H₂O

Unstable. On standing in the +8H2O" solution in which it is formed it changes into CaB.Ou+4HoC

+12H₂O. Unstable. Goes over into CaB₂O₁₀+8H₂O. (van't Hoff and Meverhoffer. A 1906, 351, 104.) CaBaO1s+12H2O (Ditte, C. R. 96, 1663.)

2CaO,B₂O₃. Insol. in H₂O, sol. in dil. acids.

(Ouvrard, C. R. 1905, 141, 353.) Ca₂B₆O₁₁ (Ditte, C R. 77, 785.) +3H₂O Mim. Pandermste, Priceste. See

4CaO, 5B₂O₂+9H₂O +5H₂O. Min. Colemanate: If all the Ca is in form of colemanite, the

solution contains in 100 g , 4.8 g. H₃BO₃ and 0 1 g. CaO (van't Hoff, B. A. B. 1907, 653.) +7H2O.

+9H2O. (van't Hoff and Meyerhoffer, A. 1906, 351, 101)

3CaO, B₂O₃. Easily sol. in dil. acids. (Ouvrard, C. R. 1901, 132, 258.) 3CaO, 5B2O2+9H2O (van't Hoff, B. A. B. 1906, II 568

4CaO, 5B2Oa+9H2O. True composition of Pandermite, (van't Hoff, B. A. B 1906, II 572)

Calcium iron (ferrous) borate silicate, Ca₂FeB₂Si₂O₁₀

Min Homilite, Easily sol in HCl+Aq

Calcium magnesium borate, CaO, MgO, $3B_2O_3 + 6H_2O$. Min, Hydroboracite Somewhat sol in H2O.

Easily sol. in warm HCl+Aq or HNOs +Aq 3CaO, 3MgO, 4B₂O₃ (Ditte, C. R. 77.

Calcium sodium borate, 2CaO, Na₂O, 5B₂O₈ $+8H_{2}O.$

(van't Hoff, B. A. B. 1907, 303 Ca₂B₁₀O₁₅, Na₈B₈O₉+15, or 24H₂O.

Mm. Natroborocalcute, Ulexute. by boiling with H-O. Sol in acids Ca+Na₄B₁₀O₅₁+15H₂O. Min Franklondate. Sl. sol. in H2O; easily sol, in HCl, and

HNO₂+Aa

Calcium borate bromide, 3CaO, 3B2O3, CaBr2. Sl. attacked by H.O Very sol, in dilute acetic acid. (Ouvrard, C. R. 1905, 141, 1023.) 3CaO, 5B2O2, CaBr2 Hardly attacked by cold H₀O or very dil acetic acid. Sol. in strong acids, even when dilute. (Ouvrard, C. R. 1905, 141, 1023)

Calcium borate chloride, Ca.B.O., CaCl. Decomp, quickly by moist air or HiO.

slowly by absolute alcohol (Chatcher, C. R. 99, 276

3CaO, 3B₂Q₄, CaCl₅. (Ouvrard, C R. 1905. **141**, 353.) 3CaO, 5B2O2, CaCl2. Sl attacked by cold H₂O and dil acetic acid+Aq Strong acids

dissolve even when very dilute. (Ouvrard, C. R. 1905, 141, 352) Calcium borate silicate, 2CaO, B2O2, 2SiO2

 $+H_{*}O.$ Min. Datolite Sol. in HCl+Aq with sep-

aration of gelatinous silica +2H₂O Min Botryokte. CaO, B₂O₈, SiO₂. Min. Danburte Very sl. attacked by HCl+Ag before genition.

Chromous borate.

Precipitate. Sol. in free acids, insol. in borax+Ag. (Moberg) Chromic borate, 7Cr₂O₂, 4B₂O₃,

Insol in H₂O; sol, in excess of borax+Ac. (Hebberling, C C 1870, 122.) Chromic magnesium borate, 3Cr₂O₂, 6MgO,

 $2B_0O_s$ Not attacked by acids (Ebelmen, A. ch.

(3) 33. 52) 2Cr₂O₃, 105. 1260) 9MgO, 3B₂O₃ (Mallard, C. R.

Cobaltous borate, 3CoO, 2B₂O₈+4H₂O. Sl. sol. in H₂O. (Rose, Pogg. 88, 299) 3CoO, B₂O₃. (Mullard, C R 105, 1260.)

2CoO, B₂O₂. (Ouvrard, C. R. 1900, 130. 337.) Cobaltous borate bromide, 6CoO, 8B2O2,

CoBt. (Rousseau and Allaire, C. R. 1894, 119.73.)

Cobaltous borate chloride, 6CoO, 8B2Os, CoCl₂ (Rousseau and Allaire, C R. 1894, 118.

1257.)

Cobaltous borate iodide, 6CoO, 8B₂O₃, CoI₂, (Allaire, C. R. 1898, 127, 557.) Cuprous borate, 3Cu,O, 2B,O,

(Guertler, Z. anorg. 1904, 38, 459.)

Cupric borate.

Composition depends on temperature and concentration of solutions. Boiling H2O dis-

solves out all the borne acid Sol, in acids, slowly sol in hot cone, NH,Cl+Aq Cu(BO2)2. Insol, in cold dil. acids, even

HF Slowly sol in hot cone HCl Not attacked by alkalies or alkali carbonates + Aq. (Guertler, Z. anorg, 1904, 38, 456) Insol in methyl acetate. (Naumann, B.

1909, 42, 3790)

Cupric borate ammonia, CuB₄O₇, 4NH₈+ 6H₄O.

Efflorescent Can be recrystallized from a little NH₁OH+Aq. (Pasternack, A. 151.

Didymium borate, DiBO2.

Insol, in H₂O acidulated with HCl+Aq (Cleve, Bull Soc (2) 43. 363.) D1*(B1O*)3. Insol. in H*O; sol. in acids (Frerichs and Smith, A 191, 355.)

Glucinum borate, basic, 5GlO, B₂O₃

Insol. in H2O; sol. in acids (Kruss and Moraht, B 23, 735.)

Iron (ferrous) borate.

Ppt H₂O dissolves out all the bouc acid. (Tunnerman.)

Iron (ferric) borate, Fe₂(BO₂)₆+3H₂O.

Ppt Insol. in H₀O Min, Lagomte Sol. in acids. 2Fe₂O₃, 3B₂O₈ (Mallard, C R 105, 1260.)

6Fe₂O₃, B₂O₄+6H₂O. Ppt (Rose, Pogg 89. 473.) 9Fe₄O₃, B₅O₄+9H₂O Ppt, (Rose)

Iron (ferric) magnesium borate, 3Fe+O1. 6MgO, 2B2O8.

Insol. in H₂O Sol in cone. HCl+Aq (Ebelmen, A ch (3) 33. 53.) 2Fe₂O₂, 9MgO, 3B₂O₃ (Mallard, C R 105, 1280.)

Iron (ferroferric) magnesium borate, 3MgO, FeO, Fe₂O₂, B₂O₃.

Min. Ludwigste. Slowly sol in HCl+Aq. when finely powdered. Iron (ferrous) borate bromide, 6FeO, 8BaOa,

FeBra. Slowly sol. in hot HNO3+Aq (Rousseau and Allaire, C. R. 116, 1445)

Iron (ferrous) borate chloride, 6FeO, 8BeOs, FeCl2.

Slowly sol. in hot HNO3+Aq (Rousseau and Allaire, C. R. 116. 1195.)

Lanthanum borate, 2La₂O₃, B₂O₃

(Nordenskjöld, Pogg. 114, 618.) La₂(B₄O₇)₃. Ppt. (Smith) Formula is La₂B₆O₁₄+xH₂O. 11. 910.)

Lead borate, basic,

2PbO, B₂O₃+2H₂O Ppt 4PbO, 3B₂O₃+4H₂O. Ppt +5H₂O Ppt 6PbO, 5B₄O₄+6H₄O Ppt 8PbO, 3B₂O₂+8H₂O. Ppt

9PbO, 5B.O.+9H2O. Ppt (Rose, Poss. 87, 470.)

Lead borate, Pb(BOg)g+H2O

Insol, in H₂O, Easily sol, in dil. HNO₃, or boiling HC₂H₃O₂+Aq. Decomp. by H₂SO₄, HCl, also by boiling KOH, or NaOH+Aq Insol. in alcohol. (Herapath, Phil Mag (3) 34. 375.)

SoI m NH₄Cl+Aq; sol m sat NaCl+Aq. 2PbO, 3B₂O₈+4H₂O (Herapath.) PbB₄O₇+4H₂O Slightly sol in pure H₂O, but meel, in solutions of Na salts as Na2B4O7 +Aq. (Souberran)

Lead borate chloride, Pb(BO₂)₂, PbCl₂+H₂O. Insol in cold, very slowly decomp, by hot H₂O into its constituents Easily sol, in dil hot HNO₄+Aq; msol m alcohol. (Herapath, Phil Mag (3) 34. 375.)

Lead borate nitrate, Pb(BO₂)₂, Pb(NO₂)₂+ H₀O Insol. in alcohol. (Herapath.)

Lithium borate, L1BO2. Solubility in H.O.

100 g H₁O dissolve g. LiBO₂ at t°. g LaBOs g LiBO: 0.7 30 4 9 10 40 11.12 1.4 20 2.6 45 20. (Le Chatelier, C. R. 1897, 124, 1094.)

Insol. in acetone. (Eidmann, C. C. 1899, II 1014; Naumann, B. 1904, 37, 4329.) Insol. in methyl acetate. (Naumann, B 1909, 42. 3790)

Insol. in ethyl acetate (Naumann, B 1910, 43, 314,) +8H₂O (Le Chatcher, Bull. Soc 1899,

(3) 21, 35) +16H₂O Effloresces in the air, slowly sol. in cold H₂O, rapidly in hot H₂O (Le Chatelier, C. R 1897, 124, 1092.) Li₂H₄(BO₃)₂+14H₂O. (Reischle, Z. anorg

4. 166.) Li₂B₄O₇. Deliquescent; easily sol, in H₂O₁ (Arrivedson, A. ch. 10, 82)

Sol. in acetone. (Erdmann, C. C. 1899, II. 1014.) Insol, in acctone. (Naumann, B 1904, 37. 4329.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

+5H2O. Insol in alcohol (Filsinger, Arch. Ph. (3) 8. 198)

L₁₂O, 3B₂O₃+6H₂O Very sol. in H₂O, Magnesium borate bromide. (Filsinger. msol, in alcohol LigO, 4B2O1 Insol in H2O (Le Chatelier, Bull. Soc. 1899, (3) 21. 35)

 +10H₂O, Sol in H₂O; insol, in alcohol. (Filsinger) "Acid lithium borate" is less sol than the tetraborate (Gmelin

L₁₂O, 5B₂O₂+10H₂O (Dukelski, C. A. 1908, 1089

Magnesium borate, Mg(BO2)2.

(Ditte, C R. 77. 893.) +3H₂O. Min Pinnoile

+4H₂O. (Laurent, A. ch (2) 67, 215) +8H₂O. Insol. in cold or hot H₂O; easily sol in HCl+Ag. Decomp. by cone. HCl

soi in HO;+Aq; Decomp, by conc. HCl +Aq into H₂BO₂ and MgCl₃. (Wohler) MgB,O;+8H₄O. (Popp, A. Suppl 8. 1) MgO, 3B₂O₃+8H₄O. Very slowly sol in H₂O. (Rose, A. 84, 221.)

Sol. in 75 pts cold H₂O (Rammelsberg,

Pogg. 49. 445.) 2MgO, B₂O₃. Insol, in H₀O, but sol in Na₂CO₃+Aq. (Guertler, Z. anorg. 1904, 40. 236.) $+H_{2}O.$ Very sl sol, in 1/10 N HCl+Aq.

(van't Hoff, B. A. B 1907, 658.) Mm Ascharite

3MgO, B₂O₃. Insol. in H₂O; easily sol in acids. (Ebelmen, A. 80, 208.) Very sl. sol. in cold, but somewhat decomp.

by boiling H2O (Rammelsberg.) Somewhat sol, in cold H2O +9H₂Ó (Wohler, Pogg. 28, 525)

3MgO, 2B₂O₃. Sol in warm H₂SO₄ or NO₃+Aq (Ditte, C. R. 77. 803.) HNO₄+Aq HNO₃+Aq (Ditte, C. 17, 1993), 10HBO₂ +13H₂O, (Rammelsberg, Pogg 49, 445) 3MgO, 4B₂O₃ Sol. in hot di acids, insol. in acetic acid (Ditte, C. R. 77, 893)

5MgO, 2B₂O₈+1½, and 3H₂O Szubelyste Difficultly sol. in HCl+ Mın. pridelinte Difficultly sol. in HCl+Aq 9MgO, B₂O₃ (Mallard, C. R. **103.** 260)

Magnesium manganous borate, 3Mg₂B₂O₅, $4Mn_2B_2O_3+7H_2O_4$

Min Sussexite. Sol. in HCl+Aq

Magnesium potassium borate, KMg2B11O124 9H₂O. Insol. in H₂O Min. Kaliborite. (Feit.

Ch. Z. 1889, 13, 1188 2MgO, 2K2O, 11B2O2+20H2O (van't Hoff and Lichtenstein, B. A. B 1904, 936.)

Magnesium sodium borate, Mg2BeO11, Na₂B₄O₇+30H₂O. Efflorescent. About as sol. in cold H₂O as borax; solution separates out a Mg borate

on warming, which redissolves on cooling. Decomp by boiling H.O. (Rammelsberg) Magnesium strontium borate, 3MgO, 3SrO,

895)

4B,O, Easily sol, in dil. acids. (Ditte, C. R. 77.

2Mg2B2O15, MgBr2 or 6MgO, 8B2O2, MgBr2 (Rousseau and Allaire, C. R. 1894, 119, 71.)

Magnesium borate chloride, 2Mg₂B₈O₁₅, MgCl.

Mm Boracile Insol in H₂O, slowly sol. in acids (Kraut) Stassfurthite Easily sol in warm acids. (Bischof)

Magnesium borate iodide, 6MgO, 8B2O1, (Allare, C R 1898, 127, 556.)

Magnesium borate phosphate, Mg(BO₀)₂, 2MgHPO+7H2O Min. Lunebus cute.

Magnesium borate sulphate, 2Mg₃B₄O₉, 3MgSO₄+12H₂O.

Min. Magnessum sulphoborite. Sol in mineral acids when ground (Naupert, B 1893, 26. 874)

Manganous borate, MnB4O7 (?).

Insol in H₂O (Berzelius), very sl sol, in H₂O (Thomas, Am. Ch J. 4, 358); decomp by warm, slowly by cold H2O Sol in MgSO . +Aq (Berzehus).

+3H₂O. (Endemann and Paisley, Zeit. angew. Ch. 1903, 16. 176.) +5H₂O. Ppt (Endemann and Paisley.)

Very hydroscopic. (Endemann, Am. Ch J. 1903, 29, 72) 3MnO, B₂O₂ (Mallard, C R **105**. I260.) Not attacked by H₂O Very sol in acids

Ouvrand, C. R. 1990, 130, 336)
3MnO, 2B₂O₃. (Mallard)
MnH₄(BO₃)₂. Very sl sol in H₂O.
Solubitty m 2% Na₂SO₄+Aq. At 18.5°,

Orf g. MnH₄(BO₃), are dissolved per little; at 40°, 0.65 g.; at 60°, 0.36 g., at 80°, 0.12 g. Solubility in 2% NaCl+Aq. 1 l solution dissolves 1 31 g. salt at 18.2°, 0.6 g. at 59°; and 0.29 g. at 80°.

Solubility in 2% CaCl₂+Aq. 1 l. CaCl₂+Aq dissolves 2.91 g. salt at 17 6°; 2 44 g at 43.0°; 2.25 g at 61°; and 1.35 g. at 80°. (Hartley and Ramage, Chem. Soc. **63**. 129.).

Manganous borate bromide, 6MnO, 8B2O42 MnBr. (Rousseau and Allane, C. R. 1894, 119, 73.)

Manganous borate chloride, 6MnO, 8B₂O₃, MnCl₂.

(Rousseau and Allaire, C R. 1894, 118. 1257.)

Molybdenum borate, MoO2, 2B2O2 (?). Insol. in H₂O; sol. in H₂BO₂+Aq (Berzelius)

Molybdenum borate, MogOg, BgOg, Precipitate. Insol, in H₂O; al sol in a solution of boric acid (Berzelius) See Boromolybdic Acid.

Nickel borate, Ni(BO₂)₂+2H₂O.

Insol in H₂O Easily sol in acids. Easily sol in warm NH₄Cl+Aq. (Rose, Pogg 88. 299.1

2N1O, B2O3+xH2O Easily sol, in acids (Rose.) 3NiO, 2B2O2+5H2O. Easily sol, in acids. (Rose.)

3N1O.B2O2. Not attacked by H2O, sol in acids. (Ouvrard, C R. 1900, 130, 337) Nickel borate bromide, 6NiO, 8B2O2, NiBr2.

(Rousseau, C. R. 1894, 119, 73) Nickel borate chloride, 6NiO.8B2O2.NiCl2. (Rousseau, C. R. 1894, 118, 1257.)

Potassium borates.

Solubilit	ty of B ₂ O ₂ in	K ₄ O+Aq at 30°	Only hydrate. (Dukelski)
Solution	contains	Solid phase	Potassium dodekaborate, K ₂ B ₁₂ O ₁₂ +10H
% by wt K:0	% by not B ₂ Os	Sunt phase	Sl sol. in cold, very sol. in hot
47 50 46 45 46 36 40 51 36 72 36 72 32 74 29 63 26 89 24 84 23 30	0 72 0 91 1 25 1 80 1 85 3 51 6 98 12 12 17 63 18 19	KOH, 2H4O K4O, B4O3, 2 5H4O "" "" "" "" "" "" "" "" "" "" "" "" "	(Laurent, A. ch. 67, 215.) — K.B., G., (Rammelsberg.) Does not exist (Dukclskı.) Potassium borate fluoride, KBO ₃ , KF. Sol in H ₂ O. (Schiff and Sestini, A. 72 Dog., 2KF. Sol. in little, decomprometh H ₂ O. (Schiff and tim, A. 228, 72.)
16 21 11 78 9 18 6 22 7 79	13 10 9.82 8 00 9 13 13 20	# # ##	Rubidium borate, Rb ₂ B ₄ O ₇ . Anhydrous. (Reischle, Z. anorg. 4, 16 +6H ₂ O Not deliquescent or efflores Sol in H ₂ O. (Reissig, A 127, 33)
7 73 7 81 7 67	13 37 13 28 13 19	K ₂ O, 2B ₂ O ₂ , 4H ₂ O+ K ₂ O, 5B ₂ O ₂ , 8H ₂ O	Samarium borate, SmBO ₈ . Insol. in H ₂ O; sol. in HCl+Aq (Club, Soc (2) 43. 1670.)
7 71 7 63 3 42 1 80 0 80	13 21 13 28 7 59 4 15 3 05	K ₂ O, 5B ₂ O ₃ , 8H ₂ O	Scandium borate, ScBO ₃ Sol. in dil. acids. (Crookes, Phil T 1910, 210 . A. 364.)
0 51 0 33	3 19 4 58	K ₂ O, 5B ₂ O ₃ , 8H ₂ O+ B(OH) ₃	borne acid is dissolved out (Rose, Ph
0 38 0 31 0 28	4 51 4 46 4 36 3 54	B(OH) ₂	Centralbl. 1853, 205.) Sol with decomp in Na ₂ S ₂ O ₄ +Aq is schel); sol in NH ₄ NO ₅ +Aq if pptd. co 1.1. H ₂ O dissolves ca. 6 x 10 ⁻² gram-s at 25°. (Abegg and Cox, Z phys. Ch.
At 30° o	nly the this	e potassium borates	46. 11.)

K₂O, B₂O₃+2 5H₂O; K₂O, 2B₂O₃+4H₂O and K2O, 5B2O2+8H2O exist in stable form.

(Dukelski, Z anorg 1906, 50. 42.)

Potassium metaborate, KBO: Sol in small amount of H2O. (Berzelius, Pogg 34, 568.

+11/H₂O. Only stabile hydrate (Dukelskı, Z anorg 1906, 50. 42) +11/2H2O (Atterberg, Bull Soc. (2) 22. 350)

Potassium tetraborate, K₂B₄O₇.

Very sol, in H2O

+4H₀O (Atteiberg, Bull, Soc. (2) 22 350.) Only stabile hydrate. (Dukelski, l. c.) +5H₂O Very sol in H₂O; more sol, than

K2B4O10 or K2B12O11. +6H₂O. (Atterberg, l ε)

Potassium hexaborate, K2B6O10+5, and 8H₀O.

Easily sol. in H₂O Does not exist. (Dukelski, l. c)

Potassium dekaborate, K2B10O10+8H2O. Sol in H.O. (Rammelsberg.)

I.O. H₀O.

. 228. p. by d Ses

66.) scent.

Cleve

Prans.

O the harm

(Herold. atoms 1903.

Insol in ethyl acetate (Naumann, B 1910, 43. 314 3Ag₂O, 4B₂O₃, (Rose, l, c)

Sodiu	m b	ora	tes

Solubility	ın Na ₂ O+Ac	at 30°.
C. L. daves	 	

Solution	contains		ľ
% by wt Na ₂ O	% by wt BaOs	Solid phase	W.
42 00		NaOH, H ₂ O	s
40 85	2 71	2	ŀ
41 37	E 10		ш
38 85	5 55 3 73 2 51 2 38 2 44 2 75 2 98	Na ₂ O? B ₂ O ₃ , 4H ₂ O	П
34 44	3 73	1.010, 2101, 21110]
29 39	2.51		4
28 61	2 38		13
27 78	2 44	- 44	ľ
26 13	2.75	44	١.
25 08	2 98		1
23 00	3 82		١.
16 61	13 69	- "	1
21 58	4 63	Na ₂ O, B ₂ O ₃ , 4H ₂ O+	ı
21 00	- 00	Na ₂ O, B ₂ O ₂ , 8H ₂ O	M tare
20 58	4 69	Na ₂ O, B ₂ O ₃ , 8H ₂ O	1
18 31	4 97	1101 01210	ŀ
15 32	6 21	44	Н
13 25	8 18		1
12 39	9 12	66	Н
8 85	10 49	Na ₂ O, 2B ₂ O ₁ , 10H ₂ O	2
5 81	6 94	11 101120	L
4 00	4 76	14	13
1 88	2 41	-	П
1 38	5 16	**	18
1 84	7 36	44	Г
2 02	7.79		1 5
2 40	9 48		li
4 08	17 20	Na ₂ O, 2B ₂ O ₂ , 10H ₂ O	13
- 00	20	+Na ₂ O, 5B ₂ O ₃ ,	П
		10H ₂ O	П

3 54 At 30°, only the four sodium borates Na₂O. $B_2O_3+4H_2O$, Na_2O , $B_2O_3+8H_2O$, Na_2O , $2B_2O_3+10H_2O$; and Na_2O , $5B_2O_3+10H_2O$ exist as stable phases

(Dukelski, Z anorg. 1906, 50. 46.)

15 84

13 30

12 14

11 84

11 78

11 18

6 11

Na₂O, 5B₂O₃, 10H₂O

Na₂O, 5B₂O₃, 10H₂O +B(OH)₃ B(OH)

Sodium metaborate, NaBO+.

3 79

3 47 2 28

1 99

1 86

1 81

0.64

Anhydrous, Easily sol in H2O, with evolution of heat. +H₂O. Easily sol in H₂O. (Benedikt.

-2H₀O Easily sol. in H2O. (Benedikt, B 7. 703.)

+3H₂O. Easily sol. in H₂O. (Berzelius.) +4H₂O. Sl. efflorescent Sol. in hot, less sol. in cold H₂O. Melts at 57° in its crystal H₂O. (Dukelski, Z. snog. 50, 42) +41/2H,O. (Atterberg, Z. anorg, 1906, 48.

+5½H₂O (Atterberg.)

+8H₂O. (Atterberg)

+4H₂O and +8H₂O are the only hydrates formed. (Dukelski)
System Na₂O, B₂O₃, H₂O at 60° investi-

gated by Sborgs. (Real Ac. Line 1915, (5) 24. I. 443)

Sodium tetrahorate, Na.B.O. (Borga)

100 g H₂O dissolve at: ° 10° 21 5° 30° 37 5°

1316 2839 5.6 g. anhydrous salt. 45° 50° 54° 55° 56° 57°

8.1 10 5 13.3 14.2 15 0 16 0 g, anhydrous salt. (Horn and van Wagener, Am Ch J. 1903,

Insol in ethyl acetate (Naumann B. 1910, 43, 314.)

Sol. in amyl alcohol in the presence of metaarsenious acid and excess of HaBOs (Auerbach, Z. anorg 1903, 37, 358.)

+4H.0 +5H₂O

100 g H₂O dissolve at. 65° 70° 80° 90° 100°

22.0 24 4 31 4 40.8 52.3 g, anhydrous salt (Horn and van Wagener, Am. Ch. J. 1903.

30, 347 +6H₂O Grows opaque in the air. (Bech). Sill. Am J. (2) 17, 129) +10H₂O Only stabile hydrate. (Dukel-

ski, Z. anorg 50, 30.) Efflorescent on surface in dry sir Not efflorescent when free from Na₂CO₂ (Sims)

Sol as 12 pts cold, and 2 pts hot H₂O Sat cold Na₂B₄O₇+Aq contains 9.23%, and sat hot Na₂B₄O₇+ Aq contains 33 33% Na₂B₄O₇ (Gmelin) Sol. in 20 pts cold, and 6 pts boiling H₂O (Wal-

kerus)
Sol. in 16 pts. HrO at 18 75° (Abl.)
100 pts. HrO at 18 75° (Abl.)
100 pts. HrO at 18 55° dissolve 5 pts., at 63°, 40 pts., at 109°, 160° pts. Nag.BQ·+ 10HrO. (Urs. 2 Dictionary)
100 pts. sat. Nag.BQ·+ 2 at 103 5° contain 32 5 pts.
Nag.BQ·, or 10 pts. HrQ dissolve 110.34 pts. Nag.BQ·, or 1 pt. Nag.BQ·, as of in 0 9047 pt. HrQ at 108.5° (Griffith, Quar J Sc. 13. 00)

Solubility in 100 pts. H₂O at to. Pts Pts

t.	Na-B-O:	Nn2B4O2 +16H2O	t°	Na ₂ B ₆ ();	10H ₂ O
0 10 20 30 40 50	1 49 2 42 4 05 6 00 8 79 12 93	2 88 4 65 7 88 11 90 17 90 27 41	60 70 80 90 100	18 09 24 22 31 17 40 14 55 16	40 43 57 85 76 19 116 66 201 43

(Poggiale, A. ch. (3) 8, 46.)

100 pts H₂O dissolve 1.4 pts. Na₂B₂O₂ at 0°, and 55.3 pts. at 100°. (Mulder) Na₂B₄O₇+Aq sat at 15° has sp gr = 1 0199, and contains 3 926 pts. Na₂B₄O₇ to

100 pts. H2O. (Michel and Kiafft, A ch. (3) 41.471)

1.0208 (Stolba,	J pr. 97. 503) ar ab Rt =
Sp gr. of	Na-BaOr+Ag	at 15°

Sp gr. of Na ₂ B ₄ O ₇ +Aq at 15°	

Nagho	NasB4Or +10H340	Sp gr	NasBiO;	Na.JB.O. +10H2O	Вр дг
1	0 52	1 0049	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0199
2	1 06	1.0099	5		1 0249
3	1 59	1 0149	6		1 0299

(Gerlach, Z anal 28, 473.)

Sp gr. of $Na_2B_4O_7 + Aq$ sat. at $15^\circ = 1032$ (Gerlach) Sat Na₂B₄O₇+Aq boils at 105 5°, and contains 110 5 pts Na₂B₄O₇ to 100 pts, H₂O. (Griffith)

Sat, Na₂B₄O₇+Aq forms a crust at 103° and contains 60 14 pts Na₂B₂O₇ to 100 pts. H₂O; highest temp observed, 104 3° (Gerlach, Z, anal. 26, 427)

B -pt. of Na₂B₄O₇+Aq containing pts Na2B4O: to 100 pts H2O.

B -pt	P19 N92B1O7	B-pt	Pt9 Nn2B1O:
100 5°	8 64	103 0°	61 2
101 0	17 2	103 5	75 4
101 5	26 5	104 0	90 8
102 0	37 5	104 5	109 0
102 5	48 5	104 6	112 3

(Gerlach, Z anal 26, 452)

M -pt of Na₂B₂O₂+10H₂O is 75.5° (Tilden, Chem. Soc. 45, 407) Insol in alcohol

100 g alcohol (0.941 sp. gr) dissolve 2.48 g (U. S. P. Sol in alcoholic solution of NaC. H.O. (Stromever)

Sol in 147 pts glycerine of 1.225 sp gr. (Vogel) Sol in 1 pt glycerine (Schultze, Arch. Pharm (3) 6. 149

100 g. glycerine dissolve 60 3 g at 15.5° (U. S. P.) Min Tincal.

Sodium borate, Na₂B₈O₁₃+10H₂O.

Sol. in 5-6 pts cold H₂O. (Bolley, A. 68. Perhaps sodium hydrogen tetraborate 774.) NaHB₂O₁+41/2H₂O

Na2B10O16+10H2O. Decomp. by H2O. (Atterberg, Z. anorg. 48, 370) (Dukelski, Z anorg. 50. 42.) Stabile

+11H₂O (Laurent, C. R. 29, 5) Sodium borate fluoride, NaBO2, 3NaF+

4H2O. Sol in H₀O.

Basarow (B 7. 112) considers this salt to be a mixture.

Na₂B₄O₇, 12NaF+22H₂O. Can be separated into its constituents by H2O (Berzelius, Berz J. B. 23. 96)

Strontium borâte, Sr(BO2)2.

(Ditte, C R 77. 788) Easily hydrated by H₂O forming SrO, B₂O₂ +2H₂O. Very sol. in dil acetac acid (Ouv-rard, C. R. 1906, **142**, 282)

Insol. in acetone (Naumann, B. 1904, 37.

+2H_{*}O (Ouvraid, l. c) +4H₂O (Ouvrard, l c +5H₀O H₂O dissolves 2.3 g, at 10°.

(Ditte, A ch. 1883 (5) 30. 253.) S₁B₂O₇. Insol in H₂O; sol in dil. acids. (Guertler, Z anorg, 1904, **40**. 243)

+4H₂O Sol. in 130 pts. boiling H₂O pts H₂O at 100° dissolve 7 7 pts (Ure's Dict.) lasily sol, in cold NH4 salts+Aq, sol, in cold HNO3+Aq

2S1O,B2O2. Easily decomp. by H2O forming B₂O₃, SrO, 4H₂O Very sol. in acids. (Ouvrard, C. R. 1906, **142**, 282) 38rO, B₂O₈ Less easily attacked by H₂O

than Ca comp Very sol, in mineral acids. attacked by dil. acetic acid. (Ouvrard,

R 1901, 132. 258.) SrB₄O₁₀ Very sl. sol. in H₂O; sol in acids. (Laurent)

SrB₈O₂₁+7H₂O Ppt. (Laurent.) (Ditte) +12H₀O.

SrsB4Os. Sol, in cold mineral acids and (Ditte, C. R. 77, 785.) acetic acid. 2SrO, 3B2O2. Easily sol. in acids (Ditte,

Strontium borate bromide, 3SrO, 5B2O2, SrBr2. As the chloride (Ouvrard, C R. 1906,

142, 283,) Strontium borate chloride, 3SrO, 5B.O. SrCl. Sl. attacked by cold H₂O, not attacked by

dilute acetic acid. (Ouvrard, C. R. 1906, 142.

Thallous borate, TIBO: + 1/2H2O.

Decomp. in the air (Buchtala, J pr. 1913, (2) 88. 784) Tl₂B₂O₇ (Buchtala) Ppt. Sol. in boiling H₂O, insol. Tl.B.O.

in cold dil. HaSO4+Aq. (Crookes) +2H₂O. (Buchtala, J. pr 1913 (2) 88. $Ti_2B_8O_{10} + 3H_2O$ (Buchtala.)

TlaB8O11+4H2O (Buchtala) Tl2B10O10+8H2O (Buchtala.) Tl₂B₁₂O₁₁+7H₂O. (Buchtala)

Thorium borate (?). Precipitate. Insol in H₂O and H₂BO₂+

Aq (Berzehus)

Tin (stannous) borate (?). Ppt. (Wenzel.)

Divanadyl borate.

Insol. in H₂O; sol in H₃BO₅+Aq (Berzelius)

Viterhium borate, YbBOs.

Insol, in conc. HCl; sol, in HF (Cleve, Z anorg 1902, 32. 148)

Yttrium borate. Precipitate. (Berlin, Pogg. 43, 105.)

Zinc borate, 3ZnO, 2B2O2. (Mallard, C. R. 105. 1260.)

Decomp. by H₂O, very sol in dil. acids. (Ouvrard, C R. 1900, **130**, 336) ZnO, 2B₂O₈+4H₂O Sol. in H₂O with decomp. (Ditte, A. ch. 1883, (5) 30. 256) 3ZnO, 4B₂O₃+H₂O. Ppt. (Holdermann, Arch. Pharm. 1904, 242. 567.)

ZnO, 4B₂O₄+10H₂O (Ditte, A ch. 1883, (5) 30. 256 9ZnO, 4B₂O₃+9H₂O Sl sol in H₃BO₃ Aq (Rose, Pogg. 88. 299)

Zinc borate ammonia, ZnB₄O₇, 4NH₂+6H₂O. Easily sol. in NH4OH, HC2H2O2, H2SO4, HCl, and HNO2+Aq. (Buchner, A. 151. 234.)

Zinc borate bromide, 6ZnO, 8B2O3, ZnBr2, (Rousseau and Allane, C. R. 116, 1446.)

Zinc borate chloride, 6ZnO.8B.Q.,ZnCl., Insol m HCl (Rousseau, C. R. 1894, 118. 1256)

Zinc borate iodide, 6ZnO, 8B2O2, ZnI2. (Allaire, C. R. 1898, 127, 556.)

Zirconium borate, (?). Insol in H₂O.

Perhoric acid. See Perboric Acid.

Boric phosphoric acid. See Phosphoboric acid.

Boric tungstic acid. See Borotungstic acid.

Boric acid sulphur traoxide. See Borosulphuric acid.

Borimide, B₂(NH)₈

Decomp by H.O; msol, in all indifferent solvents; sol in liquid NH2+S to form a dark blue solution, (Stock, B. 1901, 34. 3044.)

Borimide hydrochloride, B2(NH)3,3HCl.

Decomp, by HaO, msol in all ordinary orgame solvents (Stock, B. 1901, 34. 3045.)

Borofluorhydric acid, HBF.

See Fluoboric acid.

Borofluorides. Sec Fluoborides.

Boromolybdic acid.

Sol in H₂O. Decomp. by alcohol. (Berzelius)

Boron, B

(a) Amorphous. Somewhat sol. in pure H₂O, when not ignited Salts and acids separate it out of aqueous solution. Upon evaporation of H2O solution a crust is formed, which is only partially sol in H₂O (Ber-zelius, Pogg 2, 113.) Decomp. by hot H₂SO₄ and cold moderately conc. HNO₂+Aq. Strongly ignited amorphous B is much less easily attacked by reagents than freshly pptd., and is insol in H₂O. (Berzelius.) Insol in caustic alkalies + Aq; also in alcohol and ether

+Aq (Rose, Pogg. 8o. am),
32nd, B₂O₅. Insol un minetal acids. (le
C.R. 114, 392.)
Chatelier, C. R. 113, 1034)
Pure B is not attacked by acids, but has a
strong reducing action on KMnO₄+Aq, FeCl₃

**The C. B. 114, 617.) +Aq, etc (Moissan, C R. 114. 617)

Does not melt at 1500°. Readily sol in cone acids, as H₂SO₄, HNO₄, H₂PO₄, very sl. sol. in hydracids; decomp H2O at red heat.

(Moissan, A ch 1895, (7) 6. 313-14) Insol in hquid NH₂ (Gore, Am Ch J. 1898, 20. 827

(b) Crystallized 1 Insol in H₂O, HCl, or KOH+Aq. Very slightly and slowly attacked by boiling cone, H₂SO₄. Gradually sol in hot cone, HNO₃. Formula is Al₂B₂₄. (Hampe, A 183, 75.)

2. Very slightly attacked by conc. HCl or H₂SO₄, slowly but completely sol. in conc. HNO₃; insol. in KOH+Aq. Formula is (Hampe.

C₂Al₂B₄₄. Crystalline Insol in a solution of CrO₅ in H₂SO₄ Insol in hot cone HCl and H2SO. Sol. in hot cone HNO2 (Biltz, B, 1910, 43, 303)

Boron tribromide, BBr3.

Sol. in H₂O or alcohol with decomp. (Nicklès, C. R. 60, 800)

Boron phosphorus bromide, BBr2, PBr2,

Decomp. by H₂O. Sol in CS2, and CHCl2 Decomp by al-cohol, ether, etc. (Tauble, C R 116. 1521.) BBr₃, PBr₅. Si. sol. in cold, easily in hot

CS₂. (Tarible.) Boron bromide ammonia, BBrs, 4NHs

Decomp. by H₂O and alkalies. (Besson, C. R. 114. 542.)

Boron bromide phosphine, BBr2, PH2 Violently decomp. by H₂O (Besson, C. R. 123, 78) 9

Boron bromide phosphorus trichloride, 2BBr2,PCla

Decomp by H₂O Sol in BBr₃, PCl₂, CS₂, and CHCl₂ Insol. in petroleum ether. (Tarble C R. 1901, 132, 84.)

Boron bromide phosphorus pentachloride, 2BBr₂,PCl₄

Sol in BBrs and CSo; decomp by H2O insol, in light netroleum. (Tauble, C. R. 1901, 132, 85)

Boron bromide phosphorus dijodide, 2BBra, Pala

Sol in BBrs, CSs, CHCls; insol, in light petroleum; decomp by H2O (Tauble, C. R. 1901, 132, 205,)

Boron bromide phosphoryl chloride, BB13. POCI. Very easily decomp (Oddo and Teald), Gazz, ch. it. 1903, 33, (2) 431.)

Boron bromoiodide, BBr2I Decomp violently by H₂O. (Besson, C. R.

112. 100.) BBrI. (Besson, C. R. 112, 100)

Boron bromosulphide, BoSa, BBra, Decomp. by H.O. (Stock, B 1901, 34, in the air. 3040.)

Boron carbide, B.C. Very stable, insol, in HF and in HNO: sol in KOH at 1ed heat (Moissan, Bull Soc. 1894, (3) 11. 1101)

Insol in acids, sol. in fused alkalı. (Moissan, C R. 1894, 118. 559.) BC or B2C2. Insol, in all the usual solvents. (Mullhauser, Z. anorg 5, 92.)

Boron trachloride, BCl., Rapidly absorbed by H₂O and alcohol with decomposition

Boron nitrosyl chloride, BCl3, NOCl, Decomp violently by H_{*}O. (Geuther, J.) pr. (2) 8. 854)

Boron phosphoryl chloride, BCl2, POCl3, Decomp immediately by H₂O. (Gustavson, Zeit Chem. 1870, 521)

Boron chloride ammonia, 2BCls, 3NHs. Decomp. by H2O. (Berzelius, Poga 2.

Boron chloride phosphine, BCls, PH., Decomp by H₂O. (Besson, C. R. 110.

Boron chlorosulphide, B.S., BCl., Decomp. by H₂O. (Stock, B. 1901, 34. 3040.)

Boron traffuoride, BFs. H₂O absorbs 700 vols. BF₃ gas to form a san.)

liquid of 177 sp gr. On boiling, 1/4 of the BF. is given off, and a residue boiling at 165-200 with composition BF3+2H2O or HBOs+ 3HF, is left (J. Davy, A ch 86, 178.) 1 ccm H2O absorbs at 0° and 762 mm pres-

sure 1 057 ccm BF₃.

1 vol cone H₂SO₄ of 1.85 sp gr absorbs

50 vols BF2 Absorbed by alcohol with decomp

Cold oil of turnentine absorbs 6.8% of

Boron fluoride ammonia, BF2.NH4, BF2, 2NH, and BF, 3NH, Decomp. by H.O.

Boron fluoride cyanhydric acid, BF2, HCN Very unstable (Patem, C R, 113, 85.)

Boron fluoride phosphine, 2BF2, PH2, Very unstable at ordinary temp Decomp. by H.O (Besson, C. R. 110, 80)

Boron hydride, BH. Not obtained free from H. SI sol, in H.O.

(Jones, Chem Soc. 35. 41) See Cycloty aborene. B₄H₁₀. B.-pt. 16-17° at 760 mm Very unstable Takes fire spontaneously

Decomp. by H₂O, dil. HCl, and oxidized by conc. HNO₃ with explosive violence

Absorbed by NaOH+Aq Decomp, by alcohol Sol in dry benzene.

(Stock, B. 1912, 45, 3562.)

B₂H₁₂. B₂-pt. 100° at atmospheric pressure.

Decomp by H₂O With aqueous alkalies, hydrogen is evolved. (Stock, B. 1912, 45. 3565

BaH. Insol, in HCl Sol, in aqua regia and Br₂+Aq (Winkler, B 1890, 23, 778.)
B₁₆H₁₄, M.-pt. 99.5°; not attacked by cold or boiling H₂O. Sol in dil. NaOH+Aq.

Sol. in alcohol, ether, benzene, and CS:. (Stock, B 1913, 46, 3360)

Boron sodide, BI.

Very hygroscopic, and instantly decomp, by H₂O or alcohol. Very sol. in CS₂, CCl₄. C₆H₅, less sol in PCl₃, AsCl₅, and a great many organic liquids (Moissan, C. R. 112. 717)

Boron iodide ammonia, BI₃, 5NH₃. Decomp. by H₂O. (Besson, C. R. 114. 542.)

Boron iodophosphide, BI₂P.

Very hygroscopic; decomp, by H.O. Not attacked by cold conc H2SO4, even if fuming, but on heating decomposition takes place. Very sl. sol in CS2. Insol, in benzene, PCl3, or CCl₄. (Moissan, C R. 113. 624.) BIP Less hygroscopic than BI₄P, but

otherwise the properties are similar (Mois-

```
Boron nitride, BN.
  Insol in H2O, cone HNO3, conc. HCl+
Aq, or conc. solutions of alkalies
   Decomp by hot cone H2SO4 or HF.
(Wohler, A 74, 70.)
```

Roron trioxide, B2O1

Dehouescent. Sol. in H2O with a large increase in temp (Ditte, C R. 85. 1069)

```
1 pt dissolves-
      at 18 75° in 47 01 pts. H<sub>2</sub>O.
" 25° " 27.75 " "
          37.5° " 18 73 "
                   " 15 13 "
          50°
          62 5° "
                       9.29 "
                   **
          75°
                       7.28 "
```

" 87.5° " " 100° 474

" 87.5°

```
Or 100 pts. H2O dissolve-
          at 18.75° 2.13 pts. B<sub>2</sub>O<sub>3</sub>
               25°
                         3 60
           44
               37.5°
                         4 24
               50°
                                       ..
                         6 61
               62.5°
                        10.76
               75°
                                  44
                        13 73
```

5 58 "

17.92 " 100° 21.09 (Brandes and Firnhaber, Arch. Pharm. 7, 50)

1 litre H₂O dissolves 0° at 11.00 g B₂O₂, 16.50 g B₂O₂,

12° 20° 22 49 " 40° 39.50 " " 62° 64.50 " " 80° 95 00 "

" 102° 164 50 " (Ditte, C. R. 85, 1069)

Sat. H₂O solution boils at 100° (Brandes Borosulphuric acid, BOHSO₄+SO₃ and Firnhaber.)

Sat H₂O solution boils at 103.3°, (Griffiths, Quar J. Sci 18. 90.) Sol. in acetic acid, hot cone HCl+Aq, HNO₄, and H₂SO₄. From the three latter it

separates on cooling or dilution with H2O. Solubility in Na2O+Aq at 30.

See Borates, sodium. Solubility in K₂O+Ag at 30°.

See Borates, potassium. Insol in hot glacial acetic acid. (Holt, Chem. Soc 1911, 100. (2) 720.)

Insol in alcohol (Graham.) Sol. in alcohol (Berzelius, Ebelmen.)

Sol. in oils. See also Boric acid.

Boron traoxide potassium fluoride, B2O2, 2KF. Gradually sol in H₂O Decomp. by much H₂O. Insol, in alcohol, (Schiff and Sestini, A. 228. 82).

Boron oxychloride, BOCl.

(Gustavson, Zeit Chem. 1870. 521.) BOCl₄. Slowly decomp. by H₂O. (Coun- Ammonium ----, (NH₄)₄B₁W₅O₁₂+18H₂O. cler, J. pr (2) 18, 399.)

Oxychlorides of either the above formulæ do not exist, the true formula for boron oxychloride is B₈O₁₁Cl₂. (Lorenz, A. **247**. 226.)

Boron phosphide, BP.

Insol in H₂O. Sol. in conc. boiling alkalies Aq with decomp Decomp, by HNO₃+Aq (Besson, C. R 113. 78)
Insol. in PCl₃, AsCl₃, SbCl₂, CCl₄, and m

fact in all known solvents. Not attacked by boiling H2O, conc. HCl, or

HI+Aq Sol. in conc. HNO₃ with decomp. on heating Not attacked by cold H₂SO₄. on heating Not attacked by cold H₂SO₄. (Moissan, C. R. 113, 726) B₅P₂. Not attacked by boiling conc. HNO₄

+Aq. Insol. in all solvents. (Moissan)

Boron phosphoiodide. See Boron iodophosphide.

Boron selenide, B₂Se₂.

Violently decomp by H₄O. (Sabatier, C. R 112. 1000)

Boron trisulphide, B₈S₈,

Decomp with violence with H₂O. Combines with alcohol and ether. (Fremy, A, ch.

(3) 38. 312.)

Insol, in most solvents, but sl. sol, in PCls without decomp.; more sol. in SCl2, but does not crystallize from the solution. (Moissan,

C. R. 115. 203) Boron trasulphide ammonia, B₂S₃,6NH₃

Ppt (Stock, B 1901, 34, 3042.) Boron pentasulphide, B₂S₂.

Decomp. by H2O and alcohol. (Moissan, C. R. 115. 271)

Decomp. by H.O. (Schultz-Sellac, B. 4.

B(HSO₄)₃. Very deliquescent Easily sol. in furning H2SO4 (D'Aicy, Chem Soc. 55.

SO₂(O.BO)₂, Hydroscopic Deliquescent. Sol. in H-O with decomp Decomp by cold alcohols. (Pictet, Bull. Soc 1908, (4) 3. 1121.) (SO₃)₂B₂O₅ Hydroscopic. Deliquescent Sol. in H₂O with decomp. Decomp by cold alcohols (Pictet, Bull. Soc. 1908, (4) 3. 1121.)

Borononotungstic acid. H4B2W2O12 + $22H_2O = 9WO_3$, B_2O_3 , $2H_2O + 22H_2O$.

Sol. in less than 1/0 pt. H2O, and as easily sol. in alcohol and ether. Sp. gr. of aqueous solution is somewhat under 3. (Klein, A. ch. (5) 28. 370.)

Aluminum borononotungstate, Al₄(B₂W₀O₅₂)₂ +65H2O.

Extremely sol. in H₂O. (Klein.)

Quickly effloresces. (Klein.)

(Klem)

Barium borononotungstate, Ba2B2W0O22+ Potassium borononotungstate, K4B2W1O32+ 19H₂O.

Sol, in 4 pts. cold, and less than ½ pt. hot H₂O. (Klein.)

Cadmium — Cd₂B₂W₃O₂₂ + 18H₂O Deliquescent

100 pts, of salt dissolve in less than S pts. H₂O at 19°. Sp. gr of solution is 3 28. (Klein.) Sp gr. of sat, solution at 15 6°/4° = 3 2887, at 16.2°/4° = 3 2868 (Kahlbaum, Z anorg 1902, 29, 229)

Calcium ----, Ca₂B₂W₂O₃₂+15H₂O. Sol in 1/10 pt. H2O. Solution has sp. gr. =

3.10. (Klein.) Cerium --- , Ce4(B+W4O3x73+57H4O.

Very sol in H₂O, sp gr. of solution is over 3 Chromium ----, Cr4(B2W2O32)8+74H2O. Very sol in H₂O; sp. gr of solution is 2.80 (Klein.)

Cobalt ----, Co₂B₂W₂O₃₂+18H₂O.

Very sol. in H₂O, sp. gr of solution set at 19°=3.38. (Klein) 100 pts. H₂O dissolve 306 8 pts. anhydrous salt at 16 2°; 288 pts. at 18 5°, 299.7 pts at 196°, 286 pts at 218°

Sp gr of solution sat at $19.2^{\circ}/4^{\circ} = 3.1369$ (Kahlbaum, Z anorg, 1902, 29, 218)

Copper ----, Cu2B2W6O32+19H2O. 25 pts H₂O dissolve 100 pts. salt, Sp. gr. of solution = 2 6. (Klein.)

Lead ----, Pb2B2W2O22+11H2O. Sl. sol. in cold, easily sol. in hot H₂O (Klein.)

Lithium ----, (?) Very sol, in H₂O, 'Sp. gr. of solution is

about 3. Magnesium ----, Mg2B2W9O21+22H2O. Very sol, in H₂O. (Klein)

Manganous ---- MngBgWgOgg+17HgO 100 pts. dissolve in 13 pts H₂O, Sp, gr, of solution at 19° = 3.15. (Klem)

Mercurous ---, 3Hg2O, B2O2, 9WO2+ 14H2O (?).

Precipitate Insol in H₂O (Klem.) Sol. in 20,000 pts. dil cold, and 1000 pts. boiling HNOs+Aq of 1 42 sp. gr

Nickel --- NioBoWoOoo +18HoO Very sol. in H₂O; sp. gr. of sat. solution at Silver ---, Ag₄H₂B₂W₁₄O₄₉+7H₂O. 19° = 3 32.

100 pts. H2O dissolve 261.6 pts, at 21.2°. gr. 15.75°/4° of solution = 2.2959. (Kahlbaum, Z. anorg. 1902, 29, 218.)

13H₂O 5 pts. salt dissolve in 8 pts H2O at 19° to form a solution of 1 38 sp gr. The solution sat, at 100° has sp gr of over 2, (Klein)

Silver ----, Ag4B2W0O22+14H2O Very sl. sol, in H2O.

Sodium ----, Na₂H₂B₃W₄O₂₂+23H₃O Very sol in H₂O Solution sat. at 19° con-

tains 84 pts. salt to 16 pts H₂O. (Klein.) Na₄B₂W₂O₃₂+12H₂O Sol. in less than 1/2 pt. H2O. Thallium ---, Tl2B2W4O32+5H2O

Sl. sol in hot H2O and nearly msol, in cold H₂O. (Klein)

Uranyl ----, $(UO_3)_4(B_2W_9O_{30})_2+30H_2O$. Very sol in H₂O (Klein.)

Sp gr of solution = 31 Zinc — $Zn_0B_0W_0O_{20} + 2II_0O_1$ Very sol, in H₂O. Sp. gr of solution = 3 15.

Borodecitungstic acid.

Barium borodecstungstate, Ba2B2W10O24+ 20H2O. Sol in H₀O. (Klein, C. R. 99, 35.)

Boroduodecitungstic acid, H₈B₂W₁₂O₄₄= 4H₂O, B₂O₃, 12 WO₃

Known only in solution, which decomposes into boronotungstic acid and tungstic acid. when evaporated to a certain concentration (Klein, C R 99, 35)

Barium potassium boroduodecitungstate. 3BaO, K2O, B2O2, 12WO2+28H2O. Potassium ——, $K_8B_2W_{18}O_{42}+21H_9O$

Sol. in H₂O (Klein.) 2K₂O, 12WO₃, B₂O₂+18H₂O Sol, in H₂O, (Klein.)

Boroquatuordecitungstic acid, H₁₂B₂W₁₄O₅₁ =6H₂O, B₂O₄, 14WO₂,

Has not been obtained in the free state. (Klein, A. ch. (5) 28, 353.) Barium boroquatuordecetungstate.

 $Ba_2B_2W_{14}O_{45} = 3BaO_1$, B_2O_3 , $14WO_2 +$. 5H2O. Sl. sol. in H₂O. (Klein)

Barium sodium ---3½BaO, 1½Na₂O, 5H2O, B2O2, 14WO2+29H2O

Potassium ----, 3K2O, H2O, B2O8, 14WO8+ 22H.O.

Sol. in H₂O. (Klein.)

Nearly most in cold H.O. (Klein.) Sodium ---, $Na_4H_4B_2W_{14}O_{51}+29H_2O$. Sol, in H₂O (Klein.)

Sodium strontum boroquatuordecstungstate, 3½SrO, 1½Na₂O, B₂O₃, 14WO₃+29H₂O. Decomp. by H₂O. (Klein)

Boroundeviguntitungstic acid.

Barium borounderigintitungstate, 4BaO, B₂O₃, 19WO₃+30H₂O Can be cryst from H₂O. (Ebenhuson,

Dissert 1905.)

Boroquattuoretrigintitungstic acid, B₂O₅,

24WO₃+66H₂O.

Deliquescent. Somewhat more sol. in H₂O

than B₂O₂, 28WO₂+62H₂O. Also more stable (Copaux, C R 1908, 147, 975.) Barium boroqualiuo einginitungstate, 5BaO, B₂O₂, 24WO₂+54H₂O

100 pts. H₂O dissolve 50 pts. salt. (Copaux, A. ch. 1909, (8) 17. 217.) 6BaO, B₂O₃, 24WO₃+58H₂O (Copaux,

6BeO, B₂O₃, 24WO₃+58H₂O (Copaux, 12H₂Coro l c) (Copaux, 12H₂Coro Cadmium —, 5CdO, B₂O₃, 24WO₃+ land, l c)

51H₂O Extremely sol. in H₂O. (Copaux, l. c.) Calcium —, 5CaO, B₂O₃, 24WO₈+44H₂O.

Very sol. in H₂O. (Copaux, l. c.) Lithium ——, 15L₁₂O, B₂O₄, 24WO₂+38H₂O.

(Copaux, l. c.)

Magnesium ——, 5MgO, B₂O₃, 24WO₃+
42H₂O.

Very sol in H₂O. (Copaux, l. c.)

Mercurous —, 9Hg₂O, B₂O₃, 24WO₃+ 25H₂O. (Copaux, *l. c.*)

Potassium —, 5K₂O, B₂O₃, 24WO₃+ 36H₂O. (Copaux, l. c.)

Sodium ---, 5Na₂O, B₂O₃, 24WO₃+5H₂O. As NH₄ salt. (Copaux, l, c,)

Boroquinquetrigintitungstic acid.

Potassium boroquinquetrigintitungstate.

5K₁O, B₂O₃, 25WO₄+34H₂O. (Ebenhusen, Dissert. 1905.) Boroduodetrigintatungstic acid, B₂O₃,

Boroduodetrigintatungstic acid, B₂O₃, 28WO₄+62H₂O.

Decomp in boiling aqueous solution. (Co-

paux, C. R. 1908, 147. 975.)

Potassium boroduodetrigintatungstate, 6KiO.

B₂O₃, 28WO₃+42H

Decomp. by boiling alkalies. (Copaux, A ch. 1909 (8) 17, 217.)

Borovanadic acid.

Sol. in H₄O. Easily decomp. (Guyard, Bull Soc. (2) 25, 354.) Metabromantimonic acid, HSbBr₆+3H₄O. Very hydroscopic. Loses Br₂ in the air. Decomp. by H₂O with separation of antimonic acid. (Wemland, B. 1903, 36, 256.)

Ammonium melabromantimonate, NH₄SbBr₅+H₂O.

Loses Br₁ in the air. Decomp. by H_2O . (Weinland, l. c)

Iron (ferric) metabromantimonate, Fe(SbBr₆)₃+14H₂O.

Very hydroscopic Decomp. by H₂O. (Weinland, l. c.)

Lithium melabromantimonate, LiSbBr₆+

· 4H₂O

Very hydroscopic Loses Br₂ in the air.

Decomp. by H₂O. (Weinland, l. c.)

Nickel metabromantimonate, Ni(SbBrs)2+ 12H₂O.

Hydroscopic. Decomp. by H₂O. (Weinland, *l c.*)

Potassium metabromantimonate, KSbBt₀+ H₂O. Loses Br₂ in the air Decomp. by H₂O. (Weinland, l. c.)

Bromarsenious acid. See Arsenyl bromide.

Bromauric acid, HAuBr4+8H2O.

(Lengfeld, Am. Ch. J. 1901, 26, 329.) +5H₂O. Very sol. in H₂O. (Thomsen, J. pr. (2) 13, 337.) +5H₂O. Sol. in ether and CHCl₃ without decomp. (Lengfeld, Am. Ch. J. 1901, 26, 329.)

Ammonium bromaurate, NH₄AuBr₄.

Ppt. (Gutbier, Z. anorg. 1914, 85. 358.)

Ppt. (Gutbier, Z. anorg. 1914, 85. 35)
Barium bromaurate.

Not deliquescent. Sol. in H₂O. (v. Bonsdorff, Pogg. 17. 261.)

Cæsium bromaurate, CsAuBr.

Sl. sol. in H₂O or alcohol. Insol. in ether. (Wells and Wheeler, Sill. Am J 144. 157.) Ppt. (Gutbier, Z. anorg. 1914, 85. 380.)
Cerium bromaurate, CeAuBr₈+8H₂O.

Sol. in H₂O. (Jolin, Bull. Soc (2) 21. 533.) Didymium bromaurate, DiAuBr₂+9H₂O.

Very deliquescent. Sol. in H₂O. (Cleve.) Lanthanum bromaurate, LaAuBr₀+9H₂O.

Sol. in H₂O (Cleve)

Magnesium bromaurate.

Deliquescent in moist air. (v. Bonsdorff)

Manganese bromaurate.

Deliquescent. (v. Bonsdorff.)

Potassium bromaurate, KAuBi.

Sl sol in H_{*}O than in H.O v Bonsdorff

+2H₂O Sol m 5 12 pts. H₂O at 15°, 1.56 pts at 40°, and 0.48 pt at 67°. Decomp by ether Si sol, in KB1+Aq. (Schottlander, A 217, 314,)

+5H₂O Efflorescent (v Bonsdorff)

Rubidium bromaurate, RbAuB14

As cæsium bromaurate Ppt (Gutbier, Z anorg, 1914, 85, 359.)

Samarium bromaurate, SmAuBra+10H-O. Very deliquescent. (Cleve, Bull Soc. (2) 43, 165.)

Sodium bromaurate, NaAuBr4. Slowly sol, in H₂O (v Bonsdorff)

Zinc bromaurate, Zn(AuBr.).

Very deliquescent, (v. Bonsdorff) Bromauricvanhdric acid.

Not known in free state. Barium bromauricvanude, BafAu(CN)2Brele+ 10H₂O.

Very sol, in hot or cold HaO, also in alcohol (Lindborn, Lund Univ Aisk 12, No 6) Cadmium bromauricyanide, Cd[Au(CN)2Br2]2

+6H₂O Very sol in hot or cold II2O, but solution is

unstable (Landborn) Calcium bromauricyanide, Ca[Au(CN),Br.]. +10H.C

Extremely sol. in H₂O and alcohol (Lindhom.)

Cobalt bromauricvanide, Co[Au(CN)+Br-l++ 9H.O. Moderately sol. in H₂O. Less sol than

other bromauricyanides. (Lindbom) Potassium bromauricyanide, KAu(CN), Bro

+3H*0 Sol. in H₀O and sleohol

Sodium bromauricyanide, NaAu(CN),Br2+

Very sol in H2O or alcohol Strontium bromauricyanide, St[Au(CN);Brs],

 $+xH_2O$

Very sol, in H₂O or alcohol

Zinc bromauricyanide, Zn[Au(CN)2Br2]2+

Easily sol, in cold or hot H2O. Bromhydric acid, HBr.

Very sol, in H2O.

2H2O.

The most concentrated HBr+Aq has a sp. gr of 1.78, and contains 82.02% HBr (Champion and Pellat, C. R. 70, 620) This, or a weak acid on heating leaves a residue, which

distils unchanged at 125-125.5° under 785 More sol in cold alcohol amm. pressure, and contains 48 17%, HBr (Topsoe); at 126° under 758 mm. pressure. and contains 46 83% HB1 (Bineau), and had sp gr. = 1486 at 20° (Bineau), sp. gr. = 1.48 at 20° (Champion and Pellat), sp. gr =1 49 at

20° (Topsoë), According to Roscoe (A. 116, 214) an acid. of constant composition, obtained by boiling a stronger or a weaker acid, if distilled under 752-762 mm pressure, contains 47.38-47.86% HBr. and boils at 126° at 760 mm. pressure, but the composition is dependent on the pressure, as, for example, under 1952 mm pressure, the residue boils at 153°, and con-

tains 46.3% HBr. (Roscoe) By conducting dry air through HB1+A0 an acid is obtained containing 51 65% HBr if at 16°, and 49 35% HBr if at 100° (Roscoe) 1 vol H₂O dissolves 600 a vols HB1 at 10°. (Berthelot, C. R. 76, 679)

I nt H₀O at t^c and 760 mm pressure dissolves ats HBi

t°	Pts HBr	t°	Pts HBr	ŧ°	Pts HBr
-25 -20 -15 -10	2 550 2 473 2 390 2 335	$-5 \\ 0 \\ +10 \\ +25$	2 280 2 212 2 103 1 930	+50 +75 +100	1 715 1 505 1 300
(Roozeboom, R. t. c 4, 107)					

Absorption by 1 pt. H₂O at t° and p pressure in mm

+°= --259

Б	Pts RBr	р .	PES HBF
760 300 140	2 550 2.263 2 120	100 1 0 5	2 056 1 755 1 10

t° = -20°.

Þ	Pts HB1	p	Pts. HBr
760 375 180	2 473 2 267 2 119	130 20	2 056 1 850

$t^{\circ} = -15^{\circ}$. Pts HB: Pts HB: 760 2 390 175 2.056470 2 266 102 1 980 250 2 119

t° =11.3°				
p	Pts HBr	p	Ptg. HBr	
760 570	2 350 2 265	310 216	2 118 2.055	

t°=5°				Sp gr. of HB1+Aq at 15°.					
p	Pts HBr	p	Pts HBr	% HBr	Sp gr	HBr	8р дт	HBr	Sp gr
760 730	2 280 2 264	430 298	2 117 2 055	1	1 0082	18	1 145	35	1 314
	t°=	• 0°		2 3 4	1 0155 1 0230 1 0305	19 20 21	1 154 1 163 1 172	36 37 38	1 326 1 338 1 350
p	Pts HBr	р,	Pts HBr	5	1 038	22	1 181	39	1 362
760 540	2 212 2 116	380 5	2.054 1 085	7 8	1 046 1 053 1 061	23 24 25	1 190 1.200 1 209	40 41 42	1.375 1.388 1.401
	(Roozeboom,		07)	10 11	1 069	26 27	1 219 1 229	43 44	1 415 1 429
Sp. gr.	Sp. gr. of		HBr Temp	12	1 085 1 093 1 102	28 29 30	1 239 1 249 1 260	45 46 47	1 444 1 459 1 474
	7 67 14° 10 19 14°	1 349 37	3.67 13° 7.86 13°	14 15 16	1 110 1 119 1 127	31 32 33	1 270 1 281 1 292	48 49 50	1 490 1 496 1 513

(Biel, C. C 1882, 148.)

17 1 136 34 1 303

Absorbed by alcohol with formation of

The composition of the hydrates formed by HBr at different dilutions is calculated from determinations of the lowering of the fr. pt produced by HBr and of the conductivity and sp. gr. of HBr+Aq. (Jones, Am. Ch. J.

1905, 34 326) +H₂O. (Roozeboom, R t c. 5. 363)

+2H₂O. (Berthelot, A. ch. 6), 14. 369.) (Pickering Chem. Soo 1894, 64 (2) 232 Mpt. —11,2°. (Pickering, l. c.) +3H₄O. Mpt. —48.0°. (Pickering.) +4H₄O. Mpt. —55.8°. (Pickering.) +5H₂O. (Pickering)

Bromhydric cyanhydric acid, 3HBr, 2HCN.

Decomp by H₂O and alcohol. Insol. in ether (Gautier, A ch (4) 17. 141.)

Bromic acid, HB1Oa

Known only in aqueous solution

Solution evaporated on water bath decomposes when it contains 4 26% HBrO₄ In vacuo, an acid containing 50 59% HBrO₄ corresponding to formula HBrO1+7H2O can be obtained.

Not decomp. by dil. HNQ3, or H2SO4+AC Conc H.SO, decomposes Alcohol and ether are quickly oxidized by HBrO.

Bromates.

Most of the bromates are very sol, in H₂O. a few are sl sol, but none are msol., the least sol being AgBrO₃ and Hg₂(BrO₃)₂

Aluminum bromate, Al(BrO₂)₂. Deliquescent (Rammelsberg, Pogg. 55.

+9H₂O. Mpt 62 3° Less hygroscopic

30 13 120 14° īš° 1 097 12 96 419 43 12 130 15 37 140 1 431 118 43 99 14° īš° 131 16.93 1 438 44 62 $\bar{14}^{\circ}$ 1 164 20 65 1 451 14° 45.45 1 460 īá° 1 200 24 35 46 09 13° 232 27 62 1 485 47 87 14° 13° 1 253 29 68 1 490 48 17 140 î3° 1 302 | 33 84

(Tonsoé, B 3, 404.)

C. ... CTTD 1 1 1 2 10

op gr. or HBr+Aq at 14'.						
% HBr	Sp gr	% HBr	Sp gr.	% HBr	Sp gr	ļ
1	1 007	18	1 140	35	1 314	
2	1 014	19	1 149	36	1 326	1
3	1 021	20	1 158	37	1 338	L
4	1 028	21	1 167	38	1 351	Į.
4 5	1 035	22	1 176	39	1 363	١.
6	1 043	23	1 186	40	1 376	[]
7 8	1 050	24	1 196	41	1.389	ì
8	1 058	25	1 206	42	1 403	1
9	1 065	26	1 215	43	1 417	1
10	1.073	27	1.225	44	1 431	l١
11	1 081	28	1 235	45	1 445	l.
12	1 089	29	1 246	46	1.459]]
13	1 097	30	1 257	47	1 473	L
14	1 108	31	1 268	48	1 487	1
15	1 114	32	1 279	49	1 502	ı
16	1.122	33	1 290	1 20	1 002	15
17	1 131	34	1 302			١,
	* *0*	0.2	1 002	1 .		Hi
(Topson enloylated by Coult by 7 1 07						

(Topsoe, calculated by Gerlach, Z. anal 27. 316.) Sp gr. of HBr+Ag at 15°.

% HBr Sp. gr Sp gr 1 % HBr Sp gr 1 038 1 204 45 1 435 10 1 077 30 1.25250 1 515 15 35 1.305 20 1.159 40 1.365

Only a "moderate degree of accuracy" is claimed for this table. (Wright, C N 23. 242)

than Al(ClO₂)₂. (Dobrosserdow, C. C 1907. Bismuth bromate. I. 1723.)

Ammonium bromate, NH, BrOz.

Decomposes spontaneously; sol in H₂O.

(Rammelsberg, Pogg. 52, 85.) Barium bromate, Ba(BrO₂)₂

Solubility of Ba(BrO₃)₂ in H₂O. 100 g. sat. Ba(BrOa) +Aq at to contain g anhydrous Ba(BrO₃)2.

-0 034° ± 0 002° 0 280 50° 1 72	t°	grams Ba(BrO ₃);	t°	Grums Ba(BrO+)+	E
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0 034°±0 002° 0° +10° 20° 25° 30°	0 286 0 439 0 652 0 788 0 95	60° - 70° 80° 90° 98 7°	2 271 2 922 3 521 4 26 5 256	I C

^{*99 65°} is bpt. at 740 mm. = 100 39° at 760 mm.

(Anschutz, Z phys Ch. 1906, 56, 240) 100 g sat. Ba(BrO_g)₂+Aq contain 0.793 g Ba(BrO₃)₂ at 25°. Sp gr. of the solution at 25°/4°=1.0038 (Harkins J Am. Chem

Soc 1911, 33, 1815) Solubility of Ba(BiO₃)₂ in salts+Aq at 25°. C = concentration of salt in salt + Aa in milli-

equivalents per l d₁=Sp. gr at 25°/4° of salt+Aq. S=solubility of Ba(BrOa), in salt+Aq expressed in milliequivalents per I d₂=sp. gr. at 25°/4° of Ba(BrO₃)₄+salt+Aq

Salt d2 None 1 0038 40 18 KNO₃ 25 018 0 9985 43 86 1 0059 47 03 1 0081 50 032 1 0080 99 970 1 0033 52.13 1 0120

Ba(NO.) 25 018 1 0003 36 77 1 0059 1 0025 50 039 34 74 1.0083 32 63 1 0132 99 97 1 0073 199 95 1 0183 30 95 1.0233 KBrO. 24 988 1.0001 26.531 0046 17 37 49 971 1.0031 1 0062 99 85 1 0093 8 76 1 0109 Mg(NO₂)₂ 100 0 52 57 1 0114

(Harkins, J. Am. Chem. Soc. 1911, 33, 1815.) +H₂O. Sol. in 130 pts. cold, and 24 pts. boiling H₂O. (Rammelsberg, Pogg. **52**. 81.)

Decomp. by H.SO., or HCl+Aq. Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4329.) Insol. in methyl acetate. (Naumann, B 1909. 42. 3790)

Known only in solution, which decomp on evaporation. (Rammelsberg, Pogg. 55. 76)

Cadmium bromate, Cd(BrO₁)₂+H₂O Sol in 0 8 pt cold H₂O. (Rammelsberg,

Pogg. 55, 74.) +2H₂O (Topsoe, J. B 1872, 164)

Cadmium bromate ammonia, Cd(BrO₁)₂, Decomp by H₂O (Rammelsberg, Pogg

55. 74 Cd(BrO₃)₂, 4NH₃. Ppt. (Ephraim, B 1915, **48.** 51.)

Calcium bromate, $C_8(B_1O_2)_2 + H_2O_3$ Sol. in 1.1 pts. cold H₂O (Rammelsberg, Pogg. 52. 98) Cerous bromate, Ce(BrC₃)₈+9H₂O

Easily sol. in H₂O (Rammelsberg, Pogg. **5.** 63) Mpt. 49°; very sol. in H₂O with decomp. (James, J. Am, Chem. Soc 1909, 31, 914.)

Cobaltous bromate, Co(BrOs):+6H.O. Sol. in 2.2 pts cold H₂O; sol. in NH₄OH

+Aq. (Rammelsberg, Pogg, 55, 71) Cupric bromate, basic, 6CuO, Br₂O₅+10H₂O, Ppt. (Rammelsberg, Pogg 55, 78)

Cupric bromate, Cu(BrO₃)₂+6H₂O. Easily sol, in H₂O (Rammelsberg, Pogg, 52. 92)

Cupric bromate ammonia, Cu(BrO₂), 4NH₂, Completely sol, in a little H2O, but dccomp by difution. Insol in alcohol (Rammelsberg, Pogg. 52.

Didymium bromate, D1(BrOs)++9HsO. Sol. in H.O (Mangnae)

Dysprosium bromate, Dy(BrO₂)₂+9H₂O. Mpt. 78°. Easily sol, in H.O. Difficultly sol. in alcohol. (Jantsch, B. 1911, 44, 1275) Erbium bromate, Er(BrO₁)₂+9H₂O. Very sol, in alcohol and H2O.

Glucinum bromate. Deliquescent.

Iron (ferrous) bromate, Fe(BrOs): Sol, in H2O, but solution decomp, very easily.

Iron (ferric) bromate, 5Fe₂O₃, Br₂O₃+30H₂O Partially sol. in H.O. with separation of a more basic salt Sol. in HBOs+Aq (Rammelsberg, Pogg. 55, 68.)

Lanthanum bromate, La(BrO_{*})₂+9H₀O_{*}

Sol in 3½ pts H₂O at 15° (Mangnao, Ann Min. (5) 15. 274)

Mpt. 37.5° in its water of crystallization 416 pts. are sol in 100 pts. H₂O at 25°. (James, J Am. Chem. Soc 1909, 31. 913.)

Lead bromate, basic, 3PbO, Pb(BrO₃)₂+ 2H₂O Ppt (Strömholm, Z anorg 1904, 38, 441)

Lead bromate, Pb(BrO₂)₂.

Sl. sol. in H₂O 13 37 x 10⁻¹g, are contained in 1 liter of sat solution at 20° (Bottger, Z phys. Ch 1903, 46.603) + H₂O. Sol. in 75 pts cold H₂O. (Ram-

melsberg, Pogg. 52, 96.)

Lithium bromate, LiBrO₂.

Very deliquescent, and sol, in H₂O (Ram-

melsberg, Pogs. A 55, 63)

Not deliquescent (Politilitzin, B. 23, 545 R.)

Sp. gr of solution sat at 18°=1 833, and contains 60.4% LiBrO₃. (Mylus, B. 1897,

30. 1718.) +H₂O. Not deliquescent. (Potalitzm.)

Magnesium bromate, Mg(BrO₃)₂+6H₂O Efflorescent. Sol in 1.4 pts cold H₂O at 15. Melts in its water of crystallization when heated (Rammelsberg, Pogr. 52, 89.)

Mercurous bromate, basic, 2Hg₂O, Bl₂O₈
Insol in warm H₂O. Sol. in HNO₂+Aq.
(Rammelsberg, Pogg, 55, 79.)

Mercurous bromate, Hg2(BrO3)2.

Decomp by H₂O into basic salt Difficultly sol in HNO₃+Aq; easily sol in HCl+Aq (Rammelsberg.)

Mercuric bromate, basic, 2HgO, Br₂O₄+H₂O Slowly decomp. by cold, quickly by hor H₂O into oxide and an acid salt, Easily sol in dil. acids. (Topsoe, W. A. B 66, 2, 2)

Mercuric bromate, HgBrO₃+2H₂O.

Sol in 650 pts. cold, and 64 pts. bodin H₂O. Sl. sol, in HNO₂+Aq. Basily sol, i: HCl+Aq. (Rammelsberg, Pogg. 55, 79.)

Mercuric bromate ammonia.
Sol with decomp in HCl+Aq. (Storer

Dict.)

Neodymium bromate, Nd(BrO₈)₈+9H₂O.

Mpt. 66.7°. 146 pts. are sol. in 100 p

Mpt. 66.7°. 146 pts. are sol. in 100 pts H₂O at 25°. (James, J. Am. Chem. Soc 1909, 31, 915.)

Nickel bromate, Ni(BrO₂)₂+6H₂O. Sol. in 3 58 pts. cold H₂O. (Rammelsberg

Pogg. 55, 69)

Nickel bromate ammonia, Ni(BrO₂)₂, 2NH₈
Sol in H₂O, with decomposition of th
major portion brond, in alcohol. (Rammels
berg, L. c.)
Ni(BrO₃)₂, 6NH₈. Ppt (Ephraim, E

1915, 48. 50) Potassium bromate, KBrO_a

100 pts. H₂O dissolve 6.58 pts KBrO₃ at 15° (Rammelsberg). 100 pts. H₄O dissolve 5 83 pts KBrO₃ at 17.1° (Pohl W. A. B. 6.

595), at 0°, 3.11 pts.; at 20°, 6.92 pts , at 40°, 13 24 pts., at 60°, 22 76 pts ; at 80°, 33 90 pts , at 100° 49 75 pts KBrO₂ Sat. solution boils at 104° _(Kremers, Pogg. 97. 5.)

 I. H₂O at 25° dissolves 0.4715 moles KB₁O₃ (Geffcken, Z. phys. Ch 1904, 49. 296.)

11 H₂O dissolves 0.478 mol KBiO₃ at 25°. (Rothmund, Z. phys. Ch. 1909, **69.** 539.)

othmund, Z. phys. Ch. 1909, **69**. 539.) Sp gr. of KBrO₃+Aq at 19.5°.

%KBrO ₁ Sp gr .	1.009	$\frac{2}{1.016}$	3 1 024	$^{4}_{1\ 031}$	5 1.039
%KBrO ₁ Sp. gr.		$\frac{7}{1.054}$	8 1 062	9 1 070	10 1.079

(Gerlach, Z. anal. 8. 290)

| Solubility of ISBrO₂ in salts +Aq at 25° | Moles of KBrO₂ sol in 1 lites of | Salt | Salt | Solution | S

(Geffcken, Z. phys Ch. 1904, 49. 296)

Easily sol in liquid HF. (Franklin, Z. anorg, 1905, 46, 2) Sl. sol in alcohol, (Rammelsberg)

Insol in absolute alcohol .

Solubility in organic compds.+Aq at 25°.

J	Dorus	mity in organic com	jus. Thy at 20 .		
ot B.		Solvent	Moi KBrOs soi 1 litre	ın	
в.		Water	0 478		
	0 5-N	Methyl alcohol	0 444		
	- 4	Ethyl alcohol	0 421		
1g	- 11	Propyl alcohol	0 409		
iñ	1.0	Tert. amyl alcohol	0 383		
	- 11	Acetone	0 425		
	- 61	Ether	0.395		
'n	- 11	Formaldehyde	0.397		
S	- 11	Glycol	0.448		
	"	Glycerine	0 451		
	- "	Mannitol	0 451		
s.	tr .	Glucose	0 463		
c.	- 11	Sucrose	0 431		
٠.	ш	Urea	0 477		
	66	Dimethyl pyrone	0 478		
	"	Ammonia	0 445		
g,	- 66	Diethylamine	0 384		
٠,	- (1	Pyridme	0 415	•	
		Piperidine	0 396		
٠	- 66	Urethane	0 433		
10	"	Formamide	0 455		
S-					
.		Acetamide	0 445		
3.	u	Glycocoll	0 501		
- 1	"	Acetic acid	0 456		
		Phenol	0.426		
	",	Methylal	0 405		
ŝŧ	**	Methyl acetate	0 420		

(Rothmund, Z. phys. Ch. 1909, 69, 539.)

Insol in acetone (Eidmann, C. C. 1899, II_1014, Naumaun, B. 1904, 37, 4329) Insol. in ethyl acetate (Naumann, B. 1910. 43, 314) Insol. in methyl acetate (Naumann, B 1909, 42, 3790)

Praseodymium bromate, Pr(BiO₃)₃+9H₂O. Mpt. 56 5°. 190 pts, are sol, in 100 pts H_2O at 25°. (James, J Am Chem Soc. 1909, 31. 914)

Samarium bromate, Sm(BrO₃)₃+9H₂O Mpt, 75° 114 pts, are sol, in 100 pts, H₂O at 25°, Very sl, sol in alcohol. (James, J Am, Chem Soc 1909, 31, 915)

Scandium bromate.

(Crookes, Roy. Soc Proc 1908, 80, A, 518) Silver bromate, AgB1O2.

1 pt. H₂O dissolves 0 00810 pt. AgBrO₂ at 24 5°. (Noyes, Z phys Ch 6. 246.) Sol m 595.3 pts H₂O at 25°

Sol m 320.4 pts HNO4+Aq (sp. gr 1 21) at 25° Sol in 2 2 pts NH₄OH+Aq (sp gr 0.96) at 25° (Longs, Gazz, ch it 13, 87.) 1 l H₂O dissolves 1.71 g AgBiO₃ at 27°

(Whitby, Z. anorg 1910, 67, 108) Si sol, in H.O 159 x 10-4 g are contamed in 1 liter of sat solution at 20° (Bottger, Z. phys. Ch 1903, 46, 603)

Insol, in HNO, (Lowig.) Easily sol in pA+HO_bHN

Silver bromate ammonia, AgBrO3, 2NH3 Decomp in air or by H₀O. (Rammelsberg, Pogg 52. 94)

Sodium bromate, NaBrOs. Sol in 2 7 pts H-O at 15°. (Rammelsberg) 100 pts. H₂O dissolve at-

20° 40° 60° 80° 100° 27 54 34.48 50 25 62.5 75 75 90 9 pts. NaBrOs. (Kremers, Pogg. 94, 271.)

Easily forms supersaturated solutions Sat. solution boils at 109°. (Kremers) NaBrO₁+Aq containing 10.10% NaBrO₈ has sp.gr 20°/20° = 1.0818

NaBiO₁+Aq containing 11.09% NaBrO₈ has sp. gr 20°/20°=1 0900. (Le Blanc and Rohland, Z. phys. Ch 1896

19. 278.) Sp gr. of NaBrO +Aq at 19.5°

%NaBrO. 15 Spgr. . 1 041 1 083 1 129 %NaBrO. 20 25 30 Sp. gr. 1 178 1 231 1 289 (Kremers, Pogg. 97. 5, calculated by Gerlach,

Z. anal. 8, 290.) Moderately sol in liquid NH4. (Franklin, Perbromic acid.

Am. Ch. J. 1898, 20, 829.)

Insol, in methyl acetate. (Naumann, B. 1909, 42, 3790 Insol. in ethyl acetate (Naumann, B 1910, 43, 314)

Sodium bromate bromide, 3NaBrO., 2NaBr +3H.O

Decomp by H₂O or alcohol. (Fritzsche.) Strontium bromate, Sr(BrO₂)₂+H₂O

Sol in 3 pts, H₂O (Rammelsberg, Pogg, 52, 84), less sol in H₂O than S₁Br₂+6H₂O, (L_O wig)

Thallous bromate, TIBrO.

Sl sol. in hot H2O, easily sol in HNO: +An (Oettinger,) Easily sol in HaO and dil, acids (Ditte. A ch (6) 21, 145)

Terbium bromate, Tb(BrO2)2+9H2O. Not deliquescent, (Potratz, C. N. 1905,

92, 3,) Thallous bromate, TlB1Os

1 1 H₂O at 39 75° dissolves 2 216 x 10-2 g. mol. (Noyes and Abbott, Z. phys Ch. 1895, 16, 130 Sl. sol. in H₂O. 3 46 x 10-1 gram are contained in 1 liter of sat solution at 20° (Bott-

ger, Z phys. Ch 1903, 46, 603.) Thallic bromate, Tl(BrO₈)₂+3H₂O

Very hydroscopic. Easily decomp. by H.O. (Gewecke, Z anorg, 1912, 75, 275) Thulium bromate, Tm2(BrO2)6+18H2O

Putd, from sat, aqueous solution by 95% alcohol NII4OH is the best precipitant (James, J Am Chem Soc 1911, 33, 1342)

Tin (stannous) bromate (?). Insol. in H2O; sol in HCl+Aq. Uranyl bromate, 4UOs, 3B12Os+16H2O.

Sol in H₂O (Rammelsberg) Yttrium bromate, Y(BrO₂)₂+9H₂O More easily sol, in H₂O than Y(IO₂)₂. Sl.

sol in alcohol Insol, in ether, (Cleve,) Mpt. 74°. 168 pts. are sol. in 100 pts. H₂O at 25° Sl sol m alcohol (James, J. Am. Chem.

Soc. 1909, 31. 916.) Zinc bromate, Zn(BrO₃)₂+6H₂O

Sol. in 1 pt cold H₂O (Rammelsberg, Pogg. 52. 90.)

Zmc bromate ammonia, Zn(BrO₃)₂, 2NH₃+ 3H,O. Decomp. by H₂O and alcohol. Sol in

NH₄OH+Aq (Rammelsberg, Pogg. 52. 90) Zn(BrO₃)₂, 4NH₂ Ppt. (Ephram, B. 1915, 48. 51

See Perbromic acid,

Bromides.

Most bromides are sol m H₂O, many m alcohol, and some m ether AgBr and Hg₂Br₂ are insol..in H₂O or acids, PbBr, and TiBr are sl. sol. therein Cu₂Br₂ is insol. in H₂O, sol in acids. See under each element

Bromine, Bro

1 pt. Br dissolves at 15° m 33 pts. H₂O. (Lowig, Pogg 14 485) 1 pt Br dissolves at 15° m 31 pts H₂O.

Solubility of Br in 100 pts. H ₂ O at t°					
10	Pts Br.	t°	Pts Br	to.	Pts Br
5	3 600	15 20	3 226	25	3 167

(Dancer, l. c.)

A sat aqueous solution of Bi contains

405% Br at 0°; 3.80% Br at 3°; 3.33% Br at 10° (Roozeboom, R. t e 3.29, 59, 73, 84) 1.1 H₂O dissolves 34 g. Br at 25°. (Jakow-km, Z. phys. Ch. 1896, 20. 25.) 1 ut is sol in 30 uts H.O. (Dietze. Chem.

Soc. 1899, 76 (2) 150.) 100 pts H₂O dissolve at.

100 pts H₂O dissolve at. 0° 10 34° 19 96° 30 17° 40 03° 49 85° 4 167 3 740 3 578 3 437 3 446 3 522 pts. bromine.

Liquid bromine as such is insol in H₂O; only the vapor dissolves (Winkler, Ch. Z 1899, 23. 688.)

Lauchlan, Z phys. Ch. 1903, 44. 617)

Solubility of bromine vapor in H_2O at t^c . $\alpha = \text{coefficient of absorption}$

t°	a	t ^o	4
0	60 5	42	8 6
0 2 4 6	54 1	44	7 9
4	48 3	46	7.4
6	48 3	48	6.9
8	38 9	50	6.5
10	35 1	52	6 1
12	31.5	54	5.8
14	28 4	56	5 4 5 1
16	25 7	58	51
18	23 4 21 3	60	4 9
20 22	21 3 19 4	64	4 6 4 4
24	17 7	66	7.5
26	16 3	68	4.2 4.0
28	15 0	70	3 8
30	13 8	72	3.6
32	12 7	74	3 4 3 3
34	11.7	76	3 3
36	10.9	78	3 1
38	10 1	80	3 0
40	9 4	11 .	l

(Winkler, Ch. Z. 1899, 23, 688.)

Solubility of bromine vapor.

(22 can of many descriminations)						
Temp	Pressure	Absorption coefficient				
0 0	56-13mm.	60 53				
9 94°	89-16	35 22				
20 46	138-9	20 87				
30 38	179-12	13 65				
40 31	229-26	9 22				
50 25	274-53	6 50				
60 04	314-46	4 84				
69 98	154-54	3 82				
80 22	396-74	2 94				

Solubility of liquid bromine.

(The mean of many determinations)						
Temp	0°	10.34°	19 96°	30 17°	40 03°	49 8
Pts H ₂ O that		26.74	27 0.1	20.10	20, 02	28.3

presence of bromine hydrate.

Solubility in presence of bromine hydrate.

(The mean of many determinations)

	Temp	0°	5 12°	
Pts	H ₁ O that dissolve 1 pt. Br ₂	42 39	26 26	

(Winkler, Ch. Z. 1899, 23, 688-689.) Solubility of Br₂ in H₂O at 25°=0.21 mols. in 1 l. (Bray, J. Am. Chem. Soc. 1910, 32.

Sn or of Br.+An containing nte Br in

1000 pts. solution.						
Pts Bı	Sp gr.	Pts Br	Sp gr			
10 72 10 68 12 05 12 21	1.00901 1 00931 1 00995 1 01223	18 74-19.06 19 52-20.09 20 89-21.55 31 02-31 69	1 01491 1 01585 1 01807 1 02367			

(Slessor, N. Edin Phil. J. 7, 287.)

Sp gr. of Bro+Ac at 32 5°.

% Br2 by weight	Sp. gr
0 7214	0 999814
1.1172	1 002520-
1.6448	1 006100-
1 0056	1 008870

2 5960 1 013200 (Joseph, Chem. Soc. 1915, 107, 3.)

Sol. in conc. HCl, HBr, conc. solutions of bromides, and in liquid SO₂. (Sestim, Zeit, Chem. 1868, 718.)

Much more sol in HCl+Aq than in H₂O. 100 cem. HCl+Aq of 1.153 sp. gr. dissolve 36 4 g. Br at 12°

More sol. in SrCl₂, and BaCl₂+Aq than m H₂O. (Berthelot, C. R. 100, 761.)

Bromine is not more sol, in KB1 +A0 than in HoO (?). (Baland)

KBr+Aq containing 1 pt. KBr to 6 pts H₂O takes up as much Br as it already contams; when this solution is heated the dissolved Br is separated. I pt. KBr+1 pt H₂O takes up twice as much Br as it already contains, much heat being evolved. This solution loses Br on exposure to the air or when heated. (Löwig.)

Solubility of Br. in KBr+Aq.

g, Mois. KBr per l.	g. at. Br dissolved per l at 18 59	g at Br dissolved per l at 26.5°
0 00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7	0.4448 0.4634 0.4632 0.5049 0.5049 0.5491 0.5699 0.6801 0.6801 0.6801 0.8718 1.0549 1.0549 1.7712 2.0006 2.2354	0 4282 0 4490 0 4671 0 4925 0 5101 0 5530 0 5536 0 5920 0 .5981 0 .6488 0 .8591 1 .0787 1 .2704 1 .4731 1 .67717 1 9197 2 1029
0.9	2.4851	2 3349

The above figures indicate that below a concentration of 0.1 g. mol. KBr per l. just enough Br is dissolved to form KBr₃, while above that concentration somowhat larger amounts of Br are dissolved, which is greater at the lower temp.

(Worley, Chem. Soc. 1905, 87, 1109.)

Solubility of Br2 in NaBr+Aq at 25°.			
g NaBı per l	gatoms Br2 par l	Sp. gr.	
92 6	2.479	1 213	
160 5 205.8	4 345 6.195	1 372 1 515	
255.8 319.7	8 575 13 65	1 678 1.997	
359 0	16 04 19 23	2 137	
408.3	20.85	2 420	

(Bell, J. Am. Chem. Soc. 1912, 34, 14.)

Solubility in salts+Aq. Solubility in 1 liter K2SO4+Aq at 25°

K2804+Aq	g Bromine
1-N 1/z-N 2/c-N 1/s-N	25.14 29.44 31.46 32.70
1-N 1/z-N 2/e-N 1/s-N	29.44 31.46

(Jakowkin, Z. phys Ch. 1896, 20, 26,)

Solubility in I liter Na ₂ SO ₄ +Aq at 25°		
NasSO1+Aq	g Bromine	
1-N 1/s-N 1/r-N 1/s-N 1/s-N	25 07 29 20 31 33 32 94 33 26	

(Jakowkin, l. c.)

Solubility in 1 liter NaNO3+Aq at 25°,

NaNO1+Aq	g Bronune
1-N	28 80
1/2-N	31 35
1/4-N	32 62
1/4-N	33 33
1/4-N	33 74

(Jakowkin, l, c.)

Solubility in salts + An at 25°.

Salt +Aq	g Br2 sol. in 1 lite
(r-N N8:50, (r-N K:50, (r-N (NH.):50, N NaNO: N KNO: N KNO: N NB:NO: N NaC! N KC! N KC! N KC!	23 90 24 80 77 7 28 00 28 95 55 15 55 90 57 40 82 2

(McLauchlan, Z. phys. Ch. 1903, 44, 617.)

Solubility in HgBr2+Aq at 25°. 10 ccm, of the solution contain;-

2 231

Millimols, Br ₂	Millimols, Hg
2 • 125	0.
2 204	0 0560
2 216	0 0793
0.006	0.1904

(Herz and Paul, Z. anorg, 1914, 85, 215.)

0 2120

1 1 N.NH₄C₂H₄O₂+Aq dissolves 340.5 g Br₂ at 25°. (McLauchlan, Z. phys. Ch. 1903, 44. 617.

Muscible in all proportions with houid NOs. (Frankland, Chem. Soc. 1901, 79, 1361.)

More sol, in alcohol than in H.O. miscible with other, CS, CHCl. (Sestini, Zeit Chem. 1868. 718.

Somewhat soluble in glycerine. (Pelouze.) Sol. in benzene (Mansfield); insol. in benzene CMoride, A. ch. (3) 39, 452). Sol. in warm chloral, bromal, and todal. (Löwig, Pogg, 14. 485). Sol. in SCl₂ (Solly), and SBr₂. Sol in conc. HC₂H₂O₂+Aq. (Balard.) Sol in

aquesus solution of potassium, sodium, or cal-cium acetates (Cahours.)

Solubility in CS ₂ .	
100 g of the sat. solu	tion contain at
-95° -110 5	116°
45 4 39 0	
(Arctowski, Z. anoi	g 1896, 11. 274.)
Cryst from CS2 at	-90° in fine needle
Arctowski, Z anorg 1	395, 10. 25)
Sp. gr of Br2+CCl4	
% Br2 by weight	Sp gr
1 5449	1 58014
1 6454	1 58060
1 7990	1 58168

3 5833 1 59526 (Joseph, Chem. Soc 1915, 107, 3.) Sp. gi, of Br₂+nitrobenzone at 32 5°. % Bre by weight Sp gr 1 5643 1 20225

1 58812

2 6676

Other solvent

3 2323 1 21449 4 6462 1 22518 6 1826 1 23603 (Joseph, Chem. Soc. 1915, 107, 3)

Very sol in benzonitrile (Naumann, B. 1914, 47. 1369.) Sol in acetone (Eidmann, C C 1899. H. 1014; Naumann, B. 1904, 37, 4328)

Partition of Br2 between water and other solvents. W=millmols Bromme in 10 ccm of the

aqueous layer. G=millmols Bromine in 10 ccm, of the other laver. G

1 - W

Other spirons		3 "	G/ 11
CCl ₄	1 949 7 008 12.171 39.880 54 574	0.0853 0 3085 0 5300 1 3132 1 5560	22 78 22 71 23 13 30 32 35 01
75% by vol. CCl ₄ +25% by vol. CS ₂	3 567 7.304 10.888 13 922 17 280 25 687 40.625 54.085	0.0985 0.1910 0.2900 0.3720 0.4580 0.6580 0.9940 1.2080	37 06 38.15 37.36 37.42 37.62 38.96 40 88 44 73
50% by vol. CCl ₄ + 50% by vol. CS ₂	3.592 6 820 10 148 13 866 16 616 42.975 55.965	0 0784 0 1487 0 2206 0 3065 0 3688 0 8086 0 9960	45.82 46.85 46.01 45.24 45.05 53.15 56.19
25% by vol. CCl ₄ +75% by vol. CS ₁	5 753 10 902 26 724 41 314	0 0884 0.1682 0 4970 0 6331	65 05 64.82 65.65 65 26

Partition of Brs, etc.—Continued				
Other solvent	G	W	G/W	
CS ₂	7 750 10 600 14 696 17 999 26 345 40 625 57.038	0 1015 0 1387 0 1910 0 2352 0 3467 0 5194 0 7160	76 35 76 44 76 98 76 54 75 99 78 21 79.66	

(Herz, Z. Elektrochem, 1910, 16, 871)

Partition coefficient for biomine between CS: and H₂O at 25°C. A = concentration of the water layer.

C = concentration of the CS, layer

A C N=C/A	
13.0	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Partition coefficient for bromine between CHBr₃ and H₂O at 25°C. A = concentration of the water layer

C = concentration of the Crist; layer.		
С	N =C/A	
373 6 264 7 161 5 90 17 50 49	68 88 68 80 68 19 66 90 65 84 64 85	
	373 6 284 7 161 5 90 17	

Partition coefficient for bromine between CCl₄ and H₂O at 25°C A = concentration of the water layer C = concentration of the CCl₂ layer

17 230	0 4580	37.62	C = concentration of the CCl ₄ layer		
25 637	0 6580	88'96	A	С	N = C/A
40.625 54.035	0.9940 1.2080	40 88 44 73	14.42 10.80	545.2	37 82
3.592	0 0784	45.82	7.901 7.163	372 2 252.8 225.8	34 44 32 01 31.52
6 820 10 148 13 866	0 1487 0 2206 0 3065	46 85 46.01 45.24	6.808 5.651	218.5 172.6	32.12 * 30.54
16 616 42,975	0 3688 0 8086	45.05 53 15	3 216 2 054	94.84 58.36	29 48 28 41
55.965	0 9960	56.19	1 266 0.7711	35 92 21.53	28 37 27 92
5 753 10 902	0 0884	65 05 64.82	0.5761 0.4476	15 72 12 09	27 26 27 02
26 724 41 314	0 4970	65.65 65.26	· 0 3803 0 2478	10 27 6 691	27.00 27.00
55 526	0.8520	65 17	(Jekowkin.	Z phys Ch 18	05 18 588)

(Jakowkin, Z. phys. Ch. 1895, 18, 588)

Partition of bromine between CCL and salts+An A = concentration of B1 in H2O layer C = concentration of Br in CCl4 layer.

Partition of Br₂ between CCl₄ and NaNO₂+ Ag at 25°

NaNO₄+Aq	A	С
1-N 1/,-N 1/,-N 1/s-N	7 905 8 763 9 033 9 200 0 300	316 7 319 5 315 7 316 7

(Jakowkin, Z phys Ch 1896, 20, 25)

Partition of Br. between CCL and K-SC4+ Ag at 25°

K28O4+Aq	Α •	C			
1-N 1/2-N 1/4-N 1/8-N 1/18-N	5 982 6 843 7 354 7 585 7 498	255 4 253 4 252 8 250 3 242 3			
(Jakowkin, l. c.)					

Partition of Br2 between CCl4 and Na2SO4+ Ag at 25

Na ₂ SO ₁ +Aq	A	C
I-N	5 934	254 6
1/e-N	6 838	253 4
1/e-N	7 402	254 4
1/e-N	7.609	252 8
1/e-N	7 713	251 2

(Jakowkin, l c.)

Crystallizes at 4° with 10H2O. Bromine chloride, BiCl Sol. m H₂O, CS₂, ether, etc

Bromine fluoride, BrF2.

Fumes in the air Decomp, by H2O. (Lebeau, C. R. 1905, 141. 1019.)

Bromine oxides. No oxides of bromme are known in the free See hypobiomous, bromic, and perbromic acids

Bromiridic acid.

Ammonium bromiridate, (NH4)2IrBrs Less sol. in cold H₂O than the K salt

(Birnbaum, Zeit Chem 1865. 22.) Very sol, m cold H2O (Gutbier, B 1909, 42, 3910)

Cæsium bromindate, C'seIrBra

Sol in H₂O (Gutbier, B. 1909, 42, 3911) Potassium bromiridate, KalrBra

Moderately sol. in cold, more easily in hot H₂O.

Insol, in alcohol or ether Sol in cold H2O and in HBr+Aq (Gutbier, B 1909, 42, 3910)

Rubidium bromiridate, Rh₂IrB₁₀ Very sol. in cold H2O Sol in hot dil.

HBr+Ag (Gutbier, B 1909, 42, 3911) Sodium bromiridate.

Deliquescent Easily sol in H₂O, alcohol. or ether.

Bromiridous acid, HalraBra +6HaO. Easily sol, in H2O, alcohol, or ether. (Birn-

haum. 1864.) Ammonium bromiridite, (NH4)6Ir2Br12+H2O.

Difficultly sol in H₂O. (Birnbaum) Potassium bromuridite, K6Ir4Br12+6H4O. Efflorescent, Sol in H.C.

Silver bromundite, AgaIraBras. Ppt Insol. in H2O or acids.

Sodium bromiridite, NagligBriz+24H2O. Efflorescent. Very sol. in H2O.

Bromocarbonatoplatindiamine carbonate, $\frac{\text{CO}_8}{\text{Br}_2}[\text{Pt}(\text{N}_2\text{H}_8)_2]_2(\text{CO}_8)_2 + 4\text{H}_2\text{O}$. Ppt.

Bromocarbonatoplatin/samine carbonate bromoplatind; amine nitrate,

 $\frac{\text{CO}_8}{\text{Br}_9}$ [Pt(N₂H₆)₂]₂(CO₈)₂, 2Br₂Pt(N₂H₆)₂ (NO.).

Bromochloroplatindiamine chloride,

Br Pt(N₂H₄)₂Cl₂. Very sl. sol, in H₂O (Cleve.) chlorobromide, Br Pt N2H6Cl (?)

Very sl. sol. in H₀()

Bromochlororoplatinic acid.

Potassium bromochloropletinate, KaPtClaBr (Pitkin, J. Am. Chem. Soc. 2. 408.) Mixture. (Herty, J. Am Chem. Soc 1896,

K₂PtCl₄Br₂. Sl. sol. m cold H₂O; much more sol. in hot H₂O. (Pitkin.)

Mixture. (Herty.) K_sPtCl_sBr_s. As above. K_sPtCl_sBr_s. (Pigeon, A. ch. 1894, (7) 2.

K₂PtClBr₁. (Pitkin.)

Bromochromic acid.

Potassium bromochromate, KCrO, Bro == CrO₂(Br)OK Decomp. by H₂O. (Heintze, J. pr (2) 4. 225.)

Dibromochromium chloride, (Cr(H₂O)₄Br₂lCl+2H₂O.

Pot. Nearly insol, in fuming HCl. (Biers' 1um, B 1907, 40, 2918)

Bromohydroxyloplatindiamine bromide

OH Pt(N2H4Br)2. Very sl sol, in H₂O (Cleve)

--- chloride, OH Pt(N:H:Cl);

Sol in H₂O (Cleve.) --- nitrate, OH Pt(N2H4NO1)2.

Very sl sol in cold, moderately sol in hot H_{*}O. (Cleve)

Bromohydroxyloplatinmonodiamine

nitrate, $_{\mathrm{OH}}^{\mathrm{Br}}$ Pt $_{\mathrm{NH_3NO_3}}^{\mathrm{(NH_3)_2NO_3}}+\mathrm{H_4O}$ Easily sol, in H2O (Cleve)

Bromomercurosulphurous acid.

Ammonium bromomercurosulphite. NH.SO.HeBi

Sol in H.O. (Barth, Z phys Ch. 9, 215) Potassium bromomercurosulphite.

KSO₃HgBr As above. (B)

Bromomolybdenum bromide, Br₄Mo₂Br₂ = molybdenum d₃bromide,

MoBr. Insol, in H2O or acids, or even in boiling aqua regia. Easily sol in dilute, decomp, b cone. alkalies+Aq (Blomstrand, J. pr. 82.

Bromomolybdenum chloride, B14M04Cl2+ 3H,O.

Insol, in acids (Blomstrand.) Bromomolybdenum chromate, B14M05C1O4+

2H.O. Insol. in dil. acids Sol. in hot conc. HCl +Aq Insol. in alkalı chromates+Aq. (Atterberg.)

Bromomolybdenum fluoride, Bl4MoaF2+ 3H.O.

Insol in HaO, (Atterberg.) Bromomolybdenum hydroxide, Br₄Mo₂(OH)₂.

Completely sol in alkalies if not heated over 90°. (Atterberg) +2H₂O.

+8H₂O.

Bromomolybdenum modide hydroxide, 2Br₄Mo₃I₂, Br₄Mo₃(OH)₂+8H₂O. Precipitate (Blomstrand, J. pr. 77, 92)

Bromomolybdenum molybdate, Br₄Mo₃MoO₄ Precipitate (Atterberg.)

Bromomolybdenum phosphate. Br.Mo.H.(PO.). Precipitate Insol in H.O. (Atterberg)

Bromomolybdenum sulphate, Br₄Mo₂SO₄+

3H.O Precipitate. Sl. sol in boiling H2SO4 (Atterberg)

Dibromomolybdous acid, MoOBr₂(OH) + 114H-0

Sol, in H_{*}O. Very hydroscopic (Weinland, Z anorg 1905, 44, 86) Tetrabromomolybdous acid, MoBr. (OH) +

2H₂O Sol. in H₂O Hydroscopic, (Weinland, le)

Diammonium pentabromomolybdite. MoBr₂O(NH₄)₂

Hydroscopic, Sol in H₂O (Weinland, 10)

Dicæsium pentabromomolybdite, MoBraOCs.

Hydroscopic Sol in H₂O, (Weinland,

Calcium tetrabromomolybdite, (MoBiaO), Ca +7H-0 Hydroscopic Sol in H.O (Weinland, l c

Monolithrum tetrabromomolybdite,

MoBr₄(OL₁)+4H₉O Hydroscopic. Sol. in H₂O (Weinland,

Magnesium pentabromomolybdite, MoBr₂(OMg)+7H₂O. Hydroscopic, Sol. in H₂O (Weinland,

Monopotassium tetrabromomolybdite.

 $MoBr_4(OK) + 2H_2O$. Hydroscome Sol. in H.O. (Weinland,

Dipotassium pentabromomolybdite, MoBrsOK2.

Hydroscopic. Sol in H2O (Weinland,

Dirubidium pentabromomolybdite, MoBr.ORb.

Hydroscopic. Sol. in H2O. (Weinland,

Bromonitratoplatindiamine nitrate,

Br NO. Pt N. H. NO. Decomp. by H₂O (Cleve.)

— sulphate, $\frac{Br}{NO_2}$ Pt(N₂H₆)₂SO₄+H₂O.

Sl. sol. in H₂O.

Bromonitritoplatinsemidiamine nitrite, NO₂Br₂Pt(NH₃)₂NO₂.

Sl. sol. in H₂O. (Blomstrand.)

Bromonitrous acid.

Platinum silver bromomitrite, PtAg₂B₁₂(NO₂)₄.
Ppt. (Miolati, Gazz. ch. it 1900, **30**, 588.)

Bromopalladic acid.

Ammonium bromopalladate, (NH₄)₂PdBr₈.
Difficultly sol. in cold H₂O. Decomp. by hot H₂O and by hot cone H₂SO₄. (Gutbier, B 1905, **38**, 1907.)

Cesium bromopalladate, Cs₂PdBr₆. Difficultly sol in cold H₂O Decomp. by hot H₂O or by hot conc H₂SO₄. (Gutbier,

l. c)

Potassium bromopalladate, K₂PdBr₆.

Difficultly sol in cold H₂O. Decomp. by hot H₂O or by hot conc. H₂SO₄ (Gutbie).

l. c.)
Rubidium bromopalladate, Rb₂PdBr₆
Insol. in cold H₂O. Decomp by hot H₂O or by hot conc. H₂SO₂. (Gutbier, l. c.)

Bromonalladious acid.

Ammonium bromopalladite, (NH₄)₂PdBr₄.

Very stable. Sol in H₂O (Smith, Z. anorg. 1894, **6**, 381.) ,

Very sol, in cold H₂O.

Can be cryst. from a very small amount of

hot H₂O (Gutbier, B 1905, **38**, 2387.)

Barium bromopalladite.

Not deliquescent. Sol. in H_2O . (v. Bonsdorff.) Cæsium bromopalladite, Cs_2PdBr_4

Very sol. in H₂O. (Gutbier, B. 1905, **38**, 2388.)

Manganese bromopaliadite, MnPdBr₄ Sol m H₂O and alcohol. (v Bonsdorff.) +7H₂O. Very sol. in H₂O. (Smith, Z. anorg. 1894, 6. 382)

Potassium bromopalladite, K₂PdBr₄. Easily sol. in H₂O. (Joannes, C. R. 95. 995.) Very stable. Sol in H₂O (Smith, Z. anorg, 1894, 6, 381.)

+2H₂O. Unstable in the air. (Smith, l. c.) Rubidium bromopalladite, Rb₂PdBr₄.

Can be cryst. from a very small amount of hot H₂O (Gutbier, B. 1905, **38**, 2388.)

Sodium bromopalladite, $Na_2PdBr_4+4\frac{1}{2}H_2O$. Very deliquescent. Sol in H_2O . (Smith, l c.)

Strontium bromopalladite, SrPdBr₄+6H₂O.
Stable in the air. Very sol in H₂O. (Smith,

Zinc bromopalladite. Sol. in H.O. (v. Bonsdorff.)

Bromophosphatoplatindiamine phos-

Bromophosphoric acid.

Thorium bromophosphate, ThBr₄, 3(3ThO₂, 2P₂O₃).

Insol. in most acids and in fused alkali carbonates Decomp. by long boiling with cone. H₂SO₄ (Colani, C. R. 1909, **149**. 208.)

Bromoplatinamine bromide, Br₂Pt(NH₈Br)₂. Sl. sol. in H-C. (Cleve, Sv. V. A. H. 10. 9.

31)
— nitrite, Br₂Pt(NH₂NO₂),

Very sl. sol in H₂O. (Cleve) Bromonlatindamine bromide.

Br₂Pt(N₂H₄)₂Br₂. Only sl sol, in hot H₂O. (Cleve.)

(Cleve.)

— phosphate, Br₂Pt[N₂H₆PO₂(OH)₂]₂+

2H₂O. Rather easily sol, in hot H₂O. (Cleve.)

— sulphate, Br₂Pt(N₂H₆)₂SO₄.
Very 8l, sol. in H₂O.

Easily sol, in H₄O.

Bromoplatin monodiamine nitrate, $Br_4Pt \stackrel{(NH_8)_5NO_3}{NH_4NO_4} + H_2O.$

— sulphate, Br₂Pt (NH₈)₂ SO₄+H₂O Moderately sol. in H₂O (Cleve)

Bromoplatinsemidiamine bromide,

Br₂Pt(NH₁)₂Br Sl sol in cold H₂O. (Cleve.)

Bromodiplatindiamine anhydronitrate, Br₂Pt₃ (N₂H₃)₂(NO₃)₃. (NH₂NH₄)₂

Sol in HNOs+Aq.

Bromodiplatindiamine chloride, Br₂Pt₂(N₂H₄)₄Cl₄

Ppt (Cleve.)

nitrate, Br₂Pt₂(N₂H₀)₄(NO₃)₄+2H₂O.
Moderately sol in hot H₂O.

— sulphate, Br₂Pt₂(N₂H₆)₄(SO₄)₂+2H₂O.
Ppt. (Cleve)

Bromoplatinic acid, H₂PtBr₆+9H₄O. Very deliquescent, and sol in H₂O, alcohol, ether, chloroform, or acetic acid. (Topsee, J B 1888, 273.)

Ammonium bromoplatinate, (NH₄)₂PtBr₆. Sol m 200 pts H₂O at 15°. (Topsoe) 100 pts (NH₄)₂PtBr₆+Aq sat. at 20° contain 0 59 pt dry salt. (Halberstadt, B 17.

Barium bromoplatmate, BaPtBi₆+10H₄O.
St deliquescent. Very sol in H₅O

Casium bromoplatinate, Cs₂PtBr₆.
Sl. sol. in dil. HBr+Aq. (Obermaier,

Dissert)

Calcum bromonistinate, CaPtBrs+12HoO

Sl. deliquescent Very sol. in H₂O.

Cobalt bromoplatinate, CoPtBr₆+12H₂O.

Deliquescent.

Copper bromoplatinate, CuPtBr₆+8H₂O

Very deliquescent, sol. in H₂O. Lead bromoplatinate, PbPtBr₃.

Easily sol in H₂O, but decomp. by large amount.

Lead tetrabromoplatmate, [PtBr₄(OH)₂]Pb, PbOH. Insol in H₂O. (Miolati, C. C. **1900**, II. 810.)

Magnesium bromoplatmate, MgPtBr₄+ 12H₂O.

Not deliquescent.

Manganese bromoplatinate, MnPtBr₀+
6H₂O.

Sol, in H₂O +12H₂O. Sol, in H₂O.

Mercuric telt abromoplatinate, [PtBr4(OH)s]Hg

Insol, in H₂O (Miolati, C C 1900, II. 810.)

Nickel bromoplatinate, NiPtB1s+12H2O Deliquescent

Potassium bromoplatinate, K₂PtBr₄ Sl sol, in H₂O. Insol, in alcohol. (Bonsdorff, Pogg 19, 344.) Sol. m 10 pts. boiling H₂O (Pitkin, C. N. 41. 218) 100 pts. K₂PtBr₃+Aq sat. at 20° contain 2 02 pts dry salt. (Halberstadt, B. 17. 2962)

Praseodymium bromoplatinate, PrBr₃,PtBr₃ +10H₂O.

Deliquescent, very sol in H₂O, sol. in HBr. (Von Schule, Z anorg. 1898, 18, 353.)

Rubidium bromoplatmate, Rb₂PtBr₆

Sl. sol. in dil HBr+Aq. (Obermaier. Dissert)

Silver bromoplatinate, Ag₂PtBr₈
Insol. in H₂O. (Miolati, C. C. 1900, II. 810)

Silver tetrabromoplatinate, [PtBr₄(OH)₂]Ag₂.

Ppt , msol. in H₂O (Mnolatı, l c)

Sodium bromoplatinate, Na₂PtBr₄+6H₂O Easily sol in H₂O and alcohol.

Strontium promoplatinate, SrPtBr₅+10H₂O.
Sl. deliquescent Very sol, in H₂O.

Thallium tetrobromoplatinate, [PtBr₀(OH)₂]Tl₂.

Insol. in H₂O (Miolati, C. C **1900**, II. 810.)

Ytterbium bromoplatinate, YbB1_{3,3}H₂PtBr₄ +30H₂O Ppt. (Cleve, Z anorg 1902, **32**. 138) Zinc bromoplatinate, ZnPtB1₈+12H₂O. Sol. in H₂O.

Bromoplatinocyanhydric acid, H₂Pt(CN)₄Br₂.

See Perbromoplatinocyanhydric acid.

Potassium bromoplatinocyanide, 5K₂Pt(CN)₄,
K₂Pt(CN)₄Br₂+18H₂O.

Sol. in H₂O Bromoplatinous acid.

Potassium bromoplatinite, K₂PtBr₄+2H₂O. Extremely sol. m H₂O. (Billmann and Andersen, B. 1903, **36**, 1566.)

Bromopurpureochromium bromide, BrCr(NH₃)₅Br₂.

Less sol. in H₂O than chloropurpureochromium chloride (Jorgensen, J. pr. (2) 25, 83.)

— bromoplatinate, BrCr(NH₃)₄PtBr₆ (Jorgensen, l. c.)

—— chloride, BrCr(NH₂)₂Cl₂.

More sol in H₂O than the bromide.

(Jorgensen, l c.)

as roseo salt

```
Bromopurpureorhodium nitrate,
Bromopurpureochromium chromate,
                                                               B1Rh(NH3)5(NO3)2
     B1Cr(NHs)sCrOs.
                                                            SI sol in H2O, but much more sol than the
   Precipitate (Jörgensen, l, c)
                                                          bromule
---- nitrate, BrCr(NHa)a(NOa)2.
                                                          Bromorhodous acid.
   More sol than bromide and less than
chloride (Jørgensen, l c)
                                                          Ammonium bromorhodite, (NH<sub>4</sub>)<sub>2</sub>RhB<sub>1</sub>,
                                                          Sol in H<sub>2</sub>O. (Goloubkine; Chem. Sol
1911, 100 (2) 45)
Sol, in H<sub>2</sub>O (Gutbici, B 1908, 41, 215.)
                                                                               (Goloubkine, Chem. Soc.
Bromopurpureocobaltic bromide,
      CoBri NH<sub>3</sub>)<sub>4</sub>B<sub>14</sub>
Sol in 530 pts. H<sub>2</sub>O at 16°. Insol. in
alcohol, NH<sub>4</sub>Br, KBr, or HB<sub>1</sub>+Ag More
                                                          Barium bromorhodite, BaRhBrs
sol in hot HgO containing a little HBr. (Jor-
                                                             Sol in H<sub>2</sub>O (Goloubkine, l. c)
gensen, J pi (2) 19 49.)
                                                          Cesium bromorhodite, Cs2RhBrs.
 Bromopurpureocobaltic mercuric bromide,
                                                             Difficultly sol in H<sub>2</sub>O. (Gutbier, l. c.)
      CoBr(NH<sub>3</sub>)<sub>5</sub>Br<sub>2</sub>, 3HgBr<sub>2</sub>
                                                          Potassium bromorhodite, KaRhBra.
    More sol in H<sub>2</sub>O than the corresponding
 HgCl<sub>2</sub> salt. (J.)
                                                             Very sol, in H<sub>2</sub>O (Goloubkine, l, c.)
                                                             Sol in H<sub>2</sub>O (Gutbier, l. c)

    bromoulatinate.

    Very sl sol in cold H<sub>2</sub>O (J)
                                                          Rubidium bromorhodite, Rb2RhBr4.
                                                             Sol in H<sub>2</sub>O (Goloubkine, l. c.)
Difficultly sol in H<sub>2</sub>O (Gutbier, l. c.)
     - chloride, CoBr(NHa)aCl2
    Difficultly sol in cold H2O, but much more
 easily than the bromide Insol. in dil HCl+
                                                          Sodium bromorhodite, Na-RhBr-
 Aq, and m alcohol
                                                             Very sol, in H<sub>*</sub>O. (Goloubking, l c.)
 ---- mercuric chloride, CoBr(NH<sub>3</sub>)<sub>5</sub>Cl<sub>3</sub>,
                                                          Bromoruthenic acid.
      3HgCl2.
                                                          Potassium bromoruthenate, K2RuBrs.
   SI sol in H<sub>2</sub>O
                                                             Very sol in H<sub>2</sub>O. (Howe, J Am. Chem.

    chloroplatinate.

                                                          Soc 1904, 26, 946)
   Nearly or quite insol. in H<sub>2</sub>O (J)
                                                           Potassium aquobromoruthenate,
 --- chromate, CoBr(NH<sub>3</sub>)<sub>3</sub>CrO<sub>4</sub>,
                                                                K.Ru(H.O)Br.
    Nearly insol in H<sub>2</sub>O
                                                             Ppt (Howe, l. c)

    dithionate, CoBi (NH<sub>3</sub>)<sub>4</sub>S<sub>4</sub>O<sub>4</sub>.

                                                           Rubidum bromoruthenate, Rb.RuBre.
    Nearly msol in H<sub>2</sub>O
                                                             Sol in H<sub>2</sub>O (Howe, l c.)
 - fluosilicate, CoBr(NH<sub>1</sub>)<sub>4</sub>S<sub>1</sub>F<sub>6</sub>,
                                                           Rubidium aquobromoruthenate,
                                                                Rb2Ru(H2O)Br4.
    Very sl sol in cold H<sub>2</sub>O; insol in alcohol.
                                                             Ppt. (Howe, l. c.)
 --- nitrate, CoBt (NH<sub>5</sub>)<sub>6</sub>(NO<sub>5</sub>)<sub>2</sub>,
 More sol in H<sub>2</sub>O than the bromide, but
less than the chloride Wholly insol in dil.
                                                           Bromoruthenious acid.
                                                           Cæsium bromoruthenite, CsRuBrs+HeO.
 HNO3+Aq or alcohol
                                                             Ppt. (Howe, J. Am. Chem Soc. 1904, 26.
 --- oxalate, CoBr(NH<sub>3</sub>)<sub>6</sub>C<sub>2</sub>O<sub>4</sub>
    Nearly insol in H<sub>2</sub>O
                                                           Potassium bromoruthenite, K.RuBra.
 - sulphate, CoBr(NHs), SQ.,
                                                              Very sol. in H2O with decomp Very sol.
    Can be crystallized from very dil, H<sub>2</sub>SO<sub>4</sub>+
                                                           m dil, HBr (Howe, l, c,)
 Aq Insol. in alcohol.
+6H<sub>2</sub>O. Efflorescent
                                                           Rubidium bromoruthenite, Rb<sub>2</sub>RuBr<sub>5</sub>+H<sub>2</sub>O.
                                                             Sol. in dil HBr. (Howe, l, c)
 Bromopurpureorhodium bromide,
       BrRh(NH<sub>8</sub>)<sub>5</sub>Br<sub>2</sub>
                                                           Bromoselenic acid.
    Much less easily sol in H2O than the chloro-
                                                           Ammonium bromoselenate, (NH4) sSeBrc.
 chloride. Insol. in dil. HBr+Aq and alcohol
                                                              Sol in H2O with decomp. (Muthmann and
 (Jörgensen, J. pr. (2) 27, 433.)
                                                           Schafer, B. 26, 1008.)
      - bromoplatinate, BrRh(NHs),PtBrs.
                                                           Cæsium bromoselenate, Cs-SeBra.
    Almost msol. in H<sub>2</sub>O
                                                              Sl sol. in H<sub>2</sub>O (Lenher, J. Am. Chem.
      - fluosilicate, BiRh(NH<sub>3</sub>)<sub>5</sub>SiF<sub>6</sub>
                                                           Soc. 1898, 20, 571.)
    Sl sol in H<sub>2</sub>O. Sol in boiling NaOH+Aq
                                                           Potassium bromoselenate, K-SeBra
```

As NH4 salt. (M and S.)

Rubidium bromoselenate, Rb₂SeBr₆ Less sol in H₂O than K salt (Lenher, l c)

Rromomroselenious acid.

Ammonium bromopys oselenite, NH₄Br, 2SeO₂ +2H₂O More easily sol in H₂O than corresponding

More easily sol in H₂O than corresponding Cl compound (Muthmann and Schafer, B 1893, **26**, 1014.)

Potassium bromopy oselenite, KBr, 2SeO₂+ 2H₂O. Sol, in H₂O. (Muthmann and Schafer, B.

26. 1008.)

Bromosmic acid.

Ammonium bromosmate, (NH₄)₂OsBr₉
Only sl sol in H₂O (Rosenheim, Z. anorg.

1899, 21. 135)

Casium bromosmate, Cs₂OsBr₀

Nearly insol in H₂O and dil. HBr (Gut-

bier, B. 1913, 46, 2103)
Potassium bromosmate, K₂OsBr₆

Only sl. sol in H₂O (Rosenheim, l c)

Rubidium bromosmate, Rb₂OsBr₂.

Difficultly sol in H₂O and in dil. HBr. (Gutbier, l. c.) Silver bromosmate, Ag₂OsBr₈.

Ppt , insol in H₂O (Rosenheim, l. c.)

Sodium bromosmate, Na₂OsBr₆+4H₂O. Sol in H₂O (Rosenheim, l c) Bromostannic acid, H₂SnBr₆+8H₂O.

B 20.794.)

Ammonium bromostannate, (NH₄)₂ShBi₅

Very deliquescent, and sol. in H₂O. (Ray-

mann and Preis, A. 223, 323)
Cæsium bromostannate.

113, 541.)

Sol in H₂O. (Raymann and Press)

Calcium bromostannate, CaSnBr₈+6H₂O.

Very deliquescent. Sol. in H₄O. (Raymann and Preis)

Cobalt bromostannate, CoSnBr_t+10H₂O.
Deliquescent (Raymann and Press.)

Ferrous bromostannate, FeSnBr_t+6H₂O.

Deliquescent. (Raymann and Press)

Lithium bromostannate, Lt₂SnBr₅+6H₂O.

Extremely deliquescent (Leteur, C R

Magnesium bromostannate, MgSnBrs+ 10H₂O.

Deliquescent (Raymann and Press)

Manganous bromostannate, MnSnBr₀+ 6H₂O

Deliquescent (Raymann and Press.)

Nickel bromostannate, NiSnBr₅+8H₂O Deliquescent (Raymann and Press.)

Potassium bromostannate, K₂SnBr₆. Sol in H₂O (Topsoe)

Rubidium bromostannate.

Sol in H₂O. (Raymann and Preis)

Sodium bromostannate, Na₂SnBr₃+6H₂O. Not deliquescent, but extremely sol in H₂O (Seubert, B **20**. 796)

Strontium bromostannate, SrSnBr₄+6H₂O. Very hydroscopic, and sol in H₂O (Raymann and Press.)

Bromosulphatoplatindiamine sulphate,

Br > Pt(N₂H₆)₂SO₄ + H₂O SO₄ > Pt(N₁H₆)₂SO₄ + H₂O

Rather easily sol, in hot H₂O Bromosulphobismuthous acid.

Cuprous bromosulphobismuthite, 2Cu₂S, Bi₂S₈, 2BiSB₁.

Stable in the an and msol in H₂O at ord, temp. Partially decomp by boiling H₂O Decomp by mineral acids with the evolution of H₂S. (Ducatte, C R. 1902, **134**, 1212.)

Lead bromosulphobismuthite, PbS,B12S2' 2BiSBr

comostannic acid, $H_SBB_{7s}+8H_2O$. Very deliquescent Sol, in H_2O . (Seubert, of H_3O . Decomp. by dil. mine all acids with evolution of H_3O . (Ducatte, l. c)

Bromotantalum bromide, (Ta₈Br₁₂)Br₂+
7H₂O.
Stable in the air when in the solid state

Stable in the air when in the solid state Sol in H₂O without decomp Sol. in propyl alcohol (Chapin, J Am Chem. Soc 1910, 32, 328)

Bromotantalum chloride, (Ta₀Br₁₂)Cl₂+ 7H₂O. (Chapm, *l. c.*)

Bromotantalum hydroxide, (Ta₆Br₁₂)(OH)₂+ 10H₂O

Si sol, in HCl. Stable in the air below 100°. Sol in alcohol Insol, in other (Chapin,

Sol in alcohol Insol, in ether (Chapi l c.)

Bromotantalum iodide, (Ta₃Br₁₂)I₂+7H₂O.

(Chapin, l. c)

Bromotelluric acid.

Ammonium bromotellurate, (NH4)2TeBr4

Less sol. in H₂O than K salt. (Muthmann and Schmidt, B. 1893, **26**. 1011) Cæsium bromotellurate, Cs. TeBra.

Decomp. by H₂O 100 pts HBr+Aq (sp. gr 149) dissolve 0 02 pt. at 22°

100 pts HBr+Aq (sp. gr. 108) dissolve 0 13 pt. at 22°.

Insol. in alcohol. (Wheeler, Sill Am J. 145. 267.)

Potassium bromotellurate, K2TeBr4+3H2O. Sol. in lettle, decomp by much H2O (v. Hauer.)

Contains 2H₂O (Wheeler, Sill, Am. J. 145, 267.)

Efflorescent 100 pts. HBr+Aq (sp. gr 149) dissolve

6.57 pts at 22° 100 pts, HBr+Aq (sp. gr 1 08) dissolve 62 90 pts. at 22° Anhudrous Stable on air (Wheeler.)

Rubidium bromotellurate, Rb2TeBrs.

Sol m a little hot H₂O, but H₂TeO₂ separates on cooling 100 pts HB1+Aq (sp. gr 1.49) dissolve

0 25 pt. at 22° 100 pts HBr+Aq (sp gr. 1.08) dissolve 3.88 pts at 22°. (Wheeler.)

Bromotetramine chromium bromide, CrBr(NH₄),Br₂+H₂O.

Easily sol in H₂O (Cleve.) - chloride, CrBr(NH₂)₄Cl₂+H₂O.

Sol in H2O. (Cleve) sulphate, CrBr(NH₂)₄SO₄+H₄O. Easily sol, in H₂O. (Cleve.)

Bromotetramine cobaltic sulphate, BrCo(NH₈) 4SO 4, or B12Co2(NH₄) 5(SO 4) 2.

Sol. in H₂O. (Vortmann and Blasberg, B. 22, 2652.)

Cadmium, Cd.

Not attacked by H₂O. Sol. in HCl, or dil. H_1SO_4+Aq , but more easily in HNO_8+Aq Sol. in $HC_8H_8O_2+Aq$ Chemically pure Cd like Zn is almost most in dil acids, with the exception of HNO2.

(Weeren, B. 1891, 24, 1798.) Sol. in HClO3+Aq without evolution of H. (Hendrixson, J. Am. Chem. Soc. 1904, 26.

Cadmium is sol. in molten CdCla and can be recryst. therefrom. (Auerbach, Z. anorg. 1901, 28, 42.)

From 4 g. Cd in 32 g molten CdCl2 at 650°, 2.197 g. were dissolved in ½ hr. (Helfenstein, Z. anorg. 1900, 23. 295.)

Moderately quickly sol. in K₂S₂O₅+Aq More slowly sol. in (NH₄),S₂O₅+Aq. (Levi, Gazz. ch. it. 1908, 38 (1) 583.) Sol. in (NH₄),S₂O₅+Aq without evolution

of gas. (Turrentine, J. phys. Chem. 1907, 11. 627.)

Sol. in sulphostannates+Aq (Storch, B. 1883, 16, 2015)

1/2 ccm oleic acid dissolves 0.0293 g. Cd in 6 days (Gates, J. phys. Chem 1911, 15. 143.) Not attacked by sugar solution. (Klein and Berg, C R, 102, 1170.)

Cadmium amalgam, Cd₂Hg₂.

Stable from 0°-44°. Can be cryst from Hg without decomp, if temp, does not exceed (Kerp Z. anorg. 1900, 25, 68.)

Cadmium amide, Cd(NH2)2. Decomp. by H2O., (Bohart, J. phys. Chem.

1915, 19. 548) Cadmium arsenide, Cd.As.

(Descamps, C. R 86, 1022)

Cd.As2. Sol in dil cold HNO: Attacked by aqua regia. (Granger, C. R. 1904, 138. 575.)

Cadmium azoimide, Cd(Na)2.

Ppt. (Curtus, J pr. 1898, (2) 58, 294.) Cadmium subbromide, Cd.Br.

Decomp, by H2O (Morse and Jones, Am, Ch J. 1890, 12, 490.)

Cadmium bromide, CdBr2. Deliquescent. Very sol in H₂O.

Solubility in H₂O at to

t°	% CdBrs	to.	€ CdBrs
-4	732 0	48	60 0
1	34 7	71	61 2
+1	36 3	104	61 8
2	36 0	155	63 7
9	41 9	170	65 2
14	46.0	215	69 9
25	52.6	232	70.1
35	59.6	245	71 5

Solid phase above 100° is CdBr₂+1½H₃O. (Étard, A. ch. 1894, (7) 2. 541) See also under CdBr2+H2O and CdBr2+ 4H₂O

Sp. gr. of CdBr2+Aq at 19.5° containing; 5 25 % CdBr2, 10 15 20 1.043 1.090 1.141 1 199 1.260 30 50 % CdBro. 35 40 45 1.326 1 400 1.481 1 578 1.680 (Kremers, calculated by Gerlach, Z. anal. 8.

CdB12+Aq containing 18 06% CdBr2 has c. gr 20°/20° = 1 1378.

CdBr₂+Aq containing 21.39% CdBr₂ has sp. gr. 20°/20° = 1.1666. (Le Blane and Rohland, Z. phys. Ch. 1896, 19. 282.)

Sp. gr. of CdBr₂+Aq containing 35.84% CdBr₂=1.4231 at 19.4°/4°. (Hallwachs, W. Ann. 1899, 68. 27)

Sp gr	of CdBr ₂ +	Aq at 18	3"/4"	
CdBr ₂	33.289			11 98
Sp gr.	1 384	1252	1.209	1.11
% CdBr	6.543	3,734	1.927	
Sp. gr	1.106		1.017	
(de A	fuynek, W	Ann. 18	94, 53. 5	61.)
	1.02.200			

Sp gr, of CdBr2+Aq at 18°. 1 - 5 10 15

20 CdBr. 1,0072 1.0431 1 0907 1,1432 1,1991 Sp gr. or CdBr2 35 40 1 2605 1 3296 1 4052 1.4915 1.5467 Sp. gr (Grotrian, W. Ann. 1883, 18, 193)

Sp. gr of CdBr2+Aq Sp gr at to Sp gr at 180 C CdBr 17 90 0 99901 0.99900 0.032422 75 0 99702 17 23 0.0748 0 99949 0 99935 21 50 0 99863 17 67 1.00008 0.1541 00002 23 10 0 99896 17 23 1 00119 0 253 0.00100 22 95 0 99986 0.506 18 07 0 00308 1 00310 22 65 1 00212 1 013 18 00 1 00750

(Wershofen, Z. phys. Ch. 1890, 5, 493.)

Sp. gr.	Sp. gr. of CdBr ₂ +Aq at 20°				
Normality of CdBr2+Aq	%CdBr2	Sp gr			
2 774 1 997 0 973 0 5138	46 574 37 53 22.53 12.46	1 6198 1 4469 1 2293 1 1211			

(Forchheimer, Z. phys. Ch. 1900, 34, 29) Insol, in liquid NHa. (Franklin, Am. Ch.

J. 1898. 20, 827) Sol in AlBr₃. (Isbekow, Z. anorg. 1913,

84, 27) Sol in HCl+Aq, HC2H3O3, alcohol, or ether (Bathemot, A ch 44, 387)
Sol. in 0 94 pt H₂O, 3 4 pts. abs. alcohol,

250 pts. ether, and 16 pts. alcohol-ether (1:1) (Eder, Dingl. 221. 89.) Anhydrous CdBr2 is sol in acetone (Krug

and M'Elroy) 1 g CdBr₂ is sol. in 64.5 g. acetone at 18°.
Sp. gr. of sat, solution 18°/4°=0.8073 (Nau-

mann, B. 1904, 37. 4337 Sol. in acctone (Eidmann, C. C. 1899,

II. 1014) Insol. in mustard oil. (Mathews, J phys.

Chem. 1905, 9, 647.) Difficultly sol, in methyl acetate. (Nau-

mann, B. 1909, **42**, 3790.) Insol in ethyl acetate 1910, **43**. 314) (Naumann, B. Sol, in chinoline. (Beckmann and Gabel,

Z. anorg, 1906, 51, 236) 100 g. benzonitrile dissolve 0.857 g. CdBr₂ 47 95 55 17 68 82

at 18°. (Naumann, B 1914, 47. 1370.)

Mol weight determined in piperidine, (Ferchland, Z. anorg. 1897, 15, 17.) +H₂O. Solubility in H₂O.

100 g. of the sat, solution contain at. 40° 45° 60° 80° 100°

60.29 60 65 60 75 61 10 61 29 61.63 g. CdBr₂. (Dietz, Z. anorg 1899, 20, 261)

+1½H₂O (Étard, A. ch. 1894, (7) 2. 541.) +4H₂O Efflorescent (Rammelsberg, Pogg. 55, 241.)

Solubility in H₀O 100 g of the sat. solution contain at: 30° 38°

37.92 48.90 56.90 61 84 g CdBr₂, Sp. gr. of sat. solution at 18° = 1 683. (Dietz, Z. anorg, 1899, 20, 261.)

100 g sat, solution of CdBr +4HoO m absolute alcohol contain 20 93 g CdBr at

100 g. sat solution of CdBr2+4H2O in absolute ether contain 0 4 g. CdBr₁ at 15°. (Eder, Dingl 221. 89.)

Cadmium hydrogen bromide.

Decomp. by H₂O. (Berthelot, C. R. 91.

Cadmium cassum bromide, CdBr₂, CsBr. Easily sol. in H₂O. (Wells and Walden, Z. anorg, 5, 270.

CdBr₂, 2CsBr. Decomp. by H₂O into above comp. (W. and W.) CdB12,3CsBr Decomp CdB12,3CsBr Decomp. by H2O into CdBr2, CsBr. (W. and W.)

Cadmium potassium bromide, CdBr., KBr+ 1⁄2H20.

Sol. in 0 79 pt. H₂O at 15°; pptd. by alcohol and ether (Eder, Dmgl. 221. 89.) +H₂O Sol in H₂O without decomp from 0 4°-112 5°. (Rimbach, B 1905, 38, 1554.) 100 pts. of the solution contain at:

`15.8° 50° 112.5° 53.75 58.68 68.25 78 10 pts. of the salt. CdBr2, 4KBr. Sol. in 1 40 pts. H2O at 15°

otd, by alcohol and ether. (Eder, Dingl. 221, 89.) Cannot be prepared in a pure state as it is decomp. by H₂O below 160°. (Rimbach, B. 1905, 38, 1560.)

Cadmium rubidium bromide, CdBr2, RbBr. Sol, in H₂O without decomp, from 0.4° to ...

100 pts. of the solution contain at:

0.4° 14.5° 49.2° 107.5° 32.65 41.87 58.54 75.77 pts. of the salt... (Rimbach, B. 1905, 38, 1556.)

Sol. in H₂O without. CdBr2, 4RbBr. decomp, from 0.5° to 114 5°.

100 pts. of the solution contain at: 0.5° 13.5° 51.5° 114.5°

79.04 pts. of the salt. ' (Rimbach, B. 1905, 38. 1561.)

Cadmium sodium bromide, CdBr₂, NaBr+ 21/2H2O

alcohol, and 190 pts ether (sp. gr 0 729). (Eder, Dingl. 221. 89.) 3CdBr₂, 2NaBr+6H₂O. Stable in conc. solutions and decomp. only by great dilution (Jones and Knight, Am Ch. J 1899, 22. 134.) Cadmium bromide ammonia, CdBr2, 2NH2

Can be crystallized out of warm NH4OH+ (Croft, Phil Mag 21. 356)

CdBr., 3NH . (Tassily, C. R. 1897, 124. 1022.) CdBr₂, 4NH₃, Decomp. by H₂O. (Croft.)

Cadmium bromide cupric oxide, CdBr2, 3CuO+3H₂O. (Mailhe, A. ch. 1902, (7) 27, 383) Cadmium bromide hydrazine, CdBr2, 2N2H4.

Easily sol. in NH₄OH+Aq (Franzen, Z. anorg, 1908, 60, 280) Cadmium bromide hydroxylamine, CdBr2,

2NH₂OH. Sol, in hot H2O with formation of a basic salt. Sol. in dil. acids Insol. in alcohol and

ether. (Adams, Am. Ch. J. 1902, 28, 218) Cadmium subchloride, Cd₄Cl₇.

Decomp, by H₂O and by acids. and Jones, Am. Ch. J. 1890, 12, 490)

Cadmium chloride, CdCl2.

Sol. at 20° 40° 60° 80° 100° in 0.71 0.72 0 72 0 70 0.67 pts H₂O. (Kremers Pogg. 103, 57)

Sat. CdCl₂+Aq contains % CdCl₂ at t°.

to.	%CdCl2	to.	%CdCl2
7	43 5	120	63 0
+1	47.6	150	64.8
6	49 7	165	68.2
10	51 3 51 6	170 180	68 4 70 1
î9	-52 7	190	71 9
25	52.9	200	72 0
61 82	57.9	235	76 0
82	58 8	270	77 7
Œt.	ard, A. ch. 1	894. (7) 2.	536.)

100 mol. H₂O dissolve at: 19 3° 29.7° 40.1° 54.5° 10.94 12.74 13.15 13.16 mol, CdCl2, (Sudhaus, Mmer. Jahrb. Beil.-Bd. 1914, 37,

See also under CdCls+H2O, CdCl2+ 21/2H2O, and CdCl2+4H2O.

gp. gr. of CdCl2+Aq containing pts. CdCl2 to 100 pts. H₂O. 26.9 41 pts CdCl2,

1.1068 1 2106 1.3100 55.8 72.5114.2 pts. CdCl2. 1.4060 1.5060 1.7266

(Kremers, Pogg 103. 57)

CdCl₂+Aq containing 8.91% CdCl₂ has sp gr 20°/20°=1.0715 (Le Blanc and Rohland, Z phys Ch. 1896, **19**. 282) Sol, at 15° m 1 04 pts H₂O, 3 7 pts abs. Sp gr. of CdCl2+Aq at room temp containing.

% CdCl₂ Sp. gr 11.09 16 30 24 786 1 1093 1 1813 1 3199 (Wagner, W. Ann. 1883, 18, 266.)

Sp. gr. of CdCl2+Aq at 18°/4° % CdCl, 57.524 41.547 29.977 Śp gr. 1 852 1.515 1 330

% CdCl. 21 431 14 761 Śp gr 1.210 1.142

(de Muvnek, W. Ann. 1894, 53, 561.) Sp gr. of CdCl2+Aq at 18°. % CdCl₂ 5

1.0063 1 0436 1 0919 1 1443 20 25 30 Sp gr % CdCl₂ 1 2007 1 2620 1 3305 1.4075 40 45 50

Sp. gr. 1.4878 1.5775 1.6790 (Grotrian, W Ann 1883, 18, 193.)

Sp gr, of CdCl2+Aq at 25° Concentration of CdCl2+Aq Sp gr 1-normal 1 0779 1/2-1.0394 1/4-... 1 0197 ..

1/8-1.0098 (Wagner, Z. phys Ch. 1890, 5. 36.)

Sp. gr of CdCl₂+Aq

%CdCl2	to.	Sp gr. at to	Sp. gr at 18°
0 0503	17 59	0 99920	0 99910
	24 27	0 99781	
0 0999	17 70 22.06	0.99964	0 99958
0 200	18 31	1 00038	1 00044
	24 00	0 99920	
0.399	16 86 24 21	1 00239	1.0022
0 599	17 49	1 00406	1 0039
	25 12	1 00238	1
0 769	17.58 21.76	1 00580	1 0057
0.997	17 55	1 00754	1 0075
	19 65	1 00713	

(Wershofen, Z. phys. Ch 1890, 5, 492.)

Sp. gr of CdCls+Ag at to.

-	to	Normality of CdCl ₁ +Aq	g CdCls in 100 g of solution	Sp gr tº/4°
2	20,5	3 80 2 61	44.42 34.22	1 5645 1 3941
	**	1 76 1 29	25 90 19 91	1 2435 1.1977
	u	0.93	14 88 8 84	1.1404

(Oppenheimer, Z. phys. Ch. 1898, 27, 454)

Sp gr. of CdCl2+Aq at to

Solubility in NaCl+Aq at to.

						1,5021			acr , and acr .
t°			CdCl ₂ +Aq	Sp gı	t°			dissolve	Solid phase
22 18 7 17 2 16 17 22	1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 "	" " 53 " " 54 " " 57 " " 77	1458 pts. H ₂ O 1005 " " 988 " " 118 " " 479 " " 232 *" "	1 6128 1 2896 1 0155 1 0152 1 0136 1 0076	19 3	111 116 85 40	30 64 15	7 52 12 19 25 67 36 76 35 84	CdCl ₂ +2½H ₂ O CdCl ₂ +2½H ₂ O+CdCl ₅ 2NaCl+3H ₂ O CdCl ₅ , 2NaCl+3H ₂ O CdCl ₅ , 2NaCl+3H ₂ O+ NaCl NaCl
	Solubi	lity ın F	Cl+Aq at t°		29 7	129. 132		9 63	CdCl ₂ +2 ¹ §H ₂ O CdCl ₂ +2 ¹ §H ₂ O +CdCl ₂ , 2NaCl +3H ₂ O
t°	g CdCls	dissolve g KCl	Solid pha	ac		123 105 91	16	10 10 12 92 15 41	CriCls, 2NaCl+3H ₂ O
19 3	111 30 59 59	6 70	CdCls +2½ CdCls +2½HsO KCl +Hs	+CdCl2,		43 9	74 43	27 46 37 54 35 88	CdCls, 2NnCl+3HgO+ NaCl NaCl
	26 98 11.61	11 09 30 04	CdCl ₂ , KCl- CdCl ₂ , KCl+H ₂ 4KCl	0 +CdCls,	40 1	133	85	15 14	CdCl ₂ +H ₂ O CdCl ₂ +H ₃ O+CdCl ₃
29 7	129 65	34 76 33 94	CdCls, 4KCl KCl CdCls+814			137 48 13	17	29 50 38 16	2NaCl+3H ₂ O CdCl ₂ , 2NaCl+3H ₂ O CdCl ₂ , 2NaCl+3H ₂ O+
25 1	97 62 68 23	0 70 7 08	CdCls+2½ CdCls+2½HsU KCl+H	H ₂ O +CdCls,	-	_		36 18	NaCi NaCi
	47 12 32 67 24 26 15 99 15 47	9 89 13 06 16 10 25 97 33.58	CdCls, KCl+Hs CdCls, KCl+Hs 4KCl	+H ₂ O	54 5	133 140 52 22	42 76	19 10 32 97 39 07	CdCl ₂ +H ₂ O CdCl ₂ +H ₃ O +CdCl ₂ , 2NnCl+3H ₂ O CdCl ₂ , 2NnCl+3H ₂ O CdCl ₃ , 2NnCl+3H ₂ O + NnCl
	2 42	37 66 37 21	CdCls, 4KCl	+KCl	At 3	1 5°, C	dC		$H_2O \rightarrow CdCl_1+H_2O$ and
40 1	133 85 92 15	2 70	CdCl ₂ +H ₂ O - KCl+H	+CdCl ₂ ,	(Sud	haus,	Μr	ner. Jal	ster. urb Beil –Bd. 1914, 37. 'S.)
	51 90 37 91 24 45 18 97 19.92	11 50 15 21 21 73 35 51 37 63	CdCls, KCl " " CdCls, KCl+H: 4KCl	+H-0 s0 +CdCls	J. 18	98, 2 0) Lliq 0. 8:	uid NE 27)	(Klemensiewicz, C A. I ₃ . (Franklin, Am. Ch. ethyl alcohol, furfurol,
	2.98	40 45 40 36	OdCls, 4RC		- cyan	aceta:	te,	ethyl n-nitrot	monochloracetate, ethyl oxalate, ethyl nitrate; oluene, pyridine, piperi-
54.8	102 15	2 32	CdCl ₁ +l CdCl ₁ +H ₂ O KCl+H	+CdCls, IsO	dine, and quinoline. Sol in salicylic alde- hyde. (Lincoln, J. phys. Chem. 1899, 3. 461) Insol, in anhydrous ether. (Hampe, Ch				
	26 13	18.39 43.78	CdCls, KCl CdCls, KCl+H 4KCl	O+C4CI	, R.	0 pts	sol al	in alco solute	methyl alcohol dissolve
	4.20	43 00	CdCl ₂ , 4KC KCl		pts	0 pts. CdCl:	ah	l, at 15 solute et 15.5°	.b". hyl alcohol dissolve 1.52 (de Bruyn, Z. phys. Ch.
(Su	thaus, M		hrb, BeilBd. 4.)	1914, 37	10. 7	783.) 10 g.C	dCl	2+CH4	OH contain 1 5 g GdCl2.

at the critical temp. (Centnessawer, Z. phys. | Cadmium cobaltons chloride, 2CdCl₂, CoCl₂ Ch. 1910, 72, 437 Somewhat sol in acetone. (Krug and M'Elroy.)

Sol in acetone; insol in methylal (Eidmann, C C 1899, H. 1014)

Insol in methyl acetate (Naumann, B 1909, 42. 3790) Sol in ethyl acetate. (Naumann, B. 1904,

37. 3601.) Difficultly sol in ethylacetate. (Naumann, B 1910, 43. 314) Sol. in urethane (Castoro, Z anorg. 1899,

20. 61.) At 18°, 100 g benzonitule dissolve 0 06332 g. CdCl₂ (Naumann, B 1914, 47, 1370.) Insol. in toluene. (Baxter and Hines, Am.

Ch. J. 1904, 31, 222.) (Beckmann and Gabel, Sol in chinolin, (Be Z anoig 1906, 51, 236)

+H.O Solubility in H.O 100 g. of the sat solution contain at 100 20° 40° 609 57.47 57.35 57 51 37 77

80° 100° 59 52 g CdCl₂ 58.41110° is bpt of the sat solution. (Dretz, Z. anorg 1899, 20, 257)

+21/4H₂O Solubility in H₂O 100 g of the sat solution contain at,

~10° U.o 180 30° 260 44 35 47.37 52.53 56 27 57.91 g CdCl₂. Sp gr of sat. solution = 1 741 (Dietz, Z anorg 1899, 20, 257)

+4H₄O Solubility in H₄O 100 g, of the sat, solution contain at. 00 +10° +15° 43 58 49 39 55.58 59 12 g. CdClo (Dietz, Z anorg, 1899, 20, 257.)

+5H₂O. (Worobieff, Z. anorg. 1898, 18. 386.)

Cadmium hydrogen chloride, CdCl2, 2HCl+ 7H₂O. • Decomp in air. (Berthelot, C. R. 91. 1024)

Cadmium casium chloride, CdClo, 2CeCl. Easily sol, in H₄O and dil, HCl+Aq; insol. n conc. HCl+Aq. (Godelfroy, B. 8. 9.) Nearly msol, in CsCl+Aq (Wells and Walden, Z. anorg. 5. 266.) CdCl₂, CsCl. Sl. sol. in H₂O, nearly msol.

in CdCl₂+Aq. (Wells and Walden)

Cadmium calcium chloride, 2CdCl2, CaCl2+ 7H₂O

Rather deliquescent, and very sol, in H2O. When ignited is only sl. sol. in H₂O with evolution of heat. (v. Hauer, J pr. 63. 432.) CdCl2, 2CaCl2+12H2O. Very deliquescent. (v. Hauer.)

 $+12H_2O$

Deliquescent Sol in H2O. (v. Hauer, W A B, 17, 331)

Cadmium cupric chloride, CdCl2, CuClo+ 4H,0. Sol in H₂O (v. Hauer, W A B 17, 331.)

Cadmium hydrazine chloride, CdCl2, NoH.HČl.

Unstable in the air when moist Very sol. in H_2O , sl. sol. in alcohol; sol in NH_2+Aq . (Curtrus, J. pr 1894, (2) 50. 334.) CdCl₄,2N₂H₄HCl+4H₂() Ver Very sol m H.O. sl sol in alcohol (Curtius, J pr. 1894) (2) 50. 335)

Cadmium iron (ferrous) chloride, 2CdCl2, FeCl2+12H2O. Sol. in H₂O (v Hauer, W. A. B 17. 331)

Cadmium lithium chloride, CdCl+, LiCl+ 3½H₂O. Very deliquescent Decomp by solution in H2O, but not in alcohol. (Chassevant, A.

Cadmium magnesium chloride, 2CdCl2, $MgCl_0 + 12H_0O$

ch. (6) 30, 39)

Deliquescent in moist, stable in dry air. Easily sol in H₂O with absorption of heat. Much more sol, in hot than in cold H2O. (v. Hauer)

Solubility in H2O at to

t°	G Cd:MgCls in 100 g solution	G Cd:MgCls in 100 g H:O
2 4 20.8 45.5 67 2 121 8	45 61 49 69 53 51 58 14 65 48	83 86 98 77 115.10 138.90 189.69

(Rimbach, B. 1897, 30, 3084.)

CdCl2, 2MgCl2+12H2O Very deliquescent. (v Hauer.)

Cadmium manganese chloride, 2CdCl₂, MnCl+12H.O.

Deliquescent in moist, efflorescent in dry air. Sol m H.O. (v Hauer)

Cadmium nickel chloride, CdCl2, 2N1Cl2+ 12H₄O

Sol. in H₂O. (v Hauer, W. A. B 20, 40.) 2CdCl₂, NiCl₂+12H₂O Sol. in H₂O. (v. Hauer.)

Cadmium potassium chloride, CdCl., KCl+ 16H.0

Sol. in H₀O without decomp. (v. Haner.)

+H₂O 100 mol H₂O dissolve at 19 3° 29.7° 40 1° 54.5° 2.65 3.21 3.72 4.33 mol CdCl₂, KCl+H₂O.

(Sudhaus, Miner Jahrb Beil Bd. 1914, 37. 26)

Solubility in H.O at to

	Dolubiney in 1170 ac c .				
t°	G CdKClain 100 g solution	G CdKCl ₂ in 100 g H ₂ O			
2 6 15 9 41 5 60 6 105 1	21 87 26 60 35.66 40 67 51 67	27 99 36, 4 55,34 68 55 106 91			

(Rimbach, B. 1897, 30, 3079)

CdCl₂, 2KCl. 100 pts. H₂O at 15 5° dis-solve 33 45 pts Sl. sol. in alcohol (Croft, Phil Mag. (3) 21, 356.)

Solubility in salts + Aq at 16°. CdCl₂, 2KCl is sol without decomp, in the following salt solutions at 16°.

Salt	Mois In 1 litre of the solution S				Sp gr. of the
LiCl CaCl ₂ KCl	9 3 3 8 2 378	0.270		4 488 1 887	1 1380 1.2333 1.214

(Rimbach, B. 1905, 38, 1568.)

More sol in H2O than

CdCl₂, KCl (v Hauer.) 100 g H₂O dissolve at. 19.3° 29.7° 40.1° 54.5° 41.65 49.05 57 55 69.91 g. CdCl₂, 4KCl (Sudhaus, Miner, Jahrb, Beil-Bd, 1914, 37,

24.) Solubility in H.O et to

to.	100 pts	solution con	tain pts
t-	Cd	CI	К
4 0 23.6 50 2 108 8 109 0	3 64 5 66 9.10 11 97 11 91	9 84 14 02 18 09 23 08 23 15	8 31 11 52 13 60 17 10 17 22

(Rimbach, B 1897, 30, 3080.)

Decomp. by H.O.

CdCl₂, 4KCl.

Can be recryst without decomp, from LiCl CaCl₂, or MgCl₂+Aq. (Rimbach, B. 1905, 38, 1565.)

The salt is sol, without decomp, in HCl+Aq containing 198 mole HCl per 100 mole H2O

1 l, of the solution contains 0.033 mole CdCl₂, 0 132 mole KCl and 8,828 mole HCl; sp. gr. of the solution = 1.1403 (Rimbach, B. 1905, 38, 1568.)

Cadmium rubidium chloride, CdCl., 2RbCl Sol in H₂O and HCl+Aq. (Godeffroy, B

8. 9.) CdCl₂, RbCl Solubility in H₂O at t^c. 100 pts by wt of the solution contain pts by wt RbCl, CdCl.

to.	Pts. RbCl, CdCl ₂
1 2	12 97
14.5 41.4	16 80 25 31
57 6	30 83
103 9	46 62

CdCl2, RbCl is sol. in H2O without decomp from 0-104° (Rimbach, B. 1902, 35, 1303)

CdCls, 4RbCl. Solubility of CdCl₂, 4RbCl and CdCl₂, RbCl m H₂O at t°.

	In 10	0 pts by the solution	wt. of on	Composition of the solid phase				
t°	Pta by wt Cd	Pts by wt Cl	Pts. by wt Rb	Mol -% mono- salt	Moi -% tetra- salt			
0.7 8.8 13.8 42.4 59.0 08.4	0 65 1 07 1.32 3.21 4 61 8 94	6.52 7 37 7 86 11 35 13 41 18 57	14 73 16 18 16 93 22 45 25 31 31,15	30 24 16 14 33	70 76 84 86 67			
UO 1	0 94	10 01	91.10					

(Rimbach, B. 1902, 35, 1305.)

Decomp by H₂O between 0° and 108°. (Rimbach, B 1905, 38. 1571.)
Sol in cone. HCl without decomp. (Rimbach, B. 1905, 38. 1571.)
Not sol. in CaCl₂+Aq and LiCl+Aq with-

out decomp. (Rimbach, B. 1905, 38, 1571.)

Cadmium sodium chloride, CdCls, 2NaCl+ 3H₂O

Sol in 1.4 pts. H₂O at 16° (Croft) 100 mol. H₂O dissolve at 19.3° 29.7° 40.1° 54 5° 4.73 3.93 4 29 5.18 mol. CdCl₃.

Stable between 19° and 55° (Sudhaus, Miner Jahrb, Beil-Bd. 1914, 37. 25.)

2NaCl+3H2O.

SI sol in alcohol or wood alcohol (Crou.) Cadmium strontium chloride, 2CdCl2, SrCl2+

7H₂O Sol in H₂O (v. Hauer)

Cadmium chloride ammonia, CdCl2, 2NH4. Nearly msol, in H2O. (v. Hauer.)

Nearly lists. in 143.5 (**) Trades., GCdCl₃, 3NH₃+½H₂C. GdCl₄, 4NH₄+½H₂C. GdCl₅, 5NH₄. (André, C. R. 104. 908.) GdCl₅, 6NH₄. Difficultly sol. in cold H₂C.

(Schuler, A. 87. 34.)

(Mailhe, A. oh.

Cadmium chloride cupric oxide, CdClo. 3CuO+3H₄O. Not decomp, by H_{*}O

1902, (7) 27. 378 and 174.)

Cadmium chloride hydrazine, CdCl₂, 2N₂H₄. Insol. in H₂O. Sol. in NH4OH+Aq (Franzen, Z anorg

1908, 60, 279,) +H₂O. Insol. in H₂O; easily sol in NH₄OH+Aq (Curtius, J pr. 1894, (2) 50.

Cadmium chloride hydroxylamine, CdCl2, 2NH2OH

SI sol in cold, somewhat more in warm H₂O Very sol in hydroxylamine+Aq Very sl sol, in alcohol and other organic solvents (Cusmer, Bull, Soc. (3) 3, 116) Aq solution sat. at 20° contains about 1%. (Antonoff, C C. 1905, II. 810)

Cadmium fluoride, CdF2,

Difficultly sol, in H2O Easily sol, in HF+

(Berzelius, Pogg. 1. 26) Aq. (Berzeitus, Fogg. 1. 20) Very sol in H₂O, msol, in 95% alcohol, sol. in HCl, H₂SO₄, or HNO₃+Aq with evolu-tion of HF. (Poulenc, C R 116.582) 1 l H₂O dissolves 0 289 mol CdF₂ at 25°

or 100 cc. sat. aqueous solution contains 4.36 g. CdF₂ at 25°. (Jaeger, Z anorg. 1901, 27, 35) l, of 108-N HF dissolves 0.372 mol. CdF₂ at 25° (Jaeger, Z anorg 1901, 27. 35) Insol. in liquid NH₃. (Gore, Am. Ch. J

1898, 20, 827 Cadmium cenc fluoride, CdF2,2CeF4+7H2O Ppt. Decomp by H.O. (Rimbach, A. 1909, 368, 106.)

Cadmium columbium fluoride. See Fluocolumbate, cadmium.

Cadmium molybdenyl fluoride. See Fluoxymolybdate, cadmium,

Cadmium silicon fluoride. See Fluosilicate, cadmium.

Cadmium stannic fluoride. See Fluostannate, cadmium.

Cadmium titanium fluoride. See Fluotitanate, cadmium.

Cadmium zirconium fluoride.

See Fluozirconate, cadmium. Cadmous hydroxide, CdOH. Insol. in H2O. Decomp by acids into

cadmic salt (Morse and Jones, Am. Ch J. 12, 488)

Cadmium hydroxide, CdO2H2

Insol. in H_{*}O.

CdO₂H₂+Aq contains 0.0026 g, CdO₂H₂

at 25° (Bodlander, Z. phys. Ch. 1898, 27. 66 Solubility in H₂O = 2 6 x 10-4 (Herz, Z.

anorg, 1900, 24, 126.) Sol in acids; very sol, in NH₄OH+Aq; insol in KOH, NaOH, Na₂CO₃, K₂CO₃, and

(NH₄)₂CO₃+Aq Easily sol in (NH4)2SO4, NH4Cl, NH4NO4 and NH4 succurate + Aq. (Wittstein) Freshly pptd CdO2H2 is sol in alkali haloids+Aq. (Bersch, Z. phys. Ch 1891, 8.

Solubility in NH4OH+Aq increases with increase in concentration of NH4OH (Euler, B. 1903, 36, 3401)

> Solubility in NH₄OH+Aq at 25°. g. CdO per l NH norm 0.5 0 24

0 62

1 33

4 92

(Bonsdorff, Z. anoig 1904, 41, 187)

Insol in ethyl, and methyl amine +Aq. (Wurtz)

Very sl. sol in HCN+Aq even when freshly optd (Schuler, A 87, 48. Not pptd in presence of Na citrate (Spiller), and many non-volatile organic substances

(Rose)

1 0

4 6

8

Cadmium iodide, CdI2 Sol. in 1 13 pts H₂O at 15° (Eder, Dingl. 221, 89.)

Sol at 20° 40° 60° 80° 100° in 1.08 1.00 0 93 0.86 0.75 pts H₂O. (Kremers, Pogg. 103, 57.)

Sat. CdI₂+Aq contains at -4° +2° 24° +10° 13° 42.4 437 45.2 44.8 46 5 47.4% CdI2 76° 94° 95° 54° 64° 135° 55 1 54.7 62 9% CdI2. 49 5 50.1 52 4 255° 140° 165° 185° 202° 202° 63 1 73.4 73.2 84.5% CdIs.

68.1 70.7 (Étard, A. ch 1894, (7) 2. 545.)

Solubility in H₂O. 100 g, of the sat solution contain at:

75° 100° 56 08 g CdI2. 44 39 46.02 49,35 52.65 (Dietz, Z. anorg. 1899, 20. 262)

Sp gr. of Cd I2+Aq containing pts. CdI2 to 100 pts. H2O.

21.4437 88.5 pts CdI2. 1.1681 1.328

(Kremers, Pogg. 111, 60.)

20

Sp. g: of CdI2+Aq at 19.5° containing. 15 20 25 %CdI2, 1 044 1 088 1 138 1.194 1.253 • 30 40 45 50 %CdI₂ 35 1 319 1 395 1.476 1.575 1.680 (Kiemers, calculated by Gerlach, Z. anal.

8. 285.) Sp. gr of CdI₂+Aq at 18°. .

Sp gr. 10071 10425 10883 1.1392 1.1943 35 C CdI2 30 40 1 2550 1.3228 1.4000 1 4816 1 5741 Sp. gr

(Grotrian, W Ann. 1883, 18, 193.) Sp. gr of CdI+Aa.

g CdI2 per 1	Sp. gr.	g CdI: per l	Sp gr
98 85 197.7	1 08 1 162	289 5 400	1 237 1 328
(Barbier an	d Roux, 1	Bull. Soc. 1	890, (3) 3.

Sp. gr of CdIo+An.

% CdI:	to.	Sp gr at to	Sp gr. at 18°
0 0429	17 68	0.99915	0.99908
0 100	22 88 17 55	0 99807 0 99965	0.99956
0 100	22 91	0 99363	0.99900
0.204	17 76	1.00052	1 0005
0 399	17 40	0 99948	1 0021
	24 30	1 00082	
0 600	18 00		1 0038
0 800	17 44 23 11	1 00564 1.00442	1 0056
1 00	18 00	11001111	1 0072

(Wershofen, Z phys Ch. 1890, 5, 493.) Sp gr. CdI₂+Aq at 18°/4° containing 31 123 13 677 9 559 % CdI₂

1 338 1.125 1.086 (de Muynck, W. Ann 1894, 53, 561) CdI₂+Ag containing 10 97% CdI₂ has sp.

gr. 20°/20° = 1 0982. CdI2+Aq containing 16.53% CdI2 has sp. gr. 20°/20° = 1 1562

(Le Blanc and Rohland, Z. phys. Ch. 1896,

Sp gr of CdIo+Aq at 20°. Normality of

CdI ₂ +Aq	% CdI:	Sp. gr.
1 924 0 951 0 447 0 211	44.53 27 07 14 40 7 26	1 5807 1 2837 1 1355 1 0630

(Forchheimer, Z. phys Ch. 1900, 34. 29.)

CdI₂+Aq containing 1 pt. CdI₂ in 2,2691 pts. H₂O at 17° has sp. gr. = 1.3341. (Hit-torf, Z phys. Ch 1902, **39**. 628.) Sol m sat. HI+Ac

Sol in waim NH,OH+Aq. Insol in liquid NH₂. (Goie, Am Ch J. 1898, 20, 827 Sl sol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, 20, 827.) Sol in S₂Cl₂. (Walden, Z anorg, 1900, 25.

Difficultly sol. in POCl3 (Walden, Z.

anorg. 1900, 25, 212 Nearly msol. in AsBra (Walden, Z. anorg. 1902, 29. 374.) Sol. in SO₂Cl₂ (Walden, Z anorg, 1900,

25, 215.) Sol. in 15 pts alcohol. (Vogel, N. Rep.

Pharm. 12. 393.) -Sol in 0 98 pt. abs alcohol. (Eder. Dingl. 221, 89.)

Sp. gr. of CdI2+alcohol. %CdI2 Sp. gr. 20°/20°

0.79497 28 0.8470(Le Blane and Rohland, Z. phys. Ch. 1896,

19, 284.) Sol in 5.2 mols methyl, 7 mols, ethyl, and 9.8 mols propyl alcohol at 20° (Timofejew,

C. R. 112, 1224.) Sol in 36 pts. ether. (Eder, l c)

Sol. m 2.0 pts. alcohol-ether (1:1). (Eder. sol, in anhydrous abs. ether.

Very sl (Hampe, Ch. Z. 1887, 11. 847.) 100 g, of sat, solution in abs, ether contain 0.143 g. CdI₂ at 12°. (Tyrer, Proc. Chem. Soc. 1911, 27. 142)

Solubility in ether + Aq at 12°.

% H₂O | % CdI₂ % H₂O %H₂O m ether n ether % CdI: 7 30 0 0 0 143 0 50 3 36 1 00 0.100.78 0.70 4 77 1 10 8 27 6.46 8.68 0.30 0.90 ! 1.14 (Tyrer, Proc Chem Soc 27, 142.)

at 16°. =0 01% " 35° =0 02% Solubility in benzene =0 03% Solubility in ethyl ether at 0°

15.5° ≈ 0 04 9 " 20.3°=0.056

(Linebarger, Am. J Sci. 1895, (3) 49, 52 Sol in acctone (Eidmann, C. C 1899, II.,

1014.)1 g. CdI₂ is sol in 4 g. acetone at 18°. Sp gr. of sat. solution 18°/4°=0.994. (Nau-

mann, B. 1904, 37. 4338.) Sp gr of CdI2+acetone.

%CdI: Sp gr. 20°/20° 0.7998 12 02 0 8929

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19, 284)

ou chimiton was				
Sol. in chinolin (Beckmann and Gabel,		Sp. gr of	K_2CdI_4+Aq	
5. anorg. 1906, 51. 236) 100 g. benzonitule dissolve 1.6295 g CdI ₂ :	%K ₂ CdL	t°	Sp gr at to	Sp gr at 18°
it 18° (Naumann, B 1914, 47, 1370) Insol in methylene iodide. (Retgers, Z	0 0328	f8		0 99895
morg 3, 343.)	0 0596	18 18		0 99921 0 99938
Sl. sol in ethylamine. (Shinn, J phys Chem 1907, 11, 538)	0.100	17 12 21 82	0 99962	0 99945
Insol. in CS ₁ (Arctowski, Z. aitorg 1849, 5, 257.)		18	0 33072	1 0007
Solubility in methyl acetate = 0.7-1 5%;	0 500	18 17 32	1 0068	1 0027 1 0067
2.1% at bpt. (Schroder and Steiner, J pr		20 63	1.0061	

1909, (2) 79, 49)
Sol. in methyl acetate (Naumann, B 1909, 42, 3790.)

1 pt. is sol in 54.3 pts. ethyl acetatc at 18°
The sat. solution has D18°/4°=0.9145.
(Naumann, B 1910, 43, 318.)

(Naumann, B 1910, 43, 518.)
Insol. in mustard oil. (Mathews, J. phys. Chem 1905, 9, 647.)

Mol. weight determined in piperidine, pyridine, methyl and ethyl sulphide. (Werner, Z anorg 1897, 15, 17.)

Cadmium hydrogen iodide, CdI₂, HI+3H₂O.

Decomp in air (Dobroserdow, C C 1900, II. 527.)

Cadmium cesium iodide, CdI₂, CsI+H₂O.
Sol in H₂O without decomp. (Wells and Walden, Z anorg. 5, 271.)

Cdl., 2Cal. As above. Cdl., 3Cal. Decomp. by H₂O into the above salt.

Cadmium hydrazine 10dide, CdI₂,2N₂H₄HI Sol. in H₂O (Ferratini, C A. **1912**. 1612)

Cadmum mercuric iodide.

Very sol in H₂O. (Berthemot, J Pharm 14, 613.) Cdl₃, 3HgI₂. Sol in H₂O Can be recrystallized in alcohol. (Clarke and Kebler, Am. Ch. J. 5, 235.)

Cadmium potassium iodide, CdI₂, KI+H₂O Sol. m 0.94 pt H₂O at 15°. (Eder, Dingl. 221.89) CdI₅, 2KI+2H₂O. Deliquescent. Extremely sol. m H₂O. Sol. at 15° in 0.73 pt

tremely sol. in H₂U. Sol. at 15° in 0.73 pt H₃O. Sl. sol in alcohol and wood spirit, but less than CdI₂. (Croft.) Sol at 15° in 1.4 pts. absolute alcohol, 24.5 pts. ether (0.729 sp. gr.), and 4.5 pts. alcoholpts. ether (0.729 sp. gr.), and 4.5 pts. alcohol-

ether (1:1). (Eder, l. c.) Sp. gr. of K₂CdI₄+Aq at 18°.

%K₁CdI₄ 1 5 10 15 20 Sp gr. 1.0065 1 0384 1.0808 1.1269 1.1770 %K₂CdI₄ 25 30 35 40 45

Sp. gr. 1.2313 1.2890 1 3557 1 4282 1.5065 (Grotrian, W. Ann. 1883, 18, 193.) (Wershofen, Z phys Ch. 1890, 5. 493.)

Sol. in ethyl acetate. (Naumann, B 1904, 37, 3601.)

Cadmium sodium iodide, CdI₂, 2NaI+6H₂O Deliquescent (Croft.) Sol. at 15° in 0 63 pt H₂O, 0.86 pt abs

alcohol, and 10 1 pts. ether (sp. gr. 0 729) (Eder, Dingl 221. 89)

SH₂O

Deliquesces in moist, effloresces in dry air, sol in H₂O (Croft)

Cadmium iodide ammonia, CdI2, 2NH3.

Decomp by H₂O. (Rammelsberg.) CdI₂, 4NH₃. (Dawson and McCrae, Chem

Soc. 1900, 77. 1246.)
CdI₂, 6NH₃. Decomp. by H₄O; sol in warm, less sol in cold NH₄OH+Aq. (Rammelsberg.)

Cadmium iodide hydrazine, CdI₂, 2N₂H₄
Easily sol. in warm NH₄OH+Aq (Franzen, Z anorg 1908, 60, 281.)

Cadmium iodide hydroxylamine, CdI₂, 3NH₂OH.

Sol, in H₂O and alcohol. Insol. in ether. (Adams, Am Ch. J 1902, 28, 218.)

Cadmium iodide selenide, CdI₂, 3CdSe. Easily decomp, (Fonzes-Diacon, C. R. 1900, **131**, 897.)

Cadmium iodosulphide, CdI, 2CdS.
Ppt. (Naumann, B. 1904, 37. 4338.)

Cadmium suboxide, Cd4O.

Decomp. by H₂O, acids and NH₄OH+ Aq. (Tanatar, Z anorg. 1901, 27, 433.) Cd₂O. Properties as cadmous hydroxide (Morse and Jones.)

Cadmium oxide, CdO.

Insol in H_1O . Sol, in acids Sol, in NH_4OH+Aq . Insol, in $(NH_4)_2CO_2+Aq$. Easily sol in NH_4CI+Aq , less in NH_4NO_2+Aq . (Brett, 1837.)

Insol in KOH, NaOH, K₂CO₃, and Na₂CO₃ Cadmium sulphide, CdS

(Naumann, B.

Sec also Cadmium hydroxide.

Solubility in (calcium subrate+sugar)+ Aq 1 l solution containing 418.6 g, sugar and 343 g CaO dissolves 0 22 g CdO. 1 l, solution containing 1744 g sugar and

14.1 g. CaO dissolves 0 48 g. CdO (Bodenbender, J. B. 1865, 600) Insol in acetone (Naumann, B. 1904, 37.

Insol in acetone (Naumann, B. 1904, 37. 4329) Insol in methyl acetate (Naumann, B 1909, 42, 3790.)

1904, 37. 3601.)

Cadmium peroxide, Cd₃O₈ or Cd₅O₅(?).

Insol in ethyl acetate

(Haas)

CdO₂, Cd(OH)₂. (Kouriloff, A. ch. (6) **23**. +321) Very stable towards H₂O Insol in NH₄OH +Aq (Haas, B. 1884, **17**. 2253) +CdO₂, Cd(OH)₂ Ppt Insol in NaOH+ Aq (Bykmann, C. C **1905**, I 1629)

5CdO₂,CdO+3H₂O Ppt. (Teletow, C A 1912, 43)

Cadmium oxybromide, CdO, CdB₁₂+H₂O. Decomp. by H₂O (Tassily, C. R. 1897, 124, 1023.)

+2H₂O Stable in dry air; insol. in H₂O. (Tassily, C R. 1897, **124**, 1022) +3H₂O Slowly decomp by H₂O. (Tas-

sily, C R 1897, **124**, 1022) +7H₂O (Mailhe, C. R. 1901, **132**, 1561.)

Cadmium oxychloride, CdCl₅, CdO+H₂O Sl. sol, in hot H₂O (Habermann, M. Ch. 5, 432)

0. ±0.5 / +7H₂O (Mailhe, Bull Soc 1901, (3) 25. 791) 2CdO, CdCl₂ Insol in H₂O, but slowly

decomp thereby. (Canzoneri, Gazz. ch. it. 1897, 27. (2) 486) Cadmium oxyiodide, CdO, CdI₂+H₂O

Decomp. by H₂O. (Tassily, C R. 1897, 124, 1023.) +3H₂O. Stable in dry air, insol in H₂O. (Tassily, C. R. 1897, 124, 1022.)

Cadmium phosphide, Cd₂P₂.

Sol. in HCl+Aq with evolution of PH₂.
(Stromever.)

(Stromeyer.) Cd₂P. Sol. m conc. HCl+Aq. (Emmerling, B. 12, 152.) Easily decomp. by acids. (Kuhsch, A. 231.

CdP₂. Decomp by boiling conc. HCl+Aq. (Renault, C. R. 76, 283)

Cadmium selenide, CdSe.
Sol in HCl+Aq. (Uelsmann, A. 116, 122)
Easily decomp. by acids. (Fonzes-Diacon;
C. R. 1900, 131, 897.)

Insol in H₂O Solubility in H₂O at 16-18°=6.6 x 10⁻⁶ mols, per l (Biltz, Z phys Ch. 1907, 58.

291.)
1 1 H₂O dissolves 9 00 v 10⁻⁶ mols CdS

(artificial greenockite) at 18°.

1 I H₂O dissolves 8.86 x 10 ° mols. pptd. CdS at 18°. (Weigel, Z. phys. Ch. 1907, 58, 294)

Difficultly sol in bot dil HCl+Ag. Easily sol, in cold cone HCl+Aq. (Stromeya.) Sol in HNO₁+Aq (Messner), and boling dil H₂S0.+Aq (1 *6). (A. W. Hoffmann, I. H₂S0.+Aq (1 *6). (A. W. Hoffmann, I. H₂S0.+Aq (Wasckenroder, Repert 46. 226) Insol in KOH, or (NH₂)S+Aq. Appreciably sol, in an and solution of NH₂Cl. (Baxter and

Hines, Z. anorg, T.965, 44, 180.)

Much more sol. in (NH₄)₂S+Aq than usually supposed. (Ditte, C. R. 85, 402.), Solubility increases by waiming, and at 68° is twice that at ordinary temperatures. A sat solution of (NH₄)₂S dissolves about 2 g. CdS to a litre. Alkali subplicite dissolve much

less (Ditte.)
Fresenus (Z anal. 20. 236) could not confirm the above According to Fresenus, CdS is not appreciably sol in (NH₄)₂S+Aq

is not appreciately sol in {NH₄}s+Aq Insol in Na₃SO₃ on KCN+Aq (Fresenius.) Insol. in NH₄Cl or NH₄NO₃+Aq. (Breet.) Sol in alkali sulpho-molybdates, -tungstates, -vanadates, -arsenates, -antimonates, stannates+Aq (Storch, B. 16, 2015.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20, 827)
Insol. in acctone (Naumann, B. 1904, 37.

4329, Eidmann, C C. 1899, II 1014.) Insol. in othyl acctate. (Naumann, B. 1910, 43, 314.)

Min Greenockite, Sol in HCl+Aq

Colloidal.—Solution of 4 g. colloidal C in a litre H₂O remains transparent several days. If it contains 11 g. CdS in a litre, it is completely coagulated in 24 hours. Solutions of salts of the following concentration cause an immediate coagulation in an aqueous solution of CdS containing 3.02 g. in a litre.

	KCl .			1	1615
	KBr .				727
	KI .			1 .	57
	KCN			1	166
	KClO ₈ .			1.	1666
	KNO,				1000
	K.S.O.			1.	5000
	K,80,			1.	833
	K ₃ Fe(C	$N)_s$			166
	K,Fe(C	$N)_a$	<	1:	100
	K2CrO4			1:	400
	K.Cr.O	7			3571
	NaCl			1:	2666
•	Na ₂ S ₂ O	3			98
	NaHCC)a		1 .	333
	Na ₂ CO			1.	166
	Na ₂ HP	04		1 :	202

NaC ₂ H ₂ O ₂ .	. 1 · 2451
Na benzoate	. 1 10,000
$(NH_4)_2C_2O_4$.	1.588
BaCl ₂ ,	1 . 11,764
Ba(NO ₂) ₂	1 8032
BaS_2O_t .	. 1,5617
$MgSO_4$, 1.41,666
MnSO ₄	. 1:22,222
CdSO.	. 1 · 250,000
$Cd(NO_3)_2$. 1 · 285,714
Pb(ClO ₃) ₂ .	1 209
$Pb(C_2H_3O_2)_2$	1 . 147,058
Hg(CN) ₂	<1 20
$Al_2(SO_4)_3$.	1 · 232,558
Alum	. 1 192,377
Chrome alum	1 42,555
HCI .	1 4807
H ₂ SO ₄	. 1 8000
$HC_2H_3O_2$	In . 15
H ₂ C ₂ O ₄	. 1 . 23,255
Succinic acid	
Tartane and	1 · 333
(Prost, Belg Acad	Bull (3) 14, 312, J B.

Cadmium pentasulphide, CdS.

1887, 537) Insol, in H₂O (Schiff, A. 115, 74) Mixture of CdS and S (Follonius, Z anal 13. 412)

Cadmium notassium sulphide, KoCdaSa. (Milbauer, Z. anorg, 1904, 42, 439)

Cadmium sodium sulphide, 3CdS, Na₂S, Decomp, by H₂O (Schneider, J. pr (2) 8.29)

Cadmium sulphoiodide. See Cadmium iodosulphide.

Cadmium telluride, CdTe

Not attacked by dil acids. Attacked in Casium iridium bromide. the cold only by HNO2. (Tibbals, J. Am. Chem Soc. 1909, 31, 908)

Cadmic acid.

Potassium cadmate.

Insol. in H2O, but gradually decomp. when in contact therewith (Meumer, C. R. 63. 330)

Cæsium, Cs.

 Decomp. H₂O with great violence (Setterberg, A. 211, 100.) ery sol. in hould NH, (Franklin, Am.

Ch J. 1898, 20, 827) Cæsium acetylide acetylene, Cs2C2, C2H2, Insol. in CoH4 and in CHCl4 (Mossan,

C. R. 1903, 136, 1218.) Cæsium amide, CsNH2

Decomp. by H2O Very sol. in liquid NH2. (Rengade, C R. 1905, 140, 1185)

Cæsium ammonia, Cs.NH2. Sol. in liquid NH₈ (Moissan, C. R. 1903. 136, 1177)

Casium azoimide, CsNa.

Dehousseent Stable in an solution 224 2 pts sol, in 100 pts H₂O 307 4 " " 100 " H₂O " 16° 1.0366 " " "100 " abs, alcohol " 16° Insol in nursether (Curtius, J pr 1898. (2) 58, 283.)

Casium bromide, CsBr.

Ppt. (Chabrić, C. R. 1901, 132, 679) Sat CsBr+Ag at 25° contains 55.23% CsBr. (Foote, Am. Ch J 1907, 37. 125)

Cesium tribromide, CsBr. Sol in H₂O, decomp by alcohols, (Wells, Sill. Am. J. 148, 17.3

Cæsium neutabromide, CsBr. Very unstable (Wells and Wheeler, Sill.

Am J 144, 42.) Casium cobalt bromide, Cs.CoBr.

Decomp. by H₂O (Campbell, Z anorg. 1894, 8, 126.) Decomp. by H₄O and by alcohol (Campbell, Am J Sci 1894, (3) 48, 418)

Cs2CoBr4 Decomp. by H2O (Campbell, Z. anorg. 1894, 8, 126 Decomp. by H₂O and by alcohol (Campbell, Am J. Sci. 1894, (3) 48, 418.)

Cæsium copper bromide, CsBr. CuBr. Sol in H2O without decomp (Wells and Walden, Z. anorg 5, 304.) 2 CsBr, CuBr₂, (W and W.)

See Bromiridate, cæsium.

Cæsium iron (ferric) bromide, CsFeBr. Sol in H₂O (Walden, Z, anorg, 1894, 7, 332.) Cs2FeBrs+H2O (Walden, Z. anorg 1894,

7, 332) Cæsium lead bromide, CsBr. 2PbBr.

Nearly stable in aqueous solution. (Wal-

den, Sill Am J. 145, 127.) CsBr, PbBr₂ Decomp by H₂O. (Walden.)

4CsBr, PbBr₂ As above. Solubility determinations show that the double salts formed by cassum and lead bromides at 25° are CsPb2Br4, CsPbBr4 and Cs. PbBrs. (Foote, Am. Ch. J. 1907, 37, 125.)

Cæsium magnesium bromide, CsBr, MgBr.+ 6H₀O.

Sol. in H₂O. (Wheeler and Campbell, Z. anorg 5, 275)

Cæsium mercuric bromide, CsBr, 2HgBr2.

Not decomp by H₂O. 100 pts solution sat, at 16° contain 0.807 pt CsBr, 2HgBr, Sl, sol. in hot strong alcohol, from which CsBi, HgBl; separates on cooling. (Wells, Sill, Am J 144, 221)

CsBr, HgBr₃. Decomp by H₂O mto above salt. Sol m alcohol without decomp. (Wells) 2CsBr, HgBr₂. Decomp. by H₂O mto CsBr, 2HgBr₂

3CsBr, HgBr₂ As above

 Cæsium molybdenyl bromide, 2CsBi, MoOBra.

(Weinland and Knoll, Z. anorg 1905, 44, 107)

Cassum nickel bromide, CsN₁Br₁
Decomp by H₂O (Campbell, Z. anorg

1894, 8. 126)
Decomp. by H₂O and by alcohol. (Campbell, Am J. Sci. 1894, (3) 48. 418.)

Cæsium osmum bromide.

Sec Bromosmate, cæsium.

Cæsium palladıum bromıde.

See Bromopalladate, cæsium and bromonalladite, cæsium.

Cæsium platinum bromide.

See Bromoplatinate, cæsium.

Cæsium ruthenium bromide.

See Bromoruthenite, cæsium.

Cæsium selenium bromide.

See Bromoselenate, cæsium. Cæsium tellurium bromide.

See Bromotellurate, cæsium.

Casium thallic bromade, CsBr, TlBr₂.

Sol. in H₂O with decomp. (Pratt, Z anorg

1895, 9, 19)
By recryst from H₂O, forms 3CsBr, 2TlBr₂.
(Pratt, Am. J. Sci. 1895, (3) **49**, 403.)
3CsBr, 2TlBr₂.
Can be increase, unchanged

3CsBr, 2TlBr; Can be recryst, unchanged from H₂O. (Pratt, Am. J. Sci 1895, (3) 49. 402.)

Cæsium tın (stannic) bromide. See Bromostannate, cæsium.

Cæsium zinc bromide, 3CsBr, ZnBr₂. Sol. in H₂O. (Wells and Campbell, Z

anorg. 5. 275) 2CsBr, ZnBr₂. As above

Cæsium bromide columbium oxybromide, 25°: 2CsBr, CbOBr₂

Unstable in moist air Decomp. by H₂O. (Weinland, B. 1906, **39.** 3059.)

Cæsium bromochloride, CsBr₂Cl.

Properties as CsBr₃ (Wells)

CsBrCl₂ As above (Wells.)

Casum mercuric bromochloride, CasHgClaBra

Decomp. by H₂O finally to HgBr₂ (Wells, Sill Am. J 144, 121) Cs₂HgCl₂Br. As above.

CsHg₂ClBr₄. As above CsHg₂ClBr₁₀. As above

Cæsjum bromochlorosodide, CsBrClI

More sol, in H₂O than in alcohol. Not decomp, at once by other (Wells.)

Cæsium bromoiodide, CsBrI2

CsHgClBr2. As above.

Decomp. by H₂O. Sol. in alcohol. Decomp. by ether with residue of CsBr (Wells, Sill. Am J 143. 17) CsB₁J. More sol. in H₂O than in alcohol.

Not decomp by ether CsBr₂I+Aq sat at 20° contains about

4 45% ČsBr₂I. (Wells) Cæsium carbide, Cs₂C₂

Decomp. by cold H₂O. (Moissan, C. R 1903, **136**, **122**I)

Cæsium chloride, CsCl.

Very deliquescent, sol. in H₂O and alcohol

Solubility of CsCl at t°

t°	Pts by wt of C4Cl in 100 pts solution
0 3	61 9 63 5
20	64.9
30 40	66 3 67.4

(Hinrichsen, Z. phys. Ch. 1904, 50. 99)

Solubility of CsCl at t°.

t°	% C ₉ CI	t°	% C4C1
0	61 7	60	69 7
10	63 6	70 80	70 71 4
20 30	65 1 66 4	90	72 2
40	67 5	100	78 0
50	68 0	119 4	74 4

(Berkeley, Trans. Roy Soc. 1904, 203. A.

A normal solution of CsCl has sp gr at 25°=11076 (Wagner, Z phys Ch. 1890, 5.

Sp. gr at 20°/4° of a normal solution of CsCl = 1 125815. (Haugh, J Am. Chem Soc. 1912.-34, 1151)

	Sp gr. of	CsCl+Aq.		Solubilit	y of CsCl-	⊢HgCl _s in acctone at 25°.
G equiv CsCl per	Sp gr at 0°/6°	Sp gr at 18°/18°	Sp m * at 30°/30°	Solution contains		Solid phase
I at 18°	nt (fo/to	at 18°/18°	at 30°/30°	% HgCl2	%'ChCl	Some pages
0 504	1 06556	1 06483	1 06452	57 74	0 00	HgCl ₂
1 602 2 007	1 12962 1 25705	1.12825	1 12750 1 25307	57 79 57 74	0 13	HgCl ₂ +CsHg ₆ Cl ₁₁ CsHg ₄ Cl ₁₁
3 994	1 50514	1 50100	1 49859	52 54	0 22	"
(Clausen, W. Ann. 1914, (4) 44, 1071.)				49 83 44 32)	0,32	CsHg ₀ Cl ₁₁ +CsHg ₂ Cl ₅
				44 46	0 44	"
Solubility of CsCl+FeCl ₄ in H ₂ O at 21°				39 65 28 48	0 48 0 48	CsHg ₂ Cl ₅
Substan	ce added	Pts by weight of solu	in 100 pts	26 96	0.52)	CsHg ₂ Cl ₄ +CsHgCl ₃
				97 39	0.611	

21 50 0 46

13 08 | 0 45 0 16 | 0 19

0 17 0 25

0 02 | 0 11

0 00 | 0 032

FoCh. CPCA CYCI FeCla grams grains o° 65.0 0.611 6 0 45 55 18 1 4 10 2 2 1 52 38 8 8 52451 44 2.0 7 4 7 8 47 70 3.8 6.0 8 93 41 15 4 6 4 6 15 34 25 25 5 4 $\hat{2}.8$ 21.65 14 96 6 2 1 4 27 96 8 42 35 0 2 48 71 0.94 83 89

(Humichsen, Z. phys. Ch. 1904, 50 96.)

Solubility of CsCl+HgCl₂ in H₂O at 25°

Solutio	n contains	Solid phase
% CsCl	€ HgCl ₂	sond phase
65 61	0 00	CaCl
65 78	0 215	CsCl+Cs ₂ HgCl ₄
62 36	0 32	Cs ₄ HgCl ₅
57 01	0.64	6.
52 35	1.23	11
51 08	1.44	Cs ₃ HgCl ₅ +Cs ₂ HgCl ₄
49 30	1.49	Cs ₂ HgCl ₄
45 95	1 69	"
45 23	1 73	Cs ₂ HgCl ₄ +CsHgCl ₂
38 63	1 32	CsHgCl ₃
17 03	0 51	
1 53	0 42	"
0 61	2 64	CsHgCls+CsHggCls
0 49	2 91	CsHg ₂ Cl ₅
0.40	3.78	CsHg ₂ Cl ₆ +CsHg ₆ Cl ₁₁
0.44	4 63	
0.41	4 68	CsHg ₅ Cl ₁₁
0 25	5 65	72
0.18	7 09	CsHg ₅ Cl ₁₁ +HgCl ₂
0 00	6.90	HgCl ₂

(Foote, Am., Ch. J. 1903, 30, 340.)

Insol. in acetone. (Naumann, B 1904, 37. 4326; Eidmann, C. C. 1899, II. 1014.)
100 g solution in acetone sat at 25° contain 0.032 g. CsCl (Foote and Haigh, J. Am Chem Soc. 1911, 33. 461)

(Foote and Haigh, J. Am. Ch. Soc. 1911, 33.
461)

Insol in methyl acctate. (Naumann, B.

CsHgCl,

Mixtures of salts

CsC1

| 1909, 42, 3790.) | Solubility in glycol at ord, temp = 10.6-| 10.8% (de Comnck, Belg Acad. Bull. 1905, | 359)

Insol. in anhydrous pyridine and in 97% pyridine+Aq Sl. sol in 95% pyridine+Aq and in 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc 1908, **30**, 1107.)

Cessium chromium chlcride, $2\text{CSCl}, \text{CrCl}_2+H_1\text{O}$ Stable in the air. Sol. in H_2O . (Wells, Z anorg. 1895, 10. 182) $2\text{CsCl}, \text{CrCl}_3+4\text{H}_2\text{O}$; hydroscopic; very sol. in H_2O . (Wells, t. c.)

Cessum tetra-aquochromium chloride,

CrCl₂(OH₂)₄.Cl, 2CsCl. Ppt (Werner, B 1901, **34**, 1602)

Cassium cobait chloride, Cs/CoCl₁+2H₂O.
Decomp. by H₂C and alcohol. (Campbell, Z. anorg. 1894, 8, 126.)
Cs/CoCl₁. Decomp by H₂O and by alcohol. (Campbell, Z. anorg. 1894, 8, 126.)
Cs/CoCl₁. Decomp. by H₂O and by alcohol. (Campbell, Z. anorg. 1894, 8, 126.)

Cæsium cuprous chloride, CsCl, Cu₂Cl₃.

Decomp. by H₂O mto CuCl₂, CsCl. (Wells, Z. anorg 5. 306.)

3CsCl, Cu₃Cl₄. (Wells.)

6CsCl, Cu₂Cl₂. (Wells)

Cæsium cupric chloride, 2CsCl, CuCl₂
Easily sol. in H₂O and dil. HCl+Aq;
insol. in conc. HCl+Aq (Godeffroy, B.
8, 9.1

Sol m small amount H2O without decomp. (Wells and Dupee, Z. anorg 5, 300 +2H₀O Efflorescent (W. and D.) 3CsCl, 2CuCl₂+2H₂O CsCl, CuCl₂. Sol in H₂O without decomp

(W and D)

Cæsium gold chloride.

See Chloraurate, cæsium. Cesium iridium tetrachloride. See Chloriridate, cæsium.

Casium tron (ferric) chloride, CsFeCl.+

Sol in H2O. Decomp in the air (Walden, Z anorg 1894, 7. 332) Gs-FeCl₄+H₂O Sol. in H₂O (Walden) Cs.FeCla+H₂O. Sol in H₂O (Walden)

Cæsium lanthanum chloride, Cs-LaCla+ 4H₄O

Easily sol in H₀O Very hydroscopic (R. J. Meyer, Z. anorg. 1914, 86, 273.)

Cæsium lead chloride, CsCl. 2PbCl-

Nearly stable in aqueous solution (Camp-bell, Sill. Am. J. 145. 126) CsCl, PbCl2. Decomp by H2O. (Camp-

4CsCl, PbCl₂, As above (Campbell.)

Casium lead tetrachloride. See Chloroplumbate, cæsium.

Cæsium magnesium chloride, CsCl. MgClo+ 6H₂O

Sol. in H_{*}O (Wells and Campbell, Z. anorg. 5. 275)

Cæsium manganous chloride, CsCl, MnCl2+ 2H2O. Not deliquescent; sol in H2O. (Saunders,

Am Ch J 14. 143)
2CsCl, MnCl₂. (Godeffroy.)
+2½H₂O. (Godeffroy.)

+3H₂O Sol in H₂O Cone HCl+Ag precipitates anhydrous salt from aqueous solution. (Godeffrov. B 8. 9.)

The only salt which exists contains 2H2O. (Saunders, Am Ch. J 14. 143)

Cæsium manganic chloride, 2CsCl, MnCl2. Easily decomp. (Meyer and Best, Z.

anorg 1899, 22. 187) Cæsium mercuric chloride, CsCl, HgCl2.

100 pts. solution sat. at 17° contain 1.406 pts. Cs.HgCl₂. Not decomp by H₂O Insol. m absolute alcohol, but sol. on diluting with V₃ vol. H₂O. (Wells, Sill. Am. J 144. 221.)

2CsCl, HgCl₂. Easily sol. in H₂O and dilution to the control of the contr

HCl+Aq; msol, in cone HCl+Aq. (Godeffroy)

3CsCl. HgClo. Decomp. by H.O. on recrystallizing from H.O. CsCl, HgCl, is finally formed (Wells, Sill Am. J. 144, 221.)

CsCl. 5HgCl. Decomp by H₂O (Wells) Solubility determinations show that the only double saits of CsCl and HgCl, which exist at 25° are Cs2HgCl5, Cs2HgCl4, CsHgCl2, CsHg₂Cl₅, CsHg₅Cl₁₁, (Foote, Am Ch. J. 1903, 30, 340)

Cæsium molyhdenum chloride, Cs.MoCl.+ H.O.

Sol in H₂O. Nearly insol in alcohol and ether. (Chilesotti, C. C. 1908, II 652)

Cæsium molybdenyl chloride, CsCl MoO.Cl.+H.O

Hygroscopic. Decomp by H₂O (Weinland and Knoll, Z anorg, 1905, 44, 93) 2CsCl, MoO2Cl2 Hygroscopic. Decomp.

by H_{*}O 1905, 44, 92, 2CsCl, 6MoO₂Cl₂+22H₂O. Very hygro-scopic Decomp. by H₂O. (Weinland and Knoll, Z anorg. 1905, 44. 94.) 2CsCl, MoOCl₃ Only sl. sol in H₂O (Nordenskjold, B. 1901, 34. 1573.)

Cæsium neodymium chloride, Cs.NdClc+ 5H.0 Very hydroscopic. Easily sol in H₀O

(R. J. Meyer, Z. anorg 1914, 86, 273.) Cæsium nickel chloride, 2CsCl, NiCl2

As the corresponding Cu salt CsNiCls. Decomp by H2O and by alcohol (Campbell, Am. J Sci. 1894, (3) 48, 418)

Cæssum palladsum dichloride. See Chloropalladite, cæsium.

Cæsium palladium tetrachloride. See Chloropalladate, cæsium.

Cæssum praseodymium chloride, CszP1Cl0+ 5H₄O.

Very hydroscopic. Easily sol, in H₂O. (R. J. Mever, Z. anorg, 1914, 86, 273.)

Cesium rhodium chloride. See Chlororhodite, cæsium,

Cæsium ruthenium chloride.

See Chlororuthenite, cæsium and chlororuthenate, cæsium.

Cæsium_ozyruthenium chloride. Cs₂RuÖ₂Cl₄.

Ppt; decomp. by H₂O; sol in cold HCl, (Howe, J Am. Chem. Soc 1901, 23. 779.)

Cæsium samarium chloride, Cs₂SmCl₂+ 5H₂O.

Very hydroscopic. Easily sol in H2O. (R. J. Meyer, Z. anorg 1914, 86. 273.)

Cæsium silver chloride, 2CsCl, AgCl
Easily decomp by H₂O (Wells and
Wheeler, Sill, Am J. 144, 155)

Cæsium tellurium chloride.

See Chlorotellurate, cæsium.

Cassum thallic chloride, 2CsCl, TiCl₁
By 1ecryst, from H.O forms 3CsCl, 2TiCl₁
(Pratt, Am J Sci 1895, (3) 49, 398.)
+H.O Readily sol in Not H_O but 3CsCl,
2TiCl₂ a yest, from the solution (Pratt, Am J Sci 1895, (3) 49, 399.)
3CsCl, 2TiCl₃ (2an be recryst from H_O
3CsCl, 2TiCl₄ (2an be 7 Sci 1895, (3) 400, 309.)

3CsCl, TlCl₁+2H₂O Sol in 36.4 pts. H₂O at 17° and 3 pts. at 100°. (Godeffroy, Zeitsch d. allgem. osterr. Apothekerv. **1880**. No. 9)

Cæsium tin (stannic) chloride. See Chlorostannate, cæsium.

87, 4409)

Cæsium tıtanıum chloride, TıCl_i, 2CsCl+ H_zO. Dıfficultly sol in H₂O. (Stahler, B 1904,

Cæsium tungsten chloride, Cs₃W₂Cl₉
Neauly msol, in cold H₂O.
Sol. in a hot muxture of equal pts H₂O and cone HCl

Nearly msol, in cone HCl Sol, in very dil, NaOH+Aq Nearly insol, in most organic solvents. (Olsson, B. 1913, 46, 574.)

Cesium uranous chioride, Cs₂UCl₆.

As K salt. (Aloy, Bull Soc 1899, (3) 21.
264.)

Cæsum uranyl chloride, 2CsCl, (UO₂)Cl₃. Sol m H₂O. (Wells, Z. anorg 1895, 10. 183) 100 pts of the solution contain at 29.75°.

56.07 pts. UQ₄Cl₂, 2CsCl. (Rimbach, B. 1904, **37**, 468)

Pptd from aq solution by gaseous HCl (Wells, Am. J. Sci. 1894, (3) **50**, 251.)

Cæsium vanadium chloride, Cs₂VdCl₅+H₂O. Difficultly sol. in H₂O and alcohol. (Stähler, B 1904, **37**, 4412.)

Cæsium zinc chloride, 3CsCl, ZnCl₂.

Sol. in H₂O. (Wells and Campbell, Z.
anorg. 5. 275.)

2CsCl, ZnCl₂. Easily sol in H₂O and dil
HCl+Aq Insol. in conc. HCl+Aq. (Godeffrov.)

Cæsium chloride chromic oxychloride, 2CsCl, CiOCl₃.

Decomp in the air Sol in cone HCl without decomp (Weinland, B 1906, 39, 4045)

Cassum chloride columbium oxychloride, 2CsCl, CbOCls Decomp. by H₂O (Weinland, B 1996

Decomp. by H₂O (Weinland, B 1906, 39. 3057)

Cæsium chloroiodide, CsCl-I

Proporties as CsBiCII. (Wells) CsCl₄I Sl. sol in H₂O, from which it can be recrystallized without decomp (Wells and Wheeler)

Cæsium mercuric chlorosodide, Cs₂HgCl₂I₂ Decomp. instantly by H₂O to HgI₂ (Wells.)

Cæsium fluoride, CsF.

Ppt (Chabrié, C. R. 1901, **132**, 680.) +1½H₂O. 100 g. H₂O dissolve 366 5 g CsF st 15°. (de Forcrand, C. R. 1911, **152**, 1210.)

Cæsium hydrogen fluoride, CsHF₂.

Ppt (Chabrié, C R 1901, **132**, 680)

Cæsium tantalum fluoride. See Fluotantalate, cæsium.

Cæsium tellurium fluoride, CsF,TeF₄.

Decomp* by H₂O (Wells, Am. J Sci 1901,
(4) 12, 190)

Cæsium titanıum fluoride. See Fluotitanate, cæsium.

Cæsium zirconium fluoride.

See Fluozirconate, cæsium.

Casium hydride, CsH Decomp. by H_2O with evolution of H_2 (Moissan, C. R. 1903, 136. 589)

Cæsium hydroxide, CsOH.

Very deliquescent, and sol. in H₂O. Sol.

m alcohol.
79.41% CsOH is contained m a sat. aq solution at 15° (de Forerand, C. R. 1909, 149.

75.08% CsOH is contained in sat aq solution at 30°. (Schreinemakers, C. C 1909, I

Cæsium iodide, CsI.

Sol m $\rm H_2O$ dissolve 44 pts CsI at 0°; 66 3 pts at 14.5°; 160 pts at 61°. Sp gr of CsI+Aq sat. at 14°=1 393. (Betekoff, Bull Soc Pétersb. (4) 2. 197.)

Cæsium periodide.

Solubility determinations show that CsI₃ and CsI₄ are the only periodides of cessium existing between —4° and +73° (Foote, Am Ch J. 1903, 29. 203)

Cæsium traiodide, CsIa

1 ccm. sat. Csi+Aq dissolves 0.0097 g. Csi₃, and sp gi of solution is 3.154 Only si. decomp by solution in H₂O Much more sol in alcohol than in H₂O. Not immediately decomp by ether. (Wells, Sill Am. J 148. 17)

Casium pentaiodide, CsIs

Cæsium cobalt iodide, Cs2CoI4

Decomp by H₂O (Campbell, Z anorg 1894, 8. 12) Deliquescent; decomp. by H₂O and by alcohol. (Campbell, Am. J. Sci 1894, (3) 48, 418.)

Cæsium lead iodide, CsPbI2

Sl. sol. in hot CsI+Aq (Wheeler, Sill Am. J 145, 129)

Cæsium mercuric iodide, CsI, 2HgI2.

Decomp by H₂O finally into HgI₂. (Wells, Sill, Am. J 144, 221) 2CsI, 3HgI₂. Decomp by H₂O finally into

HgI₂
CsI, HgI₂. As above.

2CsI, HgI₂. Decomp by H₂O; insol. in

alcohol 3CsI, HgI₂ As above

Cæsium silver iodfde, CsI, AgI.

(Penfield, Z anorg, 1, 100) Osl, 2Agl. More sol. in hot than in cold actions. (Marsh, Chem. Soc. 1913, 103, 782.)

Cæsium tellurium iodide. See Iodotellurate, cæsium.

2CsI, ZnI₂. As above.

٠

Cæsium thallic iodide, CsI, TlI₂.

Decomp. by H₂O. (Pratt, Am. J. Sci.

1895, (3) 49. 403.)

Cæsium zinc iodide, 3CsI, ZnI₂ Sol m H₂O. (Wells and Campbell, Z. anorg. 5, 275)

Cæsium oxide, Cs₂O.

Absorbs H₂O and CO₂ from the air.

Decomp. by II₂O and by liquid NH₂. (Rengade, C. R. 1906, **143**. 593.)

Cæsium dioxide, Cs₂O₄
Decomp. by H₂O. (Rengade, C. R. 1905, 140, 1537.)

Cæsium traoxide, Cs₂O₃

 Decomp by H₂O (Rengade, C. R. 1905, 140, 1537.)

Cæsium tetroxide, Cs2O4

Decomp. by H₂O (Rengade, C. R. 1905, 140, 1538)

Cæsium sulphide, Cs₂S+4H₂O.

 $\begin{array}{ccccc} Deliquescent, \ very \ sol & in \ H_2O. \ (Biltz, \\ Z \ anorg \ 1906, 48.\ 300.) \\ \\ Cæsium \ \mathit{disulphide}, \ Cs_2S_2. \end{array}$

Anhydrous Sol. in H₁O. Hydroscopic. (Biltz, Z. anorg 1906, **50**, 72.) +H₂O From Cs₂S₂+Aq. Hydroscopic. (Biltz, Z. anorg 1906, **50**, 72)

Cæsium trisulphide, Cs₂S₃.

Anhydrous Sol in H₂O Not hydroscopie

(Biltz, Z anorg, 1906, 50, 75.) +H₂O. From Cs₂S₈+Aq. (Biltz, Z anorg 1906, 50, 76.)

Cæsium tetrasulphide, Cs2S4.

Sol m H₂O Insol m abs alcohol (Biltz, Z. anorg 1906, **48**. 305)

Cæsium pentasulphide, Cs₂S₅.

Mpt 2°. Not hydroscopic Very sol in cold 70% alcohol. (Biltz, B. 1905, 38, 129.)

Cæsium hydrogen sulphide, CsHS.

Deliquescent, very sol, in H₂O. (Biltz.

Z. anorg 1906, 48. 300.)

Cæsium copper tetrasulphide, CsCuS,

Sl. sol. in cold H₂O.
Decomp. by cone, and dil HCl, H₂SO₄ and HNO₅.

Sl sol. in alcohol. (Biltz, B. 1907, 40, 978.)

Calcium, Ca

Decomp. H₂O volently. Slowly attacked by cold H₂SO₂ Dil H₂SO₂+Aq or HCl+Aq attack volently and dissolve Dil. HNO₂+Aq oxidzes, but fumma HNO₃ searcely attacks even on boiling. (Bunsen and Matthessen.) Not attacked by anhydrous alcohol. (Ices-Bodart and Jobin, A., ch. (3) 54. 364.)

(Lies-Botart and John, A. Ch. (3) 04. 50%.)

Pure Ce is only very slowly decomp. by

H₂O at ordinary temp. sol. in HCl., HNO 5,

H₂SO₄. (Moissan, C. R. 1898, 129. 589)

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, 20, 827)

½ com. oleio and dissolves 0.0334 g. Ca in 6 days. (Gates, J. phys. Chem. 1911, 15, 143.)

Calcium amalgam, Ca,Hg,

Decomp. H₂O readily. (Feré, C. R 1898,

127. 619 CaHg₅. Rapidly decomp. in moist air. (Echurger, Z. anorg. 1900, 25. 425.)

Calcium amide, Ca(NH₂)₂. (Moissan, A ch 1899, (7) **18**, 326.)

Calcium ammonia, Ca. 4NH

Decomp, at ordinary temp; takes fire in contact with the air, sl. sol in hquid NH₃ (Moissan, C. R. 1898, 127. 991) Ca,6NH₃ (Kraus, J. Am. Chem Soc 1908, 30, 565.)

Calcium arsenide, Ca₃As₂,

Decomp by cold H₂O; msol in cold furning HNO₃, very sol, in hot HNO₃ (Lebeau, C. R. 1899, **128**, 98.)

Calcium azoimide, Ca(N2)2

Hydroscopic; explosive * 38 1 pts. sol. in 100 pts. H₂O at 0° 45 0 " 15.2 0 211 " " "100 " abs alcohol "16 Sol in H₂O, decomp when heated and on standing in the au. (Dennis, Z anoig 1898,

17. 21.) Insol in pure other. (Curtius, J. pr. 1898, (2) 58, 286.)

Calcium boride, CaBa

Not decomp by H₂O at 250°; sol, in fused ovidzing agents. Insol, in aq acids, sl sol, in conc H₂SO₄; sol in dil. or conc. HNO₃ (Moissan, C. R. 1897, 125, 631–32)

Calcium bromide, CaBia

Very deliquescent. 100 pts H₂O dissolve åt 0° 20° 40° 60° 105° 125 143 213 278 312 pts CaBr₂ (Kremes, Pogs. 108. 65.)

+8° 9° 11° 20° 50° 53 1 55 1 55 7 57 1 62 6% CaB₁₂ (Étard, A ch 1894, (7) 2, 540)

Sp. gr. of CaBr₂+Aq at 19 5° containing. 5 10 15 20 25 %CaBr₂, 1 044 1 089 1 139 1 194 1.25°

30 35 40 45 50 % CaBr₂. 1.315 1385 1461 1.549 1641 (Kremers, Pogg. 99. 444, calculated by Gerlach, Z anal, 8, 285.)

Sl. sol in liquid NH₃. (Franklin, Am Ch J. 1898, **20.** 827)

Very sol. in alcohol (Henry.) Sol in acetone. (Edmann, C. C 1899, II. 1614; Naumann, B 1904, 37, 4328.) Sol in methyl acetate. (Naumann, B. 1909, 42, 3790)

Sol. m ethyl acetate (Naumann, B. 1910, 43, 314) Insol. m benzonitrile. (Naumann, B. 1914, 47, 1370)

+4H₂O (Kuznetzov, C. A 1911. 842.) +6H₂O

Calcium manganous bromide, CaMnBr₄+

Sl hydrosechic Unstable. (Ephraim, Z. anorg 1910, 67, 377)

Calcium mercuric bromide.

Decomp by H₂O (v. Bonsdorff)

Calcium molybdenyl bromide, CaBr₀, 2MoOBr₀+7H₂O.

(Wemland and Knöll, Z anorg. 1905, 44.

Calcium stannic bromide. See Bromostannate, calcium.

Calcium bromide ammonia, CaBr₁, 6NH₃. Sol in H₂O (Rammelsberg, Pogg. **55**, 239)

Calcium bromide hydrazine, CaBr₂, 3N₂H₄
Easily sol in H₂O. (Franzen, Z anorg. 1908, **60**, 288)

Calcium bromofluoride, CaBr₂, CaF₂
Decomp by H₂O. (Defacqz, A. ch 1904, (8) 1, 357.)

(8) 1. 357.)
Calcium carbide, CaC.

Sp. gr 2.22 at 18° Insol in furning HNO₃ and cone. H₂SO₄ but readily decomp, by dil. acids and H₂O (Moissan, Bull Soc. 1894, (3) 11, 1005.)

Insel, in HCl in the cold, but decomp, at red heat. Strong min, sends do not act in the cold; sol. in glacial acetic in the cold; sol. in fused alkali (Venable, J. Am. Chem. Soc. 1895, 17, 307–310)

Calcium chloride, CaCl-

Very deliquescent Very sol, in H₂O with evolution of heat.

Anthydrous CaCly asol m 1 459 pts Hr0 (Gerland)
Anthydrous CaCly asol m 1 55 pts Hr0 at 10 2°
(Kremer, Poog 103, 60)
Anthydrous CaCly as on m 1 35 pts Hr0 at 2°
0, 03 pt Hr0 at 40°, 0.72 pt Hr0 at 60° CaCly 4-0Hr0 is
CaCly as of Hrat 6° and 50 pt at 15° Chreshin
CaCly as of Hrat 6° and 50 pt at 15° Chreshin
(Fourery) in pur cold, and 5 pt boling Hr3
CaCly All States and the cold contains 40°, 7° CaCly
CaCly All States and the cold contains 40°, 7° CaCly

(Fourtrey)
(GaCl+Aq sat at 12.5° contains 53.8% CaCla
(Hasconfratz)

100 pts H₂O dissolve 165.7 pts. CaCl₂+

6H₂O at 0°; 7141 pts. at 40°. (Tilden, Chem. Soc 45, 409.)
100 pts H₂O dissolve 60 3 pts. CaCl₃ from CaCl₃+6H₂O at 0°, and solution has sp. gr. = 1 367. (Engel, Bull. Soc (2) 47, 318.)

				C.	AL	Clum	CHLO	RH	DF				145
	Solubility of CaCl ₂ +6H ₂ O in H ₂ O at t°. Sat. solution Sat solution contains Sat solution contains							ts s 6°; l	S = 54	n, S=3 5+0.07	2+0.21 55t fro	48t fro	CaCl ₂ in m —18° to 120°.
-2		% 32 36	CaCl ₂ 2 24 3 91 3 77	aCl ₂ - % CaCl ₂ +6H ₂ O 24 63 61 91 72 82			(Etard, C. R. 98, 1432.) According to Bakhuis Roozeboom, the solu- bility of CaCl, varies according to the hydrate employed, and the following data were ob- tained as the result of very exact experiments.						
1 1 2 2	3 86 9 35 3 46 4.47 7 71	41 42 44 45	03 50	76 49 80 95 83 85 87 11 89 44 91 35				Solubility of CaCl ₂ +6H ₄ 0 in 100 pts. H ₂					
2	9 53	50	67		99	97	to.	1	Pts CaCls	t°	Pts CaCl2	t°	Pts CaCl:
			AB 72,				20 4		5 1	28 0	88 8	29 5	96 07
		CaCle i	0 pts H	2U at	_	s CsCl2	25 05	8	1 67	28 9	92 05	30 2	102.7
-0		39	13 8	8	-	49	Th	otro	oro f	mo mo	dification	ne of i	C°C1. +
5 7 88	64	83	19 8	5	73	91 77	4H ₂ O	, α :	and β	wo mo	umestro.	115 01	O#O12 7
(Hamn	nerl, c	lculate		Bakh	_	Rooze	So	lubi	ılıty o	f CaCl ₂ H ₂ O	+4H₂O/ at t°.	m 100	pts.
			0 pts. H		t°.		te.		Pts	CaCl ₂	t°	Pts	CaCl ₂
t ^a	Pts. CaCl ₂	t°	Pte CaCl ₂	t°	CHON			18 4 103 3 25 0 108 8 30 0 114 1			35 0 38 4 127.5		
0	49 6 50	19 20	72 74	38 39		108 109						٠	
2 3 4	51 52 53	21 22 23	75 77 79	40 41 42		110 111 112	Solub	alıty	of C	aCl ₂ +4	H ₂ Oa 11	100 p	ots. H ₂ O
5 6	54 55	24 25	80 82	43 44		113 114	-to		Pts	CaCl ₂	t°	l Pts.	CaCl ₂
7 8 9	56 57 58	26 27 28	84 87 89	45 46 47		115 116 117	22. 24	7	95	95 59 40 00 115		7.21 5 3	
10 11	60 61	29 30	91 93	48 49	1	118 119		8	100	6	45 00	12	9.9
12 13 14 15	62 63 65 66	31 32 33 34	96 98 100 103	50 51 52 53		120 121 122 123	Solub	ılıty	of C	laCl ₂ +2	H ₂ O m	100 p	ts. H ₂ O
16 17	68 69	35 36	104 105	54 55		124 125	t°	P	ts sCl:	t°	Pts CaCl ₂	l to	Pts. CaCle
18 57	71 127	37 72	107 137	56 87		126 145	40	-	8 1	95.8	156.5	139	
58 59 60	128 129 129	73 74 75	138 138 139	88 89 90		146 147 147	45 50 59 5	12 13	9 9 2 3 6 5	115 124 137	169.5 176.0 187.6	155 165 174	191.0 214 3 236 2 275 7
61 62	130 131	76 77	139 140	91 92		148 149	80 5		5.3			1	12.0
63 64 65 66	131 132 133 133	78 79 80 81	141 141 142 142	93 94 95 96		150 150 151 152	Solub	ılıty	of (CaCl ₂ +1	H ₂ O in	100 p	ts H ₂ O
67 68	134 135	, 82 , 83	143 143	97 98		152 153	-		t°		F	ta. CaC	la .
69 70 71	135 136 136	84 85 86	144 144 145	99 179.		154 325			191 235			306 331	
(Mı	ılder. S	!	erhande	1. 186	4.	107.)	(Bak	thus	Roozebo	om, R	t. c. 8.	1.)

(Mulder, Scheik. Verhandel. 1864. 107.) (Bakhus Roozeboom, Rt. c. 8.1.)

				CAL	CIUM
	s	p gr of (CaCl ₂ +A	9	
3 95 7 66 11 23 14 42 17 80	Sp gr 1 03 1 06 1 09 1 12 1 15	CaCls 20 85 23 93 26 86 29 67 32 35	Sp gr 1 18 1 21 1 24 1 27 1 30	7 CaCl ₁ 34 57 36 49 38 31 40 43 41 91	Sp gr * 1 33 1 36 1 39 1 42 1 45
		(Rieh	ter)		

Sp gr of CaCl₂+Aq at 19.5° containing pts CaCl₂ to 100 pts H₂O

no per nati					
Pts CaCl ₂	Sp gr	Pts CaCl ₂	Sp gr		
0 97 12 58 23 33	.1 0515 1 0954 1 1681	36 33 50 67 62 90	1 2469 I 3234 I 3806		

(Kremers, Pogg 99 444)

Sp. gr of CaCl₁+Aq G=sp. gr at 15° if % is CaCl₃, according to Gerlach; S=sp. gr at 18 3° if % is CaCl₁+6H₂O, according to Schiff

-	%	G		8	1 %	Γ	G	1	s	-
10 11 11 11 11 11 11 11 11 11 11 11 11 1	Also de la constantina della c	1.27704 1.28789 1.29917 1.31045 1.32174 1.33602		0039 0079 0119 0119 0200 0241 0282 0323 0365 0407 0449 0449 0534 0577 0619 0663 07750 0775	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 51 55 55 56 66 66 66 66 67 68 69 70	11111	35610 36790 37970 39150 40330	111111111111111111111111111111111111111	1 167 1 171 1 176 1 186 1 186 1 191	21986543222

-	ь .		a	j b	
1 2 3 4 5 6	1 041 1 076 1 106 1 133 1 157 1 179	1 043 1 084 1 122 1 159 1 193 1 227	7 8 9 10 11	1 198 1 214 1 229 1 242 1 255	1 258

(Favre and Valson, C. R. 79. 968)

Sp gr of CaCl2+Ac at 18°

% CaCl ₂	Sp gr.	% CaCle	Sp gr
5 10 15 20	1 0409 1 0852 1 1311 1 1794	25 30 35	1 2305 1 2841 1 3420

(Kohlrausch, W Ann 1879. I.)

CaCl₂+Aq sat. at 0° has sp gr. = 1.367. (Engel, Bull. Soc. 1887, (2) 47. 318)

Sp. gr of CaCl2+Aq at 9 5°C

Mass of suit per unit	Density of solution
mass of solution	(g per ce)
0 00191	1 00168
0 00381	1 00317
0 00570	1.00465
0 00759	1.00615
0 00947	1 00765
0 01320	1 01050

(McGregor, C N. 1887, 55. 6)

Sp gr. of CaCl2+	⊢Ag at 25°
Concentration of CaCle+Aq	Sp gr
1-normal 1/2- " 1/4- " 1/4- "	1.0446 1 0218 1 0105 1 0050

(Wagner, Z. phys Ch. 1890, 5. 36.)

Sp gr. at 16°/4° of CaCl₂+Aq containing 12 1638% CaCl₂=1.10489. (Schonrock, Z phys Ch. 1893, 11, 768)

(Calculated by Gerlach, Z. anal. 8, 283)

		+Aq at 1			10	00 pt:	sН	+Aq co 20 G: 26, 440)	= accord	ling to	Gerlach
CaCle Sp gr	C461	Spgr	CaĈI:	Sp. gt	(A	and	(A	ch (2)	39. 43)	coraing	to re-
0 0 0 99869 0 1 0 99954	13 14	I 11206 I 12130	33 34	1 31562 1 32689	B-pt	G	_	L	B-pt	G	L
0 2 1.00037	15 16	1 13067 1 14016	35 36	1.33821	101° 102	6		10 16 5	134° 135	119	117 2
0 4 1 00201 0 6 1 00371	17	1 14969 1 15926	37 38	1 36100 1 37242	103 104	16 21	5	21 6 25 8	136 138		123.5 129 9
0.8 1 00539 1 0 1 00703	19 20	1 16920 1 17910	39 40	1 38400 1.39489	105 106	25. 29		29 4 32 6	140 142	137 5	136 3 142 8
1 5 1.01127 2 1.01548 3 1 02386	21 22	1 18897 1 19901	41	1.40641 1.41770	107 108	32 35	5	35 6 38 5	144 145	157	149 4
4 1 03238	23 24	1 20901 1 21918	43 44	1 42882 1 44007	109 110	38 41		41 3 44 0	146 148	: .	156 2 163 2
5 1 04089 6 1 04951	25 26	1 22941 1 23969	45 46	1.45124	111 112			46 8 49.7	150 152	178	170 5 178 I
7 1 05822 8 1 06680 9 1 07569	27 28 29	1 25030 1 26092	48	1 47329 1 48450 1 49573	113 114			52 6 55 6	154 155	200	186 0
9 1 07569 10 1 08467 11 1 09373	30 31	1 27182 1 28271 1 29360	50 51	1 50676 1 51778	115 116 117	55	U	58 6 61 6 64 6	156 158 160	222	194 3 203 0 212 1
12 1 10288	32	1 30461	01	1 01776	118			67 6 70 6	162 164	. 223	221.6 231.5
(Picker	ing, B	. 1894, 27 .	1385	i.)	120 121	69	0	73.6	165 166	245	241 9
					122 123			79 8 82 9	168 170	268	252 8 264 2
		aCl ₂ +Aq of CaCl ₂ +A		Sp gr.	124 125		:	86 0 89 1	172 174		276 1 285 5
		.1045 pts	-	1 1062	126 128			92 2 98 4	175 176	292	301 4
20 1 " "		64 25 "	11,0	1 0032	130 130 4	101 102	67	104.6	178 179.5	305	314 8 325 0
(Hittorf, Z	phys	Ch. 1902	39.	628)	132			110 9	<u> </u>	<u> </u>	L·
							В-	pt. of C	aCl ₂ +A	Aq.	
Sp gr	of Ca	ıCl ₂ +Aq ı	t 20°		% C	nCl ₁	I	3 -pt.	% CnC		B-pt
g mols CaC	l, per l.	-	Sp. j	`	10			101° 102	17 8 20 0		104° 105
0 010		(Skinner, Chem. Soc 61, 340)									
0 075 0 10	0 075 1.006814		Les			ici+Ac			HCl+		
0 25 1 02267		Ag sa	t. at	120	dissolv with 21	es 27%	CaCl ₂	which			
0.75 1 00		1	0664 0874		242.)						
(Jones and Per	nce. A	m Ch J	1907	38, 696)	So	lubılı	ty c	f CaCl ₂			
(tittle 2 Of			,	300)	0			, g	per 100 -	ce solutu	on T

Sat. CaCl₂+Aq forms a crust at 150°, and contains 178 pts. CaCl₂ to 100 pts. H₂O. (Gerlach) (Gerlach) (Rudorff.)

1 367	51 45	0.0
1 344	46 45	3 32
1 326	42 80	5 83
1 310	36 77	10 66
1.283	29 84	15 84
1 250	20 12	23 05
1 238	11 29	34 62

HCI

(Engel, C R. 1887, 104, 434)

ť

6 7

5 39

8 01

9 93

15 94

CaCl₂+CaO₂H₂. Solubility of CaCl₂+ CaO2H2 in H2O at 25°.

CaCla	CaO;H2	Solid phase
5 02	0 101	CsO ₂ H ₂
10 00	0 115	
12 94	0 128	
15 14	0 140	
17 20	0 145	
18 15	0 148	CaO ₂ H ₂ +CaCl ₂ , 4CaO 14H ₂ O
18 01	0 152	CaCl ₂ , 4CaO 14H ₂ O
21 02	0 147	
23 80	0 146	
24 33	0 147	
28 37	0 170	
29 54	0 180	
32 67	0 225	CqO ₂ H ₂ (?)
33 21	0.245	CnCl ₂ , 4CaO 14H ₂ O
33 72	0 254	CaCls, 4CaO 14HsO+CaCls,
	3	CaO,2H ₂ O
34 36	0 173	CaCl ₂ , CaO 2H ₂ O
38 61	0 060	
41 32	0.048	
44 30	0 030	-
44 60	0.029	CaCls, 6H2O+CaCls, CaO.2H2O
44 77		CaCl ₂ 8H ₂ O

(Schreinemakers and Figee, Chem Weekbl. 1911. 8, 685)

See also under Calcium hydroxide

CaCl₄+KCl. 100 pts H₂O dissolve 56 pts CaCl₂ at 7°, 100 pts. H₂O dissolve 31 pts. KCl at 7°; 100 pts. H₄O dissolve 63.5 pts CaCl₂+4.9 pts. KCl at 7°. (Mulder, J. B. 1866. 67.

1886. 67.)

CaCl₂+NaCl 100 pts. H₂O theselve 55 pts. CaCl₃+NaCl 100 pts. H₂O theselve 55 pts. et s. 100 pts. pts. cacl₃ at 4 s. and 56 pts. at 5°, 100 pts. pts. at 7°, 100 pts. H₂O theselve 5° to pts. at 7°, 100 pts. H₂O theselve 5° to pts. at 7°, 100 pts. H₂O theselve 5° to pts. CaCl₂+4.5° pts NaCl at 4°, 100 pts. H₂O dissolve 75°, 0 pts. CaCl₃+4.5° pts. NaCl at 7° (Mulder, l. c) 100 g. H₂O dissolve 72.5° g. CaCl₃+16.0° g. NaCl at 15°. (Ridorft.)

Sol. in seak. KNO₂+Aq. (Fouriery).

Insol. in liquid CO: (Buchner, Z phys.

Ch 1908, 54, 674 Insol. in liquid NH3. (Franklin, Am. Ch. J. 1898, 20. 827.)

Sol. in 1 pt. strong boiling alcohol (Wen-Sol. in 8 pts alcohol at 15°, and in 1 pt spirits of wine. (Bergman.)

Sol, in 0.7 pt, boiling absolute alcohol (Otto.) Sol, in 1 43 pts, boiling absolute alcohol at

78.3°. (Graham.) Solubility of CaCl2 in methyl alcohol. CaCl2 forms with methyl alcohol two complexes. CaCl, 4CH, OH and CaCl, 3CH, OH

Solubility of CaCls, 4CH₂OH in CH₂OH % by weight of CaCle, 4CHaOH n 33.310 37 6 42 2 47 0 • 52 O 40 57 3 50 55 60.0 56 61 3

Solubility of CaCl2, 3CH3OH in CH2OH 1 Ct by weight of CaCls, 3CH OH

£-	% by weight of Cach, acris
55 75 95 115 135 155 165 170 174 177 (mpt)	60 5 63.1 66 3 70 3 75 2 81 8 86 2 89 5 93 5

(Menschutkin, Z. anorg. 1907, 52, 21,) Solubility of CaCl2 in ethyl alcohol.

CaCl₂ forms with ethyl alcohol a complex. CaCl₂ 3C₂H₅OH Solubility of CaCl₂ 3C₂H₅OH in C₂H₅OH at to.

•	% by weight of CaCls 3C-H ₃ OH	t.	CaCl2.3C2H3OH
0 0 0 0	34 8	80	86 8
	46 0	85	89 2
	58 7	90	91.9
	73 0	95	96 2
	80.8	97 mpt.	100

(Menschutkin, Z. anorg. 1907, 52. 23.) Sp gr. at 16°/4° of CaCl2+alcohol con-

taining 5.668% CaCl2 = 0.83636. (Schonrock, Z phys. Ch. 1893, 11. 708)

B -pt. of an alcoholic solution of CaCl₂. B.-pt % CaCls 78 43°+ 0 70°

7843 + 2.15

 $78 \ 32 \ + \ 4 \ 18$

 $78 \ 43 \ + 5 \ 55$

78 43 +11 75

(Skinner, Chem. Soc 61, 340.)

SI sol in propyl alcohol. (Berthelot.) 100 g. propyl alcohol dissolve 10.75 CaCl₂ (Schlamp, Z. phys Ch 1894, 14, 276.) Si sol. in amyl alcohol. (Bouis.)

Pptd. from alcoholic solution by ether. (Dobberginer.)

Sol, in wood-spirit; sol in lignone (Liebig): insol in lignone (Gmelin) Insol in acetone, sol. in butyl alcohol. (Wurtz.) Very sl. sol in acetone. (Krug and M'Elroy, J. Anal. Ch. 6, 184.)

Solubility in acetone + Aq at 20°

CaCl₂ will salt out acetone from aqueous solution. The table shows the composi-tion of the solutions at the points at which inhomogeneous solutions of CaCl2, acetone and H2O just become homogencous at 20° 100 g of the solution contain:

g CaClt. g H ₂ O k sections 13.0.93 52 40 73 34 45 8 8.5 8 45 10 13 44 15 1 6 8.5 8 5 10 15 15 15 15 15 15 15 15 15 15 15 15 15	eous at 20	. Ton g of the so	nution contain.
8 5 45 37 46 15 6 15 6 15 6 15 6 15 6 15 6 15 6 1	g CaCl ₂	g H ₂ O	g acetone
0 15 9 05 90 81	13 08 8 6 38 6 38 6 38 6 38 6 38 6 38 6 3	45 57 51 51 51 51 51 51 51 51 51 51 51 51 51	34 46 5 54 17 10 64 69 54 17 10 64 69 18 17 10 64 69 18 18 18 18 18 18 18 18 18 18 18 18 18

(Frankforter, J. Am. Chem. Soc. 1914, 36.

Sol in many compound ethers, as ethyl acetate (Liebig), ethyl lactate (Strecker) Sol in considerable quantity in amyl sulphocyanide. (Medlock, Chem. Soc 1. 374)

Sol in valyl (Kolbe) Very sol, in cone HC.H.O. (Liebug.)

Solubility of CaCl₂ in acetic acid. CaCl₂ forms with acetic acid a complex, CaCl2, 4CH1COOH

Solubility of CaCl₂, 4CH₂COOH in CH₂COOH at 1°

Oxfoodit at t				
t°	% by wt CaCl2, 4CH4COOH			
11 1 30 35 40 45 50 60 65 70	42 0 47 6 50 0 54 7 63 0 69 5 79 5 84 5 91 2			
73	100 0			

(Menschutkin, Z. anorg 1907, 54, 95.)

Insol in benzonitrile (Naumann, B. 1914. 47, 1370) Insol in ethyl acetate (Naumann, B

1910, 43. 314.)

Sl sol, in anhydrous pyridine, Sol m 97%, 95% and 93% pyridine+Aq (Kahlenberg, J Am Chem Soc. 1908, 30. 1107)

100 g sat. solution of CaCl2 in sat. sugar+ Ag at 31.25° contain 42.84 g. sugar +25.25 g. CaCl₂, or 100 g. H₂O dissolve 135.1 g. sugar +79.9 g. CaCl₂ at 31.25°. (Köhler, Z. Ver. Zuckerind, 1907, 47. 447.) +H₂O (Bakhuis Roozeboom.) See above.

+2H₂O. (Bakhus Roozeboom.) See above. +4H₂O. Two modifications. (Bakhuis Roozeboom.) See above.

 α and β modifications (α =stable form)

(Kuznetzov, C A 1911, 842) +6H₂O, Very deliquescent Sol. in H₂O with absorption of much heat.

250 pts CaCl₂+6H₂O with 100 pts. H₂O at 10.8⁵ lower the temp. 23.2°. (Rudorff, B

Melts in crystal H₂O at 28° (Tilden, Chem Soc. 45, 409); at 30 2° (Bakhus Roozeboom.)

Sat. solution in H₂O contains at: -22° -17° -5° -5° + -17° --22° 31 5 32 4 35 1 35 2 36 5% salt,

29° 35° 55 1% salt, 37.942 1 46 1 49.0 115° 63° 104° 55.9 57 5 58 5 58.6% salt.

(Étard, A. ch. 1894, (7) 2, 532.)

Sat. solution of CaCl2+6H2O contains

44.77 g. CaCl₂ at 25°. (Schreinemakers and Figee, Chem Weekbl. 1911, 8, 685)

Calcium uranium chloride, CaCl₂,UCl₄

Figee, Chem Weekbl. 1911, 8, 685)

Discound by H₂O (Alov, Bull. Soc See also above

Solubility of CaCl2+6H2O in ethyl alcohol+ Ac under addition of increasing amounts of CaCl2

Per cent of alcohol	G CaCls	Grams CaCle to
by volume	added	5 ce of solution
92 3 97 3 99 3 "	1 2 3 4 5	1 430 1 409 1 429 1 529 1 561 1 590 1 641 1 709

(Bodtker, Z. phys Ch 1897, 22, 510)

Calcium hydroxylamine chloride, CaCl2, 3NH₂OH, HCl

(Antonow, J. Russ Phys Chem. Soc. 1905, 37. 479.)

Calcium iodine trichloride, 2ICl2, CaCl2+ Calcium chloride lead oxide, CaCl2, 3PbO+ Hydroscopic. (Weinland, Z anorg, 1902,

Calcium mercuric chloride, CaCl2, 5HgCl2+

Decomp by cold H₂O, which dissolves out | Calcium chlorofluoride, CaF₂, CaCl₂ CaCl2, but all dissolves on heating. (v. Bonsdorff, 1829.) CaCl₂, 2HgCl₂+6H₂O Deliquescent.

Very sol in H₂O. (v. Bonsdorff)
CaCl₂, 6HgCl₂+6H₂O Very deliquescent.
Decomp by H₃O (Stromholm, J. pr 1902. (2) 66, 521.)

Calcium lead chloride, basic. See Calcium lead oxychloride.

30. 142.)

Calcium magnesium chloride, CaCl., 2MgCl. +12H.Ö

Min Tachhydrute, Deliguescent 100 pts H₂O dissolve 160 3 pts at 18.75° By dissolving 20 pts in 80 pts. H₂O the temp is raised 7.75°. (Bischof)

Calcium mercuric chloride, basic, CaCla, 2HgO+4H2O.

See Calcium mercuric oxychloride.

Calcium thallic chloride, 2TICl3,CaCl2+ 6H₂O. Can be cryst from H₂O. (Gewecke A. 1909, 366, 222,)

Calcium tin (stannic) chloride. See Chlorostannate, calcium. Decomp by H2O (Aloy, Bull. Soc. 1899,

(3) 21. 265) .

Calcium zinc chloride. CaZnCl₄+5½H₂O, and Ca₂ZnCl₆+6H₂O Very hydroscopie (Ephraim, Z. anorg 1910.

Calcium chioride ammonia, CaCl₂, 8NH₃ Sol in HoO with decomp. (Faraday.)

Calcium chloride hydrazine, CaCl₂, 2N₂H₄(?) Ppt (Franzen, Z. anorg 1908, 60, 288)

Calcium chloride hydroxylamine, CaCl. NH-OH+5H-O

Not hygroscopic (Antonow, J. Russ. Phys Chem. Soc 1905, 37, 479.) CaCl, 2NH2OH +H₂O. Aqueous solution sat. at 20° con-

tains 56.6 pts salt. +2H₂O (Antonow, l. c) 2CaCl₂, 3NH₂OH+6H₂O. (Antonow, l c.)

2CaCl₂, 5NH₂OH+4H₂O (Antonow, l. c.)

3H.O. See Calcium lead oxychloride.

Calcium chloroferrite, CaO, CaCl₂, Fe₂O₃ Insol in H₂O (le Chatelier, C. R. 99, 276.)

Decomp. by H₂O, by very dil. HCl, HNO₃ or acetae acid, by hot dil or conc. H₂SO₄. Sol. in conc. HCl or HNO₃. Insol. in, and not decomp by cold or boiling alcohol. (Defacqz, A ch. 1904, (8) 1. 355)

Calcium cyanamide, basic, CN2(CaOH)2+ 6H₀O Sl. sol. in H₂O. (Meyer, J pr 1878, (2) 18.

Calcium cyanamide, CaCN2 Decomp. by HgO. (Meyer, J. pr 1878, (2) 18. 425.)

Calcium subfluoride, CaF.

425)

Decomp. by H2O. Sol. in hot dil. HCl and somewhat sol, in dil. acetic acid. Somewhat sol, in boiling absolute alcohol. (Wohler, Z anorg, 1909, 61, 81)

Calcium fluoride, CaF.

Sol in 26,923 pts H₂O at 15.5° (Wilson, Ch. Gaz **1850**, 366) H₂O dissolves 16 mg. CaF₂ at 18°. (Kohlausch, Z phys. Ch. 1904, 50. 356.) 16.3 mg in 1 l. of sat. solution at 18°. (Kohlrausch, Z phys Ch. 1908, 64. 168) scarcely sol in dil., more sol, in cone HCl+ solution (Divers and Shimidzu, Chem Soc. Ag, decomp. by conc. H2SO4, not decomp by 45, 271.) dil. alkaline solutions. (Fresenius)

from this solution by addition of H₂O.

Sol in conc HCl, and HNO₂+Aq in the

same way, but the liquid is not viscid. Very sl. sol in HF. Boiling HCl+Aq dissolves slightly Decomp by boiling HNO2+Aq

Sol. in NH, salts+Aq. (Rose. Pathy decomp by boling K₂CO₃, and Na₂CO₃+Aq. (Dulong, A. ch. 82, 278.) Insol in liquid HF. (Franklin, Z anorg.

1905, 46.2) Insol in acetone (Naumann, B 1904, 37.

Insol in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acctate (Naumann, B 1910, 43, 314,) Mm. Fluorite (Fluorspar). Calculated from electrical conductivity of CaF₂+Aq, 11 H₂O dissolves 14 mg CaF₂ at 18°. (Kohl-

nausch and Rose, Z phys. Ch 12. 241) Calcium hydrogen fluoride, CaH2F4+6H2O Decomp. by boiling H2O. Sol. in HF+Aq. (Fremy, A ch (3) 47. 35)

Calcium tantalum fluoride. See Fluotantalate, calcium.

Calcium stannic fluoride. See Fluostannate, calcium.

Calcium titanium fluoride. See Fluotitanate, calcium.

Calcium fluoiodide, CaF2, CaI2.

Very deliquescent Decomp. by cold H₂O, more rapidly by hot H₂O, by dil HCl, HNO,, H₂SO, cone. H₂SO,, and by alcohol and by ether if these reagents are not absolute. (Defacqz, A ch 1904, (8) 1. 358)

Calcium hydride, CaH.

Decomp. by HCl+Aq (Winkler, B 24. 1975. (Moldenhauer, Z. anorg 1913, 82. 136) CaH. Readily decomp, by H.O and dil. acids, almost insol in conc. acids. Insol. in benzene, turpentine and alkyl haloids. (Moissan, C. R 1898, 127. 30-31.)

Decomp. H₂O and ether, sol in dil. H₂SO₄ and HNO, almost mool in cone, H2SO, and HNO₃. (von Lengyll, C. C. 1898, II 262.) Insol. in CCl₄, CS₃, alcohols and ethers. No known solvent. (Mossan, C C. 1903, I. 863.)

Calcium hydrosulphide, CaS₂H₂

Cryst. with 6H₂O. Extremely sol. in H₂O and alcohol. 1/2 of its weight of H2O at or- Arch. Pharm. (3) 4. 558)

When pptd not completely msol in H2O; dinary temp, more than suffices to hold it in

Sp. gr. of aqueous solution containing 32% Not decomp by conc. H.SO, below 40°, but anhydrous CaS, H. (64% CaS, H. +6H₃O) = forms a transparent syrup. CaF₂ is pptd. 1.255; 37 5% CaS, H. (75.5% CaS, H₂+7) 6H2O) = 1 310, (Divers and Shimidzu,)

Calcium hydroxide, CaO2H2.

See also Calcium oxide. Sl. sol in cold, and less in hot H2O.

to Pts H2O Authorit	
	У
20	(B. 7, 817) 1, 290) Pharm 1, 182)

Solubility in H₂O 1000 pts, CaO₂H₂+Aq sat at to contain pts. CaO.

to.		Pts. CaO	
1.	From Nitrate	Marble	H3 drate
0	1 362	1 381	1 430
10 15	1 311	1 342 1 299	1 384
30	1 142	1.162	1 195
45	0 996	1 005	1 033
60 100	0 884	0 868 0 576	0 885 0 584

(Lamy, C R, 86, 333,) Solubility of CoO.H. in H.O. at to

		DOLGOIN	of or our	Jan 2 III	xx10 160	
•	t°	Pts H ₂ O to 1 pt 'CaO	Pts CaO in 100 pts H ₂ O	t°	Pts HrO to 1 pt CnO	Pts CaC in 100 pts H:O
	0 10 20 30 40 50	759 770 791 862 932 1019	0 131 0 129 0 126 0 116 0 107 0 098	*60 70 80 90 100	1136 1235 1362 1579 1650	0 088 0 080 0 073 0 063 0 060

(Maben, Pharm. J. Trans. (3) 14, 505.)

1 pt. CaO₂H₂ is sol. in 640 pts. H₂O at 19°, and 3081 pts. at 150° (Shenstone and Cundall, Chem. Soc 53. 550)

1000 g H₂O dissolve 1 251 g. CaO (Carles,

	e pts. CaO at t		Ac Lu Sol.	ne 1913 in NH	₄Cl+Aq	I, 715 and 798.) Much more s	
t° Pts Cat		Pts CaO	NaCl-	-Aq thi	m m H ₂ () (Rose)	c
20 0 137- 40 0 1165 60 0 1026	100	0 0845 0 0664	·		CaO ₂ H ₂	n NH ₄ Cl+Aq a	
	1 1	21)	Concent	milimols	per liter	milimols per	
1 nt CaO is sol		t° 5° 40° 45°		0 00 21 70 43 53 87 03	3	20 22 29 08 39 23 59 68	
pts. H ₂ O 1044 110		30 1410 1482	(Noyes	and C	hapın, 2 52	2 phys Ch. 189	9, 28.
(Herzfeld, 100 g. sat. Ca at t°:	C. C 1897 , I,		C	ity of C iCl ₂ +A iO at t	q of give	n CaCl ₂ +Aq 10 n strength dissolv	00 pts. re pts.
g. CaO 0.135 0	1342 0.132 0. 35 40	1293 0.1254 50 60	, 0	5% CaCle	10% Caro	CaCle+Aq 20% CaCle	CaCls+Aq 30% CaCls
t° 70 g. CaO 0.0781 0 (Guthrie, J. Soc	074 0.0696 0		40 0 1 60 0.1 80 0 0 100 0 0		119 0 178 313 0 170 328 0 173 389 0 184	1 0 2249 0 3030* 0 0 2204 0 2989 3 0 2295 0 3261 2 0 2325 0 3710	0 1630° 0 3684° 0.3664 0 4122 0 4922
Solubility in H_4O at high temp 1 litre of the solution contains at: 120° 150° 190° 0,305 0.169 0.084 g. CaO			*In these cases, ppts of 3CaO, CaCb+15H3O were formed. (Zahorsky, Z anorg. 3. 34.) See also CaCl2+CaO ₂ H ₂ under Calcium chloride. *				
(Herold, Z. elektrochem. 1905, 11. 421)		0.	almbahas	r in CaO	NOs)2+Aq at 25°		
Solubi	lity in H ₂ O at t	°.				NOS/2 TAQ 86 25	
2 10	1 g CaO m sol. 765 780	3.5 3.8	Sp gr 25°/25°	R CAO su Ca(OH); m 100 g HsO	g. Ca(NO ₃₎ , n 100 g. H ₂ O	Solid phase	
15 20 25	80: 820 800	6 4 8 7	1.0249 1 0484 1 0940	0 096 0 100 0 125	3 38 8 52 13 42	Cn(OH):	
30 40 50	988 1083	3 0	1 1840 1 2101	0 181 0 187 0 198	20 73 28 98 32 84	Ca(OH); and solid c CaO, xN;Os, yI	olution IrO
60 70 80	1179 127- 1368	4 8	1 2287 1 2290 1 2541 1 2581 1 2826	0 212 0 213 0 224 0 230 0 280	36 83 37 55 40 25 41 98	Solid solution CaO, xN ₂ O ₄ , yH	:0
(Moody, Che	m. Soc. 1908, 9	3. 1772.)	1 2825 1 2905 1 3337	0 263 0 332	47 00 47 16 58 67	1	
Sat. CaO ₂ H ₅ +- 95° 0.0580	Aq contains at: 76° 0.0705% by w		1 3735 1 4195	0 429 0 545	89 40	Solad solution CaO, yH ₂ O and Ca(NO 314H ₂ O	xNtO4, 0a) 2.
(Tschugaeff,	Z. anorg. 1914,	86. 159.)	1.4840 I 5330 1 5809	0 449 0 371 0 303	99 70 115 50 135 30	Ca(NO ₂) ₂ , 3½H ₂ O Ca(NO ₂) ₂ , 3½H ₂ O Ca(NO ₂) ₃ , 4H ₂	0
100 g sat. sob	rtion of CaO ₂ E	Is in HsO at Cameron and	1 5842	0 000	139 30	Ca(NO ₂):, 4H:	ò
25° contain 0 117 g. CaO ₂ H ₂ . (Cameron and Potter, J phys Ch. 1911, 15. 70.) Readily sol in most acids.			(Came	ron ar	d Robii 1907, 1	nson, J. phys. 1.275.)	Chem.

Solubility of CaO₂H₂ in Ca(NO₃)₂+Aq Temp. =25°.

. G per 100 g sat solution		Solid phase
CaO	Ca(NO ₃):	
0 1150 0.0978 0 1074 0 1193 0 1444 0 1650 0 1931 0 2579 0 3060 0 2802 0 2314 0 1659 0 1486 0 0.0836 0	0 4 84 9 36 13 77 22 46 27 83 32 94 40 66 44 45 28 47 79 51 07 53 20 55 25 57 72 57 98	CnO3H2

Temp. = 100°.

0 0561	0	CaO ₂ H ₂	-
0 0550	2 42		
0 0624	4 91		
0 1110	15.39		-
0 1200	16.10		
0 155	21.86		
0 269	33 03		
0 480	42.26	a	
0 973	50 94	"7	
1 261	53 75	"	2
1 477	55 40		2
1 476	55 43	"	١.
1.491	55.65		
1 635	56.89	CaO2H+Ca2N2O22H4O	
1.686	57.03	Cn+N ₂ O ₇ 2H ₂ O	1
1 596	57 91		l
1 576	58 67	"	
1.348	60 44		ı
1.167	62.82		١.
1.077	66 44		l
1.141	69 12		1
1 252	70.60	CasN ₁ O ₇ 2H ₂ O+Ca ₂ N ₂ O ₇ ¹ 4H ₂ O	l
1 203	70 40	Cu ₂ N ₂ O ₇ , 24H ₂ O	ŀ
1 103 .	71.44		
0 937	73.85		ı
0 849	75.74		ı
0 815	76 94		1
0 804	77.62	Ca(NO ₃) ₂	1
0.412	77 74		ı
0	78.43	"	ĺ

(Bassett and Taylor, Chem. Soc. 1914, 105, 1926.)

Solubility of CaO in KCl and NaCl+Aq. Curves are given which show that the solubility of lime in solutions of either NaCl or

KCl is a maximum for all temps, when the solution contains about 60 g of sail per I It is a minimum at any fixed temp when the solution is sait, the solution it is an interest of the solution of NaCl dissolves more lime at all temps, and concentrations than a corresponding solution of KCl. In all cases the maximum solubility of lime occurs when the temp is lowest With solutions of all concentrations that solutions will be solved in the solution of the consess regularly as the temp. The solution of the sol

Solubility in KCl+Aq moreases with increased quantities of KCl and then diminisles, becoming less than the solubility in H₂O alone (Kernot, Gazz, ch. ii 1998, 38. (KOH or NaOH+Aq containing 1 pt KOH or NaOH in 100 pts. H₂O do not dissolve more than ¹/₁₉₈₆ pt CaO₂H₂, but it is sol. in NH₂OH+Aq. (Pelouse, A ch (3) 38. 11.)

Solubility in NaOH+Aq at to.

G NaOH	Solubility of CaO in g. per liter at				
per l	20°	50°	70°	100°	
0	1 17	0.88	0 75	0 54	
0 400	0.94	0 65	0 53	0 35	
1 600	0 57	0 35	0 225	0 14	
2 666 5 000	0 39	0 20	0 11	0.05	
8 000	0.11	0 02	0 01	traces	
20.000	0.02	traces	0	0	

(d'Anselme, Bull, Soc 1903, (3) 29, 936)

Solubility of CaO in NaCl+NaOH+Aq.

G NaCl	G CaO per I of solution containing				
per l.	No NaOH	0 89 g NaOH per l.	4 00 g NaOH per l.		
0 5	1 3 1 4	0.8 0.9	0 22		
10 25 50	1 6 1 7 1 8	1 0 1 1 1 25			
75 100	1.9 1.85	14	0 55		
175	· 1 6	1 25 1 2 1 2	0.44		
225 250	1 4	1.0 0 9 0 7	0.22		
150 175 182 225	1 65 - 1 6 1 6 1 4	1 25 1 2 1 2 1 2 1.0	0.44		

(Maigret, Bull. Soc. 1905, (3) 33. 631.)

Solubility of CaO ₂ H ₂ in CaSO ₄ +Aq at 25°.				
G per 100 co sut	Solid phase			

G per 100 co sat solution		Solid phase
CaSO ₁	CaO	
0	0 1166	CaO ₂ H ₂
0 0391	0 1141	
0.0666	0 1150	
0.0955	0 1215	
0 1214	0.1242	
0 1588	0.1222	CnO2H2 + CaSO4 2H2O
0 1634	0.0939	CaSO ₄ 2H ₂ ()
0.1722	0 0611	
0 1853	0 0349	
0 1918	0 0176	
0 2030	0 0062	"
0 2126	0	

(Cameron and Bell, J. Am. Chem. Soc 1906, 28, 1220.)

Insol in liquid NH₂. (Franklin, Am Ch J 1898, **20**. 827.) Alcohol dissolves traces

Methyl alcohol forms colloidal solution contaming 1 125 g per l. (Neuberg and Rewald, Biochem. Z 1908, 9. 545) Insol in ether.

Insol. in acctone. (Naumann, B. 1904, 37. 4329.)

Insol. in acctone and in methylal (Endmann, C. C. 1899, II 1014) Insol in methyl acctate (Naumann, B. 1909, 42, 3790) Insol in ethyl acctate (Naumann, B.

1904, 37, 3601) Much more sol. in glycerine, or sugar+Aq than in H₂O

Solubility of CaO in glycerine

Wt of glycerine in 100 cem of	Wt CaO contained in 100 ccm. of		of CaO to erme
solution	liquid sat with CaO	CaO	Glyconne
10 00 5 00 2 86 2 50 2 00 1 00	0 370 0 240 0 196 0 192 0 186 0 165	3.6 4.6 6.4 7.1 8.5 14.2	96 4 95 4 93 6 92 9 91 5 85.8

(Berthelot, A ch. (3) 46. 176.)

1000 g H₂O dissolve 1.251 g. CaO, 1000 g. H₂O+50 g. gyrenne dassolve 1.858 g. CaO, 1000 g. H₂O+50 g. gyrenre dassolve 2.583 g. CaO; 1000 g. H₂O+200 g. gyrenre fassolve 2.583 g. CaO; 1000 g. H₂O+200 g. gyrenre fassolve 4.940 g. CaO, 1000 g. H₂O+200 g. gyrenre fassolve 6.586 g. CaO (Carles, Arch Pharm (3) 4.558.) g. CaO (Carles, Insol in pure glycerine.

....

Solubility of CaO₂H₂ m glycerine+Aq at 25°, G=g glycerine in 100 g, glycerine+Aq, ½Ca(OH₂)=millimols sol in 100 cc. glycerine+Aq.

G	3gCnO₂H₂	Sp. gr
0 7 15 20 44 31 55 40 95 48 7 69 2	4 3 8 13 14 9 22 5 40 1 44 0 95 8	1 0003 1 0244 1.0587 1 0842 1 1137 1 1356 1 2027

(Herz and Knoch, Z. anorg. 1905, 46, 193.)

Solubility in glycerine+Aq at 25°

St	dution contains		
% Ca(OH):	% giycenne	%H ₁ O	Sp gr
0 117 0 178 0 413 0 48 0 88 1 34	0 3 50 15 59 17 84 34 32 55 04	96 32 80 28 81 68 64 80 43 62	1 008 1 042 1 088 1 149

Solid phase in this system is CaO₂H₂. (Cameron and Patten, J phys. Chem. 1911, 15. 71)

100 pts sugge dissolved in H₂O dissolve 55 6 pts CaO (Osann), *50 pts CaO (Urv), 49 6 pts CaO (Daniell), 29-30 6 pts CaO (Hanton), 23 pts CaO (Souberran) Sugar solution at 100° takes up ½ mol CaO for each

Sugar solution at 100° takes up ¼ mol CaO for each mol sugar; at 0° if it contains not less than 25% of sugar; it takes up 2 mols CaO to 1 mol sugar (Dubrunfaut) Insoint dissolved as proportional to the density and

Solubility of CaO in sugar+Aq

temperature of the solutions

Pts sugar dissolved in	Relation of CaO to sugai			
100 pts H ₂ O	CaO	Sugar		
40 37 5 35 0 32 5 30 0 27 5 25 0	21 0 20 8 20 3 20 3 20 1 19 9 18 8	79 8 79 2 79 5 79 7 79 7 80 1 80 2		
22 5 20 0 17 5 15 0 12 5 10 0 7 5 5 0	19 3 18 8 18 7 18 5 18 3 18 1 16 9	80 7 81 2 81 3 81 5 81 7 81 7 81 9 83 1		

(Peligot, C R 32, 335)

100 g solution of sugar sat, with CaO between 10° and 54.4° contain 22 5 to 23 5% CaO (Hunton, 1827.)

Solubility of CaO in dil. sugar solutions.				
Wt of sugar in 100 ccm.	Wt of CaO contained in 100 ccm of	Relation of CaO , to sugar		
of solution	liquid sat with CaO	CaO	Sugar	
4 850	1 031	17 5	82 5	
2 401	0 484	16 8	83 2	
2 000	0 433	17.8	82 2	
1.660	Q 364	18 0	82 0	
1 386	0 326	19 0	81 0	
1 200	0.316	20 8	79 2	
1 058	0 281	21 0	79 0	
0 960	0 264	21 6	78 4	
0 400	0 194	32 7	67.3	
0 191	0 172	47 4	52 6	
0 096	0 154	61.6	78 4	
0 000	0 148			

(Berthelot, A. ch. (3) 46, 176.) Solubility in sugar+Aq at to.

t ^e	G sugar in 100 ccm of solution	G CaO dissolved per 100 g sugar
6-17°	0 7814 0 9120 1 4000 1 6930 4 754 5 730 10 159 11 200 12 500 13, 930 14 487 16 410	37 9 32 3 30 5 28 9 27 7 27 1 27 5 27 2 27 2 27 3 27 9 27 5 28 0
15°	0 625 0 964 2 084 3 028 3 451 4 168 4 880 5 73 6 12	71 6 53 4 35 0 32 3 31 7 30 2 28 7 28 3 27 4

7 55 8 20 (Weisberg, Bull Soc. 1899, (3) 21, 775.)

6 51

27.7

27 5

27 9

27 3

Solution contains			
% Ca(OH):	% sugar	% H ₁ O	Sp gn
0 117 0 188 0 730 1 355 2 31 3 21 4 57 5 38 6 07	0 0 62 4 82 7 50 9 87 11 90 15 10 17 42 19 86	99 19 94 50 91 12 87 85 84 89 80 33 76 93 73 07	0 983 1 000 1 021 1 037 1 051 1 067 1 092 1 109 1 123

The solid phase in this system consists of a series of solid solutions with Ca(OH); a limit-(Cameron and Patter, J phys. Chem 1911, 15.70)

Solubility of CaO in sugar + An at 80°.

CT Coft | I CT Super | CT Coft

9 90 0 189 24 60 0 458	16 migus	,6 CaO	6 ongai	9 Ca0
	9 90	0 189	24 60	0 358 0 458 1.017

Solid phase, CaO2H2 (von Guneken, Proc. Kon, Akad v Wetcnsch. Amsterdam, 1911, 14, 457)

Onlink Street Co. Communicate 1 Ac-

solubility of CaO in manning+Aq				
Wt of manute in 100 rem of	Wt of CaO contained in 100 cem of	Relation of CaO to manute		
solution	hquid sat with CaO	CaO	Mannite	
9 60 4 80 2 40 1 92 1 60 1 37 1 20 1 07	0 753 0 372 0 255 0 225 0 207 0 194 0 193 0 190	7 3 7 2 9 6 10 5 11 4 12 5 13 9 15 1	92 7 92 8 90 4 89 5 88 6 87 5 86 1 84 9	
0 96 0 192 0 096 0 000	0 186 0 155 0.154 0 148	16 2 44 6 61 6	86 8 55 4 38 4	

(Berthelot, A ch. (3) 46. 176)

Solutions of CaO in sugar, mannite, or glycerine afford an abundant ppt. on being heated, but this redissolves on cooling (Berthelot)

Sol in sorbite + Aq (Pelouze), sl sol. in quercite+Aq. Sol in monobasic Ca sac-charate+Aq (Pelgot) Much more sol, in gelatine+Aq than in pure H₂O.

Calcium hydroxyhydrosulphide, Ca(OH)SH +3H₂O.

Easily sol. in H₂O with almost immediate decomposition. Insol. in alcohol, but slowly decomp, thereby Chem Soc 45. 270)

Calcium subiodide, Cal.

Decomp. by moisture. (Wohler, Z anorg 1909, 61, 76)

Calcium iodide, Cal:

Deliquescent 100 pts H₂O dissolve— 0° 20° 40° 43° 92° at 0 192 228 286 435 pts. CaI₂ 204 (Kremers, Pogg 103. 65.)

Sp gr. of CaI₂+Aq at 19.5° containing. 5 10 15 20 25 30% Ca 30% CaI, 1.044 1.09 1 14 1 198 1 26 1 321

40 45 50 . 55 60% CaI2 1 398 1 477 1.567 1.665 1.78 1.91 (Kremers, calculated by Gerlach, Z anal. 8, 285)

Sol in absolute alcohol. (Gay-Lussae, A ch. 91, 57.)

Sol. in acetone. (Natumann, B 1904, 37. 4328, Eidmann, C C 1899, II. 1014.) Sol in ethyl acetate (Naumann, B. 1910. 43, 314)

+4H₂O. (Kuznetzov, C A. 1911. 842) +6H₂O. Sat aq. solution contains at -22° +7° 10° 19° 616 65.0 65.1

66.3% salt 51° 649 2489 130° 69.4 75.9 813 87.1% salt. (Etard, A. ch. 1894, (7) 2, 543.)

+7H2O. (Kuznetzov.)

Calcium periodide, Cals+15H2O (Mosnier, A. ch. 1897, (7) 12. 401.) Cal. (Herz and Bulla, Z. anorg. 1911, 71.

255.)

Calcium mercuric iodide, CaI2, HgI2+8H2O. Very deliquescent. Sol. in H₂O, alcohols, allyl rodide, aldehyde, acetic acid, ethyl oxalate and anime Sl. sol in mtrobenzene Completely insol. in CHCl., CCl., ethyl iodide, ethylene bromide, C.H., monochlorbenzene and toluene. (Duboin, C R. 1906, 142. 573.)

3Cal., 4HgI2+24H2O Sol in H2O with pptn, of red Hele.

Very sol in alcohols, glycerine, ethyl acetate, methyl and isobutyl propionate, allyl iodide, aldehyde, acetone, aniline and ethyl oxalate Insol or sl. sol in nitrobenzene. Insol in CHCl₄, C₆H₆, ethyl iodide, monochlorbenzene, etc. (Duboin, C. R. 1906, 142, 397.)

CaI₂, 2HgI₂. Decomp. by H₂O. (Boullay) CaI2, 5HgI2+8H2O. Decomp by H2O, B 16. 997.)

(Divers and Shimidzu, alcohols, glycerine, aldehyde, and acetic acid. slowly by mtrobenzene and ethyl oxalate. Insol in monochlorbenzene, toluene, CHCl. and ethylene bromide (Duboin, $l. \epsilon$)

> Calcium silver iodide, CdI2, 2AgI+6H2O Immediately decomp by H₂O (Simpson. Roy Soc Proc 27, 120.)

Calcium zinc iodide, CaI2, ZaI2+8H2O Very hydroscopic. (Ephraim, Z anorg. 1910, 67, 384)

Calcium iodide ammonia, CaI., 6NH, (Isambert, C. R. 66, 1259.)

Calcium nitride, Ca₂N₂

Sol, in dil acids; insol in conc. (water free) acids (Moissan, C. R. 1898, 127, 499.)

Calcium oxide, CaO.

Decomp. by H2O, with evolution of much heat, to form CaO2H2, which see for solubility in H.C. etc.

Calcium peroxide, CaO2 Very sl. sol. in H₂O, easily sol. in acids.

and NH4 salts+Aq Insol in NH4OH+Aq (Conroy, Chem. Soc (2) 11, 808.) +2H₂O. True composition is CaO₂H₂-

H₂O₂. (de Forerand, C. R. 1900, 130. 1390.) +8H₂O. Efflorescent. Difficultly sol. in H₂O with gradual decomp. Insol in alcohol or other (Gay-Lussic and Thénard, A ch (2) 8, 313)

Calcium oxybromide, 3CaO, CaBr₂+16H₂O. Decomp. by H₂O and alcohol Very easily sol. in hydracids and dil. HNOa. (Tassily, C. R. 1894, 119, 372.)

Calcium oxychloride, Ca₄O₃Cl₂+15H₂O = 3CaO, CaCl₂+15H₂O.

Decomp. by H₂O or alcohol. (Rose) Formula is Ca. HO, Cl+7H,O. (Grimshaw,

N. 30. 280. +16H₂O. Decomp, by H₂O into CaO₂H₂ +16H₂U. Decomp. by H₂U into CaO₃H₂ and CaCl₂ until a maximum of 85 g. CaCl₂ are dissolved per litre. (Ditte, C. R. 91, 576) 4CaO, CaCl₂+14H₂O (Schreinemakers and Figee, Chem. Weekbl. 1911, 8, 685)

CaO, CaCle. (Schreinemakers and Figee) Calcium lead oxychloride, CaCl₂, CaO, 2PbO

 $+4H_{2}O$ Sol in H4O with decomp (André, C. R. 104. 359.) CaCl₂, 3PbO +3H₂O, (André.)

Calcium mercuric oxychloride, CaCl2, 2HgO

+4H₂O Decomp. immediately by H2O. (Klinger, Calcium oxygodide, 3CaO, CaI,+16H,O. Decomp, by H.O. alcohol, and acids. Sol in hydracids and in very dil. HNO3. (Tassily, C R 1894, 119. 372)

Calcium oxysulphide, Ca₄O₄S₄+12H₂O= 3CaO. CaS. +12H.O.

Decomp by H₂O. Not acted on by ab-solute alcohol. (Schone, Pogg 117. 77) According to Geuther (A 224. 178) = CaS₂. 2CaO+10. or 11H₂O. Sol in dil HCl+Aq with separation of S.

 $Ca_0O_4S_4+18H_4O=4CaO$, CaS_4+18H_4O . Decomp. by H_4O , but not acted on by absolute alcohol. (Schone, Pogg 117 82. According to Geuther (A. 224, 178) = CaSz. 3CaO+14, or 15H.O

 $C_{8*}O_{a}S_{b} + 20H_{2}O = 5CaO, CaS_{a} + 20H_{2}O$ (Rose, Pogg 55. 433.)

Sol. in 400 pts. cold, decomp. by boiling H₂O (Buchner), sl sol in cold, much more in hot H.O. but it is not deposited on cooling Aqueous solution sat. at 6°-7 2° has sp. gr. = 1.0105 (Herschel); sol in alcohol (Gay-Lussac); msol, m alcohol (Gmelin).

Calcium phosphide, CaP.

Deliquescent. Decomp in moist air or with H.O Not attacked by cone, HNO3, but decomp. by dil HNO₃+Aq (Thénard, A ch. (3) **14**, 14) Ca₃P₂ Crystallized.

Decomp. by H2O.

Not attacked by conc. H₂SO₄. Violently attacked by dil. H₂SO₄
Not attacked by abs alcohol, ether, ben-

zene or oil of turpentine (Moissan, C R Insol in liquid CO2. (Büchner,

Z phys Ch 1906, 54, 674.)

Calcium selenide, CaSe.

Very easily decomp, ch. (4) 7. 126 Sl sol. in H₀O. (Fabre, C R. 102. 1469.)

Calcium silicide, CaSi2.

Slowly decomp. by H₂O, sol. in conc. H₂SO₄ and dil HNO, with evolution of H₂. With and dil HNOs with evolution of H2. cone. HCl it gives H2, S1 and silicon hydride; with dil. HCl, H₂ and a yellow substance. Sol. in alkah+Aq or NH₂+Aq with evolution of H₂ (Moissan, C. R. 1902, **134**. 505.) Two modifications:

(a) Only sl. sol. in HNOs; decomp H2O to give an insol. ppt. on addition of HCl. (b) Easily sol in HNO3 and acetic acid; decomp HCl to give a ppt which is sol. in KOH+Aq. (de Chalmot, Am. Ch. J. 1896,

Ca₃S₁₂. Slowly decomp. by H₂O, rapidly by dl. acetic and or by H₂SO₂+Aq without evolution of spontaneously inflammable gas.

(Honigschmid, M. 1909, 30, 497) Decomp. by dil min. acids, with evolution

of spontaneously inflammable gas. (Hackspill. Bull. Soc. 1908. (4) 3, 619 CaeSin Insol. in all solvents.

by boiling H₂O, by cone HCl and by acetic acid Sol in dil. alkali and alkali carbonates +Aq. Hardly attacked by conc H₂SO₄ or HNO₈ (Kolb, Z anorg 1909, **64**, 349.)

HNO, (Kolb, Z anorg 1909, by one.)
Cansin Easily decomp by boiling with H₂O Decomp by dil. seetis and, dil. or cone HCl. (Kolb. Z. anorg 1909, 64, 349 and 356)

Calcium siliconstrade, CoSiaNa

(Kolb. Z. anorg 1909, 64, 363.)

CapS11N4. Slowly decomp. by boiling with H₂O, somewhat more rapidly with dil NaOH +An Slowly decomp, by cone HCl (Kolb,

CanSimNa Completely decomp by HCl. (Kolb, l, c)

Calcium sulphide, CaS.

500 pts. H₂O dissolve 1 pt CaS completely, less H₂O dissolves out CaS₂H₂ and leaves CaO₂H₃. Very much H₂O decomposes completely into CaO₂H₂ and H₂S. (Bechamp, A. ch (4) 16, 222)

Not decomp. by H2O, and only sl. sol. therein at ordinary temp. (Pelouze.) After 48 hours contact with CaS, 1 l. H2O

contains at

10° 40° 60° 0.23 0.30 048 033 g CaS. After boiling for 2 hours, 0.27 g CaS is

dissolved, addition of NaCl diminishes solubility, but Na2SO4 mereases it. Lime-water county, our Avapor, increases it. Line-Water dissolves at 14° 0.18 g CaS, the same amount which H₂O dissolves at 60° Milk of lime dissolves 0.55 g at 60°. H₂O contauring 3 to 79 g Na₂O per litre dissolves only traces of CaS at 10°, but at 40-80°, or by boiling, a large amount of Na₂S is formed. (Kolb, A.

Sol in 12,500 pts H₂O at 12.6° (Scheurer-Kestner, Répert. chim. appl. 1862. 331.) Sat Na₂CO₂+Aq has scarcely any action

on CaS, but a dilute solution has more action. (Kolb.) Sol in H₂O and sulphur, forming CaS.

Insol, in liquid NH₂ (Franklin, Am Ch. J. 1898, 20, 827. Insol, in methyl acetate (Naumann, B.

1909, 42, 3790.) Insol, in ethyl acetate 1904, 37, 3601.) (Naumann, B.

Insol in methylal. (Eidmann, C. C. 1899, II. 1014.)

Sol. in 10 pts glycerine (Cap and Garot, J. Pharm. (3) 26, 81) Sol. in sugar + Aq (Stolle, C. C. 1900, I. 1044)

Calcium tetrasulphide, CaS, Known only in solution.

Calcium neutosulphide, CoSt.

Sol in H₂O and alcohol. (Berzelius) Exists only in aqueous solution (Schone, Pogg 117 73.)

Calcium hydroxyl sulphide, Ca(OH)SH+

Easily sol in H₂O with immediate decomp and separation of Ca(OH)2. Insol in alcohol but slowly decomp thereby (Divers and Shumdzu, Chem. Soc 45 270)

Calcium stannic sulphide.

Sec Sulphostannate, calcium,

Colomel

See Mercurous chloride

Carbamic acid.

Ammonium carbamate acid carbonate (commercial carbonate of ammonia)

Ner Carbonate carbamate, ammonium hydrogen. (salts of hartshorn), 2NH₄HCO₄

NH-CONH-See Carbonate carbamate, ammonium hy-

Carbazote silicon, C.S.IN. Insol. in acids, even HF; also in boiling KOH+Aq (Schutzenberger and Colson,

C R. 92 1508.) Carbon, C.

drogen.

Insol. in all solvents. Diamond is unacted upon by KClO₄+fum. HNO₃, graphite forms graphitic acid by KClO₃+fum, HNO₃; amorphous carbon is sol. m KClO₃+fum. HNO₃ (Berthelot, A. ch (4) 19.399.)

Diamond is sol in molten iron at 1160° Amorphous carbon is insol, in molten from at 1160°, but becomes sol, therein by heating to (Hempel, B. 18. 998)

Insol in liquid CO2. (Buchner, Z. phys. Ch. 1906, 54, 674.) Charcoal is insol in liquid NH₃. (Gore, Am Ch J 1898, 20, 830.) The quantity of carbon dissolved by iron

dumnishes by increasing phosphorus, falling by about 05% for each additional 20% of phosphorus (Fettweis, Metallurgic, 1906.

3, 60.) Solubility in iron is reduced by the presence of tin and of sulphur. (Wust, Metallurgie,

1906, 3, 169.) The solubility of C in iron is increased by

the presence of chromium, 92% C dissolved when 62% Cr is present in the mixture. (Goerens, Metallingie, 1907, 4. 18.)

Carbon boride, CBe

Insol. in boiling HNO₃+Aq. (Jolv. C R 97. 456)

Carbon suboxide, C.O.

B.-pt +7° at 761 mm Sol in H2O with formation of malonic acid. Slowly decomp on standing in a sealed tube (Diels, B, 1906, 39, 696)

Carbon monoxide, CO

Sol in 50 vois recently boiled HrO (Davv) Sol in 16 vois HrO (de Saussure) Sol in 27 vois HrO (Dalton) 100 vols HrO dissolve 6 2 vois CO at 18°. (de Saus-

Solubility of CO in H₂O · 1 vol H₂O at t° dissolves V vols. CO reduced to 0° and 760 mm.

t°	V	to	V	to.	v
0	0 03287	7	0 02796	14	0 02466
1	0 03207	8	0 02739	15	0 02432
2	0 03131	9	0 02686	16	0 02402
3	0 03057	10	0 02635	17	0 02374
4	0 02987	11	0 02588	18	0 02350
5	0 02920	12	0 02544	19	0 02329
6	0 02857	13	0 02504	20	0 02312

(Bunsen's Gasometry, pp. 287, 128, 146)

Coefficient of absorption = 0 032874— 0.00081632t.+0.000016421t*. (Bunsen and Pauli, A. 93, 16.)

Solubility of CO in H2O.

β=Vol CO absorbed by 1 vol H₂O at a partial pressure of 760 mm $\beta^1 = \text{Vol. CO (reduced to 0}^\circ \text{ and 760 mm)}$ absorbed by 1 vol. of H2O under a total pressine of 760 mm

q=g. CO dissolved by 100 g. H₂O at a

total pi	essure of 700	mm.	
t°	β	βι	q
0	0 03537	0 03516	0.0044
5	0 03149	0 03122	0 0039
10	0 02816	0 02782	0 0035
15	0 02543	0 02501	0 0031
20	0 02319	0 02266	0 0028
25	0 02142	0 02076	0 0026
30	0 01998	0.01915	0.0024
40	0.01775	0 01647	0.0021
50	0 01615	0 01420	0 0018
60	0 01488	0 01197	0 0015
70	0 01440	0 00998	0 0013
80	0 01430	0 00762	0 0010
90	0 01420	0 00438	0 0006
100	0.01410	0.00000	0.0000

(Winkler, B. 1901, 34, 1416.)

Solubility in H₂O at various pressures V = Volume of the absorbing bound P = Hg pressure in metres λ = Coefficient of solubility.

v	t°	P	λ
30 830 ccm	17 7	0 9202 1 1438 1 4624 1 7986 2 3659 2 8390 3 2622 4 0114 4 6017 5 1953 5 8717 6 5462 7 0983 7 6470 8 0184	0.02791 0 02787 0 02786 0 02788 0 02783 0 02776 0 02771 0 02763 0 02763 0 02763 0 02764 0 02744 0 02738 0 02723 0 02723
31 939 cem.	19 0	0 9176 1 1506 1 3897 1 7044 2 1239 2 7173 3 2576 3 9311 4 4584 6 6303 7 1842, 7 9542	0 02716 0 02717 0 02717 0 02715 0 02712 0 02708 0 02701 0 02693 0 02689 0 02689 0 02673 0 02665 0 02636 0 02636

(Cassuto, Phys Zert. 1904, 5, 236.)

Coefficient of absorption of CO in H2O at 1 25° equals 0 0154. (Findlay and Cleighton, Biochem. J 1911, 5. 294) Cuprous chloride in an hydrochloric acid or

ammoniacal solution, and ammoniacal solutions of cupious salts absorb large amounts of CO. (Leblanc, C. R. 30, 488.)
Cuprous chloride dissolved in HCI+Ag ab-

sorbs 15-20 vols CO. (Berthelot, A. ch. (3)

Absorbed by KOH, NaOH, Ba(OH), and Ca(OH)2+Aq, more readily by ether, alcohol, and wood spirit, with formation of forms and wood spirit, with formation of forms acid (Berthelot, A. ch (3) 61, 463.)
Sol. m HCN. (Bottmger, B 10, 1122.)
1 vol. alcohol absorbs 0 20443 rols CO

gas at all temperatures between 0° and 25° (Carius, A 94, 135)

100 vols. alcohol (0 84 sp. gr.) dissolve 14.5 vols. CO at 18°, 100 vols restlied naphtha (0 784 sp. gr.), 20 0 vols CO at 18°, 100 vols of oi favender (0 88 sp. gr.), 10 8 vols CO at 18°, 100 vols olive oil (0 913 sp. gr.), 12 vols CO at 18°, 100 vols oil vols oil KCl+Aq (1 168 sp. gr.), 5 2 vols CO at 18°, (0 68 sassure, 1314.) 1 vol. oil of turpentus absorbs 0 16-0 20 vol. CO (de Saussure)

Sol in ether. (Regnault.) Insol, in caoutchine

Solubility in alcohol+An % alcohol by weight 0 00 Solubility 2 41 9.00 16 67 23.08 1.87 1.68 % alcohol 22 22 50.00

by weight 28 57 Solubility 3 20 1.50 1.94 (Lubarsch, W. Ann. 1889, 37, 524.)

combinity of CO in organic solvents.					
Solvent	Solubility at 20° C	Solubility at 25° C.			
Solvent Glycerine Water Anuline Carbon bisulphide Nitrobenzene Benzene Glacual acetic acid Amyl alcohol Xylene Toluene Ethyl alcohol (99 8%) Chlorofou m	Not measurable 0 02404 0 03358 0 08314 0 09366 0 1707 0 1714 0 1781 0 1808 0 1921 0 1954	0 02586 0 05055 0 08112 0 09105 0 1645 0 1744 0 1742 0 1901 0 1897			
Methyl alcohol Amyl acetate Acetone Isobutyl acetate Ethyl acetate	0 1955 0 2140 0 2225 0 2365 0 2516	0 1830 0 2108 0 2128 0 2314 0 2419			

(Just. Z. phys. Ch 1901, 37, 361) Solubility of CO in ether at 0° = 0 3618, and at 10°=0.3842 (Christoff, Z phys. Ch.

Solubility of CO in organic mixtures CO in benzene and naphthalene at 25°C

1912, 79, 459)

Percent by weight	Per cent by weight	* Solubility of
of naphthalene	of henzene	CO
0	100	0 174
11 52	88 48	0 164
11 65	88 35	0 163
23 98	76 02	0 149
23 60	76 40	0 148
32.35	67 65	0 142
32 74	67 26	0 143
33 79	66 21	0 141

(Skirtow, Z. phys Ch 1902, 41, 144.) * See under Oxygon.

CO in benzenc and phenanthrene at 25° C

Per cent by weight	Per cent by weight	Solubility of
of phenanthrene	of benzene	CO
0	100	0 174
10 48	89 52	0.144
10 48	89 52	0 144
19 22	80 78	0 132
18.99	81 01	0 133
27 04	72 96	0 128
27 39	72 61	

160		CARBO	N OXIDE		
CO in benze	ne and «-napht	hol at 25° C.	CO in tolue	ne and naphtha	lene at 25° C.
Per cent by weight of α-naphthol	Percent by weight of benzene	Solubility of CO	Per cent by weight of naphthalene	Per cent by weight of toluene	Solubility of CO
0 3 48 6.75 6 59 12 10 11 81	100 96 52 93 25 93 41 87 90 88 19	0 174 0.149 0 145 0.144 0 139 0 139	0 7 13 7.10 15 10 15 13 22 75 22.58	100 92 87 92 9 84 9 84 87 77 25 77 42	0 182 0 169 0 171 0 161 0 161 0 153 0 154
	(Skirrow.)			(Skirrow.)	
CO in benze	ne and β-napht	hol at 25° C	CO in toluen	e and phenanth	rene at 25° C.
Per cent by weight of \$\beta\$ naphthol	Per cent by weight of benzene	Solubility of CO	Per cent by weight of phonanthrene	Per cent by weight of toluene	Solubility of CO
0 2.06 4 14 4 36	100 97 94 95.86 95 64 (Skirrow.)	0 174 0 158 0 151 0 149	0 5 59 5 58 11 16 11 20 21 62 21 93	100 94 41 94 42 88 84 88 8 78 38 78 07	0 182 0 170 0 171 0 161 0 161 0 147 0 147
CO in benzer	ie and nitrobeni	ene at 25° C		(Sknrow.)	
	Per cent by weight of benzene	Solubility of CO	CO in toluen	e and nitrobens	sene at 25° C.
0 narosenzene	100	0 174	Per cent by weight of nitrobenzene	Percent by weight of toluene	Solubility of CO
14 5 14 12 28 18 28, 14 40 63 54 9 83 33 83, 2 100	85 5 85 88 71 82 71 86 59 37 45 1 10 67 16 8	0 162 0 162 0 152 0 152 0 140 0 140 0 126 0 127 0 101 0 102 0 093	0 8 86 8 87 18 27 18 19 26 82 26 76 49 14 49 02 76 31 76.31	100 91 14 91 13 81 73 81 81 73 18 73 24 50 86 50 98 23 69 0	0 182 0 168 0 168 0 160 0 161 0 151 0 151 0 131 0 131 0 108 0 108
	(Skurrow)			(Skirrow.)	
CO in ben	zene and amime	at 25° C.	CO in tola	iene and anilme	at 25° C.
Per cent by weight of aniline	Per cent by u cight of henzene	Solubility of CO	Per cent by weight of aniline	Per cent by weight of toluene	Solubility of CO
0 12 69 12 03 19 57 19 43 28 43 28 26 57 68 57 38 78.90 78.80	100 . 87.31 87.97 80.43 80.57 71.57 71.74 42.32 42.62 21.10 21.20 0	0 174 0.156 0.158 0.145 0.144 0 131 0 131 0 0945 0 0953 0 0689 0 0684 0 053	0 6 61 6 61 13 56 13 55 19 91 19 96 44 64 44 31 74 63 75 03	100 93 39 93 39 86 44 86 45 80 09 80 04 55 36 55 69 25 37 24 97	0 182 0 169 0 168 0 157 0 156 0 148 0 148 0 115 0 116 0 0768 0 0753 0 053
	(Skmow.)		1	(Skirrow)	

CO in to	luene and a-1	aphthol a	t 25° C	CO in acetic	acid and m	troben	zene	at 25° C.
Percent by we of g-naphth	of tolu	weight So	lubility of '	Percent by weig of natrobenses	thi Per cont by e of acetic	weight acid	Solu	bility of CO
0 4 46 4 44 8 75	100 95 5 95 5 91 2	6 5	0 182 0.171 0 171 0 162	0 21 65 51 03 100	100 78 3 48 9	77		0.173 0.156 0.130 0.093
8 89	91 1		0 163		(Skirro	ow.)		
	(Skure	ow.)			stic acid and		ie at	25° C.
	etone and na		at 25° C.	Per cont by wen of amline	ght Per cent by of acetic	weight	Solu	ibility of CO
Per cent by weight of naphthalene	Per cent by weight of acctone	Measured vapor pressure 229 6	Solubility of CO	0 13.5 41.64 60 77	100 86.5 58.3 39.2	36)		0 173 0.110 0.0699 0.0618
13 31	86 69	212 4	0 199	82.21	17 7			0 0580
27 40	72 60	196 6	0 187	100	0			0 053
	(Skirre	(.ж			(Skirre			
CO in acc	tone and ph	enanthrene	at 25°C.	CO in meth	yl alcohol a	nd glye	erin	e at 25°C.
Percent by weight of phenanthren	Percent by weight of	Measured vapor pressure	Solubility of CO	Per cent by weight of glycenne	Per cent by weight of methyl alcohol	Measu vapo pressu	r	Solubility of CO
0 12 77 25 04	100 87 23 74.96	229 6 218 207 5	0 238 0 205 0 183	0 39.6 60.5 77.1	100 60 4 39 5 22.9	122 106 91 63		0.196 0.0964 0.0515 0.0246
	(Skirr	ow)		100	0			very smal
COmo	cetone and β	nanhthol i	± 25° C		(Skirr	ow.)		
Per cent by	Per cent by		1	CO in ac	stone and ch	lorofo	rm s	t 25° C.
weight of β-naphthol	weight of acetone	Measured vapor pressure	Solubility of CO	Per cent by weight of chloroform	Per cent by weight of acctone	Measu vape press	or	Solubility of CO
0 13 95 26 88	100 86 05 73 12	220 6 213 195	0 238 0.190 0 169	0 33.38 53 2	100 66.62 46.8	229 202 179	.6	0 238 0 226 0 219
CO in ac	(Skırı etone and nı		at 25° C	65 03 73.46 79 83	34.97 26 54 20.17	167 162 163		0.220 0.212 0.204
Per cent by weight of nitrobensens	Per cent by weight of nectons	Mensured vapor pressure	Solubility of CO	87.3 94.4 100	12.7 5.6 0	168 178 188		0 207 0 205 0 207
0	100	229 6	0 238		(Skur	row.)		
21.59 53 20	78 4 46.8	201 152	0 207	CO in aceto	ne and carbo	on bisu	lphi	de at 25° C
100	0	102	0 093	Per cent by weight of	Per cent by	Mense		Solubility
	(Skirı	,		earbon bisulphide	weight of acctone	press	ure	of CO
CO in	acetone and	l anılıne at	25° C.	0	100	229		0 238
Per cent by weight of amline	Per cent by weight of acetons	Measured vapor pressure	Solubility of CO	8 18 18 02 49.46 62.6	91.82 81.98 50.54 37.4	306 367 443 457		0.236 0.236 0.227 0.210
	100 79 17	229.6 192	0 238 0.179 0.110	74.05 85 51	25.95 14 49 3.58	457 433 382		0.187 0.144 0.114
0 20 83 55 10	44.9	120	0.053	96.42 100	0.00	356		0.0959

CO in benzene and ethyl alcohol at 25° C.

weight of	weight of	vapor	Solubility
acetic acid	chloroform		of CO
0	100	95 9	0 174
15 43	84 56	125	0 179
52 34	47.66	119	0 181
100	0	59	0 192

(Skirrow.)

CO in chloroform and methyl alcohol at 25° C.

Per cent by weight of alcohol	Per cent by weight of chloroform	Measured vapor pressure	Solubility of CO
0 13	100 87	188 233	0 207 0 202
100	0	122	0 196

(Skirrow.)

CO in acetic acid and benzene at 25° C.

weight of	weight of	vapor	Solubility
acetle geid	beazene		of CO
0 19 17 33.54 67.51	100 80 83 66 46 32 49 0	95 9 87 5 82 64 5 14	0 174 0 190 0 198 0 199 0 172

(Skirrow.)

CO in acetic acid and toluene at 25° C.

Per cent by weight of neetle acud	Per cent by neight of toluene	Measured vapor pressure	Solubility of CO
0 20 48 56.89 74 71 100	100 79.52 43.11 25 29	9 31.6 28 25.6 14	0.182 0 190 0.195 0.191 0.172

(Skirrow.)

CO in acetic acid and chloroform at 25° C.

Per cent by weight of acetic acid	Per cent by weight of chloroform	Mensured vapor pressure	Solubilit of CO
0	100	188	0.206
26.67	73 38	144.5	0.207
56.46	43.54	88 5	0.196
100	0	14	0.172

(Skirrow.)

CO in carbon bisulphide and ethylene dichloride at 25° C

volume of earbon busulphide	volume of ethylene dichloride	Messured vapor pressure	Solubility of CO
0	100	77	0 147
25 49	75 51	231 294	0.159 0.160
81.6	18.4	338	0.140
100	0	356 5	0.083

(Skirrow)

Coefficient of absorption for petroleum = 0.123 at 20°, and 0.134 at 10°. (Gniewasz and Walfisz, Zeit. phys. Ch. 1. 70.)

Carbon dioxide, CO2.

Gas.—

CO₂, at CO₂+A escapes more qu diminish

H4G dissolves about its own vol CO₂ at the ordinary temperature (the solution eitherned being of 10018 ap gr) and pressure, and an additional vol for the pressure of seak additional atmosphere to which it is subjected. The power of H5O to absorb CO₂ does not meresse in processly this saine ratio 8 th pressure (Solutisman) and mucked bin saine ratio 8 th pressure (Solutisman) and mind greater pressure is necessary in order to increase the amount of gas dissolved, but up to 4 or 5

atmosphere the amount of gas dissolved is very nearly proportional to the pressure (Courthe, J Pharm 26, 121)

160 vols H:O as 12 78° absorb 118 vols, CO₂ (Cavendas), at 29 44°, 34 vols CO₂ (Henry); at 15 56°, 108 vols CO₃ (Gavendas), at 20 44°, 34 vols CO₂ (Henry); at 15 56°, 108 vols CO₃ (Henry); at 15 56°, 108 vols CO₃ (Henry); at 15 50°, 108 vols C

100 vols H₂O at t^o C absorb V vols of CO₂ gas reduced to 60° F and 30 in pressure

t°	- V	t°	v
0 4 4 10	175 72 147 94 122 27	26 7 32 2 37 8	68 60 57 50 30 39
15 6	100 50	65 6	11 10

(Rogers, Am J Ser (2) 6, 107)

H ₂ O at 5° abs 10° scarcely 1	•	:	0	I vol.
q sat at 2° has upon exposing	+hn	nalution to	tha	in CO:
uckly the higher	the	temperature.	Bu	t us COs

communister, and remainner is more constantely held, so that bolling for ½ hour is necessary to expel it completely (Hergman) Solubility of CO₂ in H₂O. 1 vol. H₂O at t^o and 760 mm, dissolves V vols. CO₂ gas

reduced to 0° and 760 mm.

t°	v	t°	V	t°	Vet
0	1 7967	7	1 3339	14	1.0321
1	1 7207	8	1.2809	15	1 0020
2	1 6481	9	1.2311	16	0 9753
3	1 5787	10	1 1847	17	0 9519
4	1 5126	11	1.1416	18	0 9318
5	1 4497	12	1.1018	19	0 9150
6	1 3901	13	1 0653	20	0 9014

(Bussen's Gasometry, pp. 287, 128, 152.)

Coefficient of absorption = 1.7967—0.07761t +0.0016424t², (Bunsen,) kg/sq cn.

30

130

140

150

160 170

20

b

19 77

16 89 17 71 17 49

Solubility in H₂O at various pressures: P=

	pressure in aumospheres						
1P	Vol gas in 1 cem		P	Vol. gus	in 1 eem.		
1 5 10	1.797 8 65 16.03	1 086 5 15 9 65	20 25 30	26 65 30 55 33.74	17 11 20 31 23 35		
15	21 95	13 63				1	

(Wroblewski, C. R. 94, 1355.)

I VOI. 11	2U.			
P	v	P	v	
697 71 809 03 1289 41 1469 95 2003 06	0.9441 1 1619 1 8647 2 1628 2 9067	2188 65 2369 02 2554 00 2738 33 3109 51	3 1764 3 4857 3 7152 4.0031 4.5006	

(Khanikoff and Longuinine, A ch. (4) 11.

C = coefficient of absorption in H₂O at t° and 760 mm to I C

1 60 0

, C |

15 2	1 009	18.38	0 896	21	0	838
17 6	0 930	18.3	0 885	23		798
(Sets	henow,	Mém. A	cad. St.	Peter	sb.	22.

Nos. 6, 7.) Absorption coefficient of CO₂ in H₂O at 0° =1.7308. (Prytz and Holst, W. Ann 1895,

54. 136.) Absorption of CO2 by H2O at to.

a = coefficient of absorption.

w - occurrence or monor peron. 4				
t°	æ	t°	æ	
0 1 2 3	1 713 1 646 1 584 1 527	19 20 - 21 22	0 902 0 878 0 854 0 829	
3 4 5 6 7	1 473 1 424 1 377 1 331	23 24 25 26	0 804 0 781 0 759 0 738	
8 9 10 11 12	1 282 1 237 1 194 1 154 1 117	27 28 29 30 35	0 718 0 699 0 682 0 665 0 592	
13 14 15 16 17	1.088 1.050 1.019 0.985 0.956	40 45 50 55 60	0.530 0.479 0.436 0.394 0.359	
18	0.928			

(Bohr, W. Ann. 1899, 68, 504.)

Solubility in H_1O at $25^\circ = 0.8255$, at $15^\circ =$ 1.070 (Geffcken, Z phys Ch. 1904, 49. 273) 75 cc. H₂O absorb 0.1381 g. CO₂ at 15 5° and 720 mm. (Christoff, Z. phys. Ch. 1905,

Absorption-coefficient of CO₂ in H₂O at 20° = 0.877, or 1000 g. H₂O dissolve 878 cc. CO₂. (Usher, Chem. Soc. 1910, 97, 72.) Solubility of CO, in H,O = 1,158 at 12° and

0 825 at 25°. (Findlay and Shenn, Chem. Soc. 1911, 99. 1315.)

Absorption of CO₂ in H₂O at high pressure sures: P = pressure in mm.; V = vols. CO₃ and Absorption of CO₂ by H₂O at high pressure reduced to 0° and 760° mm, absorbed by Absorption and Absorption denoted by

V = cem of CO2 absorbed by H2O at to, re-

duced to a pressure of 1 kg per sq cm. V1 = ccm. of CO2 absorbed by 1 ccm of H2O. Pressure

	40 50 55			21 52 28.09 29.75
	30 40 50 60 70 80	35°	11 77 14 82 18 96 22 90 27 18	13 57 20 00 24 64 22 50 27 62 32 85
,	40 50 60 70 80 90 100 110	60°	10 SS 12 24 14 46 16 80 19 74 22 74 26 21 28 92 30 20	9 798 13 72 15 28 17 46 22 67 21 16 27 85 28 79 33 90
	60 70 80 90 100 110 120	100°	8 965 10 11 11 05 12 63 13 63 14 88 16 40	6 395 9 591 10 85 12 40 16 31 15 78

(Sander, Z. phys. Ch. 1912, 78, 537.)

19.56

20 58

22 07

22 78

Solubility of carbon dioxide in water at 25°.

P. = Pressure in mm. Hg S. = Solubility calculated according to formula for which see the original article

mula for which see the original article (Findlay, Chem. Soc. 1910, 97. 538.)

P	8	P	8
743	0 816	1059	0 817
752 800	0 817	1064 1153	0 819 0 818
841	0 817	1243	0 819
955 955	0 816	1351 1351	0 820

(Findlay and Creighton, Chem. Soc 1910, 97.

538)
Solubility of carbon dioxide in water at 25°.

P	8	P	8
755	0 826	1069	0 823
759 836	0 825 0 825	1084 1210	0 825 0 825
841	0 826	1211	0 825
927 934	0.826	1350 1350	0 824

(Findlay and Creighton, Chem. Soc 1912, 101, 1460.)

Solubility of carbon dioxide in water at 25°.

P=Pressure in mm. Hg
S=Solubility. See above.

P = Pressure in mm. Hg.

P	s	P	8
263	0 817	495	0 816
271	0 816	651	0 816
382	0 814	667	0 817
392	0 811	752	0 818
479	0 816	768	0 817

(Findlay and Creighton, Chem Soc. 1913, 103, 638.)

100 vols H₃NO of 1 840 sp gr. absorb 45 vols CO₂ (de Saussure)
H₃SO₄ of ordinary density at 15.50° and common present absorbs 94% of its vol. of CO₂ funng H₃SO₄, 128%; the absorption for pure H₄O under the same conditions being 68% (Rogers, Am. J Sci. (2) 5.115)

H₂SO₄ absorbs 7-10% CO₂. (Hlasiwetz, W. A. B. **20**. 193,)

Coefficient of absorption by conc. H₂SO₄ = CO₂S₂, which is the same as that by H₂O; but this diminishes on diluting, and is at its lowest limit 0.666, when the composition of the solution is H₂SO₄, H₂O; upon further dilution the coefficient of solubility gradually increases, and when 58 H₂O are present to 1 H₂SO₄, the

coefficient of absorption is 0.857 (Setschenow, J. B 1876, 48.)

Absorption of CO2 by H2504-Aq.					
Solution	Grams CO ₂ absorbed by 75 ce at 15.5° and 720 mm				
1/2-N H ₂ SO ₄ 1-N H ₂ SO ₄ 2-N H ₂ SO ₄ 4-N H ₂ SO ₄	0 1273 0 1179 0 1092 0 1003				

(Christoff, Z. phys. Ch. 1905, 53, 329)

Solution	Grams CO ₂ absorbed by 75 ee at 15 5° and 720 mm
2 5% H ₂ SO ₄	0 1282
500 11	0 1179
10% "	0 0833
20% "	0 0755
30% "	0 0751
4062 "	0 0713
150% 11	0 0725
70% "	0 0918
90% "	0 1433

(Christoff, l. c)

Coefficient of absorption for 96% H₂SO₄ = 0 926 at 20 2°. (Bohr, Z. phys. Ch. 1910, **71**. 48.)

Absorption of CO₂ by acids

M = Content in gram-equivalents per liter,
S = Solubility (see under oxygen),
Absorption of CO₂ by HNO₃+Aq.

М	Sg ₀ °	Siaº
0,472	0 8382	1.073
0.475	0 8866	1.075
0 557	0 8387	1 069
0 704	0.8447	1 080
1 382	0 8620	1 093 '
1.387	0.8622	1 093
1 860	0.8752	1.105
2.519	0.8839	1 109
2 539	0.8865	1 111

(Geffeken, Z. phys Ch. 1904, 49, 273.)

Absorption of CO by HCl+Ag.

М	Szz°	Sito
0 499 0.511 1 212 1.249 2 080	0 8047 0 8074 0 7973 0.7984 0 7951	I 041 I 042 I 020 I 023 0.9864
2 180	0.7951	1 000

(Geffcken.)

Absorption of CO_2 by $\frac{H_2SO_4}{O} + A\alpha$

M	Sea ^o a	S _L ,*
0 512 0 517	0 7923 0 7936	1 016 1 016
0 995	0 7693 0 7685	0.9772 0.9775
1 067 1 956	0 7672 0 7302	0 9756 0 9756 0 9175
2 088	0 7273	0 9143
3 790 3 800	0 6736 0 6747	0 8354 0 8385

(Geffeken.)

In collecting CO₂ gas in pneumatic operations, a saturated solution of common salt is better than H₂O for filling the trough. This solution will only absorb about V₂ of the amount of CO₂ absorbed by pure H₂O (de Saussure, I

(de Saussure, l c)
100 vols of the following solutions at 18° and ordi-nary pressure absorb vols CO+--

1.078 1.168 61 1402 26 1 077 1 105 58 1047 70 1 139 57 1 206 43

(de Saussure, Gilbert's Ann. Phys 47, 167.) About half as sol. in NaCl+Aq (15% NaCl) as in H₂O

Much more sol in Na-HPO++Ac or Na₂CO₃+Aq than in H₂O, the quantity dissolved mcreasing with the amount of salt in the solution. The solubility in these solutions depends on the coefficient of solubility in H2O plus the product of a constant coefficient multiplied by the amount of salt in the solution; this constant equals 0.069 for Na2HPO4 and 0.088 for Na₂CO₂. (Fernet, A. ch. (3) 47. 307.

Fernet's determinations are not accurate (L. Meyer, A. Suppl. 2. 157.) 1 mol Na₂HPO₄ in dil Na₂HPO₄+Aq

absorbs 2 mols CO₂ (Setschenow.) Solutions of salts of similar constitution are eouvalent in regard to their power of absorption of CO2, when they contain the same percentage of crystal water. Experiments were made with solutions of alum, MgSO4, 7H2O, and ZnSO4, 7H2O, containing 10% of the salts. The MgSO4 solution absorbed the greatest proportional amount of CO2, and the alum the least. . The further rule was deduced that with salts of similar constitution

absorptiometric equivalents are identical with the chemical equivalents. (Setschenow, B.

Salts can be divided into two classes, according as CO. has chemical action on the salt or not In the first case, 1 c., when there is chemical combination or action of CO2 on the salt in solution, the amount of CO2 absorbed increases with increasing concentra-tion of the solution; in the second case, how-ever, the amount of CO₂ decreases with the strength of the solution. Several salts can be arranged in a series as regards their power of absorption, beginning with that which has the greatest, as follows: Na₂CO₂, Na₂B₄O₇, Na₂CH₄O₅, Na₂CH₄O₅, Na₂CO₄, NaC₄H₄O₅, MNO₃, MCI, M₂SO₄ The division between the two classes occurs in this series at Na₂C₂O₄

The matter is discussed at length in the original papers. (Setschenow, Mémoires Acad, St. Petersb 22. No 3. Also further, Setschenow, ib. 34. No. 3, and 35. No 7 See also Ostwald, Allgemeine Chemie, 2te Aufl vol. 1, p. 629.)

Solubility of CO₂ in salts+Ag at 15.2°. CO1=00, CO2 (at 0° and 760 mm.) dissolved per ce of solt solution

per cc. of sait solution.		
Selt	g salt per l	CO ₂
NH ₄ Cl "" "" "" "" "" "" "" "" ""	10 51 6 172 258 2.8 11 2 55 101 202 1 404 3 722 2 16 42 40 4 40 4 72 2 50.15 16 72 50.15 125 4 250 8 50 15 125 8 150 15 125 8 150 15 125 8 150 15 125 8 150 15 125 8 150 15 125 15 126 15 127 7 127 15 127 15 128 16 129 16 129 17 129 18 129 18	1 005 0 885 0 891 1 002 0 819 1 1 002 0 992 0 992 0 911 0 807 0 772 0 792 0 120 0 992 0 180 0 991 0 191 0 699 0 441 0 188 0 596 0 891 0 898 0 898 0 899

Solubility of CO₂ in salts+Aq at 15 2°-Cont

Salt	g salt per l	CO2		
KSCN	978	0 387		
KNO ₃	58 8	0 959		
	117 5	0.890		
44	235 1	0.781		
NaCl	12 9	0 978		
- 11	64	0 760		
u	128	0.580		
**	192	0 466		
NaBr	115 1	0 775		
***	460 3	0 364		
.4	690.4	0 221		
$NaNO_a$	89 3	0 835		
"	125	0 762		
-4	208 4	0.621		
и,	416 8	0 385		
"	625 2	0 244		
NaClO ₂	233 3	0 625		
	349 9	0 506		
"	699 8	0 257		
Na ₂ SO ₄	14 2	0 950		
11	94.8	0 620		
44	284 4	0 234		
ZnSO ₄	38 3	0 903		
44	76.7	0.783		
44	230	0 474		
#	460	0 209		
(Setschenow, A. ch. 1892, (6) 25, 226.)				

CO₂ is not disengaged at ordinary temp. from H₂O, in which \(\frac{1}{1000}\) pt of CaCO₃ or MgCO₂ is held in solution thereby These solutions have a great power of retaming CO₂ even at a boiling temp, or with diminished pressure, and they also absorb CO₂ from the air in much larger quantity than pure H2O. (Rineau.)

BaCOs in H2O also retains CO2 even after

BacOy in the area as a recent plant by Dagon also absorbed from the air by Na₄CO₃, or K₂CO₃+Aq, especially if dilute Absorption of CO₂ by NaCl+Aq at t²

a = Coefficient of absorption for a 6.52% NaCl solution. a = Coefficient of absorption for a 17 62%

NaCl solution.

	t°	α	a ₁
	0 5	1.234	0 678
-	10	1.024 0.875	0 577 0 503
	15 20	0.755 0.664	0 442 0 393
	25 30	0 583	0 352
	35	0 517 0 460	0.319 0.288
	40 45	0 414 0.370	0 263 0.235
	50 55	0 335 0 305	0.215 0.198
	60	0 000	0 183

(Bohr, W. Ann. 1899, 68, 504.)

Absorption of CO₂ by CsCl+Aq M = Content in g equiv per l. S = Solubility, (See under Oxygen.)

	n 1 01	1004 (0.070.)
0.552 0.554	0.7771 0.7769	1 001 0 9995
51	- 011	1713

(Geffcken, Z. phys. Ch. 1904, 49, 273.) Above to a control of the MANO A American

Absorption of CO2 by IXAO2 TAQ.		
M	Siso	N ₁₁ 0
0 536 0 537 1 022 1 033	0 7832 0.7818 0.7452 0.7447	1 002 0 9997 0 9489 0 9421

(Geffcken.) Absorption of CO2 by KI+Aq.

М	Sto	Su°
0.559 0 573 1 043	0.7678 0.7676 0.7236 0.7166	0 9809 0 9835 0 9144 0 9090

(Geffcken.)

Absort	tion of CO2	by RbCl	+Aq.
31			

M	Sto ⁰	Sug
0 479	0 7705	0.9908
0 481	0 7698	0 9910
1 007	0 7190	0.9210
1.012	0 7157	0 9200

(Geffcken.)

Absorp	tion of CO2 by I	ABr+Aq.
M Sno		91¢°
0 550 0 565	0.7621 0.7619	0 9783 0.9766
1 056	0.7030	0 9100
1 064	0.7068	0 9065

(Geffeken)

Absorption of CO2 by KCI+Aq.

M	Ser	840
0 423 0 432 1 045 1 058	0.7695 0.7667 0.6920 0.6961	0 9892 0.9865 0 8875 0 8910

(Geffcken.)

in the original article.

Absorption	of	CO2	bу	salts+Aq	
		Gr	ma	CO: absorbed b	y

Salt	cc. of salt solution at 15 5° and 720 mm
1-N KBr	0 1280
1-N KNOs	0 1231
1-N KCl	0.1213
1-N KI	0.1204
1-N LiCl	0.1087
1-N NaCl	0.1050
1-N (NH ₄) ₂ SO ₄	0 1093
1-N (NH ₄) ₂ SO ₄ ,	0 1055
Fe ₂ SO ₄) ₃ +24H ₂ O	0 0991
1-N K ₂ SO ₄	0 1002
1-N K ₂ SO ₄	0 1002
Al ₂ (SO ₄) ₃ +24H ₂ O	0 1054
N F CO	0.1140
² / ₃ -N K ₂ SO ₄ ¹ / ₂ -N MgSO ₄	0.1140
1 N M - 90	0.1209
1-N MgSO ₄	0 0656
2-N MgSO ₄ 4-N MgSO ₄	0 0527
2-N CuSO ₄	0.0751
2-N ZnSO ₄	0.0720
2/2-N KHSO2	0 1017
2-N KHSO ₄	0.0999
1-N KH ₂ AsO ₄	0.0808
1-N KH ₂ PO ₄	0.0000
1/r-N K2HAsO.	0 1111
1/2-N K2HPO4	0 4989
1/40-N Na ₂ B ₄ O ₂	0 2205
1/4-N Na ₂ B ₄ O ₇	0 5317
1/4-N Na ₃ B ₄ O ₇	0 8511
1/-N NaBO	0 8124
/-N NH HB.O.	0 7672
N-Na ₂ PO ₄ +12H ₂ O	0.5828
N-Na ₄ P ₂ O ₇ +10H ₂ O	0 8457
N-NaPO _a	0.2081
N-KPO,	0 2618

(Christoff, Z. phys Ch. 1905, 53, 338-340.)

Solubility of CO₂ in KCl+Aq at 25°. Concentration, 7.45 g. in 100 cc of solution, sp gr.=1 043.

Pressure 756 850 953 1116 1249 1362 Solubility 0.694 0.693 0.688 0 700 0 709 0.710

Concentration, 5 g in 100 cc. of solution, sp. gi = 1031

Pressure 756 832 901 1050 1150 1223 Solubility 0 731 0 727 0 724 0 726 0 735 0 736

Concentration, 2.56 g in 100 cc. of solution,

Sp. gr. ≈1 016.

Pressure 756 852 981 1079 1190 1362 Solubility 0 767 0 761 0 761 0.762 0.768 0 766 (Findlay and Creighton, Chem. Soc. 1910, 97, 557) Solubility of CO₂ in NH₄Cl+Aq at 25° Concentration (C) denotes number of

grams of solute m 100 cc of solution.

Density (D) equals the specific gravity of
the solution.

Solubluty (S) calculated by formula given

2 0.701 2 35 1 005 5 05 1 013 0.7548 24 1 022 0.732 10 02 1 027 0 712 1 045 17 09 0.665

> (Findlay and Shenn, Chem. Soc. 1912, 101, 1461.)

Solubility of CO₂ in KCl+Aq at 25°.

С	D	8
1 84 3 05 4 58 7 46	1 008 1 017 1 026	0 792 0 764 0 749 0 701

(Findley and Shenn)

Solubility of CO ₂ in BaCl ₂ +Aq at 25°			
·c	D	s	
2 80 5 81 8 15	1 018 1 040 1 054	0 789 0 741 0 710 0 676	

(Findley and Shenn.)
Solubility of CO₂ in (NH₄)₄Fe(SO₄)₂+Aq at

25°

C D S

9 51 1 052 0.641
10 26 1 057 0 629
22 47 1 124 0 460

(Findlay and Shenn.)

Solubility of CO₂ in solutions of sucrose at 25°.

C D S
2.63 1 009 0 813

(Findlay and Shenn.) Solubility of CO₂ in solutions of chloral hy-

0 795

diate at 25°.

C D S
5.08 1.019 0.815

(Findlay and Shenn)

10 12

100 vols. alcohol (0 803 sp gr) at 18° absorb 260 vols COz.
100 vols. alcohol (0 840 sp gr) at 18° absorb 186 vols. COz. (de Saussure, l c.)

Solubility of CO₂ in alcohol 1 vol. alcohol at t° and 760 mm, dissolves V vols CO₂ gas reduced to 0° and 760 mm

						ı
tº	v	to	V	t°	1	1
0 1 2 3 4 5	4 3295 4 2368 4 1466 4 0589 3 9736 3 8908	9 10 11 12 13 14	3 5844 3 5140 3 4461 3 3807 3 3178 3 2573	18 19 20 21 22 23	3 0402 2 9921 2 9465 2 9034 2 8628 2 8247	
6 7 8	3 8105 3 7327 3 6573	15 16 17	3 1993 3 1438 3 0908	24	2 7890	

(Bunsen's Gasometry, pp. 287, 128, 153)

Coefficient of absorption = 4 32955— 0.09395t+0.00124t2 (Bunsen)

Much less sol. in 30% alcohol than in pure alcohol or pure H_2O . (Muller, W. Ann 37. 24.)

Solubility of CO, in 99% alcohol at to.

a=Coefficient of absorption, i. e., the noof com. of CO₂ measured at 0° and 760 mm, which are absorbed at the given temp, and at an absorption pressure of 760 mm by 1 ccm. alcohol.

a₁ = Coefficient of absorption corrected for increase in the volume of the alcohol used due to absorption of CO_{*}.

t°	α	αι
-65 -25 -20 -15 -10 -5 0 +5 10 16 20 26 33	38.41 8.75 7 51 6 59 5 75 4 44 3 96 3 57 3 25 2 276 2 276 2 241	35 93 8 61 7 41 6 51 5 69 4 96 4 40 3 93 3 55 3 23 2 74 2 56 2 74 2 2 39
40 45	2.20	2 19

(Bohr, W Ann. 1900, (4) 1, 249.)

Solubility in 98 7% alcohol at to,

a₁ = Coefficient of absorption corrected for increase in volume of the alcohol used due to absorption of CO₂.

\$°	a	α,
0	4 35	4 31
10	5 43	5 38
20	7 25	7 16
30	9 97	9 79
10	14 25	13 89
50	21 28	20 49
60	31 25	29 59
65	39 89	37 22
67	44 07	40 83

(Bohr, W. Ann. 1900, (4) 1, 253)

Solubility in alcohol + Ag at to

t°	% by at of alcohol in the solvent	Solubility of CO ₂ in alsohol +Aq	Solubility of COs in H ₂ O
1 4	6 325	1 5864	1 6916
3 2	4 464	1 4878	1 5652
9 2	7 276	1 1829	1 2216
13 8	2 870	1 0268	1 0385

(Langer, C C. 1904, I. 1583.)

Solubility of CO₂ in ethyl alcohol at 25°. Concentration. 2.95 g alcohol in 100 cc.

Concentration. 2.95 g alcohol in 100 cc. of solution \$50, gr. 25°/15°=0 99308.
Pressure 737 836 929 1073 1213 1338
Solubity 0.812 0.813 0.812 0.811 0.813 0.811

Concentration. 3 01 g. alcohol in 100 cc. of solution. Sp. gr. 25°/15° = 0 99295. Pressure 745 823 937 1083 1226 1357 Solubility 0.814 0.812 0.815 0.813 0.812 0.812

Concentration. 8.83 g. alcohol in 100 cc. of solution. Sp. gr. 25°/15°=0.98342. Pressure 747 846 942 1090 1231 1360 Solubithy 0.786 0.786 0.786 0.785 0.785 0.785 (Findlay and Shenn, Chem Soc 1911, 99.

Solubility of CO2 in organic solvents at low temperatures.

Solvent Ethyl alcohol. t = -78°; sp gr. =0 872

Pressure	Coefficient of absorption	Solubility
100	111 8	68.4
200	115 7	69.5
400	123.8	71.4
700	138 6	74.7

temperatures .- Continued

Pressure	Coefficient of absorption	Solubility
100	40 85	27 27
200	41 00	27 16
400	42 35	27.65
700	44 15	28.10

Methyl alcohol. Solvent

Pressure	Coefficient of absorption	Solubility
50 100 200 400 500 740	194 0 195.0 202 9 221 5 226 4 260 0	120 5 119 6 120 1 122 2 126 8

to --- 59°; sp gr -0 866

Pressure	absorption	Solubility
100	63 0	42.5
200	64 2	42.7
400	66.3	43.1
700	69.0	43.3

Solvent, Acetone.

t =--78°, sp gr. -0.900

Pressure	Coefficient of absorption	Solubility
50 100 200 400 640 700	311 322 344.5 400 487 545 5	196 6 198 1 201 5 208 8 215 7

t =--59°, sp gr. =0.879

Pressure	Coefficient of absorption	Solubility
100	97.8	67.2
200	101 2	68.0
460	106 6	72.8
700	118 8	72.8

Solvent -Ethyl acetate.

t =78°; sp gr =1017								
Pressure	Coefficient of absorption	Solubility						
	250.2 255 6 271.8 310.9 386 9	177 5 177.1 179 2 183 2 191 2						

Solubility of CO2 in organic solvents at low Solubility of CO2 in organic solvents at low temperatures -Continued 4- 500 -- -- 0.00

Pressure	Coefficient of absorption	Solubility
100	85 3	65 6
200	86 3	65 3
400	91 6	66 7
700	101 5	69 7

3
Solubility
224 1 224 3 223 1 225 6

	$t = -59^{\circ}$, sp gr = 10	82
Pressure	Coefficient of absorption	Solubility
100 200	94 3 98 45	75 8 77 1
400	103 6	77 6
700	112 9	79.0

(Stern, Z. phys Ch 1912, 81, 468)

Solubility of CO2 in ether at 0°=7.33, at 10° =6.044; at 15° =5.46. (Christoff, Z. phys. Ch. 1912, 79. 459.) Coefficient of absorption in chloroform is 0 20376 at 36.57 mm., and 4 43757 at 762 mm. pressure. (Woukoloff, C. R. 109. 62.)

100 vole of following housely absorb vols COs at 180-

	Sp	gr	Vols CO2
Ether	0.7	27	217
Rectified naphths .	0.7	/84	169
Oil of turnentine	0.8		166
Oil of turpentine	0.8	190	191
Oil of thyme	0.8	200	188
Lanseed oil	0 5		156
Olive atl	0 6		151
Gum-arabie +Ag (contsining 25%	0.	12.0	201
of the gum)	1 /	092	75
Cane-sugar +Ac (containing 25%		302	10
of sugar)		104	72

(de Sauvaure, I c.) 1 vol oil of turpentine absorbs 17-19 vols CO;

(Вациито.) 1 vol. spirit at 10° absorbs 2 vols. CO₂ (de Saussure) 1 vol. shive oil at 10° absorbs 1+vol. CO₂ (de Saussure.) 1 vol oil of turpentine at 10° absorbs 2 vols CO:

(Bergman.)

1 vol. caoutehine absorbs 11 vols CO₂ (Bergman) Coefficient of absorption for petroleum is 1.17 at 20° and 1.31 at 10°. (Gniewasz and Walfisz, Zeit. phys. Ch. 1. 70.)

100 vols. petroleum absorb 70 vols CO₂ at 10°. (Robinet, C. R. 58. 608.)

Solubility of CO_2 in $\frac{N}{2}$ solutions of various organic substances at 20°.

Substance	$\frac{\mathrm{Sp}}{\mathrm{gr}} \mathrm{of} \\ \frac{\mathrm{N}}{2} \mathrm{solution}$	Coeff of absorp- tion	er COs dissolved in 1000 g HsO
Dextrose Mannite Glycernne Pyrogallol Hydrochmon Resorein Pyrocatechm Urethane Carbamude Thocarbamude Antapyrine Acetamide Acetic acid N Propylic acid	1 0328	0 792	841
	1 03031	0 782	833
	1 01413	0 843	864
	1 01718	0 853	894
	1 00946	0 887	928
	1 00958	0 901	945
	1 0107	0 868	908
	1 0037	0 869	907
	1 00715	0 864	884
	1 00917	0 859	885
	1 01339	0 879	935
	1 0005	0 879	906
	1 0026	0 868	893
	0 9939	0 869	902

(Usher, Chem. Soc 1910, 97 73.)

Absorption of CO2 by ethyl alcohol

Amount of alcohol used =0.093 ccm. V=ccm of CO₂ absorbed by the solvent at t°, reduced to a pressure of 1 kg. per sq cm. V₁=ccm. of CO₂ absorbed by 1 ccm. of the solvent.

Pressure kg/sq.em.	t°	Gas volume cem	ν	V ₁
30 40 50	20°	57 31	9 462 15 15 23 04	104.8 149.7 188 8
30 40 50 60 70	35°	60 05	7 114 10 52 14.73 19 63 27 39	77 87 113.1 144.5 173.0 210 8
40 50 60 70 80 90 100	60°	64 44	6 429 9 023 12 27 15 64 19 11 20 64 23 88	72 82 97 09 122 5 145 2 167 9 180.7 195.7
50 60 70 80 90 100 110 120 130 140	100°	72 19	3 809 6 034 8 374 10 76 13 06 14 90 16.22 18 93 20 48 20 61	42 49 66 05 88 67 111 2 129 0 145 7 155 0 174 6 182 6 186 0

(Sander, Z. phys. Ch 1912, 78. 524)

Absorption of CO2 by propyl alcohol Amount of alcohol used = 0.103 ccm. V and V₁. See under absorption of CO₂ by ethyl alcohol.

Pressure kg/sq cm	t*	Gas volume eem	v	v ₁ '
20 30 40 50	20°	60 59	4.867 8 472 13 46 21.62	56 16 86 62 122 1 174 6
20 30 40 50 60 70 80	35°	62 96	3 493 6 307 9 296 13 99 18 90 35 03 49 23	40 00 64 08 98 16 122 8 159.9 228 2 269 6
20 30 40 50 60 70 80 90	60°	68 08	2 602 4 722 6 723 9 810 13.05 17 15 19.61 24 75 30 19	24 78 47 68 64 65 88 54 111 5 144 4 159 2 184.3 213 9
40 50 60 70 80 90 100 110 120	100°	76 27	2 592 5 669 8 025 10 44 13 13 15 72 17 10 20 95 23 55	26 50 54 19 74 51 92 17 107 7 132 3 144 7 163 5 175 4
		(Sandar	1	

(Sander)

Absorption of CO2 by ether Amount of ether used = 0.131 ccm V and V₁: See under absorption of CO₂

	by alcoh	ol.			
2	Pressure kg/sq cm	t°	Gas volume cem	v	V_1
	45 50 60	35°	62 06	42.62 46.81 57.83	205 6 217.3 241.6
9 5 7	50 60 70 80 90 100	60°	67 11	28 49 35 24 42 01 46 64 50 72 56 63	171 6 195 4 210 0 221 4 235 0 248 7
	60 70 80 90 100	100°	71 03	12 57 20 00 26 34 32 16 35 70	101 0 134 6 142 8 166.4 175.4
			7/2 1	$\overline{}$	

(Sander)

				CARBON	OXIDE	C			17
		on of CO2			Absorpt	ion of	CO ₂ by chl	orbenzene	.—Cont
Amou V and	V1 S	enzene use ee under ab	sd = 0.080 osorption	of CO ₂ by	Pressure kg/sq em	t°	Gas volume cem	v	V ₁
Pressure cg/sq em. 15 20	t° 20°	Gas volume eem 55 14	2.728 4.845	V ₁ 46 89 71 16	50 60 70 80 90 110			11.16 13.74 16 65 19 50 22 23 31.64	99 06 118 1 134 5 149 3 165 5 204 4
30 40 50			9 618 18 70 30 10	125.3 192 4 264 3	30 40	100°	77 73	3 562 5 008	33 65 48.16
15 20 30 40 50 60 70	35°	58 17	2 225 3 373 6 879 11 56 17 09 25 73 35 80	39 94 48 65 94 39 138 3 186 6 243.1 269 0	50 60 70 80 90 100 110 120 130			7 106 8 701 10 37 12 05 13 88 14 89 16 35 17 77 18 54	63 78 77 24 91 02 103 00 121 2 121 5 130 7 140 7 146 8
20 30 40 50 60 70 80	60°	61 86	2 140 3 880 6 699 10 28 13 57 17 71 22 50	34.57 55 97 88 71 128 5 156 6 184 6 215 0	Abs Amou	nt of b	(Sander of CO ₂ by rombenzen See under l.) bromben: e used = 0	zene. .113 com
90 100			28 09 33 76	246 6 284 4	Pressure kg/sq.em	t°	Gas volume rem	v	V ₁
40 50 60 70	100°	73 75	2 822 3 981 6 440 8 398	46 52 58 46 91 27 119 0	20 30 40 50	20°	60.84	4 531 7 793 12 22 17 37	50.83 82.29 121.1 160 0
80 90 100 110 120			11 96* 14 57 17 79 20 60 23 98	155 8 182 5 212 9 237 7 258 2	20 30 40 50 60	35°	68 96	3 947 5 782 8 508 11.96 16.00	43.38 62.69 90.43 116.4 146.0
		(Sander.			70 80			22.56 41.26	184.1 233 9
Amou	nt of c V ₁ . S ohol	of CO ₂ by hlorbenzene ee under ab	s used =0 esorption	.106 ccm. of CO ₂ by	20 30 40 50 60	60°	69 16	2.650 3.714 5 971 7 406 9 718	30 58 46 15 62 64 77 19 98 73
g/eq om 20	t° 20°	cem.	V	V ₁	70 80 90			10 27 13 99 16 70	108 4 131 4 144 3
30 40 50	20	61 03	5 813 10 25 17.17 26 59	62 61 95 22 137.3 187 5	100 110			20 06 23 13 2 970	169.7 190 6 30 56
20 30 40 50 60 70	35°	64 16	4 650 7.705 11.81 16 83 22 82 32 83	46 66 72.78 101 5 137 3 168 3 205 5	30 40 50 60 70 80 90	100°	77 48	2 970 4 032 5 833 7 239 8 330 9 714 11 14 12 79	41 49 59 64 72 64 82 56 92 86 107 1 118 0
20 30 40	60°	69 38	3.685 5 510 7 982	35 86 53.94 73 69	110 120		(Sander	13 80 15 50	125 3 140 7
							,		

				Absort	tann of	CO, by to	nene.—('	ontinued
V ₁ . 8	See under	absorption	n of CO ₂	kg/sq em.		cem		V ₁
f ₀	Gas volume cem	V	V1	40 50	100°	76 37	5 945 8 703	28 68 49 25 67.93
20°	57 65	5 459 7 354 12 14 15 93 21 71	41 60 57 12 92 50 115 9 155 9	70 80 90 100 110			13 72 16 30 18 88 21 85 24 86	85 98 101 7 117 6 132 6 149 0 161 9
35°	59 86	5 644 8 658 11 98	44 48 68 23 94 39	130		(Sandar	28 21	171.8 178 7
		15 59 19 94 25 57 34 95	113 4 145 1 179 6 227 0	Amou	nt of e	of CO2 by	ethyl acc	.155 ccm
60°	64 73	3 787 4 519	31 38 38 23				absorptio	n of CO
		7 750	64 21	Pressure kg/sq.em	t°	Gas volume	v	V ₁
		10 15 10 80	82 40 85.03	25 30 40	20°	60 30	29.48 37 91 51 26	158.6 188 2 227 9
100	75 52	4 162 5 393 6.832 7.763	41 00 50 36 63 80 70 85	30 40 50 60	35°	63.40	26 54 38 69 48.35 51.88	145 2 188 4 213 9 219 8
	<u> </u>	10.65	86 86	30 40	€0°	68 55	18 12 25 67	108 0 140 5
nt of t	tion of CO ₂ oluene used See under	by tolues =0.114 c	em.	50 60 70			33 21 40 12 45 47 49 16	165 2 186 7 201 1 223.4
_	Gasvolume		T 1:	40°	100°	76 80	12 76 18 80	80.70 110 1
20°	59 97	7 420 13 31 23 25 45 10	57 91 103.3 155.9 235.8	60 70 80 90 100			24.12 28.99 32.96 36.92 42.75	182 0 152 0 162 3 172 1 191 5
35°	63 05	6 018	49.60			(Sander	.)	
		16 03 23 34	118 8	Absor	ption o	of CO ₂ by C		
		31 39 44 17	192 I 225.8	-				absorbed
60°	68 17	6 735	54.67	08 "	CH.	00H+		10
		13 98 18.00	104 6 128 1	05 0	CCL	300H+		2 4
		22 66 26 60 31 66 38.86	150 1 171.9 191 5 210 0	0 8	CCI		5	0 2 7 6
	15. of nu V ₁ . S alcohol 1° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20	100° 150° 100° 150° 100° 150° 100° 150° 100° 150° 15	1		Appendix Appendix	Pressure color c		1

dt

Absorption of CO ₂ byC ₂ H ₄ Cl ₂ +CS ₂ .				
Solvent	er CO2 absorbed			
1. mol C ₂ H ₄ Cl ₂ 0.8 " C ₂ H ₄ Cl ₂ +	209 7			
0 2 " CS ₂	173 4			
0 5 " CS ₂	140 0			
0 2 " C ₂ H ₄ Cl ₂ + 0 8 " CS ₂ 1 " CS ₂	71 9 19 9			

(Christoff.)

Solvent

Glycerine

Solubility of CO2 in organic solvents $\frac{ds}{dt}$ = change of solubility for 1° increase in

temp Sol- Sol- Sol-ubility ubility ubility

0 0302

at at at at 25° C 20° C 15° C

Water	0	8256			ı		1	
Carbon bisulphide	0		0	8888	ю	9448	- −0	00747
Iodoben ∡ene	1	301	1	371	1	440		0139
Anthre	1	324	lı.	434	п	531	i —0	0207
o-Tolundine	lı.	381	1	473	1	539	I—ċ	0158
m-Toluidine	1	436	1	581	1	730	10	0244
Eugenol	Ιī	539	Ιī	653	ī	762		0223
Benzotnehlonde	Ιĩ	643	17		1		1 -	
Cumene .	١Ŧ	782	h	879	1	978	<u> </u>	0196
Carvene	ΙŦ	802	Ιī	921		034		0232
Dieblorhydrin	li	810	Ιī	917	2	020		0210
Amyl alcohol	Ιĩ	831	Ιī	941	2	058		0227
Brombenzene	Ιì	842	lĩ	964	2	092		0250
Isobutyl alcohol	lî	849	١î	964	2	388		0239
Benzyl chloride	lî	938	2	072	2	180	1-0	0242
m-Xylene		080	2	216	2	346		0256
Ethylene bromide	2	157		294	2	424		0287
Chlorobenzene	2	265	12	420	2	581	-0	0316
Carbon tetrachloride	2	294	ĺ2	502	2	603	_0	0309
Propylene bromide	2	301	2	453	2	586		0281
Toluene	2	305	2	428	2	557	0	0256
Benzene	2	425	2	540	2	710	- 0	0285
Amyl bromide	2	455	2	638	2	803	30	0248
Nitrobenzene	2	456	lŝ	655	2	845		0389
Propyl alcohol	2	498	۴	1100	۴	910	II"	UJG0
Carvol	15	498	2	690	2	914	L.	0416
Ethyl alcohol (97%)	2	706	16	.923	15	. 130	100	0424
Benzaldehyde	16	841	3	057	3	304		0463
Amyl chloride	22	910	3	127	3	363		0453
Isobutyl chloride	lã	105		388	ls s	659		.0554
Chloroform		430	3	681	13	956		0526
Butyrie and		478	3	767	4	084		0606
Ethylene chloride	3	525				061	1-0	.0536
Pyridine	3	656	3	795 862	4	291	-0	0635
Methyl alcohol	13	.837	4	205				0769
Amyl formate	13	.887	1		4	646		0620
Propionie acid		026	4	329	4		-0	0709
Amyl acetate	1	078	1	417	14	787 850	-0	0709
Glacial acetic acid		119						0032
Isobutyl acetate	12	679	5	988	5	614		0554
1800dtyl neetate		.691			١.			
Acetic anhydrade Acetone	15	206	5	720	6	218	1-0	
Methyl acetate		295	6		1		1-0	1252
Atetayi acetate	A	.494	1		н			
(Tuet Z. phys. Ch. 1001 27 254)								

(Just, Z. phys. Ch. 1901. 37. 354)

Absorption of CO₂ by organic substances+ Aq at 15° P=% of the organic substance in the sol-

vent. β₁₅° = Coefficient of absorption at 15°. S₁₆° = Solubility at 15°.

-10			
Organic substance used	P	β ₁₆ °	S ₁₅ °
Chloral hydrate	0 0 0 17 7 21 8 31 6 37 6 38 3 49 8 51 1 52 6 61.1 68.8 71.6 74.6 79.4	0.996 0 992 1 012 0 885 0 880 0 790 0 781 0 769 0 764 0 765 0 780 0 797 0 818 0 903	1 056 0.935 0 908 0 848 0 825 0 802 0 812 0 807 0 808 0 824 0 825 0 808 0 824 0 857 0 808
Glycerine	0 0 26 11 27.69 43 72 46 59 62.14 73 36 77 75 87 74 90 75 96 64 99 26	1.003 1 013 0 785 0 800 0 639 0 620 0 511 0 449 0 430 0 422 0 404 0 415 0 410	1 064 0 829 0 845 0 655 0 655 0 540 0 474 0 454 0 427 0 427 0 438 0 438

(Hammel, Z phys. Ch. 1915, 90. 123.)

Solubility of earbon dioxide in solutions of aniline at 25°.

I. Concentration, 0.206 g. aniline in 100 c c. of solution. P=Pressure. S=Solubility calc. according to formula

given in original article P 0.865 1053 0.855 748 0 855 0 857 1159 0.862 808 920 1243

II Concentration, 0 425 g, aniline in 100 c, c, of solution.

P	S	P	S
760	0.909	1150	0 897
816	0.897	1236	0 902
921	0.897	1380	0 908

Solubility of earbon dioxide in solutions of anilme at 25° .- Continued

III. Concentration, 0.566 g aniline in 100 e. e. of solution.

P	8	P	s
760	0.935	1082	0 923
823	0 929	1223	0 924
941	0 925	1341	0 930

IV Concentration, 0.743 g amline in 100 c. c. of solution

P 1	9	1 1	
760	0 953	1063	0 940
895	0 941	1223	0.940
083	0 940	1302	0.942

(Findlay and Creighton, Chem Soc. 1910, 97. 555.)

Solubility of CO. in CS. mereases approx. proportionally with the pressure. The absorption is greater at lower temp, and less at higher temp, than is required by Dalton's law. (Woukoloff, C. R. 1889, 108. 674.)

Absorption of CO2 by sugar + Aq.

Sugar ‡Aq	Grams CO ₂ absorbed by 75 ee of solution at 15 5° and 720 mm
1/10-N sugar solution 1/-N " "	0.1225 0.1089 0.0931

(Christoff, Z. phys. Ch 1905, 53, 329.) . Absorption of CO2 in sugar + Aq at 20°.

Conv of solution	Sp. gr	Coefficient of absorption
1/8 mol. per l. 1/4 " " " " " 1/2 " " " "	1 01518 1 03125 1.06372 1 12809	0 846 0 815 0 756 0 649

(Usher, Chem. Soc. 1910, 97, 72.)

Liquid .- Not miscible with H4O, though Liquid.—vot imassance with fatty oils; missibility so theren, or with fatty oils; missible with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and the essential with alcohol, ether, CS₂, and ether with alcohol, ether, CS₂, and ether with alcohol, ether, CS₂, and ether with alcohol, ether, CS₂, and ether with alcohol, ether with all ether with all ether with all ether with all ether with all ether with all ether with all ether with all ether with all

Unacted upon by H₂O; sol, in alcohol, ethers, petroleum, oil of turpentine, and CS2 (Mareska and Donny.

Petroleum dissolves 5 to 6 vols, liquid CO₂ (Cailletet, C. R. 75. 1271.)

Sl. sol, in CS2. (Cailletet.) Solul.-When immersed in H₂O, rapidly volatilizes and dissolves. With alcohol or

ether it forms a semi-fluid mixture (Channing, Am. J. Sci. (2) 5. 186.)
Only slightly sol. in anhydrous ether, but

may be mixed therewith to a paste. (This orier.)

Sol in methyl chloride below -65° to the point of sat, without decomp. (Villard, C. R. 1895, 120, 1413.

+6H_{*}O. (Villard, C. R 1894, 119, 369.)

Carbon selenide, CaSe

Sol only in hot cone, HaSO, (v. Bartal. Ch Z 1906, 30, 810,

C₂Se Insol. in H₂O, CS₂, and ether Easily sol, in hot cone. H₂SO₄; sol in cone NaOH+Ag from which it is pptd by HCL (v. Bartal)

Carbon silicide CSi.

(Carborundum) Not attacked by any acids, even HF; sl. attacked by caustic alkalies or carbonates (Acheson, C. N. 68, 179.)

Not attacked by KOH+Ac. (Schutzenberges, C. R. 114, 1089.)

Carbon monosulphide, CS

Insol in H₂O, alcohol, oil of turpentine, or benzene, somewhat sol. in CS₂ or ether; sol in warm HNO₂; sol in conc. KOH+Aq. (Sidot, C. R. 81. 32.)

Readily absorbed by alcohol and aniline. (Deninger, J. pr. 1895, (2) 51, 349.)

Carbon disulphide, CS2.

Very sl. sol. in H₂O.

 H₂O dissolves 2-3 g CS₂ (Ckiandi, Bull. Soc. 43. 562); 3.5-4 52 g (Peligot, 1b 43. 563). 30 ccm. CS₂ shaken with 8690 ccm. H₂O at 20-23° for 18 days decreased 11 ccm. in 9 days and 1.4 ccm in the next 3 days by diffused hight, and 0.6 ccm, in the last 5 days (no light). Part of the CS2 was decomp and 7.85 ccm. were dissolved, therefore H₂O dissolves ¹/₁₀₀ of its weight CS₂. (Sestini, Gazz. ch. it. 1.

473.)

Solubility of CS2 in H2O 100 pts. H₂O dissolve 0 203 pts CS₂ at 12-13° " " 15-16° " " 25-27° -£1 0.191 0 168 cc 0 145 44 30-339

(Page, C. N. 41, 195.)

COME DOLARION DE F.						
	t°	A	t°	а .	t°	
2 04 1 99 1 94 1.87	0 5 10 15	1 79 1 69 1.55 1 37	20 25 30 35	1 11 0 70 0 14	40 45 49	

(Chancel and Parmentier, C. R. 100, 773.)

100 g. H₂O dissolve at t°:

0 -10 20 0.258 0.239 0.201 0.195 g. CS₂. (Rex, Z. phys. Ch. 1906, **55**, 365.)

to.	Coefficient of absorption
. 0	3 573
10	2 189
20	1 346
30	0.799

Cale from data of Chancel and Parmentier. C. R. 100, 733.) (Winkler, Z. phys. Ch. 1906, 55, 352)

Vapors of CS₂ are most easily absorbed by alcoholic solution of KOH. Sl. absorbed by KOH+Aq, and very slowly by CuSO₄, Pb(C₂H₃O₂)₂+Aq, cone. H₃SO₄, or CaCl₂ in HCl+Aq (Berthelot, A. ch. (3) **51**, 74)

Solubility in alcohol S=strength of alcohol in per cent by weight; P=pts. CS₂ which dissolve in 10 ccm. alcohol at 17°.

s	P	s	P
100 98 5 98 15 96 95 93 54	18 20 13 20 10 00 7 00	91 37 84 12 76 02 48.40 47 90	5 00 3 00 2 00 0 20 0 00

(Tuchschmidt and Follemus, B 4, 583.) Miscible with absolute alcohol, ether, ethe-

real and fatty oils, and liquid CO2

Tricarbon disulphide, C_0S_2 .

Insol. in H₂O; easily sol. in alcohol, ether. chloroform, benzene, and CS: The alcoholic and ethereal solutions decomp. on standing. (Lengyel, B 26, 2960.)

Sol, in alcohol with decomp. Sol, in CS2 and in benzene. (Stock, B 1912, 45. 3575.)
Solul modification. Insol in H₂O and ordinary solvents. (Lengyel.) Sol. in KOH+Aq.

Carbon sulphoselenide, CSSc

Mpt. --85°, bpt +84° Decomp. by light. Not attacked by H₂O.
Sol. in hot conc. HNO₃. Decomp. by Br₂
to an oil. Sol. in alcohol with decomp. Miscible with CS2. (Stock, B. 1914, 47, 150.)

Carbon sulphotelluride, CSTe.

Mpt -54°. Very unstable.

Miscible with CS₁ and benzene without decomp. (Stock, B. 1914, 47. 142.)

Carbonatochloroplatind; amine carbonate chloroplatind; amine nitrate.

 $\frac{\text{CO}_{8}}{\text{Cl}_{2}} \left[\text{Pt} \frac{N_{2}H_{6}}{N_{2}H_{6}} \right]_{2} (\text{CO}_{8})_{2}, \quad \text{Cl}_{2}\text{Pt}(N_{2}H_{6}\text{NO}_{8})_{2}.$ Precipitate. (Cleve, J. B. 1867. 321)

Carbonatonitratoplatind/amine carbonate, CO3 [Pt(N2H6)2]2(CO3)2

Sol, in boiling H₂O (Cleve.)

Carbonatotetramine cobaltic bromide, Co(NH₂),CO₂Br.

Much less sol than chloride. (Jorgensen, Z anorg. 2, 279)

- carbonate, [Co(NH_a),CO₂l₂CO₄+3H₂O Very sol, in H₂O. (Jorgensen.)

- chloraurate, [Co(NH₈)₄CO₃]₂AuCl₄+ 1/2H2O.

Somewhat sol, in H2O; nearly absolutely insol, in alcohol. (Jorgensen)

---- chloride, Co(NH_s)₄CO₃Cl.

Easily sol. in H₂O; msol. in alcohol. (Jorgensen.)

---- chloroplatmate, [Co(NH₁)₄CO₄]₂PtCl₆+ Nearly insol in H2O and alcohol. (Jorgensen)

 chloroplatinite, [Co(NH₃)₄CO₃]₂PtCl₄ Nearly msol, in H₂O; wholly in alcohol, (Jorgensen)

--- dithionate, [Co(NH₃)₄CO₃]₂S₂O₈. Ppt. (Jorgensen.)

iodide, Co(NH₂)₄CO₃I.

Much less sol, than bromide or chloride (Jörgensen.)

— nitrate, $Co(NH_2)_4CO_8NO_2 + \frac{1}{2}H_2O_4$. Sol. in about 15 pts. cold H2O, msol. m alcohol. (Jorgensen.)

 sulphate, [Co(NH₃)₄CO₈]₂SO₄+3H₂O. Considerably less sol, in H₂O than the nitrate. (Jorgensen.)

Carbonic acid, H2CO2 See Carbon dioxide.

Carbonates.

Carbonates of Na, K, Rb, and Cs are easily sol in H₂O; carbonates of Li and Tl are much less sol; other carbonates are nearly or quite insol. All carbonates are sol, to some extent in H₂O containing CO₂ All carbonates, ex-cept those of NH₄, Rb, and Cs, are med. in alcohol.

Sol. in those soids which are themselves sol. in H₂O, except HCN and H₂BO₃. Insol. in liquid NH₃ (Franklin, Am. Ch. J. 1898, 20, 824)

(3) 48. 505)

Aluminum	carbonate,	basic.
----------	------------	--------

 $5Al_{2}O_{3}$, $6CO_{2} + 37H_{2}O = 3Al(OH)$; $Al_{\bullet}(CO_{\bullet})_{\bullet} + 14H_{\bullet}O_{\bullet}$ (Seubert, Z. anorg 1893, 4, 67) Al2O2, CO2. (Parkmann, Sill Am. J. (2) 34. 324) 3Al₂O₂, 2CO₂+16H₂O. (Muspratt and Danson, A. 72. 120) 3Al₂O₃, 2CO₂+9H₂O. (Wallace, Chem. Gaz. 1858, 410) 5Al₂O₂, 3CO₂+18H₂O. (Bley, J. pr 39. 11.)

 $2Al_2O_3$, $CO_3+6H_2O = 10Al(OH)_3$, $Al_3(CO_3)_3$

+3H₂O, Sol. in cold dil. ands. (Schlumberger, Bull. Soc. 1895, (3) 13. 46) +8H₂O. (Urban and Renoul. J. Pharm (4) 30. 340.) = 10Al(OH)₃, Al₂(CO₂)₂+9H₂O (Seubert, Z. anorg, 1893, 4. 67.) SAl₂O₂, 3CO₂+40H₂O. (Langlois, A ch

All are precipitates, insol. in H2O, sol in acids, and give off CO2 at slight heat. There are no definite carbonates of aluminum. (Cameron, J. phys. Chem. 1908, 12.

Aluminum ammonium carbonate, Al₂O₃, CO₂, (NH₄)₂CO₃+4H₂O. Precipitate. (Rose, Pogg. 91, 460.)

Aluminum sodium carbonate, Al₂O₅, CO₅, 2Na₂CO₃+24H₂O. Precipitate. Sol. in cold dil. acids. (Bley, J. pr. 39, 22.)

Ammonium carbonate, (NH₄)₂CO₂+H₂O. Sol. at 15° in its own weight H2O. Solution

in H₄O gives off gas at 70–75°, and boils at 75–80°. Si sol. in cold dil. NH₄OH+Aq, more sol. at ordinary temp. Insol. in conc. Solublity of NH, HCO, in NH, NO, +Ag at to more son as common MH₄OH+Aq. (Divers, Chem. Soc. (2), 171, 259, and 364.)
Insol. in liquid NH₄ (Franklin, Am. C

J 1898, 20, 826) Insol in alcohol. Insol, in CS₂. (Arctowski, Z. anorg, 189 6. 257.) Insol. in ethyl acetate. (Naumann,

1910, 43. 314.) 100 g. pure glycerine dissolve 20 (NH₄)₂CO₂ at 15° (Ossendowski, Pharm.

1907, 79, 575)

Ammonium hydrogen carbonate, NH4HC0 Sol, at 15° in about 8 pts. H2O. (Berth let, J. Phys. 66, 168.)

N. Edinb. J. 16, 245.)

Solution decomp, on air or by gentle heat or y addition of the solid salt. (Berthollet) by addition of the solid salt. 100 pts. H₂O dissolve at 0°, 11.9 pts; at 10°, 15.85 pts; at 20°, 21 pts; at 30°, 27 pts, NH₄HCO₃. (Dibbits, J. pr. (2) 10. 417.) 27 pts.

Solubility of NH4HCO3 in NH4Cl+Aq, sat, with COo at to

min con and .				
to.	g,per 100 g HrO		Sp gr. of sat.	
	NH4Cl	NH4HCO4	solution	
0°	0 29 08	11 9 3 6	1 077	
15°	0 2,99 6 06 8 51 11 68 18 30 26 93 33 25 34 35	18 64 16 29 14 22 12 69 11.68 9 33 7 73 6 64 6 42	1 064 1 063 1 062 1 062 1 065 1 069 1 076 1 085 1 085	
30°	0 39 7	27 0 9 1		

(Fedotieff, Z. phys. Ch. 1904, 49, 168)

Solubility of NH4HCO2 in NaHCO2+Aq. sat, with CO, at to

to	g. per 10	g. per 100 g H ₂ O	
	NaHCO ₁	NH _i HCO ₂	Sp. gr of sat
. 0°	0 4.82	11 90 10 94	1 072
15°	0 5 92	18 64 17 06	1 064 1 090
30°	0 7 0	27 0 23 0	T .

(Fedotieff, Z. phys Ch. 1904, 49, 168.)

t.º	g per 100 g. H ₂ O		Sp. gr of sat.
1 1	NH4NOs	NIIIHCO	solution
0°	0 118	11.90 4 52	1.2625
15°	0 23.26 49.82 108 4 128.9 166 9	18 64 12.91 10.33 8 25 7 79 7 49	1.064 1.113 1.164 1.242 1.269 1.302
30°	0 231 9	26.96 12.57	::

Sol. at 12.8° in about 6 pts. H₂O. (J. Davy, (Fedotieff and Koltunoff, Z. anorg. 1914, 85. 251.)

> Insol, in alcohol. (J. Davy.) Insol, in acetone. (Edmann (Erdmann, C. C. 1899, II 1014; Naumann, B 1904, 37. 4329.)

Ammonium dihydrogen carbonate,

(NH₄)₄H₂(CO₃)₃+H₃O. Sol. in 5 pts H₂O at 15°; decomp by more H₂O or by heat. (Divers, Chem Soc. (2) 8. 171, 359, and 364.)

Sl. sol. in alcohol.

Ammonium hydrogen carbonate carbamate, 2NH4HCO8, NH4CONH2. (Salts of hartshorn.)

1 pt. salt dissolves at: 13° m 4 pts. H₂O. 16.7° "3.3

32.2° "2.7 40.6° "2.4 "2 49°

(J. Davy, N. Edinb J 16, 245.) Strong alcohol dissolves out carbamate, and

the carbonate remains undissolved. NH₄HCO₃, NH₄CO₂NH₂. (Commercial carbonate of ammonia.) Sol, at 15° m 4 pts. H₂O, at 65° m 1½ pts.

H₂O. (Divers.)

30 pts. salt+100 pts H₂O lower temp, from 15.3° to 3.2°. (Rudorff, B. 2.68.) Sol in 1 667 pts cold, and 6 833 pt. hot H2O (Four-

100 pts H2O at 13° dissolve 25 pts. 170 30 37° 37 "

410 400 (Berzelms)

100 pts H₂O at 15.5° dissolve 33 pts.; at 100°, 100 100 pts H₁O at 15.6° dissolve 33 pts.; at 107; 100 pts (Urc's Det.)
Sol. in 2 pts. H₂O at 15.5°, and in less than 1 pt.
boling H₃O; set solution at 15.6° contains 33.3%, and
sat boling solution 50%. (Abl)
Sat. aqueous solution at 10° contains 15.7% (Eiler.)
Sat. aqueous solution at 0° contains 6.1%, (AlusSat. aqueous solution at 0° contains 6.1%, (Alus-

sembrook.) Sat. solution in the cold contains 37.5% (Fourcrov.)

Does not dissolve as such in H₂O, (NH₄)₂CO₂ dissolves out first, and NH₄HCO₂ later. (Scanlag.)

Sp gr of carbonate of ammonia+Aq at 12°.

Change of % Carb Spgrat Deg. Tw sp gr. for 1° C

1.005 0 0002 1.66 3 1 010 3.18 0 0002 1 015 0.0003 4.66 4 1.020 6 04 0 0003 ő 7 49 1 025 0 0008 1 030 8 93 0.00041.035 0.0004 10 35 8 11 86 1 040 0.0004ğ 1 045 13 36 0 0005 1.050 14.83 0.0005 11 1 055 16 16 0.000512 1 060 17.70 0.0005 13 1.065 19 18 0 0005 14 1.070 20 70 0 0005 1.075 0 0006 22.25 16 1.080 23.78 0.0006 25.31 1.0850 0006

Sp. gr. of carbonate of ammonia+Aq at 12° .- Continued

Deg Tw.	Sp. gr. at 120	% Carb. ammon.	Change of sp gr for 1 C.
18 19 20 21 22 23 24 25 26 27 28	1 090 1 095 1 100 1 105 1 115 1 115 1 120 1 125 1 130 1 135 1 140	26 82 28 33 29 93 31 77 33 45 35 08 36 88 38 71 40 34 42 20 44 29	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007
29	1.144	44 90	0 0007

(Lunge, Chem. Ind. 1883, 2)

Sp. gr. of aqueous solution of salt with com-H₂O. 100 pts. of solution contain— 8 9.96 14.75 19 83 25.71 pts. salt 1.0219 1.0337 1.0497 1.0672 1.0863 sp. gr.

40.23 29.74 35.85 44.90 pts. salt. 1.0995 1.1174 1.1297 1.1414 sp. gr. (J. H. Smith, Chem. Ind., 1883, 3.)

Conc. alcohol dissolves out carbamate and leaves carbonate (Hunefeld, J. pr. 7, 25.) Insol. in acetone. (Naumann, B. 1904, 37. 4328.)

Ammonium cerous carbonate, (NH4)2COs. $Ce_2(CO_8)_8+6H_2O$. Ppt. Very sl. sol, m conc. (NH₄)₂CO₂+Aq.

(Meyer, Z. anorg, 1904, 41, 104.) Ammonium chromous carbonate, (NH4)2COs. $CrCO_* + H_*O_*$

Decomp, by most air; sol, in dil HCl and H₂SO₄. (Baugé, C. R. 1896, **122**. 476.)

Ammonium cobaltous carbonate, (NH4)2CO3, CoCO3+4H2O.

Permanent, Sol. in H₂O. (Deville, A. ch. (3) 35. 460.) (NH₄)₂O, 2CoO, 4CO₂+9H₂O. Quickly decomp. on air; sol. in H₂O (Deville.) +12H₂O. Sol. in H₄O.

Ammonium didymium carbonate, (NH4)2COt, $D_{12}(CO_4)_4 + 3H_2O$. Insol in H2O. (Cleve.)

Ammonium dysprosium carbonate, NH₄Dy(CO₈)₂+H₂O.

Only sl. sol. in H2O. (Jantsch, B. 1911, 44. 1277.)

Ammonium glucinum carbonate, 2(NH4)2CO3. 3GICO.(?). Very sol, in cold, decomp, by hot H2O. Nearly insol in alcohol (Debray Composition is (NH₄)₂CO₄, 2GlCO₄

Gl(OH) +2HaO. (Humpidge, Royal Soc. Proc. 39, 1.)

Ammonium lanthanum carbonate, La. (CO.). $(NH_4)_2CO_8 + 4H_2O$.

Ppt. (Meyer, Z. anorg 1904, 41, 102.)

Ammonium magnesium carbonate, (NH₄)₂Mg(CO₃)₂+4H₂O

Sol. in 71 pts. H.O with decomp.; more sol. in NH Cl+Aq. (Divers, Chem. Soc. 51. 196.)

H₂O containing (NH₄)₂CO₂ dissolves very slightly; more sol, in H2O containing NH.Cl. (Favre, A. ch (3) 10, 473)

Ammonium magnesium hydrogen carbonate, (NH₄)₂Mg₂H₂(CO₃)₄+8H₂O, or 12H₂O. Decomp. on air. (Deville, A ch (3) 35. 454.)

Ammonium neodymium carbonate, (NH4)2CO2, Nd2(CO2)2+4H2O.

Ppt. Sl. sol. m conc (NH₄)₂CO₂+Aq. (Meyer, Z. anorg, 1904, 41, 106.)

Ammonium nickel carbonate, NH,HCO. $N_1CO_3+4H_4O$. Insol, in H2O. (Deville, A. ch. (3) 35, 452)

Ammonium praseodymium carbonate, (NH₄)2CO₃, Pr₂(CO₂)₃+4H₂O.

Ppt Insol. in (NH₄)₂CO₃+Aq. (Meyer, Z. aporg. 1904, 41, 105.)

Ammonium samarium carbonate, (NH4)2CO3, $Sm_3(CO_3)_3 + 4H_4O$ Ppt

Ammonium scandium carbonate, (NH2)2CO3, | -2Sc₃(CO₃)_a+6H₂O Difficultly sol. in H2O. Sol, in cold alkalicarbonate+Aq, less sol, m hot, (R. Meyer,

Ammonium tin (stannous) carbonate, (NH₄)₂CO₃, 2SnCO₃+3H₂O.

Z. anorg 1910, 67, 410.)

Decomp. by cold H2O. (Deville, A. ch. (3) 35. 456.)

Ammonium uranyl carbonate, 2(NH4)2CO3, UO.CO.

Sol. at 15° m 20 pts. H₂O, more abundantly in H₂O containing (NH₂):CO₂ (Ebelmen). Insol. in pure H₂O, sol. in H₂O containing in pure H₂O, sol. in H₂O constituting cons. IfNO₁+Aq. (NH4)2CO, Solution is decomp. by boiling. (Berzelius.)

Sol. in SO₂+Aq (Berthier, A. ch. (3) 7. 76) 3(NH₄)₂CO₅, 2(UO₂)CO₃+4H₂O. Sol in H₂O (Giolitti C C. **1905**, II. 227)

Ammonium vanadyl carbonate, 3(NH₂)₂O₁ 7VO2, 5CO2+16HO St. sol in H₂O.

Sol. m acids and alkalies. (Koppel, Z. anorg 1905, 45, 350.)

Ammonium yttrium carbonate, (NH4)2CO3. Y.(CO.) +2H.O

Insol in (NH₄)₂CO₂+Aq. (Mosander)

Ammonium zinc carbonate, basic, 3ZnO, NH.OH, 2CO2+H2O Insol in H₂O. (Kassner, Arch Pharm (3)

27. 673.) Ammonium zinc carbonate, (NH₄)2CO₈,

Insol. in H₂O. (Deville.) Quite sol in H₂O; more sol than (NH₄)₂CO₃, MgCO₃. Tolerably permanent in the air Slowly decomp by cold, rapidly by hot H₀O Very sol, m (NH₄)₂CO₂+Ag. Not attacked

by alcohol (Favre, A. ch (3) 10, 481) Barium carbonate, BaCO.

ZnCO.

Sol in 4304 pts. cold, and 2304 pts. boiling H.O. (Fourerov.) Sol. in 47,620 pts H2O (Bineau, A ch.

(3) 51, 290.) Sol. m 14,137 pts H₂O at 16-20°, and 15,421 pts. at 100° (Fresenius)

Sol. in 12,027 pts. H₂O at 15° (Kiemers. Pogg. 85. 247 Calculated from electrical conductivity of solution, 1 pt. BaCO, is sol in 64,070 pts. H₂O

at 8.8° and 45,566 pts. at 24.2° (Hollemann, Z. phys. Ch. 12, 125.)

Solubility in H ₂ O at t ^o		
to.	g. sol in 100 g H ₂ O	
14	4 32 x 10 ⁻⁴	
18 23	4.57 x 10 ⁻⁴ 4.89 x 10 ⁻⁴	
27	5,22 x 10-4	
32	5,69 x 10 ⁻⁴	

(Weissenberger, Z. phys Ch 1914, 88, 266.)

"Solubility product"=8.1 x 10-9 mol. 1. (McCoy and Smith, J. Am Chem. Soc. 1911, 33. 473.) Sol. in H2COs+Aq. (See barsum hydrogen

Not decomp. by 1 pt. H2SO4+6 pts ab-

solute alcohol. Slowly decomp, by 1 pt.

comp by 1 pt. H2C2O4+6 pts absolute alcohol.

Not decomp by absolute alcoholic solufrom of racemic, tartaric, citric, or glacial acetic acids (Babington and Phillips, 1816.) Almost completely insol. in H₂O containing NH₄OH and (NH₄)₂CO₃, when digested in such a solution and allowed to stand. 1 pt. BaCO, dissolves in 141,000 pts of such a solution (Fresenius)

Not more sol. in NaCl+Ag than in H₂O.

Sol in cold NH4Cl, NH4NOs, or NH4 8uccinate+Aq. (Vogel, J. pr 7, 453.) 2 mols. NH₄Cl dissolved in H₂O dissolve 1

mol. BaCO₂ by continued boiling (Smith, Phil. Mag. J. 9. 540) Solubility in H₂O increases by addition of

NH.Cl. at first strongly, then less strongly and finally strongly again. (D'Agustino and Pellegrino, Gazz ch. it. 1908, 38 (1) 532) Somewhat sol. in K2CO2+Aq. (Wackenroder, A 24, 30.)

Solubility of BaCOs in KCl+Aq at bpt, of solution

g KCl per 100 g solution	g. BaCOs per 1000 ce sat.
0 15	0 0847
1	0 1781 0 2667
10	0 2007
30	0.5550

(Canton and Goguelia, Bull Soc. 1905, (3) 33. 13.1

Solubility of BaCO2 in NaCl+Aq at bpt of solution

g NaCl per 100 g solution	g. BaCO ₂ per 1000 se sat.
0 15 1	, 0.0587 0 0787 0 1056
10 30	0.1575 0.2784

(Cantoni and Goguelia, 1 c) Solubility of BaCO, in 10% KCl+Aq at to,

t*	g BaCO; per 1000 ce sat solution
10 20	0.2175
40	0.2408 0.2972
60 80	0 3491

(Cantoni and Goguelia, 1 c.)

HNO1+6 pts. absolute alcohol Slowly de-Solubility of BaCO2 in 10% NaCl+A9 at to

t°	g BaCOs per 1000 cc 44t
10	0 1085
20	0 1126
40	0 1231
60	0 1303
80	0 1418

(Canton and Goguelia, 1 c.)

Slowly sol in cone Na-SO, MgSO, ZnSO, Ca(NO₃)₂, or CaCl₂+Aq, but insol in ZnCl₂ +Aq. (Karsten.)

Sl decomp by boiling K2SO4+Aq SI decomp in the cold by 1 pt. K2SO4+2

pts Na₂SO₄+Aq. Decomp by salts of Al. Mn. Cr. Fe. U. Bi.

Cd, Cu, Hg, Pb, Sni, Sni, Hg2, Rh, Ir, Au, with pptn, of oxide of metal. (Rose, Tr.) Potn of BaCO₃ is hindered by presence of alkalı cıtrates or metaphosphates.

Sol in solutions of various salts, as in the case of calcium carbonate (see Calcium carbonate). The solvent power of these solutions for barium carbonate is somewhat less than

for calcium carbonate. Insol in acctone. (Naumann, B 1904, 37,

Insol, in methyl acetate (Naumann, B. B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, 37. 3602)

Insol. in acetone and in methylal. (Eidmann, C. C. 1899, II 1014.) Min. Witherite

Barium hydrogen carbonate, BaH₂(CO₂)₂(?) 100 pts H₂O containing CO₂ dissolve 0.079 pt BaCOs. (Bineau)

100 pts H₂O containing CO₂ dissolve 0 17 pt BaCOs.

t BaCO_s. (Lassaugne) 100 pts. H₂O sat, with CO₂ under a pressure of 4-6 atmospheres dissolve 0.725 pt. BaCO. Upon evaporating, BaCOs is deposited.

(Wagner, Z anal. 6. 167.) BaCO, is sol. in 833 pts. H.O sat. with CO. at 10° (Lassaigne.)

BaCO, is sol, in 830 pts. H2O sat, with CO2 at 10° (Fourcroy.)
BaCO₃ is sol in 1550 pts H₂O sat with CO₂

at 10°. (Bergman)

100 cc H₂O sat with CO₂ dissolve 0.73 g. -BaH2(CO3); (McCoy and Smith, J. Am. Chem Soc. 1911, 33. 473.)

Barium calcium carbonate, BaCO₂, CaCO₂. Min. Barutocalcite. Brombie. Sol. in dil. acıds

Barium uranyl carbonate, BaO, 2UO₃, 2CO₂ Decomp by H2O. (Blinkoff +5H_{*}O Dissert 1900)

+8H₂O. Decomp. by H₂O (Blinkoff.)

Easily

Bismuth carbonate, basic, (BiO)2CO2+ Calcium carbonate, CaCOa

16H.O. Insol, in H₂O, sol, in acids. Insol, in CO₂+ Aq. (Bergman.)

Completely sol in $(NH_4)_2OO_2+Aq$; sl. sol. in K₂CO₃+Aq.; insol. in Na₂CO₃+Aq. (Lau-Absolutely insol. in (NH₄)₂CO₂+Aq unless H₂PO₄ or H₂AsO₄ are present. (Berzelius.)

Insol. in (NH₄)₂CO₈, K₂CO₃, or Na₂CO₃+ (Rose Sol in NH₄Cl+Aq (Wackenroder) In-sol in NH₄NO₃+Aq. (Brett) Sol, in CaCl₂+Aq. (Pearson)

Min. Bismuthosphairite

3B12O3, CO2. Min. Bismuthite. sol, in acids

4B₁₉O₂, 3GO₂+4½H₂O. Mm Bismuth spar Easily sol, in acids

Bismuth potassium carbonate, $B_{12}OK_4(CO_3)$, H_3O at 87° , and 80_3OH by at 23.8° . (Hollemann, Z. phys Ch. 12, 125) Decomp. by large quantities of H2O. (Rey-

nolds, Chem. Soc. 1898, 73, 266.) Cadmium carbonate, CdCO2

Insol, in H₂O, easily sol, in acids; insol, in K2COs, and Na2COs+Aq; very sl. sol. in (NH_c)₂CO₃+Aq (Fresenus)
Easily sol. in NH_c sulphate, nitrate, and succinate+Aq (Wittstein.)
Sol. in KCN+Aq; sol in cold NH_cCl+Aq,

less sol. in NH4NO++Aq (Brett, 1837.) Not prevented from pptn by non-volatile organic substances. (Rose)

Not pptd. from solutions containing sodium citrate (Spiller. Insol. in liquid NH, (Gore, Am. Ch. J.

1898, 20, 827.) Insol. in methyl acetate. (Naumann, B 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43, 314) Insol in acetone. (Naumann, B. 1904, 37.

4329.)+16H.O. (Lefort, J. B. 1847, 346.) (Kraut, Z. anorg, 1897, 13, 14.)

Cadmium carbonate hydrazine, CdCOs. 2N.H.

Easily sol in cold NH4OH+Aq. (Franzen, Z. anorg, 1908, 60, 281.)

Cæsium carbonate, Cs₂CO₃.

Very deliquescent, and sol, in H₂O. 100 pts. absolute alcohol dissolve 11.1 pts. Cs2CO2 at 19°; 20.1 pts. Cs2CO2 at boiling temp. (Bunsen.)

Cæsium hydrogen carbonate, CsHCO₂. Not deliquescent. Sol. in H₂O.

Calcium carbonate basic, CaO, CaCO, +HOO, Hardened by H₂O, but not dissolved. (Raoult, C. R. 92, 189.)

Where so in cold than in the Hot (Grachin) When recentive pipel, sol in 8834 pile bothing, and 10,601 pits sold Hd, much less soi in Hd,9 containing NH of B and (NH a) Color 82,246 pile sol which dissolved the NH and (NH a) Color 82,246 pile sol where the sol in Hd,900 pile piper Hd, Of Brandes, 1325 5 Sol in 10,2858 pile pire Hd, 0 at 16°. (Kremers, Pogg 85,247)

Sol. in 16,000-24,000 pts pure H₂O (Bucholz)

1 l H₂O dissolves 34 mg CaCO₈ (Chevalet, Z anal. 8. 91; Hoffmann, Z. anal. 4. 414.)
1 1 H₂O may contain 0 016 g. CaCO₃. i. e.,
1 pt is sol. in 62,500 pts H₂O. (Bineau, A.

ch (3) 51, 290) H₂O dissolves 0 02 g. CaCO₃, r e., 1 pt. CaCO, is sol in 50,000 pts. H₂O. (Peligot.) Solubility is much affected by CO, of the air.

1 l H₂O at 16° dissolves 13.1 mg. CaCO₈. (Sohlesing, C. R **74.** 1552.) Calculated from electrical conductivity of

By continued boiling CaH2(CO4)2, 36 mg. CaCO, remain in solution. (Weltzien, A 136.

Solubility in H₂O at different pressures.

riesare in atmos.	Sutubility
1 2 4 6	1079 1403 1820 2109

(Fngel, C. R 101, 949.)

100 pts. H₂O dissolve 0.0005 pt. (calculated as CaO) from pptd CaCO, and 0.0027 pt. from calcspar. (Lubavin, J russ. Soc 24. 389)

1 l. H₂O dissolves 13 mg. CaCO₃ at 18°. (Kohlrausch, Z. phys. Ch 1893, 12, 241) 1 l. CO₂ free water dissolves 17.4 mg. CaO or 31.0 mg. CaCO, (Gothe, Ch. Z. 1915, 39. 305.)

CaCOs dissolves in 9662 pts. H₂O at 12°. (Pollacci, C C 1896, II. 946) 1 l. H₂O free from CO₂ dissolves 9.6 mg.

CaCO: (McCoy and Smith, J. Am Chem. Soc. 1911, 33, 473)

Found dissolved in 10,000 pts, sea water.

(Davy) Pptd. amorphous CaCO₃ dissolves in 1600 pts. sea water Pptd. crystalline CaCOs dissolves in 8000 pts. sea water. (Irvine and

Young, Chem. Soc. 56. 344. Artificial sea water sat, with CO2 dissolves CaCO, corresponding to 57.27 mg. of com-

bined CO2 per litre at 15°

Sea water which contains 52-55 mg, neutral combined CO2 per litre must be sat with CaCO₄. (Cohen, Chem. Soc. 1900, 78 (2)

For action of H2CO3+Aq, see Calcium hudrogen carbonate

Sol, in H₂SO₆, oven when native Sol in Ino ppt. in the cold Na₂CO₆, or K₂CO₇+Aq ands generally When treated with ands in set likewise. (Storer, Am J Sci. (2) 25, 41) closed vessels effervesorace cases on increase of pressure, but is renewed at once on iemor- k₁ (NH₂SO₆, or 14.88 g NH₂AC), to effect mg rt. (Lank, 1814)

Unacted upon by conc. HNO3, even when holling as Ca(NC₂) as insol in cone. HNO₂ Not decomp by mixture of 1 pt. H.SO. and nts, absolute alcohol, but immediately by

HNO.+absolute alcohol

Not decomp by absolute alcoholic solutions of oxalic, racemic, tartaric, citric, or glacial scene acids (Babington and Phillips, 1816.) Unacted upon by glacial HC+H₂O₂, even

when boiling. Freshly notd, CaCO, is sol, in cold NH,Cl+ Aq; but the solution becomes cloudy on ex-posure to air, a portion, however, of CaCO₃ remains dissolved, which cannot be pptd even remains ensoived, when cannot be pixel septial every boiling. If pix is washed and allowed to stand 24 hours, it is not as sol. in NH_Cl as at first, but natural CaCO₁ is not wholly insol in NH_Cl+Aq; it is, however, much less sol than MgCO₂ (Vogel, J. pr. 7. 453.)
Sol. in boiling NH_CO₁+Aq with evolution

Sol. in Bolling NH₄Cl+Aq with evolution of NH₃ (Demarcay, 1834.)

When NH₄OH+Aq, incompletely sat. with CaCl₂+Aq, no ppt. occurs even during several days. if kept in a closed

vessel, and only a slight ppt. if the mixture is exposed to the air, but CaCO₃ is pptd. if the solution is boiled

NH₄OH+Aq wholly sat. with CO₂ produces ppt. when mixed with CaCl₂+Aq, but. pptn. is not complete until heat is applied. Also when an excess of GaCl₂+Aq is added to a solution of crystallized carbonate of ammoma, orly a portion of the CaCO, is pptd.
until the solution is boiled. (Vogel, 1814.)
When CaCl + 4q mixed with NH_OH + Aq
Solubility of CaCO, in NH_4Cl + Aq at 12-18°

is exposed to an atmos. of pure CO2, no ppt. occurs for several hours, but CaCO, is com-

pletely pptd. in several days. (Vogel.) When recently pptd., readily sol. in NH₄Cl and NH₄NO₄+Aq. (Brett, 1837; Wackenroder, A. 41. 315.)

When recently pptd, readily sol. 1 (NH₄)₂CO₂, (NH₄)₂SO₄, NH₄NO₃, NH₄Cl and NH₄ succenate+Aq. (Wittstein.)

Sol. in NH₄C₂H₃O₂+Aq. (Thomson.) More sol. in NH₄Cl, or NH₄NO₂+Aq, or in neutral potassium, or sodium salts+Aq than in H₂O. (Fresenius.)

From solutions in NH4 salts, NH4OH, and (NH4)2CO2+Aq precipitate CaCO2 more

completely than BaCO₃. (Fresenus.)

When boiled with NH₄Cl+Aq, CaCO₃ is dissolved, and (NH₄)₂CO₃ given off. (D.

Smith.) CaCl₂+Aq prevents pptn. of CaCO₃ in the cold, as do also NH₂Cl₂ KCl, or NaCl+Aq, but it is pptd. when boiled, if the latter solu-tions are not too conc. K₃SO₄, KNO₅,

tions are not too cone K.SO₄, KNO₅, SO 0 584 (NH.),SO₄, or Na,SO₄+Aq have a similar effect. A large excess of (NH.),SO₃+Aq (Berju and Kosmunko, Landw. Vers. Sta. when quickly added to CaCl2+Aq produces

solution. (Bertrand, Monit Sci (3) 10. 477.) Less sol. in Na than in NH, salts, but more

than in K salts. (Berthelot.)

When NH₄OH+Aq, partially neutralized by CO₂, is mixed with CaO₂H₄+Aq, no cloudiness appears until the mixture is boiled: when more CO2 has been added to NH2OH+ Ag, a ppt, appears at first, which disappears and only reappears on addition of much CaO₂H₂+Aq; but NH₄OH+Aq does not dissolve pptd. CaCO₃. (Vogel.)

Solubility in NH, selts+An at 25°.

$\mathrm{NH_{4}}$ salt	Milhmols NH ₄ salt per l	Millimols CaO dis- solved per l
NH ₄ Cl	1000 500 230 125	6 770 5.008 3 724 2 743
NH ₄ NO ₂	500 250 125 62 5	5.267 3 830 2.779 2.004
Triammonium citrate	500 250 125 62 5	66.87 39.80 22.64 14.92

(Rindell, Z. phys Ch 1909, 70, 454.)

Time, 98 days

١,	g periof	sat solution
l,	NH-Cl	CaCO ₃
n L	53 5 100 200	0.423 0 609 0 645

(Cantoni and Goguelia, Bull. Soc. 1905, (3)

Solubility of CaCO₂ in NH₄NO₂+Aq at 18°

g per i o) sat somuon		
NH,NO2	CaCO ₃	
0 5 10 20 40 80	0.131 0.211 0.258 0.340 0.462 0.584	

1904, 60, 422)

CaO₂H₂+Aq dissolves a little CaCO₃.

(Welter and Berthollet, 1789)

CaO2H2+Aq retains a little CaCO3 in solution at ordinary temperature, which is pptd. on boiling. (Eliot and Storer, Proc. Am. Acad

1860. 5. 63.)
CaO₂H₂+Aq, mixed with dil. NaOH, KOH,
or NH₄OH+Aq, gives no immediate ppt. when CO₂ is passed through it, unless boiled. Sol. in boiling MgCl₂+Aq even when dilute.

Cousté.)

Not decomp, when boiled with K₂SO₄, Na₂SO₄, CaSO₄, MgSO₄, and Na₂B₄O + Aq, ragovi, vacovi, migrovi, and Naprovi Allovi Para, but partailly decomp, by boiling with (NH₀)SO₆, K.SO₃, Na₂SO₈, (NH₀)SO₈, K.SO₃, Na₂SO₈, (NH₀)SO₈, Na₂HPO₈, (NH₀)HPO₈, K.HASO₄, Na₂ASO₈, K.C.O₉, (NH₀)CO₉, Na₇, and K.GO₄+A₉. With the NH₄ satis the decomposition is complete

(Dulong, A. ch 82, 286.) Not decomp by alkalı sulphates+Aq

(Malaguti) Precipitation of CaCO, is much hindered by alkalı citrates or metaphosphates

Solubility in KCl-LAg at 25°

юшины	isoldofficy in reci 1 rid to 20			
Sp gr 25°/25°	% KC1	% CaCOs		
1 000 1 024 1 046 1 072 1 092 1 101	0 00 3 90 7 23 11 10 13 82 15 49	0 0013 0 0078 0 0078 0 0076 0 0072 0 0076		
1.122 1.133	18 21 19 84	0 0070		
1 179	26 00	0 0060		

phys Chem. (Cameron and Robinson, J. 1907. 11, 578.)

Solubility in NaCl+Aq in contact with CO; free air at 25°.

Sp gr 25°/25°	g. per 100 g H ₂ O			
oh &t. 20./20.	NaCl	CnCO ₃		
1 0079 1 0314 1 0466 1 0734 1 0949 1 1346 1 1794	1 60 5 18 9 25 11 48 16 66 22 04 30 50	0 C079 0.0086 0 C094 0.0104 0 0106 0.0115 0.0119		

(Cameron, Bell and Robinson, J. phys. Ch. 1907, 11, 396)

Solubility	of	$CaCO_3$ in NaOH+Aq.
	1	1 litre diganives

Solvent	1 litre dissolves			
Nonvent	nt 15°	at 95°-100°		
H ₂ O	42 " "	20 7 mg, CaCOs 8.6 6.9 " " 5.7 " "		

(Le Blanc, Z anorg. 1906, 51. 185)

Solubility in K ₂ SO ₄ +Aq at 25°.					
Sp gr 25°/25°	% K ₂ 80 ₁	% CaCO ₃			
1 010 1 021 1 033 1 048 1 061 1 069 1 083 1 084	1 60 3 15 4 73 6.06 7 85 8 88 10 18 10 48	0 0104 0 0116 0 0132 0 0148 0 0168 0 0192 0 0192 0 0188			

(Cameron and Robinson, J phys. Chem. 1907, 11, 578.)

The solubility of CaCO4 in Na₂SO₄+Aq in equilibrium with an steadily increases with increasing amounts of CaSO, in the solution up to saturation point of the CaSO4. In the presence of solid CaSO₄ the solubility of CaCO₄ is much decreased (Cameron and Scidell, J phys Chem 1902, 6. 56) Sec under CaH2(CO2)

Solubility in Na₁SO₄+Aq in contact with

	per 100 g HrO
Nasio.	CaCUa
0 97 1 65 4 90 12 69 14 55 19 38 23 90	0 0151 0 0180 0 0262 0 0313 0 0322 0 0346 0 0360

(Cameron, Bell and Robinson, J. phys. Ch. 1907. 11, 396.)

Solubility in salts+Aq.

)2	g salt added per latre	mg CuO dissolved per litre
	0 000	17 4
-	0 585 g, NaCl 1 17 g. " 2 93 g "	20 05 24 9 31 1
	0 85 g. NaNO ₂ 1.70 " 4 25 "	24 35 27 7 34 5
	0 805 g. Na ₂ SO ₄ , 10H ₂ O 1.61 g 4 03 g	25 95 31.15 40.7
_	0 53 g, Na ₂ CO ₃ 1.06 g. " 2 65 g. "	8 4 7.2 4 4
0,	0 55 g. CaCl ₂ , 6H ₂ O 1 10 g.	90.

The solubility of CaCO, in CO,-free water

is therefore increased by the addition of NaCl, NaNO₁ or Na₂SO₄, 10H₂O, but decreased by the addition of Na₂CO₃ or CaCl₂, 6H₂O.

(Gothe, Ch. Z. 1915, 39, 306.)

Sol. in ferric chloride or nitrate+Aq with evolution of CO₂ and pptn. of Fe₂O₆H₂ (Fuchs, 1831); also in chlorides or nitrates of Al, Mn,

Cr. or U, but not in FeCl₄+Aq.
Sol. in cold SnCl₄+Aq with pptn. of SnO₂.
Insol. in conc. Na₂SO₄, MgSC₄, BaCl₂,
MgCl₃, Pb(NO₈)₂, or AgNO₂+Aq (Karsten)

Abundantly sol when freshly precipitated in CaCl₂+Aq, and MgSO₄+Aq (Hunt.) Absolutely insol. at 15-19° in BaO₂H₂+ Aq; also on boiling

11. H₂O containing 3–4 g MgSO₄ dissolves 1–2 g CaCO₃, and also 1 g. MgCO₃. (Hunt, Am. J. Sci (2) **26**. 109)

Am. J. Sci. (2) 26, 109) 100 pts NaCl+Aq (2 525% NaCl) dissolve 0.0037 pt. (calculated as CaO) pptd CaCO₃, and 0.0035 pt calcspar. (Lubavin, J. russ Sco 24, 389)

Insol in liquid NH₄. (Franklin, Am. Ch. J. 1898, **20**. 827.) Insol in liquid CO₂. (Buchner, Z. phys.

Ch. 1906, 54, 674)
Alcohol dissolves traces of CaCO₂ (Gris-

chow)
Sol, m Na citrate+Aq. (Spiller.)
Sol, m Ca sucrate+Aq. (Barreswill)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)
Insol. in acetone and in methylal. (Eid-

mann, C. C. 1899, H 1014.)
Insol in methyl acctate. (Naumann, B. 1909, 42, 3790.)
Insol in ethyl acetate. (Naumann, B.

1910, 43, 314)
Amorphous. Solubility in H₂O cannot be determined because of its instability. (Kendall, Phil Mag. 1912, (6) 23, 972)

Min. Calcite. In contact with air free from CO₂, 1 l. H₂O dissolves at:

25° 50° 100° 0.01433 0.01504 0.01779 g. calcite. (Kendall, Phil. Mag 1912, (6) **23**. 964.)

In contact with air containing 3.7 pts. CO₂ per 10,000, the solubility of calcite in H₂O was found to be 0 04608 g per l. at 25° and 0 02925 g, per l at 50°. (Kendall, Phil. Mag. 1912, (6) 23, 973.)

Min. Aragonus In contact with air free from CO., 1 l, H.O dissolves at:

 $\begin{array}{cccc} 25^{\circ} & 50^{\circ} & 100^{\circ} \\ 0.01528 & 0.01617 & 0.01902 \text{ g aragonite.} \\ \text{(Kendall, Phl. Mag. 1912, } (6) \ \textbf{23. 964.}) \end{array}$

+5H₂O. Efflorescent. +6H₂O. (Pelouze.)

Calcium hydrogen carbonate, CaH₂(CO₄)₂. Known only in aqueous solution. CaCO₄ dissolves in CO₂+Aq

CaCO₂ is sol, in 1428 pis 1540 sat with CO₃ at 0°, 1185 pis, 110° (Lassatgne, J. ch. med 4 312.)

H. Bosen could divelote, even in large quantities of H. Co₃ only 'j₁ enough CaCO₃ to Double Color CaH₂(CO₃) in 150 pis, 119 H₂O sat. with CO₃, while Jeckand spar requires 3149 pis (Baschof) CaCO₃ is 0° in 1,1015 pis H₂O sat. with CO₄, CaCO₃ is 0° in 1,1015 pis H₂O sat. with CO₄, at 21°

while Iceland spar requires 3149 pts (Bischof) CaCO₂ as sol in 1015 pts H₂O ast with CO₂ at 21° and 748 3 mm (Warington, Chem See 6 296) Solubility of CaCO₂ in CO₂+Aq at p pressure

ombility of CaCO₂ in CO₂+Aq at p pressure in atmospheres CaO+CO₂=mg. CO₂ and CaC dissolved, corresponding to CaCO₃=mg. CaCO₃.

р	CaO+CUs	CaCO ₂
0 000504 0 000808 0 00333 0 03187 0 0282 0 05008 0 1422 0 2538 0 4167 0 5533 0 7297	60 96 72 11 123 218 4 310 4 408 5 1072 1500 1846 2270	74 6 85 0 137 2 223 1 296 5 360 533 663 4 787 5 885.5 972
0 9841	2864	1086

(Schlosing, C R 74. 1522.)

With high pressure, 11. H₂O containing CO₂ dissolves at most 3 g. GaCO₃. This maximum is reached at 5° under 4 atmospheres' pressure; at 10–13° under 5 atmospheres; and at 20° under 7 atmospheres. (Garo, Arch, Pharm (3) 4. 145.)

CaCO₃ is sol. in about 1000 pts. H₂CC₃+ Aq, and solubility is considerably increased by Na₂SO₄ or MgSO₄.

1000 pts. H₂O sat. with CO₂ dissolve pts. Carrara marble at t°, and B=height of barometer in millimetres.

t°	В	CaCO:	t°	В	CaCOs
7 5	754	1 224	22.0	746	0 920
8.5	752	1.202	26 0	740	0.875
9.5	754	1.115	26 5	743	0.860
20.5	741	0.975	27 0	741	0.885
21.5	744	0 935	28 0	737	0 770

Or, from 7.5–9.5°, 1000 pts. H_2O sat. with CO_2 dissolve 1.181 pts. $CaCO_2$; from 20.5–22°, 0.9487 pt. $CaCO_2$, from 26–28°, 0.855 pt. $CaCO_2$.

Other varieties of CaCO₃ are dissolved as follows in 1000 pts. H₂O sat. with CO₅.

Vanoty	ŧ°.	В	Pts CaCOs
Lüneburg chalk	18	740	0 835
Pptd. CaCO,	18	740	0 950
Iceland spar	18	785	1 970
Calcite	12	754	1 223
Traversella	12	754	212
Dolomite, semi-trans-			
parent	11 5	749	0.654
Dolomite, opaque, in			
small crystals	11.5	755	0 725
Dolomite, opaque, in			
large crystals	11	746	224
Dolomite, transparent,			
in large crystals .	11	749	1 073
Oolithic limestone	15	747	252
Dolomitic limestone .	15.5	740	573

(Cossa, Z. anal. 8, 145.)

Solubility of CaCO₂ in H₂O containing CO₂ at various pressures.

CO₂ pressure in atm. 1 2 4 6 Solubility 1079 1403 1820 2109 (Engel, C. R. 1885, **101.** 951.)

1 H₂O dissolves 0.3850 g. CaH₂(CO₃)₂ at 15°. (Treadwell, Z. anorg. 1898, 17. 186)
 11. of sat CaH₂(CO₂)₂+A₃, obtained from pure or impure limestone, contains 1.13-1 17 g. CaCO₃ at 15°. (Treadwell, Z. anorg. 1898, 17. 189).

Solubility of CaH₄(CO₂)₂ in H₂O containing CO₂ at 15°.

earbonie acid in gas at 0° and 780 mm	Hg- partial pressure mm.	Free car- bone and mg	Ing CaH ₂ (CO ₂) ₂ in 100 or of the solution	mg. Ca
8.94	67 9	157 4	187 2	46.2
6.04	45.9	86 3	175.5	43 3
5.45	41.4	52.8	159.7	39 4
2.18	16.6	48 5	154 0	38 0
1 89	14.4	34.7	149.2	36.8
1.72	13.1	24 3	133.1	32.9
0 79	6.0	14.5	124 9	30 8
0.41	3.1	4.7	82.1	20.3
0.25	19	2 9	59.5	14 7
0.08	0.6		40.2	9.9
			38.5	9.5
			38.5	9.5
			38.5	9.5

(Treadwell and Reuter, Z. anorg. 1898, 17.

1 l. H₂O sat with carbonic acid dissolves 1.30 g CaCO₂ at 13.2°; 145 g. at 2.8° (Treadwell, Z. anorg. 1898, 17. 189.) At 30° C. in-equilibrium with the air, not

At 30° C. in-equilibrium with the air, not more than 3 per cent of the calcium present is combined as CaCO₂. At lower temperatures and several the percentages and the calcium present is combined as Ca(HCO₂), (Cameron and Briggs, J. plays (chem 1901, 6.549.)
With pressure less than 4.5 atmospheres

With pressures less than 45 atmospheres of CO₂ no other than normal calcium carbonate or a hydrate of the normal carbonate can exist as the solid phase at 0° (Cameron, J. phys. Chem. 1908, 12, 566.)

Solubility in H₂O in contact with air, containing CO₂ with varying partial pressures at t°.

P = partial pressure of CO₂.

£=12.		
р	a p	er l.
	CaCOs	CO.
0 8 1 5 1 7 6.8 9 9 13 6 14 6 31 6	0 193 0 193 0 238 0 445 0 627 0 723 0 686 1 050	0 117 0 152 0 135 0 327 0 456 0 560 0 623 1 117

g perl CaCO₂ CO. 0.7 0 159 0.091 16 0 177 0 111 48 0 341 0 208 7 8 0 448 0.301 16 5 0 539 0.52230.1 0 743 0.715 35 5 0 803 0.755

	1-40	
P	g p	er l
	CaCOs	O02
0 6 1.7 2.9 3 5 7 14 9 22.2 31 7	0 136 0 143 0 175 0 232 0 284 0 384 0 427 0 480	0 078 0.085 0 106 0 169 0 234 0 293 0 333 0 476

Similar results at 20°, 30°, and 35° are also given.

(Leather and Sen, Mem. Dept. Agric. (India) Chem. Ser. 1909, 1. 117; Seidell, Solubilities, 1919.)

with CO₂ under varying pressures. P=approximate pressure of CO₂ in atmospheres

P	g per l sat solution		Solid phase
		Cu(HCO ₂) ₂	
0 I	0 22	0 67	CaCO ₃
1 I	2 3	1.58	
9 9	20 6	3 62	"
13 2	27 5	4 04	
16 3	34 1	4 21	Ca(HCO ₃) ₂
25 4	53.2	4.22	

(McCoy and Smith, J. Am. Chem. Soc 1911,

33. 468.)

under a CO₂ pressure of 2 atmos. (Ehlert, Z. Elektrochem. 1912, **18**. 727.)

Solubility data for calcute in H2O containing CO2, with and without the presence of salts are given by Seyler and Lloyd (Chem. Soc 1909, 95. 346.)
A critical analysis and recalculation of re-

sults of Schloesing and others is given by Johnston (J. Am Chem. Soc. 1915, 37, 2001). CaCO₂ is not dissolved by CO₂ and H₂O in presence of MgCOs. (Leather and Sen. C. A.

presence of McGoost. (Deather and Sen, C. A. 1915, 181.)

1 1. of 1/10-normal NaCl+Aq dissolves
0 3320 g. CaH₂(CO₈)₂ at 15°. a(Treadwell and Reuter, Z. anong 1898, 17, 193.)

Solubility of CaH2(CO2)2 in NaCl+Aq sat. with carbonic acid at 15°, containing 5 g. NaCl per l. of NaCl+Aq.

carbonie acid in gas at 0° and 760 mm.	mm, Hg = partial pressure	mg free CO ₂	CaH ₂ (CO ₃): in 100 cc of the solution	mg. Ca	1
16.95	128 8	132 5	218 4	53 9	0
11.47	87.2	110 1	214 3	52 9 36 8	i
6.07 3.16	46.1 24.0	23.5 13.5	149.2 118.3	29.2	8
0.50	3.8	2.7	78 9	18 2	١.
0 41	3 4	0.3	49 0	12.1	
			34.9	8.6	-
			33 7	8.3	П
			32 9	8.1	
			33.2	8.2	ì

(Treadwell and Reuter, Z. anorg 1898, 17. 193.)

Solubility of calcite in H2O at 25°, in contact Solubility in NaCl+Aq at 25° C. and in equilibrium with air.

Ca(HCO ₃) ₂		NaCl	
Grams per liter	Reacting wts per liter	Grams per liter	Reacting wts per litre
0.1046 0 1770 0.2051 0.2152 0 2252 0 2212 0 2172 0 1971 0 1569 0 1227	0 00065 0 00110 0 00128 0 00134 0 00140 0 00138 0 00135 0 00123 0 00095 0 00076	0.000 9.720 21 010 30.301 50.620 69.370 98.400 147 400 234 500 262 300	0 000 0 168 0 362 0 522 0 872 1 195 1 695 2 540 4 040 4 520

(Cameron and Seidell, J. phys. Chem. 1902, 6. 51.)

1 l. H₂O dissolves 2.3374 g. CaCO₈ at 5° Solubility in various salts+Aq under a CO₂ pressure of 2 atmos, at 5°

Salt	g salt per 1000 g H.O	g CaCOs sol in 11 of solveut	
H₂O		2.3374	
$MgCl_2+6H_2O$	6 08	2 3518	
	50 0	3 4045	
	86 0	4 0826	
	350 0	3 3009	
	700 0	2 7357	
	1150 0	2 2054	
	1725 0	1 7058	
	2300 (sat.)	1 4060	
NaCl	27 96	3 2796	
	50.0	3.7399	
	86.0	3.7828	
	106.9	3 6900	
	175.6	3 3495	
	263.4	2 8107	
	351 2	2.1625 at 8°	
MgSO ₄ +7H ₂ O	105.3 (14°)	2.1768	
-	sat. at 14°	0.91356	
Na ₄ SO ₄ +10H ₂ O	137.7 (14°)	1,4060	
	sat. at 14°	1.9199	

(Ehlert and Hempel, Z Elektrochem. 1912, 18, 727.)

Solubility of CaCO, in KCl+Ag at 25° sat. with CO2 at atmospheric pressure.

% KCl	% CaCOs
3.90 7.23 11.10 13.82 15.49 18.21 19.84	0 145 0 150 0 166 0 165 0 167 0 154 0 140
26 00	0 126

(Cameron and Robinson, J phys. Chem. 1907, 11. 579.)

Solubility in NaCl+Aq in contact with CO: at atmospheric pressure at 25°.

g per 100 g H ₂ O		
CaCOs		
0 150 0 160		
0 174		
0 172 0 159		
0 123 0 103		

(Cameron, Bell and Robinson, J. phys. Ch. 1907, 11. 396)

Solubility in K2SO4+Aq, sat with CO2 at atmospheric pressure and 25° temp.

% SO _a	% ChO
0 69 1 37 1 67 2 18 2 99	0 69 0 69 0 47 * 0 30 * 0 24 *

* Solid phase, CaSO₄, K₂SO₄. (Cameron and Robinson.)

Solubility in Na2SO4+Aq at 24° m equilbrium with air.

Total Ca cale. as Ca(HCO ₂) ₂ Grams per liter Ca actually dissolved as Ca(HCO ₂) ₂ Grams per liter Ca actually dissolved as Na;SO ₄ Grams per liter	ter
0.0925 0.0925 0.000	
0.1488 0.1488 2.800 0.1729 0.1729+ 5.235	
0 2330 0 2210 11 730 0 3240 0 3020 36 860	
0.3960 0.3440 74 010 0.4580 0.3660 116 100	
0 5630 0 3940 184,200	
0 5910 0 4060 213.700 0.6650 0 4300 255 900	

(Cameron and Seidell, J. phys. Chem. 1902, 6, 53.)

Data are also given for solubility of CaCO: in NaCl+Na2SO4+Aq, and CaCO3+CaSO4 m NaCl+Na2SO4+Aq (Cameron, Bell and Robinson.)

Calcium copper uranium carbonate, CaCO3. 3CuCO₂, 4U(CO₃)₂+24H₂O. Sol in soids

Calcium lead carbonate, xCaCO₃, yPbCO₃ Mm. Plumbocalcue.

Calcium magnesium carbonate, CaCO₃, MgCO_a

Mm Dolomite 11 H2O sat. with CO2 at 18° and 750 mm, dissolves 0.31 g, dolomite. (Cossa, B 2. 697.)

Not obtained by evaporating solution, but can be crystallized from CO2+Aq between 100° and 200°. (Hoppe-Seyler

Dolomite is dissolved by CO2 and H2O. but solution is prevented partially by CaCO. and wholly by MgCO, (Leather and Sen, C. A. 1915. 181.)

Insol in cold dil acids. (Dolomieu, J. Phys 39. 1)

Insol in cold acetic acid. (Forchhammer.)

Calcium potassium carbonate, CaK₂(CO₂)₂.

Decomp. by H₂O. (Reynolds, Chem Soc. 1898, **73**, 265; Butschli, C. A. **1907**, 2223) 2CaCO₃, 3K₂CO₄+6H₂O. (Butschli.)

Calcium sodium carbonate, CaNa2(CO3)2. Auhydrous. Decomp by H2O

+2H₀O (Butschh, C. A. 1907. 2223.) +5H₂O Min Gaylussite. Sparingly sol. ın Ĥ₀O

Calcium uranvi carbonate, CaCOs, UOcCOs+

20H.O Mm Liebigite Sol in HCl+Aq.

+1H₂O. Decomp. by H₂O Dissert. **1900.**) (Blinkoff, 2CaO, 4UO₃, 3CO₂+24H₂O Decomp. by H₂O (Blinkoff, Dissert, **1900**.)

Calcium carbonate chloride, CaCO2, CaCl2+

6H2O. Sol. m H2O with immediate decomp. (Fritzsche, J. pr. 83, 213.)

Cerous carbonate, Ce2(CO3)3+5, and 9H2O. Insolem HaO, and solution of COa in HaO.

(Vauquelm.) Somewhat sol, in (NH4)2CO2+Aq (John) Insol. in neutral salt solutions and neutral alkalı carbonates+Aq; easily sol. in SO2+

Aq. (Berthier, A ch. (3) 7, 77) Ceric carbonate, Cc(CO2)2+1/2H2O.

Precipitate (Hisinger, A. ch 94, 108) Insol in H₂O. Sol. in slight traces in Na_2CO_8+Aq ; sl. sol. in $NaHCO_8+Aq$, and in $(NH_4)_2CO_8+Aq$ (Rosc)

Cerous lanthanum carbonate fluoride.

Mm. Batnæsite, Hamartite, Hydroftweerite. Slowly decomp. by HCl+Aq, easily by H_sSO_s

Cerous potassium carbonate, Ce2(CO2)3, K2CO1+3H2O.

Ppt. (John.) Ce2(CO2), K2CO2+12H2O. Ppt Sol. m 30% K₂CO₃+Aq. (Meyer, Z. anorg. 1904, 41, 103.) 4K,COa+12HaO.

Ciystallane. Sl. sol in H₂O containing K₄CO₂; sol. in dil H₂SO₄ with decomp. (Job, C R 1899, **128**, 1098.)

Cerous sodium carbonate, Ce2(CO2)3. 2Na2CO3+2H2O.

Ppt (John.) 2Ce2(CO3)3, 3Na2CO4+24H2O(?). Easily decomp (Meyer, Z. anorg. 1904, 41. 103)

Chromous carbonate, CrCO2

Sol in much H₂O; sl. sol in KHCO₂+Aq. (Moberg, J. pr. 44, 328; Moissan, A ch. (5) 21. 199.)

Chromic carbonate, basic, Cr2O2, 2CO2 Precipitate. (Parkmann, Sill Am J (2)

34. 321.) Cr2O2, CO2+4H2O Insol. in H2O; sol in acids, when freshly potd, is sol in K₂CO₂, or (NH4)2CO2+Aq, and still more sol. in KOH

+Aq. (Meissner.) Insol. in ethyl acetate (Naumann, B. 1910, 43, 314); methyl acetate. (Naumann, B. 1909, 42, 3790)

2Cr2Cs, CO2+6H2O Precipitate (Langloss, A ch. (3) 48. 502)

Chromous potassium carbonate, C1CO2, K2CO2+13/2H2O

Sol in H₂O when freshly prepared; slowly polymerizes; stable in dry air, decomp, in moist air; sol, in acids with decomp (Bauge, C R. 1898, 126, 1568)

Chromous sodium carbonate, CrNa2(CO3)2+ H_2O

Decomp, when heated In Aq. solution, passes into the hydrate containing 10 mols H₂O. (Baugé, C. R. 1897, 125. 1179) +10 H₂O. Very sol in cold H₂O; Aq. solution decomp, below 100°; effloresces in the air, sol in HCl+Aq and H2SO4+Aq. (Baugé, C R 1897, 125, 1178.)

Cobaltous carbonate, basic, 5CoO, 2CO2+ 4H₂O.

Insol in H₂O; sol. in (NH₄)₂SO₄, (NH₄)₂CO₃, NH₄NO₅, and NH₄Cl+Aq Sol. in cold NH₄NO₃, and NH₄Cl+Aq.

(Brett, 1837.) Sol. in CO2+Aq, and acid alkali carbonates +Aq, from which it is pptd. on boiling. Very sl sol. in cone Na2CO2, or K2CO2+Aq; gely sol in (NH₄)2CO2+Aq, and partly sol.

largely sol in (NH4)2002 Transit in NH4OH+Aq. (Berzelius.) Not pptd. from solutions containing Na citrate.

trate. (Spiller.) 4CoO, CO₂+4H₂O. Ppt. (Beetz.) +3H₂O. (Meigen, C. C. 1905, I. 1363.)

Perceric potassium carbonate, Ce2O3(CO3)3, Cobaltous carbonate, basic, 3CoO, CO2+ 2H.O.

> 3H₂O (Rose, Pogg, 84, 551) 3CoO, 2CO2+4H2O (Biatin, Z. anal. 6.

2CoO, CO2+312H2O. Converted into 5CoO, 2CO₂+4H₂O by H₂O (Beetz)

Cobaltous carbonate, CoCO₂.

(Meigen, C C 1905, I 1363)

Anhudrous Not attacked by cold cone HCl, or HNOs+Aq. (Senarmont, A. ch (3) 30. 129) Insol. in liquid NH₂. (Gore, Am. Ch. J.

1898, 20, 827) Min Sphgrocobaltite. Sl attacked by cold HNOs, or HCl+Aq.

+1/2H2O. Sol. m acids. (Deville, A ch. (3) 33. 95.) +6H_{*}O. (Deville)

Decomp. by H2O with formation of a basic carbonate. (Berzelius)

Cobaltous potassium carbonate, CoCO2 K,CO,+4H,O. Decomp. by II₂O. (Deville, A, ch. (3) 33.

Ppt. Decomp by H.O. (Reynolds, Chem. Soc. 1898, 73, 264) CoCO₄, KHCO₂+4H₄O. Decomp. by H₂O. (Deville.)

Cobaltous sodium carbonate, CoCO3, NagCO3 +4H2O, and 10H2O. Decomp. by H₅O. (Deville, A ch (3) 33.

Cupric carbonate, basic.

75.)

The compounds produced by pptn conner solutions by carbonates are unstable and possess varying solubilities in solutions of CO₂. On treatment with solutions of CO₂, these substances pass over into an apparently stable compound possessing a definite solu-bility in solutions of CO2 of definite concentiation, which solubility increases with the concentration of CO₂. Solubility of this compound in various salts+Aq is recorded. (Free, J. Am. Chem. Soc 1908, 30. 1374.) 8CuO, CO+5H+O (Deville, A, ch (3)

33. 75

6CuO, CO2. (Field, Chem. Soc. 14. 70) 3CuO, CO+2HeO, (Favre, A, ch. (3) 10.

5CuO, 2CO₂+6H₂O. (Struve.) 2CuO, CO₂+H₂O. Insol. in H₂O; easily

ol. in acids, even H₂SO₂+Aq; sl. sol in H₂CO₅+Aq, 30,720 pts of the solution con-tening 1 pt. CuO. (Jahn) Sol. in 4690 pts. H₂CO₂+Aq sat. at 4-6 atmos pressure. (Wagner.) Sol. in 3833 pts. sat. H₂CO₂+Aq. (Lassaigne, J. ch. méd. 4. 312.) Sol. in NH₄ salts+Aq. Partially sol. in

Na₂CO₃, or K₂CO₃+Aq, and more sol in

NaHCO₂, or KHCO₃+Aq; sol in (NH₄)₂CO₃ Didymium carbonate, Di₂(CO₃)₃+H₂O₁ or +Aq. (Favre, A, ch. (3) **10.** 18.) (6H₂O. 16H₂O. 16H₂O. 16H₂O. Only traces dissolve in CO. NHOH+Aq (Thomson, 1001.) WCN+Aq. (Berzclius) Sol in NH₄Cl, or

Sol, in terrie salts with pptn of Fe₂O₄H₆. Insol in lig NH2 (Franklin and Kraus, Am. Ch. J 1898, 20, 827.)

Insol. in methyl acetate (Naumann, B. 1909, 42, 3790); ethyl acetate. (Naumann, B 1910, 43, 314.) Insol, in acetone (Naumann, B 1904, 37. 4329; Erdmann, C C. 1899, II. 1014.)

Sol. in ethyl amine carbonate+Aq. (Wurtz) Sol. in cane sugar+Aq (Peschier, Repert.

1820, 6, S5.) Not potd, from solutions containing sodium (Spiller.) Insol. in pyridine. (Schroeder, Dissert.

Min Malachite. Sol. in acids, and NH4OH +Aq. +2H₂O (Favre.)

SCuO, 5CO2+7H1O. (Groger, Z. anorg 1900, 24, 137 3CuO, 2CO2+H2O. Insol, in H2O. Sol. in NH.CH+Aq, also in hot cong, NaHCOs+

Aq Mın, Azurete,

+3H2O.

Copper potassium carbonate, basic, 8CuO, Erbium carbonate, Er2O2, 2CO2+2H2O 2K2CO2, 7CO2+17H2O.

Ppt.; decomp. by H.O. (Groger, B 1901) 34, 430.) Mixture. (Wood and Jones, C. A. 1907. 2667). 5CuO, 4CO2, K2CO2+10H2O. Decomp by H₂O (Deville, A. ch. (3) 33. 102).

Cupric potassium carbonate, CuCO2, K2CO2. Decomp. by H.O. (Wood and Jones, C A. 1907. 2667.) (Wood and Jones.)

+H₂O. +4H₂O Decomp. by H.O. (Reynolds. Chem. Soc. 1898, 73, 263.) Could not be obtained. (Wood and Jones.) 2CuCO₃, K₂CO₃+4H₂O. Decomp. by H₂O

(Wood and Jones.) Cupric sodium carbonate, CuCO₃, Na₄CO₃, Not decomp by cold H2O. (Debray, C. R. · 49, 218)

Cupric zinc carbonate, 2CuO, 3ZnO, 2CO+ 3H2O, or 3CuO, 9ZnO, 4CO2+8H5O. Mm. Aurichalcite. Easily sol, in HCl+Aq.

Cupric carbonate ammonia (cuprammonium carbonate), CuCO3, 2NH1. Decomp, by H.O. Insol, in alcohol and

ether. Sol. m (NH4)2CO2+Aq. (Favre, A. ch. (3) 10. 116.)

+Aq. Insol, in solutions of alkalı carbonates or bicarbonates + Aq. (Marignac, A. ch (3) 38. 166.) Very sl. sol. in conc NH4Cl+Ac. (Rose.)

Insol in acetone. (Naumann, B 1904, 37. 4329.1

+8H₄O (Cleve, Bull, Soc. (2) 43, 363)

Didymium potassium carbonate, Dig(CO2)4, K₂CO₂+4H₂O.

Insol. in H₂O (Cleve, Bull, Soc. (2) 43. 363.) +12H₀O. (Cleve.)

Didymium sodium carbonate, 2D12(CO3)2. $3Na_{2}CO_{3}+9H_{2}O.$ Ppt (Cleve)

Dig(CO₃)₃, 2Na₂CO₃+8H₂O. Ppt. (Cleve.) Dysprosium carbonate, Dy2(CO3)+4H2O.

Insol. in H.O. (Jantsch. B. 1911, 44. 1277.)

Insol in H₂O. (Hogland)

Erbium sodium carbonate, Er (CO). 5Na₂CO₃+36H₂O. Efflorescent, Decomp. by H.O.

Gadolinium carbonate, basic, Gd(OH)COa+ H.O. Ppt. (Benedicks, Z. anorg. 1900, 22, 417.)

Glucinum carbonate, basic, 3GlO, CO2; 4GlO,

CO2; 5GlO, CO2+5H2O, etc. Not perceptibly sol. in H2O or H2CO2+Aq. Decomp. by boiling H.O. Easily sol, in acids. Sol. m NH4 salts, and KOH, or NaOH+Aq carbonates, Sol. in alkalı cspecially (NH₄)₂CO₃+Aq (Vauquelin) Sl. sol. m K₂CO₂+Aq. When solution in (NH₄),CO₃ is boiled, a more basic carbonate is pptd. (Rose.)

Glucinum carbonate, GlCO_a+4H₄O. Efflorescent Sol. in 278 pts. H2O. (Klatzo,

J. pr. 106. 242.) Insol in hould NHz. (Gore, Am. Ch. J. 1898, 20, 828 j

No definite carbonate of gluenum exists (Cameron, J. phys Chem. 1908, 12. 572.)

Glucinum potassium carbonate, 3GlCO, 2K,CO.

Easily sol, in H_2O , but decomp, by boiling. (Debray.) Less easily sol. in alcohol.

Indium carbonate, Ing(COa)n.

Ppt. Insol. in K2CO2, or Na2CO2+Aq. Sol. in (NH₄)₂CO₂+Aq. (Winkler, J. pr. 94.1)

Iron (ferric) carbonate, basic. 9Fe₂O₂, CO₂+12H₂O. (Wallace, Chem. Gaz. 1858. 410)

3Fe₂O₃, CO₂+4H₂O, and 8H₂O. (Barrat, C N 1. 110.) +6H2O. (Wallace.) 2Fe₂O₄, CO₂+1½H₂O. (Rother, Pharm, J. Trans. (3) 4. 576.)

Fe₂O₃, CO₂. (Parkmann, Sill. Am. J. (2) These and other similar basic salts are puts... easily decomp, on standing into Fe-O-Ha

Iron (ferrous) carbonate, FeCO.

Insol. m H₂O.

Sol in acids, even in H_{*}CO_{*}+Aq See Carbonate, ferrous hydrogen.

Min. Siderite, Spathic ore Sl. attacked by dil. acids. Sol in H₂CO₂+Aq under pressure. Insol, in NH₄Cl, or NH₄NO₂+Aq. (Biett.) +H₂O. Sl. sol in H₂O, easily sol. in acids; sol. in H₂CO₃+Aq

Sol, in NH4Cl+Aq. Sol, in ferric salts+Aq with evolution of CO2 and pptn. of Fe2O4H4. Soluble in an aqueous solution of cane sugar

Solubility in salts+Aq free from CO₂.

Salt	g. sait per 1000 g. H ₂ O	1 of solvent dissolves g FeCOs
NaCl	351 2	0 35042
MgCl ₂ + 6H ₂ O	2300.0	4 2049
Na ₂ SO ₄ +10H ₂ O	137 7 sat. at +14°	0 70085 0 93444
MgSO ₄ + 7H ₂ O	105 3 sat at +18°	1.4667 2 9334

(Ehlert, Z. Elektrochem. 1912, 18. 728.)

Iron (ferrous) hydrogen carbonate, FeH₂(CO₂)₂(?).

Known only in aqueous solution. By conducting CO₂ at ordinary pressure Insol. in (NH₄)₂CO₂+Aq through H₂O, in which Fe is suspended, a solu-Insol. in acetone. (Nat tion containing 9.1 pts FeCOs to 10,000 pts. 4329.) H₂O is obtained. (v. Hauer, J. pr. 81. 391.)

100 pts H₂CO₂+Aq dissolve 0.72 pt. FeCO3. (Wagner.) FeCO₂ dissolves in 1381 pts H₂O saturated with CO2, under a pressure of 4-6 atmos-

pheres. (Wagner, J. B. 1867, 135.) 1 l. H₂O dissolves 6.1907 g. FeCO₃ (pure) under a CO₂ pressure of 2 atmos (Ehlert, Z. Elektrochem 1912, 18, 728)

Solubility in various salts+Aq in presence of CO₂ under pressure of 2 atmos.

001	diluct pressure o	и вышов.
	With CO2 of 2 atmos pressure	
Salt	g mlt per 1000 g H,O	1 l of solvent dissolves g FeCO;
H ₂ O		6 1907
NaCl	50 106 9 175 6 263 4 351 2	:
MgCl ₂ + 6H ₂ O	86 9 700 0 1150 0 1437.5 1725 0 2300 0	5 8403 4 5553 4.4587 4.6934 5 3975 9 0524
Na ₂ SO ₄ +10H ₂ O	137 7 sat at +14°	7 9428 9 5780
MgSO ₄ + 7H ₂ O	105 3 sat, at +18°	6 2423 7.3922

(Ehlert, Z. Elektrochem. 1912, 18. 728.)

A bicarbonate of ferrous iron is not formed under pressures of CO₂ up to 5 atmospheres at 0°. (Cameron, J 'phys Chem. 1908, **12**.

Iron (ferrous) magnesium carbonate, FeCO₈, MgCO₃. Mm Pistomesile.

FeCOs, 2MgCOs. Mm. Mestute.

Iron (ferrous) potassium carbonate, FeK₁(CO₁)₂+4H₂O.

Ppt. Decomp. by H₂O. (Reynolds, Chem. Soc. 1898, 73, 265.)

Lanthanum carbonate, $La_2(CO_a)_a + H_2O_c$ 3H2O, and 8H2O.

Insol. in H₂O. CO₂+Aq dissolves traces. Insol, in acetone. (Naumann, B 1904, 37.

Min. Lanthanite.

Lanthanum potassium carbonate, La₂(CO₅)₃, K₇CO₅+12H₂O₅

Sol. m 30% K₂CO₈+Aq. (Meyer, Z. anorg 1904, 41, 101)

Lanthanum sodium carbonate, 2La₂(CO₃)₃, 3Na₂CO₃+20H₂O(?).

Ppt Easily decomp (Meyer, Z anorg 1904, 41, 102)

 $\begin{array}{c} Lead \quad carbonate, \quad basic, \quad 2PbCO_{3}, \quad PbO_{2}H_{2}, \\ 5PbCO_{3}, \quad 3PbO_{2}H_{2}, \quad 3PbCO_{3}, \quad PbO_{2}H_{2}; \\ 5PbCO_{3}, \quad PbO_{2}H_{4} \end{array}$

White Levil. Insol. in H₂O Nearly insol in H₂CO₃+A₉, oven under pressure Sol in dil, insol in cone. KOH+A₂ Insol in normal, or acid alkali carbonates+A₃. (Bottger.)

Sol m cold dil. NH₄Cl+Aq (Brett.) PbCO₅, PbO₂H₂ Very sl. sol. m H₂O. (Yorke)

2PbCO3, PbO2H2

Solubility is less than 0 0002 millimol Pb in 1 liter H₂O at 18° (Pleissner, C C 1907, II 1056.)

When not exposed to air, sol in 32,000 gpts. (NH₄)₃SO₄+Aq (0.2 g, per 1), 23,000 pts. KNO₅+Aq (0.2 g, per 1), 23,000 pts. CaCl₂+Aq (0.2 g, per 1), 4600 pts. NH₄NO₅ +Aq (0.2 g, per 1), 4300 pts. H₂O sat. with

When exposed to air in beakers, sol in 43,000 pts (NH_0) sO₄+Aq (0.2 g per 1); 28,000 pts (NO_3+Aq) (0.2 g per 1); 28,000 pts (NL_0) +Aq (0.2 g per 1); 28,000 pts (NL_0) +Aq (0.2 g per 1), 4300 pts (NL_0) +Aq (0.2 g per 1), 4300 pts (NL_0) +Aq (NL_0) +A

Soc. 31. 664)
Insol in methyl acetate (Naumann, B. 1909, 42, 3790.)

3PbO, 4PbC O₃+2H₂O. Ppt. (Stromholm, Z. anorg. 1904, **38**. 446.)

Lead carbonate, PbCO3.

Sol in 50,551 pts. H_2O at ordinary temp. Sol in 23,450 pts. H_2O with little ammonium acetate, carbonate, and free ammonis; and in somewhat less H_2O , containing much ammonium intrate with carbonate and free ammonia (Fresenus, A. 59, 124.)

Calculated from electrical conductivity of PbCO₃+Aq, 1 l H₂O dissolves 3 mg. PbCO₃ at 10° (Kohlrausch and Rose, Z. phys. Ch 12, 241) Solubility is 0 0002 millimol. Pb in 1 liter

H₂O at 18°. (Pleisner, C. C. 1907, II 1058.) St sol. in H₂O 15 x 10⁻¹ g are contained in 1 l of sat. solution at 20°. (Böttger, Z phys Ch 1903, 46, 604.)

Easily sol, in acids, even HC₂H₈O₂, but not decomp by cone. HNO₂+Aq on account of insolubility of Pfo/NO₂), in HNO₂+Aq. Insol. in a nuxture of 1 pt. H₃SO₄ and 6 pts absolute alcohol, or in an alcoholic solution of racemic or tartaria caids

Insol in H₂CO₂+Aq. (Jahn, A. 28. 117) Very sl. sol. in H₂CO₂+Aq. but solution is prevented by traces of various salts. (Thinnerman) Sol. in 7144 pts. sat. H₂CO₂+Aq. (Lassagne, J. ch. méd. 4. 312) H₂O sat. with CO₂ unded 4-6 atmos pressure dissolves only traces of Pb; 1000 pts. of solution containing 0 5 pt. PbCO₂. (Wagner, Z and 6. 167)

Solubility of PbCO₃ in H₂CO₂+Aq at 18°.

	mg per l
CO ₂	PbCO ₅
0 2 8 5 4 14 4 26 43 5 106	1 75 6 7 8 2 9 9 10 9 15 4

(Pleissner, C. C. 1907, II 1056.)

Soi m NH₄C₂H₄O₂ and NH₄C₃I+A₃. (Weppen, 1837) Soi in ROH+Aq; not absolutely insol at ord, temp, in an excess of K₂Ob₃ or Na₆O₃ +Aq, and still more sol, at 100°; but absolutely med. in NaHCO₃ + 100°; but absolutely med. in NaHCO₄ in

Si decomp (Pensoz), not at all decomp. (Malaguth) by alkalı sulphatesi—Aq. Partially decomp. by bolung with K,SO, Ne,SO4, (KH,JSO), GSO, MSQ, Ne,HPO, NaNH,HPO4, K,SO3, Ne,SO3, (KH,JSO), Na,HPO5, Na,BO, K,SA50, Na,SO4, K,CO, Na,CO, Na

decomp. is complete (Dulong, A. ch. 82, 290.)
Easily sol. in hot NH₄Cl+Aq. (Biett,

Rose.)
When 1 mol. PbCO₃ is boiled with 1 mol. $K_2C_3O_4$, 15% of the PbCO₃ is decomp.; with 1 mol. K_2CO_3 , 32.28% is decomp. (Mala-

guti.)
Not decomp. by K₂SO₄+Aq (Rose.)
Insol. in liquid NH₃ (Franklin, Am Ch.

J. 1898, 20. 828.) Sol m an aqueous solution of acetates (Mercer, 1844.)

Insol. in methyl acetate (Naumann, B. 1909, 42, 3790)

Not pptd, in presence of Na citrate. (Spiller) Min. Cerussite.

Lead sodium carbonate, 4PbCO₅, Na₂CO₃. Insol. in H₂O (Berzelius, Pogg. **47.** 199.)

Lead carbonate bromide, PbCO₈, PbBr₂. Insol, in H₂O. (Storer's Dict.)

8

0 3647

0 3688

0 3676

0 3956 0 3946

0 3901

0.3776

0 7863

0 9804

Lead carbonate chloride, PbCOs, PbClo Insol in H₂O. (Miller, Chem Soc (2) 8.

Mm Phosgenite. Easily sol. in acids.

Lead carbonate iodide, PbCO3, PbI2 Insol. in H₂O (Poggiale)

Lead carbonate sulphate, PbCO₁, PbSO₄, Mm Lanarksie, Sol m HNO3+Aq with residue of PbSO. 3PbCO₄, PbSO₄ Mm Leadhillite, As

Lithium carbonate, Li₂CO₂,

shove.

50

100 pts. H₂O at 13° dissolve 0.769 pt. Li₂CO₃; at 102°, 0.778 pt. Li₂CO₃ (Kremers, Pogg 99. 48.)

100 pts H₂O, cold or hot, dissolve 1.2 pts. L₁₂CO₃. (Troost, A. ch. (3) **51** 103.) 100 pts H₂O dissolve 1.4787 pts. at 15°, 0.7162 pt. at 100° (Diaper, C N. **55**, 169)

100 pts H₂O dissolve pts. L₁CO₂ at t^o.

t ^o	Pts Lt.CO1	t°	Pts Li ₂ CO ₃
0 10	1 539 1 406	75 100	0 866 0 728
20	1 329	102	0 796

0.796 pt is dissolved at 102° in less than 14 hour, and 0.955 in 1 hour (Beketow, J

1 181

iuss Soc. 1884, 591.) Sat. solution at 15° has sp gr, 1.014, and contains 1 g, Li₂CO₂ to 70 g, H₂O, while solution sat at 0° has sp, gr 1.0168 and contains 1 g Li₂CO₂ in 64.6 g, H₂O. By long spontaneous evaporation at 15° a solution can

be obtained of 1 0278 sp. gr. containing 1 g Li₂CO₂ in 45 57 g. H₂O. (Flückiger, Arch Pharm. (3) 25. 549.)

By boiling for an instant with H₂O a solution is obtained, which has sp. gr. 1.0074 and contains 1 g. Li₂CO₃ to 139 g. H₂O. (Flücki-ger, Arch. Pharm. (3) 26. 543)

0 1687 mol. is sol in 1 l. H.O at 25°. (Rothmund, Z. phys. Ch. 1909, 69, 531.)

Sat. Li.CO.+Aq contains at:

95° 0.723 0.883% by wt Li₂CO₂.

(Tschugzeff, Z. anorg, 1914, 86, 159)

Sat solution boils at 102°. (Kremers.)

100 pts H₂O dissolve 1 pt Li₂CO₃ (Vau- KCI 0.10 0 3553 quelin, A. ch 7. 284.) 0 3590

0.3656 1 00 1 50 0 3490 2 00 0 3268 0.250.3782 0.50 0.75 0 3832 0 3835 00 0 3731 1.50 2 00 0 3558 NaCl 0.3569 0 25 0 3691 0 3867 0.50

(Troost.) See LiHCO:

equiv, per l

KNO.

Salt

Sol in NH salts+Aq.

2 00 K2SO4 0.25 0.40280 50 0.43561 00 0 4860 0 4411 0.50 1 00 0 4926 2 00 0.5534

0.75

00 50

pts. sat. CO₂+Aq dissolve 5.25 pts Li₂CO₃.

Solubility in salts+Aq at 25°

C = concentration of salt solution in g -

S = solubility of Li₂CO₂ in g -equiv, per I

0 25

0.50

0.75

0 10 0 3902 0 25 0 4677 0 50 0 5659 0.75 0 6270 1 00 0.68101 50 0 7463 2 00 0 7739 4.00 0.78810 25 0.5059 (NH₄)₂SO₄

0 50

1.00 1 50 1 109 1 174 2 00 KClO₈ 0.3500 02 0 3570 0 4 0.3616

(Geffcken, Z. anorg. 1905, 43. 198.)

Insol in liquid NH₃ (Franklin, Am Ch More sol in CO2+Aq than in H2O. 100 J. 1898, 20. 828.)

Solubility in organic compds +Aq at 25°. Solubility in H₂O at 25°=0.1687 mols litre. Solubility in organic compds.+Aq. at 25°-Continued.

Organic compd.	Normality of the solution	Mol Li ₂ CO ₂ sol. in 1 i	Organic compd	Normality of the solution	Mol LtrCOs sol in 11
Methyl alcohol	0 250 0 5 1 0	0 1604 0 1529 0 1394	Thio-urea	0.125 0 250 0 5 1 0	0 1667 0 1643 0 1600 0 1523
Ethyl alcohol	0 125 0 250 0.5 1.0	0.1614 0 1555 0 1417 0 1203	Dimethyl-pyrone	0 125 0.250 0 5 1 0	0 1562 0 1460 0 1284 0 0992
Propyl alcohol	0 125 0 250 0 5 1 0	0 1604 0 1524 0 1380 0 1097	Ammonia	0 125 0 250 0.5 1.0	0.1653 0.1680 0.1577 0.1466
Tertiary amyl alcohol	0 125 0 250 0 5 1 0	0 1564 0 1442 0 1224 0 0899	Diethylamine	0 125 0 250 0 5	0 1589 0 1481 0 1283
Acetone	0 125 0 250 0 5 1 0	0 1600 0 1515 0 1366 0.1104	Pyridine	0 125 0 250 0 5	0 0937 0 1592 0 1503 0 1347
Ether	0 125 0 250 0 5	0 1580 0 1476 0 1300	Piperidine	0.125 0.250	0.1584 0.1488
Formaldehyde	0 125 0 250 0 5	0.1668 0.1653 0.1606	Urethane	0 5 1 0 0.125	0 1320 0.1009 0 1604
Glycol	0 125 0.250 0.5	0.1531 0.1660 0.1629 0.1565	Acetamide	0.250 0.5 1 0	0 1525 0.1377 0 1113
Glycerine	0.125	0.1472	Accuming	0 5 0 5 1 0	0 1520 0 1358
	0.250 0.5 1.0	0 1647 0 1613 0 1532	Acetomtrile	0 125 0 250 0 5 1 0	0.1618 0 1556 0 1429 0 1178
Mannitol	0 125 0 250 0 5	0.1705 0.1737 0.1778	Mercuric cyanido	0 125 0 250	0 1697 0 1704
Glucose	0 125 0 250 0 5 1 0	0 1702 0 1728 0 1752 0 1778	(Rothmund, Z	phys. Ch. 190	9, 69. 531.)
Sucrose	0 125 0 250 0 5 1 0	0 1693 0.1689 0 1661 0 1557	Insol in methy 1909, 42 . 3790); e B. 1904, 37 . 3601.) Insol, in acetone 4329; Eidmann, C	thyl acetate. Naumann	Naumann, B. (Naumann, , B. 1904, 37. 1014.)
Urea ·	0 125 0,250 0.5 1 0	0 1686 0 1673 0 1643 0 1605	Lithium hydrogen 100 pts H ₂ O d (Bewad, B. 17. 406	issolve 5.501	

Magnesium carbonate, basic, Mg₁C₂O₇+ 3H₂O = 3MgO, 2CO₂+3H₂O or 2MgCO₃, MgO₂H₂+2H₂O. (Fritzsche, Pogg. 37, 310.)

 $\begin{array}{lll} \bullet M \cdot gnesia & alba, & 3MgCO_3, & Mg(OH)_2 + \\ 4H_2O, & 4MgCO_3, & Mg(OH)_2 + 5H_2O, & or \\ 5MgCO_3, 2Mg(OH)_2 + 7H_2O. & \\ Very sl. sol. in H_2O. Sol in 10,000 pts. \\ \end{array}$

hot or cold H₂O (Bmeau) Sol. in 2500 pts. cold, and 9000 pts. hot H₂O. (Fyfe.)

Sol in H₂O containing CO₂

Very easily sol, in acids Easily sol, in dil. HCl+Aq.

Easily Sol. in Oil. MC1-TA1. Easily Sol. in MH. subhate, nutrate, or sucleasily Sol. in MH. subhate, nutrate, or sucemate-haq, also in (NH₂):CO₃+A₃C, (Wittstein.) Sol in cold Na₂CO₃, K₃CO₄, K₃CO₄, KCl, or KNO₃+A₄ (Lougehamp); also in MH,Cl+A₃, separating out on heating, (Vogel, J. pr. 7. 455.) Slowly sol. in cort. BaCl₃, CaCl₃, or ZnSO₄-A₄ (Karston.)

Sol. in MgSO₄+Aq (Dulong)
Sol. in ferric salts+Aq with evolution of
CO₂ and pptn of Fe₂O₆H₄. (Fuchs)

Sol. in boiling Co, Ni, Zn, Mn, or Cu nitrates or chlorides + Aq. Min. Hydromagnesite, 4MgO, 3CO₂+

 $_{\pm 10H_2O}$. Sol. m considerable amount in $_{\pm 2CO_8+Aq}$ as $_{\pm 10H_2(CO_8)_2+Aq}$. (Engel, C. R. 100. 911)

Magnesium carbonate, MgCOs.

A hydrons. Insol. in H₂O. 11 H₃O dissolves 106 mg. MgCO₃. (Chevalet, Z and 8, 9.1). Sol. in 5071 pts H₂O at 16. (Kremers.) MgCO₄ combines with H₂O to form MgCO₄+3H₂O, and +5H₂O, which are less sol. in H₃O than anhydrous salt. (Engel, C. R 101. 814)

Very hydroscopic. About 20 g. are sol. in 1. H₂O. (Engel, C. R. 1899, 129, 598.) 0.7156 g. are sol. in 1 l. H₂O at 15°. 0 627 g. are sol. in 1 l. H₂O at 15° with

0 627 g, are sol. in 1 l. hg/d at 15 with vapour pressure of CO₂ equal to cato. 6.977 grams are sol. in 1 l. H₂O at 15° with vapour pressure CO₂ equal to 1 atmos. (Treadwell and Reuter, Z. anorg. 1898, 17. 202.)

94.4 mg arc sol. in 1 l. of CO₂-free water. (Gothe, Ch. Z. 1915, **39**. 306.)

Solubility in H₂O in equilibrium with Mg(HCO₂)₂ and CO₂.

System: MgCO₂, Mg(HCO₂)₂ and CO₂ at 30° C.

Total Mg (grams per liter)	Mg as MgCOs (grams per liter)	Mg as Mg(HCOs)a (grams per liter)
0.02410	0 01205	0.01205
0.13135	0 06820	0.06314
0.16087	0 08676	0.07411

Solubility in H₂O m equilibrium with Mg(HCO₃)₂ and CO₂—Continued

System MgCO₃, Mg(HCO₃)₂ and CO₂ at 30° C

Total Mg (gra	m-	Mg a	u MgCO:	Mg as	Mg(HCO ₃)
atoms per lite	r)	Pe	ercent		er cent
0.00100		50 00		4	50 00
0 00545		51 92			18 08
0 00667		53.93			16 07
Total salts in solution Grams ner		MgC		Mg(HCO ₀):
0 1144 0 6174 0 7479	0	0418 2368 3012	36.5 38.2 40.3	0 072 0 380 0 446	6 63 5 6 61 7

In a solution near the saturation point and mequilibrium with atmosphere air upwards of 50 per cent of the magnesum is m the form of the normal earbonate. When the solution is brought in contact with the solid phase, the proportion of the base combined per control of the proportion of the base combined per control of the proportion of the base combined per control of the proportion of the base combined per control of the proportion of the p

For solubility in H₂CO₃+Aq, see Magnesium hydrogen carbonate.

Scarcely acted upon by HCl+Aq. (Senar-mont)

The solubility of MgCO₃ in NaCl+Aq when in contact with ordinary ar mcreases with increasing concentration of NaCl up to a maximum, and then decreases. (Cameron and Seidell, J. phys. Chem. 1903, 7.579.)

Solubility of MgCO₃ m salts+Aq m equilibrium with an atmosphere free from CO₂.

NaCl+Ag: t=23°

Weight of liter of solution	Grums NaCl per liter	Grams MgCO ₃ per liter	Reacting weights NaCl per liter	Reacting weights MgCO ₁ per liter
996 92 1016.82 1041.09 1070 50 1094.53 1142.48 1170.14 1199.28	0.0 28.0 59.5 106 3 147.4 231.1 272.9 331.4	0 176 0 418 0 527 0 585 0 544 0 460 0 393 0 293	0 000 0 482 1.025 1 831 2 539 3 981 4.701 5.709	0 00210 0 00500 0 00630 0 00699 0.00650 0.00550 0 00470 0.00350

(Cameron and Seidell, J. phys. Chem. 1903, 7.)

Solubility of MgCO₂ in salts+Aq-Continued Na₂SO₄+Aq; t=24°.

Weigh liter solute	of	Grams NuSO4 per liter	Gruns MgCU ₄ per liter	Reacting wts Na ₂ SO ₄ per later	Reacting wts MgCC per liter
997 1021 1047 1080 1133 1157 1206 1223 1241	.24 .60 .95 .85 .34 .03	0.00 25 12 54 76 95 68 160 80 191 90 254 60 278 50 305 10	0 216 0.586 0 828 1 020 1 230 1.280 1 338 1 338 1 388	0 000 0.178 0.388 0 678 1 140 1 360 1.804 1.973 2.162	0 00258 0 00700 0.00990 0 01219 0 01470 0.01530 0.01600 0.01600 0 01660

$t = 35.5^{\circ}$.

Weight of hter of solution	Grams Na _i SO ₄ per liter	Grams MgCOs per liter	Reacting weights Nu ₃ SO ₄ per liter	Reacting weights MgCO ₂ per liter
995.15 1032 89 1067.23 1094.77 1120 38 1151 70 1179.82 1196.32 1236.52	0.32 41 84 81.84 116.56 148.56 186.70 224.00 247.20 199.20	0.131 0.577 0.753 0.904 0.962 1.047 1.088 1.100 1.130	0 296 0 579 0 826 1 052 1 323 1 587 1 751 2 120	0 00156 0 00689 0 00900 0 01080 0 01149 0 01251 0 01300 0 01314 0 01350
	(Camon	on and S	(Ilabial	

Na₂CO₂+Aq: t=25°.

Weight of liter of solution	Grams Na ₂ CO ₂ per liter	Grams MgCO; per hter	Reacting weights Na ₂ CO ₂ per liter	Reacting weights MgCO ₂ per later
996 84 1019.89 1047 72 1082 47 1118 91 1147 66 1166 05 1189 38	0 00 23 12 50.75 86.42 127.30 160.80 181.90 213.20	0.223 0.288 0.510 0.879 1.314 1.636 1.972 2.317	0.000 0.220 0.482 0.820 1 209 1.526 1.727 2 024	0 00286 0 00344 0 00620 0 01027 0.01570 0 01955 0 02357 0.02770
	10	1.0		

(Cameron and Seidell.)

Solubility in salts+Aq.

g salt added per litra	mg.MgCO ₂ dissolved per litre
0 0	94 4
0.585 g. NaCl 1.17 g. " 2.93 g. "	128.3 134.4 120.95
0.85 g. NaNO ₃ 1.70 g. " 4.25 g. "	122.85 138.80 137.20

Solubility in salts+Aq -Continued				
g sait added per htro	mg MgCOs dissolved per litre			
0.805 g Na ₂ SO ₄ , 10H ₂ O	145 05			
1.61 g.	162.05			
4.03 g.	150.75			
0 53 g. Na ₂ CO ₂	98 6			
1 06 g. "	53 5			
2 65 g. "	15 7			
0 51 g. MgCl _{2,} 6H ₂ O	47.0			
1 02 g.	39.5			
2 55 g. "	35.3			
The solubility of MgCC	3 in CO2-free water			

is mereased by the addition of NaCl, NaNO, or Na₂SO₄, 10H₂O but decreased by the addition of Na₂CO₅ or MgCl₂, 6H₂O.

(Gothe, Ch. Z 1915, 39, 306.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20, 828.) Insol. in acetone. (Naumann, B 1904, 37, 4229.)

Insol m acetone and m methylal. (Eidmann, C C 1899, H. 1014.)
Insol m methyl acetate (Naumann, B. 1909, 42, 3790), ethyl acetate (Naumann.

B. 16c4, 37, 3601.)

Min. Magneside. Very sl. attacked by warm cone. HCl+Aq. 100 pts. H₂O dusolve 0.0027 pt., calculated as MgO. (Lubar).

Solution in H₂O contains 0.018 g, Mg and 0.005 g, CO₂ per l. at 20°. (Wells, J. Am. Chem. Soc. 1915, 37, 1705.)

Chem. Soc. 1915, 37, 1705.)
Solution in H₂O containing 27.2 g. NaCl
per I. contains 0.028 g. Mg and 0.086 g. Oo₂
per I. at 20° (Wells, J. Am. Chem. Soc.

1915, **37.** 1705.) +H₂O.

12H₂O. Decomp. by suspension in H₂O into basic salt. (Engel, C. R. 100. 911.)
12H₂O. Small quantities of this salt are wholly dissolved by much H₂O. (Bincau.)
12H₂O solution contains in 100 pts. at—

0° 6,5° 8° 16° 0.15 0.153 0.155 0.179 pts, MgCO₈+3H₂O, (Norgaard, 1850.)

Decomp. by boiling H₂O into a basic insol. salt and CO₂. 100 pts. H₂O dissolve 0.1518 pt at 19°. (Fritzsche, Pogg 37.304.)
Sol. in 48 pts H₂O, and decomp. by large ant. (Fourcroy.)

100 pts. H₂O dissolve 0.1518 pt. at 10°, or sol. in 568 pts H₂O at 10°. (Beckurts, J. B. 1881. 212.) 100 pts. H₂O dissolve 0.0812 pt., calculated as MgO (Lubavın, J. russ. Soc 24. 389)

Solution in H₂O contains 0.38 g. Mg and 1.01 g. CO₂ per 1 at 20°. (Wells, J. Am. Chem. Soc. 1915, 37. 1707.) Solubility in H₂O sat. with CO₂ has been determined at 20°, 25°, 30°, 34° and 39° and 30.3% CO₂ in the gas phase. (Leather and Sill. Am. J. (2) 42, 49.) Sen, Chem. Soc. 1915, 108 (2) 13) More sol in cold all Easily sol. in acids, even when dil

Not decomp. by 1 pt. H₂SO₄+6 pts al-cohol, or by alcoholic solutions of glacial acetic, racemic, or tartaric acids, but is slowly decomp, by alcoholic solution of citric acid,

or HNO₃-abs alcohol. (Butin, 1827.)
100 pts. NaCl+Aq (2.525%) dissolve 0.1250 pt., calculated as MgO. (Lubavin.)
1% Na₃CO₃+Aq, when mixed with 1% MgSO4+Aq, cause no ppt., but 1.5-2% solutions ppt. this salt. (Brandes, 1825.) More sol. in NH₄Cl+Aq than CaCO₂. Sol.

in NHANO. +Ag, but less easily than in NH4Cl+Aq

Solubility in KHCOa+Aq at to.

Values are given in mol./litre.						
I.o.	K	Mg	Solid phase			
15°	0 0 0 6992 0 1943 0 3992 0 2681 0 5243 0 6792 0 9810	0 0095 0 0131 0 0167 0 0211 0 0192 0 0097 0 0074 0 0028	MgCO ₂ +3H ₂ O "labile MgCO ₂ +3H ₂ O+MgCO ₃ KHCO ₂ +4H ₂ O MgCO ₃ , KHCO ₃ +4H ₃ O, ""	d m (0 w		
25°	0 0 0 0985 0 2210 0 3188 0 3434 0 4216 0 4985 0 3906 0 5893 0 6406 0 788 1 125	0 0087 0 0115 0 0149 0 0175 0.0181 0 0205 0.0207 0.0196	MgCO ₃ +4H ₂ O " inhulo " inhulo MgCO ₃ +4H ₂ O+3H ₂ OO ₃ KHCO ₃ +4H ₂ O MgCO ₅ KHCO ₂ O ₄ H ₂ O " " "	AA H		
35°	0.0 0 1092 0 2001 0 2811 0 3704 0 4847 0 5807 0 5088 0 6231 0 8435	0 0071 0 0098 0 0132(?) 0 0142 0 0163 0 0177 6 0198 0 0184 0 0153 0 0119	MgCO ₃ +3H ₂ O " " " " " " " " " " " " " " MgCO ₃ +3H ₂ O+MgCO ₃ KHCO ₄ +4H ₅ O MgCO ₃ , KHCO ₄ +4H ₃ O	at		

The experiments were performed in such way as to prevent, as far as possible, loss of CO. from the solutions. (Auerbach, Z. Elektrochem. 1904, 10. 164.)

at CO2 pressures corresponding with 0.5 to a little NaCl, dissolves 5 g MgCO2. (Hunt,

 More sol in cold alkali borates+Aq than in hot. (Wittstein.)

Sol in Na citrate+Aq.

+4H₂O. Efflorescent.

+5H₂O. Two modifications. a. Plaies. Sol in 600 pts. H₂O at 0-7°; solution gradually separates out MgCOa+ 2H₂O H₂CO₁+Aq sat. at 3-4 atmos. pressure dissolves 9% at 0-4° MgSO₁+Aq dissolves 4% moist salt at 3-4°, and its easily sol. in Na₂CO₂, or NaHCO₃+Aq. (Norgaard.)

β. Prisms. More efflorescent than a Sol in 600 pts H2O but not in MgSO4, or Na2CO2 +Aq. Both forms are decomp, by boiling H₂O. (Norgaard.)

Magnesium hydrogen carbonate, $MgH_2(CO_1)_2(?)$.

Known only in solution.

 H₂CO₃+Aq sat. at 1 atmos. pressure lissolves 23 5 g MgCO₂. (Bineau.) 1 1 carbonic acid water dissolves 0.115 g. nagnesate at 18° and 0.75 m. pressure Cossa, B. 2. 697) 1 pt. MgOQ; dissolves m H₂O saturated with CO₁ at 5° and a pressure of—

6 atmospheres n 161 144 134 100 7 110 76 pts. H₂O (Merkel, Techn. J. B. 1867, 213)

H2CO2+Aq sat at 3-4 atmos, pressure dissolved 9% MgCO₃+5H₂O. md 0-4 Norgaard.)

MgCO+3HO is sol in 72.4 pts. HcCG+ g sat. at 20° and oid. pressure; 30 5 pts. HCO.+Ag sat, at 2 atmos. pressure, 26.0 1300±7Aq sat. at 3 atmos. pressure, 30.0 11.1 pts. H₂CO₂+Aq sat. at 4 atmos pres-ure; 17.09 pts. H₂CO₂+Aq sat. at 5 atmos pressure (Beckurts, J. B. 1881. 212.)

 H₂O sat. with CO₂ at p pressure and t° dissolves g MgCO₃.

i	atmos	t°	MgCO ₂	mm	t°	MgCO:
	1 0 2 1 3 2 4 7 5 6 6 2 7 5 9 0	19 5 19 5 19 7 19 0 19 2 19 2 19 5 18 7	27 79 33 11 37 3 43 5 46 2 48 51 51 2 56 59	751 760 762 764 764 765 765 765 765	13 4 19 5 29 3 46 62 70 82 91 100	28 45 25 79 21 95 15 7 10 4 8.1 4 9 2 4 0 0

(Engel and Ville, C. R 93. 34.)

The low figures of other observers are due to their using basic carbonates. By very careful to their using basic carbonates. By very careful experiments it was found that 1 L H₂O

sat. with CO2 at 1 atmos, pressure and to dis-| Solubility in NaCl+Ag at 23°C, in equilibsolved the following amts, of MgCO:

_					
10	1 ECO	t ^o	MgCO:	to.	Macon
3 5 12	35.6 26.5	18 30	22 1 15 8	40 50	22 1 9 5

(Engel, C R, 100, 444.)

1.9540 g are sol. 1 l. H2O at 15°. (Treadwell and euter, Z. anorg. 1898, 17, 202.) MgH2(CO4); is not stable except in the presence of free CC:

At 15° and 760 mm, a solution having the partial pressure of CO₂=0, contains 1.9540 g. MgH₂(CO₃)₂ and 0.7156 g. MgCO₃ per liter. (Trendwell and Router, Z. anorg. 1898, 17, 204.)

Solubility of MgH2(CO3)2 in H2O containing carbonic acid, at 15°

% earlione and in the gay at 0° and 760 mm	pertial pressure	mg free COs	mg MgH-(CO3) m 200 er of the solution	mg MgCOam 100 cc of the solution	пя Мк
18 80 5 47 4.45 1.54 1 37 0.62 0 60 0 33 0 31 0 0.14 0 03	143 3 41 6 33 8 11 7 10 3 8.2 4 7 4 6 2 5 1 6 1 1 0 3	119 0 86 8 223 5	1210 5 1210 5 1210 5 1076 6 762 9 505 2 366 3 341 7 263 2 222 9 216 9 203 6 203 3 196 0 203 6 195 4	77 3 76 5 80 7 70.1 8 74 8 77 1 71.0 71 1 68 5 70 2 62 5 61 6 64 1	201 6 201 6 201 6 201 6 149 2 122 4 86 5 78.8 65.5 59.4 56 6 52 9 51 1 51 8

(Treadwell and Reuter, Z. anorg. 1898, 17. 200.)

No bicarbonate of magnesium is formed under pressures of CO₂ up to five atmos-pheres at 0°. (Cameron, J. phys. Chem. 1908, pnere. 12. 570.)

A critical analysis and recalculation of results of Engel and others is given by Johnston (J. Am Chem. Soc 1915, 37. 2001.)

rum with an atmosphere of CO.

g NaCl per liter	g Mg(HCOs)2 per hter
7.0	30 64
56 5	30 18
119 7	27 88
163 9	24.96
224 8	20.78
306 6	10.75

(Cameron and Seidell, J phys Chem. 1903. 7.582)

Solubility in Na₂SO₄+Aq at 23° C in equilibrum with an atmosphere of CO.

Strength of NasSO:+Aq	g Mg(HCOa): in 100 ccm.
0.0	1.463
12%	1.916
saturated	1.612

(Cameron and Scidell.)

Magnesium potassium carbonate, MgK2(CO3)2+4H2O.

Quickly decomp by rold H₂O. (Deville, A ch. (3) 33.87) Ppt. Decomp. by H₂O. (Reynolds, Chem. Soc. 1898, 73, 264.) MgKH(CO2)2+4H2O Insol. in H2O, but decomp, thereby into an insol basic Mg carbonate, and MgH2(CO3)2 and KHCO3, which dissolve (Berzelius.)

Magnesium rubidium hydrogen carbonate, MgRbH(CC₈)₂+4H₂O. Decomp in the air (Erdmann, A. 1897,

294. 75.) Magnesium sodium carbonate, MgCO1.

No. CO. Quickly decomp, with H2O. (Deville, A. ch (3) 33. 89.) +15H2O. (Norgaard.)

Magnesium sodium carbonate sodium chloride, MgCO, Na₂CO, NaCl. Decomp. by H₂O. (de Schulten, C. R. 1896, 122, 1427.)

Manganous carbonate, MnCO, Permanent. Practically insol. in H2O. Sol. remainent. Fracticuty mison in 112.
In H₂CO₂+Aq and in acids generally.
1 l. H₂O dissolves 0 065 g. at 25°. (Ageno and Valla, Att. Accad. Linc 1911, 20, II. 708.)
Insol. in liquid NH₄. (Franklin, Am. Ch.

J. 1898, 20, 828.) Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.) Min. Rhodochrosite.

+1/2, or 1H₂O. Insol. in H₂O. Sol. in acids. Sol. in H₂CO₂+Aq. 1 pt. MnCO₂ requires 2000 pts. H2CO+Aq for solution.

(Lassaigne.) Sol. in 7680 pts H₂O, and 3840 very sl. sol. in Na₂CO₁+Aq; sol in warm treshly precapitated is sol. in NH₄ salts+Aq. Not pptd. in Nresence of Na citrate (Spil-(Wittstein, Not more sol in H₂O containing Na₂CO₃ or K₂CO₃ than in pure H₂O.
(Ebelmen, Insol in NH₂Cl, or NH₃NO₃+

Aq. (Brett.)
Sol. in ferric salts+Aq, with evolution of CO2 and pptn. oi Fe2C6H1. (Fuchs.) Not pptd. in presence of Na citrate.

(Spiller.)

Manganous potassium carbonate. $MnK_2(CO_3)_2+4H_2O_4$

Ppt. Decomp by H₂O alone. SI sol, in Mn(C₂H₂O₂)₂+Aq or K₂CO₂+ Aq. (Reynolds, Chem. Soc 1898, 73, 264.)

Manganous carbonate hydroxylamine, 4MnCO, 3NH,0+2H,0

Sol. in acids. (Goldschmidt and Pot Syngros, Z. anorg 5. 138.)

Mercurous carbonate, Hg₂CO₂

Ppt. Decomp, by hot H2O. Sol. in hot or warm NH₄Cl+Aq, but less easily than mer-curic carbonate, less sol. in NH₄NO₃+Aq. (Brett, 1837.)

Sl. sol. in K2CO+Aq; partially sol with decomp. in NH4OH+Aq. (Wittstein)

Mercuric carbonate, basic, 4HgO, CO2. Can be washed with cold H₂O without de-

comp. (Millon, A. ch. (3) 19. 308.) 3HgO, CO₂. Insol. in cold H₂O. Sol. in CO₂+Aq; sl. sol. in K₂CO₂+Aq. Easily sol. in NH4CI+Ag (Berzehus.)

Neodymium potassium carbonate, Nd2(CO8)8, K.CO.+12H.O

Ppt. Sol. in 30% K2COs+Aq. (Meyer, Z. anorg 1904, 41. 105.)

Neodymium sodium carbonate, 2Nd₂(CO₂)2, $3Na_2CO_3 + 22H_2O(?)$.

Ppt. Easily decomp. Sl. sol. in conc. Na₂CO₂+Aq. (Meyer, Z. anorg. 1904, 41. 106.)

Nickel carbonate, basic, 3N1O, CO2+5H2O. Min. Zaratite. Easily sol in HCl+Aq. Pptd. nickel carbonate is a basic salt of

varying composition Insol in H2O or H2CO2 +Ao Sol, in acids Sol, in (NH4)2CO4+Aq;

Nickel carbonate, NiCO.

1 l H.O dissolves 0 0925 g at 25% (Ageno and Valla, Att Accad, Linc. 1911, 20. II. 706.)

Not attacked by cold cone HCl, or HNO. +Aq. (Senarmont, A. ch (3) 30. 138.) +6H₂O Sol. in acids (Deville, A. ch (3) 35, 446.)

Sec also Carbonate, nickel, basic.

Nickel potassium carbonate, NiCO₃, K₂CO₂+ 4H₂O.

Ppt (Deville, A. ch. (3) 33. 96) N1CO3, KHCO3+4H2O Decomp. by H2O, but may be washed by KHCO1+Aq without decomp. (Rose, Pogg 84, 566)

Nickel sodium carbonate, N1CO3, Na2CO3+ 10H.O. Ppt. (Deville)

Nickel carbonate hydroxylamine, 2N1(OH)2. 4N1CO2, 5NH2OH+7H2O.

Ppt. (Goldschmidt and Syngros, Z anorg. 1894, 5, 143.) 2N₁(OH)₁, 4N₁CO₃, 6NH₂OH+6H₂O.

Ppt. (Goldschmidt and Syngros.)

Paliadious carbonate, PdCO3, 9PdO+ 10H,O.

Insol in H₂O; partly sol, in NH₄OH+Aq; al. sol. in Na COa + Au, sol. in acids. (Kane, 1842.)

Potassium carbonate, K₂CO₃ Deliquescent. Very sol. in H₂O with evolution of heat

Sol in 1.05 pts. HaO at 3°, 0.962 pt at 6°, 0.960 pt at 12.6°, 0.747 pt at 23°, and 0.490 pt at 70° (Osam) Jeann) Sol in 0 92 pt. H₂O. (M. R. and P.) Sol in 0 922 pt. H₂O at. 15° (Gerlach) Sol in 1 pt. H₂O (1bl) 100 pt. H₂O at 15 5° divente 100 pts. K₂CO₂₋ (Ure's

Dict.)

Solubility in 100 pts. H2C at to.

t°	Pt9 K±COs	t°	Eta KrCO1	t°	Pts K ₂ CO ₃
0	83 12	40	106.20	80	134 25
10	88.72	50	112.90	90	143 18
20	94 06	60	119.24	100	153 66
30	100 09	70	127 10	135	205 11

(Poggiale, A. ch (3) 8. 468.)

	Solubility	in 10	0 pts. H	Oat to		Šp	gr of K	2CO2+4q	at 15°-C	ontinues	l
ţ°	Pts K ₂ CO ₂	t°	Pts K ₂ CO ₂	t°	Pts K,CO ₂	% K		Sp gr	% Ks0		Sp gr 1 391 7
0 1 2 3 4 5 6	89.4 94 97 100 102 104 105	46 47 48 49 50 51 52	119 120 120 121 121 121 122 122	91 92 93 94 95 96 97	148 149 150 151 151 152 153 154	23 41 24 17 25 44 26 4 27 4 28 35 29 36 30 3- 31 33 32 86	75 31 32 12 12 10 10 19	1 2836 1 2980 1 3078 1 3177 1 3177 1 3277 1 3378 1 3480 1 3585 1 3692 1 3803	34 24 35 23 36 23 37 24 38 14 39 14 10 15	35 44 23 32 31 30 30	1 4030 1 4147 1 4265 1 4384 1 4504 1 4626 1 4750 1 4812
7 8 9	106 107 108	53 54 55	123 124 124	98 99 100	155 156		Sp gr nt		point of K	2CO2+4	Λq
10 11 12	109 109 109	56 57 58	125 125 126	101 102 103	157 158 159	K ₂ ČO ₁	Sp gr	B-pt	K₂00,	Sp gr	Bpt.
13 14 15 16 17 18 19 20 21	110 110 110 111 111 111 111 111 112 112	59 60 61 62 63 64 65 66 67	197 127 128 128 129 130 130 131 132	104 105 106 107 108 109 110 111 112 113	160 161 162 163 164 166 167 168 169 171	4 7 9 0 13 2 16 8 20 5 24 0 27 3 30 5 33 6 33 6 36 2 39 0 41 7	1 06 1 11 1 15 1 19 1 22 1 25 1 28 1 31 1 34 1 38 1 41 1 14	100 56° 100 56 101 11 101 11 101 68 102 22 102 78 103 33 104 44 105 56 107 22 108 33	43 3 45 8 48 8 52 1 56 0 60 4 65 5 71 8 79 8 88 4 100 0	1 46 1 50 1 54 1 58 1 63 1 70 1 80 1 95 2 15 2 40 2 60	100 44° 111 11 112 78 114 44 116 11 117 78 119 44 122 22 125 56 129 44 137 78
22 23 24 25	112 112 112 113	68 69 70 71	132 133 133 134 135	114 115 116 117	172 173 175 176		Sp. gr		olton) Os+Aq	nt 17.5	۶.
26 27 28 29	113 113 113	72 73 74	135 136	118 119	178 179	K ₂ C() ₁	Sp gr	K2002	Sp gr	K1001	Sp gt
30 31 32 33 34 35 36 37 38 40 41 42 43 44	114 114 114 115 115 115 115 116 116 117 117 117 118 118 119	75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	137 138 139 140 141 141 142 143 144 144 145 146 147	120 121 122 123 124 125 126 127 128 129 130 131 132 132 133 134 135	181 182 184 185 187 188 190 191 193 195 196 198 200 201 203 205	1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17	1 009 1 018 1 027 1 036 1 045 1 064 1 073 •1 082 1 102 1 112 1 123 1 133 1 143 1 163	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	1 182 1 192 1 203 1 213 1 224 1 235 1 245 1 256 1 267 1 278 1 280 1 312 1 323 1 334 1 345 1 345	36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52	1 368 1.380 1.392 1.404 1.416 1 429 1.441 1 453 1 466 1.478 1.503 1.503 1.516 0 5529 1.555 1 569
	Mulder, S			el 1864	. 97.)	18	1.179	H .		1	<u></u>

(Muder, Scheik, Vernandel 1804, 97.)

112 g are sol. in 100 g. H₂O at 20°. (Frankforter, J. Am. Chem Soc. 1914, 36. 1106)

Sp gr of K₂CO₁+Au at 15°.

	op at 01 11001 110 10 1							
% K ₃ CO ₂	Sp gr	% K ₂ CO ₂	Sp gr					
0 489 0 979 1 958 2 934 3 916 4 895 5 874 6 853	1 0048 1 0008 1 0108 1 0299 2 0401 1 0505 1 0811 1 0719	11 748 12.727 13 708 14 685 15 664 16 648 17 622 18 601	1 1282 1 1400 1 1520 1 1642 1 1764 1 1892 1 2020 1 2150					
7 832 8 811 9 790	1.0829 1.0940 1.1052	19 580 20 539 21 538	1 2282 1 2417 1 2554					
10 769	1 1166	22 517	1 2094					

(Hager, Comm. 1883.)

The sp. gr. increases or diminishes between 8° and 20° by a decrease or increase of temp. of 1° by the following amounts:—

mounts:
Corr.
0 0007 0.0005 0 0003 0.0002

(Hager)

	-+Aα	

% K:CO:	Sp gr	% K ₂ CO ₃	Sp gr.		
% K ₁ CO ₃ 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Sp gr 1 00914 1 01829 1 02743 1 03658 1 04572 1 05513 1 06354 1 07396 1 08337 1 09278 1 11238 1 12219 1 13199	% K ₂ CO ₃ 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Sp gr. 1 27893 1 28999 1 30105 1 31261 1 32417 1 33573 1 84729 1 35885 1 37082 1 38279 1 39476 1 40673 1 41870 1 43104		
15 16 17 18 19 20 21 22 23 24 25 26 27	1 14179 1 15200 1 16222 1 17243 1 18265 1 19286 1 20344 1 21402 1 22459 1 23517 1 24575 1 25681 1 26787	42 43 44 45 46 47 48 49 50 51 52 024	1 44388 1.44573 1.46807 1 48041 1 49314 1.50588 1 51861 1 53135 1 54408 1 55728 1 57048 1 57048		

(Gerlach, Z. anal. 8. 279)

Sp. gr. of KaCOa+Ag at 15°.

% K ₂ CO ₃	Sp gr.	% K:CO:	Sp gr
5	1 0449	30	1 3002
10	1.0919	40	1 4170
20	1.1920	50	1 5428

(Kohlrausch, W. Ann. 1879. 1.)

K₅CO₅+Aq containing 10% K₇CO₅ boils at 100.8° K₅CO₇+Aq containing 20% K₅CO₇ boils at 102.2° K₅CO₅+Aq containing 20% K₅CO₇ boils at 104.5° K₇CO₇+Aq containing 40% K₅CO₇ boils at 108.6° K₇CO₇+Aq containing 50% K₅CO₇ boils at 115.2° (Gerslach).

Sat. K_4CO_3+Aq containing 158 pts. K_2CO_2 to 100 pts. H_2O forms a crust at 126°; highest temp. observed 134 9°. (Gerlach, Z. anal. 26.

427.)

B.-pt. of K₂CO₃+Aq containing pts. K₂CO₄ to 100 pts. H₂O. G=according to Gerlach (Z. anal. 26, 459); L=according to Legrand (A. ch. (2) 59, 438).

Legrand	! (A. ch. (2) 59. 4	138).
B-pt	G	I,
101°	11.5	13
102	22 5	22 5
103	32	31
104	40	38 8
105	47.5	46.1
106	54.5	53 1
107	61	59.6
108	67	65 9
109	73	71 9
110	78.5	77.6
111	83 5	83 0
112	88 5	88.2
113	93.5	93.2
114	98 5	98 0
115	103 5	102 8
116	108 5	107 5
117	113 5	112 3 117 1
118	117 5 122.5	117 1
119	122.5	122 0
120	127 5	127 0
121	132 5	132 0
122	137 5	137 0
123	142 5	142 0
124	147 5	147 1
125	152 5	152.2
126 127	158	157 3
127	163 5	162 5 167 7
128	169 5	167 7 172.9
129	175.5	178 1
130	181.5	178 1
131	187.5	183.4 188.8
132	193.5	188 8
133	199.5	194 2
133 3	202.5	199.6
134		205 0
135		200 0

When K₂CO₃+Aq is sat, with NH₃, two layers form. When K₂CO₃ is added to NH₄OH+Aq, it dissolves with formation of two layers and evolution of NH₃. The same takes place also when sat. K₂CO₂+Aq and NH₄OH+Aq are brought together. (Girard, Bull. Soc 9. 43. 552.)

Solubility of K₂CO₃+KHCO₃ in H₂O at 70°.

g rer 100	Sp. gr.	
K _i CO _i	KHCO:	1 2 2 2
0 0 11 8 16 7 23 8 34.0 43.0 51 6 60 5 81.4	21.2 15.3 12.6 10.3 7.6 5.9 4 9 3 8 0.0	1.133 1.182 1 200 1.241 1 298 1 350 1 398 1.448 1.542

(Engel, A. ch. 1888, (6) 13. 348.)

Equibbrium between	K2COs and KHC	Oa in Solt	ibility of K2CO2+Na2CO	2 m H ₂ O at 24 2°.

tem: K ₂ CO ₂ , KHCO ₃ , and CO ₂ at 25° e						
Grams stoms K per liter	Amount of volution used for titration ec	Amount K combined as K.CO ₁ Pet cent	Amount K combined as KHCO, Per cent			
0 393	5	77 5	22 5	2000		
0 553	2	83 9	16 1	1		
1 025	2 2	86.8	13 2	000000000000000000000000000000000000000		
1.865	2 2	91.4	8.6	ľ		
2.820	2	89 0	11 0	l		
3.710	2	88 6	11 4	ŀ		
4 310	1	89 6	10 4	ļ		
5.695	1 1	88 7	11 3	1		
	Grams Atoms K per liter 0 393 0 553 1 025 1.865 2.820 3.710 4 310	Grane August of Street Control	Grame Automet of Control of Contr	Ground See Schools of the See School See Sch		

In 1000	rem H ₂ O	Solid phase
Na ₂ CO ₂	K₂C0₃	,
28 35 354 2 369 7 363.0 330 8 273 8 187 2 130 0 137 9 112 3	150.03 226.6 243.5 282.7 344.9 483.9 921.5 982.6 1074.0 1085.1 1108.6 1125.7	Na ₂ CO ₃ " Na ₂ CO ₃ , K ₂ CO ₂ ,6H ₄ O " " " " " " " " " " Na ₂ CO ₃ , K ₂ CO ₂ 6H ₄ O + Na ₂ CO ₃ K ₃ CO ₄

(Kremann and Zite\, M. 1909, 30. 317.)

Solubility of K₂CO₂+Na₂CO₃ in H₄O at 10°.

In 1000 cem H₂O

Na₂CO₂ K₂CO₁ 119.8

(Cameron and	Briggs, J phys 5. 546.)	Chem. 1901,
Valuabilities of	IC CO. LNI- CO.	77.0 -4

-		100 g O	g per H	100 g	
	Solid plasse	Na,CO3	K,CO3	NasCOa	K,CO-
So -	K ₂ CO ₂ 2H ₂ O " K ₂ CO ₂ 2H ₃ O +Nn ₃ CO ₃ . K ₂ CO ₃ 12H ₂ O	0 2 2 3 7 10 0	112 110 7 108 7 105 5	0 1 0 2 6 4 6	52 82 52 0 50 7 19 0
١-	Na ₂ CO ₂ , K ₂ CO ₂ 12H ₂ O	8.8	94 6	4.3	46.5

52 82	0 1	1112	0 1	K-CO-2H-()	1
52 0	10	110 7	2.2		
50.7	2.6	108 7	3.7		
19 0	4.6	105 5	10 0	K2CO22H2O+Nn2CO2	
10.0	* "	100 0	10 0	K-CO ₂ 12H+O	
46 5	4.3	94 6	8.8	Nu ₂ CO ₂ , K ₂ CO ₂ 12H ₂ O	i.
46 2	5 2	94 8	10 6	MERCAN, ICO 121120	
		77 6			ŧ.
41 0	6.3	68 3			ı.
37 7	7.0		12 6		ŧ.
31.0	10 5	33 6	17 9	1 :	ł.
29 8	11 3	30 5	19 1		1
25 2	14 1	41 4	23 2		Ł
22 4	16 6	3 3 8	27 3		Ł
19.8	18 7	32 1	30.3		U
10 1	10 7	31 2	32 1		ı.
15 î	23 2	21 5	37 6	NasCOs. KsCOs 12H-0	ı
19 f	A0 2	2.0	91.0	+NasCO110H.O	1
	22 8	23 1	36 4	Na ₂ CO ₂ 10H ₂ O	3
14 5	22 7	16 2	34 0	NagCO2 102120	١.
10.8		10 2		1	ŧ
10 7	22 4	16 0			ŧ
17	21 9	6.4	29 8	1	١.
0	22 71	0	29 37		н

176.4 108 61 19	354.1 500.1 0052.9 1084 0	Na ₂ CO ₃ , K ₂ CO ₃ K ₂ CO ₅		
(Kremann and Zitek, M. 1909, 30, 324.)				

Solid phase

olubility of K₂CO₂+KNO₂ in H₂O at 25.2°.

• 11 of the solu	ition contains
Mol K ₂ CO ₂	Mol KNOs
0.00 0 59 1 35 2 10 2 70 3 58	3.217 2.62 1.97 1.46 1 14 0 79

(Touren, C. R 1900, 131. 259)

[22 // [] 0 [29 9/]	Comomo,	01 111000	i minot m mio m no
sal a, J. Tok. Chem. Soc. 1911, 32, 870)	In 1000	cem H ₂ O	
,	KNO ₂	K ₂ CO ₂	Solid phrase
	202 0	1	KNO.

(Kremann and Zitek, M. 1909, 30. 325.)

Solubility	of K2CO2-	+KNO ₃ in H ₂ O at 24.2°,	į
	cem H ₂ O	1	
KNO	K ₁ CO ₃	Solid phase	
376 85 285.00	130 3	KNO,	
161 · 67 141 · 80	348 4 371 9	u u	
73.04 38.78	688 1 878.3	и	
31.11	1112.2	KNO ₂ , K ₂ CO ₃	

(Kremann and Zitek, M. 1909, 30, 316.) Solubility of K2CO3+KCl in H2O at 304

K2CO1	к [®] n	Solid phase
53 27 52 22 51 66 * : 1 64	0 1.03 1.07 26 22	K ₂ CO ₃ 1½H ₂ O K ₂ CO ₃ 1½H ₂ O+KCl KCl ;

4 Author gives intermediary data

	(de V	Taal, Dissert. 1910.) \$\mathbb{I}_2CO_8 + KOH in H_0O at \times 0^\circ\$				
% KOH % K2CO4 Solid phase						
55 75 55 14 53 77	0 2 05 2 50	KOH 2H ₂ O KOH,2H ₂ O+K ₂ CO ₃ ,1½H ₂ O K ₂ CO ₃ 1½H ₂ O				
0	53 27	K ₂ CO ₃ .1½H ₂ O				
* Au	* Author gives intermediary deta					

(de Waal, Dissert. 1910.) Insol ın liquid NH₈. (Franklin, Am. Ch

J 1898, 20, 828.) Sol in 9 pts alcohol of 17° B. Insol in

absolute alcohol Not decomp by 1 pt. H₂SO₄+6 pts. ab solute alcohol. Not decomp. by 1 pt. HNO₄+ 6 pts. absolute alcohol. Not decomp by alcoholic solution of HCl, oxalic, racemic, to

taric, or glacial acetic acids, but is decomp. alcoholic solution of citric acid. Solubility in methyl alcohol. Composition liquids in equilibrium with solid K2C

at to. Unner layer Lower layer

	K,CO,	EC-H2	OFH.	K,CO,	CH-OF	Ç.	0 04			
t°	%	18	80	35	50	80	* So			
-30	21 7	42 2	36 1							
$-20 \\ -20$	13 8	52 1	34 1	44 2	8 2	47.6				
-20	7 6	66 3	26.1	46.3	6 7	47	A ft in met			
0	7 4			46 6	6 6	46 8	alcoho			
$^{+17}_{35}$	6.2	69.6 72.9	24.2 22.1	48 3	5 7	46 44 7	(J phy and T			
	35 5 0 72 9 22.1 . 4 3 42 7 and T (de Bruyn, Z phys Ch 1900, 32. 63 and ff.) 2697)									
(ae Bi	ruyn, z	pnys	s un i	1900, 3	a. ua a	au II.)	2001)			

Solubility in ethyl alcohol Composition of hquids in equilibrium with solid K2COs at to.

	U	pper lay	rr	I.	ower las	er
12	7, K,CO;	₽ CsHJOB	O, H.O	', K,CO3	C.C.M.OH	05 R±0
-18 0 -17 35 50 75	0.03 0 04 0 06 0 07 0 09 0 12	90 3 91 9 91 5 90.9 91.8 91 4	9 7 8 1 8 4 9 8 1 8 5	51 2 51 3 52 1 53 4 55 3 57 9	0 2 0 2 0 2 0 2 0 2 0 2 2 0 2	48 6 48 5 47.7 46.4 44.5 40 9

(de Bruyn)

Solubility in ethyl alcohol +Aq at 25°. When K2CO2 is dissolved in ethyl alcohol+ Ag two lavers are formed, the compositions of which are as follows:

T.	pper lay	1	Lower laver			
alcohol	H-O	K₁Ĉo₃	alcuhol	H*0	KiCo.	
81 25 71.67 56.98 53.92 50.21 43.93 37.64 28 43	18 61 27 91 41 55 44 13 47 24 52 04 56 45 61 57	0 14 0 42 1.47 2 05 2 55 3 92 5 90 10 00	0 82 1 79 4 02 4 88 5 54 7 71 10 54 15 73	55 42 61 61 65 73 66 87 67 06 67 56 67 40 66 38	43 76 36.60 30.25 28.25 27.41 24.74 22.06 17 90	

(Cuno. W. Ann. 1909, (4) 28, 664)

Solubility of K2CO2 in alcohol + Aq at 30°.

an	K,Co,	Alcohol	O'H	Solid phase
ar- by	53 27 53 09	0 0 1	46.73 46.81	K ₂ CO ₃ 1½H ₂ O
of O ₃	0.13	90 49	9 38	" K₂CO, 1½H₂O "
	0 04	99 92	0 04	" K₂CO₅+K₄CO₃. 1½H₂O

 Solution separates into two layers. (de Waal, Dissert. Leiden, 1910)

A full discussion of the solubility of K2COs in methyl, ethyl, propyl, isopropyl, and allyl sleohols is given by Frankforter and Frary (J phys Ch. 1913, 17, 402), and Frankforter and Temple (J. Am. Chem. Soc. 1915, 37.

K₂CO₄ will "salt out" acetone from aqueous solution. The table shows the composition of the solutions at the points at which inhomogeneous solutions of K₂CO₃, acetone and H₂O just become homogeneous at 20°. 100 g of the solution con-

tai	ın.					
K ₂ CO ₂	H ₂ O	g acetone	K,CO,	H,o	g acetone	
18.84 13.32 11.83 10.13 8.24 7.22 6.04 28.87 23.94 21.960 6.46 5.91 5.604 4.50 3.80 3.80 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21	73 22 71.38 70 34 69.03 67 31 65.99 64.39 69.08 71.98 72.75 73.10 65.34 64.65 63.93 62.80 61.48 59.79 57.95 56.50	7 94 15 30 17 83 20 84 24 45 26 79 29 57 2 05 4 08 5 33 7 70 29 24 4 30 47 32 16 34 02 36 41 38 87	2 43 22 29 17 86 15 81 14 39 1 91 1 760 1 29 1 08 0 94 0 75 0 66 0 60 0 50 0 46	55 36 72.81 73 12 72 53 71 89 69 46 54 05 52 86 49 57 47 86 46 73 44 72 43 31 42.49 41.73 40 69 40 48	42 21 4 90 9 02 11 66 13 72 20 25 44 04 45 38 46 80 49 14 51 06 52 33 56 91 57 73 57 88 60 06	
_ ,,	1 00	1 '' 1	1 "		1	ł

(Frankforter and Cohen, J. Am. Chem. Soc. 1914, 36, 1121,)

Insol in benzonstrile (Naumann, B. 1914, Insol. in methyl acetate (Naumann, B.

1909, 42. 3790); ethyl acetate. (Naumann, B 1910, 34, 314) Sol in phenol.

Sol. in 13.5 pts. glycerine of 1.225 sp gr. (Vogel, N. Repert. 16. 557.)

100 g. sat. K₂CO₂+sugar+Aq contain 22.44 g. K₂CO₃ and 56 g sugar at 31.25 (Kohler, Z. Ver. Zuckerind 1897, 47.447.) +H.O. -112H2O. Very deliquescent. (Pohl.)

Deliquescent only in very moist air (Stadeler.) Sol. in H2O with evolution of heat. (Pohl

Sol. at 17.6° with absorption of heat, at 32 with evolution of heat, and at 25° with neither absorption nor evolution of heat. (Berthelot, C. R. 78, 1722.)

Sat. solution of K₂CO₆+1½H₂O in H₂O contains 53.27 g anhydrous K₄CO₆ in 100 g. solution at 30°. (de Waal, Dissert. 1910.) +2H₂O. Salt usually given as containing 1½H₂O contains 2H₂O. (Gerlach, Z. anal.

26, 460.) Sat. solution of K2CO3+2H2O contains

112 g. anhydrous KaCO, in 100 g. HaO at 25°. (Osaka, J. Tok. Ch. Soc. 1911, 32, 870.) +4H₄O. Not deliquescent in closed vessels. (Gerlach, l. c.)

Potassium hydrogen carbonate, KHCO2.

Not deliquescent.

Sol in 3.5 pts HaO at 13° (Redwood) Sol x Sol in 25 pts H-10 et 13° (Redwood) Sol in 4 pts H-0 et moderate temperatures (Regmann) Sol in 0 8334 pt boshing H-0 (Pelletier); in 4 pts cold, and 12 pts besing H-0 (M R ann P 's Pharm) Sol in i pts H-0 et 1879° (Abl) 100 pts H-0 et 13.3° directly 30 pts and at 100°, 38 pts (Ure's Diet) 100 pts H-0 et 10-11.2° dissolve 26 l pts KHCO₁, and the sp gr of solution is 1 1536 (Anthon, Dingl

100 pts. H₂O dissolve at-10° 20° 30°

1961 23.23 26.91 30 57 pts. KHCO, 40° 60° 70 34.15 37 92 41 35 45.24 pts. KHCO: (Poggiale, A. ch. (3) 8, 468)

100 pts H₂O dissolve pts. KHCO₂ at t°. Pts KHCOs Pts KHCO: 45.2 $2\check{0}$ 33 2 46.4

(Dubbits, J. pr. (2) 10, 417.)

gr. of KHCOs+Ag at 15° containing 5% KHCO, = 1 0328; containing 10% KHCO, =10674. (Kohlrausch, Z anal. 28. 472)

Sol, in 1200 pts. boiling alcohol. (Berthol-let.) Insol, in alcohol. (Dumas.) 100 pts. H₂O dissolve 19.3 pts. KHCO_a and 8 3 pts. NaHCO, if the sat. solution of latter

is sat, with former; and 26 1 pts KHCO, and 6.0 pts NaHCO2, if the sat. solution of the former is sat with the latter, all at 10° (Mulder, J. B. 1866. 6)

Insol, mesat, KeCOa+Aq. (Engel, C. R. 102, 365.)

Solubility of KHCO++KNO+ in H₂O in an atmosphere of CO2.

S		aure or the sc	MILEON CORRERA	8		
٩	• nt 1	£ 5º	at 25 2°			
ł	Mol KHCO	Mől KNO:	Mol KHCO.	Mol KNO:		
	0 00	2 33 2 17	0 00	3 28 2 84		
)	0.76 1 16	2 03 1 92	1.33 1 91	2.65 2.45		

This case is complicated by the fact that KNO2 is more sol. in H2O sat with CO2 than in pure H₂O.

(Touren, C. R. 1900, 131, 261.)

Insol. in benzonitrile (Naumann, B. 1914. 47, 1370.) Insol in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate (Naumann,

B. 1910, 43, 314.) Potassium praseodymium carbonate, K2CO2,

Pr₂(CO₂)₂+12H₂O. Ppt. Sol. in 20% K2CO4+Aq (Meyer, Z. anorg, 1904, 41, 104.)

Potassium samarium carbonate, K,CO, Sm₂(CO₂)₂+12H₂O. (Cleve.)

Potassium silver carbonate, KAgCO. Decomp by H₂O. (de Schulten, C. R.

105, 811 Ppt. Decomp. by H2O. (Reynolds, Chem. Soc 1898, 73 265)

Potassium sodium carbonate, KNaCO++ 6H₀O

Slightly efflorescent Sol. in 0.75 pt H₂O at 12.5°; in 0.54 pt. H₂O at 15°. Sat. solution at 15° has sp gr.=1,366

(Stolba, J. pr. 94. 406.) Decomp, by regrestallizing from H-O but ervstallizes undecomposed from sat KaCOa+

Sol, in H₂O (Osaka, C A. 1911. 2601.) See K₂CO₃+Na₂CO₂ under Na₂CO₃ +3H₂O. (Kremann and Zite'r, M 1909. 30, 317) Does not exist (Osal'a)

K₂CO₃, 2Na₂CO₃+18H₂O. SI efflorescent. Very sol in H₂O. (Manignac.)

Potassium stannous carbonate, K2CO2, 2SnCO₂+2H₂O Decomp. by H₂O (Deville)

Potassium uranvl carbonate, 2K,CO: (UO2)CO3.

Sol. without decomp. in 13.5 pts. H₂O at 15°, and in somewhat less warm H₂O Sol. in boiling H2O with decomp More sol in K2CO2, or KHCO2+Aq than m H₂O. (Rose.) Insol, in alcohol. (Ebelmen, A. ch. (3) 5.

189.) Potassium zinc carbonate, 4K-O, 6ZnO, 11CO2+8H2O.

Can be washed with cold H₂O without decomp. (Deville, A. ch. (3) 33. 99.)

Praseodymium carbonate, Pr₂(CO₂)₈+8H₂O. Sol in H₂O. (von Schule, Z. anorg. 1898, 18, 362.)

Prasecdymium sodium carbonate. 2Pr₂(CO₂)₃, 3Na₂CO₂+22H₂O(?).

Ppt. Essily decomp (Meyer, Z. snorg. 1904, 41. 105.)

Radium carbonate.

Less sol. in H₂O than corresponding Ba comp. (Curie, Dissert 1903.)

Rubidium carbonate, Rb2CO2

Very deliquescent, and sol. in H2O. ts. absolute alcohol dissolve 0.74 pt. Rb2CO2. (Bunsen)

Rubidium hydrogen carbonate, RbHCO: Not deliquescent. Easily sol. in H₂O. (Bunsen)

Samarium carbonate, Sms(CO2)2+3H2O. · Insol. in H₂O. (Cleve, Bull, Soc (2) 43. 168.)

Samarum sodium carbonate, Sm-(CO2)2. Na₂CO₂+16H₂O. Pnt. (Clove.)

Scandium carbonate, Sc+(CO+)+12H+O.

(Crookes, Rov. Soc. Proc. 1908, 80, A. 518.) Scandium sodium carbonate, Sc2(CO1)2,

4Na,CO,+6H,O. Difficultly sol. in H_2O . Sol. in cold, less sol. in hot alkali carbonates +Aq (R. Meyer, Z. anorg. 1910, 67. 410.)

Silver carbonate, Ag2CO3.

Somewhat sol in H₂O. Sol. in 31,978 pts. H₂O at 15°. (Kremers, Pogg. 85. 248.) 1 g. Ag2CO2 dissolves in 2 l boiling H2O. (Joulin, A. ch (4) 30, 260) Solubility in H₂O at 25° ≈ 1,16 x 10⁻¹

mol./1 (Spencer and Le Pla, Z. anorg 1910, 65. 14.) 1 l H₂O at 25° dissolves 1.2 x 10⁻⁴ gram

atoms of silver. (Abegg and Cox, Z. phys. Ch. 1903, 46. 11)

Insol. n H₂CO₂+Aq (Bergman.) Sol. in 961 pts H₂CO₂+Aq (Lessaugne.) 1 l. sat H₂CO₂+Aq dassolves 0 846 g. Ag₂CO₂ at 15°. (Johnson, C. N. 54. 75). Sol in (NH4)2CO3+Aq or NH4OH+Aq

Soi in (NH₂)₄U₃+Aq or NH₄OH+Aq; sl. soi in K₂O₂+Aq (Wittstein) Essaly soi in Na₂S₄O₃+Aq (Herschel, 1819) Soi. in hot NH₄Cl+Aq, and sl. soi. in NH₄NO₃+ Aq. (Brett, 1887.) Not pptd. in presence of Na citrate (Spiller) Decomp by HCl+ Aq, and chlorides+Ac Somewhat sol. in conc. NaNOa+Aq. (de

Connck, Belg. Acad. Bull. 1909, 333. Insol in houid NH₃. (Franklin, Am Ch. J 1898, 20, 829

Insol, m alcohol Insol in methyl acetate (Naumann, B. 1909, 42, 3790); ethyl acetate. (Naumann,

B. 1910, 43, 314.) Insol. in acctone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C 1899, II. 1014.)

Silver carbonate ammonia.

Easily sol. in H₂O Sol. in NH₄OH+Aq, from which it is precipitated by absolute alcohol. (Berzelius) Ag₂CO₃, 4NH₃ Ppt. Insol. in alcohol. (Kcen, C. N. 31. 231)

Sodium carbonate, Na₂CO₂.

Anhudrous. Sol. in H2O with evolution of heat.

Sol in 3 807 pts H₂O at 15°. (Freemax) 100 pts H₃O at 14 8° dissalve 7.74 pts Na₂CO₃, or 20 64 pts Na₂CO₃, 10 H₂O at 16 rather less than 1 pt booling H₃O (Thomason, PSCI) program 1 Sol in 2 pts H₂O (Thomason Sol In 2 pts H₃O at 18.75° (Abl)

Solubshiv in 100 pts H ₂ O at t ^o							
t°	Pta NasCUs	Pts Na.CO ₂ +10H_0	to.	Pts Na ₂ CO ₁	Pts. • Na ₂ CO ₂ +10H ₂ O		
0 10 20	7 08 16 06 30 83	21 52 61 98 123 12	25 30 104 6	35 90 35 90 48 50	, 171 33 241 57 420 68		
(Poggatk, A ch. (3) 8 468)							

Possesses four different degrees of solubility, according to different states of molecular constitution and degrees of hydration (Lowel. A. ch. (3) 44. 330)

Little more sol, at 34-38° than at 104°, but maximum of solubility is probably at 15° (Lowel)

Solubility of Na₂CO₂, Na₂CO₃+10H₂O, Na₂CO₃+7H₂O (a), and Na₂CO₃+7H₂O (b) in H₂O.

	Sat solution of NasCO ₃ +10H ₂ O contains—		Sut solution of Nu ₂ CO ₃ +7H ₂ O (b) contains—			Sat solution of Na ₂ CO ₂ +7H ₂ O (a) contains—		
to.	Pts Na ₂ CO ₄ m 100 pts H ₂ O	Pts Ng:CO:+ 10H:0 in 100 pts H:0	Pts NasCO; in 100 pts H ₂ O	Pts Na ₂ CO ₂ + 7H ₂ O (b) in 100 pts H ₂ O	Prs Na.CO++ 10H ₂ O in 100 pts H ₂ O	Pts Na ₂ CO ₂ m 100 pts H ₂ O	Pts Ns ₂ CO ₃ + 7H ₂ O (a) in 100 pts H ₂ O	Pt4 Na ₂ CO ₂ + 10H ₂ O m 100 pta H ₂ O
0 10 15 20 25 30 38 104	6 97 12 06 16 20 21 71 28 50 37 24 51 67 45 47	21 33 40 94 63 20 92 82 149 13 273 64 1142 17 539 63	20 30 26 33 29 58 38 55 38 07 43 45	58 93 83 94 100 00 122 25 152 36 196 93	84 28 128 57 160 51 210 58 290 91 447.93	31 93 37 85 41 55 45 79	112 94 150 77 179 90 220 20	188 37 286,13 381 29 556 71

(Lowel, A, ch. (3) 33. 382)

100 pts H₂O at 14° dissolve 60.4 pts. Solubility in 100 pts H₂O at t°—Continued Na₂CO₂+10H₂O; at 36°, 833 pts.; at 104°, 445 pts. Solubility increases to 36°, diminishes (Payen, A. ch. (3) 43. 233.) then There are apparently two maxima of solu-

bility; the one occurring at 15°, or even lower, as warm solutions cool; the other at 34-38°, when cold solutions are warmed (Payen, A. ch. (3) 44, 330)

Solubility in 100 pts. H_{*}O at t°. 1 8 11 1 8 11

to.	Na ₂ CO ₁	t°	Pts Nn ₂ CO ₃	t°	Pts Na ₂ CO ₂
0 1 2	7.1 7.5 7.8	22 23 24	23 8 25 1 26 5	43 44 45	46.2 46.2 46.2
1 2 3 4 5 6	8 4 8 9 9 5	25 26 27	28 0 29 7 31 6	46 47 48	46 2 46 2 46 2
6 7 8 9	10 0 10 6 11 2 11 9	28 29 30	33 6 35 8 38 1	49 50 51	46 2 46 2 46 2
10 11 12	12 6 13 3 14.0	31 32 32,5 33	41.4 46.2 59 0 46 2	52 53 54 55	46 2 46 2 46 2 46 2
13 14 15	14 8 15 6 16 5	34 35 36	46.2 46.2 46.2	56 57 58	46 2 46 2 46 2
16 17 18 19	17.4 18.3 19.3 20.3	37 38 39 40	46 2 46 2 46 2 46 2	59 60 61	46 2 46 2 46 2
20 21	21.4 22 6	41 42	46 2 46 2 46 2	62 63 64	46 2 46 2 46.2

fo.	Pts Na ₂ CO ₃	t°	Pts NasCOs	t°	Pts NasCO ₂
65	46 2	79	46 2	93	45.6
66	46 2	80	46 1	94	45.6
67	46.2	81	46 1	95	45 6
68	46.2	82	46 1	96	45.6
69	46 2	83	46 0	97	45 5
70	46 2	84	46 0	98	45.5
71	46 2	85	45 9	99	45 5
72	46 2	86	45 9	100	45.4
73	46 2	87	45 8	101	45.4
74.	46.2	88	45 8	102	45 8
75	46.2	89	45 8	103	45.3
76	46 2	90	45 7	104	45 2
77	46 2	91	45 7	105	45 1
78	46.2	92	45 7		

(Mulder, Scheik Verhandel, 1864, 129.)

Liable to form supersaturated solutions Supersat. Na₂CO₂+Aq (2 pts. Na₂CO₂ 10H2O: 1 pt. H2O) may be kept in a flask closed with cotton wool. (Schroder.)

When supersat. Na CO + Aq is exposed to low temperatures, the 10H-O salt orystallizes out; but under other circumstances two other salts are formed, each containing 7H₂O; one is four times as sol. at 10° as the 10H2O salt, and the other twice as sol. See above. (Löwel, A. ch. (3) 33, 337.)

See also Na2CO2+H2O, 7H2O, and 10H2O.

	Sn on of N- o	NA. I Acres 1		1					
	Sp. gr of Na ₂ C				Sp gr	of Na ₂ C	D2+A	1 at 17.5°	
% Na ₂ CO ₃ 0 372 9 744	Sp gr 1 0040 1 0081	7 812 8 184	Sp. gr 1 0892 1 0947	Na ₂ 80	N=2CO +10H2	Sp. gr	Na ct	Na CO	Sp ga
1 116 1 488 1 850 2 232 2 504 2 976 3 348 3 720 4 000 1 464 4 838 5 208 5 580	1 0121 1 0163 1 0204 1 0245 1 0245 1 0387 1 0388 1 0410 1 0452 1 0494 1 0537 1 0576 1 0625	8 556 8 628 9 300 9 672 10 044 10 116 10 788 11 160 11 532 11 904 12 276 12 648 13 020	1 0982 1 1028 1 1074 1 1120 1 1167 1 1214 1 1251 1 1308 1 1358 1 1404 1 1452 1 1500 1 1549	1 2 3 4 5 6 7 8	2 70 5 40 8 10 10 18 13 50 16 20 18 90 21 60	1 010 1 020 1 031 1 041 1 052 1 063 1 073 1 084	9 10 11 12 13 14 15 ger.)	24 30 27 00 29 70 32 40 35 10 37.80 40 50	1 095 1 105 1 116 1 127 1 137 1 148 1 157
5 972 6 324 6 396 6 768 7 440	1 0669 1 0713 1 0757 1 0802 1 0847	13 392 13 764 14 136 14 508 14 880	1 1598 1 1648 1 1698 1 1748 1 1816	Sp minis the fo	hes by a	Na ₂ CO ₃	+Aq	increases perature o	or di- of 1° by
	(Tünn	erman)			Corr		1	" Na CO	13
Sp gr. of Na ₂ CO ₃ +Aq at 15°.			0 000s 0 000s 0 000s	33		13-15 8-12 3-7			
%	Sp. gr. if % NatCO ₃	Nazi	gr if % is CO:+10H:0			Jager, Co	mm 1	-	-
1 2	1.0105 1.0210		1 004 1.008					+Aq at 3	0°.
3 4 5	1 0315 1 0420 1 0525		1 012 1.016 1.020	Sp gr	Načeu	Na ₂ CO ₃ in 1 L	Sp g	NazCO:	Na ₂ C() in 1 l
6 7 8 9 10 11 12 13 14 15	1 0631 1.0737 1.0843 1 0950 1.1057 1 1165 1.1274 1 1384 1.1495		1.023 1.027 1.031 1.035 1.039 1.043 1.047 1.050 1.054 1.058	1.310 1 300 1 290 1.280 1.270 1 260 1 250 1.240 1.230	27 30 26 46 25 62 24 78 23 93 23 93 23 93 22 21	354 9 341 3 2 327 9 3 314 7 3 301 5 8 288 5 275 4	1 22 1 21 1,20 1 19 1 18 1 17 1 16 1 15 1 14	0 19 61 0 18 76 0 17 90 0 17 04 0 16 18 0 15 32 0 14 47	249 7 237 3 225 1 214 0 201 1 189 3 177 7 166 4 155 3
16 17			1.062		(Lung	e, Chem.	Ind 1	882. 320	
18			1.070		Sp. gr	of Na ₂ C	O3+5	q at 23°	
19 20 21 22 23 24			1.074 1.078 1.082 1.086 1.090 1.094	% Na2CO1 +10H2O	N _{ES} CO ₂	Sp. gr	", N'3CO3 +10H3O	Na.co.	8р дт
25 26 27 28 29 30 31 32 33 34 35 36 37 38			1.099 1.103 1.106 1.110 1.114 1.119 1.123 1.126 1.130 1.135 1.135 1.139 1.143 1.147 1.150	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0 370 0 741 1.112 1.482 1 853 2 223 2.594 2.965 3 335 3 706 4 076 4.447 4 817 5 188 5.558	1 0038 1 0076 1 0114 1 0153 1 0192 1 0231 1 0271 1 0348 1 0388 1 0428 1 0468 1 0508 1 0588 1 0588	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	5 929 6 299 6 670 7 041 7 412 7 7.782 8 153 8 523 8 894 9 635 10 005 10 376 10 746 11 118	1 0628 1 0668 1 0708 1 0748 1 0789 1 0836 1 0836 1 0912 1 0994 1 1035 1 1076 1 1117 1 11158 1 1200
	(Gerlach, Z.	anai, 8. 27	B.)						

Sp	Sp gr. of NA_2CO_3+Aq at 23^o —Continued.						
% NasCOs +10H.0	NagCO ₈	Sp gr	%Na, CO, +10 H.O	Na ₂ CO ₃	Sp gr		
31 32 33 34 35 36 37 38 39 40	11 488 11 859 12 230 12 600 12 971 13 341 13 712 14 082 14 530 14 824	1 1452 1 1494 1 1536	41 42 43 44 45 46 47 48 49 50	15 195 15 556 15 936 16 307 16 677 17 048 17 418 17 789 18 159 18 530	1.1662 1 1704 1 1746 1 1788 1 1830 1 1873 1 1916 1 1959 1 2002 1.2045		

(Schiff, A. 113, 186.)

Sp. gr. of Na₂CO₃+Aq at 23.3°. a = number of grms. $\times 1_2$ mol. wt., dissolved in 1000 grms H₂O; b = sp. gr. if a = Na₂CO₂, 10H₂O (1_2 mol wt. = 143); c = sp. gr. if a = Na₂CO₃ (1_2 mol. wt. = 53).

a.			4		
1 2 3 4	1 086	1 052 1 100 1 145 1.187	6	1.163 1 182 1 198	1.226

(Favre and Valson, C. R. 79, 968).

8	Sp gr. of Na ₂ CO ₃ +Aq at 18°.					
Na ₁ CO ₃	Sp gr.	NasCOs	Sp gr			
.5	1.0511	15	1 1590			

(Kohlrausch, W. Ann 1879, 1.)

Sp. gr of Na₂CO₂+Aq.

g -equivalents Na ₂ CO ₂ per l.	t ^a	Sp gr tº/tº
0 002524 0 005041	16 004 16 026	1.0001418 1.0002844
0 01006 0 02501	16.049 16.028	1 000568
0.04954	16 050	1 002789
0.10188 0.24646	16.030 16.041	1.005699 1.013598
0.002628 0.003948	16.051 16.088	1 0001473 1 0002216
0 009182 0.01830	16.081 16.089	1 0005181 1 001033
0 10842 0 21570	16 042 16 055	1 006048
0 4297 2 5015	15 14 16 05	1.02346

(Kohlrausch, W. Ann. 1894, 53, 26.)

Sp. gr. of N	Ta₂CO₃+Aq at t°	 H₂O at 4°=1.
to.	% Na ₂ CO ₂	Sp gr
60°	28 74 25.20 22.25 18 23 14 06	1 2971 1 2546 1 2191 1 1746 1 1277
80°	28 59 18 26	1 2807 1 1607

(Wegscheider, M. 1905, 26. 690.)

Sp. gr. of dil Na₂CO₃+Aq at 20.004° Cono. = g. equiv. Na₂CO₂ per l. at 20.004° and 730 mm.

Sp. gr. compared with H_2O at $20~004^\circ = 1$.

Cone	Op gr
0.0000	1 000,000,0
0.0001	1 000,005,6
0 0002	1 000,011,2
0 0004	1.000,022,5
0 0005	1 000,028,1
0 0020	1 000,112,7
0 0040	1 000,225,8
0 0050	1 000,282,4
0.0100	1.000,564,8

(Lamb and Lee, J. Am. Chem. Soc. 1913, 35.

Na₂CO₃+Aq containing 5% Na₂CO₅ beils at 100 5°; 10% Na₂CO₃, at 101 1°; 15% Na₂CO₃, at 101.8°. (Gerlach)

Sat. solution boils at 104.4° (Griffiths, 1825); 105° (Kremers); 104° (Payon) Sat. solution forms a crust at 104.1°, and contains 42.2 pts. Na₂CO₂ to 100 pts. H₂O; highest temporature observed, 105°. (Gerlach, 7 and 26.427.)

B-pt. of Na₂CO₃+Aq containing pts. Na₂CO₃ to 100 pts. H₂O. G=according to Gerlach (Z. anal. 26, 458); L=according to Legrand (A ch. (2) 59, 426).

B-pt	G	L	B-pt	G	T
100 5° 101 0 101.5 102.0 102.5 103 0	5 2 10 4 15 6 20 8 26 0 31.1	7 5 14.4 20.8 26 7 32 0 36 8	103 5° 104 0 104 5 104 63 105.0	36 2 41 2 46.2 51 2	41 0 44 7 47 9 48.5

Less sol. in dil. NH₄OH+Aq than in H₂O. (Fresenius.)

See also under Ammonia. Solubility of Na₂CO₃+NH₄Cl. See under

Ammonium Chloride.
Solubility of Na₂CO₃+K₂CO₃. See under Carbonate, potassium.

The reciprocal solubility of sodium car- Solubility of Na₂CO₂+NaBr in H₂O at 30°. bonate and sodium hydrogen carbonate in H₂O has been determined. (de Paepe, C. A. 1911, 2603, and 1912, 2723.)

Solubility of Na₂CO₂+NaHCO₂ in H₂O at

		25°.	2
g per 10	0 g H ₁ O	2111	2
NaH C O ₂	Na.CO1	Solid phase	2
0 2 1 4 2 5 7 7.8 9.0	28.3 27.3 26.5 19.2 12.4 6.2 1.0	Na ₂ CO ₃₋ 10H ₂ O Na ₂ CO ₃ 10H ₂ O +NaHCO ₃ NaHCO ₃ "	1

(de Paepe, Bull. Soc Chim. Belg. 1911, 25,

Solubility of Na₂CO₈+NaHCO₂ in H₂O at Solubility in NaCl+Aq. 100 pts. H₂O dis-25°.

g per l

		Solid phase	
NaHCO:	Na ₂ CO ₃	Cond plinas	
98.7 50.8 27.6	0 0 216 6 276 3 276.4	NuHCO ₃ NuHCO ₃ +Nu ₇ CO ₅ ,Nu ₇ HCO ₂ ,2H ₇ O Nu ₇ CO ₅ ,NuHCO ₂ 2H ₇ O+Nu ₇ CO ₂ 10H ₇ O Nu ₅ CO ₃ 10H ₂ O	
(MoCo	y and '	l'est, J. Am Chem. Soc. 1911,	

33, 474.) Equilibrium between Na₂CO₃, NaHCO₃ and CO2. See under Carbonate, sodium hydrogen.

Solubility of NaNO, in Na,CO, + Ag at 10°.

In 1000	cem. H ₂ O	Solid phase
NaNO: NacCO:		Boud phase
805.0		NaNO:
704.8	87.5 119 8	NaNO ₃ , Na ₂ CO ₃ Na ₂ CO ₃

(Kremann, M. 1909, 30. 325.)

Solubility of NaNO3 in NagCO2+Aq at 24.2°. In 1000 cem H-O]

10 1000 0000120		Solid phase	
NaNO:	Na ₂ CO ₂	South bruse	
913.58 844.50 627.75 544.8 459.6	59 61 217.85 246.30 263 30 28.55	NaNO ₈ NaNO ₈ +Na ₂ CO ₂ ,7H ₂ O Na ₂ CO ₂ ,7H ₂ O Na ₂ CO ₂ ,10H ₂ O Na ₂ CO ₃ ,10H ₂ O Na ₂ CO ₃ ,10H ₂ O	

(Kremann.)

NarČO:	NaBr	Solid phase
27 98	0	Nu ₂ CO ₂ 10H ₂ Q
27 54	2 41	
26 72	4 06	
26 23	6.26	NasCO2 10HeO + NasCO27H2O
23 40	11 00	Na-CO: 7H-O
22 68	12 22	
19 86	16 88	
19 57	16 95	Na ₂ CO ₂ 7H ₂ O + Na ₂ CO ₂ H ₂ O
18 11	19 32	Nu ₂ CO ₂ H ₂ O
8 45	33 39	"
6 90	36 13	
3 04	44 75	
2 99	45 31	NaBr 2HgO+NagCO3.HgO
2 60	45 68	NaBr 2H±O

(Cocherct, Dissert. 1911.)

solve pts. NaCl and pts. Na2CO+10H2O,

WHELL GIRG SALE IS IN CAUCUS AS AS .				
Pts NaCl	Pts Na ₃ CO ₂ +10H ₁ O	Pts NaCi	Pts. Nn:CO: +10H:O	
0 00 4 03 8 02 12.02 16 05 19.82	61.42 53.86 48.00 43.78 40.96 39.46	23 70 27.93 31.65 35 46 sat. 37 27	39.06 39.73 41.44 43.77 45.32	

Solubility of anhydrous Na₂CO₅ in 100 pts. NaCl+Aq containing % NaCl at 15°.

% NaCl	Pt+ NasCOs	% NaCi	Pts NngCO2	
0	16.408	12	10.488	
1	15 717	13	10.244	
2	15.060	14	10 041	
3	14 438	15	9.880	
4	13 851	16	9 762	
5	13 299	17	9 686	
6	12.783	18	9 655	
7	12 305	19	9 667	
8	11.864	20	9.725	
9	11.461	21	9 828	
10	11.097	22	9 997	
1 74	10 772			

(Reich, W. A. B. 99, 25, 433.) Solubility of Na₂CO₂+NaCl in H₂O at 30°.

_	Na ₂ CO ₃	% NaCl	Solid phase
)	27.98 27.48 27.12	0 0 9 3 33	Na:CO2 10H2O "
_	26 82 25 59 24 26	4 15 5 17 5 93	Na ₂ CO ₂ ,10H ₂ O +Na ₂ CO ₂ ,7H ₂ O Na ₂ CO ₃ ,7H ₂ O

Solubility	of Na ₂ CO ₂ +NaCl in H ₂ O at

00 Consentation			
Na ₁ CO ₁	NaCt	, Solid phase	
22 75 20 72 18 00 14 81 9.71 5.05		Nn; CO,7H;O+Na;CO; H;O Nn;CO; H;O Nn;Cl+Nn;CO; H;O NnCl+Nn;CO; H;O NnCl	

(Cocheret, Dissert. 1911.)

Solubility of Na₂CO₃+NaI in H₂O at 30°.

· 84001	% NaI	Solid phase
27 4 28.5 25.5 25.5 24 4 24 3 23 0 20 8 20 0 18 7 15.3 1 10 4 4 2 3 1 2 7 1 5	0 2.4 4 7 5 2 8 6 9 5 11 2 0 15 7 18 4 25 4 29 1 40 4 49.5 51.6	NasCO ₂ 10H ₂ O NasCO ₂ 10H ₂ O NasCO ₂ 7H ₂ O NasCO ₃ 7H ₂ O NasCO ₄ 7H ₂ O NasCO ₄ 7H ₂ O
0 9 0 6 0.3 0.0	57 6 61 2 65.6 65 5	". Naf 2H,O + Na,CO ₂ ,H ·O Naf 2T-O

(Cocheret, Dissert. 1911.)

Insol. in liquid CO₂. (Büchner, Z. phys.
 Ch. 1906, 54. 674.)
 Insol in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20, 829.)

Insol. in alcohol. (Fresenius.) Sl. sol. in absolute alcohol, apparently insol an alcoholic solution of soap. (Duffy, Chem. Soc. 5, 305.)

Solubility of Na₂CO₃ m ethyl alcohol at 20°.

Alcohol, wt per cent	g Na-CO ₂ per 100 g solution
44	1 7
46	1 13
48	0.9
50	0.84
54	0.80

(Linebarger, A. Ch. J. 1892, 14, 380.)

	Comming	01 1100	.,
,	% NacO.	% alcohol	, Solid phase
	27 4	0	Nn ₂ CO ₂ 10H ₂ O .
-	26 61	2 64	**
	(26 14*	3 41 4	
	1 38	44 81	
	` 0 62	52 99	**
i	0 61	53 26	**
ı	0.53	55 70	NngCO2 10H2O+NngCO27H4O
i	0 51	56 56	Nn,CO ₃ 7H ₂ O
	0 47	62.61	
-	0 40	63 20	
1	0 15	72 80	
ı	0.11	73 06	Na ₂ CO ₂ 7H ₂ O +Na ₃ CO ₂ H ₂ O
	0 07	78 19	Nn ₂ CO ₂ H ₂ O
- 1	0.07	82 26	"
١	0.06	86 76	
1	0.06	90 95	"
-	0.04	93.09	
ı	0.03	95 06	NasCO ₁ H ₂ O +Na ₂ CO.
ı		95 65	Va.COs
	1	98 46	

Solubility of Na2CO3 m alcohol +H2O at 30°.

* Conjugated liquid phases. (Cocheret, Dissort 1911.) See also under Na₂CO₂+H₂O, +7H₂O and +10H₈O

Not decomp. by 1 pt. H₈SO₄+6 pts. absolute alcohol.
Not decomp. by alcohole solutions of racemir, tartaric, or gineal accta andis; slowly decomp. by HNO₁+absolute alcohol.
Solubility of Na₂CO₂+NaB₁, NaCl and NaI in alcohol. Numerical data given by Cochert (Dissert, 1911), reported in Tables annuelles internationales des Constants, etc. for 1911.

Solubility of Na₂CO₂ in propyl alcohol at 20°.

Alcohol, ut per cent	g Na ₂ CO; per 100 g notusion
28 38	4 4
44	2.7 1.7
46 · 48	1 5 1 3
50 54	1 2
62	0.4

(Linebarger, A. Ch. J. 1892, 14, 380.)

A full discussion of the solubility of Na₂CO₃ in propyl, and allyl alcohol is given by Frankforter and Temple (J. Am. Ch. Soc. 1915, **37**, 2697). Insol. in CS₂, (Arctowski, Z. anorg, 1894.

6. 257)
Insol. in benzonitrile. (Naumann, B. 1914,
47. 1370.)
Insol. in methyl acctate (Naumann, B.

Insol. in methyl acetate (Naumann, B. 1909, 42, 3790); ethyl acetate. (Naumann, B. 1904, 37, 3602.)

Solubility in mixtures of pyridme and H₂O from -65° to +200°. Solubility curves are given. (Limbosch, Chem. Soc. 1909, 96 (2),

Insol in acetone and in methylal. (Eidmann, C. C. 1899, II 1014.)

100 g. glycerine (sp. gr.=1.262) dissolve 8.3 g. Na₂CO₃ at 15-16°. (Ossendowski, Pharm J 1907, 79. 575.) 100 g. sat. solution in glycol contain 3,28-3.4 g. Na₂CO₃ (de Connek, Bull. Soc. Belg. 1907, 21. 141.)

1907, 21. 141.)
100 g, sat. Ns-CO₃+sugar+Aq contam
0.59 g. Ns-CO₃+b4.7z g, sugar at 31.25°.
(Wells and McAdam, J.Am. Chem. Soc. 1907,
141.0 Takes up H₂O from the air. Less
soli m H₂O at 10"t than at 38"; at 15-29°, 100
pts. H₂O dissolve 524 pts. of this salt; calquilated as Ns-CO₃. Insol. in alcohol. (Lowel.)

Solubility in 100 pts. H₂O at t^o.

Corrected to	Pts
(Hydrogen scale)	anhydrous salt
29.86	50.53
29.89	50.75
31.80	50.31
35.17	49.63
35.37	49.67
35.66	49.37
35.86	49.36
36.45	49.38
36.90	49.29
37.91	49.11
40 94	48 51
40 98	48 52
43 94	47 98

(Wells and McAdam, J. Am. Chem. Soc. 1907, 29, 726.)

Solubility in alcohol+Aq.

Composition of the alcohol and water lavers in contact with the solid phase Na₂CO₂+H
₂O. Composition of the two liquid layers which Alcohol layer Wester laster

	2011	OHOL 16	,		tract int.	-	
t°	alcohol	% salt	% water	alcohol	% salt	% water	-
68 49 40 36 35	55 8 61.0 61 0 62 0 62 9	0 9 0 4 0 4 0 8 0.3	43.3 38.6 38.6 37.7 36.8	2 3 1 2 1 2 1.1 1.0	28 8 31 5 31 9 32.1 32.4	68 9 67.3 66.9 66 8 66.6	-
(Ketner, Z. phys. Ch. 1902, 39. 651.)						Ŀ	

+3H₂O. (Schickendantz, A. 155. 359.) -5H₂O. (Persoz, Pogg. 32. 303.) Not efflorescent. Sol. in H2O.

+6H₂O. (Mitscherlich, Pogg. 8, 441.) +7H₂O. Efflorescent. Two salts, 7H₂O (b) (≈ + 8H₂O of Thomson), and 7H₂O (a). See also under Na₂CO₂.

Solubility in 100 pts. H₂O at to.

Corrected to	Pts
(Hydrogen scale)	anhydrous salt
30 35	43 50
31.82	45 16
32.86	46 28
34.37	48 22
34.76	48 98
35.15	49 23
35.17	49 34
35.62	50.08

different temperatures.

t°	% Na ₂ CO ₃
32.1	31 8
32.5	32.1
33.3	32 7
33.9	33 0
34.5	33 9

(Ketner, Z. phys. Ch. 1902, 39. 646.)

Composition of the alcohol and water layers in contact with the solid phase, Na2CO3+ 7H₂Oβ, at different temperatures.

	Ale	obol la	yer	7	Vater la	/er
f.	alcohol	% salt	% water	% al- cohol	% salt	% water
33.2 32.3	58 1 56.1	0.5	42.4 43.3	1 4 1.5	31.0 30.2	67.6 68.3
31 9 31.45	54 8 53 5	0 7	44.5	1 7	29 8 29.3	68.5
31.2	52.4	0.8	46.8		29.3	

(Ketner.)

at different temperatures can be in metastabile equilibrium with Na₂CO₂+ 7H₂Oβ.

	2000mos myes					
tº	alcohol	% salt	% water	% al- cohel	salt	water
26.6	46.9 39 1 24.5	1.3	59 6	3.3	25 4	71.3

(Ketner.)

+10H₂O. Efflorescent. Sol. in 1.05 pts. H₂O at 23°, and sat. solution has sp. gr. 1.1995. (Schiff, A. 109. 326.) Melts in crystal H₂O at 34°. (Tilden

Chem. Soc. 45, 409.) See above under Na2CO, for further data.

Solubihty m	100	pts.	H ₂ O	at	ť
Corrected so. (Hydrogen scale)			anhvi	Pta	

Corrected to.	Pts
(Hydrogen scale)	anhydrous suit
27.84	34 20
29.33	37 40
29.85	38 89
30.35	40 12
31.45	43.25
31.66	43 95
31.72	44 21
32.06	45 64

(Wells and McAdam, J. Am. Chem. Soc 1907, 29, 726.)

Sat. solution at 25° contains 29.37 g. anhyd. Na₂CO₃ in 100 g. H₂O. (Osaka, J. Tok, Ch. Soc. 1911, 32, 870.) Sat. solution at 25° contains 28 3 g. anhyd

Na₂CO₃ in 100 g. H₁O. (de Paepe, Bull, Soc. Chim. Belg. 1911, 25, 174.) Sat. solution at 30° contains 27 4-27 98 g.

anhyd. Na₂CO₂ m 100 g. of the solution. (Cocheret, Dissert. 1911.) Sat. solution at 25° contains 27.64 g, anhyd Na2CO, in 100 cc of the solution (McCov and Test, J Am. Chem. Soc. 1911, 33, 474.)

Solubility in alcohol.

Composition of the alcohol and water layers in contact with the solid phase, Na, CO,+ 10H2O, at different temperatures. Alcohol laver

	Janeou or	adie	WITHER	conor	8815	Water	
29 7 29 0	47 8 40 0 32.7 23 5	2.1	57 9 63 5	29	25 5	79 A	
(Ketner, Z. phys. Ch. 1902, 39, 651.)							

Water laver

Solubility in alcohol +Aq.

Liquids which can be in equilibrium with Na2CO2+10H2O at 21°.

% alcohol	% salt	% water
0 6.2 15.3 26.1 39.2 58.2 67 1 73.8	18.5 12.7 6.9 3.2 1.2 0.2 0.1	81.5 81 1 77 8 70 7 59 6 41 6 32.8 26.64

(Ketner.)

Composition of the alcohol hourds which con be in equilibrium with Na₂CO₃+10H₂O and Na₂CO₂+7H₂Oβ at different temneratures.

fo.	% alcohol	% salt	% water
29°	62 3	0 3	37 4
26°	67 8	0.1	32 1
21°	73 3	0 06	26.6

(Ketner.)

See also under Na₂CO₂. +15H2O. (Jacquelain, A. 80. 241.)

Sodium hydrogen carbonate, NaHCO.,

100 pts cold Hs0 dissolve 7.7 pts. NaHCO₃. (Rose, Schw J 6 62). 100 pts. Gay of 1 100 pts. HsO at 11 23° dresolve 8 27 pts. NaHCO₃ to form solution of 1 0b13 sp. gr. (Authon, Dingl 161 216)

100 pts, H₂O dissolve at-

8.95 10 04 11.15 12.24 pts. NaHCO. 40°

13 35 14.45 15.57 16.69 pts. NaHCO, (Poggiale, A. ch (3) 8. 468.)

100 pts. H_zO dissolve pts. NaHCO_∗ at t°.

t°	Pts. NaHCOs	t°	NaHCO ₃	to	Pre. NaHCOs
0	6.90	21	9.75	42	13.05
ī	7.00	22	9.90	43	13.20
2	7.10	23	10 05	44	13 40
3	7 20	24	10 20	45	13.55
4 5	7 25	25	10 35	46	13 75
5	7 45	26	10 50	47	13 90
6	7 60	27	10 65	48	14 10
7	7 70	28	10.80	49	14 30
8	7 85	29	10 95	50	14 45
9	8.00	30	11.10	51	14.65
10	8 15	31	11 25	52	14.85
11 '	8 25	32	11 40	58	15 00
12	8 40	33	11 55	54	15.20
13	8 55	34	11.70	55	15 40
14	8 70	35	11.90	56	15 60
15	8 85	36	12 05	57	15.80
16	9 00	37	12 20	58	16.00
17	9.15	38	12 35	59	16.20
18	9.30	39	12 50	60	16 40
19	9 40	40	12 70		
20	9.60	41	12 90		

(Dibbits, J. pr. (2) 10. 417.)

Experiments with solutions of sodium hydrogen carbonate show that they gradually decompose after a time. (Treadwell, Z. anorg. 1898, 17, 204.)

The source of error of many solubility determinations of this substance is due to loss of CO2. Solutions exposed to the air lose CO2.

(McCoy, Am. Ch. J. 1903, 29, 438.) 1 l. sat. solution at 25° contains 98.4 g. NaHCO1. (McCoy and Test, J. Am Chem. Soc 1911, 33, 474.)

, TOBIOM HIDWOODN 211									
1.06904.	(Pitolpa.)		as sp gr.=		Temper	ature, 7	′5° C.		
Nearly (Balman	msol in sa , B. 5. 121.) ,	Na ₂ SO ₄ +Aq.	atoms Na	Amount solution used for titration	Na cut as Na	ount nhined aCOs	I Na	mount combined NaIICOs or cont
Equilibrium between Na ₂ CO ₃ and NaHCO ₃ in H ₂ O and in contact with the air System: Na ₂ CO ₃ , NaHCO ₃ , and CO ₂ .		0.003	50 25	Per 25		-	74 3		
Gram	Amount solution used	Amount Na combined	Amount No.	0 019	25 20	34	8		35 2
ntoms Na per liter	for titration	ns Ns ₂ CO ₂ Per cent	NaHCO: Per cent	0.036	20 10 10	55	7	1	11 3
0 0044	50 50	8 7	91 3	0 270	5 5	79	5	1	20.5
0 0143	20 20	20 0	80 0	0.702	1	85	0		15 0
0.0562	10 10	37.3	62.7	6 56	1	84	8		15 2
0 2248	10 10	59.3	40.7			•		_	
0 8847	2 2	64.0	36.0		· Na ₂ CO ₃ s		_		
	3			Total salts dissolved	Na ₂ C)2		NaHC	O3
	Tempera	ture, 37° C.		gnums	Weight Grams	Per cent	Gra		Per cent
Gram atoms Na per liter	Amount solution used for titration ce	Amount No combined as Na ₂ CO ₂ Per cent	Amount Na combined as NaHCO ₂ Per cent	0 3555 1 1053 4 0443 14 6558	0 0208 0 1505 1 1041 7 0212	5 71 13 62 27.30 47 91	0 3 0 9 2 9 7 6	548 402	94.29 86.38 72.70 52.09
0 0019	50 50	10 5	89 5	56 3982		52 88	26.5		47 12
0 0071	20 20	21 1	78 9	(Cameron	and Brigg	s, J. p. 540)	hys. C	Chem	1, 1901,
0 0276	10 10	41 3	, 58 7	100 g. a	cohol of 0.	941 sp.	er di	ssolv	е 1.2 г.
0 030	1C 10	64.5	35 5	NaHCO ₂	at 15 5° glycerol di				
0 421	2 2	81 9	18 1	15 5°. (0 575.)	Össendowsk	ı, Pha	rm. J	. 19	07, 79.
0 815	2 2	86 5	13 5	4329)	n acetone.				,
1 795	2+ 2	83 4	16 6	Insol 1 1909, 42. B. 1910, 4	n methyl 3790); eth	acetat yl acet	e (Na ate.	(Na	nn, B umann,
	Tempera	ture, 50° C.		Insol 1	n acetone C 1899, II	and in	meth	ylal.	(Eid-
Gram atoms Na per liter	Amount solution used for titistion ee	Amount Na combined as Na ₂ CO ₃ Per cent	Amount Na combined as NaHCO: Per cent	Sodium d Na ₄ H	ihydrogen I ₂ (CO ₂) ₃ +3	rz carb o H ₂ O.	nate,		
0.0017	50 25	22.2	77 8	Na ₂ CO ₂ 11	ol. than I n H ₂ O. (R	ose, Po	gg. 34	. 16	3.)
0 0071	20 20	32.9	67 1	100 pts. 3CO ₂ —	H ₂ O disso	ve, cal	culate	d as	2Na₂O,
0 0266	10 20	50.7	49 3	at 0°	12 63 pts	at	60° :	29.68	pts.
0.1014	10 10	70 0	30 0	" 10° " 20°	18.30 "	**	80°	32.58 35.8	
0.4066	10	81 0	19.0	" 30° " 40°	23 95 "			38.63 41.59	
0.8068	2 2	86 8	13.2	" 50°	26.78 " Poggiale, A	eh. (3	8.46	38)	
1.7486	2.1	87 1	12.9		rona, Ura				201)1+

abs. alcohol.

Trisodium hydrogen carbonate, Na₃H(CO₃)₂ Na₂AsO₂, K₂AsO₂, K₂C₂O₄, Na₂C₂O₄, NaF, +2H₂O.

Sol. in H₂O.

True formula of "Trona" and "Hrao" Zepharovich, Zeit. Kryst 13, 135, de Mondesir, C. R. 104, 1505.)

Sodium thorium carbonate, 3Na₂CO₂, $Th(CO_s)_2 + 12H_2O_s$ Decomp. by H₂O. (Cleve.)

Sodium uranyl carbonate, 2Na₂CO₂,

(UO,)CO, Slowly sol in H2O. Solution sat at 15° has sp gr = 1.161 (Anthon, Dingl, 156, 207.) Sodium yttrium carbonate, Na₂CO₃, Y₂(CO₂)₈

+4H.O. Ppt. Not decomp. by gold H₂O (Cleve)

Sodium zinc carbonate, 3Ne₄O, 8ZnO, 11CO₄ $+8H_2O = 3Na_2CO_4, 8ZnCO_4 + 8H_4O_4$

Sl. decomp. by pure H₂O (Wohler.) Less easily decomp, by H₂O than most double carbonates. (Deville, A. ch. (3) 33.

Na₂O, 3ZnO, 4CO₂+3H₂O, (Kraut, Z. anorg, 1897, 13, 13.)

Sodium carbonate sulphite, Na₂CO₂, 2Na₂SO₃ +21H₂O. Sol in hot H2O, sl. sol in cold H2O. (Johnson, J. Soc. Chem. Ind. 1895, 14, 271.)

Strontium carbonate, SrCO.

Sol, in 18.045 pts. H₂O at ordinary temp. (Fresenius Sol. in 12,522 pts. H₂O at 15°. (Kremers, Pogg. 85. 247.) Sol. in 33,000 pts. H₂O. (Bineau, C. R. 41.

511.) (Dulong.)

Less sol. in H₂O than SrSO₄. (D Sol. in 1536 pts. boiling H₂O Edinb Trans. 4. 5.) (Hope, Calculated from electrical conductivity of SrCO₂+Aq, SrCO₈ is sol. in 121,760 pts. H₂O at 8.8° and 91,468 pts. at 24.3° (Holle-

mann, Z. phys. Ch. 12, 130). 1 l. H₂O dissolves 11 mg. SrCO, at 18° (Kohlrausch and Rose, Z. phys. Ch. 12, 241.)
"Solubility product" = 15.67 × 10-19 mol.
litre. (McCoy and Smith, J. Am. Chem. Soc. 1911, 33, 473) Sol. m 833 pts. H2CO2+Aq at 10°.

(Gmelin)
Sol. in 56,545 pts H₂O containing NH₄OH and (NH₄)₂CO₅.

Quite sol. in NH,Cl+Aq or NH,NO; but reprecipitated on addition of NH,NO₃+Aq, (NH₄)₂CO₂+Aq. (Fresenius.)

(NH₀2O₃-N₄). (Freemins.) Partially decomp. by boiling with squeous solutions of K₂SO₄, Na₂SO₄, CaSO₄, (NH₀)₂SO₄, MgSO₄, Na₂HPO₄, (NH₄)₂HPO₄, K₂SO₅, Na₄SO₅, (NH₄)₂SO₅, Na₂B₄O₇, solutions Na₂B₄O₇, jen)

and K₂CrO₄. Decomp. is complete with the NH₄ salts. (Dulong, A ch. 82, 286.) Sl. decomp. by Na₂SO₄, or K₂SO₄+A_Q.

(Persoz) Easily sol. in NH, chloride, nitrate, succinate+Aq, but less so than BaCO₂, (Fresenius.) Sol. in ferric salts+Aq, with pptn of Fe₂O₆H₆ Sol. in Na citrate+Aq. (Spiller.) Not decomp. by a mixture of 1 pt. HiSO, and 6 pts absolute alcohol, or by alcoholic solutions of tartaric, racemic, citric, or glacial acetic acids; immediately decomp. by HNO2+absolute alcohol, or H2C2O4+

Solubility of SrCO₃ in NH₄Cl+Aq. or NH CI

/6 2122101	78 01002
5.35 10 20	0 179 0 259 0 358

(Cantoni and Goguelia, Bull Soc. 1905. (3) 33, 13)

Insol, in liquid NH3. (Franklin, Am, Ch. J 1898, 20. 829 Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, 37, 3602.) Insol. in acctone. (Naumann, B. 1904, 37,

4329) Insol. in acetone and in methylal (Eid-mann, C. C. 1899, II. 1014.) Min. Strontianite.

Strontium hydrogen carbonate.

SrCO, is sol, in 850 pts, of a sat, solution of CO2 in H2O.

Strontium uranyl carbonate, SrO, 2UOs, 2COs +16H.O. As Ba comp. (Blmkoff, Dissert, 1900.)

Terbium carbonate. Ppt. Insol. in excess (NH₄)₂CO₃+Aq. (Potratz, C. N. 1905, 92. 3.)

Thallous carbonate, Tl₂CO₃, 100 pts. H₂O dissolve pts. Tl₂CO₂ (C = ac-

cording to Crookes; L=according to Lamy) at-15.5° 18° 62° 100° 100.8°

5.23 22.4 pts. Tl₂CO₅.

Insol, in absolute alcohol (L), and ether (C), Insol. in acetone and pyridine. (Naumann, B. 1904, 37. 4329.)
Insol. in methyl acetate (Naumann, B., 1909, 42, 3790.)

Thallous carbonate, acid, Tl₂O, 2CO₂. Rather easily sol, in cold H₅O. (Carstan-

TiHCOs. (Giorgis, Gazz, ch. it. 1894, 24, 474-479.)

Thallous carbonate platinocyanide, Tl2CO2. Tl.Pt(CN)4. Sl. sol. in hot, insol, in cold HaO. (Frag-

well, Chem. Soc. (2) 9, 461.)

Thorium carbonate, basic, 2ThO2, CO2+ 3H₂O. Insol. in CO1+Aq, but sol. in excess of

alkalı carbonates + Aq, if conc. Tin (stannous) carbonate, 2SnO, CO2.

Easily decomp. on air: insol. in HoO or H₂CO₂+Aq. (Deville, A ch. (3) 35. 448.)

Uranvi carbonate, basic, 5(UO,)(OH), 3(UO₂)CO₂+6H₂O. Ppt. (Seubert and Elten, Z. anorg, 1893.

4, 80.

Ytterbium carbonate, basic, Yb(OH)CO,+ H₂O.

Ppt. (Cleve, Z. anorg, 1902, 32, 146.) Ytterbium carbonate, Yb2(CO3)3+4H2O. Ppt. (Cleve, Z. anorg, 1902, 32, 146.)

Yttrium carbonate, Y2(CO2)2+3H2O.

Insol. in H2O, very sl sol. in H2CO2+Aq. Sol in SO2+Aq and all mineral acids Sol. m NH4 salts, and alkali carbonates+Aq to some extent. More sol. in (NH4)2CO4+Aq than in K₂CO₂+Aq. (Berlin.) More sol. in (NH₄₎₂CO₂+Aq than cerium, but 5 or 6 times less sol. than glucinum carbonate (Vauquelin.) Sol, in large excess of KHCO1+ Ag. (Rose.) Slowly sol, in NH4 salts+Ag. (Berzelius.)

Zinc carbonates, basic, 8ZnO, CO₁+2H₂O; 5ZnO, 2CO₂+3, or 7H₂O; 3ZnO, CO₂+ H₂O; 11ZnO, 4CO₂+14H₂O, 14ZnO, 5QO₂+9H₂O; 2ZnO, CO₂+H₃O; 8ZnO, 3CO2+5H2O, etc.

All ppts formed from Zn salts and carbo nates + Ag. Sol. in 2000-3000 pts. cold HaO. separates out on heating and does not redissolve on cooling. (Schindler.) Sol. in 20,895 pts. H₂O at 15°. (Kremers, Pogg. 35. 248) Zinc carbonate ammonia, ZnCO₅, NH₃. Sol. in 44,600 pts. H₂O at ord. temp. (Fresenius)

Sol. in 1428 pts. sat. H₂CO₂+Aq. (Las-Sol. in 1225 pts. sat. H₂CO₁+Aq. (L48-singne.) Sol. in 189 pts. H₂CO₁+Aq. sat. at 4-5 atmos (Wagner, Z anal. 6, 107.) Essily sol. in KOH, NaOH, NH₂OH, (NH₂)CO₂+ Aq. and in acids. Somewhat sol. in alkali bicarbonates and NH₁ salts+Aq Frees-muz) Sol. in hot fruchs), also cold (Breit, 1827) NH₂C(1+Aq; less sol. in NH₂NO₂+Aq. (Brett.)

Sol. in all NH, salts + Aq excepting (NH,) S +Aq. (Terreil, Bull. Soc. (2) 9. 441.)

Insol. in Na₂CO₂, or K₂CO₃+Aq. Sol in ferric salts+Aq with pptn. of Fe₂O₆H₂. (Fuchs, 1831.)

The carbonates described by Boussingault. Wackenroder, Rose, and probably all salts between ZnO, CO₂ and 5ZnO, 2CO₂ are mixtures. (Kraut, Z. anorg. 1897, 13. 1-15.) 3ZnO, CO₂+2H₂O. Min. Zing bloom, Hudrozineste

ZnCOs, 3ZnO2H2. Min. Auricalcite.

Zinc carbonate, ZnCO:

1 1 H₂O at 15° dissolves 0.01 g.; 1 l. H₂O dissolves 1.64 x 10-1 mols., or 0.206 g. ZnCOs at 25° (Ageno and Valla, Att. acc. Line. 1911, 20, II 706) 1. 585% NaCl+Aq dissolves 0.0586 g; 11.745% KCl+Aq dissolves 0.0586 g; (Essen, Gm. K. 4, 1.680.)

Sol in seids, KOH+Aq, and NH, salts+

Aq. Sol. m H₂CO₈+Aq.

Solubility in various salts+Aq.

Solvent	g ZnCO2 sol in 1 l. of the solvent
10% NaNO ₂ +Aq	0 058981
sat. NaNO ₃ +Aq	0 149000
5% NaCl+Aq	0 021730
10% NaCl+Aq	0 046504
sat. NaCl+Aq	0 130880
10% Na ₂ SO ₄ +Aq	0 009313
sat. Na ₂ SO ₄ +Aq	0.015521

(Ehlert, Z. Elektrochem, 1912, 18, 728.)

Insol. in liquid NHs. (Franklin, Am. Ch. J. 1898, 20, 830.) Insol. in acctone. (Eidmann, C C 1899. II 1014; Naumann, B. 1904, 37. 4329)

Insol, in methyl acetste (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43. 314.)

Min. Calamine, Smithsonite Calamine is sol. in NH.OH+Aq only in the presence of NH, salts Zeit. angew. Ch. 1904, 17. 513.)

+14H₂O. (Mikusch, Z. anorg. 1908, 56. +H₂O. (Belar, Zeit. Kryst. 1890, 17. 126.)

Slowly decomp by H.O. but not on the air. or by boiling with alcohol (Favre, A. ch. (3) 10. 474.)

Zinc carbonate hydroxylamine, ZnCOs. 2NH₂O.

Insol in H₂O. Decomp by acids. (Goldschmidt and Syngros, Z. anorg. 5, 129. Zirconium carbonate, 3ZrO, CO,+6H,O,

Decomp, by hot H2O, all CO2 being given off. (Hermann.)

Sol. in alkalı carbonates + Aq.

Percarbonic acid. See Percarbonic acid.

Carbonic anhydride, CO₁, See Carbon dioxide.

Carbenophosphoric acid.

Potassium carbonophosphate, (K2HPO4)2, 2CO2, 2KHCO3, 1903, 137, 566,)

Carbonyl bromide, COBr2.

Decomp by H₂O (Besson, C. R. 1895, 120. 192)

Carbonyl platinous bromide, CO, PtBr2. Sol, in H.O with almost instant decomp.

Sol in absolute alcohol. (Pullinger, Chem. Sec. 59, 603) Quite easily sol. in hot C₈H₆, insol. in ligroine, and can be crystallized from CCl₄. Very easily sol. in HBr+Aq. (Mylius and Forster, B 24, 2432)

Carbonyl bromochloride, COCIBr. Decomp. by H₂O. (Besson.)

Carbonyl chloride, COCl2.

Phosgene. Cold H₂O dissolves 1-2 vols. Prosperie. Cold rigo ussouves 1-2 vois. COCle gas with slow decomposition. Alcohol decomp immediately. Immediately absorbed by KOH, or NH,OH+Aq Very sol. in glacial HC₂H₂O₇, benzene, and most liquid hydrocarbons (Berthelot, Bull Soc. (2) 13. 14.) Sol. in SCl.

1 vol AsCl₂ absorbs 10 vols COCl₂

Dicarbonyl cuprous chloride, Cu2Cl2, 2CO+ 4H2O.

Decomp. by air (Jones, Am. Ch. J 1899, 22. 305)

Carbonyl platinous chloride, 2COCl₂, PtCl₂ Sl. deliquescent. Easily sol. in H₂O with-out decomp.; sl. sol. in alcohol. Almost insol. in CCl₄. (Pullinger, Chem Soc **59**. 600.)

Monocarbonyl platinous chloride, CO, PtCl2. Decomp, by H₂O and alcohol; sol, in hot CCl4. (Schutzenberger, A. ch. (4) 15. 100)
Sol in conc. HCl+Aq. (Myhus and For-

Decarbonyl platinous chloride, 2CO, PtCl2 Decomp by HaO and alcohol. Sol. in CCla. (Schutzenberger)

Decomp. by conc. HCl+Aq into CO and CO, PtCl₂. (Mylius and Forster.)

Sesquicarbonyl platinous chloride, 3CO. 2PtCl2.

Decomp, by H₂O or alcohol Much more sol in CCl, than 2CO, PtCl2

Carbonyl platinous iodide, CO. Pt.I.

Not hygroscopic. Insol. in, but slowly de-comp. by, H₂O. Easily sol. in benzene or ether, also in alcohol, which decomp on warming; sol. in HI+Aq. (Mylius and Forster.)

Known only in solution. (Baullé, C. R. Carbonyl platinous sulphide, CO, PtS.

Easily decomp. Insol in ordinary solvents. (Myhus and Forster)

Carbonyl sulphide, COS. II:O absorbs 1 vol. COS.

Absorption of COS by H₀O at t^o Coefficient of absorption 1 333 10 0 835 20 0.561 30 6 403

(Winkler, Z. phys. Ch. 1906, 55, 351.) 1 ccm H₂O at 13.5° and 756 mm. pres. dissolves 0.8 ccm. COS. (Hempel, Zeit.

angew. ch 1901, 14. 867.) I cem of a hydrochloric acid solution of Cu₂Cl₂ absorbs about 0.2 ccm, COS (Hem-

Carbonyl ferrocyanhydric acid. HsFe(CO)(CN)

Very sol in H₂O; decomp. on heating. (Muller, A ch. (6) 17. 94.)

Cobalt carbonyl ferrocyanide.

SL sol in H.O. very sol, in dil HNO++Aq (M.)

Cupric carbonyl ferrocyanide.

Cu2[Fe(CO)(CN),]2. Insol. in HaO, HaSO4, or dil. HNO2+Aq. (M.)

Iron (ferric) carbonyl ferrocyanide, FeFeCO(CN)s.

Insol. in H₂O. Sol. in H₂C₂O₄+Aq. Insol. in acetic, lactic, succinic, tartaric, and citric acids + Ac. but easily sol, in the neutral salts of those acids Insol. in KCl, or KNO₃+Aq, but sensibly sol. in Na₂HPO₄+Aq. Insol even on warming in very dil. HaSO4, or HaPO4. +Ag. (Muller.)

Potassium earbonyl ferrecyanide, K₂F₆(CO)(CN)₄+3½H₂O.

100 pts H₂O dissolve 148 pts. at 16°. (Muller, C. R. 104, 992.)

Silver carbonyl ferrocvanide.

Ag-Fe(CO)(CN). Insol. in H2O; sl sol. in dil. H2SO4, HCl. on HNOs+Aq; scarcely attacked by cone. HC2H3O2+Aq. (Müller.)

Sodium carbonyl ferrocyanide. Na,Fc(CO)(CN),+6H,O, Sol. m H₂O (Müller.)

Uranyl carbonyl ferrocyanide (UO2)2[FeCO(CN)5]2+5H2O

Sl sol in H2O, but more easily if H2O is Cerous chloride zinc iodide. acidified with HC2H2O2.

Cericotungstic acid.

Ammonium cericotungstate, 2(NH4)2O. Ce2O2, 16WO8+2H2O.

Insol. in H2O, but decomp, by boiling therewith (Smith, J Am. Chem. Soc. 1904.) 26, 1481.)

Cerium, Ce.

Decomp, pure HoO very slowly at ordinary temp. Not attacked by cold cone. H₅SO₄ or red fuming HNO₅. Sol. in dil. H₅SO₄+Aq, HNO₂+Aq, and cone. or dil. HCl+Aq. (Hillebrand and Norton, Pogg. 155. 633.)

Cerous bromide, CeBrg.

Anhydrous. As the chloride. (Robinson. Proc. Roy. Soc 37, 150) Sol m acetone. (Eidmann, C C 1899, II. 1014, Naumann, B. 1904, 37, 4328.)

Sol in methyl acetate. (Naumann, B. 1909. 42. 3790.)

+xH₂O. Very deliquescent. (Jolin.)

Cerium gold bromide, CeBr2, AuBr2+8H2O. See Bromaurate, cerium. Cerium carbide, CeC2.

Decomp. by fused alkalı nitrates, chlorates, ydroxides and carbonates; and by conc. the SO₄ on heating. Insol. in cone HNO₄; decomp. by H₂O and dil. acids (Moissan, C. R. 1896, **122**. 359.) CeC₃. Not attacked by hot conc. acids. (Delafontaine, J. B 1865, 176.)

Cerous chloride, CeCls.

Anhydrous. Deliquescent. Sol. in H₂O with hissing and evolution of heat; sol. in alcohol. Sol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4328.)

Difficultly scl. in methyl acetate. (Naumann, B. 1909, 42. 3790.

+7H.O. Insol. in NH.OH+Aq. (Den-

nis, Z. anorg. 1894, 7. 290.)

47/3/H.O. Deliquescent. (Berzelius.)

Decomp. by boiling with Ho. Sol. in 1pt.

Ho. at ord temp. and 3-4 pts. alcohol. 1995, 43. 322.) (Dumas.)

Caric chlorida

Known only in solution, which decomposes by slight heat. (Berzelius.)

Cerous mercuric chloride.

Not deliquescent. (v. Bonsdorff.) CeCl_s, 4HgCl₂+10H₂O. Permanent; eas-ily sol. in H₂O. (Jolin, Bull. Sec. (2) 21. 533.)

Cerium stannic chloride. See Chlorostannate, cerium.

Sol. in H2O and alcohol. (Holzmann, J. pr. 84. 76.)

Cerous fluoride, CeF2. Insol. npt. +1/2H2O.

Ceric fluoride, CeF.

Insoluble precipitate (Berzelius.) +H₀O Insol. in H₀O. (Brauner, B. 14. 1944.)

Ceric cobaltous fluoride, 2CeFa, CoFa+7HaO. Ppt. Easily decomp, by H₂O (Rimbach, A. 1909, 368, 107.)

Ceric cupric fluoride, 2CeF4, CuF2+7H2O. Ppt. Decomp by H.O. (Rumbach, l. c.)

Ceric nickel fluoride, 2CeF4, N1F2+7H2O. Ppt. Decomp. by H.O. (Rimbach, l. c.)

Ceric potassium fluoride, 2CcF4, 3KF+2H2O. Insol. in H₂O. (Brauner, B. 14, 1944; 15, 109) Could not be obtained pure. (Rumbach,

Ceric zmc fluoride, 2CeF4, ZnF2+7H2O. Pnt. Decomp. by H₂O. (Rimbach, l. c.)

Ceroceric fluoride, 2CeFs, CeFs Mm. Fluocerite.

Cerium hydride, CeH.

Decomp. by ands. (Winkler, B. 24. 873.) OcH₄. Decomp. in moist air; decomp. by hot or cold H₂O; sol. in acids with evolution of H₂O. Decomp. by alkalis. (Muthmann, A. 1902, 325, 286.)

Cerous hydroxide, Ce2Os, zH2O.

Easily sol. in acids. Insol. in excess of alkali hydroxides+Aq. Sol. in (NH₄)₂CO₈+

Exists in two modifications: one insol. in-

cold HCl+Aq; the other sol. in cold HCl+ Aq. (Brauner, C. N. 1895, 71. 283.)

Ceric hydroxide, 2CeO2, 3H2O.

Sol, in ENO, or H₂SO₄, also in HCl+Aq, forming ocrosu chloride and free chlorum. Insel, in hydrofluoric, sectio, or formic scids+Aq, Somewhat sol, in dil, HNO, or HCl+Aq, (Ordway, Am. J. Sci. (2) 26, 205.) Insel, in NH,CH, KOH, and NoOH+Aq, Sl. sol, in alkalı carbonates+Aq. (Dumas). Sl. sol, in (NH₂CC), HAq, (Ordway.)

Sl. sol. in (NH_d)₂CO₁+Aq. (Ordway.) 100 com. of a solution in glycerine+Aq containing about 60% by vol. of glycerine contain 0.08 g. CeO₂. (Muller, Z. anorg. 1905, 43. 232.)

Cerous iodide, Cel.

Sol. in acetone. (Eidmann, C. C. 1899, II 1014; Naumann, B. 1904, 37. 4328.) +9B40. Very deliquescent and sol. in H₂O. (Lange, J pr. 82. 134.) Sol. in alcohol.

Cerium nitride, CeN.

Decomp. by H_2O and alkali. Sol, in mineral acids with formation of cerous and ammonium salts. (Muthmann, A. 1902, 325. 272.)

Cerous oxide, Ce2O2.

When ignited, insol. in HCl+Aq, when long digested with H₂SO₄, is sol. in HCl+Aq with addition of alcohol.

Ceric oxide, CeO2.

When ignited, is only dissolved in traces, even on heating, by HCl or HNO₁+Aq. Sol. in cone. H₂SO₂ when warmed. Sol. in the cold in a solution of KI in HCl+Aq (Bunsen), in a mixture of HCl and FeCl₁+Aq, or any reducing substance.

Cerium peroxide, Ce4Oo.

Insol. in boiling conc. acids. Sol in H₂SO₄ by long digestion. (Popp, A. 131. 361.) Probably does not exist. (Rammelsberg, Pogr. 108. 40.)

Ce₂O₅. (Hermann, J. pr. 30. 184.) Probably does not exist. (Rammelsberg) CeO₃+xH₂O. Sol. in HCl+Aq. (Popp,

A. 131. 361); (Lecoq de Bossbaudran, C. R. 100. 605.)
CeO₂+H₂O₂, according to Cleve (Bull. Soc. (2) 43. 57.)

Cerlum oxycarbide, CeC₂, 2CeO₂,

Stable in the air. Slowly attacked by cold H₂O. With hot H₂O and with acids, it gives unsat. hydrocarbons. (Sterba, C. R. 1902, 134. 1055.)

Cerium oxychloride, CeOCi,
Slightly attacked by hot conc. HCl+Aq.
Slowly sol. in conc. HNO_b+Aq. (Wöhler,)

Easily sol. in dil acids. (Didier, C. R. **101**, 882.)

Cerium oxychloride tungsten traoxide, CeOCl, WOa

(Didier, C. R. 102. 823.)

Cerium selenide.

Insol, in H₂O; difficultly sol. in acids. (Berzelius.)

Cerium silicide, CeSig.

Insol. in H₂O, by which it is acted upon only very slowly.

Sol. in HCl and HF+Ag with evolution of

H₂. Not attacked by alkalis+Aq or NH₄OH+

Insol. in organic solvents. (Sterba, C. R. 1902, 135, 170.)

Cerium silicide, Ce2S12.

Insol. m acids (Ullik, W. A. B. 52, 2. 115.)

Cerium disulphide, Ce254.

Not decomp. by cold H₁O. Slowly sol. in cold dil. H₂SO₄, HCl and acetic acid. Rapidly sol. in warm dil. H₂SO₄, HCl and acetic acid with decomp. (Biltz, B. 1908, 41. 3342.)

Cerium sesquesulphide, Ce₂S₃.

Insol in, and not decomp. by, H_2O , but easily decomp. by the weakest acids. (Mosander); (Didier, C. R. 100, 1461.)

Monochloramine, NH2Cl.

Eastly sol. in H₂O. (Raschig, Ch. Z. 1907, **31**, 926.)

Chlortetramine comps.

See Chlorotetramine comps.

Metachlorantimonic acid, HSbCl₆+ 4½H₂O.

Hydroscopic. Sol. in H₂O with decomp.; sol. in alcohol, acetone, and acetic acid (Weinland, Z. anorg. 1905, 44, 43.)

Metachlorantimonic acid ammonia, HSbCls,

Sol. in H₂O and in alcohol. (Weinland and Schmid, Z. anorg. 1905, **44**, 59.)

Aluminum metachlorantimonate, Al(SbCl₆); +15H₂O. Hydroscopic.

Sol. in dil. HCl+Aq. (Weinland, B. 1903, 36. 254.) Ammonium metachlorantimonate, NH₄SbCl₅ +H₄O. Hydroscopic. Sol. in H₂O. Solution decomp. slowly when cold, rapidly on warming. Sol. in dil. HCl. (Weinland, B, 1903, 38.

201.)

Cadmium melachlorantimonate ammonia,
Cd(SbCl₀)₂, 7NH₃,

Ppt. (Wemland and Schmid, Z. anorg. 1905, 44. 56.)

Calcium metachlorantimonate, Ca(SbCl_s)₂+9F₂O.

Hydroscopic. Sol. in dil. HCl+Aq (Weinland, B 1903, 36, 253.)

36. 253.)
Chromium metachlorantimonate, Cr(SbCl₆)₂
+13H₂O.

Hydroscopic. Sol. in dil. HCl+Ao. (Weinland.)

Sol. in dil. HCl+Aq. (Weinland.)

Chromium orthochlorantimonate. CrShCl++

10H₂O. Hydroscopic. Sol. in dil. HCl+Aq. (Weinland)

Cupric metachlorantimonate ammonia, Cu(SbCls), 5NHs.

(Weirland and Schmid, Z. anorg. 1905, 44. 55.)

Glucinum metachlorantimonate, Gl(SbCl₆)₂ +10H₂O. Very hydroscopic.

Sol. in ddl. HCl. (Weinland, B. 1903, 36. 252.)

Iron (ferric) orthochlorantimonate, FeSbCl_s +8H₂O.

Hydroscopic.
Can easily be cryst, from dil. HCl+Aq.

(Weinland.)

Lithium metachlorantimonate, LiSbCl₆+ 4H₂O. Very hydroscopic.

Sol, in dil. HCl+Aq. (Weinland, l. c.)

Magnesium pyrochlorantimonate, MgSbCl₇

+9H₂O. Hydroscopic. Sol. in dil. HCl+Aq. (Weinland.)

Sol. in dif. HCl+Aq. (Weinland.) Nickel metachlorantimonate ammonia.

N₁(SbCl_c)₂, 6NH₂. Sol. in H₂O. (Weinland and Schmid, Z. anorg. 1905, **44**. 57.)

Potassium metachlorantimonate, KSbCla+ Cerium chloraurate, CeCl₁, AuCl₁+10H₂O. Extremely deliquescent. Easily sol. in H₂

Hydroscopic.
Sol. in H₂O. Solution decomp. slowly when cold, rapidly when warmed.

Sol. in dil HCl+Aq. (Weinland, B. 1903, 36. 250.)

Rubidium metachlorantimonate, RbSbCl₆. Hydroscopic.

Sol. in dil. HCl+Aq (Wemland.)
Silver metachlorantimonate ammonia,
AgSbCls. 2NHs.

Decomp, by H₂O. (Weinland and Schmid.)

Schmid.)

Zinc metachlorantimonate ammonia,
Zn(SbCl₂), 4NH.

(Weinland and Schmid.)
Chlorarsenious acid.
See Arsenvi chloride.

Chlorauric acid, HAuCl₄+4H₂O. Sol. in H₂O, alcohol, and ether. Sol. in POCl₂. (Walden, Z. anorg. 1900, **25**.

212.)
Difficultly sol. in PCl₃. (Walden.)
Cryst. with 3H₂O as stated by Weber and
Schottlander and not with 4H₂O as stated by

Thomsen. (Schmidt, C. C. 1906, II. 855.) Chloraurates.

All chloraurates are easily sol. in H₂O and in alcohol. (v. Bonsdorff, 1829.)

Ammonium chloraurate, NH₄AuCl₄+H₂O.

Very cassly sol. in H₂O.

+2H₄O. Very cassly sol. in H₂O.

Barium chloraurate, Ba(AuCl₄)₂+xH₂O.

Deliquescent in moist air Sol, in H₂O and alcohol. (v. Bonsdorff, Pogg. 17, 261.)

Cadmium chloraurate.

Not deliquescent. Sol. in H₂O and alcohol, (v. Bonsdorff.)

Casium chloraurate, CsAuCl₄. 100 pts. aqueous sat. solution contain at:

10° 20° 30° 40° 50° 0.5 0.8 1.7 3.2 5.4 pts. anhydrous salt, 60° 70° 80° 90° 100°

8.2 12.0 16.3 21.7 27.5 pts. anhydrous salt. (Rosenbladt, B. 19. 2538.)

+1/2H₂O. (Wells and Wheeler, Am. J. (3) 44. 157.)

Calcium chloraurate, Ca(AuCl₄)₂+6H₂O,
Deliquescent. Sol, in H₂O and alcohol. (v.
Bonsdorff.)

Cerium chioraurate, CeCl₃, AuCl₃+10H₂O. Extremely deliquescent. Easily sol. in H₂O and absolute alcohol. (Holzmann, C. C. 1863, 206) +13H₂O. (Jolin, Bull, Soc. (2) 21, 534.) Cobalt chloraurate, Co(AuCL), +8H.O. Sol. in H2O and alcohol (Topsoe.)

Didymium chloraurate, DiCls, AuCls+10H-O Very deliquescent. (Cleve, Bull, Soc. (2)

43, 361.) 2DiCl, 3AuCl,+20H2C. (Cleve)

Gadolinium chloraurate, GdCl., AuCl.+

Sol. in H.C. (Benedicks, Z anorg 1900.) 22, 404.)

Lanthanum chloraurate, LaCl., AuCl.+5H.O. Deliquescent in moist air Sol. in H₂O. (Cleve, B. 8. 128.)

Lithium chloraurate, LiAuCl.

100 pts. aqueous solution contain at: 20° 30° 100 409

57.7 62.5 67.3 pts. anhydrous salt. 53.1 72.0 76.4 81.0 85.7 pts, anhydrous salt.

(Rosenbladt.) (Antony and Lucchest, Gazz. ch. 1910, 210, A. 365.) $+2H_{2}O$ ıt. 1890, 20. 601)

+4H₂C. Not stable Sol in H₂O and alcohol (Fasbender, C. C. 1894, T. 409.)

Magnesium chloraurate, Mg(AuCl.).+8H.O. Somewhat deliquescent Sol. in H₂O and | Sodium chloraurate, NaAuCl₄+2H₂O, alcohol. (Topsoč.) +12H₂O.

Manganese chloraurate, Mn(AuCL)+ Dehouescent Sol, in H₂O and alcohol,

(Topsoi.) +12H.O. Nickel chloraurate, N1(AuCL)+8H+O

Deliguescent. Sol. in HaO and alcohol. (Topsoc)

Potassium chloraurate, KAuCl. Anhydrous. Very stable. (Lainer, W A.

B. 99, 2b. 247.) 100 pts. solution in H2O contain at:

10° 500 30° 27.7 38.2 48.7 pts anhydrous salt.

40° 50° 59.2 70.0 80.2 pts. anhydrous salt. (Rosenbladt, B. 19, 2538.)

Sol. in H₂O and alcohol; insol. in ether. (Fasbender, C. C. 1894, I. 409.) 1 pt. is sol. in 4 pts. 98% alcohol. (Fas-bender, C. C. 1894, II 609.) +2H₂O Efflorescent

+1/2H20.

Praseodymium chloraurate, PrCl., AuCl.+ 10H.O

Very sol, in H.O; sol in cone HCl. (von Schule, Z aporg 1898, 18, 354)

Rubidium chloraurate, RbAuCl., 100 pts. sat. RbAuCl.+Ag contain at:

10° 20° 30° 40° 50° 4.6 9.0 13.4 17.7 22.2 pts. anhydrous salt.

60° 70° 80° 90° 100° 26.6 31.0 35 3 39.7 44 2 pts, anhydrous sait. (Rosenbledt.)

1 pt. sol in 54 pts. 98% alcohol. Insol in ether (Fasbender, C. C 1894, II 609.)

Samarium chloraurate, SmCla, AuCla+ 10H.O. Deliquescent Easily sol in H₂O. (Cleve.

Bull Soc. (2) 43, 165.) Scandium chloraurate, 3ScCls, 2AuCls+ 21H.O.

Very deliquescent. (Crookes, Phil. Trans. Silver chloraurate, AgAuCl.

Decomp. in the air. Decomp. by H₂O, HCl and NH₃. (Herrmann, B 1894, 27, 597)

Easily sol in H₂O and absolute alcohol. 100 pts. aqueous solution contain at 10° 20° 30°

58.2 60.2 64.0 pts. anhydrous salt, 4n° 500 RNº

69.4 77.5 90.0 pts. anhydrous salt. (Rosenbladt.) Easily sol in NaCl+Aq.

Essily sol in H2O, alcohol and other. (Fasbender, C. C. 1894, I 409.)

Strontium chloraurate. Sol. in H₂O. (v. Bonsdorff.)

Thallium chloraurate. (Carstanien.)

Ytterbium chloraurate, YbCls, AuCl2+9H2O. Ppt. (Cleve, Z anorg. 1902, 32, 138.)

Yttrium chloraurate, YtCl, 2AuCl++16H-O. Very sol, in H₂O, (Cleve.)

Zinc chloraurate, Zn(AuCl₄)₂+8H₂O. Sol in H_2O . (Topsoe) +12 H_2O Sol. in H_2O and alcohol. (v. Bonsdorff.)

Chlorauricvanhydric acid.

Barium chlorauricyanide, Ba[Au(CN),Clslo+ . 8H.O.

Very sol, in H₂O or alcohol, (Lindborn, Land Univ. Arsk. 12, No. 6)

Potassium chlorauricyanide, KAu(CN)2Cl2+ Very sol, in H₂O or alcohol.

Strontium chlorauricyanide, Sr[Au(CN),Clol.

+8H.O. Sol m H₂O.

Zinc chlorauricvanide, Zn[Au(CN),Clol.+ 7H.O.

Very sol in H_{*}O

Chlorhydric acid, HCl Liquid Miscible with liquid CO2, and H2S.

Gas Absorbed by H2O with production of much heat.

He absorbes 400–900 vis. at ord, temp and pressure.

I wil He absorbes 490 vis. at ord, temp and pressure.

I wil He absorbes 490 vis. at 07 vp. gr. of att solition in 1 2100. (Days 17, 522 vis.) at solition in 12 200. (Days 17, 522 vis.) at 200 vis. at solition in 12 200. (Days 17, 522 vis.) at 200 vis. at solition of 10 vis. at 10 vis. a

t ^e	V	Sp gr	% HCI
0 4 8	525 2 494 7 480 3	1 2257 1 2285 1 2185	45 148 14 361 43 828
12 14 18	471 3 462 4 151 2	1 2148 1 2074 1 2064	42° 277 42° 829
18 25 23	450 7 435 0	1 2064 1 2056 1 2014	12 314 42 283 41 536

(Deteke, Pogg. 119 156)

At 760 mm, pressure 1 g. H₂O absorbs g HCl at to.

10	g. HCl	1°	g HCl	t°	g HCl
0	0 825	22	0.710	44	0 618
2	0 814	24	0 700	46	0.611
2	0 804	26	0.691	48	0 603
6	0.793	28	0 682	50	0 596
8	0 783	30	0 673	52	0 589
10	0 772	32	0 665	54	0.582
12	0 762	34	0 657	56	0 575
14	0 752	36	0 649	58	0 568
16	0.742	38	0 641	60	0 561
18	0 731	40	0 688		
20	0 721	42	0 626	١	

(Roscoe and Dittmar.)

Conc. HCl+Ag loses HCl, and dil HCl+ Aq loses H₂O on warming, until an acid of constant composition is formed, containing 20.18% HCl, with a sp. gr. of 1.101 at 15°, which can be distilled unchanged at 110°

(Bineau, A. ch. (3) 7. 257.)
The above is true if barometer is at 760 mm, but the composition changes with the pressure as follows-

Mm Hg	S HCI	Mm Hg	% HCI	Mm Hg	% HCl
50 100 200 300 400 500 600 700 760	23 2 22 9 22 3 21 8 21 4 21 1 20 7 20 4 20 24	800 900 1000 1100 1200 1300 1400 1500 1600	20 2 19 9 19 7 19 5 19 4 19 3 19 1 19 0 18 9	1700 1800 1900 2000 2100 2200 2300 2400 2500	18 8 18 7 18 6 18 5 18 4 18 3 18 2 18 1 18 0

(Roscoe and Dittmar)

Cone. HCl+Aq gradually gives off HCl on the air until it has a sp. gr. 1.128 at 15°, and contains 25 2% HCl. (Bineau, l c.)

According to Roscoe and Dittmar, this depends on the temperature. If a current of air is passed through HCl+Aq, and or water is given off according as the acid is strong or weak, until an acid of constant composition for a given temperature is formed, as follows-

Temp	G HCI	Temp	G HCI	Temp	", HCI
0°	25 0	35°	23 9	70°	22 6
5 10	24 9 24 7	45	23 8 23 6	75 80	22 3 22 0
15 20	24 6	50 55	23 4 23 2	85 90	21 7
25 30	24 3 24 1	60 65	23 0 22 8	95 100	21 1 20 7

From the above it is seen that the acid which distils unchanged at a given pressure, that is, boils at a certain constant temperature, is identical with the acid which undergoes no change in composition by a current of dry air at the same temperature, and under the ordinary pressure, thus-

Mm Hg	B -pt	% HCI	Temp of air current	% HC1
100 200 300 380 490 620	61-62° 76-77 84-85 91 97 103	22 8 22 1 21 7 21 3 20 9 20 6	62° 77 85 91 98	22 9 22 2 21 7 21 4 21 1

(Roscoe and Dittmar.)

+20°

degr in m tens	y of HCl in H ees of pressur m. Hg, i e., i ion of aqueo p.; G=gramr H ₂ O at the p	re. P=par total pressur us vapour a nes of HCl	tial pressure re minus the at the given dissolved in
P	G	P	G
60	0 613	350 400	0 751 0 763

P	G	P	G
60	0 613	350	0 751
70	0.628	400	0.763
80	0.640	450	0.772
90	0 649	500	0 782
100	0 657	550	0 791
110	0 664	600	0 800
120	0.670	650	0 808
130	0 676	700	0 817
140	0 681	750	0 824
150	0 686	800	0 831
175	0 697	900	0 844
200	0 707	1000	0 856
225	0 716	1100	0 869
250	0 724	1200	0 882
275	0 732	1300	0 895
300	0.738	1	ì

(Roscoe and Dittmar, A. 112, 334.) 1 vol. H₂O dissolves 560 vols. HCl at -12°

500 ** 440 (Berthelot, C. R. 76, 779.)

1 vol. H₂O absorbs 480 vols. HCl at 15° to form a solution containing 42 85% HCl with a sp. gr. of 1.215. (Hager.)

Solubility of HCl at low temperatures, and 760 mm, pressure.

t°	Pts. HCl in 1 pt, HsO	to.	Pts HC in 1 pt H
0	0 842	-18	0.957
- 5	0 864	-19	0.965
-10	0 898	-20	0.974
-15	0 933	-21	0.983
-17	0 949	-24	1.012

(Roozeboom, R. t. c. 1884, 3, 79.)

Solubility in H2O at to.

%HCI 50 61.65 45 40 35 30 20 15 61.76 62.27 62 90 63 21 64 19 64.70 10 65 18 65.48 5

65.85

66,44

66.71 67.29 67 65

(Rupert,	J. Am.	Chem.	Sec.	1909,	31.	860.)

- 5

-1ŏ

oh di nimoriwa							
Sp gr	% HCI	Sp gr	% HCI	Sp gr	% HCi		
1 203 1 179 1 162 1 149 1 139	10 66 37 00 33 95 31 33 29 13	1 1285 1 1197 1 1127 1 1060 1 1008	27 21 25 52 24 00 22 70 21 51	1 0960 1 0902 1 0860 1 0820 1 0780	19 47 18.59 17 79		

(Thomson, in his Eystem, 2 189,)

			,				
Sp gr of HC1+Aq							
Sp gr.	% HCI	Sp gr.	% HCl				
1 21 1 20 1 19 1 18 1 17 1 .16 1 15 1 14 1 13 1 12 1 11	12 43 40 80 38 38 36 36 34 34 32 30 30 30 28 28 26 26 21 24 20 30	1 10 1 09 1 08 1 07 1 06 1 05 1 04 1 03 1 02 1 01	20 20 18 18 16 16 14 14 12 12 10 10 8 08 6 06 4 04 2 02				

(Edm. Davy)

op gr m mortand							
Sp gr	% HCl	B-pt	Sp gr	% HCI	B-pt		
1 199 1 181 1 166 1 154 1 144 1 136 1 127 1 121	34 01 31 09 28 29 26 57 24 84 23 25 21 06 20 74	49° 65 76 87 100 103 105 109	1 094 1 075 1 064 1 047 1 035 1 018 1 009	16 08 13 16 11 16 8 62 6 92 3 52 1 86	111° 109 107 105 104 102 101		

(Kirwan and Dalton)

Sn gr of HCI+Ag at 15°

of St. or year Lived we way							
% HC1	Sp gr.	% HCI	Sp gr				
2 22 3 80 6 26 11 02 15 20 18 67 20 91 23 72 25 96	1 0103 2 0189 1 0310 1 0357 1 0751 1 0742 1 1048 1 1196 1 1308	99 72 31 50 34 24 36 63 38 07 40 51 41 72 43 09	1 1504 1 1588 1 1730 1 1844 1 1935 1 2021 1 2074 1 2124				

(Kolb. C. R. 74 337.)

S

% H Sp gr.

p :	gr. of HCl+Aq at 15°.							
CI	Sp gr.	% HCI	Sp ga	% HCl				
77 39 31 34 45 38 38 30 32 31 6 38 30 32 31 6 30 32 31 31 31 31 31 31 31 31 31 31 31 31 31	1 1620 1 1599 1 1578 1 1578 1 1536 1 1515 1 1494 1 1473 1 1452 1 1431 1 1410 1 1389 1 1389 1 1389 1 1389 1 1389 1 1389	32 621 32 213 31 805 31 898 30 990 30 5°2 30 174 29 767 29 359 28 951 28 544 28 136 27 728 27 728 27 721 26 913 26 505	1 1206 1 1185 1 1164 1 1143 1 1123 1 1102 1 1081 1 1081 1 1041 1 1000 1 10980 1 0980 1 0990 1 0999 1 0899	24 466 24 058 23 050 23 242 22 834 22 426 22 019 21 611 21 203 20 796 20 288 19 980 19 572 19 165 18 757 18 349				
52	1 1287	26 098	1 0879	17 941				
45 37 29	1 1287 1 1247 1 1226	25 690 25 282 24 874	1 0859 1 0838 1 0818	17 534 17 126 16 718				

Va an a	CTICLLS	4 150	0 .					-					
Sp. gr of HCl+Aq at 15°—Continued. Sp. gr % HCl Sp gr % HCl Sp gr. % HCl					-	8	Sp. g	r of F	ICI	+Aq	at 15	۰.	
1 0798 16 310 1 0778 15 902 1 0759 15 494	1 0517 2 1 0497 1 0 177	10 602 10 194 9 768	1 02: f 02: 1 02:	59 5 301	HČI	Sp	μr	HĈ1	8	риг	нč		Sp gr
1 0738 15 087 1 0718 14 679 1 0697 11 271 1 0677 13 363 1 0667 13 450	7 1 0457 1 0437 1 0417 1 0397 1 0377	9 379 8 971 8 563 8 155 7 747	1 010 1 010 1 010 1 010	00 4 07% 30 3 670 10 3 262 10 2 854 20 2 447	5 10 15	1 0 1 0 1 0	488	20 25 30	1	0982 1234 1488	35 40 41	1	1 1739 1.1969 1.2013
1 0637 13 106 1 0617 12 641 1 0597 12 233	1 0337	8 932 6 524	1 000 1 000 1 000	0 1 631	(H:	ıger,	Adp	iment	a vi	aria, I	eipzi	g,	1876.)
1 0577 11 823 1 0557 11 418 1 0537 11 010	1 0279	6 116 5 709	1 002	0 1 0 816	Sp. g	r of	HC	+Aq	at	15° (I	I ₂ O :	ıt:	15°= 1).
	Ure, Hand	wörterbu	eh.)		16.1	HCI	s	o gr		GH6	21		Sp. gr
Sp gr. of H according cording t	to Ure	: L = sn	gr. e	at 15.55° it 15° ac-	43.	136	I I.	21479 21076		34.40 25 20	30		17138 12479
%HCI U	K	%HCI	U	K	41 :	212	1	20430 20204	1	19.6		1.	09675 07255
1 1 005 2 1 010	1 005 1 010	22 23	1 109 1 114	1.111	39.8	331		19703 18687	ı	6 38			03150
3 1 015	1 015	24	1 119 1 124	1 116 1 121 1 126			(Pie	kermg	, B	. 26. 2	77.)	_	
5 1 025 6 1 030	1 025	26	1 128 1 133	1 131 1 136	Most	accu	rate	table.					
7 1 034 8 1.039	1 034		1 138 1 143	1 141	Sp g	r. of	HC	+Aq	at:	15° (H	LO a	t 4	°=1).
9 1 044	1 044		1 147 1 153	1 151	Sp gr	7		Kg HC		Sp gr		_	Kg HCI
11 1.058 12 1.059	1 053		1 157 1 163	1 163				10 I	-11-			_	ın 11
13 1.064 14 1 069	1 065 1 070	34	1 169 1 174	1 179	1 000	1		$0016 \\ 0012$		105	20	97	0 232 0 243
15 1.074 16 1.079	1 075	36	1 179		1 010 1 015	3	12	0 022 0 032	1	115	22	36	0 255
17 1.084 18 1.089	1 085	38	1 188 1 193		1 020	4	13	0 042 0 053	1	125	24 '	78	0 278 0 291
19 1 094 20 1 098	1 095 1 100	40	1 197		1 030 1 035	6	15	0 064 0 074	1	135	26 1	0	0 303
21 1 104	1.105		1 203		1.040	8	16	0 085 0 096	1 1		28 (57	0 322
(Calculated					1.050	10.	17	0 107 0 118	1	155		55	0 353
Sp. gr of HC					1.060	12 13.	19	$0129 \\ 0141$.165	32 4	19	0 366 0 379
HCl Sp gr	HČ:	Sp gr.	HČ1	Sp gr	1.070	14	17	0.152 0.163	1 1	175	34 4	16	0 392 0 404
0 0 9992 1 1 00503	15 1 16 1	07539 08042	30 31	1 15079 1.15581	1.080		15	0.163 0.174 0.186	1	180 185	36 3	9	$0.418 \\ 0.430$
1 1 00503 2 1 01005 3 1 01508	17 1	08545	32	1.16084	1.090	18.	11	0.197	1	195	38	6	$0.443 \\ 0.456$
4 1.02010 5 1 02513	19 1	.09550	33 34	1.16587 1.17089	1.100	19 20.		$0.209 \\ 0.220$	1	200	39.	.1	0.469
4 1.02010 5 1 02513 6 1 03016 7 1.03518 8 1.04021	21 1	.10052	35 36	1.17592 1.18095	(Lunge	and	Mai	chlow	ski,	Z an	gew.	Ch	. 1891.
8 1.04021 9 1.04524	23 1	11058 11560	37	1.18597 1 191					33.)				
10 1.05026 11 1.05529	25 1	12063	39 40	1.196 1 200	8	р, gr % н		HCl+	Aq			m	р
12 1 06031 13 1 06534	27 1	13068 13571	41 42	1 204 1 208		8.1			-		.037)	
14 1 07037	29 1	14516		1.212		16.1 23.0	25			1	084 113	3	
(Kolb, recalcu	lated by 316	Gerlac	h, Z. a	nal. 27.				W. Ar	m	-		-	
	310								***	.000,	.o. Z	Jt.	,

			OILLO MALLA	DALLO A	LOLD			
	Relation of	sp	gr of HCl+A	q at to	to sp. g	r. at 19 5° =	1.0.	
4.0	89% HC sp gr =104)1	10 8 % HCl • sp gr =1 0704	25 5 % sp gr	HC! 1 101	35.8% HC sp. gr =1.1	1 46 6 33 sp. g	% HCI r =1 1608
0 19 5 40 60 80 100	0 99557 1 00000 1 00707 1 01588 1 02639 1 03855		0 99379 1 00000 1 00781 1 01665 1 02676 1 03801	0 99 1 00 1 00 1 01 1 02 1 03	000 877 794 791	0 99079 1.00000 1 00990 1.01969 1 02986 1 04059	1.1	98982 00000 01063 02180
_			(Kremers,	Pogg 10				
	gr. of HCl	+2	ıq	-	Sp. g	of HCl+	lq at 20°.	
G equivalents HOI per liter	10		Sp gi tº/tº	Norn IIC	ulity of	€ HCI	1	tg që
0 005036 0.01006 0.02008 0.04990 0.09885 0 19641 0.29247 0.48278 0.4994 4.094	17 111 17 125 17 148 17 138 17 133 17 162 17 147 17 140 17 28 17 35		1 0000943 1 0001892 1 0003775 1 000935 1 001843 1 003633 1 005382 1 008811 1 00008 1 08390	5 3 2 1 1 0	031 588 138 523	27 10 19 30 12 94 7 17 5.65 4 05 1 90 c, Z. phys. C	1 1 1 1 1 1 1	0187 0076
(Kohirausch, W. Ann 1894, 53, 28) Sp. gr. of a normal solution of HCl+Aq at 18°,4°=1 0165. (Looms, W. Ann 1896,			Sp. g mols, F M Sp gr	r. at 20 ICl per 0 025 1.0003	0.05	ontair 0.075 1.00135	ung M g 0.10 1 00180	
Sp. gr. of HC cent stier density;	Sp. gr. of HCl+Aq at 19.5°, when p =per cent strength of solution; d=observed density; w=volume cone. m grams			Sp. gr 1.00425 1.00849 1.01264 1 017				1.0 1 01749 38. 730.
p	d		w	HCl but in (Aime.	large a	bsorbed by mounts by	conc. H _s i anhydrou	SO ₄ +Aq is H ₂ SO ₄
36 0 29 97	1 1818 1 1511		0 4255 0 3450	A	bsorptio	n of HCl by	H ₂ SO ₄ +	-Aa
24 35 18 55	1.1207		0 2729			Temp = 17		
12 22	1 0910 1 0587		0 2024 0 1294			per l.		100 g.
9 148 6 559	1 0433 1 0305		0.0954 0.0676	Sp gr.	HCI	H ₂ SO ₄	HCI	H ₂ SO ₄
3 540 5 345	1 0159 1 0246	- 1	0 0360 0.0548	1 211			42.7	
1 356	1 0051		0 0136	1 211 1 220 1 220	517 8 487.3 478 8	22 7 58 0	39 9 39 2	1.8
	Phys. Chem			1 235 1 260	455 3 418 0	99.3	36 9 33.2	8 0 12 8
g HCl in 100 g o	of HC1+Aq	at	18"/4". Sp gr	1 305	371 4 306 6	273 2 417 7	28 5 22 6	20.9 30.8
0 12149 0.08075 0.04060 0 03032	7 9 8		0.99928 0 99900 0 99887 0 99881	1 430 1 545 1 580 1 660 1 735	215 3 96 7 51.3 10.3 1.8	638.2 917.6 1033 5 1224 0	15.0 6.26 3 25 0.62 0 11	59 4 65 4 73 7 77.5
(Jahn, Z.	phys Ch. 19	000	33. 567.)	1 815	1.2		0 068	89.0

					ILOMITI	DRIC ACI	D				220
Absorption of HCl by H ₂ SO ₄ +Aq—Cont Solubility of HCl in ether at t° s Temp = 40° Pressure						an	d 760 mm				
Sp gr	a l	oer l		g pe	r 100 g	to.	5%	HCI	t º	ī	% HCl
1 185 1.195 1.210 1.255	421 4 416 4 392 1 346 3	42 70 107 211	2 0 7	35.6 34.8 32.4 27.6	3 56 5.86 8 90 16 8	-9 2 - 5 0 + 5 10	37 35 33	51 0 6 .1	15 20 25 30		27 62 24 9 22 18 19 47
1.255 1.340 1.400 1.520 1.575 1.650 1.725 1.755 1.770	325.4 247.4 161.6 50.9 18.5 2.9 1.4 0.57 0.52	236 383 619 929 1046 1207 1370 1428 1478	3 7 4 3 0 6 5 4	25 9 18 5 11.5 3 35 1 17 0 17 0 081 0.032 0.029	18 8 28 6 44.2 61 1 66 4 73 2 79 4 81.4	Sol. m benzene, x Oil of (Thénard, Oil of tr 22° and 7 34% at 24	glaci cylene turp) urpen 724 rl	al HC; , etc. entinc tine about ; is 1 724 m	absorbs sorbs 163 otereben im.; met	the	or, hexane, 50% HCl. ols. HCl at me absorbs prebenthene
		Temp.	-70	۱۰		(lot)					. (Berthe-
Sp gr	£	per l		g pe	r 100 g	Oil of layender absorbs 68 7 vols. at (Thénard.)				ols. at 24°.	
	BCI	H ₂ SC	٥,	TICL	II:50:	Oil of l	avend				ols, without absorbs 218
1 145 1 150 1 160 1 180 1 225 1 230 1 315	374 1 357 3 353 8 341 3 277 7 274 3 173 7	18 38 55 93 231 246 476	9 .7 6 9 4	32 7 31.1 30.5 28 9 22 8 22 3 13 2	1 61 3 38 4 80 7 93 18 9 20 0 36 2	(Saussure, Absorbe Fuming miscible w	22°; .) ed by HCl nth o	sol. m capryli +Aq 13 one HC	e alcohol s sol. m C ₂ H ₃ O ₂	ol l gly	petroleum
1 380	96.5	661 946	.8	6 99	48 0 62 7	Comp	of H₃O	layer	Comp	of p	ohenol laver
1 510 1.560 1.700	23 6 8 4 0 86	1055	0	0 54	67 6	°% HC1	1 %	phenol	ef. HC	1	% phenol
1.745 1.745 (Copps 100 t	0 62 0 57 adoro, Ga	1448 1455 zz ch	.2 .t.	0 03 0 03 1910, 3 9	5 83 0			7.45 5 6 5 3 5.1 4 8	0 0.09 0.2 0 36 0.52		72 78 80.3 82 6 84 5
Alco	hol of 0.8	36 sp.	gr.	dissolve	s 327 vols.						
solutio	n has an, a	d 758 : cr.≃ 1.0	mm 105.	. pressur (Pierre	e, and the , A. ch. (3)	Composition	on of s	olution in	contact v	ath	solid phenol
31. 135	,					€ He	0	c _e	HCl	L	°é phenol
Solubil		at	thy t°.	t°	(absolute)	11.2 14 9 84 5	8		52 .7		88 78 84 5 4 8
-10		HCI		10	% HCI	80 3	8	15	64		3 98

t°	% HGI	to.	% HCI			
-10.3	54 6 51 3	18 31 7	46 9 43			
/J. D						

Solubility of HCl in ethyl alcohol (absolute) at to.

to	% HCI	to.	% HCI
0 6 5 11 5	45 4 44 2 42 7	19 2 23 5 32 0	41 40 2 38 1
	(4 - D		

(de Bruyn, l.c.)

72 43 24 37 3 2 60 25 36 25 3.5 (Schrememakers, Z. phys Ch. 1912, 79, 553.)

+H₂O. F.-pt. - 15.35°. Very sol. in H₂O but only slightly sol. in HCl. (Rupert, J. Am. Chem. Soc. 1909, **31**.

866.) +2H₂O. M.-pt.-17.4° +3H₂O. M-pt -24.8° (Pickering, B. 1893, 26, 280.)

The composition of the hydrates formed by HCl at different dilutions is calculated from determinations of the lowering of the f .- pt. produced by HCl, and of the conductivity and sp. gr. of HCl+Aq (Jones, Am. Ch. J. 1905, 34, 323.)

Chlorhydric cyanhydric acid, 3HCl, 2HCN.

Decomp. by H₂O or alcohol; sol. in HC₂H₂O₂. Insol. in ether, chloroform, or acetic ether. (Claisen, B. 16. 309.)
HCl, HCN Sol. in H₂O₂ absolute alcohol, HC₂H₃O₂, and CHCl₃, with decomp; decomp, is especially rapid in H₂O (Gautier, A. ch (4) 17. 130)

Chloric acid, HClO3.

Known only in aqueous solution, which can be concentrated in vacuo to a sp gr. of 1.282 at 14.2°, and then contains 40.10% HClOs. corresponding to HClO3+7H2O; if left longer in vacuo over H₂SO₄ an acid corresponding to HClO₃+4½H₂O is obtained. Aqueous solution of HClC₃ decomp. at 40°. (Kammerer, Pogg. 138, 390.)

Chlorates.

All chlorates except mercurous chlorate are sol. in H₂O, most of them are deliquescent; many are sol in alcohol.

Aluminum chlorate, Al(ClO₂)₂+6H₂O.

Very hygroscopic. (Dobroserdow, G. C. 1904, II 177.)

+9H₃O. Very sol. in cold but much less than in hot HaO. (Dobroserdow.)

Ammonium chlorate, NH4ClO2 Essilv sol. in H₂O; less sol in alcohol.

Much less sol. in H₂O at 0° than NaClO₃. (Storer.) Very sl. sol. in absolute alcohol. (Wachter, J pr. 30. 321) Barium chlorate, Ba(ClO₃)₂+H₂O.

Sol. m 4 pts. cold. and less hot H2O.

(Chevenix.) 100 pts. H₄O dissolve at: 0° 20° 40° 60 80° 100° 22.8 37.0 52.1 77.5 98.0 126.4 pts. Ba(ClO₁)₁.

100 grams sat. Ba(ClO2)2+Aq at to contain grams anhydrous Ba(CIOa)a

t°	Giams Ba(ClO ₂):	to.	Gram« Ba(ClOz):
Eutectic point,	15 28	50	36.69
-2.740 ±0.004	16 90	60	40 05
10	21 °3	70	43.04
20	25 26	80	45 90
25	27 53	90	48 70
30	29 43	99 1	51.17
40	33 16	104 6	52 67

^{* 104.6°} is bpt. at 740 mm. pressure= 105.0° at 760 mm. pressure.

(Anschutz, Z. phys. Ch. 1906, 56, 238.)

g. Ba(ClOs): 10 100 g H₂O Sp gr O 25.51 195 20 39 3 1.27440 55 9 1 355 74 1 1.433 80 92 1 1.508 100 113 2 1.580 105.6 * 120 1.600

Solubility of Ba(ClO₂)₂ in H₂O.

* Bpt. of sat. solution. (Carlson, Dissert. 1910.)

Only slight traces dissolve in absolute alcohol. (Wachter, J. pr. 30, 334.) Sol in acetone. (Eidmann, C. C 1899, II.

Difficultly sol, in acctone. (Naumann, B.

1904, 37, 4328,) Insol. in methyl acetate. (Naumann, B.

1909, 42. 3790); ethylacet ate (Naumann, B. 1910, 43, 314.)

Rismuth chlorate.

Known only in solution, which decomp, on evaporation

Cadmium chlorate, Cd(ClO₈)₂+2H₂O,

Very deliquescent; sol. in H₂O and alcohol. Melts in crystal H₂O at 80°. (Wachter, J. pr. 30. 321.

418°

Solubility in H2O. Sat. solution contains at:

-20° -15° 72 18 72,53 74 95 76.36 49° 65° 80.08 82.95% Cd(ClO₃)2.

Sp. gr. of solution containing 76,36% Cd(ClO₂)₂ at 18° = 2.284 (Meusser, B. 1902, 35. 1422.) Sol in acetone. (Naumann, B. 1904, 37. 4328.)

Cadmium chlorate ammonia, Cd(ClO₃)₃, 6NHa

Ppt. (Ephram, B 1915, 48, 49.)

Cæsium chlorate, CsClOs.

100 g. H.O dissolve at: 0° 19.8° 30° 42.20 2 46 3.50 6 28 9 53 14.94 50° 990 19.40 41 65 76.5 g CsClO₂.

(Calzolari, Acc. Sc. med di Ferrara, 1911, 85, 150.) Calcium chlorate, Ca(ClO₃)₂+2H₂O.

Deliquescent; very sol. in H₂O and alcohol. (Wachter, J. pr. 30, 323)

Melts in its water of crystallization at over | Cupric chlorate ammonia, Cu(ClO₂)₂, 4NH₂. Sp. gr of solution sat at 18°=1 729, conaming 64% Ca(ClO₃)₂. (Myhus B. 1897, raim, B 1915, 48, 46.) 30; 1718.) Sol. in acetone. (Eidmann, C. C. 1899, II. Erbium chlorate, Er(ClO₃)₃+8H₂O. 1014, Naumann, B. 1904, 37, 4328)

Chromic chlorate. Easily sol. in H₂O. (Prudhomme, C. C.

1890, 1, 668)

Cobaltous chlorate, Co(ClOs) +2HO. (Meusser, B. 1902, 35, 1418) +4H₂O. Solubility in H₂O. Sat solution contains at:

35° 470 610 64 19 64 39 67 09 69.66 76.12% Co(CIO_a)_a

gr. of solution contaming 64.19% Co(ClO₈), at 18°=1 861. (Meusser, B. 1902, 35, 1418 +6H2O. Very deliquescent Sol. in H2O and alcohol Melts in crystal H₂O at 50°. (Wachter, J. pr. 30. 321.)

Solubility in H2O Sat. solution contains at

-21° - 19° $+10.5^{\circ}$ 53.30 53 61 57.45 61.83% Co(ClO₁)₂ (Mensser, B. 1902, 35, 1418.)

Cupric chlorate, basic, Cu(ClO₂)₂, 3Cu(OH)₂, Insol. in H2O. Very sol. in dil. acids. Sol in warm cone. Cu(ClO₃)2+Aq, the solubility mcreasing with the conc. and temp. (Bourgeois, Bull Soc 1898, (3) 19, 950.)

Cupric chlorate, Cu(ClO₃)₂+4H₂O.

Solubility in H₂O

Sat. solution contains at: 45° -31° -21° -F0.8° 18° 54 59 57.12 58.51 62 17 66.17

50 6° 69 42 76.9% Cu(ClO₃)₂.

gr. of the solution containing 62 17% Cu(ClO₄) at 18° = 1.695. (Meusser, B. 1902, 35, 1420 +6H₂Ó. Very deliquescent Easily so in H2O and alcohol. Melts in its crystal H2O

at 65°. (Wachter, J. pr. 30. 321.) Sp. gr. of Cu(ClO₂)2+Aq at 15°. % Cu(ClO₂)₂ 2.106 4.778 6.945

Sp. gr. 1.01620 1.03857 1.05714 % Cu(ClO₂)₂ 14.387 Sp. gr. 1.08441.12531

(Traube, Gm,-K, 5, 1, 921)

Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Ppt Not hydroscopic. Insol. in alcohol. Cu(ClO₁)_{2,6}NH₂. Not hydroscopic. (Eph-

Deliquescent Sol, in H.O and alcohol.

Glucinum chlorate. Known only in aqueous solution, which decomposes on evaporation.

Ferrous chlorate.

Known only in solution.

Ferric chlorate, Fo(ClO₂)₂,

Sol. in H₂O. Basic salt. Insol. in H.O.

Lanthanum chlorate, La(ClO₂)₁.

Deliquescent. (Cleve.) Lead chlorate, Pb(ClO₃)₃+H₃O.

Deliquescent: casily sol in H₂O and alcohol. (Wachter, J. pr. 30. 321) Sp. gr. of solution sat at 18°=1.947 and

contains 60.2% Pb(ClO₂)₂ 1897, **30**, 1718.) (Mylius, B.

100 g. H₂O dissolve 440 g. Pb(ClO₂)₂ at. 18°; sp. gr. of sat. solution = 1.63. (Carlson, Dissect 1910.)

Lithium chlorate, LiClO.+36H.O.

Very deliquescent and sol in H₂O. Very easily sol. in alcohol. Melts at 50° in its crystal water. (Wachter, J. pr. 30, 321.) LiClO₃+Aq sat. at 18° contains 75.8% LiClO₂. Sp. gr. = 1.815. (Mylius, B. 1897. 30, 1718.)

483 g. LaClO2 dissolve in 100 g H2O at 15°; sp. gr. of solution = 1.82. (Carlson, Dissert,

1910.) Contains 3H2O, and is not deliquescent. (Lagorio, Zeit. f Kryst. 15. 80.) Salt is anhydrous. (Retgers, Z. phys. Ch.

Magnesium chlorate, Mg(ClO₂)₂.

5, 449.)

128.1 g. Mg(ClO_s) dissolve in 100 g. H₂O at 19°; sp. gr. of solution = 1.59. (Carlson, Dissert, 1910.)

Sp. gr. of solution containing 56.5% Mg(ClO₂)₂ at 18°=1 564. (Meusser, l.c.)
Sp. gr. of solution sat at 18°=1.594, con-

taining 56.3% Mg(ClO₂)₂. (Mylius, B. 1897, 30. 1718.) Sol. in acetone. (Naumann, B. 1904, 37. 4328.

Sol. in acetone. (Eidmann, C. C. 1899. II. 1014.

+2H₂O. Solubility in H₂O. Sat. solution contains at.

39.5° 61° 68° 65 37 69.46 70.69 73.71% Mg(ClO₄). (Meusser, B. 1902, 35, 1416.)

+4H₂O. Solubility in H₂O. Sat. solution contains at

420 65.5° 69.12% Mg(ClO₃)₂. 63.82 (Meusser, I.c.)

+6H₂O. Very deliquescent and sol in H₂O. Very easily sol in alcohol. Melts at 40° in its crystal water. (Wachter, J. pr. 30.

Solubility in H₂O. Sat. solution contains at:

-- 18° 0° -- 18° 20°

51.64 53.27 56.50 60.23 63.65% Mg(ClO₂)₂, (Meusser)

Manganous chlorate, Mn(ClO_a)₂.

Known only in solution which decomposes on evaporation. (Wachter.)

Mercurous chlorate, Hg;(ClO3)2.

a. Easily sol. in alcohol and H₂O. (Wachter, J. pr. 30, 321)
β. Insol. in H₂O; easily sol. in HC₂H₃O₂+ Ag. (Wachter.) Decomp. by boiling H.O.

Mercuric chlorate, 2HgO, CloOs+HoO

Deliquescent. Decomp, by H₂O into oxide and an acid salt. (Wachter. Sol. in 4 pts. cold H2O (Chevenix, 1802.)

Nickel chlorate, N1(ClO₂)₂+4H₂O. Solubility in H₂O

Sat. solution contains at

48.5° 55° 65° 79.5° 68.78 67.60 69.05 75.50% Ni(ClO₂)2. (Meusser, B. 1902, 35, 1419.)

+6H₂O. Deliquescent. Easily sol in H₂O and alcohol. Melts in crystal H2O at 80° (Wachter, J. pr. 30, 321.)

Solubility in H₂O. Sat. solution contains at:

+18° 40° -18° -8° 00

49.55 51.52 52.66 56.74 64.47% N₁(ClO₄)₄

Sp. gr. of solution containing 56.74% Ni(ClO₈)₂ at 18°=1.661. Goes over into 4R₂O salt at 39°. (Meusser.) 156 g. Ni(ClO₂)₂ dissolve in 100 g. H₂O at 16°; sp. gr. of solution=1.76. (Carlson, Dissert. 1910.)

Nickel chlorate ammonia, Ni(ClOs)2, 6NHs.

Ppt. (Ephraim, B. 1915, 48, 47.) Potassium chlorate, KClO2,

Sol. in H2O with absorption of heat,

Sol in about 16 pts cold, and in much less hot H₂O. (Choven's, 1802) Sol. in 30.03 pts H₂O at 0°, 17.85 pts. at 13.3°, and in 1.66 pts at 104 78°. (M. R. and P.)

Sol in 16 pts H₂O at 18 73°, (AbI) 100 pts H₂O at 15 5° dissolve 6 2 pts , at 100°, 40 pts (Uic's Dict.)

100 pts HsO deschie pts KClOs at to-Pts KClOs . 18 3 29 1 (Gerardin)

100 nts H-O dissolve nts KCiOs at to

f ₀	Pts KCiO ₄	to.	Pts KClO ₄
0	3 33	35 0	12 05
13 32	5 00	49 08	18 96
15 37	6 03	74 89	35 10
24 43	8 41	104 78	60 24

(Gay-Lussac, A ch 11 314.)

100 pts H2O dissolve pts, KClO2 at to. t° Pts KClOs Pts KCIO 3 3 130 88.5 100 56 5 180 190

(Tilden and Shenstone, Roy. Soc Proc. 35.

100 pts. H₂O dissolve pts KClO₂ at t^o.

t°

Pts KClO₂ Pts KCIO 120 73.7 160 148 136 98 9 190 183

(Tilden and Shenstone, Phil. Trans. 1884, 23.)

Coefficient of solubility is 3.2+0.109t+ 0.0043t2 between 0° and 35° (Blarez, C. R. 112, 1213.)

Sat. KClO₃+Aq contains % KClO₄ at to.

t°	% KClO ₄	t°	% KClOs
-0.5 -0.3 +4.5 4.5 11 19 29 36 42 56 58	2 6 2 4 3.5 2.9 4.7 6.1 8 9 9.9 11.4 15.6	92 106 130 171 180 190 200 207 300 330	31.2 37.2 47.0 59.8 62 1 63 1 64 2 66.0 87 0 96 7

(Etard, A ch 1894, (7) 2. 528.)

27.8 102 0

35.8 102.5

Solubility in H ₂ O.				
Temp.	% KClO,	Pts sol m	Pts H ₂ O to	
	in a sat sol	100 pts H ₂ O	1 pt KClO ₁	
0°	3 06	3 14	31 8	
5	3 67	3 82	26 2	
10	4 27	4 45	22 5	
15	5 11	5 35	18 5	
20	6 76	7 22	13.6	
25	7 56-	8 17	12.2	
30	8 46	9.26	10.8	
35	10 29	11 47	8.7	
40	11 75	13 31	7 5	
45	13 16	14.97	6 6	
50	15 18	17.95	5 6	
55	16 85	20.27	4 9	
60	18.97	23 42	4 2	
65	20 32	25 50	3 9	
70	22 55	29 16	3 4	
75	24 82	32 99	3 0	
80	26 97	36 93	2 6	
85	29.25	41 35	2 4	
90	31.36	46 11	2 1	
95	33.76	51 39	1 9	
100	35 83	55 54	1.8	

(Pawlewski, B. 1899, 32, 1041.)

 KClO₃+Aq at 25° contains 675 millimols. KClO₄. (Calvert, Z. phys. Ch 1901,

38, 541.) 100 g, H2O dissolve at:

0° 20° 400 3.3 7.4 13.8 24.0 g. KClO₈ So. gr. 1.021 1.045 1.073 1.115

2nº 1000 104° * 37.7 56.5 59.9 g KClOs. 1.165 Sp. gr. 1 219 1 220

* But, of sat, solution.

(Carlson, Dissert 1910)

100 g H2O dissolve at: 8° 19.8° 30°

4.48 7.15 10.27 57.3 g. KClO₄ (Calzolari, Acc. Sc. med. di Ferrara, 1911, 85, 150)

Sat. KClO++Aq contains at: 53° 810 620 86° (?) 17.37 23.25 23.53 30.46% KClO₃. (Tschuggeff, Z. anorg, 1914, 86, 161.)

Sp. gr. of KClO₂+A₀, according to Kremer's experiments (Pogg. 96, 62), and Gerlach's calculations. (Z. anal. 8, 290.)

⁴% KCiO₃	Sp gr	% KC10	Sp gr
1	1 007	6	1.039
2	1 014	7	1.045
3	1.020	8	1.052
4	1.026	9	1.059
5	1 033	10	1.066

Sp gr of KClO₃+Aq at 20° containing 1 tol KClO₃ to 100 mols $H_2O = 1.04122$.

Nicol, Phil Mag. (5) 18, 122)

Sp. gr of KClO₃+Aq at 15° containing 5% KClO₃=1.0316 (Kohlrausch, W Ann. 1879. 1)

B.-pt. of KClO₂+Aq containing pts. KClO₈ to 100 pts HaC. B pt B-pt Pts KCIO Pra KClOs 100 5° 44 6 103.0° 13 2 101 0 53 4 103 5 20.2 101.5 62.2 104 0

(Gerlach, Z. anal, 26, 450.)

69.2 104 4

Saturated solution boils at 105°. (Kremers.) Saturated solution boils at 104 2°, and contains 61.5 pts. KClO, to 100 pts H₂O.

(Legrand.) Saturated solution boils at 103.3°, and contains 66.6 pts KClO2 to 100 pts. H2O (Grif-

fiths.) Saturated solution boils at 104.4°. (Ger-

lach, Z. anal 26. 427.) Sol in pure HNOs without decomp., but decomp., at once by HNO₃ containing NO₂ (Millon, A. ch. (3) 6, 92.)
Sol. in sat. NH₄Cl+Aq without causing

1 mol. (=129 pts.) KClO₄ dissolves in 2493 vols. H₂O; in 2208 vols. H₂O when 1 mol. (=59 pts.) NaCl is added; in 2000 vols H₂O with 2 mols. (=118 pts.) NaCl; and in 1910 vols. H₂O with 4 mols. (=236 pts.) NaCl.

(Gladstone, Chem, Soc 15, 302)

KClO, 18 sol, in about-29 50 pts H₂O

35.50 pts. NH OH + Aq cone 39,00 pts. dil. NH4OH+Aq (1 vol. conc.: 3

vols, H₂O). 30 50 pts HNO₄+Aq (1 vol. conc. HNO₄: 5 vols. H₂O)

33.0 pts. HCl+Aq (1 vol conc. HCl: 4 vols. 48 00 pts. HC₂H₄O₂+Aq (1 vol. commercial HC₂H₄O₂·1 vol. H₂O). 31.50 pts. NH₄Cl+Aq (1 pt. NH₄Cl·10 pts.

18.00 pts NH4NOs+Aq (1 pt NH4NOs 10 pts. H₂O)

pgs. H₂O₂
34.00 pts. NH₄C₂H₃O₂+Aq (ddl. NH₄OH+Aq+dil. HC₂H₃O₂+Aq).
32.50 pts. NaC₂H₄O₂+Aq (commercial HC₂H₃O₂+Na₃CO₃, diluted with 4 vols. H₂O).
31.50 pts. Cu(C₂H₃O₂)₂+Aq (See Stolba,

Z. anal. 2. 390.) 33 50 pts. cane-sugar (I pt cane-sugar : 10 pts. H₂O).

36 50 pts. grape-sugar (1 pt grape-sugar 10 pts. H₂O). (Pearson, Zeit. Chem. 1869, 662.) Addition of K salts to sat. KClO₃+Aq ppts KClO_s in such a way, that the sum of the

KClO₃ remaining in solution and the K in the salt added, is a constant, which constant is equal to the solubility of KClO₃, so that the following formula represents the coefficiency of solubility of KClO₃ after addition of a K salt, 3.2+0.109t+0.0943t² - K of salt added.

of solubility of KClO ₁ after addition of a K salt, 3.2+0.109t+0.0043t ² -K of salt added. (Blarez, C R. 112, 1213)					
	Solu	bility of KClO ₄ -			
	1	00 g H ₂ O dissolve g	salts	_	
t°		g. TIClOs	g KClO ₂		
0 15 50 100		2 8 10 12 67 57 3	3 3 1 5 16 2 48 2	_	
		e, Z. anorg 1902			
	Solubii	ity of KClO ₁ in I		7	
	to.		per I		
		KNO ₃	KCIO ₁	-	
19 85 0 00 12 65 25 29 101 19 202.38		69 88 64 86 60 33 45 85 40 20	-		
	28 87 0 00 79 09 50.59 63 14			A N	
(A	(Arrhenius, Z. phys. Ch. 1893, 11, 397.)				
	Solubility in KCl+Aq at 20° C.				
G	KCl in i litre	G KClO ₂ m 1 late	Sp gr	U)	
	0 10 20 30 40 40 50 60 90 110 120 120 130 140 150 170 180 200 210 220 220 220 240 250	71.1 85 49 48 48 48 48 38.5 36.5 34 32 30 30 32 32 32 32 32 32 32 32 32 32	1 050 1 050 1 050 1 060 1 060 1 054 1 054 1 054 1 077 1 077 1 077 1 081 1 108 1 108 1 108 1 108 1 108 1 113 1 113 1 113 1 113 1 114 1 125 1 146 1 146	Sc	
_(V	(Winteler, Z Elektrochem. 1900, 7 361.)				

| Solubility in KOH+Aq at 25°.
| KOH+Aq | Millimoli KClOp per lure of the solution | Millimoli KClop per lure of the solution | 1/2-normal | 624 | 573 | 573 |

(Calvert, Z. phys. Ch. 1901, 38, 541.) Solubility in H₂O₂ at 25°.

| Concentration of H₂O₂ | Millimols KClO₃ per litte millimols per litre | 1260 | 730 | 1310 | 737

(Calvert, l.c.)

Solubility in 1/4 normal KOH+Aq in presence of H₂O₂ at 25°.

Concentration of H ₂ O ₂ millimols per litre	Millimois KCiO ₂ per live of the solution
15	578
276 954	584 616
1073	673

(Calvert, / c.)

Moderately sol. in liquid NH₂. (Franklin, im Ch. J. 1898, 20, 828) Neither dissolved nor attacked by liquid O₂. (Frankland, Chem Soc. 1901, 79, 1361.)

Sol. in 120 pts. alcohol of 83% at 16°. (Wittstem) Sol. in 120 pts. alcohol of 77 1%. (Pohl, W. A. B 6, 595.)

insol in absolute alcohol. (Gerardin.)

Solubility of KClO₅ in dil. alcohol. D=sp.
gr of alcohol, S=solubility in 100 pts

alcohol at to. D 40 9004 D = 0.9848 D = 0.9793ť t° 9 13 14 å 14 3.2 6 28 i 28 5 4 5 3 38 7.9 30 9 47 12 S 48 10 8 35 10 2 55 12 2 17 5 44 13.6 16

	10 2	ou	22 0	00	79 0
D=	0 9726	D =	0 9573	D=	0 9390
t°	8	t°	В	10	S
13 20 83 43 56 59	2 2 3 3 5 8 7 2 11.4 12 9	13 20 29 36 55 60 63	1.9 2 7 3 6 4 3 7 9 9 7 10.5	14 5 28 40 50 62 67	1 1 2.2 3.4 4.3 6.6 7.6

8		7		
		S	to.	S
0 74	12 31			0 09
1 78	43	1 95		0 12

(Gerardin, A. ch (4) 5. 148.)

Solubility of KClO2 in alcohol + Ac.

wt % alcohol	g KClOs per 100 g. solution		
are /g anconor	t = 30°	t =40°	
0 5 10 20 30 40 50 60 70	9 23 7 72 6 44 4.51 3 21 2 35 1 64 1 01 0 54	12 23 10.48 8 84 6 40 4.67 3.41 2.41 1.41 0 78	
80 90	0 24 0 06	0 34 0.12	

Insol in benzonitrile (Naumann, B. 1914, 47, 1370.)
Very sl. sol, in acetone. (Krug and M'El-

roy, J. Anal. Ch. 6, 184) Insol. in acetone (Naumann, B. 1904, 37, 4329; Eidmann, C. C. 1899, H. 1014)

Solubility of KClO3 in acctone+Aq.

wt. % acetone	g KClO ₂ per 100 g solution		
Wil 78 Acetone	t =30°	t =40°	
0	9.23	12 23	
5 9 00	8 32 7 63	11 10 10 28	
20	6 09	8 27	
30 40	4 93	6 69	
50	3 90 2 90	5.36 4.03	
60	2 03	2.86	
70 80	1 24 0 57	1.68	
90	0 18	0.24	

(Taylor, J. phys. Ch. 1897, 1. 301.)

Insol. in methyl acetate (Naumann, B. 1909, 42, 3790); ethyl acetate. (Naumann, B. 1904, 37, 3601)

Solubility in glycol=09% at ord. temp. (de Comnok, Belg. Acad. Bull. 1905. 359) 100 g. glycerol (sp. gr. 1.256) dissolve 3.54 g. KClO₃ at 15-16°. (Ossendowski, Pharm. J. 1907, 79. 575.) Potassium silver chlorate, KClO₃, AgClO₃.
(Pfaundler, W. A. B 46, 2, 266.)

Rubidium chlorate, RbClO;

100 pts. H₄O dissolve 2.8 pts. at 4.7°; 3.9 pts. at 13°; 4.9 pts. at 18.2°; 5.1 pts. at 19°.

(Ressig, A. 127, 33.) 100 g H₂O dissolve 3.1 RbClO₂ at 15°; sp. gr of solution = 1.07 (Carlson, Dissert. 1916.)

100 g. H₂O dissolve at

0° 8° 19.8° 30° 2.138 3.07 5.36 8.00 g. RbClO_t,

42.2° 50° 76° 99° 12.48 15.98 34.12 62.8 g. RbClO₃. (Calzolari, Acc. Sc. med. di Ferrara, 1911, **85**.

Scandium chlorate.

(Crookes, Roy. Soc. Proc 1908, 80. A, 518.)

Silver chlorate, AgClC₂.

Sol. in 10-12 pts. cold H₂O (Vauquelin); in 8-10 pts. cold, and 2 pts. hot H₂O (Chercux), in 5 pts. cold H₂O (Wachter) Sl. sol. in alcohol (Chevenix); easily sol. in alcohol (Wachter)

Sliver chlorate ammonia, AgClO₃, 2NH₃.

Easily sol. in H₂O or alcohol. (Wachter, 1843.)

Sodium chlorate, NaClO3.

Deliquescent.
Sol in 3 pts. cold and less hot Hist. (Whichter,

Chevenx)
Sol m 3 pts H₂O at 18 75° (\lambda l) 100 pts H₂O desolve 35 5 pts NaClO₅ (Ure's Diet.)

100 pts, H₅O dissolve at.

0° 20° 40° 60° 81 9 99 123.5 147.1 pts. NaClO₂,

80° 100° 120° 175.6 232.6 333 3 pts NaClO₂, (Kremers, Pogg. **97**, 4.)

100 pts, H₂O dissolve 89.3 pts. NaClO₃ at 12°. (Schlosing.)

100 g H₂O dissolve at: -15° 0° 20°

72 79 101 126 pts. NaClO₃,

Sp.gr. 1.380 1.389 1.430 1.472 60° 80° 100° 122° *

155 189 230 286 pts. NaClO₃. Sp. gr. 1 514 1.559 1 604 1.654

* Bpt. of sat. solution. (Carlson, Dissert, 1910.)

100 g. NaClO.+Ag contain at: 4.78° 19.85° 30.05° 35.10° 44.72° 45.47 48 91 51,22 52,36 54 50 g NaClOs (Le Blane and Schmandt, Z. phys. Ch. 1911, 77. 614)

Sp. gr. of NaClO, +Ag. containing: 25% NaClOs 25 30 1.070 1.108 1 147 1.190 1.235 1.282 (Gerlach, Z. anal 8, 296.)

Sp gr of NaClO₃+Aq at 20° containing 1 aClO₃ m 100 mols H₂O = 1.03844 (Nicol, Phil. Mag. (5) 16. 122.) NaClO₁+Ao contaming 7 23% NaClO, has sp. gi. 20°/20° = 1 0496. (Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 278.)

Sat. solution boils at 132°, and temp. can be raised to 135° by supersaturation. (Krem-

ers. Pogg. 97, 4.1 Easily sol, in liquid HF. (Franklin, Z. anorg. 1905, 46, 2,)

NaClOs+NaCl NaClO₃++NaCl 100 pts H₂O dissolve 50.75 pts NaClO₃+ 24 4 pts. NaCl at 12°: 100 pts. H₂O dissolve 249.6 pts. NaClO₃+11.5 pts. NaCl at 122°, and when cooled to 12° contain 68.6 pts. NaClO₃+11.5 pts. NaCl. (Sohlosing, C R. 78. 1272)

Solubility in NaCl+Ag at 20° C

G NaC! in 1 htro	G NaClOs in 1 litre	Sp gr
5	668	1 426
10	661	1 424
15	653	1 423
20	645	1 421
25	638	1.419
30	630	1 418
35	622	1 417
40	615	1 415
45	607	1 414
50	599	1 412
55	590	1.411
60	582	1.409
65	574	1.408
70	566	1 406
75	559	1.405
80	551	1 404
85	544	1 402
90	537	1,401
95	529	1 399
100	522	1,398
105	514	1 396
110	507	1.394
115	499	1.392
120	491	1 391
125	484	1 389
130	476	1.387
135	467	1 385
140	450	1 202

451

1 381

145

55 (Winteler, Z. Elektrochem, 1900, 7, 361.)

295 300 1,226

1.217

Very sol, in liquid NHs. (Franklin, Am-Ch. J. 1898, 20, 829.) Sol. in 34 pts. alcohol of 83% at 16° and in less hot alcohol. (Wittstern.) Somewhat more easily sol, in alcohol than NaCl. (Berzehus.)

Solubility of NaClO₁ in alcohol, (g. NaClO₂ per l. of solution)

10	Alrohol			
	110 %	75 %	50 %	
20 40 60 70	16.1 22 9 29 0	110.8 133 5 155 8 161 3	311.3 321 8 326 8	

(Carlson, Dissert. 1910.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43, 314.) 100 g. glycerol dissolve 20 g NaClO, at

15.5°. (Ossendowski, Pharm. J. 1907, 79. 575)

CHLORING

Strontium chlorate, Sr(ClO₄)₄+5H₆O.

Very deliquescent, and sol in H₂O. (Top-soe, W. A. B 66, 2, 29) Sp. gr of solution sat. at 18° containing 63 3% Sr (ClO₃)₂=1.839. (Mylius, B. 1897,

30, 1718) Easily sol in H2O, less in alcohol, but more sol in alcohol than SiCl2. (Souchay, A. 102. 381.)

Insol in absolute alcohol (Wachter)

Thallous chlorate, TlClOs. Sol. in H2O, but decomp, by heating

100 pts H₂O dissolve at: 0° 20° 50° 80° 100° 2 80 3.92 12 67 36.65 57.31 pts. TICIO. (Muir. Chem. Soc. 29, 857.)

 TiClO_s+Aq sat. at 10° contains 25.637 g. TlClO₃. (Roozeboom, Z. phys. Ch. 8, 532.) 1 l. H₂O dissolves 0.134 equivalents TICIO₂ at 20°, or 38.51 g. in 1 l. of the solution (mean of 10 experiments). (Noyes and Fairell, J Am. Chem. Soc. 1911, 33. 1657.)

Solubility in Tl-SO. + Ag at 20°

G equiv	. per l.	Solid phase
TICIO:	Tl ₂ SO ₄	Sonu panse
0.1058	0 1366	TlClO4+Tl2SO4

(Noyes and Farrell, l.c.)

Thallic chlorate, Tl(ClOs)s+4HsO. Very deliquescent; sol. in H₂O. Decomp. slowly in the air. (Gewecke, Z. anorg. 1912, 75, 273)

Vtterhium chlorate.

Sol, in H₂O (Popp, A, 131, 179.)

Yttrium chlorate, Y(ClO₂)₂+8H₂O

Deliquescent, Easily sol, in alcohol, Sl. sol, in ether. (Cleve.)

Zinc chlorate, Zn(ClO₂)2+4H2O. Solubility in H₂O.

Sat. solution contains at:

4-18° 40° 66.52 67.66 69.06 75.44% Zn(ClO₃)₂, gr. of solution containing 66.52%

 $Zn(ClO_3)_2$ at $18^{\circ} = 1.916$. (Meusser, B 1902, 35. 1417.)

More sol, in H2O than chlorates of Mg, Co.

Ni or Cu, less sol than chlorate of Cd; more sol, than Zn(NO₂)₂ (Meusser, *l.c.*) +6H₂O. Very deliquescent. Easily sol in H₂O and alcohol. Melts in crystal H₂O at 80°. (Vauquelin, A. ch 95, 113.)

Solubility in H₂O. Sat. solution contains at:

_ 190 g٥ 150 55 62

50 10 60.20 67.32% Zn(ClO₈)₂ (Meusser, l.c.)

231

Sp. gr. of solution sat. at 18° containing 65% Zn(ClO₂)₂=1.914 (Myhus, B. 1897, 30, 1718.)

Zinc chlorate ammonia, Zr(ClO₂)₀, 4NH₂, Zn(ClO₃)_{2,} 6NH₃. Ppt. (Ephram, B. 1915, 48, 48)

Perchloric acid See Perchloric acid.

Chlorides

Most chlorides are sol. in H₂O; a few, however, are insol or nearly so therem, the chief of which are AgCl, Hg2Cl2, Cu2Cl2, PtCl2, and AuCl. Several chlorides are decomp into insol. basic salts or hydrovides, either by the addition of H₂O, as in the case of BiCl₃ and SbCl, or on evaporating the aqueous solution, as AlCl₂, ZnCl₂, MgCl₂, etc

Some chlorides are sol, in alcohol or ether. See under each element

Chlorine, Cla.

The maximum solubility of Cl in H2O is at 10° (Schonfeld); at 8-10° (Gay-Lussac); at 9-10° (Pelouze). Solubility decreases from 9-0°; at 100° the

solubility = 0 (Gay-Lussac.) Cl2+Aq sat at 65 has sp. gr. = 1 003 (Berthelot)

1 vol. H₂O at t° absorbs vols Cl reduced to 0° and 760 mm, pressure,

t°	Vols Cl	t°	Vols Ci			
10 11 12 13 14 15 16 17 18	2 5852 2 5413 2 4977 2 4543 2 4111 2 3681 2 3253 2 2828 2 2405	26 27 28 29 30 31 32 33 34	1 9099 1 8695 1 8295 1 7895 1 7499 1.7104 1.6712 1.6322 1.5934			
19 20 21 22 23 24 25	2 1984 2 1565 2 1148 2 0734 2 0322 1 9912 1 9504	35 36 37 38 39 40	1.5550 1.5166 1.4785 1.4406 1.4029 1.3655			

(Schonfeld, A. 93, 26)

CHLORINE

ol.	H ₂ O	absorbs	vols.	Cl	at	ť٥	(not	
		oome-						

Vols Cl	ţ°	Vols Cl	t°	Vols Cl	te
1.43 1.52 2.08 2.17	0 3 6 5 7	3 04 3 00 2 37 1 61	8 10 17 35	1 19 0 71 0 15	50 70 100

232

1 v

(Gay-Lussac, A. ch. (3) 7, 124.)

1 vol. H₂O at 8° absorbs 3.04 vols. Cl., which is a maximum of solubility. At 50°, 1.00 vols. are absorbe and at 0°, 1.5 vols. (Pelouse and Frem.)

1 vol. H₂O at t^o dessolves vols. Cl (not corrected) Vols. Cl | to Vols Cl t٥ Vols, Cl

(Pelouze, A. ch (3) 7 188)

1 vol. II-O absorbs vols. Cl at to

Vols Cl

2 6 -2 65

Vols C1 Vols CI

2 35-2 4 1 8 -1 83 (Riegel and Walr, Berz J B 1846, 72)

Solubility in H_2O : $\alpha = coefficient of solubility.$

\mathbf{t}^{o}	α	ţ°	α	t°	ء ا
8 4	2.2931 2.5469 2.7135	11 2	2 7267	32 1	1 576

(Goodwin, B. 15. 3040.)

Goodwin also gives tables for solubility of Cl in HCl and various chlorides, but they do not show evidence of accurate work. (A.M.C.)

Cla+Aq contains at 760 mm. pressure:

1.44% Cl at 0° 1.07% "" 6° 0.95% "" 9° 0.95% " " 9° 0.87% " " 12°

(Roozeboom, R. t. c. 1884, 3, 29.)

See also Cl₂+8H₂O.

Solubility of Cl₂ in H₂O 81 = Vol. of Cl (reduced to 0° and 760 mm.) absorbed by 1 vol. H2O under a total pressure of 760 mm

g = g, Cl₂ absorbed by 100 g, H₂O under a total pressure of 760 mm.

5	count	breome	0. 100 1			
0	f.o.	βι	q	t°	βι	q
	10	3 095	0 980	25	1 985	0 630
- 1	11	2 996	948	26	1 937	615
	12	2 900	918	27	1 891	600
	13	2 808	889	28	1.848	587
	14	2.720	861	29	1 808	574
be	15	2 635	835	30	1.769	562
d,	16	2 553	809	35	1 575	501
	17	2 474	784	40	1.414	451
	18	2 399	760	45	1 300	415
	19	2 328	738	50	1 204	· 386
_	20	2.260	716	60	1 006	324
_	21	2 200	698	70	0 848	274
10 10 15	22	2 143	680	80	0 672	219
5	23	2 087	662	90	0 380	125
_	24	2.035	646	100	0 000	000

(Winkler, Landolt and Bornstom, Tab. 4th Ed. 1912, 597.)

1 l. HCl+Aq (38% HCl) dissolves 17.3 g. Cl; 1 l. HCl+Aq (38% HCl) dissolves 11 g. Cl; 1 l. HCl+Aq (3% HCl) dissolves 65 g. Cl. (Berthelot, C R, 91. 191)

Solubility of Cl₂ in HCl+Aq at 20-21° and 759-761 mm. pressure.

g HCl per	g Claper l	Coefficient of absorption	Solubility
0 3 134 6 248 9 402 12 540 15 670 31 340 62 680 94 020 125 360 156 700 188 040 219 380 250 720 282 060 313 401	7 23 5 30 4 94 4.76 4 85 5 10 5 81 6 38 7.19 7.76 8 58 9 23 10 68 11.87	2 1157 1.5496 1 4483 1.3942 1 4200 1 4933 1.6736 1.8682 2.1044 2 2711 2 5095 2.7020 2 9243 3 1272 3 3278 3 5492	2 2799 1 6698 1.5607 1 5013 1 5292 1 6092 2 0131 2 2677 2 4473 2 7043 2 9117 3 1312 3 3677 3 5859 3 8224

(Mellor, Chem. Soc. 1901, 75, 227.)

Solubility of Cl in NaCl+Aq, $\alpha = 0$ officient of solubility.

 $N_8Cl = 9.97\%$

l	t°	α	t°	α
	7.9 11.9 15.4	1.8115 1 5879 1 3684	18.8 22.6	1 2785 1.0081

Ā

Solubility	of	Cl	ın	NaCl+AqContinued
		N	C	= 16.01%

• to	α	t°	a
6 11 6 16 4	1 5866 1 2227 1 0121	21 4 26 9	0 8732 0 7017

NaCl=19 66%.

t°	α	t°	α
9.2 9.3 14.8	1 6978 1 2145 1 2068 0 9740	15 4 20 4 21 9	0 9511 0 7758 0 7385

(Kumpf, W Ann. Beibl 6. 276.)

Solubility of Cl in sat. NaCl+Aq at t° and 760 mm, pressure.

10	Coefficient of absorp- tion at 0° and 760 mm	Solubility at 0° and 760 mm
14 5	0.3607	0 3898
29 0	0 3125	0 3458
60 0	0.1332	0 1625
82 0	0.6586	0 0763

(Kohn and O'Brien, J. Soc. Chem. Ind. 1898, 17. 1100)

Sat. KCl+-Aq absorbs '/, less Cl at 15' than pure H₂O. (Dettmer, A. 38. 35.) 1. l. of a solution of CsCl₂ (1 pt. in 15 pts. H₂O) dissolves 2.45 g. Cl at 12'. 1. of a solution of MgCl₃ (1 pt. in 15 pts. H₃O) dissolves 2.33 g. Cl at 12'. 1. l. cl at 12'.

Somewhat sol. in liquid NO₂. (Frankland, Chem. Soc 1901, **79**. 1361.)

CCl, absorbs 10% of Cl₂ at 13°. (Perkins, Chem. Soc. 1894, 65. 20)

1 mol. CrOCl₂ dissolves at 0°, 0.70 atom Cl; at-14°, 1.24 atoms; at-21°, 2.31 atoms; and at-24, 3 00 atoms Cl. (Roozeboom, R. t. c. 4. 379.) Sulphuryl chloude absorbs 71 vols. Cl or

0.136 pt. Cl by weight at 6°. (Schulze, J. pr. (2) 27. 168.)

Insol, in benzene, (Moride.) Sl. sol, in chloral and iodal (Dumas.) Sol, in perchlorethylene, (Fanaday.) Sol in a very large quantity of ether with decomp Coefficient of solubility of Cl₂ in organic

Substance	Coefficient of Solubility		
Carbon tetrachloride	51 7		
Acetic anhydride	39 6		
Acetic acid (99.84%)	36 7		
" (90 vol. %)	25 3		
" (75 vol. %)	16 43		
" (65 vol. %)	13 43		

(Jones, Chem. Soc. 1911, 99, 392.)

+8H₂O Critical temp, of decomposition in open vessel =9.6°; in closed vessel = 28.7°. Solubility in H₂O. % Cl₂=% of Cl₂ in Cl₂+Aq sat. at t° and

760 mm, in presence of Cl.+8H.O

t°	% Cl:	% Cl: t°	
0 3 6 9	0 505 0 64 0 709 0 900	12 5 20 28 5	1.10 1.82 3.50

(Roozeboom, R. t. e. 1884, 3. 57.)

Chlorine monoxide, Cl₂O

Sol in H₂O. At 0°, H₂O absorbs at least 200 times its volume of Cl₂O gas

Chlorine traoxide, Cl2O2

Decomp on air at 57° with explosion. H₂O absorbs 5-6 vols. Cl₂O₃. (Millon, A. ch. (3) 7. 298.)

H₂O absorbs at 8.5° and 753 mm. press. 8.591 vols Cl₂O₈. (Brandan.) 100 g H₂O dissolve at:

8.5° and 752 9 mm press 4 7655 g, Cl₂O₄. 14° " 756 3 " " 5,9117 " 21° " 754 " " 54447 " 93° " 760 " " 5,6508 " (Brandan, A, 151, 340.)

Does not exist, and above data are for mixture of ClO₂ and Cl (Garzarolli-Thurnlakh, A. 209. 184.)

Chlorine letroxide, ClO2

H₂O at 4° absorbs about 20 vols. ClO₂ with formation of HClO₂ and HClO₃. H₂SO₄ at -18° absorbs about 20 vols. ClO₂. (Millon, A. eh. (3) 7, 285.)

Solubility of ClO₂ in H₂O.

f.	g ClO ₂ per l		
1 10 7 14 0	>108 6 116 7 >107 9		

Z. phys. Ch. 1906, 54 569.)

4-8HaO (+:1HaO)

1				
		Solubility:	m	H ₂ O.

to.	g ClO: per l	f.o.	g ClO ₂ per l
0 79* 0 1 5 7	26 98 27 59 29 48 42 10	10 15 3 18 2	60 06 60 06 107 9

* Entertie.

(Bray)

Chlorine oxide, ClcO17

Very easily decomp (Millon, A 46, 281.) Probably a mixture of ClO2 and O

Chlorine heptoxide, Cl₂O₇ Explosive, decomp. by H₂O, sol. m well cooled benzene with al. decomp. (Michael,

Am. Ch. J 1909, 23, 447.) Chloriridid:amine chloride,

Cl₂IrNH₂NH₃Cl.

SI sol in cold, easily in hot H₂O. (Skoblikoff, A 84. 275.)

- nitrate, Cl₂Ir(N₂H₄NO₄)₂.

Sol. m H₂O.

sulphate, Cl₂Ir(N₂H₆)SO₄. Sl. sol, in cold, much more easily in hot

Chloriridic acid.

Chloriridates.

Most of the chloridates are very difficultly sol. in H₂O, but a little more scl. than the corresponding chloroplatinates Insol. or nearly so in alcohol, but not so difficultly sol as the chloroplatmates. (Rose.)

Ammonium chloriridate, (NH4)+IrCla.

Sol. in 20 pts. cold H₂O (Vauquelin); sl. sol. in cold, much more in hot H₂O (Claus); sol. in HCl+Aq (Soblewsky); insol. in cold NH4Cl+Aq (Claus); msol, m alcohol (Ber-

zelius). 100 pts H₂O dissolve at. 14.4° 26.8° 39.4°

0.699 0.905 1,226 pts. (NH4)5 IrCls. 61 2° 100 20 1.608 2 130 2.824 pts. (NH4), IrCla

(Rimbach and Korten, Z. anorg. 1907, 52. 407.)

Casium chloriridate, Cs.IrCl.

Only sl. sol. in H₂O. (Delépme, C. R. 1908, 146. 1268.)

Lithium chloriridate, Li-IrCle. Somewhat deliquescent; very sol in H_{*}O.

(Antony, Gazz. ch. it 23, 1. 190)

Potassium chloriridate, K2IrCl2

Sl. sol, in cold H₂O, sol in 15 pts. boiling H₂O; less sol, in H₂O containing HCl; insol, in alcohol or sat. KCl, and CaCl₂+Aq.

Linsol in liquid NH₃. (Gore, Am. Ch. J. 1898, 20, 829.

Rubidium chloriridate, Rb₂IrCl₅. Very sl. sol in H.O. (Rimbach, Z. anorg

1907, **52**, 408) Sodium chloriridate, Na-IrCla+6H2O Easily sol in H₂O; sol, in alcohol of 0 837

sp gi. Thallium chloriridate, Tl2IrCl4.

Decomp. by hot HCl forming TlaIrCla. (Delépine, C R. 1909, 149. 1073.)

Chloriridium pentamine comps. See Iridopentamine chloro comps.

Chloriridosulphurous acid.

Potassium chloriridosulphite, K4 Yr2Cl2(SO3)4, 4KCl+12H₀O

Insol. in cold, decomp. by hot H₄O. K₄I₇Cl₄(SO₂)₄, 2K₅SO₃. Decomp by H₅O. Cl₄Ir₅(SO₂)₄, 2KCl₄+H₅O. Sol. in H₂O; insol in alcohol. (Claus, J. pr. **42**, 354.)

Chloriridous acid.

146. 1268

Ammonium chloriridite, (NH₄)₂IrCl₄. Decomp, by H₂O. (Delépine, C. R. 1908,

+1½H₂O Sol. m H₂O. (Claus.) $IrCl_0(H_2O) (NH_4)_2$. (Delépine)

Cæsium chloriridite, ItCl_s(H₂O)Cs₂, (Delépine.)

Lithium chloriridite, Lt. IrClt+12H2O Deliquescent; sol. in H₂O and alcohol. (Delépme, C. R. 1914, 158, 1277.)

Lithium sodium chloriridite, Li-NaIrCl.+ 12H,O.

Stable in ag. solution in the presence of excess of lithium salt. (Delépine, C. R. 1914,

LiNasIrCle+12H2O Stable in aq. solution in the presence of excess of sodium salt (Delépine, C. R. 1914, 158, 1278,)

Petassium chloriridite, K.IrCla.

Decomp. by H₂O. (Delépine.) +3H₂O. Easily sol. in H₂O; insol. in al-cohol; msol. m sat. KCl+Aq. (Berzelius.) IrCl₆(H₂O)K₂. (Delépine)

Rubidium chloriridite, IrCls(HsO)Rbs (Delépine.)

Silver chloriridite, Ag-IrCla.

Insol. in H2O or acids; sl. sol in NH2OH+ Pot. (Delépme, Bull Soc 1910, (4), 7. 55)

Sodium chloriridite, NaglrCla+12H.O. Efflorescent, sol in ½ pt. H₂O. Insol. in alcohol. Melts in crystal H₂O at 50°.

Thallium chloriridite, TlaIrCla. Sol. in hot HCl; pptd. on cooling. (Delé-pine, C. R. 1909, 149, 1073)

Chlorotetramine chromium comps. See Chlorotetramine chromium comps.

Chloro-azoimide, NaCl.

Sl. sol in H2O. (Raschig, B, 1908, 41, 4194)

Chlorobromo comps: See Bromechloro comps.

Chlorocarbonic acid. See Carbonvl chloride. Chlorochromic acid. CrO2 OH

Known only in its salts. CrO2Cl2 See Chromyl chloride.

Ammonium chlorochromate, NH,C1O,C1=

CrO2ONH. More sol. in H2O than the K salt. (Peligot, A. ch. 52, 283.)

Barium chlorochromate chloride, Ba(CrOsCl)2, BaCl2.

Deliquescent. Very sol. in H₂O. (Pratorius, A. 201. 1.) +H₂O. Not deliquescent.

Calcium chlorochromate, Ca(CrOaCl)2. Deliquescent, (Peligot,)

+5H2O. Very deliquescent. (Pratonus) Chromous chlorochromate.

See Trichromyl chloride.

Cobalt chlorochromate, Co(CrO,Cl),+9H,O. Deliquescent; melts at 40° in crystal H₂O (Pratorius.)

Lithium chlorochromate, LiCrO.Cl decomp (Löwenthal, Z. anorg, 1894, 6. 357.)

Magnessum chlorochromate, Mg(CrO₃Cl)₂ Deliquescent. (Peligot)

+9H₂O. Less deliquescent than the other chlorochromates (Pratorius, A 201. 1.) Very hydroscopic; sol. in H₂O acidified with HCl without decomp (Lowenthal, Z. anorg. 1894, 6, 359.)

Nickel chlorochromate, Ni(CrO₃Cl)₂+9H₂O. Deliquescent; melts in its crystal H₂O at 46-48° (Pratorius)

Potassium chlorochromate, ICC1O2CI= · CrO₂(Cl)OK

Sol. in H2O with decomp. Cryst. from H2O containing HCl without decomp. (Peligot. Sol. in acctone (Naumann, B. 1904, 37. 4328.)

Sodium chlorochromate, NaCrOaCl. Deliquescent (Peligot) +2H₂O. Deliquescent (Pratorius.)

Strontium chlorochromate, Sr(CrO-Cl),+ 4H.O. Deliquescent; melts in crystal H₂O at 72°. (Pratorius)

Thallous chlorochromate, TlCrOsCl. Decomp by H₀O (Luchaud and Lenierre, C. R. 103, 198.)

Zinc chlorochromate, Zn(CrO₂Cl)₂+9H₂O Deliquescent; melts at 37 5° in crystal H.O. (Pratorius.) Very hydroscopic, very sol. in H₂O and acids. (Löwenthal, Z. anorg 1894, 6.360.)

Dichlorochromium bromide. [Cr(H2O)4Cl2]Br.

Very deliquescent Sol. in fuming HBr. in a mixture of equal volumes ether and fuming HBr, in alcohol and in accione. (Bjerrum, B 1907, 40, 2919.)

Chlorochromotetrammonium comps. See Chlorotetramine chromium comps.

Chlorocolumbium bromide, (ChgCl12)Br2+ 7H.O. Sol. in a small quantity of cold H2O.

(Harned, J. Am. Chem. Soc. 1913, 35, 1083)

Chlorocolumbium chloride, (CbcCl10)Cl2+ 7H.O. Insol, in cold, sol, in boiling H.O.

Not easily decomp by boiling with NH4OH Sol, in H₂O acidified with HCl without Cone HNO₃ decomp, a boiling solution of comp (Löwenthal, Z. anorg. 1894, 6. this comp. Completely sol in cone, alkalies (Harned, J. Am., Chem. Soc 1913, 35, 1080) Chlorocolumbum hydroxide, (Ch₀Cl₁₀) (OH), Chloromanganic acid. TSHO

Insol, in H2O. Sol. in acids and alkalics (Harned, J Am Chem, Soc 1913, 35, 1082.) Chloroctamine cobaltic carbonate, Very sol in H₀O (Vortmann and Blas-

berg, B. 22. 2651.) Cl₂Co₂(NH₂)₂(CO₄)₂+H₂O (Vortmann

and Blasberg. Chloroferrous acid.

Cl₄C0₂(NH₂)₈CO₂+2H₂O.

Calcium chloroferrite, CaO, CaCls, FosOa* Insol. in H.O. (le Chatcher, C. R. 99, 276.)

Dichlorofulminoplatinum,

Pt.N.Cl2O12H22(?). Insol. in H.O (v. Meyer, J. pr (2) 18. 305.)

Trichlorofulminoplatinum.

Pt.N.Cl.(OH)O19H24(?). Insol. in H₂O; sol. in HCl+Aa. (v Mover.)

Tetrachlorofulminoplatinum, PtaNaClaOasHea(?)

Insol, in H.O. (v. Meyer.) Chlorohydroxylonitritoplatinsemidiamine nitrite, (OH)CINO-Pt(NHa)+NO:

Easily sol. in hot H₂O. (Cleve.) Chlorohydroxylopiatindiamine bromide, OHPt(N2HBr)2.

Sl. sol. in H₂O

---- carbonate, OHPt(N2He)2CO2

Insol. in H₂O. (Cleve) --- chloride, OHPt(N2H6Cl)2.

Si sol, in H₂O, (Clove.) --- chromate, $OH_{Pt(N_2H_4)_2C_2O_4}$.

Nearly msol, in H₀O —— dichromate, OH_{Pt(NsH_t)₂Cr₂O₇.}

Ppt (Cleve.)

- nitrate (Raewsky's mtrate),

OHPt(NaHaNOs)a. Sl. sol. in cold, more easily in hot Ha(). (Gerhardt.)

Chlorohyposulphuric acid, S₂O₃Cl₄.

es Sulphur oxytetrachloride.

See Manganic hydrogen chloride.

Chloromercurosulphrous acid.

Ammonium chloromercurosulphite. NH SO HgCl.

Sol in H.O. (Barth, Z. phys Ch. 9, 205)

Barium chloromercurosulphite, Ba(SO, HgCl)

Insol in H₂O (Barth.)

Potassium chloromercurosulphite, KSO, HoCl Sol, in H.O. (Barth)

Sodium chloromercurosulphite, NaSO, HgCl +H2O.

Very sol in H.O. (Barth.)

Chloromolybdenum bromide, Cl.Mo.B1,+3H10.

Insol, in H₂O and dil. acids; sol. in alcohol. +6H₂O At first easily sol. in H₂O, but a precipitate soon forms. Can be crystallized from dil. HBr+Aq Sol in alcohol and ether. (Blomstrand,)

Chloromolybdenum potassium bromide, Cl₄Mo₂Br₂, 2KBr+2H₂O.

Decomp, by H.O. Can be cryst, from HBr +Aq (Blomstrand.)

Chloromolybdenum chloride, Cl₄Mo₃Cl₄= molybdenum dichloride, MoCla

Insol. in H₂O; easily sol in HCl+Aq or H₄SC₄+Aq; sl sol. in HNO₃; sol. in NH₄OH +Aq, NaOH+Aq, or KOH+Aq, with separation of precipitate on boiling; sol, in alcohol and ether, (Blomstrand, J pr. 77,

Very sol m conc. HCl. (Rosenheim and Kohn, Z. anorg 1910, 66, 2)
+3H₂O Insol in H₂O.
+4½H₂O. Insol in H₂O. (Liechti and Kempe, A. 170, 351)
+6H₂O Sol in H₂O, alcohol, or other. (Blomstrand.)

Chloromolybdenum hydrogen chloride, Mo₃Cl₄, HCl+4H₂O

Sol in H2O, but ppt. forms after a few minutes. (Rosenheim and Kohn, Z. anorg. 1910, 86. 5.)

Chloromolybdenum potassium chloride, ${\rm Cl_4Mo_3Cl_2,\ 2KCl+2H_2O}$

Decomp. by pure H₂O; can be recrystal-hzed from HCl+Aq (Blomstrand, J. pr. 77.

Chloromolybdenum hydroxide, Cl₄Mo₈(OH₂) Potassium hydrogen chloroli imolybdate, +2H₂O.

Insol, in H₂O or alcohol Easily sol in strong acids if fresh, and washed only with cold H2O. If washed with warm H2O, it is less sol. in acids. If precipitated hot, is insol in acids, even H₂SO₄ or fuming HNO₃. (Blom-Monorubidium trachloromolybdate, strand, J pr. 77, 100.)

Chloromolybdenum iodide, Cl.MosIs+3HsO Precipitate

 $+8H_{2}O.$

+6H2C. Sol. in H2O and alcohol

Chloromolybdenum potassium iodide, Cl₄Mo₃I₃, 2KI+2H₂O. Decomp. by H₄O Recryst, from HI+Aq.

(Blomstrand) Chloromolybdenum oxybromide, Cl, Mos De

+2H₂O. Insol in alcohol (Blomstrand, J. pr. 77.

116.) Chleromolybdic acid, $M_0OCl_8(OH) + 7H_2O$.

Very hydroscopic. (Weinland, B. 1904, 37,

Diammonium (els achloromolybdate, MoCl4(ONH4)2+2H2O. Hydroscopic Decomp, by H2O. Sol. in dilute acids, alkalics and ammonia. (Weinland, Z. anorg 1905, 44, 83)

Casium chloroframolybdate, acid. Mo₅O₁₁Cl₁₄(Cs₂O)+22H₂O, Hydroscopie, Decomp. by H₂O Sol in

dilute acids, alkalies, and ammonia. (Weinland, l.c) Monocæsium trichloromolybdate,

MoOCl₄(OCs)+H₃O Hydroscopic, Decomp. by H₂O. Sol. in dilute acids, alkalies and ammonia. (Wein-

Dicesium tetrachloromolybdate, MoCl₄(OCs)₂

land.)

Hydroscopic, Sol. in H₂O with decomp. Sol in dilute acids, alkalies, and ammonia (Wemland, Z. anorg. 1905, 44. 83.)

Monopotassium trichloromolybdate, $M_0OCl_*(OK) + H_0O.$ Hydroscopic. Decomp. by H₂O. Sol. in

dilute acids, alkalies, and ammonia. (Weinland.)

Dipotassium tetrachloromolybdate, McCl4(OK)3+2H2O

Hydroscopie, Decomp. by H₂O. Sol in dilute acids, alkalics, and ammonia. (Weinland.)

Mo₀O₁₁Cl₁₄, K₂O+6H₂O.

Hydroscopic Decomp, by H.O. Sol in dilute acids, alkalies, and ammonia. (Wein-

MoOCh(ORb) +H₂O

Hydroscopic Decomp, by H₂O Sol in dilute acids, alkalies, and ammonia. (Weinland.)

Dirubidium tetrachloromolybdate, MoCl₄(ORb)₂.

Hydroscopic, Decomp. by H.O. Sol. in dilute acid, alkalics, and ammonia. land.)

Chloronitratoplatinamine nitrite,

Cl NO, Pt(NH,NO,)2. Easily sol, in H₂O.

Chloronitratoplatindiamine nitrate,

Cl NO, Pt(N2H4NO3)2

Decomp. by H₂O with formation of OHPt[(NH₃)₂NO₃)]₂.

- sulphate, Cl_{NO} , $Pt(N_2H_0)_2SO_1+H_2O$. Si sol in cold, more easily in hot HoO.

Chloronitritotetramine cobaltic chloride. Cl(NO2)Co(NH2)4Cl. Not very sol, in cold H_{*}O (Jörgensen, Z.

anorg, 5, 195.) Chloronitritoplatinsemidiamine chloride.

 $Cl_2(NO_2)Pt(NH_2)_2Cl$ 100 pts. solution in H₂O sat at 18° contain 1.8 pts. salt; sat at 100°, 6 pts.

Insol. in abs alcohol or ether. Not decomp. by cone, HNO2, HCl, or H2C2O4+Aq, and by H.SO, only at a high heat. Formula given was PtNeH12CleO4. (Peyione, J. B. 1855, 421)

nitrite, Cl₂(NO₂)Pt(NH₂)₂NO₂ Sol. in H₂O. (Blomstrand.)

Chlorophosphatoplatindiamine phos-ClPt(N2H6)2

+2H₅O. Nearly insol in cold, and only very sl. sol in hot H₂O. (Raewsky.)

Chloronitrous acid.

Iridium potassium chloronitrite, Ir₂Cl₂(NO₂)₄, 6KCl.

Ppt., decomp. by boiling H2O. Sol. in cold H.O. (Leidié, C. R. 1902, 134, 1583.)

IraK12Cl16(NO2)3+4H2O. Pnt. (Quennessen, C. R. 1905, 141, 258.)

Chloropalladic acid.

Chloronalladates.

The chloropaliadates are generally very sol. un H.O. and sol un alcohol (v. Bonsdorff. Pogg. 17. 264.)

Ammonium chloropalladate, (NH4)2PdCl6. Sl. sol, in H₂O. (Berzelius)

Barium chloropalladate.

Sol. in H₀O and alcohol. (v Bonsdorff.)

Cadmium chloropalladate. As above

Cæsium chloropalladate, Cs2PdCl4. Nearly insol, in cold H₂O Decomp, by boiling with H₂O or by hot cone H₂SO₄. (Gutbier, B. 1905, **38**, 2386.)

Calcium chloropalladate.

Deliquescent, sol. in H₂O and alcohol. (v. Bonsdorff, **1829**.)

Glucinum chloropalladate, GlPdCla+8HoO. ·Very hydroscopic, and sol, in H2O.

Magnesium chloronalladate, MgPdCla+ 6H.O.

Dehouescent: sol. in H₀O. Nickel chloropalladate, NiPdCla+6H2O.

Extremely deliquescent. Potassium chloropalladate, KoPdCla.

Sl. sol, in cold H₂O. Decomp, by long boil-ing with H₂O. Sl. sol. in dil. HCl+Aq with-out decomp. Insol, in NH₄Cl, KCl, or NaCl +Aq. Insol. in alcohol. (Berzelius.)

Rubidium chloropalladate, Rb.PdCl., Insol, in cold H1O. Decomp, by boiling with HaO or by hot cone, HaSO, (Gutbier, B. 1905, 38, 2387.)

Zinc chloropalladate, ZnPdCla+6HoO. Very deliquescent, (v. Bonsdorff,)

Chloropalladous acid

Aluminum chloropalladite, Al, Pd, Cl, + 20H.O.

Deliquescent. Sol. m H2O, alcohol, or ether. (Welkow, B. 7, 804.)

Ammonium chloropaliadite, (NH4)2PdCl4+ H2O. Easily sol, in H2O, Insol, in alcohol, Sol in NH4CI+Aq. (Claus.)

Barium chloropalladite.

Easily sol, in H_{*}O or alcohol.

Cadmium chloropalladite. Not deliquescent

Cæsium chloropalladite, Cs2PdCl4.

Can be cryst, from hot H₂O (Gutbier, B. 1905, 38, 2386)

Calcium chloronalladite. Deliguescent Sol, in H.O or alcohol

Easily sol, in H₂O, (Gutbier, B, 1905, 38.

Glucinum chloropalladite, GIPdCL+6H.O Very hygroscopic, very sol in H₂O, alcohol or ether. (Welkow.)

Magnesium chloropaliadite. Deliguescent, Easily sol in H.O. (v. Bonsdorff.)

Manganese chloropalladite. Sol in FIaO and alcohol.

Nickel chloropalladite. Sol, in H₂O.

Potassium chloropalladite, K2PdCl. Much more sol, in hot than cold H₁O, (Joannis, C. R. 95, 295.) Sol, in NH₄OH+

(Joanns, C. R. 95, 295.) Soi. In MAGH+Aq. (Berzelius.) Soi. In cold sat. KCl+Aq. (Gibbs, Sill. Am. J. (2) 31, 70.) Insol. In alcohol. (Wollaston.) Somewhat soi. in alcohol of 0.84 sp. gr. but insol. In absolute alcohol; decomp. on boiling (Berzelius.)

Rubidium chloropalladite, Rb2PdCl4 Can be cryst from hot H₂O (Gutbier, B. 1905, 38, 2387.)

Sodium chloropalladite.

Deliquescent Sol. in H2O and alcohol. Zinc chloropalladite.

Very deliquescent. Sol. in H₂O and alcohol. (v. Bonadorff)

Chlorophosphoarsenioiridic acid, 2IrCla 3H2PO2, 3H2PO4, 5H2A8O4(?). Very sol, in H.O. (Geisenheimer.)

Lead chlorophosphoarsenioiridate, 4IrCl₃, 3Pb₂H₂(PO₃)₂, 3Pb₃(PO₄)₂, 5Pb₂H₃(AsO₄)₃. Insol in H₂O.

Chlorophosphoiridic acid, 2IrCls, 3HsPO4, 3HaPOa

Very sol. in H₂O. Insol. in alcohol. (Geisenheimer, A. ch. (6) 23, 254.) 2IrCl₃, 3H₄PO₄. Sol. in H₂O and alcohol.

monium chlorophosphoiridate, 2IrCl₃, Chloroplatindiamine chromate, 3(NH₄)₄PO₄, 3(NH₄)₄HPO₄. Ammonium Very deliquescent. Very sol m HaO. (Gasenheimer)

Lead chlorophosphorridate, 4IrCl., 3Pb2(PO4)2, 3PbH2(PO3)2.

Insol, in H2O or acetic acid; very sol in dil HNO.+Ag (Geisenheimer.)

Silver chlorophosphoiridate, 2IrCla. 3AgH₂PO₄, 3AgH₂PO₃, Insol. in H₂O Sol. in HNO₂+Aq. and

NH₄OH+Aq. (Geisenheimer.) Chlorophosphoplatinic acid.

See Chloroplatinophosphoric acid.

Chlorophosphoric acid. Thorium chlorophosphate, 3ThO. ThCl.

2P₂O₄ Insol, in H2O and acids; decomp by boiling with H-SO, and fusing with alkali carbonates. (Colani, C R 1909, 149, 208)

Chloroplatinamine chloride, Cl₂Pt NH₃Cl.

Sol in about 700 pts. H₂O at 0°, and 33-34 nts. at 100°. Not attacked by boiling cone. HNO, or H₂SO₄. Sol. in boiling KOH+Aq with decomp. Sol. in NH₄OH+Aq. (Cleve,

Sv. V. A. H 10, 9. 30.) ---- nitrite, Cl₂Pt(NH₂NO₂)₂,

SI sol. in cold, easily in hot H₂O.

AgNO2. Easily sol, in hot, sl. sol, in cold H₂O. (Cleve.)

--- nitritochloride, Cl₂PtNH₈NO₂ Sol. in H2O. (Cleve.)

Chloroplatindiamine bromide. Cl2Pt(N2H4Br)2.

Sl. sol, in hot H.O. (Cleve.)

---- chloride (Gros' chloride). Cl₂Pt(N₂H₆Cl)₂.

H.O. Sol. in hot cone, KOH+Ag, with decomp. (Grimm)
Sol in cold KOH+Aq without decomp.

Nearly insol, in NH₂OH+Aq. (Buckton.) +H2O. (Raewsky.) ---- chloroplatinate, NCl2Pt(2HaCl)2, PtCl4.

Easily sol. in hot H2O.

--- chloroplatinite, Cl.Pt(N.H.Cl), PtCl2. Sl. sol, in HaO, (Cleve.)

Cl-Pt(N-He)-CrO4.

Nearly insol, in H₂O. (Cleve)

-dschromate, Cl.Pt(NaHe)+CreOz. SI sol in cold, more sol, in hot H2O. (Cleve.)

- nitrate (Gros' nitrate).Cl-Pt(NoH-NOs) Much more easily sol in hot than in cold H₂O. Sol in hot KOH+Ag with decomp. Nearly insol in cone. HNO,+An.

---- nitritochloride, Cl₂Pt_N,H₄NO₂

Ppt (Jorgensen.) --- phosphate.

See Chlorophosphatoplatind:amine phosphate.

---- sulphate, Cl₂Pt(N₂H₄)₂SO₄ Sl. sol, in both cold or hot H₄O (Cleve.) +2H2O. Sl. sol in cold, easily in hot

H.O. (Grimm) sulphocyanide, Cl₂Pt(N₂H₆)₂(CNS)₂
 +H₂O.

Ppt. (Cleve.)

Chloroplatinggonodyamine chloride.

Cl₂Pt_{NH₃Cl,}

Quite easily sol in H₂O. (Cleve)

Chloroplatinsemuliamine carbonate chloride, 2Pt(NH2)2Cl2, Pt2(NH2)4Cl2(CO3) Sl. sol. in H₂O; insol. in alcohol and ether. Decomp by cold HCl+Aq. (Schon, Z. anorg --- nitrate salver natrite, Cl₂Pt(NH₂NO₂)₂, 1897, 13. 37)

> Chloroplatinsemidiamine chloride, ClaPt(NHa)aCl.

Sol. in 300 pts. H2O at 0°, and 65 pts at 100°. Not decomp, by conc. H2SO4. Sol. in KOH+Aq without decomp. (Cleve.)

Chloroplatinic acid, H2PtCls+6H2O.

Deliquescent Sol in H₂O, alcohol, or ether. (Pigeon, C R. +4H,0. Deliguescent 112, 1218

PtCl4, HCl+2H2O (Pigeon.)

Nearly insol in cold, and only sl. sol. in hot Aluminum chloroplatinate, AlCla, PtCl4+ 15H₂O

Very sol, in H₀O and alcohol (Welkow, B. 7.304) Insol. in ether.

Ammonium chloroplatinate, (NH4), PtCls. Sl. sol. in cold, more easily in hot H2O

(Fresenius) 100 pts. H2O dissolve 0.666 pt. at ord temp. and 12.5 pts at 100°. (Crookes, C. N. 9. 37.)

Insol. in cold HCl+Aq Separates out on cooling from solution in hot HCl, HNOs, or H₂SO₄. (Fischer.) Very sl sol in cold, easily in hot NH₄OH+

(Fresenius.

Cone. NH Cl+Aq ppts. it almost completely from aqueous solution (Bottger.) Sol. in NH, succinate+Aq (Dopping Less sol. in H.PtCla+Aq than in H2O. (Rogoiski, A. ch (3) 41, 452

Sol. in SnCl2+Aq (Fischer) Very sol with decomp, in KCNS+Aq

(Claus.) (Causs)
At 15-20°, sel. in 26,335 pts. 97.5% alcohol,
In 1476 pts. 76% alcohol, and in 665 pts 55%
At 15-20°, sel. in 1670 pts. 76% alcohol. If free HC1 is present, at is sol. in
672 pts. 76% alcohol. (Freemus, A. 59.11s.)
Erbrum chloropiatmate, ErCl., PtCl.+ Insol, in absolute alcohol or ether.

Barium chloroplatinate, BaPtCls+6H2O

Permanent, sol. in H₂O; decomp, by alcohol (v Bonsdorff, Pogg 17, 250.) Barium monochloroplatinate, PtCl(OH).Ba+ H₂O.

Insol, in H2O and in org solvents. (Bellucci, C. C. 1903, I 131)

Barium pentachloroplatmate, OH.PtClaBa+

(Miolati, Chem. Soc. 1900, 78, (2) 732.) Cadmium chloroplatinate, CdPtCla+6H2O Dehouescent, and casily sol in H.O. (v. Bonsdorff)

Cassium chloroplatinate, Cs.PtCl.

100 pts. H2O dissolve at 10° 20° 0.024 0.050 0.079 0.110 pts. Cs2PtCla 40° 50° 60° 0.142 0.213 0 251 pts. CsaPtClo 80° ano 1000 0.291 0.332 0.377 pts. CsoPtClc. (Bunsen, Pogg. 113. 337)

Sol. in 1308 pts. II₂O at 15°, and 261 pts at 100°. (Crookes, C. N. 9. 205) Calcium chloroplatinate, CaPtCle+8H2O

Deliquescent; easily sol, in H.O. (v. Bonsdorff.)

Calcium monochloroplatinate, PtCl(OH),Ca +H.O. Insol, in H₂O and in org, solvents. (Bel-

lucci, C. C. 1903, I 131) Cerium chloroplatinate, CeCl3, PtCl4+13H2O. Deliquescent: very sol in H₂O or alcohol: insol. in ether. (Marignac) 4CeCl₄, 3PtCl₄+8H₂O. Deliquescent: casily sol in H2O or alcohol, insol, in ether.

(Holzmann, J. pr. 84. 80.) Chromium chloroplatinate, CrCl, PtCl4+ 1016H.O.

Deliquescent. (Nilson, B. 9, 1056.)

+10H₂O Very sol in H₂O and alcohol, Nearly insol. in acetone. (Higley, J. Am Chem Soc 1904, 26,617,)

Cobalt chloroplatinate, CoPtCl4+6H4O. Very deliquescent, (Jørgensen.)

Copper chloroplatinate, CuPtCls+6H2O. Deliquescent in moist air. (v. Bonsdorff.) Didymium chloroplatinate, DiCl., PtCl.-4 13H-O.

Less deliquescent than the cerum salt. (Mangnac) +1016HaO. Deliquescent. (Cleve. Bull

11H.O.

Very deliquescent. (Cleve.)

Gadolinium chloroplatmate, GdCl2, PtCl.+ 10H,O.

Ppt. (Benedicko, Z anorg. 1900, 22, 204.) Glucinum chloroplatinate, GlPtCls+8HsO. Deliquescent in moist air. Very sol. in H₂O, moderately in alcohol. Insol. in ether.

(Welkow, B 6. 1288.) Indium chloroplatinate, 2InCls, 5PtCl.+

36H.O. Deliquescent. (Nilson.)

Iron (ferrous) chloroplatinate, FePtCls+ 6H.O.

Dehquescent, (Topsoc.) Iron (ferric) chloroplatinate, FcCl., PtCl.+ 101/6H+O.

Deliquescent. (Nilson.)

Lanthanum chloroplatmate, LaCl., PtCl.+ 13H.O. Deliquescent; extremely sol. in H₂O (Cleve.)

Lead chloroplatinate, PbPtCls+3H2O. Easily sol. in H2O and alcohol (Topsoc), with decomp. (Birnbaum, Zeit, Ch 1867.

520.) Lead monochloroplatinate, [PtCl(OH),]Pb, Pb(OH)

Ppt. (Bellucci, Chem. Soc 1902, 82, II. 155.) Lead pentachloroplatinate, basic,

PtCl₄(OH)Pb, Pb(OH)₂ (Mioleti, Chem. Scc. 1900, 78, (2) 732.)

Lithum chloroplatinate, Li₂PtCl₆+6H₂O.

Extremely deliquescent (Jorgensen); efflorescent. Easily sol. in H₂O, alcohol, or ether-alcohol; insol in ether. (Scheibler.)

Lithium pentachloroplatinate, OH PtCl.Li. Very hydroscopic (Miolati, Chem. Soc. 1900, 78 (2) 732.)

Magnesium chloroplatinate, MgPtCl₀+6H₂O. Sol in H₂O and abs alcohol +12H₂O. Sol in H₂O.

+12H₂O. Sol. in H₂O.

Manganese chloroplatinate, MnPtCl₀+6H₂O

Not deliquescent, sol. in H₂O.

+12H₂O Sl efflorescent. Nickel chloroplatinate, N₁PtCl₄+6H₂O.

Sol, in H₂O.

Potassium chloroplatinate, K₂PtCl₀.

otassium chloroplatinate, K₂PtC 100 pts. H₂O dissolve at:

0° 10° 20° 30° 40° 50° 0.74 0.90 1.12 141 1.76 2.17 pts K₂PtCl₆, 60° 70° 80° 90° 100° 264 319 3.79 445 5.18 pts. K₂PtCl₆,

(Bunsen, Pogg. 113. 337) 100 pts. H₂O dissolve 0.926 pt at 15°, and

5.26 pts. at 100°. (Grookes, C. N. 9. 205.) 100 g H₂O dissolve at· 2° 16° 25° 35° 48°

2° 16° 25° 35° 48° 0.4812 0.6718 0.8641 1.132 1.745 g K₂PtCl₄, 59° 68° 78° 92°

2 396 2 913 3.589 4 484 g. K₂PtCl₃. (Archibald, J. Am. Chem. Soc. 1908, **30.** 752.)

Not attacked by cold cone. H₂SO₄. (Lassagne.) Sl. sol. in cold, more easily m hot dil. acids. Less sol in KCl+Aq than in H₂O, and nearly insol. in sat KCl+Aq. (Schrötter, W. A. B.

50, 2. 268) Solubility in KCl+Aq at 20³.

G mol KCl per l of KCl+Aq	G. K ₂ PtCle in 100 g of solution.	
0 00 0 20 0 25	0.7742 0.0236 0.0207	
0 50 1 00 2 00	0.0109 0.0046 0.0045	
3.00 4.00 sat.	0 0048 0.0042 0 0034	

(Archibald, J. Am. Chem. Soc. 1908, 30, 757)

Solubility in NaCl+Ag at 16°. G. mol. NaCl per litre of NaCl+Aq G KePtCle in 100 g of solution 0.00 0.6720 05 0 700 0 729 0 10 0 758 0.250.775 0.50 0.75 0.791 1.00 0 805

2 00 0.834

Sol. in KOH+Aq. Insol. in cold or hot alkali earbonates or bicarbonates +Aq. (Rosc. Easily sol. in warm Na₂S₂O₄+Aq. (Himly.) Sol in NH₂Cl+Aq. (Biett.)

Sol. in NH, succinate +Aq. (Dopping.) A 15-20°, sol in 12,083 pts. absolute alohol, in 3775 pts. 78% absolute alcohol, and in 1053 pts. 55% absolute alcohol. (Fresenius.)

Sol. in 1835 pts. 76% alcohol containing HCl at 15-20°. (Fresenius.) Nearly absolutely insol. in alcohol containing ether.

taining ether.
Sol in 42,600 pts absolute alcohol (Precht, Z anal. 18, 509.)

Z anal. 18, 509.) 1 l. methyl alcohol dissolves 0.072 g. at 20°. (Peligot, Monit. Sci. 1892, (4) 6. I, 873.)

Solubility in methyl alcohol+Aq at 20°

ď	alcohol by w	G K ₂ PtCl ₂ in 100 g of solution
	0	0 7742
	.5	0 5350
	10	0 4120
	20 30	0 2642 0.1831
	40	0.1831
	50	0 0625
	60	0.0325
	70	0.0182
	80	0.0124
	90	0 0038
•	100	0 0027

(Archibald, J. Am, Chem. Soc. 1908, 30, 755.)

Solubility in ethyl alcohol + Aq at 20°.				
% alcohol by wt	G K ₂ PtCl ₅ in 100 g of solution			
0 5 10 20 30 40 50	0 7742 0.4910 0.3720 0 2180 0.1340 0 0760 0 0491			
50 60 70 80 90 100	0 0265 0 0128 0 0085 0 0025 0 0009			

(Archibald, J. Am. Chem Soc. 1908, 30. 755.)

| Solubility in isobutyl alcohol + Aq at 20°.
% alcohol	g . KsPlCl4 in 100 g of solution
0	0.7742
8.20	0.6250
sat.	0.3180

(Archibald, J. Am. Chem. Soc. 1908, 30. 757.) (Archibald, J. Am. Chem. Soc. 1908, 30. 755.)

Potassium pentachlorohudroplatinate. K₂(PtCl_OH)

Easily sol, in H.O. (Ruff, B 1913, 46. 925.)

Praseodymium chloroplatinate, PiCl, PtCl, Thallium chloroplatinate, Tl2PtCl3 +12H₀O Very sol, in H_{*}O Sol, in conc HCl. (von

Scheele, Z anorg 1898, 18, 353.) Rubidium chloroplatinate, Rh.PtCl. 100 pts. H₂O dissolve at:

no 10° 0.1840 154 0.141 pts. Rb₂PtCl₆, 20° ٦U° 0 203 pts. Rb₂PtCl₆, 0.1450.166ദവം 700 su_o 0.2530.3290.417 pts Rb.PtCle. 900 100° 0.521 pts Rb2PtCl6. (Bunsen, Poge 113, 337.)

Sol. in 740 pts. H₂O at 15°, and 157 pts. at 100°. (Crookes, C. N. 9. 205.) Insol, in alcohol.

Samarum chloroplatinate, SmCl., PtCl.+ 1014H.O. Deliguescent Very sol, in H₂O. (Cleve,

Bull. Soc. (2) 43. 165.) Silver chloroplatinate, Ag-PtClc.

Ppt. Gradually decomp, by H2O into AgCl and PtCl, (Jörgensen, J. pr (2) 16. 345.) Ag:PtCl,(OH); Ppt.

Silver monochloroplatmate, [PtCl(OH), Ag. Ppt. (Bellucet, Chem. Soc 1902, 82, (2).

Silver pentachloroplatinate, (OH)PtCLAge Ppt.; stable in boiling H2O (Miolati, Chem. Soc. 1900, 78 (2), 732.)

Silver chloroplatmate ammonia, AgaPtCls, 2NH2.

Insol, in H.O. (Birnbaum.) Sodium chloroplatmate, NacPtClc+6H-O.

Easily sol, in H₂O Sat solution at 15° contains 39 77 g Na₂PtCl₄ and has sp gr. of 1.368. Sol. in NaCl+Aq More sol. in absolute alcohol than in 95% alcohol Sat solution in abs. alcohol contains 11.90%; 959 alcohol, 6 34%. Mixture of equal parts of ether. (Precht, Z. anal 18, 502.)

Sodium pentachloroplatinate, (OH)PtCl₅Na₂. Exists only in solution. (Miolati, l c.)

Strontum chloroplatinate, SrPtCls+8H2O. Very sol. m H₂O,

Strontium monochloroplatmate, PtCl(OH), St. THO Insol. in H-O and ore solvents (Bellucei C C 1903, I, 131)

Very al. sol. in H_{*}O Sol. in 15,585 nts H₂O at 15°, and 1948 pts at 100° (Crookes.)

Thalloum monochloroplatinate, [PtCl(OH): Tl. Pnt. (Bellucci, Chem. Soc. 1902, 82, (2) 155.)

Thallium pentachloroplatinate, (OH)PtCl,Ti. (Miolatz, Chem. Soc. 1900, 78 (2) 732) Thorium chloroplatmate, ThCl, PtCl,+

12H₂O. Very deliquescent. (Cleve, Bull Soc (2). 21. 118)

Tin (stannic) chloroplatinate, SnCl4, PtCl4+ 12H.O. (Nilson, B 9. 1142.)

Ytterbium chloroplatinate, 2YbCls, PtCls+ 22H₂O, and +35H₂O. Ppt. (Cleve. Z. anorg, 1902, 32, 137)

Vanadyl chloroplatinate, (VO)PtCl.+

101/2H2O. Sol in HzO; cryst from PtCl1+Aq (Brauner, M. 3, 58.)

Yttrium chloroplatinate, 4YCl2, 5PtCl4+ 52H_{*}O. Very deliquescent. (Cleve) 2YCl., 3PtCl.+30HaO. (Nilson, B. 9.

2YCl2, PtCl4+21H2O, (Nilson) Zinc chloroplatinate, ZnPtCl₆+6H₂O Deliquescent; sol, in H-O and alcohol.

Zinc tetrachloroplatmate, ZnPt(OH),Cl++ 5H₂O Extremely sol in H₂O and alcohol (Miolati, Z. anorg. 1900, 22, 458.)

Zirconyl chloroplatinate, (ZrO)PtCl₆+12H₂O. (Nilson.)

Chloroplatinoanhydropyrophosphoric acid, ClPtP₂O₀H₄=ClPt P(OH)₂

ФО(OH)₃. Not deliquescent. Sol. in H₂O (Schutzenberger, Bull. Soc. (2) 18. 154.)

Chloroplatinocyanhydric acid, HaPt(CN),Cla

See Perchloroplatinocyanhydric acid.

Potassium chloroplatinocyanide, 5K₂Pt(CN)₄, K₂Pt(CN)₁Cl₂+21H₂O. Sol. in H₂O; ussol in alcohol.

Silver chloroplatinocyanide, Ag₂(PtCl₂(CN)₄)₂.

Ppt. (Mulati, C C 1901, I. 500.)

Chloroplatinophosphoric acid, Cl₂PtP(OH)₃.

Very deliquescent, and sol. in H₂O (Schützenberger, Bull. Soc. (2) 17. 493) Lead chloroplatinophosphate, Pb₃(Cl₂PtPO₃)₂

+8H₂O.

Ppt.
Pb₄(Cl₂PtPO₃)₃, 2PbO+4H₂O. Ppt.
(Schutzenberger, Bull, Soc. (2) 17, 494.)

(Schutzenberger, Bull, Soc. (2) 17. 494.) Silver chloroplatinophosphate, Ag₂HPO₂, PtCl₂.

Ppt. (Schutzenberger, Bull. Soc. (2) 17. 494)

Chloroplatinodiphosphoric acid, PtCl₂, P₂(OH)₀.

Very deliquescent, and easily sol. in H₂O. (Schutzenberger, Bull. Soc. (2) 18. 153.) Chloroplatinopyrophosphoric acid,

CIPt $P(OH)_3$ $P(OH)_3$

Less deliquescent than chloroplatmodiphosphoric acid.

Chloroplatinous acid, H₂PtCl₁ Known only in solution

Aluminum chloroplatinite, AIPtCl₅+10½H₂O. Very deliqueseent, sol in H₂O. (Nilson, J. pr. (2) 15. 260.)

Ammonium chloroplatmite, (NH₄)₂PtCl₄. Sl. sol. in cold, easily in hot H₂O. Insol in alcohol. (Peyrone, A. **55**. 206)

Barium chloroplatinite, BaPtCl₄+3H₂O. Not deliquescent, sol. in H₂O. Very sl sol. in 93% alcohol.

Cadmium chloroplatimite ammonia, CdPtCl, 4NH₄.

Insol. in H₂O or NH₄OH+Aq. Sol. in HCl+Aq (Thomsen, B. 2, 668)

Cæsium chloroplatınıte, Cs:PtCl.

Sl. sol. m cold, easily in hot H_2O . 100 pts. H_2O dissolve 3 4 pts. salt at 20° " " 568 " 60" " " 1002 " 80° " " 1002 " 80° " 12.10 " 100°

(Godeffroy, A. 181. 176)

Cs₂PtCl₅ Ppt. Very sensitive to sunlight Decomp. by H₂O into the higher and lower chlorides. (Wohler, B. 1909, **42**, 4104.)

Calcium chloroplatinite, CaPtCl₄+8H₂O Deliquescent; sol. in H₂O.

Cerum chloroplatinite, CeCl₁, 2PtCl₂+ 10½H₂O

Deliquescent, easily sol. in H₂O (Nilson, B 9. 1847.)

Chromium chloroplatinite, Cr₂Pt₀Cl₁₀+ 18H₂O. Deliquescent.

Cobalt chloroplatinite, CoPtCl₄+6H₂O.
Sl. deliquescent in moist, efflorescent in dry air.

Copper chloroplatimite, CuPtCl₄+6H₂O. Extremely deliquescent (Topsoc.)

Copper chloroplatinite ammonia (cuprammonium chloroplatinite), Cu(NH₂)₄PtCl₄.

Insol. in $\rm H_2O$ or NH₄OH+Aq; easily sol. in $\rm H_2SO_4+Aq$ (Millon and Commaille, C. R. 57, 822.)

Didymium chloroplatinite, DiCl₃, 2PtCl₄+ 10H₂O Deliquescent; very sol, in H₂O. (Nilson.)

2DiCl₃, 3PtCl₂+18H₂O. As above. (Nilson.) Erbium chloroplatinite, ErPtCl₂+13}\(\xi\)H₂O

Deliquescent Er,Pt₃Cl₁₂+24H₂O Deliquescent in moist

Giucinum chloroplatinite, $GiPtCl_4+5H_2O$. Deliquescent in moist air. Sol in H_2O in all proportions

Iron (ferrous) chloroplatinite, FePtCl₄+
7H₂O
Deliquescent Rather sl sol. in cold, very

Lanthanum chloroplatinite, La₂Pt₃Cl₁₂+18, and 27H₂O.
Deliquescent.

Lead chloroplatinite, PbPtCl₄ Insol in cold H₂O.

sol in hot H.O (Nilson)

Lithium chloroplatinite, Li₂PtCl₄+6H₂O. Sol. in H₂O

Magnesium chloroplatinite, MgPtCl₄+6H₂O. Not very deliquescent; very sol. in H₂O. Manganese chloroplatmite, MnPtCl₄+6H₂O
As the Mg salt.

Mercurous chloroplatinite.

Nickel chloroplatinite, NiPtCl₁+6H₂O. As the Co salt

 $\begin{array}{ll} \textbf{Potassium chloroplatinite,} & K_2PtCl_4. \\ \textbf{Moderately sol. in H_2O, insol. in alcohol} \end{array}$

Rubidium chloroplatinite, Rb₂PtCl₄ Sl. sol in cold, casily in hot H₂O.

Silver chloroplatinite, Ag₂PtCl₄
Insol in H₂() NH₄()H+Aq dissolves out
AgCl, (Lang)
AgCl, PtCl₃(?) As above (Commaille,
Bull. Soc. (2) 6, 262.)

Silver chloroplatinite ammonia, Ag_9PtCl_4 , $4NH_3$

(Thomsen.)

Sodium chloroplatinite, Na₂PtCl₁+4Π₂O.

Dehquescent; very sol. in H₂O

Strontium chloroplatinite, SrPtCl₁+6H₂O.
Deliquescent, Very sol in H₂O.

Thallium chloroplatinite, Tl₂PtCl₄
Very al. sol even in boiling H₂O.

Thorium chloropistanite, Th₂Pt₃Cl₁₄+24H₂O. Very deliquescent.

Yttrium chloroplatinite, Y₂Pt₂Cl₁₂+24H₂O. Deliquescent.

Zinc chloroplatinite, ZnPtCl₁+6H₂O Sl. sol. in cold, more easily in hot H₂O; msol. in alcohol.

Zinc chloroplatmite ammonia, $ZnPtCl_4$, $4NH_3$

Sl. sol. in H₂O; easily sol. in HCl+Aq. Insol in alcohol (Thomsen, J B. 1868, 278.)

Zirconyl chloroplatinite, $(ZrO)PtCl_4+8H_2O$. (Nilson)

Trichloroplatinous acid, H₂Pt(OH)Cl₃.
Sol. in H₂O. (Miolati, Z. anorg. 1902, 33.
265.)

+H₂O. (Nilson, J. pr. (2) **15**. 260)

Lead trichloroplatinite, PbPt(OH)Cls. Ppt (Miolati,)

Silver trichloroplatinite, Ag₂Pt(OH)Cl₃. Ppt (Miolati.) Chloroplatosulphurous acid.

Ammonium chloroplatosulphite, acid, NH₄PtClSO₃, H₂SO₃+4H₂O. Sol. in H₄O (Birnbaum, A. **152**, 149.)

Ammonium chloroplatosulphite chloride sulphite, NH₄PtClSO₃, (NH₄)₂SO₂, NH₄Cl

Very deliquescent (Birnbaum)

Ammonium chloroplatosulphite sulphite,
NH₄CIPtSO₃, (NH₄)₂SO₃+3H₄O.
Sol in H₂O. (Birnbaum.)

Barium chloroplatosulphite chloride ammonium chloride, Ba/ClPtSO₃)₂, Ba(PtClSO₃)Cl, 6NH₄Cl+3H₄O.

Sol. in H₂O. (Birnbaum.)

Potassium chloroplatosulphite ammonium chloride, KPtClSO₂, 2NH₄Cl.

chloride, RPUSSU₂, ZNILLOI.
Very deliquescent (Birnbaum, A. 152, 142.)
Potassium chloroplatosulphite chloride,

KPtClSO₃, 2KCl.
Deliquescent; sol. in H₂O. (Birubaum, A **152**, 145)

Potassium chloroplatosulphite ammonium potassium sulphite, KCPtClSO_a, (NH₄)KSO₂+3H₂O. Very deliquescent. (Birnbaum, A. 159.

120.)
Sodium chloroplatosulphite ammonium chloride, NaPiCISOs, 2NH4CI.

Very deliquescent. (Birnbaum, A. 166. 117.) Chloroplumbic acid, H₂PbCl₄ Decomp. in solution on standing. (Gutbier, J. pr. 1914, (2) 90. 497.)

Ammonium chloroplumbate, (NH₄)₂PbCl₅.

Ppt. Difficultly sol. in a small amount of

H.O Solution decomp. slowly when cold, more rapidly when warmed. Decomp. by a large amount of H₂O. Sol. without decomp. in 20% HCl. Decomp. by dll acids and alkalis. (Etbs, Z. Elektrochem.

1903, 9, 778.) In small amount of H₂O and solution decomp slowly in the cold, more rapidly when warmed Decomp by a large amount of H₂O. (Gutbier, J. pr. 1914, (2)

90. 498.)
Sol. in cold HNO₃ without decomp. (Friedrich, M. 1893, **14.** 511.)

Insol. in cone. NH₄Cl+Aq (Nikoljukin, B. 18, 370 R)

5NH₄Cl, 2PbCl₄. Not hygroscopic. Decomp. by H₂O with pptn. of PbO₂. Sol. in HCl+Aq and in cold HNO₂+Aq without

decomp. (Classen and Zahorski, Z anorg 4. Chioropurpureochromium ferrocyanide, 100.) Composition is 2NH₄Cl, PbCl₄. (Friedrich, W. A. B. 102, 2b. 527.)

Cæsium chloroplumbate, Cs2PbCl4. Nearly absolutely insol. in cone, CsCl+Aq

in presence of Cl (Wells, Z. anorg. 4, 335) 1 ccm. cone HCl+Aq containing PbCl dissolves 0 000049 g Cs2PbCla. (Wells, Z. anorg. 4.341.)

Reacts with H₂O as the corresponding ammomum salt (Gutbier, J pr 1914, (2) 90, 500.)

Potassium chloroplumbate, K-PbCl.

Decomp. by H₂O, sol, in KCl+Aq. (Wells. Z. anorg. 4. 335) Readily decomp in the air (Gutbier, J. pr. 1914, (2) 90. 499.)

Rubidium chloroplumbate, Rb₂PbCl₆.

Decomp. by H₂O, sl sol. in conc. RbCl+

Aq (Wells, Z anorg 4.335)
1 ccm. conc HCl+Aq containing PbCl, dissolves 0 003 g Rb-PbCl (Wells, Z. anorg. 4 341) Reacts with H2O as the corresponding am-

monium salt (Gutbiei, J. pr. 1914, (2) 90. 499) Decomp. by conc H.SO. Insol. in 96% alcohol. (Erdmann, A. 1896, 294 76.)

Chloropurpureochromium bromide, CrCl(NH₃),Br₂.

Somewhat more easily sol, in H2O than the chloride. (Jorgensen, J pr (2) 20, 105.)

---- chloride, CrCl(NH₈)₈Cl₂.

Difficultly sol in cold, and decomp. by hot H₂O.

1 pt. dissolves in 154 pts H₂O at 16° Insol. in conc HCl+Aq. More sol. in dil. H₂SO₄+Aq than in H₂O. Sol in NH₄OH+ An without decomp (Jorgensen, J. pr. (2) 20. 105.)

mercuric chloride, CrCl(NH_s)_sCl_s, 3HgClo.

Very difficultly sol, in H₀O. (Jörgensen.) ---- chloroplatinate, CrCl(NHa)a(PtCla).

Extremely difficultly sol, in H₂O. (Jörgensen.)

—— chromate, CrCl(NH₂)₅(CrO₄). Sl. sol, in HoO; sl more sol, than chloropurpureocobalt chromate. (Jorgensen.)

— dithionate, CrCl(NH_s)₅(S₂O₅). in hot H.O. (Jorgensen.)

[CrCl(NII₃)₄]₂Fe(CN)₄+4H₂O Very difficultly sol. m cold H2O (Jorgen-

--- fluosilicate, CiCl(NH₄)₅(SiF₆).

Very difficultly sol in H2O. Insol in H₂SiF₆+Aq (Jorgensen, J. pr. (2) 20. 105)

 mercuric iodide, CrCl(NH₂)₂I₂, 2HgI₂. Decomp. by H2O; sol in alcohol and warm KCN+Ac

CrCl(NHa), I2, HgI2. Very difficultly sol m cold H₂O; easily sol in KCN+Aq. (Jörgensen, le.)

 nstrate, CrCl(NH₃)₃(NO₃)₂. Sol. m 71 pts. H₂O at 17 5° Insol. in HNO_a+Aq. (Jdigensen.)

oxalate, CrCl(NH₂)₄C₂O₄

Very sl sol, in cold H2O. (Jörgensen, l.c.)

 sulphate, CrCl(NH₂)₂SO₄+2H₂O. Sol in H2O; precipitated by alcohol (Jörgensen.)

Quite sol. in H₂O. (Jorgensen, J. pr. (2) 20. 185.)

pentasulphide, CrCl(NH₂)₁S₅.

Very sl sol, in cold, easily sol, in warm H₂O. Decomp. by dil HCl+Aq. Insol. in alcohol. (Jorgensen)

Chloropurpureocobaltic bromide, CoCl(NH1)5Br2.

Properties resemble the chloride very closely. Sol. in 214 pts. H₂O at 14.3° (Jörgensen, J. pr (2) 18. 205.)

 mercuric bromide 4CoCl(NH₄)₄Br₄, 9HgBr₄ Ppt (J.)

 bromoplatinate, CoCl(NH₄)₅Br₂, PtBr₄. Very sl sol in H₂O. (J) carbonate, CoCl(NH₃),CO₂+4½H₂O.

Efflorescent: very easily sol, in H₂O. (J.) - chloride, CoCl(NH₈),Cl₂

Very sl sol. in cold, more easily in hot H₂O. Sol in 244 pts. H₂O at 15.5°. (Claudet, Phil Sol in 244 pts. 130 at 19.3 . (Changet, Phin Mag J. (4) 2. 253.) In 287 pts. 14,0 at 10.2° and 255 pts. at 11.5°. (Rose, Pogg. 20. 152.) 100 pts. 14.90 dissolve 0 232 pt. CoCls, 50H, at 0°, and 1.031 pts. at 46.0°. (Kurnakoff, J. Russ, Soc. 24, 629.)

Sl. decomp, by cold, completely by boiling Very sl. sol. in cold, but much more easily H₄O; decomp. prevented by a little HCl. hot H₄O. (Jorgensen.) or sat. KCl or NaCl+Aq, not decomp. by boiling HCl+Aq. (Claudet, lc) Nearly unsol me old, but sel in hot H₂O, to which a few drops of HCl have been added Less sol, in till HCl+Aq than luteocobaltac chloride (Rospijski, A. ch., 3) \$1, 447.)

Insol in alcohol (Gibbs and Genth.)

Chloropurpureocobaltic antimony chloride,

2CoCl(NH₈)₅Cl₂, SbCl₃.

Pat. Decomp by H₂O. (Gibbs.)

H₂O, (Gibbs.)

-- mercuric chloride, CoCl(NH₁)₅Cl₂, 3H₂Cl₃

Insol m cold, less sol, m hot H₂O than chloropurpurecobaltic chloride. Insol in cold fuming HCl+Aq, sl. sol m hot HCl+Aq, separating on cooling; is sol in hot aqua regra, moderately sol, in hot HNO₃+Aq; partly sol in cold cone, H₂SO₄, wholly partly sol in cold cone, H₂SO₄, wholly con warming Easily sol, in warm H₂CrO₄+Aq. Insol in H₂Cl₂+Aq.

Inso! in HgCl₂+Aq.

Moderately sol. in NH₄OH+Aq or
(NH₄)₂CO₃+Aq. (Carstanjen.)

CoCl(NH₃)₄Cl₃, 2HgCl₂. Sl. sol. in cold,

but much more easily in hot H₃O (Gibbs, Proc Am Acad. 10. 33.)

Sl. sol in cold, moderately sol in hot H₂O.

(Carstanjen.)

— chloropiatmate, CoCl(NH₃),cCl₂, PtCl₄ Nearly msol m cold. Very sl. sol in hot H₂O. (Gibbs and Genth, Sill. Am. J (2) 23. 319.)

---- chromate, CoCl(NH₃)₅CrO₄. Very sl sol in H₂O (J)

—— dichromate, CoCl(NH₃)₅Cr₂O₇.

Much more easily sol. in H₂O than the

neutral salt. (J.) — dithionate, CoCl(NH_s)₄S₂O₄

Very sl sol in cold, more easily in hot II O (J)

---- manganic fluoride

Ppt. Si sol, m dil HF+Aq. (Christensen, J. pr (2) 35. 161)

—— fluosilicate, CoCl(NH₂)₂S₁F₄
Very sl. sol. in HF+Aq.

--- iodide, CoCl(NH₁),I₂

Much more sol. in H₂O than bromide or chloride. Sol in 54.5 pts. H₂O at 15.6°, and 50 pts at 19.3°. (J.)

 $\begin{array}{c} Chloropurpure o cobaltic & mercuric & iodide, \\ CoCl(NH_2)_iI_2, \ 2HgI_2. \end{array}$

Sl. sol in H_4O (J.) $CoCl(NH_4)_{\tilde{e}}l_{2}$, HgL_2 . Very sl sol in eqld H_4O (J.)

---- nitrate, CoCl(NH₂)₀(NO₃)₂.

Sol. in 80 pts H₂O at 15°. Rather easily sol. in hot H₂O (Jorgensen, J pr (2) 18, 209)

---- oxalate, CoCl(NH₃)₃C₂O₄.
Si sol in H₂O₂. (I)

—— pyrophosphate, CoCl(NH₃)₃(H₂P₂O₇)
SI and very slowly sol. in cold, much more easily in warm H₂O. (J)

easily in warm H_2O . (J) [CoCl(NH₃)₅]₂ $P_2O_7+\tau H_2O$. Quite easily sol, in H_2O

---- diphosphopeniamolybdate,

[CoC!(NH₃)₆]₂(5MoO₃, 2HPO₄).

Ppt. Nearly insol in pure H₂O; more sol.
in dil H₂SO₄+Aq without decomp. (J.)
[CoC!(NH₃)₄]₂(5MoO₃, 2NH₄PO₄). Ppt.
As above

---- sulphate, CoCl(NH₃)₄SO₄.

Anhydrous Slowly sol in 128–131.9 pts H₂O at 16° +2H₂O. Sol in 133 4 pts. H₂O at 17.3° Rather easily sol in hot H₂O, and much more rapidly than the anhydrous salt (J) [CoC((XH₂)₂)₂SO₄(SO₄H)₆ Decomp. by H₂O into neutral subphase Sol in H₂SO₄

Moderately sol. in H₂O; msol in alcohol

——thiosulphate, CoCl(NH₃)₄S₂O₃.

Nearly insol. in cold H₂O, very sl. sol. in

boiling H₂O with partial decomp. (J)

Chloropurpureoiridium comps.

Sec Iridopentamine comps. Chloropurpureorhodium carbonate, Clith(NH₂)₃CO₂+H₂O.

Easily sol. in H₂O. (Jörgensen)

---- chloride, ClRh(NH₃);Cl₂

Sol in 179 pts. H_2O at 17° , and more easily in hot H_2O . Sol in cone. H_2SO_4 or boiling NaOH+Aq without decomp. Very 81, sol. in cold dil HCl+Aq (1:1). Sl. sol in hot HCl+Aq. Insol. in alcohol. (Jorgensen, J. pr. (2) 27. 433; 34. 394)

--- rhodium chloride, 3ClRh(NH₃)₆Cl₃, 2RhCl₃. Ppt (Jörgensen, Z anorg 5, 75.)

Chloropurpureorhodium chloroplatinate, CIRh(NH₃)₅PtCl₄. Insol. in cold H2O. (J.)

- fluosilicate, ClRh(NH₃),SiF₅,

Very sl. sol. in cold H₂O. Sol. in NaOH+ An as roseo salt (J)

---- hydroxide, ClRh(NH₃)₆(OH)₂. Known only in solution. (J.)

--- nitrate, ClRh(NH₂)₅(NO₅)₂ Sl. sol in cold H₂O, but more easily than

the chloride. Sol. in boiling NaOH+Aq as roseo salt. (J) — sulphate, ClRh(NH₃)₂SO₄+2H₂C.

Sl. sol in cold, more easily in hot H2O. (J.) 4CiRh(NH₂)₆SO₄, 3H₆SO₄ Sl. sol in cold, Sodium chlororhodite, Na₆Rh₂Cl₁₂+18H₂O. more easily in hot H₂O. (J)

Chlororhodous acid.

(Gutbier, l. c)

Ammonium chlororhodite, (NH4)2RhCl4+ H₂O.

(Gutbier, B. 1908, 41, 213.) Sol. in H₂O, insol in alcohol. (Wollaston) Not obtainable. (Leidié, A. ch (6) 17. 275.) (NII₄)₂RhCl₆+1½H₂O. Sol. in H₂O, but less easily than Na salt, insol. in alcohol Sol. in dil NH.Cl+Ac (Claus, J B 1855, 423.)

Ammonium chlororhodite nitrate,

(NH4)2Rh2Cls, 2NH4NO3 Very sol. in H₂O Decomp. by boiling with H₂O Sl. sol in HNO₃+Aq (Leidié, C R. 107, 234,)

Barium chlororhodite, Bag(RhCle)s. Resembles the Na salt (Bunsen, A. 146. 276.)

Cæsium chlororhodite, Cs2RhCl2+H2O. Difficulty sol in H.O. (Gutbier, B. 1908. 41. 214)

Lead chlororhodite, Pb₂(RhCl₂), Ppt. Insol m H.O (Claus.) Not obtainable. (Leidié)

Mercurous chlororhodite, Hg,RhCl1. Ppt. Insol. in H.O (Claus.) Not obtainable (Leidié.) Potassium chlororhodite, K.RhCl₅+H₂O.

Not efflorescent, Sl sol. in H₂O. Sl. sol. m KCl—Aq., (Gibbs.) Insol. or sl. sol. in alcohol. (Berzelius.) Salt is anhydrous (Leidié)

Contains 1H2O. (Seubert and Kobbé, B. 23. 2556.)

Can be cryst, from H2O containing a little HCl. (Gutbier, B. 1908, 41. 212 RhCls+3H2O. Efflorescent Sl. sol. m H₂O. Aqueous solution decomp to above on standing. (Claus.)

Not obtainable, (Leidić,) Also obtained by Scubert and Kobbé (B.

+11/2H2O. (Leidić, C. R 111, 106)

Rubidium chlororhodite, Rb₂RhCl₅+H₂O. Difficulty sol in H₂O. (Gutbier, B. 1908, 41, 214

Silver chlororhodite, AgaRhCla Ppt. Insol. in H₂O. (Claus) Not obtainable (Leidić.)

Na₃RhCl₅+9H₂O

Efflorescent Sol. in I 5 pts. H₂O. Melts in crystal H₂O at 50° Insol, in alcohol. +12H_{*}O. (Gutber, B. 1908, 41, 213.)

Chlororuthenic acid.

Ammonium chlororuthenate, (NH4)2RuClo. Easily sol. in H₂O (Claus.) Formula is (NH4)2Ru(NO)Cl3 (Joly, C.

R. 107, 994.) Sol. in H₂O with decomp. Sol. in HCl. (Howe, J Am, Chem. Soc. 1904, 26, 549.)

Ammonium aquochlororuthenate, (NH.)2Ru(H2O)Cl. Ppt (Howe, J. Am Chem Soc 1904, 26. 548.)

Cæsium chlororuthenate, Cs.RuCla. Sl sol in H2O Sol, in hot dil HCl+Ao. (Howe, J. Am. Chem. Soc. 1901, 23, 784.)

Potassium chlororuthenate, K2RuCla. Very sol. in H₂O. Very sl. sol. in conc NH₄Cl+Aq. Insol in 70% alcohol. (Claus.) Formula is K₈Ru(NO)Cl₅ (Joly.) Very sl. sol in cold H₂O. Insol in presence of KCl.

Partially decomp in hot aqueous solution. (Antony, Gazz. ch. it. 1899, 29. (2), 82.)
Easily sol. in H₂O with rapid decomp. Sol. in HCl. (Howe, J Am Chem. Soc. 1904, 26, 542.)

Potassium aquochlororuthenate, K₂Ru(OH₂)Cl₃.

Sol. in H2O. (Howe, J. Am, Chem. Soc. 1904, 26, 547.)

Rubidium chlororuthenate, Rb2RuCla. Sl. sol in H₂O, sol, in hot dil, HCl+Aq. (Howe, J. Am Chem. Soc 1901, 23, 784.)

Chlororuthenious acid.

Ammonium chlororuthenite, (NH₄)₄Ru₂Cl₂s.
Sl. sol, in H₂O. Insol in NH₄Cl+Aq or alcohol. (Claus, J. pr. 80, 282.)

Cæsium chlororuthenite, Cs₂RuCl₄+H₂O. Sl. sol. in H₂O; sol. in HCl+Aq. (Howe, J Am Chem. Soc. 1901, 23. 785.)

Potassium oblororuthenite, K₄Ru₂Cl₁₀
Moderately sol, in cold, more easily in hot
H₂O. Decomp, easily by heating. Insol in
cone. NH₄Cl+Aq. Insol, in 80% alcohol.
Rubidium chlororuthenite, Rb₄RuCl₅+H₅O.

Sl. sol. in H₂O; sol. in HCl+Aq. (Howe, J. Am. Chem Soc. 1901, 23. 786.) Sodium chlororuthenite, Na₄Ru₂Cl₁₉.

Deliquescent. Sol. in H₂O or alcohol. Trichlorosilicomercaptane. See Silicon chlorohydrosulphide.

Chlorosmic acid.

Ammonium chlorosmate, (NH₄)₂O₃Cl₄. Sl. sol, in H₂O, Insol, in alcohol and H₂O containing HCl.

Potassium chlorosmate, K₂OsCl₈. Properties as the NH₄ salt.

Properties as the NH₄ salt.

Potassium amino chlorosmate,
(NH₄)OsCl₂2KCl.

Ppt. (Brizard, A. ch. 1900, (7) 21. 375.)

Potassium amino, chlorosmate hydrogen chloride, (NH₂)CsCl₃,2KCl,HCl.

Ppt. (Brizard, A. ch. 1900, (7) 21. 378.)

Silver chlorosmate, Ag₂O₅Cl₆.

Insol. in H₂O or HNO₃+Aq (Claus and Jacoby.)

Silver-h'orosmate ammonia, Ag₂O₈Cl₆, 2NH₃. Sol. in much H₂O. Sl. sol. in KOH+Aq. Easily sol. in KCN+Aq. (C. and J.)

Sodium chlorosmate, Na₂OsCl₆+2H₂O. Fasily sol, in H₂O or alcohol,

Chlorosmious acid.

Ammonium chlorosmite, (NH₄)₄Os₂Cl₁₀+3H₂O.

Easily sol. in H₂O and alcohol; msol. in ether. (Claus and Jacoby, J. pr. 90, 65.)

Potassium chlorosmite, K₆Os₂Cl₁₂+6H₂O. Very easily sol. in H₂O or alcohol. Insol. in ether. (C. and J.) Chlorosmisulphurous acid.

Potassium hydrogen chlorosmisulphite, OSCl₁(SO₃)₈K₆H₂ Ppt. (Rosenheim, Z. anorg. 1900, 24, 422.)

Sodium chlorosmisulphite, OsCl₂(SO₂)₄Na₆+10H₂O. Ppt. (Rosenheim, Z. anorg. 1900, 24. 420.)

Chloronnoselenious acid.

 $H_{2}O$

Ammonium chloropyroselenite, NH₄Cl, 2S₂O₂+2H₂O₃

Sol. in H₂O. (Muthmann and Schafer, B. 26, 1008.)

Potessium chloropyroselenite, KCl. 2SeO.+

As NH₄ salt (M, and S)

Rubidium chloropyroselenite, RbCl,

2SeO₂+2H₂O. As NH₄ salt. (M. and S.)

Chlorostannic acid, SnO(OH)Cl (Mallet, Chem. Soc. 35. 524.) H₂SnCl₈+6H₂O Extremely deliquescent; sol. in H₂O. (Scubert, B. 20. 793.)

Ammonium chlorostannate, (NH₄)₂SnCl₄ (punk salt) Sol. in 3 pts. H₂O at 14.5°. Solution decomp on boiling when dilute, but not when

cone (Bolley.)

Barium chlorostannate, BaSnCl_b+5H₂O.

Sol in H₂O. (Lewy, A. ch. (3) 16. 308.)

Cossium chlorostannate, C32SnClo. Nearly msol. in conc. HCl+Aq. (Sharples Sill Am J. (2) 47, 178.)

Calcium chlorostannate, CaSnCl₈+5H₂O.
Very deliquescent. (Lewy, A. ch. (3) 16.

Cerium chlorostannate, CeSnCl₇+9H₂O. Deliquescent. Sol. m H₂O. (Cleve, Bull. Soc. (2) 31, 197.)

Cobalt chlorostannate, CoSnCl₄+6H₂O. Sol, in H₂O. (Jorgensen.)

Didymium chlorostannate, D₁Cl₃, S₁Cl₄+ 10½H₂O. Sol. in H₄O. (Cleve.)

Giucinum chlorostannate, GlSnCl₂+8H₂O.
Deliquescent Sol m H₂O. (Atterberg, Sv. V. A. Handl. 12. No. 4. 14.)

Lanthanum chlorostannate, 4LaCl₃, 5SnCl₄+ | Sodium chloropyrosulphonate, ClS₂O₄Na 45H.O.

Deliquescent. Sol in H₂O. (Cleve.)

Lithium chlorostannate, Li2SuCl6+8H2O. Sol. in httle H2O without decomp., but decomp, by dilution (Chassevant, A. ch (6) 30. 42.)

Magnesium chlorostannate, MgSnCl₄+6H₂O. Very deliquescent. (Lewy)

Manganous chlorostannate, MnSnCl++6H2O. Deliquescent in moist, efflorescent in dry air. (Jorgensen)

Nickel chlorostannate, NiSnCl₄+6H₂O Sol in H₂O. (Jorgensen.)

Potassium chlorostannate, K.SnCla. Sol. in H2O

Sodium chlorostannate, Na₂SnCl₄+6H₂O. Easily sol in H₂O. (Topsoc, Gm K. Handb 6te aufl III 149

Strontium chlorostannate, SrSnCl₄+8H₂O. Sl, deliquescent, and easily sol, in H₂O. (Topsoe.)

Yttrium chlorostannate, YCl₂, SnCl₄+8H₂O. Sol. in H₀O (Cleve, Bull, Soc (2) 31,197.)

Zinc chlorostannate, ZnSnCla+6H2O. (Biron, C. C. 1904, II. 410.)

Chlorosulphobismuthous acid.

Cuprous chlorosulphobismuthite, 2C114S, B14S4, 2B1SCl.

Stable in air and insol, in H2O at ord. Decomp by boiling H₂O.

Decomp by mineral acids with evolution of H.S. (Ducatte, C. R. 1902, 134, 1212.)

Lead chlorosulphobismuthite, PbS, Bi₂S₃, 2BiSCl.

Stable in the air Insol. in HaO; decomp. by boiling HaO, sol, in dil, acids with decomp. and evolution of H-S. (Ducatte.)

Chlorosulphonic acid, HClSO₃,

See Sulphuryl hydroxyl chloride.

Chloropyrosulphonic acid. Ammonium chloropurosulphonate, CIS2OONH.

Fumes in the air. Decomp. by H₂O and alcohol. (Traube, 13.99 pts. at 22° B. 1913, 46, 2519)

Fumes in the air.

· Decomp. by H2O and alcohol (Traube.)

Chlorosulphuric acid, HSO₃Cl.

See Sulphuryl hydroxyl chloride. SO₂Cl₂. See Sulphuryl chloride.

Aluminum chlorosulphate, Al(SO4)Cl+6H2O. Very sol. m H₂O. Nearly insol. m abs. alcohol. (Recoura, Bull, Soc. 1902, (3) 27. 1155.)

Chromium chlorosulphate, CrClSO₄+5H₂O. Green (Weinland, Z. anorg. 1905, 48, 253.)
(Recoura, C. R. 1902, 135, 164.)

Violet. (Weinland, Z. anorg. 1905, 48. 254)

Very sol, in H₂O Insol in a mixture of alcohol and acetone (Recoura, C. R. 1902, 135, 164.) +8H₂O. Two isomeric modifications:

(a) Green needles. Easily sol. in H₂O. (Weinland, Z. anorg 1906, 48, 251.) (b) Violet plates. Easily sol. in H₂O. (Weinland.)

Chlorosulphurous acid.

Ammonium palladious trichlorosulphite. (NH₄)₃PdCl₃SO₃+H₂O.

Easily sol. in H₂O (Rosenheim, Z. anorg. 1900, 23, 30,

Chlorotelluric acid.

Ammonium chlorotellurate, (NH4)2TeCl6. Sol without decomp, in a small amt, of H₂O, but decomp by much H₂O or alcohol.

Casium chlorotellurate, Cs2TeCl;

Decomp, by H₂O. Sol. in dil. HCl+Aq. 100 pts HCl+Aq (sp. gr 1.2) dissolve 0.05 pt. at 22°. 100 pts. HCl+Aq (sp. gr. 1.05) dissolve 0.78 pt. at 22°.

Insol, in alcohol (Wheeler, Sill Am. J. 145, 267)

Potassium chlorotellurate, K2TeCla Deliquescent; decomp by H₂O and abso-

lute alcohol (Berzelius.) The most sol, in H₂O of the chloro- or bromo-tellurates. Easily sol in dil HCl+Aq; conc. HCl+Aq ppts. KCl (Wheeler, Sill. Am. J. 145. 267.)

Rubidium chlorotellurate, Rb2TeCl4.

Decomp, by H₂O. Much more sol, in dil. HCl+Aq than Cs₂TeTl₆. 100 pts. HCl+Aq (sp. gr. 1.2) dissolve 0.34 pt. at 22°.

100 pts, HCl+Aq (sp. gr. 1.05) dissolve.

Sl. sol, in alcohol. (Wheeler,)

Chlorotetramine chromium bromide.

ClCr(NH₂)₄(OH₂)B₁₂ Very easily sol in H₂O

(Cleve, 1861; (Jorgensen, J pr (2) 42. 210,) ----chloride, ClC1(NH4)4(OH2)Cl2

Sol. in H2O, but decomp, by boiling S in HCl+Aq, and this solution may be boiled without decomp (Cleve) Sol. in 15 7 pts H₂O at 15°. (Jorgensen, J

pr 42.208) ----chromate, ClCr(NH₂);(OH₂)CrO₄.

Precipitate. (Cleve) -----fluosilicate, CiCr(NH₂)₄(OH₂)S₁F₄

Sl sol, in H_{*}O. (Jorgensen, J pr. (2) 42. 218.)

--- hvdroxide, ClCr(NH2):(OII)2. Known only in solution. (Cleve)

- iodide, ClCr(NH₂)₄(OH₂)I₋ Easily sol, in H₂O. (Cleve.)

--- nitrate, CICr(NH₁)₄(OH₂)(NO₃)₂. Very easily sol. in H₂O (Cleve), (Jorgensen, J. pr (2) 42. 209)

— sulphate, ClCr(NH₂)₂(OH₂)SO₁ Very difficulty sol, in cold, more easily in hot H2O. (Cleve.)

Chlorotetramine cobaltic bromide, ClCo(NH₅)₄(OH₂)Br₂ More sol, in H₂O than chloride. Nearly insol, in HBr+Aq (1.1). (Jorgensen, J pr

(2) 42. 215.) --- chloride, ClCo(NH₂)₄(OH₂)Cl₂

Sol, in about 40 pts. HaO, and is identical with octamine cobaltic purpure ochloride of Vortmann (Joigensen, J. pi. (2) 42, 211.)

---- chloroplatinate, ClCo(NH₃)₄(OH₂)PtCl₅ +2H₂O. Sl. sol in H₂O. (Jörgensen.)

chromate, ClCo(NH₃)₄(OH₂)CrO₄. Easily sol, in cold H₂() (Jorgensen, J. pr (2) 42, 216)

---- fluosilicate, ClCo(NH3)4(OH2)S1F6. Si sol in H₂O. Nearly msol, in H₂S₁F₀+ Aq. (Jörgensen, J. pr. (2) 42, 219.)

 sulphate, ClCo(NH₀)_s(OH₀)SO_s Sol. in H₂C. (Jorgensen, J pr (2) 42. 214)

Chlorotitanic acid, TrCl.,2HCl=H.TrCl. Known only in solution (Kowalewsky, Z. anorg 1900, 25, 192)

Chlorous acid, HClO2

Known only in aqueous solution. 100 g Anown on in aqueous solution. 100 g 14,0 at 8.5° and 753 mm pressure dissolve 4 7 g Cl₂O₂. Hydrate with 50 07-67 43% H₂O₃ perhaps HClO₁+H₂O₃ separates out at 0³. (Brandan, A. 151. 340.) Pure HClO2 is not known even in solution,

(Garzarolli-Thurnlakh, A. 209 184.)

Chlorites.

All chlorites are easily sol in H2O and alcohol, with gradual decomp.

Ammonium chlorite.

Known only in aqueous solution, which decomposes on evaporation or long standing

Barium chlorite, Ba(ClO₂)₂

Deliquescent; easily sol. in H₂O. Solu-tion decomp on evaporation. Easily sol. in alcohol. (Millon, A ch (3) 7. 298.)

Lead chlorite, Pb(ClO2)2

Nearly msol. in cold H2O, and only sl. sol. in hot H₂O Sol. in KOH+Aq. (Garzarolli and Hayn, A 209, 203.)

Lead chlorite chloride, 6Pb(ClO2)2,4PbCl1, PbO.

Rather difficulty sol. in H2O. (Schiel, A 109.317)

Potassium chlorite, KClO2

Very deliquescent and sol in H₂O. Sol. in alcohol of 38° (Millon, A. ch. (3) 7. 323.) Sol in HClO2+Aq.

Silver chlorite, AgClO2.

Sol. in hot, less in cold H₂O Easily de-comp by heating above 100° Decomp. by weakest acids. (Millon, A, ch. (3) 7, 329.)

Sodium chlorite, NaClO2.

Very deliquescent, and sol, in H₂O.

Strontium chlorite, Sr(ClO2): Deliquescent and sol in H₂O Decomp. by slow evaporation. (Millon, A ch (3) 7, 327)

Chloroxyfulminoplatinum, Pt.N.Cl(OH)O...H.

Insol. in H₂O, sol. in HCl+Aq. (v. Meyer, J pr. (2) 18, 305.)

Chloruranic acid, HUO, Cl+2H,O. Sol. in H2O; sl. sol in alcohol (Mylius, B 1901, 34, 2776.)

Chromacichloride, CrO2Cl2. See Chromyl chloride.

Chromatoiodic acid. See Chromoiodic acid.

Chromic acid, HoCrO4

Very sol in H₂O. (Moissun, C R. 98.

Does not exist except in solution, (Field, Chem. Soc 61, 405) The composition of the hydrates formed by

ILCrO, at different dilutions is calculated from determinations of the lowering of the front produced by H.CrO, and of the conductivity and sp. gr. of H₂CrO₄+Aq (Jones, Am Ch J. 1905, 34, 333.) See also Chromium trioxide.

Chromates.

Chromates of the alkalı metals and of Ca Mg. and Sr are sol, in H.C; the others are enerally insol. or sl. sol in H₂O, but sol in HNO.+Aq.

Aluminum chromate, basic, Al₂O₂, C₁O₃+ 7H₂O.

Easily sol. in NH4OH+Aq, alum, or accts

acid+Aq. Insol. in NH₄Cl+Aq. (Farrie, Chem Soc. 4, 300.) Insol as such as H₄O, but easily decomp. into HoC1O4 and a basic insol, comp. Sol in alkaline solutions and acids Decomp by many salts (Ehot and Storer, Proc Am Acad 5. 214)

Aluminum sodium chromate silicate, 4AloOs,5NaoO,CrOs,7SiOs

(Weyberg, C. B. Miner, 1904, 727.)

Ammonium chromate, basic, 5(NH₄)₂(). 4CrO₄(?)

Easily sol, in cold H_{*}O (Pohl, W. A. B. 6, 592.)

Ammonium chromate, (NH₄)₂CrO₄.

Very sol. in H₂O, pptd from aqueous solu-on by alcohol. (Malaguti and Sarzeau.) tion by alcohol. 100 g. H₂O dissolve 40 46 g at 30°. (Schreinemakers, Chem. Weekbi. 1905, 1.

Sol in H2O without decomp (Schrememakers, C. C 1905, II 1067)

Sp gr of (NH₄)₂CrO₄+Aq at t°/4°. 13° 13 7° 19.6° % (NH₄)₂C₁O₄ 10.52 19.75 28.04 Śn. gr 1 0633 1 1197 1.1727 (Slotte, W. Ann. 1881, 14, 18)

Sl. sol, in liquid NH₂ (Franklin, Am Ch. J. 1898, 20. 826.) Difficulty sol in acetone (Naumann, B. 1904, 37, 4328.)

Ammonium dichromate, (NH₄)₂Cr₂O₇. Less sol in H₀O than (NH₄)₂CrO₄ (Moser.)

100 g. H₂O dissolve 47.17g at 30°. 148. 1465)

(Schreinemakers, Chem. Weekbl 1905, 1. 395)

Sp. gi of (NH4)2Cr2O7+Aq at t°/4°. 12° 10.59 12° % (NH₄)₂Cr₂O₇ Sp gr 19.93 6.85 13.00 1 0393 1.0782 1.1258(Slotte, W. Ann. 1881, 14, 18)

Sol. in alcohol (Ranitzer, Zeit angew. ch. 1913, 26, 456.)

Insol in benzonitrile. (Naumann, B. 1914, 47, 1370) Insol in acctone (Naumann, B 1904, 37. 4328)

Ammonium trichromate, (NH4)2Cr1O10 Not deliquescent, but very sol in H₂O (Siewert)

Decomp by H-O into chromic acid and dichromate (Jager and Kruss, B 22, 2036) Sol. in acctone (Naumann, B 1904, 37. 4328.)

Ammonium telt achromate, (NH4)2Cr4O13 Deliquescent Decomp by H.O. (Jager

and Krüss, B 22, 2037.) Ammonium hexachromate, (NH₃)₂Cr₆O₁₉+

10IL(C)(?) Very efflorescent. (Rammelsberg, Pogg 94, 516 \

Ammonium barium chromate, BaCrO4 (NII4)2CrO4.

Decomp by H.O. Ppt (Groger, Z. anorg. 1908, 58, 414)

Ammonium cadmium chromate, (NH₄)₂(). 4CdO, 4CrO++3H₂O

Ppt Decomp by boiling H.O. (Groger, M 1904, 25, 583

Ammonium cadmium chromate ammonia, (NH4)0C1O4.CdCrO4.10NH1+116H0O Decomp. by H₂O, (Groger, Z anorg 1908, 58, 418)

(NH₄)₂Cd(C₁O₄)₂, 2NH₃. Insol. in cold, decomp by hot H.O. Sol. in dil. acids or in NH4OH+Aq. (Buggs, Chem. Soc. 1903, 83, 395)

Ammonium chromous chromate(?)

 $(NH_4)_2CrO_4$, $CrCrO_4 = (NH_4)_2Cr(CrO_4)_5$, Difficultly sol in H₂O Insol. in alcohol, ether, chloroform, or glacial acetic acid. Easily sol, in cone, acids, from which it is separated on dilution. Decomp. by NaOH+ Aq. (Heintze, J. pr (2) 4. 220.)

Ammonium chromyl chromate, (3(NH2)-O. 2CrO2,3CrO2. Nearly msol, in H₂O. (Pascal, C. R. 1909. Ammonium cobaltous chromate. (NH₄)₂Co(CrO₄)₂+6H₂O.

Ppt. Easily decomp (Buggs, Z. anorg. 1907, 56, 247.) (NH₄)₂O, 4CoO, 4CrO₃+3H₂O. Insol. m H₂O. Sol. m cold dil H₂SO₄ (Gruger, Z.

anorg, 1906, 49, 202.)

Ammonium cobaltous dichromate, $C_0Cr_2C_{7_1}(NH_4)_2Cr_2O_7 + 2H_2O_1$ Sl. hydroscopic; sol. in H2O, insol. in al-

cohol. (Kruss, Z anorg. 1895, 8. 454.) Ammonium cobaltous chromate ammonia,

 $3C_0C_1O_1$, $(NH_4)_2C_1O_4$, $2NH_1+3H_2O$. Ppt.; decomp by H_sO (Groger, Z. anorg. 1908, 58, 422.)

Ammonium cupric dichromate, 2CrCr₂O₇,3(NH₄)₂Cr₂O₇+6H₂O. Sol in H₂O (Kruss, Z. anorg. 1895, 8.

455.) Ammonium cupric chromate ammonia, (NH₄)₂CrO₄,CuCrO₄,2NH₃

Decomp. by H₂O. (Groger, Z. anorg. 1908, 58, 420.) Insol in cold, decomp by hot H₂O Sol n dil. acids or in NH4OH+Aq. (Briggs,

Ammonium iron (ferric) chromate. (NH₄)₂CrO₄,Fe₂(CrO₄)₂+4H₂O.

Chem. Soc. 1903, 83. 394.)

PbCrO.

More easily decomp, by H2O than K2CrO2. Fe₃(CrO₄)₃+4H₂O. (Hensgen, B. 12, 1300.) 6CrO₃, 5Fe₃O₅, 6(NH₄)₂O, and 4CrO₅, Fe₃O₅, (NH₄)₂O+4H₂O. Ppts. (Lepterre, C. R. 1894, 119, 1217.)

Ammonium lithium chromate, NH, LıCrO, + 2H₂O.

Not deliquescent. (Rammelsberg.) Ammonium lead chromate, (NH₁)₂CrO₄,

Ppt. Decomp. by H₂O. (Groger, Z. anorg, 1908, 58, 424.)

Ammonium magnesium chromate, (NH₄)₂CrO₄, MgCrO₄+6H₂O₅

Much more sol. in H₂O than the corresponding sulphate. (v. Hauer.) Sol. in H₂O. (Gröger, Z anorg. 1908, 58. 416.)

Ammonium manganous chromate, (NH₄)₂CrO₄, 2MnCrO₄, Sol. in H₂O. (Hensgen, R t c. 3. 433.)

Ammonium nickel chromate, (NH4)2CrO4, NiCrO+6H.O. Sol. in H₂O. (Gröger, Z. anorg, 1906, 51.

353.)

Can be cryst from H₂O under 40°. (Briggs, Chem. Soc 1903, 83, 392.) Ammonium nickel chromate ammonia,

(NH4)4C1O4, N1CrO4, NH + H2O.

Decomp. by H₂O. (Groger, Z anorg. 1906, **51**, 354.) (NH₂)s. Ni(CrO₁)s, 2NH₂. Insol. in cold H₂O. Decomp. by hot H₂O Sol in dil. acids on in NH₂OH+Aq. (Briggs, Chem. Soc. 1903, 83. 393.)

+6H₄O. (Briggs, Proc. Chem. Soc. 1902. 18. 254)

Ammonium potassium chromate, NH4KCrO. Sol. in H₂O. (E Kopp, C. N. 11. 16.) +H₂O. (Etard, C. R. 85, 443.) 2(NH4)2CrO4, 3K2CrO4. Very sol. in H2O.

(Zehenter, M. 1897, 18, 51.) Ammonium silver chromate, (NH4)2CrO4.

3Ag₂CrO₄. Decomp by H₂O. (Groger, Z anorg.

1908, 58, 423.) Ammonium sodium chromate, NH₄NaC₂O₄+ 2H₂O

Very sol in H₂O. (Zehenter, M. 1897, 18, 54.)

Ammonium strontium chromate, (NH4)2CtO4. SrCrO₄. Pnt Decomp by H₂O. (Groger, Z.

anorg, 1908, 58, 415.) Ammonium uranyl chromate, (NH4)2CrO4. 2(UO2)CrO4+6H2O.

Decomp. by boiling with H₂O. Sol in acidulated H₂O. (Formanek, A. 257, 106.) +3H₂O. (Formanek.) Ammonium zinc chromate, (NH4)2O, 2ZnO,

2CrO₂+H₂O. Decomp. by hot H2O. (Groger, M 1904, 25, 520.)

Ammonium zinc chromate ammonia, (NH₄)₂Zn(CrO₄)₂, 2NH₄.

Insol. in cold, decomp by hot H₂O. Sol. in dil acids or in NH₄OH+Aq. (Briggs, m m asses or m Arigon Faq. (Dresser) Chem Soc. 1903, 83, 394.) 4ZnCrO₄, 2(NH₄)₂CrO₄, 3NH₃+3H₂O. Ppt Decomp by H₂O. (Gröger, Z. anorg.

1908, 58, 416,

Ammonium dichromate chloride mercuric chloride, (NH4)2Cr2O7,2NH4Cl,4HgCl2+ Ppt. Sol. in cold, more sol. in warm H2O.

(Strömholm, Z. anorg. 1912, 75, 280.) Ammonium dichromate chloride mercuric

cyanide, (NH₄)₂Cr₂O₇, 4NH₄Cl, 6Hg(CN)₂+4H₂O.

(Stromholm, Z. anorg. 1913, 80, 157.)

3.395

5.120

7.119

9.036

Ammonium chromate chromyl fluoride. (NH4), CrO4, C1O, F2, Sol in H₂O (Varenne, C. R. 91, 989.)

Ammonium chromate iodate. See Chromoiodate, ammonium.

Ammonium dichromate mercuric chloride. (NH₄)₂Cr₂O₇, HgCl₂

Cannot be recryst, from H2O or HgCla+Aq. but from (NH₄)₂Cr₂O₇+Aq (Jäger and Krüss, B. 22. 2044.)

+H₄O. (Richmond and Abel. Chem. Soc. Q. J. 3. 199.) Cannot be made to crystallize with H-O

(Jager and Krüss.) 3(NH₄)₂C1₂O₇, HgCl₂. Decomp by H₂O (J and K

4(NH₄)₂Cr₂O₇, HgCl₂. Decomp by H₂O. (J. and K. (NH₄)₂Cr₂O₇, 3HgCl₂. (J. and K.) (NH4) CroO7, 4HgClo (J and K.)

Ammonium chromate phosphate.

See Phosphochromate, ammonium. Ammonium chromate tellurate. See Chromotellurate, ammonium.

Barum chromate, BaCrO4

Extremely sl. sol. in H₂O.

Calculated from electrical conductivity of BaCrO₄+Aq, 1 l H₂O dissolves 3.8 mg. BaCrO₄ at 18°. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.)

When not ignited, BaCrO, is sol. in 86,957 HC₂H₄O₂); 1813 pts H₂CrO₄+Aq(10% pro CrO₄). When ignited, 160,000 pts. H₄O are Aq necessary for solution. (Schweitzer, by Fie-

senius, Z. anal, 29, 414. Sol in 23,000 pts. boiling H₂O. (Mescherzerski, Z. anal. 21, 399) 3 5 mg. BaCrO₄ are dissolved in 1 l. of sat.

solution at 18' (Kohlrausch, Z phys. Ch 1908, 64, 168.)

Easily sol, in HNOs, HCl, or chromic acid+ Aq, from which it is precipitated by NH4OH, or by dilution with H₂O. (Bahr.) Insol. in K₂Cr₂O₂+Aq. (Schweitzer.)

Insol. in K₄(r₁O₇+A₀. (Schwettzer.) Sol. in 49 381 pts. NH₂C₂H₂O₂+Aq (0 75 % salt) at 15°; in 23,355 pts. NH₄C₄H₂O₂+Aq (1.5% salt) at 15°, in 45,162 pts. NH₄NO₂ +Aq (0.5% salt) at 15°. (Fresenius, Z. anal.

Easily sol. in alkali tartrates, or citrates + (Fleischer, J. pr. (2) 5. 326.) Aq. (Fleischer, J. pr. (2) o. o. o., 0.22×10 g equiv. BaCrO4 are dissolved m 1 I of 45% alcohol at ord. temp (Guerini,

Dissert, 1912.) Insol, in acetic acid and in MaCraO2+Aq. Partly sol in a mixture of the two, except Soc. 31. 24.)

in presence of MC.H.O. (Caron and Raquet. Bull. Soc. 1906, (3) 35, 1064) Not completely insul in acrtic acid. (Bau-

bigny, Bull Soc. 1907, (4) 1. 58.) Insol. m acctone (Naumann, B. 1904, 37, 4329)

Insol in methyl acetate (Naumann, B. 1909, 42, 3790.)

Barium dichromate, BaCr+O+2H+0

Decome, by H-O with separation of BaCiO4. Sol in H2CrO4+Aq (Bahr, J. B. 1853, 358)

Sol in cold H-O with formation of BaCrO. and CrO. Insol in glacial acetic acid. (Mayer, B.

1903, 36, 1742) Barium calcium chromate, BaCa(CrO4), (Bourgeois Bull, Soc. Min. 1879, 2, 124)

Barium potassium chromate, BaK. (CrO.). Decomp. by H.O. (Groger, Z. anorg.

1907, 54, 186 Decomp. by H2O Stable in K2CrO4+Aq, containing.

2.181 pts. K2CrO4 per 100 pts. H2O at 11.5° 27 5° ee 66 55 6. 50 0° 66 66 44 " 76.0° " 100 0°

(Barre, C. R. 1914, 158, 497.)

Barium potassium trichromate, $Ba_2K_4(Cr_3O_{10})_3+3H_4O_4$

Extremely deliquescent, (Bahr.) Bismuth chromates, basic

These comps, are insol in II2O even in presence of H.CrO4: sol, m HCl or HNO2+ (Löwe, J pr. 67. 288.) 100 pts. H₂O dissolve 0 00008 pt "bis-

muth chromate"; 100 pts. acetic acid dis-solve 0 00021 pt "bismuth chromate"; 100 pts HNO₄+Aq (sp gr =1.038) dissolve 0.00024 pt "bismuth chromate"; 100 pts KOH+Aq (sp. gr.=133) dissolve 0.00016 pt. "bismuth chromate." (Pearson, Phil Mag. (4) 11. 206.)

Not insol in dil HNO₃+Aq unless K₂CrO₄ is present. Less sol, in hot NaOH+Aq than

PhCrO₄. (Storer.) Bismuth chromate" is insol in acctone. (Naumann, B. 1904, 37, 4329.)

· 3Bi₂O₅, 2CrO₃=2(BiO)₂CrO₄, Bi₂O₅. Insol. in H₂O; sol in HNO₃+Aq. Bi₁O₅, CrO₃=(BiO)₂CrO₄. Insol in H₂O, easily sol. in dil. HCl+Aq, less in dil. HNO; or H₂SO₄+Aq (Mur.)

 Bi_2O_3 $2CrO_3 = (B_1O)_2Cr_2O_2$. Insol. in H₂C

5Bi₂O₃, 11CrO₃+6H₂O. (Muir. Chem

3B12O2, 7CrO2. Insol. in H2O; castly sol in | Cadmium dichromate mercuric cyanide. mmeral acids, especially HCl+Aq Partly sol, in KOH + Ao

Bismuth chromate, acid, Bi₂O₃, 4CrO₂+H₂O Insol. in hot or cold HaO. Sol. in dil. HCl. or HNO3+Aq (Mur, Chem Soc 30. 17)

Bismuth notassum chromate, Bu(CtO4)s, K,CrO.

Insol in H₂O. Decomp with hot H₂O Bi₂O₂, K₂O, 6CrO₂+H₂O (Pres and Ravmann, J. B 1880, 336,)

Bromomolyhdenum chromate. (Atterberg)

Cadmium chromate, basic, 2CdO, CiOo+

Very al sol m H.O. very slowly sol in NH OH + Au with combination. (Malaguti and Sarzeau, A ch. (3) 9, 431) Composition as above. (Freese, B 2, 478)

Cadmium chromate, CdCrOs.

Insol. in H₄O, sol in acids, decomp. by heating with H2O (Schulz, Z. anorg 1895, 10, 153.) Sol in hot cone CdSO+Aa (Briggs. Z anorg 1907, 56, 253) +2H₂O Decomp, by boiling II₂O (Schulz, Z anorg, 1895, 10, 153)

Cadmium dichromate, CdO,2CrOs+H+O Easily sol m H₂O without decomp; hydroscopic (Schulz, Z anorg. 1895, 10. Easily sol in H₂O but decomp on evaporation (Groger, Z. anorg, 1910, 66, 11)

Cadmium trichromate, CdCr₂O₁₀+II₂O. Deliquescent. (Gröger, Z anorg 1910, 66, 12.)

Cadmium chromate ammonia, CdC1O1, $4NH_1+3H_2O$

Efflorescent. Decomp, by H₂O Sol in NH4OH+Aq, insol in alcohol and ether (Malaguti and Sarzeau)

Cadmium potassium chromate, CdK2(CrO4)2 +2H.O

Pot. Decomp. by H2O (Gröger, Z. anorg 1907, 54, 189. 3CdO, KgO, 3CrOs+3HgO Ppt. (Press and Raymann, Sitzungsb. bohms. Gesell 1880.) 4CdO, K2O, 4CrO2+3H2O. Ppt Slowly decomp by H₂O (Groger, M 1904, 25, 533)

Cadmium potassium dichromate, CdCr2O7, K2Cr2O7+2H2O.

Sol, in H2O; sl, hydroscopic (Kruss, Z. anoig. 1895, 8. 454.)

CdCr₂O₂, 2Hg(CN)₂+7H₂O Sol m ILO without decomp (Kruss.

Z. anorg 1895, 8, 460) Cæsium chromate, Cs2CrO4 (Chabrié, C. R. 1901, 132, 680)

Ag solution sat, at 30° contains 47% (Schreinemakers, C C. 1909, I 11)

Caesum dichromate, Cs. Cr.O.

(Chabrié, C. R. 1901, 132, 680) Much more sol in hot H.O. than in cold (Frapric, Am J. Sci 1906, (4) 21. 309.)
Aq solution sat at 30° contains 5.2°. (Schronemakers, C. C 1909, 1. 11)

Cæsium trichromate, Cs2Cr2O10. Decomp by H₂O (Schreinemakers, Chem.

Weekbl. 1908, 5. 811.) Sol in H₂O. (Fraprie, Am J Sci. 1906. (4) 21. 315)

Casium tell achromate, Cs2Cr4O13. (Schreine-Sol in H.O with decomp. makers, Chem Weekbl 1908, 5, 811.)

Casium cobaltous chromate. C8,Co(CrO4)s+6H,O.

(Briggs, Z anorg, 1907, 56, 248) Cæsium magnesium chromate,

Cs-Mg(CrO₄)+6H₂O. (Briggs, Chem. Soc. 1904, 85, 680.)

Cassum nickel chromate, Cs2N1(CrO4)2 +6H2O. Sol. in cold H2O without much change, but decomp by warm H₂O (Briggs, Chem.

Calcium chromate basic, Ca₂CrO₄+3H₂O. Sol. m 230 pts H₀O without decomp. (Myhus and Wrochem, Gm. K. 3. I, 1385)

Calcium chromate, CaCrO.

Soc. 1904. 85, 679.)

Auhudrous Verv sl. sol. in H₂O (Siewert, J. B. 1862, 148) Ag, solution sat at 18° contains 2.3% CaCrO₄; sp gr = 1.023 Wrochem, B 1900, **33**, 3688.) (Mylius and

Insol. in acetone (Naumann, B. 1904, 37.

+½H2O Aq. solution sat at 18° contains 4.4% CaCıO₁, sp. gr. = 1.044. (Mylus and Wrochem, B 1900, 33, 3688.)

+II₂O. Solubility in H₂O at t°. 0° 80 13°

% CaCrO 11.5 10.8 10.3 96 40° 60° 75° 7.8 57 46 3.6 (Mylius and Wiochem, Gm.-K 3. I, 1386.) Sp gr of solution containing 9.6% by wt CaCiO₁ at 18°=1 096. (Mylius and Wrochem, B 1900, **33**, 3688.) +2H₂O. Sol in 2413 pts H₂O at 14° (Siewert)

(Siewert) Sol in 34 pts H₂O (Schwarz, Dingl. 198. 159)

Solubility of two modifications in H₂O at t^o a modification

t° 0° 20° 30° 45° % CaCrO₄ 1475 1422 13.89 12.53

a modification Sp. gr. of the solution containing 14 3% by wt CaCrO₄ at 18°=1 149 (Mylius and Wrochem, B 1900, **33**, 3688) β modification Sp. gr. of the solution containing 10.3% by wt. CaCrO₄ at 18°=1.105 (Mylius and Wrochem, B 1900, **33**, 3688.)

(Mylus and Wroohem, B 1900, 33. 3688.)
Easily sol in H₃O containing CrO₄
Insol, in absolute alcohol.
50 cc. of alcohol (29%) dissolve 0.608 g
CaCrO₄, 50 cc of alcohol (53%) dissolve 0.44
g CaCrO₄ (Presanus, Z. anal. 30. 672)

Sol. in acids and in dilute alcohol (Caron and Raquet, Bull Soc. 1906, (3) 35. 1064.)

Calcium dichromate, CaCr₂O₇+3H₂O

Very deliquescent (Bahr, J. pr. 60, 60) In sat, solution at 18°, 61% CaC₁₂O₇ is present. (Myhus and Wrochem, Cm.-K 3. I. 1387.)

Sol in acctone (Naumann, B. 1904, 37, 4328.)

Calcium potassium chromate, CaCrO₄, K₂CrO₄ (Barre, C R. 1914, **158**, 495) +H₂O Easily sol. in H₂O (Duncan.)

Insol in H₂O when ignited +2H₂O Easily sol. in H₂O, even after ignition. Insol in alcohol (Duncan, J. B.

1850. 313) Formed below 45°. (Barre, C R 1914, 158. 495)

Sol. in cold H_2O . Sl. sol in sat K_2CrO_4+ Aq. (Gröger, Z. anorg 1907, 54. 187) Two modifications Solubility of a modification is somewhat less than that of the β modification (Wyrouboff, Bull. Soc.

Solubility of two modifications in H_2O at t^o t^o 0° 15° Solubility of a 23 06 25.06 "" β 23 01 24 45 (Rakowski, C C, 1909, I 133)

Min. 1891, 14, 255.)

4CaCrO₄, K₂CrO₄.

, 5CaCıO₄, K₂CrO₄. Sol m much H₂O (Bahı)

Calcium chromate potassium sulphate, CaCrO₄, K₂SO₄+H₂O.

Decomp by H₂O (Hannay, Chem Soc. 32, 399)

CaC₁O₁, K₂SO₄, K₂C₇O₁ As above (H.)

Cerous chromate. Insol. in H₂O.

alaium atrontusm

Calcium strontum chromate, CuSr(CrO₄)₁.
(Bourgeois, Bull. Soc. Min. 1879, **2**. 123.)

Ceric dichromate, CcO₂, 2C₁O₃+2H₂O.
Insol in H₂O; sol. in acids; decomp completely by boiling H₂O. (Biscout, C R 1894, 118, 145)

Chromic chromate, CiO₂ = Ci₂O₃, CrO₃.

Insol as such in H₂O, but decomp thereby into CrO₃ and Cr₂O₃ (decomp by alkalme and many saline solutions Easily sol, in d.l. acids if recently pptd, but with difficulty if dired at a high temp (Ehot and Storer, Proc. Am.

Acad 5.207) $Cr_3O_{12}=Cr_2O_3$, $3Cr_O$. Sol. in HCl+Aq. Very slowly sol in HNO₃+Aq. Slowly decomp by H₂SO₄ or NH₄OH+Aq. Easily deomp by KOH+Aq.

Does not exist (Ehot and Storer, *l.e.*) $C_{19}O_{15} = 3C_{17}O_{2}$, $2C_{1}O_{1}$ Easily sol, in HGI or HNO₃+Aq, difficulty sol in acetic acid, Easily sol in KOH+Aq (Traube, A. 66.

108) Existence doubtful.

C₅O₅=2C₇O₅, CrO₅ Insol m all acids, even aqua regra; slowly attacked by a boiling cone, solution of alkali hydroxides. (Genther and Merz, A 118, 62.) Cr₃O₅, according to Wohler

| Chromic cupric chromate, CuCi ₁O₂, Ci₂O₂+ 12H₂O. | Insol m H₂O and H₂SO₄ | Sol m HCl and HNO₃. (Rosenfeld, B. 1879, **12**. 957.)

6CuO, Cr₂O₅, CrO₅+9H₂O Insol in H₂O Sol in acids (Rosenfeld, B 1879, **12**. 958)

Chromic potassium chromate, Cr₂H₂(CrO₄)₂, K₂CrO₄(?).

Insol in H₄O, alcohol, or acetic acid. Not attacked by cold HNO₃+Aq; al oxidized when hot. Insol in cold, easily sol in hot H₂SO₄. Sl sol. in SO₂+Aq. Sol. in conc. HCl+Aq. (Tommas, Bull. Soc (2) 17. 306.)

Chromous potassium chromate, $K_2C_1O_4(C_1O_2)_2 = K_2C_1(C_1O_4)_2(?)$.

Sat. cold solution in H₂O contains 9% of the salt. Insol in alcohol and other (Heintze, J. pr (2) 4. 212) Cobaltous chromate, basic, 3CoO. CrO2+ Cupric tetrachromate, CuCr3O12+2F2O. 4H₂O Ppt. Decomp. by H₂O. (Malaguti and

Sarzeau, A. ch. (3) 9, 431.)

True formula is 2CoO, CrO₃+2H₂O (Freese, Pogg. 140, 252.)

4CoO, 3CrO₈+2H₂O. Decomp. by H₂O (Groger, Z anorg 1906, 49, 203)

Cobaltous chromate, CoC1O4

Much more sol in H2O than NiC1O4 Easily sol. in hot dil HNO₃+Aq. (Briggs, Z anorg, 1909, 63, 327) +2H₂O Ppt (Briggs, Z. anorg 1909,

63, 328.) Cobaltous dichromate, CoCr₂O₇+H₂O. Deliquescent. Very sol in H.O. (Bilggs, Z. anorg. 1907, 56, 247)

Cobaltous potassium chromate, basic. K₂O, 4CoO, 4CrO₂+3H₂O.

Sol, in cold dil, H₂SO₄+Aq (Groger, Z. anorg. 1906, 49, 199.)

Cobaltous potassium chromate, K2Co(C1O4)2 +2H.O. Decomp by H₂O (Groger, Z anorg, 1906,

49, 200.) Cupric chromate, basic, 3CuO, C1Os+

Insol. in H_{*}O. Easily sol in dil HNO_{*}+ Aq and in NH,OH+Aq. Decomp. by KOH +Aq. (Malagutı and Sarzeau, A ch. (3) 9. 434 7CuO, 2CrO+5H2O. Ppt. (Rosenfeld,

B. 13. 1469.) 7CuO, CrO₂+5H₂O, Ppt. (R.)

Cobaltous dichromate mercuric cvanide. CoCr₂O₇, 2Hg(CN)₂+7H₂O. Very stable. Sol. in H_{*}O. (Kruss. Z. anorg. 1895, 8, 458)

150.)

Cupric chromate, CuCrO4 Insol, in H₂O; very sol, in chromic acid and in other acids, decomp by boiling with H₂O. (Schulz, Z. anorg 1895, 10, 152) Insol, in liquid NHs. (Gore, Am. Ch. J.

1898, 20. 827.) Cupric dichromate, basic, CuCr₂O₇, 2CuO, (Stanley, C. N. 54, 194.)

Cupric dichromate, CuCr₂O₇+2H₂O. Deliquescent Very easily sol. in H₂O, NH₄OH+Aq, and alcohol (Droge, A. 101. Aqueous solution is decomp, by boiling, (Malaguti and Sarzeau, A. ch. (3) 9, 456.)
Very hygroscopic. Very sol, in H₂O without decomp. (Schulz, Z. anorg. 1895, 10.

Deliquescent. Decomp. when its solution in H₂O is concentrated. (Grüger, Z. anorg. 1910, 66, 15)

Cupric lead chromate, 2(PbCrO4, PbO), (2CuCrO₄, CuO). Min. Vauquelinite. Sol in neids.

Cupric potassium chromate, basic, KCu₂(OH)(CrO₄)₂+H₂O.

pt (Groger, M. 1903, 24. 485) 3CuO, K₂O, 3CrO₂+2H₂O Nearly msol. in H₂O Sol in NH₄OH or (NH₄)₂CO₂+Aq. (Knop, A. 70, 52.)

Does not exist. (Rosenfeld, B. 13. 1472.)
4Cu0, K₂0, 4Cu0₂+H₂0. Decomp. by
boiling H₂0. (Gerbardt)
+3H₂0

Decomp. by boiling H₂0. (Gro-

ger, Dissert, 1880.) Cupric potassium chromate ammonia, K₂Cu(CrO₄)₂, 2NH₃.

Very sol, in dil. NH2+Aq.: decomp by H2O. (Briggs, Chem. Soc 1904, 85. 672.)

Cupric chromate ammonia, CuCrO4, 4NH4. Decomp, by H2O. Sol. in dil. NH4OH+ Aq. (Parrayano and Pasta, Gazz. ch it. 1997, 37, (2), 255.)

4CuCrO₄, 3NH₃+5H₂O. Sol in HCl and NH₄OH+Aq ; insol. in organic solvents; easily sol in AgNO₃+Aq. (Schuyten, C C. 1900,

399.) 2CuCrO4, 7NH3+H2O Decomp. by H2O Very sol, in dil NH OH + Aq. (Briggs, Chem. Soc. 1904, 85, 673)
3CuO, 2CrO₃, 10NH₃+2H₂O. Decomp.
by H₂O; sl. sol. or insol. m alcohol, ether, or

NH₂OH+Aq (Malaguti and Saizeau.) Decomp. by hot H₂O; iosol. in alcohol (Bottger.)

Cupric dischromate ammonia, CuCroOn. 4NH+2H+0. Decomp. by H2O. Sol. in dil NH4OH+

Aq. (Parravano and Pasta, Gazz. ch. it. 1907, 37. (2) 255)

Cupric dichromate mercuric cyanide, CuCr₂O₇, Hg(CN)₂+5H₂O.

Not hygroscopic Sol. in H₂O. (Kruss, Z. anorg. 1895, **8**, 461.)

Didymium chromate, D12(CrO4)5. Sl. sol in H2O, easily in dil acids (Frerichs and Smith, A. 191, 353.) +7H₂O. (Cleve)

Didymium potassium chromate, Di2(CrO4)8, K2CrO4. Precipitate Decomp. by H2O. (Cleve.)

Dysprosium chromate, Dys(CrOz), +10H₂O.

Very sl sol in H₂O. 1.0002 pt is sol in 100 pts H₂O at 25° (Jantsch, B. 1911, 44. 1276.)

Glucinum chromate, basic, GlCrO4, 13GlO+ 23H.O

Ppt Insol. in H₂O. (Creuzberg, Dine) 163, 449) GlCrO, 6Gl(OH2). Ppt. Insol, in H-O (Glassmann, B. 1907, 40, 2603)

Glucinum chromate, GlCrO4+H2O.

Decomp. by H₂O with separation of the basic chromate. (Glassmann, B. 1907, 40, 2603)

Gold (auric) chromate, Au2(CrO4)5, CrO2. Ppt. (Orloff, Ch Z 1907, 31, 1182.)

Indium chromate. Ppt (Meyer)

Indium dichromate.

Very sol in H₂O. Known only in solution.

Iron (ferric) chromate, basic.

Decomp. by H₂O (Maus.) Fe₂O₂, CrO₄ Insol. in H₂O, but decomp. thereby, or by saline solutions; easily sol. in acids. Sol. in H₂CrO₄+Aq. (Eliot and Store, Proc. Am. Acad. 5. 216)

Iron (ferric) dichromate.

Sol. in H2O and alcohol. (Maus, Pogg 9.

Iron (ferric) potassium chromate, basic, 2CrO₂, 6Fe₂O₃, 3K₂O.

4CrO₂, 3Fe₂O₃, 4K₂O 10C1O3, 6Fe2O3, 7K2O 10030, 97690, 1820 11Cr0, 37690, 4820 + 98420 9Cr0, 27690, 6820 + 10H20 9Cr0, 27690, 6820 + 10H20 10Cr0, 37690, 6820 + 10H20 10Cr0, 37690, 820 + 77H20 4Cr0, 7690, 820 + 4H20 6Cr0, 27690, 820 + 4H20 16Cr0, 27690, 3820 + 8H20

16CrO₃, 4Fe₂O₃, 5K₂O+8H₂O. Above compounds are ppts., insol. in H₂O, alcohol and ether. (Lepierre, C. R. 1894, 119,

1215-18.) Iron (ferric) potassium chromate, Fe₂(CrO₄)₃, K₂C₁O₄+4H₂O.

Decomp. by much H2O, cone. HCl, or NH.OH+Aq Not de (Hensgen, B. 12. 1300) Not decomp, by alcohol.

Iron (ferric) sodium chromate, basic, 5CrO₃, 7Fe₂O₃, 4Na₂O.

Ppt (Lepierre, C. R. 1894, 119, 1217.)

Lanthanum chromate, La2(C1O1)1.

,Sl sol. in cold, more easily in hot H2(); easily sol in acids. (Frerichs and Smith, A. 191, 355)

+8H₂Ó Ppt (Cleve)

Lanthanum potassium chromate.

(Cleve)

Lead chromate, basic, 2PhO, CrO; (chrome

Insol, in H₂O, acetic acad dissolves out 1/2 the PbO. Sol. in KOH+Aq (Badams, Pogg 3, 221) Insol, in acctone. (Naumann, B 1904, 37.

4329.) 3PbO, CrO₅. (Hermann, Pogg 28, 162.) +H2O. Ppt (Strömholm, Z anorg. 1904,

38, 443.) Min Melanochroite, Phanicociate Sol. m acids. PbO, PbCrO₄. Ppt (S)

Lead chromate, PbCrOs.

Insol, in H₂O. Pptd. from Pb(NO₂)₂ in presence of 70,000 pts. H₂O. (Harting.) Calculated from electrical conductivity of PbCrO₄+Aq, 1 l H₂O dissolves 0.2 mg. PbCrO₄ at IS° (Kohlrausch and Rose, Z. phys Ch, 12 24].)

I l. H₂O dissolves 1 2×10 ° g PbCrO, at 25°. (Hevesy, Z. anorg 1913, 82, 328.) Sol. in dil. H₂SO₄+Aq (Storer), sl sol. in dil. HNO2+Aq

Sol. m 560 pts. HNO₃+Aq of 1.12 sp. gr.; m 150 pts. HNO₃+Aq of 1.225 sp. gr., in 130 pts. HNO₄+Aq of 1.265 sp. gr.; m 80 pts HNOs+Aq of 1.395 sp gr (Storer's Dict.)

Solubility of PbCrO₄ in HNO₃+Aq at 18°. (Millimols, per 1) 0.2N0.3N 0 IN 0.506 1 13 0 844 1 44

(Beck and Stegmuller, I c.) Easily decomp. by hot HCl+Aq (Frese-

Solubility of PbCrO4 in HCl+Aq.

18

(Milhmols, per l.) 0 IN 0.2N 0 3N 0 4N 0.5N 0.6N 0.393 0.186 0.654 1.07 1.56 2 25 0.239 | 0.485 0.839 1.32 4.06 2 95 37 | 0.357 | 0.744 | 1.31 2.10 3.28

(Beck and Stegmüller, Arb. K. Gesund, Amt. 1910, 34, 446.)

Insol, in HC₂H₄O₂+Aq. Easily sol, m KOH, or NaOH+Aq. KOH+Aq (½ normal) dissolves 11.9 g. PbCrO₄ at 15°;16 2 g. at 60°, 26.1 g. at 80° 38 5 g. at 102. (Lachaud and Lepierre, Bull | Magnesium chromate, MgCrO. Soc. (3) 6. 230.1 Insol. in NH Cl+Ag. (Brett, 1837.)

Sol. in K₂Cr₂O₇+Aq; almost completely insol, in NH₄C₂H₂O₃, or NH₄NO₃+Aq. Not uptd in presence of Na citrate. (Spillet.)

Insol, in liquid NH4. (Franklin, Am Ch J. 1898, 20, 828.) Insol. in acctone. (Naumann, B. 1904,

37, 4329.) Min. Crocoite Sol. in hot HCl+Aa: difficultiv sol in HNO+Ag; sol in KOH+Ag.

Lead dichromate, PbCr₂O₂,

Decomp. by H2O +2H.O

As above (Preis and Raymann. B. 13, 340.)

Lead lithium chromate, PbCrO4, LtsCrO4 (Lachaud and Lepierre, C. R. 110. 1035.) Lead potassium chromate, PbC1O4, K2CrO4.

Insol. in hot or cold H₂O or in alcohol Dil acids dissolve out K2CrO4. (Lachaud and Ledierre, C R 110, 1035.)

Decomp by H-O. Stable in contact with solutions containing.

8.950 pts. K₂CrO₄ per 100 pts. H₂O at 10° 27.5° 8.077 ce . 37.5° 7.629 7.150 50.0° " 76.0° 6.145 " 100,0° 4 940

(Barre, C. R. 1914, 158, 497) Lead sodium chromate, PbCrO4, NaCrO4,

PbCrO4, 2PbO, Na2CrO4 (L and L) Lithium chromate, Li-CrO.

100 cc of solution sat at 18° contain 85 g anhydrous salt (Kohlrausch, B. A. B 1897, 90.)

99,94 pts, are sol, in 100 pts H₂O at 30° (Schreinemakers, C C 1905, II, 1486.) +2H₂O. Very easily sol, in H₂O (Ram-

Tall V. C. San J. S. San J. Sa Sp. gr. of solution sat. at 18° = 1.574, and contains 52.6% LiCrO₄ (Mylius and Wro-chem, B. 1897, 30, 1718.)

Lithium dichromate, LigCr2O2.

130.4 pts. are sol in 100 pts. H₂O at 30° (Schreinemakers, C. C. 1905. II, 1486.) +2H2O. Deliquescent Sol. in H2O. (Rammelsberg.)

Lithium potassium chromate, KaCrO4. Li2CrO4+1/2H2O.

Hydroscopic. (Zehenter, M. 1897, 18, 54,) | ter.)

Sol in H-SO4, and HCl, insol, in HNO.

(Dufan. C. R. 1896, 123, 888)

So gr of MgCrO4+Aq sat at to/40 14 5° 13.6° 12 69 % MgCrO4 21.86 27 71 1.0886 Sp. gr. 1.1641 1 2170 (Slotte, W. Ann. 1881, 14, 19.)

Sel. in acetone. (Naumann, B 1904, 37. 4328

+7H.O. Easily sol in H.O. (Vauquelin.) 100 cm. of solution sat. at 18° contain 60 g. MgCrO. (Kohlrausch, B A, B, 1897, 90) Sp. gr. of solution sat. at 18 =1 422, and Sp. gr. of southon sar. at 18 > 1 422, and ontains 42% MgCrO₄ (Mylius and Wrochem, B 1897, 30, 1718) +5H₂O Very sol in H₂O. (Wyrouboff, Bull Soc. Min. 12, 60)

Magnesium dichromate, Mg2Cr2O2 Sol. in H₂O

Sl. sol in alcohol. (Reimtzer, Zeit. angew. 1913, 26, 456.)

Magnesium potassium chromate, MgCrO. K₀CrO₄+2H₀O. 100 pts H₀O dissolve 28 2 pts at 20°: 34.3

pts, at 60°. (Schweitzer Sol. in H2O. Sl, sol in sat K2C1O4+Au. (Groger, Z anorg, 1907, 54, 188)

Insol. in alcohol +6H₂Q Efflorescent. (Briggs, Chem. Soc. 1904, 85, 679.

Magnesium rubidium chromate, Sol, in H₂O(?). (Lachaud and Lepierre) $MgRb_0(CrO_4)_0 + 6H_0O_4$ (Briggs, Chem. Soc 1904, 85, 679.) (Barker. Chem. Soc. 1911, 99, 1327,

Magnesium sodium chromate. (Stanley, C. N. 54, 194.)

Manganous chromate, 2MnO, CrO₃+H₂O. Ppt. Sol. in dd H₂SO₄, or HNO₃+Aq. (Warrington and Reinsch, Schw J 3, 378.)

Manganous potassium chromate, MnCrO4. K2CrO4+2H2O.

Decomp. by H₂O. Sol in dil. H2SO4. Groger, Z. anorg 1905, 44. 459)

2MnCrO₄, K₂CrO₄+4H₂O. Sol. in H₂O
(Hensgen, R t c. 3. 433.)

Mercurous chromate, basic, 4Hg₂O, 3CrO₂, Very sl. sol in cold, more in boiling HaO. Sl. sol. m HNO₃+Aq. Decomp. by HCl+ Aq. Sl. sol m NH₄Cl+Aq or NH₄NO₃+Aq. (Brett.)

Does not exist. (Richter, B. 15, 1489.) 3HgsO, CrOs. Sol in HNOs+Aq. (Rich-

3Hg-O, 2CrO₂ Ppt (Fighter, Z anorg, 1912, 76, 350.)

Marcurous chromate, Hg-C1O, "

Very sl, sol in cold, more readily in bot II₂O. Si sol in dil HNO₂+Aq; sol in cone HNO₃; sol. in KCN+Aq, insol. in Hg₃(NO₃). +Aq. (Rose, Pogg 53. 124) Less sol in K₂CrO₄+Aq. than in H₂O

(Fichter, Z. anorg 1912, 76, 349.) Insol, in acctone. (Naumann, B. 1904, 37.

Mercuric chromate, basic, 2HgO, CrOs. Sol. in HCl, and in HNO₃+Aq. (Geuther.) 3HgO, CrO₃ Sl. sol in H₂O (Millon.) The only true compound. All others are mixtures of HgO or HgCrO₄ with this com-

pound. (Cox, Z. anorg. 1904, **40**, 155) 4HgO, CrO₃ Sl sol. in H₂O. (Millon, A. ch. (3) **18**, 365.) 7HgO, 2CrO₃. Easily sol in warm HNO₄. when freshly precipitated. Easily sol in HCl+Aq (Geuther, A. 106, 247.)

Does not exist. (Freese, B. 2. 477.) 5HgO, CrO₈ Easily sol. m HCl+Aq Very sl. sol. in HNOs+Aq. Decomp. by H₂O into—

6HgO, CrO₂. Insc Kruss. B. **22**, 2049.) Insol in H₂O (Jager and

Mercuric chromate, HgCrO4

Decomp, by H₂O and acids into basic salt. (Geuther.) Sol in warm NH2Cl, or

NH4NO2+Aq Sol. in Hg(NO3)2, or HgCl2+ | Potassium chromate, K2CrO4, K2Cr2O7, etc. Insol in ethyl acetate. (Naumann, B. 1910, 43, 314.)

Insol in acetone. (Naumann, B. 190 37, 4329.) Mercuric dichromate, HgCroOr.

Ppt. (Gawalowski, C. C 1906, II, 130) Mercurous potassium chromate.

Hg2K2(CrO4)2. Ppt , decomp. by H₂O (Groger, Z anor

1907, 54, 191)

Mercuric chromate, basic, ammonia, 12Hg 3CrO₈, 2NH₂+3H₂O

(Gröger, Z. anorg, 1908, 58, 420.) Mercuric chromate ammonia, HgCro 2NH2+H2O

(Gröger, Z. anorg 1908, 58. 419.) Mercuric chromate sulphide, 2HgC1O4, H4

Not attacked by weak acids (Palm, C. 1863. 121)

Nickel chromate, basic, 4N1O, CrOs+6H2 Insol. in H2O: easily sol in NH4OH+Aq. (Malaguti and Sarzeau, A. ch (3) 9. 451.)

3N₁O, CrO₃+6H₂O. Insol, in H₂O, sol. in NH₄OH+Aq. (Freese, J. B. 1869, 271) 2N₁O, CrO₄+6H₄O. As above (Schmidt, A 156, 19)

5N₁O. 2CrO₂+12H₂O As above (Schmidt)

Nickel chromate, NiCrOz. Not attacked by boiling H₂()

Nearly msol, in hot dil HNOs. Slowly sol. in cone. HNO2 and aqua regia. Somewhat sol in NH3+Aq. (Briggs, Z. anorg 1909, 63, 326.)

Nickel dichromate, 2NiCr₂O₇+3H₂O.

Slowly sol in cold, rapidly sol in hot H2O Deliquescent (Briggs Z. anorg 1907, 56. 246 1

Nickel potassium chromate, NiCrO4, K2CrO4 +2H₂O.

Decomp. by HaO (Groper, Z anorg, 1906, 51. 353.) +6H_{*}O. Efflorescent (Briggs, Chem. Soc. 1904. 85, 678.)

Nickel rubidium chromate, NiRb(Cr()₄)₂+ 6H2O Sl. efflorescent at ord, temp. (Briggs.

Chem Soc 1904, 85, 678) Nickel chromate ammonia, NiCrO, 6NHa+

4H.O. Decomp. by H4O. Quite easily sol. in NH,OH+Aq of 0 96 sp. gr. (Schmidt) Insol in alcohol or ether.

System, K.O. CrO., H.O at 0°

04,	100 g of the sat solu- tion contain		Solid phase
	g K:0	g Cr7a	
7.)	31 18 26 06 19 31	0 54 4 27	K₂CrO₄
ng	17 73 17 06 17 18 17 62	5 50 11 77 11 91 18 71	и и
о,	17 63 17 61 17 79	18 72 18 91 19 10	K ₂ C ₁ O ₄ +K ₂ C _{F2} O ₇
Э,,	17.80 10 90 8.07 1 87	19.10 11 93 8 93 3.13	K₂Cr₂O₁
S. C.	1 41 1 42 0 97 0.78 1 02	3.00 3 01 3 94 22.38 38.83	66 66 700 66
O.	1 26 1 36 1 22	40 10 40 41 41 70	tt tt

System	KA CO.	H2() at 0°-Continued	Sys	tem K ₂ O,	CrO ₃ , H ₂ () at 30°
100 g, of th		ZIEO III O "COMMINION	100 g of th	ne sat solu ontain	Solid phase
tion contain Solid phase		g K+O	g CrO ₁	South Prints	
g K ₀ O	g CrO _d		46.8		KOH, 2H ₂ O
1 28	41 75	K2C12O7	26 89	0 94	K₂CrO₄
1 40	42 10	"	22 25	3 06	" "
1 23 1 33	42 11 42.16		19 52 18 65	6 99 13 72	ü
1 31	42 28		18 60	17 00	- 4
1 38	42 48	"	18 70	17 03	"
1 40	42.68		19 12	20 30	T 0 0 1 T 0 -
1 47	42 93 42 95	K ₂ Cr ₂ O ₇ +K ₂ C ₁₃ O ₁₀	19 35 15 04	21 00 16 85	K ₂ CrO ₄ +K ₂ Cr ₂ O ₇ K ₂ Cr ₃ O ₇
1 47	43 09	"	14 77	16 51	1KgCigO7
1.25	44 52	K ₂ C ₁₃ O ₁₀	12 28	14 57	"
1 27	44 95	"	11 20	13 11	"
1 18	45 84 46 84	"	4 98 3 07	10 48 19 34	",
1.36	47 22	K ₂ C ₁₃ O ₁₆ +K ₂ Cr ₁ O ₁₃	2 42	28 21	и
1 36	47 31			33 77	- 11
1 40	47 67	"	2 35 2 30 2 30 2 50	36 78	"
1.24	48 23	K ₂ Cr ₄ O _{1,i}	2 30	40 41	
1 35	51 66 53.81	1	2 50 2 25	44 50 49 95	K ₂ Cr ₃ O ₇ +K ₂ Cr ₄ O ₁₀ K ₂ Cr ₃ O ₁₀ +K ₂ Cr ₄ O ₁₂
1 08	55 63	и	1 35	53.39	K ₀ Cr ₂ O ₁₄
1 16	56 93	u	0 69	62 81	$K_2Cr_4O_{13}+CrO_3$
0.96	57 63 59 46	"		62 52	CrO ₃
1 16 0 91	59 87	.,	(Konnel ar	ad Blumoni	thal, Z anorg, 1907, 53
0 81	60 16	и	(Exopposit	2	35.)
0.70	61 76	K ₂ Cr ₄ O ₁₂ +CrO ₂	1		
0 62 0 57	61 77 61 78		Syst	em. K ₂ O,	CrO ₃ , H ₂ O at 60°
0 67	61 86		100 g of th	e sat solu	
	61 51 61 52	Cr.O.	tion e	ontain	Solid phase
		11		g CrOs	
,	61 55	"	g KiO	g cros	
	61 57		c. 50 0		кон нао
Koppel a	61 57 nd Blumen	thal, Z. anorg. 1907, 53.	c. 50 0	0 53	KOH, H₂O K₂CrO₄
Koppel a	61 57 nd Blumen		e. 50 0 32 98 21 05 20 70	0 53 9 15 8 90	K ₂ CrO ₄
Koppel a	61 57 nd Blumen	thal, Z. anorg. 1907, 53.	e. 50 0 32 98 21 05 20 70 20 25	0 53 9 15 8 99 14 43	K ₁ CrO ₄
	61 57 nd Blumen 2	thal, Z. anorg. 1907, 53 .	c. 50 0 32 98 21 05 20 70 20 25 20 32	0 53 9 15 8 90 14 43 16 56	K ₂ CrO ₄
	61 57 nd Blumen 2	thal, Z. anorg. 1907, 53.	c. 50 0 32 98 21 05 20 70 20 25 20 32 20 67 20 72	0 53 9 15 8 99 14 43	K ₁ CrO ₄
Sys	61 57 nd Blumen 2 tem· K ₂ O,	thal, Z. anorg. 1907, 53 .	c. 50 0 32 98 21 05 20 70 20 25 20 32 20 67 20 72 20 68	0 53 9 15 8 90 14 43 16 56 21 94 22 00 23 49	K ₂ C ₇ O ₄ " " " " " " " " " " " " " " " " " "
Sys	61 57 nd Blumen 2	thal, Z. anorg. 1907, 53 . 45) CrO ₃ , H ₂ O at 20°	e. 50 0 32 98 21 05 20 70 20 25 20 32 20 67 20 72 20 68 20 55	0 53 9 15 8 90 14 43 16 56 21 94 22 00 23 49 23 74	K ₂ CrO ₄ 4 4 4 4 4 4
Sys	61 57 nd Blumen 2 tem: K ₂ O,	thal, Z. anorg. 1907, 53 .	c. 50 0 32 98 21 05 20 70 20 25 20 32 20 67 20 72 20 68 20 55 14 53	0 53 9 15 8 90 14 43 16 56 21 94 22 00 23 49 23 74 20 82	K ₂ C ₇ O ₄ " " " " " " " " " " " " " " " " " "
Sys 100 g, of th tion of g R _f O	61 57 nd Blumen 2 tem: K ₂ O,	thal, Z. anorg. 1907, 53 . 45) CrO ₃ , H ₂ O at 20°	c. 50 0 32 98 21 05 20 70 20 25 20 32 20 67 20 .72 20 68 20 55 14 53 13 36 10 .01	0 53 9 15 8 90 14 43 16 56 21 94 22 00 23 49 23 74 20 82 20 93 21 24	K ₂ CrO ₄ " " " " " " " " " " " " " " " " " "
Sys 100 g, of the tion of g K ₂ O 2 21	tem: K ₂ O, re vat volu- ontain g CrO ₁ 42 92	thal, Z. anorg. 1907, 53 . 45) CrO ₃ , H ₂ O at 20° Nolst phase	c. 50 0 32 98 21 05 20 70 20 25 20 32 20 67 20 72 20 68 20 55 14 53 13 36 10 01	0 53 9 15 8 99 14 43 16 56 21 94 22 00 23 49 23 74 20 82 20 93 21 24 21 24	K ₂ CrO ₄
Sys 100 g, of the tion of g R ₂ O 2 21 2 20	61 57 nd Blumen 2 tem: K ₂ O, ic sat solu- ontain g CrO: 42 92 43 28	thal, Z. anorg. 1907, 53. 45) CrO ₃ , H ₂ O at 20* Sold place K ₂ Cr ₂ O ₇ + K ₂ Cr ₂ O ₁₆	c. 50 0 32 98 21 05 20 70 20 25 20 32 20 67 20 .72 20 68 20 55 14 53 13 36 10.01 10.01 8 39	0 53 9 15 8 90 14 43 16 56 21 94 22 00 23 49 23 74 20 93 21 24 21 24 26 95	K2CrO4
Sys 100 g, of ti tion to g K ₂ O 2 21 2 20 2 10	61 57 nd Blumen 2 tem: K ₂ O, te sat solutiontain g CrO ₁ 42 92 43 28 44.02	thal, Z. anorg. 1907, 53 . 45) CrO ₃ , H ₂ O at 20° Nolst phase	c. 50 0 32 98 21 05 20 70 20 25 20 32 20 67 20 .72 20 68 20 55 14 53 13 36 10.01 10.01 8 39 7 .85	0 53 9 15 8 90 14 43 16 56 21 94 22 00 23 49 23 74 20 82 20 93 21 24 21 24 26 95 31 49	K ₂ CrO ₄
Sys 100 g, of the tuon of g K ₂ O 2 21 2 20 2 10 2 02 2 01	61 57 nd Blumen 2 tem: K ₂ O, ne sat solu- ontain g CrO; 42 92 43 28 44 02 45 28	thal, Z. anorg. 1907, 53. 45) CrO ₃ , H ₂ O at 20* Sold place K ₂ Cr ₂ O ₇ + K ₂ Cr ₂ O ₁₆	c. 50 0 32 98 21 05 20 70 20 25 20 32 20 67 20 72 20 68 20 55 14 53 13 36 10 01 10 01 10 01 8 39 7 65 7 54 6 86	0 53 9 15 8 90 14 43 16 56 21 94 22 00 23 49 23 74 20 93 21 24 21 24 26 95	K ₂ CrO ₄
Sys 100 g. of the tool of the	61 57 and Blumen 2 tem: K ₂ O, ie sat solu- contain g CrO: 42 92 43 28 44 02 45 28 46 24 48 46	thal, Z. anorg. 1907, 53. 45) CrO ₂ , H ₂ O at 20*- Nolat phase K ₂ Cr ₂ O ₁ , K ₃ Cr ₂ O ₂ , (K ₃ Cr ₂ O ₄) (K ₃ Cr ₂ O ₄) (K ₃ Cr ₃ O ₄)	c. 50 0 32 98 21 05 20 70 20 25 20 32 20 67 20 72 20 68 20 55 14 53 13 36 10.01 8 39 7 65 7 64 6 86 7 06	0 53 9 15 8 99 14 43 16 56 22 00 23 49 22 00 23 49 20 82 20 93 21 24 21 24 21 24 21 24 22 92 33 92 49,84	K ₂ CrO ₄
Sys 100 g. of the g K ₁ O 2 21 3 20 2 32 2 10 2 02 2 01 2 02 1 94	61 57 and Blumen 2 term: K ₂ O, ie sat solutiontum g CrO; 42 92 43 28 44 02 44 02 44 84 48 48 24 48 84 84 48 84 84	thal, Z. anorg. 1907, 53. 45) CrO ₂ , H ₂ O at 20 ⁴ Noted phase K ₂ Cr ₂ O ₃ + K ₄ Cr ₂ O ₁₀ K ₂ Cr ₂ O ₄ """	c. 50 0 c. 50 0 22 98 21 05 20 70 20 25 20 32 20 67 20 .72 20 68 20 55 14 53 13 36 10 .01 10 .01 8 39 7 .65 7 64 6 86 6 .51	0 53 9 15 8 99 14 43 16 56 21 94 22 09 23 74 20 82 31 24 21 24 21 24 21 24 21 24 21 24 21 29 31 49 31 49 32 69 31 49 49 84	K ₂ CrO ₄
Sys 100 g. of the tool of g. K _f O 2 21 3 20 2 10 2 02 2 01 2 00 1 94 1 62	61 57 and Blumen 2 tem: K ₂ O, ic sat solu- ontain 42 92 43 28 44 .02 45 .28 46 .24 48 46 48 .62 49 .01	thal, Z. anorg. 1907, \$3. CrO ₂ , H ₂ O at 20* Sold phase K ₂ Cr ₂ O ₃ +K ₄ Cr ₂ O ₁₀ K ₂ Cr ₂ O ₃ +K ₄ Cr ₂ O ₁₀ K ₃ Cr ₃ O ₃	c. 50 0 32 98 27 07 20 27 20 32 20 67 20 67 20 68 20 55 14 53 13 36 10 01 1 0.01 8 39 7 65 7 54 6 6 6.5 5 33	0 53 9 15 8 99 14 43 14 43 12 94 22 49 23 74 22 20 93 21 24 26 95 31 49 32 92 39 64 49 84 49 84 50 40	K ₂ CrO ₄
Sys 100 g, of th tuon 0 g K ₂ O 2 21 3 20 2 10 2 02 2 01 2 00 1 94	61 57 and Blumen 2 term: K ₂ O, ie sat solutiontum g CrO; 42 92 43 28 44 02 44 02 44 84 48 48 24 48 84 84 48 84 84	thal, Z. anorg. 1907, 53. 45) CrO ₂ , H ₂ O at 20*- Nolat phase K ₂ Cr ₂ O ₁ , K ₃ Cr ₂ O ₂ , (K ₃ Cr ₂ O ₄) (K ₃ Cr ₂ O ₄) (K ₃ Cr ₃ O ₄)	c. 50 0 32 98 21 05 20 70 20 22 20 32 20 32 20 67 20 72 20 72 20 68 10 01 8 39 7 64 6 53 6 53 6 6 53 6 6 53 6 6 53 7 6 6 6 53 7 6 6 6 53 7 7 6 6 6 5 7 6 6 6 6	0 53 9 15 8 99 14 43 14 43 14 43 12 20 23 49 23 49 20 82 20 93 21 24 26 93 21 24 26 94 27 29 28 49 29 49 29 49 20 82 20 83 21 24 26 95 27 27 27 27 28 27 29 27 20 52 20	K ₂ CrO ₁ " " " " " K ₅ CrO ₂ +K ₅ Cr ₅ O ₇ K ₅ Cr ₅ O ₇ " " " " " " " " " " " " "
Sys 100 g. of the tion of g. RyO 2 21 2 20 2 .10 2 02 2 .01 1 94 1 .62 0 62	61 57 and Blumen 2 tem: K ₂ O, are sat solution tain g: CrO ₁ 42 92 43 28 44 .02 45 .24 48 .62 48 .62 49 .01 62 80	thal, Z. anorg. 1907, \$3. CrO ₂ , H ₂ O at 20* Sold phase K ₂ Cr ₂ O ₃ +K ₄ Cr ₂ O ₁₀ K ₂ Cr ₂ O ₃ +K ₄ Cr ₂ O ₁₀ K ₃ Cr ₃ O ₃	c. 50 0 32 98 21 08 20 70 20 20 70 20 32 20 67 20 72 20 72 20 72 20 72 20 72 20 72 14 53 13 30 7 65 7 65 7 65 7 55 8 6 6 51 5 3 3	0 53 9 15 8 99 14 43 16 56 21 94 22 09 23 74 20 93 21 24 22 99 23 24 24 28 95 31 49 24 28 95 31 49 24 27 26 95 31 49 27 27 27 27 27 27 27 27 27 27 27 27 27 2	K ₂ Cr ₂ O ₄

System. K ₂ O, CrO ₃ , H ₂ O at 60°-Continued			
100 g of the sat solu- tion contain		Solul phase	
g K ₂ O	g CtOs		1
5.01	54 09 54.73	K ₂ Cr ₃ O ₁₀ +K ₂ Cr ₄ O ₁₁ K ₂ Cr ₄ O ₁₁	6
4.06 3 29	54 91	K ₂ Cr ₂ O ₁₃	Ŀ
2 95 3 01	55 43 56 41		7
2 50 2 31	58 05 58 69	41	
2 00	60.69 61.25	65	
2 05 1 70	61 27	10	
1 79 1 57	61 29 62 57	"	
1 27	65 77	K ₂ Cr ₄ O ₁₂ +CrO ₂ CrO ₃	l

(Koppel and Blumenthal, Z. anorg. 1907. 53. 240.)

System. K.O. CrOs. H.O at the cryohydne pt.

Cryohy tion contain		the solu ontain	Solid phase	
time pe	g KıO	g CrOs		
-11 5° -30 0° -39 0°	17.18 1 18 0 79	42 51	K ₂ C ₁ O ₄ +K ₂ C ₇₂ O ₇ K ₂ C ₇₃ O ₇ +K ₂ C ₇₂ O ₁₀ K ₂ C ₇₃ O ₁₀ +K ₂ C ₇₄ O ₁₃	

(Koppel and Blumenthal, Z. anorg., 1907, 53.

B.-pt. of solutions of CrO₃+K₅O+Aq. 100 g of the solu-

Bpt	tion contain		Solid phase	
	g Kg∩	g CtO		
109° 105.8 106 8 104 8 114 0 127 0	30 01 23 8 24.3 16 4 16.8	11 92 25 3 30 5 35 6 59 2 71 2	K ₂ CrO ₄ K ₂ Cr ₂ O ₄ + K ₂ Cr ₂ O ₇ K ₂ Cr ₂ O ₇ + K ₂ Cr ₃ O CrO ₃	
(T*	1 1 D	L	.1 7 among 1007 5	

i, Z. anorg. 1907, **53**. (Koppel and Blumenth 255.)

Potassium chromate, K2CrO4 Eastly sol, in H2O.

Sol in 2 pts. H₂O at 18.75° (Ahl) 100 pts H₂O at 15° dissolve 43.837 pts K₂CrO₄, and solution has ep. gr. of 1 3932 (Michel and Krafft, A ch (3) 41.478)

1 pt. dissolves in 2.07 pts. H₂O at 15.5°.

100 pts, H₂O dissolve atnο 100 200 30° š.90 64.96 pts. K-CrO4. 60.92 62.94 4nº 50° 60° 702 73 04 pts. K₂CrO₄ 6.98 49 00 71.02 80° ano 100° 5.08 77.08 79.10 nts. K.CrO.

(Allhard, C. R. 59, 500.)

100 pts. H₂O dissolve at-Uo 10° 27 37° 42.1° 61.5 62.1 66.3 70.3 nts K-C1O4

106.1° 63.6° 93.6° 81.8 nts K-CrO4. 74.0 79.7

(Nordenskjold and Landstrom, Pogg. 136. 314.)

100 pts. K2CrO1+Aq sat at 10-12° contain 37.14 pts salt. (v. Hauer, J. pr. 103.

114.) 100 pts H₂O at 19 5° dissolve 62 3 pts. KaC1O4, and solution has sp gr. of 1.3787. (Schiff, A 109, 326.)

Sat. K-CrO+An contains at-34° 53°

40.3 41 8% K2CrO4. 39.7 157° 120° 96°

45.4% K.CrO. 42.6 44.0 (Etard, A. ch. 1894, (7) 2, 550)

100 cc. sat K₂C₁O₄+Aq contain 53 g. K₂CrO₄ at 18° (Kohlrausch, B A. B. 1897. 100 pts H₂O dissolve 64 91 pts K₂CrO₄ at 30°, or 100 g. of solution contain 39.36 g. K₂CrO₄ (Schreinemakers, Chem. Weekbl.

1905, 1. 837.)

100 g. H₂O dissolve: 54.57 g. K2CrO4 at - 11.37° (eryohydric pt.) U. 57.11 g. 66 30° 65.13 g

44 60° 74 60 g. 11 " 105.8° (b-pt of sat. sol.) 88.80 g. (Koppel, Z. anorg. 1907, 53, 262.)

64.62 g. K2CrO, are sol. in 100 g H2O at

1 pt. dissolves in 1.75 pts. H₂O at 17.5°, 25°. (Amadori, Real Att. Line 1912, (5) 21, and in 1.67 pts. H₂O at 100° (Moser)

Sp. gr. of K_2CrO_4+Aq at 19 5°					
% KiCrO	Sp дт	rg KaCrOa	5p gr	C KiCrO	op gi
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 0080 1 0161 1 0243 1 0325 1 0408 1 0492 1 0576 1 0663 1 0750 1 0837 1 0925 1 1014 1 1104 1 1195	15 16 17 18 19 20 21 22 23 24 25 26 27	1 1287 1 1380 1 1474 1 1570 1 1667 1 1765 1 1864 1 1964 1 2060 1 2169 1 2274 1 2379 1 2485	28 29 30 31 32 33 34 35 36 37 38 39 40	1 2592 1 2700 1 2808 1 2921 1 3035 1 3151 1 3268 1 3386 1 3505 1 3625 1 3746 1 3808 1 3991

(Kremers, and Schiff, calculated by Gerlach, Z. anal. 8, 288.)

 K_2CrO_1 dissolved in 2 pts. H_2O has sp gr, 1.28; 3 pts., 1 21; 4 pts, 1 18, 5 pts., 1 15, 6 pts, 1 12, 7 pts., 1.11; 8 pts, 1 10 (Moser) Sp gr of sat. solution at 8° = 1 368 (Anthon, 1837.)

tion, 1837.)
Sp. gr of sat K₂CrO₄+Aq containing
24.26% K₂CrO₄=1 2335 at 18°/4° (Slotte,
W. Ann 1881, 14, 18.)

Su gr. of K2CrO4+Aq at 25°

Concentration of K:CrO4+Aq	Sp gı
1-normal 1/2- 44 1/4- 44 1/6- 44	1 0935 1 0475 1 0241 1 0121

(Wagner, Z phys. Ch. 1890, 5, 36) Sat K₂C₁O₄+Aq boils at 107° (Kremers)

Sat K₂CrO₄+Aq boils at 104 2° under 718 mm, pressure. (Alluard.) Freezing point of sat K₂CrO₄+Aq = -12.5°. (Rudorff)

By dissolving K₂CrO₄ in 2 pts H₂O, the temp. is lowered 10° (Moser.) 100 pts. sat solution of K₂CrO₄ and K₂SO₄

contam 37.14 pts of the two salts at 10-12° (v Hauer, J pr. 103. 114)

Solubility of K₂CrO₄+K₂SO₄ in H₂O at 25° (G per 100 g H₂O.)

K ₁ C ₁ O ₁	K _i SO ₄	K₁CrO₄	K _s SO _s
63.09	0 76	20 83	5 75
61.39	1.17	14 65	7 12
58 40	1.84	7 81	8 98
51 81	2 36	4 36	10 25
40 93	3.33	1 94	10 86

(Amadori, Real. Att. Line 1912, (5) 21, I.

Insol. in hquid NH₂. (Franklin, Am Ch. J 1898, 20. 829.) 100 g sat solution in glycol at 15 4° contain 1 7 g K-CrO₄. (de Coninck, C. C. 1905, II 183) Insol in benzonitrile. (Naumann, B.

1914, 47. 1370)
Insol. in methyl acetatc (Naumann, B. 1909, 42. 3790), cthyl acetatc. (Naumann, B. B. 1904, 37. 3801.)

Insol in actione. (Naumann, B 1904, 37. 4329, Eidmann, C C 1899, II, 1014.) +4H₂O Easily sol. in H₂O and in NH₄OH +Aq (Wesch, Dissert. 1909.)

Potassium dichromate, K2Cr2O7.

Sol in H₂O, with slight absorption of heat, Less sol in H₂O than K₂CrO₄

Sol in 9 of the H₂O at 17.3% (Thompson)

" 18 7° (Moser)

" 10 " " " 18 7° (Moser)
100 pts H₂O at 15° dissolve 9.126 pts
K₂Cr₂O₇, and solution has sp. gr.=1 0618

(Michel and Krafft, A ch. (3) 41. 478)

100 pts H₂O dissolve pts K₂Cr₂O₇. A=according to Alluard (C. R. 59, 500); K=according to Kremers (Pogg. 92, 497)

t°	A	Ж	f-	A	K
0	46	4 97	60	45 0	50 5
	12.4	8 5 13 1	70 80	56 7 68 6	73 0
	18 4 25 9	29 1	90 100	81 1 94 1	102 00
	35 A		100	"	102 00

(Tilden and Shenstone, Phil Trans. 1884. 23)

148

180

200 6

262 7

Solubility of K2Cr2O7 in H2O at to

128 3

153 8

120

t°	% K2Ct2O7	t°	% KaCraOr
-1 +1 6 7 12 15 20 29 36 57 61	4 1 4 3 5 6 6 6 1 7 2 8 5 10 4 14 2 16 6 28 2 30 2	92 97 104 120 130 150 157 178 215 291 312	42 8 44 0 48 0 52 0 54.4 60.8 62.8 66 6 76 9 89 7 91 8
65 70	32.0 34.4	360	97 4

(Étard, A ch. 1894, (7) 2. 550.)

100 g H₂O dissolve 10.1 g, K₂Cr₂O₇ at 15.5° (Greenish and Smith, Pharm. J. 1901, mann, C C 1899. II, 1014.) 66, 774 100 pts H₂O at 30° dissolve 18 12 pts K₂Cr₂O₇ (Schreimemakers, Chem. Weekbl.

1905 1, 837.)

100 g H₂O dissolve 4.50 g. K₂Cr₂O₇ at -0.63° (ervolvedue nt.) 4.61 g U.

cc 61 30° 18 13 g. ... 45.44 g 60°

" 104.8° (b-pt of sat. sol) 108 2 g (Koppel, Z anorg 1907, 53, 263)

100 c.c. sat solution contain 1143 g K₂Cl₂O₇ at 20° (Sherrill and Eaton, J. Am. Chem. Soc 1907, 29. 1643.)

100 g. sat. K.Cr.O. contain 5.52 g. K2Cr2O7 at 481°

30 10° " 35 33 (Le Blanc and Schmandt, Z. phys. Ch. 1911.

77, 614) 100 g sat K2Cr2O7+Aq. at 35.03° contains

17.72 g K₂Cr₂O₇. (Le Blanc, Z. phys. Ch. 1913, 86, 335.) K₂Cr₂O; +Aq sat at 5° has up gr 1065. (Anthon

Sp. gr. of KaCraOa + Acrast 10 55

op. gr. or jorzo / j rid as 180 .					
% K2Cr2Or	Sp g:	% K ₂ C ₇₂ O;	Sp gr		
1 2 3 4 5 6 7 8	1 007 1 015 1 022 1 030 1 037 1 043 1 050 1 056	9 10 11 12 13 14 15	1 065 1 073 1 080 1 085 1 097 1 102 1 170		

(Kremers, calculated by Gerlach, Z. anal 8.

Sp gr of K₂Cr₂O₇+Aq containing 4.71% less a large excess of the CrO₄ ion is present. K₂Cr₂O₇ = 1.0325 at 11°/4°; containing 6.97% less a large excess of the CrO₄ ion is present. K₂Cr₂O₇ = 1 0493 at 10 6⁶/4° (Slotte, W Ann 1881, 14. 18

Sat. K₂Cr₂O₇+Aq boils at 104° (Kremers), 103.4°. (Alluard) Insol in alcohol

Sl. sol in hound NH., (Franklin, Am. Ch. J. 1898, 20. 829.) Insol in alcohol (Reinitzer, Zeit, angew. Ch 1913, 26. 456.) 100 g sat, solution in glycol contain 6 g

K2Cr2O1 (de Coninck, Bull acad. roy. Belg. 1905, 257) Insol. in benzonitrile. (Naumann, B.

1914, 47. 1370.) Insol. in acetone. (Naumann, B 1904, 37. 4329)

Insol in acetone and in methylal (Eid-

Potassium Irichromate, K-Cr-Ou Easily sol. in H₂O and alcohol (Bothe, J. pr 46, 184.)

Not deliquescent, decomp. by H₂O in chromic acid and K2Cr2O1. (Jager and Kruss,: B 22, 2041)

Potassium tetrachromate, K.Cr.O.

Very deliquescent, and easily sol, in H₂O (Schwarz, Dingl. 186, 31) Not deliquescent Decomp. by H₂() (Jager and Kruss, B. 22, 2042)

Potassium samarium chromate, $K_2Sm_2(CrO_4)_4+6H_2O$.

Precipitate (Cleve.) Insol in ethyl acetate (Naumann, B. 1904, 37, 3601)

Potassium sodium chromate, 3K-CrO₁, Na₂CrO₂

Sol. in H.O. (v. Hauer, J pr. 83, 359.) 64.2 pts, are sol m 100 pts H₂O at 14° (Zehenter, M. 1897, 18, 49)

Potassium strontum chromate, K-Sr(CrO₄)₀. Ppt. Decomp. by H.Q. (Gröger, Z. anorg 1907, 54, 187)

Decomp by H.O Stable in contact with solutions containing

(Barre, C. R. 1914, 158, 496.)

Potassium thallium chromate, K-CrO₄ Tl-CrO.

(Lachaud and Lepierre, Bull. Soc. (3) 6. 232.) +2H₂O Rapidly hydrolyzed by H₂O un-

Readily sol, in dil. mineral acids Difficulty sol. in K2Cr2O2+Aq. (Hawley, J. Am. Chem Soc. 1907, 29, 304.)

Potassium uranyl chromate, K2CrO4.

2(UO₂)C₁O₁+6H₂O. Decomp. by boiling with H2O Sol, in acidified H.O (Formanek, A. 257, 103)

K₂CrO₄, (UO₂)CrO₄+H₂O; 2K₂CrO₃, 3(UO₂)CrO₄+7H₂O; 3K₂CrO₄, 4(UO₂)CrO₄ +7H₂O; and K₂CrO₄, 3(UO₂)CrO₄+14H₂O. Precipitates (Wiesner, C C. 1882, 777.)

Potassium vtterbium chromate, basic 2KYb(CrO4)1+Yb(OH)1+1512H2O. Ppt (Cleve, Z. anorg. 1902, 32. 151.)

Potassium Y ₂ /Cr	yttrium () ₄) ₄ +xH	chromate,	K ₂ C ₁ O ₄ ,
Ppt (C	'leve)		

Potassium zinc chromate, basic, K.O. 5ZnO, 4CrO₄+6H₂O, o₁ K₂O, 4ZnO, 3CrO₄ +3H₂O

Slightly sol. in cold, decomp, by hot H2O (Wohler.) K₂O, 4Z₁₁O, 3CrO₃+3H₂O. Insol in cold, decomp. by hot H₂O (Gröger, M 1904,

25, 520.) Potassium zinc chromate, K2Zn(C1O1)2+ 2H.O. Ppt. Decomp. by H2O (Groger, Z.

anorg. 1907, 54. 189.) Potassium dichromate chloride mercuric chloride, K2Cr2O7,2KCl,4HgCl2+2H2O. Solution in II-O sat. at 20.5° contains .78% salt Salt is much more sol in hot H₂O. (Strömholm, Z anorg 1912, 75, 278.)

Potassium chromate iodate.

See Chromoiodate, potassium. Potassium chromate magnesium sulphate. K_2CrO_3 , $MgSO_4+9H_3O$.

Sol in H₂(). (Étard, C. R. 85, 443.)

Potassium chromate mercuric chloride, K₂C₁O₄, 2HgCl₂, Easily sol in H2O. Sol in dil HCl+Aq. (Darby)

Potassium dichromate mercuric chloride, K₂Cr₂O₇, HgCl₂. Ether or absolute alcohol dissolves out

HgCl2, (Millon, A, ch. (3) 18, 388) Can be crystallized from H.O. (Jager and Kruss, B. 22. 2046.)

Potassium chromate mercuric cyanide, 2K2CrO4, 3Hg(CN)2.

Easily sol. m H₂O. +H_eO. (Dexter)

Formula is K₂CrO₄, 2Hg(CN)₂ and Sterne, Am. Ch. J. 3, 352.) (Clarke Potassium dichromate mercuric evanide.

 $K_2Cr_2O_7$, $Hg(CN)_2+2H_2O$. Sol in H₂O (Wyrouboff, J. B. **1880**, 309)

Potassium chromate phosphate. See Phosphochromate, potassium.

Potassium chromate sulphate, K2CrO4, 6K2SO1.

Easily sol, in H₂O. (Boutron-Chalard.)

Potassium chromate tellurate. See Chromotellurate, potassium.

Rubidium chromate, Rb₂C₁O₄,

Sol. in H2O. (Piccard, J. pr. 86, 455.)

Columney in reso ac a				
t°	% Rb ₈ C _{5O4}			
7 0 10 3 20 30 40 50 60 4	36 65 38 27 40 22 42 42 44 11 46 13 47 44 48 90			

Calababater on H O at +0

(Schrememakers and Filippo, Chem. Weekbl. 1906, 3, 157.)

Rubidium dichromate, Rb2Cr2O7

Sol. in H₄O. (Grandeau, A. ch (3) 67

Very sl. sol in H₂O; 5% at 10°, 8% at 26°, 35% at 60°. (Wyrouboff, Bull Soc. Min. 1881, 4. 129.)

100 pts. H₂O dissolve 10.46 pts. Rb₂Cr₂O₇ at 30°. The solution contains 9.479 (Schreinemakers and Filippo, Chem Weekbl 1906, 3, 157.)

Two forms of crystals Figures denote pts. salt per 100 pts H₂O. 28°

Monochnic form 4 45 8,00 16.52 4 40 7.91 16.57 Trichmic form

(Wyrouboff, Bull, Soc 1908, (4) 3, 7,) Solubility of monochnic and triclinic forms

	Temp	Pta, of 100 pt	salt in s. H ₂ O		Pts of salt in 100 pts H ₂ O	
,	temp	Mono- Tra- chnic clinic	1011111	Mono- clime	Tri- clinio	
	18° 24° 30°•	5 42 6 94 9 08	4 96 6 55 8 70	40° 50° 60°	13 22 18 94 28 1	12 90 18 77 27 3

(Stortenbeker, C C 1907, II 1588) Rubidium dichromate chloride mercuric

chloride, Rb2Cr2O7, 2RbCl, 4HgCl2+ 2H2O. Sol. in H₂O. Solution sat. at 20.5° contains 5.35% salt.

(Strömholm, Z. anorg. 1912, 75. 284.) Silver (argentous) chromate, Ag₄CrO₄,

Sol. in dil. acids. (Wöhler and Rautenberg.)

Existence very doubtful. Silver chromate, Ag-CrOs.

Absolutely mosol, in H₂O. Sol, in acids, ammonia, and alkali chromates+Aq. (War-ington, A. 27, 12.)

Appreciably sol in cold, and still more in hot H₂O. (Meineke, A. 261, 341.) 100 ccm H.O dissolve 0 064 grain Ag. CrO.

at 100°; 100 ccm. H₂O containing 50 grains

of the following salts dissolve the given amts. of AggCrO, at 100° NaNO, 0 064 grain; KNO2, 0.192 grain; NH4NO3, 0.320 grain Mg(NO₃)₂, 0.256 grain (Carpenter, J S. C. I 5. 286)

1 5. 250)

According to electrical conductivity of Ag₃CrO₄+Aq, 1 | H₂O dissolves 28 mg Ag₅CrO₄ at 18° (Kohlrausch and Rose, Z phys Ch 12. 241.)

1 | H₂O dissolves 25 mg Ag₂CrO₄ at 18°

(Kohhausch, Z. phys Ch 1904, 50, 356.) 25 mg, are contained in 1 l. of sat solution at 18°. Solubility increases unusually rapidly with temp. (Kohlrausch, Z phys Ch. 1908, 64. 168)

Sol in 26,378 pts. cold H₂O and 9116 pts. H₂O at 100° (Koninck and Nihoul, Zeit. angew Ch 1891, 5, 295)

1 1 H₂O dissolves 1 2×10 d gram atoms of silver at 25° (Abegg and Cov, Z phys. 2050.) Ch. 1903, 46 11.)

1 1 H_{*}O dissolves 0 029 g, Ag_{*}CrO_{*} at 25° (Schafer, Z. anorg 1905, 45. 310) 1 l H₂O dissolves 0 0256 g Ag₂CrO₄ at

18°; 0.0341 g. at 27°; 0.0534 g. at 50°. (Whithy Z. anorg. 1910, 67. 108.) Sol, in hot NH₄OH+Aq of sp. gr 0 94 (15.63% NH₃); sl sol, in cold NH₄OH+Aq of sp gr 0 91 (24.99% NH₃). (Margosches, Z. anorg. 1904, 41, 73)

Solubility of Ag.CaO, in NH.OH+An at 25°

	Mals HNO per l			Solid P	
Mola NH4OH per l	Mols ×102 Ag ₂ CrO ₄ per l		Cr	Ag	
0 01	2 004	0	32 20	5 390	Ag ₂ CrC
0 02 0 04	4.169 8.595	0.01	25 06	6 131	AgeC
0 08	17.58	0 02	20 21	7 148	44
(Sherrill and Russ, J	. Am. Chem. Soc. 1907.	0 04 0 06	13 59 11 10	9 529 11 10	Ag ₂ Cr

29. 1662.)

Sl. sol. in very cone, KoCrOs+Ag. Practically insol. in AgNO₄+Aq (Margosches.) Solubility of Ag₂CrO₄ in HNO₂+Aq at 25°

Milliat per l Mols. IINO. Solid Phase per l Ag 3 157 0.01 6 315 0 015

0 02	4 177	8 356	61		NI
0.025	4 567				
0.03	5.200		- "		Sil
0 04	5 803	11.62	"		
0 05	6 380		44		
0 06	6 833		- 66		WI
0 07	7 333		"	1	45
0.075	7 477	14 85	- 66	+Ag ₂ Cr ₂ O ₇	
0.08	7 260	15 45	"	-11	me
0 10	5 647	19.01	- 11	ce .	Ac
0 13	4 293	23 89	ee	ee	So
0 14	3 948	25 63	"	tt	-

(Sherrill and Russ, J. Am Chem Soc. 1907, 29. 1663.)

Insol in liquid NH_a (Gore, Am Ch. J. 1898, 20, 829 11.65% alcohol dissolve 0.0129 g Ag₂CrO₄ at ord, temp (Guerin, Dissert, 1912)

Insol in H2O containing acetic acid in presence of large excess of AgNO. (Gooch and Weed, Am. J Sei, 1908, (4) 26, 85.)

Practically insol, in glacial acetic acid but somewhat sol, in dil. acetic and. It behaves in a similar manner toward propionic, lactic and other organic acids. The red modification is more sol, than the greenish-black. (Margosehes, Z. anorg. 1906, 51, 233.)

Silver dichromate, AgrCr_O;

Sl. sol, in H₂O. Easily sol, in HNO₅, or NH₄OII+Aq (Warington) Decomp. by boiling with H₄O into CrO₄ and Ag₂CrO₄. (Jager and Kriss, B. 22.

Decomp. by cold H2O. (Autenrieth, B

1902, 35. 2061) 1 pt is sol. in 12,000 pts H₂O at 15°.

(Mayer, B 1903, 36, 1741.)
Solubility in H₂O at 25°=7 3×10⁻¹ atoms Ag per l. Decomp. by HNO₁+Aq (less than 0.06 N) with separation of Ag₂CrO₄ (Sherrill and Russ, J Am. Chem Soc. 1907, 29. 1074.)

Solubility of Ag₂C₁O₇ in HNO₃+Aq at 25°. Milliat, per I

hase 0.08 11 10 11 10 0.08+0 lAgNO₂ 6 624

(Sherrill and Russ, J. Am Chem Soc 1907, 29. 1664.) Silver uranyl chromate, 2Ag, CrO4, UO, CrO4,

Ppt. (Formánek, A. 257. 110.) Silver chromate ammonia, Ag₂CrO₄, 4NH₃ Decomp. by H₂O. Sol in warm conc H₄OH+Aq (Mitscherlich, Pogg. 12, 141)

lver dichromate mercuric cyanide. Ag₂Cr₂O₇, Hg(CN)₂.

Sol. in cold H₂O; very sol. in hot H₂O thout decomp. (Kruss, Z. anoig 1895, 8. Ag_Cr₂O₇, 2Hg(CN)₂ Scarcely sol. in cold, ore readily in hot H₂O. Sol. in hot HNO₂+

q, separating on cooling. (Darby, Chem. Soc 1, 24.) Sodium chromate, basic, Na₄CrO₅+13H₂O

Sol without decomp. in H2O. Sat, solution at 30° contains 41.3% Na₄C₁O₅ (Schreinemakers, Z phys Ch. 1906, **55**. 93)

Deliquescent.
Solubility m H₂O at t°
50 na GrO₅ 33 87 35 58 38.05

t° 27 7° 35° 37°
(4. No GrO₅ 40 09 44 09 45 13

(Mylus and Funk, Gm - K 3. I, 1379.)

Na₄CrO₅+Aq sat. at 18° contains 37 50%,
Na₄CrO₅, and has sp. gr = 1 446. (Mylus and Funk, B 1900, 33, 3688.)

Sodium chromate, Na2CrO4

100 cem of solution sat. at 18° contain 54 g Na₂CrO₁ (Kohlrausch, B A. B 1897. 90.)

Solubility in	n H₂O at t°
t*	% Na ₂ CrO ₁
70 80 100	55 15 55 53 55 74
(Mylius and Funk,	Gm -K. 3. I, 1379)

Na₂CrO₄+Aq sat at 18° contains 40.10% Na₅CrO₄, and has sp. gr. = 1 432. (Mylius and Funk, B 1900, **33**, 3686)

See also +4, 6, and 10H₂O •
Sp. gr of Na₂CrO₄+Aq at t°/4°.

17.4°
17.1°

te 174° 17.1° 20.7° % Na₂CrO₄ 5.76 10.62 14.81 Sp gr 1.0576 1.1125 1.1644 (Slotte, W Ann. 1881, 14.18.)

+4H₂O. Sat. solution at 30° contains 46 62% Na₂CrO₄. (Schreinemakers, Z. phys. Ch. 1906, **55**. 93.)

Solubility in H₂O at t^o

to.	%NnsCrOs	t°	%Na ₂ CrO ₄
25 6 31 5 36 40 45	46 08 47 05 47 98 48 97 50 20	49.5 54.5 59.5 65	50 93 52 28 53 39 55 23

(Mylius and Funk, Gm.-K. 3. I, 1379.)

Solubility in H₂O at t°.

t ^a	% Na ₂ CrO ₄	Mols H ₂ O to 1 mol anhy- droms salt	Mois anhy- drous salt to 100 mois, H ₂ O
28 9	46 47	10 37	9 64
29 7	46 54	10 34	9 67
31 2	47 08	10 12	9.88

(Salkowski, B. 1901, 34, 1948)

TRH*O

Solubility in H₂O at t°.

to.	% Na ₂ CrO ₄	Mols H ₂ O to 1 mol anhy- drous sult	Mois antiv- drous salt to 100 mois H.O
17 7	43.65	11 60	8 62
19 2	44 12	11 40	8 77
21 2	44 64	11 16	8 96
23.2	45 27	10 88	9 19
24 7	45 75	10 77	9 37

(Salkowski, B 1901, 34, 1948.)

+10H₂O. Deluquescent (Kopp, A. 42, 98). Easily sol in H₂O. Melts in crystal H₂O at 23° (Berthelot.).
Sp. gr of solution sat. at 18°=1.409, and contains 88.1% Na₂CrO₄ (Mylius and Funk, B 1897, 30, 1718.)

Solubility in H₂O at t^o

t°	%NnsCrOs		
0 10 18 5 19 5	24.04 33 41 41 65 44 78		
21	47 40		

(Mylius and Funk, Gm -K. 3. I, 1379)

Sp gi of solution at 18° containing 40.1%

Na₂CrÕ₄=1.432 (Mylius, B 1900, 33. 3688.) Si sol in alcohol. (Moser) 100 g absolute methyl alcohol dissolve

100 g absolute methyl alcohol dissolve 0.345 g Na₂CrO₄ at 25°. (de Bruyn, Z. phys. Ch. 10. 783). Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Sodium dichromate, Na₂Cr₂O₇

More sol, in H₂O than Na₂CrO₄.

Solubility in H₂O at t°.

t° % Na₂Cr₁O;

93° 81 19
98° 81 25

(Mylius and Funk, Gm.-K 3. I, 1380)

Sp gr of aqueous solution containing— 1 5 10 15 20 25% Na₂Cr₂O₃, 1.007 1 035 1.071 1 105 1 141 1 171 30 35 40 45 50 % Na₂Cr₂O₇.

1 208 1.245 1.280 1.313 1.343 (Stanley, C N. 54, 194.)

Sp gr of sat solution containing 63.92%, Na₅Cr₂O₇ at 18°=1745 (Myhus and Funk, B. 1900, 33, 3688.)

Sl. sol. in liquid NH₅. (Franklin, Am Ch. J. 1898, 20, 829.) 4328.)+2H₂O. Deliquescent.

100 pts H2O dissolve at-0° 15° 30° 80° 100° 139° 107 2 109.2 116 6 142 8 162 8 209 7 pts, salt (Stanley, C N 54, 194)

Solubility in H₂O at to

to.	% Na ₂ Cr ₂ O ₇
0	61 98
17	63 82
34 5	67 36
52	71 76
72	76 90
81	79 80

(Mylius and Funk, Gm.-K. 3, I, 1380)

100 g. H₂O at 30° dissolve 197.6 g Nu₂Cr₂O₃ or sat, solution at 30° contains 66 4° Na₈Cr₂O₇ (Schrememakers, Z. phys. Ch 1906, 55, 97.)

100 ccm. of a solution of sodium dichro-

mate in alcohol contain 5 133 g Na₂Cr₂O₇+ 2H₂O at 19 4°. The solution decomp. rapidly. (Remitzei, Zeit. angew Ch 1913, 26, 456) The composition of the hydrates formed by Na₂Cr₂O₇ at different dilutions is calculated from determinations of the lowering of the fr = pt. produced by Na₂Cr₂O₇ and of the conductivity and sp. gr of Na₂Ch₂O₇+Aq. (Jones, Am. ch. J. 1905, **34**, 317)

Sodium trachromate, NaCraO to

Deliquescent Very sol, in H₂O (Stanley, C. N 54, 194.) +H.0 Sat. solution at 30° contains

30% Na2Cr2O10. (Schrememakers, Z. phys Ch 1906, 55. 94)

Solubility in H₂O at t^o.

% Na Cr.O. 80.03 80 44 82.68 85 78 (Mylius and Funk, Gm -K 3. I, 1380.)

Sp gr. of sat. solution containing 80.6% Na₂Cr₃O₁₀ at 18° = 2.059 (Mylius and Funk, B. 1900, 33, 3688)

Sodium tetrachromate, Na₂Cr₄O₁₂+4H₂O.

and Funk, B. 1900, 33, 3688)

Sol. m acetone (Naumann, B. 1904, 37. | Sodium uranyl chromate, Na₂Cr(), 2(UO2)CrO4+10H2O

Easily sol in II₂O (Formánek, A 257

100 pts of the solution in H2O contain 52.52 pts of the anhydrous salt at 20° (Rimbach, B 1904, 37, 482)

Sodium chromate silicate, Na₂O, Cr₂O₃, 2SiO: +14H.O.

Not decomp, by HCl+Aq Singer, Dis-2Na₂O, 3Cr₂O₃, 6SiO₂. Not decomp by

boiling cone, acids except HF (Weyberg, C B Miner, 1908, 519.)
5Na₂O, 2Cr₂O₃, 11SiO₂, (Weyberg)
3Na₂O, 2Cr₂O₃, 0.5SiO₂ (Weyberg)

Strontium chromate, SrCrO.

Somewhat sol, in H₂O. Sol in 840 pts. H₂O (Meschezerski, Z. anal. 21, 399); sol. in 831 8 pts H₂O at 15° (Fresenius, Z. anal. 29.

100 cc H₂O dissolve 0.4651% at 10°.

100 cc H₂O dissolve 0.4001/_O at 10, 1% at 20°; 2417% at 50°, 36°, at 100° (Reichard, Ch Z. 1903, 27. 877)

Easily sol in HCl, HNO₃, or H₂CrO₄+Aq
Sol, in 512 pts 0.5°, NH₄Cl+Aq at 15° Sol. in 63 7 pts, 1% HC2H3O2+Aq at 15° Sol, in 348 8 pts. solution containing 0 75% NH₄C₂H₃O₂, 4 drops HC₂H₃O₂, and 6 drops

(NIL)₂CiO₄+Aq (Fresenius) 100 ccm NH₁Cl+Aq sat at bpt. dissolve 1 g SrCrO₄ (Dumesnil, A ch 1900, (7) 20.

50 ccm alcohol (29%) dissolve 0.0066 g SiCrO4. 50 ccm alcohol (53%) dissolve 0.001 g SrCrO₄. (Fresenius, Z. anal 30, 672)

Strontium dichromate, SrCr₂O₂ Easily sol, in H₂O,

Strontium trichromate, SrCr₂O₁₀+3H₂O Very deliquescent, and sol in H₂O. (Preis and Raymann, B. 13, 340.)

99° Strontium chromate mercuric hydrogen chloride, SrCrO4, 2HgCl2, HCl. According to Strömholm is SrCl., SrCr2Or.

4HgCl2+H2O Recryst from H2(). (Imbert and Belugon,

Bull. Soc., 1897, (3) 17, 471)
2SrCrO₄, 6HgCl₂, HCl. (Imbert and Belugon.)

Thallous chromate, TlCrO4.

H₂SO₄+Aq (Carstanjen)

11 KOH+Aq (112 g per l) dissolves about | +2H₂O. Ppt Not wholly insol, in H₂O. 3.5 g Tl₂CrO₁ on boiling, which separates out (Prüssen and Phillipona.) on cooling

Boiling conc. KOH+Aq (31% KOH) dissolves IS g. Tl-CrO, per litre. (Lepiere and Lachand, C. R. 113, 196)

Thallous dichromate, Tl-Cr-O.

Insol, in II-O, etc. Has the same properties as Tl-CiO.

Thallous /rachromate, Tl-CraOte Sol, in 2814 pts. H₂O at 15°, and 438 7 pts. at 100° (Croukes.)

Thallic chromate. Ppt.

Pogg 119. 54)

Thorsum chromate, basic, Th(OH)2CrO4 Ppt., unstable in solution (Palmer, Am Ch. J. 1895, 17, 278.)

Thorum chromate, Th(CrO₄),+H₄O Ppt, Sol in HCl and NH₄Cl+Aq. 1 pt. is sol, in 284 pts. H₂O at 22° (Palmer, Am Ch. J. 1895, 17, 375 and 278.) +3H₂O Ppt (Haber, M. 1897, **18**, 689.) Insol. m H₂O (Chydenius, +8H₂O

Tin (stannous) chromate. Ppt Sol, in dil. acids (Berzelius)

Tin (stannic) chromate. Ppt (Leykauf, J. pr 19, 127.)

Uranyl chromate, basic, UO3, 2(UO1)CrO4 +8H₂Oat (Orloff, Ch. Z 1907, 31, 375)

UO3. (UO3)C1O4+6H4O (Orloff.) Uranyl chromate, (UO2)CrO4+3H2O. 1 pt. is sol in 13 3 pts. H₂O at 15°; slowly

sol, in alcohol to give a solution which is decomp on boiling (Orloff, Ch. Z. 1907, 31. 375. +11H₂O Very sol. in H₂O (Formánck, A. 257. 108)

Yttrium chromate.

Deliquescent Easily sol, in H_{*}O (Berlin.)

Zinc chromate, basic, 4ZnO, CrO₃+3H₂O.

(Gregor, Z. anorg 1911, 70, 135) +5H₃O Insol. in H₂O; sol. in hot H₃CrO₄ +Aq, slowly sol. in NH₂OH+Aq. (Malaguta and Sarzeau, A. ch. (3) 9, 431.)

3ZnO, CrO₂+2H₂O (Gröger)

2ZnO, CrO₂+H₂O. (Briggs, Z. anorg.

1907, 56, 254.) +12H₂O. Ppt. Insol. in H₂O Sol. in hot H₂CrO₄+Aq. (Prussen and Philhpona, A 149, 92.)

Insol in liquid NH_s (Franklin, Am. Ch. 1898, **20**, 830.) Insol, in acetone. (Naumann, B 1904. 37, 4329.1 +H₂O (Groger, Z. anorg 1911, 70 135.)

Insol in H2O; very sol, in acids; decomn by boiling with H.O. (Schulze, Z anorga

Zinc dichromate, ZnCr2O7+3H2O Hyproscome.

3ZnO, 2CrOs+H₂O (Groger)

Zinc chromate, ZnCrO4.

1895, 10, 154.)

Very sol, in H₂O and sl. decomp, by boiling (Schulze, Z anorg, 1895, 10, 153) Zinc trichromate, ZnCraO a+3HaO

Deliquescent, very sol. in H₂O, (Groper, Z. anorg 1910, 66, 10.)

Zinc chromate ammonia, ZnCrC4, NH++ H₂O Decomp by H.O. (Gröger, Z anorg. 1908, 58. 417.)

ZnCrO₄, 4NH₄+5H₂O Decomp. by H₂O.
Sol. in NH₂OH+Aq. Insol. in alcohol and
ether '(Malaguti and Sarzeau, A ch (3) 9. +3H₂O. Efflorescent. Decomp by H₂O. Easily sol in dil, acids and NH₄OH+Aq. (Bieler, A. 151. 223)

2ZnO, 3C1O3, 10NH3+10H2O (Malaguta and Sarzeau.) Zinc dschromate mercuric cvanide, ZnCr₂O₂.

2Hg(CN)2+7H2O. Very sol. in H₂O. Stable in aqueous solution at 100°. (Kruss, Z. anorg 1895, 8, 460.)

Perchromic acid See Perchromic acid.

Chromicomolybdic acid, Cr₂O₃, 12M₀O₃ +28H₂O. Slowly sol in H₂O (Hall, J. Am. Chem. Soc 1907, **29**. 708.)

Ammonium chromicomolybdate, 3(NH₄)₂O. Cr₂O₃, 12M₀O₃+20H₂O.

Sol. in Fi₂O. (Struve, J. pr **61**, 457; Hall, J. Am. Chem. Soc. 1907, **29** 695.) +26H₂O. (Marckwald, Dissert, 1895.)

Ammonium barium chromicomolybdate, (NH₄)₂O, 22BaO, Cr₂O₃, 12MoO₄+ 20H₂O.

(Hall, J. Am Chem. Soc 1907, 29, 707.)

Barium chromicomolybdate, 4BaO, Cr₂O₃, | Sol. in conc. H₂SO₄ 12MoO₄+15H₂O, 4BaO, Cr₂O₅, 12MoO₅ (Kaiser, A. Suppl 3, 170.) +18H₂O; 5BaO, Cr₂O₃, 12M₀O₃+ 16H2O

Ppts. (Hall, J. Am. Chem. Soc. 1907, 29, 705.)

Lead chromicomolybdate, 4PbO, 12MoO₄+22H₄O, and +24H₄O. Cr₂O₃, Ppts (Hall, J Am Chem. Soc. 1907, 29. 706.)

chromicomolybdate, Mercurous 8Hg₂O, Cr2Os, 12MoOs+16H2O

Ppt. (Hall, J. Am. Chem. Soc 1907.

Potassium chromicomolybdate, K2O, Cr2Oa, 3MoOs Sol. in HCl+Aq with evolution of Cl,

(Bradbury, Z. anorg. 1894, 7. 46.) 3K₂O, Cr₂O₃, 12M₂O₃+20H₂O S 38.51 pts H₂O at 17°. (Strive; Hall) +24H₂O. (Hall) 4K₂O, Cr₂O₄, 12MoO₄+15H₂O, (Hall, J

Am Chem Soc. 1907, 29, 709) 7K₂O, 2Cr₂O₃, 24M₀O₂+32H₂O (Hall.) in H₂O.

Silver chromicomolybdate, 5Ag₂O, Cr₂O₃, 12MoOz+17HoO. Ppt (Hall.)

Sodium chromicomolybdate, 3Na₂O, Cr2O3, 12MoO3+21H2O Efflorescent Easily sol in H2O (Struve.)

Chromic sulphuric acid. See Sulphochromic acid.

Chromicvanhydric acid. H₃Cr(CN)₄(?

Insol. in H₂O. (Kaiser, A. Suppl. 3, 163.) Ammonium chromicvanide, (NH₄)₂Ct(CN)₆ Easily sol. in H2O (Kaiser, A. Suppl. 3.

Cupric chromicyanide, Gua[Cr(CN)a]a. Ppt Insol, in dil, or cone acids, except on heating, Insol, in NH4OH, or KOH+Au.

(Kaiser.) Lead chromicyanide, basic, 3Pb(CN)₂, 2C₁(CN)₃, Pb(OH)₂.

Ppt. Sol. in IINO3, NaOH+Aq, or Pb salts+Aq. (Kauser.)

Potassium chromicyanide, K₂Cr(CN)₆.

Very sol in H_2O . 100 pts. cold H_2O dissolve 30.9 pts. salt Insof, in absolute alcohol, but somewhat sol, in dil. alcohol.

Sol. in cone, H2SO4 without decomp.

Silver chromicyanide, Ag₃Cr(CN), Insol in all solvents, excepting KCN+Aq.

(Kuiser.) Sol in large excess of HCl+Aq. Sl sol. m cold, easily sol in hot cone HNO. Very sol in cone H2SO1 Insol in hot or cold

acetic acad. (Cruser, Dissert. 1896.) Chromisulphocyanhydric acid. H,Cr(SCN)

Known only in aqueous solution.

Ammonium chromisulphocyanide, (NH4)3Cr(SCN)0+4H2().

Easily sol. in H₂O. (Rossler, A. 141. 185.)

Barium chromisulphocyanide, Ba. Cr(SCN). +16H2O.

Dehauescent, and sol, in H₂O. (R.)

Lead chromisulphocyanide, PhilCr(SCN), lz. 4PbO.H.+8H.O Insol in H₁O, but decomp. thereby into- $Pb_2[Cr(SCN)_b]_2$, $4PbO_2H_2+5H_2O$, Insol.

Potassium chromisulphocyanide, KoCr(SCN)6 $+4H_2O$

Sol m 0.72 pt H2O, and 0.91 pt. alcohol.

Silver chromisulphocyanide, AgeCr(SCN)c. Insol in II₂O or cone, HNO₂+Aq. Insol. m NH₄OH+Aq. Sol in KCN+Aq.

Sodium chromisulphocyanide, NacCr(SCN) +7H.O Deliquescent, sol. in H₂O

Chromium.

Two modifications-(a) Not attacked by H₂O. Easily sol in cold HCl+Aq Sl sol in dil H₂SO₄+Aq. (Deville.) Easily sol in dil H₂SO₄+AG. (Devine:) Essay son in a hot mixture of 1 pt H₂SO₄, and 20 pts. H₂O. (Regnault, A ch. 62, 357.) Easily sol, in warm cone H₂SO₄. (Gmelin.) Very slowly sol, in hot H₂NO₄+Ag. (Vauquelin.) Insol in dil or cone. H₂NO₂+Ag. (Deville.) Very slowly (Richter), not at all (Berzelius) sol, in hot aqua regia Easily sol, in HF+Aq. (β) Insol in all acids, even aqua regia (Fremy), probably contains St. Pure Cr is sol, in cone. H₂SO₄, HCl and dil.

HNO₂, sol. in HgCl₂+Aq.
Insol in funing HNO₂ and aqua regia.
(Moissan, C R. 1894, 119, 187.)

Cr prepared by aluminothermic method is sol, in haloid acids to form chromic and chromous salts, even in absence of air. (Doring, J. pr 1902, (2) 66. 65; 1906, (2) 73.

Aluminothermic Cr is active in contact

with HCl, HBl, III, HF, H₂SO₄, H₂C₂O₅, e., sol in cold cone. or warm dil. actis. Is mactive in contact with cone HNO₅, H₂Cl₂O₄, HClO₂, HClO₅, HClO₆, H₂PO₄, KOH, citic, formue, acetic and tatistic acids Cause attributed to a different electric state (Huttorf, Z phys. Ch. 1898, **25**, 729.)

Chromium ammonia compounds.

Bromotetramine chromium compounds, BrCr(NH₂)₄X₂,

Bromopurpureochromium compounds, BrCr(NH₂)₂X₂.

Chlorotetramine chromium compounds, $ClCr(NH_1)_1X_2$

Chloropurpureochromium compounds, ClCr(NH₃)₆X₂

Diamine chromium sulphocyanides, Cr(NH₂)₂(SCN)₁M

Erythrochromium compounds, (HO)Cr₂(NH₃)₁₀X₂.

Iodopurpureochromium compounds, $ICr(NH_3)_4X_2$

Iodotetramine chromium compounds, $IGr(NH_1)_4X_2$. Luteochromium compounds, $Cr(NH_2)_5X_3$

Rhodochromium compounds, (HO)Cr₂(NH₁)₁₀X₅.

Rhodosechromium compounds, (HO)₃Cr₂(NH₁)₆X₃.

Roseochromium compounds.

Cr(NH₂)₄(OH₂)X₄.

Xanthochromium compounds.

(HO₂)Cr(NH₂)₁X₂. Chromium arsenide, CrAs.

Insol, in mineral acids (Dieckmann, Z. anorg. 1914, 86, 294.)

Cr₂A₅₃ Insol in mineral acids (Dieckmann.)

Chromium azoimide, CrN:

Pptd. by addition of alcohol and ether Insol. in H₂O (Curtius, J. pr. 1900, (2) 61, 410.)

Chromium boride, CrB.

Insol in HCl, dil H₂SO₄, HF, HF+HNO₃ Si sol, in HNO₃ and in aqua regia. (Wedekind, B 1907, 40, 299.) Sol in cold dil or conc. HCl, HF, and H₂SO₄. (Jassonneix, C R. 1906, 143, 1151.)

Sol m cold dil or cone. HCl, HF, and HsSO₄. (Jassonnetx, C R. 1906, 143. 1151) Cr₁B₄. Sol. m cone or dil. HF, HCl, HsSO₄; insol in HNO₅ or alkabs+Aq. (Jassonnex.)

Chromous bromide, CrBro

Sol. in H₂O. Not deliquescent in dry air (Moissan, C. R. 92. 1051.)

Chromic bromide, CrBra

Anhydrous Insol in H₂O, but dissolves at once in presence of the least trace of CrBr₂ (Bauck, A. 111. 382) +6H₂O. Deliquescent Very sol in H₂O.

+6H₂O. Deliquescent Very sol in H₂O. H₂O disolves more than 2 pts crystals at ord. temp. Very sol. in alcohol Insol. in ether. (Recoura, C. R. 110, 1029.) Blue modification. Insol in alcohol

(Recoura, C. R. 110, 1193.)
Very hygroscopic. Easily sol. in alcohol and acctone. Insol in ether (Werner, A. 1902, 322, 343)

+8H₂O. Sol. in H₂O. (Varenne, C R. 93, 727.)

Chromium molybdenyl bromide, CrMo₂O₄Br₄.

Apparently wholly msol. in dil acids. Sol. in hot cone. HCl+Aq with decomp. Insol in M₂CrO₄+Aq (Atterberg.) +2H₂O. Apparently wholly insol. in dil acids

Sol. in hot conc. HCl+Aq with decomp. Insol. in M₂CrO₄+Aq (Atterberg.)

Chromic rubidium bromide, CrBr₈, 2RbBr +H₂O Sol, in H₂O with decomp. (Werner, A.

1902, 322. 345.) Chromic bromide ammonia.

See Bromotetramine chromium bromide.

-

CrBr₂, 2N₂H₄.

Insol in H₂O. Sol in acids. Insol in alcohol, ether and similar solvents. (Traube, B, 1913, 46, 1507)

Chromium carbide, Cr.C.

(Mossan, C R. 1894, 119. 187.)

Cr₁C₂ Does not decomp. H₂O at ordinary temp or at 100°; insol. in cone. HCl, HNO, and aqua regia; sol in did HCl (slowly); insol. in fused KOH; sol in fused KNO₃. (Mossan, Bull Soc. 1894, (3) 117. 1016.)

Chromium iron carbide, 3Fe₅C, 2Cr₃C₂

Decomp by H₂O; sol. in gaseous hydracids; insol. in HNO₂ and aqua regia (Williams, C. R. 1898, **127**, 484.)

Chromium tungsten carbide, CW2, 3Cr3C2.

Not attacked by acids Slowly attacked by fused KOH or alkali carbonates. Rapidly decomp. by fused alkali nitrates or KClO₂. (Moissan, C. R. 1903, 137, 294.)

Chromous chloride, CrCl2.

Deliquescent. Very sol. in H₂O with evolution of much heat. (Moberg, J. pr. 29, 175.) Practically insol in other Moderately sol in absolute alcohol, methyl alcohol, and acetaldehyde. (Rohland, Z. anorg 1809. 21.

39) +1½H₂O. (Moissan, A. ch. (5) **25.** 40.) +2H₂O (Knight and Rich, Chem. Soc. 1911, 99, 89

+3H₂O. (Knight and Rich.)

Chromous hydrogen chloride, 3CrCl, 2HCl+ 13H₂O

Decomp by H₂O. (Recours. C. R. 100. Sl. sol in liquid NH3, (Gore, Am. Ch. J. 1898, 20. 827

Chromic chloride, CrCl.

Anhudrous.-Peach-blossom-colored madufication Insol. in pure H2O (Peligot), but by long continued boiling of the finely divided salt with H₂O, traces are dissolved with decomp Not decomp, by boiling cone HaSO4, or other acids, even aqua regia.

Easily sol. with evolution of heat in H2O containing only 1/49,000 pt CrCl₂ (Peligot, J pr. 36. 150) Also sol in presence of traces of SnCl₂ (5 mg SnCl₂ cause 1 g CrCl₃ to dis-solve), FeCl₂, Cu₂Cl₂, Na₂S₂O₄, and other educing substances; chlorides without reducing properties have no effect. (Pelouze, A. ch (3) 14. 251). TiCls and SO₂ have similar solvent action (Ebelmen, A. ch (3) 20. 390);

also Zn+dil. aods (Moberg.)
Insol in dil. alkalies+Aq; very slowly
decomp. by boiling cone alkalies or alkali
carbonates+Aq (Fellenberg, Pogg 50, 76) Difficulty sol, in methyl acetate. (Nan-

mann, B. 1909, 42, 3790.) Insol, in CS: (Arctowski, Z anorg, 1894. 6. 257

Insol. in acetone. (Eidmann, C. C. 1899. II, 1014.) Practically mool in absolute ethyl alsohol.

methyl alcohol, acetaldehyde and other (Rohland, Z anorg. 1899, 21. 39.)

Sl. sol. in benzonstrile Yellow ' mann, B. 1914, 47, 1369

Violet modification. Very sol in H₂O to form a green solution (Moberg, J. pr. 44. The violet mod, is almost insol, in H₂O but if 1/20,000 pt. chromous chloride is present, it is readily sol (Rohland, Z. anorg. 1899, 21.

+4H₂O Sl. deliquescent, Very sol. m

H₂O, alcohol, and ethyl acetate (Godeffroy, Bull Soc. (2) 43, 229.)
+6H₂O Deliquescent. Sol in H₂O, but probably decomp. to CrOCl₂.

Practically insol, in ether Moderately sol, in absolute ethyl alcohol, methyl alcohol and acetaldehyde. (Rohland, Z anorg. 1899, 21. 39.)

"Monochlorochromic chloride" is sol. ether and fuming HCl(1.1). (Bjerrum, B. 1906, 39. 1599)

Green madrication

Solubility in H₂O at 25°.

25 g. green CrCl++6H-O and 10 g H-O

Time	Total Solu-	sat solution		
		'; violet sult	'; green salt	
½ hr. ½ hr 4 hrs 1 day 2 days 3 " 11 " 13 " 19 "	58.36 63.27 68 50 68 95 68 58	8 30 12 57 24 80 37 64 40 90 42 78 42 84 42 39 42 62	91 70 87 43 75 20 62 36 59 10 57 22 57 16 57 61 57 38	

(Ohe. Z. anorg. 1906, 51, 55.)

Solubility of green CrCl++6H-O in H-O at

10 g CrCls+6H₂O and 4 g H₂O.

	Total solubility	Composition dissolved at	Solid	
Time	in C	" violet	e green	phase
7' 45' 2h 5' 48h * 11 dvs.	63 69 66 24 69 53 69 33 70 81	12 87 21 43 34 53 45 27 45 27	87 13 78 57 65 47 54 78 54 73	Almost all dis- solved

* First 8 days at 35°.

(Olie, Z. anorg 1907, 53, 276.)

Solubility of green CrCl₂+6H₂O in H₂O at 35°

10 g CrCl3+6H2O and 3.3 g. H2O

Time		Total solubil-	Composition of the dresolved substance			
		119 111 70	° violet salt	% green salt		
	8' 38' 1 ^h 2 ^h 10' 4 ^h 23 ^h 72 ^h	65 85 66 74 66 21 68 90 70 79 71 34 70 79	16 47 25 02 25 45 31 47 36 28 42.95 42 88	83 53 74 98 74 55 68 53 63 72 57 05 57 12		

(Olie, l. c.)

If a solution saturated with the green hexahydrate below 32° is cooled, the decahydrate separates out; if the solution is saturated above 32°, both the decahydrate and hexahydrate separate out on cooling. (Ohe, l. c.)

Urolet modulication

Solubility in H₂O at 25°

25 g violet CrCl.+6H₂O and 10 ccm of a 35% solution of green CrCl++6H-O

				ι.
Time	Total Solu- bility in S	₹at. N		
		'(violet ault	% preen salt	
11/4 hr	65 49	84 05	15 95	
5 "		84 47	15 53	-
29 "		78 16	21 84	
2 dys.	70 47	73 19	26 81	1
4 "	76.38	68 71	31 29 39 34	4
5 dys, 6 hrs	70.35	60 36	39 64	
6 dys		65.10	34 90	
8 77	73 26	65.80	34 20	
10 "		58.08	41 92	1
12 "	71 14	41 40	58 60	

(Ohe, Z anong 1906, 51, 57)

Solubility in H₀O at 25°.

25 g violet CrCl+6H-O and 10 g H-O.

Time	Total Solu-	Composition of the		
	bility in Co	% violet suit	% green suit	
1/e hr 41/2 hrs	61 99	98 47 96 70	1 53 3.30	
1 dy	63 88	91 54 83 37	8.46 16.63	
2 " 4 " 5 "	70 68	69 11 62 20	30 89 37 80	
7 " 8 "	72 11	62 72 54 63	37 28 45 37	
12 "		46 39	53.61 52.34	
13 " 26 "	70 82	47 66 48 55	51.45	

(Ohe, l. c)

+0/sH₂O Green modification. 100 pts. H₂O dissolve 130 pts sait at 15°. Sol. in al-cohol. (Recoung, C. R. 102. 515), re-frequish-kine modification Yery sol in H₂O the Computer of the Computer of the H₂O the Computer of the Computer of the Computer of the Computer of the Computer of the crystal H₂O at 5-7° Very sol in H₂O, alcohol, and ethyl acctate: (Grieffine) v

and ethyl acetate (Godeffroy)

Easily sol in H₂O; can be recryst. from H₂O. Sol, in alcohol and ether. (Werner, B 1906, 39, 1827,)

Green modification

Solubility of green CrCla+10H₂O in H₂O at

14 2 g CrCls+10H₂O and 2.5 g, H₂O,

ı	Time	Total solubil'y	Compos the di subs	ttion of ssolved tance	Solid phase
-		m %	'{ violet	% green sult	, , , , , , , , , , , , , , , , , , , ,
	7' 20'	61 35 62 46	8 71 9 90	91 29 90 10	CrCl ₅ +10H ₂ O
Ì	1h 55' 4h 30'	65 04 67 41	25 05 32 90	74 95 67.10	" CrCl₂+6H₂O
	24h 28h	69 44	42 93 31 78	57 07 68 22	all dissolved CrCl ₂ +10H ₂ O
	29h 48h	67 59 69 42	33 65 42 17	66 36 57 83	CıCla+6H2O
	72h	68.69	43 80	56 20	ee.

(Ohe. Z. anorg 1907, 53, 275.)

The composition of the hydrates formed byCrCl, at different dilutions is calculated from determinations of the lowering of the fr. pt produced by CrCl₂ and of the conductivity and sp. gr of CrCl₂+Aq. (Jones, Am. Ch J 1905, 34, 310.)

Chromic glucinum chloride, CrCl2, GlClo

Sol. in H2O with decomp (Neumann, A. 244, 329,),

Chromic lithium chloride, CrCls, 2LiCl+

Very hygroscopic. Sol in ice water but solution soon decomp. Easily sol in alcohol. (Weiner, B. 1901, 34. 1603.)

[Cr(OH₂)Cl₃]L₁₂+4H₂O. Very hygroscopic, Sol in ice cold H₄O and in alcohol. (Werner, B. 1901, 34, 1604,)

Chromic magnesium chloride, CrCls, MgCls +H₂O.

Decomp. by H2O. (Neumann)

Chromic phosphoric chloride, CrCls, PCls. Decomp. by H2O. (Cronander)

Chromium platinum chloride. See chloropiatinate, chromium.

Chromic potassium chloride, CrCls, KCl. Decomp. by H₄O.

CrCl, 2KCl+H2O. (Neumann, A. 244.

CrCls, 3KCl. Easily sol. in H₂O with decomp. (Fremy, A. ch. (3) 12, 361.)

Chromic rubidium chloride, CrCls, 2RbCl-4-H.O.

Decomp. by H₂O (Neumann, A. 244. Slowly sol. in cold, rapidly sol in hot H.O.

with decomp (Werner, B. 1901, 34, 1803.) CrCl₃, 3RbCl+8H₂O. Unstable Decomp. by alcohol. (Werner, B. 1906, 39, 1830.)

Chromic sodium chloride, CrCls, NaCl. Sol. in HoO (Berzelius.) CrCls. 3NaCl. Sol. in H₂O. (Berzelius.)

Chromic thallium chloride, CrCls, 3TICI Sol. with decomp, in H₂O. (Neumann, A. 244. 329.)

Chromic chloride ammonia. See Chlorotetramine chromium chloride.

Chromous chloride hydrazine, CrCl., 2N.H.

Insol in H2O Sol, in acids. Insol in alcohol, ether and similar solvents. (Traube, B. 1913, 46. 1506.

Chromic chloride ferric oxide.

Fe₂O₂ is easily sol, in dil., difficultly sol in cone. CrCl+Aq (Béchamp. A, ch. (3) 57, 311)

Chromous fluoride, CrF.

Sl. sol. in H₂O, hot H₂SO₄ or dil. HNO₃. Sol. in boiling HCl. Insol in alcohol. (Poulene, C R. 1893, **116**, 254.)

Chromic fluoride, CrFs.

Perfectly sol, in H₂O. (Berzelius.) Insol in liquid NH₄ (Gore, Am. Ch. J. 1898. 20, 827.) Insol, in methyl acetate. (Naumann? B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43. 314.) +3H2O, Insol, in H2O, (Werner and Costachesou, B 1908, 41, 4243.) +32 H.O Sol. in H₂O. (Por 1893, 116, 255.) Sol. in H₂O. (Poulenc, C. R.

+6H₂O, Sl, sol, in H₂O, (Werner and Costachescu, B. 1908, 41. 4242.) +9H₂O. Violet modification. Very sl. sol. 2 H₂O. Insol. in alcohol Sol. in HCl, and KOH+Aq. (Fabris, Gazz, ch it. 20. 582.)

Chromium hexafluoride, CrFa. Decomp by H₂O with evolution of heat. 27, 197.)

(Borzelius.) Correct composition is CrO₂F₂. (Ohveri, easily sol, in excess of the reagent; after being Gazz. ch. it. 16, 218.)

Chromic cobaltous fluoride, CrFa, CoFa+ 7H₂O.

Easily sol. in H₂O. (Petersen, J. pr. (2) is readily changed into a modification which is mod (Herz, Z. anorg. 1902, 31, 352.) 40, 60.)

Chromic cupric fluoride, CrCuFs+5H2O. Can be cryst, from HF+Aq. (Higley, J. Am. Chem. Soc. 1904, 26, 630

Chromic nickel fluoride, CrFa, N1F2+7H2O. Somewhat more sol. in HaO than CrFs. CoF₂+7H₂O, (Petersen, J, pr. (2) 40, 61.)

Chromic potassium fluoride, CrF2, 3KF. Nearly insol. in H₂O. (Christensen, J. pr. (2) **35**, 161.) CrF₁, 2KF+H₂O Nearly insol in H₃O. Sol. in cone. HCl+Aq. (Christensen.)

Chromic sodium fluoride, CrF1, 2NaF+-H2O, (Wagner, B. 19, 896.)

Chromic thallous fluoride, 2CrFv, 3TIF. Sol. in hot H2O, less sol. in cold. Sl. sol. in HF (Ephraim, Z anorg. 1909, 61, 242.)

Chromic zinc fluoride, CrF2, ZnF2+7H2O. Can be cryst. from HF+Aq. (Higley, J. Am. Chem. Soc. 1904, 26, 630.)

Colloidal solution is perfectly clear. (Biltz, B. 1902, 35, 4433)

Chromous hydroxide, CrO2H2

Decomp, by H₂O, especially if hot, (Peligot, A. ch (3) 12. 539) Slowly sol. in cold cone acids, even aquaregia, almost msol, in dil. acids. (Moberg, J. pr. 43, 119.)

Chromic hydroxide, Cr2Oa, vH2O, probably

Insol. in H₂O. Easily sol. in acids. Easily sol. in cold KOH, or NaOH+Aq; much less sol. in cold NH₄OH+Aq; the presence of NH₄Cl has no influence upon solubility in NH₄OH+Aq if it has been thoroughly washed.

Insol. in KCN+Aq, but sl. sol. in KCN+ HCN+Aq. (Rodgers, 1834.) Gradually sol, in dil. FeCl₂+Aq; after three

months, 2 mols. Cr₂O₄H₆ are dessolved by 1 mol. FeCl₃ without pptn. of Fe₂O₅H₆. (Bé-champ, A. ch. (3) 57. 296.)
Alsi sol. in CrCl₃+Aq; in four months, 1½
mols. Cr₂O₄H₆ are dissolved by 1 mol. CrCl₃

(Béchamp.)
Sol. in Cr(NO₈)₈+Aq, and clear solution formed as long as 3 mols. HNO₈ are present for 8 mols, Cr2O2, (Ordway, Sill. Am, J. (2) Chromic hydrovide, pptd. by alkalies is

dired in a vacuum, however, it is insol in alkalies. (Herz, Z. anorg. 1901, 28. 344.) Freshly pptd. it is sol. in ag. alkalı, but it

The solubility of chromic hydroxide in an

aqueous solution of red chromic chloride is Chromic oxide, Cr2O3 not directly proportional to the concentration of the latter—a basic chloride is probably formed. (Fischer, Z. anorg. 1904, 40, 43) Not potd, in presence of Na citrate. (Spil-

ler.) Insol in amylamine+Aq; not pptd in presence of alkalı tartrates, sugar, etc.

Cr₂O₄H₆+4H₂O. Difficultly sol in acids. Cr₂O₄H₆+H₂O. Extremely hygroscopic Exists in a soluble modification, obtained by dislysis; solution can be diluted with pure H₂O, but gelatmizes with traces of salts (Graham, Roy. Soc. Trans 1861, 183.) Cr2O2(OH)2 Insol in boiling dil HCl+

Aq. CT₁O(OH)₄ (Gugnet's green) Soarcely sol. in boiling HCl+Aq (Salvétat, C. R. 43, 295.) Guignet gave formula as 2Cr₂O₈+3H₂O.

Chromochromic hydroxide, Cr₂O₄, H₂O(?). Slightly attacked by acids (Peligot, A. ch. (3) 12, 539)

Chromous iodide, CrI2 Easily sol in H₂O (Moissan, A, ch (5) 25, 401.)

Chromic iodide, CrI₂(?),

Insol. in cold, sol. in hot H2O, but no separation occurs on cooling. (Berlin.) +9H₂O Hygroscopic Sol in alcohol and acetone, Insol, in CHCl₂, (Higley, J Am Chem Soc 1904, 26, 628.)

Chromous sodide hydrazine, CrI2, 2N2H4 (Traube, B. 1913, 46. 1507.)

Chromium nitride, CrN.

Insol. in dil. ands and alkalies, conc. HNO₄, HCl, or HF+Aq, even on heating. Slowly sol. in hot aqua regia or cold H₂SO₄. Sol, in cold solutions of alkali hypochlorites

(Vier, A. 112, 281) Insol. in HCl, HNO, and aqua regis. (Force, Bull. Soc. 1901, (3) 25, 618.)

Unacted upon by acids at ordinary temperatures. (Smits, Chem. Soc. 1897, 72. (2) 33.)
Crs.N., Slowly attacked by conc. HNO₃ and by HNO₃-HCl. All other reagents are without action. (Henderson and Galletly, J. Soc. Chem. Ind. 1908, 27, 387.)

CrNs. See Chromium azomide.

Chromous oxide, CrO.

Insol. in HNOs and dil. HaSO4+Aq Sol. in HCl. (Férée, Bull. Soc. 1901, (3) 25. 619.)

When ignited is nearly insol, in acids, but dissolves in H₂SO₄ by long boiling Insol in liquid HCl. (Gore.)

Insol in acetone (Fidmann, C. C. 1899 II, 1014.)

Solubility in (calcium sucrate+sugar)+

Aq. 11, solution containing 418 6 g. sugar and 34.3 g. CaO dissolves 1.07 g. Cr₂O₃, 1 l. solution containing 296.5 g. sugar and 24.2 g. CaO dissolves 0 56 g. Cr₂O₃; 1 l. solution containing 174 4 g. sugar and 14.1 g. CaO dissolves 0 20 g. Cr₂O₃. (Bodenbender, J. B. 1865. 600 1

See also Chromic hydroxide.

+H.O. The compound to which Bunson gave the formula Cr.O. Insol. in acids, but easily attacked by HNOs. (Férée, Bull. Sor. 1901 (3) 25, 620)

Chromochromic oxide, CraO4=CrO, CraO4. Known only in form of hydroxide, which

+3H₂O. Stable in dry air. Decomp. in +3H₂U. Stable in dry air. Decomp, in moist air. (Baugé, C. R. 1898, 127, 552.) Cr₄O₅, or Cr₃O₅ (?). Insol. in acids or in aqua regia (Bunsen, Pogg. 91, 622.) Not obtainable. (Geuther, A. 118, 66.) Formula is Cr₂O₅+H₃O (Fórée.)

Chromium trioxide, CrOs.

Deliquescent, and very sol m H₂O, to form solution of H₂CrO₄ or H₂Cr₂O₇.

Solubility in H2O at to.

00 15° 50° % CrOx 62.08 62.38 64.55 67.20 (Mylius and Funk, Gm. K. 3, 1, 1332)

Sat. CrO+Aq contains at. n٥ 61.54 62.52 65,12% CrO₃.

(Koppel and Blumenthal, Z. anorg, 1907, 53, 228.)

The system CrO₈—H₂O has been studied at temp, from 0°to—74°. In the limits of concentration investigated, from 0-71.2% CrOs, no hydrate of CrO₃ cryst, from the aq. solution. (Kremann, M. 1911, **32**, 622.) Sat. CrO₃+Aq contains at:

> 820 100° 68 4% CrO1. 67.4

(Kremann, M. 1911, 32, 620.)

Solubil	ity m H ₂ O at	•.
t°	% by wt CrOs	Solid phase.
-0 9°	3 6 7.8	Ice
-3.7	11.5 14.1	11
$-4.8 \\ -10.95$	24 9	и
-11 7 -18.75	25 2 33 5	"
25.25 43.5	39 2 49 1	11
-60 -20	53.3 61.7	CrO _s
0	62 24	Cros
+24 8 40	62 88 63 50	u
65 90	64 83 68 5	44
	20.7	

100 (Buchner and Prms, Z phys. Ch. 1912, 81. 114.)

Sp. gr of CrOs+Ag at to.

193-196

t°	≓ур gr	% CrOs
16.0	1.0606	8 25
18.0	1.0679	8.79
14.5	1 0694	8.79
19 5	1 0957	12.34
19.0	1 1569	79.33
20.9	1 20269	31 83
20.1	1 20264	31.83
12 0	1 20714	31 83
35 0	1 20940	32 59
18.6	1 21914	32.59
15 2	1 22106	32.59
9 7	1 22384	32.59
22 0	1 3441	37 77
19 2	1 3448	37 82
22 0	1 34416	37 82
A2 0	1 7028	62 23

(Zettnow, Pogg. 143. 474.)

Sp. gr. of CrO₈+Aq (H₂CrO₄+Aq). M ≈ according to Mendelejeff at 15°; Z=according to Zettnow, calculated by Gerlach (Z. anal. 27, 300).

% CrO	М	Z	% CrOs	M	z
5 10 15 20 25 30	1 036 1 076 1 119 1 166 1 215 1 268	1 037 1 076 1 118 1.162 1.208 1.258	35 40 45 50 55 60	1 324 1 383 1.445 1.510 1 579	I 312 1.373 1 440 1.512 1.587 1.656

3	-nt	of	$C_{r}O$	l. A a	+	and	necessire.	

B-pt.	G CrOs in 100 g of the solution
102°	10 81
101	24 08
107	36 47
110 5	45 15
116	54 56
120	61 54
127	71 24 sat. solutio

(Koppel and Blumenthal, Z. anorg. 1907, 53.

Sol, m H.SO.: the solubility is least when

Sol. II H₂SO₄; the solitonity is least when the acid contains 66% H₂SO₄ (Schrotter), 84.5% H₂SO₄ (Bolley). Very sol in H₂SO₄ of 1.85 sp. gr. Sl. sol in cold KHSO₄-Aq (Fritzsche.) The statement that CrO₂ is insol, in acids 10 statement that CrO₃ is insol. in acids incorrect. 2.85 g (gnitted) are sol. in HNO₃ to the extent of 2.75 g. 0.81 g, (ignited) are sol. in HNO₃ to the extent of 0.77 g. (Jovit-schittech, M. 1909, 30, 48)

Practically insol in POCl₃ (Walden, Z anog 1910, 68, 312)

Si sol. in liquid NH (Franklin, Am. Ch.

J 1898, 20. 827.) Sol in alcohol with decomps. Sol in anhydrous ether.

Sol in acetic anhydride. (Frv. J. Am. Chem Soc 1911, 33, 702)
Sol macetone. (Naumann, B 1904, 4328.)

Sol. in benzonitrile (Naumann, B. 1914, 47, 1369.)
Sol in methyl acetate (Naumann, B 1909, 42, 3790.) Difficultly sol. in ethyl acetate (Nau-mann, B, 1910, 43, 314)

Chromium oxide, Cr₅O₂=2Cr₂O₃, CrO₃. $C_{r_0}C_{1s} = 3C_{r_2}C_{s_1}, 2C_{r_0}C_{s_1}, 2C_{r_0}C_{s_2}, C_{r_0}C_{$

See Chromate, chromium. Chromium peroxide, Cr₂O₂(?)

More sol. in ether than in H₂O. Ether solution is somewhat more stable than aqueous solution. (Aschoff, J. pr. 81, 401.)
Formula is CrO₃, H₂O₂ (Moissan, C. R. 97. 96.)

Chromium peroxide ammonia, CrO4, 3NHz. Sol. in H₂O with partial decomp.

Sl sol in NH₄OH+Aq. Sol, with decomp. in 20% acetic acid. (Hofmann, B. 1905, 38, 3060.)

Chromium tetroxide potassium cyanide,

CrO₄, 3KCN.
Sol in H₂O. Insol. in other solvents (Wiede, B. 1899, **32**, 381.) Insol. in other ordinary

Chromic oxychloride.

From Cr₂O₃, Sol. in H₂O as long as 1 mol. CrCl₃ is present for 2½ mols Cr₂O₆H₆ (Ordway, Sill Am J. (2) 27, 197) Cr₂O₃, 2CrCl₃. Sol. m H₂O. (Kletzinsky,

Zeit. Ch. 1866, 277.)

Cr₂O₃, CrCl₂=C₁OCl. Anhydrous. Only partly sol. in H₂O. +3H₂O. Very deliquescent, and sol in H_2O , (Peligot.) Cr_2O_2 , $4CrCl_3+6H_2O=Cl_2OCl_1+2H_2O$

(Peligot, J. pr. 37. 38) +9H₂O = Cr₂OCl₂+3H₂O₂ Sol m H₂O (Moberg); = Cr₂(OH)₂Cl₄+2H₂O (Schift, A. 124. 157.)

Cr₂O₂, 7CrCl₂=Cr₂OCl₂ Very sol in H₂O with decomp. Besson and Fourmer, C R 1909, 148, 1194,) Cr₀O₃, SCrCl₂+24H₂O. Sol. in H₂O (Moberg); = Cr₂(OH)Cl₅+4H₂O. (Schiff, l. c.) (CrO₂)₃Cl₃. (Pascal, C. R. 1909, **148**.

1464.) Cr.O.Cl. Insol. in H₂O (Pascal, C R. 1909, 148, 1464.)

From CrO3 See Chromyl chloride.

Chromic oxychloride potassium chloride, CrOCl., 2KCl.

Decomp, in the an. Sol. in cone HCl without decomp (Weinland, B 1906, 39, 4043,)

Chromic oxychloride rubidium chloride, CrOCl₈, 2RbCl.

Decomp, in the air. Sol. in cone. HCl without decomp (Weinland, B 1906, 39, 4045.)

Chromium oxyfluoride, C1O2F2. See Chromyl fluoride.

Chromium phosphide, CrP. Insol. in acids, but a trace dissolves in aqua regia. Insol. in HF+Aq. (Berzelius.) Not attacked by acids or by aqua regia.

(Granger, C. N. 1898, 77. 228.) Insol. in all acids except a mixture of HNO, and HF. (Maronneau, C. R. 1900, 130. 658.)

Insol, in mmeral acids. (Dieckmann, Z. anorg. 1914, 86. 295) Insol. in aqua regia (Granger, C. R

1897, 124, 191) CrsPs. Insol in mineral acids. (Dieck-mann, Z. ahorg. 1914, 86, 295)

Chromous selenide, CrSe. (Moissan, C. R. 90, 817.)

Chromic selenide, Cr:Sea.

Chromic potassium selenide, K2Cr2Se4. Insol in HCl Easily sol in conc. HNO. (Milbauer, Z. anoig. 1904, 42, 451.)

Chromium silicide, Cr.Si

Sol, in fused KNO2; insol in cold HCl and aqua regia Insol in HF+Aq (Moissun, C. R. 1895, 121. 625)

 $C_1S_{1_2}$ Sol. in HF. Insol in HCl and aqua regia (Chalmot, Am. Ch J. 1897, 19.

Cr.Sl₂ Insol. in dil. HCl, sol in warm cone. HCl and in HF, insol. in HNO₂ and HSO₄ (Lebeau, C. R. 1903, **136**, 1330.) Cr.Sl. Sol. in HF; insol. in other acids, sol, in fused KOII and fused alkali nitrates and carbonates. (Zettel, C R. 1898, 126. 834.)

Chromous sulphide, CrS

Insol, in H₂O or K₂S+Aq. (Peligot.) Easily sol, in acids. (Moissan, C. R. 90. 817.)

Sol in cold cone, acids. Sol in molten alkalies (Mourlot, C. R. 1895, 121, 944.) Min Daubrelite

Chromic sulphide, C1 851

Insol, in H₂O or alkalı sulphides + Aq. Sl. attacked by HCl+Aq (W. Müller, Pogg. 127. 404) HNOs+Aq decomposes or not according

to method of preparation Easily decomp. by aqua regia. Insol in caustic alkalies+Aq.

Insol in K₂S+Aq (Berzelius.) Chromochromic sulphide, Cr₈S₄, = CrS,

Cr₂S₂. Issol, in H₂O, HCl, or dil. H₂SO₄+Aq. Easily sol in HNO₂+Aq. (Groger, W. A. B. 81. (2) 531)

Chromic zinc sulphide, CagZnS4. (Grbger, W A. B. 1880, 81. 534.)

Chromicyanhydric acid.

Cadmium chromicyanide, Cds[Cr(CN)6]2. Readily sol, in an excess of KCN and in NH₄OH+Aq Decomp. by cone. HCl, HNO₃ or H₂SO₄. Slowly decomp. by cold, rapidly by hot dil HCl, HNO₃, or H₂SO₄. Quickly dissolved by agua regia. Decomp. by boiling with NagO2, by NaOH+Aq and by Na₂CO₂+Aq. Slowly decomp. by boiling acetic acid. (Cruser and Miller, J. Am. Chem. Soc. 1906, 28, 1136.)

Cobaltous chromicvanide, Cos[Cr(CN)s]o. rromic selenide, Cr₂Se₂.

Sol. m cold, readily sol. m hot conc. HCl
Insol. in H₂O. (Moissan, C. R. 90. 817.) or H₂SO₄. Sl. sol. even in boiling conc. HNO, Slowly sol. in cold dil. H₂SO₄, HCl Lithium chromisulphocyanide, or HNO₅. Readily sol. in bohing dil. HCl or H₂SO₄. Decomp. but not entrely dissolved by aqua regga. Readily sol in an access of KCK. Decomp by NHOH, NaOH or Published Association of Published Readily Sol. 10 Published Readil Decomp by boiling with Na₂CO₂+Aq Na₂O₂. Insol in cold or boiling acotic acid (Cruser and Miller.)

Cuprous chromicvanide, CusCr(CN),

Sol in KCN, cold cone, or boiling dil. HNO2+Aq Slowly sol, in cold conc. H-SO4. still more slowly sol in dil H-SO, but randly sol in hot dil. and conc. H₂SO₄. Readily decomp. by aqua 1egia Decomp. by dil or conc HCl, slowly going into solution in the cold, but quickly on boiling. (Cruser and Miller.)

Cupric chromicvanide, Cus[Cr(CN)sla.

Slowly sol, in cold dil HCl, HNO, or H.SO.: on boiling the first two readily dissolve it but the H2SO, dissolves it only slowly. Sol m aqua regia or cold conc H₂SO₄. Readily sol. in cold or hot conc. HCl Decomp. by sol. in cold or two colle. In Seconds, by cold, dissolved by bouling HNO₂. Decomp. by bouling Na₂O₂+Aq. Decomp. by NH₂OH, NaOH or Na₂CO₃+Aq. Readily sol. in an excess of KCN+Aq. Insol. in cold acctic acid (Cruser and Miller)

Nickel chromicvanide, Nis[Cr(CN)s]o.

Slowly sol, in cold, readily sol, in hot dil HCl. HNO; or H2SO4. Slowly sol in cold, neadily sol. in hot cone H₂SO₁, HCl or HNO₂. Slowly decomp by cold, rapidly by boiling aqua regna. Readily sol in excess of KCN Sol in NH₂OH+Aq. Decomp. by NaOH, Na₂CO₂+Aq or Na₂O₂+Aq. Insol. in cold, sl sol. in boiling acctic acid. (Cruser and Miller)

Potassium thallous chromicyanide, K.TlCr(CN).

(Fischer and Benzian, Ch. Z. 1902, 26. 50)

Thallous chromicyanide, Tl₂Cr(CN)₆. Easily sol. in H2O (Fischer and Benzian, Ch. Z. 1902, 26, 50) Zmc chromicvanide, Zn₃[Cr(CN)₆]₂,

Insol. in H₂O. Sol. m excess of NH₄OH, NaOH and KCN+Aq. Decomp. by Na₂OO₃. +Aq. Sol. m cold did. HCl. Slowly sol. in did H₂SO₄ and in did HNO₄. By boiling with dil. acids a clear solution is quickly

obtained. (Cruser, Dissert 1906.) Chromisulphocyanhydric acid.

Cesium chromisulphocyanide, $C_{B_3}C_r(SCN)_s + 2H_2O$.

Less sol, m H2O than K salt (Osann, Dissert. 1907.)

Extremely deliquescent. (Osann.) Rubidium chromisulphocyanide,

Rb₂Cr(SCN)₄+4H₂O. Appreciably less sol in H₂O and alcohol than the K salt. (Osann.)

Chromocyandric acid. H.Cr(CN).

Decomp, rapidly on air. Sol. in H2O (Moissan, A. ch. (6) 4, 144.)

Potassium chromocyanide, K.Cr(CN).

Very sol. in H₂O; 100 pts H₂O dissolve 32 33 pts. at 20°. Much more sol. in hot H₂O. Insol in alcohol, ether, benzene, or chiloroform. (Moissan, A ch. (6) 4. 136.) Above salt was K₃O₁(CN)₄ (Christensen.) +3H₄O (Christensen, J. pr. (2) 31. 166.)

Chromoiodic acid, CrOs, HIOs+2H2O. Deliquescent (Berg, C, R. 104, 1514.)

Ammonium chromoiodate, CrO₂, NH₃IO₂+ H₂O. Moderately sol in II₂O. (Berg.)

Lithium chromoiodate, CrO₃, LiIO₃+H₂O₄ Very sol in H₂O. (Berg.)

Magnesium chromoiodate. Sol. m H.O. (Berg)

Potassium chromoiodate, C1O1, KIO1,

Sol, m H₂O, (Berg.) +H₂O=KCrIH₂O₇. Sl. decomp. by H₂O. (Blomstrand, J. pr. (2) 40, 331,)

Silver chromosodate, CrOs, AgIOs Sl. attacked by cold, rapidly decomp, by hot H₂O. (Berg, C. R 111, 42.)

Sodium chromosodate, CrOs, NaIOs+HsO, Very sol, in H₂O. (Berg.)

Chromosulphocyanhydric acid.

Sodium chromosulphocyanide Na₄Cr(SCN)₅+10, or 11H₂O, Unstable. Decomp, by H₂O (Koppel, Z. anorg.

1905, 45, 360.)

Chromosulphuric acid, H₀Cr₀(SO₄)₄, Sol, in H₂O in all proportions, but solution is easily decomp, on standing or boiling,

(Recoura, Bull. Soc. (3) 9. 586.) H₄Cr₂(SO₄)₄. As above,

H₆Cr₂(SO₄)₄. As above

Ammonium chromosulphate, (NH₄)₂Cr₂(SO₄)₄+5H₂O.

Sol in H₂O after a few minutes. (Recours.)

Chromium potassium chromosulphate, [Cr₂(SO₄)₃CrO₄]K₂,[Cr₂(SO₄)₂(CrO₄)₂]K₄,

and [Cr2(SO4)3(CrO4)3]K0. Sol. in H₂O. (Recoura, Bull Soc. 1897, (3) 17. 934)

Potassium chromosulphate, K₂Cr₂(SO₄)₄+ 4H₂O.

Sol in H₂O in a few minutes. (Recours.) Bull. Soc (3) 9. 590.)

Sodium chromosulphate, Na₂Cr₂(SO₄)₄+ 10H2O. As K salt. (Recoura)

Chromotelluric acid.

Ammonium chromotellurate,

2(NH₄)₂O, 4CrO₃, TeO₃ Sol in H₂O. (Berg, C R. 1911, 152, 1588.)

Potassium chromotellurate, 2K2O, 4CrO3, TeO3.

Sl. sol, in cold H.O without decomp. Sol in boiling H2O. (Berg, Bull. Soc. 1911, (4) 9, 583.)

Chromous acid, $H_2C_{12}O_4 = Cr_2O_3$, H_2O . Chromic hydroxide shows slightly acid prop-

erties, and salts corresponding to the above acid are known. Aluminum ferrous magnesium chromite

chrome iron ore), (Fe, Mg)O, (Cr2, Al2)O. Insol. in H₂O or acids, even a mixture of H2SO4 and HF (Ebelmen.)

Barium chromite, BaCr2O4.

436.)

Insol. in H₂O. (Gerber, Bull Soc. (2) 27.

Barium tetrachromite, BaO, 4Cr.O.

Undecomp, by steam at red heat; insol in HCl, H-8O4, HNO5, sol in fused KOH+ KNO; decomp. in the air. (Dufau, C. R. 1896, 122, 1126.)

Cadmium chremite, CdCr.O. Not attacked by acids. (Viard, C. R. 109.

Calcium chromite, CaCr2O4

Insol, in H₂O. (Gerber, Bull, Soc. (2) 27.

Insol. in HCl, HF, HNO, H2SO4; sol. in gaseous HCl and HF at red heat; sol. in fused KOH, KNO, KClO, K2CO. (Dufau, C. R. 1895, 121, 690.)

2CaO, Cr₂O₃ Insol. in H₂O, KOH, or NH₂OH+Aq, slowly decomp. by H₂CO₃, or MaCOa+Aq; insol. in sugar solution (Pelouze, A. ch. (3) 33. 9.) 4CaO, Cr₂O₃. Attacked by H₂O. (Mossan, C. R., 1894, 119, 188.)

Cobaltous chromite, CoC12O4. (Elliot, Dissert, Göttingen, 1862.)

Cuprous chromite, Cu2O, Cr2O2.

Insol. in HNOg+Aq(sp. gr 1.4). (Wöhler, Z. phys. Ch. 1908, 62, 445.) Cupric chromite basic, 5CuO, 4Cr₂O₂,

(Wöhler, Z phys. Ch, 1908, 62, 445.) Cupric chromite, CuCr₂O₄.

Not attacked by HNO2+Aq (Persoz, A. ch (3) 25, 283.) Not attacked by conc. HCl.

Insol. in dil. acids. (Wohler, Z. phys. Ch. 1908, 62, 446.) CuO, 3Cr₂O₄. (Rosenfeld, B. 1879, 12.

Glucinum chromite, GlCr2O4. Insol. in H₂O. (Mallard, C. R. 105, 1260.) Iron (ferrous) chromite (chrome iron ore).

See Chromite, aluminum ferrous magne-

Iron (ferroferric) chromite, FeO. FeO., C1.O. Not attacked by HCl+Aq. (Ebelmen)

Iron (ferrous) magnesium chromite. Insol, in HCl+Aq Scarcely attacked by H2SO4.

Lead chromite, PbC1 O4. Ppt Insol. in KOH+Aq (Chancel, C. R. 43, 927.)

Lithium chromite, LigCrgO4. Very sl. sol. m acids (Weyberg, C. C.

1906, II. 1659) Magnesium chromite, MgO. 2Cr.O.

Insol. in H₂O. (Nichols, Sill, Am. J. (2) 47. 16. MgCr2O. Insol m acids or alkalies, ex-

cept boiling H₂SO₄. (Schweitzer, J. pr. 39. 259) Could not be obtained. (Viard, Bull. Soc.

(3) 5, 934.) Easily attacked by boiling H₂SO₄+Aq. Less easily by HCl or HF+Aq not at-

Less easily by HCi or Fir +Aq not artacked by boiling HNO₃ (Dufau, C R. 1896, 123. 886.)

2MgO, Cr₂O₅. Insol. in H₂O or acids.

(Nichols.) 5MgO, 4Cr₂O₈. Insol. in acids. (Viard. C. R. 112, 1003.)

3 MgO, 2Cr₂O₂. As above. (V.)

Cobelt, Co.

Manganese chromite, MnCr2O4. Enturely insol. in acids. (Ebelmen, A. ch. (3) 33. 44)

Zinc chromite, ZnCr2O4.

Insol, m acids and alkalies (Viard, C. R. 109, 142 +ιH₂Ó, (Chancel, C R. 43, 927.) 3ZnO, 2C1₂O₃ As above. (Viard, C. R.

112, 1003.) 6ZnO, 5Cr2O3. As above. (V. 8ZnO, 3Cr₂O₃. (Gröger, M. 1904, 25,

Chromovanadic acid.

Ammonium chromovanadate, 2(NH₄)₂O, 2CrO₂, V₂O₅+7H₂O. Sol. in H₂O (Ditte, C. R. 102, 1105.)

Chromyl amide, CrO2 (NH2)2.

Sol. in H₀O (Ohlv. C. N. 1899, 80, 134.)

Chromyl subchloride, (C1O+)+Cla. Deliquescent, sol, in H2O with decomp., msol, in dry ether (Pascal, C. R. 1909, **148**, 1463.)

Chromyl chloride (chlorochromic acid). CrO2Cl2.

Decomp by H₂O with evolution of much heat. Sol, in glacial acetic acid without decomposition. Sol. in CCl₄, C₅H₄, (mol. wt. det.)., (Oddo, Gazz. ch. it. 1899, 29 (2) 318; Chem. Soc. 1900, **78**. (2) 75.)

Trachromyl chloride, CraO4Cl2. Deliquescent Sol. in H₂O with gradual Sol in cone HCl+Aq. decomposition. (Thorpe, Chem Soc. (2) 8. 31.)

Scarcely sol, in CS2. Sol in alcohol and ether (Rawson, C. N. 1889, 59, 185)

Chromyl chlcrides.

From Cr.O. See Chromium oxychlorides.

Chromyl chloride nitrogen tetroxide, Cr.Cl.O., 2NO.

Sol. in H₂O with decomp. (Thomas, C. R. 1899, 129, 828.)

Chromyl fluoride, CrO₂F₂. Decomp by H2O with evolution of heat.

(Oliver, Gazz, ch. it, 16, 218.)

Clay. See Silicate, aluminum, Al₂O₃, SiO₂+

Not attacked by H₂O Sol in dil. IICl, or H₂SO₄, or HNO₃+Aq. Conc. hot H₂SO₄, and HNO₃ decomp. with

evolution of SO2 or NO gas.

Exists also in passive state. See Iron. (Nickles, J pr. 61, 186.) Sol. in conc. KOH+Aq when in finely divided state. (Winkler, J. pr. 91, 211.) Sol. in NH₄OH+Aq in presence of air. (Hodgkinson and Bellars, C. N. 1895, 71, 73)

Cobalt ammonia compounds.

See Anhydrooxycobaltamine compounds.

 $[C_0(NH_2)_5]_2 | C_0(OH)$

Bromotetramine cobaltic compounds, BrCo(NHs),X2.

Bromopurpureocobaltic compounds, BrCo(NH₃)₄X₂ Carbonatotetramine cobaltic compounds.

(CO₄)C₀(NH₄),X Chlorotetramine cobaltic compounds, ClCo(NHa) X

Chloropurpureocobaltic compounds, ClCo(NH₂)₄X₂

Croceocobaltic compounds, Co(NH₁)₁(NO₂)₂X

Decamine cobaltic sulphite. Co2(NH3)10(SO3)3

Diamine cobaltic nitrites, Co(NH₄)2(NO₂)4M. Dichrocobaltic compounds, Co(NH+).X+.

Flavocobaltic compounds, (NO₂)₂Co(NH₂)₄X. Fuscocobaltic compounds,

(OH)Co(NH₄)₄X₂. Iodotetramine cobaltic compounds, ICO(NH₂)₄X₂

Luteocobaltic compounds, Co(NH*)aX*. Melanocobaltic compounds, [Co(NH₃)₂Cl₂]₂, NH₂C

Nitratotetramine cobaltic compounds, (NO₈)Co(NH₈)₄X₂.

Nitratopurpureocobaltic compounds, (NO),Co(NH₃),X₂ Natritocobaltic compounds.

(NO2)Co(NH3)4X2. Octamine cobaltic compounds, Co2(NH2), X4.

(=Tetramme cobaltic compounds, Co(NHs),Xs.

Oxycobaltamine compounds, Co2(NH2)10(OOH)X4

Praseocobaltic compounds, Co(NH1),X1. Purpureocobaltic compounds. Co(NH₁),X

Roseocobaltic compounds, Co(NH3)6(OH2)X3.

Sulphatotetramine cobaltic compounds, (SO4)Co(NH4)4X.

Sulphatopurpureocobaltic compounds, (SO₄)Co(NH₃)₄X.

"Tetramine cobaltic" compounds, Co(NH₈)₂X₃.

Xanthocobaltic compounds, (NO₂)Co(NH₄)₈X₂.

Cobalt arsenide, CoAs.

As Co₁As₂. (Ducelliez, C R 1908, 147.

425) As Co. As. (Ducelliez, C. R. CoAs. 1908, 147, 425.)

Co2As2. As Co2As2. (Ducelliez, C. R. 1908, 147, 425.) CoaAs2. Very al. attacked by hot conc.

HCl, less by H₂SO₄. Easily sol. in HNO₂ and aqua regia. Sl. attacked by fused alkalies and alkali carbonates. (Ducelliez, C. R. 1908, 147. 425.)
CoAss. Min Skutterudite. Sol in HNOs.

+Aq, with separation of As₂O₃. Cobalt arsenide sulphide, CoAs2, CoS2.

Min. Cobaltite. Sol. in HNO.+Au, with separation of S and As₂O₂ Glaucodoie. Completely sol. in HNO2+

Ag.

Cobalt azoimide, basic, Co(OH)N₂ Insol. in H₂O. Sol. in HN2+Aq. (Curtaus, J. pr. 1898, (2)

58, 300.) Cobalt potassium azoimide, KN₃, Co(N₃)₂.

Sol. in H₂O. Ag solution decomp, on boiling. (Curtaus, J. pr. 1898, (2) 58. 301.)

Cobalt boride, Co2B.

Attacked by HNO2. (Jassonneix, C. R. 1907, 145, 240.)

CoB, Decomp, by moist air and by alkali nitrates, chlorates, hydroxides and carbonates; decomp. by steam at red heat and by acids. (Moissan, C. R. 1896, 122, 425.) Not attacked by HCl; rapidly attacked by HNO2. Not attacked by dil. but decomp.

by conc. H₂SO₄ Rapidly attacked by aqua regia. (Moissan, A. ch. 1896, (7) 9, 272.) CoB₂. (Jassonneix, C. R. 1907, 145. 241.)

Cobaltous bromide, CoBr2.

Deliquescent, Sol in H₂O, alcohol, and other.

Sat. CoBr2+Aq contains at: 59° 75° 97° 86.7 66.8 68.1% CoBr. (Etard, A. ch. 1894, (7) 2, 542,)

Nearly insol in AsBr. (Walden, Z. anorg.

1902, 29. 374.)
Sol. in SO₂Cl(OH). (Walden.)
Sol. in quinoline. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

1g. CoBr, is sol. in 9.74g. methyl acetate at 18°. Sp. gr, 18°/4° of sat. solution = 1.013. (Naumann, B. 1909, 42. 3792.)

Difficultly sol. in ethyl acetate. (Nau-mann, B 1910, 43. 314.) Sol in acctone (Bidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4328.) Mol. weight determined in pyridine

(Werner, Z. anorg. 1897, 15. 24.) +2, and 6H₂O (Hartley, Chem Soc (2) 12, 214.)

Cobaltous hydrazine bromide hydrazine, 2CoBr₂, 4N₂H₄HBr, N₂H₄(?).

Sol. in H.O with decomp (Ferratini, C A 1912, 1613,)

Cobaltous mercuric bromide, basic, CoBr2, HgBr2, 6CoO+20H2O. (Mailhe, A. ch. 1902, (7) 27, 369.)

Cobalt stannic bromide.

See Bromostannate, cobalt.

Cobaltous bromide ammonia, CoBr2, 6NH2. Sol in H₂O with residue of cobalt hydroxide. (Rammelsberg, Pogg. 55, 245.)

Cobaltous bromide hydrazine, CoBr2, 2N2H4. Decomp. by boiling with HgO (Franzen, Z. anorg. 1908, 60. 270.)

Cobalt carbonyl, Co(CO)4

Insol. in H2O. More or less sol. in CS2, ether, alcohol and N1(CO)4 Relatively stable with non-oxidizing acids. Quickly decomp. by oxiding acids (Mond, Hirtz and Cowap, C. N 1908, 98, 165.)

Cobaltous chloride, CoCl2.

Deliquescent Sol, in H₂O with evolution of heat. 100 pts. H₂O dissolve 43.3 pts CoCl₂ at 0° (Engel, A. ch. (6) 17. 355.)

100 pts sat CoCl2+Aq at to contain pts. CoCl₂.

	t°	CoCl ₂	t°	CoCl ₂	tº	CoCle
ì	-22	24 7	25	34.4	56	48.4
	- 4	28 0	34	37 5	78	48.8
	+ 7	31.2	41	39 8	94	50 5
	11	31.3	45	41 7	96	51.2
	12	32 5	49	46 7	112	52.3

(Étard, C. R. 113. 699.)

Sp. gr. of CoCl2+Aq containing 10 CoCla. 1.0496 1.0997 1.1579 1,2245 1.3002 Sat. solution, 1,3613.

(Franz, J. pr. (2) 5, 284.)

Sp gr. of CoCl2+Aq containing in 1000 g. П₂O, g CoCl₂+6H₂O— 119 g.(=½ mol.) 238 357 4 476 594 1.055 1.101 1.141 1.177 1.209

952 1071 1190 1.238 1.264 1 287 1.309

Conta	uning g. CoCl	ı (anh	ydrou	s)	
65 g.(=	½ mol.) 130	195	260	325	390
1.058			1,213		1 304
	(Gerlach, Z.	anai.	25. 46	0)	

Sp. gr of CoCl2+Aq at room temp contaming: 14 858 22,27% CoClo

1.0807 1.1613 1 2645

(Wagner, W Ann. 1883, 18, 267.) Sp gr. of CoCl2+Aq at 20° containing M

g mols, of salt per liter. 0.01 0.025 0.075 0.05

Sp. gr. 1 001159 1,003052 1 006065 1,009190 0.10 0.25 0.50

Sp. gr. 1.012386 1.03049 1.05492 1.09118 15 Sp. gr 1.11847 1.17502 1.23637 (Jones and Pearce, Am. Ch. J. 1907, 38, 711.)

Sp. gr. of CoCl2+Aq. at 25°.

So. gr.

- CTT	-	-	- 01				-
1/8	44			1	00	58	
1/	44			1	01	44	
1/2-	•••			1	02	86	
	orma.	1		1	05	71	

Concentration of

(Wagner, Z phys Ch. 1890, 5. 37.) Solubility in HC1+Aq at 0° = 1/4 mols.

CoCl₂ in mgs. in 10 ccm, of solution HCl=mols, HCl in mgs, in ditto, H.O =g. H2O

CoCla 2	HCI	CoCl ₂ +IICl	Sp gr	H ₂ O
62.4 58 525 50.8 37 25 12 85 4.75 12.0 25 0	0 3 7 11 45 25 2 55 0 74.75 104 5 139.0	62 4 62 2 62 25 62 45 67 85 79.50 116 5 164 0	1 343 1 328 1 299 1 248 1 167 1 150 1 229 1 323	9 36 9 34 9 27 9 13 8 46 7 5

(Engel, A. ch. (6) 17, 355.)

Insol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, 20, 827.) Sol in alcohol

Sat. solution in alcohol (0 792 sp. gr.) contains 23.66 % CoCl₂ and has sp. gr. = 1.0107. (Winkler, J. pr. 91. 209.) Very sol. in ether.

100 pts, absolute ether dissolve only 0.021 CoCl₂. (Bödtker, Z. phys. Ch. 1897, 22. 511.)

100 g. formic acid (95%) dissolve 6.2 g. CoCl₂ at 20 2° (Aschan, Ch. Z 1913, 37.

1g. CoCl, is sol, in 271g, methyl acctate at 18°. Sp gr. 18°/4° of sat. solution = 0.938. (Naumann, B. 1909, 42, 3791)

Difficultly sol, in ethyl acetate, (Naumann, B 1910, 43. 314.)

100 pts. acetone dissolve 8.62 pts. anhydrous CoClo. (Krug and M'Elroy, J. Anal. Ch. 6, 184.)

0.08 pts sol in 100 pts. ethyl acetate at 14°. 9 11 " " " 100 " acetone 00 9 28 " " " 100 " " 22.5°

(Laszczynski, B. 1894, 27, 2286.)

Sol. in acetone (Eidmann, C. C. 1899, II 1014.)

1 g. CoCl₂ is sol in 36.4 g. acctone at 18°. Sp. gr of sat. solution 18°/4°=0 825 (Naumann, B 1904, 37. 4334.)

100 g acctomtrile dissolve 4.08 g. CoCl₂ at 18°. (Naumann and Schier, B. 1914, 97. 249.) Sol. in quinoline. (Beckmann and Gabel, Z anorg. 1906, 51, 236)

Solubility in pyridine at to.

t ^o	G CoClesal in 100 g pan line	Solid phase
-50.3 -45 0 · -30 0 -19 6 -10.0 0 +23 0	0 4200 0 4204 0 4224 0.4227 0 4329 0 4326 0 572	CoCl ₂ , 6C ₂ H ₅ N
25 0 34.6 87.6 44.6 47.2 51.0 55.0 60 0 64 2	0 578 0 755 0 760 0 950 1 029 1 122 1 206 1 342 1 483	CoCls, 4CsHsN
68.0 74.8 78.2 79.8 88.0	1 597 2 079 2 330 2 488 3 397	CoCl ₂ , 2C ₂ H ₄ N
96 5 98.8 106 0 110.0	7 817 8.862 14 340 16 500	CoCl ₂

(Pearce and Moore, Am. Ch. J. 1913, 50, 226.)

Mol, weight determined in piperidine and pyridine. (Werner Z. anorg 1897, 15. 18 and 23.)

Sol. in urethane (Castoro, Z anorg 1899, 20. 61.) +H₂O.

+2H₂O. J. B. 1867, 291.)

17.16 pts. sol, in 100 pts, acetone at 17.06 " " 100 " " " " no. 25° (Laszczynski, B. 1894, 27, 2287.) +4H₂O. Deliquescent. (Bersch.)

+6H2O. Not deliquescent. Easily sol. m H₂O.

Solubility of CoCl2+6H2O in ethyl alcohol +Ag at 11.5° under addition of increasing amounts of CoCla

P=Percent of alcohol by volume G=Grams of CoCl₂ added.

Co = Grams of CoClo in 5 cc. of the solution. Cw = Grams of water m 5 cc. of the solution, calculated from

the water content of the alcohol. (2) the water of crystallization which had

gone into solution. (3) the water held mechanically in CoCl₂

P	G	Cu	Co
91.3	0.0	1 325	1 168
98 3	0.0	1 134	1 214
98 3	0.0	1 068	1 181
99 3	0.0	1 045	1 199
**	0.194	0 899	1 204
"	0.40€	0.829	1 325
**	0.812	0 764	1 459
"	0.813	0.688	1 568
**	1.032	0 634	1 713
"	1.240	0.553	1 831
**	1.446	0 483	1 943
44	0.650	0 500	2.186

(Bodtker, Z. phys. Ch 1897, 22, 508) Easily soluble in absolute ethyl alcohol.

100 pts absolute alcohol dissolve at room temperature 56,20 pts. CoCl₂. Water pre-cuptates CoCl₂+6H₂O from a solution of CoCl. in absolute alcohol. (Bodtker.)

100 pts. absolute ether dissolve 0 291g. CoCl₂+6H₂O (Bodtker, Z. phys. Ch 1897. 22. 511.)

Anhydrous ethylene glycol dissolves 10.6% CoCl₂+6H₂O at 16.4°. (de Connek, Chem. Soc 1904, 86, (2) 741)

Cobaltous hydrazine chloride, CoCl., 2N2H4HC1+21/2H4O

Sol. in H₂O (Ferratm, C. A. 1912, 1613.)

Cobaltous iodine chloride, CoCl2, 2ICl2+ 8H₃O. Hygroscopic. Decomp. by H₂O CCl₄ parates ICl₂ (Weinland and Schlegel-

separates ICL milch, Z. anorg. 1902, 30, 137.)

Cobalt lithium chloride, CoCl2, LaCl+3H2O. Very deliquescent. Sol. in H2O with decomp. Sol. in LiCl+Ag without decomp. Sol. in alcohol without decomp. (Chassevant, A. ch. (6) 30. 27)

Very deliquescent (Bersch, Cobaltous mercuric chloride basic, CoCl., HgCl2, 6CnO+20H2O. (Mailhe, A ch 1902, (7) 27. 369.)

> Cobaltous mercuric chloride, CoCl2, HgCl2. Very deliquescent. (v. Bonsdorff,)

> Cobaltous thallic chloride, 2TlCl3, CoCl2+ 8H₂O.

> Hydroscopic; can be cryst. from H₂O. (Gewecke, A. 1909, 366, 222.)

> Cobaltous tin (stannsc) chloride, CoCl2, SnCl2 $+6H_{\circ}O$ See Chlorostannate, cobaltous,

Cobaltous chloride ammonia, CoCl., 2NH., Decomp. by H₂O. (F. Rose.) CoCl₂, 4NH₂ Decomp by Decomp by H₂O (H.

Rose) CoCl₂, 6NH₃ Decomp. by H₂O. Sol. m dil. NH4OH+Aq with ease, but difficultly in eone NH₄OH+Aq. Insol. in absolute alcohol (Fremy.)

Cobaltous chloride hydrazine, CoCl., 2N.H. Insol, in cold II2O.

Slowly decomp by cold, rapidly by hot H₂O. Easily sol, in dil acids and NH4OH+Aq. (Franzen, Z anorg 1908, 60. 270.)

Cohaltous chloride hydroxylamine. CoCl₂, 2NH₂OH.

Decomp. in the au; sol in H₂O (Feldt, B. 1894, 27, 403.)

Cobaltic chloride hydroxylamine, CoCls, 6NH2OH. Insol in alcohol.

Sol in acidified H2O without decomp.; in cone H2SO4 without decomp (Feldt, B. 1894, 27, 404.)

Cobaltous fluoride, CoF2

Sl. sol, in H2O; insol, in alcohol and other, slowly attacked by cold HCl, H₂SO₄, or HNO₃ +Aq. (Poulenc, C. R. 114. 1429.) Insol in liquid NH₃. (Gore, Am. Ch. J. 1898, 29, 827.

+2H₂O Sol, m a little H₂O without decomp. Decomp. into oxyfluoride by boiling with much H₂O. Sol. in HF+Aq. (Berzelius.)

+4H2O. Two modifications. Solubility of a mod, at ?" = 2,2328 9 " B " " " =2.3203 %. (Costachescu, Ann. Sci. Univ. Jassy, 1912,

Cobaltic fluoride, CoF2.

Sol. in conc. H2SO4. (Barbieri, Chem. Soc. 1905, 88, (2) 393,)

6H₂O. Easily sol in H₂O and dil. acids

Sol. in NH4OH+Aq with decomp. (Bohin, Z. anorg. 1905, 43, 330.)

Cobalt columbium fluoride. See Fluocolumbate, cobalt.

Cobaltous iron (ferric) fluoride, CoF2, FcF3+7H2O. Sol in dul. HF+Aq (Weinland, Z. anorg.

Cobaltous manganic fluoride, 2CoF2, MnoFa +8H₂O.

(Christensen, J pr. (2) 34. 41,)

Cobalt molybdenyl fluoride.

See Fluoxymolybdate, cobalt.

Cobaltous potassium fluoride, CoF2, KF. Sl. sol. in H2O; less in ethyl or methyl alcohol, insol, in amyl alcohol or benzene

Decomp. by hot H2SO4. (Poulenc, C, R, 114. +H₂O. Sl sol in H₂O. (Wagner, B 19. 896.)

CoF2, 2KF

1899, 22, 269.)

Cobaltous sodium fluoride, CoFz, NaF+H2O. Sol. in H₂O. (Wagner, B. 19, 896.)

Cobaltous stannic fluoride.

See Fluostannate, cobaltous, Cobalt vanadium fluoride.

See Fluovanadate, cobalt.

Cobaltous hydroxide, CoO.H.

Insol. in H₂O. Sol. in acids. Insol. in KOH+Aq. Sol. in ammonium sulphate, chloride, nitrate, or succinate + Aq. (Brett) Sol, in warm acetic acid; insol, in NH,OH +Aq and cold NH₄Cl+Aq, but sol. in warm NH₄Cl+Aq. (de Schulten, C. R. 109.

Insol in H2O and dil. KOH+Aq, somewhat sol. in conc. KOH+Aq; easily sol. in NH, salts+Aq. (Fresenius.)

Easily sol in KCN+Aq (Rodgers, 1834.) Sol. in conc. K₂CO₈+Aq. (Gmelin.) Not pptd, by KOH+Aq in presence of H2C4H4O4 or NH4 citrate. (Spiller. Sol. in large amt. in boiling NH,SCN+Aq.

(Grossmann, Z. anorg 1908, 58. 269.) Insol in methyl, or amyl amine +Aq. (Wurtz.) Many non-volatile organic substances pre-

vent its pptn.

Cobaltic hydroxide, 3CosOs, 2HsO. (Mills, Phil. Mag. (4) 35, 257.)

CosOs, 2HsO Decomp. by HCl+Aq;

Cobaltous hydrogen fluoride, CoF2, 5HF+ gives brown solutions with cold HNO3 or H2SO4+Aa, which soon decomp (Wernicke, Pogg. 141. 120.)

Co2O6H6=Co2O8, 3H2O Sol. in warm HCl, HNO, and H.SO, with decomp. (Proust.) Sol, in cold HaPO4, H2SO4, HNO2, or HCl+ Ag, but decomp, on standing or warming (Winkelbloch.)

Sol in racemic, tartane, ovalie, or estric acid as cobaltous salt Sol, in cone, acctic acid without immediate

decomp. (Remele). Solution is not decomp by boiling Sol, in warm sat (NH4)2C2O4+ Ag with decomp. Not attacked by cold or hot NH_OH+Aq

Insol. in boiling NH4Cl+Aq. Sol when freshly pptd, in (NH₄)₂SO₄+ Aq. (Geuther, A. 128, 157.)

Cobaltocobaltic hydroxide, Co₂O₄, 3H₂O

Insol. in H2O. Sol. in oxalte acid; solution decomp. by heat Sol. in HCl+Aq with evolution of Cl. (Gibbs and Genth, Sill. Am. J (2) 23, 257.) Co₂O₄, 7H₂O Sol. in weak acids, especially

HC₂H₃O₂ without decomp. (Fremy.) Co₄O₇, 6II₂O Min. Heterogenute. Sol. in dil, HCl+Aq with evolution of Cl.

Cobaltous iodide, CoI2.

Deliquescent, and very sol, in H_{*}O.

100 pts. sat. CoI2+Aq at to contain pts. Col.,

t°	Pts CoIs	to.	Pts CoI ₂	12	Pt« Col-
-22 - 8 - 2 + 9	52.4 56.7 58.7 61.4	14 25 34 40	61 6 66 4 73.0 79 0	60 82 111 156	79.2 80 7 80 9 83 1

(Étard, C R, 113, 699)

Sol, in SO₂(OCH₃)₂. (Walden, Z anorg. 1902, 29, 388 Sol. in SOCl., (Walden, Z. anorg 1900,

25. 216.) Sol. in POCl₂ (Walden, Z anorg 1900, 25, 212,)

Sol, in S.Cl., (Walden, Z. anorg, 1900, 25,

Nearly insol. in AsBr₄. (Walden, Z. anorg. 1902, 29, 374.) Sol. in AsCls. (Walden, Z. anorg, 1900,

25. 214.)

Easily sol. in alcohol

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.) (Naumann, B. 1904, 37, 4328.) Sol, in quinoline. (Beckmann and Gabel, Z. anorg, 1906, 51, 236.) Sol, in methyl acetate. (Naumann, B. 1909. 42, 3790.)

+2H₂O. +4H,O. Very deliquescent. (Étard.)

214.) +9H_∗O Very hydroseome (Bolschakoff, C C. 1898, IT, 660.)

Cobaltous lead iodide, 2 CoI2, PbI2+3H2O Decomp. by H₂O. (Mosnier, A. ch. 1897, (7) 12. 412.)

Cobaltons mercuric indide, CoI., HgI.+ 6HO.

Partially decomp by H₂O. Sol in alcohol and acetone. (Dobroserdoff. C. C 1901, II 332)

Col2, 2HgI2+6H2O. Decomp. by H2O; sol. in alcohol and acctone. (Dobroserdoff, C. C. 1901, II. 332.)

Cobaltons include ammonia, Col., 4NHs. Decomp. by H.O. Sol. in NH.OH+Ag.

(Rammelsberg, Pogg 48, 155.) Col:, 6NH2. Insol in NH4OH+Aq. (Rammelsberg.)

Cobaltous rodide hydrazine, CoI2, 2N2H4. Sl. sol. in H.O. Easily sol in acids (Franzen, Z. anorg, 1911, 70, 147.)

Cobaltic octamine compounds. See Octamine cobaltic compounds.

Cobaltous oxide, CoO

Insol, in H₀O. Easily sol in dil, or cone. HCl or HNO3+Aq Slowly sol, in cold, but easily in hot dil H₂SO₄+Aq, acetic, or tartaric acid +Aq. Insol. in NH₄OH+Aq. Sol. in hot NH CI +Ag KOH, or NaOH +Ag

Insol in NH4Cl or NH4NO,+Aq. (Brett,

1834.) Insol. in K2CO2+Aq. Sol. in boiling Ce and Ni nitrates +Aq, with pptn, of the oxides. (Persoz.)

Easily sol. in dil. acids, even tartaric. exetic, and oxalic acids. Not attacked by NH,OH+Aq. Sol. in 13% NH₂Cl+Aq with evolution of NH₂; also in NH₂SCN+Aq. Sol. in warm cone. NaOH, and KOH+Aq. (Zimmerman, A. 232, 324.)

Solubility in (calcium sucrate + sugar) + An 1 l. solution containing 418 6 g. sugar and 34.3 g. CaO dissolves 1.56 g. CoO: 1 l. solution containing 296.5 g. sugar and 24.2 g CaO dissolves 0.29 g. CoO. (Bodenbender, J. B. 1865, 600.)

Insol. in liquid NHs. (Franklin, Am. Ch. J 1898, 20. 827.

See also Cobaltous hydroxide.

Cobaltic oxide, Co₂O₂,

Decomp, by most acids, even in the cold. with formation of cobaltous salts. Sol. in acetic acid without immediate decomp.

Sol in Bro+Aq. See also Cobaltic hydroxide.

+6H.O. (Hartley, Chem. Soc. (2) 12. Cobaltocobaltic oxide, Co.O. = CoO, Co.O. Insol, in boiling cone, HCl, HNO3, or aqua regia. Sol by long standing with H₂SO₄, (Chbbs and Genth, Sill Am J (2) 23, 257.) See also Cobaltocobaltic hydroxide.

See also Cosarocontain nyaroxide.

Co₄O₁ = 2COO, Co₂O₃. Not attacked by
boiling did. IINO₂ or H₂SO₄. Aq (Beetz.)

Co₂O₂ = 6CoO, Co₂O₃ + 2OH₂O. Sol. in dil.
acids, with residue of Co₂O₃, which dissolvee on warming. (Gentlele, J. pr. 69, 181.) +8H₂O As above. (Gentele.)

Cobaltous oxychloride, CoCl., 3CoO+

316H2O. Pnt. Very sl. sol in H₂O. (Habermann M. 5. 432.)

Cobaltous oxychloride hydroxylamını, CoOCL 2NH OH

Insol. in H2O; unstable; insol. in alcohol. (Feldt, B. 1894, 27, 404.)

Cobaltous oxyfluoride, CoO, CoFa+HaO, Ppt. (Berzelius, Pogg. 1, 26.)

Cobaltous oxviodide, CoO, CoI. Insol, in H₂O. (Rammelsberg.)

Cobaltous oxysulphide, CoO. CoS.

Cold HCl+Aq dissolves out CoO; hot HCl+Aq decomp, with evolution of H2S. (Arfvedson, Pogg. 1. 64)

Cobalt phosphide, Co2P

Sol. in conc. HNO2. Slowly attacked by HCl and H₂SO₄ (Maronneau, C. R. 1900. 130. 658.)

Sol. in HNO, aqua regia, and in fused alkalies. (Granger, Bull Soc. 1896, (3) 15. Co.P. In ol. in HNO and aqua regia; stable in the air even when heated (Granger,

Bull. Soc 1896, (3) 15, 1087 Co1P1. Insol. in cone HCl+Aq. Sol. in HNO₃+Aq. (Rose, Pogg 24, 332.)

Cobalt subselenide, Co.Se.

Sol. in bromine water Only sl. attacked by boiling furning HCl. (Fonzes-Diacon, C. R. 1900, 131, 704.)

Cobalt monoselenide, CoSe (Little, A. 112, 211.)

Cobalt disselenide CoSet,

Only al attacked by boiling furning HCl. (Fonzes-Diacon, C R. 1900, 131. 705.)

Cobalt sesquiselenide, CosSes. Sel in Br₂+Aa. Only sl. attacked by boiling furning HCl. (Fonzes-Diacon, C. R. 1900, 131, 704)

Cobalt selenide, Co2Se1. Sol in Br₂+Aq.

Only sl. attacked by boiling fuming HCl. (Fonzes-Diacon, C. R. 190, 131, 704.)

Cobalt silicide, Co.Si.

Sol, in HF and aqua regia. Insol, in cold H₂O. Decomp. by steam at red heat. Sol. m fused alkalı carbonates. (Vigouroux, R. 1895, 121, 687.

CoS1. Insol. in HNOs and H2SOs. Sol in aqua regia and HCl, and in fused KOII. (Lebeau, C. R 1901, 132, 557)

Not attacked by dil or conc. HNO3, or cone. H2SO4 Sol. in aqua regra and in cone, HCl. Not attacked by dil, alkalı hydroxides +

Aq.; attacked by fused alkali. (Lebau, Bull Soc. 1901. (3), 25, 540) Sl. sol. in hot cone, HCl and hot conc. alkali + Aq. Sol in HF; insol, in

476.)

Cobaltous sulphide, CoS. Anhudrous Easily sol. in acids, even HC2H3O2, but only slowly in the latter case. (Hjortdahl, C. R. 65, 75.) Not attacked by cold dil. HCl+Aq. (Ebel-

men, A. ch. (3) 25. 94.) Mm. Seypoorite +xH₂O 1 l. H₂O dissolve 41.62+10-6 moles CoS at 18°. (Weigel, Z phys Ch. 1907, 58, 294,)

Sol, in cone mineral acids; very sl sol, in cold dil. acids; scarcely sol. in acetic acid. (Wackemoder.) Sol, when still moist in SO₂+Aq (Ber- 71) thier.)

Easily sol, in HNO₃, but only very st sol in HCl+Aq Not pptd. from very dil acid solutions by H.S

Insol. in H₂O, alkalies, and alkalı carbonates, or sulphides + Aq (Fresenius) Insol in NH Cl. and NH NO + Aq. (Brett.)

When pptd by (NH₁)₁S+Aq, shows brown colour in presence of 200,000 pts H₂O (Pfaff.)

Sol, in potassium thiocarbonate + Aq (Rosenbladt, Z anal 26. 15.) Sol. in Na₂S₂ or K₂S₂+Aq. (de Koninck, Ammonium barium cobalticyanide, Zeit angew. Ch. 1891, 202.)

Cobaltic sulphide, CoaSa.

Partially decomp, by HCl+Aq; sol, in · HNO₃+Aq with decomposition. SI attacked by HCl+Aq; and slowly even by aqua regia. (Schneider, J. pr. (2) 9. 209.)

Mm. Cobalt purite + tH₂O, Insol in KCN+Ao (Fleek, J. pr 97, 303.) More sol in HCI+Aq than CoS₂ (Dingler, Berz, J. B 10, 130)

Cobaltoccbaltic sulphide, CosNa.

Min. Linuarite, Sol. in warm HNO₃+Aq, with residue of S

Cobalt disulphide, CoS2

Not attacked by alkalies or acids except HNO₂ and aqua regia. (Setterberg, Pogg 7.

Cobalt sulphide, Co.S.

Easily sol, in hot HCl with evolution of H₂S (and H₂) (Proust)

Cobalt potassium sulphide, K₂Co₁₁S₁₀ Slowly sol. in cold HCl and aqua regia.

Quickly sol. in warm aqua regia, Sol. in HF and H₂SO₁ only on warming. Insol. in (NH₄)-S, organic acids, alkalies, 12% HCl+Aq and KCN+Aq (Milbauer, Z. anorg. 1904, 42, 447.)

HNO2 and H2SO4 (Lebeau, C. R. 1902, 135. Cobalt telluride, CoTe. (Fabre, C. R. 105, 673)

> Cobalt decamine sulphurous acid. See Decamine cobaltisulphurous acid.

Cobaltic acid.

Potassium cobaltate, K2CoiO16+2H2O, or 3H₂O,

Insol. in H₂O (Pebal, A 100, 262), but decomp. by long boiling Sol in cone acids. K₂O, tCoO₂, Sol, in H₂O (Winkler, J. pr. 91. 351.)

Does not exist (Donath, W. A. B 102, 2b.

Cobalticyanhydric acid, H₂Co(CN)₄+1₂H₂O. Deliquescent. Very sol in H₂O and only

sl, decomp, on boiling.

Sol, in HCl+Aq without decomp, even on boiling. Sl, sol, in cone, more sol, in dil. HNO3+Aq. Not decomp, by boiling conc. IINO₂+Aq or aqua regia. Insol. in conc., sl. sol. in dil. H₂SO₄+Aq. Sol. in alcohol. Insol. in ether. (Zwenger, A. 162, 157.)

Tartaric acid, etc does not hinder the pptn. by (NH₄)₃S+Aq. (Rose)

Ammonium cobalticyanide, (NH₄)₃Co(CN)₆
+1/₃H₂O.

Very sol, in H₂O; sl. sol, m alcohol,

NH₄BaCo(CN)₄+H₂O. Sol. in H2O. (Weselsky)

Ammonium calcium cobalticyanide. NH₄CaCo(CN)₆+10H₂O. Sol. in H₂O.

Ammonium lead cobalticyanide, NH₄PbCo(CN)₆+3H₂O.

NH₄PbCo(CN)₆+3H₂O. Sol. in S 31 pts. H₂O at 18°, and sl. sol. in 93% alcohol. (Schuler.)

Ammonium mercuric cobalticyanide, (NH₄)₆Co₂Hg(CN)₁₁+H₂O.

Sol, in H₂O with decomp. Insol, in alcohol (Soenderop, Dissert, 1899.)

Ammonium sodium cobalticyanide, NH,Na,Co(CN),

Only sl sol, in H₂O (Weselsky, B. 2, 598) Ammonium strontium cobalticyamde, NH₄SrCo(CN)₃+9H₂O Sol in H₄O (W)

Barium cobalticyanide, basic, Bas[Co(CN)e]es, BaOsHr. Not very stable. Cannot be recryst without partial decomp. (W)

Barium cobaltuyanide, Ba₃[Co(CN)₆]; + 10H₂O Sl efflorescent Very sol in H₂O Insol.

Barium cobalticyanide chloride, Ba₄[Co(CN)₆]₂, BaCl₂+16H₃O.

in alcohol

Sol in H₂O without decomp (W.)

Barium lithium cobaltuyanude, BaLaCo(CN)₆
+15H₅O.

The most sol. of the double cobaltreyamdes. (Weselsky)

Barium potassium cobalticyanide, BaKCo(CN)₆+11H₂O. Sol, in H₂O. (W.)

Bismuth cobalticyanide BiCo(CN)₆
Ppt (Mathews, J. Am Chem Soc. 1900, 22, 275)

+5H₂O. Moderately stable with dil, min acids; more stable with cone acids than Cd or Zn comp. Decomp. by NH₂ and alkalies. (Fischer

and Cuntze, Čh Z 1902, 26. 872.)

Cadmium cobalticvanide. Cds[Co(CN)_e]_e+

7½H₂O

Attacked by strong min. acids only when

hot. Behaves as Zn salt, toward cone. H₂SO₄ and dil. and cone. HCl. Insol in K₃Co(CN)₄+Aq Sol in NH₄OH and NH₄Cl+Aq (Fischer and Cuntze, Ch. Z. 1902, 26. S78)

Cadmium potassium cobalticyanide, KCdCo(CN)₆.

Not attacked by H₂O. (Fischer and Cuntze, Ch Z. 1902, 26, 873)

Cadmium sodium cobalticyanide, NaCdCo(CN)₆.

(Fischer and Cuntze, Ch. Z. 1902, 26. 873.)

Cadmium cobalticyanide ammonia, Cd₂[Co(CN)₆], 4NH₂+2H₂O.

CajlCo(Civija), 24137-2215. (Pisoher and Cantize, Ch. Z. 1902, 26. S73.) CajlCo(CN)aja, 5hH+3H±0. (Fisoher and Cantze, Ch. Z. 1902, 26. S73.) CajlCo(CN)aja, 7hH, Cuntze, Ch. Z. 1902, 26. S73.) CajlCo(CN)aja, 9hH±+2H±0. (Fisoher and Cantze, Ch. Z. 1902, 26. S73.)

Calcium potassium cobalticyanide, Calco(CN)_s+9H₂O.

Sol. in H₂O (W)

Cobaltous cobalticyanide, Co₃[Co(CN)₆]₂+14H₂O

Insol. in H_2O and acids. SI sol. in NH_4OH +Aq Decomp. by KOH+AqCupric cobalticyanide, $Cu_2[Co(CN)_4]_2+$

Insol in H_2O and acids. Sol in NH_4OH+ +Aq.

Cupric cobalticyanide ammonia, Cu₂[Co(CN)₀]₂, 4NH₂+7H₂O. Sol. in H₂O (Zwenger.)

Lead cobalticyanide, basic, Pb₂[Co(CN)₀]₃, 3PbQ₂H₂+11H₂O. Insol. in H₂O or alcohol; somewhat sol in hot Pb(C₂H₂O₂)₂+Aq. (Schuler.)

Lead cobalticyanide, Pb₈[Co(CN)₆]₂+4H₂O Very sol. in H₂O Insol. in alcohol (Zwenger) +7H₂O. Sol. in 1.77 pts. H₂O at 18°, and 1.63 pts. at 19° Insol. in absolute alcohol,

1.63 pts. at 19 ^o Insol. in absolute alcohol. Sl. sol. in 93% alcohol. (Schuler, W. A B 79. 302.)

Lead potassium cobalticyanide, PbKCo(CN)₆ +3H₂O.
Sol in 6.74 pts H₂O at 18° and much more easily in hot H₂O. Insol, in absolute, si

sol. in 93% alcohol. (Schuler)

Lead cobalticvanide nitrate. PhalCo(CN)als.

Pb(NO₂)₂+12H₂O.

Sol in 16 91 pts. H₂O at 18°, 16.79 pts

Sol in 16 91 pts. H₂O at 18°, 16.79 pts at 19°, and much less hot H₂O. Nearly insol. in 93% alcohol. (Schuler.)

Mercurous cobalticyanide, Hg₅Co(CN)₆.

Ppt. Decomp. by HCl Not attacked by cold, but by hot cone, H₂SO₄. Not attacked by HNO₄, acetic or oxahe acid. Decomp. by skales+Aq. (Miller and Mathews, J Am Chem Soc 1900, 22. 64.)

Mercuric cobalticyanide, Hg₃[Co(CN)_{els}, SI sol. in H2O, decomp, by boiling. Insol in alcohol and ether. Not attacked by HCl (Soenderop, Dissert, 1899.)

Mercuric potassium cobalticyanide. K₄HgCo₂(CN)₁₄.

Sol, in H₂O with decomp, Insol, in alcohol. Sl. sol m ether. (Soenderop, Dissert. KoHg3Co4(CN)24 (Soenderop, Dissert. 1899.)

Mercuric sodium cobalticyanide, NasHgsCo4(CN)24+4H1O.

Extremely deliquescent (Soenderop. Dissert. 1899.

Nickel cobalticyanide, Ni₂[Co(CN)₆]₂+ 12H₀O.

Insol, in H₂O and acids. Not attacked by boiling HCl+Aq. Sol. in NH₄OH+Aq. Decomp by KOH+Ag.

Nickel cobalticyanide ammonia, Ni₃[Co(CN)₆]₂, 4NH₃+7H₂O Insol. in H₂O.

Petassium cobalticyanide, KaCo(CN)6. Easily sol in H₂O. Insol in alcohol

Potassium strontium cobalticyanide. KSrCo(CN),+9H2O. Sol. in H₂O. (Weselsky,)

Potassium thellium cobalticyanide, KaTla[Co(CN)a]a

More sol. in H2O than corresponding K salt. (Fischer and Benzian, Ch. Z. 1902. 26. 49.)

Potassium zınc cobalticyanide, KZnCo(CN)6+3H2O. 2K,Co(CN), 3HgCl.

(Fischer and Cuntze, Ch. Z. 1902, 26, 873.) Potassium cobalticyanide mercuric chloride.

(Soenderop, Dissert, 1899.)

Potassium cobalticyanide mercuric iodide, 4K,Co(CN), HgI2. Sol, in H₂O with subsequent decomp. Sol, in alcohol and ether with decomp.

(Soenderop, Dissert, 1899.) Silver cobalticyanide, Ag₄Co(CN)₆. Insol, in H₂O and acids. Sol. in NH₄OH+

 Silver cobalticyanide ammonia, AgsCo(CN), NH,+1/H,O

Insol, in H₂O, (Zwenger.)

Sodium cobalticyanide, Na₂Co(CN)₄+2H₂O. Easily sol in HaO: insol in alcohol.

Sodium zinc cobelticyanide, NaZnCo(CN)e +H.0 (Fischer and Cuntze, Ch. Z. 1902, 26, 873)

Strontium cobalticyanide, Sr₂[Co(CN)₆]₂+ Very sol in H₂O, (Weselsky,)

Thallium cobalticvanide, TisCo(CN)c. 100 pts. H₂O dissolve 3.6 pts. at 0°, 5 86 pts. at 95°, 10.04 pts. at 195°. (Fronmuller, B.

Yttrium cobalticyanide, YCo(CN)6+2H2O Nearly insol, in H2O. (Cleve)

Zinc cobalticyanide, Zn₃[Co(CN)₆]₂+12H₂O. Sol in HCl+Aq and salt is pptd. by dilu-tion with H₂O. Decomp. by H₂SO₄. Insol in K₄Co(CN)₄+Aq. Sol, in NH₄OH and NH,Cl+Aq. (Fischer and Cuntze, Ch. Z 1902, 26, 873.)

Zinc cobalticyanide ammonia, Zn₃|Co(CN)₆|₂, 5NH₃.

Decomp by H₂O and acids. (Fischer and Cuntze, Ch. Z. 1902, 26, 873.) Zn₂[Co(CN)₆]₂, 6NH₃. (Fischer and Cuntze)

+3H₂O. (Fischer and Contze) Zn₃[Co(CN)₆]₂, 10NH₃+9H₂O, Decomp by H2O. (Fischer and Cuntze.)

Cobaltimolybdic acid.

Ammonium barium cobaltous cobaltimolybdate, ½(NH₄)₂O, 1½BaO, CoO, CoO₂, 10MoO₄+18½H₂O.

Difficultly sol, in H₂O (Friedheim and Keller, B. 1906, 39, 4306)

Ammonium cobaltous cobaltimolybdate, 2(NH₄)₂O, CoO, CoO₂, 10 MoO₄+12H₂O. Much more sol, in H₂O than 3(NH₄)₂O. CoO, CoO₂, 12MoO₃+20H₂O. Sp. gr. of cold sat. solution = 1.096 (Friedheim and Keller.)

3(NH₄)₂O, CoO, CoO₂, 12MoO₈+20H₂O. 100 cc. cold sat. aqueous solution contain

3 g. of the salt. Sp.gr. of the solution = 1 0234 Sol. in cone. HCl. Decomp. by cone. H2SO4, by KOH+Aq and by NaOH+Aq. (Friedheim and Keller.)

Barium cobaltous cobaltimolybdate 3BaO, CoO, CoO2, 9MoO2+25H2O Sl. sol. in H.O. (Friedheim and Keller.) 703)

Cobaltous potassium cobaltimolybdate, CoO, 3K₂O, CoO₂, 10MoO₂+10H₂O (Kurnakoff, Ch. Z. 1890, 14, 113.)

+11H₂O, Sol in cone, HCl. Decomp by KOH+An and by NaOH+An. (Friedheim and Keller.) 3K₂O, CoO, CoO₂, 12M₂O₂+15H₂O SI sol, in H.O. Sol, in cone, HCl Decomp by

KOH+Aq and by NaOH+Aq. (Friedherm +20H₂O, (Kurnskoff, Ch Z 1890, 14.

113.)

Potassium cobaltimolybdate. 3K2O, CoO2, 9MoO2+612H2O Ppt. (Hall, J Am, Chem Soc. 1907, 29.

Cobaltinitrocvanhydric acid.

Potassium cobaltinitrocvanide, K,Co2(CN)2NO2+3H2O

Very sol. in H₂O but quickly decomp. Insol. in alcohol (Rosenheim and Kop-pel, Z. anoig 1898, 17, 68)

Silver cobaltmitrocvanide,

Co2Ag3NO2(CN)10+6H2O, and +21H2O (Rosenherm and Koppel.)

Sodium cobaltinitrocyanide, NacCo4(NO2)(CN)10+11H2O.

Very deliquescent. Sol. in H₂O (Rosenheim and Koppel)

Cobaltisulphurous acid, HeCo2(SO2)e Not obtained in a solid state. (Berglund, Acta Lund. 1872.)

Cobaltisulphites.

The cobaltisulphites are insol, or at least very sl. sol. in H2O. (Berglund, Acta Land. 1872, 23.)

Ammonium cobalteus cobeltisulphite. $(NH_4)_2SO_3$, $2CoSO_3$, $Co_2(SO_3)_3+14H_2O=$ $(NH_4)_3Co_2Co_2(SO_3)_6 + 14H_2O_3$

Scarcely sol. in H2O, but decomp. thereby. Easily sol, in acids, when finely divided,

also in H₃SO₃+Aq (Berglund) 2(NH₄)₃SO₃, CoSO₃, Co₂(SO₃)₅+8H₂O = (NH₄)₄CoCo₂(SO₃)₅+8H₂O As above. (Bergiund.)

Barium cobaltisulphite, 3BaSO₃, Co₂(SO₃)₃+ $12\Pi_2O = Ba_3Co_2(SO_3)_6 + 12H_2O$. Ppt. Insol in H2O. Not attacked by cold

acids even H2SO4, but is decomp. by boiling therewirth. (Berglund, Acta Lund, 1872.)

Bismuth cobaltisulphite, Bi₂Co₂(SO₂)₆, Insol. in H₂O, dil. HNO₈, or HCl+Aq. (Berglund, Acta Lund. **1872**, 31.)

Calcium cobaltisulphite, CasCo2(SO),)4. Pot. Insol. in H2O or HCl+Aq. (Berglund, Acta Lund. 1872. 30)

Cobaltous cobaltisulphite, Co2Co2(SO2)a= 3CoSO2, Co2(SO2)3.

Pnt. (Berglund, B, 7, 470.)

Cobaltous potassium cobaltisulphite, CoK,Co2(SO2)0.

Insol in H₂O. (Berglund.) Silver cobaltisulphite, Co2(SO2)2, 3Ag2SO2.

Properties as the following comp. (Berg-Silver cobaltous cobaltisulphite, CoSO2,

Co₂(SO₂)₃, 2Ag₂SO₂+9H₂O. Insol in H₂O. Insol. in HNO₈+Aq comp by HCl or H2S+Aq. (Berglund.)

Sodium cobaltous cobaltisulphite.

Decomp by HoO, so that it has not been obtained pure (Berglund, Acta Lund 1872.

Cobaltoctamine sulphurous acid. See Octamine cobaltisulphurous acid.

Cobaltocobalticyanhydric acid, H2C02(CN)11

Unstable, (Jackson and Comey, Am. Ch. J. 1897. 19, 277.) Barium cobaltocobalticyanide, BaHCo2(CN)11+136H2O.

Somewhat sol, in H₂O when pure. The crude salt is insol, even in hot H₂O. (Jackson and Comev.)

Cupric cobaltocobalticvanide, CurCos(CN) ... $+4H_{2}O$ Ppt. (Jackson and Comey)

Potassium hydrogen cobaltocobalticyanide,

K2HCo2(CN)21+2H2O Sl. sol. in cold, easily sol. in hot H₂O. Insol. in alcohol (Jackson and Comey.) KH₂Co₂(CN)₁₁+H₂O. Insol. in cold or hot H₂O when impure

The pure salt is slowly sol. in cold H₂O. More sol. in warm H₂O. (Jackson and Comey)

Silver cobaltocobalticvanide, Ag, Co. (CN), +H_{*}O. Ppt. (Jackson and Comey, B. 1896, 29 1021.)

Zinc cobaltocobalticyanide, ZnHCos(CN)11 $+3H_{0}O$

Ppt. (Jackson and Comey.)

Cobaltocyanhydric acid, $H_4\text{Co}(\text{CN})_6$. Very unstable. Sol. in $H_2\text{O}$. Insol, in alcohol.

Cuprous potassium cobaltocyanide, K₃CuCo(CN)₄.

(Straus, Z. anorg. 1895, 9, 17)

Potassium cobaltocyanide, K₄Co(CN)₆.

Decomp. on air. Very deliquescent, and sol. in H₂O. Insol. in alcohol and ether.
(Descamps, Zeit. Ch. 1888, 952.)

Cobaltous acid.

Barium cobaltite, BaCoOs.

Insol. in H₂O or dil HC₂H₃O₂+Aq. in HCl+Aq. (Rousseau, C. R. 109.64.) BaCo₂O₃. As above. (Rousseau.)

Cobaltous potassium cobaltite, 3CoOa, CoO,

Rapidly hydrolysed by H₂O. Sol. in conc. HCl. (Bellucci, Chem. Soc. 1907, **92**, (2) 354)

Magnesium cobaltite, MgCoO2.

Insol. in H₂O, NH₄OH, or (NH₄)₂CO₂+Aq. Eastly sol in NH₄Cl+Aq, from which it is pptd by KOH+Aq (Berzelius, Pogg. 33. 126.)

Sol in HF, HCl, HNO₃+H₂SO₄; decomp. and partially dissolved by NH₄OH+Aq; quite stable when heated. (Dufau, C. R. 1896, 123, 240.)

Potassium cobaltite.

According to Bellucci and Dominici the compounds formerly described are more or less decomp. by hydrolysis. (C C. 1907. I, 1530.)

Sodium cobaltite.

Sol. in NaOH+Aq, but pptd. by diluting the solution.

Columbic acid (Niobic acid), 3Cb₂O₅, 4H₂O, or 3Cb₂O₅, 7H₂O.

Easily sol. in HF, very al. sol. in HG1+Aq, but is sol. in HQ. offer being treated with HG1+Aq. Sol. in conc. H₂SO. Sol. in KGH+Aq. Insol in NaGH+Aq, but becomes sol. in H₂O by being treated with NaGH+Aq. Sol. in boding Na₂CO₂+Aq. (Rose, Pogg. 113. 109.) Insol. in Flouid NH₂. (Gore, Am. Ch. J. 1898, 20. 380.)

Cb₂O₅, 7H₂O. (Santesson, Bull. Soc. (2)

Aluminum columbate, Al₂O₃, 3Cb₂O₃+12H₂O. Ppt. (E. F. Smith, J. Am. Chem. Soc. 1908, **30**, 1652.)

Barium columbate, 7BaO, 6Cb₂O₄+18H₂O.
Ppt. (Bedford, J. Am. Chem. Soc. 1905, 27. 1218.)

Cadmium columbate, CdO, Cb₂O₆.

Sol. in boiling cone. H₂SO₄; insol. in most acids; decomp. by HKSO₄ at red heat. (Larsson, *L.* anorg. 1896, 12, 199.)
+33/4H4O. Ppt. (E. F. Smith, J. Am. Chem. Soc. 1908, 30, 1652.)

Cesium columbate, 4Cs₂O, 3Cb₂O₅+14H₂O.

Very sol in H.O. (E. F. Smith, J. Am.

Very sol. in H₂O. (E. F. Smith, J. Am. Chem. Soc. 1998, **30**. 1654.) 7Cs₂O, 6Cb₂O₃+30H₂O. Ppt (E. F. Smith, J. Am. Chem. Soc. 1908, **30**. 1655.)

Calcium columbate, 2CaO, Cb2Os.

Insol. in H₂O (Joly, C R. 81. 266.) CaO, Ch₂O_s. Sol. in boling cone. H₂SO₄; insol. in most acids; decomp. by HKSO₄ at red heat. (Larsson, Z. anorg. 1896, **12**. 198.)

Cobalt columbate, CoO, Cb₂O₅.

Sol. in conc. bouling H₂SO₄; msol. in most soids; decomp. by HKSO₄ at red heat. (Lars-

Copper columbate, CuO, Cb2Os.

Chem. Soc. 1908, 30, 1652.)

Sol. in boiling cone, H₂SO₄; insol. in most acids; decomp. by HKSO₄ at red heat. (Larsson.) +3½H₂O. Ppt. (E. F. Smith, J. Am.

Iron (ferrous) columbate, Fe(CbO₈)₂.
Min. Columbite. Insol. in acids.

Iron (ferrous)-columbate tantalate, xFe(TaO₂)₂, yFe(CbO₂)₂.

Min. Tantalite, Not attacked by acids. Fe(CbO₃)₂, 4Fe(TaO₃)₂. Min. Tapiolite.

Lithium columbate, 7Li₂O, 6Cb₂O₅+26H₂O. Ppt. (E. F. Smith, J. Am. Chem. Soc. 1908, 30. 1655.)

Magnesium columbate, MgO, Cb₂O₄.

Sol. in boiling conc. H₂SO₄; insol. in most acids, decomp. by KHSO₄ at red heat. (Larsson, Z. anorg. 1896, **12**. 196.)

+4H₂O. Precipitate. (Rammelsberg) +7H₂O. Ppt. (E. F. Smith, J. Am. Chem. Soc. 1908, 30. 1651.) 4M_EO, Cb₂O₂. Insol. in H₂O (Joly, C. R.

3MgO, Cb₂O₅. As above,

Manganous columbate.

Insol. in H₂O. (Joly, C. R. **81**, 266.) 3MnO, 5Cb₂O₈. Sol. in boiling cone. H₂SO₄; insol. in most acids; decomp. by HKSO₄ at red heat. (Larsson, Z. anorg., 1896, 12, 201.) Potassium columbate, KCbO₂.

Sol, in H.O. (Joly, in Fremy's Encyc Ch.) K2Ch4O7+512H2O. Insol, in H2O (San-

tesson.) K₃Cb₀O₁₀+5H₂O. Nearly msol. in H₂O. K₄Cb₂O₇+11H₂O. Insol in H₂O. (Santesson, Bull. Soc. (2) 24, 53,)

K₄Cb₈O₂₂+11H₂O. (Santesson.) K₄Cb₄O₁₂+13H₂O. Sol. in H₂O. K₃Cb₆O₁₀+16H₁O. Efflorescent Sol. in H₂O. (Marignac, A. ch. (4) 8, 20) Very sol, in H₂O (E. F. Smith, J. Am.

Chem. Soc. 1908, 30, 1652.) K₁₄Cb₁₂O₄₇+27H₂O. Sol, in H₂O. Insol. in alcohol. (E.F. Smith.)

K₁₆Cb₁₄O₄₂+32H₂O. Sol. in H₂O. Potassium sodium columbate, 3K2O, Na2O,

Very slightly sol, in H2O. Insol, in alkalies. (Marignac.)

3Cb₀O₄+9H₀O.

Rubidium columbate, 3Rb2O, 4Cb2O5+ 91/4B2O. (E. F. Smith, J Am. Chem Soc. 1908, 30.

1655.) 4Rb₂O, 3Cb₂O₅+14H₂O. Very sol in H₂O. (E. F. Smith.)

Silver columbate, Ag₂O, Cb₂O₆+2H₂O

Ppt. (E. F. Smith.) 7Ag₂O, 6Cb₂O₄+5H₂O. Insol. in H₂O. (Bedford, J. Am. Chem. Soc. 1905, 27, 1218.)

Sodium columbate, NaCbO2+312H2O.

Completely sol. in H₂O. (Rose). Ppt. (E. F. Smith, J. Am. Chem. Soc. 1908, 30, 1651.

+21/2HtO. Sl. sol. in cold HtO. Insol in NaOH+Aq. (Santesson.) 2Na₂O, 3Cb₂O₄+9H₂O. Insol. in H₂O or NaOH+Aq. (Santesson.) SNa₂O, 7Cb₂O₄. 1 pt. is sol. in 195-200 pts.

H₂O at 14-20°; in ether 75-80 pts. or in 103 pts. boiling water. (Rose 7Na₂O, 6Cb₂O₅+32H₂O. Very stable. Sol in H₂O. (Bedford, J. Am. Chem. Soc. 1905, 27, 1217.)

Thorum columbate, 5Th₂O, 16Cb₂O₅, Sol. in boiling conc. H₂SO₄; msol. in most acids; decomp. by HKSO₄ at red heat. (Lars-

son, Z. anorg 1896, 12. 202.) Yttrium columbate, Y1O2, Cb2O3.

Insol. in H₂O. (Joly, C. R. 81. 1261.) Sol. in boiling cone. H₂SO₄; insol. in most acids; decomp. by HKSO₄ at red heat. (Lars-

Zinc columbate, ZnO. Cb₂O₈.

Sol, in boiling cone, H2SO4; insol, in most acids; decomp. by HKSO, at red heat. (Lars. Columbium hydroxide Cb,Os. xH1O. son.)

7ZnO, 6Cb₂O₄+25H₂O Insol in H₂O, (Bedford, J. Am. Chem. Soc. 1905, 27, 1218.)

Zirconium columbate, ZrO., 5Cb.O.

Sol, in boiling cone, H2SO4; insol in most acids; decomp, by HKSO, at red heat (Larsson.)

Percolumbic acid. See Percolumbic acid.

Columbium (Niobium), Cb.

Searcely attacked by HCl, HNO2, or agua regna. Conc. H.SO, dissolves easily on warm-

Sol in fused oxidizing agents; sol in hot cone H₅SO₄ and in HF; also in HF+HNO₅; insol. in other acids. (Moissan, C. R. 1901, 133. 24.)

Columbium pentabromide, CbCrt. (Rose, Pogg. 104, 422.)

Columbium carbide nitride, 3CbC, 2CbN. (Joly, Bull Soc. (2) 25, 506)

Columbium trichloride, CbCla.

Not deliquescent; not attacked by H2O, but easily oxidised by HNO,+Aq. Insol. in NH4OH+Aq. (Roscoc, C N. 37. 25)

Columbium pentachloride, CbCls.

Decomp by H₂O with separation of a hydrate of Cb₂O₃. Sol. in cold HCl+Aq, forming a solution which soon gelatimises, and separates out Cb2O5 by heat or dilution, with separates our coso; by next or diamon, what hot HCl+Aq, forms a cloudy solution which does not gelatinise. Sol. in H₂SO₄ to form a clear hould which gelatinises on heating. Sol. in KOH+Aq. Sol in alcohol with slight residue. (Rose, Pogg. 104, 432.)

Columbium pentafluoride, CbFs.

Very hydroscopic; sol in H₂O without separation of columbic acid. (Ruff, B. 1909, 42, 492.)

Columbium fluoride with MF. See Fluocolumbate, M.

Columbium hydride, ChH(?)

Insol in HCl, HNOs, and dil, H-SOs+An, even on boiling. Sol. in boiling conc. H:80, and in fused KHSO. Sol. in cold HF+Aq. if not too dilute. Also attacked by KOH+
Aq. (Mangnac, N. Arch, Phys. Nat. 31, 89.)
Not attacked by boiling H₂O, or boiling

Oxidized by hot H2SO4 Insol. in boiling HNO₂. (Muthmann, A. 1907, 355, 90.)

See Columbic acid.

Columbium nitride.

Not attacked by boiling natric acid or aqua na, but sol. in a cold mixture of HNO, and

regin, tote sof. in a color maxime of HNO₄ and HF: (Rose, Pogg. 111, 426.) Cb₄N₄. Not attacked by boiling H₂O or HCl Insol in conc. HNO₄, and H₂SO₄. Decomp by fused KOH. Not attacked by boiling with KOH+Aq 1907, 355. 94) (Muthmann, A.

Columbium dioxide, ChrOz.

Sol, when still moist in boiling dil HCI+ Aq. Insol. in hot HNO₃, less sol. in aqua regia than in HCl+Aq Sol in cone. H₂SO₄ Insol in H₂O, KOH, or cone, acids, even when boiling. (Delafontaine.)

Columbium traoxide, Ch.O. Insol, m acids except HF. (Smith, Z

anorg, 1894, 7. 28) Columbium tetroxide, Ch.O.

Not attacked by cold or hot HaO, HCL HNO₂, H₂SO₄, or aqua regis. Slightly at-tacked by boiling KOH+Aq. (Delafon-

taine.) Columbium nentoxide, Ch₂O₁.

When ignited insol in hot conc H-SO. When it has not been ignited it forms a clear solution with H2SO4, which can be diluted without forming any precipitate

Pogg. 112. 549.)
Sol in fused KHSO₄, which can be diluted with H.O without causing pptn Insol in

Columbium oxybromide, ChOBra.

Decomp by H.O into Cb.O. and HBr. Sol in hot H2SO4 and cone, HC1+Aq. (Rose, Pogg 104, 442.) 3H₂O, Cb₂O₄, HBr(?)

Eastly sublimed. (Smith, Z. anorg 1894, 7. 97.) Columbium oxybromide rubidium bromide,

CbOBr., 2RbBr Unstable in moist an Decomp by H2O

(Weinland, B 1903, 39, 3059.) Columbium oxychloride, CbOCla.

Attracts H₂O from air without deliquescing

and decomposed. Decomp. with H₂O with evolution of heat. Insol. in hot or cold HCl+ Aq. Sol by long contact with H2SO4 to a cloudy hound, which clears up on warming but soon separates out Cb₂O₃. Sol. in cold KOH+Aq and hot K₂CO₃+Aq. (Rose) Sol. in alcohol, from which it is precipitated

by ether. (Blomstrand.) 3H₄O, Cb₂O₄, HCl. Z. anorg. 1894, 7. 97) Sublimate, (Smith.

Columbium oxychloride rubidium chloride, CbOCl₃, 2RbCl.

Decomp, by H₂O, (Weinland, B. 1906, 39, 3057

Columbium oxyfluoride, ChOF-, (Joly, C. R. 81, 1266)

Columbium oxyfluoride with MF.

See Fluoxycolumbate, and Fluoxyhypocolumbate. M.

Columbium oxysulphide, Cb2OS2.

Insol. in boiling IICl+Aq. Slowly decomp. into Cb₂O₄ by boiling with HNO₅ or aqua regia. Insol. in boiling dil. H₂SO₄+Aq. Converted into columbic sulphate, sol in H₂C by boiling cone H2SO4. Sl. sol in hot HF. Insol in boiling K₂S+Aq. (Rose, Pogg. 111. 193.)

Copper, Cu

Copper is not attacked by distilled H₂O, or by NH4NO2, KNO2, or (NH4)2SO4+Aq, or by a mixture of those salts in solution. (Muir. cited by Carnelly, Chem Soc. 30. 1.)
Distilled H₂O has slight action on Cu. 100

eem H₂O dissolved from 2 so dem Cu from 0 035 mg Cu in one hom up to 0 280 mg in 72 hours, 100 ccm, H₂O dissolved 0 44 mg, from 6 sq dcm, in 48 hours. Presence of solder diminishes solubility about one-half. At 90-100° the amount dissolved is about onehalf that at ord temp (Carnelley, Chem. Soc 30. 1.) 100 ccm. distilled H₂O dissolved only 1

mg. Cu from 11 8 sq. cm, during a week, while air free from CO2 was conducted through the solution When the air contained CO₂, 3 m were dissolved. (Wagner, Dingl. 221, 259) 100 l. sea water dissolved 12.96 g Cu from

1 sq. m. (Calvert and Johnson, C. N. 11. 171

Solubility in H2SO4.

Not attacked by dil. H₂SO₄+Aq (Vogel, Schw. J. 32, 301.

Action of H₂SO₄ at ordinary temp. is ver slight even after a long time. (Barruel, J. Pharm. 20. 13 [1834].)

H₂SO₄ has no action below 130°. (Calvert and Johnson, Chem. Soc. 19, 438.) H2SO4 acts slightly even at 20.

16.3 g. H₂SO₄ (1 843 sp. gr.) dissolved the following amts, from 3 g Cu, having a surface of 65 sq cm at the given temp.

Temp	Time	% Cu dissolved
19°	14 days	About 6
60	120 min.	2 5
80	30 "	1.5
100	30 "	3 1
124	30 "	22 7
130	30 "	32 6
137	30 "	35 0
150	30 "	69 2
170	10 "	51 92
195	2 "	53 5
220	1/4 "	70 57
270	few seconds	nearly 100

292 COPPER

With dilute acid the action was much less violent, as is seen in the following table-

Tem	Time *	And	Sp gr.	% Cu dissolved
100° 100 100 100 130 130 130 165 165	30 min. 30 " 30 " 30 " 30 " 30 " 30 " 30 " 30 "	H ₂ SO ₄ 2H ₂ SO ₄ , H ₂ O H ₂ SO ₄ , H ₂ O	1 843 1 8295 1 780 1 620 1 843 1 780 1 620 1 843 1 780 1 620	2.380 0 585 0 32.6 1.18 0 70 16.5 2.7

(Pickering, Chem. Soc. 33, 112.) Cu is very sl. attacked by cold HCl+Aq o

1.12 sp. gr , but somewhat more on warming Even less sol. in dil: HCl+Aq. (Lowe, Z anal 4.361.) Sol. in warm conc HI+Aq. (Rose.)

Slowly attacked by H2SO3+Aq. (Causse Bull. Soc. (2) 45. 3.)

More or less sol, in all dil, mineral acids and also in organic acids, as acetic, tartaric, etc when supply of air is afforded; but absolutely msol. in the latter acids when air is wholly excluded. The importance of this fact in the use of Cu cooking utensils is manifest. Easily attacked by ord HNOa+Aq

With very conc HNO3+Aq (sp. gr. 1.52) 1 becomes passive, as in the case of Fe.

Pure dil. HNO₂+Aq of 1 07 sp. gr. or les does not attack Cu at 20°, but if NO₂ or KNO2, is added the action begins at once. I HNO1+Aq is more conc the Cu is attacked HNO1+Aq of 1.108 sp. gr. begins to act a

, and of 1.217 sp. gr. at -10°. HNO₄+Aq of 1.512 sp. gr attacks Cu vio-lently at 20°, but action soon ceases on account of formation of a crust of Cu(NOs): insol, in pure HNO. (Millon, A. ch. (3) 6

Éasily sol. in 2N-HClO₁+Ag at 50° (Hendrixson, J. Am. Chem. Soc. 1904, 26 756)

Not appreciably sol in anhydrous HF. (Poulenc, A ch. 1894, (7) 2. 12.) When in contact with the air. Cu is soon

oxidised by acids, alkalies (especially NH₂OH +Aq), and many fatty bodies.

Sol. in (NH4)2CO2+Aq. (Traube, B. 18. 1887.) Slowly sol in NHOH+Aq, (Schönbein,

A B. 1856, 580.) Sol. in KI+Aq when warm and conc. (Rose.)

When finely divided, Cu is easily sol, in hot $FeCl_s + Aa$.

Action of dilute solutions of salts on solubility of Cu in H2O.

100 ccm. solution of the following salts dissolve the amts of Cu given below, from a surface of 1 sq. dem. in 48 hours.

-1			
5	Salts	G salt dissolved in 100 ccm. H ₁ O	Mg. Cu dis- solved
	H ₂ O		0.11
	KNO;	0 01 0 05 5.00	0 07 0 13 0 16
-	NaNO ₃	0 05 5 00	0 18 0 19
of .	CaSO ₄	0 05	0 11
5	K _i SO ₄ {	0 05 5.00	0 12 0 28
3,	MgSO ₄	0 05 5 00	0 16 0 34
d , y y	NagCO ₃	0 01 0 05 5.00	0 05 0.11 2 80
е	K ₂ CO ₂	0.05 5 00	0 14 2 35
s	NaCl {	0 01 0 05 5 00	0 05 0 18 7 50
r f	KCI	5 00	8 17
t t	(NH ₄) ₂ SO ₄	0 05 5 00	0 66 28.50
2,	ÑH,NO:	0.01 0.05 5.00	0 17 0 66 60 00
3.	NH,Cl {	0 05 5 00	0 92 158 75

At 100° the action of KNO, K2SO, and NH4NO1 is diminished, while that of (NH4)2SO4, Na2CO3, and NaCl is increased. Tables are also given for mixtures of the

above salts. (Carnelley, Chem. Soc 30, 1.) Solubility of Cu in dilute salt solutions. 11.8 sq. cm. Cu were used, and the action continued one week, while air with or without CO2 was passed through the solution con-

tinually.

solved the given amts. Cu

Salt		G salt dis solved in 100 ccm. H ₂ O	Mg Cu dis- solved with- out CO ₂	Mg Cu dissolved with CO ₂
NaC KC MgC NH ₄ (K ₂ SC KNC Na ₂ C NaOl CaO ₄		0 50 0 50 0 83 1 00 1 00 1 00 1 00 0 923 sat.	4 4 5 904 0 0 0	115 115 112 138 4 3
	- 1			

(Wagner, Dingl. 221, 260)

Distilled H₂O dissolved no Cu from 420 sq. mm in 150 hours at ord temp NH4NOs+Aq with less than 0.4 g, per litre

showed the same result. KNO3+Aq or (NH4)2SO4+Aq containing 0.1 to 0 2 g per litre dissolved no Cu. H₂O containing carbonates+nitrates, car-

bonates+sulphates, or chlorides+nitrates also dissolved no Cu. NH4NO3+Aq containing 0.4 g. per litre

dissolved 3 mg. per litre after 150 hours contact. From a surface of 2100 sq. m. of Cu, H₂O

charged with CO2 at ord, pressure, and containing the following salts in solution, dissolved the given amts Cu. in 120 hours

Salt	G salt dissolved in 11 H ₂ O	Mg Cu diasolved
H ₂ O K ₂ CO ₃ CaCl ₂ NH,NO ₂ NH,NO ₂ K ₂ CO ₃ + NH,NO ₃ NH,NO ₃ NH,NO ₃ + CaCl ₃	0 2 0 2 0 02 0 02 0 04 0 1 0 02 0 04 0 2	1 0 0.2 1 80 1.40 1.40 1.00 0.1

From a surface of 2100 sq m., H₂O charged with CO2 at pressure of 6 atmos, dissolved 0.6 mg in 48 hours.

H2O when charged with CO2 at 6 atmos. and containing; 16 mg. NH₄NO₃ per litre, dissolved 0.8 mg. in 48 hours

80 mg. NH4NO1 per litre, dissolved 1.4 mg, in 48 hours. 40 mg K₄CO₃, per litre, dissolved 1.2 mg in 48 hours. (Muir, Proc. Soc. Manchester,

15. 31.) Sol. in KCN+Aq. (Goyder, C. N. 1894,

A solution of (NH4)2S2O8 containing 0.829 g. 1900, (7) 19. 54.)

100 ccm. solution of the following salts dis- in 110 cc. dissolves 0.2050-0.2279 g. Cu. (Turrentine, J. phys Chem 1907, 11. 625.) Sl. attacked by hquid NH₃ (Franklin, Am. Ch. J. 1898, 20, 827,)

- Amts. Cu dissolved by action of various oils on 8 sq. in Cu by 10 days' exposure and subsequent 67 days-

	Amt. Cu dis scived in 10 days	Amt Cu di-solved in subsequent 67 days
Linseed oil . Olive oil . Colza oil . Almond oil .	0.3000 grain 0.3200 " 0.0170 " 0.1030 "	0 2435 grain 0 0200 " 0 1230 " 0 1170 "
Seal oil Sperm oil . Castor oil	0.0485 " 0.0030 " 0.0065 "	0 0315 " 0 0575 " 0 0035 "
Neatsfoot oil Sesame oil . Paraffine oil .	0 1100 " 0 1700 " 0.0015 "	0.0015 "

(Watson, C. N 36, 200.)

Qualitative results of the action of various oils on Cu are also given by Thompson.

(C N 34. 176, 200, 219.)

½ ccm. olere netd dissolves 0 0157 g Cu in 6 days. (Gates, J. phys Chem. 1911, 15, 143 j

Sol in an alkaline solution of gelatine (3.54 %) copper gauze dissolved in 48 hours (Lidoff, C. C. 1899, II 471)

Cuprous acetylide, Cu₂C₁,

Decomp. by heating with H₂O or KCN+ Aq. Decomp. by HNO₃. (Keiser, Am. Ch. J. 1892, 14. 289)

Not decomp. by H2SO4, NH4OH, KOH + Aq or acetic acid, even on warming. The dry salt is sol. in very dil. HCl+Aq without evolution of gas. Sol. in conc. KCN+Aq (Böttger, A. 1859, 109, 356.)

Cupric acetylide, CuC2.

Easily sol. in HCl. Turns brown in the air, and becomes insol. in acids. (Phillips, Z. anorg. 1894, 6. 241.)

3Cu₄C₈O+2H₂O. Solubility as that of Cu₈C₁₇H₄O₃. (Soderbaum, B. 1897, **30**. 764.) Cu₈C₁₇H₄O₄. Insol in H₂O.

When dry is violently decomp, by cone, H2SO4 or not too dil. HNO4. Rapidly decomp. by warming with dil. acids, especially HCl. Insol, in NH4OH+Aq in absence of air,

partially sol, in presence of air. Insol, in organic solvents, (Soderbaum, B. 1897, 30, 762.)

Cuprous acetylide iodide, Cu₂C₄I, CuI. Ppt. (Berthelot and Delépine, A, ch. Cupric arsenide, CusA82.

(Remsch, J pr. 24, 244.) Cu₄As₂. (Gehlen.) Cu₃As₂ Ppt. Decomp. by acids. (Kane,

Pogg. 44, 471) Min. Domeukite. Insol in HCl Cu₃As +Aq; sol in HNO: Cu.As. Mm Algodonite. CuAs. Min Darumnute

Cuprous azomide, CuNs. Insol. in H₂O. (Curtus) Sensitive to sunlight, (Wohler, B; 1913, 48, 2053)

Cupric azoimide, basic, CuO, CuNs Insol. in H₂O. (Wöhler, B. 1913, 46, 2055.)

Cupric azoimide, CuNs.

Very explosive Very sl sol in H₂O. Decomp by boiling with H₂O. (Curtus, J. pt 1898, (2) 58. 296.)

Copper azoimide ammonia, CuN₅, 2NH₂. Put Insol in H₂O Easily sol in dil acids, (Dennis, J Am Chem. Soc 1907. 29, 19)

Copper boride, Cu₁B₂. (Marsden, J. B., 1880, 330.)

Cuprous bromide, Cu2Br2

1 l.H₂O dissolves at 18°-20°. 0 4320 milimols bromme. cupric copper. 0 1061 cuprous copper. (Bodlander, Z. anorg, 1902, 31, 460.)

Sol. in HBr, HCl without decomp., or HNOs+Aq with decomp, also in NHcOII +Aq. Insol. in boiling cone. H₂SO₄ or HC₂H₂O₃+Aq. (Berthemot, A. ch. 44, 385.) Sol. in H₂SO₃+Aq. (Lean and What-mough, Chem Soc 1898, 73, 151.) Sol. in NaCl. and Na₂S₂O₃+Aq. (Re-

nault, C. R. 59. 319)

Solubility of Cu₂Br₂ in KBr+Aa All values recorded in millimols per litre.

KBr	Total copper	Cupne	Cuprous
25 40 60 80 100 120 500	0 119 0 200 0 310 0 423 0 5836 0 6934 8 719	0 012 0 013 0.025 0 012	0 107 0 187 0 285 0 411 0 5836 0 6934 8.719

(Bodlander and Storbeck, Z anorg 1902, 31.

Difficultly sol, in methyl acetate (Naumann, B. 1909, 42, 3790) Sol in ethyl acetate. (Naumann, B. 1910. 43.314)

Insol in acetone (Naumann, B 1904, 37, 4329, Eidmann, C C 1897, II, 1014.) 100 g. acetonitule dissolve 3.86 g Cu₂Br₂ at 18°, (Naumann and Schier, B 1914, 47. 249)

Sol, m pyridine. (Naumann, B. 1904, 37. 4609) Mol. weight determined in pyridine. methyl and ethyl sulphides (Werner, Z. anorg 1897, 15. 19, 26, and 28)

Cupric bromide, CuBr₂.

Deliquescent. Very sol in H₂O. Insol in benzene. Very sei in 1120. Inisol in benzene. (Franchimont, B 16. 387.) Very si attacked by cold or even hot H₂SO₁ (Viard, C. R. 1902, **135**, 169.) Moderately sol in liquid NH₃ (Horn,

Am Ch. J. 1908, 39. 219) 100 g. 95% formic acid dissolve 0 16 g at 21° (Aschan, Ch. Z 1913, 37, 1117) 100 g acctomitule dissolve 24 43 g. CuBr. at IS°. (Naumann and Schier, B 1914, 47.

Sol in henzonitrile. (Naumann, B. 1914. 47, 1369) Sol in methyl acetate. (Naumann, B.

1909. 42, 3790) Sol, in acctone. (Naumann, B. 1904. 37. 4328.) Sol. in acetone with a brown color. (Eid-

mann, C C 1899, II. 1014.) +2H₂O(?) (Berthemot, A. ch. 1830, 44, 385) +4H₂O Very sol in H_{*}O (Sabatier, Bull Soc 1894, (3) 11. 677.)

Cupric hydrogen bromide, CuBr2, HBr+ 2H₂O

Decomp. by H₂O (Sabatier, Bull, Soc. 1894, (3) 11. 681) +10H₂O. (Weinland and Knöll, Z. anorg. 1905, 44. 116.)

Cupric lithium bromide, CuBr₂, 2LiBr+6H₂O. Very hydroscopic. (Sementschenko, Z anorg. 1899, 19. 336) Very hydroscopic; decomp (Kurnakoff, C. C. 1899, I. 16.) decomp. by H₂O.

Cupric potassium bromide, CuBr2, KBr.

Decomp. by H2O. (Sabatier, Bull. Soc. 1894. (3) 11, 683.)

Cuprous bromide ammonia, Cu₂Br₈, 2NH₈.

Stable when dry. Easily sol in HNO₂ and NH₂OH+Aq. Other mineral acids and acetic acid separate Cu. Br. (Richards, Z. anorg, 1898, 17, 245.)

Cu₂Br₂, 6NH₃. (Lloyd.) Cu₂Br₂, 3NH₃. (Lloyd, J. phys. Chem. Cupric bromide ammonia, CuBr₂, 2NH₂
Sol m NH₄Br+Aq without decomp
(Ruchards, B 23, 3790.)
3CuBr₂, 10NH₃. Decomp by H₂O
(Ruchards, Am. Ch J. 15, 651)
CuBr₃, 3NH₃ Completely sol m a little

H₂(), but is decomp. by dilution. Insol. in alcohol (Rammelsberg, Pogg 55, 248.)

CuBr₂, 4MH₂+H₂(). 100 pts H₂() disolve 69.03 pts. CuBr₃, 4MH₄ at 25° (Pudschies, Dissert).

CuBr₃, 5NH₃. As above. (Rammels-CuBr₃, 5NH₃.

berg.)
CuBr₂, 6NH₂. Sol. in small amts. of H₂O, but decomp. on dilution. (Richards.)

Cupric bromide nitric oxide, CuB12, NO. Decomp. by H₂O. (Manchot, B. 1914, 47. 1807.)

Cuprous chloride, Cu₂Cl₂

1.53 g. Cu₂Cl₂ dissolve in 100 g H₂O at 21.5°; 1.55 g. at 26.5°. (Kremann and Noss, M. 1912, 33. 1206)

Solubility of Cu₂Cl₂ in H₂O in an atmosphere of hydrogen, Solubility is recorded in mg-atoms per l.

t°	Total Cu	CuCls by analysis	Cl	Cu ₂ Cl ₂ eale	Cu ₂ C ₁ : bv analys:
20 2 19 6 19 3	2 919	2 124 2 254 2 294 2 245	5 525	0 655	0 474

(Bodlánder, Z. anorg. 1902, 31. 12)

Solubility of Cu_2Cl_2 in H_7O in an atmosphere of CO_2 . Solubility is recorded in mg-atoms per I.

t°	Total Cu	CuCl ₂ by analysis	CI	CuaCla by analysis	CurCle cule
	2 818 2 805 2 880	2 243	5 430	0 525 0 516 0 301	0 562 0 602
19 7			5.390	0.336	0 667

(Bodlander, l. c.)

Sol. m conc. HCl+Aq; msol in dil HNO₃, or H₂SO₁+Aq. Not attacked by cold conc. H₂SO₄, and only al. on warming, Reserted, B. 12. 954. Sol. in RHO,H+Aq; sol. in hot NaCl, KCl, FeCl₂, ZnCl₃, MnCl₃, etc. +Aq. 1 mol. NaS,SO₄ m aqueues solution dissolves 1 mol. Cl₂Cl₃ (Winkler, J. pr. 88. 428.) Sol. m KI, 1₂, KCN, or (VH₀)SO₄+Aq. (Renault, C. R. 59. 558.)

Solubility in HCl+Aq at 17°. Cu₂Cl₂ = ½ mols. CuCl₂ in mgs. in 10 ccm. solution. HCl=mols. HCl in ditto.

Cu ₂ Cl ₂	HCI	Sp gr.
0 475 1.4 1.575 4 5 8,25 11.5	8 975 15.7 18 2 34 5 47.8 57 0	1.050 1.080 1.135

(Chatelier, cale, by Engel, A. ch (6) 17, 377.)

Solubility of Cu₂Cl₂ in HCl+Ac at 0°.

Cu:Cl:	нсі	Sp gr.
1 5 2 9 8 25 15 5 33.0	17.5 26.0 44.75 68.5	1 049 1 065 1 132 1.261

(Engel, l, c,)

Freshly pptd Cu₂Cl₂ is sol in H₂SO₃+Aq, (Lean and Whatmough, Chem. Soc. 1898, 73, 150.)

Sl. soi. m normal NH_cOH+Aq only by shaking several hours, a 0.02 normal solution of cuprous copper being obtained. (Gaus, Z. anorg. 1990, 25, 258.) Insol. m Na₂S_cO_c+Aq. (Siewert, Gm. K.

5. 1, 893.) Sol in alkyl triphosphites. (Arbusoff, C. C 1906, II 750.)

Solubility in FeCl₂, 4H₂O+Aq at 21.5°.

l ₂	In 100 g. H ₂ O		Solid phase
_	g FeCl:	g Cu ₂ Cl ₂	Solid phase
2 2 7 0,,,, o., o., o., s-, 8.	6 015 11 62 16 30 26 305 29.35 33 125 43.75 54 00 66 40 73 20 71 895 69 34 65 10	1 537 1 33 1 81 3 11 7 125 8 06 9 565 12 44 17 04 21 60 22 20 21 655 11 895	Cu ₂ Cl ₂ "" "" "" "" "" "" Cu ₂ Cl ₂ +FeCl ₂ , 4H ₂ O FeCl ₃ , 4H ₂ O
+	<u> </u>		

(Kremann and Noss, M. 1912, 33, 1208.)

Solubility of Cu₂Cl₂ in KCl+Aq at to. De-Solubility of Cu₂Cl₂+KCl in H₂O at 22° --Continued

0.009458

termined in an atmosphere of CO ₂ ,				
to.	g atoms Cu per l			
18.3	0 05	0 002411		

19 2 16.4	1.0 2.0		0.0	970 840		
(Bodländer	and Storbeck, 17.)	z	anorg	1902,	31.	-

Solubility of Cu2Cl2 in KCl+Aq at to. Determined in an atmosphere of CO2. All values recorded in millimols per litre.

-						0 1451
t°	KCI	Cupric	Total	Cuprous	C1	0.1155
		copper	ootibei	cale		0 1139
						0.0953
20°	0	2.222	2 851	0.629	5 436	0 0735
19	1	1 901	2 385		5 287	0 0555
19	2	1 571	2 150			0 0453
19	2.5	1.421	1 955			0 0366
19	3	1.523	1 983	0 460	6.247	0 0314
16	5	1.008	1 522	0 514	7 525	0.0285
18	10	0 475	1.236	0 761	11 735	0.0265
20	15		1 344	1 022		0 0220
19	20	0 324	1 446	1.122	21.356	0 0193
19	30	0 1308				0 0176
18	50	0 1088	2 411	2 302		0 0193
16	100	0	4 702	4 702		0 0160
16	200	l ō	9 485	9 485		0.0124
19	1000		97.0	97 0		0.0058
16	2000		384.0	384.0		0 0000
			00210	001,0		0 0000

(Bodlander and Storbeck, Z. anorg 1902, 31,

Solutions of 0.05=0.4 normal KCl dissolve Cu2Cl2 with the formation of KCuCl2; those of higher concentration with the forma-tion of K₂CuCl₂. (Bodlander and Storbeck, Z. anorg. 1902, 31, 41.)

Solubility of Cu₂Cl₂+KCl in H₂O at 22°.

G. m 1 g	of solution	Solid Phase
Cu ₂ Cl ₂	KCI	DOING 2 HARD
0.00115 0.00405 0.00861 0.0137 0.0219 0.0390 0.0484 0.0675	0.0387 0.0656 0.0824 0.0984 0.1133 0.1406 0.1530 0.1639	Cu _t Ol _s " " " " " " " " " " " " " " "
0.0719 0.0863 0.1043 0.1084 0.1021 0.1204 0.1332	0 1747 0.1839 0.2027 0.2018 0.2031 0.2095 0 2164	и и и и и

G m 1 g of solution		of solution	
	Cu ₂ Cl ₂	KCl	Solid Phase
	0 1621	0 2330	Cu ₂ Ci ₂
	0 1723	0.2384	"
	0 1907	0.2374	u.
	0 2148 0 2145	0.2506	Cu ₂ Cl ₂ +Cu ₂ Cl ₂ , 4KCl
	0.2149		Curcia+Curcia, 4KCi
			Cu ₂ Cl ₂ , 4KCl
			u
	0 1473		
	0 1399	0 2357	ü
	0.1439	0 2389	
	0 1451	0.2363	
	0.1155	0.2320	"
	0 1139	0 2350	"
	0.0953	0.2359	
	0 0735	0 2349	
	0 0555	0 2389	44
	0 0453	0 2404	и
	0 0366	0 2433	61
	0 0314	0 2503	41
	0.0285	0.2499	er er

0 2523

0 2628

0.2687 0.2698

0 2703

0.2706

0 2668 0 2632

0.2568

(Brönsted, Z. phys. Ch. 1912, 80, 208.)

4KCl+KCl

Solubility in NaCl+Aq.
Sat. NaCl+Aq dissolves 16.9 % Cu₄Cl₁ at 60°, 11.9 % at 40°, and 8.9 % at 11°.
15 % NaCl+Aq dissolves 10.3 % Cu₄Cl₂ at 90°, 6.0 % at 40°, and 3.6 % at 14°.
5 % NaCl+Aq dissolves 2.6 % Cu₄Cl₃ at 90°, and 1.1 % at 40.° (Hunt, Sull Am. J. (2) 49. 154).

Solubility in NaCl+Ag at 26.5°.

In 10	g H _z O	Solid phase	
CurClt NaCl		Some place	
1 55 3 15 7 30 40 60 49 10 57 21 41 40 18 70	10 80 20 70 27 00 36.48 44 14 55 95 50 90	CugClg " " CugClg+NaCl NaCl	

(Kremann and Noss, M. 1912, 33, 1210.)

1.057

342

1.425

Solubility	of Cu ₂ Cl ₂ in CuSO ₄ +Aq at t°.
Values	recorded in millimols per l.

t°,	Cone of CuSO:	Cupric	Total copper	Cuprous copper cale.	CI		
19 7 16 3 18 6 17 5 19 4 20 4 20 5 20 1	0.49375 0.9875 1 4812 1 975 2.4687 2 9625 4 9375	2 258 2 746 3 145 3 315 4 131 4 349 4 625 6 546	2 880 3.125 3 602 3.915 4 553 4 786 5 193 7.276	0 622 0 379 0 457 0 600 0 422 0 437 0 509 0 730	5 312 4 805 4 908 4 530 4 687 4 287 4 256 4 329		
(Bodl	(Bodlander and Storbeck, Z. anorg. 1902. 81.						

Insol. in SbCl₃. (Klemensiewicz, Bull. Acad. Crac. 1908, 6, 485) Sl. sol. in liquid NH₂. (Franklin, Am. Cb. J. 1898, 20, 827.) Insol, in alcohol. Sl. sol. in ether (Gehlen) Sol in quincline.

1.197 (Beckmann and Gabel, 598.5 anorg. 1906, 51, 236) Sol in pyridine. (Schroeder, Dissert. 1901.) 769.5 Insol in phosgene. (Eidmann, Dissert. 1.371 1899.) 940.5

Insol in acetone. (Naumann, B. 1904, 37, 4329.) Insol. in acetone and in methylal. (Eid-

mann, C C 1899, II, 1014.) Difficultly sol. in methyl acetate. (Naumann. B. 1909, 42, 3790) Insol in ethyl acetate. (Alexander, Dis- 337 5 sert 1899.) (Naumann, B. 1904, 37, 3601.) | 1 257 Difficultly sol. in ethyl acetate (Naumann, B. 1910, 43, 314.)

100 g. acctonitrile dissolve 13 33 g Cu₂Cl₂ at 18° (Naumann and Schier, B 1914, 47. 249) Sol, in benzonitrile. (Naumann, B. 1914.

47, 1369.) Sol in hot benzonitrile and other aromatic nitriles. (Werner, Z. anorg. 1897, 15.

Mol weight determined in pyridine methyl and ethyl sulphides. (Werner, Z. anoig 1897, 15. 19, 25 and 28.) Min Nantokite Sol. in HCl. HNOs, or NH₄OH+Aq.

Cupric chloride, CuCl2.

Deliquescent. 100 pts. H₂O dissolve 70.6 pts CuCl₂ at 0°; 100 pts. CuCl₂+Aq contain 100 pts. H₂O dissolve 76.2 pts. CuCl₂ at 16 1°, or 100 pts CuCl₂ +Aq sat. at 16.1° con-10 1, or 100 pts CuCu₁-rad sat. at 10.1 contain 43.25 pts. CuCl₂-tAq sat. at 17° contain 43.06 pts CuCl₂: Aq sat. at 17° contain 43.06 pts CuCl₂; at 31.5°, contain 44.7 pts. CuCl₄.

Coefficient of solubility 41.4+ CuCl₂ (Reicher and Deventer, Z. phys. 0.105t Ch. 5, 560.)

Sat. CuCl2 + Aq. contains at: -20° ~5° +12° 17° 32° 41 7 43 2% CuCla, 3738 8 39 3 39° 55° 680 73° 91° 44 0 46 5 47.9 48 6 51 0% CuCla. (Etand A ab 1904 (7) 9 536)

Sp. gr. of CuCl ₂ +Aq at 17.5°.						
% CuCl.	Sp gr	'é CuCl2	Sp gr			
5 10 15 20	1 0455 1.0920 1 1565 1,2223	25 30 35 40	1 2918 1 3618 1 4447 1 5284			

(Franz, J. pr. (2) 5, 274)

Sp. gr. of CuCl.+Ag at 22.9°, containing in 1000 g. H₂O, g. CuCl₂+2H₂O. 85.5 (= 1/2 mol.) 171 255.5 gt. CuCl2+2H2O

1.108 1.154 427 5 513 g, CuCl2+2H2O, 1.238 1.275 684 g. CuClo+2HoO. 1.341 g. CuClo+2HoO. 1.399

g. CuCl++2H+O.

1.026 1.449 Containing CuCl₂ (anhydrous).

67 5 (= 1/2 mol) 135 202 5 270 g. CuCl₂, . 1.059 1 114 1.165 1.213 405 472 5 g. CuCl. 1.299 1.30 540 607.5 675 g. CuCl2. 1 379 1.416 1.453

(Gerlach, Z. anal. 28, 468.)

Sp gr of CuCl2+Aq at 0° S=pts CuCla in 100 pts, solution; S1 = mols, CuCl2 in 100 mols, of solution.

S	81	Sp. gr
39 4170	S 00	1 4797
35 3839	6 82	1 4173
30.9255	5.65	1 3529
26 1129	4 51	1 2881
20 6697	3 36	1 2204
14 5820	2 23	1 1494
8 0732	1 16	1 0796

(Charpy, A, ch (6) 29, 25.)

Tables for 7°, 30.5°, 49 2°, and 65° are also given by Charny.

Sp. gr. of CuCl2+Aq at room temp., containing

21.349 33 027% CuCl₂. 12 006 1 1037 1 2154 1.3312 (Wagner, W. Ann. 1883, 18, 273.)

-										
Sp. gr. a		CuCl ₂ +Aq		ing M.	So	lubili	ty of	CuCl	2+Hg	Cl ₂ in H ₂ O at 35°.
М,	mols. 0	CuCl ₂ per Iu 0 05	ter.	075	28	HgC	2	% C	uCl ₂	Solid Phase
Sp. gr.	1 00120	8 1 0063	71.	009264		0	-1	44.		CuCl ₂₁ 2H ₂ O
M. Sp. gr.	0 10	0 20 4 1 03099		0 50 051479		$\frac{21}{37}$ $\frac{03}{30}$		33 26	07	1 2
M.	0.75	1 1 00000		1 0		4 47		23	31	"
Sp. gr	1.090912	2	1	120249	١.	50 47	1	21		CuCl ₂ +HgCl ₂
M.	1.5			2 0		52 44 52 54		19 18		HgCl ₂
Sp. gr.	1.17761			234551		52 81		18		
(Jones ar	id Pearce	, Am. Ch. J.	1907, 3	B. 717.)		51 03		14		44
S	p.grofC	CuCl₂+Aq a	t 25°.			19 50 23 87			94 64	ü
Concentra	tion of CuC	1/+Aq	Sp gr			8 51			51	41
	1-norm	1	1 062 1 031		(Scl	reino				nus, Proc. K Akad 5. 472)
	1/4 "		1 015 1 007		_8	olubi	hty	_		Cl m H ₂ O at t°
		ohys. Ch. 18 ur HCl+Ac	- 7			Cl p	er g hitton	100:	a per mois ₂O	
1 l. HCl pts. H ₂ O whereas	+Aq con dissolves 11 H₂O a	taining 45 p s only 290 g t 12° dissolv , 92. 353.)	ts HCl	to 100 at 12°,	t°	As CuCi,	As KCI	CuCl	KCI	
		Cl+Aq at	0° C	uCl ₂	39 4	0 120	0 10	5 58	9 93	CuCls, 2KCl 2HsO+ KCl
1/2	mols. m	milligramm	es in 1	0 cem	60 4	0 129 0 142 0 168	0 12	51 7 71	11 4 13 6 18 8	
	H.O.	A-111018. 110	1 m an	ю, шус					24 1	CuCls, KCI+KCI
CuCl ₂	HCI	Sum of equit	Sp gr	H ₂ O	1	0 214	1	9 84	28 7 1 91 5 44	CuCl ₂ , 2KCl 2H ₂ O + CuCl ₂ 3H ₂ O
91 75 86 8	0 4 5	91 75 91 3	1 490 1 475	8 73 8 74	50 1	0 233 0 241 0 246	0 05	0 13 7	6 90 7 63 8 49	CuCl _b , KCl+CuCl ₂ 2H ₂ O
83.2 79.35	7 8 10 5	91 89 85	1 458 1 435	8 64	72 6 64 2	0 255	0 08	3 16 8 14 9	8 35 11 6	CuCl ₁ , 2KCl 2H ₂ O + CuCl ₃ , KCl
68.4 50.0	20 25 37 5	88 65 87 5	1.389	8 56 8 47	72 8		1	14 8	1 50	CuCl ₂ , KCl CuCl ₂ , KCl
22 8 23 5	70.25 102 5	93 05 126	1 231 1 288	8 21 7 56	(1)	leyer	hoffe	r, Z.]	phys	Ch. 1890, 5, 102)
26.7	(Engel	154 7 A. ch (6) 17	1 323	6 77	Nas Nas	00 g. Ol (H₂O Rud	dissol	ve 72 . 6. 68	.6 g. CuCl ₂ +16. 0 g 34)
Not de	ecomp. by	cold H ₂ SC			80	lubil	ty o	f CuC	l_2+N	aCl m H ₂ O at 30°
Sol n NaCl+2	n NfI₄Cí Ao. (Bou	+Aq. Ver ssingault)	y sol 1	n cone		% NaC	1	% C	uCl ₂	Solid Phase
Solubil		Cl ₂ in NH ₄ C	l+Aq a	t 30°.	1	0 3 10		43 41	14	CuCl₂, 2H₂O
NH CI	ou č 1,	Solid	phase			4 28 6 41	. 1	41 39	40	и
29 5	0	NE	I ₄ Cl			10 25 12 02		36. 32	38	CuCl ₂ +NaCl NaCl
28 6	19 NE	LCI+CuCl	2NH	I, H₂O	l	12 25	: [32	40	и
	00	CuCl ₂ , 2N Cl ₂ , 2NH ₄ C	H ₄ Cl, H	₂ Ο		13 54		28 28		"
1		2E	I, 11107	OuO12,		15 40 18 44		16		и
0 4	3 95	$CuCl_2$, 2H₂O			20.61		11		"
(Schreine	emakers,	Z phys Ch.	1909. 6	6. 688.)		26 47	1	0		"
		l+CuCl₂ un			(Sc	hrein	mak	ers at 1900	nd de 9, 65 .	Baat, Z phys. Ch 586.)

Solul	oility of	CuCl ₂ in CuSO ₄ +Aq at 30°	Easily sol in accton	e. (Krug a	nd M'Elroy,
Compos	Composition of the solution		J. Anal. Ch. 6. 184.) Insol. m benzene.		
by wt	% by w	t Solid plase	Solubility in o	rganie solve	nts
CuCt ₂	20 32	CuSO ₄ , 5H ₂ O	Solvent	to.	Sat solution contains 1; CuCl ₂
6 58 15 68 25 67 39 48 42 77 42 47	13 62 8 93 4 77 3.21 2 89 2 90	CuSO ₄ , 5H ₂ O ₊ +CuCl ₅ , 2H ₂ O	Methyl alcohol	22 40 50 60	36 8 37 5 37 1 37 5
43 25 43 95	1 14 0	CuCl ₂₁ 2H ₂ O	Abs ethyl alcohol	0 19	32 0 35 7
		ers, Z. phys. Ch. 1909, 69. 561.)		20 38 50	35 9 38 5 41 7
1898, 5 SI s 1905, 6 Sol. Sol.	Insol in hquid NH ₃ . (Gore, Am Ch. J. 1898, 20. 827) SI sol in liquid HF. (Franklm, Z. anorg 1905, 46. 2.) Sol. in alcohol and ether Sol. in 1 pt strong alcohol.		Propyl alcohol	-15 19 37 57 62	26.8 30.9 30.7 30.3 30.5
pts. C alcoho Bruyn	uCl ₂ at l dissolv Z. phy	olute methyl alcohol dissolve 68 15 5°; 100 pts. absolute ethyl re 53 pts. CuCl ₂ at 15.5°. (de rs. Ch. 10. 783.) ler CuCl ₂ +2H ₂ O	Allyl alcohol	20 4 27 32	23 4 23 6 22 9 23 3
Solubil	Solubility of $CuCl_2+KCl$ m absolute alcohol at 25°		N-butyl alcohol	0 23	15 2 15 8
CuCh 1 27	Kči 0 28)	Solid Phase KCl+KCl, CuCl ₂		37 55 84 92	15 7 16 1 16 2 16 7
1 51 2 15 5 25 30 16 34 17	0 28; 0 2i;	KCl, CuCl ₂ "KCl, CuCl ₂ +CuCl ₂ , C ₂ H ₆ OH	Ethyl formate	-20 +24 37 50	10 2 9 4 7.4 7 2
34.45 34.29 33.97	0 21 0 21 0.00	CuCl ₂ , C ₂ H ₄ OH	Ethyl acetate	+20 40 72	3.0 2.5 1.3
		alden, J. Am. Chem. Soc. 1911, 33. 1032.) CuCl ₂ +KCl m acctone at 25°.	Acctone	-20 +8	18 4 18 8
CuCla	ке ке	Solid Phase	Isopropyl alcohol	32 70 84	11 0 28 3 28 7
0 34 0.48	0 38	KCl+KCl, CuCl ₂ KCl, CuCl ₂	(Étard, A. ch.		
1 50 2 06		и	See also under CuC	l ₂ +2H ₂ O.	
2.49	0 27	KCl, CuCl ₂ +CuCl ₂ , C ₃ H ₄ O	1 g CuCl ₂ is sol. ii at 18°. Sp. gr 18°/4 0.939. (Naumann, 1	n 181 g. me	thyl acetate
		alden, J Am. Chem Soc. 1911, 38. 1032.)	at 18°. Sp gr of sat.	in 249 g. e solution 18°	thyl acctate
100	g, of a	at. solution of CuCl ₂ in ethyl	(Naumann, B. 1904,	37. 3603.)	

100 g. of sat. solution of CuCl₃ in ethyl (Naumann, B. 1904, 37. 3603.) alcohol contains 33.97 g. CrCl₂. (Foote and Difficulty sol. in ethyl acetate (Nau-Walden, J. Am. Chem. Soc. 1911, 33. 1032.) mann, B. 1910, 43. 314.)

1 pt. sol, in 249.3 pts. ethyl acetate at 10°. | Solubility of CuCl₂+2H₂O in ethyl alcohol+ (Alexander, Dissert, 1899.) Solubility in acetone.

34.7 g. acetone dissolve 1 g CuCl₂ at 18°. Sp gr. of sat. solution 18°/4° ≈0.8154 (Naumann, B. 1904, 37, 4329.)

1.40 pts. are sol. in 100 pts acctone at 56°. (Laszczynski, B. 1894, 27, 2287.) Sol in acetone and methylal. 1 gram dis-

solves in 34.08 grams of acctone at 18°. (Eidmann, C. C. 1899, II, 1014.) 100 pts. absolute ether dissolve 0 043 g.

CuCl₂. (Bodtker, Z. phys. Ch. 1897, 22. Mol weight determined in pyridine and

methyl sulphide (Werner, Z. anorg 1897. 15. 20 and 25.) 100 g. sat, solution in acetonitrile contains

 1.57 g. CuCl. (Naumann and Schiel, B. 1914, 47, 249)
 Sl. sol. in benzonitrile, (Naumann, B. 1914, 47, 1369.)

Sol. in boiling dipropylamine. (Werner, Z. anorg, 1897, 15, 34.) Sol. in methane. (Ley, Z. phys. Ch 1897, 22, 81); (Castoro Z. anorg. 1899, 20, 61.)

+H₂O. (Datte, A ch. (5) 22. 551.) Sol, in H₂O with slight decomp. (Sabatier, Bull. Soc. 1895, (3) 13. 601)

+2H₂O. Deliquescent. 100 g. H₂O dis-solve 121.4 g. CuCl₂+2H₂O at 16.1°. (Ru-Aq, sol, at 35° contains 9.689 Mol. % CuCl₂.

" 15°

(Schreinemakers, C. C. 1911, II. 349.)

8.934 "

CuCl2+2H2O+Aq. sat. at 30° contains 43.95% CuCl₂. (Meerburg, C. C. 1904, II. 1362 43 95 g. anhydrous CuCl2 are desolved in

10 g. CuCl₂+Aq at 30°. (Sohreinemakers, Arch. neer Sc. 1910 [2], 15. 117.) 44.47% by weight anhydrous CuCl₂ is dis-solved in H₂O at 35°. (Schreinemakers and Thonus, Verh. k. Akad. Wet Amst. 1912, 21. 333.

Solubility of CuCl2+2H2O in ethyl alcohol +Ao at 11.5°.

Percent of ethyl alcohol	Grams CuCls dissolved
by volume	in 5 cc.
99 3	1 175
98 3	1 116
96 3	1 097
95 3	1 070
94 3	1 059

Anhydrous salt dissolves readily in absolute ethyl alcohol; CuCl+2H-O is precipitated by H₂O

Aq at 115° C. under addition of increasing amounts of CuCl2

P = Percent of ethyl alcohol by volume. G = Grams of CuCl₂ added.

Ce = Grams of CuCle in 5 cc. of the solution. $C_n = Grams of water in 5 cc. of the solution.$ calculated from

(1) the water content of the alcohol. (2) the water of crystallization which had gone into solution.

(3) the water held mechanically in CuCl-+2H2O.

P	G	Сw	Ce
89 3 90 3 91 3 92 3 94.3 95.3 96.3 97 3 98 3 99 3 ""	0 0000 "" "" "" "" 0 223 0.444 0 665 1 324 1 540	0 794 0 744 0 695 0 648 0 561 0 517 0 478 0 440 0 396 0 369 0 270 0 270 0 270 0 223 0 205 0 191	Ce 1 137 1 122 1 104 1 090 1 096 1 196 1 116 1 140 1 194 1 208 1 295 1 506 1 639 1 772 1 921 2 086
66	1 739 1 957	0 179 0.164	2 236 2 400
(77 - 3-14		CI 1000 00	FOO FOT 1

(Bödtler, Z. phys. Ch. 1897, 22, 506-507.)

100 pts. absolute ether dissolve 0 061 g CuCl.+2H.O. (Bodtker, Z. phys Ch. 1897, 22, 511.)

0.11 pts, are sol, in 100 pts, ether at " " 100 " " 35° 011 8.86 " " 100 " acetone " ... O°. ** " " 100 " " 13.5° ... 8.92 (Laszczynski, B. 1894, 27. 2286 and 2287.)

Solubility in organic solvents at to.

н			
	Solvent	t°	Pis of solvent required to dis- solve 1 pt CuClr+ 2HrO at to.
	Pure methyl nicohol Ethyl sicohol (85°) Pure sectone 9) pts ethyl slechol (88°) +10 pts Hs0	20° 18 9 20 3 19 6 22 1 20.0 21.8 23.0	7 3 7.6 11 6 11.9 43 6 44 2 9 0 8.5

Solubility in organic solvents	at t°.—	-Cont
Solvent	ţo.	Pts of solvent to dis solve 1 pt CuCl ₁ + 2H ₂ () at t°
80 pts abs alcohol +20 pts H ₂ O	$\frac{28}{20} \frac{1}{7}$	6 0 6 2 5 3
80 pts. scetone +20 pts. H ₂ O	23 1 21.8	5 3 5 6
80 pts acctone+20 pts methyl alcohol "	23.1 24.0	12.0 11 6
10 pts methyl alcohol +90 pts ethyl alcohol (98°)	24.2 25 0	5 4 5 1
20 pts methyl alcohol +80 pts. ord ether 80 pts abs alcohol +20 pts ord ether	24 1 22 4 24 1	15 1 15 7 8 8
Comm methyl alcohol 85 pts pyridine +15 pts H ₂ O	25 0 23.9 23 0 24 4	8 5 5 4 5 6 63 4
80 pts pyridine +10 pts H ₂ O 60 pts, pyridine +40 pts H ₂ O	23 6 27.3 28 0	63 7 26 7 26 2
75 pts, a ptcoline+25 pts H ₂ O 70 pts a ptcoline+30 pts H ₂ O	26.1 25.1 26.1	51 6 52.3 47.3
- per a president per mare	12012	1 4.10

(de Connok, C. R. 1900, 131, 59.)

Solubility in organic solvents. Sol. in propyl alcohol, hot glycol, hot glycerne, hot paraldehyde, hot crys. acetic acid, pure acetone, 30% methylamine+Aq, pure pyridine, pure a-picoline, acetonitrile; al sol in isobutyl and amyl alcohols, crystallizable formic acid, ethyl acetate; insol. in cold glycol, cold glycerne, cold paraldehyde, benzaldehyde, cold crystallizable acetic acid, ord. ether, abs. ether, hot and cold CS₂, cold annine, cold orthotoluidine, methylene chloride, ethyl iodide, propyl iodide, ethylene bromide, benzene, toluene, xylene, ligron, nitrobenzene, cold piperidine and essence of terebenthine. (de Coninck, C. R. 1900, 131. 59.) +5H₂O.

Aq. sol, at 35° contains 2.921 Mol. % CuCl₂.

(Schreinemakers, C. C. 1911, II. 349.)

Cuprous hydrogen chloride, CuCl.HCl. Sol. in H₂O. (Neumann, M. 1894, 15. 493.)

· Cupric hydrogen chloride, CuCl2, HCl+3H2O Decomp, by H2O. Sol, in HCl+Aq below 0° .(Engel, Č. R. 106. 273.)

Very sol in CuCl. 2HCl Deliquescent H₂O (Alexander, Dissert 1899.) +5H.O. Properties as above. (Sabatter, C R. 106, 1724.)

CuCl₂,3HCl. Sol in H₂O. (Neumann M. 1894, 15, 493.)

Cupric gold (auric) chloride, CuCl-, 2AuCl₂+6H₂O.

10% is sol, in H2O at 18° (Mylius, Z. anorg 1911, 70, 210.)

Cupric lithium chloride, CuCl2, LiCl+ 216H.O.

Decomp on air. Decomp. by dissolving in H₂O. Sol. in conc LaCl+Aq without decomp. Decomp. by alcohol. (Chassevant, A. ch. (6) 30, 33,) +2H₂O. (Meyerhoffer, W. A. B. 100, 2b.

Cupric mercuric chloride.

Easily sol m H₂O, (v Bonsdorff.)

Cupric mercuric potassium chloride, CuCl2, 3HgCl+, 6KCl+2H+O

Deliquescent in moist air. Sol. in boiling H₂O without decomp, and recrystallises if cooled slowly. Insol. in absolute alcohol. (v. Bonsdorff, Pogg. 33. 81)

Cuprous nitrosyl chloride, Cu₂Cl₂, 2NOCl. Very deliquescent and sol. in H₂O with immediate decomp. (Sudborough, Chem. Soc. 59, 658.)

Cuprous potassium chloride, Cu2Cl2, 4KCl. Sol. in H₂O (Mitscherlich, A. ch. 73, 384.) For solubility data, see Cu2Cl2+KCl under cuprous chloride.

Cupric potassium chloride.

CuCl₂,KCl. (Meyerhoffer, Z. phys. Ch. 3. 336.)

Sol, in H2O; only sl sol in conc. HCl+Aq.

(Groger, Z. anorg. 1899, 19, 330) CuCl₂, 2kCl+2H₂O. Sol. in H₂O and alcohol (Berzelius, Pogg 13 458.) The composition of the hydrates formed by this salt at different dilutions is calculated

from determinations of the lowering of the fr pt. produced by the salt and of the conductivity and sp. gr. of its aqueous solutions. (Jones, Am. Ch. J. 1905, 34, 322.)

For solubility data, see CuCl₂+KCl under cupric chloride

Cupric rubidium chloride, CuCl₂, 2RbCl.

Easily sol, in H₂O and HCl+Aq. (Godeffroy, B. 8. 9) +2H.O. Sol. in H.O. (Wyrouboff, J. B. 1887. 538.)

Cuprous sodium chloride. Very sol. in H2O.

Cupric sodium chloride.

Easily sol in cone NaCl+Aq. Sol, in alcohol of 0 837 sp. gr.

No double sult exists. (Schreinemakers and de Baat, Z phys Ch 1909, 65, 586)

Cupric thallic chloride, CuCla, 2TlCla Sol. in H₂O. (Willm, A. ch (4) 5. 55.) +6H₂O. Can be cryst, from H₂O. (Gewecke, A 1909, 366, 225)

Cuprous chloride ammonia, Cu2Cl2, NH2. (Lloyd, J. phys. Chem. 1908, 12, 399.) Cu₂Cl₃, 2M₃ Decomp by H₂O or acids, not by alcohol (Ritthausen, J pr 59 309) Cu₂Cl₃, 3MH₃ Decomp by H₂O or acids, not by alcohol (Ritthausen, J pr 59 309) Cu₂Cl₃, 3MH₃ (Lloyd, J. phys. Chem. 1908, 12, 399.) Cu. Cl., 6NH., (Lloyd, J phys Chem. 1908. 12, 399)

Cupric chloride ammonia, CuCla, 2NHa, Decomp by H.O. (Kane, A. ch. 72, 273) CuCls, 4NHs. Sol. in H2O. (Bouzat, C. R

1902, 135, 294) +H₂O (Cuprammonsum chloride) Sol. in H₂O and hot NH₄OH+Aq +2H₂O. Sol. in small amt, of H₂O. Cu(OH)₂ is pptd by dilution. (Bouzat, A ch. 1903, (7) 29. 350) CuCl, 5NHs. (Bouzat, A ch. 1903, (7) 29. 350.3 +11/2H₂O Sol, in H₂O. On dilution Cu(OH)₂ is pptd Sol in NH₄OH+Aq. solubility decreases as NH₈ concentration mercases. (Bouzat, A. ch. 1903, (7) 29, 350.) CuCl₂, 6NH₂, Completely sol in H₂O. (Rose, Pogg. 20, 55.) Sol. in H₂O but decomp. by great dilution

with potn, of Cu(OH). Insol in liquid NH2 (Bouzat, A ch. 1903, (7) 29, 350.)

Cuprocupric chloride ammonia, Cu2Cl2, CuCl2, 4NH2+H2O.

Decomp. by H₂O or alcohol. Abundantly sol. in NH₄Cl+Aq, but with partial decomposition (Ritthausen.)

Cupric chloride ammonia platmous chloride, CuCl₂, 4NH₃, PtCl₂. See Platodiamme cupric chloride.

Cuprous chloride carbon monoxide.

Cu₂Cl₂, 2CO +4H₂O. Very sol. in HCl (sp. gr. 1.19) with evolu-tion of CO. Sol. in NH₄OH+Aq. (Manchot and Friend, A. 1908, 359, 110) 2Cu₂Cl₂, CO+2H₂O. Insol. in H₂O (Berthelot, A. ch. 1856, (3) 46, 488. H₂O

4Cu₂Cl₂3CO+7H₂O. Insol. m but decomp, therewith very quickly,

in Cu2Cl2+HCl.

Cupric chloride hydrazine, CuCl2, 2NoH4, Easily decomp (Hofmann and Marburg, A. 1899, 305, 222)

Cuprous chloride mercuric sulphide, CuaCla. 2HgS

Insol. in HaO, sol in conc. hot HCl+Aq, not decome by boiling dil H₂SO₄+Aq, but decomp, by cone, HaSO4. (Heumann, B. 7. 1300)

Cuprous fluoride, CuoFo.

Insol, in HaO or HF Sol in conc. HCl+ Aq, from which it is precipitated by H₂O. Insol in alcohol (Berzelius, Pogg. 1, 28.)

Decomp. by H₂O into sol CuF₂ Sol in
boiling HCl+Ac and in HNO₄+Ac. Only sl attacked by warm H2SO4 (Poulenc, C. R. 116, 1447.)

Curric fluoride, CuF.

Easily takes up H₂O to form CuF₂+2H₂O. Sol. in HCl. HNO, or HF+Aq. (Poulenc, C R. 116. 1448)

Solubility at 25° in HF+Aq

Normality of HF+Aq	g atoms Cu in 1000 c of solution
0.12	0 0307
0.28	0 1164
0.57	0 2494
1.08	0 388
2.28	0 463

Solubility is decreased by presence of KF (Jaeger, Z. anorg, 1901, 27, 29.)

Insol. in liquid NH₂ (Gore, Am. Ch. J. 1898, 20, 827,) Insol in methyl acetate (Naumann, B. 1909, 42. 3790), ethyl acetate. (Naumann, B 1910, 43, 314.)

Iusol in acetone (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4329.) +2H₂O. Sl sol in cold, decomp. by hot H₂O, (Berzelius.)

Cupric hydrogen fluoride, CuF v. 5HF+5H o). Deliquescent.

Easily sol, in H₂O and dil acids, Sol in NH,OH+Aq with decomp (Bohm, Z. anorg, 1905, 43, 329)

Cupric potassium fluoride, CuF2, 2KF, Ensily sol in H₀O.

CuF₃, KF. Very sl. sol m H₂O; sl. sol, m dil. acids (Helmholt, Z. anorg. 3, 115.)

Cupric rubidium fluoride, CuF2, RbF. As the K salt, (Helmholt.)

Cupric silicon fluoride.

See Fluosilicate, cupric.

Copper	stannic	fluo	ride.
See F	luostanı	nate,	copper

Copper tantalum fluoride. See Fluotantalate, copper.

Copper titanium fluoride. See Fluotitanate, copper.

Copper tungstyl fluoride. See Fluoxytungstate, copper. Copper zirconium fluoride.

See Fluozirconate, copper. Cupric fluoride ammonia, CuF2, 4NH3+

5H₀O, Decomp. rapidly in the air. Easily sol. in H₂O

Decomp. by boiling with H2O with evolution of NH3. Easily sol, in dil. acids. (Bohm, Z. anorg. 1905, 43. 333.)

Cuprous hydride, CuH.

Insol, in H2O. Sol, in HCl+Aq. (Wurtz, C. R. 18, 102)

Sol in warm cone, HCl with decomp. (Bartlett, Am. Ch. J. 1895, 17, 187.)

Cupric hydride, CuH2.

Sol. in HCl with decomp. (Bartlett, Am. Ch. J. 1895, 17, 187.)

Copper hydrosulphide, 7CuS, H2S.

(Lander and Picton, Chem Soc. 1892, 61. 120

H.S. (Linder and Picton.) 22CuS, H.S. (Linder and Picton.)

Cuprous hydroxide, Cu2O, xH2O.

Sol. in acids as cupric salt. Insol. in NaOH, or KOH+Aq. Sol. in NH₄OH, and (NH₄)₂CO₅+Aq; sol. in Na₂S₂O₂+Aq.

Cuprocupric hydroxide, CuOH, 3Cu(OH): +3H2O.

Sol. in acids. (Francke, Dissert. 1907.)

Cupric hydroxide, 3CuO, H2O.

Insol, in H₂O or dil. alkalies. Easily sol, in warm NH,Cl+Aq. (Rose.) Much more difficultly sol. than CuO₂H₂ in KOH+Aq. (Chodnew, J. pr. 28, 220.) True composition is 6CuO, H₂O.

See also Cupric oxide.

CuO2H2. Insol. in H2O, but decomp. into 6CuO, H₂O by being boiled therewith. Extremely easily sol in acids.

Sol. in NH4OH, and NH4 salts+ Aq

Solubility in NH₄OH+Aq at 25°.

NH2 nerw.	g, Cu per 1	equiv CuO-H ₂ per l
2 63	3 05	0 096
2 00	2 12	0 067
1 32	1 08	0 034
2 540	6 26	0 197
1 965	6 28	0 166
1 280	4 13	0 129
0 973	3 36	0 106
0 870	3 08	1 0 097
0 540	2 36	0 074
0 391	2 04	0 064
3 176	8 06	0.253
2 070	5 72	0 180
1 272	4.75	0.149
0 451	2 54	0 080
0 320	2 13	0.067

The non-agreement of the results is due to the presence of different modifications of

(Bonsdorff, Z. anorg, 1904, 41, 182.)

Solubility in NH₄OH+Aq at 18°.

NH ₂ mols per l	Cug atoms per l.
0.20	0 00054
0.50	0.0033
1.0	0 0109 .
1.5	0 0204
2.0	0 0314
2 5	0.0442
3 0	0 0548
4 0	0.0784
5.0	0 1041
6.0	0.1254
8 0	0 1599
9.96	0 1787

(Dawson, Z. phys Ch 1909, 69, 111.)

Sol. in cold NaOH, or KOH + Aq (Proust); but CuO is pptd on boiling (Berthollet); is not pptd. (Chodnew, J pr 28. 220.) Insol, in NaOH or KOH+Aq unless they

contain organic matter (Berzelius). This is contradicted by Volcker (A. 59. 34).

Entirely sol. in cone. KOH+Aq, but solution is decomp, by heating (Fremy, A. ch.

(3) 12. 510.) Sol. in NaOH+Aq (70% NaOH). (Low, Z. anal, 9, 463.)

The solubility in NaOH of CuO2H2, prepared either from CuSO, or Cu(NOs)2, deoreases with decrease in concentration of the base. The solubility of CuO2H2 in NaOH is only very slightly affected by the addition of sodium or potassium carbonate. (Fischer, Z. anorg, 1904, 40, 41,)

acal Ba(OH); and NaOH solutions at 18°.

Solvent contains per litre	Cu concentra tion g atoms per 1
1 mol, NH ₃ +0 mol, Ba(OH " +0 0025 " " +0 005 "	0 01090 0 00907 0 00801
" +0 01 " " +0 02 "	0 00633
2 mols, NH ₂ +0 mol Ba(OH "+0 01"	
4 mols, NHs+0 mol, Ba(OH)2 0.0784
" +0 01 " 1 mol NH ₄ +0 mol. NaOH	0.0147
" +0 01 " " +0 02 "	0.00766
" +0 03 "	0 00531
" +0.05 " " +0.10 "	0 00456
(Dawson, Chem. Soc. 1909,	
Solubility of crystalline CuO ₂ H acal salt solutions at	ın ammonı- 18°.
Solvent contains per litro	Cone of dis- solved Cu g atoms per I
1 mol NII1	0 0109
0 05 mol. NH ₃ +0 01 mol (NH ₄) ₅ SO ₄ +0 025 "	0 00129
0 1 mol NH ₂ +0 01 mol (NH ₄) ₂ SO ₄	0 00311
" +0 025 "	0 0108
" +0 03 "	0 0233
0 2 mol. NH ₄ +0 00 mol (NH ₄) ₂ 8O ₄ +0 01 "	0.00054
" +0 025 "	0.0175
" +0 05 "	0 0384
40.10	0.0690
0 5 mol NH ₃ +0 00 mol (NH ₄) ₂ SO ₄ " +0 01 "	0.0127
" +0.025 "	0.0284
" +0 05 "	0.0536
" +0 10 " " +0 20 "	0 1013
1 0 mol NH2+0 00 mol (NH4)2SO4	0.0109
" +0 01 "	0.0210
" +0 025 " " +0 05 "	0.0386
" +0 10 "	0.1185
" +0 20 "	0 2275
" +0 40 "	0 4135
	0.0314
" +0 01 "	0.0462
" +0 01 " " +0 025 " +0 05 "	0.0462 0.0605 0.0886
" +0 01 " " +0 025 " " +0 05 " " +0 10 "	0.0462 0.0605 0.0886 0.1468
" +0 01 " " +0 025 " " +0 05 " " +0 10 " +0 20 "	0.0462 0.0605 0.0886 0.1468 0.2591
" +0 01 " +0 025 " +0 05 " +0 10 " +0 20 " +0 40 "	0.0462 0.0605 0.0886 0.1468 0.2591 0.4718
" +0 01 " " +0 025 " " +0 10 " " +0 10 " " +0 20 " " +0 20 " " +0 40 " " +0 40 " " +0 40 " " +0 40 "	0.0462 0.0605 0.0886 0.1468 0.2591
" +0 01 " " +0 025 " " +0 05 " " +0 10 " " +0 20 " " +0 40 0 " " +0 40 10 " 3 mol. NH ₂ +0 00 mol. (NH ₄) ₂ SO ₄	0.0462 0.0605 0.0886 0.1468 0.2591 0.4718 0.0548

Solubility of crystalline CuO2H2 in ammoni- Solubility of crystalline CuO2H2 in ammoniacal salt solutions at 18°-Continued

Solvent contains per litre	Cone of div- solved Cu g, stoms per l.
3 mol, NH ₂ +0 10 mol (NH ₄),SO ₄	0 1740
" +0 20 "	0 2861
" +0 40 "	0 5044
1 mol, NH2+0 00 mol (NH4)2SO4	0.0784
" +0 01 "	0.0922
" +0 025 "	0 1101
" 4-0 05 "	0 1397
+0 10	0 2002
+0.20 "	0 3188
+0 40	0.5451
5 mol NH2+0 00 mol (NH4) sSO4	0.1041
" +0.01 "	0.1154
+0 025	0 1320
" +10 05 "	0.1639
" +0 10 "	0.1039
" +0 20 "	
" 40.40 "	0.3415
1 mol NHa+0 00 mol NasSO4	0.0109
" +0 025 "	
+0 10	0.0134
" +0 10 "	0.0162
" +0 40 "	0 0192
4 mol NH1+0 10 mol NasSO	0.0784
+ mo: NH1+0 10 mo: NA28O;	0.0994
+u 20 "	0.1161

(Dawson, Chem. Soc. 1909, 95, 373.)

Sl. sol, in alkali carbonates + Aq, especially KHCO₄ and NaHCO₄. (Berzelius.)

Sol. in cold Na₂S₂O₂+Aq, but pptd. on warming. (Field, Chem. Soc. (2) 1, 28.) Partially sol. when freshly pptd. in KCN

+Aq. (Rodgers, 1834.) Sol. in (NH₄):S₁O₈+Aq. (Moreau, Apoth.

Ztg, 1901, 16. 383.)

Sol. in MSCN+Aq; more difficultly sol. n NH SCN+Aq than ZnO₂H₂ maun, Z anorg. 1908, **58**. 269.)

Very sol in hydroxylamine. (Jannasch and Cohen, J pr. 1905, (2), 72, 14.) Insol in acetone. (Edmann, C. C. 1899, II. 1014.)

Sol. in large amt. in NaC2H3O2+Aq. (Merer, 1844.)

Not pptd. in presence of Na citrate. (Spil-

Insol. in cane sugar + Aq, unless an alkali or alkaline earth is present (Peschier.) Recently pptd. CaO₂H₂: a seasily sol. in cane sugar with NaOH, KOH, or CaO₂H₂+Aq; ess sol. in presence of SrO2H2 or BaO2H2.

Becquerel.) Not pptd, by KOH+Ag in solutions containing tartaric acid, cane sugar, and many

other non-volatile organic substances. Sol. in Ca, Ba, Sr, K or Na sucrates+Aq, and ppts. of double sucrates form when solutions of the first three bases are heated, but no

ppt forms in the last two cases even at 100° (Hunton)

Insol. in simple Ca, Ba, or K sucrates + Ag. but immediately sol, when an excess of cane sugar + Aq is present. (Peligot.)

Moderately sol in amyl amine, easily sol in methyl, less in ethyl amine (Wurtz.) Sol. in sorbine + Aq. (Pelouze)

Not pptd in presence of atomatic ovxacids or phenols of the ortho series Thus in presence of salicylic acid, pyrocatechin, gallie acid, pyrogallic acid, etc., NaOH+Aq does not ppt. CuOsHs from Cu solutions, but potn, is not prevented by benzoic acid, resorcin, hydroquinone, etc. (Weith, B. 9.

Sol, in solutions of alkalı salts of "spal-tungsprodukte" of albumen, (Kalle and Co, Pat 1901.)

Sol. in starch emulsion which has become thin liquid in an alternating magnetic field (Rosenthal, C. C 1908, I 593.) CuO, 2H₂O. (Rubénovitch, C. R. 1899.

129. 336 CuO, 3H₂O, (Kosmann, Z. anorg. 1893) 3. 373.

2CuO, 3H₂O, (Cross, Gm.-K 5, 1, 753.) 4CuO, H₂O. Insol in NH₄((Mailhe, A. ch 1902, (7) 27. 393.) Insol in NH-OH+Ag.

Cupric hydroxide ammonia, CuO.H., 4NH. Present in ammoniacal solution of CuO₂II₂. (Dawson, Z. phys. Ch. 1909, 69, 110.)

Cuprous imide, Cu2NH.

Decomp at 160° forming Cu₃N. Readily hydrolysed by H_0O .

Sol in liquid NHa solutions of NH4NOa. (Franklin, J. Am. Chem. Soc. 1912, 34, 1502.)

Cuprous iodide, Cu2I2.

Insol in H₂O, or dil acids. Calculated from electrical conductivity of

Cu₂I₂+Aq, 1 1 H₂O dissolves about 8 mg. Cu₂I₂ at 18 (Kohlrausch and Rose, Z. phys. Ch. 12. 241.)

Sol. in conc. HaSO4. (Vitali, Gm.-K. 5.1,947)

Sol, with difficulty in cone. HCl+Aq Soi. with dimently in cone. fict-fact Decomp. by cone. HNO₃, or H₅SO₄. Insol. in NaCl, KNO₃, Na₅SO₃, KBr, or NH₄Cl+ Aq. Sol. in NH₄OH, Na₅SO₅, KCN, or KI+ Aq. (Renault, C. R. 59, 558.)

Appreciably sol in N/10 HCl. Practically msol, in N/10 H₂SO₄, (Moser, Z. anal, 1904, 43. 604.)

Results of experiments on solubility of Cu₂I₂ in I₂+Aq in presence of acids and salts are given by Bray and MacKay.

Cul₂ was found to be sl. sol in H₄O but 0 000157 g. mol. Cu₃L. (Bodlander, Z. a considerable and dissolves in presence of a morg 1902, 31 475)

I₃ owing to formation of Cul₃ and Cul₄. (J. Am Chem So. 101. 32 1907)

Wey sol in liquid NH₂. (Franklin, Am. Am. Am. Chem So. 101. 32 1907)

Am Chem. Soc. 1910, 32, 1207.)

		_
Solubility of	Cu-L in L+An at 20	D

g per l		
Cu	I	Solid Phase
0 285	0.585	Cu ₂ I ₂
0.482	1 305	11
0.583	1 922	**
0.678	2 557	**
0.756	3 204	16
0.841	3 954	**
0.898	4 436	cc .
0 961	5 085	66
1 032	5 685	u
1 000	6 282	EE.
1 112	6 530	"
1 232	7 653	Cu ₂ I ₂ +I ₂
1 040	6 449	I_2
0.898	5 594	16
0.748	4 711	**
0 606	3 856	"
0 448	2 919	**
0.300	2 069	"
0 159	1 230	**
0 925 *	5 461	Cu ₂ I ₂ +I ₂

1 658** * at 0°. ** at 40°.

11 366 (Fedotieff, Z anorg 1911, 69, 26)

Solubility in NH-Br+Ag at 20°

$NH_4Br + \Lambda q$	g Cu ₂ I ₂ in 1 I of the solution	
2-N	1 9068	
3-N	3 6540	
4-N	6 0588	

(Kohn and Klein, Z. anoig, 1912, 77, 254)

Sol, in FeCl₃+Aq. (Fleischer, C. N. 1869. 19.206)

Solubility in KBr+Aq at t°.

t°	KBr+Aq.	g Custs in 11 of the solution
19 5	2-N	1.4666
24.0	2-N	1.5576
19 5	3-N	3.4094
23 0	3-N	3.5949
22 0	4-N	7.1263
22.0	4-N	6.9768

The solutions undergo change in the course of a few days, iodine being set free; the solubility of the cuprous iodide is not markedly affected thereby.

(Kohn, Z. anorg, 1909, 63, 337.)

Ch. J. 1898, 20, 827.)

Insol. in CS2. (Arctowski, Z anorg. 1894, 6. 257.) Practically insol, in methylene rodide, (Retgers, Z anorg 1893, 3. 347) Sol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Insol in acetone (Naumann, B. 1904, 37, 4329); (Eidmann, C. C. 1899, II, 1014.) 100 g. acctomtrile dissolve 3 52 g Cu₄I₂ 18° (Naumann and Schier, B. 1914, 47. at 18° 249.)

Min. Marshite. (Gm.-K 5. 1, 945.)

Cupric iodide, CuI., Exists only in very dil aqueous solution. Copper periodide, Cul.,

(Traube, B. 17. 1064.)

Sol. in H₂O, (Walker and Dover, Chem. Soc. 1905, 87, 1588) Copper ammonium iodide ammonia.

See Cupriammonium iodide ammonia. Cuprous mercuric iodide, Cu2l2, HgI3.

KI+Aq dissolves out HgI2. Cuprous mercuric iodide ammonia, CuI2,

2Hglo, 4NHa. Decomp by H₂O or acids. Sol, in a mixture of acetic acid and alcohol. CuI2, HgI2, 4NH2. As above. (Jörgensen, J. pr. (2) 2. 347)

Cupric nitrogen iodide, CuI, N.H.I. Decomp. by H2O; or NH4OH+Aa. (Guvard, C. R. 97, 526)

Cupric thallic iodide ammonia, CuI2, 2TII2. 4NH_x. Decomp. slowly by H₂O. Sol in NH₄OH+ Aq with decomp. Sol in alcohol,

Cuprous iodide ammonia, Cu2I2, NH2. Ppt. (Anderline, Gazz. ch. it. 1912, 42, I. +4H2O. Insol in H2O. Very sol. in NH4OH+Aq. (Silberrad, Chem. Soc. 1905. 87. 67.) Cu₂I₂, 3NE 1908, **12**, 399.) 3NH, (Lloyd, J. phys. Chem. Cu, I, 4NH, (Levol, J. Pharm 4, 328.) +H₂O, (Saglier, C. R 104, 1440.) Cu₂I₂, 6NH₂. (Lloyd)

Cupric iodide ammonia, CuI2, 4NH2+H2O. Decomp. by H2O. Sol.in NH4OH+Aq without decomp. Not attacked by cold Aq into cuprous chloride.

alcohol or ether. (Berthemont, J Pharm. 15, 445) (Pozzi-Escot, C. R. 1900, 130, 90.) CuI₂, 6NH₃. Sol. in liquid NH₃. (Horn, Am. Ch J. 1908, **39**. 205.) 3CuI₂, 10NH₃. Decomp by H₂O. (Richards, Am. Ch. J. 1895, 17. 302.)

Sol. in hig NH4. (Horn, Am. Ch. J. 1908, 39, 204.)

Cupriammonium iodide ammonia, 3Cu(NH₃)₂I₂, 4NH₃.

Decomp, by air and by H2O, (Richards, Am. Ch J 1895, 17, 302

Copper periodide ammonia, 2CuI, I4, 5NH; +H₂O.

Because of its insolubility it cannot be recryst from any solvent. (Silberrad, Chem. Soc. 1905, 87, 66)

Copper tetrasodide, ammonia, CuI4, 4NH3 (Jorgensen, J. pr. (2) 2, 353.)

Conner haraiodide ammonia, Culs. 4NHo. Not decomp, in H2O in closed vessels, (Jorgensen.)

Copper mercuric iodide ammonia. CuHgale, 5NHa.

CuHgI3, 2NH3. Ppt. Decomp. by H2O and by alcohol, CuHg2Is, 3NH3. Ppt. Decomp. by long

washing with H₂O. CuHg₂I₄, 4NH₄. Ppt. Decomp. by H₂O. Sl. attacked by abs. alcohol Cul2, HgI2, 4NH2. Ppt. (Anderline, Gazz. ch, rt. 1912, 42, (1) 321; C. C. 1912, II. 95.)

Copper nitride, Cu₄N₂,

Decomp by dil or cone, acids, Easily decomp. by H₂O when finely pow-dered. (Rossel, C. R. 1895, 121, 942.)

Copper suboxide, Cu.O.

Not attacked by H₂O. Decomp. by dil. H₂SO₄+Aq into Cu and CuSO₄; dil. HCI+Aq has similar action. Not attacked by NH-OH +Aq or NH₄OH+(NH₄)₂CO₃+Aq. (Rose, Pogg. 120. 1) Cu₃O. Not attacked by dil. or conc. min. acids, even aqua regia. Slowly sol. in HF+

Aq. (Bailey and Hopkins, Chem. Soc. 1890, 57, 272.) Is a solution of oxide in Cu. (Jordis, Zeit, angew. Ch. 1908, 21. 51.)

Cuprous oxide, Cu2O.

Insol. in H₂O Decomp. by H₂SO₄+Aq, H₂PO₄+Aq, or cold very dil HNO₂+Aq into a cupric salt and Cu. Converted by HCl+

7 20

G CuO m 10 cem

Solubility of Cu₂O in NH₄OH+Aq at 25°

Cone of total Cu

1.6981

Conc t	. total Cir		10001 1113	i.
G in 1000 g of solution	G mol m 1000 g of solution	G. in 1000 g. of solution	G mol in 1000 g of solution	
	Prepar	ation I		
0 3593 0.5024 0 6869 0.6964 1.0144 1.0462 1 0557 1.2243	0 00566 0.00791 0.01080 0 01095 0 01597 0 01645 0 01660 0.01924	3 91 12 07 13 77 16.15 27 03 32 64 36.89 45.73	0 23 0 71 0 81 0.95 1.59 1.92 2.17 2 69	
1 3229 1 4882 1 5105	0 02081 0 02340 0 02375 0 02565	68.68 74.12 81.26	4 04 4 36 4 78	

Preparation II

122.40

0.02670

0 4229	0 00665	7 82	0 46
0.6678	0 01050	8 16	0.48
0 9890	0 01555	22 61	1.33
1 0494	0 01650	28.39	1 67
1.3528	0 02127	54 15	3.19
1.5047	0.02366	72 08	4 24
1 5968	0 02510	78 20	4 60
1 6555	0.02603	102 05	6 00

(Donnan and Thomas, Chem Soc. 1911, 99.

Sol. in boiling NH₄Cl+Aq. (Rose) Sl sol. in excess of KOH+Aq. (Chodnew.) Sol. in conc. MgCl₂, and FeCl₂+Aq. (Hunt, C. R. 69, 1367.)

SI attacked by liquid NH₂. (Gore, Am Ch. J. 1898, 20, 827) Min. Cuprite. Sol. in HCl, HNO₂, and NH.OH+Aq.

Cupric oxide, CuO.
Insol. in H₂O. Easily sol. in acids. Sol. in H₂SO₂+Aq. Insol. in NH₄OH+Aq, but dissolves on addition of a few drops of acid or (NH₄)₂CO₂+Aq. Insol. in dil., but sol in warm cone. NaOH, and KOH+Aq. (Low,

Z. anal. 9, 463.)

CuO prepared at a low temp. is easily sol in dil. acids, but when ignited is slowly sol in buling oone, acids, but moderately rapidly in a cold mixture of NH₄l+HCl. (Joannis, C. R. 1886, 102, 1161.)

 Solubility in N-HNO₃, 1 l. of the solution contains 0.4802 g, atoms Cu at 25°. (Jaeger, Z. anorg. 1901, 27, 33.)

Solubility of CuO in HF+Aq at 25°.

	1 line	of the solution
0 25N-HF	114 hrs. 33; " 2514 " 7114 " 17012 "	0.0431 0 0619 0 0812 0 0823 0 0907
N-HF (a)	514 " 2114 " 52 " 20114 " 22614 "	0 3018 0 2797 0 2747 0 2339 0 2353
N-HF (b)	414 " 4414 " 11734 " 16734 "	0 3220 0 2930 0 2431 0 2219
2.02N-HF	1½ " 5 " 71½ " 156½ "	0 3646 0.4533 0 3583 0 3311

(Deussen, Z. anorg 1905, 44, 421.)

Solubility of CuO in HF at 25°.

Cu = g-atoms Cu in 1 l. of the solution.

HF normality Cu

0.12 0.0307

0 12 0 0307 0 28 0 1164 0 57 0 2494 1 08 0 .388 2 28 0 .403

(Jaeger, Z. anorg. 1901, 27. 29.)

Solubility of CuO in HF+KF at 25°. Cu=g-atoms Cu in 1 l. of the solution.

HP normality	Cu
0.12	0 0356
0.28	0 06437
0.57	0 1442
1.11(1.08)	0 2451
2.17(2.28)	0 2517

(Jaeger, l. c.)

Sl. sol in large excess of KOH+Aq. (de Connek, C. C. 1904, II, 65.) Slowly sol in boiling NH₄Cl+Aq. and less easily in NH₄NO₂+Aq (Rose)

less cussly iff NLGAVI-1-34 [1008]
Sol. in bothing H₂O solutions of Al., Gl, U, Cr., Feg. or Bi intrates and chlorides, Hg(NO). Hg(NO). SbCl., Scl., and SnCl., with potn. of oxides of the bases of those selts. Unacted upon by boiling H₂O solutions of Mn, Mg. Ni, Co, Zn, Ce, or

Fe nitrates or chlorides, AgNO₃, Pb(NO₃)₂₁ Cupric oxide ammonia (cuprammonium hy-Cd(NO₂)₂, and HgCl₂. (Persoz.) Pure CuO is very sl sol, in NH₂OH+Aq but the solution is greatly increased by the addition of NH4 salts (Muthmann, C. C.

1904. II, 410) Sol. in hot (NH4)2SO4 or (NH4)2SO4+Aq (Jumau, Electrochem Ind. 1908, 6, 258) 15° dissolves in (NII₁)₂CO₂+Aq in 24 hrs (Schnabel, Z. B H Sal 1880, 28 282)

Sl. attacked by liquid NH2. (Franklin, Am. Ch J. 1898, 20, 827.)

Solubility in N-acetic acid. 1 l of the solution contains 0.1677 g-atoms Cu at 25° (Jaeger, Z. anorg, 1902, 27, 33)

Insol in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C 1899, II. 1014) 81 sol in benzamide (Dessaignes, A. ch 1852, (3), 34, 146.)

Insol, in paperidine (Cahours, C R 1852, 34, 481

Sol in acid ammes as asparagin. (Piria, A ch. 1848, (3), 22, 160.) Sol. in amines alone or mixed with NHs.

(Lance, Dissert 1905.) Slowly sol in Ca or any other alkalı suerate+Aq, but not in cane sugar+Aq.

(Hunton) Solubility in (calcium sucrate+sugar)+Aq 1 l solution containing 418 6 g, sugai and

34 3 g CaO dissolves 10.26 g. CuO. 1 1 solution containing 296.5 g sugai and 242 g CaO dissolves 568 g CuO 1 l. solution containing 174 4 g. sugai and 14 I g CaO dissolves 3,47 g, CuO. (Boden-

bender, J B, 1865, 600) Polypeptides in aqueous solution dissolve Cu() by short boiling (Fischer, B. 1906, 39.

Insol. m dil., $+1/_{6}H_{6}O = 6CuO + H_{6}O$. but sol. in conc KOH or NaOH +Aq. Sol, in volatile oils,

See also Cupric hydroxide. Mm. Melaconite. Sol. in HCl. or HNO:+

Cuprocupric oxide, Cu₅O₈=2Cu₂O, CuO. (Favre and Maumené.)

Cu₄O₄+H₄O =Cu₂O₄, CuO +H₄O. When freshly pptd., sol in HCl+Aq, but insol after drying (Siewert, J. B 1866, 257.) Cu₄O₄=Cu₄O₄, 2CuO. (Siewert.) All oxides of Cu except Cu₄O, Cu₂O, CuO, al CuO₂ are mixtures (Osborne, Sill. Am.

and CuO₂ are mixtures (Osborne, S J. (3) 32, 33; Debray, C R. 99, 583.)

Copper dioxide, CuO2+H2O.

Insol. in H₂O. Decomp. by acids with formation of cupric salt and H2O2. (Weltzien, A. 140, 207.)

Cuprous oxide ammonia (cuprosammonium

Known only in solution, (Wagner, C. C. 1863, 239)

droxide), 3CuO, 4NH1+6H2O Insol in H₂O. (Kane, A. ch. **72** 283) CuO. 4NH₃+4H₂O Very deliquescent, Decomp in the air and by H2O. (Malaguti and Sarzeau, A. ch. (3) 9. 438.)

Cuprous oxybromide, Cu₂Bi₂, CuO+H₂O, (Spring and Lucion, Bull Ac. Belg. (3) 24. 21.)

Cupric oxybromide, CuBi₂, 3CuO+3H₄O. Insol in H2O Easily sol in dil acids or

NH.OH+Aq (Brun, C R 109. 66) Insol. in H2O but decomp, by continued boiling. Sol in cone acetic acid, sl. sol in cone. CuBr₂+Aq Insol. in dil. KBr+Aq. (Richards, Proc. Am. Acad, 1890, 25, 215.)

Cupric oxybromide ammonia, 2CuO, CuBr. 2NH+3H.O.

(Kohlschutter and Pudschies, B 1904, 37. 1159)

Cuprous oxychloride, Cu₂Cl₂, CuO+3H₂O. (Spring and Lucion, Bull, Ac. Belg. (3)

Cupric oxychloride, CuO, CuCl₂+H₂O. Decomp by H2O. (Rousseau, C. R. 1890,

110. 1263.) 2CuO, CuCl₂, Insol. in H₂O. Sol. in HCl +Aq, from which it is reprecipitated by dilution with H₂O

+H₂O

(Kane, A. ch. 72, 277.) +4H.O (Gladstone, Chem. Soc. 8. 211.) 3CuO, CnCl2+2H2O (Miller and Kenrick, Trans Roy Soc Can 1901, (2) 8, III

+3H₂O. (Dupont and Jansen, Bull, Soc 1893, (3), 9. 193.) +3½H₂O. Insol in cold H₂O, sl decomp.

by boiling. (Reindel, J. pr. 106. 378.)
Insol in boiling H₂O. (Habermann, W. A. B. 90, 2, 268 +4H₂O Sol. in alkaline solution of KNa

tartrate. (Groger, Z. anorg. 1902, 31, 327.) (Brunswick green). Insol, in H2O, Easily sol. in acids. Min, Atacamite. Sol in acids, and NH4OH

+Aq. (Bolton, Sol. in cold sat cutare acid+Aq. (Bolton,

B. 1880, 13, 732) 4CuO. CuCl₂+6H₂O (Kane, Gm.-K.

5, 1, 919.) +8H₂Ó. Mı K. **5.** 1, 919. Mm. Tallingute (Church, Gm.

5Cu(OH)2, Cu2Cl2Cl(OH) Insol. in H2O. Decomp by hot H₂O. (Kuhhng, B. 1901, **34.** 2852)

7CuO, 2CuCl2+9H2O. (Reindel.) 7Cu0, 2cucl₃+9r₁₉. (Reinter.) 6Cu0, CuCl₃+9H₀. Insol. in H₃O. Sol. in acette acid. (Neumann, Repert, **37**, 304.) ° 8CuO, CuCl₃+12H₂O. Min. Footeste. (Konig, Zeit. Kryst. 1891, **19**, 601.)

+6H.O. (André, C R 1888, 106, 855.) -

Cupric oxychloride ammonia, 2CuO, CuCl₂, 2NH, +3H,O. (Dehéram, Gm.—K. 5. 1, 932.)

Cupric oxyfluoride, CuO, CuF2+H2O. Insol m H₂O (Berzelius) (Balbiano,

Gazz ch it 14.74) Cupric oxyfluoride ammonia (cuprammonium oxyfluoride), Cu(OH)F, 2NH,

(Balbiano, Gazz. ch. st. 14, 74.) 3CuO, CuI2+xH2O. (Tschiriwinski, Gm. -K. 5, 1, 1584)

Cuprous oxygodide, Cu2I2, CuO+H2O. (Spring and Lucion, Bull. Ac. Belg. (3) 24, 21.)

Cupric oxylodide, 2CuIs, CuO+4H2O. Easily decomp. by H₂O. (Carnegie, Watts' Dict. II, 257.)

Copper oxysulphide, 2Cu2S, CuO. Insol. in H₂O. (Maumené, A. ch. (3) 18.

5CuS, CuO. Ppt. (Pelouze) 2CuS. CuO. Insol. in H₂O. 2CuS, CuO. Insol. in H₂O. CuS, CuO. Insol. in H₂O.

Above comps, do not exist. (Pickering, Chem. Soc. 33, 136.)

Copper phosphide, Cu₆P₂.

Easily sol. in HNO, or aqua regia; insol. in HCl+Aq. (Rose, Pogg. 6, 209.) Sol m HNO, and Big+Aq

hot cone H2SO4. (Rubénovitch, C R. 1899, 128. 1399.) Cu₂P Sol. in HNOs+Aq. (Granger,

A. ch 1898, (7), 14. 64)
Crystallized. Completely sol. in hot HNO., aqua regia and HF+HNOs. Slowly sol, in hot HCl or H₂SO₄. Not attacked by hot or cold HF or acetic acid (Maronneau, C. R.

1899, 128. 939.) Cu₂P₂ Easily sol. in HNO₃. Sol. in hot conc. H₂SO₄. Sol. in conc. HCl+Aq before the phosphide has been heated. (Rose, Pogg.

4. 110.) Easily sol in HNOs, or HCl+Aq. Cu₂P₂. Easily sol in HNO₃, or HCl+Aq. Sol. in NH₄OH+Aq. (Granger, Bull. Soc. (3) 9. 661.)

Decomp, by HNO; not readily CuP2. Sol in HCl. Easily stacked by Cl. or Br4+ Aq. (Granger, C. R. 1895, 120, 024.) - Cu.P., (Granger, C. N. 1898, 77, 229.) - Very sol in HNO₂ and Br₂+Aq. Decomp.

by hot conc. HaSO4. (Rubénovitch, C. R. 1899, 129, 338.)

Cupric zinc oxychloride, ZnO, 2ZnCl₂, 5CuO Cupric zinc phosphide, 10Cu₆P₂, Zn,P₂('). (Hvoslef, A 100, 99.)

> Copper phosphoselenide, CuSe, P.Sc. Insol in H₂O or HCl+Aq, sol in HNO₅+ Insol in cold alkalies, but decomp. slowly when heated therewith (Hahn, J.

pr 93, 436) 2CuSe, P₂Se₂ NO₂. (Hahn.) Attacked only by fuming HNO₂.

2CuSe, P2Se5. Sol only in HNO2+Aq. (Hahn.)

Copper phosphosulphide, 2Cu2S, PcS.

Cu₂S, P₂S. (Berzeinus)

2Cu.S. P.S. (Berzelus)
CuS. P.S. Insol. in H₂O and dil. HCl.
Aq. Sol in cone HCl+Aq, from which it is procipitated by H.O. (Berzelms, A. 46. 252.)

8CuS, PrS. (Berzelius.)

Cu₄PS₂ S.J. m cone. HNO₄ and m aqua-gua. Insol. in HCl Not attacked by hot H₄SO₄ or cone NaOII+Aq (Ferrand, A. ch 1899, (7), 17, 407)

Cuprous selenide, Cu2Se.

Ppt. Sol. in HCl and in H₂SO. Decomp. by HNO₃, Sol in NH₄OH+Aq. (Fonzes-Diacon, C R. 1900, **131**, 1207.) Sol, in KCN+Aq. (Heyn and Bauer, Metall 1903, 3, 84)

Mm. Berzelianite

Cupric selenide, CuSe. (Lattle, A 112, 211.) Ppt Sol. in HCl and in H2SO4. Decomp. by HNO2. (Fonzes-Discon, C. R. 1900, 131. 1207.)

Cuprocupric selenide, Cu₈Se₂. Min, Umangite. Sol. in HNO, - Klockmann, Zeit Kryst. 1891. 19, 270)

Cuprous lead scienide, 3Cu2Se, PbSe. Min Zorgete Sol. in cold cone. HNO,+ Aq with separation of Se.

Cupric lead selenide, CuSe, PbSe. Sol. in cold cone. HNO₄ with separation of

(Karsten.) CuSe, 2PbSc. As above. CuSe, 4PbSc. As above.

Cuprous silver selenide, Cu₂Se, Ag₂Se Min. Eucainite. Sol. in hot HNO; with decomp. (Berzelius.)

Cuprous silicide, Cu,Si.

Sol, in warm dil or cone. HNO, Only sl. sal. in HCl, H₂SO₄ and HF Sol. in a mixture of HNO₅ and HF. Not attacked by solutions of alkahes (Vigouroux, C R. 1906, 142, 88.)

Cu₂Si₂. Sol. in aqua regra and fused sodium potassium carbonate. (de Chalmot, Am. Ch J. 1896, 18, 95.) Cu₂Si Decomp. by water and moist air,

Cu₂Si Decomp. by water and moist air, and by acids and fused alkali. (Vigouroux, C. R. 1896, **122**, 319)

Cuprous sulphide, Cu2S.

More sol. in Il₂O than Ag₂S, but much less than PbS (Bodlander, Z phys. Ch. **1898**, 27, 64.)

1 | H₂O dissolves 3,1+10-4 moles Cu₂S at 18°. (Weigel, Z phys. Ch 1907, **58**, 294.) Very slowly decomp by dil H₂SO₄ in

Very slowly decomp by dil H₂SO₄ in presence of oxygen. (Thompson, Electrochem, Ind. 1904. 2, 225) Decomp. by cone H₂SO₄ (Pickeing, C N

1878, 37, 37)
Cold HNO₁+Aq dissolves out Cu and

Cold HNO₃+Aq dissolves out Cu and leaves CuS, hot HNO₂ dissolves with separation of S Sl, sol, in boiling cone. HCl+ Aq. Insol in (NH.),S+Aq.

Aq. Insol. in (NH_c)₈+Aq 5N-HCl dissolves Cu₈8 very slightly (0.0038 g Cu in 7½ hrs) but it is more sol. in presence of Cl, when 0 672 g, are dissolved in 7½ hours. (Egh, Z. anoig. 1902,

30. 46.)
Sol with evaluation of air in NH₄OH+Aq.
(Malzae, Pat. 1904.)

Insol. in acetone (Naumann, B. 1904, 37, 4329, Edimann, C. C 1899, II. 1014.) Min (*halcocite. Completely sol. in warm HNOs with separation of S.

Cupric sulphide, CuS.

Almost absolutely maol in H₂O, sol. in, 30,000 pts H₂O. When exposed to the an, dissolves in H₂O as CuSO₄. Easily sol. in boiling HNO₂ with separation of S. Difficulty sol. in hot cone. HCl+Aq. Insol in dl. H₂SO₄+Aq (1.6). (Hoffmann, A. 115.

Pptd. by H₂S or (NH₄)_SS+Aq in presence of 100,000 pts H₂O (Pfaff), 200,000 pts. H₂O (Lassaigne), 15,000 pts. H₂O and 7500 pts HCl, but with 40,000 pts H₂O and 20,000 pts. HCl no colour is visible (Renseh).

pts. HCl no colour is visible (Reinsch).
1 1 H₂O dissolves 3.51+10-6 moles CuS at 18°. (Weigel, Z. phys. Ch. 1907, 58. 294.)
Insol in H₂SO₃+Aq (Guerout, C. R.

1872, 75. 1276) Decomp by cone. H₂SO₄. (Kliche, J. B 1890, 593.)

Sol. in (NH₄)₂CO₃+Aq. (Berzelius) Sol in alkalı bıcarbonates +Aq. Insol in NH₄NO₂, or NH₄Cl+Aq. (Brett)

Insol. in acidified conc. alkalı chlorides+ Aq (Cushmann, Am. Ch J. 1895, 17, 382.) Sol. in FeCl₄+Aq with separation of S. (Cumenge and Wimmer, Dingl. 1883, 250.

Decomp by boiling CuCl₂+Aq in presence of HCl or NaCl. (Raschig, Gm.—K. 5.

Sol in Fe₂(SO₄)₂+Aq in presence of large excess of air. (Thompson, Electrochem. Ind. 1904, 2, 228.)

Insol in KOH, or K₂S+Aq, especially if boiling, appreciably sol in colourless and even more readily in hot yellow (NH_d)₂S+Aq SI sol in Na₂S+Aq, more easily in Na₂S+ Aq (Becker, Sill, Am. J (3) 38, 199.)

100 cc sat. Na.S+Aq (sp g; ~1 225) dissolve 0.0032 g CuS. (Holland, Ann. Chim. Anal 1897, 2, 243)

Sol. in K polysulphides (3-64%). (Prost, Bull. Soc. Belg Chim 1897, 103.) Appreciably sol in alkali polysulphides +

Aq. (Rossing, Z. anal 1902, 41, 1)
Sol. in considerable quantity in alkali sulphstannates+Aq. Therefore when a mixed
ppt, of CuS and AssS₁, SbS₂, or SnS 12 treated
with K₁S₂, a portion of the CuS is dissolved.
(Wohler, A. 34, 236.)

Sol in alkali sulphovandates, or sulphotungstates+Aq (Storch, B 16, 2015.)

Soi. m alkalı sulphomolybdates + Aq (Debray, C. R. 96. 1616.) Insoi m K thocas bonate + Aq. (Rosenbladt, Z. anal 26. 15.) Soi. m KCN+Aq.

Insol. in liquid NH₂ (Franklin, Am Ch. J. 1898, 20, 827)
Insol. in methyl acetate (Naumann, B. 1909, 42, 3790); ethyl acetate (Naumann,

B 1910, 43, 314)

Insol. in acctone. (Naumann, B. 1904, 37. 4329, Eidmann, C. C. 1899, II 1014.)
Insol. in Na xanthogenate (Ragg, Ch. Z. 1908, 32, 677)

Solfbulty of CuS in sugar+Aq at t° g CuS per l. of solution

30% sugar

50% sugar

10% sugar

	17 5	0 5672	0 8632	0 9076
	45	0 3659	0 7220	1 0589
	75	1 1345	1 2033	1 2809
J	(Sto)	lle Z Ver 2	Zuckernd 190	0 50 331)

(Stolle, Z. Ver Zuckerind 1900, 50, 331)

Min. Covellate.
Colloidal. Aqueous solution is stable when it contains 5 g. CuS in a litre; when it contains 4 or 5 times that amount it is decomposed in

an hour.

Solutions of salts of the following concentration cause a precipitate in the above solution. Salts of univalent elements—

Salts of univalent elements—

Salts of univalent elements—

K₂Fe(CN)₃ . 1 : 62

K₄Fe(CN)₄ . 1 : 62

K,Fe(CN)		1:62
K.Fe(CN)		1:127
$Na_{2}S_{2}O_{3}$		1:157
Na ₂ CO ₃		1:200
Na ₂ HPO ₄		1:252
Na ₂ SO ₄		1:333
$K_2Cr_2O_7$		1:2083
KI .		1:80
KBr .		1:133
KClO ₃ .		1 166

Salts of univalen	t ele	ment	9—	Con	tini	ted	
NaC.H.O.			٠.		221		
(NH ₄) ₂ C ₂ O ₄					258		
NnCl .					400		
NaHCO.			:		250		
K ₂ SO ₄ .				î:	117		
K ₂ CrO ₁			•	î:	133		
NaC ₁ H ₂ O ₂	•						
K ₂ S ₂ O ₄		•	:	î.	222		
KCl .			•	î:	222		
KNO.			•	î:	333 500		
Trios.	•	•		2 :	DOC.		
Salts of bivalent	mets	ls—					
BaS ₂ O ₃					224		
$Cd(NO_3)_2$				1 .	348	3	
$MgSO_4$				1:	683	0	
Ba(NO ₁) ₂				1:	267	7	
BaCl ₂ .				1:	392 698	1	
Pb(ClO _s) _s				1:	698	8	
CdSO				1.	344	2	
MnSO ₄				1:	551	8	
		,				-	
Salts of trivalent							
Ammonia al				Ι.	31,	896	
Chrome alu				1.	58,	889	
$Al_2(SO_4)_3$				1:	90,	909	
Acids							
Succinic				1:	100		
Oxalic		1		ī.	162		
HCl	:			î :	733		
H ₂ SO ₄ .	-				208		
Citare .		•		î:			
Acetic .	•		•		t at	-11	
Tartaric	•		•	110	i al	"	
	٠.	٠	٠.				
(Spring and de B	oeck	, Bul	i. S	00.	(Z)	Dŏ.	165.)
Copper polysulph	ide.	Cus			,		
copper parguage			••				

Amorphous. Ppt. Decomp. by boiling alcohol. (Rossing, Z. anorg, 1900, 25, 413.)

Cu4S, Amorphous. Ppt. can be boiled with H2O without decomposition. (Rossing, Z. anorg. 1900, 25. 4, 11.) Cu₂S₅. Ppt; insol in alkali sulphdes; decomp. by cone. HNO₅. (Bodroux, C. R.

1900, 130. 1398.) Could not be obtained. (Rossing, Z.

Couls. Ppt. Decomp by H₃O. Sol. in alkali and barum polysulphides+Aq. Decomp by colorless alkali sulphides+Aq. (Rössing, Z. anorg 1900, 25, 407)

Cuprous from (ferric) sulphide, CuoS, FeoSz. Decomp, by conc. HCl+Aq. Sol, in boiling HNO₂+Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38, 569.) Min. Chalcopyrie Insol. in HCl+Aq. When heated in a sealed tube with H₃S+Aq. a portion of it dissolves with difficulty and subsequent deposition of S. (Senarmont, A. ch. (3) 32, 168.)

Cuprocupric iron (ferric) sulphide, Cu2S, CuS, FeS.

Min. Bornste. Sol. in HCl+Aq with a residue of S.

Cupric iron (ferric) sulphide, CuS, Fe₂S₃, Mm. Cubanite.

Copper iron potassium sulphide, K2FeCu3S4. Sl. attacked by cold dil, HCl+Aq. Decomp. by warming. (Schneider, Pogg. 138.

Copper iron sodium sulphide, NasFeCuiSz. Sl. attacked by cold dil., easily decomp. by hot HCl+Aq. (Schneider, Pogg. 138, 318)

Cuprous lead sulphide, 9Cu S. 2PbS. 3Cu₂S, 2PbS. 2Cu.S. 2PbS. Min. Cuproplumbite.

Copper phosphorus sulphide. See Copper phosphosulphide.

Cupric platinum sulphide. See Sulphoplatinate, cupric.

Cuprous potassium sulphide, 4Cu2S, K2S. (Ditte, C. R. 98, 1429)

Cuprocupric potassium sulphide, 3Cu₂S. 2CuS, K2S.

Not decomp, by very dil, HCl+Aq, but easily by cone. HCl+Aq on warming. (Schneider, Pogg. 138, 311.)

Copper potassium polysulphide, KCuS₄. Sl. sol, in cold H.O. Decomp. by hot

Si. sol. in cold H-O. Decomp. by not H-O. Decomp. by cone. and dil. HCl, H-SO, and HNO_a. Si, sol. in alcohol. (Siltz and Herns, B 1907, 46, 977) 2CuS₃, K-S. Decomp. by H₄O, NIL,OH, NH-SH+A₁C. (Privezank, B. 5, 1291.) K₂CuS₃s. Easily sol. in H₂O. 1 g is sol. mless than 5 cm, H₄O. Rapidly decomp by dil acids, slowly by conc. acids SI sol. in alcohol. (Biltz and Herms, B. 1907, 40, 983.)

Cupric rubidium polysulphide, RbCuS4. As K salt. (Biltz and Herms, B. 1907, 40.

Rb₂Cu₂S₁₀. Easily sol in H₂O. Decomp. by acids Sl. sol, in alcohol (Biltz and Herms, B 1907, 40. 985.)

Cuprous silver sulphide, Cu2S, Ag2S. Min. Stromeyerite. Sol m HNO2+Aq with separation of S. Cu-S. 3Ag-S. Mm. Jalpaite. As above.

Cuprous sodium sulphide, Na₂S, Cu₂S. (Bodlander, Z. Elektrochem, 1905, 11. 181.) Na₂S, 2Cu₂S. (Bodlander, Z. Elektrochem. 1905, **11**, 181.) Cuprocupric sodium sulphide, CupS, CuS, Croceocobaltic phosphomolybdate

Scarcely decomp by cold dil HCl+Au: Am. Ch. J. 3, 317) cone, HCl+Aq decomp, easily on warming, without, however, dissolving all the Cu2S Completely decomp by warm HNO2+Aq (Schneider, Porg. 188, 315)

Copper zinc sulphide, CuS, 3ZnS.

Conner sulphonhosphide.

See Copper phosphosulphide. Cupric telluride, CuTe. Cu2Te2. Insol in H2O. (Parkmann, Sill

Am. J (2) 3, 335) Cu. Te. (Brauner, M. 1889, 423.) Croceocobaltic bromide.

24, 91.)

Co(NH₂)₄(NO₂)₂Br. Very sl. sol. in cold, casily in hot H₂O (Gibbs, Proc. Am. Acad. 10. 1.)

---- chloraurate: 2Co(NH₂), (NO₂), Cl. AuCl₂ Difficultly sol, in H2O.

---- chloride, Co(NH₃)₄(NO₃)₂Cl. Very al, sol in cold easily in hot H₂O, but

more sol, than the sulphate. (Gibbs.) ---- chloroplatinate, 2Co(NH₂)4(NO₂)9Cl,

Can be recrystallised without decomp, with difficulty. (Gibbs and Genth, Sill, Am. J. (2)

---- chromate, Co(NH₃)₄(NO₂)₂|₅CrO₄, Sl. sol, in H₂O, (Gibbs.)

--- dichromate, [Co(NH₃)₄(NO₃)₃l₃Cr₃O₇ Sl. sol. in H₂O. (Gibbs.)

- neriodide, Co(NH_{*})₄(NO_{*})₃I, I₅, Difficultly sol, in cold H₂O and alcohol. Decomp. by hot H2O. (Gibbs.)

--- nitrate, Co(NH₅)₄(NO₂)₂NO₂.

Sl. sol. in cold, easily sol. in hot HgO or dil. acids. Much more sol, than the sulphate. (Gibbs.)

Sol. in about 400 pts. cold H₂O. (Jörgensen, Z. anorg. 5. 163.)

--- nitrite cobaltic nitrite, 3Co(NH₂)4(NO₂)2, Co(NO2). Somewhat sol, in H₂O, (Jörgensen, Z.

anorg. 5. 178.)

- nitrite diamine cobaltic nitrite $C_0(NH_1)_4(NO_2)_2$, $(NO_2)_2(NH_2)_2C_0(NO_2)_2$. Nearly insol. in cold, very sl. sol. in boiling H.O. (Jörgensen.)

- sulphate, |Co(NH₀)₄(NO₀)₀|₃SO₄ Very sl. sol in cold or hot H₂O, more easily in hot dil. H₂SO₄+Aq

(Co(NH₂)_e(NO₂)_el_eO, 24MoO₂, P_eO₄

Sl. sol, in cold, easily in hot H.O. (Gibbs.

Cuprammonium compounds. See Copper compounds, ammonia.

Cuprotet ammonium tetraiodide. See Cunric tetraiodide ammonia

Cunric acid.

Known only in solution (Kruger, Pogg. 62, 445.)

Calcium cuprate. Decomp. by H2O with evolution of oxygen.

(Kruger and Crum, A. 55. 213.) Cvanhydric acid, HCN.

Miscible with H-O, alcohol, and ether with absorption of heat

Sp. gr. of HCN+Ao. % HCN % HCN Sn er Sp gr 1 60 0.9979 4.0 0 9940 1 68 0 9978 46 0.9930 1 77. 0.99755 0 0 9923 20 0.9974 5 3 0 9914 2 1 0 9973 5.8 0 9900 2 3 0 9890 0 9970 6 4 2 5 7 3 0.9967 0 9870 2.7 0 9964 8 0 0 9840 3 0 0 0058 9 1 0 9815 3.2 0.9952 10 6 0.9768 0 9945 16.0 0 9570

(Ure, Quar, J. Sci. 13, 321.)

.

2HCN mixed with 3H2O causes a diminution of temp, of 9.75°. (Bussy and Burgnet. A. ch (4) 3. 231. Miscible with volatile oils and other organic

compounds. Cyanhydric iodhydric acid, HI, HCN.

Easily sol in H2O or alcohol, with rapid decomp Sl. sol. in ether. (Gal, A. 138. 38.)

Cyanides.

The alkalı cyanides are easily sol. in H₂O; those of the alkali-earths are less sol., while all others are msol, with the exception of Hg(CN)2. All cyanides are sol, in KCN+Ao.

Ammonium cvanide, NH,CN.

Unstable; easily sol. in H₂O and alcohol.

Ammonium cobaltic mercuric evanide. See Cobalticyanide, ammonium mercuric.

Ammonium cuprous cyanide, NH-CN. Cu₂(CN)₂

Ppt. Decomp by acids +H2O. Sol in H2O, less sol. in alcohol. Decomp, by acids and alkalies. (Treadwell and Girsewald, Z anorg 1904, 39. 90 2NH4CN, Cu₂(CN)₂. Sl sol. in H₂O, but decomp. by long boiling therewith. Sol. in

HCN+Ag. (Dufau, A 88. 278.) Ammonium cuprous cyanide ammonia.

NH₄CN, 2Cu₂(CN)₂, NH₃ Easily decomp (Treadwell and Gursewald, Z anorg, 1904, 39, 90,) +2H2O. Insol. in cold, decomp by boiling

H₂O Sol. in NH₄OH+Aq. (Fleurent, C. R. 1893, 116, 191,) NH₄CN, Cu₂ CN)₂, 3NH₂ Insol in cold, sl. sol, in boiling H₂O without decomp. Sol

m NH OH + Aq (Flewent, C R 1891, 113 NH4CN, 2Cu2(CN)2, 2NH2+2H2O. (Fleurent. B. 25, 498R.)

Ammonium gold (aurous) cvanide NH-CN. AnCN

Easily sol, in cold or warm H₂O or in alcohol. Insol. in ether.

Ammonium gold (auric) mercuric cyanide, basic, 3NH4CN, 2Au₂O, Hg(CN)₂, HgO, (Schmidt, Ch. Z. 1896, 20, 633.)

Ammonium mercuric silver cyanide, basic, NH₄CN, 2Ag₂O, 3AgCN, 4Hg(OH)CN+ 1/2H2O (Schmidt, Z. anorg 1895, 9, 431.)

Ammonium nickel cyanide, 2NH₄CN,

Ni(CN)2. Easily decomposed.

Ammonium tungsten cyanide. See Tungstocvanide, ammonium,

Ammonium zinc cyanide, 2NH4CN, Zn(CN)2. Sol. in H₂O.

Ammonium cyanide mercuric nitrate silver cvanide basic, 2Hg(OH)NO2, 3NH4CN, 4AgCN.

(Schmidt, Z anorg 1895, 9. 431)

Arsenic tracyanide, As(CN)4. Decomp by H₂O. Not attacked by cold

conc. H.SO. Decomp. on heating. (Guenez, C. R. 1892, 114, 1188.)

Barium cvanide, Ba(CN)

Rather sl. sol. in H.O. more easily in KCN +Aq. (Schulz, J. pr. 68, 257.) 10 pts H₂O dissolve 8 pts., and 10 pts 70% alcohol dissolve 1 8 pts. Ba(CN)₂ at 14 ⁶

(Joannis, A ch (5) 26, 489) Insol in methyl acetate, (Naumann, B. 1909, 42, 3790)

+2H₂O. Very deliquescent Ba(CN)₂, BaO (Drechsel, J. pr (2) 21.

Barium cadmium cyanide, Ba(CN)2,

Cd(CN)2+H2O.

Easily sol. in H₂O and in NH₄OH+Aq. Sl sol m alcohol (Loebe, Dissert, 1902.) 2Ba(CN), 3Cd CN), +10H₂O Sol. m H₂O (Weselsky, B 2, 590)

Barium cobaltous cobaltic cyanide.

See Cobaltocobalticvanide, barium,

Barium cuprous cyanide, Ba(CN); Cu2(CN); Sol. in H₂O without decomp. (Traube, Z. anorg 1894, 8. 21.) +H₂O_{*} (Weselsky, B 2. 590.)

Could not be obtained (Grossmann, Z.

anorg. 1905, 43. 101)
+ HH₂O Decomp. by H₂O (Grossmann,
Z. anorg. 1905, 43. 101.)
2Ba(CN)₂, Cu₂(CN)₂+6H₂O Decomp. by H₂O (Grossmann, Z. anorg 1905, 43,

Barium gold (aurous) cyanide, Ba(CN)2, 2AuCN+2H₂O Sl. sol, in cold but easily sol, in hot H2O. Sl. sol. in alcohol. (Landborn, Lund Univ. Arsk. 12. No.6.)

Barium iridium cvanide. See Iridicvanide, barium.

105.)

Barium manganous cyanide, Ba(CN), 2Mn(CN)2.

Pnt (Descamps.) See also Manganocyanide and Manganicyanide, barium.

Barium mercuric cyanide, (Ba(CN)2, Hg(CN)2+3H2O.

Very hygroscopie Very sol in H₂O Grossmann, B 1904, 37, 4112)

Barium mercuric cvanide iodide, Ba(CN)₂. HgI_2+6H_2O

(Varet, C R. 1895, 121, 499)

Barium palladium cvanide, Ba(CN). Pd(CN)2+4H2O. See Palladocyanide, barium.

Barium nickel cvanide, Ba(CN), N1(CN),+ 3H₂O.

Sol. in H2O, decomp, by acids with pptn. of N₁(CN)₁. (Weselsky, B. 2. 590.)

Barrum silver cvanide, BaCN), 2AgCN+

Sol. in H.O. (Weselsky, B. 2, 589)

Barium zinc cyanide, Ba(CN)2, Zn(CN)2+ 2H,0 Sol. in H.O.

Cadmium cyanide, basic, CilO₄H₄, 2Cd(CN)₄

Sl. sol. in H₂O: msol. in alcohol (Loebe, Dissert, 1902.)

Cadmium cvanide, Cd(CN)a.

Sl. sol. in H₂O. 100 pts, H₂O dissolve 1.7 pts Cd(CN)₂ at 15°. (Joannis) Easily sol. in acids; sol. in KCN+Aq. Sol. in warm NH,OH+Aq, but insol in (NH₄),CO₂+Aq. (Wittstein. Insol. in benzonitule (Naumann, B.

1914, 47, 1370.)

Cadmium calcium cyanide, Cd(CN)2, 4Ca(CN)2+20II2O. Sol in H₂O and in alcohol. (Loebe, Dis-

sert. 1902.) Cadmium chromic cvanide. See Chromicyanide, cadmium.

Cadmium cobaltic evanide. See Cobalticyanide, cadmium,

Cadmium cuprous cvanide, 2Cd(CN), Cu2(CN)2.

Permanent, Insol. in H.O. Sl. sol in cold, easily in warm HCl+Aq without decomp., except by long boiling. Insol, in NH.OH. or NH, salts+Ao. (Schüler)

Cadmium cupric cyanide, Cd(CN)2, Cu(CN)2 Very unstable.

Cadmium gold (aurous) cyanide, Cd(CN)₂, 2\uCN

Nearly insol in cold H2O. SI sol, in boiling H2O. Insol in alcohol (Lindborn) Cadmium mercuric cyanide, 2Cd(CN):

3Hg(CN)2. Permanent. Readily sol. in cold H₂O. (Schüler.)

Cadmium mercuric cyanide mercuric iodide, Cd(CN)2, Hg(CN)2, HgI2+8H2O.

Very sol. in H₂O. (Varet, Bull Soc. (3) 5. 8.) +7H2O. Sol. in H2O and in NH4OH+Aq. (Varet, C. R. 1890, 111, 679.)

Cadmium mercuric cyanide mercuric iodide, Cd(CN)₂, Hg(CN)₂, HgI₂+8H₂O. Very sol. in H₂O. (Varet, Bull Soc. (3) 5. 8.)

+7HaO. Sol. in HaO and in NHAOH+Ao. (Valet. C R, 1890, 111, 679.)

Cadmium mercuric cyanide mercuric iodide ammonia, Cd(CN)₂, Hg(CN)₂, HgI₂. Very easily decomp. (Varet, Bull, Soc. (3) 6. 22.)

Cadmium molybdenum cyanide. See Molybdocyanide, cadmium.

sert. 1902.)

anorg, 1914, 88, 68)

Cadmium potassium cyanide, Cd(CN).

2KCN. Sol. in 3 pts. cold, and 1 pt. boiling H2O. Insol in absolute alcohol. (Rammelsherg)

Cadmium sodium evanide, Na-Cd-(CN). +3H.O Sol. in H₂O and in alcohol. (Loebe, Dis-

Cadmium strontium cyanide, Cd(CN)2,

2Sr(CN)+3H₂O. Sol, in H2O and in alcohol. (Loebe, Dissert. 1902.)

Cadmium tungsten cvanide, Cd.W(CN), 4 8H₂O.

Nearly insol, in H2O. Sl. sol in dil HCl Sol, in conc NH,OH+ Aq. Insol. in organic solvents. (Olsson, Z.

Cadmiunf cvanide dihvdrazine, Cd(CN). (N2H4)2. Easily sol in dil. acids. (Franzen, Z. anorg, 1911, 70, 152.)

Casium cuprous cvanide, CsCN, CuCN+ 1½H₂O. H₂O separates CuCN. (Grossmann, Z. anorg 1905, 43. 98.)

2CsCN, CuCN+H2O Sol. in H₂O. (Grossmann, Z. anorg 1905, 43. 98.) 2CsCN, 3CuCN. Insol. in, and not decomp. by H2O. (Grossmann, Z anorg 1905, 43, 98)

Cæsium tungsten cyanide.

See Tungstocvanide, casium.

Calcium cvanide, Ca(CN). Sol. in H2O, but the solution is very unstable. (Schulz.) Ca(CN), 3CaO+15H2O. Decomp. by H₂O. (Joannis, A ch. (5) 26, 496.)

Calcium cuprous cyanide, Ca(CN)2, CuCN+ 4H.O.

Easily decomp. by H₂O. (Grossmann, Z. anorg. 1905, 43, 106.) Ca(CN)₁, 3CuCN+8H₂O. Immediately 1905, 43, 99.) Calcium gold (aurous) cyanide, Ca(CN)₂, 2AuCN+3H₂O.

Easily sol in hot or cold H₂O or in alcohol. (Lindbom)

Calcium manganous cyanide, Ca(CN)2. 2Mn(CN)2

Ppt (Descamps) See also Manganocyanide, calcium.

Calcium mercuric cyanide, Ca(CN)2, 2Hg(CN)2+8H4O.

Very deliquescent (Grossmann, B. 1904, 37, 4143.) 2Ca(CN)2, 3Hg(CN)2+6H2O. Very sol.

m H₂O. (Grossmann, B. 1904, 37, 4143.) Calcium mercuric cyanide iodide, Ca(CN)2. HgI₂, Hg(CN)₂+7H₂O.

(Varet, C. R. 1895, 121, 499) Calcium nickel cvanide, Ca(CN), Ni(CN)+ vH₂O

Calcium tungsten cyanide. See Tungstocvanide, calcium,

Calcium zinc cyanide, (Ca(CN)2, Zn(CN)2+ Sol. in H₂O and in alcohol (Loebe, Dissert. 1902.)

Cerous cvanide (?).

Sol, in H2O.

Ppt. Very easily decomp, (Behringer, A. **42.** 139.)

Chromic cyanide, with MCN. See Chromicvanide, M.

Chromous potassium cvanide. See Chromocyanide, potassium,

Cobaltous cvanide, Co(CN).+H.O. Insol, in H₂O. Easily sol. in NH₄OH+Aq. and KCN+Aq; also in (NH4)2CO3, or NH4 succinate + Aq; insol. in NH, NO3, or NH, Cl +Aq. (Wittstein.)

Cobaltous evanide with 4MCN. See Cobaltocvanide, M.

Cobaltic cyanide with 3MCN. See Cobaltocvanide, M.

Cobalt gold (aurous) cyanide, Insol. in H2O or cold HCl+Aq.

decomp. by H2O. (Grossmann, Z anorg. Cobalt hydrazine cyanide, (N2H4)4Co(CN)6. Deliquescent (Franzen, Z. anorg, 1911, 70. 155.)

> Cobaltous cyanide ammonia, Co(CN)2, 2NH.

Unstable. (Peters, B. 1908, 41, 3178.)

Cuprous cyanide, Cu2(CN)2.

Insol, in H₂O and dil. acids. Sol. in NH₃OH, (NH₃)₂O₃ or NH₄ succente+ Aq, and in hot NH₄Cl, or NH₄NO₂+Aq. Sol. in cone. HCl+Aq Sol. in KCN+Aq. Easily sol. in cone. NH₃SCN or KSCN+Aq Sl sol. in NaSCN+Ag. (Grossmann, Z.

anorg - 1903, 37, 408, Sl sol, in hound NH+. (Franklin, Am. Ch. J. 1898, 20, 827.) Very sl. sol, in pyridine. (Schroeder,

Dissert. 1902.) Mol weight determined in pyridine. (Werner, Z anong 1897, 15. 20.)

Cupric cyanide, Cu(CN)2

Easily decomp. Insol in H2O Sol, in pyridine. (Schroeder, Dissert 1901.) Insol in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Cuprocupric cyanide, Cu(CN)2, Cu2(CN)2+

Insol in H₂O, but decomp. by boiling Sol. in cold cone. HCl+Aq. Sol in NH₄OH+Aq. (NH₀):CO₂+Aq, and in hot NH₄ salts+Aq.

Easily sol. in KCN+Aq.

+H₄O. Ppt. (Dufau.)
+Cu(CN)₂, 2Cu₂(CN)₂+H₂O. Ppt.

Cuprous hydrazine cyanide, Cu_{*}(CN)₀, N₂H₂CN. Insol. in alcohol and H_{*}O. (Ferratini.) C. C. 1912, I. 1281,)

Cupric iridium cyanide. See Iridicyanide, cupric.

Cuprous lithium cyanide, Cu2(CN)2, LiCN+ H₂O. Gradually decomp, by H₂O. (Grossmann. Z anorg, 1905, 43, 97.)

Cuprous magnesium cvanide, Cu2(CN)2, Mg(CN)2+11H2O. Decomp by H2O, (Grossmann, Z. anorg, 1905, 43, 103.)

Cuprous mercuric cyanide bromide, Cu(CN)2, 2Hg(CN), HgBr2.

Sol. in H₂O. (Varet, C. R. 1890, 110, 148.)

Cupric molybdenum cyanide ammonia. See Molybdocyanide ammonia, cupric. Cuprous potassium cyanide, Cu2 CN)2, 2KCX

SI sol in H₂O, with partial decomp Decomp by acids, but not by alkalis Decomp, by boiling H₂O. Sol, in NH₄OH +Aq (Fleurent, C R. 1893, 116, 191.) Sol, without decomp, in cone KSCN. (Grossmann, Z. anorg. 1903, 37. 407

Sol without decomp in KCN+Aq. (Treadwell and Girsewald, Z. anorg. 1904) Cu₂(CN)₂, KCN+H₂O. Almost insol in eold HoO 100 ec HoO dissolve 0 0591 g at

15° Decome by much hot HoO with sepnation of Cu2(CN)2 Sol in KCN+Aq or in NH₄OH+Aq (Treadwell and Girsewald, anoig 1904, 39. 87.)

Z anorg. 1904, 38, 93) 3Cu₂(CN)₂, 4KCN. Sol. in H₂O. Cu₂(CN)₂, 6KCN. Sol in H₂O.

Cuprous potassium cyanide ammonia, Cu₂(CN)₂, KCN, NH₃

(Treadwell and Girsewald, Z. anorg 1904. 39. 88.)

Cuprous potassium cyanide potassium sulphocyanide, Cu2(CN)2, 4KCN, 2KSCN, H.O.

Easily sol, in cold H₂O. (Itzug, B. 1902, 35. 108)

Cupric potassium cyanide, Cu(CN)2, 2KCN. 100°. (Buignet, J. Pharm. 1859, (3), 35, 168)

Cuprocupric potassium cyanide. Cu2(CN)2, Cu(CN)2, 2KCN. (Straus, Z anoig 1895, 9, 15)

Cuprous rubidium cyanide, Cu₂(CN)₂, 2RbCN.

Sl. sol. in H2O. Pure H2O separates CuCN. (Grossmann, Z. anorg. 1905, 43, 100.) 3Cu₂(CN)₂, 4RbCN. Si sol in H₂O ure H₂O separates CuCN (Grossmann, Z. anorg. 1905, 43, 98.)

Cuprous silver cyanide, Cu2(CN)2, 2AgCN.

Cu₂(CN)₂, 6AgCN. Sol, in excess o Cu₂(CN)₂, KCN+Aq. (Rammelsberg.) 6AgCN, Sol, in excess of

Cuprous sodium cvanide, Cus(CN)s, 2NaCN. (Traube, Z anorg. 1894, 8, 21,)

+4H₂O. Decomp. by H₂O. Sol. in excess of NaCN+Aq (Grossmann, Z. anorg, 1905.

Cu₂(CN)₂, NaCN+2H₂O. Decomp. by H₂O. (Grossmann, Z. anoig 1965, 43, 96) Cu₂(CN)₈, 4NaCN+6H₂O. Very sol. in H₂O without decomp (Grossmann, Z. anorg. 1905, 43, 96.) Cu.(CN), 6NaCN+6H2O Very sol in 484.)

H_{*}O without decomp (Grussmann, Z anorg 1905, 43. 96)

Cuprous strontium cyanide, Cu₂(CN)₂, Sr(CN)2+8H2O

II-O separates Cu₂(CN); (Grossmann, Z. nnour 1905, 43, 103)

Cuprous cyanide ammonia, Cu₂(CN)₀, 2NH

Nearly msol in cold H2O. Easily sol in NH2OH+Aq in absence of oxygen Insol. in alcohol and other. Decomp by hot H2O and acids (Treadwell and Girsewald, Z.

Cuprocupric cyanide ammonia, Cu2(CN), Cu(CN)2, 2NH2.

(Malmberg, Arch Pharm 1898, 236, 256.) +H2O. Sl sol. in cold, decomp by boiling H₄O, Sol. in NH₄OH+Aq. (Dufau, A, 88.

Cu(CN)₂, Cu₂(CN)₂ 3NH₃. (Mills, Z. Ch 1867, 545.)

Si, decomp, by boiling H2O. Sol. in NH4OH+Aq and can be recryst. therefrom. Insol. in alcohol and other. Decomp. by alkalies and acids (Treadwell and Girse-

wald, Z. anorg 1904, 39. 98.)

Cu(CN)₂, Cu₂(CN)₂, 4NH₂. Insol. in cold, decomp by hot H₂O Sol. in NH₄OH, or (NH₄)₂CO₂+Aq (Treadwell and Girse-

Decomp, by boiling acids and alkalies. (Treadwell and Gusewald, Z. anorg. 1904, 39. 92.)

+H₂O (Monthuer, J. Pharm. 11, 257.) Cu(CN)₃, 2Cu₂(CN)₃, 4NH₃. (Hillen-kamp, A. 97. 218.) Cu(CN)₃, 2Cu₃(CN)₅, 6NH₃. (Schuff and Beochi, A. 134, 43.) 2Cu(CN)₃, Cu₃(CN)₅, 2NH₃+3H₂O. (Fleurent, C. R. 114, 1030)

2Cu(CN)₂, Cu₂(CN)₂, 4NH₂+H₂O Correct formula for Cu(CN)₂, Cu₂(CN)₂, 4NH₃. (Bouveault, Bull, Soc (3) 4, 641)

Cuprous cyanade ammonium sulphocyanide, Cu₂(CN)₂, 3NH₄SCN

Decomp. by HgO. (Grossmann, Z. anorg. 1903, 37, 409,

Cupric cyanide hydrazine, Cu(CN), (N,H.). Insol. in HgO and cold dil. acids. Sol in warm dil. acids. (Franzen, Z.

anorg. 1911, 70. 154.)

Cuprous cyanide mercuric iodide, Cu*(CN). HgI2.

Sol. in H₂O. (Varet, Bull. Soc. (3) 4.

Cuprous cyanide potassium sulphocyanide, Lanthanum cyanide, La(CN), Cu2(CN)2, 3KSCN Decomp by H2O. (Grossmann, Z anorg 1903, 37, 409.)

Gold (aurous) cyanide, AuCN.

Insol in H2O, alcohol, or ether. Not attacked by dil., or conc. acids, even boiling Sol in NH4OH+Aq, also in soluble evanides +Aq

Slowly decomp. by boiling KOH+Aq, also by (NH₄)₂S+Aq Sol, in K4Fc(CN)4+Aq (Bentel, Z. anorg, 1912, 78, 152,)

Gold (auric) cyanide with MCN. See Auricvanide, M.

Gold (auroauric) mercuric cyanide auric mercuric chloride, 4AuCN, Au(CN)₃. 5Hg(CN)2, 7AuCl2, 5HgCl2.

(Schmidt, Ch. Z 1896, 20, 633.) Gold (aurous) potassium cyanide, AuCN,

Sol in 7 pts cold, and less than 0.5 pt, boiling H₂O Sl. sol in cold, and somewhat more sol in boiling alcohol Insol. in ether

(Humly, A 42. 160) Decomp by warm acids, even tartane, and acetic acids.

Gold (aurous) sodium cyanide, AuCN, NaCN SI sol in cold, more easily in hot H2O. Sl. sol. in alcohol. (Lindbom)

Gold (aurous) strontium cyanide, 2AuCN Sr(CN)2+3H2O. As the Na salt.

Gold (aurous) zinc cyanide, 2AuCN, Zn(CN)2. Nearly insol, in hot or cold H₂O Insol in cold HCl+Aq.

Gold (auric) cvanide auric mercuric chloride. Au(CN)₃, AuCl₂, 2HgCl₂ (Schmidt, Ch. Z. 1896, 20, 633)

Gold (auroauric) cyanide aurous mercuric Magnesium platinum cyanide. chloride, 12AuCN, 3Au(CN), 4AuCl, 2HgCl+.

(Schmidt, Ch. Z 1896, 20, 633.)

Gold (auroauric) cyanide mercuric chloride. 15AuCN, 2Au(CN)2, 5HgCl2. (Schmidt, Ch. Z. 1896, 20. 633.)

Iridium cvanide, Ir(CN)a. Insol, in H2O. Sol, in HCN +Aq.

Iridium evanide with MCN. See Iridicvanide, M.

Ppt. (Frenchs and Smith, B. 11. 910, 1151.)

Lead cyanide, Pb(CN)₂.

Sl sol m cold, more in hot H2O. Sol, m HNO₁+Aq, and KCN+Aq Partially sol. m NH₁OH+Aq, and NH₄ salts+Aq. Not pptd in presence of Na citrate

Above compound is 2PhO, Pb(CN)2+ H₂O (Joannis, A. ch. (5) 26, 201.) 2PbO, Pb(CN)2+H2O. Insol. in H2O.

Lead tungsten cyanide.

See Tungstocvanide, lead.

Lead zinc cyanide, Pb(CN)2, 2Zn(CN)2. Ppt. (Rammelsberg)

Lead cyanide chloride, 2Pb(CN), PbCl, Insol. in H₂O. (Grissom and Thorp, Am. Ch J 10, 229)

Lithium mercuric cyanide mercuric iodide, 2Li(CN)₂, Hg(CN)₂, HgI₂+7H₂O Deliquescent; sol. in H₂O. (Varet, C. R. 111. 526.)

Magnesium cyanide, Mg(CN), Known only in aqueous solution which decomposes on evaporation. (Schulz)

Magnesium mercuric cyanide, 2Mg(CN)2, 3Hg(CN)2+5H2O (Gressmann, B 1904, 37, 4143)

Magnesium mercuric cyanide mercuric bromide, Mg(CN)2, Hg(CN)2, HgB12+ 8H₂O

Very sol, in H₂O. (Varet, Bull, Soc. (3) 7, 170.)

Magnesium mercuric cyanide mercuric jodide, Mg(CN), Hg(CN), HgI+ 8H₂O. Sol. in H₂O (Varet, Bull. Soc. (3) 7, 170.)

See Platinocvanide, magnesium.

Magnesium tungsten cyanide. See Tungstocvanide, magnesium.

Manganous and manganic cyanides. See Manganocyanhydric, and Manganicyanhydric acids.

Manganous strontium cyanide, 2Mn(CN)2, Sr(CN). Ppt. (Descamps)

See also Manganocyanide, strontium

Manganous tungsten cyanide.

Sec Tungstocyanide, manganous.

Manganic cyanide, with MCN, See Manganicyanide, M.

Manganous cyanide with MCN. Sec Manganocyanide, M.

Mercuric cyanide, basic, Hg(CN), HgO Sl sol, m cold, moderately sol, in hot H₂O Sol, with decomp, in KOH, KCN, or KCl+

. (Johnston.) Decomp. by H₂O over 80° (Holdermann, Arch Pharm, 1906, 244, 135)

Cold H₂O dissolves about 1%, boiling H₂O about 5%. (Borelli, Gazz. ch it. 1908, 38. (1), 361)

1.1° dissolves in H₂O at ord, temp. (Richard, J. Chim. Phys. (6) 18. 555.)

At 0° 1/100 mol dissolve in 1 l At 25° 1/32 At 90° 1'10

(Borelli, Gazz. ch it 1908, 38. (1), 361.) 1000 cc. cold H₂O dissolve 1.35g (Holder-

mann, Arch Pharm 1906, 244, 135) Less sol. in cold H2O than Hg(CN)2. (Pieverling, J. B. 1899, 783.) Somewhat sol, in dil. alcohol.

Practically insol in alcohol, ether, CaH, and all organic solvents. (Borelli, Gazz, ch. it 1908, 38, (1), 361.)

Sol. in 110 pt alcohol of 90° Bc. (Richard J. Chim Phys (6), 18, 555) 3Hg(CN)₂, HgO, (Joannis, A. ch (5) 26.

Moderately sol. in H₂O. (Barthe, J Pharm. 1896, (6), 3. 186.) Very sol. in hot, less sol. in cold H₂O (Holdermann, Arch. Pharm 1904, 242. 32) Easily sol, in HCl. (Joannis, A ch. 1882.

Hg(CN)₂, 3HgO More sol. in H₂O than Hg(CN)₂, HgO.

Mercuric cyanide, Hg(CN)2

Moderately sol, in H₂O. 100 pts. Hg(CN)₂+Aq sat at 101.1° contain 35 pts. Hg(CN)₅, or 100 pts. H₂O dissolve 53.85 pts Hg(CN)2 at 101.1°. (Grif-

Sol. in 8 pts H₂O at 15°. (Abl.) Sol. in 11 pts cold, and 2.5 pts. boiling

H₂O. (Wittstein) 8 g. are sol. in 100 g. H₂O at -0.45° (Guthne, Phil. Mag 1878, (5) 6. 40) 100 g. H₂O dassolve 9.3 g at 13.5° (Timoferey, Dissert 1894.)

100 cc sat solution contain 9 3 g at 20° (Konowalow, J russ Soc 1898, (4) 30.

Solubility in H₂O at 25°=0.44 mol. l. (Sherrill, Z. phys. Ch. 1903, 43, 735.)

and Wagner, Z. Elektrochem. 1909, 15, 444, 100 g. H₂O dissolve 12 5 g. at 15° and Struthers, Chem. Soc. 1905, 87, 1879 1 100 g. H₂O dissolve 11 27 g. at 25° Sp. gr of solution = 1 0813 (Herz and Anders, Z anorg, 1907, 52 164)

(Hofmann

H₂O dissolves 0.3956 mol

Hg(CN)2+Aq containing 7.23% Hg(CN)2

has sp. gr 20°/20°=1 0572. Hg(CN)₂+Aq containing 9.07% Hg(CN)₂ has sp. gr. 20°/20° = 1 0743.

(Le Blanc and Rohland, Z phys. Ch. 1896, 19.

Sp. gr at 16°/4° of Hg(CN)₂+Aq containing 7 8921% Hg(CN)₂=1.06376; containing 5 4037%=1 04246; containing 7 5009%= 1.06049. (Schonrock, Z. phys. Ch. 1893, 11.

Not decomp, by acids except hot cone. H2SO4. Sol without decomp, in HNO2+Aq. (Ber-

zelius) NH₄OH+Aq (52% NH₄) dissolves
 3 g at about 25°. (Konowalow.) Solubility in bases.

H₂O containing 0 3286 mols KOH dis-solves 0.5179 mols Hg(CN)₂.

1 l. H₂O containing 0.2350 mols. NaOH dissolves 0.4840 mols Hg(CN)₂ 1 l H₂O containing 0.4775 mols. NaOH dissolves 0.5977 mols. Hg(CN)₂.

1 l. H₂O containing 0.9475 mols. NaOH dissolves 0.79603 mols. Hg(CN)2. 1 l H₂O containing 0 970 mols. LiOH dis-

solves 0.6543 mols, Hg(CN)2. 1 | H₂O containing 0 480 mols. LiOH dissolves 0.5500 mols. Hg(CN)₂.

1 l H₂O containing 0.243 mols LiOH dissolves 0 4840 mols. Hg(CN)2. (Hofmann and Wagner, Z Elektrochem 1909, 15. 444.)

Solubility in KCN+Ag at 25°.

Concentration of KCN	Solubility of Hg(CN) ₂
Mols per litre	Mols, per litre
0 0493	0 4855
0 0985	0 5350
0 1970	0 627.

(Shernil, Z. phys. Ch 1903, 43, 719.)

Solubility in Na₂CO₂+Aq.

1 l. H₂O containing 0 4923 mols. Na₂CO₃ dissolves 0.4956 mols. Hg(CN)₂.
1 l. H₃O containing 0.2443 mols. Na₂CO₃ dissolves 0.4464 mols. Hg(CN)₃.
1 l. H₃O containing 0.1250 mols. Na₂CO₄ dissolves 0.4147 mols, Hg(CN).

H₂O containing 0.0000 mols. Na₂CO₂ dissolves 0.3952 mols Hg(CN)₂.

(Hofmann and Wagner, Z. Elektrochem, 1909, 15, 444.)

Solubility in KNO₄+Aq at 25°.

1 H₂O containing 0.9574 mols. KNO₄
dissolves 0.5383 mols. HgCN)₂
1_al. H₂O containing 0.4614 mols. KNO₄

1.1. H₂O containing 0.4614 mols. KNO₂ dissolves 0.4619 mols. Hg(CN)₂.

1. H₂O containing 0 0000 mols. KNO₃ dissolves 0.3956 mols. Hg(CN).

(Hofmann and Wagner, Z. Elektrochem, 1909,

15. 444.)
Insol, in bould CO₂ (Büchner, Z phys.

Ch 1906, 54, 674.)
Very easily sol. in liquid NH₂. (Franklin, Am Ch. J. 1898, 20, 829.)

Solubility of Hg(CN)₂ in ethyl sleohol at t^o

t°	% Ha (N)~
0	8.3
10	8.8
20 30	9 25
30	9.8

(Timofeley, Dissert 1894.)

Solubility of Hg(CN)₂ in methyl alcohol at t°. Hg(CN)₄=g. Hg(CN)₂ in 100 g, of the

to.	Hg(CN)2	
0 0 14 7 23 4 27 4 31.7 38.1	26 10 29.17 32 01 31 77 32 53 33 20	
44.5	34 05	

(Dukelski, Z. anorg. 1907, **53**. 337.)

100 pts. methyl alcohol dissolve 44.2 pts. Hg(CN)₁ at 19.5°; 100 pts. ethyl alcohol dissolve 2.09 pts at 19.5°. (de Bruyn, Z phys Ch 1892, 10. 784.)
Sol. m 2.5 pts. methyl slcohol at 14°; in

20 pts ethyl alcohol at 15°. (Marsh, Chem. Soc. 1905, 87. 1878.) Solubility of Hg(CN), in methyl alcohol+

Aq at 25°.

P=g. alcohol in 100 g alcohol+Aq

Hg(CN)₂ = millimols. Hg(CN)₂ in 10 ec. of the solution

P Hg(CN)₂ : Sp. gr.

0 10.60 30.77 37 21 47.06 64 00 78.05	4 34 4 37 4 94 5 40 6 49 8 13 9 75	1 0813 1 0642 1 0484 1 0430 1 0426 1 0441 1 0484
100	13.60	1 0762

(Herz and Anders, Z. anorg 1907, 52, 165.)

Solubility of Hg(CN)₂ in ethyl alcohol+Aq at 25°.

P=g alcohol in 100 g, alcohol+Aq Hg(CN)₂=mllimols Hg(CN)₂ in 10 cc of the solution

P	Hg(CN),	Sp. gr
0	4 34	1.0813
20.18	3 47	1 0339
40 69	3 58	1 0006
70 01	3 80	0 9419
100	3 25	0 8552

(Herz and Anders, l c)

Solubility of Hg(CN)₂ in mixtures of methyl and ethyl alcohol at 25°.

 $P = {}^{C}_{0}$ methyl alcohol in the solvent. $Hg(CN)_{z} = g$. $Hg(CN)_{z}$ in 10 com, of the

S 25°/4°=Sp. gr. of the sat. solution.

P	Hg(CN)2	S 25°/4°
0	0 819	0 8552
4 37	0 902	0 8618
10 4	1.01	0 8707
41 02	1 67	0 9267
80 69	2 82	1 024
84 77	2.96	1 034
91 25	3.09	1 052
100	3 43	1 076

(Herz and Kuhn, Z. anorg 1908, 58, 166.)

100 g propyl alcohol dissolve 3.79 g. Hg(CN)₂ at 13.5°. (Timofeiev, Dissert 1894.)

Solubility in mixtures of propyl and methyl alcohol at 25°.

 $\begin{array}{l} P=\% \ propyl \ alcohol \ m \ the \ solvent \\ G=g \ Hg(CN)_2 \ m \ 10 \ ccm. \ of \ the \ solution. \\ S=Sp. \ gr. \ of \ the \ sat. \ solution. \end{array}$

0 3.43 1 0760 11 11 2 952 1 0327 23 8 2.448 0 9891 65 2 1 048 0 8890 91 8 0.504 0 8376 93 97 0.423 0 8335 96 6 0 398 0 8322	P	(i	S 25°/4°
100 0.344 0.8283	23 8 65 2 91 8 93 97 96 6	2 952 2.448 1 048 0.504 0.423 0 398	1 0327 0 9891 0 8800 0 8376 0 8335 0 8322

(Herz and Kuhn, Z. anorg. 1908, 60.158.)

Solubility in mixtures of propyl and ethyl alcohol at 25°.

 $P = {}^{o}_{0}$ propyl alcohol in the solvent G = g, $Hg(CN)_{2}$ in 10 ccm, of the solution S=Sn m of the sat solution

P	G	S 25°/4°			
0	0 819	0 8552			
8 1	0 790	0.8549			
17.85	0 730	0 8527			
56 6	0 521	0.8386			
88 6	0 387	0 8311			
91.2	0 384	0 8306			
95 2	0 364	0.8293			
100	0 341	0.8283			

(Herz and Kuhn, 1 c)

Sp. gr. at 16°/4° of Hg(CN)₂+alcohol, containing 8,2206 °_CHg(CN)₂=0.85273, contaiming 5.8652 Ct = 0.8348 + So. cr. of 16°/4° of Hg(CN)2+ pyridine

containing 29.6018 (Hg(CN)) = 1 28155, contaming 23.2275% = 1.20198

(Schonrock, Z. phys. Ch. 1803, 11, 771) I l, ether dissolves 0 01 mol at 25° (Sherrill, Z. phys. Ch 1903, 43, 735.))

Easily sol, in acetone. (Krug and M'Elroy, J Anal. Ch 6.84) 100 g glycerol dissolve 27 g Hg(CN)2 at 15 5°. (Ossendowski, Pharm J. 1907, 79.

Nearly msol in C6H1, (Sherull, Z phys Ch. 1903, 43, 735.) Sol. in methyl acctate. (Naumann, B.

1909, 42, 3790) 100 g, boiling methyl acetate dissolve

3.2 g. (Steiner, Dissert, 1906.) Solubility of Hg(CN)2 in cthyl acetate+Ac

at 25° P=g, ethyl acetate m 100 g ethyl acetate +Aq. Hg(CN)2=millimols Hg(CN)2 in 10 cc, o the solution.

P	Hg(CN)2	Sp gr.		
0	4 34	1 0810		
4 39	4 295	1 0797		
96 76	1 056	1.9374		
100	0 714	0.09097		

(Herz and Anders, Z. anorg 1907, 52, 165) Insol in ethyl acetate. (Naumann, B.

1910, 43, 314) Solubility in organic solvents at 18-20°

100 g. tetrachlormethane dissolve 0 001 g. Hg(CN). t00 g. bromoform dissolve 0.005 Hg(CN):

100 g. ethyl bromide dissolve 0.013 g Hg(CN): 100 g ethylene dibromide dissolve 0.001 g

(Sule, Z. anorg. 1900, 25, 401.)

100 g. acetonitule dissolve 9 58 g. Hg(CN). at 18° (Naumann and Schiot, B. 1914, 47. 240 1

Solubility in benzonitrile at 18° = 1.093 g. in 100 g. (Naumann, B. 1914, 47, 1370)
Sl. sol in ethyl amme (Shinn, J. phys. Chem. 1907, 11, 538)

Very sol, in liquid methyl amine (Gibbs, J. Am. Chem Soc. 1906, 28, 1419.) Sol. in paratoluidine. (Weiner, Z. anorg, (897, 15, 7.)

Mol, weight determined in pyridine and benzonitrile. (Werner, Z. anorg, 1897, 15. 20 and 32.) 100 g, pyridine dissolve 64 S g Hg(CN), at 18°, (Schroeder, Z. anorg 1905, 44, 6)

Solubility in pyridine.

Mols per 30 llg(CN):	Temp of Solidification	Mols per 100 Hg(CN)	Temp of Solidification
7 1 8 7 10 1 10 4 11 3 12 9 13.8 15 8 15 9 17 3 18 4 19 3 20 6	0 11 12 3 12 2 13 13 5 14 5 16 5 20 5 22 5 28 5 38	22.9 23.7 25.3 26.0 20.6 27.5 27.7 29.0 32.0 33.8 34.4 38.3	45 46 53 54 56 68 70 86 111 122.5 125 141
22 3	42		

(Staronka, Ang. Ak. Wiss, Krakau, 1910,

Solubility in quinoline.

Mols per	Temp of	Mols per	Temp of
100 Hg(CN)	Solidification	100 Hg(CV):	Solidification
4 2	45°	13 2	137°
6 0	54	17.4	161
8 2	89(61)	22.5	180
9 2	99(61) (Staron	27 1 ka, l. c.)	192

Mols per 100 Hg(CN):	Temp of Solidification	Mola per 100 Hg(CN):	Temp of Solidification			
3 7 4 9 5 7 7.7 9 2	26° (?) 30 5(?) 35 (?) 38 5(?)	14 2 18 2 19.7 23 4	77° (?) 83 5(?) 84 (?) 88.5(?)			

(Staronka, l. c.)

Mercuric nickel cyanide ammonia, 2Hg(CN)2 4N1(CN)2, 5NH3+2H2O. (Papiermeister, Dissert 1898.) 5Hg(CN)₂, 18Ni(CN)₂, 8NH₂+15H₂O.

(Papiermeister, Dissert, 1898.)

Mercuric potassium cyanide, Hg(CN), 2KCN Sol. in 4.4 pts cold HoO; al sol, in alcohol-

decomp, by acids. 100 g. H₂O dissolve 22 7 g. (Fronmüller, B, 1878, 11, 92.) Abundantly sol. in liquid NHs. (Franklin, Z. phys. Ch. 1909, 69, 295.)

Mercuric silver cyanide, basic, Hg(CN)2, HgO, 7AgCN. Ppt. (Bloxam, B, 16, 2669.)

1891, 112. 535.) Mercuric silver cyanide mercuric sulphate, Hg(CN)₂, 2AgCN, HgSO₄+H₂O.

Mercuric sodium cyanide, Hg(CN)2, NaCN $+1\frac{1}{2}H_{2}O$. Sol. in H₂O (Grossmann, B. 1904, 37. 4141)

Mercuric strontium evanide. Hg(CN),Sr(CN), +5H,O, Very hygroscopic. Sol in H.O. (Grossmann, B, 1904, 37, 4142)

Mercuric strontium evanude iodide, Sr(CN). HgI2, Hg(CN)2+7H2O. (Varet, C. R. 1895, 121, 499)

Easily sol, in H_{*}O. 100 pts H_{*}O dissolve 7 9 pts at 1°, and 10 3 pts. at 10°. (Fronmuller, B 11, 92) Mercuric zinc cyanide, 4Zn(CN)2, Hg(CN)2.

Insol. in HoO. (Dunstan, Chem Soc. 6. Mercuric zinc cyanide mercuric bromude ammonia, Hg(CN)2, Zn(CN)2, HgBr2,

Decomp by H2O Sl sol. in cold NH4OH +Aq. (Varet, C. R. 1889, 109, 810.) Mercuric cyanide ammonia, Hg(CN)2, NH2.

Very sol, in H2O, NH4OH+Aq, and alcohol. (Varet, C. R. 1889, 109. 903) Sl. sol. in H₂O (Schmidt, B. 1894, 27. 232 8Hg(CN), 2NH₈+1/2H₂O Easily decomp. (Varet, Bull Soc (3) 6. 221)

Mercuric cyanide bromide, Hg(CN)2, HgBr. Very al. sol even in boiling H₂O. (Prussia,

Gazz, ch. it. 1898, 28, (2), 114) Mercuric cyanide barum bromide, 2Hg(CN)2

BaBr2+6H2O. Easily sol, especially in hot H₂O and alcohol. (Varet. C. R. 1895, 121, 398.)

Mercuric cyanide cadmium bromide, Hg(CN)₂, CdBr₂+3H₂O.

Sol m H2O and NH4OII+Aq. (Varet, Bull. Soc. (3) 5. 8) 2Hg(CN)2, CdBr2+4.5 H2O, Sol. in H2O and in NH OH+Aq. (Varet, C R. 1890, 111.680.)

Mercuric cyanide cadmium bromide ammonia 2Hg(CN)2, CdBr2, 4NH1+2H2O. Decomp by H.O. Sl. sol. in NH.OH+Aq (Varet, C. R.

Mercuric cyanide calcium bromide,

2Hg(CN)2, CaBr2+5H2O. Sol in 1 pt. cold, and 0.25 pt. boiling H2O; also in 2 pts. cold, and 1 pt boiling 90% alcohol (Custer.) +7H₂O. (Varet. C. R. 1895, **121**, 399.)

Mercuric cvanide cupric bromide ammonia. 2Hg(CN), CuBr, 4NH, Decomp, by H.O: sl. sol, in NH₂OH+Aq. (Varet, Bull Soc. (3) 6, 221)

Mercuric evanide lithium bromide, 2Hg (CN). 2LiBr+7H.O. Dehouescent, (Varet, C. R. 111, 526.)

Mercuric thallium cyanide, Hg(CN)2, 2T1CN, Mercuric cyanide magnesium bromide. See Magnesium mercuric cyanide mercuric bromide. Hg(CN)2, 2KBr Very sol, in H₂O. (Harth, Z anorg 1897, 14. 351)

> Mercuric cyanide potassium bromide, Hg(CN)₂, KBr+2H₂O. Sol. in 13 34 pts. H₂O at 18°, and less than pt boiling HaO. (Brett) Sol without decomp. in hot dil. H₂SO₄, HNO₃, or HCl+Aq. (Brett.) Contains 1½H₂O (Berthelot, A. ch. (5) 29, 226.)

Mercuric cyanide sodium bromide, Hg(CN), NaBr+116H2O. Sol. in H₂O and alcohol.

Mercuric cyanide strontium bromide, 2Hg(CN)₂, SrBr₂+6H₂O. Sol. in H₂O and in alcohol. (Varet, C. R. 1895, 121, 399.)

Mercuric cyanide zinc bromide, HgBr. Hg(CN)2, Zn(CN)2+8H2O. Sol. in H2O and NH4OH+Aq. (Varet, Bull Soc. (3) 5. 8.)

Mercuric cyanide zinc bromide ammonia, HgBrs, Hg(CN)2, Zn(CN)2, 4NH3. As the corresponding chloride. (Varet.) Mercuric cyanide chloride, Hg(CN)₂, HgCl₂ Sol. in H₂O. Decomp. by alcohol, which dissolves out HgCl₂.

Mercuric cyanide ammonium chloride, Hg(CN)₃, NH₄Cl. Sol. in H₂O and alcohol. (Poggiale) Hg(CN)₃, 4NH₄Cl.

Mercuric cyanide barium chloride, 2Hg(CN)₂, BaCl₂+4H₂O. Efflorescent. Easely sol. in H₂O and alcohol +6H₂O. (Dester)

Mercuric cyanide barium chloride ammonia, 2Hg(CN)₅, BaCl₅, 4NH₅. Decomp. by H₂O. Sl. sol. in NH₄OH+Aq.

Varet, Bull. Soc. (3) 6, 221.)

Mercuric cyanide cadmium chloride,
Hg(CN)₃, CdCl₃+2H₂O.
Sol. in H-O and NH-OH+Ag. (Varet.

Bull. Soc. (3) 5. 8.)

Mercuric cyanide calcium chloride,
2Hg(CN)₂, CaCl₂+6H₂O.
Efflorescent. Very sol. in H₂O. (Varet,
C. R. 1895, 121. 349)

Mercuric cyanide cerium chloride, 3Hg(CN)₂, CeCl₂+8H₂O. Very sol, in H₂O. (Ahlén, Bull. Soc. (2)

27. 365.)

Mercuric cyanide cobaltous chloride,
Hg(CN)₂, 2CoCl₂+4H₄O.

Sol. in H₂O. (Poggiale.) 2Hg(CN)₂₁ CoCl₂+7H₂O. (Dexter.) Mercuric cyanide cupric chloride, Hg(CN)₂,

CuCl₂+6H₂O. Efflorescent. Sol. in H₄O and in NH₄OH+Aq. (Varet, C. R. 1888, 107. 1002.)

2Hg(CN)₂, CuCl₁+6H₂O. Efflorescent Very sol in H₂O and in NH₄OH+Aq. (Varet, C R. 1888, 107. 1002.)

Mercuric cyanide cupric chloride ammonia, 2Hg(CN)₂, CuCl₂, 4NH₂. Decomp. by H₂O. Sl. sol. in cold NH₄OH +Aq. (Varet, Bull. Soc. (3) 6, 221.)

Mercuric cyanude didymium chloride, 3Hg(CN)₂, D₁Cl₁+8H₂O. Very sol. in H₂O. (Ahlén.)

Mercuric cyanide erbium chloride, 3Hg(CN)₂, ErCl₄+8H₂O, Easily sol, in H₂O, (Ahlén.)

Mercuric cyanide hydrazine chloride, Hg(CN)₂, N₂H₄, HCl. Very sol. in H₂O. Nearly insol in alcohol and ether, (Ferratim, Gazz. ch. it 1912, 42. (1), 154.)

Mercuric cyanide ferric chloride, 2Hg(CN)₂, FeCl₃+3½H₂O. (Dexter.)

Mercuric cyanide lanthanum chloride, 3Hg(CN)₁, LaCl₂+8H₂O. Very sol, in H₂O. (Ahlén.)

Mercuric cyanide magnesium chloride, 2Hg(CN)₁, MgCl₂+2H₂O. Easily sol in H₂O and dil, alcohol. (Pog-

giale)

Mercuric cyanide manganous chloride,
Hg(CN)₃, MnCl₂+3H₃O.
Efflorescent. Very sol. m H₂O. (Poggiala.)

Mercuric cyanide nickel chloride, Hg(CN)₂, NiCl₂+6H₂O Deliquescent. Sol. in H₂O. (Poggiale.) 2Hg(CN)₂, NiCl₂+7H₂O. (Dexter.)

Mercuric cyanide chloride nickel chloride oxychloride, 11Hg(CN)₂, 8HgCl₃, 2N₁Cl₂, 8N₁(OH)Cl+76H₂O.

(Papiermeister, Dissert. 1898.)

Mercuric cyanude potassium chloride, Hg(CN)₂₁ KCl+H₂O. Sol. m 6.75 pts. H₂O at 18°. (Brett.) Sol. m alcohol.

Mercuric cyanide sodium chloride, Hg(CN)₂, NaCl. Easily sol, especially in hot H₂O; unsol, in

alcohol. (Poggfale)

Mercuric cyanide strontium chloride,

2Hg(CN)₂, SrCl₂+6H₂O.

Easily sol. in H₂O and dil. alcohol. (Varet, C. R. 1895, **121**, 349.) Mercuric cyanide yttrum chloride, 3Hg(CN)₄

YCl₂+8H₂O. Easily sol. in H₂O. (Ahlén, Bull. Soc. (2) 27. 365.)

27. 365.)

Mercuric cyanide zinc chloride, 2Hg(CN)₂,
ZnCl₂+6H₄O.

Efflorescent. Sol. in H_2O . (Kane.) $HgCl_3$, $Hg(CN)_2$, $Zn(CN)_2+7H_2O$. Efforescent. Very sol in H_2O . (Varet, Bull. Soc. (3) 5.8)

Mercuric cyanide zinc chiorde ammonia, HgCl₂, Hg(CN)₂, ZnCl₃, 4NH₂. Decomp. by H₂O. Sol. in NH₄OH+Aq. (Varet, Bull. Soc (3) 6. 221.) Hg(CN)₃, Zn(CN)₂, HgCl₂, 6NH₃. (Varet, C. R. 106. 1080.) Mercuric cyanide potassium chromate. See Chromate mercuric cyanide, potassium. Mercuric cyanide potassium ferrocyanide,

Mercuric cyanide potassium ferrocyanide, 3Hg(CN)₂, K₄Fe(CN)₅+4H₂O. Readily sol. in H₂O.

Mercuric cyanide hydrazine, Hg(CN)_{2s} N₂H₄. Very sol. in H₂O with partial decomp.

(Hofmann and Marburg, A 1899, 305. 215.) Hg(CN)₂, N₂H₄ Ppt. (Franzen, Z. anorg. 1911, 70. 154.)

Mercuric cyanide potassium hydroxide, Hg(CN)₂, KOH.

(Hofmann and Wagner, B 1908, 41, 321.) +1½H₂O. (Hofmann and Wagner, B. 1908, 41, 1630.) 2Hg(CN)₂, KQH+H₂O. Very sol. in H₂O. (Hofmann and Wagner, B. 1908, 41, 320.)

Mercuric cyanide sodium hydroxide, Hg(CN)₂.NaOH+1½H₃O or H₂O.

(Hofmann and Wagner, B. 1908, 41. 1631.) Mercuric cyanide barium iodide, 2Hg(CN)₃,

BaI₂+4H₂O.
Slowly deliquescent. Sol. in 16 5 pts cold, and 0 4 pt. boiling H₂O. Sol. in 22 5 pts. cold, and 1.6 pts. hot 90% alcohol Solution

us decomp. on boiling. (Custer.)

Mercuric cyanide cadmium iodide, Hg(CN)₂,
Cd(CN)₂, HgI₂+8H₂O.

See Cadmium mercuric cyanide mercuric iodide.

Mercuric cyanide cæsium iodide, Hg(CN)₂, CsI. Recryst. from H₂O without decomp. Decomp. by acids. (Mathewson and

Decomp. by acids. (Mathewson and Wells, Am Ch. J. 1903, 30, 433.)

Mercuric cyanide calcium iodide, 2Hg(CN)₂,

CaI₂+6H₃O.
Sl efflorescent. More sol. in H₂O than corresponding Sr. comp. (Custer.)

Mercuric cyanide lithium iodide, Hg(CN)₂, 2Lz(CN)₂, HgI₂+7H₂O. See Cyanide, lithium mercuric mercuric iodide.

Mercuric cyanide magnesium iodide, Hg(CN)₂, Mg(CN)₄, HgI₂+8H₂O. See Cyanide, magnesium mercuric mercuric

See Cyanide, magnessum mercuric mercuric iodide.

Mercuric cyanide potassium iodide, Hg(CN)₂,

Sol. in 16 pts. cold, and less hot H₂O Sol.

in 96 pts cold alcohol of 34° Baumé. (Caillot.) Sl sol. in ether. Decomp by acids.
3Hg(CN)₂ 2Kl+½H₂O. (Berthelot.)

Mercuric cyanide sodium iodide, Hg(CN)2, NaI+2H₂O. Sol in 415 pts. H₂O at 18°, and 4/2 pts.

Sol in 4½ pts. H₂O at 18°, and ½ pts. boiling H₂O. Sol. in 2 pts. boiling, and 6½ pts. cold 90% alcohol (Custer.)

Mercuric cyanide strontum iodide, 2Hg(CN)₂, SrI₂+6H₂O.

Sol m 7 pts. H₂O at 18°, and ½ pt. at b -pt. Sol. m 4 pts. 90% alcohol at 18°, and ½ pt. at b.-pt. (Custer.)

Mercuric cyanide zinc iodide, 2Hg(CN)₂, ZnI₂+6H₂O, Efflorescent: sol in H-O.

Mercuric cyanide iodide potassium cyanide, Hgl₃, Hg(CN)₂, 2KCN Easily decomp. by dil. acids. (Rupp. Apoth. Ztg., 23, 374.)

Mercuric cyanide cadmium nitrate, 2Hg(CN)₂, Cd(NO₃)₂+7H₂O

Decomp by H₂O, not by alcohol (Nylander, J B 1859 271)

Mercuric cyanide cobalt nitrate, 2Hg(CN)₂, Co(NO₂)₂ +7H₂O Decomp. by H₂O, not by alcohol (Ny-lander.)

Mercuric cyanide copper nitrate, Hg(CN)₂, Cu(NO₂)₂+5H₂O Decomp by H₂O, not by alcohol. (Ny-lander.)

Mercuric cyanide ferrous nitrate, 2Hg(CN)₂, Fe(NO₃)₂+7H₂O Decomp. by H₂O, not by alcohol (Nylander.)

Mercuric cyanide manganous nitrate, Hg(CN)₂, Mn(NO₂)₂+5H₂O.

Decomp by H₂O, not by alcohol. (Nylander) 2Hg(CN)₂, Mn(NO₃)₂+7H₂O As above.

Mercuric cyanide nickel nitrate, 2Hg(CN)₂, Ni(NO₂)₂+7H₂O. Decomp. by H₂O, not by alcohol. (Ny-lander.)

Mercuric cyanide silver nitrate, 2Hg(CN)₅, AgNO_{3+2H₃O. Sl sol. in cold, more readily in hot H₂O. Sl sol with decomp. in HNO₃+Aq. As sol. in alcohol as in H₂O}

Mercuric cyanide zinc nitrate, 2Hg(CN);, Zn(NO₃);+7H₂O. Sol. in H₂O with decomp. Not decomp. by alcohol. (Nvlander. J. B. 1859, 271.) Mercuric cyanide nitrate silver cyanide, basic, Mercuric cyanide samarium sulphocyanide, Hg(NO₃)CN, 10AgCN, Hg(OH)NO₃. (Schmidt, Z. anorg 1895, 9, 431)

Mercuric cyanide potassium selenocyanide, IIg(CN)₂, KSeCN.

Sl. sol, in cold, much more easily sol, in hot H₂O or alcohol. Traces dissove in ether. (Cameron and Davy, C. N. 44. 63)

Mercuric cyanide nickel sulphate, Hg(CN)2, N1SO4+9H2O. (Papiermeister, Dissert. 1898.)

Mercuric cyanide ammonium sulphocyanide, Hg(CN)2, NH4SCN. Easily sol. in hot H2O. (Cleve, Bull Soc (2) 23.71)

Mercuric cvanide barium sulphocyanide, 2Hg(CN)₂, Ba(SCN)₂+4H₂O. Permanent, Sol, in hot H2O (Cleve)

Mercuric cyanide cadmium sulphocyanide, 2Hg(CN)₂, Cd(SCN)₂+4H₂O Permanent, Sol in hot H₂O. (Cleve.)

Mercuric cyanide calcium sulphocyanide, 2Hg(CN)2, Ca(SCN)2+8H2O Sol, in H2O, (Cleve.)

Mercuric cvanide cerium sulphocyanide, 3Hg(CN)2, Ce(SCN)3+12H4O Easily sol in hot H₂O (John)

Mercuric cyanide didymium sulphocyanide, 3Hg(CN)₂, D₁(SCN)₂+6H₂O. Sl sol, in cold, easily in hot H₂O. (Cleve.)

Mercuric cyanide erbium sulphocyanide, 3Hg(CN)2, 2Er(SCN)2+12H2O Sl. sol. in cold, easily in hot H2O. (Cleve)

Mercuric cyanide lanthanum sulphocyanide, 3Hg(CN), La(SCN), +12H,O. Very sol, m H₂O. (Cleve.)

Mercuric cyanide magnesium sulphocyanide, 2Hg(CN)₂, Mg(SCN)₂+4H₂O. Permanent. Easily sol, in hot H₂O. (Cleve.)

Mercuric cyanide potassium sulphocyanide, Hg(CN)₂, KSCN. Permanent. Easily sol. in hot H₂O. +2H₂O. (Philip, Z Ch. 1867. 552.)

Mercuric cyanide rubidium sulphocyanide, Hg(CN)₂ Rb(SCN).

Sol. in hot H2O without decomp. (Grossmann, B. 1904, 37, 1259.)

3Hg(CN)1, Sm(SCN)1+12H10. Easily sol in H₂O. (Cleve.)

Mercuric cvanide sodium sulphocyanide, Hg(CN)2, NaSCN+2H2O Efflorescent. Sol. in H₂O. (Cleve, Bull,

Sec (2) 23.71) Mercuric cyanide strontium sulphocyanide, 2Hg(CN)₅, Sr(SCN)₂+4H₂O Efflorescent. (Cleve)

Mercuric cyanide yttrium sulphocyanide, 3Hg(CN), Y(SCN),+12H2O SI sol. in waim, much less in cold H2O. (Cleve)

Mercuric cyanide zinc sulphocyanide, 2Hg(CN)2, Zn(SCN)2+4H2O. Sl. sol. in H₂O (Cleve.)

Mercuric cyanide zinc sulphocyanide am-monia, 2Hg(CN)₂, Zn(SCN)₃, 3NH₃. Not efflorescent Decomp, by H2O.

Mercuric cyanide potassium thiosulphate, Hg(CN)2, K2S2O2. Permanent. Sol. in H2O. (Kessler.) +H₂O. (Fock and Kluss, B. 24, 1355)

Molybdenum hydroxyl potassium cyanide, K₂Mo(OH)₂(CN)₃. (Rosenheim and Koss, Z anorg. 1906, 49.

155) K₄Mo(OH)₂(CN)₈. Very sol. in H₂O, (Rosenheim and Koss.)

Molybdenum cyanide with MCN. See Molybdocvanide M.

Melybdenyl potassium cyanide, MoO₂(CN)₂, 2KCN.

Very sol in H₂O. Aqueous solution is stable in presence of alkalies Insol. m alcohol (Péchard, C R. 1894, 118. 805.) MoO2(CN); 3KCN, Sol. in H2O Insol.

in alcohol. (Hofmann, Z. anorg. 1896, 12. +H2O. Sol. m H2O. Insol. in alcohol.

(Hofmann) +4H2O. Sol. in H2O. Insol, in alcohol, (Hofmann.)

Nickel cyanide, $N_1(CN)_2+xH_2O$. Insol. in H2O. Insol. in conc HCl, H2SO4. or HNO,+Aq, but decomp, by heating therewith. Sol in NH₄OH, warm (NH₄)₃SO₄, or NH₄ succenate+Aq; also in KCN+Aq. Sl. sol. in NH₄Cl, or NH₄NO₃+Aq. (Wittstein.

Insol. in methyl acetate (Naumann, B. 1909, 42, 3790.)

+3H₂O, +31/4H₂O₂+33/4 H₂O, +41/4H₂O, and +51/1H2O. (Papiermeister, Dissert. 1898.) +4H₂O. (Hofmann and Hochtlen, B.

1903, 36, 1149.) Nickel potassium cyanide, Ni(CN), 2KCN

 $+H_2O$. Sol in H2O. Decomp. by acids with residue

of insol. Ni(CN)2. +1/2H₂O. (Rammelsberg.)

, Nickel sodium cyanide, Ni(CN)2, 2NaCN+ 3H₂O. Sol. in H₂O; decomp. by acids with residue

of NI(CN)2. Nickel strontium cyanide, Ni(CN)2, Sr(CN)2

Sol. in H2O. (Handl, J. B. 1859, 273)

 $+\tau H_{\nu}O.$

Nickel cyanide ammonia, Ni(CN)2, NH2+ 1/2H2O.

Scarcely attacked by H₂O or dil. acids. Sol. in cone H2SO4. Sol. in (NH4)2CO2+ Aq, cone NH₄OH+Aq. (NH₄)₂C₂O₄+Aq. (NH₄)₂S+Aq, and KCN+Aq Decomp by boiling with NaOH or KOH. (Bernoulli (Bernoulli and Grether, Ch Z 1901, 25, 436)

Nickel cyanide trahydrazine, Ni(CN), (N2H4)2.

Ppt. (Franzen, Z anorg 1911, 70, 155.) Osmium cyanide, Os(CN)₂(?), Insol in H2O; not attacked by acids.

See also Osmocyanhydric acid. Osmium potassium cyanide.

See Osmocyanide, potassium.

Palladous cyanide, Pd(CN)2. Insol. in H2O. Insol. in dil. acids Sol in KCN or NH4OH+Aq, also in conc. HCN +Aq.

Platinous cyanide, Pt(CN)2. Insol. in H₂O, alkalies, or acids. Sol. in $KCN + A_G$. When freshly pptd., sol. in NH,OH+Aq

Platinous evanide with MCN. See Platinocyanide, M.

Potassium cyanide, KCN. Deliquescent Very sol, in H₂O.

100 pts. KCN+Aq, sat. at b.-pt. 103.3,° contain 55 pts. KCN, i. e. 100 pts. H₂O dissolve 122.2 pts. KCN at 103.3.° (Griffiths) solve 122.2 pts. KCN at 103 3. (Griffiths) KCN+Aq containing 3.25% KCN has -sp. gr. = 10154; 6.5% KCN, 10316. (Kohlrausch, W Ann. 1879. 1) KCN+Aq containing 9.64% KCN has

sp. gr. 20°/20° = 1.0514.

KCN+Aq containing 14 42% KCN has sp gr 20°/20°=1 0768 (Le Blanc and Rohland, Z phy ch 1896, 19 278

Moderately sol. in liquid NII3. (Franklin, Am Ch J, 1808, 20, 829.) Almost msol, in absolute alcohol

Sol in 80 pts. 95% alcohol when boiling, and easily sol. in 35% alcohol. (Geiger, A. I.

100 pts. absolute methyl alcohol dissolve 4.91 pts. at 19.5°; 100 pts absolute ethyl alcohol dissolve 0.87 pt. at 19.5°. (de Bruyn, Z. phys. Ch. 10, 783.)

Insol m methyl acetate (Naumann, B. 1909, 42, 3790), ethyl acetate. (Naumann, B. 1904, 37, 3801.)

100 g glycerol dissolve 32 g KCN at 15 5°. (Ossendowski, Pharm. J. 1907, 79, 575) Sol in CS2 when pure (Loughlin, J. B. 1875, 234)

Wholly insol. in CS2. (Moldenhauer, Z. anal. 16, 199.) Sl. sol. in benzonitrile. (Naumann, B. 1914, 47, 1369.)

Potassium chromium tetroxide pentacyanide, $K_{6}[(CrO_{4})_{2}(CN)_{6}] + 5H_{2}O$

Very hygroscopic. Sol in H₂O. (Riesenfeld, B. 1908, 41. 3548)

Potassium chromium tetroxide dicyanide ammonia, $K_2[CrO_4(CN)_2NH_3] + 5\tilde{H}_2O$.

Hygroscopic in the air. Easily sol in H₂O and in NH₂OH+Aq. (Riesenfeld, B. 1908, 41. 3545.)

Potassium rhodium cyanide. See Rhodocyanide, potassium.

Potassium ruthenium cyanide. See Ruthenocyanide, potassium.

Potassium silver cyanide, KCN, AgCN. Sol. m 4.7 pts H₂O at 15°, 4 pts. at 20° and in much less at higher temp. Sol in 25

pts. 85% alcohol. (Baup, A. ch. (3) 53. 464.) Potassium silver sodium cyanide, 2KCN, NaCN, 3AgCN. Sol. in 4.4 pts. H₂O at 15°, and 22 pts. 85%

alcohol at 17°. (Baup.) Potassium tungsten cyanide.

See Tungstocyanide, potassium. Potassium uranyl cyanide,

(UO2)(CN)2, 2KCN. Ppt. Sol in H₂O. Sl. sol, in presence of large excess of KCN (Aloy, A. ch. 1901, (7) 24. 417.)

Potassium vanadium cyanide, K₃V(CN)_s, Readily sol, in H2O; decomp slowly in neutral ag, solution, rapidly in acid ag, solution; insol, in alcohol (Locke, Am. Ch. J. 1898, 20. 601.) K₄V(CN)₆+3H₂O. Sol. m H₂O. Insol, in alcohol and ether. (Petersen, Z.)

anorg, 1904, 38, 345.)

Potassium zinc cvanide, 2KCN, Zn(CN)₂, 100 pts. H₂O dissolve 11 pts at 20°. (Sharwood, Eng. Min. J 1904, 77, 845.)

Potassium cyanide molybdenum dioxide, 4KCN, MoO₂+5H₂O. Sol. in H₂O. Insol. m alcohol. (Hof-

Z anorg. 1896, 12. 287) H₂O "Potassium diovotetracyan-+6H₂O omolybdate"

Very sol in H₂O. (Winkler, Dissert.) 1909.) +8H2O. (Rosenheim, Kohn and Gar-

funkel, Z. anorg. 1910, 65, 174) +10H₂O. Decomp. by conc. HCl, HNO₃ and H₂SO₄. Not acted upon by cold dil, acids (v. der

Heide and Hofmann, Z. anorg. 1890, 12. 285) 5KCN, MoO₂+8H₂O. Sol. in H₂O Insol in alcohol (Kalischer, Dissert. 1902.)

Potassium cyanide molybdenum dioxide hydroxylamine, 4KCN, MoO2, NH2OH $+H_{*}O$ Sol. in H₂O.

Decomp, by dil acids. (v. der Heide and Hofmann, Z. anorg, 1896, 12, 282)

Potassium cyanide molybdenum sulphide, 6KCN, Mo₂S₂+5H₂O. Easily sol in ILO. Decomp. by dil acids

(Hofmann, Z. anorg. 1896, 12, 289) Very sol in H₂O Slowly decomp, in the cold by dil mineral acids. (v. der Heide and Hofmann, Z anorg, 1896, 12, 289,)

Potassium cyanide molybdenum sulpho-cyanide, 2KCN, MoS₂(CN)₂. (Péchard, C. R. 1894, 118, 806.)

5KCN, Mo₂S₄(CN)₂+7H₂O Sol. in H₂O. Stable toward dil. acids and alkalies. (Hofmann, Z. anorg. 1896, 12. 289)

Potassium cyanide molybdenum sulphoxycyanide, 4KCN, Mo2SO(CN)2+4H2O. Sol in H2O Stable toward dil acids. (Hofmann, Z. anorg 1896, 12, 289)

Potassium cyanide nitrite, KCN, KNO2+ 1/4H10. Sol. in H₂O; decomp, alowly by H₂O explosive. (Hormann, Z. anorg. 1895, 10, 260-

Potassium cyanide sulphur dioxide, KCN, $SO_2+H_2O_2$ Much more sol. in hot than cold H₂O. (Etard, C R. 88, 649.)

KCN, HCN, 2SO₂+3H₂O. Very sl sol. in cold H₂O; decomp by hot H₂O. (Étard.)

Rubidium tungsten cyanide. See Tungstocvanide, rubidium.

Rhodium cyanide, Rh(CN), Ppt Not decomp, by acids KCN+Aq (Martius, A. 117. 361.)

Rhodium cvanide with 3KCN. See Rhodicyanide, potassium.

Ruthenium cvanide with 4MCN. See Ruthenocyanide, M.

Silver cyanide, AgCN.

Sl. sol in H4O.

2.2+10- g sol in 1 liter of H2O at 19.96°. (Böttger, Z. phys ch. 1903, 46, 603.)

1 l. solution in H₂O contains 0.000043 g.

AgCN at 17.5° (Abegg and Cox, Z. phys.

Ch. 1903, 46, 11) Solubility in H₂O at 25°=2.22+10-4 mol. per l (Lucas, Z. anorg, 1904, 41. 198.)

mol. per I (Lucas, Z. anorg. 1904, 31. 180.) Insol. in dil. aads Decomp. by oone. aads. Not sol to any extent in HCN+ Aq. Freshly pptd AgCN 18 not dissolved by cold dil. HNO, but is attacked by very dil.

HNO, on boiling From dry AgCN is dis-solved 5% by boiling 1 hour with 1% HNO; +Aq. Conc HNO; dissolves more (Brunck, B 1901, 34, 1605

Sol. in NH₂OH+Aq Sol in boiling KCl, NaCl, CaCl₂, BaCl₂, or MgCl₂+Aq, but very slowly sol, therein at ord temp. Sol in Na₂S₂O₃, K₄Fe(CN)₆, (NH₄)₂CO₆, (NH₄)₂SO₄, NH₄NO₅, and NH₄ succenate+Aq, and in NH₄NO₅, and NH₄ succenate+Aq, and in large ant of hot NH₄Cl+Aq (Wittstein.)
Sol in KCN, NaCN, Ba(CN)₂, Ca(CN)₂, or Sr(CN)₂+Aq. Insol. in KOH, or NaOH
+Aq. Sol. in conc. boiling AgNO₅+Aq

(Wohler.) Sol. in 431.7 pts. 5% NH₄OH+Aq (sp. gr 0.998) at 12°; in 184.5 pts 10% NH₄OH+Aq (sp. gr. 0.96) at 18°. (Longi, Gazz, ch.

it 13. 87) Sl. sol, m Na citrate+Aq Sol. in Hg(NO₃)₂+Aq. 1 l of a 3-N solution of AgNO₃ dissolves

1.216 g AgCN at 25°. (Hellwig, Z. anorg. 1900, 25, 177) Very sol. in (NH₄)₂S₂O₃+Aq. (Rosen-

heim and Steinhäuser, Z anorg. 1900, 25.

Moderately sol. in liquid NH₂. (Franklin, Am Ch. J. 1898, 20, 829.)

Sl. sol. in liquid HF (Franklin, Z. anorg. 1905, 46. 2.) Abundantly sol in quinoline at 60°. (Varet,

C. R. 1893, 116. 60.) Sl. sol. in ethyl amine. (Shinn, J. phys. -Chem. 1907, 11. 538.) Insol in methyl acetate. (Bezold, Dissert.

1906; Naumann, B. 1909, 42, 3790); ethyl

acetate B. 1910, 43. 314.)

Silver hydrogen cyanide, AgCN, HCN. (Euler, B. 1903, 36. 1859.)

Silver sodium cyanide, AgCN, NaCN. Sol, in 5 pts. H₂O at 20° and in much less hot H₂O Sol. in 24 pts. 85% alcohol at 20°. (Baup, A. ch. (3) 53. 468.)

Silver thallous cyanide, AgCN, TICN. Easily sol in H₂O. 100 pts H₂O dissolve 4.7 pts. at 0°, and 7 4 pts at 16°. (Fron-muller, B. 11. 92)

Silver tungsten cyanide. See Tungstocyanide, silver.

Silver cvanide ammonia, AgCN, NH, Efflorescent. Decomp, on air, Very sol. in ammonia at -10°. (Joannis, C. R. 1894, 118, 1151.)

Silver cvanide hydrazine, AgCN, NoHa. Decomp. in the air

Decomp. by H₂O. (Franzen, Z. anorg. 1911, 70. 153.)

Silver cyanide nitrate, 2AgCN, AgNO₂, Decomp. by H₂O.

Sodium cvanide, NaCN,

Sol. in H₂O and 75% alcohol. +½H₂O, and 2H₂O. Very sol. in H₂O; sl. sol. in alcohol. (Joannis, A. ch. (5) 26, 484.)

Sodium tungsten cyanide. See Tungstocyanide, sodium.

Sodium zinc cyanide, NaCN, Zn(CN)1+ 21/2H2O.

Much more sol in H2O than the corresponding K Zn salt. (Rammelsberg.) +8H₄O. (Loebe, Dissert. 1902.)

Sodium cvanide molybdenum dioxide, 4NaCN, MoO2+6H2O. (Winkler, Dissert, 1909.)

+14H₀O. Sol. in H.O. (Rosenheim Garfunkel and Kohn, Z. anorg. 1910, 65. 174)

Sodium cvanide molybdenum droxide hy droxylamine, 4NaCN, MoO2, NH2OH +H*0

As K comp. (Winkler, Dissert. 1909.)

Strontium cvanide, Sr(CN)2+4H2O. Very unstable; very deliquescent, and sol. in H₂O. (Joannis, A ch (5) 26, 496)

Strontium tungsten cyanide. See Tungstocvanide, strontium.

(Hamers, Dissert. 1906; Naumann, Strontium zinc cyanide, 2Sr(CN)2, 3Zn(CN)2+H2O.

Sol. in H₂O and alcohol. (Loebe, Dissert. 1902.)

Thallous cyanide, TICN 100 pts. H₂O dissolve 16.8 pts. at 28,5°. (Fronmuller, B. 6. 1178.)

Thallothallic cvanide, Tl2(CN), = TlCN.

Tl(CN)₃. Eastly sol. in H2O. 100 pts. H₂O dissolve 27.3 pts. at 30°, 15.3 pts. at 12°, 9.7 pts at 0°. (Fronmüller, B. 11.

Thallous tungsten cyanide. See Tungstocyanide, thallous.

Thallous zinc cvanide, 2TICN, Zn(CN)2,

Easily sol, in H2O. 100 pts. H2O dissolve 87 pts. at 0°; 15.2 pts. at 14°; and 29.6 pts. at 31°. (Fronmüller, B. 11, 92.)

Tungsten cyanide with MCN. See Tungstocyanide, M.

Zinc cyanide, Zn(CN)2.

Insol. in H₂O and alcohol Sol in alkalies. Easily sol in KCN+Aq. Sol, in hot NH. salts+Aq (Wittstein.)

Easily sol. in (NH₄)₂CO₃+Aq. (Gore.) Sol. in KOH+Aq. Solution is stable Sol in KOH+Aq. Solution is stable when less than 1 mol Zn(CN)₂ to 2 mols. KOH is present When proportion is 1:1,

ZnO2H2 soon separates. Sol in dil. KCN+Aq. (Sharwood, J. Am. Chem. Soc. 1903, 25, 587.) Sl. sol. in conc. Zn salts+Aq. 1 l. conc.

Zn(C₂H₂O₂)₂+Aq dissolves 4 g., and 1 l. cone. ZnSO₄+Aq dissolves 2 g. Zn(CN)₂. Insol. in HCN+Aq. Easily sol. in dil. acids. (Joannis.)

Very sol. in liquid NH2. (Franklin, Am. Ch J. 1898, 20. 830) Insol. in methyl acctate. (Naumann, B. 1909, 42, 3790); ethyl acetate. (Naumann, B. 1910, 43, 314)

Zinc cyanide ammonia, Zn(CN)2, 2NH3. Decomp on air. (Varet, C. R. 105. 1070) +H₂O. Decomp. on air. Decomp. by H₂O. Sol. in NH₂OH+Aq. (Varet.)

Zinc cvanide dihvdrazine, Zn(CN), 2NoH4. Decomp by H₂O. (Franzen, Z. anorg 1911, 70. 153)

Cyanogen, CN.

H₂O absorbs 4½ vols. CN gas at 20°. Alcohol absorbs 23 vols., and ether 5 vols. at the same temperature. (Gay-Lussac.)

The solution gradually decomposes, but this is prevented by traces of acids.

0.221 mol. litre are dissolved in H₂O at Cadmium diamune chromuum sulphocyanide, 0°. (Naumann, Z Electrochem. 1910, 16.) Cd(SCN)₂, [Cr(NH₂)₂(SCN)₃]₂+H₂O 177 Oil of tupentine absorbs 5 vols. (Gay-Lussac.) Absorbed by many essential oils (Gav-

Very sol. in CuCl2+Aq Absorbed with decomp by NH,OH+Aq and other alkaline houlds.

Absorbed by andine. (Jacquemain, C. R. 100, 1006.)

Cyclotriborene, B.H.,

Insol in H.O. (Ramsay and Hatfield. Proc Chem. Soc 1901, 17, 152)

Decemine cohaltic sulphite. Cos(NHs):s(SOs)s+3HsO.

Sol. in H₂O. (Vortmann and Magdeburg, B. 22, 2636.)

Decamine cobaltisulphurous acid.

Cobaltic decamine cobaltisulphyte.

Co₂(NH₂)₁₀(SO₂)₀Co₂+8H₂O. Pot. (Vortmenn and Magdeburg, B. 22, 2635

Sodium decamine cobaltisulphite, Co2(NH2)10(SO2NB)6+2H2O

Sol, in H.O. (Vortmann and Magdeburg, B. 22. 2635.)

Diamide, NoH4. See Hydrezine.

Diamine chromium sulphocyanhydric acid, Cr(NH₂)12(SCN)2, HSCN+H2O. Sol. in H₂O. (Nordenskield, Z. anorg. 1,

Diamine chromium diaguo sulphocyanide, Cr(NH₄)₄(SCN)₄+2H₄O Sol. in H1O, from which it is potd, by con, HCl+Aq. (Nordenskield, Z. anorg, 1. 137)

Ammonium diamine chromium sulphocyanide, Cr(NH₈)₂(SCN)₂, NH₂SCN.

(Remecke's salt) Quite easily sol, in H2O, less in alcohol, and msol, in benzene Slowly decomp. by boiling H₂O or dil. acids. (Nordenskield, Z anorg. 1, 130.)
+H₂O. Insol. in absolute ether. (Chustensen, J. pr. (2) 45. 218.)

Ammonium diamine chromium sulphocyanide iodide, Cr(NH₄)₂(SCN)₃, NH₄SCN, I. Barium ~ ----, [Cr(NH₃)₂(SCN)₃]₃,

Ba(SCN): Sol, in H2O and alcohol (N)

Nearly maol in cold, al. sol, in hot HoO Sl sol, in boiling alcohol. (Christensen, J. pr (2) 45, 371)

. Cu(SCN)₂. Cupric ------(Cr(NH₃)₂(SCN)₃)₂

Insol in H2O or dil. acids (Remecke, A 126, 116)

Ferric ------, [Cr(NH₄)₂(SCN)₂)₃, Fe(SCN), (N.)

Luteocobaltic -Co(NH₂)₀(SCN)₃[Cr(NH₂)₀(SCN)₄]₈. As good as maol in cold H2O. Sl. sol in hot H-O and alcohol. (Christensen, J. pr. (2) 45. 370)

---- [Cr(NH₂)₂(SCN)₂]₂ Mercuric -Hg(SCN)2. Insol in H.O. (N.)

Insol in H₂O and dil. acids. (Reinecke.) Potassium ----, Cr(NH_s)_s(SCN)_s,

Properties as the NH4 salt. (N) Cr(NHz)4(SCN)4, KSCN, I. As the NH4 salt. (N.)

Sodium --- NaSCN.

Cr(NH₄)₂(SCN)₃ Sol. in H2O, alcohol, and ether. (Reinecke.) Diamine cobaltic nitrite ammonium

nitrite, CO(NH₂)2(NO₂)2, NH₄NO₂ Sol. in H.O. (Erdmann.) - - nitrite lead nitrite

2Co(NH₂)₂(NO₂)₃, Pb(NO₂)₂, Sol, in hot H2O with partial decomp,

- - nitrite mercurous nitrite. 2Co(NH₂)₂(NO₂)₂, Hg₂(NO₂)₂. Ppt. Not sol, in hot H₂O without decomp.

- --- nitrite potassium nitrite, Co(NH1)o(NO1)1, KNO2. Sol. in H₂O. (Erdmann, J. pr. 97, 385.)

nitrite silver nitrite, Co(NH₈)₂(NO₂)₈, AgNO₂. Ppt. Crystallises out of hot H2O. (Erdmann.)

- nitrite thallium nitrite.

Co(NH₃)₂(NO₂)₃, TINO₂. Crystallises out of hot H₂O without decomp.

Dichrocobaltic carbonate, Co(NH₂)₃(OH)CO₃+1½H₂O.

Sol in H₂O. (Vortmann, B. 15, 1901)

Dichrocobaltic chloride, Co(NH₄)₂Cl₃+H₂O.
Quite sol. in cold H₂O, dtl. acids, cone.
H₃SO₄ or dtl. alcohol

From solution in cone H₂SO₄, the salt is precipitated by much HCl+Aq Composition is Co(NH₂)₂(OH₂)Cl₂. (Jorgensen, Z. anorz. 5. 189.)

- nitrate, Co(NH₃)₃(NO₃)₃+4H₂O.

Deliquescent. Sol. in H₂O. More sol in dil. HNO₂+Aq than praseocobaltic nitrate (Vortmann, B. 15, 1897)

Anhydrous. Insol in H₂O as such, but converted into above salt thereby. (Jorgensen, Z. anorg. 5. 186)

— nitrite, Co(NH₈)₃(NO₂)₃.
Difficultly sol. in cold, but rather easily sol. in hot H₈O.

— sulphate, [Co(NH₃)₃]₂(SO₄)₃+6H₂O.
Easily sol. in H₂O. (Vortmann, B. 15.

— sulphite, [Co(NH₂)₂]₂(SO₃)₂+H₂O. Nearly msol in cold, slowly decomp. by hot H₂O. Decomp. by acds or KOH+Aq Insol. in cold, sol. in warm NH₂OH+Aq (Kunzel, J. pr. (1) 72, 299) According to Geuther (A. 128, 157). is a double salt—

(Co(NH₃)₃)₂(SO₃)₃, Co₂(SO₃)₃+2H₂O

Didymium, Dr.

Slowly decomp. by H₂O. Insol in cold cone, H₂SO₄ Sol in dll acids. Compound of two elements, neodymium and praseodymium. (v. Welsbach, Wa A. B. 92, 317.)

Didymium bromide, DiBr₈+6H₂O. Very deliquescent, and sol, in H₂O.

(Cleve.)

Didymium nickel bromide, 2DiBr₈, 3NiBr₂+

18H₂O.

Deliquescent. Very sol. in H₂O. (Fierichs 7, 799)

and Smith, A 191, 342.)

Didymium zinc bromide, DiBr₁, 3ZnBr₂+ 12H₂O. Extremely deliquescent. (Cleve, Bull Soc. (3) 43, 361.)

(F. and S.)

2DiBr₈, 3ZnBr₂+36H₂O. Didymium chloride, DiCl₂.

Anhydrous. Deliquescent. Sol. in H₂O and alcohol. (Marignac.) +6H₂O. Deliquescent. Easily sol in H₂O and alcohol. (Marignac.)

Didymium mercuric chloride, 2DiCl₃, 9HgCl₃+24H₂O.

More sol. in H₂O than the corresponding La salt. (Marignac) DiCl₃, 4HgCl₂+11H₂O. Not deliquescent. Easily sol in H₂O.

Didymium stannic chloride.

See Chlorostannate, didymium. Didymium fluoride, DiFa+!5H-O

Precipitate. (Cleve.)

Didymium hydrogen fluoride, 2D1F₃, 3HF. Precipitate (Smith.) Does not exist. (Cleve.)

Didymium potassium fluoride, DiFs, KF+ H₃O.

Sol. in H₂O. (Brauner, B. **15**, 114.) +1/₃H₂O As above (B) 2DiF₂, 3KF+H₂O. As above. (B.)

Didymium hydroxide, Di₂O₆H₆.

Insol. in KOH, or NaOH+Aq, but is sl. sol. in NH₄Cl+Aq (Rose.)

See also Di₂O₃.

Didymium penthydroxide, DiO₁H₂=D₁₂O₅,
3H₂O.

Precipitate (Brauner, B. 15. 113.)

Didymium zinc iodide, 2Dil₂, 3Znl₂+24H₂O.

Very deliquescent. (Frenchs and Smith)

Didymium oxide, Di₂O₃

With H₂O slowly forms Di₂O₄H₆. Sol. in conc., or dil. mineral acids (Marignae), and in acetic acid (Hermann). Sol. in

ammonium salts+Aq.
Slightly more slowly sol. in conc. NH₄NO₄
+Aq than La₂O₂. (Damour and Deville.)
A solution of NH₄NO₃ in II₂O that can
dissolve 2.9 mols La₂O₃ dissolves 1 mol.

dissolve 2.9 mols La₂O₃ dissolves 1 mol. Di₂O₃. (Brauner, B **15**. 114.)

Insol. in acotone (Naumann, B 1904, **37**. 4329.)

Didymium peroxide, Di₄O₁.

Sol. in acids with decomp. (Fierichs, B. 7, 799)
Not obtained by Cleve. (B. 11, 910)

Not obtained by Cleve. (B. 11. 910)
The contradictory statements concerning
the composition of Di peroxide are owing to
the fact that praseodidymium is the only one
of the constituents of Di which easily forms a

peroxide (v. Welsbach.) Didymium pentoxide, Di₂O₅.

Sol. in H₂O

Sol. in dil. HNO₂ or H₂SO₄-Aq in the cold without evolution of gas, but gas is evolved if treated with cone. acids Insol. in HfF+Aq Sl sol in cold NH₄NO₃+Aq.

-D₄O₅ (Cleva.)

Didymium oxybromide, D10Br. (Frenchs and Smith.)

Didymium oxychloride, DiOCl.

Anhudrous. Insol. in H₂O. (Smith.) +3H₂O. Sol. in cold dil. HNO₂+Aq. (Mangnac) Sl. sol. in HCl+Aq. (Her-

Didymium oxysulphide, Di-O-S. Insol, in H2O. Sol, in HCl+Aq without residue. (Marignac)

Didymium sulphide, Di₂S₂

Insol, in H₂O. Decomp. by dil acids. (Marignac, A. ch. (3) 38. 159.) Insol. in acetone. (Naumann, B. 1904. 37. 4329.)

Disulphuric acid, H2S2O7. See Disulphuric acid.

Dithionic acid (Hyposulphuric acid), H2S2On.

Known only in aqueous solution, which is stable only when dif Can be evaporated in vacuo until sp gr = 1 347, but decomp. upon further evaporation. (Weiter and Gayfurther evaporation. Lussac, A. ch. 10. 312.)

Dithionates.

All dithionates are sol, in H₂O.

Aluminum dithionate, Ala(SaOa) + 18HaO. Extremely deliquescent, Easily sol in H₂O or absolute alcohol. (Kluss, A. 246. 218.)

Aluminum ammonium dithionate, Al₂(S₂O₆)₂, (NH₄)₂S₂O₆+27H₂O.

SI deliquescent. Sol. in H₂O. (Kluss, A. 246, 303.3

Ammonium dithionate, (NH4)2S2Oc. with reduction of temp Not decomp. on boiling. Insol in absolute alcohol. (Heeren, Pogg. 7. 172) Contains 12H2O. Sol. in 0.56 pt H2O at 19°, (Klüss, A. 246, 194.)

Ammonium cadmium dithionate 2(NH₄)₂S₂O₆, CdS₂O₆+4½H₂O. Sol. in H₂O. (Klüss, A. 246, 298)

Ammonium cobalt dithionate, 9(NH4)2S2O6. 2CoS2O4+161/2H2O.

Sol. in H2O. (Klüss.)

Ammonium cupric dithionate, (NH4)2S2O6, 2CuS2O6+8H2O. Sol. m H₂O.

Ammonium ferrous dithionate, 3(NH₄)₂S₂O₆, Fe-S-O₄+6H₂O₄ Sol. in H₂O. (Kluss, A **246**. 300.) 9(NH₄)₂S₂O₅, 2Fe₂S₂O₅+16½H₂O. Sol. in H₂O. (Kluss.)

Ammonium manganous dithionate, 9(NH4)2S2O6, 2MnS2O6.

Sol in H_{*}O (Kluss, A. 246, 301.) Ammonium nickel dithionate, 9(NH4)28204

2N₁S₂O₄+16½H₂O. Sol. in H₂O. (Klüss.)

Ammonium zinc dithionate, 5(NH4):SoO4. $ZnS_2O_6 + 9H_2O$.

Easily sol. in H_2O . (Kluss, A. 246, 296.) $9(NH_4)_2S_2O_6$, $2ZuS_2O_6+16\frac{1}{2}H_2O$. Easily sol in H_4O (Kluss) Ammonium dithionate chloride, (NH₄)₅S₅O₄.

Sol. in H.O. (Fock and Kluss, B. 24. 3017.)

Barium dithionate, BaScOc+2HcO.

Not efforescent. Sol in 7.17 pts H₂O at 8°, 4.04 pts. at 18°, and 1.1 pts H₂O at 100°. Insol. in alcohol. (Gay-Lussac, Heeren.) Sol. in 0.994 pt. H₂O at 102°, the boiling-point of the sat. solution. (Baker, Bull Soc. (2) 44. 166.) Insol. in methyl acetate. (Naumann, B.

1909, 42. 3790.) +4H₂O, Very efflorescent. (Heeren.)

Barium magnesium dithionate, BaMg(S2O6)2 +4H₂O. Sol. in H2O. (Schiff, A 118. 97.)

Barium rubidium dithionate, BaRb4(S2O6), #H.O. Sol. in H2O. Solubility is diminished by presence of excess of Rb2SO4, but increased by

BaS₂O₄ (Bodlander, Chem. Ztg. 14. 1140.) Very sol. in H2O. Sol in 0.79 pt. H2O at Barium sodium dithionate, BaNa4(S2O4)3+ 4H,0

Sol. in H₂O Decomp by recrystallisation. (Kraut, A. 118, 95.) +6H₂O. (Schiff,

Barium dithionate chloride, BaS2O4, BaCl2+ 4H.O.

(Fock and Kluss, B. 23, 3001)

Bismuth dithionate, basic, B12O3, S2O4+ +5H₂O. Efflorescent. Insol. in H2O, but decomp

thereby into the following salt. Easily sol. in dil. acids, especially HCl+Aq. (Klüss, A. 246, 183.)

4B12O2, 3S2O2+5H2O. Insol. in H2O. Sol. in dil. acids. (Klüss)

Cadmium dithionate.

Deliquescent in moist air; very sol in H₂O. (Heeren, Pogg 7, 183.)

Cadmium dithionate ammonia, CdS₂O₆, 4NH₂.

Decomp by alcohol; sol. in NH₄OH+Aq, but decomp. on heating. (Rammelsberg, Pogg. 58, 298.)

Cæsium dithionate, Cs2S2O6

Easily sol in H₂O (Chabrié, C. R. 1901, 133, 297.)

Calcium dithionate, CaS₁O₄+4H₂O.
Sol. m 2 46 pts. H₂O at 19°; 0.8 pt. at 100.°
Insol. m alcohol. (Heeren, Pogg 7. 178)
Insol. in acetone. (Naumann, B. 1904, 37, 4329.)

Cerous dithionate, Ce₂(S₂O₄)₃+24H₂O Very sol. in H₂O. (Jolin.) +3, and 5H₂O. (Wyrouboff.)

Chromic dithionate, Cr₂(S₂O₅)₃+18H₂O Sol. in H₂O and alcohol (Kluss, A. 246. 189.) 3Cr₂O₅, 4S₂O₅+24H₂O. Easily sol. in H₂O

or alcohol. Insol. in ether (Klüss.)

Cobaltous dithionate, CoS₂O₆+6H₂O.

Not deliquescent. Very sol. in H₂O

(Heeren.) +8H₂O. Sol. in 0.49 pt H₂O at 19°. Sol. in absolute alcohol. (Kluss, A. 246: 208)

Cupric dithionate basic, 4CuO, S₂O₆+4H₂O. Very sl. sol. in H₂O. (Heeren, Pogg. 7. 18.) Insol. in H₂O; easily sol. in dil. acids.

(Kluss, A 246, 208.) $+3H_2O$. Insol. in H_2O and $NaC_2H_4O_2+$ Aq; sol. in traces in conc. CuS_2O_4+Aq . Easily sol. in dil. acids, even $HC_2H_2O_2$, or $H_2S_2O_4+Aq$. (Kluss)

Cupric dithionate, CuS₂O₆+4H₂O.

Not efflorescent Very sol. in H₂O. Insol.

in alcohol. (Heeren.) +5H₁O. (Efflorescent. Sol. in 0.64 pt H₂O at 18.5 ° (Klüss, A. 246. 204.)

Cupric dithionate ammonia, CuS₂O_t, 4NH₃ Difficultly sol. in cold H₂O, moderately sol. in H₂O at 40°. Decomp. by much H₂O or by heating the solution above 60°. Decomp. by HCl+Aq. (Heeren.)

Can be recryst. from NH₄OH+Aq. Sol. in liquid NH₈ (Horn, Am Ch. J. 1908, 39, 213.)

CuS₂O₈, 9NH₃. Decomp. at ord. temp. in the air. Insol. in liquid NH₃. (Horn, Am. Ch. J. 1908, 39, 213.)

Didymium dithionate, Di₂(S₂O₄)₈+24H₂O. Extremely sol in H₂O (Cleve.)

Erbium dithionate, Er₂(S₂O₆)₃+18H₂O. Very sol. in H₂O or alcohol, insol. in ether. (Hogland)

Glucinum dithonate, basic, 5GlO, 2S₂O₆+ 1HI₂O Easily sol. in H₂O and absolute alcohol. (Kluss, A, 246, 190.)

Iron (ferrous) dithionate, FeS₂O₆+5H₂O. Very sol m H₂O. Insol, m alcohol. Decomp. in aqueous solution into FeSO₄ by boiling (Heeren, Pogg. 7, 181.) +7H₂O. Sol in 0.59 pt. H₂O at 18.5°. (Kluss. A 246, 19S.)

Iron (ferric) dithionate, basic, SFe₂O₄, S₂O₅+ 20H₂O. Insol in H₂O or alcohol Very sl. sol in H₂S₂O₅+Aq; easily sol. in HCl+Aq

(Heeren.)
Contains 14H₂O. (Kluss, A. **246**. 200.)
3Fe₁O₃, S₂O₃+8H₂O Insol. in H₂O.
Easily sol. in acids. (Kluss, A. **246**. 201.)

Lanthanum dithionate, La₂(S₂O₅)₂+16H₂O, and 24H₂O.
Sol. in H₂O. (Cleve.)

Lead dithionate, basic, 2PbO, S₂O₅+2H₂O. Very difficulty sol. in H₂O. (Heeren, Pogg. 7, 171.) 10PbO, S₂O₅+2H₂O. Sl. sol. in H₂O. (Heeren.)

Lead dithionate, PbS₂O₆+4H₂O. Easily sol. in H₂O. (Heern.)

Sol. in 0 869 pt. H₂O at 20.5°. (Baker, C. N. 36. 203.)

Lead strontium dithionate, (Pb,Sr)S₂O₆+ 4H₂O. (Rammelsberg)

Lithium dithionate, Li₂S₂O₄+2H₂O.
Sl. deliquescent, and easily sol, in H₂O.
Insol, in alcohol. (Rammelsberg)

Magnesium dithionate, MgS₂O₅+6H₆O. Sol in 0.85 pt. H₂O at 13°. Solution can be boiled without decomp. (Heeren, Pogg. 7, 179.)

Sol. in 0.692 pt. H₂O at 17°. (Baker, C. N. 36, 203.)

| Manganous dithionate, MnS₂O₆+3H₂O. Sol. in H₂O (Kraut, A. 118.98.) +6H₂O. Efflorescent. Sol. in H₂O. (Marigne, J. B. 1855. 380.) Mercurous dithionate, Hg₂S₂O₆. Sl. sol in cold, decomp. by hot H₂O: (Rammelsberg)

Mercuric dithionate, basic, 5HgO, 28₂O₃. Sl. sol. m cold, decomp. by hot H₂O. Easily sol m HNO₃+Aq. (Rammelsberg, Pogg. 59, 472)

Mercuric dathionate, HgS₂O₆+6H₂O Decomp. by H₂O or on standing. (Kluss, A 246, 216.)

Nickel dithionate, NiS₂O₆+6H₂O. Sol. in H₂O (Topsoe.) Sol. in 0.897 pt H₂O at 12°. (Baker, C. N. 36, 203.)

Nickel dithionate ammonia, NiS₂O₄, 6NH₃ Can be recryst. from warm NH₄OH+Aq Decomp by H₂O. (Rammelsberg, Pogg 58, 295.)

Nickel dithionate hydrazme, NiS2O4, 3N2H4.

Unstable Sol in NH4OH+Aq (Franzen, Z anorg 1908, 60, 267)

Potassium dithionate, K2S2O6.

Not deliqueseent Sol. m 16.5 pts. H₂O at 16°, and 1.58 pts at 100°. Insol. m alcohol. (Heeren.) Sol in 2 65 pts. H₂O at 16°. (Dumas) Sol in 16.5 pts. H₂O at 16°, in 1.58 pts. bolling H₂O. Insol. in alcohol (Heeren, Pogg 1826, 7.

Praseodymium dithionate, Pr₂(S₂O_o)₅+ 12H₂O

Deliquescent; very sol in H₂O. (von Schule, Z. anorg 1898, 18, 361)

Rubidium dithionate, Rb₂S₂O₄.

Sol. in H₂O. (Topsöe and Christiansen)

Ruthenium dithionate, RuS₂O₆.

Ppt. from aq. sol. by alcohol. (Antony, Gazz. ch. it. 1898, 28, 139-142.)

Silver dithionate, Ag₂S₄O₆+2H₂O.
Sol. in 2 pts H₂O at 16°. Sol. in NH₄OH+
Aq. (Heeren, Pogg. 7. 191.)

Silver sodium dithionate, AgS₂O₆, Na₂S₂O₆ +4H₂O

Sol. in H₂O. (Kraut, A. 118. 96.)

Silver dithionate ammonia, Ag₂S₂O₄, 4NH₈
Sol. in H₂O without decomp. (Rammelsberg, Pogg. 58, 298.)

Sodium dithionate, Na₂S₂O₆+2H₂O Sol in 2 1 pts. H₂O at 16° and in 1.1 pts. boiling H₂O· Insol. in alcohol. Furning HCl+Aq precipitates the salt from aqueous solution. (Heeren, Pogg. 7.

+6H₂O. (Kraut, A. 117. 97.)

Strontium dithionate, SrS2O0+4II2O.

Sol. in 4.5 pts. H_2O at 16°, 15 pts boiling H_2O Insol. in alcohol (Heeren, Pogg 7, 177)

Thallous dithionate, Tl₂S₂O₄. Very easily sol in H₄O. (Weither)

Thallous dithionate sulphate, 3Tl₂S₁O₆, Tl₂SO₄. Sol in H₂O. (Wyrouboff, Ann Phys. Beibl. 8, 802.)

Thorium dithionate, Th(S₂O₆)₂+4H₂O (?). Very unstable, (Kluss, A, 246, 188.)

Tin (stannous) dithionate, SnS₂O₆.

Known only in solution.
SSnO, S₂O₆+9H₂O Insol in H₂O. Sol.
in dil. aceds, even dithionic acid+Ag. (Klüss.

A. 246. 186.)

Uranous dithionate, 6UO₂, S₂O₅+10H₂O.

Insol. in H₂O; sol. in warm HCl+Aq.

(Kluss. A? 246. 191.)

7UO₂, S₂O₅+8H₂O. As above. 8UO₂, S₂O₅+21H₂O. As above.

Divanadyl dithionate, (VO₂)₂S₂O₈ Sol. in H₂O. (Bevan, C. N. 38. 294.)

Ytu'um dithionate, Y₂(S₂O₆)₈+18H₂O. Not deliquescent. Easily sol. in H₂O, but difficultly sol. in alcohol. Insol. in ether. (Cleve, Bull. Soc. (2) 21, 344.)

Zinc dithionate, ZnS₂O₆+6H₂O. Very sol. in H₂O; decomp. on boiling. (Heeren, Pogg. 7, 183.)

Zinc dithionate ammonia, ZnS₁O₁, 4NH₁.

Decomp. with H₂O; sol. in warm, less sol. in cold NH₄OH+Aq. (Rammelsberg, Pogg. 58. 297.)

+H₂O. Ppt. (Ephram, B. 1915, 48.

640.)

Dysprosium, Dy. (Lecoq de Boisbaudran, C. R. 102, 1005.) Dysprosium chloride, DyCl₁+6H₂O.

Deliquescent, sol. in H₂O. (Urbam, C. R. 1908, **146**. 129)

Europium.

Europium chloride, EuCl2.

Sel. in H₂O. Stable in very dil. aqueous solution, but decomp, when the solution is concentrated at 100°. (Urbain, C R. 1911, 153, 1157.)

Erbium, Er

Decomposes H₂O (Höglund) The so-called element "erbium" can be further decomp. into simple substances. (Kruss, Z. anorg 3. 353.)

Erbium bromide, ErBr_{*}+9H_{*}O. Very deliquescent.

Erbum chloride, ErCl.+6H.O. Deliquescent. Sol. in H2O and alcohol (Hoglund)

Erbium mercuric chloride, ErCl3, 5HgCl2+

Deliquescent. (Cleve.)

Erbium fluoride, ErF₁.

Insol, in H₀O Very sl. sol. in HF+Aq. (Höglund, Bull Soc. (2) 18, 193.)

Brbium hydroxide, Er2O(OH)4.

Insol in KOH, or NaOH+Aq. Easily sol, in acids Decomp. ammonium salts by boiling therewith.

Erbium iodide, ErI₂.

Very deliquescent. Very sol. in H₂O and alcohol. Insol. in ether. (Hoglund.)

Erbium oxide, Er.O.

Difficultly but completely sol, in warm HNO₆, H₂SO₄, or HCl+Aq. Decomp. NH₄ salts by boiling therewith.

Erbium peroxide, Er₂O₅. 53)

Precipitate, (Cleve, Bull. Soc. (2) 43.

Erbium sulphide.

Decomp. in moist air and with acids.

Erythrochromium bromide, HOCr2(NH4)10Br4+H2O.

Very easily sol. in H₂O. Insol. in HBr+ Aq. Sol m NH₄OH+Aq (Jörgensen, J. pr. (2) 25. 398)

— bromide, basic, HOCr₂(NH₄)₁₀(OH)Br₄ $+H_2O$

Very sol in H2O. (Jörgensen)

— chloroiodide, HOCr₂(NH₂)₁₆CH₄+H₂O. Sol. in H₂O and in alcohol. (Jorgensen.) (Fremy, l. c.)

Erythrochromium chloroplatinate, [HOCr:(NHs)10]2(PtClo)6+10H2O. Nearly msol in H₂O, (Jorgensen.)

 dithionate, basic, $HOCr_2(NH_3)_{10}(S_2O_r)_2(OH) + 2H_2O.$ Insol. in H₂O. Easily sol in very dil. HNOs, HBr, HCl+Aq. Sol. in conc. NH4Cl +Aq. (Jörgensen.)

- nitrate, HOCr2(NH2)to(NO2)t+H2O Easily sol, in H₂O Insol in dil HNO₈+ Aq Sol. in cone. HNOs with decomp. Very sol. in dil NH4OH+Aq. Insol. in alcohol. (Jorgensen)

-- nitrate, basic, HOCr2(NH2)10(NO2)4OH +314H.O.

Sol in cold H₂O (Jorgenson.)

 sulphate, [HOCr₂(NH₈)₁₀]₂(SO₄)₅. Nearly insol in H2O. (Jörgensen)

Tetraforriammonium, Fe₂N. See Iron nitride.

Ferric acid.

Barium ferrate, BaFeO₄+H₂O.

Ppt. Can be boiled for some time with H₂O without decomp. Decomp, by mineral acids. Sol in dil acetic acid. (Fremy, A ch. (3) Insol. in H2O, not readily acted upon by

acids when day. (Rosen, J. Am. Chem. Soc. 1895, 17. 766)
Ppt. Easily decomp by acids (Moeser,

Arch. Pharm. 1895, 233. 526.) Insol. m acetone. (Naumann, B. 1904, 37. 4329.)

Calcium ferrate, CaF₂O₄

Sol. in H₂O. (Rosell, J. Am Chem. Soc. 1895, 17, 760-69.)

Potassium ferrate, K₂FeO₄.

Very deliquescent Easily sol, in cold H₂O with evolution of much heat. Decomp. by standing or warming. Decomp by acids or alkalass (Fremy, A ch (3) 12, 339) Sol in H₂O; msol in alcohol. (Moeser, Arch Pharm, 1895, 233, 524)

Quickly decomp, by potassium tartrate or racemate, sugar, or albumen without separa-tion of Fe₂O₆H₀, by alcohol with separation of Fe₂O₈H₀. Potassium oxilate, acetate, formate, and benzoate, also citrate decomp. much more slowly. Insol in conc. KOH+ Aq. (Wackenroder, A. 33. 41.)

Sodium ferrate, Na₂FeO₄.

Sol. in H2O and in cone. NaOH+Aq.

Strontium ferrate, SrFeO.

Sl. sol. in H₂O by which it is decomp . Decomp. by acids

Sol, in aqueous solutions of Na aud K salts with partial decomp. Insol in sat. SrBr₂+Aq., alcohol and other. (Eidmann, B. 1903, 36, 2290)

Ferricomolybdic acid.

Ammonium ferricomolybdate, 3(NH4)2O, Fe₂O₃, 12MoO₃+19H₂O.

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29.

Ferricvanhydric acid.

H₃Fe(CN)₃₁ (or H₄Fe₂(CN)₁₂). Easily sol, in H₂O or alcohol Solution decomposes slowly by standing, more rapidly by heating. Insol in ether.

Ferricyanides.

The alkali, and alkaline-earth ferricyanides are sol in H₂O; the others are insol. The ferricyanides of metals, the oxides of which are sol, in NH,OH, or KOH+Aq, are themselves sol, in those reagents

Ammonium ferricvanide, (NH4),Fe(CN),+ Permanent. Readily sol. in H2O (and

alcohol?). Ammonium ferrous ferricyanide,

 $NH_{\bullet}FeFe(CN)_{\circ}+1 \frac{1}{2}H_{\bullet}O$. Sol in H2O and not pptd. by alcohol from aqueous solution More stable than the cor-

Ammonium lead ferricvanide. NII, PbFe(CN), +3H₂O.

responding K salt.

Ammonium potassium ferricyanide, (NHa) KFe(CN)a.

Sol. in H2O. (Schaller, Bull. Soc. (2) 1.

Barium ferricyanide, Bas[Fe(CN)s]2+ 20H2O. Eastly sol. in H2O; insol. in alcohol. (Schuler, W. A. B. 77, 692.)

Barium potassium ferricyanide, BaKFe(CN)s 4-3H.O. Permanent. Easily sol. in H₂O. less in

alcohol.

Barium ferricyanide bromide, Bas[Fe(CN)s]s, 2BaB1 + + 20H + O.

Easily sol. in H2O. Boiling alcohol does not dissolve out BaBr₂. (Rammelsberg, J. pr. (2) 39. 463.)

Bismuth ferricvanide, B13[Fe(CN)0]6.

Insol in H2O, but decomp. by boiling therewith. (Muir, Chem. Soc. 32, 40)

Cadmium ferricyanide ammonia, Cda[Fe(CN)als, 6NH2+3H2O.

Effloresces to form— Cd₃[Fe(CN ·]₃, 4NH₂+2H₂O. Insol. in H₂O. (Wyrouboff, A. he (5) **10.** 413.)

Calcium ferricyanide, Ca₄[Fe(CN)₆]₂+10, or 12H₂O. Delignescent Sol. in H_{*}O and dil. alcohol. •

Calcium potassium ferricyanide, CaKFe(CN)_s

Sol. in H₂O. Cerous ferricyanide, CeFe(CN)₀+4H₂O. Sol. in H₂O, easily decomp. (John.)

Chromic ferricyanide (?).

Pot.

Cobaltous ferricyanide, Co3[Fe(CN)]2. Insol in H₂O and HCl+Aq. Sol. in NH₄OH+Aq.

Cobaltous ferricvanide ammonia, Co₃[Fe(CN)₆]₂, 4NH₄+6H₂O.

Cobaltic ferricyanide ammonia. See Luteo,- purpureo,- etc. cobaltic ferricyanide.

Cuprous ferricvanide, (Cus) [Fe(CN)] Sol in NH4OH+Aq; insol in NH4 salts+ Ag. (Wittstein)

Cupric ferricyanide, Cu₃[Fe(CN)₅]₂. Insol in H₂O or NH₄ salts+Aq. Sol. in NH₄OH, and (NH₄)₂CO₃+Aq (Wittstein.) Insol in HCl+Aq

Iron (ferrous) ferricyanide, Fe₃[Fe(CN)_c]₂+ xH2O. (Turnbull's blue) Properties as ferric

ferrocyanide (Prussian blue), with which it is perhaps identical. (Gintl, Z. anal. 21. 110.) Iron (ferrosoferric) ferricyanide,

 $Fe_{in}(CN)_m = Fe^{it_it}Fe^{it_it}Fe(CN)_n|_n$ (Prussian green) Insol, in H₂O or conc. HCl+Aq, but slowly decomp, by boiling therewith

Fe₃(CN)₈+4H₂O=Fe¹₄Fe¹₄[Fe(CN)_r]₄+ 12H₂O Properties as above. (Reynolds, Chem. Soc. 54. 767.)

Iron (ferrous) potassium ferricyanide, KFe₂(CN)₀ = KFeFe(CN)₅+4, or 3H₂O. •

(Soluble Prussian blue) Sol. in H2O, but msol. in salts+Aq or alcohol,

C

Salt of the same composition, called "Wilhamson's blue," is insol. in H₂O.

Lead ferricyanide, basic, Fb₃[Fe(CN)₆]₂, 3PbO₂H₂+11H₂O.

(Schuler.)

Lead ferricyanide, $Pb_2[Fe(CN)_6]_2+16H_2O$ Sl. sol. in H_2O ; more sol. in hot, than cold H_2O , but decomp. on boiling. (Gmelin.) $+4H_2O$. Easily sol. in H_2O ; sl. sol. in alcohol. (Schuler, W. A. B. 77, 692.)

Lead potassium ferricyanide, PbKFe(CN)s+3H_sO.

+5H;0.

Sol in 4.75 pts. H;0 at 16°, and the solution decomp. on standing. (Schuler.)
+1½H;0. Efflorescent Much more sol.
In H;0 than the Pb salt. Insol in alcohol (Wyrouboff.)

Lead ferricyanide nitrate, Pb₃[Fe(CN)_c]₂, Pb(NO₂)₂+12H₂O.
Sol. m 13.31 pts. H₂O at 16°. (Schuler.)
+11H₂O. (Joanns, A. ch. (5) 26, 528.)

Magnesium ferricyanide, Mg₃[Fe(CN)₆]₂. Sol. in H₂O.

Magnesium potassium ferricyanide, MgKFe(CN)₄.

(Rendel, J pr. 103, 166.)

Manganous ferricyanide, Mn₃[Fe(CN)₆]₂. Insol. in H₂O, acids, NH₄OH, or NH₄ salts +Aq.

Mercurous ferricyanide, Hg,Fe(CN)_e Ppt. (Fernekes, J. Am. Chem. Soc. 1906, 28, 604.)

Mercuric ferricyanide, Hg₄[Fe(CN)₄]₂.
Very sol in H₂O. Solution quickly decomp.
(Fernekes, J. Am. Chem. Soc. 1906, 28, 603.)

Nickel ferricyanide ammonia, N₁₅[Fe(CN)₆]₂, 4NH₃+H₂O. Sol. in NH₄OH+Aq. (Reynoso, A. ch (3) 30, 254.)

Nickel ferricyanide, Ni₂[Fe(CN)₆]₂(?). Ppt. Insol. in HCl+Aq.

Potassium ferricyanide, K_{\$}Fe(CN)_{\$\text{0}\$}, (or K_{\$}Fe₂(CN)_{\$\text{1}\$}).

Permanent. Easily sol, in H₂O.

 100 pts. H₂O dissolve pts. K₃Fe(CN)₆ at t°.

 t°
 Pts ealt
 t°
 Pts salt
 t°
 Pts salt

 4 4
 33 0
 15.6
 40 8
 100
 77 5

 10
 36 6
 37.8
 58 8
 104.4
 82 6

(Wallace, Chem. Soc. 7. 80.)

100 pts. H₂O at 13° dissolve 38 pts., and the solution has sp. gr. = 1.1630. (Schiff, A. 113.

350.) 1 1 sat solution in H₂O at 25° contains 385 5 g, K₃Fe(CN)₆. (Grube, Z, Electrochem, 1914, 20, 342.)

Sn or of K-Fo(CN), 4-Ac at 13°

ply Pr. or rest cionils (and me re					
sult	Sp gr	salt	Sp gr	salt	Sp. gr
1	1 0051 1 0103	11 12	1 0595 1 0653	21 22	1 1202 1 1266
3	1 0155	13	1 0712	23 24	1 1331
5	1 0261	15 16	1.0831	25 26	1 1462 1 1529
6 7	1 0370	17	1.0952	27 28	1 1596
8 9 10	1 0482	18	1,1076	29	1.1664
10	1 0538	20	1 1039	30	1.1802

(Schiff)

Sp gr. of KaFe(CN)a+Ag at 25°.

1 0 4 -11 70	1 0 111 101 111 11		
Concentration of K ₃ Fe(CN) ₄ +Aq	Sp. gr		
1—normal	1.0574 1 0289 1 0143 1 0092		

(Wagner, Z. phys. Ch. 1890, 5, 37.)

Sat. K₄Fe(CN)₆+Aq boils at 104.4°, (Wallace) 1 l sat, solution at 25° of K₄Fe(CN)₆+ K₄Fe(CN)₆ contains 338.1 g K₃Fe(CN)₆ and

79.02 g. K4Fe(CN)6 (Grube)

Solubility of K₃Fe(CN)₆+K₄Fe(CN)₆ in KOH+Aq at 25°

коп	g. per l		
Normality	K ₁ Fe(CN) ₁	K _i Fe(CN)s	
0 4687 0 9628 1 949	309 275 3 200 8	66 64 55 19 35 95	

(Grube.)

Solubility in KOH+Aq at 25°.		
KOH Normality	g KaFe(CN)s per i.	
0 4687 0 9628 1 949	342 7 302 3 215.1	

(Grube, Z. Electrochem, 1914, 20, 342)

Insol. in liquid NH₁ (Franklin, Am. Ch.
J. 1898, 20, 828.)

Insol. in absolute alcohol, and only sl. sol. Ammonium ferrocyanide, $(NH_4)_4Fe(CN)_6+m$ dil. alcohol.

Sol. in accione. (Naumann, B. 1904, 37. 4328.)
Insol. in methyl acctate (Naumann, B. 1909, 42, 3790); ethyl acctate (Naumann,

B. 1910, 43. 314)
Insol. m benzoutrile (Naumann, B. 1914, 47, 1370.)

Potassium sodium ferricyanide, KNa-Fe(CN)...

Sol in H₂O. K₂NaFe(CN)₄. Sol in H₂O K₃Na₄[Fe(CN)₄]₂ Sol in H₂O. +3H₄O.

Potassium ferricyanide iodide, KaFe(CN),

Very unstable.

Silver ferricvanide, Ag₁Fe(CN)₀

1 1 H₂O dissolves 0 00066 g Ag₃Fe(CN)₆ at 20°. (Whitby, Z anorg 1910, 67, 108.) Sol. in NH₂OH, and hot (NH₄)₂CO₃+Aq, but insol. in NH₄ sults+Aq. Insol. in Hg(NO₂)₂+Aq. (Wackenioder, A. 41, 317.)

Silver ferricyanide ammonia, 2Ag₃Fe(CN)_b,

3NH₄+1₂H₂O.

Insol in H₂O. Sol. in NH₄OH+Aq (Gintt.)
2Ag₃Fe(CN)₆, 5NH₂. (Carlo, Gazz ch. it. 1910, 40. (2) 477)

Sodium ferricyanide, Na₃Fe(CN)₆+H₂O Deliquescent. Sol. in 5.3 pts. cold, and 1.5 pts. boiling H₂O Insol. in alcohol, but not pptd. thereby from aqueous solution. (Bette)

Ferrinitrososulphydric acid.

See Ferroheptanitrososulphydric acid.

Ferrocyanhydric acid, H₄Fe(CN)₆. Sol in H₂O and alcohol. 100 pts. H₂O dissolve 15 pts. acid at 14°.

(Joannis, A. ch. (5) 26. 514.)
Insol in ether, and much less sol, in etheralcohol than in alcohol. Insol. in conc. HCl+Aq.

Ferrocvanides.

The ferrocyanides of the alkalı and alkaline-earth metals are sol. in H_2O_2 the others are insol., but sol. in alkalies + Aq in case the base is sol. therein.

Aluminum ferrocyanide, Ala[Fe(CN)_e]_e+
17H₂O.

Sl. sol. in H₂O Sl. sol. in HCl+Aq with partial decomp. (Wyrouboff, A. ch (5) 8, 446.) 3H₂O Very sol in H₂O; insol. in alcohol. +H₂O. (Berzelius.)

Ammonium cadmium ferrocyanide ammonia, (NH₄)₂Cd₃[Fe(CN)₆]₂, 2NH₃+H₂O. Sol m H₂O. (Wyrouboff, A. ch. (5) 10. 413.)

Ammonium calcium ferrocyanide, (NH₄)-CaFe(CN)₄.

Sl. sol. in H₂O (Kunheim and Zimmerman, Dingl. 252, 478) 100 g. sat solution in H₂O contain 0.258 g at 16°. (Brown, J. phys Ch. 1898, 2, 51)

Ammonium cuprous ferro cyanide, (NH₄)₂Cu₂Fe(CN)₄.

Insol in H₂O and alcohol. Decomp in the air. (Messner, Z. anorg, 1895, 8. 382)

Ammonium cupric ferrocyanide, (NH₄)₂CuFe(CN)₆

Ppt. +zH₂O Very unstable Insol in H₂O; decomp by boiling H₂O (Messnei, Z anorg. 1895, 8 384.)

Ammonium lithium ferrocyanide, (NH₄)₂L₂Fe(CN)_t+3H₂O. Sol. in H₂O. (Wyrouboff, A. ch. (4) 21. 270.)

Ammoniufa magnesium ferrocyanide, (NH₄)₂MgFe(CN)₆.

1 l sat solution at 17° contains 2 48 g (NH₄)₄MgFe(CN)₆ (Robinson, Chem Soc 1909, 95, 1353)

Ammonium manganous ferrocyanide, {NH₄},MnFe(CN)₄. Ppt. (Blum, Z. anal. 30, 284.)

Ammonium potassium ferrocyanide, NH₄K₃Fe(CN)₆+3H₂O,

Easily sol in cold, more easily in hot H₂O. Insol. in alcohol. (NH₄)₂K₂Fe(CN)₆+3H₂O. Sol. in H₂O.

Ammonium potassium ferrocyanide ammonium chloride, (NH₁)₂KFe(CN)₆, 2NH₂Cl

Sol m H₂O. (Étard, J. pr. (2) 31, 430.)

Ammonium ferrocyanide bromide.

(NH₄)₄Fe(CN)₆, 2NH₄Br. Permanent. Very sol. in H₄O,

Ammonium ferrocyanide chloride, (NH₄)₄Fe(CN)₅, 2NH₄Cl+3H₂O.

Permanent. Very sol. in H₂O, but less so than NH₄Cl. (Bunsen.) Antimony ferrocyanide, Sb4[Fe(CN)4]3+ 25H₂O. Ppt. (Attenberg.)

Barium ferrocyanide, BarFe(CN)6+6H2O. Permanent. SI sol in H₂O

Sol. in 584 pts. cold, and 116 pts boiling H₂O (Duflos, 1832); sol. in 1800 pts. cold Calcium sodium ferrocvanide. H₂O (Porrett, 1814); sol. in 1920 pts. cold, and about 100 pts. boiling H₂O (Thomson); sol, in 2000 pts. cold, and 100 pts. boiling H.O. (Ure's Dict.)

Sol in 1000 pts. HaO at 15°, and 100 pts at 75°. (Wyrouboff, A. ch. (4) 16. 292.) Sol. in HNO2, HCl, or conc. H2SO4+Aq.

Barium cupric ferrocyanide, BaCuFe(CN), Insol in H2O. (Messner, Z. anorg. 1895, 8, 389.)

Barium potassium ferrocyanide, BaK₂Fe(CN)₆+3H₂O.

Sol. in 38 pts. cold, and 9.5 pts. boiling H2O (Duflos, 1832); in 36.4 pts. H₂O at 14⁸, and 11 9 pts. at b.-pt. (Mosander) Not more sol, in NH₄Cl+Aq than in H₂O. Sol. in dil., insol. in conc. HCl+Aq. (Rose.) +5H₀O Sol, in 300 pts, H₀O at ord, temp. (Wyrouboff.)

Bismuth ferrocvanide, Bi₂Fe(CN)₄+ 5H₂O (?)

Sl sol. in pure H2O. (Wyrouboff.) B14[Fe(CN)₀]₅. Ppt (Muir, Chem. Soc. 31 657.)

Bismuth potassium ferrocyanide BiKFe(CN),+7H2O, or 4H2O.

Ppt.

Cadmium potassium ferrocyanide, CdK₂Fe(CN)₆+H₂O. Insol. in H2O.

Formula given by Wyrouboff is $Cd_tK_0[Fe(CN)_t]_t+11H_tO(?).$ Calcium ferrocvanide, Ca₂Fe(CN)₆+12H₂O.

Very sol. in H₂O. Sol. in 0.66 pt. H₂O at 90° and not pptd by cooling, and is apparently less sol, in warm than cold H₂O. (Wyrouboff, A. ch. (4) 16, 280.)

Calcium cuprous ferrocyanide, CaCu₂Fe(CN)₆. (Messner, Z. anorg. 1894, 8. 387.)

Calcium cupric ferrocvanide, CaCuFe(CN), Insol, in H₂O, (Messner, Z. anorg. 1895) 388.)

Calcium potassium ferrocyanide,

CaK₂Fe(CN)₄ Sl. sol. in H2O. (Kunheim and Zimmerman, Dingl, 252, 478.)

+3H₂O. Sol. in 795 pts. H₂O at 15°, and 145, pts. at b-pt., with decomp, in the latter

Sol in dil., insol. in conc. HCl+Aq. Sol, in HNO₈ of 1.2 sp. gr. (Mosander.) Insol. in NH,Cl+Aq.

CaNad Fe(CN)sl2. Sol, in H₂O,

Calcium strontium ferrocyanide. CaSrFe(CN)a+10HoO.

Efflorescent. Sol. in about 3 pts. H₂O. (Wyrouboff, A. ch. (4) 21. 278.)

Cerium ferrocyanide, CedFe(CN)da+ 30H2O. Ppt. (Wyrouboff,)

Cerium potassium ferrocyanide, CeKFe(CN), +3H2O.

Ppt. (Jolin.) +4H₂O, (Wyrouboff.)

Ppt.

Chromic ferrocyanide, Cr2[Fe(CN)6]2+ 20H₂O.

Cobaltous ferrocyanide, Co2Fe(CN)+ $7H_1O$

Wholly meol, in H₁O. Sol. in H₂SO₄ with decomp. Insol. in HCl+Aq. Sl. sol. in NH₄OH+Aq. Sol. in Insol, in (NH₄)₄CO₄+Aq. Insol. in NH₄Cl+Aq. Sol. in KCN+Aq.

Cobaltous ferrocvanide ammonia. Co₂Fe(CN)₀, 8NH₂+10H₂O.

Ppt Decomp. on standing. (Curds, Z. Ch. 1869. 369.) Co₂Fe(CN)₆, 12NH₂+9H₂O. As above. (Curda.)

Cobaltous potassium ferrocyanide, CoK₂Fe(CN)₆.

Ppt. (Wyrouboff.) Co₄K₅[Fe(CN)₆]₄ (?). Ppt. Insol. only in presence of an excess of K₄Fe(CN)₆. (Wyrouboff.)

Columbium potassium ferrocyanide, Cb₁₆K[Fe(CN)₆]₂+67H₂O (?). Sol, in H.O. (Wyrouboff,)

Cb₁₂K₂Fe(CN)₆ + 39H₂O (?). Sol. H₂O (W.) (CbO),K,[Fe(CN),],+10H,O(?). Ppt. (Atterberg.)

Cuprous ferrocyanide, Cu4Fe(CN)4. Insol, in H₂O; sol in NH₂OH+Aq; insol, in NH Cl+Aq.

Ppt. (Bong. Bull. Soc. 23, 231.)

Cupric ferrocyanide, Cu₂Fe(CN)₆+7H₂O. Insol, in H2O or acids. Insol. in NH4 salts+Aq. Sol. m NH₄OH+Aq. Sol in (NH₄)₂C₂O₄+Aq and in KCN+Aq. Insol, in liquid NH₄. (Gore, Am. Ch J.

1898, 20. 827.) +10H₂O. Sol. in excess of K₄Fe(CN)₅+ | Gallium ferrocyanide. Aq, especially if hot. (Wyrouboff.)

Cupric ferrocyanide ammonia (cuprammonium ferrocyanide), CuzFe(CN),

4NH3+H2O Insol, in H2O or alcohol Sol, in NH4OH+ Aq. (Bunsen) $Cu_2Fe(CN)_6$, $8NH_2+H_2O$.

Cuprous magnesium ferrocyanide,

Cu2MgFe(CN)6. Very unstable. Decomp in an. Insol. in H₂O (Messuer, Z. anorg. 1895, 8.385)

Insol, in H2O. Decomp. by boiling H2O

Cupric magnesium ferrocyanide, CuMgFe(CN)5.

Very unstable. (Messner, Z. anorg. 1895, 8. 387.)

Cuprous potassium ferrocyanide, Cu₂K₂Fe(CN)₆.

Insol. in H₂O. Decomp. by boiling H₂O. Decomp. by acids Insol. in alcohol. (Messner, Z. anorg. 1895, 8. 378) +1½H₂O. Insol in H₂O, alcohol, or ether. Decomp. by sends. Sol. in KCN+Aq. K₂Cu₃Fe(CN)₄+4H₂O. +5H₂O. (Wonfor.)

+6H₂O. (Wyrouboff.)

Cupric potassium ferrocyanide, K2CuFe(CN)s +H.0 Insol. in cold, sl. decomp. by boiling H₂O

 $K_2Cu_2[Fe(CN)_6]_2+12H_2O$. Ppt. Cuprous sodium ferrocvanide. Cu2Na2Fe(CN)6.

Decomp. by boiling H₂O; insol. in alcohol, insol in H2O; decomp, by seids. (Messner, Z. anorg. 1895, 8. 373)

Cupric sodium ferrocvanide. CuNa_{*}Fe(CN)_{*}

Insol. in cold H4O. Decomp. by boiling H₂O. (Moissan, Z. anorg, 1895, 8, 376.)

Cupric strontium ferrocyanide, CuSrFe(CN)s.

Insol. in H2O. (Messner, Z. anorg 1895, 8.389.)

Cupric ferrocyanide, basic, CuFe(OH)4(CN)4 Didymium potassium ferrocyanide, DikFo(CN)₀+4H₂O.

> Ppt. (Cleve) +2H-O. (Wyrouboff.)

Erbium potassium ferrocyanide, ErKFe(CN)a $+xH_2O$.

(Höglund.)

Sol in boiling HCl+Aq. (de Boisbaudran,

C R. 99,526.) Glucinum ferrocyanide, Gl₂Fe(CN)₆, 4GlO₂H₄,

+7H+O (?). Sol in H₂O, (Atterberg.)

(ferric) ferrocvanide, Fe₇(CN)₁₃= $Fe_4|Fe(CN)_6|_8+xH_2O$.

(Prussian blue) Insol. in H₂O, alcohol, ether, or oils Decomp slowly by boiling H₂O. Insol in dil. mineral acids. Sol. in cone HCl+Aq, and conc. H₂SO₄ without de-comp Sol. in H₂C₂O₄ or NH₄ tartrate+Aq. Insol in NH₄OH+Aq Decomp by NaOH. or KOH+Aq. Not pptd, in presence of tartrates or citrates

Iron (ferrous) potassium ferrocyanide, FeK.Fe(CN). Insol, in H2O. Decomp. on air.

Iron (ferric) 'potassium ferrocyanide,

FeKFe(CN). Is probably ferrous potassium ferricyanide. which see.

Iron (ferric) ferrocyanide ammonia, Fe4Fe(CN)els, 6NH1+9H2O Insol. in NH, tartrate+Aq.

Lanthanum potassium ferrocvanide, LaKFe(CN)₀+4H₂O. Ppt.

Lead ferrocyanide, Pb₂Fe(CN)₆+3H₂O. Insol. in H₂O, acids, or NH₄OH+Aq. (Wyrouboff, A ch. (5) 8. 480.) Sl sol. in conc. H2SO4, from which it is

pptd by H₂O (Berzelius.) Sol. in hot NH₄Cl, or NH₄ succenate+Aq; insol. in other NH₄ salts+Aq (Wittstein.) Insol, in NH4Cl+Aq (Brett.) Not pptd. in presence of Na citrate.

(Spiller.) Lithium ferrocyanide, LigFe(CN)a+9H2O.

Deliquescent. Very sol in H₂O. Lithium potassium ferrocyanide,

 $L_{4a}K_{a}Fe(CN)_{a}+3H_{2}O$

Very sol. in H₂O Sol. in 1.5 pts H₂O at ord, temp. (Wyrouboff, A, ch. (4) 21, 274) Magnesium ferrocyanide, Mg₂Fe(CN)₆+ 6H₅O.

Sol. in 3 pts. cold H_2O . (Bette, A. 22. 148)

Magnesium potassium ferrocyanide, MgK₂Fe(CN)₆.

Sol. in 1575 pts H₂O at 15°, and 238 pts. at 100°. Solution is decomp. by boiling. (Storer's Dict.)

1 l sat. solution at 17° contains 1.95 g. MgK₂Fe(CN)₆ (Robinson, Chem. Soc. 1909, **75**, 1353.)

Manganous ferrocyanide, Mn₂Fe(CN)₀+ 7H₂O.

Insol in H₂O. Sol, in HCl+Aq. Insol in NH₄Cl, or NH₄NO₃+Aq

Manganic ferrocyanide, Mn₂Fe₃(CN)₁₂.
Insol in H₂O. Easily decomp. in the air.
Sol. in HCl (Straus, Z. anorg. 1895, 9. 8.)

Manganous potassium ferrocyanide, MnK₂Fe(CN)_t.

Ppt. (Berzelius) $5Mn_2Fe(CN)_t$, $4K_4Fe(CN)_t+4H_2O(?)$. Ppt. Sol, in dil HCl+Aq. (Wyrouboff.)

Mercuric potassium ferrocyanide, K₂HgFe(CN)₄.

Insol m H₂O Appreciably sol m K₄Fe(CN)₄+Aq (Fernekes, J Am Chem. Soc 1906, **28**. 87)

Molybdenum ferrocyanide, Mo₄Fe(CN)₆+ 20H₂O(?)

Very sol in NH₄OH+Aq. (Wyrouboff) Mo₂Fe(CM)₆+8H₄O (?). (W.) +14H₂O (?). Very sol in H₂O; insol in alcohol. (W.)

Molybdenum potassium ferrocyanide, K₄Mo₈[Fe(CN)₄]₂+40H₂O (?).

(Wyrouboff) K₃(MoO₃)₃[Fe(CN)₅]₅, 2MoO₃+20H₂O (?). (Atterberg.) K₃MO₃[Fe(CN)₆]₃, 2MoO₃+12H₂O (?). (Atterberg.)

Nickel ferrocyanide, N₁₂Fe(CN)₄+11H₂O, or 14H₂O.

Ppt. Insol. in H₂O or HCl+Aq Sol. in NH₄OH+Aq, insol. in NH₄ salts+Aq. Sol. in KCN+Aq.

Nickel ferrocyanide ammonia, Ni₂Fe(CN)₆,

Completely insol. in H₂O and not attacked thereby, sol in NH₄OH+Aq to form— Ni₂Fe(CN)₆, 10NH₃+4H₂O. Decomp. by hot H₂O (Reynoso, A ch. (3) **30**, 252.) Ni₂Fe(CN)₆, 2NH₅+4, and 9H₂O. Hygro-

scopic. Easily decomp. (Gintl, J. B 1868. 304) \$\begin{array}{c} \begin{array}{c} \begin{ar

compounds. "(G.)

Nickel potassium ferrocyanide, NiK₂Fe(CN)₆
+3H.O.

Ppt (Wyrouboff)

Osmium ferrocyanide, Os₂Fe(CN), Pnt. (Martius, A 117, 368.)

Potassium ferrocyanide, K.Fe(CN).

Permanent. Easily sol. in cold, and more easily in hot H₂O. Sol. in 4 23 pts H₂O at 15°, or 100 pts. H₂O dissolve 23.6 pts. salt at 15°. (Schiff, A. 113.

350.)
100 pts. H₂O dissolve 27 8 pts. at 12 2°;
65.8 pts at 37.7°; 87.6 pts. at 65 5°, and 90.6
pts. at 96.3° (Thomson.)

pts. at 96.3° (Thomson.)
Sol. in 4 pts cold, and 2 pts. boiling H₂O.
(Wittstein)

100 pts H₂O dissolve 29.2 pts salt at 15°, and solution has sp. gr. = 1 1441. (Michel and Kraft, A. ch. (3) 41. 478.)

Solubility of K₁Fe(CN)₈ in H₂O at t°. -2° +7° 14° 30° 56°

-2° +7° 14° 30° 56° 10 8 15 4 17 9 23 0 31 7% 60° 75° 89° 98° 157° 34 0 39 1 41 9 42 6 46.8% (Étard, A, ch. 1894, (7) 2. 546.)

K₄Fe(CN)₄+Aq sat. at 8° has sp. gr. = 1.13. (Anthon.)

Sp. gr. of K₄Fe(CN)₆+Aq at 15°.

o, hydrous	Sp gr	57. hydrous	Sp gr	% hydrous	Sp gr
1 2 3 4 5 6 7	1.0058 1 0116 1 0175 1 0234 1 0295 1 0356 1 0417	8 9 10 11 12 13 14	1.0479 1 0542 1 0605 1.0669 1.0734 1 0800 1 0866	15 16 17 18 19 20	1 0932 1 0999 1 1067 1 1136 1 1205 1 1275

(Schiff, A 113, 199.)

Sp gr of K₄Fe(CN)₆+Aq at 25°.

Concentration of Sp gr

Concentration of K ₄ Fe(CN)s+Aq	Sp gr
1—normal 1/2— " 1/4— " 1/5— " 1/15— "	1 0617 1 0300 1 0150 1 0074 1 0037

(Wagner, Z phys. Ch. 1890, 5. 37.)

Solubility in KOH+Aq at 25°.	
KOH Normality	g K4Fe(CN)s+dH2O pet l.
0 09984 0 2496 0 4963 0 7036 0 9415 1 395	308 5 283 5 247 1 217 4 184 8 132 1
1 883	86 12

(Grube, Z. Electrochem, 1914, 20, 342.)

K.Fe(CN)₈+NaCl+Aq sat. at 20° contains 26.6 g. NaCl and 17.8 g. K.Fe(CN)₈ per 10.0 g. H₂O; sat. at 9.3 't contains 27.8 g. NaCl and 38.9 g. K.Fe(CN)₈ per 10.0 g. H₂O; Corroy, J. Soc. Chem. Ind. 1889, 47. 10.5 K.Fe(CN)₈+K.Cl+Aq sat. at 21° contains 27.2 g. KCl and 42. g. K.Fe(CN)₈ per 10.0 g. H₂O; sat. at 9.0 't contains 9.7.2 g. KCl and 4.70 g. K.Fe(CN)₈ per 10.0 g. H₂O; sat. at 9.0 't contains 9.0 g. KCl and 4.70 g. K.Fe(CN)₈ per 10.0 g. H₂O;

(Conroy.)

K,Fe(CN)_s+Na₂CO₂+Aq sat at 22°

K,Fe(CN)_s per 100 g. H₂O; sat, at 97° it contains 22.0 g. Na₅CO₂ and 20.7 g.

K,Fe(CN)_s per 100 g. H₂O; sat, at 97° it contains 42.0 g. Na₅CO₂ and 27.5 g. K₄Fe(CN)_s

per 100 g H₂O. (Conroy.)

per 100 g 11₂O. (Conroy.) Insol. in liquid NH₂. (Franklin, Am. Ch J. 1898, **20**. 829.)

J. 1898, 20. 829.)
Insol, in alcohol even when dilute.
Insol, in methyl acetate. (Naumann, B

1909, 42, 3790.) 1nsol. in ethyl acetate. (Naumann, B 1904, 37, 3601.)

Insol. m benzonitrile (Naumann, B | (Atterherg.) 1914, 47, 1370.)
Sol m acetone (Naumann, B, 1904, 37.

4328.)
+3H₂O. 1 l sat solution in H₂O contains
319 t g K₄Fe(CN)₆+3H₂O (Grube, Electrochem, Z. 1911, 20, 342.)

Two modifications with different solubil-

25.0 g of α modification are contained in 100 g, of solution at 20° 24.6 g of β modification are contained in 100 g, of solution at 20°. (Briggs, Chem

Soc 1911, 99 1024.)
32.0 g. K₄Fe(CN)₆ (anhydrous) are dissolved in 100 g. H₂O at 25°. (Wagnei, Z. phys. Ch. 1910, 71, 428.)

Potassium samarium ferrocyanide, KSmFe(CN)₆+5H₂O.

Precipitate. (Cleve.)

Potassium sodium ferrocyanide,

 $KNa_4Fe(CN)_6+12H_2O$. Sol in H_2O . $K_2Na_2Fe(CN)_6+8H_2O$. Easily sol. in H_2O .

K₁NaFe(CN)₆+3H₂O. Permanent. Easily sol, in H₂O; insol, in alcohol. Potassium sodium ferrocyanide nitrate,

K₂Na₂Fe(CN)₆, 4KNO₃.

Sol. in H₂O. (Martius.)

Potassium strontium ferrocyanide, K₂SrFe(CN)₆+3H₂O.

Easily decomp Sol in H₂O; sl sol. in alcohol (Wyrouboff, A. ch. (4) 21. 276.)

Potassium stannic ferrocyanide, KSn₃[F₀(CN)₄]₂+68H₂O (?).

Ppt. (Wyrouboff) K₄Sn₁₆[Pe(CN)₆]₁₁+230H₂O (?). (Atterberg)

Potassium titanium ferrocyanide, K₈T₁₈[Fe(CN)₆]₂+11H₂O (?).

Ppt. Sol in K₄Fe(CN)₆+Aq. (Wyrouboff.)

K₄Fe(CN)₆, 11Ti₂Fe(CN)₆+43H₄O (?). Ppt (Wyrouboff.)

^K₂(TiO)₃[Fe(CN)₄]₂+23H₂O (?) Ppt (Atterberg) K₂(TiO)₁₂[Fe(CN)₄]₆+110H₂O (?). Ppt (Atterberg)

Potassium tungsten ferrocyanide, KW₂Fe(CN)₆+7H₂O (?).

Sol. in H₂O. (Wyrouboff) K₂W₄Fe(CN)₆+20H₂O (?) Sol in H₂O. (W.)

Potassium uranium ferrocyanide, K₂U₃[Fe(CN)₆]₂+6H₂O (?).

Ppt. (Wyrouboff)
K₁₂(IO₂)₃[Fe(CN)₈]₂+6H₂O. Ppt. (Atterberg)
K₃(IO₂)₃[Fe(CN)₈]₄+12H₂O. Sol. in [H₂O.

Potassium vanadium ferrocyanide,

 $K_{18}V[Fe(CN)_{e]e}+39H_2O$ (?). Ppt Sl. sol. in H_2O , (Wyrouboff.) $K_4(VO)_5[Fe(CN)_{e]_4}+60H_2O$ (?). Ppt. (At-

ra(VU)₃[re(UN)_{6]4}+00H₂U(r). Ppt. (A terberg) Potassium ytterbium ferrocyanide,

KYbFe(CN)₆+3H₄O. Ppt. Sol. in excess K₄Fe(CN)₆+Aq. (Cleve, Z. anorg. 1902, **32**, 140.)

Potassium yttrum ferrocyanide, KYFe(CN)_t+2H₂O.

Ppt. (Wyrouboff, A. ch. (5) 8. 444.)

Potassium zinc ferrocyanide,

 $K_4Zn_4[Fe(CN)_6]_4+12H_4O$. Absolutely msol. in H_2O . (Wyrouboff, A. ch. (5) 8, 485.)

Potassium ferrocyanide carbonyl, K₈Fe(CN)₈(CO)+3½H₂O. See Carbonyl ferrocyanide, potassium.

Rubidium ferrocyanide, Rb₄Fe(CN)₆+2H₂O. Sol. in less than 1 pt. H₂O at ord. temp. with great absorption of heat. (Wyrouboff, A. ch. (4) 16. 307. Silver ferrocyanide, Ag₄Fe(CN)₄+H₂O. Insol m H₂O or dil acuds Insol m NH₄OH, or NH₄ salts + Aq Sol m KCN + At. Decomp. by warm NH₄OH+A-. (Weith, Z. Ch (2) 5, 381)

Silver ferrocyanide ammonia, Ag₄Fe(CN)₅, 2NH₂+H₂O (Wyrouboff) + 6H₂O. (Gintl)

Sodium ferrocyanide, Na₄Fe(CN)₅+12H₂O.
 Efflorescent. Less soi in H₂O than K₄Fe(CN)₄. Soi in 4.5 pts. H₂O at 12° (John.)
 100 pts H₂O at 15.5° dissolve 22 pts.

100 pts. H₂O dissolve at:

62.1 61 6 6 30 pts. Na₄FeCN₆, (Conroy, J. Soc. Chem. Ind. 1898, 17. 104.)

 $+10H_{3}O.$

(Ure's Dict.)

100 pts. H₂O dissolve at:

(Conroy.)

Strontium ferroganide, Sr₂Fe(CN)₄+15H₂O.

Efflorescent Sol. m 2 pts. cold, and less than 1 pt. boling H₂O. (Bette.)

Excessively sol. in H₂O. (Wyrouboff, A ch. (4) 16, 280.)

+8H₂O. (Wyrouboff.)

Thallous ferrocyanide, $Tl_4Fe(CN)_0+2H_5O$. 100 pts H_5O dissolve 0.37 pt. at 18°, and 3 93 pts. at 101°. (Lamy.) Sol. m KCN+Aq (Kühlmann.)

Sol. in KCN+Aq (Kühlmann.)

Thorium ferrocyanide, ThFe(CN)₄+4H₂O.

Ppt. (Cleve, Bull. Soc. (2) 24. 355.)

Tin (stannous) ferrocyanide, Sn₂Fe(CN)₅+
4H₂O.
Insol. in H₂O or acids; sl. sol. in NH₄OH+
Aq. (Wyrouboff.)

Tin (stannic) ferrocyanide, Sn;[Fe(CN),]2+
18½H,O (?).
(Wyrouboff.)

Titanium ferrocyanide, Ti₇[Fe(CN)₆]₂ (?). Ppt. (Wyrouboff.)

Uranium ferrocyanide, UFe(CN)₆+10H₂O.
Ppt. (Wyrouboff)

Vanadyl ferrocyanide, (VO)₂Fe(CN)₆+ 11H₂O

Ppt. (Atterberg.)

Yttrium ferrocyanide, Y₄[Fc(CN)₆]₂. Easily sol in H₂O; insol. in alcohol. (Popp, A. 131, 179)

Zinc ferrocyanide, Zn₂Fe(CN)₆+3H₂O. Insol. in H₂O or acids. Insol. in HCl+Aq. (Lea, Sill, Am. J. (2)

31. 191.)
Sol. in NH₄OH, or NH₄ salts+Aq. (Witt-

stem) Insol. in NH₄Cl, or NH₄NO+Aq. (Brett.) Sl. sol. in boiling K₄Fe(CN)₅, or K₂Fe(CN)₅

+Aq. (Core.) Na_LFe(CN)_p to Hyle(CN)_p +NaCl+Aq sat. at 21° oon-tams 29.0 g. NaCl and 5 8 g Na_LFe(CN)_p per 100 g. H₂O; sat. at 90° it contains 24.7 g. NaCl and 21.3 g. Na_LFe(CN)_p per 109 g. H₂O. (Conroy, J. Soc Chem Ind. 1898, 17. 105.)

100 g. H₂O₂ sat. at yo it contains zero p. NoCl and 21.3 g. Na₂Fe(CN), per 100 g. H₂O₂ (Coursy, J. Soc Chem Ind. 1898, 17. 105.) Na₂Fe(CN)₂+Na₂CO₂+A₃ st. at 22° contains 22.6 g. Na₂CO₂ and 5.5 g. Na₂Fe(CN)₂ per 100 g. H₂O₂ sat. at 95° the contains 29.8 g. Na₂CO₂ and 36.8 g. Na₂Fe(CN)₂ per 100 g. H₂O₂ (Conroy) Very at sol. in liquid NH₃ (Franklin, Am. Ch. J. 1898, 20. S30.)

Insul in alcohol +4H₂O. Absolutely insul, in H₂O. (Wyrouboff, A. ch. (5) 8, 485.)

(Wyrouboff, A. ch. (5) 8, 485.) +8H₂O (Weith, A 147, 329) +10H₂O. (Pebal, A. 238, 105.)

Ferroletranitrososulphydric acid, H₂S₂(NO)₄Fe₂.

Insol. in H₂O; sl. sol in alcohol; more easily m ether; very sol, in CS₂ or CHCl₂. Not obtained in a pune state (Pawel, B. 15. 2600.)

Ethyl ferrotetranstrososulphide, (C,H,)S,(NO),Fe,

Insol. in H₂O, difficultly sol. in alcohol, more easily in ether, and very easily in CS₂, CHCl₂, C₂H₃I, or C₈H₄. (Pawel, B 15. 2609.)

Ferrous —, FeS₂(NO)₄Fe₂.

More difficultly sol, in H₂O and alcohol than the hepta salt, Sol, in ether.

Potassium —, K₂S₂(NO)₄Fe₂+4H₂O. Sol. in H₂O. Easily sol. in alcohol; insol. in ether. (Pawel, B. 15. 2600.)

True composition of "nitrosulphide of

Sodium ferrotetranitrososulphide. Na₂S₂(NO)₄Fe₂+8H₂O.

Sol. in H₂O, easily sol. in alcohol; insol in ether. (Pawel.) True composition of "nitrosulphide of iron and sodium" of Roussin. (Pawel)

Thallium ---, Tl₂S₂(NO)₄Fe₂.

Insol. in H₂O. alcohol. or ether. (Pawel)

Ferroheptanitrososulphydric acid, HS₃(NO), Fe₄.

Insol in H₂O, alcohol, and ether Easily sol, in CS₂ or CHCl₃ (Pawel, B 15, 2604) May be called Fermutrososulphydric acid.

Ammonium ferroheptanitrososulphide, $NH_s(NO)$: Fe_t+H_tO .

Less easily sol in H2O than the K compound. (Pawel, B. 15. 2600.) "Binitrosulphide of iron" of Roussin. Sol. in about 2 pts boiling H₂O; very sl sol in cold H₂O. Very sol in alcohols, methyl, ethyl, or amyl, and in HC₂H₂O₂ Miscible with ether. Insol. in CS₂ or CHCl₂
Decomp by cone. HCl, HNO₂, or H₂SO₄.
Not attacked by H₂C₂O₄, or H₂C₄H₄O₅+

Insol. in NH4OH, and KOH+Aq. (Rous-

sin, A. ch. (3) 52. 286.) Sol m IL() Insol m alcohol (Hofmann, Z anorg. 1895, 9, 299)

Barium -----

Easily sol, in H2O. (Pawel)

Cæsium ----, Fe₄(NO)₇ S₂Cs+H₂O. Insol. in H2O. Difficultly sol. in alcohol Perrotungstic acid. and other. (Pawel)
Sparingly sol in H₂O. (Hofmann, Z

anorg, 1895, 9, 298.) Calcium ----.

Easily sol, in H2O. (Pawel.)

Ferrous ----, Fe[S₂(NO)₇ Fe₄]₂+SH₂O. More easily sol. in H2O than Na salt. (Pawel.)

Lead ----

Difficultly sol. in H2O. (Pawel.)

Magnesium ----

Easily sol. in H₂O. (Pawel.)

Potassium ----, KS_t(NO)₇ Fe₄. Sol. in H2O, alcohol, and very sol. in ether Barum ferrite, BaO, Fe1O3. with slight decomp. (Pawel, B 15, 2600.)

iron and potassium" of Roussin (A. ch. Rubidium ferroheplanitrososulphide, (3) 52, 297.) (Pawel, B. 13, 1949.) . RbS₃(NO); Fe₂.

Less soluble in H₂O than the NH₄ salt. (Pawel.) +H₂O Ppt. (Hofmann, Z anorg. 1895, 9, 298.)

Sodium --- , NaS2(NO), Fe4+2H2O. More sol in H2O than the potassium salt, (Pawel)

Thallium ---, TIS₂(NO)₇ Fe₄+H₂O. Very difficultly sol in H₂O. More easily sol in alcohol. (Pawel) (Hofmann, Z. anorg. 1895, 9, 297,)

Ferrodinitrosothiosulphonic acid.

Ammonium ferrodinitrosothiosulphonate, Fe(NO)₂S₂O₂NH₄+H₂O.

Can be cryst. from warm H₂O without decomp. (Hofmann, Z anorg 1895, 8, 321.) Cæsium ----, Fe(NO)2S2O2C8.

Sparingly sol in H.O. (Hofmann.)

Potassium ----, $Fe(NO)_2S_2O_3K + H_2O$. Si sol in H2O without decomp at 80°. Sol in 50% alcohol. Sol. in H2SO4 without decomp (Hofmann)

Rubidium —, $Fe(NO)_2S_2O_4Rb+H_2O$. Less sol. in H2O than the corresponding Na salt. (Hofmann.)

Sodium ----, Fe(NO)₂S₂O₃Na+2H₂O. Closely resembles K salt, but is more sol. in H₂O and alcohol. (Hofmann.)

Sol, in H2O. (Laurent, C R, 31, 693)

Ammonium manganous ferrotungstate 12(NH₄)₂O, 6MnO, 2Fe₂O₄, 3H₄O. 45WO₃+81H₂O. Sol, in H₂O (Laurent.)

Barium ferrotungstate, 21BaO, 2Fe₄O₃, 45WO3+27H2O. Sol. in H2O (Laurent.)

Potassium ferrotungstate, 9K₂O, 2Fe₂O₅, 12H₂O, 45WO₃+54H₂O. Sol. in H.O. (Laurent.) 18K2O, 2Fe2O3, 3H2O, 45WOs+54HoO. (Laurent.)

Ferrous acid.

Ppt. (List. B 11, 1512.)

Calcium ferrite, 4CaO, Fe₂O₃,

Insol. in H₂O, or sugar+H₂O Decomp. by the weakest acids, but not by boiling KOH +Aq. (Pelouze, A. ch. (3) 33. 5.) CaO, Fe₂O₃ (List) 3CaO, Fe₂O₄. Much less readily attacked

by H2O and acids than the silicates. (Hilpert, B. 1909, 42, 4581.) 3CaO, 2Fe₂O₃. As above. (Hilpert, B.

1909. 42, 4581) Calcium ferrite chloride, CaO, Fe-Os, CaClo. Not decomp by II₂O. (Chatelier, C. R. 99.

276) Cupric ferrite, CuO. Fe-O1. Pot. (List.)

+5H₂O. (List.)

Ferrous argentous ferrite, 2FeO, Ag₄O, Fe.O. (?)

Easily decomp. by HCl+Aq. Not com-pletely sol. in dil HNO₃+Aq Easily sol. in conc. HNO₃ Decomp. by acetic acid. (Rose, Pogg. 10, 323)

Magnesium ferrite, MgO, Fe₂O₃.

· Insol in H2O. Not attacked by boiling conc. HNO3. (Deville C. R. 52. 1264) Min Magnesioferrile, Difficultly sol, in (Rammelsberg, Pogg 107, 451.) Ppt. (List, B 11, 1512.) HCl+Aa +4H₂O Ppt. (List, B 11 6MgO, Fe₂O₂+9H₂O. Ppt. +15H₂O Min. Pur oaurite.

Manganous ferrite, MnO, Fe2O2. Ppt. (List.)

Nickel ferrite, NiO, Fe₂O₂. Pot. (List)

Potassium ferrite, 3K2O, 4Fe2O2.

Decomp. by H2O, KOH+Aq, NaOH+Aq, etc, but only slowly by NH₄Cl+Aq. (Salm-Horstman, Jpr. 56. 349.)

K₂Fe₃O₄. Decomp by H₄O. (Rousseau Ammonium fluoboride, NH₄BF₄.

and Bernheim, C. R. 107. 240.)

Silver (argentous) ferrite, Ag₄O, Fe₉O₈ (?), Decomp, by dil, HNO2+Aq. (Rose, Pogg. 10, 323.)

Sodium ferrite, Na₂O, Fe₂O₃. Na₂O is dissolved out by H₂O. Easily sol. in dil. HCl+Aq Not easily decomp. by

NH₄Cl+Aq (Salm-Horstmar.) Zinc ferrite, ZnO, Fe₂O₈.

Sol. in boiling conc. HCl+Aq. (Ebelmen, A. ch. (3) 33. 47.) Min Franklinite.

Flavocobaltic compounds. See also Xanthocobaltic compounds. Flavocobaltic chloraurate, (NO₂)₂Co(NH₄)₄AuCl₄.

More easily sol than the chloroplatinate, Not wholly insol, in absolute alcohol. (Jorgensen, Z. anorg. 5, 159.)

- chloroplatinate, [(NO2)2Co(NH2)4]2PtCl6 As the chloroplatinite. (Jörgensen.)

- chloroplatinite, $I(N()_a)_a Co(NH_a)_a l_b PtCl_a$ Somewhat sol in H₂O, and not insol, in

50% alcohol (Jorgensen.) ---- chromate, [(NO₂)₂Co(NH₂)₄]₂Cr₂O₇

Ppt. (Jorgensen)

---- nstrate, Co(NO₂)₂(NH₂)₄NO₈, Sol in about 33 pts cold H₂O, msol, m HNO₃, (Jörgensen.) Co(NO₂)₂(NH₃)₄NO₈, HNO₃. Decomp.

by H₂O or alcohol. (Jorgensen) -cobaltic nitrite, 3(NO₀)₂Co(NH₂)₄, Co+(NO+)+2H+O

Sl. sol. in H.O. (Jorgensen, Z anorg, 5. 179.)

--- diamine cobaltic nitrite, (NO2)2Co(NH2)4,

(NO₂)₂(NH₃)₂Co(NO₂)₂. Very sl. sol, in H₂O. (Jorgensen.)

 sulphate, [(NO₂)₂Co(NH₈)₄]₂SO₄. Sl sol in H_{*}O, more easily in HC_{*}H_{*}O_{*}+ Aq (Jörgensen)

Fluoborhydric acid, HBF, Decome, by H₂O very rapidly, (Landolph, C R 86, 603)

Aluminum fluoboride, 2AlF2, 3BF2,

Sol. in H2O only when acadulated, sol. in

Easily sol in H₂O. Sol, in 4 pts H₂O at 16°, and 1 02-1.05 pts. boiling H₂O. (Stolba, Chem techn, Cent. Anz. 7. 459.) Sl. sol. in alcohol.

Barium fluoboride, Ba(BF4)2+2H2O.

Deliquescent; easily sol, in H2O, decomp. by alcohol. (Berzelius)

Cæsium fluoboride, CsBF4.

100 pts. H₂O dissolve 0.92 pt. CsBF₄ at 20° and 0.04 pt at 100°. (Godeffroy, B. 9. 1367.) 0.02 pts. are sol in 100 pts. H₂O at 20°. (Erdmann, Arch Pharm. 1894, 232, 21)

Calcium fluoboride, Ca(BF4)2.

Decomp. by H.O. with formation of a sol. acid salt and an insol. basic salt. (Berzelius.) Cupric fluoboride, Cu(BF₄)₂.

Deliquescent, and very sol. in H₂O. (Ber-

Deliquescent, and very sol. in H₂O. (Bg zelius.)

Lead fluoboride, Pb(BF4)2.

Sol. in H₂O. Decomp, by boiling with H₂O or atcohol into an acid soluble, and a basic insoluble salt. (Berzelius.)

Lithium fluoboride, LiBF4.

Hygroscopic. Easily sol. in H₂O. (Berzelius.)

Magnesium fluoboride. Easily sol. in H₂O. (Berzelius.)

Potassium fluoboride, KBF.

Sol. m 223 pts. H₂O at 20° (Stolba) Sol. m 704 pts. cold H₂O. (Berrelius). Sol. in 15.94 pts. H₂O at 100° (Stolba). 1.43 pts. are sol in 100 pts. H₂O at 20° (Stolba). 1.43 pts. are sol in 100 pts. H₂O at 20° (Erdman, Arch. Pharm. 1894, 232. 21.). Not more sol in NH₂OH+A₂d than in H₂O sol, in hot KOH, NaOH, or N₂CO₂+A₂C (Berzeltus) M₂C at 10° (Stolba). (Berzeltus) M₂C at 10° (Stolba). (KC₂H₂O₂+A₂C, (Stoneyer.) Insol. in cold, si. sol. in boling alcohol.

Rubidium fluoboride, RbBF4.

100 pts. H₂O dissolve 0.55 pt. at 20°, and 1.0 pt. at 100° (Godefroy, B. 9. 1337.) 0.55 pts. are sol in 100 pts H₂O at 20° (Erdmann, Arch. Pharm. 1894, 232. 21.)

Sodium fluoboride, NaBF4.

lius.)

Easily sol. in H₂O. Very sl. sol. in alcohol. (Berzelius.)

Yttrium fluoboride. Sol. in H₂O with excess of acid. (Berze-

Zinc fluoboride, Zn/BF₄)₂.

Deliouescent. Sol. in H₂O. (Berzelius.)

Deliquescent. Box. in 1150. (De

Fluoboric acid, HBF.

See Fluoborhydric acid.

H₄B₄O₇, 3HF and H₄B₄O₅, 2HF (?). Fume
on air, and are decomp. with H₂O. (Landolph, B. 12. 1583.)

HBO₃, 3HF. Decomp. by H₂O. (Berzelus, Pogg. 59, 644.)

La sible a mythus on a solution of HBO.

zelus, Pogg. 59, 644)
Is either a mixture, or a solution of HBO₂ in HF, and is decomp. by distillation, and the salts are decomp. by recrystallisation. (Basaroy, C. R. 78, 1698.)

Potassium fluòborate, K₂B₂O₄F₂ (?). Sl. deliquescent. Scarcely sol. in boiling alcohol. (Schiff, A. Suppl 5. 175.)

alcohol. (Schiff, A. Suppl 5. 175.)

See Boron trioxide potassium fluoride,
B₁O₄. 2KF.

Fluochromic acid.

Ammonium fluochromate, NH, CrO, F

Sol. in H₂O. (Varenne, C. R. 91. 989.)

Potassium fluochromate, KCrO₂F. Efflorescent. Sol. m H₂O, with gradual decomp. (Streng, A. 129, 225.)

Fluocolumbic acid.

See also Fluoxycolumbic acid.

Ammonium fluocolumbate fluoxycolumbate,

(NH₄)₂CbF₃, 2CbOF₃, NH₄F.

Cadmium fluocolumbate, Cd₄H₈Cb₈F₃₀+

28H₂O.

Insol. in, and decomp by H₂O. (Streng.)

Cobalt fluocolumbate, Co₄H₄Cb₄F₄₀+28H₄O. Insol. in, and decomp. by H₄O. (Streng.)

Copper fluocolumbate, Cu₂HCbF₁₀+9H₂O. Insol. in, and decomp. by H₂O.

Ferrous fluocolumbate, Fe₃H₄Cb₂F₁₀+19H₂O. As above

Manganous fluocolumbate, $Mn_8H_4Cb_8F_{00}$ + 28 H_2O .

Mercuric fluocolumbate, Hg₃CbF₁₁+8H₂O. As above.

Nickel fluocolumbate, Ni₈H₄Cb₂F₂₀+19H₂O. As above.

Potassium fluocolumbate, K₂CbF₇, Qecomp. by solution in H₂O. (Marignae A. ch. (4) 8, 34.)

Rubidium fluocolumbate, Rb₂CbF₇

Sol. in H₂O and HF+Aq. Insol in alcohol (Pennington, J. Am Chem. Soc. 1896, 18. 58.)

Zinc fluocolumbate, Zn₅H₅Cb₈F₂₀+28H₂O. Insol. in cold H₂O; decomp. by hot H₈O. (Santesson, Bull Soc. (2) 24.52.)

Fluodithionic acid.

Cæsium monofluodithionate, S₂O₅(OH)FC₈₂+H₂O.

Easily sol. in H₂O with decomp. Sol. in HF; very unstable. (Weinland, Z. anorg. 1899, 21, 66.)

Potassium defluodithionate, S₂O₃F₂K₃+3H₂O. Easily sol. in H₂O with decomp. Sol. in HF; very unstable. (Weinland.) Rubidium diffuodithionate, S2OsF2Rb2+ Ammonium fluomanganate, (NH4)2MnFs. 3H.O. Easily sol, in H₂O with decomp. Sol. in HF; very unstable. (Weinland.)

Fluogermanic acid, H₂GeF₄.

Known only in solution. (Winkler, J. pr. (2) 36, 177.)

Potassium fluogermanate, K.GeF. Sol. in 173.98 pts, H₂O at 18°, (Winkler,) Sol. in 184 61 pts. H₂O at 18°. (Krüss and Nilson, B. 20, 1696.) Sol. in 34.07 pts. H₂O at 100.° (Winkler.) Sol. in 38.76 pts. H₂O at 100, ° (Kruss and

Nilson.)
Insol. in alcohol.

Definoiodic acid.

Ammonium diffuoiodate, NHAO.F.

Lake K salt Sol. in 40% HF+Aq. (Weinland, Z. anorg. 1899, 20. 30.)
Sol. in H₂O. Eastly decomp. (Weinland, B. 1897, 30, 868,)

Cæsium diffuoiodate, CsIO2F2. (Weinland, Z. anorg, 1899, 20, 36.)

Cæsium hydrogen diffuoiodate, CsIO₂F₂, HIO₂F₂+2H₂O.

Efflorescent Sol, in H₂O with decomp. (Weinland, Z. anorg. 1899, 22, 257.) Potassium diffuoiodate, KIO.F.

Sol. in H₂O. Decomp. in moist air. (Weinland, B. 1897, **30**. 867 Decomp in air. Sol. in H₂O with decomp. Sol. without decomp. in 40% HF+Aq. (Weinland, Z. anorg. 1899, 20. 31.

Rubidium diffuoiodate, RbIO2F2. Resembles K salt. Sol. in HF+Ao. (Weinland, Z. anorg, 1899, 20, 35.)

Rubidium hydrogen difluoiodate, RbIO₂F₂,HIO₂F₂+2H₂O.

Sol. in 40-60% HF+Aq (Weinland, Z. anorg, 1899, 22, 260.)

Sodium diffuolodate, NaIO₂F₂, Decomp. by H.O. (Weinland, B. 1897, 30. 868.) Sol, in HF, (Weinland, Z. anorg, 1899, 20,

·Fluomanganic acid, H2MnF4. Decomp. by H2O. Sol. in alcohol and ether

More sol, than the K salt, (Nicklès, C. R. 65, 107.) True composition is (NH₄)₄Mn₂F₁₀= 4NH4F, Mn₂F₆, (Christensen, J. pr. (2) 34. 41)

Cobalt fluomanganate, 2CoFs, MnsFs+ 8H₂O. Sol, in H2O. (Christensen.)

Nickel fluomanganate, 2NtF2, Mn2Fa+ 8H₂O. Sol. in H₂O. (Christensen.)

Potassium fluomanganate, K2MnF4. Difficultly sol. in H₂O. Decomp. by much H₂O. (Nickles, C. R. 65, 107) Composition is K₄Mn₂F₁₀=4KF, Mn₂F₆. Also with 2H₂O. (Christensen, J. pr. (2) 34.

Decomp. by H₂O. Sol. in HCl, H₂SO₄ and HNOs with decomp. Can be recryst, from 40% HF+Aq. Insol, in acetic acid. (Weinland and Lauenstein, Z anorg 1899, 20, 41.)

Rubidium fluomanganate, Rb2MnF4+2H2O. As the K salt. (Weinland and Lauenstein. Z anorg, 1899, 20, 44.)

Silver fluomanganate, Ag, Mn, F, +14H, O. (Christensen, J. pr. (2) 34, 41,)

Sodium fluomanganate, 4NaF, Mn-Fa. Decomp. by much H2O. (Christensen.)

Zinc fluomanganate, 2ZnF., Mn.F.+8H.O. Sol. in H₂O, (Christensen.)

Fluomolybdic acid. See Fluoxyhypomolybdic, and Fluoxymolybdic acids.

Fluopalladous acid. Potassium fluopalladite. SI sol, in H.O.

Sodium fluopalladite. Sl. sol, in HoO (Berzelius.)

Fluoperboric acid.

Ammonium fluoperborate, NH,00B(F)00B(F)00NH,. Ppt. Insol in ether. (Petrenko, C. C. 1902, I. 1191.)

Potassium fluoperborate, K4B4F4O11+H2O. Dry salt is rather stable. Easily sol, in H2O. Aqueous solution in absence of H2O. (Nicklès, C. R. 65. 107.) decomp. rapidly when warmed; at ordinary temp, the decomp. proceeds slowly. Insol. Fluorhydric (Hydrofluoric) acid, HF or in alcohol. (Mehkoff, B. 1899, **32**. 3350. KOOB(F)OOB(F)OK+1,2H₂O Ppt. Insol. in ether. (Petrenko, C. C. 1902, I 1191; J. Russ, phys. chem. Soc 34. 37)

Fluopernranic acid.

Potassium fluoperuranate, K4U4FaO15+ 4H2O=3UO4KF, UO4F2, KF+4H2O. Ppt (Lordkipanidse, C. C. 1900, II, 525)

Sodium fluoperuranate, UO4NaF+5H2O. Ppt. (Lordkipanidse, C. C. 1900, II. 525)

Fluophosphamide, PFa(NH1)2 Sol. in H₂O (Poulenc, A. ch. (6) 24. 566)

Fluophosphoric acid.

Monocæsium monofluophosphate,

P(OII)_a(OCs)F. Like the K salt. (Wemland, Z anorg, 1899, 21, 48)

Monopotassium monofluophosphate, P(OH)a(OK)F.

Sol. in 40% HF+Aq, decomp in the air. (Weinland, Z anorg 1899, 21. 44)

Potassium monofluophosphate, KHF,PO1+H2O.

Decomp. by H₂O; unstable. (Weinland. B. 1898, 31. 124–125.)

Monorubidium monofluophosphate, P(OH),(ORb)F.

Sol. in 40° HF+Aq. (Weinland, Z. anorg, 1899, 21, 47)

Rubidium monofluophosphate, RbHFPOs+H2O

Decomp by H2O. (Weinland, B. 1898, 31. 124.)

Fluoplatinic acid.

Ammonium fluoplatinate.

Secomp. by H₂O to a sol. acid, and an insol. basic salt. Insol in alcohol. (Berzelius.)

Potassium fluoplatinate.

Deliquescent, Insol, in alcohol. Decomp. by H₂O. (Berzelius.)

Sodium fluoplatinate.

Decomp. by H₂O. (Berzelius.)

Fluor- and Fluoro-.

See Fluo-.

H.F.

Attracts II:0 from air with great avidity. Very sol in H₂O with evolution of much heat. Sat. solution has sp. gr, 1 25. (H. Davy.) On boiling the aqueous solution an acid of

constant composition is obtained, which boils at 120°, has sp. gr. 1 15, and contains 35 37% HF (Bineau, A. ch. (3) 7, 257.) The residual acid after boiling contains 36 to 38% HF, and by standing over CaO gives off HF until an acid containing 32 5 to 32.7% HF is formed Weaker acids increase their strength to 32,2 to 32 4% HF, while an acid containing 32.5% HF remains unchanged (Roscoe, A. 116.

Does not attack gutta-percha. Sol. in H2SO4.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sp. gr. of HF+Aq at 15°.										
1.02 5 80 1 11 31 90 1 20 58 00 1 03 8 70 1 12 34 80 1 21 60 90 1 04 11 60 1.13 37.70 1 22 63 80	Sp gr	℃ HF	Sp gr	% HF	Sp gr	% HF					
1 05 14 50 1.14 40 60 1 23 66.70 1 06 17 40 1.15 43.50 1.24 69 60 1 07 20 30 1.16 46.40 1 25 72 50 1 08 23 20 1.17 49 30	1.02 1 03 1 04 1 05 1 06 1 07 1 08	5 80 8 70 11 60 14 50 17 40 20 30 23 20	1 11 1 12 1.13 1.14 1.15 1.16 1.17	31 90 34 80 37.70 40 60 43.50 46.40 49 30	1 20 1 21 1 22 1 23 1 24	58 00 60 90 63 80 66,70 69 60					

(Hart, J. Anal Ch. 3, 372)

C 2 Y 77 1 1 1

į	Sp gr	of HF+Aq at or	d temp.
	Deg Baumé	Sp gr	% HF
	Deg Baumé 1 2 3 4 5 6 7 8 9 10 111 12 13 14 15 16 17 18	Sp gr 1 0069 1 0139 1 0139 1 0211 1 0258 1 0358 1 0431 1 0506 1 0588 1 0661 1 074 1 082 1 0961 1 0963 1 1067 1 1152 1 1239 1 1326 1 1326 1 1326 1 1326 1 1326 1 14415	% HF 2 32 4 04 5 76 7 48 9 20 10 92 12 48 14 04 15 59 17 15 86 21 64 24 42 27 20 29 98 32 78 35 15 37 53
	19 20 21 22 23 24	1 1506 1 1598 1 1691 1 1786 1 1883 1 1981	39 91 42.29 44 67 47 04 49 42 51 57
	25 26 27	1 2080 1 2182 1 2285	53 72 55 87 58 02

Sp. gr of HF	+Aq at ord ten	p.—Continued
Deg Baumé	Np gf	% HF
* 28	I 2390	60 17
29	1 2497	62 32
30	1 2605	64 47
31	1 2716	66 61
32	1 2828	68 76
33	1 2943	70 91
34	1 3059	73 06
35	1 3177	75 21
36	1 3298	77 36
37	1 3421	79 51
38	1 3546	81.66
39	1 3674	83 81
40	1 3804	85 96
41	1 3937	88 10
42	1 4072	90 24
43	1 4211	92 39
44	1 4350	94 54
45	1 4493	96 69

(Eckelt, Ch Z 1898, 22, 225.) Sp. gr. of HF+Aq at 0°

% HF	Sp gr	% HF	Sp gr	
0 484	1.005	71 73	1.262	
1 504	1.009	72 21	1 260	
2 48	1.012	78 05	1 260	
4 80	1 017	84 27	1.235	
7 75	1.035	87 72	1 212	
15 85	1 065	88 11	1 210	
24 47 28.48	1.007	88 82 89 02	1,207 1,202	
29.83	1 120	89 15	1 200	
34 23	1 130	89 82	1,190	
38 50	1 145	90 20	1 185	l
41 00	1 155	90 64	1 175	
41 15	1 155	91 04	1 165	
41 92	1 157	92 09	1 152	l
47 52	1 182	92 81	1 135	
48 49	1 187	92 91	1 130	l
50 97	1 200	94 26	1 095	
55 09	1 217	95 84	1 065	

(Hill, Roy. Soc Proc. 1909, 83. A 144.) Sp. gr. of HF+Ag at 18°

1 220

1 230

1 245

1 255

97 50 1 035

98 22

100 05

1.022

1 0005

55 39

57 66

61 66

65 19

€ HF	Sp. gr
0 484	1 003
1 504	1 005
2 48	1 009
4 80	1 017
7.75	1 028
15 85	1 088
24 47	1 087
29 83	1 103

Aq, solution of sp. gr. 1.138 at 18° contains 43.2% HF and has a constant bpt. of 111° at 750 mm (Deussen, Z. anorg. 1906, 49, 297.)

The strongest acid that can be obtained by distillation contains 4S 17° GHF and boils at 125–125 5°. (Gore.)

Fluorides

The alkalı fluorides, also AgF and SnF₂, are sol in H₂O; the fluorides of Fc, Sr, and Cd are sl sol.; the others are insol. in H₂O. Most fluorides are sol. in acids, especially HF +Aq

Insol. in liquid NH₂. (Franklin, Am. Ch. J 1898, 20, 822.) See under each clement.

Fluorine, F2.

Decomposes H₂O and all organic solvent with great violence. (Moissan, C. R. 103, 202 and 256.)

and 256.)
Liquified at —185° to a yellowish liquid
which does not dissolve glass nor ignite cooled
Si, B, C, S, P, or Fe. (Moissan, C R. 1897,
124. 1202–1204.)

Fluomolybdic acid.

Ammonium fluomolybdate, (NH₄)MoF₄+ H₂O.

Somewhat more sol in H₂O than the K salt, Hydrolysed by H₂O (Rosenheim, Z. anorg, 1905, 46. 321.) (NH₂)₂Mo₂F₂+2H₂O. (Rosenheim.)

Potassium fluomolybdate, KMoF₄+H₂O.
Nearly insol. in H₂O. (Rosenheim.)

Fluoselenic acid.

Ammonium monofluoselenate,

SeO₂(OH)F(NH₄)₂. Not hygroscopic

Easily sol H₂O with decomp. Sol in HF (Weinland, Z anorg. 1899, 21. 58.)

Tripotassium diffuodiselenate, Se₂O₇F₂K₃H+H₂O

Decomp. in the air; sol. in H₂O with decomp; sol. in HF. (Weinland.)

Trirubidium diffuodiselenate, Se₂O₃F₂Rb₂H +H₂O.

Decomp. in the air; sol. in H₂O with decomp.; sol. in HF (Weinland, Z. anorg. 1899, 21, 57)

(Hıll.)

Fluosilicic acid, H.S.F.

Sp. gr. of H2SiFe+Aq at 17 5° (H2O at- $17.5^{\circ} = 1.000$).

°″ H₃SiFa	Sp gr	% H.SiFe	Sp gr
2	1.0161	20	1.1748
4	1.0324	22	1.1941
6 8	1.0491 1.0661	24 26	1,2335
10	1 0834	28	1 2537
12	1 1011	30	1.2742
14 16	1 1190 1 1373	32 34	1,2951
18	1 1559	04	1.0102

(Stolba, J pr. 90. 193.)

 $+2H_2O$. Very deliquescent, and sol. in H_2O . (Kessler, C. R. 90. 1285) Solution decomp. into HF and SiF, on evaporation, when it becomes concentrated.

Fluosilicates.

Most of the fluosilicates are sol in H₂O, but the alkali salts (especially K) and the Ba salt are only al. sol. in H2O.

Aluminum fluosificate, Al2(SiF4)2.

Easily sol, in H2O. After evaporating to dryness, the residue is slowly but completely sol. in H₂O. (Deville, A. ch. (3) 61, 327.)
Insol. in acctone. (Naumann, B. 1904, 37.

Aluminum fluosilicate silicate, Al SiF10.

5Al-SiO. Min. Topaz, Insol in acids.

Ammonium fluosilicate, (NHA) SIFs.

Sol. in 5.38 pts. H₂O at 17.5° to form a solution of 1.0961 sp. gr.; sol in 18 pts. hot H2O; sol in 45.5 pts alcohol of 31% (Stolba, C. C. 1877, 418.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.) 3NH₄F, S₁F₄=(NH₄)₂S₁F₅, NH₄F. Sol : H₂O. (Marignac, Ann. Min. (5) **15**. 221.)

Barium fluosilicate, BaSıFa

Sol. in 3802 pts. cold H2O, (Fresenius, A.

Sol. in 3731 pts. H₂O at 17.5°; in 3315 pts

at 21°; in 1175 pts. at 100° (Stolba, J. pr. 96.

Sol, in 640-733 pts. H₂O containing a little HCl. (Fresenius.)

488 pts HCl+Aq containing 4.25% HCl dissolve 1 pt. at 22°. (Stolba.) More sol. in HNO₃+Aq than in H₂O.

(Fresenius.

272 pts. HNO₃+Aq, containing 8% N₂O₄, dissolve 1 pt. at 22°. (Stolba.) 1 pt. BaSiF₆ dissolves in 428 pts. sat. NH₄Cl+Aq; in 589 pts. sat. NH₄Cl+Aq+

NH₄Cl+Aq; m 589 pts. sat. NH₄Cl+Aq+ m 150 pts. of 85% at 20°; m 617 pts. of 92% 2 vols H₂O. (Mallet, Sill. Am. J. (2) 28. 48.) at 20°. (Stolba, J. pr. 102. 7.)

1 pt. BaSiF, dissolves in 306 pts sat, NH₄Cl+Aq at 22°; in 361 pts. 15% solution of NH4Cl; in 563 pts. sat. boiling NaCl+Aq: in 349 pts. 10% solution of NaCl at boiling temp.; in 2185 pts. 10% solution of NaCl at 20°; in 1140 pts. 5% solution of NaCl at 20°.

(Stolba.) Nearly absolutely insol, in alcohol. (Fresenus.)

Solubility in a mixture of II₂O, alcohol (96%), HCl+Aq (20%), HSiF₆+Aq (3.7%). 1 pt BaSiF₆ us sol. in pts. of solutions of given composition.

H ₂ O	Alcohol	IICl+Aq	H ₉ StFe +Aq	BaSiF ₄
50 74.1 70.8 77 95 73 0 97.09 75.0	50 25 25 20 25 0 25	0 0 9 4 2 0 9 0.9 1.25	0 0 0 1 15 1 1 1 66	37,219 5,263 2,860 39,061 70,679 3,247 16,914

(Fresenius, Z anal. 29, 143.)

Cadmium fluosilicate, CdS1Fe+6H2O.

Extremely sol, in H2O Easily sol, in 50% alcohol. (Engelskirchen, Dissert. 1903.)

Cæsium fluosilicate, Cs2S1F0 Sol in 166 pts. H2O at 17°, and much less

h2t H₂O Insol, in alcohol (Preis, J. pr 103, 410.)

Calcium fluosilicate, CaSiFe+2H2O

SI sol, in, and partly decomp, by H2O Sol. in HF and HCl+Aq. Sol in fluosilicic acid without decomp. Easily sol. in 60% alcohol. (Fleischer.)

Cerium fluosilicate.

Very difficulty sol. in H₂O, acetic, or fluosilicie acids. Insol. in alcohol. (Stolba, C. C. 1874. 130.)

Chromium fluosilicate.

Deliquescent. (Berzelius) Efflorescent, Sol. in H₂O (Berlin)

Cobaltous fluosilicate, CoSiF.+6H.O

Easily sol, in H₂O. (Berzelius.)

Cuprous fluosilicate, Cu-SiFa.

Insol. in HaO. (Berzelius, Pogg. 1, 199.)

Cupric fluosilicate, CuSiFa+6HaO.

Deliquescent in moist, efflorescent in dry air.

Sol. in 0.428 pt. H₂O at 17°. Sp. gr. of solution sat. at 17°≈1.6241 Sol, in 17 5 pts, sleohol of 62 vol % at 20°

Insol. in methyl acetate. (Naumann, B 1909, 42, 3790

Contains 61/2 H2O (Stolba.) +512H2O. (Knop and Wolf)

Cupric fluosilicate phosphate, CuSiFe, Cu2(PO4)2.

Insol in H.O. but easily sol, in dil, HCl+ (Thorpe and Rodger, Chem. Soc 55.

Glucinum fluosilicate. Known only in solution

Iron (ferrous) fluosilicate, FeS1F6+6H2O. Easily sol, in H2O. (Berzelius.)

Iron (ferric) fluosilicate, Fe₂(SiF₆)₂. Sol. in H₂O. (Berzelius.)

Lead fluosilicate, PbS1Fe+2H2O.

Deliquescent, Easily sol, in H2O. Insol. in acetone. (Naumann, B. 1904, 37.

Lithium fluosilicate, Li2SiFa+2H2O.

+4H₂O. (Marignac) 100 pts. H₂O at 17° dissolve 73 pts crystal-

1877. 578)

line salt. (Marignac.) 100 pts. cold H₂O dissolve 52 6 pts. crystals. Sol. in dil. alcohol. (Stolba, J. pr. 91. 456.) 100 pts alcohol of 46 vol. % dissolve about 4 pts, and 100 pts. alcohol of 79 vol % dissolve about 0.4 pt. crystals (Stolba, Z. anal.

3, 311. Insol, in ether or benzene. Insol. in acctone. (Eidmann, C. C. 1899, II. 1014; Naumann, B 1904, 37, 4329.)

1909, 42, 3790 1904. 37, 3601)

Magnesium fluosilicate, MgSiF₆+6H₂O. Efflorescent. Sol in 1534 pts. cold H₂O, forming a solution of 1.235 sp. gr. at 17 5°. Separates out SiO2 on warming, which nearly all redissolves on cooling. (Stolba, C. C

Magnesium fluosilicate silicate, Mg,Si,F,18, zMg,S12O2

Min Humite, Chondrodite. Gelatinises with HCl, or H2SO4+Aq.

Manganous fluosilicate, MnSiFa+6H2O. Sol. in H2O. (Marignae, J. pr. 83. 202.) 100 pts. dissolve in 71.4 pts H₂O at 17.5°, and sp. gr. of solution = 1.44825. Much more sol, in hot H2O, and less sol in alcohol, the stronger the alcohol (Stolba, C. C. 1883. 292.)

Mercurous fluosilicate, Hg2S1Fa.

Sl. sol in H2O without decomp (Lemaire, C. C. 1897, I. 1046.)

+2H₂O SI sol m H₂O More easily sol in acidified H2O, but precipitated by HCl+ Ag. (Berzelius)

Mercuric fluosilicate, basic, HgSiFa, HgO+ Decomp. by H₂O, but sol. in weakest acids.

Mercuric fluosilicate, HgS1F6+6H2O.

(Berzelius, Pogg. 1, 200.)

Deliquescent, and easily sol, in H₂O. (Finkener, Pogg 111, 246.)

Nickel fluosilicate, NiSiFa+6HoO.

Easily sol. in H₂O (Marignae, Ann. Min. (5) 15, 262.)

Potassium fluosilicate, K2SiFt.

Sol. in 833 1 pts. H₂O at 17.5°, and 104.8 pts. at 100°. (Stolba, J. pr. 103, 396.) Sol. in 3800 pts cold, and more easily sol. in hot H₂O (Fresenius.)

More sol. in HCI+Aq than in H2O.

Sol. in 337 pts. HCl+Aq of 26.5% at 14°; in 307 pts. of 25 7% at 15°; in 340 pts. of 14.1 % at 14°; in 303 pts of 13.8% at 15°; in 327 pts. of 9.6% at 14°; in 313 pts. of 9.2% at 15°; in 376 pts. of 2.7% at 14°, in 319 pts. of 2.4% at 15°; in 409 pts of 1.8% at 14°.

(Stolba, 1 c.)

Sol. m 428 pts. sat, and 589 pts. dil. NH₂Cl+Aq (Mallet) Much less sol. m K₂SO₄, KNO₃, or KCl+ Aq, but more sol. m NH₂Cl+Aq than in H₂O.

. 1014; Naumann, B 1904, 37, 4329.)
Insol. nn esthyl acetate. (Naumann, B 19,2% K,850, at 17°, in 17,358 pts. containing 19,2% K,870, at 17°, in 17,358 pts. containing 1% at 17°, in 107,27 pts. containing 1% at 17°, in 107,27 pts. containing 1% at 17°, in 107,27 pts. containing 1% at 17°, in 107,27 pts. Containing 1% at 17°, in 107,27 pts. KNO₂-7-4 go containing 1% at 17°, in 107,27 pts. KNO₂-7-4 go containing 1% at 17°, in 107,27 pts. KNO₂-7-4 go containing 1% at 17°, in 107,27 pts. KNO₂-7-4 go containing 1% at 17°, in 107,27 pts. KNO₂-7-4 go containing 10°, at 18°, in 125,000 pts. KNO₂-7-4 go containing 10°, at 17°, in 10°, 27°, in 10°, 28°, in 1

Sol III 123,000 pts. K103-Taq communistics 18.4% KNO3 at 15°; in 43,478 pts. containing 8.7% at 16°; in 1735 pts. containing 8.8% at 100°; in 35,814 pts. containing 4.3% at 15°; in 10,208 pts. containing 1 00% at 15°.

Sol. m 40,070 pts KCl+Aq containing 25 KCl at 17°; in 38,352 pts. containing 18.4% at 17°; in 41,254 pts. containing 13.4% at 14°; in 24,032 pts containing 6.7% at 12°; in 1200 pts. containing 0.65% at 17°; in 1095 pts. containing 0.45% at 18°

Sol. in 358 pts. NH₄Cl+Aq containing 26.3 %NH₄Cl at 17°; in 306 pts. containing 15% at 15°; in 339 pts, containing 10% at 15°; in 436 pts. containing 5% at 15°. (Stolba, J. pr. 103.306) Insol. in liquid CO. (Buchner, Z. phys.

Ch. 1906, 54, 674.) Insol. in liquid NH2. (Gore, Am. ch. J. 1898, 20, 829.

Completely pptd, from aqueous solution by an equal vol of alcohol.

Sl. sol in benzonitrile 1914. 47. 1369.) Insol in methyl acetate (Nanmann, B.

1909, 42, 3790)

Rubidium fluosilicate, Rb-SiFa.

Sol, in 625 pts H₂O at 20°, and 73 05-74 5 pts at 100°. More sol in aesdified water Insol, in alcohol. (Stolba, J. pr 101, 1.) Insol, in H₂O. (Eggeling, Z. anorg 1905, Less sol, in H₂O than K₂S₁F₅ (Gossner,

Zeit Kryst, 1904, 38, 149)

Silver fluosilicate, Ag-SiF++4H-O

Deltouescent, Easily sol, in H.O. (Marignac, Ann Min. (5) 15, 221.)

Sodium fluosilicate, NasSiFa

Much more sol in H₂O than K₂SiF₈₁ especially in hot H₂O. Addition of acid does not increase solubility. (Berzelius)

not increase sommity. Devzenus 7 Sol in 153.3 pts H₂O at 17.5°, and 40.66 pts. at 100°. Easily forms super-aturated solutions (Stolba, Z. anal. 11, 199) Much less sol. in NaCl+Aq than in H₂O. (Stolba, J. pr. 1865 (1) 96, 26) Precipitated completely from aqueous solu-

tion by alcohol (Rose) Insol. in methyl acetate (Naumann, B. 1909, 42, 3790.)

Strontium fluosilicate, SrS1F4+2H2O

Sol, in cold H₂O, but decomp, somewhat on heating Sol in 31 06 pts H₂O. (Fresenus.) Easily sol, in acidified H₂O without decomp. Sol. in alcohol

Solubility in a myxture of H₂O, alcohol (96% HCi+Aq (20%), H₂S₁F₄+Aq (3.7%). 1 pt S₁S₁F₆ is sol. in pts of solutions of given composition.

H ₂ O	Akobol	HCl+Aq	H ₅ S₁F ₆ +Aq	SrSıFı
50 74 1 70 8 77 95 73 75 95.24	50 25 25 25 20 25 25 25	0 1 2 0 9 0 9 0 9 0 2 04	0 0 0 1 15 1 1 0 2 72	15.29 82 93 50 9 55 0 82.97 147 4 7 3

(Fresenus, Z. anal. 29, 143.)

Thallous fluosilicate, Tl-S1Fe+2H-O. Very easily sol. in H₂O. (Kuhlmann.)

Thorium fluosilicate, Th(OH) SiFa (?). (Cleve)

Tin (stannic) fluosilicate, SnF4, StF4, Very easily sol. in H₂O. (Berzelius.)

(Naumann, B Uranyl fluosilicate.

Very sl sol in acids. (Berzelius) Sol in alcohol (Stolba, Z. anal 3. 71.)

Vanadium fluosilicate.

Deliguescent Sol in H₂O. (Guvaid. Bull. Sor (2) 25, 352)

Yttrium fluosilicate.

Insol in pure, sol. in acidified H2O. (Berzelius)

Zinc fluosilicate, ZnSiFe+6H2O. Very easily sol, in H₂O (Berzelius.)

Zirconium fluosilicate.

Sol. in H2O. Solution clouds up on boiling. (Berzelius.)

Fluostannic acid.

Ammonium fluostannate, (NHz)+SnFs Sol in H.O. (Marignac, Ann. Min. (5) 15. 224) 4NH.F. SnF. Sol. in H.O (Marignae.)

Barium fluostannate, BaSnFe

Slowly sol, in H2O. +3H₂O Sol. in 18 pts. H₂O at 18°. (Marignac, Ann. Min. (5) 15, 246. Decomp. by warming with H₂SO₄ with evolution of HF, (Emich, M. 1904, 25, 1912.)

Calcium fluostannate, CaSnFc+2HcO. Sol. in H.O (Marignac, Ann. Min. (5) 15. 250.)

Cadmium fluostannate, CdSnF4+6H2O. Sol. in H₂O. (Marignac.)

Cobaltous fluostannate, CoSnFa+6H2O. (Gossner, Zeit. Kryst 1907, 42. 482.)

Cupric fluostannate, CuSnFa+4HaO. Not deliquescent, (Marignac, Ann. Min. (5) 15, 291)

Lithum fluostannate, LigSnF4+2H2O. Sol. in H.O. (Marignac, Ann. Min. (5) 15. 242)

Magnesium fluostannate, MgSnFa+6H2O Not deliquescent. Sol. in H2O. (Marignac, Ann. Min. (5) 15, 256.)

Manganous fluostannate, MnSnF₆+6H₂O. Slowly efflorescent. (Marignac.)

Nickel fluostannate, NiSnFa+6H2O Sol. in H2O. (Marignac, Ann Mm. (5) 15. 262.)

Potessium fluostannate, K-SnF++H-O. Two modifications-(a) Thin plates. in 2.3 pts H₂O at 100°, and in 15-16 pts at 18° (Marignac) (b) Octahedra

Sol in 3 pts. H₂O at 100°, and 27 pts at 18° (Marignac.) Sol. in hot H₀O. Can be ervet from hot H₂O. With conc. H₂SO₄, HF is evolved. (Emich, M. 1904, 25, 911)

Potassium hydrogen fluostannate, 3KF, HF SnF4.

Sol. in H_{*}O. (Marignac)

Silver fluostannate, Ag2SnFs+4H2O. Sl. deliquescent. Easily sol. in H₂O. (Marignac.)

Sodium fluostannate, NasSnFs.

Sol, in 18-19 pts. H₂O at 20°. (Marignae) Strontium fluostannate, SrSnFa+2HaO. Sol. m 5.5 pts. H.O at 18° (Mangnae.)

Zinc fluostannate, ZnSnF++6H-O. Sol, in HoO. (Marignac.)

Fluosulphonic acid, HSO₃F. See Sulphuryl hydroxyl fluoride.

Ammonium fluosulphonate, FSO.NH. Easily sol, in H₂O from which it can be

Sol. in ethyl alcohol, more sol. in methyl alcohol Can be cryst, from abs alcohol. (Traube, B. 1913, 46, 2528.)

Sodium fluosulphonate, FSOaNa

Hydroscopic. Sol, in alcohol and acetone (Traube.)

Fluosulphuric acid.

Tricesium difluedisulphate, 8,0,F,Cs,H+

As the K salt. (Weinland, Z. anorg, 1899. 21, 53.)

Tripotassium diffuodisulphate, $S_sO_rF_oK_sH+H_sO_s$

Sol, in HF; quite stable in air; sol in H2O with decomp. (Weinland, Z. anorg, 1899, 21. 51.)

Trirubidium difluodisulphate, S2O7R2Tb2H $+H_{*}O.$

Sol in HF. (Weinland, Z. anorg, 1899, 21. 53)

Fluotantalic acid.

' Ammonium fluetantalate, (NH4)2TaF7. Very sol, in H₀O. (Marignac, A, ch. (4) 9. 272.)

(NHA) TaFe (Balke, J. Am. Chem. Soc. 1905, 27, 1151.)

Cæsium fluotantalate, CsTaFis-

Can be recryst, from HF+Aq (Balke,) Cs2TaF2. Can not be receyst, from H2O as it tends to go into CsF, TaF₂. (Balke, J. Am. Chem. Soc. 1905, 27, 1151.) 15CsF, TaF₄, Sl. sol. in H₂O. (Penning-

ton, J. Am. Chem. Soc. 1896, 18, 59.)

Calcium fluotantalate. Difficulty sol. in H₂O (Berzelius.)

Cupric fluotantalate, CuTaFr+4H.O Deliquescent Easily sol in H₂O (Marignac, A ch (4) 9, 294

Lead fluotantalate. Difficulty sol in H.O (Berzelius)

Lithium fluotantalate, LiF, TaFs+2H2O. Can be recryst, from conc HF. (Balke, J.

Am, Chem Soc. 1905, 27, 1143.) Potassium fluotantalate, K. TaF7.

SI sol, in cold, much more easily in hot

H₂O Decomposes, with formation of a white precipitate on boiling (Berzelius.)

Much more sol in HF+Aq. 1 pt. of the salt is sol, in 200 pts. H₂O containing a trace of HF, and m 150-160 pts. of H₂O containing a little more HF. (Marignac, A. ch. (4) 9.

Potassium hydrogen fluotantalate, KF, HF, TaF, (?)

Sol. in H₂O. (Berzelius.)

Rubidium fluotantalate, Rb. TaF; Sol. in HF+Aq. (Pennington, J. Am. Ch.

Soc. 1896, 18, 58.) 3RbF, 2TaF₅. Soc 1905, 27, 1151.) (Balke, J. Am. Chem.

Sodium fluotantalate, 3NaF. TaFa.

Easily sol, in H₂O, Na₂TaF₁+H₂O, Sol, in H₂O, (Marignac.)

Thallous fluotantalate, Tl₂TaF₇.

Sol in H2O. On boiling the aqueous solution tantalic acid separates Decomp. by cone. H2SO Difficultly sol, in cold, easily sol, in hot HF (Ephraim. B. 1909, 42, 4461)

Zinc fluotantalate, ZuTaF2+7H2O Very deliquescent Sol. in H2O (Marignac, A. ch. (4) 9. 249.)

Fluotelluric acid.

Ammonium fluotellurate, NH4TeFs+H2O. Decomp. by H2(). (Hügbom, Bull. Soc. (2) 35, 60.)

Barium fluotellurate, $Ba(TeF_b)_2+H_2O$. As above.

Potassium fluotellurate, KTeF₅.
As above.

TeO₃F₂K₂+3H₂O. Stable in dry air; only sl. sol, in H₂O with decomp.; sol. in HF (Weinland, Z. anorg. 1899, 21, 61.)

Rubidium diffuotellurate, TeO₃F₂Rb₂+3H₂O. Sl. sol in H₂O with decomp Sol in HF (Weinland, Z. anorg 1899, 21, 62.)

Fluotitanic acid.

Known only in solution as titanium hydrogen fluoride.

Ammonium fluotitanate, (NH₄)₂T₁F₆.

Sol. in H₂O (Marignac.) 3NH₄F, TiF₄. Sol in H₂O. (Marignac.)

Ammonium fluosequititanate, 6NH₄F, Ti₂F₆.
Ensily sol. in H₂O. Sl sol. in NH₄F+Aq.
(Petersen, J. pr. (2) 40.54)
Insol. in NH₄F+Aq. (Precim, C. R. 97.

1064)
4NH₄F, T₁₂F₈. Properties as the corresponding K salt. (Piccini, B. 18, 257 R.)

Barium fluotitanate, BaTiFa.

Very sl. sol. m H₂O. More easily sol. in dl. HNO₃ or HCl. (Engelskirchen, Dissert 1903.) + ½H₂O. (Emich, M. 1904, 25. 907.)

Cadmium fluotitanate, CdTiFs+6Hz0. Extremely sol in Hz0. Easily sol. in 50% alcohol. (Engelskirchen, Dissert 1908.)

Cæsium fluotitanate, Cs2TiF4.

More sol in hot than cold H₂O and much more sol, than the Rb comp. (Engelskirchen, Dassert. 1903.)

4C8F, ThF₄. More sol in H₂O than Cs₃TaF₃ and is not decomp. by pure H₄O. (Pennington, J. Am. Chem. Soc. 1896, 18. 60.)

Calcium fluotitanate, CaTiFa+3H2O

Decomp. by pure H₂O. Sol. without decomp in acidfied H₂O (Berzelius) Separates a precipitate with cold H₂O, which dissolves on heating. (Marignac, Ann. Min. (5) 15, 250.)

Cupric fluotitanate, CuTiF₈+4H₂O. Sol. in pure H₂O with partial decomp.; casily and completely sol. in acidified H₂O, (Berzehus.)

Cupric fluotitanate ammonium fluoride, CuTiF₄, NH₄F+4H₂O Efflorescent. Easily sol, in H₂O. (Marig-

nac, Ann. Min. (5) 15, 267.)

Cupric fluotitanate potassium fluoride, CuTiF₀, KF+4H₂O. As the above salt (Margnac)

As the above salt (Mangnac)

Ferrous fluotitanate, FeT₁F₆+6H₂O Sol. in H₂O. (Weber, Pogg. **120**, 287.)

Ferric fluotitanate.

Decomp. by H.O. (Berzelius)

Lead fluotitanate. Easily sol, in H.O. (Berzelius.)

Lithium fluotitanate, Li₂TiF₆+2H₂O. Very sol. in H₂O. (Engelskirchen, Dissert, 1903.)

Magnesium fluotitanate, MgTiF₆+6H₂O. Easily sol. in cold H₂O. (Marignac, Ann.

Mm. (5) 15. 257)

Nickel fluotitanate, NiTiF₄+6H₂O.

Easily sol. in H₂O. (Weber, Pogg. 120.

282.)

Potassium fluotitanate, K₂TiF₄.

Difficultly sol, in cold, much more easily in hot H_2O . 100 pts. H_2O dissolve at: 0° 3° 6° 10° 12° 20° 0.550 0 67 7.775 0.909 1.042 1.28 pts. K_2TiF_4 .

(Marignac, A. ch. (4) 8, 65.)

Sol in *78.6 pts H₂O at 21°. Sol in acids. (Piccini, Gazz. ch. it. 1886, 18, 101)

Sol. in 78 pts. H₂O at 20°; 9.4 pts at 100°. By addition of small amount of HF, the

solubility is increased. (Wess and Kaiser, Z. anorg. 1910, 65, 354.) Spl. in H.F. (Marchetti, Z. anorg. 1895, 10, 66.) +H-O. Much less sol. in H-O in presence

of KBr or KI. (Hall, J. Am. Chem. Soc. 1904, 26, 1246)
Sol m H₂O or HF with decomp. (Marchett, Z. anoig. 1895, 10, 66.)

Potassium fluosesquatitanate, 4KF, Ti₂F₆. Scarcely sol. in H₂O, sol. in dil. acids. (Piccini, B. **18**. 257 R.)

Rubidium fluotitanate, Rb₂TiF₄
Very sl. sol. in cold, somewhat more sol. in

hot H₂O. (Engelskirchen, Dissert. 1903.) Silver fluotitanate.

Very deliquescent. (Marignac.)

Sodium fluotitanate, NasTiFs.

Much more sol, in H₂O than the corresponding potassium salt. (Marignae, Ann. Min. (5) 15, 238.)

Sodium hydrogen fluotitanate, Na₂TiF₆, Fluoxycolumbic acid. NaHF. Sol in H.O. (Marignac.)

Strontium fluotitanate, SrT1F0+2H2O. Sol. in cold HaO. Solution clouds up on heating. (Marienac)

Zinc fluotitanate, ZnTiFa+6HaO. Sol. in H2O. (Marignae, A. ch. (3) 60. 304)

Fluovanadic acid

Ammonium fluovanadate, 3NH4F, VF2. Moderately sol. in H₂O. More easily sol. in dil. acids Nearly insol. in alcohol or MF +Aq. (Petersen, J. pr. (2) 40. 52.) 2NH₄F, VF₂+H₂O. Easily sol. in H₂O. Sl. sol, in alcohol. (Petersen.) NH4F, VF3+2H2O. As above. (Peterson.)

Cadmium fluovanadate, CdF2, VF1+7H2O. Very sl. sol. in H.O. (Piccini and Giorgia, Gazz, ch. it. 22, 1, 89.)

Cobalt fluovanadate, CoF2, VF2+2H2O. Sol. in H₂O without decomp. (Petersen, l. c.)

Nickel fluovanadate, NiFs, VFs+2HsO. As the Co salt. (Petersen.)

Potassium fluovanadate, 2KF, VF3+H2O. Sl. sol. in H.O: easily sol. in acids. Insol. in KF+Aq. (Petersen, J. pr. (2) 40. 51.)

Potassium fluovanadate fluoxyvanadate, 4KF, VF., VOF. Easily sol. in H₂O, and still more easily in HF+Aq. Sl. sol, in KF+Aq. (Petersen, J. pr. (2) 40, 274.)

Sodium fluovanadate, 5NaF, 2VF1+H2O. As the potassium salt. (Petersen.)

Thallous fluovanadate, TIF, VFa+2H2O. Easily sol. in H₂O.

Sol. with decomp. in cone. H₂SO₄, dil. HNO₃ or cold dil. HCl. Insol, in NaOH+Ag. (Ephram, B. 1909.

2TIF, VF₃+H₂O. Easily sol. in H₂O. Sol, in cone, H-SO4, dil, HNO3, or cold dil. HCl with decomp Insol. in cold or hot NaOH+Aq. (Ephraim, B. 1909, 42, 4461.)

Zinc fluovanadate, ZnF., VF.+7H.O. Sl. sol, in cold H₂O. Decomp, on heating. (Precini and Giorgis.)

Ammonium fluoxycolumbate, 3NH,F, CbOF, Cubic salt. Sol. in H.O. (Marionac, A. ch. (4) 8, 38.1 2NH₄F, CbOF₃. Lamellar salt. Much more sol. in H₂O than 2KF, CbOF₂. (M.) 5NH4F, 3CbOF4+H2O. Hexagonal salt, NH.F. ChOFs. Rectangular salt. (M.)

Ammonium fluoxycolumbate columbium fluoride, 3NH4F, CbOF2, CbF5. (Marignac.)

Cupric fluoxycolumbate, CuF2, ChOF++ St. deliquescent, Sol. in H.O. (Marignac, A. ch. (4) 8, 42.)

Potassium fluoxycolumbate, 2KF, CbOF,+ Sol. in 12.5-13 pts. H₂O at 17-21°. Much more sol. in hot H₂O, or H₂O containing HF. (Marignac CbOFs. Decomp. by H2O into above

lt. (M.) 5KF, 3CbOF₄+H₂O Sol. in H₂O. (M.) 4KF, 3CbOF₂+ H₂O. Sol. in H₂O. 3KF, 2Cb₂O₂+5H₂O. Sl. sol. in Sl. sol. in H.O. (Petersen, J. pr. (2) 40. 287. KF, Cb2Os+3H2O. Sl. sol. in H2O. (Pe-

tersen)
2KF, 3CbO₂F. Insol in H₂O. Sol in HF. See also Fluoxypercolumbate, potassium,

Potassium hydrogen fluoxycolumbate, 3KF. HF, CbOF. Sol. in H2O. (Marignae)

Sodium fluoxycolumbate, 2NaF, ChOF.+ 2H,0. Sol. in H₂O. NaF, CbOF: +H2O. (Marignac.)

Zinc fluoxycolumbate, ZnF1, CbOF1+6H1O. Sol. in H₂O. (Marignae, A. ch. (4) 8.

Fluoxyhypomolybdic acid.

41.)

Ammonium fluoxyhypomolybdate, MoOF₂, 2NH.F. Decomp. by H2O. (Mauro, Gaza, ch. it. 19. 179.) 3MoOF. 5NH4F+H2O. Decomp, by H₂O. (Mauro.)

Cupric fluoxyhypomolybdate, CuF2, MoOF1+ 4H,0. Deliquescent. Sol. in H₂O. (Mauro. Real, Ac. Linc. 1892, 1, 194.)

Potassium fluoxyhypomolybdate, MoOFs, Cobaltous fluoxymolybdate, CoFs, MoO2F2+ 2KF+H₂O. Sol. in H₂O with decomp. 'Mauro and Pana-Sol, in HF or HCl+Aa

3MoOF₁, 5KF+H₂O. Sol. in H₂O with decomp. (Mauro, Gazz. ch. it. 19, 179.)

Thallous fluoxyhypomolybdate, 2TlF, MoOF. (Mauro, B. 1894, 27R, 109.)

Zinc fluoxyhypomolybdate, ZnF3, MoOF4+ 6H.O. Rapidly deliquescent. Sol. in H₂O. (Mauro, Real, Ac. Linc. 1892. 1. 194.)

Fluoxyhypoyanadic acid. See Fluoxyvanadic acid.

Fluoxymanganic acid.

Ammonium fluoxymanganate, (NH4)2MnOF4. Precipitate. (Nicklès.)

Potassium fluoxymanganate, K2MnOF4. Precipitate. (Nicklès, C. R. 65. 107.)

Sesquifluoxymanganic acid.

Potassium sesquefluoxymanganate, K.Mn.OF. = 4KF, Mn.OF. Precipitate. (Nicklès.)

Fluoxymolybdic acid.

See also Fluoxyhypomolybdic, and fluoxypermolybdic acids.

Ammonium fluoxymolybdate, NH4F, MoO.F. Sol. in H2O. (Mauro, Gazz. ch. it. 20.

+H₂O. More sol. in H₂O than 2NH₄F, MoO₂F₂, (Delafontaine, N. Arch. Sci. ph. nat. 30, 250 Correct formula is 3NH,F, MoO2F2. (Mauro, Gazz. ch. it. 18. 120)

(Mauro, Cazz. un. 16. 16. 120) 2NH₄F, MoO₂F₂. Much more sol. than 2KF, MoO₂F₃. (Delafontaine.) 3NH₄F, MoO₂F₃. Sol. in H₂O. (Mauro.) 5NH₄F₂. 3MoO₂F₃+H₂O. Sol. in H₄O. 5NH₄F, 3MoO₂F₃+H₂O. Sol. in H₂O. (Mauro, Gazz, ch. it. 20, 109.)

Ammonium fluoxymolybdate molybdate, MoO2F2, 4NH4F, (NH4)2MoO4. Sol. in H₂O, but with decomp. (Mauro, Gazz. ch. 1t. 18. 120.)

Cadmium fluoxymolybdate, CdF2, MoO2F2+ Potassium fluoxypermolybdate, MoO3F24 Sl. efflorescent. (Delafontaine, J. B. 1867. 236.)

6H.O. Sol. in H₂O. (Delafontaine, J. B. 1867. 236.)

Cupric fluoxymolybdate, CuF2, MoO2F2+ Deliquescent. (Mauro, Real, Ac. Linc, 1892, 1, 194.

Nickel fluoxymolybdate, N1F2, MoO2F2+ Sol. in H₀O. (Delafontaine, J. B. 1867.) 236.)

Potassium fluoxymolybdate, 2KF, MoO₂F₂+ H.O. Easily sol, in boiling H₂O.

Sol in H2O with decomp Sol in HF (Matchetti, Z anorg 1895, 10, 68.) KF, MoO₂F₁+H₂O. Gradually efflorescent. (Delafontaine.)

Rubidium fluoxymolybdate, 2RbF, 2MoO_{*}F_{*} $+2H_{2}O.$ Sol in cold, more sol, in hot H₂O. (Delafontaine.)

Sodium fluoxymolybdate, NaF, MoO₄F₄+ 1/2H2O. Sol. in H₂O. (Delafontaine.)

Thallous fluoxymolybdate, 2TlF, MoO₂F₂+ H.O. Sol, in hot H₂O. (Delafontaine.)

Zinc fluoxymolybdate, ZnF2, MoO2F2+6H2O. Sol, in H2O. (Delafontaine.)

Fluoxypercolumbic acid.

Potassium fluoxypercolumbate, 2KF, CbO₂F₄

+H20. (Piecini, Z. anorg. 2. 21.) Sol. in H₂O with decomp. Sol. in HF. (Marchetti, Z. anorg. 1895, 10. 67.)

Fluoxypermolybdic acid.

Ammonium fluoxypermolybdate, MoO₂F₂, Sol. in H₂O. (Piccini, Z. anorg. 1. 51.)

Cæsium fluoxypermolybdate, MoO.F., 2CsF $+H_{2}O.$ (Piccini)

2KF+H₂O. Not very sol. in H2O; more sol. in HF+ Aq without decomp. (Piccini.)

Rubidium fluoxypermolybdate, MoO3F2, 2RbF+H20. Somewhat more sol. in H₂O than K salt. Easily sol. in HF+Aq. (Piccini.)

Fluoxypertantalic acid.

Potassium fluoxypertantalate, 2KF, TaO₂F₂ $+H_{2}O.$

Fluoxypertitanic acid, T1O2F2, HF.

255 R)

Ammonium fluoxypertitanate, TiO.F. 2NH,F. Verv unstable. (Piccini, Gazz, ch. 1t. 17.

479.1 TiO₂F₂, 3NH₄F. Sol. in H₂O. Sol. in H₂O₂. (Piccini, Z. anorg. 1895, 10

2TiO2F2, 3NH4F. Sol. in H2O. (Piccini, B. 18. 698 R.) Barium fluoxypertitanate, TiO₂F₂, BaF₂. Precipitate. Easily sol. in acids. (Piccini, | nac)

B. 18, 698 R. 2TiO₂F₂, 3BaF₂ Insol in H₂O; sol. in dil. acids. (Piccini, Gazz ch. it. 17. 479.)

Potassium fluoxypertitanate, TiO.F., 2KF. Sol. in H₂O. (Precini, B. 21. 1391.) Sol. in H2O2. (Piccini, Z. anorg. 1895, 10. 438.)

Fluoxypertungstic acid.

Potassium fluoxypertungstate, 2KF, WO₃F+ H₂O. (Piccini, Z. anorg. 2, 11.)

Fluoxytantalic acid.

See also Fluoxypertantalic acid.

Ammonium fluoxytantalate, 3NH4F, TaOF2. Easily sol, in H2O. The solution clouds up by standing or on warming. (Joly, C. R. 81. 1266.)

Fluoxytitanic acid.

See also Fluoxypertitanic acid.

Barium fluoxytitanate, TiOF2, BaF2. Insol. in H₂O; sol. in dil. acids. (Piccini, Gazz, ch. it. 17. 479.)

Fluoxytungstic acid.

Ammonium fluoxytungstate, 2NH4F, WO1F1. Very sol. in H.O. (Marignac, A. ch. (3) 69. Zinc fluoxytungstate, ZnF2, WO2F2+10H2O. 65.)

NH₄F, WO₂F₂+H₂O. Decomp. by H₂O Crystallises unchanged from H₂O containing HF. (Marignac.)

Ammonium fluoxytungstate tungstate, 4NH4F, WO2F2, (NH4)2WO4. Incompletely sol, in H2O. Residue dissolves in NHOH+Aq. (Marignac.)

Sol. in H2O. (Piccini, Z. anorg. 2, 21) Cadmium fluoxytungstate. Very sol. in H₂O. (Marignac.)

Known only in solution. (Piccini, B. 18. Cupric fluoxytungstate, CuF2, WO2F2+4H2O. Very sol. in H₂O. (Marignac, C. R. 55, 888.

> Cupric fluoxytungstate ammonium fluoride, CuF2, WO2F2, NH4F+4H2O. Sol. in H₂O, (Marignac.)

Manganese fluoxytungstate. Very sol. in H₀O. (Marignac.)

Nickel fluoxytungstate, NiF2, WO2F2+ 10H₂O. Deliquescent, Very sol. in H₂O. (Marig-

Potassium fluoxytungstate, KF, WO₂F₂+

Can be recrystallised without decomp, only from H2O containing HF. (Marignac, A. ch. 2KF, WO₂F₂+H₂O. Difficultly sol. in cold, more easily in hot H₂O. (Berzelius) Sol. in 17 pts. H₂O at 15°. (Marignac.)

Can be recrystallised without decomp, from H₂O, or H₂O containing HF. (Marig-Sol. in H₂O with decomp. Sol. in HF. (Marchetti, Z. anorg 1895, 10, 71.) See also Fluoxypertungstate, potassium.

Silver fluoxytungstate. Very easily sol, in H₂O. (Marignac)

Sodium fluoxytungstate, 2NaF, WO2F2.

More sol, in H₂O than the corresponding K compound. (Berzelius.) Thallous fluoxytungstate, TlF, WO₂F₂.

Insol. in H₂O. Decomp. by H₂O. (Ephraim and Heymann, B. 1909, 42, 4463.) 2TIF, WO.F. Insol in H.O but decomp. thereby. (Ephraim and Heymann, B. 1909, 42, 4462.)

3TIF, 2WO₂F₂. Insol. in H₂O Decomp. by acids. (Ephraim and Heymann, B. 1909, 42, 4462.)

Very sol, in H₂O. (Marignac.)

Fluoxvuranic acid.

Ammonium fluoxyuranate, 3NH4F, UO2F2 Easily sol. in H2O, less in HF. Insol. in alcohol. (Bolton.)

100 g. solution sat. at 27° contain 10.11 g. 100 g. solution sat. at 81.3° contain 20.71 g.

salt. (Burger, Dissert. 1904.)

Barium fluoxvuranate, 3BaF+, 2UO₂F₄+

Traces dissolve in hot H₂O. Easily sol. in dil. acids. (Bolton.)

Potassium fluoxfuranate, 3KF, UO+F+. Sol, in 8 pts H₂O at 21°, Insol, in alcohol and other. (Bolton, J. pr. 99, 269.)

Does not exist. (Smithells, Chem. Soc. 43. 125.) 4KF, UO2F2. Insol. in H2O. Easily sol. in dil. acids. (Ditte, C. R. 91. 115.) 5KF, 2UO₂F₂. (Baker, Chem. Soc. 35.

760.3 3KF, 2UO₂F₂+2H₂O, (Baker.)

Sodium fluoxyuranate, NaF, UO2F2. +2H₂O. Not efflorescent

+4H₂O. Insol. in H₂O and dil. neids. Sl. sol, in cone. HCl+Aq. Sol. in cone. H₂SO₄. (Bolton, J. B. 1886, 212.)

4NaF, UO₂F₃. (Ditte.)

Does not exist. (Smithells, Chem. Soc

43. 125.)

Fluoxyvanadic acid.

Ammonium fluoxyvanadate, 12NH.F. V.O. 2VOF.

Easily sol. in H2O, and not attacked by cold conc. H.SO. (Baker, Chem. Soc. 33.

388.) Formula is 3NH,F, VO2F. (Petersen, J.

pr. (2) 40. 289.) 3NH₄F, VO₂F. Sol. in H₂O. (Petersen, Much less sol. in H₂O in presence of NH₄F. (Piccini and Giorgis, Gazz, ch. it. 27, 1, 65.)

+H2O. (Piccini and Giorgis, Gazz. ch. it. 1892, 22. 55.) (H.F. VOF: "Hypovanadate" Quite 3NH,F 3NH₄F, VOF₂ "Hypovanadate" Quite sol. in H₂O. Very sl. sol, in MF+Aq. Less

sol. in alcohol than in H2O. (Petersen, J. pr. (2) 40, 195.)

2NH₄F, VOF₂. Sol. in H₂O. (Petersen.)

+H₂O. (Precini and Giorgis.)

7NH4F, 4VOF2+5H2O. Very sol. in H2O. (Petersen.)

3NH4F, 2VO2F. Sol. in H2O without de-comp. Sol. in cone. HF+Aq. (Piccini and Giorgia, Gazz. ch. it. 24, 1, 68)

3NH4F, 2VOF2+H2O. Sol, in H2O with decomp. V₂O₅, 2NH₄F. (Ditte, C. R. **106**, 270.)

V₂O₅, 8NH₄F+4H₂O. As above. V2Os, 4NH4F+4H2O. As above. Sol. in H,0.

Ammonium hydrogen 7NH₄F, HF, 4VO₂F. flud:oxyvanadate. Very sol, in H₂O. (Petersen, J. pr. (2) 40. 284.)

Ammonium hydrogen irifluoxyvanadate, 3HF, 9NH₄F, 5VOF₃.

Easily sol, in H2O. Sl. sol, in MF+Au. (Petersen, J. pr. (2) 40, 280.) 3NH₄F, 3HF, 2VOF₂. (Baker, Chem. Soc. 33, 388.) Sol in H₂O. Identical with 3HF, 9NH,F, 5VOF, (Petersen.)

Barium fluoxyvanadate, BaF2, VO2F. Ppt. (Ephraim, Z. anorg. 1903, 35, 79.)

Cadmium fluoxyvanadate, CdF2, VOF2+ 7H₂O. "Hypovanadate." As the Co salt. (Piceini and Giorgis.)

Cobalt fluoxyvanadate, CoF2, VOF2+7H2O. "Hypovanadate." Sol in H2O. (Piccini

Nickel fluoxyvanadate, N1F2, VOF2+7H2O. "Hypovanadate," As the Co salt, (Piccini and Giorgis)

and Giorgis.)

Potassium fluoxyvanadate, 7KF, 3VOF₂, Very sl. sol. in H₂O and MF+Aq. Easily sol, in dil. acids. (Petersen, J. pr. (2) 40.

199.) 2KF, VOF₂. As above. (Petersen.) 2KF, 2V₂O₃+8H₂O. Sol. in H₂O and H₂O₄. (Ditte, C. R. 105. 1067.) 2KF, 3V₂O₄+5H₂O. As above.

2KF, 4V₂O₅+8H₂O. As above. 4KF, V₂O₅. Less sol. than 4KF, 3V₂O₅.

4KF, V₂U₅. Less But tiles +2H₂O, Sol. in H₂O 4KF, 3V₂O₃+4H₂O, and +6H₂O. sol. than 2KF, 3V₂O₃+5H₂O. Less 8KF, V2Os+2H2O, and +3H2O. Sol. in H₂O.

Potassium trifluoxyvanadate, 2KF, VOF., Ppt. (Petersen, J. pr. (2) 40. 272.) 6KF, V₂O₅, 2VOF₈+2H₂O. Sol. in H₂O. Insol. in cold conc. H₂SO₄. (Baker, Chem. Soc. 33, 300.)

Formula is 3KF, 2VO2F. (Piccini and Giorgis.) See also Fluovanadate fluoxyvanadate, potassium.

Potassium fludioxyvanadate, 2KF, VO.F. Easily sol. in H₂O, (Petersen, J. pr. (2) 40. 3KF, VO₂F. As above. (Petersen.) 3KF, 2VO₂F. Sol in H₂O; scarcely attacked by H₂SO₄. (Piccini and Giorgis.)

Potåssium hydrogen fluoxyvanadate, 3KF, HF,2VOF₃.
Sol. in H-O. (Petersen.)

Sodium fluoxyvanadate, 8NaF, 3VOF₂+ 2H₂O.

Sol. in H₂O. (Petersen, J. pr. (2) 40, 200) 3NaF, VO₂F, VOF₂ (7). Very easily decomp. (Picom and Giorgis.) 2NaF, 2V₂O₂+10H₂O. Sol. in H₂O.

comp. (Piccini and Giorgis.)
2NaF, 2Y₀, +10H₂0. Sol. in
(Dittle, C. R. 106, 270.)
4NaF, Y₀0, As above.
4NaF, 3Y₀0,+18H₂0. As above.
6NaF, Y₁0,+5H₂0. As above.
8NaF, Y₁0,+3H₂0. (As above.

Thallous fluoxyvanadate, 2TlF, VOF₂. Somewhat sol. in cold H₂O without decomp. Sol. in boiling H₂O with exception of a black residue, which is easily sol. in dil

H₂SO₄. (Ephraim, B. 1999, 42, 4460.) 3TIF, 2VO₂F. Insol. in H₂O. Sol in H₂O containing H₂SO₄. (Ephraim and Heymann, B. 1909, 42, 4459.)

Zinc fluoxyvanadate, ZuF₂, ZnO, 2VOF₂+

Decomp. on air; sol. in H₂O. (Baker, Chem. Soc. 33, 388.)

True composition is represented by the formula ZnF₁, VO₂F+7H₂O. (Petersen.)

ZnF₂, VO₃F+7H₂O. Very sol. an H₂O. (Peocini and Giorgis)

ZnF₂, VOF₂+7H₂O. "Hypovanadate." Sol. in cold H₂O, but decomp. by boiling; sol. in dil. HF+Ag. (Piccini and Giorgis.)

Fluozirconic acid.

Ammonium fluozirconate, (NH₄)₂ZrF₆. Sol. in H₄O.

3NH4F, ZrF4. Sol. in H2O. (Marignac.)

Cadmium fluozirconate, 2CdF₂, ZrF₄+6H₂O. Sol. in H₂O; can be recrystalised therefrom (Marignac, A. ch. (3) 60. 257) CdZrP₄+6H₂O. Sol. in H₂O. (Marignac.)

Cæsium fluozirconate, CsF, ZrF₄+H₂O Sol. in H₂O without decomp. (Wells,

Z. anorg. 1895, 10. 434.)

2CsF, ZrF₄. Sol. m H₂O without decomp.

(Wells, Z. anorg. 1895, 10, 434.)

2CsF, 3ZrF₄+2H₂O. Only sl. sol. in H₂O.

(Wells, Z. anorg. 1895, 10. 434.)

Cupric fluozirconate, 2CuF₁, ZrF₄+12H₂O. Easily sol. in cold H₂O. (Marignac, A. ch. (3) 60, 296.)

3CuF₂, 2ZrF₄+16H₂O. Sol. in H₂O. (Marignac.)

Lithium fluozirconate, 2LiF, ZrF4.

Ppt. (Wells, Am. J. Sci. 1897, (4) 3, 468.)

468.)
4LiF, ZrF₄+1/3H₂O. Sol. in H₂O with decomp. (Wells, Am. J. Sci. 1897, (4) 3. 469.)

Magnesium fluozirconate, MgZrP₆+5H₂O. Sol. in H₂O. (Marignac.)

Manganous fluozirconate, MnZrF_t+5H₂O. Sol. in H₂O. (Marignac, J. pr. 88. 202.)

Nickel fluozirconate, 2NiF₂, ZrF₄+12H₂O. Sol. in H₂O. (Marignac, A. ch. (3) 60. 291.) NiZrF₆+6H₂O. Sol. in H₂O. (Marignac)

Nickel potassium fluozirconate, K₂ZrF₀, NiZrF₀+8H₂O.
Sol. in H₂O. (Marignac.)

Potassium fluozirconate, KF, ZrF₄+H₂O. Much more sol. in hot, than cold H₂O. (Marignac.) 2KF, ZrF₄=K₂ZrF₅. 100 pts. H₂O dis-

solve at 2°, 0.781 pt.; at 15°, 1.41 pts.; at 19.° 1.69 pts.; at 100°, 25.0 pts. K₂ZrF₆. (Marignac.) Insol. in liquid NH₄. (Gore, Am. Ch. J.

Insol. in liquid NH₂. (Gore, Am. Ch. 5 1898, **20**. 829.) 3KF, ZrF 5.

Sodium fluozirconate, 5NaF, ZrF4.

100 pts. H₂O dissolve 0.387 pt. at 18°, and 1.67 pts. at 100° (Margnac.) 2NaF, ZrF₄. (Wells, Am. J. Sci. 1897, (4) 3. 469.)

5NaF, 2ZrF4. Sol. in H₂O with decomp. (Wells.)

Tellurium fluozirconate, TeF, ZrF4.

Sol. in H₂O without decomp. (Wells, Am. J. Sci. 1897, (4) **3.** 470.) +H₂O. Sol. in H₂O without decomp. (Wells.)

3TeF, ZrF₄. Sol. in H₂O without decomp. (Wells.) 5TeF, 3ZrF₄. Sol. in H₂O without decomp.

5TeF, 3ZrF4. Sol. in H2O without decom (Wells.)

Zinc fluozirconate, ZnZrF₆+6H₂O. Sol. in H₂O (Marignac.)

2ZnF₂, ZrF₄+12H₂O. Sol. in H₂O. (Marignac, A. ch. (3) **60**, 257)

Fulminating gold. See Auroamidoimide.

Fulminating platinum. See Fulminoplatinum.

Pluoxyuranic acid.

Ammonium fluoxyuranate, 3NH4F, UO2F2. Easily sol, in H-O, less in HF. Insol, in alcohol. (Bolton.) 100 g. solution sat. at 27° contain 10.11 g.

100 g, solution sat, at \$1.3° contain 20.71 g

salt. (Burger, Dissert, 1904.)

Barium fluoxyuranate, 3BaFt, 2UO2F2+

Traces dissolve in hot H2O. Easily sol. in dil. acids. (Bolton.)

Potassium fluoxfuranate, 3KF, UO2F2. Sol. in 8 pts. H-O at 21°. Insol. in alcohol and ether. (Bolton, J. pr. 99. 269.) Does not exist. (Smithells, Chem. Soc. 43.

4KF, UO2F2. Insol. in H2O. Easily sol. in dil, acids. (Ditte, C. R. 91, 115.) 5KF, 2UO2F2. (Baker, Chem. Soc. 35.

3KF, 2UO2F2+2H2O. (Baker.)

Sodium fluoxyuranate, NaF, UO₂F₂. +2H₂O. Not efflorescent.

4H₂O. Insol. in H₂O and dil, acids, sol, in cone. HCl+Aq. Sol. in cone. H2SO4. (Bolton, J. B. 1866, 212.)

4NaF, UO2F2 (Ditte.) Does not exist. (Smithells, Chem. Soc. 48, 125.)

Fluoxyvanadic acid.

Ammonium fluoxyvanadate, 12NH4F, V2O5. 2VOF.

Easily sol, in H₂O, and not attacked b cold cone. H2SO4. (Baker, Chem. Soc. 33.

388.) Formula is 3NH₄F, VO₂F. (Petersen, J.

. (2) 40. 289.) 3NH₄F, VO₂F. Sol. in H₂O. (Petersen, Much less sol, in H2O in presence of NH4F

(Piceini and Giorgis, Gazz. ch. it. 27, 1, 65, +H2O. (Precim and Giorgis, Gazz, ch. it. 1892, 22. 55.)
3NH.F. VOF.. "Hypovanadate." Quite sol. in H₂O. Very sl. sol. in MF+Aq. Less sol. in alcohol than m H₂O. (Petersen, J.

pr. (2) 40. 195.)

2NH₄F, VOF₂. Sol. in H₂O. (Petersen.) +H₂O. (Piccini and Giorgis.) 7NH₄F, 4VOF₂+5H₂O. Very sol. in H₂O. (Petersen.)

3NH4F, 2VO2F. Sol. in H2O without decomp. Sol. in conc. HF+Ag. (Piccini and Giorgis, Gazz. ch. it. 24. 1. 68.)

3NH4F, 2VOF3+H2O. Sol. in H2O with decomp.

V₂O₅, 2NH₄F. (Ditte, C. R. 106, 270.)

V-O. SNH4F+4H2O. As above. V₂O₄, 4NH₄F+4H₂O. As above. Sol. in H.O.

Ammonium hydrogen flud:oxyvanadate. 7NH.F. HF. 4VO2F. Very sol, in H.O. (Petersen, J. pr. (2) 40.

284) Ammonium hydrogen trifluoxyvanadate, 3HF, 9NH,F, 5VOF3.

Easily sol, in H2O. Sl. sol. in MF+Aq. (Petersen, J. pr. (2) 40. 280) 3NH₄F, 3HF, 2VOF₈. (Baker, Chem Soc. 33. 388.) Sol in H₂O, Identical with 3HF, 9NH,F, 5VOF, (Petersen.)

Regium fluoxyvanadate, BaFs, VOsF. Ppt. (Ephram, Z. anorg, 1903, 35, 79) Cedmium fluoxyvanadate, CdF₂, VOF₂+

7H₂O. "Hypovanadate." As the Co salt. (Piccini and Giorgis)

Cobalt fluoxyvanadate, CoF2, VOF2+7H2O. "Hypovanadate." Sol. in H.O. (Piccini and Giorgis.)

Nickel fluoxyvanadate, NiF., VOF.+7H.O. "Hypovanadate." As the Co salt (Piccini and Giorgis)

Potassium fluoxyvanadate, 7KF, 3VOF2, Very sl. sol. in H₂O and MF+Aq. Easily sol. in dil. acids. (Petersen, J. pr (2) 40.

50. in ult. anna. (reveneus v. p. v.).

20. T. VOF. A above. Federama)

20. T. VOF. A above. (Federam)

20. T. VOF. A SEO. Sol. in HAO and

HSO. (Ditte. C. R. 105. 1067.)

22. T. VAF. A SEO. Sol. in HAO and

HSO. (Ditte. T. R. 105. 1067.)

22. T. VAF. A SEO. Sol. in HAO.

22. T. VAF. A SEO. Sol. in HAO.

22. T. VAF. A SEO. Sol. in HAO.

23. T. VAF. A SEO. Sol. in HAO.

24. T. VAF. A SEO. Sol. in HAO.

25. T. VAF. A SEO. Sol. in HAO.

26. T. VAF. A SEO. Sol. in HAO.

27. VAF. A SEO. SOL. In HAO.

28. T. VAF. A SEO. SOL. IN HAO.

29. T. VAF. A SEO. SOL. IN HAO.

29. T. VAF. A SEO. SOL. IN HAO.

29. T. VAF. A SEO. SOL. IN HAO.

20. T. VAF. A SEO. SOL. IN 8KF, V2Os+2H2O, and +3H2O. Sol. in H20.

Potassium trifluoxyvanadate, 2KF, VOFz. Ppt. (Petersen, J. pr. (2) 40. 272.) 6KF, V₂O₄, 2VOF₃+2H₂O. Sol. in H₂O. Insol. in cold conc. H₂SO₄. (Baker, Chem. Soc. 33, 300.)

Formula is 3KF, 2VO₂F, (Precint and Giorgis.) See also Fluovanadate fluoxyvanadate, potassium.

Potassium fludioxyvanadate, 2KF, VO.F. Easily sol. in H₂O. (Petersen, J. pr. (2) 40. 278.)

3KF, VO₂F. 3KF, 2VO₂F. As above. (Petersen.) Sol in H₂O: scarcely attacked by H.SO. (Piccini and Giorgia.)

Potassium hydrogen fluoxyvanadate, 3KF. HF.2VOF.

Sol. in H₂O. (Petersen.)

Sodium fluoxyvanadate, SNaF, 3VOF++

Sol. in H₂O. (Petersen, J. pr. (2) **40**, 200.) 3NaF, VO,F, VOF₂ (?). Very easily demp (Piccini and Giorgis.) 2NaF, 2V₂O_x+10H.O. Very easily de-

2ÑaF, 2V₂U₅+1UH₂U co. (Ditto, C. R. 106, 270.) 4NaF, V₂O₅. As above 4NaF, 3V₂O₅+18H₂O. As above 6NaF, V₂O₅+5H₂O. As above 10s+18H2O. As above. 6NaF, V₂O₅+5H₂O. As above. 8NaF, V₂O₆+3H₂O. (As above.

Thallous fluoxyvanadate, 2TiF, VOF.

Somewhat sol, in cold H_{*}O without decomp. Sol, in boiling H2O with exception of a black residue, which is easily sol. in dil H₂SO₄. (Ephraim, B. 1909, 42, 4460.) 3TiF, 2VO₂F. Insol. in H₂O. Sol. in H₂O containing H₂SO₄. (Ephraim and Hev-

mann, B. 1909, 42. 4459.) Zinc fluoxyvanadate, ZnFa, ZnO, 2VOFa+

Decomp. on air; sol. in H2O. (Baker, Chem. Soc 33, 388.) True composition is represented by the formula ZnF₂, VO₂F+7H₂O. (Petersen) ZnF₂, VO₂F+7H₂O. Very sol an H₂O.

(Piccini and Giorgis.) ZnF₂, VOF₂+7H₂O "Hypovanadate." Sol. in cold H₂O, but decomp. by boiling; sol, in dil. HF+Aq. (Piceini and Giorgis.)

Fluozirconic acid.

(Marignac.)

Ammonium fluozirconate, (NH₄),ZrF₆. Sol, in H₂O.

3NH.F. ZrF., Sol. in H.O. (Marignac.)

Cadmium fluozirconate, 2CdF2, ZrF4+6H2O. Sol. in H2O; can be recrystalised therefrom. (Marignac, A. ch. (3) 60. 257.)

CdZrFa+6H2O, Sol. in H2O. (Marignae.) Casium fluozirconate, CsF, ZrF4+H4O.

Sol, in H2O without decomp. (Wells, Z. anorg. 1895, 10. 434.)

ZCsF, ZrF₄. Sol. in H₂O without decomp. (Wells, Z anorg. 1895, 10, 434.) 2CsF, 3ZrF₄+2H₂O Only sl. sol. in H₂O. (Wells, Z. anorg, 1895, 10, 434.)

Cupric fluozirconate, 2CuF2, ZrF4+12H2O. Easily sol, in cold H.O. (Marignae, A. ch. (3) 60, 296.) 3CuF2, 2ZrF4+16H2O. Sol. in H2O.

Lithium fluozirconate, 2LiF, ZrF4. Ppt. (Wells, Am. J. Sci. 1897, (4) 3. 468 4LaF, ZrF4+15H2O, Sol. in H2O with

decomp. (Wells, Am. J Sci. 1897, (4) 3. 469 1 Magnesium fluozirconate, MgZrFe+5HeO.

Sol. in H2O. (Marignac.) Manganous fluozirconate, MnZrFs+5HsO.

Sol in H.O. (Marignac, J. pr. 83, 202.) Nickel fluozirconate, 2N1F2, ZrF4+12H2O.

Sol in H₂O. (Marignac, A, ch. (3) 60. 291.) NiZrF++6H+0. Sol. in H+0. (Marignac.)

Nickel potassium fluozirconate, K₂ZrF₀, NiZrF₄+8H₂O,

Sol. in H.O. (Marignac.)

Potassium fluozirconate, KF, ZrF4+H2O. Much more sol, in hot, than cold H2O. (Marignac.) 2KF, ZrF₄=K₂ZrF₆. 100 pts. H₂O dis-

solve at 2°, 0.781 pt.; at 15°, 1.41 pts.; at 19.° 1.69 pts.; at 100°, 25.0 pts. K2ZrF6. (Marignae.) Insol. in liquid NHs. (Gore, Am. Ch. J. 1898, 20, 829.)

Sodium fluozirconate, 5NaF, ZrF.

3KF, ZrF4.

100 pts. H2O dissolve 0.387 pt. at 18°, and 1.67 pts. at 100°. (Marignac.) 2NaF, ZrF4. (Wells, Am. J. Sci. 1897, (4) 3, 469,

5NaF, 2ZrF4. Sol. in H2O with decomp. (Wells)

Tellurium fluozirconate, TeF, ZiF4.

Sol. in H₂O without decomp. (Wells, Am. J. Sci. 1897, (4) 3. 470) +H₂O. Sol. in H₂O without decomp. (Wells.) 3TeF, ZrF4. Sol. in H2O without decomp.

(Wells.) 5TeF, 3ZrF4. Sol. in H2O without decomp. (Wells.)

Zinc fluozirconate, ZnZrFe+6H2O.

Sol. in H.O. (Marignac.) 2ZnF2, ZrF4+12H2O. Sol. in H2O. (Marignae, A ch. (3) 60. 257.)

Fulminating gold. See Auroamidoimide.

Fulminating platinum. See Fulminoplatinum.

Fulminating silver. See Silver nitride.

Fulminoplatinum compounds.

Dichlorofulminoplatinum. Trichlorofulminoplatinum.

Tetrachlorofulminoplatinum. Chloroxyfulminoplatinum.

Fuscocobaltic chloride, Co(NH3)4(OH)Cl2 Sol. in H2O, from which it is precipitated

by NH4Cl+Aq, decomp. by boiling H2O; pptd. from aqueous solution by alcohol. (Fremy, C R. 32, 501.)

--- nitrate, Co(NH₂)₄(OH)(NO₂)₂+H₂O. Sol. in H2O. Properties as the chloride. (Fremy)

—— sulphate, Co(NH₂)₄(OH)SO₄+1½H₂O. Sol. in H₂O. Insol. in NH₄OH+Aq. (Fremy, C. R. 32. 501.) Insol. in H₂O. Sol. in conc. HCl+Aq, or H₂SO₄, from which it is precipitated by H₂O (Vortmann, N. 6. 412.)

Fusible white precipitate.

See Mercuridiammonium chloride.

Gadolinium, Gd. (Marignac, C. R. 102, 92.)

Gadolinium bromide, GdBr₂+6H₂O. Sol. in HBr. (Benedicks, Z. anorg, 1900,

Gadolinium chloride, GdCla+6H2O. Somewhat deliquescent. Sol. in H₂O (Benedicks.)

Gadolinium platinum chloride. See Chloroplatinate, gadolmium.

Gadolinium fluoride, GdF.

Insol. in H2O; sl. sol, in hot HF. (Popovici, B. 1908, 41. 635.)

Gadolinium hydroxide, Gd(OH),

Ppt. (Benedicks, Z. anorg. 1900, 22, 402.) Gadolinium oxide, Gd.O.

Sol in acids. (de Boisbaudran, C. R. 111,

Somewhat hydroscopie: easily sol, in acids. (Benedicks.)

Gallium, Ga.

Not decomp, by H₀O; easily sol, in cold HCl +Aq. Slowly sol. in warm dil. HNO₂+ +3H₂O. Deliquescent. Melts in Aq. Not attacked by conc HNO₂ free from crystal H₂O when warmed. (Winkler.)

N₂O₂ below 40-50°, and only slowly in presence of N₂O₂. (Dupré, C. R. 86, 720.) Easily sol, in cold or warm KOH+Aq. (de Boisbaudran, A ch. (5) 10. 100)

Gallium bromide, GaBra Deliquescent, and sol, in H2O.

Gallium dichloride, GaCl₂,

Deliquescent, and decomp. by H2O. (Nilson and Petersen, C. R 107. 527.)

Gallium chloride, GaCl₈.

Deliquescent, and very sol, in little H₂O. Decomp. by much H₂O, with formation of basic salt, which is slowly sol, in dil. HCl +Aa

Gallium hydroxide.

Sol. in acids; sol. in KOH or NaOH+Ao. less easily in NH4OH+Aq, even in presence of ammonium salts.

Gallium iodide, GaIa.

Deliquescent, and sol. in H₂O (de Boisbaudran and Jungfleisch, C R. 86, 578)

Gallium suboxide, GaO (?) Sol in HNO₈+Aq. (Dupré) Sol in dil H₂SO₄+Aq.

Gallium oxide, Ga2O2. Sol. in acids.

Germanium, Ge.

Insol in HCl+Aq. Easily sol, in aqua gia. Decomp. by HNO₂+Aq to oxide. Conc H.SO, decomp, to sulphate, Insol. in boiling KOH+Aq (Winkler, J. pr. (2) 34. 177; 36, 177.)

Germanium tetrabromide, GeBr4. Decomp, by H.O. (Winkler.)

Germanium dichloride, GeCl2. Decompl by H₂O. (Winkler.)

Germanium tetrachloride, GeCl4.

Sinks in H₂O, and is gradually decomp, thereby. (Winkler, J. pr. 34. 177.)
Insol. in and not attacked by hot conc. H₂SO₄. (Friedrich, W. A. B. 102, 2b. 540.)

Germanium chloroform, GeHCl₂, Decomp. by H2O. Sol. in HCl+Aq. (Winkler.)

Germanium tetraffuoride, GeF.

Deliquescent, and sol. in H2O. Melts in its GLASS 359

Germanium potassium fluoride. See Fluogermanate, notassium.

Germanium hydride, GeH.

Sl. sol, in hot HCl. Sol, in NaOCl+An (Voegelen, Z. anong 1902, 30, 327)

Germanium tetraiodide, GeL

Deliguescent, and sol in H₂O with decomp. (Winkler)

Germanium monoxide, GeO.

Not appreciably sol. in dil H₂SO₄+Aq. Easily sol. in HCl+Aq. Insol. in alkalies. (Winkler, J pr (2) 34, 177.)

Somewhat sol. in H2O; insol. in H2SO4+Aq, even when hot and conc. (van Bemmelen, R. t c 6, 205)

Germanium dioxide, GeO.

+Aq; sl. sol. in acids.

Not very difficultly sol, in H₂O.

Sol. in 247.1 pts H₂O at 20°; in 93 3 pts. at 100°. (Winkler.) Easily sol, in alkali carbonates or hydrates

Germanium oxychloride, GeOCl.

Insol. in H₂O; sol, m acids. (Winkler, J pr. (2) 36, 177.)

Germanium monosulphide, GeS

Sol. in 402.9 pts. H₂O. Sol. in conc. hot Cl+Aq. Sol in KOH+Aq. Sol. in HCl+Aq. (NH₄):S+Aq when precipitated. Ihsol. in (NH₄):S+Aq if crystalline. Also exists in a colloidal state. (Winkler.)

Germanium disulphide, GeSz.

Sol. in 221.9 pts. H₂O. Easily sol. in . KOH+Aq, or NH₄OH+Aq. Insol. in acids. Exists also in a colloidal state. (Winkler.)

Glass.

Numerous and extensive researches have been made on the action of H2O and various solutions on glass. The older work has a certain historical interest, but only a brief statement of some of the more important results can be given here For a very thorough resume of the work before the year 1861, Storer's Dictionary, p. 555, should be consulted

All glass is more or less attacked by H₂O the more easily the greater the amount of alkali present, the finer it is powdered, and the higher the temperature.

Gliss, as that of a flack, is decomposed to a consistent control of the flack ulloud being dissolved, but when powdered of the flack ulloud being dissolved, but when powdered control of the flack ulloud being dissolved, but when powdered control of the flack ulloud being dissolved, but when powdered control of the flack ulloud being dissolved by the control of the flack under the

a perton of the alice, the decomposition taking place the more cavity in proportion as the given is raiser in all the water higher. (Breelof, Kasin Arch 1 443) Powdered crown glass and some varieties of window glass reader cold H40 allaline when in contract there

with (Dumas) 100 pts. finely divided finit glass lose 7 pts. potash when builed one week with H₂O (Griffiths, Q J. Sei,

when healrd one week with H₂O (Griffiths, Q J. Set. 2025) Retorts of actinary or flunt glass are partially dis-solved by H₂O when it is evaporated therein. (Chev-lerich) powdered plate glass (Faraday, Poug. 18. 809), and Thuringan potals glass (Ladwig, Arch Phurn. 94. 17) redden moretimed turnerie paper. The dikaline resection disappears by continued wash-

ng, but rennears when the glass is freshly rubbed. (Griffitha)

und. but recupenars when the glass as feesily rubbed. (Cold HG) have up 80°F as well as a thick from glass powder. (Whels) have the substantial powder. (Whels) have represented amounts of PO to weakly a september 100°F and 100

The action of H₂O is greatly increased by

finely pulverising the glass.

H₂O dissolved 10% of a glass containing 12% Na₂O, 15.5% CaO, and 72.5% SiO₂, and 32.9% of another glass containing 16.3% Na₂O, 6.4% CaO, and 77.3% SiO₂. (Vogel, B. A. Munchen, 1887, 437.)

Action of H₂O on a glass containing 74% SiO₂, 86% CaO₂, 14% Na₂O₂, 0.6% K₂O₃ with traces of Al₂O₃, Fe₂O₃, MnO₃ and MgO₄. By boiling with H₂O₄ a decrease of 3.9 mg.

was observed for the first hour, which soon became constant at 2.2 mg. per hour. The action was then proportional to the time, and also to the surface in contact with the liquid, but independent of the amount of liquid evaporating.

The action decreases rapidly with the temperature, so that at 90-100° only 1/4 as much glass is dissolved as by boiling H₂O. (Emmerling, A. 150, 257.)

When steam condenses in tubes of Na glass they are so strongly attacked that the H2O has an alkaline reaction, but tubes of hard or Bohemian K glass are not so strongly at-

The effect of H₂O is so great as to impart a distinctly alkaline reaction to water condensing in a tube of ordinary glass. By condensing water in long tubes of various kinds of glass

I. Easily fusible Thuringian glass. Surface exposed = 324 sq. cm. After 2 hours, 62.0 mg. KOH were dissolved. After 3 hours more, 36.0 mg. KOH were dis-	Action of H_2O on various kinds of Na glass 1 g of finely powdered glass was boiled 10–15 minutes in a silver dish with 100 ccm. H_2O , and the per cent of Na_2O (or K_2O) ir the solution was determined.
solved. After 3 hours more, 33.2 mg. KOH were dissolved. Shours more, 20.8 mg. KOH were dissolved. After 3 hours more, 20.8 mg. KOH were dissolved. Or, in 14 hours, 172.8 mg KOH were dissolved. Or, in 14 hours, 172.8 mg KOH were dissolved. Surface exposed = 490 sq. cm. After 3 hours, 192 mg. KOH were dissolved. After 3 hours more, 15 2 mg. KOH were dissolved. After 3 hours more, 12 4 mg. KOH were dissolved.	Orthodase foldings
After 3 hours more, 11.2 mg. KOH were dissolved. Or, after 12 hours, 58.0 mg KOH were dissolved. III. Combustion tubing of very difficultly fusible Boheman glass. Surface exposed =	(Wartha, Z. anal. 24, 220) The relative case by which various kinds of glass are attacked by H ₂ O is shown by the following table. The glass was powdered and heated on a water bath with exclusion of
1180 sq. cm. After 3 hours 4.16 mg. KOH were dis- solved. After 3 hours more 4.16 mg. KOH were dis- solved. After 3 hours more 4.16 mg. KOH were dis- solved. Charles 3 hours more 4.16 mg. KOH were dis- solved. Or, After 12 hours, 16.64 mg. KOH were dis- solved. Or, After 12 hours, 16.64 mg. KOH were dis- solved.	atmospheric CO ₂ . Potassum water glass 291 Sodium water glass 196 Yellow glass rich in alkalı 34 Thungian glass 10 Ditto from Tittel and Co. 8 Window glass 8 Undow glass 6 Boheman glass from Kavaller 24 Lead cınıştal glasy 14
IV. Easily fusible Boheman glass. Surface exposed = 1394 sq. cm After 3 hours, 7.88 mg. KOH were dissolved. After 3 hours more, 8.56 mg. KOH were dissolved. After 3 hours more, 1.97 mg. KOH were dissolved.	(Malma C C 1998 1212)
olved. Or, after 9 hours, 24.32 mg. KOH were dissolved. (Kreusler and Henzold, B. 17. 34.) From the above the following table has been calculated. 50 ccm. H ₂ O dissolves from a surface of	Solubility of various kinds of glass in H ₂ O. The amounts dissolved from various kinds of glass by heating 5 hours with H ₂ O were as follows. Yellow glass rich in alkali (13%
1000 sq. m in 1 hour:— 96.0 mg. from easily fusible Thuringian glass. 12.8 mg, from less fusible Thuringian glass. 1.2 mg, from combustion tube of Bohemian	Poor Thuringan glass (6.6% K ₂ O, 16.5% Na ₂ O) 91.4 " Glass from Tittel and Co. (7.1% K ₂ O, 14.3% Na ₂ O) 91.4 "
glass. 2.0 mg. from harder tube of Bohemian glass. (Kreusler and Henzold, B. 17. 34.) 100 ccm. H ₂ O dissolves so much glass from a	K ₂ O, 11.9% Na ₂ O) 13 0 " Bohemian glass from Kavalier (13.3% K ₂ O, 11.4% Na ₂ O) 10 1 " Rhenish window glass (13.5%
flask every 2 seconds when in contact therewith that 0.1 ccm. ½ normal oxalic acid is neutralised thereby (Bohlig, Z. anal. 23. 518.)	Lead crystal glass from Ehren- feld (12.1% K ₂ O) . 8.5 "

GLASS 361 .

Solubility of various kinds of glass in H₂O-Continued. Thermometer glass 16III from

 Jena (14.0% Na₂O, 7% ZnO) 6 4 mg. Lead glass, No. 483, from Jena (47% PbO, 7.3% K₂O) 3 3 Lead silicate 0.6

(Mylius and Forster, B. 22. 1100)

By calculation from the electrical conductwity of the solutions formed, various data were obtained by Kohlrausch (B. 24, 3565), which showed that different varieties of glass were attacked in very different degree by cold H2O, and, moreover, the amount dissolved was proportionately much greater during the first few minutes of treatment with H2O than afterwards, and, furthermore the rate of decrease was much faster for good glass than poor Increase of temperature increased the rate of solubility to a very great degree, the increase for 1° C being about 17%. In 7 hours at 80° half as much was dissolved as in 6 months at 18° tensive tables are given (Kohlrausch, B. 3651.) See also Kohlrausch (W. Ann. 44.

A very extensive research on the action of H2O on glass, with a historical review of the work previously done on the subject, has been published by Mylius and Forster. (Z anal 31. 241.) The general results may be summed up as follows:-

 The solution of glass in H₂O is caused by a decomposition, by which free alkali is

formed. 2. The silicic acid of the glass is brought into solution by a secondary reaction of the

free alkalı in the solution 3. The constituents of the solution change

according to the conditions of the diges-

is a measure for the resistance of a glass under those conditions The rate of attack of glass surfaces by cold H₂O decreases rapidly with the length

of time of digestion, and finally approaches a mentioned on page 359 in Emmerling's exconstant value 6. The solubility increases very rapidly

with increase of temperature. 7. The ratio of the solubility of several kinds of glass is dependent on the tempera-

of attack unequal amounts of substance may

be dissolved The solubility of a glass is influenced by the condition of the surface from "weathering" by prolonged exposure to the CO2 and

H₂O of the air. 10. The poorer a glass is the less will its solubility decrease by prolonged treatment

with H2O. 11. A good glass is essentially less easily

attacked after having been previously treated with H2O.

12. After treatment with H2O, glass surfaces have the property of fixing alkali from the solutions formed, and giving it up again by a subsequent treatment with H_2O .

13. Potassium glass is much more sol, than sodium glass (contrary to previous researches), but the difference decreases as the glass becomes richer in CaO.

14. In glass flasks which are to be only slightly attacked by cold or hot H2O, the CaO, alkalies, and SiO₂ must stand in a fixed rela-

tion to each other Of the more common varieties of glass. lead flint glass is least sol. in H2O, but its surface is corroded, and it is easily decomp.

(Mylius and Forster, Z. anal. 31, 241.)

Bottle glass containing much AlrOs is easily attacked

by nearly processing the process of (Grifhths)

by acids.

All glass is decomp by HF Cone HsPO4 also attacks all glass Glass containing small amounts of SiO2 are attacked by H-SO₄; poorer glass by boiling HCl, HNO₅ and aqua regna (Berzelius)

Cone HNO₅ does not act on flint glass at 145-150°.
(Sorby, C R 50 990)

Glass of ordinary chemical apparatus gives up traces of metals to HCl and HNO₃+ Aq, but hard Bohemian glass consisting of 75% SiO₂, 15%K₂O, 10% CaO, resists the action of warm conc. acids; also an easily fusible Na K glass with 77 % SiO₂, 7.7% K₂O, 5% Na₂O, 10 3% CaO, is not easily attacked. (Stas.)

KOH, and NaOH+Aq dissolve SiO₂ from glass the more easily the hotter and the more cone the solutions are. (Müller.) NH4OH, 4. The amount of alkali going into solution and (NH₄)2CO₂+Aq attack many kinds of from a given surface under certain conditions glass, especially flint glass. CaO2H2 attacks glass appreciably at 45° and lower; still more strongly on boiling. (Lamy, A. ch. (5) 14.

The action of various solvents on the glass

periments is as follows

The action of HCl+Aq containing 0.2 to 3% HCl is practically null, but is increased either by dilution or concentration. A versmall quantity (0.02%) HCl added to H₂O re. almost wholly prevents its action on glass. 8. From glasses which show the same ease With HCl+Aq (11% HCl) a decrease of 4.2 mg. was noticed in the first hour, and only 3-4 mg. afterwards. The same is the case for HNO.+Aq in still greater degree, 0 008% HNO: sufficing to nearly counteract the solvent action of H2O.

H₂SO₄+Aq has about double the solvent effect possessed by H₂O.

Oxalic and acetic acids both diminish the solvent action of H₀O

The addition of even traces (0.04%) of

Na₂CO₂ increases the solvent action, and this is further rapidly increased by an increase in the amount of Na₂CO₂. Na₂CO₂+Aq con-taining 1% Na₂CO₃ dissolves about 10 times as much as pure H.O. i. e. about 35 mg, per

The above is also the case with KOH+Ag. but in even greater degree KOH+Ao containing 0.025% KOH dissolved three times as

much as pure H₂O.
(NH₄)₂CO₂+Aq has about the same action as H.O. With NH₄OH+Aq (9% NH₅) 7 mg, de-

crease for the first hour, and 3 mg. afterwards was noticed. The concentration of the

was noticed. Ine concentration of but NH_OH+Aq was apparently without effect. The addition of NH_CI decreases the solv-ent action of H_O proportionately to the amount added, but with new flasks large

amounts are dissolved. With NH₄Cl+Aq (7%NH₄Cl) 4.2 mg, were dissolved in the first hour, and the amount dissolved gradually decreased to null after 24 hours on account of the liberation of HCl by

the decomp. of NH₄Cl. NaCl, KCl, KNO₃, and Na₂SO₄ show a similar behavious to that of NH,Cl. Na. HPO. +Aq containing 0 4% Na. HPO.

has sax times the solvent action of pure H.O. but the action is not increased by further concentration.

concentration, in general, those salts the acids of which form insol. Ca salts, as Na₂CO₃, Na₂SO₄, Na₃HO₄, (NH₂)₂CO₄, increase the solvent action of H₂O, and this effect is greater the more concentrated the solution. KCl, KNO₃, NH₂CO, and CaCl, decrease the effect, and the stronger the solution the loss is the

All Na glass with approximately the above composition has the same power of resistance against H₂O; Bohemian K glass shows a greater resistance, especially against acids, (Emmerling, A. 150, 257.)

Action of various reagents on hard Bohemian glass. 100 ccm, substance dissolved mg. glass in 6 days at 100°.

H ₀ S+An . 8.7
Dil. (NH ₄) ₂ S+Aq. , 52 5
Conc. (NH.) S+Aq. 47 2
Conc NH OH+Aq 42.5
Dil. NH.OH+Aq 7 7
NH ₆ SH+Aq 51 2
(Cowper, Chem. Soc. 41, 254.)

Action of various solutions on glass of different composition. (The figures denote decrease m weight in mg. of a 100 ccm. flask.

	Time	1	3	3	4	5	6	7	8	9	10
H ₂ O . H ₃ SO ₄ +Aq (25% H ₂ SO ₄) . HCl+Aq (12% HCl) NH ₄ OH+Aq (10% NH ₃) . Na ₂ HPO ₄ +Aq (12% Na ₂ HPO ₄) Na ₂ CO ₂ +Aq (2% Na ₃ CO ₃)	5 hrs. 3 " 3 " 3 " 3 "	62 85 283	31 43	29 35 27 62 81 130	17 8 4 11 64 124	13 7 2 8 40 50	9 6 1 7 35 45	7 5 1 7 34 42	7 5 1 6 30 42	5 0 5 15 26	4 3 0 5 12 25

Composition of above varieties of glass.

	1	2	3	3 4 5 6 7 8		9	10			
Al ₂ O ₂ CaO K ₂ O	76 22 4 27 19 51	0 40 5 85 7 32	5 50 4 94	1 85 7 60 2.24	74.48 0 50 7 15 6 64 11 23	7.85 8 64	1 31 13.37 05.50	74.12 0 50 8.55 4 86 11.97	0 30 8 10 3 75	74.40 0.70 8 85 4 40 11 65

It is seen that glass which resists the attack i of H₂O also resists acids and alkalies, and that the relative resistance of all varieties to any of the solutions is the same. Therefore the action of H₂O may be accepted as a criterion for judging of the resistance of a glass to all solvents. Glass No. 10, in which the molecular ratio of SiO₁:CaO:K₂O(Na₂O) is 8: 1:1.5, is recommended as best suited for chemical uses. (Weber and Sauer, B. 25, 70.) Mylius and Förster (B. 25, 97) recommend

a glass in which the molecular ratio of SiO₂: CaO: K₂O (Na₂O) is 7.2: 1 1.1 as the best suited for chemical apparatus.

In an exhaustive research on the action of aqueous solutions on glass, which cannot be given in full on account of its great length, the following conclusions are reached:-

1. Solutions of caustic alkalies act on glass much more strongly than H2O, dissolving all the constituents of the glass—that is, the glass as such. Very dilute solutions form an exception.

Of the caustic alkalies, NaOH+Aq has the strongest action, then come KOH, NH₄OH, and BaO₂H₂+Aq in the order named.

3. Increase in temperature increases the

strength of the attack of alkalies very considerably

4. At high temperatures, the case with which glass is attacked increases at first rapidly with the concentration of the alkali. but afterwards more slowly.

5. At ordinary temperatures very concentrated alkali solutions have less action on glass than dil. solutions.

6. Solutions of pure alkalies, if not too conc., act less on glass than when contaminated with small amounts of SiO2 7. Alkalı carbonates+Ag attack glass

much more than H2O, even when they are very dilute. The action corresponds less to that of the caustic alkalies than to that of other salts. With equivalent concentration, Na₂CO₂+Aq has a stonger action than K₂CO₂

+Aq.
8. The action of salt solutions on glass is a compound one, depending both on the concentration and the kind of salt dissolved, and is made up of the action of the H₂O and the

salt in solution.

9. Each kind of attack is differently influenced by the composition of the glass. 10. Solutions of those salts, the acids of which form insol. Ca salts, have a stronger action than H2O, and the action increases with the concentration.

Solutions of those salts, the acids of which form sol. Ca salts, have less action than H2O, and the action decreases with the concentration, (Förster, B. 25, 2494.)

Data on this subject published since the first edition of this work have not been considered

Glucinic acid.

Potassium glucinate, K2GlO2.

Very deliquescent, Sol. in H.O and acids. (Krüss and Moraht, B. 23, 733.)

Glucinum (Bervllium), Gl.

Not attacked by hot or cold H.O. Sol. in cold dil. HNO3+Aq. (Wohler, Pogg. 13. 577.) Sol. only in boiling conc. HNOs+Aq. (Debray, A. ch. (3) 44. 5.

Sol. m dil. HCl + Aq. dil. and cone H2SO, Aq, and KOH+Aq, but msol in NH,OH+ (Wöhler, Debray.) Sol, in hot HCl, hot cone, HNO, and hot Glucinum mercuric chloride, GlCl2, 3HgCl2+

conc. H2SO4. (Lebeau, A. ch. 1899, (7), 16, 474.)

Glucinium azoimide, GlN3.

Decomp. by hot H2O. (Curtius, J. pr. Glucinum thallic chloride, 3GlCl2, 2TlCl1. 1898, (2), 58. 292.)

Glucinum borocarbide, 3Gl2C, B4C.

Insol. in H.O. Easily sol, in mineral acids especially HNO₃. (Lebeau, A, ch. 1899, (7) 16. 481.)°

C₄B₆Gl₆. Stable m air. Easily sol. in mineral acids, cone and dil. (Lebeau, C. R. 1898, 126, 1349.)

Glucinum bromide, GlBr₂,

Sol. in H₂O with evolution of much heat. (Wohler.)

Sol, in abs. alcohol. (Lebeau, A. ch. 1899. (7) 16, 484)

Glucinum carbide, Gl₂C.

Decomp, by H₂O. Slowly attacked by cold or hot cone. HCl and HNOs. Gradually but completely sol. in dil. acids. (Le-

beau, A. ch. 1899, (7), 16. 476.) GIC2. Not easily decomp, by strong acids. Easily sol. with decomp. in dil acids. (Lebeau, C. R. 1895, 121, 497.)

Glucinum chloride, GlCl₂,

Anhydrous. Fumes and deliquesces in air. Sol. in H₂O with hissing and evolution of much heat. Easily sol, in alcohol

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, 20, 828

Sol, in alcohol and ether. Sl. sol, in CaHa. CHCla, Cl4 and CS2. (Lebeau, A. ch. 1899, (7) 16. 493.)

Insol, in acctone. (Naumann, B. 1904. 37, 4329.) Very hydroscopic.

+4H₂O, Easily sol. in H2O and in alcohol. (Mieleitner, Z. anorg, 1913, 80, 73.)

Glucinum chloride ammonia, GlCl₂, 4NH₃ (Mieleitner, Z. anorg, 1913, 80, 73.)

Glucinum chloride iodine trichloride, 2ICl, GlCl+8H₂O.

Hygroscopic (Weinland, Z. anorg. 1902, 30. 140.)

Glucinum ferric chloride, GlCls, FeCls+H1O. Decomp. by H2O. (Neumann, A. 244.

6H₂O. Sol. in H₂O. (Atterberg, B. 6. 1288.)

Cryst. from HCl solution. (Neumann, A. 244, 348.)

Glucinum stannic chloride. See Chlorostannate, glucinum.

Glucinum fluoride, basic, 2GlO, 5GlF₂
Sol. in H₂O. (Lebeau, A. ch. 1899, (7) 16.

Glucinum fluoride, GlF2.

Deliquescent. Sol. in Il₂O. Insol. in anhydrous IIF. Sol. in alcohol. (Lebeau, C. R. 1898, 126, 1421.)

Sol. in H₂O in all proportions. Somewhat sol in abs alcohol. Easily sol. in 90% alcohol, also in a mytune of alcohol and ether. Insol. in anhydrous HF. (Lebeau, A. ch. 1899, (7) 16, 484.)

Glucinum potassium fluoride, GIF₂, KF.
Sl. sol. in H₂O. (Awdejew.) Much more
sol. in luot than cold H₂O. (Berzelus.)
GIF₂, 2KF. Sol. in about 50 pts. H₂O at
20°, and 19 pts. boiling H₂O. (Marignac.)

Glucinum sodium fluoride, GlF2, 2NaF. Sol. in 34 pts. H2O at 100°, and 68 pts. at 18°. (Marignac.)

Glucinum hydroxide, GlO2H2.

Easily sol. in acids. Sol. in H₂SO₂+Aq Sol. in CO₂+Aq; 100 ccm. sat. CO₂+Aq dissolve 0.0185 g. GlO. (Sestini, Gazz. ch. it. 20.313.)

Also sol. in KOH, NaOH, NH₄OH, or (NH₄)₂CO₃+Aq, especially when freshly precipitated; also in Na₂CO₃, or K₂CO₃+Aq. (Debray.)

Insol. in NH₄OH+Aq containing NH₄Cl+

Aq. Very sl sol. in Li₂CO₅+Aq. (Gmelin.) Sol. in H₁SO₄+Aq. (Berthier.)

Sol. in H₂O₄+A₄, from which it is pptd. by NH₄ salts, but not by boiling. Sol. in boiling NH₄Cl+Aq when freshly pptd. Sol. in NH₄F+Aq. (Helmholt, Z. anorg. 3. 130.)

Solubility of GlO₂H₂ in NaOH+Aq.

G Na m 20 cem	G GI m 20 cem,
0.3358 0.6717	0 0358 0 0882
0 8725	0.1175

1.7346

(Rubenbauer, Z. anorg, 1902, 30, 334.)

0 2847

When gluenum hydroxide is treated with alkali, more dissolves at first than corresponds with the true equilibrium under the prevailing conditions, for such solutions spontaneously deposit more or less glueinum hydroxide according to the concentration. (Rubenbauer.)

Solubility of freshly pptd. GlO₂H₂ in NaOH+ Aq at room temperature.

milimols Na per l	G GIO dissolved in 11
649	3.6
540	2 92
540	2 53
483	1 69
383	1.64
388	1 53
386	1 45
390	1 24

In the first two cases the values were obtained by adding to GiCl₂+Aq at 0°, ice cold NH₄OH and treating the ppt with NaOH+Aq. In the remaining cases by dissolving basic GiCO₂ in HCl and pouring into NaOH+Aq. (Haher, Z. anorg, 1904, **38**, 3836).

Solubility of GlO₂H₂, which is one week oldin NaOH+Ao at to.

NuOII	t°	G G10 m 11
%-N 1N 2N 1N 1N 2N 2N 2N	20-23° 20-23° 20-23° 50-53° 50-53° 50-53° 100° 100°	0.060 0 170 0 570 0 080 0 230 0 900 0.080 0.290 1 020

(Haber.)

Solubility of GlO₂H₂ in NaOH+Aq at 25°.

Na	GI
0 268	0.0330
0 318	0 0492
0.446	0 0841
0 520	0.089
0 563	0 101
0.801	0 143
0 854	0 202

(Wood, Chem. Soc. 1910, 97, 884.)

Insol. in NH₄OH+Aq and in alkyl amines. (Renz, B. 1903, 36, 2753.) Sol. in GISO₄+Aq. (Parsons, J. phys.

Chem. 1907, 11. 658.)

A form mool, in acids and alkalies can be

obtained by sufficiently long heating in boiling H₂O, Na₂O₃+Aq, NH₂OH+Aq, or solutions of NaOH or NOH so oil that the GlO₂H₂ is either insol or very all soll therein, (van Oordt, C. C. 1906, I 108) 100 ccm. of givernue+Aq containing about

60% by vol. of glycerine dissolve 0.1 g GlO. (Müller, Z. anorg 1905, 43, 322) Contains '/₂H₄O (Schaffgotsch); '/₂H₄O (Atterberg).

Solubility of GlO	₂H₂, which has	been boiled with a	ılkalı, ın varıous solvents.
Alkah used	Time	Solvent	Solubility
* 10-N NaOH	2½ hrs.	0.39-N NaOH 0.97-N NaOH 2.0-N NaOH	1 mol, GlO ₂ H ₂ : 331 mole NaOH 1 mol, GlO ₂ H ₂ : 183 mole NaOH 1 mol GlO ₂ H ₂ : 91.8 mole NaOH 1 mol, GlO ₂ H ₂ : 49 mole NaOH
NaOH NaOH	Long time 2 hrs.	2.0-N NaOH 10-N K ₂ CO ₂ Dil. HCl Hot cone. HCl Dil. acetic acid	1 mol GlO H ₂ : 49 mole NaOH Insol. Sl sol. Slowly sol. Almost usol.
кон	Till flocculent		Insol.
	ppt. appeared	1-N NaOH Warm dil. HCl	" Sol.
½-N Na ₂ CO ₃	3 hrs.	I-N NaOH Dil HCl	Easily sol.
1/2-N Na ₂ CO ₃ for then 1/10-N Na ₂ CO ₃	3 hrs. and	Di nei	
for	4 hrs.	1-N NaOH Dil, HCl	Sl. sol. Slowly sol.
14-N K ₂ CO ₃ 10-N K ₂ CO ₃	6 hrs. Short time	10-N K ₂ CO ₃ 1-N NaOH Cold 10-N K ₂ CO ₃	Insol, Eastly sol. Very slowly sol.

½-N NaOH (Haber.)

NH₄OH
Glucinum iodide, GII₂.

Sol. in H₂O with evolution of much heat.
(Wohler.)
Decomp. in moist air and by H₂O

5 hrs.

Sol. in abs alcohol. Insol. in most neutral organic solvents, as benzene, toluene, etc. (Lebeau, C. R. 1898, 126, 1273.)

Insol. in C₅H₅, C₇H₅ and oil of turpentine. Easily sol. in CS₂. Sol. in anhydrous alcohols without evolution of heat. (Lebeau, A. ch. 1899, (7) 16, 490.)

Glucinum iodide ammonia, 2GII2, 3NH3.

Ppt (Lebeau, A, ch. 1899, (7) 16. 492.)

Glucinum oxide, GlO.

Crystalline. Insol. in acids except conc. H₂SO₄. (Ebelmen, C. R. 32, 710.)

Amorphous. Absolutely insol in H₂O.

The higher the temp, to which the substance
has been heated the more insol, is it in acids.
Insol, in NH₂OH+Aq or (NH₂)₂CO₃+Aq.
Insol, in cone. NH₄Cl+Aq, or KOH, and

NaOH+Aq. (Rose.)
When obtained by ignition of GlSO₄, it is very slowly but completely sol, in HCl, and

very slowly but completely sol. in HCl, and H₂SO₄+Aq. (Rose.)
Insol. in hydracids. Sol. in conc. H₂SO₄. (Lebeau, C. R. 1896, 123, 819.)

Insol. in liquid NH₃. (Gore, Am. ch. J. 1898, 20, 828.)

Glucinum peroxide basic, 2GlO₂, 3GlO. t. +8½H₂O. (Komarovski, Chem. Soc.

+8½H₂O. (Komarovski, Chem. Sc 1913, **104** (2) 707.)

Very sl. sol.

Glucinum oxybromides.

Sol. in H₂O if three or less equivalents of base are present to one of acid; insol. if more of the base is present. (Ordway, Am. J. Sci. (2) 28. 207.)

Glucinum oxychloride, Gl₂OCl₃=GlO, GlCl₂.

Insol, in H₂O.

3GlCl₂, 2GlO+2H₂O (?). Sol. in H₂O. (Atterberg.) GlCl₂, 3GlO+3H₂O (?). Sol. in H₂O, but

GlCl₃, 3GlC+3H₃O (7). Sol. in H₂O₂, but solution soon becomes cloudy and deposits a fine ppt. By boiling the solution it is decompinto above salt, and GlCl₃, 12GlO₂H₃+ 10H₂O, which is insol. in H₂O; decomp. into GlO₂H₃ by washing. Sol. in acids. (Atterberg.)

Glucinum oxyfluoride, 5GlF2, 2GlO.

Readily sol. in H₄O. (Lebeau, C. R. 1898, 126, 1419.)

Glucinum phosphide.

Decomp. by H₂O. (Wöhler.)

Glucinum selenide.

Sl. sol, m H₂O, (Berzelius.)

Glucinum sulphide.

Slowly sol without decomp, in H.O. but easily decomp, by acids, (Wohler,)

Gold, Au.

Gold which has been pptd. from AuCls+ Aq by FeSO, is al. sol. in HCl. (Awerkiew, Z. anorg, 1909, 61, 10.)

Not attacked by H2O. Insol in HNOs or HCl+Ag. Easily sol. in aqua regia or any mixture evolving Cl or Br. Sol. in science acid, or antimonic acid+Aq; less easily in arsenic acid+Aq. Sol. in mixtures of HCl and nitrates, or HNO; and chlorides; also in $(NaCl+KNO_1+K_2Al_1(SO_4)_4)+Aq$ (?). Insol in H₂SO₄, except in presence of KMnO₄, HNO₃, or HIO₃ Sol. in a solution of I in ether in direct sunlight.

Sol. in solutions of ferrie, and cupric salts. Sol. in HCl+Aq containing H₂CrO₄, H₂MnO₄, H₃SeO₄, H₃AsO₄, or FeCl₃ (Wurtz). Attacked by fuming HCl (sp. gr. 1.178) at ord, temp. in direct light, especially in the presence of a trace of MnCl₂, but not attacked in the dark even in the presence of this salt. (Berthelot, C. R. 1904, 138, 1298.)

100 ccm. hot cone. HCl dissolve 0.008 g yellow Au powder in 4 hours. (Hanriot and Raoult, C. R. 1912, 155, 1086.)

Upon boiling 25 and 50 ee. HCl+Aq (sp. gr. I 178), dil. to 125 cc. with 250 mg sheet Au 1/4 in, square, 0 009 in thick, weighing 250 mg, for several hours, there was no loss

of weight of Au. (McCaughey, J Am. Chem.) Soc 1909, 31, 1263.) From 5 g. finely divided ordinary yellow

gold; 100 cc, HNO, of 22° B. dissolve 0.002 g. in 2 hrs. 100 cc. HNO, of 32° B. dissolve 0.0119 g.

in 2 hrs. 100 cc, HNO, of 36° B, dissolve 0.028 g

100 cc. HNO, monohydrate dissolve 0.076 in 2 hrs. (Hanriot and Ragult, C. R. 1912) 55, 1085.)

From 5 g. brown gold:

100 ccm, HNO₁ of 22° Baume dissolve 0.006 g. in 2 hrs. 100 ccm, HNO, of 32° Baume dissolve 0.039 g. in 2 hrs

100 ccm HNO, of 36° Baume dissolve 0.078 g. in 2 hrs

100 ccm. HNO; monohydrate dissolve 1.540 g. in 2 hrs. (Hanriot and Raoult.) Sl. sol. in boiling HNO, (sp. gr. =1,42).

The solution deposits Au by standing several days. (Dewey, J. Am. Chem. Soc. 1910, 32, 320.)

Best composition of squa regis for dissolving Au is 200 cc. HCl (sp. gr. 1.1946) 45 cc.

HNO, (sp. gr. 1.4) and 245 cc. H₂O. 1 pt. Au is sol. in 4.3 pts. of such a mixture. (Priwoznik, C. C. 1910, H. 1743.)
Sol. in 1 pt. HNO₂+4 pts. HCl as representation senting the most economical mixture. (Priwoznik, Chem. Soc. 1911, 100. (2), 484.)

Easily sol, in nitrosulphonic acid from sulphuric acid manufacture, when mixed with equal parts conc. HCl+Aq (Borntrager, Rep. anal. Ch. 1887. 741.)

Sol in hot cone, H2SO4 in the presence of MnO₃, Mn₂O₄, Mn₅O₄, PbO₂, Pb₂O₃, Pb₃O₄, CrO₄, CrO₄ and N₁₂O₃ Solution also takes place slowly in the cold Sol. in hot H2SO4+ KMnO4. Slowly sol. in cold, more rapidly in hot H2SO4+HNO4. (Lenher, J. Am. Chem. Soc. 1904, 26, 550.

Sol in a hot solution of crystalline telluric acid in H2SO4 or H2PO4.

Sol. in hot H2PO4 in the presence of MnO4. Mn2O2, Mn2O4, the higher oxides of lead. CrO₂, chromium tetroxide and nickelic oxide. Solution takes place more slowly in the cold. Sol. in hot H₈PO₄ in the presence of KMnO4. Slowly sol. in a cold, more rapidly sol. in a hot mixture of H₂PO₄ and

Sol. in hot arsenic acid in the presence of (Lenher, J. MnO₂, Mn₂O₃ and Mn₃O₄. Am. Chem. Soc. 1904, **26**, 550

Gold leaf is not attacked by cold cone. H₂SeO₄, when completely free from halogens, but is dissolved by cone H₂SeO₄ at 300° (Lenher, J. Am. Chem. Soc. 1902, 24, 354.)

Solubility of thin sheet Au in HCl solution of non alum Mg Au dissolved hours 1g Fr 1g Fc 2g Fe 2g Fe

		25 cc HCl	50 ec HCl	25 ec. HC	50 cc. HCI
		7	Temp. 38-	43°.	
	16	1.00	1 30	1.08	1 47
ı	22 40	1 12 1.52	1 55 2 15	1.20 1.82	1 81 2.75
,	43 64	1 71	2 34 3 10	2.02	2.95 3.79
	72 89	2.12	3.30 3.65	2 83 3 22	4.05 4.65
1	100 113	2.40 2.45	3 76 3 95	3 38 3 51	4 81 5 12
1	124 161	2 60 2 78	4 09 4.36	3 63 3 95	5 39 5 96

4 49 Temp. 98-100°

4 11 6 22

2 90

1	1 13	0.78	1 15	1.27
2	1 99	1 74	2 56	2 86
4	3 46	3.31	4 55	5 06
16	10 09	11.37	13 15	15 56
20	12.20	13 72	15.59	19 41
24	14.37	16 49	17 96	23,29
36	17 38	23 27	22.07	31.73
42	18 79	26 30	24.62	35.29
54	20 94	31.39	29.49	42.11
591/2	21 64	33 12	30 64	44 43

of Fe as iron alum, the sp gr of the HCI was 1.178, and the solutions diluted to 125 cc. (McCaughey, J. Am. Chem Soc. 1909, 31. _ 1263.)

The solvent action of ferric salt occurs even in presence of a ferrous salt, but deereases with increase of concentration of ferrous salt (McCaughey)

Solubility of thin sheet Au in HCl solution

	Of CaCi2	2
	Mg Au desolved	1
Time, hours	1 g Cu 1 g Cu 2 g Cu 2 g Cu 30 cc HCl	1
	Temp. 38-43°.	2

					ĺ
19 25	0 03	0 26 0 36	0 05	0 39 0 54	l
43	0 10	0 54	0 14	0 94	ľ
4912 6612	0.12	0 61	0 15	1 07 1 40	١
78	0 14	0.87	0 22	1 58 1 75	ı
91 102	0 14	0 92 1 02	0 24 0 27	1 90	1
139	0 18	1.34	0 32	2 45 2 84	ĺ
163	0 20	1 00	0.00	201	1

Temp. 98-100°.

1	0 15	0 34	0 17 \ 0.55 \ 2.12 \ 2.78 \ 3.59 \ 5.07	0 46
4	0 55	1.23		1 35
16	1 34	5.00		8 80
20	1 63	6.53		11 86
26	2 17	9.13		15 70
38	3 13	13 98		23 14
43	3.61	16.54	5.77	26.62
48	4 07	19 26	6.26	36.80
60	4 82	26 37	7.47	39.09

Conditions the same as above for HCl+ iron alum. (McCaughey.)

Finely powdered gold is sol, in cone HCl in the presence of alcohol, etc.

0.0302 g. Au. is sol, in 100 cc. HCl+100 cc. CH,OH.

0.0230 g. Au. 18 sol, in 100 cc. HCl+100 cc. CHCl. 0.0066 g. Au, is sol, in 100 cc. HCl+100 cc.

C.H.OH. 0.0190 g. Au. 18 sol, in 100 cc. HCl+100 cc.

C_tH₁₁OH. 0.0125 g. Au. CCl_tCH(OH)₁. Au, is sol. in 100 cc. HCl+50 cc.

(Awerkiew, C. C. 1908, II. 1566.)

The solution contained the given amounts Solubility of Au which has been pptd. from AuCl₂+Aq by various precipitants in HCl+formaldehyde

(fl), ()	HCl (1 14) cem	Au dis solved g	An used was pptd from AuCla+Aq by
150 100 125 100 150 250 500 100 100 150 250 150 100 100	150 100 25 200 150 250 500 200 200 200 200 125 75 200 200 120 200	0 0007 0 0006 0 0008 0 0009 0 0003 0 0002 0 0008 0 0004 0 0006 0 001 0 0013 0 0006 0 0003	FeSO ₄ sugar oxalic acid FeSO ₄ oxalic acid u sugar FeSO ₄ oxalic acid u sugar FeSO ₄
180 360 360 209	540 720 720 720 400	0 0 001 0 0019 0 0013	FeSO, sugar FeSO,

In the last four cases the solubility was determined at the ordinary temp., in the first sixteen the gold was boiled with the mixture of HCl and HCHO.

(Awerkiew, Z. anorg, 1909, 61, 3.)

Solubility of Au in boiling HCI+ paraformaldehyde.

(CH ₂ O) ₃	HC1 (1 19) g-	Dresolved Au g	Au used was pptd from AuCls+Aq by
5 25 20 20 20 20 20 20 20 20 40 20 20 10 10 60	25 25 125 400 400 400 400 400 400 400 300 300 200 200	0 0005 0 0004 0.006 0.0024 0.003 0 0005 0 0044 0.0005 0.001 0.0024 0.003 0 0008 0 0006 0 0015	FeSO ₄ oxahe aeid sugar CHOH CH ₄ OH sugar formic acid CH ₂ OH FeSO ₄ oxahe aeid FeSO ₄

(Awerkiew.)

Solubility of Au in boiling HC	1+methyl

368

CH ₂ OH (00° 5) com.	HC1 (1.19) cem	Dissolved Au g	An used was pptd from AuCl ₂ +Aq by
100	100 150	0.0302	FeSO ₄ oxalic acid
150 150	150	0.0033	Sugar
25	25	0 001	CHOH
50	50	0 0002	oxalic acid
50	50	0 0005	CH*OII
50	50	0 0002	oxalic acid
50	50	0 0015	FeSO₄
50	50	0.002	." .
100	100	0 0009	oxalic acid
500	500	0 0126	FeSO ₄
1000	1000	0.0281	ü
50	100	0.0084	ü
100 100	200 300	0 0000	- "
75	25	0.005	HCOH
90	30	0.005	110011
75	25	0 0014	"
80	20	0 0005	11
100	50	0 0018	FeSO ₄
100	50	0.0008	CH ₂ OH
50	200	0.001	"

(Awerkiew.)

Solubility of Au in boiling HCl+ethyl alcohol.

HCI (1.19) ecm	Dusohed Au g	An used was pptd from AuCh+Aq by
50	0.0006	FeSO, -
		- 44
400	0.0017	"
50	0.0003	sugar
300	0.0004	n
100	0 0015	"
200	0 0055	C ₂ H ₂ OH
250	0 0021	sugur
300	0.0197	FeSO.
1000	0 007	CH ₂ OH
150	0 008	ii.
	50 200 400 50 300 100 200 200 200 1000	0.199 0.0006

(Awerkiew.)

Solubility of Au in boiling HCl+amyl alcohol.

	,		
C:H:iOH	HC1 (1 19) g	Dissolved Au g.	Au used was pptd from AuCls+Aq by
100 100 150	100 200 150	0 019 0.0048 0.0024	FeSO.
100 150	100	0.0027	sugar
300 200 500	100 200 500	0 0023 0 0067	FeSO, C ₆ H ₁₁ OH

(Awerkiew.)

Solubility of Au in boiling HCl+phenol,

C _i H _i OH	HCl (I 19) g	Dissolved Au g.	Au used was pptd from AuCla+Aq by
10+25	100 40	0 001	C ₆ H ₆ OH oxalic acid
10 20	50	0 0003	· ·
$\frac{25}{25}$	100 150	0.0005	FeSO ₄ HCOH
50 25	200 250	0.0005	FeSO.
25	250	0.0012	"

(Awerkiew.)

Solubility of Au in boiling HCl+chloroform.

CHCl ₃	HCl (1 19) g.	Dissolved Au g	Au used was pptd from AuCls+Aq by
50 100	100 100	0 0009	FeSO.
100	100	0 0017	"
150 200	400	0 0024	sugar
250 300	250 300	0.002	"

(Awerkiew.)

Colloidal gold is sol. in dil. alkalies. (Paal, B 1902, 35. 2236.) Rather quickly sol. in 10–15% solution In KT+Aq. Very slowly sol, in 5% solution of I in KI+

Aq. Scarcely sol. in more dil. solution of I in KI+Aq.

Easily sol. in 10% NH₄I+I Less casily sol. in 5% NH₄I+I (Dbring.) Sol. in cold Na₈S+Aq when Na₂S is present in proportion of 843 pts. Na₂S to 1 pt Au. (Becker, Sill, Am. J. (3) 33. 199.)

In finely divided state Au is sol in boiling KCN+Aq. Not attacked by boiling HgCl₂

+Aq. (Vogel, J. pr. 20. 366.)

Solubility of Au (disks) in KCN+Aq with (A) oxygen passed through solution, and
 (B) agitated with oxygen.

% KCN	g Au dusolved in 24 hours	
/0 LECK!	A	В
1 5	0 00845 0.01355	0.0187 0.0472
20 50	0 0115	0.0814

(Maclaurin, Chem. Soc. 1893, 63, 729.)

The solution of Au in KCN+Aq is essentially hastened by sunlight. (Caldecott, Proc. Chem. Soc. 1904, 20, 199.)

The presence of oxygen is necessary for the solution of Au in KCN+Aq. The rate of solution of Au in KCN+Aq varies with the strength of the solution, being small for conc. solutions, increasing as the solution becomes more dilute, reaching a maximum at 0.25% KCN, and then again diminishing. (Maclaurin, Chem. Soc. 1895, 67, 211.)

Solubility of Au (staips) in dil. KCN+Au

% KCN	Mg Au dissolved in 24 hou
0 0005 0 001 0 001 0 0016 0 002 0 00325 0 004 0 008 0 016 0 0325 0 065	0.010 0.043-0.07 0.10-0.23 0.16 0.44 1.77 4.20 48.43 74.96 150.54 168.12

(Christy, Elektrochem Z 1901, 7, 205.)

Finely divided metallic gold is completely sol, at the ord, temp, in solutions of potassum ferrocyanide. Solution takes place very slowly even when the potassium ferroevanide solution is boiling. (Beutel, Z

anorg 1912, 78. 158.) Sol. in RbCl₄I+Aq. Pharm. 1894, 232, 30.) (Erdmann, Arch.

Not attacked by FeCls+Aq when air is excluded but very energetically attacked in

presence of HCl and oxygen. (MeIlhiney, Am. J. Scu., 1896, (4), 2, 293.)

Not attacked by several days heating with SOCl₂ at 150°. At 200° there is al.

with SOCl₂ at 150°. At 200° there is al. action in 10 days. (North, J. Am. Chem. Soc 1912, 34. 892.) SO₂Cl₂ in excess dissolves pulverulent Au

y several hours heating at 160°. (North, Bull. Soc. (4), 9. 647.)
Sol. in PCl₃. (Baudrimont, A. ch. (4) 2. 416)

Easily sol. in acid solutions of thiotarbamide especially in presence of suitable oxidizing compounds. (Moir, Chem. Soc 1906, 89, 1345.)

Gold arsenide, AuAs,

H₂O or alcohol slowly extracts As; HNO₁+ Aq converts into Au and H.AsO4. Sol. in aqua regia. Not attacked by cold, decomp. by hot conc. H₂SO4. (Tivoli, C. C. 1887. 778; J. B. 1887. 610.)

Gold bismuthide, Au. Bi.

Min. Maldonite, Sol. in agua regia.

Aurous bromide, AuBr.

Insol, in H₂O, (Thomsen, C. C. 1860. 606.)

Insol. in H₂O, HNO₃, H₂SO₄

Sol. in NH₄OH+Aq. with decomp. Decomp. by HBr and KBr+Aq. Sol. in KCN+Aq without decomp. Slowly decomp. by alcohol, ether, acetone and most CHCl_s. (Lengfeld, Am. Ch. J. 1901, 26, 325.)

Gold (auroauric) bromide, Au-Bra.

Not deliquescent. H₂O or ether dissolves out AuBr. (Thomsen, C. C. 1860. 606.)

Does not exist. (Kruss, B. 20, 640.) Existence is maintained by Petersen. (J. pr. (2) 46. 334.)

Auric bromide, AuBra.

Not deliquescent. Slowly sol in H_{*}O, more readily in ether. Can be recryst. from AsBra, SbBra, TiBra

or SnBr₂. (Lindet, Bull. Soc. 1886, (2) 45. Sol. in methyl acetate. (Naumann, B. 1909, 42, 3790)

Aurous phosphorus tribromide, AuBr, PBr. Decomp. by H.O. (Lindet, J pr. (2) 32. 494.)

Auric phosphorus pentabromide, AuBr., PBr. Decomp. by H₂O. (Lindet.)

Aurous bromide phosphorus trichloride, AuBr, PCls.

Decomp by H2O. (Landet.)

Auric praseodymium bromide, PrBr₂, AuBr₂+10H₂O. Very sol. in H₂O; sol. in conc HBr. (Von Schule, Z. anorg. 1898, 18. 355)

Aurous bromide ammonia. AuBr, 2NH.

Decomp. by H₂O and dil. HCl. Sol in agua regia, (Meyer, C. R. 1906, 143. 281.)

Gold carbide, Au₂C₂,

Ppt. Decomp by boiling H₂O without evolution of C₂H₂. Decomp. by HCl with evolution of C₂H₂. (Mathews, J. Am. Chem. Soc. 1900, 22. 110.)

Aurous chloride, AuCl.

Insol. in H2O, but gradually decomp. thereby into Au and AuCls. (Thomsen, J. pr. (2) 13, 341.)

Insol. in H₂O and dil. HNO₂. Decomp. by conc. HNO, to Au and AuCl., Sol. in HCl, HBr and in sol. of alkali

chloride and bromides, with decomp. Decomp. by alcohol, ether and acetone, (Lengfeld, Am. Ch. J. 1901, 26, 324.) Gold (auric) chloride, AuCl.

Deliquescent, Very sol in H₂O, Sol. in 1.47 pts. H₂O, (Abl.) Sol. in cone, HCl. or HNO.+An without decomp. AsCl₃ dissolves about 22% at 160° and 2.5% at 15°. Solubility m SbCl₃ is about the

same. Much less sol. in SnCl₄ or TiCl₄, SnCl₄ dissolving 4% at 160° and hardly a trace at 0°. Very sl. sol, in hot or cold SiCl₄.

(Lindet, Bull Soc. (2) 45, 149.) Sl. sol, in liquid NH₂. (Franklin and Kraus, Am. Ch. J. 1898, 20. 829)

Sol. in alcohol with gradual decomp (Gmelin) Sol. in other with decomp. in light from AuCl₃+Aq (Proust) Sol in volatile
oils with gradual decomp.

Sol. in ether. (Mylus, Z. anorg, 1911, 70, Very sol. in other. (Willstatter, B. 1903,

86. 1830.) Completely sol. in ether. (Frank, C. C., 1913, II, 541.)

Insol, in or decomp, by alcohol, ether, CS2, C.H. oil of turpentine, pentane, hexane, CHCl, CCl, ethyl nitrate, nitrobenzol, ethyl acetate, ethyl propionate and pyri-dine. (Lenher, J Am Chem. Soc 1903, 25. 1138)

+2H₂O. (Thomsen.)

Auroauric chloride, AusCla.

Decomp. by H2O into AuCl3 and AuCl (Thomsen, J. pr. (2) 13. 357.) Does not exist. (Krüss and Schmidt, J.

pr. (2) 38. 77.) Existence is maintained by Christensen (J. pr. (2) 46. 328.)

Auric chloride with MCI. See Chloraurate, M.

Chem. Soc. 59, 662.)

Auric nitrosyl chloride, AuCl. NOCl. Sol, in H₂O with decomp. (Sudborough.

Aurous phosphorus trichloride, AuCl, PCls. Decomp. by H2O. Sol. in about 100 pts. PCl, at 15°, and about 8 pts at 120°. Sol. in AsCl. (Lindet, C R. 101, 1492.)

Auric phosphorus pentachloride, AuCl. PCls. Decomp, by H.O Nearly insol, in PCl. Sol. in AsCl₃. (Lindet.)

Aurous potassium chloride, AuCl. KCl. Decomp. by H2O or HCl+Aq into KCl. KAuCl., and Au. (Berzelius.)

Auric potassium chloride.

See Chloraurate, potassium,

Auric selenium chloride, AuCl., SeCl., Decomp. by H2O. Sol. in AsCl2. (Lindet, C. R. 101. 1492.)

Gold (aurous) sodium chloride, AuCl. NaCl. Insol, m IIaO. Sol, m alcohol. (Meillet. J. Pharm 3, 417.)

Formula is 4NaCl. AuCl. AuCl. (Jorgen-

Auric sodium chloride. See Chloraurate, sodium.

Auric sulphur chloride, AuCla. SCl. Easily decomp, by H₂O, (Lindet, C. R.

Aurous chloride ammonia, AuCl. NH₁.

Ppt. Unstable (Diemer, J. Am Chem. Soc. 1913, 35, 554)

AuCl. 3NH₃. Decomp, by H₃O and dil. acids. Sol, in aqua regia. Sol in conc. H.SO.

with decomp. (Meyer, C. R. 1906, 143, 282.) AuCl, 12NH₃. (Meyer.)

Auric fluoride, AuFa. Very unstable

101, 1492.)

Is meanable of existence not only in presence of H.O but under the ordinary conditions met with in the laboratory and in nature. (Lenher, J. Am. Chem. Soc. 1903, 25. 1138.)

Auric hydroxide, AuO.H.

Nearly msol. in most acids. Easily sol. in very conc. HNO₃+Aq (Proust), from which all AuO₂H₃ is separated by dilution (Fremy). Extremely sl. sol in fuming HNO₃. Sol. in dil. HNO₃+Aq when pure (Krüss, A. 237. 281). Not attacked by H₃PO₄ Insol. in HF.

Sol, in HCl, or HBr+Aq (Fremy). Sol, in H₂SeO₄+Aq. (Mitscherlich.) Sl sol, in conc. H₂SO₄, somewhat sol, in

HC₂H₂O₃+Aq. (Rose.) Nearly maol. in cold KOH+Aq, but dis-solved on boiling. Insol. in NH₄OH+Aq or alkali carbonates + Aq (Rose). Sl. sol. in boiling CaCl₂+Aq, NaCl+Aq, BaCl₃+Aq (Pelletier). Sol. in NH₄CN, and KCN+Aq

(Himly) Sl. sol. in KCl, or NaCl+Aq. (Pelletier.) Sol. in K₄Fe(CN)₆+Aq at ord, temp. rapidly on boiling. (Beutel, Z. anorg. 1912. 78, 154.)

AuO, OH = Au₂O₃, H₂O, (Kruss.)

Auroauric hydroxide, $Au_3O_2(OH)_2 = 3Au_2O_2$ +2H₂O.

Insol. in boiling cone. KOH+Aq. Decomp. by conc. HCl or HNO.+Aq into Au and Au₂O₄, which dissolves (Schöttlander, A. 217. 336.)

Aurous iodide, AuI.

Insol. in cold, decomp. by hot H2O, H2SO4 HCl, or HNO.+Aq, with separation of Au. Decomp, immediately by ether, more slowly by alcohol.

Partially sol. in KI, Fels, or HI+Aq in a litre. This solution may be concentrated (Pellotter). SI attacked by NH,OH, or without coagulation. The solution is coagul-NaCl+Aq, at 35° (Fordos). Instantly de, lately by dil. HNOs, or HCl+Aq, more easily comp by KOH+Aq

Gold (auric) iodide, Aula.

Insol. in H₂O. Sol. in alkalı iodides, and HI+Aq. Decomp on air or by alkalies. (Johnston, Phil. Mag. J. 9, 266.)

Aurous iodide ammonia, Aul. NH. Decomp. by H₂O or dil. acids. (Meyer,

C R 1906, 143, 281.) Sol. m aqua regia, AuI, 6NH₃. (Meyer.)

Aurous oxide, Au₂O.

Insol. in H2O or alcohol. Decomp. by boilnusol in H₂U or alcohol. Decomp. by boil-ing with HCl+Aq into Au and AuCl₂. H₂SO₄, HNO₃, or HC₂H₂O₂+Aq do not attack. Sol. in cold aqua regna. Sol in HI

+Aq. Sol. in KOH, or NaOH+Aq when freshly precipitated (Berzelius.) According to Kruss (A. 237, 281) all hitherto prepared Au₂O is impure. Pure Au₂O is sol in cold H2O when freshly precipitated, from which hydroxide is precipitated by boiling. Partly sol, in HCl, or HBr+Aq. Sol in KOH, or NaOH+Aq when freshly precipitated. Not affected by any other acid or

solvent. (Kruss.) The so-called solution of Au₂O in H₂O is in reality a coloidal suspension. (Vanino, B. 1905, 38. 462.)

Auric oxide, Au₂O₂, See Auric hydroxide.

Auroauric oxide, Au₂O₂.

Sol in cold HCl+Aq; forms insol. comp, with HF. (Prat, C. R. 70, 842.) Obtained pure by Krüss (A. 237. 296.)

Gold phosphide, Au.Pa.

Not attacked by HCl+Aq. HNO, forms H,PO, and leaves undissolved Au. (Schrötter, J. B. 1849, 247.)
AuP. Decomp. on air or with H₂O. (Ca-

vazzi, Gazz. ch. it. 15. 40.) Au₂P₄. Readily attacked by aqua regia or Cl₂+Aq. (Granger, C. R. 1897, **124**, 498.)

Gold purple (mixture of Au and SnO₂). Insol, in H.O. Easily sol, in aqua regia

HCl+Aq dissolves all Sn and leaves Au. Boiling HNO.+Aq dissolves a little Sn. Insol. in boiling KOH+Aq (Berzelus).

KOH+Aq extracts excess of SnO₂, and the residue becomes sol. in H₂O, from which it is pptd. by NH₄Cl+Aq. (Figuier, A. ch. (3) 11, 353.)

Sol., when still moist, in NH₄OH+Aq, but insol. if it has been dried,

Obtained in colloidal state in aqueous solution containing 0.58 g. Au. and 5.41 g. SnO. 28. (2) 350.)

by dil. H₂SO₄+A₀; also by KCl, HgCl₂, FeSO4+Aq, and many other salts Not coagulated by alcohol, but easily when ether is added to the alcohol (Schneider, Z. anorg-5.80.)

Gold (auric) selenide, Au₂Se₂.

HNO₁+Aq dissolves out Se. Sol. in aqua regia or alkali sulphides + Aq. (Uelsmann, J. B. 1860. 90.)

Aurous sulphide, Au-S.

Easily sol, in H₂O when freshly prepared, but precipitated from aqueous solution by HCl, KCl, or NaCl+Aq When dried is insol. in H2O.

Insol. in boiling dil. or conc. HCl, or H₂SO₄ +Aq. Easily sol. in aqua regia, HCl+Aq with KClO, etc. Slowly sol in alkalı monosulphides + Aq. Easily sol. in polysulphides +Âq

Insol. in KOH+Ao. Sol. in KCN+Ao. (Kruss, B. 20, 2369.)

Known also in colloidal state in aqueous solution containing 1.74 g. Au₂S per l (Schneider, B. 24, 2241.)

Auric sulphide, Au₂S₃.

Insol, in H₂O and acids except agua regas: sol. in alkali sulphides, or KOH+Aq. (Berzelius.)

Does not exist (Krúss, B 22, 2369), but Does not exist (kruss, 18 22, 2009), Dut has since been made by Antony and Luchesi (Gazz, ch. it 20, 001). Insol. in HCl, or dil. HNO,+Aq. Decomp. by cone. HNO, KOH, or NaOH-Aq with separation of Au. Si KCN-Aq; Geomp. by (KH₂),S-Aq. Sol. in cold Na₂S or K₂S+Aq; decomp. on bolimo (Antony and Luchesia Gazz, ch. it, 21, inc. (Antony and Luchesia Gazz, ch. it, 21, inc. (Antony and Luchesia Gazz, ch. it, 21, inc. (Antony and Luchesia Gazz, ch. it, 21, inc. (Antony and Luchesia Gazz, ch. it, 21, inc. (Antony and Luchesia Gazz, ch. it, 21, inc. (Antony and Luchesia Gazz, ch. it, 21, inc. (Antony and Luchesia Gazz, ch. it, 21, inc. (Antony and Luchesia Gazz, ch. it, 21, inc. (Antony and Luchesia Gazz, ch. it, 21, inc. (Antony and Luchesia Gazz, ch. it, 21, inc. (Antony and Luchesia Gazz, ch. it)

ing. (Antony and Luchesi, Gazz. ch. it. 21, 2. 209.) Insol. in ether. (Hofmann, B. 1904, 37.

Auroauric sulphide, Au₂S₂.

Insol. in H₂O or acids except aqua regia. Sl. sol. in cold alkali monosulphides + Aq, but easily sol, on warming. Sol in cold polysulphides + Aq, but less in ammonium polysulphide than the other alkalı polysulphides

Not attacked by cold, but easily sol. in hôt KOH+Aq. Sol. in KCN+Aq. (Hoffmann and Kruss, B. 20, 2704.) Obtained also in colloidal state in aqueous

solution containing 0.8 g. per l. (Schneider.) Insol. in Na₂S+Aq. sat. with S. (Ditte, A. ch. 1907, (8) 12. 273.)

Aurous potassium sulphide, Au₂S. 3K₂S.

(Antony and Lucchesi, Gazz, ch. it 1896.

Au₂S, 4K₂S+12H₂O. Very sol. in II₂O. (Ditte, C. R. 1895, **120**, 322.)

Gold silver sulphide, Ag₃AuS₂ Ppt. (Lucchesi, Gazz. ch it 1896, **26**, 350-53)

Aurous sodium sulphide, NuAuS+HI₂O.

Sol. in H₂O and alcohol. (Yorke, Chem.
Soc. O. J. 1, 235.)

Soc. Q J. 1, 235) +5H₂O Sol. in H₂O. (Ditte, C R. 1895, 120, 321.)

Na₃AuS₂. Sol. in H₂O. (Lucchesi, Gazz ch. it 1896, 26, 350-53) Au₂S, 2Na₂S+20H₃O. Very sol. in H₂O (Ditte, C. R. 1895, 120, 321.)

Gold telluride.

Ppt, (Berzehus, Pogg. 8, 178)

Gold silver telluride, Au₂Te₂, Ag₂Te.

Min. Sulvanita. Sol. in HNO₂+Au with

separation of Au, in aqua regia with separation of AgCl.

3Ag₄Te, Au₂Te. Min. Petzile.

Hartshorn, salts of.

See Carbonate carbamate, ammonium hydrogen.

Helium, He. Coefficient of absorption for H₂O at 18.2°=0 0073. (Ramsay, Z phys. Ch. 1906, 55, 347.)

Absorption of helium by H₂O at to and 760 Sesquihydraurylamine, (AuOH) N, NH₈=

mm, pressure.		
t ^a	Coefficient of absorption	
0	0 01500	
0.5	0 01487	
5	0.01460	
10	0.01442	
15	0 01396	
20	0 01386	
25	0 01371	
30	0 01382	
35	0 01380	
40	0 01387	
45	0 01403	
50	0.01404	

(Estreicher, Z. phys. Ch. 1899, 31. 184.) Absorption by H₂O at t°.

Coefficient of absorption

0	0 0134
10	0.0100
20 30	0.0138
	0.0161
40	0.0191
50	0.0226

Completely insol. in benzene and in alcohol: (Ramsay, Chem. Soc. 1895, 67. 684)

Hexamine chromium compounds. , See Luteochromium compounds.

Hexamine cobaltic compounds, Co₂(NH₂)₆X₆

See Dichrocobaltic compounds. Co(NH₂)₅X₃. See Lateocobaltic compounds.

Hexamine iridium chloride, Ir₂(NH₃)₃Cl₄. ·
See Iridotreamine chloride.

Hexathionic acid, H2S4O4.

Known only in aqueous solution, which decomposes rapidly, even in presence of free sulphuric acid. (Debus, A. 244, 76.)

Potassium hexathionate, K₂S₃O₄. Sol. in H₂O, with rapid decomp. Not

obtained in pure state. (Debus, A. 244. 76.)

Holmium, Ho.

A. 235, 341.)

Holmium oxide, Ho₂O₃.

(Cleve, C R. 89. 478; 91. 328.) Consists of at least two elements. (Lecoq de Boisbaudran, C. R. 102. 1005.)

Consists of seven elements. (Kruss and Nilson.).

| Sesquinydraurylamine, (AuOH)₈N, NH₈= Au₂N₂+3H₂O. Decomp. by boiling with H₂O. (Raschig,

Hydrazidophosphoric acid.

Berlum hydrazidophosphate,

OP(N₂H₄)O₂Ba. (Ephraim, B. 1911, **44**, 3420.)

Lead hydrazidophosphate, OP(N₂H₈)O₂Pb. Easily sol. in HNO₅. (Ephram.)

Determine bud-seld-st-set-t-

Potassium hydrazidophosphate, OP(N₂H₄)(OK)₂, (Ephraim.)

Sodium hydrazidophosphate, OP(N₂H₃)(ON₃)₂.

Can be cryst, from dil. alcohol. (Ephraim.)

Hydrazine, N₂H₄=NH₂--NH₂.

Very sol in H₂O. (Curtaus, B. 20. 1632.) Very hydroscopic; decomp. by H₂O; solvent for sulphur, KCl, KBr, KNO₂. (de Bruyn, R. t. c. 1894, 12. 433–40; Chem. Soc.

1895, 68 (2) 347.)
Mixes in all proportions with alcohols;
sl. sol. in organic solvents. (Lobry de Bruyn,

(Antropoff, Roy. Soc. Proc. 1910, 83. A 480.) | Chem. Soc. 1897, 72 (2) 22.)

Hydrazine amidosulphonate, N₂H₄, HSO₅, NH₂.

Very sol. in H₂O. (Sabancjeff, Z. anoig. 221) 1899, 20, 22.)

Hydrazine azoimide, N₂H₄, HN₅.
Deltquescent. Easily sol in H₂O. Sl. sol. m alcohol, and can be crystallised therefrom. (Curtus. B. 24, 2344.)

Hydrazine borate, (N₂H₄)₂(B₂O₃)₆. Sol. in H₂O. (Dschawachow, C C. 1902, I, 1394)

(N₂H₄)₂(H₂B₄O₇)₂ Sol. in H₂O. (Dschawachow, C. C. 1902, I. 1394.) +5H₂O. Sol. in H₂O. (Dschawachow, C. C. 1902, I. 1394.) +10H₂O Ppt. (Dschawachow, C. C. 1902, I. 1394.)

Hydrazine cuprous bromide chloride, N₂H₆Cl, N₂H₆ Br, 3CuB₁.

N₂H₅Cl, N₂H₅ Br, 3CuB₁. (Ranfalds, Real Ac. Lunc, 1906 (5) **15**, II.

95)

Hydrazine mercuric bromide, HgBr₂, 2 (N₂H₄, HBr)+H₂O Very sol, in H₂O, sol. in alcohol and acetone.

Sl. sol. in acetic ether. Insol. in ethyl ether. (Ferratim, C. A. 1912. 1612.)

Hydrazine zinc bromide, 2N₂H₄HBr, ZnBr₁ +H₂O.

Very sol. in H₂O; sol. in alcohol and acetone. (Ferratim, C. A. **1912**, 1612.)

Hydrazine carbonate.

Very deliquescent, but only sl. sol. in H₄O. Sl. sol in alcohol. (Curtus and Jay, J. pr. 1889, (2) 39. 41.)

Hydrazine zinc carbonate hydrazine, Zn(CO₂, NH, NH₂)₂, 2N₂H₄.

Easily sol. in H₂O. (Ebler and Schott, J. pr. 1909, (2) **79**, 72.)

Hydrazine chlorate, N₂H₄, HClO₃. Very sol in H₂O; sl. sol in alcohol Insol. n ether, CHCl₂ and benzol. (Salvadori, Gazz, ch. it 1907, 37, (2) 32.)

Hydrazine dichlorate, N₂H₄, 2HClO₄.

Ppt. Decomp in aq. solution. (Turrentine, J. Am. Chem. Soc. 1915, 37, 1123.)

Hydrazine cupric chloride, N₂H₃Cl, CuCl₂+ ½H₂O.

Decomp. by H₂O. (Ranfaldi, Real. Ac. | Very deliq Linc. 1906, (5) **15**, H. 95.) +2H₂O. Decomp. by H₂O. (Ranfaldi.) (2) **42**. 536.)

Hydrazine mercuric chloride, N₂H₃Cl, HgCl₂. (Hoffmann and Marburg, A 1899, **305**, 221)

Hydrazine dithionate, N₂H₄, H₂S₂O₆.

Sol. in H₂O, decomp. on standing in aq. solution (Sabanejeff, Z. anorg. 1899, 20. 21) 2N₂H₄, H₂S₁O₆ Sol in H₂O. (Sabanejeff.)

Hydrazıne fluosilicate, N₂H₄, H₂SıF₄.
Easily sol, in H₂O.
Difficultly sol, in ethyl and methyl alcohol.

Difficultly sol, in ethyl and methyl alcoho (Ebler, J. pr. 1910, (2) 81. 552.)

Hydrazme fluotitanate, (N₂H₄)₂, H₂TiF₅+ 2H₂O Ppt. Sol. in H₂O. (Ebler, J.p r. 1910, (2) 81, 555.)

Hydrazine monohydrobromide, N₂H₄, HBr. Very easily sol. in H₂O or hot alcohol. (Curtius and Schultz, J. pr. (2) 42. 537)

Hydrazine dihydrobromide, N₂H₄, 2HBr. Easily sol. in H₂O. Si. sol. in alcohol. (Curtius and Schulz, J. pr. (2) 42, 535.)

Hydrazine monohydrochloride, N₂H₄, HCl. Extremely sol. in H₂O. Sl. sol. in boiling aboute alcohol. (Curtius and Jay, J. pr. (2) 39, 38.)

Hydrazine drhydrochloride, N₂H₄, 2HCl.
Easily sol. in cold H₂O, sl. sol. in hot

alcohol. (Curtius, l c) Sol. in 2.67 pts H₂O at 23° Sp. gr. of sat. solution at 20°/4° = 1.4226. (Schiff, Z. phys. Ch. 1896, 21. 292)

Sp. gr. of aqueous solution at 20°.

% salt	Sp gr.
25	1 1183
20 15	1.0923 1.0675
10	1.0436 1 0206
0	1 0200

(Schiff, Z phys. Ch. 1896, 21, 292.) Nearly msol. in hot absolute alcohol

(Curtuus and Jay, J. pr. (2) 39. 37.) Hydrazine dihydrofiuoride, N₂H₄, 2HF.

Easily sol. in H_2O . Nearly msol. in alcohol, (Curtius and Schulz, J. pr. (2) 42. 533.)

Hydrazine monohydroiodide, N₂H₄, HI. Easily sol. in H₂O. (Curtus and Schulz.)

Hydrazine dihydroiodide, N₂H₄, 2HI. (Very deliquescent. Easily sol. in H₂O. Sl.

[Very deliquescent. Easily sol. in H₂O. Sl, sol. in alcohol. (Curtius and Schulz, J. pr. (2) 42, 536.) Trihydrazine dihydroiodide, 3N2H4, 2HI Easily sol. m H-() and alcohol (Curtius and Schulz, J. pr. (2) 42. 540.)

Hydrazine hydroxide, NoH., H.O.

Miscible with H2O or alcohol, but not with ether, chloroform, or benzene. (Curtius and Schulz, J. pr. (2) 42, 530.)

Hydrazine hypophosphate, NoH4, H4P2O6. SI sol, in H2O. 1.5 pts dissolve in 100 pts H.O. (Sabancieff, Z. anorg 1898, 17. 490.)

Hydrazine hypophosphate ammonia, N₂H₄, H₄P₅O₅, NH₃

Sol. in H-O (Sabaneueff, Z. anore 1899, 20, 23.)

Hydrazine mercuric iodide. 2N2H4I, HgI2+H2O.

Very sol. in H₂O, alcohol, acetone, acetic Insol, in ether Excess of H₂O decomp. (Ferratim, Gazz. ch. st. 1912, 42. (1), 172.)

Hydrazine zinc iodide.

ZnI., 2N.H., HI+15H.O Very sol, in H.O., sol, in alcohol and acctone.

(Ferratini, C. A 1912, 1612) Hydrazine nitrate, N2H4, HNO3.

Very sol m H₂O, sl. sol m abs. alcohol. (Subanejeff, Z anorg, 1899, 20, 24)

Solubility in H₂O at t°.

to	g NeHt, HNO	Da per 100 g.
	Sat solution	H ₂ O
10	63 63	174 9
15	68 47	217 2
20	72 70	266 3
25	76 61	327.5
30	80 09	402 2
35	83 06	490 3
40	85 86	607 2
45	88 06	737 6
50	91 18	1034
55	93 58	1458.
60	95 51	2127

(Sommer, Z. anorg, 1914, 86, S5.)

N₂H₄, 2HNO₃ Very unstable. Sol. in H₄O but solution cannot be concentrated beyond 30% without decomp. Decomp. by abs. alcohol.

Very sol, in hydrazine hydroxide+Aq. (Sabanejeff, Z. anorg. 1898, 20, 25.)

Hydrazine nitrite, N2H4, HNO2.

Very sol, in H.O. Potd, by ether from solution in alcohol; insol, in ether.

Very hydroscopic (Sommer, Z. anorg. 1913, 83, 125)

Hydrazine perchlorate, NoHa, HClOa+2HaO. Sol m 1 is nts HaO at 30° and 34 nts alcohol; crystallizes from boiling absolute alcohol. (Salvadori, Ch. Z. 31. 680.)

+3H₂O₂

18

35

Solubility in H.O at to

	% N2H4, HClO4	Sp. gr
3	41 72 66 9	1 264 1 391

(Carlson, Dissert, 1910.)

Hydrazine deperchlorate, NoH., 2HClO.+ 2H₂O

Efflorescent. Deliquescent.

102 pts, salt sol in 100 pts H₂O at 29° 2 8 pts salt sol. in 100 pts alcohol. 1.0 pt. """100 " ether,

(Turrentine, J. Am. Chem. Soc. 1915, 37. 1123.)

Hydrazine phosphate, N.H., H.PO. Very sol in HaO. (Sobaneieff, Z. anorg 1898, 17. 488) N₂H₄, 2H₃PO₄. Sol. in H₂O. (Sabaneieff.)

Hydrazme phosphite, N2H4, H2PO4. Sol, in H.O. (Sabanejeff, Z. anorg, 1898, 17. 468)

Hydrazine hydrogen phosphite. N2H4, 2H3PO2.

Less sol. in H2O than the normal salt. (Sabaneieff.)

Hydrazme selenate, N2H4, H2SeO4. Sol. in H2O with decomp. (Rimin, C. C.

1907, I. 86.) Hydrazine zinc selenate. (NaHa)aSeO4, ZnSeO4.

Sl, sol, in H2O but more sol, than Cu salt, (Rimini and Malagnini, Gazz. ch. it. 1907, 37. (1), 265.) Hydrazine sulphocyanide, N2H4, HSCN. Very deliquescent, Sol, in H2O and alcohol. (Curtius and Herdenreich, J. pr. 1895, [2] 52.

Hydrazine sulphate, N.H., H.SO.

488.)

Sol. with difficulty in cold, easily in hot H₂O. Insol. in alcohol. (Curtius, *l. c.*) 100 pts. H₂O dissolve 3.055 pts. salt at 22°. (Curtius and Jay, J. pr. (2) 39, 39) 2N₂H₄, H₂SO₄. Very deliquescent, and

sol. in H₂O Insol. in alcohol. (Curtius, J. Spr. (2) 44. 101.)

Hydrazine sulphite, (N₂H₄)₂H₂SO₈. (Sabanejeff, Z. anorg, 1899, 20, 24.)

Hydrazine pyrosulphite, 2N₂H₄, H₂S₂O₅. Sol. in H₂O with decomp., insol. in alcohol. (Sabanejeff, Z. anorg. 1899, 20. 23.)

Hydrazine thiosulphate, (N₂H₄)₂ H₂S₂O₄. Ppt. (Not pure.) (Ferratini, Gazz. ch. it. 1912, 42. (1) 138.)

Hydrazine lead thiosulphate, PbS₂O₂, 2(N₂H₄)₂H₅S₂O₃+H₂O. Insol. in H₂O and alcohol. Sol. in HCl+Aq and in HNO₂+Aq.

(Ferratum, C. A. 1912, 1612.)

Hydrazune silver thiosulphate,

Ag₂S₂O₃, (N₂H₄)₂H₂S₂O₃.

Insol. in H₂O: sol. in NH₂OH+Ag and in

Hydrazine sulphinic acid.

HNOs. (Ferratini.)

Barium hydrazine disulphinate,

Ba₂N₂(SO₂)₂. Insol. in H₂O; sol. in acids. (Ephraim, B. 1911, 44, 390.)

Hydrazinesulphonic acid, N₂H₂SO₂OH.

Sol. in about 24 pts. H₄O at ord temp. Decomp by mineral acids; nearly insol in alcohol and other organic solvents. (Traube, B, 1914, 47, 941.)

Ammonium hydrazinesulphonate, (N₂H₄SO₃)NH₄,

Deliquescent; decomp. by acids. (Traube.)

Barium hydrazinesulphonate,

(N₂H₃SO₃)₂Ba+2H₂O. Sol. in H₂O; pptd. by alcohol; decomp. by acids. (Traube.)

Calcium hydrazinesulphonate, (N₂H₃SO₈)₂Ca+H₂O.

(N₂H₃SO₈)₂Ca+H₂O. Sol. in H₂O. Decomp. by acids Insol. in alcohol. (Traube.)

Potassium hydrazinesulphonate, N₂H₃SO₄K. Decomp. by acids. (Traube.)

Silver hydrazinesulphonate, N₂H₂SO₂Ag. (Traube.) Sodium hydrazinesulphonate,

N₂H₂SO₂Na+H₂O.
Decomp. by acids. (Traube.)

ius, J. Strontium hydrazinesulphonate,

(N₂H₂SO₂)₂Sr+2H₂O. Sol. in H₂O. Decomp, by acids. Insol. in

alcohol. (Traube.)

Hydrodic acid. HI.

See Iodhydric acid.

Hydrobronuc acid, HBr. See Bromhydric scid.

Hydrochloric acid, HCl.

See Chlorhydric acid.

Hydrofluorboric acid, HBF4. See Fluoborhydric acid.

Hydrofluoric acid, HF. Sec Fluorhydric acid.

Hydrogen, H₂. Sl. absorbed by H₂O.

Sol. in 150 pts. H; 0, 1 vol 22 Recently bulled H; 0 absorbs 180 vols H; 0 at 18° absorb 1814)

1 vol. H₂O absorbs 0.0193 vol. H at 760 mm, and all temperatures between 0° and 23.6°.

(Bunsen.)

Later work does not confirm the above statement.

Absorption of H by H₂O at t and 760 mm, β=coefficient of absorption; β₁="solu-

bility" (see under Oxygen)				
t° β		βι		
0 1 2 3 4 4 5 6 7 7 8 8 9 10 11 12 13 144 115 116 117 118 119 20	B 0 02153 0 02154 0 02154 0 021154 0 022156 0 022067 0 022061 0 022044 0 022027 0 022010 0 02150 0 02150 0 02150 0 02150 0 011973 0 011982 0 011982 0 011983 0 011885 0 011863 0 011863 0 011863	\$1 0.02140 0.02140 0.02120 0.02100 0.020081 0.020081 0.020083 0.020083 0.020083 0.020083 0.020083 0.020083 0.020083 0.020083 0.019840 0.01987 0.019840 0.01987 0.019888 0.019888 0.019888 0.019888 0.019888 0.019888 0.019888 0.019888 0.019888 0.019888 0.019888		
21 22 23 24 25 26	0.01825 0.01813 0.01802 0.01791 0.01780 0.01770	0.01781 0.01767 0.01753 0.01789 0.01725 0.01712		

(Timofejeff, Z. phys. Ch. 6, 147.)

•

 $\theta = coefficient of absorption$

ŧ°	β	to.	β	t°	β
0	0.0203	16	0 0182	32	0.0161
1	0.0202	17	0 0180	33	0 0160
2	0.0200	18	0.0179	34	0 0159
3	0.0199	19	0.0178	35	0 0157
4	0.0198	20	0.0177	36	0.0156
5	0.0196	21	0 0175	37	0 0155
6	0.0195	22	0 0174	38	0 0154
7	0.0194	23	0 0172	39	0.0153
8	0.0192	24	0 0171	40	0 0152
9	0.0191	25	0 0170	45	0 0149
10	0.0190	26	0 0168	50	0 0146
11	0.0189	27	0.0167	60	0.0144
12	0.0187	28	0.0166	70	0 0146
13	0.0186	29	0 0164	80	0 0149
14	0 0184	30	0 0163	90	0 0155
15	0 0183	31	0.0162	100	0 0166

(Bohr and Bock, W. Ann. 44. 318)

Absorption of hydrogen by H₂O at t° and 760 mm, pressure. B=coefficient of absorption. $\beta_1 =$ "solubility" (see under Oxygen).

t ^a	β	βι	
0	0 02148	0.02135	
1	0 02126	0.02112	
2	0 02105	0.02090	
3	0.02084	0.02068	
1 2 3 4 5 6 7	0.02064	0 02047	
5	0.02044	0 02026	
6	0 02025	0 02006	
7	0 02007	0 01987	
8 9	0 01989	0.01968	
9	0.01972	0.01950	
10	0 01955	0 01932	
11	0.01940	0 01915	
12 13	0.01925	0 01899	
13	0 01911	0.01883	
14	0.01897	0.01867	
15	0.01883	0,01851	
16	0 01869	0.01836	
17	0 01856	0 01821	
18	0 01844	0 01706	
19	0.01831	0.01792	
20	0 01819	0.01777	
21 22	0.01805	0.01761	
22	0.01792	0.01746	
23	0.01779	0 01730	
24	0.01766	0.01715	
25	0.01754	0.01700	
26	0.01742	0.01685	
27	0.01731	0.01670	
28	0 01720	0.01656	
29	0.01709	0.01642	
30	0 01699	0,01630	
31	0.01692	0.01618	
32	0.01685	0 01608	
33	0.01679	0.01596	
34	0.01672	0.01585	
35	0.01666	0.01574	

Absorption of H by H2O at to and 760 mm. Absorption of hydrogen by H2O at to and 760 mm pressure -Continued

	nui. pressure — Co	тинтиви.
t°	- β	βι
36	0 01661	0.01564
37	0 01657	0 01554
38	0 01652	0.01544
39	0 01648	0.01535
40	0 01644	0 01525
41	0 01640	0.01515
42	0 01635	0 01504
43	0 01631	0 01493
44	0 01627	0 01482
45	0 01624	0 01475
46	0 01620	0 01460
47	0.01617	0.01449
48	0 01614	0,01437
49	0 01611	0 01425
50	0 01608	0 01413
52	0.01606	0 01392
54	0 01605	0 01369
56	0 01603	0.01343
58	0 01602	0.01316
60	0 01600	0.01287
62	0 01600	0.01256
64	0 01600	0 01223
66	0 01600	0 01188
68	0 01600	0 01150
70 72	0 01600	0 01100
7.3	0 01600	0.01065
74	0 01660	0 01017
76	0.01600	0.00966
78 80	0.01600 0.01600	0.00912
82	0 01600	0 00853 0 00790
84	0 01600	0 00790
86	0 01600	0 00652
88	0 01600	0.00575
90	0 01600	0.00575
92	0 01600	0.00407
94	0 01600	0.00315
96	0 01600	0.00216
- 98	0 01600	0.00210

0.01600 (Winkler, B, 24, 99.)

0 0000

100

Critical t,—232°. Ch. 1895, 17. 43-48) (Natanson, Z. phys Coefficient of absorption for H₂O =0 01750 at 25°; 0.01905 at 20°; 0.02059 at 15°; 0.0213 at 10°; 0.02366 at 5°. (Braun, Z. phys. Ch. 1900, 33, 734.)

Solubility in H₂O at 25° = 0.01926. (Geff-

cken, Z phys Ch. 1904, 49, 267.)
Coefficient of absorption for H₂O =0 01810
at 20.11.° (Hufner, Z. phys. Ch. 1907, 57.

Solubility in H₂O at 25°=0.01962. (Drucker and Moles, Z. phys. Ch. 1910, 75. 417.)

Coefficient of absorption for H₂O at 15°= 0.01892; at 20°= 0.01829. (Muller, Z. phys. Ch. 1912, 81, 493.)

	ity of hydrog			Absorption of H ₂ by HCl+Aq.		
mula, for	bility calcula which see ori			. м	S 25°	
P = Pres P 756 757 850 877 986 992	8 0 0199 0 0198 0 0200 0 0193 0 0194 0 0198	P 1095 1097 1244 1252 1380 1393	8 0 0195 0 0197 0 0202 0 0196 0 0196 0 0198	0 426 0 432 1 063 1 062 1 802 1 928 2 338 2 438 2 836	0 01875 0 01868 0 01789 0 01732 0 01699 0 01688 0 01652 0 01627 0 01606	
	ay, Chem. So			(Gelfo		
Absorpt P=Hg-	ion by H ₂ O a pressure in m	t different etres.		Absorption of H		
Table I	herent of solu . Volume of . T=19.5°.		ing liquid=	M	S 25°	
0 9010 0 9967 1 0809	λ 0 01798 0 01796 0 01799	3 3926 4 1405 4 6629	λ 0 01789 0 01776 0 01761	0 527 0 562 0 985 1 122 1.806 1.905	0.01869 0.01838 0.01780 0.01768 0.01642 0.01632	
1 2133 1 3711 1 5448 1 8002 2 5208 2 9971	0 01800 0 01794 0 01791 0 01793 0 01793 0 01795	5 4705 5 9580 6 6507 7 4548 7 8783 8,2439	0 01748 0 01725 0 01706 0 01674 0 01652 0 01632	2 605 3.045 3.174 3 962 3 989	0 01575 0 01496 0 01456 0 01422 0 01402	
	II, Volume of			(Geffcken.) Solubility of H ₂ in H ₂ SO ₄ +Aq at 20°.		
32.007 cc		one about	ang nqua	% H ₂ 80 ₄	λ 20°	
P	λ	P	λ	0	0 0208	
1.1154 1.3758 1.7416 2.1712 2.8724 3 4115 4 0229	0.01736 0 01739 0.01733 0.01731 0 01734 0 01732 0 01728	4.6220 5 1130 5 9702 7 1920 7 4493 7 8696 8.1913	0 01716 0 01702 0 01687 0 01649 0 01631 0 01618 0 01603		0 00954 0 00708 0 01097 Ch. 1906, 55 , 627)	
	ssuto, Phys. 2	11		in pure H ₂ O.		
Absorption of H ₂ by saids+Aq. M=content in gram-equivalents per liter. S=solubility. (See under Oxygen.) Absorption of H ₂ by HNO ₂ +Aq.			q. ats per liter. rgen.)	Solubility of H ₂ in a solution conta 18 11 g Fe(OH) ₃ per liter at 25°=0 308; Solubility of H ₂ in a solution conta 18.309 g. Fe (OH) ₃ per liter at 25°=0 30 (Geffcken, Z. phys. Ch. 1904, 49, 299		
	М		S 25°	Absorption of H ₂ by		
Ō	0 741 0 01851 0.753 0.01868 1 22 0 01812			M =content in gram-equivalents per lit S=solubility. (See under Oxygen.) Absorption of H ₂ by KOH+Aq.		
1 45 0 01782		01782	M	S 25°		
. 2.09 0 01739 2 96 0 01690 3 18 0 01667 3 22 0 01633 4 13 0 01611 4 23 0 01689				0 536 0 715 1.059 1 056 1.480	0.01658 0.01539 0.01378 0.01389 0.01195	
(Geff	fcken, Z. phy	B. Ch. 1904	, 49. 267.)	(Geffcken, Z. phys	Ch. 1904, 49. 267.)	

•

	Absorp	tion of H2 by	NaOH+Aq.	1	Abs	orptio	a by	salts-	-Aq.	
	0.54 0.57 0.69	1	8 25° . 0.01632 0.01608 0.01442	Salt	t ₁ °	Sp gr salt + Aq at to /4°	enlt	t°g	Absorption- coefficient at to	Absorption- coefficient at 25° (Calculated)
	0.97- 1.05 1.13 1.85 3.40	7	0 01409 0 01372 0 01348 0 01018 0 00048	KCI	15°	1 1363	12 13 7 48	18 71	0 00869 0 00985 0 01240 0 01447	0.00893
	3.43 4.68	ו	0 00039 0 00483	KNO ₁	15°	1 1160				0 01100
	Solubili	(Geffeke	n.) lts+Aq at 15°.			, .	-		i	
	Salt	% Sale	Coefficient of	K:C0s	15°	1 4395 1 3112 1 2353	41 81 30 99	13 17 12 77	0 00162 0 00290	0 00160 0 00285
	H ₂ O	0 00	0 01883	1		1 1555 1 0807 1 0405	16 47 8 83 1 53	12 51 11 32 12 29	0 00775 0 01216 0 01532	0 00180 0 00285 0 00462 0 00701 0 01183 0 01501 0 01628
	CaCl ₂	3 47 6 10	0.01619 0.01450	NaCl	15°		2 82		0 01675	
		11 33 17 52	0 01138 0,00839					٠,		,
	MgSO ₄	26 31 4 94 10 19 23 76	0 00519 0 01501 0 01159 0 00499	NaNOa	180	1 2963 1 2099 1 1117 1 0765 1 0367		17 30	0.01034	0 00810
	LıCl	3 48 7 34 14 63	0 01619 0 01370 0 0099	Na ₂ CO ₃	15°	1 1213 1 0835 1 0457 1 0217	11 53 8 02 4 64	13 07 12 08 11 61	0 00851 0 01106 0 01420	0 00839 0 01082 0 01385 0 01639
	K ₂ CO ₂	2.82	0 01628	Nat804	18° 15°	1 1608 1 0768 1 0412				0 00775 0.01234 0 01519
		8 88 16 47 24 13 41 81	0 01188 0 00761 0 00462 0 00160	LaC1	150	1 0843 1 0416 1 0192				0 00990 0 01370 0 01619
	KCI	3 83 7 48 12 13	0 01667 0 01489 0 01279	MgSO ₄	15°	1 0503	4 97	17 10	0 00487 0 00783 0 01140 0 01479	0 01501
		19 21 22 92	0 01012 0 00892	ZnSO.	18°	1 3265 1 1961 1 1394 1 0802	26 51 17 23 12 73 6 03	18 56 18 22 17 95	0 00590 0 00940 0 01151	0 00605 0 00961 0 01175 0 01525
	KNO ₃	4 73 8 44 16 59 21.46	0 01683 0.01559 0 01311 0 01180	CaCl ₁	15°	1 9470			0.0110	
	NaNO ₄	5 57 11 16 19 77 37 43	0 01603 0 01370 0 01052 0 00578	AlCla	15°	1 2647 1 1589 1 0914 1 0488	20 75	17 28 17 30	0.00525 0 00860 0 01190 0 01460	0.00874
•	Na ₂ CO ₃	2 15 8 64 11 53	0 01639 0 01385 0 00839						0 00900 0 01292 0 01571	
	Na ₂ SO ₄	4.58 8.42 16 69	0.01519 0.0154 0.00775	(Stei	ner, V	v. Anr	. 189	4 (2),	52. 29	1.)
	(Ciordon	, z. phys. Ch	1895, 18, 14.)							

Percent of BaCl₂ m the solution a 25° $a20^{\circ}$ a15° a10° a.50

7 002

Solubility in salt solutions. C=concentration of the solution in terms

a = coefficient of absorption.

Absorption of hydrogen by NH₄NO₃+Aq at 20°.

of normal.

Absorption of H by $BaCl_2+\Lambda q$. $\alpha t^{\circ} = \text{coefficient of absorption at } t^{\circ}$.

0 01455 0 01591 0 01715 0 01833 0 01937

P	С	а	6 433 0	011740 01	605lo 0173:	(in 01:	857 0 01957
1,037	0 1308	0.01872	3 t00 0 3 291 0	01562 n 01 01570 0 01	1700]0 01839 1719]0 01849	0 01	971 0 02089 983 0 02110
2 167 3 378 4 823	0.2765 0.4363 0.6333	0 01845 0 01823 0 01773	1 vol. alcoi	hol at t°			
6 773 11 550	0.9069 1.6308	0 01744 0.01647			ed to 0° a		
(Knopp, Z	. phys. Ch. 190	4, 48, 103.)	t° V	10	v	t°	V
	ydrogen by KN		0 0.069		0 06799 0 06787	18 19	0.06690 0.06679
P	C	4	2 0 068	96 11	0 06774	20 21	0.06608
1.244 2 094 4 010 5.925 7 742 13 510	0.1245 0.2114 0.4127 0.6225 0.8293 1.5436	0 01835 0.01818 0 01785 0 01743 0 01667 0 01436	4 0 068 5 0 068 6 0.068 7 0 068 8 0 068	867 13 853 14 839 15 826 16 813 17	0 06761 0 06749 0 06737 0 06725 0.06713 0.06701	22 23 24 	0 06657 0 06646 0.06636 0 06621
	(Knopp.)					•	
Absorption	of hydrogen by at 20°.	NaNO _s +Aq	One vo 0.000148t (Bunsen.)				0.06925— I at t°.
P	С	α	Solubility	m alcohol	+Aq at 2	0° an	d 760 mm.
1.041 2 192 4 405	0.1236 0.2634 0.5416	0.01839 0.01774 0.01694	Wt. % alcohol	Vol. He absorbe	i alcoi		Vol. H ₁ absorbed
6 702 12 637	0.8442 1.7394	0.01518 0.01300	9.09 16 67	1 93 1 43 1 29	28 33 50	33	1.04 1.17 2.02
	(Knopp)		23 08	1 17	66.		2.55
		Cl+Aq at 20°.	i ·	-	nn. 1889,		
P	С	a	Abso	rption of l	hydrogen	by al	cohol,
1.089 2.123	0.1475 0.2907	0 01823 0.01757	t°	Coeff of absorption	t°		Coeff of absorption
4.070 6.375 7.380	0.5687 0 9127 1 0682	0.01661 0 01531 0.01472	0 6.2	0.0676 0.0693	13.4 18.8		0 0705 0 0740
13.612	2 1222	0.01255		(Ti	mofejeff.)		
	(Knopp.)		Solub	ulity of H	in ethyl	ether	rat t°.
Absorpt at°=coct	tion of H ₂ by N fficient of absor	aCl+Aq. ption at t°.		t°		Solub	ulity
Percent of NaCl in the solution 5 999 5 506	25° a20° a15		1	5		0.11 0.11 0.11 0.11 0.12	50 95 57
4 496 3 798 1 523 1 .250 (Braun, 2	Z. phys Ch. 19	00, 33. 735.)	Coeffici	ent of al 20°, and	osorption 0.0652 at	in p	etroleum = (Griewası

380 HYDROGEN

Absorption	οſ	hydrogen	by	chloralhydrate-
ADSOLDEROR	OI	Ag et '	DY.	emoramyurate-

P	С	α
4,911 7,69 14,56 18 77 29,50 32,00 38 42 49 79 60 12 03 90	0 310 0 501 1 030 1 397 2 530 2 845 3 770 6 000 9 120 10 700	0.01839 0.01802 0.01712 0.01653 0.01542 0.01518 0.01440 0.01353 0.01324 0.01307

(Knopp, Z. phys Ch. 1904, 48, 103.) Absorption of H. by chloralhydrate+Ag.

t°=temp. of the solution. P = % chloralhydrate in the solution. Bto = coefficient of absorption at to \$15° = coefficient of absorption at 15°.

to.	P	βţο	β15°
15 0 16.4 15 8 15 0 15 6 16.2 15.5 15 0	10.0 16 1 33 35 39 4 51 0 60 8 70 7 79 0	0 01740 0 01719 0 01475 0 01470 0 01300 0 01281 0 01282 0 01320	0.01740 0.01737 0.01484 0.01470 0.01306 0.01230 0.01287 0.01320
			β20°
19.4 17.4 18.7 16.5 17.0 17.2 17.9 18.3	15 5 28.3 46 56 52 0 63 0 66 0 68 0 78.4	0 01732 0 01569 0 01388 0 01314 0 01270 0 01285 0 01286 0 01398	0 01724 0.01540 0.01375 0.01280 0.01243 0.01260 0.01270 0.01380

(Muller, Z, phys. Ch 1912, 81, 499.) Solubility of H₂ in glycerol+Aq.

fa	% glycerol	Coefficient of absorption
14	0 2 29 5.32 8.57 10.83 15 31	0 0193 0 0189 0 0186 0 0182 0 01815 0 01765
21	0 2 29 5 68 6 46 10 40	0 0184 0 0181 0 0177 0 0176 0 0171

18 20 (Henkel, in Landolt-Börnstein, Tab. 4th Ed 602)

0 0160

Absorption of H2 by glycerine+Aq. to = temp, of the solution P = % glycerne in the solution.

Bt° = coefficient of absorption at t° β15° = coefficient of absorption at 15°.

t°	P	βt°	β15°
14.5	14 9	0 01654	0 01647
13 0	22 8	0.01532	0 01510
13.8	38 0	0 01226	0 01216
14.5	43 5	0 01117	0 01110
13.7	49 15	0.01019	0 01010
14 9	51 5	0 01026	0 01025
12 3	68 0	0 00822	0.00806
18 0	90 7	0.00853	0 00870

(Müller, Z. phys. Ch. 1912, 81, 496.)

Solubility of H₂ in glycerine +Aq at 25°. G = % by wt. glycerine in the solvent. S=Solubility of H2.

P=corrected pressure at end of experiment in mm. Hg at 0°.

P G 8	P
716 3 4.0 0 0188 738 1 10.5 0 0178 738 1 10.5 0 0178 864 3 22 0 0 0154 750 1 2 50.5 0 0099 750 1 2 50.5 0 0099 750 1 2 50.5 0 0099 741 1 2 67 0 0 0097 741 1 67 0 0 0097 768 0 80 0 0097 655 5 82 0 0051 602.3 88 0 0044 741 8 80 6.0 0 0094 741 8 80 6.0 0 0094 741 8 80 60 0 0094 741 8 80 60 0 0094 741 8 80 60 0 0094 741 8 80 6.0 0 0094	736 1 684 3 709 9 730 1 672 2 741 1 708 0 665 5 662 3

(Drucker and Moles, Z. phys. 1910, 75. 417.)

Absorption of H2 by glucose+Aq. t°=temp. of the solution.

P = % glucose in the solution. Bt° = coefficient of absorption at t°. β20° = coefficient of absorption at 20°.

t°		P	βt°	β20°	
	20 5 20 5 21 1 21 8	12.2 20.7 32.56 45.8	0 01595 0.01445 0.01243	0 01600 0.01450 0 01250	

0.00775

0 00780

(Müller, Z. phys. Ch. 1912, 81, 494.) Solubility in sugar+Aq at 15°.

% Sugar	Absorption Coefficient
16.67	0 01561
30.08	0 01284
47 65	0 00892

(Gordon, Z. phys. Ch. 1895, 18, 14.)

Absorption of H₂ by sucrose+Aq.

t°=temp. of the solution in the absorption vessel.

P = % sucrose in the solution: $\beta t^{\circ} = \text{coefficient of absorption at } t^{\circ}$. $\beta_{15}^{\circ} = \text{coefficient of absorption at } 15^{\circ}$.

1-10	,		
t°	P	βιο	β15°
12 7		0 01862	0.01892
19.3		0 01840	β20°= 0 01829
15.2 11 6 12 12 7 11.8 13 3 12.6	5 04 14.7 20.26 29.86 31.74 39.65 42.94	0 01723 0 01547 0 01500 0 01290 0 01220 0 01047 0 00956	0.01726 0 01510 0 01462 0 01257 0 01185 0 01033 0 00939

(Muller)

Absorption of H₂ by propionic acid +Aq. at° = coefficient of absorption at t°.

	oocaro,	CELO OL	monor pr	non ne	
Percent of propionic acid in the solution	α25°	a20°	a15°	α10°	e.స్రం
9 910	0.01609	0 01799	n name	0.0000	0.00100
9 763					
6 500					
5 267		•			
3.373					

(Braun, Z. phys. Ch. 1900, 33, 735.)

Absorption of H₂ by organic acids+Aq. M = content in gram-equivalents per liter. S = solubility. Absorption of H₂ by CH₂COOH+Ag.

M	S25°
0.517	0.01925
0.528	0 01923
1.160	0 01903
1.20	0.01895
1.963	0.01885
1.980	0 01882
3.178	0 01862
3.220	0.01858
4.157	0.01849

(Geffeken, Z. phys. Ch. 1904, 49, 267.)

Absorption of H2 by CH2ClCOOH+Aq

М	S25°	
0.527	0.01905	
0.990	0.01852	
1 773	0.01783	

(Geffeken.)

Absorption of H by organic substances+

Aq at t°.

V = absorbed volume reduced to 0° and 760 mm.

a = coefficient of absorption

-	Substance	Grams in 1 liter	Vol of solution used in cem	¢°	V cem	*
	Glucose Glucose Glucose Urea Acetamale Alanine Glycocoll	174 80 8 11 45 60 59 89 75	409 94	20 28° 20 16° 20 00° 20 17° 20 11° 20 08° 20 16°	5 48 6 12 6 36 6 26 6 51 5 37 5 67	0 01516 0 01649 0 01759 0 01703 0 01793 0 01557

(Hüfner, Z. phys. Ch. 1907, 57, 623-4.)

Solubility in organic solvents.

Solvent	Solubality at 25° C	Solu- bility at 20° C	ds dt
Glycerine	Not		
Water Anilhus Anilhus Anily alcohol Nitrobienzene Carbon besuiphade Bassan Acetime Amyl acetite Amyl acetate Tolisene Ethyl acetate Tolisene Ethyl acetate Tolisene Ethyl alcohol Isobutyl acetate Chloroform Carbon tetra-	mensurable 0 01992 0 02849 0 02708 0 03708 0 03708 0 03753 0 01830 0 07540 0 07540 0 07758 0 08185 0 085742 0 08935 0 09758 no constant value	0 02000 0 09033 0 03533 0 03533 0 03558 0 06172 0 07027 0 07027 0 07834 0 07877 0 05384 0 08620 0 09016 0 09287	-0 000368 +0 00035 +0 00035 +0 00079 +0 000078 +0 000078 +0 001228 +0.00061 +0 000702 +0 001278 +0 000710

(Just. Z. phys. Ch. 1901, 37, 359.)

Extended investigations have been made by Findlay and Shen. (Chem. Soc. 1912, 101. 1465) on the effect of colloids on solubility of H₂ in H₂O. See original article.

Hydrogen arsenide. See Arsenic hydride.

Hydrogen peroxide, H2O2.

Miscible with H₂O. Not stable in conc. solution. Aqueous solution gives up its H₂O₂ to ether. Ethereal solution is more stable than an aqueous solution of the same strength, and may be distilled without decomp. Miscible with alcohol.

Very stable in aq. solution of various cone if perfectly free from impurity such as compds. of heavy metals, etc. (Woffenstein, B. 1894, 27, 3307.)

Cofficient of distribution between ether and H₂O determined at 3°, 7°, and 17.5° with varying quantities (1.7—5%) of H₂O₂. (Ospoff, C. C. 1903, II. 1285.)

As sol, in ether as in H₂O. A 50% solution in H₂O still contained about 25% H₂O₂ after

(Berzelius.)

being shaken 6 times with large quantities of Hydrogen selenide, H₂Se. fresh ether.

Insol. in petroleum ether. (Brühl, B. 1895, 28, 2855.)

+H₂O, and +2H₂O Does not solidify at -20° (Wolflenstein, B 1891, 27, 3311)

Hydrogen phosphide, gaseous (Phosphine),

Very slightly absorbed by H₂O. Statements as to solubility in H₂O vary

considerably. (a) Difficultly inflammable ous-

1 vol. H₂O absorbs 0.1122 vol PH₂. (Dyb-kowsky, J B. 1866, 735) 1 vol H₂O absorbs 0.125 vol. PH₂. (H. Davy.)

(b) Eusely inflimmable gas— 1 vol H_.O absorbs 0.018 vol PH₃. (Gengembie, Crell Ann. 1, 450)

1 vol. H₂O absorbs 0.0214 vol. PH₃ (Henry.) 1 vol. H₂O absorbs 0 025 vol. PH₁ (Davy,

1 vol. H₂O absorbs 0.125 vol. PH₂. (Dalton, Ann. Phil. 11. 7) 1 vol. H₂O absorbs 0 255 vol. PH₂. (Ray-

mond, Scher. J. 5. 389.) 1 vol. H₂O dissolves 0.26 vols. PH₂ at (Stock, Böttger and Lenger, B. 1909,

42, 2855.) Sol. in conc. H₂SO₄ without immediate decomp. (Buff, Pogg. 16, 363.) 1 vol. 50% H₂SO₄ dissolves 0.05 vol. PH₃.

(S. B. and L) Absorbed by CuSO4+Aq and by Br.

(Berthelot.) Absorbed rapidly by Cu2Cl2+Aq with

formation of Cu₂Cl₂, 2PH₃, and Cu₂Cl₂, 4PH₂. (Riban, C. R. 88, 581.) 1 vol. alcohol of 0.85 sp. gr. absorbs 0.5 vol; 1 vol. ether absorbs 2 vols (Graham.) Sol in volatile oils; 1 vol oil of turpentine

Several varieties of blood absorb PH₁.

absorbs 3,25 vols. (Graham.) Hydrogen phosphide, liquid, P.H.

Insol. in H2O. Apparently sol. in alcohol and oil of turpentine, but solution is ver quickly decomp. (Thénard, A. ch. (3) 145.)

Hydrogen phosphide, solid, P.H.

Insol, in H2O and alcohol. (Leverrier, A. ch. 60. 174.) Insol, in all liquids except liquid PHs. (Thénard, A. ch. (3) 14. 5.)

Instantly decomp, by HNO2, or H2SO4+ iq Sol. with decomp, in alcoholic solution of KOH. (Thénard)

Somewhat sol. in liquid phosphorus. (Buck, Dissert. 1904.) P.H. Insol. in all solvents. (Stock, Böttger and Lenger, B. 1909, 42, 2851.)

P₁₂H₆. Sol. in liquid hydrogen phosphide and molten P. There are no other solvents which appreciably dissolve it Insol. in Insol. in houid PH₃. (S B and L.)

More sol, in H2O than hydrogen sulphide.

Solubility coefficient of H-Se at to

t ^o	Sol. Coeff.
9 65 13.2 22.5	3.77 vols. 3 43 3 31 2 70

(Forerand and Fonzes-Diacon, C. R. 1902. 134. 171.)

Sol in cold COCl₂. (Besson, C. R. 1869, 122. 140)

Hydrogen silicide. See Silicon hydride.

Hydrogen sulphide, H2S.

(a) Liquid. Dissolves S on warming, which separates on cooling. (b) Gas

1 vol H2O absorbs 1 08 vols H2S at 10° (Henry, 1803) 1 vol H₂O absorbs 2 53 vols H₂S at 15° (de Saussure, Ann Phil. 6, 340.)

1 vol H₂O absorbs 3 vols H₂S at 11°. (Gay-Lussac and Thémard)

1 vol H₂O absorbs 3 66 vols H₂S at ord, temp (Thompson) 1 vol H₂O sheorbs 2.5 vols H₂S at ord temp (Dulton)

1 vol. H_zO absorbs 4.3706-0.083687t+ 0.0005213t2 vols H.S at temperatures between 2 and 43.3°. (Bunsen and Schonfeld, A. 93. 26.)

At 0° and about 820 mm, pressure, 1 ccm, H₂O absorbs 100 ccm H₂S, while only about 4 ccm. are absorbed at ord. pressure. (de Forerand and Villaid, C. R. 106, 1402.)

1 vol. H₂O at 760 mm, pressure and t° absorbs V vols. H.S, reduced to 0° and 760 mm.

	t°	v	t°	v	t°	v
	0	4 3706 4 2874	14 15	3 3012 3 2326	28 29	2 4357 2.3819
	3	4 2053 4 1243	16 17	3 1651 3 0986	30	2.3290
1	4 5	4 0442	18	3 0331	32	2.2262
	5 6	3 9652 3 8872	19 20	2 9687 2 9053	33	2.1764
ı	7 8	3.8103 3.7345	21 22	2 8430 1.7817	35	2.0799
	9	3 6596	23	2.7215	37	1.9876
١	10 11	3 5858 3 5132	24 25	2 6623 2 6091	38	1.9430
	12 13	3 4415 3 3708	26 27	2.5470	40	1.8569

(Schonfeld, A. 93, 26.)

Absorption coefficient of H₂S in H₂O at 0°=4.6796. (Prytz and Holst, W. Ann. 1895, **54**, 137.)

1 l. H₂O dissolves 0′1004 mol H₂S at 25° and 760 mm. (Pollitzer, Z. anorg. 1909,

Absorption of hydrogen culphyda by H.O at to

64. 145.)

t°	Coefficient of absorption
0°	4 686
10°	3 520
20°	2 672

[Calc. fr. data of Fauser. (C. C. 1889, 1. 754.)]
(Winkler, Z. phys. Ch. 1906, 55, 350.)

Absorption of hydrogen sulplude by H₂O at t°.

to.	Coefficient of absorption
0	4,621
10	3 362
20	2 554
30	2 014
40	1 642
50	1 376
60	1 176

(Winkler, Z. phys. Ch. 1906, 55. 350.)

Solubility of H₂S in H₂O.

and or rion in 117.		
t°	Mois. H ₂ S per 100 mois H ₂ O	
0 6 17 26 29.5	0 ± 0 5 0 8 1 2 1 6	

	Layer rich in H2O			
t°	Mols II:8 per 100 mols. H:0			
29.4	96.3			
28.5	96 9			
26 9	97.3			
26.3 23.8	97.5 98.1			
23 3	98.1			
22.9	98.2			
17.2	98.8			
13 7	00.1			

(Scheffer, Proc. K. Ak Amsterdam, 1911, 1

11.4

99.25

99.5

Difficultly sol in conc. H₂SO₄ with decomp. Instantly decomp. by fuming HNO₅. Solubility of H₂S in HI+Aq at 25° and 760

HI Mol per I	H2S Mol per l
0.00	0.1004
1 01	0.111
1.51	0.113
1.93	0.125
2 65	0.130
2.64	0.138
3.42	0.142
4 38	0.163
5 005	0.165
5.695	0.181
6 935	0.197
* (9.21	0.267)

* Not exact.

t°=25°.

t°=25°.

(Pollitzer, Z. anorg, 1909, 64, 145.)

Solubility in acids+Aq.

l=value of H₂S dissolved in acid+Aq as determined by titration. lo=value of H₂S dissolved in H₂O as determined by titration.

Acid	1/lo
1/2-N.HCl	0 975
1/2-N.H.SO.	0 905

(McLauchlan, Z. phys. Ch. 1903, 44. 615.)

Less sol. in NaCl, or CaCl₂+Aq than in H₁O.
Sol. in CdCl₂+NH₄OH+Aq. (Crobaugh, Z. anorg 1894, 5. 321.)

Solubility in salts+Aq.

l=value of H₂S dissolved in salt+Aq as determined by titration.

lo=value of H₂S dissolved in H₂O as determined by litration.

Salt +Aq	1/10*	Salt +Aq.	l/lo
	0.73		0.855
12-N.K2SO4	0.78		0.890
14-N.(NH4),SO4		14-N.(NH.) SO.	
N. NaCl	0.847		[0.930]
N.KCl	0.853		0.935
N NH.Cl	0.960		0.945
N.NaNO	0.893		1.00
N.KNO*	[0.913]	N.KI	0.98
N. NHLNO.	0.990	1	l

(McLauchlan, Z. phys Ch. 1903, 44. 615.)

 		_		_		_	_
Solul	nlity	of H	-S in	Nas	H-	-Aσ.	
(e.	mol.	H-S	diaso	lved	in 1	1.)	

	(We control to F		
t°	0.05 g mol NaSH per l	0 l g mol NaSH per l	02g mel NaSH per l
15 25 35 45	0 082 0 061	0 132 0 104 0 082	0 129 0 1035

(Goldschmidt and Lursen, Z. phys. Ch 1910, 71. 449.)

At 18° and and pressure 100 vols alcohol of 0 \$4 sp. gr. absorb 606 mole H₂S (de Sanssure, 1814) vol. alcohol absorbs 17 891-0.65598t+ 0.00661ts vols H₂S between 0 and 22 (Carius.)

1 vol alcohol at to and 760 mm absorbs V vols H-S reduced to 0° and 760 mm.

0 17 801 9 12 523 18 8.225 1 17.242 10 11 192 119 7 814 2 16 606 11 11.475 20 7 415 3 15 983 12 10.971 21 7 630 4 15.373 13 10 480 22 6.659 65 14 776 14 10 003 23 6.590 6 14 133 15 938 24 5 955 7 13 623 16 9 8089	to	V	t°	V	to.	V
2 100 000 21 0 000 . .		17.242 16 606 15 983 15.373 14 776 14 193	10 11 12 13 14 15	11 992 11.475 10.971 10 480 10 003 9 539	19 20 21 22 23 24	7 814 7 415 7 030 6.659 6 300

(Carius, A. 94. 140.)

Solubility in alcohol+Aq at 25°.

Molecules of C ₂ H ₃ OH in 100 molecules C ₂ H ₄ OH +H ₄ O	Molecules H ₂ O m 100 molecules C ₂ H ₃ OH +H ₃ O	I/lo
0 00 1 60 5.18 9.25 23.60 47.75	100 98 (?) 94 82 90 75 76 40 52.25 0	1.00 0.96 0.933 0.91 1.28 1.95 2.16)

^{*} Carius.

(McLauchlan.)

Sol, in methyl acetate (Marchand), ether (Higgms).

Insol. in caoutchin. Sol. in glycerine in less amount than in 20. If a certain vol. of H₂O dissolves 100 H₂O. If a certain vol. of H₂O dissolves 100 pts. H₂S, the same vol. of glycerine (1 pt. ycerine +1pt. H₁O) dissolves only 60 pts. H.S, but the solution is very stable. After standing a year there is no appreciable decomp. (Lapage, J. Pharm. (4) 5. 256.) According to Lindo (C. N. 57. 173), the

solution in glycerine is no more stable than that in H.O

Sol. in CS.

Solubility in organic substances + Aq. l = value of H-S dissolved in organic sub-

stance+Aq as determined by titration.
lo=value of H₂S dissolved in H₂O as determined by titration. t°=25°

Solution	I/lo
N-NH ₄ C ₂ H ₃ O ₂	1.09
N-C ₄ H ₄ O ₄	0 944
3-N-C ₄ H ₄ O ₆	0 858
N-(NH ₂) ₂ CO	1.02
pure C ₄ H ₄ (OH) ₃	0 863

(McLauchlan, Z. phys. Ch. 1903, 44, 615.)

Malamba of

Solubility in acetic acid + Ag at 25°.

H ₂ CO()H in 100 inolecules H ₂ COOH +H ₂ O	Molecules of H ₂ O m 100 molecules CH ₂ COOH +H ₂ O	1/10
0 8 85 16 7 21 0 35 5 53 5 55 7 67 8 81.0 98 58	100 91 15 83.30 79 64.5 40.5 32 2 19 0 1 42	1 00 0 98 0 955 1 00 1 035 1 21 1 .29 1 40 1 83 3 .81

(McLauchlan)

Hydrogen persulphide, H.S. or H.S.

Decomp. by contact with H2O, in which it

is apparently insol. Sol.in ether with subse-quent decomp Sol. in CS₂ (Thénard, A. ch. 48. 79. H2S2. Quickly decomp, by ether, acetic

ether, ethyl, or amyl alcohol, H2S has no action

Cone. HCl, or HC₂H₂O₂+Aq have no action liquid hydrocarbons.

Chloroform dissolves without decomp. (Sabatier, C. R. 100. 1346, 1585.) Alkalies, and K₂S+Aq decomp. instantly.

Decomp. by H,O, dil. and conc. HCl, conc. H₂SO₄ alkali and alcohol. Sol. in alcohol containing HCl but soon decomp. in this solution Miscible in all proportions and without decomp, with benzene, ether and CS₁.
(Bloch, B. 1908, 41, 1977)
Formula is H_SI. (Rebs, A. 246, 356.)
+7H₂O. Easily decomp, by heat. (de-

Forerand and Villard, C. R. 106, 1402)

Hydrogen trisulphide, H₂S₃.

Decomp. by H.O, dil. and conc. HCl, conc. H₂SO₄, alkali and alcohol. Somewhat sol. m alcohol containing HCl, but slowly decomp. in this solution. Miscible with ether, benzene and CS2 and these solutions are relatively stable, (Bloch, B. 1908, 41, 1974.)

Hydrogen telluride, H₂Te.
Sl. sol. in H₂O Decomp. in the air.
(Ernyel, Z. anorg. 1900, 25, 313₂)

Hydrosulphuric acid, H₂S. Sec Hydrogen sulphide.

Hydrosulphurous acid, H₂SO₂. See Hyposulphurous acid.

Hydroxylamic acid.

Calcium hydroxylamate, Ca(ONH₂)₂.
Very explosive, decomp. by H₂O. (Ebler and Schott, J. p. 1908, (2) 78. 323)

Zinc hydroxylamate Zn(ONH₂)₂, Decomp by H₂O. (Ebler and Schott.)

Zinc hydroxylamate, hydroxylamine, Zn(H₂NO)₂, 3NH₂O

Very unstable. Insol, in abs. alcohol. (Ebler and Schott.)

Hydroxylamine, NH₂O = NH₂(OH). Known only in solution.

No in alcohol. (Lossen, J. pr 96, 462)
Prepared in fice state by de Bruyn.
Very deliquescent, and sol. in H₂O and alcohol. Sl. sol. or insol. in CHCl₂, C₄H₄, ether, or ethyl acetate
Mathyl alcohol et 5° dissolves 35°; ethyl

Methyl alcohol at 5° dissolves 35%; ethyl alcohol at 16°, 15%; boiling dry ether, 1 2%; boiling ethyl acetate, 1 6%. (de Bruyn, R. t c. 11. 18)

Hydroxylamine arsenate, $AsO_4H_8(NH_8O)_5$. Sl. sol in cold H_sO ; sol in hot II_2O from which it can be cryst. (Hofmann, Å. 1899, 307. 331.)

Hydroxylamine azoimide. See Azoimide, hydroxylamine.

Hydroxylamine bromide, NH₂OH, HBr. Very sol in H₂O; insol. in ether by which it is pptd. from solution in alcohol. (Adams, Am. Ch. J 1902, 28. 205.) 2NH₂OH, HBr. Essily sol. in H₂O₁ msol. in ether and ligroin. Sl. sol. in alcohol. (Adams.)

Hydroxylamine mercuric bromide hydroxylamine, 2NH₂OH, 2HB₇, HgBr₂, 2NH₂OH.
Decomp. by H₂O and methyl alcohol.
Readily decomp. by alkalies. (Adams.)

Hydroxylamine calcium, HO.Ca.ONH₂.

Partially decomp. by H₂O at ordinary temp. (Hofmann, Z. anorg. 1898, 16. 464.)

Hydroxylamine chloride, basic, NH₂(OH)Cl, NH₂OH.

Sol. in H₂O. Alcohol precipitates from aquicous solution. Insol. in ether. (Loseen.) 2NH₄(OII)Cl, NH₂OH. Deliquescent; very sol in H₂O, less in alcohol, and insol. in ether. (Loseen.)

Hydroxylamine chloride, NH₂(OH)Cl.
Not deliquescent Very sol. in H₂O and hot ordinary alcohol. Sl sol. in absolute alcohol. Insol in ether (Lossen.)
Sol. in 1.2 pts H₂O at 17°. (Schiff, Z. phys. Ch. 1896, 21, 290.)

Sp. gr. of aqueous solution at 17°.

€ salt	sp gr
40 28 20 14 10 7	1.1852 1.1260 1.0888 1.0616 1.0437 1.0303 1 0214
3 5	1.0147

(Schiff, Z. phys. Ch. 1896, 21, 290.)

100 pts absolute methyl alcohol dissolve 16.4 pts. at 19.75°; 100 pts. absolute ethyl alcohol dissolve 4.43 pts. at 19.75°. (de Bruyn, Z. phys. Ch. 10.783.) Somewhat sol. m alcohol. (Adams, Am.

Ch. J. 1902, 28. 204.)

Hydroxylamine mercuric chloride, NH₂OH.

HCl, HgCl, Very sol, in H₂O and alcohol Less sol, in ether. (Adams, Am. Ch. J. 1902, 28, 213.) 5/NH-OTl₂, HCl, 2HgCl₂ Sol, in cold H₂t₁ alcohol, Sol, in HCl. The slightest trace of sikult causes decomp. (Adams)

Herehydroxylamine cobaltic bromide, [Co(NH₂OH)_c|Br₃. (Werner, B. 1905, 38, 897.)

Hexahydroxylamine cobaltic chloride, [Co(NH₂OH)₄]Cl₂.

Very stable toward HCl. (Werner, B, 1905, 38, 895.)

Hexahydroxylamine cobaltic nitrate, [Co(NH₂OH)₄](NO₄)₃. (Werner.)

Hexahydroxylamine cobaltic sulphate, $[Co(NH_2OH)_e]_2(SO_4)_3+2H_2O,$ $Easily sol. in H_2O. (Werner)$

Hydroxylamine columbate, ChO₆N₂H₁₀. Explosive. Sl. sol. in H₂O. (Hofmann, Z. anorg. 1898, 16. 473.) Hvdroxvlamine dithionate, (NH2OH)2, H-S-Oa

Sol. in HaO: decomp on heating the agsolution. (Sabanejeff, Z. anorg 1898, 17, 485.)

Hydroxylamine fluosilicate, (NII₃O)₂, II₂S₁F₆ Fasily sol, in H₂O. Nearly insol in methyl

and abs ethyl alcohol, (Ebler, J pr. 1908, (2), 78, 338)

Hydroxylamine fluotitanate, (NH₃O)₃, H₂TiF₆ Sol, in H₂O Sl sol in methyl alcohol, (Ebler, J. pr. 1908, (2) 78, 340.)

Hydroxylamine hypophosphite. (NHOH)HPO:

Very sol. in H₂O (Sabanejeff, Z anorg. 1898, 17, 483.)
Sol. in H₂O and absolute alcohol. Insol. in ether, (Hofmann and Kohlschütter, Z.

anorg, 1898, 16, 469.) Hydroxylamine potassium hypophosphite, $(H_1PO_2)_2(NH_2O)_3K_2$.

Easily sol. in H2O, decomp on heating; sol m hot abs. alcohol. (Hofmann and Kohlschutter, Z anorg, 1898, 16, 468)

Hydroxylamine hypophosphate, (NH₈OH)₂H₂P₂O₆,

Easily sol in H2O. (Sabanejeff, Z. anorg 1898, 17, 489)

Hydroxylamine 10dide, NH-OH, HI. Very Hydroscopic, sol in methyl alcohol explosive (Wolffenstein and Groll, B. 1901, 34, 2419.)

Dihydroxylamine iodide, (NH2OH)2, HI. Deliquescent. More sol. in H₂O, methyl and ethyl alcohol than the tri compound. Is decomp, when recryst, from these solvents.

69, 841.) Trihydroxylamine iodide, (NH2OH)2, HI. Deliquescent in moist air. Sol. in H₂O, methyl and ethyl alcohol. Insol, in ether,

Hydroxylamine nitrate, NH₃(OH)NO₃. Very sol, in H₂O and absolute alcohol. (Lossen)

Hydroxylamine orthophosphate, (NH₂OH)₄PO₄

(Dunstan.)

Sl. sol. in cold H₂O, (Lossen.) Only sl. sol. in H₂O. (Hofmann, A. 1899,

307, 330.) Moderately sol, in H2O, (Ross, Chem. Soc. 1906, 90, (2) 19.)

Solubility in H₂O 1 g of aqueous solution contains at

0 012 0 015 g hydroxylamine phosphate. 20° 0.019 0 027 g, hydroxylamine phosphate

409 0 055 g, hydroxylamine phosphate. 0.040 ano

0.077 0 102 g, hydroxylamine phosphate 800 900 0.1330 168 g hydroxylamine phosphate.

(Adams, Am. Ch. J. 1902, 28, 204.) (NH₃OH)H₃PO₄, Hygroscopic Aq. solution is decomp on heating. (Sabaneieff, B. 1897, 30, 287.)

Hydroxylamine phosphite, (NH₃OH)₃HPO₃. Sol in H₂() and absolute alcohol. (Hofmann and Kohlschütter, Z. anorg. 1898. 16.

(NH₂OH)H₂PO₂ Sol, in H₂O Insol in alcohol (Sabanejeff, Chem. Soc. 1900, 78, (2), 14.)

Hydroxylamine phosphite ammonia. (NH₄OH)H₂PO₈, NH₂.

Sol in H₂O. (Sabaneieff, Chem. Soc. 1900. 78, (2) 14.)

Hydroxylamine sodium, NaONH. Very hygroscopic. (de Bruyn, R. t. c. 1892, 11, 18,) Hydroxylamine sulphate, (NH,OH)2SO4.

Easily sol in H.O. Precipitated from concentrated aqueous solution by alcohol. (Los-Sol. in conc. NH4OH+Aq Insol. in alcohol and ether. (Preibisch, J. pr. 1873. (2)

7. 480.) Not deliquescent. Sol in 34 of its wt of H₂O at 20° (Divers and Haga, Chem. Soc. 1896, 69, 1665) Insol. in ether. (Dunstan, Chem. Soc. 1896.

1 g. of aqueous solution contains at

0 307 0 329 0 366 g hydroxylamine sulphate, 20° 30° 400 0.413 0.441 0.482 g. hydroxylamine sulphate, ROS 000

0.522 0,560 0.685 g, hydroxylamine sulphate. (Adams, Am. Ch. J. 1902, 28, 203.)

Dry hydroxylamine sulphate is insol, in abs, and almost insol in 95% alcohol. (Adams.)

For double salts, see under sulphuric acid. NH₂OH, H₂SO₄. Deliquescent. Sol. in H₂O. (Divers, Chem. Soc. 1895, 67, 226.)

Hydroxylamine tungstate, 4NH2OH, 3WO2+ 3H2O.

Moderately sol. in H₂O. (Allen and Gottschalk, Am. Ch. J. 1902, 27, 338.)

Hydroxylamine uranate, UO₄(NH₃O)₂+H₂O. Decomp. by heat. (Hofmann, Z. anorg. 1897, **15**. 78.)

Hydroxylamine uranate ammonia, UO4(NH3O)2, 2NH2.

Decomp. by H₂O (Hofmann, Z anorg. 1897, **15**. 79.)

Hydroxylamine metavanadate, VO₆N₅H₁₆
Decomp. by moisture. (Hofmann, Zanorg 1898, 16, 472.)

Hydroxylamine metavanadate ammonia, VO₂H, (NH₂O)₂, 2NH₂

Eastly decomp by H₂O and HCl (Hofmann, Z anorg. 1898, 16. 471.)

Hydroxylamine monosulphonic acid, HONH(SO₃H).

'Sulphazidic acid' of Fremy

"Sulphydroxylamic acid" of Claus. Sol in H₂O Slowly decomp on boiling.

(Raschig, A. 241, 161.)

Ammonium hydroxylamine monosulphonate.

(OH)HN, SO₄NH₄. (Sabanéjeff, Z anorg 1898, **17**. 491)

Monobarium —— , (HONHSO₃)₃Ba+ H₂O.

Easily sol in H₂O (Divers and Haga, Chem Soc. **55**, 760)

Dibarium —— , $Ba(HONSO_3)_2Ba+H_2O$.

Nearly insol in H₂O; sol. in HCl+Aq. (Divers and Haga, Chem. Soc. 55. 760.)

Potassium —— —, HONH(SO₃K).

"Potassium sulphydroxylamate" of Claus

"Potassum sulphazidate" of Fremy.
Sol. in cold H₂O. Easily sol in hot H₂O
without decomp. Insol in alcohol. (Raschig.
+H₂O. (Divers and Haga, Chem. Soc. 55.

Hydroxylamine disulphonic acid, HON(SO₂H)₂

"Disulphydroazotic acid" of Claus
"Sulphazotic acid" of Fremy.
Not known in free state. (Raschig, A. 241.
161.)

Barium hydroxylamine disulphonate,

Ba₁(NS₂O₇)₂+4H₂O and +8H₂O. Practically insol. in H₂O. Sol in NH₄Cl+ Aq. (Divers, Chem. Soc 1894, 65, 559.)

Barium potassium — —. $Ba_8K_8H_4(NS_2O_7)_6+9H_2O$, $BaKNS_2O_7+H_2O$ $(HO)_2Ba_6K_4H(NS_2O_7)_5+H_2O$. Ba₉K₂(NS₂O₇)₇+14H₂O 3Bu(OH)₂, Ba₉K₁(NS₂O₇)₇

Above salts are all ppts. (Divers, Chem. Soc. 1894, 65, 561.)

Barium sodium hydroxylamine disulphonate, Ba₀Na₂(NS₂O₁)₅+7H₂O.

Ba₃Na₂(NS₂O₇)₇+7H₂O Ba₁₄Na₁₅(NS₂O₇)₁₇+24H₂O, Above salts are ppts (Divers.)

Potassium ----, HON(SO₃K)₂+2H₂O.

"Potassium disulphydroxynzotate" of Claus (A 188, 75) Insol in cold H₂0. Very unstable Very difficultly sol in H₂0, more easily in dil KOH+Aq. (Ruschig, A.

241. 161.)
HON(SO₃K)₂, KON(SO₃K)₂+H₃O. True composition of potassum sulphazotate of Fremy. (Divers and Haga, Chem. Soc. 1900, 77. 432.)

Potassium sodium ———————, 3K₂NS₂O₇, 2Na₂NS₂O₇+2H₂O. Sol, in H₂O.

6K₃NS₂O₇, Na₄NS₂O₇, H₂NS₂O₇+20H₂O Sol m H₂O K₂Na₃₄H₄(NS₂O₇)₇+5H₄O, Less sol, in

H₂O than the others. K₁₈Na₅H₄(NS₂O₇)₈+9H₂O Sol. in H₂O. KNa₄H(NS₂O₇)₂+H₂O. Readily sol in

 H_2O $K_4NaH_2(NS_2O_7)_3+2H_2O$. Moderately sol, in H_2O .

KNaHNS₂O₁+3H₂O. Sol in H₂O. (Divers, Chem Soc. 1894, **65**, 552.)

Potassium strontium — , (HO, Sr)₄NS₂O₇, 8(SrKNS₂O₇, 2H₂O). Ppt. (Divers.)

Potassium hydroxylamine disulphonate nitrite, HON(SO₃K)₂, KNO₂.

Very sl. in H₂() (Divers and Haga, Chem Soc. 1900, 77, 433.) K₄H(NS₂O₇)₂, 3KNO₂+H₂O Decomp by

H₂O. (Divers and Haga.) 2KON(SO₃K)₂, KNO₃+4.4H₂O. Very sol in H₂O which decomp. it into its constituent salts. (Divers and Haga.)

salts (Divers and Haga)

+6H₂O, Very sol. in H₂O which decomp,
into its constituent salts (Divers and
Haga.)

2K₈H(NS₂O₇)₂, 7KNO₂+3H₂O. Decomp,

2K₈H(NS₂O₇)₂, 7KNO₂+3H₂O. Decomp. by H₂O. (Divers and Haga.) 3K₄H(NS₂O₇)₂, 7KNO₂. Decomp. by H₂O. (Divers and Haga.)

Potassium hydroxylamine disulphonate sodium chloride, 5K₂HNS₂O₁, 8NaCl+ 3H₂O.

Decomp. by H₂O. (Divers, Chem. Soc. 1894, 65, 551.)

(Fremy)

Sodium hydroxylamine disulphonate, HON(SO, Na)a.

Sol, in somewhat more than its own wt of H₂O at 14°. (Divers, Chem. Soc. 1894, 65. 546) Na₂HNS₂O₇, 2Na₂NS₂O₇+3H₂O. Sol. m

less than 1.5 pts H₂O at 14°. (Divers)

Hydroxylamine isomonosulphonic acid, NH2, O, SO2, OH.

Very hydroscopie, Sol, in water; sol, in alcohol. (Sommer, B. 1914, 47, 1226.) [Compare Raschig, A. 1887, 241, 161]

Hydroxylamine isodisulphonic acid.

Ammonium hydroxylamine isodisulphonate, (SO,NH,)ONH(SO,NH,).

3 pts. are sol. in 2 pts. H₂O at 18°. Apt to form supersut solutions. (Haga, Chem. Soc. 1906, 89, 246)

Dipotassium ---- K2HS2O7N. Only sl. sol, in cold II₂O. Easily sol, in boiling H₂O. Decomp. by hot dil HCl. (Raschig, B. 1906, 39. 246.)

6.44 pts. are sol in 100 pts H₂O at 16.4°. 7.18 " " " 100 " H₂O " 17.8°. 8.05 " " " " 100 " H₂O " 20°. (Haga, Chem. Soc. 1906, 39, 243)

Tripotassium ---- ... (SO₃K)ONK(SO₃K)+2H2O.

Very sol in H2O; ppt. by alcohol. (Haga.)

it is ppt from aqueous solution. (Haga) Trasodium -----, (SO₃Na)ONNa(SO₈Na)

+2H2O. Sol. in H₂O, ppt. by alcohol. (Haga.) +3H₂O. Sol. in 1 3 pts H₂O at 20°. Less sol in NaOH+Aq. (Divers, Chem. Soc. 1894, 65, 546,)

Hydroxylamine trisulphonic acid.

Ammonium hydroxylamine trisulphonate, 2(SO₃NH₄)ON(SO₃NH₄)₂+3H₄O. Sol. in 0.61 pts H2O at 16°. (Haga, Chem. Soc. 1904, 85, 84.)

Potassium ----, 2(SO2K)ON(SO2K)2+ 3H₀O.

1 pt. is sol. in 25 37 pts. H₂O at 18°. (Haga.)

- (SO_{*}Na)ON(SO_{*}Na)_{*}+

2H₂O. Sol. in 2.84 pts. H₂O at 21.5°.

Sodium

sulphonic acid. Dihydroxylamine (HO) N(SOaH).

"Sulphazmous acid" of Fremy. Known only in its salts. (Raschig, A 241. 161)

Potessium d/hydroxylamine sulphonate, (HO)2NSO3K.

Not obtained in pure state; forms basic salt KONSO₄K, which is quite sol. in H₂O, and corresponds to "sulfazite de potasse" of Fremy (A ch (3) 15. 421). Sol m H2O; msol. in alohol and ether.

Hydroxyliodoplatindamine sulphate, (OII)IPt(NH4)4SO4+H4O.

Very sl sol, even in boiling H₂O. (Carl-gren, Sv V. A F 47. 312.)

Hydroxylonitratoplatind;amine nitrate, OH PtN2H6NO3 NO3PtN2H6NO3.

Sl. sol in cold, more easily in hot H.O. Very sl sol in H₄O containing HNO₈. (Cleve.) purophosphate,

 ${}^{OH}_{NO_8} Pt^{N_2H_4}_{N_2H_4} \Big]_{2} P_2O_7 + H_2O.$ Very sl sol in H₂O. (Cleve)

Hydroxyloplatinamine hydroxide,

(OH),Pt(NH,OH), Insol in H₈O. Easily sol, in dil acids, even HC2H4O2+Aq. Not decomp. by boiling Disodium ———, (SO₃Na)ONH(SO₄Na). KOH+Aq (Gerhardt, Compt. Chem. 1849. Very sol, in H₂O; insol, in alcohol by which 490.)

Hydroxyloplatinamine nitrate

(OH)2Pt(NH4NO3)2+2H2O. Sl. sol, in cold, easily in hot H.O: not attacked by cold HCl+Aq. (Cleve.)

--- oxalate, (OH)2Pt(NH2)2C2O4+H2O. Sol. in hot H₂O.

---- sulphate, (OH),Pt(NH,),SO,+HO., Difficultly sol, in H2O. (Cleve.)

Hydroxyloplatindiamine bromide, (OH) Pt(NH3) Br.

Sl. sol., even in boiling H₂O. (Carlgren, Sv. V. A. F. 47, 320.) --- chloride, (OH)2Pt(NHs)4Cl2.

Sol. in 206 pts. cold, and 49 pts. boiling H₂O. (Carlgren, Sv. V. A. F. 47. 316.)

—— chromate, (OH)₂Pt(NH₃)₄Cr₂O₇. Very al. sol. in cold or hot H2O. (Carlgren, Sv. V. A. F. 47. 319.)

Hydroxyloplatindramine rodide, $(OH)_2Pt(NH_3)_4I_2$.

Sl, sol in hot or cold H₂O. (Carlgren)

--- nitrate, (OH)₂Pt(NH₂)₄(NO₂)₂. SI sol in cold, moderately sol in hot H₂O. (Gerhardt, A 76, 315)

(Gerhardt, A 76. 315)
Sol. in 343 pts. cold, and 38 pts. boiling
H₂O (Carlgren, Sv. V. A. F. 47. 318.)

— mtrite, (OH)₂Pt(NH₃)₄(NO₂)₂. Easily sol. in H₂O. (Carlgren.)

---- sulphate, (OH)2Pt(NH3)4SO4.

Very sl. sol in boiling H₂O. (Cleve.) +4H₂O. Efflorescent. (Carlgren, Sv. V. A. F. 47, 313)

Hydroxyloplatinmonodiamine nitrate, (OH)₂Pt^{NH₂NH₃NO₂ (NH₂NO₂}

Very easily sol, in H₄O. (Cleve.)

Hydroxyloplatinsemidiamine nitrate, (OII)₃PtNH₃NH₃NO₂(?). Easily sol in H₂O. (Cleve)

--- sulphate,

(OH)₂PtNH₃NH₃ \/ (?). SO,

Sol, in hot H₂O.

Hydroxylod:platind:amine chloride, (OH)₂Pt₂(N₂H₃)₄Cl₄+H₂O Extremely sl. sol. in H₂O.

Very al. sol. in cold, more easily in hot H₂O. (Cleve.)

Ppt Phosphate, (OH)₂Pt₂(N₂H₄)₄(PO₄H)₂.

— sulphate, (OH)₂Pt₂(N₂H₄)₄(SO₄)₂+ 2H₂O
Ppt. Nearly insol in H₂O.

Hydroxylosulphatoplatindiamine bromide, (OH)Pt(N₂H₄)₂Br. +2H₂O.

Easily sol, in H₂O. (Cleve.)

Moderately sol. in cold, very sol. in hot H_2O . Hydroxylosulphatoplatind:amine chloroplatinate.

 $2\begin{bmatrix} (OH)Pt(N_2H_4)_2Cl\\ SO_4 \end{bmatrix}, PtCl_4+2H_2O.$ Ppt.

Sl. sol. in H₂O.

— dichromate, \[\begin{pmatrix} (OH)Pt(N_2H_6)_2 \\ \frac{1}{2} \end{pmatrix} \cdot \cdot \cdot \frac{1}{2} \end{pmatrix} \]

Cr₂O₇.

Sl. sol in H₂O.

(OH)Pt(N₂H₆)₂NO₃.

nitrate.

Sol. in hot H₂O.

sulphate, $\begin{bmatrix} (OH)Pt(N_2H_5)_2\\ & \checkmark\\ & SO_4 \end{bmatrix}_2 SO_4 + 3H_2O.$ SI sol. in H₂O. (Cleve.)

Hypoantimonic acid.

Calcium hypoantimonate (?), Ca₂Sb₂O₈.

Mun. Ramette. Insol. in acids.

Potassium hypoantimonate, K₃Sb₂O₅. Sol. in hot H₂O. Sol. in 425 pts boiling H₂O (Brandes) Sol. in boiling KOH+Aq (Berzelius). K₂Sb₂O₆. Ppt.

Hypoboric acid.

Sodium hypoborate, NaOBH₄.

Deliquescent, decomp. in aq. solution at room temp. Decomp. by acids. Sl. sol. in alcohol with decomp. (Stock, B. 1914, 47. 821.)

Hypobromous acid, HBrO. Known only in aqueous solution.

Solution containing 6.21 pts. Br as HBrO in 100 cm. HD. decomposes at 30° If dutte solution is distilled in vacuo, an acad containing 0.736 pt. Br as HBrO in 100 ccm is obtained at first, but the distillate slowly grows weaker. Dil. solution, stable at ordinary temp, decomp by heating over 60°. (Dancer A. 126. 237.)

Barium hypobromite. Known only in solution

Calcium hypobromite bromide. Deliquescent, and sol in H₂O with nartial

decomp (Berzelius.)

Potassium hypobromite, KBr(). Known only in solution.

Sodium hypobromite. Known only in solution.

Strontium hynohromite Known only in solution.

Hypochlorous acid, HClO. Miscible with H.O Decomposes at 0° in the dark, more rapidly at higher temp or in light. The stronger the solution the more rapid the decomposition. Moderately strong acid may be distilled without any considerable decomp., a stronger acid distilling over at first, and afterwards an acid weaker than

acids decomp, by distillation.

Ammonium hypochlorite.

the original acid. Very conc. or very dil. Known only in aqueous solution, which decomposes at once

Barium hypochlorite.

Known only in solution

Calcium hypochlorite, Ca(OCl)2+4H4O. Deliquescent, and sol in H₂O. (Kinzgett, Chem. Soc. (2) 13, 404,)

Calcium hypochlorite chloride, etc. (bleaching powder), Ca(OCl)₂, CaCl₂, Ca(OH)₂+ H₂O.

Not deliquescent. Sol. in H.O. Alcohol does not dissolve out CaCl2. Sol. in 20 pts. H₂O with a slight residue Correct formula is CaOCl. (Lunge and

Schappi; Kraut, A. 214, 354), CaOCl (Stahlschmidt, B. 8. 869), CaOCl, Cl (Odling).

CaCl2 is dissolved out by alcohol. Formula = 2CaOH CaCl+2H₂O. (Dreyfuss, Bull.

Soc. (2) 41, 600.) Didymium hypochlorite, Di(OCI)2

Difficultly sol, in H.O. Easily sol, in acids. (Frerichs and Smith, A. 191. 348.) Lanthanum hypochlorite, La(OCI).

Easily sol. in H2O, (Frerichs and Smith,)

Lithium hypochlorite, LiClO. Known only in solution. (Kraut, A. 1882,

214, 356.)

Magnesium hypochlorite. Known only in solution. Potassium hypochlorite, KClO. Known only in solution.

Silver hypochlorite, AgClO.

Very sol, in H.O. and decomp very nuckly. (Stas, Acad, R. de Belg. 35, 103.)

Sodium hypochlorite, NaClO. Known only in solution

Hypoiodic acid, IgO4. See Todine textioxide.

Hypoiodous acid, HOI.

Known only in solution which decomp, on standing. (Taylor, C. N. 1897, 76. 97)

Calcium hypoiodite iodide, Ca(OI), CaI, Not year unstable (Lunge and Shoch, B. 15. 1883)

Hyponitric acid, N.O. See Nitrogen tetroxide.

A. 1896, 292, 323.)

Hyponitrous acid, HNO, or better H.N.O. Known only in aqueous solution. Solution is quite stable (van der Plaats, B. 10, 1507.) Very deliquescent, sol in H₂O and alcohol; sol. in other, chloroform, benzene, sl. sol. in netroleum ether. (Hantzsch and Kaufmann.

Ammonium hyponitrite, (NH₄)₂N₂O₂, Sol, in H₂O and in alcohol, (Jackson, C. N. 1893, 68, 266,)

Ammonium hydrogen hyponitrate, NH4HN2O2 Easily sol, in H₂O The solid salt slowly decomp. at ord temp. into ammonia, H₂O and N₂O. (Hantzsch and Kaufmann, A. 1896, 292. 328.)

Barium hyponstrite, BaN2O2.

Nearly insol in, but gradually decomp, by H₂O. Sol. in conc. acids with evolution of N₂O, but sol in dil. HC₂H₃O₂+Aq without decomp (Zorn, B. 15. 1007.) +4H₂O. Sl. sol. in H₂O; insol in alcohol

and ether. (Kirschner, Z anoig 1898, 16. 424.)+xH-O. Efflorescent. (Manuenne, C. R. 108. 1303)

Barium hydrogen hyponitrite, BaH, (NoOo)2. Easily sol, in H2O, (Zorn, B. 1882, 15.

1011.)

Calcium'hyponitrite, CaN2O2+4H2O. Nearly insol. in H₂O; easily sol. in dil. acids. (Maquenne, C R. 108. 1303) Sl. sol, in H₂O, msol, in alcohol. (Kirsch-

ner. Z. anorg. 1898, 16, 426.)

Cunric hyponitrite, basic, CuN.O., Cu(OH). Insul in HaO: not decomp by hot HaO Sol in dil acids and in ammonia. Decomp by NaOH. (Divers, Chem Soc. 1899, 75, 121. Insol. in H₂O. Sol. in dil acids and in NH OH + Aq. (Kirschner, Z. anorg, 1898. 16, 430.)

Currous hyponitrite, Cu,N,O,+2H,O

Ppt. (Kolotow, C C. 1891, I 1859.) Cannot be formed. (Divers, Chem. Soc. 1899, 75, 121.)

Lead hyponitrite, basic, PbNoOs, PbO. Insol in HaO. Sol, in dil seeds from which

it may be pptd, by NaOH+Aq or NH,OH+ Ag. (Kirschner, Z. anorg 1898, 16, 430.)

Lead hyponitrite, PhN2O2.

Insol in H2O; sol in dil. acids from which it may be pptd by NaOH+Aq or NH+Aq (Kirschner)

Mercuric hyponitrite, basic, 3HgO, HgNgOa +3H.O. Ppt SI sol even in boiling dil. HNO:

Scarcely sol in conc , very sol, in warm dil HCl. (Rav. Chem Soc. 1897, 71, 349)

Mercurous hyponitrite, Hg2N2O2. Sol, in dil. HNOs with slow decomp. (Rav. Chem. Soc. 1907, 91, 1404.)

Mercuric hyponitrite, HgNoOs

Sol. in HCl. and in NaCl+Ag. Sl. sol. in very dil alkalı, (Divers, Chem. Soc. 1899, 75, 119.)

Potassium hyponitrite, K2N2O2. Sol, in H.O. (van der Plaats.)

Stable when dry Sol. in 90% alcohol, and sl. sol. in abs alcohol. (Divers. Chem. Soc. 1899, 75, 103.)

Silver hyponitrite (natrosyl silver), Ag2N2O2

Insol, in H₂O. Easily sol, in dil. HNO₂+ Aq or H₈SO₂+Aq. Decomp by H₁PO₄, H₂S, and boiling HC₃H₂O₂+Aq. (van der Plaats.)
Insol. in HC₃H₂O₂+Aq. sol. in NH₄OH
+Aq. (Divers, C. N. 23, 206)
Sol. in dil HNO₃ and H₃SO₄ and in conc.

NH₄OH+Aq; decomp. by HCl. (Kırschner, Z. anorg, 1898, 16, 431.)

Sodium hyponitrite, Na₂N₂O₂+6H₂O. Sol. in H₂O. (van der Plaats.)

Strontium hyponitrite, SrN.O. Easily sol. in H2O. (Roederer, Bull. Soc. 1906, (3) 35, 715.)

ın dil. acıds. (Maquenne, C. R. 108, 1303.) Sl. sol in H-O. insol in alcohol (Kirschner, Z anorg, 1898, 16, 426.)

Hypophosphomolybdic acid, MosOs, 7H,PO2+3II.O.

Very al sol, in cold H.O. Searcely sol, in cold dil H2SO4. Sol in cold conc. H2SO4. Sol. in warm cone, HCl. Warm HNO. oxidizes forming clear solution. (Mawrow. Z. anorg 1901, 28, 164.)

Ammonium hypophosphomolyhdate 2(NH4)4O, 2H4PO, 8M0O4+2H0O.

Not very sol in cold H2O, readily in hot H₂O. (Gibbs, Am. Ch. J. 3, 402.)

Hypophosphoric acid, H4P2O6.

Very deliquescent, and sol, in the leastamount of H.O. (Joly, C. R. 101, 1058.) 100 cc. H₄P₂O₄+\Q, containing 4.1%P₂O₄ has sp. gr. = 1 036.

100 cc H.P.O. +Ag. containing 12.3% P_2O_4 has sp gr. = 1.122

(Salzer, A 1878, 194, 28.) +H₂O (Sanger, A. 232. 14.)

Does not exist. (Joly.) +2H₂O Appears to be the only stable hydrate between 0° and 60.

Sanger's hydrate, H₄P₂O₄+H₂O, and Joly's anhydride could not be obtained. (Rosenheim, B. 1908, 41, 2711)

Aluminum hypophosphate, Ala(PaOa)a+ 23H₀O.

Easily sol in mineral acids. Sol in Na₄P₂O₆ +Aq. (Palm, Dissertation, Rostock, 1890.) Ammonium hypophosphate, (NH₄)₄P₆O₆+

Sol. in 30 pts. H₂O. (Salzer, A. 194, 32.)

Ammonium hydrogen hypophosphate. (NH4)2H2P2O4. Sol, in 14 pts cold, and 4 pts, boiling H.O.

Ammonium trihydrogen hypophosphate, NH.H.P.O.

Sol. in H₂O (Salzer, A. 211. 1.)

(Salzer, A. 194, 32.)

Ammonium magnesium hypophosphate, (NH₄)₂MgP₂O₄+6H₂O. Precapitate. (Salzer, A. 232, 114.)

Barium hypophosphate, Ba₂P₂O₆ Very slightly sol, but not wholly insol, in H₂O. Very slightly sol in acetic acid, but more soluble in hydrochloric, and hypophosphoric acids. (Salzer, A. 194, 34.)

Barium hydrogen hypophosphate, BaH₂P₂O₄ +2H₀O

Soluble in about 1000 pts H₂O. Solution +5H₂O. Nearly insol. in H₂O; easily sol. decomposes by heating. (Salzer, A. 194, 34.) Bismuth hypophosphate, $Bi_4(P_2O_6)_8 + 8\frac{1}{2}H_2O$.

Completely sol, in HCl+Aq, also in warm HNO₄+Aq. Insol, in boiling dil H₂SO₄+ Aq. Sl, sol, by long boiling with conc. H₂SO₄. (Palm, Rostock, 1890.)

Cadmium hypophosphate, Cd₂P₂O₆+2H₂O.
Insol. in H₂O. Sol. m dil acids (Drawe, B. 21, 3403.)

Cadmium potassium hydrogen hypophosphate, $CdK_2(H_2P_3O_6)_2 + 2\frac{1}{2}H_2O$ (Bausa, Z. anorg 1894, 6. 147.)

Cadmium sodium hypophosphate, CdNa₂P₂O₄ +6H₂O. Insol. in H₂O, but decomp, thereby. Sol. in dil. acids (Drawe.)

Calcium hypophosphate, $\operatorname{Ca}_2P_2O_5+2H_3O$. Insol. in H_2O_5 difficultly sol. in $\operatorname{HC}_2H_3O_2$; casily sol in $\operatorname{H}_4P_2O_6$, or $\operatorname{HCl}+\operatorname{Aq}$. (Salzer, A. 194. 36.)

Calcium hydrogen hypophosphate, CaH₂P₂O₆+6H₂O. Sol, in 60 pts. H₂O (Salzer, A. 232, 114)

Chromic hypophosphate, Cr₄(P₂O_e)₂+34H₂O.
Sol. in IICl+Aq on sl. warming, also in
HNO₂+Aq. Not completely sol. in dil.
H₂SO₄+Aq, but completely sol in conc.
H₂SO₄+Aq, but completely sol in conc.

H₂SO₄. (Palm, Dissertation, Rostock, 1890.) Cobaltous hypophosphate, Co₂P₂O₅+8H₂O. Insol. in H₂O. Easily sol in acids (Drawe, B. 21, 3403.)

Cobaltous potassium hypophosphate,

CoK₂P₂O₅+5H₂O. Ppt. (Bausa, Z. anorg, 1894, **6**, 156)

Cobaltous potassium hydrogen hypophosphate, CoH₂P₂O₆, 3K₂H₂P₂O₆+15H₂O

Cobaltous sodium hypophosphate, CoNa₂P₂O₆ +1,½H₂O.

Insol. in H₂O, but decomp. thereby. Sol. in dil, acids. (Drawe, B. 21, 3403)

Cupric hypophosphate, Cu₂P₂O₄+6H₂O. Insol. in H₂O. Sol. in dil. acids. (Drawe, B. 21, 3403.) Ppt. (Bausa, Z. anorg, 1894, 6, 145.)

Cupric potassium hydrogen hypophosphate, CuH₂P₂O₄, 3K₂H₄P₂O₆+15H₂O.

CuH₂P₂O₄, 3K₂H₂P₂O₅+15H₂O. Ppt. (Bausa, Z. anorg. 1894, 6. 152.)

Glucinum hypophosphate, Gl₂P₂O₆+7H₂O. Insol, in H₂O. Moderately sol, in all muneral acids. (Palm, Rostock, 1890.) +3H₂O. (Rammelsberg.) Iron (ferrous) hypophosphate, Fe₂P₂O₄+
41,2H₂O.

Insol m II₂O. Sol. m cold HCl+Aq. Decomp by hot HNO₃+Aq mto Fe₄(P₂O₂)_z Insol m HNO₃+Aq Insol m bouling dil. H₂SO₄+Aq Somewhat sol in cold H₂SO₄, but a ppt separates out on heating. (Palm, Rostock, 1890.)

Iron (ferric) hypophosphate, $Fe_4(P_2O_6)_4$ +

Easily sol. in HCl+Aq Wholly insol. in HNO_3 , and diff H_2SO_4+Aq Completely sol. in conc. H_2SO_4 by warming a short time, but a put separates out on boiling. (Palm.)

Lead hypophosphate, Pb₂P₂O₆ Insol in H₂O, HC₂H₃O₂, or H₄P₂O₆+Aq; sol in dd, IINO₈+Aq (Salzer)

Lithium hypophosphate, Lt₄P₂O₆+7H₂O. Very sl. sol m H₂O. (Salzer, A. **194**. 28.) Sol in 120 pts H₅O at ord. temp. (Rammelsberg, J pr. (2) **45**, 153) Lt₂H₂P₅O₆+2H₅O Deliquescent. (Ram-

melsberg.)

Magnesium hypophosphate, Mg₂P₂O₀+

Sol. in 15,000 pts H₂O; sl sol. in acetic, easily in hypophosphoric, or mineral acids. (Salzer, A 232, 114.) +24H₂O (Rammelsberg.)

Magnesium hydrogen hypophosphate, MgH₂P₄O₅+4H₂O Sol. in 200 pts H₂O. (Salzer, A. 232, 114.)

Manganese hypophosphate, Mn₂P₂O₄+
2½H₂O.

Insol. in H₂O; sol. in mineral acids, insol. in acetic acid. (Palm, Dissertation, Rostock, 1890.)

Manganous potassium hydrogen hypophosphate, MnH₂P₁O₆, K₂H₂P₂O₆+3H₂O Ppt. (Bausa, Z. anorg, 1894, 6. 150.)

Manganous sodium hypophosphate, Mn₂P₂O₆, Na₄P₂O₆+11H₂O. Insol. in H₂O. sol. in mineral acids. (Palm.)

Nickel hypophosphate, Ni₂P₂O₅+12H₂O. Insol in H₂O: Sol. in dil. acids (Drawe, B. 21, 3401)

Nickel potassium hypophosphate, NiK₂P₂O₅+6H₂O.

Ppt. (Bausa, Z. anorg. 1894, 6. 155.)

Nickel potassium hydrogen hypophosphate, NiH₂P₂O₄, 3K₂H₂P₂O₆+15H₂O. Ppt (Bausa, Z. anorg. 1894, 6. 144.)

·12H2O Insol in H₂O, but decomp. thereby. Easily (Joly, C R. 1894, 118, 650.) sol in dil. acids. (Drawe)

Potassium hypophosphate, K₄P₂O₆+8H₂O Sol in 1/4 pt H2O, insol in alcohol. (Salzer, A. 211. 1.)

Potassium hydrogen hypophosphate, KaHP2O0+3H2O.

Sol. in 1/2 pt. H2O. (Salzer, A. 211, 1.) Potassium dihydrogen hypophosphate, K.H.P.O. +3H.O. and +2H.O.

Sol in 3 pts cold, and 1 pt, boiling H2O. (Salzer, A. 211, 1.) Potassium trihydrogen hypophosphate,

KH2P2Os. Sol. in 11/2 pts cold, and 1/2 pt. hot HaO.

(Salzer, A. 211. 1.) Potassium pentahydrogen dehypophosphate.

 $K_1H_2(P_2O_4)_2+2H_2O$. Sol. in 21/2 pts cold, and 4/5 pt. boiling (Rose, Pogg. 12. 86) H₂O. (Salzer, A. 211. 1)

Potassium sodium hypophosphate, $Na_2K_2P_2O_6+9H_2O$

Sol. in about 25 pts. cold, and 3 pts hot H₂O. (Bausa, Z. anorg, 1894, 6, 158.)

Potassium zinc hydrogen hypophosphate, $ZnH_2P_2O_6$, $3K_2H_2P_2O_6+15H_2O$. Ppt. (Bausa, Z anorg 1894, 6, 148)

Silver hypophosphate, Ag₄P₂O₆. Sl. sol. in H₂O. Easily sol. in HNO₂, or NH₄OH+Aq. Very sl. sol. in H₄P₂O₄+Aq (Salzer, A. 232, 114.)

Sodium hypophosphate, Na₄P₂O₄+10H₂O. Sol, in about 30 pts, cold, much more easily

Sodium hydrogen hypophosphate, Na₂HP₂O₆ +9H₂O.

in hot H2O. (Salzer)

Sol. in 22 pts. H₂O. (Salzer)

Sodium dihydrogen hypophosphate, Na.H.P.O.+6H.O.

Sol. in 45 pts. cold, and 5 pts. boiling H₂O. More sol in dil. H2SO4+Aq. Insol. in alcohol. (Salzer, A. 187. 331.)

Sodium trihydrogen hypophosphate, NaH.P.O.

Sol. in H₂O. (Salzer, A. 211. 1) Sodium trihydrogen dihypophosphate,

Very efflorescent, Sol. in 15 pts. cold H₂O. (Salzer, A. 211. 1.)

Nickel sodium hypophosphate, NiNa2P2O6+ Thallium hypophosphate, Tl4P2O6

Sl sol. in H₂O Decomp. in sunlight.

Thailium hydrogen hypophosphate. Tl2II2P4O6. Sol in H₂(), (Joly.)

Zinc hypophosphate, Zn₂P₂O₄+2H₂O. Insol. in II2O. Easily sol. in dil. acids. (Drawe, B. 21. 3403)

Hypophosphorosomolybide acid,

Barium hypophosphorosomolybdate, BaO, Mo₂O₂₀, 3H₂PO₂+12H₂O. Very sol. in H₂O and BaCl₂+Aq. (Mawrow, Z. anorg, 1902, 29, 156.)

Hypophosphorous acid, H,PO2. Very sol. in H₂O and alcohol. (Rose.)

Aluminum hypophosphite.

Not deliquescent, but very sol, in H2O, Ammonium hypophosphite, NH4H2PO2.

Sol. in H₂O, less deliquescent than the potassium salt. (Wuitz, A. ch. (3) 7. 193.) Very sol. in absolute alcohol. (Dulong.) Moderately sol, in liquid NH2. (Franklin, Am. Ch. J. 1898, 20, 826.) Insol in acetone (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4328.)

Barjum hypophosphite, Ba(H₂PO₂)₂+H₂O. Sol. in 3 5 pts cold, and 3 pts. boiling H2O. Insol. in alcohol. (Wurtz, A. 43, 323.)

Bismuth hypophosphite, B1(H2PO2)2. Ppt (Vanino, J. pr. 1906, (2) 74, 150.) Sol. in acid Bi(NO₄)2+Aq. (Haga, Chem Soc. 1895, 67, 229)

Cadmium hypophosphite. Sol. in H₂O. (Rose, Pogg. 12. 91.) Calcium hypophosphite, Ca(PH2O2)2

Sol. in 6 pts. cold, and not much more sol in hot H₂O. Insol. in strong, very sol. in weak alcohol (Rose, Pogg. 9, 361.)

Calcium cobaltous hypophosphite. 2Ca(PH2O2)2, Co(PH2O2)2+2H2O. Efflorescent. (Rose, Pogg. 12, 295)

Calcium ferrous hypophosphite. Sol, in H_{*}O. (Rose, Pogg 12, 294)

Cerous hypophosphite, Ce(PH2O2)2+H2O. Si. sol in H₀O (Rammelsberg, B. A. B. 1872. 437.) •

288)

(Rose)

 $\begin{array}{lll} Chromium\ hypophosphite,\ Cr_2(OH)_2(H_2PO_2)_4, \\ Anhydrous & Insol\ in\ H_2O\ or\ dil.\ aeads.\ , \\ +3H_2O. & Sol.\ in\ H_2O.\ (Wurtz,\ A.\ eh\ (3) \\ \textbf{16},\ 196.) \end{array}$

Cobaltous hypophosphite, Co(PH₂O₂)₂+ UH₂O. Efflorescent, Easily sol, in H₂O (Rose,

Pogg. 12. 87.)

Cupric hypophosphite, Cu(PH₂O₂)₁.

Very sol in H₂O, but very easily decomp on heating. (Wurtz, A. ch. (3) 16, 199)

Glucinum hypophosphite

Sol in H₂O. (Rose, Pogg 12. 86.)

Iron (ferrous) hypophosphite, Fe(PH₂O₂)₂+ 6H₂O.
Sol. in H₂O. (Rose, Pogg. 12, 294)

Iron (ferric) hypophosphite,
Difficultly sol in H₂O or acids, Decomp.

on boiling. St sol, in H₃PO₂+Aq. (Rosc.)

Lead hypophosphite, Pb(PH₂O₂)₂.

Difficultly sol, in cold, more easily in hot H₂O. Insol, in alcohol. (Rose, Pogg. 12.

Lithium hypophosphite, LiH₂PO₂+H₂O Sol. in H₂O (Rammelsberg, B. A. B. 1872, 416)

Magnesium hypophosphite, $Mg(PH_2O_2)_2+6H_2O$. Efflorescent in dry air. Sol, in H_2O

Manganous hypophosphite, Mn(H₂PO₂)₂+ H₂O. Permanent. Very sol. in H₂O. (Wurtz,

A. ch. (3) 16. 195.)

Mercurous hypophosphite nitrate,
HgH₂PO₂, HgNO₃+H₄O.

Sl. sol. in H₂O with rapid decomp. Sol. in hot cone HNO₃. (Haga, Chem. Soc 1895, 67, 227)

Nickel hypophosphite, N₁(PH₂O₂)₂+6H₂O Efflorescent. Sol. in H₂O. (Rammelsberg, B. 5, 494.)

Nickel hypophosphite ammonia, Ni(H₂PO₂)₂, 6NH₃. (Ephram, B. 1913, **46**. 3111.)

Platinous hypophosphite Pt(PH₂O₂)₂. Insol. in H₄O, HCl, H₂SO₄+Aq, etc. Sol. in HNO₃+Aq. Insol. in alcohol. (Engel, C. R. 91, 1068) Potassium hypophosphite, KH₂PO₂. Very deliquescent Very sol. in H₂O. sol. in weak, less in absolute alcohol. Insol in other. (Wuntz, A. ch. (3) 7, 192) SI sol in liquid NH₂. (Franklin, Am Ch. J. 1808, 20, 828.)

Sodium hypophosphite, NaH₂PO₂+H₂O.
Very deliquescent Somewhat less sol, than
the K sult Very sol, in absolute alcohol,
(Dulong)

Very sol in H₂O, and somewhat less sol in alcohol (Rainmelsberg, B A. B. 1872, 412.) Sl sol in hquid NH₂. (Franklin, Am. Ch. J. 1898, 20, 829.)

Strontium hypophosphite, Sr(PH₂O₃)₂ Very easily sol. in H₂O. (Dulong.) Insol in alcohol (Wurtz.)

Thallous hypophosphite, TlH₂PO₂.
Sol in H₂O (Rammelsberg, B. A. B. 1872, 492)

Uranyl hypophosphite, $UO_2(H_2PO_3)_2+H_3O$. Sl. sol. in H_2O . Easily sol. in HCl, or HNO_2+Aq . (Rammelsberg, Chem. Soc. (2) 11. 1.)

Davanadyl hypophosphite, $\nabla_2 O_2(H_2PO_2)_4 + 2H_2O$. Insol, in cold, sl sol, in hot H_2O .

Soi in hot dil HCi, H₂SO₄ and HNO₃ and in warm conc. HCl and H₂SO₄. Insol in oxalic acid. (Mawrow, Z. anorg. 1907, 55, 147)

Zinc hypophosphite, Zn(H₂PO₂)₂+H₂O Sol_in_H₂O.

+6H₂O. Efflorescent. (Wurtz, A. ch. (3) 16.195.)

Zirconium hypophosphite, Zr(OPH₂O)₄+H₂O. Sensitive to light Insol in alcohol, by, which it is pptd. from aqueous solution.

(Hauser, Z. anorg. 1913, 84, 93.) Hypophosphotungstic acid.

Potassium hypophosphotungstate, 4K₂O, 6H₃PO₂, 18WO₃+7H₂O.

Precipitate . Sol in hot, very sl. sol. in cold H₂O. (Gibbs, Am. Ch. J. 5. 361.)

Hyposulpharsenious acid.

Hyposulpharsenites, As₂S₂, M₂S.
Difficultly sol. in H₂O. (Berzelius.)
Do not exist. (Nilson, B. 4. 989)

Hyposulphuric acid, H₂S₂O₆. See Dithionic acid. Hyposulphurous acid, H₂S₂O₃. New Thiosulphuric acid.

See Thiosulphuric acid.

Hyposulphurous (Hydrosulphurous) acid.

H.SO.

Known only m dil. aqueous solution, which decomposes rapidly. Correct formula is H₂S₂O₅, according to Bernthsen (A. 211, 285.) More sol. in alcohol than in H₂O (Rossler,

Arch. Pharm. (3) 25. 845.)

Ammonium hyposulphite, (NII₄)₂S₂O₄.

Known only in solution. (Pudhomme.

Bull Soc 1899, (3) 21. 326)

Ammonium hydrogen hyposulphite,
NH.HS-O.

Known only in solution. (Prudhomme, Bull. Soc. 1899, (3) 21. 326.)

Calcium hyposulphite, CaS₂O₄+1 5H₂O Difficultly sol. in H₂O. (Bazlen, B 1905, 38, 1059.)

Magnesium hyposulphite, MgS₂O₄ (Billy, C R. 1905, 140, 936)

1058.)

Potassium hyposulphite, K₂S₂O₄+3H₂O. Easily decomp Insol. in alcohol. (Bazlen, B. 1905, 38.

Sodium hyposulphite, Na₂S₂O₄.

Anhydrous. Stable in dry air (Bazlen, B, 1905, 38, 1061.)

100 g, H₄O dissolve 24.1 g, of the anhydrous salt at 20°. (Jellinek, Z. anorg 1911, 76, 130.) +2H₄O Solubility in H₂O 11.6 g, of the solution contain at:

20° 1.91 g. Na₄S₂O₄ 10° 1 67 g. " 1° 1 49 g. " (Jellinek, Z anorg. 1911, 70. 128)

Insol. in alcohol, (Bazlen, B 1905, 38, 1058.)

Sodium zinc hyposulphite, Na₂S₂O₄, ZnS₂O₄.

Less sol. in H₂O than ZnS₂O₄. (Bazlen, B 1905, 38. 1060.) Strontium hyposulphite, SrS₂O₄.

Strontium hyposulphite, SrS₂O₄.
Sol. in H₂O. (Moissan, C. R. 1902, **135**. 653.)

Zinc hyposulphite, ZnS₂O₄.
Easily sol in H₃O; about 1 pt. in 7 pts.
H₃O. Forms supersat. solutions readily.
(Bazlen, B. 1905, 38. 1060.)

Hypovanadic acid, V₂O₂(OH)₄. See Vanadium tetrhydroxide. Hypovanadic acid, H₂V₄O₆. See Vanadous acid.

Hypovanadic acid with vanadic acid. See Vanadicovanadic acid.

Imidodimetaarsenic acid.

Ammonium imidodimetaaresenate, (NH₄O₂As₂O₃NH.

(Rosenheim and Jacobsohn, Z. anorg. 1903, 50, 307.)

Imidochromic acid.

Ammonium imidochromate, NHCrO(ONH₄)₅.

Very sol in H₂O with decomp. (Rosenheim and Jacobsohn, Z anorg. 1906, **50**. 299.)

Ammonium potassium imidochromate, NH₄KCrO₂NH

Decomp. on solution in H₂O. (Rosenheim, Z. anorg. 1906, 50, 302.)

Imidodimidochromic acid.

Ammonium imidodimido chromate, NH[CrO(NH)ONH₄]₂.

(Rosenheim and Jacobsohn, Z. anorg 1906, 50, 303.)

Imidomolybdic acid.

Potassium imidomolybdate, NKMoO(OK)₂.

Unstable in air.

Very hygroscopic. Very sol. in H₂O.
(Rosenheim, Z. anorg. 1906, 50, 305.)

Dimidodiphosphormonamic acid,

IIO-PO <NH > PO-NH

Correct formula for pyrophosphotriamic acid of Gladstone. (Mente, A. 248, 241.)

Imidodaphosphoric acid,

HO-PO < O > PO-OH.

Correct name for pyrophosphamic acid.

(Mente, A. 248, 251.)

Barium imidodiphosphate, Ba $\stackrel{\bigcirc}{0} > \stackrel{PO}{PO} > NF$

Sl. sol, in H₂O. (Mente, A. 248, 243.)

Barium imidodiphosphate, basic,

Ba 0 PO N-Ba-N PO Ba +

Ppt. (Mente.)

Ferric imidodiphosphate.

Sl. sol, in conc. acids. (Mente, A. 248. 241,)

Silver imidodiphosphate, Ag, H2P2NO6. Insol. in H₂O. (Stokes, Am Ch. J 1896,

18. 660.) Ag, HPaNO ... Ppt. (Stokes)

Diimidodiphosphoric acid.

Correct name for pyrophosphodianue acid (Mente, A. 248, 241.)

Barium drimidodaphosphate,

 $NH < \overline{PO} > \overline{NHO} > Ba$.

Sl. sol in dil acids, (Mente, A. 248. 244.)

Sodium dzimidodzphosphate, basic,

NaN < PO NH ONa

Sl. sol, in H₂O. (Mente, A. 248, 245)

Dümidotriphosphoric acid.

Silver dimidoti sphosphate, Ag₃H₄P₃N₂O₈. Insol, in H₂O. Very sol. in NH₄OH+Aq Rather sl. sol in dil HNO₃. (Stokes, Am.

Ch. J. 1896, 18, 657) Ag₅H₂P₃N₂O₈. Insol in H₂O. Very sol. in NH.OH+Aq

Decomp. by HNO3, (Stokes.) Trisodium/lumidofriphosphate, PaNaOaHaNna

Sol in H2O.

Insol in alcohol, (Stokes)

Triimidotetraphosphoric acid. Silver traimidotetraphosphate.

Ag, H.P. N.O. Ppt. (Stokes, Am. Ch. J 1898, 20, 755.)

Sodium trimidotetraphosphate, PaNaOmHaNa.

Easily sol in H₂O; msol, in sodium acetate solution and dil. alcohol. (Stokes, Am. Ch. J. 1898, 20, 754.)

Imidosulphamide, NH2 SO2-NH-SO2-NH2

"Sulphamide" of Traube. Very sol, in II-O with decomp, appreciably sol, in cold, easily sol, in hot methyl and ethyl alcohol Insol. in C.H., and CHCl. Sl. sol, in ether, cold and hot acetic ether and glacial acetic acid. Moderately stable toward alkalies. (Hantzsch and Stuer, B. 1905, 38. 1022.)

Ammonium imidosulphamide, NH4S2O4N2H4.

(Hantzch and Stuer.)

Imidosulphonic acid, H₃S₂O₆N=HN < SO₂—OH SO₂—OH

Ammondisulphonic acid of Claus. Known only in aqueous solution (Divers and Haga, Chem. Soc 61. 943.)

Very unstable (Berglund, B 9, 252.)

Ammonium imidosulphonate, basic,

(NH4)N(SO3NH4)2 Sol, in 9 pts. of H₂O Solution is stable.

Insol in alcohol SI sol in warm conc H2SO4 without decomp (Rose, Pogg. 1834, 32. 81.) Much less sol than the neutral salt (Berg-

lund, B 9. 255) ="Parasulphatammon" +H₂O Gradually efflorescent. Sol. in H₂O with subsequent decomp. (Divers and

Ammonium imidesulphonate, HN(SO,NH4)2.

Sol. in H₂O. (Raschig, A. 241, 161.) Ammonium barium ımıdosulphonate,

NH4BaN(SO3)2(?). Very sl. sol in H₂O. (Divers and Haga) (NH₄)₂Ba₅N₄(SO₃)₈+8H₂O. (D. and H.)

Ammonium calcium ımidosulphonate. (Divers, Chem. Soc. 1892, 61, 968.)

Ammonium sodium imidosulphonate, NH4Na4N2(SO8)4+7H2O, and 21/2H2O. Very sl, sol, in NH4OH+Aq. (Divers and Haga.)

Ammonium sodium imidosulphonate nitrate, HN(SOaNH4)2, NaNO3.

Very sol. in H2O. (Divers and Haga.)

Barium imidosulphonate, Ba[N(SO₂)₂Ba]₂+ 5H2O.

Sl. sol. in H₂O (Berglund, B 9. 255.) Sol. in dil HNOs+Aq without decomp. (Divers and Haga.) HN(SO₈)₂Ba+H₂O. Moderately sol. in

H₂O. (D. and H.)

Barium mercury imidosulphonate,

N2Hg(SO3)4Ba2. Almost msol, in cold H2O, (Divers and Haga, Chem Soc. 1892, 61, 977.)

Barium sodium imidosulphonate, Ba11Na8N10(SO3)20+13H2O.

Sparingly sol. in H₂O. Readily sol. in HNO₂ or HCl. (Divers, Chem. Soc. 1892, 61. 967.)

6H2O. Sl. sol. in H₂O (Berglund.)

Calcium mercury imidosulphonate,

N2Hg[(SO2)2Cal2. Very sol. in H2O. (Divers and Haga,

Chem. Soc. 1896, 69, 1629.)

Calcium mercury imidosulphonate chloride. $(NS_2O_6Ca)_3Hg_2Cl+12H_2O$.

Decomp. by H2O. (Divers and Haga Chem. Soc. 1896, 69. 1629.)

Calcium sodium imidosulphonate, $NaN(SO_2)_2Ca+3H_2C$

Sl. sol. in cold II₂O. (Divers and Haga, Chem. Soc 61. 968.)

Lead imidosulphonate, (PbOHSO₃)₂NPbOH Ppt. (Berglund)

Insol in H₂O (Divers and Haga) (PbOH)₈N(SO₃)₂, PbO, Insol. in H₂O; easily sol in dil HNO₃+Aq. (D, and H.)

Mercurous imidosulphonate, basic, [Hg2N(SO3)2Hg2]2O+6H2O.

Much more sol, in dil HNO2 than meicuric salt. Sol. in cold conc. KI+Aq, leaving half Hg as metal. (Divers and Haga, Chem Soc 1896, 69, 1631)

Mercuric imidosulphonate, basic, NH(SO₂, HgO)₂Hg.

Easily decomp. (Divers and Haga) Mercuromercuric imidosulphonate,

 $[Hg^{\mu}N(SO_a)_3Hgll_0O + 3H_sO_s]$ Divers and Haga.) [Hg¹¹N(SO₂)₂Hg¹₂]₂O, [Hg¹N(SO₂)₂Hg₂, HgttN(SO,)2Hgl]O+6H2O. (Divers and Haga.)

Mercury sodium imidosulphonate, basic, Hg2ON(SO2)2Na+2H2O

Slightly efflorescent. Decomp. by long washing with H₂O. Much more readily sol. in HCl than in HNO₂ or H₂SO₄ and is wholly decomp. thereby. (Divers and Haga, Chem Soc. 1892, **61**. 983.)

Mercury sodium imidosulphonate, $HgN_2(SO_2Na)_4+6H_2O$.

Sparingly sol in cold H₂O. Readily sol in HNO2 and in HCl. Decomp. by HCl immediately, but not by HNO₃. (Divers and Haga, Chem. Soc 1892, 61. 981.)

Potassium imidosulphonate, basic, $KN(SO_3K)_2 + \hat{H}_2O$.

Sol, m H.O. (Raschig, A. 241, 161.) Less sol. than neutral salt. (Berglund.)

Calcium imidosulphonate, Ca[N(SO₂)₂Ca]₂+ Potassium imidosulphonate, HN(SO₃K)₂, Sol in H₂O. (Raselug, A 241, 161.)

= Potassum ammondisulphonate of Claus. Difficultly sol, in cold H₂O, sol in 64 pts. H₂O at 23°. (Frenty.) Gradually decomp. by boiling (Claus)

Sl. sol in H₂O, (Berglund, B, 9, 255)

Potassium mercury insidosulphonate N2Hg(SO2K)4+4H2O.

See Mercurimidosulphonic acid.

Silver imidosulphonate, AgN(SO₅Ag)₂. Sl. sol, in H₂O, (Berglund.)

Silver sodium imidosulphonate. NaN(SO,Ag),

Sl. sol. in H2O. (Davers and Haga.) AgNa2N(SO2)2. Sl sol. m H2O, but more sol, than the two preceding salts. (D. and H.)

Sodium imidosulphonate, HN(SO₂Na)₂+ 2H-O Not efflorescent. Very sol in H₂O (Diver

NaN(SO₃Na)₂+12H₂O. Efflorescent. sol. in cold H₂O, but very sol. in hot H₂O. Sol in 54 pts H₂O at 27.5°. (Divers and Haga)

Sodium strontium midosulphonate, SrNaNS₂O₄+3H₂O.

Sl sol. in H2O (Divers, Chem. Soc. 1896, 69, 1625)

Strontium imidosulphonate. Sr[N(SO₃)₂Sr]₂+6H₂O

Sl. sol in H2O (Berglund) +12H₂O Somewhat sol. in hot H₂O, (Divers, Chem Soc. 1896, 69. 1623)

Imidotrisulphoorthophosphoric acid, NH.P(SH)2.

Insol, in CS2 and readily decomp, by H2O, (Stock, B. 1906, 39. 1991)

Ammonium imidotrisulphoothophosphate, NHP(SNH₄)_a. Very hydroscopic. Loses NH₃ in the air.

Somewhat sol. in liquid NH. Decomp. by any other solvent in which it is sol. (Stock, B. 1906, 39. 1983.)

Drammonium hydrogen imidotrisulphoorthophosphate, SHP(SNH4)2NH. (Stock, B. 1906, 39, 1983.)

Ammonium dihydrogen ------SNH.P(SH)-NH. (Stock.)

Disodium hydrogen imidotrisulphcorthophos- Indium monobromide, InBr phate, SHP(SNa)-NH.

Very easily sol in H₂O. Decome by H₂O Somewhat sol, in methyl and ethyl alcohol (Stock.)

Drimidoneulasulphonumophosphoric acid. PaSaNaHa.

Not known in pure state (Stock, B. 1906, 39, 1967.)

Ammonium drimido pentasulpho pyrophosphate, S(P(SNH₂)₂NH₃)

Very hydroscopic. Sol in cold H₂O with decomp. (Stock, B 1906, 39, 1978.)

Inidosulphurous acid.

Ammonium imidosulphite, HN(SO+NH₄)».

Somewhat deliquescent. Very unstable Easily sol in H₂O with decomp, into thiosulphate and amidosul-

Insol, in alcohol. (Divers and Ogawa, Chem Soc. 1901, 79, 1100)

Ammonium barium imidosulphite, Ba(SO2NHSO2NH4)2.

Sol in H₂O (Divers, Chem. Soc. 1901, 79. 1102)

Potassium midosulphite, NH(SO₂K)₂. (Divers and Owaga, Proc. Chem. Soc. 1900, 16, 113.) Very sol, in H.O. (Divers, Chem. Soc.

1901, 79, 1101.) Imidosulphuryl amide, S₂O₄N₄H₅=

SO2 < NH2 SO, < NH,

Sol. in NH4OH+Aq Decomp, by cone, HCl. Insol, in alcohol sat, with NH. (Mente, A. 248, 265)

Indic acid.

Magnesium indate, MgIn₂O₄+3H₄O. Ppt. Insol. in H₂O Sol in HCl+Ao. (Renz, B. 1901, 34, 2764.)

Indium, In

Does not decomp, hot H2O.

Sol. in dil HCl, and H₂SO₄+Aq. Decomp. by cone H₂SO₄. Easily sol in HNO₂+Aq Insol. in acetic acid. Insol. in KOH+Aq (Winkler, J pr. 102, 273.) Insol. in liquid NHs. (Gore, Am. Ch. J.

1898, 20, 830,

12 ccm oleic acid dissolves 0.0039 g. In in 6 days. (Gates, J phys Chem. 1911, 15. 143.)

Decomp by hot H₂O. Easily sol. in acids. Easily sol in cold conc. HCl. (Thiel, Z. anorg 1904, 40, 328)

Indium debromide, InBra.

Decomp. by hot H.O. Easily sol in saids (Thiel, Z anorg 1904, 40, 329.)

Indium to bromide, InBra-Deliquescent Very sol, in H₂O

Indium monochloride, InCl

Deliguescent. Decomp. by H.O into InCl. and In. (Nilson and Pettersson, Chem. Soc. 43, 820.)

Indium dichloride, InCl.

Deliquescent in moist air; decomp. by H2O into InCl₁ and In (Nilson and Pettersson, Chem. Soc 43. SIS.)

Indium trichloride, InCl., Very deliquescent; sol in H2O with hissing

and great evolution of heat Indum lithum chloride.

Extremely deliquescent, Sol. in H₀O. (Meyer, A. 150. 144.)

Indium potassium chloride, 3KCl, InCl,+ 11/4H.O Easily sol in H₂O (Meyer.)

Indium trifluoride, InF3+3H2O

Sol. in H.O; readily decomp. (Thiel, B 1904, 37, 175.) 1 l. H₂O dissolves 86 4 g. at 25°. Decomp. on boiling (Thiel, Z. anorg 1904, 40. 331.)

+9H₂O. Si sol in cold H₂O. Sol. in HCl and in HNO.

Insol. in alcohol and ether. (Chabrié C. R. 1905, 140, 90,)

Indium hydrosulphide.

Decomp. by acids. (Meyer.)

Indium hydroxide, In₂O₄H₆,

Sol. in acids, also in KOH, or NaOH+Aq but the solution clouds up on standing or boiling, with separation of In.O.H. Insol, in NH,OH, or NH,Cl+Aq.

Sl. sol. in NH4OH+Aq (Renz, B, 1904, 37. 2110.)

SI sol in alkylamines but completely ppt. by addition of the hydrochloride of the base. (Renz. B. 1903, 36, 2754.)

Indium monoiodide, InI.

Slowly decomp, in moist air. Not attacked by boiling HOO

Sol. in dil. HNO2 in presence of AgNO2. Very slowly sol, in cold, more rapidly sol, in hot acids with evolution of H2. Very sol in Indium sesquisulphide, In2S1. sulphurous acid Insol. m alcohol. ether and chloroform. (Tinel, Z anorg 1910, 66, 302.)

Indium diiodide, InI. (Thiel, Z. anoig. 1910, 66, 302.)

Indium traiodide, InIa

Deliquescent. (Meyer.) Sol in CHCl₂. Decomp. by xylene. (Thiel, Z. anorg. 1904, 40. 330.)

Indium nitride, InN.

Decomp by heat (Franz Fischer, B. 1910, 43, 1469)

Indium monoxide, InO.

Gradually sol. in HCl+Aq. (Winkler, J. pr. 94, 1.)

Indium sesquioxide, In₂O₂

Slowly sol in cold, easily in hot acids. Four modifications:

(1) Yellow Amorphous. Sol. in acids Its hydroxide is insol, in ammonia and NH4Cl. (2) White Amorphous Insol in acids. (3) White Amorphous. Sol in acids Its hydroxide is sol. in ammonia, but pptd. by

(4) Crystallized. Crystalline modification is insol. in acids. (Renz, B. 1904, 37, 2112.) Insol, in liquid NH2. (Gore, Am. Ch. J. 1898, 20, 830.)

Indium oxide, $In_7O_9 = 3InO_1 2In_2O_2$ (?), (Winkler)

 $\text{In}_4O_5 = 2\text{InO}$, In_9O_3 (?), (Winkler.) Indium oxybromide (?),

Not decomp, by hot acids or alkalies. (Meyer, A. 150, 137.)

Indium oxychloride, InOCl. Very sl. sol. in H₂O. (Thiel, B. 1904, 37. 176.)

Very sl. sol, in cold or hot dil acids, Quickly sol in hot cone. acids (Thiel, Z anorg. 1904, 40. 327.)

Indium triselenide, IngSes. Sol, in strong acids with evolution of H2Se.

(Thiel, Z. anorg, 1910, 66, 315.) Daindium sulphide, In₂S.

Sol. in acids. (Thiel. Z. anorg, 1904, 40,

Indium monosulphide, InS.

Easily sol. in HCl with evolution of H2S. Sol. in HNO, with evolution of oxides of sol, in alcohol. (Landborn, Lund, Univ. Arsk. nitrogen. (Thiel, Z. anorg. 1910, 66. 314.) 12. No. 6.)

Partially sol in (NH₄) S+Aq

Indium potassium sulphide, In-S., KoS Insol in H₂O; decomp, by weak acids with separation of In2St, sol. in conc. acids. (Schneider, J. pr. (2) 9. 209.)

Indium silver sulphide, In S. Ag.S Insol. in H₂O. (Schneider, l, c.)

Indium sodium sulphide, In_2S_3 , Na_2S+2H_2O . Insol, in H₂O. (Schneider, l, c.)

Indium monotelluride, InTe.

Sol. in HNO₅; msol. in HCl+Aq. (Thiel, Z. anorg, 1910, 66, 318.)

Infusible white precipitate.

Diodamine, NHI2. Decomp. by H2O.

Iodammonium iodide, NIHal.

Decomp by H₂O, caustic alkalies, and acids. Sol. in KI+Ag, alcohol, ether, CS₁, CHCl2. (Guthrie, Chem Soc (2) 1, 239.)

Iodauric acid, HAuL (?). Not known with certainty

Ammonium iodaurate. Deliquescent. Decomp. by H2O. (John-

ston, Phil. Mag. (3) 9. 266.) Barium iodaurate.

Sol. in BaI.+Ao Cæsium iodaurate, CsAuI4.

(Gupta, J.Am Chem. Soc. 1914, 36, 748.)

Ferrous iodaurate. Sol. in H₂O. (Johnston.)

Potassium iodaurate, KAul.

Decomp. by H.O. Sol. in KI, and HI+A. (Johnston.)

Sodium iodaurate.

Very deliquescent (Johnston.) Iodauricyanhydric acid, HAu(CN)2I2.

Known only in its salts.

Barium iodauricyanide, Ba[Au(CN), I,], + 10H,O.

Sl. sol. in cold, easily in hot H2O. Easily

Calcium iodauricvanide, CalAu(CN)-I-I-+ 10H-O. Not stable, (L.)

Cobalt iodauricvanide, CofAu(CN)-I-la+

101LO. Most mool, of all iodauricvanides, and only sl. sol in warm H-O Easily sol, in alcohol

Potassium iodauricvanide, KAu(CN)-In+ Sl. sol. in cold, easily sol in warm H2O and

Strontium iodauricvanide, Sr[Au(CN):12]2+

10H.O Sl. sol, in cold, more easily in hot H₂O.

Iodhydric Acid, III.

Very easily and quickly absorbed by II₂O. with evolution of much heat Solution is decomp, on exposure to the fur.

1 vol. H₂O absorbs 450 vols, HI at 10°. (Thomson.) I vol H₂O absorbs 425 vols. HI at 10°.

alcohol (L)

(Berthelot, C. R. 76, 679.) Weak or strong solutions when boiled in an atmosphere of H leave a residue of constant composition, which distils unchanged at 126' compesition, which distily unchanged at 126° (de Lynne), at 127° (Hoxco, Chem Soc. 13. 146; Naumann; Topo), at 128° (Biesu) A. 146; Naumann; Topo) and has a sp. of the control of Co. 150° (100° Co. 150° 100°. (Roscoc.)

ALLES ATTE TO CO

Solut	Solubility of HI in H ₂ O at t				
t _o	12 HI	Solid Phase			
- 10 - 20 - 30 - 40 - 50 - 60	20 3 29 3 35 1 39 42 44 4	Ice " " " " " "			
-70 -80 -60 -40 -35 5 -40 -49 -48 -56	46 2 47 9 52 6 59 64 65 5 66 3 70 3 78 5	" Icc+HI, 4H ₂ O HI, 4H ₂ O " " HI, 4H ₂ O+HI, 3H ₂ O HI, 3H ₂ O+HI, 2H ₂ O			
-52	74	HI, 2H ₂ O			

(Pickering, B. 1893, 26, 2307)

Solution in H₂O sat, at 0° has sp. gr. = 1 99 (de Luynes, A. ch. (4) 2, 385); 2.0 (Vigier),

Sp. gr of HI+Aq.

Sp gr	22,111	Temp
1 017	2 286	13 5°
1 0524	7 019	13 5
1 077	10 15	13 5
1 095	12 21	13
1.102	13 09	13 5
1 126	15.73	13 5
1.164	19.97	18 5
1.191	22 63	13 8
1.225	25 86	18 8
1.2535	28 41	13.5
1.274	30 20	13 5
1.309	33.07	13
1 347	36 07	13
1 382	38 68	13
1 413	40 45	13
1 451	43 39	13
1 4865	45 71	13
1 528	48 22	13
1 542	49 13	13.5
1 5727	50.75	13
1 603	52 43	12 5
1.630	53 93	14
1 674	56 15	13 7
1 696	57 28	13
1.703	57 42	12.5
1 706	57 64	13.7
1 708	57.74	12

(Topsoe, B. 3. 403)

.

	Sp. gr. of HI+Aq at 15°.						
١	% HI	Sp gr	% HI	Sp gr	% HI	Sp gr.	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1.008 1.015 1.022 1.029 1.037 1.045 1.061 1.069 1.077 1.085 1.093 1.093 1.110 1.118 1.128 1.127	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	1 175 1 185 1 195 1 205 1 216 1 227 1 238 1 249 1 260 1 271 1 283 1 295 1 307 1 320 1 333 1 346	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	1 414 1 429 1 444 1 459 1 .475 1 .475 1 .508 1 525 1 548 1 561 1 .579 1 .615 1 .634 1 .654 1 .674	
١	18 19	1.146	38 39	1.359 1.372 1.386	57 58	1 694 1.713	
	20	1 165	40	1.400	.:	:::	

(Topsoe, calculated by Gerlach, Z. anal. 27.

25

1.9954

2 1269

Sp. gr. of HI +Aq at 15°.						İ.
5 10	5p gr. 1 045 1 091	25 30	Sp. gr 1 239 1.296	% III 45 50	Sp gr. 1 533 1.650	
15 20	1.138 1.187	35 40	1 361 1.438	52	1.700	

Only a "moderate degree of accuracy" is claimed for this table. (Wright, C. N. 23. 253.) +2H₂O. Mpt.-43°. (Pickering, B. 1893,

26, 2308.) 43H-0 Mpt,-48°. (Pickering.) +4H+O Mpt.-36 5°. (Pickering.)

Iodic acid, HIOs.

Very sol, in H₂O and alcohol.

100 g. H₂O dissolve 286 1 g. HIO₂ at 13.5°. Sp. gr. of HIO: +Aq. = 2.4256.

100 g. H2O dissolve 293 g. HIO2 at 18°. Sp. gr. of HIO1+Aq. = 2,4711. (Groschuff, Z. anorg. 1905, 47. 337.)

Solubility of HIO2 in H2O at to.

Solid phase	t°	G HIO: in 100 g of the	G I ₂ O ₅ m 100 g of the solution	18 21 27 38 g. HIO ₂ .
				Solubility in HNO, containing 40.88% HNO.
ice	- 0.80 - 0.67	1 78 4 35	1 69 4 13	100 g of the sat. solution contain at:
	- 1 01	7 17	6 81	0° 20° 40° 60°
44	- 1 90	17 66	16 75	9 10 14 18 g. HIO ₂ .
tt.	- 2 38	27 65	26 22	(Groschuff, Z. anorg. 1905, 47. 344.)
11	- 4 72	54 19	51 42	7 1 7770 1 77.0 1 1-1
ıı	- 6 32	60 72	57 61	Less sol. in HNO ₂ than H ₂ O; nearly insol. in anhydrous HNO ₂ . (Groschuff, Z. anorg.
11	-12.25	71 04	67 40	1905, 47, 347)
	-13 5	72.2	68 5 70 0	Insol. in liquid NH. (Franklin, Am. Ch.
	15 19	73 8 76 2	72 3	J. 1898, 20, 830.)
ice+HIO:	-14	72 8	69.1	Unattacked and undissolved by liquid NO:
HIO.	1 0	74.1	70.3	(Frankland, Chem. Soc. 1901, 79, 1362.)
"	+16	75.6	71 7	Insol. in absolute alcohol. Alcohol of 35°
64	40	77 7	73.7	B. dissolves half its weight in HIO ₃ . (Kam- merer.)
44	60	80.0	75.9	+4½H ₂ O,
44	80	82.5 83.0	78 3 78.7	HIOs. LOs. (Grosschuff, Z. anorg. 1905,
	85 101	85.2	80.8	47, 343)
HIO,+HI,O	110	86.5	82 1	
HI ₂ O ₈	125	87 2	82.7	Iodates.
	140	88.3	83.8	The alkali podates are sol in H.O. the others

(Groschuff, Z. anorg. 1905, 47. 343.)

160

90.5 85.9

Sat. solution has sp. gr. 2.842 at 12.5°, and boils at 104.° (Ditte, B. 6. 1533.) Sat. solution has sp. gr. 2.1629 (1.874 pts. 1_2O_3 m 1 pt. 1_3O_3 and boils at 100° . (Kammerer. Pogg, 138, 400.)

Sp. gr. of HIOa+Ac at 15°. % I₁O₂ So gr % I:O: So, gr 1 0053 1.4428 1 0263 40 1 5371 0525 1.6315 10 45 1.7356 15 ĩ 1223 50 1.8689 20 î 2003 55

60

65

(Kammerer.)

2773

ī 30 1 3484

According to Thomsen (B. 7. 71) solutions of HIO, have sp. gr.-

 $HIO_1 + 10H_1O = 1.6609$ $HIO_2 + 20H_2O = 1.3660$

HIO₂+ 40H₂O = 1.1945. HIO₂+ 80H₂O = 1.1945. HIO₂+ 160H₂O = 1.0512. HIO₃+320H₂O = 1.0258.

H2SO, at nearly boiling temp, dissolves 1/2 its weight of rodic acid. (Millon.)

Solubility in HNOs containing 27,73% HNOs. 100 g. of the sat. solution contain at:

200 40° 600 27 38 g. HIO2.

The alkalı rodates are sol, in H2O, the others are sl. sol, or insol, therein,

Aluminum iodate, Al(IO*)* (?). Deliquescent. (Berzelius.)

Ammonium iodate, NII, IO2. Sl. sol, in H2O. Sol. in 38.5 pts. H2O at 15°

6.9 pts .at 100°. (Rammelsberg, Pogg. 44. 555.

Solubility of	NH,10, 11	HIO3+Ac	1 at 30°.

containty of Milital in Hio3 + Md at so .			
% HIO; in the solution	NH4O) in the solution	Solid phase	
0 2 54 4 52 4 51 4 56 4 73 6 57 8 45 9 12 24 00 36 01 44 43 58 12 76 35	4 20 3 89 3 83 3 83 3 75 3 53 1 94 1 .09 0 .89 0 41 0 30 0 .37 0 31	NII,101 NH4103+NH4103,2H10, "" NH4103,2H103,2H103, "" "" "" "" "" "" "" "" "" "" "" "" ""	

(Meerburg, Z. anorg. 1905, 45. 341.)

Ammonium diodate, NH₄H(IO₂)₂. Sl. sol, in cold H₂O. (Ditte, A. ch. (6) 21. 145.)

Ammonium traiodate, NH₄H₂(IO₃)₃. Sol, m H₂O. (Blomstrand, J. pr. (2) 42. 335.) See also solubility in HIO₂, under Am-

monium iodate. (Meerburg.)

Ammonium cobalt iodate.

Decomp. by H₂O. Insol. in alcohol. (Rammelsberg.)

Ammonium oxyd;mercuriammonium iodate.

See Oxydimercuriammonium ammonium iodate.

Ammonium tellurium iodate. See Iodotellurate, ammonium.

Ammonium iodate selenate. See Iodoselenate, ammonium.

Barium iodate, Ba(IOz)2.

Anhydrous sait is sol. in 1746 pts. H₂O at 15°, and 600 pts. H₂O at 100° (Rammelsberg, Pogg. 44. 577); in 3018 pts. H₂O at 13.5°, and 681 pts. H₂O at 100°. (Kremers, Pogg. 84. 27.)

Solubility of Ba(IO₃), in H₂O. 100 g sat. Ba(IO₃)₂+\q at t° contain g. anhydrous Ba(IO₃)₂.

10	Grams Ba(IOg):	to.	Grams Ba(IO ₃₎₂	10	Grams RaffOut
Date the point 	0 008 0 014 0 022 0 028	30° 50° 50°	0 031 0 041 0 056 0 071	70° 80° 90° *99 2°	0 093 0 115 0 141 0 197

*Bpt. at 735 mm pressure=about 100° at 760 mm pressure. (Anschutz, Z phys. Ch. 1906, 56, 241.)

(historius, 2 pays. Ch. 1985, 66, 221.)

1 1 sat aq solution contains 0.284 g,
Ba(IO₂); at room temp. (Hill and Zink, J,
Am Chem Soc 1909, 31, 44.)

1 l. H₂O dissolves 0.3845 g Ba(IO₃)₂ at 25°. (Harkins and Winninghof, J. Am. Chem Soc 1911, 33, 1828.) Easily sol in cold HCl+Aq; difficultly sol.

in warm HNO₄+Aq. (Rammelsberg.)
Insol in H₂SO₄. (Ditte.)
100 cc NH₄OH+Aq (sp. gr =0.90) discolva 0.0190 g. Bq.(D₂)₂. (Hill and Zink.)

solve 0 0199 g Ba(IO₄)₂. (Hill and Zink)

Solubility in salts+Aq at 25°.

C=concentration of salt m salt solution expressed in equivalents per l. S=solubility of Ba(IO₃)₂ in salts+Aq expressed in equivalents per l.

	Salt	С	s
	Ba(NO ₁) ₂	0.001 0.002 0.005 0.020 0.050 0.100 0.200	0 001362 0 001212 0 0009753 0 0006744 0 0006131 0 0005659 0.0005580
	KNO ₃	0 002 0.010 0.050 0 200	0.001624 0 001820 0 002640 0 003190
1	KIO,	0 00010608 0 0005304 0 0010608	0.001510 0.001242 0.0009418

(Harkins and Winninghof, J. Am Chem. Soc. 1911, 33, 1829.)

Insol, in alcohol

100 cc 95% alcohol dissolve 0.0011 g. Ba(IO₃)₂ at room temp. (Hill and Zink.) Insol. in acetone. (Eidmann, C. C. 1899, H 1014.)

+H₂O. Sol. in 3333 pts H₂O at 18°, and 625 pts. H₂O at 100° (Gay-Lussac, A. ch. 91. 5.)

Insol. in acctone. (Naumann, B. 1904, 37, 4329.) 0.1

40°

Barium manganic iodate, Mn(IO₂), Ba(IO₂),

Insol in HaC Insol in HIO3. (Berg, C. R. 1899, 128.

Bismuth todate, basic.

675.)

Insol m H₂O. Very difficultly sol. in HNO₃+Aq (Ranmelsberg, Pogg. 44, 568.) B₁(IO₄)₃+1½H₂O. Insol in H₂O.

Cadmium iodate, Cd(IO2)2.

Very sl. sol. in H2O Easily sol. in HNO4, or NH.OH+Aq. Sol. in Cd(C2H3O2)2+ Aq (Rammelsberg, Pogg. 44, 566.) +H₂O. Sl. sol. in H₂O. Very sol. in dil. HNO₃+Aq. (Ditte, A ch. (6) 21. 145.)

Cadmium iodate ammonia, Cd(IO₂)₂, 2NH₂, Insol, in H₂O; sol, in NH₄OH+Aq. (Ditte.)

A. ch. (6) 21, 145,) Cd (IO+)+ 2NII+ +HO As above. (Ditte.

Cesium iodate, CsIO.

100 pts H.O dissolve 2.6 pts, CsIO, at 24° Insol in alcohol. (Wheeler, Sill, Am. J. 144.

2CsIO₂, I₂O₂. 100 pts H₂O dissolve 2.5 pts. at 21°. Not decomp. by hot H₂O (Wheeler.) 2CsIO2, I2O2, 2HIO2. Sl sol. in cold H.O and decomp thereby into 2CsIOs, I2Os (Wheeler.)

Casium iodate chloride, CsCl, HIO. Decomp, by H2O into 2CsIO3, I2O4. (Wheeler)

Cæsium hydrogen iodate periodate, HCsIO₂, IO₄+2H₂O.

Ppt. Sol. in dil. HNOs. (Wells, Am. Ch. J. 1901, 26, 280.)

Calcium iodate, Ca(IO₄)₂, 100 pts dissolve 0.22 pt. at 18°.

100 pts dissilve 0.22 pt. at 18°, and 0.986 pt. at 100°. (Gay-Lussac.) Sol. in cone. HCl+Aq. (Filhol.) Much more sol. in HNO₄+Aq than in H₄O. (Rammelsberg) Insol. in HSO₄. (Ditto.) Searcely sol. in sat. KIO. + Ao. (Sonstadt, C. N. 29, 209.)

 $+H_{*}O.$ Sat. solution contains at: 21° 35° 40° 45° 0.54% Ca(IO,)2, 0.37 0 48 0 52 50° BOS 80° 1000 0.59 0.65 0.790.94% Ca(IO₃)2. (Mylius and Funk, B. 1897, 30, 1724.)

+6H₂O. Efflorescent. Sol. in 253 pts H2O at 15°, and 75 pts. at (Rammelsberg.)

Sat, solution contains at:

Inº 18° 300 0 17 0.25 0 42% Ca(IO4)2 500 54° 60° 0.890.14 1 36% Ca(IO₄)2.

(Mylus and Funk, B 1897, 30, 1724) Much more sol, in HNO++Aa. Potd, by

alcohol from Ca(IO2)2+Aq. Insol. in H2SO4. (Ditte.) Potd by alcohol from aqueous solution. (Henry.)

Cerous iodate, Ce(IO₂)₂+2H₂O.

Sl. sol, in cold, easily sol, in hot H.O and in solution contain 0.1456 g. at 25° (Rimbach,

Solution contain 0.1450 g. at 25° (1000) acn, Z. phys. Ct. 1909, 67. 190.)

Calc. from electrical conductivity of Ce(10₃)₃+Aq., 100 cc of the sat. solution contain 0.1636 g. Ce(10₃)₃ at 25°. (Rumbach, Z. phys. Ch. 1909, 67. 199.)

Ceric iodate, Ce(IO,),

Slightly hydrolyzed by H₂O, 0.34 g is sol, in 100 cc hot cone, HNO2. (Barbieri, Chem. Soc. 1907, 92, (2) 467.)

Cobaltous iodate, Co(IO₃)2.

Anhydrous, Sol. in warm dil H₃PO₄, or H₂SO₄+Aq. (Ditte, A. ch. (6) 21. 14.)

Solubility in H₂O

Form	Temp.	Co(llon:	Mole of water free salt to 100 mole H ₂ O	
Co(IO ₃) ₂ +4H ₂ O " " " " Co(IO ₃) ₃ +2H ₂ O " " " " " " " Co(IO ₃) ₂ :	0° 18° 30° 50° 65° 0° 18° 30° 50° 75° 100° 18°	0.54 0.83 1.03 1.46 1.86 2.17 0.32 0.45 0.52 0.67 0.84 1.02 1.03	0 028 0 038 0 046 0 065 0 084 0 098 0 014 0 023 0 030 0 038 0 045 0 046	
"	30° 50°	0.89	0 040	
"	75°	0.75	0 033	
,	100°	0 69	0 031	

(Meusser, B. 1901, 34, 2435.)

+H2O. Sol, in 148 pts. H2O at 15° and 90 pts, at 100°, Sol, in NH,OH+Aq, (Rammelsberg, Pogg. 44, 561.) Does not exist. (Meusser, B. 1901, 34,

2434.) +2H₂O. (Meusser.) +4H2O. (Meusser.) "Ahu

Iron (ferric) 10date, Fe₂O₃, I₂O₅, Cupric iodate, basic, 6CuO, 3I2Os+2H2O.

Insol. in H₂O. (Millon, A. ch. (3) 9. 400.) Mixture of CuO and Cu(IOs). (Datte.

A. ch. (6) 21, 175)

2CuO, I₂O₈+II₂O. Slowly sol. in dil.
H-SO. (Granger and de Schulten, Bull. Soc. 1904, (3) 31, 1027)

Cupric iodate, Cu(IOa)2.

 H₂O dissolves 3.32 × 10 7 mol. Cu(IO₂)₂ (Spencer, Z. phys. Ch. 1913, 83, 295.)

Solubility in CuSO₄+Aq = 3 28×10 4 mol per l. at 25° Solubility in KIO₄+Aq = 3 29×10 3 mol

per l at 25°. (Spencer) +H₂O (Ditte.) +2H₂O Sol in 302 pts. H₂O at 15°, and 154 pts. at 100°. Sol. in HCl+Aq or NH₂OH +Aq. (Millon)

Cupric todate ammonia, Cu(IO2)2, 2NII2+ H₂O.

Insol, in H₂O. (Ditte, A, ch. (6) 21, 145.) Cu(IO₃)₂, 4NH₃+2II₂O. Ppt. (Ephraim, B. 1915, 48, 52.)

+3H₂O, Partially sol. in H₂O. Sol. in NH,OH+Aq. Insol, in alcohol. (Rammelsberg.)

Cu(IO₃)₂, 5NH₃. (Ephraim.) Cu(IO₃)₂, 8NH₃+4H₂O. Sol. in H₂O. Sol in NH₄OH+Aq. Insol. in alcohol. (Ditte, A. ch. (6) 21. 145.)

Decipium iodate, Dp(IO₂)₂+3H₂O(?), Precipitate; scarcely sol, in H2O. (Delafontaine.)

Didymium iodate, Di(IOz)2+2H2O Ppt (Cleve)

Erbium iodate, Er(IO₂)₂+3H₂O₂ Very sl. sol, in H₂O. (Hoglund.)

Glucinum iodate. Deliquescent.

Indium iodate, In(IOs)z.

1 pt. is sol. in 1500 pts H₂O at 20° 1 pt. 1s sol. in 150 pts HNO₄ (1 5) at 80°. Sol. in HCl with decomp. Sol. in dil. H₂SO₄. (Mathers, J. Am. Chem. Soc. 1908, 30. 213.

Iodine lodate, I(IO.),

Decomp, by H2O or by alcohol, (Fighter, Z. anorg, 1915, 91, 142.)

Iron (ferrous) iodate.

Aq. (Geiger, Mag Pharm, 29, 252.)

Insol in acids. (Ditte, A. ch (6) 21. 145.) Fe₂O₅, 2I₂O₅+8H₂O Sol in 500 pts H₂O. Difficultly sol, in HNO, +Aq. Sol, in FeCla+ Aq. (Geiger 3Fe₂O₂, 5I₂O₆+15H₂O. Sol. in HCl, or

HNOs+Aq (Rammelsberg.)

Lanthanum sodate, La(IO₂)₂+1½H₂O, Sl. sol, in cold, easily sol, in hot H₂O, Very sol, in waim HCl+Aq. (Holzmann, J.

pr. 75, 349) 100 cc of the sat solution in H2O contain 0.1681 g at 25° (Rimbach, Z. phys Ch. 1909, 67, 199)

Calc from electrical conductivity of La(IO₃)₂+Aq, 100 cc of the sat solution contain 0.1871 g, La(IO₃)₃ at 25°. (Rimhach)

Lead iodate, basic, 3PbO, Pb(IO₂)₂+2H₂O. Ppt. (Stromholm, Z. anorg, 1904, 38, 442.)

Lead iodate, Pb(IO₃)2. Very sl. sol. in H2O (Pleaschl), and dif-

ficultly sol. in HNO₂+Aq. (Rammelsberg.) Insol. in H₂O and H₂SO₄+Aq. Very sl. sol. in HNO2+Aq, and wholly insol therein after being heated to 100°. (Ditte, A. ch. (6) 21, 169.) Sl sol, in H_{*}O 1 83×10⁻² are dissolved in

1 liter of sat solution at 20°, (Böttger, Z. phys Ch. 1903, 46. 603.) 1 1 H₂O dissolves 19 mg. Pb(IO₂)₂ at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50. 356)

17 8 mg, are dissolved in 1 l sat, solution at 18°. (Kohlrausch, Z. phys. Ch. 1908, 64.

1 l. H₂O dissolves 0.0307 g. Pb(IO₃)₁ at 1830) Solubility of Pb(IO,), in salts+Aq at 25°.

C=concentration of salt in salt solution expressed in equivalents per l. S=solubility of Pb(IO₈)₂ in salt solution expressed in equivalents per l.

Salt	С	8
Pb(NO ₃) ₂	0 0001 0 001 0 010 0 100 0 500 3 0	0 0000870 0 0000411 0 0000185 0 000016 0 000028 0 000015
KNO,	0 002 0 010 0.050 0 200	0.0001141 0 0001384 0 0002037 0 0002544
KIO,	0 00005304 0 0001061	0.0000697 0.0000437

Ppt. Sl. sol. in H₂O; more sol. in FeSO₄+ (Harkins and Winninghof, J. Am. Chem. Soc. 1911, 33. 1830.)

Insol in liquid NH₃ (Gore, Am. Ch. J. conc HIO_{2+Aq.} (Lefort, J. Pharm. 1845. 1898, 20, 828.)

Lithium iodate, LiIO2+12H2O.

Deliquescent, and very sol. in II₂O.

ogg. 44. 555.)

Insol in methyl acetate. (Naumann, B.

1909, 42, 3790.) +H2O. Very deliquescent. (Ditte, A. ch. (6) 21. 145.)

Magnesium iodate, Mg(IO2)2.

Anhydrous. Insol. in H₂O. (Millon, A. ch. (3) 9. 422.) +4H₂O. Very sol. in H₂O. (Ditte.) Sol. in 0 43 pts. H₂O at 15° and 3.04 pts. at 100°. (Berzelus.) Very el. sol in H₂O. (Serullas, A. ch. 45. 279.) Easily sol. in dil H-SO₄+Aq. (Ditte.)

Sat, solution contains at.

0-	10-	20-
6.8	6 4	7 7% Mg(IO ₃) ₂ ,
35°	63°	100°
8 9	12.6	19 3% Mg(IO ₂) ₂
(Mylius	and Funk, B	. 1897, 30 . 1722.)

Sat. ac. solution at 18° contains 6.44% Mg(IO₃)₂ or 6 88 g are sol. in 100 g. H₂O Sp. gr of sat. solution = 1078. (Mylius and Funk, B. 1897, 30, 1718.)

+10H2O. Sat aq. solution contains at: 0° 20° 30° 35° 50° (m.pt.). 3 1 10 2 17 4 21 9 67.5% Mg(IO₂)₂. (Mylius and Funk, B. 1897, 30, 1723)

Manganous iodate, $Mn(IO_3)_2 + H_2O$. Sol. in about 200 pts. H₂O. (Rammels-

berg.) Insol. m H2O and HNO2+Aq, even on boiling. Insol. in NH₂OH+Aq. (Ditte)

Manganous manganic iodate,

 $Mn(IO_a)_4$, $Mn(IO_3)_2$. Insol. in H₂O. (Berg, C. R. 1899, 128.

Manganic potassium iodate.

 $Mn(IO_8)_4$, $2KIO_8$. Insol, in and only sl. attacked by H_2O . Insol. in HIO, (Berg, C. R. 1899, 128. 674.)

Mercurous iodate, Hg2(IO3)2.

Insol. in boiling H2O, or cold HNOs+Aq. Easily sol. in dil. HCl+Aq. Sol. in very (Gay-Lussac.)

Mercuric iodate, Hg(IO₃).

Insol, in H2O or alcohol (Millon, A. ch Sol. in 2 pts. cold, and not much less hot (3) 18. 367.) Sol. in H₂O (Berzelius.) Sol. H₂O. Insol. in alcohol. (Rammelsberg, in dil. HCl+Aq (Rammelsberg.) Pogg. 44. 555.)

Nearly insol. in H₂O. Easily sol in HCl, Sp gr of solution sat at 18°=1568, con-HBc, or HI+An; very sl. sol. in HNO₁+An; taming 44 6% LiIO₂ 100 g. H₂O dissolve insol. in HF, M₂SF₆ or HC₂HO₂+Aq. Sol. 80.3 pts LiIO₂. (Mylius and Funk, B 1897, in alkalı chlorides, bromides, iochdes, cyanides, and cyanates+Aq; also in Na₂S₂O₃, dil. MnCl₂, and ZnCl₂+Aq. Insol in KOH, NaOH, NH₂OH, Na₂S, Na₂B₄O₂, Na₂HPO₄, and the alkali chlorates, bromates, and iodates +Aq. (Cameron, C. N 33, 253.)

Nickel iodate, Ni(IO₃)₂. Solubility in H.O.

containty in 1120.			
Form	Temp	Perrent of N ₁ (IO ₂) ₂ in solu- tion	Mols. water free salt to 100 mols H ₂ O
N ₁ (IO ₂) ₂ +4H ₂ O aN ₁ (IO ₂) ₂ +2H ₂ O aN ₁ (IO ₂) ₂ +2H ₂ O aN ₁ (IO ₂) ₂ +2H ₂ O an ₁ an ₂ an ₂ an ₃ an ₄ a	0° 18° 30° 0° 18° 30° 50° 8° 18° 50° 75° 100° 30° 50°	0 73 1 01 1.41 0 53 0.68 0.86 1.78 0.52 0.52 0.51 1 03 1 12 1.135 1 07	0 033 0 045 0 063 0 023 0 030 0 039 0 080 0 023 0 0245 0 045 0 049 0 050 0 046
44	75° 100°	1 02 0 988	0 045 0 044

(Meusser, B. 1901, 34. 2440.)

+H₂O Sol, in 120.3 pts. H₂O at 15°, and 77.35 pts at 100° (Rammelsberg, Pogg. 44. 562.) Sol. in HNO2, and dil. H2SO4+Aq.

(Ditte. Sol. in NH_OH+Ao.

Does not exist (Meusser

+2H₂O. See Meusser above +3H₂O. Insul in H₂O Sol. in HNO. (Ditte, A. ch. 1890, (6) 21, 160) +4H₂O. See Meusser above.

Nickel iodate ammonia, Ni(IO₂)₂, 4NH₂, Sol, in NH₄OH+Aq Insol in alcohol, (Rammelsberg, Pogg. 44. 562.) Ni(IO₂)₂, 5NH₂. Ppt. (Ephraum, B. 1915,

+3H₂O. (Ephraim.)

Potassium iodate, KIO₂.

1 pt. KIO, dissolves in 13 pts. H.O at 14°.

³ 1 pt, KIO₂ dissolves at: 0° in 21 11 pts, H₂O

20° " 12 29 " 40° " 7 76 " 60° " 5.40 " 80° " 4 02 " 100° " 3.10 "

Sat. solution boils at 102°. (Kremers, Pogg. 97. 5.)

Sp. gr. of KIO₁+Aq contaming: 1 2 3 4 5 %KIO₂,

1 010 1.019 1 027 1 035 1 044 6 7 8 9 10 %KIO₃: 1.052 1.061 1.071 1 080 1 090 (Kremers, Pogg. 96. 62.)

Stable at 10° in H₂O or potassium acetate +Aq. (Eakle, C. C. 1896, II. 649.)

Solubility of KIO₃ in HIO₃+Aq at 30°.

% HIO: % KIOs in the Solid phase solution -olution KIO. 9.51KIO.+KIO. HIO. 0.64 9.48 0.66 9 52 0 65 9 46 8 90 6.6 KIO2, HIO2 0.65 0 67 1 14 4 57 1 69 3.63 2 02 3 10 3.34 2 14 5.00 7.00 1 0 8.04 3 47 0.85 KIO, HIO, +KIO, 2HIO, 3 57 KIO, 2HIO, (labile) 4 80 2.90 1 35 6.45 9 35 12 04 KIO3, 2HIO2 0 64 0 44 n 17 50 0.30 31.200 52 53.64 0.68 62 52 0.72 KIO, 2HIO,+HIO, 76 40 0.80 HIO 76.70

(Meerburg, Z. anorg. 1905, 45. 330.)

More sol in KI+Aq than in H₂O. Sol. in warm H₃SO₄+Aq. Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 829.)

Insol. in alcohol. Insol. in methyl acetate (Naumann, B. 1909, 42, 3790); ethyl acetate. (Naumann, B. 1910, 43 314.) + +3 Hg.O. (Ditte, C. R. 70, 621.)

Potassium hydrogen iodate, KH(IO₂)₂. Sol. in 18.65 pts, H₂O at 17°. (Meineke, A. 261, 360.)

Sol. in 75 pts H₃O at 15°. Insol. in alcohol. (Sciullas, A. ch. 22, 181.) See also Mereburg under KIO₃

Potassium dihydrogen 10date, KH₂(IO₃)₂. Sol. in 25 pts. H₂O at 15°. (Serullas, A. ch. 43, 117)

See also Meerburg under KIO;

Potassium tellurium iodate. See Iodotellurate, potassium.

Potassium uranyl iodate, KUO₂(IO₃)₈+3H₂O.

Decomp. by H₂O, dil. salt solutions and UO₂(NO₃)₂+Aq. (Artmann, Z anorg. 1913, 79. 340)

Potassium iodate chloride, KH(IO₃)₂, 2KCl, Sol. in 19 pts. H₂O at 15° with decomp. Cold alcohol dissolves out KCl

Potassium iodate molybdate, KIO₃, MoO₃+ 2H₂O See Molybdatoiodate, potassium.

Potassium iodate selenate.

See Iodoselenate, potassium.

Potassium iodate sulphate, KIO₂ KHSO₄.

Decomp. by H₂O. (Marignac, J. B. 1856.

299)

KHIO₂, KHSO₄. More sol. in H₂O than KHIO₃. (Serullas.)

Potassium iodate tungstate. See Tungstoiodate, potassium. Rubidium iodate, RbIO₈

100 pts H₂O dissolve 2.1 pts. RbIO₂ at 23°. Easily sol. in cold HCl+Aq (Wheeler Sill. Am. J. **144**. 123.)

Rubidium hydrogen iodate, RbH(IO₂).
Sl. sol in cold, more readily in hot H₂O,
RbHO₂ separating on cooling. Insol. in alcohol. (Wheeler.)
RbH₂(IO₂). As above. (Wheeler.)

Rubidium iodate chloride, RbIOs, HCl, or HIOs. RbCl.

Decomp. by cold H₂O. (Wheeler.) 3RbCl, 2HIO₂. Sol. in H₂O, from which RbIO₂ separates. (Wheeler.)

Rubidium iodate selenate. See Iodoselenate, rubidium.

Samarium iodate, Sm(IO₂)₂+6H₂O. Precipitate. (Cleve.) Scandium iodate, Sc(IO₂)₂+10, 13, 15, and 18H₆O

Nearly msol, in H₂O, (Crookes, Ph) Trans. 1910, 210. A, 361.)

Silver 10date, AgIO2.

1,80×10⁻¹ moles or 5,30×10⁻² g, AgIO₃ are sol in 1 liter H₂O at 25°. (Noves and Kohr, Z. phys. Ch. 1903, 42, 338.)

SI sol in H₂O, 4.35×10⁻² g are dissolved in 1 liter of sat solution at 20° (Böttger, Z

phys Ch. 1903, 46, 603.) 1 l. HaO dissolves 40 mg. AgIO, at 18° (Kohlrausch, Z. phys. Ch. 1904, 50, 356.)

11 H₂O dissolves 0 0275 g AgIO₂ at 9 43°; 0.039 g. at 184°: 0.0539 g at 26.6°. Solubility increases rapidly with temp. (Kohl-rausch, Z phys. Ch 1908, 64, 168) 1 l. H₂O dissolves 0 039 g. AgIO₃ at 20°. (Whitby, Z. anorg. 1910, 67, 108.)

Not completely insol, in H₂O, (Rose.) Sol. in NH₄OH+Aq; sol. in HNO₈+Aq (Na-quet, J. B **1860**, 201.) Sol. in conc. KI+Aq.

(Ladenburg, A. 135, 1.) Sol. in 27,700 pts. H₂O at 25°; in 42.4 pts. 5% NH₂OH+Aq at 25°; in 2.1 pts. 10°, NH₄OH+Aq at 25°; in 1014.3 pts. 35% NH₄OH+Aq (sp. gr. 1.21) at 25°. (Longr, Gazz, ch. it 13. 87.)

Solubility in HNO.+Ag at 25°.

Normality HNOs	G. AgIO ₃ dresolved per l
0.000	0 0503
0 125 0 250	0.0864 0.1075
0 500 1.00	0.1414
2.00 4.00	0 3319 0 6985
8.00	1 5875

(Hill and Simmons, Z. phys. Ch. 1909, 67.

Insol. in liquid NH₂. (Gore, Am. Ch. J. 1898, 20, 829) Insol, in methyl acetate. (Bezold, Dissert. 1906; Naumann, B. 1909, 42, 3790);

ethyl acetate. (Hamers, Dissert 1906 Naumann, B. 1910, 43, 314.) Silver iodate ammonia, 2AgIO₂, 3NH₂+

112H2O. Very sol. in cold H₂O. (Ditte, A. ch. (6)

21, 145.) AgIO3, 2NHs. Sl. sol. in conc NH4OH+Aq. (Rosenheim, A. 1809, 308, 52,)

Sodium iodate, NaIO2.

100 pts. H.O dissolve 7.25 pts. NaIO: at 14.5°. (Gay-Lussac.) 100 pts. H₀O dissolve 2.52 pts. at 0°; 9 07 pts. at 20°; 14.39 pts. at 60°; 27.7 pts. at 80°; 33.9 pts at 100°. (Krem- 202.)

ers, Pogg. 97. 5.) Sat. solution boils at 102° (Kremers), 105° (Ditte). Sol. in warm H₂SO₄+Aq diluted with ½

vol. H.O. Crystallizes out on standing over H-SO. (Ditte.)

Salukibir of NaTO, in IIIO, 4-Ag at 30°

Solubility of NaIO, in ItiO3+Aq at 30°.			
', IIIO; in the solution	7 NaIO, in the solution	Solul phase	
0 1.98 4.86 5.86	9 36 9 52 10 22 11.04	NaIO ₁ +1½H ₂ O	
7.40 9.73 6.76 6.66	11.60 14.73 11.18	", labile NaIO₂+11⁄2H₂O+ Na ₂ O₂ 2I₂O₃	
7.80 9.15 9.93 11 20	10.30 9.00 8.71 7.54	Na ₂ O, 2I ₂ O ₄ " "	
11.89 11.75 14.62 23.23 32.68	7 21 7.18 5 65 3 69	Na ₂ O, 2I ₂ O ₄ +Na ₁ O ₄ , 2HIO ₄ Na ₁ O ₅ , 2HIO ₅	
40.91 46 62 55.48 65.47 76.19	5 65 3 69 2 91 2 64 2 67 2 12 1.83 1.42	" " " NaIO ₃ , 2HIO ₂ +HIO ₂	
76 70	0 0	HIO,	

(Meerburg, Z. anorg, 1905, 45, 334.)

Insol, in alcohol. Sol, in dil. HC+H+O++ Aq Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.) See Meerburg above.

Sodium diodate, Na₂O, 2I₂O₄, See Meerburg under NaIOa.

Sodium triiodate, NaIO2, 2HIO2+1/2H2O. Very sol, in H₂O, ABlomstrand, J. pr. (2) 42, 337.)

Sec also Meerburg under NaIOs. Sodium iodate bromide, NaIO, 2NaBr+

9H₂O. Sol, in II₂O. (Rammelsberg.)

Sodium iodate chloride, NaIO2, NaCl+4H2O, and 2NaIO, 3NaCl+18H,O.

Cold H₂O dissolves out NnCl

Sodium iodate iodide, NaIOs, NaI. Hot H₂O or alcohol dissolves out NaI. +8H2O

+10H₂O 2NaIO. 3NaI+20H.O. (Penny, A. 37.

Stable in a solution of NaI+NaOH+Aq. Ytterbium iodate, Yb(IO2)a+6H2O. (Eakle, C. C. 1896, II, 650.)

Strontium iodate, Sr(IO₂)₂.

Anhudrous. Insol. in H-SO, (Ditte), easily sol. in cold HCl+Aq. (Rammelsberg, Pogg 44. 575.)

+H2O. Difficultly sol. in H2O +6H2O. Sol. in 416 pts. H2O at 15°, and

138 pts. at 100° (Gay-Lussac); 342 pts. at 15°, and 110 pts. at 100°. Difficultly sol in warm HNO₂+Ag. (Rammelsberg, Pogg. 44, 575.)

Thallous iodate, TiIO2.

Difficultly sol, in warm H₀O (Oettinger.) Insol, in H2O; difficultly sol in HNO2+Aq. (Rammelsberg.

Sl. sol. in H.O. 0.58×10⁻¹ g. are dissolved in 1 lites of sat. solution at 20°. (Böttger, Z. phys Ch 1903,

46.603) 2.12×10-1 mols =0.667 g, are sol, in 1 l, H₄O at 25°. (Spencer, Z phys. Ch 1912, 80.

Sol, in a little NH4OH+Aq, also in boiling HNO, HISO, or HCl+Aq. Insol. in alcohol. (Oettinger.) +1/2H₂O. Very sl, sol. in H2O or dil. boiling acids. (Ditte, A, ch. (6) 21. 145.)

Thallic iodate, basic, Tl(OH)(IO₂)2+H2O=

Tl₂O₃, 2I₂O₅+3H₂O. Insol. in H₂O: sol. in cold HCl+Aq, and warm dil, H2SO4+Aq. (Ditte, A. ch. (6) 21.

Thallic iodate, Tl(IO₂)₂+1½ H₂O.

Insol. in H₂O; sl. sol. in HNO₁+Aq. Decomp. by alkalies. (Rammelsberg.) +12H₂O. Difficultly sol. in H₂O

Easily sol. in dil. acids (Gewecke, Z. anorg. 1912, 75, 275.)

Thorium iodate, Th(IO2)4. Precipitate. (Cleve.)

Tin (stannous) iodate.

Ppt. Sol, in SnCl2+Aq; insol, in NaIO2+ Aa.

Tin (stannic) jodate. Ppt.

Uranous iodate.

Precipitate, Very unstable, (Rammelsberg.)

Uranyl iodate, UO2(IO1)2.

Sol. or insol. in HNOs and HaPO++Aq, according to method of preparation. (Ditte. +H2O. Sl. sol. in HNO2+Aq. (Rammelsberg.)

Ppt. (Cleve, Z. anorg. 1902, 32, 136.)

Yttrium iodate, Y(IO2)2+3H2O.

Sol. in 190 pts. H₂O. (Berlin.)

Zinc 10date, Zn(IO₃)₂

Anhudrous. (Ditte, A. ch. (6) 21. 145.) +2II.0. Sol, in 114 pts, cold, and 76 pts. hot II₂O. (Rammelsberg, Pogg. 43. 665.) Sol. in HNO3, and NH4OH+Aq.

Exists also in a very sol modification (Mylius and Funk, B. 1897, 30, 1723.)

Zinc sodate ammonsa, 3Zn(IOz)2, 8NH2. Decomp by H2O; sol. in NH4OH+Aq,

from which it is pptd, by alcohol (Rammelsberg, Pogg. 44. 563.) Zn(IO₃)₂, 2NH₂. Insol. in H₂O. (Ditte, A. ch. (6) 21, 145.)

Zn(IO₂)₂, 3NH₂+H₂O. Insol. in H₂O. (Ditte.

Zn(IO₃)₂, 4NH₃. (Ditte, A. ch. 1890, (6) 164.) (Ephraim, B 1915, 48. 53.)

Periodic acid. See Periodic acid.

Iodides.

The iodides are in general easily sol, in H₂O; exceptions are HgI₂, PbI₂, AgI, Cu₂I₂, and Bil, also the iodides of the Pt metals, all of which are insol SnI4, SbI2, and TiI2 are decomp, by H2O. Many iodides are more sol in solutions of salts than in H2O, and several are sol, in alcohol or ether. See under each element.

Iodine, I2.

Sol in 5524 pts H₂O at 0-12° (Wittstein, J B 1857 123) Sol in 7000 pts, H₃O (Gay-Levane) Sol in 3500 pts H₅O at 15° (Basse) Sol in 500 pts H₅O (Janquelain) Sol in 7106 4 pts, B₅O at 18 75 (Abl.)

Pure H₂O dissolves 0.01519173 g. I per litre, or I is sol in 6582 pts. H₂O at 6.3°. (Dossus and Weith, Zeit, Ch 12, 378) Sol in about 4500 pts. H.O. (Hager.

Comm. 1883.) Sol, in 7000 pts. HaO. (Cap and Garot, J. Pharm. (3) 26, 80)

1 l. H₂O at 25° dissolves 0.3387 g. I₂. (Jakowkin, Z. phys. Ch. 1895, 18, 590.)

1 I. H₂O dissolves 1.342 millimols of iodine

at 25°. (Noyes, Z. phys. Ch. 1898, 27, 359.) When iodine is shaken with H₂O at 15°, 1 pt. dissolves in 3750 pts. H₂O; when iodine and H₂O are heated together and then cooled to 15°, 1 pt iodine dissolves in 3500 pts. H₂O. At 30°, 1 pt. is sol. in 2200 pts H₂O. (Dietz, Chem. Soc. 1899, 76, (2) 150.)

1 l. H₂O dissolves 0.279 grams I₂ at 25°. (McLauchlan, Z. phys. Ch. 1903, 44, 617.) TODINE 409

Solubilii	ty of I ₂ in H ₂ O at t°
t°	g Inpert HAO
18 25 35 45 55	0 2765 0 3395 0 4661 0 6474 0 9222

(Hartley, Chem Soc. 1908, 93, 744.) Solubility of I2 in H2O at to.

f.o.	g per l.	miliat per l
0	0.1649	1.30
20	0.2941	2.30
40	0.5684	4.56

(Fedotieff, Z. anorg. 1910, 69. 30.)

1.32 millimol I₂ are sol. in 1 l. H₂O. (Bray) J. Am. Chem. Soc., 1910, 32, 938.)

Calculated from electrical conductivity of sat, I2+Aq. 1 l. H2O dissolves 0.0006383 mols. I. at 0°. (Jones, J. Am. Chem. Soc. 1915, 37.

Conc. H2SO4, HCl, HNO2, H2PO4, HC2H3O2, tartaric, or citric acids+Aq dissolve I, but give it up to CS2 on shaking therewith. (Tessier, Z. anal. 11, 313.)

Sol, in 150 pts H2SO4 on warming, but crystallizes out in part on cooling. (Kraus) Much more sol in HBr+Ag than in pure H2O; HBr+Aq of sp. gr. 1.486 dissolves

(Bineau. Sl. sol in HCl+Aq. Easily sol, in even dil HI+Aq.

1 l. 0.001 N-HCl+Aq sat with I2 contains 0 338 g. I2 (Bray and Mackay, J. Am Chem Soc 1910, 32, 1919.) 1 l 0 1 N-HNOs+Aq sat. with I2 contains

0 340 g I₂ (Sammet, Z phys Ch. 1905, 53. 1 l. 0.1 N-H₂SO₄+Aq sat with I₂ contains

0.341 g, I₂. (Sammet) Sol. in H₂SO₂+Aq with decomp

1 l. 0.9 N. H₂BO₂ dissolves 0.300 g. I₂ at

(McLauchlan, Z. phys. Ch. 1903, 44. 617.) 100 cc. of a 10% solution of BaBr₂ dis-

solve 0.231 g. I₂ at 13.5°. (Meyer, Z. anorg. 1902, 30, 114.)

100 cc. of a 10% solution of BaCl₂ dissolve 0.067 g I₂ at 18.5°. (Meyer.)
100 cc of a 10% solution of BaI₂ dissolve 6.541 g. I₂ at 18.5° (Meyer.) 541 g. I₂ at 13.5. (Meyer.) 100 cc. of a 10% solution of CaBr₂ dis-

solve 0 274 g. I₄ at 13.5.° (Meyer.) 100 cc of a 10% solution of CaCl₂ dissolve 0.078 g. I₄ at 18.5° (Meyer.)

100 cc. of a 10% solution of CaI₂ dissolve 8.062 g. I₂ at 13 5°. (Mever.) Easily sol. in boiling dil. HgCl2+Aq. (Selmı)

Solubility in HgCl+Aq at 25°.

10 ccm, of the solution contain				
milhuols I ₂	pullmol- Hg			
0 0134 0 1294 0 1460 0.1806 0 2543	0 0 9444 1.2442 1.9542 3 3460			

(Herz and Paul, Z. anorg 1914, 85. 214.)

Sol, in solutions of soluble iodides. 100 pts. KI+200 pts. H₂O dissolve 153

pts. I; from this solution H₂O precipitates ½ the dissolved I. 100 pts. KI+400 pts. H₂O dissolve quickly 76.5 pts I. If more water is present, the solution takes place more slowly. (Baup.) CS2 extracts the I from the above solutions

Solubility of I in KI+Ag at 7-7.3°

% KI m KI +Aq	Pts I dissolved	Sp gr of solution
1 802	1.173	1.0234
3 159 4.628	2,303	1 0433 1 0668
5 935	4 778	1 0881
	6 037	
10.036	8 877	1 1637
11 034	9 949	1 1893
12.648	12 060	1.2293
5 935 7 201 8 663 10.036 11 034 11.893	6 037 7 368 8 877 9 949 11.182	1 0881 1 1112 1 1382 1 1637 1 1893 1 2110

(Dossius and Werth, Zert. Ch (2) 5. 379.)

Solubility of I₂ in KI+Aq at room tempera-ture, 14.5°-15 1°.

% KI	28 I	I/KI
1.80 3.16 4.63 5.93 7.20 8.66 10.04 11.03	1 17 2 30 3.64 4.78 6.04 7.37 8.88 9 95	0 651 0 729 0.786 0 805 0.839 0 851 0.884 0 902 0 940
12 64	12 06	0.954

(Weith and Dossus, Z. phys. Ch. 1898, 26.

Solubility	of	I,	in	KI+Aq	at	1.50	
------------	----	----	----	-------	----	------	--

% KI	term 1/10-n, todane in 5cmm of the solution	1/6.1
10 S 6 4 2	35 0 27.1 19 7 12 7 6.25	35 0 33 9 32 8 31 8 31 2
1	3 04 *	30 4

Obtained with 1/100-normal iodine.
 (Bruner, Z. phys. Ch. 1898, 26, 151.)

Solubility of I2 in KI+Aq at 25°.

Millimols KI per liter	Millimols dissolved indine per liter
106.3 53.15 20.57 13.29 6.613 3.322 1.661 0.8304	55 28 28 03 14 68 8 003 4 607 3 052 2 235 1 814

(Noyes and Seidenstricker, Z. phys. Ch. 1898, 27, 359)

Solubility in KI+Aq at 25°.

KI mol/I	I G atoms/1
1,91	3.29
2,85	5 45
4 51	11 52
5 36	17.12
5 55	17.16

(Abegg, Z. anorg. 1906, 50, 427.)

Solubility of I₂ in KI+Aq at 25°.

Millimol KI per 1	Millimol Is dissolved
100 50 20 10 5 2	51.35 25.77 11.13 6.185 3.728 2.266 1.788

(Bray and MacKay, J. Am. Chem. Soc 1910,

Solubility in KI+Aa at 25°.

	randomes in ter to	ind are we .	
Sp gr	Analyses of liquid phase	phase tog	of solid ether with moths.
	So KI So I	G KI	% I

a) In equilibrium with excess of KI

(a) In equinorium with execus of axx.						
733	60 39	0.0		0.0		
888	54 415	11 63	84 92			
066	49 045	23 085	85 94	6 32		
216	44 82	31.01	80 46	10.84		
539	38.065	44 56	78 56	15.23		
560	37 655	45 55	77 32	16.73		
665	35 805	49 61				
232	29.71	62 81	39 99	56.10		

3.246 | 27 92 | 66 45 | 38 78 | 56.27 (b) In equilibrium with excess of I,

(n) In edimentalin with excess of T.						
349	16 025	18 49	3 04	85.43		
516	19 705	26 16	4 48	83.87		
769	22 88	36 06	3 70	89 33		
910	23 55	40 515	6 49	83.62		
403	24.78	53 605	8 62	83.81		
904	24 995	63 125	4 82	92.41		
082	25 18	66.04	4 00	94.39		

(c) Invariant point. Excess of KI and I.

3 316	25.96		16.14	83.77
	26 04 25 92	68 16 68 13	11 32	86 56

25 92 | 68 13 | 11 32 | 86 56 (Parsons and Whittemore, J. Am. Chem. 1911, 33, 1934.)

Solubility in KI+Ag at 0°.

1	KI +Aq		KI+Aq sat with I;		
	Wt norm.	Sp. gr 0°/1°	G I2 m 1 g of solution	Sp. gr 0°/4°	
	0.09871 0.09861 0.04969 0.04966 0.01992 0.01983 0.00998 0.00992	(1.0123) 1.01231 (1.0061) 1.00610 1.00236 (1.0024) (1.0011) (1.0011) (1.0005)	0 01199 0 01199 0 006094 0 006083 0.002535 0.0025325 0.0013532 0 0013585 0.007609	(1.0219) 1 02187 (1 0109) 1 01089 1.00429 (1.0044) (1.0020) (1.0020) (1.0010)	
-	0.004991 0.002000 0.002000 0.000999	(1 0005) (1 0001) (1.0001) (0 9999) (1.0000)	0.0007577 0 0004137 0 0004015 0 0002839 0.00028125	(1.0011) (1.0004) (1.0004) (1.0002) (1.0002)	

Values in parentheses are found by interpolation. (Jones and Hartman, J. Am. Chem. Soc. 1915, 37, 247.)

1 mol. KI in alcohol dissolves 2 atoms I, and the solution does not give up I to CS₂. (Jörgensen, J. pr. (2) 2. 347.) IÓDINE 411

IODINE #11									
Solubility in KI+60% alcohol at 25°.				Solubility in KI+10% alcohol at 25°.—					
Sp gr	Anglyses of phi		phase tog adherma	of sold other with mother uor	Sp gr	An ilysis i pha	of hound	An ily se plinse top adherina ho	ther with mother
						"; KI	% 1	Si KI	% I
	In equilib		h excess		(b) In equil	ibrium v	rith excess	I.
1.148 1 191 1 285 1 368 1 427 1.533 1 776 2 250 2.507 2 845	30.93 29 87 28 39 28 00 27 60 27 60 25 90 24 90 24 40 22 49	0.0 4.51 12.48 18.60 21.80 28.00 40.52 52.42 58.93 65.75	89 13 86 60 87 30 85 75 84 39 81 05 76 21 73 20 71 66	0.0 0 71 2 27 3.21 4.25 6 05 10 30 16 73 21 04 24 15	0 962 1 292 1.581 2 000 2 173 1 749 2.902	0 0 8 45 12 56 15 20 16 02 17 18 19.20	2 97 28 70 40 63 49 95 52.95 57 38 66 89 69 10	0 0 1 85 3.41 4.98 5.60 6 61 8 45 7 08 excess KI	84 51 84 02 83 81 82 96 83 60 85 16 88 81
	21 50	68 95		26 42	3 246	22 50	70 79	19 48	76 24
) In equil				-	22 43	70 88	69 37	26 14
1 134 1.530 1.721 1.90 2.11 2.22 2 80 2 99	0 0 7 36 10 60 12 44 13 74 15 20 17.72 19.30	23.04 43.05 49.38 55.33 59.26 62.66 69.10 71.90	0 0 1 40 2.50 3 72 4 41 5.80 7 15 7.45	1 88 76 88.21 87.10 86 60 85.20 85 49 88 96	See also Sol. Chem S Solube H ₂ O	under KI in KI- soc 1902, dity in K Lann, C	32, 1372 +nitrobe 81, 529, IO ₈ +Aq \ 1909.	nzene.) 1s the sa 1622)	(Dawson, me as in
(c) I	nvariant p	ont E	cess KI	and I.	Solubility of I ₂ in KBr+Aq at 25°.				
3.162	20 11 20 03 20 05	72 51 72.46 72 54	21 84	74 64 KI+I		60.6 106 9	+	0.017 0.027	G 8
	19.98 20.08 20.06	72 44 72 51 72 44	7.40 20 61	89 81 I 74 09 KI+I		175 9 229 8 281 9 330.6		0.041 0.053 0.062 0.071	2 8
	20.00	72 44	33 46	63.19 KI		377.1		0.079	7
(Parson:	Parsons and Corliss, J. Am. Chem Soc. 1910, 32, 1370.)		461 7 509 8		0 086 0 094 0.100	8 6			
Solu	blity in F	T+40%	alcohol	at 25°.		548.0 567.9 sat	.	0 100	
Sp. gr.	Analysis of hquid phase together with adhering mother liquor				1		34. 13		
	° KI	1 %	% KI	1 %	Solubility in NaBr+Aq at 25°		5°.		
		-			G 1	NuBr per l.		G atoms I:	per l
(a) 1 339 1 377 1 455 1 532 1 605 1 655 1 847 2 024 2 169 2 558 2 784	1 n equih 42.10 40.83 38.94 37.41 36.25 35.38 33.26 31.71 30.59 28.56 20.95 24.52	brium wi 0 0 3 76 10 09 15.71 20 52 24.44 33.62 39.99 44.76 55 30 60 27 65 93	89 21 88 80 88 19 87 04 86 08 83 61 82 06 80 80 75 90 74 77 72 98	0 0 0 0 70 1 90 3.02 4.21 5.11 8 41 10.76 12 35 18.63 20.86 23.61		96.4 187 7 271 8 357.4 422 4 499 1 569.9 632.0 679.7 750.5 756.1 sat		0 026 0.042 0.055 0.065 0.065 0.064 0.065 0.065 0.055	5 8 8 8 8 4 4 2 2 5 5 5 1 1 0 0
:::	23 04	69 93	72.98	25.04	(Bell at	u Buckle	84. 13.	, Chem. (506: 1912,

 270 g. I₂ at 13.50. (Meyer, Z. anorg. 1903, 30. 114.)

100 cc. of a 10% solution of SrCl₂ dissolve 0.066 g. I₂ at 18.5° . (Meyer) 100 cc. of a 10% solution of SrI₂ dissolve 6.016 g. I₂ at 13.5° . (Meyer.)

Solubility in salts+Aq at 25°

Sult +Aq	Grams Icenlun 1 liter	Salt+\q	Grams f ₂ sol in 1 liter			
12-N Na ₂ SO ₄ 12-N K ₂ SO ₄ 12-N (NH ₄) ₂ SO ₄ N NaNO ₂ N KNO ₃ N NILNO ₂	0.160 0.238 0.246 0.257 0.266 0.375	N.NaCl N.KCl N.NH ₄ Cl N.NaBr N.KBr N.KBr N.NH ₄ Br	0 575 0 658 0 735 3 29 3 801 4 003			

(McLauchlan, Z. phys. Ch. 1903, 44, 617.)

1.14 g are sol in 100 cem, liquid ILS. (Antony, Gazz. ch. it 1905, 35, (1) 206.) Sol. in liquid NH₃ (Franklin, Am ch. J. 1898, **20**. 822.) Sl. sol in liquid CO₂ (Buchner, Z phys.

Ch. 1906, 54, 674 Sol, in liquid SO₂ (Sestini), and SO₂ (Weber).

100 pts AsCl; dissolve 8,42 pts, I at 0°; 11.88 pts. I at 15°, 36 89 pts I at 96° (Sloan, C. N. 46. 194.)

Sol. in liquid SO₂, AsCl₃, SO₂Cl₂, and acetaldehyde. (Walden, Z. phys. Ch. 1903,

 43. 407.)
 Very sol. in liquid NO₂. (Frankland, Chem. Soc. 1901, 79. 1361.) Sol, in 10-12 pts alcohol, (Wittstein.)

Sol, in wood-spirit. (Playfair.) Abundantly sol, in amyl (Pelletan), and hexyl alcohol (Bouis), Indine is sol in 20 pts, alcohol, 110 pts, oil

7000 pts. H₂O, 100 pts. glycerine. (Cap and Garot, J Pharm, (3) 26. 80.)

Solubility of I₂ in C₂H₄OH+Aq at room temperature (14.5°—15.1°). Volumes of C:H₂OH in Com of 1/10-normal 100 volumes of C:H₂OH indine in 5 cc of the

+1150	Boittion
100	61 7
90	29 4
80 70	16.6 9.2
60	4.45
	3 4
50 40 30 20	10
30	0.4
20	0.25
	0.2
0	0.0

(Bruner, Z. phys. Ch. 1898, 26, 150.)

100 cc. of a 10% solution of SrBr2 dissolve Solubility of I2 in C8H7OH+Aq at room temperature (14.5°-15.1°).

Volumes of CallyOH in	Cem of 1/10-normal
00 volumes of CallyOH	todine in 5 cc of the
+HaO	solution
100	58 8
90	36 0
80	23 6
70	16.1
60	10.7
50	6.4
40	3.7
30	1.56
20	0.42
10	0.19

(Bruner, Z. phys. Ch. 1898, 26, 150.)

Solubility in ethyl alcohol + Ag at 25°

Molecules of hH ₂ OH in 100 molecules hH ₂ OH+H ₂ O	Molecules of H ₂ O in 100 molecules C ₂ H ₂ OH +H ₂ O	Normality of the
0 0 0 03 0 06 1 12 1 83 9 40 13 48 23 80 50 80 100	100 99 7(?) 99 4(?) 98 88 98 27(?) 90 60 86 52 76 20 49 20 0	0 0022 0 0024 0 0024 0 0023 0 0025 0 0059 0 0111 0 0617 0 4326 1 590

(McLauchlan, Z. phys. Ch 1903, 44, 627)

Solubility in acetic acid+Aq at 25° Molecules of H-O

CH ₂ COOH in 100 molecule CH ₂ COOH +H ₂ O	in 100 molecules CH ₄ COOH +H ₅ O	Normality of the lodine solution
0 0 6 98 16.40 31 90 55 70	100 93 02 83 60 68 10 44 30	0 0022 0.0049 0 0112 0 0331 0.0882 0 205

(McLauchlan, Z. phys. Ch. 1903, 44, 627)

Very sol, in ether, chloroform, and bromoform

Solubility in ether. 100 g of the sat, solution contain at: -830 --90° -108°

15 39 14 58 15 09 g. I₂. (Arctowski, Z. anorg, 1896, 11, 276.)

About as sol in all fatty oils as in CHCls. etc. (Gruel, Arch, Pharm, 223, 431.)

	IOD	INE	418
Sol. in 56.6 pts. chloroform at 10°. (Dun- ean, Pharm J. Trans. 51, 544.) Solubility in CHCl ₂ .		Solubility of I ₂ in temperature	CS ₁ +CCl ₄ at room (14.5°—15.1°).
100 g, of the sat. sol	ution contam at —69.5° —73.5°	Volumes of CS ₂ in 100 volumes of CS ₂ +CCh	Cem of 1/10-normal todine in 5 ee of the solution
	0 0 089 0 080 g. I ₂ org. 1896, 11 . 276.)	100 90	69.1 56.9
Very sol. in methy Z. anorg. 3. 343)	lene 10dide (Retgers,	80 70 60	48 6 40 7 33.9
Solubility of I ₂ in C temperature	(11,+CHCl ₃ at room ' (14.5°—15 1°)	50 40	26 9 21 8
Volumes of CsHs in 100 volumes of CsHs+CHCls	Cens of 1/10-normal sodine in 5 ce. of the solution	30 20 10 0	17 7 13 25 10.2 8 1
100 90	41 05 38 8		iner.)
80 70 60 50 40	34 6 30 5 27 4 24 4 21 0	Solubility of I ₂ in C ₂	H ₃ OH+CHCl ₃ at room (14.5°—15 1°).
30 20 10	19 2 17 8 16 0	Volumes of C-H ₂ OH m 100 volumes of C-H ₃ OH+ CHCl ₃	Cem of 1/10 normal soding in 3 ee of the solution
0	14 3	100 90 80	61 7 37.1
(Bruner, Z phys. Ch 1898, 26, 147) Solubility of I ₂ in CS ₂ +CHCl ₂ at 100m temperature (14 5°—15 1°).		70 60	34 2 30 7 27 9 26.1
Volumes of CS ₂ in 100 volumes of CS ₂ +CHCl ₂	Cem of 1/10-normal sodine in 5 ee of the solution	50 40 30	24 6 22.7
100 90 80	69 4 62 7 55 9	20 10 0	19.9 17 1 14.25
70 60	47 9 42 0	(Br	uner.)
50 40 30	35 8 30 4 25 3	Solubility of I ₂ in C ₃ temperature	H;OH+CHCl; at room (14.5°—15 1°)
20 10 0	20 8 17.0 14 3	Volumes of CaHrOH in 100 volumes of CaHrOH +CHCh	Cem of 1/10 normal sodine in 5 ec of the solution
Solubility of I2 m	uner.) C ₆ H ₄ +CCl ₄ at room (14 5°—15.1°).	100 90 80 70	58 8 51 9 44.2 35 4
Volumes of CaHa m 100 volumes of CaHa+CCla	Cem of 1/10-normal sodme in 5 cc of the solution	60 50 40	31 8 30 8 27 9
100 90 80 70 60	41 05 37 2 33 6 29 6	30 20 10 0	25.3 21 8 17.8 14.25
50 40	26 1 22 4 19 25	(Br	uner.)
30 20 10 0	16 1 13 4 10 75 8 1	4328); (Eidmann, C Sol in methyl acet	Naumann, B. 1904, 37. C. 1999, H. 1014.) ate (Naumann, B. 1909, cetate. (Naumann, B.

(Bruner)

Sol. in acetone. (Naumann, B. 1904, 37. 4328); (Eidmann, C. C. 1999, II. 1014.) Sol in methyl acetate. (Naumann, B. 1909, 42. 3790), ethyl acetate. (Naumann, B. 1904, 37. 3601) Sol. in allyl mustard oil, phenyl mustard

414 IODINE

oil, phenyl isocyanate, pyridine, and alcohol. (Mathews, J. phys. Chem. 1905, 9, 649)

Solubility of I2 in glycerine + Aq at 25° G=g. glycerine in 100 g glycerine+Aq I2 = g I2 m 100 cc, of the solution

G	I;	Sp gr
0 7 15 20 44 31 55 40 95 48 7	0 0304 0.0342 0 0482 0.0621 0 0875 0.135	0 9979 1 0198 1 0471 1 0750 1 0995 1 1207
69.2	0.133	1 1765

1 1765

0 278 1 223 1.2646(Herz and Knoch, Z anorg 1905, 45, 269)

100 N-NH₄C₂H₅O₂+Aq dissolves 0 440 g. I2 at 25°

11 0.7 N-(NH₄)₂C₂O₄+Aq dissolves 0 980 g. I. at 25°

(McLauchlan, Z. phys. Ch. 1903, 44, 617.) Very sol. in benzomtrile. (Naumann, B 1914, 47, 1369,)

t ₀	Grams today in 100 g of sat solution	5
100 95 90 85 80 75	0 32 0 37 0 41 0 46 0 51 0 55	-
25 20 15 10 5 0 +- 5 10 15 20 25 30 36 40 42	3 47 4 14 4 82 5 52 6 58 7 89 9 21 10 51 12 35 14 62 18 26 18 26 27 22 27 20 75	

(Arctowski, Z. anorg 1894, 6. 404.)

1 l CS₂ dissolves 230 g. I₂ at 25°. 1 l CHBr₈ dissolves 189.55 g. I₂ at 25° 1 l CCI₄ dissolves 30 33 g. I₄ at 25° (Jakowkin, Z. phys. Ch. 1895, 18, 590.)

Solubility in CS.

100 g. of the sat. solution contain at: -80° ---87° -92 5° --04° 0.509 0.4400.3910 378 g. I₂.

(Arctowski, Z. anorg, 1896, 11, 274.)

When an aqueous solution of I is shaken with CS_{2,} 400 pts go into solution in CS₂ for 1 pt. remaining in H₂O (Berthelot and Jungflersch, C. R. 69, 338.)

Abundantly sol in methane. (Villard. ch. 1897, (7) 10. 387.) Easily sol in hot, less in cold naphtha.

(Pelletier and Walker.) Sol, m about 8 pts hot petroleum from

Amiano (de Saussure)

Sl. sol in cold, more readily in hot ben-zene (Mansfield.) Easily sol, in benzene. (Moride, A. ch. (3) 39, 452)

Solubility in benzene.

100 g, of the sat, solution contain at: 6 6° 10 5° 13.7° 16.3°

8 08 8 63 9 60 10.4411.23 g. I. (Arctowski, Z. anorg 1896, 11, 276.)

1 l. benzene sat, with sodine at 25° contains 139 g. iodine. Abegg, Z. anorg. 1906, 50.

409.) 1 l nitrobenzene dissolves 50 62 g L at

16-17°. (Dawson and Gawler, Chem. Soc. 1902, 81. 524.)

Solubility of I2 in nitrobenzene+iodides at 100m temp

Salt G pe					
		Salt	I ₂		
	KI	12 35	112.7		
1	11	45.56	295 7		
1	**	115.8	698 2		
	11	155.2	943 6		
	NaI	13 55	125		
	11	57 7	393		
1	**	109.1	738		
1		228.	1251		
	RbI	85.4	421		
1	44	217 5	1060		
1	Li	84.1	642		
!	CaI	48.2	213		
ŀ	44	223	858		
	NHAI	69 5	482		
	44	94 3	669		
	S ₁ L ₂	106 5	599		
	Bal ₂	42.2	237		
	66	158 5	809		
A	iline hydriodide	164	721		
Dimeth	yl anılıne hydriodide	160	626		
Tetram	ethylammonium				
100	ide	49.3	266		
		51 4	280		

796.)

Sol in quinoline (Beckmann and Gabel, Z. anorg. 1906, 51. 236.) Easily sol. in oil of turpentine, but an explosion soon occurs (Walker.)

Sol, in oil of mandarin. (Luca.)

IODINE 415

Sol in oil of armes root. (Zeller) Very sol, in CS., lignone, furfurol, giveeting. aldehyde, chloral, warm retinole, toluene, salicylic acid, methyl nitrate, methyl salicylate. mercaptan, amvl carbamate, ethyl sulphydrate, allyl iodide, ethyl disulphocarbonate, carbon chloride, SCl2, ICl2, H2S5, chlorochromic acid, amyl valerianate, valerianic acid, warm butyric acid, creosote, aniline, annoline, methylsalicylic acid. Quickly sol. in oil of dill, peppermint, sassafras, and tansy. Slowly sol, in oil of cloves, cannamon, calcout, and rue. Other essential oils decompose it,

Sol. in potassium croconate+Aq. (Gmclin.) Sol. in potassium antimony taitrate+Aq 176 pts. H₂O+6 pts. potassium antimony tartrate dissolve 2.75 pts. I: 378 pts. H₀O +6 pts potassium antimony tartrate dissolve -

4.12 pts. I

0.0939

0.0518

(Various authorities.)

More sol, in tannic acid than in H2O. 1 pt. I is sol in 450 pts, H₂O with 3.3 pts, tannic acid at 12°; 1 pt. I is sol in 240 pts. H2O with 0.015 pt. tannic send at about 30°. (Koller, Zeit. Ch. 1866, 380.)

200 g. H₂O contaming 0 3 g. tannic acid dissolve 1.0 g. I. (Hager, Comm. 1883.)

Sol, in considerable quantity, especially on warming, in resorcin, orcin, or phloroglucm + Aq, without coloration or formation of HI+Aq. These solutions withdraw I from CS, solution, and do not give it up on boiling, but on evaporation in vacuo the I is sublimed in a pure state. (Hlasiwetz, Z. anal. 6. 447.)

Partition coefficient for iodine between CS: and Aq at 25°C.

A = concentration of the water layer. C=concentration of the carbon bisulphide laver.

A	C	h=C/A
0 2571 0 2195 0.1947 0.1743 0 1605	167 6 140 2 122 0 108.3 98 27	651 8 638 7 626 4 620.0 612.2
0.1229	73 23	595 8

55.29 30.36 Partition coefficient for iodine between CHBra and Aq at 25°C.

590 5

586.2

=concentration of the water layer. C = concentration of the CHBrs layer.

A	С	g=C/A
0.2736	144.36	527.6
0.1752	85.11	485.7
0.1084	49.93	460.5
0.0757	32.65	431.7
0.0517	22.19	429.3

Partition coefficient for iodine between CCL and Ag at 25°C.

A = concentration of the water layer. C = concentration of the CCl4 layer.

Α	С	h=C/A
0 1934 0 1276	25 61 16 54 10 88 6.966	87.91 85.51 85.30 85.13 85.77

(Jakowkin, Z. phys. Ch. 1895, 18, 586-588.)

G alcohol in 100 cc of maxture	C nq_alcohol × 102
30 5	1 29
26 7	0 76
22 9	0 49
19 1	0 34
16 3	0 28
11 4	0 23
7 6	0 20

(Osaka, Chem. Soc. 1905, 88. (2) 811.)

Division of iodine between CS2 and Na₂SO₄+A₀ at 25°. = concentration of I in H₂O layer.

C = concentration of I in CS2 layer. NasS0++Aa A 0 1518 142 4

1/2-N		0 1809		141.7	
1/4-N		0 2022		143.6	
1/8-N		0 2138		142.4	
Division of	iodine	between	CS ₂	and	NaNOs

NaNO.+Aq A 0 1923 142.4 143.7 2090 0.2164143 5

(Jakowkin, Z. phys. Ch. 1896, 20, 25.)

Partition between CHCl2 and glycerine. C=millmols iodine in 10 g, CHCl, layer. W=millimols iodine in 10 g, glycerine layer.

С	W	C/W
0.564 0.919 0.151	0.244 0.397 0.500	2 31 2 32 2 30

(Herz. Z. Elektrochem, 1910, 16, 870.)

solventa.

layer W=millimols rodine in 10 ccm of the other

Partition of I2 between CHCl3 and other Distribution of I2 between glycerine and CCl4 at to. C = millimols todane in 10 cent, of the CHCla

M. = concentration of I2 in CCl4 layer expressed in g.-mol per l. M₂ ≈ concentration of I₂ in glycerine layer expressed in g.-mol per l.

Other Solvent	1 6	. w	C/W	t°	N1	M2
Water 75% by vol. H ₂ O+ 25% by vol glycerine	1 516 2 318 3 207 3 439 1 217	0 0025 0 0120 0 0184 0 0242 0 0259 0 0183 0 0290	129 0 126 3 132 8 132 8 66 32 65 33	25°	0.002230 0.0024113 0.0048227 0.010452 0.038973 0.04598 0.05820	0 0014386 0 0014595 0 0027014 0 005581 0 019959 0 023948 0 030097
50% by vol. H ₂ O+ 50% by vol. glycerine 25% by vol. H ₂ O+ 75% by vol. glycerine	3 219 1 217 1 835 2.370 3 294 1 188	0 0483 0 0405 0 0600 0 0782 0 1020 0 116 0 173	66 65 30 0 30 1 30 4 32 2 10 25 10 45	40°	0 00227 0 00239 0 00461 0 01092 0 02540 0 04091 0 08074	0.00127 0.00138 0.00272 0.00482 0.01116 0.01749 0.02701
(Herz, Z. Flektroch	2 859 3 400 an. 19			50°	0.00257 0.00500 0.01363 0.02549 0.04167	0 00118 0 00225 0 00598 0 01050 0 01693

Distribution of I₂ between benzene and 0.06309 0.02502 glycerine at t°.

M₁=concentration of I₂ in benzene layer

expressed in g.-mol. per l,

M₂ = concentration of I₂ in glycerine layer expressed in g.-mol per l.

	and Steered Board		L
tº	M_1	M;	١
25°	0.09757 0.01610 0.02719 0.04024 0.06255 0.07923 0.10243	0 001604 0 002664 0 004115 0 005794 0 00834 0 01033 0 01324	
	0 12201 0.13342 0 16784	0 01559 0 01668 0 02081	
40°	0.008545 0.01544 0.04432 0.095004 0.13271 0.18508	0.00181 0.002593 0.006242 0.012013 0.01632 0.02193	-
50°	0 00865 0 01523 0 02683 0 04413 0 0620 0 07832 0 10153 0 12166 0 13199 0 18438	0 00184 0.00253 0 00390 0 00576 0 00744 0 00942 0 01214 0.0145 0.01560 0.02122	

(Landau, Z. phys. Ch. 1910, 73, 202.)

(Landau, Z. phys Ch. 1910, 73, 203.) Distribution of I2 between ether and ethylene glycol at t°.

M1=concentration of I2 in ether layer, expressed in g.-mol per l. M2=concentration of I2 in C2H6O2 layer, expressed in a amol per l

1	CAPICOSC	a in g-mor, per t.	
	†ª	Mt	Mı
-	0°	0 00843 0 03082 0 06551 0 08105 0 12528 0 31511	0 00571 0 01713 0 03736 0 04605 0 07148 0 17524
-	25°	0.00870 0 01677 0 02710 0 03046 0 06385 0 11951 0.30820	0 00571 0 01001 0 01586 0 01713 0 03594 0 06725 0 17524

(Landau, Z. phys. Ch. 1910, 73, 205.)

Iodine monobromide, IBr.

Slowly sol. in H₂O with slight decomp. Sol. in CHCl₂, CS₂, ether, and alcohol. +5H₂O. (Löwig, Pogg 14. 485.) Does not exist. (Bornemann, A. 189. 183.)

Iodine pentabromide, IBr.(?).

Sol in H₂O with separation of indine (Lowne, Pogg. 14, 485.)

Todine wayachloride, TCI.

Decomp. by H-O; sol, without decomp. in alcohol, ether, and HCl+Ac. Sol. in CS2.

Todine hydrogen chloride, ICL IICL Unstable. Sol. in ether. (Schutzenberger, C. R. 84, 389.)

Todine trychloride, ICle.

Deliquescent With H2O, a part is dissolved without decomp., and the rest is decomp. The aqueous solution contains more unchanged ICls, the more cone, it is. (Serullas) Precipitated from aqueous solution by H₂SO₄ Sol. in HCl+Aq. Sol. in warm cone, H₂SO₄ without decomp Sol. in alcohol, and ben-zene. Decomp. by small amount of CS₂. (Christomanos, B. 10, 434.) Ether does not remove it from aqueous solution, (Serullas.)

Iodine lithium chloride, ICl2, LiCl+4H2O. See Lithium chlorosodide.

Iodine trichloride magnesium chloride, 2ICls. MgClo+5HoO.

Very deliquescent and easily decomposed. (Filhol, J Pharm, 25, 442.) +SH₂O Hydroscopic (Weinland, Z anoig 1902, 30, 141.)

Iodine trichloride manganous chloride, 2ICla, MnClo+8HoO. Hydroscopic (Weinland, Z anorg 1902,

30, 139) Iodine truchloride nickel chloride, 2ICl2,

NiCl2+8H2O Hydroscopic. CCl, dissolves out ICl₂. Iodine oxides, I₁₀O₁₉, I₂O₁₃.

(Weinland, Z. anorg 1902, 30, 138)

The compounds I₂O₁₂.

Iodine monochloride phosphorus ventachloride, ICl, PCls. Very deliquescent: decomp. by H₂O.

Iodine potassium chloride, ICl, KCl. Sol. in H.O with decomp.

Ether dissolves out ICl. (Filhol, J. Pharm. 25. 433, 506) See Potassium chloroiodide.

Iodine sodium chloride, ICl., NaCl+2H₂O. See Sodium chlorolodide.

Iodine trichloride strontium chloride, 2ICl, SrCl2+8H2O. Hydroscopic (Weinland, Z anorg. 1902, 30. 142.)

Iodine trichloride sulphur tetrachloride, ICls.

Very deliquescent in air: decomp, by H₀O. Decomp, with formation of clear solution by dil HNO₃+Aq. (Weber, Pogg. 128, 459.) SCl₂, 2ICl₂. (Jaillard, J. B. 1860, 95.)

Correct formula is as above. (Weber, l. c.) 2ICl₂, SCl₄ Sol in SO₂Cl₂, SOCl₃, POCl₅, warm SCl₂, petroleum ether, ligroin, CHCl₃, CCl₄, CS₂ and abs. ether. (Ruff, B. 1904, 37. 4519.)

Iodine trichloride zinc chloride, 2ICl, ZnCl+ SH-O.

Unstable Hydroscopic (Weinland, Z. anorg 1902, 30 140)

Iodine ventafluoride, IFx.

Fumes in air; decomp, with II2O. (Gore, C. N. 24, 291.)

Decomp. by H2O into iodic acid and HF. Decomp. by solutions of the alkalies. (Moissan, C. R. 1902, 135, 564.)

Iodine trioxide, I2O2. Decomp. by H₂O. (Ogier, C. R. 85. 957; 86, 722.) Probably a mixture

Indine tetroxide, I2O4(?).

Insol in cold, decomp. by hot H₂O; insol. in alcohol Decomp. by HNO₂+Aq. Sol in H₂SO₁. (Millon, J. pr. 34. 319, 337.)

Iodine ventoxide, I:Os.

Very sol. in H2O, and in dil. alcohol. Insol in absolute alcohol, ether, CS2, chloroform, and hydrocarbons.

Forms hydrates, iodic acid HIO₃, and 3I₂O₅, H₂O; insol. in ordinary alcohol. For sp gr. of aqueous solution, see todic acid.

The compounds, I10O19 (Millon, J. pr. 34. 336), and I₂O₁₂ (Kammerer, J. pr. 83. 81). are probably mixtures.
Millon's oxides are impure I₂O₄. (Kap-

peler, B. 1911, 44. 3496.) Iodine sulphur oxide, 5I2O5, SO3.

Decomp. by H.O. (Kammerer.) I₂O₅, 3SO₂. Decomp. by H₂O; sl. sol. in hot SO₄. (Weber, B. 20. 86.) =(IO)₂(SO₄)₂. Iodyl sulphate (?).

Iodine oxyffuoride, IOF. +5H.O. Fumes in the air. (Weinland, Z. anorg. 1908, 60, 163,)

Iodine sulphide, S₂I₂.

Sol. in CS2. (Linebarger, Am. Ch. J. 1895, 17. 57.)

(Clove)

Iodine sulphoxide, I₂SO₄(?)
Decomp. by H₂O. (Schultz-Sellack.)
I₄(SO₂)₃(?). Decomp. by H₂O. (Weber, J.
pr. (2) 25. 224.)
I₄(SO₃)₄(?). As above. (Weber, See also Iodosulphuric aphydride.

Indiridic acid.

Ammonium iodiridate, (NII₄):Irl₅.

Very easily sol. in cold H₂O, decomp. on warming. Insol. in alcohol. (Oppler, J. B 1867, 263.)

Potassium iodiridate, K₂IrI₆.
Verv casily sol, in H₂O. Insol, in alcohol.

Sodium iodiridate, Na₂IrI₅.

Insol. in cold, sl. sol. in hot H₂O. Easily sol. in acids. (Oppler.)

Indiridous acid.

Ammonium iodiridite, (NH₄)₀h₂I₄₂+H₂O. Very sol. in H₂O, but decomp. on warming (Oppler.)

Potassium iodiridite, $K_0Ir_2I_{12}$. Insol. in H_2O , or alcohol. Slowly sol. in acids, easily in warm alkalies+Aq.

Silver iodiridite, Ag₆Ir₂I₁₂. Pnt.

Iodochloroplatindiamine chloride,

SI. sol. in H₂O.

Indochromic acid.

Potassium iodochromate, KCrO₄I.

Decomp. by boiling H₂O. (Guyot, C. R.

See also Chromoiodic acid.

Iodomolybdic acid. See Molybdolodic acid.

Iodonitratoplatinmonodiamine bromide, $I_{NO_4} Pt_{NH_4 pBr}^{(NH_4)_2Br}(?).$

Very al. sol. in H2O. (Cleve.)

Iodonitritoplatindiamine nitrate, I(NO₂)Pt(N₂H₄)₂(NO₄)₂. Quite easily sol. in hot H₂O. (Cleve.)

Iodopalladous acid.

Potassium iodopalladite. Deliquescent. (Lassaigne,) Iodophosphoric acid.

Iodoplatinamine iodide, I₂Pt(NH₂I)₂.
Sol in H₂O₄ especially easily if boiling.

Iodoplatindiamine iodide, I₂Pt(N₂H₄I)₂ Sol. m H₂O, especially when hot (Cleve.)

—— mercuric iodide, I₂Pt(N₂H₄I)₂, 2HgI₂. Extremely difficultly sol. in cold H₂O, partly decomp by boiling. (Jörgensen, Gm. K. 8, 1214)

— nitrate, I₂Pt(N₂H₄NO₃)₂.
More sol. in hot than cold H₂O.

—— sulphate, I₂Pt(N₂H₅)₂SO₄ Very sl sol. in H₂O (Jörgensen, J. pr. (2) 15, 429.)

Iodoplatinsemidiamine iodide, 1,Pt(NH₁)₂I(?). Sl. sol. in H₂O (Jorgensen, J. pr. (2) 16,

345)

— periodide, I₃Pt(NH₃)₂I, I₂.

Moderately sl. sol. m H₂O. (Cleve)

Iododiplatinamine iodide, I₂Pt₂(N₃H₄)₂I₄

Iododiplatindiamine anhydroiodide, I₂Pt₂(N₂H₆)₄OI₂. Insol. in NH₄OH+A_G.

anhydronitrate, I₂Pt₂(N₂H₆)₄O(NO₅)₂.
Easily sol. in warm H₂SO₅+Ag. (Cleve.)

--- iodide, I₂Pt₂(N₂H₆)₄I₄.

Ppt.

nitrate, I₂Pt₂(N₂H₄)₄(NO₂)₄+4H₂O.
Sl. sol. in cold, moderately sol. in hot H₂O.
(Cleve.)

---- phosphate, I₂Pt₂(N₂H₆)₄[O₂P(OH)]₂. Nearly used in H₂O.

— sulphate, I₂Pt₂(N₂H₆)₄(SO₄)₂. Nearly msol, in H₂O.

platodiamine sulphate, I₂Pt₂(N₂H₆)₄SO₄, Pt(NII₃)₂SO₄

Very sl. sol. in H₂O. (Carlgren Sv. V. A. F. 47. 308.)

Iodoplatinic acid, H₂PtI₆+9H₂O.
Deliquescent. Easily sol. in H₂O, with decomp. into PtI₄ and HI on standing or warming. (Topsoc.)

Ammonium iodoplatinate, (NH4):PtIs. Easily sol in H₂O. (Topsoe.) NH,I, PtI4. Sl. sol. in H2O; insol. in alcohol (Lassaigne, A. ch. (2) 51, 128.)

Rarium iodoplatmate, BaPtle. Deliquescent, but less so than Na₂PtI₄ which it otherwise resembles. (Lassaigne.)

Calcium iodoplatmate, CaPtIs+12H2O. Not so deliquescent as Na salt.

Cobalt iodoplatinate, CoPtI+9H2O. Very deliquescent.

Lead tetraiodoplatinate, [PtI4(OH)2]Pb. Pb(OH). Ppt. (Belluci, C. C. 1902, I 625)

Magnesium iodoplatmate, MgPtI₆+9H₂O. Sol. in H₂O.

Manganese iodoplatinate, MnPtIa+9H2O. Very deliquescent.

Mercuric tetraiodoplatinate, [PtI4(OH)1]Hg. Ppt. (Belluci, C. C. 1902, I 625)

Nickel iodoplatinate, NiPtIo+9H2O. Very deliquescent.

Potassium iodoplatinate, KoPtIa. Easily sol. in H₂O Insol. in alcohol. Not attacked by cold cone. H2SO4.

Silver tetraiodoplatinate, Pt[I4(OH)2]Ag2, Ppt. (Belluci, C. C. 1902, I. 625.)

Sodium iodoplatinate, Na-PtI++6H-O. Not deliquescent, but easily sol, in H2O and alcohol. (Vauquelin.) Deliquescent. (Lassaigne.)

Thallium tett aiodoplatinate, [PtI4(OH)2]Tl2. Ppt. (Belluci, C. C. 1902, I 625.)

Zinc iodoplatinate, ZnPtIa+9H2O. Easily sol in H₂O.

Iodoplatinocyanhydric acid, H2Pt(CN)4I2. See Periodoplatinocyanhydric acid.

Silver iodoplatinocyanide, Ag₂(PtI₂(CN₄)₂. Ppt. (Miolati, Gazz, ch. 1t. 1900, 30, 588.)

Strontium iodoplatinocyanide platinocyanide, $SrPt(CN)_{\bullet}I_{2}$, $10SrPt(CN)_{\bullet}+zH_{2}O$. (Holst.)

Iodopurpureochromium chloride, ICr(NH₂),Cl₂.

Quite sol. in H₂O. (Jorgensen, J. pr. (2) 25. 83.)

 chloroplatinate, ICr(NH₂)₂PtCl₄. Precipitate. (Jorgensen, l. c)

--- iodide, ICr(NH₂),I₂. Difficultly sol. in II₂O. Insol. in III, or KI+Aq; insol. in alcohol. (Jorgensen, l. c.)

- nitrate, ICr(NH₃)₂(NO₃)₂, Much less sol. in II2O than the chloride. (Jørgensen, 1 c.)

Iodopurpureocobaltic iodide, CoI(NH1)412. (Claudet.)

Does not exist. (Jorgensen, J. pr. (2) 25. 94.)

Iodopurpureorhodium chloride, IRh(NH₃),Cl₂,

Relatively castly sol. in H₂O; insol, in HCl +Aq and alcohol. Insol in KI+Aq. (Jörgensen, J. pr. (2) 27. 433)

 fluosilicate, IRh(NH₃)₅SiF₄ Nearly msol, in cold H₂O

---- iodoplatinate, IRh(NH_{*}),PtI_{*}. Ppt.

- iodide, IRh(NH3),I2. Very sl sol, in cold H₂O; more sol, in hot H₂O; msol, in dil, HI+Aq, and alcohol. (Jörgensen, J. pr. (2) 27, 433.)

- nitrate, IRh(NH₃)₂(NO₃)₂. Sl. sol. in H2O, more easily sol. in hot H2O; msol. in dil. HNOs+Aq, and alcohol.

--- sulphate, IRh(NH₂)₂SO₄, and +3H₂O. Sl. sol, in even hot H₂O. (Jorgensen.)

Iodoselenic acid.

Ammonium iodoselenate, 2(NH₄)₂O, I₂O₅ 2SeOz+H2O. Decomp, by H2O. (Weinland, B. 1903, 36.

1400.) 2(NH₄)₂O, 3I₂O₅, 2SeO₅+5H₅O, Sol. in H₂O with decomp.(?). (Weinland.)

Potassium iodoselenate, 2K2O, I2O6, 2SeO2+ H.O.

Decomp. by H₂O. (Weinland.) 2K₂O, 3I₂O₅, 2SeO₂+5H₂O. Sol in H₂O with decomp.(?) (Weinland.)

Rubidium iodoselenate, 2Rb₂O, 3I₂O₁, 2SeO₂ Cæsium iodotellurate, Cs₂TeI₄. +5H-O.

Sol, in II2O, (Wenland.)

Iodostannous acid.

Data concerning solubility of SnI₂ in H1+ Aq indicate formation of this compound. (Young, J. Am. Chem. Soc. 1897, 19, 853.)

Iodosulphobismuthous acid.

Cuprous iodosulphobismuthite, 2Cu₂S, Bi₂S₅, 2BiSI

Decomp. by H₂O at ord temp. Decomp. by mineral acids with evolution of H₂S (Ducatte, C R. 1902, 134, 1213.)

Lead iodosulphobismuthite, PbS, BrS, 2BiSI. Insol, in H2O. Partially decomp, by boiling H2O. Decomp. by dil. mineral acids with evolution of H₂S. (Ducatte.)

Iodosulphuric acid.

Ammonium iodosulphate, (NII4)2SO3I2(?). Very sol, in H2O. (Zinno, N. Rep. Pharm 20.449)

Mercuric iodosulphate, Hg (SO₄)I₄. See Mercuric sulphate iodide.

Potassium iodosulphate, K₂SO₂I₂(?). Sol, in 7,14 pts, H₂O at 15°. (Zinno, N. Rep. Pharm, 20, 449) Sodium iodosulphate, Na₂SO₈I₂+10H₂O.

Sol. in 3.64 pts, H₂O at 15° and in dil. alcohol, (Zinno, N. Rep. Pharm. 20, 449.) Does not exist. (Michaelis and Koethe, B. 6. 999.)

Iodosulphuric anhydride, ISOs.

Decomp, very violently by H₂O. (Weber, J pr (2) 25, 224.)

Diiodosulphuric anhydride, I2SO3. Decomp, with H.O. but not so violently as ISO₃. (Weber, J. pr. (2) 25, 224)

Iodotrisulphuric anhydride, I(SOs)s. Decomp. by H₂O. (Weber, J, pr. (2) 25. 224.)

Indotelluric acid.

Ammonium iodotellurate, (NH₄)₂O, I₂O₆, cohol, less in ether. (Martius, A. 117, 369.) 2TeO1+6H2O.

Sol. in H.O. (Weinland, Z. anorg, 1901.

Insol in Csl. or HI+Ag. Decomp, slowly by cold, rapidly by hot H₂O. (Wheeler, Sill. Am. J 145, 267.)

Potassium iodotellurate, K₂TeI₀+2H₂O. SI efflorescent. Somewhat sol in KI+Aq.

and dil III+Aq. (Wheeler.) K₂O, I₂O₅, TeO₅+3II₂O. Sol. in H₅O. Partially decomp on recryst, from H₂O, (Weinland, Z. anorg 1901, 28, 53.) K2O, I4O, 2TeO4+6H2O. Sol. in H4O

without decomp. (Weinland.) Rubidium iodotellurate, Rb.Tela.

Sl. sol. in III, or RbI+Aq Decomp. by H₂O. Somewhat sol in alcohol. (Wheeler) Rb₂O, I₂O₅, 2TeO₅+6H₂O. Sol. in H₂O. (Weinland)

Indotetramine chromium indide. IC1(NH₂),I₂+H₂O,

Sol, m H2O, Pptd, by alcohol (Cleve.) Iodotetramine cobaltic sulphate,

ICo(NII3)4SU4. (Vortmann and Blasberg, B. 22, 2652.)

Iodotungstic acid. See Tungstoiodic acid. Iodous acid, I₂O₈. Sec Todine transide.

Iodovanadic acid, I.Os. V.Os+5H.O. Very easily sol, in H₂O.

2V₂O₅, 3I₂O₄+18H₂O. (Ditte, C. R. 102. 757.) Ammonium iodovanadate, 3(NH₄)₂O, 2V₂O₅, 5I2O6+20H2O.

Sol. m H.O. (Ditte, C. R. 102, 1019.) Irididiamine compounds, Cl2Ir(NH2)4X2. See Chloririd:amine compounds.

Iridic acid.

Potassium iridate (?). Sol. in H₀O and HCl+Aq.

Iridicyanhydric acid, Halr(CN)s. Easily sol, in H.O. still more easily in al-

Barium iridicvanide, BasIIr(CN)als+18HsO. 28. 52.) (NH₄)₂O, I₄O₄, 2TeO₄+8H₂O. Sol. In H₄O. (Weinland, B 1900, 33. 1017.) Efflorescent. Easily sol. in hot or old H₂O. Nearly insol. in alcohol. Not decomp. by acids. Cupric iridacyanide ammonia, Cu₃Ir₂(CN)₁₂, Iridaum monochloride, IrCl. (6NII₃+HI₂O cip. (Disphal), Z caper Insol. in acude and bas

Ppt Decomp. in air. (Rimbash, Z. anorg 1907, 52, 413.)

Potassium iridicyanide, K₃Ir(CN)₆. Easily sol, in H₂O.

Silver iridicyanide ammonia, Ag₄Ir(CN)₆, 2NH₂+3H₄O. Ppt. Decomp. in the light. (Rimbach, Z. anorg. 1907, **52**, 414)

Iridium, Ir

Insol. in all acids, including aqua regia, except when in finely divided state, as "iridium black," when it is sol. in aqua regia. (Claus, J. pr 42. 251)

Iridium ammonia compounds.

See—
Chlorirdidiamme comps., Clir(NH₄)₂X.
Iridoriamine
Ir(NH₄)₃X.
Iridoriamine
Ir(NH₄)₃X.
Iridoriamine
Ir(NH₄)₄X.
Iridogeopentamine
Iridogeopentamine
Iridogeopentamine
Iridogeomine
Iridogeomine
Iridogeomine
Iridogeomine
Iridogeomine

Iridium trabromide, InBra+4H2O.

Easily sol. in H2O. Insol in alcohol or

Iridium tetrabromide, IrBr₁, or H₂IrBr₈.

Deliquescent. Sol. in H₂O and alcohol.
(Birnbaum.)

See Bromindic acid.

ether. (Birnbaum.)

Iridium hydrogen sesquibromide, 3HBr, IrBr₃+H₂O=H₈IrBr₈+3H₂O. See Bromiridous acid.

Iridium sesquebromide with MBr. See Bromiridite, M.

Tridium tetrahromide with MBr.

Iridium phosphorous bromide, IrBr₃, 3PBr₃.

Partially decomp. by H₂O into a sol., and insol. modification. Sol. in PBr₈. (Geisen-

IrBr₃, 2PBr₅. Not easily attacked by H₂O. IrBr₄, 2PCl₅. See Iridium phosphorus chlorobromide.

Iridium carbide, IrC4(?).

heimer.)

See Bromiridate, M.

(Berzelius.) Stable toward H₂O, acids, and alcohol. (Strecker, B. 1909, 42, 1773.)

Iridum monochloride, IrCl.
Insol. in acids and bases (Wohler, B. 1913, 46, 1584.)

Iridium dichloride, IrCl₂.

Insol. in acids and bases (Wohler, B. 1913, 46, 1585)

Iridium #schloride, IrCls.

Insol. in acids or alkahes. (Claus, C. C. 1861. 690) Insol. in H.O. acids and alkalies. (Leidié.

C. R. 1899, 129, 1251.) +4H₂O. Sol. in H₂O. (Claus.)

Iridium tetrachloride, IrCl₄, or H₂IrCl₆(?)
Deliquescent, and easily sol. in H₂O.

Iridium trichloride with MCI. See Chloriridite, M.

Iridium tetrachloride with MCl. See Chloriridate, M.

Iridium chloride with potassium chloride and sulphite. See Chloriridosulphite, potassium.

Iridium phosphorus chloride, IrP2Cl2.

Insol in cold H.O. Sl. decomp. by hot H₂O (Geisenheumer, A. ch. (6) 23, 254.) IrP₂Clab. Very sol. in chloroform. (6) IrP₂Cl₃ Easily sol. in PCl₄, or CHCl₄, also in CS, with gradual decomp. Sl. sol. in cold H₂O. Decomp. by boiling into IrCl₄, M²H₂O. Sl. in benzene, ligroin and CCl₄.

(Strecker, B. 1909, 42, 1772.) +H₂O Insol. in PCl₂ at 100°. Very slowly sol. in boiling H₂O. (Geisenheimer, A.

ch (6) 23, 206)
IrP,Cla. Decomp by H₄O into 21rCl₁,
3H₂PO₄, 3H₂PO₄. Violently decomp, by
alcohol SI sol in cold, more in hot PCOl₂,
without decomp. Very sol in PCl₂ with
decomp, in PrP₄Cl₃ with combination Sol in Cas, with
complex to the property of

Iridium phosphorus arsenic chloride, 2IrPsCl14, 5AsCl4.

Sol, in H₂O with decomp into corresponding acid. (Geisenheimer, C. R. 110, 1336) IrCl₃, 2PCl₃, 2AsCl₃ Very sol in H₂O with decomp. Sol. in AsCl₂; insol in CCl₄. (Geisenheimer.)

Iridium phosphorus sulphur chloride, IrCl₂, 2PCl₂, 2SCl₂.

Very sol. in sl. amt. H₂O, with decomp. into an acid analogous to chlorophosphoridic acid. Sol. in SCl₂. (Geisenheimer.) Iridium phosphorus chlorobromide, IrBn4,

(Geisenheimer, C. R. 111, 10.)

Iridium dihydroxide, IrO₂, 2H₂O=IrO₄H₄ Insol m dil HNO₃, or H₂SO₄+Aq. Slowly but completely sol, m IrCl+Aq. Sol m KOH, and NaOH+Aq. (Claus, J. pr. 39, 101.)

Iridium sesauthydroxide, 11,0cHa

Not attacked by acids, except slightly by cone HCl+Aq (Claus, C C. 1861, 690)

Iridium traodide, IrIa.

Very sl sol, in cold, somewhat more in hot H₂O. Insol, in alcohol. (Opplet, J. B. 1857, 263)

Iridium tetraiodide, IrI4.

Insol. in H₂O or acids. (Lassaugne.) Sol. in solutions of iodides. (Oppler.)

Iridium traiodide with MI. See Iodiridite, M.

Iridium teliaiodide with MI. See Iodiridate, M.

Iridium dioxide, IrO:

Very al sol m acads. Freshly ppld Sol m cone H_SSO₄, hot 2-N H_SSO₄, HNO₅, HCI Insol m 2-N KOH and sl sol m hot 1-N KOH. Drud in a desaccior Sol in HCI Insol H_SSO₄, HNO₅ and KOH, hot cone HCI Insol. m H_SSO₄, HNO₅ and KOH. (Wohler, Z. anorg 1998, 57, 334)

Iridium trioxide, IrO2.

See also Iridium dihydroxide.

Unstable. (Wehler, Z anorg. 1908, 57, 340.)

Iridium sesquioxide, Ir₂O₂.

ch. (6) 23, 286.)

Insol. in acids.
Sol. in conc. H₂SO₄, and hot cone HCl.
Forms colloidal solution with dil. HCl. Conc.
HNO₂ converts it into the dioxide.
Insol in KOH+Aq. (Wohler, Z. anorg.

1908, 57. 339.)
Iridium oxybromide, Ir₂Br₃O₂ = 2IrBr₄, IrO₂.
Not decomp by H₂O. (Geisenheimer, A.

Iridium phosphide, Ir₂P.
(Clarke and Joslin, Am. Ch. J. 5, 231.)

(Clarke and Joslin, Am. Ch. J. 5. 231. Iridium sesquiselenide, Ir₂Se₃

Insol. in HNO₁; slowly sol. in hot aqua regia. (Chabrié and Bouchonnet, C. R. 1903,

Iridium monosulphide, ItS

Inso! in HNO₃+Aq, and very sl sol if at all in aqua regia (Berzelius.) Sol in K₂S, and KSH+Aq.

+ H₂O Sl sol, in H₂O; sol, in cold HNO₃+Aq. Insol in NH₄Cl+Aq or dil, acids More sol, in K₂S+Aq than PtS₂. (Berzelus)

Iridium disulphide, IrS2.

Not attacked by H₂O, but decomp when the statement of t

Iridium sesquisulphide, Ir₂S₈.

Sl. sol in H₂O Sol. in HNO₃, or K₂S+Aq.

Tridotromine chloride, Ir(NH₃)₃Cl₃.

Sl. sol. in H₂O. Not attacked by boiling H₂SO₄. (Palmaer, B 22. 15.)

Iridotetraamine chloride, Ir(NH₈)₄Cl₈. Very sol, in H₂O. (Palmaer, B. 22, 15.)

Iridopentamine bromide, Ir(NH₄)₅Br₄.
Sol. m 352 pts. H₂O at 12.5°. (Palmaer, B.
28. 3817)

--- bromochloride, Ir(NH₁)₅ClBr₂. Sol in H₂O. (Palmaer, B. 24, 2090.)

— bromonitrite, Ir(NH₃)₅Br(NO₂)₅. Sol in 17 9 pts H₂O at 18°. (Palmaer.)

bromosulphate, Ir(NH₄)₆BrSO₄+H₂O. Sol. in H₂O. (Palmaer.)

— carbonate, [Ir(NH₈)₆]₂(CO₂)₂+3H₂O.
Sol. in H₂O. (Claus, J. pr. 63. 99.)

—— trachloride, Ir(NH₂)₂Cl₂.
Sol. in 153.1 pts H₂O at 15.1°. (Palmaer, B. 23. 3810.)
Sol in hot H₂O containing HCl. (Claus, J.

pr. 69, 30.)

—— chlorobromide, Ir(NH₂)₆ClBr₂

Sol. in 213.6 pts. H₂O at 15°. (Palmaer.)

—— chloroiodide, Ir(NH₂)₅CII₂.
Sol, in 104.5 pts. H₂O at 15°. (Palmaer.)

chlorooxalate, Ir(NH₃)₅ClC₂O₄

IRON 423

Potassium iridonitrite iridochloride,

K₆Ir₂(NO₂)₁₂, K₆Ir₂Cl₁₂

Sol. in II-O.

Iridopentamine chloronitrate, Ir(NH₃)₃Cl₃NO₃)₂.

Sol. in 51 54 pts, H₂O at 15.4°. (Palmaer.)

— chloronitrite, Ir(NH₂)₂Cl(NO₂)₂.
Easily sol. in H₂O, (Palmera.)

Easily sol, in H₂O. (Palmera.)

—— chloroplatinate, Ir(NH₂)₄Cl₄, PtCl₄.

Very sl. sol. in H₂O. (Palmear.)

— chlorosulphate, Ir(NH₃)₄ClSO₄+2H₂O.

Sol. in 134.5 pts. H₂O at 15°. (Palmaer.)

evaporation. (Claus.)

— nitrate, Ir(NH₂)₅(NO₃)₃.

Moderately sol. in H₂O. (Claus.)

Sol. in 349 pts. H₂O at 16°. (Palmaer)

Iridoaquopentamine bromide, Iridoaquopentamine bromide,

Sol. in 4 pts H₂O. Pptd from aqueous solution by HBr+Aq. (Palmaer, B 24. 2090.)

—— chloride, Ir(NH₃)₅(OH₂)Cl₄.

Sol, m 1 2 to 1.5 pts. H₂O at ord. temp. Pptd by HCl+Aq from aqueous solution. (Palmaer, B. 24, 2090.)

— nitrate, Ir(NH₂)₃(OH₂)(NO₂)₃.
Sol. in about 10 pts. H₂O at 17°. Pptd. from aqueous solution by HNO₂+Aq. (Palmaer.)

Iridonitrous acid, H₆Ir₂(NO₂)₁₂. Easily sol. in H₂O. (Gibbs, B. 4. 281.)

Ammonium iridonitrite, (NH₄)₄Ir₂(NO₂)₁₂.

Almost insol. in cold H₂O; decomp. by hot
H₂O with evolution of N₂. Decomp. by hot
conc. H₂SO₄ or HCl Insol in sat. NH₄Cl+
Aq. (Letdić, C. R. 1902, 134, 1583.)

Barium iridonitrite iridochloride, Ba₂Ir₂(NO₈)₁₃, Ba₈Ir₂Cl₁₂. Sol. in H₂O. (Lang.)

Mercuric iridonitrite, Hg₃Ir₂(NO₂)₁₂. Insol, in H₂O. (Gibbs. B 4, 280.)

Potassium iridonitrite, $K_3Ir_2(NO_2)_{12}$. Sl. sol. in cold, more sol. in boiling H_4O . Decomp. by hot HCl or H_5SO_4 . Insol. in KCl+Aq (Leidić, Bull. Soc. 1902, (3) 27. 937.). Moderately sol in H_4O .

_I

Silver iridonitrite, $\Lambda g_g Ir_2(NO_2)_{12}$.

Difficultly sol in cold, more easily in hot H_2O_s .

Sodium iridonitrite, Na₀Ir₂(NO₄)₁₁+2H₄O. Sl sol in H₂O. Sol, in cold H₂O. Decomp. by hot cone H₂SO₄ or HCl. (Ledié, C. R. 1902, 134, 1583.)

Sodium iridonitrite iridochloride, Na₄Ir₂Cl₂(NO₂)₂+2H₄O. Sl. sol. in H₂O. (Gabbs, Na₅Ir₂(NO₂)₁₂, Na₆Ir₂Cl₄. Insol. in cold, sl. sol. in hot H₃O. (Lang)

Iridosamine chloride, Ir(NH₁)₂Cl₂. Nearly insol. in H₂O. (Skoblikoff, A. 84. 275.)

Iridosodiamine chloride, Ir(N₂H₆)₂Cl₂.

Insol. m cold, decomp. by hot H₂O. (Skoblikoff.)

—— sulphate, Ir(N₂H₄)₂SO₄.
Sl. sol. in cold, easily in boiling H₂O₄.
Sl. sol, in alcohol.

Iridosulphuric acid.

Potassium iridosulphate, K₆Ir₂(SO₄)₆.
Sol. in II₂O (de Boisbaudran, C. R. 96.
1406.)

Iridosulphurous acid.

Ammonium iridosulphite, (NH₄)₆Ir₂(SO₃)₆+

Slightly sol. in H₂O. (Birnbaum, A. 136. 179.)

Potassium iridosulphite, K_tIr₂(SO₈)₆+6H₂O. Slightly sol. in H₂O

Sodium iridosulphite, Na₆Ir₂(SO₃)₆+8H₂O, Searcely sol, in H₂O.

Iron, Fe.

Permanent in dry air; oxidises only slowly in moist air, but rapidly when in contact with air and H₂O simultaneously.

Fe does not rust in contact with air and

•

424 IRON

H₄O containing alkahes even in very small! amounts. (Paven, A ch. 50, 305.) Not attacked at ord, temp, by H₂O free

from air. More easily oxidised by NH, salts +Aq than by II₂O when exposed to an

simultaneously. (Persoz, A. ch (3) 24, 506) Iron is slowly attacked by distilled H₂O m presence of air. 100 cem distilled water removed 29 mg from 11 8 sq cm from in one week, while air free from CO₂ was passed through the solution. In presence of CO₂, 54 mg were removed (Wagner, Dingl 221.

CO2 acts as a catalyst for the solution of Fe by H₂O. (Whitney, J Am Chem Soc 1903, 25, 394)

Iron is most easily oxidised when it is exposed to air, and H₂O is deposited on it at the same time in hound form 100 l. sea water dissolve 27 37 g from 1 sq

metre Fe, 29.16 g, from 1 sq metre steel,

Readily sol in HCl, dil, H2SO, + Aq, and

most other ands

Action of H₂SO₄+Aq (1 12) is very much accelerated by a few drops of PtCl4+Aq; the addition of AsiO, arrests the action completely. Tartar emetic and HgCl₂ diminish the action, but do not arrest it. CuSO4+Aq strongly accelerates the action, and AgoSO4+ An also to a less extent

In the case of HCl+Aq, the addition of small amts, of metallic salts also influences the action. Weak HC₂H₃O₂+Aq has but little action, and the addition of PtCl₄ mcreases it; As2O1 stops it; other solutions have no effect. With racemic and tartaric acids the phenomena are the same.

With oxalic seid, PtCl4 prevents the action. Saline solutions and even distilled H₂O, when mixed with PtCl4, have slight solvent action.

(Millon, C. R. 21, 45.) Above phenomena are due to galvanic action from metal deposited on the iron.

(Barreswill, C. R 21. 292.) H2SO, has only al action on cast-iron at

ord, temp, with exclusion of air Weak acids have a strong action at higher temperatures

iron are much less attacked by weak acids at b.-pt, than other sorts of Fe. Scotch pig-iron is most strongly attacked 99.8% H2SO4 has very sl. action on iron at

ord, temp, when air is evoluded. (Lunge, Dingl. 261, 181.)

P Resistance against dil. H₂SO₄+Aq is over the w greatly increased by morease in amt. of C if ccases again chemically combined, less so by P or Si. passivity." (Ledebur, Dingl 223, 326.)

Passive Iron.-When Fe is treated with pure conc. HNO2+Aq of 1.512-1.419 sp. gr., it soon becomes coated with a bluish or black coating, apparently FcO, and when thus in dil. acid, after a longer or shorter time,

any strength at ord temp or at the temp. of a freezing mixture; but action occurs on heating. Nor is Fe attacked at ord, temp heating from is re-activated at some samply send of 1,401 sp. gr. or even somewhat weaker acid, though action begins at once on heating. Very dtl. IINO₂+Aq attacks Fe at ord -temp, with formation of NH₄NO₂ and Fe(NO₂)₂. The action of HNO₂+Aq 18 and Fe(NO₃)₂. The action of HNO₃+Aq is influenced by PtCl₅. If acid containing 4.5 equivalents of H₂O is diluted with 2-3 vols. II2O, and then poured on Fe tunnings, they dissolve at once with evolution of nitrous fumes and formation of ferric salt, but if to the acid one drop of PtCl₄ be added, only H gas is evolved, and NH, NO, and Fe(NO,)2 are formed. (Millon, C R 21, 47)

covered Fe is not attacked by HNOa+An of

The more H2O the acid contains the lower will be the temp at which the Fe remains passive. Shaking the wne hastens the passivity Contact with Pt. Au, or C does not 1.12 g, from 1 sq metre galvanised Fe (Cal- prevent it. Fe wire becomes passive by revert and Johnson, C N 11), 171) maining 10 min, in HNO₃ vapour. (Renard,

C R. 79, 159.) Iron may be made passive by HClOs, HBrOs, HIOs, HsC1Os, in the same way as

by HNOa. Iron may also be made passive by moderate

ignition. Passivity occurs with HNO3+Aq of 1.38 sp. gr after a short time at 31°, but if temp. is

passivity does not occur Colourless HNO₄+Aq of 1.42 sp gr pro-duces passivity at 55° but not at 56°. Red fuming HNO₁+Aq of 1.42 sp gr. produces passivity at 82° but not at 83°. (Ordway, Sill Am J. (2) 40, 316.)

The passivity of Fe is destroyed when it is placed in a magnetic field at a much lower temperature than when in normal condition, (Nichols and Franklin, Sill. Am. J. (3) 34.

Passivity depends on a coating of NO which hinders the action of the acid. All operations which remove this layer terminate the passivity, as shaking, rubbing, placing in a vacuum, etc. (Varenne, C. R. 89, 783.)

When Fe is plunged in HNOs+Aq of 1.42 sp. gr. there is a sudden evolution of gas which ceases after 3 to 20 seconds, and the surface becomes bright The same phenomena take Charcoal pig-iron, and case-hardened castplace with a more dilute acid, if of not less than 1.32 sp gr. In the latter case, there is an immediate evolution of gas, which sud-denly ceases and the metal becomes bright, but soon the acid begins to act again at a single point, and the action gradually spreads over the whole surface, this, however, soon ceases again, and we have an "intermittent

If a part of a piece of iron is immersed in strong acid, the whole of it is made passive. This is explained by the NO spreading over the whole surface by capillarity.

The passivity ceases when the Fe is placed

according to the dilution of the acid,—when the acid has sp gr. =1.30, after 11 days "1 28 " 5 "

" " 126 " 32 hours " " 1 16 " 12 "

Iron may also be made passive by long standing in NO gas under pressure. (Varenne, C. R 90. 998.)

Fe is made passive by a coating of Fe₃O₄, not by NO (Schouben, Pogg. 39, 342.) (Beetz, Pogg. 67, 280.) (Ramain, B. 14. 1430.)

1430.)

Passivity may also be caused by NH₄NO₈
+Aq, ammoniacal AgNO₅+Aq, Fe(NO₅)₅,
Fe(NO₅)₅, Al(NO₅)₃, Co(NO₂)₅, Ni(NO₃)₃,
ete +Aq instead of HNO₅+Aq. (Ramann,

B 14, 1933.)
Hardly attacked by either dil or cone, acids when they are under high pressure. (Callletet C. R 68, 395.)

Iron is dissolved by HNO₃+Aq, even when very cone., but no gas is evolved and the process is very slow

ess is very slow

HNO₄+Aq of the following sp. gr. dissolves
the given amts. from strips of pure Fe

Sp gr. of acad	Diminution of weight in 24 hours
1.28	0 82%
1.34	0 75
1.38	0 29
1.48	0 34
1.53	5 80

(Gautier and Charpy, C. R. 113, 1451.)

Insol. in liquid chlorine below 90°. (Lange, Zeit. angew. Ch. 1900, 13. 686.) Insol in liquid NH₃. (Gore, Am. ch. J. 1898, 20. 828.)

Not attacked by alkahes

Sol. in NaOH+Aq (34%) when air is blown through the liquid (Zirnité, Ch. Ztg. 12. 355.) NaOH+Aq attacks iron and steel. (Vena-

tor, Dingl 261, 133.)
NaOH+Aq has slight action on Fe between

15° and 100°. (Lunge, Dingl 261, 131.) Presence of alkalies prevent rusting entirely, and fats and oils greatly hinder it. (Wagner.) Sol. in alkali hydrogen carbonates+Aq.

Sol. in alkali hydrogen carbonates+Aq. (Berzelius) Sat. NaCl+Aq has sl. but perceptible action on Fe. NH₄Cl+Aq has stronger action

than NaCl+Aq. (Lunge)
100 ccm. H₂O containing 0.5 g. NaCl or
KCl removed 42 mg. from 11.8 sq. cm. iron
in one week, while air free from CO₂ was

passed through the solution, and 72 mg. m presence of CO₂. 100 ccm. H₂O containing 1 g. NH₄Cl removed 45 mg., and 76 mg. respectively under

the above conditions, 100 ccm, H₂O containing 0.8 g, MgCl₂ re-

moved 49 mg., and 65 mg. respectively under the above conditions.

Not attacked by 100 ccm H₂O containing 1 g Na₂CO₂, or by CaO₂H₂+Aq (Wagner, Dingl 221, 260)

Action of KCl0₂+Aq. KCl0₃+Aq. (6.3% KCl0₃) saxified 11.21 g, cast ron and 20.1 g pure iron from a surface of 1 sq. metre in 7 hours; KCl0₃+Aq. (25% KCl0₃) oxidised 24.50 g, cast, and 44.90 g pure Fe under above conditions; Ca(Cl0₃), CaCl₂+Aq. (25% KaCl₃+Aq. (25%

Comparative action of oils on Fc.

	Amount Fe dissolved
Neatsfoot oil Colza " Speim " Lard " Oil " Linseed " Seal " Castor " Parafline "	0.0875 grains 0.0800 " 0.0460 " 0.0250 " 0.0062 " 0.0050 " 0.0050 " 0.0050 "
Almond " "Lubricating" oil	0 0040 " 0 0018 "

(Watson, C. N 42, 190.)

1/2 ccm. oleic acid dissolves 0.0097 g Fe in 6 days (Gates, J. phys. Chem. 1911, 15. 143)

Fe dissolves in albumen solution to the extent of 1 to 2 per cent. (Buchner, Arch. Pharm. (3) 20. 417)

Attacked by sugar+Aq at 115-120°, also by inverted sugar or malt extract, not by glycerine or mannite+Aq. (Klem and Berg, C. R. 102, 1170)

Iron arsenide, FcAs₂.
Min Lallynoite S

Min. Löllingite. Sol. in HNO₃+Aq with separation of As₂O₃. Fe₃As₄. Min. Leucopyrite

Poplat. Intil. Demotpyri

Iron arsenide sulphide, FcAs₂, FcS₂.

Min Arsenopyrite Sol in HNO₂+Au
with separation of S and As₂O₃; wholly sol,
in agus regie; not attacked by HCl+Au

Iron boride, Fe,B.

Decomp. by H₂O. Sol. in hot dil HCl or H₂SO₄ and in hot cone HCl or H₂SO₄. Sol in hot dil. or cold cone. HNO₅. (Jassonneix, C. R. 1907, 145, 122)

FeB. Sol. in moltén alkali carbonates; not sol. in dil. or conc. H₂SO₄ in the cold; sol. in boiling H₂SO₄ and in HNO₂. (Mossan, Bull. Soc. 1895, (3) 13, 95S.)

Stable in dry air. Decomp by aqua regia,

but not readily sol in cone H-SO, and HC! Iron carbonyl, Fe(CO)s (Moissan, C. R. 1895, 120, 176)

FeB₂, Decomp, by H₂O Sol, in HNO₁ and m hot cone, HCl (Jassonners, C. R. 1907, 145, 122)

Iron (ferrous) bromide, FeBra

Sol in H2O Decomp by heating on air Sat. FeBr -+ Au contains at ---21° ---7° +10° 210

17 0 48 3 32.3 53 701 FoBro. 37° 500 65° 0.5° 56.0 58 O 63 375 FeBr. $59 \ 4$ (Étard, A. ch. 1894, (7) 2, 541.)

+4H₂O. Very sol in H₂O, pptd from cooled aq. solution. (Volkmann, C. C 1894, II 611)

+6H₂O Sol in H₂O (Lowig.) +9H O (Volkmann.)

Ferric bromide, FeBra

Deliquescent. Sol in H₂O, alcohol, and ether (Lowig.) Sl sol, in liquid NH₂, (Franklin, Am Ch.

J. 1898, 20, 828) +6H₂O Sol. in alcohol and other. (Bol-

schakoff, C. C 1898, IL 660)

Ferrous mercuric bromide.

Deliquescent (v Bonsdorff,)

Ferric rubidium bromide, Rb.FeBr.+H.O. Sol m H₂O. (Walden, Z. anorg, 1894, 7, 332)

Perrous stannic bromide.

See Bromostannate, ferrous,

Ferrous bromide nitric oxide, 3FeBr₂, 2NO Sol, in H₂O. Not isolated (Thomas, C, R. 1896, 123, 944.)

Ferric bromochloride, FeCl.Br.

Very deliquescent, and sol. in H_2O , alcohol, and ether Notably sol in chloroform, ben-zene, and toluene, Insol in CS₂. (Lenormand, C R 116. 820.)

Iron carbide, Fe_{*}C

(Gurlt, J. B. 1856, 781.) Mixture of Fe and FeC₄. (Tunner, Polyt. Centralbl. 1861. 1227.)

Fe₄C (Karsten, J. pr. 40. 229.) Fe₃C. Sol m hot conc. HC Sol in hot cone. HCl; oxidized

slowly by most air. (Campbell, Am Ch. J. 1896, 18. 840-841.)

Fe₂C₂. (Rammelsberg, C. C. 1847, 60.)

Iron molybdenum carbide, Fe₂C, Mo₂C. Sol. in hydracids; insol. in HNOs. (Wil-

liams, C. R. 1898, 127, 484.)

Iron tungsten carbide, 2Fe₃C, 3W₂C. Insol. in H2O and hydracids; sol. in HNO:

and H₂SO₄. (Wilhams, C. R. 1898, 127. 411.)

Slowly decomp on air. Not attacked by dil H.SO., HNO, or HCl+Aq. Conc HNOs. Cl₂+Aq, or Br₂+Aq decomp, easily. Sol, in alcoholic solution of KOH or NaOH with subsequent decomp. Sol. in alcohol, ether, benzene, mineral oils, etc. (Mond and Lan-

ger, Chem. Soc. 59, 1090.) Fe₁(C(1)₇. Decomp on arr Not attacked by H_SO₄ or HCl+Aq. Sol in alcoholic potash. Very much less sol, in organic solvents than Fe(CO), (Mond and Langer.)

Ferrous chloride, FcCl2.

Deliquescent. Easily sol. in H₂O with evolution of heat, or in alcohol. Insol, in ether, (Jahn.) Sol in 2 pts II-O at 18.75°, (Abl.)

Sol in 1 pt. strong alcohol. (Wenzel.)

Sp. gr of FeCl2 = Aq at 15.5°.

Div. Bt. Of A CO12 - 224 at a solo 1						
Sp gr	7. FeCts	°c FeCl ₂ , 4H ₂ O				
1 05	5 40	8 45				
1 06	6 43	10.09				
1 07	7 47	11.69 13 29				
1 08	8 48	13.20				
1 00	9 49	14 86				
1 10	10 47	16 41				
1 10	10 47	17 86				
1 11	11 45 12 42	10 10				
1 12	13 37	19 46 20 96				
1 13	10 07	20 90				
1.14	14 31	22 41 23 87				
1.15	15 24	28 87				
1.16	16.15	25 31				
1 17	17 05	26 78				
1 18	17 94	28 13				
1.15 1.16 1.17 1.18 1.19	14 31 15 24 16 15 17 05 17 94 18 88	29 51 30 85				
1.20		30 85				
1 21	20 50	32 14				
1 22 1 23	20 50 21 39 22 24	33 53				
1 23	22 24	34 84				
1 24	23 05	36 11				
1 25	23 86	37 38				
1 25 1.26	24 68	38 67				
1.27	25 44	39 87				
1.28	26 19	41.04 42.29				
1 29	26 98 27 75 28 49	42 29				
1 30	27 75	43.49				
1 31	28 49	44 65				
1.32	29 23	45 81				
1 33	29 96	46 94				
1 34	30 68	48 08				
1 35	31 39	49.18				
1 36	32.10	50 30				
1 37	32.79	51 39				
1 38	33.47	52 46				
1 39	34.14	53 50				
1 40	34 80	54 55				
1.41	35 46	55 57				
1.42	36 09	56 56				
1.43	36 73	57 55				
1.44	37 33	58 51				

(Dunn, J. Soc. Chem. Ind. 1902, 21. 390.)

Insol m liquid HF. (Franklin, Z. anorg. 1905, 46. 2)
Sol in acetone; insol. in methylal (Eidmann, C. C. 1899, II. 1014)
Sol m acetone (Naumann, B. 1904, 37.

Sl. sol in methyl acetate. (Naumann, B. 1909, 42, 3790)

Sol, in ethyl acetate. (Naumann, B. 1910, 43, 314) Insol in ethyl acetate (Naumann, B.

1904, 37. 3601.)
Yellow modification is sol. in benzonitrile.
(Naumann, B 1914, 47. 1369.)

Mol. weight determined in pyridine. (Werner, Z. anorg. 1897, 15, 21.)

+2H₂O. (Jonas)

+4H₂O. Deliquescent. Easily sol. in alcohol Sol. in 0.68 pt. cold H₂O. (Reimann, Mag Pharm. 17. 215)

Mag Pharm. 17. 215)
Sat. aq. solution contains at
16° 18° 25° 28° 43°

40 5 40 9 41.0 42 5 44 4% FeCl₂, 50° 53° 72° 89° 96° 118° 45 0 45.9 49 2 51 3 51 0 51 7% FeCl₂. (Étard, A. ch. 1894, (7) 2. 537.)

100 g. FeCl₂, 4H₂O+Aq contain 17 54 g. Fe at 22.8°; 18 59 g at 43.2° (Boecke, N. Jahrb. Min 1911, I, 61)

More sol. in water containing NO than in pure H₂O. (Gay, Bull. Soc (2) 44, 175.) Sol in hot HCl+Aq. (Subatier, Bull. Soc. 1895, (3) 13, 599.) Sabater could not obtain FeCl+6H₂O of

Lescour]
Ferroferric chloride, Fe₃Cl₈+18H₂O.

Deliquescent. (Lefort, J. Pharm. (4) 10. S5.)

Ferric chloride, Fe₂Cl₄ or FeCl₃ Very deliquescent, and sol. in H₂O with evolution of great heat

100 mols. H₂O dissolve mols. anhydrous Fe₂Cl₂ at t°.

66 29 20 80 29.20 70 29.42 100 29.75	t°	Mols. FesCis	t°	Mals FegCls
75 28.92	70	29 42	100	29 75

(Roozeboom, Z. phys Ch. 10. 477.)

See also hydrated salts below Solution in H₂O is decomp, into colloidal Fe₂O₂, xH₂O and HCl, upon heating if conc, and on simple standing if dil.

Krecke (J. pr. (2) 3. 286) gives the following table.

C FesCls in solution	Temp. at v	rhich Graham's rdrate is formed	Temp at which Saint Gilles' colloidal by- drate is formed	Temp at which overhiorales are formed	Temp at which Fe ₂ O ₂ is formed
32 16 8 4 2 1 0 5 0 25 0 125 0.0625	100-130° 100-120 100-110 90-100 87 83 75 64 54 36	Fe ₂ Cl ₄ reformed on cooling Fe ₂ Cl ₆ not reformed on cooling.	 100–130° 21 21 22	100°+ " 90 87	140° 120 110

Sn or of Fo-Cl. + Ac

op gr. oi re₂Cl₀+Aq.								
Fe ₂ Cl ₄	Sp gr at 48°	Sp gr at 9.7°	Sp gr. at 146°	Sp gr. at 19 7°				
40 61 41.00 36 95 33 25 24.60 22.54 16.79 10.45 4.65 2 70	1 5609 1.4413 1.3381 1.2351 1.2140 1 1534 1 0939	1.5575 1.4387 1.3847 1.3359 1.2334 1.2129 1.1521 1.0930	1 5540 1.4361 1 3824 1 3339 1.2318 1 2107 1 1507 1.0918 1 0382 1 0221	1.5497 1 4335 1 3800 1.3317 1 2298 1 2090 1 1491 1 0901				

(Schult, from Gerlach, Z. anal. 27. 278.)

Sp. gr. of Fe₂Cl₄+Aq increases or diminishes between 8° and 24° for a decrease or increase of temp. of 1° by the following amts.

~ Fe ₂ Cl ₆	Curr	° FerCli	Corr
50-60	0 0008	30-39	0.0005
45-49	0 0007	20-29	0.0004
40-44	0 0006	10-19	0.0003

(Hager, l. c.)

438				IR	LORIDA	4	_		
Sp gr of Fe ₂ Cl ₂ +Aq at 17.5°.					Sı	dubility of	Fe ₂ Cl ₆ ir	HCl+Aq.	
1	Sp gr	17,71	Sp gi		op ki	,	Sit solution per-190 m mols HCI	mols LeCT	Solid phase *
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1 0073 1.0146 1 0219 1 0292 1 0292 1 0392 1 0493 1 0587 1 0661 1 0734 1 0734 1 0804 1 1034 1 1215 1 1215 1 1278 1 1378 1 1378 1 1542 1 1542 1 1542 1 1542 1 1542 1 1542 1 1542	23 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38 39 40	1 1614 1 1746 1 1818 1 1950 1 2052 1 2155 1 2258 1 2365 1 2365 1 268 1 2673 1 278 1 2883 1 2983 1 2983 1 2983 1 3093 1 3199 1 311 1 3411 1 3411 1 3622 or, (2) 5.	58 58 59 60	3870 3994 4118 4212 4367 4492 4617 4742 4867 5010 5153 5296 5439 5582	30 " " " " " " " " " " " " " " " " " " "	0 5 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 70 16 07 20 90 10 90 23 72 24 50 10 20 23 60 9 10 8 00 16 65 23 35 8 25 8 25 0 33 8 25 10 33 15 40 16 00 17 75	Fe ₃ Cl ₆ +12H ₂ O
Ferch: 1 2 3 4 5 6 7 8		of Fe ₂ C F _G Ck 21 22 23 24 25 26 27 28	Sp gr 1 191 1 202 1 212 1 223 1 234 1 245 1 268	t 17.5°. 11 42 43 44 45 46 47 48	1 428 1 441 1 454 1 469 1 481 1 494 1 507 1 520	-10 " " -12 5 -15 " -20 " "	18 05 0 19 46 20 48 20 25 22 14 0 21 30 0 7.50 15.30 20.56	23 40 7 40 10 37 20 54 21 56 16 69 6 98 9 65 6 56 4 90 7 08	
9 10 11 12 13 14 15 16 17 18 19	1 078 1 087 1 095 1 104 1 113 1 123 1 131 1 140 1 150 1 160 1 170 1 180	29 30 31 32 33 34 35 36 37 38 39 40	1 280 1 292 1 304 1 816 1 328 1 340 1 352 1 364 1 376 1 390 1 403 1 415	49 50 51 52 53 54 55 56 57 58 59 60	1 533 1.547 1.560 1.573 1 587 1 600 1 612 1 624 1 636 1.648 1 659 1 670	30 " " 25 " " 20 " "	0 4 25 0 0 2 .33 7 50 0 5 60 11 05 11.05	25 20 27.80 30 24 23 50 23 72 29 75 31 50 22.50 28 60 29 20 32 00	Fe ₂ Cl ₄ +7H ₂ O
	p. gr. of e		comm. 18	q at 20	-21°.	10	10.75 14 90 13.80 17 80	23.50 28.35 23.35 27.75	
FeiCi 60	Sp. gr.	Fe ₂ Cl ₁	Sp gr	FeeCla 70	Sp gr	0	17 80 18.05 19.50	27 75 23.40 25.93	
61 62 63 64	1.688 1.688 1.697 1.706	66 67 68 69	1.724 1 733 1.742 1 750	71 72 73 74	1.758 1.766 1.774 1.782 1.790				
	(Hager, l. c.)								

Substitute of Fe_Cb_ in InCl+ Aq.—Continued.	_							-
Solid place Part Color Part Color Part	Solubili	ty of Fe ₂ C	on HCl	+Aq.—Continued.		Sat solutio	n contant	
## 10 10 10 10 10 10 10	Sat solution contains ner 100 mols H ₂ ()				to per 100 mo		: 100 mols H ₂ O Solid p	
met. ICC	°د	Det 100 n		Solid phase		mols HCl	tools FeCh	
10		mols HCI	FcCl ₀		- 33			1
1	50	1 0 i		1	30	17 15	36 75	1
"" 10 00 38 60 0	11		39 95			31 20		1
" 10.62	44				- 11			
1 11 50	**		34 64			19 50	35 25	1
40		11 50						1
13. 40 87 48 8 10 10 11 13 10 13 10 10 12 13 13 10 13 10 10 12 13 13 13 10 13 10 10 10 13 10 10 10 10 10 13 10 10 10 10 10 10 10 10 10 10 10 10 10				l	- 11			
"" 15 70 37 60	40					31.65	44 80	
30				1			34.25	
" 17 20 34 00				1		34 23		Fe ₁ Cl ₆ +4H ₂ O
25	**					35 40	43 16	
" 7 50 29 75 Fe,Cl _k +6H ₂ O 10 27 50 32 75					15			
19 50 5 52 10 1 10 10 10 10 10 10 10 10 10 10 10 1	25		29 00	Fa-Cl -FEE O	10		32 75	.]
20			35 25	1.05019-1-01130	и	35 04	39 95	1
" 15 80	20	0		1	.0			
" 31 25 34 25 4 25 4 26 4 26 4 26 4 26 4 26 4 26				1	10			
" 10 40 29 32 " 32 65 35 .44 10 17 18 50 27 75 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 4 31 28 50 68 50 " 5 50 68	**		34 25	1	***	33 56	36 25	
10	15		28.35	i	20		32.76	
18 50 28 70		16 40		1	45			\
" 24. 50 32. 75 " 40 40 65 48 60 60 60 60 60 60 60 6	**				ii			1
" 26 00 82 10 " 27 00 50 80 Fe _C Cl _k anhydrous " 27 00 50 80 Fe _C Cl _k anhydrous " 27 00 50 80 Fe _C Cl _k anhydrous " 27 00 50 80 Fe _C Cl _k anhydrous " 27 00 50 80 Fe _C Cl _k anhydrous " 27 00 50 80 Fe _C Cl _k anhydrous " 27 00 50 80 Fe _C Cl _k anhydrous " 27 00 50 80 Fe _C Cl _k anhydrous " 27 00 50 80 Fe _C Cl _k anhydrous " 27 00 50 80 Fe _C Cl _k anhydrous " 27 00 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 Fe _C Cl _k anhydrous " 28 00 40 50 80 80 80 80 80 80 80 80 80 80 80 80 80		24.50				40 65	48 60	
	.0	24.12		.1	40		58 00	
## 27 60 5 80 50 50 55 0 0 58 0 0 58 0 0 58 0 0 ## 27 70 0 75 64 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10				**			Fe-Cl-
70			30 50		35	0		anhydrous
*** 0 75 50 00				,				1
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70	8 75)	30			
10 25 43 50	**		55 80		- 11		49.93	
" 3 75 87 25 "" 42 01 48 84 4	65		42 50					
"" 0					40			1
14 25 50 00	44		59 00		35			
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	41 40	1				11
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10 70	55 25		30	38 20		li
" 19.00 50,72 25.00 41 40 25		0	61 00	İ		35 55	47.30	
" 16,77 33,40 Fe,Cl _k +4H ₂ O " 35,74 52 d Fe,Cl _k +2H ₂ O 50,70 50,20								
" 0		19.00			25			
" 21. 24 49 33 1 10 88 62 87 48 4 20.04 52.50 4 35 4 36 38 37 46 8 38 35 4 4 4 0 7 8 39 00 4 36 30 88.70 4 36 30 88.70 4 10 70 88.00 4 36 30 88.70 4 10 70 88.00 4 36 30 88.70 4 12 70 8 30 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Fe ₂ Cl ₅ +4H ₂ O		35 74	45 24	1
" 21. 24 49 33 1 10 88 62 87 48 4 20.04 52.50 4 35 4 36 38 37 46 8 38 35 4 4 4 0 7 8 39 00 4 36 30 88.70 4 36 30 88.70 4 10 70 88.00 4 36 30 88.70 4 10 70 88.00 4 36 30 88.70 4 12 70 8 30 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					20			Fe ₂ Cl ₆ , 2HCl,
" 20.04 52.50								4H ₂ O
44 0 0 39 00	**			i i	- "	37 46	38.33]
" 14 80 38.70	44	0						
" 24 14 50 10								l i
40 13.40 37.45	"	24 14			W	34 60	38 11	11
33 15 70 37 00		13.40	37 45			37 92	35 32	11
" 29 20 42 70 —20 37.80 34.50 " 31 08 46.85 —" 34 10 34.84				[]		34 54		11
" 31 08 46.85 " 34 10 34.84	**			[]				
" 30 81 47 65 " 32.56 35 44 J		31 08	46.85			34 10	34.84	11
	-"	1 30 81	1 47 65	17	l	32.56	35 44	1)

				4
Solubili	ty of Fe ₂ C	le in HCl	+Aq —Continued.	-
10	Sat solution per 100 n		Solid plans	
_	mols RC1	mods FeCf;		ĺ
- 4 5	20 50 20 66	24 50 25 74	1	1
e	23.42	25 74 27 40		ı
6	29.10	24 73	1	ł
6	26 18	21.75	1	1
11	24 41 23 25	21 50 21 35	1	1
**	21 73	21.84		ı
ш	19 73	25.50		1
"	24 42	28 45	1	I
-10	28 20 20 48	27 04 20 54	1	1
11	24 90	18 94		l
"	28.75	20 31	1	ſ
"	31 42 28 25	28.53	Fe ₂ Cl ₆ , 2HCl,	
11	28 25 26 05	30.25 30.50	SH ₂ O	1
15	21 50	15 83	ļ	١.
-15	28 40	31.89	[ľ
-20	19 44 22 83	12 10		ı
**	25 20 25 20	11.63		1
11	27.20	11 31		ľ
"	31.08	11 51		ı
	34 13 33 93	12 90 81,77	'	١
- 11	30 08	32.76		ı
"	28 70	32 88	1	l
-10	12.01	11.99)	l
	19.78	14.02 16 20		
"	20.25	20 20		ĺ
11	17 73	20 70	1	ľ
-12.5	15 44 22 14	19 65 16.69		
-15	21 30	9 65	į į	١.
**	24 50	15 83	Fe ₂ Cl ₆ , 2HCl,	
-20	9 96	9 94	12H ₂ O	
"	13 32 16 90	8.57 7.35		١-
u	18.97	7.16	l l	
	20.56	7.08		
"				
"	23 40	7 20		
ii	23 40 24 85	9 88		
11	23 40			

(Roozeboom and Schreinemakers, Z. phys. Ch 1894, 15, 633.)

Solubility of Fe₂Cl₆+NH₄Cl. See NH₄Cl+Fe₂Cl₆ under NH₄Cl

Solubility of Fe₂Cl₆ in C₈Cl See C₈Cl+Fc₂Cl₆ under C₈Cl.

Pts by weight sol in 100 pts of solution Substance added KCI * LeCherom-KClaruns FeCh. n 25 34 97 28 13 44 24 45 13 23.18 18 16.54 ĩŝ 5 28 05 3 11.69 11.68 35 72 28 10 5 36 62 11 19 31 37 35 13 67 7 88 36 2 41 5 ä 42 03 7 54 46.5 51 69 52 Ŏ 5 155 83 89 0

Solubility of FeCla+KCl in H2O at 21°.

(Himrichsen and Sachsel, Z. phys. Ch. 1904, 50, 95.)

FeCl₂+NaCl. Solubility of FeCl₂+NaCl in H₂O at 21°,

Pts by weight sol in 100 Substance added pts of solution eCls grams | NaCl grams FeCi, NaC) 3 6 36.10 18 ã ŏ 24 27 9 10 3 6 2 5 25.40 8 45 20 5 5 26.40 5 25 7 2 1 5 38 15 3 90 9 0 1.0 43 38 2 45 10 8 0.5 46 75 2 11 10.8 ñ . 83 39

Himuchsen and Sachsel, Z. phys Ch 1904, 50, 94)

Solubility of FeCl, in NaCl+Ag at to.

arranding of a congress rate of part to o .								
Substan	Substance added							
FeCl:	NaCl	the solution						
40	20	15.2						
	1 20	15 2						
100	20	15 16						
60	20	16 2						
80		16 18						
100	20	16 2						
	30	17.7						
90	30	17.6						
110	30	17 67						
		23 5						
	20	23 9						
	30	25 4						
	30	25 5						
	20	23 8						
		24 0						
	20	24 47						
50	20	24 5						
	Substan FcCl ₁ 40 60 100 60 80	Substance added FeCh						

(Hinrichsen and Sachsel, Z phys Ch. 1904,

Difficultly sol. in AsBr₁. (Walden, Z. anong, 1992, 29, 374).

Attacked by liquid NO₂ in the presence of traces of mosture. (Frankland, Chem. Soc. 1991, 79, 1361).

Sol. in liquid SO₂ (Walden, B. 1899, 32, 2861).

Sol in alcohol ether, acetic ether (Cann. C. R. 102. 303), and acetone (Krug and M'Elnoy, J. anal. Ch. 6. 184).
Sl. sol. in ethylamune (Shinn, J. phys. Chem. 1907, 11. 538)
Sol in benzonitrile, (Naumann, B. 1914.

47, 1369)
Sol. in methyl acetate. (Naumann, B. 1974

1909, 42, 3790) Insol. in ethyl acetate. (Naumann, B. 1910, 43, 314)

1910, 43, 314)
1 g. FeCl₃ is sol. in 1.59 g. acetone at 18°.
Sp. gr of sat. solution 18°/4°=1.160. (Naumann, B. 1904, 37, 4333.)

Sol. in acetone and in methylal. (Eidmann, C. C. 1899, II. 1014.) Sol in quinoline. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

Z. anorg. 1906, 51. 236) Sl. sol. in CS₂ (Aretowski, Z. anorg. 1894 6. 257.)

Mol weight determined in pyridine (Werner, Z. anorg. 1897, 15. 22) Sublimed. Sol, in AsCl₃, POCl₃, SO₂Cl₂ and PBr₃; sl.

sol. in PCl₂. (Walden, Z. anorg. 1900, **25**. 214.)
The salts with different amts. of crystal H₂O have different solubilities. (Roozeboom. +4H₂O. Melts in crystal H₂O at 73.5°.

100 mols. H₂O dissoive mols. Fe₂Cl₆ from Fe₂Cl₆+4H₂O at t°.

ţ°	Mols. Fe ₁ Cl ₃	ţ°	Mola Fe ₂ Cl ₅	t°	Mols Fe ₂ Cl ₂
50	19 96	69	21 53	72 5	26 15
55	20 32	72 5	23 35	70	27 90
60	20 70	73 5	25 00	66	29.20

(Roozeboom, Z. phys. Ch. 10, 477.)

+5H2O. Correct formula for +6H2O salt

100 mols. H₂O dissolve mols. Fe₂Cl₄ from Fe₂Cl₅+5H₂O at t°.

t°	Mols Fe ₂ Cls	to.	Mols ForCla	t°	Mols Fe ₂ Cl ₆
12 20 27	12 87 13.95 14 85	30 35 50	15.12 15 64 17 50	55 56 55	19.15 20.00 20.32
		(D)	, ,		

(Roozeboom.)

Melts in crystal H₂O at 31° (Engel, C. R. 104. 1708); at 56° (Roozeboom). +6H₂O. Very deliquescent. Sol. in alcohol. Ether dissolves out Fe₂Cl₂. M.-pt. 18 31°. (Ordway.) Contains only 5H₂O. (Roozeboom.)

+7H₂O. Melts in crystal H₂O at 32.5°.

100 mols. H₂O dissolve mols. Fe₂Cl₄ from Fe₂Cl₆+7H₂O at t⁶.

t°	Mols FegCh	t _o	Mols Fe ₂ Cl ₄	t°	Mole Fe ₂ Cl ₄
$\frac{20}{27}$ 4	11.35 12 15	32 32 5	13 55 14 99	30 25	15.12 15.54

(Roozeboom)

+12H₂O. Less deliquescent than Fe₁Cl₆ or Fe₂Cl₆+5H₂O.

100 mols, H₂O dissolve mols, Fe₂Cl₄ from Fe₂Cl₄+12H₂O at t°.

t°	Mois Fe ₂ Cls	ŧ°	Mok FegCls	t°	Mols Fe ₂ Cl ₅
-55 -41 -27 0 10 20	2 75 2 81 2 98 4.13 4 54 5.10	30 35 36.5 37 36 36 30	5.93 6.78 7.93 8 33 9 29 10 45	27.4 20 10 8	11 20 12 15 12 83 13 70

(Roozeboom.)

Sol. in alcohol. Ether dissolves out Fe₂Cl₆. Melts in crystal H₂O at 37° (Roozeboom); at 35 5° (Ordway).

Ferric hydrogen chloride, FeCl₂, HCl+2H₂O. Decomp. by H₂O. (Sabatzer, Bull, Soc. (2)

More sol. in H₂O than FeCl₃. (Engel, C. R. 104, 1708.)

For solubility, see FeCl₃+HCl, under ferric chloride.

+6H₂O. (Roozeboom and Schreinemakers.)
For solubility, see FeCl₂+HCl, under ferric chloride.

Ferrous lithium chloride, FeCl₂, LaCl+3H₂O. (Chassevant, A ch. (6) 30, 17)

Ferric magnesium chloride, FeCl₂, MgCl₂+ H₂O.

Deliquescent. (Neumann, B. 18. 2890.)

Ferrous mercuric chloride, FeCl₂, HgCl₂+ 4H₂O.

Deliquescent, (v. Bonsdorff,)

Ferric nitrosyl chloride, FeCl₁, NOCl. Very deliquescent. (Weber, Pogg. 118. 477.)

Ferric phosphoric chloride, FeCl₂, PCl₃.

Decomp. by H₂O. (Baudrimont, A. ch. (4)

2. 15.)

| Iron (ferrous) potassium chloride, FeCl_{2s} | Iron (ferrous) fluoride, FeF_{2s} | 2KCl+2HrO, | Sl. sod. in HrO, insol. in all Sol in HrO (Berzehus) | Partly sol in hot HCl+Ac

Ferric potassium chloride, FeCl₅, 2KCl+ H₂O Alittle H₂O dissolves out FeCl₅. (Fritzsche

J pr. 18, 483)
Sol, in H₂O (Walden, Z. anorg 1894, 71, 332.)

Ferric rubidium chloride, FeCla, 3RbCl

Easily sol, in H₂O, Insol, in HCl+Aq. (Godefroy, Arch. Pharm. (3) 9, 343.) FeCl₃, 2RbCl+H₄O. Decomp by H₂O (Neumann, A. 244, 329.) Sol, in H₂O (Walden, Z. anorg. 1894, 7, 332.)

Ferric sulphur chloride, FcCl₃, SCl₄
Very sensitive toward heat and moisture (Ruft, B. 1904, 37, 4518.)

Ferric thallium chloride, FcCl₂, 3TlCl.

Decomp. by H₂O Can be crystallised from HCl+Aq. (Wohler, A, **144**, 250)

 $\begin{array}{lll} \mbox{Ferrous chloride ammonia, } 3\mbox{FeCl}_2, 2\mbox{NH}_4. \\ \mbox{Decomp. by H_2O.} & (\mbox{Rogstadus, J. pr. 86.} \\ 310.) \\ \mbox{FeCl}_2, 6\mbox{NH}_3 & \mbox{Loses } 4\mbox{NH}_9 \mbox{at } 100^{\circ} \end{array} \ (\mbox{Miller}, \label{eq:miller}$

Am Ch. J. 1895, 17, 577.) FeCl₂, 2NH₇. Decomp. in the air (Miller)

Ferric chlorde ammonia, FcCl₃, NH₃.
Slowly delquescent Sol. in II₂O with
evolution of heat. (Rose, Pogg, 24, 392.)
FcCl₃, 6NH₃, Not deliquescent, not sol,
in H₂O; sol. in HCl with decomp. (Muller,
Am, Ch. J. 1895, 47, 577)
Losses NII₄ to give FcCl₃, 5NII₃, and FcCl₃,
4NH.

Ferric chloride cyanhydric acid, FeCl₃, 2HCN. Deliquescent. (Klein, A. 74, 85.)

Ferrops chloride aitric oxide, FeCl₂, NO.
Sol. in H₄O without evolution of gas
(Thomas, C. R. 1895, 121, 204,
+2H₄O, Sol in cold H₄O without decomp.
(Thomas, C. R. 1895, 120, 448,)
2FeCl₂, NO. Very hydroseopic. (Thomas,
C. R. 1895, 121, 129.)
10FeCl₂, NO. Very hygroseopic (Thomas

Ferric chloride nitric oxide, Fe₂Cl₄, NO.

Very hygroscopic. Loses NO when exposed to the air.

C. R. 1895, 121, 128.)

2Fc₂Cl₆, NO. Very hygroscopic. In contact with H₂O gives off NO. (Thomas, C R. 1895, **120.** 447.)

Iron (terrous) fluoride, FeF₂.

Sl sol, in H₁O, msol, in alcohol and ether,
Pattly sol in hot HCl+Aq; slowly sol, in
cold, castly in hot HNO₁; decomp. by H₂SO₄.
(Poulene, C R 115, 941)
+-814.0 Difficultly sol, in H₂O; more

casily if it contains HF. (Berzelius.)

Ferroferric fluoride, FeF₂, FeF₂+7H₂O.

Sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, 22, 268.)

Ferric fluoride, FeFa

Sl. sol, m H₂O; msol, m alcohol or ether.
Sl. attacked by HNO₃, HCl, or H₂SO₄+Aq,
(Poulenc, C R 115, 941.)
+4¹₂H₄O. More sol, in hot than cold H₂O,
Insol. in alcohol. (Schemer-Kestner, A ch,
(3) 68, 472.

Ferric nickel fluoride, FeF₃, N₁F₂+7H₂O, Sl. sol. in dil. HF+Aq. (Weinland, Z. anorg 1899, 22, 268)

Ferrous potassium fluoride, FeF₂, KF+2H₂O. (Wagner, B. 19. 896.) FeF₂, 2KF Sl. sol. in H₂O. (Berzelius.)

Ferric potassium fluoride, FcF₃, 2KF.

Somewhat sol. m H₂O, especially if hot.
(Berzelius)

+H₂O. (Christensen, J pr (2) 35. 164.)
FcF₃, 3KF. Properties as above. (Berzelius)

Ferric sodium fluoride, FeF₃, 2NaF+3₂H₂O. Rather easily sol. in H₂O. Solution decomp. on heating. Very sol. in FeCl₃+Aq. (Nickles, J. Pharm. (4) 10. 14.)

FeF₁, 3NaF. (Wagner, B. 19. 896.)

Ferric thallous fluoride, 2FeF₁, 3TiF.

Sol. in hot H₂O, less sol in cold. Sl.
sol. in HF. (Ephraim, Z. anorg. 1909, 61.
339.)

Ferrous titanium fluoride. See Fluotitanate, ferrous.

Ferric zinc fluoride, FeF₃, ZnF₃+7H₂O SI sol. in ddl. HF+Aq. (Weinland, Z. anorg, 1899, 22, 269.)

Ferrous hydroxide, FeO₂H₂. Sol. in 150,000 pts. H₂O. (Bineau, C. R. 41. 509.)

41.509.)
Insol. in KOH, or NaOH+Aq. Sol. in NH₄ salts+Aq. Sl. sol. in NaC₂H₄O₂+Aq. (Mercer.)

Not pptd. in presence of Na citrate. Insol. in boiling cane sugar+Aq, but al. sol. when KOH has been added. Not pptd. in presence of much H₂C₃H₄O₈. (Rose)

Solubility in glycerine+Ag containing about 60° by vol. of glycerine

100 cem, of the solution contain 1.0 g. FeO. (Mullet, Z. anorg. 1905, 43, 322.)

Iron (ferric) hydroxides, Fe₂O₂, xH₂O,

Many indefinite compounds of Fe₂O₂ and HA) are known, and uncertainty exists as to then composition According to van Bemmelen (R. t. c. 7. 106)

there are probably no true definite compounds of Fe₂O₁ and H₂O. According to Tommasi (B. 12, 1924, 2334). there are two series of Fe hydroxides, a, red

hydroxides, and \$\beta\$, yellow hydroxides. a Hudrovides. Fe₂O₄H₆ (unstable), Fe₃O₃. $2H_2O$ (loses H_2O at 50°), and Fe_2O_3 , H_2O (loses

H:O at 92° Sol. m dil. acids and in Fe₂Cl₆+Aq, and

optd. from the latter solution by NacSO4, or Π₂SO₄+Aq. β Hydroxides. Fe₂O₆H₄ (stable below 70

Fe₂O₃, 2H₂O (loses H₂O at 105°), Fe₂O₃, H₂O

(loses H₂O at 150°). SI sol. in acids, and insol. in Fe₂Cl₆+Aq (Tommasi.)

The following more or less uncertain data are given. 2Fe₂O₃, H₂O. Sol in HCl+Aq Very sl sol, in HNO₃+Aq (Davies, Chem. Soc H2O. Sol in HCl+Aq Very sl

(2) 4. 69

Min. Turgite. Fe₂O₃, H₂O. Insol. in cold acids, difficultly sol. in warm HCl and H₂SO₄+Aq, and especially in warm HNOs+Aq (Schiff, A 114, 199)

Min Gothate. 2Fc2O3, 3H2O. Sl. sol in tartarie, , citric or acetic acids, but easily sol, in HCl+Aq.

(Wittstein.) Scarcely attacked by conc. HNOs, or HCl-

Aq. Sol. in acetic acid or dil. HNO3, or HCl+ Aq, from which solution it is pptd. by trace of alkali salts (St. Gilles.) Min. Lamonate

acids. (Fresenius)

3Fe₂O₃, 5H₂O. (Muck.) Fe₂O_{3, 2}H₂O. Easily sol. in HCl+Aq.

Min. Xanthosiderite

Fe₂O₃, 3H₂O. Sl. sol. in acetic acid of 1 03 sp. gr., but easily sol. if of 1.076 sp. gr. Sol in mineral acids (Limberger, J B. 1853, 70.) Pptd. Fe_2O_8 , $xH_2O = Fe_2O_6H_4(?)$. Insol in H₂O, or in solutions of the alkalies or NH₄ salts. When recently pptd. is easily sol. in

Sl sol, m NH,OH, and NH, salts+Ao (Odling.) Apparently insol, in NH₄Cl, or (NH₄)₂CO₂

+Aq. (Brett. 1837.) Sl. sol. in conc., but insol. in dil KOH+Aq.

(Chodnew, J. pr. 28, 221.) Sl. sol. in very conc. KOH+Aq free from CO2. (Völcker, A. 59. 34.)

Not at all sol, in pure conc. KOH+Aq, solubility noticed by previous observers being caused by the presence of silicic acid. (Sandrock.)

Sl. sol in cone, alkali carbonates + Aq. When freshly pptd, it is not acted upon by cone, K₂CO₂+Aq. (Grotthaus.)

Readily sol in cone (NII4)2CO2+Aq, but pptd. by addition of H_A().

Sol. in excess of (NH₄)₂CO₂+Aq when pptd, by that reagent. (Wohler Sol. in solutions of the alkali bicarbonates.

(Berzehus) Sol. in aqueous solutions of water-glass.

(Ordway) Immediately dissolved by H₂SO₂+Aq. Sol. in NII4F+Aq. (Helmholt, Z. anorg.

3. 121.) Sol in cone. Al₂(SO₄)₂+Aq. (Schneider,

B 23. 1352) Sl sol in a solution of MgCO₂(?). (Bischof).

Insol. in ethylamine, or amylamine+Aq. (Wurtz, A. ch (3) 30. 472.)

Sol in boiling solution of Bi(NOs)s, with pptn of Bi₂O₃, (Persoz) Sol in Cr₂Cl₄+Aq; after 3 months 15 mols. Fc2O6ILs were dissolved by 1 mol. Cr2Cls.

(Béchamp, A ch. (3) 57. 296.) Insol. in fumaric acid, even when freshly

When recently pptd, it is easily sol. in KHC.H.O.+Aq, but after drying it is difficultly sol therein

When moist easily sol. in H2C4H4O4+Aq, but after drying is scarcely sol, therein when cold, and only sl. sol. when hot. (Werther.) Easily sol, in acetic, citric, and other acids.

(Wittstein.) Solubility in glycerine+Aq containing about 60% by vol. of glycerine. 100 ccm, of the solution contain 0.8 g,

Fe₂O₃. (Müller, Z. anorg. 1905, 43, 322.) Easily sol. in aqueous solution of sucrates of Ca, Ba, Sr, K, Na. (Hunton, 1837.)

Unacted upon by cane sugar+Aq. (Gladstone.)

Sl. sol in cane sugar + Aq, from which it is pptd. by (NH4)2S+Aq, but not by NH4OH, or K4FeC6N6+Aq (Peschier.)

Solubility of $Fe_2O_0H_0$ in sugar solutions. 11. of sugar solution of given strength dissolves mg of Fe₂O₆H₆

% Sugar 10 30	Mg Fe ₂ O ₆ H ₆			
	st 17 4°	at 43°	at 75°	
	3 4 2 3 2 3	3 4 2 7 1 9	6.1 3 8 3.4	

(Stolle, Z. Ver. Zuckermd, 1900, 50, 340.) Not pptd. from solutions by alkalies or

alkali carbonates in presence of many organic substances, as tartaric acid, sugar, etc.

Not pptd. by NH₄OH from solutions con-taining Na₄P₂O₇. (Rose, Pogg. 76. 19.) Not pptd. by NH₄OH in presence of Na citrate. (Spiller.)

Iron (terrous) potassium chloride, FeCl2, Iron (ferrous) fluoride, FeF2. 2KC1+2H₂O₂ Sol in H₂O (Berzelius.)

Ferric potassium chloride, FeCl., 2KCl+ H₂O.

A little H₂O dissolves out FeCl₂. (Fritzsche J. pl 18, 483.) Sol. in H₂O (Walden, Z anorg, 1894, 71. 332.)

Ferric rubidium chloride, FeCl₂, 3RbCl. Easily sol, in H₂O. Insol, in HCl+Aq

(Godelfroy, Arch. Pharm. (3) 9. 343) FeCl₃, 2RbCl+H₂O. Decomp. b Decomp. by II20 (Neumann, A. 244. 329.) Sol. in H.O. (Walden, Z. anorg, 1894, 7,

Ferric sulphur chloride, FeCl₃, SCl₄. Very sensitive toward heat and moisture. (Ruff, B. 1904, 37, 4518.)

Ferric thallium chloride, FeCl2, 3TICL Decomp, by HaO. Can be crystallised from HCl+Aq (Wohler, A. 144, 250.)

Ferrous chloride ammonia, 3FcCl., 2NHa, Decomp. by H₂O. (Rogstadius, J pr 86. 310.)

FeCl₂, 6NH₃. Loses 4NH₂ at 100°. (Miller, Am. Ch. J 1895, 17. 577.) FeCl₂, 2NH₃. Decomp in the air (Miller).

Ferric chloride ammonia, FeCla, NHa Slowly deliquescent. Sol. in H₀O with

evolution of heat. (Rose, Pogg, 24. 302.) FeCl₃, 6NH₄. Not deliquescent; not sol. FeCl₃, 6NH₃. Not deliquescent; not sol. in H₂O; sol. in HCl with decomp (Miller, Am Ch. J. 1895, 17. 577.) Loses NH2 to give FeCl2, 5NH2, and FeCl2. 4NH_s.

Ferric chloride cyanhydric acid, FeCl₃, 2HCN. Deliquescent. (Klein, A. 74, 85.)

Ferrous chloride nitric oxide, FeCl₂, NO. Sol, in HoO without evolution of gas Sol. in fig.0 without evolution of gas (Thomas, C. R. 1885, 121, 204.) +2H₂O. Sol. in cold H₂O without decomp. (Thomas, C. R. 1895, 120, 448.) 2FeCl₅, NO. Very hydroscopic. (Thomas, C. R. 1895, 121, 129.) 10FeCl₅, NO. Very hydroscopic. (Thomas,

C. R. 1895, 121, 128.)

Ferric chloride nitric oxide, Fe₂Cl₅, NO. Very hygroscopic Loses NO when exposed to the air.

Pro.Cl. NO. Very hygroscopic. In con-

2Fe₂Cl₄, NO. Very hygroscopic. In contact with H₂O gives off NO. (Thomas, C. R. 1895, 120, 447.)

Sl. sol, in H2O; insol, in alcohol and ether. Partly sol in hot HCl+Aq; slowly sol, in cold, easily in hot HNOs; decomp. by H.SO. (Poulenc, C. R. 115. 941.) +SII; O Difficultly sol. in H₂O; more easily if it contains HF. (Berzelius)

Ferroferric fluoride, FeF2, FeF2+7H2O. Sol, in dil HF+Aq. (Weinland, Z anorg, 1899, 22, 268.)

Ferric fluoride, FeF2.

SI. sol. in H₂O; insol. in alcohol or ether. SI attacked by HNO₃, HCl, or H₂SO₄+Aq. (Poulenc, C R 115. 94I.) +412H2O. More sol in hot than cold H2O. Insol in alcohol, (Scheurer-Kestner, A, ch. (3) 68, 472.)

Ferric nickel fluoride, FeF2, NiF2+7H2O. Sl. sol. in dil. HF+Ao. (Weinland, Z. anorg, 1899, 22. 268.)

Ferrous potassium fluoride, FeF2, KF+2H2O. (Wagner, B. 19, 896.) FeF, 2KF. Sl. sol. in H₂O (Berzelius.)

Ferric potassium fluoride, FeFs, 2KF. Somewhat sol. in H₂O, especially if hot. (Berzelius.) +H₂O. (Christensen, J pr (2) 35, 164.) FeFs, 3KF. Properties as above. (Ber-

Ferric sodium fluoride, FeF, 2NaF+1/H,O. Rather easily sol, in H₂O. Solution de-comp, on heating Very sol, in FeCl₃+Aq. (Nicklès, J. Pharm, (4) 10, 14) FeF, 3NaF. (Wagner, B. 19, 896.)

Ferric thallous fluoride, 2FeF2, 3TlF. Sol, in hot H2O, less sol, in cold, sol. in HF. (Ephraim, Z. anorg, 1909, 61.

Ferrous tstanium fluoride. See Fluotitanate, ferrous,

zelius.)

Ferric zinc fluoride, FeF2, ZnF2+7H2O. Sl. sol. in dil. HF+Ac. (Weinland, Z. anorg. 1899, 22, 269.)

Ferrous hydroxide, FeO.H.

Sol. in 150,000 pts. H₂O. (Bineau, C. R. 41. 509.) Insol. in KOH, or NaOH+Aq. Sol. in NH₄ salts+Aq. Sl. sol. in NaC₂H₂O₂+Aq.

(Mercer.) Not pptd. in presence of Na citrate. Insol. in boiling cane sugar+Aq, but sl. sol. when KOH has been added. Not pptd. in presence of much H₂C₄H₄O₆. (Rose.)

Solubility in glycerine+Aq containing about 60% by vol. of glycerine. 100 ccm, of the solution contain 1.0 g, FeO. (Muller, Z. anorg, 1905, 43, 322.)

Iron (ferric) hydroxides, Fe₂O₂, rH₂O

Many indefinite compounds of Fe₂O₃ and H₂O are known, and uncertainty exists as to their composition.

According to van Bemmelen (R. t. e 7, 106) there are probably no true definite compounds

of Fe₂O₂ and H₂O, According to Tommasi (B. 12, 1924, 2334). there are two series of Fe hydroxides, a, red

hydroxides, and β, yellow hydroxides α Hydroxides Fe₂O₆H₆ (unstable), Fe₂O₂, 2H₂O (loses H₂O at 50°), and Fe₂O₃, H₂O (loses H₂O at 92°)

Sol in dil. acids and in Fe₂Cl₄+Aq, and optd from the latter solution by Na₂SO₄, or

H₂SO₄+Aq. β Hydroxides. Fe₂O₄H₆ (stable below 70) Fe₂O₃, 2H₂O (loses H₂O at 105°), Fe₂O₃, H₂O (loses H2O at 150°).

SI sol. in acids, and insol. in Fe₂Cl₄+Aq. (Tomması.)

The following more or less uncertain data are given.

2Fe₂O₃, H₂O. Sol. in HCl+Aq. Very sl. sol. in HNO₃+Aq (Davies, Chem. Soc

(2) 4. 69.)
Min. Turgite.

Fe₂O₃, H₂O. Insol. in cold acids, difficultly sol. in warm HCl and H2SO4+Aq, and especially in warm HNOs+Aq (Schiff, A. 114. 199.) Min Gothite

2Fe₂O₃, 3H₂O Sl. sol in tartaric, citric, or acetic acids, but easily sol, in HCl+Aq. (Wittstein.)

Scarcely attacked by cone HNO3, or HCl+ Aq. Sol. in acetic acid or dil. HNO3, or HCl+ Aq, from which solution it is pptd. by trace of alkali salts (St Galles.)

Min. Lamonite.

3Fc₂O₃, 5H₂O. (Muck.) Fe₂O₃, 2H₂O. Easily sol. in HCl+Aq. Min. Xanthosiderite

Fe₂O₈, 3H₂O Sl. sol in acetic acid of 1.03 sp. gr., but easily sol. if of 1.076 sp. gr Sol in mineral acids. (Limberger, J. B. 1853, 70.)

Pptd. Fe_2O_8 , $xH_2O = Fe_2O_8H_6(?)$. Insol. in H₂O, or in solutions of the alkalies or NH₄ salts. When recently pptd. is easily sol. in acids (Fresenius)

Sl. sol. in NH₂OH, and NH₂ salts+Aq. (Odling) Apparently insol. in NH4Cl, or (NH4)2CO3

+Aq. (Brett, 1837.) Sl. sol, in cone, but insol, in dil. KOH+Aq (Chodnew, J. pr. 28, 221.)

Sl. sol, in very conc. KOH+Aq free from CO₂ (Völcker, A. 59. 34.) Not at all sol. in pure conc. KOH+Aq,

solubility noticed by previous observers being caused by the presence of silicic acid. (Sandrock.)

Sl. sol, in cone alkalı carbonates + Au. When freshly pptd., it is not acted upon by

conc. K2CO2+.1q. (Grotthaus. Readily sol in cone (NH₄)₂CO₃+Aq, but pptd by addition of H₂O

Sol. in excess of (NH₄)₂CO₄+Aq when pptd by that reagent (Wohler.) Sol, in solutions of the alkali bicarbonates. (Berzelius.)

Sol. in aqueous solutions of water-glass. (Ordway)

Immediately dissolved by H_2SO_0+Aq . Sol. m NII F+Aq. (Helmholt, Z anorg.

Sol in cone. Al₂(SO₄)₃+Aq (Schneider, B 23, 1352)

Sl. sol m a solution of MgCO3(?). (Bischof).

Insol. in ethylamine, or amylamine+Ag. (Wurtz, A. ch. (3) 30, 472.) Sol in boiling solution of Bi(NOs), with

pptn. of Bi₂O₁ (Persoz.) Sol. in Cr₂Cl₆+Aq; after 3 months 15 mols. Fe₂O₄H₄ were dissolved by 1 mol. Cr₂Cl₄.

(Béchamp, A ch (3) 57, 296) Insol, in fumaric acid, even when freshly

When recently pptd, it is easily sol, in KHC, H,O6+Aq, but after drying it is difficultly sol, therein.

When moist easily sol in H2C4H4O4+Aq, but after drying is scarcely sol, therein when cold, and only sl. sol. when hot. (Werther.) Easily sol, in acetic, citric, and other acids.

(Wittstein.) Solubility in glycerine+Aq containing about 60% by vol, of glycerine.

100 ccm. of the solution contain 0.8 g. Fe₂O₃. (Muller, Z. anorg. 1905, **43**. 322.) Easily sol. in aqueous solution of sucrates of Ca, Ba, Sr, K, Na. (Hunton, 1837.)

Unacted upon by cane sugar + Aq. (Glad-Sl. sol. in cane sugar + Aq, from which it is pptd by (NH.)₂S+Aq, but not by NH₂OH, or K₄FeC₆N₆+Aq (Peschier.)

Solubility of Fe₂O₆H₆ in sugar solutions 1 l of sugar solution of given strength dissolves ing. of Fe2O6H6

C Sugar	1	Mg Fe,OtHt	
д гладом	ut 17 10	at 15°	nt 75°
10 30	3 4 2 3	3 4 2 7	6.1 3.8
50	2.3	1 9	3 4

(Stolle, Z. Ver. Zuckerind 1900, 50, 340.)

Not pptd. from solutions by alkalies or alkalı carbonates in presence of many organic substances, as tartaric acid, sugar, etc.

Not pptd, by NH OH from solutions containing Na₄P₂O₇. (Rose, Pogg. **76**. 19.) Not pptd. by NH₄OH in presence of Na citrate. (Spiller)

Soluble (a) By dualysis Solutions containing 1' a can be concentrated somewhat, whereupon they gelatimise. They also gelatimise by cold, or addition of traces of H₂SO₄, alkalies, alkalı carbonates or sulphates, or neutral salts, not, however, by HCl, HNO5,

alcohol, or sugar (Graham, A. 121, 16.) When a dil solution of a solid organic acid. or an alkalı, or salt is added to a dialysed solution of Fe₂O₈H₆, a coagulum sol, in H₂O is formed, but if the solutions are conc. the

separating coagulum is no longer sol, in H2O (Athenstudt, C. C. 1871, 822.)

(b) Pean St Gilles' hydroxide, or nicta-iron hydroxide. Sol. in H₂O Pptd from solution

by traces of H_4SO_4 , HCl, HNO_3+Aq , and alkalies; the ppt. is insol in cold acids, but sol. in pure $H_2()$ (Pean St Gilles, Λ . ch. (3) See also table by Krecke in the article on ferric chloride.

Iron (Ferroferric) hydroxide, Fe₃O₄, H₂O (?).

Sol in acids Fe₂O₄, 4H₂O (Lefort.)

Ferrous iodide, l'el2.

Very deliquescent. Sol, in H₂O. Solution decomp on evaporating.

+4H₂O. Very deliquescent, sl. sol. in H₂O; sol. in ether. (Jackson, Am. Ch. J. 1900, 24, 19) +5H₂O. Deliquescent Sol in alcohol.

Sol in sugar + Aq, and solution is much more stable than aqueous solution. Easily sol. in givcerme Insol in methylene iodide. (Retgers, Z.

anorg. 3, 343.) +6H₂O, and +9H₂O. Very sol : pptd from cooled aq. solution. (Volkmann, C. C. 1894, II. 611.)

Ferric iodide, FeI,

Has not been isolated. Solution of I in | Fel₂+Aq in the molecular ratio of I : Fel₂ probably contains Fel. Very sol, in liquid NH, (Franklin, Am. Ch. J. 1898, 20, 828)

Ferrous mercuric iodide, FeI2, 2HgI2+6H2O. As the corresponding Mg salt. (Duboin,

C. R. 1907, 145, 714.) Ferrous iodide ammonia, FeI2, 6NH2.

Decomp. by H₂O. (Jackson, Am. Ch. J. 1900, 24, 27,) Ferrous mercuric iodide.

Very deliquescent. Decomp. by H₂O; sol. in HC2H2O2 or alcohol.

Iron molybdenide, FeMo2.

Attacked by HCl+Aq with difficultly Sol. in hot cone H₂SO₄. (Steinacker.)

Iron nitride.

Easily decomp. by H₂O when finely pow-dered. (Rossel, C. R. 1895, **121**, 942) Fe₂N. Easily sol. in HNO₃, HCl, or E₂SO₄ +Aq Very slowly decomp, by H2O. (Stahl-

schmidt, Pogg 125, 37)
Sol in HCl with decomp.; decomp. by steam and by H₄S at 200°. (Fowler, C. N.

1894, 68. 152)
Fe₄N₂ Probably the same as the above compound (Rogstadius, J. pr. 86, 307.)

Iron nitrososulphantimonate, Fe₄S(NO)₆Sh₆S.

(Low, C. C 1865, 948.) Does not exist, but was impure sodium forrotet anitrososulphide. (Pawel, B. 15, 2600)

Iron nitrososulphides.

See Perrotetranitrososulphydric acid and Ferroheptunitrososulphide, ammonium. Fe₂S₄H₂(NO)₄ (Roussin, C. R 46. 224) Fr.S.(NO) ++2H2O. (Porczinsky, A. 125,

302.) Fe₀S₄(NO)₁₂+4H₂O. (Rosenberg, B. 3. 312.)

The compound to which the above formula were given was impure, according to Pawel (B. 12. 1407 and 1919; 15. 2600), and contained more or less Na or NH4. Pawel considers the substance as NH₄ salt of ferroheptanitroso-sulphydric acid, which see.

Fe₂S₂N₂O₄+114H₂O. Sol. in H₂O. alcohol. other, CHCi2, acetone and ethyl acetate, Insol, in benzene and light petroleum. (Marie, C. R. 1896, 122, 138.)

Iron sodium nitrososulphide, 3Na2S, Fe1S2. (Roussin)

Na₈Fe₈S₂(NO)₁₈. (Rosenberg.) Correct formula is Na₂S₂(NO)₄Fe₂, sodium ferrotetranitrososulphide.

Iron nitrososulphocarbonate, Fe₄S(NO)₆CS₂+ 3H₂O. (Low, C. C. 1865, 948.)

Correct formula is NaSa(NO), Fe4 +2H,O. sodium ferrohentanitrososulphide B. 15, 2600.)

Ferrous oxide, FeO. Insol in H₂O. Sol in acids

Easily sol in HCl, and HNO4+Aq; nearly insol, in H2SO4, even when heated. (Tissandier, C. R. 74, 531.)

Ferric oxide, Fe-Oa.

Attacked by acids with difficulty, the more

so the higher it has been heated 'HCl+Aq is the best solvent, in which it is more quickly sol. by long digestion at a gentle heat than by boiling (Fresenius.) Most easily sol, in 16 pts. of a mixture of

8 pts. H2SO, and 3 pts. H2O. (Mitscherlich, J. pr. 81, 110.)

Solubility of Fe ₂ O ₃ in HF+Aq at 25°.				
•	Time	G Fe ₂ O ₂ in '10 cem of the solution		
N-IIF	4½ hrs. 21¾ " 45¾ "	0 1581 0 2235 0 2279		
0.5N-HF	23/4 " 81/4 " 231/4 " 561/4 "	0 0579 0 0884 0 1045 0 1162		
0.25N-HF	2½ " 8¼ " 24¾ " 142½ "	0 0180 0 0345 0 0475 0 0534		
equal amts. N-HF+N-HCl	23/4 " 81/4 " 233/4 " 96 " 264 "	0.1011 0.1611 0.1976 0.2223 0.2297		
(Deussen, Z. anorg. 1905, 44, 414)				

Solubility of Fe ₂ O ₃ in HCl+Aq at 25°.					
	Time	G Fe ₂ O ₃ m 10 ccm of the solution			
N-HCl	4¾ hrs. 21½ " 45½ "	0.0409 0.1230 0.2125			
0.5N-HCl	234 " 8½ " 23½ " 56½ "	0 0126 0 0188 0.0382 0.0672			
0.25N-HCl	214 " 814 "	0 0040 0.0054			

1421

0.0306

0.0444

0 0640 0.0743 0.0757

0.0766

(Deussen, I. c.)

equal vol.

N-HCl+N-NaF

Solubility of Fe₂O₂ in N-oxalic acid at 25°.

Time	G Fe ₂ O ₂ in 10 ccm. o	
1¾ hrs.	0.0310	
6¾ "	0 0790	
22 "	0.1960	
94 "	0 2326	

(Deussen.)

Absolutely insol m Br₂+Aq. (Balard)

Insol. in hot NH₄Cl+Aq (Rose.) Insol. in KOH+Aq (Chodnew, J. pr. 28.

Slowly sol, in an aq solution of calcium hydrogen carbonate. The velocity of the reaction may be much increased by the addition of small amounts of alkali sulphate or CasO₄ (Robland, Z anal 1909, 48, 629) Insol, in benzonitrie (Nauman, B 1914.

47. 1370.)
Insol. in acctone. (Edmann, C. C. 1899, II, 1014; Naumann, B 1904, 37, 4329.)

Solubility in (ealcum sucrate + sugar) + Aq, 1 l. solution containing 418.6 g. sugar and 34.3 g. CaO dissolves 6.26 g. Fey0., 290.5 g. sugar and 24 2 g. CaO dissolves 4.71 g. FeyO₄; 174 4 g. sugar and 14 1 g. CaO dissolves 3.08 g. FeyO₄. (Bodenbender, J. B. 1865. 600.)

Solubility of Fe₂O₃ in sugar solutions 1 l, of sugar solution of given strength dissolves mg. Fe₂O₃

% Sugar	mg	Fe ₂ O ₄
16 rtragar	at 17 3°	at 45°
10	1.1	2 0
30 50	0.8	i i

(Stolle, Z. Ver. Zuckerınd, 1900, **50**. 340)

Solubility of calcined Fe₂O₃ in acids at 25°.

Acid	Time	10 ccm of the solution
N-HF	4½ hrs. 43½ " 129½ "	0.0889 0 2035 0 2194
N-HCl	43/4 " 433/4 " 1393/4 "	0.0224 0.1000 0.1910

(Deussen, Z. anorg. 1905, 44. 413.)

See also Ferric hydroxide.

Min. Hematite. Rather easily sol in HCl
+Aq, but not readily sol, in other acids.

Metairon oxide.

Calcined

See Ferric hydroxides.

Ferroferric oxide, 6FeO, Fe₂O₂.

FeO, Fe₂O₁=Fe₃O₄ With insufficient HCl +Aq for complete solution, FeO is dissolved and Fe₃O₄ left. (Berzelius.) Insol. in HNO₄+Aq at the ordinary temperature. (Millon.)

perature. (Millon.) Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Solubility of Fe₂O₄ in sugar solutions 11 of sugar solution of given strength dissolves mg Fr.O4

r, Seri	nor Frath			
(1-4-11	417.0	a 13°	st 77°	
10 30 50	10 3 12 4 14 5	10 3 10 3 10 3	12 4 12 1 14 5	

(Stolle, Z. Ver. Zuckerind, 1900, 50, 310.)

Min. Magnetite. Insol. in HNO₂, but sol in hot HCl+Aq.

Iron sesquioxide zinc oxide, Fe₂O₂, ZnO. See Ferrite, zinc.

Ferric oxybromide.

Basic ferric bromides containing three equivalents, or less, of base to one of acid may be obtained dissolved in H₂O. (Ordway, Am. J. Sci. (2) 26, 202.)

The most basic soluble compound obtained by three months' digestion of Fe₂O₆H₆ with Fe₂Br₆+Aq, is Fe₂Br₆, 14Fe₂O₃, (Béehamp)

Ferric oxychlorides.

(a) Soluble. Fe₂O₆H₆ dissolves in Fe₂Cl₆+ Ao. By digesting until the acid reaction of the chloride has disappeared a solution of Fe₂Cl₆, 2Fe₂O₂ is obtained. (Pettenkofei, Repert. (2) 41, 289.)

By digesting for several days in the cold, Fe₂Cl₆,5Fe₂O₃ is obtained, and still more basic compounds by further addition of Fe₂O₄H₄. When the solution contains Fe₂Cl₄, 12Fe₂O₄ it gelatmises, but still dissolves completely in H₂O. The most basic soluble compound is Fe₂Cl₅, 20Fe₂O₃. (Béchamp, A ch. (3) 57. 296)

If the digestion is carried on several weeks, a solution containing Fc2Cls, 23Fc2Os is obtained; this can be boiled and diluted without pptn , but Fe2O4H4 is precipitated by the addition of very many salts. (Ordway, Sill

Am, J. (2) 26, 197.) Solutions containing 10 or less molecules Fe2O2 to 1 mol. Fe2Cl6 can be dried without

the oxychloride becoming insoluble, (Ordway.) The above solutions do not become cloudy by boiling or diluting. (Phillips.)

A very dil. solution of Fe₂Cl₅, 10Fe₂O₅ re-mains clear after protracted boiling, and may be boiled without decomp, even when Fe2Cl6 20Fe₂O₃ is present. (Béchamp.) HNO₃, and HCl+Aq form precipitates in

the above solutions, which are sol, on addition of more H2O. H2SO4+Aq forms a precipitate insol. in H₂O. (Béchamp.)

Fe₂Cl₆, 9Fe₂O₂ is easily sol. in H₂O, weak alcohol, and glycerine; but solutions are pptd. Fe₂P₂ Insol. in HCl, HNO₂ and aqua by small amts. of H₂SO₄, M₂SO₄, citric or regis. Sol. in potassium hypobromite solu-

tartaric acids, or a few drops of HCl, or IINO₂+Aq (Jeannel, C R. 46, 799.) Solutions containing 5 mols Fe₂O₂ to 1 mol, reading containing of most rego, to 1 mol. Fe/Ch are completely precepitated by K.SO, Na.SO, MgSO, KNO, NaNO, Zn(NO), KCl, NaCl, NHCl, CaCl, MgCl, ZnCl, KB, ot KSCN. (Brehamp.)

Bu(NO₃)₂ does not precipitate solutions of

less than 18-20 Fe₂O₂ to 1 Fe₂Cl₆. Pb(NO₃)₂ or Pb(C₂H₄O₂)₂ do not precipitate solutions containing the compound Fe.Cl., 12Fe.Oz, but a mixture of the two

salts causes complete precipitation. Solution has been obtained containing 116 Fc₂O₃ to 1 FcCl₆, probably owing to a forma-tion of soluble colloidal Fc₂O₃. (Magnier de

la Source, C R. 90, 1352.) Solubility determinations in the system Fe₂O₃, HCl and H₂O, show that at 25° no definite basic chloride is formed, but that the stable solid phase is one of a series of solid solutions of the control of the co solutions e : Pr O

, 11. 694.) +9H₂O. (Cameron. · : (' : (β) Inso

(F) Inso.

(I) By exposing FeCl₂+Aq to air. Insol.
in H₂O; sl. sol. in HCl+Aq. (Wittstein.)
(2) From FeCl₂+Aq and HNO₃. Insol.
in H₂O, and sl. sol. in HCl+Aq. (Béchamp.) 2Fe₂Cl₀, 25Fe₂O₂+41H₂O. Insol in H₂O.

(Béchamp.) Fe₂Cl₂, 2Fe₂O₃+3H₂O. Decomp. by H₂O with residue of Fe₂O₃; sl. sol. in dil. acids. (Rousseau, C. R. 110, 1032.)
Fe₂Cl₂, 3Fe₂O₃. As above. (Rousseau,

Fe₂Cl₆, 3Fe₂C C. R. **113**, 542.)

Ferric oxyfluoride, 3Fe₂O₃, 2FeF₃+4H₂O. Ppt. (Scheurer-Kestner.)

Ferric oxysulphide, Fe₂O₃, 3Fe₂S₃. (Rammelsberg.)

Iron phosphide, FeP.
Very slowly (Freese), not (Hvoslef, A 100.
99) sol, in hot HCl+Aq. Still more insol, in

dil. H₂SO₄+Aq. (Freese.) Slowly sol. in HNO₃+Aq, and easily sol. in aqua regia (Struve) Insol in ammonum citrate+Aq; sl. sol.

in HCl. (Dennis, J. Am. Chem. Soc. 1894, 483.)
 Fe₂P. Slowly but completely sol, in HCl.

or dil. H.SO.+Aq Sol. in hot conc. H.SO., in HNO, and in aqua regia. (Freese, Pogg. 132. 225) Insol, in all acids except in a mixture of

HNO2 and HF. (Maronneau, C. R. 1900, 130. 657.) Fe2P4. Very slowly sol, in hot conc. HCl-

Aq. 0.1 g. dissolves by 4 days' heating with HCl+Aq; 0.3 g. dissolves in hot conc. H₂SO₄ in 11/2 hours; 0.4 g. in 2 hours in HNO2+Aq. Quite easily sol. in aqua regia on warming. (Freese.)

(Granger, Bull, Soc. 1896, (3) 15. tion. 1086.) FeaPa. Very slowly sol, in boiling HCl+ Aq , Easily sol. in HNO₃ or siqua regia. (Struve, J. B. 1860, 77.)

Mixture. (Freese, Pogg. 132, 225.) Almost msol, in aqua regia. Sol. in fused

alkalı. (Granger)
Fe₃P. Nearly insol. in dil. acids; rapidly

sol in HNO or aqua regia; decomp. by conc. HCl. or KOH+Aq. (Schneider, J. B 1886. 2026) Of the nine iron phosphides described the

constitution has been established for only two, Fe,P and Fe,P.

Fe₂P Sol, in conc. HCl. Fe₂P. Sol, in hot aqua regia, Insol, in other acids. (Le Chatelier, C. R. 1909, 149.

Iron selenide, Fe-Se.

Not attacked by HNO2 or acetic acid. Sl. attacked by cone HCl Readily attacked by aqua regis. Sol. in HF. (Vigouroux. by aqua regia. R 1905, 141, 829,)

F6Se+xH₂O. Sol. in HCl, HNO₃, or HC₂H₂O₂+Aq. Insol in alkalies, or (NH₄)₂S +Aq. (Reeb, J. Pharm, (4) 9, 173.)

Fe₂Se₃. Sol. in dil. HCl, or HNO₃+Aq with evolution of H2Se Sol in conc. HNO+An. (Little, A 112, 211.)

Fe₃Se₄. Decomp. by fuming HNO₃. (Fonzes-Discon, C. R. 1900, 130, 1711) Fe;Se₈. Decomp. by fuming. HNO₈ (Fonzes-Diacon, C. R. 1900, 130. 1711.)

FeSe. Insol. in conc. HCl: decomp. by fuming HNO₃. (Fonzes-Diacon, C. R. 1900, 130, 1711.)

Iron silicide, FegS1.

Difficultly sol. in HCl+Aq; easily sol. even in dil. HF+Aq. (Hahn, A. 129. 57 Fe2Si. Not easily sol, in conc. HCl and HNO2 but readily sol in HF. (Moissan,

C. R. 1895, 121. 623.) Fe₁₀Si₀, Sol in hot HCl+Ag only when

most finely powdered (Hahn.) FeSi₂, Not attacked by conc. HF or H₂SO₄ (Hahn.)

Sol. in cold HF. (de Chalmot, Am. Ch. J. 1897, 19. 123) Existence questioned by Jouve, (Bull, Soc.

1901, 25, 290-293) Fe,Si, Sol in HF and in fused KNO; and KNaCO₃. (de Chalmot, J Am. Chem. Soc. 1895, 17, 924,)

Iron semisulphide, Fe2S.

Sol. in dil. acids with decomposition. (Arfvedson, Pogg. 1. 72.)

Perrous sulphide, FeS.

HNO.+Aa.

+xH₂O Sl, sol, in H₂O, especially if hot. (Berzelius)

1 l H₂O dissolves 70.1 x 10⁻⁴ moles FeS at (Weigel, Z. phys. Ch. 1907, 58, 294.) Very violently decomp, even by dil. acids. Sol in H₂SO₂+Aq. Insol in H₂S, or (NH₄)₂S +Aq. Sl sol, in Na₂S, or K₃S+Aq Sol, in

NasS or K.S +Aq. (de Koninek, Z. angew. Ch. 1891, 204) Insol, in NILNO, or NH₂Cl+Aq (Brett.)

Not completely pptd. in presence of Na citrate (Spiller.) Contrary to assertion of Persoz, it can be

nearly completely pptd. in presence of Na₄P₂O₇ by (NH₄)₂S+Aq (Rose, Pogg, 76. IS.) Sol. in alkalı sulpho-molybdates, -tung-

states, -vanadates, -arsenates, -antimonates, and -stannates (Storch, B. 16, 2015.) Sol in KCN+Aq

Insol in liquid NH₂. (Franklin, Am., Ch. J 1898, 20, 828) Insol in methyl acetate. (Naumann, B. 1909. 42, 3790.)

Solubility of FeS in sugar solutions sugar of given strength dissolves mg. FeS

% Sugar	mg FeS			
	at 1° 5°	at 45°	at 75°	
10	3 8	3 8	5.3	
30 50	7 1 9 9	9 1 19 8	7 2 9 1	

(Stolle, Z. Ver. Zuckerind, 1900, 50, 300.)

Colloidal,-A very dilute solution has been obtained which coagulated very readily. (Winssinger, Bull, Soc. (2) 49, 452.)

Ferric sulphide, Fe-Sa. Decomp by dil. HCl, or H2SO4+Aq with

evolution of H.S, leaving a residue of FeS2. +11/2H2O. Sol. in NH4OH+Aq, also in alcoholic ammonia. Sl. sol. in (NH₄)₂S+very dil Na₂S₂O₂+Aq. (Phipson, C. N. 30, 139.)

Iron disulphide, FeS2.

Insol in dil. HCl. or H2SO2+Aq. Decomp. by HNO2 or aqua regia with separation of S. Insol in a 10% solution of alkalı sulphide.

Min Pyrite, Marcasite, Sol. in a mixture of Na₂S and NaOH+Aq, Na₂S+Aq, or mix-ture of Na₂S and NaSH+Aq; msol in cold NaSH+Aq. Marcusite is more easily sol, in above than pyrite. (Becker, Sill. Am. J. (3) 33, 199.)

Ferroferric sulphide, Fe₈S₂ or Fe₂S₂,

Min. Pyrrhotite. Sol. in dil. acids with a Decomp. by dil. acids, with evolution of residue of S. Extremely slowly sol. in a 10% H_sS and without separation of S, except with solution of alkali sulphides. (Terrel, C. R. 69, 1360).

Iron (terrous) nickel sulphide, 2FeS, NiS. Mm. Penthindite.

Ferrous phosphorus sulphide, FoS, P.S.

(Berzehus) 2FeS, P.S. Slowly decomp by H₂O. Insol, in boiling HCl+Aq; decomp, by aqua 1egm. (Berzehus, Λ. 46, 256.)

Iron potassium sulphide (potassium sulphoferrite), K₂Fe₂S₄ = K₂S, Fe₂S₅ Insol in cold or hot II-O Violently at-

tacked by dil. acids. Not decomp by boiling with alkal.es, alkalı carbonates, or sulpludes+ Aq. Decomp by KCN, or Na.S₂O₂+Aq. (Preis, J. pr. 107, 16) K.S. 2FeS. (Schneider, Pogg. 136, 460.)

Iron silver sulphide (silver sulphoferrite), Ag.S. Fe₂S₄.

Not attacked by dil. HCl+Aq, decomp. by cone HCl+Aq. (Schneider.) 2Ag₂S, FeS₁ (Schneider, Pogg. 138, 305.)
Ag₂S, 3FeS, FeS₂. Min Steinbeigte Decomp. by aqua regia.

Iron sodium sulphide (sodium sulphoferrite), Na FesSt+4HO.

Insol in H₂O Decomp. by very dil, acids (Schneider, Pogg 138, 302.)

Iron sulphophosphide, Fe₂PS₃

Attacked by acids at 100°. Decomp. by boiling NaOH+Aq. (Ferrand, A. ch. 1899, (7) 17. 410.)

Ferrous telluride, FeTe.

Insol, in H2O; sol, in acids (Fabre, C. R. 105, 277)

Kermes.

See Antimony trasulphide.

"Knallplatin" compounds. See Fulminoplatinum compounds.

Krypton, Kr

Absorption by H₂O at to.

t°	Coefficient of abso series of a	rptionfdet by two repriments
0	0 1249	0 1166
10	0 0965	0.0877
20	0.0788	0.0670
30	0.0762	0.0597
40	0 0740	0.0561
50	0.0823	0 0610

(Antropoff, Roy. Soc. Proc. 1910, 83. A. 480.) conc. HNO.

Lanthanic acid.

Barium metalanthanate, Ba(IIaLasO11)2. (Baskerville, J. Am Chem. Soc. 1904; 26, 790

Lithium metalanthanate, LiHoLacOis+2II-O. (Baskerville)

Potassium metalanthanate, KII, LatO 1. + 15H.O. Decomp. by H₂O. (Baskerville.)

Sodium metalanthanate, NaHoLaoO15+ 4H-O Almost msol. in H2O, but decomp. by it

(Baskerville) Disodum tetralanthanate, Nas Las Or. Insol, in H2O. (Baskerville.)

Lanthanicotungstic acid.

Ammonium lanthanicotungstate, 2(NH4)2O. $L_{12}O_3$, $16WO_2+16H_2\bar{O}$.

Insol. in H₂O (E. F. Smith, J Am, Ppt Chem Soc 1904, 26, 1481)

Barium lanthanicotungstate, 5BaO, La2O2, 16WO₂+16H₂O. Pot (E.F. Smith)

Silver lanthanicotungstate, 5Ag₂O, La₂O₂, 16WO++4H₂O. Very insol, in H₂O (E F Smith.)

Lanthanum, La

Slowly decomp, cold, rapidly hot H2O. Not attacked by cold conc. H2SO4, but energetically by cold cone, HNO+Aq. Sol. in dil. acids, (Hillebrand and Norton, Pogg, 155. 633.)

Lanthanum bromide, LaBr₃+7H₂O.

Easily sol, in H₂O. Not very sol, in absolute alcohol. Insol in ether. (Cleve, Sv. V. A. H. Bih. 2. No. 7.)

Lanthanum nickel bromide, 2LaBr3, 3NiBr2+ 18H.O.

Deliquescent, (Frerichs and Smith, A, 191, 355.)

Lanthanum zinc bromide, 2LaBrs, 3ZnBrs+

Very deliquescent. (F. and S.)

Lanthanum carbide, LaCo.

Decomp, by H2O and dil. acids. (Pettersson, B. 1895, 28, 2422.) Sol in conc. H2SO4 and dil, acids; insol. in LEAD 439

sol in fused oxidizing agents; decomp, by H.() at ordinary temps, (Moissan, C. R. 1896 123, 149)

Lanthanum chloride, LaCl.

Inhadrous, Deliquescent, (Hermann,) Insol. in acctone. (Naumann, B. 1904, 37. +71 H.O. Not deliquescent, (Zschiesche.) Easily sol, in alcohol. (Hermann.)

Lenthanum mercuric chloride, 2LaCls, HgCls +*/.H.O. Very sol, in H₂O. Not deliquescent.

(Marumac, Ann. Min. (5) 15, 272.) Lanthanum stannic chloride.

See Chlorostannate, lanthanum.

Lanthanum fluoride, LaF++-HOO.

Precipitate, Sl. sol, in HCl+Aq. (Cleve.) Lanthanum hydrogen fluoride, 2LaFs, 3HF. Precipitate. (Frerichs and Smith, A. 191.

Does not exist. (Cleve, B. 11, 910.)

Lanthanum hydride, La2H2.

Decomp, by dil, acids, (Winkler, B. 24. 1966.) LaH. Decomp. by H₂O. Sol. in acids with evolution of H₂ Decomp, by alkalis (Muthmann, A. 1902, 325. 266.)

Lanthanum hydroxide, La₂O₅H₄,

Insol, in H₂O; easily sol, in acids, insol, in KOH, or NaOII+Ag. Sol. m citric acid. (Baskerville, J. Am. Chem. Soc. 1904, 26, 49.)

Lanthanum zinc iodide, 2LaI, 3ZnI2+27H2O. Very sol, in H₂O. (Frenchs and Smith, A. 191, 358.)

Lanthanum nitride, LaN.

Decomp. by H2O with evolution of NH2. Sol. in mineral acids. Decomp. by alkali. (Muthmann, A. 1902, 325, 275.)

Lanthanum oxide, La₂O₃.

Easily sol., even when ignited, in mineral, and acetic acids (Hermann Sol. in boiling cone, NH,Cl+Aq. (Mosander.)

Sol, in cold cone, NH4NO3+Aq. (Damour and Deville) Insol. in (NH₄)₂CO₃+Aq. (Mosander.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Lanthanum peroxide, La₄O₆.

Sol in HCl, H2SO4, HNO4, and HC2H2O2-Aq with decomp. (Cleve, Bull. Soc. (2) 43.

 $La_2O_4+xH_2O$. Unstable. Sol. in dil. H.SO.+Aq with decomp. anorg. 1899, 21, 71.) (Melikoff,

Lanthanum oxybromide, LaOBr. Ppt. (Frenchs and Smith.)

Lanthanum oxychloride, 3LasOs, 2LaCla-Insol. in HaO. Deficultly and slowly sol.

in HCl, or IINO₂+Aq. (Hermann.) LaOCl. Boiling H₂O dissolves only traces. (Frerichs and Smith.)

Lanthanum sulphide, La2S1.

Decomp, by H-O and acids. (Didier.) Lanthanum disulphide, LuS.

Decomp, by heat, (Biltz, Z. anorg, 1911, 71, 435.)

Lead, Ph.

Lead, in contact with H₂O and air free from CO₂, gives a solution of Plot which turns blue and seems a souther with real real transition of the

mute, of Pin are investived. (Christiana, Plan Mag. J. 25, CGCV), dissolved in CNn state ferrories the solution of CNn state ferrories the solution of Pin more them may other will.

Destilled 114, quantity simulating in a closed flucky with good and are free from CO₂, disposate solute flucks of an infalation resolution. It fore-ford [19, 1992, 43, 305].

Water of 3° lanctimes close not take up enough Ph to be considered to the control of the control

(Bottger)
Presence of HsSO4 decreases the solubility of Pb
(Honford, Chem Gar 1849 247)
HsQ containing KsSO4 takes up only a trace of Pb.
(Wertlar, Selw J 54 324)
Presence of sulphates dummenbes (Christison), does
not disapply (Graham, Miller, and Hoffmann), the

not demants (Gisham, Miller, and Hoffmann), the entition of He'O an Dh, but it is attacked by much MgCO. (Nevins) MgCO. (Nevin

10 lbs, of H2O dissolved the following amts. from Pb pipes in 24 hours: if distilled H₂O+ 1% Na₂CO₂, 0.38 grain Pb; if Duna water, 0.19 grain Pb; if canal water, 0.15 grain Pb; if distilled H₂O+1% NH₄NO₃, 0.15 grain Pb; if hard well water, 0 04 grain Pb; if distilled H₂O+1% KNO₃, 0 01 grain Pb (Kersting, Dingl. 169, 183.)

200 l. Manchester drinking water dissolved 2.094 g. from 1 sq metre Pb in 8 weeks; 9 l. well water dissolved 1,477 g, from 1 sq. metre Pb in 8 weeks: 11 l. distilled H₀O containing are dissolved 110 003 g, from 1 sq, metre Pb m 8 weeks; distilled II_0 free from air dissolved 1 820 g, from 1 sq metre Pb m 8 weeks, sea water dissolved 0.038 g from 1 sq metre Pb in 8 weeks. (Calvert and Johnson, C. N. 16, 171.)

440

C. N. 16, 171.)
A lead pape taken up in Paris, which had been exposed to action of ordinary II.0 for 200 years, was found perfectly smooth and uncorroded. (Belgrand, C R 77, 1055.)

uncorroded. (Belgrand, C R 77, 1055.)

Pb is attacked by all waters, hard or soft,
even highly calcureous water dissolves some
lead. (Mavencon and Bengeret C R 78, 484.)

Pure distilled H₂O does not act on Ph, but extremely small quantities of NH₃, HNO₃, etc. cause an action; but for this action on Pb the presence of air and CO₂ is also required. (Stallman, Ding! 180, 366)

100 ccm. distilled H₂O dissolved 3 mg from 11.8 sq cm. lead m one week when air without CO₂ was passed through the solution 8 mg. were dissolved when the air contained

CÖ, (Wagner, Dingl 221, 250.)
Action of dil salt solutions on lead In 500
cem, of the solutions containing salt, bught
sheets of lead of 5500 sq. metres' surface were
so suspended that the liquid reached all parts
of the metal without lundrance, and the amts,
dissolved determined after 24, 48, and 72
hours of action.

TOMES OF INCEION.					
Sult	Grammes sult per lttre		Dissolved Pi m mg per litre		
		ufter 24	48	72 hrs	
NH ₄ NO ₃	0 020	13 0		25	
jt .	0.040	15 0		32	
- "	0 080	15 0			
∫ KNO₃+	f 0 020				
NaNO.	0 050	2.0	2 0		
KNO+	∫0.040				
Na ₂ SO.	0 212	0.8	10		
KNO+ K-CO+	0 045			0.3	
KNO ₂ +	0 070		-	00	
K2SO4	1 0 504			0.5	
CaSO.	0 252	0.4		0.8	
0111004	0.408	0 4	1.0		
K ₁ CO ₁	0.310			0.2	
	0 516			0.2	
CaCl ₂	0 250	0.5	0.5	0.5	
er	0 510	0.3		0 4	
Na ₂ SO ₄	0 200	1		0.8	
	0 400			0.5	
NH,NO,+	f 0 020				
CACI ₂	0.060			1.8	
$\left\{ \begin{array}{l} NH_4NO_3 + \\ K_1CO_3 + \end{array} \right.$	0 020			0.4	
No SO	0 200		١.	104	
Na ₂ SO ₄ Na ₂ SO ₄ +	0.200	i	1		
K ₂ CO ₂ +	0.200			0.1	
CaCl	0.100				
Water from L.		10	1.0	1.5	
Distilled water		2 0	2 0	3.0	

Action of salt solutions on 11.8 sq. cm Pb in one week while air either with or without CO, was passed through the solution Solubility of Pb in salt solutions

100 ccm, solutions containing the given amts.

	e silt m	mg Pb dis90h ed			
>ult	100 erm.	without CO2	with CO2		
KCl	0.5	21	12		
NaCi	0.5	21	12		
NH ₄ Cl	1.0	12	5		
MgCl ₂	0.83	20	35		
K2SO.	10	0	0		
KNO ₂	10	14	. 20		
Na ₂ CO ₂	10	0			
NaOH	0 923	430			
CaO ₂ H ₂	Saturated	137			

(Wagner, Dingl. 221, 260)

Solubility of Pb in salt solutions.

25 sq. cm. were acted upon by a solution containing 0 2 g. salt in a litre for 21 days. Three series of experiments were carried on

I in corked flasks. II. In heakors covered with porous paper; dameter of mouth of beaker = 11 5 cm. III. In basns covered with porous paper; dameter of mouth of basn = 14.5 cm. IV in corked flasks with constant current of air. V. In beakers half filled and covered with porous paper, the lead being suspended so that equal amix, of surface were

above and beneath the liquid
The amts. in mgs. of Pb dissolved were as

onong.						
Salt uses	1	I	II.	III	IV	V.
NH ₄ NO ₂ KNO ₃ CaCl ₂ . (NH ₄) ₂ SO ₄ K ₂ CO ₂ Dist. H ₂ O		1 8 1 6 3.0 0 7 0.3 1 5	4 0 0 5 2 8 1.3 0 3 0 8	16 0 6.0 5 5 16.0 0.7 4.2	1 5 3 5 5 0 0 6 2 0	3 5 2.5 0.3

(Mur. Chem. Soc. 36, 660.)

H₂O sat. with CO₂ dissolves 0.012 g. Pb to a little in 3 days (Marais, C. R. 77, 1829.) Action of H₂O charged with CO₂ under 780 mm. pressure on Pb. 3 mg. of Pb were dissolved per little in 24 hours, and the ant. was not increased by further action. The addition

of 100 mg K₂CO₃+20 mg, NH₄NO₈ to a litre prevented all action. Action of H₂O charged with CO₂ under 6 atmos, pressure on Pb.

14.8 mg, were dissolved per l. in 24 hours, and 24 mg, per l. in 48 hours.

Action of various salt solutions added to

above solution of CO2 were as follows:--

441

	mg sult	mg Pb	dissolved
	per l	after 21 hrs	after 18 hrs
K ₂ CO ₂	80 160 160 16 40	13.2 32.0 5.0 10.0 14.8	32.0 6 0 44.0 35.0 24 0

(Mur. C. N. 33, 125.)

The corrosion of Pb by ordinary distilled H₂O depends upon the presence of CO₂ and O If the dissolved CO2 is double the amt. of the dissolved O, the action is most energetic. When CO2 is wholly absent and O present the action is very slight, and when the H₂O contains 1½ or more vol % CO₂ with normal anit. of oxygen, there is no visible corresion. Pure distilled H₂O containing neither O nor CO₂ has no action on Pb In the above cases the greater part of the Pb remains in the form of a white ppt, or crust on the Pb, but in the case where O and CO, are both present m the ratio of 1:2, very small amts, of Pb go into solution in a few days, the amt., how-ever, diminishes on standing. As the amt. of CO: mcreases, the amt, of Pb dissolved in the H₂O also increases

NH4OH alone does not protect Pb from corrosion, but when in combination with CO. the action is much diminished

CaO2H2, and NaOH+Aq attack Pb much more actively in absence of CO, and presence of air. In absence of dissolved O neither CaO2H2 nor NaOH attacks Pb

Na₂CO₂+Aq in absence of CO₂ attacks Pb slightly, but NaHCO3+Aq has not the slight-

est action

CaH₂(CO₂)₂+Aq also has not the slightest action on Pb, and the presence of CaCO2 and CO2 wholly prevents H2O attacking Pb

CaSO₄+Aq in presence of air forms a crust on Pb, but no Pb is found in solution, but if air is excluded there is no visible action. Presence of CO, causes a strong corrosive action. H2O containing CaSO4 and CaH2(CO2)2

does not attack Pb

The above reactions are not in the least altered by the presence of moderate amts. of nitrates, chlorides, or ammonium, or organic compounds: but ammonium salts in excess have a strong solvent action on Pb. (Muller,

J. pr. (2) 36. 317.) See also an extended report of the action of H.O on Pb made to the Water Committee of Huddersfield, England, in 1886, by Messrs.

Crookes, Odhng, and Tidy,

Very extended researches are published by be given here.

The action of slaked lime, limestone, sand calcium silicate, mortar, etc., was tested. The

results were as follows -

 In nearly all cases the corrosion is greater with free exposure to the air than when air is excluded. The difference is especially great in those cases where the greatest action on the lead takes place. Aluminum hydroxide and blue clay form exceptions, and evert a greater corrosive action when air is eveluded. In the case of CaCO₃, old mortar, CaSiO₃, or a mixture of CaCO2 and CaO2H2, the evclusion or presence of air makes no appreciable differ-

ence KNO₂+Ao shows a peculiar behaviour. In the presence of air it acts nearly as much on the Pb as pure ILO, but when air is excluded it exerts nearly as much retarding action as

CaSiO.

 In the presence of air the action of H₂C on Pb is considerably increased by the presence of NH4NO4 or CaO2H4, with exclusion of air, by CaSO₄, also by a mixture of CaO₂H₂ and sand. All the other investigated substances, even KNO2, hinder the action of H2O

on Pb either with or without exclusion of air. 3 CaO-II.+An exerts in all cases a much greater corresive action than pure II2O, and although this action is diminished by sand yet fresh mortar very quickly destroys lead pipes when in contact therewith. Old mortar. on the other hand, and also CaSiO, and CaCO2, have a protective action

 The fact is very important that sand, CaCO₃, old mortar, CaSiO₃, and a mixture of sand and CaCO2 afford considerable protection to lead against H2O. A mixture of limestone and sandstone has more effect than the two substances separately.

 CaSiO₂ totally prevents the corrosive action of KNO₂ and NH₄NO₃, so that the lead is not attacked by solutions of those salts any more than by H₂O containing CaSiO₂ alone. Sand, and a mixture of sand and CaCO, have a similar effect, but not to such a degree.

6. The protective influence of CaCO, does not appear to depend on the presence of CO;

and the formation of CaH2(CO2)2 MgCO, prevents the corrosion of Pb as much as CaSiO₃ (Carnelley and Frew, Jour. Soc. Chem. Ind 7. 15)

Pb in contact with Zn or Fe is protected thereby from the solvent action of H2O, and in fact the action is nearly null. Sn, on the other hand, increases the action. This is of importance in regard to the use of tin-coated lead pipes

The presence of Ca salts does not influence the action of the H2O on Pb, hard or soft H2O provided it contains CO2 having a strong corrosive action. Removal of air from H2O diminishes the solvent action. Simple filtra-Cornelley and Frew (Jour. Soc. Chem. Ind. 7. tion will remove all Pb from H2O if suit-15), of which only the general conclusions can able filters are used. (Flogel, J. B 1888. 2645.)

acad water, but the presence of sulphates m-ercase the action Pb is not appreciably at-presence of traces of CaH₂(CO₁)₂. (Barbagha tacked by H₂O m presence of chloudes alone, and Guect, C. C. 1888, 931)

Pure distilled ILO has strong corresive but very strongly when CaSO₄ is also present. action on Ph, which is very much we ikened H O containing CO2 also corrodes Ph. The by addition of a solution of CaCO, in carbonic | conclusion was drawn that the absence of ac-

Water med	P	Pts of lead per 100,000			
	1	2	3	4	
Water alone, infiltered Water containing 0 999 g. NaCl per 1, unfiltered Water containing 0 99 g. NaSO; per 1, unfiltered Water containing 0 99 g. NaSO; per 1, unfiltered	8 19 3 00 1 36 0 68 3 41 2 05	12 98 4.09 2 73 1 50 6 83 3 41	8 19 2 07 0 68 0 67 2 05 1 64	4.00 2 32 4 04 1 36 1 84 1.77	
CaliCO)+Aq containing 0.04 g. CaO as carbonate per 1 CaliCO)+Aq with NaCl CaliCO)+Aq with NaSO, CaSO,+Aq containing 0.095 g. CaO as sulphate per 1 CaSO,+Aq with NaCl CaSO,+Aq with NaSO,	2 45 2 05 2 18 6 83 5.46 1.78	3.14 3 41 3 32 6.83 6 57 5.87	2 68 2 35 2 05 3 41 3 51 3 69	5 70 3.40 3 16 1 35 1 50 1.77	

Column 1 gives the numbers for distilled water free from air; column 2 for distilled water aerated by agitation with air; column 3 for water continuously aerated by passing 1 litre of air through it per hour; column 4 for distilled water through which 1 litre of air and 400 cc. of CO2 were passed per hour throughout the experiment. (Antony and Benelli, Gazz. ch. it. 1896, 26, (2) 97 and 352.)

Almost insol in cold HC1+Aq, and only sl attacked when boiling Completely sol in HNO2+Aq if not too cone., but presence of H2SO4 or HCl diminishes the solvent power

to a great extent (Rose) Granulated Pb is sl. sol. in cone HCI+Aq; addition of PtCl4 makes the action very energetic. Dil. HCl+Aq may also be used with

PtCl. (Millon, C. R. 21, 49.) HCl+Aq of 1.2 sp. gr., with Pb, gives off H at ord, temp., more abundantly when heated. Evolution of H is hastened by placing Cu m contact with the Pb. (Stolba, J. 94. 113)

Quickly decomp. by hot HCl+Aq, slowly by cold. (Sharples, C. N. 50, 126.) Scarcely acted upon by boiling cone, HCI+

Sol, in aqua regia HNO₁+Aq is the best solvent, but Pb is as good as insol in a mixture of HNO₂ and

H2SO4. (Berzelms.)

Not acted upon by very cone. HNOs+Aq. Pb is only sl. attacked by HNO2+Ag of any strength below 15°. Above 15° it is most rapidly attacked by a rather weak acid. (Montemartini, Gazz. ch. it. 22, 397.) Action of H.SO. on Pb.

H-SO₄ of 1.842 sp. gr. dissolves 201 g. from sq. metre pure lead at ordinary temp. (time?), and H₂SO₄ of 1.705 sp. gr. dissolves only 59 g.

solubility. (Calvert and Johnson, Chem Soc. (2) 1, 66.)

Strongly attacked by 99.8% H2SO4 at ord. temp. with exclusion of air. (Lunge, Dingl. 261, 131,

When 0.2 g. pure Pb was heated with 50 ccm, H₂SO₄ of 66° B. there was no appreciable action below 175°. At 230-250° all the Pb was suddenly converted into PbSO4, which dissolved. (Bauer, B. 8. 210.)

Lead is slowly attacked by pure cold cone. H₂SO₄+Aq (99 78% H₂SO₄). Lead vessels which held the H₂SO₄ were gradually destroyed by long standing (Napier and Tatlock, C. N. 42, 314)

H2SO4+Aq (20%) does not evolve H under the same circumstances. (Stolba) Sol in HC2H2O2+Aq when in contact with

the air. Strong NH4OH+Aq does not dissolve litharge; but lead immersed in NH-OH+Aq 3 days gives an ammonia solution containing 0 0139% lead. (Endemann, Am. Ch. J. 0 0139% lead. (Endemann, Am. Ch. J. 1897, 19, 892.)

Somewhat sol, in NaCl+Aq. (Reichelt, Dingl. 172. 155.)

NaCl+Aq attacks Pb at high temp. (Lunge, l. c.

Action of KClOs. KClO₃+Aq (6.3% KClO_s) oxidised 64.31 g. Pb from 1 sq. metre imé?), and H₂SO, of 1.705 sp. gr. dissolves by 50 g. KClo), ordined 51.12 g. under same condi-Slight impurities in the lead lessen this tions; and Ca(ClO₃)₃, CaCl₂+Aq (20° Baume), obtained by passing Cl₂ through CaO₂H₂+Aq, oxidised 437.70 g. (Lunge and Daggeler, Jour. See, Chem. Ind. 4.31.) Insol. m hourd NHz. (Gore, Am. Ch. J.

1898, 20, 828,)

Sol, in a solution of K in liquid NHs. (Kraus, J Am. Chem. Soc. 1907, 29. 1562.) 1 ccm, olere acid dissolves 0.0502 g. Pb in 6 days. (Gates, J. phys. Chem. 1911, 15.

Solubility of Pb in petroleum.

If b.-pt. is under 230°, only slightest trace

is dissolved in 4 months, if 230-300°, 0.0026% in 4 months; if over 300°, 0.0244% in 4 months in 4 months; if over 300°, 0.0244% in 4 months.

Solubility of Pb in commercial oil of turpentine and resin oil.

		% Pb d	ssolved
	Temp	ın 8 days	ın 14 days
Fresh oil of turpentine Old oil of tur-	15-20°	sl trace	0.0722
pentine Fresh oil of	15-20	0.0522	0 1435
turpentine	100	0 265	0.715
pentine Fresh oil of	100	0.982	1 851
turpentine	130~150	0 938	2 045
pentine Fresh resin oil Old " Fresh " Old " Fresh " Old "	130-150 15-20 15-20 100 100 130-150 130-150	1 738 trace 0.073 0.380 1.190 1 050 2 208	4 083 0.024 0.185 0.880 2 711 2.065 4.740

(Engler and Kness, Dingl. 263, 193)

Pb is strongly attacked by oil of turpentine (Am. Chem. 4. 289.) The fatty oils dissolve Pb in considerable

amt. (Macadam, J. B. 1878. 1169.) Not attacked by sugar+Aq. (Klein and Berg, C R. 102. 1176)

Lead potassium amide.

See Potassium ammonoplumbite.

Lead azomide, basic, PbO, PbNs. Insol. in H₂O. (Wohler, B. 1913, 46, 2054.)

Lead azoimide, PbNs.

Insol in cold H2O; much less sol, in boiling H₂O than PbCl₂ 1 l. H₂O dissolves about 1/2 g. PbNa. Easily sol. in warm HC2H4O2+Aq. Insol. m conc. NH₄OH+Aq. (Curtius, B. 24. 1904, 37, 4328.)

Lead bromide, PbBr.

Sl. sol in cold, more easily in hot H₂O, or in H₂O containing HCl, HNO₃, or HC₂H₃O₂

(Lowig) 1 l. H.O dissolves 6 g PbBr₂ at 10°, addition of HBr causes a ppt, which redissolves on further addition of HBr 1000 pts, of a liquid containing 720 pts. HBr dissolve 550 g. (Ditte, C. R. 92, 718)

1 1. H₂O dissolves 26.28 millimols, PbBr₂

... E-4a Z anorg, 1901, **26**, 159).

Solubility in 100 g H₂O at to,

t°	G PbBr ₂
0	0 4554
15	0 7305
25	0 9744
35	1,3220
45	1.7457
55	2,1376
65	2 5736
80	3 3430
95	4 3613
* 100	4.7510

* By extrapolation. (Lichty, J. Am. Chem. Soc. 1903, 25, 474.)

Sl. sol, m H₂O.

8 34 x 10 1 gram, are dissolved in 1 liter of sat solution at 20°. (Böttger, Z phys. ch. 1903, 48, (403.)

Solubility of PbBr₂ in HNO_a+Aq at 25,2°, S = solubility in millimols per litre.

١	IINO2 normal	S
-	0 001 0 01 0 051 0 04 KNO ₈ + 0 01 HNO ₈	39.11 39.87 42.56 42.77

(von Ende, Z. anorg, 1901, 26, 162.)

Slowly sol. in cold, easily in warm NH.Cl. or NH, NOs+Aq (Wittstein.) Not pptd. in presence of Na citrate.

(Spiller.) Insol. in H₂O containing Pb(NO₂)₂. (von Ende, Z. anorg. 1901, **26**. 159.)

Insol. in benzene. (Franchimont, B. 16. 387.) Moderately sol. in liquid NH₈. (Franklin.

Am. Ch. J. 1898, 20, 828.) Insol in benzomtrile. (Naumann, B. 1914, 47, 1370.)

Insol. m methyl acetate (Naumann, B. 1909, 42, 3790); ethyl acetate (Naumann, B. 1910, 43, 314.)

Difficultly sol, in acetone. (Naumann, B.

Lead hydrogen bromide, 5PbBr₂, 2HBr+ 10H₂O₂

Sol, in HBr+1q. (Ditte, C lt 92, 718)

Lead magnesium bromide, PbB12, 2MgBr2+ 1bH20. Very dehoue-cent. Decome immediately

Very delique-cent. Decomp immediately by H₂O or alcohol. (Otto and Drewes, Arch. Pharm, **229**, 585.)

Lead potassium bromide (potassium bromoplumbite, PhBi₂, KBr+H₂O.

(Remson and Hestr, Am Ch. J. 14, 124) +-H₂O. (Wells, Sill, Am. J. 145, 129.) PbBr₂, 2KBr. Sol in a little H₂O without decomp, but decomp, by an excess with separation of PbBr₂ (Lowig.) +-H₂O. (Wells, Sill Am. J. 145, 129.) 2PbBr, KBr. (Wells)

Lead potassium perbromide, K₂Pb₂Br₁+ 4H₂O Decomp. by H₂O and alcohol (Wells, Z anore, 4, 340.)

Lead rubidium bromide, PbBi₂, 2RbBi+

(Wells, Sill. Am. J. 146, 34.) 2PbBr₂, RbBr (Wells)

Lead sodium bromide.

Decomp by H₂O. (Lowig)

Lead bromochloride, PbBrCl=PbBr₂, PbCl₂. Can be recrystallised from H₂O without decomp. (Iles, C. N. 43, 216.) 3PbCl₂, PbBr₂. Sol in H₂O with decomp.

3PbCl₂, PbBr₃. Sol m H₂O with decomp. Sol. m HCl and m HBr. Insol m cold alcohol, sl. sol, in boding alcohol. (Thomas, C R 1899, **128**, 1235.)

Lead bromoiodide, PbB₁I = PbBr₂, PbI₂.
Decomp. by H₂O. Cryst. from a solution of PbI₂ in HBr. (Grissom and Thorp, Am

Ch. J. 10, 229.) 3PbBr₃, PbI₂. Decomp by H₂O. (Thomas C. R. 1899, 128, 1236.) 6PbBr₃, PbI₂. (G. and T.)

Lead bromosulphide, PbBr2, PbS.

Properties as chlorosulphide. (Parmentier.)

Lead chloride, PbClo.

Slowly sol, in L55 pts H50 at 12-5°, and in a much smaller quantity of hot H50 (Breshof) (Wittstean) Sol, in 30 pts, H50 at 18 75° (Abl.) 100 pts H50 dissolve 1 50 pts, P6Cl; at 15 5° (Ure's Dtet.)

100 pts. H₂O dissolve 0.9712 pt. PbCl₂ at
 20°. (Formánek, C. C. 1887, 270.)
 100 pts. H₂O dissolve 0.946 pt. PbCl₂ at
 17.7°. (Bell, Chem. Soc. (2) 6, 355.)
 Sol. in 105.2 pts. H₂O at 16.5°. (Bell, C. N.

Sol. in 105.2 pts. H₂O at 16.5°. (Bell, C. N 16. 69.) 100 pts, H₁O dissolve 0.8 pt. PbCl₂ at 0°, 1.18 pts, at 20°; 1.7 pts at 40°; 2.1 pts, at 55°; 3.1 pts, at 80°, (Ditte, C. R. 92, 718.) 1.1 H₂O dissolves 38.80 millimols. PbCl₂ at 25°2° (von Ende, Z. anorg. 1901, 26, 148.)

9-61 × 10 ⁴ gram are dissolved in 1 liter of set solution at 20° (Bottger, Z. phys. ch. 1903, 46, 603)

Solubility in H₂O, 100 g, H₂O dissolve g PbCl₂ at t°

0 0, 4728 15 0, 6900 25 1 0,842 35 1 0,842 45 1 1,844 45 1 1,843 55 1 8,803 65 2 1265 80 2 6,224 9,5 3 1,654 1,000 3 3,420	†°	G PbCl ₂
	15 25 35 45 55 65 80 95	0 9090 1 0842 1 3244 1 5673 1 8263 2 1265 2 6224 3 1654

* By extrapolation.

(Lachty, J. Am. Chem Soc. 1903, 25. 474.)

33 6 millimols. Pb are dissolved in 1 liter H₂0 at 18° (Plessner, C. C. 1907, II 1056.) 1 l. H₂O dissolves 77.76 milliequivalents PbCl₂ at 25°. Sp. gr. of the solution 25°/4° ≡ 1.0069. (Harkins and Winninghoff, J. Am. Chem. Soc 1911, 33. 1816.)

0.0388 mol. mg. PbCl₂ are sol in 1 l. H₂O. (Kernot and Poundo, Soc. R. Napoli, 1912, (3), XVII, 353)

A colloidal modification is sol. in hot water to give cryst. modification. (Van de Veide, Ch. Z. 1893, 17. 1908) Solubility in H-O is not much increased by

the addition of acids. (Fresenius.)
Sol in conc. HCl+Aq, from which it is pptd, by H₂O, but less sol, in dil. HCl+Aq than in H₂O. (Berzelius)

Sol. in 1636 pts. H₂O containing HCl. (Bischof.) Sat, solution of PbCl₂ in HCl+Aq of 1.116

sp gr. contains 2.568% PbCl₂ at 16 5°.
Solubility in HCl+Aq. 100 pts. liquid containing pts. HCl of 1 1162 sp. gr. in 100 pts. Hcl dissolve pts PbCl, at 17.7°.

P.	hen with arrest a hear a next as x to 1						
Pts HCl	Pts. PbCl ₂	Pts HCl	Pts. PbCl ₂	Pts HCl	Pts. PbCl ₂		
1 2 3 4 5 6 7	0.347 0 201 0 165 0 145 0 131 0.107 0 100	8 9 10 15 20 30 40	0 099 0 096 0 093 0 090 0.111 0 151 0 216	50 60 70 80 90 100	0 356 0 559 0.933 1.498 2 117 2.900		

(Bell, Chem. Soc. 21, 350.)

Solubility of PbCl ₂ in HCl,						Solubility of PbCl ₂ in HCl at 18°		
Ant HCl in 100 pts	Amou	nt PhCl ₂	dissolved liquid	in 1000	pts of	* HCl Normality	G PbCl ₂ per I	
0 0 5 6 10 0 18 0 21 9 31 5 46 0	8 0 2 8 1 2 2 4 4 7 11 9 29 8	11 8 3 0 1 4 4 8 6 2 14.1 30 0	17 0 4.6 3 2 7 2 10 4 19 0	21 0 6 5 5 5 9 8 12 9 24 0	31 0 12 4 12 0 19 8 23 8 38 0	0 0004 0 0002 0 0005 0 0005 0 00102 0 0102 (Pleissner, Arb. Kais	9 34 9 305 9 300 9 243 9 200 8 504 Gesundamt, 1907,	

(Ditte, C. R 92, 718

PbCl₂ = 1/2mols Solubility in HCl+Ao at 0° PbClo in mgs, in 10 ccm, solution; HCl= mols HCl in ditto.

PbCl₂ HCI HCI 0.42 0.088 11 7 29 5 0 22 0.350 675 0.1350.100 46 7 73 5 0 11 125 0 209 0 105 6 0 95 0 099 2 3 -5 89 0 3 0 090 4 9 96.0 3 01 0.08 4 5 111 5

It is seen that very little HCl+Aq is sufficient to diminish solubility very considerably, and, that on further addition of HCl+Ag, the solubility is nearly constant, and increases finally very much when large amts, of HCl+Aq are present (Engel, A ch. (6) 17. 359) Solubility of PhCl, in HCl+Aa at 25°

G. HCl	G PbCl ₂	G. HCl	G. PbCh
per l.	per l	per l	per l.
0	10 79	3	5 0
0 5	9 0	6	3 1
1	7 6	10	1 8

(Noves, Z. phys. Ch. 1892, 9, 623.) Solubility of PbCl₂ in HCl+Aq at 25.20°. S=solubility in millimols per litre.

HCl normal	s	HCl normal	8
0 0000	38.80	0 3714	6.35
0 0009	38.66	0 5142	5 37
0 0002	38.20	0 7386	4.73
0 0032	37.94	1 026	4.41
0 0045	37.35	1 538	4.61
0 0091	35.80	2 051	5.18
0 0151	34.99	2 564	6.25
0 0226	33.75	3 085	7.78
0 0302	31.46	3 718	8.16
0 0452	29.32	5 0	19.38
0 0910	25.46	7 5	65.86
0 1850	17.12	10 0	141.35

(von Ende, Z. anorg 1901, 26. 148.)

07. 26.

Sol. in hot, msol. in cold conc. H2SO4. (Hayes,)

Sol. in dil HNOa+Aq, from which it is putd, by HC1+Aq. (Gladstone.) Easily and completely decomp, by hot HNO₄+Aq. (Wurtz.)

Solubility of PhCl₂ m HNO₂+Aq at 25 2°. S=solubility in millimols per litre.

HNO ₂ normal	s
0 001 0.01 0.051	38 87 39.71 42 92
0 04 KNO ₃ + 0 01 HNO ₃	43.36

(von Ende, Z. anorg, 1901, 26, 162.)

Solubility of PbCl2 in NH4Cl+Aq at 25.20°. S=solubility in millimols per litre.

NH4Ci normal	8		
0.25 0.50	9 47 7.11		
1 0	4 35		
(von Ende, Z ano	rg. 1901, 26. 152.)		

Solubility of PhCl. LNH Cl at 22°

continuity of 1 beig-fittiget at 222 .							
G equiv per l H ₂ O NH ₄ Cl	G equiv per 100 ct H ₂ O PbCl ₂	G equiv. per I H≰0 NH₄Cl	G equiv per 100 cc H ₂ O PbCl ₂				
0 0 0 1 0 2 0 3 0 4 ·	7 49 x 10 ³ 3 10 1 916 1 508 1 348 1 263 1 189	1 0 1 2 1 5 2 0 2 5 3.0 4 0	0 758 x 10 3 0 707 0 671 0 695 0 812 0 968 1 502				
0 6 0.05 0 7 0 8 0 9	1 092 1 012 0 956 0 837 0 793	5 0 6 0 7 0 7.29*	2 338 3 580 5 628 6 46				

* Saturated.

(Brønsted, Cong. Appl Chem. 1909, Sec. X,

	Solubility in NH ₄ Cl+Aq at t [*]				Much more sol, in HgCl ₂ +Aq than in H ₂ O,			
,	G PhCl in 100 p of the obution	ri NHaCl in 100 g of the olution	Solid phase	Grammes HgCl; in 100 cm	Grammes .PbCl ₂ .dps-ob-ed	After sub- tracting amit dissolved by H ₂ O alone	Calculated no of grammes for 100 g HgCl ₂	
17°	0 89 0 21 0 16 0 11 0 076 0 078 0 078 0 098	0 0 0 96 1 43 2 40 3 48 4 23 4 93 12 36	PbCl ₇ outcome-pt. 2PbCl ₂ , NH ₄ Cl	0 4 2 1 0 5 0 25 0 125	0 9712 1 8972 1 4874 1 2272 1 0808 1 0192 0 9926	0 9350 0 5208 0 2600 0 1134 0 0500 0 0226	23 37 26 04 26 00 22 68 20 00 18 08	
	0 31 0 61 0 52	22 33 26 49 26 68	eutectic-pt.	1	of PbCl ₂ in	C. 1887. 27 Pb(NO ₄) ₂ +		
	0 33	26 91 27 03 27 14	NH,Cl	Phys	G equi	n per l Pb	CI.	
50°	1.69 1.08	0 0	Í	0	0 2	0.0	832	
	0 67	1 45 2 45	PbCl ₂			Ch. 1892, 9		
	0 48 0 49 0 71	0 48 4 86 0 49 12 45	eutectic pt	Solubility in Pb(NO ₃) ₂ +Aq at 25°, C=concentration of Pb(NO ₃) ₂ in Pb(NO ₃) +Aq expressed in milliequivalents per l			1 Pb(NO ₃) ₂ s per l	
	1 76 3 31	27 16 31 90	2PbCl₂, NH₄Cl	S=Solub	olity of Pl	O ₃) ₂ +Aq at Cl ₂ in Pb($NO_a)_2 + A\alpha$	
	3 96 2 65 1 62	33 56 33 62 33.88	eutectic pt	expressed in milliequivalents per l. d ₂ =Sp. gr. 25°/4° of PbCl ₂ +Pb(NO ₃) ₂ + Aq.				
	0 32	34 14 34 25	NH,Cl	С	d ₁	S	da	
100°	3 10 2 02	0 0 1 32	PbCl ₂	20 020 50.063 99 660	1.0008 1 0045 1 0119	76.75 76 64 77 98	1 0095 1.0139 1.0210	
	1 85 1 80 1 76	5 33 6 01 8 59	eutectic pt.	(Harkins and Winninghof, J. Am. Chem. Soc. 1911, 33, 1816.)				
	1 98 4 54	13 19 26 08	1	Solubility of PbCl ₂ in Pb(NO ₃) ₂ +				
	8 32 11 40	32 64 36 29	2PbCl ₂ , NH ₄ Cl	G Pb(NO	la) o per L	% P		
	12 67 12.50	12 67 37 62 12 50 38 14	eutectic pt		31 62	1.1		
	11.60 10.70 9.88	38 32 38 66 40.22	PbCl ₂ , 2NH ₄ Cl	33 82	12	ī	11 29	
	9.26 4.21	41 90 42 91	eutectic pt.	(Armstrong	and Eyre	Proc. Roy 3. 234.)	Soc. 1913,	
	3.06 1.61 0.0	43 20 43 42 43 51	NH ₄ Cl	Solubility S=Solub	of PbCl ₂ I	n KCl+Aq lımols per li	at 25.20°. tre.	
_				KCl normal	8	KCl normal	8	
PbCl ₂ solution	, 2NH∢Cl on at temp	can only crature abo	: the double salt exist in aqueous ive 70°. 13, 156 . 894.)	0.0000 0.001 0.0025 0.0049 0.0049 0.0099 0.0200 0.0599	38.80 38.32 37.85 37.02 37.02 37.02 35.28 32.16 22.62	0.0999 0.5006 0.7018 0 9991 0 9991 1.5018 2 0024 3.0036 org, 1901, 26	16.90 7 40 7.38 4.90 4.90 4.83 5.56 9.74	

Solubility of PbCl₂+KCl in H₂O at 20°. Values=g, equivalents.

n 1000 g solution	In 1000 g H ₂ O	Solid phrise	
PECI- KCI	28 0 4 57	PbCl ₂ , KCl.	
16 56 3 05 15 50 2 91 14 76 2 77 13 96 2 66 13 16 2 47 13 08 2 45	23 42 4 18 21 50 3 96 19 85 3 73 18 50 50 17 48 3 33 16 17 3 03 16 06 3 01 15 80 2 93	PbCl ₂ , KCl. '/ ₂ H ₄ O	
12.86 2 55 11.84 2 29 11.84 2 29 11.84 2 29 11.84 2 29 11.0 60 2 .2 C1 10.46 2 .14 10 60 2 .2 C1 10.46 2 .14 10 60 2 .2 C1 10.46 2 .14 10 5 2 2 .2 10 .46 2 .14 13 2 .2 2 0 .0 3 .34 1 .38 1 .37 7 .7 21 .52 2 7 .7 36 1 .32 7 7 .32 7 .	114 352 62 112 4712 55 112 1312 49 111 602 41 1510 962 31 10 422 20 18 921 74 18 8 561 570 4 8 291 472 18 8.111.348 38 .131 347 7 7 981 231 2 8 011 225 2 8 101 107 8 8 131.068 9 8 80 14 32 18 10 10 152 18 10 10 10 152 2 8 10 1 10 152 2 8 10 1 10 152 2 8 10 1 10 152 3 8 13 1 00 1 152 3 8 13 1 00 8 30 143 18 1 10 8 30 943 18 790 875	2PbCl ₅ , KCl	
12.36 0.483 12.56 0.475 12.48 0.458 12.24 0.375 14.52 0.296	3 12.88 0 523 3 12.85 0.502 5 13.04 0 497 8 12 95 0.475 5 13 65 0.387 9 14.88 0 306 5 19 33 0 199	PbCl ₄	

(Brönsted, Z. phys. Ch. 1912, 80, 208.)

PbCl₂ is sol in 120 pts, pure H₂O, but on adding 5% NaCl 437 pts, are required to effect solution. When PbCl₂ is digested with cone. NaCl+Aq, 1 pt. dissolves in 120 pts. of the liquid.

A study of the equilibrium between lead chloride and sodium chloride in aqueous solution at 13°, 50° and 100° shows that at nonof these temp. do these chlorides form a double salt. (Demassieuv, C. R. 1914, 158, 702.)

Solubility in salts+Aq at 25°.

Salt used	Concentration of the salt Equivalents per liter	Solubility of PbCl ₂ Equivalents per liter		
None HCl " KCl " MgCl ₂ CaCl ₂	0 0 05 0.1 0.2 0.05 0.1 0 2 0 05 0.1 0.05 0.1	0 07770 0.04786 0 03248 0 01927 0.0482 0 0341 0.0219 0 0503 0 0503 0 0503 0 0503		
MnCl ₂ ZnCl ₂ CdCl ₂ "	0 2 0 05 0 1 0.2 0 2 0 05 0 1 0 2	0.0219 0.0501 0.0349 0.0217 0.0220 0.0601 0.0481 0.0855		

(Noyes, Z. phys. Ch. 1892, 9, 623.)

Sol. in KOH+Aq (Rose.)
Less sol. in dil. salt solutions than in H₄O
specially CaCl₂+Ag, sol. in 534 pts. H₂C

capecially CaCl₁+Aq₁, sol. in 534 pts. H₂O containing CaCl₁. (Bisehof.) More sol. in Na₂SO₂+Aq than in H₂O, but not as sol. as AgCl. (Herschell, 1819.) More sol. in NaC₂H₄O₂+Aq than in H₄O. (Antion.)

Easily sol. in NH₄NO₂+Aq. Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. S28.) Insol. in conc. alcohol. (Wittstein.) In-

sol, in 94% alcohol, very sl. sol, in cold or hot 76% alcohol.

Solubility in alcohol at 25°.

Alcohol = g mol. alcohol in 1 l. of solvent.

PhCl₃ = g, mol. PbCl₂ in 1 l. of solution. Alcohol 4 2 1 1/z 1/s PbCl₃ 0.0172 0.0257 0 0298 0.0330 0.0338 Alcohol 1/s 0

PhCl₂ 0.0367 0.0388 (Kernot and Pomilio, Soc. R. Napoli, (3) 17. 353.)

Insol, in benzene. (Franchimont, B. 16.

Insol. in CS₂. (Arctowski, Z. anorg. 1894, 6. 257.) Insol. in benzonitrile. (Naumann, B. 1914, 47, 1370)

Insol, in methyl acetate (Naumann, B.

1909, 42 3790; ethyl acetate. (Nanmann, Lead sodium tetrichloride, 2PbCl., 9NaCl. B, 1910, 43, 311 Insel in methylal (Eidmann, C. C. 1899. 11, 1014)

Insol in acctone (Naumann, B. 1904, 37. Glycerine dissolves 1,995%, PbCl₂

1 pt. glycerine +1 pt. H₂O dissolves 1 32% PhO.

1 pt. glycerine+3 pts H₂O dissolves 1 0365 Giveering containing 87.5% II O dissolves 0.91°, PbCl. (Piesse, B. 7, 599.)

Solubility of PbCb in mannie+Aq at 25° Mannite = g, mol mannite in 1 l, of solvent $PbCl_2 = g \mod. PbCl_2 \text{ in } 1 \text{ l of solution}$ $l_2 = l_3 \mod. PbCl_2 \text{ in } 1 \text{ l of solution}$ Mannite 1/2 PbCl 0.0408 0.0403 0.0304 0.0384 0.0385

Mannite 1. Manute 1, 0 PbCl₂ 0,0377 0.0388

(Kernot and Pomilio, Soc. R. Napoli, (3) 17,

Min Cotumnite Lead tetrachloride, PbCls.

Sol. in H₂O with subsequent decomp (Rivot, Beudant, and Daguin, Ann. Min. (5) 4. 239.)

Obtained in a pure state by Friedrich. Sol. in a little cold H2O, but is decomp, by warmng or diluting. Miscible with cone. HCl+ Aq; not attacked by cone. H₂SO₄ even on warning. (Friedrich, W. A. B. 102, 2b. 534)

Lead tetrachloride with MCI. See Chloroplumbate, M.

Lead magnesium chloride, PbCl₂, 2MgCl₂+

1311.0. Deliquescent, Decomp, by H2O. (Otto and Drewes, Arch. Pharm. 228, 495)

Lead potassium chloride (potassium chloroplumbite), PbCl, KCl. (Remsen and Herty, Am. Ch J. 14, 125)

Contains 1/2 H.O (Wells, Sill, Am. J 145. See also Demassieux, PbCl2+KCl under

PbCl₂ 2PbCl₂, KCl. (Wells.) See also Demassieux as above.

Lead rhodium chloride. See Chlororhodite, lead.

Lead rubidium chloride, PbCl2, 2RbCl+ 12H2O.

(Wells, Sill. Am. J. 146, 34,) 2 PbCl2, RbCl. (Wells)

Lead sodium chloride. Decomp. by H.O.

Very sol, in H₂O, (Sobrero and Selmi, A. ch. (3) 29, 165.)

See also Chloroplumbate, lead.

Lead thallous chloride, PbCl2, 3TlCl. SI sol in cold, more in hot H2O. (Noves. Z phys Ch 9, 622.)
PhCl., TlCl Ppt. (Ephraim, Z. anorg. 1909, 61, 245)

Lead chloride ammonia, 2PbCl₂, 3NH₄. (Rose, Pogg. 20, 157.)

Lead tetrachloride ammonia, PhCl, 4NH2. Pptd from chloroform solution (Mate. thews, J. Am. Chem. Soc. 1898, 20, 825.)
PbCl₁, 2NH₃. Fumes in the air. Decomp. by H2O (Matthews)

Lead chloride arsenate, 3Pb4(AsO1)2, PbCl2, See Arsenate chloride, lead,

Lead chloride borate, Pb(BO2)2, PbCl2+ O.H See Borate chloride, lead,

Lead chloride carbonate. See Carbonate chloride, lead.

Lead chloride chlorite. See Chlorite chloride, lead,

Lead chloride with fluoride and iodide. See Lead chlorofluoride and Lead chloroiodide.

Lead chloride phosphate. See Phosphate chloride, lead.

Lead chloride phosphite, PbCl₂, Pb₂P₂O₄(?), Pot. (Berzelius.) Does not exist. (Rose.)

Lead chloride sulphate. See Sulphate chloride, lead.

Lead chloride sulphide, PbCl., 3PbS. See Lead chlorosulphide.

Lead chlorofluoride, PbClF.

Sl. sol, in H₂O without decomp. Easily sol, in HNO₂+Aq. (Berzelius.) Solubility in II₂O. 100 g. H₂O dissolve 0.0211 g. PbClF at

0°; 0.0370 g. at 25°; 0.1081 g. at 100°. (Starck, Z anorg. Ch. 1911, 70. 174.) Solubility in HCl+Aq at 25°. Solution of PbClF in HCl+Aq containing

0 0535 g. equiv per l. contains 0 0758 g. PbClF in 100 cc. of solvent Solution of PbClF in HCl+Aq containing 0 1060 g, equiv per l, contains 0.1006 g. PbClF in 100 cc of solvent. (Starck.) Solubility in acetic acid at 25°

Solution of PbCIF in HC2H3O2 containing 0.0518 g. equiv. per l. contains 0.05129 g. PbClF in 100 cc. of solvent. Solution of PbClF in IIC1H2O2 containing

0.1055 g equiv. per l. contains 0.0501 g PhClF in 100 cc. of solvent. (Starck.)

Solubility in PbCla+Aq.

. **	G equiv por l PhCla	G PhClF in 100 ec of solvent
. 25°	0 0100 0 0195 0 0495 0 00996 0 0196 0 0392	0 0020 0 0016 0 0002 0 0030 0 0008 0 0005

(Starck.)

Lead chloroiodide, 2PbCl₂, PbI₂

Sol in hot NHLCl+Ag. (Poggiale, J. pr 35, 320) PbCl., PbI. Sol, m hot HCl+Aq. (Engelhardt.)

Sol. m H₂O, (Thomas, C. R. 1898, 126. 1351

Lead chloroselenide.

Decomp, by boiling H₂O and by cone KOH + Ao. (Fonzes-Diacon, C. R. 1900, 130.

Lead chlorosulphide, PbCl2, 3PbS.

Partially decomp, by hot H.O. Not at-

Aq (Hunefeld, J. pr. 7. 27.) PbS, PbCl₂. Decomp by H₂O, acids, or alkalies. (Parmentier, C. R. **114**. 298.) ClPbS₂PbS₂PbS₂PbCl. Ppt. (Hofmann B. 1904, 37, 250)

Lead fluoride, PbF2 Very sl, sol in H2O, and not more in HF+

Aq. (Berzelius, Pogg. 1. 31.) 5.5 milimois are sol in 1000 ccm, H₂O (Jaeger, Z. anorg, 1901, 27. 38)

 I. H₂O dissolves 640 mg at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50. 356.) 641 mg. m 1 l. of sat. solution at 18°. (Kohlrausch, Z phys. Ch. 1908, 64. 108.) More sol in HNO₃, or HCl+Aq. Sl. sol. in

KF+Aq. (Herty, Am. Ch. J. 14, 107.) Sl. sol. in dil. HF+Aq, insol. in strong HF+Aq. 0.01302 g. atoms Pb are sol. in 1000 cc. HF. (Jaeger, Z. anorg. 1901, 27, 37.) Insol. in liquid HF. (Franklin, Z. anorg.

Insol, in liquid NHs. (Gorc. Am. J. Ch. 1898, 20, 828.)

Insol. in othylacetate (Naumann, B. 1910, 43, 311.) Insol. m acctone. (Naumann, B 1904, 37, 4329.)

Lead potassium fluoride, 3KF, HF, PbF. Decomp, H2(), stable in dry air. (Brauner, Z. anorg. 1894, 7, 7.)

Lead silicon fluoride. Sec Fluosilicate, lead.

Lead tantalum fluoride. See Fluotantalate, lead.

Lead titanium fluorida

Sec Fluotitanate, lead.

Lead fluoride sulphate. See Sulphate fluoride, lead.

Lead hydroxide, PhO-H-,

Not appreciably sol, in HoO, (Jacger, Z. anorg. 1901, 27, 38.)
1 l H₂() dissolves 0 155 g. PbO₂H₂ at 20° and 100° (Sehnal, C R. 1909, 148, 1396.)

Solubility in NaOII+Ag.

G. Na m 20 ecm	G. Pb in 20 cem.
0 2024	0 1012
0 3196	0.1736
0 5866	0 3532
0.9476	0.4071
1 7802	0.5170

(Rubenbauer, Z. anorg, 1902, 30, 336.) tacked by dil , but decomp. by conc. HCl+ Solubility of PbO.H2 in NaOH+Aq at 25°,

G mol ovel

ч	C mor per i		Solid Phase	
	Nu	Pb	South Tracks	
1	0.274	0 0181 0 287	PbO ₂ H ₂	
	0.476 0.745	0.319 0.480	"	
	1.132 1.519	0.711 0.101	"	
		0.202		

(Wood, Chem Soc. 1910, 97, 884)

Insol in acetone. (Naumann, B. 1904. 37. 4329.) 2PbO, PbO₂H₂=3PbO, H₄O. Sol. in 10,000 to 12,000 pts. H₄O. (Yorke.) Sol in 7000 pts. H₂U. (v. Bonsdorff, Pogg. 41. 307.)

0.45 millimol. Pb are sol. in 1 liter H₂O at 0.45 millimol. Fo are sol. in a neer rays is 18°. (Pleissner, C. C. 1907, II 1056). Sol. in acids. Insol. in NH₂OII+Aq, Sol. in NaOH, or KOH+Aq, Sol. in hot NH₂Cl+ Aq, and repptd. by NH₂OH+Aq. Solubility in KOH+Aq, according to Ditte (C. R. 94. 130). When KOH+Aq is gradu-

ally added to lead by decide suspended in Hg4, the lead by devicie is at inst deserved Hg4 proportional to the amount of KOH, until the strength reaches 200 g. KOH to I litre Hg4. The solubility them dimmedes and increases again until 400 g. KOH are the solved in I litre Hg4. The amorphous lead light the solution of the solution of the solution of the solution of KOH the solutidity is surblenly decreased, and then increases again (District and them care and them are reasons again (District and them are reasons again (Distri

Sol. in triethyl toluenyl ammonium hydrate+Aq.

Sol in sorbine+Aq. (Pelouze.)

Sol. in acetates+Aq. (Mercer.) Sol. in Ca, Ba, Sr, K, or Na sucrate+Aq. Not pptd. in presence of Na catrate+Aq. (Spiller.)

See also under Lead, and Lead oxide.

Lead perhydroxide, PbO₂, H₂O. See Lead peroxide.

Lead imide, PbNH

Decomp. by H₂O and dilute acids. (Franklin, Z. anoig 1905, 46, 27.)

Lead iodide, PbI:

Sol. in 187 pts boiling H₂O (Berthemot.) Sol. in 1235 pts. H₂O at ord temp, and 194 pts. at 100°. (Denot, J. pr. 1. 425.) Sol. in 2400 pts. H₂O at 18 75°. (Abl.)

Sol. in 2400 pts. H₂O at 18 75°. (Abl.) Sat. Pbl₂+Aq at 20° contains 0.0017 pt.; at 27°, 0 002 pt.; at 100°, 0.0039 pt. Pbl₂ (Lassnigne, J. chun, med. 7, 364)

11. H₂O dissolves 0.6 g. PbI₂ at 10°. (Ditte, C. R. 92, 718) 1 l. H₄O dissolves 1.58 millimois PbI₂ at 25.2°. (Von Ende, Z. anorg 1901, 26, 159.)

25.2°. (Von Ende, Z. anorg 1901, 26, 159.) 0.47 ×10⁻¹ gram are dissolved in 1 litre of sat. solution at 20°. (Böttgei, Z. phys Ch 1903, 46, 603.)

Solubility in 100 g. H₂O at t°.

f ₀	G PbI _t
0	0.0442
15	0.0613
25	0.0764
35	0.1042
46	0.1453
55	0 1755
65	0 2183
80	0.3023
95	0.3020
* 100	0.4360

By extrapolation.

(Lichty, J. Am. Chem. Soc. 1903, 25. 474.)

0 0013 g mol. PbI₂ are dissolved in 1 l. II₂O at 20° (Fedotieff, Z. anorg 1911, 73.

Not more sol. in HC₂H₃O₂+Aq than in H₂O₂, contrary to Henry. (Denot, l c.) Pptd from aqueous solution by little HI+ Au, but redissolved by the addition of more.

(Ditte, C R. 92. 718)
Insol. in cold, sol in hot HCl+Aq with

Solubility of Pbl₂ in HNO₃+Aq at 25.2°, S=Solubility in millimols, per litre.

HNO _k normal	s
0 001 0.01 0 051 0.04 KNO ₂ +	38 87 39.06 39 45
0.04 KNO3+ 0.01 HNO3	39 45

(von Ende, Z. anorg. 1901, 26, 162.)

Sol in KOH+Aq. Sol in cone KI, NaI, BaI2, SrI2, CaI2, and

MgI₂+Aq, from which it is pptd. by H₂O, (Berthemot) Very sol, in KI+Aq, 2 mols. PbI₂ being

very soi, in A1+Aq, 2 mois, Pol; being dissolved for 1 moi. KI. (Boullay) Sol, in NH, 1+Aq, Easily sol, in Na₂S₂O₈+ Aq. (Werner, C N. 53, 51.) Not pptd in presence of Na citrate. (Spil-

Not pptd in presence of Na citrate. (Spiller) Solubility in sat. I₂+Aq at 20°=0.00216 g

mol per l Solid phase PbI₂+I₂. (Fedotieff, Z anorg. 1911, 73, 178.) Very easily sol. in liquid NH₃. (Franklin,

Am. Ch. J 1898, 20, 828.)
Sl sol. in alcohol. (Henry.) Decomp. by boiling ether (Vogel)

100 g. formic acid dissolve 0 25 g at 19 8°. (Aschan, Ch Ztg. 1913, 37. 1117.) Insol. in CS₂. (Arctowski, Z. anorg. 1894, 6, 257.)

SI. sol. in benzontrile. (Naumann, B. 1914, 47. 1369.)
Difficultly sol. in methyl acctate. (Naumann, B. 1909, 42. 3790.)
Insol. in ethyl acctate (Naumann, B.

1910, 43. 314.)
Insol in acctone. (Naumann, B. 1904, 37. 4329.)
0.02 pts. are sol in 100 pts. sections at 50°

0.02 pts. are sol. in 100 pts. acetone at 59°. 0.02 pts. are sol. in 100 pts. amyl alcohol at 133 5

0.50 pts. are sol. in 100 pts. amline at 13°.
1.10 pts. are sol. in 100 pts. amline at 184°.
(Laszczynski, B. 1894, 27. 2287.)

Solubility of Fort in pyrionic at t			
, to	G PbI ₂ per 100 g pyridine	Solid phase	
-37 -20 - 9 0 + 3 6	0 166 0 175 0 186 0 200 0 215 0 225	PbI ₂ , C ₈ II ₄ N " " " " " " " " " " " " " " " " " "	
15 35 57 77 92	0 208 0 188 0 190 0 228 0 290	PbI ₂ , 2C ₅ H ₆ N	

stabilities of DhT in namedon at 49

(Heise, J. phys. Ch. 1912, 16, 273)

Lead hydrogen iodide, PbH₂I₄ = PbI₂, 2HI Cold H₂O dissolves out HI. Sol in hot H₂O, from which crystallizes PbI₂ (Guyot, J. chim. med. 12, 247.) +10H₂O Decomp. by H₂O. (Berthelot, CR. 91, 1024.)

0.340

0 370

0.410

0 445

98

105

108

Lead lithium iodide, PbI2, LiI+5H2O.

Loses 1 mol. $\rm H_2O$ at 95° and loses another mol. $\rm H_2O$ at 100°. (Bogorodski, C. C. 1894, II. 515.). $\rm Pbl_2$, $\rm 2LaI+6H_2O$. Sl. sol in $\rm H_2O$ (Mosnier, C. R. 1895, 120. 446.)

Lead magnesium iodide, PbI₂, 2MgI₂
Decomp by H₂O and by alcohol. (Mos-

mer, A. ch 1897, (7) 12, 402.) +16H₈O. Very hygroscopic. Decomp. mmediately by H₂O. (Otto and Drewes, Arch. Pharm, 229, 180)

Lead nickel iodide, PbN1₂I₄+3H₂O. Decomp. by H₂O. (Mosnier, A. ch. 1897,

(7) 12. 411.)
Lead potassium iodide (Potassium iodoplum-

bite), PbI₁, KI
Permanent Completely decomp. by H₂O.
Unasted upon by cold, but completely decomp. by hot alcohol. (Boullay, A. ch.

(2) 34. 360.) +2H₂O. The only salt that could be obtained by Remsen and Herty (Am. Ch. J 14. 110.)

Ph1₂, 2KI. Sl. sol. in boiling chloroform; easily sol in strong KI+Aq, msol. in alcohol. (Brooks, C N 1898, 77. 191) +2H₂O. Decomp. by H₂O. (Berthelot,

A. ch. (5) 29. 289)

Does not exist (R. and H.)

+4H₂O. (Ditte, C. R. 92, 134) Does not exist. (R. and H.)

PbL₂, 4KI. Decomp. by H₂O, insol. in alcohol. (Boullay.) Does not exist (R. and H.) 3PbL₂, 4KI+6H₂O. (Berthelot, l. c.) Does not exist. (R. and H.)

Lead potassium periodide, K₂Pb₂I₃+4H₂O.

Decomp. by H₂O or alcohol (Wells, Z. anorg. 4, 346.)

Lead rubidium iodide, PbI₂, RbI+2H₂O, (Wells, Sill, Am. J 146, 34.)

Lead silver iodide, PbI₂, 2AgI. (Ruff and Gesel, B 1905, 38, 2663.)

Lead silver iodide ammonia, PbI₂, 2AgI, 5NH₃.

(Ruff and Geisel, B. 1905, 38, 2663.)

Lead sodium iodide, PbI₂, NaI. Decomp. by H₂O. (Poggale, .C. R. 20. 1180.)

+rII₂O. (Remsen and Herty, Am Ch. J 14. 124.) Pbl. 2NaI+6H₂O. Sl. sol in H₂O.

PbI₂, 2NaI+6H₂() Sl sol u (Moisnier, C. R. 1895, **120**, 445.)

Lead iodide ammonia, PbI₂, 2NH₂.

Decomp. by II₂O (Rammelsberg, Pogg. 48, 166.)

Lead sodide carbonate.

See Carbonate iodide, lead.

Lead iodosulphide, PbS, 4PbI₂.

Decomp by light, heat, acids and alkalies.

(Lenher, J. Am. Chem. Soc. 1895, 17, 512.) Sol in conc. H1; msol in dil. H1+Λq. (Lenher, J. Am. Chem. Soc. 1901, 23, 681.) IPbS₂PbS₂PbI. Ppt. (Hofmann, B. 1904, 37, 251)

Lead suboxide, Ph₂O.

Decomp. by H₂O into PbO₂II₂.
Decomp. by dil H₂SO₆ HCl, HNO₆,
HCl₂H₂O₂+A_G, or alkalies, into PbO, which
dissolves, and Pb, which dissolves or not,
according to the reagent Sol in dil
Pb(NO₂)₂+A_G.

Lead monoxide (Litharge), PhO

Sol. m 7000 pts. H₂O. (Horsford.) Pure PbO is msol. m H₂O. (Brandecke, Repert. **53**. 155, Siebold, Repert, **53**. 174; Herbergen, Repert. **55**. 55) Sl sol. m H₂O. (Yorke, Phil. Mag (3) **5**. 82.)

0.31 millimoles Pb are dissolved in 1 liter H₂O at 18°. (Pleismer, C. C. 1907, II. 1050.) 171×10. g. are dissolved in 1 litre of sat. solution at 20°. (Bottger, Z. phys. Ch. 1903, 46, 603.)

Easily sol, in acids,

Sol in KOH, or NaOH+ Au, also in CaO₂H₂ + Aq Sol in bodone CucNO-1, i-Au with notity of

Sol. in CaCl. and SiCl.+An (Andre. R. 104, 359.)

Sol in boiling Cu(NOs).+Au with pptn of ChO

Partially sol in Cd: NO₃), and Mn(NO₃). +An with potn of CdO and MnO re-pec-

Not acted upon by Mg. Ag. Co. Ni. or Ce mitrates + Aq. (Person.) Very sol in Pb(C2H3O2)2+Aq. (Rochle-

due) Insol in hould NIL (Franklin, Am. Ch J. 1898, 20, 828.) Insol. in acctone (Eidmann, C. C 1899,

11, 1014) When finely pulverised, sol in cane sugar +Aq, but less than Ph₂O₄. (Peschici)

Sl. sol, in glycerine. Readily sol, in glucose +Aq. (Persoz) Sol in volatile oils (Schweitzer,) Yellow modification

Solubility in H-O at 22°

Solubility in gcour per htre Yellow PbO, obtained by 1 03 x 10-1 boiling lead by droxide with 10% NaOH 2. Yellow PbO, obtained by 1 05 x 10-4 heating 1 at 630° 3. Yellow PbO, obtained by 1.00 x 10-4 heating at 740° red PbO formed by boiling lead hydroxide with cone. 4. Yellow PbO obtained by 1 09 x 10-1 heating pure, commercial, yellow-brown PhO at 620°.

(Ruer, Z. anorg, 1906, 50, 273.)

Red medification. Obtained by boiling lead hydroxide with cone. NaOH+Aq.
Solubility in H₂O at 22°=0.56×(10⁴ g. equiv. per l. (Ruer, Z. anorg 1906, 50, 273.) Yellow-brown modification. Solubility in H₂O at 22°=1.10×10 ⁴ g equiv per litre (Ruer, Z. anorg. 1906, **50.** 273.) See also Lead.

Min. Massicot

Lead oxide (Red lead), Pb.O. Insol, in H₂O.

Converted by acids into PbO, and salts of monoxide.

Sol. in a large amt, of glacial acetic acid. (Berzelius.) Insol. in acetic acid. (Schonbein, J. pr. 74, 325.)

Solution in HC-H₂O₂+Ag may decompose or not according to concentration of acid. When treated with an excess of HC:H3O++ Ag of So B. Plu(), is quickly dissolved, but the solution soon deposits PbO2, this decomposition is inclitated by dilution. But Sol in MgCl.+Aq. (Voigt, Ch. Zig 13. (it Ph.O. is treated with a large excess of placial HC-IL-Os, it dissolves, and the solution is permanent if atmospheric air is excluded, and temp, does not rise above 40° (Jacquelain, J. pr. 53. 152)

Insel in acctone, (Eidmann, C. C. 1899. II. 1014; Naumann, B. 1904, 37, 4329) Eauly sol, in cane sugar + Aq. (Peschier.) Min. Minium.

Lead sesquioxide, Pb2O2.

Insul in H₂O or in KOH+Au.

Decomp, by strong acids into PbO, and corresponding salt of monoxide.

Lead peroxide, PbO2.

mols, crystalline PbO₂.

Insol. in II₂O. Sol. in acids, also in conc. alkalı hydroxides+Aq The solutions in acids are very unstable, except when concentrated and kept at a low temperature. Decomp. by cold HCl, HCN, HBr, and HI+ Aq Not attacked by other acids when cold, but decomp thereby when hot. Insol.

in moderately conc. HNO₅, H₂SO₄, or HC₂H₅O₂+Aq There are two forms of PbO2, the amorphous and the crystalline. 1 l. of very cone H2SO4 dissolves 10 milli-

Solubility of amorphous PbO2 in H2SO4+Aq

at 22°. 99 5 millmols PbO2 are dissolved m 1 l, of acid containing 1720 g. II₂SO₄ 4 millimols PbO2 are dissolved in 1 l of

acid containing 1097 g. H-SO. v = moles H₂SO₄ per mole of H₂O₄

١ .	e	v	c
0 32	0 82	0 20	8 10-4
0 30	0 4	0 15	5 10-4
0 25	7 10-2	0 10	1 10-6

(Dolezalek and Finckli, Z anoig 1906, 51. 323-5.)

Decomp. by NH₄OH+Aq. Sol. in cone. KOH, or NaOH+Aq. Sol. with decomp. in Hg2(NO3)2+Aq. (Levol.)

Insol. in acctone. (Eidmann, C. C. 1899. II, 1014; Naumann, B. 1904, 37. 2943.) Min. Plattnerite.

Lead manganese peroxide, PbO₅, 4MnO₅, Ppt. (Gibbs and Parkmann, Sill, Am. J. (2) 39. 58.)

Lead oxybromide, PhBrs. PhO.

Insol in H2O. +1, 114, and 3H4O (André, C. R. 96, C. R. 1913, 157, 721.) 1503.)

Z. anorg. 1904, 38, 436.)

Lead oxychloride, 2PbCl, PbO+2H-O. (André, C. R. 96, 435.)

PbCl, PbO. Absolutely insol in hot or cold H2O. (André, A. ch. (6) 3. 108.)

Mm. Matlockite Min. Manocente. +H₂O. Sol. in hot NaOH+Aq. (André) 0 38 millimols. Pb are dissolved in 1 litre H₂O at 18° (Plessner, C C 1907, II. 1085) PlCl₂, 2PbO. Insol. in H₂O. Sol. in dil KOH+Aq (about 110 g. in 11.) (Ditte, C. R.

Min. Menderate Easily sol, in HNO++Ag

+2H₂O. (André, A. ch. (6) 3. 111.) PbCl₃, 3PbO. Insol, in H₂O. (Dober-+12H₂O. 1901, 38. 435.) Ppt, (Stromholm, Z. anorg

+2H₂O 0 10 millimols Pb are dissolved m 1 litre H2O at 18° (Pleissner, C C. 1907,

II. 1056. +3H₂O. Ppt. (André. C. R. **104.** 359.) +4H₂O. Nearly insol. in H₂O. Sl. sol.

in NaOH+Aq. (Vauquelin.) PbCl₂, 5PbO. (Döbereiner.) 6PbO, PbCl₂+2H₂O Ppt. Ppt. (Stromholm. Z. anorg. 1904, 38, 434.)

PbCl2 7PbO. Cassel-uellow. Lead strontium oxychloride, 2PbO, SrCla+

5H₂O. (André, C. R. 104, 359.)

Lead oxychloride, iodide, PbCl2, PbI2, 4PbO. Min. Schwartzenbergite. Sol. in dil. HNO.+Aq.

Lead oxylodide, PbI2, PbO Insol in boiling H₂O or KI+Aq. (Brandes,

A 10. 269.) +1/2H2O. (Ditte, C. R. 92. 145.) +H,0

PbI₂, 2PbO. Insol. in H₂O. (Denot, J. Pharm. 20, 1.) +H,0.

8PbO+2H2O. Ppt. (Kuhn, C. C. PbI₂, 5PbO. Insol. in H₂O. +7H₂O. (Ditte, C. R. **92**, 145, 6PbO, PbI₂+2H₂O. Ppt (3 5PbO. Insol. in H.O. (Denot.)

(Strömholm, Z. anorg. 1904, 38. 437.) 9PbO, PbI2+2H2O (Strömholm, Z. anorg. 1904, 38. 437.)

Lead oxyperiodide, PbO, PbI2I2.

Decomp, by boiling H₂O. Sol. in dil. HC.H.O.+Aq. (Groger, W. A. B. 100, 2b. 415)

Lead phosphide, PhPs.

Decomp, by H₂O and dil acids. (Bossuet,

6Pb(), PbBr₂+2H₂O. Ppt. (Stromholm, Lead phosphoselenide, PbSc. P-Sc.

Insol in H₂O or HCl+An. Sol in HNO₂+ Aq.

nsol, in cold, slowly decomp, by hot alkalies+Aq. (Hahn, J. pr. (2) 98, 436.) 2PbSe, P₂Se₃ Insol. in H₂O, HCl. or HNO₃+Aq Sl HNO₃ (Hahn.) Slowly sol. in red fuming 2PbSe, P2Se5. Decomp. by fuming HNO1.

Lead selenide, PhSe.

(Hahn.)

Cold HNO2+Aq dissolves Pb with separation of Sc. which dissolves on warming. (Little, A. 112, 212.) Min. Clausthalite. Sol. in HNO2+Ac

with separation of Sc. when warmed. Lead mercury selenide, (Pb, Hg)Se.

Mm. Lehrbachite. Lead sulphide, PbS

Very sl. sol. in H2O 1 l, H₂O dissolves 3.6×10⁻¹ moles. PbS at

18°. (Weigel, Z. phys. Ch 1907, 58, 294.) 1 l. H₂O dissolves 3×10-4 g PbS at 25°. (Hevesy, Z anorg. 1913, 82, 328.) Insol. in dilute acids, alkalies, and alkali sulphides+Aq Decomp. with solution in moderately dil. HNO₂+Aq. With conc. HNO₂ or aqua regia, PbSO₄ is formed. Sol.

in hot cone, HCl+Aq. 1 l. H₂O sat, with H₂S dissolves 1.5×10-4g. PbS at 25° (Hevesy, Z. anorg. 1913, 82.

Insol. in NH4Cl, or NH4NO3+Aq. (Brett.) Somewhat sol. in H2S+Aq when heated therewith in a sealed tube. (Senarmont, A. ch. (3) 32, 168.)

Insol, in potassum thiocarbonate +An. (Rosenbladt, Z. anal 26, 15 Sol in Na-S-O₃+Aq (Waller, J Anal. Ch. 5, 646.)

Insol, in liquid NH2. (Franklin, Am. Ch. J. 1898, 20, 828. Min Galena, Galenate.

Lead polysulphide, PbS1.

Ppt.; insol. in alkali sulphides; decomp. by cone, HNO. (Bodroux, C R, 1900, 130. 1398.)

Lead platinum sulphide. See Sulphoplatinate, lead.

Lead sulphide mercuric chloride, 3PbS, 4HgCl₂.

Decomp. by H2O. (Levallois, C. R. 96. 1666)

Lead sulphobromide, chloride, or iodide. See Lead bromosulphide, etc.

Lead disulphodeimide, PbN St. NHa

Very stable in the air or in a vacuum Sol in no solvent without decomp

When rapidly heated it explodes very violently at 140° (Ruft, B 1904, 37, 1581)

Lead telluride, PhTe

Insol in H.O. Sol in cold HNO++Au (Rose, Pogg 18, 68) Mm. Altante. Easily sol in HNO3+Aq.

"Leucone,"

Wohler (A. 127, 268) gives this substance the formula H10St.O10, but it is identical with silicoformie anhydride, Si₂H₂O₃, which see

Lime.

Quicklime, CaO See Calcium oxide. Slaked time, CaO₂H₂ See Calcium hydroxide.

Lithium, L

Decomposes II-O.

Easily sol in dil acids. Slowly attacked by cone H2SO4, rapidly by cone HNO2+Aq Insol, in hydrocarbons. Sol in liquid NH2, but not so easily as K.

Sol in hquid NH2. (Franklin, Am Ch.) J. 1898, 20, 820,

1 gram atom dissolves

at 0° m 3 93 mol liquid NH₃ " --25° " 3 93 " " --50° " 3 93 44 " " --- 80° " 3 93 44 **

(Ruff, B 1906, 39, 840) Sol in ethylamine Insol, in propylamine

Lithium amalgam, LiHgs.

J. Am. Chem. Soc. 1907, 29, 1561.)

LiHgs is obtained at all temp, up to 100° Can be cryst from Hg without decomp. at any temp, below 100°, (Kerp, Z anorg, 1900, 25, 68.)

Lithium amide, LiNH2.

(Ruff. B. 1911, 44, 505.) Decomp, slowly in the air. Slowly decomp, by cold, rapidly by hot

H20. Slowly decomp. by HCl.

Slowly decomp by cold, rapidly by hot abs, alcohol. (Titherley, Chem. Soc. 1894. 65. 518.)

Trilithium amide, Li.NH.

Hydroscopic; decomp, by H₂O. (Dafert, M. 1910, 31. 994.)

Lithium ammonia, Li, NH2

Decemp by H2O at ordinary temp; sol. m hquid NH3. (Mossan, C. R. 1898, 127. 680 1

La. 3NH₂. (Moissan, C. R. 1901, 133, 716.) Trelithium ammonium, LiaNH.

Very hydroscopic, decomp. by H₂O. (Dafert. M. 1910, 31, 992.)

Lithium antimonide, Li₂Sb.

Decomp. by H2O with evolution of H2. Sol in liquid NH₄. (Lebeau, C. R. 1902, 134.

Lithium arsenide, Li3As

Decomp. by H₂O; decomp. violently by fuming HNO₃. (Lebeau, C. R. 1899, 129. 50.)

Lithium azoimide, LaNa.

Deliquescent. Stable in aq solution. 36 12 pts. are sol. in 100 pts. H₂O at 10° 62 07 " " " " 100 " H₂O " 15. 66 41 " " " 100 " H₂O " 16° H₂O " 15.5 abs alcohol 20.26

at 16° Insol. in ether. (Curtius, J pr. 1898, (2) 58. 277.]

+H₂O. Very hydroscopic; decomp. in the air. Very sol in H.O and alcohol. (Dennis, Z. anorg 1898, 17. 18)

Lithium bromide, LaBr.

Dehouescent 100 pts. H₂O dissolve at:

82° θ° 34° 59° 103 244 270 pts. LiBr. 143 196 222

Sp. gr. of LiBr+Aq at 19.5° containing 0 10 15 20 25 30% Li U 10 15 20 25 30% LiBr, 1 035 1 072 1.113 1.156 1.204 1.254 and in secondary and tertiary amines. (Kraus, 55% LaBr.

40 45 50 1 309 1.368 1 432 1.500 1.580 (Kremers, Pogg 103. 65; 104. 133: Gerlach.

Z anal. 8, 285) Temp of maximum g -mol LiBr dissolved

in 1000 g. H₂O. density of LiBr+Aq. 0.29411.921° 0 881° 0.4383

(de Coppet, C. R. 1900, 131, 178.) Moderately sol. in liquid NH2. (Franklin,

Am. Ch. J. 1898, 20. 828.) Sol. in benzonitrile. (Naumann, B. 1914,

47. 1369) Solubility in glycol at 14.7°=37 5%. (de Connek, Belg. Acad. Bull. 1905, 359.

Sol. in acetone. (Naumann, B. 1904, 37. 4328; Eidmann, C. C. 1899, II. 1014.) Sol, in methyl acetate (Naumann, B. 1909,

42. 3789); ethyl acetate. (Naumann, B 1904 37. 3601.)

Difficultly sol, in ethyl acetate.	(Nau-
mann, B. 1910, 43, 314.) +II.O. 100 g. H ₂ O dissolve 209	g. LiBr
at H ^o (Bogorodski, C. C. 1894, H +2H ₂ () (Bogorodski,)	514.)
+3H ₂ O 100 g H ₂ O dissolve S0	g. LaBr
at -30°, and 122 g at -10° (Boge	modski.)

Lithium molybdenyl bromide, LiBr, MoOBr, +4H₂O.

Very hygroscopic. (Weinland and Knoll, Z anorg. 1905, 44, 111.)

Lithium bromide ammonia.

LiBr, NH3.	Sol.	ın	H_2O	with	decomp.
LiBr. 2NH.	**	"	"	"	и
LaBr. 3NH3.	"	"	**	**	**
LiBr. 4NH.	44	ш	**	**	44

(Bonnefor, C. R. 1900, 130, 1395.)

Lithium carbide, LiC2.

Insol. in conc. acids.
Sol, in fused oxidizing agents; decomp. H₂O
in the cold. (Moissan, C. R. 1896, **122**, 363.)

Lithium subchloride, LigCl.

Decomp. by H₂O. (Guntz, C. R. 1895, 121. 945.)

Lithium chloride, LiCl.

Very deliquescent. Most deliquescent salt known to Berzelius. Very sol in H₂O. Sol. in 1.315 pts H₂O at 15°, (Gerlach.) 100 pts. H₂O dissolve at: 0° 20° 65° 80° 69° 140° 160° 63 7 80.7 104 2 115 129 139 145 pts LaCl

(Gerlach, Z. anal. 8, 281.)

Sp. gr. of LiCl+Aq at 15° containing:

1 5 10 15 20% LaCl, 1.006 1.030 1.058 1.036 1.117 25 30 35 40% LaCl, 1.148 1.182 1.219 1.256 (Gerlach, Z. anal. 8. 281.)

Sp. gr. of LiCl+Aq at 18° containing: 5 10 20 30 40% LiCl. 1.0274 1.0503 1.115 1.181 1.256 (Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of LiCl+Aq at 25°.

Concentration of LaCl+Aq	Sp. gr
1-normal 1/2- " 1/4- " 1/6- "	1.0243 1.0129 1.0062 1.0030
(NT 7 1 CI	4000 F 00)

(Wagner, Z phys. Ch. 1890, 5. 38.)

Sp. gr. of LiCl+Ag.

g, IaCl m 1900 g, of solution	Sp gr 16°/16°
0 2.3023 6 2360	1 000000 1 001405 1 003647
10 1093	1 005921

(Dijken, Z. phys. Ch. 1897, 24, 109.)

Sp. gr. of IaCl+Aq at 0°.

% LiCl 4.26 12.18 22.2 32.5 41.4 43.2 Sp. gr. 1.026 1.073 1.133 1.203 1.267 1.282 (Lemoine, C. R. 1897, 125, 603.)

Sp. gr. of LiCl+Aq at 20°.

Normality of LiCl+Aq	'; LiCi	Sp gr
10 35	35 97	1.2230
7.17	26 40	1.1550
5 57	21 10	1.1215
2 98	11.83	1.0691
1 06	4 37	1.0232

(Forehheimer, Z. phys. Ch. 1900, 34. 25)

Sp. gr. 20°/4° of a normal solution of LiCl= 1.022375. (Haigh, J. Am. Chem. Soc. 1912, 34. 1151.)

Sp. gr. of dil. LiCl+Aq at 20.004°. Conc.=g. equiv. LiCl per l. at 20.004°. Sp. gr. compared with H₂O at 20.004=1.

Cone	Sp. gr
0 0000 0.0001 0.0002 0 0005 0 0010 0 0020 0 0050 0 0100	1 000,000,0 1.000,002,5 1.000,005,0 1.000,012,6 1 000,012,6 1.000,050,5 1.000,125,8 1.000,251,0

(Lamb and Lec, J. Am. Chem. Soc. 1913, 35.

B.-pt. of LiCl+Aq.

% LICI	B-pt.	% LiCi	B-pt
3 38	101°	16.66	107°
6 54	102	19.35	109
13.04	105	21.8	111

(Skinner, Chem. Soc. 61, 341.)

Sat, LaCl+ \(\)q bods at 171 \(\) (Kremers.)

B.-pt. of LaCl+ \(\)\ \(\) \

B -pa	Р	B pt	l,	B pt	P
1010	3.5	121°	48.5	1170	87.5
102	7	125	50	HS	90
103	10	126	51.5	149	92.5
104	12 5	127	53	150	95
105	15	128	51.5	151	97.5
106	17 5	129	56	152	100
107	20	130	57.5	153	102 5
108	22	131	59	154	105
109	24	132	60.5	155	107 5
110	26	133	62	156	110 5
111	28	134	63.5	157	113 5
112	30	135	65	158	116.5
113	32	136	66.5	158.5	117.96
114	33 5	137	68	159	119.5
115	35	138	69,75	160	122.5
116	36.5	139	71.5	161	1255
117	38	140	73.25	162	128 5
118	39.5	141	75	163	131 5
119	41	142	77	164	135
120	42.5	143	79	165	138.5
121	4.1	144	81	166	142.5
122	45 5	145	83	167	146.5
123	47	146	85	168	151

(Gerlach, Z. anal 26, 437.)

Solubility of LiCl in HCl+Aq at 0°

Mg mol	per 10 cc ttion	G per l	O ee of tion	Sp gr of
LiCl	HCl	1 ₁ C!	HC	Solution
120 97 5 67.0 58 0	0.0 22.5 66.0 81.0	51.0 41.4 28.5 24.6	0 0 8.2 24 1 29 5	1 255 1 243 1.249 1.251

(Engel, A. ch. (6) 13, 385.)

See also LiCl+H₂().

Sl. sol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, 20, 828)
Sol. in absolute alcohol, ether, and alcohol-

ether.

B,-pt. of alcoholic solution of LiCl.

% LiCi			% LiCi	B-pt	
2.4 5.39 8.01	78 43°+0 " +2 " +4	70° 15 18	9 93 15.94	78.43°+ 5 " +11	55° 75

(Skinner.)

Solubility in alcohol+Aq decreases to 40% alcohol+60% H₂O. Curve shows munimum at 30% H₂O to 70% alcohol. The sat, pure H₂O and pure alcohol solutions cooled to 0° deposit LGI, H_QO and LGI, 4C₃H_QO respectively. (Pina de Rubres, C. A. 1914, 743, 3006.)

Solubility in ethyl alcohol.

Temp 1.00° 5.07° 13.0° 25.0° 40 6° 62.6°

LiCl 14 14 13 14 15 18

(Lemoine, C. R. 1897, 125, 605.)

100 g ethyl alcohol dissolve at 5° 10° 15° 17°

0° 5° 10° 15° 17° 14.42 15.04 10.77 18.79 20.31 g. LiCl, The solid phase from 0°–17° is LiCl, 4C₂H₀O

20° 30° 40° 50° 60° 24 28 25.10 25.33 24.40 23.46 g. LiCl, The solid phase from 20°-60° is LiCl, 'Turner and Bissett, Chem Soc. 1913, 103

Solubility in ethyl alcohol+Aq at 25°.

100 g. of the solution contain			
G Carlon	G H ₂ O	G LiCi	
0 5 96 11 07 17 46 18 56 22 16 26 29 28, 97 29, 27 30, 10 30, 51	55 10 51 52 48 73 43 90 43 70 41 17 39 51 37 42 36 89 36 64 35 67	44 90 42 52 40 20 38 64 37.74 36 67 34 70 33.61 33.84 33.26 33.82 32.26	
32 79 38 40 49 27 50.32 53.50 58.15 59 78 63 09 70 24 70.70 70 74 79 26	34 95 31.58 24.67 24.04 20.94 18 47 17.46 14.83 8 66 8.26 7 78	32 26 30 02 26 06 25 64 25.56 23 38 22 76 22 08 21 10 21 04 21 48 20 74	

The solid phase in the mixtures which ar richest in alcohol is LiCl; in the other mixtures the solid phase is LiCl+H₄O.

(Pma de Rubies, C. C. 1915, I. 521.)

Sp. gr. of LiCl in ethyl alcohol (LiC 2C2H6O).

% salt	Sp gr. at 14°	Sp gr at 0°
0	0 797	0.809
5.2 10 1	0 839 0 871	0.851 0.881
14 6	0 903	0.903

(Lemoine, C. R. 1897, 125, 605.)

Solubility in methyl alcohol at t°		
t,o	% IaCl in sit solution	
, 1 23	26 27	
50	30	

(Lemoine, C. R. 1897, 125, 604.)

Sp. gr. of LaCl in methyl alcohol (LaCl. 3CH.0) % salt 14.5 22.1 Sp. gr at 21.5° 0.836 0.910 0.974 Sp. gr. " 0° 0.854 0.926 0.988

(Lemoine, C. R. 1897, 125, 604.) 15 86 g. are sol. m 100 g. propyl alcohol. (Schlamp, Z. phys. Ch. 1894, 14, 276.) Sol. in 15 pts. fusel oil (Gooch, Am Ch. J

9, 33.) 100 g, methyl alcohol dissolve 42.36 g. LiCl

at 25 100 g, ethyl alcohol dissolve 25,83 g. LiCl at 25°

100 g. propyl alcohol dissolve 16.22 g. LiCl at 25° 100 g. isoamyl alcohol dissolve 9.03 g. LiCl

at 25°. (Turner and Bissett, Chem. Soc. 1913, 103.

Solubility of fused LiCl in alcohols at 25°

Solvent	G LiCi
Water	45.0
Ethyl alcohol	2.475
Propyl alcohol	3 720
Butyl alcohol	9.56
Amyl alcohol	8 26
Allyl alcohol	4 20
Glycerine	4 14
Phenol (at 53°C)	1 89

(Patten and Mott, J. phys. Chem. 1904, 8. 158)

100 pts, pyridine dissolve 7.78 pts. LaCl at 15°; 14.26 pts. LiCl at 100°. (Laszczynski, B. 1894, 27. 2288.)

. 1894, 27. 2288.) Soluble in anhydrous pyridine, 97% pyridine+Aq, 95% pyridine+Aq, and 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc. 1908, 30, 1107.)

Difficultly sol, in methyl acetate (Naumann, B. 1909, 42. 3789); ethyl acetate. (Naumann, B. 1910, 43. 314.) Sol. in ethyl acetate. (Naumann, B. 1904,

37. 3601.)

Solubility in glycol at 15°=11%. (de Coninck, Belg. Acad. Bull. 1905, 359.) Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.) Sol. in ethylamine. (Shinn, J. phys. Chem.

1907, 11, 538.) Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

Solubility of LiCl in acctone.		
sol in 100 pts netons	t ₀	
4 60	0	
4 40	12	
4 11	25	
3 76	46	
3.12	53	
2 14	58	

(Laszczynski, B 1894, 27, 2287.)

+H₂O. 13.536 millimols, are contained in 1 l. sat. solution at 25°. (Herz, Z. anorg, 1912, 73. 274.)

Solubility in HCl+Ag at 25°.

fillimols HCl in 10 ccm	Millimols LiCl in 10 cen
	135 36
6 30	134.14
10 53	126.52
17 64	122.58

(Herz, Z. anorg, 1912, 73, 274.)

+2H₂O. Sol. in acctone. (Krug and M'Elroy, J. Anal. Ch. 6, 184) +3H₂O. (Bogorodski, C. C. 1894, II. 514)

Lithium gold chloride.

See Chloraurate, lithium.

Lithium manganous chloride, LiCl. MnCl++ 3H₂O.

Decomp, by H2O; stable only in excess of LiCl. (Chassevant, A. ch. (6) 30, 10.)

Lithium mercuric chloride, 2LiCl, HgCl2. Very deliquescent and sol, in H₂O. (Harth, Z. anorg. 1897, 14, 323.)

Lithium nickel chloride, LtCl, NiCl2+3H2O. Deliquescent. Sol. in H₂O and alcohol. (Chassevant.)

Lithium thallic chloride, 3LiCl, TlCl,+ 8H₂O

Very deliquescent. Sol in H₂O. (Pratt. Am. J. Sci 1895, (3) 49, 404.)

Lithium stannic chloride.

See Chlorostannate, lithium.

Lithum uranous chloride, Li2UCle. As K salt. (Alov. Bull. Soc. 1899, (3) 21,

Lithium uranium chloride, UCl., 2LiCl.

Very hydroscopic; sol. in H₂O with decomp. Sol. in acetic acid. Decomp. by alcohol. (Aloy, Bull Soc. 1899, (3) 21. 264.)

(Ephram, Z

Lithium zinc chloride, LiCl, ZnCl2+3H2O Extremely deliquescent anorg 1908, 59, 68)

3LiCl, ZuCl₂+10H₂O (?) Not obtained in solid state (Ephram, Z. anorg 1908, 59.

Lithium chloride ammonia.

LtCl, NHa LtCl, 2NH LtCl. 3NH

LiCl, 4NH,

Above salts are all decomp by H₂O, (Bonnefoi, C R 1898, 127, 367-369)

Lithium chloroiodide, LiCl4I+4H2O

Deliquescent (Wells and Wheeler, Sill Am J. 144, 42.)

Lithium fluoride, LaF.

Very difficultly sol in H₂O, (Berzelius, Pogg. 1. 17) Two crystalline forms Only very st sol in H₂O. Very st decomp by H₂O at red

heat. (Poulene, Bull. Soc 1894, (3) 11. 17) Sp. gr of solution sat at 18°=1,003 and contains 0.27° LaF. (Mylius, B 1897, 30, 1718)

Sol m 800 pts H₄O, and the presence of NH₄F and NH₄ decreases solubility to 1 3500 (Carnot, Bull. Soc. 1889, (3) 1. 250.) Two crystalline forms are very al sol, in HCl, easily sol, in HNOs. (Poulenc, Bull,

Soc. 1894, (3) 11, 17,) Two crystalline forms are insol in 95% alcohol. (Poulenc.)

Insol in methyl acetate. (Naumann, B. 1909, 42, 3700) Difficultly sol, in ethyl acetate, (Naumann,

B. 1910, 43, 314.) Insol. in acctone (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

Lithium hydrogen fluoride, LiHF2.

Difficultly sol in H2O, but more easily than LiF. (Berzelius)

Lithlum silicon fluoride. See Fluosilicate, lithium.

Lithium stannic fluoride. See Fluostannate, lithium.

Lithium tantalum fluoride. See Fluotantalate, lithium.

Lithium uranyl fluoride, UO2F2, 4LiF. (Ditte)

Lithium zirconium fluoride. See Fluozirconate, lithium.

Lithium hydride, LiH.

Decomp. by H2O. Not deliguescent Guntz, C. R. 1896, 123, 997.)

Lithium hydrosulphide, LiSH (?). Deliquescent. Sol in H₂O and alcohol. (Berzelius, Pogg. 6, 139)

Lithium hydroxide, LiOII.

Not so deliquescent as NaOH, and apparently not more sol in hot than cold H.O.

(Gmelin, Gilb 62. 399) Not deliquescent. (Arfvedson, A. ch. 10.

The solubility of LiOH in H₂O can be expressed by y=66750+000346t+0.0003t2, where v = the percentage of Li₂O in a saturated solution (Dittmar, Jour, Soc. Chem. Ind. 7, 730.)

Solubility of LiOH in H2O at to.

10	G per 100 g Solution		G LOH per
,	La ₂ O	LiOH	100 g. H ₂ O
0	6 67 6.74	10 64 10.80	12 7 12 7
10 20	6.86	10.99	12 8
25 30	6 95 7 05	11.14 11.27	12 9 12.9
40 50	7 29 7 56	11.68 12.12	13.0 13.3
60 80	7.96 8.87	12 76 14 21	13.8 15.3
100	10.02	16 05	17.5
(S	eidell's Solub	ilities, 1st Ed	174.)

A sat aq solution contains 7.09% LiOH, (Schreinemakers, C. C. 1905, II, 1486.)

Sp gr, of LiOH+Ag at 18° containing: 1.25 5 75% LiOH 1 0132 1.0276 1.0547 1.0804

(Kohlrausch, W. Ann. 1879. 1)

Solubility in LisSbS4+Aq at 30°. Lion Lishs. Solid Phese 11 4 LiOH, H₂O 9 1 8 3 2 3 29 9 48 3 2 1 52 1 LiOH, H2O+Li2SbS4, 10H2O 1 4 Li.SbS4, 10H2O 51.8 51 3

(Donk, Chem. Weekbl. 1908, 5, 529, 629, 767,)

Sl. sol. in alcohol: insol. in alcohol-ether. (Mayer.)

Insol. in methyl acetate (Naumann, B, 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, 37, 3601)

Insol. in acetone (Naumann, B. 1904, 37, 4339; Eidmann, C. C. 1899, II 1011.) Cryst. also with H₂O, and ½H₂O. (Gottig, B. 20, 2912)

Lithium imide, Li-NH

Decomp. at high temp. Insol. in toluene benzene, ether and ethyl acetate. Decomp CHCl₅. (Ruff, B 1911, 44, 506)

Lithium iodide, Ltl.

Deliquescent.

Solubility in 100 pts. H₂O at: 0° 19° 40° 59° 75° 80° 99° 120° 151 184 179 200 263 435 476 588 pts. L₄L

Sp. gr. of LiI+Aq at 19.5° containing:
5 10 15 20 25 30% LiI,
1.038 1.079 1.124 1.172 1.224 1.280
35 40 45 50 55 60% LiI.

1.344 1.414 1.489 1.575 1.670 1.777 (Kremers, Pogg. 104. 133; 111. 60: Gerlach, Z. anal 8, 295.)

Sp. gr. of LiI+Aq at 18° containing. 5 10 15 20 25% LiI. 1,0861 1.0756 1.1180 1.1643 1.2138

(Kohlrausch, W Ann 1879. 1.)

Temp of maximum density of LiI+Aq. 2.516° 2.516° 0.039° 0.4666

(de Coppet, C. R. 1900, 131, 178)

Very sol in liquid NH₃. (Franklin, Am Ch. J. 1898, **20**. 828)

100 g, méthyl alcohol dissolve 343 4 g. Lil at 25° 100 g, ethyl alcohol dissolve 250.8 g. Lil at 25°.

100 g propyl alcohol dissolve 47.52 g. LaI at 25°.
100 g isoamyl alcohol dissolve 112.50 g. LiI at 25°.
In the case of propyl alcohol the solid phase at 25° is LiI, 4C₂H₂O. (Turner and Bissett, Chen. Soc 1913. 103, 1909.)

Solubility in organic solvents at t°.

C=pts by wt. of LiI in 100 ccm, of the

sat. solution. L=no. of liters which at the saturation temp. hold in solution 1 mol. LiI.

Solvent	to.	С	L
Furfurol Nitromethane	25° 25° 0°	45 86 2 519 1 219	0 292 5.32 10.98

(Walden, Z. phys. Ch. 1906, 55. 718.)

Solubility in glycol at 15 3°=28%. (Coninck, Belg. Acad Bull. 1905, 359.)

Sol in benzonitule, (Naumann, B. 1911, 47, 1309.) Sol, in methyl acetate (Naumann, B.

Difficultly sol in ethyl acetate. (Naumann, B. 1910, 43, 314)

Sol in accone (Fadmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4328.) +H₂O Mpt below 200°. (Bogorodsky,

+H₂O Mpt below 200°, (Bogorodsky C. C. 1897, H. 175)

+2H₂O. Mpt. 86-88°. (Bogorodsky.) +3H₂O. Mpt. 75°. (Bogorodsky.) Sol in absolute alcohol without decom

Sol in absolute alcohol without decomp. (Thusoff, Chem. Soc. 1894, 66. (2) 234.)

The composition of the hydrates formed by Lil at different dilutions is calculated from determinations of the lowering of the fr-pt. produced by Lil and of the conductivity and sp gr. of Lil+Aq (Jones, Am. Ch. J. 1905, 34, 301.)

Lüthium mercuric iodide, 21.1, Haf2,+0415,0. Very deligutescent Decomp by H.O. Very sol, without decomp, un alevabots, giverine, accione, funning formic and, acette aced, ethyl acetate, ethyl ovalate, etc. Less sol in nitrobenzene. Insol. in benzene and methyl iodide. (Duboin, C. R. 1905, 141. 1017.)

+8H.O. Decomp. by HgO. Very sol in alcohols, glycerme, acetone, funning formic acid, acetor acid, ethyl acetate, etc. without decomp. Sl. sol in nutrobenzene Insol. in benzene and methyl iodide (Duboin, I. c.) +9H.O. Hydracopot. Sol. na alcohol and acetone without decomp (Dobroserdoff, C. C. 1991, I. 664.)

Lithium natride, La2N.

Sol. in H₂O with decomp. (Ouvrard, C. R. 114, 120.) Very hydroscopic, (Dafert, M. 1910, 31.

Lithium oxide, La₂O.

987)

Slowly sol. in H₂O to form LiOH. See Lithium hydroxide.

Lithium peroxide, Li₂O₂,

(de Forcrand, C. R. 1900, 180. 1467.)

Lithium hydrogen peroxide, Li₂O₂, H₂O₂+ 3H₂O.

Sol, in H₂O. Insol in alcohol. (de Forerand, C. R. 1900, **130**, 1466.)

Lithium selenide, LagSe.

Sol. in H₂O. (Fabre, C. R. **103**, 269.) +9H₂O Sol. in H₂O. (Fabre)

Lithium silicide, L.S.

Decomp. by H₂O and by dil. acids. Decomp by aqueous solutions of alkalies with evolution of H₂. (Moissan, C. R. 1902, **134**. 1083.)

Lithium mor osulphide, I1-8

More soi in 11.0 or alcohol than LiOH Luteochromium bromide, Ci MinBri Less sol in H₂O than the chloride "Jor-

gensen, J. m (2) 30, 1) bromoplatinate, [Cr: \II t)₀|₂(P(Br_i)₀+

Sl. sol, in H₂O Insol in alcohol (Jorgen-

sen)

- chloride, Cr(NH₂),Cl₂+H₂(), Efflorescent, and very sol in H₂() (Jorgen- sulphate, [Cr(NH₄)₄)₂(SO₄)₃+5H₂O. sen.)

--- chloroplatmate.

(a) [Cr: NH₂)₆]₂(PtCl₆)₅+6H₂O. completely insol in H₂() (Jorgensen.) (b) Cr(NH₄)₆Cl(PtCl₄)+21 H₂() Decomp by H₂O into above, insol in alcohol, (Jor-(c) |Cr(NH₂)₀|₂Cl₄(PtCl₆)+2H₂O Do.

comp. by H₂O into (a) (Jorgensen) ---- mercuric chloride, Cr(NH₃)₆Cl₃, HgCl₂ Decomp. by II₂O; sl sol in dil, HCl+Aq;

insol, in alcohol, $Cr(N\Pi_3)_6Cl_3$, $3HgCl_2+2H_2O$ Decomp by dil HCl+Aq into above salt (Jorgensen)

---- chromicvanide, Cr(NH2), Cr(CN)4. Precipitate.

--- cobalticvanide, Cr(NH₂)₀Co(CN)₄, Nearly msol in H₂O or in cone, HCl+Aq (Jörgensen)

— ferrocvanide, Cr(NH₂)_eFe(CN)_e Very sl, sol, in cold H₂O or dil acids, (Jörgensen)

- iodide, Cr(NH2)6I2. Sl. sol, in H.O. (Jorgensen, I. c.)

- iodosulphate, Cr(NH₁)₆So₄I.

Sol. in H₂O; nearly insol, in dil. NH₂OH+ Aq or alcohol. (Jorgensen)

--- nitrate, Cr(NH₃)₄(NO₂)₅ Sol. in 35-40 pts. H₂O Insol, in cold dil

HNO₄+Aq or alcohol. Can be crystallised out of H₂O containing a little HNO₃. (Jorgensen, J. pr. (2) 30. I.)

 nitrate chloroplatinate. $Cr(NH_1)_t(NO_t)PtCL + H_tO_t$

Insol. in H₂O. Sol. in dd. H₂SO₄+Aq. (Jörgensen.)

--- nitratosulphate, Cr(NH3)s(NO2)SO4. Sol. in H₂O; insol. in alcohol. (Jorgensen.)

Luteochromium oxalate, [Cr(NH₂)₆]₂(C₂O₄)₃+ 4HO.

Nearly mool, in cold H₂O. (Jorgensen.) - orthophosphate, Cr(NH2)aPO4+4H.O.

Si sol in H2O; easily sol, in dil, acids. (Jörgensen.)

--- sodium pyrophosphate, Cr(NH₃)₄(NaP₂O₂)+11½H₂O.

Nearly msol. in cold H2O; wholly insol. in dil NHLOH+An. (Jörgensen.)

Quite sol, in H₂O; insol, in alcohol. (Jorgensen)

---- sulphate chloroplatinate, (Ct (NIIs)a(SO₄)l₂PtCla.

Nearly insol. in H2O. (Jorgensen) Luteocobalt diamine chromium sulpho-

cyanide. See Diamine chromium luteocobalt sulphocyanide.

Luteocobaltic bromide, Co(NH₂)₆Br₃. Sol in H₂O Precipitated from saturated II2O solution by dil. HBr+Aq (Jorgensen,

J. pr. (2) 35. 417.) bromopermanganate,

Co(NH₄)₀Br₂(MnO₄). Eastly sol. in H₄O (Klobb, A. ch. (6) **12**.

bromoplatinate, Co(NH₄)₆Br₂, PtBr₄+ H₂O. Sl. sol in H₂O; can be recrystallised from hot H₂O containing HBr. (Jörgensen.)

— bromosulphate, Co(NH₃)₀Br(SO₄). Nearly insol, in H2O. Very al sol, in dil.

NH,OH+Aq. (Jorgensen.) ---- carbonate, [Co(NH₂)₃]₂(CO₂)₃+7H₂O.

Efflorescent: easily sol in H₀O. (Co(NH_a)_a)₂(CO_a)₁, H₂CO_a+5H₂O sol in H2O than the neutral salt. (Gibbs and Genth)

— chloride, Co(NH₂)₆Cl₂.

Sol. in 17.09 pts. H.O at 10.5°: 16.81 pts. at 11.4°; 16.48 pts. at 12°; and more easily in hot H₂O. (F. Rose.) 100 pts. H₂O dissolve 4.26 pts. at 0°, and 12.74 pts. at 46.6°. (Kurnakoff, J. russ. Soc.

24. 629.) Not appreciably sol. in conc. HCl+Aq. (Jorgensen.)

Insol in alcohol or solutions of the alkali chlorides (Gibbs and Genth) Insol. in NH₄OH+Aq.

eral aculs, or alkalı chlorides.

 $I(gCl_2+1) \stackrel{\cdot}{_2}H_2O$.

Sol m hot H2O. (Krok, 1870.) By recrystallizing from hot H₂O containing

HCl is converted into-Co(NII₈),Cl₈, 3HgCl₂+H₂O. Very sl. sol.

in cold H₂O (Jorgensen.) Co(NH₂)₆Cl₂₁ 2HgCl₂+1₂H₂O. Sol. in hot H₂O, from which it crystallizes on cooling Insul in cold cone HCl+Aq, and is pptd from H₂O solution by HCl or alcohol. (Car-

stanjen) Does not exist (Jörgensen) +3H2O. More easily sol, in cold II2O and other solvents than the preceding comp

(Carstangen, Berlin, 1861.) Does not exist (Jorgensen.)

---- stannous chloride, 2Co(NH3), Cl3, 3SnCl₂+10H₂O,

+8II.O. chloraurate, Co(NH₄)₆Cl₂, AuCl₁. Very sl. sol in cold, more easily in hot H2O

containing HCl. (Gibbs and Genth, Sill. Am. J. (2) 23, 330)

--- chloriodate, [Co(NH₂)₀Cl₂]₂I₁O₁₁+H₂O chloriridite, Co(NH_a)_a, IrCl_a Insol in boiling H.O or dil, HCl+Aq.

(Gibbs.) ---- chloriridate, 2Co(NH₃)₆Cl₃, 3IrCl₄.

Insol in H₂O. (Gibbs.)

—— chlorochromate, Co(NH₃)₄CrO₄Cl+ 3H₂O. Sol. in H₂O (Klobb, Bull, Soc 1901, (3)

---- chlorofluoride, Co(NH₂)₄Cl₂F. (Bohm, Z. anorg. 1905, 43, 339.)

25. 1027.)

—— chloropalladite, 2Co(NH₅)₅Cl₃, 3PdCl₂. Easily sol in dil, HCl+Aq. (Gibbs, Stll. Am. J. (2) 37, 58.)

 chloroperchlorate, Co(NH₃)₆Cl(ClO₄)₂. (Millosevich, Gazz ch. it. 1901, 31. (2) 285)

chloropermanganate, Co(NH₅)₆Cl₂(MnO₄).

Can be recrystallized from H₂O. (Klobb, C. R. 103. 384.)

 chloropermanganate ammonium chloride, Co(NH₄)6Cl₂(MnO₄), NH₄Cl. Easily sol, in H.O. (Klobb.)

Aqueous solution is pptd. by alcohol, min- Luteocobaltic chloropermanganate potassium chloride, CoaNH₂)_cCl₂(MnO₄), KCl.

--- chloropermanganate sodium chloride, Co(NH₂),Cl₂(MnO₄), NnCl.

Very sol, in H₂O +Klobb)

 chloroplatinate, 2Co(NIL),Ch, 3PtCh+ 6H.O.

Can be recrystallized from much hot H₂O. (Gibbs and Genth)

(Glibs and Genth)
+21H₂(0. Glibbs and Genth)
Co(NH₃)₆Cl₃, PtCl₄+2₂H₂O. Very sl. sol. in sold, decomp by hot H₂O into—
2Co(NH₃)₆Cl₃, PtCl₄+2H₂O. By recys-

tallizing from hot H2O containing HCl this salt is converted into the above salt. (Jorgensen.)

chlororhodite.

Nearly meal, in boiling H₂O or dil acids, Sol, in cone, HCl+Aq. (Gibbs, Sill Am. J. (2) 37, 57)

---- chlororuthenate, 2Co(NH₃)₆Cl₂, 3RuCl₄, Sol in dil. acids. (Gibbs.)

---- chloroselenate, Co(NH₂)₆ClSeO₄+3H₂O. Decomp. by H₂O. (Klobb, Bull Soc. 1901, (3) 25, 1029)

 — chlorosulphate, Cot NH₄)₆Cl(SO₄). Sol. in H2O.

+3H2O. Only sl. sol. in cold H2O (Klobb, Bull Soc. 1901, (3) 25. 1025.)

- ammonium chlorosulphate,

 $[Co(NH_3)_4]_4Cl_2(SO_4)_5$, $3(NH_4)_4SO_4+6II_2O$. Decomp. by H₂O, (Klobb, Bull. Soc.

1901, (3) 25, 1027,)

---- chlorosulphate chloroplatinate. 2Co(NH₃),Cl/SO₄), PtCl₄.

Very al, sol, in cold pure HoO. Can be recrystallized out of H2O containing HCl. (Krok)

 chlorosulphate mercuric chloride. Co(NH₂)₆Cl(SO₄), HgCl₂.

Searcely sol. in pure H₂O, but can be crystallized from warm acidified H₂O. (Krok.)

—— chlorosulphite, Co(NH₂)₆(SO₃)Cl+ 3H₂O₂

Sol. in H₂O. (Vortmann and Magdeburg, B. 22, 2637.)

 chromate, [Co(NH₂)₀]₂(CrO₄)₂+5H₂O. Ppt. Sol. in hot H2O. [Co(NH₂)₆]₂(Cr₂O)₁+5H₂O. sol, in hot H₂O. Moderately

Lutecccbaltic chromicvanide. Co(NHo)Cr(CN)

Ppf (Braun.)

--- dithionate, basic,

- cobalticyanide, Co(NH₁),Co(CN)₆. Pot

 $\{(Co(NH_4)_6(S_2O_6)(OH)\}, Co_2(S_2O_4)_2O\}$ Sol in H2O and dil. alcohol

--- ferricyanide, Co(NII₂)_eFe(CN)₀+ 1 H2O.

Insol m H2O, (Braun)

--- fluoride, Co(NII₃)₆F₃. Sl. sol, in cold H₂O. Nearly insol, in acids (Bohm, Z anorg 1905, 43, 340.)

— hydrogen fluoride, Co(NH₂)₆H₂F₆. Sl sol, in H₂O Decomp, by hot H₂O, (Miolati and Rossi, Real, Ac Line, 1896, (5) 5. II, 185.)

— hydrogen boron fluoride, Co(NII₂)₆F₂, 3BF₃, HF.

lati and Ross) ---- molybdenyl fluoride,

Co(NH₃)₀F₃, 2 MoO₂F₂ Cryst from H₂O containing HF. (Miolati and Rossi,)

---- silicon fluoride. Co(NH₃),F₃, 2SiF₄. (Miolati and Rossi,)

 titanium hydrogen fluoride, 2Co(NH2)6F3, 3T1F4, 2HF. (Miolati and Rossi.)

 tungstyl fluoride,
 Co(NH₃)₈F₃, 2WO₂F₂. (Miolati and Rossi)

---- uranyl fluoride. Co(NH_a)_aF_a, UO_aF_a,

Can be cryst, from H₂O containing HF. (Miolati and Rossi.)

--- vanadyl fluoride. 2Co(NH₂)₆F₃, 5VO₂F, 7HF. Ppt. (Miolati and Rossi)

--- fluoride nitrate, Co(NH₃)₆F(NO₃)₂.

(Bohm, Z. anorg, 1905, 43, 336.) ---- hydroxide, Co(NH₂)₅(OH)₂.

Known only in aqueous solution.

Luteocobaltic mercuric hydroxychloride, CoNeHa (HgCl) (HgOH)Cl Easily decomp. (Vortmann and

Morgulis, B 22. 2644.) CoN.H. (HgOH) Ch Ppt. (V and M.) CoNeHM(HgOH)2Cl, Ppt. (V and M.)

--- iodide, Co(NH₂)₄I₂. Insol. in cold, but moderately sol. in hot

According to Jorgensen, contains HNO, and has the formula Cos(NHs)12I4(NOs)2.

--- 10dosulphate, Co(NH3)4I(SO4). Can be recrystallized from hot H2O. St. sol. m warm, nearly msol. m cold H₂O, (Kiok, B 4, 711.)

--- mercuriodide, Co2N12Har(HgI)aIa. Ppt. (Vortmann and Borsbach.) CoNellis(HgI): Is. Ppt. (V. and B.)

---- mercuriodide, basic, CoNeH16(HgOH)2I2(OH) Insol, in H2O SI sol, in H2O, (Vortmaun and Borsbach, B 23, 2804.)

— nitrate, Co(NH₃)₆(NO₂)₂. Sol in H₂O. Can be recrystallised from boiling H₂O. Sol in about 60 pts. H₂O, Cryst, from H2O acidified with HF. Mio-Insol. in conc. HNO₄+Aq. (Jorgensen, J. pr (2), 35. 417)

Almost msol. in acids. (Rogojski, A. ch. (3), 41. 454) Insol. in NH₄OH, HCl, and HNO₂+Aq; decomp by H₂SO₄+Aq. (Gabbs and Genth.) Co(NH₃)₄(NO₂)₄, HNO₃. Decomp. by H₂O or dil. alcohol. (Jorgensen, J. pr. (2), 44.

63.) --- nitrate chloroplatinate.

 $Co(NH_4)_6(NO_3)Cl_2$, $PtCl_4+H_2O$. Not decomp, by H₂O, (Jorgensen.) — nitratosulphate, Co(NH₃)₄(NO₃)(SO₄). Sol in H2O, (Jorgensen,)

---- nitrite cobaltic nitrite. $Co_2(NH_3)_{12}(NO_2)_3$, $Co_2(NO_2)_4 =$ Co(NH₃)₆(NO₂)₆Co.

Nearly insol. in H₂O. (Jörgensen) Much less sol. in H₂O than the corresponding roseo salt. (Gibbs.)

— diamine cobaltic mtrite, Co(NH₃)₄[Co(NH₃)₂(NO₂)₄]₅. Ppt. (Gibbs)

=Co(NH₃)₄(NO₂)₂(NH₃)₂Co(NO₂)₂]₈
Nearly insol. in cold, si sol. in boiling H₂O.
(Jorgensen, Z. anorg. 5, 179) - oxalate, [Co(NH_s)_s]_s(C_sO_s)_s+4H_sO_s

Insol. in hot or cold H1O. Easily sol. it H2C2O4+Aq.

Luteocobaltic oxalate chloraurate, 2Co(NH₃)₆(C₂O₄)Cl, AuCl₃+4H₂O Easily sol. in hot H₂O. (Gibbs.)

— perchlorate, Co(NH₃)₆(ClO₄)₃.
(Millosevich, Gazz. ch it. 1901, 31, (2) 285.)

— permanganate, [Co(NH₃)₂]₂(MnO₄)₃. Nearly insol. in H₂O. 100 pts Π₂O at 0° dissilve only 0.072 pt. salt Moderately sol. in hot H₂O. (Rlobb, A. ch, (6) 12. 5.)

persulphate sulphate,
[Co(NH₃)₀]₂S₂O₄(SO₄)₂.

Much less sol. in H₂O than the sulphate Sol. in 641 pts. H₄O at 18.8° and in 632 pts. at 20°. Not easily sol. even in boiling H₂O. (Jorgensen, Z. anorg 1898, 17, 459.)

---- orthophosphate, Co(NH₃)₆(PO₄)+
4H₂O.

Sl. sol. in cold H_2O Easily sol. in dil acids. (Jorgensen) [Co(NH₃)₄;(PO₄)(PO₄H)₁+5) $\frac{1}{2}$ H₂O (?). Ppt. (Braun) [Co(NH₄)₄]₂(PO₄H)₃+4H₂O. Ppt. Easily sol, in very dil. HCl+Aq (Jörgensen.)

Ppt

— pyrophosphate, acid, Co(NH₂)₀(P₂O₇H).

Wholly msol. in H₂O. Somewhat sol. in dil. HC₃H₄O₂+Aq. Easily sol. in HCl+Aq

(Jörgensen.)

Co(NH₀)₀(P₂O₇Na) +11½H₂O.

Pot Not wholly used in cold

Ppt. Not wholly msol. in cold H₂O Decomp. by hot H₂O. Less sol. in NH₄OH + Aq than in H₂O. (Jdrgensen.) (Co(NH₃)₂)₄(P₂O₂)₃, 2Co(NH₃)₅(NaP₂O₇) +39 H₂O. As above. (Jorgensen.)

— selenate, [Co(NH_t)]₂(SeO₄)₂+5H₄O.
Very sol. in H₂O. (Klobb, Bull. Soc. 1901, (3) 25. 1028.)

— hydrogen selenate, [Co(NH₃)_t]H(SeO₄)₂+2½H₂O. Not decomp. by H₂O. (Klobb.) Luteocobaltic ammonium selenate, [Co(NH₂)₂]₂(SeO₄)₂, (NH₄)₂SeO₄+ 4H₂O₃

Very sol. in H₂() [Co(NH₄)₂(Se()₄)₃ (NH₄)₂Se()₄+8H₂(), Very sol in H₂(), (Klobb)

sulphocyanide, Co(NH₃)₆(SCN)₃.

Decomp. by hot 11₂O. (Miolati, Z. anorg. 1900, 23, 241.)

— mercuric sulphocyanide, Co(NH₂)₆(SCN)₂, 2Hg(SCN)₂.

Decomp. by H₂O, Cryst. from dd NH₄SCN+Aq. (Miolati.)

— platinum sulphocyanide, [Pt(SCN)₄]₂[Co(NH₂)₆(SCN₂)]₂.
Decomp. by hot H₂O, (Miolati.)

— silver sulphocyanide, Co(NH₄)₆(SCN)₂, 2AgSCN. Decomp. by hot H₂O. (Miolati)

- sulphate, [Co(NH₃)₀]₂(SO₄)₂+5H₂O.

Sl. sol. in cold, more easily in hot H₂O, +6H₂O (Krol., B. **4.** 711)

hydrogen sulphate, Co(NH₃)₆H₄SO₄)₂.

Decomp. by alcohol to sulphate (Jörgensen, Z. anorg 1898, 17. 458.)

4[(Co6NH₃)₂(SO₄)₃], 5H₂SO₄+10H₂O. Very sol. in H₂O with decomp. into the normal sulphate.

When pulverized it seems to dissociate slowly in contact with abs. alcohol. (Klobb, Bull Soc. 1901, (3) 25. 1025.)

ammonium sulphate, [Co₅(NH₂)₂(SO₄)₃, (NH₄)₂SO₄+8H₂O. Sol. in H₂O with decomp. (Klobb.)

— cerium sulphate, [Co(NH₃)₀]₂(SO₄)₃, Ce₂(SO₄)₃+1¹₂H₂O.
Very sl. sol. in cold, and practically insol. in boiling H₂O. Sol. in acids. (Gibbs, Am. Ch. J. 15, 560.)

[Co(NH₂)_c]₂(SO₄)₃, 3Ce(SO₄)₂+H₂O A above. (Wing, Sill Am. J. (2) 49. 363.)

Sl. sol. in H₂O, (Wing.)

Tl₂O(SO₄)₂+5H₂O.

Decomp. by cold H₂O. (Gibbs.)

— sulphate bromaurate, Co(NH₃)₆(SO₄)(AuBr₄).

Very sl sol. in H₂O with apparent decomp. Insol, in alcohol. (Jörgensen.) Lutencobaltic sulphate chloraurate. Co. XII 378O // ArCl.

Sl sol m H O. (Jorrensen)

--- cobaltic sulphite, |Co(NH₂)_c|₂(SO₂)₃, |Co(SO₁)₂+H₂O = dichrocobaltic sulphite, [Co(NH₂)-b(SO₂)₂ +2H₂O, which

 $[Co(NH_3)_c]_2(SO_8)_4$, $2Co_2(SO_8)_5 + 15H_2O =$ diamine cobaltic sulphite, [Co(NH₂)₂b₃S()₂)₂ +5H O, which see,

Luteorhodium bromide, 1th (NHa), Bra. Less sol in H2O than the chloride. (Jorgensen, J. pr. (2) 44, 51.)

---- chloride, Rh(NHa)-Cla Sol in 7 to 8 pts, H₂O at 8°. (J.) +Hat). Extremely efflorescent. (J.)

--- rhodium chloride, Rh(NII2)6Cl2, RhCl2. Sol. in ILO, (Jorgensen, Z. anorg 5,

- chloroplatinate, 2Rh(NH₂)₆Cl₃, 3PtCl₄+ GIL-O.

Insol, in II₂O. Sol in warm HCl+Aq. (J.) Rh(NH₃),Cl₃, PtCl₄+12H₂O. Decomp by II2O into chloride and above salt (J.)

--- nitrate, Rh(NH₂)₆(NO₂)₅.

Sl. sol m cold H₂O (J.)

Sol. m 48 to 49 pts II-O at ord temp HNO3+Aq diluted with 5 vols II-O ppts the salt completely from aqueous solution (Jörgensen, J. pr (2) 44, 51) Rh(NH₃)₆(NO₃)₃, HNO₃ Decomp. by H₂O or dil alcohol. (Jorgensen, J pr. (2),

44. 63.) --- orthophosphate, Rh(NH₂),PO₄+4H₂O₁

— sodium pyrophosphate, [Rh(NH₃)₆]₂(P₂O₇)₃Na₂+23H₂O.

Nearly wholly insol in H₂O. Wholly insol in NH₄OH+Aq. (J.)

--- sulphate, [Rh(NH₂)₆]₂(SO₄)₃+5H₂O. Sol. in 43 pts. H.O at 20°. (J.)

Magnesium, Mg.

Does not decomp. H₂O at ord. temp., but decomp slowly at 100°. H₂O containing acids dissolves Mg easily. Sol, in cold dil. acids dissolves Mg easily. Sol, in cold dil. HC₂H₃O₂+Aq. Difficultly sol. in cold HCsHO1+Aq, Eduneau, Cold mitrosulphuric acid does not attack, (Bunsen,) Cold NHAOH+Aq, KOH+Aq, or NAOH+Aq do not attack (Maak, Phippson,) Sol. in NH₄Cl or (NH4),CO4+Aq (Wohler.)

Very rapidly sol. in K₂S₂O₈+Aq and NH_{1/2}S₂O₈+Aq with violent evolution of

(NII)-8-0.8-1Aq with violent evolution of gas (Lev), Gazz, ch. it. 1908, 38. (1), 583.) Attacked by aqueous solution of EC, NIL(c), NaCl, LCl, ChCls, CdCl₂, CoCl₃, PbCl₃, HgCl₃, FcCl₃, CrCl₃, PbCl₄, AuCl₄, CuSO₃, ZnSO₄, FcSO₄ and MnSO₄ S₁ attacked by hot 30% CaCl₂+Aq₂, not

by 30°, MgCl₂+Aq, BaCl₂+Aq and SrCl₂+ Aq (Tommasi, Bull Soc. 1899, (3), 21, 886.) Not attacked by NH₄F+Aq, very slowly by solutions of BaCl₂, CaCl₃, KCl, K₄Fe(CN), NaNO₂, Na₂S₂O₃ and Na₂HPO₄ Solutions of NaC₂H₂O₂, Na₂B₄O₃, alum and chrome alum attack vigorously. Solutions of (NH4)2CO3, NH4Cl, (NH4)2C2O4, (NH4)3S and Na₂CO₃ attack even more vigorously.
(Monraour, C R 1900, 130, 140)
Insol in liquid NH₃ (Gore, Am. Ch. J.

1898, 20, 828, Insol in liquid HF. (Franklin, Z. anorg. 1905, 46, 2)

Somewhat sol. in liquid NH2, if a clean metallic surface is in contact with the pure solvent, (Kraus, J. Am, Chem. Soc. 1907. 29. 1561.)

leon oles and dissolves 0.0104 g. Mg in 6 days (Gates, J. phys. Chem. 1911. 15, 143.)

Magnesium arsenide, Mg, As2. Decomp on air. (Parkinson, Chem. Soc. 5, 127.)

Magnesium azoimide, Mg(N₈)₂.

Decomp. by hot H₂O. (Curtaus, J. pr. 1898, (2) 58, 292)

Sol in HCl+Aq. (Winkler, B. 23, 774.) Magnesium bromide, MgBro.

Deliquescent, Very sol in H2O with evolution of heat.

Sat MgBr2+Aq contains at: +17° 48° 62° 97° 58 60 9 62 5 65.8% MgBr₄. -18° 52 (Étard, A. ch. 1894, (7), 2. 541.)

See also MgBr.+6H.O.

Magnesium boride, MgaBa

Sp. gr. of MgBr2+Ag at 19.5° contaming. 1.043 1.087 1 137 1.191 1.247 MgBr₁,

40 45 50 % MgBr₂. 1 377 1.451 1.585 1 625 1.31 Pogg. 108. 118, calculated by Cold (Kremers, Gerlach, Z. anal. 8, 285.)

MgBr₂+Aq is sl. decomp, by evaporation.

100

Solubility of MgBr ₂ in	alcohols.	
MgBr ₂ forms with methyl plea, MgBr ₂ , 6CH ₄ OH,	alcohol a	con

Solubility of MgBr2, 6CH2OH in CH2OH at to.

t _a	of MgBra. eCHrOH	to.	Chyweight of MgBra 6CH ₂ OH
0 20 40 60 80	42 6 44 6 46 7 48 9 51.4 55 5	130 140 150 160 170 180	63 6 66 8 70 2 74 0 78 5 84 5
110 120	58 0 60.7	185 190 mpt.	88 0 100

(Menschutkin, Z. anorg. 1907, 52, 11.)

 ${
m MgBr_2}$ forms with ethyl alcohol a complex, ${
m MgBr_2}$, ${
m 6C_2H_4OH}$.

Solubility of $MgBr_{2_1}$ $6C_2H_4OH$ in C_2H_4OH at t° .

t° of Mg 6C ₂ H ₁	On		of MgBr ₂ , bC ₂ H ₂ OH
0 17. 10 24. 20 32. 30 40. 40 47. 50 55. 60 62. 70 68. 75 71	9 85 7 90 3 95 8 100 1 103 2 106	5 mpt.	73.8 76.2 78.7 82.3 86.7 90.0 94.4

(Menschutkin.)

MgBr₂ forms with propyl alcohol a complex, MgBr₂, 6C₂H₇OH.

Solubility of MgBr2, 6CaH7OH in CaH7OH at to.

t ^a	of MgBrs. 6CsH;OH	to.	% by weight of MgBrs. 6CsH:OH
0	77 9	43	93.0
10	81 5	46	94.3
20	85.1	48	95.8
30	89.5	50	97.8
40	92.0	52 mpt.	100

(Menschutkin.)

MgBr₂ forms with isobutylalcohol a complex, MgBr₂, 6(iso)C₄H₅OH.

Solu		gBr ₂ , 6(180)C l ₂ OH at t°.	H ₂ OH in
t°	Chawaght of MgBr, broCallath	t°	e, by weight of MgBr ₂ , tusoCdL ₂ OH
0 10 20 30	55.8 60 5 65 2 69 8	60 65 71 75	82 4 84.2 88.0 92 0

(Menschutkin.)

MgBr₂ forms with isoamylalcohol a complex, MgBr₂, 6(180)C₂H₁₁OII.

Solubility of MgBr₂, 6(iso)C₂H₃₁OH in C₄H₁₁OH at t°.

t°	% by weight of MgBr-, baseC.HnHO	t ^o	of MgBr ₂ , fir-oC:HnOH
0 10 20 30 35	70 2 75 6 80 2 84.5 86 7	38 40 42 44 46 mpt	88.7 90 0 92.0 94 2

(Menschutkin.)

Solubility in ether at to.

to.	°c MgBr₂	'; MgBrs, 2C4H10O
- 8	0.6	1 08
0	0.8	1 44
+10	1.27	2.3
14	1.64	2 95
16	1.93	3.48
18	2 3	4.14
20	2.7	4.86
22 mpt.	3 22	5.80

(Menschutkin, Z. anorg. 1906, 49, 36.)

Solubility of MgBr₂, 2C₄H₁₀O in ether at t°.

"Lower solution" = the melted MgBr₂,
2C₄H₁₀O which does not mix with the ether
above.

10 -				
	MgBr,	CdHaO	% MgBrs	C. MgBr. 2C.HuO
-10 0 +10 20 30 40 50 60 70 80 90	42 0 41 0 40.1 39.3 38.7 38.2 37.8 37.6 37 6 37 8 38 1	75.7 73.9 72.2 70.8 68.8 68.8 67.7 67.7 68.0 68.6	1 8 2 8 3 3 8 4 3 7 5 4 5 5 7	3 2 4.1 5 0 6.8 7.7 8.5 9.2 9.7 10.0 10.2

(Menschutkin.)

Solubility of MgBr, in forms and MgBra forms with formic and a complex, MgBr, 6HCOOH,

Solubility of MgBr., 6HCOOH in HCOOH

t"	t, la wi MgBr, aBCO
0	49 S
20	57.5
40	65 1
60	73.1
70	78 1
80	86 0
86	95.0
88 mpt.	100

(Menschutkin, Z. anorg. 1907, 54, 90.)

Solubility of MgBr₂ in acetic acid. MgBr₂ forms with acctic acid a complex, MgBr₂, 6CH₂COOH

Solubility of MgBr₂, 6CH₃COOH in CH₃COOH at t³

t°	6CH ₂ COOH
17 30 50 60 70 80 85 90 100 105 110 112 mpt.	0 3 1 5 4 5 7 9 16 2 38 5 49 5 57 7 71 8 80 0 89 5

(Menschutkin)

Solubility of MgBr2 in acetic anhydride MgBr2 forms with acetic anhydride a complex, MgBr₂, 6(CH₂CO)₃O.

Solubility of MgBr2, 6(CH2CO)2O in (CH,CO)2O at to.

to.	% by wt MgBr ₂ , 6(CH ₂ CO) ₂ O	
0 30 60 90 120 130 135 136–137 mpt.	26 4 30 0 37 7 44 5 57.8 69 8 85.0	

(Menschutkin, Z. anorg. 1909, 61. 112.) (Menschutkin, Z. anorg. 1909, 61. 109.)

Solubility of MgBr2 in acctone. MgBr. forms with acctone a complex. MgBr2, 3CH,COCH,

Solubility of MgBr₂, 3CH₂COCH₃ in CH₂COCH₃ at t^o.

CHICOCHI av v .		
t ₀	5 by wt MgBr ₂ .	
0 30 60 70 72 73 74 75 76	0 2 0 8 1 45 2 0 3 7 5 5 14 0 50 0 71 6 83 3	
84 88	89 8 , 95 2	
92 mpt.	100	

(Menschutkin, Z. anorg. 1907, 53, 30.)

Solubility of MgBr2 in acetamide. MgBr: forms with acetanide a complex, MgBr2, 6CH2CONH2.

Solubility of MgBr₂, 6CH₃CONH₂ in CH₃CONH₂ at t°.

t°	% by wt MgBrs. 6CHsCONHs
50 5 70 90 110 130 150 160 165 169 mpt.	56.0 57.8 60.5 65 0 71 5 80 0 85 5 90 0 100 0

(Menschutkin, Z. anorg, 1909, 61, 106)

Solubility of MgBr2 in acetanilide. MgBro forms with acetanilide a complex. MgBr2, 6CH2CONHC.H.

Solubility of MgBr2, 6CH2CONHCaHs in CH.CONHC.H. at to.

t _o	% by wt MgBrs. 6CH2CONHC4H4
107 5 140 170 185 195 200 205 209 mpt.	9 0 19 3 29 6 30 0 49 0 59 5 73 2 100 0

Solubility of MgBr₂ in aniline. MgBr₂ forms with aniline thre

MgBr₂ forms with aniline three complexes; MgBr₃, 6C₄H₅NH₂; MgBr₂, 4C₄H₄NH₂; MgBr₂, 2C₅H₅NH₂.

Solubility of these complexes in aniline. Solubility of MgBr₂, 6C₆H₆NH₂ in C₆H₈NH₂

f _o	Coby weight of MgBr2, 6CoH,NH2
10	3 2
30	3 9
50	5 1
70	7.5
90	12 8
100	18 5
103 5	27 5

Solubility of MgBr₂, 4C_cH₄NH₂ in C_sH₄NH₂.

5% by weight of MgBr₂,

103 24 0	% by weight of MgBr ₂ , 4C ₂ H ₂ NH ₂	
120		

 $\begin{array}{c|c} \mbox{Solubility of MgBr}_{1_1} \ 2C_bH_bNH_2 \ in \ C_bH_b \ NH_2 \\ \hline t^e & \S^e_b \ ^b_b \ \ ^b_b \ ^b_$

280 78 1 270 79 0 (Menschutkin, Z. anorg. 1907, **52**. 159.)

Solubility of MgBr₂ in benzaldehyde. MgBr₁ forms with benzaldehyde a complex, MgBr₂, 3C₄H₄CHO.

> Solubility of MgBr₂, 3C₄H₅CHO in C₄H₅CHO at t°.

t°	C by wt MgBrs. 3C4H4CHO	to.	% by wt MgBrs. 3C₄H₄CHO
0	0 7	140	17.8
30	1.3	145	37.5
60	1 9	146	65.0
80	2 5	148	84.5
100	3.4	153	93.2
120	6 0	159 mpt.	100

(Menschutkin, Z. anorg, 1907, 53, 26.)

Solubility of MgBr₂ in methylal, MgBr₂ forms with methylal a complex, MgBr₃, 2CH₃(OCH₃).

Solubility of MgBr₂, 2CH₂(OCH₃)₂ in CH₂(OCH₃)₂ at t².

10	', by wt MgBrs. 2CHs(OCHs);
20 40 60 80 100 106 106 108 110	0 3 0 45 0 6 0 75 0 9 1 1 86 2 90 8
112 mpt.	100

(Menschutkin, Z. anorg, 1907, 53, 32.)

Solubility of MgBr₂ in dimethylcarbinol, MgBr₂ forms with dimethylcarbinol a complex, MgBr₂, 4(CH₃)₂CHOH.

Solubility of MgBr₂, 4(CH₃)₂CHOH in (CH₃)₂CHOH at t°.

to.	of MgBrs. 4(CHaigCHOH	t°	of MgBrs. 4(CHpsCHOH
0 20 40	40 0 42 2 45 0	110 120 130	62 5 67 3 74.0
60 80	48 5 53.3 59 0	136 138 139 mpt.	83 6 90 00

(Menschutkin.)

Solubility of MgBr₂ in trimethylcarbinol MgBr₂ forms with trimethylcarbinol a complex, MgBr₂, 4(CH₂)₃COH

Solubility of MgBr₂, 4(CH₃)₈COH in (CH₂)₂COH at t°.

t°	of MgBr ₂ , 4(CH ₄₎₃ COH	t°	of MgBr ₂ t(CH ₀) ₂ COH
24 4 25 35 45 55 60	0 06 1 0 9 5 19 1 32 2 40 5	65 70 75 77 5 79 80 mpt.	50 5 62 5 77 0 85 0 91 5 100

Menschutkin.)

Solubility of MgBr₂ in phenylhydrazine. MgBr₂ forms with C₆H₆NHNH₂ a complex, MgBr₃, 6C₆H₅NHNH₂.

Solubility of MgBr ₂ , 6C ₄ H_NHNI	
C.H.NHNH at 1°	

	', by we of MgBr ₂ , of JLNHVII:		
20 40 60 80 90 100 140 180 200	3 0 7 0 16 1 33 0 54 8 54 8 60 8 68 4 73 4		

(Menschutkin, Z. anorg 1907, 52, 162.)

Solubility of MgBr₂ in urea. MgBr- forms with urea a complex, MgBr-6CO(NH₂)₂

Solubility of MgBr2, 6CO(NH2)2 in urea at to

t°	", by ut MgBrs, 6CO(NHgls
108 5	24 2
115	29 8
120	35 0
125	41 6
127	45 5
130	60 0

(Menschutkin, Z. anorg, 1909, 61, 116.)

MgBr₂, 6CO(NH₂)₂ decomposes at 130° giving MgBr2, 4CO(NH2)2. Solubility of MgBr2, 4CO(NH2)2 in urea at to.

to be at MgBra 130 58 0 145 60 7 67 2 160 165 71 4 170 83 7

(Menschutkin, Z. anoig 1909, 61, 116) Solubility of MgBr2 in urethane. MgBr₂ forms with urethane a complex,

96.0

MgBr2, 6NH2COOC2Hs. Solubility of MgBr2, 6NH2COOC2H6 m NH COOC H, at to

c* (5, bv w MeBr., 6, NESCOOCH) 35 43.3 50 45.0 70 51.3 80 56.2 85 50.8 90 66.5 91.6 75.5		
50	t ₀	" by wt MgBrs, SNH2COOC2Hs
	50 70 80 85 90	45.0 51.3 56.2 59.8 66.5

* Mpt. of MgBr2, 6NH2COOC2H1. (Menschutkin, Z. anorg, 1909, 61, 113.)

McBrs. tiNH-COOC2Hs decomposes at 90 5-91° forming MgBr2, 4NH2COOC.H.

Solubility of MgBr₂, 4NH₂COOC₅H₄'in NH₂COOC₅H₄ at t°.

f.s	% by wt MgBra. 4NH COOC2H3
91 100 110 115 120 123 mpt	69 4 73 8 80 0 84.1 90 0

(Menschutkin.)

4-6H₂O Solubility of MgBr. +6H.O in H.O at to

t°	of MgBr ₁ + GH ₂ O	t°	% by weight of MgBr ₂ + 6H ₂ O	
0 20 40 60 80 100	76 0 78 1 80 2 82.3 84 4 86.6	120 140 150 160 164 mpt.	89 0 92 0 94 9 98 0 100	

(Menschutkin, Z. anorg, 1907, 52, 153.)

Sp. gr, of solution sat. at 18° = 1.655, and contains 50 8% MgBr₂ (Mylius and Funk, B 1897, 30, 1718)
Sl. sol. in liquid NII₂. (Franklin, Am. Ch. J. 1898, 20, 828.)

Sol. in alcohol, Sol, in acetone. (Naumann, B. 1904, 37. 4328; Eidmann, C. C. 1899, II. 1014.) Difficultly sol, in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Insol, in ethyl acetate. (Naumann, B, 1910, 43, 314.) +10H₂O, Sol, in H₂O. (Panfiloff, Chem. Soc. 26, 234.)

Magnesium manganous bromide, MgBr₂, 2MnBr2+12H2O. Deliquescent. (Saunders, Am, Ch. J. 14.

150) Magnesium mercuric bromide, MgBr2, HgBr3 Deliquescent

MgBrs, 2HgBrs. Not deliquescent. Magnesium molybdenyl bromide, MgBr. $M_0OBr_1+7H_0O$. (Weinland and Knoll, Z. anorg, 1905, 44

112.) Magnesium potassium bromide, MgBr₂ 2KBr+6H2O.

Easily sol, in H₂O, from which KBr crystallises at 75 to 87°. Alcohol dissolves ou MgBr2. (Lowig, Repert, 29, 261.)

Formula liquescent.	is MgBr ₂ , KB ₁ +6H ₂ O. (Lerch, J. pr. (2) 28 , 33S.)	De
Magnesium	stannic bromide.	

See Bromostannate, magnesium.

Magnesium chloride, MgCl2 Deliquescent. Very sol in H2O with

evolution of heat. The solution decomposes on evaporation losing HCl, when less than 6 mols. II₂O are present to 1 mol. MgCl₂ (Casaseca, C. R. 37, 350) 1nhydrous. Sol in 1.857 pts H₂O at 15°. (Gerlach.)

Sol in 1 pt cold H₂() (Fourerov) Sat MgCl₂+Aq at 12 5° contains 64 8° MgCl₂ Hastenfrats 1 100 pts H₂O at 15 5° dissolve 200 pts MgCl₂ (Ure's

100 pts, H₂O dissolve 52.2 pts. MgCl₂ at 0° and sp. gr. of sat. solution = 1,3619 at 15°. (Engel, Bull. Soc. (2) 47, 318.) 1000 mols. H₄O dissolve 108 mols. MgCl₂

at 25°C. (Lowenherz, Z. phys. Ch. 1894, 13. 479.)

100 mols. MgCl2+Aq contain at to. 67.5 68.5 68.7 79.5 79.95 Mol. MgCl₂ 11.58 11.92 11.71 12.28 12.39

116.67 152.6 181-2 16.2 18.24 23.8 24,1-24.4 Mol. MgCl₂ (Vant Hoff and Meverhoffer, B. A. B. 1897, 73.)

Solubility of MaCl. in Hall at to

1	Solubility of magon in mao at t .				
	Solid plase	MgC12	10		
ŀ	Ice	11 4	10		
18	tt	16.	20		
Ι.	и	19.4	30		
1	Ice+MgCl ₂ , 12H ₂ O	20.6	33 6		
١.	MgCl ₂ , 12H ₂ O	26.7	20		
I.	12	30.5	16 4		
1	MgCl ₂ , 12H ₂ O+	31.6	16 8		
ŀ	MgCl ₂ , 8H ₂ O	1 3			
1	MgCl ₂ , 8H ₂ O+MgCl ₂ ,	34.3	- 3.4		
ı	6H ₂ O				
1	MgCl ₂ , 6H ₂ O	34 6	0		
1	".	34 9	10		
1-	",	35 3	20		
1	"	35.6	22		
н		36.5	40		
1	"	37 9	60		
1	"	39 8	80		
4		42.2	100		
1	MgCl ₂ , 6H ₂ O+MgCl ₂ ,	46.1	116.7		
1	4H ₂ O MgCl ₂ , 4H ₂ O		***		
1	MgCl ₂ , 4H ₂ O+MgCl ₂ ,	49.1	152 6 181.5		
Ţ	2H ₂ O + MgCi ₂ ,	55 8	181.0		
ŀ	MgCl ₂ , 2H ₂ O	E0 1	100		
- (pagon, 2010	56.1	186		

(Landolt-Bornstein, Tab. 5th Ed. 1912, 480.) See also MgCl-+6H-O.

Sp. gr. of MgCl₂+Aq at 15°.

ar war o	Sp gr	· C MgCfa	Sp gr	', MgCl.	Sp gr
1	1 0081	13	1 1130	25	1 2274
2	1 0169	14	1 1220	26	1.2378
2 3 4 5	1.0253	15	1 1311	27 28	1 2482
4	1 0338	16	1 1401	28	1 2586
	1.0422	17	1 1498	20	1 2690
6	1 0510	18	1 1592	30	1.2794
6 7 8	1 0597	19	1 1686	31	1 2903
8	1.0684	20	1.1780	32	1 3012
9	1 0772	21	1 1879	33	1 3121
10	1 0859	22 23	1 1977	34	1 3230
П	1.0949	23	1 2076	35	1 3340
12	1 1040	24	1 2175		

(Gerlach, Z. anal. 8, 281.)

Sp. gr. of MgCl2+Ag at 18°.

", MgC);	Sp gr	C. MgCls	Sp gr	'; MgCh	5р дг
5 10	1.0416	20 30	1.1764	34	1.3210

(Kohlrausch, W. Ann, 1879, 1.)

Sp. gr. of MgCl2+Aq at 0°. S=pts salt in 100 pts. of solution; S1 = mols salt in 100 mols, solution.

8	8,	8p gr
29 2056	7 230	1 2788
20 9293	4 762	1 1927
15.7989	3.423	1 1427
11.3249	2.355	1 1007
6.2008	1 233	1 0545

(Charpy, A. ch. (6) 29, 23)

Sp. gr. of MgCl₂+Aq at 19 5°.

Pts MgCl ₂ in 100 pts Sp. gr		Prs MgCl ₂ in 100 prs Hg()	Sp gr	
10 7	1 0826	35 3	1 2388	
22 0	1.1592	51 5	1 3234	

(Kremers, Pogg. 104, 155.)

15 1 0599 32

16 1 0641

	Sp. gr of MgCl ₂ +Aq at 14°.					
% MgCls +6HsO	Sp gr	°, MrCls +6H3O	Sp gr	% Mr.Cls +6HsO	Sp gr	
0	0 9993	17	1 0682	34	1 1407	
1 2	1 0033	18	1 0724	35	1 1451	
2	1.0073	19	1 0765	36	1 1495	
3	1.0113	20	1.0807	37	1 1540	
4	1.0154	21	1 0849	38	1 1584	
4 5 6 7 8 9	1.0194	22	1 0891	39	1 1628	
6	1 0234	23	1.0933	40	1 1673	
7	1 0274	24	1.0976	41	1 1718	
8	1 0314	25	1 1018	42	1 1763	
	1 0355	26	1 1061	43	1 1809	
10	1.0395	27	1 1103	44	1 1855	
11	1 0435	28	1 1146	45	1.1901	
12	1.0476	29	1 1189	46	1 1948	
13	1.0517	30	1 1232	47	1.1995	
14	1 0558	31	1 1275	48	1 2042	

ĩ 33 (Oudemans, Z, anal. 7, 420.)

Sp. gr. of MgCl2+Aq at 24°.

1319

1 1363

% MrCls +offso	Sp gr	CHP+	Sp gr.	C MEC! +6HaO	Sp. gr
2 4 6 8 10 12 14 16 18 20 22 24 26 28	1 0069 1 0138 1 0207 1 0276 1 0345 1 0415 1 0485 1 0556 1 0627 1 0698 1 0770 1 0842 1 0915 1 0988	30 32 34 36 38 40 42 44 46 48 50 52 56	1 1062 1 1137 1 1212 1 1288 1 1364 1 1441 1 1519 1 1598 1 1677 1 1756 1 1836 1 1918 1 2000 1 2083	58 60 62 64 66 68 70 72 74 76 78 80	1 2167 1 2252 1 2338 1 2425 1 2513 1 2602 1 2692 1 2783 1 2875 1 2968 1 3063 1 3159

(Gerlach, Z. anal. 8, 283. Calculated from Schiff.)

Sp. gr. of MgClo+Aq at 25°.

Concentration of ManCi2+AQ.	ep. gr.
1-normal 1/z- " 1/4- " 1/s- "	1.1375 1.0188 1.0091 1.0043

(Wagner, Z. phys. Ch. 1890, 5, 38.)

Sp. gr. of MgCl+Ag.

MgCl ₂ g in 1000 g of solution	Sp gr 16°/16°
0 0 4400 0.8801 1.7780 3.4533 7.4691 14 7187 29 6307	1 000000 1 000372 1 000741 1 001458 1 002888 1 006219 1 0112235 1 024647

(Diiken, Z. phys. Ch. 1897, 24, 108.)

Sp. gr. of MgCl₂ at 20 1°. n = ner cent strength of solution: d = observed duesity; w=volume conc. in grams

P	ď	ж.
28 S3 25 59 20 31 15 79 10 185 8 058 5 919 3 913 3 903 1 743	1 2569 1 2241 1 1735 1 1324 1 0833 1 0650 1 0473 1 0304 1 0240 1 0126	0 36237 0 31327 0 23842 0 17877 0 11033 0 08583 0 06198 0 04022 0 03210 0 01765

(Baines, J. Phys. Chem 1898, 2, 546.)

Sp. gr. of MgCls+Ag at to.

t°	Concentration of MgCl2+Aq	Sp. gr,
23	1 pt. MgCl ₂ in 8,1874 pts. H ₂ O	1.0906
24	1 pt. " 102,1 " "	1 0065

(Hittorf, Z. phys. Ch. 1902, 39, 628.)

Sp. gr. of MgCl₂ at 0°. G. MgCl₂ m 100 ccm, of solution 6 7158 9 9506 Sp. gr. 1.0591 1.0845

G. MgCl2 in 100 ccm, of sol. 13 8111 20 004 Sp. gr. 1.1106 1.1605 (Bremer, C. C. 1902, I. 293.)

Sp. gr. of MgCl₂+Aq at 20° containing M g. mols. MgCl₂ per l.

Sp. gr. 1.000344 1 000524 1.000842 1.002756 0.05108 0.07171 0.10 0.25 Sp. gr. 1.004224 1.006036 1.008505 1.020966

0.75 0.9415Sp. gr. 1 038496 1.056905 1.069617

(Jones and Pearce, Am Ch. J. 1907, 38. 699.)

MgCl2+Aq containing 10% MgCl2 boils at 101.6°; containing 20% MgCl, boils at 106.2°; containing 30% MgCl2 boils at 115.6°. (Ger-

lach.) Sat. MgCl₂+Aq forms a crust at 122.5° and contains 52 9 pts. MgCl2 to 100 pts H2O. (Gerlach, Z. anal. 26, 426)

B.-pt. of MgCl2+Aq. P=pts. MgCl2 to 100

pts n₄∪.					
B-pt	P	B-pt.	P	B-pt	P
101° 102 103 104 105 106 107 108 109 110	4 9 9 2 13 2 16 7 19 9 22 5 25.0 27.5 29.9 32 3	111° 112 113 114 115 116 117 118 119 120	34 6 36 6 38 4 40 2 41 8 43 4 44 9 46.4 47.9 49 4	121° 122 123 124 125 126 127 128 129 130	50.8 52 2 53 6 55 0 56 4 57 7 59 0 60 3 61 6 62 9

(Gerlach, Z. anal, 26, 440.)

% MgCls	B-pt	containing 9	B-pt
4 6	101°	11.6	103°
8 4	102	14.3	104

Sol. in KCl+Aq at 50°. (Uhlig, C. C. 1913, II. 749.)

Sol in 7 pts alcohol at 15° (Bergmann)

100 pts alco	hol of given s	p gr dussolv	e pts. MgCl ₂
Sp. gr	Pts MgCl:	Sp gr.	Pts. MgCl2
0.900 0.848	21 25 23 75	0 834 0 817	36 25 50 00

(Kirwan)

MgCl₂+6H₂O is sol in 5 pts alcohol of 0 90 sp "gr and in 2 pts alcohol of 0.817 sp gr Sol in 0 1828 pt strong alcohol at 82 5° (Wenzel.)

B.-pt. of an alcoholic solution of MgCl₂.

% MgCl ₂	B-pt.
5.56 8 53 9 62 13.84	78 43°+0.73° " +1 34 " +1 77 " +3.54

(Skinner, Chem. Soc. 61, 341.)

Even more sol. in acetic ether than CaCl₂. (Cann, C. R. 102. 363.) Sol. in boiling amyl alcohol. (Riggs, Sill.

Am. J. 144, 103. Sl. sol. in anhydrous pyridine Sol. in

97%, 95% and 93% pyridine+Aq. (Kahlen-berg, J. Am. Chem. Soc. 1908, 30, 1107.)

Insol. in CS2. (Arctowski, Z. anorg, 1894, 6, 257.)

Sl. sol. in benzonstrile. (Naumann, B. 1914, 47. 1369) Insol, in methyl acetate. (Naumann, B.

1909, 42. 3790.) +2H₂O. Very deliquescent (Ditte, A.

ch. 1881, (5) 22. 560.) +4H₂O. (van't Hoff and Meyerhoffer.) -6H2O. Deliquescent, Sol. in 0.6 pt. cold, and 0.273 pt. hot H2O. (Casaseca, l. c.)

Solubility in H₂O at to. 1000 mole HaO

t°	dissolve mols MgCl ₂	solve g MgCl ₂
3 5	99 6	52.65
25 0	104 5	55.26
50.0	110.6	58.66

(Biltz and Marcus, Z. anorg 1911, 71. 169.)

Solubility in KCl+NH,Cl+Aq at 25° has been studied. (Biltz and Marcus, Z. anorg.

1911, 71. 178.)
When the solid phases are MgSO₄+6H₂O dissolve and MgCl₂+6H₂O, 1000 mols H₂O dissolve 104 mols. MgCl, and 14 mols. MgSO, at 25°.

(Löwenherz, Z. phys. Ch. 1894, 13, 480.) Solubility of MgCl₂+6H₂O in (NH₄)MgCl₄+ 6H₂O+Aq at t°.

10	Per 1000 mole H ₂ O		
•	Mols NH ₄ Cl	Moly MgCl ₂	
3.5 25.0 50.0	0 5 0 5 0.8	99.5 103.8 111.2	

(Biltz and Marcus, Z. anorg 1911, 71, 170.) Solubility data of MgCl2+KCl+MgKCl2 are given by van't Hoff and Meyerhoffer.

(Z. phys. Ch. 1899, 30, 64.) +8H₂O. Pptd. from an aqueous solution which contains about 10 mols. H2O to 1 mol.

+12H₂O. Pptd. from an aq. solution which contains 1 mol. MgCl2 in about 12.06 mols. of H₂O. (Bogorodsky, C. C. 1899, I. 246.)

Magnesium manganous chloride, MgCl2,

2MnCl+12H+0. Deliquescent. Very sol, in H₂O and alcohol. (Saunders, Am. Ch. J. 14, 148.)

2MgCl₂, MnCl₂+12H₂O Ppt. Deliquesces in the air. (Gossner, C. C 1904, I. 707.)

Magnesium mercuric chloride, MgCl₂, HgCl₂ +6H₂O.

Very deliquescent. More sol, than the following salt. (v Bonsdorff, Pogg. 17, 133.) MgCl₂, 3HgCl₂+5H₂O. Sol. in H₂O without decomp. Easily sol, in alcohol. Bonsdorff.)

Magnesium phosphoryl chloride, MgCl₂,

Deliquescent. Sol in H2O with evolution of heat and decomposition. Very sl. sol, in warm POCl. (Casselmann, A. 98, 223.)

Magnesium potassium chloride, MgCl₂, 2KCl+6H₂O.

Deliquescent, forming a solution of MgCl veliquescent, forming a solution of MgCl₃, while KCl remains undissolved. 100 pts. H₂O dissolve d.5, pts. at 18 75° 20 pts. salt dissolved in 80 pts. H₂O lower the temp. 1.75°. (Bischof.) Alcohol dissolves out MgCl₂. Docomp. into the two salts by solution in H₂O. (Marcet.)

A sat. solution in contact with solid KCl and KCl, MgCl₂, H₂O at 50° contains 79.5 mol. MgCl₂ and 14.9 mol. KCl per 1000 mol. H₂O. A sat, solution in contact with solid Have. A sit, solution in contact with solution MgCl₃ eH₄O and KCl, MgCl₃ eH₄O at 50° contains 111.9 mol MgCl₄ and 1.2 mol KCl per 1000 mol. H₅O. (Unlig. Chem. Soc. 1913, 104. (2) 775; C. B. Mmer. 1913, 417.) Mm. Carnallite.

Magnesium rubidium chloride, MgCl2, RbCl +6H.O.

Not decomp, by a small quantity of H₂O. (Fest and Kubierscky, Ch. Ztg. 16, 335.)

Magnesium sodium chloride, MgCl2, NaCl+ Sol, in H2O. (Poggiale.)

Magnesium thallic chloride, 2TlCls, MgCls+

Hydroscopic. Can be cryst, from H₂O. Magnesium hydroxide, MgO₂H₂. (Gewecke, A. 1909, 366, 224.)

Magnesium stannic chloride. See Chlorostannate, magnesium.

Magnesium vanadium chloride, MgCl2, VCl. +H.O.

Difficultly sol, in H₂O and alcohol. (Stahler. B. 1904, 37, 4412.)

Magnesium zinc chloride, MgCl2, ZnCl2+ Deliquescent; sol. in H₂O. (Warner, C. N.

27, 271.) Magnesium chloride ammonia, MgCl₂, 4NH₂.

Easily decomp. (Clark, A. 78, 369.) Magnesium chloride hydroxylamine, MgCl₂,

2NH:0H+2H:0.

100 g. of solution in H₂O contain 44.4% at 20°. (Antonow, J. Russ. Phys. Chem Soc. 1905, 37, 478.)

Magnesium fluoride, MgF2. (v.

1 l. H₃O dissolves 76 mg. MgF₂ at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50. 356.) 87 mg, are dissolved in 1 l. of sat solution

at 18°. (Kohlrausch, Z. phys. Ch. 1908, 64. 168.) Searcely sol. in acids. (Gay-Lussac and Thénard.) Insol. in excess of HF. When precipitated, is sol in aqueous solution of ammonium and magnesium salts. Sol. in dil.

HNO,+Ag, from which it is precipitated by alcohol. Insol in methyl acetate. (Naumann, B.

1909, 42, 3790,) Min. Sellaite.

Magnesium potassium fluoride, MgF2, KF. Decomp. by H.SO4. (Dubom, C. R. 1895, 120, 679

MgF2, 2KF, Decomp by H2SO4, (Duboin.)

Magnesium sodium fluoride, MgFc, NaF. Insol in H₂O. (Geuther, J B. 1865, 173.) Magnesium stannic fluoride.

See Fluostannate, magnesium. Magnesium titanium fluoride. See Fluotitanate, magnesium.

Magnesium zirconium fluoride. See Fluozirconate, magnesium,

Magnesium hydrosulphide, MgS2H2. Known only in aqueous solution, which decomposes on warming. Solution contain-ing 16% MgS₂H₂ has sp. gr 1.118 at 12°. (Divers and Shimidzu, Chem. Soc. 45, 699.)

MgO is sol in 55,368 pts. H₂O at ordinary temp , and also at 100° (Freesnus, A 59, 117.) MgO is sol in 542 pts H₁O at 15 & (Fyto), in 8800 pts at 15 & (Henry, J Phaum 13, 2), in 7900 pts. (Kirwan), in 18,000 pts (Daiton), in 100,000-200,000 pts cold (H₂O (khucau), in 35,000 pts boiling H₄O (Fyto, Ed. Phil.) 5, 3085.)

Calculated from electrical conductivity of MgO_H, +Aq, 1 I. H₂O dissolves 9 mg. MgO_H, at 18°. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) Calculated from electrical conductivity, 1

H₂O dissolves 00.076 g MgO₂H₂ at 18° (Dupré and Brutus, Z. angew. Ch. 1903, 16. 55.)

Presence of CaO₂H₂ or CaSO₄ does not decrease the solubility (Henry.) Presence of the satts of the alkal metals, especially ammonium salts, increase the solubility. Insol. in conc. Na₂SO₅, NaNO₅, NaCl, or KNO₂+Aq. (Karsten.) Sol. in NH₂OH+Aq, but

insol. in KOH+Aq. (Odling.) Easily sol. in acids. Sol. i Sol. in an aqueous solution of sugar. Boiling alcohol dissolves traces.

8	Solubility	of	MgO ₂ H ₂ at 29°	ın	NH ₄ Cl+Aq
---	------------	----	---	----	-----------------------

One of CI+Aq form.7)	berated in 25 or orms)	Norma	lity of	Ğ p	er l
ठ <u>म</u> ेंड	for h	MgO ₂ H ₂	NH _i Cl	MgO ₄ H ₂	NH _t Cl
0 7 0 406 0 35 0 23 0 17	0 09835 0 1108 0 09835 0 1108 0 1108	0 156 0 108 0 089 0 0638 -0 049	0 388 0 250 0 172 0 106 0 0771	4 55 3 15 2 60 1 85 1 43	20 86 13 39 9 21 5 67 4 13

(Herz and Muhs, Z. anorg, 1909. 38, 140)

Solubil	ity of ivit	5U2H2 III	METH	Ja+Aq	8f 29
Cone of NH ₄ NO ₈	Acid re- quired for liber	Norms	dity of	G ;	per l
+Aq (Nor- mal)	ated NHs in 25cc. (Normal)	MgO:H:	NH4NO8	MgOsHs	NH ₄ NO
0.35 0.175	0.1108 0 1108	0.0833 0 0495	0 1834 0.076	2 43 1 45	14 6 6 0

(Herz and Muhs.)

Completely insol in 16% NaCl+Aq in presence of 0.8 g. NaOH. (Maigret, Bull. Soc. (3) 33. 631.)

Solubility of MgO₂H₂ in NaCl+NaOH+Aq.

G. NaCl per l	G MgO per i of solution with added		
G, NaOt per i	08g NaOH per l	40g NaOH peal	
125	0.07	0.03	
140 160	0 045 None	None	

(Maigret.)

Freshly pptd, Mg(OH), is sol in Th(NO,), +Aq forming a colloidal solution. (Halls, Z. anorg. 1912, 79. 262.) Insol, in acetone. (Naumann, B. 1904, 37 4329; Edmann, C. C. 1899, II, 1014.)

See also Magnesium oxide. Min. Brucste. Sol. in cold citric acid +Aq

(Bolton, C. N. 37. 14.) 2MgO, 3HgO. (Bender, B. 3. 982.)

Magnesium iodide, MgI2. Very deliquescent.

Solubility in H₂O. See MgI₂+6, and 8H₂O. Sp. gr. of MgI2+Aq at 19.5° containing 10 15 20 25 30% MgI2 1.043 1.088 1 139 1.194 1 254 1.32 ₹60% MgI₂ 1.395 1.474 1 568 1.668 1 781 [1.915 (Kremers, Pogg. 111. 62, calculated by Gerlach, Z. anal. 8. 285.)

MgI₂+Aq decomp. slightly on evaporation Very sol in liquid NH₃. (Franklin, Am Ch. J. 1898, 20, 828,)

Sol. in alcohol, ether, and wood-spirit.

Solubility of MgI2 in alcohols MgI2 forms with methyl alcohol a complex, MgI. 6CH,OH.

Solubility of MgI. 6CH,OH in CH,OH at to.

t°	% by weight of MgI ₂ , CH ₂ OH	t°	% by weight of MgI ₂ , 6CH ₂ OH
0 20 40 60 80	49.6 52.6 55.3 58.0 60.6 63.3	120 140 160 180 200	66 2 69 5 73 2 77.1 81 5

(Menschutkin, Z. anorg, 1907, 52, 15.)

MgI. forms with ethyl alcohol a complex. MgI2, 6C2H4OH

Solubility of MgI2, 6C2H4OH in C2H4OH at to.

t°	% by weight of MgIs 6CsHsOH	to.	% by weight of MgIs, 6 C ₂ H ₅ OH
0 20 40 60 80 100 110	21 9 33 2 44 4 55 3 65 5 74 7 78 8	120 130 135 140 143 145 146.5 mpt	82 7 87 2 90 0 93.3 96.0 98.0

(Menschutkin.)

MgIs forms with dimethylcarbinol a complex, MgI₂, 6(CH₃)₂CHOH.

> Solubility of MgI2, 6(CH3)2CHOH in (CH,)2CHOH at to.

t°	% by weight of MgLs. 6(CHs)sCHOH	t°	% by weight of MgIs, 6(CHs)sCHOH
10	57.1	110	76 2
30	60 0	120	79.4
50	63 3	130	84 8
70	67.0	136	91 7
90	71.2	138 mpt.	100

(Menschutkun)

. 1	онцыш	ny or migram c	enci ac c .
1	to.	% MgI ₁	% MgI ₂ , 2C ₄ H ₁₀
-	5 4	1 45	2.2
	11 8 15.6	2.43 3.46	3.7 5.3
	18.1	5 4	83
	20.4	7.55	11 6

(Menschutkin, Z. anorg, 1906, 49, 41.)

10	€ MgI₂	" Mgl > 2C4Hn0
	m low	er layer
14 8 17 6 20 28 4 33 35	35 5 35 5 35 8 35 5 35.7 35.7	54 4 54 4 54 8 54 4 54 7 54 1
	m upper layer	
18 6 23.2 24 4 32 4	13 57 14 4 14 6 15 82	20 8 22 1 22 4 24 2
ın solution when two layers mix		
37 3 38 5 38 5	19 4 22 45 26 07	29 3 34 4 39 9

29 8 32 8 (Menschutkin)

45 7

50 3

38 5

38 3

Solubility of MgI₂ in acetic acid.

MgI₂ forms with acetic acid a complex,
MgI₂ 6CH₂COOH.

Solubility of MgI₂, 6CH₃COOH in CH₃COOH at t°.

t°	% by ut. MgI2, 6CH2COOH
20	0 6
40 60	2 0 5 0
70 75 80	9.5 13.0
80	18.5
85 95	27.1 42.0
105 115	54 5 65.0
125	73.8
135 140	85.0 94.0
142 mpt.	100 0

(Menschutkin, Z. anorg. 1907, 54. 93.)

Solubility of MgI₂ m acetone MgI₂ forms with acetone a complex, MgI₂, 6CH₂COCH₃.

Solubility of MgI₂, 6CH₂COCH₂ in CH₂COCH₃ at t^o.

CARGOO CARE MO C I		
t ^o	% by wt MgIs, 6CH2COCH2	
0	4 9	
30	6.7	
50	83	
60	10 2	
70	15 2	
80	28.6	
85	40.0	
90	59 2	
95	80.0	
100	92.5	
105	98.5	
106.5 mpt.	100	

(Menschutkin, Z. anorg, 1907, 53, 30)

Solubility of MgI₂ in acetal.

MgI₂ forms with acetal a complex, MgI₃, 2CH₃CH(OC₂H₅)₂

Solubility of MgI₂, 2CH₂CH(OC₂H₅)₂ in CH₂CH(OC₂H₃)₂ at t°.

t°	% by wt MgI. 2CH ₂ CH(OC ₂ H ₂):
20	0 15
60 77	0 45
77	92.0
79	93.7
81	95 5
83	97.3
S6 mnt	100

(Menschutkin, Z. anorg. 1907, 53. 33.)

Solubility of MgI₂ in acetamide. MgI₂ forms with acetamide a complex, MgI₂, 6CH₂CONH₂.

Solubility of MgI₂, 6CH₄CONH₂ in CH₅CONH₂ at t°.

t°	% by wt of MgIs, 6CHsCONH2
49	56 5
80	63 4
110	70 5
130	76 0
150	82 1
160	85 5
170	90 8
175	96 2
177 mpt.	100 0

(Menschutkin, Z. anorg. 1909, 61, 108.)

Solubility of MgI₂ m acetonitrile.

MgI₂ forms with acetonitrile a complex,
MgI₃, 6CH₃CN.

Solubility of MgI₂, 6CH₂CN in CH₂CN at t°

t°	% by wt MgI ₂ , 6CH ₃ CN
0 30 50 70 80 89	37 2 49 8 58 2 67 9 76.5 91.3

(Menschutkin, Z. anorg 1909, 61. 110)

Solubility of MgI₂ in benzaldehyde. MgI₂ forms with benzaldehyde a complex, MgI₂, 6C₆H₆CHO

Solubility of MgI2, 6CcHcCHO in CcHcCHO

t°	% by wt. MgI ₂ , 6C ₆ H ₂ CHO
0	3 2
20	3.8
40	5.3
60	7.7
80	11 0
100	18 5
110	26 5
120	40 0
125	53 0
130	74.5
133	86 0
136	94.2
139 mpt.	100

(Menschutkin, Z. anorg 1907, 53. 28.)

Solubility of MgI₂ in methyl acetate. MgI₂ forms with methyl acetate a complex, MgI₂, 6CH₂COOCH₃.

Solubility of MgI₂, 6CH₂COOCH₂ in CH₂COOCH₂ at t°

t°	CAASCOCCAAS as s		
30 0 55 60 0 75 90 0 9 100 1 8 103 2 4 103 74 2 110 81.7 120 98.0	t°	% by wt. MgIs, %CHsCOOCHs	
	30 60 90 100 103 103 110	0 55 0 75 0 9 1 8 2 4 74 2 81.7 98.0	

(Menschutkin, Z. anorg. 1909, 61, 101.)

Solubility of MgI₂ in methyl acetate.

MgI₂ forms with ethyl acetate a complex,
MgI₂, 6CH₂COOC₂H₅

Solubility of MgI₂, 6CH₅COOC₂H₅ in CH₅COOC₅H₅ at t°.

t ^o	% by wt MgI ₂ , 6CH ₂ COOC ₂ H ₅	
0 20 40 50 55 60 65 70 75 78 5 mpt	3 2 4.8 8 6 13 7 21.5 38 0 68 5 90.5 97.7 100 0	

(Menschutkin.)

Solubility of MgI₂ in cthyl formate. MgI₂ forms with ethyl formate a complex, MgI₂, 6HCOOC₂H₄.

Solubility of MgIs, 6HCOOC:Hs in HCOOC:Hs at to.

t°	% by wt MgIa 6HCOOC ₂ Ha	
0 10 20 30 40 50 60 70.5 mpt.	15 1 17 4 20 5 25 31 8 44 68 100	

(Menschutkin)

Solubility of MgI₂ in isoamylacetate. MgI₂ forms with isoamylacetate a complex, MgI₃, $6CH_6COO(iso)C_5H_{11}$

Solubility of MgI₂, 6CH₅COO(iso)C₅H₁₁ in CH₅COO(iso)C₅H₁₁ at t^o

t°	% by wt MgIs 6CH4COO(180)C4H11
0 20 40 45 50 55 57.5 60 mpt.	7 7 11 5 20 9 25 5 33 2 47 8 63 0 100 0

(Menschutkin.)

Solubility of MgI₂ in isobutyl acetate.

MgI₂ forms with isobutylacetate a complex, MgI₂, 6CH₂COOC₆H₈.

Solubility	of MgI ₂ , (iCH ₃ COO(180)C ₄ H ₈ in CH ₂ CO()(180)C ₄ H ₈ .	
	CH ₃ COO(Iso)C ₄ H ₀ .	

f.o.	bCH ₂ COO(180)C ₆ H
0 20 40 50 60 70 75 80 85	10.5 13.6 17 6 20 4 24 9 33 7 40 5 52 0 89 0
87.5 mpt	100 0

(Menschutkin.)

Solubility of MgI₂ in propyl acetate. Mel. forms with propyl acetate a complex, MgI. 6CH,COOC,H, Solubility of MgI2 6CH4COOC4H7 in CH-COOC-H, at to.

f.o	Chy wt. Mgl, 6CH3CUOC4H7
0 20 30 35 40 45 50 55 60 65 mpt.	4 1 5 4 6 5 7 8 19 0 46 0 72 5 88 2 96 0 100 0

(Menschutkin.)

Solubility of MgI2 in urethane. MgI. forms with urethane a complex, MgI. 6NH,COOC.H.

Solubility of MgI₂, 6NH₂COOC₂H₅ m NH₂COOC₂H₅ at t°.

t°	6NH ₂ COOC ₂ H
32 50 70 80 84 87 mpt.	51 8 59.4 70 7 78 8 85 0 100 0
12.5	

(Menschutkin.)

+6H.O. Solubility of MgI₂+6H₂O in H₂O at t°.

t°	MgI1+6H2O	t°	MgI2+6HgC
43°	89.8	160°	91 7
80°	90.3	200°	93 4
120°	90.9	215°	94 3

(Menschutkin, Z. anorg. 1907, 52, 156.)

+8H₂O Sp gr of solution of MgI₂+8H₂O sat. at 18° containing 59 7% MgI₂=1 909. (Mylms, B. 1897, 30, 1718)

Solubility of MgI.+8H2O in H2O at to.

t°	Co by weight of MgIa+8H4
0 20 40	76 0 81 0 88 0
43 5	90 8

(Menschutkin.)

+10H2O Sol. in H2O. (Panfiloff, C. C. 1894, II, 610.)

Magnesium mercuric jodide, MgI. HgI. Known only in solution. Very deliquescent. +9H.O. (Duboin.

C. R. 1906, 142, 1338.) Very sol. in ethyl, methyl, propyl, butyl, isobutyl, amyl, isopropyl and allyl alcohols,

ethyl, amyl, propyl and isobutyl acetates, ethyl cyanide and arctone Sol. in benzyl alcohol Decomp, by glycerine Sl sol, in ethyl benzoate, amyl benzoate, nitrobenzene. Decomp by ethyl oxalate. Insol. in toluene. benzene, ethyl iodide, CHCl3, CCl4, ethylene bromide, monochlor and monobrombenzene. (Duboin, A. ch 1909, (8) 16, 276.)

MgI₂, 2HgI₂. Decomp. by H₂O into HgI₂ and above compound, which remains in solu-+7H2O. Sat. solution in H2O at 17.8° has

the composition MgI₂, 1.29 HgI₂, 11.06 H₂O. (Duboin, C. R. 1906, 142, 1338.) Magnesium potassium iodide, MgI2, KI+

6H₂O. Deliquescent. (Lerch, J. pr. (2) 28. 338)

Very hygroscopic. (de Schulten, Bull. Soc 1900 (3) 23. 158.)

Magnesium iodide ammonia, MgI2, 6NH3. Practically insol, in liquid NH. (Franklin, J. Am. Chem. Soc. 1913, 35, 1459.)

Magnesium nitride, Mg₈N₂.

Decomp, by moist air or H2O. Sol. in dil. or cone. HCl+Aq, or HNOs+Aq Sol. in warm HsSOs. Insol. in alcohol, ethyl iodide, or phosphorus oxychloride. (Briegleb and Geuther, A. 123, 236.)

Decomp. by H₂O. (Smits, R. t. c. 1894, 12, 198.)

Easily decomp. HaO when finely powdered. (Rossel, C. R. 1895, 121, 942.)

Magnesium suboxide (?).

Decomp H₂O. Sol. in dil. acids. (Beetz, Pogg. 127, 45.)

Magnesium oxide, MgO. Sol in 80,000-100,000 pts H₁O (Binsau, C R 41, 510), in 53,368 pts. cold or hot H₂O (Fresenius, A 39, 123), in 100,000-200,000 pts H₂O (Brussen), in 18,000 pts H₃O at ord temp (Dalton); in 7000 pts H₂O at ord temp (Kurwan), in 3700 pts H₃O at 5.5°, and

36,000 pts. at 100° (Fyfe)

Cale, from electrical conductivity of MgO +Ag. 1 pt. MgO is sol. in 172,000 pts. H2O in H2O (Warrington.) (Dupré, Zeit angew. Ch. 1903, 16. 55.) "Heavy" MgO is more sol, in H.O than "light" MgO. The temp. of preparation affects the rate of solution, the rate being diminished as the temp, of preparation is

increased (Anderson, Chem. Soc. 1905, 87. Easily sol. in acids, even in H2SO:+Aq. - DO 14

Solubility in P ₂ O ₅ +Aq at 25°.				
Composition of the		Sp gr 25°/25°	Solid phase	
G MgO per l	G P ₂ O ₈ per l	25"/25"	Som plane	
0 207 0 280 0 553 1 438 2 23 4.73 11.19 17.33 26.09 37 40 122.6 129 9 140 8 147 3 146 8 147 3 155 5 87.1 70.6	0 486 0 732 1 917 4 85 7 35 16 84 38 59 61 21 93 09 130 7 281 8 439 0 498 4 546 5 546 5 623 3 625 9 645 8 809 6 835 1	1.006 1 017 1 042 1.069 1 109 1 144 1 285 1 470 1 595	MgHPO, 3H ₃ O	

(Cameron, J. phys. Chem. 1907, 11, 364.) Sol. in NH4 salts, NaCl, or KCl+Aq. (Fresenius)

Solubility in McCl. + Ac at 25°

Soldonity in	Soldonity in MgOn+Aq at 20 .			
% MgCl ₂	% MgO as Mg(OH):			
2 36	0 00008			
4 47	0.00028			
6 79	0 00048			
9 02	0.00080			
13 14	0.00115			
15 15	0.00195			
17 53	0 00240			
18.52	0 00250			
22 04	0 00245			
23 78	0 00235			
25.13	0 00230			
26 88	0.00250			
28.34	0.00230			
29 80	0.00240			
30.04	0.00250			
34.22	0 0030			

(Robinson, J. phys. Chem. 1909, 13. 676.)

More sol in K2SO4, and Na2SO4+Aq than Insol, in liquid NH3. (Franklin, Am, Ch.

J. 1898, 20, 828,) Sol, in methyl alcohol to form a colloidal solution containing 1.6% MgO. (Neuland Rewald (Biochem. Z. 1908, 9. 547.)

Insol in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, 87, 3602.) Insol in acetone. (Naumann, B. 1904, 37.

Insol, in acetone and in methylal. (Eid-

mann, C. C. 1899, II. 1014.) Solubility in (calcium sucrate+sugar)+

Aq.
1 l. solution containing 418.6 g. sugar and 34.3 g. CaO dissolves 0.30 g. MgO, containing 296.5 g. sugar and 24.2 g. CaO dissolves 0 24 g MgO; containing 174.4 g. sugar and 14.1 g. CaO dissolves 0.22 g. MgO. (Bodenbender, J B. 1865, 600)

See also Magnesium hydroxide.

Min. Periclasite.

Magnesium peroxide, MgO2. Sol in 14,550 pts. H₂O at 20°. (Foregger

and Philipp, J. Soc. Chem. Ind. 1906, 25. 5MgO, 2MgO2+3H2O. 3MgO, 2MgO₂+3H₂O 2MgO, 2MgO₂+3H₂O.

4MgO, 2MgO2+3H2O. Above salts are decomp. by H2O, (Carrasco, Gazz. ch. it. 1909, 39, (1) 47.)

Magnesium oxybromide, MgBr₂, 3MgO+ 12H₂O.

Decomp. in the air and also by H₂O, alcohol and most reagents. (Tassilly, C. R. 1897, 125. 607.)

Magnesium oxychloride, Mg2OCl2+16H2O. Easily decomp, by H2O and alcohol.

André, A. ch. (6) 3. 80.)

+0H₂O. (André,)

2MgO, HCl, 5H₂O or 3MgO, MgCl₂+

10H₂O. Solubility determinations show that this salt is the solid phase in equilibrium at 25° with solutions of MgCl₂ and MgO con-taining from 10–15% MgCl₂. (Robinson, J. phys. Chem. 1909, 13. 677.)

Mg₈O₅Cl₂+6, 8, 14, or 17H₂O. Decomp by H₂O, which dissolves out MgCl₂. (Bender, B. 3, 932.)

Mg₁₁O₁₀Cl₂+14, or 18H₂O. (Krause, A. 165. 38.) $Mg_{10}O_0Cl_3 + 24H_2O = 9MgO$

24H₂O. H₂O removes all MgCl₂ by long di-gesting. (Bender, A. 159, 341.) +10, and 15H2O. (Bender.)

Magnesium oxysulphide, Mg₂OS. (Reichel, J. pr. (2) 12. 55.)

Magnesium phosphide, Mg.Po.

Decomp, by H2O, dil, HCl+Aq, or HNO. +Aq. (Parkinson, Chem. Soc. 5. (2) 125 and 309 V

Insol, in moderately dil, cold HCl+Ag, or boiling dil, H2SO4+Aq. Difficultly and slowly sol. in aqua regia. (Blunt, Chem. Soc. 3. (2) 106.)

Decomp. by H₂O, HCl, conc. H₂SO₄ and by HNO₁. (Gautier, C. R. 1899, 128, 1169)

Magnesium silicide, Mg₃St₂

Slowly decomp by warm H2O. Slowly decomp. by cold, rapidly by hot NH₄Cl+Aq Decomp. by cold dil HCl+Aq. (Geuther, J

pr. 95, 425.) MggSi. Decomp. by HCl+Aq with residue of Si. (Wöhler, A. 107. 113) Slowly decomp. by H₂O at ord, temp

Violently decomp, by HCl. (Lebeau and Bossuet, C. R. 1908, 146, 284.)

Magnesium sulphide, MgS.

Decomp. by H₂O. (Reichel, J. pr. (2) 12. (Wedekind, B 1905, 38, 1229.) 55.) SI sol. in H₂O with rapid decomip (Fremy.) | Manganous bromide, MnBr₂.

Sol in acids with decomp. Anhydrous, Crustalline, Only very sl. sol. in cold H₂O. Sol. in HNO₃ and H₃SO₄ at ord, temp. Sol. in PCl, and in chromyl chloride. (Mourlot, C. R. 1898, 127, 182.)

Magnesium polysulphide, MgSz. Known only in solution. (Reichel.)

Magnus' green salt. See Platodiamine chloroplatinite.

Manganese, Mn.

Decomposes H₂O even in the cold, more rapidly when hot. (Regnault.)

Decomposes cold water violently. (Bunsen)

Sol. in all dil. acids. Slowly sol in cold H₂SO₄. (John.) Insol, in cold, but rapidly sol, in hot H2SO4.

Very easily sol. in dil. H2SO4, or HCl+Aq, HNO₃, or HC₃H₃O₂+Aq. (Brunner.) Pure manganese is unaltered in dry air.

Fure Hanganese is unaltered in dry any executive the manual providered. Slowly attacked by every solution of the stacked by cold H.80, rapidly on warming, rapidly attacked by cold H.80, rapidly or warming, rapidly attacked by cold H.80, H.91, violently by cone. HNO₁+Aq; and lapidly by dil HNO₁, HO₁+Aq, and also NaOH+Aq. Sol in NH₂Cl+Aq (Prelimetr, W. A. Blox, 2b, 389.)

Insol, in liquid NH₃ (Gore, Am Ch. J. 1898, 20, 828 1/2 ccm. oleic acid dissolves 0.0276 g. Mn

in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

Manganese antimonide. MnSb.

Sol. in hot aqua regia. (Wedekind, B. 1907, 40. 1266.)

Manganese azomide, basic, Mu(OH)Nv. Only sl. sol in H2O with decomp. (Curtius, J. pr. 1898, (2) 58, 293)

Manganese bismuthide, MnBi.

Very sensitive towards acids with the exception of cone, HCl. (Wedekind, B. 1911, 44. 2665.)

Manganese boride, MnB.

Attacked by cold H₂O and by acids, (Jassoners, C. R. 1904, 139, 1210)

Easily attacked by HCl, H₂SO₄ and HF with evolution of BH₄. (Wedekind, B. 1905,

38. 1231.) MnB. Sol m acids, with evolution of H2. (Troost and Hautefeuille, A. ch. (5) 9, 65 Slowly decomp, by HoO, Sol, in dil, HCl and other dil. acids with evolution of BH4.

Anhydrous. Very deliquescent. Sat. MnBr2+Aq contains at: -21° +7° 11° 18° 38° 52° 52.1 56.5 57.0 59.1 62.7 64.2% MnBrs.

76° 89° 97° 68,2 70.1 69.7 69.2 70.2% MnBr.

(Étard, A. ch. 1894, (7) 2. 541.) Insol. in liquid NH2. (Franklin, Am Ch. J. 1898, 20, 828,)

+H₂O. (Lescoeur, A. ch. 1894, (7) 2. 104.) +4H₂O. More deliquescent than MnCl₂. Melts in crystal water when heated. (Berthe-

+6H₂O. (Kuznetzoff, C. C. 1897, II. 329.) Manganous mercuric bromide.

Deliquescent. Manganous palladium bromide.

See Bromopalladite, manganous.

Manganous stannic bromide.

See Bromostannate, manganous.

Manganese carbide, MnC. (Brown, J. pr. 17, 492.)

MnC₁. Mn₃C. (Troost and Hautefeulle, A. ch. (5) 9, 60,) Decomp. by H2O and by dil acids (Moissan, C. R. 1896, 122, 422)

Manganous chloride, MnCl. Anhydrous. Deliquescent.

	MANGANOUS					S CHLORII	Œ			479
100	100 pts. H ₂ O at t° dissolve pts. MnCl ₂ :			Sp. gr. of MnCl2+Aq at room temp.						
ţ°	Pt	MnCl2	t°	P	ts MnCl ₂	% M	luCl ₂		Sp gr	
10 31. 62.	25 5 1	62 16 85 72 122 22	87 5 122 22 106 25 123.81		8 15. 30 40	330		1 0960 1 1963 1 3372 1 4530		
- 0	r, sat. I	MnCl ₂ +A	q at t	ontai contai	ins:	(Wag	ner, W. Ann	. 1882		_
ŧ°		% MnCl ₂	t°		% MnCl ₁		131-0		1.19	
10 31.	25	38 33 46 15	106		55 0 55 32		gr. of MnC	12+A		
62.		55 0				t°	% MnCls	_	Sp gr	
Sn gr	See also below under +2H ₂ O, and +4H ₂ O. Sp. gr. of MnCl ₂ +Aq at 15°. a=sp. gr. if % is MnCl ₂ +		14.5 14.5 14.0 14.5 14.0 14.6	5 0 11 99 14 98 19.92 23 10 28 51		1 0457 1 1076 1 1379 1 1891 1 2246 1 2888				
4	H₂O.					(Lo	ng, W. Ann.	1880	, 11. 38.)	
% 5	1 045	b 1 0285	% 40	a 1 443	b 1 250	Sp,	gr. of MnCl	12+A	q at 25°.	
10	1 091	1.057	45 50	1 514		Concentrat	tion of MnCl2+	-Aq	Sp gr	
15 20 25 30 35	1 189 1 189 1 245 1 306 1 372	1 116 1 147 1 180 1 .214	55 60 65 70	:::	1 375 1.419 1.463 1 508	1 1/s 1/s	- "		1 0513 1.0259 1.0125 1 0063	;
	(Ge	rlach, Z. s	ınal. 2	8. 476.)	,	(Wago	er, Z. phys.	Ch 1	1890, 5. 38.)	

Solubility of MnCl2+KCl in H2O at to.

t°	% MnCl2	% KCl	Solid phase
6	40 23 35 94	9 41 23 06	MnCl ₂ , 4H ₂ O MnCl ₃ , 4H ₂ O + MnCl ₃ , KCl, 2H ₂ O + KCl KCl
28 4	44 46 43 28 38.65	8.66 13.79 26 91	MnCl ₂ , 4H ₂ O MnCl ₃ , 4H ₂ O+MnCl ₃ , KCl, 2H ₂ O MnCl ₃ , 4H ₂ O+MnCl ₃ , 2KCl, 2H ₂ O+KCl KCl
52 8	50 14	6.01	MnCl ₂ , 4H ₂ O+MnCl ₂ , 2H ₂ O+MnCl ₂ , KCl, 2H ₂ O
62.6	51 86 49.95 44.05 36 85	6.67 12.49 18.77 31 57	MnCl ₂ , 2H ₂ O MnCl ₃ , 2H ₂ O + MnCl ₃ , KCl ₃ , 2H ₂ O MnCl ₃ , KCl ₃ , 2H ₃ O + MnCl ₃ , 2KCl ₃ , 2H ₃ O MnCl ₃ , 2KCl ₃ , 2H ₂ O + MnCl ₃ , 4KCl KCl

(Suss, Z. Kryst. Min. 1912, 51. 262.)

Insol. in liquid NH₂. (Franklin, Am. Ch | Solutions of MnCl₂ in 75% alcohol saturated J. 1898, 20, 828.)

as a compani.					
t°	% MnCla	to.	% MnCl ₂		
10 25	23 1 36.1	43 75 87.5 (Bpt.)	37 5 32 2		

Solutions of MnCl2 in absolute alcohol saturated at to contain.

t°	C MnCl ₂	t°	C MnCl2
11 25	33 3	76 25	36 2
37 5	33 3	(Bpt.)	

(Brandes, l, c)

MnCl₂ crystallises from above solutions on standing. When 15-20 vols, ether are added to 1 vol absolute alcohol sat. with MnCl₂, MnCl₂ is completely pptd. (Dobereiner)

Insol, in oil of turpentine. Sol. in urethane. (Castoro, Z. anorg. 1899, 20, 61

Sl. sol, in benzonstrile, (Naumann, B 1914, 47, 1369.) Difficultly sol, in methyl acetate. (Nau-

mann, B. 1909, 42, 3790.) Insol, in ethyl acetate. (Naumann, B.

1910, 43, 314.)

+II₂O. Solubility in HCl+Aq decreases with increasing amt. of HCl. It is greater when hot than cold, but is not inconsiderable even when HCl is conc. I l. conc. HCl+Aq sat. at 12° dissolves 190 g. MnCl₂ from MnCl₂ +H₂O. (Ditte, C. R. 1881, 92. 243.)

+5/2H₂O MnCl₂+4H₂O efforesces to MnCl₂+5/2H₂O in a dry atmosphere and under low pressure and not to MnCl₂+ 2H₂O. (Sabatier, Bull. Soc. 1894, (3) 11. 547.) +2H.O.

Solubility in H₂O at t°.

t°	Pt= MnCl ₂ per 100 pt= H ₁ O	Sp gr of sut
60 70	108 6 110 6	1 6108
80	112 7	1 0104

(Dawson and Williams, Z. phys. Ch 1899, 31.63)

Sat. aqueous solution of MnClo+2HoO Contains 51.86% MnCl₂ at 62.6°. (Suss. Z. Krist. 1912, 51, 262.)

+4H2O. Deliquescent.

100 pts, H_{*}O at t° dissolve:

t°	Pts. MnCl ₂ +4H ₂ O	t°	Pts. MnCl ₂ +4H ₂ O
8 31.25 62.5	151 265 641	87 5 106.25	641 656

(Brandes, l. c.)

Sol. in 0 8 pt. H₂O at 18 75°. (Abl.) Pptd. from solution in 9.17 mols. H₂O. (Kuznetzoff, C. C. 1899, I. 246.)

Sat. ag. solution contains at --22° --5° +7° 17° 19° 37.8 40.4 41.2 42.3% MnCla.

35° 57° 80° 100° 140° 44 4 48.2 50.0 51.0 53.7 54.7% MnCl. (Étard, A ch. 1894, (7) 2. 537)

Solubility in H₀O at t°.

t°	Pts MnCl ₂ per 100 pts H ₂ O	Sp. gr of sat solution
25	77 18	1 4991
30	80.71	1 5049
40	88.59	1 5348
50	98 15	1 5744
57.65	105.40	1 6097

* Temp. of transition into MnCls+2H2O. (Dawson and Williams, Z. phys. Ch. 1899, 31.

Sat aqueous solution of MnCl₂+4H₂O contains 40.23% MnCl₂ at 6°, 44.6% MnCl₂ at 28.4°. (Suss, Z. Krist. 1912, 51, 262)

100 pts. 75% alcohol dissolve at to:

t°	Pts MnCl ₂ +4H ₂ O	t°	Pts MnCl ₂ +4H ₂ O
10	53	43 75	144
25	132	87 5	100 1

(Brandes, l. c.)

Insol. in absolute ether, which also does not abstract crystal H₂O. Insol, in boiling oil of turnentine (Brandes. Sol, in conc. HNOs+Aq

+5H₂O. (Müller-Erzbach, B. 1889, 22. 3181. +6H₂O Pptd, from solution in 11.7 mols. H₂O at -21°. (Kuznetzoff, C. C. 1899, I. 246.)

Manganese trichloride, MnCls.

Immediately decomp, by H₂O; sol, in abs. ether and in abs. alcohol. (Holmes, J. Am. Chem. Soc. 1907, 29, 1285.)

Manganese tetrachloride, MnCl., Has not been isolated.

Sol. in H₂O, alcohol, or ether. (Nicklès, J. B. 1865, 225.)

Composition is Mn₂Cl₆. (Christensen, J. pr. (2) 34, 41.)

Manganese hydrogen tetrachloride (chloromanganic acid), MnCl, 2HCl. Sol in ether; decomp. by H2O. (Franke, (2) 36. 31.)

Manganese heptachloride, MnCl₂(?). Decomp. by H2O, (Dumas, Berz, J. B. 7.

112.)

Has the formula MnO₄Cl (?) (Aschoff, J. pr. 81. 29.)

Manganous mercuric chloride, MnCl₂, HgCl₂ +4H₂O.

Deliquescent in moist air. Easily sol. in H₂O. (v. Bonsdoiff) MnCl₂, 2HgCl₂. (Varet, C R. 1896, **123**,

Manganous potassium chloride, MnCl₂, KCl +2H₂O.

Deliquescent. Very sol. in H₂O, but is

decomp. thereby. (Remsen and Saunders, Am. Ch. J. 14, 129.) MnCl₂, 2KCl+2H₂O (Suss, Z. Kryst. 1912, 51, 262.)

Manganic potassium chloride, MnCl₃, 2KCl+ H₂O. Decomp. by H₂O. Sol. in HCl apparently without decomp. (Rice, Chem. Soc 1898,

73. 261)
MrGl, 2KCI Very easily decomp.
(Meyer and Best, Z. anorg. 1899, 22. 186)
MrGl, MrGl, 5KCl. Easily decomp.
(Meyer and Best, Z. anorg. 1899, 22. 185)
probably doe
pr. (2) 35. 161)

Manganous rubidium chloride, MnCl₂, 2RbCl.

(Godeffroy.) +3H₂O. Easily sol. in H₂O Insol. in alcohol, conc. HCl+ppt. anhydrous sait from aqueous solution. (Godeffroy, Arch. Pharm. (3) 12. 40.) Contains only 2H₂O. (Saunders, Am. Ch.

Manganous thallic chloride, MnCl₂, 2TlCl₃+ 6H₂O.

Can be cryst, from H₂O. (Gewecke, A.

1909, 366. 224.) Manganous stannıc chloride.

J. 14. 139.)

See Chlorostannate, manganous.

Manganous chloride hydrazme, MnCl₂,

2N₂H₄. Ppt. (Franzen, Z. anorg. 1908, **60**, 285.)

Manganous chloride hydroxylamine, MnCl₂, 2NH₂OH,

Very stable; msol. in alcohol. (Feldt, B. 1894, 27, 405.)

Manganous fluoride, MnF2.

Only sol. in H₂O containing HF. (Berselusa). Sol. in S4. 41.)

1. Insol. in H₂O; decomp. by boiling with H₂O; sl. oil in liquid NH₂; easily sol. in cold or hot cone. HNO₂ and HCl; slowly sol in dl. HCl; decomp. by fused K₂O₂ KOH, +Aq as KNO₂ and KClO₂; insol. in sloohol and 35. 161.

ether. Slowly sol. in acetic acid. (Moissan, C. R. 1900, **130**. 1160.) Insol. in liquid NH₁ (Gore, Am. Ch. J.

1898, 20. 828.)
Insol. in acctone (Naumann, B 1904, 37. 4329.)

Manganese trafluoride, MnF:

Completely sol, in a little H₂O, but decomp. by dilution or boiling. (Berzelius.) +6H₂O. Efflorescent (Christensen, J. pr.

(2) 35. 57.)
Sol. in H₂SO₄, HCl, HNO₂; decomp. by H₄O; insol in most organic solvents. (Moisson, C. R. 1900, **130**, 626.)

Manganomangame fluoride, Mn₈F₈+10H₂O. Sol. in a little H₂O, but decomp by dilution. (Nicklès, C. R. 67, 448.)

Manganese tetrafluoride, MnF4.

Not isolated. Sol. in absolute alcohol or ether; decomp. by H₂O. (Nicklès, C. R. 65. 107.)
Probably does not exist. (Christensen, J.

Manganese heptafluoride, MnFr (?)

Sol. in H₂O with decomp. (Wöhler.) Manganese sesquifluoride with MF.

See also Fluomanganate, M.

Manganic nickel fluoride, 2N₁F₂, Mn₂F₆+
8H₂O.

(Christensen, J pr. (2) 34. 41.)

Manganic potassium fluoride, Mn₂F₆, 4KF+

Decomp. by H_{*}O. Sol. in conc. HCl+Ag, dil. HNO₁+Ag, conc. H₂SO₄+Ag, H₂PO₄+ Ag, H₂CO₄+Ag, H₂CH₄O₅+Ag, and dil. HCl+Aq. (Christensen, J. pr. (2) 35, 72.) MnF₆, 2KF, Difficulty sol. in H₂O. Decomp. by much H₂O. (Nicklès, C. R. 65, 107.)

107.) True composition is Mn₂F₆, 4KF, also with 2H₂O. (Christensen, J. pr. (2) 34, 41.) MnF₃, 4KF. (Nickles.) See also Fluomanganate, potassium.

Manganic rubidium fluoride.

See Fluomanganate, rubidium.

Manganic silver fluoride, 2AgF, Mn₂F₈+

14H₄O. Sol. in HF+Aq. (Christensen, J. pr. (2) 34. 41.)

Manganic sodium fluoride, Mn₂F_e, 4NaF. Decomp. by much H₂O. Not as sol. in HF +Aq as the K salt. (Christensen, J. pr. (2) 35, 161)

2MnF2, MnF2.

Decomp, by H₂O Sl. sol. in dil , casily sol. in conc. HF. Sol in conc HCl, dil. HNO₂, and cold or hot cone. H2SO1

Sol, in warm H2O2 containing H2SO4. Sol m dil tartarie and oxalie acids. (Ephraim, B. 1909, 42, 4458.)

Manganous stannic fluoride. See Fluostannate, manganous.

Manganic zinc fluoride, 2ZnF2, Mn2F4+8H2O See Fluomanganate, zinc.

Manganous zirconium fluoride. See Fluozirconate, manganous.

Manganous fluoride ammonia, 3MnF2, 2NH2. (Moisson, C. R. 1900, 130, 1161.)

Manganous hydroxide, MnO2H2.

2.15 x 10⁻³ g.-mol, are sol, in 1 l. H₂O at 18° (Sackur, Z. Elektrochem, 1909, 15, 846) Solubility in $H_2O = 0.6 \times 10^{-4} g$, mol. (Herz,

Z. anorg. 1899, 22. 284.)

 1 l. H₂O dissolves 2 x 10⁻¹ mol. MnO₂H₂ (Tamm, Z. phys. Ch 1910, 74. 500) Very sl. sol, in H2O or alkalies. (Fresenius.) Easily sol. in acids. Insol. in NaOH,

or KOH+Aq. Sol. in NH4 salts+Aq. Insol in NH,OH+Aq. Sol. in NaOH+Aq in presence of glycerine. (Donath, Dingl. 229. 542.) Not pptd, by NH₄OH+Aq in presence of H₄C₄H₄O₆; by KOH+Aq in presence of cane sugar; by KOH+Aq in presence of Na citrate. Solubility of MnO₂H₂ in organic Na salts+

Aq. (0.5 normal.) Na tartrate, 0.0068 mol. per l. Na malate, 0.0042

Na citrate, 0 0126 Tamm, Z phys. Ch. 1910, 74, 496.) Min. Pirrochroite. Manganomanganic hydroxide, Mn₂O₄, rH₂O.

Not attacked by boiling NH4Cl+Aq. Behaves towards acids as Mn₂O₃

Manganic hydroxide, Mn₂O₃, H₂O.

Insol in hot or cold dil. H-SO₄+Aa. Sol, in cone. H2SO4 at somewhat over 100°. (Carius.) Sol, in tertaric, oxalic, and malic acids, with

subsequent decomp. Insol. in formic, acetic, benzoic, or hippuric acids. (Hermann, Pogg. 74, 303.)

Insol. in NH,Cl+Aq. Insol. in cane sugar +Aq. (Peschier.) Min. Mangamto. Sol. in conc. HCl+Aq. Sl. sol. in conc. H.SO.

Manganomanganic thallous fluoride, 5TlF, Manganese dihydroxide, MnO2, H2O See Manganous acid.

Manganous iodide, MnI₁

Anhydrous. Nearly insol. in AsBia. (Walden, Z. anorg. 1902, 29. 374)
Sol. in POCl₂. (Walden, Z. anorg. 1900, 25. 212)

Moderately sol, in liquid NH, (Franklin, Am Ch. J. 1898, 20, 828.) +4H₂O. Very deliquescent, and sol in H₂O. (Kuznetzoff, C. C. 1900, II. 525.) +9H₂O (Kuznetzoff.)

Manganous mercuric iodide, MnI2, 2HgI2+

Decomp by H₂O. Sol. without decomp. in alcohol and acctone. (Dobroserdoff, C C. 1901, I. 363) 3MnI2, 5HgI2+20H2O

A sat, solution in H2O at 17° has composition 1.4 MnI., HgI.+10.22 H.O and sp. gr = 2.98. (Duboin, C. R. 1906, 142 1338)

Very sol, without decomp in methyl, propyl, isopropyl, isobutyl, and allyl alcohols, ethyl acetate and ethyl cyanide Somewhat less sol. in amyl, propyl and isobutyl acetates, acctone, acetic acid, formic acid (with ppnt of HgI2), ethyl benzoate, ethyl oxalate, butyl alcohol, amyl alcohol and nitrobenzene SI decomp by glycerine. Insol. in ethyl nitrate, ethylene bromide, toluene, benzene CHCl2, CCl4, ethyl 10dide, monobrom- and monochlorbenzene. (Duboin, A ch. 1909, (8), 16, 278)

Manganese nitride, Mn₃N₂

Sol, in HNO₄ only on heating, HCl+Aq dissolves only in presence of Pt. Aqua regia dissolves slowly. H₂SO₄ acts only when hot and cone. Insol in acetic acid. (Prelinger, M 1894, **15**, 398.)

Mn₅N₂. Sol. in NH₄Cl+Aq and NH₄OH+ Aq; insol. in HCl; sol in HNO₂+Aq. with decomp (Preinger, M. 1894, 15, 398)

Mn₇N₂. Easily attacked by acids and alkalies (Wedekind, B. 1908, 41, 3772.)

Manganous oxide, MnO.

Insol in H₂O Easily sol. in acids. Readily sol. in NH4Cl+Aq.

Manganic oxide (Manganese sesqueoxide),

Decomp. by boling with HNO₁+Aq into MnO, which dissolves, and MnO₂ which dissolves and MnO₃ which is insol. (Bertherly: also by boling with dill. HSO₁+Aq. (Turner.) Sol in hot conc. HsO₂ or Hcl+Aq. Sol in cold HCl+Aq without decomp. If perfectly pure, is insol in dil. HsO₂+Aq, but fit if contains any MnO₁ it dissolves. (Ross.) Insol. in boling NHCl+Aq.

Insol. in acetone. (Naumann, B. 1904, 37. 4329)

Solubility in (calcium sucrate + sugar) +

Aq 1 l solution containing 418.6 g sugar and 34.3 g. CaO dissolves 0.50 g. Mn₂O₃; containing 296 5 g, sugar and 24.2 g. CaO dissolves 0.37 g Mn₂O₃; containing 174.4 g, sugar and 14.1 g CaO dissolves 0 32 g. Mn₂O₃. (Bodenbender, J. B. 1865, 600.)

Min. Braumte.

Calloidal, Solution in H2O containing 0.21 to a litre is precipitated by KNO+Aq (1:1000); K₂SO₄+Aq (1:1100); (NH₄)₂SO₄ +Aq (1:1500); NaCl+Aq (1:1580), MgSO₄ +Aq (1 . 40,983); BaCl₂+Aq (1 · 58,823), MnSO₄+Aq (1 · 147,929), (NH₄)₂Al₂(SO₄)₄+ 362,318), K₂Cr₂(SO₄)₄+Aq (1 . 416. HCl+Aq (1:61,350), HC₂H₃O₂ (1: 2); H₄SO₄ (1:62,500). (Spring and de 17,262); H₄SO₄ (1:62,500). Boeck, Bull Soc. (2) 48, 170.)

Manganomanganic oxide, Mn₂O₄,

Insol in HaO. Boiling dil. or conc. HNOa+ Aq dissolves out MnO (Berthier); also boiling dil. H₄SO₄+Aq (Turner.) Sol in hot HCl +An. (Otto) NH₄Cl+Aq dissolves out +Aq. (Otto) MnO. (Rose.) Sol. without decomp. in hot very conc. H₂PO₄+Aq, and cold conc. H₂SO₄. ovalic, and tartaric acids+Aq Min. Hausmannite

Manganese dioxide, MnO2.

Min Pyrolusite. Insol in H₂O Very slowly sol, in conc. H₂SO₄ with evolution of Sol in cold HCl+Aq; decomp, by hot HCl+Aq Sol in aqua regia. Sol. in SO₂+ Aq or N₂O₂+Aq. (Karsten

Insol. in HNO2, or dil. H2SO4+Aq, except in presence of organic reducing substances. Decomp by citric acid, and more essily by oxalic acid. (Bolton.)

Si sol in hot cone, but insol in dil HNO:
-Ag. (Deville.) When pure it is insol in cold dil H.SO4+Aq, but if a small quantity of MnO is added much MnO: dissolves.

Not decomp, by boiling NH₁Cl+Aq Easily sol, in a mixture of nitrososulphuric

acid and conc. HCI+Aq. (Borntrager, Rep. anal, Ch. 1887, 741) Insol, in acetone (Naumann, B. 1904, 37. 4329, Eidmann, C. C 1899, II 1014.)

Manganese oxides, Mn₂O₅, Mn₂O₁₁, etc. See Manganite, manganous.

Manganese traoxide, MnO2.

Deliquescent. Sol. in H₂O, with subsequent decomp. Decomp. by ether. Sol. in conc. H₂SO₄. (Franke, J. pr. (2) 36. 31.)

Manganese tetroxide, MnO. (?).

Sl. sol, in H₂O with decomp. Decomp. by H₂SO₄ or ether (Franke, J. pr. (2) 36, 166.) (Hahn.)

Manganese heptoxide, Mn₂O₇

Very unstable, takes up H2O from air. Sol. in H₂O with evolution of heat and rapid decomposition Sol. in conc. H18O4 without decomp. (Aschoff)

Manganese oxychloride, 3Mn₂O₂, MnCl₂. Insol, in H.O. (Saint-Gilles, C. R. 55, 329.) MnCl. MnO (?). (Gorgeu, A. ch (6) 4.

MnO:Cl. See Manganyl chloride.

Manganic oxvfluoride, MnOF.

Sol. in absolute ether. MnOF₂, 2HF=fluoxymanganic acid. (Nicklès, C. R. **659**, 107)

Manganic oxyfluoride notassum fluoride. See Fluoxymanganate, potassium.

Manganic sesqueoxyfluoride potassium fluor-

See Sesquifluoxymanganate, potassium,

Manganous oxviodide, MnI., MnO+6H2O Sol. in H₂O with decomp. (Kuznetzoff, C. C 1913, I, 1659.)

Manganese oxysulphide, MnO, MnS, Sol in acids. (Arfvedson, Pogg. 1, 50)

Manganese phosphide, Mn₃P₂

Insol, in dil. acids; sol in hot cone, HNO, (Wedekind, B. 1907, 40, 1268.)

Sol. in aqua regia; insol. in HNO. (Granger, C R 1897, 124, 191.)

Mn₂P₂ HCl+Aq. dissolves out Mn₂P₂ and leaves Mn₇P₂, which is sol in HNO₈+Aq. (Wöhler and Merkel, A 86, 371.) Not attacked by boiling H₂O or by HCl.

Easily sol. in warm HNO₂ or aqua regia. (Wedekind and Veit, B 1907, 40, 1268.) xMn₂P₂, yMn₄P₂. Easily sol. in aqua regia; partly sol in H2SO4 or HCl+Aq (Struve, J.

pr 79, 321. Mn₆P₂. Insol in HCl+Aq Sol, in HNO₃ +Aq. (Schrötter, W. A. B 1849, 1. 305.)

Manganous phosphoselenide, MnS, P2Se.

Insol, in H₂O. Sol, in HCl+Aq or HNO₂+ Aq. Insol in cold, al decomp, by hot alkalies +Aq. (Hahn, J. pr. 93, 436)

2MnSc, PaSea. Insol. in cold, slowly sol. in hot HCl+Aq. Not decomp. by alkalies 2MnSe, P2Se4. Easily decomp, by acids.

Manganese selenide, MnSe.

Decomp. by H₂O and min. acids. (Wede-

kmd, B. 1911, 44, 2667)

('ryst Sl decomp by H₂O at 100°; easily sol, m dd acads (Fonzes-Diacon, C R, 1900, 130, 1025.)

Manganese silicide.

Sol, m HF; only very sl sol, in other acids. (Warren, C, N 1898, 78, 319)

Mg,Sl₂ Sol in HCl+Aq with evolution of SiH₄ (Wohler, A. 106, 54.)

Mn₂S₁. Insol in H₂O. (Vigouroux, C R. 1895, **121**, 772.) Easily sol in HF (Wedekind, B. 1911,

44. 266S.)

Easily sol in dil neids, HF and HNO₃
Insol, in KOH+Aq. (Vigourous, A ch

1897, (7) 12, 179.)

Easily sol, in HF when heated; in HCl
hot. Sol in dil mm. acids with
decomp. (Vigonioux. C. R. 1895, 121.

772.) Insol, in IINO₂, sol in dil, oi cone. HCl Slowly decomp, by alkalı hydroxides. (Lebeau, C. R. 1903, 136, 91.)

beau, C. R. 1903, 136, 91.)

Mn.St. Easily sol in molten alkalı.

(Vigoucoux, C. R. 1895, 121, 772.)

MnSt. Slowly attacked by hot cone. HCl

Not acted upon by dil. or conc. HNO₃ or kind, B. 1911, 44, 2067.)
H-SO₄. (Lebeau, C R. 1903, 136, 91)
MnSu. Not attacked by HNO₃ or H-SO₄
Manuaric acid. H Manuaric acid. H Manuaric acid. H Manuaric acid.

MnS₁₂. Not attacked by HNO₃ or H₂SO₄ Easily sol. in cold HF; decomp. by cone alkalies+Aq. (Lebean, C. R. 1903, 186. 233.)

Manganous sulphide, MnS

Anhydrous, Insol. in H₂O. Sol in weak

acids, even in acetic acid.

1 I. H₂O dissolves 71.60 x 10⁻⁴ moles MnS

at 18°. (Weigel, Z. phys Ch. 1907, 58, 294) Insol. in acetone. (Naumann, B. 1904, 37, 4320)

Min. Alabandate. Sol. in HCl+Aq. +½H₂O. Green. Decomp. by boiling with H₂O. Sol in weak acids, as acctic or sulphurous acid. Very sl. sol. in (NH₄)₂S+ Aq. (Wackenioder)

Sol. in NH₄ salts+Aq. 100 ccm. of sat. NH₄Cl+Aq at 12° dissolve 0.43 g. MnS (Clermont and Guyot, C. R. 85. 37.) + \(\begin{array}{c} \psi_1 \text{H}_2 \text{O}, \text{Flesh-colorid}. Less sol. in NH₄ \)

+1/1H₂O. Plesh-colored. Less sol. in NH₄ salts, or acetic acid+Aq than the preceding salt 100 cem. of sat. NH₄Cl+Aq at 12° dissolve 0 088 g. (Clermont and

Guyot)
Neither green nor flesh-coloured MnS contains H₂O. (Antony and Donnmi, Gazz, ch. 1t. 23, 560.)

MnS is not pptd. in presence of alkalı citrates, tartrates, or grape sugar; cane or milk sugar do not prevent precipitation. (Spiller.) Not pptd. in presence of Na₄P₂O₇. (Rose.)

Manganese sulphide, Mn₂S₄

* Decomp. by H₂O Sol. in cold dil acids, (Gautica and Hallopeau, C. R. 1889, 108, 809)

Manganese disulphide, MnS₂.

(Scnarmont, J. pr. 51, 385.)

Min. Hauerite Decomp. by hot HCl+Aq
with separation of S

Manganous phosphorus sulphide, MnS, P₂S.
Sol in HCl+Aq with decomp. (Berzelius,
A 46, 147.)

Manganous potassium sulphide, 3MnS, K₂S.
Nearly insol in water, alcohol, or ether.
Easily sol in acids (Völcker, A 59, 35.)

Manganous sodium sulphide, 3MnS, Na₂S Insol in H₂O, alcohol, or ether Sol. in dil acids, and SO₂+Aq. (Völcker) 2MnS, Na₂S Decomp by H₂O, (Schneider, Pogg 151, 446.)

Manganese telluride, MnTe.

Decomp. by H₂O and min, acids. (Wede-

Manganic acid, HoMnO4.

Known only in solution, which decomposes rapidly. (Franke, J. pr. (2) 36. 31.)

Barium manganate, BaMnO4.
Insol. in H₂O; decomp, by acids (Mit-

scheilich.)

Didymium manganate, Di₂(MnO₄)₃.

Insol. in H₂O. Sol in H₂SO₄+Aq, (Frerichs and Smith, A 191. 331.) Does not exist. (Cleve, B. 11. 912.)

Lanthanum manganate, La₂(MnO₄)₂. Ppt. (Frerichs and Smith, A 191, 331.) Does not exist. (Cleve, B. 11, 912.)

Manganese manganate, Mn₂O₃, MnO₃=3MnO₂

See Manganese dioxide.

Ppt. (Jolles, C. C. 1888. 58.)

Potassium manganate, K2MnO4.

Sol. in water containing alkalies without decomp., but decomp. by pure H₂O. Can be recrystallised from dil. KOH+AG.

Solubility	y in KOH+Aq at t°		
Solvent	t°	Mol K ₂ MnO ₄ m 1 l of set solution	
2-N KOH	0 10 20 30 45	0 907 1 013 1 140 1 252 1 424	
4-и кон	0 17 25 30 40 45 51 60 70 80	0 554 0 681 0 733 0 772 0 852 0 889 0.938 1 003 1 074 1 143	
НОМ И-9	0 15 23 30 40 45 60 70 80	0 155 0 224 0 261 0 303 0 362 0 388 0 469 0 528 0 587	
8-N KOH	0 10 20 30 40 50 60 70 80	0 063 0 070 0 078 0 096 0 119 0 142 0 167 0 196 0 222	
10-N KOH	0 10 20 30 40 50 63 70 80	0 0145 0 0152 0 0160 0 0215 0 0305 0 0462 0 0620 0 0700 0 0830 m. 1912, 18, 724.)	

Sol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Potassium manganate permanganate, K₂MnO₄, KMnO₄.

Sol. without decomp. in 20% KOH+Aq (Gorgeu, A. ch. (3) 61. 355.)

Sodium manganate, Na₂MnO₄+10H₂O. Sol. in H₂O, with partial decomp. (Gentele, J. pr. 82. 58)

Strontium manganate, SrMnO₄. Insol. in H₂O. (Fromherz.) Permanganic acid. See Permanganic acid.

Manganicyanhydric acid, H₃Mn(CN)₄. Not known in the free state

Barium manganicyanide, Bas[Mn(CN)6]2 Sol in H2O. (Fittig and Eaton)

Barium potassium manganicyanide barium cyanide, 2KBaMn(CN)₆, 3Ba(CN)₂+ 8H₂O

Decomp. by H₂O. (Lehmann, Dissert. 1898.)

Calcium manganicyanide, Ca₂[Mn(CN)₆]₂. Sol in H₂O. (Fittig and Eaton)

Potassium manganicyanide, K₂Mn(CN)₆. Sol. m H₂O. (Christensen, J. pr. (2) 31. 163.)

Sodium manganicyanide, Na₂Mn(CN)₅+

2H₂O. Sol in H₂O. (Fittig and Eaton.)

Manganimanganic acid.

Barium manganimanganate, BasMn2Os+

Insol, in H₂O. Identical with Rosenstichl's "basic barium manganate," (J. Pharm. 1864, 46, 344). (Auger and Billy, C. R. 1904, 138.

Lithium manganımanganate, Li₄Mn₂O₅+ H₂O. Insol in H₂O. (Auger and Billy.)

Manganiperiodic acid, H₂O, Mn₄O₃, I₂O₇
Wholly insol. in H₂O, in hot dil. or cone.
HNO₃ and in hot dil. H₃SO₄. (Price, Am.
Ch. J. 1903. 30. 182.)

Potassium manganiperiodate, K₂O, Mn₂O₂,

Apparently entirely insol. and unchanged when boiled with H₂O, dil or conc. HNO₂, or dil. H₂SO₄. (Price.)

Sodium manganiperiodate, Na₂O, Mn₂O₄, I₂O₇.

Apparently insol. and unchanged when treated with boiling H₂O, boiling dil. or conc. HNO₃ and boiling dill. H₃SO₄. (Price.)

Manganocyanhydric acid, H₄Mn(CN)₆
Most easily decomp, Sl. sol. in alcohol,

Insol. in ether. (Descamps, A ch (5) 24.

Ammonium cuprous manganocyanide. (NH₄)₂Cu₂Mn(CN)₆

Sol, in H.O; decomp, by acids and alkalies: very unstable. (Straus, Z, anorg. 1895. 9.

Ammonium manganous manganocyanide, NII₄CN, Mn(CN)₄= (NH) MnMn(CN)

Sol in NH4CN+Aq. (Fittig and Eaton, A. 145, 157)

Barium manganocyanide, Ba2Mn(CN)a Sol, in cold H.O. (Fittig and Eaton.)

Calcium manganocyanide, Ca:Mn(CN)s, Very deliquescent. Sol in H₂O; msol. in fau, A ch 1897, (7) 12, 275 alcohol (Pittig and Eaton) Sol in d

Cuprous potassium manganocyanide. Cu₂K₂Mn(CN)₄

Sol. in H₂O with sl. decomp. Easily de-comp. by acids and alkalies. (Straus, Z. anorg, 1895, 9, 12)

Cuprous sodium manganocyanide. Cu2Na2Mn(CN)a.

Sol, in H2O with only sl. decomp tially decomp. by acids. (Straus.)

Manganous potassium manganocyanide, KCN, $Mn(CN)_2 = K_2MnMn(CN)_6$. Put Sol in KCN+Ac

Potassium manganocyanide, K4Mn(CN)6+ Very efflorescent Sol in H2O; decomp, by boiling.

Potassium manganocyanide chloride, K,Mn(CN),, KCl,

Easily sol in H.O. (Descamps)

Sodium manganocyanide, Nu₄Mm(CN)₆+ SH₂O, Verv efflorescent, Easily sol. in H₂O (Fittig and Enton.)

Strontium manganocyanide, St. Mn(CN), As the Ba comp. (Descamus.)

Permanganomolybdic acid. See Permanganomolybdic acid.

Permanganotungstic acid. See Permanganotungstic acid.

Manganosulphuric acid. See Sulphate, manganic.

Manganous acid, $H_2MnO_3 = MnO_2$, H_2O . Insol. in H₂O. (Franke, J. pr. (2) 36. 451.) 2MnO2, H2O (?). Mm. Wad.

Barium manganite, BaO, 5MnO₂,

SI sol, in HCl+Aq, less sol, in HNOa+Aq, SI sol. in HUT-Aq. 1888 805. in 111/03 T-Aq. (Risslet, Bull Soc (2) 30. 111.)

BaO, 7MnO₂. /Rousseau, C. R. 104. 786.)

BaO, 2MnO₂. Insol in H₂O. (Rousseau, BaO, MnO₂. Insol in H₂O. (Rousseau, R. 1988)

BaO, MnO₂ R, **102.** 425.) Ba(H2Mn4O10)2. (Morawski and Stingl, J. m (2) 18, 92)

Calcium manganite, CaO, 5MnO2.

Easily sol in HCI+Ag, less in HNO*+Ag. SCaO, MnO; (?), Decomp by H₂O Sol,

in HCl+Aq with evolution of Cl. Scarcely sol, in cold HNO3, but sol on heating. (Du-Sol in dil min. acids. (Rousseau, C R 116, 1060)

CaO, 2MnO₁ (Rousseau, C. R. 102, 425.) CaO, 3MnO₂. CaO, MnO₂ Sol. in fuming HCl+Aq, but not in dil. HNO₃+Aq (Rousseau, C. R. 116. 1060)

Chromium manganite, Cr2O2, 3MnO2= Cr.(MnO2)2 Slowly decomp by acids. (Groger, Z. anorg. 1905, 44. 458.)

Cobaltous manganite, CoO, MnO2+2H2O. Ppt. (Salinger, Z. anorg. 1903, 33, 352.) +4H2O. Ppt. (Salinger.)

Cobalt copper manganite, CoO, CuO, 2MnO₂ +4H₂O, Mm. Asbolite. Sol. in HCl+Aq, with

evolution of Cl. Cupric manganite, CuO, 4MnO2. (Gorgeu, Bull Soc. 1903, (3) 29, 1167.)

CuO, SMnO2+3H2O (Baubigny, C. R. 1897, 124, 955)

Cupric manganous manganite, 4CuO, MnO, 7MnO++8H₂O.

Ppt. (Salinger, Dissert. 1902.) Mn₁O₃, 3CuO Sol in HCl+Aq. (Schneider, Am. Ch J 9. 269.)

Lead manganite, PbO, 5MnO₂. Not attacked by conc. acids; sol in aqua. regia (Rissler)

Magnesium manganite, 2MgO, MnO2. (Lemoine, Ann Min. (7) 3. 5.) +2H2O. (Vollard.)

Manganous manganite, Mn₃O₈ = MnO, 2MnO₉.

(Reissig, A 103, 27.) MngO11 = MnO, 5MnO2. (Veley, Chem. Soc 38, 581.)

3MnO2, 2MnO. Decomp. by dil. H2SO4+ Melanocobaltic chloride, Ag. (Franke, J. pr. (2) 36. 166) 3MnO2, MnO+H2O. Min. Varmeste

Manganous zinc manganite, MnO, ZnO. MnO2.

(Gorgeu, Bull Soc. 1903, (3) 29. 1168.) 2MnO, ZnO, 2MnO₂. (Gorgeu.)

Potassium manganite, K₂O, 2MnO₂ Insol. in H₂O.

K2O, 5MnO2 K₂O, 7MnO₂+3H₂O

 K_2O , $8MnO_2+3H_2O=KH_3Mn_4O_{10}$. (Morawski and Stingl, J pr. (2) 18. 91.)

(Wright and Menke, Does not exist. Chem. Soc 37. 22) K₂O, 10MnO₂ K10, 16MnO2+6H2O Sol. in cone HCl+

Aq. (Rousseau, C R 114. 72)

Silver manganite, AgH₄Mn₄O₁₀ (Morawski and Stingl, J. pr. (2) 18, 92.) Ag-MnO₂ Ppt (Gorgeu, C. R. 110, 958.)

Silver (argentous) manganite, Ag₄O. Mn₂O₃ (?)

Insol. in cold dil HNOa+Aq, and separates Mn₂O₃ on warming Insol in NH₄OH+ Ag (Rose, Pogg. 101, 229.)

Silver (argentoargentic) manganite, Ag₄O, 2Ag₂O, Mn₂O₃ (?) (Rose.)

Sodium manganite, Na₂O, 5MnO₂.

Insol. in H₂O. (Rousseau, C R 103. 261.) Na₂O, 12MnO₂ Insol in H₂O. (Rousseau.) +4H₂O. (Rousseau, C. R. **112**. 525) Na₂O, 8MnO₂+5H₂O. (Rousseau.)

Na₂O, 16MnO₂+8H₂O. (Rousseau.)

Strontium manganite, MnO2, SrO.

Insol. in H₂O. 2MnO₃, SrO₂, Insol. in H₂O (Rousseau, C R 101, 167 %. MnO₃, 5SrO Sol in HCl, or HNO₃+Aq. (Russler, Bull Soc. (2) 30. 110.)

Zinc manganite, ZnO, 5MnO2.

Insol in H₂O (Russler) ZnO, 4MnO₂. (Gorgeu, Bull Soc 1903, (3) 29. 1168. 3ZnO, MnO₂+7½H₂O. (Salinger, Dissert.

27ZnO, 2MnO₂+25H₂O. Insol. in H₂O. (Salinger.)

Manganyl chloride, MnO.Cl.

Decomp. by H₂O. (Aschoff, J. pr. 81, 29.) | Gazz. ch it 20, 485.)

Co₂(NH₂)₆Cl₄NH₃Cl₄ or Cos(NH3),Cl,NH2.

Very sl sol, in cold H₂O or very dil. HCl+ Aq. Decomp. by long standing or warming. Cold conc. HCl or di. H₂SO₄+Aq does not attack, but decomp. on warming. HNO₃+ Aq decomp, on warming. Sol. in cold H2SO.

or NH4OH+Aq; from both solutions it can be precipitated by HCl+Ag. (Vortmann, B. 10. 1455.)

--- chloroplatinate, Co2(NH2)4NH2Cl1 PtCl.

Ppt (Vortmann, B. 15, 1902. Co₂(NH₄)₆NH₂Cl₂(OH)₅, PtCl₄ (Vortmann.)

 mercuric chloride. $Co_2(NH_2)e(NH_2)Cl_3(OH)_2$, $3HgCl_2+$ H₀O

Difficultly sol in cold H2O, quite easily in warm H2O acidified with HCL (Vortmann)

—— chloride chromate. $Co_2(NH_3)_6NH_2Cl_3Cr_2O_7+H_2O_1$ Sol in hot H₂O. (Vortmann.)

Mercurammonium comps. See Mercury ammonium comps.

Mercuriammonium bromide, Hg(NH2)Br. See Dimercuriammonium ammonium bromide.

Mercuriammonium chloride, Hg(NH2)Cl. See Dymercuriammonium ammonium chloride.

Mercuriammonium oxydimercuriammonium chloride, 4Hg(NH2)Cl, NH2(HgOHg)Cl.

Millon.) Correct composition is Dimercuriammonium ammonium chloride, NHgoCl, NH4Cl, which see. (Balestra, Gazz. ch. it. 21, 2. 294.)

Hg(NH₂)Cl, 2NH₂(HgOHg)Cl (Millon.) Correct composition is Dimercuriammonium mercuric chloride, 2NHg2Cl, HgCl2+ H.O. or Damereuriammonium hydrogen chloride, NHg₂Cl, HCl. (Balestra.)

Mercuriammonium nitrate, 2NHs, 2HgO, $N_2O_3 = NH_2HgNO_3 + \frac{1}{2}H_2O_4$

Essily decomp. by HCl, or alkali sul-phides+Aq. Sl. sol. in HNO+Aq. Insol. in H₂SO₄, NH₄OH, or KOH+Aq. (Mitscherlich.)

Is dimercuriammonium ammonium nitrate, NHg2NOs, NH4NO2+H2O. (Pesci, nitrate, 3HgO, 2NH₃, N₂O₄ = NH₂HgNO₃ (NHg₂OH₂)NO₃+H₂O.

Decomp. by boiling with H₂O, which dis-solves out NH₄NO₃. Sol. in NH₄NO₃+Aq containing NH₄OH (Mitscherlich.)

Is dimercuriammonium aminonium nitrate, 3NHg₂NO₂, NH₄NO₂+2II₂O (Pesci, Gazz, ch. 1t. 20, 485,)

Mercuriammonium oxydemercuriammonium sulphate, (NH₂Hg)₂SO₄, 3(NHg₂OH₂)₂SO₄. Boiling H2O dissolves out H2SO4. Gradu-

ally decomp, by boiling KOH+Aq. Completely sol in NH4Cl+Aq. Sol, in cone. or dil. HCl, or very dil. H2SO4+Aq. Insol in conc. or dil. HNO2+Aq or conc. H2SO4 (Schneider.)

Correct formula is 7(NHgz)2SO4, (NH4)2SO4 +12H₂O, dimercuriammonium ammonium sulphate. (Pesci, Gazz, ch. it. 20, 485)

Mercuridiammonium chloride (fusible white precipitate), Hg(NH1)2Cl2.

Is dimercurismmonium ammonium chloride, Hg₂NCl, 3NH₄Cl, which see. (Ram-melsberg J. pr. 38, 558.)

Mercuridammonium mercuric chloride, Hg(NH₃)2Cl₂, HgCl₂.

Insol, in H.O. but gradually decomp, by boiling therewith, (Rose, Pogg 20, 158.) Partly sol. in HaO. (Kane)

Mercuridammonium iodide, Hg(NH2)2I2 H2O extracts all the NH2. Partly sol. in little alcohol. Partly sol. in ether without decomp. (Nessler.) Correct composition is dimercuriammon-

ium ammonium 10dide, NHg2I, 3NH4I. (Pesci, Gazz. ch. it. 20. 485.) Mercuriliammonium cupric iodide, 4NH2,

CuI2, HgI2. Decomp, by H2O. Sol. in alcohol+ HC₂H₂O₂. (Jörgensen, J. pr (2) 2. 347) 2Hg(NH₂)₂I₃. CuI₂ (Decomp. by H₂O.

(Jörgensen) Mercuridammonium iodide, Hg(NH₂)₂I₂.

Decomp, by H.O Partly sol in a little alcohol. Partly sol. in ether. (Nessler.) Correct composition is dimercuriammonium ammonium iodide, NHg-I, 3NH-I, (Pesci.)

Mercuridiammonium mercuric sodide. Hg(NH2)2, HgI2, or NH3, HgI2.

Decomp. by H₂O or dil. acids. (Callot and Corriol, J. Pharm. 9, 381.)

Correct composition is dimercuriammonium ammonium mercuric iodide, 3NHg₂I, 8NH₄I, 4HgI₂. (Pesci, Gazz. ch. it 20. 485.)

Mercuriammonium oxydemercuriammonium Mercuridemmonium sulphate, Hg(NH2) SO4. Decomp. with H₂O. Does not exist. (Posci, Gazz, ch. it 20.

> +H₂O. Decomp. by H₂O. Easily sol. in IICl, very dil. H₂SO₄+Aq, or HNO₃+Aq. Insol in cone. HNO₃+Aq. Sol in (NH₂)₂SO₄ +Aq or NH₄Cl+Aq Decomp. by KOH+ Aq. (Schneider, J. pr. 75. 136.

> Correct composition is (NHg₂)₂SO₄. 3(NH₄)₂SO₄+12H₂O, demercurianmonium ammonium sulphate (Pesci.)

Dimercuriammonium acetate, NHg₂C₂H₆O₂

Insol in H-O or alcohol. Sol. in HCl or NH4C2H4O2+Aq. (Balestra, Gazz, ch. it. 22, 2, 563.)

Dimercuriammonium ammonium acetate, NHg₂C₂H₂O₂, 3NH₄C₂H₂O₂+H₂O. Deliquescent; sol. in a little H2O without decomp., but decomp. into NHg₂C₂H₃O₂ and NH₄C₂H₃O₂ by excess of H₂O (Balestra.)

---- arsenate, NHg, H, AsO, (Hirzel, Zeit. Pharm 1853. 3.)

-bromate, NHg₂BrO₂+1½H₂O. Ppt. (Rammelsberg, Pogg. 55, 82.) Is ovydemercuriammonium bromate, (NH2Hg2O)B1O2

- bromide, NHg2Br

Insol in H2O or HNO2 Sol in HCl+Aq (Pesci, Gazz ch. it. 19. 509.) Sol in KI, or Na₂S₂O₃+Aq with evolution of NH₅ (Balestra, Gazz. ch. it. 22, 2. 558) Sol in ammoniacal solutions of ammonium salts and in aq. acids. (Franklin, J. Am. Chem Soc. 1905, 27, 839.)

- ammonium bromide, NHg2Br, NH4Br. Decomp. by H2O. (Pesci, Gazz. ch. it. 19.

4NHg₄Br, 5NH₄Br, Decomp. by H₂O. Insol in (NH₄)₂CO₂+Aq Sol. in conc. or Mdl. HCl+Aq. Insol in HNO₈+Aq. (Pesci.) NHg₂Br, 3NH₄Br Decomp. by H₂O Easily sol. in HCl+Aq Insol in alcohol (Pesci.)

Sol. in NH4Br, NH4Cl, or NH4I+Aq; sol. in KI, or Na₂S₂O₂+Aq

 mercuric bromide, 2NHg₂Br, HgBr₂. Ppt. Sol, in HBr and in HCl. (Ray, Chem. Soc. 1902, 81, 649.)

—— carbonate, (NHg₂)₂CO₂+2H₂O. Ppt. Not decomp by KOH+Aq, but easily by K2S, or KI+Aq. (Rammelsberg, J. pr. (2) 38. 567.)

Dimercuriammonium chloride, NHg2Cl. Not attacked by boiling H2O Sl attacked by cold dil. HCl+Aq, but is gradually dissolved thereby. Decomp by hot KOH+Aq. (Weyl.)

Sol in KI, or Na2S2O3+Aq with evolution of NH3. +H₂O. Nearly insol. in H₂O; easily sol. HNO₃, and HCl+Aq. Not decomp. by

KOH+Aq. Decomp by KCl, NaCl, or KI+ Ac (Rammelsberg, Pogg. 48, 181.)

--- hydrogen chloride, NHg2Cl, 2HCl. Correct composition of mercuric chloramide chloride. (Balestra, Gazz ch. it 21 2. 299.)

Decomp. by H₂O. NHg₂Cl, HCl. Decomp. by H₂O. (Ba-

lestra, l. c. NHg2Cl, 4HCl. Sol. in H2O (Ray, Proc. Chem. Soc. 1901, 17. 96.)

--- ammonium chloride, NHg2Cl, NH4Cl. (Infusible white precipitate.)

Correct composition of what has been called mercuric chloramide, Hg(NHa)Cl. (Rammelsberg, J. pr. 38. 558 Insol in cold, decomp, by hot HaO. (Mil-

lon, A. ch. (3) 18, 413.) Sol. m 600 pts. H₂O. (Wittstein.) Sol. in 719 98 pts. H₂O at 18.75°. (Abl.) Insol. in alcohol Sol. in acids, even in HC₂H₃O₂+Aq, also in NH₄NO₃, (NH₄)₂SO₄, and NH₄C₂H₃O₂+

Aq. (Pelouze and Fremy.) Sol. in warm NH₄Cl, or NH₄NO₂+Aq (Brett.)

Sl. sol in alkalı chlorides+Aq, which partially decomp. (Mahle, A. ch. (3) 5. 180.) Decomp by KOH+Aq Sol. in KI, or Na₄S₂O₈+Aq, with evolution of NH₈. (Balestra.) When freshly prepared is sol in cone,

NH.OH+Aq (Saha and Choudhurs, Z. anorg. 1910, 67. 359.) Sol, in excess of (NH₄)₂HPO₄+Aq. Insol in excess of Na₂HPO₄+Aq. (Carnegie and

Burt, C N. 1897, 76, 175. Insol in excess of NH4OH+Aq. (Carnegie and Burt.)

NHg2Cl, 3NH4Cl (Fusible white precipitate).

Correct composition of what has been hellen mercurid:ammonium chloride. Hg(NH₄)₂Cl₂. (Rammelsberg, J pr. (2)

Decomp. by hot H2O. Sol. in acids, even H₂O₂+Aq. Not decomp. by cold, but by boiling KOH+Aq. (Weyl.) Sol in warm, less in cold NH,OH+Aq.

(Mitscherlich.) Sol. m KI, or Na₂S₂O₃+Aq, with evolution

305, 198.)

Dimercuriammonium mercuric chloride. 2NHg₂Cl, HgCl₂

Insol. in, and not decomp by boiling H₂O, alkalies, conc. HNOs, or dil. H.SO4+Aq. Sol. in boiling HCl+Aq. (Mitscherlich, J. pr 19, 453.)

Sl. decomp by H2O, 1eadily by KOH+Aq. (Gaudechon, A. ch. 1911, (8) 22. 212.) Ppt. Sol in HBr. (Ray, Proc. Chem. Soc. 1902, 18, 86.)

 chloride ammonia, NHg₂Cl, ½NH₂. Decomp. by water and by NH4OH+Aq. (Gaudechon, A. ch. 1911, (8) 22. 212)

---- chromate. See Oxydemercuriammonium chromate.

hydroxide, NHg₂OH.

Takes up H2O to form NHg2OH+H2O or (NHg:OH:)OH, oxydimercuriammonium hydroxide, which also see.

Sol in warm HCl or HNOs+Aq.

nodate, NHg₂IO₃, 2NH₄IO₃. Insol. in HNO₂. (Rammelsberg, J pr (2) 38, 568)

- iodide, NHg₂I.

Insol. in H₂O. Sol in HCl+Aq Decomp. by boling with KOH+Aq or KCl+Aq. (Weyl, Pogs. 121. 601.) Decomp. by hot KI, or NaS-O₂+Aq. (Balestra.)

Decomp by dilute HCl. Sol. in ammonum salts+Aq. (Frankin, Z. anorg 1905, 48, 21.) +H₂O. See Oxydemercuriammonium iodide.

—— ammonium iodide, NHg₂I, 3NH₄I Correct composition of mercuridammonnum iodide, Hg(NH₂), I₂. (Pesci, Gazz ch it. 20, 485)

3NHg₂I, 8NH₄I, 4HgI₂. Correct formula for mercuridiammonium mercuric iodide. Hg(NH₃)₂I₂, HgI₂. (Pesci.)

- nitrate, NHg2NOs.

Insol, in H₂O, (Rammelsberg, J. pr. (2) 38. 566.) Sol. in KI, or Na₂S₂O₃+Aq, with evolution

of NH₈. (Balestra, Gazz, ch. it. 22, 2, 560.) +H₂O. (Hofmann and Marburg, A. 1899, 305. 212.) Sl. sol. in HNO3. (Ray, Z. anorg. 1902,

33, 209.)

- ammonium nitrate, NHg,NO, NH,NO,

of MH₂. (Balestra.)
Sol. in 10% HNO₂, H₂SO₄ and seetic nitrate, NH₂HgNO₃+3/4H₄O. (Pesci, Gazz. and. (Hofmann and Marburg, A. 1899, i. h. it. 20. 485.)

NHg2NO3, 2NH4NO2+2H2O. Correct for-

mula for ovy/mercuriammonium ammonium | D/mercuriammonium tartrate. nitrate, (NHg₂OH₂)NO₃, 2NH₂NO₈+H₂O. (Pesci.

NHg₂NO₃, 3NH₄NO₃ Decomp by cold H₂O; sol. in NH₄OH+Aq. (Pesci) 3NHg₂NO₃, NH₄NO₂+2H₂O. Correct formula for mercunammonium oxyd/mercuriammonium nitrate, NII2HgNOs, (NIIg2OII2)NOs +II₂O. (Pesci)

Dimercuriammonium nitrite, NHg2NO2. Readily sol, in warm HCl or HBr. (Ray, Chem. Soc 1902, 81, 648.)

+12H2O. Ppt. Sol m HCl. (Rây, Proc Chem. Soc. 1902, 18. 85.) +H₂O. (Hofmann and Marburg, A. 1899, 305, 214.)

—— oxide, (NHg₂)₂O.

1907, 144, 1419,)

Slowly decomp. by H2O. Sol in HCl, or HNO₂+Aq. Decomp. by hot KOH, or KCl +Aq. (Weyl, Pogg 121, 601.) Sol. in KCN+Aq by heating 4-5 hours at 130° Not completely sol in HCl owing to formation of Hg2Cl2. (Gaudechon, C. R.

--- phosphate, (NHg;)2PO4, 2NHg2OH+ 10H2O

(Rammelsberg, J. pr. (2) 38, 567.) Sec Oxydemercuriammonium phosphate.

- ammonium salicylate, 2NHg₂C₆H₄OHCO₂, 5NH₄C₆H₄OHCO₂. Decomp. by II₂O. Sol. in NH₄C₂H₈O₂, HCl, or KI+Aq (Balcstra.)

--- selenate, (NHg)₂SeO₄+2H₂O Ppt. Insol. in H₂O; sol. in NH₄OH+Aq. (Cameron and Davy, C. N 44. 63.)

—— sulphate, (NHg₂)₂SO₄+2H₂O Insol in H₂O. Easily sol in HCl+Aq. (Rammelsberg, J. pr (2) 38, 565.) Sol. (Kane), insol (Hirzel) in HNO₃+Aq.

Sol. in KI, or Na2S2Os+Aq with evolution of NH₄. (Balestra.) +H2O. Insol. in H2O, sol in HCl. (Ray,

Chem. Soc. 1905, 87, 9.)

--- ammonium sulphate, (NHg2)2SO4 3(NH₄)₂SO₄+4H₂O. Correct formula for mercuridiammonium sulphate, 2NH₂, HgO, SO₃+H₂O. (Pesci, Gazz. ch. it. 20, 485.)

5(NHg₂)₂SO₄, 14(NH₄)₂SO₄+16H₂O.

7(NHg₂)₂SO₄, (NH₄)₂SO₄+12H₂O. Correct formula for mercuriammonium oxydimer-(NHg2H2)2SO4 curiammonium sulphate, 3(NHg₂OH₂)₂SO₄, (Pesci.)

(NHg₂)₂C₄H₄O₆+2½H₂O.

Insol in H2O. Sol. in HCl, KI, Na₂S₂O₃, $NH_4C_2H_2O_2$, or $(NH_4)_2C_4H_4O_6+Aq$. (Balestra, Gazz, ch. 1t 22, 2, 563.)

ammonium tartrate, 2(NHg₁)₂C₄H₄O₅, (NII4)2C4H4O0+H2O As above, (B.)

Tramercuriammonium sulphate, $(NHg_2)(NHgII_2)SO_4 + 2H_2O$. Decomp by H₂O. (Millon.)

Does not exist (Pesci, Gazz ch. it. 20. 485.)

Dimercuriarsonium mercuric chloride, $AsHg_3Cl_3 = AsHg_2Cl$, $HgCl_3$. Decomp, by H2O. Decomp, by warm HNO₃+Aq. (Rose, Pogg. 51, 428.)

Mercurimidosulphonic acid.

(HO₃S)₄N₂Hg. Very unstable (Berglund, B. 9. 256.)

Barium mercurimidosulphonate, Ba₂(SO₂)₄N₂Hg+5H₂O (Berglund, B. 9, 256.)

Cadmium ----, Cd2HgN2(SO3)4+12H2O. Unstable; al sol. in H2O. (Berglund, Bull. Soc. (2) 25, 452.)

Cobalt - , Co. HgN2(SO2)4+15H2O. Sol in H₂O (B.)

Copper ----, Cu₂HgN₂(SO₃)₄+15H₂O Very sol in H₂O. (B.)

Magnesium ---. Mg-HgNo(SOs)4+15H2O. Very sol in H₂O, (B.)

Manganous --- Mn. HgN. (SOs) +10H.O. Unstable. (B)

Mercuric --- (Hg₂O)₂HgN₂(SO₃)₄. Nearly insol in H₂O. (B.)

Nickel ----, N1, HgN2(SO3)4+15H2O (B.)

Potassium ——, $(KO_sS)_sN_sHg+4H_sO$ Precipitate. (Raschig, A 241, 161.)

Potassium silver ----, (AgSO₃)₂(KSO₃)₂HgN₂ +3H₂O. Sl. sol. in H₂O (Berglund.)

Sodium ---, $(NaSO_3)_4HgN_5+5H_2O_1$ More sol, in H₂O than K salt. (Berglund.)

Strontium —, $Sr_2(SO_3)_4HgN_2+15H_2O$. More sol, than Ba salt (B.)

MERCURY

Zinc mercurimidosulphonate, Zn₂(SO₁)₄HgN₂+15H₂O.

Very sol, in H2O. (B) Demercuriphosphonium mercuric bro-

mide, 2PHg₂Br, HgBr₂ (Lemoult, C. R. 1907, 145, 1176)

Domercuriphosphonium mercuric chloride, HgCl, PHg,Cl.

(Lemoult, C. R. 1907, 145, 1176.) 4-11/6H.O. Decomp. by hot, slowly by cold H.O into Hg, HCl, and H.POs. Decomp by acids or alkalies. (Rose, Pogg. 40. 75.)

Dimercuriphosphonium mercuric iodide. HgI2, PHg2I

Slowly decomp, by cold or warm H₂O. quickly by MOH+Aq . Not attacked by HCl or H₂SO₄+Aq. Rapidly attacked by HNO, and aqua regia. (Lemoult, C. R. 1904, 139. 479.)

Damercuriphosphonium mercuric nitrate. P₂Hg₃, 6HgO. 3N₂O₄=2lPHg₂NO₂ Hg(NO₁)₂], 3HgO

(Rose Pogg. 40, 75)

Dimercuriphosphonium mercuric sulphate. P_2Hg_3 , 6HgO, $4SO_3+4H_2O=(PHg_2)_3SO_4$ 3HgSO4, 2HgO+4H2O

Sol. in aqua regia. (Rose, Pogg. 40, 75)

Mercuric acid.

Calcium mercurate (?). (Berthollet, A. ch. 1, 61.)

Potassium mercurate, K2O, 2HgO,

Gradually decomp. by H2O; less rapidly by absolute alcohol. (St. Meunier, C. R. 60.

Sodium mercurate, Na₂O. HgO. (Bettekoff, Bull, Soc. (2) 34, 328)

Mercuroammonium chloride,

Hg(NH₂)Cl (Rose, Pogg, 20, 158)

Mixture of Hg, HgNH₂Cl, and NH₄Cl. (Barfoed, J. pr. (2) 39. 201.) - nitrate, (NHg.H2)NO2, "Hahnemann's

soluble mercury. Sol. in hot HCl, and HC2H2O2+Aq. Decomp. by NH4OH+Aq, or NH4 salts+Aq Probably mixture of mercurous salts and Hg.

Mercurodiammonium chloride, Hg2(NH3)2Cl2.

Easily decomp. (Rose, Pogg. 20. 158.) Mixture of Hg, NH₂HgCl, and NH₄Cl. (Barfoed, J. pr. (2) 39. 201)

Mercurod ammonum fluoride. Hg₂(NH₂)₂F₂ (?)

Decomp. by H_s(). (Finkener, Pogg. 110. 147.)

101

Mercurosulphonic acid.

Mercurosulphonates, Hg(SO₂M)₂,

Correct composition for the double sulphites, HgSO₃, M₂SO₃. (Divers and Shimidzu, Chem. Soc. 49, 583; Barth, Z phys. Ch. 9, 195.)

Mercuroxy-comps.

See Oxymercur- comps.

Mercury, Hg.

Not attacked by H.O. Not attacked by boiling cone HCl or dil H-SO4+Aq. Easily sol in dil or conc HNOs+Aq; also in HBr or HI+Aa.

Not attacked by pure HNO, unless heated, but readily attacked by cold dil. HNOs+Ag containing NO. (Millon.)

Anhydrous H₂SO₄ attacks Hg gradually

at ord. temp. (Berthelot, C. R 1897. 125.

H₂SO₄ attacks only when hot and conc.

(Ditte, A. ch. 1890, (6) 19.68.) Cone, H₂SO₄ does not attack dry or most Hg either with or without an. (Pitman, J. Am. Chem. Soc. 1898, 20, 100.

HoSO, attacks Hg at 20° if it contains 99.7%; does not attack if it contains only 95.6%. (Baskerville, J. Am. Chem. Soc.

1898, 20, 515.) Insol in H2SO2+Aq alone or in presence of HCl or dil. H1SO4. (Berthelot, A ch.

1898, (7) 14. 198 Not attacked by HF+Aq at any temp.

(Gav-Lussac.) HI dissolves Hg rapidly at ord temp (Norris and Cottrell, Am. Ch. J. 1896, 18. 99)

More rapidly attacked by HBr+Aq than by HCI+Aq Rapidly acted upon by HI in absence of O. (Bailey, Chem. Soc. 1888, 53. 760)

Not attacked by pure HCl+Aq, but in presence of O, Hg₄OCl₂+H₂O is formed. Action is apparently less in sunlight than in the dark. (Bailey, Chem. Soc. 1888, 53, 759.) Small amts. of ferric salts hinder action of HNO, on Hg, but it is hastened by pres-ence of Mn(NO₃)₂ or NaNO₅. (Ray, Chem.

Soc 1911, 99, 1015. HNO under 33% does not attack Hg if

metal and acid are kept in motion and HNO₂ is absent (Veley, B. 1895, 28, 928.) Rapidly sol. in HClO. (Balaid, Dissert 1834.)

Alkali chlorides + Aq in presence of air decomp. Hg; action is not increased by heat. (Miable.)

Insol, in alkalı chlorides+Aq ın neutral or

alkaline solution. (Bhaduri, Z anorg. 1897,

13, 407) Very sol, in cone, solution of I in KI+Aq (Varet, Bull, Soc. 1897, (3) 17, 451) Slowly sol. in KCl or KI+Aq m presence

of air. (Palmaer, Z. phys. Ch. 1907, **59**, 136) Slowly sol. in Na S+Aq in presence of air. (Palmaer, Z. phys. Ch. 1907, **59**, 137)

Mo, W, V, As, Sb and Sn (Storch, B 1883, 16, 2015) Hg is appreciably sol, in the sulpho salts of

Persulphates in alkali or neutral solution attack Hg. (NH₂)850 m NH₂OH solution has strongest action. This dissolves Hg by repeated shaking at high temp. (Tarugi, Gazz, ch. it. 1903, 33, (1) 127.) Insol in KCN+Aq. (Elmer, J. pr. 1888,

(2) 37. 442)

Slowly sol, in KCN+Ag in presence of air. (Palmaer, Z. phys. Ch. 1907, 59, 136. Sol in considerable quantity in 6% KCN+

Aq. (Goyder, C. N. 1894, 69, 268)

Most sol. in K₄Fe(CN)₆+Aq when KOH
is present (Smith, J. Am. Chem. Soc. 1905, 27, 541)

Hg dissolves in Br2 in the presence of KBr sl. faster than in I2 but in CuBr2 much more slowly. (Van Name and Edgar, Am J. Sci. 1910, (4) 29, 255)

Not attacked by PCl₃ even at 350° (Morssan, A. ch 1885 (6) 6, 457.) Insol in hquid NH2 (Gore, Am. Ch J. 1898, 20, 829,

12 ccm, oleic acid dissolves 0.0075 g. Hg in 6 days (Gates, J phys. Chem. 1911, 15.

Mercurous acetylide, Hg2C2+H2O. (Burkard and Travers, Chem. Soc. 1902, Mercurous azomide, HgNz. 81. 1271.)

Mercuric acetylide, basic, 2HgO, 3HgC₂+ 2H.O.

(Burkard and Travers, Chem. Soc. 1902, 81, 1272.)

Mercuric acetylide, HgC2.

Very sol. in HCl with evolution of H2C2. (Keiser, Am. Ch. J. 1893, 15, 535.) +1/₂H₂O Insol. in H₂O, alcohol and ether.

Sol. in NH, acctate +Aq, and in KCN +Aq. Sl. attacked by cold HCl, ensity by hot. Easily sol, in HNO₁ Dil. H₃SO₄ attacks slowly; cone causes explosion (Plimpton and Travers, Chem. Soc. 1894, 65. 267.) Mercuric acetylide chloride, HgC2, HgCl2+

! ≨II.₂O Not acted upon by dil. HCl. Decomp. by

furning HNO, or aqua regia. Insol. in alcohol and ether. (Keiser, Am. Ch. J. 1893. 15, 538.)

Mercuric acetylide mercuromercuric chloride. HgC2, HgCl, HgCl2+H2O.

Insol in all ordinary solvents. (Biltz and Mumm, B. 1904, 37, 4420)

Mercurous amidofluoride, HgNH2F.

Insol, in HoO, HNO, and HoSO, Sol, m. dil HCl

Probably dimercurammonium ammonium fluoride, NHg₂F, NH₄F. (Böhm, Z. anorg. 1901, 43, 327.)

Mercury ammonium comps. See-

Mercuroammonium comps., NH, HgR. Demercuroammonium comps., NH. Hg.R. Mercurous chloramide, Hg(NH₂)Cl. Dimercuriammonium comps., NHgR.

Mercuric chlor-, brom-, etc., amide, He(NIL)R. Mercuridammonium comps., Hg(NH2)2R (Mercuriammonium comps., HgNH,R

Domercuridammonium comps., HgoNoHaR. Tramercuriammonium comps., NoFloHgoR. Oxydemercuriammonium comps., (NH₂Hg₂O)R.

Mercurous arsinchloride, AsHgCl. Decomp. by H.O. (Capitaine, J. Pharm. 25. 559.)

Mercurous arsinchloride chloride, AsHg2Cl2 =2AsHgCl, Hg₂Cl₂ (?) Decomp by H₂O (Capitaine)

Wholly insol in H₂O. (Curtius, B. 24. 3321.) 1 l H₂O dissolves 0.25 g (Wohler and Krupko, B 1913, 46, 2050.)

Mercuric azomide, HgNo.

Sol in H₂O especially when hot. (Berthelot and Vieille, Bull. Soc. 1894. (3) 11. 747. Moderately sol, in H2O, (Wöhler and Krupko, B. 1913, 46, 2050.)

Mercuric bromamide, Hg(NH2)Br.

Insol in HoO and alcohol, Sl. sol, in NH₄OH+Aq. (Mitscherlich, J. pi. 19. 455.) Correct composition is dimercuriammon-ium ammonium bromide, Hg2NBr, NH4Br, which see. (Pesci, Gazz, ch. it. 19, 511.)

Mercurous bromide, Hg2Br2.

Solubility in $\dot{H}_{2}O=9.1\times10^{-7}$ g, equiv. per l. (Bodhander, Z. phys. Ch. 1988, 27, 61.) Solubility in $\dot{H}_{2}O=7\times10^{-8}$ mols. per liter at 25°. (Sherrill, Z. phys. Ch. 193, 430. 735.)

Solubility in H₂O at 25°=1.4×10⁻⁷ equivalents per l (Thompson, J. Am. Chem Soc 1806, 28. 762) Insol in H₂O and dil acids Decomp. by

HC1+Aq Sol m hot cone. H₂SO₄ with evolution of SO₅. Sl. sol. In hot HNO₃+Aq of 142 sp. gr. (Stromann, B 20. 2818) Decomp into Hg and HgBr₂ by boiling with NH₂Br₂ or NH₂Cl₃+Aq, also by ammonium carbonate or succinate, but not by ammonium subhate or nitrate. (Witti-

stein.)
Sol in Hg(NO₈)₂+Aq. (Wackenroder, A

41. 317.) Partially decomp by alkali chlorides+Aq; when out of contact of air this decomp is slight and HgBr₂ is formed, while in the air HgCl₂ is the resulting product. Much more mandly decomp, in hot than cold solutions.

(Miahle, A. ch. (3) 5. 177.)

A solution of HgBr in 0.1—N KBi contain about 1 mg. Hg ions in 1300 l

Insol. in sleohol
Insol. in benzonitrile (Naumann, B
1914, 47. 1370.)
Insol. in methyl acetate (Naumann
B. 1909, 42. 3790), ethyl acetate. (Naumann

B. 1910, 43. 314.) Insol. in acetone. (Naumann, B 1904, 37. 4329); (Eidmann, C. C. 1899, II 1014.)

Mercuric bromide, HgBr2.

Sol in 250 pts. $\rm H_{2}O$ at ordinary temp , and 25 pts boling H O (Wittstein) Sol in 240 pts $\rm H_{2}O$ at 18 75° (Abl.)

Sol in 94 pts. H₂O at 9°, and in 4–5 pts at 100°. (Lassaigne, J. chim. méd 12. 177) Solubility in g-equivalents per htre= 2×10⁻². (Bodlander, Z. phys. Ch. 1898, 27.

1 l. H₂O dissolves about 4 g. at ord temp (Morse, Z. phys. Ch. 1902, 41. 731.) 1 l. H₂O dissolves 0.017 mol. at 25°. (Jan der. Dissert. 1902.)

der, Dissert. 1902.)
Solubihty in H₂O at 25°=0.017 mo

Solubility at ord, temp. = 0.8%; at bpt. = 8-9%. (Larine, J. Pharm. 1904, (6) 20, 450.)

Solubility in cold H₂O=4%, but solution prepared by heating contains more Hg of account of decomp, into HBr and oxybronide. (Vicario, C. C. 1907, II. 1224.)

1 l. H₂O dissolves about 5-6 g. at ord temp. (Gaudechon, A. ch. 1911, (8) 22. 212.) 1 l. aqueous solution at 25° contains 0.017

mol. (Herz and Paul, Z. anorg. 1913, 83. 431.)
Decomp. by warm HNO₃, or H₂SO₄+A₀, Sol. in warm H₂SO₄. (Ditte, A. ch. (5)

I mol, is sol in 1 mol. warm HI+Aq. in 1 mol cold cone. HCl and in ½ mol. hot cone. HCl (Löwig.)

Solubility of HgBr2 in KBr+Aq at 25°.

Mole	per liter
KBr	IfgBt ₂
0 0 05 0 10 0 5 0 866 2 3	0.017 0.055 0.088 0.0359 r 0.611 1.407 2.096 2.339

(Sherrill, Z. phys. Ch. 1903, 43, 705) Solubility in various salts+Aq at 25°.

r	Solubility	y in various salts+Aq at 25°.			
e i.	Sult	In 10 eem of the solution			
- 1		Millimols Hg Bra	Millimols salt		
s	NaBr	0 17 0 78	0 1 18 5 96		
1,		2 85 5 40 12 76 15 50 23 06	11 42 24 48 29.97 52 46		
· ·	KBr	0 17 0 98 4 72 13.60 19.30	0 2 09 7 70 23 80 34 70		
7.	CaBr ₂	0.17 1 17 6 76 13 58 27 66 36 66	0 0 72 6 45 18 92 24 79 37 54		
1- 1. 3.	SrBr ₂	0.17 1 04 4 71 .9 02 17 70 22 38	0 0 62 3 28 6 68 14 01 18 72		
n n n	BaBr ₂	0.17 3.70 5.40 7 59 14 78	0 2 74 3 96 5 79 10 96		

(Herz and Paul, Z. anoig. 1913, 82, 434.) Solubility in 0.1—N Hg(NO₄)₂+Aq is about 20 g. per liter. (Morse, Z. phys. Ch. 1902, 41, 731.)

Sol in KBr or NaBr+Aq. (Jander, Dissert, 1902.)

Solubility in 10 cc. Br₂+Aq at 25°.

Millimol Br₂ 0 753 1.797 2 231

" Hg 0 1844 0.1947 0 2120

(Herz and Paul, Z. anorg. 1914, 85. 215.)

1 5° 7 HgB12 at 159 4° (Niggli, Z. andrg 1912, 75, 182.)

Moderately sol, in liquid NH: (Gore, Am. Cb. J. 1898, 20, 829.)

Sol. m AlBra. (Isbekow, Z. anorg. 1913. 1 ccm, of sat solution in abs, alcohol at

ord term, contains 0.0958 g. HgBra; at bpt. contains 0 1262 g (Hamper, Ch. Z 1887, 11. 005)

Solubility of HgBr2 in alcohols+Aq at to.

Aleolud	10	G HgBr ₂ per
		100 g alcohol
Methyl alcohol	0 10 19 22 39 65 97	41 15 49 5 66 3 60 9 71 3 90 8 139.1
Ethyl alcohol	0 10 19 39 65 89	25 2 26 3 29 7 31 9 44 5 66 9
Propyl alcohol	0 10 19 39 65 86 5	14 6 15 6 15 5 20 8 31 3 42 7
Isobutyl alcohol	0 10 23 39 65	4 61 5 63 6 65 9 58 15 80

(Timofelew, Dissert, 1894.)

Much more sol, than HgI2 in alcohol 100 g. of solution sat. at 0° contain 13,33-13.05 g. HgBr₂, 16.53 g. at 25°, 22.63 g at 50°. (Reinders, Z phys. Ch 1900, **32**, 522)

Solubility of HgB1, in methyl alcohol +Aq at 25°. P=g, alcohol in 100 g, alcohol+Aq.

HgBr2 = millimols. HgBr2 in 10 cc. of the solution.

P	HgBr _i Sp	gr P	HgBr ₂	Sp gr
10 60 30 77	0 3580 9	022 47.06 857 64.00 588 78.05 508 100	1 90	0 9386

Sat. solution in liquid SO2 contains about | Solubility of HgBr2 in ethyl alcohol+Ac at 25° P=g alcohol in 100 g alcohol+Aq. HgBr₂=millimols, HgBr₂ in 10 cc of the solution

Р	HgBrs	Sp gr
0 20.18 40.69 70.01	0 167 0 187 0 440 1 829 6 337	1 0022 0 9717 0.9435 0.9214 0 9873

(Herz and Anders.)

Solubility in mixtures of methyl and propyl alcohol at 25°. P = % propyl alcohol in the solvent

G=g HgBrz in 10 ccm, of the solution S=Sp gr. of the sat, solution.

P	G	8 25°/1°
0 11 11 23.8 65 2 91.8 93.75 96.6	5 02 4 728 4 153 2 530 1 635 1 586 1 466 1 873	1 227 1 1954 1 1524 1 0257 0 9487 0 9368 0 9275 0 9213
/Trans and L	Tube 7	1000 80 180)

(Herz and Kuhn, Z. anorg 1908, 60. 158.) Solubility in mixtures of ethyl and propyl alcohol at 25°. P = % propyl alcohol in the solvent. G = g HgBr₂ in 10 ccm. of the solution.

S=Sp gr of the sat, solution. Р C 0 0 9873 2 28 8 1 225 0.9802 17 85 2 106 0 9740 56 6 763 0.9487 88 6 0 9269 476 91 2 464

1 406 1 378 (Herz and Kuhn, Z. anorg. 1908, 60, 161.) Solubility of HgBr₂ in mixtures of methyl and ethyl alcohol at 25°.

P = % methyl alcohol in the mixtures.

95 2

100

HgBr2=g. HgBr2 in 10 ccm of the solution. S25° 4° men or of the set solution

0 9227

0.9218

P	HgBr ₂	S 25°/4°
0 4 37 10 4 41 02 80 69 84 77 91 25	2 28 2 31 2 54 3 33 4 57 4 68 4 86 5 02	0 9873 0 9932 1 009 1 080 1 185 1 193 1 211 1 227

(Herz and Anders, Z. anorg. 1907, 52, 165.) (Herz and Kuhn, Z. anorg. 1908, 58, 163.)

Cold sat. solution in anhydrous ether contains 0 00567 g, in I cc.; hot solution contains 0.032 g. (Hampe, Ch. Z. 1887, 11, 905.) Solubility in organic solvents at 18°-20°.

100 g. chloroform dissolve 0.126 g. HgBro. 100 g. tetrachlormethane dissolve 0.003 g. 100 g bromoform dissolve 0 679 g HgBrs.

100 g, ethyl bromide dissolve 2,310 g, 100 g, ethylene dibromide dissolve 2 340 g.

HgBr2. (Sulc. Z. anorg. 1900, 25, 401.)

Solubility in CS, at to

~	colubing in on, as a		
t°	100 pts sat volution contain pts HgBr ₂		
-10 5 0 + 5 10	0 049 0 068 0 087 0 105 0 122		
15 20 25	0 140 0 187 0 232 0 274		

(Arctowski, Z. anorg. 1894, 6. 267.)

100 g boiling methyl acetate (bpt. 56.2-56.7°) dissolves 24 g. HgBr₂. (Schroeder and Steiner, J pr. 1909, (2) 79. 49) 1 g. HgBr₂ is sol. in 4.56 g. methyl acetate

at 18°. Sp. gr. 18°/4° of sat. solution = 1 09 (Naumann, B 1909, 42 3795.) 100 g. anhydrous ethyl acetate or sat.
with H₂O at 18° dissolve 130.5-135 g.

HgBr₂, (Hamers, Dissert, 1906.) Solubility of HgBr: in ethyl acetate+Aq at

25° P = g, ethyl acetate in 100 g, ethyl acetate

HgBr₂=millimols HgBr₂ in 10 cc of the

solution.					
P	HgBrz	Sp gr			
0 4 39 96 76	0.167 0.159 7.42	1 0022 1.0018			

100

3 93 (Herz and Anders, Z. anorg. 1907, 52, 172.)

1 0113

1 pt. HgBr₂ sol. in 7.66 pts ethyl acetate 18°. (Naumann, B. 1910, 43, 315.) at 18° Easily sol in acetone (Oppenheim, B. 2.

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014) Acetone dissolves much more HgBra than HgI₂. 100 g sat solution at 25° con-

tam 34.58 g. HgBr₂. (Reinders, Z. phys. Ch 1900, 32, 514.)

Solubility in diethyl oxalate is much greater than that of HgI, and is equal to 12% at 100°. (Reinders, Z phys. Ch. 1900, 32. 507.) Solubility in benzene = 0.0194 mol at 25°. (Sherrill, Z. phys Ch 1903, 43.

Sol. in allyl mustard oil. (Mathews, J. phys. Chem, 1905, 9, 647.) Sol. in benzonitrile. (Naumann, B. 1914.

47. 1369.)

Solubility in aniline. S=temp of solidification.

Mols HgBrs per 100	s	Mois HgBrs per 100	s	Mols HgBrs per 100	8
4 9 10 12 5 14 9 19 7 23 4	9° 43 5 57 68 89 106	25 4 33 9 39.5 41.9 43 9 46 2	115 5° 117 108 113 118 121	49 6 54 9 58 8 64 0	123 124 134 133

(Staronks, Ang. Ak. Wiss, Kraksu, 1910, 372)

Solubility of HgBr, in guinoline. S = temp, of solidification

Mols HgBr. per 100 9.0 14.3 17 6 888 127° 111° 134° (Staronka, Anz. Wiss Krakau, 1910. 372.)

Mol. weight determined in ethyl sulphide. (Werner, Z. anorg, 1897, 15, 30,) +4H.O. (Thomsen.)

Mercuric perbromide, HgBr4.

(Herz and Paul, Z. anorg, 1914, 85, 216.) Mercuric hydrogen bromide (Bromomercuric

acid), HgBr2, HBr=HHgBr2. Decomp. by H.O. (Neumann, M. 10, 236.) Mercuric nickel bromide, basic, HgBr₀,

NiBr₂, 6NiO+20H₂O. (Mailhe, A. ch. 1902, (7) 27, 369,)

Mercuric platinum bromide. See Bromoplatinate, mercuric.

Mercuric potassium bromide, HgBr2, KBr. Sol. m H2O, but decomp. by a large amount, with separation of one half of the HgBr2. (v. Bonsdorff, Pogg. 19. 339.) 2HgBr₁, KBr+2H₂O. Permanent. Sol. in H₂O and alcohol. (v. Bonsdorff.)

Mercuric sodium bromide, HgBr2, NaBr. Deliquescent. (v. Bonsdorff.) (Varet, C. R. 1890, 111, 527.)

HgBr₂, 2NaBr Very sel, m H₂O (Vicario, J. Pharm. 1907, (6) 26, 115) 2HgBi₂, NnBr+3H₂O. Sol in H₂O and alcohol, (Berthemot.)

Mercuric strontium bromide, HgBr2, SrBr2. Sol in all proportions of H₂O (Löwig, Mag Pharm 33, 7.) 2HgB₁₂, SrBr₂. Decomp by H₂O into HgBr₂ and HgBr₂, SrBr₂. (Löwig)

Mercuric zinc bromide.

Dehouescent in moist air (v. Bonsdorff.)

Mercuric zinc bromide cyanide ammonia. See Cyanide zinc bromide ammonia, mercuric.

Mercuric bromide ammonia, HgBrs, 2NHs Decomp, by boiling II2O Sol, in min acids and acetic acid. (Naumann, B 1910. 43. 316.)

Mercuric bromide cadmium oxide, HgBr₂, CdO+H₂O (Maille, A ch 1902, (7) 27, 371)

Mercuric bromide cupric oxide. $HgBr_{i_1}$ $CuO+3H_2O$ (Mailhe, Bull Soc 1901, (3) 25, 791,)

Mercuric bromide hydrazme, HgBr2, N2H4. (Hofmann and Marburg, A 1899, 305. 215.)

Mercuric bromide potassium chloride. HgBrs, 2KCl

Decomp. by H₂O. (Harth, Z. anorg 1897, 14, 345)

Mercuric bromide zinc oxide, HgBr₂, ZnO+ (Mailhe, C. R. 1901, 132, 1274)

Mercuric bromoiodide, HgBrI.

Sol in alcohol and other. Can be recrystallised from ether without decomp. (Oppenheim, B. 2, 571.)

Mercurous chloramide, Hg2(NH2)Cl. Insol. in boiling H₂O or NH₄OH+Aq. (Kane, A. ch. (2) 72. 215.)

Mixture of Hg and HgNH₂Cl. (Barfoed,

J. pr. (2), 39, 201.)

Mercuric chloramide, Hg(NH₂)Cl.

Composition is dimerculammonium animonium chloride, Hg2NCl, NH4Cl, which

Mercuric chloramide oxymercuriammonium chloride, 4Hg(NH2)Cl, (NHg2OH2)Cl. (Millon.)

Correct composition is dimer curanmonium annionium chloride, NHgCl, NHgCl, which see. (Balestra, Gazz, ch. tt. 21. (2) 294.)
Hg(NH₂)Cl, (NHg₂OH₂)C. (Millon)

True composition is dimercuriammonium mercuric chloride, 2Hg2NCl, HgCl2+H2O; or dimercuriammonium hydrogen chloride, NHg₂Cl, HCl (Balestra.

Mercuric chloramide chloride, Hg(NH2)Cl, HgCb.

Properties as mercuric chloramide. De-comp. by cold HCl+Aq. (Millon.) True composition is dunercuriammonium hydrogen chloride, NHg₂Cl, 2HCl. (Ba-lesten, Gazz, ch. it. 21, (2) 294.)

Mercuric chloramide chromate,

2Hg(NH₂)Cl, HgCrO₄ Decomp. by hot H₂O Easily sol. in HNO₃ or HCl+Aq (Jager and Kruss, B. 22, 2048)

Mercurous chloride, Hg-Cl.,

Almost absolutely msol. in cold, but gradually sl. decomp by boding H₂O Calculated from electrical conductivity of Hg₂Cl₂+Ag, 1 l. H₂O dissolves 3.1 mg. Hg₂Cl₂ at 18°. (Kohlrausch and Rose, Z. phys. Ch.

12. 241.) 1 l. H₂O dissolves 2 mg Hg₂Cl₂ at 18°. (Kohlrausch, Z phys Ch. 1904, 50, 356)

1 l. H₂O dissolves 1.4 mg, at 0.5°; 21 mg, at 18°, 2.8 mg, at 24 b°, 7 mg, at 43°. (Kohl-rausch, Z. phys. Ch. 190°, 64, 150.) When finely divided, is 10% more sol than when comsely crystalline. (Sauer, Z. phys. Ch. 1904, 47, 184)

Solubility in $H_2O = 0.8 \times 10^{-6}$ g. mol (Ley,

Z Elektrochem. 1904, 10. 301.) Sl. sol, with decomp in boiling H₂O free from air, 20 ccm. H₂O affording 0.002 g. HgCl, after boiling 1 hour with Hg,Cl, (Mushle, A. ch. (3) 5, 176.) Hg₂(NO₂)₂+ Aq containing 1 pt Hg2(NO2)2 to 250,000 pts. II₂O give ppt of IIg₂Cl₂ with HCl+Aq. Sol. with decomp. in conc HCl+Aq, hot HNO₃+Aq, aqua regia, or Cl₂+Aq (Fresenius.) Insol. in cold dil acids, but slowly sol, on heating.

The solubility of Hg₂Cl₂ in HCl+Aq increases slowly with time, and finally reaches a point where it increases very rapidly, which takes place sooner the more dil the acid. Presence of Hg2(NOs)2+Aq helps the solubility, (Why not oxidation to HgCl₂?) (Varenne, C. R. 92, 1161.)

Solubility of Hg₂Cl₂ in HCl+Aq at 25°. Solid phase = Hg₂Cl₂+0.1 g. Hg.

G p	G per l		
HCI	Hg ₂ Cl ₂	Sp gr of solutions	
31 69 36 46 95 43 158 4 209 2 267 3 278 7 317 3	0 034 0 048 0 207 0 399 0 548 0 654 0 675 0 670 0 673	1 042 1 069 1 091 1 114 1 119 1 132 1 153	

(Richards and Archibald, Z. phys. Ch. 1902, 40, 385.)

Cold conc. HgSO4 does not dissolve or decomp Boiling H2SO4 dissolves with evolution of SO2 (Vogel.)

Solubility of Hg₂Cl₂ in chlorides+Aq at 25°. Solid phase = HgoClo+0.1 g. Hg.

Could burge - Higgord 4.0.1 g. Hig.			
Salt	G per	Sp gr of	
Calle	NaCl	Hg ₂ Cl ₂	solutions
NaCl	5 85 58 50 119. 148 25 222.3 292.5	0 0041 0 041 0 129 0 194 0.380 0.643	1.040 1.078 1.093 1.142 1.188
BaCl ₂	104 15 156.22 208.30 312.54	0 044 0 088 0 107 0 231	1.088 1 134 1 174 1 263
CaCl ₂	39.96 55.5 111 138.75 195.36 257.52 324.67 432.9 499.5	0.022 0.033 0.081 0.118 0.231 0.322 0.430 0.518	1.064 1.105 1 151 1 205 1 243 1 315 1 358

(Richards and Archibald, Z. phys Ch. 1902, 40, 385.)

Sol, in cold HCN+Aq with separation of

Hg.
Sol. in alkalı chlorides+Aq. NH4Cl+Aq dissolves out HgCl₂ at ord. temp., much more at 40-50°. Dil. NH₄Cl+Aq decomposes more slowly than conc. Access of air hastens reaction, (Muahle.)

When heated several hours to 40-50°, 100 pts. NH₄Cl+833 pts. H₂O form 0.75 pt HgCl₂ from 25 pts Hg₂Cl₂; 100 pts. NaCl+ 833 pts. H₂O form 0.33 pt. HgCl₂ from 25 pts. NH,Cl+533 pts. H,O form 0.75 pt HGCl, from 25 pts HgCl; 100 pts. NGCl+54 (J. Days, 1823.) Sel n3 pts being HO (Mencel) 833 pts. H,O form 0.35 pt. HgCl; from 25 Sel n3 pts HGCl n107, and 197, an

0.25 pt. HgCl₂ from 25 pts. HgCl₂; 100 pts. BaCl₂+833 pts. H₂O form 0.33 pt. HgCl₂ from 25 pts. Hg₂Cl₂. (Mishle, J. Pharm. 26.

Other chlorides act as NH4Cl, only less

vigorously. (Pettenkofer)
By boiling 1 pt. Hg₂Cl₂ 10 times with a solution of 1 pt. NaCl each time, the Hg2Cl2 is finally completely decomp. (Henne.)

Boiling BaCl₂+Aq or CaCl₂+Aq dissolve traces. K_2SO_4+Aq , KNO_3+Aq , or $KHC_4H_4O_6+Aq$ do not dissolve. (Petten-

kofer.) Sol. in (NH₄)₂SO₄+Aq. Insol. in NH₄ nitrate, or succinate+Aq. (Wittstein.)

Sol. in hot Hg3(NO3)2+Aq, and still more in hot Hg(NO₂)₂+Aq; on cooling it crystal-lises out completely 25 g. Hg₂Cl₂ dissolve in 1.5 l. H₂O containing 50 g. Hg(NO₂)₂. (Debray, C. R. 70. 995.)
 Sol. in PtCl₂+Aq.

Decomp. by NH₂OH+Aq Decomp. by KOH, or NaOH+Aq. Sol. in Na₂S₂O₃+Aq. (Faktor, C. C.

1905, I. 1524 Very sl. sol. in NH, succurate. (Witt-

stein.) Insol. in SbCl₃ (Klemensiewicz, C. C. 1908, II. 1850.

Very sol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, 20. 829.) Insol. in alcohol or ether More sol. in

H₂O containing pèpsin and an acid than in H₂O, and is not converted thereby into H₂Cl₂ (Torsellini, Ann. Chim. Ch. farm. (4) 4. 105.)

Small amts, are sol, with decomp, in alcohol, ether and CHCls. 1 g. CHCls disoccur, court and CRIVIs, 1 g. CHCIs dis-solves 0.0946 g. Hg.Cl₃. (Maclagan, Arch. Pharm. 1884, 222, 788) Formic acid (95%) dissolves at 16.5°, 0 02%; at 18°, 0.003% (Aschan, Ch. Z. 1913, 37, 1117.)

Insol. in methyl acetate (Naumann, B 1909, 42. 3790); ethyl acetate (Hamers, Dissert, 1906; Naumann, B. 1904, 37, 3602.) Somewhat sol. in hydroxylamine hydro-

chloride. (Adams, Am., Ch. J 1902, 28, 1216.) Insol. in benzonitrile. (Naumann, B. 1914, 47, 1370.)

Insol. in acetone and in methylal. (Eid-mann, C. C 1899, II. 1014) Solubility in organic solvents at 18-20°.

100 g. chloroform dissolve traces of HgCl. 100 g. bromoform dissolve 0.055 g. HgCl. 100 g. ethyl bromide dissolve traces of

100 g. ethylene dibromide dissolve traces of HgCl. (Sule, Z. anorg, 1900, 25, 401.)

Mercuric chloride, HgCl1. Permanent.

(Abl.) Sol. in 16

53.96

20

30 8.43 70

7.39

100	100 pts. H ₂ O dissolve pts. HgCl ₂ at t°:					Sp	
t°	Pts HgCl ₂	to.	Pts HgCl.	I.a.	Pts HgCl ₂	° HgCla	-
0	5.73	40	9 62	80	24.30	9 10	

100

13 86 17 29 (Poggiale, A ch. (3) 8, 468)

60

Solubility of HgCl₂ in H₂O.

t°	°¢ HgCl₂	t°	" HgCl
+ 1	3 9	80	23 6
4.5	4.8	87	28 2
4.5 7.5	4.8 5.1	100 121	39 3 59.7
13.8	5.2	127	69.7
25.1	7.1	140	77.0
29.5	76	150	78.4
38.0 49	9 9 11.3	159 160	80 2 81.7
61	15 1	165	81.8

(Étard, A. ch. 1894, (7) 2, 557.)

71.17 g. HgCl₂ are sol. in 1 l. H₂O at 25°. (Morse, Z. phys. Ch. 1902, 41. 726.) Solubility at 25°=0 267 mol. in 1 l. H₂O (Jander, Z Elektrochem, 1903, 8, 688) Solubility in H₂O at 25°=0 263 mol liter (Sherrill, Z phys. Ch. 1903, 43, 735)
Sat. HgCl₂+Aq at 25° contains 6.9%
HgCl₂. (Poote, Am Ch. J. 1906, 35, 238.)

HgCl2+Aq centams 3.95 g. HgCl2 m 100 g of solution at 0°; 7 67 g at 30°. (Schreine-makers, Ch. Weekbl 1910, 7. 202) HgCl₂+Aq sat. at (°) contains 6.8%

HgCl₂. (Abe, J. Tok, Chem Soc, 1912, 33. 1087.) HgCl₁+Aq sat. at 35° contains 8.51%

IIgCl₂. (Schreinemakers and Thonus, Ver. K. Akad Wet Amsterdam, 1912, 21, 333.) 1 l aqueous solution sat. at 25° contains 0.265 mol. HgCl2 (Herz and Paul, Z. anorg 1913, 82, 431

H₂O dissolves 7.39% at 20° (Aschan, Ch. Z. 1913, 37, 1117.)

HgCl: +4q ear at 8° has 1041 sp gr (Anthon. 1837

Sp. gr. of HgCl₂+Aq at 20°.

% HgCh	Sp gr	% HgCl2	Spgr
1 2 3	1 0072 1 0148 1 0236	4 5	1.0323 1.0411

(Schroder, calculated by Gerlach, Z anal 27, 206.)

Sp. gr. of HgCl ₂ +Aq at 15°.					
℃ HgClo	Sp gr	℃ HgCla	Sp gr		
8 9 10	1 071 1.0815 1 095	11 12 13	1 1035 1 115 1 127		

(Mendelejeff, calculated by Gerlach, Z. anal

Sp. gr. of HgCl2+Aq.

55	Sp gr				
Harc'l ₂	at 0°	nt 10°	at 20°	at 30°	
3 57 2 42	1.03050 1.02035	1.04033 1 03022 1 02018 1 00990	1 02885 1 01856	1 02577 1 01585	

(Schröder, B. 19, 161 R.)

Sp. gr. of HgCls+Ag at room temp containing: 0.226 3.55% HgCl₂.

1.0233 1.0328 (Wagner, W. Ann 1883, 18, 266.)

Sp. gr. of HgCl2+Aq at 25°.

stion of HgCl ₂ +Aq	Sp. gr	
/-normal	1.0275 1 0138	

(Wagner, Z. phys. Ch. 1890, 5. 39)

Sp. gr. at 16°/4° of HgClz+Aq containing 4 5256% HgCl₂=1.03806

2224% HgCl₂=1.05300. Sp gr. at 16°/4° of HgCl₂+Aq containing 4.2224% HgCl₂=1.03491 (Schonrock, Z. phys. Ch. 1893, 11. 768) HgCl₂+Aq containing 6.04% HgCl₂ has sp gr. 20°/20°=1.0523.

HgCl₂+Aq containing 6.08% HgCl₂ has b. gr. 20°/20° = 1 0526 (Le Blanc and Rohland, Z. phys. ch. 1896, 19, 282.)

Sar HgClq+Aq bools at 101 1°. (Graffiths)

B,-pt. of HgCl2+Aq

% HgCl ₂	B-pt	% HgCl ₂	B-pt	
4.8 9.0	100 10° 100 16	11 04 15 2	100.20° 100.275	
(Skinner Chem See 61, 340.)				

Solubility in HCI+Ao is greater than in H-O. (Dumas) Sol in 0.5 pt HCl+Ao of 1 158 sp gr at 23 20, forming a solution of 2 412 sp gr (Davy, 1822)

Solubility of HgCl ₂ in HCl+Aq.					
Pts. HCl in 100 pts. HrO	Pta HgCl ₂ dissolved by 100 pta hquid	Pts HCl in 100 pts H ₂ O	Pts HgCl ₁ dissolved by 100 pts liquid		
0 0 5 6 10 1	6 8 46.8 73.7 87 8	21 6 31 0 50 0 68 0	127.4 141 9 148 0		

(Ditte, A. ch. (5) 22, 551.)

Solubihty in HCl+Aq at 0° $\frac{\text{HgCl}_2}{2}$ = ½ mols. HgCl₂ (in mgs.) in 10 ecm. solution, HCl = mols HCl ditto, H₂O = grms. H₂O present.

HgCl ₂	HCI	Sp gr	H ₂ O
9 7 19.8 35 5 55 6 68.9	4.3 9.9 17 8 26 9 32 25	1 117 1 238 1 427 1 665 1 811	9 704 9 340 9 816 8 135 7 714
08.9 72.37 85.5 88.65 95.675	34 25 41 5 48.1 70 875	1 874 2 023 2 066 2 198	7 679 7 131 6 893 6 431

(Engel, A, ch. (6) 17, 362.)

Not decomp, by H₂SO₄ or HNO₂+Aq. Sol mc30 pt H₂SO₄, and in more than 500 pts hot. HNO₃+Aq of 1 11 ap gr without decomp (T Davy) Sol in H₃SO₄ HNO₃, HIO₃, or H₂CrO₄ without decomp. (Millon, A. ch. (3) 18.373.) Very sl sol. in HNO₃, but not decomp thereby (Wurts)

Solubility of HgCl2 in NH4Cl+Aq at 30°.

Composition of liquid phase		liquid	Solid phase
HgČla	NH4C1	%H ₁ O	Soun praise
0 15 68 22 80 31 96 42.45 50 05 53 08 55 97 58.91 58.89 56.38 55.83 55.70 55.58	29 5 27 56 26 91 26 16 25 05 24 79 24 31 22 77 21 42 20 06 19 98 18 86 18 50 17 70 17 13 16 82	70 5 56 76 50 29 41 88 32 50 25 16 25 09 24.15 22 61 21 03 21 13 24.61 25.12 26 47 27 17 27 60	NH4CI "" NH4CI+HgCls, 2NH4CI, HgOb, 2NH4CI, HsO HgCls, 2NH4CI, HsO HgCls, NH4CI, HsO HgCls, NH4CI, HsO HgCls, NH4CI, HsO HgCls, NH4CI, HsO "" ""

Solubility of HgCl₂ in NH₄Cl+Aq at 30°—Continued.

Composition of liquid phase		hquid	Solid phase
HgČi₁	NH4CI	% H ₂ O	Sond page
55 55 55 85 55 85 56 71 57 04 56 88 56 88 56 26 56 70 57 05 58 55 58 55 58 65 58 65 51 83 46 00 32 90 35 10 32 90 40 12 21 00 7 67		32 23	HgCls, NH,Cl. H,O HgCls, NH,Cl. H,O HgCls, 2NH,Cl. H,O JHgCls, 2NH,Cl. H,O JHgCls, 2NH,Cl. H,O JHgCls, 2NH,Cl. H,O HgCls, 2NH,Cl. H,G
		102 00	

(Meerburg, Z. anorg 1908, 59, 139)

1 pt. sat. NaCl+Aq dissolves 1.29 pts. HgCl₂ at 14°. (Voit, A. 104. 354.)

Set NaCl-belg (20 grams 16g) 4.7 grams NaCl) deselves 25 grams (16g), at 16 75, at 35 grants more on warming. Sp gr. of solution 42 14. (Davy, 1282) 31 shows 25 grams 16g, as to make grams better (1592) 1160) deselves 16 grams 16gCb; at 15 75, and 4 grams more no beating. Sp gr of solution 1-1 (Davy) more fined with MgO deselves 10 grams 16gCb; at 26 28 (Davy) on purily beating. Sp gr of solution 38 (Davy) on purily beating. Sp gr of solution 38 (Davy) and Godder-Log, and in McCa, 25gCb, 15gc 17 123 (Ch), and Godder-Log, and in McCa, 25gCb, 15gc 17 123 (Ch), and Godder-Log, and in McCa, 25gCb,

The solubility in H₂O is greatly increased by the addition of cupric chloride 8.5% HgCl₁ is sol. in pure H₂O and 52.8% HgCl₂ is sol in 18.06% CuCl₂+Aq. (Schreinemakers, C. C. 1913, I. 1858.)

2	Solubi	lity of	HgCl₂	+KC	l at 25%.						n H ₂ O. Solu double salts
Compo of rol	ution ution	Comp	position object re	of roduc	Solid place	forme	d at 25	°. (F)	oote a	nd Lev	y, I. c.)
κέτ	ngči.	ĸčı	ngch	H _e o		- ce	lity in intaini IgCl:	NaCl- ng gr	+Aq. zen %	100 r NaC	ots NaCl+A Cl dissolve g
26 16 26 21 26 23	15 04 15 02	160	3 63 26 15		KCl KCl+2KCl, HgCl-, HgO		NaCi	g H	4Cl ₂	g HgC	Cla g HgCla nt 100°
26 33 26 33 26 33 26 74 22 36	15 02 14 92 18 91 21 39	34 61 31 77	52 61 61 64 61 66 62 62	3 73 3 21	2KCl, HgCl ₂ ,	26 25 10	i	12 12 5	0	152 142 68	208
21 39 20 32	23 88 27 62	31 05	61 84 65 24	3 35	2KCl, HgCls, H ₂ O+KCl, HgCls, II ₂ O	5		1 1	0	36 18 13	
20 26 17 85	27 38 25 31	21 89	73 98 73 10	3 OI	KCl, HgCls.	(Home	eyer ar	nd Rate	sert, F	harm.	Ztg. 33. 738
9 20 7 80 6 84	18 45 19 56 22 81	21 02 20 76 20 75	74 36 73 96 74 54	5 62 6 18 4 71	:	8	olubili	y of L	IgCl₂-	+NaCl	at 25%.
6 52	24 32 25 13	20 54	73 99 76 46	5 17	KCl, HgCls. H ₂ O+KCl,	Compe of sob	estion ution	Comp	osition olved r	of esidue	Solid phase
6 64 6 27	25 16 25 11	12 09	80 60 83 20	1 71	2HgCl ₂ , 2H ₂ O KCl, 2HgCl ₂ ,	NaČi	Hgȹı	NaCl	HgČl₂	% H:O	COINT PARISO
5 77 4 68	21 73 21 75	11 57	83 18 81 46	4 95	KCl, 2HgCls, 2HgO + HgCls	26 5 18 66	51 35	100	0 16 39	0	NaCl NaCl+NaCl, HgCl ₂ , 2H ₂ O
4 66 4 66 0	25 17 24 82 6 90	0	93 58 98 50 100	U	2H ₂ O +HgCl: HgCl:	18 71 18 64 18 87 14 97	51 32 51 42 51 26 57 74	16 38	21 98 65 45 71 25 74 18	9 44	NaCl. HeCh.
(Foote and Levy, Am. Ch. J. 1906, Solubility of HgCl ₂ +KCl at			14 03 13 25 13 17 12 97	59 69 62 16 62 59 62 50	16 36 16 16 15 96	74 21 74 70 74 76 78 20	9 28	2H ₂ O NuCl, HgCls			
G per 100 g H ₅ O		phase	13 14 13 15	62 48 62 55		88 64 90 83		2H ₂ O+HgCl			
KC	1 11	gCl:		augg	puave	(Foot	te and	Levy,	Am.	Ch J	1906, 35. 239
0 1.1 2.3 4.6	12 13	7.39 1.63 5.72 2.17		H	gCl ₂	Hg(N	0 g. O ₂) ₂ + 4 . 72	Aq at	are s 25°.	ol. in (Mors	1 l of 0.1- e, Z. phys. C
4.8	34 25	16			HgCl ₅ KCl l ₂ KCl	_	Solu				at 25°.
6 7	71 28	66			1+HgCl ₂ , KCl	s	ult		In 10 co		Millimols salt
7.4 8.9	16 24	70		HgC	KCl	Li	3	-	65	gcn	0
15 17.4 20.3 26.3 80.3 34.1	57 26 35 29 31 34 32 39 12 45	1.83 9.10 2.82	HgCl:	, KCI	" " " +HgCl ₂ , 2KCl			3 6 10 16 22	51 66 21 78		4 14 8 35 12 71 17 38 22 65 30 91
84.1 34.3	34 3	5.16		HgCl	2KCl			30	.62		35.27
34.2 37.3 41.3 39.6 37.8 35.3	72 24 13 19 36 16 87 10	0.63 4 30 9.33 5.76 0 28 2.1	Hg	Cl ₂ , 2	" KCI+KCI ICI "	Na	CI	3 5 7	65 72 08 .48 92 22		0 2 12 4.16 6.71 11 53 19 41
(Tick	omiro	ff, J. rı	ass. Ph 39. 73		nem. Soc. 1907			27	54 34		27.83 31 62

Solubility in MCl+Aq at 25° —Continued. In 10 ccm of the solution					
Salt					
	Millimois HgCl ₂	Millimols salt			
KCl	2 65	0			
	3 55 3.81	1.74 2 21			
	8 36	6.88			
$MgCl_2$	2 65 3 74	0 1 68			
	7.19	4 15			
	11 31	5 70			
	18.64	9 97			
	25 69 32 06	13 20 17.28			
	32 00	17.28			
CaCl ₂	2 65	0			
	3 64 7 66	1 90 4 02			
	11 08	6 56			
	18 11	9 64			
	26 45	14 29			
	33 04	17 23			
SrCl ₂	2 65 3 15	0			
	3 15	1 64 3 11			
	5 63 8 29	3 11 5 19 7 24			
	13 42	7 24			
	17 76	10 46			
	22 93	13 86			
BaCl ₂	2 65	0 3 85			
	6 97	3 85			
	11 67 16 20	5 72 7 76 13 36			
	26 45	13 36			
	53 48	30.30			

Solubility in H₂O is increased by presence of I2. (Herz and Paul, Z. anorg. 1914, 85. Solubility in H₂O is increased by presence of hydroxylamine hydrochloride. (Adams, Am. Ch. J. 1902, 28. 213.)

Moderately sol. in liquid NH₂. (Franklin,

Am. Ch. J. 1898, 20. 829.) Insol. in liquid CO2. (Büchner, Z phys. Ch. 1908, 54, 674.) Abundantly sol in H.PtCl.+Ag. (Nilson. B. 1876, 9, 1146.)

So. in a 60 pts split alreaded (Retrice), 3 pts. (East), 20, at a 60 pts. (16 38) 99 mt. organized temps, and 1.157 pts. on houling (Berseliwi); 2 pts. alreaded of 50 sts pts. at 15 5 (sp. gt. or solution - 180 pts. at 10 pts. pts. alreaded of Davy, Ptml Trans. 1822 363), on the 10 pts. at 107

Sol. in 25 mols, methyl, 13 1 mols, ethyl, and 20.3 mois, propyl alcohol at 8.5°; in (Herz and Anders, Z. anorg. 1907. 52, 170.)

16.2 mols, methyl, 12.4 mols ethyl, and 18 mols propyl alcohol at 20°, in 6.8 mols methyl, 106 mols, ethyl, and 14.6 mols propyl alcohol at 38.2°. (Timofejew, C. R. 112, 1224.)

100 pts absolute methyl alcohol dissolve 66.9 pts. HgCl₂ at 25°; 100 pts. absolute ethyl alcohol dissolve 49.5 pts. HgCl₂ at 25°. (de Biuvn, Z. phys Ch. 10, 783

At 15°, 1 pt, by weight is sol, in .--

13.53 pts H₂O. " methyl alcohol of sp. gr. 0.7990 " ethyl " " " " 0.8100 15 " ethyl 2.5 " " " " 0.8160 " propyl

(Rohland, Z. anorg. 1899, 18. 328.)

100 g. HgCl2+CH2OH contain 1.2 g. HgCl2 at the critical temp. (Centnerszwer, Z. phys. Ch. 1910, 72, 437.)

Solubility of HgCl₂ in methyl alcohol+Aq at 25°

P=g. alcohol m 100 g alcohol+Aq. HgCl = millimois HgCl2 in 10 cc. of the solution.

P	HgCl ₂	Sp gr
0 10 60 30 77 37 21 47 06 64 00 78 05	2 67 2 92 4 18 4 96 7 27 14 19 21 11 17 95	1 0565 1 0441 1 0420 1 0507 1 0809 1 2015 1 3314 1 2160

(Herz and Anders, Z. anorg, 1907, 52, 165.)

100 cc. 90% ethyl alcohol dissolve 27.5° g. HgCl₂ at 15.5° Sp. gr. 15° of sat. solution = 1.085. (Greenish and Smith, Pharm. J. 1903, 71. 881.)

100 g. 99.2% ethyl alcohol dissolve 33.4 g. HgCl₂ at 25°. (Osaka.)

Solubility of HgCl2 in ethyl alcohol+Aq at

P=g alcohol in 100 g. alcohol+Aq. HgCl2=millimols HgCl2 in 10 cc. of the solution.

P	HgCl ₂	Sp. gr
0	2.67	1 0565
20 18	2 49	1 0214
40 69	3 94	1 0180
70.01	.8 70	1 0616
100	13 61	1 1067

Solubility of HgCl₂ in ethyl alcohol+Aq at 25°

CHOH!	°e HgCl₂	5, C2H,OH	G HgCl-
0	6 80	45 84	15 36
5 08 14 49	6 65	49 86 53 61	18 18 21 40
21	6.55	57 26	24 51
26 25 31 53	7 31 8 51	60 55 63 95	27.67 29.86
36.85	10 32	67 39	32.40
41.36	12 69		l

(Abe, J. Tok. Chem. Soc 1912, 33 1087.)

Solubility in alcohol is increased by presence

of hydroxylamme hydrochloride. (Adams, Am. Ch. J. 1902, 28, 213.)

Solubility of IIgCl₂ in a mixture of methyl and ethyl alcohol at 25°.

P = C methyl alcohol in the mixture. HgCl₂=g HgCl₂ in 10 ccm of the solution. S=sp. gr. of the sat, solution.

P	Hgt 12	S 25%/4°
0	3 686	1 107
4 37	3 943	1 130
10 4	4 261	1.157
41 02	5 837	1 294
80 69	6 167	1.321
84 77	5 782	1 288
91 25	5 385	1 254
100	4 862	1 216

(Herz and Kuhn, Z. anorg. 1908, 58. 161.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

S = Sp gr, of the sat, solution

P = % propyl alcohol m the solvent. G = g HgCl₂ m 10 ccm, of the solution

P	G	S 25°/4°
0 	4 862 5 034 5 714 4 228	1 2160 1.2278 1 2848 1 1568
91 8 93 75 96.6 100	2 509 2 323 2 152 2 003	1 0090 1.0029 0 9851 0.9720

⁽Herz and Kuhn, Z. anorg. 1908, 60. 157.)

Solubility in mixtures of propyl and ethyl alcohol at 25°.

P = "n propyl alcohol in the solvent.
G = g HgCl₂ in 10 ccm of the solution
S = Sn. cr. of the sat solution

15 - 1 P. Br.	13-14. gr. of the sat sometime					
l,	G	8 250/10				
0 8.1 17 85 56 6 88 6 91.2	3 686 3 667 3 406 2 711 2 166 2 160	1 1070 1 0988 1 0857 1 0272 0 9854 0 9824 0 9772				
95 2 100	2 087 2 003	0.9720				

(Herz and Kuhn, Z. anorg. 1908, 60. 160.) Sp. gr of HgCl₂+alcohol.

5, HgCl ₂	Sp gr 25°/20°
0	0 7948
5 44	0 8346

(Le Blane and Rohland, Z. phys Ch 1896, 19. 283.)

Sp gr of alcoholic solution of HeCl.

9					
HgCl ₂	at 0°	at 10°	at 20°	at 30°	
0 00 1 22 2 38 4 42 8 56 12 43 15 91 19 32 22 46	0 83135 0 8397 0 8484 0 8635 0 8966 0 9306 0 9629 0 9951 1 0285	0 82286 0 8312 0 8399 0 8549 0 8877 0 9213 0 9523 0 9523 1 0184	0 81435 0 8228 0 8314 0 8463 0 8789 0 9119 0 9425 0 9753 1 0083	0 80594 0 8141 0 8227 0 8375 0 8689 0 9024 0 9329 0 9652 0 9982	

(Schröder, B 19, 161 R.)

Sp gr. at 16°/4° of HgCl₂+ethyl alcohol contaming 23 5489% HgCl₂=0 99885, contaming 11 8801% =0 88572. (Schonrock, Z. phys Ch. 1893, 11, 768.)

Sp gr. at 16°/4° of HgCl₂+amyl sloohol containing 10 9948% HgCl₂=0 89550

(Schonrock, Z phys. Ch. 1893, 11. 789.)
Sol m 4 pts ether (Karis); in 4.1 pts.
(Henry), m 286 pts. ether of 0.745 sp. gr.
(sp. gr. of solution = 1.08); the solvent power
is not mereased by elevating the temp, and
b-pt of ether is not raised. (J. Davy.)

Éther extracts HgCl₂ from HgCl₃+Aq (Orfila); very slightly if HgCl₂+Aq is dil. (Lassaigne.)

Very sl. sol. in pure ether. (Polis, B 20.

6 35 pts. are sol. in 100 pts. ether at 0°. 6.44 """ 100 """ 18. 6.38 """ 100 """ 35.5.

(Laszczynski, B. 1894, 27. 2286.)

Sol. in 71.2-8 pts. ether. (Madsen, Ch. Z. Repert. 1897, 21. 169.) Solubility in 100 cc. ether at 17° = 4.1-4.12

(Stromholm, J. pr 1902, (2), 66, 450.) The solubility of HgCl₂ in H₂O is only sl, affected by the presence of ether. An aqueous solution sat. with ether and HgCl₂ contains about 10% aqueous solution. Partition coefficient for ether

 $_{\text{HgCl}_2} = \frac{e_{\text{theo}}}{H_2O} = 4.9 \text{ at } 0^{\circ}, 3.02 \text{ at } 14.6^{\circ}; 2.80 \text{ at}$ (Strombolm, Z. phys Ch. 1903, 44. 70.)

Solubility of HgCl₂ in ether+Aq at 25°.

% Ether	% H ₂ O	% HgCl ₂
87 86	5.22	6 92
1 2	93 6	5 2
5 2	90 5	4 3
5 4	91 8	2 8
5 4	93 1	1 5

(Abc. J. Tok. Chem. Soc. 1912, 33, 1087.)

Solubility of HgCl2 in ether+ethyl alcohol

	au 20 .					
~ Alcohol	% HgCl ₂	% Alcohol	% HgCl ₂			
67 57 58 59 51 02 44 79 38 69 32 84	32 43 32 50 37 39 37 96 38 24 37.75	27 16 22 48 15 20 8 97 0	36 29 34 08 28.55 20.67 5 49			

(Abe.)

4 pts ether dissolve 1 pt. HgCl2, but 4 pts, ether+1.33 pts, camphor dissolve 1.33 pts. HgCl₁; 4 pts ether+4 pts. camphor dissolve 2 pts. HgCl₂; 4 pts ether+8 pts. camphor dissolve 4 pts. HgCl₂; 4 pts. ether+16 pts. camphor dissolve 4 pts. HgCl₂; 4 pts. ether+16 pts. camphor dissolve 8 pts. HgCl₂. (Karls, Pogg, 10. 608.)

3 pts. alcohol dissolve 1 pt. HgCl2, but 3 pts. alcohol+1 pt. camphor dissolve 2 pts. HgCl₂; 3 pts alcohol+3 pts. camphor dissolve 3 pts. HgCl₂; 3 pts alcohol+6 pts camphor dissolve 6 pts. HgCl₂. (Karls, l c)

Solution can be obtained contaming 25 pis camphor, 16 pts HgCl₂, and only 4 pts camphor, 18 pts of solution = 1.326. (Simon Pogg. 37.553.) 100 pts. acetone dissolve 60 pts. HgCl2 at (Krug and M'Elroy, J. Anal, Appl. Ch.

98.35 pts. HgCl₂ are sol, in 100 pts. acetone

at 10°.

126.80 pts HgCl, are sol, in 100 pts, acetone at 18°. (Lasczynski, B. 1894, 27, 2287.) 1 g. HgCl; is sol, in 0.70 g. acetone at 18'

g. gr. of sat. solution 18°/4°=1.956.) (Naumann, B. 1904, 37, 4334.)

Sat, solution in acetone contains 57.74 g. HgCl₂ in 100 g. solution at 25°. (Foote and Haigh, J. Am. Chem. Soc. 1911, **33**. 461.) Sp gr. at 26 7°/4° of HgCl₂+acetone contaming 36.25% HgCl₂=1.1585. (Schönrock, Z. phys. Ch. 1893, 11. 769.

Sn or of HaCla-Lacetone

	, 0.2 1.0000
% HgCl ₁	Sp gr 20°/20°
0 10 94 21 05	0.8003 0.8847 0.9799

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19, 283.)

100 g. methyl acetate dissolve 46 g. at bpt. (56 5°). (Schroeder and Steiner, J. pr.

1909, (2) 79, 49,) 1 g. HgCl₂ is sol in 2.35 g, methyl acetate at 18° Sp. gr. 18°/4° of the sat solution = 1.251. (Naumann, B. 1909, 42, 3793.)

Solubility in ethyl acctate Pts sol in 100 pts athul acotate

(1) 101 111 100	pus empracemen	
Pts HgCl ₁	t°	
28 92 29 03 30 71 31 87 32 77	0 13 35 48 60	
35 98	83	

(Loszczynski, B. 1894, 27, 2286.)

Solubility in ethyl acetate = 1,3,466 at (Alexander, Dissert, 1899.)

Solubility of HgCl. in ethyl acetate.

1	Temp.	00	13°	30°	40 5°	50	20
,	Mol. HgCl ₂ in 100 mols. C ₄ H ₈ O ₂	15 4	15.9	16.0	16.1	16	3

(Linebarger, Am. Ch. J. 1894, 16. 214.)

 0° 1 g. HgCl₂ as sol. in 3.5 g. ethyl acetate at 110 95 pts HgCl₂ are sol. in 100 pts. acetone 18°. Sp. gr. of sat. solution 18°/4°=1.110. (Naumann, B. 1904, 37. 3602.)

OUT				Manaconio	CHIOTHE		
Solubi	lity of I	HgCl ₂ in acetone a	ethyl	acetate and	Solvent	t°	Sat. solution contains % HgCl ₂
t°	Molecules HgCl ₂ sol in 100 mol- ecules of ethyl acetate	Molecules HgCl ₂ sol in 100 mol- ecules of acctone	s	olid present in arrioge	Ethyl alcohol	60 55 43 40 30	3 0 7 8 8 8 9 8 14 3
-15 0 +10 10 17 25	9.10 9.25 9.15	14.5 14.3 18.7 23.5 23.2 22.8	HgC	l ₂ , CH ₃ COCH ₃ " " IIgCl ₂ "		-23 -21 -20 -17 -11 - 9 - 5	18 6 19 1 21 9 22 1 24 7 27 0 29.7
(Aten, Z. phys. Ch. 1906, 54, 121.) Solubility of HgCl ₂ in ethyl acetate+Aq at						+ 3 7 10 14	29 0 30 0 30 9 31 3 31 3
25°. P=g, ethyl acetate in 100 g, ethyl acetate +Aq. HgCl ₂ =millimols. HgCl ₂ in 10 cc. of the solution.				19 31 43 51 62 63	32 0 34 2 36 4 38.9 42.1 42.5		
	P	HgCl ₂		Sp gr	Ì	68	44.7
	39 .76	2.67 2 72 15 34 9 75		1.0565 1 0581 1 2371 1 1126		75 80 92 93 100 115	45.2 48.0 51.0 51.4 53.6 60.6
(Herz and Anders, Z. anorg. 1907, 52. 172.)				127 138	65 3 67 8		
1 pt. is sol. in 2.05 pts. ethyl acetate at 18° or 100 g. ethyl acetate dissolve 48.7 g. HgCl ₂ . (Naumann, B. 1910, 43, 315.)			N-propyl alcohol	-32 -22 -14 0	14 7 15 4 15 6 16 4		
glyceri 685.)	ine. (Fa	arley, Mo	nít.	ol. in 14 pts Scient. (3) 9.		+16 41 53	16 5 18 2 23 8 27 9
100 g. glycerine dissolve 80 g. HgCl ₁ at 25°. (Moles and Maquina, Ann. Soc Eshan. fis quin. 1914, 12 . 383.)				62 67 78 100	29.4 32.7 36.4 43.8		
	Solubili	ty in orga	nic so	lvents	Allyl alcohol	127	52 7
	Solvent			Sat solution contains % HgCl ₁		- 1 + 8 22	29.6 35.2 48.7
Methy	yl alcohol	+	34 20 15 2 4 12 36 51 52 54 74 90 27	7 6 11 5 12 8 18 7 23 2 27 6 53 1 61 0 63 6 63 7 64 7 75 2	Acetone	-23 -18 -15 -10 - 8 - 4 - 1 + 6 12 15 27 36 54	51.4 52.9 56.6 56.7 58.4 59.1 60.1 61.9 61.4 61.8 62.0 61.9 62.1

	a			
e solvents		Solubility in organ	ic solvents	-Continued.
to	. contains % HgCl ₁	Solvent	t°	Sat. solution contains % HgCl:
- 6 + 9 21 59	13 0 14 3 15.9 25.8	Acetic acid	+21 22 33 43	2.7 3 0 5 0 6 0
-11 - 6 0 +11 63 98 127 145	5.5 6.2 6.7 7 5 19 3 32 1 42 0 47 2		61 87 95 95 115 116 127 145 182	6 7 8 0 11 0 12 0 12 5 16 0 17 0 20 0 26 3 44 8
13 +26 50 90	8 6 8 9 14 0 29 8	Formic acid	207 21 50 90	55.2 2 0 3.2 7.3
-47 -40 -35 -30 -19 0 +13 83	5 6 5 8 6 1 5 9 5 5 8 5 8 8 4	(Étard, A ch. 1	.894, (7) 2. 5	57 et seq.)
115 20	9 0	Solvent	t°	% HgCl ₂
- 3 +24 -48	30 0		+44.2	0 12
50 20 14 6	39 6 40 5 40 2 40 0	Ceffe	18 0 34.1 54.1	0 53 0 64 1.02
+ 7 19 45 66 100 131 150	39.9 40 2 41 6 44.0 47.8 50 1 57 0	C ₈ H ₄ Cl ₂	20 8 25 3 30 2 33 0	1 68 1 73 1 92 2 05
-20 +24 55 +22	42.0 40.3 41.5	CH ₂ COOC ₂ H ₃	26.3 38	22 8
48 +20 55 71	18 5 12 6 13.5 15.1	Dukelskı, Z		
	** -21 -6 -9 -10 -9 -10 -9 -10 -9 -10 -9 -10 -9 -9 -10 -9 -9 -10 -9 -10 -9 -10 -9 -10 -9 -10 -9 -10 -9 -10 -9 -10 -9 -10 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	5, HaCh -0 13 0 -0 13 0 -0 13 0 -0 13 0 -0 13 0 -1 13 0 -1 13 0 -1 13 0 -1 13 0 -1 14 0 -1 15 0 -1 17 0 -1 17 0 -1 17 0 -1 17 0 -1 17 0 -1 17 0 -1 17 0 -1 17 0 -1 17 0 -1 17 0 -1 17 0 -1 17 0 -1 18 0 -1	Sate solution Solvent	Sal. solution Comment

Solubility of HgCl₂ in mixed organic solvents | Solubility of HgCl₂ in mixed organic solvents

	at to	,	s Solubility of HgCl ₂ m 1 at t°—Co	ntrnued	
Solvant	- 1°	", HgCl _i	Solvent	to.	HgCi ₂
C4H6+C5H3OH	-2 5 0 0 6 0 20 5 20 65 21 5 34 5 51 4 54 5	15 20 15 40 16 38 18 10 18 50 19 33 21.31 24 81 24 42	C ₂ H ₁ Cl ₂ +CH ₂ OH	0 0 12 5 20 8 25 3 30 2 33 0 37 4 45 9	13 33 21 30 29 23 34 78 36 87 37 01 37 95 39 36
C ₆ H ₆ +2C ₆ H ₆ OH	-5 2 0 +9 1 20 9 24 4	19 45 20.13 21.65 23.57 21 19	CH ₄ COOC ₂ H ₆ +C ₆ H ₄	0 0 6 5 25 7 27 6 35 5 45 3	9 62 9 62 9 78 9 78 10 81 13 69
CAICHTAN	36.5 53.7 74 0	26 53 31 27 38 74 3 82	CH3COOC2H8+CHCl8	0 0 26 1 36 1 46 0 48 5	3 34 4 07 4 78 5 38 5 10
CHCl²+C²H²OH	-20 5 -12 6 0 0 +8.0 23 0 38 5 44 2 45 6	4 43 4 89 5 37 7 12 8 51 9 51 9 98	2CH ₂ COOC ₂ H ₆ +CCl ₄	0 0 10 3 25 7 27 6 38 5 45 3	9 24 9 05 9 32 9 50 9 89 11 70
CHCl ₃ +2C ₂ H ₄ OH	-20 5 0 0 +8 0 23 0 38 5 44 2	6 60 7 69 8.96 10 66 12 50 14 40	(Dukelskı, Z. anorg Solubility in organic s 100 g. chloroform diss 100 g. tetrachlormeth HgCl ₂ . 100 g. bromoform dis	solvents at solve 0 100 ane dissol solve 0 480	18°/20°. 3 g HgCl ₂ . ve 0 002 g. 3 g HgCl ₂ .
CHCl3+CH3OH	-12.0 0 0 +8 0 23 0 24 9 30 6 38 5	1 73 3 51 5 63 10 15 10 71 11 40 12 02	100 g. ethyl bromic HgCl ₂ . 100 g. ethylene dibror HgCl ₂ . (Sulc. Z. anorg. Solubility of HgCl ₂ i solvents r G = g HgCl ₂ dissolved	nide dissol 1900, 25. n various d t 25°.	ve 1.530 g. 401.) organie
CHCl₃+2CH₃OĤ	-12 0 0 0 +8.0 23.0 24 9 30.6 38 5	3 33 6.73 8 21 16 56 18 45 19 70 20.83	Solvent Ethylene chloride Tetrachlorethane Chloroform Dichlorethylene Pentachlorethylene Trichlorethylene		1 216 0.146 0 120 0 110 0 039 0 036
CCl ₄ +2CH ₈ OH	0 0 7 7 24 9 30 6 35 5 36 1 48 5	5 20 6 69 14 06 19 40 20 50 21 80 21 90	Perchlorethylene Carbon tetrachloride (Hofman, et al., B. Very sl sol in nitrome Very sol on warming. (3298)	1910, 43.	0 012 Trace 188) ord, temp.

86.5 87.3

t°	100 pts sat solution contain pts HgCl ₂
10	0 010
5	0 014
0	0 018
+ 5	0 022
10	0.026
15	0.032
20	0 042
25	0 053
30	0 063

0.030 g, is dissolved in 100 g, sat solution in CS2 at 8°. (Arctowski, Z. anorg. 1894, 6.

Formic acid (95%) dissolves 2.1% at 19°. (Aschan, Ch. Z 1913, 37, 1117) Sol in molten urethane. (Castoro, Z

anorg, 1899, 20, 61) Sol in ethyl sulphocyanate (Kalılenberg, Z. phys Ch 1903, 46. 66)

Solubility of HgCl2 in benzene.

100 pts C6H6 dissolve at:-

15° 41° 55° 0.54 0.62 0.85 1 80 pts. HgCl2.

(Laszcynski, B. 1894, 27. 2287.) Solubility in C₆H₆=0 0197 mol./l, at 25°.

(Sherrill, Z phys Ch. 1903, 43. 735.) Sol in C₄H₀, toluene, xylene, and other aromatic hydrocarbons Insol, or only al. sol in petroleum ether, hexane, decane and CS.

(Gulewitsch, B 1904, 37. 1563) Sol. in p-toluidine. (Werner) Sol. in quinoline (Beckmann and Gabel,

Z. anorg 1906, 51. 236.)

Solubility of HgCl₂ in pyridine. t = point of fusion.

Solid Phase = HgCl₂, 2C₅H₅N.

t° HgCl ₁ t° HgCl ₃ t° HgCl ₃ 17 HgCl ₄ 18 HgCl ₅ 18 HgCl ₅ 18 HgCl ₅ 18 HgCl ₅ 18 18 18 18 18 18 18 1
-21.9 7.86 5C 10 34 94 78.7 50.3°
12.58 17 34 7C 15 46 44 82.5 52 46
18.78 19.78 70.8 45.77 89.0 56.4 23.60 21.59 74.6 48.00 90.8 57.0
27.23 22.65 75.2 48.38 94.1 60.0 31.05 24.46 76.4 49.15

Solubility of HgCl, in nyriding.—Continued t = point of fusion

Solid Phase = HgCls, CsHsN Herr HgC1 Hech 747 83.5

48 38 50.53 52.37 52.02	90 61 75 0° 99.5 99.5 100,5	53.50 56.45 56.07 57.01 57.84	104.1 104.2 104.7 107	60.09 60.72 58.97 63.06		

Solid Phase = 3HgCl₂, C₃H₃N HgC3 Hách HeCl-

947 60.72 63.06 124 2 65 00 95 2 60 77 63 18 129 4 65 63 106 4 61 93 63 37 145 5 69 66 109.8 62.58 118 2 64 09

(McBride, Z, phys Ch 1910, 14, 196)

Solubility in pyridine. C-town of solidification

N-0	sup, or sonumention,						
Mols per 100	8	Muls per 100	8	Mols. per 100	s		
5 8 5 9 10 2 14 1 21 4 25 0	19 18.5 39 5 52 74 5 83	27 0 28 6 30 3 31 2 33 1 35 1	87 (98) 91 5 92 108 115 5	38 5 41 0 43 2 44 0 47 5 52.8	130 137 142 143 5 159 173		

(Staronka, Anz. Ak Wiss, Krakau, 1910.

Sp gr. at 16°/4° of HgCl₂+pyridine containing 17.53% HgCl₂=1.1523, containing 6.57% HgCla=1.0388. (Schönrock, Z. phys Ch 1893, 11. 768.)

Mol weight determined in benzonitrile, methyl- and ethyl-sulphide (Werner, Z. anorg 1897, 15. 31. 26 and 30.)

Sol. in benzonitiile. (Naumann, B 1914. 47, 1369.)

Easily sol in oil of turpentine and other essential oils: sl sol in cold benzene, but much more on heating, crystallising on cooling. (Franchimont, B. 16. 387.)

Easily sol. in boiling creosote.

Insol. in oltve oil.

Insol in oils and fats but sol when first dissolved in alcohol, free ether or anhydrous ketones (Glock, Ch. Z. Repert 36, 315.) Extracted from HgCl2+Aq by volatile oils

Mercuric hydrogen chloride (Chloromercuric acid), HgCl, HCl=HHgCl,

Decomp. by H₀O. (Boullay, A. ch. 34. 243)

Easily decomposed (Neumann, M. 10. 236.)

97.338)

HgCl₂, 2HCl+7H₂O. Decomp. by H₄O. (Ditte, A. ch. (5) 22, 551) 3HgCl₂, 4HCl+14H₂O. As above, 2HgCl₂, HCl+6H₂O. As above, 4HgCl₂, 2HCl+9H₂O. As above.

3HgCl2, HCl+5H2O As above.

Mercuric hydrazine chloride, HgCl2. 2(N,H, HCl).

Very sol in H2O More sol, in hot alcohol than in cold; decomp, by HNO₂, (Curtius,

J pr. 1894, (2) 50. 332.) Mercuric nickel chloride, basic, HgCl₂, 6NiO, NiCl₂+20H₂O, and HgCl₂, 7NiO,

(Mailhe, A. ch. 1902, (7) 27. 369.)

NiCl2.

Mercuric nickel chloride. Delicuescent. (v. Bonsdorff.)

Mercuric nitrosyl chloride, HgCl₂, NOCl. Sol. in H₂O without effervescence. (Sudborough, Chem. Soc. 59, 659.)

Mercuric phosphoric chloride, 3HgCl, 2PCl, Decomp, and dissolved by H2O. (Baudrimont, A. ch. (4) 2, 45.)

Mercuric potassium chloride, 2HgCl, KCl+

Very easily sol. in warm H₄O. A clear solution at 18° is filled with crystals at 15°. Sl. sol. in alcohol. (v. Bonsdorff, Pogg 17.

HgCl₂, KCl+H₂O Easily sol in H₂O; sl sol in alcohol. (v. Bonsdorff, Pogg. 19. 336.) HgCl₂, 2KCl+H₂O. As above. Solubility determinations show that the

double salts formed by mercuric and notassium chlorides at 25° are: 2KCl, HgCl₂+H₂O. KCl, HgCl₂+H₂O. Can be recryst, with-

out decomp

KCl, 2HgCl₂+2H₂O. Gives HgCl₂ on coryst. from H₂O. (Foote and Levy, Am. Ch J. 1906, 35, 237.)

Mercurous rhodium chloride.

See Chlororhodite, mercurous. Mercuric rubidium chloride, HgCls, RbCl. Sol in H₂O

HgCl, 2RbCl Sol. in H2O and HCl+Aq.

(Godeffroy, Arch. Pharm. (3) 12, 47.) +2H₂O. Sol in H₄O. (Godeffroy) 2HgCl₃, RbCl Sol in H₄O. (Godeffroy. Solubility determinations show that at 25° there exist five double mercuric subidium

chlorides with the following formulas: RbCl, 5HgCl₂. Gives HgCl₂ on recryst from H₂O.

3RbCl, 4HgCl2+H2O. Gives RbCl,

on recryst. from HaO.

5HgCl₂ on recryst from H₂O. RbCl, HgCl₂+H₂O. Gives 3RbCl, 4HgCl₂

3RbCl, 2HgCl₂+2H₂O Gives 3 4HgCl₂ on recryst from H₂O. 2RbCl, HgCl₂+H₂O. Gives 3RbCl, Gives 3RbCl 4HgCl; on recryst from H2O

(Fnote and Levy, Am. Ch. J. 1906, 35, 241)

Mercurous silver chloride, HgCl, AgCl. (Jones, J. Soc. Chem, Ind. 1893, 12, 983.) 2HgCl, AgCl. Min. Bordosite. J. Soc. Chem, Ind. 1893, 12, 983,) (Jones, 3HgCl, AgCl. (Jones, Chem. Soc 1910,

Mercuric sodium chloride, HgCl2, NaCl. Sp. gr. at 16°/4° of aqueous solution con-

taining 14.937% salt = 1.13310; containing 11.0736% = 1.09528. (Schönrock, Z. phys. Ch. 1893, 11, 782.)

+H₂O, (Linebarger, Am. Ch. J. 1893, 15. 344.)

+11/2H₂O Sol. in 0.33 pt H₂O at 15°. (Schindler, Report, 36, 240) Extremely easily sol. in alcohol. (Voit.) Sol. in 275 pts. ether. Ether dissolves the undecomposed salt out of H₂O solution.

(Lassaigne, A ch. 64. 104.) HgCl₂, 2NaCl. Deliquescent. Very sol. in H₂O. (Voit, A. 104, 354.) 2HgCl₃, NaCl. Decomp. by H₂O in dil solution Sol. in acetone and acetic ether.

(Linebarger, Am. Ch. J. 1893, 15, 344)
Solubility determinations show that the only double salt formed by mercuric and sodium chlorides between 10.3° and 25° is NaCl, HgCl₂+2H₂O. Can be recryst from H₅O. (Foote and Levy, Am. Ch. J. 1906, 35.

Mercuric strontium chloride, basic, SrCl2, HgO+6H2O. Decomp. by H₂O. (André. C. R. 104, 431.)

Mercuric strontium chloride, 2HgCls, SrCls+ 2H₂O.

Easily sol. in H2O. (v. Bonsdorff.) 3HgCl₂, SrCl₂+5-6H₂O. Very sol, in H₂O. (Swan, Am. Ch J. 1898, 20. 632.)

Mercurous sulphur chloride. See Mercurous sulphochloride.

Mercuric thallous chloride, HgCls, TlCl. Easily sol. in H2O. (Jorgensen, J. pr. (2) 6, 83,)

Mercurous stannous chloride, Hg, Cl., SnCl., Decomp. by H₂O. (Capitaine, J. Pharm, 25. 549.)

Mercuric yttrium chloride, 3HgCl2, YCl1+

Deliquescent. Very sol in H₂O. (Popp, A. 131. 179.)

Mercuric zinc chloride, HgCl2, ZnClo. Very sol, in H₂O. (Harth, Z anorg 1897.

14. 323) 2HgCl₁, ZnCl₂ (Varet, C R 1896, 123.

Mercuric zinc chloride ammonia, HgCl2, 4ZnCl₂, 10NH₂+2H₂O

Insol. in boiling H₂O, but decomp thereby (Andié, C. R. 112. 995) HgCl2, 2ZnCl2, 6NH2+12H2O. As above.

Mercuric chloride ammonia, HgClo. 12NH-Si sol m ammonia, (Franklin, Am Ch. J 1900, 23, 300)

Mercuric chloride cadmium oxide, HgCl., CdO+H2O.

(Mailhe, A. ch 1902, (7) 27, 371.)

(André.)

Mercuric chloride cobaltous oxide, HgCl. 3CoO+1/4H2O. (Mailbe, C. R. 1901, 132, 1274)

Mercuric chloride cupric oxide, HgCl, 3CuO +H.O.

(Mailhe, Bull, Soc 1901, (3) 25, 791.)

Mercuric chloride hydrazme, HgCl., N.H. Very unstable. Decomp. by H2O. Pptd. from alcohol solution by H.O; very sol, in min, acids with decomp. Easily sol, in HCl or HNO, Decomp, by

alkalies Somewhat sol, in acetic acid. (Hofmann. B. 1897, 30, 2020.) Mercuric chloride hydroxylamine, HgCla.

2NH₂OH. Completely sol, in methyl and ethyl alcohol; insoi. in ether; decomp. by H2O and Sol in NH2OH, HCl+Aq. NaOH+Aq.

(Adams, Am. Ch. J 1902, 28, 210) Mercuric chloride lead oxide, HgCl₂, 2PbO+ 2H₄O.

(Mailhe, A. ch. 1902, (7) 27, 372)

Mercuric chloride strontium chromate. 2HgCl, HCl, SrCrO4.

Sol. in H.O without decomp, (Imbert, Bull Soc. 1897, (3) 17, 471,)

Mercuric chloroiodide, 2HgCl2, HgI2. Sol. in H2O. (Liebig.)

HgCl₂, HgI₂. Sl. sol. in hot H₂O with partial decomp. More easily sol. in alcohol. (Köhler, B. 12, 1187.)

Mercurous fluoride, Hg.F. Decomp, by H2O with separation of Hg2O.

Mercuric fluoride, HgF2+2H2O.

Decomp by cold H.O. with separation of HgO. Sol. in dil HNOs+Aq, and HF+Aq (Finkener, Pogg, 110, 628.)

Mercurous hydrogen fluoride, Hg-F-, 4HF+ . 4H.O.

Deliquescent. Easily sol, in H₂O Sol, in dil. acids and dil. HF. (Bohm, Z. anorg. 1905, 43, 327.)

Mercurous silicon fluoride. See Fluosilicate, mercurous.

Mercurous fluoride ammonia, Hg-F-, 2NH-, Stable on air (Finkener, Pogg. 110, 142.)

Mercurous hydroxide, HgOH

Nearly msol, m cold, sol, m bot H₀O Sol. in NaOH+Aq. (Bhaduri, Z. anorg 1897, 13, 410.)

Mercurous iodamide, Hgo(NHo)I.

(Rammelsberg, Pogg. 48. 184) Is a mixture of Hg and Hg(NH₂)1. (Barfoed)

Mercurous iodide, Hg₂I₂.

Sol, in over 2375 pts. H.O. (Saladin, J. chim. méd. 7, 530.) Solubility in H20=26 x 10 8 g.-equiv. per

liter (calculated) (Bodlander, Z. phys. Ch. 1898, 27, 58,)

Solubility in H₂O = 3 x 10⁻¹⁰ mols, per litre at 25°. (Sherrill, Z. phys Ch. 1903, 43. 735) Sol. in Hg(NO_{*}), +Ao. (Stromann, B. 20. 2815.3

Sol, in KI+Aq. Easily sol, in Hg₂(NO₃)₂+ Aq. Sl. sol, in NH₄OH+Aq. Sol, in hot NH₄Cl+Aq, but less than Hg₁₂. Less sol. Cl+Aq, but less than HgI2. Less sol. in NH4NOs than in NH4Cl+Aq. (Brett.) Partially sol, with separation of Hg and formation of HgI₂, in cold KI+Aq, hot NaI, CaI₂, SrI₂, BaI₃, MgI₂, ZnI₃, and NH₄I+Aq; in warm NaCl, KCl and NH₄Cl+Aq, and slowly in hot HCI+Aq (Boullay, A. ch (2)

34. 358.) Decomp, by alkalı chlorides+Aq. (Miahle, A ch. (3) 5, 177.)

Very easily sol. in liquid NH3. (Franklin, Am. Ch. J. 1898, 20, 829.)

Not wholly insol. in alcohol, ether, or chloroform. (Maclagan, Rep. anal, Ch. 1884, 378) Decomp by boiling alcohol; 1000 g. boiling alcohol decomp about 3 15 g Hg,I₂. (Fran-cois, C. R. 1896, **121**. 890.)

Boiling alcohol decomp Hg.I. to Hg and HgI2 which dissolves until 0 220 g HgI2 are contained in 100 g, alcohol. (François, C. R. 1896, 121, 889.)

Insol. in cold ether. (Francois, J. Pharm. 1897, (6), 6. 445) Insol, in methylene iodide. (Retgers, Z

anorg. 3. 345.) Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Phenol at 180° decomp, it into Hg and HgI2 until a state of equilibrium is reached with 2 75 g. Hgl₂ to 100 g. phenol, above which alcoholic solution of HgCl₂. (Boullay, A. ch.

point Hgl bs st sol. (0.05 g m 100 g.) in (2) 34, 346) phenol-Hgl₂ mixture. Decomp. by cold and more rapidly than by hot Equilibrium is reached when 2635 g. HgI2 are present to 100 g and ne at bpt of and ne Amhne containing more than 26 g. Hgl₂ to 100 g. dissolves HgI in considerable quantity. (François, C C 1896, I, 170.)

SI sol, in benzonitule (Naumann, B 1914. 47, 1369) St. sol. in allyl mustard oil (Mathews, J. phys, Chem. 1905, 9, 647)

Mercuric iodide, HgI.

Sol in 150 (2) pts H2O (Wurtz)

1 1 H-O at 17 5° dissolves 0 0403 g HgIs (Bourgoin, A. ch. (6) 3. 129)

(Hager.)

Sol in about 6500 pts. H₂O

According to calculation from electrical conductivity of HgI2+Aq, HgI2 is much less sol, 11 HO dissolving only 0 5 mg HgI2 at (Kohlrausch and Rose, Z. phys Ch. 12. 241.)

 H₂O dissolves 0.054 g. HgI₂ at 22°. (Rohland, Z. anorg 1898, 15, 412) 1 l. H.O at 25° dissolves about 0.06 g

(Morse, Z phys Ch 1902, 41, 731) I. H₂O at 18° dissolves 4 x 10⁻⁶ mol (Abegg, Z Elektrochem 1903, 9, 553)

Solubility in H-O at 25°=0,00013 mol hter (Sherull, Z phys Ch 1903, 43, 735.) 1 l H₂O dissolves 0.4 mg, HgI₂ at 18° (Kohlrausch, Z. phys. Ch. 1904, 50, 350) 1 l H₂O at 18° dissolves 0.2 to 0.4 mg

(Kohhausch, Z phys. Ch 1908, 64, 168.) The yellow modification is always deposited from solution even in the presence of an excess of the red form. (Gernez, C R. 1903,

136. 1323)

Sol. in many acids, especially in HCl, and HI+Aq. Insol in HC₁H₃O₂+Aq. (Berthe-mot) Scarrely sol in dli HNO₃+Aq. Not attacked by cold H₂SO₄, decomp by hot. (Ditte, A ch. 1879, 5) 17, 124.)

not (1977c, A ch. 1879, (5) 17, 124) Sat solution in H₂SO₂+A₂ contains at critical temp. (188.2°), 0.7° GHgI₂ (Niggli, Z. anorg 1912, 75, 182). Sol, in hot (NH₂)₂CO₃, (NH₄)₂SO₄, cold

NH₄Cl, NH₄NO₃, or ammonium sucrinate+ Aq. (Wittstein,) Aq. (Wittstein.) Sol. in HgCl₂, Hg(NO₃)₂, or Hg(C₂H₃O₂)₂+

Aq. Easily sol, in Na₂S₂O₅+Aq. Easily sol in soluble todides+Aq. More sol, in hot than in cold NaI or KI+Aq. When cone , 1 mol KI in hot solution dissolves 3 mols, HgI2, but a portion separates on cooling. Bal₂, Srl₃, MgI₂, and CaI₂ act in the same way Easily sol in cold, more sol. in hot ZnI2+Aq, 2 mols HgI, being dissolved to 1 mol ZnI, In NH,I +Aq, 3 mols. HgI2 are dissolved to 2 mols Abundantly sol in hot KCl, NaCl NH₄Cl+Aq, but separates out on cooling, and the trace remaining may be pptd, by H2O, 2 g. KCl in solution dissolves i 166 g. HgI2 Sol. in HgCl₂+Aq, and very easily sol in (Dunningham, Chem. Soc. 1914, 105. 368.)

Solubility in MI+Aq at 25°.

Salt	In 10 cem of	the solution
	Millimols HgI;	Millimols sult
NaI	4 12 6 22 9 45	7.94 13.85 22.25
KI	1 27 1.80 5.10 7 00 12 24	3 03 3 90 10.34 15 54 25 19
CaI ₂	0 50 2.61 4 40 4 58 17 06	0 53 2 52 4 68 4 84 17.99
SrI ₂	2 12 3 20 5 82 6 94	2 54 3 55 5 39 6 08
BaI2	0 59 7 42 8 98 14 62	0 99 7.48 9.78 15.08

(Herz and Paul, Z. anorg. 1913, 82. 434.)

Solubility of HgI2+KI in H2O

$Temp = 20^{\circ}$						
% KI	% HgI:	Solid phase				
50 9 44 4 39 37 4 37 8 35 1 35 5 26 7 26 6 23 7	19 3 32.4 48 53 6 52 6 52 2 51 2 50 3 49 4 40 2	KI " " " " " KHgIs KHgIs KHgIs HgO KHgIs HgIs HgIs				
14.9	22 5					

	remp .	- 00
80 6 40 39 6 40 40 2	53 52 7 52 2 51.2	KI+KHgI, KHgI, "
39 3 33 7 33 31 4	50 3 49 8 52 51 7	" . " KHgI₃, H₂O
00.7		

Town w300

tion.

121 0 " propyl

1867, 131. 93 Sol. m 109 pts. cryst Na₂S₂O₂+An

Sol. in 109 pts. cryst Na₂S₂O₂+Aq (Eder and Ulm, M 1882, 3, 197.) Vcry sol. in hot CaCl₂+Aq, less sol in BaCl₂, KCl and NaCl+Aq. (Lea, Z. anorg BaCl₂, KCl an 1896, **12**, 341.)

Solubility in normal Hg(NO+)+An= 48.0 g, per litre. (Morse, Z. phys Ch. 1902 Extremely sol. in cold conc NH4Br+Au

(Grossmann, B 1903, 36, 1602) Sol in alkalı sulphites+Aq. (Barth, Z phys. Ch. 1892, 9. 215

Sol in Ca(OCl)₂+Aq; sol in KOH+Aq (Melsens, A. ch (3) 26, 222) Sol, in liquid SO₂. (Walden and Centnerszwer, C C. 1902, I. 344.) Very easily sol, in liquid NHa (Franklin,

Am Ch. J 1898, 20. 829 Sol. in SOCl₂, S₂Cl₂, SO₂Cl₂, warm AsCl₂, PBr₃, warm POCl₂ (Walden, Z. anorg. 1900, 25. 212)

Easily sol in AsBr. (Walden, Z. anorg 1902. 29, 374.) Insol. in liquid CO₂. (Büchner, Z. phys

Ch. 1906, 54, 674.) More sol, in alcohol than in H2O. II₂O containing 10% of 90% alcohol dis-solves 0 08 g HgI₂ 1 l, of alcohol of 80° B. solves 0 08 g HgI₂ 1 l. of alcohol of 80° B. dissolves 2 851 g. HgI₂, 1 l absolute alcohol (Herz and Anders, Z. anorg. 1907, 52, 170.)

dissolves 11.86 g HgI2 (Bourgoin, A. ch (6) 3. 429.) Sol. in 130 pts. cold, and 15 pts. hot 90% alcohol. (Hager.)

100 pts. absolute methyl alcohol dissolve 3.16 pis. at 19 5°; 100 pts. absolute ethyl alcohol dissolve 2 09 pts at 19 5° (de Bruyn, Z. phys. Ch. 10. 783) 0 00842 pt is sol m 1 pt. alcohol at 15° (Gautier and Charpy, C. R. 1890, 111.

100 g methyl alcohol dissolve 3.7 g. HgI₁ at 19°; ethyl alcohol, 1.86 g., propyl alcohol, 1.25 g.; isobutyl alcohol, at 22.5°, 0.51 g.

(Timoferew, Dissert. 1894.)
At 15-20°, 100 g methyl alcohol dissolve 3.24 g. HgI1, ethyl alcohol, 1.42 g.; propyl alcohol, 0.826 g. (Rohland, Z. anorg. 1898, 15. 412⁽⁾

Solubility of HgI2 in ethyl alcohol+Aq at 25° A=g, alcohol in 100 g, alcohol+Aq, HgI2=millimols HgI2 m 100 cc. of the solution.

A	HgI ₂	Sp. gr.
100	3 86	0 80325
95 82	2 56	0.80950
92 44	1.92	0 81536
86 74	1.38	0 82996
78.75	0 935	0 84654
67 63	0 45	0 87214

(Herz and Knoch, Z. anorg. 1905, 45, 266.)

Very sol. in KSCN+Aq. (Philipp, Pogg. Solubility of HgI2 in methyl alcohol+Aq at

P=g. alcohol in 100 g. alcohol+Aq HgI-=millimols, HgI, in 10 cc of the solution.

P	HgI ₂	Sp gr
0 47 06 64 00 78 05	0 0013 0 0098 0 0347 0.0981 0 571	0 9187 0 8834 0 8519 0.8155

(Herz and Anders, Z anorg, 1907, 52, 165.)

Solubility of HgI, in ethyl alcohol+Aq at 25°. P=g, alcohol in 100 g, alcohol+Ac HgI2 = millimols. HgI2 in 10 cc, of the solu-

-		
P	HgI ₂	Sp gr
70 01 100	0.061 0.386	0 8636 0 8032

At 15°, 1 pt. by weight is sol. in:-24813 nts. H₂O 30.8 pts. methyl alcohol of sp gr. at 0.7990. 70 3 " ethyl

(Rohland, Z. anorg 1899, 18, 328.)

" " " " 0 8160

Solubility of HgI2 in mixtures of methyl and ethyl alcohol at 25°.

P = % methyl alcohol in the mixtures. HgI1=g HgI2 in 10 ccm of the solution, S 25°/4° = Sp. gr. of the sat. solution.

P	HgI:	S 25°/4°
0	0 180	0 8038
4 37	0 193	0 8039
10 4	0 208	0 8046
41 02	0 232	0 8077
80 69	0 289	0 8131
84.77	0 296	0 8140
91 25	0 298	0 8146
100	0 316	0 8156

(Herz and Kuhn, Z. anorg. 1908, 58. 164.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = C propyl alcohol in the solvent. G = g HgI in 10 cem, of the solution,

S = Sp gr. of the sat. solution.

P	G	S 25°/1°
0	0 316	0 8156
23 8	0 301	0 8155
91 8	0.169	0 8101
93 75	0.167	0 8110
96.6	0.153	0 810S
100	0.142	0 8116

(Herz and Kuhn, Z. anorg, 1908, 60, 158)

Solubility in mixtures of propyl and ethyl alcohol at 25°. P= c propyl alcohol in the solvent. G = g. HgI2 in 10 ccm. of the solution. S=Sp, gr, of the sat, solution,

P	G	, 8 25°/1°
0 8 1 17 85 56 6 91 2 95 2	0.180 0.173 0.165 0.155 0.152 0.144	0 8038 0 8036(?) 0 8043 0 8075 0 8099 0 8108
100	0 142	0.8116

(Herz and Kuhn, Z. anorg, 1908, 60, 161.)

Solubility in 100 pts. amyl alcohol equals: 0 66 pts at 13°. 3 66 " " 71°. 5 30 " " 100°.

9 57 " " 133 5°.

(Laszevnski, B. 1894, 27, 2287.)

Sp. gr. at 16°/4° of HgI₂+alcohol containing 1 S358% HgI₂=0 80718; containing 1.7119% = 0.80597(Schonrock, Z phys Ch. 1893, 11. 770)

Somewhat sol in ether. Sol in 77 pts (Saladin) Sol in 60 pts. ether ether

(Hager) Sol. in cold ether. (François, J Pharm 1897, (6) 6. 445.)

Very al sol. in anhydrous ether. (Hampe) 0.62 pt. is sol in 100 pts. ether at 0° 0.97 pt. is sol. in 100 pts. ether at 36°. (Laszcynski, B 1894, 27, 2286.)

Solubility in ether = 0.3% at ord, temp (Marsh, Chem. Soc. 1910, 97, 2299.)

Nearly insol in ether. (Dunningham, Chem. Soc. 1914, 105. 368.) Data are given on the system HgI2+KI+

ether. (Dunningham.) Solubility at 23° in chloroform=0.071%; in ether=0.551%; in aceton=2.005% in ethyl alcohol=3.975%; in benzen=0.247%. (Beckmann

and Stock, Z. phys. Ch. 1895, 17, 130.)

Solubility in organic solvents at to.

100 g of the

Potrejit	·	g HgI:
Chloroform	61	0 163
Tetrachlormethane	75	0 094
Ethylene dichloride	85 5	1 200
Isobutyl chloride	69	0 328
Ethyl bromide	38	0 773
Methyl alcohol	66	6 512
Ethyl alcohol	78	4.325
Isopropyl alcohol	81	2.266
Isobutyl alcohol	ca. 100	2.433
Methyl formate	36-38	1 166
Ethyl formate	52-55	2 150
Methyl acetate	56-59	2 500
Ether	35	0 470
Acetone	56	3.249
Acetal	ca. 100	2.000
Chloral	96	
Epichlorhydrin	ca. 100	6.113
Hexane	67	0.072
Benzene	80	0 825
Ethyl acetate	7478	4.200

(Sulc. Z. anorg 1900, 25, 402.)

Solubility in organic solvents at 18-20°. 100 g. chloroform dissolve 0 040 g. HgI2. 100 g. tetrachlormethane dissolve 0.006 g. HgI2.

100 g. bromoform dissolve 0.486 g. HgI₂. 100 g ethyl bromide dissolve 0 643 g HgI.

100 g. ethyl iodide dissolve 2.041 g. HgI: 100 g. ethylene dibromide dissolve 0.748 g. HgI,

(Sulc, Z. anorg 1900, 25. 401.)

1 pt. ethylene bromide dissolves 0.00553 pts HgI₂ at 15°. (Gautier and Charpy, C. R. 1890, 111, 647,) 100 pts, methylene iodide CH₂I₂ dissolve

2.5 pts HgI, at 15°, 16.6 pts at 100°, and 58 pts at 180°. (Retgers, Z. anorg 3, 252.)

1 l. sat. solution in CCl₄ at 15° contains 0 170 g. HgI₂. (Dawson, Chem Soc 1909, 95, 874)

Sol in 340 pts. glycerme (Fairley, Monit. Scient, (3) 9. 685. 100 pts, acetone dissolve 2.09 pts HgI at

(Krug and M'Ehoy, J Anal. Ch. 6. 84.) Sol in acetone and in methylal. (Eidmann,

C. C. 1899, II, 1014.) Solubility in 100 pts. acctone equals: 2 83 pts. HgI₂ at -- 1°. 180

3 36 4 73 " 40° 6 07 ** " 58°

(Laszczynski, B. 1894, 27, 2287.)

100 g, methyl acetate solution, sat. at 18°, contain 1 10 g. HgI2. (Bezold, Dissert.

100 g boiling methyl acetate slowly dissolve 23 g Hgl₂ (Schroeder and Steiner, J. pr. 1909, (2) 79. 49.)

Solubility in ethyl acetate at to.

Pts sol in 100 pts othyl acetate	, fe
1 49	2
1 56	+17 5
1 64	21
2 53	40
3 19	55
4 31	76

(Laszczynski, B. 1894, 27, 2286)

100 g. ethyl acetate anhydrous, or sat. with H2O at 18°, dissolve at 18°, 14.70 g HgI₁. Solubility increases somewhat with temp. (Hamers, Dissert. 1906.)

Solubility of Hul- in ethyl acetate+Ag at 25°

P = g, ethyl acetate in 100 g, ethyl acetate HgI2=millimols. HgI2 in 10 cc. of the solution.

P	HgI ₂	Sp gr
4 89	0.0028	0 9978
96 76	0.412	0 9063
100	0.241	0 9011

(Herz and Anders, Z. anorg, 1907, 52, 172.)

1 pt. is sol in 68.03 pts. ethyl acetate at 18°. (Naumann, B. 1910, 43. 316.

Solubility in diethyl oxalate is 12.5% at bpt, and 2.5% at 100°. (Reinders, Z. phys. Ch. 1900, 32, 507.)

Solubility in CS₀ at t°.

ţ°	100 pts sat solution contain pts HgI ₂
-10	0.107
5	0 141
0	0.173
+ 5	0 207
10	0 239
15	0.271
20	0 320
25 30	0 382
30	0.445

(Arctowski, Z. anorg. 1894, 6. 267.)

Solubility in CS₂.

100 g, of the sat, solution contain at -86.5° --93° --116° 0.024

0.0230.017 g. HgI2 (Arctowski, Z. anorg, 1896, 11, 274.)

0.0028 pt. is sol, in 1 pt. CS₂ at 15°. (Gautier and Charpy, C. R. 1890, 111. 647.) 1 l. sat solution in CS; at 15° contains

3.127 g. HgI₂. (Dawson, Chem. Soc. 1909, 95, 874.) Very sol, in liquid methylamine (Gibbs, J. Am. Chem. Soc 1906, 28, 1419.)

Abundantly sol, in methylamine, gerald, J. phys. Chem. 1912, 16. 633) Somewhat sol, in allyl mustard oil. (Math-

ews, J phys. Chem. 1905, 9. 647) Sol. in Sb(CH₃)₄I+Aq.

Very sl. sol. in Na citrate+Aq. (Spiller.) 1 pt. C₀H₄ dissolves 0.00217 pts. HgI₂ at 15°. (Gautier and Charpy, C. R. 1890, 111. 647.)

Solubility in 100 pts, benzene equals:

0.22 pts at 15° 0.88 " "60".

1,24 " " 840

(Laszczynski, B. 1894, 27, 2284.)

 l. CaHa dissolves 0.00493 mol. HgIo at (Sherrill, Z. phys. Ch. 1903, 43, 735.) 100 g. boiling phenol dissolve 10 g. HgI₂. (François, C. R. 1895, **121**. 769.)

Israngous, C. R. 1899, 121, 799.)
Sl. sol. in phenol with 20% H₂O not very sol in acetae and at 119°, in amyl acetate at 133°, in amyl bromide at 119°, Rather sol. in diethyl oxalate at 186°, in ethylene bromide at 187°, in amyl alcohol at 137°, in amyl colide at 150°, in CHBr₁ at 151°, in independent of the 187°, in CHBr₂ at 151°, in independent at 160°. Very sol. in benzaldehyde at 179°, in methyl-ene iodide at 182°. (Reinders, Z. phys. Ch. 1900. **32.** 506.3

1000 pts. oil of bitter almonds dissolve 4 pts. HgI, at ord. temp.; 1000 pts. olive oil, 4 pts; 1000 pts. poppy oil, 10 pts; 1000 pts. nut oil, 15 pts.; 1000 pts. castor oil, 20 pts.; 1000 pts. lard oil, 4. 5 pts ; 1000 pts. vaseline, pts.; 1000 pts. benzene, 4 pts. Sol. in phenol. (Mehn, Pharm J. 8, 327; B. 19. 8

Solubility in aniline. S Temp of solidification

D T citaly of Bontantonston,					
Mols per 100	s	Mols per 100	8	Mols per 100	s
5.9 8 2 10 3 14.9 16 6	12° 22.5 29 41.5 45	19.9 25.8 29.3 31.7 32.4	48 5° 53 5 105 122 (55)	33 0 35 6 37 5 39.2	128° 140 147 156

(Staronka, Anz. Ak. Wiss. Krakau, 1910. 372.)

Solubility of	f HgI ₂ in	anıline	at t°.
g Hgl;			

10	g Hgl; per 100 g andine	Solid phase
-6 5 +0 4 17.8 21 1 26 9 30 1 36 2 42 9 46 8 63 6 70 82 76 2 95.9 108.* 115.7 137.2 1199.1	23 35 28 69 42 85 47.55 55 47 62 05 75 80 96 49 128 1 163 8 184 1 201 6 246.7 281 8 285 2 279 863 2	Hgl, 2GHANH; "" "+Hgls(red) Hgls(red) Hgls(red)+Hsl(yellow) Hgls(yellow) "" "" "" "" "" "" "" "" "" "" "" "" ""

^{*}Transition point.

(Pearce and Fry, J. phys. Ch. 1914, 18. 667)

Very sol. in boiling alcoholic solution of aniline. (Vohl, Dissert 1871.)

Abundantly sol. in hot benzontrile and other aromatic nitriles. (Werner, Z. anorg. 1897, 16, 7.)
Sol. in benzontrile (0.98 g. in 100 g. at 18°). 20 times more sol. by addition of

5 g. KI to 100 cc. benzonstrile. (Naumann, B. 1914, 47, 1375.) Sol. in pyridine (Naumann, B. 1904, 37, 4609.)

Solubility of HgI₂ in pyridine. S=temp, of solidification.

Mols. per 100	s	Mals per 100	s	Mols per 100	s
5 9.8 15.14 19.3 26.3 29.6	10° 42.5 66.5 83 102.5 107	34 6 38 0 43 0 46.7 48 5 50.6	107° 103 97 88 5 89	51 3 51 6 52.7 53 2 55 4 57 9	93 5° 96 108 109 122 135

(Staronka, Anz. Ak. Wiss. Krakau, 1910. 372.)

Sp. gr. at 16°/4° of HgI₁+pyridine containing 10.43% HgI₁=1.1482; containing 7.99%=1.1053. (Schenrock, Z. phys. Ch. 1893, 11. 770.)

Solubility of HgI₂ in quinoline, S=temp of solidification.

Mols er 100	s	Mols per 100	s	Mola per 100	s
4 7 9 1 13 2 23 1 26 7	100° 115 5 133 5 138 145	29 8 31 4 35 4 37 7 41 6	151° 153 156 160 165	43 0 46 1 48.8 49 5 54.4	165° 167 170 169 5 166 5
Canonles Ang Ale Wass Kushon 1919 279 1					

Staronka, Anz. Ak. Wiss. Krakau, 1910. 37:

Mol. weight determined in pyridine, methyl- and ethyl-sulphide (Werner, Z. anorg. 1897, 15, 20)

anorg. 1897, 15. 20)
More or less sol. at high temp in petroleum (bpt. 160–230°), bromnaphthalene, pyridine, toludine and amyl alcohol. (Reinders, Z. phys Ch 1990, 32, 503.)

Yellow modification.

100 g of sat, solution in acctone at 25° contain 3 0 g HgI₂. (Reinders, Z phys Ch. 1900, 32, 514)

Red modification
Solubility in alcohol equals:

0.717-0.724 g in 100 g, solution at 0° 1.044-1 084 g. " " 25° 2.10-2.20 g. " " 50°,

(Reinders, Z. phys. Ch. 1900, 32. 522.)

100 g. of sat. solution in acetone at 25° contain 1 95 g. HgI₂. (Reinders, Z. phys Ch. 1900, 32. 514.)

HgI₂ is moderately sol. in abs. alcohol at

its b.-pt. The solution has a decided yellow color. On cooling, yellow crystals separate out. They soon change to the red modification.

Readily sol, in hot amyl alcohol Yellow crystals separate from the solution when cooled.

Readily sol. in allyl alcohol, forming a yellow solution, from which yellow crystals separate on cooling.

Sl. sol. in acctone, giving a yellow solution.

On cooling yellow plates separate from the solution and rapidly turn red.

Sol in phenol at 150° C. Solution has yellow color and yellow crystals separate out on cooling Readily sol in boiling benzene Saturated

solution is yellow. The yellow iodide separates out on cooling, and changes rapidly to the red. Sol in toluene giving yellow solution, from

which yellow crystals separate on cooling.
They rapidly change to red.
Readily sol. in naphthalene at temperatures

above its transition point Solution is yellow and on cooling yellow crystals separate out Readily sol. in hot pseudo-cumene giving a yellow solution. On cooling gives yellow

crystals
Readily sol. in ethyl todide giving very

vellow solution, from which yellow crystals separate on cooling, which change to red rapidly

Only sl sol in ethyl bromide, giving yellow solution from which yellow crystals separate on cooling, which change rather slowly to

Sparingly sol. in isopropyl bromide. Moderately sol in isobutyl bromide, giving

a pink solution from which yellow crystals separate on cooling, which change slowly to 1ed. Sl. sol in ethylidene chloride. On sudden

cooling at 18° the modide crystallizes out in vellow plates, which quickly change to red Sparingly sol in propyl chloride, giving a pink solution, from which yellow crystals

separate on cooling Readily sol in ethyl cyanide, giving a yellow solution. On cooling yellow crystals separate and rapidly change to red.

Moderately sol in benzene cyanide, giving a deep yellow solution. On sudden cooling the solution deposits yellow crystals, which 782 rapidly turn red.

Rapidly sol in benzoic acid at high tem- 1906. peratures

vellow solution.

Sol. in ethyl propionate. Very sol in ethyl butyrate, giving a yellow solution. On cooling the iodide crystallized

from the solution. Sl. sol. in ethyl isobutyrate.

Readily sol, in methyl salicylate, giving a yellow solution. Sparingly sol. in phenyl salicylate, giving yellow solution. On cooling yellow crystals separate out, which gradually change to red. (Kastle, Am Ch. J. 1899, 22. 47±.)

Mercuromercuric iodide, Hg₄I₄=Hg₂I₂, 2HgI.

Insol. in H₂O or alcohol. Partially sol. in KI+Aq, in hot NaCl, and NH₄Cl+Aq, and in hot HCl+Aq, though very slowly (Boullav. A ch (2) 34. 345.

Mercury periodide, HgL. Sol in KI+Aq. Decomp by cold H₂O or

alcohol. (Jörgensen, J. pr. (2) 2. 347.)

Mercuric hydrogen iodide (Iodomercuric acid), HI, HgI2=HHgI3.

Crystallises from HI+Aq. (Boullay.) Easily decomp. (Neumann, M. 10. 236.) 3HgI2, 2HI+H2O. (François, Dissert. 1901.)

Mercuric nickel iodide, HgI2, NiI2+6H2O. Sol. in alcohol, ether, and acetone; not decomp. by H₂O. (Dobroserdoff, C. C. 1901,

II. 332. 2HgI2, NiI2+6H2O, Hydroscopie; decomp. by H.O; sol, in acetone and ether. (Dobroserdoff, C. C. 1901, II. 332.)

Mercuric potassium iodide, HgI, KI+ 11/4H+O.

Deliquescent (v Bonsdorff). Permanent, decomp. by H2O into 2KI, HgI2, and HgI2 (Boullay); sol. in alcohol, other, and conc. HC2H4O2, but decomp. by other acids (Berthemot, J. Pharm. 14, 186). Sp. gr. of sat.

solution in H₂O=2.4 to 3.1 +H₂O. Sol. in H₂O with decomp. Can be cryst. from alcohol. Very sl sol. in dry ether. Very sol. in wet ether. (Marsh, Chem

Soc. 1910, 97. 2297) HgI₂, 2Kl. Sol m H₂O. (Thomsen and

Bloxam, Chem. Soc. 41. 379.)

Sat. solution of KI+HgI₂ in H₂O at 22.9° contains 8 66% K, 22 49% Hg and 52.48% I, corresponding to 0.22 mol K, 0.11 mol. Hg and 0.45 mol. I. (Duboin, C. R. 1905, 141.

Sp. gr. at 16°/4° of aqueous solution con-tening 12 2875% sult=1.10148; containing 12.2371% = 1 1038, containing 7 9843% = 1.05491 (Schonrock, Z. phys Ch. 1893, 11.

Sol. in methyl acetate. (Bezold, Dissert.

ratines
Sparingly sol. in ethyl acetate, giving 1899; Hamers, Dissert. 1906.)

Sol in acetone. (Eidmann, C C. 1899, II. 1014; Naumann, B. 1904, 37, 4328.)
Sol. in methyl acetate (Naumann, B. 1909, 42. 3790), ethyl acetate (Naumann, B. 1904. 37, 3601.)

+2H2O. Sol. in alcohol, ether and acetone; decomp, by H₂O. (Pawlow, C. C. 1901, I.

363.) Solubility determinations show that KHgIa and KHgI₂+H₂O are the only double salts formed at 20°-30°. See HgI2+KI under HgI₂. (Dunningham, Chem. Soc. 1914, 105.

Mercuric rubidium iodide, HgI2, RbI.

Sol in alcohol; decomp, by H2O. HgI2, 2RbI. Very easily sol, in H₂O. (Grossmann, B. 1904, 37, 1258.)

Very sol, in acetic acid and alcohol; decomp. by HaO. Stable in aq. solution in the preence of an excess of RbI. (Erdmann, Arch. Pharm, 1894, 232, 30,)

Mercuric silver iodide, HgI., 2AgI.

(Wegelius and Kilpi, Z anorg, 1909, 61, 416)

Mercuric sodium iodide, HgI2, NaI.

Deliquescent, and decomp. by much H₂O. (v. Bonsdorff, Pogg. 17. 266.) Sol. in alcohol; decomp. by H₂O.

HgI, 2Nal Deliquescent; sol. in H2O and alcohol, (Boullay.)

Sat. solution of NaI+HgI₁ in H₂O at 24.75° contains 4.59% Na. 25% Hg, and 58.25% I, corresponding to 0.20 mol. Na,

0 12 mol Hg, and 0 45 mol, I. (Duboin, C. R. 1905, 141, 385) #4H () Extremely deliquescent, (Dubom. C. R. 1906, 143, 314.)

Mercuric strontium iodide, High, Srl, (?). Sol in H-O without decomp. (Boullay.)

4-SHO As Ca salt. (Duboin, C. R.) 1906 142 573) 2HgI2, Sil2 (?). Decomp by much H.O

into sol, Hgl2, SrI2 and msol, HgI2. (Boul-Mercuric thorium iodide, 5HaIs, ThIs+

18H₂O Very deliquescent Easily decomp. by H₂O. (Duboin, A ch. 1909, (8) **16.** 282.) 5Hgl₂, 2ThI₄+21H₂O. (Duboin) 2HgI₂, ThI₄+12H₂O (Duboin)

Mercuric zinc iodide.

Deliquescent, Decomp. by H₂O. Bonsdorff.)

Mercuric iodide ammonia, HgI2, 2NH2, Decomp. by NH2 giving NHg2I and NH4I (Francois, C R, 1900, 130, 333.)

Stable only in the presence of excess of anmonia. Gives off NH₃ in the air. (Francos, J. Pharm. 1897, (6) 5. 388; C. C. 1897, I. 1088)

Mercuric todide hydrazine, Hells, NaHa Decomp, by HoO (Hofmann and Marburg, A. 1899, 305, 215.)

Mercuric sodide rubidium bromide.

HgI., 2RbBr. Decomp, by HaO.

31.)

Sol in alcohol without decomp, (Grosmann, B. 1903, 36. 1603.)

Mercuric iodide silver chloride, HgI2, 2AgCL Insol. in H.O. (Lea. Sill Am. J (3) 7.

Mercury iodoantimonide, Hg-Sb,2HgI. Sol, in HNO, agua regia and hot HaSO. insol in HCl. (Granger, C. R. 1901, 132, 1116.)

Mercury nitride, Hg₁N₂.

Gradually decomp. by H₂O. Decomp. by conc. HNO₂, or HCl+Aq (Hirzel, J. B. 1852, 419)

Not attacked by cold, but decomp. by hot dil. H.SO. Sol. in acids+Ac. Sol, in ammoniacal solutions of ammonium

salts Insol. in excess of KNH₃. (Franklin, Z.

anorg. 1905, 46. IS.) Sol. in ammonia solutions of ammonium salts and in aq. acid solutions.

Very explosive, (Franklin, J. Am. Chem. Soc. 1905, 27, 835.) HgN, Son Mercurous azoimide.

HrN.

See Mercuric azoimide.

Mercurous oxide, Hg2O. Insol. in H₂O. Insol, in dil HCl or HNO. +Aq. Sol. in warm cone. HC₂H₃O₂+Aq. Sol. in 150,000 pts. H₂O (Bhaduri Z. anorg. 1897, 13. 410.)

Decomp, by H₂O or weak bases (Rose), (NH₄)₂CO₃+Aq (Wittstein), KNO₄+Aq (Rose), KI+Aq (Berthemot), or conc NH,Cl+Aq (Pagenstecher) into HgO and Hg. or HgCl, etc.

SI decomp, by alkali chlorides + Au with formation of HgCl2, which dissolves. (Miable.)

St. sol. in alkalı evanides+Ag. (Jahn.) Insol. in KOH, and NaOH+Aq. Insol. in liquid NH₄. (Franklin, Am. Ch

J. 1898, 20, 829.) Insol, in alcohol and ether.

Mercuric oxide, HgO.

Sol. m 20,000 to 30,000 pts. H.O (Bineau, C. R. 41. 509.)

Sol in 200,000 pts. H.O. (Wallace, Ch. Gaz. 1858, 345) Ordinary coarse HgO is sol, in H₂O to the extent of 50 mg. per l, at 25°, but when

finely powdered the solubility increases to 150 mg per l. (Hulett, Z. phys. Ch. 1901, 37, 406.) Red modification is --Sol. in 19,500 pts, H₂O at 25°, in 2,600 pts.

H₂O at 100°, (Schick, Z. phys Ch. 1908, 42, 172) 1 l H₂O dissolves 50 mg, red modification

of HgO at 25°. (Hulett, Z. phys. Ch. 1901, 37, 406.) Yellow modification is -

lon, A, ch. (3) 18, 352.

Sol. in 19,300 pts. H₂O at 25°; m 2400 pts at 100° (Schick, Z. phys Ch 1903, 42. Sol in acids Insol in H.PO. or H.AsO.+ Aq. (Haack, A. 262, 190.) Scarcely attacked by H₂C₂O₄+Aq (Mil-

Solubility of HgO in HF at 25°.

rig=g,-atoms rig in 1 l. of the solution.		
HF normal	Hg	
0.12 0.24 0.57 1.11 2.17	0 01258 0 0247 0.0629 0.1168 0 2586	

(Jaeger, Z. anorg, 1901, 27, 26.)

addition of KF, which proves the non-existence of complex fluorides. (Jaeger.) Insol. in H2AsO4, H2PO4 and in primary and secondary alkalı salts of these acids. (Haack, A 1891, 262, 190.)

Sol. in hot NH4Cl+Aq, less in NH4NO3+ Aq. (Brett.)

nsol, m KOH, or NaOH+Aq.

Decomp by alkali chlorides + Aq into HgCl., which dissolves (Miahle, A. ch. (3) 5, 177 Sol. in Fe(NO₃)₃, and Bi(NO₂)₂+Aq with pptn of oxides Sol. in KI+Aq (Persoz)

Very sol in acid sulphites+Aq (Barth, Z. phys. Ch. 1892, 9. 192.) Completely sol in conc. CaCl₂, BaCl₃ MgCl₂, and SrCl₂+Aq. (André, C. R. 1887

104. 431

Solubility in Ag salts+Aq. 100 g. Ag₂SO₄ in aqueous solution dissolve 13 g. HgO. Solubility in AgNOa+Aq is 15.6.100; in Ag acetate+Aq is 1.137 100. (Finci, Gazz. ch. it 1911, 41. (2) 545.)

Much less sol. in KCl and NaCl+Aq

than in H₂O (Schoch, Sol, in U(NO₃)₃, Al(NO₃)₃ and Fe(NO₃)₃+ Aq. (Mailhe, A. ch. 1902, (7) 27, 373)

Very sl. sol in cold Hg(CN)₂+Aq, abundantly sol at 75° with evolution of HCN

(Barthe, J. Pharm. 1896, (6) 3. 183. Sol, in cold or hot alcoholic NH SCN in

arge amounts (Floischer, A. 1875, 179. 225.Completely sol in KI+Ag. (Jehn, Arch

Pharm, 1873, 201, 97) Solubility of red or yellow modification in N/50 KCl+Aq is about 25% greater than in pure H2O. (Schick, Z, phys Ch. 1903, 42.

168.) Insol. in liquid HF. (Franklin, Z. anorg. Insol. in liquid NH₃ (Gore, Am Ch. J.

1898, 20, 829.) Insol, in liquid NH₂. (Franklin, Am. Ch. J. 1898, 20, 829.)

Sol, in alcoholic solution of hydroxylamine hydrobromide below 0° (Adams, Am Ch. 1902, 28. 216.) Insol. in alcohol.

Sol, in trichloracetic acid+Aq (Brand, J pr. 1913, (2) 88. 342.) Insol. in acetone and in methylal. (Eid-

mann, C. C. 1899, II. 1014) Insol in acetone. (Naumann, B. 1904, 37, 4329

When freshly pptd., is msol. in acetone+ Aq. even on warming, but easily sol. if liquid is made alkaline by NaOH. Insol. in acetophenone even after long warming at 100°. Sol, in acetaldehyde and much H₂O and a little NaOH. (Auld and Hantzsch, B. 1905, J. 1901, 29. 335)

38. 2680.) Sol, in formamide. (Fischer, Arch. Pharm. 1894, 232, 329.)

Very sol, in ethylene diamine. For 1 mol. Mitt. (2) 2, 177.)

Solubility of HgO in HF is decreased by the HgO, 7-10 mols ethylene diamine are neces sary. (Traube and Lowe, B. 1914, 47, 1910) Easily sol in benzamide. (Dessaignes, A. ch. 1852, (3) 34, 146)

When freshly pptd , is sol in picric acid+ Aq. (Varet, C. R. 1894, 119. 560)

Sol. in alkaline solution of phenol disulphonic acid. (Lumiére and Chevrotier, C. R. 1901, 132, 145

Sol. in nucleic acid+Ac when freshly pptd. (Schweckerath, Pat. 1899.) Sol. in gum arabie+Aq. (Peschier, J. Pharm. 1896, (6) 3, 509.)

Mercuric oxybromide, HgBrs, HgO.

André, A. ch (6) 3, 123)

HgBr₁, 2HgO (André.) HgBr₁, 3HgO. (a) Yellow Insol in cold,

sl. sol in hot HaO. Easily sol in alcohol (Lowig.)

(b) Brown, Insol in alcohol (Rammels-berg, Pogg. 55, 248) HgBrs, 4HgO. (André)

Insol in ord, solvents. Decomp. by alkalies and acids. (Fischer and von Wartenburg, Ch. Z. 1902, 26. 894.)
2HgBr₂, 7HgO. Readily decomp by acids

and alkalies. (Fischer and yon Wartenburg.)

Mercurous oxychloride, Hg₂O, 2HgCl. Min. Enlestonite.

Decomp. by hot HCl and by HNO₃. (Moses, Am. J. Sei, 1903, (4) **16**. 253.)

Mercuric oxychloride.

HgO, HgCl2, Less sol, than HgCl2, but not isolated. (Thümmel.) Decomp, by old H₂O (André, A. ch. (6) **3.** 118.) HgO, 2HgCl₂. Decomp. by warm H₂O or cold H₂O

cold alcohol into 2HgO, HgCl2 (Thummel, Arch Pharm. (3) 27. 589.)
Decomp. by H₂O. Not decomp. by alcohol. (Aretowski, Z. anorg 1895, 9. 178.)

2HgO, HgCl₂. Two modifications. A. Red. Insol in H₂O; decomp. by alkali carbonates, or chlorides + Aq into 4HgO.

HgCl. Acted upon by cold alkalı carbonates and alkali chlorides + Aq. (Schoch, Am. Ch. J.

1903, 29, 335.) Not decomp, by H2O at ord, temp. (Thummel)

Very sl. sol. in cold, completely sol in hot H₂O. (Haack, A. 1891, 262, 189.) A small amt. of HNO₂ converts it into a

white powder; more HNO, dissolves it. Isack, A. 1891, 262, 189.)
B. Black. Not decomp by alkalı chlorides, (Haack

or carbonates+Aq. (Thummel.)
Not affected by boiling alkalı carbonates or alkalı chlorides+Aq, (Schoch, Am. Ch.

Insol, in cold and hot H2O and alcohol, Sol, in acid. (Van Nest, Dissert, 1909.)

Not changed by H2O. (Blaas, Miner.

Sol, m HNO₃ or HCl+Aq. (Blass.) Not changed by alcohol. (Blass.) +12H2O. (Rây, A. 1901, 316, 255.) 3HgO, HgCl. Decomp, by warm H2O (Thummel.) Not attacked by cold H2O. (André.)

Ppt. (Tarugi, Gazz. ch. it. 1901, 31, 313) Decomp. by H2O Not decomp. by alcohol. (Arctowski, Z anorg. 1895, 9, 178) Three wodifications.
a. Prisms Decomp. by boiling H₂O.

 Brick-red, amorphous
 Yellow plates (Schoeh, Am. Ch. J 1903, 29, 337.)

Yellow plites. Decomp by hot H2O, Na2CO3 or NaOH+ Sol, in KHCOs+Aq Insol, in cold dil. Aq So Ad Soi, in KnCo₂+Ad insoi, in cold di. HNO₂ (Tarugi) 4HgO, HgCl₂ Decomp by H₂O. Not decomp. by alcohol (Arctowski, Z. anorg. 1895, 9. 178.) Decomp by H_{*}O. Not

· Two modefications

A. Yellow plates. Easily sol. in acids. Insol. in alcohol and her. Decomp by KOH. (Dukelski, Z anorg, 1906, 49, 336)

B. Brown, amorphous. Easily sol. in acids Decomp by KOH. Insol in alcohol and other. (Dukelski,

Z. anorg. 1906, 49, 336) 5HgO, HgCl₂. (Millon.) Does not exist (Thurnmel) 6HgO, HgCl2. Does not exist. (T.) +H₂O Insol in cold H₂O. (Roucher, A

ch (3) 27, 353) Does not exist 7HgO, 4HgCl (Roucher.) Does not exist. (T)

Mercuromercuric oxychloride, Hg-OCI Min Terlingwrite.

Decomp. by HCl and HNO. Slowly decomp, by cold acetic acid when (Hillebrand and Schaller, J. powdered. Am. Chem Soc. 1907, 29, 1190)

Mercuric strontum oxychloride, HgO, SrCl-+6H₂O.

Decomp. by H₂O. (André, C. R., 104, 431)

Mercuric oxyfluoride, HgO, HgF2+H2O Decomp by H₂O. Sol in dil HNO.+An. (Finkener)

Mercuric oxylodide, 3HgO, HgI2. Decomp. by H2O. Sol. in HI +Aq. (Weyl, Pogg. 131, 524)

Mercuric oxyphosphide, HgsP2O4. Decomp. by H₂O. (Partheil and van Haaren, Arch. Pharm. 1900, 238. 35.)

Mercuric oxyselenide, 2HgSe, HgO. Easily sol. in aqua regia. (Uelsmann, A. 116, 122,)

Mercury phosphide, Hg₂P₂.

Insol. in H2O, HNO3, or HCI+Aq Easily sol in aqua regia. (Granger, C. R. 115, 229.) Hg.P. (Granger, C N. 1898, 77, 229.)

Mercury phosphochloride, P2Hg2, 3HgCl,+ 3H₂O. Sec Dimercuriphosphonium mercuric chloride.

Mercury phosphosulphide, 2HgS, P2S,

HgS, P₂S.
2HgS, P₂S₂. (Berzehus) 3HgS. P.S. (Baudrimont, C R. 55. 323.) 2HgS, P2S4 (Berzehus, A. 47, 256.)

Mercuric selenide, HgSe.

Sol. in cold aqua regia when crystalline When precipitated shows the same properties towards solvents as mercuric sulphide (Reeb J. Pharm. (4) 9, 173.)

Mm. Tilmannute Sol. only in aqua regia,

Mercuric seienochloride, 2HgSe, HgCla Insol in boiling HCl, HNO₅, or H₂SO₁+ Aq. Easily sol, in aqua regia and a mixture of H₂SO₄ and conc. HNO₄+Aq. (Uelsmann, J B. 1860, 92.)

Mercurous sulphide, Hg₂S.

Insol in H₂O, dil. HNO₃, hot NH₄OH, or (NH₄)₄S+Aq. Sol in KOH+Aq with separation of Hg. (Rose.)

Does not exist; only mixtures of Hg and HgS are formed. (Barfoed, J. pr. 93, 230.) See also Baskerville, J. Am Chem. Soc. 1903, 25, 799,) Not attacked by HNO₈ below 0°, but attacked by dil HNO3 and HCl+Aq when temp is increased Sol in Na,S or K,S but Hg soon ppts (Antony and Sestini, Gazz.

ch it 1894, 24, (1) 194) Mercuric sulphide, HgS.

Insol in H₂O.

Pptd as a brown coloration in presence of 20,000 pts H₂O, and as a green coloration in presence of 40,000 pts H₂O (Lassaigne.)

Much less sol in H₂O than Ag₂S or Cu₂S. (Bodlander, Z. phys. Ch. 1898, 27. 64.) 1 l. H₂O dissolves 0.05×10⁻⁶ mols HgS at 18°. (Weigel, Z. phys. Ch. 1907, 58, 294.) Sol m cold conc., and in hot dil HI+Aq or HBr+Aq. (Kckulć, A. Suppl 2. 101.) Very sl. decomp. by hot conc. HCl+Aq. Not attacked by hot HNO2+Aq Sol, in cold aqua

regia. Not attacked by 4-N HNO, or 4-N HNO. +4-N H₂SO₄ at ord, temp, even after many days. By action of a mixture of equal volumes of 4-N HNO2 and conc. H2SO4, there was slight action on pptd. HgS after 14, more action after 62 days. If HgS is boiled with the 4-N acids, oxidation takes place most rapidly with 4-N HNO₃, then the mixture 66 7% 4-N H₂SO₄+33.3% 4-N HNO₃, then 33.3% 4-N H₂SO₄+66 7% 4-N HNO₄, and Mercuric potassium sulphide, K₂S₂ 2H₂S lastly 4-N H₂SO₄ alone. (Moore, J. Am. Decomp. into its constituents by H₂O; Chem Soc 1911, 33. 1094.) Cold conc. H2SO4 does not attack red or

black HgS, but they are attacked by hot acid. (Berthelot, A. ch. 1898, (7) 14. 198. Freshly pptd HgS is insol, in dil KCN+

(Berthelot)

Sol. in K₂S+Aq, but readily only in pres-ence of free alkalı (Brunner, Pogg 15, 596.) Insol in boiling KOH+Aq.

Sol in KSH on NaSH+Aq Very sl sol. in cold yellow (NH₄)₂S+Aq. Insol, in KCN or Na₂S₂O₃+Aq. (Fresenus.) Easily sol. in conc. Na₂S or K₂S+Aq, even in absence of KOH or NaOH. Insol. in

(NH₄)₂S+Aq. Sol in CaS, BaS, or SrS+Aq. Insol. in NaSH or KSH+Aq. (de Koninck, Z. angew. Ch. 1891. 51. Solubility in NaSH is very small in companson with that in NasS+Aq. (Knox.

Trans Faraday, Soc 1908, 4. 30 Solubility in BaS is practically equal to

that in Na₂S. (Knox.) All cryst modifications are sol. in conc K.S and in conc. Na2S+Aq. (Allen and Crenshaw, Am J Sci 1912, (4) 34. 368.) Sol. in potassium thiocarbonate+Aq.

(Rosenbladt, Z. anal. 26. 15 Sol in alkalı sulpho-molybdates, -tungstates, -vanadates, -arsenates, -antimonates

and stannates. (Storch, B 16. 2015.) BaS₂H₂+Aq containing 50 g. Ba dissolves no HgS in the cold, but 50-60 g at 40-50°

Insol in liquid NH₂. (Gore, Am. Ch. J. 1898, 20, 829 Insol m acetone. (Eidmann, C C 1899, II. 1014)

Insol. in pyridine. (Schroeder, Dissert 1901.

Insol. in ethyl acetate. (Naumann, B. 1910. 43. 314.) Exists in a colloidal state, sol. in H₂O.

(Winnsinger, Bull. Soc. (2) 49. 452.) Min. Cunacha. Insol. in H.O. alcohol. dil. acids. or alkaline solution

Decomp by hot dil HNO₀+Aq. Not decomp. by HCI+Aq, but easily by hot H2SO4 or aqua regia. Easily sol in CuCl2+ Aq. (Karsten.)

Sol in a mixture of Na2S and NaOH when present in the proportion of HgS: 2Na₂S Sol. in pure Na₂S+Aq or in mixtures of Na₂S and NaSH+Aq. Insol. in cold NaSH+ Aq, but sol on warming with evolution of H₂S. (Becker, Sill. Am. J (3) 33. 199)

Insol in acetone. (Krug and M'Elroy.) Cinnabar is easily sol. in 20% HBr+Aq (Rising and Lenher, J. Am. Chem. Soc. 1896.

Sol, in S2Cl2. (Smith, J. Am. Chem. Soc. 1898, 20, 291)

Mercuric platinum sulphide. See Sulphoplatinate, mercuric,

Decomp. into its constituents by H₂O; decomp. by HCl, and HNOs+Aq, and by hot KOH, and NH,OH+Aq. (Schneider, Pogg. **127.** 488.1

K2S, HgS+5H2O, Decomp. by H2O or alkalies. (Weber, Pogg. 97. 76) $+H_*0$ (Ditte.)

+7H2O. Sol in K2S+Aq (Ditte, C. R. 98. 1271. K2S, 5HgS+5H2O. Easily decomp. by

H₂O. (Ditte.) Mercuric sodium sulphide, HgS, Na₂S+

8H2O. Decomp by H₂O or alkalies 5HgS, 2Na₂S+3H₂O. Decomp. by H₂O. (Knox, Trans. Faraday Soc. 1908, 4. 36.)

Mercuric sulphobromide, 2HgS, HgBr₂. Insol. in H₂O Not attacked by boiling HNO₃ or H₂SO₄. (Rose.)

Mercuric sulphochloride, 2HgS, HgCl2 Insol in H2O, cold or hot, dil. or conc. HNO, H2SO, or HCl+Aq. (Rose, Pogg. 13.

Decomp. by hot aqua regia.

By boiling with dil. HNO₅, H₂SO₄ and HCl, Hg and Cl go into solution. (Harners,

Dissert. 1906. Insol. in H₂O and H₂SO₄. Partly sol. in HCl and HNO₂; easily sol in aqua regia. (Alexander, Dissert 1899.)

Sol in aqua regia. (Denigès, Bull. Soc. 1915, (4) 17, 356.)
3HgS, HgCl₂. Properties as the above comp. (Poleck and Goercki, B. 21, 2415.)
4HgS, HgCl₃. As above. (P. and G.)

5HgS, HgCl2. As above. (P. and G. Insol in alkalı sulphides and in fuming HNO₁; decomp. by NaOBr+Aq and by KOH. (Bodroux, C. R. 1900, **130**, 1399.)

Sl. sol, in solutions of alkali sulphides unless heated. (Berzelius)

Easily sol. in alkali sulphides+Aq; slowly sol, in alkalies or alkali hydrosulphides+Aq. (Atterberg, J. B. 1873, 258.)

Mercurous sulphotetrachloride, Hg-SCl. Decomp, by HsO with separation of S HgCl₂ going into solution. (Capitaine, J. Pharm. 25. 525.)

Mercuric sulphofluoride, 2HgS, HgF2. Decomp, by boiling HO Not decomp, by hot HCl or HNO. +Aq, but gives HF with hot H₂SO₄+Aq. (Rose, Pogg. 13. 66.)

Mercury sulphodtimide, HgN2S, NH3. Ppt. (Ruff, B. 1904, 37. 1585.)

Mercuric sulphoiodide, HgS, HgI2. Ppt. (Rammelsberg, Pogg. 48, 175.) 2HgS, HgI₂. (Palm, C. C. 1863, 121)

(Uhrlaub.)

Insol. in min. acids with exception of aqua Molybdenum amide, OH.MoO2.NH2. regia, (Hamers, Dissert. 1906.)

Mercuric sulphoiodide ammonia, 2HgS, Help, NH.

(Foerster, Ch. Z. 1895, 19, 1895.)

Mercuric telluride, HgTe. Min. Coloradaite. Sol in boiling HNO.+ An with separation of HaTeOa.

Metastannic acid. See Stannic acid.

Molybdatoiodic acid. See Molybdosodic acid.

Molybdenum, Mo

Not attacked by HCl, HF, or dil. H₂SO₄+ Aq. Sol. in cone. H₂SO₄. Very easily sol. in aqua 1egia. Oxidised by HNO₄+Aq either to molybdenum oxide, which dissolves in HNOs, or, if HNO, is in excess, to molybdue acid.

which remains undissolved. Attacked by HNO₂+Aq containing 3-70% HNO, but only slowly by 70% acid, with formation of insol, white powder; much more vigorously by 50% acid, in which case a clear solution is formed. (Montemartini, Gazz, ch. it, 22, 384)

Not attacked by alkalies+Aq. (Bucholz, Scher. J. 9, 485.)

With a sp gr 9.01, the metal is malleable and sol in a mixture of HF and HNO, sol in fused KClO2 (Moissan, Bull. Soc. 1895, (3) 13. 966)

Dustile Mo is moderately quickly attacked by HNO, H2SO, and HCl (Fink, Met Chem. Eng 1910, 8. 341)

Not immediately attacked by cold dil HNOs. Not attacked by dil and conc H.SO. Boiling dil HCl+Aq does not attack; cone. dissolves traces by long heating. Sol. in aqua regia. (Lederer, Dissert. 1911.) Dil. HCl dissolves 20.3% Mo at 110° in

18 hrs. More slowly sol, in HCl (sp. gr Insol. in dil. H2SO4 at 110°. Slowly sol

in conc. H₄SO₄ (sp. gr. 1.82) at 110°, rapidly sol. at 200°-250° Slowly sol. in conc. HNOs (sp. gr. 1.40),

rapidly sol. in dil. HNO4 (sp. gr 1.15). Rapidly sol. in hot squa regia. Insol. in hot or cold HF. (Ruder, J. Am Chem. Soc 1912, 34, 388,)

Insol, in KOH+Aq. Sol. in fused KOH. (Ruder, J. Am. Chem. Soc. 1912, 34, 389.) Insol. in liquid NH₁. (Franklin, Am. Ch. J. 1898, 20, 828.)

Molybdenum acichloride. See Molybdenyl chloride.

Very unstable. Insol. in abs. alcohol. (Fleck, Z. anorg. 1894, 7. 353)

Molybdenum amide natride, MosNnH4= 4MoN2, Mo(NH2)2. Not attacked by HCl, or dil, HNO.+An

Molybdenum amidochloride, Mo2(NH2)8Cl2 Insol, in H2O and dil, acids, (Rosenheim, Z, anorg, 1905, 46, 317.)

Molybdenum amidochloride ammonia, Mo2(NH2)2Cl2, 10NH2.

Unstable in the air. (Rosenheim, Z. anorg. 1905, 46, 319)

Molybdenum boride, Mo₂B₄,

Moderately attacked by hot conc. acids and vigorously by hot aqua regia. (Tucker and Moody, Chem. Soc. 1902, 81, 17.)

Molybdenum dibromide, MoBr. = Mo.Br.Br.

See Bromomolybdenum bromide. Molybdenum trabromide, MoBr₃.

Not decomp by H2O. Boiling cone, HCl and cold dil HNO3+Aq do not attack appreciably. Dil alkalies act slowly, but decomp. with separation of Mo₂O₂ on boiling. (Blomstrand, J. pr. 82. 435)

Molybdenum tetrabromide, MoBr. Rapidly deliquescent, and easily sol, in H₂O. (Blomstrand, J. pr. 82, 433)

Molybdenum bromochloride, etc. See Bromomolybdenum chloride, etc.

Molybdenum bronze.

See Molybdate molybdenum oxide, sodium,

Molybdenum carbide, Mo₂C. Insol. in HNO3. (Moissan, Bull. Soc. 1895, (3) 13, 967)

MoC. Does not decomp. H₂O even at 500-600°. Slowly attacked by hot HCl, HF and hot conc. H₂SO₄. Easily decomp. by HNO₃. Not attacked by NaOH+Aq or KOH+Aq, (Moussan and Hoffmann, C. R. 1904, 138, 1559.)

Molybdenum carbonyl, Mo(CO)₆.

Quickly attacked by bromine. Sol. in ether or benzene. (Mond, Hirtz and Cowap, Chem. Soc. 1910, 97, 808.)

Molybdenum dichloride, MoCl₂ = Mo₂Cl₄Cl₂. See Chloromolybdenum chloride.

Molybdenum trichloride, MoCla.

Insol. in H₂O or boiling cone. HCl+Aq Easily sol, especially when heated, in HNO₃ +Aq. Sol in H₂SO₄ Decomp. by NH₄OH, KOH, or NaOH+Aq

Sl. sol. in alcohol. (Leichti and Kempe)
Practically msol in alcohol and other
(Hampe, Ch. Z. 1888, 12. 5)

Molybdenum tetrachloride, MoCl.

Deliquescent. Hisses with little H₂O, but only partly sol in more H₂O. Only sl. sol in conc, HCl+Aq. Sol, in H₂SO₄ or HNO₂+ Aq. Partly sol, in alcohol and ether. (Liechti and Kempe.)

Molybdenum penjachloride, MoCla.

Very deliquescent Sol. in H₂O with extreme evolution of heat. Sol. in HCl, HNO₂, or H₂SO₄+Aq

When freshly prepared, is incompletely sol in H₂O, but after standing is easily sol. with hissing (Kalischer, Dissert 1902.)

Sol. in a small amt of cone HCl. (Hampe, Ch. Z. 1888, 12. 5) Sol. in absolute alcohol or ether (Liechti

and Kempe.)

Sol. in CHCl₃ and in CCl₄. Sol with hissing in many organic solvents (ethers, alcohols, ketones, aldelydes, acids, acid esters, acid anhydrides, amines). Sol in cinnamic alde-

hyde (Kalischer, Dissert 1902.)

Molybdenum hydroxyl chloride, Mo(OH)₂Cl₂.

Easily sol. in H₂O. (Debray, C. R. 46.

Molybdenum tetrachloride phosphorus pentachloride, MoCl₄, PCl₅.

Sol, in H₂O, MoCl₄, 2PCl₅. Sol in H₂O. (Cronander, Bull Soc. (2) 19, 500.)

Molybdenum phosphorus pentachloride, MoCls, PCls.

Easily decomp. (Smith and Sargent, Z. anorg, 1894, 6, 385.)

Molybdenum phosphoryl chloride, MoCls,

Decomp. by H_2O ; insol. in CS_2 ; sol. in C_4H_4 and $CHCl_3$.

Molybdenum trichloride potassium chloride. Efflorescent, Decomp. with H₂O. (Berzelius)

MoCl₃, 3KCl. Very sol. in H₂O. Nearly msol. in alcohol and ether. (Chilesotti, C. C. 1903, II. 652)

+2H₂O. Farrly easily sol. in cold H₂O without any apparent decomp. Decomp. in aqueous solution, slowly in the cold but rapidly on boiling. This decomp. is prevented by the presence of HCl.

Sl sol in cone HCl. (Henderson, Proc. Chem. Soc. 1903, 19. 245.)

Molybdenum rubidium chloride, Rb₂MoCl₅ +H₂O Sol in H₂O. Nearly insol in alcohol and

ether. (Chilesotti, C. C. 1903, H. 652.)

Molybdenum pentachloride nitrogen sul-

phide, MoCl₅, N₄S₄.

Decomp. in most air (Davis, Chem Soc. 1906, 89, (2) 1575.)

Molybdenum herrfluoride, MoFa.

Decomp by a little H₂O with separation of blue oxide Sol in large amount of H₂O forming a colorless solution. Absorbed by alkalies and NH₄OH+Aq. (Ruff, B 1907, 40, 2930)

Molybdenum fluoride with MF. See Fluomolybdate, M.

Molybdenum potassium trifluoride (?). Precipitate Sol. in HCl+Aq.

Molybdenum potassium tetrafluoride (?) Sl sol. in H_3O . (Berzelius.)

Molybdenum sesquihydroxide, Mo₁O₄H_o.
Difficultly sol. in acids. Insol. in KOH,
NaOH, NH₄OH, or K₂CO₃+Aq Somewhat
sol. in (NH₄)₂CO₃+Aq, but pptd. on boiling.
(Berzelius.)

Molybdenum hydroxide, Mo₄O₈, 5H₄O.
Easily sol in H₄O. Insol. in CaCl₂,
NH₄Cl₂ or NaCl+Aq Sl. sol in alcohol.
(Berzelus)

Molybdenum dihydroxide, MoO₂, xH₂O. Slowly and not abundantly sol. in H₄O.

from which it is precipitated by NH,Cl and other salts Gelatinises by stanting in closed vessels or by evaporating on the air. Sol. in the ordinary ands. Insol. in KOH, or NaOH +Aq Sol. in sklall carbonates+Aq.

Molybdenum diiodide, Mol2.

Insol. in H₂O and alcohol. Sl. attacked by cold H₂SO₄ or HNO₃. (Guichard, A. ch. 1901, (7) **23**, 587)

Sl. decomp. H₂O at ordinary temp. Slowly sol. in H₂SO₄ and HNO₂. (Guichard, C. R. 1896, 123. 822.)

Molybdenum tetraiodide (?).

Completely sol. in water. (Berzelius.)

Molybdenum nitride, MosNa, and MosNa (Uhrlaub.)

See Molybdenum amide.
Mo₈N₂. (Rosenheim, Z anorg. 1905, 46.
317.)

Molybdenum monoxide, MoO.

Known only as hydroxide (Blomstrand, J. pr. 77, 90.)

Molybdenum sesqueoxide, Mo₂O₃ Insol in acids or alkalies

See Molybdenum sesquihydroxide. Molybdenum dioxide, MoO: Insol in IICl or IIF+Aq. Sl sol in conc H₂SO₁ HNO₂ oxidises to MoO₂ Not at-tacked by KOH+Aq (Ullik, A 144, 227.)

Sl sol m KHC4H4O4+Aq. Molybdenum trioxide, MoOa

Sol in 500 pts. cold, and much less hot H.O. (Bucholz Sol. in 960 pts. hot H2O (Hatchett)

Sol. in 570 pts. cold, and much less hot HaO.

Sol in acids before ignition. Insol, in acids, but sl. sol. in acid potassium tartiate+Aq after ignition. Sol. in alkalies or alkali carbonates + Ao

Sol m NH OH + Aq See also Molybdic acid.

Mm. Molybrite. Sol. in HC1+An

Molybdenum oxide, MosOs.

Sol in H₂SO₄ and HCl, only sl sol in H₂SO₄ (Klason, B. 1901, **34**, 151) +3H₂O SI sol. m H₂O (2 g m 1 l). Insol m NH₄Cl+Aq. Insol in caustic al-kalies, somewhat sol. m NH₄OH. Much Annes, somewhate soi. in Nardon. haven more soi. in M₂CO₂+4 q and in (NH₄)₂CO₂+ Aq. (Klason, B. 1901, 34, 150.)

Anology-3H₂O. (Smath and Oberholtzer, Z. anorg 1893, 4, 243.)

MoO₁+6H₂O. Soi. in H₂O. (Bailhache,

C. R. 1901, 133, 1212.) Mo₃O₁₄+6H₂O Very sol in H₂O (Guuchard, C. R. 1900, 131, 419) Mo7O20. Sol. in H2O. (Junius, Z. anorg

1905, 46, 447, Mo₂₀O₄₁+21H₂O = Mo₂O₅, 18M₀O₂+ 21H₂O. Easily sol in H₂O Insol in NH₄Cl +Aq. (Klason, B. 1901, 34. 160.

 $Mo_{24}O_{77} + 24H_2O = Mo_2O_5$, $24M_0O_8 +$ 24H.O. (Klason, B. 1901, 34. 159.) 3Mo₂O₃, 2Mo₂O₂₄+18H₂O Sol. in H₂O.

It is probable that the five blue oxides of molybdenum described by Klason (B 34, 148, 158) and Bailhache are either the blue oxide Mo₄O₁₄ prepared by the author or mixtures of this compd. with molybdenum tri-oxide. (Guichard, C. R. 1902, 134, 173.)

Mo₈O₁₂. Not attacked by ammonia, easily idised by HNO₂+Aq. Not attacked by MOSO₁₅. NOT attacked by ammount, energy oxidised by HNO₂+A_Q. Not attacked by HCl or H₂SO₄+A_Q. (Wohler, A. 110, 275.) Formula is Mo₃O₅, according to Wöhler, but Muthmann (A. 230, 108) has shown that

correct formula is MosO12.

Not attacked by boiling alkalies, HCl, or dil, H.SO. +Aq. Sol, in conc. H.SO. with and Rautenberg A 109, 374.)

subsequent decomp. Sol. in aqua regia, and Cla+Aq (Muthmann) Mo₂O₂ Sol in H2O. (Muthmann, A. 238. 108) Min Risemannite (?).

+5H₂O. Moderately sol. in H₂O. (Marchetti, Z. anorg. 1899, 19. 393.) Mo₂O₇, (v. d. Pfordten, B 15, 1925.)

Molvbdenum trioxide ammonia, MoO₄, 3NH₃. Unstable in air. Very sol. in H₂O with evolution of ammonia. anorg. 1906, 50, 303.) (Rosenheim, Z.

3MoOs, NHs+1/2HsO True composition of commercial molybdic acid. (Klason, B.

NH4H3Mo3O12. Very sl. sol in cold, easily sol, in hot H2O with partial decomp. (Klason, B. 1901, 34. 156.)

3MoO₃, 3NH₃+7H₂O = (NH₄)₃H₃Mo₃O₁₃ +4H₂O True composition of Rammelsberg's 3(NH₄)₂O, 7MoO₃+12H₂O. (Klason, B. 1901, 34. 155.) 4MoO₂, NH₂+6H₂O. Very sl sol. in cold, yery easily sol in hot H₂O. An insol. modi-

fication with less H2O gradually cryst out, (Mylius, B. 1903, 36, 639.)

4MoO₈, 2NH₁+3H₂O, (Klason, B. 1901. 34. 156.) 6MoOs, 3NH2+5H2O. Very al. sol. in

cold, more cassly sol. in hot H₂O, with partial decomp (Klason, B. 1901, 34, 156.) 12MoOs, 3NH₃+12H₂O. (Klason, B.

1901, 34, 158) 12MoO₅, 3NH₂, 12H₂O+3MoO₅, 8H₂O. Moderately sol in boiling H₂O. (Klason) 15MoO₂, 3NH₂+6H₂O. Insol in H₂O

(Klason) 4MoO₃, MoO₂, 2NH₂+7H₂O. Slowly sol. in H₂O; fauly stable, gradually decomp. by dil. acids (Hofmann, Z. anorg. 1896, 12. 280.)

Molybdenum trioxide ammonia hydrogen peroxide, 18MoOs, 14NHz, 3HzOz+ 18HzO.

Sol. in H₂O Sp gr of sat solution = 1.486 at 17 4°. (Baerwald, B 1884, 17. 1206.)

Molybdenum oxybromide. See Molybdenyl bromide.

Molvbdenum oxychloride. See Molvbdenvl chloride.

Molybdenum oxyfluoride. See Molybdenyl fluoride.

Molybdenum oxyfluoride with MF. See Fluoxymolybdate, M, and Fluoxyhypomolybdate, M.

Molybdenum phosphide, Mo.P.

Gradually sol in hot HNOs+Aq. (Wohler

Molybdenum selenide, MoSes. Not obtained pure. (Uelsmann, A. 116. 125)

Molybdenum silicide.

Sol in HF; only very sl sol in other acids (Warren, C. N. 1898, 78, 319) MoSi₂ Insol in all min acids; sol, in a warm mixture of HF+HNO₃. (Defacqz,

C. R. 1907, 144. 1425)

Insol in min. acids, sol. in HF+HNO: Unattacked by 10-20% KOH+Aq De-comp. by fused NaOH. (Honigschmid, M 1907, 28, 1020.)

Not attacked by boiling HNOs, aqua regia or HF. (Watts, Trans. Am. Electrochem. Soc. 1906, 9, 106)

MosSia. (Vigouroux, C. R 129, 1238.)

Molybdenum disulphide, MoS₂,

Insol in H₂O. Easily sol in aqua regia Easily oxidised by HNO, Sol in boiling H-SO, Sl. attacked by KOH+Ag (Ber-

zelius.) Min. Molubdenste. Sol. in HNO₃+Aq. with separation of MoO4; sol, in aqua legia, very sl sol, in H2SO4

Molybdenum trisulphide, MoSa.

Somewhat sol in H2O, especially if hot, but pptd by an acid Difficultly sol except when boiled with KOH+Aq. Sl. sol. in solutions of alkalı sulphides unless heated. (Berzelius.) Easily sol, in alkalı sulphides + Aq; slowly

sol, in alkalies or alkalı hydrosulphides + Aq (Atterberg, J. B. 1873, 258)

Molybdenum tetrasulphide, MoS.

Not decomp, by hot H2O or acids

Sl. sol, in cold alkalı sulphides + Ag, but easily by boiling. (Berzelius.) Insol in liquid NH, (Gore, Am Ch J 1898, 20, 828,

Molybdenum sesquisulphide, MosSa

Insol. in HCl and H2SO4; sol, in hot cone. HNO2 and aqua regia (Guichard, C. R. 1900, 130, 138.)

Molybdenum sulphide unth MS. Sec Sulphomolybdate, M.

Molybenum sulphochloride, MosSsCle Insol. in H2O and alkalies Slowly sol. in conc HNO₃ (Smith and Oberholtzer, Z anorg. 1894, 5. 67.)

Molybdenyl monamide, NH, MoO, or

(Rosenheim, Z anorg, 1905, 46, 318.)

Molybdenyl bromide, MoO.Br.,

Deliquescent, and sol, in H2O with slight evolution of heat. Mo₂O₂Br₄ Unstable in air (Smith and Oberholtzer, Z anorg. 4, 236)

Molybdenyl potassium bromide, MoOBra. 2KBr.

(Weinland, Z anorg 1905, 44, 109.) MoOBrs, KBr+2H2O. anorg 1905, 44, 110) (Weinland, Z.

Molybdenyl rubidium bromide, MoOBra, (Weinland, Z. anorg 1905, 44, 108.)

Molydenyl chloride, MoO.Cl.

Sol, in H₀O and alcohol Abundantly sol, in abs. alcohol. Not very

sol. in abs ether (Hampe, Ch. Z. 1888, 12.

+H₂O Composition settled by mol. wt. determinations Dissociates in alcohol and in H₂O. (Vaudenberghe, Z. anorg. 1895, 10.

Very hygroscopic. Sol. in acctone, ether and alcohol. (Vaudenberghe, l. c.)

MooCl₄ Deliquescent Sol in little H₂O
with violent action. More H₂O decomposes

(Puttbach, A 201. 123.) Formula is MosOsClas, according to Blom-

strand (J pr. 71. 460)

Mo₄O₃Cl₄ (Puttbach, l c)

Mo₅O₅Cl₅. Debquescent Sol. in H₂O with

very slight evolution of heat and subsequent formation of precipitate. (Blomstrand) Sol. in acids (Puttbach, A 201. 129.)

Mo₂O₂Cl₅. Deliquescent, and sol in H₂O. (Blomstrand.) Mo_sO_sCl_s. Insol, in HCl and cold H-SO4. Sol in hot H2SO4 and HNO2. (Püttbach, A.

201. 123.) Mo.O.Cl-Difficultly sol, in HCl Easily sol, in HNO₃, and alkalies+Aq. (Püttbach)

Molybdenyl potassium chloride, MoOoClo. $KCI + H_0O$. (Weinland, Z. anorg 1905, 44. 97)

+2H₂O, (Weinland, Z anorg 1905, 44. 96

6MoO₂Cl₂, 2KCl+6H₂O. (Weinland, Z. anorg, 1905, 44, 97.) MoOCl₂, 2KCl+2H₂O. Sol. in H₂O (Nordenskjold, B. 1901, 34. 1573) Ppt (Henderson, Proc. Chem Soc. 1903, 19, 245.)

Molybdenyl rubidium chloride, MoO2Cl2, RbCl+H2O.

MoO₂Cl₂, 2RbCl. (Weinland, Z. anorg. 1905, 44. 95.)

MoOCls, 2RbCl Sl. sol in H2O. Less sol. than K salt (Nordenskjöld, B. 1901. 34. 1573.)

Molybdenyl fluoride, MoO.F.

Decomp. rapidly in moist air. (Schulze, J.

pr. (2) 21, 442) Very hydroscopic Sol in a little H₂O givmg a blue solution, in more H-O giving a color less solution

Sol in AsCla, StCla, SO2Cla and PCla. On warming these solutions, gas is evolved Insol in toluenc, Nearly msol, in other, CHCls, CCls, and CS₂—Sol in waim pyridine and in ethyl and methyl alcohol—(Ruff, B

1907, 40, 2934) MoOF Very hydroscopic. Decomp by H₂O and cone H₂SO₄ Decomp by alcohol Sol in ether and CHCls with evolution of gas Insol in toluene Very sl. sol in benzene and CS_c (Ruff, B 1907, 40, 2932) MocOsf₄. Deliquescent. Easily sol in HF

+Aq. not in H₂O. (Smith and Oberholtzer)

Molybdenyl fluoride with MF. See Fluoxymolybdate, M, and Fluoxyhypo-

molybdate, M.

Molybdenyl hydroxide, MoO(OH).

2 g are sol, in 1000 cc H₂O; insol, in H₂O+ NH4Cl; only sl sol. in NH4OH and alkali carbonates + Aq. (Klason, B 1901, 34, 151.)

Molybdic acid, H2MoO4.

(Ullik, A. 144, 217.)

Nearly insol, in H2O, (Vivier, C R. 106. Very sparingly sol. in cold H₂O, more sol. in hot H₂O. (Rosenheim and Bertheim, Z anorg. 1903, **34**. 435)

a-modification

Solubility of MoO₃, H₂O (a-modification) in H₂O at t°.

1000 g, H₂O dissolve g, MoO₂.

to.	G, MoO ₃	to.	G MoO ₁
14.8	2 117	42 0	3 446
15 2	2 131	45 0	3 661
216	2 619	52 0	4 184
25 6	2 689	60 0	4 685
30.3	2 973	70 0	4 231
36 0	3 085	80 0	5 212
36.8	3 295	II .	

(Rosenheim and Davidsohn, Z anorg. 1903, 37. 318.)

(β modification), MoO₂, H₂O. MoOs, 2H2O at 60°-70°. (Rosenheim and Davidsohn.)

Insol. in liquid NH4. (Franklin, Am. Ch J, 1898, 20, 828.)

Easily sol. in H2SO4. (Ruegenberg and Smith, J. Am. Chem. Soc. 1900, 22, 772. H.MoOs. Sol. in H.O and acids. (Mil lingk.)

Very sol, in H₂O. (Mylius, B 1903, 36, 638.)

Solubility of MoOs, 2H2O in H2O. 1000 g H₂O dissolve g. MoO₂ at t^o.

t°	G MoO ₃	t°	G MoO ₃
18 23 30 40 48 50 2	1.066 1 856 2 638 4.761 6 360 6 873 7.855	59 60 66 70 74 4 75 79	11 258 12 057 17 274 20 550 20 904 20 920 21 064
(Rosenhe	um and Berth	eim. Z. an	org, 1903, 34.

Solubility of MoOs, 2H2O in ammonium salts

+Aq at to.

1000 g. of the softene dissofts & Aloos.						
Solvent	t°	G MoOa				
10% (NH ₄) ₂ SO ₄ 10% NII ₄ HSO ₄	29 6 31.5	19 27 27 53				
**	41 8	34 36				

(Rosenheim and Davidsohn, Z. anorg. 1903, 37. 315.)

H₀MoO₄ (?), Known only in solution, H₂Mo₂O₇ Easily sol. in H₂O. (Ullik.) $H_1Mo_4O_{13}$. Easily sol in H_2O . $H_2Mo_8O_{24}$. Easily sol in H_4O (U)

Molybdic acid also exists in a colloidal modification, sol. in H₀O, (Graham, C R, 59, 174.)

Molybdates.

The normal molybdates of the alkalı metals

are casily sol in H₂O, while the others are sl. sol or insol therein The tramolybdates are al. sol in cold, but

very easily sol. in hot H₂O. The teti amolybdates are easily sol, in H.O.

Aluminum molybdate, Al₁₆Mo₂O₂₁. Precipitate. (Gentele, J. pr. 81, 414.)

Contains aluminum hydroxide and sulphate. (Struve, J. pr. 61, 441.) Aluminum ammonium molybdate.

See Aluminicomolybdate, ammonium.

Alumınum barium molybdate.

See Aluminicomolybdate, barium,

Ammonium molybdate, (NH4)2MoO4. Efflorescent through loss of NH2; decomp.

by H2O into acid salt. (Syanberg and Struve.) Insol, in liquid NH₁, (Franklin, Am. Ch. J. 1898, 20, 826)

(NH₄)₂Mo₂O₇. Sol. in H₂O +H.O=NH4HMoO4. Sol. in H2O Sol. in 2-3 pts H₂O (Brandes, Mauro, Gazz ch. it. 18, 120)

(NH₄)₄Mo₇O₂₄+4H₂O. (Commercial ammonium molybdate) Not efflorescent. Sol. m H₂O. (Delafontame, N. Arch. Sc ph. nat. 23. 17.)

According to Struve and Berlin = (NH4),Mo4O17+3H2O

According to Marignac and Delfis = (NH₄)HMoO₄. The true composition of commercial ammonium molybdate is NH₄)₁₀Mo₁₂O₄₁. (Junius, Z. anorg 1905,

46, 428) +12H.O. More sol, than the above. (Rammelsberg, Pogg. 127, 298) Insol in acctone. (Krug and M'Elroy, J Anal. Appl. Ch 6, 184)

(NH4)16Mo12O41. True formula for commercial ammonium molybdate (Sand and Eisenlohr, Z. anorg 1907, 52. 68)

+7II₂O (Junius, Z anorg. 1905, 46, 428.) (NH₄),Mo₃O₁₇+H₂O (Jean, C. R. 78.

(NH₄)₂Mo₂O₁₉+H₂O Very difficultly sol, m cold, easily sol m hot H₂O (Berlin, J. pr. 49, 445.1 Easily sol in NH4OH+Aq. (Kammerer,

J. pr. (2) 6. 358.) (NH₄)₂O, 4MoO₃ Practically insol. in cold, sl sol in hot H₂O. (Westphal, Dissert. Practically insol. in

+2H₂O. Very difficultly sol in cold, lather easily sol, in hot H₂O. (Berlin) 100 cc. H₅O dissolve 3.5200 g. at 15°; sp gr.=1.03, 3.6711 g. at 18°, sp gr.=1 04; 4.5901 g at 32°; sp gr.=1 105 (Wempe, Z. anorg. 1912, 78. 258.) +212H₂O. (Junus, Z. anorg. 1905, 48.

440.)

(NH₄)₂O, 8MoO₃+13H₂O. (Rosenhem, Z. anorg. 1897, **15**. 188.) _(NH₃)₂O, 9MoO₃+17H₂O. (Westphal,

Dissert. 1895.) See also Molybdenum is coxide ammonia.

Ammonium barium molybdate, 3(NH₄)₂O, 3BaO, 14M₂O₄+12H₂O, (Westphal, Dissert. 1895.)

Ammonium bismuth molybdate. NH Bi(MoO.).

(Riederer, J. Am. Chem. Soc. 1903, 25. Ammonium magnesium molybdate, (NH4)20. 914.)

Ammonium cadmium molybdate ammonia, (NH4)2Cd(MoO4)2, 2NH2.

Decomp. by H₂O. Sol. in dil NH₄OH+Aq. (Briggs, Chem. Soc. 1904, 85, 674)

Ammonium cerium molybdate, $(NH_4)_6CeMo_{14}O_{48} + 24H_2O$ Sol. in H₂O. (Barbieri, C. A. 1909, 293) Ammonium chromic molybdate.

See Chromicomolybdate, ammonium.

Ammonium cobaltous molybdate 3(NH₄)₂O, 7M₀O₃, 3C₀O, 7M₀O₃+1H₂O 5[3(NH₄)₂O, 7MoO₃], 7[3CoO, 7MoO₃]+ xH₂O

2[3(NH₄)₂O, 7M₀O₂], 3[3C₀O, 7M₀O₂] +./H2O 3[3(NH₄)₂O, 7M₀O₂], 5[3C₀O, 7M₀O₂] +iH;0

3(NH₄)₂O, 7M₀O₃, 5[3C₀O, 7M₀O₂]+ εH₂O. 9[2(NH₄)₂O, 5MoO₃], 5[2CoO, 5MoO₃]+ 118 H₂O

4(NH4),0. 2CoO. 15MoOa+20H2O. (Marckwald, Dissert 1895.)

Ammonium cobaltous molybdate ammonia, (NH₄)₂Co(MoO₄)₂, 2NH₄ Decomp by H₂C

Sol. in dal. NH,OH+Aq. (Briggs, Chem. Soc. 1904, 85, 674.)

Ammonium cobaltic molybdate.

See Cobaltimolybdate, ammonium.

Ammonium cupric molybdate, (NH4)20, CuO, 5MoO₂+9H₂O Sl. sol. in cold, sol. in boiling H₂O without decomp (Struve.)

Ammonium cupric molybdate ammonia,

(NH₄)₂Cu(MoO₄)₂, 2NH₃ Sol in dil NH4OH+Aq.

Decomp. by HaO. (Briggs, Chem. Soc. 1904, 85, 673,

Ammonium ferric molybdate, 3(NH₄)₂Mo₂O₇, $Fe_2(MoO_4)_4 + 20H_2O$. Sol. in H₂O. (Struve.)

See also Ferricomolybdate, ammonium, Ammonium lanthanum molybdate,

(NH4)4La2Mo14O18+24H2O. Sol. in H₂O. (Barbier, C. A. 1909, 293.)

Ammonium lithium molybdate, NH4LiMoO4 +H2O.

(Traube, N. Jahrb Miner 1894, I. 194.)

 $MgO, 2MoO_s+2H_2O = (NH_4)_2MoO_4$ MgMoO.+2H.O. Easily sol. in H2O (Ulitk, A. 144. 344.)

Ammonium manganous molybdate.

2(NH4)2O, MnO, 3MoO2+5H2O. Decomp. by boiling H.O. (Marckwald. Dissert, 1895. (NH4)2O, 2MnO, 6MoOa+16HoO.

comp by boiling H.O. (Marckwald, Dissert. 1895.)

(NH₄)₂O₄ 3MnO₅ 6MoO₅+16H₂O₅ comp by boiling H2O. (Marckwald, Dissert. 1895.

3(NH₄)₂O₅ 2MnO, 12MoO₄+22H₂O. (Marckwald, Dissert 1895.)

Ammonium manganic molybdate. See Permanganomolybdate ammonium.

Ammonium mercuric molybdate. Sol. in HCl+Aq Sol. in boiling NH4Cl+ Aq, separating out on cooling. Sol. in hot

(NH₄) SO₄+An₄ (Hurzel) Ammonium molybdenum molybdate, (NH₄)₂O, 2MoO₂, 4MoO₂+9H₂O

Easily sol, in H2O, but the solution soon becomes cloudy (Rammelsberg, Pogg 127. 291.)

Ammonium neodymium molybdate. (NIL) NdM0O24+12H2O. Ppt. (Barbieri, C. C. 1911, I. 1043.)

Ammonium nickel molybdate, (NII,)2O, 3NiO, 9MoO3+25H2O.

CSTLIJAN, GSTLO, VARUAT-T-ZOTEU.

Very sl. sol. in cold, sol in hot HgO without decomp. (Marckwald, Dissect. 1885.)

3(NHL)30, 2010, (10MO)4-14HJ,O. Very sl. sol. in cold, sol. in hot HgO without decomp. (Marckwald, Dissect. 1885.)

5(NHL)30, 2010, 10MO)4-16H3O. (Hall, J. Am. Client Soc. 1897, 20, 740 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. Very Sol. Hl, 20, 2010, 10MO)4-20HJO. Very sol. Mill. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. Very sol. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. Very sol. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. Very sol. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (March Soc. 1897, 20, 720 HgO)

1, Am. Client Soc. 1897, 20, 720 HgO. (Marc

(Marckwald, Dissert, 1895.) 8(NH₄)₂O, 6N₁O, 31M₀O₂+63H₂O. Very sl. sol. in cold, sol. in hot H2O without demp (Marckwald, Dissert. 1895.) 3(NH₄)₂O, 9N₁O, 34M₂OO₄+120H₂O Very sl. sol. in cold, easily sol. in hot H₂O without

decomp. (Marckwald, Dissert 1895.) Ammonium nickelic molybdate.

See Nickelmolybdate, ammonium. Ammonium nickel hydrogen molybdate,

 $(NH_a)_aH_a[N_1(M_0O_a)_a] + 5H_aO$ See Nickelomolybdate, ammonium hydrogen.

Ammonium praseodymium molybdate, (NH₄)₂PrMoO₂₄+12H₂O

Ppt. (Barbieri, C. A. 1911, 1884.)

Ammonium samarium molybdate, (NH₄)₂SmM₀O₂₄+12H₂O. Ppt. (Barbieri, C. A. 1911, 1884)

Ammonium sodium molybdate, 7(NH4)2O. 2Na₂O, 21MoO₃+15H₂O (?).

Easily sol. in H₂O. (Delafontame, J. pr. 7(NH₄)₂O, 3Na₂O, 25MoO₃+80H₂O (?). (Delafontaine.)

(NH₄, Na)₂O, 3MoO₃+H₂O Sol. in H₂O (Manio, Gazz ch. it. 11, 214.) De-

> Ammonium thorium molybdate. See Thoromolybdate, ammonium,

Ammonium titanium molybdate. See Titanomolybdate, ammonium.

Ammonum vanadium molybdate. See Vanadiomolybdate, ammonium.

Ammonium zmc molybdate. Sol in H₂O. (Berzelius)

Ammonium zirconium molybdate. See Zirconomolybdate, ammonium.

Ammonium molybdate hydrogen dioxide, 18MoO₃, 7(NH₄)₂O, 3H₂O₂+11H₂O, Sol. in H.O. (Barwald, B. 17, 1206)

Barium molybdate, basic, 2BaO, MoO.+ H-O (?).

Insol. in H2O. Sol. in dil, HCl+Aq or HNO₈+Aq. (Heine, J. pr. 9. 204.) Barium molybdate, BaMoO4.

Difficultly sol in H2O; sol. in dil HCl, and Dimentity 801 in 120; 801, in the 110; and 110;

BaMo₂O₁₀+3H₂O. SI sol in H₂O. Ba₂MoO₂₄+9H₂O. Appreciably sol in H₁O. (Jorgensen)

Svanberg and Struve=

Ba2Mo,O1 +6H.O. +12H₂O or 5BaO, 12MoO₂+20H₂O. (Junius, Z anorg, 1905, 46, 433.) +22H₂O Pnt (Westphal, Dissert.

1895.) BaO, 4MoO2+31/2H2O, Ppt, (Wempe, Z. anorg. 1912, 78, 320.) +12H₂O. Ppt.

Ppt. (Rosenheim, Z. anorg, T121120, 192, 200.)

BaMo₂O₂₈+4H₂O. Insol. in cold or hot H₂O or H_NO₄+Aq Extremely slightly decomp. by H₂SO₄, or H₂SO₄+H_NO₃, or HCl+

Aq (Svanberg and Struve.) Barium paramolybdate, 5BaO, 12MoOa+

10H.O Ppt. Sol. in excess of BaCl2+Aq. (Junius, Z. anorg. 1905, 46, 433.)

Barium tetramolybdate, BaH₂(Mo₄O₁₃)₂+ 17H.O.

Insol in cold, apparently decomp by hot H₂O, a small part dissolving, and the rest forming an insol. residue (Ullik, A. 144. 336.)

+14H₂O. Insol. m cold and hot H₂O. (Wempe, Z anorg. 1912, 78. 32O.)
BaO, 8MoO₃+17H₂O. (Felix, Dissert 1912.)

Barium chromic molybdate. See Chromicomolybdate, barium.

Barium cobaltic molybdate. See Cobaltimolybdate, barium.

Barium manganic molybdate.

See Permanganomolybdate, barium.

Barium nickelic molybdate. See Nickelimolybdate, barium.

Barium nickel hydrogen molybdate, Ba₂H₆[Ni(MoO₄)₄]+10H₂O. See Nickelomolybdate, barium hydrogen.

Barium vanadıum molybdate. See Vanadiomolybdate, barium.

Barium molybdate hydrogen dioxide, 8BaO, 19MoO₄, 2H₂O₂+13H₂O. Precipitate. (Barwald.)

Bismuth molybdate, Bi₂O₄, 3MoO₃. Somewhat sol in H₂O. Sol in 500 pts. H₄O and in the stronger acids (Ruchter.)

Bromomolybdenum molybdate.

See under Bromomolybdenum comps.

Cadmum molybdate, CdMoO., Insol. m H₄O; sol in NH₄OH+Aq, KCN+ Aq, or acids (Smith and Bradbury, B. 24. 2390.) CdO, H₄O, 8MoO₃+6H₄O. Decomp. by boiling with H₂O. (Wempe, Z. anorg. 1912, 78, 323.)

Casium molybdate, Cs₂O, 3MoO₃+H₂O. (Ephraum and Herschfinkel, Z. anorg 1909, 64, 270)

1900, 64, 57M.O., +3H.O. Ephraim and Herschinkel, 2, anorg. 1909, 64, 270, 134H.O. Very al. sol. in cold, easily sol in hot E.O. (Wempe, Bassett 1911.)

12Copf. 5M.O.+5H.O. (Ephraim and 12Copf. 5M.O.+5H.O. (Ephraim and 3Cop. 10M.O.+3H.O. (Ephraim and Herschinkel, Z. anorg. 1900, 64, 271.)

13Cop. 10M.O.+8H.O. (Ephraim and 3Cop. 10M.O.+8H.O. (Ephraim and Herschinkel, Z. anorg. 1900, 64, 271.)

Cæsium tetramolybdate, Cs₂O, 4MoO₂. Only sl. sol. in H₂O. (Muthmann, B 1898, **31**, 1841.) +2H₂O. Sl sol. in H₂O. (Muthmann, B. 1898, **31**, 1841.)

+3H₂O Easily sol. m cold or hot H₂O. (Wempe, Z anorg, 1912, 78, 317.)
+5H₂O Very sol in cold and hot H₂O. (Wempe, Dissert 1911.)
C8₂O, MoO₃, C8₂O, 3MoO₂+4.5H₂O. Sol in H₂O. (Wempe, Z. anorg, 1912, 78, 317)

Cosium paramolybdate, 5Cs₂O, 12MoO₅+ 11H₂O. Efflorescent Easily sol in H₂O (Warme

Efflorescent. Easily sol. in H₂O (Wempe, Z. anorg. 1912, **78**. 317.)

Calcium molybdate, CaMoO4.

Insol precapitate (Ullik.)
SI sol. in H₂O; insol in alcohol. (Smith and Bradbury, B 24, 2930)
+H₂O (Westphal, Dissert. 1895.)

+H₂O (Westphal, Dissert. 1895.) +2H₂O. (Westphal, Dissert. 1895.) +6H₂O. Difficultly sol in cold, easily in hot H₂O. (Ullik, A. 144. 231.)

CaMo₄O₁₁+9H₂O Easily sol in cold H₂O. CaO, 2H₂O, 12MoO₃+21H₂O. Efflorescent. Sl. sol in cold, easily sol in hot H₂O. (Wempe)

CaH₂(Mo₄O₁₄)₂+17H₂O,

Sl. sol in cold, easily sol in hot H_2O with decomp (Ullik) $+16H_2O$. Insol. in cold, difficultly sol. in hot H_2O (Wempe, Z. anorg. 1912, 78. 318.)

Cerium molybdate, Ce₂(MoO₄)₈.

Precipitate. Insol in H₂O, sol. in acids.
(Cossa, B, 19, 536 R)

Chromic molybdate.

Iusol. m H₂O, but sol. m acids. Sol in NH₄ molybdate+Aq (Berzelius.) See also Chromicomolybdic acid.

Chromic molybdate, with M. molybdate. See Chromicomolybdate. M.

Cobaltous molybdate, CoMoO4

Decomp by alkalies and strong acids. (Berzeitus) +H₅O. Sl. sol. in pure, easily sol. in acidified H₅O. (Coloriano, Bull. Soc. (2) **50**.

CoO, 2MoO₂+2H₂O. (Marckwald, Dissert. 1895.)

d 6½H₂O. Sl sol in H₂O. (Marckwald)

1 61/H₂O. Sl sol m H₂O. (Marckwald) CoMo₂O₁₀+10H₂O. Very sl. sol. in cold, but very easily sol. m hot H₂O. (Ullik, W. A. B **55**, 2. 767.)

Cobaltic potassium molybdate.

See Cobaltimolybdate, potassium.

Cobaltous sodium molybdate,

Na₂O, 2CoO, 6MoO₃+18H₂O. (Marckwald, Dissert. **1895.**)

2Na₂O, CoO, 7MoO₃+20H₂O. Sol. in cold H₂O without decomp Decomp. on heating. (Marckwald)

3Na.(), 2CoO, 12MoO, +27H.O. (Marck-Iron (ferrous) molybdate, FeMoO. wald.)

3Na₂O₃ 3CoO₂ 14MoO₃+50H₂O₃ Sol m much cold H₂O₃ (Marckwald.) 4Na₂O₃ 6CoO₂ 25MoO₃+68H₂O₃ (Marckwald.)

Cobaltons molybdate ammonia, CoMoOa, 2NH₄+H₄O

Sol, in H₂O. (Sonnenschein, J. pr 53.) 340.)

Cupric molybdate, basic, 4CuO, 3MoOs+ Insol in H₂O, (Strave, J. B. 1854, 350,)

Cupric molybdate, CuMoO4

St. sol. in H-O; decomp, by acids and alkaline solutions. augmine solutions. CuMo₂(p_0 + p_0) p_0 Easily sol in cold H_2O . (Ulhk, A. 144, 233.) + p_0 H_2O . Very sl sol, in cold, and extraordinarily easily sol, in hot H_2O (Ullik)

Cupric molybdate ammonia.

CuMoO4, 2NH3+H2O. Gives off NH2 at ord temp. Decomp. by H₂O. Sol. in dil. NII OH+Aq from which it can be cryst. (Briggs, Chem. Soc. 1904, 85, 674) CuMoO₄, 4NH₃. Decomp. by H₂O Sol. in dil. NH₂OH+Ao (Jorgensen, Ch Z Repert. 1896, 20, 225.)

Didymium molybdate, Di-(MoOs)s.

Ppt. Insol. in H₂O. (Cossa, B 19. 536R) Di₂O₈, 6MoO₄ + 3H₂O (?) Precipitate. Precipitate. (Smith)

Glucinum molybdate, basic, 2GlO, MoOa+ Nearly insol. in H₂O. (Atterberg, J. B.

Glucinum molybdate, GlO, MoOa+2H2O Sol in H₂O with decomp. (Rosenheim, Z. anorg. 1897, 15, 307.) GlMoO₄, MoO₅+₁H₂O. Easily sol. in H₂O. (Atterberg.)

Gold (auric) molybdate (?).

1873, 258)

Sl. sol. in H₂O. Sol. in HCl, and HNO₂+ Aq. (Richter.)

Hydroxylamine potassium molybdate. MoO4H2(NH3O)4(NH2OK). Easily sol. in H₂O; pptd by alcohol. (Hof-mann, A. 1899, 309, 324.)

Indium molybdate, Ino(MoO4)+2HoO.

Ppt. Insol. in H₂O Easily sol in HCl. (Renz, B. 1901, 34. 2765.)

Insol in H₂O. (Schultze, A. 126, 55)

lion (ferric) molybdate, Fe₂O₄, 4M₀O₄+ 7H.O.

Nearly insol. in H₂O Slowly sol. in cold, easily in hot HCl, or HNO₂+Aq Dil. acids gradually dissolve out Fe₂O₈ in the cold. When ignited, difficultly sol, in all solvents.

(Stemacker. Fe₂O₃, 5MoO₃+16H₂O Very sl. sol. m H₂O. (Struve, J. B **1854**, 346) 2Fe₂O₈, 7MoO₃+34H₂O Ppt. (Hall, J.

Am. Chem Soc 1907, 29, 704)

Ferric potassium molybdate, Fe₂O₃, 3K₂O₃ 12MoO₃+20H₂O = 3K₂Mo₂O₅ Fe₂(Mo₂O₇)_a+20H₂O. Sol, in H₂O. (Struve)

Lanthanum molybdate, $L_8H_3(MoO_4)_8 = L_{cl_2}O_3$, $MoO_3 + 3H_2O$, (?) Precipitate. (Smith)

Lead molybdate, PbMoO.

Insol in H₂O. Sol in warm HNO₈+A_G: decomp. by H2SO4; sol in conc. HCl+Aq, or KOH +Aa

Min, Wulfenste As above.

Lithium molybdate, Li-MoO. Moderately sol, in cold, and only al, more sol in hot H.O (Ephram, Z. anorg 1909.

64. 259.) +2/.II2O. Easily sol. in H2O. 5Li₂O, 5M₂O₂+2H₂O, 46 13 g, are present in 100 ccm, of the aqueous solution at 20°.

and sp. gr. of the solution = 1.44. (Wempe, Z. anoig. 1912, 78, 309.)
Li₂O, 2MoO₂+5H₂O. Sol. in cold, easily sol in hot H₂O. (Ephraim, Z. anoig. 1909, 64. 258.)

Li₂O, 3M₀O₄+H₂O Easily sol. in warm H₂O. (Wempe, Dissert, **1911**.) +4H₂O. (Wempe.)

+41/H₂O. (Wempe) +7H₂O. Nearly masol in cold, sol. in hot H2O. (Ephraim, Z. anorg 1909, 64. 258) 2Li₂O. 3MoO₃. SI sol, in H₂O. (Ephraim.

Z. anorg 1909, 64, 258.) Lithium paramolybdate, 3L₁,O. 7M₀O₂+

12H2O. Sol. in H₂O. (Rosenheim, Z anorg. 1897,

15. 181.) +28H₂O Easily sol, in cold and hot H₂O. (Ephram, Z. anorg, 1909, 64, 258.)

Lithium tett amolybdate, Li₂O, 4MoO₃+7H₂O. Sol. in cold H2O. (Ephraim, Z. anorg. 1909, 64, 258,)

LigO, HgO, 8MoOs+10HgO. Easily sol.

in hot H₂O. (Wempe, Z. anorg 1912, 78. LioO, 3H2O, 16MoO3+612H2O. sol in warm H₂O. (Wempe, Z. anorg. 1912 78, 308.)

Lithium potassium molybdate, KLiMoO4+ (Traube, N. Jahrb. Miner, 1894, I, 194.)

Magnesium molybdate, MgMoO4

Min. Belonesia.

Insol in HCl+Aq. (Scacchi, Zeit. Kryst. 1888, 14, 523. +5H₂O. Easily sol. in cold, but still more sol, in hot H₂O. (Delafontaine.)

Sol. in 12-15 pts cold H₂O. (Brandes) +7H₂O. Easily sol. in hot or cold H₂O (Ullık.) MgMogO10+10H2O. Difficultly sol. in cold, very easily in hot HaO. (Ullik.)

Magnesium paramolybdate, Mg2Mo2O24+ 20H.O. Quite sol, in cold, more easily in hot II₂O

(Ulhk) Magnesium tetramolybdate. MgO, H₂O, 8MoO₂+19H₂O.

Magnesium hydrogen tetramolybdate, MgH2(Mo4O11)2+19H2O Easily sol, in cold H₂O. (Ullik, A. 144. 335.)

Sl. sol, in cold, easily sol, in hot H₂O. (Wempe, Dissert. 1911.) +20H₂O. Ppt. (Wempe, Z. anorg. 1912 78. 323.)

Magnesium hydrogen octomolybdate, $MgH_{\bullet}(Mo_sO_{\bullet h})_{\bullet} + 29H_{\bullet}O_{\bullet}$

Very difficultly sol. in cold, very easily sol in hot H.O (Ulltk, W. A. B. 60, 2, 314.) Magnesium potassium molybdate, MgMoO4,

 $K_2M_0O_4+2H_2O$. Slowly sol in cold, easily in hot H₂O.

(Ullik, A. 144, 343) Manganous molybdate, MnMoO4+HsO.

Insol. in H₂O. Sl sol. in pure, easily sol. in acidified H₂O. Decomp by alkalies or alkali carbonates + Aq. (Coloriano, Bull. Soc. (2) 50. 451.) +5/2H2O. (Marckwald, Dissert. 1895.)

+10H2O. (Marckwald)

Manganic potassium molybdate. See Permanganomolybdate, potassium.

Manganic silver molybdate. See Permanganomolybdate, silver.

Mercurous molybdate, Hg2Mo2O7.

350,)

Sol in 500-600 pts. H₂O; decomp. by HNO3+Aq (Hatchett.)

Molybdenum molybdate. See Molybdenum oxides, Mo₄O₂, Mo₄O₀,

Neodymium molybdate, Nd2(MoO4):

Very sl. sol, m H_{*}O

1 pt. is sol. in 53790 pts. H₂O at 28°.
1 " " " 32466 " H₂O . "75°. (Hitchcock, J. Am. Chem. Soc. 1895, 17, 532.)

Nickel molybdate, $N_1M_0O_4+^2/_3H_2O_7+^3/_4H_2O_7$ and +5H.O.

Marckwald, Dissert. 1895.) NiO, 3MoO₂+18H₂O. SI sol m cold; easily sol in hot H₂O. (Marckwald.) 5NiO, 14MoO₃+57H₂O, and +70H₂O. Sl. sol in cold; easily sol. in hot H1O. (Marckwald)

Nickel potassium molybdate, 3NiO, 5K2O 16MoO₁+21H₀O Can be cryst. from H2O (Hall, J. Am.

Chem. Soc 1907, 29, 701.)

Nickelic potassium molybdate. See Nickelimolybdate, potassium.

Nickel potassium hydrogen molybdate, $K_tH_t[Ni(M_0O_4)_t]+5H_2O.$

See Nickelomolybdate, potassium hydrogen. Nickel sodium molybdate, 2NiO, Na₂O,

6MoOs+17H2O. Sol in cold H₂O without decomp. but de-comp. on warming. (Marckwald, Dissert. 1895.)

Nickel molybdate ammonia, NiMoO4, 2NH3 $+H_2O$ Decomp. by H2O. (Sonnenschein, J. pr.

53.341.) Potassium molybdate, K₂MoO₄.

Very sol, in Deliquescent in moist air. H₂O. Insol, in alcohol, (Syanberg and Struve, J. pr. 44, 265) 184 6 grams are sol in 100 grams H₂O at 25° (Amadori, C. A. 1912, 2878.)

Solubility of K.MoO.+K.SO. at 25°.

G, per 10	00 g H ₂ O	G per 1	00 g, H _f O
K2SO4	K ₂ MoO ₄	K ₂ SO ₄	K2MoO4
0 0 46 0 72 0 98 1 27	184 6 180 7 177. 127 2 107.5	1.50 2.13 3.95 8.55 12.10	99.49 45.89 17 48 4 73 0

Decomp. by H₂O. (Struve, J. B. 1754. (Amadori, Att. acc. Line. 1912, 21, I 467,

530.)

+3 (H₂O Easily sol, in H₂O (Wempe, Praseodymium molybdate, Pr₂(MoO₄)₃ Dissert. 1911.)

K₂O, SM₀O₃+13H₂O Easily sol in warm H₂O (Wempe, Dissert **1911**.) K₂O, **1**0M₀O₃+9H₂O Nearly insol in hot and cold H₂O, 100 g, H₂O dissolve 0.682 g at 100° (Felry, Dissert, **1912**.)

+15H₂O Sol in H₂O, (Felix) 5K₂O, 12M₀O₂+8H₂O. Sl sol in cold H₂O (Junus, Z anorg 1905, 46, 439)

Potassium trimolybdate, K2Mo2O10

Difficultly sol in cold, but much more easily in hot H₂O. When ignited is absolutely insol in H₂O. (Syanberg and Struve)

+2H₂O. (Junius, Z anorg 1905, 46, 439.) Sl. sol. in cold, easily sol in hot H₂O

(Wempe, Dissert. 1911.) +2³,H₂O. Easily sol in H₂O (Wempe, Dissert 1911.)

+3H₂O. Very sl. sol. in cold, more castly sol. in hot H₂O. (Wempe, Dissert 1911.) +11H₂O. Practically insol. in H₂O. (Westphal, Dissert. 1895.)

Potassium hydrogen tetramolybdate, $K_6\Pi_4|H_2(Mo_2O_7)_6|+18H_2O$

Sl. sol. in cold H2O Decomp by boiling H₂O (Rosenheim, Z anorg. 1913, **79**, 298) KHMo₂O₁₃+6H₂O. Decomp by H₂O (Ulhk.)

Potassium paramolybdate, K6Mo7O24+ 4H₄O.

Decomp even by cold H₂O (Delafon-Formula is K₈Mo₄O₅₁+6H₂O, according to Svanberg and Struve (?)

Potassium selenium molybdate. See Selenomolybdate, potassium.

Potassium sodium molybdate, K2MoO4, 2Na₂MoO₄+14H₂O Very easily sol. in cold, still more easily in hot H.O (Delafontaine.)

Potassium vanadium molybdate. See Vanadiomolybdate, potassium.

Potassium zinc molybdate. Sol, in H₂O. (Berzelius.)

Potassium molybdate hydrogen dioxide, 6K2O, 16M0O3, 4H2O2+13H2O. Sol in H₀O. (Bárwald, C. C. 1885, 424)

Potassium molybdate sulphocyanide, KSCN, K2M02O10+4H2O.

Decomp. by H₂O. Sol. in dil HCl+Aq (Péchard, C. R. 1894, 118. 806.)

Very sl sol m H₂O.

1 pt is sol in 65820 pts H₂O at 23°

(Hitchcock, J. Am. Chem. Soc. 1895, 17. Rubidium molybdate, Rb₀O, MoO₃, Hygroscopic (Ephiaim, Z anorg 1909.

Rb₂O, 2MoO₃+2H₂O Easily sol in H₂O,

(Ephraum, Z anorg 1909, 64, 263.) Rb₄Mo₇O₂₁+4H₂O Very sl. sol. in cold,

Myw06/j₁₊-H₁Cy Vety St. 80.1 in cold, much more easily sol in hot H₂O (Delafontame, N Arch Se phys. nat. 30, 233) (Ephraum, Z anong 1999, 64, 263) + +¹/₂H₂O (Wempe, Dissert, 1911.) 2Rb₂O, 7MO₂+5H₂O, Very st. sol. in cold, very easily sol. in hot H₂O. (Wempe, 5Hb₂O, 7MO₂+1H₂O. (Ephraum and 5Hb₂O, 7MO₂+1H₂O. (Ephraum and 1914) (Ephraum and 1

Herschinkel, Z. anorg. 1909, 64 268.) 3Rb₂O, SMoO₃+6H₂O (Ephram and

5Rb₂O, 12MoO₃+H₂O. 100 cc H₂O dissolve 1941 g. at 21°. (Wempe, Z anorg. 1912, **78**, 258)

Rb₂O, 3MoO₃, Insol. m H₂O (Muth-mann, B. 1898, **31**, 1839.) | +H₂O (Muthmann, B. 1898, **31**, 1839.)

+3H₂O Sl sol m cold, casily sol, in hot H₂O (Wempe, Dissert. 1911.) 6½H₂O (Ephraim and Heischfinkel, Z.

anorg 1909, 64, 269.) 2Rb₂O, 3MoO₈+4H₂O. Sl. sol m cold, easily in hot H2O. (Wempe, Dissert. 1911.)

Rb₂O, 4MoO₃. Difficultly sol in cold, easily in hot H₂O. (Wempe, Z. anorg. 1912, 78, 312

+1₂H₂O Practically msol in H₂O. Very sol by addition of NH₁. (Ephraim and Heischfinkel, Z anorg 1909, **64**, 266.) +25H₂O Insol. in H2O (Ephram, Z anorg. 1909, 64, 263)

+4H₂O Sol in cold, more easily sol in hot H2O. (Wempe, Z anorg 1912, 78. 312.) Rb₂O, MoO₃, Rb₂O, 3MoO₃+5H₂O Sol in cold or hot H₂O (Wempe, Z anorg 1912, 78, 312,)

Rb₂O, H₂O, 8MoO₄+3H₂O. sol in cold, easily in hot H₂O (Wempe, Z anorg 1912, 78, 312.) Rb₂O, 11MoO₂+5 5H₂O, Ppt, (Ephraum, Z anorg. 1909, 64. 263) Rb₂O, 13MoO₃+4H₂O. Ppt (Ephram.)

Difficultly

Rb₂O, 18MoO₂. Ppt. (Ephraim)

Samarium molybdate, Sm2(MoO4)2. Insol in H₂O. (Cleve.)

Samarium sodium molybdate, Na₂Sm₂(MoO₄)₄.

Insol, in H2O. Easily sol, in warm dil. HNO2+Aq. (Cleve.)

-Silver (argentous) molybdate, Ag_iO, 2MoO₃ MoOs and Ago separates out. Not decomp. by dil. NH₁OH+Aq. (Wohler and Rautenbeig, A. 114, 119)

Does not exist. (Muthmann, B. 20, 983)

Silver (argentic) molybdate, Ag₂MoO₄. Somewhat sol in H2O, less when HNO3 is

present (Richter) Very sl. sol. in pure H2O; easily sol in H₂O acidulated with HNO₃. (Struve and

Sol. in KCN or NaOH+Aq. (Smith and Bradbury.) Ag₂O, 2MoO₃. Sl. sol. in H₂O. Sol in KCN+Aq. (Junius, Dissert 1905.)

2Ag₂O, 5MoO₄. Somewhat sol. in H₄O (Syanberg and Struve, J. B 1847-48, 412) Ag₂O, 4MoO₃+6H₂O Sl sol in H₂O with decomp (Wempe, Z anorg 1912, 78. 322.)

Silver thorium molybdate.

See Thoromolybdate, silver.

Silver molybdate ammonia, Ag2MoO4, 4NH3. Sol. in H₂O with rapid decomposition (Widmann, Bull Soc. (2) 20. 64)

Silver molybdate hydrogen dioxide, 13Ag₂O, 2H₂O₂, 32MoO₃.

Ppt. (Barwald, B. 17, 1206)

Sodium molybdate, Na2MoO4. Anhydrous. Easily and completely sol. in +2H₂O. Sol in H₂O.

+10H₂O. Efflorescent.

Solubility in H ₂ O at t ^o								
Solid phase	t°	Per cent of anhydrous salt	Mols. H ₂ O to 1 mol of suhy drous salt	Mole of anbydrous sult to 100 mole HrO				
Na ₂ MoO ₄₂ 10 ₂ HO "" Na ₂ MoO ₄₂ 2H ₂ O "" "" ""	0 4 6 90 10 15 5 32 51 5	30 63 33 83 35 58 38 16 39 28 39 27 39 82 41 27 45 57	25 92 22 38 20 72 18 54 17 70 17 70 17 30 16 28 13 67	3 86 4 47 4 83 5 39 5 65 5 65 5 78 6 14 7 32				

(Funk, B 1900, 33, 3699)

Insol, in methyl acetate (Naumann, B. 1909, 42, 3790.) Na₂Mo₂O₇ After ignition, very difficultly sol. in cold, and very slowly sol. in hot H.O.

(Svanberg and Struve) +H₂O. Easily sol. in H₂O.

+31/2H2O. Easily sol in cold or hot H2O Sol. in HNO₃+Aq. KOH+Aq dissolves (Wempe, Dissert 1911.)

+4H₂O Easily and completely sol. in cold H₂O (Ullik)

+614H₂O. Sl sol in cold, very easily sol. in hot H₂O. (Wempe, Dissert **1911**.) +7H₂O. Difficultly sol in cold H₂O, but

more easily than the corresponding K salt. 100 pts. H₂O dissolve 3 878 pts at 20° and 13.7 pts at 100° (Ullik, A 144, 244.) +9H2O Easily sol. in cold, very easily

sol. in hot H₂O (Wempe.) +11H₂O (Junius, Z, anorg, 1905, 46. 437.)

3Na₂O, 7MoO₈ Easily sol in cold, very easily sol in hot H2O (Ott, Dissert 1911.) +20H₂O (Westphal, Dissert 1895.)

+22H₂O Efflorescent Easily sol. in

H₂O (Ullik, A 144, 219) Na₂O, 8MoO₂+½H₂O Very sol in cold or hot H₂O. (Wempe, Dissert, 1911.) +4H₂O. Ingol, in H₂O (Ullik, W A B. 60, 2, 312.)

+15H₂O. (Rosenheim, Z. anorg 1897, 15. 188)

Na₂O, 10MoO₂+6H₂O Very sl. sol in H₂O 100 g H₂O dissolve 0 842 g. at 100°. (Felix, Dissert 1912.) +7H₂O (Felix.) Nearly insol in hot and

cold H2O. (Rosenheim, Z anorg. 1903, 37.

+12H₂O Difficultly sol in H₂O +21H₂O. Abundantly but slowly sol, in cold H₂O = NaHNa₆O₁₆+10H₂O (Ullik.) 5Na₄O, 12MoO₃+8H₂O Sl. sol in cold, easily sol in hot H₂O (Wempe, Dissert.

+20H₂O Sl. sol in cold, easily sol. in hot H₂O (Wempe, Dissert. 1911.) +36H₂O. (Junius, Z anorg. 1905, 46, 436.) +44H₂O. Sl. sol in cold, easily sol in hot H₂O (Wempe, Dissert, 1911.)

Sodium tetramolybdate, Na₂Mo₂O₁₂+6H₂O Difficultly sol, in cold, easily in hot H₂O. (Ullik)

100 cc H₂O dissolve at 21°, 28.39 g of the salt. Sp. gr. of the solution = 1 47.

of the sail. Sp. gr. of the solution = 1.47. (Wernige, Z. annig. 1912, 79, 309)

(Wernige, Z. annig. 1912, 79, 309)

Na.H.(Hz.(Mo.O.), 1+2.H.H.O. Slowly sol no cold, casaly sol, in bot H. Hg.O (Rosenheum, Z. annig. 1913, 79, 298.)

Na.H.M.O.(3), 3+8H.O. Very sol in hot or cold Hg.O (Ulluk, A. 144, 333)

Na.H.M.O.(3), 4+4H.O. Insol m H₂O.

(Ullik.)

Sodium manganous molybdate, 2Na₂O, MnO, 6MoO+19HoO.

(Marckwald, Dissert, 1895.)

Sodium molybdate molybdenum oxide. Na2MosO15.

Insol. in H2O. Sol in HNOs and aqua regia Insol. in HCl and in HaSO4. Sol. in alkalies. (Stavenhagen and Engels, B. 1895, Yttrum molybdate.

28, 2280.)

Strontium molybdate, SrMoO.

Sl. sol. in H₂O. (Schultze.) Sol. in 9600 pts H₂O at 17°. (Smith and Sol. in 9600 pts H₂O at 17°. (Smith and Bradbury, B. 24, 2930.) SrO, 3MoO₂+1₂H₂O. Searcely sol. in cold, easily in hot H₂O. (Wempe, Dissert, 1911.) SrO, H₂O, 8MoO₂+9H₂O. Searcely sol. in cold, easily in hot H₂O. (Wempe, Dissert

1911.)

2SrO. 3H₂O. 20M₂O₂+21H₂O. Ppt. (Wempe Z aporg. 1912, 78, 321.)

Thallous molybdate, Tl-MoO.

Insol in H.O. Sol, in alkalies Insol, in (Oettinger, J. B. 1864, 254) Sl sol, in hot or cold H₂O (Ulik, J B. 1867, 234)

STl₂O, 11MoO₃. Sol. in hot H₂O. (Fleming, J. B 1868, 250) 3ThO, 8MoOs. (Fleming.)

Thallous tetramolybdate, Tl2O, 4MoO2+H2O Sl sol in H2O with decomp. (Wempe, Z. anorg, 1912, 78, 322,)

Thallous paramolybdate, 5ThO, 12MoOs. Insol, in H.O. Easily sol, in mineral acids and m alkalı hydroxides and earbonates.

(Junius, Z. anorg. 1905, 46, 432.) Tin (stannic) molybdate.

Insol in H.O Sol, in dil or cone, HCl+ Ag, or in KOH+Ag. Not decomp, by HNO +Aq. (Berzelius)

Uranous molybdate.

Precipitate, Sol in HCl+Aq. Decomp. by KOH+Aa U(MoO₄), (Lancien, C. C. 1908, I. 1763.)

Uranyl molybdate, (UO1)MoO4.

Insol. in H₂O, methyl and ethyl alcohol, ether, acetic acid, CHCl₂, C₄H₆ and C₇H₈. Sol. in mmeral acids. (Lancien, C. C. 1907, 2UO₃, 3MoO₃ (?). Insol. in H₂O. Sol. in strong acids and (NH₄)₂CO₃+Aq. (Ber-

3UO₃, 7MoO₃. Insol. in hot and cold H₂O. Insol. in NaOH, KOH, and NH₄OH+Aq. Sol. in all min, acids and decomp, by an ex-

cess of H₂O. Insol. in acetic acid. (Lancien. C. C. 1908, I. 1763.) UO₁, SMoO₂, (Lancien.)

+13H₂O. Insol. in HNO₄. (Lancien.)

Ytterbium molybdate, Yb2O2, 7MoO2+6H2O. Insol in hot H2O. (Cleve, Z. anorg. 1902, 32, 152.

2Yb2O2, MoO2. Ppt. (Cleve.)

Insol. in H₂O. Sol in HNO₂+Aq. (Ber-

Zinc molybdate, ZnMoO4 Difficultly sol, in H₂O; easily in acula

(Schultze, A. 126, 49.) +H₂O. St. sol in H₂O. Easily sol, in dil. acids. (Coloriano, Bull. Soc (2) 50. 451.) ZnMo.O. +10H.O. Very difficultly sol in cold, but extraordinarily easily sol, in hot. H.O. (Ulbk, W. A. B. 55, 2, 767.)

Zinc tetramolybdate, ZnMo4O11+8H0O. Easily sol, in cold H.O. (Ulhk.) ZnO, H₂O, 8MoO₂+14H₂O, Ppt, (Wempe, Z. anorg 1912, 78, 324)

Zinc molybdate ammonia, ZnMoO4, 2NH++

(Sonnenschein, J pr. 53, 339)

Permolybdic acid. See Permolybdic acid.

Molybdic sulphuric acid, MoOa, SOa, Deliquescent. (Schultz-Sellack, B. 4, 14.) Very deliquescent. Very sol. in H.O. (Muthmann, A 1886, 238, 126) MoO3, 3SO2+2H2O (?).

Molyhdocyanhydric acid, H.Mo(CN).+ 6H.O.

Easily sol, in H2O and abs. alcohol. Solutions are stable at ord, temp. (Rosenheim and Garfunkel, Z. anorg. 1910, 65, 168)

Cadmium molybdocvanide, Cd2Mo(CN)s+ SH₂O. Insol in H2O. (Rosenheim.)

Cadmium molybdocyanide ammonia, Cd₂Mo(CN)₈, 4NH₂+2H₂O.

Cupric molybdocyanide ammonia, Cu₂Mo(CN)₈, 4NH₁+7H₂O (Rosenheim)

(Rosenheim)

Potassium molybdocyanide, K₄Mo(CN)₈+ 2H₂O

Very sol in H2O. (Rosenheim.)

Thallous molybdocyanide, Tl₄Mo(CN)₈. Very sl. sol in H.O. (Rosenheim.)

Molybdoiodic acid, HIO3, H3MoO4+H3O. Easily sol, in H₂O. (Blomstrand, J. pr. (2) 40, 320. I₂O₅ 2MoO₅+2H₄O Very sol in H₂O

Insol, in cold, sol, in hot HNO. Sol, in alcohol. (Chrétaen, A. ch. 1898, (7) 15, 402.)

Ammonium molybdoiodate, NH4IOs, H2MoO4

Somewhat more sol, than K salt. (Blom-

(NH₁)₂O, I₂O₃, 2MoO₂ Very sl sol in cold H₂O More sol in hot H₂O. (Rosen-KHO.10.33-0.00) hem and Liebknecht, A. 1899, 308. 50 +H₂O. 1 1. H₂O dissolves 5.39 g. salt at 15°; 30 94 g at 100° More sol, in dil. HNO₈ +Aq. (Chretien, A. ch. 1898, (7) 15. 409.) 3(NH₄)₂O, (I₂O₅, 2MoO₈)₄+6H₂O. (Chrétien.)

Rarium molybdoiodate, BaO, I2Os, 2MoOs+

4.23 g, are sol, m 1 l. H₂O at ord, temp, (Chrétien.)

Cadmium molybdoiodate, acid, 3CdO, (I2O5, 2MoO₂)s+16H₂O.

Sl. sol, in H₂O. (Chrétien.)

Calcium molybdoiodate, CaO, I2Os, 2MoOs+ 6H.O. H₂O dissolves 7.8 g. of the salt at 15°; 20.89 g. at 90° (Chrétien)

Cobaltous molybdoiodate, CoO, I2Os, 2MoO3 Silver molybdoiodate, Ag2O, I2Os, 2MoO3+ $+6H_{2}O.$

5.11 g. are sol. in 1 l. H₂O at 15°; 22.27 g. at 100°. (Chrétien)

Cobaltous molybdoiodate acid, CoO, (I2O6, 2MoO₃)₄+18H₂O Very sol. in H₂O. (Chiétien)

Cupric molybdoiodate, CuO, I2Os, 2MoOs+ 3H₂O.

1 L H₂O dissolves 10 63 g, of the salt at 15°; 25.55 g at 100°. (Chrétien)

Lithium molybdoiodate, L₁₂O, I₂O₅, 2MoO₃+ 21/4H.O. 197,83 g. are sol in 1 l. H₂O at 15°. Sol, in dil. HNO₃+Ag. (Chrétien.)

Magnesium molybdoiodate, MgO, I2O6, 2MoO₃+6H₂O. I. H₂O dissolves 3.85 g, of the salt at 15°; 18.2 g. at 100°. (Chrétien.)

Manganous molybdoiodate, 3MnO, (I2O5, 2MoO₃)₄+9H₃O. H₂O dissolves 17.05 g, of the salt at

15°: 55.05 g, at 100°. (Chrétien.)

6H2O. 5.43 g. are sol. in 1 l. H₂O at 15°; 21.8 g. at (Chrétien.) 2NiO, 2I₂O₅, 3MoO₄+23H₂O. Easily sol. in H₂O. Not decomp, by acids, (Masss,

Dissert. 1901.)

Nickel molybdosodate, acid, 2NiO, (I₂O₅, 2MoO₃)₆+15H₂O

Very sol. in H₂O. (Chrétien.)

KHO₂IO₂M₀O₃OH, or KIO₃, M₀O₄+

2H₂O. Ppt. Sl. sol, in H₂O (Blomstrand, J. pr (2) 40. 320)

K₂O, I₂O₄, 2M₀O₃. Only sl. sol. in cold H₂O; sol. on long boiling. 4.48 grs are sol. in 1 l. H₂O at 12°. (Compare Blomstrand: not identical.) (Rosenheim, A. 1899, 308. 50)

+H₂O Sl. sol in H₂O 3 45 g are sol. in 1 l H₂O at 15°; 28.38 g at 100°. More sol in dil. HNO₃+Aq. (Chrétien, A ch. 1898, (7) 15. 404.)

Potassium molybdoiodate, acid.

 I_2O_{6} , $2M_0O_{8})_{5}$, $4K_2O + 7H_2O$ I_2O_5 , $2M_0O_3$)₃, $2K_2O + 13H_2O$. (I₂O₅, 2M₀O₃)₂, K₂O +4H₂O. (I₂O₅, 2M₀O₃)₃, K₂O +7H₂O. (I₂O₅, 2M₀O₃)₄, K₂O +5H₂O.

(Chrétien.)

1½H₂O.

Insol in H₂O. 4Ag₂O₁ 4I₂O₅, 3MoO₃. Sol. in H₂O containing HNO₃. (Chrétien.)

Sodium molybdosodate, Na₂O, I₂O₅, 2MoO₃+ H₂O.

Sl. sol. in II₂O. Sol. in HNO₃ with decomp. (Chrétien, C. R. 1896, **123**. 178.) 11 H₂O dissolves 6.97 g. of the salt at 15°:

22 75 g at 90° 1 l HNO₁+Aq (1.10) dissolves 23.78 g. of the salt at ord temp. (Chrétien, A. ch. 1898, (7) 15. 410

+2H₂O. Only sl. sol. in cold H₂O; sol. on long boiling. 3.35 grams are sol. in 1 l. H₂O at 12°. (Rosenheim, A. 1899, 308. 50.)

Strontium molybdoiodate, SrO, I_2O_5 , 2MoO +3H₂O. Very sol. in H₂O. (Chrétien, A. ch. 1898, (7) 15. 415.)

Strontium molybdoiodate, acid, 3SrO, (I2O5, $2\text{MoO}_{2})_{4} + 15\text{H}_{2}\text{O}$ H₂O dissolves 2.94 g. of the salt at

Nickel molybdoiodate, NiO, I2Os, 2MoO2+ Uranyl molybdoiodate, 2UOs, 4I2Os, 3MoOs+ 3H₂O. (Chrétien.)

15°, 13.64 g at 100°. (Chrétien.)

Zinc molybdoiodate, ZnO, I₂O₅, 2MoO₅+ 5H2O.

l. H2O dissolves 4.08 g. of the salt at 15°; 16.25 g. at 100°. (Chrétien.)

Zinc molybdoiodate scid, ZnO, (1.0 - 2MoO₃), Sodum molybdophosphite. +16H O. Very sol in H₂O (Chrétien)

Molybdoperiodic acid.

Ammonium molybdoperiodate, 5(NH₄)₂(), LO- 12MoO+12H-O Sol. m H.O. (Blomstrand, Sv. V. A II.

Bib. 1892, No. 6.) 4(NII₄)₂O, I₂O₇, 8M₀O₂+7H₂O Very sl. sol, in cold H₂O (Blomstrand)

Ammonium sodium --- 2/NILAO, Na₂O. I2O2, 2M0O2+10H2O Very sl. sol in H₂O₂ (B)

Barium sodium ---, 9BaO, Na₂O, 2I₂O₇, 24MoOa+28H.O.

Very sl. sol m H.O. (B.) Calcium ---, 5CaO, LO:, 12MoO2+26H2O Extremely sol in II-O. (Blomstrand.) (CaO, LO;, 12MoO; +21H,O I ess sol, in H₂O than above silt

Lithium ---, 51.1(), 1.O₅, 12M₀O₄+30H₂O Not so efflorescent as Na salt - Sol in ILO (B)

Manganous sodium ---, 2Mn(), 3Nn₀(), LO₅, 12MoO₅+32H₂O₅ Sol in H.O. (B.)

Potassium ---, 5K O. 1.O-, 12MoO++ 12H (). Not efflorescent, (Blomstrand)

+18H.O (B)

Sodium --- , 5Na₂O, LO₂, 12MoO₂+34H₂O₂ Fiftorescent Very sol in H2O, (Blomstrand, Sv V. A H. Bih 1892, No. 6, 21) +26H2O. Not efflore-cent. Very sol, in H₀O (Blomstrand)

Sodium strentium ---, Na₂(), 4S₁(), L(); 12MeO₂+20H₂O Sol in H.O (B)

Molybdophosphoric acid. See Phesphomolybdic acid.

Molybdosubphosphoric acid.

Sodnum molybdosabphosphate,

NadP(Mo.O.) 1+8H O. Ppt (Rosenheim, Z. anorg. 1913, 84, 222)

Molybdophosphorous acid.

Potassium molybdophosphite. $[k_2]HP(Mo_2O_{7/3}] + 11H_2O_2$ Difficultly sol in cold H₂O. (Rosenheim, Z anorg. 1913, 84, 219.1

Na JHP(Mo.O-)-1+11H-O Sl sol. m H₂O. (Rosenheum, Z anorg 1913, 84, 218.)

Molybdophosphoyanadic acid. See Phosphovanadiomolyhdic acid.

Molvbdoselenious acid.

Ammonium molybdoselenite, 1(NH₄)₂O. 3SeO . 10MoO +4HoO More sol, in hot than cold H₂O, insol in alcohol. (Péchard, A. ch (6) 30, 403.)

Ammonium potassium molybdoselenite, 2(NH₃)-O. 2K₂O. 3SeO₃. 10M₀O₃+ Very sol in H.O. msol in alcohol (Péch-

and) Barium molybdoselenite, 4BaO, 3ScO₃, 10MoO2+3H ()

81 sol in cold, easily in warm H.O. (Pechard) Potassium molybdoselenite, 4K₂O, 3S₀O₆,

10MoOa+5HA). Very sol, in II₂(), insol, in alcohol (Péchard)

Sodium molybdoselenite, 4Na₂O, 3SeO₂, 10MeO4+15HO. Very efflore-cent, and sol in H.O. msol in alcohol (Péchand)

Molybdosilicic acid. See Silicomolybdic acid.

Molyhdosilicovanadic acid. See Silicovanadiomolybdic acid.

Molybdosulphuric acid. Appreciably sol in H₂O (Hoffmann, Dr-sert, 1903.)

Ammonium molybdosulphate, (NH4)2O, 2MoO₃, SO₄+4H₂O, and +9H₂O.

Decomp by H₂O (Weinland, Z. anorg. 1907, 54, 261) (NIL₄),O, 2MnO₃, 3SO₃+10H₂O (Wem-Lind)

Ammonium molybdenyl molybdosulphate, (NH4)20, MoO2, 7MoO4, SO2+1H2O. 112(NH₄)4O, MoO₂, 7MoO₃, SO₃+5H₂O

2(NH₄)₂O, MoO₂, 7MoO₃, SO₄+14H₂O (Hoffmann, Dissert 1903.) 3NH₂, MoO₂, 7MoO₂, SO₃+10H₂O. Very sol in H₂O Very sl. sol in NH₄ salts+Aq. Vuy stable toward alkalı+Aq (Péchard

C R. 1893, 116. 1441)

5NH₅, MoO₄, 7MoO₅, SO₃+8H₄O (P6-chard, C R. 1893, **116**, 1441.) Potassium molybdosulphate, K2O, 2MoO3,

K₂O₂ 2MoO₂, SO₃+6H₂O anorg. 1907, 54, 260)

SO₁+2H₂O

K₁O, 2MoO₄, 3SO₄+6H₂O. (Weinland, Z

Potassium molybdenyl molybdosulphate, K₃O, M₀O₂, 7M₀O₃, SO₃+8H₂O (Hoffmann, Dissert. 1903.)

Molybdosulphurous acid.

Ammonium molybdosulphite, 4(NH4)2O, 3SO, 10MoO3+6H2O.

St sol in cold, more easily in hot H2O Insol m alcohol (Péchard, A. ch. (6) 30.

3(NH₄)₂O₄ 8M₀O₃, 2SO₂+5H₂O_. Sl. sol m cold, easily sol in warm H2O. Easily decomp by H2O, and can be recryst. only in mesence of an excess of sulphurous acid. (Rosenheun, Z. anong 1894, 7, 177)

Ammonium potassium molybdosulphite, 2(NH₄)₂O, 2K₂O, 3SO₂, 10M₀O₃+9H₂O Sl sol m cold H2O Decomp on warming (Péchard.)

Barium molybdosulphite, 2BaO, 5MoO3, 28O2+10H /O

(Rosenheim, Z. anoig, 1897, 15, 185.) Casium molybdosulphite, 2Cs₂O, 5MoO₃, 2SO+6II-0 Unstable As K salt (Rosenheim)

Potassium molybdosulphite, 4K2O, 3SO2, 10MoO2+10H2O Very sl. sol m H₂O, but decomp, on warm-

ing (Péchard.) 2K₂O, 5MoO₃, 2SO₂+H₂O (Rosenheim)

Rubidium molybdosulphite, 2Rb₂O, 5MoO₃, 280+15H₀O. As K salt. (Rosenheum)

 Sodium molybdosulphite, 4Na₂O, 3SO₂, 10MoO₃+12H₂O. Very sol in cold H2O; insol in alcohol. (Péchard.)

+16H₂O Very efflorescent (Péchard) 2Na₂O, 5MoO₃, 2SO₂+SH₂O In dry state it gradually gives off SO2 and soon effloresces. (Rosenheim)

Strontium molybdosulphite, 2SrO, 5MoOs, 280₂+12H₀O (Rosenheim)

Molybdotitanic acid. See Tstanomolybdic acid. Molybdous acid.

Magnesium molybdite, Mg2Mo3O3=2MgO, $3M_0O_2$

Not attacked by KOH, and HCl+Aq (Muthmann, A 238, 108.)

Zinc molybdite, Zn₂Mo₂O₈=2ZnO, 3MoO₂. Easily sol in aqua regia. (Muthmann, A. 238, 108)

Molybdovanadates. See Vanadiomolybdates.

Neodymicotungstic acid.

Ammonium neodymicotungstate, 3(NH₄)₂O,

 Nd_2O_4 , $16WO_3 + 20H_2O_2$ Difficultiv sol in H₀O (E F Smith, J. Am Chem Soc 1904, 26, 1480)

Barium neodymicotungstate, 6BaO, Nd₂O₃, 16WO₂+17H₂O Insol m H₂O (E F, Smith.)

Neodymium.

See also under Didymium.

Neodymium bromide, NdBra (Matignon, C R 1905, 140, 1638)

Neodymium carbide, NdC₂, Decomp by H2O; insol in conc HNO3;

decomp by dil HNO3. (Moissan, C. R. 1900, 131, 597)

Neodymium chloride, NdCl₂

100 g H₂O dissolve 98.68 g. NdCl₈ at 13°; 140 4 g at 100° Sp gr. at 15°/4° of the solution sat at 13° =

1.74. (Matignon, A ch 1906, (8) 8, 249) 44.5 g are sol in 100 g abs alcohol at 20°.
1.8 g. " " " pyridine at 15°.

Insol. in ether, CHCl₃, quinoline, toluidine, etc Sl, sol, in amline and in phenylhydrazine (Matignon, A. ch 1906, (8) 8, 266.)

+6H₂O. Deliquescent At 13°, 100 pts H₂O dissolve 246 2 pts of the hydrated salt

At 100°, 100 pts. H₂O dissolve 511 pts. of hydrated salt Sat, solution at 13° has a sp. gr. 15°/4° == 1 741. (Matagnon, C. R. 1901, 133, 289.)

Neodymium chloride ammonia, NdCla, 12NH₃.

Decomposes on heating into NdCla+NHa: +2NH_a; +4NH_a; +5NH_a; +8NH_a, and +11NH_{*}. (Matignon, C. R. 1906, 142, 1043.)

Neodymuum hydroxide.

Sol in citric acid. (Baskerville, J Am.

Chem. Soc. 1904, 26, 49.)

Solubility in glycerine+Aq containing about 60% by vol. of glycerine. 100 ccm. of the solution contain 45 g. neodymium oxide. (Müller, Z. anorg, 1905, 43, 322.)

Neodymium hydride, NdH₂ (?)

Slowly attacked by boiling H_{*}() Sol. in acids with violent evolution of H2. (Muthmann, A. 1904, 331. 58.)

Neodymium iodide, NdI,

(Matumob, C. R. 1905, 140, 1638)

Neodymium nitride, NdN.

Decomp, in moist air with evolution of NH. (Muthmann, A. 1904, 331, 59.)

Neodymium oxide, Nd₂O₂. Easily sol, in acids, (v. Welsbach, M. 6.

Neodymium oxychloride, NdOCl.

(Matignon, C. R. 1905, 140, 1638.) Meon, No

oxygen. (Ramsay, B 1898, 31, 3118) Absorption by H₂O at t°.

to.	Coefficient of absorption
0	0 0114
10	0.0118
20	0.0147
30	0.0158
40	0 0203
50	0 0317

Less sol, than argon in H-O, sol in bound

(Antropoff, Roy, Soc. Proc. 1910, 83, A. 480.)

Nickel, Nt

dilute H₂PO₄, H₂SO₄, or HCl+Aq. (Tupputi, A. ch 78, 133.) Very easily attacked by HNO1+Aq, and difficultly by hot H.SO4. When pure, is con-

verted into passive condition by conc. HNO. (Nicklès, C. R. 38. 284.) Very sl. attacked by cold acids, except HNO₁+Aq. (Tissier, C. R. 50, 106.)

Not attacked by NaOH+Aq (Venator, Dingl. 261, 133.)

Insol, in liquid NH, (Gore, Am, Ch. J. 1898, **20**, 828.)

Nickel amide, Ni(NH2)2.

Decomp. by H2O; slowly sol. in min. acids. Insol, in liquid NH4. (Bohart, J. phys. Chem. 1915, 19. 560.)

Nickel antimonide, NiSb.

Insol. in HCl+Aq; easily sol, in HNO.+ Aq. (Christofle, 1863.)

Min. Breithauptite. Insol in acids: easily sol, in aqua regia Ni-Sh. (Christoffe.)

Nickel antimonide sulphide, NiSb., NiS. =

Mm. Nickel glance, Ullmannite, Decomp. by HNO3+Aq; completely sol, in agua regia with separation of S.

Nickel arsenide, NiAs

Min. Niccolite Sol. in conc. HNO₃+Aq with separation of As₂O₃; more easily sol in aqua regia. NiAs₂.

Min. Chloanthite, Rammelsbergite. Sol. in HNO₂+Aq. Ni, As2. Sol. in HNO, and in aqua regia

Readily attacked by fused alkalı (Granger, C. R. 1900, 130, 915.)

Nickel arsenide sulphide, NiAso, NiSo

Min Gersdorffite, Partly sol, in HNO,+ An with sensiation of S and As-O+: not attacked by KOH+Aq.

Nickel azoimide, basic, Ni(OH)N, Insol in H₂O, (Curtius, J pr. 1898, (2)

58, 300.)

Nickel azoimide, NiNa+HgO. Sol in H2O, insol. in alcohol and ether.

(Curtus, J. pr. 1900, (2) 61. 418.) Nickel potassium azoimide, Ni(Na)a, KNa (?)

Sol in H₂O. (Curtius, J. pr 1898, (2) 58. 302.1

Nickel boride, NisB.

Attacked by HNO₂ Slowly sol in hot HCl. (Jassonery, C. R. 1907, 145, 240) NiB. Decomp. by most air and by alkali nitrates, chlorates, hydroxides and carbon-Not attacked by H₂O. Very slowly sol, in ates; decomp. by steam at red heat. Not attacked by HCl. Easily attacked by HNO. and aqua regia; by H2SO4 only on heating,

(Moissan, C. R. 1896, 122, 425.) N₁B₂ (Jassoncix, C R. 1907, 145, 241.)

Nickel bromide, NiBra.

Deliguescent Slowly sol. in H₂O. Sat NiBr2+Aq contains at.

-6° -21° ∔19° 38° 47.1 51.7 56.6 58.9% NiBra 58°

60.7% NiBrt. 60.361.0 61.0

60.5 (Étard. A. ch. 1894, (7) 2, 542.)

Somewhat hygroscopic. Nearly insol. in cold H₂O but begins to dissolve appreciably at 50°, and somewhat more rapidly at 90°. but even at that temp 1 g. requires 1-2 hours for solution. HNOs does not appreciably hasten solution. (Richards and Cushman, Z. anorg, 1898, 16, 169,)

Co

Sl sol. in benzonitrile (Naumann, B. 1914, 47, 1369.) Sol, in quinoline. (Beckmann and Gabel,

Z. anorg. 1906, 51. 236.) +3H₄O. Deliquescent. Very sol in H₂O. HCl+Aq, NH,OH+Aq, alcohol, and ether (Berthemot, A ch. 44, 389) (Bolschakoff, C. C. 1897, II. +6H.O. 331 and 726) +9H₂O. (Bolschakoff, C. C. 1897, II.

Nickel stannic bromide.

726 and 331.)

See Bromostannate, nickel.

Nickel bromide ammonia, NiBr2, 6NHs. Sol in little H₂O, but decomp. by more

(Rammelsberg, Pogg 55. 243.)
Sol. in warm conc. NH40H+Aq, insol in cold (Richards and Cushmann, Z. anorg. 1898, 16, 175.)

Nickel bromide cupric oxide, NiBra, 3CuO+

Not decomp. by H₂O. (Maslhe, A ch 1902, (7) 27. 377.)

Nickel bromide hydrazine, NiBr2, 2N2H4.

Essilv sol. in dil acids and NH4OH+Aq NiBra, 3NaHa Sol. in dil. acids (Franzen, Z, anoig 1908, 60. 263-4.)

Nickel carbonyl, Ni(CO).

cone. HNO₈+Aq and in aqua regia. Sol in alcohol, benzene, and chloroform. (Mond, Langer, and Quincke, Chem. Soc 57. 749.)

Sol. in hydrocarbons, especially oil of tur-pentine. (Berthelot, C. R. 1891, 112, 1346.) Sol. in acctone, toluene, methyl and ethyl alcohol, etc (Lenher and Loos, J Am Chem. Soc. 1900, 22, 114.)

Nickel chloride, NiCla.

Anhydrous. Not immediately sol, in H₂O but gradually dissolves on boiling or by addition of HCl+Aq. Deliquesces on air, and is then easily sol. in H₂O. Sol. in NH₄OH+Aq. Sol. in alcohol. Sol. in hot HCl+Aq only slowly.

Sp. gr. of NiCl2+Aq containing:

10 15 25% NiCl₂. 1.0493 1.0995 1,1578 1,2245 1.3000 (B, Franz, J, pr. (2) 5, 285.)

Sp. gr. of NiCl₂+Aq containing, in 1000 grms. H₂O, g. NiCl₂+7H₂O at 23.1°: 128 g. (= ½ mol.) 256 384 512 1,057 1.107 1.187

1.149 768 896 1024 1.220 1.249 1.276 1.301

Containing g. NiCl₂ (anhydrous): 65 g. (=½ mol.) 130 195 260 1.061 1.119 1.178 1 230 325 390 1.119 1.176 1 230 1 284 1.335 (Gerlach, Z. anal, 28, 468.)

Sp. gr. of NiCl2+Aq at room temp. containing

11,449 226930 40% N₁Cl₂, 1.1093 1 2284 1.3371 (Wagner, W. Ann 1883, 18, 269.)

Sp gr. of NiCls+Aq at 25°.

ncentration of NiCh+Aq	Sp gr
1-normal 1/5- " 1/4- " 1/5- "	1 0591 1 0308 1 0144 1 0087

(Wagner, Z. phys. Ch. 1890, 5. 39.)

Insol, in liquid NH₂. (Franklin, Am. Ch. J. 1898, 20 828.) 100 pts. absolute alcohol dissolve at room temperature 10.05 pts NiCl₂ (Bödtker, Z.

phys Ch 1897, 22, 511) Sol in quinoline. (Beckmann and Gabel, Z anorg. 1906, 51. 236.)

Difficultly sol in methyl acetate, (Naumann, B. 1909, 42. 3790.) Insol. in ethyl acetate. (Naumann, B.

1910, 43. 314.) Solubility in glycol=16.1-16.3%. (de Connek, C. C. 1905, II. 1234.) Sl. sol. in benzomtrile (Naumann, B.

Insol. in H₂O; not attacked by dil acids or 1914, 47, 1369.)

alkalies or cono HOl+Aq Easily sol is Anhydrous NiCl₂ is insol in acetone.

enon. HNO₂+Aq and in aqua regra. Sol in (Krug and M'Elroy, J. Anal Ch. 6, 184)

Insol in acetone and in methylal. (Eid-mann, C. C. 1899, II. 1014)

+H₂O. (Baubigny.) 11. sat HCl+Aq at 12° contains 40 g. NiCl₂ dissolved from NiCl₂, H₂O (Ditte.) +2H₂O. (Sabatier, Bull. Soc (3) 1. 88)

+6H₂O. Deliquescent in moist, efflores-cent in dry air; sol. in H₂O with evolution of heat. Sol. in 1 5 to 2 pts. H₂O. Easily sol. in alcohol. (Tupputi.)

 I. H₂O dissolves 600 g NiCl₂+6H₂O. (Ditte, A ch. 1879, (5) 22. 551.)

Sat. ag. solution contains at.

-17° -16° +10° 29.7 31.0 37 3 38.5% NıCla

38° 78° 96° 41.9 45.046.6 46 7% N1Cl2. (Étard, A. ch. 1894, (7) 2. 539.)

Solubility of NiCl2+6H2O=37.53% NiCl2 at 25°. (Foote, J. Am. Chem. Soc. 1912, 34. 882.)

100 pts. absolute alcohol dissolve at room temperature 53.71 pts NiCl2+6H2O. (Bödtker, Z. phys. Ch. 1897, 22. 511.)

+7H₂O₂ 100 g absolute alcohol dissolve 2 16 g NiCl₂+7H₂O at 17° and 1 4 g, at 3°, (de Bruyn, R t c, 1892, 11, 156)

Nickel hydrogen chloride, 3NiCl, 2HCl+ 11 41.0

(Reitzenstein, Z. anorg. 1898, 18, 270.)

Nickel rubidium chloride, NiCl., 2RbCl Eastly sol in H₂O and HCl+Aq (Godeffrov. B 8, 9)

Nickel thallic chloride, NiCl., 2TlCl++8H.O Dehouescent. Can be eryst from II-O (Gewecke, A. 1909, 366, 221)

Nickel tin (stannous) chloride, NiCl., SnCl.+ 6H.O.

Sol in H.O. (Jorgensen)

Nickel tin (stannic) chloride. New Chlorostannate, nickel.

Nucleal chloride ammonia, NiCl., 2NH-

Sol m H.O. decomp on boiling, insol in alcohol N(Cl., 3NH, +3H₂O + André, C. R. 1888, 106, 937)

NiCL, 6NH. Sol in cold H-O without decomp Jusol in alcohol Very sl sol in cone NHOH+Au Nearly insol in a sat's dution of NH₃Cl

m NILOH+Au (Sotensen, Z anorg 1894. 5. 36G)

Nickel chloride cupric oxide, ViCi., 3CuO+ HLO Not decomp by H₂O (Malhe, A, ch 1902, (7) 27, 377)

Nickel chloride hydrazine, NiCl., 2NzHz Sol in dil acids and NHa+Au. (Franzen,

Z. anorg 1908, 60, 262) NiCl₀ 3N₂H₄ Sol in dd acids (F)

Nickel fluoride, NiF-

Nickel hydrogen fluoride, NiF., 511F+61L basily sol in H O and dil acids. Sol NH₂OH + Aq with decomp Bohm, Z anorg 1905, 43, 330,)

Nickel potassium fluoride, NiF., KF. +H.O. Sol in H.O. (Wagner, B. 19. 896

NiF₂, 2KF, Sl sol in H₂O. Scarcely sol m methyl or ethyl alcohol or benzene. (Poulene, C. R. 114, 747)

Nickel notassum zirconium fluoride. See Fluozirconate, nickel notassium,

Nickel manganic fluoride. New Fluomanganate, nickel.

Nickel sodium fluoride, NiF2, NaF+H2O. Sol. in H₂O (Wagner, B 19, 896)

Nickel stannic fluoride. See Fluostannate, nickel.

Nickel titanum fluoride.

See Fluotitanate, nickel,

Nickel tungstyl fluoride. See Fluorytungstate, nickel,

Nickel vanadum fluoride. See Fluovanadate, nickel,

Nickel zirconium fluoride. Nec Fluozirconate, nickel,

Nickel fluoride ammonia, 5NiFa, 6NHa+ SILO

Insul in cold H₂O. Decomp, by hot H₂O. Easily sol in dil acids, (Bohm, Z anorg 1905, 43, 331)

Nickelous hydroxide, 4NiO.H., H.O. Very sl. sol, m H.O. Sol, m again, Insol. m KOH or NaOH+Aq Somewhat diffi-cultly sol m (NH₂)₂CO₃ or NH₄OH+Aq, but easily sol in presence of NH₄ salts. Sol, in NH; sdts+Aq. Sol m KCN+Aq (Rodgers, 1834.)

Sol in boiling NILCI+An

NiO.II. Solubilities on NII CH 1 August 059

Sol mabout 5000 pts II ₂ O; msol malcohol nd other Not attacked by IICl, IINO,, or	Solubih	ty m NH;OH+	-Aq at 25°
I SO; even when hot (Poulenc, C R 114.	NH ₁ norm	G. Ni per I	G AiO ₂ H ₄ per l
42a) Insol m liquid NH ₂ (Gore, Am Ch. J.	1 2 3 1	0 084	0 00287
888, 20 , 828)		0 170	0 00579
+2H,O. Decomp by pure H ₂ O. Sol. m.		0 257	0 00875
LO acidulated with HF, (Berzelius.)		0 360	6 01227
+3H ₂ O (Clarke, Sill Am J (3) 13 , 29H)	4 911	2 580	0 0879
lickel hydrogen fluoride, NiF ₂ , 5HF+6H ₂ O,	3 900	1 780	0 0607
bassly sol in H O and dil acids. Sol in	2 101	0 835	0 0284
M ₁ OH+Aq with decomin—Bohm, Z	0 602	0 158	0 0054

The non-agreement of the results is due to the formation of different modifications of NIO.H.

(Bonsdorff, Z. anorg 1904, 41, 185)

Solubility in NH₄OH+Aq Cone. of N₁=0 014N in 1N NH₄OH+Aq ""=0 036N "2N NH₄OH+Aq (Starck, B 1903, 36, 3840.)

Sol in hot NH4F+Aq. (von Helmolt, Z anorg 1893, 3, 133.)

Insol in methyl or amyl amine. (Wurtz.) Not pptd in presence of Na citrate (Spiller)

Not pptd in presence of a large number of non-volatile organic substances, particularly H₂C₄H₄O₆ (Rose.)

Nickelonickelic hydroxide, Ni₃O₄, 2H₂O. Sol. in acids, insol in H₂O and alkalies (Dudley, J Am Chem. Soc. 1896, 18, 901)

Nickelic hydroxide, Ni₂O₈, 2H₂O (?).

(Wernicke, Pogg 141, 122) N₁₂O₂, 3H₂O (?). Sol in acids as nickelous lts. Not attacked by boiling KOH or NaOH+Aq. Slowly sol in HC2H8O2+Aq Sol in NH4OH, and NH4 salts+Aq (Odling)

Nickel iodide, NiIz

Deliquescent and sol. in H2O. (Eidmann, J pr 7 254)

Sat Nil. +Aa contains at

16° --23° -6° +11° 57.8 59 0%, Ntls. 51.8 54.3 43° 80° 850 65 7% Nils 65.0 65 2 641

(Étard, A. ch. 1894, (7) 2, 546) Easily sol, in +6H₂O Deliquescent H.O (Eidmann)

Nickel iodide ammonia, NiI, 4NH;

(Rammelsberg, Pogg 48, 119.) Nil₂, 6NH₃ Decomp by H₂O Sol in waim dil NH₄OH+Aq. Very si sol in cone Sol m NH₄OH+Aq. (Erdmann)

Nickel iodide hydrazine, NiI2(N2H1)2

Insol in H₂O Sol in acids (Franzen, Z anorg 1911, 70, 150)

Nickel suboxide, N13O2+H2O

Insol in H₂O, sol in HCl and H₂SO₃ and HNO, also in KCN+Aq (Moore, C. N 1895, 71, 81.)

Nickelous oxide, NiO

Insol in II2O Sol. in conc. acids, except when crystalline, when it is scarcely attacked by acids (Ebelmen, C R 33 256.) Very sl sol in boiling NH4Cl+Aq (De-

marçay

Very slowly sol. in NH₁OH+Aq. Insol in KOH, and NaOH+Aq.

Sol in min acids, especially HCl+Aq, tacke when warmed; insol in HC₂H₃O₂, NH₄Cl, 232)

and NH,SCN+Aq. Insol in cone NaOH+ Aq (Zimmerman, A 232, 324) 11 solution containing 418.6 g. sugar and 343 g CaO dissolves 0 29 g NiO. (Bodenbender, J B 1865. 600.) Mm Bunsente

Nickelonickelic oxide, Ni-O4

Sol m acids (Baubigny, C. R 87, 1082.) +2H2O Insol in H2O, and m alkalies+ Aq. Sol in acids. (Dudley, J. Am Chem Soc 1896, 18, 901.)

6N₁O, N₁,O₂+H₂O, (Schonbein, J. pr 93.

Nickelic oxide, Ni₂O₃

Sol in HNO₃, H₂SO₄, or HCl+Aq with decomp., also in NH₄OH and (NH₄)₄CO₂+ Aq (Winkelblech, A, 13, 259)

Nickel peroxide, Ni₃O₅ (?)

(Bayley, C. N. 39, 81) Correct composition is Ni₂O₅. (Carnot, C R. 108 610 N₁₄O₇ (?). (Wicke, Zeit Ch. **1865**. 303) N₁O₁. (Hollard, C. R. 1903, **136**. 230)

Nickel oxychloride. St. sol. in H.O. (Berzelius) NiCl., SNiO+13HoO. (Raoult, C. R. 69. 826)

Nickel oxviodide, Nil., 9NiO+15H2O

Insol in H₂O Sol in HNO₃+Aq or acetic acid Insol in NH OH+Aq, Alcohol dissolves out N1I2. (Erdmann.)

Nickel oxyselenide.

Almost msol in boiling HCl; decomp by HNO₃. (Fonzes-Diacon, C, R. 1900, 131. 557.)

Nickel phosphide, Ni₂P

Sol in HNO₃+Aq and aqua regra, insol. in HCl+Ag. (Struve, J. pr 79, 321) Sol in aqua regia and in HNOs,

fused alkalı (Granger, Bull Soc. 1896, (3) 15. 1089) Easily sol in HNOs. (Granger, C N 1898.)

77. 229.) When prepared by heating phosphorus, copper and nickel in electric furnace, is insol m all acids except a mixture of IINO₃ and HF (Maronneau, C R 1900, **130**, 657)

NiP2 Sol m IINO4; decomp. by fused NaOH (Jolibois, C R 1910, 150, 107.) NiPa. Sol in HNOa, decomp by fused NaOH (J.)

Ni2P3 Insol in HNO3, HCl and aqua regia, stable in the air even when heated

(Granger, Bull. Soc. 1896, (3) **15**, 1086) N₁₈P₂. Not attacked by HCl. Easily attacked by HNO, (Rose, Pogg. 1832, 24, N₈P₂. Sol. in HNO₅, aqua regia and in fused alkali. (Granger, C. R. 1896, **123**, 177.)

Nickel phosphosulphide, Ni-PS-

Decomp. by hot ILO or by aqua regia.
Sl. attacked by IINO₃. (Ferrand. A. ch. 1899. (7) 17, 417.)

Nickel semiselenide, NiaSe,

Almost insol, in boiling HCl, decomp, by HNO₂. (Fonzes-Diacon, C. R. 1900, 131. 557.)

Nickel selenide, NiSo

Insol in H₂O, dil or cone, HCl+Aq: slowly sol, in HNO2+Aq; easily in aqua regia (Little, A 112, 211.) Almost insol in boiling HCl, decomp. by HNO: (Fonzes-Diacon, C. R 1900, 131.

557) NiSe₂. (Fonzes-Diacon.)

Ni₂Se₂ Almost insol, in boiling HCl; Ni Se. decomp. by HNO. (Fonzes-Diagon.)

Nickel silicide, Ni.St.

Sol, in HF and aqua regra, insol, in cold H₂O, decomp, by steam at red heat, sol, in fused alkali carbonates. (Vigouroux, C R. 1895, 121, 687,)

Nickel semisulphide, Ni2S.

Sol. in HNO₃+Aq, with residue of S. Difficultly sol. in cone HCl+Aq; insol. in dil. HCl+Aq. (Artvedson, Pogg. 1. 65; Gautter, C R 108, 1111.)

Does not exist. (Bornemann, C. A. 1908. 1686.)

Nickel monosulphide, NiS.

Anhydrous. Insol in H2O, HCl, or H2SO4 +Aq. Sol in HNO₄+Aq or aqua regia. Min. Millerite.

+xH₂O Insol, in H₂O, but decomp. by H₂O in contact with the air (Clermont and Guiot, C. R. 84. 714), or by boiling with H₂O

(Geitner, A. 139, 354. When pptd, with (NH₄)₂S, is somewhat sol in H₂O. 11. H₂O dissolves 39.87×10 moles NiS at 18°. (Weigel, Z. phys. Ch. 1907, 58.

294) Very sl. sol. in dil. HCl+Aq, and still less

in HC₂H₂O₂+Aq. (Fresenus. More sol. in HNO, +Aq, and easily in aqua

Somewhat sol, in NH,OH+Ag or solutions of alkali sulphides. Insol. in NH,SH+Aq (Fresenius.)

Sol, at moment of formation in NacS but not in (NH.) 8+Aq. (Vilhers, C. R. 1894, 119, 1264.)

Sol. while yet moist in H2SO4+Aq. (Ber-When recently pptd., sol. in KCN+Aq

(Haidlen.)

Pptd, in presence of non-volatile organic substances as tartaric acid, etc. (Rose) Sol. in potassium thiocarbonate+Aq (Rosenbladt, Z anal 26. 15.)

Exists in a colloidal form in a very dil solution (Winnsinger, Bull. Soc (2) 49, 452.)

a modification Very sol in 2N-HCl+Aq sat, with H-S. & modification

0.033 g. is sol in 1 l. 2N-HCl+Ac sat. with H-S; very sol, in 2N-HCl+Aq.

y modification Insol, in 2N-HCl+Aq sat, with H2S, 0.013 g. is sol in 2N-HCl+Ag. (Thiel C. C. 1914, I 19.)

Nickel sulphide, NisS2

(Bornemann, C. A. 1908, 1686) Ni₅S₄. (Bornemann.) Ni₆S₅. (Bornemann.)

NLS, Min. Polydymite. Insol. in HCl+ Aq Sol. in HNO₂+Aq with separation of S. Ni₂S₂. Min, Beyrichite Sol in HCl+Aq

Nickel disulphide, NiSz,

(Fellenberg, Pogg 50, 75.) Does not evist. (Bellucci, C. A. 1909, 293.)

Nickel notassium sulphide, 3NiS, K-S

Insol. in H₂O (Schneider, J pr. (2) 9. 209.) K.N111S10 Not attacked by hot (NH4)2S;

slowly attacked by HCl or cold aqua regia; quickly by hot aqua rega. HF and H₂SO₄ dissolve only on heating. Insol. in organic acids, alkalies and 12% HCl, also in RCN, AgNO₂ or CuSO₄+Aq. (Milbauer, Z anorg. 1904. 42. 447.)

Nickel telluride, NioTea

Min. Melonite. Sol in HNO2+Aq NiTe (Fabre, C R 105, 277.)

Nickelicotungstic acid.

Ammonium nickelicotungstate, 2(NH₂)₂O. 2N₁₂O₃, 8WO₃+14H₂O.

(Rogers and Smith, J. Am. Chem Soc 1904, 26, 1476) 3(NH₄)₂O, Ni₂O₃, 16WO₃+22H₂O. Very sl. sol. in H₂O (Rogers and Smith)

Barium nickelicotungstate, 19BaO. Ni₂O₈,

16WO3. Ppt. Very msol. in H₂O. (E. F Smith.)

Nickelimolybdic acid.

Barium nickelimolybdate, 3BaO, NiO2, 9MoO_{*}+12H_{*}O.

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 702.)

Potassjum nickelimolybdate, 3K2O, NiO2, Nitratooctamine cobaltic carbonate, 9MoO3+61/2H2O Very msol. even in hot H2O. (Hall.)

Nickelomolybdic acid.

Ammonium hydrogen nickelomolybdate, (NH₄),H₆[Ni(MoO₄)₆]+5H₂O

bieri, C. A 1915. 897) Barium hydrogen nickelomolybdate,

Ba2H4[N1(MoO4)4]+10H2O. Ppt. (Barbieri)

Potassium hydrogen nickelomolybdate, K,H6[Ni(MoO4)6]+5H2O. SI, sol, in H₂O, easily in acids (Barbiei.)

Silver hydrogen nickelomolybdate, Ag. H. NI (MOO4)6]+3H2O. Insol in H2O; sol. in NH4OH, or HNO3+

Aq. (Barbieri) Nickelonickelous acid.

Potassium nickelonickelite, K2N12O4 or K2O, N1O. NiO2.

(Hofmann and Hiendlmaier, B. 1906, 39,

Sodium nickelonickelite, Na₂ Ni₂O₆ = Na₂O, NiO. 2NiO2. (Bellucci and Rubegni, C. C. 1907, I. 794)

Nickelous acid.

Barium dinickelite, BaO, 2NiO2 Unstable; decomp by cold H2O; slowly and very rapidly by hot HaO (Dufau, C. R. 1896, 123. 496.)

Niobium, Nb.

For mobium and its compounds, see columbum. Cb. and the corresponding compounds

Nitramide, NH2NO2.

Decomp. by cone. H2SO4 Easily sol in H₂O, alcohol, ether and acetone. Less sol. in benzol Almost msol in ligroin. (Thiele and Lachman, A. 1895, 288. 297.) Sol. in ether, insol in petroleum ether. Very unstable; decomp. by hot H₂O. (Thiele and Lachman, B. 1894, 27, 1909.)

Nitratochloroplatinamine comps. See Chloronitratoplatinamine comps.

Nitratocobalt octamine comps. . See Nitratooctamine cobaltic comps.

 $(NO_2)_2Co_2(NH_2)_8(CO_3)_2 + H_2O.$ Less sol, than other octamine carbonates. (Vortmann and Blasberg, B 22, 2650.)

chloride, $(NO_2)_2Co_2(NH_3)_3Cl_4+4H_2O$. (Vortmann and Blasberg, B. 22, 2652)

SI sol in H₂O, easily in dil. acids (Bar- -- iodide, (NO₂)₂Co₂(NH₂)₂L₄+2H₂O. (Vortmann and Blasberg.)

> nıtrate. See Octamine cobaltic nitrate.

sulphate, (NO₂)₂Co₆(NH₂)₈(SO₄)₂+ 2H,0 +4H2O. (Vortmann and Blasberg, B. 22. 2652)

Nitratoplatinamine nitrate,

(NO₂)₂Pt(NH₄NO₂)₂ Sl. sol. in cold, more easily in hot H2O; easily sol, in dil HNO2+Aq (Cleve.)

nitrite, (NO₃)₂Pt(NH₃NO₂)₂.

Eastly sol in H₂O. (Cleve)

Nitratoplatindiamine chloride, $(N\tilde{O}_{\bullet})_{\bullet}Pt(N_{\bullet}H_{\bullet}Cl)_{\bullet}+H_{\bullet}O$ Moderately sol, in cold, very easily in hot

chloroplatinate, (NO₂)₂Pt(N₂H₄Cl)₂, PtCl4+2H20.

chromate, (NO₂)₂Pt(N₂H₄)₂CrO₄. Nearly insol. in H₂O (Cleve.)

Ppt.

Sl. sol. in H₂O.

nitrate, (NO₂)₂Pt(N₂H₆NO₈)₂. Sol. in H.O. Insol. in HNO++Au.

--- phosphate, NO₂Pt(N₂H₄)₂+H₂O.

PO. Very sl sol. in H₂O (Cleve.)

Nitratodiplatindiamin e nitrate, (NO₃)₂Pt₂(N₂H₆)₄(NO₃)₄. Sol. in H₂O with decomp.

Nitratopurpureocobaltic bromide, Co(NOs)(NHs)sBrs.

Resembles the chloride in its properties. (Jorgensen, J. pr (2) 23, 227,)

2648.1

Nitratopurpureocobaltic carbonate,

 $Co(NO_3)(NH_3)_4(CO_3) + H_2O$. Less sol, in H₂O than other purpureocarbonates, (Vortnuann and Blasberg, B 22.

---- chloride, Co(N()₃)(NH₃)₅Cl₂ SI sol in cold H2O, but more than nitrate, more easily sol, in hot 11.0, but is converted

into roseo salt. Insol in HCl+Aq or alcohol. (Jörgensen, J. pr (2) 23, 227.) - mercuric chloride,

Co(NO_a): NH_{ala}Cl₂, HgCl₂ Not wholly insol. in II O. (Jorgensen)

---- chloroplatinate, Co(NO₃)(NH₃)₆Cl₂, PtCl.

---- chromate, Co(NO₃)(NII₃),C₁(), Nearly insol in ILO (Jorgensen.)

--- dichromate.

Pot

sen)

Sl. sol, in H₂O, but more easily than the neutral salt. (Jorgensen.)

Nearly much in cold H-O (Jörgen-

— dithionate, Co(NO₂)(NH₂)₂S₂O₄ Very sl sol in cold, more easily in hot H₂O (Jörgensen)

--- nitrate, Co(NO₂)(NH₂)₆(NO₂)₈ Sol. in 273 pts H2O at 16° Much more sol in hot H₂O containing HNO₃ (Jorgensen, J pr. (2) 23, 227)

--- cobaltic nitrite, 3('o(NO₃)(NH₃)₃, 2CotNOs)a+2HaO.

Verv sl. sol in II₂O (Jorgensen, Z anorg 5. 176.)

- diamine cobaltic nitrate, Co(NO₃)(NH₂)s (NO2)4Co(NH4)2 Ppt. (Jorgensen.)

--- oxalate, Co(NO₂)(NH₂)₂C₃()₄. Pot.

---- sulphate, Co(NO₃)(NH₃)₀SO₄+H₂O Rather difficultly sol. in cold H₂O (Jorgensen)

Nitratopurpureorhodium chloride, (NO₃)Rh(NH₃)₅Cl₅

SI sol. in cold H₂O, but more easily than the nitrate. (Jörgensen, J. pr. (2) 34, 394)

--- dithionate, (NO₃)Rh(NH₂)₅S₂O₅+H₂O. Nearly insol, in cold H₂O. (Jorgensen.)

Nitratonurnireorhodium nitrate. (NO2)Rh(NIL)4(NO2)2.

Very sl sol in cold H2O. Insol, in alcohol. (Jorgensen.)

Nitric acid, IINO3

Miscible with H₂O When HNO₃+Aq is distilled at 760 mm pressure, an acid containing 68% IINO3 is formed, which boils at 120 5° under 735 mm pressure. By distilling at 150 mm, pressure the acid contains 67 6 at 150 mm. pressure the acid contains 67 6%, HNO₂; at 70 mm. (b.-pt. 65-70°) the acid contains 66.7% HNO₃. The percentage of HNO₂ in the liquid obtained by passing dry an into HNO₂+Aq containing 64-68% HNO₃ varies with the temp., the higher the temp. the greater the percentage of HNOs. (Roscoe, Chem Soc. 13. 150.)

(Mitscherheh) HNO2+1q at 1 288 sp gr. conturs 35 75% N2O2 HNO2+ tq of 1 298 sp gr contains 18% (Davy.) IINO +Aq of 1 298 sp gr contains 32-33% (Ber-

For Ure's table of sp. gr. of HNO₃+Aq, see Watt's Dict 1st ed.

1 469

1 465

1.462

445

1 442

1 438

76 00 65 14

74 0163 44

75 00 .

64 28

_				_					
Sp. g	of HNO	, etcConi		Sp gr	of HNC % 18 N) ₃ +Aq :	at 15°.	a=%;	b = sp NO_{2}
HNO1	$N_2^{r_0'}$	Sp gr at 0°	Sp gr at 15°	a	ь]	e	a	ь	6
1271-2838-2838-2838-2838-2838-2838-2838-283	20 10 10 10 10 10 10 10 10 10 10 10 10 10	1 1657 1 4564 1 4564 1 4564 1 4564 1 4564 1 4564 1 4564 1 4564 1 4566 1	1 435 1 436 1 437 1 438 1 439 1 414 1 419 1 414 1 416 1 416 1 416 1 395	1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	1 007 1 0014 1 021 1 034 1 027 1 034 1 036 1 1 036 1 1 036 1 1 036 1 1 036 1 1 136 1 1 1 136 1 1 1 136 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		512 53 54 55 52 53 54 55 56 56 66 67 68 69 97 71 77 77 77 77 77 77 77 77 77 77 77 78 81 22 82 83 84 55 86 99 99 99 99 99 99 99 99 99 99 99 99 99		
0.00	0 00	1 000	0 999	5	1 032	9	1 060	13	1 089

(Kolb, A. ch. (4) 10. 140.)

ъ‱.	Sp gr	n.o.	Spgn	N201	Sp gr
5	1 032	9	1 060	13	1 089
6	1 038	10	1 068	14	1 096
7	1 045	11	1 075	15	1 104
8	1 053	12	1 082	16	1 111

Sep. gr. of HNOs, etc. Continued; Sep. gr. of HNOs, etc. Sep. g										
1.118		gr. of	HNO3,	etc.—C	ontinue	d.				
18 125 41 1 301 64 1.385 80 7 8 N.9. 7 1.110 1.132 42 1.30 65 1.442 1.000 0.00 0.05 0.00							Sp. gr. of	HNO ₃ +A	q at 15°; H	O at 4°=1
1.140	18	1 125	41	1 301	64	1.438	Sp gr	% N.O.	% HNO ₁	Kg HNO ₁ in 1 l.
22 1 1115 45 1 3300 88 1 456 1 010 1 622 1 90 0 0 018 23 1 103 46 1 338 6 0 1 460 1 1015 2 30 2 80 0 028 244 1 1773 47 1 346 770 1 466 1 026 3 3 17 3 70 0 0387 245 1 1773 47 1 346 770 1 466 1 026 3 3 17 3 70 0 0387 247 1 104 4 50 1 364 72 1 476 1 039 4 71 6 50 0 0 028 25 1 200 1 138 6 1 1 338 7 72 1 472 1 039 4 71 6 50 0 0 028 27 1 104 4 50 1 364 73 1 476 1 039 4 71 6 50 0 0 0 076 28 1 200 1 1 1377 1 47 1 480 1 046 6 0 27 7 28 0 0 076 28 1 200 1 1 1377 1 47 1 480 1 046 6 0 27 7 28 0 0 076 28 1 200 1 1 1377 1 492 1 478 1 0 105 5 8.43 9 8 4 0 1076 38 1 1 221 1 44 1 480 1 1 60 1 055 8 .43 9 8 4 0 1076 38 1 1 221 1 44 1 480 1 1 60 1 000 6 1 0 0 1 0 0 1 0 0 1 0 0 0 0	20	1 140	43	1 315	66	1 447	1 000		0 10	
23 1 103 46 1 238 69 1 400 1 015 2 39 2 80 0 028 24 1 170 47 1 3445 70 1 4455 1023 3 17 0 0 032 25 1 170 47 1 345 70 1 4455 1023 3 17 0 0 032 25 1 170 40 1 30 1 30 1 70 1 405 1 023 3 17 0 0 032 25 1 170 40 1 30 1 30 1 70 1 405 1 023 3 1 1 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21								1 90	
24 1 170	23	1 163	46	1 338	69		1 015	2 39	2 80	0 028
297 1894 491 1368 72 1472 1 0300 4 71 5 50 0 067 281 1901 501 1301 72 1473 1 0400 0 47 7 58 0 007 281 1901 501 303 77 75 1 488 1 045 0 97 8 18 0 005 281 1200 52 1 377 75 1 488 1 045 0 97 8 18 0 005 281 1200 52 1 377 75 1 488 1 045 0 97 8 18 0 005 281 1200 52 1 377 75 1 488 1 045 0 97 8 18 0 005 281 1200 52 1 377 75 1 488 1 045 0 97 8 18 0 005 281 1200 55 1 380 77 1 488 1 045 0 97 1 97 281 1200 56 1 400 70 1 600 1 050 9 87 1 150 281 1200 56 1 400 70 1 600 1 055 9 87 1 150 283 1 230 58 1 4112 81 1 085 1 055 9 87 283 1 250 88 1 4112 81 1 085 1 055 1 150 283 1 250 88 1 4112 81 1 085 1 055 1 150 283 1 270 101 1 420 83 1 160 1 055 1 120 283 1 270 101 1 420 83 1 160 1 005 1 120 284 1 271 001 1 421 83 1 160 1 005 1 120 285 1 277 02 1 300 85 1 023 1 000 1 3 3 1 1 5 53 0 10 285 1 277 02 1 300 85 1 023 1 000 1 3 3 1 1 5 53 0 10 285 1 277 0 2 1 300 85 1 023 1 000 1 3 3 1 1 5 53 0 10 285 1 277 0 2 1 300 85 1 023 1 000 1 3 3 1 1 5 53 0 0 285 1 277 0 2 1 300 85 1 023 1 000 1 3 3 1 1 5 53 0 0 285 1 277 1 0 0 0 1 447 85 1 514 1 155 1 0 0 0 1 3 0 290 1 140 0 0 1 417 85 1 514 1 155 1 0 0 0 1 0 0 201 1 140 0 0 1 417 85 1 514 1 155 1 0 0 0 0 0 0 201 1 140 0 0 1 417 85 1 514 1 155 1 0 0 0 0 0 0 201 1 140 0 0 1 417 85 1 514 1 155 1 0 0 0 0 0 0 201 1 140 0 0 1 417 85 1 514 1 155 1 0 0 0 0 0 0 201 1 140 0 0 1 417 85 1 164 1 155 1 0 0 0 0 0 0 201 1 140 0 0 1 1 417 85 1 164 1 155 1 0 0 0 0 0 201 1 140 0 0 1 417 85 1 164 1 155 1 0 0 0 0 0 0 201 1 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24							3 17		
27 1 194 50 1 864 73 1 476 1 035 5 47 6 88 0 066 28 1 290 101 1377 74 1 480 1 400 0 227 7 220 0 075 29 1 297 58 1 377 77 1 492 1 045 0 77 8 15 0 0 084 32 1 297 58 1 377 77 1 492 1 055 8 4.3 0 84 0 104 32 1 232 55 1 304 77 1 492 1 055 8 4.3 0 84 0 104 32 1 232 55 1 304 77 1 492 1 055 8 4.3 0 84 0 104 32 1 232 55 1 304 77 1 492 1 055 8 4.3 0 84 0 104 33 1 232 55 1 304 77 1 492 1 055 8 4.3 1 5 10 0 8 34 1 237 50 1 400 10 1 000 1 000 0 15 1 0 0 8 0 123 34 1 237 50 1 400 10 1 000 1 000 0 15 1 0 0 8 0 123 34 1 237 50 1 400 1 1 000 1 000 0 15 1 0 0 8 0 123 35 1 255 58 1 412 81 1 058 1 075 1 1.27 13 15 0 122 36 1 203 30 1 440 82 1 012 1 000 1 1.96 1 3 05 0 140 37 1 277 60 1 421 83 1 150 1 050 1 1.96 1 3 05 0 140 37 1 277 60 1 421 83 1 150 1 055 1 120 1 140 1 10 30 1 257 70 1 400 8 1 205 1 100 1 1.96 1 10 1 10 30 1 257 70 1 400 8 1 205 1 100 1 1.96 1 10 1 10 30 1 257 70 1 400 8 1 205 1 100 1 1.96 1 0 0 1 10 30 1 257 70 1 400 8 1 205 1 100 1 1.96 1 0 0 1 0 0 30 1 257 70 1 400 8 1 205 1 100 1 100 1 100 1 0 30 1 257 70 1 400 1 300 1 100 1 100 1 100 1 0 30 1 257 70 1 400 1 300 1 100	25				71				5 50	
29 1 209 52 1 377 75 1 483 1 045 6 97 8 13 0 085 30 1 217 53 1 833 70 4883 1 045 6 97 8 10 0 094 31 1 217 53 1 833 70 4883 1 055 7.78 1 005 7.78 32 1 232 55 1 304 77 1 496 1 005 7 1 50 33 1 233 56 1 400 80 1 500 1 005 9 87 1 51 0 084 34 1 247 57 1 406 80 1 504 1 005 0 87 1 51 0 123 34 1 247 57 1 406 80 1 504 1 005 1 105 1 123 36 1 247 80 1 440 80 1 504 1 005 1 105 1 123 36 1 27 1 00 1 421 83 1 160 1 005 1 105 1 123 1 0 123 38 1 270 10 1 420 83 1 160 1 005 1 125 1 10 0 38 1 270 10 1 420 83 1 510 1 000 1 31 30 1 10 10 30 1 287 10 1 420 88 1 510 1 000 1 31 30 1 10 10 30 1 287 10 1 420 88 1 50 1 100 1 31 30 1 10 10 30 1 287 10 1 420 88 1 50 1 100 1 31 30 1 10 10 30 1 287 10 1 420 88 1 50 1 100 1 100 1 31 30 1 10 1 10 30 1 287 10 1 420 88 1 50 1 100 1 100 1 31 30 1 10 1 10 30 1 287 10 1 420 88 1 100 1 100 1 100 1 10 1 10 1 10 30 1 287 10 1 420 88 1 100 1 100 1 10 1 10 1 10 1 10 30 1 287 1 10 1 420 88 1 100 1 100 1 10 1 10 1 10 1 10 30 1 287 1 10 1 100 1 100 1 10 1 10 1 10 1 10 30 1 287 1 10 1 100 1 100 1 10 1 10 1 10 1 10 30 1 287 1 10 1 10 1 10 1 10 1 10 1 10 1 10 30 1 287 1 1 10 1 10 1 10 1 10 1 10 1 10 1 10 30 1 287 1 1 10 1 10 1 10 1 10 1 10 1 10 1 10 30 1 287 1 1 10 1 10 1 10 1 10 1 10 1 10 1 10 30 1 287 1 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 30 1 287 1 1 10 1	27	1 194			73	1 476	1 035	5 47	6 38	
30 1 217 53 1 583 76 1 485 1 0.90 7.71 8 90 0 0 64 31 1 223 54 1 386 77 1 402 1 0.55 8.43 9 84 0 104 33 1 223 54 1 386 77 1 402 1 0.55 8.43 9 84 0 104 34 1 247 77 1 406 80 1 501 1 0.55 1 1 0.55 35 1 255 58 1 412 81 1 505 1 0.75 1 1.77 13 15 0 141 36 1 205 58 1 412 81 1 505 1 0.75 1 1.27 13 15 0 141 36 1 205 38 1 412 81 81 1 505 1 0.75 1 1.27 13 15 0 141 38 1 279 0.11 1 426 84 1 151 1 0.05 1 1.06 1 1.06 1 38 1 279 0.11 1 426 84 1 151 1 0.05 1 1.05 1 1.05 1 39 1 279 0.1 1 426 84 1 151 1 0.05 1 1.05 1 1.05 1 30 1 277 0 1 420 84 1 151 1 105 1 1.05 1 1.05 1 30 1 277 0 1 420 84 1 151 1 105 1 1.05 1 1.05 1 30 1 277 0 1 420 84 1 151 1 105 1 1.05 1 1.05 1 1.05 1 30 1 277 0 1 420 84 1 151 1 105 1 1.05	28		51					6 22		
33 1 1 223 54 1 880 77 1 492 1 055 8.43 9 84 0 104 33 2 1 232 55 1 304 78 1 4960 1 000 9 15 10 68 0 113 33 1 1 237 67 1 400 7 1 1 60 1 000 1 000 1 0 0 33 1 1 237 67 1 400 7 1 1 0 0 1 0 0 1 0 0 1 0 0 35 1 1 255 58 1 449 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 36 1 1 203 68 1 449 8 1 1 608 1 0 0 0 1 0 0 1 0 0 37 1 271 1 0 0 1 421 8 1 1 608 1 0 0 0 1 0 0 38 1 1 203 7 1 271 1 0 0 1 421 8 1 1 608 1 1 0 0 1 1 0 38 1 1 203 7 1 271 1 0 0 1 421 8 1 1 608 1 1 0 0 1 1 0 38 1 1 203 0 0 1 400 8 1 1 608 1 1 0 0 1 1 0 1 1 0 38 1 1 203 0 0 1 400 8 1 1 608 1 1 0 0 1 1 0 30 1 203 0 0 1 400 8 1 1 608 1 1 0 0 **Hager, Commin 1883.** **Illager, Commin 1883.**	30		52	1 383		1 484				
33	31	1 221	54	1 389	77	1 492	1 055	8.43	9 84	0 104
1	32							9 15		
35 1.295 58 1.412 81 1.608 1.075 11.27 13 15 0 1410 36 1.209 150 1410 182 1612 1060 11.094 13 097 0 141 37 127 10 1.404 84 1.619 1.008 11.094 13.81 15.53 0 1.619 38 1.279 11 1.404 84 1.619 1.000 13.81 15.53 0 1.619 39 1.279 11 1.404 84 1.619 1.000 13.81 15.53 0 1.000 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 30 1.217 1.000 1.417 55 1.614 1.400 1.000 2.205 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 30 1.217 1.000 1.000 1.000 1.000 1.000 1.000 30 1.217 1.000 1.000 1.000 1.000 1.000 1.000 1.000 30 1.217 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 30 1.217 1.0000 1.000		1 247							12 33	
37 1271 00 1 421 83 1516 1 085 12.04 14 74 0 100 13.83 1 270 01 1420 85 1516 100 13.83 15.53 0.169 38 1 270 02 1400 85 15.53 0.169 38 12.00 12.00 13.84 15.53 0.169 38 12.00 13.86 15.53 0.169 38 12.00 13.86 38 15.53 0.169 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169 38 15.53 0.169	35		58	1 412	81			11.27		0 141
1 279 01 1 428 84 1 10 1 600 13. 31 15.58 0.169	36	1 263						11.96		
Sp. pr. INO) + An at 17 st 100 14 dt 67 17 11 0 188 189 11 105 13 14 dt 7 st 7 st 1 10 188 17 st 7 st 1 10 188 189 1	38	1 279					1 090	13.31	15 53	
Holger, Comm. 1883.1	39	1 287	62	1 430	85	1 523				
Sp. gr. INO1-4Aq at 175'. 1110 10.00 18 67 0 207		(H	ager, Co	mm 18	83.)					
10		Sp. gr	. IINO	+Aq at	17 5°.		1 110	16.00	18 67	0 207
10	% N ₂ O.	No ge	'6 N.O.	Sp gr	S. N2O:	Sp sp				
1	10	1.068	40	1 202	70	1 485	1 125		21 00	
145 20 64 24 68 0 276	15	1 104	50	1 361	80	1 500			21 77	
145 20 64 24 68 0 276			60	1 417	85	1 514			22 54	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			l		<u></u>	1		20 64	24 08	0 276
1 100 22 60 22 60 26 60 30	(Hag					1876.)			24 84 25 60	
1	er MN7						1 160	22 60	26 36	0.306
2 1 01136 27 1 10000 1 175 24 54 28 03 0 303 0 334 1 01731 28 1 17371 1 150 25 18 29 38 0,347 4 1 02234 1 10731 28 1 17371 1 150 25 18 29 38 0,347 4 1 02234 1 10000 1 1000 20 1	1								27 12	
4 1 022-90 29 1 18073 1 185 22 83 80 13 0 387 5 1 185 12 83 80 12 0 387 5 1 185 12 83 80 12 0 387 7 10 185	2	1 1	01136	27	1	16660	1 175	24 54	28 63	
7 0.4010 32 1.20776 1.200 27 74 \$2, 26 0 0.389 8 0.46762 33 1.20435 1.205 25 56 0.390 0.390 9 1.06234 34 1.20350 1.205 25 56 0.390 0.390 11.11 0.330 30 1.2035 1.2035 1.205 25 0.405 11.21 0.0350 33 1.22375 1.205 25 0.405 34 55 0.420 11.21 0.0350 37 1.22347 1.225 20 88 36, 0.0 0.401 11.31 0.0754 38 1.22347 1.225 20 88 36, 0.0 0.401 11.31 0.0754 38 1.22347 1.225 20 88 36, 0.0 0.401 14 1.05125 39 1.24510 1.235 21 7 37 55 0.465 16 1.05125 39 1.24510 1.245 22 17 37 55 0.465 16 1.05125 39 1.24510 1.245 23 17 37 55 0.465 17 1.10102 42 1.203475 1.226 33 47 30 0.0 0.0 18 1.10725 43 1.27125 1.255 34, 78 40 58 0.00 19 1.11321 44 1.28485 1.205 30, 78 42 57 0.561 20 1.13540 47 1.28405 1.205 30, 78 44 41 34 0.521 21 1.13440 47 1.28400 1.285 30, 78 44 44 4.0 64 24 1.14490 40 1.31101 1.285 38, 73 45, 16 0.569 25 1.1546 40 1.31101 1.285 38, 73 45, 16 0.569 26 1.1546 40 1.31101 1.285 38, 73 45, 16 0.569 26 1.1546 40 1.31101 1.285 38, 73 45, 16 0.569 27 1.1546 40 1.31101 1.285 38, 73 45, 16 0.568 28 1.3840 40 1.31101 1.285 38, 73 45, 16 0.568 28 1.3840 40 1.31101 1.285 38, 73 45, 16 0.568 29 1.1540 40 1.31101 1.285 38, 73 45, 16 0.568 20 1.1540 50 1.31722 1.290 38, 39 55, 95 0.568 20 1.3640 40 1.31101 1.285 38, 73 45, 16 0.568 20 1.3850 48 1.38728 1.38728 1.38728 1.38728 1.38728 20 1.3850 48 1.38728	3	1 1	01713							
7 0.4010 32 1.20776 1.200 27 74 \$2, 26 0 0.388 8 0.4502 33 1.20435 1.205 25 5.0 450 1.00244 34 1.2030 1.210 2.25 2.5 3.0 0.389 1.00244 34 1.21300 1.210 2.25 90 33 62 0.409 1.111 1.00330 33 1.21300 1.210 2.25 90 33 62 0.409 1.11 1.00330 33 1.22375 1.22377 1.225 2.25 3.0 3.	5									
0 1 06234 34 1 21300 1 210 22 90 38 82 0 0.400 101 1 06746 38 1 22013 1 215 20 01 3 45 5 0 420 11 1 1 0746 38 1 1 22013 1 215 20 01 3 45 5 0 420 11 1 1 0754 38 1 1 22077 1 220 3 1 22	6							27 10	31 62	0 378
0 1 06234 34 1 21300 1 210 22 90 38 82 0 0.400 101 1 06746 38 1 22013 1 215 20 01 3 45 5 0 420 11 1 1 0746 38 1 1 22013 1 215 20 01 3 45 5 0 420 11 1 1 0754 38 1 1 22077 1 220 3 1 22	8		04592	33				27 74		
11	9	1	05234	34	1 1 3	21300	1 210	28 99		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1 1	05746							
13 1 07581 88 1.29890 1.290 31 53 80 78 0 452 11 15 15 15 15 15 15 15 15 15 15 15 15	12	1 1	06951							
15 1 08943 40 1 22255 1,240 28 28 28,28,29 0 475 10 10 106900 41 1 26225 1,245 38 47 38,05 0 475 10 10 106900 41 1 26850 1,245 38 47 38,05 0 4875 17 1,10102 42 1,29475 1,260 34 13 39 82 0 498 18 1 10725 43 1 27125 1 255 34,78 40 58 0 590 12 1 1,10725 44 1 1 28856 1 200 23,44 41,34 0 621 22 1 1,1374 44 1 1 28856 1 200 35,44 41,34 0 621 22 1 1,1374 44 1 1 28856 1 200 35,44 41,34 0 621 22 1 1,1374 44 1 1 28816 1 200 36,04 42 10 0 638 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							1.230	81 53	36 78	0 452
10							1.240			
17 1.10102 42 1.20475 1.250 34 13 39 82 0.498 18 1 10725 43 13 127125 1255 34.78 40 58 0.590 0.590 11.10725 44 1.28836 1.200 35.44 41.34 0.521 0	16	1 1	09500	41	1 1	25850	1.245	33 47	39.05	0 486
19 1.11321 44 1 28895 1 200 35.44 11.34 0 221 20 1.12744 45 1 28490 1 205 38.00 42 10 0 53.2 22 1.12744 46 1 28410 1 270 58.00 42 10 0 53.2 23 1.13746 46 1 28410 1 270 58.76 42.87 0.544 22 23 1.1380 48 1 28410 1 270 58.76 42.87 0.544 24 1.14490 40 1 31101 1 285 38.73 45.16 0 558 24 1.14490 40 1 31101 1 285 38.73 45.16 0 588		1 1.	10102 10725				1.250	34 13	39 82	
20 1.12024 45 1.29430 1.205 88.09 42.10 0.533 21 1.1714 40 1.29110 1.270 80.75 42.87 0.544 22 1.13349 47 1.29170 1.275 87.41 43.04 0.556 23 1.18340 48 1.30443 1.290 88.07 44.41 0.568 24 1.14490 40 1.31101 1.285 88.73 45.18 0.891 25 1.1614 50 1.3122 1.290 88.07 45.96 0.891	19	1.	11321	44	1 1 5	28895	1 260		41.34	
22 1.13349 47 1.29750 1.275 37 41 43.64 0.556 23 1.13890 48 1.3043 1.280 88.07 44.41 0.556 24 1.14400 40 1.3101 1.285 88.73 45.18 0.581 25 1.15164 50 1.31722 1.290 88.93 45.18 0.581	20	1.	12024					36.09	42 10	0 533
23 1 13890 48 1 30443 1 280 38.07 44.41 0 508 24 1.14400 40 1 31101 1 285 38.73 44.518 0 581 25 1 15164 50 1.31722 1 290 39.39 45.95 0 593	22	1 1.	13349							
24 1.14460 49 1.31101 1.285 38.73 45.18 0.581 25 1.15164 50 1.31722 1.290 39.39 45.95 0.593	23			48	1:	30443	1 280	38.07	44.41	0 568
1 20 09.00 40.00 0 995							1 285		45.18	0 581
(Squires, 1 marm. 15m, Jan, 1091.)							1 295		48.72	
	V	- munico,	* ************************************		m, roar	/	1			

Section Sect	Sn. gr	of HNO	, etc.—Cont	inued.	Sp. gr.	of N-HNOs	+Aq at 18°/	4°=1.0324.
1809 44.7 74 49 77 69 69 69 69 69 69 6				Kg HNO	(Loomis,	W. Ann 188	96, 60. 550.)	
1 1 1 1 2 2 3 3 4 5 6 6 6 7 7 6 6 6 7 7					Sp gr. (re	educed to a		HNO ₃ from
1 13 42 76	1 305	41.37	48 26		14 2	°/4° and 24	2°/4°.	at 1/1,
1.350 43 47 50 71							Sp. gr.	
1.386 44 59 62 38 32 9 0 710 77 78 22 1 47129 1 48504 1 43964 1 43964 1 44973 1 44911 1 44573 1 44911 1 44573 1 44911 1 44573 1 44911 1 44573 1 44911 1 44573 1 44911 1 44573 1 4911 1 44573 1 4911 1 44573 1 4911 1 4911 1 44573 1 4911 1 4911 1 44573 1 4911 1 4911 1 44573 1 4911 1 491	1.320	43 47	50 71	0.669	% HNO ₃	40/10		94 90/40
1886 45 62 53 22 0 710 76		44 17	52.37					
1449 48 87	1 335	45 62				1 47129		
1 135 48 78 66 60 76 78 85 40 1 1 1 1 1 1 1 1 1			54 93	0 739				
1.365 60 131 56 348 0.798 85 21 1 49081 1 47826 1.40224 1 277 50 01 95 39 0 6 814 97 0 72 1 241	1 350	47 82		0 753			1.46680	1 45092
1 1 1 1 1 1 1 1 1 1		48 57			85 21			
1. 389	1 365					1 50211	1 47826	1.46224
1.880			60 30		87 90			1 46891
1 305 55 07 64 25 0 886 30 1 5279 1 1 5201 1 1 5304 1 1 48517 1 1 5305 1 1 507 64 1 1 50	1.380	52 52						1 48964
1 100 55 07 64 .25 0 896 50 64 1 23.12 1 23.02 1 2	1 385		63 23		94 04	1.51949	1 50149	1.48516
1.419 67 80 67 50 69 40 0 853 97 33 1 50011 1.49137 1419 67 80 67 50 99 97 1 18212 1 51298 1 49054 1 1419 5 88 83 68 83 0.971 1 8012 1 1 1422 1 1 51228 1 1 51298 1 1 51098 1 1	1 395	55 07						
1410 57 80 67 50 0 992 98 07 1 82212 1 5228 1 49053 1					97 33		1 50911	1.49137
1.425	1 410	57 86						
1.430		58 83 59 83						
1 33	1.425	60 84	70 98	1.011	(Veley			. 1903, 83.
1 449 64 01 74 68 1.075 2 1.085 1.485 61 1.485 65 1.375 98 1 1088 1 1.485 65 1.375 98 1 1.284 1.485 65 1.375 98 1 1.284 1.485 67 1.385 1.485 69 79 18 1.482 1.193 1.184 1.485 73.76 85 0.5 1.224 1.245			72 17		Sn on		,	
1 450 68 24 77 28 1 121 55 gr. 1.000026 1.002763 1.002853	1 440	64 01	74 68	1.075	g. mols. l			antaming lar
1 455 6 77 98 1 145 1 168 1 255 6 79 98 21 1.168 3 1 255 6 27 98 21 1.168 3 1 255 6 27 98 21 1.168 3 1 255 6 27 98 21 1.168 3 1 255 6 27 98 21 1.168 3 1 255 6 27 98 21 1.168 3 1 255 6 27 98 21 1.168 21 1.168 1 1.16								
1 465 69 79 81, 42 1, 193 85, gr. 1,069481 1,01686 1,02503 1,0336 1,470 71,00 82 99 4 1 219 85, gr. 1,069481 1,01686 1,02503 1,0336 1,0	1 455	67 38	78.60	1 144				
1 470 71.06 \$2.90 \$1 429 \$4 2.00 \$1 219 \$4 2.00 \$1 475 \$7.30 \$84 48 5.00 \$1 246 \$1.246			79 98 81.42					
1 485	1 470	71.06	82 90		M 2	0		210000
1 485 75.18 87 70 1.302 1 490 70 80 80 50 60 1 335 1 496 70 80 80 50 60 1 335 1 50 80 60 40 60 1 335 1 50 80 60 40 60 1 335 1 50 80 60 40 60 1 335 1 50 80 60 40 60 1 335 1 50 80 60 40 60 1 450 1 50 80 80 60 40 60 1 450 1 50 80 82 20 80 60 70 1 445 1 50 80 80 80 1 1 450 1 50 80 80 80 80 1 1 450 1 50 80 80 80 80 1 1 450 1 50 80 80 80 80 1 1 450 1 50 80 80 80 80 1 1 450 1 50 80 80 80 80 1 1 450 1 50 80 80 80 80 1 1 450 1 50 80 80 80 80 1 1 450 1 50 80 80 80 80 1 1 450 1 50 80 80 80 80 1 1 450 1 50 80 80 80 80 1 1 450 1 50 80 80 80 80 1 1 450 1 50 80 80 80 80 1 1 450 1 50 80 80 80 80 80 1 1 450 1 50 80 80 80 80 80 80 80 80 80 80 80 80 80							m Ch T 10	00 TOO)
1.496 78 57 10 60 1 209 1 100 1 209 1 100 1 200 1 100 1 200 1 200 1 100 1 200 1 100	1 485	75.18	87 70	1.302	(aones an	iu I earce, A	III. CII. 0. 10	01, 00. 102.)
1 500					For sp	o, gr. of H	NO2+H2SO4	, see under
1 500 81 50 95.08 1 428 1 50 1 50 55 1 50 5	1 500	80 65			Partiti	on coefficie	nt for HN	Os between
1					ether an	d H ₂ O is m	creased by t	he addition
1 505 82 63 96 39 1 451 1 457		81 91	95 55					
1					not exist	There are	only two a	thentic hy-
1 505					(Küster,	Ch. Z. 1904	, 28. 132)	•
1.509 S3 87 97 84 1 475 1 1610 84 90 88 10 1 481 1 1610 84 90 88 10 1 481 1 1610 84 90 88 10 1 481 1 1610 84 90 90 21 1.482 1 1610 84 90 90 91 160 1 1610 84 18 18 73 1494 1 1610 84 18 18 18 18 18 18 18 18 18 18 18 18 18					The c	omposition :	of the hydr	
1 511 84 28 98 32 1.495 1.512 84 64 98 53 1.490 1.513 84.63 98 73 1.490 1.514 84.87 98 90 11 497 1.515 84.92 99 07 1 501 1.516 85.04 99 21 1.504 1.517 85.15 99 .34 1 507 1.518 85.23 99 .46 1 510 1.519 85 54 99 .57 1 .512 1.520 85 44 99 .57 1 .515			97 84		fmm det	er minstions	of the low	ering of the
1.312 84 80 188 52 1.480 Am. (Ch. J. 1905, 54, 328) 1.514 48.48 188 58 1.497 1.515 94.92 99 07 1.507 1.516 85.04 99 21 1.504 1.517 85.15 99.34 1.507 1.518 85.25 29 99.46 1.510 1.519 85.55 99.57 1.512 1.520 85 44 99.57 1.515		84 28	98.10		frpt pr	roduced by	HNO, and	of the con-
1 514	1.512	84 46	98 53	1.490				ny (dones,
1 515 34.92 99.07 1 501 The second of most beat. (Weber, J. pr. (2) 1 516 85.04 99.21 1.504 The second of most beat. (Weber, J. pr. (2) 1 517 85.15 69.34 1 507 3.62.2 1.512 85.22 1.512 85.22 1.512 8.62.2 1.512 Natrates. 1.512 Natrates. 1.515 All nitrates are sol. in H ₂ O except a few	1 514				Dinitric	acid. H.N.	O., =2N.O.	H.O
1 517 85.15 99.44 1 5507 1 518 85.26 99.46 1 5107 1 519 85 35 99.67 1 515 1 520 85 44 99.67 1 515 1 520 85 44 99.67 1 515 1 520 85 44 99.67 1 515	1 515	84.92	99 07	1 501				
1 518					evolution			
1 520 85 44 99.67 1 515 All nitrates are sol, in H ₂ O except a few	1 518	85.26	99.46	1 510				4
All nitrates are sol, in H ₂ O except a few							1 to Tr.C	
	(Lunge an	<u> </u>	1		basic cor	nnounds. N	o, in H ₂ O e Aost nitrates	are insol. in

cone, HNO2+Aq; many are sol. m alcohol; some are sol, in glycerne

Aluminum nitrate, basic, 2Al₂O₃, 3N₂O₅+

Sol. in H₂O. (Ordway, Sill. Am. J. (2) 26.

203.) Basic alummum nitrates containing 2 mols or less of Al₂O₅ to one of N₂O₅ may be obtained sol, in H₂O, but the compounds con-

taining more than 2 mols. Al₂O₃ are msol. in H.O. (Ordway, l. c.) 2Al₂O₃, N₂O₅+10H₂O₅ (Ditte, C R. 110. 782

Al₂O₁₄H₁₀, HNO₁. Sol. in H₂O. (Schlumberger, Bull, Soc. 1895, (3) **13**, 59.)

Aluminum nitrate, Al(NO₃)₃+9H₆O.

Deliquescent. Very sol. m H₂O, HNO₃+ Aq, or alcohol. (Berzelius.) Melts in its crystal H₂O at 72 7°. (Ordway. Sol. in 1 pt. strong alcohol. (Wenzel.) Difficultly sol. in acetone. (Naumann, B.

1904, 37, 4328.) Insol. in ethyl acetate. (Naumann, B. 1910, 43, 314.)

Ammonium nitrate, NII4NOs.

Deliquescent.

Sol in 0.502 pt H₂O at 18⁵ (Karsten) Sol in 0.51 pt H₂O at 10⁶ (Harris C R 24 816) Much more sol is but than cold H₂O (Harris) Sol in 2 pts H₂O at 15.5° and 0.5 pt bothing H₂O

Sol an lpt cold, and 0.5 pt boiling H.O. (Fourcros.) (Muller and Kaufmann, Z. phys. Ch. 1903, Sol an 0.5 pt Hyo at 18° (Berzelus)

42, 499.) (Foureros)

Der	omp. by	boiling	H ₂ O.		
	Solubilit	y in 10	0 pts. H	O at t	·
t°	Pta NH ₄ NO ₄	t°	Pts NH ₄ NO ₂	t^	Pts NH ₄ NO ₂
0	97	24	205	48	351
1 2 3 4 5 6 7 8	101	25	210	49 50	358
2	105	26	216	51	365 372
3	109 113	27 28	221 226	52	372
*	117	29	232	53	387
0	121	30	238	54	395
9	121	31	244	55	402
	130	32	250	56	410
8		33	256	57	418
10	134	34	262	58	425
11	139	35	268	59	433
12	143 148	36	274	60	441
12		37			
13 14	152	38	280	61	449
	157		286	62	457
15 16	161	39	292	63	465
10	166	40	298	64	473
17	170	41	304	65	481
18	175	42	311	66	490
19	180	43	317	67	499
20	185	44	324	68	508
21	190	45	331	69	517
22	195	46	337	70	526

344 (Mulder, Scheik, Verhandel, 1864, 95)

100 pts. H₂O dissolve 183 pts. NH₂NO₂ at 19.5°. (Mulder.)

Solubility in H₂O at t°.

t°	Specific gravity of the saturated solution	Mols of NH ₁ NC soluble in 100 mols of water
12.2	1. 2945	34 50
20.2	1 3116	43 30
23.0	1 3159	46 57
25.0	1 3197	48 19
27 7	1 3257	51 67
28.0	1 3260	51 86
30.0	1 3299	54.40
30.2	1 3308	54 61
31 9	1 3348	57 20
32.1	1 3344	57.60
32 7	1 3356	57.90
34 0	1 3375	58.89
35 0	1 3394	59.80
35.1	1 3397	60 00
35 6	1 3408	60 62
36 0	1 3412	61.00
36.6	1 3420	
37 5	1 3432	62 90
38 0	1 3438	63.60
38 5	1 3440	64 10
39 0	1 3448	65 09
39 5	1 3460	65 88
40 0	1 3464	66 80

t°	G V per l	H ₄ NO ₈ 100 g.	Solid phase
	solution	water	
0	51 19	118 3	NH ₁ NO ₃ , thomb. β
12 2	60 53	153 4	"
20 2	65 80	192 4	
25 0	68 17	214 2	**
30 0	70 73	241 8	"
$32\ 1$	71 97	256 9	NH ₁ NO ₂ , rhomb β+
			rhomb. α
35	72 64	265 8	NH4NOa, rhomb a
40	74.82	297 0	
50	77 49	344.0	"
60	80 81	421 0	
70	83 32		11
80	85 25	580 0	
90	88 08	740 0	NH4NO1, rhomb (*)
100	89 71	871 0	

1st ed. 28. Calc. from Müller & Kauffmann, see above, and Schwarz, Ostwald's Lehrb., p. 425.)

100 g. NH4NO4+Aq contain 54.19 g NH4NOs at 0° " 30° 70.10 g. " 70° 84.03 g.

(de Waal, Dissert. Leiden, 1910.)

70.19 g NH₄NO₄ are contained in 100 g. NH₄NO₅+Aq sat. at 30°. (Schreinemakers and de Bast, Arch neer. Sc. 1911, (2) 15.

415.) 60 pts. NH4NO2 mixed with 100 pts. H2O lower the temperature from 13.6° to -13.6° that is 27.2°, but if the initial temperature is 0° it will fall only to —16 7°, the freezing-point of the mixture. (Rudorff, B. 2. 68.)

Sp. gr. of NH ₁ NO ₂ +Aq at 18°							
Pts NH _t NO ₂	Pts H₂O	Sp gr					
80 80 80	1800 900 360	1 0180 1 0331 1 0743					

(Thomsen and Gerlach, Z. anal. 28, 520) CATTE NO. 1 A - -4 150

Sp.	Sp. gr. of Nn4NO3+Aq at 15 .							
% NH4NOs	Sp gr	% NH4NO3	Sp gr.					
5 10 20	1 0201 1 0419 1.0860	30 40 50	1 1304 1 1780 1,2279					

(Kohlrausch, W. Ann 1879. 1) Sp. gr. of NH4NO++Aq at 17 5°

% NH4NO2	Sp gr	% NH4NO3	Sp gr
1	1 0042	33	1 1454
2 3	1 0085	34	1.1502
3	1.0127	35	1.1550
4 5 6 7	1.0170	36	1 1598 1 1646
5	1 0212	37	1 1646
6	1 0255	38	1.1694
7	1.0297	39	1 1742
8	1 0340	40	1 1790
.9	1.0382	41	1 1841
10	1 0425	42	1 1892
11	1 0468	43	1 1942
12	1 0512	44	1.1994
13	1.0555	45	1 2045
14	1.0599	46	1 2096
15	1.0642	47	1 2147
16	1 0686	48	1 2198
17	1 0729	49	1 2249
18	1 0778	50	1 2300
19	1 0816	51	1 2353
20	1.0860	52	1 2407
21	1 0905	53	1 2460
22	1.0950	54	1 2514
23	1 0995	55	1 2567
24	1 1040	56	1 2621
25	1 1085	57	1 2674
26	1.1130	58	1 2728
27	1 1175	59	1 2781

Sp. gr. of 1	IH₄NO₃+Aq
% NII4NO1	Sp. gr. 16°/1

% NIL/NO ₂	Sp. gr. 16°/16°
0 6419 1 4101 2 7501 5 4890 11 7981 23 4480 47 9500	1.000000 1 000271 1 000593 1 001153 1 002300 1 004916 1 009758 1 019952

(Duken Z phys Ch 1897, 24 107.) Sp. gr. 20°/4° of a normal solution of NH. NO.

=1.030435; of a 0.5-normal solution 1 = .014505. (Haigh, J Am. Chem. Soc. 1912, 34, 1151.)

B-pt. of NH₄NO₃+Aq containing pts. NH₄NO₅ to 100 pts. H₂O. G= according to Gerlach (Z. anal. 26, 445); L= according to Legrand (A, ch. (2) 59 426.)

B-pt.	G	L	B-pt	G	I.
101°	10	10	140°	682	770 5
102	20	20 5	141	719	
103 104	30 41	31 3 42 4	142 143	737 765	840 6
105	52	53.8	144	793	915 5
106	63	65 4	145	823	910 9
107	74	77.3	146	853	995.5
108	85	89.4	147	883	
109	96	101 9	148	914	1081.5
110	108	114 9	149	945	
111 112	120 132	128 4 142 4	150	977	1173 5
113	145	156 9	551 152	1009 1043	1273
114	158	172	153	1043	1273
115	172	188	154	1116	1383
116	187	204 4	155	1155	1000
117	202	221 4	156	1196	1504
118	217	238 4	157	1238	
119	232	256 8	158	1281	1637
120	248	275 3	159	1325	
121	265 283	314	160	1370	1775
122 123	301	314	161	1417	1923
123	319	354	162 163	1464 1511	1923
124 125	337	00·±	164	1558	2084
126	356	396	165	1606	2001
127	376		166	1653	İ
1.28	396	440 2	167	1700	ĺ
129	417		168	1748	
130	439	487 4	169	1796	
131	461		170	1844	
132	484	537 3	180	2400	00
133	507	590	190	3112	
134 135	530	590	200	4099	
136	554 578	645	210 220	5618 8547	
137	603	040	230	16950	
138	629	705 5	240	10990	1
139	655		240	١	Ι.
		1			

(Gerlach, Z. anal, 27, 310.)

60

61

62

63

64

1 2835

1 2888

1.2942

1.3005

1.3059

1.1220

1.1265

1 1310

1 1358

32 1.1406

484.)

Ba(NO₃)2

18 27 07 49.22

30 29.76 52.50

40

32.6852.22

(Schulz, Zeit.

Very sol in HNO+Aa. Ch. 1869, 531.)

Solubility of NH ₄ NO ₅ in HNO ₅ .						
Solution temp	C. by wt NH/NOi	Solid phase				
+8°	21 1	NH4NO2, 2HNO2 (solu- tion in HNO2)				
23 0	28 7	110111111111111111111111111111111111111				
28.5	34 5	"				
29 5 *	38 8	(solution in NH4NO2)				
27.5	44 6					
27 0	45 8	"				
23 5	49 4	"				
23 0	50 0	"				
17 5	54 0	"				
16 5	54 3					
4 ()	45 S	NH4NO2, HNO2 labile				
	1	(solution in HNO ₃)				
9.5	49 4	1 "				
11 0	51.7	1 ::				
11.5	52.7	1 "				
12 0	54 3	1 ::				
12 0	54.7	1 "				
11.5	57 6	(solution in NII ₄ NO ₂)				
11.5	54.0	NII4NO3 (labile)				
14 5	54.3	1				
17 0	51 7	stable				
26 0	55 9	l ü				
27 0	56.2					

* Mpt. of NH4NO4, 2HNO3. (Groschuff, Z. anorg, 1904, 40, 6.) Solubility of NH.NO. in NH.OH-LAG

57 5

33 5 49 Ö 60.4

79 0 GS I

Grams of NH ₁ NO ₂	Grams of NHs	Molecules of NH ₁ NC ₁ in 100 molecules NH ₄ NO ₂ + NH ₂	
0 7578 0 6439 4 2615 0 7746 0 9358 0 7600 0 9675 0 8308 0 9526 1 3918	0 0588 0 0665 0 7747 0 1857 0 2352 0 2607 0 3515 0 3700 1 2457 4 4827	100 74 2 67 3 53 8 47 0 45 9 38 3 36 9 32 3 13 9 6 25	about 168° 109 8 94 0 68 8 35 9 33 3 0 -10 5 -30 0 -44 5 -60 about -80

NH,NO,+NH,CI 100 pts. H₂O dissolve 29.1 pts. NH₄Cl and 173.8 pts. NH₄NO₄. (Rüdorff, B. 6, 484.) Sol. in sat. NH₄Cl+Aq with pptn, of

NH4Cl until a state of equilibrium is reached. (Schreinemakers and de Baat, Arch. néer. Sc. (Karsten.)

Addition of KClOs to NH4Cl+Aq prevents pptn. of NII,Cl, and dissolves any NH,Cl that may have been pptd. (Margueritte, C. R. 38, 306.)

See also under Ammonium chloride. NH4NO3+KNO3

100 pts, H₂O dissolve:

	(1) (2)		At 11° (3) (4)		At 15° (5) (6)		(6)	
KNO1 NH1NO1	20 2	40 6 88 8	143	26	0	46 130	$\frac{2}{4}$	161
2 Sat		<u></u>		_	_		_	

with KNO₂; 5, sat. at 11° with NH₄NO₂ and then at 5° with KNO₃. (Mulder) Sol. in sat HNO₂+Aq without causing ppt. (Karsten), with separation of KNO₃ (Rudorf).

Composition of solution is dependent on the relative excess of the salts present. (Rudorff) 100 pts. H₂O dissolve 77 1 pts. NaNO₂ and 162 9 pts. NH₃NO₂ at 16°. (Rudorff, B. 6.

If a sat. solution of NH4NO3+Aq at 11° is sat. with Ba(NO3)2 at 9°, 100 pts. H2O

dissolve. At 11° At 9º NH4NOs. 143 101 3

2 (Mulder) Solubility of NH4NO.+AgNO. in H2O at to.

NH NO B rb

AgNOs, NHANOs 4-

NH4NO; a rb.

68

Solid phase AgNO₁ NHANO: - 7 3° 47 1 Ice+AgNO a thomb. -10.744 52 8 43 -14942 0 16 80 Ice+AgNOs, NH4NOs +AgNOs rb ~14 8 39 51 18 79 Ice + AgNOs, NH4NO2 -18 7 15 99 Ice+AgNOs, NH4NOs 37 30 +NH4NO1 B rb -1740 41 2 Ice+NH4NO2, Brb. 0 50 36 19 59 AgNOs, NH4NOs+ AgNOs, rb 18 55 36 22 00 30 58 89 23 42 55 63 32 26 12 32.1 109 6 67 9 22 13 AcNOs NHANOs+ 44.87

36.60 52.38101.5 47.5 AgNOs NHANOs+ 52 5 NH4NO2, rbd. 1911 (2) 15, 414.)

Solubilit	y in NI	I,NOs and AgN at 30°.	O ₈ in H ₈ O	Solubili	y of N	H ₄ NO ₃ +(NH ₄) ₂ SO ₄ in H ₂ O at 30°.	
Composit	on of the	Solid pha	80	NH NO	(NH ₄) ₄ So ₄	Solid phase	
NIL NO.	AgÑO:			70.1 67.63 66 93	0 2.38 3.46	NH4NOs NH4NO++(NH4)4SO4	
6 59 15 62	73 0 69 08 63 27 58 84	AgNO ₃		63.84 58.06	4 96 8.22	NH ₄ NO ₅ +(NH ₄) ₂ SO ₄ , 3NH ₄ NO ₅ (NH ₄) ₂ SO ₄ , 3NH ₄ NO ₅ (NH ₄) ₂ SO ₄ , 3NH ₄ NO ₅ + (NH ₄) ₂ SO ₅ , 2NH ₄ NO ₅	
23.40 23.45 24.33 26.22	58 93 57 98 55 32	AgNO ₃ +AgNO AgNO ₈ , N		52 75 49 80	11 42 13 27	(NH ₄) ₂ SO, 2NH ₄ NO ₃ (NH ₄) ₂ SO ₄ , 2NH ₄ NO ₃ (NH ₄) ₂ SO ₄ , 2NH ₄ NO ₃ + (NH ₄) ₂ SO ₄	
28 86 34.47 39 60	52 45 45 85 41 09	u u		37.20 19 91 12 05	19.48 28.83 34.7	(NH ₄) ₂ SO ₄	
45 44 52 49	35 62 29 77	NH4NO3+AgN	O3, NH4NO3	0	44 1	и	
52 11 52.89 54 12 58.64	29 86 29 66 27 75 21 31	NH ₄ N	O ₈	(Schrein	nemakers	s and Haenen, Chem. Weekbl. 1909, 6. 51.)	
63.59	12 51	"		Solubi	hty of N	$H_4NO_3+(NH_4)_2SO_1$ in H_4O .	
	Schrememakers and de Baat, Z. phys. Ch.				Temp =0°		
Solubili	1909, 65. 572.) olubility of NH4NO ₈ +NaNO ₃ in H ₂ O at t°.			NH.NO.	(NH.);SO.	Solid phase	
to		100 g H ₂ O	Sp gr	0	41 4	(NП ₄) ₂ SO ₄	
0	0 105.5 118.4	73 33 66 0	1 354 1 407 1.264	5 61 29 58 29 81 31 04 30.87	37 89 41.64 21 33 20 40 20.43	(NH ₄) ₂ SO ₄ +(NH ₄) ₂ SO ₄ , 2NH ₄ NO ₈ (NH ₄) ₂ SO ₅ , 2NH ₄ NO ₂ (NH ₄) ₂ SO ₄ , 2NH ₄ NO ₅ +(NH ₄) ₂ SO ₄ ,	
15	0 24 03 42 81 64.6 110 9	83.9 81.21 79.34 78.06 75.81	1.375 1.386 1.392 1.401 1.417	31 61 45 99 49.12 54.19	19.50 9.53 6.00 0	3NH4NO3 (NH4)-SO4, 3NH4NO3 (NH4)-SO4, 3NH4NO3+NH4NO4 NH4NO3	
	152. 155.3	75.35 75.38	1 428 1.429			Temp. =70°	
	156.1 159 160 162.3 167 4	60 76 36 50 27 79 17 63	1.405 1.364 1.350 1.330 1.298	NH.NO.	(NE,)%SO.	Solid phase	
30	0 220 8 232.6	96.12 88 31 0	1 401 1.450 1.329	0 11 10 70 15 71.58	47 81 40 81 6 71 5 82	(NH ₄) ₂ 80 ₄ (NH ₄) ₄ 80 ₄ +(NH ₄) ₂ 80 ₄ , 2NH ₄ NO ₂ (NH ₄) ₂ 80 ₄ , 2NH ₄ NO ₃	
(Fedot	ieff and	Koltunoff, Z. an 251.)	org. 1914, 85	76.01 80 25 81 01 81 38	3 96 2 68 2.45	(NH ₄) ₄ SO ₄ , 2NH ₄ NO ₃ +(NH ₄) ₅ SO ₄ , 3NH ₄ NO ₂ (NH ₄) ₅ SO ₄ , 3NH ₄ NO ₃ (NH ₄) ₅ SO ₄ , 3NH ₄ NO ₂ +NH ₄ NO ₃ NH ₄ NO ₂	
-				84 03	0	Dissert. Leiden. 1910.)	

/12 - - 1-1---

Am, Ch. J. 1898, 20, 826.)	ia, (Frankini,
1 pt NH ₄ NO ₅ dissolves in 2.29 pts at 25° (Pehl, W. A. B. 6, 599.)	deolad of 66 84 $_{\rm 0}$

57 21 11 12 -- 1 3777

1 of NH-NG absolves in 11 of botton aboba (Wenzel

100 pts, absolute methyl alcohol dissolve 17.1 pts, at 20 5°, (de Bruyn, Z phys. Ch. 10, 783.1

absolute methyl alcohol dissolve 100 g. absolute methyl alcohol dissolv 14.6 g NH₄NO₃ at 14° and 16.3 g at 18.5° (Schiff and Monsacchi, Z. phys. Ch. 1896, 21. 100 pts, absolute ethyl alcohol dissolve 3.8

pts, at 20 5°. (de Bruyn, Z. phys Ch 10. 100 g, absolute ethyl alcohol dissolve 4.6 g. . (Schiff and Monsacchi, Z. phys. Ch.

1896 21 277) Solubility of NH4NO; in H2O is decreased by presence of ethyl alcohol but increased by presence of methyl alcohol. NH4NO, is only very si sol, in abs, ethyl alcohol and the solubility increases slowly with rise in temp.; it is more sol, in abs. methyl alcohol and the solubility increases rapidly with rise in temp (Fleckenstein, Phys. Zeit. 1905, 6. 419.)

C NILNO C. Alcohol % H () 54 19 45 81 42 69 12.70 44.61 1 96 97.93 0 11 20 70 10 0 29 90 59 83 10 60 29 57 8 06 85 30 6 64 3 60 96 51 n 15 97 70 84 03 n 72 37 11 19 16 51 22 82 16 02 61 11 41 25 44 64 14 11 24 71 67 23 8 08 7.51 92 49

Solubility of NH₄NO₃ in alcohol.

(de Waal Dissert, Leiden, 1910.)

Pts.

Sp. gr. of alcoholic solution of NH4NO at 15°. Pte

NH ₄ NO ₃	alcohol	op 8
0	100	0.83904
2	98	0.84746
4	96	0.85604

Solubility in methyl alcohol + Aq. at 30°.

% by wt H-O	alcohol	NH ₁ NO ₂
29.9 21.6 20.6 16.5 11.5	0 24 5 31 3 46 0 59 4 83 3	70 1 53 9 48 1 37 5 29.1 16 7

(Schreinemakers, Z. phys. Ch. 1909, 65.

(Gerlach, Z. anal, 28, 521.)

Insol, in benzonstrile. (Naumann, B. 1914, 47, 1370.) Insol, in methyl acetate. (Naumann, B. 1909, 42. 3790.) Very sl. sol, in acetone. (Krug and M'Elroy, J. Anal. Ch. 6, 184.)

Sol, in acetone, (Eidmann, C. C. 1899, II 1014.) Ammonium hydrogen nitrate, NH4H(NO3)2.

Sol. in H.O. (Ditte, C. R. 89, 576, 641.) Decomp. by H.O. (Groschuff, B. 1904, 37. 1487.)

Solubility of NH, NO, in ethyl alcohol + An at 30°. Composition of sat. solution.

% by ut H2O	'; by ut alcohol	" by wt NH4NO
29 9	.0	70.1
26 9 23 2	18 6 39 3	54.5 37.5
18.3 11.6	58 5 76.5	23 2 11 9
5.8	86 2	8.0
0	96.4	3 6

(Schreinemakers, Z. phys. Ch. 1909, 65.

Ammonium dihydrogen nitrate, NH.H2(NOs)s.

Sol. in H.O. (Ditte.)

Solubility in H₂O.

Solution temp	NH ₄ NO ₅	% by wt HNOa
-8 0 -2 5 +3 0 3 5 19 5 25 0 29 5 mpt.	34 2 34 8 35 4 36 0 37 4 38 1	53 9 54 8 55 8 56 8 58 9 60 0

(Groschuff, Z. anorg. 1904, 40, 7.)

Ammonium cerous nitrate, 3NH₄NO₃, 2Ce(NO₃)₃+12H₂O. Very deliquisseent. Very sol. in H₃O and alcohol. (Holzmann, J pr. 84.78) +10H₂O. Hygroscopic. Sol. in H₂O. (Drossbach, B. 1900, 33. 3507.)

(Drossbach, B. 1900, 33, 3507.) 2NH₄NO₃, Ce(NO₃)₈+4H₂O. As above. (Marignac, A. ch. (4) 30, 64.)

Solubility in H₂O 100 g. H₂O dissolve at:

8.75° 25° 45° 235.5 296.8 410 2 g. anhydrous salt,

60° 65.06° 681.2 817.4 g, anhydrous salt. (Wolff, Z, anorg. 1905, 45. 98)

Ammonium ceric nitrate, 2NH₄NO₃,

Very sol, in H₂O without decomp. Sol. in HNO₃. (Meyer, B. 1900, **33**, 2137) Sol. in alcohol. (Meyer, Z. anorg. 1901, 27, 369)

Solubility in H₂O. 100 g. H₂O dissolve at t°:

25° 35.2° 45.3° 140.9 181.7 174.9 g. anhydrous salt, 64.5° 85.60° 122°

201.6 226.8 735.4 g. anhydrous salt. (Wolff, Z. anorg. 1905, 45. 94.)

+11/4H₂O. Very deliquescent. (Holzmann, J. pr. 84. 78.)

Ammonium cobalt nitrate.

Permanent. Sol. in H₂O. (Thenard)

Ammonium copper nitrate, 2NH4NOs,

Cu(NO₃)₂ Very sol. in H₂O.

Ammonium didymium nitrate, 2NH₄NO₁, D₁(NO₃)₃+4H₂O. Somewhat deliguescent.

Ammonium gadolinium nitrate, 2NH4NOs, Gd(NOs)s.

Deliquesces in the air. (Benedicks, Z. anorg. 1900, 22, 407.)

Ammonium gold (auric) nitrate (Ammonium auronitrate), NH₄Au(NO₃)₄. Extremely deliquescent. H(NH₄)₂Au(NO₃)₆. (Schottlander, A 217.

312)
Ammonium lanthanum nitrate, 2NH4NO2,

La(NO₂)₃+4H₂O. Not deliquescent. Sol. in H₂O. (Marignac.)

Ammonium magnessum nitrate, 2NH₄NO₈, Mg(NO₃)₂.

Slowly deliquescent. Sol. in 10 pts. H₂O at 12.5°, and much less hot H₂O. (Foureroy.)

Ammonsum mercurous nitrate, 4NH₄NO₃, Hg₂(NO₃)₂+5H₂O. Sol. in H₂O. (Pagenstecher, Repert. 14. 188.)

Ammonium nickel nitrate.

Sol. in 3 pts. cold H₂O. (Thénard, Scher. J. 10. 428.)

Ammonium praseodymium nitrate, 2NH4NOs, Pr(NOs)+4H2O.

Sol in H₂O. (von Scheele, Z. anorg, 1898, 18, 356.)

Ammonium silver nitrate, NH₄NO₃, AgNO₃. Very sol in H₂O. (Russell and Maskelyne, Roy. Soc. Proc 26. 357.) Sol. in H₄O without decomp (Schreinemakers and de Baat, Chem. Weekbl. 1910,

7.6.)
See also solubility of NH₄NO₃+AgNO₂
under NH₄NO₃.

Ammonium thorium nitrate, (NH₄)₂Th(NO₁)₆. Sol. in strong HNO₈. (Meyer, Z anorg. 1901, 27. 383.) NH₄Th(NO₁)₈+5H₂O. Sol. in HNO₂ of sp gr.1.25. (Meyer, Z anorg. 1901, 27. 382.)

sp gr. 1.25. (Meyer, Z anorg. 1901, 27. 38 Ammonium uranyl nitrate, NH₄NO₂,

UO₂(NO₂)₂. Decomp. by H₂O. Sol. in conc. HNO₃. (Meyer, B. 1903, 36, 4057.)

Solubility in H_2O at t° .

	In 18 of th	0 pts l he solu	y wt tion	
t°	Pts by wt	Pts by wt	Pts by wt total salt	Solid phase
0 5 13 5 24 9 a 5 0 59 0 80 7 a b	42 07	3 44 2 90 2 98	68 97	Double salt +UOs(NOs)

Ammonium uranyl nitrate is decomp. by H₂O at temp. below 60°: above 60° it is sol. in H₂O without decomp. (Rimbach, B. 1904, 37, 475.)

Ammonium nitrate ammonia, 2NH₄NO₃, 3NH₄ Known only as a solution of NH₄ in NH₄NO₃+Aq. (Troost, C. R. 94, 789.) NH₄NO₅, 3NH₃. As above.

552	NITRA	ATE, AMA	IONIUM,	MERCURI	C CHLORI	DE	
Ammonium	nitrate merc	uric chlorid	le,	Solul	bility in 100	pts. H₂O a	t t°.
Insol. in l) ₄ , 2HgCl ₂ . H ₂ O. Ether	dissolves o	ut HgCl ₂ .	t°	Pts Bu(NO ₂) ₂	t°	Pt: Ba(NO ₁):
2NH ₄ NO	A. ch. (3) 27 3, HgCl ₂ . i Marburg, A.	Sol. in H ₂ 0	O. (Hof- 199.)	0 1 2 3	5.0 5 I 5 3 5 5	52 53 54 55	17 7 18 1 18 4 18 7
	nitrate s 2SO ₃ , II ₂ O lroscopic and	ulphate,		4 5	5 7 6 0 6 2	56 57 58	19 0 19 3 19 6
heim, Z. an 2NH,NO 1910.) 3NH,NO	org. IS94, 6. 5, (NH ₄) ₂ SO 1, (NH ₄) ₂ SO solubility of	297.) . (de Was	al, Dissert.	7 8 9 10 11 12 13	6 4 6 6 6 8 7 0 7 3 7 5 7.7	59 60 61 62 63 64 65	20.0 20.3 20.6 20.9 21.0 21.6 21.0
2(NH ₄ Decompo	nitrate met	I₂O. stallising o	- 1	14 15 16 17 18	7 9 8 1 8 3 8 5 8 8	66 67 68 69 70	22 3 22 6 22 9 23 3 23 6
(Marignae, A. ch. (3) 98. 61.) Antimony nitrate, 8h.O., N.O., Decemp. by cold H.O. (Bucholz.) Aqueous solution sai. 4t 10° contains 30.4% Sol in stong, less sol. in dil. HNO ₄ +Aq. (Peligot, A. et 13) 90. 283.) Insol in acctone (Naumann, B. 1904, 37. 4329.)			20 21 22 23 24 25 26 27 28 29	9 0 9 2 9 5 9.7 9.9 10.1 10.4 10 6 10 8 11 1	71 72 73 74 75 76 77 78 79 80 81	23 9 24 3 24 9 25 0 25 4 25 7 26 0 26 4 26 7 27 0 27 4	
Barium aitrate, Ba(NO ₃) ₂ . Sol. in H ₂ (9 wth absorption of heat. 100 pits. H ₂ (0 at 0" dissolve 5.0 parts Ba(NO ₂) ₂ . (Gry-Lussee, A. ch. 11. 313.) 100 pits. H ₂ (1) at 0" dissolve 5.2 parts Ba(NO ₃) ₃ . + H ₃ (1) at 0" dissolve 5.2 parts Ba(NO ₃) ₃ . + H ₄ (1) at at 20" contains 5.7 pits Ba(NO ₃) ₃ . + H ₄ set at 20" contains 5.7 pits Ba(NO ₃) ₃ . + H ₄ at 20" has 1.004 ap. gr., Ba(NO ₃) ₄ . + 100 pits. H ₂ O, and has 1.0070 ap. Ba(NO ₃) ₄ . + 100 pits. H ₃ O dissolve pts. Ba(NO ₃) ₄ . at 10 pits. H ₂ O, (Mitchel and Kraft.) 100 pts. H ₂ O dissolve pts. Ba(NO ₃) ₂ at 1°. 100 pts. H ₂ O dissolve pts. Ba(NO ₃) ₂ at 1°. 101 pts. H ₂ O dissolve pts. Ba(NO ₃) ₂ at 1°.				30 31 32 33 34 35 36 37 38 40 41 42 43 44 44	11 6 11 2 1 12 3 12.6 12 8 13 1 13.4 14 0 14.2 14 5 14 8 15 1	82 83 84 85 86 87 88 80 90 91 92 93 94 95 96	27 7 28 1 28 8 29 1 29.5 29 8 30 6 30 9 31 3 31.7 32 0 32 4 33 1
0	Ba(NOs) ₂ 5 00	52.11	17 97	46 47 48	15 9 16 2 16 5	98 99 100	33.5 33.8 34.2
14 95 17 62	8.18 8.54	73.75 86 21	25.01 29.57	49 50	16 8 17.1	101	34.5

t°	Pt+ Ba(NO ₂) ₂	t°	Pts. Ba(NO ₂)
0 14 95 17 62 37.87 49.22	5 00 8.18 8.54 13.67 17 07	52.11 73.75 86 21 101 85	17 97 25.01 29.57 35 18

(Gay-Lussac, A. ch, (2) 11, 313.)

15 4 15 6 15 9 16 2 16 5 16 8 17.1 17 4 45 46 47 48 49 50 51 (Mulder, calculated from his own and other experiments, Scheik. Verhandel. 1864. 50.)

Sat.	Ba(NO ₃) ₂ +Aq	contains	%	Ba(NO ₄)

t°	Ba(NOs):	t°	Ba(NOs);
0 4	4 3	60.0	16 1
2 1	4 9	73 0	19 4
6 0	5 6	92 0	23 4
6 5	5.6	110 0	27 4
11 0	6 4	132 0	31 8
15.3	7.1	134 0	32.5
18 0	7.7	150 0	34.9
28 5	9.7	152 0	35.4
45 5	12.8	171 0	38.3
52.0	14.9	215 0	45.8

(Étard, A. ch. 1894, (7) 2 528)

100 g. H₂O dissolve 8 54 g. Ba(NO₃)₂ at 17°. (Gmelin-Kraut, Handbuch der anorg.

Čhemie) 100 g H₄O dissolve 7.87 g. Ba(NO₂)₂ at 16°,8.32 g. at 17° (Euler, Z. phys. Ch. 1904, 49. 315.) 1000 g. H₅O dissolve 0.72 gram-equivalents Ba(NO₂)₂ at 21.5°. (Euler, Z. phys. Ch.

1904, 49, 312.)
10.30 g anhydrous Ba(NO₃)₂ are sol. in 100 g. H₂O at 25° (Parsons and Colson, J. Am. Chem. Soc. 1910, 32, 1385.)

4.74 g. Ba(NO₂); are contained in 100 g Ba(NO₂); sat at 0°. (Coppadoro, Gazz ch. it. 1911, 42, 1. 233.) Solubility of Ba(NO₂); in H₂O = 0 427 mol. l. at 30°. (Masson, Chem. Soc. 1911, 99.

Solubility of Ba(NO₂)₂ in H₂O at 30° = 10.33%. (Coppadoro, Gazz. ch. it. 1913, 43. I. 240.)

Solubility in H₂O

100 g. of the sat. solution contain at: 9.1° 21.1° 35° 6.25 8.46 11 39 g Ba(NO₂)₂

(Findlay, Chem. Soc. 1914, 105. 780.)
Sp. gr. of Ba(NO₃)₂+Ag at 19 5°.

Ba(NO ₂) ₂	Sp gr	Bu(NOa)2	Sp gr.
1 2 3 4 5	1.009 1 017 1 025 1 034 1 042	6 7 8 9	1.050 1 060 1 069 1 078 1 087

(Calculated by Gerlach, Z. anal. 8. 286, from Kremers, Pogg. 95. 110.)

Sp. gr. of Ba(NO₃)₂+Ag at 18°.

% Ba(NO _{a)2}	Sp gr
4 2	1 0340
8 4	1 0712

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of Ba(NO ₃) ₂ +Aq at 17.5°.			
% Bu(NO2)2	Sp gı	Ba(NOs):	Sp gr
1 2 3 4 5	1 0085 1 0170 1 0255 1.0340 1 0425	6 7 8 Sat. sol	1 0510 1 0600 1 0690 1 0690

(Gerlach, Z. anal, 27, 283.)

Sp. gr. of Ba(NO ₃) ₂ +Aq at room temp		
% Ba(NO ₃),	Sp gr	
5.25	1 0507	

1.0274

(Wagner, W. Ann. 1883, 18. 264.)

2.98

op gr. of Da(NO3)1+Aq at 20		
Concentration of Ba(NOs)s+Aq	Sp gr	
1/2 normal 2/1 "	1 0518 1 0259 1 0130	

(Wagner, Z. phys. Ch 1890, 5. 35.)

Ba(NO₂)₂+Aq contaming 6.08% Ba(NO₂)₂ has sp. gr. 20°/20° = 1.0517. Ba(NO₂)₂+Aq contaming 6.97% Ba(NO₂)₂ has sp. gr. 20°/20° = 1.0597. (Le Blane and Rohland, Z. phys. Ch. 1896,

19. 279.)
Sp. gr. of Ba(NO_b)₂+Aq at 20° containing M g. mols, salt per liter.

M 0.01 0.025 0.05 Sp. gr. 1.002031 1.005224 1.010591 M 0.075 0.10 0.15

M 0.075 0.10 0.15 Sp. gr. 1.015671 1.021143 1.031770 (Jones and Pearce, Am. Ch. J. 1907, **38**. 708.)

Sp. gr. of sat. Ba(NO₃)₂+Aq at t°.

fo.	m 100 g H ₂ O	Sp gr
0	5 2	1.043
10	7 0	1.056
20 30	9 2 11.6	1.073
40	14.2	1 104
50	17 1	1.121
60 70	20.3 23.6	1 137
70	23.6	1 146

(Tschernaj, J. Russ. Phys. Chem. Soc. 1912, 44, 1565.)

Saturated BaNO₂+Aq contains:— 36.18 pts Ba(NO₂)₂ to 100 pts, H₂O, and boils at 101 1°. (Griffiths.)

35.2 pts Ba(NO₂), to 100 pts H₂O₂ and boils at 101.65°, (Gay-Lussae) 34.8 pts Ba(NO₃)₂ to 100 pts. H₂O₂ and boils at 101.9°. (Mulder.)

101 0

101 1

highest temp, observed was 101.5°. (Gerlach, Z anal 26, 427.)

B. nt. of Ba(NO₂)₂+Ag containing nts.

Ba(NO ₁) ₂ to 100 pts H ₂ O.		١.
B-pt	Pts Bu(NOs).	ľ
100 5°	12 5	ı.

(Geriach, Z. anal 26, 440)

26 0

27 5

Insol, in cone, HNO,+Aq, and much less sol, in dil. HNO,+An or HCl+An than in H₂O.

Solubility of Ba(NO2), in HNO2+Au at 30° Calabata Same Parkets

South Datase, Datas (2015)		
So gr of set	G mol per l	
solution	HNO ₃	Ba(NO ₂) ₂
1 0891 1 0811	0 0000 0 1318 0 2496	0.4270 0.3282 0.3268
1 0663 1 0619 1 0609	0 4995 6 7494 1 000	0 2410 0 1785 0.1353
1 0633 1 0668 1 0783 1 1050	1 247 1 493 1 998 2 903	0.1056 0.0847 0.0598 0.0334
1 1341 1 1341 1 1645	3 986 3 994 5 012	0 0218 0 0223 0 0147

(Masson, Chem. Soc. 1911, 99, 1136)

Less sol, in dil. HC2H2O2+Aq than in dil. HCl+Aq. Solubility in NH4Cl+Aq is the same as in

H:0. Less sol, in NH₄OH+Aq, NH₄C₂H₃O₂+ Ag, or NH, NO, +Ag than in H,O. (Pearson,

Zeit, Ch. (2) 5, 662. Ba(NO₁)2 is sol, in about

13.33 pts H₂O at ord temp., and 4.67 pts. at 100°.

14.67 pts. NH₄OH+Aq (cone.) at ord temp, and 5.67 pts. at 100°. 16.50 pts. NH₄OH+Aq (1 vol. cone +3 vols. H₂O) at ord. temp.

28.00 pts. HCl+Aq (1 vol. conc. HCl+4 vols, H.O) at ord, temp

29 00 pts. HC2H2O2+Aq (1 vol. commercial HC,H,O,+1 vol, H,O) at ord, temp.

13 67 pts. NH₄Cl+Aq (1 pt. NH₄Cl+10 pts. H₂O) at ord. temp, and 4 67 pts at

24 00 pts, NII4NO3+Aq (1 pt. NH4NO++

boils at 101.9°. (Muner.)
34.8 pts. Ba(NO); to 100 pts. H₄O, and 10 pts. H₇O) at ord. temp.
17.33 pts. NH₄C;H₂O;+Aq (dd. NH₄OH)
boils at 102.5°. (Kremers.)
5.8 Ba(NO)...+Ao forms a crust at 101.1°; neutralised by dd. HC;H₃O;) at ord. temp.,

and 4.33 pts. at 100°. 14.67 pts. NaC₂H₂O₂+Aq (dil. HC₂H₈O₂ neutralised by Na₂CO₂ and dil. with 4 vols. II₂O) at ord, temp., and 5.33 pts. at 100°.
17.33 pts. Cu(C₂H₃O₂)₂+Aq (see Stolba, Z.

anal, 2, 390) at ord, temp, and 6,00 pts, at

18.67 pts. grape sugar (1 pt. grape sugar +10 pts. H-O) at ord, temp. (Pearson, Zeit

Ch. 1869, 662, Sol, in sat, NH4Cl+Aq without pptn. at first, but finally NH4Cl is pptd, until a certun state of equilibrium is reached. (Karsten.)

Solubility in BaO.H., 8H.O+Ac at 25°

Sp gr 25°/23°	G BaO as Ba(OH)2 in 100 g H2O	G Ba(NO ₃) ₃ m 100 g H ₂ O
1 0797 1 1002 1 1210 *1 1448	0 1.55 3.22 5.02	10 30 10 66 11 04 11.48
- 600		

* This solution is sat, with respect to both Ba(OH)2, 8H2O and Ba(NO2)2. (Parsons J. Am. Chem. Soc. 1910, 32, 1385.) See also under BaO2H2.

Solubility in BaCl.+Ag at to.

e Sat solution contains T ₂ BaCb ₃ T ₂ BaCb ₃			
-7 (2) 4 (4) (4) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	10	Sat solution contains	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		™ BaCh	% Bu(NO3)2
210 32 5 31 9	-1 +1 5 2 10 21 32 35 38 48 53 53 53 66 73 90 155 162	23 0 22 6 24 5 26 6 26 4 26 7 28 5 28 3 28 3 30 0 30 3 32 1 32 5	4 0 4 4 4 5 0 6 1 5 6 7 7 7 7 7 8 8 9 0 9 0 10 5 11 5 12 5 12 5 23 1
	210	32 5	81.9

(Étard, A. ch. 1894, (7) 3, 287.) See also under BaCl.

 $Ba(NO_s)_2+Pb(NO_s)_2$ Very al, sol. in sat. Pb(NO₃)₂+Aq. (Kar-

100 pts. sat Ba(NO₈)₂+Pb(NO₈)₂+Aq contain 33.95 pts. of the two salts at 19-20°. (v. Hauer, J pr. 98. 137.)

Solubility of Ba(NO₃)₂+Pb(NO₃)₂ at 25°.

G per!		Sp gr.
Ba(NOs)2	Pb(NOs)2	SP gr.
102 2 54 9 86 5 79 7 77 0 69 8 66 0 57 5 25 9 28.8	0 17 63 49.80 68 10 97 20 130 7 177 3 247 7 334 3 429 7	1 079 1 088 1 108 1 119 1 140 1 163 1 198 1 252 1 294 1 376
20.0	553 8	1 450

(Fock, Z. Kryst. Min. 1897, 28, 365, 397)

100 ccm Ba(NO₃)₂+Pb(NO₃)₂+Aq sat. at 17° contain 3.22 g Ba(NO₃)₂ and 38 59 g. Pb(NO₈)₂ and solution has sp. gr = 1.350 (Euler, Z. phys. Ch. 1904, 46, 313)

100 pts sat. Ba(NOs)s+Pb(NOs)s+

Sr(NO_{3)z}+Aq contain 45.90 pts. of the thr salts at 19-20°. (v. Hauer, l. c.) Ba(NO₃)z+Sr(NO₃)z 100 pts. sat Ba(NO₃)₂+Sr(NO₃)₃+Aq co tain 45.96 pts of the two salts at 19-20

(v. Hauer, l. c.) Ba(NO_s)_s+KNO_s.

100 pts. H2O dissolve

	1			(Mu	lder)		1
	- 1			(1)		ľ
KNO ₃ Ba(NO ₅) ₂ .	:	29	.7		8.8 5 4 4 2	8 9	
	_	(Kar	sten)		(K	opp) (5)	
KNO ₂ . Ba(NO ₂) ₂ .		.31 .91	29.	03 00	5.7 33.1	3.5 36.3	
	20	22	30	03	38 8	39 8	ĺ

 Sat. Ba(NO₂)₂+Aq sat. with KNO₂ 18.5° To sat. KNO₃+Aq, Ba(NO₃)₂+Aq v added To sat. Ba(NO₄)₂+Aq, KNO₃ v added

 Both salts in excess + Ag at 21.5°. Both salts in excess+Aq at 23°.

 I, of the solution contains 59 1 g. Ba(NO_a)₂ +124.2 g. KNO₃=183 35 g. mixed salts at 17°. Sp gi. Ba(NO₃)₂+KNO₃+Aq=1 120

1 l. of the solution contains 88 7 g Ba(NOs)2 +213 6 g KNO₃=302 3 g mixed salts at 30°. Sp g: Ba(NO₃)₂+KNO₃+Aq=1 191. (Euler, Z phys. Ch 1904, 49, 313)

Solubility in KNO₃+Aq at 25°.

100 pts of solu- tion contain		Solid phase
ptq KNO₃	Bu(NOs):	
15.24 14 69 14 79 16 30 21 99 27 66 27 81 27 94	6 60 6 62 5 49 3 04 2 01 2 09 1 92	Ba(NO ₃) ₂ +2KNO ₃ , Ba(NO ₅) 2KNO ₅ , Ba(NO ₃) ₂ KNO ₂ +2KNO ₅ , Ba(NO ₃) ₂ "

These results show that a double salt of potassium and barium nitrates is formed at 25°.

(Foote, Am. Ch. J 1904, 32, 252) Solubility of Ba(NO₂)₂+KNO₄ at to

- 1	- 101	Bolubility of Ba(INO2)2+IXINO8 at t .				
ee	t°	Ba(NO1)1	KNO:	Solid phase		
on- 0°.	9 1	6 25 4 20	0 8 15	Ba(NO ₃) ₂ Ba(NO ₃) ₂ +2KNO ₅ , Ba(NO ₃) ₂		
		1 98 0 98	12.02 16.80	2KNO ₃ , Ba(NO ₃) ₂ 2KNO ₃ , Ba(NO ₃) ₂ + KNO ₃		
_		0	16 76	KNO;		
-	21.1	8.46 7.47 6 35 6 06 5 98	0 2 12 5 98 8 47 13 24	Ba(NO ₃) ₂ " " Ba(NO ₃) ₂ +2KNO ₃ ,		
_		3 35 2 30 1 76	18 24 21 47 24 86 24 77	Ba(NO ₃) ₂ V · · · · · · · · · · · · · · · · · ·		
.5 .3 8	35	11.39 8 18 8 08 8 42	0 12 99 17 48 19 75	Ba(NO ₈) ₂ " Ba(NO ₃) ₂ +2KNO ₈ , Ba(NO ₈) ₂		
at vas		5 85 5 02 3 02	24 26 05 34 87	2KNO ₈ , Ba(NO ₈) ₂ 2KNO ₈ , Ba(NO ₈) ₂ + KNO ₃		
V88		1.77	34 98 35 01	KNO3		

(Findlay, Chem. Soc. 1914, 105, 779.)

Ba(NO₂)₂+NaNO₂. Ba(NO₂)₂ is sol in sat NaNO₃+Aq with-

out separation.

100 nto	H.O	diego	1.0.

		(Karsten) 11 18 73°		
${ m NaNO_3} \over { m Ba(NO_3)_2}$.		86 6	88 14 3.77	8 9
			(Kopp) M 20 22	
NaNO ₃ Ba(NO ₃) ₂		87 7	88 6 3.6	9 2

Solubility of $Ba(NO_3)_2 + NaNO_3$ in H_2O at 0° .

c NaNOs	'c Ba(NOa)	Solid phase	١.
0	4 74	Ba(NO ₂) ₂	Ī
0 41	4 33	1.	1
0.61	4 03		t
1.68	3 34	**	ľ
3.54	2 50	fs.	
8 05	1 60	44	1
12 71	1.56	44	ŀ
20.24	1 53	15	1
20 92	1 43	"	١-
27 74	1 56	**	1
30 81	1 55	ee .	
33 79	1 53		1
35 83	1 49		
41 30	1 55	Ba(NO ₂) ₂ +NaNO ₃	1
41.68	0 51	NaNO ₁	١.
42.47	0		10

(Coppadoro, Gazz, ch. it. 1912, 42 (1) 233)

Solubility of Ba(NO₀)₂+NaNO₈ in H₂O

uy oo ,			ŀ
No SO ₂	Ba(NOz)1	Sult I phase	
0	10 33	Ba(NO _z) ₂	ŀ
2 33	8 58	a	ı.
7.09	5 28	и	П
12 07	3 89	er	١
14 41	3 54	fa .	ı
17.87	3.20	64	١.
19 06	3 07	ee	Ь
23.55	2.81	14	Г
41 22	2 27	66	ı
48 22	2 11	Ra(NO.). IN aNO.	١

(Coppadoro, Gazz. ch. it. 1913, 43, I. 240.)

NaNO.

Moderately sol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, 20, 827.) 100 pts. hydrazine dissolves 81.1 pts. Ba(NO₂)₂ at 12.5-13°. (de Bruyn, R. t. c. 1899, 18. 297.)

100 pts anhydrous hydroxylamine dissolve 11.4 pts. Ba(NO₂)₂. (de Bruyn, R. t. c. 1892, 11. 18.)

Insol. in absolute alcohol. Solubility in dilute alcohol increases with

the temp. (Gerardm, A. ch (4) 5. 145)
Solubility in ethyl alcohol+Aq at 25°.

% CallaOH in C C HyOH in C. Ba(NOsts in the solvent the solution 9.557 63 10 25 9.5 17 5 18 60 6 02 25.05 23 7 5 25 40 20 38 8 3 53 58 00 57 0 1 85 78.70 78 2 0.6290 10 89 9 0.18 99 39 0.005 99 40

(D'Ans and Siegler, Z. phys. Ch. 1913, 82. 37.)

Completely insol. in boiling amyl alcohol, Browning, Sill. Am. J 143, 314.)

Solubility in organic solvents.

Solvent	% Ba(NOs): in the solution at 25°
Methyl alcohol Ethyl alcohol Acetone Ether Paracetaldehyde	0.50 0.005 0.005 very small
(D'Ans and Siegler, Z. pl	hys. Ch. 1913, 82, 44,)

Solubility in phenor+Aq at 20.			
Mol./Later	Solubility of Ba(No Mol/Liter		
0 000 0 045 0 082 0 146 0 310 0 401 0 501 0 728 (sat.)	0 3835 0 3785 0 3746 0 3664 0 3492 0 3400 0 3299 0 3098		

(Rothmund and Wilsmore, Z. phys Ch. 1902, 40. 620.)

Insol. in benzomtrile. (Naumann, B. 1914, 47. 1370.) Insol. in methyl acetate (Naumann, B. 1908, 42. 3790); ethyl acetate. (Naumann,

B. 1904, 37. 3602.)
Insol in acetone. (Krug and M'Elroy, J. Anal, Ch. 6. 184.)

Difficultly sol. in acetone (Naumann, B. 1904, 37, 4328.)
Sol. in acetone. (Eidmann, C. C. 1899, II.

1014.)

Barium mercurous nitrate, 2BaO, 2Hg₂O,

3N₂O₆.

Decomp. by H₂O Sol in hot dil. HNO₈+
Aq and hot Hg₂(NO₈)₂+Aq, from which it
crystallises on cooling (Stadeler, A. 87, 129.)

Barium potassium nitrate, Ba(NO₃)₂, 2KNO₃ Ppt. (Wallbridge, Am Ch J. 1903, 30.

154.)
Solubility determinations show that the only double salt formed by baruum and potassum nitrates at 25° is Ba(NO₃)₂, ZKNO₃.
See Ba(NO₃)₂+KNO₃ under Ba(NO₃)₂
(Foote, Am. Ch. J. 1904, **32**, 252)

Barium nitrate metatungstate, 2Ba(NO₅)₂, BaW₄O₁₃+6H₂O.

Efflorescent. Sol. in warm H₂O. (Péchaid, A. ch. (6) **22.** 198.)

Bismuth nitrate, basic, B₁₂O₃, N₂O₈+2H₂O.

Sol. in a large amount of H₂O. Sol in

Sol. in a large amount of H₂O. Sol in HNO₃+Aq (Heintz.) Sol. in 135 pts. H₂O at 90-93°. (Ruge, J. B.

1862. 163.) +1/2H₂O Sol. in much H₂O. (Yvon, 245.) C.R. 84. 1161.)

+H₂O. (Ruge) 2Bi₂O₃, N₂O₅. Not acted upon by H₂O (Ditte, C. R. 84, 1317.)

+H₂O. (Yvon) B₁₂O₃, 2N₂O₃+H₂O. (Ruge) 11B₁₂O₃, 5N₂O₃+16H₂O. Not decomp. by

H₂O (Yvon.) 5Bi₂O₃, 4N₂O₄+8H₂O Ppt. Not attacked

by H₂O. (Schulten, Bull. Soc 1903, (3) 29. 722) 5Bi₂O₃, 5N₂O₅+9H₂O. Sol. in H₂O with

decomp. (Schulten) 6B₁₆O₅, 5N₂O₅+8H₂O, and +9H₂O. (Rutten, Z. anorg 1902, **30**, 368)

At 25° the salt Bi₁₂O₁₃(NO₅):e, 9H₂O is in equilibrium with HNO₅+Aq from 0.03-0.32-N; the salt BiO(NO₃), H₂O is in equilibrium with HNO₅+Aq from 0.425-0.72-N.

At 50° the salt $Bi_1O_5(NO_4)_2$, H_2O is in equilibrium with HNO_4 +Aq from 0.087-0.285-N; the salt $Bi_{12}O_{16}(NO_4)_{16}$, $9H_2O$ is in equilibrium with HNO_5 +Aq from 0.285-0.440-N.

At 75° the salt Bi₄O₅(NO₅)₅, H₂O is m equilibrium with HNO₅+Aq from 0.109-0.314-N (Allan, Am. Ch. J. 1901, **25**. 314)

Bismuth nitrate, Bi(NOs)s.

Permanent. Decomp. by little H_iO with separation of a basic salt. This decomposition is prevented by slight excess of HNO₃, and then the salt is completely sol. in a large amount of H_iO. (Rose.). Sol in dil. HNO₃+Ad. Not decomp. by H_iO in presence of HC₂H_iO₂ or g²_{bq} pt

H₂O in presence of HC₂H₂O₂ or ₅±0 pt NH₄NO₃. (Lowe, J. pr. 74, 341.) Completely sol. in HNO₃+Aq containing

88 g. HNOs per liter. (Ditte.)

Solubility of $B_1(NO_3)_3$ in $2.3N-HNO_3+Aq$ = 2.04 g. at B1 per 1; in $0.922N-HNO_3+Aq$. = 2.23 g at B1 per 1 (Dubrisay, C. R. 1911, 153, 1077.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43, 314.)

Insol. in acetone. (Krug and M'Elroy) Solubility of Bi(NO₁)₂ in 6.67% acetone+ 2.3N-HNO₅+Aq=189 g. at Bi per 1; in 6.67% acetone+0.922N-HNO₅+Aq.=2.17 g. at Bi per 1; in 13.33% acetone+0.922N-

at Bi per 1.; in 13.33% acctone +0 922N-HNO₈+Aq=2.08 g. at Bi per l. (Dubrisay, C. R. 1911, **153**. 1077.) When Bi(NO₉)₅ is mixed with mannite

when BilNO_{3/3} is mixed with mannies (dulleits, sorbite) in proportion to the mol. wts and H₂O is added, a clear solution is obtained which is not ppd. by addition of much H₂O. These solutions are more stable the greate the proportion of mannitol. (Vanno and Hunser, Z. anorg. 1901, 28. 211.) ±114H₂O. (Ditte)

+1½/H₂O. (Dute) +5H₂O. (I treated with increasing amis. of H₂O, the amit. of Bi which dissolves decreases, and when 1 pt is treated with 50,000 pts H₂O, no Bi goes into solution. (Antony and Gigli, Gazz. ch it 1898, 28.

48 66 pts. are sol in 100 pts. acetone at 0°. 41.70 "" " 100 " " " 19°. (Laszczynski, B. 1894, 27, 2287.)

+5½H₂O. (Yvon, C. R. **84**. 1161.) +10H₂O. Melts in crystal H₂O with decomp at 74°. (Ordway)

Bismuth cesium nitrate, B1(NO₃)₈, 2CsNO₅. Ppt. (Wells, Am. Ch. J. 1901, **26**, 277)

Bismuth cobalt nitrate, 2Bi(NO₃)₃, 3Co(NO₄)₂ +24H₂O.

100 cc. sat. solution in HNO₈+Aq (sp. gr. 1 325) contain 54 67 g. hydrated salt. (Jantsch Z. anorg. 1912, 76. 321.)

Bismuth magnesium nitrate, 2Bi(NO₃)₃, 3Mg(NO₃)₂+24H₂O.

Deliquescent. Efficresces in dry au. Decomp. by H₂O. (Urbain and Lacombe, C. R. 1903, 137, 569)

100 cc. sat solution in HNO₂+Aq (sp. gr. 1 325) contain 41.69 g. hydrated salt. (Jantsch Z. anorg. 1912, **76**. 321.)

Bismuth manganous nitrate, 2Bi(NO₃)₃, 3Mn(NO₃)₂+24H₂O.

Deliquescent. Effloresces in dry air. Decomp. by H₂O. (Urbain and Lacombe, C. R. 1903, **137**, 569.)

100 co. sat. solution in HNO₅+Aq (sp. gr. 1.325) contain 65.77 g. hydrated salt. (Jantsch Z. anorg. 1912, **76**, 321.)

(Jantsch.)

Sp. gr. of Cd(NO₃)2+Aq at 25° Bismuth nickel nitrate, 2Bit NO₂)₂, 3Ni(NO₂)₂ 424H()

Deliquescent. Effloresces in dry air Decomp. by H₂O. (Urbain and Lacombe, C. R. 1903, 37, 569.)

100 cc. sat. solution in HNO2+Aq (sp. gr. 1.325) contain 46.20 g, hydrated salt at 16°. (Jantsch)

Bismuth zinc nitrate, 2Bi(NO₃)₃, 3Zn(NO₈)₂+

Deliquescent, Decomp, by H₂O. bain and Lacombe, C. R. 1903, 137, 569.) 100 cc. sat, solution in HNOs+Aq (sp. gr. 1.325) contam 57.51 g, hydrated salt at 10°

Cadmium nitrate, basic, Cd(OH)NO₃+H₂O. Decomp, by H2O, or ordinary alcohol.

(Klinger, B. 16, 997 12CdO, N₂O₅+11H₂O. Sl. sol. in H₂O; more sol, in H2O than basic sulphate (Haber-

mann, 5. 432 5 CdO, 2N₂O₅+8H₂O Decomp. by cold H₂O. (Roussean and Tite, C. R. 114, 1184)

Cadmium nitrate, Cd(NO₃)₂, Deliquescent, and very sol. in H₂O, Sec +4, and 9H2O.

Sp. gr. of aqueous solution containing. 10 15 20 25% Cd(NO2)2, 1.0528 1 0078 1 1516 1 2131 1.2842

50% Cd(NO2). 1,3566 1 4372 1,5372 1,6474 1,7608 (Franz. J. pr. (2) 5, 274.)

Sp. gr. of Cd(NO₂)2+Aq at 18° % Cd(NOs): 1 5 1,0069 1 0415 1,0869 Sp. gr. 1.136 % Cd(NO₂)₂ 20: 30 35 Sp. gr. 1.1903 1.25 1 3125 1.3802 % Cd(NO2)2 Sp. gr. 1,543 1.4591.5978

(Grotrian, W. Ann. 1883, 18, 193.) Sp. gr. of Cd(NO₁)₂+Aq at room temp.

containing: 7.81 15.71 22,36% Cd(NO₂)2. 1.1593 1 2411 1.0744

(Wagner, W. Ann. 1883, 18. 265.) Sp. gr. of Cd(NO₂)₂+Aq.

Cd(NOa)2	t°	Sp gr st t°	Sp gr at 18
0.0492	17.57	0 99912	0 99904
0.100	21 14 18 00 17 34	0 99839	0 99945
0 464	20 22 18 00	1 0002	1.0025
0.952	18.00	:	1 0065
(177 1		OL 1000	

(Wershofen, Z. phys. Ch. 1890, 5, 493.)

So gr

1 0954 1-normal 1/2-1 0479 1/4-1 0249 1/15-1 0119

(Wagner, Z phys Ch 1890, 5. 36.)

Sp. gr of Cd(NO₃)2+Aq at 18°/4°. % Cd(NO₂)2 54.027 43 716 30.879 Sp gr. 1.711 1.515 1.321 14.890 8 683 % Cd(NO₃)₃

1.204 1 134 1.074 Sp gr. (de Muynek, W. Ann. 1894, 53, 561.)

Cd(NO₂)2+Aq containing 7.89% Cd(NO₃)2 has sp. gr 20°/20° = 1.0673. Cd(NO₃)₂ + Aq conta containing

Cd(NO₃)₂ has sp. gr. 20°/20° = 1.1070. (Le Blane and Rohland, Z. phys. Ch. 1896, Sat Cd(NO₃)₂+Ag boils at 132°

Almost entirely insol, in conc. HNO.+Aq. (Wurtz) Moderately sol, in liquid NH2. (Franklin, Am. Ch. J. 1898, 20, 827.)

Sol. in alcohol Sol. in ethyl acetate. (Naumann, B. 1904, 37. 3601.)

Sol. m acetone and in methylal. (Eid-mann, C. C. 1899, II. 1014.) H₂O. M.-pt. of Cd(NO₃)₂+4H₂O = (Ordway; Tilden, Chem, Soc. 45, 409.) +4H.O. 59.5° Solubility in H₂O

Solubility in H₂O at to.

committy in 1210 moot				
t°	Cd(NO2)2 in the solution	Mols H ₂ O to 1 mol Cd(NO ₃):		
0 18 30 40 59 5 mpt	52 31 55 90 58 40 61 42 76 54	11 96 10.34 9 34 8.24 4.00		

(Funk, B, 1899, 32, 105.)

Sat. solution of Cd(NO₃)₂+4H₂O m H₂O at 0° contains 52.3% Cd(NO₃)₅; at 18°, 55 9% Cd(NO₂)2. (Mylius, Z. anorg, 1912, 74. 411.)

Sol. in liquid NHs. (Johnson and Wilsmore, Elektroch. Z. 1908, 14, 227.)
Sol. in acetone. (Naumann, B. 1904, 37.

Sol. in ethyl acetate. (Naumann, B. 1910. 43, 314.)

+9H₂O. Solubility in H₂O.

Sat. solution contains at: -10 +19 37.37 47.33 52 73% Cd(NO_{*}).

Cryohydrate is formed at -16°. (Funk. Z. anorg. 1899, 20, 416.)

The composition of the hydrates formed by Cd(NO₂)₂ at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by Cd(NO₄)₂ and of the conductivity and sp. gr. of Cd(NO₂)₂+Aq. (Jones, Am. Ch. J. 1905, 34. 308)

Cadmium uranyl nitrate, Cd(NO₂)₂.

(UO2)(NO3)2+30H2O Sol in H₂O and acids. Insol. in alcohol and alkalies+Aq. (Lancien, C. C. 1912. I 208.)

Cadmium nutrate ammonia, Cd(NO₃)₂, 6NH₃

(André, C. R. 104, 987.)

Cadmium nitrate cupric oxide, Cd(NO1)1, CuO+5H.O. Ppt. (Mailhe, C. R. 1902, 134, 235.)

Cadrum natrate cupric oxide, Cd(NOs)2, 3CuO+5H2O (Mailhe, A ch 1902, (7) 27, 383.)

Cadmium nitrate hydrazine, Cd(NO3)2,

3N2H4. Decomp. by hot H₂O. Sol. in warm NH.OH. (Franzen, Z. anorg. 1908, 60. 282.)

Cæsium nitrate, CsNO3.

100 pts. H₂O dissolve 10 58 pts. CsNO₂ at 3.2° Sl. sol. in absolute alcohol. (Bunsen.)

Solubility of CsNO₂ in H₂O at t^o.

t°.	G CaNOs per 100 g		t°		2sNO ₂ 100 g
٠	Solu- tion	Water		Solu- tion	Water
0 10 20 30 40 50	8.54 12.97 18.7 25.3 32 1 39 2	9 33 14 9 23 0 33 9 47 2 64 4	60 70 80 90 100 106.2	45.6 51.7 57.3 62.0 66.3 68.8	83 8 107.0 134.0 163 0 197.0 220 3

(Berkeley, Trans. Roy. Soc 1904, 203 A. 213.)

100 g. H₂O dissolve 26 945 g. CsNO₃ at 25°. (Haigh, J. Am. Chem. Soc. 1912, 34. 1148.) Sp. gr. 20°/4° of a normal solution of CaNO₃

=1.140905; of a 0.5 normal solution = 1.07001. (Haigh.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4328.) Solubility in glycol=8% at ord. temp. (de Connck, Belg. Acad. Bull. 1905, 359.)

Cæsium hydrogen nitrate.

CsNO2, HNO2, Sol in H2O (Wells, Am. Ch. J. 1901, 26, 273.) CsNO. 2HNO. (W.)

Cæsium cerium nitrate, CsoCe(NO1)5. Sol. in H₂O; very al. sol. in HNO₃. (Meyer, Z. anorg. 1901, **27**. 371) Sol. in HNO₃. (Meyer, B. 1900, **33**. 2137.)

Casium ferric nitrate, CsNO₃, Fe(NO₆)₃+

Deliguescent, (Wells, Am. Ch. J. 1901, 26, 276.)

Cæsium silver nitrate, CsNO₈, AgNO₂. Sol. in H.O. (Russell and Maskelvne, Rov. Soc. Proc. 26, 357.)

Casium thorum nitrate, CsoTh(NOs)s.

Decomp by H₂O; sl. sol in HNO. (Mever. Z. anorg 1901, 27, 384.)

Casium uranvi nitrate, Cs(UO2)(NO2)2. Decomp by H.O. Sol, in conc HNO.

(Meyer, B 1903, 36, 4057) Decomp, by H2O at low temp., so that the solid phase in contact with the solution con-Disso in contact with the solution consists of the double salt and CsNO₂. At 16 1° 100 pts. by wt. of the solution in H_2O contain 31.39 pts. UO_2 and 6 59 pts. Cs. (Runbach, B. 1904, 37. 477.)

Calcium nitrate, basic, Ca(NO₂), CaO₂H₂+

21/2H2O. Decomp. by H.O. (Werner, A. ch. (6) 27.

+H₂O. As above. (Rousseau and Tite, C. R. 114, 1184.)

Calcium nitrate, Ca(NO₂)₂.

Deliquescent. Very sol, in H2O with evolution of much heat. 100 pts H₂O at 0° dissolve 84.2 pts, Ca(NO₁)₂ (Poggiale.) 100 pts. H₂O at 0° dissolve 93.1 pts.

Ca(NO₂)₂. (Mulder) Sol. in 0 25 pt cold H₂O with reduction of temp. Sol in all proportions in boiling H₂O (Berrelius) Sol. in 2 pts cold, and 0 6887 pt boiling H₂O

(Fourerry) Sat Ca(NO₂)₂+Aq at 12 5° contains 33 8% (Hassenfratz, A ch 28, 29.)

Solubility in H₂O.

100 g. of the solution contain at: 55° 90° 80° 100° 78 16 78 20 78 37

78 43 g, Ca(NO₁)2, 125° 147.5° 151° (bpt. of sat. solution at

760 mm.) 78.57 78.80 79.00 g, Ca(NO₂)₂,

The anhydrous salt is the stable solid phase above 51 3°. (Bassett and Taylor, Chem. Soc 1912, 101, 580.)

,

100 g sat. Ca(NO₃)₂+Aq contain 77.3 g, Ca(NO₃)₂ at 25°. (Taylor and Henderson,

J. Am Chem. Soc. 1915, 37, 1692) See also +2, 3, and 4H2O. So, gr. of Ca(NO₄)₂+Aq at room temp.

containing. 17.55 30.10 40.13% Cat NO2)2. 1 1714 1,2739 1 3857

(Wagner, W. Ann. 1883, 18, 270.)

Sp gr. of Ca(NO ₂) ₂ +Aq at 17.5			
CathOne	Sp gr	Ca(No.12	Sp gr
1 5 10 15 20 25 30	1 009 1.045 1 086 1.129 1 174 1 222 1 272	35 40 45 50 55 60	1.328 1.385 1.447 1.515 1.588 1.666

(Franz, J. pr. (2) 5. 274) C- -- -- -- CO-- NOVY | 1 A -- + 177 FO

Sp pr	Ca(NO ₂₀₂	Sp gr
1 076 1.163 1 261	40 50 60	1.368 1.483 1.605
	1.163 1 261	1.163 50

So are of CacNO .) +Aa at 18° Sp gr Sp. gr CalNOns CarNons 6 25 1 0487 37.5 1 3546 12.5 1 1016 50 0 1 5102 25 0 1.2198

(Kohlrausch, W. Ann. 1879, 1) Sp ga of $Ca(NO_a)_2+\Lambda a$ at 24.65°, a=naof g. X 12 mol. wt. dissolved in 1000 g. ıé.

11.0; b = sp. gr. if a is Ca(NO ₃), 4H ₂ O 1≤ mol. wt, =118; c = sp. gr. if a i Ca(NO ₃), 1≤ mol wt =82.					
n	ь		a	b	e
1 2 3 4 5	1 056 1.104 1 145 1 181 1.213	1.059 1.112 1.160 1.205 1.246	6 7 8 9 10	1 243 1 270 1 294 1 316 1 336	1 286 1 323

(Favre and Valson, C. R. 79, 968.)

Sp. gr. of Ca(NO₄)2+Aq at 25°. Concentration of Ca(NO₂)₂+Aq Sp gr

	1
1-normal 1/2 " 1/4 " 1/4 "	1.0590 1.0300 1.0151
1)/8 "	1.0076

(Wagner, Z. phys. Ch. 1890, 5, 36.)

Ca(NO₃)₂+Aq containing 7.15% Ca(NO₃)₃ has sp. gr. 20°/20° = 1.0554. Ca(NO_a)₂+Aq containing 7 91% Ca(NO_a)_a has sp. gr. $20^{\circ}/20^{\circ} = 1.0613$

(Le Blane and Rohland, Z. phys. Ch. 1896. 19. 2SL)

Sp. gr. of Cat NO21+Aq at 20° containing M g, mols, of salt per liter. м 0.025 0.05 0.125Sp. gr. 1,001846 1 003166 1 00604 1.01523

0.250.5. 0.75 1,03074 1,06011 1,08874 Sp. gr.

1.00 1.50

Sp. gr. 1.11751 1 17375 (Jones and Pearce, Am. Ch. J. 1907, 38, 704.)

Saturated Ca(NO₃)₂+Aq containing 351.2 pts Ca(NO₃)₂ to 100 pts. H₂O boils at 151° (Legrand); 152° (Kremers).

Forms a crust at 141°, and contains 333 5 pts. Ca(NO₂)₂ to 100 pts. H₂O, highest temp. observed, 151°. (Gerlach, Z. anal. 26, 427.) B-pt. of Ca(NO₃)₃+Aq containing pts. Ca(NO₃)₂ to 100 pts. H.O. G=according to Gerlach (Z. anal 26, 447), L=

according to Legrand (A. ch (2) 59, 436). B pt B-pt 101° 10 215.5102 25 3 197.0 20 128 222 5 30 34 4 129 230 40 42 6 130 237.5209 5 50 50 4 245 60 57 8 253 222 2 70 64 9

Sat. Ca(NO₃)₂+Aq boils at 132°. (Ordway, Sill. Am. J. (2) 27, 14,)

Cone. HNO₃ precipitates Ca(NO₄)₂ from its aqueous solution. (Mitscherlich, Pogg. 18. 159.) Very sol, in conc. HNOs. (Rawson, J. Soc. Chem. Ind. 1897, 16. 113.)

Solubilit	y in HNO	+Aq at 25°.	
100 g of the solut	tion contain	Solid phase	
G Ca(NOz)2	G HNO ₂		Ľ
57 98 54 82 95 54 82 96 54 82 96 54 82 96 54 82 96 54 82 96 54 82 96 77 82 94 55 96 94 82 22 56 97 79 31 99 24 92 95 95 95 95 95 95 95 95 95 95 95 95 95	0 00 3 337 7 21 11.27 11.27 12.28 11.27 22.80 28.81 32.62 33.563 41.60 40.56 45.76 40.56 62.65 62.65 63.83 6	Ca(NO ₃) ₂ +4H ₄ O Ca(NO ₃) ₂ +3H ₅ O Ca(NO ₃) ₂ +2H ₄ O	- (1 A b
0 00	00 00	,	

These results show that the hydrates of Ca(NO₂), which are stable at 25° in contact with HNO3+Aq are Ca(NO3)2+4H2O, +3H₂O and +2H₂O.

(Bassett and Taylor, Chem Soc. 1912, 101. 582)

Sol. in glacial HC2H2O2. (Persoz.) Sol. in sat. KNO3+Aq with elevation of temp. and pptn. of a portion of KNOs. (Fourcroy and Vauquelin, A. ch. 11. 135.)

Solubility of Ca(NOs)2+NaNOs at to.

to.	Ca(NOs):	NaNO:	Solid phase
9	47 51 46.08 26 67 11 76	9 51 12 56 23.32 34 26	Ca(NO ₃) ₂ , 4H ₂ O "+NaNO ₃ NaNO ₃
25	54.58 53.22 52.73 52.40 37.31 26.91 14.61	7.25 10.70 12.08 11.58 19.48 24.98 36.12	Ca(NO ₃)2, 4H4O " +NaNO ₃ NaNO ₃ "

(Kremann and Rothmund, Z anorg. 1914, 86. 373.)

Solubility of Ca(NOz)2+CaS2Oz at to.

t°	Ca(NO2)2	CaSiOs	Solid phase
9	46 02 45.68 27.92 10.49	5 46 6 81 10 46 22.81 29.33	Ca(NO ₂) ₂ , 4H ₂ O "CaS ₂ O ₃ , 6H ₂ O CaS ₂ O ₃ , 6H ₂ O
25	54 03 50 25 45 92 42 93 32.01 19 51 8.15	4 27 9.10 13. 13.83 17 09 23.78 29 85	Ca(NO ₃) ₂ , 4H ₂ O "+CaS ₂ O ₃ , 6H ₂ O CaS ₂ O ₃ 6H ₂ O

Kremann and Rothmund, Z. anorg. 1914, 86. 373.)

Very easily sol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, 20, 827.) nin. cn. 3 1898, 20. 521.)
Sol. in O.8 pt. alcohol (Macquer); 1 pt.
boiling slcohol. (Bergmann.)
Dry Ca(NO₁)₂ is sol. in 7 pts. alcohol at
15° and 1 pt. boiling alcohol. (Bergmann.)

Sp. gr. of Ca(NO₂)2+alcohol.

% Ca(NOs)2	Sp gr 20°/20°
0	0 7949
4 96	0 8278
6 47	0.8383

(Le Blanc and Rohland, Z. phys. Ch 1896, 19, 284.)

Solubility in ethyl alcohol+Ac at 25°.

% CsHsOH :n	% CtHsOH in	% Ca(NOs)3 in
the solvent	the solution	the solution
*0	0	82 5
*25.1	5 8	77.0
*50.1	15 2	69.52
*60.1	20 4	66.08
*63.9	22.4	64 94
.70.4	26.5	62 3
72.0	27.39	61.96
73.4	28.5	61.15
75.3	29 9	60 3
*84.9	35.9	57.7
*99.1	48 1	51.4

* Metastable solutions.

(D'Ans and Siegler, Z. phys. Ch. 1913, 82, 43.)

Solubility of Ca(NO₈)₀, 2C₈H₈OH in C₈H₈OH +An at 25°

the solvent	" CallsOll in the solution	"; Ca(NO ₄) ₂ in the solution		
98 1 94 1 85 8 80 5 75 3	60 2 54 6 42 5 35 8 29 9	38 6 41 9 50 97 55 3 60 28		

(D'Ans and Siegler, L. c.) See also under +4H₂O.

Solubility in organic solvents

Solvent	So Ca(NOs); in the solution at 25°
Methyl alcohol	65 5
Ethyl alcohol	52 0
Propyl alcohol	36 5
Isobutyl alcohol	25.0
Amyl alcohol	13 3
Acctone	58 5

(D'Ans and Siegler, l, c.)

Sol, in 187 pts ether-alcohol (1.1) (Fresenus, Z. anal 32, 191.) Ether ppts, Ca(NO₃)₂ from its alcoholic solution. Easily sol in boiling amyl alcohol

(Browning, Sill, Am. J. 143, 53.) Sol m acetone (Naumann, B. 1904, 37, 4328.)

Insol. in benzonitiile (Naumann, B. 1914. 47, 1370.) Insol. in methylal. (Eidmann, C. C. 1899,

II. 1014.) 1 g. Ca(NO₃)₂ is sol. in 1.44 g. methyl acetate at 18°. Sp. gr. 18°/4° of sat solution =1.313. (Naumann, B. 1909, 42. 3795.)

Sol, in ethyl acetate. (Naumann, B. 1910. 43. 314.) +2H₂O. Solubility in H₂O

100 g of the solution contain at 40° 519 77.49

78.05 g Ca(NO₃)₂.

Solutions in stable equilibrium with the dihydrate can only exist between the limits of temp, 48.1° and 51 3°. (Bassett and Taylor, Chem. Soc. 1912, 101. 580.)

+3H₂O, Solubility in H₂O. 100 g, of the solution contain at: 40° 45° 50° 519

71.45 70 37 0 37 71.45 73.79 74.73 g. Ca(NO₃)₂. Mpt. of Ca(NO₃)₂+3H₂O =51.1°. (Bassett and Taylor, l, c,)

+411.0. Ca(NO₂)₂+4H₂O melts in its crystal H₂O at 44°. (Tilden, Chem. Soc. 45. 409.)

Solubility in II₉O at t°.

100 g of the solution contain g, Ca(NO_a). at to.

t°	G Cı(NOı):
26 7	43 37
10 0	47 31
0.0	50 50
+50	51 97
10 0	53 55
15 0	54 94
20 0	56 39
25 0	57 98
30 0	60 41
35 0	62 88
40 0	66 21
42 4	68 68
42 5	68 74
42 7	mpt of Ca(NO ₂) ₂ +4H ₂ O
42 45	71 70

(Bassett and Taylor, l, c)

Solubility of a and B modifications in H₂O at to.

a modification is the stable form. G Ca(NOz): in 100 g of 10 Solid phase solution 50 17 a Ca(NO₈)2+4H2O $2^{\circ}2$ 56.88 57 90 25 0 30 0 60.16 _ 30 0 61.57 в 34 0 63.66 β 62 88 35.0 a 38.0 64.84 α ,, 66.65 в 38 0 39.0 67.93 β .. 139.6 69 50 .. 2 39 O 75 34 8 40.0 66.21 a

1 42 7 242 4 1 mpt of hydrate. 2 reflex pt.

(Taylor and Henderson, J Am. Chem Soc 1915, 37, 1692,

69 50 α

71.70a ..

Sp. gr. of solution sat. at 18°=1.548, con-

taining 54.8% Ca(NO₂)₂. (Mylius, B. 1897, 30, 1718)

Solubility in ethyl alcohol+Aq at 25°.			
c C:H:OH in the solvent	% CtHsOH in the solution	% Ca(NOs)2 in the solution	
0 18 3 39 2 59 2 80 4 90 4 99 4 99 4 90 1 60 1 60 1	0 3 5 8 1 14 1 22 3 29 4 31 1 31 2 29 5 28 3 27 8 27 3 26 5	57 5 56 I 55 2 52 9 50 2 49 0 49.7 52.0 56 2 58 9 60 0 60 7 62 3	

(D'Ans and Siegler, Z. phys. Ch. 1913, 82. 42.)

Calcium nitrate hydrazine, Ca(NO₃)₂, 2N₂H₄ +H₂O. Ppt. (Franzen, Z anorg 1908, **60**. 288.)

Calcium nitrate tungstosilicate, Ca₂W₁₃SiO₄₀,

+13H₂O and +15H₂O. Decomp by H₂O. (Wyrouboff, Chem. Soc. 1897, **72.** (2) 176.)

Cerous nitrate, Cc(NO₂)₃+6H₂O.

Not very deliquescent. (John.) Very sol in H₂O; sol. in 2 pts. alcohol. (Vauquelin.)

Sol. in acetone. (Eidmann, C C. 1899. II 1014; Naumann, B 1904, 37. 4328.)

Ceric nitrate, Ce(NO₃)4.

Deliquescent. Decomp, by hot H₂O (Berzelius.)

Sol. in alcohol. (Dumas)
Basic compounds containing 12 mols, or
less CeO₂ to 1 mol. N₂O₃ may be obtained,
which are sol. in H₂O (Ordway)

 $\begin{array}{cccc} Cerous & cobaltous & nitrate, & 2Ce(NO_{8})_{3}, \\ & 3Co(NO_{8})_{2}+24H_{2}O. \end{array}$

Deliquescent. Easily forms supersaturated solutions. (Lange, J. pr. 82. 129)
1 l. sat. solution in HNO₃+Aq (sp. gr. 1325) contains 103 3 g. hydrous salt at 16°. (Jantsch, Z. anorg 1912, 76. 321.)

Ceric cobaltous nitrate, CeCo(NO₃)₄+8H₄O.
Decomp. by H₂O when heated; sol. in cold H₂O; sl. sol. in HNO₃. (Meyer, Z. anorg.

1901, 27. 376.)
Cerous magnesium nitrate, 2Ce(NO₂)₂, 3Mg(NO₂)₂+24H₂O.

Slightly deliquescent. Easily sol. in H₂O or alcohol, and easily forms supersaturated solutions. (Holzmann, J. pr. 75, 330) 1.1. sat. solution in HNO₂+Aq (sp. gr. 1.325) contains 63.8 g hydrous salt at 16° (Jantsch, Z. anorg. 1912, 76, 321.)

Ceric magnesium nitrate, CeMg(NO₂)₅. +8H₂O. Decomp by H₂O: sol in HNO₈+Aq w

Decomp by H₂O; sol in HNO₈+Aq without decomp. (Meyer, Z anorg. 1901, 27. 373.)

Cerous manganous nitrate, 2Ce(NO₈)₁, 3Mn(NO₁)₂+24H₂O .

Sol. in H₂O (Lange, J. pr 82, 129.) 1 l. sat. solution in HNO₄+Aq (sp gr. 1,325) contains 193.1 g. hydrous salt at 16°.

(Jantsch.)
Ceric manganous nitrate, CeMn(NO₃)₆+

Decomp. by H₄O and dil. HNO₃; sol. in cone. HNO₃ without decomp. (Meyer, Z anorg. 1901, 27. 377.)

Cerous nickel nitrate, 2Ce(NO₃)₃, 3N₁(NO₂)₂ +24H₂O,

Easily sol. in H₂O. (Holzmann, J. pr. 75. 321.)

11 sat. solution in HNO₃+Aq (sp. gr 1.325) contains 80 3 g hydrous salt at 16°. (Jantsch.)

Ceric nickel nitrate, CeN₁(NO₃)_t+8H₂O.
Decomp. by H₃O when heated, sol in H₂O
in the cold; sl. sol. m HNO₃ (Meyer, Z.
anorg. 1901, 27. 375.)

Cerous potassium nitrate, Ce(NO₃)₃, 2KNO₃ +2H₂O

Sol. in H₂O. (Lange, J. pr. 82. 136.)

Ceric potassium nitrate, CeK₇(NO₁)₀
Sol m H₂O with decomp. (Meyer, Z. anorg. 1901, 27. 370.)
+1½H₃O Efflorescent. (Holzmann, J.

r pr. 75. 324.)

Ceric rubidium nitrate, CeRu₂(NO₃)₆.

Very sol. in H₂O; sl sol. in HNO₃. (Meyer.)

Ceric sodium nitrate.

Dehouescent. Decomp. by recrystalliza-

tion (Holzmann.)

Cerous thallous nitrate, [Cc(NO₃)₄]Tl₂+

4H₂O Very hydroscopic. Decomp. by H₂O. (Jantsch, Z anorg. 1911, 69. 229.)

Cerous zinc natrate, 2Ce(NO_a)_a, 3Zn(NO_a)₂+ 24H₂O.

Sol in H₂O. Easily forms supersat. solutions (Lange, J pr 82, 129.) 1 1 sat. solution in HNO₄+Aq (sp. gr. 1,325) contains 124 1 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, 76, 321)

Ceric zinc nitrate, ZnCe(NO₂)₂+8H₂O.
Decomp. by H₂O; sol. in HNO₂+Aq.
(Mever, Z anorg, 1901, 27, 374.)

, as among, area, area,

Ceroceric zinc nitrate (?), Ce₃O₄, 2ZnO, 6N2O5+18H2O (?) Easily sol, in H₂O, (Holzmann, J, pr. 75.

321)

Chromic nitrate, basic, Cr₂O(NO₃)₄. Sol. in H₀O. (Lowel.) +12H₂(), Sol. in H₂O. (Ordway.)

Chromic nitrate, Cr(NO₃)₂+9H₂O. Very sol, in H₂O and alcohol. (Lowel.) Melts in its crystal H₂O at 36.5°. Sat Cr(NO₃)₅+Aq boils at 125.6°. (Ordway)

Sp. gr. of Cr(NO₅)₄+Aq. M = concentration of solution in gram, W=wt, of 25 cc. of solution.

M 0.0934 0.1868 0.3736 0.5604 0.9340 W 25,4300 25,8828 26 7302 27,5524 29,3072

1.1208 1.3076 1.4944 1.8680 W 30 0668 30 8464 31 6327 33.3379 (Jones and Getman, Z. phys. Ch. 1904, 49. 426.)

Sol m aretone (Naumann, B. 1904, 37. 4328; Eidmann, C. C. 1899, II, 1014.)

Chromic nitrate chloride, CrCl_{*}(NO₃). Sol. in H₂O and alcohol. (Schiff, A. 124. 177.)

Cr(NO₃)₂Cl (Schiff.)

Chromic nitrate sulphate, Cr2(SO4)(NO3)4. Hygroscopic. Completely sol. in H2O. Cr2(SO4)2(NO4)2. Sol in H2O. (Schiff, A. 124. 174.)

Cobaltous nitrate, basic, 6CoO, N₂O₅+5H₂O. Ppt. Gradually sol. in H2O with deposition of CoO. (Winkelblech, A. 13, 155)
Sol. in cold HCl, and HNO₄+Aq. Deeomp. by hot KOH+Aq. 4CoO, N₂O₄+6H₂O. Ppt. (Habermann, M. 5. 432.)

Cobaltous nitrate, Co(NOs):

Deliquescent in moist air. Very sol. in HO.

See +3, 6, and 9H2O. Sp. gr. of aqueous solution at 17.5° con-

taining: 15 20% Co(NO₂)₂, 1.1936 1.0462 1.0906 1.1378

40% Co(NO_z)_z. 1.4662 1,2538 1.3190 1.3896 Sp. gr. of sat. solution = 1.5382.

(Franz, J. pr. (2) 5, 274) Sp. gr. of Co(NO₂)₂+Ag at room temp.

containing: 8.28 15.96 24.528% Co(NOs)2. 1.0732 1.1436 1,2288

(Wagner, W. Ann. 1883, 18, 268.)

Sp. gr. of Co(NO₃)₂+Aq at 25°.

Concentration of Co(NOs)s+Mq	Sp gr
1-normal 1/s- " 1/s- "	1.0728 1 0369 1 0184 1 0094

(Wagner, Z phys. Ch 1890, 5, 37.)

Sp. gr at 20° of Co(NO₁)₂+Aq containing M g mols, Co(NO_{*}), per liter. M 0.01 0.0250.05

Sp. gr. 1 001496 1.003863 1.007579 1.011289 м 0.10

Sp. gr. 1.015084 1.03737 1.07415 1.11204

Sp. gr 1.14612 1.21720 1.28576 (Jones and Pearce, Am. Ch. J. 1907, 38, 715.) Sol. in hquid NH3. (Guntz, Bull. Soc.

1909 (4) 5. 1009.) 100 g. sat. solution in glycol contains 80 g. Co(NO₃)₂ (de Coninck, C. C. 1905, II. 883.) Sol in ethyl acetate. (Naumann, B. 1904,

37. 3601.) +3H₂O. Solubility in H₂O.

Sat. solution contains at. 70° 84°

91° mpt 61.74 62 88 64.89 68.84 77.21% Co(NOs)s. (Funk, Z. anorg, 1899, 20, 408.)

+6H₂O. Melts in its crystal H₂O at 56° (Ordway); 38° (Triden). Solubility in H2O

Sat. solution contains at: -21° -10° -4° 0°

-L18º

41.55 43.69 44.85 45.66% Co(NOs)2,

56° mpt. 49.73 55.96 62.88% Co(NO₄)₂, (Funk, Z. anorg, 1899, 20, 408,)

Moderately sol, in liquid NH₂. (Franklin. Am Ch. J. 1898, 20, 827.)
Easily sol. in alcohol. Sol, in 1 pt. strong alcohol at 12 5° (Wenzel, Eastly sol, in acetone. (Krug and M'Elroy, J. Anal. Ch. 6, 184.)

Sol, in methyl acetate, (Naumann, B. 1909, 42, 3790,) Difficultly sol, in ethyl acctate, (Naumann, B. 1910, 43, 314.)

+9H.O. Solubility in H.O.

Sat. solution contains at: --26° --23.5° --20.5°

39.45 40.40 42.77% Co(NO₁)₂. Cryohydrate is formed at -29°. (Funk, Z anorg, 1899, 20, 409,)

Cobaltous didymium nitrate, 3Co(NOs)2, 2D1(NO₃)₃+48H₄O

Very deliquescent. (Frenchs and Smith, A 191, 331.)

Cobaltous gadolinium nitrate, 3Co(NOs)2, 2Gd(NO₃)₃+24H₂O

1 l. sat. solution in HNOs (sp. gr. 1.325) contains 451.4 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, 76. 303)

Cobaltous lanthanum nitrate, 3Co(NO3)2, 2La(NOs)s+24H2O.

 l. sat. solution in HNO_s+Aq (sp. gr 1.325) contains 109 2 g. hydrous salt at 16° (Jantsch, Z. anorg 1912, **76**. 303.)

Cobaltous neodymium nitrate, 3Co(NO₃)₂, 2Na(NO₃)₃+24H₂O.

 1 l. sat. solution in HNO₄+Aq (sp. gr. 1,325) contains 151 6 hydrous salt at 16°. (Jantsch)

Cobaltous praseodymium nitrate, 3Co(NO₃)₂, 2Pr(NO₃)₃+24H₂O.

 l. sat solution in HNO₃+Aq (sp gr. 1,325) contains 12.99 g. hydrous salt at 16° (Jantsch.)

Cobaltous samarium nitrate, 3Co(NO2)2, 28m(NO₂)₂+24H₂O 1 l. sat. solution in HNOa+Aq (sp. g

1,325) contains 34,27 g, hydrous salt at 16° (Jantsch.)

Cobaltous thorium nitrate, CoTh(NOa)a+ Hydroscopic: sol. in HNO*+Ag. (Meyer.

Z, anoig 1901, 27, 387.) Cobaltous nitrate ammonia, Co(NO₃)₂, 6NH₂

 $+2H_{2}O.$ Decomp, by H_{*}O with separation of basic

nitrate. (Fremy.) Sol in NH₄OH+Ag. (Hess)

Cobaltous nitrate cupric oxide, Co(NO3)2, $3CuO + 3H_oO$

Ppt. (Mailhe, C. R. 1902, 134, 234.)

Cobaltous nitrate hydrazine, Co(NO₂)₃, 3N.H. Decomp, by hot H.O. (Franzen, Z. anorg.

1908, 60, 274.)

Cupric nitrate, basic, 2CuO, N2Os.

(Ditte, A ch. 1879, (5) 18, 339) 4CuO, N₄O₈+3H₂O. Insol. in H₂O. Easily sol. in acids. (Graham, A. 29, 13.) Insol in H2O; easily sol. in acids (Athanasesco, Bull. Soc. 1895, (3) 11. 1113) +3½H₂O. Insol. in H₂O, and decomp. by

heat. (Casselman, Z. anal 4. 24.)

Cupric nitrate, Cu(NOs):

Deliquescent. Very easily sol. in H2O or alcohol, also in moderately conc HNO3+Aq, but is precipitated from cone, aqueous solution by HNO₄+Aq of 1.522 sp. gr (Mitscherlich, Pogg 18, 159)

Sat. Cu(NOs) +Aq contains at —3° ---10° +39

38.8 41 6 44.5% Cu(NO₃)2.

20℃ 48 5 54.1 61.2% Cu(NO2)2. (Étard, A. ch. 1894, (7) 2, 528.) See +3, 6, and 9H2O

Sp. gr of Cu(NO₃)₂+Aq at 17 5° contain-

mg: 5 10 15% anhydrous salt, 1 1442 1.0452 1 0942

30% anhydrous salt, 1.20361.2644 1.329840 45% anhydrous salt. 1.3974 1.47241.5576

(B Franz, J. pr. (2) 5. 274.) Sp gr, of Cu(NO₃)₃+Ag at 15°.

% Cu(NOs): Sp gr. 1.04610 44 1.094 1.14620.851 202 262 26.12 35 00

1 377

(Long, W Ann. 1880, 11, 39.)

Sp. gr. of Cu(NO₈)₂+Aq at room temp. containing. 46 71% Cu(NO_a)_a 18.99 26.68 1.1774

1.26371 5363 (Wagner, W. Ann. 1883, 18, 272.)

Sp. gr. of Cu(NO₅)₂+Aq at 25°.

Cu(NOs)+Aq	Sp gr
1-normal 1/2- " 1/4- " 1/4- "	1.0755 1 0372 1 0185 1 0092

(Wagner, Z. phys. Ch 1890, 5, 38.)

Sp gr. of Cu(NO₄)₂+Aq at 12.5° % Cu(NO3)2 Sp. gr. 1.0059 1 0320 1.0655 1.0916

% Cu(NO₈)₂ 20 1 1350 20 1.1716 1.23201.2712

% Cu(NO₃)₃ Sp. gr. 1.3320 1.3749 1.4440 1.5205

(Hassenfratz, Muspratt, 1893, 4, 2243.)

Sp gr. at 20° of Cu(NO₃)₄+Aq contaming M a mols salt per liter. 0.01 0.025 0.05 Sp. gr. 1 001501 1 004076 1,007859 1,011715 0.50 0.935 Sp. gr 1.040290 1.07723 1.11169 1 14262

2.0 1 22618 1,29262

1879 (5) 18, 339,)

(Jones and Pearce, Am. Ch. J. 1917, 38, 719.) Sat. Cu(NO₃)2+An boils at about 173° (Grifhths.) Insul in fuming HNOs. (Ditte, A. ch.

Solubility of Cu(NO₃)₂+Pb(NO₃)₂ in II₂O

40 ×0 .					
	1	n 1 l. of	or tallor	n	
Sp gr	CuC	NUs ₂	Pb(NOne:	Solid phase
	E	g mol	Е	g mod	
1 354 1 322 1 321 1 313 1 360 1 454 1 562 1 700	70 5 130 2 130 5 130 5 130 5 131 7 131 >1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 475 0 712 1 207 1 508 1 707 2 707 2 4 252 3 4 252 5 025	217 2 175 1 144 4 117 8 70 1 41 0 28 1 17 2	1 056 0 777 0 529 0 103 0 356 0 213 0 133 0 055 0 055	Pb(NOst:
					Cut VOals 6H

(Fedotiett, Z anorg 1911, 73, 178.)

Very sol in hound NH: (Guntz, Bull, Soc. 1909, (4) 5, 1007) Easily sol, in liquid NH₂, (Franklin, Am. Ch. J. 1898, 20, 827 Insol in laund HF (Franklin, Z. anorg. 1905, 46, 2)

Insol, in ethyl acetate (Naumann, B. 1910, 43, 314) SI sol, in benzomtrile (Naumann, B. 1914, 47, 1369.)

(Ordway; Tilden, Chem. Soc. 45, 409.) Solubility in H O

Sat. solution contains at: 250 10° 300 50°

60.01 60.4461.51 62 62% Cu(NO₃)2. 60° 80° 70° 114.5° Mpt

64.1765.79 67 51 77 59% Cu(NO₄)2. (Funk, Z. anorg, 1899, 20, 413.)

100 pts, HNO, dissolve 2 pts. at 13°, considerably more on heating. (Ditte, A. ch. 1879, (5) 18, 339.) lol, in 1 pt. strong alcohol at 12.5°. (Wen-

Insol, in methyl acetate. (Naumann, B. 1909, 42. 3790.)

+6H₂O. Efflorescent. Melts in crystal H₂O at 35°, (Ordway.)

Solubility in H₂O. Sat. solution contains at: -21° O° ---10° +10°39.52 42.08 45,00 48 79% Cu(NOs).

> 18° 200 26.4° mpt. 55 58 63.39% Cu(NO₃)₉ 53.86(Funk, Z. anorg, 1899, 20, 413.)

Sat. solution of Cu(NO₂)2+6H2O in H2O at 20° contains 5 04 g. mol. per l Sp gr. of sat, solution = 1 688. (Fedotieff, Z. anorg, 1911, 73, 78.)

Sat. solution of Cu(N()₃)₆+6H₆O in H₆O contains 45.0 g. Cu(NO₃)₂ in 100 g. solution at 0°, 53 9 g, at 18°, (Mylius, Z anorg 1912, 74. 411

+9H.O. Solubility in H₂O Sat. solution contains at. -23° --21° -20° 36 08 37 38 40 92% Cu(NO₃)2. Cryohydrate is formed at -24° (Funk. Z anorg, 1899, 20, 414.

Cupric nitrate ammonia (Cuprammonium nitrate), Cu(NO₃)₂, 4NH₂

Easily sol, in II-O, from which it can be recrystallized. Sol, in alcohol (Berzelius.) 0.1 Sol. m 1 pt liquid NH, (Hoin, Am. Ch. J 1908, 39, 216.) Cu(NO₄)₂, 5NH₂. (Horn, Am. Ch J. 1907, 37. 620.) 4Cu(NO₂)₂, 23NH₂ (Horn)

Cupric nitrate hydrazine, Cu(NO2)2, N2H4 Decomp by H.O. (Hofmann and Marburg A. 1899, 305, 221.)

Cupric nitrate mercuric oxide, Cu(NOs)2, HeO+3H₂O. Sol, in HCl, HNO2 and H-SO4. (Finzi, +3H₂O Melts in crystal H₂O at 114.5°

Gazz. ch. it. 1913, 43. (2) 709.) Didymium nitrate, basic, 4DigO3, 3NgO6+ 15H-O.

Insol. in H₂O (Marignae.) 2Di₂O₃, 3N₂O₄. (Becquerel, A. ch. (6) 14. 257.)

Didymium nstrate, Di(NOs)a

Anhydrous. Very sol in H₂O. As sol, in 96% alcohol as in H2O, and the solution is not precipitated by much ether, Insol, in pure ether (Marignac, A. ch. (3) 36. 161.) Moderately sol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, 20. 827.) Sol. in acetone. (Naumann, B. 1904, 37.

4328; Erlmann, C. C. 1899, II. 1014.) +6H₂O. Very deliquescent. (Cleve, Bull.

Soc. (2) 43. 361.)

Didymium nickel nitrate, 2D1(NO₈) 3N1(NO₈)₂+36H₂O.

Very deliquescent. (Frerichs and Smith, A. 191, 355.) See Neodymium and praseodymium.

Didymium zinc nitrate, 2D1(NO₃)₃, 3Zn(NO₃)₂ +69H₂O.

Very deliquescent (F. and S.) See Neodymium and praseodymium.

Dysprosium nitrate, Dy(NO₃)+5H₂O. Very sol. in H₂O; less sol. in H₂O+HNO₃ Sol. in alcohol (Urbain, C R. 1908, **146**.

129.)

Erbium nitrate, basuc, 2Er₂O₈, 3N₂O₅+9H₂O.

Decomp. by H₂O. Sl sol. in HNO₃.
(Bahr and Bunsen.)

BEr₁O₈. 4N₁O₃+20H₂O (Cleve, Bull.)

Soc. (2) 21. 344.)

Erbium nitrate, Er(NO₃)_s+6H₂O. Easily sol. in H₂O, alcohol, and ether. (Höglund.) Sol. in acetone. (Naumann, B 1904, 37.

4328.)

Gadolinium nitrate, Gd(NO₃)₃+6½H₂O.

Sol. in H₂O. (Benedicks, Z. anorg. 1900, 22, 496.)

+5H₂O. Sol in HNO₃. (B)

Gadolinium magnesium nitrate, 2Gd(NO₃)₃, 3Mg(NO₃)₂+24H₂O.

 sat solution in HNO₈+Aq (sp. gr. 1.325) contains 352 3 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, 76. 303.)

Gadolinium nickel nitrate, 2Gd(NO₃)₃, 3Ni(NO₃)₃+24H₂O. 1 l. sat. solution in HNO₅+Aq (sp. gr. 1,325) contains 400 8 g. hydrous salt at 16°.

(Jantsch.)

Gadolinum zinc nitrate, 2Gd(NO₃)₃.

3Zn(NO₃)₂+24H₂O. 1 l. sat. solution in HNO₂+Aq (sp. gr. 1.325) contains 472.7 g. hydrous salt at 16°. (Jantsch)

Gallium nitrata Co(NO)

Gallium nitrate, Ga(NO₃)₃.
Very deliquescent, and sol. in H₂O. (Dupré.)

Glucinum nitrate, basic, 2GlO, N₂O₅+ 3H₂O (?),

Sol. in H₂O. 3GlO, N₂O₅, Sol. in H₂O (Ordway, Sill. Am J. (2) **26**, 205.)

Compounds more basic than this are insol. in H_4O . (Ordway.)

2Di(NO₈)₈, Glucinum nitrate, Gi(NO₈)₂+3H₂O. Very deliquescent. (Joy, Sill Am. J. (2)

36. 90')

Easily sol. in H₂O and alcohol. (Vauquelin.)

Melts in its crystal H₂O at 29 4°. (Ord-

Sat. Gl(NO_{s)2}+Aq boils at 140 5°. (Ordway.)

Gold (auric) nitrate, basic, Au₂O₃, N₂O₅+
²/₅H₂O, or Auryl nitrate, (AuO)NO₃+
¹/₅H₂O

(Schottlander, A 217. 364.) 2Au₂O₅, N₂O₅+2H₂O = Au₄O₅(NO₅)₂+ 2H₂O. Slowly sol in HNO₅+Aq at 100°, (Schottlander, A, 217. 356.)

Gold (auric) nitrate, Au(NO₃)₃+xH₂O.

Decomp. by H₂O. Sol. in acctone. (Hanriot and Raoult, C R. 1912, **155**, 1086)

Gold (auric) hydrogen nitrate, Au(NO₀)_s, HNO₂+3H₂O. Decomp. by H₂O. Sol. m HNO₃+Aq.

Gold (auric) potassium intrate, KAu(NO₃)₄. Easily sol. in H₂O. HK₂Au(NO₃)_a. Decomp, immediately by

(Schottlander, A 217. 356.)

H₂O. 2KAu(NO₃)₄, K₂HAu(NO₃)₀ (Schottlànder, J B **1884**, 453.)

Gold (auric) rubidium nitrate, RbAu(NO₃)₄.
Easily sol. in H₂O.
HRb₂Au(NO₃)₆. As above. (Schottlander)

Gold (auric) thallium nitrate, TlAu(NO₃)₄
Easily sol. in H₃O
6Au₂O₃, 2Tl₂O₃, 3N₂O₅+15H₂O. Ppt
(Schottlander.)

Indium nitrate, In(NO₃)₃+4½H₂O.

Very deliquescent. Easily sol. in H₂O and absolute alcohol. (Winkler.)

1 +1½H₂O

Iron (terrous) nitrate, Fe(NC₀)₁+6H₁O 100 pts of orystals dissolve m 50 pts. H₂O at 0°, sp. gr. of solution =1.44, 408 pts. H₂O at 15°, sp. gr. of solution =1.48, 33.3 pts. H₂O at 25°, sp. gr. of solution =1.50. (Ordway, Sill, Am. J. (2) 40, 325.) Sat. solution contains at:

-9° 0° +18° 24° 60.5° Mpt. 39.68 41.53 45.14 46.51 62.50% Fe(NO₄)₂. (Funk, Z. anorg. 1899, **20**. 406.)

Sat. solution of Fe(NO₄)₂+6H₄O in H₂O contains 41.5% Fe(NO₄)₂ at 0°; 45.1% at 18°. (Mylus, Z. anorg. 1912, **74**. 411)

+9H₂O. Solubility in H₂O. Sat, solution contains at:

-27° -21.5° -19° -15.5° 37.17% Fe(NO₁)2 35,66 36.10 36.56

Cryohydrate is formed at -28° (Funk, Z. anorg, 1899, 20, 407.)

Fe(NO₂)₂+Aq decomposes on heating, less rapidly when dil., more readily in presence of excess of acid. (Ordway)

Iron (ferric) nitrate, basic, 36Fe₂O₃, N₂O₈+ 48H2O (?).

Easily sol, in H₂O. Sl. sol, in dil. HNO₂+ Aq; very sl. sol. in alcohol. (Hausmann, A 89, 111.

8Fe₂O₃, N₂O₅+12H₂O. Sl. sol in H₂O: very al. sol, in cold or warm dtl. HNOs+ Aq; more easily sol, in hot HCl+Aq. (Haus-

+xH₂O. Sol. in H₂O; completely pptd from aqueous solution by NaCl, NH₄Cl, KI, KClO₂, Na₂SO₄, CaSO₄, ZaSO₄, CuSO₄, KNO₃ RCR15, Na504, CasO6, 26804, CasO6, RNO6, NaNO6, Ba(CaHG)15, or Zn(CaHG)1,+Aq. More slowly pptd. by NH₄NO5, Mg(NO3)2, Ba(NO3)2, or Pb(NO3)1+Aq. Not pptd. by alcohol, Pb(CaH₃O₂)2, Cu(C₂H₃O₂)2, Hg(CN)2,

AgNO₅, or As₂O₅+Aq. (Ordway, Sill Am. J. (2) 9. 30.) 4Fe₂O₃, N₂O₅+1½H₂O. Easily sol in H₂O, sl. sol. in dil. HNO₅+Aq, and in al-cohol. (Hausmann.)

+3H2O Insol. in H2O or HNO2+Aq; sol. in HCl+Aq. (Scheurer-Kestner, C. R 87.

+9H2O. Not deliquescent, easily sol in H.O. (Ordway.) Insol in H₂O

3Fe₂O₃, N₂O₃+2H₂O. (Scheurer-Kestner.) 2Fe₂O₃, N₂O₄+H₂O (Scheurer-Kestner.) Decomp. by H₂O.

+8H.O. (S.-K.) Fe₂O₄, N₂O₅ Decomp. by H₂O. (S,-K,) Fe₂O₅, 2N₂O₅. Sol. in II₂O or alcohol in all proportions. Insol. in HNO₂+Aq.

N₂O₄ with 1, 2, 3, 4, 5, 6, and 8Fe₂O₅ forms compounds, sol. in H₂O. (Ordway.) Solubility determinations show that there are no definite basic nitrates of iron formed from solutions at 25°, and that the solid phase under these conditions is a solid solution of Fe₂O₂, HNO₂ and H₂O. The normal salt, Fe₂O₃, 3N₂O₅, 18H₂O₁₈ stable in solutions containing about 30-45% NaOs. In higher concentrations of nitric acid it appears to be metastable and a new salt, Fe₂O₂, 4N₂O₅, 18(?)H₂O is the stable form. (Cameron, J

Iron (ferric) nitrate, Fe(NO₃)₃.

+H₂O. (Scheurer-Kestner, A. ch. (3) 65. 113.)

phys. Chem. 1909, 13, 252.)

+6H₂O Deliquescent, and sol. in any amount of H₂O. (Schonbern, Pogg. 39, 141.) Sol. in acctone. (Naumann, B. 1904, 37. 4328.)

+9H2O. Deliquescent. Sol. in H2O and alcohol. Sl. sol. in IINO3+Aq. 2 pts. salt. with 1 pt. H₂O lower the temperature 18 5°. (Scheurer-Kestner.)

Sp. gr. of solution at 17 5° containing 10 15 20 25% Fe(NO₃)1, 1.0398 1 0770 1.1182 1.1612 1.2110

30 35 40 45 50% Fe(NO₃)₃, 1,2622 1,3164 1,3746 1,4338 1 4972 65% Fe(NOa). 55 60 1 5722 1,6572 1,7532

(Franz. J. pr. (2) 5, 274.)

Nearly insol. in conc. HNO_z+Aq at temp. below 15 5° Easily sol in alcohol

Melts in crystal H₂O at 47 2°. (Ordway.) Sat. Fe(NO₃)₃+Ag boils at 125°. (Ord-

Lanthanum nitrate, La(NO₂)₂+6H₂O.

Very deliquescent; easily sol. in H₂O and alcohol. (Mosander.) Melts in its crystal H₂O at 40°; boils at 124.5°. (Ordway.) La(NO₃)₂+Aq sat at 25% contains 60.17% La(NO₂)₂, or 100 g H₂O dissolve 151.1 g La(NO₅)₂ at 25°. (James and Whittemore, J. Am. Chem. Soc 1912, 34, 1169.) Sol. in acetone. (Naumann, B 1904, 37. 4328; Eidmann, C C. 1899, II. 1014.)

Lanthanum magnesium nitrate, 2La(NOs)s, 3Mg(NO₂)₂+24H₂O

Deliquescent in moist air. (Holzmann, J. pr. 75, 350.) 1 l. sat. solution in HNO₂+Aq (sp. gr. 1 325) contains 63.8 g. hydrous salt at 16°. (Jantsch. Z. anorg. 1912, 76, 321.)

Lanthanum manganous nitrate, 2La(NO₂)₂, 3Mn(NO2)2+24H.O.

Sol in H₂O. (Damour and Deville.) 1 l. sat. solution in HNO₄+Aq (sp. gr. 1 325) contains 193.1 g. hydrous salt at 16°

(Jantsch.) Lanthanum nickel nitrate, 2La(NOs)s. 3N1(NO₃)2+36H₂O

Very sol. in H2O. (Frerichs and Smith, A. 191. 355.) +24H₆O 1 l. sat. solution in HNO.+ Aq (sp. gr. 1.325) contains 80.3 g. hydrous salt at 16°. (Jantsch.)

Lanthanum rubidium hydrogen nitrate, [La(NOa)]Rb, HNOa+6HaO

Sol in H2O and HNOs. (Jantsch, Z. anorg. 1911, 69, 225.)

Lanthanum thallous nitrate, [La(NO₃)₅]Tl₂+ 4H,0

Hydroscopic. (Jantsch, Z. anorg, 1911, 69. 228.)

Lanthanum zinc nitrate. 2La(NO.). 3Zn(NO₂)2+24H2O

Very sol in H.O. (Damour and Deville, J R 1858, 135.)

1 l. sat solution in HNO₄+Aq (sp. gr. 1325) contains 124.1 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, 76, 321) +69H-O. (Frerichs and Smith, A. 191. 355.)

Lead nitrate, basic, 2PbO, N₂O₅+H₂O= Pb(OH)NO.

Sol, in 5.15 pts. H₂O at 19.2°. (Pohl. W. A. B. 6, 597.) Very sl. sol in cold, much more in hot H₂O₂ (Berzelius.) Sol. in Pb(C₂H₂O₂)₂ in hot. HaU. (Herrenus.) Sol. in Fb(C₂H₁O₂)₂ +Aq. (Gugnet, C. R., 56. 358, +An. (Gugnet, C. R., 56. 368, Bull. Soc. 1895, (3) 13. 178.) +2H₂O. (André, C. R., 100. 639.)

3PbO, N₂O₄+1½H₂O. Sl sol in pure H₂O. Insol. in H2O containing HCl. (Berzelius. +3H₂O Sol. m 119 2 pts. cold, and 10 5 pts, boiling H₂O. Sol. in Pb(C₂H₃O₂)₂+Aq, but al. sol, in KNOs+Aq (Vogel, jr. A. 94.

97) =10PbO, $3N_2O_4+5H_2O$. (Wakemann and

~_107.00, 51829+01120. (Wakemann and Wells, Am. Ch. J. 9, 299.)
+4H₂O. (André, C. R. 100, 639.)
6PbO, N₂O₃+H₂O. Nearly insol. in H₂O. (Lbwe, J. pr. 98, 385.)

10PbO, 3N₂O₅+4H₂O Loss sol. in H₂O than Pb(NO₅)OH, and not decomp. by boiling H₂O (Wakemann and Wells, Am Ch. J. 9. 299.)

Lead nitrate, Pb(NOs)2.

Sol, in H2O with absorption of much heat (Rose.)

1 pt Pb(NO₂); dissolves in 7½ pts cold H₂O (Masshright)); dissolves in 1989 pts H₂O at 17 5° and forms a logal of 1807 sp pts. H₂O at 17 5° and forms a logal of 1807 sp pt. (Karston) in pt. Pb(NO₂); dissolves in 1,707 pts H₂O at 22.8°, in 185 pts H₂O at 27.1° (Karston) in 185 pts H₂O at 27.1° (Karston) in 185 pts H₂O at 27.1° (Karston) in 185 pts H₂O at 27.1° (Karston) in 185 pts H₂O at 27.1° (Karston) in 195 pts Pb(NO₁); at 10.2° (Karston) in 195 pts Pb(NO₁); at 10.2°. (Griffiths) in 195 pts Pb(NO₁); at 10.2°. (Griffiths) in 195 pts Pb(NO₁); at 10.2°. (Griffiths)

(Wittstein) 100 nts boiling H₂O dissolve 13 pts Pb(NO₃)₂

100 pts. Pb(NO₃)2+Aq sat. at 19-20° contain 35.80 pts. salt. (v. Hauer, W. A. B. 53, 2. 221.)

1 pt. dissolves: at 0° 10° 25° 45° 65° 85° 100° in 2.58 2.07 1.65 1 25 0 99 0.83 0.72 pts. H₂O. (Kremers, Pogg. 92, 497.)

1 l. Pb(NO₂).+Aq sat, at 15° contains del.49 g. Pb(NO₂), and 928.58 g. H₂O, and has sp. gr. 1.39. (Michel and Krafft, A. ch. (Kremers, calculated by Gerlach, Z. anal 8. (3) 41, 471.)

Solubility in 100 pts, in O at t .					
to.	Pts Pb(NO ₁):	t°	Pts Pb(NO ₄):	t°	Pts Pb(NO ₃)2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	36 5 37 4 38 3 39 1 40.5 44.0 42 8 43 6 44 45 0 46 8 47 5 48 3 49 9 7 51 5 52 3 53 1 53 1 55 6 56 4 57 6 59 8 60 7 61 6	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 60 61 62 63 64 66 67 68	65 9 66 7 68 68 5 68 9 4 70 3 771 2 1 773 0 774 0 774 9 76 8 77 77 78 7 78 77 78 80 5 80 5 82 4 83 83 83 85 1 83 85 1 85 1 1 88 90 0 90 90 90 90 90 90 90 90 90 90 90 90 90 9	72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 97 98 99 91 100 101 102 103	99 7 100.7 102 6 103.6 103.6 105 6 106 6 107 6 109 6 111.5 113.5 115.4 117.4 119 4 119 4 119 4 119 3 122 3 123 2 124 2 125 2 126.1
33 34 35	63 3 64 1 65 0	69 70 71	95 7 96 7 97 7 98 7	104.7	131.5

Solubility in 100 pts. H.O at to

(Mulder, Scheik. Verhandel. 1864, 66.)

100 g, H₂O dissolve 52.76 g, Pb(NO₃)₂ at 17°, (Euler, Z phys. Ch. 1904, **49**, 315.) Solubility of Pb(NO₃)₂ in H₂O at 20°= 152 g, mol. per l. Sp. gr. of sat. solution= 10.Z g. mon. per l. Sp. gr. of sat. solution = 1.419 (Fedotieff, Z. anorg. 1911, 73. 178.)
 Sat. Pb(NO₂)₂+Aq at 0° contains 26.7%
 Pb(NO₃)₂; at 18°, 29.1% Pb(NO₃)₂. (Mylius, Z. anorg. 1912, 74. 411.)

Sp. gr. of Pb(NO₂)₂+Ag at 19.5°

ļ	Pb(NOs):	Sp gr	Pb(NOs):	Sp gr
	5 10 15 20	1.045 1 093 1.144 1 203	25 30 35	1 266 1.334 1 414

Sp gr	Sp gr of Pb(NO _d) ₂ +Aq at 17.5°			
PhoNOda	Sp gr	Pb(NO _{D2}	Sp gr	
5 10 15 20	1 044 1 092 1 144 1 200	25 30 35 sat, sol.	1 263 1 333 1 409 1,433	

(Gerlach, Z. anal 27, 283.)

Sp. gr. of $Pb(NO_0)_2 + Aq$ sat. at $8^\circ = 1$ 372. (Anthon.)

Sp. gr. of Pb(NO₃)₂+Aq at 17 5°

Pb(NO ₄)2	Sp gr	Pb(NO ₃₎₂	Sp gr
1	1 0080	20	1 1902
2	1 0163	21	1 2016
2 3	1 0247	22	1 2132
-1	1 0331	23	1 2251
5	1.0416	24	1 2372
6	1 0502	25	1 2495
7	1 0591	26	1 2620
8	1 0682	27	1 2747
9	1 0775	28	1.2876
10	1 0869	29	1 3907
11	1 0963	30	1 3140
12	1 1059	31	1 3276
13	1.1157	32	1.3416
14	1 1257	33	1 3558
15	I 1359	34	1 3702
16	1 1463	35	1 3848
17	1 1569	36	1 3996
18	1 1677	37	1 4146
19	1 1788		

Schiff, calculated by Getlach, Z anal 8 286)

Sp. gr. of Pb(NO₃)₂+Aq at t^c

t°	C Ph(NO ₃) ₂	Np gr
14	5	1 0451
14	10	1,0939
14.5	15	1.1468
14 3	20	1 2045
15	25	1 2678
15	32 28	1.3716

(Long. W. Ann. 1880, 11, 40.) Sp. gr. of Pb(NO₃)₂+Aq at room temp,

containing: 32.220° Pb(NO_a)₂. 17.93 1.1786 1,3619

Concentration of Ph(NO₄)₁ +Aq

(Wagner, W. Ann. 1883, 18, 267.) Sp. gr. of Ph(NO₃)₂+Aq at 25°

1-normal 1.13801/2-1 0699 1/4-1.0351 1 0175

(Wagner, Z. phys Ch. 1890, 5, 36.)

Sp. gr

Pb(NO₃)₂+Aq containing 15 93% Pb(NO₃)₂ has sp. gr. 20/°20° = 1.1558. nhas sp. gr. 20/20° ≈ 1.1008.

Pb(NO₃)₂+Aq containing 30 57% Pb(NO₈)₂
has sp. gr. 20°/20° ≈ 1.3436

Pb(NO₈)₂+Aq containing 30.09% Pb(NO₈)₂
has sp. gr. 20°/20° ≈ 1.3456

(Le Blanc and Rohland, Z. phys. Ch. 1896,

19, 279.) Sat Pb(NO₃)₂+Aq boils at 103.5°. (Krem-

Sat Pb(NO₂)₂+Aq boils at 102 2°, and contains 140 pts. Pb(NO₃)₂ to 100 pts H₂O (Griffiths)

Sat. Pb(NO₃)₂+Aq boils at 103 5° (Gerlach, Z anal 26, 427)

B.-pt of Pb(NO₃)₂+Aq containing pts. Pb(NO₃)₂ to 100 pts. H₂O, according to Gerlach (Z anal. 26 449).

B-pt	Pts Pb(NO ₃);	B-pt	Pts Pb(NO ₃)s
100 5° 101 101 5 102	11 26 44 65	102 5° 103 103 5	87 111 137

Insol. in cone. HNO_s+Aq . Solubility of $Pb(NO_s)_2+Ba(NO_s)_2$. See under $Ba(NO_s)_2$. Solubility of $Pb(NO_s)_2+Cu(NO_s)_2$

Se: under Cu(NO₄)₂ Sol m sat KNO₄+Aq without pptn., 100 pts. H₂O at 18,75° dissolving 114 pts mixed salt, viz. 84 1 pts Pb(NO₂)2 and 29 9 pts.

KNO₂ (Kursten) 100 pts H₂O dissolve 119.6 pts. Pb(NO₂)₂ and 67 1 uts KNO, at 21 2°. (Ritdorff, B. 6.

100 g. H₂O dissolve 95.39 g. Pb(NO₈)₁ and 61.05 g KNO₈ at 20°. (Le Blanc and Noyes, Z phys Ch. 1890, 6. 386) Sol in sat. NaNOs+Aq without pptn , 100

pts. H₂O at 18 75° dissolving 121,9 pts mixed salt, viz. 878 pts Pb(NO3)2 and 341 pts. NaNOa (Kaisten.)

Solubility of Pb(NO₂)₂+NaNO₃ Solid phase = Ph(NO_{*}).

	Donk place - I b(1103/3.				
	to of saturation	∜ NaNOz	% Pb(NOs)s		
_	32	34 42	19 69		
	35 5	34.15	20 33		
	39.5	33 71	21.35		
	44	33.35	22 19		
	49 1	32 94	23.15		
	55	32.47	23 93		
	58	32.47	24 24		
	62	32.33	24 57		
	65	32.14	24 89		

Solubility of Pb(NO₈)₂+NaNO₈—Continued.

Solid phase = NaNO ₃			
to of saturation	% NaNO:	% Ph(NO ₈) ₁	
21 26 5 31 38.8 41 44.25 51 58 64	40 97 42 04 43 18 44 63 45 11 46 03 47 28 49 03 49 92	13.62 13.88 12.88 12.78 12.94 12.45 12.50 11.76 11.56	

(Isaac, Chem. Soc 1908, 93. 398.)

Also sol in KNO₈+NaNO₈+Aq 100 pts. sat Pb(NO₈)₂+Sr(NO₈)₅+Aq contain 45 98 pts of the two salts at 19 20°.

(v. Hauer, J. pr. 98. 137.)

Solubility of Pb(NO₂)₂+Sr(NO₂)₂ at 25°.

G per 100 cc		Mol per cent in solid phase		
	Pb(NOs)2	Sr(NOz)z	Pb(NO ₃) ₂	Sr(NOs)2
	46.31 50.47 53.92 45.34 44.48 25.23 19.13	0 4 56 8 14 17 81 18 74 35 03 37 54	100 99 05 98 11 97 02 96 06 83 84 32 88	0 0 95 1.89 2.98 3.94 16 16 67 12
	Α.	71 04	I 0	100

(Fock, Z. Kryst, Min. 1897, 28, 365.)

Very easily sol in liquid NHs. (Franklin. Am. Ch. J. 1898, 20, 828) 100 pts alcohol of 0.9282 sp gr dissolve. 8° 22° 40° 50° 4.96 5.82 8.77 12.8 14.9 pts Pb(NO_a)₂,

(Gerardin, A. ch. (4), 5, 129.)

100 pts, absolute methyl alcohol dissolve 1.37 pts at 20.5°. 100 pts absolute ethyl alcohol dissolve 0.04 pt. at 20.5°. (de Bruyn, Z phys. Ch. 10.

Very al sol in acetone, (Krug and M'Elroy, J. Anal. Ch. 6. 184) Insol in cold, sl. sol in hot CS1 (Arctowski, Z anorg, 1894, 6, 257.) Insol, in benzonitrile. (Naumann, B. 1914.

Insol, in methyl acetate, (Naumann, B. 1909, 42. 3790); ethyl acetate (Naumann, B. 1910, 43, 314)

47, 1370.)

ner, Z. anorg, 1897, 15, 21,)

Solubility of Pb(NO₄), in nyridine at t^o.

t°	G Pb(NO ₁); per 100 g C ₂ H ₄ N	Solid phase
-19 4 -14 5 -10 0 0 4 8 7 14 72 19 97 24 75 30 03 34 97 40 03 45 45 49 97 51 tr pt 59 52 70 89 93	2 93 2 14 1 90 3 54 3 93 5 39 6 78 8 50 10 98 10 98 22 93 22 93 36 70 47 29 61 60 90 21	Pb(NO ₃) ₂₁ 4C ₂ H ₂ N "" "" "" "" "" "" "" "" ""
94 94 96 tr pt. 99 89 104 90 109 90	128 06	"+Pb(NO ₃) ₃ , 2C ₅ H ₅ N Pb(NO ₃) ₃ , 2C ₅ H ₅ N

(Walton and Judd. J. Am. Chem. Soc. 1911. 33. 1036.)

Lead mercurous nitrate, 2PbO, 2Hg₂O, 3N₂O₅. Decomp, by H₂O. Sol, in warm dil. HNO₂, or Hg₂(NO₂)₂+Aq without decomp. (Stadeler, A. 87. 129.)

Lead silver nitrate, Pb(NO₃)₂, 2AgNO₃, Sol, in H₂O (Stürenberg, Pogg. 74, 115.)

Lead silver nitrate iodide, Pb(NO₃)₂, 8AgNO₈, 4AgI Decomp, by H₂O (Sturenberg.)

Pb(NO₃)₂, 2AgNO₃, 2AgI. Decomp by H₂O (Sturenberg)

Lead nitrate nitrite, basic, 4PbO, N₂O₄, N₂O₃ +2H₂O = Pb(OH)NO₃, Pb(OH)NO₂. Sl sol in cold, easily in hot H₂O. Sol in 80 pts. H2O at 23° (Chevreul), 85 pts. at ord. temp. (Bromeis, A. 72, 38), 10 6 pts. at 100° (Chevreuil).

$+2H_{2}O.$ Solubility in acetic acid.

Normality of acid	g PbO per 100 cc sat, solution	Normality of seid	g PbO per 100 ce sat solution
0 0 05 0 10	0.601 1.323 2.185	0 25 0 50 0 75	5.450 9 690 15 874

Mol. weight determined in pyridine, (Wer- | Chilesotti, Att. Acad. Linc, 1908, (5) 17. III.

Lorenz)

Lorenz.)

548

1 245

(v.

(v.

Formula is 3Pb(OH)NO₃, 5Pb(OH)NO₂+ H₂O. (v. Lorenz, W. A. B. 84, 2, 1133.)

+3H₂O. (v. Lorenz.) 4PbO, N₂O₅, 3N₂O₄+4H₂O Sol, in H₂O

(Bromeis) 6PbO, N₂O₅, 2N₂O₅+32/₂H₂O=Pb(OH)NO₅, 2Ph(OH)NO2+2/4H2O, (v. Lorenz') $6PbO_1 = 2N_2O_4, N_2O_3 + 3^2/_3H_2O = 2Pb(OH)NO_3, Pb(OH)NO_2+^1/_3H_2O, (v. 160012)$

7PhO, N₂O₂, N₂O₃+3H₂O. Less sol. in H₂O than 4PhO, N₂O₅, N₂O₃+2H₂O; sol. in cold conc. HNO₃+Aq. (Peligot, A 39, 338.) cold cone HNO3+Aq 8PbO, N₂O₂, 3N₂O₂+4°/₁H₂O=Pb(OH)NO₂,

3Pb(OH)NO₁+1/₃H₂O. (v Lorenz) 10PbO, N2O2 4N2O2+5H2O=Pb(OH)NO2 4Pb(OH)NO2. (v. Lorenz)

12PbO, N₂O₆, 5N₂O₃+6H₂O=Pb(OH)NO₄, 12700, N₂U₅, 5N₂U₅+9H₁U=Ph(OH)NO₅, 5Ph(OH)NO₅, (v. Lorens.) 10Ph(OH)NO₅, 2N₂U₅+4H₂O=Ph(OH)NO₅, 2Ph(OH)NO₅, 2PhO+1₂H₂O (v. Lorens.) 14PhO₅, N₂O₅, 3N₂U₅+6H₂O=Ph(OH)NO₅,

3Pb(OH)NO, 3PbO+H2O. (Bromeis.)

14PbO, 3N₂O₆, N₂O₃ +6H₂O = 3Pb(OH)NO₃, Pb(OH)NO₂, 3PbO+H₂O, (Bromeis,)

16PbO, $2N_2O_6$, $3N_2O_3+6H_4O = 4Pb(OH)NO_4$, $6Pb(OH)NO_2$, 5PbO, $Pb(OH)_2$ (v. Lorenz.) $16PbO_1 3N_2O_5, 5N_2O_3 + 10H_2O =$

3Pb(OH)NO, 5Pb(OH)NO++H+O Lorenz $26PbO, 6N_2O_4, 7N_2O_2+21H_2O = 6Pb(OH)NO_3, 7Pb(OH)NO_2+4H_2O.$

Lead nitrate phosphate, Ph(NO3)2, Ph2(PO4)2 +2H₂O.

Completely insol, in cold H₂O. Decomp by boshng H2O into its constituents. Sol. in a little conc. HNO₁+Aq without decomp (Gerhardt, A. 72. 83.)

Lead nitrate phosphite, Pb(NO2)2, PbHPO2 Decomp, by H₂O. Sol. in Pb(NO₃)₂+Aq Pb(NO₂)₂+Aq (33.3 g. per latre) dissolves 1 g. salt at 15°. If less than 31 g. per latre of Ph(NO2)2 are present the salt is decomp. (Amat, A, ch. (6) 24. 317.)

Lead nitrate potassium nitrite, Pb(NO₃)₂, 2KNO₄+H₂O. Difficultly sol. in H₂O. (Lang. J. B. 1862.

102.) 3PbO, 3K₂O, 4N₂O₂, 2N₂O₄+3H₂O. in H.O. (Hayes, Sill, Am. J. (2) 31, 226.)

Lithium nitrate, LiNOs. Very deliquescent, and sol. in II.O. 100 pts. H₂O dissolve: at 0° 20° 40° 70° 100° 110°

48.3 75.7 169.4 196.1 227.3 256.4 pts. LiNOs. (Kremers, Pogg. 99, 47,)

Forms supersaturated solutions with ease which crystallize when temp, is lowered to +1°. (Kremers, Pogg 92, 520)

Sat solution boils at over 200°. (Kremers. Posts, 99, 43 1 pt LaNO, dissolves in 200 pts. HNO.

(Schultz, Zeit, Ch (2) 5, 531) 100 pts of the sat, solution contain at:

64.33 70.9°

619 66.1 pts anhydrous salt. (Donnan and Burt, Chem. Soc. 1903, 83. Sec +15H₂O, and 3H₂O.

Sp gr. of IaNOa+Ag at 19.5° containing pts LiNO2 in 100 pts H2O

12.7 14.3 98.4 418 pts. LiNOa 1.069 1 077 1.134 1.197 77.4

1.255 1.315 1.319 (Kiemers, Pogg 114, 45.)

79 4 pts LiNO.

Sp gr, of LiNO4+Aq.

g	LtNO2 in 1000 g of solution	Sp. gr 16/16°
	0 4 8526 10 9128 17 9016	1 000000 1 002469 1 0055495 1 009113

(Dijken, Z. phys. Ch. 1897, 24, 109)

Sp. gr. 20°/4° of a normal solution of LiNO. =1.03803; of a 0.5-normal solution =1.01830. (Haigh, J Am Chem, Soc 1912, 34, 1151.) Very easily sol in liquid NHs. (Franklin. Am, Ch. J. 1898, 20. 828.)

Sol, in strong alcohol Sol. in acetone. (Eidmann, C C. 1899, II. 1014; Naumann, B. 1904, 37, 4328.) Solubility in acctone = 0 343 g mol per 1. at 18° (Roshdestwensky and McBride, Chem. Soc. 1911, 99, 2140.)

Insol, in benzonitrile (Naumann, B. 1914, 47, 1370.) Difficultly sol. in ethyl acetate. (Nau-

mann, B. 1910, 43. 314.) +1/2H2O. Solubility in H2O. 100 pts. of the sat, solution contain at:

43.6° 50.5° 55.0° 60.0°

60 S 61 3 63.0 63.6 pts. anhydrous salt.

61.1° is the temp, at which LiNO₈+1/2H₂O goes over into LiNO₂. (Donnan and Burt, Chem. Soc. 1903, 83. 339.)

_	_	_
		7.0
	- 51	ユュレ

Solubility in H₂O

100 pts. of the sat solution contain pts.

t°	Pts anhydrous salt
0.10	34 8
10 50	37 9
12 10	38.2
13 75	39 3
19 05	40 4
22 10	42 9
27 55	47 3
29.47	53 67
29.78	55 09
29 87	56 42
29 86	56.68
29 64	57 48
29 55	58 03

Mpt. of LiNO₃+3H₂O is 29 88°. (Donnan and Burt, Chem. Soc. 1903, 83, 337.)

Magnesium nitrate, basic, Mg₃N₂O₈.

Insol in H₂O and alcohol. Sol. in acids. (Chodnew, A. 71. 241.) +5H₂O. Decomp. by H₂O. (Didier, C. R. 1896, 122, 936.)

Magnesium nitrate, Mg(NO₂)₂. Anhudrous. Delrouescent.

Sol in 1 pt. HiO at 15.6° Sol in 4 pts abs alcohol at 15.6° and 2 pts at boiling temp. More sol in alcohol of 0 817 op g: than in that of 0 900 (Kirwan)
Sol in 0 3458 pt. strong alcohol at 82.5° (Wenzel)
Sol in 10 pts strong alcohol at 15° (Bergmann)
Sol, in 0 pts strong alcohol on heating (Bergmann)

Solubility in H₂O m presence of the anhydrous salt. Sat. solution contains at:

89° 77.5° 67° 63.14 65.67 67.55% Mg(NO₂)₂. (Funk, Z. anorg. 1899, **20**. 396.) See +6. and 9H₂O.

Sp. gr. of Mg(NO₃)2+Aq at 14°.

% Mg(NO ₃) ₂ , 6H ₂ O.	Sp. gr	% Mg(NO ₃) ₂ , 6H ₂ O	Sp gr
1 5 10 15 20	1 0034 1 0202 1 0418 1 0639 1.0869	30 35 40 45 49	1 1347 1.1649 1 1909 1 2176 1 2397
25	1.1103	<u> </u>	

(Oudemans, Z anal, 7, 419.)

Sp. gr. of Mg(NO₂)₂+Aq at 21°.

Sp. gr. of Mg(NO ₃) ₂ +Aq at 21°.			
% Mg(NO ₂)2 +6H ₂ O	Sp gr	% Mg(NO ₃): +6H ₂ O	Sp gr
2 4 6 8 10 12 14 16 18 20 22 24	1 0078 1 0158 1 0239 1 0321 1 0405 1 0490 1 0577 1 0663 1 0752 1 0843 1 0934 1 1028	28 30 32 34 36 38 40 42 44 46 48 50	1 1216 1 1312 1 1410 1 1508 1 1608 1 1709 1 1811 1 1914 1 2019 1 2124 1 2231 1 2340
26	1 1120		

(Schiff, calculated by Gerlach, Z. anal. 8.

Sp gr of Mg(NO₂)₂+Aq at 18° % Mg(NO₂)₂ | Sp. gr || % Mg(NO₂)₂ | Sp gr

15

1 118

10 | 1 0763 | 17 | 1 1872 (Kohlrausch, W. Ann. 1879, 1.)

Sp. gr. of Mg(NO₂)₂+Aq at room temp.

eontaining: 18.62 34.19 39.77% Mg(NO₃): 1.1025 1.2000 1.4298 (Wagner, W. Ann 1883, 18. 273.)

Sn. gr. of Mg(NO₅)₆+Aq at 25°.

Concentration of Mg(NO ₂) ₂ +Aq	Sp. gr
1-normal 1/s- " 1/s- " 1/s- "	1.0512 1.0259 1.0130 1.0066

(Wagner, Z. phys. Ch 1890, 5. 38.)

Sp. gr. of solution sat. at 18° = 1.384, containing 43.1% Mg(NO₈)₂. (Mylius, B. 1897, 30, 1718.)

Sp. gr of Mg(NO₄)₅+Aq.

¼ Mg(NOs)₁ g. in 1000 g of solution	Sp gr. 16°/16°
0 8099 1 5621 3 3398 7 4410 15 161 29 356 58 353 81 025	1 000000 1 00060 1 001253 1 002539 1 005523 1 011151 1 021580 1 043329 1 060773

(Duken, Z phys. Ch. 1897, 24, 107.)

Sp gr, of Mg(NO₃)₃+An at 20 1°. p = per cent strength of solution; d = observed density, w=volume concentration in

grams per ce

р	d	w
35 02	1 3110	0 46695
31 15	1 2655	0 39420
25 03	1 2057	0 30172
19 55	1 1551	0 22585
13 43	1 1028	0 14815
10 09	1 0753	0 10850
6 650 4 672	1 0480	0 06968
4 001	1 0376	0 04520
1 372	1 0085	0 01383

(Barnes, J. phys Chem, 1898, 2 545)

Sp. gr of Mg(NO₃)₂+Aq at 20° containing Chem Soc. 1913, 35, 1459.) Mg, mols, of salt per liter. M 0.02 0.05 0.10 0.15 Sp. gr. 1 00224 1 005626 1,011118 1 016557

0.501.00 1.274Sp gr. 1,022026 1,054804 1,107865 1,136615 (Jones and Pearce, Am. Ch. J. 1907, 38, 707.)

Less sol. in $Ca(NO_3)_2+Aq$ than in H_2O (Dijonval.) Very easily sol, in bould NH. (Franklin,

Am. Ch J 1898, 20, 828.) +2H₂O Mpt. 127°. (Wasiljew, C. C. 1909, II. 1966.) +4H₂O. Mpt. 45.5° (W.)

+6H₂O. Deliquescent. Sol. in H₂O and alcohol. Sol in 0.5 pt. cold H2O, and 9 pts cold alcohol of 0.84 sp gr.; very sl. sol, in abs. alcohol (Graham) Melts in its crystal H2O at 90°, and the re-

sulting liquid boils at 143 4°. (Ordway, Sill. Am. J. (2) 27, 14,)

Solubility in H₂O. Sat. solution contains at:

--18° -4.5° 30,96 42 33 % Mg(NO₃)23 38.03 39.50

40° 80° 90° (mpt.). 45.87 53.69 57.81% Mg(NO₄)2 (Funk, Z. anorg, 1899, 20, 395.)

+9H₂O. Solubility in H₂O. Sat. solution contains at: -23° --20.5° --18°

36.19 38 03% Mg(NO₃)₃. 35.44Cryohydrate is formed at -29°. (Funk, Z. anorg, 1899, 20, 398.)

Magnesium neodymium nitrate, 3Mg(NO₃)₂, 2Nd(NO₁)₁+24H₂O.

l. sat. solution in HNO₁+Aq (sp. gr. 1.325) contains 97 7 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, 76, 303.)

Magnesium praseodymium nitrate 3Mg(NO₂)2, 2Pr(NO₂)2+24H2O

 l. sat. solution in HNO₂+Aq (sp. gr. 1 325) contains 7.70 g, hydrous salt at 15°. (Jantsch)

Magnesium samarium nitrate, 3Mg(NO₄)₂. Sm(NO₄)3+24H₂O.

(Demarçay, C R 1900, 130. 1187.) 1 l. sat solution in HNOs+Aq (sp. gr. 1 325) contains 24 55 g hydrous salt at 16°. (Jantsch)

Magnesium thorium nitrate, MgTh(NO₂),+

Hydroscopic, sol in HNO₅. (Meyer, Z. anorg. 1901, 27, 385.)

Magnesium mtrate ammonia, Mg(NO₁)₁, 6NH2. Sl sol, in liquid NH₂ (Franklin, J. Am.

Manganous nitrate, basic, 2MnO, N₂O₄+ SII.O. Sol in H₂O. (Gorgeu.)

Manganous nitrate, Mn(NOs).

Deliquescent. Easily sol. in H₂O and alcohol Sec +3, and 6H₂O

Sp. gr. of Mn(NO₂)2+Aq at 8°.

% Mn(NO3)2 +6H4O	Sp gr	% Mn(NOs): +6HsO	Sp gr.
5 10 15 20 25 30 35 40	1 0253 1 0517 1 0792 1 1078 1 1137 1 1688 1 2012 1 2352	45 50 55 60 65 70 71	1 2705 1 3074 1 3459 1 3861 1 4281 1 4721 1 4811

(Oudemans, Z. anal. 7, 421.)

Sp. gr. of aqueous solutions containing: 10 20 30 % Mn(NO₃)₂+6H₂O, 6.237 12,474 18.711% Mn(NO₃)2, 1.165

50 60 % Mn(NO₃)₂+6H₂O, 31.185 37.422% Mn(NO₃)₂, 40 94 948 1.230 1.302 1.381

80 % Mn(NO₃)₂+6H₂O. 49.896% Mn(NO₃)₂. 70 43,659 1.466. 1 558

1 052 1.107

(Gerlach, Z. anal, 28, 477.)

Sp. gr. of Mn(NO₃)₂+Aq at room temp. containing: 18.309 20,602 49.309% Mn(NO2)2. 1.14821.32271 5056

(Wagner, W. Ann. 1883, 18, 271.)

Sp. gr of Mn(NO ₂) ₂ +Aq at 25°		
Concentration of Mn(NO ₃) ₂ +Aq	Sp gr	
1-normal	1 0690	

1/-

(Wagner, Z. phys. Ch 1890, 5. 39.)

1 0174

1.0093

Sol. in liquid NH₃. (Guntz, Bull. Soc. 1909, (4) 5, 1006.) Very sol. in liquid NH₃. (Franklin, Am Ch. J. 1808, 20, 828.)

Ch. J. 1898, 20. 828) +H₂O. Deliquescent. (Guntz, Bull. Soc 1999 (4) 5. 1095.) +3H₂O. From solution in HNO₃. (Schultz-

Sellack, Zest. Ch. 1870. 646) Solubility in H₂O.

Sat. solution contains at. 27° 29° 30° 34° 35 5° mpt. 65.66 66.99 67 38 71.31 76.82% Mn(NO₃)₂. (Funk. Z. anorg. 1899, **20**, 403.)

+6H₂O. Melts in its crystal H₂O at 25.8° and boils at 129.4°. (Ordway.)

Solubility in H₂O Sat. solution contains at:

Z. anorg. 1899, 20, 403.)

-29° -26° -21° -16° -5° 42 29 43.15 44.30 45 52 48.88% Mn(NO₈)₆.

0° +11° 18° 25 8° mpt 50.40 54.50 57.33 62 37% Mn(NO₃)₂. Cryohydrate is formed at —36° (Funk,

Manganous neodymnum nitrate, 3Mn(NOs)2,

2Nd(NO₂);+24H₄O.

1 l. sat solution in HNO₂+Aq (sp gr 1.325) contains 296 g. hydrous salt at 16° (Jantsch, Z. snorg 1912, 76, 303.)

Manganous praseodymium nitrate, 3Mn(NO₂)₂, 2Pr(NO₂)₂+24H₂O.

 l. sat. solution in HNO₂+Aq (sp. gr 1.325) contains 23 4 g. hydrous salt at 16° (Jantsch.)

Manganous samarium nitrate, 3Mn(NO₃)₂, 2Sm(NO₃)₃+24H₂O.

1 l. sat. solution in HNO₃+Aq (sp. gr. 1.325) contains 50.04 g, hydrous salt at 16°. (Jantsch.)

Mangapous thesium pitests, MaTh(NO)

Manganous thorium nitrate, MnTh(NO₃)₆+ 8H₂O. Ppt. (Meyer, Z. anorg. 1901, **27**. 388)

Manganous nitrate cupric oxide, Mn(NO₂)₂, 3CuO+3H₂O. Ppt. (Mailhe, C. R. 1902, **134**. 234.)

Manganous nitrate hydrazine, Mn(NO₃)₂, 2N₂H₄

Not decomp by H_2O (Franzen, Z. anorg. 1908, 60. 286.)

Mercurous nitrate, basic, 2Hg₂O, N_{2O0}+ H₂O.

Ppt. Decomp. by boiling with H₂O. (Marignae, A. ch. (3) 27. 332.) Slowly sol in cold. ranidly in hot HCl+Ag:

Slowly sol in cold, rapidly in hot HCl+Aq; insol. in NH₄Cl, and NH₄NO₃+Aq +10H₂O Slowly sol in normal HNO₃.

(Reuss, Dissert 1886.) $4Hg_2O$, $3N_3O_4+H_2O$. Sol. in a small quantity of H_2O ; decomp by a large aint of H_2O or by warm H_4O (Rose, Pogg 83. 154.)

or by warm H₂O (Rose, Pogg 83. 154.)
Is 3HgO, 2N₂O₅+H₂O according to Gerhardt

+5H₂O. (Reuss, Dissert 1886.) 5Hg₂O, 3N₂O₃+2H₂O (Marignac.) Is 2Hg₂O, N₂O₃+H₂O. (Lefort, A. 56. 247.) Sol. in boiling, less sol. in cold H₂O. (Marignac, l ε) +4H₂O, and +6H₄O. (Reuss, Dissert.

1886.) 8Hg₂O₂ 5N₂O₄+5H₂O₂ and +11H₂O₂

(Reuss)

11Hg₂O, 6N₂O₂+25H₂O (Reuss)
16Hg₃O, 9N₂O₁+19H₂O, +23H₃O, and
+31H₃O. (Reuss.)
3Hg₃O,N₂O₃+2H₃O. (Cox, Z anorg 1904,

40. 177.) Mercurous nitrate, HgNO₁

Very sol. in liquid NH₃ (Franklin, Am. Ch. J. 1898, 20. 829) Fairly sol. in boiling CS₂. (Arctowski, Z

Fairly sol. in boiling CS₂. (Arctowski, Z anorg, 1894, 6, 257.) Sl sol. in benzonitrile. (Naumann, B. 1914, 47, 1369.)

Sol. in methylamine (Franklin, J Am. Chem. Soc 1908, 28, 1419.)

+H₂O. Completely sol in a little warm

H₂O, but decomp. by more H₂O. Completely
sol. as acid self in H₂O containing HNOs.

(Marignac, A ch. (3) 27. 332.) Sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.) +11/4H₂O, +11/₃H₄O, +11/₄H₂O, etc.

+1'/4H₂O, +1'/₃H₂O, +1'/₂H₂O, (Reuss, Dissert 1896.)

Mercuric nitrate, basic, 6HgO, N₂O₃ (?).

Insol. in hot H₂O (Kane.) 3HgO, N₂O₃+H₂O Decomp. to oxide by

washing with cold H₂O. Sol in dil. HNO₃+ Ac. (Millon, A. ch. (3) 18. 361.) 2HgO, N₂O₃+H₂O. Sl. deliquescent Decomp by H₂O; sol. in dil. HNO₃+Aq.

(Millon.) +2H₂O. Decomp. by cold H₂O. Deliquescent. Sol in H₂O containing HNO₃ (Marignac)

+3H₂O. (Ditte, J. B. 1854. 366.) Mercuric nitrate, Hg(NO₂)₂.

Very sol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, **20**. 829)

Neither dissolved nor attacked by liquid Mercuric nitrate cupric exide, Hg(NO2)2. (Frankland, Chem. Soc. 1901, 79. 1361.) Sol in benzomtrale, (Naumann, B. 1914.

47. 1369.) Sol, in acctone. (Naumann, B. 1904, 37. 4328

Difficultly sol, in ethyl acetate. (Naumann,

B. 1910, 43. 314.) Sol in methylal, (Eidmann, C. C. 1899) II. 1014)

+1.2H₂O. Deliquescent Very sol. in a little H₂O. H₂O precipitates basic salt from cone. Hg(NO₃)₂+Aq Inso Decomp. by ether. (Millon.) Insol. in alcohol.

+H₂O. Extraordinarily sol, in H₂O (Cov, Z. anorg. 1904, 40, 159.) +8H₂O. Melts at 6° in crystal H₂O. (Ditte.)

Mercuromercuric nitrate, Hg2O, 2HgO, N2Os. Boiling II:O gradually dissolves out Hg2(NO3)2, and leaves residue of HgO and Hg. (Brooks, Pogg. 66, 63)

2Hg₂O, HgO, N₂O₅+H₂O. (Ray, Chem Soc. 1905, 87, 175.) Hg₂O, 2HgO, N₂O₄+H₂O, (Rav.)

Mercurous hydrogen nitrate, 4HgNO3, HNO3 +8H2O.

(Reuss, Dissert 1886.) 5HgNO₃, 3HNO₃+26H₆O₄ (Reuss.)

Mercuric silver nitrate, Hg(NO₃)₂, 2AgNO₂ Easily sol. in H₂O without decomp. (Berzeltus.)

Mercurous strontium nitrate, 28rO, 2Hg2O, 3N2Os Decomp, by H2O, Much more sol. in H2O

than the corresponding Ba compound Readily sol, in warm dtl. HNO3+Aq or 370.) Hga(NO₂)₂+Aq without decomposition. (Stadeler, A. 87, 131,)

Mercurous thallous nitrate, HgNO2, TINO3. Miscible with H2O. (Retgers, N. Jahrb Miner, 1896, II, 183.)

Mercuric nitrate bromide, Hg(NO₂); HgBr₂. (Morse, Z. phys. Ch. 1902, 41, 733.)

Mercuric nitrate cadmium oxide, Hg(NOs)2, CdO+2H,O Ppt. (Mailhe, Bull. Soc. 1901, (3) 25, 788.) +3H₂O. Decomp, by H₂O. (Mailhe.)

Mercuric nitrate cobaltous oxide, Hg(NO₂)2, CoO+3H.O. Ppt. (Mailhe, C. R. 1901, 132, 1275.)

+4H₂O, Decomp. by H₂O. (Mailhe, A. ch. 1902. (7) 27, 369.)

CuO+2H2O, and +4H2O. (Mailhe, Bull. Soc. 1901, (3) 25. 791.)

+5H2O Decomp by H2O. (Mailhe, A. ch. 1902, (7) 27. 365.)

Mercuric natrate cyanide, Hg(NO₃)2,

Hg(CN)2. Very sol, in H.O. Very sol, in methyl alcohol and solution is not decomp, at bot, Ethyl alcohol apparently decomp. it (Prussta, Gazz. ch. it 1898, 28. (2) 115.)

Mercurous nitrate hydrazme, 2HgNO, NoH, Decomp. by H2O. Stable in dil HNO.+ An solution (Hofmann and Marburg, A. 1899, 305. 215.)

Ppt.; very unstable. (Hofmann, B. 1897, 30, 2021.)

Hg(NO₈)₂, N₂H₄ Sol in dil. HCl and NO₈. (Hofmann and Marburg, A. 1899, HNO₂. 305. 215.) Ppt.; sol in acids; decomp, by alkali,

(Hofmann, B 1897, 30, 2021)

Mercuric nitrate 10dide, Hg(NOa)2, 2HgI2. Decomp by long boiling with H₂O. (Riegel, Jahrb Pharm, 11, 396.)

get, Janu Franti 11. 390.)

2Hg(NO₂)₁, 3Hg[1₂. Easily decomp by

H₂O; less casily by alcohol or ether. (Rtegel.)

Hg(NO₂)₂, Hgl₂. Decomp. very quickly

by HNO₂+Aq or alcohol of 0.814 sp gr. (Souville, J. Pharm, 26, 474.)

Mercuric nitrate manganous oxide, Hg(NO.). $MnO + 2H_{\bullet}O$

Decomp by H₂O, (Mailhe, Bull, Soc. 1901, (3) 25. 790.) +3H2O (Mailhe.)

+4H₂O (Mailhe, A ch. 1902, (7) 27.

Mercuric nitrate nickel oxide, Hg(NO₄)₃, NiO $+2H_{2}O$ (Mailhe, Bull. Soc. 1901, (3) 25. 788.)

+4H₂O Decomp by H₂O. (Mailhe, A. ch. 1902, (7) 27. 369.)

Mercurous nitrate phosphate, HgNO2, Hg,PO,+H,O. Insol, in H₂O, but decomp, by boiling there-

with. Insol. in H₃PO₄+Aq or alcohol, Com-pletely sol. in hot NH₄Cl+Aq. Decomp. by cold KOH+Aq, and warm K₂CO₃+Aq. (Wittstein.) 2HgNOs, HgrO, 5HgsPOs+H2O. (Haack, A. 262, 192.)

Mercuric nitrate silver bromide, Hg(NOz)21 AgBr.

(Morse, Z. phys. Ch. 1902, 41, 733.)

Mercuric nitrate silver cyanide, basic, Hg(OH)NOs, AgCN+2H2O. Schmidt, Z. anorg. 1895, 9. 431

Hg(OH)NO2, 5Ag2O, 20AgCN+7H2O. (Schmidt.)

Mercuric nitrate silver iodide, Hg(NO₃)2, 2AgI+12H2O.

Decomp. by H₂O. (Preuss, A. 29, 328.)

Mercuric nitrate sulphide, Hg(NO₃)₂, 2HgS. Very sl, sol in hot H2O. Insol in HNOa+ Aq. Decomp. by hot H₄SO₄ or aqua regia, also by hot HCl+Aq. (Barfoed, J. pr 93. 230.)

Sol. in aqua regia. (Denigès, Bull. Soc. 1915, (4) 17, 355) 2Hg(NO₈)₂, HgO, 6HgS+12H₂O. Insol. in H₂O, and HNO₃+Aq of 1 2 sp. gr. (Gramp, J. pr. (2) 14. 299.)

Mercuric nitrate zinc oxide, Hg(NO3)2, ZnO+

H₂O. Ppt. Decomp. by H₂O. (Mailhe, C. R. 1901, 132, 1274.)

Molybdenum nitrate, Mo₂O₅, N₀O₅ (?), Sol, in dil. HNO2+Aq. (Berzelius.)

MoO2, 2N2O8 (?). Sol. m dil. HNO2+Aq (Berzelius)

Neodymium nickel nitrate, 2Nd(NOs)s. 3Ni(NO₁)2+24H2O.

1 l. sat. solution in HNO₅+Aq (sp. gr. 1.325) contains 116.6 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, 76. 303.)

Neodymium rubidium nitrate, [Nd(NOs)s]Rb2 +4H₂O. Hydroscopic. (Jantsch, Z. anorg. 1911,

69. 230.) Neodymium zinc nitrate, 2Nd(NOs)a. 3Zn(NO₃)₂+24H₂O.

 l. sat. solution in HNOs+Aq (sp. 1.325) contains 177 g. hydrous salt at 16° (Jantsch.)

Nickel nitrate, basic,

Insol. in H₃O. (Proust.) 8NiO, 2N₂O₅+5H₂O. Insol. in cold or hot H₃O. (Habermann, M. 5. 432.) 5NiO, N₂O₅+4H₃O. Not decomp. by bolling H₂O. (Rousseau and Tite, C. R. 114.

1184.)

Nickel nitrate, N1(NO.).

Solubility in H₂O. See +3, 6, and 9H₂O.

Sp. gr. of aqueous solution at 17.5° containing: 10 20 % N1(NO₃)₃ 1.0463 1.0903 1.1375 1.1935

% N1(NO₈)2 1.3193 1,3896 1,4667

(Franz, J. pr. (2) 5, 295,)

Sp. gr. of N1(NO₃)₂+Aq containing g. Ni(NO₈)₂ (anhydrous) in 1000 g. H₂O at 24.4°:

91 5 g. (= ½ mol.) 183 274.5 369 460.5 549 1.073 1 141 1 205 1 266 1 324 1 37 1.141 1 205 1.266 1.324 1 378 (Gerlach, Z. anal, 28, 468.)

Sp. gr. of N1(NO₃)₂+Aq at room temp. containing:

16.493 30.006 40.953% N1(NO₂)2. 1.1363 1,2776 1,3879 (Wagner, W. Ann. 1883, 18. 269.)

Sp. gr. of N1(NO₃)2+Aq at 25°.

Concentration of Ni(NO ₂) ₂ +Aq	Sp gr
1-normal 1/2- " 1/s- " 1/s- "	1.0755 1 0381 1.0192 1.0096

(Wagner, Z. phys. Ch. 1890, 5, 39.)

Sp. gr. at 20° of Ni(NO₄)2+Aq containing M g. mols. of salt per liter. м 0.0250.05

Sp. gr. 1.001521 1.003882 1.007792 1.011541 0.5

Sp. gr. 1.015307 1.03837 1.07611 1.11310 Sp. gr. 1.14562 1 22134 1,29459

(Jones and Pearce, Am. Ch. J. 1907, 38, 720.) Sol in hquid NH3. (Guntz, Bull, Soc. 1909, (4) 5, 1008.) Moderately sol. in liquid NH2. (Franklin, Am. Ch. J. 1898, 20. 828.)

Solubility in glycol=7.5%. (de Coninck, C. C. 1905, II 1234.) Insol. in benzonstrile. (Naumann, B. 1914, 47, 1370.)

+3H₂O. Solubility in H₂O. Sat. solution contains at:

58° 60° 64° 700 61.61 61.99 62.76 63.95% Ni(NO₈)2,

95° mpt 70.16 77.12% Ni(NO₄)₂,

(Funk, Z. anorg. 1899, 20, 411.)

+6H₂O. Not deliquescent in dry air. Sol. in 2 pts cold H₂O and in alcohol. (Tupputi.)

Mpt. of Ni(NO₂)₂+6H₂O =56.7°. (Ordway; Tilden, Chem. Soc. 45.40)

Sat. solution boils at 136.7°. (Ordway.)

Solubility in H2O.

Sat. solution contains at: ---21° -12.5° --10°

43.00 % N1(NO1)1. 39.94 41.59 42.11

+20° 41° 56.7° mpt 44 32 55 22 49.06 62.76% Ni(NO₁)2. (Funk, Z. anorg. 1899, 20, 410.)

Sat. solution of N1(NO₂)₂+6H₂O contains 44.3% Ni(NO₂)₂ at 0°, and 48.7% Ni(NO₂)₂ at 18° (Mylius, Z. anorg 1912, 74. 411.) Sp. gr of Ni(NO₂)₂+Aq containing in 1000 g. H₂O at 24.4°, g. N₁(NO₂)₂+6H₂O.

145.5 g. (=15 mol.) 291 436.5 1.128 1.179 1.069 1.224

727.5 1.264 1 299 1.3291.357 (Gerlach, Z. anal 28, 468.)

Sol. in NH₂OH+Aq.

Insol, in absolute alcohol, Sl. sol. in acetone. (Krug and M'Elroy.)

Difficultiv sol, in methyl acetate (Naumann. B 1909, 42, 3790)

Insol. in ethyl acetate. (Naumann, B. 1010 43, 314.) +9H₂O. Solubility in H₂O.

Sat. solution contains at.

Z. anorg, 1899, 20, 411.)

--93° ---21° ---10.5° 39.02 39,48 44.13% Ni(NO₂)2. Cryohydrate is formed at -27°. (Funk.

Nickel prascodymium nitrate, 3Ni(NOs)2,

2Pr(NO₂)₃+24H₂O. 1 I. sat. solution in HNOs+Aq (sp 1.325) contains 9.28 g. hydrous salt at 16°

(Jantsch. Z. anorg, 1912, 76, 303) Nickel samarium nitrate, 3Ni(NO_{*})₀.

2Sm(NO₂)₂+24H₄O. sat. solution in HNO_s+Aq (sp. gr. 1,325) contains 29,11 g, hydrous salt at 16°. (Jantsch.)

Nickel thorium nitrate, NiTh(NO₂)₄+8H₂O. Sol. in HNOs+Aq. (Meyer, Z. anorg 1901, 27. 387.)

Nickel uranyl nitrate, 10Ni(NO₃)₂, 3(UO+)(NO+)-.

Sol, in H₂O and acids; insol. in aq. alkah. (Lancien, C. C. 1912, I. 208.)

Nickel nitrate ammonia, Ni(NO₃)₂, 4NH₃+ 2H₂O.

Efficescent. Easily sol. in cold H₂O; decomp. by boiling. Insol, in alcohol. (Erdmann, J. pr. 97, 395; Ephraim, B. 1913, 48, 3106.)

+1½H2O. (André, C. R. 106. 936.)

Nickel nitrate chloride ammonia, 6Ni(NO1)2, NiCl₂, 30NH₂+16H₂O. Sol. in H₂O with decomp. (Schwarz, W.

A. B. 1850. 272.) Nickel nitrate cupric oxide, N1(NO₂), 3CuO+

Ppt. (Maihle, C. R. 1902, 134, 234.)

Nickel nitrate hydrazine, Ni(NO3)2, 3N2H4. Insol. in H₂O. Decomp, by hot H₂O Easily sol. in dil. acids. (Franzen, Z anorg. 1908, 60, 267.)

Palladium nitrate, basic, Pd(NOa)a, 3PdO +4H₀O.

Ppt. Insol. in H₂O (Kane.)

Palladium nitrate, Pd(NO₄)₂+xH₂O

Very deliquescent, and sol in H₂O. De-comp. by much H₂O or alcohol (Kane,) Decomp, by cold or hot H.O (Rose, A. 83. 143)

Platinic nutrate, Pt(NO₂), (?).

Known only in solution, which is decompon evaporating (Berzelius.) Pt(NO₈)₂, 3PtO₂+5H₂O. (Prost, Bull Soc. (2) 46. 156) Insol in H₂O.

Platinum nitrate sulphocarbamide, Pt(NO₃)₄. 4CS(NHa)o.

Very sel, in H.O. Unstable (Kuinekow. J. pr 1894. (2) 50, 490.)

Potassium nitrate, KNO.

Not deliquescent, but, according to Mulder, 100 pts. KNO_3 under a bell jar with H_2O take up 339 pts. H₂O in 22 days, and small amounts finally deliquesce completely

Sol. in H₂O with absorption of heat. 16 pts. KNO₃+100 pts. H₂O at 13.2° lower the temperature 10.2° If the initial temp, is 23° it falls to 12.8°, if 0° it does not fall below -2.7°, which is the freezing-point of the mixture. (Rüdorff, Pogg. 136, 276)

KNOs+Aq ent at 18.1° has 1 1601 sp gr and contains 22 73° KNOs, or 100 pts HeO at 18.1° dissolve 29.45 pts KNOs (Kasten, 1840) Sol. in 3 745 pts. HeO at 18. (Gorlach.) Sol. in 3 pts. HeO at 18° (Gorlach.) solution has 1 1683 sp. gr Sol in 3 pts cold, and 0.5 pt boding H₂O. (Four-

COO. 1 KNO₃ + Aq sat at 18° has sp gr I 151, and contains 21 03° KNO₅, or 100 pts H₂O dissolve 27 60 pts. KNO₃ at 18° (Longchamp) Sol m i pts H₂O at 16°, and 0.25 pt at b. pt (Ruf-

100 pts H₂O at 114 5° dissolve 28 1.01 pts (Griffiths) Sol in 7 pts. cold, and 1 pt. boiling H₂O (Berg-

Sol in 6 15 pts cold H₂O at 18 75° (Abl.) 100 pts H₂O at 15,5° dissolve 26 6 pts , at 100°, 100 (Ure's Dictionary.) CNO2+Aq sat at 10° contains 33.3%

KNO2+Aq sat in the cold contains 25% (Four-TOV)
KVOs+Aq sat at 12 5° contains 24.8% (Hassen-

Solubility of KNO, in 100 pts. H.O at to. Pts KNO.

Pts. KNO

		1	
0 5	13 2	45.10	74.7
	16.7	54 72	97.1
11.67	22.2	65 45	125 5
17.91	29 3	79.72	169.2
24 94	38 4	97 66	236.4

NITRATE, POTASSIUM 579					
		ın 100	KNO		Solub
16 0 26 7 29 43 5 44 2 71 4 (Nordenskjold, Pogg. 136 312.) pts H ₂ O dasolve at: 18° 27° 41° 53° 27.9 401 66.3 93 3 pts KNO ₂ .		100 10° 21.2			
					100
	oloz pic	. 111.;	pr. so	auer, J	(v, n
	29. 456)	132.1 j	7.2 eae, J	16 2' (Andı	100
Pts KNO ₃	t°	Pts KNOs	t°	Pts KNOs	t°
168 172 175 179 182 175 189 189 190 190 190 190 190 190 190 190 190 19	79 80 81 82 83 84 85 86 87 88 89 90 91 102 103 104 106 107 108 110 111 111 111 111 111 111 111 111	64 66 68 68 70 72 74 76 78 81 81 83 86 88 89 101 103 106 1113 116 124 127 124 127 124 146 152 155 159 162	40 41 42 43 44 45 46 47 48 49 50 51 55 55 56 57 58 66 67 71 72 73 74 77	$\begin{array}{c} 13.3 \\ 13.6 \\ 14.6 \\ 16.4 \\ 17.4 \\ 17.8 \\ 20.2 \\ 22.1 \\ 11.7 \\ 22.2 \\ 20.2 \\ 22.2 \\ 20.2 \\ 22.2 \\ 20.2 \\ 22.2 \\ 20.2 \\ 22.2 \\ 20.2 \\ 22.2 \\ 20.2 \\ 22.2 \\ 20.2 \\ 22.3 \\ 20.2 \\ 22.3 \\ 20.2 \\ 22.3 \\ 20.2 \\ 22.3 \\ 20.2 \\ 22.3 \\ 20.2 \\ 22.3 \\ 33.3 \\ 33.3 \\ 33.3 \\ 4.7 \\ 36.0 \\ 20.2 \\ 20.$	0 1 2 3 4 4 5 6 7 8 9 10 11 1 12 13 14 15 16 7 18 19 20 21 1 22 3 24 5 27 8 29 30 1 32 2 3 33 4 35 6 37 3 8
Contain KNO ₂ . ENO ₃ . Contain KNO ₃	2 s)) s	Pts EN 287 7 43 E 471 4 135 31 53 9 pt 93 3 pt 94 5	Pie KN 26 7 47 12 6 48 12 6	Page NN 285 7; 43 44 45 45 45 45 45 45 45 45 45 45 45 45	16 0 25 2 25 2 25 2 25 2 25 2 25 2 25 2 2

Sp gr. of KNO ₂ +Aq at 21°.				
C KNO	Sp gr.	% KNO ₂	Sp gr	
1 2 3 4 5 6 7 8 9	1 0058 1 0118 1 0178 1 0239 1 0363 1 0425 1 0490 1 0555 1 0621	13 14 15 16 17 18 19 20 21 22	1.0819 1.0887 1.0956 1.1026 1.1097 1.1169 1.1242 1.1316 1.1390 1.1464	
11 12	1 0686 1 0752	23 24	1.1588 1.1613	

(Schiff, A 110 75.)

Sp	gr. of KN	O ₃ +Aq at	15°.
co KNO2	Sp gr	% KNO2	Sp

Co KNO2	Sp gr	% KNO2	Sp gr
1	1 00641	12	1 07905
2 3	1 01283	13	1 08590
	1 01924	14	1 09286
4	1 02566	15	1 09977
5	1 03207	16 17	1 10701 1 11426
6	1 04534	18	1 12150
ś	1 05197	19	1 12875
9	1 05861	20	1 13599
10	1 06524	21	1 14361
11	1 07215		

(Gerlach, Z. anal. 8, 286.) Sp. gr. of KNO₃+Aq at 17 5°.

KNO,	Sp gr	KNO.	Sp gr	KNO:	Sp gr
1 2 3	1.006 1.012 1.019	8 9 10	1.051 1.058 1.065	15 16 17	1 099 1 106 1 113
4 5 6 7	1.025 1.032 1.038 1.045	11 12 13 14	1.072 1.078 1.085	18 19 20	1 120 1 127 1 134

(Hager, Comm. 1883.)					
Sp.	gr. of KN	O ₂ +Aq at 18	g°		
% KNO:	Sp gr	% KNO:	Sp gr		

1 148

(Kohlrausch, W. Ann. 1879, 1,)

1.0632

1.097

10

Sp. gr. of KNO₂+Aq at 20°, containing mols. KNO₂ in 100 mols. H₂O.

KNO ₁	Sp. gr.	KNO:	Sp. gr
0.5 1 2	1.01730 1.03373 1.06524	4 5	1.12264 1.14888

(Nicol, Phil. Mag. (5) 16, 122.)

Sp gr, of KNOa+Aq at 25°.

Concentration of KNOv+Aq	Sp. gr
1-normal 1/2- " 1/4- "	1.0605 1 0305 1 0161
1/2- " 1/4- "	

(Wagner, Z. phys. Ch. 1890, 5. 37.)

Sp. gr. of KNO₃+Aq at 20 1°.

p=per cent strength of solution; d=observed density; w=volume conc. in grams per cc. (pd=w.)

p	d	w
25.54	1 1783	0.30095
21 95	1.1510	0.25270
17.88	1 1200	0 20033
13.93	1 0913	0.15203
8.706	1.0553	0.09186
5.393	1.0331	0 05571
4.389	1 0264	0.04506
2.848	1.0165	0 02895
2 030	1.0113	0 02053
0.741	1 0030	0.00743

(Barnes, J Phys Chem. 1898, 2. 544.)

Sp. gr. 20°/4° of a normal solution of KNO₂ =1.05954; of a 0 5 normal solution =1.029325. (Haigh, J Am. Chem. Soc. 1912, **34**. 1151.)

Sp gr. of sat. KNOs+Aq at to.

t°	G KNOs sol m 100 g HzO	Sp gr.
0 10 20 30 40 50 60	13 27 20.89 31 59 45 85 63 90 85 51 109 00 138 00	1 084 1 120 1 161 1 212 1 282 1 389 1 403 1 446

(Tschernaj, J. Russ Phys. Chem. Soc. 1912, 44, 1565.)

The saturated solution boils at 114.1° (Mulder); 114.5° (Griffiths); 115.9° (Legrand, Gerardin); 117° (Magnus); 118° (Kremers); 126°

arum; 11° (Atagmus); 118° (Kremers); 126° (Le Page).

The saturated solution forms a crust at 111°, and boils at 115°; highest temp. observed, 115.3°. (Gerlach, Z. anal. 26. 426.)

B.-pt of KNO+Aq containing pts. KNOs to Legrand (A. ch. (2) 52, 426).

Bpt.	G	L	B-pt.	G	L
100.5°	7.5		107°	120.5	119 0
101	15.2	12 2	108 109	141 5 164	140 6 163 0
101 5 102	23 31	26.4	110	188 5	185.9
102 5	39	42 2	111 112	215	209 2 233 0
103 103 5	47 5 56	42 2	113	274	257.6
104	64.5	59 6	114	806	283.3
104.5 105	73 82	78 3	115	338 5	310 2 335 1
108	101	98.2	1		

1 pt. KNO₂ dissolves in 1.4 pts HNO₂; at 20° in 3.8 pts., and at 123° in 1 pt. HNO. +Aq of 1.423 sp gr. (Composition 2HNO₈, 3H₂O.) (Schultz, Zeit. Ch. (2) 5. 531.)

Solubility of KNO3 in HNO3 at 0°.

G. per 100	G. per 100 ec solution		
KNO:	HNO.	Sp gr	1
12.65 10.02 8.38 7.49 7.49 7.68 10.42 28.64	0 00 3 71 8 38 13 58 19 47 30 04 42 86 75 95	1 079 1 093 1 117 1 144 1 202 1 289 1 498	-

((Engel, C. R., 1887, 104 913.)			
	Solubili	ity in HNO₃+Aq		
Solution temp	% by wt. KNO:	Solid phase		
-6°	24 4	KNO ₈ , 2HNO ₈ (solution m HNO ₈) (stable)		
+14 0 17 0	32 6	u u		
19 5	34 8 37 2	44		
22.0	44 5	(mpt.)		
21 5	47 8	(Solution in KNO ₂) (labile)		
21.5 20.0	48 6 50.9	"		
- 4.0	37.2	KNOs, HNOs (labile)		
+16.5	44.5	" "		
22.5 23.5	47.2 47.8	(stable)		
25.5	48 6	tt.		
27.0	49.4	44		
29 0	50 1	(labile)		
30.5 21 0	50.9 49.4	KNO _z (labile)		
39 0	50 9	(stable)		
50.0	51 7	(1770)		

(Groschuff, Z. anorg. 1904, 40. 10.)

Sol in sat. NH₄Cl+Aq Solution thus 100 pts. H₂O G = according to Gerlach | obtained contains 43.07 pts. mixed salts, or (Z. anal. 26. 444); L=according to 100 pts. H₄O dissolve 75.66 pts. mixed salts, viz. 38.62 pts. KNO, and 39 84 pts. NH4Cl.

(Karsten.) See also under NH4Cl. Solubility of KNO₈+K₂CO₃ and KHCO₃ in H₂O, see under K₂CO₃ and KHCO₃.

Sol. in sat. BaClo+Ag with pptn. of Ba(NOs)

Sol. in sat. NH₄NO₈+Aq, at first without pptn , but afterwards NH₄NO₃ is pptd. (Karsten.)

Sol NH, NO3+Aq with pptn. of NH4NO2. (Rudorff, B. 6. 485) See also under NHLNO.

Sol in sat. Ba(NO₃)2+Aq, but soon a double salt separates. (Karsten.) See also under Ba(NO₃)₂ (Longchamp)

Sol in Ca(NO₃)₂+Aq.
See also under Ca(NO₃)₂.

Sol. in sat. Pb(NOs)2+Aq without pptn 100 pts. H₂O dissolve 119.6 pts. Pb(NO₂)₂ and 67 l pts. KNO₂ at 21.2°. (Rüdorff, B. 6. 484.) See also under Pb(NO₂)₂

Solubility in AgNO₄+Aq at t°.

t°	Sat. solution contains			
	% KNOs	% AgNO:	% total salt	
-7 -7 5 -4 +20 33 34 36 38 46 54	10.5 10.5 11.3 23.6 26.3 27.3 29.4	39 4 40 5 42 5 46 4 50 9 51 1 52.0	49.9 51.0 53.8 70.0 77.2 78.4 81.4 81.7 82.3 88.1	
54 61 68 96 105 142	34.3 37.8 38.5 41.5	55 8 54 6 55 4 55 6 55 8	89.5 88.9 93.2 94.1 97.3	

(Étard, A. ch. 1894, (7) 3, 286.)

Solubility of mixed crystals of KNO2 and AgNOs in HiO at 25°.

Ор	er l	Mg mols per l		Mol % AgNOs in solu	Mol. % AgNOs in solid	
AgNO ₃	KNO:	AgNO:	KNO ₈	tion	phase	
45 9 110 7 176 8 259 6 365 6 507 9 745 9	321 8 322 6 333 7 364.0 456 4 387 2 398.6	270 6513 1040 1258 2151 2988 4388	3180 3184 3298 3597 4511 3816 3960	7.83 16 96 23 97 29 81 32 28 43 85 57 70	0.2896 0 6006 0.9040 1.054 1.604 2 489 8.294	

(Herz, Z Kryst, Min. 1897, 28, 405.)

. . Solubility of KNO++AgNO, at 30°.

Composition of the solution		Solid phase
℃ KNOa	G AgNO₃	
0 5 53	73.0 71.65	AgNO ₄
11 22 13 44	69 01 65 08	AgNO ₃ +AgNO ₃ , KNO ₃ AgNO ₃ , KNO ₃
17 38 25 05	57 85 46 32	KNO2+AgNO2, KNO2
25 00 26 58	46 45 39 09	KNO ₃

(Schreinemakers, Z. phys. Ch. 1909, 65, 576.)

KNO.+NaNO.

20 45 11 51 31 30

100 pts, H₂O dissolve 34.53 pts, KNO₃ and 91.16 pts. NaNO₃ at 15 t°, and solution has sp gr ≈ 1.478 (Page and Keightley) 100 pts. KNO3+NaNO3+Aq sat at 11 contain 52.17 pts of the two salts, sat at 13°

contain 53.15 pts of the two salts (v. Hauer.) 100 pts H₂O dissolve at 18 75° 29 45 pts. KNO, and 89.53 pts. NaNO, if sat. KNO++ Aq is treated with NaNO, and 35.79 pts KNO₃ and 88,00 pts. NaNO₃ by the opposite process 134 38 pts. of the two salts are dissolved if a mixture of the salts is treated with H₂O at 18 75°, (Karsten)

100 pts H O dissolve 39 34 pts. KNO, and 94.60 pts. NaNO2, or 133 91 pts of the two salts at 20° (Nicol, Phil. Mag (5) 13. 385)

Solubility of mixtures of KNO₃ and NaNO₄.

Na NO2 in maxture before solution	Potal amt mixed salts dis- solved in 100 pts H ₂ O at 20	Pts NaNO ₂ drs solved	Pto KNO; drs solved	NaNOs in mixture after solu tion and evap to dryness
100 90 80 70 60 50 45 7* 40	86 8 109 6 136 5 136 3 137 6 106 1 88 0 81 1 73 5	86 8 96 4 98 0 90 0 90 0 53 3 45 6	0 13 2 38 5 47 6 40 1 34 7 35 6	100 88 71.8 65 4 62.2 60.6 56 2
20 10 0	54 1 40 9 33 6	20 8 9 4 0	33.3 31.5 33.6	38 5 22 9 0

* NaNO2+KNO2

(Carnelley and Thomson, Chem. Soc. 53 782.)

Solubility of KNO+NaNO in H₂O at 10°.

In 1000 ccm H₂O Nn? SO: 848

		Solid plinse
NO ₃	KNO ₃	
5 0 3 3	301 9 208 9	NaNO ₃ NaNO ₃ , KNO ₃ KNO ₃

(Kremann and Zitek, M. 1909, 30, 325.)

Solubility of KNO₃+NaNO₃ in H₂O at 24.2°

In 1000 c	can H ₂ O	Solid phase
NaNO ₃	KNO:	Solid phase
913 58 910 60 1019 65 1018 40 931 30 346 70	123 60 435 85 437 70 422 00 390 00 377 35	NaNO ₂ NaNO ₂ KNO ₂ KNO ₂

(Kremann and Zitek)

Solubility of KNO₁+NaNO₁ in H₂O at 25°.

€ KN02	℃ NaNOs	Solid phase
38 70 41 60 46 35 39 08 20 98	39 62 66 31 100 10 98 99 94 44	KNO ₃ KNO ₃ +NaNO ₃ NaNO ₃

(Uveda, Mem. Col. Sc. Kioto, 1910, 2, 245)

Solubility in NaNOs+Aq at 20°, 30°, 40° Data, given in the oughnal, show that each salt mcreases the solubility of the other. (Leather, Mem, Dept. Agric. India. 1914, 3. 177; Chem Soc. 1915, 108. (2), 13.) 100 pts H₂O dissolve 28 92 pts KNO₃, 53.68 pts. NaNO₄, and 26.44 pts. NaCl at 156°, and solution has sp. gr. = 1.44. and Keightley, Chem. Soc. (2) 10, 566.)

Solubility of KNO₂+NaNO₃+NaCl in H₂O

KNO:	Naño: Naño: Nañ		Solid phase	
38 57 42 55 17 77 28 08	22 87 44 40 63 26 61 12 62 92 82 82	27 67 23 59 23 94 23 70	NaCl+KNOs NaNOs, KNOs+NaCl	

(Uyeda, Mem. Col. Sc Kioto, 1910, 2. 245.)

KNO₂+Sr(NO₂)₂

1 l. H.O sat, with both salts at 25° contains 552 g. KNO₃+1074 g. Sr(NO₃)₂ (Le Blanc and Noyes, Z. phys. Ch. 1890, **6**, 386.)

Solubility of KNO ₃ +Sr(NO ₃) ₂ at t°						
		-				
21	o.C)				
4	₂ C)				

(Findlay, Morgan and Morris, Chem. Soc. 1914, 105, 779.)

0 47.7

KNOa+TINOs.

100 g. H₂O dissolve 43.5 g. TINO₃+104 2 g. KNO₄ at 58°. (Rabe, Z. anorg. 1902, 31. 156.)

Solubility of mixed crystals of KNO₃+TlNO₈ in H₂O at 25°.

G p	Sp gr	
TINO	KNO ₈	ia de
0 00 2 37 6 15 17 64 49 74 63 60 86 18 123.8 101.3	351 0 329 0 332 4 333 7 333 3 321 0 330 5 428 3 245 1	1 2632 1 1903 1 1956 1 2050 1 2196 1 2436 1 2617 1 2950 1 2050
116.1	0.0	1 0964

KNO₄+KBr.

Solubility in KBr+Ag.

at 14 5° at 25 2°

(Herz, Z. Kryst. Min. 1897, 28 405.)

Mol KBr	Mol. KNO;	Mol KBr	Mol KNO
0.0	2 228	0.0	3 217
0 356	2 026	0.38	3 026
0.784	1 835	0.93	2 689
1 092	1 730	1.37	2 492
1 577	1 589	2.08	2 216
2.542	1 406	2.87	1 958
3.536	1 308	3.55	1 807

(Touren, C. R. 1900, 130, 910.)

KNO₄+KCl.

100 pts. H₂O dissolve pts. of the two salts:

	At 12 9°	At 15 3°
KNOs	18 8	18.9
KCl .	28 5	29 8

(Kopp.)

100 pts. H₂O dissolve 315,2 pts. KCl and 19.1 pts. KNO₂ at 20.0°. (Rudorff, B 6. 494.) 100 pts. H₂O dissolve 18.95 pts. KNO₂+32 84 pts. KCl, or 51.79 pts. of the mixed salts at 20°. (Nicol, Phil. Mag. (5) 31. 385.)

Solubility of KCl with addition of KNO₃ at 17 5°.

Sp gr.	100 ccm of solution contain g.			
Op ga.	KCl	H ₂ O	KNO:	
1 1730 1 1980 1 2100 1 2250 1 2360 1 2390 1 2388 1 2410	29 39 27.50 27.34 26.53 25 98 25 96 25 95 26 24	87 85 85 68 84 76 83 58 82 84 82 65 82,43 82,63	0 6 58 8 83 12.48 14.83 15.22 15.49 15.33	

KNO: separated out in last four solutions.

Solubility of KNOs with addition of KCl at

Sp gr	100 ccm of solution contain g				
op gr	KNO ₈	H ₂ O	KCl		
1.1625 1 1700 1 1765 1 1895 1 1983 1 2150 1 2265 1 2400	27 68 24 39 22 44 20 23 18 96 17 67 17 11 16.79	88 51 87.89 87.47 86.48 85 69 84.23 83.40 82 24	0 4 72 7 .74 12 .23 15 .15 19 61 22 .17 24 96		

(Bodlander, Z. phys. Ch. 7 359.)

KCI-LAG of to

Solubility of KCl in KNO3+Aq Concentra-

tion of % mol. per l

to.	Sat solution contains		
	% KNO:	% KCi	% total salt
-11.4 -11 -10 -14 +2.5 -4.5 -5 -4.5 -5 -6.5 -6.5 -6.5 -6.6 -6.6 -6.6 -6.6	% KNOs 4.0 3.9 3.8 6 3.7 7.8 7.7 8.9 10.2 19.7 146.1 188.9 21.0 21.3 25.3 34.5 48.2 28.3 34.5 48.2 28.3 48.2 48.2 48.2 48.2 48.2 48.2 48.2 48.2	% KCI 18.4 18.1 18.6 19.7 19.9 20.9 21.9 22.6 21.3 22.6 21.0 21.0 21.0 20.3 20.3 20.2 19.5 20.3 18.3 13.3 13.3 13.3 13.3 13.3 13.4	% total salt 22 4 22.0 22.5 22.0 22.5 28.0 6 2.2 88.0 6 28.8 8.3 34.3 34.3 34.3 34.3 34.3 34.5 35.5 35
104 105 120 120	59 9 69.6 69 1	10 8 10 9 7 7 7 6	70.7 77.3 76.7
(É	tard, A. ch.	1894, (7) 3	285.)

0°	0	283 55	3 81	
64	1/4	284.25	3 81	
64	1/2	283.60	3 81	
44	Ί	287 60	3.86	
25°	0	364.15	4.89	
-11	1/4	365 00	4 90	
44	12	361.65	4.86	
ee	'ī	358 80	4 81	
41	11/2	355 20	4 77	
(Armstrong and Furn Prog P. Soc (A) 1010				

G salt dresolved in 1 i H₂O Molecular solubility

Proc. R. Soc. (A) 1910, 84, 127.)

Solubility in KCI+Aq at 20°, 30°, 40° and 91°. Data, given in the original, show that each salt diminishes the solubility in H₂O of the other. (Leather, Mem. Dept Agric. India, 1914, 3. 177. Chem Soc 1915, 108. (2) 13.) KNO2+NaCl

NaCl is sol in sat. KNO3+Aq, and the mixed solution is capable of dissolving more KNO₃. An amount of H₂O, which, when pure, could only dissolve 100 pts KNO₃, can in this way be made to take up 152.64 pts. (Longehamp, A. ch. (2) 9. 8.) Sol. in sat NaCl+Aq.

100 pts. H₂O dissolve:

	Longchamp	Rüdorff		Page and Keightley	
	(1)	14° (2)	16° (3)	15.6° (4)	
NaCl KNO ₃	35 96 26 01	38 5 28 7	38 9 36 1	39.57 32 32	
	61 97	67.2	75 0	71 89	

Solubility in KCl+Aq

T HELD OF THE SOURCEON CONCERNS OF				
14 5°		at 25 2°		
Mol KCl	Mol KNO2	Mol KCl	Mol KNO2	
0.0 0.182 0.424 0.880	2 228 2.172 2.057 1.830	0 0 0 26 0 66 1 35	3 217 3.086 2.853 2.510	
1.778	1.576	2 08	2.218	

1.423 3 04

2.635

3.172 1.355

		Karsten 18 75°		Mulder At b -pt.
	(5)	(6)	(7)	(8)
aCl NO₃	36 53 33 12	38 25 29 45	39 19 38 53	37 9 306.7
	69 65	67 70	77 72	344.6

 2, 3, 4, and 8. Both salts in excess.
 Sat. NaCl+Aq treated with KNO. 6. Sat KNO. + Aq treated with NaCl The two salts simultaneously treated with H₂O.

Ŕ

1.946

100 pts. H₂O dissolve 31.44 pts KNO₃, 139 pts. KCl, and 38 58 pts. NaCl at 15.6°, and solution has sp. gr. = 1.33. (Page and Keightley.)

(Touren, C. R. 1900, 130, 909.)

Solubility in NaCl+Aq at to.				
t°	Sat solution contains			
	% KNO:	% NaCl	% total salt	
-22 -10 5 5 -16 5 -7 -1 1 +11 17 18 18 .5 5 222 22 22 23 30 5.5 5 32 5 32 5 33 39 2 26 5 50 5 77 79 90 90 90 90 90 100 71 115 100 71 115 115 115 115 115 115 115 115 115	7 3 7 9 10 11 10 9 7 11 10 10 11 10 9 7 11 10 9 10 11 10 9 10 11 10 9 10 11 10 10 10 10 10 10 10 10 10 10 10	% NaCl 22: 5 22: 1 22: 5 23: 0 23: 8 22: 8 22: 8 22: 8 22: 20: 7 22: 7 22: 7 22: 7 22: 7 22: 7 22: 7 22: 19: 5 20: 7 21: 14: 6 11: 6 12: 6 11: 6 12: 6 10: 6 12: 6 10: 6	% cotal salt 298 5 30 5 8 30 6 9 38 6 7 38 9 4 8 44 14 5 5 43 0 0 4 45 4 2 1 45 1 1 555 0 5 67 7 7 70 77 70 2 7 70 2 7 70 2 7 71 2 81 81	
127 127 127 127 128 132 145	73.6 72.9 73.0 74.2 75.7 77.7	7 9 8 8 7.6 7.9 7.6 7.6	81 5 81.7 80 6 82.1 83.3 85 3	

(Étard, A. ch. 1894, (7) 3, 283.)

5.8

86 5

80 7

79 1 5 9 85 0

100 g. H₄O dissolve 41.14 g. KNO₃ and 38.25 g NaCl at 25°; 168 8 g. KNO₂ and 39.81 g. NaCl at 80°. (Soch, J. phys. Ch. 1898, 2.46.)

1898, 2. 46.)
See also under NaCl.
Sol. in sat. CuSO₄+Aq, forming a double

salt, which soon separates out.

Very slowly and slightly sol. in MgSO₄+
Aq with pptn. of MgSO₄. (Karsten.)

KNO₃+K₂SO₄. Sat KNO₂+A₂ dissolves some K₂SO₄, and sat, K₂SO₄+A₂ slowly dissolves some KNO₂

without pptn., but K2SO4 is afterwards pptd. (Karsten.)

100 pts. H₂O dissolve:

	Mulder 18 75°	Karsten 18 75°		opp	Mulder 18.75°
	(1) (2)		20° (3)	40° (4)	(5)
KNOs K ₂ SO	29.90	29.42 4.0	26.9 6.6	59.35 5 75	10.8

2 H₂O sat. with KNO, and K₂SO, simultaneously, or to a sat. solution of one salt the other was added.
3 and 4. H₂O sat. with both salts simul-

taneously.

Mulder doubts the results of 3 and 4.

Solubility in K2SO4+Aq at to.

t°	In 100 eem of	Sp gr of	
	G KNO ₁	G K ₂ SO ₁	solution
15 25	216 5 308 5	50.7 47.66	1.165

(Euler, Z phys. Ch. 1914, 40. 313)

Slowly sol, in sat. Na₂SO₄ at first without pptn., but afterwards K₂SO₄ or NaSO₄ separates out.

Sol. in sat. ZnSO₄+Aq with pptn. of double salt (Karsten.)

Sol in sat. KClO₃+Aq, from which solution it is not pptd. by salts which would ppt. it from aqueous solution. (Karsten.) Hydrazine dissolves 21.7 pts. KNO₃ at

12.5-13°. (de Bruyn, R. t. c. 1899, 18. 297.) Neather dissolved nor attacked by liquid NO₂. (Frankland, Chem. Soc. 1901, 79. 1361. Very sol. in liquid NH₃. (Franklan, Am.

Ch. J. 1898, 20. 829.)
Insol. in absolute alcohol; in dilute alcohol it dissolves proportional to the amount of H₂O present, but always less is dissolved than the d H₂O would dissolve by itself. (Gerardin.)

100 pts, alcohol containing % by weight of alcohol dissolve pts, KNO2 at 15°.

10 20 30 40 50 60 80% alcohol 13.2 8.5 5.6 4.3 2.8 1.7 0.4 pts. KNO₄.

(Schiff, A. 118, 365.)

Solubility in 100 pts. alcohol at to of alcohol; S = solubility	D=sp. gr.
--	-----------

D=	0 9904	D=	0.9548	D:	0 9793	D =	9726
t°	8	t°	8	to.	8	t°	8
12 21 33 43 53 61	18 1 25 0 40.4 58.6 79 1 94 5	12 21 36 41 56	14 6 21 7 37 8 45 0 72 9	10 10 13 18 20 31	10 20 10 19 11.74 14 52 16 35 25 81	14 25 34 44 47 60	8 8 13 6 20 3 31 3 34 2 52 3
62	95 7	.:		34 40 41 50 53 61 62	28 63 36 66 37 20 50 14 56 01 72 24 73 36		

D =	0,9673	D.	0 9390	D=	:0 S967	D-	0 8129
to	s	t°	s	t°	s	t°	s
14 25 33 44 57 65	5 4 9 0 13 2 19 1 29 1 36.2	16 24 40 51 60 64	4 13 6 00 10 94 16.51 21.51 24.22	12 33 17 57	1 61 3 62 5 77 6 97	15 22 40 54 60	0 29 0 39 0 62 0 78 1.10

(Gerardin, A. ch. (4) 5, 151)

Solubility of KNO3 in alcohol at 18°.

	100 cem contain g					
Sp. gi.	Alcuhol	Water	hN0a			
1 1475 1.1085 1.1010 1 0805 1 0655 1.0490 1 0375 0 9935 0 9456 0 9050 0 8722 0 8375	3 30 5 24 8 69 14 08 16 27 19 97 28 11 37 53 42 98 51 23 61 65 69 80	89 63 87 44 86 26 83 18 77 93 76 36 72 93 64 74 54 21 48 15 27 32 24 74 13 95	25 12 20.11 18 60 16.18 14 54 12.27 10 85 6 50 4 11 3 37 1 95 0 83 0 20			

(Bodlander, Z, phys. Ch. 7, 316.)

Solubility in alcohol.					
t & alcohol	G KNO: per 100 g alcohol				
t ;è niconor	at 30°	nt 10°			
0 8 25 17 0 25 7 35 0 44 9 54 3 65 0	45 6 32 3 22 4 15 1 11 4 (34.5°) 7 0 4 5 2 7	64 5 47 1 33 3 24 1 16 7 11 6 (44°) 7 2 (55°) 4.4			
75.6 88.0	1.3 0.4	2.0 (76 3°) 0.6 (88 5°)			

(Bathrick, J. phys. Ch. 1896, 1, 160)

Solubility of KNO2 in ethyl alcohol+Aq at

6 by ut. H40	by ut alcohol	℃ by wt. KNOs
68 7	0	31 3
69.2	10 1	20.7
67 3	17 0	15 7
61 1	23 8	12.1
58 8	32 2	9.0
50 S	43 1	6.1
39 8	56 9	8.3
33 9	63 8	2.3
22 3	76.8	0.88
7.5	02.2	0.15

(Schreinemakers, Z. phys. Ch. 1909, 65, 556.)

Solubility in ethyl alcohol at 25°.

Concentration of alcohol in g mul per L H ₂ O	Solubility in 1.1 H ₂ O	Mol solubility
0	384.48	3,80
14	368.30	3 64
13	354.40	3 50
1	327.00	3 22

(Armstrong and Eyre, Proc. R. Soc. 1910, (A) 84, 127.)

Solubility of KNO₃ in methyl alcohol +Aq at

26 D) at 1130	of the account	76 03 1107 201101
68 7	0	31 3
68 9	7.8	23.3
66.4	17 3	16 3
61.0	27 8	11 2
53 9	38.4	7.7
39 2	57.0	3.8
0.99	98.58	0.43

(Schreinemakers, Z. phys. Ch. 1909, 65, 556.)

m

Solubility of KNO ₃ +AgNO ₃ in 51.6% C ₂ H ₅ OH+Aq at 30°.						
KNO:	AgNO:	Solid phase				
4 8 4 55 4 11 4 26 2 62	0 5 15 16 47 21 28 36 94 37	KNO ₃ " KNO ₁ +AgNO ₃ , KNO ₃ AgNO ₅ , KNO ₃ +AgNO ₃ AgNO ₃				

(Schrememakers, Z. phys. Ch. 1909, 65, 556.)

100 g 40% ethyl alcohol sat, with KNO++ NaCl at 25° contain 13.74 g. KNOa+15.78 g NaCl. (Soch, J. phys. Ch 1898, 2, 43.) Insol. in propyl alcohol. (Schlamp, Z. phys. Ch. 1894, 14, 277.)

Almost mool, in ether. (Braconnot.)

Very sl. sol in acetone. (Krug and M'Elrov.) Sol. in acetone. (Eidmann, C. C. 1899, II. 1014)

Solubility in acetone + Ac at 40°.

Wt % acetone	G KNO ₂ per 100 g, solve
0	64 5
8 5	51 3
16 8	38 9
25 2	22 8
34 3	24 7
44 1	17 0
53 9	11 9
64.8	7 2
76 0	3 0
87 6	0 7
87.0	0 /

(Bathrick, J. phys. Ch. 1896, 1, 160)

100 pts. glycerme (sp. gr. 1.225) dissolve 10 pts. KNO₃. (Vogel, N. Rep. Ph. 16. 557) 100 g. trichlorethylene dissolve 0 01 g. KNO, at 15°. (Wester and Bruins, Pharm. Weekbl. 1914, 51. 1443.)

Insol, in CS2. (Arctowski, Z. anorg, 1894 6. 257.) Insol, in benzonitrile. (Naumann, B. 1914)

47. 1370.) Insol in methyl acetate (Naumann, B

1909, 42, 3790); ethyl acetate. (Naumann B. 1910, 43. 314.) 100 g, H2O sat, with sugar and KNO2 dissolve 224.7 g. sugar + 41.9 g. KNO₃, or sat solution contains 61 36 g. sugar + 11.45 g KNO, at 31 25°. (Kohler, Z. Ver. Zuckerind

1897, 47, 447.) Potassium hydrogen nitrate, KNO₂, HNO₂. Very hygroscopic, Decomp. by H₂O (Groschuff, B. 1904, 37, 1489.)

Decomp. by H₂O. (Ditte, A. ch. (5) 18. 320.)

Solubility in H ₂ O				
Solution temp.	% by wt KNO3	% by wt	% by wt. H ₂ O	
1pt. +22° 20 5 18 0 12 0 6 0	44 5 44 1 43 8 43 0 42 3 41 6	55 5 55 0 54 5 53.6 52 7 51 8	0 0 9 1 7 3 4 5 0 6 6	

(Groschuff, Z. anorg, 1904, 40, 11.)

Potassium silver nitrate, KNO2, AgNO3. Sol in H₀O. (Russell and Maskelyne, Roy. Soc Proc. 26, 357) 3KNO, AgNO. Sol in H-O. (Rose, Pogg. 106, 320.)

Potassium thallic nitrate, 2KNO₃, TI(NO₃), +

Decomp. by H.O. (Meyer, Z. anorg, 1900, 24, 361.)

Potassium thorium nitrate, 4KNO₃, Th(NO₈)₄ Very sol in H₂O and alcohol. (Berzelius.) Hydroscopic, very unstable, anorg. 1901, 27, 379) (Meyer, Z.

in dil. HNO1+Aq. Hydroscopie; sol (Meyer, Z. anorg 1901, 27. 378)

Potassium thorium hydrogen nitrate, 3KNOs. Th(NO₂)4, 3HNO₃ Decomp, in the air. (Mever, B 1900, 33.

2140.) +4H2O. Sol in HNO2 of 1.2 sp. gr. Effloresces in the air. (Meyer, Z. anorg. 1901, 27, 380)

Potassium uranyl nitrate, K(UO2)(NO3)2 Decomp. by H2O. Sol. in conc. HNO2. (Meyer, B. 1903, 36, 4057.)

Solubility in H₂O at to.

,	to.	In 100 pts. of the solution			Solid phase
		Pts by wt UO:	Pts by wt K	Pts by wt NO:	John philip
,	0.5	31 98	1 72		Double salt +
	13 0 25 0 a)	33 40 37 08	2 74	22 40	***************************************
Ċ	45 0	37 06 42 18	3.98	23 46	"
	59 0 80.6 a)	41 65 43 72			" Double salt
	80.0 a)	43.70	6 34		Double Batt

Potassium uranyl nitrate is decomp by Potassium dihydrogen nitrate, KNO1, 2HNO1. H2O at temp. below 60°; above 60° it is sol, in HaO without decomp.

(Rimbach, B. 1904, 37, 473.)

Potassium nitrate 2BaSO ₄	barium	sulphate,	KNO_3
Easily decomp.	Sol.	in conc.	H ₂ SO ₄ .
(Silberberger, M. 1	904, 25 .	251.)	

Potassium nitrate phosphomolybdate.

Potassium nitrate phosphomolybdate. See Phosphomolybdate nitrate, potassium.

Potassium nitrate sulphate, KNO₁, KHSO₄. Decomp. by H₂O and alcohol. (Jacquelain.)

Potassium nitrate sulphotungstate, 2KNO₃, K₁WS₄ (?).

Very sol, in hot or cold H₂O. Insol. in alcohol. (Berzelius.)

Potassium nitrate tungstate (?). 100 pts. boiling H₂O desolve 5 pts salt.

(Storer's Dict., p. 393.)

Potassium nitrate zinc iodide.

Permanent. Easily sol. in H₂O. Insol. in alcohol. (Anthon)

Praseodymum nitrate, Pr(NO₁)₂+6H₂O. Sol. in H₂O. (von Schule, Z. anorg. 1898,

18. 355.)

Praseodymium rubidium nitrate, [Pr(NO₃)₅]Rb₂+4H₂O

Hydroscopie (Jantseh, Z. anorg. 1911, 69. 230.)

Praseodymium sodium nitrate, Pr(NO₃)₃.

2NaNO₃+H₂O. Sol in H₂O. (von Schule, Z. anorg 1898, 18, 356.)

Praseodymium zinc nitrate, 2Pr(NO₃)₃, 3Zn(NO₃)₂+24H₂O₃

 1 l. sat. solution in HNO₂+Aq (sp. gr 1.325) contains 14 69 g. hydrous salt at 18° (Jantsch, Z. anorg. 1912, 76, 321.)

Radium nitrate.

alcohol, (Claus.)

Has apparently the same solubility in H₂O as the corresponding Ba comp. (Curie, Dissert, 1903.)

Rhodium nitrate, Rh(NO₃)₂+2H₂O (?).
Deliquescent. Sol. in H₂O. Insol. in

Rhodium uranyl nitrate,

2(UO₂)(NO₃)₂Rh₂(NO₂)₆+10H₂O. Sol, in H₂O and acrds; insol. in aq. alkalies. (Lancien, C. C. 1912, I. 208.)

Rubidium nitrate, RbNO,

100 pts. H₂O dissolve 20.1 pts. at 0°; 43.5 pts. at 10°. (Bunsen.)

	Solubility	y m	H_2O	at t	٥.
_		11		$\overline{}$	

,.	G PhNOs per 100 g		Ļ.o	G. RbNO ₁ per 100 g.	
•	H*O	Solu- tion	100	II ₂ O	Solu- tion
0 10 20 30 40 50	19.5 33 0 53.3 81.3 116.7 155.6	16.3 24.8 34.6 44.8 53.9 60.9	60 70 80 90 100 118 3	200 251 309 375 452 617	66 7 71 5 75 6 78 9 81 9 86 1

(Berkeley, Trans. Roy. Soc. 1904, 203. A.

100 g. H₂O dissolve 66.855 g. RbNO₂ at 25°. (Haigh, J. Am. Chem. Soc. 1912, 34. 1148.)

Sp. gr. 20°/4° of a normal solution of RbNO₃ =1.100835; of a 0.5 normal solution = 1.04989. (Haigh, J. Am. Chem. Soc. 1912, 34. 1151.) Sp. gr. of RbNO₃+-Aq

G. equiv. RbNO, per l.

G.-equiv. RbNO; per l. at 18° = 2.000 2.685 Sp. gr. at 6°/6° 1.20655

Sp gr. at 18°/18° 1.20302 1.27066 Sp gr. at 30/30° 1.20036 1.26717

(Clausen, W. Ann. 1914, (4) 44, 1069.)

Easily sol. in HNO₃ (Schultz, Zeit, Ch.

(2) 5. 531.)
Sol in acctone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4328.)
Insol. in methyl acctate. (Naumann, B.

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Rubidium hydrogen nitrate, RbNO₃, HNO₃.

Fairly stable in air. (Wells, Am. Ch. J. 1901, 26, 273.)

Rubidium dihydrogen nitrate, RbNO₃, 2HNO₅.

(Ditte, A. ch. (5) 18. 320.)

Decomp. rapidly in air. (Wells, Am. Ch. J. 1901, 28, 273.) 2RbNO₂, 5HNO₃. Decomp. by H₂O. Known only in solution in HNO₃+Aq.

Rubidium silver nitrate, RbNO₃, AgNO₃.

Sol. in H₂O (Russell and Maskelyne, Roy.
Soc Proc. 26, 357.)

Rubidium thorium nitrate, Rb₂Th(NO₂)₆, Sl. sol. in HNO₂; decomp. by H₂O. (Meyer, Z. anorg. 1901, 27, 384.) Rubidium uranyl nitrate, Rb(UO₂)(NO₃)₃.

Decomp. by H₂O. Sol. m conc. HNO₃.

(Meyer, B. 1903, **36**. 4057.)

Solubility of H₂O at to.

	In 10	00 pts of	the solution		
t°	Pta by wt UOs	Pts. by wt NO:	Pts by wt Rb	Pts by wt total salt	Solid phase
25 80	n) 35 42 b) 35 40 n) 34 84 b) 34 68	19 72 19 76	4 63 4 67 11 01 11 01	59 57 59 64 69 46 69 52	Double salt + RbNO ₂ Double salt

Rubidium uranyl nitrate is decomp by H₂O at low temp.; at 80° it is sol in H₂O without decomp

(Rimbach, B 1904, 37, 476)

Samarium nutrate, Sm(NO₃)₃+6H₄O.

Easily sol. in H₂O. (Cleve, C. N 48. 74.)

Very hydroscopic. (Demarqay, C. R. 1900, 130. 1187.)

Samarium zinc nitrate, 2Sm(NOs)s,

3Zn(NO₅)₂+24H₂O
1 I. sat. solution in HNO₄+Aq (sp. gr. 1.325) contains 36.47 g hydrous salt at 16°. (Jantsch, Z. anorg. 1912, 76. 321.)

Scandium nitrate, basic.

Sol. in H₂O. (Nilson, B **13.** 1444.) ScOH(NO₄)₂+H₂O (Crookes, Roy. Soc Proc. 1908, **30**. A. 518.) ScO(NO₄)₄. (Crookes.)

Scandium nitrate, Sc(NO₃)₃

(Crookes, Roy. Soc. Proc. 1908, **80.** A, 518.) +4H₂O. Very sol. in H₂O. (Crookes.)

Silver nitrate, AgNOz.

100 pts. H₂O at 11° dissolve 127.7 pts (Schnauss, Arch. Pharm. (2) 82. 260.) 100 pts. H₂O dissolve at:

0° 19.5° 54° 85° 110° 121.9 227.3 500 714 1111 pts. AgNO₈.

(Kremers, Pogg. 92, 497.)

100 pts. H₂O dissolve 1622 5 pts at 125°, and 1941.4 pts. at 133°. (Tilden and Shenstone, Phil Trans. 1884. 23.) Sat. solution boils at 125°. (Kremers.) Solubility in H₂O at t° Sat. AgNO₃+Aq contains % AgNO₂ at t°.

١	t°	% AgNO1	t°	% AgNOs
į	-7	46 2	36 5	75.7
١	-7	46 0	40 5	76.8
I	0	47 6 52.4	45 48	77 1 78 5
ı	î	51 9	73	84.0
ļ	+5	56.3	122	88 7
ı	10	61.2	134	92 1 92.8
ı	15 5 20	66.1	135 135	92.7
ı	26 29	71 1	148	93 3
ļ	29	73.0	160	95.2
ı	31	73 8	182	96 9

(Étard, A. ch 1894, (7) 2. 526)

100 g. sat. AgNO₃+Aq at 15.5° contain 65.5 g. AgNO₃. (Greenish and Smith, Pharm. Jour. 1903, 71. S81.) Solubility of AgNO₂ in H₂O at 30°=10.31

Solubility of AgNO₃ in H₂O at 30°=10.31 mol.-litre. (Masson, Chem. Soc 1911, 99.

100 g. AgNO₂+Aq sat at 30° contain 73.0 g. AgNO₂. (Schreinemakers and de Baat, Arch. Néer. Sc. 1911, (2) 15. 415.)

100 g. sat. AgNO₃+Aq contain 53.5 g. AgNO₃ at 0°; 66.7 g. at 18° (Myhus, Z. anorg. 1912, 74. 411.)

Sp gr. of aqueous solution, according to C. K. = Chemiker Kalender; K. M. = Kohlrausch by Mendelejeff (Z. anal. 27. 284); and K = Kohlrausch (W. Ann. 1879. I), containing:

5 10 15 20% AgNO₃, C. K. 1.041 1.080 1.125 1160 K. M 1.0440 1.0901 11969 K 1.0422 1.0893 1.1404 11958

25 30 35 40 % AgNO₄, C. K. 1.206 1 251 ... 1.4791 K. M. 1 2555 1.3213 1.3945 1.4773

45 50% AgNO₈. K. 1.5705 1.6745

Sp. gr. of AgNO₈+Aq at 25°.

Concentration of AgNOs	Sp. gr
1-normal	1 1386
1/2- "	1 0692 1 0348
1/8 "	1 0173

(Wagner, Z. phys. Ch. 1890, 5. 40.)

Sol. in 500 pts. HNO₃; 30 pts 2HNO₄, 3H₂O at 20°, and 6 pts 2HNO₅, 3H₄O at 100°. (Schultz, Zeit. Ch. 1869. 531.) Insol in conc. HNO₂. (Warren, C. C. 1897. I, 438)

Solubility	of AgNO	in HNO	+Aq at	25° .

G mol per l		G. AgNOs	Sp gr 25°	
IINO	AgNO ₂	per l		
0	10 31	1752	2.3921	
0 404	9 36 8 08	1501 1373	2.2754 2 1243	
1 698	6 54	1111	1 9402	
2.834 4.497	4 526 2 590	769.1 440.1	1.7052	
5 992	1.698	288.6	1 4195	
8 84 12 53	0.843	143 2 58 90	1 3818	
15 00	0.017	00 00	1 0010	

(Masson, Chem. Soc 1911, 99, 1132)

AgNO₂+NH₄NO₃ Solubility of AgNO₃ in NH₄NO₃+Aq See under NH₄NO₃, AgNO₂+KNO₃, Solubility of AgNO₃

+KNO₃ in H₄O See under KNO₃.

AgNO₃+AgNO₂

Solubility of AgNO₅+AgNO₂ at 18°.

G ;	er 1	G pet f		
AgNOs	AgNO ₂	AgNO ₂	AgNO ₂	
0.000 0.439 0.878 1.756	3 184 3 042 2 926 2 601	3.512 7 024 14 048	2 201 1 799 1 480	

(Naumann and Rucker, B. 1905, 38, 2293.) See also under AgNO₂.

Insol. in liquid CO₂. (Buchner, Z phys.

Ch. 1906, 54, 674.)
Very sol. in liquid NH, (Franklin, Am. Ch. J. 1898, 20, 829.)

Sol in 4 pts. boiling alcohol Sol, in 10 pts. alcohol. (Dumas.)

Sol, in 11 pts. alcohol of 90% (Hager.)

Solubility in 100 pts. alcohol of given vol. % at t° .

t°	95%	80° E	70%		60F _e
15	3 8 7 3	10 3	22.		30 5
50 75	7 3 18.3	42.0	:		58 1 89 0
t°	50%	40%	30 CF.	20%	10%
15 50 75	35 8 :	56 4 98.3 160	73.7	107 214 340	158
(Edan I am (0) 17 44)					

(Eder, J. pr. (2) 17. 44.)

100 pts. absolute methyl alcohol dissolve 3.72 pts. at 19°; 100 pts. absolute ethyl alcohol dissolve 3.1 pts. at 19°. (de Bruyn, Z.

phys. Ch. 10, 783.)

Only traces are sol. in absolute alcohol or ether. 100 pts. of a mixture of 1 vol alcohol (95 vol. %)+1 vol pure ether dissolve 1.6 pts. AgNO₂ at 15°, 100 pts. of 2 vols. alcohol +1 vol. ether dissolve 2.3 pts AgNO₃. (Eder, J. pr. 1878, (2) 17, 45.)

Solubility of AgNO₃ in ethyl alcohol+Aq at 30%

% by wt H2O	5 by wt alcohol	% by wt AgNO:		
27.0 27.71	2.8	73 0 69 49		
30 80	13.67	55 53		
32.10	20 13	47 77		
31 40	25.85	42 75		
28 95	37.26	33.79		
27 91	44 54	27.55		
20 92	64.42	14.66		
6.83	86 54	6 63		

(Schreinemakers, Z. phys. Ch. 1909, 65, 571.)

Solubility of AgNO₃+KNO₃ in alcohol Sec under KNO₃

Sol in methyl, ethyl, and isobutyl alcohols, CCl₄, CHCl₅, acctone and pyridine. (Wilcox, J. phys. Chem. 1910, **14**, 587)

100 pts H₂O sat, with ether dissolve 88.4 pts AgNO₃ at 15° (Eder, l e) Sol in glycerine. Sol, in benzontrile 100 g, benzontrile

dissolve about 105 g. AgNO₂ at 18°. (Naumann and Schier, B. 1914, 47, 1369)

I pt. acctomtrile dissolves about 15 pts
AgNO₃. (Scholl and Steinkopf, B. 1996, 39.

AgNO₅. (Scholl and Steinkopf, B 1906, 39 4398.) Easily sol in methyl, ethyl, and amy

Fasily sol in methyl, ethyl, and amyl amine. (Shinn, J phys Chem. 1907, 11, 538) Sol. in acetone (Krug and M'Elroy, J Anal. Ch. 6, 184.)

0.35 pts. arc sol in 100 pts. acetone at 14°. 0.35 " " " " 100 " " " 59°. (Laszyznski, B. 1894, 27, 2287)

Sol, in acetone and m methylal. (Eidmann, C. C 1899, II. 1014.)

C. C. 1899, II. 1014.)

 g. AgNO₃ is sol. in 227 g, acctone at 18°.
 Sp gr of sat solution 18°4° = 0.798. (Naumann, B. 1904, 37, 4339.)

Insol. in CS₂. (Arctowski, Z anorg 1894, 6, 257) Difficultly sol. in methyl acctate. (Nau-

mann, B 1909, 42, 3790.)
Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790); ethyl acetate (Naumann,

B. 1994, 37. 3601.)
Sol. in urethane. (Castoro, Z. anoig. 1899, 20. 61.)

100 g. C_eH₅ dissolve 0.022 g. AgNO₃ at 35°; 0.044 g. at 40.5°. (Linebarger, Am. J. Soi. 1895, 49, 48.)

Mol. weight determined in piperidine, pyridine and benzonitrile. (Werner, Z. anorg. 1897, 15. pp. 17, 23 and 32.)

Solub	Solubility of AgNO ₈ in pyridine at t°.			
t°	G AgNos per 100 g CsHsN	Solul phase	,	
-48 5°+ -60 5 -63 -63 -65 -61 25 -44 -30 -24 -22 -24 -22 -10 +10 20 40 45 48 48 5 46 60 70 87 80 87 74	per 100 g Chilan 0 3 6 9 11 11.7 12 2 12 6 13 9 17 6 18 8 20 03 22 34 27 21 33 64 40 89 53 26 66 .65 70 85 69 89 10 121 21 215.02 228.5 230.6	Solid phase C.HaN C.HaN + AgNO 9, 5C,HaN AgNO 9, 5C,HaN " " + AgNO 9, 5C,HaN AgNO 9, 5C,HaN AgnO 9, 5C,HaN AgnO 9, 5C,HaN " " " " " " " " " " " " " " " " " "		
80 87 90	230.4 237.1 241 9	"		

100 110 * M. pt.

253 8

271 4

(Kahlenberg and Brewer, J. phys. Ch. 1908, 12. 283.)

Silver nitrate acetylide, AgNO₈, AgHC₂.

(Willgerodt, B. 1895, 28, 2108.) AgNO₃, Ag₂C₂. Ppt. (Chavastelon, C. R. 1897, 124, 1365.)

2AgNO₃, Ag₂C₂ (Chavastelon.)

Silver nitrate ammonia, AgNO₅, NH₅.

Partly sol. in H₂O, rather sol. in alcohol.
Sl. sol. in ether. (Revoller, B. **16**, 990.)

Very sol. in liquid ammonia below —10°. (Joannis, C. R. 1894, 118. 1151.) AgNO₃, 2NH₃. Easily sol. in H₂O. (Mit-

scherlich.)

1 l. alcohol dissolves 0.0383 g. mols. (Kuri-

low, C. C. 1903. II, 97.) AgNO₃, 3NH₃. Completely sol, in H₂O. (Rose, Pogg. 20. 153.) Silver nitrate antimonide, AgNO₃, Ag₂Sb.

Decomp. at once by H₂O. (Poleck and Thummel, B, **16**, 2435.)

Silver nitrate arsenide, AgNO₈, Ag₃As

Decomp. at once by H₂O, (Poleck and

Thummel.)
Silver nitrate bromide, AgNOs, AgBr.

Decomp. immediately by H₂O or alcohol, with separation of AgBr. (Risse, A. 111. 39.)

Silver nitrate chloride, AgNO₃, AgCl. Quickly decomp. with H₂O; more slowly with absolute alcohol; not decomp. by ether-

alcohol. (Reichert, J. pr. 92, 237.) Silver nitrate evanide, 2AcNO, AcCN.

Decomp by H₂O, not by alcohol. (Hellwig, Z. anoig 1900, 25, 177.)

Silver nitrate iodide, AgNO₃, AgI.

Cold H₂O separates AgI, which rechssolves on heating (Stürenberg, Arch. Pharm. (2) 143, 12.) Sol. in Intile H₂O without decomp.; more H₂O separates AgI. (Kreiners, J. pr. 71, 54.) Insol in absolute alcohol. Sol. in conc. AgNO₂+Aq. 2AgNO₃, AgI. Sol. in little but decomp. by

2AgNO₃, AgI. Sol. in little but decomp. by more boiling H₂O. (Risse, A. 111. 39.) Silver nitrate mercuric oxide, AgNO₈, 2HgO.

Decomp. by H_2O . Sol. in HNO_3 and H_3SO_4 . (Finei, Gazz ch. it. 1910, 41. (2) 548.)

Silver nitrate phosphide, 3AgNO₃, Ag₁P (Warren, C. N. 56, 113.) Silver nitrate silicide, 4AgNO₃, AgSi

(Büchner, Ch. Ztg. 9. 484.)

Silver nitrate silicate, 2AgNO₃, 3Ag₄SiO₄.

Sol. m dil. HNO₃+Aq, but SiO₂ separates

out after heating. (Rousseau and Tite, C. R. 114, 294.)

Silver nitrate sulphide, AgNO₈, Ag₂S.

Decomp. by H₂O (Poleck and Thummel, B. 16, 2435.)

Silver nitrate sulphocyanide, 2AgNO₄, AgSCN.

Decomp. by H₂O, not by alcohol (Hellwig, Z. anorg. 1900, 25, 178.)

Sodium nitrate, NaNO:

Deliquescent in moist air. Sol. in H_2O with absorption of heat. 75 pts NaNO₁ mixed with 100 pts. H_2O at 13.2° lower the temperature 18.5° . (Rtdorff, B. 2. 68.)

SOL	0 46 "	nio	+110°. (Marx)
44	2 89 "	**	20)
44	I 12 "		28° (Osana)
**	0 79 "	**	47°
**	1 14 "	44	18 5° (Kopp)
**	1.136"	**	18 75° (Karsten)
**	1 16 "	**	20° (Schiff, A 109, 326
**	2 "	**	18 75° (Abl.)

092			MITTANTE	, BODION	1		
100 pts	. H ₂ O at t° d	issolve pts.	NaNO3.	Sol	ubility in 10	0 pts. H _s O	at t°.
t°	Pts NaNOs	t°	Pts NaNO:	t°	Pts. NaNOs	t°	Pts NaNO
-6 0	68 80 79 75	50 60	111 13 119 94	0	72 9 74 7	60 61	122 124
10 16	84 30 87 63	70 80	129.63 140.72	2 3	75.4	62	125 126
20	89.55	90	153 63	4	76.0 76.7	63 64	126
30	95.37	100	168 20	5	77.4	65	128
40	102.31	120	225.30	6	78.1	66	130
()	Poggiale, A	h. (3) 8. 40	30.)	7 8	78 7 79 4	67 68	131 132
100 pt+ I	I ₂ O at 110° dive	he 150 pts N	aNOs (Grsf-	9	80 1	69	133
iths) NaNOs+ nts HsO h	Aq sut at 18 75 ave dissolved b	° has 1.4769 s 8 001 pts N	p gr , and 100 aNO ₂ (Kar-	10 11 12	80 8 81 4 82.0	70 71	134 136 137
NaNO+	-Aq sat in col	l contains 3	3 W; NaNO:	13	82.7	72 73	138
NaNO ₂ +	Aq sat at 12	5° contains	34° NaNOs	14	83 4	74	139
100 rate 1	HeD at 15.5° days	olve 33 pts .	at 52°, 100 pts	15 16	84 0 84 7	75 76	140 142
NaNU ₁ ((re's Duct)			17	85 4	77	143
	s. H ₂ O dissolv			18 19	86.1 86.8	78 79	145 146
to.	Pts NaNOs	t°	Pts NaNOa	20 21	87 5 88 3	80 81	148 149
θ	73.0	60 65	125 5	21	89.0	82	151
13 9	81.6	99.0	173 6	23	89 7	83	152
44 65	110 5	119 7	211 4	24	90.3	84 85	153
(N	ordenskjóld,	Pogg. 136.	312)	25 26	91.0 91.8	86	155 156
100 pt	s H;O dissol	ve pts. Nal	VO ₃ at t°.	27	92.5	87	158
t°	Pts NaNOs	to.	Pts NaNOs	28 29	93 2 94 0	88 89	159 161
0	70 94	70	142 31 153 72	30 31	94 9 96 0	90 91	162 164
10	78 57	80	153 72	32	96	92	166
20 30	87 97 98 26	90 100	165 55 178 18	33	97	93	168
40	109 01	110	194 26	34	98	94	169
50	120.00	119 4	213 43	35 36	100	95 96	171
60	131.11	1	#10 10	37	100	97	175
	(Maumené,	C R. 58. 8	1.)	38	101 102	98 99	177 178
100 pt	s. NaNO ₂ +. . NaNO ₂ ; at	lq sat. at	14° contain	40 41	102	100 101	180 182
(v. Haue	r, J. pr. 98. 1 is. H ₂ O diss	37.)	na, marog,	42	104	102	184
100 pt	s, H ₂ O duss	olve 84,21	-84.69 pts	43	105	103	186
NaNO, a	t 156° and s	int. solutioi	n has en ar	44 45	106	104 105	188 190
1.337-1.3 Soc. (2) 1	78. (Page : 10.556.)	and Keigh	ley, Chem.	46 47	108 109	106 107	192 194
100 pt	s. H ₂ O dissol	ve pts. Nal	NO, at t°.	48	110	108	196
t°	Pts NaNO ₂	fo	Pts NaNOs	49 50	111	109 110	198 200
0	66.69	18	83.62	51 52	113 114	111	202
2	70.97	21	85.73	53	115	113	207
4 8	71 04 75 65	26 29	90.33 92.93	54	116	114	209
10	76.31	36	99.39	55	117	115	211
13	79 00	51	113 63	56	118	116	213
15	80 60	68	125 07	57	119	117	215
		1 6 00		58 59	120 211	117.5	216 4
when Me	lity is consta NO ₁ +7H ₁ O	nt from 0°	to -15.7°,	-00	1 211	1 .	1

(Mulder, Scheik. Verhandel. 1864. 83.)

Sat solution at b-r	t contains 216 4 pts NaNO.
	NO (Mart), 213.4 pts. NaNO
(Maumené), 211 4 pts	NaNOz (Nordenskjóld), 224 8 150 pts. NaNOz (Griffiths)
pts NaNOs (Legrand);	150 pts. NaNOs (Griffiths)

Sat	NaNU	%+Aq	contains	at:	
120°	130°	172°	180°	199°	

120° 130° 172° 180° 199° 66.8 67.5 77.1 78.1 82.0% NaNO₈,

220° 250° 255° 290° 313° (mpt.). 83 5 89.5 91.5 97.5 100% NaNO₃. (Étard, A. ch. 1894, (7) **2.** 527.)

100 g. sat. NaNO₅+Aq contain 42.47 g. NaNO₅ at 0°. (Coppadoro, Rass. Min. 1911, XVII, **35**. 123.)

100 g. sat. NaNO₃+Aq contain 49.16 g NaNO₃ at 30°. (Coppadoro, Rass. Min. 1912, 37. 7.)

100 g. H₂O dissolve 92.14 g. NaNO₃ at 25°. (Haugh, J. Am. Chem. Soc. 1912, 34. 1148.)
The solubility of crystals on different faces has been determined by Lebrun. (Belg. Acad. Bull. 1913, 953)

Sp. gr. of NaNO++Au at 19.5°.

% NaNO:	Sp. gr	% NaNOs	Sp gr
12.057 22 726 31 987	1.0844 1 1667 1.2450	39 860 46 251	1.3176 1.3805

(Kremers, Pogg. 95. 120.)

Sp. gr. of NaNO₄+Ag at 20 2°.

% NaNOa % NaNO. Sp gr. Sp. gr. 0065 1 1904 1 0131 1.1987 1 0197 28 1 2070 1 0264 29 1 2154 0332 30 1 2239 0399 1.23250468 1.24128 0537 33 1.2500 0606 34 1 2589 1ŏ 1 0676 35 2679 11 1.0746 36 2770 2863 1.0817 13 1 0889 38 1 2958

39 1 3055

40

 $\tilde{41}$

42

44

45

48

47

48

49

1 2155

1 3225

1.3456

1.3557

1.3659

1 3761

1.3864

1 3968

1.4074

3355

1 0962

1.1035

1 1109

1 1184

1 1260

1 1338

1.1498

1 1578

1.1659

1.1740

1418

14

17

18

19

20

21 22

23

24

25 | 1.1822 | 50 | 1.4180 (Schiff, calculated by Gerlach, Z. anal. 8. 280.)

Sp. gr. of NaNOs+Aq at 18°.					
% NaNO:	Sp gr	% NaNO:	Sp. gr.		
5 10	1.0327 1.0681	20 30	1.1435 1.2278		

(Kohlrausch, W. Ann. 1879. 1)

Sp. gr. of NaNO₃+Aq at 20°, containing mols, NaNO₃ in 100 mols, H₂O.

Mols NaNOs	Sp gr
2	1.05980
5	1.13813

(Nicol, Phil. Mag. (5) 16. 122.)

The saturated solution boils at 117 5° (Mulder)

""" 118 9° (Griffisha)

""" 119° (Marx)

""" 119 14° (Mauroné,)

""" 119 12° (Legrand)

""" 122-123° (Kremeræ,)

NaNO₃+Aq forms a crust at 118°, and contains 194 pts. NaNO₃ to 100 pts. H₂O; highest temp. observed, 120.5°. (Gerlach, Z. anal 26. 427.)

B.-pt. of NaNO₂+Aq containing pts. NaNO₄ to 100 pts. H₂O G= according to Gerlach (Z. anal. 26. 433); L= according to Legrand (A. ch. (2) 59. 431).

Bpt	G	L	B-pt	G	L
101° 102 103 104	9 18 5 28 38	9 3 18 7 28.2 37.9	112° 113 114 115	121 5 133 144.5 156	120 3 131 3 142.4 153.7
105 106 107 108 109	48 58 68 78 5 89	47.7 57.6 67.7 77.9 88.3	116 117 118 119 120	168.5 181 194 207.5	165.2 176.8 188.6 200.5 212.6
110 111	99 5 110.5	98.8 109 5	121		224.8

50 pts. NaNO₂ mixed with 100 pts. snow at —1° give a temp. of —17 5°. (Rildorff, Pogg. 122, 337.)

Sp. gr. of NaNO3+Aq at to.

G NaNOs dis- solved in 100 g H ₂ O	G. NaNOsin 100 g of the solution	t°	Sp. gr.
4,166	4	17 8°	1.0278
11,111	10	13 9°	1.0704
25,000	20	12°	1.1441

(de Lannoy, Z. phys. Ch. 1895, 18. 465.)

0 10300

0.04357

0.01601

ŝ

9.665

7.039

4.241

1.589

Sp. gr of NaNO2+Aq at 20 1°, when p = per cent strength of sol.; d = observed density; w=volume cone. in grams

per co. $\left(\frac{p}{1}\right)$	$\frac{\alpha}{00} = \mathbf{w}$	
P	d	и
42.05 35.65 31.72 23.24 17.370 11.915	1.3380 1 2765 1 2407 1.1696 1.1228 1.0819	0 50267 0.45510 0.39365 0.27180 0.19505 0.12888

0656 0468 0273 1.0096 (Barnes, J. phys. Chem. 1898, 2, 545.)

Sp. gr. 20°/4° of a normal solution of NaNOs 1.05386; of a 0.5 normal solution = 1.02646 (Haigh, J. Am. Chem Soc 1912, 34, 1151.)

Sp. gr. of sat. NaNO1+Aq at to.

t°	G NaNO ₃ and in 100 g H ₂ O	Sp gr
10	68 0	1 342
0	43 0	1 358
10	80 5	1 377
20	88 0	1 387
30	96 2	1 406
40	104 9	1 418
50	114 0	1 437
60	124.6	1 456
70	136 0	1 467

(Tschernaj, J. Russ. Phys Chem Soc. 1912, 44. 1505.)

Sol. in 66 pts. IINOs; in 32 pts. 2HNOs, 3H₄O at 32°; in 4 pts 2HNO₃, 3H₂O at 123°. (Schultz, Zeit. Ch. (2) 5, 531.)

Solubility in HNO. 4 Ag at 00 '

G per 100 c	normber to	Sp gr
NaNO ₂	HNO ₂	op gr
56 5 54 2	0 00	1 341
51.48	1.67 3.59	1 338 1 331
48 42 44.88	5.55 7.92	1 324
41.44 33 61	10 65 17 02	1 308
29.86 26.46	20.33	1 288
20.00	23 48 30 26	1 282
15 32 10 97	36 09 44.76	1 270

(Engel, C. R. 1887, 104, 911.)

Solubility of NaNO, in NH4OH+Aq at 15°. G nue 100 e HaO

Or Just 4	Sp gr.	
NH1	NaNOa	.,
13 87 17.28 20 38	75 03 73 99 73 18	1.253 1.233 1.212

(Fedotieff and Koltunoff, Z. anorg. 1914, 85. 251.)

NaNO₄+Na₂CO₃, (See Na₂CO₂,)

Sol in sat. NH,Cl+Aq. Very rapidly sol in sat. BaCl.+Ag with

pptn. of Ba(NO₃)2. Sol, in sat. KCl+Aq, with formation of

KNOs. Sol, in sat. NH4NO3+Aq (See NH4NO3)

Sol. in sat. Nr₄(NO₂+Aq (See Nr₄(NO₃))
Sol. in sat. Ba(NO₃)₂+Aq, with partial
pptn of Ba(NO₃)₅. (See Ba(NO₃)₅.)
Sol. in sat. Ph(NO₃)₂+Aq, with subsequent
pptn. of Ph(NO₃)₂. (See Ph(NO₃)₂.) pptn. of Pb(NO₃), NaNO₃+KNO₃

Sol. in sat KNOs+Aq; solution thus made at 18° contains 54 33% mixed salt, or 100 pts H₂O dissolve 118 98 pts. mixed salt, viz 89.53 pts. NaNO₃ and 29.45 pts. KNO₃.

(See KNOs.)

NaNO₃+Sr(NO₃)₂ If Sr(NO₃)₂+Aq sat at 14.5° is sat, with NaNO₃, 100 pts, H₂O desolve:

NaNO ₄ lr(NO ₄) ₂	83.7	66.4 51.0	62.0
		117.4	

(Mulder.)

NaNO₂+NaNO₂, See under NaNO₂, NaNO. + NaCl.

100 pts H₂O dissolve 24 91 pts. NaCl+ 54 55 pts. NaNO3 = 79.46 pts. of the two salts at 20°, (Nicol, Phil, Mag. (5) 31, 386)

100 pts H₂O dissolve at 18.75°.

	1	2	3	-4	5	6
NaCl. NaNO ₃	36	25 22 52.89	24 96 52 84	24 98 52 82	86 6	24 6 56.8

 Sat. NaCl+Aq treated with NaNO₃.
 Sat. NaNO₃+Aq treated with NaCl. 4. Simultaneous treatment of the two salts

by H₂O (Karsten) 6. Excess of both salts+Aq warmed and cooled to 20°, (Rüdorff, B 6, 484.)

Solubility of NaCl with addition of NaNO. at 15 5°.

Sp gr	100 cem contain in g				
op gr	NaCl	H ₂ O	NaNOa		
1 2025 1 2305 1 2580 1 2810 1 3090 1 3345 1 3465 1 3465	31 78 27 89 26.31 23 98 22 30 20 40 19 40 19 67	88 47 87.63 86 25 82 66 80 42 79 25 77 37 77 34	0 00 7 53 13 24 21 58 28 18 33 80 37 88 37 64		

NaNOa+NaOH.

each salt diminishes the solubility of the other. (Leather, Mem. Dept. Agric. India, 1914, 3. 177, Chem Soc. 1915, 108. (2) 13) See also under NaCl. Solubility in NaOH+Aq at 0°. NaNO,= mols. NaNO4 (in mg.) in 10 ccm. of solu-tion, Na₂O = mols. Na₂O (in mg) in 10 cem, of solution

Solubility in NaCl+Aq at 20°, 30°, 40° and

91° Tables given in the original show that

NaNOs	NagO	NaNOs +NasO	Sp gr
66 4	0	66.4	1 341
62 5	2 875	65.375	1.338
57 15	6 1	63.25	1 333
47 5	12 75	60.25	1 327
29 5	26	55.5	1 326
17 5	39	56.5	1.332
13 19	45 875	59.065	1.356
6 05	60,875	66.925	1 401

NaNO, separated in last two solutions Solubility of NaNO3 with addition of NaCl at 15°

Sp. gr.	100 cem contain in g			
op. gr.	NaNO ₃	H ₁ O	NaCl	1
1.3720 1 3645 1.3585 1.3530 1.3495 1 3485 1 3485	62 38 56.56 52 09 47 08 42 66 39 90 38 73 39 02	74 82 75.69 75.71 76 86 76 96 77 14 77 15	0 4 00 7 24 11 36 15 33 17.81 18.97	

(Engel, Bull. Soc. (3) 6. 16.) Solubility in NaOH+Aq at 0°

G per 100	. Sp gr	
NaOH	NaNO ₂	Op a.
0 0 2 30 4 89 10 21 20 83 31 25 36 76	56 50 53 19 48 63 40 42 25 10 14 89 11 22	I 341 I 338 I 333 I 327 I 326 I 332 I 356
48 75	5 15	1.401

NaCl separated in last two solutions. (Bodlander, Z. phys. Ch. 7, 360.)

Solubility of NaNO₃ in NaCl+Aq at 15°

Sp. gr	G per 100 cc sat solution			
opi gi	NaCl	NaNO ₃	H ₂ O	
1 3720 1 3645 1 3585 1 3530 1 3495 1 3485 1 3485 1 3485	0 4 0 7.24 11.36 15 33 17 81 18 97* 19 34*	62 38 56 76 52 09 47 08 42 66 39 90 38.73* 38.02*	74.82 75.69 75.71 76.86 76 96 77 14 77 15 77 49	

(Engel, l, c,) Easily sol. in K2SO4+Aq without pptn. Easily sol in Na₂SO₄+Aq without pptn Sol. in MgSO₄+Aq, at first to a clear solu-tion, but afterwards NaNO₂ is pptd.

Very sol in sat CuSO4+Aq, but double sulphate separates out Very sol in ZnSO4+Ac with pptn, of

double sulphate. (Karsten.) Solubility of NaNOs in NasS2Os+Aq at to.

NaNO:

NasSoOs, 5HsO

Na₂S₂O₂, 5H₂O

Solid phase

+Na₂S₂O₃, 5H₂O

+Na₂S₂O₃, 5H₂O

ŧ٥

9 33.31

25 35 42 12.72 NaNO.

NaNO: NasSaO:

22.5723 41 4.22 34 77

25 40 24.25

19 90 31 81

Sommons 8	5G.	MIRT	Dotu	saits.		
(Bodlander,	z.	phys	Ch.	1891,	7. 361)

Solubility of NaNO2+NaCl (g. in 100 g. H.O)

NaNO ₃	NaCl	Solid phase
79 20 68 38 56 56 39 20 20 17	8 39 16 32 23 74 27 58 31 48	NaNOs NaNOz+NaCl NaCl NaCl

40 50 (Kremann and Rothmund, Z anorg. 1914, 86, 373.)

32 83 18 02

(Uyeds, Mem. Col. Sc. Kioto, 1910, 2, 245.)

Very sol. in liquid NH₃. (Franklin, Am Ch J. 1898, **20**, 829.) Easily sol. in liquid HF. (Franklin, Z

Forsity Seri. In June 11r. (Franchin, 2 among, 1995, 46, 23). Hydraxine dis-solves 26.6 pts. NaNO, at 12 5-13" (de Bruyn, R. t. e 1899, 18, 297). 100 pts alreadoff 9 pp. pr. dis-sloce 10 5 pts. NaNOs, 072 sp. pr. t. ps., 08.19; pp. col. and deladoff of 8 pt. pr. (St. et al., 20.48); n. mod in distributed of 12 pt. pr. (Stream) (despected of 12 pt. pt. (Stream) (despected of 12 pt. pt. 2000). 100 pts. plendoff of 12 pt. pt. (Stream) (1995). 100 pts. plendoff of 12 pt. pt. (Stream) (1995). 100 pts. plendoff of 12 pt. pt. (Stream) (1995). 100 pt. pt. pt. (Stream) (1995).

ino per alcohol of 63° Tr. dissolve 0.03 pt. NaNOs at 19.5°, (Wittstein)

10.0 pts. alcohol containing % alcohol by weight dissolve pts. NaNOs at 15°, or 100

weight dissolve pts. NaNO₂ at 15°, or 100 pts solution contain % NaNO₃:

10 20 30 40 60 80°, alcohol.
65.3 48 8 35 5 25 8 11.4 2.8 pts NaNO₂.
39.5 32 8 26.2 20.5 10.2 2 7°, NaNO₃.

39.5 32.8 26.2 20.5 10.2 2.7% NaNOs. (Schiff)

100 pts. wood-spirit of 40% dissolve 32 3 pts. NaNO₈. (Schiff, A. **118**, 365.)

Solubility in alcohol at 16 5°.

Sp gr	100 cem contain in g					
rip go	Alcohol	Water	NaNO ₃			
1 3745	0	75 25	62.20			
1 3162 1 2576	6 16	70 82 68 10	54.64 46.06			
1 2140	16 49	65 04	39.87			
1 1615	22 17	61 67	32 31			
1 0855 1.0558	32 22 37 23	52 92 48 50	23 41 19.85			
1 0050	43 98	42 78	13.74			
0.9420	52 60 60 00	32 13	9 47 4 65			
0.8610	63.16	25 65 21.31	1 63			

(Bodlander, Z. phys. Ch. 7, 317)

100 pts. absolute methyl alcohol dissolve 0.41 pt at 25°. 100 pts. absolute ethyl alcohol dissolve 0.036 pt at 25°. (de Brayn, Z phys. Ch. 10.

783.) Solubility in alcohol at 40°.

Wt. " alcohol	G NaNO2 per 100 g alcohol + 1q
0	104 5
8 22	90.8
17 4	73.3
26 0	61.6
36 0	48.4
42 8	40.6
55.3	27.1
65.1	18.1
77.0	9 4
87.2	4 2

(Bathrick, J. phys. Ch. 1896, 1, 162.)

Solubility in alcohol at 30°.

Wt. C. alcohol	G NaNOs per 100 g.		
in solvent	Solution	Water	
0	49.10	96.45	
5	46.41	91.15	
10	43.50	85.55	
20	37 42	74 75	
30	31.31	65.10	
40	25 14	55 95	
50	18 94	46 75	
60	12 97	37 25	
70	7 81	28 25	
90	1 21	12 25	

(Taylor, J. phys. Ch. 1897, 1. 723.)

Solubility in ethyl alcohol at 25°.

(Concentration of alcohol in g. mol. per 1000 g. H₂O.)

Normality	Solubility in 1000 g. H ₂ O	Mol solubility
14 1 1 2	920.30 908.80 896.60 870.95 825.35	10.83 10 70 10.54 10.24 9.70

(Armstrong and Eyre, Proc. R. Soc. 1910 (A), 84. 127.)

Very sl. sol in acctone. (Krug and M'Elroy, J. Anal, Ch. 6, 184)

Solubility of NaNO3 in acetone at 40°

Wt % acetone	G. NaNOs per 100 g acetone + Aq
0.0 8.47 16.8 25.2 34.3 44.1 53.9 64.8 76.0	105 91 2 78 3 66 4 57.9 46.2 32 8 23 0 10.8
87.6	3 2

(Bathrick, J. phys. Ch. 1896, 1, 162.)

Solubility of	NaNO ₃ 1	m adetone	at 30°.
---------------	---------------------	-----------	---------

Wt % acctone	G NaNO; per 100 g		
in solvent	Solution	Water	
0	49 10	96 45	
5	46 96	93 20	
9 09	45 11	90 40	
20	40.10	83.70	
30	35.08	77.20	
40	29 80	70 75	
50	24.34	64 40	
60	18 55	59.95	
70	13 15	50.50	
80	7 10	38 20	
90	1.98	20 20	

(Taylor, Z. phys. Ch. 1897, 2, 723.)

Sol. in glycerine. Insol. in ethylamine. (Shinn, J. phys Chem. 1907, 11, 538.) Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790); ethyl acetate. (Naumann,

B. 1910, 43, 314.) Insol, in benzonitrile, (Naumann, B. 1914. 47, 1370.)

Sodium thorium nitrate, NaTh(NO3)4+

9H₂O. Hydroscopic; sol. in dtl. HNO: and Aq (Meyer, Z. anorg, 1901, 27, 381.)

Sodium nitrate sulphate, NaNOs, NasSO4+ 1/2H2O. Sol. m H.O. (Marignac, Ann. Min. (5) 12. 44.) +H₂O. Min. Darapskite.

Sodium nitrate tungstosilicate, 3Na4W10S1O40.

4NaNO3+45H2O. (Wyruboff, Chem. Soc. 1897, 72, (2) 174,)

Strontium nitrate, Sr(NO₄)₂.

Sol. in 5 pts cold, and 0 5 pt boiling H2O (Dumas.) | 100 pts sat. Sr(NO₂)₂ - A 18.76° (Abl.) | 100 pts sat. Sr(NO₂)₂ + Aq at 19-20° contain 45.49 pts. Sr(NO₂)₂ (v. Hauer, J. pr. 98. 137)

1 pt. Sr(NOs); dissolves in pts. HsO at to

to.	Pts. H ₅ O	to.	Pts H ₂ O	to	Pts. H ₁ O
10	2 32 1 73	25 50	1 10 1 02	75 100	0.99

(Kremers, Pogg. 92, 499)

100 pts. H₂O dissolve at 0°, 39.5 pts. Sr(NO₂)₂ (Mudder); at 0°, 40.16 pts. Sr(NO₂)₂ (Poggiale); at 0°, 43.1 pts. Sr(NO₂)₂ (Kremers); at 100° 101.1 pts. Sr(NO₂)₂ (Mudder) at 100° 106.5 pts. Sr(NO₂)₂ (Kremers, Pogg. 92, 490); at 100°, 119.25 pts Sr(NO₂)₂ (Poggiale); grale)

Solubility in 100 pts HaO at to

e* Piast e* Ping 0 38 0.5 38 0.7 73 3 0.9 90 0 1 41.2 37 0.08 74 99 2 2 2 24.2.8 38 30 0.1 1 0 75 96 4 34 30 0.1 1 0 75 96 4 34 44 3 30 0.1 1 1 77 90 5 36 4 4 5 45 3 40 0.1 4 77 9 0.0 1 0 70 90 5 6 48 8 40 0.1 4 77 9 0.0 1 8 30 8 8 0.0 8 30 8 8 0.0 8 30 8 8 0.0 8 30 8 8 0.0 8 30 8 8 0.0 8 30 8 8 0.0 8 30 8 8 0.0 8 30 8 8 0.0 8 30 8 8 0.0 8 30 8 8 0.0 8 30 8 8 0.0 8 30 8 8 0.0 8 30 8 8 0.0 8 8 0.0 8 30 9 7 2 2 8 8 0.0 8 30 9 8 0.0 8 30 9 7 5 7 9 7 9 07 0 30 9 7 5 7 9 7 7 9 07 0 9 7 0 30 9 7 5 7 9 7 7 9 0 9 7 0 9 7 0 30 9 9 7 7 2 8 8 0 9 8 8 0 8 9 8 0 8 9 8 8 0 8 8 0 8 9 8 8 9 8 9	·	commutey in 100 pes, 1120 at t .				
1	t°	Pts Sr(NO ₃) ₂	t°	Pts Sr(NOa):	t°	Pts Sr(NO1)a
	1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 30 31 .3 .3 33 34	41.2 42.8 44.3 44.5 45.8 47.3 48.5 50.3 51.3 56.5 58.5 66.5 58.5 66.5 67.2 72.5 72.5 77.4 77.4 77.4 82.4 84.1 85.6 87.5 89.0 90.0 90.0 90.0 90.0 90.0 90.0	37 38 39 41 42 44 45 46 47 48 49 55 55 55 56 61 62 63 64 67 68 69 77	90 8 0 91 1 3 91 4 5 91 1 4 5 91 1 4 5 91 1 4 5 91 1 4 5 91 1 8 91 1 9 92 2 2 3 92 2 5 6 92 2 9 1 2 92 2 5 92 2 9 2 9 2 9 2 9 2 9 2 9 2 9	74 75 76 77 77 78 80 81 82 83 83 84 85 88 99 90 91 92 96 97 98 99 99 100 101 105 106 106 106 106 106 106 106 106 106 106	96 2 96 4 96 5 96 7 96 8 97 0 97 2 97 2 97 2 97 7 97 7 98 0 98 0 99 2 99 8 100 0 100 6 100 6 101 0 102 5

(Mulder, Scheik, Verhandel, 1864, 114.)

Sat. Sr(NO₈)₂+Aq contains at:

—6° +14° 20° 320 39.8 24.535.9 46.9% SrNO3.

94° 110° 47.2 47.8 49.1 50.2% SrNOs. 50.4 (Étard, A, ch. 1894, (7) 2, 528,)

79.27 g. anhydrous Sr(NOs); are sol. in 100 g. H₂O at 25°. (Parsons and Carson, J. Am. Chem. Soc. 1910, 32, 1385,)

Solub	thty of Sr(NO ₃) ₂ n	1 II ₂ O at t°.
t°	G Srt NO ₃) ₂ in 100 g H ₂ ()	Sp gr
0 58	40 124	1 2856
14 71	60 867	1 3938
26 40	82 052	1 1883
29 06	87 648	1 5110
30.28	89,577	1 5144
32 58	88 943	1 5141
39.71	90 086	1.5128
47.73	91 446	1.5115
61.34	93 856	1.5105
68.96	95 576	1.5106
78.98	97 865	1.5109
88 91	100 136	1.5117

(Berkeley and Appleby, Proc. R. Soc. 1911, (A) 85, 503)

100 g. of the sat. solution contain at 20°, 41.43 g. Sr(NO₃)₂. (Findlay, Chem. Soc

1914, 105, 782.)

Sp, gr, of Sr(NO₃)₂+Aq at 19 5°.

Sr(NO):	Sp gr	Sr(NO ₂) ₂	Sp gr
1	1 009	21	1.192
2	1 017	22	1.202
3	1 025	23	1 213
4	1 034	24	1.223
$\frac{4}{5}$	1 041	25	1.233
ő	1 049	26	1.246
7	1 059	27	1 257
8	1 068	28	1 268
		25	
9	1.076	29	1 280
10	1 085	30	1 292
11	1 095	31	1 304
12	1 103	32	1 316
13	1 113	33	1,330
14	1.122	34	1 340
15	1 131	35	1 354
16	1 140	36	1 367
17	1 150	37	1 381
18	1 160	38	1 395
19	1 170	39	1 410
20	i isi	40	1 422

(Kremers, calculated by Gerlach, Z. anal. 8, 286.)

Sp. gr. of Sr(NO₂)₂+An at 23.4°. a= no. of grms. X¹₂ nol wt dissolved in 1000 grms. H₂O; b= sp gr if a is Sr(NO₃)₂, 4H₂O, ½ nol wt = 112; c= sp gr. if a is Sr(NO₃)₃.); nol. wt = 106.

В	ь	61	п	b	e
1 2 3 4		1 081 1 155 1 224 1 281	5 6 7	1 303 1 345 1 383	1 350 1 407

(Favre and Valson, C. R. 79, 968.)

Sp. gr. of Sr(NO₃)₂+Aq at 17.5°.

131 (141 12/2	1.4r pr.	76 10 (0100)	2. A.
10 20 30	1 083 1 180 1 294	Sat. sol.	1 422 1.52

(Gerlach, Z. anal. 27, 283.)

Sp. gr. of Sr(NO₃)₂+Aq at t°.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

(Long, W. Ann 1880, 11, 39.)

Sp. gr. of Sr(NO₃)₂+Aq at room temp. containing: 10.29 21,19 32.61° S1(NO₃)₂.

1.0885 1.124 1 3067 (Wagner, W Ann. 1883, 18, 266.)

Sp gr, of Sr(NO₃)₂+Aq at 25°.

Concentration of Sr(NOa)z+Aq	Sp. gr
1-normal	1 0822 1 0119 1 0208
1/4 II	1.0208

(Wagner, Z. phys. Ch. 1890, 5, 40.)

| Sr(NO₃)₂+Aq containing 10.50% Sr(NO₈)₂ has sp. gr. 20°/20° = 1.0905 | Sr(NO₃)₂+Aq containing 25.51% Sr(NO₈)₂ has sp. gr. 20°/20° = 1.2440.

(Le Blane and Rohland, Z phys. Ch. 1896, 19. 279.)

Sp. gr. of Sr(NO₅)₂+Aq at 20° containing M g. mols. of salt per liter. M 0.91 0.025 0.05 0.075

Sp. gr 1.001525 1.004207 1.008391 1.012646 M 0 10 0.25 0.50 0.75 Sp. gr. 1.016834 1.04201 1.08812 1.12386

M 1.00 Sp. gr. 1.16354

(Jones and Pearce, Am. Ch. J. 1907, 38, 705.)

Bpt.	of Sr(NO ₃) ₂ +Aq, containing	pts.
	S ₁ (NO ₈) ₂ to 100 pts. H ₂ O.	

B-pt	Pts Sr(NOs)s	B-pt	Pts Sr(NO ₂)2
100 5° 101 101 5 102 102 5 103 103 5	12 24 34 8 45 54.4 63 6 72 6	104° 104 5 105 105 5 106 106 3	81 4 89 6 97 6 105 112 2 116.5

(Gerlach, Z. anal 26, 448.)

Sat, Sr(NO₄)2+Aq boils at 106.8°, and contoms 112.9 pts salt to 100 pts. HaO. (Guiffiths.) Sat Sr(NOs)2+Aq boils at 107.5-108° (Kremers); 107 9° (Mulder).

Sat. Sr(NO₃)2+Aq forms a crust at 106.3°, and contains 116.5 pts. Sr(NOa)2 to 100 pts. H₂O, highest temp observed was 107° (Gerlach, Z. anal 26, 427)

Very al sol. in conc. HNOs or HCl+Aq. (Wuntz.) Insol. in HNO.+Aa (Schultz, Zeit, Ch.

(2) 5, 537.)

Solubility in Sr(OH) ₂ , 8H ₂ O+Aq at 25°.		
Sp gr. 25°/25°	G StO as Sr(OH)2m 100 g H ₂ O	G Sr(NO ₂) ₂ in 100 g H ₂ O
1 492 1 494	0 38 0 78	79 47 80 83

(Parsons, J Am Chem, Soc. 1910, 32, 1388.)

Very sol in liquid NH3. (Franklin, Am. Ch J 1898, 20, 829) Sol, in 8500 pts, absolute alcohol. Sol, in 60,000 pts. of a mixture of 1 pt. ether and 1 pt. alcohol. (Rose, Pogg 110. 296.) Sol, in 4189 pts, abs alcohol and in 199.87 pts. ordinary rectified spirits. (Hill, Pharm J. 1888 (3) 19. 420)

Solubility in ethyl alcohol + Ag at 25°.

% C ₂ H ₆ OH in	% CaHaOH in	% Sr(NOz)2 in
the solvent	the solution	the solution
99 4	99 38	0.02
79 2	77 15	2 60
59 9	53 6	10 5
40 65	32 35	20.5
20 6	13 8	33 2
18.8	12 35	34 3
16.25	10.45	35 7
15.05	9.5	36 7
10.0	6.0	40 05
6.0	8 45	42 7
0	0	46 6

 $Sr(NO_4)_2$ is the solid phase in the solutions which are rich in alcohol; Sr(NO₂)2+4H₂O in | 1014.)

the solutions which contain small amounts of alcohol

(D'Ans and Siegler, Z. phys. Ch. 1913, 82. 39.)

Not completely meal, in boiling amylalcohol, 30 ccm, dissolving about 1 mg. (Browning, Sill Am. J. 143, 52)

Perfectly anhydrous Sr(NO₃)₂ is sol, in 83044 pts. absolute ether-alcohol (I:1). (Fresenius, Z. anal 32, 190)

Solubility in organic solvents.

Solvent	% Sr(NO ₂): in the solution at 25°
Methyl alcohol Ethyl alcohol Propyl alcohol Isobutyl alcohol Amyl alcohol Actone	1 26 0 02 0.02 0.02 0.01 0.003 0 02

(D'Ans and Siegler, Z phys. Ch. 1913, 82, 44)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.) Insol in benzonitrile. (Naumann, B. 1914,

47. 1370.) Sol. in acetone. (Eidmann, C. C. 1899, II.

1014.) Difficultly sol, in acetone. (Naumann, B. 1904. **37.** 4328.)

The composition of the hydrates formed by Sr(NOs)2 at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by Sr(NO4)2 and of the conductivity and sp. gr. of Sr(NO₈)₂+Aq. (Jones, Am. Ch. J. 1905, 84. 305.)

+4H_{*}O. Efflorescent.

Solubility in ethyl alcohol + Ag at 25°

7	the solvent	the solution	the solution
	0 4 6 10.8 16.0 20	0 1 7 2.6 4.95 7 95 12.35	44 25 42 8 42.1 40.4 37.6 34.3

(D'Ans and Siegler, Z. phys. Ch. 1913, 82, 39.)

Tellurium nitrate, basic, 4TcO2, N2O4+ 1½H₂O. Very hygroscopic. Easily decomp by H2O.

Sol. in HNO₂+Aq, but more sol, when dil. than cone. (Klein and Morel, Bull. Soc. (2) 43, 205,)

Tellurium nitrate, TeNO2.

Sol. in acetone. (Endmann, C. C. 1899. II,

1904, 37, 4328.)

Terbium nitrate, Tb(NO₄)₁+6H₂O.
Sol. in H₂O. Sol. in alcohol. (Urbain, C R. 1908, **146**. 128.)

Thallous nitrate, TINO₂.

1 pt. TINO₃ dissolves, according to C=

Crookes; L=Lamy: at 15° 18° 58° 107° in 9.4 10.3 2.3 0.17 pts. II₂O. C. L. L. L.

C L L L
Sat. TINOs+Aq contains at

199 32° 500 4.2 8.8 13.2 30.4 74 5% TINO. 1079 125° 1450 1500 155° 85 95 95.2 96.5 97% TINO ..

(Étard, A. ch. 1894, (7) 2. 527.) Solubility in II₂O at t°.

t°	G TINO; in 100 g H ₂ O	g mol TINOs m 1 !
0 10 20 25 30 40 50 60 70 80	3.91 6.22 9.55 14.3 20.9 30.4 46.2 69.5 111 200	0.149 0.230 0.357 0.433 0.522 0.755 1.07 1.58 2.29 3.40 5.32
100 105	414 594	8.29 10 25

(Berkeley, Trans. Roy. Soc. 1904, 203. A, 211.)

Sp. gr. of TINO2+Aq at 25°.

Concentration of TINOs+Aq	Sp gr.
1/c-normal	1.0562 1.0283

(Wagner, Z. phys. Ch. 1890, 5. 40.)

Solubility of TINO₂+KNO₄. (See KNO₅.) Insol. in alcohol. (Lamy.) Sol. in acetone. (Eidmann, Dissert. 1899; Naumann, B. 1904, 37. 4328.)

Thallous hydrogen nitrate, TINO₂, 2HNO₂. (Wells, Am. Ch. J. 1901, 26. 273.) TINO₄, 3HNO₄. (Ditte.)

Thallic nitrate, Tl(NO₂)₂+3H₂O.

Effloresces in the air. (Meyer, Z. anorg. 1900, 24, 361.) +6H₁O, or SH₂O. Deliquescent. Sol. in H₁O.

Thallous thallic nitrate, 2TlNO₅, Tl(NO₅)₅.

Decomp. by H₂O. (Wells, Am. Ch. J.
1901, 26, 278.)

Thellous uranyl nitrate, Tl(UO₂)(NO₃)₃.

Decomp. in moist air. Decomp. by H₂O.
(Meyer, B, 1903, 36, 4058)

Thorium nitrate, ThO₂, 2N₂O₅+6H₂O.
Crystallized. Sl. hydroscopic. (Fukse, Zet. angew. Ch. 1897, 10. 116.)
+122I₂O. Very deliquescent, and sol. in , H₂O and alcohol.
Difficulty sol. in acctone. (Naumann, B.

Thorium zinc nitrate, ZnTh(NO₂)₆+8H₂O.
Sol. m HNO₂; very hydroscopic. (Meyer, Z. anore. 1901, 27, 386.)

Thulium nitrate, Tm₂(NO₃)_n+8H₂O.

Deliquescent. Can readily be cryst. from HNO₃. (James, J Am. Chem Soc. 1911, 33. 1344.)

Tin (stannous) nitrate, basic, 2SnO, N₂O₅.

Difficultly sol. with partial decomp. in H₂O.
(Weber, J. pr (2), 26, 121.)

Tin (stannous) nitrate, Sn(NO₃)₂+20H₂O.
Deliquescent, and easily decomp (Weber, J pr. (2) 28. 121.)

Tin (stannic) nitrate, basic, 4SnO₂, N₂O₅+ 4H₂O. (Thomas, Bull. Soc. 1896 (3) 15. 312.)

Tin (stannic) nitrate, Sn(NOs)4.

Sol. in H₂O, but decomp, very soon on standing. Stable in presence of cone. HNO₂+A₂ at 90°, but decomp. at 100° (Montomartini, Gazz. ch. it. 22. 384.)
Insol. in moderately cone. HNO₃; readily decomp. by H₂O. (Engel, C R. 1897, 125. 710.)

Titanium nitrate, 5TiO₂, N₂O₈+6H₂O. Sol. to a slight milkiness in cold H₂O. Decomp. on boiling. (Merz, J. pr. 99, 157.)

; Uranyl nitrate, basic. Sol. in H₂O. (Ordway, Sıll. Am. J. (2) 26.

Uranyl nitrate, UO.(NO.).

+H₂O. (de Forcrand, C. R. 1913, **156**, 1046.) Sol. in fuming HNO₂ from which it can

be cryst. +2H₂O. 52.39% is sol. in dry ether at 7° 54.25% " " " " " 10°

(Lebeau, Bull. Soc. 1911, (4) 9. 300.)

+2H₂O. (Vasiheff, C. C. **1910**, II. 1527.) +3H₂O. Mpt. 121.5°. (Vasilieff.) Cryst out of hot HNOs+Ag. (Ditte.) 100 pts. HNO3 dissolve 39 pts at 14°.

(Ditte, A ch. 1879, (5) 18. 337.) +4H₂O. (de Coninck, C. C. 1901, I. 1354.) +6H₂O. Deliquescent in moist, and efflo-

respent in dry air. Sol. in 0.5 pt. cold H₂O, in 0.3 pt. absolute alcohol, and in 4.0 pts. ether. (Bucholz.)

Melts in crystal H₂O at 59.4°. (Ordway.) 1 pt is sol. in 2 pts. H₂O at 12.9°-14.2 (de Coninck, C. R. 1900, 131, 1220.)

Solubility	Solubility in H ₂ O at t°.	
t°	% by wt UO2(NO3)2, 6H2O	
-18.1 -12.1 -2.2 0 +12.3 25.6 36.7 45.2 71.8	54 90 58.00 62 13 63 01 67.36 72.83 78.05 82.96 86.32	

(Vasilieff, J. Russ. Phys. Chem. Soc. 1910,

42, 570.)

t°	% salt	Sp gr.
11 5	1	1.0049
12.4	2	1.0096
15.1	3	1 01401
14.1	4	1.0187
16 7	5	1.0230
14.1	6	1.8281
15.7	7	1.0236
15 2	8	1.0378
16.5	23456789	1.0410
15.2	10	1 0462
13.7	11	1 0504
11.5	12	1.0550
14.5	13	1.0594
11 3	14	1 0648
12.5	15	1 0680
13.2	16	1 0718

(de Coninck, C. R. 1900, 131, 1219.)

Sp. gr. of a sat. aq. solution = 1.7536 at 17°, containing 54.77% UO₂(NO₃)₂. Sp. gr. = 1.0257 when 2.80% UO₂(NO₃)₂ is present. (Vassiliev, C. C. 1912. I, 1430.)

Sp. gr. of solution in HNO3+Ag.

Pts of salt in 100 pts. HNO ₂ sp gr. 1.153	1	2	- 3	4	5	
Temp.	11 0°	11 8°	11.3°	12 0°	11.60	
Sp. gr. of the so- lution	1 1585	1 1614	1 1663	1 1698	1.1751	

(de Coninck, C. R. 1901, 132, 90.)

Sp. gr. o	f solut	ion in	H ₂ SO	+A.q.	
Pts of selt in 100 pts H ₂ SO ₄ sp gr 1 138	1 pt	2 pts	3 pts	4 pts	5 pts
Tomp	11 20	11 8°	10 70	12 0°	11 4°
Sp gr. of solution	1 1427	1 1450	1 1511	1 1540	1 1576

(de Coninck.)

Very sol, in dil. HBr and selenic acid (d=1.4). Sol. in conc. H2SO4, HNO5, dil. HCl and less sol, in cone HCl. (de Coninck, C. R., 1900, 131, 1220.)

Sp. gr. of solution in HBr+Ag of sp. gr. 1 21.

Sp gr	% salt dissolved
1.2122 1.2168 1.2198	1 2 3
1.2250	4 5

(de Coninck, Belg. Acad. Bull 1901, 222.)

Insol. in KOH+Aq, NaOH+Aq or NH4OH +Aq. Sol. in lime water. (de Coninck, C. R 1900, **131**. 1220)

Sl. attacked by liquid NH₃. (Gore, Am. Ch. J. 1898, 20. 830.)

At 15°, uranyl nitrate is sol, in comm. methyl alcohol, dil. and conc. ethyl alcohol, propyl and isobutyl alcohol, comm. amyl alcohol, acetone, ether, ethyl acetate, dil. and cone, formic acid and dil, acetic acid; sl. sol, in comm, essence of terebenthine; insol, in benzene (cryst.), comm toluene and xylene, ligroin, CHCl₃, glycerine and CS₂. (de Con-inek, C. R. 1900, **131**. 1220.)

1 pt. is sol. in 55 pts. methyl alcohol at ca.

1 pt. is sol, in 30 pts. ethyl alcohol (85°) at ca. 12.9°

1 pt. is sol, in 65 pts, acetone at ca. 12.0°. 1 pt. 18 sol. in 5.6 pts. acetic acid (d=1 035) at ca. 14.25

(de Coninek, C. R. 1900, 131, 1304.)

1 pt. sol. in 23.5 pts. methyl alcohol at 11.29

1 " " "18 4 " ethyl acetate " 10.3°. 66 " " 53 " cone, formic acid at 1 15 1°

(de Coninck, C. R. 1901, 132, 91.) Sp. gr. of solution in comm. methyl alcohol

t°	% salt	Sp. gr referred to H ₂ O
11 12.9 12.2 10.7 12.8	1 2 3 4 5	0 8902 0 8938 0.9003 0 9068 0.9108

(de Coninck, C. R 1900, 131, 1304.)

Sp. gr. of solution in ethyl alcohol (S5°) at to. Ytterbium nitrate.

$d_2 = sp$.	gr.	referred	to	alcohol.	- 1
d en	tre	realize mod	fix	TT.()	

1º	'a alt	d ₁	de
***********	-		
11.9	1	0.8918	1.0000
12 2	2	0.8979	1.0127
11 6	3	0 9023	1.0177
13.1	1 1	0.9056	1 0227
11.7	5 1	0.9131	1.0280

(de Connek, C R 1900, 131, 1219.) So, gr. of solution in acetic acid (d=1.055)

at to d = sp gr, referred to H.O d. = sp gr. referred to acetic acid

t°	Carsalt	d ₁	d ₂
14 0	1	1 0387	1 0034
13 8	2	1 0434	1 0080
14 8	3	1 0469	1 0100
16 9	4	1 9505	1 0148
14 6	5	1 0561	1 0205
10 4	6	1 0626	1 0265
11 7	7	1 0662	1 0300

(de Coninek, C. R. 1900, 131, 1301)

When excess of UO₂(NO₂)₂ is shaken with other at 7°, two layers are formed, the other laver containing 59 g. salt per 100 g. solution and the aqueous layer 62 5 g salt per 100 g. solution (Lebeau, C. R. 1911, 152, 440)

Sol. in nearly all proportions in givering

Sol. in factily all proportions in giverine (Postans, Phanin J. 1883, (3) 13, 752.) Sol. in methyl acctate (Naumann, B. 1909, 42, 3790); ethyl acctate. (Naumann, B. 1904, 37, 3601)

Sol. in acctone. (Enkmann, C C 1899. II, 1014, Naumann, B. 1904, 37, 4328) +18H₂O. Sat aq. solution has D17°/17° = 1.7536 (Vasilieff, J Russ phys. Chem Soc

1911, 48, 1183)

Uranyl nitrate ammonia, (UO2)(NO3)2, žNH.

(v. Unruh, Dissert. 1909.) (U()₂)(NO₃)₂, 3NH₃. (v. Unruh) (UO₃)(NO₃)₂, 4NH₃. (v. Unruh)

Uranyl nstrate phosphate, UO2H4(PO4)2. UO2(NO3)2+14H2O.

Easily sol. in warm H₂O, with gradual decomp. Easily sol in HNO₃, HCl, or H₂SO₄+Aq. Sol in acetic acid with decomp. (Hemtz, A. 151, 216.)

Divanadyl nitrate (?).

Known only in solution. Decomp, on evaporation.

Ytterbium nitrate, basic, Easily sol, in H₂O.

Very sol in H-O.

+3H₂O, Ppt. (Cleve, Z anorg, 1902. 32, 140.1 4-411.O. (Cleve.)

Yttrium nitrate, basic, 2Y2O2, 3N2O4+9H2O. Deliquescent in moist air Decomp by cold or botling ILO. Sol, in a solution of vitrium nitrate without decomp. (Bahr and Bunsen, A. 137, 1.)

Yttrium nitrate, Y(NO₂)₂+6H₂O.

Easily sol, in II.O. alcohol, or ether (Cleve.) 141 6 grams are sol, in 100 grams H2O at (James, J. Am. Chem. Soc. 1910, 32.

876) Zmc nitrate, basic, SZnO, N2O4+2H4O.

Insol. in H₂O (Grouvelle, A ch 19, 137.)

(Rousseau and Tite)

9ZaO, 2N₂O₅ Decomp by H₂O. (Vogel and Reischauer, N. Jahrb Pharm 11, 137) 4ZnO, N₂O₅+2H₂O. (Schundler) +3H₂O (Ordway, Sill. Am J (2) 32, 14, Gerhardt, J Pharm. (3) 12, 61.)

Insol. in II2O, sol. in dil neids (Athan-

asesco, Bull Soc 1896, 15, 1080) 2ZnO, N₂O₃+3H₂O. Decomp by H₂O, and slowly by alcohol (Wells, Am. Ch. J. 9, 304.) 7ZnO, $4N_4O_6+14H_2O=4Zn(NO_8)_2$, 3Zn(OH)2+11H.O (Bertels,)

Zinc nitrate, Zn(NO₃),

Very deliquescent. Easily sol in H2O or alcohol.

Sp gr. of Zn(NO₃)2+Aq F.=according to Franz (J pr. (2) 5, 274) at 17.5°; O =accordme to Oudemans (Z anal 7, 410) at 14°; 10 15%Zn(NOa)o.

1 0496 1 0968 1 1476 1 0425 1 087 1 1355 30%Zn(NOs). 1 2024 1 2640 1.32681 1875 1 245 1 305

35 50%Zn(NOa). F. 1.906 1 4572 1 5258 1 5984

Calculated for Zn(NO₅)₂+6H₂O:

50% salt. 1.05361 1 1131 1 1782 1 2496 1 3292 (Oudemans.)

Zn(NO₁)₂+Aq when heated soon decomposes, with formation of an insol. basic salt (Ordway.)

44.63

Sp. gr. of Zn(NO₃)2+Aq at room temp containing: 30 626 44 5% Zn(NO₁)₂ 15 955 1 2291 1 4367 1.1155 (Wagner, W. Ann 1883, 18, 270)

Sp. gr. of Zn(NO₈)₂+Ag at 25°

Concentration of Zn(NO2)2+Aq	Sp gr
I-normal 1/2- " 1/4- " 1/5- "	1 0758 1.0404 1.0191 1.0096

(Wagner, Z. phys. Ch. 1890, 5, 40.) Sp. gr. of Zn(NO₃)₃+Aq. at 16°

½ Zn(NO ₃);g per 1000 g of solution	Sp gr. 16°/16°
0.0000	1 000000
0 9950	1.000814
2 0061 4.1535	1.001646 1.003413
8.1824	1.006733
17 7760	1 014702
34.5920	1 028890
68 6780	1 058644

(Duken, Z. phys. Ch. 1897, 24, 108.)

Sp. gr. of $Zn(NO_3)_2+Aq$ at 17.3°, when p = ner cent strength of solution; d=observed density, w=volume conc. in grams per cc.

n	d	т
P 47 28 41 32 30 86 29.21 19.65 14.39 11.36 7 091	d 1 5504 1 4579 1 3138 1 2933 1 1830 1 1284 1 0988 1 0597	0 73310 0 60240 0 40535 0 37780 0 23246 0 16232 0 .12478 0 .07515
5.923 1.574 1 210	1 0491 1 0118 1 0087	0.07515 0.06213 0.01593 0.01221

(Barnes, J. Phys. Chem. 1898, 2, 545.)

Very easily sol, in liquid NH2. (Franklin, Am. Ch. J 1898, 20, 830 +1½H₂O. 100 pts HNO, dissolve 28 pts at 13°, 55 pts. at 55°. (Ditte, A ch. 1879, (5) 18. 335)

+2H₂O. (Vasilieff, C. C 1909, II 1966.) +3H₂O.

Solubility in H2O.

Sat, solution contains at: 41° 43° 45 5° mpt 66 38 67 42 68 21 69 26 77,77% Zn(NO*)*

(Funk, Z. anorg, 1899, 20, 401)

0.H8+ Solubility in H₀O. Sat. solution contains at --18° -15° -13° 45 26

--12° 45 75%Zn)NOx)». 45 51

Пo +12 5° 18° 55 90% Zn(NOs). 48 66 52 00 53 50

36 4° (mpt) 260 33 5° 65 83% Zn(NOs)s. 63 63 64.73(Funk, Z anorg. 1899, 20. 400.)

100 g. Zn(NO₃)₂+Aq sat. at 0° contain 48.7 g. Zn(NO₃)₂; at 18°, 53 5 g. Zn(NO₄)₂. (Myhus, Z. anoig. 1910, 74, 411.

Melts in its crystal H2O at 36.4° (Ordway). 50° (Pierro); boils at 131° (Ordway) Sp. gr. of solution set, at 18°=1.664, and contains 53.9% Zn(NO₂)₂. (Mylius, B.

1897. 30. 1718) Sol in methyl acetate (Naumann, B. 1909. 42, 3790) ethyl acctate. (Naumann. B 1910, 43, 314)

+9H'0. Solubility in H₂O. Sat. solution contains at.

-22.5° --20° -18° 42.03 43 59% Zn(NO₃)₂ 40 12 40 75

Cryphydrate is formed at -29°. (Funk, Z. anorg, 1899, 20, 401.)

Zinc nstrate ammonia, Zn(NO₂)₂, 4NH₂, Ppt. (Ephram, B. 1915, 48, 688.)

 $^{2}/_{8}H_{2}O$ Deliquescent. Sol. in H2O. (André, C. R. 100, 639.)

13ZnO, 3N₂O₄, 2NH₂+18H₂O. Insol, in cold, decomp, by warm H2O. (André, C. R. 1885, 100. 640.)

Zinc nitrate cupric oxide, $Zn(NO_z)_z$, $3CuO + 3H_zO$. (Mailhe, A. ch. 1902, (7) 27. 169.)

Zinc nitrate hydrazine, Zn(NO₃)₂, 3N₂H₄, Decomp. by hot H₂O

Sol. in NH4OH. (Franzen, Z anorg 1908, 60. 279.)

Zirconium nitrate, basic, 3ZrO2, 2N2O5. Insol. in H₂O. ZrO2, N2O4. Easily sol in H2O and alcohol. +H₂O As above.

Zirconium nitrate, Zr(NO₄)₄+5H₂O (?). Deliquescent, and sol, in H₂O.

Nitric oxide, NO See Nitrogen doxide.

Nitrilobromosmic acid.

Ammonium nitrilo pentabromosmate,

(OsNBr.J: NII d) + H.O.

solution. Stable in HBr+Aq

Insol, in organic solvents (Werner, B. 1906, 39, 501.)

Cosium hydrogen nitrilopentabromosmate, (OsNBral-CsaH. Si sol. in H2O, (Weiner,)

Potassium nitrilotetrabromosmate. (OsNBr.JK+2H.O.

Very sol. in H₂O Decomp. in aq. solution. Stable in HBr+Aq. Insol. in organic solvents. (Werner.)

Rubidium nitrilopentabromosmate, (OsNBralRba.

Sol, in H₂O. Decomp, in dil, aq. solution after a short time. (Werner.)

Nitritochlorosmic seid.

Ammonium nitrilopentachlorosmate,

(OsNCla)(NHa)2. Sol. in H₂O; msol in conc. HCl+Aq. (Werner, B. 1901, 34. 2702.)

Casium nitriloventachlorosmate. (OsNCla)Cas. Sol. in H.O. (Werner.)

Potassium nitrilopentachlorosmate,

(OsNCls)K2, Sol. in H.O; pptd. by HCl; insol. in organic solvents. (Werner.)

Rubidium nitrilopentachlorosmate. (OsNCl.)Rb.

Sol. in H2O; decomp, in dil, neutral solution. (Werner.)

Nitrilotrimetaphosphoric acid, H2NP2O7=

PO OH N PO OH.

Known only in solution, (Mente, A. 248, 260.)

Aluminum nitrilotrimetaphosphate.

Insol. in H₂O, conc. HCl, or HNO₂+Aq. Slowly sol. in boiling conc. H₂SO₄. Sol. in warm NaOH+Aq or Na₂CO₂+Aq without decomp. Insol. in NH₄OH+Aq. (Mente.)

Barium ---, BaNP₂O₇.

Insol, in dil, or cone, seids. Decomp, by boiling NaOH or Na₂CO₂+Aq. Insol. in NH₄OH+Aq. (Mente.)

Cadmium nitrulotrametaphosphate. Easily sol. in NH4OH+Aq, or boiling

(NH4)2CO2, or NaOH+Aq. (Mente.) Very sol. in H₂O Decomp. in dil. aq. | Calcium ----, CaNP₃O₇+H₂O.

Sol. in cone. HCl+Aq by long boiling, and more easily in furning HNO₃+Aq Insol. in NH.OH or NaOH+Aq. (Mente.)

Chromium ----.

Slowly sol in dil. acids. Easily sol. in ammonia. Sol, in cold NaOH+Aq. (Mente.)

Cobalt ----. CoNPsO++HsO.

Insol, in H₂O. Sl sol in dil. acids Easily sol, in NH₂OH+Ag. Decomp, by NaOH or Na₂CO₃+Aq. (Mente)

Copper ---

Sol. in NH4OH+Aq. Decomp. by NaOH +Ag. (Mente.) Ferric ----, Fe₂(NP₃O₇)₈.

Insol, in cone, acids. Easily sol, in NH,OH

-Aq or (NH₄)₂CO₂+Aq. Decomp. by NaOH or Na₂CO₃+Aq. (Mente.)

Lead ----

Insol. in dil. acids. Sol. in fuming HNO: Insol, in NH₄OH+Aq. Sol, in NaOH+Aq (Mente.)

Magnesium ---, MgNPaOr+HaO. Slowly sol in HCl+Aq. Sol. in H2SO4 or furning HNO, with addition of Br., Insol. in NH₄OH or (NH₄)₂CO₄+Aq. (Mente.)

Manganous ---, MnNPsOr+HsO. Insol, in dil. acids. Very sl sol in NaOII+ Aq. Insol, in Na₂CO₃ or (NH₄)₂CO₃+Aq. Easily sol. in NH OH+Aq. (Mente.)

Mercurous --- , Hg:NP:0: Insol. in dil. acids, NH,OH, NaOH, or NH,02CO3+Aq. Easily sol, in fuming (NH₄)₂CO₃+Aq.

HNO. (Mente.) Nickel ----, NiNP,0,+H,0.

Insol. in dal. acads, NH4OH, or (NH4)2CO1 +Aq. (Mente.)

Zinc ---- ZnNP₂O₇+2H₂O.

Easily sol. in NH4OH, NaOH, or (NH4)2CO2+Aq. (Mente.) Nitrilosulphonic acid, N(SO₂H)₂,

Not known in free state, (Raschig, A. 241. 161.)

Potassium nitrilosulphonate, N(SO₂K)₂+ 2H₂O.

Soluble in H₂O. (Raschig, A. **241**, 161.) Is identical with "potassium ammonirisulphonate" of Claus.

Insol. in cold H₂O (Claus); sol. m 50 pts H₃O at 23° (Fremy); in H₂O at scarcely 40° without change Decomp. by boiling (Claus.)

Potassium sodium nitrilosulphonate,

N(SO₂K)₂(SO₃Na). Nearly msol. in cold H₂O. (Raschig, A. 241, 161.)

Sodium nitrilosulphonate, N(SO₈Na)₃. Not isolated on account of its extreme solubility in H₂O. (Raschig, A. 241, 161.)

Nitrilodisulphophosphoric acid, NP(SH)₂.

Decomp. by H₂O. (Stock, B. 1906, 39. 2001.)

Ammonium nitrilodisulphophosphate, NP(SNH₄)₂

Easily sol. in H₂O Not decomp. by boiling with alkali Decomp. by acid. (Stock.) Easily sol. in liquid NH₂ (Stock, B 1903, 36, 315.)

Ammonium hydrogen nitrilodisulphophosphate, SHP(SNH₄)N.

Not decomp. by boiling with alkali. Decomp. by acids. (Stock, B. 1906, 39, 1999.)

Barium nitrilodisulphophosphate, BaNPS₂+ H₂O.

Sol, in H₂O with decomp. Decomp. by hot H₂O. Not decomp. by warming with alkali. Decomp. by acid. (Stock)

Lead nitrilodisulphophosphate, NPS₂Pb.
Sol. in liquid NH₄. Solution decomp.
rapidly with separation of PbS. (Stock.)

Sodium nitrilodisulphophosphate, NPSNa₂. Not decomp. by boiling with alkalı. Decomp. by acid. (Stock.)

Nitrilosulphuric acid.

Ammonium nitrilosulphate, N(SO₂NH₄)₂+ 2H₂O.

Rather sl. sol. in H₂O, but much more sol. than K salt. (Divers and Haga, Chem. Soc. 1901, 79, 1094.)

Sodium nitrilosulphate, N(SO₂Na)₃+5H₂O Very sol. in H₂O. (Divers and Haga, Chem. Soc. 1901, 79. 1097.)

Nitrilosulphurous acid.

Ammonium nitrilosulphite, NH(SO₂NH₄)₂. Somewhat deliquescent. Very sol. in H₂O. Slowly decomp. in solution. Decomp. by boulng with HCl. (Divers, Proc. Chem. Soc. 1901, 17, 163.)

Nitritocobaltic chloride.

Sol. in 200 pts cold H₂O. (Jörgensen, Z. anorg. 5. 172)

Nitritoplatindiamine nitrate, (NO₂)₂Pt(N₂H₄NO₂)₂,

Sol. in cold H₂O with decomp.; violently decomp. on waiming. (Hadow, Chem. Soc. (2) 4. 345.)

Nitritopurpureocobaltic comps. See Xanthocobaltic comps.

Nitritopurpureorhodium comps. See Xanthorhodium comps.

Nitrocarbamic acid.

Potassium nitrocarbamate, NO₂.NK. COOK. Decomp. by H₂O. (Thiele, B. 1894, 27, 1909)

Nitro cobalt, Co2NO2.

Decomp. by H₂O. (Sabatier and Senderens, C. R. 115, 236.)

Nitro copper, CuNO₂

Violently decomp by H₂O. (Sabatier and Senderens, C. R. **116**. 756.)

Nitrogen, Na

Nitroferricyanhydric acid.

See Nitroprussic acid.

Nearly maol in all known solvents.

1 vol recently bolled Hi-O absorbs 0 0117 vol N at
15 5 (Hanry, 1803)

1 vol recently bolled Hi-O absorbs 0 025 vol N.
(Dalton)

1 vol recently bolled Hi-O absorbs 0 0156 vol N at
ord temp. (Dalton)

1 vol. H₂O at t° and 760 mm absorbs V vols. N gas reduced to 0° and 760 mm.

t°	v	t°	v	t°	v
0	0 02035	7	0 01713	14	0.01500
1	0 01981	8	0 01675	15	0 01478
2	0 01932	9	0.01640	16	0.01458
3	0 01884	10	0 01607	17	0.01441
4	0 01838	11	0 01577	18	0 01426
5	0 01794	12	0 01549	19	0 01413
6	0 01752	13	0 01523	20	0 01403

(Bunsen.)

Coefficient of absorption = 0.020346-0.00053887t+0.000011156t², (Bunsen.)

606					NITRO	GEN		
1 l. II	O absor	bs eem	N from a	tmos	oheric air	Absorption o	of N by H ₂ O at t	°.—Continued
	at 760	min j	ressure a	nd to		to.	β	βι
t°		m N	t°		cem N	15	0.1682	0 1654 1622
(9 29 7 09	15 20		13 95 12 80	16 17	1651 1622	1591
10		7 09 5 36	25		11 81	18	1594 1567	1562 1534
(Ditt	mai. Ch	llenger	Exped.	Repor	t, vol. i)	19 20	1542	1507
	,					21 22	1519 1496	1482 1457
t	, [,	em N	t°		eem N	23	1473	1433 1410
		9 14	15	T	13 73	24 25	1452 1432	1387
ı,		6 93 5 14	20 25	1	12 63 11 80	26 27	1411 1392	1365 1344
			erg, 1885	,		28	1374	1323 1303
						29 30	1356 1340	1284
Absc	rption of	N by oefficien	H₂O at t nt of abso	" and	760 mm.	31 32	1321 1304	1263 1243
	β	10	В	t°	В	33	1287	1224 1204
-	<u> </u>					34 35	1270 1254	1185
0	0 02388		0 01696 1667	36 37	0 01252	36	1239 1224	1167 1149
2	2288 2241	00 1	1639	38	1215 1198	37 38	1210	1131
4	2190	1 22	1611 1584	39 40	1182	39 40	1196 1183	1114 1097
5	2153 2111	23	1557 1530	41	1166 1151	41	1171	1082 1067
6 7 8	2070	25	1504	43	1137	42 43	1160 1149	1052
8	2031 1993		1478 1453	44 45	1124	44	1139 1129	1037
10	1950	1 28	1428	46 47	1099 1088	45 46	1120	1009
11 12	192	5 30	1404 1380	48	1078	47 48	1111 1102	0995 0982
13 14	185		1357 1334	49 50	1069 1061	49	1094	0968 0955
15	178	33	1312	60	1000	50 52	1087 1072	0929
· 16	175 172		1291 1271	100	1000	54 56	1058 1045	0902 0876
	(Bohr a	nd Boo	k, W. An	0 44	318)	58	1033	0849
A from			,		1 760 mm	60 62	1022 1011	0822 0794
25.08	β ≈ eneft	icient c	of absorpt	ion; /	S ₁ = "Solu-	64	1001 0992	0765 0736
-	bility"	see une	ler Oxyge	n)		66 68	0983	0707
	t ^o		β		β_1	70	0976 0970	0676
-	0		2348	0	02334	74	0965	0614
	1 2		2291 2236		2276 2220	76 78	0961 0959	0546
	3		2182		2166	80 82	0957 0956	0510 0472
	2 3 4 5 6		2130 2081		2113 2063	84	0955	0432
	6	1	2032 1986		2013 1966	86 88	0954 0953	0388 0343
	7 8 9		1911		1920	90	0952	0294 0242
	9 10		1898 1857		1877 1834	92 94	0951 0950	0187
	11 12	į.	1819		1795	96 98	0949 0948	0128 0066
	13		1782 1747		1758 1722	100	0947	0000
	14	!	1714		1687	(Wi	nkler, B 24. 360	16.)

Coefficient of absorption for H₂O = 0 01432 at 25°; 0.01621 at 20°; 0.01789 at 15°; 0.02003 at 10°; 0.02173 at 5°. (Braun, Z phys. Ch. 1900, 33. 730.)

Solubility in $\mathrm{H}_{3}\mathrm{O}$ at various pressures.

V = volume of the absorbing liquid.
P = Hg-pressure in metres.

v	t ^a	P	λ
33 134 ccm.	19 4	0 8910 1 0453 1 2488 1 4764 1 8111 2 3961 2 9074 3 3411 4 1382 4 5958 5 1103 5 8349 6 2767 7 1059 7 1059 7 5815 8 1074	0 01617 0 01616 0 01611 0 01608 0 01602 0 01597 0 01585 0 01579 0 01561 0 01546 0 01546 0 01528 0 01515 0 01499 0 01487 0 01473
32.152 ccm	24 9	0 8977 1 0129 1 1887 1 5573 1 9846 2 5171 2 8781 3 2956 4 0947 4 5581 5 0529 5 5935 6 1956 7 0337 7 5596 74 1846	0 01498 0 01493 0 01491 0 01487 0 01488 0 01478 0 01478 0 01455 0 01444 0 01426 0 01413 0 01408 0 01382 0 01387 0 01369

(Cassuto, Phys. Zert. 1904, 5. 236)

Coefficient of absorption for H₂O =0.01565 at 20.18°. (Hufner, Z. phys Ch. 1907, 57. 615.) Absorption of N_2 by distilled H_1O at t^o . a = ccm. of N_2 absorbed by 1 I of H_2O at and 760 mm.

	and 100 mm.							
to	α	£°	α	10	α			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	23 00 22 50 22 02 21 09 20 64 20 20 19 75 18 94 18 54 18 16 17 46 17 16 84 16 56	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	16 29 16 03 15 78 15 58 15 54 15 29 15 06 14 84 14 43 14 23 14 04 13 71 13 55 13 39 13 28	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	12.93 12.79 12.65 12.52 12.39 12.27 12.15 12.04 11.80 11.68 11.57 11.46 11.35 11.24 11.13			

(Fox, Trans Faraday Soc. 1909, 5. 73.)

Solubility in H₂O at 25°=0 1561 (Drucker and Moles, Z. phys Ch. 1910, **75**, 418.) Solubility of N₂ in H₂O at 25°=0.0231. (Calculated according to special formula, for

which see original article.) (Findlay and Creighton, Chem. Soc 1911, 99, 1315.) Coefficient of absorption for H₂O = 0 01689 at 15°, 0 01670 at 16.2°; 0.01622 at 17.2°.

1 l. sea water (sp. gr. 1.027) absorbs com. N from atmosphere at t° and 760 mm

(Muller, Z phys. Ch. 1912, 81, 493.)

pressure-

t°	According to Tornos	According to Dittmar	According to Hamberg
0 5 10 15 20 25	14 40 13.25 12 10 10 95	15 60 13.86 12 47 11.34 10 41 9 62	14 85 13 32 12 06 11 04 10 25 9 62

No. of com of N₂ (containing 1.185% argon) absorbed by a l. of sea-water from a free dry atmosphere of 760 mm. pressure at given temperatures

į	Cl per 1000	00	4°	8°	12°	16°	20°	24°	28°
	0	18 64	17 02	15 63	14 45	13 45	12 59	11.86	11 25
	8					-			Α.
	12 16	-							' · i
	20						<u>. </u>		_

(Fox. Trans Faraday Soc. 1909, 5, 77.)

Absorption of N₂ by H₂SO₄+Aq at t°.

ണ

	-		1
Normality of the and	t°	α	ŀ
0	20 9	0 0156	
4.9 8.9	20 9 20 9	0 0001	ļ
10.7 20.3	21 2 21 1	0 0066	١
24.8 29 6	21 5 20 8	0 0048 0 0051	1
34.3	20 9	0 0100	١
35.8	21.1	0.0120	

(Bohr. Z. phys. Ch 1910, 71, 49.)

Absorption of N₂ by BaCl₂+Aq. at coefficient of absorption at tc.

Per cent of BaCi ₂ in the solution	a25°	a20°	415°	a10°	a5°	١.
	la narez	la renera	la arpsa	o orrac	o otomo	1-
11 927						1
6 903						1
6 735						1
4 870						1
1 395						1

(Braun, Z. phys. Ch. 1900, 33, 733.)

Absorption of N₁ by NaCl+Aq, $\alpha t^{\circ} = \text{coefficient}$ of absorption at t° .

Per cent of NaCl in the solution	425°	a20°	a16°	a10°	a5°
11 732	0.00470	0.00857	0.00010	0 000 80	0.01014
	0 (-				
8 135	0 -	• •		**	
8 033	0	* *	1.0		
6 595	0				
6 400	0 115				
4 196	10 .		+ 2		
3 880	10 -		- 1		
2 120 2 100	10.				
0 686	9 1				
0 671	19 .				
0.071	la	٠,			

(Braun, I. c.)

At —191.5° liquid oxygen dissolves 458 times its vol. or 50.7 per cent of its weight of gaseous nitrogen. (Erdmann, B. 1904, 37. 1191.)

At 18° and 760 mm 100 vols H₂O or alcohol of 0 84 ap. gr. absorb 4 2 vols N gas (de Saussure, 1814)

1 vol. alcohol at t° and 760 mm, dissolves V vols N gas reduced to 0° and 760 mm

vols N gas reduced to 0° and 760 mm,						
t°	v	fo.	v			
0 1 2 3	0.12634 0.12593 0.12553 0.12514 0.12476	13 14 15 16 17	0.12192 0 12166 0 12142 0 12119 0 12097			
1 2 3 4 5 6 7 8 9	0.12440 0.12405 0.12371 0.12338 0.12306	18 19 20 21 22	0 12076 0 12076 0 12036 0 12030 0 12021 0 12005			
10 11 12	0.12276 0.12247 0.12219	23 24	0.11990 0.11976			

(Bunsen's Gasometry.)

1 vol. alcohol absorbs 0.126338-0.000418t+ 0.0000060t² vols, N gas. (Carus, A. 94, 136.)

Solubility in alcohol at 25°

Vol 1140	Vol % nicohol	Solubility				
100	0	0.01634				
80	20	0.01536				
67	33	0.01719				
0	100	0.1432				

(Just. Z. phys. Ch 1901, 37, 361.)

1 vol ether absorbs 0 15 vol N (Doberemer), 1 vol. caoutchine absorbs 5 vols N in 5 weeks (Himly).

Solubility of N₂ in ether = 0 2580 at 0°; 0.2561 at 10°. (Christoff, Z. phys. Ch. 1912, 79, 459.)

Solubility in organic solvents

	Solvent	Solubility at 25° C	Bolu- buity at 20° C.	ds dt
	Glycerine	Not		
		mensurable		1
	Water	0 01631	0 01705	-0 000142
٠,	Aniline		0 02992	+0 000164
	Carbon bisulphide	0.05860	0 05280	+0 00114
	Nitrobenzene	0 00255	0.06082	+0 000346
	Benzene	0 1159	0 114	+0 0000
	Glacial acetic acid	0 1190	0 1172	+0 00036
	Xirlene	D 1217	0 1185	+0 00062
	Amyl alcohol	0.1225	0 1208	+0 00034
-	Toluene	0 1235	0 1186	+0 00008
	Chloroform	0.1348	0 1282	+0 00132
	Methyl alcohol	0 1115	0 1348	+0 00134
	Fthyl alcohol (99 8%)	0 1432	0 1400	+0 00064
- 1	Acetone	0.1460	0 1383	+0 00154
	Amyl acctate		0 1512	+0 0006
	Ethyl acetate	0 1727	0 1678	+0 00008
58	Isobutyl accate	0 1734	0 1701	+0 00066

(Just, Z. phys. Ch. 1901, 37, 361.)

Coefficient of absorption for petroleum = 0.117 at 20°; 0.135, at 10°. (Gniewasz and Walfisz, Z. phys. Ch. 1. 70.)

Absorption of	N ₂ by	propionio	acid+Aq.
ato = coeffic	ient of	absorptio	n at to.

Per cent of propionic acid in the solution	a25°	α20°	a15°	a10°	α5°
11 023	0 01295	0 01463	0 01585	0.01800	0 01077
9 537 9 155 6 066	IV WIASI.	in ma71	in missas	11) 111 1199	in wante
5 891 4 081	0 01365	0 01480	0 01688	0 01919	0 02095
		0 01547 bvs C			

Solubility of No in isobutyric acid +Aq at to. P=Corrected pressure at end of evperiment in mm. Hg at 0°.
S=Solubility of N₂.

Solvent	t°	P	8
Pure isobutyric acid	25 05	262 6 388 3 566 1 662 4 783 5 832 2	0 1609(?) 0 1640 0 1647 0 1656 0 1656 0 1656
37 5% solution of isobutyric acid+Aq Vapor pressure = 21.6 mm.	28 02	246.2 492.2 563.6 836.3 867.3	0 0393 0 0393 0.0393 0.0400 0 0401
Vapor pressure = 30.6 mm,	29 02	231 468.4 480.7 536 656 720	0.0373 0.0384 0.0383 0.0385 0.0384 0.0386

(Drucker and Moles, Z. phys. Ch. 1910, 75. 434.)

Absorption of N2 by chloralhydrate+Aq.

t°=temp. of the solution.

P = % chloralhydrate in the solution. βt° = coefficient of absorption at t°. β15° = coefficient of absorption at 15°.

	P .	PE	bro
15 6 15 4 16.4 16.9 17.0 15.3 14 8	15 8 28.2 37.25 47.0 56.52 71 5 78 8	0.01574 0.01418 0.01288 0.01260 0.01230 0.01415 0.01447	0.01580 0.01422 0.01300 0.01275 0.01245 0.01420 0.01495

0.-0

(Müller, Z. phys. Ch. 1912, 81, 499.)

Absorption of N₂ by organic substances+Aq at 15°.

P = % of the organic substance in the solβ15° = coefficient of absorption at 15°

ī	S10" = Solubility at 15",					
(Organic substance used	P	β15°	S15°		
	Chloralhydrate	0 0 0 6 9 14 0 15 0 28 6 28 1 37 6 48 9 49 3 61 3 70 9 71 2 78.3 79 1	0 01725 0 01675 0 01675 0 01706 0 0164 0 0152 0 0134 0 0141 0 0123 0 0115 0 0118 0 0114 0 0131 0 0130 0 0152 0 0156	0 01796 0.0173 0.0162 0.0160 0.0141 0 0149 0.0130 0.0121 0.0124 0.0120 0 0138 0 0137 0 0160 0.0165		
	Glycerine	0 0 15 7 15 7 29 9 46 6 67 1 72 8 74 7 77 0 85 1 87 3 88.5 99.25	0 01707 0 01708 0 01425 0 01376 0 01087 0 00840 0 00698 0 00698 0 00552 0 00552 0 00527 0 00492 0 00492 0 00536 0 00536	:		

(Hammel, Z. phys. Ch. 1915, 90, 121.)

Absorption of N2 by glycerine+Aq.

to = temp. of the solution.

P = % glycerine in the solution. β t° = coefficient of absorption at t°

β15° = coefficient of absorption at 15°

		ps.	P10
16 1 15 6 14.7 14 9 15 9 16.2	25.0 42.2 51.5 58.0 80.25 90.0	0.01240 0.00966 0.00759 0.00703 0.00520 0.00570	0 01266 0 00976 0 00759 0 00703 0 00530 0 00583
18 0	95 0	0.00578	0.00716

0..0

(Müller, Z. phys. Ch. 1912, 81, 496.)

Solubility of N. in glycerine+Aa at 25°. $G = C_0$ by wt. of glycerine in the solvent. $S = \text{solubility of } N_2$.

P = corrected pressure at end of experiment

in mm Hg at 0°.

G	P	8
16 29.7 48.9 74.5 84.1	598 4 915 5 556 5 846.5 617.7 859 8 588 5 637.3	0 0103 0 0103 0 0067 0 0068 0 0052 0 0051 0 0025 0 0024
	757 0	0 0024

(Drucker and Moles, Z. phys. Ch. 1910, 75. 418.)

Absorption of N₂ by sucrose +Aq.

to = temp, of the solution, $P = \frac{G'}{G}$ sucrose in the solution

pt° = coefficient of absorption at t° \$15° = coefficient of absorption at 15°.

t°	P	βι°	β15°	l
16 2 17 2		0 01670 0 01622	0 01700 0 01688	l
16 8 16 9 17 17.8 18	11 38 20 00 29 93 30 12 47 89 48 57	0 01432 0 01233 0 01025 0 01033 0 00742 0 0065S	0 01480 0 01280 0 01053 0 01090 0.00785 0.00700	

(Muller, Z. phys. Ch. 1912, 81. 493.)

Absorption of N2 by organic substances+Ac at t

V=absorbed volume reduced to 0° and 760 mm. \[
\alpha = \text{coefficient of absorption.}
\]

Solution	Vol of solution cem	t _o	V erm	a
N-dextrose I-N-dextrose I-N-dextrose I-N-dextrose N-dextrose N-explose N-explose N-explose N-explose N-explose N-explose N-explose N-dextrose N-dextrose N-dextrose N-dextrose	409 94 409 94 409 94 409 94 409 94 409 94 409 94 409 94	20 21 20 2 20 25 20 25 20 25 20 19 20 16 20 18	5.14 5.51 4.27 4.40 4.87 4.445 4.47 5.37	0.01215 0.01380 0.01480 0.01221 0.01203 0.01321 0.01213 0.01217 0.01477 0.01475

(Hufner, Z. phys. Ch. 1907, 57, 618-621.)

Nitrogen bromide, NBr. Decomp, under H₂O.

Nitrogen bromophosphide, PBr₂N.

Insol in H2O. Sol. in ether, less sol in CS, or CHCl₂ (Besson, C. R. 114, 1479.)

Nitrogen bromosulphide. See Nitrogen sulphobromide,

Nitrogen chloride, NCl. Very unstable. Explodes when heated to

93° or by contact with other substances. 93° or by contact with other substances. Insol. in H₂O, but is decomp thereby (in 24 hours by cold H₂O). Sol. in CS₂ PCl₃, and S₂Cl₂. (H. Davy, Phil Trans 1813, 1, 242.) Sol. in C₃H₅, CS₅, CHCl₅, CCl₄. (Hentschel B. 1897, 30, 1434)

Nitrogen chlorophosphide, N.P.Cla.

Insol in H₂O, but slowly decomp thereby. Insol. in hot H₂SO₄, HCl, or HNO₄+Aq. Decomp. by hot furning HNO, Sol. in alcohol, very sol. in other, but these solutions gradually decompose. Sol. in CS2, CHCl3, Call, and oil of turpentine.

Sol m POCls. (Gladstone, Chem. Soc 3. 138.)

Nitrogen chlorosulphide. See Nitrogen sulphochloride.

Nitrogen fluoride.

Very explosive (Warren, C. N. 55, 289.) Nitrogen monoiodamine, NH2I.

Very rapidly decomp. by H₂O into N₂H₃I₃. (Raschig, A 230, 212.)

Nitrogen diodamine, NHI2. Properties as truoddummine

Nitrogen triioddiamine, NH2, NI2.

Decomp. by H₂O. (Raschig, A. 280, 212.) Insol, in absolute alcohol. Sol. with decomp. in HCl+Aq. (Bunsen.)

Nitrogen iodide, N.I. See Triazorodide,

Nitrogen iodide, NI,

Insol. in H2O, but slowly decomp. thereby. Sol. in HCl+Aq Sol in KCN+Aq. (Millon, J. pr. 17. 1.) Sol. in Na₂S₂O₃+Aq. (Guyard, C. R. 97.

526.)

· Sol. in KSCN+Aq. (Raschig, A. 230, 212.)

Nitrogen iodide ammonia, NI₂, 3NH₂; NI₃, 2NH₃; and NI₄, NH₃.

(Hugot, C. R. 1900, 130, 507.) NI₂, 12NH₂. Ppt.; msol. m ether. (Ruff,

B. 1900, 33, 3028,

2 435

0 7737

Nitropen monoxide, NaO.

(a) Liquid, Miscible with alcohol or ether. (h) Gas.

t vol. HsO absorbs 0.78-0.86 vol. N₂O at ordinary 1 vol. 130 absolov v 78-0 30 vol. 140 at ordinary temp (Henry), 0 80 vol. at ordinary temp (Dalton), 0 76 vol. at ordinary temp (de Saussure), 0 768 vol. at 18° (Pleusch), 0 51 vol. (Davy).

1 vol. H₂O at t° and 760 mm. absorbs V vols. N.O. reduced to 0° and 760 mm

10	v	t°	V
0 1 2 3 4 5 6 7 8 9 10 11	1 3052 1 2605 1 2172 1 1752 1 1346 1 0054 1 0575 1 0210 0 9858 0 9520 0 9196 0 8885 0 8588	13 14 15 16 17 18 19 20 21 22 23 24	0 8304 0 8034 0 7778 0 7535 0 7306 0 7090 0 6888 0 6700 0 6525 0 6364 0 6216 0 6082

(Bunsen's Gasometry.)

1 vol. H₂O absorbs 1,30521-0,0453620t+ 0.00068430t2 vols N₂O at t° and 760 mm. (Bunsen.)

Coefficient of absorption by H₂O=0 01883 at 15°. (Steiner, Z. phys Ch 1895, 18 14) Coefficient of absorption by H₂O = 0.600 at 23.5°, 0.773 at 15.5°, 0.951 at 8.1° (Gordon, Z. phys Ch 1895, 18. 4.)

Absorption of NaO by HaO at to

t°	Coefficient of absorption
25	0 5752
20	0 6654
15	0 7896
10	0 9479
5	1 1408

(Roth, Z. phys. Ch. 1897, 24, 123.)

Solubility in H_2O at $25^\circ = 0.5942$, at $20^\circ =$ 0 6756; at 15°=0.7784, at 10°=0.9101; a 5°=1.067. (For formula for "solubility," see under oxygen.) (Geffcken, Z. phys Ch

1904, 49, 278) Solubility of N_2O in $H_2O = 0.592$ at 25° and 758–1362 mm. pressure. (Findle Creighton, Chem. Soc 1910, 97. 538.) (Findley and

100 vols H₂SO₄ (sp. gr. = 1.84) absorb 75.7 vols. N₂O; 100 vols. H₂SO₄+Aq (sp. gr = 1.80) absorb 66.0 vols N2O; 100 vols H2SO4 1.50) absorb 0.00 Vois N₂O; 100 Vois N₂O; +Aq (sp. gr = 1.705) absorb 39.1 vois N₁O; 100 vois H₂SO; +Aq (sp. gr = 1.45) absorb 41 6 vois N₂O; 100 vois H₂SO; +Aq (sp. gr = 1.25) absorb 33.0 vois N₂O.

CaCl₂+Aq, and NaCl+Aq absorb considerable amounts of N₂O. (Lunge, B 14.

2188.)

Absorption by acids-t-Aci

M = content in grain-equivalents per liter S=solubility (see under Oxygen).

Absorption of N₂O by HNO₃+Aq. 8 23° 8 150 0 610 0 7770 0.5969 0 614 0.59800 7766 0 7767 1 253 0.6045 1 254 0 7767 0.60612 405 0 6156 0 7735

0 6149 (Geffcken, Z. phys. Ch 1904, 49, 278)

М	8 25°	S 15°
549	0 5775	0 7550
089 089	0 5759 0 5670	0 7528 0 7360
1 093	0 5657	0 7347
2 300 2 340	0 5546 0 5564	0 7103 0 7122

(Geffeken) Absorption of N₂O by H₂SO₄+Aq

	M	S 25°	S 15°
	0 528 0 526	0 5648 0 5657	0 7328 0 7340
į	1.050 1.054 2.042	0.5426 0.5419 0.5083	0 6997 0 6984 0.6440
	2 047	0 5087 0 4819	0 6428 0 6024
	2.963 3.897 3.978	0 4820 0 4569 0 4577	0 6030 0 5648 0 5640

(Geffeken)

Absorption of N₂O by H₂PO₄+Aq at t°

t	to % of HsPO4					
,,	1	3 38%	4 72%	8 84%	9.89%	13 35%
d	10 15 20	0.8827 0.7388 0.6253	0.8665 0.7258 0.6147	0 9883 0 8296 0.6977 0 5926 0 5143	0 8101 0 6826 0 5810	0 7711 0 6505 0 5555

(Roth, Z. phys. Ch. 1897, 24, 134)

100 vols, conc. FeSO₄+Aq absorb 19 5 vols.

N₂O. Solubility of N₂O in a solution containing at 25°=0.5799; 47.7 g. Fe(OH), per litre at 25°=0.5799; 47.9 g. Fe(OH), per litre at 25°=0.5787. (Geffcken, Z. phys. Ch. 1904, 49, 299.)

8 150

0 6591

0 6595

0 5427

0.5392

м

0 541

0 542

1 074

1 082

LisO.

Na-SO.

SrCl₂

100 vols, KOH+Aq (sp. gr =1.12) absorb 18.7 vols, N₂O; 100 vols, KOH+Aq sat, with pyrogallol absorb 18.1 vols. N₂O, 100 vols. NaOH+Aq (sp. gr. = 1.1) (7% NaOH) absorb 23.1 vols. N₂O; 100 vols. NaOH+Aq sat with pyrogallol absorb 28.0 vols. N₂O.

Absorption of N₂O by KOH+Aq. M = content in gram-equivalents per litre. S=solubility (see under oxygen), 4 1170

0.5087

0.5093

0.4252

0.4221

(Geffeken, Z. phys. Ch. 1904, 49, 278.) Coefficient of solubility of N₂O in salts+Ac at to. Coeff of absorption at of selt G per 100 g Salt mol 102 150 200 adnner l tuet 5 79|0 547|0 819|0 697|0 591|0 500 CaCl. 9 8610 96410 60810 58610 50910 433 13 9911 4160 5100 4410 3800 328 LiCI 1 35 0 319 0.986 0 831 0 700 0 599 3 85|0 928|0 878|0 743|0 629|0 536 11 48|2 883|0 606|0 512|0 437|0.382

8 56|0 836|0 646|0 555|0 477|0 414 MgSO. 5 90[0.521[0.766]0.664[0.561]0.47] 7 66 0 687 0,708 0 586 0 486 0,41 10 78 0 997 0 569 0 491 0 417 0 346 4 900 6760.8790 7510 6430 558 KCl 7 64 1 037 0 799 0 693 0 591 0 49-14 58 2 187 0 654 0 574 0 500 0 430 22 08 3 414 0 544 0 459 0 390 0 330 K-SO4 2 62 0 154 0 986 0 831 0 701 0 603 4 750 2850 9180.7680 6370 519 NaCl 6 20 1 107 0 800 0 682 0 585 0 506

8 88 1 614 0 713 0 603 0 510 0 43 12 78|2 391|0 634|0 532|0,449|0,386

5 76|0 427|0 808|0,677|0 584|0 498 8 53|0,646|0 692|0 574|0,482|0 410 12 440 9740 5590 4860 4170 35

3.310 2150 9280.7880.6710 578 5,73|0,380|0 848|0 709|0,610|0,556 13.240 9390.6440.5470 4630 390

2.370 2190 9340 7920.6700 569

5,460,5210,7950 6650,5570 47-

(Gordon, Z. phys. Ch. 1895, 18. 5.)

Absorption of N.O. by sulta-LAs at 150

1	Absorption of N ₂ O by salts+Aq at 15° M = number of molecules of salt per litre, a = coefficient of absorption.		
1	Salt	M M	α
	KCl	3 554 2 900 1 755 1 051 0 526	0 0892 0 1012 0 1279 0 1489 0 1667
-	KNO ₄	2.430 1.820 1.541 0.879 0.482	0 1180 0.1311 0 1391 0.1559 0 1683
1	K ₂ CO ₈	4.352 2 930 2 156 1 376 0 690 0 341 0 200	0 0160 0 0285 0 0462 0.0761 0.1183 0.1501 0.1628
n	NnCl	4 815 2 801 2 049 0 825	0.0595 0.0925 0.1130 0.1548
058-962-945	NaNO ₂	5 711 3 980 2 656 1 413 0 679	0 0578 0.0810 0 1052 0 1370 0 1603
0	Na ₂ CO ₃	1 218 0 819 0 438 0 207	0 0839 0 1082 0 1385 0 1639
1	Na ₄ SO ₄	1 364 0 638 0 335	0 0775 0 1254 0 1519
1	IvCl	3 734 1 800 0 835	0 0990 0,1370 0 1619
5 1 5 2 9 4	MgSO ₄	2 501 1 631 0 936 0 433	0 0499 0 0797 0 1159 0 1501
6	ZnSO ₄	2 180 1 277 0 899 0 397	0 0605 0 0961 0.1175 0 1525
5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CaCl₂	2 902 2 556 1 827 1.122 0 578 0 321	0 0519 0 0619 0 0839 0 1138 0 1450 0 1619

(Steiner, Z. phys. Ch. 1895, 18 14-5.)

Coefficient of absorption of N2O by NaCl+ Ag at to.

to.		Per cent	of NaCl	
t-	0 990	1 808	3 886	5 865
5 10 15 20 25	1 0609 0 8812 0 7339 0 6191 0 5363	1 0032 0 8383 0 7026 0 5962 0 5190	0 9131 0 7699 0.6495 0 5520 0 4775	0.8428 0.7090 0.5976 0.5088 0 4424

(Roth, Z. phys. Ch. 1897, 24, 139.)

Absorption of N2O by salts+Aq at 20°. C = concentration of the solution in terms of normal

a = coefficient of absorption.

5 389

10 577

Absorption of N₂O by KNO₂+A₂ at 20°. n 0 6270 1 063 0 1061 0 6173 0 2764 2 720 0.6002 0.5630

1 1683 Absorption of N₂O by NaNO₂+Ag at 20°.

0.5713

0 5196

P	С	α
0 1 124 2 531 5 077	0 1336 0 3052 0 6286	0 6270 0 6089 0 5876 0 5465

(Knopp, Z. phys. Ch. 1904, 48, 107,)

Absorption of N₂O by salts+Aq. M = content in gram-equivalents per litre. S=solubility.

Sult	м	S 25°	8 15°	
NH ₄ Cl	0 598	0 5532	0 7203	
	0 600	0 5504	0.7185	
	1 158	0 5223	0.6800	
	1 166	0 5200	0 6775	
KI	0.550	0 5367	0.6950	
	0.557	0 5344	0 6916	
	0.886	0 5025	0 6466	
	0.913	0 5012	0 6442	
	0.514	0 5428	0 7074	
	0.545	0 5406	0.7036	
LiCl	0 558	0.5276	0.6884	
	0 561	0.5278	0.6877	
	1 057	0.4760	0.6163	
	1.059	0.4773	0.6146	

Absorption of N₂O by salts+Aq.—

	Continued,			
Salt	Salt M		S 15°	
KBr	0 546	0 5306	0 6877	
	0 550	0 5318	0 6892	
	0 937	0 4908	0 6352	
	0 959	0 4899	0 6334	
RbCl	0 439	0 5399	0 7050	
	0 444	0 5386	0 7053	
	0 977	0 4873	0 6306	
	0 993	0 4846	0 6276	
	0 558	0 5218	0 6782	
	0 559	0 5217	0 6787	
	1 070	0 4673	0 6046	
	1 102	0 4639	0 6020	

(Geffcken, Z. phys. Ch 1904, 49, 278.)

Solubility of N₂O m a solution containing 39.6 g. As₂S₂ per litre at 25°=0 5819; 42.4 g As₂S₂ per litre at 25°=0.5833. (Geffcken.)

1 vol. alcohol at to and 760 mm, absorbs V vols. N_{*}O gas reduced to 0° and 760 mm.

	to Secretarion		
t°	v	t°	v
0 1 2 3 4 5 6 7 8 9 10 11 12	4 1780 4 1088 4 0409 3 9741 3.9085 3 8442 3 7811 3.7192 3 6585 3 5990 3 5408 3 4838 3 4279	13 14 15 16 17 18 19 20 21 22 23 24	3 3734 3.3200 3 2678 3 2169 3 1672 3 1187 3 0714 3 0253 2 9305 2 9368 2 8944 2 8532

(Bunsen's Gasometry.)

Coefficient of absorption = 4.17805-0.0698160t+0.0006090t2. (Carius.)

At 18° and 780 mm, 100 vote E30 absorb 79 vots
N50,100 vots alsohol of 0.848 ag ar absorb 150 vots.
N50,100 vots alsohol of 0.848 ag ar absorb 150 vots.
Vots, 100 vots oll of lavendur of 0.8938 ag ar absorb
25° vots, 100 vots oll of 121° son gr absorb 150
vots, 100 vots oll vot oll of 0.928, TCI) of 121° ag
absorb 20 vots (de Saussure, 1814)
1 vol oil of tarpentum eshorbs 25°-27 vots N30. (de Saussure)

Absorption of N_{*}O by glycerine+Aa at t°.

to.	% by weight of glycerine			ie
'	3 460%	6 728%	12 123%	16 244%
25 20 15 10 5	0 5558 0 6468 0.7672 0 9172 1.0967	0 5415 0.6303 0.7454 0 8871 1 0552	0.5268 0 6050 0 7098 0 8411 0 9990	0.5083 0 5851 0 6857 0 8102 0 9586

(Roth, Z. phys. Ch. 1897, 24, 128.)

Absorption of N₂O by oxalic acid+Aq at to. Absorption of N_{*}O by urea+Au at t°

to.	e, by weight of urea				
	3 312°,	19714	ti 3661 ,	7.296°,	9.966.5
	0 5686 0 6533				
10	0 7708 0 9209 1 1040	0 9201	0.9086	0 9208	0 7614 0 9007 1 0685

(Roth, Z. phys. Ch. 1897, 24, 124.)

Absorption of N.O by sugar+An at 15°.

0 0892 0 1284 0 1561

(Steiner, Z, phys. Ch. 1895, 18, 15.)

Absorption of N₂O by organic substances+ Aq.

C=concentration of the solution in terms of normal

a = coefficient of absorption Absorption of N₂O by chloral hydrate+Aq at 20°

P	С	α
0 2 947 6 848 13 48 16 15	0 184 0 145 0 942 1 165	0 6270 0 6182 0 6128 0 5960 0 5891

1 911 (Knopp, Z phys. Ch 1904, 48, 106)

24 - 02

0 5675

Absorption of N2O by propiome acid+Aq at

P	С	α
0 1 492 5 702 13,680 15,011 25 589	0 2045 0 816 2 140 2 385 4 645	0.6270 0 6323 0 6369 0.6504 0 6534 0.7219

(Knopp, Z. phys. Ch. 1904, 48, 107.)

ţ°.	Coeff of abs in H ₂ C ₂ O ₄ +Aq of given	
	8 122°°	3 699%
25	0 5786	0 5643
20 15	0 6694	0 6538 0 7745
10	0 9526 1 1450	0 9264 1 1094

(Roth, Z. phys Ch. 1897, 24, 130.)

Coefficient of absorption for petroleum = 2.11 at 20°, 2.49 at 10°.
Walfisz, Z. phys. Ch 1. 70) (Gniewasz and

The solubility of N2O in various colloidal solutions has been determined by Findlay and Creighton (Chem. Soc 1910, 97, 538), for which see original article.

Nitrogen doxide, NO.

1 vol. H₂O absorbs 0.1 vol. NO gas at ordinary temp (Days), 1 vol. absorbs 0.05 vol. (Henry), 1 vol. absorbs 1/27 vol. (Dalton.)

Absorption of NO by H₂O at 760 mm.

 $\beta = \text{Coefficient of absorption}$, B'="Solubility"

, [
1	t°	β	β'	to	β	β′
1	0 5	0 07381		55 60	0 03040 2954	
-	10 15	5709 5147	5640	65	2877 2810	2169 1947
-	20 25	4706 4323	4599	75 80	2751 2700	1706
	30 35	4004 3734	3838	85 90	2665 2648	0817
	40 45	3507 3311	3000	95 100	2638 2628	0439 0000
	50	3152	2771			

(Winkler, B 1901, 34, 1414)

205 69 ec H₂O absorb 9.6798 cc. NO at 20° and 760 mm. (Hufner, Z. phys Ch 1907, 59. 420)

Sol. in cone HNO₄+Aq.

100 vols, HNO₃+Aq of 1.3 sp. gr. agitated with NO gas take up 20 vols. NO. If acid is twice as strong or one-half as strong, the quantity NO is proportional to the amount of HNO₂. Very dil HNO₂+Aq absorbs scarcely more NO than pure H₂O. (Dalton.)

100 pts HNO₂+Aq of 14 sp, gr absorb 90 pts, NO (Dalton), sol in Br₂, and very sl sol in cone H₂SO₄ (Berthelot)

1 ccm, cone, H2SO4 of 1.84 sp. gr. absorbs 0.035 ccm NO; of 150 sp gr., 0 017 ccm. NO (Lunge, B. 18. 1391.) Absorption of NO by H2SO4+Aq at 18° and Absorption of NO by FeSO4+Aq at to .-

a = Coefficient of solubility

H ₂ SO ₄	a	H ₂ SO ₄	α
98%	not constant	70%	0 0113
90%	0.0193	60%	0 0118
80%	0.0117	50%	0 0120

(Tower, Z. anorg 1906, 50, 387.)

Very sol, in aqueous solutions of ferrous salts, especially the sulphate (Priestley.) 1 vol. FeSO4+Aq of 1.081 sp. gr., containing 1 grain FeSO₄ to 6 grains H₂O, absorbs 6 vols. NO (Dalton.)

Absorption by ferrous salts+Aq is propoitional to the amount of Fe present, prespective of the acid or concentration of the solution. Between 0° and 10°, about 2 mols. NO are absorbed for each atom of Fe; between 10° and 15°, 1 mol. NO for 2 atoms of Fe; and at 25°, only 1 mol. NO for 2½ to 3 atoms of Fe. The amount of NO absorbed also varies with the pressure. The sp. gr. of the ferrous salt solution is greater after the absorption of NO than before. The solutions are decomp. by heat, and at 100° all NO is given off. (Gay, A. ch. (6) 5. 145)

Absorption of NO by FeSO4+Aq at 25°.

A=vol H₂O (in litres) containing 1 mol. FeSO4.

V = vol. NO (in litres) absorbed.

A	v	A	v
1.2	1 47	7.2	5 52
1.8	2 01	12.0	6 46
2 4	2 55	18.6	8.01
4 82	4 40	36 0	10 40

(Kohlschütter, B. 1907, 40. 877.)

Absorption of NO by FeSO4+Aq at to.

205.69 cc. FeSO4+Aq contain 0.0221 g. Fe Coefficient of absorption = 0.06067 at 20 09°

t _o	Pressure mm	NO absorbed cem
20 1 20 1 20 1 20 1 20 2 20 05 20 0	704 9 683 5 668.6 651 9 632 9 613 7	14 42 14 10 13 80 13 58 13 15 12 98

Continued. 205 69 cc. of FeSO4+Aq contain 0.0296 g.

Coefficient of absorption = 0.06505.

t°	Pressure mm	NO absorbed com
20.05	677 5	14.30
20 05	655 3	14.07
20 04	639 1	13.81
20 00	620 2	13.39
20 15	600 5	13.20
20 14	581 2	12.92

205 69 cc of FeSO4+Ac contain 0.0409 g. Fe.

Coefficient of absorption = 0.06684

t°	Pressure mm	NO absorbed com.
20.04 20.02 20.00 20.00 20.00 20.10	667 6 650 6 613 1 594 6 577.1	16 79 16 65 15 71 15 41 15 32

205.69 cc. of FeSO4+Aq contain 0.0513 g.

Coefficient of absorption = 0.07981.

t°	Pressure mm.	NO absorbed cem
20 10	644.8	18 82
20 10	623.8	18 47
20 08	606.4	18 02
20 10	589.7	17 56
20 10	571.1	17 19
20 10	553.1	16,95

205.69 cc. of FeSO4+Aq contain 0.0663 g. Fe.

Coefficient of absorption = 0 08059.

t°	Pressure mm	NO absorbed cem.
20 10 20 10 20 10 20 10 20 08 20 04 20 00	697 3 678 9 680 4 638 2 620.7 602 5	21.91 21.60 21.18 20.71 20.28 19.87

205 69 cc of FeSO₄+Aq contain 0.099 g. Fe.

П	Coefficient of absorption = 0.11061.			
	t°	Pressure mm	NO absorbed com.	
	20 10 20.15 20 20 20 00 19 85 19 85	649 9 631 1 618 4 603 3 588.6 574.2	34.26 33.82 33.26 32.76 32.34 31.95	
ı	(Histor Z	nhwe Ch 100	7 59 419)	

Absorption of NO by NiSO₄+Aq at to. 205.09 ec. NiSO, + Ag contain 0 0506 g Ni Coefficient of absorption = 0 08311.

t°	Pressure mm	NO absorbed cen
20 2 20 2 20 2 20 2 20 15 20 14	651 7 629 8 609 5 591 7 573 4	23 00 22 54 22 03 21 65 21 18

(Hüfner L.c.)

Absorption of NO by CoSO4+Aq at to. 205.69 cc. CoSO₄+Aq contain 0.0598 g. Co. Coefficient of absorption = 0.09146.

20 15 678.3 23 47 20 16 653.5 23 01 20 20 636.6 22 55 20 30 615 0 21 90	t ^o	Presure mm.	cem
	20 16	653.5	23 01
	20 20	636.6	22 55

(Hufner, I, c.)

Absorption of NO by MnCl, 4H-O+Ac at to. 205 69 cc MnClo.4H.O +An contain 0.0697 g. Mn.

Coefficient of absorption = 0.06111.

t°	Pressure mm	NO absorbed cem
20 0 20 05	711.96 686.5	14 25 13 99
20 2	657 4	13 49
20 3	638 9	13 05

(Hufner, l, c)

Coefficient of absorption for FeSO4+Aq of concentration used by Hufner (Z. phys Ch. 1907, 59, 417) = 0.180 at 20°. Hufner's results are incorrect because he assumed that the absorption-coefficient of NO always had the same value, whereas it does not NO is reduced by FeSO₄+Aq. (Usher, Z. phys Ch. 1908, **62**. 624.)

Coefficient of absorption for CoSO₄+Aa sat. at 20° = 0.0288, (Usher, Z. phys. Ch

1908, 62, 624,) Coefficient of absorption for NiSO4+Aq of the concentration used by Hufner (cf. Z. phys. Ch. 1907, 59, 422) = 0.048 at 20°. Coefficient of absorption for NiSO.+Ao

sat. at 20°=0.0245. (Usher, l. c) Coefficient of absorption for MnCl2+Aq.

sat. at 20°=0.0082. (Usher, Z. phys. Ch. 1908, 62, 624.)

Absorption of NO by FeCl₂+Aa at 22°. A = vol. H.O (in litres) containing 1 mol. FeCl.

V = vol. N() (in litres) absorbed.

Α	V
2 5	3 30
5.18	4 83
10 35	6 56
20 7	8 32
51.8	11.89

(Kohlschütter, B. 1907, 40, 878.)

Absorption by HCl+FeCl₂+Aq. 10.37 l. 30% HCl containing 1 mol. FeCl₂ in solution absorb 15.64 l. NO. 10.37 l, 10% HCl containing 1 mol. FeCl2 in solution absorb 6.17 l. NO.

(Kohlschütter, I. c.)

Absorption by salts+FeCls+Aa. 10.37 l. sat. NaCl+Aq containing 1 mol. FeCl₂ in solution absorb 6.549 l. NO. 10.37 l, sat. NII4Cl+Aq containing I mol. FeCl, in solution absorb 6.549 l. NO.

(Kohlschütter, L.c.) Solubility of NO in Fe(NO₂)₂+Aa at 23°. A = vol, H.O (in htres) containing 1 mol. Fe(NO₃)

V = vol NO (in litres) absorbed.

A	V
3 25	2 77
6 50	4 16
13 00	5.54
26 00	6.61

(Kohlschütter, l, c.)

Absorption of NO by CuCl₂+Aq A = vol. H.O (in litres) containing 1 mol CuCl₂.

V = vol. NO (in litres) absorbed.

A	v
0 231	0 120
0 277	0 098
0 371	0 052

(Kohlschutter, l, c,)

Absorption of NO by CuCl2+cone, HCl A = vol. cone HCl (in litres) containing 1 mol. CuCl-

V = vol. NO (in litres) absorbed,

A	v	A	v
0 389 0 410 0 840 1.230 2 462	0 801 0 933 2 838 3 426 3 989	7 499 12 500 18 750 28 650	3.931 3.606 3.153 1 976

(Kohlschütter, I. c.)

Absorption of NO by CuCl2+acetic acid.
A = vol. acetic acid (in litres) containing
mol. CuCl ₂ V=vol. NO (in litres) absorbed,
V = Vol. 110 till hetes) absorbed:

252 51 77 504 39 67 1269 81 60	

(Kohlschütter, l. c.)

Absorption of NO by CuCl2+98% formic acid.

A=vol 98% formic acid (in lities) containing 1 mol. CuCl₂. V = vol. NO (in litres) absorbed.

A	v
27 9	12 76
56 0	13 17
140.0	14 34
280 0	18 68
1400 0	27 29

(Kohlschutter, l, c,)

Absorption of NO by CuCl.+acetone A=vol. acetone (in litres) containing 1

mol. CuCl₂. V=vol, NO (in litres) absorbed.

A	v	A	v
4.667	14 04	291 60	40 99
29 16	24 01	583 20	67 22
58 33	24 60	1166 40	81 96

(Kohlschutter, l c.)

Absorption of NO by CuCl++methyl alcohol A = vol. methyl alcohol (in litres) contain-

ing 1 mol. CuCl₂.
V=vol NO (in litres) absorbed

A	v	A	v
1 60	3 30	20.50	6 15
8 22	5 60	82 25	4 90

(Kohlschütter, l. c.)

Absorption of NO by CuCl++ethyl alcohol. A=vol. ethyl alcohol (in litres) containing 1 mol. CuCl₂.

V=vol. NO (in litres) absorbed.

. А		Α	, v
1.50 3 84 12 80	8.70 12 38 15 43	38.41 76.83 192.10	18 15 18.05 15.92
	(FF 13 1		

(Kohlschütter, l c.)

Absorption of NO by CuBr₂+Aq. A=vol. H2O (in litres) containing 1 mol. CuBr.

V
0 515 0 120 0 000

(Kohlschütter, l. c.)

Absorption of NO by CuBr₂+ethyl alcohol. A = vol. alcohol (in litres) containing 1 mol.

CuBr_{*}. V = vol. NO (in litres) absorbed

A.	v	A	v
2 625 5.25 13 12 43 74	16 02 19 26 20 51 21.13	131 20 262 50 656 10	22 23 23.46 30 46

(Kohlschutter, l. c.)

Sol, in stannous and chromous salts+Aq. (Peligot.)

Not absorbed by Fe₂(SO₄)₃+Aq. (Dalton.) 1 vol. absolute alcohol absorbs 0.31606-0 003487t+0.000049t2 vols. NO between 0°

and 25°. (Bunsen.) 1 vol. alcohol at to and 760 mm, absorbs V and to 0° and 760 mm

to.	l v	to.	v
0	0.31606	13	0 27901
1	0.31262	14	0.27685
2 3	0 30928	15	0 27478
3	0.30604	16	0 27281
4 5	0.30290	17	0.27094
5	0 29985	18	0 26917
6	0.29690	19	0.26750
7	0 29405	20	0.26592
8	0 29130	21	0.26444
9	0 28865	22	0 26306
10	0.28609	23	0.26178
11	0 28363	24	0.26060
12	0 28127		

(Bunsen's Gasometry.)

Abundantly absorbed by CS2. (Friedburg, C N 48. 97.

Nitrogen trioxide, N.O.

Sol, in H₂O at 0°. If large amt. of H₂O is present, the solution is quite stable at ordinary temp. (Fremy, C. R. 79, 61.)
Sol. in HNO₁+A_G.
Sol. in cone. H₂SO₄ to form HNOSO₄.

Sol in ether.

Nitrogen //joxide stannic chloride, NoO2

SnCl. Decomp by HaO (Weber, Pogg 118, 471)

Nitrogen tetroxide, NO2 or N2O4

Sol, in H_iO at 0° with decomp. Miscible with very cone, ILNO2 by CS₅, CHCl₅, and (... C N 47, 52) 11.

Sol. m C.H.NO.

Sl. sol, in H2S+Aa. Sol in H.SO, or cone HNO+Aq. H₂PO₄ absorbs some liquid NO₂. (Frankland, Chem. Soc 1901, 79, 1362.)

Nitrogen pentoxide, N2Oa

Very deliquescent Combines with H₂O to form HNO, with evolution of heat

Nitrogen heaoxide, NO2

Decomposes upon air or with H.O. (Hautefeuille and Chappins, C. R. 92, 80, 134; 94. 1111, 1306)

Nitrogen oxybromide.

See Nitrosyl and Nitroxyl bromide.

Nitrogen oxychloride. See Nitrosyl and Nitroxyl chloride.

Nitrogen oxyfluoride. See Nitrosyl fluoride and Nitroxyl fluoride.

Nitrogen phosphochloride, PaNaCla

See Nitrogen chlorophosphide.

Nitrogen selenide, NSe-Very explosive. Insol. in H₂O

HNO₃+Aq, and NaClO+Aq. (Espenschied, A, 113, 101,) Insol. in H2O, ether, absolute alcohol, very

sl. sol, in CS₂, C₆H₆, and glacial acetic acid. Decomp by HCl or KOII+Aq. (Verneul, Bull. Soc (2) 38. 548

Natrogen sulphide, N.S.

Insol m H₂O Decomp, by hot H₂O SI sol. in alcohol, ether, wood alcohol, oil of turpentine Easily sol in CS₂. Slowly de-

comp by HCl+Aq or KOH+Aq, rapidly by HCl₂+Aq. 15 g dvssolve in 1 kilo of CS₂ (Fordos and Gelis, C R. 31, 702)

Sol in CHCl₃. (Demarçay, C R. 91, 854) Sol, in warm glacial acetic acid with de-

37. 1591.)

Nitrogen ventasulphide, N.S.

Sol. in ether and most organic solvents. insol. in H₂O; fairly stable in ethereal solution, but decomp. by light. (Muthmann, Z. anorg 1897, 13, 206.)

Nitrogen sulphobromide, N.S.Br. Decomp, by boiling H-O and by dil, alkalies, also by boiling with alcohol. (Muthmann, B. 1897, 30, 630.)

N.S.Br., Decomp. by moist air. (Clever, B. 1896, 29, 340-341.)

 $N_4S_4Br_0$ Decomp by moist air. Very unstable (Clever)

N.S.Bra Insol. most solvents; unstable. (Clever.)

Nitrogen sulphochloride, N4S4Cl4.

Unstable on air. Sol. in warm CHClcrystallizes out on cooling (Demarçay, C R, 91, 854, 1066) Demarcay calls this comp. thiazvl chloride.

Sol. in hot dry benzene, and in CCL: decomp by most air (Andreocci, Z. anorg, 1897, 14. 249.)

N.S.Cl₂ Partly sol. in H₂O. (Demarçay, C. R. 92, 728.) Demarcay calls this compound dithiotetra-

thiazvl dichloride. N.S.Cl2=N2S2 SCl2. Decomp. on air. (Fordos and Gélis.)

Demarcay (C. R. 92, 726) calls this comp. throdithrazyl dichloride N₂S₄Cl₂, Sol, in H₂O with subsequent, de-

comp More sol. than S in CS2 (Soubeiran, A ch 67, 71)

A ch 67.71)
Is a mixture of S₂Cl₂ and N₂S₄ (Fordos and Gelts, C. R. 31.702.)
N₂S₂Cl S sol. in warm, insol. in cold CHCl₃ (Demarçay, C. R. 92.726.)
"Thiobrary chloride," (Demarçay,)
N₂S₂Cl Sol in H₂O, Insol. in most solvents, Si sol in CHCl₃, Easily sol. in

thionyl chloride (Demarçay, C. R. 91, 854, 1066

Demarcay calls the compound thio tra-thazyl chloride = (NS)₃ = S-Cl. N₂S₁Cl₂ = 2N₂S₂, SCl₂ Decomp on air. (Michaelis.)

NoS2Cl2=3N2S2, SCl2 Not decomp, on Decomp, by H2O containing ammonia.

Nitrogen sulphoiodide, NaSaI. Readily decomp, by H2O, (Muthmann and Seitter, B 1897, 30. 627.)

Nitrohydroxylaminic acid, H2N2O2. Known only in solution. (Angeli, Gazz, ch. tt. 1897, 27 (2) 357.)

Barium nitrohydroxylaminate, $BaN_2O_3+H_4O_4$ Ppt. More stable in the air than the comp. on boiling. (Ruff and Geisel, B 1904. sodium salt. Not decomp by prolonged boiling with H₂O. (Angeli, Gazz. ch. it.

> Cadmium nstrohydroxylaminate, CdN2O3+ $H_{2}O$

1896, 26, 17-25)

As Ba salt. (Angelico and Fanara, Gazz. ch. it 1901, 31, (2) 21.)

1/6H-O. (Angeli, Gazz. ch. it. 1900, 30. (1) 593)

Calcium nitrohydroxylaminate, CaN2O3+

31/4H.O. (Angelico and Fanata, Gazz. ch. it 1901, 31. (2) 15.)

Lead nitrohydroxylaminate, PbN2O3. (Angeli, Gazz. ch it 1900, 30. (1) 593)

Potassium nitrohydroxylaminate, K2N2O2. Like Na salt More hygroscopic. (Angeli, Gazz, ch it. 1897, 27. (2) 357) Sol, in H2O. (Angeli, Gazz, ch. it. 1900, 30, (1) 593.)

Silver nitrohydroxylaminate, Ag, NoOs. Ppt. (Angeli, C C. 1901, I 1192.)

Sodium nutrohydroxylaminate, Na₂N₂O₃. Very sol in H2O. Pptd. by alcohol Aqueous solution is readily decomp. by boilmg. (Angeli, Gazz. ch. it. 1896, 26. (2) 17.)

Strontium nitrohydroxylaminate, SrN2O2+ H₀O.

(Angeli, Gazz. ch. it. 1900, 30. (1) 593.) +11/2H2O (Angelico and Fanara, Gazz ch. it. 1901, 31. (2) 15)

Nitroiodic acid, I2O4(NO)2 See Nitrosoiodic acid.

Nitronitrous acid.

Platinum potassium nitronitrite, K,Pt(NO.) Decomp by heat, (Miolati, C. C. 1896, II.

Nitroplatinous acid. See Platonitrous acid.

Nitroprussic acid, H2FeC6N6O+H2O= $H_0Fe(CN)_sNO + H_0O$.

Deliquescent. Easily sol. in H2O, alcohol, or ether. (Playfair, A. 74, 317.)

Nitroprussides.

The alkali and alkali-earth nitroprussides are sol, in H₂O, and the solutions are not pptd, by alcohol. The others are mostly insol. in HO.

Ammonium nitroprusside. $(NH_1)_2Fe(CN)_4(NO)$.

Deliquescent. Very sol. in H₂O: not pptdtherefrom by alcohol. (Playfair)

Calcium nitrohydroxylaminate, CaN₂O₃+ Barium nitroprusside, BaFe(CN)₄NO+ 4H₄O

Very sol. m H₂O $+6H_{*}O.$

Cadmium nitroprusside, CdFc(CN)sNO. Insol. in H₂O Sol. in HCl+Aq Insol. in

dil. or conc. HNO₃+Aq even when boiling. Not attacked by NH₄OH or KOH+Aq. (Norton, Am. Ch. J. 10. 222.)

Calcium nitroprusside, CaFe(CN),NO+ 4H20.

Very sol. in H₂O (Playfair.)

Cobalt nitroprusside, CoFe(CN),NO. Ppt (Norton, Am. Ch. J. 10. 222.) $+4H_{2}O$

Copper nitroprusside, CuFe(CN)₈NO+2H₂O. Insol in H₂O or alcohol.

Ferrous nitroprusside, FeFe(CN),NO+ zH₂O(?) Insol. in H_{*}O

Mercurous natroprusside, Hg2Fe(CN)4NO. Insol. in H2O. Unstable. (Norton, Am. Ch J 10. 222.)

Nickel nitroprusside, NiFe(CN)4NO. As the Co salt (Norton.)

Potassium nitroprusside, K2Fe/CN)5NO+ 2H₂O. Sl. deliquescent. Sol. in 1 pt. H₂O at 16°. K₂Fe(CN)₂NO, 2KOH. Very sol in H₂O.

Silver nitroprusside, Ag₂Fe(CN)₈NO. Insol, in H₂O, alcohol, or HNO₂+Aq. Sol.

in NH,OH+Aq. Sodium nitroprusside, Na₂Fe(CN)₅NO+

Sol, in 236 pts. H2O at 16°, and in less hot H.O.

Zinc nitroprusside, ZnFe(CN),NO. Very sl. sol, in cold, more in hot H2O.

Nitrosisulphonic acid.

Cupric nitrosisulphonate, NO Cu. Decomp. by H₂O. (Raschig, B. 1907, 40. 4583.)

Nitrosobromoruthenic acid.

Silver nitrosobromoruthenate ammonia, Ag₂Ru(NO)Br₆, NH₅

Decomp. by H₂O. Sl. sol. in NH₂OH+ Aq. Very sol. in Na₂S₂O₁+Aq. (Brizard, Bull. Soc. 1895, (3) 13. 1098.)

Nitrosobromosmic acid.

Potassium nitrosobromosmate, K2Os(NO)Brs

Stable in aqueous solution (Wintrebert, A ch. 1903, (7) 28, 132.)

Nitrosochloroplatinic acid.

Potassium nitrosochloroplatinate, K₂PtCl₈(NO). Sol. in H₂O. (Vèzes, C. R. 110, 757.)

Nitrosochlororuthenic scid.

Midosocmoror unieme acio.

Cæsjum nitrosochlororuthenate,

Potassium nitrosochlororuthenate,

K₂Ru: NO)Cl₅, Sol in H₂O (Joly.) 12 pts are sol. m 100 pts. H₂O at 25°. SO " " " " " " " " 60° (Howe)

Rubidium mtrosochlororuthenate, Rh-Ru(NO)Cls.

Sol, in boiling H₂O without decomp 0 57 pt, is sol, in 100 pts. H₂O at 25°, 2.13 " " " " " " " " " " 60° (Howe)

Silver nitrosochlororuthenate ammonia, Ag₂Ru(NO)Cl₅, NH₅.

Decomp. by H₂O. Sl. sol. in NH₄OH+Aq. Very sol. in Na₂S₂O₄+Aq (Brizard, Bull Soc. 1895, (3) 13, 1092.)

Nitrosoiodic acid, I2O4(NO)2 (?)

Decomp. with H₂O, alcohol, ether, or acetic ether. Slowly sol in H₂SO₄ (Kammerer, J pr. 83, 65

Nitrososulphonic acid.

Potassium dinitrososulphonate, N₂O.OK SO₃K.

Sol, in H₂O. Very unstable. (Hantzsch, B. 1894, **27**, 3268.)

Potassium nitrosodisulphonate, ON(SO₃K)₂. Sol. in H₂O. Very explosive. (Hantzsch, B, 1895, 28, 996 and 2744.) Potassium nitrosotrisulphonate, ON(SO₃K)₃ +H₂O

Sol. in H₂O. (Hantzsch, B, 1895, 28, 2750.) Sodium nitrosotrisulphonate, NO₂(SO₄)₅Na.

Decomp. by II₂O. (Traube, B. 1913, 46. 2521)

Nitrososulphuric acid, H₂N₂SO₅=H₂SO₅(NO)₂. Not known in free state.

Ammonium dinitrososulphate, (NH₄)₂(NO)₂SO₃,

Sol. in H₂O. Insol. in hot alcohol. (Pelouze, A. 15, 240.)

Barium ——, Ba/NO)«SO».

Sol. m H₂O. (Divers and Haga, Chem. Soc. 47. 364.)

Barium potassium —, BaK₂(SN₂O₄)₂.

Sol. in much H₂O to form a clear liquid, but the solution gradually deposits BaSO₄. (Hantzsch, B. 1891, 27. 3271.)

Cupric natrosod:sulphate, Cu(NO)(SO₅)₂ (Sabatier, Bull. Soc. 1897, (3) 17. 787.)

Lead dinitrososulphate.

Insol. in H₂O. (Divers and Haga, Chem. Soc. 47, 364.)

Potassium ----, K₂(NO)₂SO₂,

Decomp. by H₄O at ordinary temp. Insol. m alcohol. (Pelouze, A. ch. **60**. 160.) Sol, m about 8 pts. H₂O at 14.5°. Less sol. m presence of KOH. (Divers and Haga, Chem. Soc. 1895, **67**. 455.)

Sodium ---, Na2(NO)2SO3.

More sol. than K salt. (Pelouze.) Sl. sol. in H₂O; very unstable moist or dry; decomp. by H₂O. (Divers, C N. 1895, **72**.

Nitrososulphurous acid.

Ruthenum sodium nitrososulphite, O[Ru(SO₃)₂(NO)Nn₂]+2H₂O.

Sl. sul m cold H₂O. (Miolati, Gazz. ch. it. 1900, **30**. 511.)

Nitrosulphide of iron.

See Ferroletranitrososulphonic acid,

Binitrosulphide of iron.

Roussin's comp. is ammonium ferroheptanitrososulphonate, which see. (Lead chamber crystals.) Rapidly sol. m H₂O with decomp. When brought into large amount of H₂O, no gas is evolved. (Fremy, C. R. 70. 61.) Sol. in H₂SO, without decomp. Sol. in cold H₂SO, +Aq of sp. gr. 17-1.55. (Weber. J.

pr. 100. 37.)
SI, sol. in H₂SO₄+Aq of 1 6 sp. gr (Dana.)
More difficultly sol. in dil. than cone
H₂SO₄+Aq. (Müller.)

Potassium nitrosulphonate, KOSO₂NO₂(?).

Decomp. by H₂O. (Schultz-Sellack, B 4, 113.)

Nitrosulphonic anhydride (?), N₂O₃, 2SO₃ =S₂O₅(NO₂)₂.

Rapidly sol. in H₂O with decomp. Abundantly sol. in cold H₂SO₂. (Rose, Pogg. 47. 605.)
Insol. in cold, slowly sol in warm H₂SO₂. (Prevostave, A. ch. 73, 362.)

Nitrosulphonic chloride, NO₄SCl=

NO₂SO₂Cl (?). Decomp by H₂O. Sol. in fuming H₂SO₄ without decomp. Decomp. by conc. H₂SO₄. (Weber, Pogg. 123. 333.)

Dinitrosulphuric acid.

See Dinitrososulphuric acid.

Nitrosvl bromide, NOBr.

Decomp. with cold H₂O. (Landolt, A. 116.

Nitrosyl tribromide, NOBr₅.
Decomp. by H₂O or cold alcohol.
Miscible with ether. (Landolt, A. 116. 177.)
Mixture of NOBr and Br₂. (Frohlich, A. 224. 270.)

Nitrosyl platinic bromide, 2NOBr, PtBr₄. Deliquescent. Decomp by H₂O. (Topsoe, J. B. 1868, 274.)

Nitrosyl chloride, NOCl.

Decomp. by H₂O. Absorbed by fuming H₂SO₄ without decomp

Nitrosyl boron chloride, NOCl, BCl₃. See Boron nitrosyl chloride.

Nitrosyl platinic chloride, 2NOCl, PtCl₄ Very deliquescent, and sol. in H₂O with evolution of NO. (Rogers and Boye, Phil. Mag. J. 17, 397.)

Nitrosyl thallum chloride, 2NOCl, TiCl,
TiCla
Very deliquescent, and sol, in H₂O with

Very deliquescent, and sol. in H₂O with decomp. (Sudborough, Chem Soc. 59. 657.)

Nitrosyl stannic chloride, 2NOCl, SnCl₄.

Decomp. by H₂O, chloroform, or benzene, not by carbon disulphide. (Jorgensen.)

Nitrosyl titanium chloride, 2NOCl, TiCl₄. Decomp. by H₂O. (Weber, Pogg 118, 476.)

Nitrosyl zinc chloride, NOCl, ZnCl₂. Very deliquescent, and sol. in H₂O with evolution of NO (Sudborough, Chem. Soc. 59, 656.)

Nitrosyl chloride sulphur troxide, NOCl, SO₃.

Decomp. by H₂O Sol. in conc. H₂SO₄ with
evolution of HCl. (Weber, Pogg. 123, 233)

Nitrosvl fluoride, NOF.

Sol in H₂O. Solution decomp on standing with formation of NO and HNO₃. (Ruff and Stauber, Z. anorg. 1905, **47**, 190.)

Nitrosyl sulphate, acid, H(NO)SO₄. See Nitrosulphonic acid.

Nitrosyl sulphate, anhydro, (NO)₂S₂O₇. See Nitrosulphonic anhydride.

Nitrosyl selenic acid, ScO₂(ONO)₃.

Decomp. by H₂O. (Lenher and Mathews, J Am. Chem. Soc. 1906, 28, 516.)

Nitrosyl sulphuric acid, H(NO)SO₄ See Nitrosulphonic acid.

Nitrous acid, HNO2

Known only in aqueous solution. See Nitrogen trioxide.

Nitrites.

Normal nitrites, except AgNO₂, are sol. in $\rm H_2O$ and alcohol; but, as a rule, they are less sol. than the corresponding nitrates.

Ammonium nitrite, NH4NO2.

Very deliquescent, and sol. m H₂O. H₂O solution decomp. at 50°. (Perzelius.) Very dil solution can be evaporated on water bath without decomp. (Bohlig, A. 128, 52). Solution contaming '1,95,650 pt. NH.NO₂ can be evaporated to ½ is at vol. without decomp. Solution containing '10° pt. gives a distillate containing 82% of NH,NO₃, while residue containing 82% of original quantity, 9.4% being lost. (Schoyan)

Very deliquescent, sol. in H₂O; slowly but easily sol. in alcohol, insol. in ether. (Sörensen, Z. anorg 1894, 7, 38.) Ammonium barium cupric nitrite, (NH₄)₂BaCu(NO₂)₆,

Ppt; decomp reachly, (Przibylla, Z. anorg, 1897, 15, 421.)

Ammonium bismuth silver nitrite, (NII₄)₂BiAg(NO₂)₆

Moderately sol in H₂O. Rapidly hydrolyzed by H₂O. (Ball and Abram, Chem. Soc. 1913, 103, 2120.)

Ammonium bismuth sodium nitrite, 2NH₄NO₂, Bi(NO₂)₂, NaNO₂.

2NH₄NO₂, Bi(NO₂)₃, NaNO₂. Easily decomp (Ball, Chem. Soc. 1905, 87, 761.)

Ammonium cadmium nitrite ammonia, basic, 2NH₄NO₂, Cd(NO₂)₂, Cd(OH)₂, 2NH₂ Decomp. by H₂O (Morm, C R. 100. 1497.)

Ammonium calcium cupric nitrite, (NH₄)₂C'aCu|NO₂)₆

Ppt.; decomp. easily. Sol. in H₂O. Sl. sol. in alcohol. (Przibylla, Z. anorg 1897, 15, 423.)

423.)

Ammonium cobaltic nitrite, 3(NH₄)-O, Co-O₅.

6N₂O₃+1!₂H₂O
Sl. sol in H₂O, decomp. in aq. solution on heating. (Rosenheim, Z. anorg. 1898, 17, 45.)
+3H₂O.

Somewhat sol. in cold H₂O, decomp. by boiling. Decomp by cone. H₂SO₄, not by acetic or dil. mineral acids (Fidmann, J. pr. 97, 405.)

Ammonium cupric lead nitrite, CuPb(NII4)2/NO2)6.

Stable at ordinary temp; sol. in HNO_z with decomp. 2.575 pts are sol. in 100 pts. H₂O at 20°, or 2.51°; sult in sat, solution at 20° (Przibylla,

Ammonium cupric strontium nitrite,

(NH₄)₂CuSr₁(NO₂)₄. Ppt.; sol. in H₂O with decomp. (Przibylla, l. c.)

Ammonium indium nitrite.

Z. anorg 1897, 15. 420.)

See Iridonitrite, ammonium.

Ammonium lead nickel nitrite.

(NH₄)₂PbNn(NO₂)₂(?). Ppt. (Przibylla, Z. anorg. 1897, **15**, 433.)

Ammonium osmium nitrite.

See Osminitrite, ammonium.

Ammonium osmyl oxynitrite.

See Osmyloxynitrite, ammonium.

Ammonium platinum nitrite. See Platonitrite, ammonium.

Ammonium rhodium nitrite.

See Rhodonitrite, ammonium.

Ammonium ruthenium hydrogen nitrite,

Ru₂H₂(NO₂)₄, 3NH₄NO₂+3H₂O. See Rutheninitrite, ammonium hydrogen.

Barium nitrite, Ba(NO₂)₂+H₂O.

Permanent. Very sol, m H₂O.

Solubility in H₂O at t°.

t° G. in 109 er Ba(NOz): Sp. gr	
0 58 1 40 20 63 1 45 25 71 1 50 30 82 1 52 35 97 1 61	

(Vogel, Z. anorg. 1903, 35, 389.)

100 pts H₂O dissolve at.

63 5 69 5 79 5 93 pts Ba(NO₂)₂+H₂O, 40° 50° 60° 70°

113 136 170 202 pts Ba(NO₂)₂+H₂O, 80° 90° 100° 110°

254 331 461 765 pts. Ba(NO₂)₂+H₂O

The sat. solution at 17° contains 40%
Ba'NO₂)₂, and has sp gr. 17°/0°=1.4897

(Oswald, A ch 1914, (9) L 62.) 10g, H₂O at 13.5° dissolve 64 g, Ba(NO₂)₂, +10 2 g, AgNO₂ with excess of AgNO₂, and 75.6 g, Ba(NO₂)₂+9.5 g, AgNO₂, with excess of AgNO₂. (Oswald.)

cess of AgNO₂. (Oswald.) Sol. in 64 pts. 94% alcohol; nearly insol in absolute alcohol. (Lang, Pogg 118, 285.)

Solubility in alcohol+Aq at to.

t ^o	Solvent	160 ccm of the sat solution contain g Ba(NO ₂) ₂ +H ₂ O
19 5	10% alcohol	49.30
21 0	20% "	29 30
20 5	30% "	18 41
20 5	40% "	13 33
20 5	50% "	9 11
20 0	60% "	4 84
19 0	70% "	2 66
19.5	80% "	0.98
20 0	90% "	0.00
20 0	absolute alcohol	0.00

(Vogel, Z. anorg 1903, 35, 390.)

Insol. in acetone. (Naumann, B 1904, 37.

Insol. in ethyl acetate. (Naumann, B. 1910. 43, 314)

Barium cessum nitrite, CsBa₂(NO₂)₈. Sol. in H₂O (Jamieson, Am. Ch. J. 1907, 38, 616.) C_{3s}Ba(NO₂)₄+H₃O. Very sol in H₂O (Jamieson, Am. Ch. J. 1907, 38, 616.)

Barium cæsium salver nitrite, Cs₂AgBa(NO₂)₆ +2H₂O. Decomp. by cold H₂O. (Jamicson. Am. Ch.

J. 1907, 38. 616.)

Barium cobaltic nitrite, 2BaO, Co₂O₃, 4N₂O₃

Sol in moderately warm H₂O without decomp but not recryst therefrom. (Rosenheim, Z. anoig 1898, 17. 51-54.) 3BaO, Co₂O₃, 6N₂O₄+H₂O Ppt; very unstable. Nearly maol, in H₂O. (Rosenheim,

Z. anorg. 1898, 17. 47.)

Barium cobaltous potassium nitrite, Ba(NO₂)₂,

Co(NO₂)₂, 2KNO₂.

Decomp. by H₂O (Erdmann, J. pr. 97.

Barum cupric nitrite, Ba[Cu(OH)(NO₃)₂]₂.

Ppt. Insol in H₂O. Decomp by H₂O
Insol, in alcohol, but slowly decomp, by it.
(Kurtenacker, Z. anorg, 1913, 82, 208.)

Barium cupric potassium nitrite, BaCuK₂(NO₂)₀,

Stable when dry, easily decomp. when moss; sol. in H₂O with decomp.

45 86 pts are sol. in 100 pts. H₂O at 20°, or 31.45% salt is contained in sat. solution at 20°. (Prajovila, Z. anorg. 1897, 15, 424.)

Barium cupric thallium nitrite, BaCuTle(NOo)s.

Sl. sol. m H₂O (Przibylia, Z. anorg. 1898, 18, 461.)

Barium iridium nitrite.

See Iridonitrite, barium.

Barium mercuric nitrite, 2Ba(NO₂)₂, 3Hg(NO₂)₂+5H₂O, Very sol. in H₂O and easily decomp. (Rây,

Chem, Soc. 1910, 97. 327.)

Barium nickel nitrite, 2Ba(NO₂)₂, Ni(NO₂)₂.

Somewhat more easily sol. in H₂O than nickel potassium nitrite. (Lang.)

Barium nickel potassium nitrite, Ba(NO₂)₂, N₁(NO₂)₄, 2KNO₂.
Sl. sol. in cold. easily in hot H₂O without

Si. soi, in cold, easily in hot H₂O witho apparent decomp. (Lang.)

Barium nickel thallium nitrite, NiBaTla(NOa)s

Ppt. (Przibylla, Z. anorg. 1898, 18. 462.)

Barium osmium nitrate.

See Osminitrite, barium.

Barium osmyl oxynitrite.

See Osmyloxynitrite, barium.

Barium potassium mtrite, Ba(NO₂)₂, 2KNO₂ +H₂O.

Easily sol in H₂O; insol in alcohol. (Lang, Pogg, 118, 293.)

Barium rhodium nstrite, 3Ba(NO2)2, Rhe(NO2)2

See Rhodonitrite, barium.

Barium silver nitrite, Ba(NO₂)₂, 2AgNO₂+ H₂O.

Resembles the potassium salt. (Fischer.) Less stable than the Na salt. (Oswald.)

Bismuth nutrite, basic, (BiO)NO₂+½H₃O Sol. in HCl (Vanino, J. pr. 1906, (2) **74**. 150)

Bismuth cosium silver nitrite, Cs₂BiAg(NO₂)₆ Very sl sol in H₅O. Slowly decomp by H₂O. (Ball and Abram, Chem. Soc 1913, 103. 2122.)

Bismuth potassium nitrite, Bi(NO₂)₃, 3KNO₂ +H₂O.

Decomp by H₂O (Ball, Chem. Soc. 1905, 87. 762.)

Bismuth potassium silver nitrite, K₂B₁Ag(NO₂)₆.

Less sol in H₂O than NH₄ salt. (Ball and Abram, Chem. Soc. 1913, 103. 2121.)

Bismuth rubidium silver nitrite, Rb₃BiAg(NO₂)₆. Sl sol in H₂O with slow hydrolysis. (Ball and Abram.)

Bismuth silver thallous nitrite, BiAgTl₂(NO₂)₆.

Insol. in H₂O, but decomp. thereby. (Ball and Abram.)

Cadmium nstrate, basic, 2CdO, N₂O₂.
Insol. in H₂O. (Hampe, A. 125, 335)

Cadmium nitrite, Cd(NO2)2+H2O

Deliquescent. Sol in H₂O. (Lang, J. B. 1862. 99)

Cadmium potassium nitrite, Cd(NO₁)₂, KNO₂. Easily sol in H₂O. Very difficultly sol, in absolute alcohol, and only sl. sol. in 90% alcohol. (Hampe, A 125, 334.)

Cd(NO₂)₂, 2KNO₂ Essily sol. in H₂O. Insol in alcohol (Lang, J B. 1862, 99.) Cd(NO₂)₂, 4KNO₂. More sol. in H₂O than

the above salt. (Lang)

Cesium nitrite, CsNO2.

Very hydroscopic, Very sol. in H₂O, (Ball, Chem. Soc. 1913, 103, 2130.)

Cæsium calcium nitrite, Cs₂Ca(NO₂)₄+II₂O. Ppt. (Jamieson, Am. Ch. J. 1907, 38, 617.)

Cesium cobaltic nitrite, Cs₃Co(NO₂)₆+H₂O Sol. in 20,100 pts. H₂O at 17°. (Rosenbladt. B. 19, 2531)

Cæsium lead nitrite, C₈Pb(NO₂)₃+H₂O.
Sol. in cold H₂O without decomp. When
solution is heated, some basic lead salt separates. (Jameson, Am. Ch. J. 1907, 38, 618.)

Casium lead silver nitrite, CssAgPb(NOs)s+ 2H2O.

Ppt (Jamieson,)

Cæsium silver nitrite, CsAgrNO₂)₂ Decomp. by H₂() (Jamieson)

Casium silver strontium nutrite, Cs₂AgSr(NO₂)₅+2H₂O. Partially decomp. by H₂O. (Jamicson.)

Cassium strontium nitrite, CsSr(NO₂)₂+H₂O. Ppt. Sol. in H₂(), (Jameson.)

Calcium nitrite, Ca(NO₂)₂+H₂O. Very deliquescent Insol, in dil. alcohol. (Fischer, Pogg 74, 115)

100 ccm. of the sat. solution contain 111 6 g. Ca(NO₂)₂+H₂O at 20.5°. (Vogel, Z. anorg 1903, **35**. 395)

Solubility in H₂O at t°.

to.	', Ca(N()2)2	Solid plane
0	38.3	Ca(NO ₂) ₂ , 4H ₄ O
18 5 42	43 51.8	
44	53.5	" +Ca(NO ₂) ₂ , H ₂ O
54	55.2	" +Ca(NO ₂) ₂ , H ₂ O Ca(NO ₂) ₂ , H ₂ O
64 70	58.4 60.3	l ", l
78	61.5	"
91	71.2	u

(Oswald, A. ch. 1914, (9) 1, 32.)

Sat. solution of Ca(NO₂)₂+AgNO₂ contains 02.4 g. Ca(NO₂)₂ and 11.2 g. AgNO₂ per 100 g. H₂O at 14°. (Oswald.) Solubility in alcohol

100 ccm. of sat, solution in 90% alcohol contain 39.0 g Cai NO₂)₂+H₂O at 20°. 100 ccm. of sat, solution in absolute alcohol contain 1.1 g. Ca(NO₂)₂+H₂O at 20°. (Vogel.) Insol. in ethyl acetate. (Naumann, B. 1910, 43, 314.)

+4IL₂O. The sat. solution at 16° contains 42.3°° Ca(NO₂)₂ and has sp. gr. at 16°/0° = 1.4205. (Oswald, A. ch. 1914, (9) 1. 66.)

Calcium cobaltous potassium nitrite, Ca(NO₂)₂, Co(NO₂)₂, 2KNO₂ Decomp. by H₂O. (Erdmann.)

Calcium cupric potassium nitrite, CaCuK₂(NO₂)₆.

Ppt., insol. m alcohol; sol m H₂O with. decomp. 14.97 pts. are sol in 100 pts. H₂O at 20°, or 13.02 per cent of salt is contained in sat. solution. (Prabvila Z. anorg. 1897, 15, 422.)

Calcium mercuric nitrite, Ca(NO₂)₂,Hg(NO₂)₂
+5H₂O
Very sol in H.O. (RAy Chem. Soc. 1910)

Very sol, in H₂O. (Rây, Chem, Soc. 1910, 97. 327.)

Calcium nickel potassium nitrite, Ca(NO₂)₂,

N₁(NO₂)₂, 2KNO₂. Very sl. sol, in cold, easily in hot H₂O. Insol, in alcohol. Sl. sol, in dil. HC₂H₂O₂+ Aq. (Erdmann,)

Calcium osmium nitrite.

See Osminitrite, calcium.

Calcium potassium nitrite, CaK(NO₂)₄+ 3H₂O. Sol. in H₂O. (Topsoe, W. A. B **73**, **2**, 112.)

Deliquescent. (Lang)

Cobaltous nitrite. Known only in solution.

Cobaltic lead nitrite, 3PbO, Co₂O₃. 6N₂O₆+ 12H₂O. Insol, in H₂O. (Rosenheim, Z. anorg. 1898.

17. 48.)

Cobaltic lead potassium nitrite, 3K₂O, 3PbO, 2Co₂O₃, 10N₂O₃+4H₃O.

Sol. by boiling in much H₂O. Sol. in hot acids with evolution of N₂O₂. (Stromeyer, A. 96, 228.)

Cobaltous potassium nitrite, 2Co(NO₂)₂, 2KNO₂+H₂O.

Ppt. (Sadtler.) Co(NO₂)₂, 2KNO₂+H₂O. Ppt. (Sadtler.)

3Co(NO₂), 6KNO₂+H₂O. Insol. in cold, sol. in hot H₂O. Sl. sol. in KC₂H₂O₂+Aq. (Erdmann, J. pr 97. 397.) Insol. in ethyl acetate. (Naumann, B. 1904, 37. 3602.)

Cobaltic potassium nitrite (cobalt yellow), Co₂(NO₂)_b, 6KNO₂+3H₂O.

Very sl. sol. in cold H₂O. Insol. in alcohol and ether. Sol. in traces in CS₂. (St. Eyre,

KCl, KNOs, or KC2H3O2+Aq. Sol in 1120 pts H₂O at 17°. (Rosenbladt, B. 1886, 19. 2535.)

Decomp. when heated in aq solution. (Rosenheim, Z. anorg. 1898, 17, 42) More sol. in NH4Cl or NaCl+Aq than in

H₂O. (Stromeyer.) SI. decomp. by KOH+Aq, except when very conc.; casily decomp, by NaOH or

Ba(OH): +Aq Very sl. sol. m KC₂H₃O₂+Aq, or KNO₂ +Aq. (Fresenius) Sol. m HCl+Aq. Sol. in HC2H3O2, or H2C2O4+Aq. (Stromeyer)

Small quantity of HC2H2O2+Aq does not dissolve. (Fresenius.)

Cobaltic potassium silver natrite, KCoAg₂(NO₂)₆, and K₂CoAg(NO₂)₆, Very sl. sol. in H₂O. Less sol. than Na comp. (Burgess and Karum, J. Am. Chem. Known only

Soc. 1912, 34. 653.)

Cobaltous potassium strontium nitrite, Co(NO2)2, 2KNO2, Sr(NO2)2. Decomp. by H₂O. (Erdmann, J. pr. 97.

385.)

Cobaltic rubidium nitrite, Rb₈Co(NO₂)₄+ H20.

Sol. in 19.800 pts H₂O. (Rosenbladt, B. 19, 2531.)

Cobaltic silver nitrite, CoAg₃(NO₅)₅, Farrly sol, in H₂O. (Cunningham and Perkin, Chem. Soc. 1909, 95, 1568) 2Ag₂O, Co₂O₅, 3N₂O₅+3H₂O.

St. sol. in H2O, decomp, by boiling H2O. (Rosenheim, Z. anorg. 1898, 17. 56.)

Cobaltic silver hydroxynitrite, Co2Ag2(OH)2(NO2)4.

Sl. sol, in H₂O. (Suzuki, Chem. Soc. 1910, 97. 729.)

Cobaltic silver nitrite ammonia, Co2O2, Ag2O, 4N2Os, 4NHs.

See Cobalt ammonium comps.

Cobaltic sodium nitrite, 2Na₂O, Co₂O₂, 4N₂O₄, Sol. m H2O and alcohol. (Rosenheim, Z anorg 1898, 17. 50.) +H₂O. Ppt. (Sadtler, Sill. Am. J. (2) 49.

3Na₂O, Co₂O₃, 6N₂O₃+xH₂O. Sol. in H₂O; decomp. on heating; insol. in alcohol. (Rosenheim, Z. anorg. 1898, 17, 43.)

+11H₂O.

C. R. 35. 552.) Insol. in boiling cone. K2SO4, Cobaltic thallium nitrite, Co2(NO2)4, 6TINO2. Sol. in 23.810 pts. H_{*}O at 17°. (Rosenbladt, B. 19. 2531.)

Cobaltic zinc nitrite, 2ZnO, Co2O3, 3NaO3+

Sol. in dil. acetic acid. (Rosenheim, Z. anorg. 1898, 17. 56.)

Cobalt nitrite nitrate, 2CoO, Co₂O₅, 3N₂O₅, Co(NO₂)₂+14H₂O,

Ppt. (Rosenheim, Z. anorg. 1898, 17. 58.)

Cupric natrite, basic, 2CuO, N2O2.

(Hampe, A. 125, 345.) Cu(NO₂)₂, 3Cu(OH)₂. Very sl. sol. in H₂O or alcohol. Easily sol. in dil. acids or ammonia. (van der Meulen, B 12.758)

Known only in solution.

Cupric lead potassium nitrite, CuPbK₂(NO₂), (van Lessen, R. t. c. 10. 13.)

3.056 pts. are sol. in 100 pts. H₄O at 20°, or 2.51% salt is contained in sat. solution at 20° p. 429. (Przibylla, Z. anorg. 1897, 15, 429.)

Cupric potassium strontium nitrite, CuSrK₂(NO₂)₆.

Sol. in H₂O with decomp. 10.82 pts. are sol. in 100 pts. H₂O at 20°, or 9.77 per cent salt is contained in sat. solution at 20°. (Przibylla, Z. anorg. 1897, 15. 425.)

Cupric rubidium nitrite, Rb,Cu(NO.)s. Easily sol. in H₂O. Sol in alcohol. (Kur-

tenacker, Z. anorg. 1913, 82. 206.)

Cupric nitrite ammonia, Cu(NO₂)₂, 2NH₂+ 2H2O.

Sol, in little H₂O with absorption of much heat. Decomp. by much HrO. (Peligot, C R 53, 209. 3CuO, N2Os, 2NH1+H2O. As above. (Peligot.)

Iridium hydrogen nitrite, $Ir_2H_4(NO_2)_{12}$. See Iridonitrous acid.

Iridium nitrite with MNO. See Iridonitrite, M.

Iron (ferrous) lead notassium nitrite. FePbKs(NO2)6.

Ppt.; insol. in cold H₂O; stable at ordinary temp. (Przibylla, Z. anorg. 1897, 15, 439.)

Cobaltic strontium nitrite, 2SrO, Co2O2, 4N2O3 Iron (ferrous) lead thallous nitrite, FePbTl₂(NO₂)₀.

Ppt. (Rosenheim, Z. anorg. 1898, 17. 54.) Ppt. (Przibylla, Z. anorg. 1898, 18. 463.)

Lead nitrite, basic, 4PbO, N₂O₃+H₂O = Pb(OH)NO₂, PbO.

Sol. in 143 pts H₂O at 23°, and 33 pts at

100°. (Chevreul.) Sol in 1250 pts. cold II₂O, and 34 5 pts. at 100°. (Peligot.)

Sol in cold HNO₃ or HC₂H₃O₂+Aq. Composition is 3PbO, N₂O₃+H₂O. (Meiss-

Composition is 3PbO, N₂O₅+H₂O. (Meissner, J. B. 1876, 194.)
Composition is as above (v. Lorenz, W. A.

B. 84, 2, 1133.)
3PbO, N₂O₂=Pb(NO₂)₂, 2PbO Sol in
H₂O. (Bromeis, A. 72, 38; v. Lorenz)
2PbO, N₂O₂+H₂O. Sl. sol. in H₂O.
(Bromeis.)

2PbO, N₂O₃+H₂O. Sl. sol. in H₂O. (Bromeia, +3H₂O. (Meissner.) 4PbO, 3N₂O₃+2H₂O. Sol. in H₂O. (Meissner.)

ner, J. B. 1876. 195.) Lead nitrite, Pb(NO₂)₂+H₂O

Easily sol. in H₂O. (Peligot, A. ch. 77. 87.)

 $\begin{array}{cccc} \textbf{Lead} & \textbf{nickel} & \textbf{potassium} & \textbf{nitrite,} & Pb(NO_2)_2, \\ & & KNO_2, \, N1(NO_2)_2. \end{array}$

Insol. in H₂O. (Baubigny, A. ch. (6) 17. 111.)
Ppt. (Przibylla, Z anorg 1897, 15. 432)

Lead nickel thallous nitrite, NiPbTl₂(NO₂)₅.

Ppt. (Przibylla, Z anorg 1898, 18. 462) Lead potassium nitrite, 4Pb(NO₂)₂, 6KNO₂+ 3H₂O.

Easily sol, in H₂O and m absolute alcohol. (Hampe, A. 125, 334)
Pb(NO₂)₂, 2KNO₂+H₂O Easily sol, in H₂O. Insol. in alcohol. (Lang, J. B. 1862, 102.)

Lead potassium silver nitrite, K₃AgPb(NO₂)₆ +2H₂O.

Ppt. (Jamieson, Am. Ch. J. 1907, 38, 619)
Lead nitrite nitrate.

See Nitrate nitrite, lead.

Lithium nitrite, LiNOs+19H2O.

Deliquescent Easily sol. in alcohol and H₂O. (Vogel, Z. anorg 1903, 85, 403.)

Sat. solution of LiNO₂+1₂H₂O in H₃O contains at.

65° 81.5° 91° 96° 92.5°

65° 81.5° 91° 96° 92.5° 63.8 68.7 724 91.8 94.3% LiNO₂. (Oswald.)

+H₂O. Very sol. in H₂O, readily forming supersat, solutions. Very sol. in abs. alcohol. (Ball, Chem. Soc. 1913, 103, 2133.)

100 pts. H₂O dissolve at:

0° 10° 20° 125 156 189 pts. L₁NO₂+H₂O.

30° 40° 50° 242 316 459 pts, LaNO₂+H₂O. LiNO₂, H₂O +Aq sat. at 19° contains 48 9% LiNO₂ and has sp. gr. = 1.3186. (Oswald, A. ch 1914, (!!) 1. 61.) 100 g. H₂O dissolve 78.5 g. LiNO₂+10.5 g. AgNO₂ at 14°. (Oswald.)

Lithium mercuric nitrite, LaNO2, Hg(NO2)2+ IL2O

(Rây, Chem. Soc. 1907, 91, 2033.) 4LaNO₂, Hg⁴NO₂)₂+4H₂O. Extremely deliquescent. (Rây.)

Magnesium nitrite, Mg(NO2)2+2HgO.

Deliquescent, and sol in H₂O Solution decomp, by boiling. Easily sol, in absolute alcohol. (Hampe, A 125. 334) Insol in absolute alcohol. (Fischer.)

+3H₂O Sol. in H₂O and absolute alcohol Very deliquescent. (Vogel, Z. anorg. 1903, 35, 397.)

Magnesium osmium nitrite. See Osminitrite, magnesium.

Magnesium potassium nitrite.

Deliquescent, and easily sol. in II₂O. Insol in alcohol. (Lang.)

Magnesium silver nitrite.

Sol in H₂O with decomp (Spiegel, Ch. Z. 1895, **19**, 1423.)

Manganous nitrite.

Deliquescent, and sol. in H_2O . (Mitscherlich) Not obtained in a solid state, as the solition decomp. on evaporation. (Lang, Pogg. 118, 290.)

Mercurous nitrite, Hg2(NO2)2.

Sol. in H₂O with partial decomp. to Hg and Hg(NO₂)₂. (Rhy, A. 1901, **316**, 252.) Sol. in cold conc. HNO₃. Very slowly sol. in cold dil HNO₃. (Rhy, Chem. Soc. 1897,

71. 339.)
Decomp. by boiling H₂O and by cold dil.
H₂SO. (Råy, Z. anorg. 1896, 12. 366.)
+H₂O Slowly decomp by H₄O. (Råy,

+H₂O Slowly decomp by H₂O. (Rây, Chem Soc. 1897, 71. 340.)

Mercuric nitrite, basic, Hg(NO₂)₂, 2HgO+

H₂O. Ppt. (Lang) 12HgO, 5N₂O₂+24H₂O. (Ray, Chem. Soc.

1897, 71. 341.)

Mercuric nitrite, Hg(NO₂)₂.

Deliquescent. Partly sol. in boiling H₂O, but the greater part is decomp. into HgO+HNO₂. (Rây, Proc. Chem Soc. 1904, 20. 57.)

Mercuromercuric nitrite, basic.

9Hg₂O, 4HgO, 5N₂O₃+8H₂O.
 Hg₂O, 2HgO, N₂O₃+2H₂O.
 (Ray, Chem. Soc. 1897, 71, 341.)

Mercuric potassium nitrite. Hg(NO2)2, 2KNO. Easily sol, in H.O. Insol, in alcohol.

(Lang, 1860.) KHg(NO₂)₃. Obtained from K₂Hg(NO₂)₃,

KHG(NO₃)s. Obtained from h₃Hg(NO₃)s. H₄O+Aq containing a small excess of KNO₃. Decomp. by H₄O. (Rosenheim, Z. anorg. 1901, **28**. 173.) K₃Hg(NO₃)s+H₄O. Sol. in H₂O. For-mula of Lang is incorrect. (Rosenheim, Z. anorg. 1901, **28**. 172.)

Mercuric sodium nitrite, Na2Hg(NO2)4 Very hydroscopic. Decomp. by hot H.O.

(Rosenheim, Z. anorg. 1901, 28, 173.) +2H₂O, Deliquescent, (Ray, Chem. Soc 1907, 91, 2032, 2Hg(NO₂)₂, 3NaNO₃. Decomp. by H₂O. (Ray, Chem. Soc. 1907, 91, 2032.)

Mercuric strontium nitrite, 3Hg(NO2)2, 2Sr(NO2)2+5H2O

Very sol, in H₂O, (Rây, Chem. Soc. 1910. 97, 327.)

Mercuric nitrite hydrazine, Hg(NO₂)₂, N₂H₄ Ppt. Decomp. by H2O. (Hofmann and Marburg, A. 1899, 305, 215.)

Nickel nitrite, basic, 2N1O, N2O2 Ppt. (Hampe, A. 125, 343.)

Nickel nitrite, N1(NO2)2. Sol, in H2O and alcohol, (Lang. J. B. 1862. 100.)

Nickel potassium nitrite, Ni(NO2)2, 4KNO2. Moderately sol, in H.O. (Fischer, Pogg 74. 115.) Extremely sol. in H₂O. (Hampe. A. 125. 346.) Insol, in absolute alcohol.

Nickel potassium strontium nitrite, N1(NO2)2 2KNO2, Sr(NO2)2.

SI sol, in cold, easily sol, in hot HaO.

Nickel nitrite ammonia, Ni(NO2)s, 4NH2. Sol, in cold HaO. Decomp, on standing or by heating, Insol, in alcohol. Can be re-crystallized by dissolving in NH₄OH+Aq, and adding much absolute alcohol. (Erd-

mann, J. pr. 97. 395.)

Ni(NO₂)₂, 5NH₂ Decomp. in the air
giving Ni(NO₂)₃, 4NH₅. (Ephraim, B. 1913, 46. 3110.)

Osmium nitrite, Os(NO2)3. Ppt (Wintrebert, C. R. 1905, 140, 587.)

Osmium nitrite unth MNO.

See Osminitrite, M. Osmyl nitrite with MNO2.

See Osmvinitrite, M.

Osmyl oxynitrite with MNO: See Osmyloxynitrite, M.

Osmvi nitrite ammonia, OsOs(NOs), 4NHs. (Wintrebert, A. ch. 1903 (7) 28, 56.)

Palladious nitrite with MNO. See Palladonitrite, M.

Platinous hydrogen nitrite, H2Pt(NO2) See Platonitrous acid.

Platinous nitrite unth MNO... See Platonitrite, M.

Potassium nitrite, KNO2 Deliquescent. Sol. in H₀O.

Pure KNO2 is not deliquescent. (Oswald, A. ch. 1914, (9) 1, 32,) Sol in about 1/2 its wt. of H2O. (Divers, Chem. Soc. 1899, 75, 86)

100 pts. H_{*}O dissolve at:

N٥ 10° 20° 30° 302 313 325 pts. KNO4. 281 291 509 BO° 80° 337.5 351 365 380 396 pts. KNOs.

1009 110° 1205 1900

413 451 432 473 pts. KNO2. Bpt of sat. KNO1+Aq is 132° at 758 5 mm. pressure

(Oswald, A. ch. 1914, (9) 1. 58.) Sp. gr. of KNO2+Aq at 17.5° containing: 30 40% KNO.

1 049 1.126 1.208 1.295 71.5% KNO2 1.646 1.377 1 491 1 599 (Oswald)

100 g. H₂O at 13.5° dissolve 18 g. KNO₂+ 100 g. H₂O at 15.5° dissolve 15 g. K.NO₁+ 2.36 g. AgNO₂; at 25°, 23 1 g. K.NO₂+5.3 g. AgNO₂ with excess of AgNO₂. 100 g. H₂O at 13.5° dissolve 276 g. K.NO₂+ 26.3 g. AgNO₂; at 25°, 270 g. K.NO₂+39.3 g. AgNO₂ with excess of KNO₂. (Oswald.) See also under AgNO2

Very sol. in liquid NH, (Franklin, Am Ch J. 1898, 20, 829. Deliquesces in 90% alcohol; insol, in cold

94% alcohol. More sol in H₂O than KNO₃, but less sol in alcohol. (Fischer.) Ppt. from its cone. aq. solution by the addition of methyl alcohol Addition of ethyl alcohol to a cone, aq. solution of KNO

causes separation into two layers, of which the lower ag. solution contains 71 9% KNO2 while the upper alcoholic layer contains 6.9% KNO₂. (Donath, Ch. Z. 1911, 35, 773.) Very sl sol, in acetone (Krug and M'El-

roy, J. Anal. Ch. 6, 184.)

Insol in acctone.		
H. 1014; Naumann,	B. 1904, 37.	4329.)
Insol in methyl	acetate. (A	laumann, B.
1909, 42, 3790); eth	yl acctate.	(Naumann,
B. 1904, 37, 3602.)		

Potassium rhodium nitrite, 6KNO₂, Rho(NOo)e.

See Rhodonitrite, potassium.

Potassium ruthenium nitrite. See Ruthenonitrite, potassium.

Potassium silver nitrite, KNO2, AgNO2+

1 .H.O Completely sol, in a little H₂O, but decomp. by more H₂O. Sol. in KNO₂+Aq without decomp. Insol, in alcohol. (Lang.)

Potassium strontium nitrite, 2KNO2,

Sr(NO2)2 Sol. in II2O; insol. in alcohol. (Lung, Pogg. 118, 293.)

Potassium zinc nitrite, 2KNO2, Zn(NO2)2+ H.O. Deliquescent Easily sol in H₂O. (Lang,

J B. 1862, 101 1 K₂Zn(NO₂)₅+3H₂O Very hydroscopie Decomp, by H₂O (Rosenheim, Z. anorg. 1901, 28, 174

Rhodium nitrite with MNO2 See Rhodonitrite, M.

Rubidium nitrite, RbNO₀, Deliquescent; very sol. in H₂O, sl. sol in hot alcohol, almost insol in acctone. (Ball Chem. Soc. 1913, 103, 2131.)

Ruthenium nitrite with MNO. Sec Ruthenonitrite, M.

Silver nitrite, AgNO2

Sol. in 120 pts cold H2O (Mitscherlich), in 300 pts. (Fischer), and more abundantly in hot H.O.

 1 l. H₂O dissolves 3.1823 g or 0.02067 mols, at 18°. (Naumann and Rucker, B. 1905, 38, 2294.)

1 litre H₂O dissolves at-

00 0.0113 mol. AgNO: 80 0.0159 14° ** 0.0180 16° 0.0203 18° n 0.0216 950 0.0260 6 33° 44

(Pick and Abegg, Z. anorg. 1906, 51. 3.)

1 l. H₂O dissolves 3,609 g. AgNO₂ at 21° (Oswald, A. ch. 1914, (9) 1. 33.)

Solubility in H ₂ O at t°.					
t°	% AgNO;				
1 15 25 35 51 60	0.1589 0.2752 0.4125 0.6016 1.0240 1.3625				

(Creighton and Ward, J. Am. Chem. Soc. 1915, 37. 2335.)

Solubility in AgNO. + Ag at 18°

commenced on reflect of the state of the						
Mols AgNOs per l	Mols AgNO; dissolved					
of the solution	per i					
0.	0.0207					
0.0026	0.0198					
0 0052	0.0190					
0 0103	0.0189					
0 0207 0 0413	0.0144					
0 0527	0.0117 0.0098					

(Abegg and Pick, B. 1905, 38, 2573.)

1 l. 0.2-N NaNOa+Aq dissolves 4.956 g. AgNO₂ at 25°. (Ley and Schaefer, B. 1906, 39, 1263.) l. sat. KNO₂+Aq dissolves 26% AgNO₂ at 13 5°. (Oswald, A. ch. 1914, (9) 1. 33.)

Solubility in salts+Aq at 25°.

	Salt	Cone of the sult mole per l	G. AgNO ₂ m 100 g of solution
			0 4135
,	AgNO ₂	0 00258 0 00588 0 01177 0 02355 0 01710	0 3991 0 3735 0 3432 0 2943 0 2498
	KNO ₂	0.00258 0.00588 0.01177 0.02355 0.04710	0 3974 0 3820 0 3560 0 3119 0 2765

(Creighton and Ward, J. Am. Chem. Soc. 1915, 37, 2836.)

See also under KNO2.

AgNO₂+NaNO₂. 1 l. 0.02 N-NaNO₂+Aq dissolves 3.185 g. AgNO₂ at 25°, 0.2-N NaNO₂, 3.016 g. AgNO₃. (Ley and Schaefer, B 1906, 39, 1263.)

100 g. H₂O sat, with AgNO₂ and Sr(NO₂); contain 10.9 g. AgNO₂ and 78.3 g. Sr(NO₂); at 14°. (Oswald)

1411101	in godiow		04
Very sol. in liquid NH ₃ . (Franklin, A Ch J. 1898, 20, 829.)	m Solubility in 1	vaNO _a +Aq at	t°.—Continued
Insol in alcohol.	00 10	100 pts H	2O dissolve
Sol in acetone. (Eidmann, C. C. 18 II 1014; Naumann, B. 1904, 37, 4328.)	00,	NaNO2	NaNO:
100 pts. acetomitrie dissolve 23 pts. at o temp; 40 pts. at 18.6°. (Scholl and Steinok B. 1900, 39. 4393) Sl. sol. in methyl acetate. (Besold, D sert 1908.) Insol. in ethyl acetate. (Hamers, Disse 1906; Naumann, B. 1910, 43. 314) Sliver sodium nitrite, AgNO ₂ , NaNO ₃ .	pf, 21 ris- rt.	84.75 81 1 70 7 73 8 73 1 64 2 46 8 21.6 0	0 9 6 23 5 50 8 54.5* 56.7 62 8 74 7 89 3
Completely sol in a little H ₂ O, but decon by more H ₂ O. (Pischer.) +½H ₂ O. (Oswald, A. ch. 1914, (9) 75.)	52	108.8 107.9 104.3 101.8	0 6 7 20 6 34.5
Silver nitrite ammonia, AgNO ₂ , NH ₃ . Sl. gol. n H ₂ O; less gol. m alcohol; neument in ether. (Reychler; B. 16, 2425.) AgNO ₂ , 2NH ₃ . (Reychler;) AgNO ₂ , 2NH ₃ . (Reychler.) (Reychler.)	- 1	99 5 98 0 97 8 65 2 44 2 27 2 14.7 0	43.2 62.6* 82.0 88.0 92.9 101.4 109 118
Sodum nitrite, NaNO ₅ . Not delquescent. Very sol. in H ₄ O. More sol. in H ₅ O than NaNO ₈ , but less alcohol. 6 pts. H ₅ O dissolve 5 pts. NaNO ₈ at 1 (Divers, Chem Soc. 1899, 75. 86.) 100 g. H ₅ O dissolve 53.25 g. NaNO ₉ at 1 (Niementowski and Roszkowski, J. phys. 6 (1897, 22, 146.)	5°. 5°.	120 7 111 5 108 5 107 8 78.3 49 5 28.4 14.7	0 34 8 62 8 90.6* 96 104 1 113.4 121.4
100 pts. H ₂ O dussolve at: 0° 10° 20° 30° 40° 73 78 84 91.5 98.5 pts. NaNO; 50° 60° 70° 80° 107 116 125.5 136 pts. NaNO; 90° 100° 110° 120° 147 160 5 178 198.5 pts. NaNO ₂ .	81	137 1 125 7 122 7 122 6 79 1 50 0 27 2	0 38 8 69 8 101 0* 111 5 121 0 131 7
B-pt. of sat. NaNO ₃ +Aq =128° at 76 mm. pressure. Sat. solution at 20° has a gr. =1.3885. (Oswald, A. ch. 1914, (9) 59) Solubility in NaNO ₂ +Aq at \mathfrak{t}° .	92 1.5 sp. 1.	149.7 141 2 134 6 132 3 60.2 30 3 0	0 23 6 57 6 107 8* 130 6 145.0 163.5
100 pts H ₂ O dissolve	103	166	0
NaNO ₈ NaNO ₈ 0 73 0 68 5 19 67 1 36 3 64 9 41.7* 50.3 46.8		153.3 148.8 142.4 100.0 60.1	33 2 58 8 116 0* 126 8 142.9 181.2
30 2 55.4 0 74 2		in solid phase.	
0 74 2	(Oswald	l, A. ch. 1914, (9)-1. 71.)

Solubility in H2O is decreased by presence of Na₂SO₄ 100 pts. H₂O dissolve 11.8 pts. Na₂SO₄+53.9 pts. NaNO₂. (Oswald.) Very sol. in liquid NH3. (Franklin, Am Ch. J. 1898, 20, 829.) Neither dissolved nor attacked by liquid

NO₂, (Frankland, Chem, Soc. 1901, 79. 1361.) Sol. in warm 90% alcohol. (Hampe, A.

125. 336.) 100 pts. absolute methyl alcohol dissolve

4.43 pts. at 19.5°: 100 pts. absolute cthyl alcohol dissolve 0.31 pt. at 19.5°. (de Bruyn, Z. phys. Ch. 10, 783. Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann,

Strontium nitrite, Sr(NO₂)₂,

B. 1910, 43, 314.)

Very sol, in H2O, and very sl sol, in boiling alcohol. (Lang, Pogg. 118, 287.) Easily sol. in 90% alcohol. (Hampe, A.

125. 310) +H₂O. Hydroscopic. 100 ccm. of the sat, solution contain 62.83 g Sr(NO₂)₂+H₂O at 19.5°. (Vogel, Z. anorg. 1903, 35. 393.)

100 pts. H₂O dissolve at:

 20° 00 100 30° 58.9 67.6 84 nts, St(NO₀)₁+H₀O, 40° 50 60° 70° 94 105 116 130 pts. Sr(NO2)2+H2O.

80° 900 100°

145 162 182 pts. Sr(NO2)2+H2O

Bpt, of sat, solution is 112.5° at 763 mm. The sat, solution at 19° contains pressure. 39 3% Sr(NO₂)₂ and has sp. gr. at 19°/0°= 1.4461. (Oswald, A. ch. 1914, (9) 1, 64) Solubility in alcohol 100 ccm, of the solution m 90% alcohol contain 0.42 g, Sr(NO₂)₂ +H2O at 20°. 100 ccm, of the solution in absolute alcohol contain 0.04 g, Sr(NO2)2+ H₂O at 20°. (Vogel, Z. anorg, 1903, 35, 393)

Thallous nitrite, TINO.

Sol in H₂O. Ppt, from solution in H₂O by absolute alcohol (Vogel, Z. anorg, 1903. Very sol in H2O; insol in alcohol (Ball,

Chem. Soc 1913, 103, 2131,)

Zinc nitrite, basic, 2ZnO, N2O2. (Hampe, A. 125, 334,)

Zinc nitrite, Zn(NO₂)₂+3H₂O. Deliquescent. Sol. in H2O and alcohol.

(Lang, J. B. 1862, 99.)

Nitrous oxide, N.O. See Nitrogen monoxide. Nitroxyl bromide, NO.Br.

Decomp. spontaneously or with H₂O. (Hasenbach, J pr. (2) 4. 1.)
Does not exist. (Fighlich, A, 224. 270.)

Nitroxyl chloride, NO2Cl.

Decomp, by H₂O without evolution of gas, Probably does not exist. (Geuther, A. 245. 98.)

Nitroxvi fluoride, NO.F.

Absorbed by H₂O with formation of HNOs and IIF. Decomp. by H₂O, alcohol, and ether. (Moissan and Lebeau, C. R. 1905, 140. 1624.)

Nitroxypyrosulphuric acid, (HO)S₁O₄(NO₃), H₄O.

Very deliquescent. Sol in H₂O with decomp. (Weber, Pogg, 142, 602.)

Nitryl chloride, NO.Cl.

Ser Nitroxyl chloride.

Octamine cobaltic compounds.

The formulae of the following octamine cobaltic compounds should be reduced onehalf, and they should be classed with the tetramine cobaltic compounds. (Jorgensen, Z. anorg, 2, 279.)

Octamine cobaltic carbonate.

cultly sol. in H₂O.

Cu2(NH4)8(CO4)6+3H4O. Easily sol in H.O. (Vortmann and Blas-

berg, B. 22, 2654.) See Carbonatotetramine carbonate. Co₂(NH₁)₈O₃(CO₃)₄+3H₂O. Rather diffi-

— chloride (?), Co₂(NH₂)₈ (OH)₂Cl₄+ 2H2O.

Ppt. Co₂(NH₂)₄(OH)₂Cl₄, 2HgCl₂ Co₂(NH₂)₄(OH)₂Cl₄, PtCl₄+H₂O. (Vortmann and Blasberg, B. **22**, 2654.)

---- mercuric chloride, Co2(NH3)aCl4, 3HgCl+H+O. Co2(NHs),Cls. HgCls Difficultly sol, m

cold H2O, decomp. on warming (Vortmann.)

 chlorosulphite, Co₂(NH₃)₈(SO₃)₂Cl₂ +4H₂O,

Sol. in H₂O (Vortmann and Magdeburg, B 22. 2635.)

 chromate. Co2(NH3)s(CrO4)3(H2O)2+2H2O.

Sol, in H₂O or acetic acid +8H₂O. Sol in warm H₂O or acetac acid. Co₂(NH₃)₈(CrO₄)₂Cr₂O₇(H₂O)₂+H₂O. Eas-

ily sol in H2O, from which it is precipitated by dil. HNOs+Aq. (Vortmann, B. 15, 5895.) Octamme cobaltic nitrate, Co₂(NH₃)₃(NO₃)₃ +2H₂O.

Sol m H₂O, preceptated by cone HNO₈+
An (Vortmann.)

_____ nitratocarbonate, Co₂(NH₃)₈(NO₃)₂(CO₃)₂+H₂O.

Co₂(NH₃)₈(NO₃)₂(CO₃)₂+H₂O. Less sol than other octamine carbonates. (Vortmann and Blasberg, B **22**, 2650.) See Carbonatotetramine cobaltic nitrate.

— purpureochloride, Co₂(NH₂)₈Cl₀(H₂O)₂.

Easily sol. in H₂O; partly precupitated from aqueous solution by cone HCl+Aq. (Vortmann, B. 10, 1451.) -Chlorotetramne cobaltic chloride, ClCo(NH₂)₄(OH₂)Cl₃, wich see. (Jörgensen, J pr. (2) 42, 211.)

—— purpureomercuric chloride, Co₂(NH₃)₈Cl₄(H₂O)₂, 6HgCl₂. Sl, sol in cold, easily in hot H₂O. (Vort-

mann)
= Chlorotetramine cobaltic mercuric chloride. (Jorgensen, J. pr. (2) 42. 211.)

— purpureomercuric hydroxychloride, Co₂N₈H_{1c}(HgCl)₄(HgOH)₄Cl₆. Ppt. (Vortmann and Morgulis, B **22**. 2647.) Co₂N₈H_{1c}(HgOH)₅Cl₆ (V and M.) Co₃N₈H_{1c}(HgOH)₅Cl₆(OH)₆. (V, and M.)

—— purpureomercuriodide, basic, Co₂N₈H₁₈(HgOH)₆I₆

(Vortmann and Borsbach, B 23, 2805)

— — purpureochloroplatinate.

Very sl sol. in H₂O. (Vontmann)

= Chlorotetramue cobaltic chloroplatinate,
ClCo(NH₃)₄(OH₂)PtCl₆+2H₂O. (Jorgensen,
J. pr. (2) 42, 215.)

— roseomercuric hydroxychloride, Co₂N₈H₁₆(HgCl)₆(HgOH)₂Cl₄. (Vortmann and Morgula, B 22. 2647) Co₂N₈H₁₆(HgOH)₅Cl₆. (V. and M.) Co₅N₈H₁₆(HgOH)₅Cl₄(OH)₂. (V. and M.)

Co₂N₃H_{2i}(HgI)₃I₃ Ppt Sol in HCl or HNO₄. (Vortmann and Borsbach, B. 23. 2806.) $Co_2N_8H_{20}(HgI)_4I_6$ Ppt. (V. and B.) $Co_2N_8H_{20}(HgI)_4I_4(OH)_2$ Ppt. (V and B.)

Octamine cobaltic sulphate, Co₄(NH₃)₄(OH)₄(SO₄)₂+3H₂O. (?). Insol. in H₂O or dil. II₃SO₄+Aq. Sol. in moderately cone HCl+Aq. (Vortmann and Blasberg, B. 22 2653.) Co₄(NH₂)₃(SO₄)₃+6H₂O. Sol. in H₂O. (Vortmann).

+4H₂O. Easily sol in H₂O. See Roseotetramine cobaltic sulphate.

— sulphatocarbonate,

Co₂(NH₂)₂SO₄(CO₃)₂+3H₂O.
Sol. in H₂O. (Vortmann, B 10. 1458)
See Carbonatotetramme cobaltic sulphate.
Co₂(NH₂)₄(SO₄)₂CO₂+4H₂O. Sol in H₂O.
(Vortmann and Blasberg, B, 22. 2856), B, 22.

— ammonium sulphite, Co₂(NH₄)₈(SO₄NH₄)₆+10H₂O See Octamine cobaltisulphite, ammonium.

Octamine cobaltisulphurous acid.

Ammonium octamine cobaltisulphite,

Co₂(NH_a)₈(SO₂NH₄)₄+10H₂O. Sol. in H₂O. (Vortmann and Magdeburg, B. 22, 2632.) Co₂(NH₃)₈(SO₅)₂(SO₃NH₄)₂+4H₂O.

Ammonium barium ———, Co₂(NH₂)₃(SO₃)₄Ba₂(NH₄)₂+7H₂O Ppt. (V. and M.)

Barrum -----, Co₂(NH₄)₅(SO₂)₆Ba₃+
7H₅O.
Pot (V and M)

Co₂(NH₃)₃(SO₃)₄Co₂+36H₂O, and 24H₂O.

Luteocobaltic \longrightarrow \longrightarrow $Co_2(NH_8)_8(SO_9)_8(NH_8)_{12}Co_2 + 8H_2O$. Ppt. (V, and M.)

Octamine iridium chloride, Ir₂(NH₃)₈Cl₄. Very sol. in H₂O (Palmaer, B. 22, 16.)

Octamine iridium chlorosulphate, Ir₂(NH₄)₈Cl₄SO₄+4H₂O. (Palmaer.)

Osmiamic acid, H₂N₂Os₂O₆, or H₂N₂Os₁O₃(?). Known only in aqueous solution, which is unstable Ammonium osmiamate.

Easily sol. in H-O or alcohol. (Fritzsche

and Struve, J. pr. 41. 97.)

Barium osmiamate, BaN-Os-Os.

Moderately sol. in II₂O.

Lead osmiamate.

Ppt. Sol, in acids without decomp.

Lead osmiamate chloride.

Mercurous osmiamate.

Mercuric osmiamate.

Ppt.

Ppt.

Potassium osmiamate, K₂N₂O₈₂O₈, or K₂N₂O₈₂O₈, or Si. sol. in cold, much more easily in hot H₂O. Si. sol. in alcohol. Insol. in ether.

Silver osmiamate, Ag₂N₂Os₄O₃. Extremely sl. sol. in H₂O or cold HNO₃+ Ag. Sol. in NH₄OH+Aq.

Sodium osmiamate. Easily sol. in H₂O or alcohol.

Zinc osmiamate, ZnN₁Os₂O₃.

Decomp. by H₂O. Nearly insol. in NH₄OH +Ao.

Osmic acid, H2OsO4

Stable in H₂O containing alcohol Sol. in HNO₂ or HCi+Aq. Not attacked by H₂SO₄ +Aq. (Moraht and Wischin, Z. anorg. 3. 153.) 100 g. H₂O dissolve 5.88 g. H₂OsO₄ at 15°.

100 g, H₂O dissolve 5.88 g, H₂OsO₄ at 15°. (Squire and Cains, Pharm. J. 1905, 74, 720.) Attacked by liquid NH₂ (Gore, Am. Ch. J. 1898, 20, 828.)

Barium osmate, BaOsO₄+H₂O. Insol. in H₂O. (Claus, Pogg. 65, 205.)

Calcium osmate, CaOsO4.

Insol. in H₂O. (Fremy, J. pr 33. 411.)

Lead osmate, Insol. in H₂O. (Fremy.)

Potassium osmate, $K_2O_8O_4+2H_4O$. Sl. sol. in cold, much more sol. in hot H_4O , but is decomp. thereby. Sl. sol. in $KNO_2+A\alpha$. Insol. in dil. or conc. alcohol and ether.

Fremy, A. ch. (3) 12. 516.)
Insol. in conc. saline solutions. (Gibbs, Am. J. Sci. (2) 31. 70.)

Sodium osmate, Na₂OsO₄.

Sol in H₂O; insol in alcohol and ether.
(Fremy, l, c.)

Perosmic acid.

Osminitrous scid

Ammonium osminitrite, (NH₄)₂Os(NO₂)₃+

Sol. in H₂O. Decomp when solution is warmed. (Wintrebert, C. R. 1905, **140**. 586.)

Barum osminitrite, BaOs(NO₂)₄. +H₂O; +4H₂O. (Wintrebert.)

Calcium osminitrite, CaOs(NO₂)₅+4H₂O. (Wintrebert.)

Magnesium osminitrite, MgOs(NO₂)₅+ 4H₂O. (Wintrebert.)

Potassium osminitrite, K₂O₈(NO₂)₅ Very hygroscopic. Very sol in H₂O. Decomp. by HCl, HBr and Hl. (Wintrebert, A. ch. 1903, (7) 28, 135.)

Silver osminitrite, Ag₃Os(NO₂)₅+2H₂O. Sl. sol. in H₂O with partial decomp (Wintrebert, C. R. 1905, **140**, 586.)

Sodium osminitrite, Na₂O₈(NO₂)₁+2H₄O. Sol in H₂O. (Wintrebert) Strontium osminitrite, SrO₈(NO₂)₅+2H₂O.

(Wintrebert)

Zinc osminitrite, ZnOs(NO₂)₂+1/2H₂O.

(Wintrebert)

Osmyloxynitrous acid.

Ammonium osmyloxynitrite, (NH₄)₂OsO₂(NO₂)₂,

Decomp. by boiling cone. HCl and by KOH +Aq. (Wintrebert, A. ch. 1903, (7) 28. 107.)

Barium osmyloxynitrite, BaOsO₃(NO₂)₂+ 4H₂O, (Wintrebert,)

Potassium osmyloxynitrite, K₂O₆O₃(NO₂)₂+ 3H₂O.

SIL₂O,

SIL sol, in cold H₂O. Aqueous solution decomp slowly. Sol, with decomp, in dil. KOH

+Aq. (Wintrebert.)

Silver osmyloxynitrite, Ag₂O₈O₂(NO₂)₂+H₂O.
(Wintrebert.)

3H₂O. (Wintrebert.)

Osmylnitrous acid.

Potassium osmylnitrite, K₂OsO₂(NO₂)₄.

Docomp. by H₂O and by excess of KOH+
Aq. (Weinland, A. ch. 1963, (7) 28, 54.)

Osmisulphurous acid.

Potassium osmisulphite, $[O_8(H_1O)(SO_8)_8]K_6$ +4H₂O.

Ppt. (Rosenheim, Z. anorg. 1899, 21. 144.)

Potassium hydrogen osmisulphite, $[Os_2(H_2O)(SO_2)_{11}]K_{11}H_2+5H_2O$.

Sol. in H₂O without decomp. (Rosenheim.) [Os(SO₃)₀]K₄H₂+2H₂O. Sol. in H₂O without decomp (Rosenheim.)

Sodium osmisulphite, [Os(SO₃)₀]Na₈+8H₂O. Only sl. sol. in H₂O.

 $[O_8(H_2O)(SO_3)_5]Na_6+4H_2O$. Ppt. $[O_8O(SO_3)_4]Na_6+3H_2O$. Ppt. (Rosenheim)

Osmium, Os.

When finely divided and not ignited to a very high temperature, Os is sol. in HNO₂+Aq or aqua regia. When ignited it is not attacked by any acid
Insol in liquid NH₂. (Gore, Am. ch. J. 1888, 20. 828)

Osmum ammonium comps.

See— Oxyosmiumamine comps., OsO(NH₂)₂X. Oxyosmiumdiamine comps., OsO₃(NH₂)₄X₂.

Osmium bromide with MBr. See Bromosmate, M.

Osmium dichloride, OsCl₂.

Deliquescent. Sol. in little, but decomp. by more H₂O, with pptn. of Os. Sol. in conc. alkalı chlorides+Aq with combination and partial decomp. (Berzelius.)

Sol, m alcohol and ether.

Sol, m alcohol and ether.

Hol and H₃SO₄.

Sl. sol in HAO₅ and aqua regia. Slowly sol.
in strong alkali Insol in liquid Cl₂. Insol.
in alcohol and formaldehyde (Ruff, Z. anorg.

Osmium trichloride, OsCla.

1910, 65, 455.)

Hydroscopic. Sol. m conc. H₂SO₄, HCl and conc. HNO₅. Sol in alkalı and in NH₂OH. Insol. in liquid Cl₂. Easily sol. in alcohol. Sl. sol. in ether. (Ruff, Z. anorg. 1910, 65. 453.)

+3H₂O. Sol. in H₂O. (Moraht and Wischin, Z. anorg 3. 153.)

Strontium osmyloxynitrite, SrOsO₃(NO₃)₂+ Osmium tet achloride, OsCl.

Sol in a little H₂O, but decomp. by further addition of that solvent Sol in conc HCl+ Aq

Osmium trichloride with MCI. See Chlorosmite, M.

Osmium tetrachloride with MCI. See Chlorosmate, M.

Osmium sodium chloride, Na₂O₈Cl₂+2H₂O.
Very sol. in H₂O and in alcohol (Rosenheim, Z anorg 1899, 21, 133)

Osmium tetrafluoride, OsF₄.

Sol. m H₂O. (Ruff, B 1913, 46. 948)

Osmium hexafluoride, OsF₆
Decomp. by H₂O and conc. H₂SO₄ Sol in NaOH+Aq. (Ruff, B. 1913, 46, 945.)

Osmium octofluoride, OsF.

Sol. in H₂O, but is somewhat hydrolyzed Sol. in conc H₂SO₄ with decomp Sol in NaOH+Aq (Ruff, B 1913, 46. 944)

Osmium monohydroxide, OsO, zH₂O Insol. in H₂O. Sl. sol. in KOH+Aq Slowly but completely sol. in acids. (Berzelius.)

Osmium dihydroxide, OsO2, H2O.

Sol. in HCl+Aq while still moist. Insol. in H₂SO₄ or HNO₃+Aq. +2H₂O. Sol. in HCl, HNO₃, or H₂SO₄+Aq while still moist (Claus and Jacoby.)

Osmium sesquihydroxide, Os₂O₄H₆.
Sol. m acids, and partly sol. in KOH+Aq.
(Claus and Jacoby)

Osmium sodide, OsI4.

Extremely deliquescent. Sol. in H₂O of alcohol, but solution is unstable. (Moraht and Wischin, Z anorg. 3. 153.)

Osmium potassium nitrosochloride, K₂Os(NO)Cl₅.

Stable in aqueous solution Only sl. attacked by hot HNO₂. (Wintrebert, A. ch. 1903, (7) 28. 132.)

Osmium monoxide, OsO.

Insol, in H₂O or acids. (Claus and Jacoby.)

Osmium dioxide, OsO₂. Insol. in H₂O or acids.

Osmium sesquioxide, Os₂O₂.

Insol. in acids. (Claus and Jacoby.)

Osmium trioxide, "Osmic acid," OsOs. See Osmic acid.

Osmium & hoxide, "Perosmic acid," OsO₄.

Slowly but abundantly sol in H₂O. Sol in alcohol and ether with gradual decomposation. Sol. in NH₄OH+Aq, the solution undergoing decomposition on heating

Osmium oxide ammonia, OsO₂, 2NH₂+H₂O See Oxvosmiumamine hydroxide.

Osmium oxysulphide. Os-S-O-+2H-O

Unstable. $OsSO_3+H_2^1H_2O$ Insol in H_2O . (v. Meyer, J, pi. (2) 16, 77.) $Os_2O_2S_2+H_2O$ Decomp and dissolved by HNO_3 , HCl, or H_2SO_4+Aq . (Moraht and Wischin, Z, anorg 3, 153.)

Osmium sulphide, ()s-S, (?),

(Berzehus)
Mm Laurde Insol in all acids, even in

.

aqua regia.

Osmum desulphide, OsS₂.
Sl. sol. in H₂O; not more sol in alkalı hydrates or carbonates+Aq Insol. in alkalıs after drving (Fremy, A ch (3) 12. 521)

Osmium tetrasulphide, OsS4+rH2O.

Insol. in alkali sulphides, carbonates, or hydroudes+Aq Sol. in cold dil HNO₂+ Aq. (Chaus.)

Osmocyanhydric acid, H₄Os(CN)₆.

Easily sol, in H₂O and alcohol. Insol in

ether (Martius, A. 117, 361.)

Barium osmocyanide, BarOs(CN)₆+6H₅O.

Easily sol. in H_2O and dil. alcohol. (M.) Barium potassium osmocyanide,

 $BaK_2Os(CN)_6+3H_2O$ Eithorescent. Sl. sol. m cold, easily in hot H_2O

Ferric osmocyanide, Fe₄[Os(CN)₆]₁+xH₂O. Insol, in H₂O.

Potassium osmocyanide, K₄Os(CN)₅+3H₂O.
Moderately sol, in boiling, less in cold H₂O.

Insol in alcohol and ether.

Osmosyl ammonium comps.

See Oxyosmium amine comps.

Osmyl pottasium bromide, K₂OsO₂Br₄+ 2H₂O

Same properties as the chloride. (Wintrebert, A. ch. 1903, (7) 28. 94.)

Osmyl potassium chloride, K₂OsO₂Cl₄.
Very sol in H₂O. Solution is stable only

in the presence of a small amt. of HCl. Decomp by hot cone, HCl. +2H₂O. As the anhydrous salt. (Wintrebert, A. ch. 1903, (7) 28, 86)

Osmyl ditetramine comps.

See Oxyosmum diamine comps.

Oxamidosulphonic acid.

See Hydroxylamine monosulphonic acid.

Oximidosulphonic acid.

See Hydroxylamine disulphonic acid.

Oxyamidosulphonic acid.

See Hydroxylamine sulphonic acid.

Oxyammonium salts.

See Hydroxylamine salts.

Oxycobaltamines, acid comps. (Maquenne, C. R. 96, 344.)

Are anhydroovycobaltamine comps , which see. (Vortmann, M. ch. 6, 404.)

Oxycobaltamine chloride, Co₂(NH₂)₁₀O_(OH)Cl₃.

(Vortmann, M ch 6, 404.) Co₂(NH₃)₁₀O₂Cl₃, HCl+3H₂O. Is anhydroxycobaltamine chloride, which see.

- chloronitrate hydrochloride, Co₅(NH₃)₁₀(OH)(O.OH)(NO₃)₂Cl₃, 4HCl+3H₂O.

Is anhydrooxycobaltamine chloronitrate,

Co₂(NH₂)₁₀ (OH O(OH)) (SO₄)Cl₂, 4HCl Easily decomp.

Si sol in H₂O. Decomp. by much H₂O.

(Vostmann)

— nitrate, Cog(NH₃)₁₀(OH)(O.OH)(NO₃)₄

+H₂O. Decomp. by H₂O. Co₂(NH₂)₁₀(OH)(O,OH)(NO₃)₄, HNO₃+ 2H₂O. Decomp. by H₂O.

— nitratosulphate, Co₂(NH₃)₁₀(OH)(O.OH)(SO₄)(NO₂)₂, 4HNO₃.

Decomp, at once by H₂O,

			OXYG	EN		63				
Oxycobaltamin	ae sulphate,			Absorpts	on of O by H ₂ O —C	ontinued				
	10O2(SO4)2, H2SO			t°	β	βι				
aggily sol. in	n H ₂ O with of acidified H ₂ O		n acids	14	0.3486	0 3431				
(Maquenne, C	R 96. 344)			15 16	3415 3347	3358 3288				
$\mathrm{Co_{2}(NH_{8})_{10}}$	(SO ₄):	+3H ₂ C).	17	3283	3220				
	COTT			18 19	3220 3161	3155 3093				
$Co_2(NH_3)_{10}$	(O(OH))(HSO)	4 D	écomb	20	3102	3031				
violently by I	I ₂ O ′			21 22	3044 2988	2970 2911				
Oxygen, O2.			- 1	23	2934	2853				
100 vols H ₂ O (Otto-Graham)	absorb 4 6 vols O	gas at o	ord temp	24 25	2881 2831	2797 2743				
Sol in 27 pt	s HrO at ord tem		louze and	26	2783	2691				
100 vols H ₂ O	dissolve 0 925 vol		y-Lussac)	27 28	2736	2641 2592				
1 vol H ₂ O at	t° and 760 mm. educed to 0° and	absorb	s V vols.	29	2691 2649	2545				
		to		30 31	2608 2572	2500				
to V	to V	100	v	32	2537	2459 2419				
0 0 04114	7 0 03465 8 0 03389		0 03034	33 34	2503	2380 2342				
2 0 03907	9 0.03317		0 02949	35	2471 2440	2396				
3 0 03810			0 02914	36 37	2410	2270 2236				
4 0 03717 5 0 03628			0 02858	38	2382 2355	2236				
6 0 03544	13 0 03082	20	0 02838	39 40	2330	2171				
(I	Bunsen's Gasome	try)		41	2806 2280	2140 2107				
Coefficient	of absorption o	f 0 b		42 43	2256 2232	2075				
sen and Paul	10899t+0 000022 1. A 93. 21.)		(Bun-	44	2209	2043 2012				
Coefficient	of absorption o 08; at 12 6° = 0.03	f O it	H ₂ O at	45 46	2187	1981				
6.4°=0 04140 jew, Z. phys	18; at 12 6° = 0.03 Ch 6, 148.)	0011	(Timoře-	47	2166 2145	1952 1922				
		_ = "sc	lubility,"	48 49	2126	1894				
1 e, the	amount of gas (re	educed	to 0° and	50	2108 2090	1865 1837				
760 mm) which is absor- id when the bard	bed by meter	indicates	52 54	2057	1782				
760 mm	 pressure; β = 0 	oefficie	ant of ab-	56	2026 1998	1728 1674				
sorption hand w	, i. e , amount a hen the pressure	of the	one steelf	58 60	1971	1619				
without	the tension of the	liguid	amounts	62	1946 1921	1565 1508				
to 760	mm; $\beta_1 = \beta \frac{760}{760}$	1, wh	en f=va-	64 66	1897	1450				
	ion of solvent at t			68	1874 1853	1392 1332				
to.	β	1	β1	70 72	1833	1270				
		-		74	1815 1799	1208 1144				
0	0 04890 4759	0	04860 4728	76 78	1785	1078				
2	4633		4601	80	1772 1761	1010				
3 4	4512 4397		4479 4362	82	1752	0865				
5 6	4286		4250	84 86	1743 1736	0788				
6 7	4181 4080	1	4142 4040	88	1729	0622				
8	3983		3941	90 92	1723 1717	0532 0437				
9 10	3891 3802		3847	94	1712	0337				
11	3718		3756 3670	96 98	1708 1704	0231 0119				
12 13	3637 3560	1	3587 3507	100 -	7001	0000				
10	1 9900	1	9907		(Winkler, B. 24 3)	300)				

ASS OXYGEN

Absorption of () by H₂O at t° and 760 mm. β = coefficient of absorption.

_					
t°	β	t°	β	t°	β
0	0 04961	23	0.03006	-16	0 02163
1	4838	21	2956	-17	2139
2	4720	25	2904	48	2115
3	4606	26	2855	49	2092
2 3 4 5	4496	27	2808	50	2070
5	4350	28	2762	51	2049
6	4286	29	2718	52	2029
6 7 8	4186	30	2676	53	2009
8	4089	31	2635	54	1990
9	3994	32	2596	55	1972
10	3903	33	2558	56	1955
11	3816	34	2521	57	1938
12	3732	35	2486	58	1922
13	3651	36	2452	59	1907
14	3573	37	2419	60	1893
15	3497	38	2387	65	1832
16	3425	39	2356	70	1787
17	3357	10	2326	75	1752
18	3292	41	2297	80	1726
19	3230	12	2269	85	1707
20	3171	43	2241	90	1693
21	3114	44	2214	95	1684
22	3059	45	2188	100	1679

Bohr and Bock, W. Ann. (2) 44. 318.)

Coefficient of absorption of O by H₂O between 0° and 30°=0.04890-0.0013413t+
0.00002932*-0.0000209334* (Winkler, l.c.)
Solubility m H₂O at 25°=0.03080; at 15°=
0.03630. (Geffeken, Z. phys Ch. 1904, 49.
260.)

Absorption of O_2 by distilled H_2O at t^o a = ccm of O_2 absorbed by 1 l. of H_2O at t^o and 700 mm.

to.	8	to.	8	to.	a
0	49 24	17	33.21	34	25.19
1	47 94	18	32 58	35	24 85
2	46 65	19	32 01	36	24 52
1 2 3	45 45	20	31.44	37	24 20
4	44 31	21	30.91	38	23 89
5	43 21	22	30 38	39	23.59
6	42 15	23	29 86	40	23.30
7	41 15	24	29 38	41	23.02
ġ	40 19	25	28 90	42	22.75
9	39 28	26	28 42	43	22,49
10	38 37	27	27.94	44	22 24
îĭ	37 51	28	27 51	45	22.00
12	36.75	29	27 08	46	21.77
13	35 98	30	26 65	47	21 55
14	35 26	31	28.27	48	21 34
15	34 55	32	25.90	49	21 14
16	33.88	33	25 54	50	20 95
10	00.00	11 00	AU 04	1 00	20 00

(Fox, Trans. Faraday Soc. 1909, 5, 74.)

Solubility in H₂O at various pressures,

V = volume of the absorbing liquid P = Hg-pressure in metres. λ = coefficient of solubility.

v	1°	P	λ		
33 320 ccm.	23°	0. 9595 1 0941 1 2883 1. 4976 1 7638 2 0838 2 0838 2 5011 3 0402 3 8675 4 2504 4 6301 5 6973 6 1857 6 7343 7 3051 7 7138 8 1406	0 02937 0 02938 0 02938 0 02935 0 02939 0 02931 0 02928 0 02909 0 02852 0 02852 0 02818 0 02772 0 02772 0 02741 0 02708 0 02708		
32.003 ccm.	25 9°	0.8611 0.9808 1.0833 1.2039 1.4112 2.6482 2.8995 3.2883 3.9133 4.2720 4.6905 5.0559 5.6141 6.0120 0.5087 7.1056 7.4729	0 02848 0 02849 0 02846 0 02842 0 02847 0 02831 0 02831 0 02830 0 02798 0 02762 0 02740 0 02719 0 02626 0 02626 0 02740 0 02626 0 0262		

(Cassuto, Phys. Zeit 1904, 5, 236.)

8 1889

0.02645

Solubility of O in H₂O at 25°=0 0294 (Findlay and Creighton, Bioch. J. 1911, 5.

Coefficient of absorption for H₂O = 0.03398 at 15°; 0.03375 at 15.3°, 0.03330 at 16.2°. (Müller, Z. phys Ch. 1912, **81**, 494.)

Solubility in H₂O at t°

170 = solubility of atmospheric O₂ in H₂O at 760 mm and t°.

t°	lrso	t°	1200
0 1 2 3 4 5 6 7 8 9	10.26 9 99 9 73 9 48 9 25 9 02 8 80 8 59 8 39 8 20 8 02	13 14 15 16 17 18 19 20 21 22 23	7 51 7 36 7 21 7 07 6 93 6 80 6 67 6 55 6.43 6 32 6 21
11 12	7 84 7 67	24 25	6.10 6 00

(Carlson, Zeit, angew Ch 1913, 26, 714.)

Solubility of atmospheric O₂ in mixtures of distilled H₂O with sea water diminishes regularly with the proportion of sea water present. (Clowes, J Soc Chem Ind 1904, 23. 359.)

No. of ccm. of O₃ absorbed by 1 l. of sea water from a free dry atmosphere of 760 mm. pressure.

Cl per 1000	t =	00	10		4° 8°		12°		16°		20°		24°		28°	
4	9	83	8	85	8.	.04	7	68	6	80	6	33	5	91	5	53
8 12 16 20	8.	90 43	8	04 64	7	33 97	6	04 74 43 11	5	24 96	5	82 56	5 5	44 20	5	08 86

(Fox. Trans. Faraday Soc. 1909, 5, 77.)

For O absorbed from the air, see also air, atmospheric, p. 1.

Absorption of O₂ by acids+Aq. M = content in gram-cquivalents per litre S = solubility

HNO2+Aq.

M	S 25°	S 15°
0 492 0 494 1.00 1 008 1 88 1 901	0 03021 0 03016 0 02954 0 02963 0 02853	0 03478 0 03490 0 03354 0 03365 0 03175 0 03166

Absorption of O₂ by acids+Aq.—Continued HCl+Aq.

M	S 25°	S 15°		
0 578 0 579 1 170 1 176 1 736 1 982	0 02963 0 02960 0 02817 0 02833 0 02733 0 02674	0 03431 0 03410 0 03217 0 03109 0 03069 0 02988		

 $\frac{\text{H}_2\text{SO}_4}{2}$ + Aq

M	S 25°	S 15°
0 489 0 527 0 977 1 017 1 896 1 829 2 947 3 512 4 951 5 293	0 U2887 0 02875 0 02757 0 02745 0 02545 0 02577 0 02285 0 02198	0 03366 0 03375 0 03210 0 03217 0 02886 0 02930 0 02584 0 02399 0 02174 0 02067

(Geffcken, Z phys Ch 1904, 49. 269)

Absorption of O_2 by H_2SO_4+Aq at t^o . a = coefficient of absorption

ormality of the acid	to.	۵
0	20 9	0 0310
4 9	20 9	0 0195
8 9	20 9	0 0155
10.7	21 2	0 0143
20 3	21 1	0 0119
24 8	21 5	0.0103
29 6	20 8	0 0117
34 3	20 9	0 0201
35 8	21 2	0 0275

(Bohr, Z phys. Ch. 1910, 71. 49.)

Absorption of O_2 by NaOH+Aq. M = content in gram-equivalents per litre S = solubility.

M	8 25°	S 15°
0 559	0 02434	0 02777
0 601	0 02424	0 02784
1 033	0 02020	0 02291
1 059	0 01991	0 02262
2 077	0 01295	0 01479
2 089	0 01272	0 01456

Absorption of O2 by KOH+Aq.				
М	S 25°	8 15°		
0 577 0 579 1 157 1 170	0 02447 0 02435 0 01920 0 01914	0.02791 0.02791 0.02191 0.02181		

(Geffeken, Z. phys. Ch. 1904, 49, 270.)

NaCl+Aq with a chlorine content of 1,930 per 100,000 dissolved 82.9% of the amount of O₂ dissolved by distilled H₂O alone (Clowes, J. Soc Chem. Ind 1904, 23.359.)

Absorption of O₂ by salts+Aq.

M = content in gram-equivalents per latre.

S=solubility. Absorption of O = by $\frac{K_4SO_4}{2}$ +Aq.

М	S 25°	S 15°		
0 499 0.506	0 02528 0 02530	0 02944 0 02922		
0 968 0.970	0 02096	0 02395 0 02377		

Absorption	of	0.	hv	NaCl+Ag

м	S 25°	S 15°
0.530	0.02598	0 03045
0 535	0 02604	0 03052
1 020	0 02228	0.02601
1.034	0 02202	0.02557
1 880		0.01898
1 890	0.01663	0.01904
1 021	0.01654	0.01880

(Geffcken, Z. phys Ch. 1904, 49. 270.)

Solubility of O₂ in NaCl+Aq.

Data indicate oc. O₂ dissolved per 1 at 760 mm, and O².

0 6,50 3 14 1 2	20°
5 5.80 2.84 1.2: 10 5.25 2.59 1.1: 15 4.77 2.41 1.1: 20 4.39 2.25 1.0: 25 4.06 2.13 1.0: 30 3.76 2.01 0.9:	7

(Winkler, Z. anorg, 1911, 24, 342.)

Solubility of O₁ in KCN+Aq at 20°. % KCN 1 10 20 30 50 Coeff, of abs. 0.029 0.018 0.013 0.008 0.003 (McLaurin, J S. C. I. 1893, 63, 737.)

1 vol. alcohol absorbs 0 28397 vol O at all temperatures between 0° and 24°. (Bunsen.)

Absorption by alcohol (99.7%) at t°.

β = coefficient of absorption;
β, = colubbity (See p. 635.)

β ₁ =solubility. (See p 635.)			
t°	β	β_1	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 22 22 23 24	0 22370 0 22370 0 22329 0 23224 0 23149 0 23077 0 23005 0 22834 0 22724 0 22724 0 22581 0 22581 0 22582 0 22581 0 22455 0 22389 0 22581 0 22455 0 22389 0 22581 0 22456 0 22389 0 22581 0 22485 0 22581 0 22485 0 22581 0 22485 0 22581 0 22485 0 22581 0 22485 0 22581 0 22485 0 22581 0 22485 0 22588	0 22078 0 22878 0 22878 0 22878 0 22877 0 22469 0 22469 0 22565 0 22047 0 21887 0 21887 0 21887 0 21887 0 21887 0 21887 0 21887 0 21887 0 21887 0 21887 0 21886 0 21246 0 20883 0 20690 0 20459 0 20459 0 20459 0 20472	
24	0 21101	0 20112	

(Timofejew, Z. phys Ch. 6. 151.)

Solubility of O₂ in alcohol at 20° and 760 mm.

Wt % | Vol % | Wt % | Vol. %

Wt % alcohol	Vol %	Wt %	Abs. O2
0 0 9 09 16 67 23.08 28 57	2 98 2.78 2.63 2.52 2.49	33 33 50 0 66 67 80 0	2.67 3.50 4.95 5.66

(Lubarsch, W. Ann. 1889, (2) 37. 525.)

Solubility of O_2 in methyl alcohol at to.				
to	1	t°	i.	
0 5 10 15	0.31864 0.30506 0.29005 0.27361	25 · 30 40 50	0.23642 0 21569 0 16990 0.11840	

(Levs, Gazz. ch. it 1901, 31. II, 513.)

Solubility of O₂ in ether at 0°=0.4235; at 10°=0.4215 (Christoff, Z. phys. Ch. 1912, 79. 459.)

Solubility of O2 in acetone at to

to.	l.	t°	1
0 5 10 15 20	0.2997 0.2835 0.2667 0.2493 0.2313	25 30 40 50	0 2127 0.1935 0 1533 0 1057

(Levi. Gazz, ch. it 1901, 31, II, 513.)

Absorption of O2 by chloralhydrate+Aa.

o = temp, of the solution.

P = % chloralhydrate in the solution. B to = coefficient of absorption at to

β 15° = coefficient of absorption at 15°. β 20° = coefficient of absorption at 20°

t°	P	βt°	β 15°
18 3 16 9 15.4 16 6 12 8 16 2 15 9 17 2 16 9	22.9 28 0 36 6 38 6 51 3 58 44 70 0 80 85 80 9	0 02759 0.02690 0.02590 0 02402 0 02439 0 02350 0 02659 0 03200 0 03140	0.02940 0.02800 0.02560 0.02477 0.02339 0.02407 0.02710 0.03300 0.03250
			β 20°

			β 20°
20 0 21 0 21 0 20 4 21.8 21 0	16 9 32 0 52 9 61 08 65 5 71 4	0 02795 0 02443 0 02375 0 02390 0 02500 0 02680	0 02795 0 02495 0 02325 0 02410 0 02580 0 02730
22 2	78 0	0 03090	0 03280

(Müller, Z. phys. Ch. 1912, 81. 499)

Absorption of O. by glycerine+Ag

to = temp. of the solution

P = % glycerine in the solution

B to = coefficient of absorption at to β 15° = coefficient of absorption at 15°.

6°	P	βt°	β 15°
12.2	20 5	0 02904	0.02742
12.5	25 0	0 02654	0.02521
14.6	37 3	0 02038	0.02022
13.5	45.0	0 01800	0.01744
12.4	52 0	0 01623	0.01570
12.1	71 5	0 01010	0.00950
13.3	88 5	0 00906	0.00886

Absorption of O. by glucose+Aq.

t°=temp, of the solution P = % glucose in the solution.

\$ to = coefficient of absorption at to. 8 20° = coefficient of absorption at 20°.

t°	P	βt°	β 20°
21 2	10 84	0 02650	0 02690
21 5	20 7	0 02202	0 02250
19.9	33 8	0.01814	0 01815
20 5	51.9	0 01378	0 01390
21.7	58.84	0 01221	0 01250

(Muller)

Absorption of O2 by sucrose+Aq. t°=temp, of the solution

P = % sucrose in the solution.

β to = coefficient of absorption at to. \$15° = coefficient of absorption at 15°

\$°	P	βt°	β 15°
15 3		0 03375	0.03400
16 2		0 03330	0.03397
16 0	12 1	0.02911	0 02969
15 6	24 38	0 02367	0 02396
16 6	28.44	0 02113	0 02181
15 6	42 96	0 01582	0 01600
16.2	49 25	0 01348	0 01380

(Müller.)

Abundantly absorbed by oil of turpentine, Oil of turpentine absorbs its own vol. O when exposed two weeks to the air, but does not give it off on boiling. (Brandes.)

Absorbed by other oils, but this is decomposition rather than absorption, as the oils are oxidized. (See Storer's Dict.)

100 vols. arterial blood dissolve 10-13 vols.

O. (Magnus.) Coefficient of absorption for petroleum =

0 202 at 20°; 0.229 at 10°. (Gniewasz and Walfisz, Z phys Ch. 1.70.) The author examined the solubility of O2 and N2 at low temp in alcohols, ethers, acetone, CHCla, petroleum, benzene and various inorganic liquids; at low temp. the solubility of the N₂ mereases at the same rate as that of the O₂ (Claude, C R. 1900, **131**, 448.)

Oxydimercuriammonium bromate. (NHg₂OH₂)BrO₂

(Rammelsberg, Pogg. 55. 82.)

 carbonate, (NHg₂OH₂)₂CO₃+½H₂O. Insol, in H_{*}O. Decomp by HCl+Aq only when conc. Not decomp by boiling KOH+ Ag Decomp, by KI or KgSrl-Ag. (Hirzel.) -H_{*}O As above. (Hirzel.)

Oxydanercuriammonum chloride.

(NHg₂OH₂)Cl. Is dimercuriammonium chloride, NHg-Cl+

H.O. which see ---- oxylemercuriammonium chloride.

(NHg₂OH₂)Cl, (NHg₂O₂H₂)Cl (?) Insol. in H2O. Easily sol. in dil, HCl+Aq.

msol, in H₂O. Easily sol, in on, HCl+Aq. More difficulty sol, in very dil, H₂SO₄, Fol, in sol m cone H₅SO₄, Sol, in boiluig NH₄Cl+Aq, or (NH₄)₂SO₄+Aq. Decomp by KOH+Aq. (Schmieder.)

- chromate, (NHg-OH-)-CrO4. Not decome by KOH+Aq. (Hirzel, J. B.

1852, 421) - mercuric chromate, (NHg2OH2)2CrO4,

4HgO, 3CrO. Decomp, by HNO, without going into solu-

tion. Easily sol in HCl. (Hirzel)

Composition is (NHg₂0H₃)₄O, 2CrO₈,
3[(NH₄)₄O, 2Cr₂O₄] = (NHg₂0H₃)₂Cr₂O₇, 3(NII₄)₂Cr₂O₇. (Hensgen, R t. c. 5. 187) Probably (NHg2)2Cr2O7, 3(NH4)2C12O1+ 2H,O.

--- fluoride, acid, (NIIg2OH2)F, HF. (Finkener, Pogg. 110, 632.) Probably NHg.F, HF+H-O

-hydroxide, $(NHg_0OH_0)OH = NHg_0OH +$ (Millon's base.) Sl. sol. in H₂O, especially

if warm. Sol. in 13,000 pts, H.O at 17°, and 1700 pts. at 80°. Insol. in alcohol or ether. (Gerresheim, A. 195, 373.) +H₂O Insol m H₂O or alcohol. Sol m traces in NH₄OH+Aq. Not decomp. by cold

KOH+Aq; sl decomp, if hot (Millon.) - ammonium iodate, (NHg2OH2)IO3, 2NHJO.

Insol. in H₂O. (Millon, A. ch. (3) 18, 410.)

 iodide, (NHg₂OH₂)I. Sol. in warm HCl+Aq. Not decomp, by boiling KOH+Aq. Sol. in warm KI+Aq. (Rammelsberg, Pogg. 48. 170.) Correct formula is NHg, I+II,O. (Ram-

---- nitrate, (NHg₂OH₂)NO₂,

melsberg.)

male, interpretation by bolong of symmercuridian monium sulphate, the symmetry of the symmetry (Pesci, Gazz, ch. it. 20, 485.)

ammonium nitrate, NHg2OH2)NO3. 2NH, NO, +II,O.

Decomp. by H₂O. Kane, A. ch. **72**, 242.) Is dimercuriammonium ammonium nitrate, NHg,NO, 2NH,NO,+2H,O. (Pesci.)

Oxydemercurismmonium oxide, (NHg,OH.).O.

Insol in H_{*}O or alcohol; not attacked by boiling cone KOH+Aq Sol. in hot NH4NO, + Aq, NH₄Cl + Aq, (NH₄)₂SO₄ + Aq, NH₄C₂H₂O₂+Aq, (NH₄)₂C₂O₄+Aq. (Millon, A. ch. (3) **18**. 397.)

- mercuric phosphate, Hg(NHg₂OH₂)PO. Insol. in H₃O. Slowly sol. in hot HNO₃+ Aq, not decomp. by boiling with KOH+Aq, but by KI or K₃S+Aq. Sol. in HCl+Aq or much hot (NH₂)±HPO₄+Aq. (Hirsel.)

--- mercuric sulphite, (NHg-OH-)-SO. HeSO.

Insol. in H₂O. Sol in much (NH₄)₂SO₃+ Aq. Sol. in HCl+Aq with decomposition, Insol, in boiling KOH+Aq. (Hirzel.)

---- sulphate, (NHg2OH2)2SO4. Sol, in traces in H.O. Easily sol in HCl or

HNO₂+Aq. (Kane.) Insol. in HNO₃+Aq. (Hnzel.) Slowly sol in boiling cone, H2SO4, (Hir-

zel) Insol. in cone, easily sol. in dil. H₂SO₄+ Aq. (Schmieder, J pr. 75, 147.) Moderately sol in much (NH₄)₂SO₄ or boil-

ing NH₄Cl+Aq. Not decomp. by boiling KOH+Aq (Hirzel.) Easily decomp, by boiling with dil, KOH+

Aq. (Schmieder) Does not exist. (I 2NH₄, 2HgO, SO₄ (Pesci.)

See Dimercuriammonium sulphate.

Oxytrimercuriammonium chloride, (NHg₂O₂H₂)Cl (?) Insol. in H.O.

- nitrate, (NHg₃O₂H₂)NO₃.

Sol. in cold HCl+Aq, from which it is pre-cipitated by NH₄OH+Aq. Sol. in NH₄OH+ Aq without decomp Not decomp. by H₂SO₄ or warm KOH+Aq. (Pagenstecher.)
Does not evist (Pesci, Gazz. ch. it. 20.

Oxytrimercurioxydimercuriammonium sulphate, NH₂Hg₅O₄>SO₄.

Completely sol, in NH₄Cl+Aq, or (NH₄)₂SO₄+Aq. Sol, in dil. or cone, HCl+Aq, and very dil. H₂SO₄+Aq. Insol, in HNO₃+Aq. or cone, H-SO₄-Aq. or +Aq or conc. HaSO4. (Schmieder) Does not exist. (Pesci.)

OZONE 641

Oxytetramercuriammonium mercuric nitrate (?), 2(NHg₄O₂)NO₃, HgNO₃ (?), Completely insol in HNO₈+Aq. Sol. in warm HCl+Aq. Slowly decomp, by boiling KOH+Aq. Gradually sol in hot cone. Oxysulphantimonic acid. NH,NO₃+Aq (Hirzel.) Does not exist. (Pesci, Gazz, ch it. 20.

Oxynitrosulphonic anhydride, $S_2O_5 < \frac{NO_2}{ONO_2}$ (?).

Sol. in H₂O with decomp. (Weber, Pogg. 123, 339.)

Oxyosmiumamine hydroxide (Osmosyldiamine hydroxide),

OsO(NH₃OH)₂.
Insol. in H₂O. Sl sol. in acids Sol in KOH+Aq. When mosst, sol. in NH4OH+

Oxyosmiumdiamine chloride (Osmyltetramine chloride), OsO2(NaHaCl)2,

Sl. sol in cold, more easily in hot H2O Insol. in NH,Cl+Aq. (Gibbs, Am Ch J 3, 233)

- --- chloroplatinate, OsO_{*}(N_{*}H_{*}Cl)_{*}, PtCl_{*}. Sl. sol in HoO, (Gibbs.)
- --- hvdroxide, OsO2(N2H4OH)2. Known only in solution
- nitrate, OsO₂(N₂H₂NO₂)₂
- ---- sulphate, OsO2(N2H6)2SO4+H2O. (Gibbs, Am. Ch. J 3. 233.)

Oxyphosphuretted hydrogen (?). P.H(OH).

P.O of Leverrier, and Goldschmidt has this formula according to Franke (J. pr. (2) 35. Decomp. slowly by H₂O or alkalies. Forms potassium salt, P.H(OK), sol. in H2O.

- hydrosodide, P.H(OH), HI. Decomp at 80°.

Sesquioxyplatisulphuric acid, Pt₂O₈, 3SO₈, SO₄H₂+11½H₂O.

Sol in H.O. (Blondel, A. ch. 1905, (8) 6.

Barium sesquioxyplatisulphate, Pt₂O₃, 3SO₃, SO₄Ba+8H₂O.

Very sol. in H2O. (Blondel')

Potassium sesquioxyplatisulphate, Pt₂O_s, 3SO3, SO4K2+2H2O (Blondel.)

Sodium sesquioxyplatisulphate, Pt₂O₅, 3SO₃, SO₄Na₂+8H₂O. Very sol in H₂O. (Blondel.)

See Sulphoxyantimonic acid.

Oxysulpharsenic acid.

See Sulphoxyarsenic acid.

Oxysulphazotic acid, H4S4N2O14=

 $(8O_5H)_3 = N$ $NO-8O_3H$.

Known only in its salts. (Claus, A. 158. 52, 194.)

Has formula $(SO_3H)_2N \xrightarrow{O} N(SO_3H)_2$.

(Raschig, A 241, 161.)

Potassium oxysulphazotate, NO(SO₂K)₂, Insol. in alcohol (Fremy, A ch (3) 15.

According to Raschig the formula is

 $(80_{\sharp}K)_{\sharp}N \xrightarrow{0} N(80_{\sharp}K)_{\sharp}$

Very sol. in water, with rapid decomposition. (Raschig.) See also Peroxylaminesulphonate, potassium.

Oxysulphotungstic acid. See Sulphotungstic acid.

Oxysulphovanadic acid. See Sulphoxyvanadic acid.

Ozone, Oa.

Not appreciably sol. in H₂O. (Schönbein.) Imparts its taste and properties to H₂O.

Later, Carsus (B. 5. 520) found that 1000 vols. H₂O at 1-2.5° absorb 5.11 vols O₂ (red. to 0° and 760 mm.). He also still later (A. 174. 1) found, by conducting the gas for 9-12 hours through H₂O, that 1000 vols, H₂O absorb a maximum of 28.160 vols O₂. The oscenized oxygen used contained 3.44 vols, O₄ in 100 vols, Oz. Since gases are absorbed in proportion to their partial pressure, which is very small for the O2, the amount of absorption of water for the gas is very considerable. Carus calculated the coefficient of absorption at +1° to be 0.834.

Ozone is not at all absorbed by H2O; the H₂O through which ozone had been passed gave no reactions for ozone. (Rammelsberg, B 6, 603.)

. Schöne (B. 6. 1224) corroborates Carius, and finds 8 81 vols to 1000 vols. H₂O as a maximum amount absorbed. Sol. in H₂O. (Leeds, B. 12, 1831)

H₂O takes up ²/₃ of its vol of O₃ at 0° and 760 mm, pressure and ¹/₂ of its vol at 12°, or about 15 times that of oxygen at the same pressure and temp (Malfert, C R 1894, 119, 951.)

Solubility in H₂O at t°.

Solubility in 11 ₂ O at t [*] .				
Temp	Wt, Ordis- solved in 11 H ₂ O	Wt O ₄ m gaseons mix- ture above the solution	Coefficient of solubility of O ₃	
0	39 4 mgr.	61.5 mgr.	0 641	
6	34 3	61	0 562	
11.8	29.9	59 6	0 500	
13	28	58 1	0 482	
15	25 9	56 8	0 456	
27	13 9	51 4	0 270	
32	7 7	39 5	0 195	
40	4.2	37 6	0 112	
47	2 4	31.2	0 077	
55	0 6	19 2	0 031	
60	0.0	12 3	0.000	
6	39 4 mgr.	61.5 mgr. 61 59 6 58 1 56 8 55 2 51 4 39 5 37 6 31.2 19 2 12 3	0 641	
11.8	34 3		0 562	
13	29.9		0 500	
15	28		0 482	
19	25 9		0 456	
27	21		0 381	
32	13 9		0 270	
40	7 7		0 195	
47	4.2		0 112	
55	2 4		0 077	
60	0 6		0 031	

(Mailfert, C. R. 1894, 119, 952.) Sulphility of ozone in acadulated IL-O.

Temp	Coefficient of solubility of ozone	Composition of solution	
30° 33	0 240 0.224	1 1. H ₂ O+0 7 cc. H ₂ SO	

(Mailfert.)

0 156

0.096

0.00002 pt. by weight is sol in 1 pt. by weight H₂O at ordinary temp, and pressure Ladenburg, B 1898, **31**, 2510.)

l. H₂O+0.9 cc.

4-0.3 cc.

,,

The solution of O₃ in H₂O cannot be brought into equilibrium, because when the gas is blown through the liquid, a portion is continually decomposed, although the concentration remains constant (Inglis, Chem. Soc. 1903, 83, 1012.)

About 10 mg. ozone are sol. in 1 l. H₂O at +2°; 1.5 mg. ozone are sol. at +28°. (Moufang, C. C. 1911, II. 1674.) Solublity in 0 l-N H.SO.

C solution C gas = 0.23 at 20°; 0.44 at 0°. (Luther, Z. Elektrochem 1905, 11, 833.)
The absorption coefficient of the gas in 0.1 N H₂SO₄ solution is 0.487 (Rothmund, C. C. 1912, I, 1201.)

Sol. in H₂C₂O₄+Åq. (Jeremin, B. 11. 988) Completely absorbed by oil of turpentine and oil of cinnamon. (Sorct, A. ch. (4) 17. 113.) Dipalladamine chloride, Cl₂Pd₂(NH₂)₄Cl₄=

Cl—Pd < NH,Cl NH,Cl Cl—Pd < NH,Cl

Cl—Pd < NH₂Cl NH₃Cl.

Sl. sol. in H₂O. (Deville and Debray, C. R. 38, 296.)

ld Palladium, Pd

"Not attacked by H₂O. Sl. attacked by H₂O

135 sp gr (Rose)
Eastly sol, in aqua regia SI sol in cone, but msol in dil HI+Aq Sol in cone boiling H₂SO₄. Sol. in boiling FeCl₃+Aq. Sol. in the H₂SO₄ sol. sol. but he H₂SO₄ sol.

in HBr+Aq with a little HNO₃.
Insol in liquid NH₃. (Gore, Am Ch. J. 1898, **20**. 828

Palladium ammonium compounds.

Palladamine comps., Cl₂Pd₂(NH₈)₄Cl₄
Palladosamine "Pd(NH₈)₄Cl₂
Palladosamine "Pd(NH₂)₂Cl₂

Palladium dibromide.

Not known in pure state.

Palladium bromide with MBr. See Bromopalladite, M.

Palladium tetrabromide with MBr.

See Bromopalladate, M.

Palladous phosphorus bromide, Pd₂P₂Br₁₀.

Properties as the corresponding chloride.

(Streeker, B. 1909, 42, 1776)

Palladium subchloride, Pd₂Cl₂

Deliquescent. Decomp. by H₂O, NH₄Cl,

KI, or NH₄OH+Aq Kane.) Sol. in acctone. Naumann, B 1904, 37. 4328.)

Palladium dichloride, PdCl2

Slowly but completely sol, in H₂O +2H₂O Not deliquescent when pure.

Slowly sol. in H₂O. Much more sol in H₂O containing HCl
Sol. in acctone (Eidmann, C. C 1899, II.

1014.)
Sol. in othyl acetate. Naumann, B 1904,

Palladium dichloride with MCl. See Chloropalladite, M.

Paliadium tetrachloride with MCl. See Chloropaliadate, M.

Palladous phosphorus chloride, PdCl₂, PCl₂.

Decomp. by H₂O into deliquescent P(OH)₃,
PdCl₂. Decomp by alcohol. (Fink, C. R.

PdCl₂. Decomp by alcohol. (Fink, C. R. 115. 176.) Decomp. by H₂O. Sol. in CHCl₃ and C₈H₃. Insol. in ligroin and CCl₄. (Strecker, B 1909,

42. 1775)

PdCl₂, 2PCl₂. Sol. in C₆H₆, and decomp.
by H₂O (Fink.)

Palladous chloride carbon monoxide, PdCl2, Palladous oxide, PdO. 2CO Decomp. by heat (Fink, C R. 1898, 126. A. 174, 160)

2PdCl₂, 3CO Decomp. by H₂O Sol. in Palladic oxide, PdO₅. CCl₄ (Fink)

Palladium diffuoride, PdF2

Sl sol. in H2O or HF+Aq Sl. sol while moist, in NH₄OH+Aq, insol. after drying, in NH₄OH+Aq. Insol in boiling NaF or NaHF2+Aq (Berzelius)

Palladium hydride, Pd₂H (?)

Palladous hydroxide, PdO, vH2O (?). hydrates, and carbonates+Aq Sol, in hot NH₄Cl+Aq (Rose.) Insol. in Na₂B₄O₇, and Na₂HPO₄+Aq. (Claus.)

Palladic hydroxide, PdOz, xH2O

Slowly sol in acids Sol in cone, HCl+ Ag without decomp. With dil. HCl+Aq, Cl2 A 180. 240)

Palladous hydroxide hydroxylamine. Pd(NH_{*}O)_{*}(OH)_{*}.

SI sol, in H2O. Sol, in dil, HCl and in dil. H₂SO₄. (Zersel, A 1907, 351, 445)

Palladous sodide, PdI2

is evolved. (Berzelius)

Insol in H₂O. Can be detected as a brown coloration in presence of 400,000 pts. H₄O. (Lassaigne)

Si sol, in HI+Aq Easily sol in KI+Aq (Lassaigne, J. ch. méd 11. 57.)

Insol. in dil. HCl+Aq, but slightly sol. in saline solutions (Fresenius Same solutions (resembs)
SI sol. in hot conc. HNO₂+Aq. Sol. in
H₂SO₂+Aq, Cl₂+Aq, Br₂+Aq, I₂+Aq, and
CN+Aq, also in HCN, and MCN+Aq.
Insol. in dil. H₂SO₃, HCl. H₂PO₄, HNO₃, or
HC₁H₂O₂+Aq, or in the K, Na, or NH₄ salts of those acids Insol in CuCl2, ZnCl2, or Pb(C₂H₃O₂)₂+Aq. Insol in KBr+Aq ex-cept in presence of a free mineral acid, but not HC2H2O2. Insol in sugar or starch+Aq,

uric acid, alcohol, ether, or oil of lemon. Somewhat sol. in urine. Easily sol in NH₂OH +Aq, even when dil, with evolution of heat and decomposition (Kersten, A. 87, 28.) Insol, in alcohol or ether.

Sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Palladous potassium iodide. See Iodopalladite, potassium.

Palladium suboxide, Pd₂O.

Decomp, by acids into palladious salt and Pd (Kane, Phil Trans. 1842, 1. 276.) Insol in acids, even boiling aqua regia. (Willim, B, 25, 220.)

Slowly sol in acids by boiling. (Wohler,

Very sl. attacked by acids.

Sol in dil acids (Kane.)

Palladopalladic oxide, 4PdO, PdO₂ Not attacked by aqua regia (Schneider, Pogg 141. 528)

Palladous oxychloride, 3PdO, PdCl+ 4H₂O(?)

Easily sol in acids or excess of alkali Palladous oxychloride ammonia, PdO, PdCl₂, 6NH₂(?)

Sol. in HCl+Aq 3PdO, PdCl2, 2NH2+3H2O (?) (Kane.)

Palladium selenide, PdSe.

Insol. in HNO; and aqua regia (Rossler,

Palladium subsulphide, Pd_{*}S

Not attacked by acids except agua regia, which attacks slightly (Schneider, Pogg. 141. 530.)

Palladium monosulphide, PdS

Insol in H₂O or (NH₄)₂S+Aq HCl+Aq Pptd. in presence of 10,000 pts. H₂O (Fellenberg, Pogg. 50. 65) Sol, in potassium thiocarbonate+Ao. (Ro-

senbladt, Z anal 26. 15) A sol, colloidal form was obtained in very dilute solution (Winnsinger, Bull Soc. (2) 49. 452.)

Does not exist (Kritschenko, Z. anorg. 4. 247.)

Palladium disulphide, PdS₂ HNO₂ dissolves out part of the S Easily

sol, in agua regia without separation of S (Schneider)

Palladium sulphide with M_2S . See Sulphopalladate, M.

Palladodiamine bromide, Pd(N2H4Br)2. Easily sol, in H₂O.

—— bromopalladite, Pd(N₂H₆Br)₂, PdBr₂. Properties as the corresponding chloropalladite

---- carbonate. Sol in H₂O.

--- chloride, Pd(N2H2Cl)2. Easily sol. in H₂O.

Palladodismine chloropalladite, Pd(N+HsCl)s. PdCl. "Vauguelin's red salt." Insol, in cold H₂O

(Fischer) Sol. in boiling II2O with decomp. Sol in HCl or HNOs+Ao.

---- fluoride. Easily sol in H₂O. (Müller.)

fluosilicate.

Sl. sol, m cold, easily in warm H2O. Insol in alcohol.

· --- hydroxide, Pd(N2H4OH)2. Sol. in HiO.

--- iodide, Pd(N-H-I). Sol in H₂O.

--- nitrate, Pd(NoHoNOs)o Easily sol in II2O, HNOs, or NH4OH+Aq

Insol, in alcohol. --- palladous nitrite, Pd(N2H4NO2)2, Pd(N()2)2.

Fasily sol in H₂O.

---- sulphate, Pd(N2H6)2SO4+H4O. Easily sol. in H2O Insol, in alcohol

—— sulphite, Pd(N₂H₄)₂SO₃. 81 sol. in H₂O.

Palladochloronitrous acid.

Potassium palladochloronitrite. Pd(NO2)2Cl2K2. Sol. m 2 pts. hot, and 3 pts. cold H₂O. (Vézes, C R. 115. 111)

Palladocvanhydric acid.

Ammonium palladocyanide, (NH₄)₂Pd/CN)₄ (?).

Sol. in hot H2O (Rossler, Z ch. 1866, 175)

Barium --- , BaPd(CN),+4H₀O. Not efflorescent Sol. in H2O.

Calcium ---, CaPd(CN),+4H2O. Sol. in H.O.

Cupric - CuPd(CN) Ppt.

Lead - PbPd(CN).

Magnesium ----, MgPd(CN)4.

Very sol, in H₂O.

 $\begin{array}{ll} \text{Magnesium} & \longleftarrow \text{platmocyanide, MgPd(CN)_4,} \\ & \text{MgPt(CN)_4} + 14 \text{H}_2\text{O}. \end{array}$ Extremely sol, in H.O.

Potassium ----, K2Pd(CN)4+3H2O. Efflorescent. Sol. in H₂O. +H₂O. Not efflorescent

Silver ----, Ag₂Pd(CN)₄. Ppt.

Sodium ----, Na-Pd(CN)4. Not efflorescent Sol, in H2O $+H_{*}O$

Palladoiodonitrous acid.

Potassium palladoiodonitrite, Pd(NO₂)₂I₂K₂+3H₄O.

Effloresces in the air Decomp. by H₂O and dil. acids (Rosenheim, Z. anorg, 1900, 23, 28,)

Palladonitrous acid.

Potassium palladonitrite, K.Pd(NO2)4+ 2H₂O. Efflorescent, sol, in H₂O. (Leng, J pr. 83,

415.) Silver palladonitrite, Ag₂Pd(NO₂)₄.

Easily sol, in hot H.O. (Lang.) Sodium ---, Na₂Pd(NO₃)₄,

(Fischer) Palladosamine bromide, Pd(NHaBr)2. Insol. in cold, sl. sol. in hot H2O Easily

sol in HC₂H₃O₂, H₂SO₃, KOH, NH₄OH, or alkali carbonates+Aq. (Muller, A. 86, 341.) - carbonate, Pd(NH_z)₂CO₂. Moderately sol, in H₂O.

- chloride, Pd(NH,Cl).

Insol. in H₂O, but very gradually decomp. by boiling therewith.

Sol in warm HCl or HNO₂+Aq. Sol. in

cold NH4OH+Aq. Sol, in KOH+Aq with-out evolution of NH4. +2H2O Efflorescent. Insol. in H₂O.

(Baubigny, A Suppl. 4. 253.)

--- cvanide, Pd(NH,CN), Sol, in NH,OH+Aq.

---- fluoride Known only in solution.

---- hydroxide, Pd(NHaOH), Easily sol. in H_tO. Slowly decomp by

boiling with H2O. (Müller, A, 86, 341.)

Pelladosamine iodide, Pd(NH_{*}I)_{*}. Insol, in H2O. Sol, in boiling HNO, with evolution of I. (Fehling, A 39, 106.)

- nitrate. Known only in solution, which decomp on evaporation

--- nitrite, Pd(NHaNOa)a Moderately sol in H2O. (Lang.)

palladous natrite, Pd(NHaNOa)a,

Pd(NOs)s. Slowly sol, in cold, easily in hot H₂O (Lang.)

- sulphate, Pd(NHs)sSO4. Moderately sol in H₂O. (Müller)

---- sulphite, Pd(NH2)2SO4 Easily sol. in H.O. (Müller.)

Pentamine chromium compounds.

Bromopurpureochromium compounds. Chloropurpurochromium compounds. Iodopurpureochromium compounds. Xanthochromium compounds. Roseochromium compounds.

Pentamine cobaltic compounds.

Bromopurpureocobaltic compounds, Chloropurpureocobaltic compounds. Nitratopurpureocobaltic compounds. Nitritocobaltic compounds, Purpureocobaltic compounds. Roseocobaltic compounds. Sulphatopurpureocobaltic compounds. Xanthocobaltic compounds.

Pentamine dicobaltic sulphite. See Roseocobaltic cobaltic sulphite.

Pentamine iridium compounds.

See Iridopentamine, and Iridoaquopentamine compounds.

Pentamine rhodium compounds.

Bromopurpureorhodium compounds. Chloropurpureorhodium compounds. Iodopurpureorhodium compounds. Nitratopurpureorhodium compounds. Roseorhodium compounds

Xanthorhodium compounds. Pentathionic acid, H.S.O.

Known only in aqueous solution Conc. solution is decomp by boiling, but made stable by addition of acids

Sp. gr of aqueous solution of nentathionic acid at 22°: Sp gr. %H₂S₅O₆ 1 320 1 474 32 1 41 7 56 50 7 (Kessler, Pogg. 74, 279.)

Does not exist, (Spring, Bull Acad. roy. Belg.)
Existence proven by Smith (Chem. Soc.

Barium pentathionate, BaS₂O₄+2H₂O. Easily sol. in H2O Aqueous solution is precipitated by alcohol. Contains 3H₂O. (Lewes, C. N. 43, 41.)

Barium pentathionate tetrathionate, BaSsOs, BaS₄O₄+6N₂O₄

Easily sol, in H.O. Not precipitated from aqueous solution by two vols, alcohol. (Ludwig, Arch. Pharm. (2) 51. 264.)

Cupric pentathionate, CuS₄O₄+4H₂O. Eastly sol, in H₀O. (Debus, Chem. Soc. 53, 360.)

Lead pentathionate, PbS₃O₄+4H₂O. Ppt.

Potassium pentathionate, K2S5O6

Sol. in H_{*}O (Rammelsberg, J. B. 1857. Solution decomposes very quickly when

neutral, but is more stable in presence of salts or acids. Sol, in about 2 pts. H₂O. Insol in alcohol. (Debus, Chem. Soc. 53.

+H₂O. (Shaw, Chem. Soc. 43, 351.) +134H₂O. (Debus, A 244. 76) +2H₂O (Lewes, C N 43.41)

Perarsenic acid.

Sodium perarsenate, NaAsO. (Alvarez, C. N. 1906, 94, 270)

Perhoric scid.

Ammonium perborate, NH4BOs.

(Constam and Bennett, Z. anorg. 1900, 25. 265.)

+16H₂O Stable in dry air 100 pts. H₂O at 17.5° dissolve 1 55 g anhydrous salt. Decomp, in aqueous solution at oid, temp. Decomp, by dil and cone, H2SO4 and by

HCl. (Melikoff, B 1898, 31. 953) +H₂O. (Bruhat, C R. 1905, 140 508) Much more sol. in H₂O than the Na salt. (Tanatar, Z. phys. Ch 1898, 26 133.) +3H₂O. (Melikoff, B. 1898, 31. 954.) NH₄BO₄, NH₄BO₄+H₄O (Petrenko, C.

C. 1902, I 1192.)

Barium perborate, Ba(BOs), +7H2O. Difficultly sol, in H₂O (Mehkoff, B 1898. 31, 951)

Casium perborate, CsBO,+H2O. As N.H., salt. (Christenson.)

Calcium perborate.

Sl. sol in H₂O Decomp in water much more rapidly than the Ba salt. (Mehkoff, B 1898, 31, 954)

Copper perborate. Very unstable Insol in H₂O (Melikoff,

B. 1898, 31, 954.)

Nickel perborate.

Very unstable. Insol in H₂O (Mehkoff) Potassium perborate, 2KBO, +H-O.

1.25 pts, are sol, in 100 pts, H₂O at 0°: 2.5 pts., at 15°. Insol. in alcohol and other. (Girsewald, B 1909, 42, 867)

Potassium perborate hydrogen peroxide, 2KBO₁, H₂O₂, 0.70 pt. is sol. in 100 pts. H₂O at 15°.

(Girsewald, B. 1909, 42, 868.) Potassium perdiborate, KB₂O₅+2H₂O

Ppt. (Bruhat, C R. 1905, 140, 508.) Rubidium perborate, RbBO2+H2O As Na salt. (Christensen.)

Sodium perborate, Na₂B₄O₈+10H₂O,

100 g H₂O dissolve 4.2 g, at 11°, 7.1 g, at 22°, 138 g, at 32° (Jaubert, C R 1904, 134, 706) +4H₂O. Slowly decomp, in cold solution. rapidly when boiled. (Tanatar, Z. phys. Ch.

Sol, in H₄O, 100 g, H₂O dissolve 1,17 g Aq. solution decomp. on warming. (Melikoff, B. 1898, 31, 679.)

100 g. H₂O dissolve 2.55 g. at 15°, 2.69 g at 21°; 2.85 g. at 26°; 3.78 g. at 32°. (Jaubert and Lion, Rev. gén. Chim. 1905, (7) 8, 163.)

Uranyl perborate, UBO. (Bruhat, C. R. 1905, 140, 508.)

Perbromic acid, HBrO.

Known only in aqueous solution, which can know out in aqueous sourch, when can be concentrated to a thick liquid on water bath. Not decomp. by HCl, SO₂, or H₂S. (Kämmerer, J. pr. 85. 452; 80. 190.)
Does not exist. (Muir, C. N. 38. 256; MacIvor, C. N. 38. 35.)

Barium perbromate, Ba(BrO4)2 Very al. sol. in boiling H2O (Kummerer, J. pr 90, 190) Does not exist. (Wolfram, A. 198, 95.)

Potassium perbromate, KBrO. Less sol, in H2O than KBrO2, but more sol. than KClO₄. (Kammerer, J. pr 90, 190.) Does not exist. (Wolfram, A 198, 95.)

Silver perbromate, AgBrO4. Si sol in cold, more abundantly in hot H₂O. (Kammerer, J. pr 90, 190) Does not exist. (Wolfram, A. 198. 95.)

Perbromoplatinocyanhydric acid, H.Pt.(CN),Bro+EH.O.

Dehquescent. Easily sol. in H₂O. alcohol. and ether (Holst, Bull Soc. (2) 22, 347.)

Aluminum perbromopiatinocvanide, ALIPECN) Brds + 22H2O Deliquescent, Very sol in H₂O

Ammonium ----, (NH₄)₂Pt(CN)₄Br₂. Sol. in H₀O

Barium --- BaPt(CN)4Br2+5H2O. Very sol in H₂O or alcohol. Cadmium ---- CdPt(CN)4Br++xH4O

Very soi, m H₂O.

Calcium ----. CaPt(CN)₄Br₂+7H₂O. Sol in H₀O.

Cobaltous --- CoPt(CN), Br2+5H2O. Sol, in H2O Sl. sol, in alcohol

Glucinum ----, GIPt(CN),Br2. Deliquescent. Sol in H₂O.

Ferrous ----Very sl. sol in H₂O.

Lead ----. PbPt(CN),Bro+2H₂O. Sl sol in H2O.

Lithium ——, Li₂Pt(CN)₄Br₃. Deliquescent, Sol. in H.O.

Magnesium ----, MgPt(CN)₄Br₂+xH₂O. . Sol. in ILO.

Nickel ----, NiPt(CN), Br2+vH2O. Sl sol. in H2O. Sol. in NH2OH+Aq

Potassium ----, K₂Pt(CN)₄Br₂,

Sol in H₂O. +2H₂O, Efflorescent.

Silver perbromoplatinocyanide, Ag₂PtBr₂(CN)₄.

Ag₂PtBr₂(CN)₄. Pnt. (Miolati, Gazz, ch. it. 1900, **30**, 588.)

Sodium —, Na₂Pt(CN)₄Br₂.
Deliquescent Sol in H₂O.

Strontium —, SrPt(CN)₄Br₂+7H₂O. Sol in H₂O.

Zinc — -, ZnPt(CN)₄Br₂+5H₂O.
Not very sol in H₂O.

Percarbonic acid.

Ammonium percarbonate, (NH₄)₂CO₄+

2H₂O. Sol in H₂O with evolution of NH₂ Insol m alcohol and ether. (Kasanezky, C. C 1902, I. 1263.)

Barium percarbonate, BaCO4.

Insol. in H₂O. (Merck, C. C 1906, II. 1743.)
Decomp slowly in the air. Not rapidly decomp. by H₂O. Rapidly decomp. by acids (Wolffenstein, B. 1908, 41, 280.)

Potassium percarbonate, KoCOa

Sol in H₂O with decomp Sl. sol in alcohol. (v. Hansen, Z. Elektrochem, 1897, 3, 448.). Sol in H₂O at 0° with only slight decomp, but is decomp, at ord, temp. Sl sol, in alcohol. (Treadwell, Ch. Z. 1901, 25, 1008)

Rubidium percarbonate, Rb_2CO_4 , $2H_2O_2+H_2O_3$

Hydroscopic; decomp. by H₂O; pptd. by 1 alcohol. Rb₂CO₄, H₂O₂+2H₂O. Hydroscopic; de-

comp by H₂(); pptd. by alcohol. Rb₂(O₄+2)*H₂O. Hydroscopic; decomp by H₂O. pptd. by alcohol (Peltner, B 1909, 42, 1782.)

Rb₂C₂O₆. Very deliquescent (Constan and Hansen, Z. Elektrochem 1897, 3. 144)

Sodium percarbonate, Na₂CO₄+1½H₂O. Sol in H₂O with gradual decomp. (Tanatar, B, 1899, 32, 1544)

Sodium hydrogen percarbonate, 4Na₂CO₄, H₂CO₃.

Ppt. (Merck, Chem. Soc 1908, 94. (2, 180.)

Perchloric acid, HClO4.

Combines with H₂O with a hissing sound and evolution of much heat, Solution in H₂O is very stable.
When dd. HClO₄+Aq is distilled, H₂O and

When dd. HClO₁+Aq is distilled, H₂O and HClO₂ distil off until a temp, of 208° is reached, when an and of constant composation containing 71-6-72.28° HClO₁ (= HClO₂ +2H₂O) is obtained. Forms hydrate HClO₂ +H₂O, which is deliquescent, and dissolves in H₂O with evolution of much heat. HClO₂ is very unstable, HClO₂+H₂O more stable, and HClO₂+2H₂O is very stable. (Roscoe, A. 121. 346.)

Sp. gr. of HClO,+Aq, at 15°/4°.

	Sp. gr. of HClO ₄ +Aq. at 15°/4°.						
	Sp gr	ново,	Sp gr	нёю,	Sp gr	н‱	
1.	1.005 1 010 1.015 1.020 1 025	1.00 1.90 2.77 3.61 4.43	1 235 1 240 1 245 1 250 1 255	33 29 33 85 34 40 34 95 35 49	1 465 1.470 1 475 1 480 1 485	54.50 54.89 55.18 55.56 55.95	
ı.	1 030 1.035 1.040 1 045 1 050	5 25 6 07 6 88 9 68 8 48	1 260 1 265 1.270 1 275 1 280	36.03 36.56 37.08 37.60 38.10	1 490 1 495 1 500 1 505 1 510	56.32 56.69 57.06 57.44 57.81	
]-	1 055 1 060 1 065 1 070 1 075	9 28 10 06 10.83 11 58 12.88	1 285 1 290 1.295 1.300 1 305	38 60 39 10 39 60 40 10 40 59	1 515 1.520 1 525 1 530 1 535	58.17 58.54 58.91 59.28 59.66	
3.	1 080 1 085 1 090	13 08 13 83 14 56	1 310 1 315 1 320	41 08 41 56 42 03	1.540 1.545 1.550	60 04 60.41 60.78	
t l 5.	1.095 1.100 1.105 1.110	15 28 16 00 16 72	1 325 1.330 1 335	42 49 42 97 43 43	1.555 1.560 1.565	61.15 61.52 61.89	
F	1 115 1 120 1 125	17 45 18 16 18 88 19 57	1 340 1 345 1 350 1 355	43 89 44 35 44 81 45 26	1 570 1 575 1 580 1 585	62 26 62.63 63.00 63 37	
y 	1 130 1 135 1 140	20 26 20 95 21.64	1.360 1.365 1.370	45.71 46 16 46 61	1.590 1.595 1 600	63 74 64 12 64.50	
).),	1 145 1 150	22 32 22 99	1.375	47 05 47 49	1 605	64 88 65 26	
i, n	1 155 1.160 1.165	23 65 24 30 24 94	1 385 1 390 1 395	47.93 48.37 48.80	1 615 1 620 1 625	65 63 66.01 66 39	
	1.170 1.175 1.180	25 57 26 20 26 82	1 400 1 405 1 410	49 23 49 68 50 10	1 630 1 635 1 640	66 76 67 13 67 51	
-	1 185 1.190 1 195	27 44 28 05 28 66	1.415 1.420 1.425	50 51 50.91 51.31	1 645 1 650 1 655	67 89 68.26 68.64	
٠,	1 200 1 205 1 210	29.26 29.86 30.45	1.430 1.435 1.440	51.71 52.11 52.51	1.660 1.655 1.670	69.02 69.40 69.77	
)	1 215 1 220 1 225 1 230	31.04 31.61 32.18 32.74	1.445 1 450 1 455 1 460	52 91 53 31 53 71 54 11	1 675	70 15	

(Emster, Z. anorg, 1907, 52, 278.)

% HCiO,	Sp. gr. at 15°/4°	Sp. gr. at 30°/4°	Sp gr at 50°/4°	
11.14 35 63 55 63 60.81	1.0670 1.2569 1.4807	i 245i I 4637	1 0507 1 2292 1 4421 1 6284	

Stor of HCIO++An.

(Emster, Z. anorg, 1907, 52, 279.)

Sp. gr. of HClO4+Aq.

	Sp gr.				
corre	orted	uncorrected		% by wt HClO4 m the hould	
20°	50°	200	50°	tue injuid	
1.7676 1.7817 1.8059	1.7098 1.7259 1.7531 1.7690 1.7756 1.7619	1 7716 1.7858 1.8100	1 7312 1 7475 1 7751 1 7912 1 7979 1 7840	100 98 62 94.67 90 80 84.81 81.07	
1.7386 1.6471 1.5353 1.4078 1.2901 1 1778	1 7023 1 6110 1 5007 1 3779 1 2649 1 1574	1 7425 1 6508 1 5386 1 4108 1 2027 1 1800	1.7237 1 6311 1.5194 1.3949 1.2804 1 1715	75 59 68 42 60 38 50 51 39.73 27 07	

(v. Wyk. Z. anorg, 1905, 48, 45.)

Bpt, of HClO++Aq, at atmospheric pressure. A Trans I a to the I

in the liquid	in the vapor	Initial bpt
72.4 70.08	72.4 40.11	203° 198.7
65 2 61 2	6 06	181.2 162 3
56 65 50 67		148 0 132 4
38.90 24.23		114.8
0.0	0.0	105 8 100

(v. Wyk, Z. anorg, 1905, 48, 33,)

Bpt. of HClO,+Aq. at 18 mm, pressure.

hquid	Bpt
100 94 8 92.0 84.8 79.8 70.5	16 0° 24 8 35 70 92 107

(v. Wyk, Z. anorg. 1905, 48, 36.)

+H.O. Deliquescent, (Roscoe, A. 121. 346.) +2H₂O. HClO₄+2H₂O has 1.65 sp. gr. alcohol.

sp. gr. and boils at 200° (Nativelle, J. pr. 26, 405)

Sol, in alcohol with decomp.; often evulo-SIVE +21/2H₂O. (v. Wyck.) +3H₂O. (v. Wyck.) +31/2H₂O. (v. Wyck.)

Perchlorates.

All perchlorates are sol in H₂O, KClO₄, RbClO4, and CsClO4 somewhat difficultly. They are all deliquescent, and sol in alcohol excepting NH₄ClO₄, KClO₄, Pb(ClO₄)₂, and Hg₂(ClO₄)₂ (Serullas, A. ch. (2) 46, 296.)

Aluminum perchlorate, Al(ClO4),+6H.O. Very deltouescent. (Weinland, Z. anorg.

1913, 84, 370.)

Aluminum sodium perchlorate, AlNa(ClO₄)₄ +12H₂O SI hygroscopic. (Weinland, Z. anorg. 1913,

84, 370.) Sol, in acetone (Naumann, B 1904, 37, 4328.)

Ammonium perchlorate, NH4ClOs.

Permanent. Sol. in 5 pts. H₂O; somewhat sol, in alcohol. (Mitscherlich, Pogg. 25, 800)

Solubility of NH4ClO4 in H2O at to.

t°	G per l. solution	Sp. gr.
0	115 63	1.059
20 40	208.45 305.77	1 098
60	390.50	1 158
80	481.86	1.193
100 107	570 06 591.15	1 216 1.221
101	001.10	1.201

(Carlson, Festsk, Stockholm, 1911, 262.)

100 g. H₂O dissolve 18.5 g. NH₄CiO₄ (Hofmann, Hobald and Quoos, A. 1912, 386, 304.)

100 g. sat. solution in H₂O contain 1.735 (17.387) g. NH₂ClO₄ at 14 2°. (Thin and Curmung, Chem. Soc. 1915, 107, 381.) Insol in conc. HClO₄+A₀. Insol in conc. HClO₄+A₀. 100 g. sat. solution in 98.9% ethyl alcohol contain 1.96 g. NH₄ClO₄ at 25.2°. (Thin and Curmunical Chem. 1988) at 1988 (1988) at 1988

and Cumming.)

Sol. in acetone Eidmann, C. C. 1899, II. 1014.)

Barium perchiorate, Ba(ClO₄)2+4H2O.

Deliquescent, Easily sol, in H₂O and

+3H2O. Solubility of Ba(ClO4)2+3H2O in Cobaltous perchlorate, Co(ClO4)2+9H2O. HO at to.

t°	G. per 100 g H ₂ O	Sp gr
0	206	1.782
20	289	1 912
40	358	2 009
60	432 497	2.070
80 100	564	2 114 2 155
120	645	2.195
140	758	2.230

(Carlson, Festsk Stockholm, 1911, 262.)

Bismuth perchlorate, (BiO)ClO₄. Insol, in H₂O. Easily sol in HCl or HNO. +Aq, less easily in H₂SO₄+Aq (Muir, C. N. 33. 15.)

Cadmium perchlorate, Cd(ClO₄)₁,

Very deliquescent Sol, in H₂O and alcohol. (Serullas, A. ch. 46, 305.) +4H₂O. (Salvadori, C. C 1912, II 414.) +6H₂O. (S)

Cadmium perchlorate ammonia, Cd(ClO₄)₂,

Cd(ClO₄)₂, 4NH₃. (Salvadori, C. C. 1912, II 414.)

Cæsium perchiorate, CsClO4.

Very sl. sol. in H2O. (Retgers, Z phys. Ch. Solubility in H₂O 100 g H2O dissolve at: 14° 33.7° 42° 50° 0.91 1.19 2,99 4.09 5.47 g. CsClO4,

84° ROS 99° 9 79 7.30 16.51 28 57 g, CsClO₄. (Calzolari, Acc. Sc Med. Ferrara, 1911, 85.

150)

Solubility in H_iO at t^o .				
to.	G. per 100 g H ₂ O	Sp gr		
5 25	0.97 2.05	1 007 1 010		

(Carlson, Festsk, Stockholm, 1911, 262.)

Calcium perchlorate, Ca(ClO₄)₄,

Very deliquescent Very sol, in H₂O and alcohol. (Serullas, A. ch. 46, 304)

Cerous perchlorate, Ce(ClO₄)₃+8H₂O. Very deliquescent. (John.)

Chromic perchlorate, Cr(ClO₄),+6H₆O.

Very hygroscopic. (Weinland, Z. anorg. 1913, 84, 371.) +9H₂O. Can be cryst from H₂O. (Weinland.)

Solubility in H₅O at t°.

ţ°	G anhydroussalt in 100 ccm	Sp gr of sat solution at 6°/4°
-30 7 -21 3 0 + 7.5 18 26 45	83.14 90.57 100.13 101.92 103.80 113.45	1 5639 1 5658 1 5670 1 5811
40	115 10	1.5878

(Golblum and Terlikowsky, Bull Soc. 1912, (4) 11, 146)

+6H₂O. (Salvadorı, Gazz. ch. it. 1912, 42. (1) 458.)

Cobalt perchlorate ammonia, Co(ClO4)2 6NH

Co(CIO4)2, 5NH4

Co(ClO₄); 4NH₃, and +2H₂O. Co(ClO₄); 3NH₃, and +3H₂O. Co(ClO₄); 3NH₄+2H₂O.

(Salvadori, Gazz. ch at. 1912, 42, (1) 458.) Cupric perchlorate, basic, Cu(ClO4)1, Cu(OH)1.

Ppt. (Salvadori, C. C 1912, II. 414.) Cupric perchlorate, Cu(ClO₄)₂,

Deliquescent. Sol. in H₂O and alcohol. (Serullas, A ch 46, 306.) +4H₂O (Salvadori, C. C. 1912, II. 414)

Cupric perchlorate ammonia, Cu(ClO₄)₂, 4NH₂+2H₂O,

Not deliquescent So (Roscoe, A. 121, 346) Cu(ClO₄)₃, NH₃+H₂O. Sol in NH₂OH+Aq.

Cu(ClO₄)s, 2CuO+2H₂O, NH₈. Cu(ClO₄)s, 2CuO+2H₂O, 2NH₃. Cu(ClO₄)s, Cu(OH)s+2H₂O, 6NH₈. Cu(ClO₄)₂, Cu(OH)₂+2H₂O, 4NH₂

(Salvadori, C. C. 1912, II 414.) Didymium perchlorate, D1(ClO4)2+9H2O.

Very deliquescent. Very sol, in H2O and alcohol. (Cleve.)

Erbium perchlorate, E1 (ClO4)a +8H2O. Very deliquescent.

Glucinum perchiorate, Gl(ClO₄)₂+4H₂O. Very deliquescent, and sol, in H₂O. (Atterberg)

Hydrazine perchlorate, (N2H4)(HClO4)2+ 3H₂O

1 l. of sat, solution in HgO contains 417.2 g. at 18°, sp. gr. = 1.264, 669 g. at 35°, sp. gr. = 1 391. (Carlson, Festsk. Stockholm, 1911. 262.)

Indium perchlorate, In(ClO₄)₂+8H₂O Deliguescent. H-O solution decomp at 40° with separation of basic salt. Sol in H₂O and easily forms sat. solutions Sol. in abs. alcohol, but much less sol in ether. (Mathers, J. Am Chem. Soc. 1908, 30, 212)

Todine perchlorate, I(ClO₄)₄+2H₂O Decomp. by H₂O. Indifferent toward organic solvents (Fichter, Z anorg 1915, 91.)

135.) Iron (ferrous) perchlorate, Fe(ClO₄)₂. Tolerably permanent, sol. in H2O (Serul-

las, A ch 46, 335.) Iron (ferric) perchlorate, Fe(ClO₄), Sol, m HoO, (Serullas)

Iron (ferric) sodium perchlorate.

[Fe(ClO₄)₄]Na+6H₂O Hydroseome. Can be cryst, from HoO. (Weinland, Z. anorg 1913, 84, 366.)

Lanthanum perchlorate, La(ClO₄)₂+9H₂O, Extremely deliquescent. Sol. in II2O and absolute alcohol (Cleve)

Lead perchlorate, basic, 2PbO, Cl₂O₇+ 211.0

Decomp by H₂O into an insol, more basic salt, and sol. Pb(ClO₄)₂, (Marignac.)

Lead perchlorate, Pb(ClO₂)₀+3H₂O. Permanent: extremely easily sol, in H₂O. (Roscoe, A 121, 356) Sol. in about I at. II-O. (Serullas.)

Lithium perchlorate, LiClO4. Dehouescent, Sol. in H₂O and alcohol (Serullas) +3H₂O, (Wyrouboff, Zeit Kryst 10, 626.)

Magnesium perchlorate, Mg(ClO₄)₂ Deliquescent, and sol in H₂O and alcohol. (Serullas)

+6H₂O (Wemland, Z. anorg, 1913, 84. 372.)

Manganous perchlorate, Mn(ClO₄)₂. Very deliquescent. Sol. in H₂O and alcohol. (Serullas, A. ch. 46, 335.) +6H₂O. Sol. in 0 342 pts H₂O. (Salvadori, C. C. 1912, II. 414.)

Manganous perchlorate ammonia, Mn(ClO₄)₂, O.H+HA Sol, in HCl; insol, in HNO₁, (Salvador), C. C. 1912, II. 414.)

Mercurous perchlorate, (HgClO₄)₂+4H₂O. Very sol, in H₂O. Gradually decomp by

H₂(). Decomp by alcohol Chem Soc 1895, 67, 1016.) (Chikashiré, +6H₆O, Very deliquescent (Roscoe, A. 121, 356)

Permanent. (Serullas.)

Mercuric perchlorate, basic, HgO, 2Hg(ClO₄). Anhydrous Ppt. Insol, in either HCl or HNO₃ Decomp. and dissolved by a mixture of the two, (Chikashigé, Chem Soc. 1905,

87, 824.) +12H₂O Very sol, in H₂O (Chikashige.) 2HgO, Hg(ClO₄)₂.

a-salt. Decomp by H₂O Sol in acids.

(Chikashigé, Chem. Soc. 1895, 67. 1015.) β-salt Insol in H2O; insol in HCl or HNO₃. (Chikashigé, Chem Soc. 1905, 87. 825.)

Mercuric perchlorate, Hg(ClO₄)₂.

Very deliquescent Sol, in H₂O; sl. sol. with decomp, in alcohol (Serullas, A. ch. 34. 243.) +6H2O. Very hygroscopic Very sol. m H₂O. Slowly decomp. by H₂O, more easily by alcohol. (Chikashigé, Chem. Soc 1895,

67, 1014) Mercuric perchlorate bromide, HgClO.Br. Decomp, by H2O (Borelli, Gazz ch. it

1908, 38. (2) 421) Mercuric perchlorate cyanide, Hg(ClO₄)₂, Hg(CN)₂.

Very sol in H2O. Sol. in alcohol. (Borelli.)

Mercuric perchlorate iodide, Hg(ClO4)I. Deliquescent. Decomp. by H₂O. Sol. in much alcohol. Decomp. by HNO₃. Com-pletely sol. in KI or KCN+Aq. (Borelli.)

Mercuric perchlorate sulphocyanide, Hg(ClO4)2, Hg(SCN)2.

Insol. in H₂O and conc. acids. Sol. in aqua regia. (Borelli.) +6H.O. (Salvadori, C. C. 1912, II, 414.)

Nickel perchlorate, Ni(ClO₄)₂. Deliquescent, easily sol. in alcohol and H₂O. (Groth, Pogg. 133, 226.)

Solubility in H₂O at t°.

to.	G anhydrous salt in 100 ccm,	Sp. gr of the sat, solution
-30 7 -21 3 0 +7 5 18 26 45	89 98 92 48 104 55 106 76 110 05 112 15 118 60	1 5726 1.5755 1.5760 1.5841 1.5936

(Golblum and Terlikowsky, Bull. Soc. 1912, (4) 11, 147.)

+5H₂O. (Golblum and Terlikowsky.) +6H₂O (Salvadori, C C 1912, II 414.) +9H2O. (Golblum and Terlikowsky.)

Nickel perchlorate, ammonia, Ni(ClO4): 6NH.

Ppt. (Salvadori.)

Nitrosvl perchlorate, NO.O.ClO,+H₂O Ppt.; sl. hydroscopic; decomp. by H₂O. (Hofmann, B. 1909, 42, 2032.)

Platinum perchlorate, PtsClOo+15H2O. Insol. in H₂O (Prost, Bull, Soc. (2) 46. 156.)

Potassium perchlorate, KClOs.

Sol in 57 9 pts H₂O at 21 3° (Longuinne, A 121 123), in 95 pts H₂O at 15° (Serullas, A. ch. (2) 46 297), in 88 pts H₂O at 10° , in 55 pts H₂O at 100° (Hutstein, J B 1851 331)

Solubility in H_2O .

1 pt. KClO, dissolves in 142.9 pts. H₂O at 6°, and solution has sp. gr = 1.0005; in 52.5 pts. H₂O at 25°, and solution has sp. gr. = 1.0123; m 15.5 pts. H₂O at 50°, and solution has sp. gr. = 1.0181; m 5.04 pts H₂O at 100°, and solution has sp. gr. = 1.0660. (Muir. C.

N. 33, 15. H₂O dissolves 78.07 millimols. KClO₄ at 10°; 120.4 millimols. at 20°; 179.9 millimols, at 30° (Noyes and Sammet, Z. phys. Ch. 1903, 43. 538.)

1 l. H₂O dissolves 0.1475 mol. KClO₄ at . (Rothmund, Z. phys. Ch. 1909, 69, 539.) (Thin and Cumming, Chem. Soc. 1915, 107.

Solubility in H₂O at t°

t°	G KCIO ₁ in 100 g H ₂ O	t°	G KCiO ₄ in 100 g H ₂ O
0 10 15 20 5	0 70 1.14 1 54 1 90	50 70 99	6 45 12 3 22.2

(Calzolari, Acc. Sci. Med. Ferrara, 1911, 85. 150.)

t°	G. per 100 g H ₂ O	Sp gr.	1.
0 20	0 79 1 80	1.007	1
40 60	4.81 8 71	1 022	1
80 100	14 78 20 98	1.053 1.067	١.

(Carlson, Festsk. Stockholm, 1911 262)

 I. H₄O dissolves 0.1481 equivalents KClO₄ at 25°. (Noyes and Boggs, J. Am. Chem. Soc. 1911, 33, 1652.

tains 2.085 g. KClO4 at 25.2°. (Thin and Cum-

ming, Chem. Soc. 1915, 107. 361.)

KClO₄ is sol. in 22.0 pts H₂O at ord. temp, and 4 00 pts. at 100°, in 29 6 pts. NH₄OH+ Aq (conc.) at ord temp., m 30.4 pts. NH₄OH +Aq (1 vol conc +3 vols H₂O) at ord. temp; in 22 4 pts. HNO2+Aq (1 vol conc.+ 5 vols. H₂O) at ord. temp., and 5.00 pts. at 3 vois. 120 at ord, temp., and a.00 piss, at 4 vois H₃O) at ord temp., 52 piss. HCl+H₄O, 4 vois H₃O) at ord temp., 52 piss. HCl+H₂O+H₂O is of temp., 52 piss. HCl+H₂O+H₂O is ord temp., in 24.4 piss. NH₂C₂H₃O+H₂O, 140, (id. HCl+H₂O)+H₂O, 140, HCl+H₂O+H₃O, at ord temp., and 6.00 piss at 100°, in 25.6 pits. NH₂C₂H₂O is 10°, in 25.6 pits. ord. temp., and 6.00 pts at 100°, in 16.0 pts. NH₄NO₃+Aq (1 pt. NH₄NO₃+10 pts. H₂O) | NH₄NO₃+AQ (1 pt. NH₄NO₃+10 pts. H₃O) at ord. temp, and 4 oo pts at 100°; in 25.6 pts. NaC₃H₃O₂+Aq (cone HC₂H₃O₂+Aq (Stolba, Z. at ord. temp, and 7.00 pts at 100°, in 29.2 pts. Cu(C₂H₃O₂)₂+Aq (Stolba, Z. anal 2. 390) at ord temp. and 7.00 pts. at 100°; in 27.2 pts. cane sugar (1 pt.+10 pts H₂O) at ord, temp : m 36.8 pts. grape sugar (1 pt +10 pts. H₂O) at ord. temp (Approximate) (Pearson, Zeit. Chem. 1869, 662

Solubility of KClO, in HClO, at 25.2°.

Normality of HClO4	% KCIO4
0 01	1 999
0.10	1 485
1 00	0 527

Solubility in KCl+Aq at 25°.

Concentration of KCl	Solubility of KClO ₄	
Equivalents per litre	Equivalents per litre	
0 04973	0 1282	
0 09933	0 1123	

(Noves and Boggs, J. Am. Chem. Soc. 1911, 33, 1652.)

Solubility in K₂SO₄+Aq at 25°

Concentration of KsSO ₄	Solubility of KClO ₄
Equivalents per htre	Equivalents per litre
0 04970	0.1315
0 09922	0 1181

(Noves and Boggs)

Very sl sol. in abs. alcohol, and insol. if alcohol contains trace of an acetate. (Roscoe.) Insol. in alcohol of 0 835 sp. gr. (Schlös-

ing, C. R. 73, 1269.) Sol. in 6400 pts 97 2% alcohol; in 5000 pts. 95.8% alcohol, in 2500-3000 pts. 90% alcohol, in 25,000 pts. alcohol-ether (2 pts. 100 cc. of sat. solution of KClO4 m H4O con- 97% alcohol 1 pt ether) Practically insol. in an alcoholic solution of HClO. (Wenze' Z. angew. Ch 1891 801 1 đ.

Solubility	of	KCIO,	in	ethyl	alcohol+Aq	a

25.2°.		
Vol. 4 nleobol	G, KClO ₄ sol. in 1/10 g algohol	
51 2 93 5 98 8	0 754 0 051 0.019	

(Thin and Cumming, Chem. Soc. 1915, 107.

Solubility in organic compds.+Aq. at 25°. Mol KClO, sol in

0 5-N methyl alcohol	Solvent	1 litre
" acetic acid 0.1462 " phenol 0.1362 " methylal 0.1400	ethyl alcohol propsyl alcohol tert. amyl alcohol tert. amyl alcohol ethor ethor glycerine urea autunonia dethylamine pyridine urethane formanide	0.1356 0.1343 0.1279 0.1451 0.1336 0.1410 0.1404 0.1510 0.1474 0.1342 0.1410 0.1400 0.1539
	" acetic acid " phenol " methylal	0.1462 0.1362 0.1400

(Rothmund, Z. phys. Ch 1909, 69, 539.)

Insol in methyl acetate. (Naumann, B. Strontium perchlorate, Sr(ClO4)2. 1909, 42. 3790); ethyl acetate. (Naumann, B, 1910, 43, 314.)

Potassium rubidium perchlorate. KRb2(CIO4)4.

15.5 g, are contained in 1 l solution sat. at 20°; sp. gr. = 1.013. (Carlson.)

Rubidium perchlorate, RbClO, Sol. in 92.1 pts. H₂O at 21 3° (Longumine,

A, 121, 123.) 1 pt. sol. in 92 1 pts H₂O at 21° as compared with 1 pt. KClO₄ sol. in 57 9 pts H₂O at 21°. (Erdmann, Arch. Pharm. 1894, 232. 23.)

Solubility in H₂O at to.

t°	G. RbClO ₄ 10 100 g. H ₂ O	t°	G RbClO, in 100 g H ₂ O
0	2.46	42.2	14 94
8	3 50	50	19 40
19.8	6.28	77	41 65
30	9 53	99	76 5

(Calzolari, Acc. Sci. Med. Ferrara, 1911, 85. 150.)

Salubility in H.O at to

t°	G. in 100 g. H ₂ O	Sp gr.	
0 20 40 60 80 100	1.10 - 1.56 3.26 6.27 11.04 15.75	1 007 1 010 1 017 1 028 1 050 1 070	

(Carlson, Festsk, Stockholm, 1911, 262.)

Scandium perchlorate. (Crookes, Roy Soc. Proc. 1908, 80, A. 518.)

Silver perchlorate, AgClO4.

Deliguescent. Sol. in H2O and alcohol. (Serullas, A. ch. 46, 307.)

Sodium perchlorate, NaClOs

Deliquescent, and very sol, in H₂O and alcohol. (Serullas.) Not deliquescent. (Potilitzin, J. russ. Soc. 1889, 1, 258,)

Solubility in H₂O at to.

t°	G. m 1 l. of solution	Sp gr.
15 50 143	1076 1234 1414	1 666 1 731 1 789
(Carlson,	Festsk, Stockhol	m. 1911, 262.)

+H₂O Not deliquescent. (Potilitzin.)

Very deliquescent. Sol in H₂O and alcohol. (Serullas, A. ch. 46, 304.)

Terbium perchlorate.

Very sol in H2O and in alcohol. (Potratz, C. N. 1905, 92. 3)

Thallous perchlorate, TlClO4

1 pt. salt dissolves in 10 pts. H₂O at 15°, and 0 6 pt at 100°. (Roscoe, Chem. Soc. (2) 4, 504.)

Solubility in H₀O at to.

t"	G per 100 g. H40	Sp gr
0	6.00	1 060
10	8.04	1 075
30	19.72	1 146
50	39.62	1 251
70	65.32	1 430
80	81.49	1 520

(Carlson, Festsk, Stockholm, 1911, 262)

Sl. sol. in alcohol (Roscoe,)

Thallic perchlorate, Tl(ClO4)2+6H2O Very hydroscopic, sol in H₂O. Decomp. in moist air (Gewecke, Z. anorg. 1912, 75.

Uranyl perchlorate, (UO2)(ClO4)2+4H2O. (Salvadori, Ch. Z 1912, 36. 513.) +6H2O (Salvadori.)

Yttrium perchlorate, Y(ClO₄)₂+8H₂O. Very deliquescent. Sol. in H₂O and alcohol

Zinc perchlorate, Zn(ClO4)2. Deliquescent Sol in H₂O and alcohol

(Serullas, A ch 48, 302) +4H2O, and 6H2O, (Salvador, C. C. 1912, II 414)

Zinc perchlorate, ammonia, Zn(ClO₄)₂, 4NH₃. Ppt. (Salvadori, C C 1912, II. 414.) Zn(ClO₄)₂, 6NH₃. (Ephram, B 1915, 48. 643.)

Perchromic acid.

Sol, in ethyl acetate and valerate: in Soi. In etaly acctance and vanctace; many chloride, formate, anctate, butyrate, and valerate. (All give blue solutions.)

Insol. in CS₂, C₈H₆, CHCl₃, CCl₄, C₈H₈NH₅,
C₈H₈NO₂ and toluene (Grosvenor, J. Am. Chem. Soc 1895, 17, 41-43)

H₂CrO₈+2H₂O. Decomp. above -30° (Riesenfeld, B. 1914, **47.** 552.)

Ammonium perchromate, (NH4)3CrOs

Very unstable. Sl. sol in cold H₂O. Decomp. by conc H₂SO₄. Insol, in pure alcohol and pure ether. Decomp by boiling alcohol containing more than 50% H2O. (Wohlers, B. 1905, 38. 1888.)

CrO₄, 3NH₂ Sol. in 10% NH₄OH+Aq; sol. in H₂O with decomp., insol. in other solvents. (Wiede, B 1897, 30, 2181.) NH₄CrO₅, H₂O₂. Decomp. in the air. Sol in ice cold H₄O, decomp. when warmed. Insol. in alcohol, ether, ligroin and CHCl₂. (Wiede, B. 1898, **31**, 518.)

Ammonium hydrogen perchromate, CrO₂(0.0 NH₄)(0 OH).

Sol, in H₂O with decomp. Difficultly sol. in cold abs alcohol. (Hofmann, B. 1904, 37. 3406.)

Barium perchromate, BaCr.O. (Byers and Reid, Am. Ch. J. 1904, 32, 513.)

Calcium perchromate, CaCr₂O₈. Verv sol, in H₂O. (Mylus, B, 1900, 33. 3689; Byers and Reid, Am. Ch. J. 1904, 32. 513.)

Lithium perchromate, Li₂Cr₂O₈. (Byers and Reid, Am. Ch. J. 1904, 32, 511) 1908, 30, 1658)

Magnesium perchromate, MgCr₂O₈. (Byers and Reid.)

Potassium perchromate, KaCrOs.

Sl sol in cold H₂O. Decomp by conc. ₂SO₄. Insol in pure alcohol and pure ${\rm H_2SO_4}$. Insol in pure alcohol and pure ether. Decomp. by boiling alcohol containing more than 50% ${\rm H_2O}$. (Wohlers, B. 1905,

 $+\iota H_{i}O$ Sol in H2O at 0° without decomp (Riesenfeld and Kutsch, B. 1908, 41. 3948

K₂Cr₂O₈ Sol in H₂O. Decomp. in the air. (Byers and Reid, Am. Ch. J. 1904, 32. 505.)

KCrOs, H2O2 or KH2CrO7. Sol. in ice cold H₂O, decomp when warmed, explosive. (Wiede, B 1898, 31, 520)

Sodium perchromate, Na₃CrO₅.

Sl. sol in cold H₂O. Decomp by conc. H₂SO₄. Insol in pure alcohol and pure ether. Decomp. by boiling with alc. containing more than 50% H₂O. (Wohlers, B. 1905, 38. 1888.) Na₄Cr₂O₁₅+28H₂O. Efflorescent. Sl. sol. in cold, easily in hot H₂O, with decomp. Not decomp. by NaOH+Aq. (Haussermann, J. pr. (2) 48. 70.) Na₂Cr₂O₅. (B

(Byers and Reid, Am. Ch. J. 1904, 32, 511)

Perchloroplatinocyanhydric acid, H₂Pt(CN)₄Cl₂+4H₂O

Very sol, in H₂O and alcohol

Ammonium perchloroplatinocyanide, (NH₄)₂Pt(CN)₄Cl₂+2H₂O Sol. in H.O.

Barium ---, BaPt(CN), Cla+5HtO. Very sol. in H₂O.

Calcium ----. CaPt(CN),Cls. Sol. in H_2O .

Magnesium — , $MgPt(CN)_{s}Cl_{o}+rH_{o}O$. Sol. in H₂O.

Manganous ----, MnPt(CN),Cl2+5H2O. Sol. in H₂O and alcohol.

Potassium ---, K₂Pt(CN)₄Cl₂+2H₂O. Very efflorescent, and sol in H₂O and alcohol,

Percolumbic acid, HCbO4+nH2O. Insol in H₂O. Sol, with decomp, in warm H₂SO₄. (Melikoff, Z. anoig. 1899, 20. 341)

Cæsium percolumbate, Ca₂CbO₃. Ppt. (E. F. Smith, J. Am. Chem. Soc.

Cæsium magnesium percolumbate, . MgCsCbO₈+8H₂O.

Sol, m H₂O without decomp OF F Smith.)

Calcium potassium percolumbate, CalifbOo+4HO.

Difficultly sol in H₂O (E. F Smith.)

Calcium sodium percolumbate, CaNaChOs+ 4H.O

Difficultly sol, in H.O. (E. F. Smith.)

Magnesium potassium percolumbate. McKChO+7H-O

Sol. in H.O without decomp (E. F. Smith.)

Magnesium rubidium percolumbate, MgRbCbOs+712H2O.

Sol in H₂O without decomp (E. F. Smith.)

Magnesium sodium percolumbate, MgNaCbOs+8H₂O

Sol in H.O without decount, (E. F. Smith.)

Potassium percolumbate, K2CbOx. Sol m II₂(). Ppt. from aq solution by

alcohol. (E F Smith.) K4Cb2O11+3H2O Sol, with decomp, in H2O Ppt. by alcohol. Sol. in KOII+H2O2

+Aq (Melikoff, Z anorg 1899, 20. 342.) Rubidium percolumbate, Rb2CbOs Sol. m H.O. Insol in alcohol (E. F.

Smith.) Sodium percolumbate, Na₂CbO₂,

Sol. in H.O. Insol, in alcohol (E. F. Smith.)

Perferricvanhydric acid.

Potassium perferricyanide, K2Fe(CN)s+ H.O (?).

Very hygroscopic, and sol in H₂O. Nearly insol, in absolute alcohol. Decomp. by hot H₂O. (Skraup, A. 189, 368)

Periodic acid, HaIOa.

Deliquescent in moist air, very sol, in H₂O. (Bengieser, A. 17, 254.)

Rather easily sol in alcohol and ether, (Bengieser.) Rather easily sol, in alcohol, less in ether,

(Langtoch.) Sl. sol. in alcohol, still less in ether. (Lang-

lois, J. pr. 56. 36.)

Sp. gr. of HalOa+Aq

 $H_4IO_6 + 20H_4O = 1.4008$. $H_4IO_6 + 40H_4O = 1.2165$. $H_4IO_4 + 80H_4O = 1.1121$,

H,10.+160H,0 = 1.0570 $H_aIO_a + 320H_aO = 1.0288$.

(Thomsen, B, 7, 71)

Dariadates

Most periodates are insol or al. sol in HaO. all are insol, or very sl. sol in alcohol, but they all dissolve in dil HNO,+Aq. (Bengieser)

Aluminum metaperiodate, Al(IO4)s+3H2O Stable in solution containing HNO; (Eakle, C. C. 1896, II, 649.)

Ammonium metaperiodate, NH4IO4.

Sl. sol in H₂O. Cryst with 3H₂O (Ihre, B. 316), 2H₂O (Langlois, A ch (3) 34, 257). Stable in solution containing free ammonia. (Eakle, Zeit Kryst. 1896, 26, 258-88) 100 pts H₂O dissolve 2.7 pts NH₄IO₄ at 16°; sp gr. of sat. solution at 16°/4° = 1 0178 Barker, Chem. Soc. 1908, 93. 17)

Ammonium dimesoperiodate, (NH4)4I2O9+ 3H₂O

Sol in H.O. (Rammelsberg, Pogg. 134. 379)

Stable in solution containing free ammonia. Two modifications, (Eakle, Zeit Kryst. 1896, 26, 558-88; C. C. 1896, II, 649.)

Ammonium lithium dimesoperiodate, (NH₄)₂Li₂I₂O₀+7H₂O.

Sol. in H₂O. (Ihre.)

Ammonium magnessum mesoperiodate, NH.MgIOs+3H,O Precipitate. (Rammelsberg, Pogg. 134.

510) Rarium metaperiodate, Ba(IO₄).

Known only in solution

Barium dimesoperiodate, Ba2I2O0. Sl. sol, in H₂O, easily sol, in dil. HNO₂+ (Rammelsberg, Pogg. 134, 391.) Cryst also with 3H2O, 5H2O, and 7H2O.

Barium mesoperiodate, Bar(IOs) +6H2O. (Ihre)

Barium orthoperiodate, Bas(IOs).

Insol in H₂O. Sol in HNO₂+Aq. (Rammelsberg.)

Barium dimesodiperiodate, Bast4O19+5H2O. Precipitate, Sol. in dil. HNOs+Aq (Rammelsberg, Pogg. 134, 395.)

Barium periodate tungstate.

See Tungstoperiodate, barium.

Cæsium metaperiodate, CsIO4. SI. sol. in cold H2O; readily sol in hot H2O. (Wells, Am. Ch. J. 1901, 26, 279.)

2.15 pts. are sol in 100 pts. H2O at 15°. Sp. gr. of the sat aq solution at 15°/4° == 1.0166. (Barker, Chem. Soc 1908, 93. 17.)

Cæsium periodate hydrogen fluoride, 2CsIO4, Erbium periodate. 3HF+H₂O

Sol in 40-60% HF+Aq. Decomp. by H.O. Efflorescent. (Weinland, Z anorg 1899, 22, 263.)

Cadmium metaperiodate, Cd(IO2)o. Pnt. (Rammelsberg, Pogg. 134, 516)

Cadmium dimesoperiodate, Cd-I-O+9H-O. Insol in H₂O. (Rammelsberg.)

Cadmium mesoperiodate, Cda(IOa)a+5HaO. CdHIOs. (Kimmins, Chem Soc 55, 151.)

Cadmium diperiodate, Cd4l2O11+3H2O Insol in H₂O (Rammelsberg)

Cadmium periodate, Cd16I4O31+15H2O. Insol, in H₂O (Rammelsberg) Calcium metaperiodate, Ca(IO1)2.

Sol in H:IO:+Aq and acids (Rammelsberg, Pogg 134, 405)

Calcium dimesoperiodate, Ca₂I₂O₃+7H₂O, and 9H₂O Sl sol, in H₂O. (Rammelsberg.) +3H2O. (Langious)

Calcium orthoperiodate, Cas(IOs)2. Insol. in H₂O. Sol. in HNO₂+Aq (Ram-

melsberg, Pogg. 44. 577.)

Cobaltous periodate, 7CoO, 2I2O2+18H2O. Attacked by HCl, and sol. on warming. Slowly but completely sol, in NHO: (Lautsch

J. pr. 100. 89) Could not be obtained by Rammelsberg. Cupric dimesoperiodate, Cu₂I₂O₉+6H₂O.

Decomp. by H₄O without dissolving. (Rammelsberg.) Cupric orthoperiodate, CugHIOs.

Very sol. in HNO₂+Aq. (Kimmins, Chem. Soc. 55. 150)

Cupric diperiodate, Cu.I.O.: +H.O. Insol in HaO, sol, in dil HNO2+Aq. (Rammelsberg.) +7H₂O. (R)

Cupric periodate, 5CuO, I₀O₅+5H₂O, Wholly insol, in H₂O, (Rammelsberg, B. 1.73)

Didymium peroidate, Di2O2(IO4)2. Precipitate

DiIOs+4H2O. Ppt. (Cleve, Bull. Soc. (2) 43. 362.)

Sol. in H₂O (Hogland)

Glucinum periodate, Gl₂(IO₆)₂+11H₂O. Decomp. by H₂O without dissolving. Easily sol in HNO3+Aq

+13H₂O Nearly msol, in H₂O. (Atterberg, B 7. 474.)

Iron (ferrous) orthoperiodate, Fes(IOs)2. (Kimmins, Chem. Soc 55. 150) FeH₂IO₄ (Kimmins)

Iron (ferric) periodate, 2Fe₂O₈, I₂O₇+21H₂O. Ppt (Rammelsberg.)

Iron (ferric) dimesoperiodate, FeHI-O. Insol in dil HNO2+Aq. (Kimmins, Chem. Soc 55, 149)

Iron (ferric) metaperiodate, Fe(IO4): (Kimmins)

Lanthanum periodate, La(IO4)3+2H2O. Precipitate. (Cleve)

Lead melaperiodate, Pb(IO₄). Sol, in HNO2+Aq, (Kimmins)

Lead orthoperiodate, PbaH4(IO6)2. Sol in HNOs+Aq. (Kimmins, Chem. Soc. 55, 149.)

Lead mesoperiodate, Pbz(IOa)2+2H2O. Insol. in H₂O or excess of periodic acid+ Aq. Decomp. by dil. H₂SO₄+Aq. (Bengreser, A 17. 254)

Lithium metaperiodate, LiIO. Difficultly sol in H₂O. (Rammelsberg, B 1. 132.)

Somewhat deliquescent. +H₂O; sol. in H₂O. (Barker, Chem. Soc. 1911, 99, 1326)

Lithum dimesoperiodate, Lt.I.O.+3H.O. Very sl. sol, in HoO. (Rammelsberg, Pogg. 134, 387.)

Lithium orthoperiodate, LagIOs. H₂O dissolves out a slight amount of Lil. Easily sol. in HNO3+Aq. (Rammelsberg, Pogg. 137. 313)

Magnesium metaperiodate, Mg(IO4)2+ 10H.O. Easily sol. in H₂O. (Rammelsberg.)

Magnesium diperiodate, Mg4I2O11+6H2O, or 9H₂O Sl efflorescent Insol. in H₂O (Rammels-

berg.)

Magnesium dimesoperiodate, Mg₂I₂O₉+ 3H₂O.

(Rammelsherg, Pogg. 134, 490.) +15H₂O, Insol in H₂O, Sol, in periodic acid+Aq. (Langlois.)

Manganic'periodate.

See Manganiperiodic acid.

Mercurous diperiodate, 5HggO, IgO7, or

4Hg₂(), I₂Ô₇ ≈ Hg₈I₂O₁₁. Insol, in H₂O Easily sol. in HNO₂+Aq and m HCl+Aq. (Lautsch, J. pr. 100. 86.)

Mercuric arthoperiodate, Hg5(IO6)2

Insol, in H₂O. Easily sol, in HCl. Sl. sol. in HNO₃. (Lautsch)

Mercuric potassium periodate, 10HgO, 5K₂O, 6I₂O₁.

Insol. in H₂O. Difficultly sol in warm HNO₃ without decomp. (Rammelsberg, Pogg. **134**. 526)

Nickel dimesoperiodate, Ni₂I₂O₈. (Kimmins, Chem. Soc 55, 151.)

Nickel mesoperiodate, Ni₂(IO₄)₂. (Kummins)

Nickel periodate, 7NiO, 4I₂O₇+63H₂O. Insol in II₂O. Easily sol, in H₆IO₆+Aq. (Rammelsberg, Pogg. **134**, 514.)

Potassium melaperiodate, KIO4.

Sl. sol, in H₂O Sol, in 290 pts. cold H₂O,

St. sol. in 120 Sol. in 220 Jbs. con 1120, (Rammelsberg, Pogg. 134, 320.)
Almost insol in KOH+Aq
0.66 pt. is aol, in 100 pts H₂O at 13°. Sp
gr. of the sat. sol, at 13°/4° = 1,0051. (Barker,

Chem. Soc. 1908, 93, 16.) Insol in methyl acetate. (Naumann, B. 1900, 42, 3790.)

Potassium mesoperiodate, K₃IO₄+4H₂O.
Deliquescent. Easily sol. in H₂O. (Ihre.)

Potassium dimesoperiodate, K₄I₂O₆+9H₂O Sol. in 9.7 pts. cold H₂O. (Rammelsberg, Pogg. 134, 320.) Sol. in KOH+Aq. +3H₂O.

Potassium hydrogen dimesoperiodate,

K₁HI₂O₄. Less sol. in H₂O than KIO₄. (Kimmins, Chem. Soc. **51**. 356)

Potassium manganic periodate. See Manganiperiodate, potassium.

Potassium zinc periodate, K₂O, 4ZnO, 2I₂O, +4H₂O.

Ppt. (Rammelsberg, Pogg. 134, 368.)

Potassium periodate tungstate. Sec Tungstoperiodate, potassium.

Rubidium periodate, RbIO₄.

0.05 pt. is sol. m 100 pts H₂O at 13°. Sp. gr. of the sat aq. solution at 13°/4° =1.0052. (Barker, Chem. Soc 1908, 93, 16.)

Samarium periodate, Sm(IO₄)+4H₂O. Precapitate. (Cleve.)

The state of the s

Silver metaperrodate, AgIO₄.

Decomp. by coid H₄O into Ag₄I₂O₄+3H₂O, and by warm H₄O into Ag₄I₂O₄+H₅O. (Ammermuller and Magnus, Pogg. 25. 516.)

+H₄O. Insol ppt (Kimmins)

Silver mesoperiodate, AgaIO,

(Fernlunds, J. pr. 100, 99.)
Ag.HIO, Insol. ppt. (Kummins, Chem Soc 51, 358.)
Ppt by dil. HNO₂; sol. in HNO₃. (Rosenhem, A 1899, 308, 57.)

Silver dimesoperiodate, Ag₄I₂O₇+H₂O, or 3H₂O

Insol ppt. (Kimmins.)
Decomp. by boiling H₂O into Ag₆IO₆
(Rammelsberg.)

Silver orthoperiodate, AgaIOa.

Sol. in HNO₂ or NH₄OH+Aq. (Rammelsberg, Pogs. 134, 386)
Sol. in excess NH₄OH+Aq; pptd. by
HNO₃, (Rosenheim, A 1899, 308, 56)
Agg,H₃(O₄, Insol ppt (Kimaiins, Chem.
Soc 51, 385.)

Ag, H₂IO₆. As above (Kimmins.) Sol. in dil. HNO₈. (Rosenheim, A. 1899, **308**. 53)

Silver diperiodate, AgaI2O11.

Sl sol, in HNO₀+Aq; insol, in NH₄OH+ Aq. (Lautsch, J. pr. 100, 75.)

| Silver dimesodiperiodate, AgisL₄O₁₉. | HNO₃+Aq dissolves out Ag₂O. Insol. in | NH₄OH+Aq. (Lautsch.)

Sodium metaperiodate, NaIO₄ Easily sol. in H₂O

+2H₂O. (Langlois.) +3H₂O Efflorescent; sol. in 12 pts H₂O at oid. temp. (Rammelsberg, J. pr 103. 278.)

Sodium dimesoperiodate, Na₄I₂O₉+3H₂O Scarcely sol in cold, sl sol in hot H₂O.

(Magnus and Ammermuller, Pogg. 28, 514.)
Very sol in dil. HNO₃+Aq. (Langlois.)
Sol. in HC₂H₃O₃+Aq with decomp.
(Benguesor, A. 17, 254.)
Insol. in methyl acetate. (Naumann. B.

Insol. in methyl acetate. (Naumann, B 1909, **42**, 3790) +4H₂O. Sodrum mesoperiodate, $Na_1IO_5 + 5/4H_2O$. Sol in H_2O . (Ihre.) $+H_2O = Na_3H_2IO_5$. Less sol. in H_2O than $Na_4I_2O_5 + 3H_2O(=Na_2H_3IO_6)$. (Kimmins,

Na₄I₂O₆ + 3II₃O(= Na₂H₃IO₆). (Kimmii Chem Soc. **51**, 357.)

Sodium orthoperiodate, Na₄IO₅ Na₅H₄IO₅. Cornect composition for Na₄I₄O₅+3H₄O (kimmins.) Na₄H₄IO₅. Correct composition for Na₆IO₅ +H₄O. (Kimmins.)

Strontium metaperiodate, Sr(IO₄)₂+6H₂O. Sol m H₂O.

Strontium dimesoperiodate, Sr₂I₂O₆. Decomp by H₂O. +3H₂O.

Strontium mesoperiodate, Sr₃(IO₅)₂.
Precipitate.

Strontium orthoperiodate, Sr₃(IO₆)₂.
(Rammelsberg, Pogg. 44, 577.)

Thallic periodate, 3Tl₂O₃, I₂O₃+30H₂O. Insol m H₂O. Decomp by alkalies. (Ranmelsberg, B, 3, 361.)

Thorium periodate.

Precipitate Sol. in HNO++Aq.

Uranous periodate.

Precipitate, which quickly decomposes.

Ytterbum periodate, YbIO₆+2H₂O.

Hydroscopic. (Cleve, Z. anorg, 1902, 32.

Yttrium periodate, $Y_{5}(IO_{5})_{2}+8H_{2}O$. Very slightly sol. (Cleve.) $3Y_{2}O_{3}, 2I_{3}O_{7}+6H_{3}O$. Precipitate. (Cleve)

Zinc dimesoperiodate, Zn₂I₂O₉+6H₂O. (Rammelsberg, Pogg. **134.** 513.)

Zinc periodate, 3ZnO, 2I₂O₇+7H₂O. (Langlois)

Zinc deperiodate, Zn₄L₂O₁₁+H₂O Easily sol. in H₂O, sl. acid with HNO₃. (Langlois, A. ch. (3) **34**, 257.)

Zinc dimesodiperiodate, Zn₅I₄O₂₉+14H₂O (?).
(Rammelsherg.)

Zinc periodate, 9ZnO, 2I₂O₁+12H₂O. (Rammelsberg)

Periodoplatinocyanhydric acid.

Barium periodoplatinocyanide, BaPt(CN)₄I₂ +vH₂O.
Easily sol in H₂O or alcohol (Holst, Bull. Soc. (2) 22, 347.)

Potassium periodoplatinocyanide, K_{*}Pt(CN)_dI_{*}

Permanent Easily sol, in H₂O or alcohol

Permanganic acid, HMnO4.

Known only in solution, which decomposes by evaporation or warming.

Permanganates.

All permanganates are sol. in H₂O, excepting AgMnO₄, which is all sol

Ammonium permanganate, NH₄MnO₄. Sol in 12 6 pts. H₂O at 15° (Aschoff.) Sol in H₂O with decomp (Christensen, Z. anorg. 1900, 24, 208.)

Barium permanganate, $Ba(MnO_4)_2$ Sol in H_4O .

Cadmsum permanganate, Cd(MnO₄)₂+8H₂O_• Stable. (Klobb, Bull Soc 1894, (3) 11 607.)

Cadmium permanganate ammonia, Cd(MnO₄)₂, 4NH₂.

Sol in H₂O with decomp. (Klobb, Bull. Soc (3) 3. 510.)

Cæsium permanganate, CsMnO₄
Sl. sol in cold, somewhat more easily sol.

in hot H₂O. (Muthmann, B. 1893, 26. 1018.) Solubility in H₂O. 100 ccm, of the sat. solution contain at

1° 19° 59° 0.097 0.23 1.25 g. CsMnO₄. (Patterson, J. Am. Chem. Soc. 1906, **28**.

Calcium permanganate, Ca(MnO₄)₂+5H₂O. Deltauescent.

Cupric permanganate.
Deliquescent.

18 6.04 37

Cupric permanganate ammonia, Cu(MnO4)2,

Sol. in H₂O with slow decomp (Klobb, Bull, Soc. (3) 3, 509.)

Didymium permanganate, Dit MnO4)2+ 21H₂()

Sl sol, in H₂O. (Frenchs and Smith, A Has not been prepared. (Cleve, B. 11, 912.)

Lanthanum permanganate, La(MnO₄)₃+

21H₂O. Ppt. (Frerichs and Smith, A 191. 331) Has not been prepared (Cleve, B 11. 910.)

Lead permanganate. Sol, in HNO₃+Aq. (Forehhammer)

Lithium permanganate, LiMnO4+3H2O Sol, in 1.4 pts H₂O at 16°, (Aschoff)

Magnesium permanganate, Mg(Mn()4);

Insol. in CHCl₂, CCl₄, C₆H₆, toluene, natrobenzene, ligroin, ether and CS2 Sol in methyl alcohol, acetone, pyridine, and readily sol, in glacial acetic acid. Only pyridine and glacial acetic acid are sufficiently stable toward the salt to be of any practical use for (Michael and Garner, oxidation purposes Am. Ch. J. 1906, 35. 268)

+6H2O. Easily deliquescent

Nickel permanganate ammonia, N1(MnO4)2. 4NH.

Sol in H₀O with decomp (Klobb, Bull. Soc (3) 3. 509)

Potassium permanganate, KMnO4

Sol, m 16 pts. H₂O at 15° (Mitscherheh.)

Solubility in 100 pts H₂O at t°

t°	Pts KMnO ₄
0 9 8 19.8 24.8 29.8 34.8 40.0 45.0 55.0 65.0	2 83 4 31 6 34 7 59 9 03 10 67 12.56 14 58 16 89 19 33 25 03

(Baxter, J. Am. Chem. Soc. 1906, 28, 1343.) | Edwards.)

11 38 56 (Worden, J. Soc. Chem Ind. 1907, 26, 453.)

19.75 74 5 31.95

Solubility in H₂O 100 ccm, of the sat. solution contain at. 0° 15° 15.3° 309 284 5 22 5.30 8.69 g. KMnO4. Sn. gr. of sat, solution at 15°=1 035 (Patterson, J Am. Chem Soc 1906, 28.

1735) 1 l. sat KMnO₄+Aq contains at. 10° 20° 30° 40° 0.176 0 278 0.411 0.573 0.792 mol, KMnO.

63° 70° 75° 53° 1.154 1.4291 812 2 047 mol. KMnO₄. (Sackur, Z Elektrochem. 1912, 18, 723)

Solubility of KMnO4 in H4O at to

Grams KMnO4 sol. in 100 grams H2O	Ľ°
0 58	- 0 18
1 01	- 0 27
2 02	- 0 48
2 01	- 0 58
4 22	+10
5 20	+15
7 53	+25
11 61	+40
16 75	+50

(Voerman, C. C. 1906, I. 125.)

Sol. in conc H₂SO₄. Deliquesces in liquid HCl, but does not dissolve (Goie.) Slowly sol. in HaPO4+Aq. (Chevillot and

t°	H ₂ O	1-n KOH	2-n KOH	4-n KOH	6-n КОН	8-n KOH	10-n KOH
0 10 20 30 40 50 63 70 75 80 84 90	0.176 0 278 0 411 0 573 0 792 53° 1.154 1 429 1 812 2 047	0 050 0 112 0 179 32° 0 316 0 439 50° 0 638 61° 0 904 1 172 1.513 1 655	0.031 0 068 0 119 32° 0 213 0 306 0.462 60° 0 639 0 869 1 190 1 352	0 027 0.048 0.079 32° 0 149 0 211 0 304 0 427 0 572 0 651 83° 0 803	0 023 0 042 19° 0.074 0 114 0 161 0 219 0 291 0 390 0 500 85° 0 572 0 649	0 017 0.028 0.032 32° 0.062 0 084 0 111 61° 0 143 0 188 0 231	0 012 0 016 0 029 0 040 0 052 0 071 0 082 0 089

(Sackur. Z Elektrochem, 1912, 18, 723)

	(Sackt	ir, Z Elektroc	
Solubility in salts+Aq. at to			
Solvent	t°	Mol KMnO ₄ in 1 l of sat solution	
0 1-n K ₂ CO ₃	0 25 40	0 1462 0 4375 0 7380	
$1-n\frac{K_2CO_3}{2}$	0 25 .40	0.0629 0 2589 0 5007	
$2-n\frac{K_2CO_8}{2}$	0 40	0 0446 0 3519	
4-n K2CO2	0 25	0 0270 0 0930	
6-n K ₅ CO ₅	0	0 0156	
0 1-n KCl	0 25 40	0 1395 0 4315 0 7380	
0 5-n KCl	0 25 40	0.0760 0.3060 0.5840	
I-n KCI	0 25 40	0 0532 0 220 0 444	
2-n KCl	0 25 40	0 0879 0 1432 0 288	

(Sackur, Z Elektrochem 1912, 18 723.)

Very sol. in liquid NH₃. (Moissan, A. ch. 1895 (7) 6. 428; Franklin, Am Ch J 1898, **20**, 829.)

Decomp immediately by alcohol Sol in acetone. (Eidmann, C. C 1899. II, 1014, Naumann, B 1904, 37, 4328.)

Solubility in acctone+Aq. at 13°
A=com. acctone in 100 ccm acctone+Aq.

1/₈ KMnO₄ = millimols KMnO₄ in 100 ccm of the solution.

the someon.	
A	1/4 KMnO4
0 10 20 30 40 50 60 70 80 90	148 5 162 2 177 3 208 2 257.4 289 7 316 8 328.0 312 5 227.0 67.6

(Herz and Knoch, Z. anorg. 1904, 41. 317.)

Sol. in benzonitile (Naumann, B 1914, 47. 1369)
Difficulty sol in methyl acetate. (Naumann, B. 1909, 42. 3795)
Sol. in ethyl acetate. (Naumann, B 1904, 37. 3601)

Rubidium permanganate, RbMnO4.

Solubility in H₂O lies between K and Cs salts (Muthmann, B. 1893, **26**, 1018) Solubility in H₂O. 100 ccm of the sat solution contain at.

2° 19° 60° 0 46 1 06 4 68 g. RbMnO₄. (Patterson, J. Am. Chem. Soc. 1906, **28**. 1735.)

Silver permanganate, Ag2MnO4

Sol in 109 pts cold H₂O and much less hot H₂O. Decomp. by boiling (Matscherlich, Pogg. 25. 301)

Silver permanganate ammonia.

Sl. sol. in cold, more easily in hot H₂O (Klobb, C. R 103, 384)

Sodium permanganate, NaMnO₄+3H₂O.
Deliquescent Extremely sol in H₂O
Moderately sol in liquid NH₂. (Franklin,
Am Ch. J. 1898, 20, 829)

Strontium permanganate, Sr(MnO₄)₂+4H₂O Deliquescent. Sol in H₂O. (Fromherz)

Thallous permanganate, TlMnO₄.

Sol in H₂O with decomp. (R. Meyer, Z anorg. 1899, 22, 188)

Zinc permanganate, Zn(MnO₄)₂+6H₂O.
Deliquescent. Very sol in H₂O (Martenson, J. B. 1873, 274.)

Zinz.permanganate ammonia,

 $Zn(MnO_4)_3$, $4NH_3$ Sol. in H_2O with decomp. (Klobb, Bull Soc. (3) 3, 509)

Permanganomolybdic acid, MnO₂, 12MoO₃+10H₂O.

Sol. in H₂O. Decomp. by alkalis. Sol. in alcohol. (Péchard, C. R. 1897, **125**, 31)

Ammonium permanganomolybdate, 2(NH₄)₂O, MnO₂, 7MoO₃+5H₂O.

(Friedheum and Samelson, Z. anorg. 1900, 24, 73) 3(NH₄)₂O, MnO₂, 9MoO₂+6H₂O. (Friedheum and Allemann, Mit d Nat Ges. Bern.

1904, 23)
+7H₂O. (Friedheam and Samelson, Z. anorg 1900, 24, 70)
4(NH₂)₂O, MnO₂, 11MoO₂+7H₂O. (Friedheam and Samelson.)

heim and Samelson.)

3(NH₄),O. MnO₃, 12MoO₃+5H₄O. Sl. sol. in cold H₂O. Decomp. by alkalıs. Insol. in alcohol. (Péchard, C. R. 1897, **125**, 30.)

Ammonium manganous permanganomolybdate, 3[(NH₄)₂, Mn]O, MnO₂, 9MoO₃+ 6H₂O and +7H₂O

(Friedheim and Allemann, Mitt. d. Nat. Ges. Bern. 1904, 23.)

Ges. Bern. 1904. 23.)
3](NH4)₂, Mn]O, MnO₂, 10MoO₂+10H₂O
(Friedheim and Samelson, Z. anorg. 1900, 24.
91.)
4[(NH4)₂, Mn]O, MnO₂, 10MoO₂+6H₂O.
(Friedheim and Samelson, Z. anorg. 1900) 24.

(Friedneim and Sameison, Z. anorg. 1900, 24. 75.) 4[(NH₄)₂, Mn]O, MnO₂, 11MoO₃+8H₂O (Friedheim and Samelson, Z. anorg. 1900, 24.

Ammonium manganous potassium permanganomolybdate, 2(NH₄)₂O, MnO, K₂O, MnO₂, 10MoO₂+5H₂O.

Very sl. sol. in cold, easily sol. in H₂O at 7, \$0.5 \text{ 12.} \text{ 1} \text{ \sc Z} \text{ anorg. 1898, 16. 79.)} 3 \text{ 1.} \text{ 1.} \text{ \sc Z} \text{ anorg. 1898, 16. 79.)} 3 \text{ 1.} \text{ 1.} \text{ 10}\text{ 0, MnO}_t, 9MoO_t + \text{ 11}\text{ 1.} \text{ 1.} \text{ mid Allemann, Mitt. d.} Nat. Ges. Bern. 1994, 23.}

4[(NH₄)₂, K₂, Mn]O, MnO₂, 10MoO₃+ 5H₂O. (Friedheim and Samelson, Z. anoig, 1900, 24. 97.) 3[(NH₄)₂, K₂, Mn]O, MnO₂, 10MoO₃+ 6H₂O, and +10H₂O (Friedheim and Samelson, Z. anoig 1900, 24. 92.)

Ammonium potassium permanganomolybdate, 3[(NH₄)₂, K₂]O, MnO₂, 8MoO₈+ 4H₄O.

4H₂O, (Friedheum and Samelson)

Barium permanganomolybdate, 3BaO, MnO₂, 9MoO₃+12H₂O Ppt. (Hall, J. Am Chem. Soc 1907, 29.

Manganous potassium permanganomolybdate, 2K₂O, MnO, MnO₂, 9MoO₃+ 8H₂O

True formula for 5K₂O, Mn₂O₃, 16MoO₂+ 12H₂O of Stuve. (Friedheim and Samelson, Z. anorg. 1900, 24. 88.) 3[K₂,Mn]O, MnO₃, 9MoO₂+6H₂O. (Friedheim and Allemann, Mitt. d. Nat Ges. Born

1904. 23)
2 6 K₂O, 0 4 M_BO, MnO₂, 9MoO₂+7H₂O.
Ppt. (Hall, J Am. Chem. Soc. 1907, 29.
700)
4[K₂, Mn]O, MnO₂, 11MoÒ₂+7H₂O.

4[K₂, Mh]O, MhO₂, 11MbO₃+7M₂O. (Friedheim and Samelson, Z. anorg. 1900, **24**. 80)

Manganous potassium sodium permanganomolybdate, 3[Kz, Na₂, Mn]O, MnO₁, 8MnO₁+4HoO.

(Friedheim and Allemann, Mitt. d. Nat. Ges Bern 1904, 48)

Manganous sodium permanganomolybdate, 3[Na₂, Mn]O, MnO₂, 9MoO₈+15H₂O. (Friedheum and Allemann.)

Potassium permanganomolybdate, 3K₂O, MnO₂, 8MoO₂+3II₂O,

Much less sol. in H₂O than NH₄ comp. (Friedheim and Samelson, Z. anorg. 1900, 24.

+5H₂O. Nearly insol m cold or hot H₂O. (Rosenheim and Juzg, Z. anorg. 1898, **16**, 81) 3K₂O, MnO₂, 9MoO₃+5H₂O. (Friedheim and Samelson, Z. anorg. 1900, **24**, 81.) +6H₂O. (Hall, J. Am. Chem. Soc. 1907, **28**, 700)

 $3R_4O$, MnO_5 , $12MnO_5+4H_2O$. Nearly insol. in cold H_2O . Decomp. by alkalis. Insol. in alcohol. (Péchard, C. R. 1897, **125**. 31.)

Silver permanganomolybdate, 3Ag₂O, MnO₂, 9MoO₄+6H₂O. Ppt. (Hall, J. Am. Chem. Soc. 1907, 29.

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29 700) Sodium permanganomolybdate, 3Na₂O, MnO₂, 12MoO₂+13H₂O.

Efflorescent. Very sol in H₂O Decomp by alkalies. Insol in alcohol. (Péchard, C R 125, 31.)

Permanganotungstic acid.

Ammonium manganous permanganotungstate, 4(NH₂)₂O, MuO, MuO₂, 12WO₂+ 2SH₂O

Readily sol. m H₂O. Can be cryst therefrom (Rogers and Smith, J Am Chem

Soc. 1904, 26. 1475)
Sodium permanganotungstate, 3Na₂O. MnO₃.

Rather easily sol, in hot H₂O. Solution decomp on long boiling with separation of manganese peroxide (Just, B 1903, 36, 3621)

Permolybdic acid, Mo_2O_7 , $5H_2O = HMoO_4+2H_2O$.

Very sol m H₂O, and not decomp, by boiling (Péchard, A ch. (6) **28**, 550.)

H₂MoO₂+1/2H₂O "Ozo-molybdic acid."
Only very sl. sol, in H₂O after being dried in the air. Sol in fairly cone. H₂SO₄. (Muth-

mann, B. 1808, 31, 1838.)

H₃Mo₂O₇, H₂O₂. Sl. sol in cold, more easily sol in hot H₂O, but does not separate on cooling. Sol, in dl. acids, also in H₃PO₄. (Cammere, Ch. Z. 1891, 15, 957.)

Ammonium permolybdate, NH₄MoO₄+ 2H₂O.

Very sol in H₃O, sl sol in alcohol, but slood extracts it from H₂O, forming a very cone supersat. solution, which is pptd. by a crystal of NH₄MoO₄, and only a sl. amount remains in solution. (Péchard) 3(NH₂)O₅ 5MoO₄, 2MoO₄+6H₃O. (Muth-

mann, B 1898, 31, 1837.) 3(NH₄)₂O, 7MoO₄+12H₄O Ppt. (Muth-

mann, Z. anorg. 1898, 17. 76.) 3(NH₄)₂O, 5MoO₄+6H₂O. Ppt (Muthmann.)

Ammonium nickel permolybdate ammonia, (NH₄)₂N1(MoO₄)₂, 2NH₂. Decomp by H₂O. Sol. in dil. NH₄OH (Briggs, Chem. Soc. 1904, 85. 674.)

Barium permolybdate, Ba(MoO₄)₂+2H₄O. (Péchard, A. ch. 1893, (6) **28**, 537.)

8BaO, 19MoO₃, 2H₂O₂+13H₂O. (Baerwald, Dissert 1885.)

Cæsium permolybdate, Cs₂O, $4\text{MoO}_4+6\text{H}_2\text{O}$. Sol. hot H_2O . (Muthmann, B. 1898, **31**. 1841) $3\text{Cs}_2\text{O}$, 7MoO_5 , $3\text{MoO}_4+4\text{H}_2\text{O}$ Ppt. (Muthmann.)

Copper permolybdate, Cu(MoO₄)₂+H₂O
Insol in H₂O; easily sol, in acids. Sol, in
NH₂OH+Aq with decomp. (Péchard)

Magnesium permolybdate, Mg(MoO₄)₂+ 10H₂O Very sol in H₂O, sl. sol in alcohol. (Péchard.)

Mercurous permolybdate.

Insol in H₂O or NH₄NO₈+Aq. (Péchard.)

Potassium permolybdate, KMoO₄+2H₂O. Sl sol in cold, more in hot H₂O. Sl. sol.

Sodium permanganotungstate, 3Na₁O, MnO₄, 5WO₃+18H₂O.

"In alcohol (Péchard) K₂O, 2MoO₄, MoO₄+3H₂O. Ppt. (Muth-Rather easily sol. in hot H₂O. Solution man, Z anorg. 1898, 17. 77)

K₂O₂, MoO₄, H₂O₂ Decomp by H₂O. (Melikoff and Pissarjewsky, B. 1898, **31**, 2449.) K₂MoO₄+3H₂O Nearly msol in cold,

K₂MoO₄+3H₂O Nearly insol in cold, easily sol, in hot H₂O. (Mazzuchelli and Zangrilli, Gazz. ch. it. 1910, **40**, (2) 56)

Rubidium permolybdates.

"Rubidium ozo-molybdate" 3Rb₂O, 10MoO₄+14H₂O Ppt Rb₂O, 2MoO₃, MoO₄+3H₂O. May be recryst. from H₂O₂+Aq.

3Rb₂O, 5MoO₄, 2MoO₄+6H₂O Ppt Rb₂O, 3MoO₄, MoO₄+4H₂O Ppt. (Muthmann, B 1898, 31. 1839-41.)

Silver permolybdate, AgMoO₄. (Péchard.)

Sodium permelybdate, NaMoO₄+3H₂O. Very sol. in H₂O; insol. in alcohol, but behaves similarly to K salt. (Péchard)

Thallous permolybdate.

Insol. in H₂O. (Péchard, A. ch. 1893, (6) 28. 559)

Pernitric acid, NO₃.

See Nitrogen hexoxide.

Silver pernitrate, basic, 3Ag₂O₂, AgNO₃. Decomp. H₂O. (Mulder, R. t c 1898, 17. 142.)

Perosmic acid.

Potassium perosmate (?). Sol. in H₂O, but very easily decomp.

Peroxynitric acid.

Silver peroxynitrate.

Analysis of the black compound formed, under certain circumstances, in a silver voltameter when an aqueous solution of AgNO₂ is electrolyzed, points to the composition Ammonium 3Ag₂O, 5O, AgNO₃, perhaps 2Ag₃O₄, AgNO₃ monta, (I or 3.Ag₂O₂, AgNO₅, (Mulder, Chem. Soc 1896, **70**. (2) 561)

Peroxylaminesulphonic acid.

Potassium peroxylaminesulphonate,

N₂O₂(SO₂K)₄. Very unstable in H₂O. Very sl sol, in cold H₂O. More stable in N/10 KOH+Aq. 100 pts N/10 KOH+Aq dissolve 0.62 pt of the salt at 3°; 6.6 pts, at 29° (Haga, Chem Soc 1904, 85, 86)

Perstannic acid, H.Sn.O.

Known in colloidal state, sol in H₂O (Spring, Bull Sec (2) 51, 180.)

Potassium perstannate, KSnO₄+2H₂O. Sol. in H.O. Insol in alcohol. (Tanatar, B, 1905, 38, 1185)

Sodium perstannate, NaSnO4+2H2O. Difficultly sol, in H.O with decomp (Tanatar)

Persulphuric acid, S₂O₇ See Sulphur heptoxide. H.S.O.

Sp gr. of H2S2O3+Aq.

Sp gr 11°/14°	% H ₂ S ₂ O ₈	g H ₁ 8,0, per l
1 042	7 2	75
1 096	15 4	169
1 154	23 6	272
1 246	35 2	438

(Elbs and Schonherr, Z. Elektrochem, 1896, 2 245)

Ammonium persulphate, (NH₄)₂S₂O₈

Very sol in H₂O. 100 pts H₂O at 0° dissolve 58.2 pts. (NH₄)₂S₂O₈ Chem. Soc 59. 771.) (Marshall, Solubility in H₂O equals 58° at 8° (Moreau, C. C. 1901, II. 56)

100 pts. H₂O dissolve 65 pts, at ord temp, (Elbs, J pr. 1893, (2) 48, 185.)

Ammonium lead persulphate, (NH₄)₂Pb(SO₄)₃

Decump. by $\mathrm{H}_{2}\mathrm{O}$ Almost msol in cold $\mathrm{H}_{2}\mathrm{SO}_{4}$ of sp. gr. = 1.7. Sl. sol. in $\mathrm{H}_{3}\mathrm{SO}_{4}$ (sp. gr. = 1.7) at 50°. Sol. in funning $\mathrm{H}_{2}\mathrm{SO}_{4}$ and in cold cone HCl_{1} . Sol. in acetic acid, in Na acetate+Aq acidified with acetic acid and in everse of cold 20% NaOH+Aq. (Elbs, Z. Elektrochem, 1900, 7, 346)

monium mercurous persulphate am-monia, (NH₄)HgS₂O₈, 2NH₁.

Decomp by H₂O Insol, in dil or cone., hot or cold HoSO, or HNOs. Sol. in HCl. (Tarugi, Gazz ch. it. 1903, 33. (1) 131.)

Barium persulphate, BaS₂O₄+4H₂O.

Very sol. in H₂O. 100 pts H₂O at 0° dis-solve 39.1 pts. BaS₂O₈, or 52.2 pts. BaS₂O₈+ 4H₂O. Sol. in absolute alcohol with ppth. of BaS,O.+H.O Insol. in alcohol (Marshall)

Cadmium persulphate ammonia, CdS+O+. 6NH.

Sol. in H₂O (Barbieri, Z. anorg, 1911, 71, 350)

Casium persulphate, Cs-S-O. Sol. in H₂O. 8.71-8.98 pts. are sol. in 100 pts. H₂O at 23°. (E. F. Smith, J. Am. Chem.

Soc. 1899, 21, 935.)

Calcium persulphate.

Very sol. in H2O (Marshall, J Soc Chem. Ind, 1897, 16, 396.)

Copper persulphate ammonia, CuS2O8, 4NH2. Sol m H₂O (Barbieri, Z anorg 1911, 71, 351)

Lead persulphate, PbS2OA

Decomp by H₂O Sl sol in H₂SO₄, and in pyrosulphuric acid Sol. in cold cone. HCl insol or sol, with decomp in all ord solvents, (Elbs, Z Elektrochem 1900, 7. 345)

Solubility of Pb(SO₄)₂ in H₂SO₄+Aq. at 22°. v=moles of H₂SO₄ per mole of H₂O; c= millimols Pb(SO₄)₂ in 11.

١.	v	0	v	c
1	0 804	0.00	0 558	37 2
1	0 348	18	0 699	40.5
1	0.387	3.0	0 917	23 3
1	0 407	3.9	1 11	23 7
1	0 435	5.3	1.54	49 6
į.	0 477	14 4	2.08	83 5
1	0 515	23 3	2.13	88 2

(Dolezalek and Finckli, Z. anorg. 1906, 51. 321.)

+3H2O. Deliquescent Very sol, in H2O. (Marshall.)

Lead potassium persulphate, K2Pb(SO4)a

Decomp. by H_2O Almost insol in cold H_2SO_4 of sp. gr. = 1.7. Sl. sol. in H_2SO_4 (sp. gr. = 1.7) at 50°. Sol. in fuming H_2SO_4 , cold cone. HCl, excess of cold 20% NaOH+Aq, acetic acid, and in Na acetate+Aq acidified with acetic acid (Elbs, Z. Elektrochem. 1900, 7, 346.)

Nickel persulphate ammonia, N1S2O3, 6NH3. Unstable in the air Sol in H₂O with decomp. (Barbieri, Z anorg. 1911, 71, 351)

Potassium persulphate, K₂S₂O₈

100 pts H₂O at 0° dissolve 1 77 pts K₂S₂O₂: more sol in hot H2O with very al. decomp, Loss sol, in H₂O than any other persulphate. (Marshall.)

Rubidium persuiphate, Rb-S-Oa

Sol, in H₂O. 3.32-3.49 pts. are sol. in 100 pts. H₂O at 22 5°. (E. F. Smith, J. Am. Chem. Soc. 1899, 21. 934.)

Silver persulphate, basic, 5Ag₂O₂, 2Ag₂SO₇ Decomp. by H2O and acids (Mulder, C. C. 1899, I, 16)

Sodium persulphate, Na₂S₂O₃. Very sol. in H₂O (Lowenherz)

Strontium persulphate.

Very sol in H2O. (Marshall, J Soc. Chem. Ind 1897, 16, 396)

Thallium persulphate, TlaSaOs. Very sol in H₂O (Smith, J Am. Chem. Sec 1898, 21, 936)

Zinc persulphate ammonia, ZnS₂O₈, 4NH₃ Sol. in H.O. (Barbieri, Z. anorg, 1911, 71, 350.)

Persulphomolybdic acid. See Persulphomolybdic acid.

Pertantalic acid, HTaO4+nH2O. Ppt. (Mehkoff, Z. anorg, 1899, 20, 345) Cæsium pertantalate, CarTaOa.

Ppt. (E F Smrth, J Am Chem Soc 1908, 30, 1667) Calcium potassium pertantalate, CaKTaO4+

41/6H.O. Insol in cold H₂O; decomp by hot H₂O. (Melikoff, Z anorg 1899, 20, 347.)

Calcium sodium pertantalate, CaNaTaOs+ 41/2H2O. Difficultly sol in H₂O, (E. F. Smith, J. Am. Chem Soc. 1908, 30, 1668.)

Magnesium potassium pertantalate, $MgKTaO_8+7H_2O$. Somewhat sol in H₂O. (E. F. Smith.)

Magnesium rubidium pertantalate. $MgRbTaO_8+9H_2O$.

Somewhat sol. in H₂O. (E. F. Smith.)

Magnesium sodium pertantalate, MgNaTaOs +8H.O

Somewhat sol in H₂O. (E. F. Smith)

Potassium pertantalate, K_sTaO_s+½H₂O. Sol in H₂O with decomp ; sol in KOH+ H₂O₂+Aq; pptd by alcohol. (Melikoff, Z. anorg. 1899, 20. 346)

Rubidium pertantalate, Rb₃TaO₈. Somewhat sol. in H₂O. (E. F. Smith.)

Sodium pertantalate, Na₂TaO₈+H₂O.

Pptd by alcohol. Sl. sol, in H₂O, decomp on heating with H2O. (Melikoff, Z. anorg 1899, 20, 348 NaTaO₄+NaOTaO₄+13H₂O. H₂O₂+Aq, pptd by alcohol. (Melikoff, Z. anorg 1899, **20**. 349)

Pertitanic acid.

Ammonium pertitanate, (NH4)2O2, TiO2+ H_2O_2

Fairly stable; decomp. rapidly in aq. solution. (Melikoff, B. 1898, 31, 955.)

Barium pertitanate, BaO2, TiO2+5H2O Sl. sol, in H₂O. (Melikoff and Pissariewsky, Z anorg 1898, 18. 59.)

Potassium pertitanate, K₂O₂, TiO₂, K₂O₄+ 10H.O Stable at zero; deliquesces and decomp. at

ordinary temp. (Melikoff, B. 1898, 31. 680.) Sodium pertitanate, NagO2, TiO2+3H2O. Sol in H2O. Pptd. in alcohol. (Melikoff, 1898, 31. 955 4Na2O2, T12O7+10H2O. Decomp. by H2O.

(Melikoff) Pertungstic acid.

Barium pertungstate, BaO, 2WO₃, O+6H₂O. Insol in H2O. Decomp. by acids (Kellner, Dissert. 1909.)

Cæsium pertungstate, 3Cs₂O, 12WO₃, 2O+ 12H₀O. Sl. sol. m cold, easily sol. m warm H₂O.

(Kellner) 5C8₂O, 12WO₈, 24O+11H₂O. Sl sol in H₂O (Kellner)

Calcium pertungstate, 3CaO, 6WOs, 8O+ 8H_{*}O Sol. in H₂O. (Kellner)

Lithium pertungstate, Li₂O, 2WO₂, 2O+ 6H₂O Sl. sol in H2O, (Kellner.)

3L₁₂O, 4WO₃, O+9H₂O. Sol. in H₂O. (Kellner.)

Magnesium pertungstate, 2MgO, 4WO2, 6O+ Copper peruranate, (CuO2)2UO4. 9H.O.

Easily sol, in H₂O. (Kellner.)

Potassium pertungstate, K2O4, WO4+H2O. Sol in H₂O with decomp.; explodes in the nir at 80° (Mehkoff, B. 1898, 31, 634.) K₂O, 2WO₃, 4O+4H₂O Sol, in H₂O from which it is not, by alcohol and other (Kell-7K₂O, 10WO₃, 5O+22H₃O. Very sl. sol. in H₂O. (Kellner.)

Rubidium pertupgstate, 2Rb₂O, 4WO₂, O+ 3H.O.

Sol. in H₂O with slow decomp. (Kellner.) 5Rb₂O, 12WO₁, 3O+12H₂O Insol. in H₂O. (Kellner.)

Sodium pertungstate, NaWO4+H2O. Very sol. in H.O. (Péchard, C. R. 112,

+2H.O. Sol. in H.O but easily decomp. (Kellner.) NagW2Og+6H4O Sol in H2O and can be cryst, therefrom (Pissariewsky, Z. anorg. Sodium peruranate, Na, UO, +SH,O 1900, 24. 113.) Na₂O₂, WO₄+H₂O₂, (Na₂O₂)WO₄+7H₂O Decomp in the air Sol. in H₂O with decomp (Melikoff, B. 1898, 31, 633.) Na₂O₂, WO₄, H₂O₃ Very Very unstable.

comp. in the air and by H.O. (Melikoff.) Strontium pertungstate, SrO, 2WOs, O+ 6H.O.

(Kellner.) Peruranic acid, UOs, xH2O (?). Known only in its salts

Ammonium peruranate, (NH₄)₂O₂, (UO₄)₂+ Sol. in H₂O; decomp. by acids and by Al(OH)₁ in aq. solution. (Melikoff, B. 1897, 30, 2904.)

Ammonium uranyl peruranate, (NH₄)₂(UO₂)UO₅+8H₄O (?).

Easily sol. in H₂O. (Fairley, Chem. Soc. (2) 31, 134.)

Barium peruranate, BaUO:. As K salt. (de Coninck, C. C. 1909, I.

1970.) (B₃O₁)₂UO₄+8H₂O. Decomp. by H₂SO₄ and H₂CO₄. (Melikoff, B. 1897, 30, 2905.) BaO₁(UO₄)₂+9H₂O. Ppt. (Melikoff.)

Calcium peruranate, CaUOs.

As K salt, (de Coninck.)

Calcium peruranate, (CaO2)2UO4+10H2O. Ppt. (Melikoff, B, 1897, 30, 2906.)

Pot. (Melikoff.)

Lead neguranate, (PhO), UO, PhO, UO, Pnt (Melikoff)

Lithium peruranate, (Li₂O₂)(UO₄)₂+8H₂O₂ Sol. in H₂O: decomp, by acids and by Al(OH), in an solution; very unstable, (Melikoff.)

Nickel peruranate, (NiO), UO, Ppt. (Melikoff)

Potassium peruranate, K₄UO₈+10H₂O (?),

Unstable, (Fairley,) K.UO. (de Coninck, C. R. 1909, 148. 1769)

+3H₂O. Decomp. by H₂O, HCl and dil. HNO₂ (Aloy, Bull, Soc 1903, (3) 29, 293,)

Silver peruranate, AgaU2O11 (?). (Guyard, Bull, Soc (2) 1, 95.)

Does not exist. (Alibegoff, A. 233, 117.)

Sol in H₂O. Sl sol in alcohol, (Fairley.) Na₂UO₅ As K salt. (de Connek, C. C. 1909, I. 1970.)

1908, 1. 1910.)

+5H₂O Decomp. by H₃O and HCl. (Aloy, Bull. Soc. 1903, (3) 29. 293.)

(Na₃O₃)₂UO₄+8H₂O. Sol. in H₂O; decomp. by dtl. HCl. H₃SO₄, and by Al(OH), in aq. solution. (Melkoff, B. 1897, 30. 2903.)

Sodium uranvi peruranate, Na*(UO*)UO*+ 6H₂O (?). Sol. in H₂O. (Fairley.)

Pervanadic acid, HVO, (?). Sol, in H₂O. (Pissarjewsky, C. C. 1902, II. 565.)

Ammonium pervanadate, NH4VO4.

Sol in H₂O₂+Aq; msol, m alcohol. (Scheuer Z anorg 1889, 16. 294.) (NH₂)VO₂+2/4H₂O. Sol. in H₂O; insol. m alcohol (Melikoff, B. 1909, 42. 2292.) (NH₂)V₂O₁. Sol. in H₂O₂+Aq; ppt. from ag solution by alcohol (Melikoff, Z. anorg

1899, 19, 406,

Barium pervanadate, Ba(VO4)1. SI, sol in H₂O₂+Aq free from H₂SO₄; insol, in alcohol. (Scheuer, Z. anorg. 1898, 16, 288.)

Cadmium pervanadate, Cd(VO₄),

Sl. sol. m H2O2+Aq; msol, in alcohol, (Scheuer.)

Calcium pervanadate, Ca(VO₄). Sol. in H2O2+Aq; insol in alcohol. (Scheuer.)

Lead pervanadate, Pb(VO₄), Sl sol in H2O2+Aq free from H2SO4; insol m alcohol (Scheuer)

Lithium pervanadate, LaVO4 Sol in H₂O₂ +Aq; msol, in alcohol

Potassium pervanadate, KVO.

(Scheuer)

Sol in H2O2+Aq acadified with H2SO4. msol in alcohol (Scheuer) K₂VO₆+2½H₂O Sol in H₂O, insol, in alcohol (Melikoff, B. 1909, 42, 2293)

3K₂O₂VO₄, 2KVO₄+2H₂O. 0.855 g. is sol in 100 g. H₂O at 19°; sl. sol. in KOH+ Aq, very stable in the air. (Melikoff and Pissarjewsky, Z. anorg. 1899, 19. 408). Ppt. Decomp. by cold KOH+Aq. K_1V_2 0: $i+2H_2$ 0. (Melikoff and Pissarjewsky, Z. Stone. Chem Soc. 3. 135) jewsky, Z. anorg 1809, 19. 411.) Moderately sol. in K₄V₂O₁₃+31₂H₂O. H₂O with slow decomp. (Melikoff and Pissarjewsky, Z. anorg. 1899, 19. 410)

Silver pervanadate, AgVO₄.

Sl sol in H₂O₂+Aq free from H₂SO₄; sol in alcohol (Scheuer.)

Sodium pervanadate, NaVO4 Sol. in H₂O₄ acidified with H₂SO₄, msol.

in alcohol. (Scheuer.)

Strontium pervanadate, Sr(VO₄)₂, Sl. sol. in H₂O₂+Aq free from H₂SO₄, insol in alcohol (Scheuer.)

Philippium, Ph (?). (Delafontaine, C. R. 87. 559) Consists of terbium and yttrium. (Roscoe,

B 15, 1274.)

Phosgene, CoCl. See Carbonvl chloride.

Phosphame, PN2H (?).

Insol. in H₂O Insol in dil HNO₂+Aq; gradually decomp. by conc HNO₃. (Rose, Pogg. 24, 308.)

Insol. in cone HNO₃ (Paul., A. 123. 236.) Sol. in H₂SO₄ with decomp. (Rose.) Insol in dil, but decomp. by cone KOH or NaOH+Aq

Insol. in alcohol or ether. Formula is perhaps P₂N₃H₄. (Salzmann, B. 6, 494.)

Phosphamic acid, PO

Does not exact, but was impure pyrophosphodiamic acid (Gladstone.) Also Mente (A. 248, 245).

Pyrophosphamic acid, PaNHaO6= P2O2(OH)2NH2

Deliquescent in moist air, easily sol. in H.O or alcohol, sl. sol. m ether (Cladstone, Chem. Soc 3, 152)

Correct composition is unidodiphosphoric acid, $P_2NH_4O_3 = HO - PO < \frac{O}{NH} > PO - OH$. (Mente, A 248, 232.)

Barium pyrophosphamate, Bag(P2NH2O5)z. Sol. in HCl or HNO3+Aq, not in HC2H3O2 +Aq. (Gladstone and Holmes, Chem. Soc. (2) 2, 233.)

Ppt. Decomp. by cold KOH+Aq. (Gladstone, Chem Soc. 3. 135)

Ferric ----, Fe₂(P₂NH₂O₆)₂+2H₂O. Insol, in dil. acids. Sol in conc. H2SO4. and decomp. by warming Easily sol. in NH₄OH+Aq Decomp. by KOH+Aq. (Gladstone, Chem. Soc. 3. 142)

Lead —, $Pb_2(P_2NH_2O_4)_2+4H_2O$. Insol in NH₂OH+A₀.

Potassium ----, K₃P₂NH₂O₄ Deliquescent Sol in H₂O. Insol, in alcohol (Gladstone, A. 76, 85)

Silver \longrightarrow , $Ag_3P_2NH_2O_6+5H_2O$.

Zinc —, $Zn_3(P_2NH_2O_6)_2$.

(Gladstone and Holmes, Chem. Soc. (2) 2.

Phosphamide, PON. See Phosphoryl nitride.

PN₂H₂O. See Phosphoryl imidoamide.

Triphosphamide, PON₂H₆. See Phosphoryl to ramide.

Trimetaphosphimic acid, PaNaHeOc Sol. in H.O: ag solution does not coagulate albumen. (Stokes, Am. Ch. J. 1895, 17, 275.)

Ammonium trumetaphosphimate, (NH4),P,N,O,H,. Sol. in H₂O, msol. in alcohol, unstable,

(Stokes, Am. Ch. J. 1896, 18. 643.) Barium trimetaphosphimate, Bas(PaNsOsHs);

+4H₂O. +6H₂O. Sl. sol in H₂O. Easily sol. in NH₄Cl+Aq and m NaCl+Aq (Stokes.)

666 ---

Barium sodium ti imetaphosphimate, PaNaOaHaNaBa+112HaO

Almost insol in H-O, easily sol in NHLCl+ Aq and in NaCl+Aq. (Stokes.)

Magnesium trimetaphosphimate,

(PaN2OeH2)2Mg2 (?). Sol in H₂O; msol, in alcohol; aq. solution decomp, on boiling, (Stokes)

Potassium trimetaphosphimate, K2P2N2O6H2. Sol, in H₂O; msol in alcohol. (Stokes)

Silver trametaphosphimate, AgaPaNaOaHa Ppt; sol. in NH₄OH+Aq, insol. in H₂O;

sl. sol in HNO₁+Aq. (Stokes) a Sodium trimetaphosphimate, P3N3O4H3Na3

 $+1H_2O$ 18.3 pts are sol. in 100 pts. H₂O at 20°; very sol, in hot H₂O; decomp, by alkali on long boiling (Stokes.)

β Sodium trametrophosphimate, PaNaOcHaNaa +II.O.

Sol. in H2O, insol. in alcohol. (Stokes)

Tetrametaphosphimic acid,

PaNaOaHa+2H.O.

Very sl. sol in H₂O, decomposes the sol. salts of HCl, H₂SO₄ and HNO₂ (Stokes, Am. Ch. J. 1895, 17. 290) 100 pts. H₂O at 20° dissolve 0.64 pt. crystal-

lized acid. Somewhat more sol. in boiling H₂O (Stokes) 100 pts. 10% HNO₃+Aq at 20° dissolve

0.20 pt of crystallized acid (Stokes)
Not decomp. by boiling alkalies+Aq.
(Stokes, Am. Ch. J. 1896, 18. 785.)
Insol in alcohol (Stokes, Am. Ch. J.

Ammonium tetrametaphosphimate, PaNaOsHa(NHa).

1896, 18, 784)

Only sl. sol, in boiling H2O, sol in excess of hot 5° 4 HNO₃. (Stokes)

P₄N₄O₈H₄(NH₄)₄+4H₂O. Readily sol m Pyrophosphodiamic acid, H₂O; sl. sol, in NH₄OH+Aq. (Stokes.)

Barium tetrametaphosphimate, P.N.O.H.Ba. $+2H_{*}O$

Ppt.; msol m H₂O. (Stokes.)

Potassium tetrametaphosphimate. P4N4O8H6K2

+Aq. (Stokes.) P₄N₄O₈H₄K₄ (?). Very sol. in H₂O. (Stokes.)

Silver tetrametaphosphimate, P4N4O8H4Ag4 Ppt.; insol. in H2O; sl. sol in HNOz+Aq. (Stokes)

PaNaOaAga Ppt., sol. in NH4NO2+Aq. (Stokes)

Sodium tetrametaphosphimate, P4N4O3H4Na4 +214 (?) H₂O Sl. sol. in cold H₂O Easily sol in hot H₂O Pot. from aqueous solution by excess of al-

kalı. (Stokes.) Pentametaphosphimic acid.

PO (OH) NH.PO.(OH)NH.PO(OH) NH $=H_{10}\dot{P}_{t}N_{t}O_{1}$

Sol, m H₂O, pptd by alcohol. (Stokes, Am. Ch. J. 1898, 20, 748.)

Magnesium pentametaphosphimate,

(PaNaO10Hg)2Mg. Ppt. (Stokes)

PaNaOnHaMga+5HaO. Ppt., insol in alcohol, almost insol in H2O, sl, sol, in conc acetic acid. (Stokes.)

Silver pentametaphosphimate, P5N5O10H5Ag5. Ppt , sol in cold KOH+Au with decomp. (Stokes)

Sodium pentametaphosphimate, $P_aN_aO_{aa}H_aNa_a+2H_aO_a$

Sol in H2O, msol, in alcohol (Stokes.) PsNsOmHeNas+2H2O Sol in 80% acetic acid; pptd. by alcohol (Stokes)

Hexametaphosphimic acid.

Silver hexametaphosphimate, PaN6O12H6Aga. Ppt , decomp, by cold KOH+Aq (Stokes, Am. Ch J. 1898, 20, 757.)

Sodium hexametaphosphimate, PaNaO12HaNtle +2H₂O. Sol. in H2O; pptd by alcohol. (Stokes)

Phosphine.

See Hydrogen phosphide.

 $P_2N_2H_4O_3 = P_2O_3(OH)_2(NH_2)_2$

Deliquescent Easily sol, in H₂O, alcohol, or ether Sol. in cold conc. H2SO4 without decomp. (Gladstone, Chem. Soc 3, 353.)

Correct composition is dimidodiphosphoric acid, P2N2H4O4+H4O=HO-PO=(NH)2= PO-OH. (Mente.)

Sl. sol. in boiling H2O; sol. in cold dil. KOH Aluminum pyrophosphodiamate. Preemitate. Sol. in NH₄OH+Aq. Insol.

in acids (Gladstone, A. 76, 82,

Ammonium ----, P₂O₃(NH₄)₂.

Very deliquescent in moist air. Sol. in H2O. (Schiff, A. 103, 168.)

Soc 4, 10.)

Barium pyrophosphodsamate,
Bal²,O₂(NH₂)².

Precipitate. Sl sol in H₂O Sol in NH₄OH+Aq. (Gladstone)

Calcium ——, CaP₂O₃(NH₂)₂.

Insol. in NH₄OH+Aq Sol. in NH₄Cl+Aq and acids (Gladstone and Holmes.)

Lead —— Ppt Decomp by H₂O

stone and Holmes)

Magnesium —— Ppt. (Gladstone and Holmes)

Silver —, Ag₂P₂O₃(NH₂)₂ Sl. sol in H₂O. Sol in HNO₃+Aq (Glad-

Strontium — .

Sol. in acids and NH₄Cl+Aq Insol in NH₄OH+Aq. (Gladstone and Holmes, Chem. Soc. (2) 4, 295.)

Zinc —, ZnP₂O₅(NH₂)₂ Ppt. (Gladstone and Holmes)

Pyrophosphotriamic acid, P₂N₂H₂O₄ = P₂O₃(NH₂)₃
Decomp. by boiling H₂O or HCl Sol, in

cone. H₁SO₄ upon heating. (Gladstone and Holmes.)

Correct formula is HO—PO < NH > PO—

Correct formula is HO—PO < NH > PO— NH₂ = dumidod:phosphomonamic acid. (Mente, A. 248. 241.)

Ammonium pyrophosphoiriamate, P₂O₃(NH₄)₃

Insol, in H₂O. (Gladstone and Holmes.)

Barium —, BaP₂N₃H₅O₄.
BaH₂(P₂N₃H₅O₄) Decomp by HCl+Aq (Gladstone, Chem Soc 4. 6.)

Cobaltous ----, CoP2N3H5O4

Slowly decomp by dil. H₂SO₄+Aq, not by HCl+Aq. (Gladstone and Holmes, Chem. Soc. (2) 4. 1.)

Cupric ——, CuP₂N₈H₄O₄.
Insol in H₄O or NH₄OH+Aq. (Gladstone and Holmes, Chem. Soc. (2) 4. 1.)

Ferrous —, FeH₆(P₂N₃H₃O₄)₂. Insol in dil acids (Gladstone, Chem Soc (2) 4. 1.)

Lead —, H₂Pb₃(P₂N₃H₃O₄)₂. Ppt (Gladstone and Holmes, Chem. Soc. (2) 4, 1) $H_4Pb_2(P_2N_3H_4O_4)_2$ Ppt (G. and H.) $H_4Pb(P_2N_3H_4O_4)_2$ (G and H.)

Mercuric pyrophosphoiriamate, Hg₂P₂N₃H₂O₄.

Insol. in H₂O or dil. HCl or HNO₃+Aq. (Gladstone and Holmes, Chem. Soc. (2) 4. 1.)

Platinum ——, Pt₂P₂N₃H₃O₄. Decomp by H₂O when freshly pptd (G. and H.)

Potassium ——, KP₂N₂H₄O₄.
Almost insol, in H₂O. (Gladstone, Chem.

Silver —, Ag₃P₂N₂H₄O₄.

Put Sl attacked by HC₂H₄O₂; decomp.

by HNO₃ or NH₄OH+Aq mto— AgH₃P₂N₃H₄O₄ Insol in H₂O Decomp. by HCl (Gladstone, Chem. Soc. (2) 4. 1)

Zmc ——. Insol in H_zO (Gladstone and Holmes) $Tetraphosphodramic acid, <math>P_aN_zH_zO_{12} =$

P₄O₇(OII)₄ P₄O₇(NH₂)₂. Known only as NH₄ salt

Ammonium tets aphosphod:amate,

 $P_4O_7^{O_4H(NH_4)_3}$ $(NH_2)_2$. Very deliquescent, and sol. in H_4O . (Gladstone.)

Ammonium dihydrogen tetraphosphodiamate, $P_4N_4H_{16}O_{12} = P_4O_7O_4H_2(NH_4)_2$ (?).

Insol in cold, easily sol in hot H₂O and dil acids. (Gladstone)

Tetraphosphotetramic acid, P₄N₄H₁₀O₈ = P₄O₇(OH)₂ (NH₃)₄.

Sol in H₂O. Insol in alcohol. (Gladstone.)

Ammonium teti aphosphotetramate, P₄O₇(O₂HNH₄) P₄O₇(NH₂)₄.

Sol in H₂O, and precipitated from solution by alcohol (Gladstone)

Silver —, Ag₆P₄N₄H₄O₉.

Ppt

Ag₂H₄P₄N₄H₄O₉ Ppt.

Ammonium phosphoarseniovanadicovanadiotungstate.

See Arseniophosphovanadicovanadiotungstate, ammonium.

668 **&**

Tetraphosphopentazotic acid, $P_1N_1H_0O_2 \approx P_2O_2 \frac{(NH_2)}{NH}$

Insel in H.O. Decomo, gradually by boilmg with H.O (Gladstone)

Ammonio(et) (phosphoventazotic acid (?), P₄(), (NH₂)₄ P₄(), NH NH₂.

Decomp by H₂O (Gladstone)

Cupric tetraphosphopentazotate. (Gladstone, Chem. Soc (2) 6, 261)

Lead ----(Gladstone, Chem Soc. (2) 6, 261)

Potassium --- KOP N.H.O.

Insol, in H2O. (Gladstone, Chem Soc (2) 6, 268.)

Phosphoboric acid, H₃BO₃, H₂PO₄=BPO₄ ∓3H₂0.

Not decomp, by boiling H₂O or conc. acids Sol, in boiling solution of caustic alkalies. (Vogel, N Repert. Pharm. 18, 611.)

Phosphochloroplatinous acid. P(OH) . PtCl1.

See Chloroplatinophosphoric acid.

Phosphochromic acid.

Ammonium phosphochromate, 3(NH₄)₂O, P₂O₅, SCrO₂+H₂O.

Sol. in H₂O with decomp (Friedheim, Z. anorg. 1894, 6, 284.)

Potassium phosphochromate, 2K2O, P4O5, 4Cr(),+H₂(),

Sol. in H₂O but cannot be cryst, therefrom without decomp. Can be cryst, without decomp. from H₂O containing phosphoric acid (Friedheim.)

3K₂O, P₂O₃, SCrO₃. Sol. in H₂O but cannot be cryst therefrom without decomp. (Blondel, C R. 1894, 118. 194.)

Phosphohypophosphotungstic acid.

Potassium sodium phosphohypophosphotuni state, 9K₂O, Na₂O, 4P₂O₅, 2PO₂H₂, 26WO₁+23H₂O.

Precipitate. Easily sol. in hot H.O. (Gibbs, Am. Ch. J. 7. 313.)

Tetraphosphotetrimidic acid. $P_4N_4H_4O_7 = P_4O_7(NH_2)_2$

Known only in its salts, (Gladstone,)

Silver tetraphosphotetrimidate. Pnt. (Gladstone.)

Phosphoiodic acid, PaQs, 18I2Os+4H2O. Decump. by HgO (Chrétien, A ch. 1898, (7) 15, 389.)

Ammonium phosphoiodate, 4(NH₄)₂O, P₂O₅, 18I-O₄+12H₂O

Sol in H₂O. Sl. sol. in conc H₂PO₄+Aq. (Chrétien.)

Lithium phosphoiodate, 3Li₂O, P₂O₄, 18I₂O₅+ 11H.O. Sol. m H₂O Sl. sol m conc, H₂PO₄+Aq. (Chrétien.)

Potassium phosphoiodate, 4K2O, P2Os. 18I₂O₄+5H₂O.

Decomp, by a small amt of H₂O; sol, in a large amt SI sol. in conc HaPO4+AG. (Chrétien.)

Sodium phosphoiodate, 6Na₂O, P₂O₅, 18I₂O₆ $+5H_2O$ Sol. in H_{*}O Sl. sol. in conc. H_{*}PO_{*}+Aq (Clirétien.)

Phosphoiridic acid.

See Chlorophosphoiridic acid. Phospholuteotungstic acid, H₅PW₅O₂₅.

See under Phosphotungstic acid.

Phosphomolybdic acid, PoO6, 18MoO3 +rH2O. "Phospholuteomolybdic acid."

Deliquescent. Sol. in H2O in all proportions. (Kehrmann, Z. anorg. 1894, 7. 418.)
3H₂O, P₂O₄, 20M₂O₂+21H₂O Very sol.
in H₂O. Sol. in ether By evaporation of

H₂O solution crystals with 44H₂O, or from a strong solution in cone. HNO₃+Aq, with 19H2O, are obtained; also crystals with 38, and 48H₂O are known (Debray, C. R. 66. 701)

According to Rammelsberg (B 10, 1776)

formula is 3H₂O, P₂O₄, 22MoO₃ According to Gibbs (Am. Ch. J **3**, 317) formula is 3H₂O, P₂O₅, 24MoO₄+59H₂O Funkener (B. 11, 1638) gives the formula as

3H2O, P2O2, 24M0O2+58H2O, also with 29H.O.

P2O5, 20MoO2+52H2O Sol, in dry ether with evolution of heat, and subsequent separation into two layers, the upper consisting of pure ether, and lower of a solution of acid in ether. Sp. gr. of lower layer, when sat, at 13°, is 1.3 On warming lower layer, ether separates out and forms an upper layer. This redissolves on cooling and shaking. The lower layer is insol. in H₄O and miscible with alcohol.

100 pts, ether thus dissolve 80.6 pts, acid at 0°: 84 7 pts at 8 1°; 96.7 pts at 19 3°. 103.9 pts at 27 4°; 107.9 pts. at 32 9° mentier. C. R. 104. 688.) mentier, C R 104. 688.)

P₂O_b, 22MoO₃+57H₂O, and +58H₄O.

(Pohl, Dissert. 1906. P₂O₃, 23MoO₂+61H₂O. (Pohl.) (Miolati, C. C.

P₂O₅, 24MoO₈+61H₂O 1903, II. 789) +64H₂O. (Pohl)

Diphosphopentamolybdic acid, $H_6P_2Mo_4O_{23} = 3H_2O_1$, P_2O_4 , $5MoO_3$ Not known in free state

Ammonium phosphomolybdate, (NH₄)₂O, P₂O₅, 2M₀O₂+2H₂O

(Meschorier, Dissert 1894.) 2(NH₄)₂O, P₂O₅, 4MoO₅+5H₂O. (Fried-

heim, Z. anorg. 1894, 6, 33) +6H₂O. (Perlberger, Dissert. 1904.)

(NH₄)₈PO₄, 11MoO₃+6H₂O. Formula is (NH₄)₃PO₄, 10MoO₄+1½H₂O, according to the older authorities.

Scarcely sol, in H2O or aqueous acid solutions. Easily sol. in ammonia, and alkalies+ Ag. (Syanberg and Struve, J pr. 44, 291. It is almost completely insol, in a mixture

of (NH4)2MoO4+Aq, and dil. HNO2+Aq. Absolutely insol in a dil, nitric acid solution of ammonium nitrate (Richters, Z anal, 10.

471.

Solubility is increased even in presence of ammonium molybdate and free HNO₃ by HCl. ammonium, and other chlorides, tartaric acid, or large quantities of ammonium oxalate or citrate. Not precipitated in presence of excess of H.PO. (Fresenius, Z. anal. 3, 446.)

Sol. in 10,000 pts. H₂O at 16°, in 6600 pts. H₂O containing 1 vol % HNO₂, in 550 pts. HCl+Aq of 1 12 sp gr; in 620 pts alcohol of 0.80 sp. gr., m 190 pts. HNO₈+Aq (sp. gr = 1.2) at 50°, m 5 pts. conc. H.SO₂ at 100°: in 3 pts NH₄OH+Aq of 0.95 sp. gr (Eggertz, J. pr. 79, 496.)

Sol m 21,186 pts. H₂O, 38,117 pts. dil. alcohol, and 13,513 pts. strong alcohol

(Hehner, Analyst, 1879, 23.)

According to Sonnenschein, the solubility is increased by much H₂O or alcohol, alkaline hydroxides, carbonates, ortho-, pyro-, and metaphosphates, sodium borate, hyposulphate, thiosulphate, acetate, arsenate, and arsente; potassium sodium tartrate, ammo-nium oxalate, orthophosphonic acid, and sul-phuric acid. It is not increased by ammonium molybdate or sulphate, potassium sulphate, acid tartrate, acid oxalate, nitrate, or chlorate, rodide, chloride, or bromide; sodium bromide or nitrate; nitric, hydrochloric, bone, tartane, exalic, and dilute sulphune acids (Sonnenschein, J. pr 53, 342.)
Sol. in hot H₂O. Sol. in cold caustic

alkalies, alkali carbonates, and phosphates, (Perlberger)

NH₄Cl, and (NH₄)₂C₂O₄+Aq; sl sol, in (NH₄)₂SO₄, KNO₃, and KCl+Aq; very sl sol in NH₄NO₂+Aq Sol. in K₂SO₄, Na₂SO₄, NaCl, MgCl₂, H_iSO₄, HCl, and cone or dil

 $HNO_{s} + A_{0}$

Presence of (NH₄)₂MoO₄ totally changes the effect of and hands; mool in dil HNO, or H.SO.+An containing (NH4).MoO4, but somewhat sol in HCl+Aq, even in presence of that salt Tartaric acid and similar organic substances totally prevent the precipitation of this salt (Eggertz in Fresenius' Quant. anal.

48MoO. 5(NH.)+O $2P_2O_5 + 17H_2O =$ 3(NH₄)₂O, 24M₂O₃, P₄O₅+2(NII₄)₂O, H₂O, 24M₂O₃, P₄O₅+16H₂O Formula of shove Formula of above

salt according to Gibbs 3(NH4)10. 22MoO3, P1O4+9H1O, or 12H₂O

8(NH₄)₂O, H₂O, 60M₀O₄, 3P₂O₅+11H₂O Sl sol in H₂O

3(NH₄)₂O, 16MoO₃, P₂O₄+14H₂O. Insol. in cold, sol with decomp, in hot H2O. Sol m NH4OH+Aq (Gibbs, Am Ch. J 3, 317.) 5(NH₄)₂O, P₂O₅, 16M₀O₂ (Meschoirer. Dissert 1894.

3(NH₄)₂O, P₂O₅, 18M₀O₃+14H₂O in H2O. The aqueous solution is stable at ordinary temp, for several days, but when warmed ordinary ammonium phosphomolybdate separates. (Kehrmann, Z anorg 1894. 7. 414

7. 414 3(NH₁)₂O, P₂O₅, 28MoO₁+8H₂O 100 g H₂O dissolve 0.0238 g. at 15°. 1 pt. is sol. at 16° m 4206 pts. H₂O, 7300 pts. 5% NH₂NO₂+ Aq; 4930 pts. 1% HNO₂+Aq. (de Lucchi, Rass. Mm. 1910, 32, 21.)

5MoO3, P2O3+7H2O

9(NH₄)2O, 2P2O₅, 28MoO₃+8H2O (Meschoirer, Dissert, 1894.)

Ammonium diphosphopeniamolybdate, 2(NH₄)₃PO₁, 5MoO₂+7H₂O=3(NH₄)₄O,

Easily sol in hot, less in cold H₂O. (Zenk-Essay Soft in 10d, ress it could rigo. (Jenn-ner, J. pr 58, 256.) 5(NH₄)₂O, H₄O, 10MoO₃, 2P₄O₄+6H₄O, =3(NH₄)₂O, 5MoO₃, P₂O₄+2(NH₄)₂O, H₄O, 5MoO₃, P₄O₄+6H₅O. Sol. in H₂O (Gibbs, Am. Ch. J. 1895, 17, 87.)

+8H₂O. (Perlberger.)

+18II₂O. (Mazzuchelli and Zangulli, Gazz, ch. it. 1910, 40. (2) 55) 5(NH₄)₂O, P₂O₄, 10MoO₄+13H₂O, and +14H₂O. (Perlberger, Dissert. 1904.)

Ammonium barium phosphomolybdate, 3(NH4)2O, 30BaO, P2O4, 30MoO2.

Insol precipitate. (Seligsohn, J. pr. 67.

Ammonium cadmium phosphomolybdate, 5(NH₄)₂O, CdO, P₂O₅, 6M₀O₂+8H₂O. (Perlberger, Dissert 1904.) 3(NH₄)₂, 2CdO, 2P₂O₅, 9MoO₂+141H₂O.

Ammonium cobaltous phosphomolybdate, (NH₄)₂O, 2CoO, P₂O₅, 5MoO₈+10H₂O. Decomp. by cold H₂O. Sol in acids and hot HaO (Arnfeld, Dissert, 1898.)

4(NH₄)₂(), CoO, 2P₂O₅, 10MoO₃+12H₂O SI sol in cold, easily sol, in hot H₂O (Ainfeld.)

Ammonium manganous phosphomolybdate, (NH₄),O, 2MnO, P₂O₆, 5MoO₅+20H₂O. Decomp, by H.O. but dissolves clear on

heating, (Arnfeld.) I(NHa),O. MnO, 2P,O, 10MoOa+13H-O. (Arnfeld.)

5(NH₄)₂O, 10MnO, 2P₂O₃, 20MoO₃+ 0H₂O. Very sl. sol in H₂O. (Gibbs, Am.) 10H.O. Ch J 1895, 17, 87.) Ammonium nickel phosphomolybdate,

(NH₄)₂O₅ 2N₁O₅ P₂O₅ 5M₀O₅+10H₅O₅ Decomp. by cold, but sol, in hot H2O (Aunfeld i (NH₄)₂O, NiO, 2P₂O₅, 10MoO₅+12H₂O Very sol in H₂O. (Arnfeld)

Ammonium potassium phosphomolybdate, 6(NH₁)₂O, 15K₂O, 2P₂O₅, 60M₀O₂+ 12H ()

Sol. in H₂O, Insol in alcohol, (Seligsohn, J pr 67, 477.)

Ammonium sodium phosphomolyhdate 6(NH₄)₂O, 15Nn₂O, 2P₂O₅, 60M₀O₄+ 18H₂O

Sol. in much hoding H2O. Insol. in alcohol (Seligsohn, J. pr 67, 474.)

Barium phosphomolybdate, 3BaO, P2Os, 24MoO₃+rH₂O Moderately sol in cold, very easily sol in hot H2O Decomp in aqueous solution at

ordinary temp on standing (Kehrmann, Z. anorg 1894, 7, 414) Cassum phosphomolybdate, 3Cs.O, P.O., 6MoOs+8H2O.

Pot. (Ephraim, Z anorg 1910, 65, 240) 2Cs₂O, P₂O₃, 14MoO₃+3H₂O Difficultly sol. in H₂O (Ephram)

3Cs₂O, P₂O_a, 21M₀O₄+4H₂O (?). (Ephraim.)

Calcium potassium phosphomolybdate, 2CaO, 3K₂O, 2P₄O₄, 10M₂O₃ +22H₂O. (Friedheim, Z. anorg 1893, 4, 293.)

Cobaltous phosphomolybdate, 2CoO, P2O5, 1Mo(),+2H,O (Arnfeld, Dissert. 1898.)

3CoO, P2Os, 5MoO1+1612H2O, and+171/2 H.O. Extremely sol. in H.O. (Ainfeld.) 3CoO, P₂O₅, 18MoO₄+38H₂O H₂O. (Arnfeld) Sol. in 3CoO, P₂O₈, 24MoO₂+58H₂O, and+60H₂O. Sol, in H.O. (Arnfeld)

Cobaltous potassium phosphomolybdate K₂O, 2CoO, P₂O₅, 5M₀O₂+15H₂O (Arnfeld)

4K₀O, CoO, 2P₀O₄, 10M₀O₅+12H₀O SI sol, in cold, easily sol, in hot H.O. (Arnfeld.) Croceocobaltic phosphomolybdate, 24MoO₃, P₂O₄, [Co(NH₃)₄(NO₂)₂|₂O₅, 2H₂O+

21H₂O Sl. sol. in cold, easily in hot H2O. (Gibbs.

Am. Ch. J 3, 317) Gold phosphomolybdate ammonia, 12Au₂O₂,

7P2Oi, 3M0O3, 24NH1+21H.O. Insol, m II₂O (Gibbs, Am Ch. J 1895. 17, 172.)

Gold sodium phosphomolybdate ammonia. 5Au₂O₄, Na₂O, P₂O₅, 11MoO₃, 15NH₁+ 10H₂O

Sol. in dil. HCl. Almost insol in NH₄OH+ An (Gibbs.)

Lead phosphomolybdate, 23PbMoO4, P.O4. 2PbPO4+7H2O

Sol in 500,000 pts. H₂O. Insol. in NH₄OH +Aq Easily sol. in KOH, NaOH, or HNO₃ +Aq; somewhat less sol. in HC₂H₃O₂+Aq. (Beuf, Bull Soc (3) 3, 852.)

Lithium phosphomolybdate, 12LioO, 4PoOs. 5MoO++18H-O Partially sol. in H₂O. (Ephram, Z. anorg. 1909, 64, 233)

31a₂O, P₂O₃, 5MoO₄+16H₂O Ppt. (Ephram, Z anorg, 1910, 65, 233-6.) 31a₂O, P₂O₃, 5MoO₂+17H₂O. Ppt. (E) 51a₂O, 2P₂O₃, 8MoO₂+28H₂O. Eastly sol in H₂O. (E.)

3Li₂O, P₂O₄, 12MoO₂+18H₂O. Ppt. 31420 P2O6, 18MoO3+27H2O. Sol in H₂O (E,)

Manganous phosphomolybdate, 3MnO, P₂O₅, 5MnO₃+20H₂O.

Very sol in H₂O. Sl sol in alcohol (Arnfeld \ 3MnO, P₂O₅, 18M₀O₃+38H₂O Sol. in H,O (Arnfeld.) 3MnO, P2O4, 24MoO2+58H2O, and+60

H₂O Easily sol in H₂O. (Arnfeld) Manganous potassium phosphomolybdate, 2MnO, 3K₂O, 2P₂O₅, 10MoO₃+30H₂O.

Sol, in hot H₂O (Arnfeld)

Manganous sodium phosphomolybdate. 7MnO, 9Na₂O, 2P₂O₂, 22MoO₂+57H₂O Nearly insol. in cold H2O. Sol. in boiling H₂O but decomp. thereby (Gibbs, Am. Ch. J 1895, 17. 85.)

Nickel phosphomolybdate, 2NiO, PaOs. 4MoO4+xH2O. pt (Arnfeld.)

3NiO, P2O4, 5MoO2+20H2O. Decomp by H₂O. (Arnfeld.)

3N₁O, P₂O₃, 18M₂O₃+34H₂O. Sol in H₂O (Arnfeld.) 3N₁O, P₂O₃, 24M₂O₃+58H₂O, and+60H₂O Efforescent Sol. in H₂O. (Arnfeld.)

Nickel potassium phosphomolybdate, K₂O, 2NiO, P₂O₅, 5MoO₂+13H₂O.

2NIO, F₂O₀, 5MOO₂+15H₂O. Decomp. by cold H₂O, but goes into solution by boiling (Arnfeld) 4K₂O, NiO, 2P₂O₂, 10MoO₂+12H₂O. Sol in H₂O (Arnfeld.)

Potassium phosphomolybdate, K_3PO_4 , $11M_0O_0+1\frac{1}{2}H_2O=3K_2O$, P_2O_6 , $22M_0O_3$ $+3H_3O$.

Insol in H₄O. Easily sol in alkalies (Svanberg and Struve) 100 g H₄O dissolve 0 007 g. at 30°, 100 g. 10% HNO₃+Aq dissolve 0 204 g. at 30° (Donk, Bull 90, Bur. of Chem, U. S. Dept. of Agric. 1905.)

According to older authorities the formula is K₂PO₄, 10MoO₂+1½H₂O. +6H₂O (Rammelsberg.)

2K₂O, H₂O, 24MoO₃, P₁O₅+3H₂O Sl. sol. in cold H₂O H₂O, 44MoO₅, 2P₂O₅+21H₂O. (Gibbs, Am. Ch. J. 3, 317) 3K₂O, P₂O₅, 18MoO₅+11H₂O, and +15H₂O (Elnas). +14H₂O. Sl. sol. in cold, very easily sol.

m hot H₂O. Can be cryst from hot H₂O (Kehrmann, Z anorg. 1884, 7.416.)

3K₂O, P₂O₅, 17MoO₃+12H₂O Moderately sol. in H₂O (Elns, Dissert 1906.)

5K₂O, P₂O₅, 17MoO₃+2H₂O Aqueous solution decomp rapidly in the cold (Kehr-1906).

solution decomp rapidly in the cold (Kehrmann, Z anorg, 1894, 7, 423) 4K₂O, 2H₂O, 9MoO₃, P₂O₈+18H₂O. (Zenkner)

5K.O. H.O. 10MoO₂, P.O₂+19H₂O. Eastly sol. in H₂O. (Rammelsberg, B 10, 1776.) 6K,O, 15MoO₂, P₂O₂. Insol in H₂O. Sol in KOH+Aq. (Rammelsberg), K₂O, P₂O₅, 2MoO₂+13H₂O. Very sol. in H₃O. (Friedheim, Z anorg 4, 287.) 2K₂O, P₂O₃, 4MoO₂+3H₃O. Sol. in H₃O.

Potassium dsphosphopentamolybdate, 3K₂O, P₂O₅, 5MoO₅+7H₂O.

Sol. in H₂O, precipitated by HNO₃ or HCl +Aq. (Zenkner, J pr 58, 261) 2K₂O, P₂O₅, 5MoO₃+6H₂O (Friedheim.)

Potassium dsphosphopentamolybdate nstrate, 2K₁PO₄, 5MoO₃, 6KNO₃+9H₂O (Debray, C. R. 66, 706.)

Rubidium phosphomolybdates:

(Friedheim.)

7Rb₂O, P₂O₈, 22McO₃+12H₂O; 3Rb₂O, P₂O₈, 20McO₄+12H₄O; 4Rb₂O, P₂O₈, 18McO₂+10H₃O; 5Rb₂O, 2P₂O₈, 9McO₃+13H₂O; 7Rb₂O, 10McO₃+15H₂O. (Ephaum, Z anorg. 1910, 65, 237-9)

Silver phosphomolybdate, 7Ag₂O, P₂O₄, 20MoO₃+24H₂O.

Ppt Sol in dil HNO₃+Aq, forming— 2Ag₂O, P₂O₈, 20MoO₃+7H₂O. Sl sol in H₂O (Rammelsberg.) Formula of first salt is—

7Ag₈O, 22MoO₃, P₂O₅+14H₂O Sol. in hot H₄O, but solution is quickly decomp. (Gibbs, Am Ch. J. 3, 317.) 7Ag₂O, P₂O₅, 24MoO₃ Ppt. (Miolati, J pr. 1908 (2) 77, 451)

Silver diphosphopentamolybdate, AgaMoaP2O2a+7H2O

Easily sol. in H₂O. (Debray, C R 66. 705.)

Sodium phosphomolybdate.

Sol in H₂O and HNO₃+Aq. (Sonnenschem, A 104. 45.)

Na₂O, 5H₂O, P₂O₄, 18MoO₃+2H₂O 2Na₂O, 4H₂O, P₂O₅, 18MoO₃+xH₂O. 3Na₂O, P₁O₅, 18MoO₃+26H₄O (Fried-

heim) 3Na₂O, P₂O₅, 24MoO₃+42H₂O. (Rosenheim and Pinsker, Z. anorg 1911, **70**. 79.)

Sodium diphosphopentamolybdate, 3Na₂O, P₂O₅, 5MoO₄+14H₂O Easily sol, in H₂O (Debray)

Sodium auramine phosphomolybdate, Na₂O, 5Au₂O₃, 2P₂O₅, 11M₂O₃, 15NH₂. Sol in hot H₂O. Very sol in hot HCl. (Cibbs, Am Ch J. 1895, 17, 171)

Metaphosphomolybdic acid.

Ammonium monometaphosphomolybdate, 3(NH₄)₂O, 4NH₄PO₃, 10MoO₃+9H₂O

Very sol in H₂O (Gibbs, Am Ch J 7.

Barium hexametaphosphomolybdate, BaO, Ba₃(PO₄)₅, 14MoO₃+55H₂O Sol in H₄O. (Gibbs)

Pyrophosphonitrylic acid, P₂HNO₄= P₂O₃N.

Not known in free state

Ammonium pyrophosphonitrylate, P₂O₃N.

P₂O₃N.

Insol but gradually decomp by H₂O.

(Gladstone)

Potassium —, KP₂NO₄ Insol. in H₂O (Gladstone.)

Silver ----, AgP₄NO₄.
Ppt

Triphosphonitrilic chloramide,

Sol, in H₂O without decomp.; sol in ether, alcohol; sl sol in benzene. (Stokes, Am. Ch. J. 1895, 17, 287.)

Traphosphonitrilic tetrachlorhydrin. PaNaClaOaH2.

Sol, in ether, alcohol, and H₂O; insol. in benzene and CS₂ (Stokes, Am. Ch. J. 1895, 17. 286)

Triphosphonitrilic chloride, PaNaCla

Sol. in glacial acetic acid and H2SO4. 100 pts, ether dissolve 46 5 pts at 20° (Laebig) Insol in light petroleum, sol in benzene. (Stokes, Am. Ch. J 1897, 19. 783)

Tetraphosphonitralic chloride, PaNaCla Sol. in alcohol, ether, benzene, H2SO4. Sl sol. in H₂O with decomp. 100 pts. ether dis-solve 12,3 pts at 20°. (Stokes, Am Ch J 1895, 17. 281)

Pentaphosphonitrilic chloride, (PNCl₂)₅=

P.N.Cl10. Sol. in benzene, light petroleum, seetie acid, ether, CS₂; insol in H₂O. (Stokes, Am. Ch J. 1897, 19. 790,)

Hexaphosphonitrilic chloride, (PNCl₂)₁ = PoNoCI12.

Sol, in benzene, light petroleum, ether, CS₂; msol, in H₂O (Stokes)

Heptaphosphonitrilic chloride, (PNCl2), = P7N2Cl14.

Sol. in benzene, light petroleum, ether, CS2, insol. in H4O; sol. in alcohol with decomp (Stokes.)

Polyphosphonitrilic chloride, (PNCl2)x. Depolymerizes on distillation; insol in benzene and light petroleum and all neutral solvents; sol in H₂O with decomp (Stokes.)

Phosphonitrilochloramide, P2N2Cl3(NH2) Slowly sol. in H2O with decomp. Insol. in ether and CS2 Sl. sol, in boiling CCl4 (Besson and Rosset, C. R. 1908, 146, 1149.)

Phosphonium bromide, PH4Br. Decomp. violently by H₂O.

Phosphonium chloride, PH,Cl. (Ogier, Bull, Soc. (2) 32, 483.)

Phosphonium titanium chloride, 2PH,Cl. 3TiCl4.

Decomp. by H₄O, HCl, or alkalies +Aq R (se.)

Phosphonium iodide, PH4I

Decomp by H.O., alkalies, alcohol, etc (Rose, Pogg. 46, 636.) Decomp by PCl₂. (Wilde, B. 16, 217)

Phosphonium sulphate (?)

Deliquescent; very unstable (Besson, C R. 109. 644)

Phosphoramide, P(NH2)2. Insol. in NHaBr. 3NHa; sol. in NHaI, 3NHa. (Hugot, C. R. 1905, 141, 1235)

Phosphortriamide, PON.H. See Phosphoryl triamide.

Phosphoric acid, anhydrous, PsOs See Phosphorus pentoxide.

Metaphosphoric acid, HPOs Sol. in H₂O Not isolated. (Fleitmann,

Pogg. 78. 362.)
Deliquescent. Sol. in H₂O, but aqueous solution decomp. into H₃PO₃, slowly in the cold, but more rapidly on heating. Conc. solutions decomp. more rapidly than when dil (Gıran, A ch. 1903, (7) 30, 203) Insol. m liquid CO₂. (Büchner, Z. phys

Ch. 1906, 54, 674) Dimetaphosphoric acid, H2P2O4

Not isolated. (Fleitmann.) Trimetaphosphoric acid, H₂P₈O₉

Sol in H2O; the solution is permanent in the cold, but on evaporation it is quickly decomp. to H₂PO₄.

Tetrametaphosphoric acid, H₄P₄O₁₂ Not isolated.

Hexametaphosphoric acid, H.P.O.B. (Glacial phosphoric acid.)

Deliquescent; easily sol. in H₂O with evolution of heat and conversion into HaPO4. Not easily sol, in presence of slight impurities, Insol in liquid NH, (Gore, Am Ch. J. 1898, 20, 828,

Orthophosphoric acid, HaPO4. Very sol in H₂O.

100 pts of the solution contain at: 26.23° 27.02° 29.42° 29.77° 95.98 96.11 pts. HaPO4, 96.15

37 65° 39.35° 42.30° (mpt) 98.48 100 pts. H.PO. (Smith and Menzies, J. Am. Chem. Soc. 1909,

31. 1186.) See also 10H2PO4+H2O, and 2H2PO4+ H.O.

Sp. gr. of HaPO4+Aq containing: 10 30 %P.Os. 1.23 1.39 1.85 1.6

(Dalton)

	PHOSPHOR				RIC A	CID				673	
	Sp. gr. of H ₃ PO ₄ +Aq.					Sp. gr. o	of H ₂ PO	4+Aq s	t 17.5°		
Sp.gr.	% P ₂ O ₃		% P ₂ O	-		г%,	Sp gr	P.8.	Sp gr.	P.8.	Sp gr
-	45.63 45 38 44 13 43.95 43.28 42.61 41.60 40.86 40.12 39.66 39.21 38.00 37.37 36.74	1 328 1 315 1 302 1 293 1 293 1 276 1 276 1 268 1 257 1 247 1 1236 1 1.296 1 1.211 1 1.197 1 1.62 1 1.53 7 atts, C		1 136 1 122 1 123 1 124 1 100 1 100 1 1 100 1 1	16 95 44 15 64 43 10 13 25 10 13 25 10 10 14 13 10 13 25 10 14 13 10 14 15 10 14 15 10 14 15 10	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1 007 1 014 1 021 1 028 1 036 1 044 1 053 1 061 1 070 1 1070 1 108 1 108 1 118 1 112 1 120 1 129 1 148 1 158 1 168 1 168 1 168 1 168 1 168 1 168 1 178	24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	1 208 1 219 1 229 1.240 1.250 1.261 1 272 1 282 1 293 1 304 1 315 1 326 1.362 1.362 1.372 1.386 1.386 1.423 1.423 1.423 1.436	47 48 49 50 51 52 53 54 55 56 57 58 60 61 62 63 64 65	1.476 1.491 1.521 1.521 1.536 1.551 1.566 1.581 1.693 1.645 1.661 1.661 1.693 1.709 1.741 1.755 1.741 1.755 1.792
1	24 .1463	36 1 2338	54 1.384		PO ₄ .	22 23	1.188	46	1 448 1 462	68	1 809
Sp. gr	of HaF	Schiff, A O ₄ +Aq b=sp. g	at 15°.	a≕sp.		Table	for corre	etaon to	varia, I be adde in tempe	d or su	btracted
%	R	ь	1 %		ъ						
1						% P	0,	Corr.	% P ₂	0,	Corr.
2 3 4 5 6 7 8	1 009 1 017 1 025 1 032 1 039 1.047 1.055 1.063	1.0054 1 0109 1.0164 1 0220 1.0276 1.0333 1.0390 1.0449	31 32 33 34 35 36 37 38	1.288 1 299 1 310 1.321 1.333 1.345 1 357 1 369	1.1962 1.2036 1.2111 1 2186 1 2262 1 2338 1.2415 1.2493	% P 10-1 15-2 26-3	14 0. 25 0. 35 0	Oore, 00035 0004 00052 (He	% P _j 36-4 46-5 56-6 ager.)	15 0 15 0 18 0	Corr. .00068 .00082 .001
2 3 4 5 6 7 8 9	1 017 1 025 1 032 1 039 1.047 1.055 1.063 1 071 1 080	1 0109 1.0164 1 0220 1.0276 1.0333 1.0390 1.0449 1.0508 1.0567	31 32 33 34 35 36 37 38 39 40	1.288 1.299 1.310 1.321 1.333 1.345 1.369 1.381 1.393	1.1962 1.2036 1.2111 1 2186 1 2262 1 2338 1.2415 1.2493 1.2572 1.2651	10-1 15-2 26-3	14 0. 25 0. 35 0	00035 0004 00052 (He	% P ₂ 36-4 46-5 56-6	5 0 5 0 8 0	.00088
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 9	1 017 1 032 1 032 1 039 1 .047 1 .055 1 .065 1 .065 1 .069 1 107 1 1098 1 1098 1 1105 1 115 1 114 1 113 1 .161 1 .161 1 .171 1 .182 1 .192 1 .202 1 .223 1 .234 1 .254 1 .254	1 0109 1 01220 1 02276 1 02278 1 0333 1 0339 1 0508 1 0568 1 05627 1 06827 1 0874 1 0874 1 0874 1 1065 1 1196 1 1262 1 1329 1 1329 1 1485 1 1684 1 1674 1 1674 1 1674 1 1674 1 1674 1 1674 1 1674 1 1774	31 32 33 34 35 36 37 38 39 40 41 42 44 44 45 46 47 48 49 50 51 51 52 53 54 55 56 57 58 58 58 58 58 58 58 58 58 58 58 58 58	1.288 1 299 1 310 1.321 1.333 1.345 1 357 1 369 1.381	1.1962 1.2036 1.2111 1.2186 1.2262 1.2338 1.2416 1.2493 1.2572 1.2651 1.2731 1.2812 1.2812 1.3059 1.3143 1.3257 1.3313 1.3313 1.3323 1.3436 1.	10-115-26-3 26-3 0.00 0.00 0.00 0.00 0.11 0.12 0.44 0.55 5.00	Sp. syntalents per late 22572 1025 2042 2042 3056 4065 307 3046 3057 700 Cohlraus cible wi	Oor. 00035 0004 00052 (He gr. of l 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	% P _j 36-46-5 56-6 ger.) H ₄ PO ₄ + 6 714 685 685 704 696 67701 719 719 719 718 84 Ann, 180	Aq. Sp g 1 000 1 000 1 000 1 000 1 000 1 001 1 001 1 001 1 001 2 024 3 4, 53.	. 00088 . 00082 . 001
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 30	1 017 1 032 1 032 1 039 1 .047 1 .055 1 .065 1 .065 1 .068 1 107 1 1080 1 1098 1 115 1 124 1 123 1 124 1 125 1 254 1 255 1 265 1 277	1 0109 1 01220 1 02220 1 02276 1 0233 1 08390 1 0449 1 0508 1 0508 1 05027 1 0688 1 05027 1 0688 1 05027 1 0688 1 1081 1 10937 1 10937 1 1180 1 1262 1 1262 1 1262 1 1465 1 1674 1 1674 1 1674 1 1674 1 1674	31 32 33 34 35 36 37 38 39 41 44 44 44 44 45 46 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	1 .288 1 .299 1 .310 1 .321 1 .333 1 .345 1 .357 1 .367 1 .381 1 .381 1 .420 1 .420 1 .445	1. 1962 1. 2036 1. 2111 1. 2186 1. 2232 1. 2415 1. 2493 1. 2572 1. 2651 1. 2731 1. 2812 1. 2894 1. 3059 1. 3143 1. 3227 1. 3349 1. 3486 1. 3573 1. 3661 1. 3750 1. 3840 1. 384	G. eace H ₂ PO ₄ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Sp. sp. sp. sp. sp. sp. sp. sp. sp. sp. s	Corr	% P _j 36-4 46-56-6 ager.) H ₃ PO ₄ + 6 714 706 683 683 687 701 719 884 Ann, 180 HC ₂ F	Aq. Sp g 1 000 1.000 1	. 00088 . 00082 . 001

1 cc. of a sat. solution of H2O in ether dissolves 0.000033 grams H₂PO₄.

Solutions of H₂PO₄ in H₂O containing less than 0.434 grams acid per 1 ec. lose an insigniheant amount of acid to other when agi-tated therewith (Berthelot, C R 1896, 123.

The composition of the hydrates formed by

HaPO, at different dilutions is calculated from

determinations of the lowering of the fr. pt. produced by HaPO4 and of the conductivity and sp. gr. of H2PO4+Aq. (Jones, Am. Ch J. 1905, 34. 331)

10H₂PO₄+H₂O. Solubility in H₂O. 100 pts, of the solution contain at. 24.11° 24.38° 24.40° 94.78 94.80 94.84 pts. H₂PO₄, 24.81° 25.41° 25.85° 94.95 95.26 95.54 pts. H₂PO₄. (Smith and Menzies, J. Am. Chem. Soc. 1909, 31, 1186.)

2H₂PO₄+H₂O. Solubility in H₂O. 100 pts. of the solution contain at -16.3 0 5 14 95 24.03 27.0 76,7 78 7 81.7 85.7 87.7 pts. H₂PO₄,

> 29.15° 29.35° (mpt.) 90.5 91.6 pts. H.PO. 28.5° 27.0° 25.41°

925 93.494.1 pts H.PO. Retroflex part of curve.

(Smith and Menzies, J. Am. Chem. Soc. 1909, 31. 1186.) Purophosphoric acid (Diphosphoric acid),

H₄P₂O₇. Very sol, in H2O. The solution may be

kept without change, but on heating it is converted into IIaPO4. The acid in solution gradually changes to H₂PO₄; the conversion being more rapid with more concentrated solutions. (Montemartin

and Egidi, Gazz. ch. it. 1902, 32. (1) 381.) Phosphoric acid, H₈P₂O₉ (?). Sol, in H2O. (Joly, C. R, 100, 447.)

Phosphates.

The phosphates of NH4, K, Na, Li, Cs, and Rb are sol. in H2O, with the exception of certain metaphosphates; the other phosphates excepting neutral Ti salts, are nearly insol. in H₂O, excepting when an excess of H₂PO₄ is present. The latter are all sol. in HNO₂+Aq.

(a) Metaphosphates.

Monometaphosphates. Only alkalı monoinsol, in H₂O.

Alkali dimetaphos-Dometauhosphates. phates and some doublt salts containing an alkalı as one of the bases are sol. in H2O, the

rest are sl sol or msol in H2O. Trametaphosphates. All salts are sol. in

Tetrametaphosphates. The alkali salts are

sol in H2O, the others are msol. Headmetaphosphates. The alkali salts are sol, the others insol, in H2O, but are mostly

sol. in Na hexametaphosphate+Aq (b) Orthophosphates. K, Na, Li, Cs, and Rb orthophosphates are sol. in H₂O. All the others are insol. in H2O, but sol. in excess of

H₂PO₄, and HNO₃+Aq; less easily sol. m HC.HO.+Aq. Pb. Al, and Fe, phosphates are msol. in HC.HsO.+Aq. Sl sol. in NH. salts+Aq. especially NH.Cl+Aq. from which solution they are pptd. by NH.QH+Aq. Orthophosphates maol in H2O are also insol in an excess of alkali orthophosphates + Aq. All orthophosphates are mool, or very sl. sol in alcohol

(c) Pyrophosphates. Alkali pyrophosphates are sol in H2O, the others are insol in II₂O, but are mostly sol m an excess of Na pyrophosphate+Aq.

Aluminum metaphosphate, Al₂(PO₈)₄, Insol in H2O and cone, acids. (Maddrell, A. 61. 59)

Aluminum orthophosphate, basic, 3Al₂O₂, P2O6+18H2O.

Mm. Evansite. 4Al₂O₂, 3P₂O₃+18H₂O. Ppt. Insol. in 2O. (Rammelsberg) H₂O.

2Al2O2, P2O5. +3H2O. Min. Angelite. $+5H_{2}O$ Min. Kalaste (Turquoise). Sol. in HCl+Aq.

+6H2O. Decomp. by H2O. (Hautefcuille, J. pr. (2) 37. 111.)

Min Peganite. More or less sol, in HCl. and HNOs+Aq. +8H₂O. Ppt. (Munroe, A **159**. 278)

Mm. Fischerite. Sl attacked by HCl or HNO₃+Aq; sol. in H₂SO₄+Aq. 3Al₄O₈, 2P₂O₄+8H₂O, or 12H₂O

acids, even after ignition (Millot, C. R. 82.

∔10H₂O. Min. Caruleolactite Sol. in acids. +12H2O. Min. Wavellste.

Aluminum orthophosphate, Al2(PO4)2.

Crystalline. Not attacked by conc. HCl or

HNO₃+Aq, difficultly by hot cone. H₂SO₄, (de Schulten, C. R. 98, 1583.) Ignited Al₂(PO₄)₂ is al. decomp by H₂O₂ so that solubility determinations are variable; metaphosphates are known, and they are all For an extended discussion, see original paper. (Cameron and Hurst, 1904, 26, 898.)

+4H₂O Easily sol in mineral acids, insol in acetic and other organic acids Easily sol in KOH+Aq, but is reprecipitated by NH4CI+Aq. Sol. in NH4OH+Aq Sol. in a large amount of alum+Aq (Rose), m aluminum acetate and other aluminum salts +Aq (Fleischer, Z anal. 6, 28). More sol than ferric phosphate in ammonium oxalate or citrate+Aq. (Millot.) Acid NH₄ citrate+Aq dissolves 3% of the

P₄O₆; neutral NH₄ citrate+Aq dissolves 6.6 % of the P2O6, ammoniacal NH4 citrate+Aq dissolves completely in 25 min (Erlenmeyer, B. 14, 1869

Sol in NH4OH+Aq, especially in presence of alkalı phosphates (de Koninck, Z anal.

Not pptd in presence of alkali tartrates or citrates, sugar, glycerine, etc. Insol. in ethyl acetate (Naumann, B.

1910, 43, 314) Min Variscite. Very quickly sol in warm cone HCl+Aq. +5H2O. Min Zepharovichite

+8H.O. Min Gibbsite

Aluminum orthophosphate, acid, 2Al2O2, 3P₂O₅+16H₂O

Insol. in acids after being ignited. (Millot, Bull. Soc (2) 22. 244) +4H2O, and 6H2O Insol in H2O or alco-

37. 111.) Al₂O₅, 2P₂O₅+8H₂O. Insol in acids or aqua regia after being ignited. (Millot) 2Al₂O₃, 5P₂O₃+14H₂O. Decomp by cold

H₂O into-4Al₂O₄, 7P₂O₅+9H₂O. Decomp by hot H₂O. (Erlenmeyer, A. 194, 200.) Al₂O₂, 3P₂O₅+3H₂O=Al₄(H₂PO₄)₈. Deh-

quescent, completely sol m a little cold H₂O, and cone, solution can be boiled without decomp., but dil solution (1.20) separates Al₂(PO₄)₂ on boiling, which redissolves on Aluminum sodium pyrophosphate, cooling, the more quickly the more dilute the original solution. (Erlenmeyer, A 194, 198.)

Aluminum pyrophosphate, Al₄(P₂O₇)₂+ 10H.O.

Precipitate. Sol in mineral acids, and Na₄P₂O₇+Aq, msol. in acetic acid Sol. in KOH+Aq; sol. in NH,OH+Aq, but when dissolved in HCl+Aq is reprecipitated by NHOH+Aq, and is not redissolved in an excess thereof. (Schwarzenberg, A. 65, 147.) Sol, in alum + Aq (Rose, Pogg. 76, 19)

Aluminum pynometaphosphate, Al₂O₈, 2P₂O₅. (Hautefeulle and Margottet, C. R. 96. 849.)

Aluminum ammonium dihvdrogen orthophosphate, NH, H, PO, AlPO.

Partially decomp, by H₂O. Sol. in acids and alkalies. Nearly insol in 50% acetic acid. (Cohen, J. Am. Chem. Soc. 1907, 29, 720.)

Aluminum calcium phosphate, Al₂O₂, 3CaO, $P_2O_4+3H_2O_1$

Min Tavistockite 2Al₂O₄, 6CaO, 3P₂O₄+3H₂O Mm Kw10-

Aluminum calcium phosphate sulphate.

3Al₂O₂, SO₂, Ca₂(PO₄)₂+6H₂O Scarcely attacked by Mm Svanberente. HCl+Aq, and only sl. by H₂SO₄+Aq.

Aluminum ferrous magnesium phosphate, $(Mg, Fe)_2Al_2P_2O_{10}+4H_2O.$

Min, Childrenate Slowly sol, in HCl+Ag. Min. Eosphorite. Sol. in HNO, or HCl+

(Mg, Fe)Al₂P₂O₂+H₂O Mm. Luzulite Only sl attacked by acids, when not previously ignited

Aluminum lithium phosphate, Al2(PO4)2, 4L12PO4+30H2O

Precipitate. (Berzelius) Insol in H2O; easily sol, in acids

Aluminum magnesium phosphate. Min Lazulite.

See Phosphate, aluminum ferrous magnesium.

(Hautefeuille and Margottet, J. pr (2) Aluminum potassium phosphate, Al₂O₃, K₂O,

Insol in acids. (Ouvrard, A. ch. (6) 16. 2Á1,Os. 2K,O. 3P,Os. (Ouvraid)

Aluminum silver metaphosphate, $2Al_2O_3$, Ag₂O, 4P₂O₅ (Hautefeuille and Margottet, C. R. 96, 849,

Al2Na2(P2O7)2.

Insol, in H₂O and acids (Wallroth.) Nearly msol, in acids (Ouvrard, A. ch. (6) 16. 338.) 2Al₂O₅, 3Na₂O, 3P₂O₅. Sol. in HNO₂+Aq.

(Ouvrard Al₄(P₂O₇)₈, 2Na₄P₂O₇+30H₄O Very difficultly sol. in H₂O. (Pahl, Bull.

Soc. (2) 22. 122)

Aluminum phosphate lithium fluoride, 2Al₂(PO₄)₂, 3L₄F

Min. Amblygonite. Sl. attacked by HCl+ Aq, more easily by H₂SO₄+Aq.

Ammonium metaphosphate, NH4POs. Insol. in H₂O. (Flutmann, Pogg 78. 345.)

Ammonium dimetaphosphate, (NH4)2(PO3)2. Sol. in I 15 pts cold or hot H₂O. (Flett-mann, Pogg 78. 245.) More sol. in dil. alcohol than Na or K salt.

Sol in 0.9 nts HoO: easily sol, in acids especially by boiling with cone. H-SO. (Glatzel, Dissert 1880.)

Ammonium trimetanhosphate, (NH₁)₂P₂O₀ Very sol. in H.O. (Lindborn, Acta Lund) 1873. 15)

Ammonium letrametanhosnhate.

(NH4),P4O12. Sol. in H.O. (Warschauer, Z. anorg, 1903. 36, 177. +4H₂O. Much more sol, in H₂O than the K or Na salt. 1 pt. is sol. in 8 pts. H₂O.

(Glatzel, Dissert, 1880.) Ammonium nentametanhosnhate.

(NH₄)₄P₄O₁₅ Sol. in H.O. (Tammann, J. pr. 1892, (2) 45. 455)

Ammonium dekametanhosphate. (NH4)10P10O20

Very sl. sol. in H₂O; 100 g. H₂O dissolved 1 20-1,54 g. in 2 months. Easily sol, in hot H₂O with decomp. (Tammann, J. pr. 1892, (2) 45. 448.) +12H₂O (Tammann, J. pr. 1892, (2) 45. 465.)

Ammonium orthophosphate, (NH4),PO4+

3H.O. Difficultly sol in H.O.

Less sol, in H₂O than (NH₂)₂HPO₄. (Berzehus.) Insol. m alkalies+Aq. (Berzehus.) Sl. sol m H₂O. Decomp. m the air.

(Schottlinder, Z. anorg. 1894, 7, 344.) Solubility in H.PO.+Ag at 25°.

In 1000 g. of the solution, male				
NH4	PO4			
7.42 5.02 2.95 3.04 3.32 4.78	0 084 0.20 0.46 1 02 1.32 2 32			

(D'Ans and Schreiner, Z. phys. Ch. 1910, 75.

Insol. in acetone. (Eidmann, C C. 1899, II. 1014; Naumann, B. 1904, 37, 4329.) +5H2O (Sestini, Gazz. ch. it. 9, 298.)

Ammonium hydrogen orthophosphate,

(NH.) HPO. Easily sol. in H₂O. Fffloresces to form Ammonium hydrogen pyrophosphate NH.H.PO. (Schiff, A. 112. 88.) Sol. in 4 pts. cold, and less hot H.O. Solu-

100 g. H₀O dissolve 131 g. at 15°: sp. gr. of sat. solution = 1.343. (Greenish and Smith. Pharm. J. 1901, 66, 774.)

Solubility in HsPOs+Ag at 25°.

į	In 1000 g of th	e solution, mols
ĺ	NH4	· PO ₄
	6,42 6.46	3 23 3 74
,	6.56 6.78	4 01 4.34
2	7 26	4 83
	7 16	4 82

(D'Ans and Schreiner, Z. phys. Ch. 1910, 75. 105.)

Insol in acetone. (Eidmann, C. C. 1899. Il, 1014; Naumann, B, 1904, 37, 4329.)

Ammorium dihydrogen orthophosphate. NH.H.PO.

Does not effloresce Less easily sol, in H₂O than (NH₄)₂HPO₄.

(Mitscherlich, A. ch. 19, 385.) Sol in 5 uts. cold, and less hot H₂O

Solubility in H.PO4+Ag at 25°.

In 1000 g. of the solution, mols				
NH4	PO ₄			
6.72	4.54			
5.62	3.88			
4 62	3.36			
2 72	2.59			
2 50	2.54			
2 58	4.29			
2.76	6.21			
3 06	7.70			
3.10	7.86			

(D'Ans and Schreiner, Z. phys. Ch. 1910, 75. 106)

Insol in acetone (Eidmann, C C. 1899, II. 1014; Naumann, B, 1904, 37, 4329)

Ammonium orthophosphate, acid.

Decomp. into NH4H2PO4 at 77-78° (Parravano and Mieli, Gazz. ch. it. 1908, 38, II. 536.)

Ammonium pyrophosphate, (NH4)4P2O7. Easily sol. in H₂O. Alcohol precipitates it from the aqueous solution. (Schwarzenberg, A, 65, 141.)

Insol. in acctone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4329.)

(NH₄)₂H₂P₂O₇.

Very sol. in H₂O. Insol in alcohol. tion loses NH2 by boiling. Insol. in alcohol. (Schwarzenberg, A. 65, 141.)

Ammonium barium tramstaphosphate, (NH₄)BaP₃O₉+H₂O.

Easily sol. in H₂O (Lindbom)

Ammonium cadmium dimetaphosphate, $(NH_4)_2O$, CdO, $2P_2O_6+3H_2O =$ $(NH_4)_2Cd(P_2O_6)_2$.

Efflorescent (Fleitmann, Pogg. 78. 347.)

Ammonium cadmium orthophosphate, NH4CdPO4+13/H4O

Easily sol. in NH.OH+Aq and acids. (Drewson, Gm K Handb. 6to Aufl. III 74)

Ammonium calcium dimetaphosphate, (NH₄)₂Ca(P₂O₅)₁+2H₂O.

Very al sol in H₂O Not decomp. by acids. (Fleitmann, Pogg. 78. 344)

Ammonium calcium phosphate, NH₄CaPO₄+ zH₂O. Ppt. (Herzfeld and Feuerlem, Z. anal 20.

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

191.).

5(NH₄)H₅PO₄, 2CrPO₄ 4Cr(OH)₃. (Cohen, J. Am. Chem. Soc 1907, 29. 1196.) (NH₄)±RPO₄, 2CrPO₄+3H₂O Ppt. (Cohen.)

Ammonium chromic pyrophosphate, NH₄(CrP₂O₇)+6H₂O

Sl. sol. in cold H₂O. Decomp. by boiling H₂O. (Rosenherm, B. 1915, **48**, 586.)

Ammonium cobaltous metaphosphate. Extremely sol in H₂O and in NH₄OH+Aq.

(Persoz, J. pr. 3. 215)

Ammonium cobaltous orthophosphate, NH₄CoPO₄+H₂O.

Not decomp. by boiling H₄O. (Debray, J. Pharm. (3) **46**, 121) +12H₄O. Ppt. (Chancel, **1862**.) Co(NH_i)₂H₄(PO_i)₂+4H₂O. Insol. in H₄O.

(Debray.)

Ammonium copper dimetaphosphate, (NH₄)₂P₂O₆, CuP₂O₅+2H₂O

Very al. sol. in H₂O, insol. in alcohol. (Flextmann, Pogg. 78, 345.)

+4H₂O. Efficrescent. Very al. sol. in H₃O; insol. in alcohol (F.)

Sol. in 50 pts. H₂O Slowly attacked by auds. Only boiling H₃SO; attacks easily. (Glatzel, Dissert. 1880.)

Ammonium glucinum orthophosphate, NH₄GlPO₄.

Insol in cold, al. sol. in hot H₄O. (Rössler, Z. anal, 17, 148.)

Ammonium glucinum sodium orthophosphate, (NH₄)₂GlNa₂(PO₁)₂+7H₂O. (Scheffer, A. 109, 146)

Ammonium iron (ferrous) orthophosphate, NH₁FePO₄+H₂O.

Insol. even in boiling H₂O. When still moist, easily sol, in dil acids, but sparingly and slowly sol. after drying, even in conc. acids. Decomp by NH,OH, KOH, and NaOH+Aq. Insol in alcohol. (Otto, J. pr. 2, 409.)

(NH₄)₂FeH₂(PO₄)₂+4H₂O. (Debray.)

Ammonium iron (ferric) hydrogen orthophosphate, basic, 2(NH₄),HPO₄, 3FePO₄, 3Fe(OH)₃

Ppt. Insol. in 95% alcohol. (Cohen, J. Am. Chem. Soc. 1907, 29. 719)

Ammonium iron (ferric) hydrogen orthophosphate, NH₄H₂Fe(PO₄)₂.

Ppt Same properties as Na salt. (Weunland, Z. anore, 1913, 84, 366.)
Partially hydrolyzed by H.O. Readily sol HCl, HNO, HSO, and HPO., Partially hydrolyzed by cell MH_CH+AC Sol hydrolyzed by cell of HH_CH+AC Sol hydrolyzed by causato alleaire Practically unsol. in 50% nexts and (Cohen, J. Am. Chem. Soc 1907, 28.718)

Ammonium lead dimetaphosphate, (NH₄)₂Pb(P₂O₆)₂

Very difficultly sol. in H₂O and acids. (Fleitmann, Pogg. 78, 343.)

Ammonium lithium metaphosphate, Li₂O, 2(NH₄)₂O, 3P₂O₈+8H₂O. Not appreciably sol in cold H₂O but rapidly and abundantly sol in H₂O at 70° (Taminann, J. pr. 1892, (2) 45. 442)

Ammonium lithium phosphate, (NH₄)₂LiPO₄. Sl. sol. in H₂O. (Berzelius.)

Ammonium magnesium metaphosphate, (NH₄)₄O, 2MgO, 2P₂O₄+9H₂O (?)

Sol. with difficulty in H₂O or acids when heated. Easily sol. in H₂O before heating. (Wach, Schw. J. 59 29.) Precipitated from aqueous solution by alcohol.

Ammonium magnesium dimetaphosphate, (NH₄)₂Mg(P₂O₄)₂+6H₂O. Efflorescent. (Flextmann, Pogg. 78. 346.)

Efflorescent. (Flertmann, Pogg. 78. 346 Ammonium magnesium phosphate,

NII₄MgPO₄, and +6H₄O.

1 l H₂O dissolves 66 mg. anhydrous NH₄MgPO₄ at 15°. (Fresenius, A. 55. 109.) 1 l H₂O dissolves 74 l mg anhydrous NH₄MgPO₄ at 20.5–22.5°. (Ebermayer.) 1 l. H₂O dissolves 106 mg anhydrous NH₄NIgPO₃. (Liebig) Insol. in H₂O, but when boiled with H₂O it loses NH₃ and H₂O (Struve, Z. anal. 1898, 37. 485)

Solubility of NH₄MgPO₄+6H₆O in H₇O at t°.

to .	G salt in 100 g, H ₂ O
0	0 0231
20	0 0516
40	0 0359
50	0 0303
60	0 0401
70	0 0163
80	0.0195

(Wenger, Dissert Geneva, 1911.)

Aqueous solution is precipitated by NH₄OH, but not by Na₂HPO₄+Aq. (Fre-

scenius.)

Sol. m 44,900 pts. H₂0 containing ammona. More sol. in H₂0 containing NH₂Cl. and is sol. m 7548 pts. of a solution containing 1 pt. NH₂Cl to 5 pts. H₂O and ammona, and in 15,627 pts of a solution containing 1 pt. of NH₂Cl to 7 pts H₂O and ammona (Fresenius)

According to Kremers (J. pr. 55, 190), a solution of 3 pts H₂O to 1 pt NH₂OH+Aq of 0.96 sp. gt is best suited for washing the precipitated NH₂MgPO₄

Almost absolutely insol. in H₂O containing 1; vol. NH₄OH+Aq (sp. gr. 0.96) and NH₄Cl, i.e., much more insol. than given by Fresenius (Kubel, Z anal 8, 125)

According to Kissel (Z anal. 8, 173), 1 l. NH₂OH+Aq (3 pts. H₂O: 1 pt. NH₃OH+Aq of 0.96 sp gr.) dissolves 4.98 mg. in 24 hours, while 13.9 mg. are dissolved if 18 g NH₃Cl to a litro of H₂O are also present.

(NHA)SO₁+Aq containing 22 g per liter dissolves 71.7 mg, 30 g., 113 mg.; 10 g, 147 mg; NaCl+Aq containing 2 g. NaCl per 1. dissolves 123.4 mg.; NaNO₂+Aq containing 3 g. NaNO₂ per l. dissolves 93 1 mg. (Labig, A. 106, 196.) Completely insol. in water containing am-

monium phosphate or ammonium sodium phosphate. (Berzelius.)

800 ccm H₂O, sat. with CO₂, dissolve 1.425 Ins g. (Laebig.) Ins Easily sol. in H₂SO₂+Aq, acetic and other 186.)

acids, also in boiling solution of ammonium citrate. (Millot, Bull Soc. (2) 18. 20.) When in presence of Fe or Al salts it is sol

to a considerable extent in H₂C,H₄O₇+Aq 6 g, NH,Cl in 100 com H₂O containing 10 com 6 34% NH,OH+Aq dissolve pptd sult = 0 0029 g, Mg,P₂O₂, 1 g, NH,Q₂CO₄ in 100 com H₄O, and NH,OH+Aq dissolve= 0 0061 g, Mg,P₂O₂, 2 g ettle and in excess of NH,OH+Aq dissolve= 0 1047 g Mg,P₂O₃. Solubhity prevented by excess of magnesia muture (Landa, C. N. 48, 21)

Solubility of $NH_4MgPO_4+6H_2O$ in salts +Aqat t° .

(G salt dissolved in 100 g. solvent.)

0 0 1100 0 0597 0 0087 20 0.0463 0 1055 0 098 30 0 6546 0 1133 40 0 0445 0 0713 0 0185 50 0 0723 0 0981 0.0153 60 0 0846 0 1728 0 0174 70 0 0834 0.1293 0.0178 80 0 .1009 0.1913 0.0145	t°	5% NH4NO1 +Aq.	NH4Cl+Aq	1 pt. NH ₄ OB (D =0 96) +4 pts. H ₂ O
	20 30 40 50 60 70	0.0468 0 0546 0 0645 0 0723 0 0846 0 0834	0 1055 0 1133 0 0713 0.0931 0.1728 0.1239	0 0098 0 0185 0.0153 0 0174 0.0178

t°	4% NH ₂ OH+Aq and 5% NH ₂ Cl+Aq	4% NH ₄ OH +Aq and 10% NH ₄ Cl+Aq
20	0 0165	0.0541
60	0 0274	0.0731

(Wenger, Dissert Geneva, 1911.)

About 3 times as sol in Ca(C₂H₃O₂)₁+Aq as in NaC₂H₃O₂+Aq, but solubility is prevented by excess of MgCl₂. (Ville, Bull. Soc. (2) 18, 316.

Sl. sol. in ammonum citrate+Aq containing 400 g. ammonum citrate in a litre.

Solublity=0.457% at ord temp. and 0.58% at 50°. (Bohs Ch. Z. 1903, 27. 1151.)

Min. Strunte

+H₂O Insol in H₂O or eitric acid+Aq. (Millot and Maquenne, Bull Soc. (2) 23, 238)

Ammonium magnesium hydrogen orthophosphate, (NH₄)₂MgH₂(PO₄)₂+3H₂O (?). (Graham.)

Ammonium magnesium phosphate, 5MgO, (NH₄)₂O, 2P₂O₅+24H₂O (Gawalovsky, C. C. 1885, 721.)

Ammonium magnesium sodium pyrophosphate, (NH4)3Mg4Na(P4O7)4.

Insol. in H₂O and not decomp. thereby. (Berthelot and André, A ch. 1897, (7) 11, 186.)

Ammonium manganous dimetanhosphate. $(NH_4)_2Mn(PO_8)_4+4H_2O_1$

Relatively easily attacked by acids (Glatzel, Dissert 1880. +6H2O.

Efflorescent (Fleitmann, Pogg. 78, 346.) Ammonium manganous orthophosphate.

NH₄MnPO₄+H₂O Sol in 32,092 pts. cold, and 20,122 pts. boiling H₂O, and in 17,755 pts NH₄Cl+Aq 5011ing H₂C₂ and in K₁/50 pts KrAC1+Aq (1.4% NH_CC1). (Fresnus.) +7H₂O. Insol in H₂O below 70°; at 70° 100 g H₂O dissolve 0.0052 g salt; at 80°, 0.0067 (Wenger, Dissert Geneva, 1911.) Easily sol, in dil acids. Decomp by KOH+Aq, but not by NH,OH+Aq or K.CO.+Aq Insol in NH4OH or NH4 saits +Aq. (Gibbs)

Solubility in salts+Aq at to. (G. in 100 g. solvent)

t°	5% NH4NO: +Aq.	NE CI+Aq	1 pt. NH ₄ OH D =0 96 +4 pts H ₂ O			
0 20 30 40 50 60 70	0 0206 0 0200 0.0226 0.0209 0 0226 0 0270 0 0281	0.0020 0 0255 0 0345 0 0386 0 0855 0 0384 0.0414	0 0116 0.0122 0 0118 0 0132 0 0193 0.0191			
80	0.0326	0.0451	0.0197			

(Wenger, l. c.)

Insol in alcohol

Insol. in acetone. (Naumann, B. 1904, 37.

Ammonium manganic pyrophosphate, NH,MnP2O7+3H2O.

Decomp by cold H2O with separation of Mn₂O₃ (Rosenheim, B. 1915, 48, 584.)

Ammonium manganous sodium pyrophosphate, NH4NaMnP2O7+3H2O Insol. in H₂O or alcohol. Easily sol in very dil acids. (Otto, J. pr. 2, 418.)

Formula is Na₄(NH₄)₄Mn₂(P₂O₇)₃+ 12H₂O, according to Berzelius.

Ammonium mercuric metaphosphate. Sol. in II,O, or at least in NH4OH+Aq. (Persoz, J. pr. 3, 216)

Ammonium nickel metaphosphate.

lnsol in H₂O Sol. in NH₄OH+Aq, from which it is repptd. on evaporation of the NH₃ (Persoz, J. pr 3. 215)

Ammonium nickel dimetaphosphate, (NH₄)₂NiP₄O₁₂+4H₂O₄

Sol. in 12 5 pts. H₂O. (Glatzel, Dissert. 1880.)

Ammonium nickel orthophosphate, NH4N1PO4+2H4O.

Ppt (Debray, C. R. 59, 40) +6H2O Decomp. by boiling H2O. (Debray)

Ammonium potassium dimetaphosphate, (NH₄)₁₄K₄(P₂O₆)₇.

More sol in H₂O than following salt. (Fleitmann, Pogg 78, 341.) NH4K4P4O12+2H2O. Difficultly sol. in H₂O. (Fleitmann.)

Ammonium potassium pyrophosphate, NH, K, HP, O, + 16H, O.

Deliquescent. Sol. in H2O. Decomp. on boiling. (Schwarzenberg.)

Ammonium sodium dimetaphosphate, $NH_4NaP_2O_4+H_2O_4$

More sol. in H₂O than Na₂P₂O₅, but less than (NH4)2P.O. Less sol in alcohol than in H₂O. (Fleitmann, Pogg. 78, 340.)

Ammonium sodium orthophosphate,

(NH₄)₂NaPO₄+4H₄O. Decomp by H₂O. Cryst from NH₄OH+ Aq of 0.96 sp. gr From H₂O solution, NaNH4HPO4+4H2O separates out (Uelsmann, Arch. Pharm. (2) 99. 138.) Insol. in acetone. (Naumann, B 1904, 37. 4329.)

+5H₂O NH4Nn2PO4+12H2O, (Herzfeld, Z. anal.

20. 191.) (NH₄)₄Na(PO₄)₄+6H₄O. Sol in H₆O with decomp Cryst from hot cone NH4OH+Aq. (Uelsmann, Arch. Pharm, (2) 99, 138.)

Ammonium sodium hydrogen phosphate (Mi-crocosmic salt), NH₄NaHPO₄+4H₂O.

Efflorescent. Easily sol. in H₂O. Sol in 6 pts cold, and 1 pt. boiling H2O. Insol in alcohol.

Aqueous solution gives off NH3, especially if hot. Insol in acetone. (Eidmann, C C. 1899. II. 1014.)

Min. Ster corste.

+5H₂O. (Uelsmann.)

The composition of the hydrates formed by this salt at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by the salt and of the con-H-pt. brounded by the san and of the conductivity and sp. gr. of its aqueous solutions. (Jones, Am. Ch. J. 1905, 34, 319.) (NH₄)₁Na₂H₅(PO)₄+3H₅O. Decomp. by H₅O. (Filhol and Senderens, C. R. 93, 388.)

Ammonium sodium pyrophosphate, (NII4)2Na2P2O1+5H2O

Easily sol in H₂O. Aqueous solution decomp by boiling. (Schwarzenberg, A. 65. 142.

+6H_sO. (Rammelsberg.)

Ammonium sodium glucinum orthophosphate, (NH₄)₂Na₂Gl(PO₄)₂+7H₂O Precipitate. (Scheffer.)

Ammonium thallous or thophosphate, (NH4), PO4, (NH4), TIPO4, or H4NIL4PO4,

HTl₄PO₄, Sol. in H₄O, (Lamy; Rammelsberg.)

Ammonium uranyl phosphate,

NH₄(UO₂)PO
₄+vH₂O.

Insol. in H₄O and HC₂H₃O₂+Aq Sol. in mineral acids, from which it is precipitated by NH₄C₂H₃O₂+Aq, in which it is insol

(Knop.)

+3H₂O Insol in H₂O and acette acid
Sol. in all mineral acids, oxalic acid and
M₂O₂+Aq. (Lienau, Dissert. 1898.)

Ammonium vanadium phosphate. See Phosphovanadate, ammonium.

Ammonium zinc dimetaphosphate,

(NH₄)₂Zn(P₂O₄)₂+6H₂O, Efflorescent. (Fleatmann, Pogg 78, 347.) +4H₂O Sol. in 70 pts, H₂O. Decomp by

H₁SO₄. (Glatzel, Dissert. 1880.)

Ammonium zinc orthophosphate, basic, 3NH₃, 2ZnO, P₂O₅+8H₂O.

(Rother, A. 1867, 143, 356) 4(NIL),O, 6ZnO, 3P₂O₄+4H₄O. (Schweikort, A. 1868, 145, 57.)

Ammonium zinc orthophosphate, NH₄ZnPO₄ +H₂O.

Insol. in H₂O. Sol m acids, and caustic alkalics. (Bette, A. 15, 129)

Ammonium zinc hydrogen phosphate, NH₄H₂PO₄, ZnHPO₄+H₂O. Insol in H₂O. (Debray.)

4(NH₄)₂O, 6ZnO, 3P₂O₅, (Schweikert, A. 146, 57.) 3(NH₄)₂O, 4ZnO, 2P₂O₅+13H₂O (Rother, A. 143, 356.)

Ammonium phosphate selenate.

See Selenophosphate, ammonium.

Barium triphosphate, 5BaO, 3PrOs.

Insol. in It₂O; msol. in acids after heating to a high temp. (Schwarz, Z. anorz 1895, 9.

to a high temp. (Schwarz, Z. anorg 1895, 9. 264.)

Barium metaphosphate, Ba(PO₃)₂.
Insol. in H₂O or dil acids. (Maddrell, A.

61. 61.)

Not decomp. by boiling with acids or alkali
carbonates + Aq. (Fleatmann Poor 78, 352.)

carbonates+Aq. (Fleitmann, Pogg. 78. 352.) Barium dimetaphosphate, BaP₂O₆+2H₂O.

More difficultly sol. in H₂0 than Ba₂(P₂O₈)₂. Slightly attacked by boiling cone. HCl+Aq or HNO₄+Aq. Easily decomp. by H₂SO₄ (Fleitman, Pogg 78, 254.)

Barium trimetaphosphate, Ba₀(P₂O₉)₂+2H₂O. Somewhat sol. in H₂O. (Fleitmann, A. 65. 313.)

+6H₄O. Easily sol. in HCl+Aq. (Lindbom) 1 l. H₂O dissolves 2.589 g. at ord temp. (Wiesler, Z. anorg. 1901, 28, 198)

Barium herametaphosphate, Ba₂P₆O'₁₈ (?). Sol. in H₂O only after boiling several hours. Nearly mool in H₂O (Ludert, Z. anoig. 5. 15.)

Insol in NH₄Cl+Aq. (Wackenroder)
Sol in Na₆P₄O₁₈+Aq. Sol in HNO₈+Aq.
After renution it is nearly insol in HNO₈+Aq.

Barium orthophosphate, Ba₂(PO₄)₅. Precipitate. Very sl. sol. or insol in H₂O.

(Graham, Pogg 32, 49.) Sol in HCl+Aq. Decomp. by SO₂+Aq. Insol in methyl acetate. (Naumann, B. 1909, 42, 3790)

Barium hydrogen phosphate, BaHPO.
Sol in 10,000 pts. H₂O. (Mulaguti, A. ch.

(3) 51. 346.) Sol. in 20,570 pts. H₂O at 20° (Bischof, 1833.)

Not completely soluble in water containing CO₂, but BaCl₂ causes an opt. in Na,HPO₂+Aq containing 7.16 g. on less Na,HPO₂ in a litter after it has been saturated with CO₂. (Setschenov, C. C. 1878, Aq. and dil HCl+Aq. HNO₂+Aq of 1.276 sp. gr. if not diluted Aq. HNO₂+Aq of 1.276 sp. gr. if not diluted

Basily sol. in H₃FO₄+Aq, and dil HCl+ Aq HMO₂+Aq of 1.275 sp. gr. if not diluted has scarcely any solvent action, but more dissolves on dilution until a maximum is reached, when 10 yols. of H₂O have been added.

(Bischof, Schw J. 67, 39)
Sol in 367-403 pts. acetic acid (1 032 sp. gr.) at 22.5°. (Bischof, l. c.)
Easily sol in H₂O containing NH₄Cl,

Easily sol in H₄O containing NH₄Cl, NH₄NO₂, or NH₄ succinate, from which solutions it is completely pptd. by NH₄OH+Aq. (Rose.)

Insol. in Na₂HPO₄ or BaCl₂+Aq. (Rose, Pogg. 76. 23)

More sol. in BaCl₂ or NaCl+Aq than in H₂O, 1 pt. BaHPO₄ being sol. in 4362 pts. H₂O containing 1.2% NaCl and 0.8% BaCl₂. (Ludwig, Arch. Pharm (2) 56. 265) Sol. in Na citrate+Aq (Spiller.)

Bartum tetrahydrogen phosphate,

BaH₄(PO₄)₂.

Sol. in H₂O. (Mitscherlich, 1821.)

Decomp. by much H₂O into BaHPO₄.

Sol. in phosphoric, and certain other acids.

(Berzelius, Å. ch. 2. 153.)

Barium pyrophosphate, Ba₁P₂O₇+xH₂O. Somewhat sol. in H₂O, in much H₄P₂O₇+Aq, also in HCl+Aq or HNO₃+Aq. Insol.

in HC₂H₂O₂+Aq or Na₄P₂O₂+Aq. (Schwarzenberg.) Insol. in NH₄Cl+Aq. (Wackenroder.) Rarium hydrogen pyrophosphate, BaHaPaOa BasPsOr+3HJO Pot. (Knorre and Oppelt, B. 21, 773)

Barium tetraphosphate, BasP4O12 Insol, in H₂O or acids when strongly heated. (Flertmann and Henneberg, A. 65, 331)

Rarium manganic pyrophosphate, Ba(MnPoOr) +5HoO

Almost insol, in H₂O, (Rosenheum, B. 1915, 48, 585.)

Barium potassium trimetaphosphate, BaKP2O+H2O.

Much less sol in HaO than NH.BaPaO. or NaBaP₄O₈. (Lindbom) Sol. in HCl+Aq after ignition

Barium potassium orthophosphate, BaKPO4. Insol. in H₂O (Ouyrard, A, ch (6) 16. +10H₂O (de Schulten, C R 96, 706.)

Barium sodium dimetaphosphate. BaNa2(P2O6)2+4H2O (Glatzel, Dissert. 1880.)

Barium sodium trimetaphosphate, BaNaPzOz $+4H_{2}O$

More easily sol. in H₂O than Ba₃(P₄O₂)₂. Sol. in acids, unless ignited (Fleitmann and Henneberg, A. 65. 314) Efflorescent. Sol. in HCl+Ag after ignition only by long boiling. When fused it is easily sol in HCl+Aq. (Lindborn, Acta Lund 1873, 21.)

Barium sodium orthophosphate, BaNaPO4+ 10H₂O.

(de Schulten, C. R. 96, 706) Not attacked by cold, but decomp by hot H₂O (Vilhers, C. R. 104, 1103.) Sl sol m H₂O. (Quartaroli, C. A. 1911.

Barium sodium pyrophosphate, Ba4Na4(P2O7)4.

Sol in hot HCl and HNO. (Tammann.) J. pr 1892, (2) 45, 469) 6Ba2P2O7, Na4P2O7+6H2O. Completely insol. in Na4P2O7+Aq, but not insol. in H2O or NH4OH+Aq. Easily sol, in HNO2 or HCl +Aq. Insol. in alcohol (Baer, Pogg. 75. 164.)

P2Os. (Colani, A. ch. 1907, (8) 12. 142)

Barium uranyl orthophosphate. Ba(UO₁)₁(PO₄)₁+8H₂O Min Transcircute

Barium phosphate chloride, 3Ba₂(PO₄)₁, BaCl₂.

Min Barutavatite (Deville and Caron, A. ch (3) 67 451.) 4BaH (PO₄)₂, BaCl₂ (Erlenmeyer, J. B. 1857, 145)

I5BaO, 6P₂O₅, BaCl₂+6H₂O (?). Sol in 18,000 pts. cold H₂O. Much more sol. in H₂O containing BaCls, NH4Cl, and NH4OH, (Ludwig, Arch. Pharm. (2) 56, 271)

Bismuth orthophosphate, basic, 2BiPOs, 3Bi.O.

Insol, in H.O. Sol, in HCl+Ao. (Cavazzi, Gazz ch. it 14, 289)

Bismuth orthophosphate, BiPOs.

Insol in H₂O or HNO₄+Aq. Sl. sol. in NH₄ salts+Aq (Chancel, C R. 50, 416) Not decomp. by H₂O Other phosphates of B1 are decomp, by H.O. (Montmartin), C 1900, II. 1256 Not hydrolyzed by hot H₂O; sl. sol. in BiCl; +Aq, decomp by boiling alkali, (Caven, J. Soc. Chem. Ind 1897, 16, 30) More sol in HCl+Aq than in HNO2+Aq.

(Rose) Sol in UO, (NO,) + Ag. (M'Curdy, Am. J. Sci (2) 31. 282. Insol, in MNOa+Aq.

Insol in Bi salts+Au. (Rose, Pogg 76. Sol in NH4Cl+Aq, but insol, in NH4NOs+

Aq. (Brett, 1837.) +114H₂O. (Kuhn.) +8H₂O. Ppt. Decomp. by H₂S or KOH +Ag. (Vanino, J. pr. 1906, (2) 74, 151.)

Bismuth purophosphate, basic, 2Bi₂O₅, P₂O₅, Insol. in H₂O and HC₂H₄O₂+Aq; sol. in hot HCl and HNO₂+Aq. Insol in Na₄P₂O₇ +Aq, and NH4 citrate+Aq. (Passerini, Cim. 9 84)

Bismuth pyrophosphate, Bi4(P1O7)2.

Insol, in H₂O or HNO₂+Aq (Chancel, C R. 50. 416) Decomp, by H₂O (Wallroth, Bull Soc. (2) 39, 316,)

Sol. in Na,P,O,+An (Stromever) Bismuth sodium pyrophosphate, NaBiP2O7

+3H_{*}O Insol. in H₂O (Rosenheim, B 1915, 48. 588.

Barium uranous metaphosphate, UO2, BaO, Boron phosphate, BPO4. Insol. in H₂O Not attacked by boiling

alkalies. (Meyer, B 22, 2919.)

Bromomolyhdenum phosphete.

See under Bromomolyhdenum comps.

Cadmium triphosphate, Cd. (P.O.,) Insol in II-O and acids (Glithmann, Dissert, 1899.)

Cadmium tetraphosphate, 6CdO, 4PaOa+ Insol, in acids. (Glühmann)

Cadmium metaphosphate.

Very sol in NH₄OH+Aq (Persoz, A ch 56, 334)

Cadmium dimetaphosphate, Cd(POs) +2HsO Sol, in 32 pts H2O. Searcely attacked by acids, especially cone H-SO4, (Glatzel, Dissert. 1880.)

Cadmium tetrametaphosphate.

Linsol, in H₂O. Easily decomp by Na₂S+ Aq. (Flettmann, Pogg. 78, 358.) Cd₂(PO₃)₄+10H₂O. Not so very difficultly attacked by acids but insol. after ignition. (Glatzel, Dissert. 1880.)

Cadmium orthophosphate, Cd1(POs)2. Ppt Insol, in H₂O Sol, in Cd salts+Aq (Stromeyer)

Easily sol. in NH4 sulphate, chloride, nitrate, or succenate + Aq (Wittstein, Report H2Cd4(PO4)4+4H2O. Sol, in dil, H2PO4+ Aq. (de Schulten, Bull. Soc. (3) 1, 473.)

Cadmium tetrahydrogen phosphate, CdH₄(PO₄), +2H₂O

Decomp. by great excess of H₂O. (de Schulten)

Cadmium pyrophosphate, Cd₂P₂O₂+2H₂O. Insol. in H₂O. Sol. in NH₄OH, Na₄P₂O₇+ Aq, or acids. Insol. in KOH+Aq. Sol in SO₂+Aq. (Schwarzenberg, 4 65, 183.)

Cadmium hydrogen orthophosphate hydrazine, CdHPO, 2NoH. Decomp. by light (Tranzen, Z. anorg. 1908, 60, 283,5

Cadmium potassium tetrametaphosphate, CdK,(PO,),+3H,O. Sol, in 135 pts. II₂O. Difficultly decomp. by acids (Glatzel, Dissert 1880.)

Cadmium potassium orthophosphate, Cakpo.

Insol. in HaO; sol. in dtl. HCl+Aq. (Ouvrard, A. ch. (6) 16, 321.)

Cadmium potassium pyrophosphate, CdK-P-O₂.

Insol in H₂O; sol, in dil, HCl+Aq. (Ouvrord) 5Cd₂P₂O₇, 4K₈P₂O₇+30H₂O. Much more easily sol in H₂O than the CdNa salt (Pahl, Sv. V. A. F. **30**, 7, 39.)

Cadmium sodium /rohosphate, Na.CdP.O., +13H₂O Sol in acids even after ignition. (Glüh-

Cadmium sodium trimetaphosphate,

mann, Dissert, 1899.)

Na.Cd(PO2)4+4H4O Sl. sol. m II2O Insol, in alcohol. (Wiesler.

Z anorg, 1901, 28, 204) Cadmium sodium tetrametaphosphate,

Na₂Cd(PO₃)₄+3H₄O. Completely insol, in H.O. (Glatzel, Dissert. 1880.)

Cadmium sodium orthophosphate. CdNa₄(PO₄)₉, Insol, in Ft.O. very sol, in dil. acids. CdNaPO, As above (Ouvrard.)

Cadmium sodium pyrophosphate, Sol. in dil acids, even acetic acid. (Wallroth.) +4H₂O. Insol. in H₂O. (Pahl, Sv. V. A F 30, 7, 39)

Cadmium phosphate bromide, 3Cda(PO4)2, CdBr2. Sol. in cold very dil. HNO.+Aq (de Schulten, Bull. Soc (3) 1, 472.)

Cadmium phosphate chloride, 3Cds(PO4)2. Sol in dil HNOa+Aq. (de Schulten.)

Cæsium metaphosphate, CaPO. Sol. m H₂O (von Berg, B. 1901, 34, 4185) Cæsium orthophosphate, Cs1PO4+5H1O

Deliquescent, very sol in H.O. (von Berg.) Cæsium hydrogen orthophosphate, Cs-HPO. +H20

Very sol. in H₂O. (von Berg). Cæsium dthydrogen orthophosphate,

CsH.PO. Sol in H2O; msol in alcohol. (von Beig.)

Cosium pyrophosphate, C8, P1O7, Very sol in H2O; very hydroscopic (von Beig.)

	PHOSPHATES, CALCIUM 683				
Calcium tripho		5CaO, 3P ₂ O ₅ . iwars, Z. anorg. 1895,	Solubi	lity of CaO	in PrOt+Aq at 25°
9. 264.)			g CaO per l of solution	g. PsOs per 1 of solution	Solid phase
Calcium monometophosphate, Ca(PO ₂) ₂ Insol in H ₂ O and dil acids. (Maddrell, A. 61. 61) Not decomp by digestion with alkali carbonates+Aq (Flertmann)			7 61 6 51 5 01 3 42 2 42	19 96 16 52 12 82 8 16 5 75	СаНРО4
Calcium dimedophosphate, Ca ₁₀ (P ₂ O ₄) ₂ + 4H ₂ O ₄ Insol. in H ₂ O. Decomp. by warm H ₂ SO ₄ , but not approachly by cone. RCl or HNO ₂ + Aq. (Pictimann, Pogg. 78, 265) Calcium Rezometophosphate (?) Insol. in H ₂ O. Sol. in Na ₂ PO ₁₁ + Aq and HCl+Aq. (Rose, Pogg. 78, 264) Co ₄ PO ₁₁ . Wearly most in H ₂ O; sol. in dil. acids. (Lidert, Z. sanog. 6.15).			1 58 0 544 0 400 0 291 0 232 0 145 0 062 0 049 0 034 0 587 0 789	3 66 1 516 1 108 0 773 0 662 0 381 0 109 0 088 0 015 0 013 0 012	Solid phases are cvidently solid solutions Ca ₂ (PO ₂) ₂ Solid phase is prob- ably a solid solution
Calcium orthophosphate, basic, 3Ca ₂ (PO ₄) ₂ + CaO ₂ H ₂ (Warngton, J. B 1873, 253) 4CaO, P ₂ O ₃ (Hilgenstock)			(Cameron	and Seide 1905,	ell, J. Am. Chem. Soc. 27. 1513.)
Calcium orthop Equilibrium		es, m CaO+PsOs+HsO	Solubility of CaO in P ₂ O ₈ +Aq at 50.7°.		in P₂O₀+Aq at 50.7°.
-		n P ₂ O ₈ +Aq at 25°	100 g of the solution contain Solid phase		Solid phase
g. CaO per i g F of solution of	20s per l. solution	Solid phase	g. P.O.	g CaO	Conta paper
8 10 11 57 12 88 18 77 19 25 23 31 23 69 35 90 13 59 40 89 40 89 44 49 76 24 49 76 25 12 36 12 40 89 40 80 40 br>40 80 40 br>40 80 40 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 40 80 40 40 80 40 40 80 40 40 80 40 40 80 40 40 40 40 40 40 40 40 40 40 40 40 40	4.69 22.39 23.37 36.14 41.24 59.35 63.03 75.96 79.10 09.8 82.98 839.6 42.7 64.27 691.0	. CaHPO₄, 2H₄O	62 01 58 08 54 67 50 25 46 15 41 92 37 33 33 18 29 61 15 48 9 465 6 157 2 946 2 281 0 1521 0 1527 0 1533	0 336 0 635 0 939 1 428 2 100 2 974 3 898 4 880 5 725 2 328 1 563 0 852 0 692 0 0588 0 0596 0 0514	CaHaPoh, +CaHaPoh, HaO CaHaPoh, HaO
70 31 22 72 30 33 3 65 46 33 65 46 33 59 98 4 59 25 44 57 74 44 53 59 44 48 78 44 44 52 54 41 86 55	34.6 79 7 51 9 61 1 80.3 95 1 19.7 24.6 28 7 75 3 05 8 28 9 38 3	CaH ₄ (PO ₄) ₂ , H ₂ O	0 0942 0 0309 0 00068 (Ba	0 0351 0 0106 0 00071	

(Cameron and Seidell, J. Am. Chem. Soc. 1905, 27, 1508)

Solubility of CaO in PaOc+An at 40°

100 g. of t		Solid phase	
g P ₁ O ₀	g, CaO		
45 42 41 33 36 79 32 46 28 27 21 67 17 78 16 35 9 905 6 979	1 768 2 588 3 584 4 505 5 501 4 813 4 100 3 810 2 536 1 847	CaH ₄ P ₂ O ₈ , H ₂ O	
4.397 1.819 0.423	1 267 0 576 0 156	ee ee	
0 294 0 158 0 146	0 110 0 0592 0 0519	es es	
0 128 0 0262 trace	0 0508 0 0098 0 0709	Cn ₂ P ₂ O ₅ , H ₂ O Cn ₄ P ₂ O ₅ , 4H ₂ O	
**	0 0814 0 0829 0 0840	65 65	

(Bassett, Z. anorg 1908, 59, 18.)

Solubility of CaO in P ₂ O ₅ +Aq at 25°.				
100 g the	e solution tain	Solid phase		
g PrOs	g. CaO			
36.11	3 088	CaH ₄ P ₂ O ₈ , H ₂ O		
31.97	4 128			
28.34	4 908	**		
27 99	4 930	"		
25 45	5 489	**		
22 90	5 523	CaHPO ₄		
17 55	4 499	- 11		
15 34	4 027			
9 10	2 638			
6 049	1 878	6		
3 613	1 181	"		
2.387	0 826	ćs.		
0.417	0 165	CaHPO++CaHPO+2H+O		
0 178	0 0696	"" "		
0.0332	0 0126	**		
0 0948	0 0352	Probably Ca ₂ P ₂ O ₄ , H ₂ O		
0 0571	0.0211			
0 0525	0 0175			
0.0468	0 0186	6		
trace	0.1131	Ca,P2O, 4H2O+Ca(OH)2		
	0.118	Ca(OH):		

⁽Bassett, Z. anorg. 1908, 59, 20.)

Calcium orthophosphate, Ca2(PO4)2.

basic salt, 3Cas(POs)s, CaOsH2. This debility at 6-8° varies from 9.9 to 28.6 mg, in a and of 1.188 sp gr. from bone ash, litre. (Warington, Chem. Soc. (2) 11. 983.) Sol in H₂S+Aq. 1 l. H₂O sat.

 1 L cold H₂O dissolves in 7 days 31 mg. ignited, and 79 mg, freshly precipitated Cas(PO4)2. (Volcker, J. B 1862. 131)

100,000 pts. H₂O dissolve 2.36 pts gelatinous Ca phosphate; 2 56 pts. ignited Ca phosphate; 3 90 pts. Ca phosphate from bone dust.

(Maly and Donath, J. pr. (2) 7. 416.) Solubility of bones in various solvents is given by Maly and Donath, l. c.

0.009 g. Ca₆(PO₄)₂ is sol. in 1 l. H₂O. 0.153

sat, with CO2. (Joffre, Bull Soc. 1898, (3) 19.372)

Determinations of solubility in H₂O as stated in the literature vary because Ca, (PO) is apparently a solid solution of CaHPO, and When placed in contact with H₂O more PO4 ions dissolve than Ca ions, the resulting solution is acid and solid phase nicher in Ca than before addition of H₂O For material of the approximate composition, Ca₅(PO₄)₂, the amt. dissolved by CO₂ free H₂O at ord, temp is 0.01-0 10 g, per l, depending on conditions of experiment. H₂O sat with CO2 dissolves 0.15-0 30 g per l. (Cameron and Hurst, J. Am. Chem Soc. 1904. 26. 903.

The decomposition of Ca₂(PO₄)₂ in H₂O is increased by presence of CaSO4, decreased by presence of CaCO, or of CaSO, and CO, CO, increases the amount of PO4 dissolved in the solution of water alone and the sat. CaSO solutions, but has no other effect than to increase the amount of Ca in the solutions in contact with CaCO₂. (Cameion and Seidell,

J Am. Chem. Soc. 1904, 26, 1458.) Sol. in CO++Au 1 l. H₂O containing 1 vol. CO₂ dissolves in 12 hours at 10°, 0.75 g precipitated Cas(PO4)2; 0 166 g Ca₂(PO₄)₂ from bone ash; 0.300 g. Ca₂(PO₄), from bones which had been buried 20 years. (Lassaigne, J ch méd. (3) 3, 11.) 1 l. H₂O containing 0.8 vol CO₂ dissolves

0 61 g Ca₅(PO₄)₂. (Liebig, A. 106, 196) H₂O sat, with CO₂ at 5–10° and 760 mm. pressure dissolves 0.527-0.60 g. Ca₂(PO₄)₃, or, if containing 1% NH₄Cl, 0.739 g Ca₂(PO₄); (Warington, Chem. Soc. (2) 9. 80.)

Solubility varies according to form of Cas(POs)s.

In apatite, 1 pt. Ca₂(PO₄)₂ dissolves in 222,222 pts. H₂O sat with CO₂; in raw bones, in 5698 pts.; in bone ash, in 8029 pts.; in So. Carolina phosphate, in 6983 pts , in phosphatic guano from Orchilla Id., in 8009 pts (Williams, C. N 24. 306.) AlrO.H. and FerO.H. prevent the solubility

of Ca₂(PO₄)₂ in H₂O containing CO₂. (War-

ington, l. c.)
1 l. H₂O dissolves 0.22848 g. Ca₄(PO₄)₂. under a CO₄-pressure of 2 atmos. at 14°.

Decomp. by long boiling with H₂O into (Ehlert, Z Elektrochem. 1912, **18**, 728.)

Sol, in SO2+Aq, forming a liquid of 1.3 sp. comp. begins with cold H.O, so that the solu- | gr. at 9° from freshly precipitated Cas(POs)2. Sol in H.S+Aq. 1 l. H.O sat, with H.S dissolves 190-240 mg Ca₄(PO₄)₂, (Béchamp. A ch. (4) 16. 241.)

Eastly sol. in HNOs or HCl+Aq. 100 pts very dil HCl+Aq dissolve 198-225

pts Ca₃(PO₄)₂ (Crum, A **63**, 294) 100 pts HCl of 1 153 sp. gr (containing 31% HCl) dissolve at 17° when diluted with: 7 pts. H₂O 25.3 62.3 64 7 pts Ca₂(PO₄)2, 45.0 10 13 16 19 pts H₂O 71.9 68.0 69.5 69.7 pts Ca₃(PO₄₎₂

(Bischof, Schw J. 67, 39.) Decomp. by H2SO4. Completely decomp to CaSO4 and HaPO4 by a mixture of H2SO4 and alcohol.

Solubility in HNO₃+Aq. I pt. of Ca₃(PO₄)₂ dissolves at 16.25-17.5° in pts. HNO₅+Aq which contain pts. H₂O

to 1 pt. HNO, (sp. gr. = 1 23) Pts HNO3+Aq Pts HNO₁+Aq Pts H₂O Pts H₂O 2.72 30 64 10 754 0 827 4.2326 48 13 10.25 3 309 32.1413 236 15 45 5.79136 06 15 718 20.34 20.82 8.273 127 81 40

(Bischof, 1833)

More sol. in acetic, lactic, malic, and tar-taric acids than in HCl or HNO₃+Aq (Cium.)

Solubility in H₂PO₄+Aq.

G HaPO4 in 100 cc. of	G Ca ₂ (PO ₄) ₂ dissolved
HaPO4+Aq	by 100 cc of solvent
5	3.85
10	7 28
15	9 45
20	12 50
25	13 79
30	15 10

(Causse, C R, 1892, 114, 414)

Very small quantities of the salts of the alkalı metals increase the solubility in H2O (Lessaigne, J. chim. méd. (3) 3, 11)

1 litre cold H₂O with 2 g. NaCl dissolves 45.7 mg Ca₃(PO₄)₂; with 3 g NaNO₃, 33 mg Cas(PO4): (Liebig.) 1 litre H₂O containing 8.75% NaCl dissolver 317.5 mg. Ca(PO₄)₂. (Lassaigne.)

NH₄ salts have even more effect, especially NH Cl+Aq, which dissolves Ca₂(PO₄)₂ in the cold; also ammonium nitrate and suc-cinate (Wittstein.)

(NH₄)₂SO₄+Aq dissolves Ca₂(PO₄)₂ as easily as CaSO₄. (Liebig, A. **61**, 128.) 1 litre H₂O containing 2 g. NaCl dissolves conc. 1 2929 at 7-12.3° 45.7 mg Ca₁(FO₂)₃; 3 g. NaNO₂ (Ehlert and Hempel, Z. Elektrochem. 1912, at 17.3°, 33 mg, Ca₁(FO₂)₃, 2.2 g. (NH₂)₃SO₄, (Ehlert and Hempel, Z. Elektrochem. 1912,

76.7 mg, Ca₄(PO₄)₂ (Liebig, A. 106, 185)

Dry $Ca_8(PO_4)_2$ also dissolves by long boiling with solutions of ammonium chloride, nitrate, succinate (Wittstein), or sulphate (Delkeskamp).

Sol. in 89,448 pts. H₂O (boiled) at 7°; 19,628 pts H₂O (boiled) containing 1% 19,928 pts H₄O (DOHEG) containing a 70 MH₄Cl at 10°, 4324 pts H₄O (boiled) containing 10% NH₄Cl at 17°, 1788 pts H₄O sat with CO₂ and containing 10% NH₄Cl at 10° and 751 mp pressure; 1351 pts H₄O sat with CO₄ and containing 1.0% NH₄Cl at 12° and 745 mm pressure; 42,313 pts H₂O sat with CO₂ and containing CaCO₃ at 21° and 756.3 mm pressure, 18,551 pts H₂O sat with CO₂ and containing CaCO₃ and 1% NH₄Cl at 16° and 746 1 mm pressure (Warington,

Chem. Soc. (2) 4, 296. Aqueous solutions of the following NH. salts dissolve the given amts of Cas(PO4): sairs of Ca₃(rO₃); calculated for 100 pts. of the corresponding acid. NH₂(l, 0.655 pt., NH₄NO₃, 0.306 pt.; (NH₄)₂(SO₄, 1.050 pts.; NH₄CH₂O₃, 0.255 pt; NH₄CH₂O₃, 0.255 pt; NH₄ tarkrate, 4.56 pts.; NH₄ tarkrate, 4.56 pts.; NH₄ tarkrate, 4.56 pts.; NH₄ tarkrate, 4.56 pts.; NH₄ tarkrate, 4.56 pts.; NH₄ tarkrate, 4.56 pts.; Ca₂(PO₄); (Terminal of the constant of the consta reil, Bull. Soc (2) 35. 578)

Solubility in various salts+Aq under a CO₂ pressure of 2 atmospheres, at 14°.

	Salt	G sait per 100 g H ₂ O	G Cas(PO ₄)s sol in 1 l, of the solvent
	H ₂ O		0.22848
	NaCl	50 conc.	1.3208 0.64089
	MgCl ₂ +6H ₂ O	86 9 conc.	1.2873 2.8923
	KMgCl₂+6H₂O	79.2 conc.	1 5771 1 1586
	K ₂ SO ₄ , MgSO ₄ , MgCl ₂ +6H ₂ O	70 95 conc.	1 7777 2 4911
	NaNO ₈	72 7 cone.	1 5827 0 8638
	K ₂ SO ₄	74 5 conc.	4 9041 4.7649
3	(NH ₄) ₄ 80 ₄	56 5 conc.	2 4131 5.8849
7	Na ₂ SO ₄ +10H ₂ O	137.7 conc.	2.4911 3.2267
,	MgSO ₄ +7H ₄ O	105.3 conc.	1.9728 3.6001
3	NH ₄ Cl	45.74	1 3710

18.728)

 $Ca_3(PO_4)_2$ is sol in $K_2C_2O_4+Aq$ 100 ccm K₂C₂O₄+Aq (1¹₂C₆ K₂C₂O₄) dissolves 57 1% of the P₂O₃ from phosphorite, 71% from guano by boiling 25 mm. At ord, temp bone med gives up 50-80° of its P₂O₄ to K₂C₂O₄+Aq m 36 hours (Liebig, Landw, J. B. 1881, 603.) Sol. in Ca sucrate + Aq. (Bobierre, C R.

32.859) More sol, in H2O containing starch, glue, or

other animal substances than in pure H-O (Vauquelin, Pogg 85, 126.) Sol in H₂O containing organic matter.

therefore when bones decay under H₂O, Ca₂(PO₁)₂ is dissolved in considerable quantity. (Hayes, Edin Phil. J 5, 378.) Sol in sodium citrate+Aq (Spiller.)

Solubility in NH4 citrates+Aq. Ammonum citrate solution of 1.09 sp. gr. at 30–35° dissolves precipitated Ca₄(PO₄)₂ completely, but not phosphorite, (Frese-

nius.) Dried on the air, with 21/4H2O. Sol, in 40 min, in diammonium citrate+Aq (sp. gr.= 1.09); triammonium citrate+Aq (sp gr. = (Joffre, Bull. Soc 1898, (3) 19, 374.)

1 09) dissolves 55 3% of the P2O4; citric acid +Aq (1/4%) dissolves 83 8% of the PoO.

(Erlenmeyer, B 14, 1253) Dried at 50°, with 11/8H2O. Sol. in 45 min. in diammonium estrate+Aq (sp. gr. = 109);

triammonium citrate+Aq dissolves 52.3% of the P₂O₅. (Erlenmeyer.)

Ignited. Diammonium citiate+Aq (sp. gi. 1.09) dissolves 93% of the P.O., triammonium citrate+Aq (sp. gr. 1.09) dissolves 32% of the

P₂O₅; cutric acid (½%) dissolves 53.4% of the P₂O₅. (Erlenmeyer.) Insol. in liquid NH₄ (Franklin, Am. Ch.

J. 1898, 20, 827) Insol. in alcohol and ether.

Insol, in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43, 314.) Insol, in acetone. (Fidmann, C. C. 1899.

II. 1014; Naumann, B. 1904, 37, 4329.) Min Apatite. 0.002 g. is sol. in 1 l. H₂O. 0.014 "" " 1 l. H₂O sat. with CO₂.

+H2O. Solubility in H2O, in H2O sat. with CO2, and in H2O containing CO2+CaH2(CO3)2. Temp. 16°-20°.

Salvent		In 11 of	the filtrate
Solvens	`	PrOs mg	CsO mg
(1) Boiled distilled H ₂ O, (2) Isolo e., (4) Sat. with CO ₅ . (2) 1200 e., distilled H ₂ O +50 ec. (4) CO ₅ . (3) 1000 ec. (4) 250 ec. (6) (6) (7) (8) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	ntains:	0.74 6.9 48 5 91.9	
(5) Bicarbonate Carbonic acid	166 " 73 " 9 "	0 38	100 0
(6) Calcium carbonate Bicarbonate Free carbonic acid Carbonic acid	13 " 277 " 122 " 49 "	11	162 3
(7) Calcium carbonate Bicarbonate Free carbonic acid Carbonic acid	13 " 376 " 165 " 105 "	0 80	218 8
(8) Calcium carbonate Bucarbonate Free carbonic acid Carbonic acid	13 " 475 " 209 " 206 "	1.77	273 3
(9) Calcium carbonate Bicarbonate Free carbonic acid Carbonic acid	13 " 545 " 240 " 301 "	1 30	312 7

Calcium hydrogen phosphate, CaHPO4, and +2H₀O

Insol. or nearly so in H₂O. Gradually decomp, by cold, more quickly by hot HoO 1000 pts H₄O dissolve 0 135-0.152 pt CaHPO₄+2H₂O. Solution clouds up on boilmg. (Birnbaum)

1000 pts H₂O dissolve 0.28 pt., and if sat with CO₂, 0 66 pt. CaHPO₄+2H₂O. (Dusart and Pelouze.)

When this salt dissolves in H₂O, decomp. takes place and a very considerable time is necessary to establish equilibrium (Rindell.

C. R. 1902, 134, 112.)

Much less decomp by H2O than Cas(POs). or CaH4(PO4)2, and the decomposition of this salt in water depends only slightly upon the relative amounts of solid and solvent which are present. The decomposition is increased by the addition of CO2. The presence of CaSO4 or of CaCO3 decreased the amount of phosphoric acid which dissolved. See original paper. (Cameron and Seidell, J. Am.

Chem Soc. 1904, 26. 1460.)
When the ratio of P₂O₅: CaO is above 1.0 o1 below 1 27, H2O dissolves 0.40-0.54 g. CaO and 1.11-1 52 g. P₂O₄ (see original paper). (Cameron and Bell, J. Am. Chem. Soc. 1905, 27. 1512.)

Solubility in HaPO4+Aq.

G. H ₃ PO ₄ in 100 oc.	G CaHPO ₄ dissolved by		
H ₃ PO ₄ +Aq	100 co of solvent		
5 10 15 20 25 30	4 30 7 15 9 30 11 86 13 40		

(Causse, C. R. 1892, 114, 415.)

 H₂O containing 2.2 g. (NH₄)₂SO₄, 2 g. NaCl, or 3 g. NaNO; dissolves 79.2, 66 3, or 78.9 mg, CaP₂O₂, which is present in form of CaHPO₄. (Liebig, A 106, 185.) Slowly but completely sol. in boiling NH₄Cl+Aq. (Kraut, Arch, Pharm. (2) 111, 102.) Easily sol. in H₂SO₃+Aq (Gerland, J. pr. (2) 4. 123) Very sol, in HCl or HNO₂+Aq. Less sol, in HC₂H₂O₂. (Berzelius.) More sol, in dil than cone. HC.H.O.+Aq. but 60 pts HC2H3O2 (1 mol) dissolve at most 23.1 pts P₂O₅ (1 mol. = 142 pts.) from this compound. Aqueous solution of sodium acetate dissolves more easily than H2O, and becomes turbid

on boiling. (Birnbaum.)
Completely sol. in K₂C₂O₄+Aq. (Liebig, Landw J B. 1881. 603.)

1 l. of sat, solution in N/200 acid K tartrate +Aq at 25° contains 0 235 g. CaHPO₄. Insol, in alcohol. Sol, in many organic substances, as starch or gelatine + Aq

II 1014)

+1/4H2O (Vorbringer, Z anal. 9. 457.) +H2O (Gerlach, J pr (2) 4, 104)

+2H₂O Min. Brushite +3H.O. Min. Metabrushite. +5H₂O. (Dusart, C. R. 66, 327.)

Calcium tetrahydrogen orthophosphate.

CaH₄(PO₄),+H₃O. Very deliquescent. Crystals take up 97.7 pts H2O in 16 days, and 226 pts H2O in 28 days from air saturated with moisture. (Birnbaum, Zeit Ch. (2) 7. 131.) Not hygroscopic when pure. (Stocklasa,

B 23, 626 R.) Completely sol. in 100 pts. H₂O, but de-comp by 10-40 pts. H₂O with separation of

CaHPO_i, which slowly dissolves (Erlen-meyer, J. B. 1873, 254.) Later (B 9, 1839) Erlenmeyer says CaH4(PO4)2+H4O is sol. in 700 pts. H4O and decomp. into CaHPO, by a less amount of H.O. Wattenberg (Z anal, 19, 243) says that the decomposition by small amts of H₂O down to 144 pts, H2O to 1 pt salt is mappiecaable.

Completely sol in 200 pts. H₀O if pure, and in less H₂O in presence of H₂PO₄. (Stocklasa.) Sol in 25 pts. H₂O at 15°. Solution begins to decompose when warmed to 50°. (Otto. C. C. 1887. 1563.)

Greatly decomp, by H2O and the resulting solution is to be regarded as a solution of the decomposition products rather than of the substance itself. The presence of an excess of CaSO, does not materially affect the amount of phosphoric acid entering the solution. (Cameron, J. Am Chem. Soc. 1904, 26. 1462.)

Violently decomp, by H₂O in conc. solution, only sl. decomp, when dissolved in 200 pts. H₂O. (Stocklasa, Z. anorg. 1892, 1. 310.)

Solubility of CaH4P2O3 in H2PO4+Aq at pressure of 745 mm, at high temp.

100 g

	eonts		ain	Solid phase
3	m	G P ₂ O ₅	G	
1				
	115°	43.60	5.623	CaH ₄ P ₂ O ₈ , H ₂ O+CaHPO ₄ CaH ₄ P ₂ O ₈ +CaH ₄ P ₂ O ₅ , H ₂ C
		63 95		CaH ₄ P ₂ O ₃ + CaH ₄ P ₂ O ₃ , H ₂ O

(Bassett, Z. anorg. 1908, 59, 26.)

Glacial HC₂H₂O₂ ppts, it completely from aqueous solution even in presence of HNO: (Persoz.)

Decomp. by 50 pts. absolute alcohol at b .-Insol, in acetone. (Eidmann, C. C. 1899, pt. in 1 hour, by 30 pts. in 2 hours. Sol. in absolute ether. (Erlenmeyer, l c)

Calcium pyrophosphate, Ca₂P₂O₇+4H₂O
Somewhat sol, in H₂O; completely sol, in

mineral acids; less sol in acetic acid, and msol, in Na₄P₂O₇+Aq. (Schwaizenberg, A. 65, 145.) Less sol, in worm than in cold acetic acid. (Baer, Pogg. 75, 155) Insol, in NH₄Cl+Aq. (Wackenroder, A. 41, 316.)

Insol. in CaCl₂+Aq. Min. Purophosphorite.

Calcium hydrogen pyrophosphate, CaH₂P₂O₇ +2H₃O_.

Sol in H₂O. (Pahl, B. 7, 478.) 2CaH₂P₂O₂, Ca₂P₂O₂+6H₂O Decomp. by boiling with H₂O into— CaH₂P₂O₇, Ca₂P₂O₂+3H₂O. Insol. in hot H₂O (Knorre and Oppelt, B. 21, 771.)

Tetracalcium hydrogen phosphate, Ca₄H(PO₁)₁+H₂O.

Ppt. Insol. in H₂O, but decomp by boiling therewith. Sol. in acids. (Warington, Chem. Soc. (2) 4, 296.) +2H₃O.

Calcium teiraphosphate, Ca₃P₄O₁₃.

Insol. in acids when ignited. (Fleitmann and Henneberg, A. 65, 331.)

Calcium lithium phosphate, CaLiPO₄ Insol. in H₂O. (Rose, Pogg. 77, 298.)

Calcium potassium dimetaphosphate, $CaK_2(P_2O_6)_2+4H_2O$.

As BaK comp (Glatzel, Dissert. 1880.)

Calcium potassium orthophosphate, CaKPO₄
Insol in H₂O. (Rose, Pogg 77, 291.)

Easily sol. in acids. (Ouvrard, A. ch. (6) 16.308.)

Calcium potassium pyrophosphate, Calk₂P₂O₇.

Insol, in H₂O, castly sol. in dil. acids,

(Ouvrard, C. R. 106, 1599.)

Calcium sodium dimetaphosphate,

CaNas(PsOc) + 4HsO.

As BaNa comp. (Glatzel.)

Calcium sodium trimetaphosphate, CaNaP₃O₂+3H₂O. Sl. sol. in H₂O. (Fleitmann, A. 65.)

Sl, sol. in H₂O. (Flettmann, A. 65, 315.) Easily sol. in H₂O. Difficultly sol. in HCl+ Aq when heated to redness. Easily sol. in boiling HCl+Aq after being fused. (Lindborn.)

Calcium sodium orthophosphate, Ca.Na.PO.
Insol. in H.O. (Rose, Pogg. 77. 292.)
Easily sol. in dil. acids. (Ouvrard, A. ch.
(6) 16. 308.)

3CaO, 3Na₂O, 2P₂O₅. Sol. in dil. acids. (Ouvrard, C. R. 1888, **106**, 1599)

Calcium sodium pyrophosphate, CaNa₂P₂O₇ +4H₂O

Insol. m Na₁P₂O₇+Aq Easily sol. in HCl+Aq, HNO₅+Aq, and also m HC₂H₂O₂ + Aq (Baer, Pogg. **75**. 159.) Ca₁₀Na₁₆(P₂O₇)₆. Sol m acids. (Wallroth, Bull. Soc. (2) **39**. 316.)

Bull. Soc. (2) **39**, 316)
3CaO, 3Na₂O, 2P₂O₃ Easily sol in acids.
(Ouvrard, A. ch. (6) **16**, 307.)

Calcium therium metaphosphate, ThO₂, CaO, P₂O₅. (Colani, C. R. 1909, **149**, 209.)

Calcium uranous metaphosphate, UO1, CaO, P2Os.
Insol in acids. (Colani, A. ch 1907, (8) 12, 140.)

Calcium uranyl phosphate, Ca(UO₂)H₂(PO₄)₂ +2. 3, or 4H₂O.

Sol in HNO₂+Aq (Debray.) Ca(UO₂)₂(PO₄)₂+8H₂O. Min. Urante. Sol in HNO₂+Aq. 3CaO, 5UO₄, 2P₂O₄+16H₂O. (Blinkoff, Dissert. 1900.)

Dissert. 1900.)

Calcium phosphate chloride, Ca₃(PO₄)₅, CaCl₅.

(Devylle and Caron, A. ch. (3) 67. 458')

3Ca₄(PO₄)₂, CaCl₅. Chlorapatite. Insol. in

H₃O. (Daubrée, Ann. Min. (4) 19. 684.)

7CaH₄(PO₄)₂, CaCl₂+14H₂O. Sol. in HCl+Aq. 4CaH₄(PO₄)₂, CaCl₂+8H₂O. CaH₄(PO₄)₂, CaCl₂+2H₂O Partly sol. in

H₂O with decomp Also with 8H₂O. (Erlenmeyer, J B 1857, 145.)

Calcium phosphate chloride fluoride.

SCa₁(PO₁), CaClF.

Min. Apastic Bolung H₂O dissolves out
CaCl₃; dil mmeral acads dissolve casily, acetto
acid with more difficulty. Easily soluble in

molten NaCl, crystallizing on cooling. (Forchhammer.)

Calcium phosphate silicate, Ca₂(PO₄)₂,

Ca₁SiO₄.

Insol. in H₂O; decomp. by HCl+Aq. (Cannot and Richard, C. R. 97, 316.)

4Ca₅(PO₄)₂, Ca₅SiO₅. (Bücking and Linck, C. C. 1887, 562.)

4Ca₅(PO₄)₂, 3Ca₅S₁O₅. (B. and L.) Ca(PO₃)₄, CaSiO₂. (Stead and Ridsdate, Chem. Soc. 51. 601.)

Calcium dihydrogen phosphate sulphite, CaH₂(PO₄)₂, CaSO₃+H₂O.

Not decomp. by cold, slowly by boiling H₂O. Slightly sol. in NH₂OH+Aq. Sol. in maneral acids. Insol. in cold, slowly sol. in boiling acetic acid. More sol in a solution of oxalic acid. (Gerland, C. N. 20. 268)

Cerous metaphosphate, Ce(PO.):

(Rammelsberg) Ce2Os, 5P2Os Insol, in H2O or acids. (Johnsson, B. 22, 976)

HNO1+Aq.

Cerous orthophosphate, CePO,

Insol in H₂O. Easily sol, in acids (Grandeau, A ch (6) 8. 193.) Insol in acids (Hartley, Proc Roy, Soc.

41, 202 +2H₂O. Insol, in H₂O. Sol. in acids. (Jolin.) Insol. in HaPO4+Aq; sl. sol in HCl or

HNO₃+Aq (Husinger.) Insol in HNO₅+Aq (Boussingsult, A. ch. (5) 5. 178) Min. Cruptolite. Completely decomp by H-SO, when finely powdered. Insol. in dil.

Ceric orthophosphate, 4CeO2, 6P2O2+26H2O. Put. (Hartley, Proc Roy, Soc. 41, 202.)

Cerous purophosphate, Ce2H2(P2O1)0+6H2O. Sol. in cerous nitrate+Aq Ce4(P2O7)+12H2O. Sol. in excess of sodium pyrophosphate+Aq. Easily sol in

HCl. (Rosenheim, B. 1915, 48. 592.) Cerous lanthanum thorium phosphate, (Ce, La, Th)2(PO4)2. Min. Monazile

Sol. in HCl+Ag with

white residue. Cerous potassium orthophosphate, 2Ce,O3,

3K2O, 3P2O3=2CePO4, K2PO4. Insol in H.O: sol. m acids. (Ouvrard, C. R. 107. 37.)

Cerous sodium orthophosphate, Ce₂O₃, 3Na₂O, 2P2O6 = CePO4, Na2PO4. Insol in H₂O. (Ouvrard, C. R. 107, 37.)

Cerous sodium pyrophosphate, CeNaP2O1. Insol. in acetic, and cold dil. mineral acids Sol. in warm acids. (Wallroth)

Chromous phosphate, Cra(PO4)2

Insol, in H2O Easily sol, in citric, tartaric and acetic acids. Sl. sol. in H₂CO₃+Aq. (Moissan, A. ch 1882, (5) 25, 415.) +H₂O. Precipitate Easily sol. in acids. +H₂O. Precipitate Easily sol. in (Moberg, Moissan, A. ch. (5) 21. 199)

Chromic metaphosphate, Crz(PO3)4. Insol. in H₂O or conc. acads. (Maddrell, A. 61, 53.)

Chromic orthophosphate, CrPO4.

Hydrolyzed by hot H₂O. Somewhat sol in NH₄OH+Aq and in Cr₂(SO₄)₂+Aq. (Caven, J. Soc Chem. Ind 1897, **16**. 29) Insol. m methyl acetate. (Naumann, B. | HCl+Aq. (Maddrell, A. 58. 61.)

1909, 42. 3790), ethyl acctate (Naumann, B. 1910, 43, 314,)

Chromic phosphate, Cr₂(PO₄)₂+12H₂O Violet modification. Precipitate.

melsberg, Pogg. 68, 383.) +6H₄O. Green modification. TOTAL . Green monaccation. Very si. sol. in H₂O and still less in NH₃NO₃ or NH₄C₂H₃O₂+Aq. (Carnot, C R. 94, 1313.) Insol. in acetic, but easily sol. in meneral acids Easily sol. in cold KOH or NaOH+ Ag, from which it is separated on boiling (Dowling and Plunkett, Chem. Gaz. 1858. 220.)

Chromic hydrogen phosphate, Cr. Ha(PO4)4+ 16H.O. Sol, in H₂O (Haushofer)

Chromic pyrophosphate, Cr4(P2O1)3.

Anhydrous Insol in H₂O or acids (Ouv-rard, A. ch. (6) 16. 344) +7H₄O Precipitate. Sol. in strong mineral acids, SO₂+Aq, KOH+Aq, and Na₄P₂O₇+Aq. (Schwarzenberg, A 65, 149.)

Insol in Na₄P₂O₁+Aq. (Stromeyer.) Chromic potassium phosphate, Cr2O8, K2O,

2P₂O₄. Insol. in H₂O and in acids. (Ouvrard, A. ch. (6) 16, 289.)

Chromic potassium pyrophosphate, $K(CrP_2O_7) + 5H_2O$

Sl sol. in cold H₂O. Decomp. by boiling H₂O. (Rosenheim, B. 1915, 48. 586.) Cr₂K₂H₄(P₂O₇)₃. Insol. in H₂O, acids, or alkalies. Sl. decomp. by boiling conc. H₂SO₄. (Schjerning, J. pr. (2) 45. 515)

Chromic silver phosphate, 2Cr2Os, 2Ag2O, (Hautefeulle and Margottet, C. R. 96. 1142.)

Chromic sodium orthophosphate, Na₂HPO₄, 2CrPO4+5H2O. Decomp. by H₇O (Cohen, J. Am. Chem.

Soc 1907, 29, 1197.) Chromic sodium purophosphate, Cr2Na2(P2O1).

Insol, in acids. (Wallroth, Bull, Soc. (2) +10H2O, and 16H2O Sl. sol. in cold H2O. Decomp by boiling HO, (Rosenheim, B. 1915, 48, 586.)

Cobaltous monometaphosphate, Co(PO₃)₂(?). Insol, in H.O and dil, acids. Sol, in conc.

Cobaltous dimetaphosphate, Cog(P2O6)2. Insol. in cold conc. H2SO4; sl. sol. on warming, but sol, in H₂O after treating with H₂SO₄. Sol in conc. NH₄OH+Aq. Scarcely attacked by boiling Na₂S+Aq. (Fleitmann)

Cobaltous hexametaphosphate (?) Ppt Sol, in sodium hexametaphosphate+ Aq. (Rose, Pogg. 76. 4.)

Cohaltous orthophosphate, Co2(PO4)2+

 xH_2O . Sol. in HaPO. +Aq or NH.OH+Aq; sl sol. in NII4Cl or NH4NO2+Aq (Salvetat, C. R. 48. 295.) Sol. in Co salts + Aq. +2H₂O. (Debray, A. ch. (3) 61. 438.) +8H₂O. (Reynoso, C. R. 34. 795.)

Cobaltous hydrogen orthophosphate, CoHPO. +115H.O.

Ppt. (Debray.) +2½H₂O. Ppt Insol. in H₂O. Sol. in H.PO.+Aq (Bodeker, A. 94. 357.)

Cobaltous tetrahydrogen orthophosphate, CoH4(PO1)2. Sol. in H₂O. (Revnoso)

Cobaltous purophosphate.

Ppt. Sol. in Na₄P₂O₇+Aq. (Stromeyer) Sol. in NH4OH+Aq (Schwarzenberg)

Cobaltous pyrometaphosphate, 3CoO, 2P2O6. (Braun.) 6CoO, 5PoOs. (Braun.)

Cobaltous potassium phosphate, CoKPO, Insol, in H₂O; easily sol, in dil acids (Ouvrard, C. lt 106, 1729.) 3CoO, 3K₂O, 2P₂O₅. As above

Cobaltous sodium (riphosphate, NaCoaPaOan, (Schwarz, Z. anorg. 1895, 9, 260) Na₄CoP₄O₁₀+12H₂O. Very sol. in H₂O; decomp. in aq. solution. Sol. in acids. (Schwarz, Z. anorg. 1895, 9. 258.)

Cobaltous sodium metaphosphate. Co.Nas(POs).

Insol, in H2O or acids, even conc. H2SO4. (Watta' Dict.)

Cobaltous sodium monometaphosphate, 6Co(PO3)2, 2NaPO,

Insol, in HaO and dil, acids. Sol, in conc. H₂SO₄. (Maddrell, A. 61, 57.)

Cobaltous sodium trimetaphosphate, CoNa4(PO4)3+8H2O Sol. in H₂O. (Fleitmann and Henneberg, A. 65, 315.)

Cobaltous sodium orthophosphate, CoNaPO. Insol. in H₂O (Ouvrard, C. R. 108, 1729.) CO₃(PO₄)₂, 2Na₂HPO₄+8H₂O. (Debray, J. Pharm. (3) 46, 119)

Cobaltous sodium pyrophosphate, CosoNass(P2O2):

Insol. in H₂O Sol. in acids (Wallroth.) +zH₂O. Sol. in H₂O. (Stromeyer.)

Cobaltous zinc phosphate, Cos(PO4)2, 3Zn₂(PO₄)₂+12H₂O.

Ppt. Sol in acids. (Gentele) CoZn₂(PO₄)₂+6H₂O Insol in H₂O

Columbium phosphate (?) Insol. in H.O. (Blomstrand.)

Cupric dimetaphosphate, Cu2(P2O6)2 Insol, in H₂O. Sol in cone. H₂SO₄. (Maddrell, A. **61**. 62.) Insol, in most cone acids aren, N. 04. 02.) Insol, in most cone leads and in alkales, except hot NH₂OH+Aq or cone, H₂SO₄, in which it is moderately sol. Not decomp, by H₂S, but by (NH₄)S+Aq. (Fleitmann, Pogs. 78. 242.)

+8H₂O. Completely insol. in H₂O (Fleitmann.)

Sol in Na₆P₆O₁₈+Aq or CuCl₂+Aq. (Rose, Pogg. 76. 5.) Cu₃P₅O₁₅. Easily sol. in H₂O or sods, especially when freshly pptd. (Lüdert, Z.

Cupric hexametaphosphate (?).

anorg. 5. 15) Cupric orthophosphate, basic, 6CuO, P2Os+ 3H.O.

Min. Phosphocalcute. 5CuO, P₂O₄+2H₂O, Mm. Dshydrste +3H₂O. Min Ehlite. Easily sol in NH,OH+Aq, and HNOs+Aq.

4 CuO, P₂O₅+H₂O. Slowly sol in NH₄OH or (NH₄)₂CO₅+Aq; msol, m cold Na₂S₂O₅+ Aq. (Steinschneider, C. C. 1891, II 51.)
Sl. sol. in CuCl₂+Aq and CaSO₄+Aq
Decomp. by boiling H₄O and boiling Aq
potash. (Caven, J Soc. Chem. Ind. 1897, 16. 29.)

Labethenite, Sol, in acids and Min NH₄OH+Aq. Min. Pseudolibethenite. Sol. in +2H₂O, acids and NHOH+Aq. +3H2O. Min. Tagslate. Sol in acids and NH,OH+Aq.

Cupric triphosphate, 5CuO, 3P2Os+13H2O. Sol, in HO, Sol, in HNO, (Schwarz, Z. anorg. 1895, 9. 262.)

Cupric dimetaphosphate, CuP2O6+4H2O. Sol. in 78 pts. H₂O Easily decomp. by hot cone. H₂SO₄ (Glatzel, Dissert. 1880.)

into-

Cupric translaphosphate, Cu₄(P₃O₉)₂+9H₂O. Very al. sol in H₂O (0.04 g. in 11 at 20°). (Tammann, J. pr. 1892, (2) 45, 425)

Cupric tetrametaphosphate, Cu2P4O10. Insol, in H2O and in HCl. Sl. sol, in boiling

(Glatzel.)

HNO: Very sol. in boiling cone H2SO4. (Glatzel.) +8H₂O. Nearly insol. in H₂O. Slowly attacked by acids except conc. Ha804.

Cupric orthophosphate, Cu₃(PO₄)₂+3H₂O. Insol. in H₄O; easily sol in acids, even H₄PO₄, HC₂H₃O₂, or H₂SO₃+Aq Sol in NH₄OH+Aq Sl. sol. in NH₄ salts+Aq. SI sol. in Cu salts+Aq. (Rose, Pogg. 76. 25) Sol in cold Na2S2O3+Aq. (Steinschnei-

der, C. C. 1891, II, 51.) Insol in liquid NHs (Gore, Am. Ch J. 1898, 20, 827) Insol, in methyl acetate. (Naumann, B.

1909, 42, 3790)

Cupric hydrogen phosphate, CuHPO4+ 11/4H,O(?

Insol. in H₂O; sol in H₃PO₅+Ao, and HC₂H₃O₅+Aq. Insol in NH₄Cl, and NH₄NO₅+Aq. (Brett, Phil Mag. (3) 10.

Cupric pyrophosphate. basic, Cu2P2O7. 2CuO, H2O+3H2O Insol in H2O. (Pahl, J. B. 1873, 229.)

Cupric pyrophosphate, Cu2P2O7

Anhydrous. Insol. in H2O, and very al. sol, in cone acids. (Fleitmann, Pogg. 78. 244.1

As insol as Cu metaphosphate, but decomp. by H₂S. (Rose, Pogg. **76**, 14') +2H₂O. Sol in mineral acids, and NH₄OH +Aq, also in Na₄F₂O₇+Aq (Schwarzen-

berg, A 65. 156. crystallizing out on boiling

28, 202)

Cupric iron (ferric) pyrophosphate, Cu₂Fe₂(P₂O₇)₂+12H₂O. Ppt. (Pascal, C. R. 1908, 146, 233.)

Cupric potassium phosphate, 4CuO, K2O, 3P.O. Insol. in H₂O. (Ouvrard, C. R. 111, 177.) CuRPO4. As above.

Cupric potassium tetrametaphosphate, K2CuP4O13+4H2O

Sol. in 58 pts. H2O. Easily attacked by acids. (Glatzel, Dissert 1880.)

Cupric potassium pyrophosphate, CuK₂P₂O₇. Extremely easily sol. in H₄O. (Persoz, A. cb (3) 20. 315) Cu₂P₂O₇, 3K₄P₂O₇+4H₂O. Insol. in H₂O. (Pahl, Sv. V. A. F. 30, 7, 44.)

Cupric sodium phosphate, CugNac(PO4)4. Insol. in HC2H2O2+Aq. Sol. in conc. acids. (Wallroth, Bull Soc (2) 39. 316.)

Cupric sodium triphosphate, CuNa₃P₃O₁₀+12H₂O

Sl sol, in H2O; very unstable. Easily sol. in acids. (Stange, Z. anorg 1896, 12, 458.)

Cupric sodium teirametaphosphate, CuNasP4O12.

As insol. in II2O as Cu dimetaphosphate. Difficultly decomp, by digestion with Na₂S+ Aq. (Fleitmann, Pogg 78. 355) +4H₂O. Sol. in 45 pts H₂O (Glatzel, Dissert. 1880.)

Cupric sodium orthophosphate, 3Cus(POz)s.

NaHoPO4 Decomp. by H₂O to 4CuO, P₂O₄ (Steinschneider, C. C 1891, II. 52) 2Cus(PO4)2, Na2HPO4, Decomp. by H2O

3Cus(POA), NasHPOA, Decomp. by H.O. Cus(PO4)2, NaH2PO4. Decomp by H2O.

(S) 6Cu₈(PO₄)₂, 2Na₂PO₄. Decomp. by H₂O.

Cupric sodium pyrophosphate, CuNa₂P₂O₇, Insol. in H₂O. (Fleitmann and Henne-berg, A. 65, 387.) +2/₂H₂O (F and H) Much more sol

than the next salt (Pahl)

ystalining out on boiling out on boiling out on boiling out on boiling out on boiling out on boiling (Mitt-Au, 501 in Ingo excess of CuSO,+Au, +10,42),H.O. (Person, A. G. (F. and H.) over yet soi in H.O. (Person, A. G. (Parli, S. V., V. A. F. 30, 7. 42), +10,H.O. (Person, A. G. (Person, A. G. (Parli, S. V., V. A. F. 30, 7. 42), +10,H.O. (Person, A. G. (Person, A. G. (Parli, S. V.), V. A. F. 30, 7. 42), +10,H.O. (Person, A. G. (Person, A. G. (Parli, S. V.), V. A. F. 30, 7. 42), +10,H.O. (Person, A. G. (Person, A. G. (Parli, S. V.), V. A. F. 30, 7. 42), +10,H.O. (Person, A. G. (Person,

+12, and 16H₂O. Very efflorescent, and sol. in H2O. (Pahl

Cu2Na2P4O14+10H2O. Insol. in H2O; sol, in HCl and HNO, even after heating, (Stange, Z. anorg. 1896, 12, 456.)

Cupric uranyl phosphate, (UO2)2Cu(PO4)2+ 8H₂O.

Insol m H₂O; easily sol. in acids. (Debray.)
Min. Chalcolste. Sol. in HNO₃+Aq.

Cupric orthophosphate ammonia, Cu2(PO4)2, Dysprosium orthophosphate, DyPO4+5H2O. 4NH. Sl. sol, in II-O Easily sol, in R-O contain-Si, sol, in 14,4 Dessity sol, in 14,4 Containing MH,OH. (Schiff, A, 123, 41.)

2Cu(), 3P₂O₅, 20NH₃+21H₂O. Easily sol, in cold H₂O₅ with subsequent decomp. (Metaner, A, 149, 60,)

2CuO, P₂O₅, 6NH₃. (Maumené.)

Cupric pyrophosphate ammonia, SCuO, 3P₂O₃, 4NH₃+4H₂O Sl sol in H₂O. (Schwarzenberg, A. 65. 133)

Cu₂P₂O₇, 4NH₃+H₂O. Sl sol. in H₂O. (Schiff, A. **123**, 1) Didymium metophosphate, Di(PO+)4.

Di₂O₃, 5P₂O₄. Insol. in H₂O. (Cleve) Didymium phosphate, 2Di₂O₃, 3P₂O₄. Insol. in H₂O, (Ouvrard, C. R. 107. 37.)

Precipitate, (Smith.)

Didymium orthophosphate, DiPO4.

Insol. in H₂O. Very sl. sol in dil, essily sol. in cone. acids. (Marignac) Insol. in H₂O. (Wallroth, Bull. Soc. (2) 39, 316.) +H₂O. (Frenchs and Smith. A. 191.

Didymium trihydrogen phosphate, Di2H3(PO4)4.

Precipitate. (Frerichs and Smith.) Existence is doubtful (Cleve, B. 12, 910.) Glucinum hydrogen orthophosphate, GIHPO,

Didymium hezahydrogen phosphate, DiH.(PO1)+H-O. Precipitate. (Hermann.)

Didymium pyrophosphate, Di,(P,O1):+ 6H2O. Precipitate. (Cleve.)

Didymium hydrogen pyrophosphate, D12H6(P1O7)3. Precipitate. Sol. in disodium pyrophosphate+Aq. (Frerichs and Smith, A. 191.

Does not exist. (Cleve.)

Insol, in H.O. (Ouvrard.)

Didymium potassium phosphate, 2Di₂O₄, 3K₄O, 3P₂O₅=2D₁PO₄, K₂PO₄. Insol. in H₂O. (Ouvrard, C R. 107, 37.)

Didymium sodium orthophosphate, DirOs. 3Na₂O, 2P₄O₅ = DiPO₄, Na₂PO₄,

Didymium sodium pyrophosphate, Di_2O_3 , $Na_2O_1 2P_2O_3 = DiNaP_2O_7$ Insol, in H₂O, (Ouvrard, C. R. 107, 37.)

Nearly insol. in H₂O. Easily sol in dil acids or scetic acid. (Jantsch, B. 1911, 44, 1276.)

Erbium phosphate, ErPO4+H2O. Precipitate

Brbium pyrophosphate, ErHP2O7+312H2O. Scarcely sol, in boiling H.O. Slowly sol. in scids.

Erbium sodium pyrophosphate, ErNaP2O7. Precipitate, (Wallroth,)

Glucinum metaphosphate, Gl(POs): Insol. in H2O and acids. (Blever, Z. anorg. 1912, 79, 274

Glucinum orthophosphate, basic. 2Gl₂P₂O₈, GlO+13H₃O. Ppt. (Blever, Z. anorg, 1912, 79, 268.)

Glucinum orthophosphate, Gla(PO4).+6H2O. Precipitate. Insol. in H₂O. Sol. in acids (Atterberg, Sv. V. A. Handl 12, 5, 33.) 1 l. 2% HC2H3O2+Aq dissolves 0 55 g. of the anhydrous salt, 1 l. 10% HC₂H₃O₈+Aq dissolves 1.725 g (Sestini, Gazz. ch. it. 20. +7H_sO. (Atterberg)

+3H₂O. GlH₄(PO₄)₂, hydroscopic. anorg. 1912, 79, 266.) (Blever, Z. Precipitated by alcohol. (Atterberg)

Glucinum phosphate, 5GlO, 2PaOs+8HaO. Ppt. Sol. in H.O with decomp (Scheffer.) 3GlO, P.O., 3H2O+H2O. (Sestini, Gazz. ch 1t. 20. 313.)

Glucinum pyrophosphate, Gl₂P₂O₇+5H₂O₄ Precipitate (Scheffer.) Sol. in Na,P2O7+Aq (Stromever.)

Glucinum potassium phosphate, GIKPO4. Insol. in H₂O. (Ouvrard, C. R. 110. 1333.)

Glucinum sodium phosphate, GlNaPO4. Sl. sol in cold, easily sol, in hot acids, (Wallroth.) Insol. in acetic acid. Min. Beryllomite. GlO, 2Na₂O, P₂O₄. Insol. in H₂O. (Ouv-rard, C. R. 110, 1333.)

Gold (Auric) sodium purophosphate (?). Aus(P2O7) & 2NB4P2O7 + H2O Sol. in H.O. (Persoz.)

Gold sodium pyrophosphate, ammonia, 14Au₂O₃, 6P₂O₅, 3Na₂O, 14NH₂+24H₂O Insol. in H₂O. (Gibbs, Am Ch J. 1895, 17.172)

Iron (ferrous) trimetaphosphate, Fe(P2O9)2+

12H2O. Rather sl sol in cold, more easily in hot H.O. After ignition sol in HCl+Ag only after long boiling (Lindborn, Acta Lund. 1873, 17

Ferrous hexametaphosphate, Fe₃P₄O₁₈. When freshly pptd, is sol, in H₂O, and very

sol, in least traces of acids, or NacP4O18+Aq (Lüdert, Z. anorg 5. 15)

Perrous phosphate, basic, 7FeO, 2P₂O₅+ 9H₂O. Min, Ludlamite. Sol. in dil. HiSO4 or HCl+Aq. Decomp by boiling KOH or NaOH+Aq.

Ferrous orthophosphate, Fez(PO4)2.

Insol. in H2O; sol. m acids. Sol, in 1000 pts H2O containing more than 1 vol. CO2 (Pierre)

Sol. in an excess of ferrous salts+Aq Sol. m 560 pts. H2O containing 1/800 pt. HC.H.O. Sol. in 1666 pts. HaO containing 150 pts NH4C2H4O2. (Pierre, A. ch. (3) 36. 78.)

Sol m NH, salts+Aq.

Sol. in NH₂OH+Aq. Not pptd, in presence of Na citrate. Insol in acetone. (Naumann, B, 1904, 37.) 4329.

+H₂O. (Debray, A. ch (3) **61.** 437) +8H₂O. Mm, Vivianite. Easily so Easily sol. in HCl or HNOs+Aq Boiling KOH+Aq dissolves out phosphoric acid. Sol. in cold citric

acid+Aq. (Bolton, C. N. 37. 14) Insol, in H₂O. Sol. m acids. (Evans, C. C. 1897, I. 580.)

Ferrous hydrogen orthophosphate, FeHPO4+ H-O Ppt (Debray, A. ch. (3) 61. 437.) Is impure Fe₃(PO₄)₂. (Erlenmeyer and

Heinrichs, A. 194, 176.) Ferrous tetrahydrogen orthophosphate.

 $FeH_4(PO_4)_2+H_4O$. Easily sol, in HeO. Not changed by al-

cohol. (Erlenmeyer and Heinrichs, A. 194. 176.)

Ferrous pyrophosphate. Ppt. Sol in an excess of Na₄P₂O₇ or FeSO₄

+Aq. (Schwarzenberg, A. 65. 153.)

Ferric metaphosphate, Fen(POs)s or Fe(POs)s

Iron (ferric) orthophosphate, basic, 2Fe₂O₃, P2Os+xH2O

Insol, in NH, citrate, sol in NH, tartrate +Aq. (Wittstein.)

+3H,O. Min Kraurije Easily sol in HCl+Aq +4H.O Ppt (Millot, C. R. 82, 89)

+5H₂O Mm Dufrente. +12H₂O. Min. Cacozene Sol in HCl+

+18, or 24H₂O Min Delvauxite

5Fe₂O₅, 3P₂O₅+14H₂O Min. Beraunite Sol. in HCl+Aq 3Fe₂O₃, 2P₂O₅+8H₂O. Min Eleonorite. Sol m HCl+Λq

Ferric orthophosphate, Fe₂(PO₄)₂+vH₂O, or $2Fe_{1}O_{2}$, $3P_{2}O_{4}+xH_{2}O$.

+4, or 8H₂O. (Pptd. ferric phosphate.) Insol. in H₂O. Sol in 1500 pts. boiling H₂O. (Bergmann, 1815.) Sol in pure H₂O when all traces of soluble salts are absent (Fresenius.) Very sl. sol. in, but decomp by H₂O. (Lachowicz, W. A. B. 101, 2b. 374) For an extended discussion of solubility in and decomposition by H₂O and effect of salts see Cameron and Hurst, (J. Am. Chem. Soc 1904, 26. 888.)

Easily sol in dil. mineral acids, excepting

H₂PO₄+Aq Insol. m cold HC₂H₂O₂+Aq. (Wittstein.) 100 ccm. cold H₂O containing 10% HC₂H₂O₂ dissolve 0.007 g salt (Sestum, Gazz. ch it 5. 252.) When freshly pptd. easily sol in H₂SO₂+Aq, or (NH₄)₂SO₂+Aq. (Berthier.) Easily sol, in tartanc or citric acid+Aq, also in NH₄ salts of those acids, and Na citrate+Aq. (Heydenreich, C N. 4. 158.) See below

Sol. in 12,500 pts H₂O sat. with CO₂. (Pierre, A ch. (3) 36.78.) Insol. in NH₄ salts+A₂ (Wittstein.)

Sol. in NH4OH+Aq in presence of Na2HPO4; insol in hot Na₄HPO₄+Aq; sol in (NH₄)₂CO₄ +Aq (Berzelius). NH₄OH, KOH, or NaOH+An dissolve out H₂PO₄.

Sol. in ferric salts + Aq, even ferric acetate, but msol, in ferrous acetate +Aq.. Partially sol. in large amt of Na₂CO₃+Aq.

Not pptd. in presence of Na citrate. (Spiller.) Arth (Bull Soc. (3) 2. 324) obtained a modification of Fe2(PO4)4, insol in HNO+ Aq, but sol. in hot cone HCl+Aq.

+4H₂O. Mm. Strengite. Easily sol in HCl+Aq; msol, in HNO₃+Aq

+5H2O. Only sl. sol. in H2O Slowly sol. m HNO3, easily sol. in HCl. (Weinland, Z. anorg, 1913, 84, 361.)

Diammonium citrate +Aq dissolves 48% of the P₂O₅; triammonium citrate, 5.8% P₂O₅; and with an excess of NH₄OH, 21 2% P₂O₅ us dissolved. (Erlenmeyer, B. 14. 1253.) +9H₂O. Dissolves in 35 min in diam-

monium citrate +Aq (sp. gr 1.09); in 55 mm. in triammonium citrate +Aq (sp. gi Insol. in H₂O or dil. acids Sol. in conc. 1.09); ettric acid + Aq ($\frac{1}{4}$ % citric acid) dissolves 17.5% of the P₁O₅ (Erlenmeyer, l. c.)

+3H_∗Ó. Insol, m II.O. (Rumpler, Z anal, 12, 151.)

6Fe₂O₃, 7P₂O₅+3Π₂O. 4Fe₂O₃, 5P₂O₅+3H₂O. 2Fr₂O₃, 3P₂O₄+8H₂O. Ppt

Decomp, by H₂O imally into Fe₂(PO₄)₂ (Erlenmeyer and Heinrich, A. 194, 176.) 8Fe₂O₅, 11P₅O₅+9H₂O. As above (E.

and H 4Fe,O., 7P,O.+9H.O. As above, (E, and

Fe₂O₂, 2P₂O₅+SH₂O. Insol. in H₂O or HC₂H₃O₂+Aq; sol. in NH₄ citrate, alkalı hydrates, or carbonates+Au. (Winkler.)

Slowly decomp. by H₂O. (E and H) +10H₂O. (Wame, C. N. 36, 132) 2Fo₂O₃, 5P₂O₃+17H₂O. Fe₂O₄, 3P₂O₅+6H₂O=FeH₅(PO₄)₄. Deh-puescent. Insol. in H₂O, but decomp. into

Feg(PO4);. (E and H.) +4H₂O. (Hautefeuille and Margottet, C. R. 106, 135.)

Ferric purophosphate, Fc4(P2O7)2.

Tuo modifications -(a) Sol. in acids. Na₄P₂O₇+Aq, FeCl₃+Aq, NH₄OH+Aq, and m (NHa) COa+Aq

in (NII); U3+Aq Insol, in acette, sulphurous aced, or NH_{*}Cl +Aq Sol, m NH_{*} extrate+Aq. (Schwarzen-berg, A. 55, 153) (b) Insol, in dil aceds, Na_{*}P_{*}O₇+Aq, FeCl_{*} +Aq. Sol, in NH_{*}OH+Aq. (Gladstone,

Chem. Soc. (2) 5, 435)

Solubility of Fa₂(P₂O₂), in NH₂OH+Aq at 0° 100 g. sat. solution contain | 100 g. sat solution contain

G NH ₃	G Fu ₁ (P ₂ O ₇) ₂	G NH ₃	G Fe ₄ (P ₂ O ₂)	
0.884	5.600	5 92	14.71	
1.59 3 71	9.75 14.85	8.26 10.55	13.89 7 40	
4 72 5.93	15.94 13.92	15.96 18.83	2 52 0.445	
7 91	14.61	l	1	

(Pascal, A ch 1909, (8) 16, 374.)

Insol, in acetone. (Krug and M'Ehoy, J. Anal. Appl Ch. 6, 184.) Insol. in liquid NH₂ (Franklin, Am. Ch. J. 1898, 20, 828.)

Ferroferric orthophosphate. 2Fc3(PO4)2, 3(Fe₂O₅, 2P₂O₅)+16H₂O

Ppt. Sol. in HCl+Aq. (Rammelsberg.) 4Fe₂O₄, 6FeO, 5P₂O₄+40H₂O. Sol. m 40 min. in diammonium citrate+Aq (sp. gr. = 1.09); triammonium citrate+Aq (sp. gr. = 1.09) dissolves 55.7% of the P.O₄. (Erlenmeyer, B. 14, 1253)

Ferrous lithium phosphate, Li,PO, Fe,(PO),
Min Triphyline. Easily sol. in acids; not Very sol in H.O. Pptd. by alcohol. (Mick. J. B. 1865, 293.) wholly decomp, by KOH+Ag.

Iron (ferric) phosphate, acid, 8Fe₂O₈, 9P₂O₆ Iron (ferrous) manganous phosphate, Pes(PO4)2, Mns(PO4)2.

Mm. Triplite. Easily sol, in HCl+Ac 5(Mn,Fe)O, 2P2O6+5H2O. Min. Hurequiste Sol in seids

Ferric manganous sodium phosphate, FePO₄, (Na₂,Mn)₃PO₄+½H₂O Min.- (?).

Ferrous manganous phosphate \(\overline{\chi}\) chloride, 3(Mn,Fe)₁(PO₄)₂, MnCl₂. (Deville and Caron)

Ferrous manganous phosphate fluoride, (Mn,Fe)s(PO4)s, (Mn,Fe)F2.

Min. Triplite, Zwielesite Sol, in HCl+Aq 3(Mn,Fc)₃(PO₄)₂, MnF₂, f(Deville and Caron, C. R. 47. 985)

Ferric potassium phosphate, 2Fe₂O₂, 3K₂O. Not attacked by boiling H-O. (Ouvrard.

A. ch. (6) 16, 289 Fe₂O₃, K₂O, 2P₂O₄ Insol. m H₂O; very sl. attacked by acids (Ouvrard.)

Ferric silver melaphosphate, 2Fc₂O₄, 2Ag₄O; 5P,O. (Hautefeuille and Margottet, C R. 96.

1142)Ferric silver pyrophosphate, Fc2Agt(P2O1)2+ 4FLO

Ppt. (Pascal, C. R. 1908, 146, 232.)

Ferric sodium phosphate, 2FeoOs, 3NasO. Decomp by H.O. (Ouvrard.)

Ferrous sodium triphosphate, FeNa₃P₄O₁₀+ 1135H2O

Stable dry; sol. in HNO₂; decomp. in contact with H₂O (Stange, Z anorg. 1896, 12. 451)

Ferric sodium hydrogen orthophosphate, Fe(PO₄)₂H₂Na+H₂O₃.

kahes and alkali carbonates (Weinland, Z. anorg, 1913, 84, 358) Ferric sodium

ic sodium pyrophosphate, $Fe_4(P_2O_7)_8$, $2Na_4P_2O_7+7H_2O$.

berg.)

+5, and 6H₂O Easily sol. in H₄O, especially if warm (Pahl, J. B. 1873. 229). FeNaP₂O₇ Insol. in H₅O, di HCl, or HNO₅+Aq; sl. sol in conc. HCl+Aq; decomp. by cone hot H₅SO, without solution. (Jörgensen, J. pr (2) 16. 342.)

Insol in acetone. (Naumann, B. 1904, 87. 4329)
Na₅Fe₅(P₅O₇)₁+9H₂O. Decomp. by H₂O. (Rosenheim, B. 1915, 48. 586.)

(Rosenheim, B. 1915, 48, 586.) Fe₄(P₂Q₇)₃, 5Na₄P₂Q₇+7H₂O. (Pahl, J. B 1873, 229.) Iron (ferric) phosphate sulphate, 3Fe₅(PQ₄)₃.

2Fc₂(SO₃)₃, 2Fc₂O₅H₆. Min. Disochite. Lanthanum melaphosphate, La₂(PO₃)₄.

Precipitate. (Frerichs and Smith.) Le₂O₃, 5P₂O₃. Insol in H₂O, dil , or conc. acids. (Johnsson, B. **22**, 976)

Lanthanum orthophosphate, LaPO₄.

Precupitate. (Hermann.)

Incol. in H.O. and and a (Oversort C.

Insol. in H₂O and acids (Ouvrard, C R. 107, 37.)

Lanthanum hydrogen phosphate, La₂H₂(PO₄)₈.

Precupitate. (Frerichs, B. 7. 799.) Existence is doubtful. (Cleve, B. 11. 910.)

Lanthanum phosphate, acid, La₂O₃, 2P₂O₅. Precipitate (Hermann)

Lanthanum pyrophosphate, LaHP₂O₇+3H₂O. (Cleve) Le₂H₃(P₂O₇)₃. Precipitate. (Frerichs and Smith) Does not exist. (Cleve)

Lanthanum potassium orthophosphate, 2La₂O₃, 3K₂O, 3P₂O₃ = 2LaPO₄, K₃PO₄. Insol in H₂O. (Ouvrard, C. R. **107**. 37.)

Lanthanum sodium orthophosphate, La₂O₂, 3Na₂O, 2P₂O₅ Insol. in H₂O. (Ouvrard.)

Lanthanum sodium pyrophosphate, J.aNaP₂O₇,

Insol. in acetic, and dil cold mineral acids Sol. in warm dil. acids. (Wallroth)

Lead dimetaphosphate, PbP₂O₆.

Ppt. Almost msol. m H₂O. Sol in HNO₃ +Aq. (Fleitmann, Pogg 78. 253.)

Lead trimstaphosphate, Pb₃(P₃0_{*)2}+3H₂0. Nearly insol. in H₂O. Less sol. in H₂O. than the corresponding Ag salt. (Fleatmann and Henneberg, A. **55**. 304.) Most insol. of the trimstaphosphates (Lundbom, Acta Lund, 1873. 12)

Anhydrous salt is insol in H₂O; easily sol. in HNO₃+Aq. (Lindborn.)

Lead tenametaphosphate, Pb2P4O12.

Insol. in H₂O.

More easily decomp, by acids than the other insol metaphosphates. Easily decomp, by alkali hydrosulphides+Aq in the cold. (Fleitmann, Pogg 78, 353)

Lead haxametaphosphate, Pb₃P₆O₁₈
Nearly msol. in H₂O; sol in acids. (Lüdert, Z. anorg. 5, 15.)

Lead orthophosphate, basic, 4PbO, P₂O₅. (Gerhardt, A. 72, 85.)

Lead orthophosphate, Ph.(PO.).

Insol. in H.O; sol. in HNO₂+Aq Insol. in HC₂H₃O₂+Aq. Sl. sol. in H₄O. 1.35×10⁻⁴ g. is contained in 1 litre of sat. solution at 20°. (Bottger, Z. phys. Ch. 1903, 46, 604.)

pays. Ch. 1903, 46. 604.)

Not hydrolyzed by boiling H.O. Sol in boiling (COH+Aq, msol, in NH,OH+Aq, Insol in Ph(OH+Aq, Insol in Ph(NO))+Aq, (Caven, J Soc. Chem. Ind 1897, 18, 30)

Sol. in 782.9 pts. HC₁H₂O₂-j-Aq containing 38 94 pts pure HC₂H₂O₂. (Bertrand, Monit. Scient. (3) 10. 477.) Insol in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43. 314)

Lead hydrogen phosphate, PbHPO4.

Insol. in H₂O. Decomp. by H₂SO₄, or HCl +Aq. Sol in HNO₂, or in KOH or NaOH+ Aq. Insol. in HC₃H₁O₂+Aq. Sol. in cold NH₄Cl+Aq (Brett), from which it can be completely precipitated by a great excess of NH₄OH+Aq

More sol. in NII₄C₂H₃O₂+Aq at 18.8-25° than in pure H₂O. (Wappen.) Sol. m sat. NaCl+Aq, but less than PbSO₄. (Becquerel, C. R. 20. 1524.) Insol in Pb salts+Aq.

Not pptd. in presence of Na citrate (Spiller.)

Lead pyrophosphate, Pb₂P₂O₇+H₃O.

Insol. in H₂O. Sol. in HNO₃, or KOH+Aq. Insol in NH₂OH+Aq, HC₂H₂O₃, or SO₂+ Aq. (Schwatzenberg, A 65. 133.) Sol. in Na₂P₂O₇+Aq. (Stromeyer.) Insol in acetone. (Naumann, B. 1904, **37**. 4329)

Lead potassium phosphate, PbKPO₄.
Decomp. by hot H₂O. (Ouvrard, C. R. 110. 1333.)

Lead sodium phosphate, PhNaPO₄.

Very sol. in dil. acids. (Ouvrard, C. R. 110, 1333.)

10PbO, 8Na₂O, 9P₂O₆. (Ouvrard.)

Lead sodium pyrophosphate, PhNa-P-O+. Insol in hot H₂O. (Gerhardt, A eh. (3) 22 506)

Lead /rinhosphate sodium purophosphate. Physic Pront 10HaO

Sol. in HNOs after melting. (Stange, Z. anorg. 1896. 12, 459)

Lead phosphate chloride 2PhHPO. PhCl. Insol. in boiling H.O. sol in dil HNO.-4-Ag. (Gerhardt, A. ch. (3) 22, 505.) 2Ph₂(PO₄)₂, PbCl₂. Ppt. (Heintz, Pogg.

73, 119.) 3Pbs(POs)2, PbCla Min Puromorukite. Sol, in HNO, and KOH+Ao.

Sl. sol. in cold citric acid+Aq. (Bolton, C. N. 37, 14.) +H-O. Insol, in H-O. Sol, in dil. HNO. +An. (Heintz.)

Lithium metaphosphate, LiPOs.

Insol, in boiling H₂O. Scarcely sol, in Lithium sodium purophosphate, L₂O. Na₂O. acetic acid. Easily sol. in mineral acids. (Merling, Z. anal. 1879, 18, 565.)

Lithium tetrametanhosahate Li.P.O... 4H-0

Very sol. in H₂O. (Warschauer, Z anorg. 1903. 36, 180.)

Lithium orthophosphate, LizPO4.

Very slightly sol, in H-0 Very slightly soil in H₂O.
Sol. in 2539 pts. pure H₂O and 3920 pts.
ammoniacal H₂O; much more readily in H₂O
containing NH₄ salts. Easily soil in HCl+
Aq or HNO₈+Aq. (Mayer, A. 98, 193.) Easily sol. in carbonic acid water. (Troost.) Sol in dil. acids or acetic acid. (de Schulten. Bull. Soc. (3) 1. 479.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790) Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II 1014.)

+1/4H.O. or H.O. Lithium hydrogen phosphate, Li2HPO4. Nearly insol, in H₄O. (Gmelin.) Sol, in 833 pts. H₂O at 12°. (Rammelsberg.) LaH(PO4)+H4O. Sol in 200 pts H4O.

(Rammelsberg.) Lithium dihydrogen phosphate, LiH2PO4. Deliquescent, and very sol. in H₂O. (Ram-

melsberg.) Hentalithium dähydrogen phosphate,

Li, H1(PO4)1. +1H₂O, or 2H₂O. Sol. in H₂O. (Rammelsberg.)

Lithium pentahydrogen phosphate. LiH, (PO,) +H,O. Deliquescent, and sol. in H₂O.

Lithuum meranhaenhata In.P.O. +2H.O. (Remmelsherg B A B 1883, 21)

Lithium manganous phosphate La-PO. Mn.(PO.). Min Lathaonhilite

Lithium potassum metaphosphate, La-O 2K₂O 3P₂O₂+4H₂O As NH, comp. (Tammann, J pr. 1892) (2) 45, 443)

Lithium notassium puronhosphate, Li-KP,O. (Kront A 1876 182 170)

Lithium sodium phosphate SLi-() No.() P.O.

Insol in H.O. Sol in dil neide (Ouverned C R 110 1333) 2LioO. NgoO. 2PiOs. As shove (Ouvrand)

P.O. 5L4.O. Na₂O. 3P₂O₅

4LtoO, 6Na₂O, 5P₂O₄ (Kraut, A. 1876. 182, 168

Magnesium metanhosphate, Mg(PO₃), Insol. in H2O or dil, acids, but sol, in HSO.

+Aq. (Maddrell, A. 61, 62.) Not decomp, by very long digestion with alkalı carbonates, or orthophosphates +Aq. (Fleitmann)

Magnesium dimetaphosphate, Mg.(P.O.).+ 9H2O.

Insol. in H2O, decomp. by acids. (Fleitmann, Pogg. 78, 259.)

Magnesium trimetaphosphate, Mgz(PzOz)v. Sl. sol. in cold H₂O, more easily in hot H₂O. When ignited, insol. in boiling HCl+Aq. (Landborn.) Cryst, with 12, or 15H,O.

Magnesium telrametaphosphate, MgoPaOio Insol. in H₂O, somewhat sol. in HCl+Aq. More easily sol. in HNO₃+Aq, especially easily sol in cone, H2SO4, (Glatzel, Dissert. 1880.1

+10H₂O. Sol. in 70 pts, H₂O. (Glatzel.)

Magnesium orthophosphate, Mg3(PO4)2, and +5, or 7H.O.

1 litre H₂O dissolves 0.1 g. ignited 1 litre H₅O dissolves 0.1 g. ignited Mg₆(FO₂)s n 7 days, but 2.05 g. if freshly precapitated. (Volker, J. B. 1862, 131.) 1. H₅O with 2 g. NaCl dissolves 75.8 m_c; 1. H₅O with 3 g. NaNO; dissolves 61.9 mg. Mg₆(FO₂)s. (Lebig, A. 106, 185.) (Sectly sol. in acota, except in acetic acid. (Sectly sol. in acids, except in acetic acid. (Sectly sol. in acids, except in acetic acid. (Sectly sol. in acids, except in acetic acid. (Sectly sol. in acids, except in acetic acid. (Sectly sol. in acids, except in acetic acid. (Sectly sol. in acids, except in acetic acid. (Sectly sol. in acids, except in acetic acid. (Sectly sol. in acids, except in acetic acid. (Sectly sol. in acids, except in acetic acid. (Sectly sol. in acids, except in acids) (Sectly sol. in acids, except in acids) (Sectly sol. in acids, except

Easily sol, in H₂O in presence of alkah salts.

+61/6H₂O. Sol in 30 mm, in diaminonium citrate+Aq (sp. gr = 1.09); trammonum citrate+Aq (sp. gr. = 1.09) insolves 37 5% of the P₂O₅ (Etlenmever, B 14. 125a). +20H₂O. Sol. in 10 min in diammonum

citrate+Aq (sp gr =109), triammonium citrate+Aq (sp. gr.=1.09) dissolves 23 2% of the PaOs, sol. in 15 min. in 1/2 citrie acid +Aq. (Erlenmeyer, l. c.) Insol in liquid NH1. (Franklin, Am. Ch.

J. 1898, 20. 828)

Magnesium hydrogen phosphate, MgHPO4+ 7H₂O.

Sol. m 322 pts. cold H₂O m several days If heated to 40° becomes milky, and separates a precipitate out at 100° of same salt, so that solution at 100° contains only 1 pt. salt in 498 nts. H.O. Much more sol in H2O containing traces of acids, even dil oxalic or acette acids. (Graham, Phil. Mag Ann. 2, 20) Easily sol in H.SO₈+Aq (Gerland, J. pi (2) 4, 127.) in H.SU₅+Aq (Gernand, J. pi (2) 4, 127.)
Sol in aqueous solution of Mg saits, but
msol in Na₂HPO₅+Aq. (Rose.) Sol in
sodium citrate+Aq (Spiller) When freshly
precipitated it is sol. in hot NH₄Cll+Aq, and
NH₄Oll+Aq does not completely reprecipitate it, less sol, in NH4NO3+Aq (Brett, Phil. Mag. (3) 10. 96) Insol in alcohol (Berzelius

For solubility in H₂PO₄, see under MgO.

+1/4H₂O. (Debray.) +H₄O. Easily sol. in dil. acids. (de Schulten, C R. 100. 263 +3H₂O. Sl. sol in H₂O, easily in acids (Stoklasa, Z. anorg. 3. 67.) +4½H₄O. (Bergmann)

+6H.O. (Debray.)

Magnesium letrahydrogen phosphate, MgH4(PO4)2.

Not hygroscopic. Sol. in 5 pts. H₂O with-out decomp. (Stoklasa, Z. anorg. 3. 67.) +2H₂O. Not hygroscopic. Sol. in H₂O without decomp. (Stoklass, Z. anorg. 1, 307.) Decomp. by alcohol into MgHPO₄+3H₂O.

Magnesium pyrophosphate, Mg₂P₂O₇. Nearly insol, in H2O; readily sol, in HCl or HNO. +Aq. (Fresenius.)

+3H₂O. Sl. sol. in H₂O, easily in HCl or HNO3+Aq; sol. m H2SO3+Aq, and Na4P2O7 +Aq. (Schwarzenberg.)

Sol. in MgSO4+Aq, and (NH4)2CO2+Aq. Magnesium tetraphosphate, Mg₃P₄O₁₃.

Insol, in H₂O (Fleitmann and Henneberg, A. 65, 331.)

Magnesium potassium dimetaphosphate, K2Mg2(P2O4)3.

Very sol, in dil acids. (Ouvrard, C. R. 1888, 106, 1729.) +4H₂O. Sol in 10.2 pts H₂O. (Glatzel.) (Deville and Caron, A. ch. (3) 67, 455.)

Magnesium potassium orthophosphate, MgKPO.

Sl. sol, in H₂O. Decomp by H₂O Easily sol in acids +6H2O

2MgO, K₂O, 3P₂O₈. Insol in H₂O; sol. in dil HCl+Aq. (Ouvraid, C R. 106, 1729.) Mg₂HK(PO₄)₂+15H₂O. (Haushofer.)

Magnessum rubidium orthophosphate, RbMgPO₄+6H₂O₄

Easily sol in warm dil. HCl+Aq Not decomp, by boiling H2O (Erdmann, A 1897, 294, 73.)

Magnesium sodium (riphosphate, $MgNa_sP_sO_{10}+13H_sO_1$

Decomp, in the air (Stange, Z anorg. 1896, 12. 454.)

Magnesium sodium metaphosphate, 3MgO, Na₂O, 4P₂O₅ lnsol, in H₂O or H₃PO₄+Aq. Scarcely sol, in HCl+Aq, or aqua regia. Not decomp. by (NH4)2CO3+Aq Sol. in conc. H2SO4. (Maddrell, A. 61, 53.)

Magnesium sodium dimetaphosphate. MgNa₂(P₂O₄)₂+4H₂O

Sol. m 25 pts H₂O. (Glatzel, Dissert 1880.)

Magnesium sodium trimetaphosphate, $MgNs_4(P_3O_4)_2+5H_4O$.

Sl sol in H₂O. After agnition is ansol, in H.O. (Lindborn.)

Magnesium sodium phosphate, 10MgO, SNa.O. 9P.O. Insol, in H₂O; easily sol. in dil. acids. (Ouvrard, C. R. 106, 1729.)

Magnesium sodium orthophosphate, MgNaPO.

Insol in H₂O. (Rose.) +9H₂O. (Schoecker and Violet, A. 140. 282.) MgO, 2Na₂O, P₂O₅. Insol. in H₂O. (Ouvrard.) 3MgO, 3Na₂O, 2P₂O₅. Insol. in H₂O. (Ouvrard.)

Magnesium sodium pyrophosphate, basic (?). Precipitate; sl. sol. in H2O. Easily in HCl+ Ag, HNO₂+Aq, and Na₄P₂O₇+Aq (Baer, Pogg. 75. 168. Sol, in (NH4)2COs+Aq, and in MgSO4+

Aq. Insol. in alcohol.

Magnesium phosphate chloride, Mgs(PO4)2,

Magnesium pyrophosphate nitrogen dioxide, Mg,P₂O₇, H₂O₁, NO₂.
Searcely sol in water. (Luck, Z. anal. 13.

255)

Magnesium phosphate fluoride, Mg₃(PO₄)₂, MgF₂.
Mm, Wagnerite. Slowly sol in hot HNO₂.

and H₂SO₄.

Magnesium phosphate calcium fluoride,

2Mg₂(PO₄), CaF₂

Mm. Kjeruifite.
Manganous dimelaphosphate, Mn₂(P₂O₆)₂.

Anhydrous Insol in H₂O and dil. acds (Fleitmann.) Sol. in cone H₂SO₄. (Maddrell.) Scarcely attacked by warm Na₂S+Aq. and not much more by (NII₄)₂S+Aq Decomp. by Na₂CO₄+Aq

+SH₂O. Insol in II₂O and dil. acids. (Fleitmann, Pogg 78, 257.)

Manganous trimetaphosphate, Mn₂(P₂O₂)₂+

114₄O.

Difficultly sol, in cold or warm H₄O. More easily sol in cold, very easily in waim HCl+Aq When ignited, is used, in acids, even agus reris. (Landburn)

Manganous hexamelaphosphate.

Sol in sodium hexametaphosphate+Aq. (Rose, Pogg. 76. 4.) Mn₂P₅O₁₃. Nearly insol, in H₂O; easily sol in acids. (£ddert, Z. anorg. 5. 15)

Manganic metaphosphate, Mn(PO₃)₂.

Insol. in H₂O or acids, decomp. by alkalics. (Schjerung, J pr. (2) 45, 515) Insol. in H₂O, sol. in HCl; decomp. by alkalics+Aq (Barbier, C. R 1902, 135, 1055)

+H₂O. Insol. in H₂O or acids, except HCl+Aq. Sl decomp. by boiling with H₂SO₄. (Hermann, Pogg. 74, 303.)

Manganous tetrametaphosphate, Mn₂(PO₂)₄. Not attacked by acids. (Glatzel, Dissert. 1880). +10H₂O. Sol. only in boiling conc. H₂SO₄. (Glatzel.)

Manganous delametaphosphate, 5MnO, 5P₂O₄+12H₂O.

Ppt. (Tammann, J pr. 1892, (2) 45. 450.)

Manganous orthophosphate, Mn₂(PO₄)₁. +H₂O. (Debray) +3H₂O. sol in 20 min in diamonus

+3H₂O. Sol. in 20 min. in diamonium citrate+Aq (sp. gr.=1.09); triammonium citrate+Aq (sp. gr.=1.09) dissolves 30.2% of the P₂O₅. (Erlenmeyer, B. 14, 1253.) +4½-5½H₂O. Efflorescent (Erlenmeyer and Henrich, A. 190, 208.) +7H₂O. Very sl. sol. in H₂O. (Berzelius.) Easily sol. in mineral scids; sol. in HC₂H₄O₄

Easily sol. in SO₁+Aq (Gerland, J. pr. (2) 4. 97)

| Somewhat sol. in boiling (NH₄)₂CO₂+Aq, but deposited on cooling (Berzelius.) | Partly sol in cold NfLCl, or NH₄NO₄+Aq.

(Brett.)
Sol. in cold or hot solutions of ammonium

sulphate or succenate. (Wittstein)
Sl. sol. in Mn salts+Aq. (Rose, Pogg. 76,
25)

Insol. in alcohol
Sol. in 10 min, in diammonium citrate + Aq
(sp. gr = 1.09); triammonium citrate + Aq
(sp. gr, = 1.09) dissolves 53% of the P₂O₆.

Manganous dihydrogen orthophosphate, MnHPO.+3H.O.

(Erlenmeyer, B. 14, 1253.)

Sl. sol. in H₂O. Solution decomp at 100°. (Debray) Slowly decomp. by cold H₂O into Mn₄(PO₄)₂. (Erlenmeyer and Heinrich, A. 199, 208)

Easily sol. in H₂SO₃+Aq. (Gerland.) Sl. sol in HC₂H₂O₂, easily in cone mineral acids. (Heintz.) Sol. in (NH₂)₂CO₃+Aq, from which it is repptd. on boiling. Decomp. by boiling KOH+Aq.

Insol in alcohol. Mn₂(PO₄)₂, 2MnHPO₄+4H₂O. (de Schulten, C. C. 1905, I. 188.)

Manganous tetrahydrogen phosphate,

MnH₄(PO₄)₅+2H₂O.
Deliquescent Easily sol in H₂O, with decomp. to MnHPO₄. (Erlenmeyer and Hennich, A. **190**, 208)

Not decomp by H₂O. (Otto, C. C. 1887.

H₂O decomp, 1 mto MnHPO, and H₂PO, contaming some desolved sail. The less H₂O used, the more MnHPO, separates. The and filtrate separates bnHPO, on boiling, and filtrate separates where the content of the content of the separates of the content of the content of the separates of the content of t

Alcohol dissolves out H2PO4. (Heintz.)

Pentamanganous dihydrogen phosphate, Mn₈H₂(PO₄)₄+4H₂O.

Not decomp. by boiling H₂O (Erlenmeyer and Heinrich, A. 190, 208.)

Manganic orthophosphate, basic, Mn₂P₂O₉+ H₂O. Sl. sol. in H₂O. Manganic orthophosphate, MnPO.+H.O. Sol in acids, (Christensen, J. pr. (2) 28. 1.)

Manganous pyrophosphate, Mn₂P₂O₇. Anhudrous (Lewis, Sill, Am. J. (3) 14.

Ľπ.o +114.0. +3H₄O Insol in H₄O, Insol in MnSO₄+ Aq, but sol in Na₄P₂O₇+Aq (Rose.) Difficultly sol in Na₄P₂O₇+Aq, but easily sol in K₄P₄O₇+Aq (Pahl.) Decomp. by KOH+Aq Sol in H₂SO₃+Aq. (Schwarzenberg) Insol in acctone. (Naumann, B. 1904, 37. 4329 3

Manganous hydrogen pyrophosphate, MnH.P.O.+4H.O. Sol in H₂O. (Pahl.)

Manganic pyrophosphate, Mn₄P₄O₂₁+14H₂O

281.)

Sol. in H2SO4, and H2PO4 (Auger, C R 1901, 133, 95) Insol. in H₂O; very sl. at-MnHP2O7. tacked by dil HCl+Aq, easily by cone Sol m cone H.SO4. (Schierning, J pr. (2) 45. 515)

Manganous potassium dimetaphosphate. K.Mn(PO3)4+6H2O.

Sol. in 95 pts H₂O When ignited is not attacked by acids. (Glatzel, Dissert. 1880.)

Manganous potassium orthophosphate,

MnKPO4. Insol. in H₂O, easily sol, in dil. acids (Ouvrard)

Manganic potassium pyrophosphate, MnKP₂O₇.

+5H₄O. Sl sol in cold H₂O. +3H2O. Sl sol, in cold H2O. (Rosenheim, B. 1915, 48. 584.)

Manganous potassium phosphate, MnK₂P₂O₂ Insol in H2O; sol in dil acids (Ouvrard, C. R 106, 1729.)

+8H₂O Sl. sol. in H₂O. (Pahl.) Mn₂P₂O₇, 2K₄P₂O₇+10H₂O. Difficultly sol, in H₂O (Pahl)

Manganic potassium pyrophosphate, MnKP₂O₇

bases. (Schierning.)

Manganic silver pyrophosphate, AgMnP₂O₇+3H₂O Almost insol in H₂O. (Rosenheim, B.

1915, 48, 585.)

Manganous sodium triphosphate. MnNa₂P₂O₁₀+12H₂O

Sl sol, in H.O. the melt obtained by heating the sult is readily sol, in H2SO4. (Stange, Z. anorg, 1896, 12, 455)

Manganous sodium dimetaphosphate, MnNag(POa) +6H2O.

Easily sol in boiling H-SO4, but not attacked by acids after boiling. (Glatzel, Dissert 1880)

Manganous sodium trametaphosphate.

Sol. in H.O. (Fleitmann and Henneberg.) MnNa(PO+). Insol in H-O, dil. acids, or alkalies. (Schjerning, J. pr. (2) 45. 515.)

Manganous sodium ociomeianhosphate. Mn₂Na₂(PO₂)₈

Insol in acids except cone. H2SO4 (Tammann, J pr. 1892, (2) 45, 469,) +5H₂O. Almost insol in cold H₂O Decomp by boiling H₂O with separation of Mn.O. (Rosenherm, B. 1915, 48, 584,)

Manganous sodium orthophosphate, MnNaPO4.

Insol. in H₂O. (Ouvrard, C. R. 106, 1729.) MnO, 2Na₂O, P₂O₄ As above.

Manganous sodium pyrophosphate, MnNa₂P₂O₇.

Insol in H₂O; easily sol. in dil. acids. (Wallroth) +4½H₂O. Very sl sol. in H₂O. (Pahl.) 3Mn₂P₂O₂, 2Na₄P₂O₇+24H₂O Very sl. sol, in H₂O (Pahl.)

Manganic sodium purophosphate, MnNaP-O-+H.O (Christensen, J. pr (2) 28, 1)

Manganic dipprophosphate ammonia, Mn.P.O., 2NH.

Insol in H₂O Decomp by HCl and by alkalies (Barbier, C. R. 1902, 135, 1109)

Manganous phosphate chloride, Mn₂(PO₄)₂, MnCl

Insol in H₂O. (Deville and Caron, A. ch. (3) 67. 459 3Mns(PO4)s, MnCls, Insol. in H.O. (Deville and Caron)

Mercurous hexamelaphosphate (?),

Insol in H2O Decomp by acids and Ppt. Sol in sodium hexametaphosphate (Rose) +Aq (Rose) Hg₆P₄O₁₈ Insol. in H₂O, very sl. sol in acids. (Lüdeit, Z. anorg 5.15)
Moderately sol in H₂O when freshly pptd. More sol in acids than the mercurous salt. (Ludert.)

Mercurous or/hophosphate, (Hg,)2(PO4)2 Ppt Decomp by builing with H2O. (Gerhardt)

Sol. in IINO2+Aq. Sol. in Hg2(NO2)2+ Aq. Insol. in H₂PO₄+Aq.

Mercuric orthophosphate, Hgz PO1)2.

Insol in H.O. Sl. sol, in hot H₂O, crystal-lizing out on cooling. (Hanck, A. **262**, 185 Slowly sol, in cold dil., quickly in hot dil. or cold cone HCl+Aq. Less easily sol, in HNO₄+Aq. Sol m H₂PO₄+Aq (Berzelus.) Insol m H₂PO₄+Aq. (Haack.) Decomp. by NaCl+Aq into Insol HgCl₃. 3HgO, but sol, in NaCl+Aq, containing HNO. (Haack)

Sol. in 6 pts NH₄Cl m aqueous solution by heating (Trommsdorff.) Sol. in (NH4)2CO2, (NH4)2SO4, or NH4NO2

+Aq. (Wittstein.) Insal, in alcohol

Mercuromercuric orthophosphate, 7Hg2O, 11HgO, 2P₂O₆+20H₂O. (Brooks, Pour. 66, 63.)

Mercurous pyrophosphate, Hg₄P₂O₇+H₂O. Sol. in Na₄P₂O₇+Aq, when recently pptd. Insol in Na₁P₂O₇+Aq, when heated to 100°. Sol in HNO₃+Aq. Decomp. by HCl+Aq (Schwarzenberg, A 65, 133.)

Mercuric pyrophosphate, Hg:P:Or. Sol. in acids; insol. in Na₄P₂O₇+Aq, after being heated to 100°. Sol. in NaCl+Aq; quickly decomp, by NaOH+Aq, and

Quickly decomp. 5, Na,HPO,+Aq. (Trommsdorff.) Sol. in 6 pts NH,Cl+Aq. (Trommsdorff.) Sol. in NH,NO₂,(NH,₄)SO₄, and (NH,₄)₂CO₃ +Aq; also in KI+Aq.

Mercurous silver orthophosphate, AgHg-PO, Sol. in HNO₂. (Jacobsen, Bull Soc. 1909, (4) 5, 949.)

Molybdenum phosphate, Mos(PO₄), (?), Insol, in H2O. Sol, in MoCl2+Aq.

Molybdenum sodium pyrophosphate, Na(MoP₂O₇)+12H₂O. Ppt (Rosenheim, B. 1915, 48, 589.)

Nickel dimetaphosphate, NiP2O4.

Insol in H2O or dilacids. Sol. in conc. Not decomp, by boiling alkali carbonates or sulphides + Aq. (Maddrell, A, 61, 58,

-+4II₂O. Sol. in cold acids. (Glatzel, Dissert. 1880.)

Nickel tetrametaphosphate, Ni₂P₄O₁₂. Insol. in HCl. Sol. in conc. HNO, and

Nickel tetrametaphosphate, Ni₂P₄O₁₂+ 12H2O.

Easily sol in acids, (Glatzel)

Nickel orthophosphate, N13(PO4)2+7H4O. Insol. in H2O Sol in acids, (Rammeslberg, Pogg 68, 383.)

Sol m Ni salts+Aq. (Rose, Pogg 76. Insol. in Na₂HPO₄+Aq. (Tupputi, **1811**.) Very sl sol. in hot (NH₄)₂HPO₄+Aq

Insol. in methyl acetate (Naumann, B. 1909, 42, 3700); ethylacetate (Naumann, B 1910, 43, 314.)

Nickel pyrophosphate, Ni₂P₂O₇+6H₂O. Insol. in H₂O; sol. in mineral acrds, Na₄P₂O₇ +Aq, and NH₄OH+Aq Not pptd. from Ni₂P₂O₇+Aq by alcohol (Schwarzenhouse 2O7+Aq by alcohol (Schwarzenberg, A. 65, 158.)

Nickel potassium dimetaphosphate, NiK.P4O18+6H2O Sol, in 130 pts, H₂O (Glatzel)

Nickel potassium orthophosphate, NiKPO₄, Insol, in H₂O; sol, in dil. acids. (Ouvrard. R. 106, 1729 3NiO, 3K2O, 2P2O4. As above.

Nickel sodium triphosphate, NasNiPsOis+ Very sol. in H₂O; decomp. in Aq solution.

(Schwarz, Z anorg, 1895, 9, 261.) Nickel sodium metaphosphate, 3Ni(POs)s, NaPO:

Insol, in H2O and dil, acids Sol, in cone. H₂SO₄. (Maddrell, A 61. 56.) NiNa₄(PO₃)₃+8H₂O. Easily sol. in H₂O. (Lindbom.)

Nickel sodium dimetaphosphate, NiNa₂P₄O₁₂ +6H.O. Sl. sol in H₂O. Moderately sol in acids.

Nickel sodium trimetaphosphate, $Ni_2Ns_3(P_3O_3)_2 + 9H_3O$.

(Glatzel, Dissert, 1880.)

1 l H₂O dissolves 60 6 g, at 20°. (Tammann, J pr. 1892, (2) 45, 426) Na₃Nu₂O₆+12H₂O. Insol. and not decomp. by H₂O. Sol. in acids. (Schwarz, Z. anorg, 1895, 9, 261,)

Nickel sodium octometaphosphate, Na.Ni.(PO.).

(Tammann, J. pr. 1892, (2) 45, 469.)

Nickel sodium orthophosphate, NiNaPO++ 7H,O.

Ppt. (Debray, C R. 59. 40) NiO, 2Na₂O, P₂O₅. Insol in H₂O Easily especially sol. in H2SO4 on boiling. (Glatzel.) sol. in dil. acids. (Ouvraid.)

Nickel sodium pyrophosphate,

Insol. in H₂O Moderately sol. in acids (Wallroth)

Osmium phosphate (?)

SI sol in H₂O; sol in HNO₄+Aq (Berzelius.)

Palladium orthophosphate (?)

Ppt.

Phosphorus phosphate, 4P₄O, 3P₂O₅ (?) Decomp. spontaneously Sol in H₂O and alcohol when fresh; insol. in ether. (le Verrier, A. 27, 167; Reinitzer, B. 14, 1884)

Platinum phosphate, PtP2O7.

Insol. in H₂O, acids and alkalies. Decomp. by fusing with potassium carbonate (Barnett, C. N. 1895, 71, 256.)

Potassium monometaphosphate, KPO;

Nearly insol. in H₂O; sol in weak acids, even in acetic acid (Maddrell, A. 61, 62). Iusol, in H₂O and weak acids (Fletmann, Pogg. 78, 250)

Insol, in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 829)

Potassium dimetaphosphate, K₂P₂O₄+H₂O. Sol. in 1.2 pts. cold H₂O, but not more in hot H₂O. (Fleitmann, Pogg. 78, 250)

Potassium irimeiaphosphate, K₈P₃O₆.

Very sol. in cold H₂O before it is fused.

(Lindborn, Acta Lund, 1873, 14)

Potassium orthophosphate, KaPO4.

Not deliquescent. Very sol m H₂O (Graham, Pogg 32, 47) Very sl. sol. in cold, easily in hot H₂O (Darraco)

Solubility in H₂PO₄+Aq at 25°.

In 1000 g, of the solution, mols		
К	PO ₄	
9.14 8.84 8.42 7 52 6 90 6 88	3 13 3 22 3 44 3 78 4 15 4 12	

(D'Ans and Schreiner, Z. phys. Ch. 1910, 75. 103.)

Insol, in alcohol

Potassium hydrogen orthophosphate, 2K₂HPO₄, KH₂PO₄+H₂O.

Very unstable; very sol in H₂O with decomp. Identical with the substance de-

scribed as dipotassium phosphate by Berzelius. (Staudenmaier, Z. anorg. 1894, 5.

3K₂HPO₄, KH₂PO₄+2H₂O. Very unstable, very sol in H₃O with decomp (Staudenmaier.)

Potassium hydrogen orthophosphate, K-HPO

Deliquescent Very sol. in H₂O and alcohol

Solubility in H2PO4+Aq at 25°.

K	PO ₄
6.80	4 08
6.80	4 05
6.76	3 96
6 50	3 81
6 16	3 61
5.24	3 25
4.42	2 94

(D'Ans and Schreiner, Z. phys. Ch. 1910, 75.

Potassium dihydrogen phosphate, KH₂PO₄ Deliquescent, Easily sol. in H₂O. (Vauquelin, A. fo. 74. 96.) 11 sat. aq solution at 7° contains 249.9 g. KH₂PO₄. (Muthmann and Kuntze, Z. Kryst. Min. 1894, 23. 308.)

Solubility in H₄PO₄+Aq at 25°.

In 1000 g. of th	e solution, mols.
К	PO4
2 90 1.70 1.60 1.48 1.78 2 18 2 54 2 96 2 98 3 32	2.36 1.71 1.67 1 46 3 15 4 65 6 32 6 76 8.03 8.80

(D'Ans and Schreiner, Z phys. Ch. 1910, 75.

Sp. gr. of KH₂PO₄+Aq at 18° containing: 5 10 15% KH₂PO₄. 1.0341 1.0691 11092 (Kohlrausch, W. Ann 1879, 1.)

Sol. in 20% KC₂H₅O₂+Aq. (Stromeyer.) For solubility in H₂O, see K₂HPO₄, H₅PO₄. Insol. in alcohol H.PO.

Solubility in H₂O at to.

to.	KH2POLILIPO	Solat phase		
- 0.6 - 2.5 - 6.7 - 9.2 -13 0 (?) +10.9 65.2 78 87.5 105.5 125 135 139	3 337 12 13 29 43 36.98 44 45 8 50 3 68 44 72 43 77 6 85 9 92 1 96 1	Ice "" Ice+KH ₂ PO ₄ KH ₂ PO ₄ "" "+KH ₂ PO ₄ KH ₂ PO ₄ "H ₂ PO ₄		

(Parrayano and Mieli, Gazz, ch. it. 38, II.

Solubility i	n anhydrous H ₂ PO ₄ at t°.	
t ^a	% KH ₂ PO ₄ , H ₂ PO ₄	

18 17

58 42

77 53

92 26

(Parrayano and Mieli.)

38.5

84

110

126.5

1900, 42, 3790.)

Potassium purophosphate, K4P2O2+3H4O Very deliquescent, and sol in H₂O. Precipitated from aqueous solution by alcohol (Schwarzenberg, A 65, 136) Insol. in methyl acetate. (Naumann, B.

Potassium hydrogen purophosphate. K.H.P.O.

Very deliqueseent, and sol, in H₂O. Insol. in alcohol (Schwarzenberg.) Potassium silver metaphosphate,

 $K_2Ag_4(PO_2)_a+H_4O_a$ (Tammann, J pt 1892, (2) 45, 417.)

Potassium sodium dimetaphosphate, $KNaP_*O_* + H_*O_*$ Sol, in 24 pts. H₂O, (Fleitmann, Pogg 78.)

339.) Potassium sodium phosphate, KNaHPO4+

7H₂O, Not efflorescent Sol. in H₂O.

Tripotassium trisodium herahydrogen phosphate, H4Na2K2(PO4)4 +22H2O. Sol, in H₂O. (Filhol and Senderens, C. R. 93. 388.)

Potassium orthophosphate, acid, KH2PO4, Potassium sodium pyrophosphate, K,Ng,P,O,+12H,O. Sol. in H₂O. (Schwarzenberg, A. 65, 140)

> Potessium strontium dimetaphosphate. $K_sSr(P_sO_6)_z+4H_sO$

As the KBa comp. (Glatzel, Dissert, 1880.) Potassium strontium hexametaphosphate.

KoStoPeOts (Tammana, J. pr. 1892, (2) 45, 435.)

Potassium strontium orthophosphate, K8rPO. Insol, in H₀O; sol, in dil, acids, (Grandeau, A. ch. (6) 8. 193.)

Potassium strontium pyrophosphate, K₂SrP₂O₂

Insol, in H2O; sol, in dil. acids. (Ouvrard. C. R. 106, 1599.)

Potassium thorium phosphate, K2O. 4ThO2. 3P,Os. Insol, in IICl, HNOs, or aqua regia. Insol. in IICl, HNO2, or aqua regia.
(Troost and Ouvrard, C. R. 102. 1422.)
K-O, ThO2, P2O2. Insol. in H₂O; sol. in
HNO2+Aq. (Troost and Ouvrard)
_0K20, 3ThO2, 4P2O2. Sol. in acids.

(Troost and Ouvrard.) Potassium tin (stannic) phosphate, K2O, 4SnO₂, 3P₂O₃,

(Ouvraid, C. R. 111. 177.) K2O, 2SnO2, P2O3. (Ouvrard.) Potassium titanium phosphate, K2O, 4T1O2, 3PsOs.

(Ouvrard, C R. 111, 177.) K2O, 2T1O2, P2O6 (Ouvrard.)

133.)

Potassium uranous phosphate, 4UO2, K2O, 3P2O: Practically insol. in conc. HNO₃ and HCl. even when the acids are boiling. Attacked by HF+HNO₁. (Colam, A ch 1907, (8) 12.

Potassium uranous metaphosphate, UO2, K20, P2Os. Eastly sol, in IINOs. Sol in conc. HCl. (Colani.)

Potassium uranous pyrophosphate, 3UO2, 6K.O. 4P.Os. Sol. m acids. (Colani)

Potassium uranyl phosphate, K2O, UO3, P2O5.

(Ouvrard, C. R. 110, 1333.) 2K₂O, UO₈, P₂O₅ (Ouvrard.) K₂O, 2UO₈, P₂O₅ (Ouvraid.) Potassium uranyl orthophosphate, K(UO₂)PO₄+3H₂O
As NH₄ comp. (Lienau, Dissert, 1898.)

Potassium vanadium phosphate. See Phosphovanadate, potassium.

Potassium yttrium phosphate, 3K₂O, Y₂O₂, 2P₂O₃ (X₂O, Y₂O₅, 2P₂O₅, 3K₂O, 5Y₂O₃, 6P₂O₅ (Duboin, C R 107,

Potassium zinc tetrametanhosnhate.

K₂Zn(PO₈)₄+6H₂O
Sol m 70 pts H₂O. (Glatzel, Dissert 1880.)

Potassium zinc phosphate, KZnPO₄. Insol. in H₂O. Sol. in dil acids. (Ouvrard, C. R. 106, 1729) K₂ZnP₄O₇ As above.

Potassium zirconium phosphate, K₂O, 4ZrO₃, 3P₂O₄.

Insol in acids or aqua regia. (Troost and Ouvrard, C. R. 102. 1422) K4O, ZrO₂, P₂O₄ Insol. in H₂O, HNO₂, HCl, or aqua regia. Sol. in hot cone. H₂SO₄. (Troost and Ouvrard).

Potassium phosphate selenate.
See Selenophosphate, potassium.

Potassium hydrogen phosphate sulphate, KH,PO₄, KHSO₄

Decomp by H_2O and alcohol (Jacquelain.)

Rhodium phosphate, basic, 4Rh₂O₈, 3P₂O₆+ 32H₂O. Insol. in H₂O or acids. (Claus)

Rh₂O₅, P₂O₅+6H₂O=RhPO₄+3H₂O. Sol. in H₂O. (Claus)

Rubidium metaphosphate, RhPO₂. Sol. in H₂O (von Berg, B. 1901, **34**, 4183)

Rubidium orthophosphate, Rb₂PO₄+4H₂O Hydroscopic; sol. in H₂O; pptd by alcohol. (von Berg, B. 1901, 34, 4183)

Rubidium hydrogen orthophosphate, Rb₂HPO₄+H₂O.

Sol. in H₂O; insol. in conc. NH₄OH+Aq; insol. in alcohol. (von Berg.)

Rubidium dihydrogen orthophosphate, RbH_PO4. Very sol, in H_O; notd, by sleahol.

Very sol. in H₂O; pptd. by alcohol (von Berg.) Rubidium pyrophosphate, Rb₄P₂O₅.

Hydroscopic; sol. in H₂O. (von Berg.)

Samarium anhydromeiaphosphate, Sm₂O₈, 5P₂O₃. Insol. in H₂O or HNO₈+Aq. (Cleve.)

Samarium orthophosphate, SmPO₄. Scarcely attacked by boiling HNO₄+Aq. (Cleve)

(Cleve.) +2H_sO.

Samarium pyrophosphate, SmHP₂O₇+ 1½H₂O. (Cleve.)

Silicon phosphate.

See Silicophosphoric acid.

Silver metaphosphate, Ag₂O, 2P₂O₅+H₂O. (Kroll, Z anorg. 1912, 76, 408.)

Silver dimetaphosphate, Ag₂P₂O₆
Very sl. sol. in H₂O. (Fleitmann, Pogg. 78, 253)

Sol. in cold aniline metaphosphate+Aq. (Nicholson.)

Very sl. sol. in H₂O. (Warschauer, Dissert. 1903.) +H₂O. Very sol. in H₂O. (Langheld, B. 1912, 46. 3760.)

Silver trimetaphosphate, Ag₂P₂O₈.

Sol. in 60 pts cold H₂O. Can be crystallized from conc. HNO₃+Aq. (Fleitmann and Henneberg) +H₂O. (Lindbom)

Silver hexametaphosphate, Ag₆P₆O₁₈.

Insol. in H₂O Sol. in HNO₃ or NH₄OH+Aq, and in a large excess of sodium hexametaphosphate+Aq. (Rose)

Easily decomp. by Na₂S+Aq

Easily decomp. by Na₂0+Aq Decomp gradually by hot H₂O into Ag₂P₄O₁₂. When freshly pptd., easily sol in H₂O Easily sol, in dil acids. (Lindert, Z anorg

5. 15.) Silver orthophosphate, Ag₂PO₄.

Very sl. sol. in H₂O 1 l. H₂O dissolves 6 5×10⁻³ g. Ag₃PO₁ at 19.46° (Rottger, Z phys. Ch. 1903, 46, 603)

Sol in H₂PO₄, HNO₅, or HC₂H₃O₂+Aq, in NH₄OH or (NH₄):CO₅+Aq Less easily in ammonium nitrate or succentate, and incompletely in (NH₄):SO₄+Aq. (Lassaigne, J. Pharm. (3) 15. 289.)

Insol. in Na₂HPO₄+Aq. (Stromeyer.) Not pptd. in presence of Na citrate.

(Spiller.)
I mol Ag₄PO₄ is boiled with I mol.
Na₂CO₃, 44% of it is decomp. (Malaguti.)
Readily sol in soluble hyposulphites+Aq
with decomp. (Herschel.)

Insol in Ag salts † Aq. (Rose.) Insol in liquid NH₂. (Gore, Am Ch. J. 1898, 20, 829.) Insol, in acctone. (Eddmann, C. C. 1899,
 Il. 1014; Naumann, B. 1904, 37, 4329.)
 Insol, in methyl acctate. (Naumann, B. 1909, 42, 3790); ethyl acctate. (Naumann, B. 1910, 43, 314.)

Silver hydrogen orthophosphate, Ag₂HPO₄.

Decomp. by H₂O or alcohol into H₃PO₄ and Ag₂PO₄ (Joly, C. R. 103, 1071.)

Sol in H₃PO₄+Aq; insol, in other.

(Schwarzenberg, A 65, 162)

Silver pyrophosphate, Ag₄P₂O₇

Insol in hot or cold H₂O Sol m cold INO₃+A₉ without decomp Decomp by hot HNO₃ or H₂SO₄ into orthophosphate Decomp by HCl¹-Aq into AgCl and H₂FO₄ Insol. m H_CH₃O₃+Aq Sol. in NH₄OH+ Aq without decomp. (Stromeyer, Selw J. 58, 126.)

58. 120.) Insol. in Na₄P₂O₇+Aq. Very sl sol. in AgNO₃+Aq (Schwarzenbeig, A 65. 161) Not completely insol. in Na₄P₂O₇+Aq (Rosc.)

Insol. in acetone. (Edmann, C. C. 1899, H. 1014; Naumann, B. 1904, 37, 4329)

Silver hydrogen pyrophosphate, Ag₂H₂P₂O₇.

Decomp. by H₂O into Ag₄P₂O₇ (Hurtzig and Geuther, A 111, 160.)

Decomp by cold H₂O. (Cavalier, C. R. 1904, 139, 285.)

Silver hydrogen pyrophosphate metaphos-

Silver hydrogen pyrophosphate metaphosphate, 2Ag,HP,O₇, HPO₃
Decomp. by H₂O. Easily sol. in HNO₃+ Aq. (H. and G)

Silver tetraphosphate, 6Ag₂O, 4P₂O₆ = Ag₆P₄O₁₈.

Insol. in, but gradually decomp. by boiling H₂O. (Berzelius.) Sol. in large excess of the corresponding

Na salt+Aq. Silver dekaphosphate, Ag₁₂P₁₀O₃₁.

Easily sol. in sodium dekaphosphate+Aq. (Fleitmann and Henneberg, A. 65, 330.)

Silver ultraphosphate, Ag₂O, 3P₂O₅ (Kroll, Z anorg. 1912, 76, 407.)

Silver sodium dimetaphosphate, AgNaP₂O₅. Sol. in H₂O. (Fleitmann and Henneberg, Pogg. 65, 310)

Pogg. 65. 310)
Silver sodium pyrophosphate, 6Ag₄P₂O₇,
Na₄P₂O₇+4H₂O.

Not completely sol. in Na₄P₂O₇+Aq Easily sol, in HNO₂+Aq. (Bacr, Pogg. 75 152.)

Easily sol. in H₂O. (Stromeyer.) Ag₂NaP₂O₇+1/4H₂O. Ppt. (Stange, Zanorg, 1896, 12, 460.)

Silver uranyl phosphate, 2Ag₂O, 6UO₃, 3P₂O +30H₂O.

(Blinkoff, Dissert, 1900.)

Silver phosphate ammonia, Ag₃PO₄, 4NH₃. (Widmann, B, 17, 2284.)

Sodium (riphosphate, Na₅P₃O₁₀. Very sol in H₂O; decome easily in ac

solution at 100°. (Schwarz, Z. anorg 1895, 9. 253) Sodium monometaphosphate, NaPO₃

Insol in H₂O. Sol, in dil. and cone. acids, (Maddrell, A 61. 63.) [nsol in acids, (Graham.)]

Gradually decomp. by alkalies Sodium dimetaphosphate, Na₂P₂O₄+2H₂O

Deliquescent. Sol. in 7.2 pts. of cold or hot H₂O. Very sol. in cone HCl+Aq. Sol. in NaOH+Aq. Insol. in strong, very sl. sol. in dilute alcohol (Fleitmann, Pogg. 78. 246)

dilute alcohol (Fleitmann, Pogg. 78, 246)
Sodium trunetaphosphate, Na₂P₄O₉+6H₄O
Sol. in 4.5 pts. cold H₂O. Insol. in strong,
very sl. sol in dil. alcohol (Fleitmann and

Henneherg, A 65, 307.)
Decomp. by boiling H₂O. (Lindbom)
Sodium teirametaphosphate, Na₁P₄O₁₂.

Sol. in H₂O; cryst. with about 4H₂O. Less sol. in alcohol than in H₂O (Fleitmann, Pogg, 78, 854.)

Sodium hez metaphosphate, Nn₀P₄O₁₈
Deliquescent. Very sol. in H₂O Insol. in alcohol (Graham, Pogg 32 56.)

Sodium orthophosphate, Na₃PO₄+12H₂O. Not deliquescent in dry air. 100 pts H₂O dissolve 19.6 pts. crystals at 15.5°

100 pts H₂O dissolve 28.3 pts Na₀PO₄+ 12H₂O at 15°. (Sohiff.)

Solubility in H₃PO₄+A_Q at 25°.

In 1000 g. of the solution, moly

Na PO

4.28 0 040

3.24 0 183

2.24 0 752

2 73 1 08 (D'Ans and Schreiner, Z. phys. Ch. 1910, 75.

Sp. gr. of Na₂PO₄+Aq at 15°.

,	70 - 701NH3FU4+12H3U.					
,	%	Sp. gr.	%	Sp gr.	%	Sp gr.
l. 5.	1 2 3	1.0043 1.0086 1.0130	9 10	1.0399 1.0455 1.0492	17 18 19	1 0778 1.0827
5.	4 5	1.0174	11 12 13	1.0539	20 21	1.0876 1.0925 1.0975
,	6 7 8	1.0263 1.0308 1.0353	14 15 16	1.0633 1.0681 1.0729	22 23 24	1.1025 1.1076 1.1127
	(Schiff, calculated by Gerlach, Z. anal. 8, 280.)					

Insol. in CS ₂ .	(Arctowski,	Z. ar	norg. 1894	ı
6. 257) Insol in meth	vl acetate.	(Na	ımann. F	
1909, 42, 3790) +10H ₂ O, (Re	-		, _	
Could not be	obtained. (Hall,	J. pr. 94	

237.) -7H.O. (Hall.) Melts in crystal water at 76 6°. (Graham) Sodium hydrogen phosphate, Na₂HPO₄.

Sol in H₂O with evolution of heat.

100 nts. H₂O dissolve at to.

to.	Pts Na ₂ HPO ₄	t°	Pts Na ₂ HPO ₄	to.	Pts. Na ₃ HPC
0 10 20 30	1 55 4,10 11 08 19 95	40 50 60 70	30 88 43,31 55,29 68 72	80 90 100 106 2	81,29 95 02 108 20 114 43
(Poggiale, J Pharm (3) 44, 273)					

100 pts H₂O at 13° dissolve 34 pts Na₅HPO (Ferein, Ph. Vlortch, 7. 244), at 15°, 5 9 pts. (Neces) at 16°, 6 3 pts. (Micalot), pt. 95 c3); at 20°, 0.8 pts. (Neces, Russ Z. Pharm. 101); at 23°, 12 5 pts. (Veces, Russ Z. Pharm. 101); at 23°, 12 5 pts. (but d).

Solubility in 100 pts. H ₂ O at t°.					l	
ŧ°	Pts Na ₂ HPO ₄	t°	Pts Na ₂ HPO ₄	t°	Pts Ns:HPO:	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 22 22 22 22 22 22 22 22 23 30 31 22 23 33 33 33 33 33 33 33 33 33 33 33	2 5 6 2 6 7 7 2 7 7 2 7 7 2 7 8 3 .0 2 4 5 2 8 6 .3 9 4 .4 5 9 .3 11 4 6 14 0 14 16 .9 12 6 4 1 18 .5 20 2 2 2 2 2 2 2 2 4 1 2 2 2 1 2 6 4 2 9 .1 3 2 1 1 2 6 6 2 9 .1 3 2 1 1 3 2 1 1 2 6 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 3 2 1 1 3 2 1 1 3 2 1 3 2 1 1 3 3 2 1 1 3 3 3 3	35 36 37 38 39 40 41 42 43 44 45 46 47 49 50 51 52 53 54 55 56 60 61 62 63 66 66 66 66 66 66 66 66 66 66 66 66	39 3 6 49 5 5 5 60 . 6 9 68 . 6 6 8 7 0 7 6 5 7 7 7 7 7 7 7 7 8 1 2 5 7 7 8 1 2 5 7 8 8 3 7 8 8 5 8 7 8 7 7 9 7 9 3 1 5 9 3 1	69 70 71 72 73 74 75 77 80 81 81 82 83 84 85 86 87 88 89 91 91 92 93 94 96 97 97 98 99 99 90 91 91 91 91 91 91 91 91 91 91 91 91 91	94 8 9 95 1 96 1 9 96 1 9 96 1 9 96 1 9 96 1 9 96 1 9 96 1 9 96 1 9 96 1 9 96 1 9 97 1 97 2 4 9 97 6 9 97 9 97 8 9 97 9 97 9 98 9 97 9 98 9 98 1 9 9 9 9	0
84	35 5					

(Mulder, Scheik, Verhandel, 1864, 103.)

Solubility in H ₂ O at t°.		
£°	G. NasHPO4 in 100 g. HsO	
10 26 25 15 40 29 60 23 99 77	3 55 12 02 54.88 83 00 102 15	

Three breaks in the curve: at 36.45°, transifor the broads in the curve; at 30.30, thansition from dodecabydrate; to heptahydrate to the dhydrate; at 95°2, transition from dihydrate to the monohydrate. (Shiomi, C. C. 1909, II. 106)

Solubility of NasHPO, in HaO at to

comming of the part of the part of the				
t°	G. Nn:HPO: in 100 g H ₂ O	Solid phase		
-0.43 -0.24 -0.5*	1.42 0 70	Ice "		
+0.05 20.0	1 67 7 66	Na ₂ HPO ₄ +12H ₂ O		
25 0 32 0	12 0 25.7	ee		
34.0 35.2* 39.2	33.8 51.8	" Na ₂ HPO ₄ +7H ₂ O		
45.0 48.3*	67.3	NB2HFO4+7H2O		
50.0 60.0	80 2	Na ₂ HPO ₄ +2H ₂ O		
80 0 90 0	82.9 92.4	11 11		
95* 96.2 105.0	101 0 104 6 102.3	Na ₂ HPO ₄		
120	99 2	"		

Menzies and Humphery, Int. Cong. App. Chem. 1912, 2, 177.) * Transition points

Solubility in H₂O at to. 100 e H₂O

t°	dissolve g. Na HPO	Solid phase
0° 25 35 4* 40 3 48.35* 59.7 71	2.51 12.47 46.11 54.80 79.00 91.8 95 1 98.15	Na ₂ HPO ₄ , 12H ₂ O Na ₂ HPO ₄ , 7H ₂ O Na ₂ HPO ₄ , 2H ₂ O

D'Ans and Schreiner. Z. phys. Ch. 1911, 75. 99.)

*Transition points.

The composition of the hydrates formed by this salt at different dilutions is calculated 1.0511 (Stolba)

from determinations of the lowering of the fr.pt, produced by the salt and of the conductivity and sp. gr, of its aqueous solutions. (Jones.

Am. Ch J 1905, 34, 318.) Na HPO + Au saturated at 15° has 1 0469 so gr (Michel and Krafft), saturated at 16°,

Sp. gr. of Na2HPO4+Aq at 19°;

% Na.HPO. +12H.O	Sp gr	% Na.HPO. +12H.O	Sp gr	% Na, HPO, +12H,O	Sp gr
1	1.0041	5	1.0208	9	1.0376
2	1.0083	6	1.0250	10	1.0418
3	1.0125	7	1.0292	11	1.0460
4	1.0166	8	1.0332	12	1.0503

(Schiff, A. 110, 70.)

Saturated solution freezes at -0.45° (Rüdorff, Pogg 122. 337), and boils at 105° (Griffiths), 105-106.4° (Mulder), 103.5° (Le-

Sat. Na₂HPO₄+Aq boils at 105 5° (Griffiths), at 106.5°, and contains 113 2 pts NazHPO, to 100 pts H2O (Legrand), forms a crust at 1064°, and contains 1088 pts Na₂HPO₄ to 100 pts H₂O, highest temp observed, 106.8° (Gerlach, Z. anal, 26, 427.)

B-pt. of Na₂HPO₄ to 10 pts. H₂O. G=according to Gerlach (Z. anal. 25 450); 1= (D'Ans and Schreiner, Z. phys. Ch. 1910, 75. according to Legrand (A. ch. (2) 59, 426.)

B.pt	G	L	B-pt.	G	L
100.5° 101 101.5 102 102.5 103.5	8.6 17.2 25.8 34.4 42.9 51.4 59.9	11.0 21.0 31.0 40.8 50.3 59.4 68.1	104° 104 5 105 105.5 106.5 106.5 106 6	68.4 76.9 85.3 93.7 102.1 110.5	76 4 84 2 91 5 98 4 105 0 111 4 112.6

+H₂O. Transition point, 95.2°. (Shiomi.) +2H₂O. Transition point, 48.35°. (D'Ans and Schreiner); 48° (Shiomi); 48.3° (Menzies and Humphery). +7H₂O. Not efflorescent, Sol. in II₂O

with absorption of heat. Sol. in 8 pts. H₂O at 23°. (Necse, J. B. 1863. 181

Transition point, 35.4° (D'Ans and Schreiner); 36.45° (Shiomi); 35.2° (Menzies and Humphery).

Solubility in HaPO4+Aq at 25°. In 1000 g of the solution, mols Νu

6 31 4.638 76 4.88 7 31 5 55

(D'Ans and Schremer, Z. phys. Ch. 1910, 75. 101.)

See also above

+12H₂O. Efflorescent Sol in H₂O with absorption of heat.

14 pts, Na-HPO++12H-O mixed with 100 pts II2O at 10 8° lower the temperature 3.7°. (Rüdorff, B. 2. 68)

Sol in 8 48 pts, H₂O at 17°, or 100 pts, H₂O dissolved 11.8 pts at 17°	Schiff
Sol in 4 pts	Pagern
Sol in 4 pts	Pagern
100 pts H₂	+12H₂O (Mitchel and Kraft) Pagens)

100 pts H₂O dissolve 6.5 pts. Na₂HPO₄+ 12H₂O at 0°; 27.5 pts. at 30°. (Tilden, Chem. Soc. 45, 409.)

Solubility in H2PO4+Aq at 25°.

In 1000 g of th	In 1000 g of the solution, mols	
Nn	PO4	
2 62 1 56 2 38 3 18 4 65 5 63	1 09 0 78 1 60 2 24 3 55	

101.)

See also ahove

Insol in alcohol

Melts in crystal water below 100°, and easily forms supersaturated solutions. (Gav-Lussae)

Melts in crystal H₂O at 34 6° (Persoz), 35° (Kopp), 40-41° (Mulder) Melts in crystal H2O at 35°. (Tilden,

Chem. Soc 45, 409) Supersaturated solutions are brought to crystallization by addition of a crystal of Na₂HPO₄+12H₂O or an isomorphous substance as Na₂HAsO₄+12H₂O. (Thomson, Chem, Soc. 35, 200.)

Sodium dihydrogen phosphate, NaH.PO4+ H,O.

Very sol. in H₂O Insol in alcohol (Graham.)

+2H₂O Unchanged on air Very sol, in H₂O, and solubility increases rapidly with the temperature. (Joly and Dufet, C R. 102. 1391.)

100 pts. H₂O dissolve 59.9 pts at 0°; 84.6 pts at 18°. (Joly and Dufet.)

Solubility of NaH₂PO₄ in H₂O at t°. G, of anydrous NaH2PO4 in 100 g H3O, Solid phase: NaHaPOa+2HaO.

t°	G NaH₂PO₁	t°	G. NaH ₂ PO ₄
0 1 1 0 3 0 5 0 10 0 15.0 20.0 25 0 26.0 27.0	57 86 59 08 61 47 63 82 69 87 76 72 85 21 94 63 96 73 99.20	28 0 30.0 31 0 33 0 34.0 35 0 37 0 40 2 40 55	101 71 106 45 108.93 114.31 117 14 120 44 126 76 138.16 110.83

40 8°; transition point,

	Solid p	ohase; N	aH₂PO₄+E	I₃O.
41	1	42.55	52	163 84

9.2	1 140 00 1	99	110 0
45	148 20	56	173.2
50	158 61	57	175.8
80	100 01	01	110.0.

57.4°; transition point.

Solid phase: NaH-PO.

62	181.35	90	225 31
65	184 99	90 99 1	246 56

(Imadzu, Chem. Soc. 1912, 33, 359.)

190 24

Solubility in H-PO++Ag at 25°.

In 1000 g of the solution, mola.

Na	PO ₄
6 19	4 68
6 01	4 67
5 12	4 36
4 81	4.22
4 36	4 08
4 06	4.03
4 19	4.38
4.32	4.96
4 65	5.89

(D'Ans and Schremer, Z. phys. Ch. 1910, 75. 101.)

6 40

Trisodium trihydrogen phosphate,

Na2H2(PO4)2.

4.88

Not hydroscopic Sol. in H₂O in all proportions (Joulie, C. R. 1902, 134, 604) +112H2O. Sol. in H2O. (Filhol and Senderens, C. R. 93, 388.)

+7H₂O. (Salzer, Arch Pharm 1894, 232. +71/2H₂O. (Joulie)

Sodium orthophosphate acid, NaH.PO. HaPO.

Hygroscopic. Decomp by alcohol (Staudenmaier, Z. anorg. 1894, 5. 395)

Solubility of NaHoPO, HoPO, in HoO at to.

t°	NnH ₁ PO ₄ H ₁ PO ₄	Solid phase
- 5 7 - 7 9 - 11 4 - 38 - 34 + 41 - 51 7 7 9 7 85 101 7 104.5 110 119 126.5	20 77 26 92 34 15 56 66 80 46 81 82 83 68 87 48 88 66 91 47 92 67 95 79 97 99	Ice "" NaH ₃ PO, "" "+NaH ₃ PO, H ₃ PO, NaH ₃ PO, H ₃ PO,

(Parravano and Mieli, Gazz, ch. 1t. 38, II 536.)

Solubility in anhydrous H.PO.

t°	% NaII ₂ PO ₄ , H ₃ PO ₄
98 5	. 52 72
111	69 59
119	77 55
122	81 71
123	87 20

(Parravano and Mieli)

+H₂O. Very deliquescent. (Salzer, Arch. Pharm 1894, 232, 369.)

Sodium purophosphate, Na₄P₂O₇, and +10H.0

6.81 b 541

Less sol in H2O than sodium hydrogen orthophosphate, (Clark, Ed. J. Sci. 7. 298.) 100 pts. H₂O dissolve (a) pts. Na₄P₂O_{7,} (b) pts Na₄P₂O₇+10H₂O at: 50° O° 10° 20° 30° 40° 3 95 6 28 9.95 13 50 17.45a. 3.16 10.92

18.11 100° ദവം 70° 80° 90° 25 62 40.26 a 21.83 30.04 35.11 b. 44 07 52.11 63.40 77.4793.11(Poggiale.)

249733.25

Sol. in H.SO. (Walden, Z. anorg, 1902,

29. 384.)

48, 588)

Crystallizes unchanged from NH₂Cl+Aq (Winkler), or cone, NH₂OH+Aq (Uelsmann,) Decomp into orthophosphate by heating with H₂SO₄, HCl, HC₂H₃O₂, or H₃PO₄+Aq. Insol, in liquid NH₂. (Franklin, Am. Ch.

J. 1898, 20, 829) Insol, in alcohol Insol, in methyl acetate. (Naumaun, B. 1909, 42, 3790.)

Sodium hydrogen pmophosphate, Na₂H₂P₂O₇ Decomp, by H2O, Sol in H2O containing HC:H:O: without decomp (Bayer, J. pr 106, 501.

Sl. sol, in alcohol. Much more sol in H₂O than NaILPO. +6H₂O, (Rammelsberg, B A, B, 1883.

100 g. sat. solution contain 14 95 g Na₂H₂P₂O₇ at 18°. (Giran, A. ch. 1902, (7 30, 249,) NaH₃P₂O₇. Very hydroscopic. (Salzer, Arch. Pharm 1894, 232, 369)

Arcn., rnarm 1894, 232, 309 J 100 g, sat, solution contain 62 7 g, at 18°, (Giran, A. ch. 1902, (7) 30, 249.) Na,HP₂O+H₂O, 50.1 m 3 pts. H₂O. (Salzer, Arch. Pharm 1894, 232, 366.) +8H₂O. 100 g, sat, solution contain 28.17 g, Na,HP₂O₇ at 18°, (Giran.)

Sodium tetraphosphate, NacPaO11. Slowly sol, in 2 pts, cold H2O. Easily

Sodium hydrogen tetraphosphate. Na H.P.O.s. Sol. in H₂O.

+18H₂O (Uelsmann.)

Sodium dekaphosphate, Na₁₂P₁₀O₄₁, Sol. in H.O. (Fleitmann and Henneberg,

A. 65. 333.) Sodium strontium dimetaphosphate.

 $N_{0.2}S_1(P_2O_6)_2 + 4H_2O_6$ As the NaBa comp. (Glatzel, Dissert, 1880.)

Sodium strontium trimetaphosphate. NaSrP₂O₂+3H₂O.

Easily sol. in H2O and acids. (Fleitmann, A. 65. 315)

Sodium strontium orthophosphate, NaSrPO. +H.O.

Scarcely sol, in H₂O; sol, in acids, +9H.O. (Joly, C. R. 104, 905.)

Sodium strontium mrophosphate (?). Sl. sol. in H2O. Insol, in Na,P2O7+Aq. (Baer, Pogg 75, 166.) Easily sol. in HCl+Aq, or HNOs+Aq.

Sol. in NH,OH+Aq.

Sodium thallium purophosphate, $Na_{5}[Tl(P_{2}O_{7})_{2}] + 6H_{2}O = Na(TlP_{2}O_{7}),$ Na PrOy+6H4O Decomp. by H₂O. (Rosenhenn, B 1915.

Sodium thorium arthophosphate. NaThe(POA). Insol. in acids. (Wallroth, Bull, Soc. (2)

39, 316)

Sodium thorium phosphate, Na₂O, 4ThO₂, 3P.O. Insol. in HNO2, HCl, or aqua regia. (Troost

and Ouvrard, C R 105. 30 5Na₂O, 2ThO₂, 3P₂O₅. Sol. in HNO₂+Aq. (T and O.) Na₂O, ThO₂, P₂O₅ (T and O.)

Sodium thorium purophosphate, Na₄P₂O₇, ThP.O. +2H.O.

(Cleve.) Sodium tin (stannic) phosphate, NaSn_{*}(PO₄)*.

(Ouvrard, C. R. 111, 177.) Na₅Sn(PO₄)₂. (Wunder, J. pr (2) 4, 339.) 6Na₂O, 3SnO₂, 4P₂O₄. (Ouvrard.)

Sodium titanium phosphate, NaTi*(PO₄), Insol in acids. (Rose, J B, 1867. 9) 6Na O. TiO, 4P,O, (Ouvrard, C. R. 111.

Sodium uranium phosphate, UO2, Na2O, P2O4, Easily attacked by acids (Colam. A. ch. 1907, (8) 12, 137.) Sodium uranium metaphosphate, 4UO., NasO.

3PaOs. Insol in boiling HNO. (Colani.)

Sodium uranium pprophosphate, 3UO2, 6Na₂O, 4P₂O₅ Sol in acids. (Colani.)

Sodium uranyl phosphate, Na.O. UO., P.O. (Ouvrard, C R. 110, 1333) 2Na₂O, UO₃, P₂O₅. (Ouvrard.) Na₂O, 5UO₃, 2P₂O₄+3H₂O. Insol. in H₂O:

decomp, by acetic acid. (Werther, A, 68. 312.)

Sodium uranyl pyrophosphate. Very sol. in H2O. (Persoz, A. ch. (3) 20.

322.)Sodium ytterbium purophosphate, NaYbPaOz. Easily sol. in the strong acids. (Wallroth.)

Sodium vttrium purophosphate, NaYP.O. Sol. in H₂O. (Stromeyer.) Insol. in H1O. Easily sol, in strong acids.

(Wallroth.)

Sodium zinc triphosphate, Na₂O, 4ZnO, 3P₂O₅+19H₂O. Sol. in H₂O. (Schwarz, Z. anorg. 1895, 9. 266.)

Sodium zinc trimetaphosphate, Na₂O, 2ZnO, 3P₂O₅
Put. Sol. in H.O. (Fluttmann and Hanne.

Ppt Sol. in H₂O. (Flestmann and Henneberg, A. 65, 304.)

Sodium zinc tetrametaphosphate,

Na₂Zn(PO₃)₄+6H₄O. As K comp (Glatzel, Dissert. 1880.)

Sodium zinc octometaphosphate, Na₂Zn₃(PO₃)₈

Insol. in acids. Sol. in conc. H₂SO₄ (Tammann, J. pr. 1892, (2) **45**. 420.)

Sodium zinc orthophosphate, NaZnPO₄
Difficultly sol in H₂O or acota acid. Easily
sol. in dil, immeral acids. (Scheffer, A. 145.
53.)
2Na₂O, ZnO, P₂O₅. Insol in H₂O, sol. in
dil, acids. (Ouvrard, C. R. 106, 1796)

Sodium zinc pyrophosphate, Na₂ZnP₂O₇.

Insol. in H₂O, sol. in dil. acids. (Wall-roth.)

3Na₁P₂O₇, Zn₁P₂O₇+24H₂O. Very efforescent. (Pahl). Na₁P₂O₇, Zu₂P₂O₇+2½, 3, 3½, and SH₂O. Insol. in H₂O, sol in Na₁P₂O₇+A₂C. (Pahl, Sv. V. A. F. 30, 7, 35). Sv. V. A. F. 30, 7, 35, Sv. V. A. Sv. V. A. Sv. V. A. Sv. V. Sv. V. A. Sv. V. Sv

Sodium zirconium phosphate, Na₆O, 4Z_FO₂, 3P₂O₆=NaZr₂(PO₄)₃.

Insol. in acids or agua regia. (Troost and Ouvrard, C R. 105. 30) 6Na₁O, 3ZrO₂, 4P₂O₅ Sol. in acids. (T. and O.) 4Na₂O, ZrO₂, 2P₂O₅. Sol. in acids. (T. and

O.)

Sodium phosphate fluoride, Na₅PO₄, NaF+

12H,O "
100 pts. H,O dissolve, at 25°, 12 pts. salt and form solution of I.0329 sp. gr., at 70°, 57.5 pts. salt and form solution of I.1091 sp. gr. (Briegle), A. 97. 95°, 2Na₁PO₄, NaF+19H,O, and 22 H₂O. Sol in H₂O. (Baumgarten, J. B. 1865, 219.)

Sodium phosphate stannate, 4Ne₂PO₄, Ne₂SnO₂+4SH₂O. (Prandtl. B. 1907, 40, 2132.) Sodium phosphate titanate, Na₂O, TiO₂, P₂O₃+3H₂O Hygroscopic. (Mazzuchelli and Pantanelli, C C. 1908. II. 420.)

See Phosphovanadate, sodium.

Strontum monometaphosphate, Sr(PO₃)₂.

Insol. in H₂O and acids Not decomp. by alkali carbonates+Ag. (Maddrell, A. 61, 61.)

alkali carbonates + Aq. (Maddrell, A. 61. 61.)
Strontum hevameiaphosohate.

Nearly msol. in H₂O; easily sol. in acids. (Ludert, Z anorg. 5. 15.)

Strontium orthophosphate, basic, Sr(OH)₂, Sr₂(PO₄)₂
(Woverynski, Z. anorg, 1894, 6, 311.)

Strontium orihophosphate, Sr₂(PO₄)₂. Insol in H₂O. Sol in HCl+Aq (Erlenmever, J. B. **1857**, 145.)

Strontium hydrogen phosphate, SrHPO₄.

Insol. in H₂O. Sol in H₃PO₄, HCl, or HNO₃+Aq. (Vauquein.) Easily sol in cold ammonium nitrate, chloride, or succinate+Aq, but is partly precipitated by a

contains 4-A₀, but a mertly precupitated by a little NLO,H+A₀ (Bretla, little NLO,H+A₀ (Bretla, Sed in Na cutrate+A₀ (Spuller.) Partly decomp. by boiling Na₂CO₄, and K₂CO₄+A₀ (Dulong.) NLH(PO₄)+2H₂O Decomp by treating with H₂O, leaving 4.29 (SrHPO₄ (Barthe.)

Strontium phosphate, acid, H₂O, 2SrO, 3P₂O₃+zH₂O.
Entirely sol. in H₂O (Barthe, C. R. 114.

Entirely sol. in H₂O (Barthe, C. R. 114 1267.)

Strontium pyrophosphate, Sr₂P₂O₇+H₂O.

Somewhat sol. in H₂O. Easily sol in HCl or HNO₂+Aq. Insol in HCl₂H₂O₂ or Na₄P₂O₂-Aq. (Schwarzenberg, A 65, 144.) +2½H₂O (Knorre and Oppelt, B, 21. 773.)

Strontium hydrogen pyrophosphate, SrH₂P₂O₇, 2Sr₂P₂O₇+6H₂O.

Ppt. (Knorre and Oppelt, B. 21 772) StH₂P₂O₇, 3Sr₂P₂O₇+H₂O, and +2H₂O. (Knorre and Oppelt.)

Sr_bH₂(P₂O₇)₈+SH₂O, and +12H₂O. Ppt (Pahl, Gm. - K. 2, **2**, 172) Sr₂H₂(P₂O₇)₁₀+5H₂O, +18H₂O and

+20H₄O. Insol in Sr(NO₄)₂+Aq or Na₄P₂O₇+Aq. (Pahl, Gm - K. 2, **2**. 171.)

Strontium thorium phosphate, Th₂O, SrO, P₂O₅ (Colani, C. R. 1909, **149**, 209.) Strontium uranium metaphosphate, UO₂, S₁O, P₂O₅. (Colani, A. ch. 1907, (8) **12**, 141.)

Strontium uranyl phosphate, SrO, 4UO₃, 2P₂O₃+21H₂O (Blinkoff, Discott 1900.) 2SrO, 5UO₃, 2P₂O₆+24H₂O. As Ba comp. (Blinkoff, Discott

Strontium phosphate chloride, 3Sr_s(PO₄)₂, SrCl₂. Strontium anatite Insol. in H₂O. (De-

Tellurium phosphate (?). Insol, in H₂O. (Berzelius)

ville and Caron)

Thallous metaphosphate, TlPO3.

Two modifications:

a. Difficultly sol, in H₂O,

B. Extremely easily sol in H₂O. (Lamy)

Thallous orthophosphate, Tl₃PO₄. Ipt is sol, in 2012 pts. H₂O at 15°, and 149 pts boiling H₂O; sol in HNO₃+Aq. (Crookes.) Sl arl in HC₂H₃O₂+Aq. Very easily sol, in solutions of NH₄ saits. (Carstanjen.) Insol. in alcohol. (Lamy)

stanjen.) Insol. in alcohol (Lamy)

Thallous hydrogen phosphate, Tl₂HPO₄.

Anhydrous Much less sol in H₂O than the hydrous salt, but easily sol in a solution

of the hydrous salt (Lamy) +14H₂O. Easily sol in H₂O. Insol in alcohol (Lamy.) Composition is HTI₂PO₄, 2H₂TIPO₄. (Rammelsberg, W. Ann. 16, 694.)

Thallous dehydrogen phosphate, TIH_PO4

Very easily sol in H₂O Insol in alcohol (Rammelsberg, B, 3, 278.)

Trithallous trihydrogen phosphate, Tl₂HPO₄.

2TIH₂PO₄.

True composition of Tl₂HPO₄ of Lamy (Rammelsberg)

Thallous pyrophosphate, Tl₄P₂O₂.
Sol. in 2.5 pts. H₂O with slight decomposition. (Lumy.)

+2H₂O. More sol in H₂O than the above salt, with partial decomp. (Lamy.)

Thallous hydrogen pyrophosphate, H₂Tl₂P₂O₇ 114, 113.) +H₂O, Very sol, in H₂O, (Lamy.) Titanium

Thallic phosphate, basic, 2Tl₂O₃, P₂O₅+ 5H₂O. Insol. in H₂O.

Thailic phosphate, basic, Tl₈P₉O₂₇+13H₂O (Rammelsberg, W. Ann. 16, 694) Tl₆P₄O₁₉+12H₂O (R.)

Thallic phosphate, TIPO₄+2H₂O Completely insol, in H₂O Sol. in cone HNO₈, and dil. HCl+λq. (Willm.)

Thorium metaphosphate, Th(PO₃)₄.

Insol in H₂() (Troost, C R 101, 210.)

Thorum metaphosphate, ThO₂, 2P₂O₅.

Insol in acids. (Johnsson, B, 22, 976)

Thorium orthophosphate, Th₃(PO₄)₄+4H₂O.
Insol in H₂O and phosphoric acid (Berzelius); also acotic acid (Cleve.)
Sol in HCl, and HNO₅+Aq. (Cleve.)

Thorium hydrogen phosphate, ThH₂(PO₄)₂+ H₂O. Procupitate

Thorum py ophosphate, ThP₂O₇+2H₂O.
Precepitate. Insol. in H₂O. Sol. in great excess of pyrophosphoric acid or sodium pyrophosphate+Aq. (Cleve.)

Thorium phosphate bromide. See Bromophosphate, thorium.

Thorium phosphate chiroide. See Chlorophosphate, thorium.

Tin (stannous) phosphate, 5SnO, 4P₂O₆+ 4H₂O. Insol in H₂O. (Lenssen, A. **114**. 113.) Sn₃(PO₁)₂ Insol in H₂O. Sol, in mineral acids. (Kühn.)

Insol in NH₄Cl or NH₄NO₃+Aq. Sol. in KOH+Aq. Tia (stannic) phosphate, 2SnO₂, P₂O₅+

10∏₂O.

Insol in H₂O or HNO₅+Aq. (Reynoso, J. pr. 64. 261.)

Anhydrous. Insol in acids. (Hautefeuille and Margottet, C. R. 102. 1017)

Tin (stannic) phosphate, SnP₂O₇ Insol in acids. (Hautefeuille and Margottet, C R 102, 1017)

Tin (stannous) phosphate chloride, 3SnO, P₂O₅, SnCl₂+H₂O.
Not decomp by hot H₂O. (Lenssen, A.

Titanium phosphate, $Ti_2P_2O_0 = 2TiO_2$, P_2O_4 . Insol. m acids. (Hautefeuille and Margottet, C. R. 102. 1017.)

(Ouvrard, C R. 111, 177.) +3H₂O. Ppt. Insol. in H₂O. (Merz.)

(Knop) TiO₂, P₂O₄. (Knop) (Wunder, J. B. **1871**. 324) Is NaTio(PO₄)₄ H.TiPOr. Sol. in HCl, HNO, H.SO.

Sl sol in H₃PO₄ Sol in KOH, NH₄OH, (NH₄)₂CO₈ and (NH₄)₀HPO₄+Aq Very sl. sol in acetic acid. (Faber, Z.

anal. 1907, 46. 288.)

Uranous metaphosphate, U(PO3)4.

Insol. in HNOs, HCl, or H₂SO₄, even when hot and conc. (Colani, A. ch. 1907, (8) 12, 105.)

127) Uranic metaphosphate, U2(PO3)c Insol, in H₂O and acids. (Hautefeuille and Margottet, C R 96. 849.)

Uranous orthophosphate, U3(PO4)4. More easily attacked by acids than the pyro and meta phosphates, especially by HNO: (Colani, A. ch. 1907, (8) 12, 123)

Uranous hydrogen orthophosphate, UHPO4+

Insol. in H₂O. Insol. in dil, al sol. in onc. HCl+Aq. Decomp. by KOH+Aq. conc. HCl+Aq. not by NH₂OH+Aq (Rammelsberg, Pogg

Uranous pyrophosphate, UP,O1. Insol in H₂O.

59. 1)

Sl sol in min. acids. (Colani.) Uranous phosphate, 2UO2, P2O5

Easily attacked by boiling HNOs (Colam UO2, P2O1+5H2O. Insol. in H2SO4 and

in HCl+Aq of medium concentration. Sol. in very conc. HCl+Aq. (Aloy, Dissert. 1901.)

Uranyl metaphosphate, UO2(POs)2 (Rammelsberg, B A B 1872, 447.)

B. 22, 976.) Uranyl orthophosphate, UO2HPO4+11/2H2O.

Insol. in H2O. +3H₂O

+4H₂O. +4½H₂O Insol. in H₂O. Sol. in 67,000 pts. HC₂H₂O₂+Aq, 50,000 pts. NH₄C₂H₂O₂+ Aq, and 300,000 pts of a mixture of the above two solutions Sol. in K₂CO₂ or Na₂CO₂+ Aq. (Kitschin, C. N. 27, 199)

Uranyl dihydrogen phosphate, UO₂H₄(PO₄)₂+3H₂O.

Decomp. by H2O. Sol in H3PO4+Aq. (Werther, J. pr. 43, 322.)

Uranyl pyrophosphate, (UO2)2P2O7+5H2O. Efflorescent Insol in H₂O. Sol. in HNOs+Aq, and Na₄P₄O₇+Aq. Insol in Na₂HPO₄+Aq. Insol in alcohol or ether. (Girard, C R. 34, 22.)

+4H₂O. (Casteing, Bull. Soc (2) 34. 20.) Uranyl tetraphosphate (?), UO2P4O11.

(Johnsson, B. 22, 978.)

Uranous orthophosphate chloride, Us(PO4)4, UC14 SI sol. in HCl+Aq Sol. in HNOs and HNO₃+HCl (Colani, A. ch. 1907, (8) 12.

Uranous hydrogen orthophosphate chloride, U(HPO4)2, UCL

Very sl. sol. in H₂O. (Aloy, Dissert. 1901.)

Vanadium phosphate, (VO2)H2PO4+41/4H2O. Sol in II.O See Phosphovanadic acid.

Vanadium pyrophosphate.

V4(P2()7)4+30H2O. Insol. in H₂O (Rosenheim, B. 1915, 48. 590)

Davanadyl phosphate.

Very deliquescent, and sol. in H₂O. Insol. in alcohol (Berzelius.)

Ytterbium metaphosphate, Yb(PO₃)₂. Insol in H.O (Cleve, Z. anorg, 1902, 32, 149.)

Ytterbium orthophosphate, YbPO++416H4O. Ppt. (Cleve)

Ytterbium phosphate, Yb2O2, 2P2O5+5H2O. Sol in H₂O (Cleve)

Yttrium metaphosphate, Y(POs)s. Insol in H₂O or acids (Cleve.)

UO3, 2P,O5 Insol. in acids. (Johnsson, Vttrium orthophosphate, YPO4. Anhydrous. Insol. in H₂O or acids after ignition

Min Xenotame. Insol. in conc. acids. Sl. sol in much conc. HCl+Aq, but easily sol. therein when first heated with a little HCI+ Ag. (Wartha, A. 139, 237.)

Yttrium hydrogen orthophosphate, Y2(HPO4)3 Decomp, by boiling with H₂O into insol. YPO, and sol, acid salt.

Yttrium pyrophosphate, YHP2O7+31/2H2O, Difficultly sol in acids Decomp. by H₂SO₄. Sol in Na₄P₂O₇+Aq. (Cleve.) 2Y2Os, 3P2Os. Insol. in acids. (Johnsson, B. 22. 976.)

1017.)

Zinc metaphosphate. Sol in HaO. (Berzelius.)

Zinc dimetaphosphate, ZnP2O2. Sol. only in boiling H₂SO₁ Pogg. 78, 350.) (Fleitmann.

Not decomp, by boiling Na2S or (NH4)2S+

+4H₂O. Insol. in H₂O, but decomp. by boiling therewith. (Fleitmann, Pogg 78. Sol. in 4 pts. H₂O Conc. H₂SO₄ decomp.

t easily; other acids act slightly. (Glatzel, Dissert. 1880.) Difficultly decomp, by boiling acrds

Zinc trimetaphosphate, Zn₃(PO₃)₄+9H₂O. · 1 l. H₂O dissolves 0.1 g. at 20°. (Tammann, J. pr. 1892, (2) 45, 426)

Zinc tetrametaphosphate, Zn2(PO3)4+1:)H2O. Sol, in 55 pts. H₂O. Decomp. by acids only on boding (Ghatzel, Dissert, 1880.) Somowhat sof, in HNO₂+Aq. Sof in Zirconium pyrophosphate, Zr(PO₂)₂. boiling H2SO4. (Glatzel.)

Zinc orthophosphate, Zn₂(PO₄)₂+4H₂O. Insol, in H.O. Easily sol, in acids, NH,OH. (NH₄)₂CO₃, (NH₄)₂SO₄, or NH₄NO₂+Aq. (Hentz, A. 143. 356.) Sol. in NH₄Cl+Aq. (Fuchs.)

Easily sol. in Zn salts+Aq. (Rose.) Insol. in liquid NH2. (Franklin, Am. Ch. J. 1898, 20, 830)

Min Hopeite +6H₂O, (Revnoso)

Zinc hydrogen phosphate, ZnHPO.+H.O Insol. in H2O; sol. in H3PO4+Aq (Graham.)

Zinc tetrahydrogen phosphate, ZnH4(PO4)2+ 2H₂O

Nearly insol, in H₂O, but decomp, thereby into H₂PO₄ and 10ZnO, 4P₂O₅+10H₂O (Demel, B. 12, 1171)

Zinc phosphate, 10ZnO, 4P₂O₄+10H₄O Insol, in H₂O (Demel, B. 12, 1171.)

Zinc pyrophosphate, Zn₂P₂O₇+3/₂H₂O. Ppt. Sol in H₂SO₃+Aq. Sol, in acids, KOH+Aq, NH₄OH+Aq. (Schwarzenberg.

A. 65. 151.) Sol in Na,P2O+Aq (Gladstone), and in ZnSO₄+Aq. (Rose.) Insol. in acetic acid. (Knorre, Z. anorg.

1900, 24. 389,) +5H.O. Insol. in H.O. (Pahl, J. B. 1873. 229.)

Zinc hydrogen pyrophosphate.

Sol. in H₂O. (Pahl, Sv. V A. F. 30, 7. 45.) Nearly insol. in H₂O. (Gibbs.)

Zinc metaphosphate ammonia. Ppt. (Bette.)

Zinc orthophosphate ammonia, 2ZnO, P+Oa 3NH2+SH20.

(Rother, A 143. 356) 6ZnO, 3P₂O₃, 8NH₄+4H₂O. (Schweikert, A. 145, 517.)

Zinc pyrophosphate ammonia, 3Zn₂P₂O₅, 4NH₃+9H₂O. Ppt. Insol in H₂O (Bette.)

Zirconium orthophosphate, 5ZrO2, 4P2O64

Somewhat sol in acids. (Hermann, J. pr. 97. 321.) Insol in acids. (Pavkull, Bull, Soc. (2) 20. Not attacked by acids, 2Z1O2. P2O6. (Hautefeuille and Margottet, C. R. 102.

(Knop. A. 159, 36.)

Phosphoricovanadicotungstic acid.

Ammonium phosphoricovanadicotungstate, 14(NH₄)₂O, 2P₂O₃, 7V₂O₃, 31WO₄+

78H₂O. Sol in H2O, Insol, in alcohol, ether, CS2 and benzene. (Rogers, J Am. Chem. Soc. 1903, 25, 305,)

Phosphorimidamide, PN2H2 (Joannis, C R. 1904, 139, 365)

Phosphorimide, P.(NH). Very sol, in ammoniacal solution of NH₄I (Hugot, C. R. 1905, 141, 1236.)

Phosphornitryl, PON See Phosphoryl nitride.

Phosphorosomolybdic acid, P2O1 24MoO+63H-O.

(Rosenheim and Pinsker, Z. anoig. 1911, 70, 77)

Ammonium phosphorosomolybdate. 2(NH₄)2O, 2H₃PO₄, 12MoO₈+1216H₂O. Insol. in cold, slightly sol, in hot H.O. (Gibbs, Am. Ch. J. 5. 361.)

Phosphorosophosphomolybdic acid.

Ammonium phosphorosophosphomolybdate, 9(NH4)2O, 2H2PO3, 3P2O3, 72M0O3+ 38H₂O

Phosphorosophosphotungstic acid.

Potassium phosphorosophosphotungstate, 5K₂O₂ 2H₂PO₃, P₃O₃, 24WO₃+13H₂O Sol in much boiling H₂O (Gibbs, Am. Ch. J 7, 313)

Phosphorosotungstic acid.

Ammonium phosphorosotungstate, 6(NH₄)₂O, 4H₃PO₃, 22WO₃+25H₂O Sl. sol. in cold H₂O

Potassium —, $5K_2O$, $16H_3PO_3$, $32WO_3+46H_2O$. SI sol. in hot H_2O .

Sodrum —, 2Na₂O, 8H₂PO₃, 22WO₂+ 35H₄O Nearly insol. in cold, sl sol. in hot H₂O (Gibbs, Am Ch J. 7, 313).

Phosphorous anhydride, P₂O₃ See Phosphorus traoxide.

Phosphorous acid, H₂PO₂
Deliquescent Very sol in H₂O

Phosphites.

The neutral alkalı phosphites are sol. in H₂O; most of the others are sl sol. in H₂O, but sol. in H₂PO₂+Aq; all are insol in alcohol

Aluminum phosphite, basic, Al₂(HPO₁)₃. Al₂(OH)₆ Ppt. (Grützner, Arch Pharm 1897, 235.

Aluminum phosphite.

Precipitate. (Rose, Pogg 9.39) Sl sol. in H₂O.

Ammonium phosphite, (NH₄)₂HFO₃+H₅O.
Very deliquescent, and sol. In H₂O (Rose,
Pogg 9.28.)
Sol in 2 pts. cold, and less hot H₄O. Insol.
in alcohol (Berzelius.)
Insol. in acetone. (Edimann, C. C 1899,
II 1014; Naumann, B 1904, 37.4328.)

Ammonium hydrogen phosphite, * (NH4H)HPO₅.

Very deliquescent, and sol. in H₂O. 1 pt. H₂O dissolves 1.71 pts salt at 0°; 19 pts. at 14.5°; and 2.60 pts. at 31° (Amat, C. R. 105, 809.)

Ammonium hydroxylamine phosphite, NH4(NH3OH)HPOs.

Sol, in H₂O and abs. alcohol. (Hofmann, Z anorg, 1898, 16, 466.) Ammonium magnesium phosphite, (NH₄)₂Mg₂(PHO₂)₄+16H₂O

Slightly sol. in H₂O. (Rammelsberg, Pogg. 131, 367)

Antimonyl phosphite, (SbO) II₂PO₃.

Very sol. in H₂O containing HCl. (Grützner, Arch Pharm. 1897, 235, 694.)

Barium phosphite, BaHPOs.

100 pts. H₂O dissolve 0.25 pt. (Ure.)
Very slightly sol in H₂O, and decomp. by
boiling H₂O. (Dulong)
Easily sol. in H₂O containing NH₄Cl.
(Wackenroder, A 41, 315.)

Sol in H₂PO₃+Aq or HCl+Aq. (Railton.)

Barium hydrogen phosphite, Ba₂H₂(HPO₃)₂+

SH₂O.

Easily sol in H₂O, but decomp. by boiling therewith. Insol in alcohol (Rammelsberg, Pogg. 132, 496.)

Barium dihydrogen phosphite, BaH₂(HPO₃)₂ + ¹/₂H₂O.

Easily sol in H₂O. (Rose, Pogg. 9. 215) +H₂O. Sol. in H₂O; decomp by boiling H₂O into a neutral insol, and an acid sol salt. (Wirtz, A 58. 66.)

+2H₂O · Easily sol in H₂O (Rammelsberg, Pogg. 132, 496.) Insol. in sloohol. (Wurtz.)

Bismuth phosphite, 2Bi₂O₃, 3P₂O₃. Insol in H₂O

B₁₂(HPO₁₎₁+3H₂O. Ppt (Guttzner, Arch Pharm. 1897, 235, 696.) Decomp by H.S. Not decomp. by KOH +Aq. (Vanino, J. pr. 1906, (2) 74, 151.)

Cadmium phosphite, CdHPO₂+3H₂O.
Put. (Rose, Popg. 9, 41)

Calcium phosphite, CaHPO₂+%₂H₂O.
Si sol in H₂O; the acueous solution is de-

comp by boiling +H₂O. Sol. in NH₄Cl+Aq. (Wackenroder, A. 41, 315)

Insol in alcohol.

Calcium hydrogen phosphite, CaH₂(HPO₈)₂+

H₂O.

Sol. in H₂O. Aqueous solution is decomp.

by alcohol (Wurtz, A ch (3) 7. 212)

Chromic phosphite.

Precipitate. Almost insol, in H₂O (Rose, Pogg 9. 40.)

Cobaltous phosphite, CoPHO₂+2H₂O Ppt. Si sol in H₂O. (Rose) Cupric phosphite, CuHPO2+2H3O. Pot. Insol. in II-O. (Wurtz, A. ch. (3) 16. 213)

Didymum phosphite, Dig(HPO2)2 Preemitate (Frerichs and Smith, A. 191, 331)

Glucinum phosphite.

Procupitate Insol in H₂O. (Rose, Pogg 9, 39 1

Iron (ferrous) phosphite, FeIIPO++xH-0. Ppt. Nearly insol in H.O. (Rose, Pogg 9. 35)

Iron (ferric) phosphite, basic, Fe₂(HPO₃)₂, Fe-(OH) (Grützner, Arch, Pharm. 1897, 235. 697.)

Fe₁(HPO₂)₅, Fe(OH)₁+5H₂O scopic (Berger, C. R. 1904, 138, 1500) Iron (ferric) phosphite, Fe₂(HPO₂)₂+9H₂O.

Pot. Sol. in non alum+Ao. (Rose)

Lanthanum phosphite, Lag(IIPO2)2. Precinitate. (Smith) Lead phosphite, basic, 4PbO, P.Oa+2HaO.

Ppt. (Rose, Pogg 9, 222) 3PhO, F₂O₁+H₂O Insol, in H₂O. Sol in warm dil, H₂PO₁+Λq, from which it is pptd by NH₄OH+Aq (Wurtz, A. ch (3) 16, 211)

Lead phosphite, PhHPO2.

Insol. in H₂O. Very sl. sol, in a solution of phosphorous ucid; easily sol in cold HNO₁ +Aq. (Wurts.)

Lead hydrogen phosphite, PbH4(PO2)2. Decomp. by H₂O (Amat. C. R. 110, 901.)

Lead pyrophosphite, PbH2P2O2-Gradually decomp, by H2O into H2PO2 and PbHPO₃ (Amat, C. R. 110, 903)

Lithium hydrogen phosphite, LiH,PO1, Very sol, in H₂O. (Amat, \. ch, (6) 24. 309.1

Lithium pyrophosphite, IA2H2P2O4. Very sol, in H₂O, (Amat, A, ch. 1891, (6)

24, 352) Magnesium phosphite, MgHPO1+3H,O.

Sl. sol. in H₂O. (Rose, Pogg. 9, 28.) Sol. in 400 pts. H₂O. (Berzelius.) +4H,O.

Magnesium purophosphite, Mg(H,PO,). Very sol. in H₂O (Amat, A. ch. 1891, (6) 24. 313.)

Manganous phosphite, MnHPOs+1/2H₂O. Difficultly sol, in H₂O, easily in MnCl₂ or MnSO4+1q (Rose, Pogg. 9. 33.)

Nickel phosphite, N1HPO, +31/4H₂O. Put SI sol in H₂O

Potassium phosphite, K₂HPO₃

Very deliquescent Very sol in H₂O. Insol. in alcohol. (Dulong.)

Potassium hydrogen phosphite, (KH)HPOs 1 pt H₂O dissolves about 1.72 pts. salt at 20° (Anant C. R. 106 1351.) K.HPO₅, 2H₂PO₂ Very sol in H₂O (Wurtz, A. 58. 63.) Sol in 3 pts. cold. and in less hot H₀O (Fourerov and Vauquelin)

Potassium pyrophosphite, K2H,P2O6 Very sol in H₂O (Amat. A. ch. (6) 24. 351.)

Sodium phosphite. basic. NRaHPOa. NaOH (?)

Not obtained in pure state (Zimmerman, 7. 290), = NasPO₄ (Wisheenus.) Does not exist (Amat) Sodium phosphete, Na.HPO.+5H.O

Deliquescent, and very sol in H₂O. Insol in alcohol Correct formula for Na₃PO₂ of Rose and Dulong.

Sodium hydrogen phosphite, (NaH)HPOs+ 21/3H O

0.56 pt. salt dissolves in 1 pt. H₂O at 0°; 0 66 pt. at 10°; 1 93 pts at 42.° (Amat, C. R. 106. 1351) Na₂H₄(HPO₈)₈+H₂O. Deliquescent in moist sir Sol in 2 pts. cold, and about the same amt hot H₂O Sl. sol in spirit (Four-

croy and Vauquelin.) Sodium purophosphite, Na₂H₂P₂O₄. Very sol, in H.O with gradual decomp, into Na₂HPO₂. (Amat)

Strontium phosphite, SrHPO.+116HoO. Difficultly sol, in H₂O. Aqueous solution decomp on heating into a sol, acid salt and an insol basic salt

Strontium hydrogen phosphite, SrH (PO2)2. Very sol in H.O. (Amat. A. ch. (6) 24, 312.)

Thallous hydrogen phosphite, TIH2POa Very sol. in H₂O. (Amat, A. ch (6) 24.310)

Thallous pyrophosphite, Tl2H2P2O3.

Deliquescent. Very sol, in H₂O (Amat.)

Tin (stannous) phosphite, SnHPO. Ppt. Sol in HCl+Ag. (Rose, Poeg 9.

45) Tin (stannic) phosphite, 2SnO₂, P₂O₂ Put. (Rose, Pogg. 9, 47.)

Titanium phosphite (?)

Precipitate (Rose, Pogg. 9, 47)

Uranyl phosphite, (UOa)aHa(HPOa)a+12HaO Prociditate (Rammelsberg Pogg. 132. 500)

Zinc phosphite, ZnHPO. Sol in H₂O (Rammelsberg, Pogg 132,

481) +21/4H₂O More easily sol in cold than warm H.O (Rammelsherg)

Zinc phosphite, acid, Zn.H.P.O.

Sol, in H₂O Sol in H₂O, (Rammelsberg, +2H₂O. Pogg 132, 498.) Zn₃H₆P₆O₁₃ Sol in H₂O +3H₂O Sol in H₂O (Rammelsberg) Zn2H2P5O14. Sol. in H2O.

+H.O Sol m H.O. (Rammelsberg.) Zirconium phosphite, $Zr(PO_3)_2 + H_2O$, Put Nearly insol, in dil. mineral acids (Hauser, Z anorg, 1913, 84, 92)

Phosphorous anhydride, PaOs. See Phosphorus trioxide.

Phosphorus, P.

(a) Ordinary white phosphorus Insol in H₂O, but slowly decomp thereby (G, K.); very sl. sol in H2O. (Berzelius and others') A pure aqueous solution containing 0 1 g. P in 500 cc. H₂O can be obtained by dissolvmg 0.1 g P in CS2 mixed with ether and hot alcohol; this solution is poured into 500 cc boiling H₂O free from air, and the boiling continued with stirring until the alcohol, ether and CS2 are boiled off. (Bokorny, Ch. Zig. 1896, **20.** 1022)

100 g H₃O sat with P contains 0 0003 g (Stich, C C 1903, I, 1291) Sol. with decomp in hot cone, HNOa+Aq

Decomp. by boiling caustic alkalies+Aq Easily sol in SCl2, especially if hot. (Wohler.

Sol. in sulphur phospludes. Largely sol in PCls.

Easily sol, in PCl. Sol. in PBr3. Sol in PSCl3, easily on warming, separating on cooling. (Serullas, A. ch. 1829, 42, 25.) Sol. in liquid SO, (Sestim, Bull Soc

1868, (2) 10. 226.) Sol. in hquid NH,. (Franklin, Am. Ch. J. 1898, 20, 828)

Sol. in S₂Cl₂ without foaming. (Nicolardot, C R. 1908, 147, 1304.) Sol. in PS₄Cl_s. (Gladstone, A 1850, 74.

Sol in 320 pts, cold alcohol of 0 799 sp. gr., and in 240 pts. of the same when warm Pptd from alcoholic solution by H2O (Büch-

ner) One grain P dissolves in 1 ounce also alcohol (Schacht)

Sol. in 20 pts. absolute ether at 20° and 240 pts ordinary ether at 20°. (Bucholz.) Sol in 80 nts, absolute other at 15.5°, and 240 pts. ordinary ether at 15.5° (Brugnatelli, A. ch. 24, 73)

Solubility of P₄ in 100 g, ether at t°.

t°	G phosphorus	Sp gr
0 5 8 10 15 18 20 23 25	0 4335 0 62 0.79 0 85 0 9 1 005 1 04 1 121 1 39 1.601	at 13° 0.7257 at 19° 0.7187 0 7283
28 30 33 35	1.75 1.8 1.9984	

(Christomanos, Z. anorg, 1905, 45, 136.)

Solubility of P4 in 100 g. benzene at to.

t°	G phosphorus	Sp gr
0	1.513	
5 8	1 99	
10	2 01	1
15	2 7	at 13° 0.8959
18	3 1	
20	3 21	at 19° 0 8912
23	2 31 2 4 2 7 3 1 3 21 3 3995 3 7 4 35	at 22° 0 8875
25	3.7	0 8861
28 30	4 35 4 601	
33	5.0	
35	5 17	
40	5 75	
45	6 105	
50	6.8	
55	7 315	
60	7 9 8 4	
65 70	8 898	
75	9 4	
81	10.027	

(Christomanos.)

Sol. to about 1% in acetic acid. (Vulpius, Arch. Pharm 1878, 213, 38.) 100 g. 96% acetic acid dissolve 0.105% P.

(Stich, Pharm Ztg. 1903, 48, 343.) Sol. m 0.05 pt. CS₂ (Böttger), 0.125 pt (Troppusdorf)

Alcohol ppts. P from CS₂ solution 1 pt CS₂ dissolves 17–18 pts P. (Vogel,

J B 1868, 140)

Solubility in CS, at to. (g. per 100 g. of solution.)

t ^e	G. P4	t°	G. P.	
-10 -7 5 -5 -3 5 -3 2	31.40 35.85 41.95 66.14 71.72	~2 5 0 0 +5 0 +10.0	75 00 81 27 86.30 89.80	

(Cohen and Inouye, Z. phys Ch. 1910, 72. 418.)

Very sol, in methylene iodude (Retgers, Z. anorg. 3. 343.)

Strong vinegar dissolves P. (Beudet.) Sol in considerable amount in stearic acid. (Vulpius, Arch Pharm. (3) 13. 38.) Sol. in ethyl chloride, benzoyl chloride,

stannic chloride, and in hound evanogen, SI, sol, in ethyl nitrite, and wood-spirit

Sl. sol, in acetone, with gradual decomposition.

Insol, in meotine, and conune

SI, sol in cold, more sol. in hot benzene. (Mansfield) Sol. in 14 pts. hot, and less in cold petro-

leum from Amiano. (Saussure) SI, sol, in "liquid paraffine" (Crismer, B.

17. 649.) Sl. sol, in warm essential oils, as oil of turpentine, and in the fatty oils.

Sol, in hot oil of conaiba, senarating out on Sol in hot oil of caraway, and mandarin

(Luca.) Sl. sol, in cold, more sol, in hot caoutchin,

depositing on cooling. Readily sol. in warm, less in cold styrene Sol in aniline, and quinoline (Hofmann.) Sl. sol, in cold creosote

Somewhat sol, in fusel oil. Easily sol, in valerance acid, and amyl

valerate. Sol. in hexyl alcohol, ethylene chloride, allyl sulphoeyanide, mercury methyl, chloroform, bromoform, warm chloral, acetic ether,

aldehyde, hot carodyl sulphide, and in cacodyl 100 g. oil of almonds sat with P contain 1.25 g. (Stich, C. C. 1903, I. 1291.) 100 g. oleic send sat, with P contain 1.06 g

(Stich.)

100 g. paraffine sat with P contain 1. g. (Stich.)

(b) Amorphous phosphorus. Insol in H.O. Insol in NH4OH+Aq. (Fluckiger.) Sol. in boiling KOH+Ao.

The statement of Burgess and Chapman, (Chem. Soc. 79, 1235) that red P is sol. in aqueous alcoholic alkalı is incorrect. Both

ordinary crystalline and amorphous red P are insol in aqueous alcoholic alkalı. (Michaelis, A 1902, 325. 367.) Insol. in liquid NH₂ (Hugot, A. ch 1900

(7) 21, 31); (Frankin, Am. Ch. J. 1898, 20, 828.1

Bright red variety is sol, in liquid NH, at ord, temp leaving a black residue. (Stoch, Böttcher and Lenger, B. 1909, 42, 2854.)

Red Amorphous. Sol. in S2Cl2 with foaming. (Nicolardot,

R 1908, 147. 1304.) Solubility of amorphous bright red P4 in PBr2 is diminished by long heating as follows

172° 1859 0.555 0 476 Instal concentration 0.374 Final concentration 0 397 Length of expt in hours 84 24 198° 218 0.592 0.476

Ordinary amorphous P₄ is sol. in PBr₅.

A sample prepared by heating bright red
amorphous P with 94.2% P dissolved by heating in PBrs as follows

0 106 % P 0 121 0.178hours 10 20 42

A finely pulverized commercial product containing 98.0% P: % P 0 92 0.116

hours 10 20 An ordinary commercial product with 98% P. % P 0.056 0 108 hours 10 42

(Buck.) 100 g. PBr₁ dissolve 0.2601 g. bright red phosphorus at 172°; 0 3634 g at 184° (Schenk, B. 1902, 35, 353.)

Insol. in KOH+Au. Cone. H2SO4 does not act upon it in the cold, but dissolves easily when hot.

Insol. in dil., easily sol, in conc. HNO.+ Aq with decomposition.

Much more sol m HNO.+Aq than ordi-

nary P. (Personne, C. R. 45. 115. Insol. in methylene modide (Retgers) Appreciably sol, in isobutyl alcohol.

(Svedberg.) Insol. in CS2, alcohol, ether, naphtha, ligroine, PCl., etc.

Sl. sol in boiling oil of turpentine and

other high-boiling liquids, with conversion Phosphorus bromonitride. into ordinary phosphorus. Insol in oil of turpentine even at 270°. (Colson, A. ch. 1908, (8) 14, 554.) (c) Crustallane. Insol, in, and not attacked by dil HNO3+Aq Sol. in CS:

Phosphorus nibromide, PBra

Decomposed by H₂O, slowly at 8°, but very rapidly at 25°. (Löwig, Pogg. 14, 485)
Sol. in liquid H₂S (Antony and Magri, Gazz. ch. it. 1905, 35. (1) 206.) Sol, in AlBra. (Isbekow, Z. anorg, 1913. 84. 27.) Sol. in ether, acetone, CHCl, C.H. and

CS₂. (Christomanos, Z, anorg 1904, 41, 287.) Phosphorus pentabromide, PBrs. Fumes on air; and is violently decomp by

Phosphorus tribromide ruthenium bromide,

Ru₂P₅Br₁₉ Decomp by boiling H₂O Slowly sol, in hot alcohol with decomp. Insol in benzene, CCl, ligroin and cold alcohol. (Strecker, B. 1909, 42, 1775)

Phosphorus thiophosphoryl bromide, PBrs. PSBr.

Decomp. by H₂O into PSBr₂. (Michaelis.)

Phosphorus tribromide ammonia, 3PBr₃, δNH. Slowly but completely sol with decomp, in H₄O. (Storer's Dict.)

Phosphorus pentabromide ammonia, PBrs. 9NH. (Besson, C. R. 111, 972.)

Phosphorus monobromotetrachloride, PBrCl4. Decomp. by H₂O. (Prinvault, C. R. 74. 868.)

Phosphorus dibromotrichloride, PCl2Br2. Very unstable. (Michaelis, B. 5, 9,)

Phosphorus tetrabromotrichloride, PCl.Br. Decomp. with H2O. (Geuther.)

Phosphorus heptabromodichloride, PCl₂Br₇. Very unstable, (Prinvault, C. R. 74, 868.)

Phosphorus octobromotrichloride, PClaBra Very easily decomp. (Michaelis, B. 5. 9.)

Phosphorus bromoffuoride, PF₂Br₂.

Decomp. violently with H4O. (Moissan, Bull. Soc. (2) 43. 2.)

See Nitrogen bromophosphide.

Phosphorus dichloride, PaCl4. Decomp by H₂O (Besson, C. R. 1910, 150, 103 h

Phosphorus trichloride, PCl3 Gradually decomp by H₂O 0.11 g. is sol in 100 cem liquid H₂S. (Antony, Gazz. ch. it 1905, 35 (1) 206)
Acted upon by liquid NH₂. (Franklin, Am Ch. J. 1898, 20, 828)

Miscible with CS2, C6H6, CHCl8, and ether Decomp with alcohol.

Phosphorus pentachloride, PCls.

Very deliquescent, and sol. in H₂O with violent decomp and evolution of heat Sol. in liquid HCl Acted upon by liquid NH4. Somewhat sol without decomp. in CS2. (Schiff, A. 102, 118. (Franklin, Am. Ch. J. 1898, 20, 828.) Sol. without decomp, in benzoyl chloride,

(Gerhardt) Sol in oil of turpentine with evolution of heat.

Monophosphorus platinous chloride, PCl₂, PtCl₂.

Deliquescent. Sol in H₂O with formation of chloroplatinophosphoric acid. Similarly decomp. by alcohol. Abundantly sol. in hot benzene, tolucne, chloroform, or carbon tetra-chloride, and crystallizes on cooling. (Schützenberger, Bull Soc. (2) 17. 482.)

Diphosphorus platinous chloride, 2PCla.

Decomp. by H₂O with formation of chloroplatinodiphosphoric acid. Similarly decomp. by alcohol. Sol. without decomp. in PCls, CCls, CHCls, CsHs, or CsHs. (Schutzenberger.)

Sol in propyl alcohol with formation of the propyl ether of platmochlorophosphorous acid and HCl. (Pomey, C. R. 104, 364.)

Phosphorus diplatinous chloride, PCls. 2PtCl.

Sol. in alcohol, with formation of ether PtCl₂)₂P(OC₂H₆)₄ (Cochin, C. R. 86.

Phosphorus platinuc chloride, PCl₂, PtCl₄. (Schutzenberger.)

Phosphorus pentachloride platinic chloride, PCl₅, PtCl₄, or (PCl₄)₂PtCl₅. Decomp. at once by HaO. (Baudrimont, A. ch. (4) 2, 47.)

Phosphorus pentachloride selenium tetrachloride, 2PCla, SeCla.

A. ch. (4) 2, 5,)

Phosphorus trichloride ruthenium chloride, RusPsClss.

Slowly decomp, by boiling H₂O Sol, in benzene and CHC

Sl. sol. in CCl4. Insol in ligion. (Strecker, B. 1909, 42, 1774.)

Phosphorus tellurium chloride, PCls, 2TeCl.

Very deliquescent Sol. in II-O. (Metzner, A. ch. 1898, (7) 15, 203.)

Phosphorus pentachloride stannic chloride, PCl., SnCl. Very deliquescent. Sol in much H₂O with

volution of heat, forming SnCl, HCl, and H2PO4, and soon separates out stannic phosphate. (Casselmann, A, 83, 257)

Phosphorus trichloride titanium chloride. PCl₂, TiCL (Bertrand, Bull Soc (2) 33, 565.)

Phosphorus pentachloride titanium chloride, PCl₅, TiCl₄

Deliquescent. Decomp. by H₂O and alcohol. Sol in ether. Sl sol, in PCl. (Tüttschew, A 141. 111) Completely sol, in dil. acids (Weber)

Phosphorus uranium pentachloride, PCls. Decomp with II-O.

Phosphorus pentachloride zirconium chloride, PCL, ZiCL

Decomp. by H2O with pptn. of Zr phosphate. (Paykull)

Phosphorus (richloride ammonia, PCl₃, 5NH₃. Insol as such in H₂O, but slowly decomp.

by boiling H₂O. More easily sol, with de-comp in acids. Sol. with decomp by boiling with KOH or NaOH+Au. (Berzelius.) Phosphorus pentachloride ammonia, PCl.,

5NH. Properties as PCl₂, 5NH₂. (Berzelius.)

PCl_b 8NH₃. Sl. decomp. on air. (Besson, C. R. 111, 972.)

Phosphorus pentachloride tungsten trioxide, 2PCl₃, WO₃(?). (Persoz and Bloch, C. R. 28, 389.)

Phosphorus chlorobromide.

See Phosphorus bromochloride.

Phosphorus chlorofluoride, PCl_{*}F_{*} Absorbed by H2O with decomp. Absorbed

by alcohol or ether (Poulenc, A ch. (6) 24. Sol, in ILO with decomp (Baudrimont, 555) Phosphorus chloroiodide, PCl.I.

Decomp by moist an or H2O. Sol, in CS. (Most. B 13, 2029.)

Phosphorus chloronitride.

See Nitrogen chlorophosphide.

Phosphorus traffuoride, PF., Decomp. slowly by H₂O. (Moissan, Bull. Soc (2) 43, 2.)

Rapidly absorbed by KOH or NaOH+Ao. slowly by BaO2H2, and K2CO2+Aq, Absorbed by absolute alcohol with decomp. (Mossan, C R 99.655.)

Phosphorus pentafluoride, PFs. Fumes on air. (Thorpe, A 182. 20.)

Phosphorus pentafluoride ammonia, 2PF. 5NH. (Moissan, C. R. 101, 1490.)

Phosphorus pentafluoride nitrogen peroxide. Decomp. by H₂O. (Tassel, C. R. 110, 1264)

Phosphorus fluobromide. See Phosphorus bromofluoride.

Phosphorus fluochloride. See Phosphorus chloroffuoride.

Phosphorus subjedde, P.I. Sol. in dil. HNO; and in alkalies+Aq. (Boulouch, C R. 1905, 141, 257.)

Phosphorus diiodide, P2I4 Decomp by H2O Sol in CS2. (Corenwinder, A. ch. (3) 30, 242.) 0.09 g. is sol. in 100 ccm. liquid H₂S (Antony, C C. 1905, I 1692.)

Phosphorus tritodide, PI: Very deliquescent. Decomp, in moist air and by H2O. (Corenwinder, A ch. (3) 30.

Very sol, in CS, Phosphorus pentaiodide, PI, (?). (Hampton, C. N. 42, 180.)

Phosphorus iodosulphide. See Phosphorus sulphoiodide.

Phosphorus nitride, PaNa. Very slightly decomp by long boiling with H₂O

Completely msol. in any solvent (Stock, B 1903, 36, 317.)

Phosphorus suboxide, P.O.

Unchanged in dry, gradually oxidized in moist air Insol. in H₂O, alcohol, ether, and oils, not acted on by HCl+Aq; oxidized by HNO₄ or H₂SO₄. (Marchand, J. p. 13. 442.) Sl sol in H₂O. (le Verrier, A. 27. 167.)

Forms hydrate P₄O, 2H₂O, which gives up its H₂O when dried

Two modifications (a) decomp, slowly by

180 moduleations (a) decomp. Is stowy by H₂O or alkalies, (b) not decomp. by H₂O or alkalies. (Reinitzer and Goldschmidt, B. 13. 847) Is oxyphosphuretted hydrogen (?).

P₄H(OH) (Franke, J. pr. (2) 35. 341.)

----- H₃P₅O.

Insol. in all solvents Decomp. by H₂O Not attacked by non-oxidizing acids. Decomp. by dil alkalies (Gautier, C. R. 76.

---- P.HO.

Insol, in nearly all substances. Not attacked by dilute auds, oxadized by ordinary li HNOs, and oon H.5O4 at 200°. Attacked by very dil alkaline solutions. Perhaps identical with phosphorus suboxide P₄O (Gauter, C. R. 76. 49)

Phosphorus oxide, P2O

Decomp by heating with H₂O at 100°. (Besson, C R. 1897, **124**. 764)

Phosphorus trioxide, P₄O₄(formerly P₂O₃), Deliquescent, but very slowly dissolved by cold H₂O to form H₃PO₃. Violently decomp by hot H₂O or alcohol

Sol without decomp. in ether, carbon disulphide, benzene, or chloroform. (Thorpe and Tutton. Chem Soc. 57. 545.)

Phosphorus tetroxide, P2O4.

Very deliquescent. Sol. with evolution of heat in H₂O. (Thorpe and Fulton, Chem. Soc. 49, 833.)

Phosphorus pentoxide, P2O5.

Very deliquescent. Sol. in H₂O with great evolution of heat, forming H₃PO₄. Insol. in liquid NH₃ (Franklin, Am Ch J. 1898, **20**, 828.)

Insol. in acetone (Eidmann, C. C. 1899, (I. 1014); (Naumann, B 1904, 37, 4329.)

Phosphorus sulphur oxide, P₂O₅, 3SO₄ = (PO)₂(SO₄)₂(phosphoryl sulphate) (?). Decomp. by H₂O. Sol in cold, more sol. in warm SO₂. (Weber, B. **20**, 86.)

Phosphorus oxy-compounds.

See under Phosphoryl compounds.

Phosphorus oxysulphide.

See Phosphorus sulphoxide.

Phosphorus semiselenide, P.Se.

Decomp. with H₂O. Insol. in cold, decomp. by boiling KOH+Aq. Insol in, but apparently decomp. by alcohol and ether. Easily sol. in CS₂. (Habn, J. pr. 93, 430.)

Phosphorus monoselenide, P.Se.

Stable in dry, decomp. in moist air and by H₂O. Insol. in alcohol and ether. Decomp. by boiling KOH+Aq CS₂ dissolves out P. (Hahn, J. pr. 93, 430)

Sl sol. in CS₁. (Gore, Phil. Mag. (4) 30.

Phosphorous sesquiselenide, P₄Se₃.
Sol in CCl₄: sl. sol, in CS₂. (Meyer, Z.

anorg. 1902, 30. 258) Phosphorus traselenide. P-Sea

Decomp. by boiling H_2O and slowly in moist air. Easily sol in cold KOH+Aq, less easily in M_2CO_a+Aq . Insol in alcohol, ether, and CS_a . (Hahn, J. pi. 93. 430.)

Phosphorus pentaselenide, P₂Se₆.

Slowly decomp. in moist an or by H₂O, easily by KOH+Aq or alcohol Insol. in CS₂. Sol. in CCl₄. (Hahn, J. pr. 93, 430.)

Phosphorus selenides with M₂Se. See M phosphoselenide, under M.

Phosphorus semisulphide, P4S(?).

1. Laquad. Not decomp, by, and nsol, m boiled H₂O. Insol. na sicobal and ether. Sl. sol in fasts and volatile oils; decomp, by alkalies Dissolves P on warming, with separation on cooling. Sol in CS₂. 2. Red modification. Not attacked at first by HNO₂+Aq (sp. gr. 122), but after a time is attacked with the createst volentee.

Weak acids attack only when hot (Berzehus, A 46, 129)
Existence is doubtful. (Schulze, B 13. 1862: Isambert, C R, 96, 1628.)

Phosphorus monosulphide, P:S(?)

1. Ordinary. Same properties as phosphorus semisulphide, 1.
2. Red modification. Unchanged by air,
H₂O, or alcohol. Decomp. by conc. KOH+

Aq, not by dilute. Sl. sol m NH₂OH+Aq. (Berzelius, A. 46, 129.)

Existence is doubtful (Schulze; Isam-

Does not exist (Helff, Z. phys. Ch 12. 206)

Phosphorus sesquisulphide, P4S2.

Not attacked by cold, slowly by hot H₂O. Cold KOH+Aq dissolves with decomp, Oxidized by HNOs and agua regia. Sol. in onthing and ether with decomp. Sol. in CS₂ (100 pts CS₂ dissolve 60 pts. P,S₃), PCl₃, and PSCl₄, and in K₂S or Na₂S+Aq. (Lemonne, Bull. Soc. (2) 1, 407.)

Very sol. in CS₂. (Rebs, A. 246, 367.) Decomp. by dil. and cone. KOH+Aq. 1 pt. P₄S₂ is sol, m 9 pts. CS₂ at-20°, m 3.7 pts. CS₅ at 0°; m 1 pt CS₅ at 17°, m 40 pts. benzene at 17°, m 9 pts. benzene at 80°; in 32 pts. toluene at 17° in 6.5 pts. toluene at 111° (Stock R. 1010 43 15°). 111°. (Stock, B. 1910, 43, 156.

Phosphorus trasulphide, PaSz.

Decomp by water. (Kekulé, A. 90. 310) Sol., in M₂CO₃+Aq with separation of S. Easily sol in KOH, NaOH, NH₂OH+Aq (Berzelus, A. 46, 129.)

Sol. in alcohol and ether. (Lemoinc) Correct formula is P₄S₆ (Isambert, C. R. 102. 1386.) Extremely sl. sol. in CS₂ (Rebs. A 246.

Existence doubtful. (Helff, Z. phys Ch. 12. 210.)

Phosphorus sulphide, PaS1.

Sl. sol m CS₂ (Mat, A. 265, 192.) Slowly decomp, by cold, rapidly by hot H₂O.

Sol, in cold alkalies 1 pt. is sol. in 3500 pts. CS₂ at 17°; in 20,000 pts at 0° (Stock, B 1910, **43**, 416)

Phosphorus disulphide, P₂S₀ (formerly P₂S₄) Almost insol in CS₂. (Helff.)

Phosphorus pentasulphide, PoSs

Very deliquescent. Decomp. by H₂O. Very sol. in KOH, NaOH, NH₄OH+Aq. Sol, in M2CO3+Aq with separation of S at low temp. Decomposes alcohol, acetic acid, etc. (Kekulé, A. 106. 331.) Sol, in CS₂. (Isambert, C. R. 102. 1386) Not very sol. in CS₃. (Rebs, A. 246. 367)

Mpt., 290°; bpt , 513-515° at 760 mm. Decomp. by H_1O .

Easily sol. in warm NaOH+Aq. 1 pt. 18 sol. in 450 pts. CS2 at room temp.; ; in 1200 pts, at -20°. (Stock, in 550 pts. at 0°

B. 1910, 43, 1225.) Ordinary form. Sol, m 195 pts. boiling CS₁,

New form. Sol. in 32 pts. CS₂. (Stock, B. 1905, 38.

Phosphorus persulphide, P2S1, (?), Decomp. by H₂O, alkalies, etc. Consists

of S, and mechanically united P. (Ramme, B. 12. 941.)

Phosphorus sulphides with M2S. See M Phosphosulphide, under M. Phosphorus zinc sulphide, ZnP₃S₂. Sol. in HCl+Aq with separation of PaS (?). (Berzelius, A. 46, 150)

Phosphorus trisulphide ammonia, P2S2, 2NH2. Decomp. by H_sO. (Bineau.)

Phosphorus pentasulphide ammonia,

P.S., 6NH. Sol, in liquid NHz. (Stock, B. 1903. 36.

P.S. 7NHs. (Stock.) Phosphorus sulphobromide.

See Thiophosphoryl bromide.

Phosphorus sulphochloride. See Thiophosphoryl chloride.

Phosphorus sulphoiodide, P₂S₂I.

St. attacked by cold, rapidly by hot H2O; violently decomp by fuming HNO2. Easily sol. in CS2. Sl. sol in CoHo or CHCl2, and still less in other or absolute alcohol (Ouvrard, C. R. 115, 1301) P₂S₂I₂. Easily sol in CS₂. More easily

than P.S.I. and less than PI. (Ouvrard, A. ch. 1894, (7) 2. 224)

P₄SI₄ Easily decomp. (Ouvrard.) P₄S₃I₂. Insol. in H₄O; sol. in warm ether. Sl. sol. in benzene, CHCl₃ and glacial acetic acid; sol. in toluené and xylene. (Wolter, Ch.

Ztg. 1907, 31, 640.) Easily sol. in CS2. Sl. sol. in benzene, ether, absolute alcohol and CHCl., (Ouvrard, C. R. 1892, 115, 1301.)

Phosphorus sulphoxide, P4O6S4 Deliquescent. Easily sol. in H2O with de-

comp. Sol. in 2 pts CS2 without decomp. Sol. in benzene with decomp. (Thorpe and Tutton, Chem. Soc. 59. 1019.)

P₁O₂S₁. Slowly decomp. by H₂O. Violently attacked by fuming HNO₂. (Besson, C. R. 1897, 124, 152.) P₁S₂O₄. Deliquescent; sol. in H₂O with P₄S₄O₄. Deliquescent; sol. in H₂O with decomp.; insol. in most solvents. (Stock, B. 1913, 46, 1382.)

Phosphoryl triamide, PO(NH2)2.

Insol in boiling H₂O, KOH+Aq, or dil. acids Decomp by long boiling with HCl or HNO₂+Aq. More easily decomp. with aqua regia. Easily sol. in warm H2SO4 or mtrosulphuric acid. (Schiff, A. 101, 300.) Does not exist. (Gladstone; Mente, A. 248, 238,)

Phosphoryl bromide, POBrs.

Not miscible with H2O, but gradually decomp. in contact with it. Sol. in H₂SO₄, ether, oil of turpentine (Gladstone, Phil. Mag. (3) 35. 345); in CHCl₄, CS₂ (Baudrimont. Bull. Soc. 1861, 118).

Easily sol in AsBr. (Walden, Z anorg. 1902, 29, 374) Sol. in CCl., and in CaHa (Oddo, Chem. Soc. 1900, 78. (2) 75)

Phosphoryl bromide sulphide. See Thiophosphoryl bromide.

Phosphoryl bromochloride, POCI-Br. Decomp by H₂O (Menschutkin, A. 139. 343.)

Phosphoryl dibromochloride, POCIBr. Decomp. by H.O. (Gouther, Jena Zeit, 10. 130)

Phosphoryl chloride, POCI.

Very hygroscopic. Sol, in H₂O with decomp. Insol in most solvents. Sol in PCl. comp Insol in most solvents Sol in PCl₁. (Besson, C. R. 1897, 125, 772) POCl₂. Decomp by H₂O. Not acted on by liquid CO₁, P, PH₃, CS₃, I, Br, Cl, etc. Sol. in CCl₄, CH₄, CS₄, CHCl₄ and other. (Oddo, Gazz. ch. it. 1899, 29. (2) 318; Chem Soc. 1900, 78 (2) 74.)

Phosphoryl boron chloride, POCl3, BCl3. See Boron phosphoryl chloride.

Phosphoryl stannous chloride, POCla, SnCla, Deliquescent, Decomp by H₂O (Casselmann, A. 91, 242.)

Phosphoryl stannic chloride, POCl₂, SnCl₄. Deliquescent, Decomp. by H₂O, (Casselmann.)

Phosphoryl titanium chloride, POCls, TiCls, Deliquescent, and decomp. by H2O (Weber, Pogg 132, 453.)

Pyrophosphoryl chloride, PrOaCla.

Decomp. violently with H.O. (Geuther and Michaelis, B. 4. 766)

Very sol. in H₂O with decomp.; very unstable. (Besson, C. R. 1897, 124. 1100.)

Metaphosphoryl chloride, PO2Cl Decomp. by H2O. (Gustavson.) Does not exist. (Michaelis.)

Phosphoryl fluoride, POF. Absorbed and decomp, at once by H₂O or alcohol. (Moissan, C. R. 102, 1245.)

Phosphoryl imidoamide, $PN_2H_3O = PO(NH)NH_2$.

Insol. in, H2O; gradually decomp by boiling with H₂O, more rapidly in presence of KOH Insol. in boiling cone. HCl+Aq. Insol. in cold, decomp. by hot H₂SO₄. Moderately 4(NH₄),O, dil. H2SO4+Aq dissolves without evolution | H2O without decomp. (Weinland.)

of gas. Insol in boiling nitric or nitrosulphuric acid. (Gerbardt, A ch. (3) 20, 255.) Insol in alcohol, oil of turpentine, etc.

Phosphoryl iodide, P.I.O. (?) Sol in H₂O, alcohol, and ether. (Burton, Am. Ch. J 3. 280.) PO₂I₄. (Burton.)

Phosphoryl nitride, PON Insol in H₂O. acids, or alkalies. (Gladstone, Chem Soc 2, 121.)

Phosphoryl chlorosulphide, P2O2SCl4. Slowly decomp, in contact with HaO, (Besson, C. R. 1897, 124, 153.)

Phosphoryl thio-compounds. See Thiophosphoryl compounds.

Phosphoselenic acid. See Selenophosphoric acid.

Phosphoselenide, M. See under M.

Phosphosilicic acid. See Silicophosphoric acid.

Phosphosilicosovanadicotungstic acid.

Ammonium phosphosilicosovanadicotungstate. Exact formula not known. (E. F. Smith, J. Am. Chem. Soc. 1903, 25, 1225)

Phosphosilicovanadic acid, 3SiO₂, 2V₂O₃, 2P₂O₄+6H₂O. Sol. in H.O. (Berzelius)

Phosphostannosovanadicotungstic acid.

Ammonium phosphostannosovanadicotungctote.

Exact formula not known. (E. F. Smith, J Am. Chem Soc. 1903, 25, 1226.)

Phosphosulphide, M. See under M.

Phosphosulphuric anhydride, P2Os, 3SOs. Very easily decomp. (Weber, B. 19, 3190.)

Phosphotelluric acid.

Ammonium phosphotellurate, 2(NH4)2O, PaOs. TeOa+4HaO. Easily sol. in H₄O. (Weinland, Z. anorg.

4(NH₄)₂O, 3P₂O₅, 2T₆O₂+11H₂O. Sol. in

Potassium TeO2	phosphotellurate,	1 5K ₂ O,	$\mathrm{P_2O_{\mathit{b_1}}}$	
+17.5 H ₂ O Very sol. in H ₂ O				

Rubidium phosphotellurate, 1.5Rb₂O, P₂O₅, TeO1+4.5H2O

Ppt. (Weinland.)

Sodium phosphotellurate, 2Na₂O, P₂O₅, 2TeO₃+9H₂O. Difficultly sol in cold H₂O. (Weinland)

Phosphothorosovanadicotunstic acid.

Ammonium phosphothorosovanadicotungstate. Exact formula not known. (E. F. Smith, J. Am. Chem. Soc 1903, 25. 1226.)

Phosphotitanosovanadicotunstic acid.

Ammonium phosphotitanosovanadicotungstate. Formula not known (E. F. Smith, J. Am.

Phosphotungstic acid, PaO1, 12WOa+

Chem. Soc. 1903, 25, 1226)

42H₂O

Not efflorescent. Sol. in H₂O, alcohol, and ether. (Péchard, C R 110. 754.) P₂O₆, 16WO₂+69H₂O. Very efflorescent in H₂O, alcohol, and ether (Péchard,

C R 109. 301.) +xH₂O = H₃PW₅O₂₀+xH₂O (a-phospholuteotungstic acid). Known only in aqueous solution. (Kehrmann, B. 20, 1808.)

 $+48H_2O = H_2PW_3O_{28} + 16H_2O$ (a-anhydrophospholuteotungstic acid). Sol, in its crystal II.O by warmth of the hand; sol, in less than

1/a pt. H2O. (Kehrmann.) Correct composition is represented by H₃PW₃O₃₁+9H₂O (Kehrmann, Z. anorg. 1

422) P₂O₅, 20WO₃+8H₂O (Gibbs, B. **10**, 1386) Very efflorescent.

 $+19H_2O = H_{11}PW_{10}O_{28} + 8H_2O$. H_2O . (Scheibler, B. 5. 801.) Sol. in

+50, and 62H₂O Very efflorescent. (Péchard, C. R. 109. 301.)
3II₂O, P₂O₃, 21WO₃+30II₄O. Efflorescent. Sol. in H₂O in nearly every proportion Efflores-

P₂O₅, 22WO₁+28H₂O=H₅F w₁₁O₄₂T 18H₂O. Efflorescent. (Scheibler, B 5, 801) 22WO1+28H2O=H4PW11O43+ Composition is 6H₂O, 22WO₄, P₂O₄+ 45H₂O. (Gibbs.)

H₃PO₄, 12WO₁+18H₂O, or P₂O₅, 24WO₁+39H₂O. Sol. in H₂O, alcohol and ether. (Soboleff, Z. anorg. 1890, 12, 18)

P₂O₄, 24WO₄+ 24WO₄+34H₂O. 24WO1+40H2O=6H2O, P2O1 Very efflorescent, Sol, in H₂O (Gibbs.)

+45H₂O.

Solubility in H ₂ O at t°				
t°	100 ccm H ₂ O dis- solve g, of the eryst need	Sp gr of the		
0	16 206	1.1890		

1 6913

49 718 43 53 64 1 8264 92 86.75 25813(Soboleff, Z. anorg, 1896, 12, 31.)

Solubility in ether at to. 100 com other dissolves g of the cryst, and

81 196 7 8 85 327 18 2 96 017 24 2 101 348

(Soboleff)

+53H₂O =6H₂O, P₂O₅, 24WO₃+47H₂O Sol in H₂O (Gibbs) Sol in ether If an equal vol of ether is

placed above a layer of cone aqueous solution of acid, oily drops form between the two layers, which sink to bottom, forming a third layer. The sp. gr. of the latter is 1.525 The crystallized acid dissolved in smallest amt. ether forms an oil of sp. gr = 2 083. Ethereal solution is miscible with alcohol, and also with a large quantity of H₂O. (Drechsel, B. 20 1452)

+61H₂O. Sol in II2O. (Gibbs, Proc. Am Acad, 16, 116)

Aluminum ammonium phosphotungstate. See Aluminicophosphotungstate, ammonium.

Ammonium phosphotungstate, 3(NH₄)2O, P2Os, 7WOs+Aq. SI sol. in cold H2O without decomp. De-

son, in cond 1120 wichout decomp, Decomp, but H₂O. (Kehrmann, Z anorg. 1892, 1. 488) 2(NH₄)₂O, P₂O₆, 12WO₅+5H₂O. Insol. in cold H₂O. (Péchard, C. R. 110, 754.)

6(NH₄)₄O, P₂O₄, 16WO₄+10H₂O, sol in hot H.O. (Pechard)

 $5(NH_4)_4O_1$ $P_2O_{5_1}$ $16WO_3+xH_2O = (NH_4)_5PW_5O_{29}+xH_2O$. (Ammonium a-phospholuteotungstate). Sl. sol, in H.O. (Kehr-

3(NH4)2O, P2O5, 16WO6+16H2O= NH₄)₂PW₈O₂₈+8H₂O. (Ammonium 4-an-

hydrophospholuteotungstate) Efflorescent. Easily sol. in H2O. (Kehrmann) 5(NH₄)₂O, P₂O₅, 17WO₂+16H₂O sl, sol in cold H₂O (Kehrmann, Z Very (Kehrmann, Z. anorg,

1894, 6. 387.) 3(NH₄)₂O, P₂O₅, 18WO₃+14H₂O. (Phospholutestungstate.) (Kehrmann, Z. anorg. 1893, 4, 140.)

3(NH₄)₂O, P₂O₅, 21WO₃+τH₂O Rather sl. sol. in cold, easily in hot H₂O and alcohol. Insol in sat NH₄Cl+Aq. (Kehrmann and Fremkel, B. 25, 1972 3(NH₄)₄O, 3H₂O, P₂O₅, 22WO₂+18H₂O Sl. sol. in cold H₂O (Gibbs)

3(NH4)2O, 3H2O, P2O5, 24WO4+26H2O Very al sol even in hot HaO (Gibbs, Proc Am. Acad. 16, 122)

Ammonium barium a-anhydrophospholuteotungstate, NH₄BaPW₈O₂₈+xH₂O= (NH₄)₂O, 2BaO, P₂O₅, 16WO₄+xH₂O. Sol. m H₂O, (Kehrmann.)

Barium phosphotungstate, 2BaO, P2Os, 12WO1+15H2O.

Very efflorescent Sol in H₂O; insol. in alcohol. (Péchard, C R 110. 754.) 3BaO, P_2O_3 , $16WO_3+xH_2O=Ba_3(PW_4O_{23})$ (Barium a-anhydrophospholuteo-+xH₂0. Not efflorescent. Quite diffitungstate). cultly sol, in H2O. (Kehrmann.)

2BaO, P₂O₅, 16WO₃+10H₂O. Efflorescent

ZBaO, FJOi, 10WO₃+10H₂O: Enhorscent (Péchard, A. ch. (6) 22, 240) 2BaO, 6H₂O, P₂O₃, 20WO₃+24H₂O. Sol in H₂O. (clibbs, B 10, 1386.) 6BaO, 2H₂O, P₂O₃, 20WO₃+46H₂O. Sol in H₂O. (Gibbs, Proc Am Acad 16, 126.) 7BaO, P₂O₆, 22WO₃+59H₂O. Sol. in H₂O,

(Sprenger, J pr (2) 22, 418.) +53H₂O (Kehrmann, B 24, 2335) 4BaO, 2H₂O, P₂O₄, 22WO₃+39H₂O Sol.

in H₂O without decomp. (Gibbs.) BaO, P2Os, 24WOs+59H2O. Sol in H2O. (Sprenger)

2BaO, P₂O₅, 24WO₃+59H₂O. Sol in H₂O (Sprenger 3BaO, P2O1, 24WO1+46H2O=3BaO, 3H2O, P₂O₄, 24WO₂+43H₂O Eastly sol in hot H₂O. 3BaO, P2Os, 24WO2+48H2O Sol in H2O.

(Soboleff, Z. anorg 1896, 12. 18.) +58H₂O Sol in H₂O. (Sprenger Efflorescent Sl. sol. in dil. BaCl₂+Aq (Kehrmann, Z anorg, 1, 423.)

Barium potassium phosphotungstate, 5BaO, 2K2O, P2Oi, 22WO1+48H2O.

Sol. in H₂O (Kchrmann and Freinkel, B. 25, 1968.)

Barium silver phosphotungstate, 4BaO, 3 Ag₂O, P₂O₅, 22WO₂+34H₂O Very sl sol, in H₂O. (Kehrmann and Fremkel, B 25, 1966.)

Barium sodium phosphotungstate, 2BaO. Na₂O, P₂O₆, 24WO₅+46H₂O.

Sol. in H₂O, forming cloudy liquid, which clears up. Solution in HCl is not cloudy. (Brandhorst and Kraut, A. 249. 380.)

Calcium phosphotungstate, CaO, 5H2O, 16WOs, P.Os+3H.O.

Readily sol in H₂O, (Gibbs, Proc. Am. Acad 16, 130.) 2CaO, P₂O₅, 12WO₅+19H₂O Efflorescent. Insol in alcohol. (Péchard, C. R. 110. 2CaO, P₂O, 20WO₂+22H₂O. cent (Péchard, A ch. (6) **22**. 233.) Efflores-

Cadmium phosphotungstate, 2CdO, P2O4, 12WO₂+13H₂O

Sl efflorescent Very sol, in H₀O (P6chard, C. R. 110. 754)

Cupric phosphotungstate, 3CuO, 24WO2, P.O. +58H.O.

Sol in H₂O (Sprenger, J pr. (2) 22. 418.) 2CuO, P₂O₄, 12WO₂+11H₂O. Very efflores-cent. (Péchard, C R 110. 754.) 2CuO, P₂O₅, 20WO₂+13R₂O Efflores-cent. (Péchard, A. ch. (6) 22. 235.)

Lead phosphotungstate, 2PbO, PrOs, 12WO: +6H₂O

Insol, in cold, sol in boiling H2O. (P6chard, C R 110, 754.) 2PbO, PrOs, 20WOz+6HrO Sol. in boiling H₂O. (Péchard, A. ch (6) 22. 236.)

Lithium phosphotungstate, Li-O, PoOs. 12WO+21H-0. Sol in H.O. (Péchard, C R 110, 754.)

Magnesium phosphotungstate, 2MgO, PaOs, 12WO, Sl efflorescent. (Péchard, C R. 110. 754.) 2MgO, P2Os, 20WO2+19H2O SI efflores-

cent. (Péchard, A. ch. (6) 22, 234) Mercurous phosphotungstate.

Insol. in dil HNO++Aq. (Péchard, C. R. 110. 754.)

Potassium phosphotungstate, K.O. P.O. 12WO3+9H2O. Insol. in cold. sl sol. in hot H₂O (Péchard, R. 110, 754) 5K₂O, P₂O₆, 16WO₃+xH₂O=K₅PW₅O₂₀+

 zH_1O . (Potassium α -phospholuteotungstate). Very sl. sol in cold, more easily in hot H₂O. in cold dil HNO2+Aq (Kehrmann.) 3K₂O, P₂O₅, 16WO₃+16H₂O = K₃PW₈O₂ (Potassium a-anhydrophospho-+8H₂O. luteotungstate). Efflorescent. Easily sol. m H₂O. (Kehrmann 5K₂O, P₂O₂, 17WO₂+21 or 22H₂O. Sl. sol. in cold H₂O. (Kehrmann, Z. anorg.

1894, 6, 387 3K₂O, P₂O₄, 18WO₂+28H₂O. (Du and Pearce, Bull Soc. Min 1895, 18, 42 Dupare K₂O, 5H₂O, P₂O₅, 18WO₀+14H₂O Very sl. sol in H₂O (Gibbs.)

6K2O, P2Os, 18WOs+30H2O, and 23H2O.

The 23H₂O salt is more sol, in H₂O than the 30H O salt (Gibbs.) 7K₂O, H₂O, P₂O₅, 20WO₂+27H₂O. Sol m H₂O. (Gibbs, B 10, 1386) K₂O, P₂O₃, 20WO₂+5H₂O. Nearly msol m H₂O. (Péchard, A. ch. (6) **22**, 231.) 8K₂O, P₃O₅, 20WO₂+18H₂O. Sl. sol. m

(Gibbs) 3K₂O, P₂O₆, 21WO₈+31H₂O. Easily sol. in cold H₂O or alcohol. Much less sol in very dil. HCl+Aq or KCl+Aq. Decomp. by boil-ing H₂O. (Kehrmann and Freinkel, B. 25.

1971.) 2K₂O, 4H₂O, P₂O₄, 22WO₂+2H₄O Very sl. sol. in H₂O. (Gibbs) 7K₂O, P₄O₆, 22WO₂+31H₂O Easily sol

in cold or hot H2O. Insol in alcohol (Kehrmann, B 25. 1966.) 3K2O, 3H2O, P2Os, 24WOs+8, and 14H2O Sol in a large amount of H₂O with partial decomp. (Gibbs, Proc. Am. Acad 16, 120.) Practically insol. in H2O. Easily sol. in NH₂OH, alkalies, or alkali carbonates+Aq. (Kehrmann, B. 24, 2329) 6K₂O, P₂O₅, 24WO₃+18H₂O. Sol. in H₂O. (Gibbs, Proc Am. Acad 15, 1.)

Potassium lead a-phospholuteotungstate. Sl. sol. in H2O. (Kehrmann.)

Silver phosphotungstate, Ag₂O, P₂O₅, 12WO₈ +8H₂O. Ppt Insol in H₂O. (Péchard, C. R. 110, 754.)

 $5\text{Ag}_2\text{O}$, $P_2\text{O}_5$, $16\text{WO}_2+x\text{H}_2\text{O} = \text{Ag}_5\text{PW}_6\text{O}_{29}$ $x\text{H}_2\text{O}$ (Silver a-phospholuteotungstate). -xHO Ppt. (Kehrmann.) 3Ag2O, P2O3, 16WO3+16H2O=Ag2PW4O3 +8H₂O (Silver α-anhydrophospholuteo-tungstate). Easily sol in H₂O. (Kehrmann.) Ag₂O, 24WO₃, P₂O₆+60H₂O. Insol. in H.O. 3Ag₂O, 24WO₄, P₂O₄+58H₂O. Insol. in

H₂O. (Sprenger, J. pr. (2) 22. 418.)

Sodium phosphotungstate, 3Na₂O, P₂O₅, 7WO₂+AQ, Sol in H₂O, (Kehrmann, Z. anorg. 1, 437.) 5Na₂O, 11H₄O, 2P₂O₄, 12WO₃+26H₂O = Na₅H₁₁P₂W₅O₅₁+13H₂O '(?). (Scheibler, B 5. 801.) 2Na₂O, P₂O₅, 12WO₃+18H₂O. Sol. H₄O. Insol. in alcohol. (Pechard, C R. 110.

5Na₂O, 14WO₃, 2P₂O₆+42H₂O. Easily sol. in H₂O. (Gibbs.) Na₂O, P₂O₄, 20WO₄, 2H₂O+19H₂O. Sol. in H₂O. (Gibbs, Am. Ch. J. 1895, 17, 183.) Na₁O, P₂O₄, 20WO₁+23H₂O = Na₂O, 7H₂O, P₂O₅, 20WO₁+16H₅O. Easily sol. in H₂O. (Gibbs.)

+25H₂O. Sl. efflorescent; very soi. m H₂O; insoi. in alcohol. (Péchard, A. ch. (6) 2Na₂O, P₂O₃, 20WO₂+10H₄O. Sol. in H₂O; insol. in alcohol. (Péchard.)

+30H2O, (P.) 3Na₂O, P₂O₅, 20WO₈+32H₂O As above, 2Na₂O, P₂O₄, 22WO₃+9H₂O. Very sl. sol. ın H₂O, (Gıbbs.) 3Na₂O, P₂O_b, 24WO₃+22H₂O. Sol. in H₂O. (Brandhorst and Kraut, A **249**, 379) +30H₂O. Sol. in H₂O. (Soboleff, Z anorg 1896, 12. 18.) +42H₂O

Solubility in H ₂ O at t ² .				
t°	100 ccm. H ₂ O dissolve g of the cryst salt			
0 22 93	22 04 59 65 98 184			

(Soboleff, Z anorg. 1896, 12, 31.)

2Na₂O, 4H₂O, 24WO₃, P₂O₅+23H₂O, Readily sol. in H₂O. (Gabbs, Proc. Am. Acad. 16. 118.) Sp. gr at 20° of solutions of 2Na₂O, 4H₂O.

P2O4, 24WO2+23H2O containing 31.13% salt, 10.22 20 94 1.085 1 190 1.316 42.61 64.11% salt. 52921.496 1.702 2.001 or, by calculation, a=sp. gr. if % is crystal-lized salt, b=sp gr if % is anhydrous salt:

5 15 25% salt, 1.237 10 a 1040 1.084 1.131 1.181 b 1.044 1.092 1.1431 199 1.262 30 35 40 45 50% salt, a 1299 1.370 1 449

b 1 333 1 414 1.507 1.613 64% salt. 55 60 a 1754 1.884 1.998

b 1.872 (Brandhorst and Kraut, A. 249, 377.)

1.538 1.640

Strontium phosphotungstate, 2SrO, P₂O₄, 12WO₂+17H₂O. Sol. in H₂O Insol. m alcohol. (Péchard, C. R. 110, 754)

Thallium phosphotungstate, Tl2O, P2Os, 12WO+4H-0 Ppt. (Péchard, C. R. 110, 754.)

Zinc phosphotungstate, 2ZnO, P2Os, 12WOs+ 7H,0

Efflorescent. (Péchard, C. R. 110, 754.)

Monometaphosphotungstic acid.

Ammonium monometaphosphotungstate, (NH.)4O, 2NH.PO, 18WOs+11H2O. Sl. sol, in cold HaO.

Potessium monometaphosphotungstate, 3K2O, 2KPO2, 24WO2+20H2O. Very al sol in H₂O. (Gibbs, Am Ch J. 7. 319)

Orthometaphosphotungstic acid.

Potassium sodium orthometaphosphotung state, 2K2O, 4Na2O, 6NaPOs, 6K2POs, 22WO3+42H4O. Sl. sol, in H₂O (Gibbs, Am, Ch. J 7 319)

Purophosphotungstic acid.

Ammonium manganous sodium pyrophos-photungstate, 5(NH₄)₂O, 6MnO, 2Na₂O, 2P2O5, 28WOs+48H2O

Very sol, in cold and in hot H2O. (Gibbs, Am. Ch. J. 1895, 17, 90)

Ammonium sodium pyrophosphotungstate, 6(NH₄)₄P₅O₇, 3Na₄P₂O₇, 2(NH₄)₂O, 22WO₃+31H₂O.

Nearly msol, in cold H₀O or NH₄OH+A₀. Sol, in a large amount of hot H2O.

Manganous sodium pyrophosphotungstate, 6Na₂O, 3MnO, P₂O₅, 14WO₃+36H₂O. Efflorescent in dry air. Sol in H₀O and can be recryst therefrom. (Gibbs)

Potassium pyrophosphotungstate, 9K4P2O7, 22WO₈+49H₂O.

Very sl. sol. m cold H_{*}O 6K₄P₂O₇, 3H₄P₂O₇, 22WO₈, K₂O, H₂O+ 42H₂O. Sl. sol. in cold. Sol. in much boiling H₂O. (Gibbs, Am Ch J. 7. 392.)

Phosphovanadic acid, PaOs, VaOs, 2HaO+ 9H.O.

Sol, in H₂O, Composition is vanadium phosphate

(VO₂)H₂PO₄+4½H₂O. (Friedheim, B. 23. This is the only "acid" which exists. (F.) P2O6, V2O6+14H2O. Sol in H2O; can be

ecryst. from dil H.PO.+Aq. (Ditte, C. R. 102. 757 29.05, 2V₂O₅+9H₂O. Sol. m H₂O. (Ditte) P₂O₅, 3V₂O₅. (Berzelius.) 3H₂O, 7P₂O₅, 6V₂O₅+34H₂O. Sol. m H₂O. Decomp. by much H₂O into

6H2O, P2O6, 20V2O6+53H2O. Sol. in H2O. (Gibbs, Am Ch. J. 7, 209.) Ammonium phosphovanadate, (NH₄)₂O,

P2O6, V2O6+H2O

Sl. sol in cold H₂O. (Gibbs, Am. Ch. J. 7, 209.1 +H₂O (Friedheim.) (NH₄)₂O, P₂O₅, 2V₂O₅+7H₂O Easily sol

in H₂O. (Gibbs.) Sl. sol. in H₂O. (Fried. J. Am. Chem. Soc. 1903, 25, 1226.)

heim) Composition is (NH₄)₂O, V2O6, $+2(VO_3)H_2PO_4+5H_2O$ (Friedheim) 5(NH₄)₂O, 2P₂O₅, 3V₂O₅+24H₄O. Easily sol in H₂O (Ditte, C R. 102, 1019.) Could not be obtained (Friedheim)

5(NH₄)₂O, 4P₄O₅, 2V₂O₅+24H₂O. As above. (Ditte) Could not be obtained.

(Friedheim.) 7(NH₄)₄O, P₄O₅, 12V₂O₅+26H₂O Easily sol in H₄O. Composition is 2(NH₄)₂HPO₄+

5(NH₄)₂O, 12V₂O₅+25H₂O (Friedheim.)

Potassium phosphovanadate, K2O, P2O5, 2V2Os+7H2O. Sl sol. in H2O; decomp, thereby to 7K2O,

12V2O4, P2O4+26H2O Composition is K2O, V2O1+2(VO2)H2PO4 +5H₂O. (Friedheim) 3K2O, 4P2O6, 6V2O6+21H2O. Sl sol. in

H₂O. (G₁bbs.) 7K₂O, P₂O₅, 12V₂O₅+26H₂O. Easily sol in H₂O. Composition is 2K₂HPO₄+5K₂O. 12V2O6+25H2O (Friedheim)

2K,0, P,0, V,0 2k₁O, P₂O₅, v₅O₅ 3K₅O, 2P₂O₅, 2V₂O₅+5H₂O. 13K₅O, 2P₂O₅, 22V₂O₅+76H₂O. 15K₅O, 2P₂O₅, 25V₂O₅+76H₂O. (Friedheim, Z. anorg, 1894, 5, 446)

(Friedmenn, Z. anorg. 1993, 5, 440)
16K₂O, 2P₂O₅, 27V₂O₅+57H₂O.
6K₃O, P₂O₅, 11V₂O₅+33H₃O.
7K₂O, P₂O₅, 13V₂O₅+38H₃O.
4K₂O, P₂O₅, 3V₂O₅+3H₀O.
(Friedheim, Z. anorg. 1894, 5, 459–465)

Silver phosphovanadate, 2Ag₂O, P₂O₅, V₂O₅+ Sl sol. in cold or hot H₂O. (Gibbs)

Phosphovanadicotungstic acid.

Ammonium phosphovanadicotungstate. (NH₄)₂O, P₂O₅, V₂O₃, WO₅+xH₂O.

Ppt. (Smith, J. Am. Chem Soc 1902, 24.

577.) 15(NH₄)₂O₁)₂O, 2P₂O₅, 6V₂O₂, 44WO₃+ Sol. in H₂O. Insol. in alcohol. 106H₂O ether or benzene. (Rogers, J. Am. Chem. Soc. 1903, 25. 303)

Phosphovanadicovanadiotungstic acid.

Ammonium phosphovanadicovanadictung-state, 14(NH₄)₂O, 2P₂O₅, 3V₂O₅, 7V₂O₅, 27WO3+66H2O.

Sparingly sol, in cold H.O. Sol, in hot H.O. (Rogers, J. Am. Chem. Soc 1903, 25, 309.)

Phosphovanadicozirconosotungstic acid,

+3H₂O. Composition is (VO₂)(NH₄)HPO₄ Ammonium phosphovanadicozirconosotungstate.

Exact formula not known. (E. F. Smith,

Phosphovanadicovanadic acid.

Ammonium phosphovanadicovanadate

7(NH₄)₂O, 2P₂O₅, VO₂ 18V₂O₂+50H₂O Sol. in H₂O. (Gibbs, Am, Ch. J. 7, 209) 7(NH₁)₂O, 14P₂O₅, 16VO₂, 6V₂O₅+65H₂O. Decomp. by boiling with H₂O into—

5(NH₄)₂O, 10P₂O₅, 11VO₂, V₂O₅+41H₂O. Sol, in H₂O. (Gibbs)

Potassium --, 5K2O, 12P2Os, 12VO2, 6V2Os +40H.O

Decomp, by hot H₂O into-7K₂O₄, 12P₂O₈, 14VO₂, 6V₂O₅+52H₂O₄ Sol in H₂O (Gibbs.)

Sodium ----, 4Na₂O, 5P₂O₅, VO₂, 4V₂O₆+ 37H2O Insol. m H₂O, (Gibbs.)

Phosphovanadiomolybdic acid.

Ammonium phosphovanadiomolybdate 7(NH₄)₂O, 2P₂O₅, V₂O₅, 48M₀O₃+

Si, sol. in cold, somewhat more in hot HaO with partial decomp. (Gibbs, Am. Ch. J 5.

391) 8(NH₄)₂O, P₂O₅, 8V₂O₅, 14M₀O₅+50H₂O rr O without decomp. (Cabbs

5(NH₄)₂O, P₂O₆, 2½V₂O₆, 21½M₀O₂+

50H₂O. 8(NH₄)₂O, P₂O₅, 5V₂O₅, 18M₀O₃+45H₂O. 7(NH₄)₂O, P₂O₅, 5½V₂O₅, 16½M₀O₃+

8(NH₄)₂O, P₂O₅, 7V₂O₅, 15M₀O₃+50H₂O All above compounds are sol. in H₂O. (Blum, J. Am. Chem. Soc. 1908, 30, 1859.) 6(NH₄)₂O, P₂O₅, 7V₂O₅, 9M₀O₃+28H₂O

+33H₂O, and +37H₂O Can be recryst, from H₂O, (Hinsen, Dissert, 1904.) 4(NH4)2O, P2O5, 4V2O5, 11M0O3+37H2O

(Jacoby, Dissert, 1900.) 6(NH₄)₂O, P₂O₅, 7V₂O₅, 11M₀O₃+34H₂O and+43H2O, (Hinsen, Dissert, 1904, 8(NH4)2O, P2O4, 7V2O4, 11MaO3+30H2O

5(NH₄)₂O, P₂O₅, 4V₂O₅, 12MoO₃+39H₂O 1, cc. of solution in H2O contains 0 2624 g. of hydrous salt Sp gr of solution at 18° = 1.0932. (Lahrmann, Dissert. 1904.)

6(NH₄)₂O, P₂O₅, 4V₂O₅, 12MoO₂+24H₂O Nearly msol. in cold H₂O (Lahrmann.) 7(NII4)2O, P2Os, 6V2Os, 12MoOs+33H2O.

(Stamm, Dissert 1905.) 6(NH₄)₂O, P₂O₅, 4V₂O₅, 13MoO₂+37H₂O. I cc of solution sat. at 18° contains 0 1543 g. hydrous salt and has sp. gr. = 1.0900. (Toggenburg, Dissert, 1902.

6(NH₄)₂O, P₂O₅, 5V₂O₅, 13MoO₂+29H₂O. I ce solution sat. at 18° contains 0.2533 g. hydrous salt Sp. gr =1.0797. (Stamm,

Dissert. 1905.)

+32H₀O (Stamm) +34H₂O Stamm

6(NH₄)₂O, P₂O₅, 4V₂O₅, 14MoO₂+28H₂O. Easily sol. in H₂O with decomp. (Toggenburg, Dissert 1902.) S(NH₄)₂O, P₂O₅, 4V₂O₅, 14M₂O₅ +24H₂O. Decomp. by cold H₂O. (Lahrmann, Dissert.

1904.) 5(NH4)2O, P2Os, 3V2Os, 5M0O2+39H2O

I cc. of solution sat. at 18° contains 0.2445 g hydrous salt and has sp. gr = 1 144. (Jacoby, Dissert 1900.)

6(NII₄)₂O, P₂O₅, 3V₂O₅, 15 M₀O₅+41H₀O Extraordinarily easily sol. in H₂O. (Jacoby

7(NH₄)₂O, P₂O₅, 3 ₂O₅, 18M₀O₅+31H₂O. (Schulz Dissert, 1905.) 6(NH₄)₂O, P₂O₅, 3V₂O₅, 18M₀O₈+40H₂O.

(Schulz.) 8(NH₄)₂O, P₂O₅, 5V₂O, 73M₀O₈+26H₂O. +33H₂O. (Stamm, Dissert 1905.)

Ammonium barium -, 0.5(NH₄)₂O 5.5BaO, PaOs, 6VaOs, 8MoOs+38HaO. (Hmsen, Dissert, 1904.)

2(NH₄).O, 4BaO, P₂O₅, 7V₂O₅, 10 MoO₃+ 43H₂O. Sl. sol. in H₂O Decomp. on heating.

43H₃U. Si. sol. m H₃O Decomp. on heating. (Toggenburg, Dissert 1902.) (NH₀)-Q, 5BaO, P₂O₈, 6V₂O₅, 12MoO₃+ 49 H₃O. Loss sol in H₃O than NH₄ comp. (Jacoby, Dissert 1900.) 2(NH₂)-Q, 4BaO, P₂O₈, 4V₂O₄, 13MoO₃+ 37 H₃O. Sol. in much hot H₃O with decomp.

(Toggenburg, Dissert, 1902.)

2(NH₄)₂O, 4BaO, P₂O₅, 5V₂O₅, 13M₀O₃+ 5H₂O (Stamm, Dissert 1905.) 46H•O 3 NH4)2O, 4BaO, P2Os, 5V2Os, 13MoOs+ (Stamm.) 3(NH₄),O, 3BaO, P₂O₅, 4V₂O₅, 14M₀O₄+

39H₂O. (Stamm.) 2(NH₄)₂O, 4BaO, P₂O₆, 3V O₆, 17M₀O₈+ 46H2() (Schulz, Dissert 1905.)

Ammonium potassium —, (NH₄)₂O, 6K₂O, P₂O₈, 6V₂O₈, 10 MoO₈+38H₂O. (Jacoby, Dissert, 1900.)

(NH₄),O, 6K₂O, P₂O₆, 7V₂O₆, 11M₀O₃+ 25H₂O. (Jacoby, Dissert 190°.) (NH₄)₂O, 5K₂O, P₂O₆, 6V₂O₄, 12M₀O₂+

46H₂O (Jacoby.) (NH₂)₂O, 5N₂O, P₂O₅, 5V₂O₇, 13MoO₂+ +25H₂O;+29H₂O; +30H₂O. Sl. sol. in cold, more easily in hot H₂O (Stamp,

Dissert, 1905.) 5K₂O, (NH₄)₂O, P₂O₅, 4V₂O₅, 14M₀O₅+ 1 ₂O (Stamm.) (NH₄)₂O, 4K₄O, P₂O₄, 3V₂O₅, 15M₀O₅+

36H₂O. (Jacoby, Dissert 1900.) (NH₄)₂O, 6K₂O, P₂O₅, 3V₂O₅, 18M₂O₅+ 43H₂O. (Schulz, Dissert. 1905.) 5(NH)2O, K2O, P2Os, 2V2Os, 20MoOs+ 52H2O (Schulz)

Barium potassium ----, 2BaO, 2K2O, P2O4, 2V2Os, 18 MoOs+47H2O. (Schulz, Dissert, 1905.)

 $\begin{array}{c} \mbox{Potassum phosphovanadiomolybdate, } 7K_{2}O, \\ \mbox{$P_{1}O_{b_{1}}$ } 7V_{2}O_{b_{1}} 9MoO_{3} + 25H_{2}O. \\ \mbox{$(Hinsen, Dissert. 1904.)} \\ \mbox{$5K_{2}O_{1}$ } P_{2}O_{b_{1}} & 2V_{2}O_{b_{1}} \\ \mbox{$(Schulz, Dissert. 1905.)} \end{array}$

Benuiz, Dissert. 1800.)

Phosphovanadiotungstic acid.

Ammonium phosphovanadiotingstate, 10(NH₄)·20, 3P₂O₅, V₂O₅, 60WO₃+ 60H₂O.

Nearly insol in cold, sl. sol in hot H₂O Sol, in (NH₄)₂HPO₄+Aq, and in NH₄OH+ Ag.

5(NH₄)₂O, P₂O₅, 3V₂O₅, 16WO₅+37H₂O Eastly sol m H₂O (Gibbs, Am Ch. J 5. 391.) 18(NH₄)₂O, 2P₂O₅, 8V₂O₅, 34WO₂+86H₂O. Very sol. in cold and hot H₂O

nsol. in alcohol, ether, CS₂, benzene and nitrobenzene (Rogers, J Am Chem. Soc 1903, **25**. 299)

Bar.um —, 18BaO, 3P₂O₄, 2V₂O, 60WO₃

+144H₂O

Easily sol in hot H₂O with decomp (Gibbs, Am Ch J. 5. 391.)

Potassium — 3K₂O, P₂O₄, V₂O₅, 7WO₃+ 11H₂O Sol. in H₂O. SK₂O, 3P₂O₅, 4V₂O₄, 18WO₃+23H₂O Sol.

in hot H_2 ?) with decomp into preceding salt. (Gibbs, Am Ch J 5. 391) Silver — , 13Ag₃O, 2P₂O₆, 8V₅O₆, 33WO₈+ $41H_2O$

Somewhat sol. in H₂O Completely sol. in H₂O containing a few drops HNO₁ (Rogers, J Am Chem Soc. 1903, 25, 302)

Phosphovanadiovanadicotungstic acid.

Barium phosphovanadiovanadicotungstate, 18BaO, 3P₂O₃, V O₄, VO₂, 60WO₃+ 150H₂O
Sl. sol m cold, easily sol. in hot H₂O (Gibbs, Am Ch. J. 5, 391.)

Phosphuretted hydrogen. See Hydrogen phosphide.

Platibromonitrous acid.

Potassium platibromonitrite, K₂Pt(NO₄),Br₄ Rather sl. sol. in H₂O (Blomstrand, J pr. (2) 3. 214.) Sol in about 40 pts. cold, and 20 pts. boiling H₂O. Insol. in alcohol. Sl sol in KBr or

Sol in about 40 pts. cold, and 20 pts. boiling H₂O. Insol. in alcohol. Sl sol in KBr or KNO₂+Aq (Vèzes, A. ch. (6) 29. 198.) K₂Pt(NO₂)₂Br₈. Sol. in about 5 pts. warm H₄O with decomp (Vèzes.)

K₂Pt(NO₂)₂Br₄. Sol m less than 5 pts. H₂O with decomp. (Vèzes.)

Platichloronitrous acid.

Potassium platichioronitrite, K₂Pt(NO₂)₄Cl₂. Rather sl sol. m H₂O (Blomstrand J pr.

(2) 3.214)
Sol m 40 pts cold, and 20 pts boiling H₂O.
Insol m alcohol Sl sol m KCl or KNO₂+
A_C (Vèxes, A. ch. (6) 29, 183.)
K₂Ft(NO₂)Cl₂, Very sol, in H₂O. (Vèzes)
K₃Ft(NO₂)Cl₃+H₄O. Sol. in H₂O with
decomp. (Vèzes.)

Platifodonitrous acid.

Platification platification of the state of the platification of the pla

comp by boiling. (Vèze, A ch. (6) 29, 207) K₂Pt(NO₂)I₅. As above (Vèzes)

Platin-.

See also Pla ino-, plato-, p'at-, and platos-.

Platindiamine compounds.

See Chloro-, bromo-, hydroxylo-, iodo-, nirato-, nitrito-, sulphato-, etc., platind:amine compounds.

Platintriamine carbonate, Pt(NH₃)₃(CO₃)₂

Ppt. Sol m NaOH+Aq. (Geddes, J pr. (2) 26. 257)

---- chloride Pt(NH₄)₆Cl₄. Sol, m hot H₂O (Gerdes)

- nitrate, Pt(NH₃)₆(NO₅)₄.

Easily sol in H₂O, sl sol in HNO₅+Aq.
(Gerdes)

— sulphate, Pt(NH₃)₄(SO₄)₂+H₂O Nearly msol in H₂O (Gerdes)

Tetraplatinamine iodide, Pt₄(NH₃)₈I₃₆ (Blomstrand, B 16. 1469.)

Octoplatinamine iodide, Pts(NHz)16I1s. (Blomstrand)

Platinic acid.

Barium platinate, basic (?), 3BaO, 2PtO₂. Insol in HC₂H₃O₂+Aq; easily sol. in HCl+Aq (Rousseau.)

Barium platinate, BaPtO:

(Rousseau, C R. 109. 144.) +H2O. Insol. in dil. HNO2+Aq; sol in Ammonium platinitungstate, 4(NH4)2O, PtO2, warm HCi+Aq. (Topsoe, B. 3. 464.) +4H₂O Very sl. sol in H₂O, BaO₂H₂, or NaOH+Aq. Easily sol. in dil. acids, except HC₂H₄O₂, in which it is misol, in the cold, but decomp on heating. (Topsoë, l c.) Composition is 3BaPtO₃, BaCl₂, PtCl₂O+ 4H₂O (?). (Johannsen, A. 155, 204.)

Calcium platinate chloride (?), 2Ca₂Pt₂O₃Cl₂ +7H₂O (?),

"Herschel's precipitate." Easily sol. in HCl+Aq, and in HNO₃+Aq, Easily 801. in HCl+Aq, and in HNO₂+Aq, if freshly potd. (Herschel.)

Very 801. in HNO₂+Aq (Weiss and Döberener, A 14, 252)

Composition is CaPtO₂ PtCl₂O, CaO+7H₂O (?). (Johannsen, A, 155, 204.)

Potassium platinate.

Sol. in H₂O. (Berzelius) K₂O, PtO₂+8H₂O. Very sol. in H₂O. (Blondel, A. ch. 1905, (8) 6, 90.) K₂Pt(OH). Sol. in H₂O; insol. in alcohol. (Belliuci, Z. anorg. 1905, 44, 173.)

Sodium platinate, Na2O, 3PtO2+6H2O. Dil acids dissolve out Na-O and leave PtO. Sol, in HNO3+Aq. (Doberemer, Pogg. 28. 180.) Na₂O, PtO₂+3H₂O. Sol. in H₂O. (Blon-

Metaplatinic acid, 5PtO2, 5H2O. Insol, in H₂O. (Blondel, A. ch. 1905, (8) 6.103.)

Sodium metaplatinate, Na2O, 5PtO2+9H2O. Insol. in H.O. (Blondel.)

Platinimolybdic acid, 4H₂O, PtO₂, 10MoO₄. (Gibbs.)

Ammonium platinimolybdate, 8MoO₈, 2PtO₂, 3(NH₄)₂O+12H₂O. 4MoO2, 2PtO2,2(NH4)2O+19H2O. Sol, in hot H.O (Gibbs, Am. Ch. J. 1895. 17, 80-82.)

Potassium platinimolybdate. 60MoO. PtO., 10K.O+40H.O. So, in hot H₂O. (Gibbs.)

Silver platinimolybdate.

platinimolybdate, 4Na₂O, PtO₄, Sodium 10 MoO+29HO. Sol, in H₂O. (Gibbs, Sill. Am. J. (3) 14. 61.)

Platinitungstic acid.

10WO++12H+O. Sol, in H₂O. (Gibbs, B, 10, 1384)

Potassium platinitungstate, 4K2O, PtO2, 10WO.+9H.O. Sol in H₂O, (Gibbs.)

Sodium platinitungstate, 4Na₂O, PtO2. 10WO+25H,O. Sol. in H₂O. (Gibbs.)

5Na₂O. 7WO₃, 2PtO₂+35H₂O. Sol. m H_{*}O. (Gubbs.) Is double salt 3Na₂O, 7WO₃+2Na₂PtO₃. (Rosenherm, B 24, 2397.)

10WO₄, PtO₅, 4Na₅O+23H₂O. 10WO₄, PtO₅, 4Na₅O+28H₂O. 10WO₄, PtO₅, 6Na₂O+28H₂O. 20WO₄, PtO₇, 9Na₂O+58H₂O. 30WO₄, 2PtO₇, 15Na₅O+72H₂O. 30WO₄, PtO₇, 12Na₂O+72H₂O. All are sol in boiling H2O. (Gibbs, Am. Ch. J. 1895, 17, 74-80)

Platino-. See also Plato-.

Platinochlorophosphoric acid. See Chloroplatmophosphoric acid.

Platinocvanhydric acid, H.Pt(CN)4. Deliquescent, Very sol in H₂O, alcohol, and ether.

Ammonium platinocyanide, (NH4)2Pt(CN)4 +3H.O. Very sol, in H₂O.

+2H2O. Sol. in 1 pt. H2O, and still more easily in alcohol. +H.O. Ammonium hydroxylamine platinocyanide,

 $NH_4(NH_4O)Pt(CN)_4 + 3\frac{1}{2}H_2O$ Sol. in H₂O. (Scholz, M. Ch. 1, 900.) Ammonium magnessum platinocyanide. (NH4)2Mg[Pt(CN)4]2+6H2O.

Barrum platinocyanide, BaPt(CN)4+4H4O Sol. in 33 pts. H₂O at 16°, and in much less at 100°. Sol, in alcohol

Barium potassium platinocyanide, BaK [Pt(CN).]2. Sol. in H.O.

Barium rubidium platinocyanide, BaRba Pt(CN) 12. Sol. in H.O.

Cadmium platinocyanide, CdPt(CN)4 Ppt Sol, in NH₄OH+Aq. (Martius, A. 117.376) CdPt(CN)4, 2NH4+H4O (M)

Calcium platinocyanide, CaPt(CN)₁+5H₂O Very sol. in H₂O.

Calcium potassium platinocyanide, CaK₂[Pt(CN)₄]₂. Sol in H₂O.

Cerium platinocyanide, Ce₂[Pt(CN)₄]₅+ 18H₂O. Sol. in H₂O.

Cobaltous platinocyanide ammonia, CoPt(CN)₄, 2NH₃.

Insol. in H₂O, but sol. in hot NH₄OH+Aq

Cupric platinocyanide, CuPt(CN)4+xH2O Ppt.

Cupric platinocyanide ammonia, CuPt(CN)4, 2NH,+H,O. CuPt(CN)4, 4NH3. Sol. in H2O, alcohol, and ether.

Didymium platinocyanide, Dia[Pt(CN)4]3+ Efflorescent in dry air. Sol in H₂O.

(Cleve.) Dysprosium platinocyanide, Dy1[Pt(CN)4]8+

Easily sol. in H₂O. (Jantsch, B 1911, 44.

Erbium platinocyanide, Er₂[Pt(CN₄)]₃+ 21H₂O Sol in H2O. (Cleve)

Gadolinium platinocyanide, 2Gd(CN), 3Pt(CN),+18H2O. Sol. in HeO; decomp. in the air. (Benedicks, Z. anorg. 1900, 22, 405.)

Glucinum platinocyanide, GlPt(CN)4. (Toezynski, Dissert. 1871.)

Hydroxylamine platinocyanide, (NH₄O)₂Pt(CN)₄+2H₂O. Deliquescent Very sol. in H₂O. (Scholz.)

Hydroxylamine lithium platinocyanide, (NH₄O)LiPt(CN)₄+3H₂O. Sol. in H₀O

Indium platinocyanide In₂[Pt(CN)₄]₂+2H₂O

Hydroscopic; sol in H₂O. (Renz, B. 1901, 34. 2765)

Lanthanum platinocyanide, La₂[Pt(CN)₄]₃ $+18H_{\bullet}O$ Easily sol, in H₂O. (Cleve)

Magnesium platinocvanide, MgPt(CN)4+ 2H₂O. Solubility in H₄O. 100 g. of the sat. solution contain at:

44.33 43 96 g. MgPt(CN) (Buxhoevden, Z anorg 1897, 15, 325.)

 $+4H_{2}O.$ Solubility in H₂O. 100 g. of the sat solution contain at: 42.2° 46.3° 48.7° 55° 40 21 39.79 40 75 40 02 g. MgPt(CN), 69° 77.8°

42 01 43.48 44.88 45.52 g. MgPt(CN)4, 90° 45 59 45.04 g. MgPt(CN)4.

(Buxhoevden.) +7H₂O. Sol. in 3.4 pts. H₂O at 16°. Essily sol. in alcohol and ether. Solubility in H2O

100 g. of the sat. solution contain at 4 12° +0 5° 5 5° 18 0° 24 9 26 33 28 07 31 23 g. MgPt(CN)4

41 32 41 96 g. MgPt(CN)4. 38 36 (Buxhoevden.)

Magnesium potassium platinocyanide, $MgK_{2}[Pt(CN)_{4}]_{2}+7H_{2}O.$ Sol. in H₀O.

Mercuric platinocvanide, HgPt(CN)4. Ppt.

Mercuric platinocyanide nstrate, 5HgPt(CN), Hg(NO₃)₂+10H₂O. Ppt.

Nickel platinocyanide ammonia, NiPt(CN)4, 2NH++H-0.

Potassium platinocyanide, K2Pt(CN)4+ 3H.O. Extremely efflorescent Sl. sol m cold, easily in hot H2O. (Willm, B. 19. 950) Sol in alcohol and ether.

Potassium sodium platinocyanide, K2Pt(CN)4, $Na_{2}Pt(CN)_{4}+6H_{2}O.$ Sol. in H₂O. (Willm, B. 19. 950)

Praseodymium platinocyanide, 2Pr(CN)s, 3Pt(CN)s.

Sol. in H₂O. (Von Scheele, Z anorg. 1898, 18.355)

Samarium platinocyanide, Sm₂[Pt(CN₄)]₃ Zinc platinocyanide ammonia, ZnPt(CN)₄, +18H₂O. +18H₂O Sol in II₂O (Cleve,)

Scandium platinocyanide, Soa[Pt(CN)4]a +21H₂O.

Sol in H.O and insol, in alcohol; when boiled in alcohol it is dehydrated. (Crookes. Phil. Trans 1910, 210. A, 368) +21H₂O (Orlow, Ch. Z. 1912, 36, 1407.)

Silver platinocyanide, Ag-Pt(CN). Insol, in H₂O. Sol in NH₂OH+Aq

Silver platinocvanide ammonia, Ag-Pt(CN)4. 2NH Insol, in H2O. Sol in NH4OH+Aq.

Silver platinocvanide bromide. See Bromonlatmocvanide, silver,

Silver platinocyanide chloride. See Chloroplatmocvanide, silver.

Silver platinocyanide iodide. See Indulatinocvanide, silver, Sodium platinocvanide, Na»Pt(CN),+3H.O.

Easily sol in H₂O (Willin, Z anorg, 4. 208) Sol. in alcohol.

Strontium platinocyanide, SrPt(CN),+5H2O, Sol in H₂O.

Thallous platinocyanide, Tl2Pt(CN)4. Nearly insol in cold, at sol, in hot HoO (Friswell, Chem. Soc. 24, 461.)

Thallous platinocyanide carbonate. 2Tl.Pt(CN)4, Tl.COs. Nearly insol, in cold H₂O. (F)

Thorsum platinocyanide, Th[Pt(CN)4]2+ 16H₂O. Somewhat difficultly sol in cold, easily in hot H.O. (Cleve, Sv. V A. H Bih 2, No. 6.)

Uranyl platinocyanide, (UO2)Pt(CN)4+xH2O Sol. in H₂O. (Levy, Chem. Soc. 1908, 93, 1459.)

Ytterbium platinocyanide, 2Yb(CN), 3Pt(CN)2+18H2O

Easily sol, in H₂O. (Cleve, Z. anorg. 1902, 32, 139.)

Yttrium platinocyanide, Y2[Pt(CN)4]2+ 21H.O. Eastly sol, in H₂O Insol, in absolute alcohol. (Cleve and Höglund.)

Platinonitrous acid. See Platonitrous acid.

Platinoplatinicvanhydric acid, HPt(CN), +xH₀O. Sol in H.O. (Levy, Chem. Soc. 1912, 101. 1098.)

Platinoselenocvanhydric acid.

Potassium platinoselenocvanide,

K.Pt(SeCN). Sol. in H2O and alcohol. (Clarke and Dudlev. B. 1878, 11, 1325.)

Distingual angetannic acid See under Selenostannate, platinum,

Platinososulphocyanhydric acid. H.Pt(SCN).

Known only in aqueous solution.

Potassium platmososulphocyanide, K2Pt(SCN)4 Permanent Sol in 2.5 pts. HaO at 15°

and more readily at higher temp. Very sol. m warm alcohol. Silver ---, AgaPt(SCN)4.

Insol in H₂O Sol, in KSCN+Aq, and partly sol in NILOH+Ag. Platinosulphocyanhydric acid,

H.Pt(SCN) Known only in aqueous, and alcoholic solutions

Ammonium platinosulphocyanide, (NH₄)₂Pt(SCN)₅.

Sol in H2O and alcohol. Barium ----, BaPt(SCN)a.

Sol. in H.O and alcohol.

Ferrous ----, FePt(SCN)s. Insol. in H2O or alcohol Not attacked by dil, H.SO4, HCl, or HNO3+Aq.

Lead ----, PbPt(SCN)a. Sl. sol. m cold, decomp by hot H₂O. Sol. ın alcohol PbPt(SCN)6, PbO. Insol. in HgO or alcohol. Sol in acetic or nitric acids

Mercurous ---- , HgoPt(SCN)a.

Ppt, Insol. in H₂O

Potassium platinosulphocyanide, K₂Pt(SCN)₀

Sol in 12 pts H₂O at 60° Much more easily in boiling H2O, and still more easily in hot alcohol.

+2H2O. (Miolati and Bellucca, Gazz, Ch. it. 1900, 30, II. 592)

Silver ----, AgaPt(SCN)a.

Insol, in H₂O or K₂Pt(SCN)₄+Aq. Sol in cold NH₄OH+Aq and in KCNS+Aq

Sodium --- Na Pt(SCN)s. Sol, in H2O and alcohol

Platinosulphostannic acid. See under Sulphostannate, platinum.

Platinosulphurous acid. See Platosulphurous acid.

Platinum, Pt.

Not attacked by H₂O, H₂SO₄, HCl, or HNO₃+Aq Slowly sol in aqua regia, or a mixture of HBr and HNO₃, but much less easily than Au.

Precipitated Pt is remarkably sol, in HCl+Ag in presence of air (Wilm, B. 1881, 14, 636.)

Pure Pt foil is attacked by fummg HCl under influence of light, but not in the dark. (Berthelot, C R 1904, 138, 1297.)

Dil. HCl+Aq dissolves 10-15% Pt from active Pt black. (Wohler, B 1903, 36, 3482.) Conc. HNO₄ oxidizes Pt black; Pt sponge, ess easily; sheet Pt. slightly. (Wohler, Dissert. 1901.)

Pt in presence of Hg is more or less sol.

in conc. HNO: (Tarugi, Gazz, ch. it. 1903, 33, II. 171.)
Pt vessels are attacked by evaporating

HNO₃ therein (Jaunek and Meyer, Z. anorg. 1913, 83. 71.) Si sol in cone H2SO4 containing small

amounts of nitrogen oxides (Scheurer-Kestner, C. R 86. 1082.) Pt black, pptd. by formic acid, is easily sol in boiling H₂SO₄. (Deville and Stas,

Paris, 1878.)

Thin sheet Pt is attacked by boiling H2SO4 containing K₂SO₄; 1 sq. cm loses 0.01 g. in I hour and velocity of the reaction is not accelerated by addition of HNOs. Pt black is completely dissolved under the above con-ditions in 50 hours. (Delépine, C R. 1905, 141, 1013.)

Further data on solubility of Pt in H2SO4 are given by Delépine. (Č R 1906, 142.

95% H₂SO₄ dissolves 0.04 g. Pt from commercial Pt at 250–260° in 28 hours. (Conny, J. Soc Chem. Ind. 1903, 22. 465.)

See also Quenessen. (Bull. Soc. 1906, (3) 35.620)

Cl₂Pt < NH₃.R

0.0038 g is dissolved by 10 cc. of boiling H,SO4 (McCoy, Eighth Inter Cong. App. Chem 1912, 2.)

HCl+HNO₄, so long as they are sufficiently dil or the temperature is so low that they cannot react on each other, have no action on Pt Addition of Cl does not bring about reaction, but a few drops of KNO2 or N2O3+Aq bring about an immediate reaction. (Millon Slowly sol in HI+Aq (Deville, C. R 42,

Conc. H:PO4 attacks Pt when heated in presence of air, but not in its absence. (Hütt-

ner, Z. anorg. 1908, 59, 216)

Pt dissolves easily in most acids when they contain H₂O₂. (Fairley, B. 1875, 8. 1600.) Slowly sol in boiling FcCl_s+Aq (Saint-Pierie, C R. 54, 1077.)

FeCl_s in acid solution is without influence on Pt. (Marie, C. R. 1908, 146, 476.) Pt is completely insol. in KCN+Aq. (Rössler, Z. Chem. 1866, 175.)

Pt is attacked by boiling conc. KCN+Aq. (Deville and Debray, C. R. 82. 241.) Solubility of Pt in 10% KCN+Aq is very

small at ord, temp. (1.4 mg, in 8 days) but is considerably greater in boiling conc. KCN +Aq (715 mg in 5 hours). (Glaser, Z. Elektrochem. 1903, 9. 15.)

Pt foil is dissolved in boiling KCN+Aq (0 030 g, for 1 cc. in 1 hour). Insol. in cold KCN+Aq (Brochet and Petit, C. R. 1904, C. R 138. 1255.)

Sol in RbCl₄I+Aq (Erdmann, Arch Pharm 1894, 232, 30) Insol in liquid NH3. (Gore, Am. Ch J.

Platinum ammonium compounds.

Data published since the first edition of this work have not been included in this edition. Sec -

Platosamine comps., Pt < NH, R.

Platosemidiamine comps.. $\mathrm{Pt} <_{R}^{\mathrm{NH_{3}.NH_{3}.R}}$

1898. 20, 828.)

Platomonodiamine comps., Pt < NH₃.NH₃.R

Platodramine comps., Pt < NH, NH, R

Platososemiamine comps., $Pt < PH_3.R$ Diplatediamine comps...

Pt-NH2.NH2.R

Pt-NHs NHs.R Bromoplatinamine comps, Br₂Pt < NH₃.R

Chloroplatinamine comps.,

Chloronitratoplatinamine comps., Cl(NO₃)Pt<NH₃.R.

CI(NO₃)Pt<NH₃.R.

Iodoplatinamine comps., I₂Pt<NH₃.R.

Hydroxyloplatinamine comps..

(OH)₂Pt<NH₃.R.

Nitratoplatinamine comps.,

(NO₃)₂Pt<NH₃R NH₄R NH₄ R.

Sulphatoplatinamine comps., $SO_4Pt < \stackrel{NH_3}{NH_4} \stackrel{R}{R}$

Bromoplatinsemudiamine comps., Br₃PtNH₃,NH₃,R.

Bromonitritoplatinsemidiamene comps., Br₂(NO₂)PtNH₂.NH₂.R. Chloroplatinsemidiamene comps.,

Cl₃PtNH₃,NH₃,R.
Chlorohydroxylonitritosemudiamine comps.,
Cl(OII)(NO₃)PtNH₃,NH₃,R.

Chloronitritoplatinsemultamine comps., Cl₂(NO₂)PtNH₂.NH₃ R.

Iodoplatinsemidiamine comps., I.PtNH, NH, R.

Hydroxylosemultamine comps., (OH)₃PtNH₃.NH₃.R.

Bromoplatinmonodiamine comps., Br₂Pt < NH₃.NH₅ R

 $\begin{array}{l} Bromohydroxyloplatin monodiamine \ comps. \\ Br(OH)Pt < \begin{matrix} NH_3.NH_3.R \\ NH_4.R \end{matrix} \end{array}$

Chloroplatin*monodi*amine comps., Cl₂Pt < NH₃.NH₃ R

Iodonitratoplatinnonod:amine comps., I(NO₄)Pt < NH₂.NH₃ R NH₂.R.

Hydroxyloplatinmonodiamine comps., (OH)₁Pt<NH₂NH₃.R.

Bromoplatin/hamine comps., Br₂Pt < NH₂.NH₃ R.

Bromocarbonatoplatindiamine comps.,

CO₂>[Pt(NH₄)R]₂

Bromochloroplatindiamine comps., BrClPt(NH₃)₄R₂.

BrClPt(NH₃)₄R₂.

Bromohydroxyloplatind; amine comps.,
Br(OH)Pt(NH₃)₄R₂.

Bromonitratoplatindiamine comps., Br(NO₁)Pt(NH₂)₄R₂.

Br(NO₃)Pt(NH₃)₄R₂.

Bromosulphatoplatind:amine comps.,

Br₂(SO₄)[Pt(NH₃)₄R₂]₂.

Carbonatochloroplatindiamine comps., (CO₂)Cl₂[Pt(NII₂)₄R₄]₄.

(CO₂)Cl₂Pt(NII₁)₄R₂l₂.

Carbonatonitratoplatindiamine comps.,
(CO₂)(NO₂)₂|Pt(NH₂)₄R₂|₂.

Chloroplatindiamine comps., Cl₂Pt(NH₈)₄R₂

Chlorohydroxyloplatind; amine comps., Cl(OH)(NH₃)₄R₂. Chlorosodoplatind; amine comps..

CIIPt(NH₃)₄R₂
Chloronitratoplatindiamine comps.,

Chloronitratoplatindiamine comps Cl(NO₂)Pt(NH₂)₄R₂. Hydroxyloplatindiamine comps.,

(OH):Pt(NH:),R:. Hydroxylonitratod:amine comps.,

(OH)(NO₃)Pt(NH₈)₄R₁.

Hydroxylosulphatodiamine comps.,

(OH)₂SO₄[Pt(NH₄)₄R₂]₂ Iodonlatindiamine comps., I-Pt(NH₅)₄R₆

Iodonitritoplatindamine comps., 12FC(NRs)

Iodonitritoplatindamine comps.,
I(NO2)Pt(NHs)4Rs.

Nitratoplatindiamine comps., (NO₁)₂Pt(NH₂)₄R₂.

Nitritoplatindiamine comps., (NO₂)₂Pt(NH₃)₄R₂ Sulphatoplatindiamine comps.,

(SO₄)Pt(NH₂)₄R₂

Iododiplatinamine comps., I—Pt<NH, R NH, R

I-Pt < NH₃.R NH₄.R Bromodiplatindiamine comps., D₄ NH₄.NH₅.R

Pt < NH, NH, R NH, NH, R NH, NH, R

Br—Pt < NH₃, NL₃, NL₃, N.

Hydroxylodiplatindsamine comps.,
(OH)₂Pt₂(NH₃)₃R₄.

Iodod:platind:amine comps., IsPto(NHs)sR4.

Nitratodiplatind:amine comps., (NO₂)₂Pt₂(NH₂)₂R₄.

Platinfriamine comps., R₂Pt < NH₃.NH₃.NH₅.R. NH₃.NH₄.NH₅.R.

Tetraplatinamine comps., Pt₄(NH₃)₅R₁₆
Octoplatinamine comps., Pt₅(NH₃)₁₆R₁₆.

Platinum antimonide, PtSb₂. (Christoffe, 1863.)

Platinum arsenide, Pt.As.

(Tivoli, Gazz. ch. it 14. 487.) PtAs₂. Min. Sperylus Sl. attacked by aqua regia. (Wells, Sill. Am. J. (3) 37. 67.)

Platinum arsenic hydroxide (?), PtAsOH.

Insol. 11, and slowly decomp. by H₄O and alcohol. Easily decomp. by HCl+Aq; not attacked by HNO₂-Aq. Sol. in acua regia; not attacked by cold cone H₃SO₄, but decomp. on heating. (Tivoli, Gazz. ch 1t. 14. 487.)

Platinum potassium azoimide.

Ppt. Explodes violently even in ag. solution (Curtius, J pr 1898, (2) 58, 304)

Platinum boride, Pt.B.

Very slowly sol, in agua regia (Martius, A. 109, 79.)

Platinous bromide, PtBro

Insol. in H₂O. Sol. in HBr+Aq. Sl sol. in KBr+Ag, (Topsoe, J. B. 1868, 274.)

Platinic bromide, PtBr4.

Not deliquescent, sol. in H2O. (Mever and Züblin, B 13. 404) Sl. sol. in H2O. 100 g. PtBr4+Aq sat. at 20° contain 0.41 g. PtBr4. (Halberstadt. B. 17, 2962.)

Easily sol in HBr+Aq, sl. sol in HC-H-O-+Aq. Sol in considerable amount in K or NH oxalate+Aq Very sl. sol. in alcohol or ether, also in glycerine, (Halberstadt.)

Platinic hydrogen bromide. See Bromoplatinic acid.

Platinous bromide carbonyl. See Carbonyl platinous bromide.

Platinic bromide with MBr. See Bromoplatinate, M.

Platinum carbide, PtCo. Hot agua regia dissolves out nearly all the

Pt. (Zeise, J pr 20, 209.) Platinum carbon disulphide, PtCSv. See Platinum sulphocarbide.

Platinum monochloride, PtCl+xH-O. Easily sol, in HCl: mod, sol, in hot dil. H₂SO₄ without decomp. (Sonstadt, Proc. Chem. Soc. 1898, 14, 179.)

Platinous chloride, PtCl2.

II. 1014.)

Insol. in H2O, conc. H2SO4, or HNO8. Sol. in hot HCl+Aq with exclusion of air. (Berzelius) Insol in alcohol or ether; sol, in NH4OH+ Aq. (Raewsky, A ch. (8) 22. 280) Sol in Platinic chloride with MCl. aqua regia with formation of PtCl4. Insol, in cold cone, KI+Aq, but sol, when heated. (Lassagne, A. ch. (2) 51. 117.) Sl. sol in liquid NH (Gore, Am Ch. J 1898, 20, 828,) Insol. in acetone. (Fidmann, C. C. 1899,

Platinum trichloride, PtCl.

Sl. sol. in cold, more sol in hot H₂O. Partially hydrolyzed by boiling with H2O.

Insel in cold cone HCl. Sol in hot cone HCl with decomp Sol in KI+Aq. (Wohler, B 1909, 42. 3961.)

Platinic chloride, PtCl4.

Not deliquescent, Very sol, in H.O. (Pullinger, Chem Soc. 61, 420) Sp gr. of aqueous solution containing 10 15 20 25 % PtCl, 1 046 1 097 1 153 1 214 1 285 30 50 % PtCl₄. 25 40 45 1 362 1 450 1 546 1 666 1 785

(Precht. Z. anal 18, 512.) Insol in cone H₂SO₄. (Dumas.)

Sl sol, in liquid NHs. (Gore, Am Ch J. 1898, 20, 828 Sol. in alcohol and ether; sol in anhydrous acetone. (Zeise, A. 33, 34)

Insol in ether, (Willstatter, B. 1903, 36. 1830) Sl sol, in methyl acetate. (Naumann, B. 1909, 42, 3790)

Sol. in acetone. (Eidmann, C. C II. 1014; Naumann, B 1904, 37, 4328. (Eidmann, C. C. 1899, +HaO. Sol, in HaO. (Gutbier and Heinrich, Z. anorg. 1913, 81, 378) +4H₂O. Sol. in H₂O. (Pigeon, C. R. 1891, 112, 792) +5H₂O Not deliquescent. Sol. in H₂O or

HCl+Aq. Composition is probably H₂PtCl₄O+4H₂O. (Norton, J. pr. 110, 469.) +7H₂O. Sol in H₂O. (Pigeon.) +8H_{*}O. (Blondel, A. Ch. 1905, (8) 6.

98.1 Platinic thallrum chloride, Tl₂Pt₂Cl₃H₄O₄. Ppt.; insol, in H.O. (Miolati, Z anorg.

1900, 22, 460) Platinous hydrogen chloride. See Chloroplatinous acid.

Platinic hydrogen chloride. See Chloroplatinic acid.

Platinous chloride with MCl. See Chloroplatinite, M.

See Chloroplatmate, M.

Platinous phosphorus chloride. See Phosphorus platinous chloride.

Platinic phosphorus chloride. See Phosphorus platinic chloride. Platmous chloride carbonyl.

See Carbonyl platinous chloride.

Platinum chloride hydroxylamine, Pt(NH₂OH)₂Cl₂

Ppt Sol m alcohol and m ether, Decomp. in aq. solution Pt(NHAOH).Cl. Sol in H.O. (Uhlen-

Pt(NH₂OH)₄Cl₂ Sol in H₂O. (Uhlenhuth, A 1900, **311**, 124.)

Platinous chloride sulphocarbamide.

PtCl₂, 4CS(NH₂)²
Sl. sol m H₂O; very sol m hot H₂O, decomp sl. on boiling (Kurnakow, J pr. 1894, (2) 50. 483.)

Platinum chloroiodide, PtCl₂I₂

Very deliquescent (Kammerer, A 148.

329.)
PtCll₂ Insol in H₂O. Sl sol in alcohol
Sol in KOH+Aq, from which it is pptd by
H₂SO₄ (Mather, Sill Am J 27, 257)

Platinum chloronitride, PtNCl.

(Alexander, C C 1887, 1254)

Platmous cyanide with MCN.

See Platinocyanide, M.

Platinous fluoride, PtF₂, 9).
Insul in H₂O (Moissan, A, ch. (6), 24.

Platinic fluoride, PtF4

Deliquescent. Sol in H₂O with immediate decomp. into PtO₄H₄ and HF (Moissan, C R 109, 807.)

Platinous hydroxide, PtO2H2

Sol in HCl, HBr, and H₂SO₁+Aa, but not in other oxygen acids. Decomp by boiling KOH+Aq. (Thomsen, J pr. (2) 16.

341.) When freshly pptd, is insel in dil. HNO₂ and H₂SO₄, and in HC₂H₂O₂; sel. in cone. HNO₂ and H₂SO₄. Very sel. in H₂SO₄ and HCl. After dryng, is insel. in cone. HNO₃ and H₂SO₄. (Wöhler, Z. anorg. 1904, 40. 424.)

Platinic hydroxide, Pt(OH).

Eastly sol in dil needs and in NaOH+Aq. (Topsoe, J. B. 1870, 386) Nearly insol, in acctic acid (Deberginer)

Nearly usol, in acetic acid (Doberciner) Insol, in all acids except cone. HCl and aqua regia. (Wohler, Z anorg. 1904, 40.

+H₄O. Ppt. (Prost, Bull Soc. (2) 44. 256.) Insol in 2N-H₂SO₄ and dil. HNO₄+Aq, mod. sol. in cono. HNO₅, H₂SO₄, 2N-HCl and NaOH+Aq. (Wöhler.)

NaOH+Aq. (Wohler.)
+2H₂O. Essily sol in dil. acids, even acetic acid, and in NaOH+Aq. (Topsoe.)
Insol. in acetic acid; al. sol. in 2N-H₂SO₄ and HNO₅; easily sol. in HCl, and NaOH+Aq. (Wohler.)

Platinoplatinic hydroxide, Pt₃O₄, 9H₂O
Ppt (Prost, Bull Soc. (2) **46**. 156.)
Pt₄O₁₁, 11H₂O. Ppt. (Prost)

Platinum hydroxylamine comps.

See—
Platodoxamine comps., Pt(NH₂O)₄R₂
Platosoxamine comps., Pt(NH₅O)₂R₂.
Platosoxamine-amine comps..

Pt(NH₃O)₃NH₃R₂

Platinous iodide, PtI₂
Insol in H₂O, acids, or alcohol (Lassaugne, A ch (2) 51. 113.)

Difficultly sol. in Na₈SO₃+Aq (Topsoc). Gradually decomp by hot HI+Aq of 1.038 sp gr, also by hot KI+Aq, Ptl, being dissolved out and Pt left behind Not attacked by cone. H₂SO₆, HCl, or HNO₂+Aq, but gradually decomp. by KOH or NaOH+Aq. (Lassaigne.)

Insol. in acetone. (Edmann, C. C. 1889, II. 1014.)

Platinic iodide, Pt.I.

Insol in H₂O Sol, in NaOH or Na₂CO₂+A₃, H₂SO₂, or Na₂SO₂+A₃, Sol, in HI+A₃ or alkali voidudes +A₃ Sol, in alcohol, with partial decomp. Not attacked by acids. (Lassaigne, A. ch. (2) 51, 122.)
Very sol, in liquid NH₂. (Gore, Am. Ch. J.

1898, 20. 828) Sol in alcohol. (Belluci, C. C. 1902, I. 625)

Platinic iodide with MI. See Iodoplatinate, M.

Platinum nitride chloride, PtNCl. See Platinum chloronitride.

Platinous oxide, PtO.

Sol. in H₂SO₃+Aq Insol. in other acids. (Doberemer, Pogg 28, 183) Sol in conc. H₂SO₄; easily in conc. HCl+

Aq (Storer's Dict)
Very sl sol, in HCl+Aq. Sl. sol, in aqua
regia, (Wohler, B. 1903, 36, 3482.)

Platinic oxide, PtO2.

Insol. in acids, even aqua regia. (Wöhler, Dissert, 1901.)

Platmum trioxide, PtOa

Unattacked by ddl. H₂SO₄, HNO₃ or acetic acid. Sol. with decomp in dil and sone. HCl, cone. H₂SO₄ or cone. HNO₃. (Wohler, B 1909, 42 3329)

Platinum sesquioxide, Pt₂O₃+xH₂O.

Insol in dil sol in cone H₂SO₄. Sl. sol in hot dil HNO₂. Sol in HCl. Sol in cone, alkalı hydroxides+Aq. (Wohler, B. 1909, 42, 3984) +2H₂O. Insol. in HNO₂ and H₂SO₄. Insol. in alkalies +Aq, also cold dil. HCl+Aq Sol. in aqua regia. (Dudley, Am Ch. J. 1902, 28, 66) +5H₂O. (Delépine, Bull. Soc 1910, (4)

7, 103.)

Platinoplatinic oxide, Pt3O4.

Not attacked by long boiling with HCl. HNOs, or aqua regia (Jörgensen, J pr. (2) 16. 344 Does not exist. (Wohler, Z. anorg. 1904, 40 450)

Platmum oxychloride, 3PtO, PtCl2 (?) (Kane. Sol in HCl. and in KOH+Aq Phil Trans 1842, 298

PtCl₂(OH)₂ = H₂PtCl₂O₂ (Jørgensen, J. pr (2) 16. 345) 5PtO2, 2HCl+9H2O. Insol in cold H2O; decomp. on boiling. Slowly sol. in HCl. (Blondel, A. ch, 1905, (8) 6. 100.)

Platinum oxysulphide, PtOS See Platinum sulphydroxide.

Platinum phosphide, PtP:

Insol in HCl+Aq. Sol in aqua regia (Schrotter, W. A B 1849. 303.) PtP2H2. Insol in H2O, and HCl+Aq. (Cavazzi, Gazz ch. it. 13. 324) PtP Insol in aqua regia (Clark and Joslin) Pt₂P. (Clark and Sol in aqua regia Joslin)

Pt2Pt Partially sol in aqua regia (Clatk and Joshn, C N 48. 385) Attacked very slowly by aqua regis. Rapidly sol. in molten alkalies. (Granger, N. 1898, 77, 229)

Completely sol in agus regia if the action Platinum sulphides with MaS. sufficiently prolonged, though with difficulty. (Granger, C. R. 1896, 123, 1285)

Platinum diselenide, PtSe-

As PtS₂ (Minozzi, Chem. Soc. 1909, 96. (2) 899.)

Platmum traselenide, PtSea

Sl. attacked by hot cone. HNOs; not attacked by cold conc. HCl+Aq; slowly sol. in aqua regia and Cl2+Aq; insol, in CS2.

Platinum silicide, Pt.Si Sol in hot aqua regia (Vigouroux, C R. 1896, 123, 117

Pt₂S₁₂. (Colson, C. R. 94, 27.) Pt₄St₄. Slowly decomp. by aqua regia. (Guyard, Bull. Soc. (2) 25. 511.) PtS: Insol in HNO, H;SO4, HF, and HCl Completely sol. in aqua regia. (Lebeau and Novitzky, C. R. 1907, 145. 241.)

Platinum sulphydroxide, PtOS+H₂O = PtS(OH)2

Decomp, easily into-

 $P_{t_2}S_2O_4H_2 = P_{tS}OOH = P_{tOS} + \frac{1}{2}H_2O.H_2O$ cannot be removed without decomposing the compound, (v. Meyer, J pr (2) 15. 1.)

Platinous sulphide, PtS.

Not attacked by boiling acids, aqua regia, or KOH+Aq. (Böttgei, J. pr 2. 274) Sol in large excess of (NH₄)₂S+Aq.

Platmoplatinic sulphide, Pt₂S₃.

Not attacked by HCl or HNOs+Aq, and only slowly by aqua regia. (Schneider, Pogg. 138, 607)

Platinic sulphide, PtS₂

Anhydrous Aqua regia attacks sl, other acids not at all (Davy.) Hydrated Insol in HCl+Aq; sl sol in oiling HNO₂+Aq Sol n aqua regia boiling HNO2+Aq (Fresenius) Sol in alkalı sulphides, hydrates

and carbonates+Aq. (Berzelius.) Very sl. sol in (NH₄)₂S+Aq. (Claus) Insol in NH₄Cl, or NH₄NO₂+Aq

1 pt. PtCl. in 100 pts. H O+25 pts HCl is not pptd. by H₂S (Remsch)
Difficultly sol. in alkalı sulphydroxides+ Aq, but more easily in presence of Sns Sb2S1, As2S1, or SnS2 (Ribau, C R. 85. 283)

Platinum sulphide, Pt₀S_e, or Tetraplatinum sulphoplatinate, 4PtS, PtS₂.

Decomp on moist air, but not attacked by acids (Schneider, J pr (2) 7, 214)

See Sulphoplatinate, M.

Platinum sulphocarbide, PtC₂S₂. Not attacked by hot HCl, HNOs+Aq. slightly by aqua regia. (Schutzenberger, C. R. 111. 391.)

Platinum telluride, PtTe.

Decomp by fused oxidizing agents, slowly sol. in conc. HNO3. (Roessler, Z. anorg. 1897, 15. 407)

Platinum ditelluride, PtTe2.

Insol in boiling cone KOH+Aq; slowly sol, in boiling cone HNO₃; decomp by fused oxidizing agents. (Roessler)

Plato-.

See also Platino-.

Platoamidosulphonic acid.

Potassium platoamidosulphonate, K₂Pt(NH₂SO₂)₄+2H₂O.

Very al. sol. in cold H₂O; sol. in 10 pts. boiling H₂O. (Ramberg and St. Kahlenberg, B. 1912, 45, 1514.)

Sodium ---, Na₂(Pt(NH₂SO₂)₄+4H₂O. Very sol. in H₂O. (Ramberg and St. Kahlenberg.)

Platodramine bromide, Pt[(NH₃)₂Br]₂+ 3H₂O.

Easily sol, in H₂O, (Cleve.)

carbonate, Pt(N₂H₆)₂CO₃+H₂O. Sol. in H₂O. (Peyrone, A. 51, 14.) Pt(N₂H₆CO₂H)₂ Sl. sol in, but decomp by boiling with HoO into-

- sesquicarbonate.

More sol. than preceding salt. (Reset, C R. 11. 711.)

chloride, Pt[(NH₃)₂Cl]₂+H₂O. "Reset's first chloride," Sol. in 4 pts. H₂O at 16.5°, and in less hot H₂O. Insol. in alcohol or ether (Reiset, A. ch. (3) 11. 419.) As sol. in NH₄Cl+Ag as in H₂O; insol. in absolute alcohol; sl sol, in dil alcohol, very sol in dil. HCl+Aq (Peyrone, A. ch. (3) 12. 196)

--- cuprous chloride, Pt(NH2), Cl2, Cu2Cl2. Sol. in H2O, and pptd. from H2O solution by alcohol. (Buckton.)

--- cupric chloride, Pt(NH4)4Cl2, CuCl2. SI, sol. in cold, decomp. by hot H₂O into Pt(NH3), Cl2, Cu2Cl2. (Buckton, Chem. Soc. Nearly insol. in H2O; easily sol. in warm

HCl+Aq; msol, in alcohol. (Millon and Commaille, C. R. 57, 822.) Millon and Commaille's salt is

Cu(NH₂)₄Cl₂, PtCl₂, cuprammonium chloroplatinite

--- lead chloride, Pt(NHs)4Cls, PbCls. Sol. in hot, much less in cold H₂O. Insol. in HCl+Aq or alcohol. (Buckton, Chem. Soc. 5. 213,)

--- mercuric chloride, Pt(NH₂),Cl₂, HgCl₂. Easily sol, in hot H.O. much less in cold. Insol. in HCl+Aq. (Buckton)

- zinc chloride, Pt(NH1)4Cl2, ZnCl2. Easily sol. in hot H₁O. Insol, in alcohol (Buckton.)

Platodiamine chloroplatinate, Pt(NH₂),Cl₂. PtCL.

Pnt. Insol. in H.O. (Cossa, Gazz, ch. it. 17. 1.)

 chloroplatinite, Pt(NH₃)₄Cl₂, PtCl₂. (Magnus' green salt.) Insol, in, and not decomp. by HaO, HCl+Aq, or alcohol. (Mag-

nus.) Slowly sol. in boiling NH4OH+Aq and in cone. NH, salts+Aq. (Reiset, A. ch. (3) 11.

Almost as sol. in (NH4)2CO2+Aq as in NH4OH+Aq. Sol in hot PtCl4+Aq (Rei-

Not decome by boiling KOH, dil HCl, or H₂SO₄+Aq, but easily by HNO₂+Aq. (Gros, A. 27. 245.)

--- chromate, Pt(NH_{*})₄CrO₄ Scarcely sol in H₂O (Cleve.)

— dichromate, Pt(NH₃)₁Cr₂O₇ Sl. sol. in H₂O. Insol. m alcohol. Sol. in KOH+Aq. (Buckton, Chem. Soc. 5. 213.)

platinous cyanide, Pt(NH₃)₄(CN)₂, Pt(CN)₂ Sl. sol. in cold, easily in holling H₂O; sol. in KOH, HCl, and dil H₂SO₄+Aq without decomp., but conc. H₂SO₄ decomposes.

potassium ferrocvanide.

Pt(NHs) K2|Fe(CN) l2+3H2O. — hydroxide, Pt[(NH₈)₂OH]₂

"Reisct's first base." Easily sol. in H2O. Sl sol, m alcohol.

---- iodide, Pt[(NH₃)₂I₂], SI sol. in cold, more easily in hot H2O, but slowly decomp, on boiling, (Reiset,)

 nitrate, Pt[(NH₃)₂NO₂]₂. Sol, in about 10 pts boiling H.O. Insol, or but sl. sol. in alcohol (Peyrone, A. ch (3) 12. 203.)

 nitrate sulphate, [Pt(NH₃)₄NO₃]₂SO₄, Pt(NH,),SO,

Very easily sol, in H.O (Carlgren, Sv V. A. F. 47. 310) - nitrite, Pt[(NH_s)_oNO_s]_s+2H_oO.

Efflorescent. Very sol, in hot or cold H₂O. Insol, in 90% alcohol (Lang.)

 platinous nitrite, Ptl(NH₃)₂NO₂l₂, Pt(NO2)2.

Scarcely sol, in cold, somewhat more easily in hot H₂O. Not attacked by cold dil, acids. More sol. in NH₄OH+Aq than in H₂O. (Lang)

Pt(N+Ha)+HPO Platodiamine phosphate. +H.0 Rather difficultly sol. in cold, and very

easily in hot H2O. (Cleve.)

- ammonium phosphate, Pt[(N₂H₆)PO₄(NH₄)₂]₂, 4NH₄H₂PO₄+ H.O.

Very easily sol. in H₂O with decomp into— Pt(N₂H₄H₄PO₄)₅, 2NH₄H₂PO₄+9H₂O. Much more sol. in H₂O than the preceding. comp (Cleve.)

- sulphate, Pt(NH₃)₄SO₄

Sol. in 32 pts H2O at 16.5°; more easily when heated (Resset) Sol, in 50-60 pts boiling H₂O; less in cold H₂O. msol, m alcohol. (Cleve.)

---- sulphate, acid, Pt[(NH_s)₂SO₄H]₂+H₂O₄ Decomp, by H2O or alcohol into neutral

salt. 3Pt(NH₃)₄SO₄, H₂SO₄+H₂O. Sol. in H₂O. (Cleve.)

---- sulphite, Pt(NH_s)_sSO_s,

Nearly insol. in cold H2O. (Birnbaum, A. 152, 143 $Pt[(NH_s)_2SO_8H]_2 + 2H_4O$. Ppt. Sol. in HCl+Aq (Cleve.)

platinous sulphite,

3Pt(NH₃),SO₃, PtSO₃+2H₂O. Scarcely sol. in cold H₂O; sol. in 190 pts. H₂O at 100°. Easily sol. in warm HCl+Aq with decomp. (Peyrone.) +4H₂O. (Carlgren, Sv. V. A. F. 47. 308.) 2Pt(NH₄)₄SO₄, PtSO₅, H₂SO₅ Insol. in

cold H2O or alcohol. Scarcely sol in hot H2O. (Pevrone)

--- sulphocyanide, Pt(NH₄)₄(CNS)₂+H₄O, Very sol. in H₂O. Solution is decomp. on boiling. (Cleve, Sv V. A. H. 10, 9. 7.)

— platinous sulphocyanide, Pt(NH₃)₄(CNS)₂, Pt(CNS)₂.

Insol, in H₂O and alcohol; sol, in dil, HCl+ Aq (Buckton, Chem. Soc. 13. 122.)

Platomonodiamine chloride, $Pt_{NH_3Cl.}^{(NH_3)_2Cl}$ Easily sol, in H₂O, (Cleve.)

Platomonodiamine chloroplatinite 2PtNH₃)2Cl, PtCl₂.

Moderately sol. in cold, but more easily in hot H₂O. (Cleve.) •

--- nitrate, PtNH₂NO₂+H₂O.

Easily sol. in H₂O. (Cleve.)

Platomonodiamine sulphate, $Pt^{(NH_3)_3}SO_4$.

Easily sol. in cold, but much more in hot H₂O.

Platosemidiamine bromide, Pt<(NHa)3Br Sol. in H2O. Eastly sol. in NH2OH+Aq.

--- chloride, Pt < (NH₄)2Cl

(Peyrone's chloride) Sol, in 387 pts H₂O

(Peyrone's chloride) Soi, in 587 pis 1120 at 0°, and 26 pis at 100° (Cleve), in 33 pts. at 100°. (Peyrone)
Soi, in NH₄OH+Aq; very sl. soi in HCl or H₂SO₄+Aq; more easily in HNO₃+Aq, sol. in alkalı carbonates+Aq. (Peyrone, A. ch (3) 12, 193)

Platosemidiamine chlorosulphurous acid, Pt<(NH₈)₂SO₃H

Easily sol. in H₂O. (Cleve.)

Ammonium platosemidiamine chlorosulphite platosemidiamine sulphite,

Pt < (NH₃)₂SO₃NH₄, Pt < (NH₃)₂SO₃NH₄+ 2H₂O Easily sol, in H2O Insol, in alcohol,

(Cleve)

Platosemidiamine cyanide, Pt(CN)(NH₃)₂CN. Easily sol, in H₂O. (Cleve.)

 platinous cvanide, Pt(CN)(NH₂)₂CN. Pt(CN)2(?).

--- hydroxide, Pt<(NH₈)₄OH Not known.

— 10dide, Pt<(NH₃)2I Sl. sol. in boiling H2O. (Cleve.)

--- nitrate PtNOs

Moderately sol, in H₂O. (Cleve.)

— nitrite, $Pt_{NO_2}^{(NH_2)_2NO_2}$

Very al sol, m cold, more easily in hot H2O,

oxalate, Pt(NH_s)₂C₂O₄ (Cleve.) +2H₂O. (Cleve)

--- sulphate, Pt < (NH₈)₂ > SO₄.

Very al. sol, even in hot H₂O. (Cleve.)

Platosemidzamine sulphocyanide. Pt(SCN)(NH2),SCN

Easily sol in warm H.O. but solution soon decomposes.

Platosemidiamine sulphurous acid.

Ammonium platosemidiamine sulphite. Pt<(NH₄)₂SO₄(NH₄), (NH₄)₂SO₃. Very sol, in H₄O (Cleve.)

Barium ----. Pt(SO₂)[(NH₂)₂SO₂]Ba, BaSO₂.

Ppt (Cleve.)

Silver ----. Pt(SO₃Ag)[(NH₅)₂SO₃Ag], Ag₂SO₃. Ppt. (Cleve.)

Diplatodiamine chloride, Pta(NH1)4Cla. Insol, in H.O.

---- hydroxide, Pt2(NH3)4(OH)2+H2O Insol. in H₂O.

--- nitrate, Pta(NH₂)₄(NO₂)₃ Insol, m H₂O, (Cleve) - sulphate, Pt₂(NH₃)₄SO₄

Insol, in H₂O. (Cleve.) Platobromonitrous acid.

Potassium platobromonitrite, K₂Pt(NO₂),Br +2H₂O Sol, in about 3 pts. cold, and 2 pts. boiling H₂O (Vèzes, A. ch. (6) 29. 194.)

K₂Pt(NO₂)₂Br₂+H₂O. Sol. m 1 pt. cold, and still less hot H₂O. Insol. in alcohol

Platochloronitrous acid.

(Vèzes.)

Potassium chloronitrite, K₂Pt(NO₂)₂Cl+

2H₂O Sol, in about 3 pts. cold, and 2 pts. boiling H₂O. (Vèzes, A. ch. (6) 29, 178.) K₂Pt(NO₂)₂Cl₂. Sol, in about 3 pts. cold,

and 2 pts, boiling H2O. (Vèzes.) Platochlorosulphurous acid.

See Chloroplatosulphurous acid. Platoiodonitrous acid, H2Pt(NO2)2L2.

Known only in solution (Nilson, J pr. (2) 21. 172.) Aluminum platoiodonitrite, Al₂[Pt(NO₂)₂I₂],

+27H₂O. Easily sol, in H₂O. (Nilson.)

Ammonium —, $(NH_4)_2Pt(NO_4)_4I_4+2H_2O$, Rubidium —, $Rb_2Pt(NO_2)_4I_4+2H_4O$. Sol. in H₂O; decomp on heating,

Very sol, in H_sO Cadmium ---- CdPt(NO₀)₀I₀+2H₀O Easily sol, in H₀O.

BaPt(NO2)2I2+

Barium platoiodonitrite.

4H,O.

Sol. in H₀O.

Sol. in H₀O.

Insol. in H_{*}O

Casium ----. Cs.Pt(NO₂)₂I₂+2H₂O

Easily sol in H.O. Celcium --- CsPt(NO₀)₀I₀+6H₀O₁

Very easily sol in H₂O Cerum --- Cos[Pt(NO₂)₂I₂]₃+18H₂O.

Easily sol. in H₂O. Cobalt ----, CoPt(NO2)2I2+8H2O

Didymium ---- Dia[Pt(NOa)aIa]a+24HaO. Sol in H.O.

Erbium ----, Ers[Pt(NOs)sIsls+18 HsO.

Sol. m H_{*}O Ferrous ----, FePt(NO₂)₂I₂+8H₂O

Ferric --- Fes[Pt(NO*)*I*]*+6H*O Sol. in H₀O

Lanthanum —, $Le_2[Pt(NO_2)_2I_2]_3+24H_2O$. Sol. in H₂O. Lead ----, basic, PbPt(NO2)2I2, Pb(OH)2,

Lithium ---, L12Pt(NO2)2I2+6H2O. Very sol. in H₂O

Magnesium ----, MgPt(NO₂)₂I₂+8H₂O. Sol. in H.O.

Manganese ---. MnPt(NO₂)₂I₂+8H₂O. Sol in H₂O.

Mercurous ---basic, 2Hg2Pt(NO2)2I2, Hg₂O+9H₂O. Insol. in H₂O.

Nickel ----, N1Pt(NO2)2I2+8H2O Sol in H₂O.

Potassium ----, K2Pt(NO2)2I2+2H2O. Sol. in H₂O in all proportions. Very sol, in alcohol.

Sol. in H₂O.

Silver platoiodonitrite, Ag2Pt(NO2)2I2. Insol. in H₂O

Sodium ----, Na₂Pt(NO₂)₂I₂+4H₂O Very sol in H2O

Strontium ---- SrPt(NO₂)₂I₂+8H₂O. Sol in H₂C

Thallium ---, Tl2Pt(NO2)2l2 Insol in H₂O

Yttrum —, $Y_1[Pt(NO_1)_2I_2]_1+27H_2O$ Sol in H₂C

Zinc ----, ZnPt(NO2)2I2+8H2O Sol. in H₂O

Triplatooctonitrosylic acid, H4Pt4O(NO2)8. (Nilson, J. pr. (2) 16. 241)

Potassium triplatocctonitrosviate. See under Platonitrite, potassium.

Platonitrous acid, HaPt(NOa)4. Sol. in H2O or alcohol. (Lang J. pr 83. Is called "Platotetranstrosylic acid" by Nilson

Aluminum platonitrite, Al₂[Pt(NO₂)₄]₈+ 14H.O Sol in H₂C

Al₂(OH)₂[Pt(NO₂)₂]₄O₂+10H₂O Sl sol. in cold, easily in hot H₂O and alcohol (Nilson, B. 9, 1727.)

Ammonium platonitrite, (NH4)2Pt(NO2)4+ 2H.0 Moderately sol. in cold H₂O (Nilson, B. 9, 1724.)

Barium platonitrite, BaPt(NO2)4+3H2O. SI, sol, in cold, very sol, in hot H₂O (Lang.)

Cadmium platonstrite, CdPt(NO2)4+3H2O Easily sol in H₂O (Nilson.)

Casium platonitrite, Cs-Pt(NO+)4. Resembles K salt.

Calcium platonitrite, CaPt(NO2)4+5H2O. Very sol in H₀O. (Nilson)

Cerium platonitrite, Ce2[Pt(NO2)4l2+18H2O.

Chromium diplatonitrite $Cr_2(OH)_2[Pt(NO_2)_2]_4O_2 + 24H_2O.$ Sol. in H2O. (Nilson.)

Sol. in H₂O. (Nilson)

Cobalt platonstrite, CoPt(NO2)4+8H2O Easily sol. in H2O (Nilson)

Copper platonitrite, CuPt(NO₄)₄+3H₄O. Sol. in H₂O (Nulson) 3CuPt(NO₂)₄, CuO+18H₂O Decomp. by H₂O (Nilson)

Didymium platonitrite, Dig[Pt(NOg)4]s+ Deliquescent; sol. in H_2O .

Erbium platonitrite, Er-Pt(NO-), 1-+9, and Deliquescent, sol in H₂O.

Glucinum diplatonitrite, Gl'Pt(NO2)2]2O+ 9H.O. Sl sol. m cold H₂O.

Indium diplatonitrite, In(OH)2[Pt(NO2)2]4O2 +10H₂O. Sl sol m H₂O

Fernic diplatonitrite, Fe2[Pt(NO2)2]5O3+ 30H₂O. SI sol in cold, easily in hot H.O.

Lanthanum platonitrite, Las(Pt(NOs),ds+ 18H-O

Deliquescent, sol. in H₂O. Lead platonitrite, PbPt(NO2)4+3H2O. Sl. sol. in H₀O. (Nilson)

Lithium platonitrite, LigPt(NOg)4+3H2O. SI. deliquescent, easily sol. in H₂O.

Magnesium platonitrite, MgPt(NO2)4+5H2O. Easily sol. in H2O.

Manganese platonitrite, MnPt(NO2)4+ SH₂O Sol. in H₂O

Mercurous platonutrite, Hg2Pt(NO2)4, Hg2O. Nearly insol, in H.O (Lang. J pr 83, 415) +H₂O. Nearly insol in H₂O. (Nilson.)

Nickel platonitrite, NiPt(NO2)4+8H2O. Easily sol, in H₂O. (Nilson.)

Potassium platonitrite, K₂Pt(NO₂)₄. Sol, in 27 pts H₂O at 15°; more easily sol so, in 27 pts 14,0 at 10; inote easily so:
in warm H₂0. (Lang,) pr. 83, 415;
+2H₂0 Ffflorescent (Lang.)
K₂H₂Pt₂O(NO₂)₄+3H₂O. Very sl. sol. in
cold (0.01 mol. in 1 1. st 16°), but very easily
m hot H₂O. (Vezes, A. ch. (3) 29.162.)
K₂Pt₂O(NO₂)₄+2H₂O. Sl sol. in warm

H₂O. (Nilson)

Potassium platonitrite bromide. Platodioxamine oxalate, Pt/NH₂O NH₂O)₂C₂O₄.

See Platibromonitrite and platobromonitrite, potassium.

Potassium platonitrite chloride, See Plati- and platochloronitrite, potassium.

Potassium niat nitrite hydrogen chloride. KaPt(NOa), HCL

Sol. in H.O. (Miolati, Att. Line, Rend. 1896. (5) 5. IT. 358.)

Potassium platonitrite jodide.

See Plati- and platoiodonstrate, potassium. Potassium platonitrite nitrogen dioxide.

K,Pt(NO;)4, 2NO; Violently decomp. by H₂O. (Miolati, Atti Line. Rend. 1896, (5) 5, II, 356.)

Rubidium platonitrite, Rb₂(Pt)(NO₂), and

+2H.O. Very slowly sol, in cold, more easily in warm H.O. (Nilson.)

Silver platonitrate, AgoPt(NOz)4.

Very sl sol, in cold, easily in hot H₂O Silver diplatonitrite, Ag2Pt2(NO2)4O

Insol in H₀O. (Nilson.) Sodium platonitrite, Na-Pt(NO-), Easily sol in H₂O.

Strontium platonitrite, SrPt(NO₀)₄+3H₂O. Somewhat sl. sol, in cold H₂O, but easily sol, in warm H₂O.

Thallium platonitrite, Tl2Pt(NO2)4 Very sl sol, in H₂O. (Nilson.)

Yttrium platonitrite, Y2[Pt(NO2)412+9, or 21H.O. Sol. in H₂O.

Zinc platonitrite, ZnPt(NO*)4+8H*(). Sol. in H₀O.

Platodioxamine chloride. Pt(NH₂O.NH₂OCl)₂.

Easily sol. in H₂O, (Alexander, A. 246, 239.)

---- chloroplatinite, Pt(NH2O NH2OCI)2. PtCl₂.

Sol. in warm HCl+Aq Insol. in cold HaO or alcohol; very al. sol. in hot H₂O (Alexander.)

---- hydroxide, Pt(NH2O NH2O)2(OH)2 Insol. in H.O or alcohol Easily sol. in HCl or HNO1+Aq. Difficultly sol. in hot dil. H₂SO₄+Aq. (Alexander.)

Insol in cold H.O. alcohol, or organic acids. (Alexander)

---- phosphate, Pt₂(NH₃O NH₃O)₁₂(PO₄)₂+ Pnt. (Alexander.) - sulphate, Pt/NH₂O NH₂O)SO₄+H₂O.

SI sol in H.O. (Alexander.)

Platosamine bromide, Pt(NH₂Br). Sl. sol. even in hot H_{*}O (Cleve)

--- chloride, Pt(NH,Cl).

evolution of NH₂. (Cleve)

(Grimm, A 99, 75)

"Reset's second chloride" Sol. in 140 pts. H₂O at 100° (Peyrone, A. 61, 180) Sol m 130 pts. H₂O at 100°, and 4472 pts. at 0° (Cleve) Easily sol, in NH₄OH+Aq, HNO₂, or aqua regia. with decomp. Sol. in KCN+Aq with

- ammonium chloride, Pt(NHgCl)2, 2NH₄Cl SI sol in cold, easily in hot H2O; msol.'in alcohol; sol. in NH4OH or (NH4)2CO2+Aq.

Platosamine chlorosulphurous acid. PtNH,Cl

Easily sol, in H₀O without decomp (Cleve.)

Ammonium platosamine chlorosulphite. Pt(NH,Cl)NH,SO,NH,+H,O. Sol. in H2O. (Peyrone, A 61, 180.)

Platosamine cyanide, Pt(NH₂CN)₂. Quite easily sol. in H₂O or NH₄OH+Aq. (Buckton)

--- hydroxide, Pt(NH₂OH), "Resset's second base." Very sol. in H2O. (Odling, B. 3, 685.)

--- iodide, Pt(NH2I)2. Very sl. sol, in H₂O. Sol in cold NH₂OH+ Aq to form platodiamine iodide (Cleve)

- nstrate, Pt(NHsNOs). Moderately sol. in hot H.O. Sol in

NH.OH+Ac with combination. (Reiset, A. ch. (3) 11. 26)

- nitrite, Pt(NH,NO.). Very sl. sol. in cold, easily in hot H2O. Insol in alcohol (Lang.)

Platosamine platinous nitrite, Pt(NH3NO2)s, Sodium platosamine sulphite, Pt(NO2)2.

Slowly and sl sol in cold, more easily sol in Extremely sl. sol, even in conc. acids; more

sol, in NH4OH+Aq than in H2O. (Lang)

—— oxide, Pt(NH₃)₂O.

Insol. in H₂O or NH₄OH+Aq (Reiset) oxalate, Pt(NH₃)₃H₂(C₂O₄)₃+2H₂O

Ppt. (Cleve.)

----- sulphate, Pt(NH3)2SO4+H2O. Sl. sol in cold, more easily in hot H.O. ---- sulphite, Pt(NH₃)₂SO₃+H₂O,

Easily sol. in H2O. (Cleve)

—— sulphocyanide, Pt(NH₀SCN)₂. Insol. in H₂O, can be cryst. from alcohol, not attacked by HCl or H2SO4+Aq (Buck-

ton) Very sol, in hot H₂O (Cleve.)

---- silver sulphocyanide, Pt(NH₄)₂Ag₄(SCN)₆. (Cleve.)

Platosamine sulphurous acid. Pt(NH,SO,H)2. Exists only in its salts See Platosamine sulphite.

Ammonium platosamine sulphite, Pt(NH2SO2NH4)2

Sol. in H.O. Insol. in alcohol Barium platosamine sulphite,

Pt(NH₈)₂(SO₈)₂Ba+3H₂O. Ppt. (Cleve)

Cobalt ----, Pt(NH3)2(SO3)2CO+ 6H₂O. Very sl. sol. in H₂O. Sol in HCl+Aq

Copper ---——. Pt(NH₃)₂(SO₃)₂Cu+ 5H2O. Very sl sol, in H₀O, sol in HCl+Aq.

Lead — Pt(NH₃)₂(SO₃)₂Pb+H₂O Ppt.

Manganese --- , Pt(NH3)2(SO2)3Mn +4H₂O Ppt Sl. sol. in H2O.

Nickel — Pt(NH₃)₂(SO₃)₂Ni+7H₂O. Sl. sol, in H2O.

Pt(NH₂SO₂Na)₂+5½H₂O.

Sol, in H₂O 100 ccm sat, solution at 20° contains 5.52 g. cryst. salt. (Haberland and Hanekop, A. 245, 235.)

Silver --- Pt(NH₂SO₂Ag)₂+H₂O.

Uranyl ---- , Pt(NH2)2(SO1)2UO2+H2O.

Zinc ---- Pt(NH*)*(SO*)*Zn+6H*O. Ppt. Very sl sol, in H₂O. (Cleve.)

Platososemiamine potassium chloride, PtCl, KCl+H2O

Very sol in H₂O; msol, in alcohol. (Cossa. B. 23, 2507.)

NH₂OCI Platosoxamine chloride, PtNH,OCL

Sol. in H2O. Much less sol in H2O than platodroxamine chloride. (Alexander, A. 246. 239.)

Platosoxamine amme chloride. PtNH₂O.NH₂Cl NH₂ NH₂OCl.

Easily sol in H2O. Insol in alcohol and conc HCl+Aq. (Alexander, A. 246, 239.)

---- chloroplatinite, PtNH₃O.NH₃Cl₁PtCl₂ Ppt

Platosulphurous acid.

Ammonium platosulphite, (NH4)4Pt(SO2)4+

Sol in H₂O (Birnbaum, A. 139, 170) (NH4)2Pt(SO2)2+H2O. Sol. in H2O (Liebig, Pogg 17, 108.)

Ammonium platosulphite chloride, (NH₄)₂Pt(SO₃)₂, 2NH₄Cl

Sol in H₂O. (Birnbaum.) PtClSO₃H, 2NH₄Cl. Deliquescent; sol. in H₂O. (Birnbaum, A. **152**, 143)

See also Chloroplatosulphite, ammonium,

Potassium platosulphite, K₄Pt(SO₃)₄+4H₂O Sl. sol, in cold, easily in hot H2O.. Much more sol, than the Na salt. (Burnbaum, A.

139. 168; +3H₂O (Lang, J. pr 83, 415.) 6K₄O, 2PtO, 10SO₂. Sl. sol. in H₂O. (Claus, J. B. 1847-48, 453)

Does not exist. (Lang) K₂Pt(SO₄)₂. Sol. in H₂O.

Silver platosulphite, AgaPt(SOs)4-

Ppt Very sol. in cold NH₂OH+Aq (Lang J, pr. 83, 415)

Sodium platosulphite, NacPt(SO:),

Very sl sol m cold, somewhat more easily in hot H2O Not decomp, by boiling KOH or NaOH+Aq. Gradually sol in (NH₄)₂S or K₂S+Aq Insol in NaCl+Aq or alcohol (Litton and Schnodermann, A. 42. 316)

+1½H₂O. +7H₂O. NagPt(SO₃H)₄. Moderately sol in H₂O. (Litton and Schnedermann)

Platothiosulphuric acid.

Sodium platothiosulphate, $N_{Se}Pt(S_2O_2)_4 + 10H_2O$. Very sol in H2O (Schottlander, A. 140.

200.) PtS₂O₃, 4Na₂S₂O₄+10H₂O.

PtS₂O₈, 6Na₂S₂O₃+19H₂O 2Pt₂S₂O₃, 7Na₂S₂O₃+18H₂O. C. C. 1885, 642.) (Jochum,

Plumbic acid.

Barrum plumbate, Ba2PbO4.

Insol. in H₂O. Sol in HCl+An with evolution of Cl Sol, in acids in presence of a reducing substance (Kassner, Arch Pharm 228, 109)

Calcium plumbate.

Insol in H₂O. HNO₃+Aq dissolves out CaO. (Crum, A. **55**, 218.) Ca₂PbO₄. Properties as Ba₂PbO₄. (Kassner, Arch Pharm. 228, 109.) -4H₂O. Easily decomp by HNO, (Kassner, Arch. Pharm 1894, 232, 378)

Calcium hydrogen plumbate, H, CaPb,Oa. Fairly stable, slowly sol, in HNO2 in the cold (Kassner.)

Calcium lead orthoplumbate, CaPbPbO4. Insol. in H₂O. Sol. in HCl HNO₃, acetic and other acids cause a separation of PbO₂. (Kassner, Arch. Pharm 1903, 241, 147)

Copper metaplumbate, CuPbO2.

Decomp. by acids. Insol. in NH₄OH+Aq. Acetic acid dissolves Cu. (Hoehnel, Arch. Pharm 1896, 234. 399.)

Lead mstaplumbate, PbPbO.

Identical with lead sesquioxide. (Hoehnel, Arch. Pharm. 1896, 234. 399.)

Manganese metaplumbate.

1896, 234, 399.)

Potassium plumbate, K2PbO2+3H2O. Very deliquescent Decomp by pure H₂O into PbO₂ and KOH. Sol in KOH+Aq without decomp. (Fremy, J Pharm (3) 3, 32.)

Silver metaplumbate, Ag₂PbO₃. Ppt (Grützner, Arch. Pharm 1895. 233. 518)

Sodium plumbate.

Sol in H2O with decomposition. Sl. sol in alkalies+Aq (Fremy, A. ch (3) 12. 490)

Sodium metaplumbate, Na₂PbO₈+4H₂O. Decomp by H₂O; msol in alcohol. (Hochnel, Arch Pharm 1894, 232, 224)

Strontium plumbate, Sr. PbO4.

Properties as Ba₂PbO₄ (Kassner, Arch Pharm, 228 109.)

Zinc metaplumbate, ZnPbO2+2H2O. Decomp. by dil acids; insol. in H2O. (Hochnel, Arch. Pharm, 1896, 234, 398.)

Plumbous acid.

Calcium plumbite.

Sl sol in H₂O. (Kausten, Scher J. 5, 575) Potassium plumbite, PbO, xK2O.

Known only in solution.

Silver plumbite, Ag2PbO2

Insol in H2O, NH4OH+Aq and KOH+ Aq; sol. in HNO, and acetic acid; and in conc. H₂SO, HI, and HF. (Bullnheimer, B 1898, 31, 1288.) +2H₂O. Insol m H2O. Decomp. on air. (Kratwig, B 15, 264)

Sodium plumbite.

Known only in solution

Potassium, K2.

Violently decomposes H₂O or alcohol. Insol in hydrocarbons. Sol, with violent action in acids.

Solubility in fused KOH at to 1 C W -- 1 !- 100

480 7.8-8 9 600 3 -4 650 2 -2 7
700 0.5-13

(Hevesy, Z. Elektrochem 1909, 15, 534.)

 Sol. in liquid NH₈.
 (Seely, C. N. 23. 169);

 Pocomp. by acads.
 (Hoehnel, Arch. Pharm.)

 100, 234.
 399.

 Sol. in liquid NH₈.
 (Seely, C. N. 23. 169);

 Franklin, Am Ch. J. 1898, 20, 829.
 1

 I gram atom of K dissolves in 4,74 mol.
 1

 I gram atom of K dissolves in 4,74 mol.
 1

liquid NH₃ at 0°, in 4.79 mol. at —50°; in 4.82 mol at —100° (Ruff, B 1906, 39, 839.) Insol in liquid CO₂. (Büchner, Z. phys Ch 1906, 54. 674.)

Slowly sol in ethylene diamine Insol in ethyl amme and in secondary and tertiary omines (Kraus, J. Am Chem. Soc 1907. 29.1561)

Potassium acetylide, K₂C₃ (Moissan, C R 1898, 127, 917.)

Potassium acetylide acetylene, K₂C₄, C₃H₅, (Moissan, C. R. 1898, 127, 915.)

Potassium amalgams.

Hg₄K, Hg₄K, Hg K, Hg₁₀K, Hg₁₂K and g₁₈K (Guntz, C R. 1900, **131**. 183) Hg₁₄K Stable up to 0°. Can be cryst Hg₁₈K from Hg without decomp. below 0° Hg₁₂K Stable from 0° to 71° or 73° Can be cryst from Hg without decomp, at any temp, between these limits.

Hg10K. Stable from 71° or 73-75°. Can be cryst, from Hg without decomp at any temp between these limits. (Kerp, Z. anorg. 1900, 25. 68.)

Potassium amide, KH2N.

Decomp by water or alcohol Insol in hydrocarbons.

Potassium ammonickelate, Ni₂N₈K₅, 6NH₂ Decomp by H₂O Sl sol, in liquid NH₃. (Bohart, J. phys. Chem. 1915, 19. 559)

Potassium ammonoargentate, AgNHK, NH. or AgNH2, KNH2

Ppt, decomp, in the air. Decomp by H₂O or by hould NH, solutions of acids. (Franklin, J. Am Chem. Soc. 1915, 37 855)

Potassium ammonobarate, BaNK, 2NHs. Hydrolyzed by H₂O. Insol, in liquid NH₃, Decomp. and dissolved in a solution of NH4NO2 in liquid NH4. (Franklin, J. Am. Chem Soc. 1915, 37, 2297.)

Potassium ammonocadmiate, Cd(NHK)2, 2NH.

Ppt. (Franklin, Am. Ch. J. 1912, 47. 310.) Cd(NHK)₂, 2NH₃ Decomp. by H₂O. Insol. in liquid NH₃. (Bohart, J. phys. Chem. 1915, 19, 542,)

Potassium ammonocalciate, CaNK, 2NH₃. Hydrolyzed by H₂O Readily sol, in a solution of NH4NOs in liquid NH4. (Franklin, J. Am. Chem. Soc. 1915, 37, 2300.)

Potassium ammonocuprite, CuNK2, 3NH2. Very sol in houid NH. CuNK2, 2NH1.

CuNK₂, NH₂. (Franklin, J. Am. Chem. Soc. 1912, **34**. 1503)

CuNK₂, 2½NH₃. Ch J. 1912, 47, 311.) Ppt (Franklin, Am.

Potassium ammonomagnesate, Mg(NHK)₂. 2NH.

Sl. sol m hquid NH₂. Rapidly hydrolyzed by H₂O. (Franklin, J Am. Chem. Soc. 1913, 35, 1463)

Potassium ammonoplumbite, PbNK, 21/6NH2. Completely hydrolyzed by action of water Violently decomp. by H2O or dil. vapor Sol. in liquid NH4. (Franklin, J. abroa phys Chem. 1911, 15. 519.)

Potassium ammonostannate, Sn(NK)2, 4NH2. Decomp. by H2O Readily sol. in HCl+ Aq Sl. sol. in liquid NH₃. Readily sol. in a solution of NH₄I in liquid NH₃ (Fitzgerald, J. Am. Chem. Soc. 1907, 29, 1696.

Potassium ammonostrontiate, SrNK, 2NHs. Hydrolyzed vigorously by H₂O. Sol. in solutions of NH, NO; in liquid NH; Insol. in liquid NH4. (Franklin, J Am Chem. Soc. 1915, 37. 2299.)

Potassium ammonothallate, TINK2, 4NH3

Sensitive to action of air or moisture. Violently decomp by H₂O or dil. acids. Moderately sol. in liquid NH, at 20°, more sol. at higher temp, and much less sol at lower temp. Decomp, by liquid NH; solutions of acids. (Franklin, J. phys. Chem. 1912, 16. 689.)

Potassium ammonotitanate, (N) T1NHK.

Vigorously hydrolyzed by H₂O. Insol. in liquid NH₈ solutions of either potassium amide or NH₄Br (Franklin, J. Am. Chem. Soc 1912, 34, 1500)

Potassium ammonozincate, Zn(NHK). 2NH:

Decomp. by water. Sl. sol. in liquid NH: (Fitzgerald, J. Am Chem. Soc. 1907, 29. 663.) Decomp. by H₂O. Sol. in dilute acids. Sl. sol. in liquid NH₂. Sol. in solutions of ammonium salts in liquid NH₂. (Franklin, Z. anorg. 1907, 55, 195.)

Potassium arsenide, K₃As. (Hugot, C. R. 1899, 129, 604.) K2A84. (Hugot.)

Potassium arsenide, ammonia, AsK₁, NH₂. Nearly insol, in liquid NH4. (Hugot.) K.As., NH., (Hugot.)

Potassium azoimide, KN2.

Stable in ag solution. 46.5 pts. are sol. in 100 pts. H₂O at 10.5°. 48.9 " " " 100 " H₂O " 15 5. 49.6 " " " " 100 " H₂O " 17

0.1375 " " " 100 " abs. alcohol at Insol, in pure ether. (Curtus, J pr 1898,

(2) 58, 280.)

Potassium bromide, KBr.

Solubility of KBr in 100 pts. H₂O at to.

tº.	Pts. KBr	f.o.	Pts. KBr
0	53.48	60	85 35
20	64 52	80	93 46
40	74 63	100	102 0

(Kremers, Pogg. 97, 151.) Solubility of KBr in 100 pts. H_sO at t°.

to.	Pts. KBr	to.	Pts. KBr	
-13.4	46.17	43.15	77 0	
- 6.2 0	49 57 53.32	45 45 50.5	77.73 80.33	
+3.4	55 60	54.8	82 78	
5 2 12 65	56 63 61 03	60.15	85 37 88 22	
13.0	61.17	71 45	90 69	
13 3 18 3	61.45 64 11	74 85 86 5	92 25 97 28	
26.05	68 31	97.9	102 9	
30 0 37 9	70.35 74.46	110 0	110 3	

Solubility is represented by a straight line of the formula 54.43+0 5128t. (Coppet, A. ch. (5) 30. 416) 100 pts. KBr+Aq sat. at 15-16° contain

39.06 pts, KBr (v. Hauer, J pr. 98, 137) Solubility of KBr in 100 pts. H₂O at high

осыр.		
ţ°.	Pts. KBr	
140 181	120 9 145 6	

(Tilden and Sherstone, Phil. Trans. 1884, 23.)

Sat. solution boils at 112°. (Kremers) Sat. KBr+Aq contains at:

-129 ---10° +3° 390 32° 31,0 31.5 35.7 41.6 47.7% KBr. 55° 140° 1730 220° 45.5 48.7 54.1 58 5 61.6% KBr.

(Etard, A. ch. 1894, (7) 2, 539.) If solubility S=pts. KBr in 100 pts. solu-

41.5+0 1378t from 30° to 120°. (Etard. C R 98, 1432.)

Solubility of KBr in 100 g, H₂O at to,

f.o.	G. KBr	\$0	G. KBr.
10 5 10 3 5 0 -5 -8 -11.5	62 1 60 7 55 5 52.6 50 1 47 5 45 3	-11 -10 5 -10 - 8.5 - 8 - 6 5	44 9 41 8 39 7 35 7 31 2 25 0

(Meusser, Z anorg, 1905, 44, 80,)

68.74 g. KBr are sol in 100 g H₂O at 25°, (Amadori and Pampanini, Rend Ac. Line. 1911, V, 20, 473)

Sp. gr. of KBr+Ag at 19°.

% KBr	Sp gr	% KBr	Sp. gr
5 10 15 20 25	1 037 1 075 1.116 1 159 1.207	30 35 40 45	1.256 1.309 1.366 1 432

(Gerlach, Z. anal 8, 285.)

Sp gr of KBr+Aq at 15° containing. 20 30 1.0357 1.074 1.1583 1.2553 1.3198 (Kohlrausch, W Ann. 1879, 1.)

Class and ACD and According

op, go of him This acc.				
G. KBr dis- solved in 100 g. H ₂ O	G KBr m 100 g of the solution	t°	Sp. gr	
4 166 11 111 25 000 49 867	4 10 20 30	14 5 15 7 16 5 16 0	1 0291 1 0753 1 1625 1 2580	

10.0 | 1 2580 (de Lannoy, Z. phys. Ch. 1895, 18. 460.)

KBr+Aq containing 6.99%KBr has sp. gr. 20°/20° = 1.0521. (Le Blanc and Rohland, Z. phys Ch. 1896, 19. 278.)

Sp. gr. of KBr+Aq at 20.5°.

Normality of KBr+Aq.	G. KBr in100 g of solution	Sp. gr t°/4°
4 29	37.97	1 3449
3.01	28.83	1 2407
2 00	20.49	1 1629

tion, S=34.5+0.2420t from 0° to 40°, S= (Oppenheimer, Z. phys. Ch 1898, 27, 452.)

Solubility of KBr+NH ₄ Br at 25°.				
% KBr	% NH ₄ Br	Sp gr		
55 81	0 0	1 3756		
55 42	0 64	1 3745		
53 .65	2 46	1 3733		
51 68	5 13	1 3721		
44 12	15 29	1 3711		
34 .73	26 22	1 3715		
26 .23	34.76	1 3753		
26 .03	38.14	1 3753		
-23 .22	41 78	1 3766		
22.23	43.25	1.3777		
17.99	48.08	1.3766		
0 0	57 73	1.3763		

(Fock, Z. Kryst Min 1897, 28, 357.)

Solubility in KNOa+Aq.

at 14 5°

1 litre of the solution contains

Mol. KNO	Mol KBr	Mol. KNOs	Moi. KBr
0 0 0 362 0 706 1 235	4 332 4 156 4 093 3 939	0 0 0 131 0.527 0.721 1 090 1 170 1.504	4.761 4.72 4.61 4.54 4.475 4.44 4.375

at 25.20

(Touren, C. R. 1900, 130 911) See also under KNO.

100 pts. KBr+KCl+Aq sat at 15-16° con-100 pts. KBr+KCl+Aq sat at 10-10° contain 3755 pts. of the two salts; 10.0 pts. KBr+KI+Aq sat. at 15-16° contain 57 96 pts. of the two salts; 100 pts KBr+KCl+ KI+Aq sat. at 15-16° contain 57.88 pts of the three salts. (v Hauer, J. pr. 98. 137.

Solubility of KBr+KCl in H₀O at 25°.

% KBr	% KCI	Sp gr.
55.81	0 00	1.3756
53.15 50.36	2 34 4 66	1 3700 1.3648
45.46 37.96	8 26 13 66	1.3544
32.48 21.80	16.69 21.39	1 3119 1.2689
14 07 4 75	25.09 29.17	1 2455
0 00	31 13	1.1756

(Fock, Z Krvst, Mm. 1897, 28, 357.)

Solubility of KBr+KCl in H₂O at to.

	Sat. solution contains		
to.	% KCl	% KBr	% total salt
-14	10.7	18 8	29 5
-13 7 -13 5	1		29.4 29.5
-7	10 7	19 8	30 5
+5 2 +6	11.3	22.6	34 4 33 9
10 21	11.0	23 7	34 7
26	10.8 11.2	25.5	35.3 36.7
30 32	11 9	26 6	39.4 38.5
39 .		20 0	39.8
47 52	11.0 11.0	30 8 31 2	41.8 42.2
55	11.9	29 9	41.8
71 78	12 0 11 8	31 7 32 9	43 7 44 7
102	12.8	35.8	48 6
152 160	13 2 12 5	40 6 42 3	53 8 54 8
168			55 0
225	14 7	45 0	59.7

(Étard, A. ch. 1894, (7) 3, 281.)

Solubility of KBr+KCl in H₂O at 25°. G per 100 g H₂O

KBr	KCI
68 47 62.26 58 50 52 45 45 42 38.70	0.0 5.43 8.46 12.48 17.17 21.23
26.62 12.94	25.88 31 02
0.0	36.12

(Amadori and Pampanini, Att. Acc. Line. . 1911, 20, II. 475.)

Solubility in KCl+Aq at 25 2°.

1 litre of the solution contains					
Mol KCI	Mol KBr				
0.0 0.67 0.81 1.35 1.48 1.61 1.70 2.46 3.775	4 761 4 .22 4 .15 3 70 3 .54 3 .42 3 34 2 50 0 525				

(Touren, C. R. 1900, 130, 1252.) See also under KCl.

By repeatedly heating KBr+Ag sat. at 15– 16° with KI and cooling to 15°, nearly all the KBr can be separated 'v. Hauer') 100 pts HO sat. with KBr at 16° dissolve

100 pts H₂O sat, with KBr at 16° dissolve 13.15 pts KI, but on addition of more KI, KBr is pptd. (van Melekebeke, C. C. 1872. 586)

Solubility in KI+Aq at t°.

10	Sat	tains	
	% KBr	% KI	% total salt
-22 -19 -6 -1 5 +3 13.6 25 44 2 51 66 70	8.3 9.5 9.3 10.3 10.1 10.8 11.1 12.1 10.8 11.6	42 6 42 8 44 7 45 9 46 2 48 0 50.1 50 0 53 1 51.9	50 9 52 3 54 0 55 3 56.2 55.9 58.8 61 2 62.1 63 9 63 5
80 93 116 125 150 175 175 195 220	12.3 13.0 13.2 13.7 15.1 16.0 16.7 17.6	52 5 53.7 54 6 54 8 55 1 57 2 56 5 57.0	64.8 66 7 67 8 68 5 70 2 73 2 72.7 73.2 74 6

(Etard, A. ch 1894, (7) 3 279.)

Solubility of KBr+KI in H₂O at 25°.

G per 10	0 g. H ₁ O
KBr	KCI
53 21 42.32 34.14 30.08 29 62 22 15 21.88 18.54 0.0	35 92 66.63 95 36 119 59 119 127.10 127 31 130 61 149.26

(Amadori and Pampanini, Att. Acc. Linc. 1911, 20, II, 475.)

Solubility of KBr in KOH+Ag.

G. per 1000 g H ₂ O		G per 1000 g H ₂ O		
	кон	KBr	кон	KBr
	36.4 113.5 177.2 231.1	558.4 433 6 358 1 281 2	277.6 434.7 579.6 806.9	248 1 137 1 64 8 33 4

(Ditte, C. R. 1897, 124, 30.)

Sol in Br₂ at 15°. (Walden, Z. anorg. 1900, 25, 220) Moderately sol, in liquid NH₂. (Franklin.

Moderately sol. m laund NH₃. (Franklin, Am Ch J 1888, 20. 829) Sol. m laund NH₃ at 5 pts are sol. m 100 pts. laund NH₄ at -50°. (Joanns, C. R. 1905, 140. 1244) Attacked by laund NO₂ with liberation Br. (Frankland, Chem. Soc. 1901, 79.

1361.)
Insol in liquid CO₂ (Buchner, Z. phys. Ch. 1906, **54**, 674.)

Ch 1906, **54**. 674.)
Sol in SO₅ (Walden, Z. anorg 1900, **25**. 217)

Sol. in SO₅Cl(OH). (Walden, Z. anorg. 1902, **29**. 382)
Difficultly sol. in AsBr₅. (Walden, Z. anorg 1902, **29**. 374)

anorg 1902, 29, 374.)
Sol in SbCl₃. (Walden, Z anorg, 1900, 25.
220.)
Sol. in liquid SO₂. (Walden, Z. anorg

1902, 30. 160) Hydraane dissolves 56.4 pts KBr at 12 5— 13°. (de Bruyn, R. t. c 1899, 18. 297) Sl. sol. in alcohol (Ballard.)

Sol. in 200 pts cold, and 16 pts boiling 80% alcohol Sol in 180 pts 90% alcohol. (Hager)

Sol. in 750 pts abs. alcohol at 15°. (Eder, Dingl. 221. 89) 100 pts absolute methyl alcohol dissolve 1.51 pts. at 25°, 100 pts absolute ethyl alcohol dissolve 0.13 pt. at 25° (de Bruya, Z. phys. Ch. 10, 783.)

Solubility of KBr in methyl alcohol+Aq at

P=% by wt. of alcohol in alcohol+Aq. S=Sp. gr. of alcohol+Aq sat. with KBr L=millimols KBr in 100 ccm, of the solution.

	P	S 25°/4°	L L
i	0	1.3797	471
	10 6	1 300	389
	30.8	1 159	252
	47.1	1 058	162
	64 0	0 9801	87
	78.1 98.9	0.8906	44
	100	0 8411 0.8047	23 14 2

(Herz and Anders, Z. anorg. 1907, 55. 273.)

100 g. KBr+CH₃OH contain 0.2 g. KBr at the critical temp. (Centnerszwer, Z. phys. Ch 1910, 72, 437.)

	Temp	=30°	Temp	Temp =40°	
Wt %	G KBr 1	er 100 g	G KBr per 100 g.		
	Solution		Solution Solver		
0 5 10 20 30 40 50 60 70	41 62 38 98 36 33 31.09 25 98 21 24 16 27 11 50 6 90	71 30 67.25 63.40 56 40 50.15 44 95 38.85 32 50 24.70	43 40 40 85 38.37 33 27 28 32 23 22 18.11 13.02 7 98 3 65	76.65 72.70 69.00 62 30 56 45 50.46 44 25 37 40 28 90	
80 90	3 09 0.87	3 09 15 95 0.87 8 80		18 95 10 45	

(Taylor, J. phys. Ch. 1896, 1, 724.)

At room temp., 1 pt. KBr by weight is sol. in: 52 pts. methyl alcohol, D¹⁵ 0 7990

350 " ethyl " D¹¹ 0.8100. 1818 " propyl " D¹³ 0.8160 (Rohland, Z anorg. 1898, **18**, 325.)

Solubility of KBr in ethyl alcohol at 0°

Cone of sleebel

in mol g. per l	G KBrin 11 HzO	Mol. solubility
1/4 1/2 1 2	536.75 529.25 502.85 491.75 455.25	4 51 4.45 4 22 4.13 3 82

(Armstrong and Eyre, Proc. R. Soc. 1910, [A] 84, 127.)

100 g. methyl alcohol dissolve 2 17 g KBr at 25°. 100 g. ethyl alcohol dissolve 0.142 g. KBr at 25°. 100 g. propyl alcohol dissolve 0.035 g KBr

100 g. propyl alcohol dissolve 0.035 g. KBr st 25°. 100 g. isoamyl alcohol dissolve 0.003 g. KBr at 25°. (Turner and Bissett, Chem. Soc. 1913. 103.

1909.)

0 055 g. is sol. in 100 g. propyl alcohol (Schlamp, Z. phys. Ch. 1894, 14, 276.)

(Schlamp, Z. phys Ch. 1894, 14. 276.) Sol. in 5000 pts. ether (sp. gr. 0.729 at 15°.) (Eder, l. c.) Sol. in 1700 pts. alcohol-ether (1 · 1) at 15° (Eder, l. c.)

100 pts. acetone dissolve 0 023 pt. KBr at 25°. (Krug and M'Elroy, J Anal. Ch. 6. 184)

Solubility of KBr in acetone+Aq at 25° A=cc. acetone in 100 cc. acetone+Aq. KBi=millimols KBr in 100 cc. of the solution.

A	KBr	Sp. gr
0 20 30 40 50 60 70 80	481 3 366.7 310.5 259.0 202 9 144 9 95 3 46 5	1 3793 1 2688 1.2118 1.1558 1.0918 1.0275 0.9591 0.89415 0 8340

(Herz and Knoch, Z. anorg. 1905, 45, 262.)

Solubility of KBr in glycerine+Aq at 25° G=g. glycerine in 100 g. glycerine+Aq KBr=millimols KBr in 100 cc. of the solution.

G	KBr	Sp. gr
0	481 3	1 3793
13 28	444 3	1.3704
25 98	404.0	1 3655
45 36	340 5	1.3594
54 23	310 4	1.3580
83 84	219.25	1.3603
100	172 65	1.3691

(Herz and Knoch, Z anorg. 1905, 45. 267.)

100 g. 95% formic acid dissolve 23.2 g. KBr at 18.5°. (Aschan, Chem. Ztg. 1913, 37.

Insol in methyl acetate. (Naumann, B. 1909, 42. 3790), ethyl acetate (Naumann, B. 1904, 37. 3601.)
Insol in henzonitule (Naumann, B.

Insol. in benzonitule (Naumann, B. 1914, 47, 1370.) 100 ccm. of a sat. solution of KBr in fur-

furol at 25° contain 0 139 pts by wt KBr.
(Walden, Z. phys Ch. 1906, 55. 713)
Insol. in CS₂ (Aretowski, Z. anorg 1894,
p. 6. 257.)

Potassium rhodium bromide.

See Bromorhodite, petassium.

Potassium ruthenium tribromide. See Bromoruthenite, potassium.

Potassium ruthenium tetrabromide. See Bromoruthenate, potassium.

Potassium selenium bromide. See Bromoselenate, potassium.

Potassium tellurium bromide. See Bromotellurate, potassium.

Potassium thallic bromide, KBr. TIBr.+ 2H.O.

Sol. in H2O.

3KBr, 2TlBr3+3H2O. Sol. in H2O. (Rammelsberg)

Potassium thorium bromide. Sol. in H₂O. (Berzelius.)

from HBr+Ag (Richardson.)

Potassium tin (stannous) bromide, KBr. $SnBr_2+H_2O$ Sol. in H₂O. (Benas, C. C. 1884. 958.) Can be recryst, from HBr or KBr+Aq. (Richardson, Am. Ch. J. 14. 95) 2KBr, SnBr₂+2H₂O. Cannot be recryst.

Potassium tin (stannic) bromide, 2KBr, See Bromostannate, potassium.

Potassium uranous bromide, KUBrs. Very sol, in H2O. (Aloy, Bull. Soc. 1899, (3) 21. 264.)

Potassium uranyl bromide, 2KBr, UO2Br2+ Very easily sol in H₀O (Sendiner)

Potassium zinc bromide, KBr, ZnBr2+2H2O. Not hygroscopic (Ephraim, Z anorg 1908, 59. 60) 2KBr, ZnBr2+2H2O. Not hygroscopic.

Potassium bromide ammonia, KBr, 4NH2. (Joannis, C. R. 1905, 140, 1244.)

Potassium bromide ruthenium dihydronitrosochloride, (NO)Ru2H2Cl3, 2HCl, 3KBr. Pot Sl. sol. in H2O (Brizard, A. ch 1900, (7) 21. 359)

Potassium bromoiodide, KBr₂I.

Decomp. rapidly on air. Wheeler, Sill Am J. 143, 475) (Wells and

Potassium carbonyl, K2C2O2 Decomp. by H2O with explosion. (Joannis. C. R. 116. 158.)

Potassium chloride, KCl.

(Ephraim)

Sol. in H2O with absorption of heat 30 pts. KCl+100 pts. H₂O at 13.2° lower the temp. 12.6° (Rüdorff, B. 2. 68.) 100 pts. H₂O dissolve 29.31 pts. KCl at 0° Gay-Lussac); 28.5 pts. KCl at 0° (Mulder Gerardin.)

The saturated solution contains 58.5%, and The sattrated somition contains 85.3%, and bolls at 107.5 '(Muldel), contains 94.9%, and bolls at 109.3' (Legrand), contains 95.29%, and bolls at 109.6' (Gay-Lussac); bolls at 110°. (Kreiners).

Sol. in 3.016 pts. H₂O at 15° (Gerlach); in 3.05 pts. at 17.5°, or 100 pts. H₂O at 17.5° dissolve 350 pts. (CL. (Schiff.)).

100 pts. H ₂ O at to dissolve pts KCl:					
t°	Pts. KCl	t°	Pts KCl	ţ°	Pts KCl
0 19.35	29 21 34 53	52 39 79.58	43.59 50 93	109.60	59.26
(Gay-Lussno, A. oh. (2) 11, 308)					

100 pts H₂O desolve 34.6 pts KCl at 11 8°, 34.9 pts at 13.2°; 35 pts at 15.0°, (Kopp.)
100 pts H₂O at 17.5° dissolve 33 24 pts KCl, and 100 pis H₂O at 17.5° dissolve 33 24 pts KCl, and sp gr. of solution as 1 385. (Karsten.) 100 pts H₂O at 12° dresolve 32 pts., and at 100°, 59.4 pts. (Otto Graham) Sol in 3 pts. H₂O at ord. temp., and 3 pts. bolling H₂O (Bergmann), in 3.35 pts hot or old H₂O (Rour-coy), in 3 pts at 15°, and 1 68 pts at 110° (M. R. and

Sol in 35 pts. H₂O at 9°, and in less than 1 pt bot H₂O (Schubarth), 100 pts H₂O at 17.5° dissolve 30.7-33 0 pts KCi (Ure's Dict.). 100 pts. H₂O dissolve 33 405 pts. KCl at 15°, and solution has ap gr. = 1.1800 (Michel and Krafit, A. ch (3) 41 478.

100 pts H2O dissolve at: 18° 30° 40° 57° 33 6 37 8 40 1 45.0 pts. KCl. (Gerardin, A. ch. (4) 5, 139.)

100 pts. H₂O dissolve 33.06-32.08 pts KCl at 15.6° and sp gr. of solution = 1.171. (Page and Keightley, Chem. Soc. (2) 10. 566.)

	Solubility in 100 pts. H ₂ O at t°.					
	t°	Pts KCl	t°	Pta KC!	t°	Pts. KCl
1	0 1 2 3 4 5 6 7 8 9	28.5 28.7 29.0 29.3 29.5 30.0 30.5 31.0 31.5 31.7 32.0 32.3	17 18 19 20 21 22 23 24 25 26 27 28	33 9 34 2 34.4 34 7 35.0 35 3 35 5 36.1 36.4 36.6 36.9	34 35 36 37 38 39 40 41 42 43 44 45	38.5 38.7 39.0 39.3 39.6 39.9 40.1 40.3 40.6 40.9 41.2 41.5
;	12 13 14 15 16	32 5 32 8 33.1 33.4 33 6	29 30 31 32 33	37.2 37.4 37.7 38.0 38.2	46 47 48 49 50	41.7 42.0 42.3 42.5 42.8

Soluk	Solubility in 100 pts., etc.—Continued.						
t°	Pta KCl	t°	Pts KCl	to.	Pts KCl		
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	43.1 43.4 43.6 44.2 44.4 44.7 44.5 45.5 46.6 46.9 47.5	71 72 73 74 75 76 77 78 80 81 82 83 84 85 86	48 5 48 8 49 1 49 4 49 6 49 9 50 5 50 8 51.3 51.8 52 1 52 4 52 9	91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	54 1 54 4 6 54 6 54 9 55 5 5 55 6 0 56 6 57 2 57 4 57 7 58 0 58 5		
68 69 70	47 7 48 0 48.3	88 89 90	53 2 53 5 53.8	107.65	58 5		

(Mulder, calculated from his own and other observations, Scheik Verhandel, 1864, 41)

Solubility in 100 pts H₂O at to.

t°	Pts KCl	f.	Pts KCl	t°	Pts. KCl
-6 4 0 +3 9 9 4 11 4 14 95	25 78 27 9 29.37 30.84 32.19 32 66	29 25 38.0 41.45 46 15 48.8 55 1	37.31 39.71 40 67 42 34 42 86 44.51	71 65 74.25 80 75 86 6 91 4	48 76

(Coppet, A. ch (5) 30, 414.)

Solubility is represented by a straight line. of which the formula is 28.51+0.2837t (Coppet.) 100 pts H₂O dissolve 29.33 pts KCl at 4°.

100 pts H_{*}O dissolve at.

0° 100° 130° 180° 29.2 56 5 66 78 pts KCI (Tilden and Shenstone, Lond, R. Soc. Proc. 35. 345.)

Solubility of KCl in 100 pts H₂O at high

t°	Pta. KCl	t°	Pis. KCl	fo	KČI
125 133	59 6 69 3	147 175	70.8 75.2	180	77 5

(Tilden and Shenstone, Phil, Trans. 1884, 23.)

If solubility S=pts. KCl in 100 pts. solu-tion, S=20.5+0 1445t from --90° to 110°. (Etard, C R 98, 1432.)

Sat. KCl+Ag contains at: 142° 150° 175°

180° 38.6 38 8 41.2 41.8% KCL 732° (mnt.) 1000 2002 242° 43 2 42.9 47 B 100% KC (Étard, A. ch. 1894, (7) 2, 256.)

100 g H₂O dissolve 0.488 gram-equivalent KCl at 25°. (van't Hoff and Meyerhoffer, Z phys. Ch. 1904, 49 315)

Solubility of KCl in H₂O at to.

G KCl per 100 G H₂O

t°	KCI	Sp gr
0 70 -	28.29	1 1540
19.55	34.37	1 1738
32.80	38.32	1 1839
59.85	45.84	1 1980
74.80	49.58	1 2032
89.45	53 38	1.2069
108.0*	58.11	1.2118

* Bpt. of sat. solution. (Berkeley, Phil. Trans. Roy, Soc. 1904, 203,

A. 189.) Solubility of KCl in 100 g. H₂O at to.

t°	g. KCl	t°	g KCI
+18 5	33.3	-4.5	25 9
11 5	31.2	-9	23.9
10	30 8	-8.5	21 5
7.5	29.8	-8	20 0
2 5	28.4	-7	17.5
0	27.5	-6	15.7
-1	27 2	-55	14 3

(Meusser, Z. anorg, 1905, 44, 80,)

Sat, KCl+Aq at 25° contains 26 46% KCl 45.5 pts. at 60° (Andreae, J. pr. (2) 29. 456) (Foote, Am Ch. J. 1906, 35. 238) 28.01 g KCl are contained in 100 g, solution sat. at 30°. (de Waal, Dissert 1910.) 36.12 g KCl are sol in 100 g. H2O at 25°. Amadori and Pampanini, Rend. Acc. Linc.

(Amadori and Tampanin), Rend. Acc. Lanc. 1911, V. 20, 473.) 4.272 g, mol. are contained in 1. solution sat. at 25°. (Herz. Z. anorg 1911, 73, 274) Solubility of KBr at 6°=23.06%; 23.4°= 26.91%; 62.6°=31.57° (Suss, Z. Krist. 1912, 51.262.)

Solubility at 22°=25 68%. (Bronstedt, Z. phys Ch. 1912, 80. 208)

100 mol. H₂O dissolve at: 19.3° 29.7° 40.1° 54.5°

8.99 . 9.75 10 39 mol. KCl. (Sudhaus, Miner, Jahrb, Beil-Bd, 1914, 37, 18.)

...

Cone

KCl+Aq sat at 16° has sp. gr. ≈1.077. (Stolba, J pr 97, 503.)

	Sp. gr. of KCl+Aq at 17 5°.						
1861	Sp gr.	ĸčı	Sp gr.	r. c	Sp gr.		
1 2 3 4 5 6 7 8	1 0062 1 0125 1 0189 1 0254 1 0319 1 0385 1 0451	9 10 11 12 13 14 15	1 0586 1 0655 1 0725 1 0795 1 0866 1 0937 1 1008	17 18 19 20 21 22 23 24	1.1152 1 1225 1.1298 1 1372 1 1446 1 1521 1 1596 1.1673		

(Schiff, A. 110, 76)

Sp gr of KCl+Aq at 19 5°

	-r D					
% KCl	Sp. gr	% KCi	Sp gr			
5 98 11 27 16 27	1 0382 1 0733 1 1075	21 31 25 133	1 1436 1 1720			

(Kremers, Pogg 95, 119.)

Sp. gr. of KCl+Aq at 15°.

κέι	Sp gr	Kči	Sp gr	KČ!	Sp. gr
1 2 3 4 5 6 7 8	1 00650 1 01300 1 01950 1 02600 1 03250 1 03250 1 04582 1 05248 1 05914	10 11 12 13 14 15 16 17 18	1 06580 1.07271 1 07962 1 08654 1 09345 1 10036 1 10750 1 11465 1 12179	19 20 21 22 23 24 24 9*	1,12894 1,13608 1,14348 1,15088 1,15828 1,16568 1,17234

* Mother liquor. (Gerlach, Z. anal: 8 281.)

Sp. gr. of KCl+Aq at 20°, containing mols KCl to 100 mols. H₂O

Mols KCl	Sp gr	Mola, KCl	Sp. gr
0.5 1.0 2 0	1 01310 1 02568 1 04959	4.0 5.0	1 09415 1 11445

(Nicol, Phil. Mag. (5) 16, 122.)

	Sp	gr.	of B	Cl+Aq	at	18°.	
1		11			-11		_

ĸči	Sp gr	κέι	Sp. gr.	ĸči	Sp gr
5 10	1.0308 1.0638	15 20	1.0978	25	1.1408

(Kohlrausch, W. Ann. 1879. 1.)

Sp gr. of KCi+Aq at 0°. S=pts. salt in 100 pts. of solution; S₁=mols. salt in 100 mols. solution.

8	S:	Sp gr.
20.7840	5 954	1 1489
17 7214	4.940	1 1258
14 4707	3.922	1 1018
11.0757	2 918	1 0769
7 5440	1 931	1 0521
4 4968	1 123	1 0308

(Charpy, A. ch. (6) 29. 23.)

Sp gr. of KCl+Aq at 25°

centration of KCl+Aq	Sp gr.
1-normal 1/2	1 0466 1 0235 1 0117 1 0059

(Wagner, Z. phys. Ch 1890, 5. 36.)

KCl+Aq contannug 5.05% KCl has sp. gr. 20°/20° = 1.0327
KCl+Aq contannug 20.55% KCl has sp. gr 20°/20° = 1.1393.
(Le Blane and Rohland, Z phys. Ch. 1896,

19. 272)

	Ob. Br.	or recor i raq
g	KCl in 1000 g of solution	Sp gr 16°/16°
	0 0 7140 1 5042 3 0724	1.000000 1.000464 1.000975 1.001991

1.005391

(Dijken, Z. phys. Ch 1897, 24, 109.)

8 3165

Sp. gr. of KCl+Aq at 20 1°, when p=per cent strength of solution; d= observed density, and w= volume conc. in g per (pd)

p	d	w
36 43 31.12 24.79 18.06 13 17 8 412 6.610		0 43171 0 35954 0 27887 0.19610 0.13980 0 08736 0.06806
4 419 3.456 1 197	1 0193 1.0148	0.4505 0.03507 0.01202

(Barnes, J. phys. Ch. 1898, 2, 544.)

Sp. gr. of KCl+Aq at t°.					
to Normality of KCl +Aq. Sp gr to 14					
20 5	3 74 2 65 1 87 0 93	23 93 17 66 12 82 6 64	1 1617 1 1166 1 0829 1 0424		

(Oppenheimer, Z. phys. Ch. 1898, 27, 450.)

Sp. gr of KCl+Aq at 18°/4°		
g KCl in 100 g. of solution	Sp gr	
0 24963 0 12459 0 08342 0 062343	1 0003 0 9995 0 99929 0 99912	

(Jahn, Z. phys Ch. 1900, 33, 559)

KCl+Aq containing 1 pt. KCl in 58 923 pts. H₂O at 17° has sp. gr. = 1.0096. (Hittorf, Z. phys Ch 1902, 39. 628.) Sp. gr 20°/4° of a normal solution of KCl = 1.04443. (Haigh, J Am Chem. Soc. 1912, 34. 1151)

Sp. gr. of sat, KCl+Ag at to.

t°	100 g. H ₂ O	Sp gr.
10°	24 98	1 139
0	28.50	1 156
10	31 23	1 168
20	34 11	1 177
30	37 28	1 183
40	40 12	1 190
50	42 86	1 195
60	45 48	1 199
70	48 30	1.203

(Tschernaj, J. Russ phys Chem. Soc. 1912, 44, 1565)

Sp. gr. of dil. KCl+Aq at 20 004°. Conc.=g. equiv. KCl per l at 20 004°.

op. gr. compared with 1110 at 20.001 -		
Cone	Sp. gr	
0 0000 0.0001 0 0002 0 0005 0.0010 0.0026 0.0050 0.0100	1 000,000,0 1 000,004,8 1.000,009,7 1.000,024,2 1.000,048,5 1.000,942,6 1.000,443,6	

(Lamb and Lee, J. Am. Chem. Soc, 1913, 35. (Armstrong and Eyre, Proc. R. Soc, 1910 (A)

KCI+Aq containing 10% KCl boils at 101.1°; containing 20%, at 103 4°. (Gerlach.) Sat KCl+Aq containing 52.7 pts. KCl to 100 pts. H₂O forms a crust at 107.7°; highest temp. observed, 108.5°. (Gerlach, Z. anal. 26.

B.-pt. of KCl+Aq containing pts. KCl to 100 pts. H₂O. G=according to Gerlach (Z. anal. 26. 438); L=according to Legrand (A. ch. (2) 59. 426).

А						
	B-pt.	G	L	Bpt	G	£
	100 5° 101 0 101 5 102 102.5 103 5	4 9 9 2 13 1 16 7 20 1 23 4 26 7	4 7 9 0 13 2 17 1 20 9 24 5 28 0	105° 105 5 106 106 5 107 107 5 108	36 2 39.3 42.4 45 5 48.4 51.5 54 5	37 8 41 0 44 2 47 4 50 5 53 7 56 9
	104 104 5	29 9 33.1	31.4 34.6	108 3 108 5	57.4	59 4

Precipitated from aqueous solution by HCl +Aq Much less sol in very dil. HCl+Aq than in H_{*}O (Fresenius)

Nearly insol. in cone. HCl+Aq. 100 cc. sat. HCl+Aq dissolve 1.9 g. KCl at 17°. (Ditte, A. ch 1881, (5) 24, 226.)

Solubility of KCl in HCl+Aq at 0°.

G per 100 ec of solution		
HCI	KCl	
0.0 1.42 2.41 2.59 4.05 8.39 12.40 14.95 23.88	25.73 22.69 20.84 20.51 17.71 11 93 7 46 5.60	

(Engel, A. ch. 1888, (6) 33, 377.) Solubibly of KCl in HCl + An

comming of from front true.			
t°	Concentra- tion of HCl g mol per 1000 g. H ₂ O	Wt, KCl per 1000 g. H ₂ O	Mol solubility
0 "	0 1/2 1/3 1	283.55 267.25 250.00 214.25	3 81 3 59 3 36 2 88
25 " "	0 1/4 1/2 1	359 25 341 55 324 30 289.60	4.82 4.59 4.35 3.89

84. 127.)

100 g. sat. HCl+Aq dissolve 1.9 g. KCl Solubility of KCl in MgCl₂+Aq of given per-at 20°. (Stoltzenberg, B. 1912, 45. 2248.)

Solubility is	

Combiney in 11	OI-T-AND RE NO .	20
Milhmols HCl in 10 cem, Milhmols KCl in 10 cem		30
	42 72	40 50
5 66	37 49	60
10 20	33 79	70
15 90	28 68	80
20 94 32 52	24 74 17 39	100

(Herz, Z. anorg 1912, 73 275)

Colubation of	ECL	TID-1-	a at 950	

Milhmols HBr m 10 ccm	Milimols KCl in 10 cem
6.61 34 15	42 72 37 80 19 57

(Herz, Z. anorg, 1912, 73, 275)

Sol in sat, NH₂Cl+Ag with pptn, of NH.Cl. When action has ceased, the solution at 18.75° contains 31.6% of the mixed salt; or 100 pts. H2O dissolve 46.1 pts. of the mixed salt, viz. 16.27 pts. KCl and 29.83 pts. NH₄Cl. (Karsten.)

Solubility of KCl in NH₄Cl+Ag at 25°. Dissolved in 1000 muls H₂O

Mola KCl	Mols NH ₄ Cl
74.2	23.8
67 9	32.5
61.4	52 2
55 5	65 9
50.2	74.4
43 0	96.3
37 6	110.0
37 0	107.5
37 5	109.4
22.6	118 2

(Biltz, Z. anorg, 1911, 71, 174.) See also NH4Cl.

Sol. in sat. BaCl2+Aq with pptn. of BaCl2 until a state of equilibrium is reached, when salts, viz. 18.2 pts. BaCl, and 27 7 pts. KCl. See also BaCl.

12 4 13 6 14 7 15 9 22 1 27 1 (Precht and Wittgen, B. 14, 1667.)

18 3 23.2

19 5 24 5 20 8

25 8

30% 21,2% 15% 11%

1 9% 5 3% 9 9% 14 3%

2.6 6 5 11 3 15 9

3 4 7 6 12 7 17 5

4 2 8.8 14.2 19 0

5 0 10.0 15.6 20.5

5 8 11 2 17 0 21.9

6 5

7 3

8 1

at 14.5°

20 6 0 5 9

40 6.9 6.0

50 7 9 6 1

Solubility of KCl+NaCl in 20% MgCl₂+Aq. NaCi % K CI % KCI NaCl 10 4.2 5.7 60 8 9 63 20 5 1 58 70 9.9 6.4

80 90 100 (P and W.)

10 9 6 6

11 9 6 7

13.0 6 9

Sol, in sat. KNOs+Aq with pptn of KNOs 1 litre of the solution contains

	• •	100	202
Mol. KCI	Mol KNO	Mol KCl	Mol KNO
3 865 3 810 3 782 3 710 3 667 3 629 3 597 3 582	0 0 0 204 0 318 0 615 0 818 0 910 1 176	4 18 4 11 4.07 3 93 3 85 3.81 3.70	0 0 0 136 0 318 0 902 1.212 1 397 1.805

(Touren, C R. 1900, 130, 909)

Solubility of KCl in KNO3+Aq.

t°	tion of KNOs in g mol per 1000 g H ₂ O	Wt KCl in 1000 g H ₂ O	Mol solubility
0	0	283 55	3 81
ce	1 1/4	284 25	3.81
44	1.6	283 60	8 81
66	1 1	287 60	3 86
25	Ô	364 15	4 89
***	1/4	355 00	4 90
**	1.6	361 65	4 86
44	1 1	358.80	4.81
ee	116	355 20	4 77

100 pts. H₂O at 16 8° dissolve 45.9 pts. mixed (Armstrong and Eyre, Proc. R. Soc. 1910 [A], 84, 127,)

See also KNOs.

Sol. in sat. NaNO₃+Aq without causing pptn (See NaNO₂)
Sol in sat. Ba(NO₃)₂+Aq without causing

pptn.		
	Solubility in KBr+Aq at 2	5 2°.

	1 htre of the sc	olution contains
	Mol KBr	Mol. KCl
•	0 0 0 49 0 85 1 31 1 78 2 25 2 69	4 18 3 85 3 58 3 19 2 91 2 58 2 33

(Touren, C. R. 1900, **130**. 1252.) See also KBr.

100 pts. H₂O dissolve 133 2 pts. KI and 10 4 pts. KCl at 21 5°, no matter how pre100 pts. KCl + 21 5°, no matter how pre100 pts. KCl + Ag sat. at 15-16° contain 25:20-25:37 pts. KCl 100 pts. KCl + Kt + Ag sat at 15-16° contain 78 0pt sc of the value. KCl spptd by KI (v. Hauer, J. pr. 98. 137)

Solubility in KI+Aq at t°.

t.º	Sat solution contains		
t*	% KCI	% KI	% total sult
0 8 18 30 41 49 60 75 82 96	4.8 5.1 4.2 4.7 5.7 4.4 5.0	50.8 51.1 54.6 55.0 56.0 59.5 59.6	56.6 56.2 57.9 58.8 59.7 61.7 62.5 63.9 64.6 66.2 66.8
140 155 182 190 245	7.6 8.7 8.6 10.0	63 3 64.8 65 4 66 0 66 5	72.4 74.1 74.6 76.5

(Étard, A. ch. 1894, (7) 3. 281.) Solubility of KCl+KI in H₂O at 25°.

G per 100 g. H ₂ O			
KCI	KI	KCI	KI
0 4.06 7.63 11.36 11.74 15 10	149.26 144.03 137.79 132.60 133.90 105.91	19 64 23 75 29.56 31 38 33.68 36 12	68 22 43.89 23.88 14 83 7.00 0.00

(Amadori and Pampanini, Att. Acc. Lanc. 1911, 20, II. 475.)

Solubility of KCl in KOH+Aq at 0°.

G per 100 cc solution		
KCI	кон	
26.83 23.44 21.39 17.39 13.89 10.91 8.64 6.78 4.74	0.0 1.33 2.64 5.58 8.46 11.23 13.83 16.42 19.72	

(Engel, Bull. Soc. 1891, (3) 6. 16.)

Solubility in KOH+Aq at 20°.

G KOH in 1 litre	G KCl m 1 litre	Sp gr	Degrees Baumé
100 300 300 600 600 600 600 600 600 600 6	288 285 275 225 225 225 225 225 225 225 225 22	1.185 1.185 1.180 1.190 1.190 1.200 1.200 1.200 1.200 1.201 1.215 1.201 1.215 1.215 1.215 1.225 1.230 1.235	22.5 23.0 22.5 23.0 23.5 24.0 24.5 24.5 25.0 26.5 25.0 27.5 25.0 26.5 25.0 2

20 14 7 29.2 70

30

40 19.5

50

17 2 28.7

Solubility in KOH+Aq at 20°.—Continued	Solubility

G KOH in 1 litre	G KCl in 1 litre	Sp gr	Degroes Baumé
420	61	1.355	38 0
430	58	1 360	38.5
440	55	1 365	38 9
450	53	1 370	39 2
460	50	1 375	39.5
470	47	1 380	40.0
480	44	1 385	40.2
490	42	1 390	40 6
500	40	1 397	41 0
510	38	1 405	41 5
520	35	1 410	42 0
530	33	1 415	42 3
540	31	1 420	42 6
550	29	1 425	43 0
560	27	1 430	43 5
570	25	1 435	43 7
580	24	1 440	44 0
590	23	1 445	44 3
600	22	1 450	44 6
610	21	1.455	45 0
620	20	1.460	45.5
630	18	1.465	45.9
640	17	1.470	46.2
650	16	1.475	46.5
660	15	1.480	46 8
670	15	1.485	47 0
680	15	1 490	47 5
690	15	1 495	47 9
700	14	1 500	48 2
710	14	1 505	48 5
720	13	1 510	48 8
730	13	1 515	49 1
740	13	1 520	49 5
750	13	1 525	49 7
760	12	1 530	50 0
770	îã	1 535	50 3
780	12	1 540	50 6
790	îĩ	1.545	51 0
800	îî	1 550	51.3
810	îô	1 560	51.5
820	10	1 565	51 8
830	ĝ	1 570	52 2
840	9	1 575	52.6
850	9	1 580	53 0

KCl+NaCl

100 pts. KCl+NaCl+Aq sat. at 13-16° contain 30.18 pts. of the two salts. (v. Hauer.)

100 pts. H₂O dissolve 13.92 pts. KCl and 30.65 pts. NaCl at 15.6°, and solution has sp. gr. = 1.233. (Page and Keightley) 100 pts H₂O dissolve 10.11 pts. KCl, 32.15 pts. NaCl, and 4.09 pts. K₂SO₄, and solution has sp. gr. = 1.250. (P and K.)

100 pts. H₁O dissolve 29 9 pts NaCl and 15.7 pts. KCl at 18.8° (Rudorff.)

of KCl+NaCl in H₂O at t°. 100 dissolve pts. KCl and pts. NaCl Pts ÑaCi 12.5 29.7 60 27.2

٩ň 90 22 0 100 34 25 8 (Precht and Wittgen, B 14, 1667.)

28 2 27 7

27. š

30 0 26.4

32 9 26.1

26.8

100 pts, H₂O dissolve 13 99 pts KC1+30.54 NaCl=44 53 pts, mixed salts at 20° (Nicol. Phyl. Mag. (5) 31, 385.)

Solubility of KCl in NaCl+Aq at 20°

G. per 10	0 g H ₂ O
NaCl	KCl
0 0 6 5 13 0 19 5	34.52 29.37 4.71 0.42

(Nicol, Phil. Mag. 1891, 31, 369.)

Solubi	lity of KCl+Na	Clatt°.		
	G per 100 g H ₂ O			
to	KCI	NaCl		
25 80	15.8 29.0 30.0 26.4	14 5 31.3 25.2 34.0		

(Soch, J. phys. Ch. 1898, 2, 46.)

Solubility of KCl+NeCl at ? 9

G salts in 100 g. H ₂ O						
NaCl	KCI	Solid phase				
9.89 18.35 29.88 31.57 33.17	28.34 22.75 16.28 10.91 5.65	KCl KCl+NaCl NaCl				

(Uyeda, Mem. Col. Sc. Kioto, 1910, 2, 245.)

100 g H₂O sat with NaCl dissolve 0.216 gram-equivalent KCl at 25°

gram-equivalent NO. 36 20 100 g. H.Q. sat. with K.SO. dissolve 0.486 gram-equivalent KCl at 25°. (Euler, Z phys Ch. 1904, 49, 315.) Solubility in NaCl+Aq at 20°, 30°, 40° and 91° Tables given in the original show that

each salt diminishes the solubility of the other. (Leather, Chem. Soc. 1915, 108, (2) 13.)

40

Solubility of KCl+NaCl in HCl+Aq at 25°.						
% NaCl	% KCl					
19.95 10.65 3.56 2.03	10.90 7 58 3 80 2.86					
	% NaCl 19.95 10.65 3.56					

(Hicks, J. Am. Chem. Soc. 1915, 37, 846.) See also under NaCl.

KCl+SrCl₂

100 pts H₂O dissolve 11.2 pts KCl and 48.6 pts SrCl₂ at 14.5°. (v Hauer.)

If SrClo+Aq sat. at 14.5 is sat. with KCl at same temp , 100 pts. H₀O dissolve:

KCl SrCl:	 :	33.2	11 2 48 6	50 7
			59 8	

(Mulder, Scheik, Verhandel, 1864.)

KCl+(NH₄)₂SO₄ Sat solution of KCl+(NH₄)₂SO₄ at b.-pt when cooled to 14° has different composition from sat. solution of (NH4)Cl and K2SO4, and its composition is changed by warming it with either KCl or (NH₄)₂SO₄. (Rüdorff)

KCl+KsO.

100 pts. H2O contain the following amounts salt at 18.75°; (1) sat, with KCl alone; (2) sat. first with KCl then with K2SO4; (3) sat. with K₂SO₄ and KCl together;
(4) sat. first with K₂SO₄ then with KCl;

(5) sat. with K2SO4 alone.

	1	2	3	4	5
KCl . K₂SO₄ .	34.5	32 96 1.79	33.12 1 75	33 12 1.83	10.8
		(Karst	en.)		

100 pts, H₂O sat, with both K₂SO, and KCl contain the following amounts.

				At 148°	
KCl . K ₂ SO ₄ .	:		33.5	28.2 2 0	10.3
	-			At 158°	
KCl . K ₂ SO ₄ .	:		33.6	27.9 2.3	10.4
				At 16 1°	
KCl . K ₂ SO ₄ .	:	:	33.6	27.1 3.3	10 4

(Kopp, A. 34, 264.)

Sat. K₂SO₄+Aq dissolves KCl only with pptn. of K₂SO₄, but sat. KCl+Aq dissolves some K₂SO₄ without any separation. (Karsten.)

Solubility of KCl+K₂SO₄: 100 pts. H₂O dissolve at to

t°	Pts. KCl	Pts K ₁ SO ₄	t°	Pts KCl	Pts K ₁ SO ₄
10	30 9	1.32	60	43 8	1 94
20	83.4	1.43	70	46.5	2 06
30	36.1	1.57	80	49.2	2 21
40	38.7	1.68	90	52 0	2 38
50	41.3	1.82	100	54 5	2.53

(Precht and Wittgen.)

100 g. H₂O dissolve 34.76 g. KCl+2.93 g. K₂SO₄ at 25°. (Van't Hoff and Meyerhoffer, Z. phys. Ch. 1898, 27. 75.)

Sol in 20% KC2H3O2+Aq (Stromeyer.) Quickly attacked by liquid NO2 in the presence of traces of moisture, with evolution of Cl2. (Frankland, Chem. Soc. 1901, 79.

1361.) Sl. sol in liquid NH2. (Franklin, Am. Ch.

1898, 20, 829) Easily sol. in liquid HF (Franklin, Z. anorg. 1905, 46. 2.)

100 g, hydrazine dissolves 8.5 pts. KCl at 12.5-13°. (de Bruyn, R. t. c. 1899, 18. 297.) 100 g. anhyd. hydroxylamine dissolve 12.3 g. KCl at 17–18°. (de Bruyn, Z. phys. Ch. 1892, 10, 782.)

100 pts. alcohol of 0 900 sp. gr dissolve 4.62 pts; 0 872, 1 66 pts; 0 834, 0 38 pt; 0 817, 0 00 pt KCl

Sol in 48 pts boling alcohol (Wenzel)
Insol in absolute alcohol containing LiCl (Mitscherheh)

At 15°, 100 pts alcohol of p percentage by volume (S=sp, gr) dissolve pts. KCl as follows: 20

0.084 0.972 0.958 0.940 KCl 198 147 10.7 7.7 80 0.018 0.898 0.848 KCI 0.45 5.0 28

(Schiff, A. 118, 365) 100 pts. of a mixture of 40% alcohol with 60% H₂O dissolve 9 2 pts. KCl at 15° (Schiff)

Insol, m absolute alcohol or m 96% alcohol at 15° or below. At 20°, 100 pts. of the latter dissolve 0.04 pt.; at 25°, 0.06 pt., at 30°, 0.20 pt KCl. Dilute alcohol dissolves less KCl than the contained H₂O would dissolve by itself

Solubility in dil. alcohol. D = sp. gr. of alcohol; S = solubility in 100 pts. alcohol at t°.

D =	0 9904	D =0 9848		D =	0.9793	D-	0.9726
t°	S	t*	s	to.	s	t°	8
0 4 22 25 34 52	23 2 24 8 29.4 30.2 32 8 37.5	20 27 30 37 60	20 9 25 5 26.6 27 5 29.0 35.2	21 28 43	16.4 20 3 22 0 25 6	3 5 16 20 25 34	12 2 12 7 15 4 16 1 17 3 19 0
D -	0 9573	D=	0 9390	D	0.8967	D=	0 8244
p =	0 9573 S	D=	0 9390 S	D=	0.8967 S	D =	0 8244 S

(Gerardin, A. ch. (4) 5 140)

Solubility of KCl in dil alcohol at 14 5°

	100 ecm contain					
Sp. gr.	Akohol	Water	KCI			
1.1720 1.1542 1.1365 1.1076 1.1085 1.0545 1.0455 0.9695 0.9315 0.8448	2 79 4 98 10 56 15 57 20.66 24 25 40 42 48.73 68.63	88 10 85 78 84 00 79.63 75 24 70 52 67.05 50.18 40 60 15 55	29 10 26 85 24 67 20 56 17 24 14 27 13 25 6 35 3 82 0 30			

(Bodlander, Z. phys. Ch. 7, 316.)

Solubility of KCl in ethyl alcohol. (G. KCl per 100 g. alcohol+Ag.)

Wt conol	at 30°	at 40°	Wt. % alcohol	at 30°	at 40°
0 5.28 9.43 16.9 25.1 34.1	38 9 33.9 30.2 24.9 19.2 15.6	41.8 35.9 33.3 27.6 21.8 17.2	43.1 55.9 65.9 78.1 86.2	11.1 6.8 3.6 1.3 0.4	13.1 8.2 4.1 1.6 0.5

(Bathrick, J. phys. Ch. 1896, 1, 160.)

Solubility of KCl in ethyl alcohol at 0°.

Concentration of alcohol Mol g alcohol per 1000 g, H ₂ O	Solubility in 1000 g H ₂ O	Molecular solubility	
0 25 0 50 1 00 3 00	285 15 277 95 271 10 265 50 208 80	3 80 3.73 3 64 3 45 2 81	

(Armstrong and Eyre, Proc. Roy. Soc. 1910, (A) 84 127.)

Solubility of KCl in ethyl alcohol +Aq at

Wt % alcohol	G. KCl per 100 cc sat solution	Wt % alcohol	G KCl per 100 cc sut solution
0 10 20 30 40 50	31 18 23 93 17 89 13 27 9.40 6.26	60 70 80 90 100	4 18 2.27 0.93 0.31 0 08

(McIntosh, J. phys. Ch. 1903, 7, 350.)

100 pts. absolute methyl alcohol dissolve 0.5 pt at 18.5°; 100 pts. absolute ethyl alcohol dissolve 0.034 pt at 18.5°. (de Bruyn, Z. phys Ch. 10.783)

100 pts. 40% wood alcohol dissolve 9.2 pts. KCl. (Schiff.)

Solubility of KCl in methyl alcohol+Aq at 25°.

P = % by wt. of alcohol in alcohol+Aq. S = Sp. gr. alcohol+Aq sat. with KCl L = millimols KCl in 100 ccm of the solution.

P	S 25°/4°	L
0 10.6 30.8 47.1 64.0 78.1 98 9 100	1.1782 1.125 1.033 0.9679 0.9064 0.8607 0.8242 0.7937	417.4 329 183 102 46.1 20 6 9.9 5 7
		1

(Herz and Anders, Z. anorg, 1907, 55, 273.)

Solut	Solubility of KCl in methyl alcohol.			
t"	Concentra tion of alcohol Mol g alcohol per 1000 g H ₂ O	Solubility 1 in 1000 g H ₂ O	Molecular solubility	
0 "	0 25 0.50 1 00 3 00	283 55 280.00 276 35 267.85 238 10	3 81 3 76 3 71 3 60 3 18	
25	0 25 0.50 1 00 3.00	364 15 361 90 357 10 348.70 324.15	4 89 4 86 4.79 4 67 4 35	

(Armstrong and Eyre, Proc. Roy. Soc. 1910 (A) 84, 127.)

At room temp 1 pt by weight is sol in. 200 pts methyl alcohol, Dis 0.7990 750 " ethyl " Dis 0.8035

Insol in propyl alcohol. (Rohland, Z. anoig 1899, 18, 325.) 100 g methyl alcohol dissolve 0.53 g. KCl

at 25°.

100 g. ethyl alcohol dissolve 0 022 g. KCl at 25°

at 25° 100 g propyl alcohol dissolve 0 004 g KCl at 25°. 100 g isoamyl alcohol dissolve 0.0008 g.

KCl at 25°. (Turner and Bissett, Chem. Soc. 1913, 103, 1909.)

Insol. in propyl alcohol. (Schlamp, Z. phys. Ch. 1894, 14, 276.)

Solubility of KCl in propyl alcohol.

ţ°	Concentra- tion of alcohol Mol g per 1000 g, H ₂ O	Solubility in 1000 g. H ₂ O	Molecular solubility
0 "	0.25 0.50 1.00	283 55 274 10 265 45 248 0	3.81 3.68 3.56 3.33
25 "	0 25 0 50 1 00	365 10 355.40 347 70 331 50	4 90 4 77 4 67 4 45

(Armstrong and Eyre, Proc. Roy. Soc. 1916 (A) 84, 127.)

Insol. in fusel-oil. (Gooch, Am. Ch. J. 53-)

Very sl. sol. in mixture of equal pts, a solute alcohol and ether. (Berzelius.) 500 mg KCl treated with 10 g. of above mixture yield only 0.3 mg. to the liquid. (Lawrence Smith, Am. J Sci 16 56)

(Lawrence Smith, Am. J Sci 16 56) Insol. in acetone (Kiug and M'Elroy, J. Anal. Ch 6. 184, Eidmann, C C. 1899, II. 1014.)

Solubility of KCl in agetone+Ag at t.º

Soluk	Solubility of KCl in acetone+Aq at t.			
to.	1 %	100 g of the solution contain		
	acetone	G H ₂ O	G acctone	G KCI
30	0 5	72 73 71 15	0 00 3 74	27.27
	9 09	71 15 69 62	6 96	25.11 23 42
	20	64 88	16 22	18 90
	30	59 49	25 45	15 06
	40	53 17	35 52	11.31
	50	45 98 37.97	45 98 56 91	8 04 5 12
	60 70	29 22	68 18	5 12 2 60
	80	19 82	79 43	0 76
	90	9 98	89 88	0 13
	100	0 00	100 00	0 00
40	0	71 31	0 00	28.69
	5	69.62	3 67	26 72
	9 09	67 88	6 79	25 33
	15 20	65 15	11 51	32 34 21 28
	80	62 97 19 81	15.75 79 34	21 28 0 58
	85	14 94	84.66	0 40
	90	10 00	89.84	0 16
	95	4 97	94.96	0 07
	100	0.00	100.00	0.00

Since there is but one liquid phase here, these figures represent the solubility of KCl in acctone+Aq at 30° and 40°.

(Snell, J. phys. Chem. 1898, 2. 484.)

The addition of KCl to mixtures of acctone and H₄O will cause a division into two layers. The following table gives the temp na which sat solutions of KCl in acctone+Aq of varying concentrations separate into two layers and also the compositions of the sat solutions of KCl in acctone+Aq.

_	%	Temp	100 g of solution contain		ontain
	ncetone	division	G H₂O	G. acetons	G. KCI
0, 9.	26 30 40 50 60 70 75 80	46 5° 40 0 34.2 32 6 33.3 35.5 39.0 45 6	59 36 53 21 45 97 37.86 29 09 19 80	25 44 35 47 45 97 56 80 68 25 79 20	15.20 11.32 8.06 5.34 2.66
b-			/Cm -11		

(Snell)

The following table gives the compositions of the solutions of KCl in acetone+Aq at the points at which the solution just divides into two layers. Temp = 40°.

100 g. of the solution contsin		
G. H _f O	G. acutone	G KCI
56 68 53.05 50.34 47 60 44.35 42 68 38.53 36.59 32.37 30.62	28 63 35 67 39 82 43 83 48 36 50 75 56 26 58 84 64 18 66 43	14.08 11.29 9.83 8.58 7.29 6.57 5.21 4.57 3.45

(Snell.)

The addition of KCl to aqueous acetone causes the separation of the liquid into two layers. The following table gives the composition of these layers at 40°

Upper layer contains per 100 g of solution		
G H ₂ O	G. acetone	G KCI
55 20	31 82	12.99
54 27	36 69	12.03
53 27	35.44	11 29
51.69	37 76	10 55
51 23	48 50	10 27
50.34	39.88	9 77
49.08	41 67	9.26
48.02	43.18	8 79
47 62	43.73	8.64
46.49	45.34	8 17
45.65	46.52	7 83
45.64	46 57	7.79
58 99	25.24	15 77

Lower layer contains per 100 g of solution

G. H.O	G acetone	G KCI
28 14	69.42	2,44
29.45	67 83	2.72
30 96	65 97	3 07
31 83	64 83	8.33
32.64	63 79	3.56
34.07	62.01	3.92
35 27	60.49	4.24
37.44	57 67	4.89
38 00	56 96	5.04
38.68	56.17	5 25
39.98	54.36	5.66
40.41	53 78	5.81
23 66	74.91	1.43

Solubility in acetone+Aq at 20°.

A = ccm. acetone in 100 ccm. acetone+Aq.

KCl = millimols KCl in 100 ccm. of the obtain.

uuon.	
Λ	KCl
0 10 20 30 40 50 60 70	410 5 351.7 286 6 223 7 166.5 115.4 71 2 38.5 12 9
90 100	2.0

(Herz and Knoch, Z. anorg. 1904, 41 317.)

Solubility of KCl in glycerine+Aq at 25°. G=g. glycerine in 100 g. glycerine+Aq. KCl = millimols KCl in 100 cc. of the solution.

G	KCl	8р дг.
0	424.5	1.1800
13.28	383 4	1 1848
25.98	339 3	1.1935
45.36	271.4	1 2106
54.28	238 5	1.2189
83.84	149 0	1.2590
100	110 6	1 2860

(Herz and Knoch, Z. anorg. 1905, 45. 267.)

Insol in CS₂, (Baeyer; Arctowski, Z anorg 1894, 6, 257) [Host In benzonitrile. (Naumann, B 1914, 47, 1370.) [Insol in methyl acetate. (Naumann, B, 1909, 42, 3790), ethy lacetate. (Naumann, B, 1910, 43, 314.)

Solubility of KCl in organic compounds +Aq at 25°.

Compound	G comp per l H ₂ O	G KCl per 100 g sat solution
Water Acetaldehyde Paraldehyde Glycerol Glycol Mannitol	11.01 11.07 13.01 15.51 62.05 45.53 136.59	26.89 27.05 26.42 25.58 26.43 25.26 24.86 24.46

(Armstrong and Eyre, Proc. Roy. Soc. 1913, A. 88, 234.)

Solubilit	y in pyridine+	Aq at 10°.	
Sol	100 g of the solution contain		
H ₂ O	Pyridine	g. KCl	
100	0	23 79	
		19.76	
		16.37 13 19	
	40	10.05	
50	50	6.34	
		3 335	
		1 245	
		0.24 0.039	
10	100	0.009	
	H ₂ O 100 90 80 70 60 50 40 30 20	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

(Schroeder, J. pr. 1908, (2) 77, 268.)

Insol in anhydrous pyridine and in 97% pyridine+Aq.

*Very st sol. in 95% pyndine+Aq. (Kahlenberg, J. Am Chem. Soc 1908, 30, 1107) 100 ccm. of a sat. solution of KCI in furirol at 25° contain 0.685 pts. by wf. KCI 100 pt. do thesolve 246 fs. sugar+44 8 g. KCI at 31.26°, 100 g sat solution contain 6.28 g. sugar+44 8 g. KCI at 31.26°, 100 g sat solution contain 6.2.28 g. sugar+11.3 3 g. KCI. (Kóhler, Z.

Solubility in glucose+Aq at 25°

Ver. Zuckerind, 1897, 47, 447.)

Concentration of glucose in 9 mol per 1000 g H ₂ O	Solubility in 1000 g H ₁ O	Molecular solubility
0 25 0 50 1 0 3 0	362 70 366 10 369 85 376 25 402 25	4 86 4 91 4 96 5 04 5 39

(Armstrong and Eyre, Proc. Roy. Soc. 1910, 84, 127)

Potassium manganic chloride, K₂MnCl₅. Sol. m H₂O; less sol. in NH₄Cl+Aq, unstable. (Neuman, M 1894, **15**. 492.)

Potassium rhodium chloride. See Chlororhodite, potassium.

Potassium ruthenium sesquichloride. See Chlororuthenite, potassium.

Potassium ruthenium tetrachloride. See Chlororuthenate, potassium.

Potassium tellurium chloride.

See Chlorotellurate, potassium.

Potassium thallic chloride, 3KCl, TlCl₃+ 2H₄O. Sol. in H₂O Not decomp. by boiling H₂O.

Sol, in H₂O Not decomp, by boiling H₂O (Rammelsberg.) Potassium thorium chloride, KCl, 2ThCl₄+ 18H₂O.
Deliquescent; sol. in H₂O and alcohol. (Berzelius.)

Potassium tin (stannous) chloride (Potassium chlorostannite), KCl, SnCl₂+H₄O.

Decomp by H₂O; sol in hot HCl or KCl+ Aq. (Remsen and Richardson, Am Ch. J. 14. 90.)

2KCl, SnCl₂+H₄O. Partially decomp. by dissolving in H₂O. (Rammelsberg, Pogg. 94. 507.) +2H₄O. Very sol. in hot, and but slightly

n cold HCl+Aq or KCl+Aq. (Remsen and Richardson) 4KCl, SnCl₂+3H₂O (Poggale, C. R. 20.

1182)

Does not exist. (Remsen and Richardson.)

Potassium tin (stannıc) chloride, 2KCl, SnCl₄. See Chlorostannate, potassium.

Potassium tungsten chloride, K₂(OH)WCl₄ Decomp, by moisture Insol in organic solvents. (Olsson, B. 1913, 46, 581.) K₃W₄Cl₉. Sol. in H₄O Nearly insol in most organic solvents. (Olsson.)

Potassium uranium chloride, UCl₄, 2KCl.
Very hydroscopic, sol in H₂O with decomp.;
sol in acetic acid Decomp. by alsohol.
Nearly insol in ether (Aloy, Bull. Soc. 1899,
(3) 21, 264)

Potassium uranyl chloride, K2(UO2)Cl4.

alcohol. (Aloy, Dissert. 1901.) +2H₂O. Very sol. in H₂O and alcohol. (Arfvedson.) Sol. in H₂O, with decomp, and separation of KCl. unless H₂O is acadulated with HCl.

Solubility in H₂O at t°

(Peligot, A ch (3) 5. 37)

	Solubility in H ₂ O at t ^o .						
	+0	100 pt	of the secontain	Solid phase			
		Pts. UO2	Pts. Cl	Pts K	dona princo		
	0.8	38 57	13 59	3.86	UO ₂ Cl ₂ , 2KCl, 2H ₂ O +KCl		
ı	14 9	33 71	13.51		"		
Ì	17.5	37 36	14.50	5 27	"		
i	25.0	35 01	15.26	4.40	"		
į	41 5 50 0	35.27	15.92	7 39	l ".		
ı	60.0	34.18 34.19	17 25	9.14	UO ₂ Cl ₂ , 2KCl, 2H ₂ O		
ı	71.5	33 55	17.44	9.28	UUsCli, 2KCl, 2HiO		
ĺ	78 5	35 26	18.24	9 95	"		

(Rimbach, B. 1904, 37, 463)

Potassium uranyl chloride is decomp, by KF will "salt out" acetone from aqueous H.O at temp, below 60°. Above 60° it is sol, in H2O without decomp.

Potassium vanadium chloride, VK₂Cl₄+H₂O. Difficultly sol. in H₂O and alcohol. (Stahler, B. 1904, 37. 4412)

Potassium vttrum chloride.

Sol. in H₂O with evolution of heat

Potassium zinc chloride, 2KCl, ZnCl2, Very deliquescent. Sol. in 1 pt. cold, and in all proportions of hot H2O. (Pierre, A. ch.

In an proposal state of the proposal state (Enhraum.)

Potassium chloroiodide, KCl2I.

Very unstable. (Wells and Wheeler, Sill. Am. J. 143, 475.) KCLI. Sol. in H2O with decomp. Ether dissolves out ICla (Filhol, J. Pharm 25. 433.)

Potassium fluoride, KF or K₂F₂.

Very deliquescent. Very sol. in H₂O. sol. in HF+Aq. Easily sol. in conc. KC2H2O2 +Aq. Insol in alcohol. (Berzelius.) Sol. in dilute alcohol. (Stromeyer, A. 100. 83.) Sp. gr. of aqueous solution of KF at 18° containing-10 20 40% KF.

1.378 1.041 1.084 1 117 1.272 (Kohlrausch, W. Ann. 1879, 1.)

Solubility in HF+Aq at 21°. (G. per 100 g. H.O.)

HF	KP	HF	KF
0.0 1 21 1 61 3 73 4.03 6.05 9.25 11.36 12.50	96.3 72.0 61.0 40.4 32.5 30.4 29.9 29.6 30.5	13 95 15 98 17 69 20 68 28.60 41.98 53 71 74.20 119 20	31 4 33 4 35.6 38 4 46 9 61 8 74 8 105 0 169 5

(Ditte, C. R. 1896, 123, 1282.)

Easily sol. in liquid HF. (Franklin, Z. anorg. 1905, 46. 2.) Very sl. sol, in liquid NHs. (Gore, Am. Ch. J. 1898, 20, 829.) Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

solution. The table shows the composiwhich inhomogeneous solutions of KF. acctone and HaO just become homogeneous at 20°

100 g of the solution contain:

G	KF	G H ₂ O	G nectone	G KF	G H ₁ O	G acctone	
5 3 2 2 14 11 9 7	75 00 84 06 61 22 95 46 17 72 07 43	58 91 56 28 52 25 49 05 46 84 44 79 73 66 70 77 67 30 64 01 62 03 60 50	35 34 38 72 43 91 47 89 50 55 52 99 11 39	0 61 0 50 28 42 25 74 22 35 20 28 18 71 16 31 12 40 33.86 29 97 32.05	31 95 29 92 69 76 71 24 72.99 73.80 74.10 73 97 72.01 65 73 68 54 73 41	67 44 69 58 1 82 3 02 4 66 5 90 7 19 9 72 15 59 0 397 1 50 4 54	
1 0 0 0	.38 979 693 57 89	40.55 36 42 32 69 31 50	58 06 62 60 66 61 67 93 63 36 65 41	17 82 14 34 44 24 38 34 29 86	74 01 73 29 55 52	8.16 12 87 0 240 1 00 1 60 3 45	

At the first quadruple point where the hydrate, acetone, water and vapor are in equilibrium the upper layer contains 98% acetone, while the lower layer contains in 100 g , 46.3 g KF A sat. solution of KF will thus dehydrate agetone to the extent of 98%.

(Frankforter and Cohen, J. Am, Chem, Soc. 1914, 36, 1115,)

Similar data are given for KF in ethyl and propyl alcohol by Frankforter and Frary. (J. phys. Ch. 1913, 17, 402.) +2H₂O Very deliquescent. (Guntz. A. ch. (6) 3. 20)

* Sat. aq. solution at 18° contains 45.3% KF (de Forcrand, C. R. 1911, 152. 1210.) Sp. gr of solution sat at 18°=1.502, and

contains 48% KF. (Mylius and Funk, B. 1897, 30, 1718.) +4H₂O. Not deliquescent. (de Forcrand. C. R. 1911, 152, 1075)

Sat. aq. solution at 18° contains 35.96% KF. (de Forcrand, C. R. 1911, 152, 1210.)

Potassium hydrogen fluoride, KF, HF= KHF2. Easily sol. in H₂O. Sl. sol in H₂O con-taining HF Easily sol. in conc. KC₂H₃O₂+

Aq. Sol. in dil. alcohol, but insol. in absolute alcohol. KF, 2HF. Deliquescent. Decomp. by H-O with absorption of heat (Mossan, C. R.

KF, 3HF. As above (Moissan.)

Potassium manganic fluoride.

See Fluomanganate, notassium.

Potassium scandium fluoride, K₂SeF₆. Sol in H₂O Decomp. by acids. (R. J. Meyer, Z. anorg. 1914, 86, 275.)

Potassium silicon fluoride.

Potassium tantalum fluoride.

See Fluotantalate, potassium.

Potassium tellurium fluoride, KF, TeF₄.

Decomp by H₂O. (Högbom, Bull Soc (2) 35.60)

Potassium thallic fluoride, 2TlF₁, KF.

Decomp. by moisture Insol in HF.

(Gewecke, A. 1909, 366, 226)

Potassium thorium fluoride, 2KF, ThF₄+
4H₂O.
Nearly insol, in H₂O Sol, in HF+Aq
KF, ThF₄. Precipitate (Chydenius)

Potassium tin (stannous) fluoride, 2KF, 3SnF₂+H₃O Sol. in H₅O. (Wagner, B. **19.** 896.)

Potassium tin (stannic) fluoride. See Fluostannate, potassium.

Potassium titanium tetrafluoride. See Fluotitanate, potassium.

Potassium titanium sesquifluoride, 4KF, T₁₃F₆.

Preupitate. Very sl. sol in H₂O. Sol, in dil acids (Piccini, C. R. 97, 1064.) See also Fluosesquittanate, potassium.

Potassium titanyl fluoride. See Fluoxypertitanate, potassium.

Potassium tungstyl fluoride.

See Fluoxytungstate, potassium.

Potassium uranium fluoride, KF, UF. Insol. in H₂O and dil. acids Difficultly sol in conc. Hcl+Aq Sol. in conc. H₂SO₄. (Bolton. J. B. 1866, 212.)

Potassium uranyl fluoride. See Fluoxyuranate, potassium.

Potassium vanadium sesquefluoride. See Fluovanadate, potassium.

Potassium vanadium tetrafluoride (?).

Easily sol. in H₂O Insol. in alcoho (Berzelius.)

Potassium zinc fluoride, KF, ZnF₂ Sol in H₂O. (R. Wagner.)

2KF, ZnF₂ Sol. in H₂O. (Berzelius.)

Potassium zirconium fluoride. See Fluozirconate, potassium.

Potassum fluoride hydrogen peroxide, KF, H_2O_2

Not hydroscopic. Very sol. in H₂O. Is not decomp. at 70° and only partially so at 110° (Tanatar, Z. anorg 1901, 28, 255)

Potassium fluoride vanadic acid. See Fluoxyvanadate, potassium.

Potassium hydride, KH.

Decomp. by H-O Insol. in o

Decomp. by H₂O Insol. in oil of turpentine, benzene, other and CS₂. (Moissan, C R 1902, **134**. 18)

Potassium hydrosulphide, KSH.
Very deliquescent, and sol. in H₂O with
gnadual decomp Crystallizes with ½H₂O.
Sol in alcuhol,

Potassium hydroxide, KOH.

Very dehquescent, and sol in H₂O with
evolution of much heat. 100 pts KOH, exposed over H₂O at 16-20° take up 460 pts.
H₂O in 56 days. (Mulder.)

H₂O in 56 days. (Mulder.) I pt. KOH dissolves in 0.5 pt. cold H₂O (Lowitz), in 0.47 pt. cold H₂O (Binesu, C. R 41 509), in 1 pt. H₂O (Abi)

Solubility of KOH in $\mathrm{H}_2\mathrm{O}$ at t^o

1		G. KOH per 100 g		Solid phase
		H ₂ O	solution	Down panes
n	22 20 7 65 2 36 2 32 7 33	3 7 22 5 44.5 36 2 77 94 80	3.6 18 4 30 8 26 6 43 8 44 4	Ice " " KOH 4H4O " KOH 4H4O+KOH,
ly 4.	-23 2 0 10 15 20 30 32 5 50 100 125 143	85 97 103 107 112 126 135 140 178 213 311.7	45 9 49 2 50 7 51 7 52 8 55 76 57 44 58 33 64 03 68 06 75 73	2H,0 KOH.2H;0 "" "KOH 2H;0+KOH. H;0 KOH.H;0

(Pickering, Chem. Soc. 1893, 63, 908.)

fluoride (7).

Insol, in alcohol. 15° or 100 pts. H₂O dissolve 107 pts. KOH at 15°. Sp. gr. = 1 5355 at 15°.

are incorrect. (Ferchland, Z anorg. 1902,	
0. 133) 100 g. sat. sq. solution at 15° contain	
 48 g. KOH. (de Forcrand, C. R. 1909, 49, 719.) 	
Sat, KOH+Aq boils at 157 7° (Griffiths);	

340°, (Gerlach).

В,-т	ot. c	ρf	KOH+Aq	contai	ining	pts.	KOH	to
			100	pts. H	O			

100 ptd. 1120.					
Bpt.	Pts. KOH	Bpt	Pts KOH		
105°	20 5	215°	210 5		
110	34.5	220	219 8		
115	46 25	225	230 0		
120	57.5	230	240 9		
125	67.5	235	251 9		
130	76.8	240	263 1		
135	850	245	274 4		
140	92.5	250	285 7		
145	99.8	255	298 5		
150	108 5	260	312 5		
155	114 05	265	328.0		
160	121 7	270	343 5		
165	129 35	275	359 0		
170	137 0	280	375.0		
175	144 8	285	391 0		
180	152 6	290	408 2		
185	160 4	295	425 5		
190	168 2	300	444.4		
195	176 5	310	484.0		
200	185 0	320	526 3		
205	193 5	336	571 5		
210	202 0	340	623 6		

(Gerlach, Z. anal, 26, 464.)

Sp gr and b-pt, of KOH+Aq according to Dalton

% K:O	Sp gr.	B-pt	% K ₂ O	Sp gr	B-pt
4.7	1 06	100 56°		1 44	123 S9°
9.5	1 11	101 11	39 6	1 47	129 44
13 0	1 15	101 66	42 9	1 52	135 56
16 2	1 19	103 33	46 7	1 60	143 33
19 5	1 23	104.44	51 2	1 68	160 00
23 4	1 28	106 66	58 8	1 78	188 22
26 3	1 33	100 44	63 6	1 88	215 56
29 4	1 36	112 22	72 4	2 00	315 56
32 4	1 39	115 56	84 0	2 2	red heat
34 4	1 49	118 80	100	2 4	1

Sp gr of KOH+Aq at 15°.

% K()	Sp gr	% K:0	Spgr	% K:0	Sp. gr.
0.568 1 697 2 829 3 961 5 002 6 224 7 355 8 487 9 619	1 0050 1 0153 1 0360 1 0369 1 0478 1 0589 1 0703 1 0819 1 0938	10 750 11 882 13 013 14 145 15 277 16 408 17 540 18 671 19 803	1 1059 1 1182 1 1308 1 1437 1 1568 1 1702 1 1839 1 1979 1 2122	21 500 22 632 23 764	1 2268 1 2342 1 2493 1 2648 1 2805 1 2966 1 3131 1 3300

(Zimmerman, N J. Pharm 18, 2. 5.

Sp. gr of KOH + Aq					
% K:0	Sp gr	% K:0	Sp gr	% K ₁ O	Sp. gr
2 44 4 77 7 02 9 20 11 28 13 30 15 38 17 40 19 34 21 25	1 02 1 04 1 08 1 08 1 10 1 12 1 11 1 16 1 18 1 20	23 14 21 77 26 34 27 86 29 34 30 74 32 14 33 46 34 74 35 90	1 22 1 24 1 26 1 28 1 30 1 32 1 34 1 36 1 38 1 40	37 97 10 17 42 31 44 40 46 45 48 46 50 09 51 58 53 06	1 42 1 44 1 46 1 48 1 50 1 52 1 54 1 56 1 58

(Richter)

Sp gr of KOH+Aq at 15°. a = sp. gr. if % is K₂O: b = sp. gr. if % is KOH.

1420, b - up. gr. n // 18 21011.					
er ₀	8	ь	%	a	b
1	1 010	1 009	31	1 370	1.300
	1 020	1 017	32	1 385	1.311
2 3	1 030	1 025	33	1 403	1 324
4	1 039	1 033	34	1.418	1 336
5	1 048	1 041	35	1 431	1 349
6	1 058	1 049	36	1 445	1 361
7	1 068	1.058	37	1 460	1 374
8	1 078	1 065	38	1 475	1 387
9	1.089	1.074	39	1.490	1 400
10	1 099	1 083	40	1 504	1 411
11	1.110	1 092	41	1 522	1 425
12	1 121	1 110	42	1 539	1 438
13	1 132	1 111	43	1 564	1 450
14	1.143	1.119	44	1 570	1 462
15	1 154	1 128	45	1 584	1 472
16	1 166	1 137	46	1 600	1.488
17	1 178	1 146	47	1 615	1.499
18	1 190	1 155	4.8	1.630	1 511
19	1 202	1 166	49	1.645	1 527
20	1 215	1 177	50	1.660	1 539
21	1 230	1 188	51	1 676	1 552
22	1 242	1 198	52	1.690	1 565
23	1 256	1 209	53	1 705	1 578
24	1 270	1 220	54	1 720	1 590
25	1 285	1.230	55	1 733	1 604
26	1.300	1 241	56	1 746	1.618
27	1 312	1 252	57	1 762	1 630
28	1.326	1 264	58	1 780	1 641
29	1 340	1 278	59	1 795	1 655
30	1 355	1 288	60	1 810	1.667

(Calculated by Gerlach, Z. anal. 8, 279, after Zimmermann, N. J. Pharm, 18, 2, 5, and Schiff, A, 107, 300.)

Sp. gr. of KOH+Aq at 15°.

% кон	Sp. gr	% кон	Sp gr
4 2 8.4 12 6 16 8	1 0382 1 0776 1 1177 1 1588	21.0 25.2 29.4	1 2008 1 2439 1 2880

(Kohlrausch, W. Ann. 1879, 1.)

Sp. gr. of KOH+Aq at 15°				
% кон	Sp. gr	% КОН	Sp. gr	
10 20 30 40	1 077 1 175 1 288 1 411	50 60 70	1 539 1 667 1 790	

(Gerlach, Z. anal. 27, 275, calculated from Schiff, A, 107, 300)

Sp gr. of K₂O+Aq at 15°.

% K ₂ O	Sp gr	% K ₂ O	Sp. gr
5 10 15	1.054 1 111 1 171	30 35 40	1 358 1 428 1 500
20	1 231	45	1 576

1,294

25

(Hager, Adjumenta varia, Leipsic, 1876.)

Sp gr. of KOH+Aq at 20° containing 2 mols, KOH to 100 mols H₂O=1 05325, (Nicol, Phil. Mag. (5) 16 122.)

Sp gr, of KOH+Aq at 15°.

кон	Sp gr	кон	Sp gr	кон	Sp gr
52 51 50 49 48 47 46 45 44 43 42 41 40	1 53822 1 52622 1 51430 1 51430 1 49067 1 47896 1 46733 1 45577 1 44429 1 43289 1 42150 1 41025 1 39906	34 33 32 31 30 29 28 27 26 25 24 23 22	1 33313 1 32236 1 31166 1 30102 1 29046 1 27997 1 26954 1 25918 1 24888 1 23866 1 22849 1 21838 1 20834	16 15 14 13 12 11 10 9 8 7 6 5 4	1 14925 1 13955 1 12991 1 12031 1 11076 1 10127 1 09183 1 08240 1 07302 1 06371 1 05443 1 04517 1 03593
39 38 37 36 35	1 38793 1.37686 1 36586 1 35485 1 34396	21 20 19 18 17	1 19837 1 18839 1.17855 1 16875 1 15898	3 2 1 0	1 02671 1 01752 1 00834 0 99918

(Pickering, Phil. Mag 1894, (5) 37, 375.)

Sp. gr of N solution at 18°/4°=1.0481 (Loomis, W Ann. 1896, 60, 550.)

Sp. gr. of KOH+Ao. % KOH 6.87

12.10 Sp gr. 20°/20° 1.0601 1 1025 (Le Blane and Rohland, Z. phys Ch. 1898, 19, 272)

KOH+As containing equal pts of KOH and H₂O freezes at —54°. (Guyton-Morveau, Gm -K. 2, 1. 18)

KOH is completely miscible with NaOH and with RbOH in both the liquid and the solid states. (Hevesy, Z phys. Ch. 1910, 73.

667.) Insol. in liquid NH₂ (Franklin, Am Ch.

J. 1898, 20. 828.) Abundantly sol, in strong alcohol or woodspirit.

See below under KOH+2H2O.

Readily sol in glycerine. Sol in not less than 25 pts. of ether.

(Bouliay.) Sol in much more than 25 pts of ether (Connell.) Insol. in methyl acetate (Naumann, B.

1909, 42. 3790); ethyl acctate. (Naumann, B. 1904, 37. 3601.)

Insol in acctone. Readily sol, in fusel oil Insol in acetone and in methylal (Bid-

mann, C. C 1899, II 1014) Sol. in aqueous solution of mannite (Favre,

A. ch (3) 11.76 The composition of the hydrates formed by KOH at different dilutions is calculated from determinations of the lowering of the fr-pt. produced by KOH and of the conductivity and sp. gr. of KOH+Aq. (Jones, Am Ch. J. 1905, 34, 337.)

+H₂O.

+2H₂O. Very deliquescent, and sol in H₂O with absorption of much heat

100 g. sat. solution in H₂O at 30° contain 55.75 g. anhyd. KOH. (de Waal, Dissert. 1910.)

Solubility of KOH+2H2O in alcohol+Ag at 30°.

% КОН	% alcohol	% H ₈ O
55.75 54.81	0 0 43	44.25 44.76
31.0 28 99 27 67 27 20 26 25	57.50 65 07 69 92 73 01 81 98	11 50 5 94 2 41 negative

*Separates into two lavers (de Waal, Dissert, 1910)

+4H₂O.

Potassium hydrogen titanium damade,

Ti(NH)NK. Decomp. by H₂O and alcohol Insol, in all ord. indufferent organic solvents. (Ruff,

B. 1912, 45. 1371.) Potassium iodide, KI.

Deliquescent only in very moist air Very sol. in H₂O with absorption of heat

The temp of H₂O can be lowered 24° by dissolving KI (Baup.) 140 pts KI dissolved in 100 pts. H-O at 10.8° lower the temp. 22.5°. (Rudorff, Pogg

136, 276.)

100 pts. H₂O dissolve 126.6 pts. KI at 0° (Kremers); 127 8 pts. KI at 0° (Mulder), 127.9 pts KI at 0°. (Gerardin.) By boiling, 100 pts. H₂O dissolve 221 pts. KI at 120° (Baup); 222 2 pts. KI at 120° (Gay-Lussao); 222.6 pts. KI at 118.4° (Mul-

der), 223.58 pts. KI at 117° (Legrand); 223.6 pts. KI at 117°. (Gerardin.)

Between these temps the solubility increases proportional to temp.

(Mulder, calculated from his own and other Sol in 0.735 pt H₂O at 12 5°, in 0.769 pt H₂O at 16°; in 0.7 pt H₂O at 18°, in 0.45 pt H₂O at 120° (Graham-Otto)

Sol. in 0.71 pt. H₂O at 15°. (Eder, Ding). 221, 89.)

Solubility of KI in 100 nts. Hall at to

COOL	Solubility of KL in 100 pts. H2O at t.				
t°	Pts. KI	to.	Pts KI	t.o	Pts KI
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	127 9 128 7 129 6 130 4 131 2 132 9 133.7 134 5 135.3 136.1 137.8 138.6 139.4 139.4 140.2	19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	Pts Ki 143.4 144.2 145.1 145.9 146.7.5 147.5 148.3 149.1 150.7 151.5 152.3 153 154 155 156	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Pts KI 159 160 160 161 162 163 164 164 165 166 167 168 168 169 170 171
16 17 18	141.0 141.8 142.6	35 36 37	156 157 158	54 55 56	172 172 173

Solubility of KI in 100 pts., etc.—Continued.					
t°	Pts KI	t°	Pt ₉ KI	t°	Pts KI
57	174	78	191	99	208
58	175	79	192	100	209
59	175	80	192	101	210
60	176	81	193	102	211
61	177	82	194	103	212
62	178	83	195	104	213
63	179	84	196	105	213
64	180	85	197	106	214
65	180	86	197	107	215
66	181	87	198	108	216
67	182	88	199	109	217
68	183	89	200	110	218
69	184	90	201	111	219
70	184	91	202	112	220
71	185	92	202	113	220
72	186	93	203 -	114	221
73	187	94	204	115	222
74	188	95	205	116	223
75	188	96	206	117	223 6
76	189	97	207		
77	190	98	208		

observations, Scheik, Verhandel, 1864, 63.)

shalatar of TCT on 100 mts. IC O of 40

Solubility of K1 in 100 pts 1140 at t.						
t°	Pts. KI	to.	Pts KI	t°	Pts KI	
0 +3 25 9 55	106 6 111 1 116 3 120 4 126 1 130 1 134 0 137 1	25 6 29 1 37.3 42 3 45 75 51.8 55 05 60 55	146.6 149 6 156.7 160 3 163 6 167 6 169.1	81 6 86 35 93 5 100 7 110 2 113.7	185.6 192.0	

(Coppet, A. ch. (5) 30, 417)

Solubility is represented by a straight line of the formula 126,23+0,8088t. (Coppet.)

Solubility of	f KI in 100	pts. H_2O a	t high temp.
to .	Pts. KI	t°	Pts KI
124	233.9	144	264 6

(Tilden and Shenstone, Phil. Trans. 1884, 23.)

If solubility S=pts. KI in 100 pts solution, S=55.8+0.122t from 0° to 165° (Etard, C. R. 98, 1432.)

Sat KI+Aq contains % KI at to.

t°	% KI	t°	% KI
-21 -21 -21 -19 -15 -9 0 +21 44 72	50 7 51 0 51 2 52 2 53 2 54 5 56 9 59 3 60 8 64 3	78 96 150 151 175 176 190 193 213	64 8 66 9 70 6 70 9 71 6 72.7 73 8 74 5 75 7

(Étard, A ch 1894, (7) 2, 542)

Solubility of KI in 100 g H₂O at to.

to.	g KI	t°	g KI
-1	122.2	-11 5	64 7
-5	119 8	-95	51 5
-4	117 4	-7	42.6
10	115 1	-6	34 4
1.4	750	E	05.77

(Meusser, Z anorg 1905, 44, 80)

102 70 pts by weight are contained in 100 cc KI+Aq sat. at 25°, or 59 54 pts. in 100 g. of solution; sp. gr = 1 7254

94 05 pts by weight are contained in 100 cc KI+Aq sat at 0°, or 56.34 pts. in 100 g of solution; sp. gr = 1 6699. (Walden, Z. phys Ch. 1906, 55. 715.)

Solubility of KI in H₂O at low temperatures

t°	% KI	Solid phase	t°	% KI	Solid phase
-12.5		Ice	-22	52 1	KI
-15 -17.5	$\frac{41}{44.6}$	u	-20 -15	52 6 53 5	"
-20	48	"	-10	54 5	"
-22.5 -23.2	$\frac{51}{51.9}$	"+KI	- 5	56 4 56 4	"

(Kremann and Kershbaum, Z. anorg. 1907, 56, 218.)

149 26 g KI dissolve in 100 g H₂O at 25°. (Amadori and Pampanim, Rend. Acc. Line. 1911, V, 20. 473.)

60 39 g m 100 g. KI+Aq sat. at 25°. (Parsons and Whittemore, J. Am Chem. Soc. 1911, 33. 1934.)

56 1 g m 100 g, KI+Aq set at 0°; 60.35 g m 100 g KI+Aq set, at 30° (Van Dam and Donk, Chem Weekbl 1911, 8, 848)

Sp gr. of KI+Aq at 21°.

Ki s	p. gr Ki	Sp gr	Ki	Sp. gr.
1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 1 9 1 1 1 0 1	0075 21 0075 21 0151 22 0227 23 0305 24 0384 26 0464 26 0545 27 0710 29 0793 30 0877 31 0962 32 1048 33 1136 34 1226 35 1318 36 1412 37	1 1807 1 1911 1 2016 1 2122 1 2229 1 2336 1 2445 1 2556 1 245 1 2566 1 2784 1 289 1 3017 1 3138 1 3262 1 3389 1 3519 1 3653	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	1 4224 1 4371 1 4520 1 4671 1 4825 1 5142 1 5305 1 5471 1 5610 1 5810 1 6162 1 6328 1 6717 1 6101 1 7109
19 1 20 1	1605 39 1705 40	1 3933 1 4079	59 60	1 7311 1 7517

(Schiff, A 110, 75.)

Sp. ga. cf KI+Aq. S=according to Schiff (A. 108, 340) at 21°; K=according to Kremers (Pogg 96, 62), interpolated by Gerlach (Z. anal 8, 285)

5 10 15 20 25 30% KI, S 1 038 1 079 1 123 1.171 1 279 K 1.038 1.078 1 120 1.166 1 218 1.271

35 40 45 50 55 60% KI S . 1.483 K 1.331 1.396 1.469 1.546 1.636 1.734

Sp gr. of KI+Ag at 18°.

%î	Sp gr	Řî	Sp. gr.	%i	Sp gr.
5 10 20	1.0863 1.0762 1.1679	30 40 50	1 273 1 3966 1 545	55	1 630
(Kohlrausch, W Ann 1879, 1,)					

Sp. gr. of KI+Aq at 18°

% KI	Sp. gi
1 044 5 0	1 0062 1 0363

(Giotrian, W. Ann. 1883, 18, 191.)

Sp. gr. at 16°/4° of KI+Aq containing 32.4875% KI=1.30238. (Schonrock, Z. phys. Cb. 1893, 11.781.)

Ch. 1893, 11. 781.)
KI+Aq containing 9.35% KI has sp. gr.
20°20° = 1.0726
KI+Aq containing 11.35% KI has sp. gr.

20°/20° = 1 0892. (Le Blanc and Rohland, Z. phys Ch. 1896, 19. 278)

B.-pt. of KI+An containing pts. KI to 100 pts. H.O

B-pt.	Pts KI	B-pt	Pts KI	B-pt	Pts KI
101°	15	108°	111.5	115	185°
102 103	30 45	109	123 134	116	195 205
104 105	60 74	111	145 155	118 118 5	215 220
106 107	87 99 5	113	165 175		

(Gerlach, Z. anal 26, 439)

Sat. KI+Aq boils at 119° (Kremers) Sat, KI+Ao forms a crust at 117 5°, and contains 210 pts. KI to 100 pts H.O; highest temp observed, 118.5°. (Gerlach, Z anal 26, 426)

Solubility of KI in I.+Aa at 25°

Kl mol/l	I g -atoms/i
6 15	0.00
6 23 6 40	3 64 11 11
6 36	13 16
6 33 6 24 ·	13 2 17 03

(Aberg. Z. anorg. 1906, 50, 428.)

Solubility of KI+I, in H₂O at 25°.

Ki	% I	Solid phase	Ki	% 1	Solid phuse
28.91 26.84 27.18	63 88	KI,+KI,	25 57	69 01 66.56 66.91 67.17	KI,

(Foote and Chalker, Am. Ch. J. 1908, 39.

See also under Iodine.

KI+Aq sat, at 14.5° containing 139.8 pts KI to 100 pts. H₂O dissolves 1.0 pt. K₂SO₄ with separation of 2 2 pts. KI, so that solution contains 137.6 pts. KI and 1.0 pt. K.SO, to 100 pts. H₂O. (Mulder, Rotterdam, 1864.) 100 pts. H₃O dissolve 86.3 pts. KI and 2.1 pts. Na₂SO₄ at 14.5°. (Mulder, J. B. 1866. 67.)

Sol. in AsCl₃, SnCl₄ and POCl₃. (Walden, Z. anorg. 1966, 25, 214.)

Attacked by dry liquid NO, with liberation of I₂. (Frankland, Chem. Soc 1901, 79, 1361 (Herz and Anders, Z. anorg. 1907, 55, 274.)

Sol. in liquid SO. (Walden, B. 1899, 32. 2864.)

Solubility in SO₂ decreases with rise of temp (Walden, Z. phys. Ch. 1903, **42**, 456.) Insol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, 54, 674.)

Very easily sol, in liquid NH_a (Franklin, Am Ch. J. 1898, 20, 829.

Hydrazine dissolves 135.7 pts. KI at 12.5-13°. (de Bruyn, R. t. c. 1899, 18, 297.)

100 pts alcohol of 0.85 sp. gr. disselve 18 pts KI at 12.5° 100 pts, absolute alcohol dissolve 2.5 pts, KI at 13.5° Much more sol in hot alcohol (Baup.)

100 pts. alcohol of D sp gr. at 0° dissolve at 18°-

D 0.9904 0 9851 0.9726 0.9665 0.9528 130.5 119.4 100 1 89.9 76.9 pts. KI.

That is, aqueous alcohol dissolves approximately the same amount of KI that the water present in the alcohol would dissolve, and it is therefore probable that KI is insol. in strictly

absolute alcohol (Gerardin.) Solubility in 100 pts alcohol of 0 9496 sp. gr at 13° 25° 460 55°

67.4 69.2 75.1 84.7 87.5 90.2 pts. KT. (Gerardin, A. ch. (4) 5, 155)

Sol in 68.3 pts. absolute alcohol (Eder. Dingl. 221. 89); in 370 pts ether (sp. gr. 0.729), (Eder, l. c.), in 120 pts alcohol-ether (1:1), (Eder, l c)
Sol in 10-12 pts. 90% alcohol, and 40 pts.

absolute alcohol. (Hager, Comm 1883.) 100 pts. absolute methyl alcohol dissolve 16.5 pis. at 20.5°; 100 pis. absolute ethyl alcohol dissolve 1.75 pts at 20.5° (de Bruyn,

Z phys. Ch 10, 783.) Solubility of KI in methyl alcohol + Ag at 25°

P = % by wt. of alcohol in alcohol+Aq. S = Sp. gr. of alcohol + Aq sat with KI. L = millumols KI in 100 ccm of the solution.

P	S 25°/4°	L
0	1 7213	620
10 6 30 8	1.634	555 431
47 1	1.325	335
64.0 78 1	1.185	243 169
98 9 100	0.9700	113 80

Solubility of KI in CH₃OH.

G = g, KI in 100 g, of the solution. to = temp of complete solution

t. = temp at which salt begins to separate out

	G	t ₁	t ₂
	8.64		266°
•	12 95 14 2	0° 20	
	14 6		262
	14 97 19 2	25 85	256
	26 8 28.9	115 144	242 229
	29.6	188	196
	33 0		

(Centnerszwer, Z phys Ch 1910, 72, 432.)

Solubility of KI in methyl alcohol at to.

t°	g Kl m 100 g alcohol	t ^a	g Kl m 100 g alcohol
15 30 50 80 100 120 140 160	14 50 16 20 18 9 22.5 25.0 27.2 29.2 30 6	180 200 220 240 245 247 250 252 5*	30.7 29 1 27 5 24.8 22.6 21 0 13 8

*Critical temp. of solution

(Tyrer, Chem Soc 1910, 97, 626.)

At room temp, 1 pt. KI by weight is sol in 6 pts methyl alcohol D¹⁵ 0.7990. 16 ethyl D14 0 8322 219 " propyl D15 0 8160

(Rohland, Z. anorg 1898, 18, 325.)

Solubility in mixtures of methyl and ethyl alcohol at 25°

P = % methyl alcohol in the solvent. G = g KI in 10 ccm, of the solution. S = Sp. gr of the sat. solution at 25°.

P	G	S 25°/4°
0 00 4 37 10.40 41 02 80 69 84.77 91.25 100.00	0 155 0 191 0 225 0 494 1.013 1.072 1 184 1 816	0 8015 0.8041 0 8071 0 8295 0.8794 0.8795 0 8908 0 9018
		- 0010

(Herz and Kuhn, Z. anorg, 1908, 60, 155.)

Solubility in mixtures of methyl and propyl

alcohol at 25°. P = % propyl alcohol in the solvent G = g. KI in 10 ccm of the solution S = Sp. gr. of the sat solution.

77 C 8 25%/4% 1.316 0 9018 11 11 1.096 0 8823 23 8 0.854 0 8629 65 2 0.2620 8187 01 8 0.060 0 8045 93 75 0.058 0.8041 100 0 043 0.8041

(Herz and Kuhn.)

Solubility in mixtures of propyl and ethyl alcohol at 25

P = % propyl alcohol in the solvent. G = g. KI in 10 ccm of the solution. S = Sp. gr. of the sat solution.

P	G	S 25°/4°
0 8 1 17 85 56 6 88 6 91 2 95 2	0 155 0 146 0 137 0 075 0 052 0 049 0 044 0 043	0.8015 0 7983 0 7991 0 7988 0 8022 0 8027 0 8029 0 8041

(Herz and Kuhn.)

100 g methyl alcohol dissolve 18.04 g, KI

100 g, ethyl alcohol dissolve 2 16 g, KI at 25°

100 g propyl alcohol dissolve 0.43 g. KI at 25° 100 g isoamvi alcohol dissolve 0.09 g. KI

(Turner and Bissett, Chem. Soc. 1913, 103. 1909.)

0.455 g. is sol. in 100 g. propyl alcohol. (Schlamp, Z. phys Ch 1894, 14, 276.) Alcoholic solution can be mixed with 1/2 vol. ether without pptn

100 g. 95% formic acid dissolve 38.2 g. KI at 18.5° (Aschan, Chem. Ztg. 1913, 37.

1113.)

Solubility in organic solvents at to. C=pts by wt. of KI in 100 ccm. of the

sat. solution L=no, of htres which at the saturation temp, hold in solution 1 mol. KI. $S = sp. gr. of the solution at t^{\circ}$, referred to

H₂O at t p=pts, by wt of KI in 100 g of the solu-

(Walden, Z. phys. Ch. 1906, 55, 715.) Insol. in CS2. (Arctowski, Z anorg. 1894,

 257.)
 Sol. in benzonitrile. (Naumann, B. 1914, Difficultly sol. in methyl acetate (Naumann, B. 1909, 42. 3789)

Sol, in ethyl acetate. (Casascca, C R. 30. Insol. in ethyl acetate. (Naumann, B.

1910, 43. 314) Insol. in ethylamine, (Shinn, J phys. Chem. 1907, 11. 538.)

100 pts. acetone dissolve 2.930 pts. KI at 25°. (Krug and M'Elroy, J. Anal Ch. 6 184.) Sol in acetone, insol. in methylal. (Ed-mann, C. C. 1899. II. 1014.) 3.08 pts. sol. in 100 pts. acetone at -2 5°. 2.38 " " 100 " " +22°. 1 21

" " 100 ** 56°. " " 100 0.26" pyridine " 100 " " 100 0.11 44 " 1199

(Laszczynski, B. 1894, 27. 2287.)

Freely sol in glycerine Insol. in acetic acid (Berthemot)

Sol in 3 pts glycerme, insol. in olive oil. (Cap and Garot) 100 g. glycerol dissolve 40 g. KI at 15.5°. (Ossendowski, Pharm. J. 1907, 79. 575.)

Potassium triodide, KI,

Very deliquescent; very sol. in H₂O and cohol (Johnson, Chem. Soc. 1877, 1. alcohol 249.)

Solution of I in KI contains this salt (see KI) Decomp by heat or shaking with CS2. ether, chloroform. Sol in alcohol, from which CS: does not remove I. (Jörgensen, J. pr. (2) 2. 247)

Potassium periodide.

Solubility determinations show that the compds. KI2 and KI2 are the only periodides of potasisium which form solids at 25°.

See inder KI+I. (Foote and Chalker,
Am. Ch. J. 1908, 39. 566.)

KI₂. See above.

Potassium mercuric iodide ammonia, K₂HgI₄, 2NH₃ (Peters, Z anorg. 1912, 77, 188.)

Potassium silver iodide, KI, AgI,

Sol, in KI+Aq Sol, in hot alcohol. (Boullay, A. ch. 34, 377)
2KI, AgI, Sol in KI+Aq Decomp. by
H₂O (Boullay)

Hygroscopic (Hellwig, Z. anorg, 1900, 25, 3KI, AgI. Decomp. by H2O (Ditte, C. R.

93, 415.) KI, 2AgI Sol. in methylethylketone. (Marsh, Chem Soc. 1913, 103, 783.)

Potassium silver polyiodide, AgK₄I₁₂, 3KI+ 5H₂O Very deliquescent. (Johnson, Chem. Soc. 33. 183.)

Potassium tellurium iodide. See Iodotellurate, potassium.

Potassium thellic iodide, Kl. Til.

Decomp. by H₂O Can be crystallized from alcohol (Willm.) 3KI, 2TII.+3H2O Partially decomp. by H_{*}O (Rammelsberg.)

Potassium (tin) stannous) iodide, KI, SnI2+ 11/2H2O

When treated with a small quantity of HgO, KI dissolves out; but when more H₂O is added, the substance is completely dissolved. More sol, in warm than cold alcohol. (Boullav)

Potassium zinc iodide, KI, ZnI2.

Very deliquescent (Rammelsberg, Pogg. 43.665) K-ZnI₄+2H₂O Hydroscopic. (Ephraim,

Z anorg. 1910, 67. 382.)

Potassium iodide sulphur dioxide, KI, SO2.

(Péchard, C R. 1900, 130, 1188.) KI, 480₂. (Walden, Z. phys. Ch. 1903, 42, 439.) KI, 148O₂. (Walden.)

K1, 14002 (Waldell.)

Potassium nitride, KaN.

Decomp. violently by H₂O. (H. Davy)

Potassium ruthenium dihydronitrosobromide, Ru₂H₂ NOBr₂, 2HBr, 3KBr. Ppt (Buzard, A. ch. 1900, (7) **21.** 362)

Potassium ruthemum nitrosochloride, Ru:H:NOCls, 3KCl, 2HCl.

SI sol in H₂O. (Brizard, C. R. 1899, **129**. 216.)

Potassium suboxide.
Decomposes H₂O.

Does not exist. (Lupton, Chem Soc 1876, 2, 565.)

Potassium oxide, K₂O Very sol in H₂O with much heat. See Potassium hydroxide.

Potassium doxide, K.O.

Deliquescent. Sol. in H₂O. Forms compound K₂O₂, 2H₂O₃. (Schöne, A, 193, 241)

Potassium peroxide, K₂O₄.

Deliquescent Very sol, with decomp. in

H₁O.

Potassium silicon oxyfluoride, SiF₂(OK)₂ and SiO(F)OK. (Schiff and Bechi, A. Suppl. 4. 33)

Potassium tantalum oxyfluoride, K₄Ta₄O₄F₁₆. Insol. in boiling water. Easily sol. in HF+Aa (Marignac, A. ch. (4) 9, 268.)

Potassium phosphide, KP_I.

Decomp. by H₂O. (Joannis, C. C. 1894, II, 834.)

KP_t. Easily decomp by H₂O. (Hugot, C. R. 1895, **121**, 208.)

Potassium hydrogen phosphide, PH₂K.

Decomp. by H₂O. (Joannis; C. R. 1894, 119, 558)

Potassium phosphoselenide, KSeP=K₂Se,

1 356. Sol in cold H₂O with rapid decomp. Sol. in alcohol with slight decomp. (Hahn, J. pr. 93, 430.) Potassium phosphotriselenide, 2K₂Se, P₂Se.

Deliquescent. Decomp. violently with H₄O. Sol in alcohol or other, or in a mixture of the two, with slight decomp., but decomp. gradually on the air. (Hahn, J. pr. 93. 430)

Potassium phosphopentaselenide, $K_4P_2Se_7 = 2K_2Se$, P_2Se_4 Deliquescent, immediately decomp. by

Potassium phosphosulphide, 4K₂S₂, P₂S₃
Deliguescent Sol. in H-O with decomp.

Potassium selenide, K-Se.

H₂O, alcohol, or ether (Hahn)

Sol in H₂O with subsequent decomp. on the air. Insol. in liquid NH₃; sol. in air free H₂O to a colorless liquid. (Hugot, C R. 1899,

129, 299) +2H₂O. Sol. in H₂O with decomp. (Clever, Z. anorg. 1895, 10, 143) +9, 14, or 19H₂O. (Fabre, C. R. 102.

Potassium tetraselenide, K₂Se₄.

613.)

Easily sol in H₂O. Decomp on standing. Sol. in liquid NH₂. (Hugot, C. R. 1899, 129, 299)

Potassium monosulphide, K₂S.
Deliquescent. Sol in H₂O and alcohol.

H₂O solution decomp on air.
Sol in 10 pts. glycerine. (Cap and Garot,
J. Pharm. (3) 26. 81.)

Moderately sol. in liquid NH₅. (Franklin, Am, Ch. J. 1898, 20. 829.) Insol in acctone and in methylal. (Eid-

mann, C. C. 1899, II 1014)
Insol in methyl acetate. (Naumann, B. 1909, 42, 3790.)

+5H₂O. (Schone, Pogg. 131, 380.) All potassium sulphides are sol in glycerine; insol in ether and ethyl acetate.

Potassium disulphide, K₂S₂.

Sol. in H₂O and alcohol, with gradual decomp.

Potassium trisulphide, K₂S₃
Sol in H.O and alsohol

Sol. in H_2O and alcohol, with gradual decomp on the air.

Potassium tetrasulphide, K₂S₄. Sol. in H₂O and alcohol.

+2H₂O Sol m H₂O. Sl sol in alcohol. +8H₂O. Sol m H₂O. Alcohol takes out water (Schöne.)

Potassium pentasulphide, K₂S₅. Sol. in H₂O and alcohol. Potassium palladium sulphide. See Sulphopalladate, potassium.

Potassium platinum sulphide.

See Sulphoplatinate, potassium.

Potassium silver sulphide,

4Ag₁S, K₂S+2H₂O. Decomp. by H₂O. (Ditte, C R. 1895, **120** 91)

Potassium rhodium sulphide, 3K₂S₁, Rh₂S₁. Decomp. by H₂O. (Leidié)

Potassium tellurium sulphide. See Sulphotellurate, potassium.

Potassium thallium sulphide, K₂S, Tl₂S₃

Not decomposed by H₂O, or hot NH₂OH, or KOH+Aq. Decomp by HCl or moderately cone. H₂SO₄+Aq Hot HNO₃+Aq decomp with separation of S. (Schneider, J pr. 110. 168.)

Potassium tin (stannic) sulphide. See Sulphostannate, potassium.

Potassum zinc sulphide, K.S., 3ZnS

Not attacked by H₂O, but easily decomp
by the most till acids (Schneider, J. pr. (2)

8. 29.)

Potassium telluride, K₂Te.

Sol. in H₂O. (Demarçay, Bull. Soc. (2)

40. 99.)
Sol. in H₂O and liquid NH₃ (Hugot, C R 1899, 129, 388.)

Praseocobaltic chloride, Co(NH₂)₄Cl₂+H₂O.

Eastly sol. in H₂O Dil HCl+Aq dissolves traces; conc. HCl+ Aq dissolves more Sol. in NH₄OH+Aq with decomp. Sol. in conc. H₂SO₄ without decomp. Sl sol in dil. H₂SO₄+Aq (Rose).

— mercuric chloride, Co(NH₂)₄Cl₃, HgCl₂.
Sl. sol. in cold H₂O; insol. in HgCl₂+Aq.
(Vortmann, B. 15. 1892.)

---- chloride dichromate, [CoCl₂(NH₂)₄]₂Cr₂O₇+H₂O.

Scarcely sol. in cold, easily sol. in warm H.O. (Vortmann, B. 15, 1897.)

Praseocobaltic chloride nitrate, CoCl₂(NH₃)₄NO₃+H₂O.

Much less sol. in H₂O than the chloride, Precipitated from aqueous solution by dil. HNO₄+Aq. (Vortmann, B. 15, 1896.)

Praseodymicotungstic acid.

Ammonium praseodymicotungstate, 2(NH₄)₂O, Pr₂O₃, 16WO₃+16H₂O.

Very sl sol. in H₂O. Decomp by acids and alkalies. (E. F. Smith, J. Am. Chem. Soc. 1904, 26, 1478.)

Barium praseodymicotungstate, 4BaO, Pr₂O₃, ,
16WO₃+7H₂O.

Ppt Insol m H₂O 6BaO, Pr₂O₃, 16WO₃+9H₂O Ppt (E. F. Smith)

Silver praseodymicotungstate, 4Ag₂O, Pr₂O₂, 16WO₂+8H₂O. Insol in H₂O (E F Smith)

Praseodymium, Pr

Praseodymrum bromide, PrBr₃+6H₂O Very sol. in H₂O, sol. in HBr. (von Schule, Z. anorg, 1898, **18**, 353.)

Praseodymium carbide, PrC₂.

Decomp by H₂O; msol. m conc. HNO₃,
decomp. by dil HNO₃ (Moissan, C R
1900, 131, 597)

Praseodymium chloride, PrCl₃
Very sol in H₂O Insol in PCl₄ or SnCl₄
Sol in alcohol. Insol in ether and most organic solvents. (Matagnon, C. R. 1902, 134.
427.)

2.14 g PrCl, dissolve in 100 g. pyridine at 15°. (Matignon, Int. Cong. App. Chem. 1909, 2. 53.) +H.O.

+3H₂O. +7H₂O. 100 g. H₂O dissolve 334 2 g. PrCl₂+7H₂O or 103.9 g. of the anhydrous salt at 13°. The aqueous solution sat. at 14° has a p. gr 16°/16° = 1.68°. At 100°, the solubility in H₂O is unlimited. (Matignon,

A ch. 1906, (8) 8. 388.) Sol in cone HCl. (von Schule, Z anorg. 1898, 18. 352)

100 pts of a solution of the salt in HCl+Aq contain at 18°, 41.05 pts. of anhydrous salt and 7.25 pts. HCl. Sp gr. of this solution at 16°=1.574. (Matignon, A ch. 1906, (8) 8. 388.)

Praseodymium hydride, PrH₃ (?) (Muthmann, A 1904, 331. 59.)

Praseodymium hydroxide.

Sol. in citric acid (Baskerville, J Am. Chem. Soc. 1904, 26, 49.)

Praseodymum nitride, PrN.

Decomp. in moist air with evolution of NH₂. (Muthmann, A. 1904, **331**, 59.)

Praseodymium oxide, Pr2Oa.

Easily sol. in H₂O (v. Welsbach, M 6. 477)
Decomp. by heating in the air. (Scheele.

Z anorg. 1898, 17. 322)

Praseodymium monoperoxide, Pr(OH); H₂O
(Melikoff, Chem. Soc. 1902, 82, (2) 140.)

Praseodymium superoxide, Pt (OH)₂(OOH).
Pnt (Melkoff, C. C. 1902, J. 172)

Praseodymium trisuperoxide, Pr(OOH)₃.
Ppt. (Melikoff)

Praseodymium peroxide, Pr₄O₇.

Sol in acids with evolution of O Welshach)

Praseodymium oxysulphide, Pr₂SO₂ (Biltz, Z anorg 1911, 71 436)

Praseodymium disulphide, PrS: Decomp. by heat (Biltz, Z. anorg 1911, 71, 437.)

Purpureocobaltic salts.

For other purpureocobaltic salts, see— Chloropurpureocobaltic salts. Bromopurpureocobaltic salts. Nitratopurpureocobaltic salts.

Sulphatopurpureocobaltic salts.

Purpureocobaltic cobalticyanide,

Co(NH₃)₄Co(CN)₆+1½H₂O.

Insol. in H₂O.

—— ferricyanide, Co(NH₈)₈Fe(CN)₈.

Insol in cold H₂O Probably belongs to pose series.

— mercuric hydroxychloride, CoN₂H₁₁(HgCl)₁(HgOH)Cl₃. Ppt. (Vortmann and Morguhs, B. 22. 2845)

CoN₄H₁₁(HgOH)₄Cl₅. Ppt. (V. and M.)

—mercuriodide, basic,

CoN₄H₁₁(HgI₂)₂(HgOH)₄I₅.

Ppt. Sl sol, in acids. Sol. in KI+Aq.

(Vortmann and Borsbach, B. 23, 2804.)

——molybdate, Co₂O₂(NH₂)₂₀, 7MoO₂+

3H₂O (?). Insol. in H₂O or dil. HC₂H₂O₂+Aq. (Carnot, C. R. **109**. 109)

---- sulphate.

See Sulphatopurpureocobaltic salts.

— tungstate, Co(NH₂)₄O(WO₄).
Scarcely sol in cold or hot H₂O. (Gibbs.)
Co₂O₃(NH₂)₁₀, 10WO₂+9H₂O (?). Insol.

in H₂O, or dil. HC₂H₃O₂+Aq, or NH₄OH+ Aq (Carnot, C R. 109, 147)

Purpureocobaltic vanadate, Co₂O₃(NH₃)₁₆, 5V₂O₄+9H₂O (?). Ppt Insol in H₂O (Carnot, C R. 109.

Purpureocobaltic octamine salts.

See Octamine cobaltic purpureo salts.

Pyrosulphuric acid, H₂S₂O₇ See Dissilphuric acid.

Radium, Ra

Radium A.

More sol than Radium B and C in all solvents; sol. even in organic solvents, especially CS₂ (Ramstedt, Le Radium, 1913, 10, 159)

Radium B.

More quickly sol than Radium C in H₂O and acids, less quickly sol in alkaline solutions, very sl sol in organic solvents (Ramstedt, Le Radium, 1913, 10. 159)

Radium C.

Sol in common acids, less so in alkaline solutions and in H₂O, only very sl. sol in organic solvents (Ramstedt, Le Radium, 1913, 10. 159; Chem. Soc. 1913, 104. (2) 659.) Radium hromide.

Less sol in H₂O than corresponding Ba comp. (Curic, Dissert. 1903.)

Radium chloride.

Less sol. in H₂O than corresponding Ba comp (Curie, Dissert 1903.) Radium emanation.

Coefficient of absorption for H₂O = C 245 at 3°; 0.23 at 20°, 0.17 at 40°; 0.135 at 60°; 0.12 at 70°; 0.12 at 80°. (Hofmann, Phys Zeit 1905, 6.339)

Solubility in H₂O at t^o

Coefficient of solubility = cone of the emanation in the liquid: cone, of the emanation in the gas

t°	Coefficient of solubility
0 4.3 5.7 10 0 14.0 17 6 20 0 26.8 31.6 39.1	0 508 0 424 0 388 0 340 0 .303 0 .280 0 245 0 208 0 193 0 180

Coefficient of solubility in sea-water of sp. gr. at 14° = 1 022 is 0, 255, (Boyle, Phil Mag. 1911, (6) 22, 850.)

Solubility in H₂O. 0.5° 51° 22.70 at -21°. Temp 17.5° 350 41° 0.526 0.138

0.283 0.183 0.161 Sol. ano 91° Temp. 740 700 82° Sol. 0.127 0.112 0.111 0.111 0.108 (Koffer, M. 1913, 34, 389.)

Coefficient of solubility of radium emanation at 14° in various solvents.

Ethyl alcohol 7 24 Amyl alcohol 9 31 Toluene 13 7 0 255 Sea water Mercury

(Boyle, Phil Mag, 1911, (6) 22, 851,)

Coefficient of solubility emanation of radium

ın various solvents at t°.					
Solvents	t=18°	t=0°	t= -18°	B	
Ethyl acetate Acetone Absolute	7 35 6 30	9.4I 7.99	13 6 10 8	E	
alcohol Aniline	6.17 3 80	8 28 4 43	11 4	c	
Benzene Chloroform	12 82 15 08	16 54 at 3° 20.5	28 5	1	
Cylclohevane Water Ether	18 04 at 80° 0 285 15 08	0 52 20 09	29 1	(
Glycerme Hexane Parafline oil	0 21 16 56 9 2	23 4 12 6	35 2	l.	
Carbon- bisulphide	23 14	33 4	50.3	S	
Toluene Xylene	13 24 12 75	18 4	27	E	

(Ramstedt, Le Radium, 1911, 8, 255.)

Solubility in various oils etc. at to

Ra	pe ail	Poppy seed oil		Oil of turpentine		
t°	Solubility	ţ°	Solutahty	t ^o	Solubelity	
-3 10 20 100 200	51 2 35 3 26.1 6 2 3.3	5 16 40 65 90	50 5 30.2 19 1 12 4 8 4	-21 0 18 50 6.5	42 5 23 1 16.6 7 5 4 08	

Solubility in 10% dammar resin in oil of turpentine = 16 7 at 18°.

Solubility in 5% colophony in amyl alcohol = 11.2 at 20°. Solubility in amyl alcohol = 10 6 at 18°. Solubility in 20% colophony in amyl alcohol = 11 1 at 20°.

(Curie, Thesis, 1910.)

Coefficient of absorption for petroleum -12 87 at +3°

9.55 at 20°. 8 13 at 40° 7 01 at 60° (Hofmann, Phys. Zert 1905, 6, 339.)

Rhodicvanhydric acid, H.Rh(CN).

Not known in the free state Potassium rhodicvanide, K2Rh(CN)a. Sol in H₂O. Easily decomp by acids. Very sol, in H₂O. (Leidié, C. R. 1900, 130,

Rhodium, Rh. Insol in all acids, including aqua regia. Rhodum "sponge" is sol. in HNO₄+Aq, and somewhat in HCl+Aq when exposed to

Rhodium ammonia compounds.

Bromopurpureorhodium comps., BrRh(NH2)4X2.

Chloropurpureorhodium comps., CIRh(NH a) X

Iodopurpureorhodium comps., Rh(NH₂),X₂, Luteorhodium comps., Rh(NHs)aXs.

Nitratopurpureorhodium comps., NOa)Rh(NHa),X2 Roseothodium comps., Rh(NHs)s(OHs)Xs. Xanthorhodium comps., (NO.)Rh(NH.), Xo.

Rhodium tribromide, RhBr₂+2H₂O. Very sol. in H2O (Goloubkine, Chem. Soc. 1911, 100, (2) 45)

Rhodium rubidium bromide. See Bromorhodite, rubidium.

Rhodium sodium bromide. See Bromorhodite, sodium.

Rhodium dichloride, RhCl2 (?).

Insol. in H2O, HCl, or HNO2+Aq. Not attacked by boiling KOH or K2CO2+Aq. (Fellenberg)

Decomp. by boiling KOH+Aq. (Beizelius.) Does not exist. (Leidié, C. R. 106, 1076

Rhodium trichloride, RhCl.,

Insol. in acids, even aqua regia. When boiled for a long time with KOH+Aq, it be-comes sl. sol. in HCl+Aq.

comes st. sol. in H.O.T-RQ.
Insol. in H₂O and acids; sol. in alkalies+AQ.
(Leidié, C. R. 1899, 129, 1251.)
+4H₂O. Very al deliquescent. Easily sol.
in H₂O, HCl+Aq, or alcohol. Insol. in ether.

December by H₂O or alcohol. Insol. in ether.

Decomp. by H₂SO₄ only when boiling (Claus, J. pr. 80. 282.)

No definite amount of crystal H2O. (Leidié Rhodochromium bromide. A. ch. (6) 17, 271.)

Rhodium chloride with MCl. See Chlororhodite, M.

Rhodium dihydroxide, RhO2, Rhodium rhodate, Rh₂O₂, RhO₂+6H₂O Sol in HCl+Aq

Rhodium sesmihydroxide, Rh.O.Ha.

Only sl. sol. in conc. HCl+Aq. (Claus.) +2H₂O. Easily sol in HCl, H₂SO₄, H₂SO₅, +2H₂O. Sasay soi in HO., H₂SO₃, H₂O₄, HNO₃, or HSCN+Aq, also when moist, in HC₃H₄O₄+Aq. Sol. in conc. KOH+Aq; very sl soi in H₃BO₅, H₄PO₅, H₂C₄H₄O₅, and HCN+Aq. Sol in acid alkali oxalates+Aq. (Lendé, C R 107. 234)

Phodum truodide, RhI.

Ppt (Goloubkine, Chem Soc. 1911, 100.

Rhodium monoxide, RhO.

Not attacked by acids. (Deville and Debray, A. ch (3) 61. 83.)

Rhodium sesamoxide, Rh.O.

Insol in H.O. boiling KOH+Aq, or any acid, even acida regia. (Claus.)

Rhodium dioxide, RhOo.

Insol, in all acids or alkalies

Rhodium trioxide, RhO₃ "Rhodic acid." Known only in solution of

"Potassium rhodate," which as very easily decomp. (Claus) Rhodium oxybromide, Rh(OH)₂Br+2H₂O,

Sol. in HgO. (Goloubkine, Chem Soc. 1911, 100. (2) 45)

Rhodium monosulphide, RhS. Insol in aqua regia.

Rhodium sesquisulphide, RhoSa.

Sol. in alkalı sulphides+Aq. (Debray, C. R. 97. 1332) Insol in alkalı sulphides+Ao. Not attacked by HNO₂, aqua regus, or Br₂+Aq.

(Leidié, Bull. Soc. (2) 50. 664) Rhodium sodium sulphide, 3Na₂S, Rh₂S₄. Decomp. by H₂O. (Leidié)

Rhodium sesquisulphydroxide, Rh-S-He.

Fasily sol, in agua regia or Br₂+Ag Insol, in alkali sulphides + Aq or soids. (Leidié, Bull. Soc. (2) 50. 664.)

HOCr2(NHa)10Bra+H2O

Rather difficultly sol in H₂O Decomp. by boiling or standing. Sol in NH40H+Aq or NaOH+Aq. Insol, in dil HB1+Aq. KB1 +Aq, or alcohol. (Jörgensen, J. pr (2) 25, 321.)

- --- bromide, basic, HOCro(NH₂)₁₀(OH)Br. +H₂O.
- Sl sol in H₂O Sol in NH₂OH or NaOH+ Ag Insol in alcohol (Jörgensen.)
 - bromoplatinate, HOCro(NHa)10BtaPtBre. HOCr.(NH.),Br.(PtBr.).+4H.O. Pnt. (Jörgensen)
- --- chloraurate, HOCr2(NH2)10Cl2(AuCl4)2 +2H₂O. Difficultly sol, but not insol in H₂O (Jörgensen)
- ---- chloride, HOCro(NH₃)₁₀Cl₄+H₀O. Sol. in about 40 pts of cold H₂O Insol in cold dil HCl+Aq, NH₄Cl+Aq, or alcohol. Sol. in NH₄OH+Aq. (Jörgensen, J. pr. (2) 25, 321)

--- chloroiodide, basic, HOCr2(NH2)10(OH)CloIo.

Sl sol in cold H.O; insol, in alcohol. (Jörgensen.)

- ---- chloroplatinate, HOCr.(NH.); Cl.PtCls. HOCr2(NH,)10Cl(PtCle)2+4H2O. Precipitate, (Jörgensen.)
- dithionate, [HOCr2(NH2)16]2(S2O6)6+ 2H2O Nearly meal, in H₂O.
- dithionate, basic, HOCr₂(NH₄)₁₀OH(S₂O₆)₂+H₂O. Insol, in H2O, cold NH4OH+Aq, or

NaOH+Aq

- iodide, HOCr₂(NH₄)₁₀I₅+H₂O. Very difficultly sol in H₂O Insol, in very dil HÎ+Aq or alcohol. Sl. sol, m NH4OH or
- KOH+Aq (Jorgensen.) ---- nitrate, HOCr2(NHs)10(NOs)5.
- Rather difficultly sol, in H.O. from which it is precipitated by a few drops of HNO₃+ Aq. Sol. in hot dil NH₄OH+Aq.
 - $HOCr_2(NH_2)_{10}(NO_3)(PtCl_4)_2 + 4H_2O$. Precipitate (Jörgensen.)

Rhodochromium sulphate.

nitrate chloroplatinate.

[HOCr2(NHs)10l2(SO4)s+2HoO Very al sol in cold H.O. Easily sol, in cold dil. HaSO4+Aq.

Almost mool, in a mixture of 3 vols. H₂O, 1 vol. alcohol, and 1/2 vol dil HoSO4+Aq (Jörgensen)

Rhodonitrous acid.

Anumonium rhodonitrite, (NH4)6Rh2(NO2)10 Nearly msol in cold, sl sol in hot H2O Insol in conc. NH₄Cl or NH₄C₂H₃O₂+Aq Insol in alcohol (Leidić, C R 111, 108)

Barium rhodonitrite, BarRho(NO.) .. Sl sol, in cold, more easily in hot H.O.

(Lamy) +12H₂O. Sol in 50 pts H₂O at 16°, and 6 5 pts. at 100° (Leidié, C. R. 111, 108)

Potassium rhodonitrite, KaRha(NOa)12

Nearly insol, in cold, very sl sol, in boiling

H₂O. Completely msol in KNO₂+Aq, and in KCl+Aq (30% KCl), or KC₂H₃O₂+Aq (50% KC₂H₃O₂) Insol. in alcohol (Leadié, C R. 111. 106.) Sodium rhodonitrite, Na₄Rh₂(NO₂)₁₀ Sol in 21/2 pts. H₂O at 17°, and 1 pt

100° Insol, in alcohol Decomp by HCl+ Aq. (Leidié, C. R. 111, 107) Rhodosochromium bromide.

Sol in H₂O; msol in dil HBr+Aq (1 1).

pr. (2) 45. 260)

(Jörgensen, J pr (2) 45, 260) --- chloraurate, Cr2(NH2)6(HO)5Cl2.

2AuCla+2HoO Not msol, in cold H₂O. (Jörgensen.)

—— chloride, Cl₂(NH₂)_c(HO)_aCl_a+2H₂O. Sol m 10.6 pts H₂O at 18°; decomp by boiling. Pptd. bv 1/4 to 1 vol. dil HCl+Aq. Sol in cold dil NILOH+Aq. (Jorgensen, J.

- chloroplatinate, 2Cr2(NH8)6(OH)3Cl3, 3PtCl₄+6H₂O.

Insol. in H₂O (Jörgensen.) Cr₂(NH₁)₁(OH)₂Cl₃, 2PtCl₄+2H₂O Insol.

ın 95% alcohol, (Jörgensen.) --- chromate, [Cr2(NH3)4(OH)8]2(CrO4)1+ 7H₂O. (Jörgensen.)

Very sl sol, in H₂O. (Jorgensen.) — iodide, Cr₂(NH₃)₄(OH)₃I₃+2H₂O.

Sol. in H2O Insol. in dil. HI+Aq. (Jörgensen.)

--- nitrate, Cr2(NH3)8(OH)2(NO3)2+H2O. Much less sol, in cold H2O than the chloride Insol in dil. HNO2+Aq. (Jorgensen.)

 oxalate $[Cr_2(NH_3)_6(OH)_3]_2(C_2O_4)(HC_2O_4)_4 +$

Sol. in cold H₂O, but not very easily. (Jorgensen.)

Rhodosochromium sulphate,

[C1+(NH2)s(OH)2]2(SO4)3+5H2O Very sl sol in cold H2O. Easily sol in dil.

NH₄Cl+Aq (Jorgensen) [Cr₂(NH₂)₆(OH)₃|SO₄, HSO₄+1½H₂O. Decomp. by H₂O into H₂SO, and above compound (Jorgensen.)

 persulphide, [Cr₂(NH₃)₅(OH)₃]₂S₁₁+ 4H.0 Ppt Insol in H₂O (Jorgensen)

Rhodosulphuric acid.

Potassium rhodosulphate, K₆Rh₂(SO₄)_a,

Two modifications (a) Slowly sol in cold, easily in hot H₂O

(b) Insol in H₂O. Does not exist. (Leidié, C. R. 107, 234.)

Sodium rhodosulphate. Insul in H2O, HCl, HNO3, or aqua regia.

(Claus) Does not exist (Leidié) Na₂Rh₂(SO₄)₄ Insol in H₂O. (Seubert and Kobbé, B 23. 2560)

Rhodosulphurous acid.

Potassium rhodosulphite, KaRha(SOa)a+ 6H2O

Nearly insol, in H2O. Slowly sol, in acids, Not decomp, by boiling KOH+Aq. (Claus.) Sodium rhodosulphite,

 $Na_4Rh_2(SO_4)_5+4\frac{1}{2}H_2O=3Na_2SO_3$ 2RhSO,

Insol in cold, very sl sol, in hot H₂O. Easily sol in HNO₂+Aq (Scubert and Kobbé, B 23. 2558)

Roseochromium bromide. C1(NH+)+Br++H+O.

Easily sol, in H₂O Insol in HBr+Ao. (Christensen, J pr. (2) 23, 26)

 bromochromate, Cr(NH₁)₂Br(CrO₄). Somewhat sol. in H2O, but decomp. on standing. (Jörgensen, J. pr. (2) 25. 398.)

bromoplatinate, Cr(NH_a)_aBr(PtBr_b)+ 2H₂O.

Precipitate Difficultly sol. in H2O. (Christensen, l.c)

- chloride, Cr(NH₃),Cl₃+H₂O Easily sol, in H₂O with subsequent decomp. Insol. in alcohol (Christensen, J. pr. (2) 23. 26)

--- mercuric chloride, Cr(NH₃)₅Cl₂, 3HgCl₂ $+2H_{\bullet}O.$

Sl sol, in H₂O. Sol in dil, HCl+Aq with decomposition (Christensen, l. c.)

Roseochromium dithionate, basic, Cr(NH₃)₅(OH)₂S₅O₆+H₂O · Easily sol m very dl. HCl+Aq. (Jorgensen, J pr (2) 25. 398.)

---- iodide, Cr(NH₃)₆I₃

Easily sol in H₂O; decomp by boiling (Christensen, l. c)

mitrate, Cr(NH₃)₀(NO₃)₃+H₂O

Rather easily sol in H₂O. (Christensen, Cr(NH₂)₅(NO₂)₃(OH₃)₂, HNO₂. Decomp. by H₂O or alcohol (Jörgensen, J pr (2) 44. 63)

—— sulphate, [Cr(NH₂)₈]₂(SO₄)₈+5H₂O.
Easily sol, in H₂O. Precipitated by alcohol (Christensen, l. c.)

— sulphate bromoplatinate, [Cr(NH₂)₂(SO₄)]₂PtBr₆ Difficultly sol. in H₂O. (Christensen, l. c.)

— sulphate chloroplatmate, [Cr(NH₄)₄(SO₄)]₂PtCl₄
Difficultly sol, in H.O. (Christensen, l.c.)

Roseocobaltic bromide, $Co(NH_3)_1(OH_2)Br_3$. Sol in H_2O ; insol. in HBr+Aq (Jö_lgensen, J. pr. (2) 31. 49)_a

in strong alcohol. (Jörgensen.) 2Co(NH₂)₅(OH₂)Br₃, 3PtBr₄+4H₂O Ppt (Jórgensen.)

bromosulphate, Co(NH₃)₃(OH₂)Br(SO₄). Sol. in H₂O. (Krok.)

bromosulphate bromaurate, Co(NH₈)₄(OH₂)(SO₄)Br₁ AuBr₂.

Very sol, in H₂O.

—— chloraurate, Co(NH₃)₄(OH₂)Cl₃, AuCl₃. Moderately sol. in cold H₂O.

— chloride, Co(NH₂)(OH₂)Cl.,
Sol. m 4.8 pis H₂O at 10 1°, but decomponed to the children of the children

Rosecobaltic mercuric chloride,
Co(NH₂)₁(OH₂)Cl₂, 3HgCl₂+H₂O.
More easily sol m solvents than the
anhydrous purpuree salt. (Carstanjen,)
Co(NH₂)₁(OH₂)Cl₃, HgCl₃. Sol. in HCl+

Co(NH₃)₃(OH₂)Cl₄, PtCl₄+½H₂O Decomp by H₃O. (Jörgensen) 2Co(NH₂)₃(OH₂)Cl₃, PtCl₄+2H₂O. De-

Decomp by H₄U. (Jorgensen)
2Co(NH₂)₄(OH₂)Cl₃, PtCl₄+2H₂O. Decomp. by H₄O.
2Co(NH₃)₂(OH₂)Cl₃, 3PtCl₄+6H₄O. Not difficultly sol. in warm H₂O. (Gibbs.)
Co(NH₃)₄Cl₅. PtCl₄+H₅O (Gibbs.)

--- chlorosulphate, Co(NH₃)₈Cl(SO₄).

Easily sol. in H₂O.

— chlorosulphate mercuric chloride, Co(NH₃)₂Cl(SO₄), HgCl₂+3H₂O Sol. in bot H₂O, and can be recrystallized without decomp. (Kiok)

— cobalticyanide, Co(NH₂)₄(OH₂)Co(CN)₆. Nearly absolutely insol. in cold H₂O. (Jor-

gensen.) +H₂O. (Gibbs and Gentele.)

— dithionate, Co(NH₂)_i(S₂O₄)(OH).
Decomp by H₂O. (Rammelsberg, Pogg. 58, 296.)
Co(NH₂)_i(OH₂)(S₂O₄)+2H₂O. Ppt. (Jörgensen.)

mercuric hydroxychloride, CoN₈H₂₂(HgOH)₃Cl₃.

Ppt Sol. in dil. acids. (Vortmann and Morgulis, B. 22. 2646.) CoN₂H₁₂(HgOH)₅Cl₂(OH). Ppt Sol. in dil. acids. (Vortmann and Morgulis.)

—— iodide, Co(NH₂)₃(OH₂)I₃.

Less sol. in H₂O than bromide Insol. in Hi+Aq (Jörgensen)

— iodosulphate, Co(NH₂)₅(OH₃)I(SO₄), Easily sol. in H₂O. (Krok)

—— metcuriodide, [CoN₈H_{1,3}]₂(HgI)₃I₈. Ppt. (Vortmann and Borsbach, B. 23. 2805.) CoN₈H₁₂(HgI)₃I₈. Ppt. (Vortmann and Borsbach)

CoN₅H₁₅(HgI)₅I₂(OH) Ppt.

Roseocobaltic nitrate, Co(NH₃)₅(OH₂)(NO₃)₃

Three modifications:

a. Sol. in 20 pts. H₂O at 15°. (Jbrgensen)
β Known only in solution. Insol in cold
HNO₃+Aq. (Gibbs.)
γ. Fassly sol, in hot H₂O (Cibbs.) (Pur-

Fastly sol, in hot H₂O (Gabbs) (Purpureo salt?)
 Co(NH₂)₃(OH₂)(NO₃)₃, HNO₃ Decomp by H₂O or alcohol. (Järgensen, J pr. (2) 44.63.)

nitrate chloroplatinate, Co(NH₂)₄(OH₂)(NO₃)Cl₂, PtCl₄+H₂O Ppt. (Jorgensen.)

---- nitratosulphate, Co(NH₃)₄(OH₂)(NO₃)(SO₄) Sl. sol. in cold, easily in hot H₂O.

Sol. in hot H_4O . $[Co(NH_3)_4]_2(SO_4)_2(C_2O_4)(OH)_2+6H_2O$. SI sol. in H_4O .

— orthophosphate, Co(NH₂)₄(OH₂)(PO₄H)(OH)+xH₂O. Nearly insol, in H₂O, [Co(NH₃)₄(OH₂)]₂(PO₄H)₃+4H₂O Very sl. sol in cold H₄O; easily in H₂O containing HCl. (Jörgensen.)

pyrophosphate, $[Co(NH_8)_8(OH_2)]_4(P_1O_7)_4+12H_2O$. Insol. in H_2O . (Jorgensen)

Co(NH₂)₃(OH₂)(P₂O₇N₃)+12H₂O Nearly insol in cold, easily sol, in hot H₂O containing NH₄OH. (Jörgensen, J. pr. (2) 23, 252.)

- sulphate, $[Co(NH_t)_0(OH_2)]_2(SO_4)_5 +$ $3H_2O$.

Three modifications: a Sl. sol. in 58 pts. at 27° (Gibbs); 83.5 pts at 20.2° , and 94.6 pts at 17.2° (Gibbs); 83.5 pts at 20.2° , and 94.6 pts at 17.2° (Girgensen); more castly sol in the 14.6 And still more easily in NH₄OH+Aq. 6, Sol. in 1-2 pts. 14.6 (Gibbs.) 7. Less sol. than lutcosulphate. (Jorgensen.)

+2H₂O. Easily sol. in H₂O. (Vortmann.)

Roseocobaltic sulphate, acid, $[Co(NH_3)_b]_2(SO_4)_1$, $2H_2SO_4+3H_2O$.

(Fremy), or 4(Co(NH₃)₅|₃(SO₄)₅, 9H₃SO₄ +11H₂O (Jorgensen) More easily sol. in H₂O than neutral sulpliate, into which it is converted by recrystallization Sol in about 13 pts H₂O. (Jörgensen)

--- cerium sulphate, [Co(NH₃)₅(OH₃)]₂(SO₄)₃, Ce₂(SO₄)₃+ 2½H₂O.

Sl. sol. in cold, practically insol. in boiling H₂O Sol in acids (Gibbs, Am. Ch. J 15. 590)
[Co(NH_b)_b(OH₂)]₂(SO₄)_b, Ce(SO₄)₂+
2½H₄O As above. (Gibbs)

- sulphate chlorausate.

hot H₂O

394)

Three modifications: α . $O(NH_3)_\delta(OH_3)(SO_4)Cl$, $AuCl_\delta$ Ppt. (Jörgensen) β $Co(NH_3)_\delta(SO_3)$, $AuCl_\delta+2H_2O$ Sl. sol. in cold H_3O . (Gibbs.) γ . As above. Can be recrystallized from

— sulphate chloroplatinate, 2Co(NH₂)₂(OH₂)(SO₄)Cl₃, PtCl₄. Three modifications, all difficultly sol. in hot or cold H₂O. (Jörgensen)

Sl. sol. in cold, decomp by hot H₂O. (Gibbs.)

Roseocobaltic octamine compounds. See Roseotetramine cobaltic compounds.

Roseoiridium compounds.

See Iridoaquopentamine compounds.

Roseorhodium bromide, Rh(NH₃)₃(OH₂)Br₁ Sol. m cold H₂O. (Jörgensen, J. pr. (2) 34.

Roseorhodium cobsticyanide, Rh(NH₃)₆(OH₂)Co(CN)₆ Scarcely sol. in H₂O.

—— iodosulphate, Rh(NH₂)₅(OH₂)I(SO₄).

Very sl. sol, in H₂O, casily sol, in NH₄OH+
Aq. (Jörgensen.)

— nitrate, Rh(NH₃)₄(OH₄)(NO₃)₃.
Moderately sol. in cold H₄O (Jörgensen)
Rh(NH₃)₄(OH₄)(NO₃)₃, HNO₃. Decomp.

Roseorhodium nitrate chloroplatinate. $(Rh(NH_s)_s(OH_s)(NO_s))_sPtCl_s+2H_sO.$

Pnt (Jorgensen)

- or (hophosphate, [Rh(NH₃)₅(OH₂)]₂(HPO₄)₃+4H₂O. Very al sol in H₀O

---- sodium vurophosphate. [Rh(NH₂)₆(OH₂)]₂NaP₂O₇+23H₂O. Pot. Very sl sol in cold H.O. Fasily sol. m very dil. acids.

---- sulphate. (Rh(NH₂)₄(OH₂)₂(SO₄)₃+3H₂O. Very sl sol in cold, much more in hot HaO.

 sulphate chloroplatinate Rh(NH₂)₅(OH₂)(SO₄)PtCl₄.

Ppt. Nearly insol in H₂O or alcohol Roseotetramine cobaltic bromide. Co(NH₂)₄(OH₂)₂Br₂

Sol in H₂O; insol in HBr+Aq Nearly insol in alcohol. (Jorgensen, Z anorg 2, 295.) ---- chloride, Co(NII₂)₄(OH₂)₉Cl₂ Easily sol in H.O; insol in cone HCl+Aq:

sol. in sat. HgCl2+Aq (Jorgensen) cobalticyanide. Co(NH₄)₄(OH₂)₂Co(CN)₆,

(Jorgensen.)

 oxalate sulphate. [Co(NH₂)₄(OH₂)₂]₂(SO₄)₂C₂O₄ Ppt (Jorgensen.)

--- purophosphate. [Co(NH₈) (OH₂)₂] (P₂O₇)₃+6H₂O. Nearly insol in HaO, but easily sol, in very dil. acids+Aq (Jorgensen.)

 sulphate. $[C_0(NH_2)_4(OH_2)_2]_2(SO_4)_3 + 3H_2O.$ Sol. m about 35 pts. H2O, and more easily by addition of dil HCl or H2SO4+Aq. (Jorgensen.)

 sulphate bromaurate, [Co(NH₃)₄(OH₂)₂]₂(SO₄)₂AuBr₄. Sl. sol. in cold H2O; insol, in alcohol. (Jörgensen.)

 sulphate chloroplatinate. [Co(NH_a)₄(OH₂)₂]₂(SO₄)₂PtCl₆. As the bromaurate. (Jörgensen.)

by H2O or alcohol. (Jorgensen, J. pr (2) 44. Rubidium. Rb.

Decomp H₂O with violence hydrocarbons. Sol. in liquid NH4 (Seely, N 23. 169), (Franklin, Am Ch. J 1898, 20, 829)

Rubidium acetylide acetylene RbC2, C2H2

Very hygroscopic. Insol in CCl, and in ether. (Moissan, C R. 1903, 136, 1220.)

Rubidium amalgam, RbHg10

Stable in contact with Hg below 0° Above 0° the composition of the amalgam varies Can be cryst from Hg without decomp below 0°. (Kerp, Z. anorg. 1900, 25.

Rubidium amide, RbNH₀.

Very deliquescent Violently decomp, by H₂O; less violently acted on by alcohol. (Titherley, Chem. Soc 1897, 71, 470.)

Rubidium ammonia, RbNH,

Decomp, by H₂O Very sol in liquid NH, (Moissan, C. R. 1903, 136, 1178.)

Rubidium azoimide, RbN₂ Sl. hydroseome.

Stable in aq. solution 107 I pts are sol in 100 pts H₂O at 16°.
114 1 " " " 100 " H₂O " 17°.
0 182 " " " 100 " abs alcohol at 16°

Insol. in pure ether. (Curtius, J pr. 1898, (2) 58, 281.)

Rubidium bromide, RbBr.

100 pts H₂O dissolve 98 pts at 5°, 104.8 pts. at 16°. (Reissig, A 127, 33.) Solubility in H.O.

100 pts of the solution contain at 0.5° 5 0°

47 26 49 50 51 17 pts. RbB1, 39 7° 113.5°

56 87 60 39 67 24 pts. RbBr. (Rimbach, B 1905, 38, 1557.)

Sp. gr. of RbBr containing g. equiv. RbBr per l.

G equiv	Sp gr.	Sp gr.	Sp gr
	6°/6°	18°/18°	30°/30°
0.508	1.06448	1.06389	1 06326
1 020	1.12931	1.12799	1.12626
2 031	1 25622	1.25366	1.25187
4.072	1 50574	1.50107	1.49870

(Clausen, W Ann 1914, (4) 44, 1070)

RbBr+Aq containing	6.60%	RbBr	has		Solubility 1	
sp. gr. 20°/20° = 1.0525. RbBr+Aq. containing		D1 D		100 pts	of the soluti	on contain
RDBr+Aq. containing	14.36%	RDBr	has		t°	Pts

(Lo Blane and Rohland, Z. phys. Ch 1896,

19, 279) Sol. in acctone. (Fidmann, C C 1899. II 1014.)

Difficultly sol in acctone (Naumann, B 1904, 37, 4328.) Insol. in methyl acetate (Naumann, B. 1909, 42, 3790)

Rubidium trabromide, RbBra.

Very sol. in H₂O; decomp by alcohol and ether (Wells and Wheeler, Sill Am J 143, 475.)

Rubidium ruthenium bromide.

See Bromoruthenate and bromoruthenite, ruhidium.

Rubidium selenium bromide. See Bromoselenate, rubidium.

Rubidum tellurum bromide See Bromotellurate, rubidium.

Rubidium thallic bromide, RbBr, TlBr₂+H₂O Recryst. from H2O unchanged (Pratt, Am J Sei. 1895, (3) 49, 403) 3RbBr, TiBr₂+H₂O. Very sol. in H₂O. (Pratt)

Rubidium stannic bromide. See Bromostannate, rubidium.

Rubidium bromochloride, RbBr2Cl.

Easily decomp., even by H₂O (Wells and 1912, 34, 1151.) Wheeler.) RbBrCl2. Sol. m H2O; decomp by alcohol and ether. (Wells and Wheeler)

Rubidium bromochlerosodide, RbBrCII. Sol. in H₂O and alcohol. Decomp, by ether (Wells and Wheeler)

Rubidium bromoiodide, RbBraI.

Very sol, in H2O. Sat. solution contains about 44% RbBr₂I, and sp. gr. = 3 84. (Wells and Wheeler)

Rubidium carbide, Rb2C1

Decomp. violently by H2O. (Moissan, C. R. 1903, 136, 1221)

Rubidium chloride, RbCl.

100 pts H₂O dissolve 76.38 pts. at 1°, 82.89 pts. at 7°. (Bunsen)

pts. RbCl. RbCl 0.4 43 61 15 5 46 56 57 3 53 71 114 9 59 48

(Rumbach, B. 1902, 35, 1304.) Solubility of RbCl in H₂O at to.

t°	G RbCi	per 100 g.		G RbCl per 100 g		
	H ₂ O	Solution	t°	H _z O	Solution	
0 10 20 30 40 50	77 0 84 4 91 1 97 6 103 5 109 3	43 5 45 8 47.7 49 4 50 9 52.2	60 70 80 90 100 112 9	115 5 121 4 127.2 133 1 138 9 146.6	53 6 54.8 56 0 57.1 58.9 59.5	

(Berkeley, Phil, Trans. Roy. Soc. 1904, 203, A. 189.)

Sat. RbCl+Aq at 25° contains 48 57%
RbCl. (Foote, Am Ch. J 1906, 35. 242.) Sp. gr. of RbCl+Aq containing in 100 pts H.O

25 88 33 13 pts. RbCl 12 14 1 1066 1 2156 1 2675 sp. gr. (Tammann, W. Ann 24, 1885)

A normal solution of RbCl has sp gr. at 25°=1 0610. (Wagner, Z. phys. Ch. 1890,

RbCl+Aq containing 6 64% RbCl has ROCI+Aq containing 0 64% ROCI has sp gr 20°/20°=1.0502.

RbCl+Aq containing 10.59% RbCl has sp gr 20°/20°=1.0815. (Le Blane and Rohland, Z. phys Ch. 1896, 19. 278.) Sp gr. 20°/4° of a normal solution of RbCl =1.085405.(Haigh, J Am. Chem. Soc.

Sp gr. of RbCl+Aq sat. at to.

f.o	Sp gr	t°	Sp gr
0.55 18.7 31.5 44.7	1 4409 1 4865 1 5118 1 5348	60 25 75 15 89 35 114*	1.5558 1.5746 1.5905 1.6148

* Boiling point (Berkelev.)

Sp. gr. of RbCl containing g. equiv RbCl per 1.

G, equiv. RbCi	6°/6°	18°, 18°	30°/30°
0 5123	1.06410	1 04538	1.04503
1.001	1.08916	1.08810	1.08749
2.073	1.18200	1 17959	1.17828
3 984	1.34334	1 33967	1.33757

(Clausen, W Ann. 1914, (4) 44. 1069.)

Ch. J 1898, 20, 829) Solubility in alcohols at 25°. 160 g methyl alcohol dissolve 141 g.

100 g ethyl alcohol dissolve 0 078 g 100 g propyl alcohol dissolve 0.015 g. 100 g isoamyl alcohol dissolve 0.0025 g (Turner and Bissett, Chem. Soc. 1913, 103.

1900.) Insol. in anhydrous pyridine and in 97% pyridine+Aq Very sl. sol in 95% pyridine +Aq; sl sol. in 93% pyridine+Aq. (Kahpyridine+Aq lenberg, J. Am Chem Soc 1908, 30. 1107.) Insol. in methyl acetate (Naumann, B. 1909, 42, 3790), acetone; (Naumann, B 1904, 87, 4329), (Eidmann, C C 1899, II 1014).

Rubidium ruthenium trachloride. See Chlororuthenite, rubidium.

Rubidium ruthenium tetrachloride. See Chlororuthenate, rubidium.

Rubidium oxyruthenium chloride. Rb₂RuO₂Cl₄

Ppt; decomp, by H₂O, sol in cold HCl (Howe, J. Am. Chem. Soc. 1901, 23, 779)

Rubidium tellurium chloride. See Chlorotellurate, rubidium.

Rubidium thallic chloride, 2RbCl, TlCls+ H₂O

Can be recryst, from H₂O without change. (Pratt, Am J. Sor. 1895, (3) 49, 399) 3RbCl, TlCl₂. Crystallizes from HCl solution. (Neumann, A. 244. 348.)

+H.0 Very sol in cold H2O (Pratty Am J. Sci 1895, (3) 49, 398.) +2H₂O Efforescent in dry air 7.5 pts. H₂O at 18°, and 16 pts. at 100°. (Godeffroy, Zeitschr. d. allgem. osterr. Apothekery. 1880. No. 9.)

Rubidium stannic chloride. See Chlorostannste, rubidium,

Rubidium titanium chloride, 2RbCl, TıCla +H₂O. Sol. in H₂O (Stahler, B 1904, 37, 4408.)

Rubidium tungsten chloride, Rb₃W₂Cl₂.

Sl. sol m cold, more sol, in hot H₂O Sol. in very dil. NaOH+Aq Nearly insol, in most organic solvents. (Olsson, B. 1913, 46, 574)

Rubidium uranous chloride, Rb. UCla As K salt. (Aloy, Bull, Soc 1899, (3) 21. 264)

Very sl sol in liquid NH_z (Franklin, Am. Rubidium uranyl chloride, 2RbCl, (UO₁)Cl₂ $+2H_2O$.

Solubility in H_{*}O. 100 pts of the solution contain at: 24 8° 80.3°

57 8 65 73 pts UO₂Cl₂, 2RbCl (Rimbach, B. 1904, 37, 467)

Rubidium vanadium chloride, Rb₂VCl₅ $+H_{2}O$

Sl sol, in H2O and alcohol. Decomp by H₂O on standing so that it dissolves. (Stahler, B. 1904, 37. 4411)

Rubidium zinc chloride, 2RbCl, ZnClo

Easily sol in H₂O and HCl+Aq. (Godeffrov. B 8.9)

Rubidium chloride selenium dioxide, RbCl, $2SeO_2+2H_2O$. Sol. in H₂O (Muthmann, B. 1893, 26. 1013.)

Rubidium chloroiodide, RbCl₂I.

Properties are similar to those of RbBrCII. (Wells.) RbCl₄I Sol. in alcohol, not attacked by ether. (Wells and Wheeler, Sill. Am. J 144.

42.)Sol in POCla. (Walden, Z anorg 1900, 25. 212.)

Nearly insol in AsBr₃ (Walden, Z. anorg, 1902, 29, 374.) Very stable; sl sol in H₂O at 0°; only very sl, sol in HCl (Eidmann, Arch Pharm.

1894, 232. 32) (C C. 1894, I. 670.)

Rubidium fluoride, RbF. Very sol in H₂O (Eggeling, Z anorg 1905, 46, 174)

100 g. H₂O dissolve 130.6 g. RbF at 18° (de Forcrand, C. R. 1911, 152, 1210)
Sol in dil. HF (Pennington, J Am Chem. Soc 1896, 18. 57) Insol in liquid NHz. (Core, Am Ch. J. 1898, 20, 829,

Rubidium hydrogen fluoride, RbF, HF.

Verv deliquescent. Insol, in alcohol and ether. (Chabrié,

C. R. 1905, 140, 91.)
C. R. 1905, 140, 91.)
Very hygroscopic Sol in H₂O. (Eggeling, Z. anoig, 1905, 46, 175.)
RbF, 2HF. Very sl sol in H₂O. (Eggeling, Z anorg, 1905, 46, 176)

Rubidium silicon fluoride. See Fluosilicate, rubidium.

Rubidium tantalum fluoride. See Fluotantalate, rubidium.

Rubidium uranyl fluoride, 4RbF, UO2F2+ 6H₂O.

(Ditte, C. R. 91, 115.)

Rubidium hydride, RbH

Decomp. by H₂O with evolution of H₂ (Moissan, C. R. 1903, **136**, 589.)

Rubidium hydroxide, RbOH

Deliquescent, and very sol in H₂O. Sol. in alcohol. (Bunsen) Sat. RbOH+Aq contains 64 17% RbOH at 15°. (de Forerund. C. R. 1909, 149, 1344.)

Rubidium iodide, RbI.

100 pts H₂O dissolve 137.5 pts. at 6.9°, 152 pts. at 17.4° (Ressig, A 127. 33) Sat. Rbl +Aq. at 25° contains 61.93% Rbl (Foote and Chalker, Am. Ch. J. 1908, 39, 567.)

Sp gr. of RbI+Ac containing 5% 10% cold hot sat sat.

Sp. gr. 1 0353 1 0755 1 726 1 9629 (Erdmann, Arch Pharm. 1894, 232, 25.)

Sp. gr. of RbI+Aq containing g. equiv. RbI per l,

G equiv	Sp gr	Sp gr	Np. gr
	6°/6°	18°/18°	30°/30°
0.510	1 08347	1 08268	1 08226
1 025	1 16751	1 16569	1 16433
2 025	1 33012	1.32637	1 32531
4.015	1.64781	1 64144	1 63780

(Clausen, W. Ann. 1914, (4) 44. 1070.)

Nearly msol. in AsBr₀ (Walden, Z anorg 1902, 28, 374.) Sol. in AsCl₂ (Walden, Z anorg 1900, 25, 214); liquid SO₂. (Walden, Z anorg. 1902, 30, 161), S₂Cl₂. (Walden, Z anorg. 1900, 25, 217); SO₂Cl₂. (Walden); POCl₄.

1900, 25. 217); SO₂Cl₂. (Walden); POCl₃. (Walden.) Sol m methyl acetate. (Naumann, B. 1909, 42, 3789)

Solubility in organic solvents at t° . C = pts. by wt. of RbI in 100 ccm. of the sat.

solution

L=no. of litres which at the saturation temp, hold in solution I mol. RbI

Solvent	to.	С	L
Furfurol Acetonitrile Propionitrile	25° 25° 0° 25°	4 93 1 350 1 478 0 305	4.31 15.73 14.36 69.61
Nitromethane	25° 0°	0 274 0 518 0 567	77.48 41.00 37 44
Acetone	25° 0°	0.674 0.960	31.5 22.1
(Walden, Z	phys. (Ch. 1906, 5	5. 718.)

Rubidium triiodide, Rbls

Very sol. in H₂O. Sol. in about ¹/₂ pt H₂O at 20°; sol. in alcohol. Decomp. by ether. (Wells and Wheller, Sill. Am. J. 143. 475). Solibility determinations show that RbL.

Solubity determinations show that RDI₁ is the only polynodide of rubidum formed at 25° RbI₇ and RbI₈, mentioned by Abegg and Hamburger, (Z anoig 50, 403) could not be obtained. (Foote and Chalker, Am. Ch. J. 1908, 39, 567.)

Rubidium silver iodide, 2RbI, AgI.

Easily decomp by H₂O. (Wells and Wheeler, Sill Am. J 144. 155.)
RbI, AgI+¹/₂H₂O (Marsh, Chem. Soc. 1913, 103. 783.)

RbI, 2AgI. Not deliquescent. Very sol. in acetone (Marsh, Chem. Soc.

1913, 103. 783.)

Rubidium tellurium iodide. See Iodotellurate, rubidium.

Rubidium thallic iodide, RbI, TII₂+2H₂O. Decomp. by H₂O. (Pratt, Am. J Sci. 1895, (3) 49. 403)

Rubidsum nitride,

Decomp by heat (Franz Fischer, B. 1910, 43, 1468.)

See also Rubidium azoimide.

Rubidium dioxide, RbO₂.

Decomp. by H₂O. (Erdmann, A. 1897, 294, 68.)

Rubidium sulphide, Rb₂S+4H₂O Deliquescent; very sol. in H₂O (Biltz, Z. anorg. 1906, 48, 299)

Rubidium disulphide, Rb₂S₂

Anhydrous. Sol. in H.O.

Very hydroscopic. (Biltz, Z. anorg. 1906, 50. 72.)

+H₂O. From Rb₂S₂+Aq. Hydroscopic. (Biltz.)

Rubidium trisulphide, Rb₂S₃.

Anhudrous

Sol. in H₂O. Hydroscopic. (Biltz, Z. anorg. 1906, **50**.

75.)

+H₂O. From Rb₂S₂+Aq (Biltz.)

Rubidium tetrasulphide Rb₂S₄+2H₂O. Sol. in H₂O. (Biltz, Z. anorg, 1906, 48. 304)

Rubidium pentasulphide, Rb₂S₅.

Deliquescent. Decomp. by H₂O. Very easily sol. in 70% alcohol. Insol. in ether, ethyl sulphide or CHCl₂. (Biltz, B. 1905, 38, 127.) Rubidium hydrogen sulphide, RbHS Deliquescent, very sol. in H₂O (Bilt Z anorg 1906, 48, 300.)

Rubidium copper tetrasulphide, RbCuS₄ Decomp. very slowly in the air

Sl sol in H₂O.

Very slowly decomp, by cold conc., more rapidly by hot cone, and still more rapidly by dil. HCl, H₂SO, and HNO₃. Sl. sol in alcohol. (Biltz, B. 1907, 40. 978.)

Ruthenic acid.

Barium ruthenate, BaRuO₄+H₂O.

Ppt. (Debray and Joly, C R 106, 1494)

Calcium ruthenate, CaRuO₄.
Ppt.

Magnesium ruthenate, MgRuO₄
Ppt.

Potassium ruthenate, K₂RuO₄+H₂O. Very sol. in H₂O.

Permithenic acid.

Potassium pertuthenate, KRuO₄.
Sl sol, in H₂O (Debray and Joly, C. R.

106. 1494)

Sodium perruthenate, NaRuO₄+H₂O.
Sl. sol in H₂O.

Ruthenium, Ru.

Not attacked by acids, except aqua regia, which dissolves it only very slightly. (Claus, Pogg. 65, 218.)

Ruthenium ammonium comps. See Ruthenodiamine comps, etc

n at the state of D. D.

Ruthenium tribromide, RuBr₈.

Sol. in H₂O. Solution decomposes slowly on standing, but rapidly on heating. (Gutber, Z. anorg. 1905, 45. 178.)

Ruthenium tribromide, ammonia, 2RuBr₁, 7NH₂.

Sol. in H_2O and ammonia with slight warming.
Insol. in alcohol (Gutbier, Z. anorg. 1905, 45, 182.)

Ruthenium dichloride, RuCl2.

Insol. in acids, even in aqua regia. Sl. attacked by acids. Traces are dissolved by boiling with conc. KOH+Aq+2H₂O. Known only in aqueous solution. (Claus, A. 59. 238.)

Ruthenium trachloride, RuCla

Deliquescent Sol. in H₂O and alcohol, but solution is decomp. by heating into Ru₂O₂ and HCl. (Claus) Pure RuCl₃ is insol in cold H₂O, mineral,

Pure RuCl₂ is insol in cold H₂O, mineral, or organic acids Slowly decomp, by boiling H₂O. Insol in CCl₄, CS₂, CHCl₃, PCl₃, or ether Slowly sol in hot absolute alcohol, but decomp, into Ru(OH)Cl₂ by 95% alcohol. (Joly, C. R. 114. 292)

Hydroscopic Sol in H₂O, decomp. at 50°. Sol in alcohol (Gutbier, Z anorg. 1905,

45. 174.)

See also Ruthenium nitrosochloride.

Ruthenium tetrachloride, RuCl₄. Sol. in H₂O and alcohol (Claus)

Ruthenium trichloride with MCI. See Chlororuthenite, M.

Ruthenium tetrachloride with MCl. See Chlororuthenate, M.

Ruthenium sesquihydroxide, Ru₁O₆H₈. Sol in acids; msol in alkalies Less sol. in NH₄OH+Aq than any other oxide of the Pt metals (Claus)

Ruthenium dihydroxide, RuO₄H₄+3H₂O
Sol in acids and alkalies. (Claus, A 59.
237)

Contains NO Joly, C. R. 107. 994)

Ruthenium triodide, RuI3.

Ppt (Claus.) Insol. in H₂O, KI+Aq, and alcohol. (Gutbier, Z. anorg. 1905, 45. 181.)

Ruthenium triiodide ammonia, 2RuI₂, 7NH₂.

Sol in H₂O and ammonia with slight warmng.

Insol in alcohol. (Gutbier, Z. anorg. 1905, 45, 182.)

Ruthenium nitrosochloride, RuCl₂(NO)+ H₂O, and 5H₂O Slowly sol. in cold, easily in hot H₂O. (Joly, C. R. 108, 855.)

Ruthenium dihydronitrosochloride, NO.RuzHaCla, 2HCl.

Sol in H₂O. (Brızard, A. ch. 1900, (7) 91. 353.)

Ruthenium silver nitrosochloride, NO.Ru₂H₂Cl₃, 2HCl, 3AgCl. Ppt (Brizard, A. ch. 1900, (7) 21, 357.)

Ruthenium nitrososesquioxide, Ru₂O₂(NO)₂ +2H₂O.

Ppt (Joly, C. R 108, 854.)

Ruthenium dihydronitrosohydroxide, NO.Ru₂H₂(OH)₃+2H₂O

Sl sol, in cold H_{*}O with decomp (Brizard, A. ch. 1900, (7) 21, 349)

Ruthenium dihydronitrosooxychloride, NO Ru₂H₂Cl₂OH+2H₂O.

Ppt (Buzard, A. ch. 1900, (7) 21. 349.)

Ruthenium monoxide, RuO.

Insol. in acids. (Claus, A 59, 236.)

Ruthenium sesquioxide, Ru₂O₂. Insol in acids. Mixture of Ru and RuOs.

(Debray and Joly, C. R. 106, 1494.) See Ruthenium nitrososcoguioxide.

Ruthenium dioxide, RuO2. Insol. in acids (Debray and Joly.)

Ruthenium trioxide, RuOa

"Ruthenie acid." Known only in its salts. Ruthenium tetroxide, RuO4.

Rather difficultly and slowly sol in H₂O Decomp in aqueous solution into Ru₂O₆+

2H₂O. (Debray and Joly) Ruthenium pentoxide, Ru₂O₄.

(Debray and Joly, C. R. 106, 1494.) +2H2O. Ppt. (Debray and Joly)

Ruthenium heutoxide, RusOr. "Perruthenic acid," Known only in its

Ruthenium oxide, Ru₄O₀, (Debray and Joly)

salts.

Ruthenum oxychloride, Ru(OH)Cl2. Very soi, in H2O, but decomp, by an excess. (Joly, C. R. 114, 293.)

Ruthenium silicide, RuSt. Insol. in boiling acids; slowly attacked by a mixture of fused KIISO, and KNOs.

(Moissan, C. R 1903, 137, 231) Ruthenium trisulphide, RuSs.

Ppt. (Antony, Gazz. ch. it 1900, 30, 539)

Ruthenomonamine hydroxide, $Ru(OH)_1(NH_1)_1+4H_1O$. See Ruthenosamine hydroxide.

Ruthenodiamine carbonate, Ru(N₂H₄)₃CO₄+5H₂O.

Easily sol. in H₄O. Insol. in alcohol. (Claus.)

Ruthenodiamine chloride, Ru(N,H4Cl)+3H2O

Not very sol in cold, easily sol, in hot HaO. Insol in alcohol See Ruthenonitrosodiamine comps.

- mercuric chloride, Ru(N2H4Cl)2, HgCl, Nearly msol. in cold, sol in hot H₂O. (Gibbs, Sill Am J (2) 34, 350.)

 chloroplatinate, Ru(N₂H_bCl)₂, PtCl₄ Sl. sol in H₂O. (Claus)

--- hydroxide, Ru(N2H6OH)2 Known only in aqueous solution.

— nitrate, Ru(N₂H₆NO₈)₂+2H₂O Somewhat difficultly sol in cold, easily in hot H2O Insol, in alcohol

---- sulphate, Ru(NoHa)oSOa+4HoO Moderately sol in H2O. Insol, in alcohol (Claus.)

Ruthenocyanhydric acid, H₄Ru(CN)₆. Easily sol, in H₂O and alcohol Less sol in ether (Claus, J. B. 1855, 444.)

Potassium ruthenocyanide, KaRu(CN)a+ 3H.O. Sl. efflorescent Very sol in H2O, sl. sol. in dil alcohol (Claus.)

Ruthenonitrosodiamine bromide. Ru(NO)(NH₃)₄Br₃

Sl sol. in H₂O. (Joly, C. R **111**, 969.) Ru(NO)OH(NH₂)₄Br₂. Less sol than corresponding chloride (Joly, C R. 108, 300)

- chloride, Ru(NO)(NH₅)₄Cl₅. Sl. sol. in H₂O. (Joly, C. R. 111, 969.) St. 80.1 in H₂O. (2017), Ct. 801. in H₂O Ru(NO)OH(NH₂),Ct. 801. in H₂O (Joly, C R. 108. 1300.) Ru(NO)(NH₂),Ct₃+2H₂O= Ru(NO)(OH(NH₂),Ct₃, HCl+H₂O (?) Very sol. in H₂O. (Joly, C. R. 111. 969.)

chloroplatinate, Ru(NO)OH(NH₈)₄PtCl₄.

Scarcely sol in boiling H₂O, (Joly, C. R. 108. 1300.) Ru(NO)(NH₄)₄Cl₅, PtCl₄ Ppt (Joly, C. R. 111. 969)

--- iodide, Ru(NO)(NHa) I.

Sl sol in H₂O (Joly, C. R. 111.969) Ru(NO)OH(NH₃)₄I₂ Less sol, than the corresponding bromide (Joly, C. R. 108. 1300.)

— nitrate, Ru(NO)(NH₂)₄(NO₃)₃ More sol in H.O than

Ru(NO)(OH)(NH₃)₄(NO₃)₂. (Joly, C. R. 111. 969.)

Ru(NO)OH(NH₃)₄(NO₃)₂ Sl. sol. m cold H₂O; msol m conc HNO₂+Aq. (Joly, C R. 108, 1300.)

Ruthenonitrosodiamine sulphate, [Ru(NO)(NH₂)₄]₂(SO₄)₄+10H₂O

Sl. sol in H₄O (Joly, C. R. 111, 969) [Ru(NO)(NH₃)]₄(SO₃, H₂SO₄+H₄O Decomp, by cold H₄O (Joly) Ru(NO)(OH)₄(NH₄)₄SO₄+H₄O Most sol. in H₅O of this class of salts (Joly, C. R. 168, 1300.

Ruthenonitrous acid.

Ammonium ruthenonitrite, RuH₂(NO₂)₄, 3NH₄NO₂+2H₂O. Easily sol in H₂O; practically insol. in

KCl+Aq. (Brizard, A ch 1900, (7) 21. 308)

Potassium ruthenonitrite, K₄Ru₄(NO₂)₂₂=6KNO₂, Ru₂(NO₂)₃. Easily sol. in H₂O, alcohol, or ether.

Easily Sol. In 1990, 344 344 (Gibbs, Sill Am. J. (2), 34 344)
Sl. sol m H_2O Easily sol in KNO_2+Aq . (Claus) $K_1Ru_2(NO_2)_{10}=Ru_2O_2(N_2O_3)_3$, $4KNO_2$. Very sol. in H_2O (Joly and Vèzes, C. R. 109.

K₈Ru₅(NO₂)₁₄=Ru₅O₅(N₅O₃)₃,8KNO₂ Sl. sol in H₂O. Sol in cold dil acids (Joly and Vèzes) Ru₂H₅(NO₂)₄,3KNO₅+4H₂O Very sol. in H₂O. Aqueous solution decomp sl. on long bolling Almost insol. in conc. KCl+

Aq. (Brizard, C. R. 1899, 129, 216)

Silver ruthenomitrite, NO Ru₂H₂(NO₂)₄,

3AgNO₂+2H₂O.

Ppt. (Brizard, A. ch. 1900, (7) 21, 368.) Sodium ruthenonitrite, Ru₂(NO₂)₄, 4NaNO₂+

4H₂O. Very sol. in H₂O without decomp. (Joly, C. R. 1894, **118**, 469)

Ruthenosamine hydroxide, Ru(NH₃OH)₂+4H₃O (?).

Very deliquescent, and sol in H₂O. (Claus)

Samarium, Sm.

The element has not been isolated.

Samarium bromide, SmBr₂+6H₂O., Very deliquescent. (Cleve.)

Samarium carbide, SmC₂.

Decomp by water and acids. (Moissan, C. R. 1900, **131**, 925)

Samarium dichloride, SmCl2.

Decomp by H₂O with liberation of H₂ and formation of samarium oxide and samarium oxychloride Insol. in CS₂, CHCl₃, benzene, abs alcohol, pyridine and toluene. (Matignon, C R. 1906, **142**, 85)

Samarium trichloride, SmCla.

The anhydrous salt is very hydroscopic and easily sol in H₂O. (Matignon, C. R. 1902, **134**, 1309)

1902, 1948, 1309)
Very sol in H₂O. Very sol in abs. alcohol
6.38 g are sol, in 100 grams pyridine at ord
temp.; insol in quinoline (Matignon, A ch.
1906, (8) 8, 406.)
+3H₂O. Deltquescent.

Samarium chloride ammonia, SmCl₈+NH₃, +2NH₃, +3NH₅; +4NH₂; +5NH₃; +8NH₃, +9 5NH₃, +11 5NH₃. (Matigmon, C R. 1905, 140, 143)

Samarium fluoride, SmF₃+½H₂O.

Precipitate Insol in H₂O and dil. acids.
(Cleve)

Samarium iodide, SmI₃ (Malignon, A. ch. 1906, (8) 8, 413.)

Samarium hydroxide, Sm₂(OH)₅ Insol in alkalies; easily sol in acids, and

decomposes ammonium salts (Cleve, C. N. 51, 145.)

Samarium oxide, Sm₂O₃

Easily sol, in acids (Cleve, C. N. 51, 145.)

Samarium peroxide, Sm₄O₉ Precipitate (Cleve)

Samarium oxychloride, SmOCl. (Matignon, A. ch. 1906, (8) 8, 412)

Samarium sulphide, Sm₂S₃. (Matignon, A. ch. 1906, (8) 8. 415.)

Scandium, Sc. Element has not been isolated

Scandium bromide, Sc₂Br₆ +3H₂O, and +12H₂O.

(Crookes, Roy. Soc. Proc. 1908, 80. A, 518.)

Scandrum chloride, Sc₂Cl₈, +3H₂O, and +12H₂O (Crookes, Roy. Soc. Proc 1908, **80**. A, 518.)

Scandium hydroxide.

Easily sol in conc HNO, or HCl+Ac

Easily sol in conc HNO, or HCl+Aq. (Crookes, Roy. Soc. Proc 1908, 80. A, 518.) Scandium oxide, Sc₂O₃

Easily sol. by boiling with conc. HNO₃ or

HCl+Aq Scandium sulphide, Sc₂S₃.

Decomp. by H₂O and by acids with evention of H₂S. (Wirth, Z. anorg. 1914, 87. 5)

Selenantimonic acid.

Sodium selenantimonate, Na₂SbSe₄+9H₂O Sol. in 2 pts. cold H₂O. Insol in alcoho (Hofacker, A. 107. d)) Sl. sol. in H₂O, unstable. (Pouget, A. c

1899, (7) 18. 562.)

Selenantimonous acid.

Potassium orthoselenantimonite, K₃SbSc₃ Ppt Decomp by H₂O. (Pouget, A of 1899, (7) 18.560.)

Potassium paraselenantimonite, K₂Sb₄Se₇-3H₂O.

Sl. sol, in H₂O; unstable (Pouget, A ch 1899, (7) 18, 500)

Sodium orthoselenantimonite, Na₃SbSe₃-9H₂O.

Very sol. in H₂O. Aqueous solution standing deposits red crystals of sodium selantimonate, Na₂SbSe₂+9H₂O. (Pouget, ch. 1899, (7) 18. 562.)

Sodium paraselenantimonite, Na₂Sb₄Se₇. (Pouget, A. ch. 1899, (7) **18**. 561)

Selenic acid, H₂SeO₄. Very sol in H₂O with evolution of heat

If aqueous solition is evaporated at tem of 165°, and has 2 524 sp. gr.; at temp. 267°, and has 2.504 sp. gr., at temp. 267°, and has 2.60 sp. gr., at temp. of 285 and has 2 625 sp. gr. Decomp to H₅86′ at higher temp. (Mitscherlich, Pogg. 9. 628 By evaporation at 265°, and of 2 600 s gr. containing 95% H₅86′, is obtained. brought at same temp in vacuo over H₅80 add of 2.827 sp. gr. with 97.5% H₅86′, obtained. Febaura, A Suppl. 1, 243.)

Sp. gr of HaSeO4+Aq.

% H ₂ SeO ₄	Sp. gr.	% H ₂ SeO ₄	Sp. gr.
99.73	2 6083	90 0	2 3848
99.50	2 6051	89 0	2 3568
99.00	2.6975	88.0	2 3291
98.5	2 5863	87 0	2 3061
98.0	2 5767	86.0	2 2795
97.5	2.5695	85 0	2.5558
97.0	2.5601	84 0	2.2258
96.0	2.5388	83.0	2.1946
95.0	2.5163	82.0	2 1757
94 0	2.4925	81.0	2 1479
93.0	2.4596	80.0 79.0	2.1216
92.0 91 0	2 4322 2.4081	78.50	2 0922
91 0	2,4081	18 00	1 8019

(Cameron and Macallan, Lond R. Soc. P.

Sp. gr. of H₂SeO₄+Aq at 20° compared with H₂O at 4°. Wts. corrected to vacuum

	11 000					
lu-	Sp. gr	н.‰о,	Sp gr	II 256O4	Sp. gr	H-Seu.
)	1 000		1 295	32 64	1 590	54.62
- 1	1 005	0.9	1 300	33 08	1.595	54.92
).	1 010	1 56 2 12	1.305	33 50 33 92	1.600	55 28
iol.	1 015	2 92	1 315	34.36	1 610	55.62 55.96
101-	1 025	3.62	1 320	34.82	1 615	56.30
ch.	1 030	4.16	1 325	35 26	1 620	56.60
C11.	1 035	4 70	1 330	35.72	1.625	56 88
	1 040	5 32	1 335	36.10	1 630	57.20
	1.045	6 08	1 340	36.43	1 635	57 48
	1.050	6 66	1 345	86 88	1 640	57 70
ch	1.055	7 34	1 350	37.34	1.645	58 04
-	1 060	7 92	1 355	37 80	1.650	58 47
	1.065	8 56	1.360	38 24	1 655	58.86
7+	1 070	9 20 9 82	1.365	38 66 39 10	1.660	59 24 59 56
-1.	1 075	10 44	1 375	39 50	1 670	59 74
ch.	1 085	11.02	1 380	39.98	1 675	59.94
	1 090	11.62	1 385	40.06	1.680	60.18
s+	1 095	12.20	1 390	40 66	1 685	60.36
	1 100	12 88	1 395	41 10	1.690	60 58
on	1 105	13.58	1 400	41 56	1 695	60.80
en- A	1 110	14 14	1 405	41.98	1 700	61 06
A.	1 115	14 66	1 410	42 36 42 78	1 705	61 36
- 1	1 120 1 125	15 20 15 74	1.415	42 78 43.16	1 710 1 715	61 64
	1.130	16.32	1.425	43 56	1 720	62 24
	1 135	16.86	1.430	43 94	1.725	62 48
	1 140	17 38	1.435	44 32	1 730	62 76
	1.145	17 90	1 440	44 52	1 735	63 06
np	1 150	18 44	1 445	45 00	1.740	63.32
of	1.155	18 92	1 450	45 32	1 745	63 60
5°,	1.160	19 48	1.455	45.68	1 750	63 86
O ₃	1 165	20.58	1.460	46 36	1.755	64.04
sp.	1 175	21.08	1 470	46 70	1 765	64.42
'n	1 180	21.60	1 475	47.01	1.770	64 62
0,	1 185	22.22	1 480	47 32	1.775	64.84
is	1 190	22.66	1 485	47 66	1.780	65.06
	1.195	23.18	1 490	47 98	1.785	65.28
	1.200	23 70	1.495	48 28	1 790	65 48
-	1 205	24.26 24.84	1 500 1 505	48 54	1 795 I 800	65.66
	1.215	25 30	1.510	49 30	1.805	65.90
8	1 220	25 84	1.515	49 68	1 810	66 36
8	1 225	26 30	1.520	50 02	1 815	66 64
1	1 230	26 84	1.525	50 34	1.820	66 90
1	1.235	27.28	1.530	50.68	1.825	67.16
5	1 240	27.70	1.535	51 04	1 830	67.46
8	1 245	28 18 28 58	1 540 1.545	51.38	1.835	67 72
6	1 255	29 06	1 550	51.98	1 845	68.30
7	1 260	29 44	1 555	52.28	1.850	68 50
9	1 265	29.82	1 560	52.56	1.855	68.70
6	1.270	30 26	1.565	52.88	1.860	68.92
2	1 275	30 76	1 570	53 28	1.865	69.12
5	1.280	31 26 31.74	1 575	53 56 53 94	1.870	69.34
roc.	1.290	32 18	1 585		1 875 1 880	69.56
	1.200	100 10	II x 000	10x.00	11 7 990	00 12

785

Sp. gr. of H ₂ SeO ₄ +Aq-Concluded					
Sp gr	H ₂ SeO ₄	Sp gr	H25004	Sp gr	11±SeO4
1 886 1 . 890 1 . 900 1 . 905 1 . 905 1 . 905 1 . 905 1 . 905 1 . 905 1 . 925 1 . 935 1 . 935 1 . 935 1 . 935 1 . 935 2 . 905 2 . 905	69 94 77 0 34 77 0 70 70 70 70 70 70 70 70 70 70 70 7	1125 125 1300 12 1315 1315 1315 1315 1315 1315 1315 1	80. 25 80 68 80 49 80 69	2 985 2 2 385 2 440 4 1 2 4 450 2 4 450 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 4 450 2 2 2 4 450 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89.14.0 89.14.0 89.14.0 89.14.0 89.14.0 89.14.0 89.14.0 99.0 90.0 90.0 90.0 90.0 90.0 90.0 9

(Diemer and Lenher, J. phys. Chem. 1909, 13, 509.)

Sol. in cone. or furning H₂SO₄. Insol in liquid NH₂. (Franklin, Am. Ch J. 1898, **20**, 830.)

J. 1898, 20, 830.)
Decomp. by alcohol.
+H₄O. (Cameron and Macallan, C. N.

09. 232.) +2H₂O, and +6H₂O (?). (C. and M.) +4H₂O. (Kremann and Hofmeier, M. 1908, 29. 1117.)

Selenates.

All the neutral and acid salts of H₂SeO₄ are sol in H₂O, except BaSeO₄, SrSeO₄, CaSeO₅, and PbSeO₄, which are nearly or quite insol. in H₂O or HNO₁+Aq

Aluminum selenate, Al₂(SeO₄)₈.

Resembles in every way aluminum sulphate. (Berzelius.)

Aluminum ammonium selenate, Al₂(NH₄)₂(SeO₄)₄+24H₂O.

More sol in H₂O than the corresponding sulphate. (Wohlwil, A. 114, 191.)

Aluminum cæsium selenate, Al₂Cs₂(SeO₄)₄+ 24H₂O.

(Peterson, B. 9. 1563.) Much more sol. in H₂O than the corre-

sponding sulphate (Fabre, C. R. 105, 114.)

Aluminum potassium selenate, Al₂K₂(SeO₄)

Aluminum potassium selenate, Al₂K₂(SeO₄)₄
+24H₂O.

More sol. in H₂O then common alum.
(Weber, Pogg. 108. 615.)

Aluminum rubidium selenate, Al₂Rb₂(SeO₄)₄ +24H₂O.

(Peterson, B. 9. 1563.) Much more sol in H₂O than the corre-

sponding sulphate (Fabre, C. R. 105. 114.)

Aluminum sodium selenate, Al₂Na₂(SeO₄)₄+

Sl. efflorescent. Very sol. in H₄O. (Wohlwill, A. 114. 191.)

Aluminum thallium sulphate, Al₂Tl₄(SeO₄)₄+

24H₂O. Sol. in H₂O. (Fabre, C. R. **105**. 114.)

Aluminum selenate potassium sulphate, $AI_2(SeO_4)_3$, $K_2SO_4+24H_2O$. Sol. in H_2O . (v Gerichten, A. 168, 222.)

Ammonium selenate, (NH₄)₂SeO₄ Easily sol in H₂O.

100 g. Hg.O dissolve 117 g. (NH₄)₂SeO₄ at 7°; 164 g. at 59°; 197 g. at 100°. (Tutton, Proc. Roy. Soc. 1907, 79, A. 351.)
Insol. in liquid NH₃. (Franklin, Am. Ch. J 1898, 20. 826.)

Ammonium hydrogen selenate, NH₄HSeO₄. Sol. in H₂O. (Topsoë.)

Ammonium cadmium selenate, (NH₄)₂SeO₄, CdSeO₄+2H₂O. Sol. in H₂O. (Topsoë, W. A. B. 66, 2. 2.)

+6H₂O Efflorescent. Very easily sol. in H₂O. (Topsoe.) Ammonium cerous selenate, (NH₄)₂Ce₂(SeO₄)₄+9H₂O Easily sol. in H₂O. (John.)

Ammonium chromium selenate, (NH₄)₂Cr₂(SeO_{*})₄+24H₂O. Sol. in H₂O. (Fabre, C. R. 105, 114)

Sol. in H₂O. (Fabre, C. R. 105, 114)

Ammonium cobelious selenate, (NH₄)₂SeO₄,
CoSeO₄+6H₂O.

Easily sol in H_2O . (Topsoč.) Ammonium cupric selenate, $(NH_4)_2SeO_4$,

 $CuSeO_4+6H_2O$. Sol. in H_2O (Topsoe)

Ammonium didymium selenate, (NH₄)₂SeO₄, Di₂(SeO₄)₄+6H₂O. Easily sol. in H₂O. (Cleve.) +10H₂O. (Cleve. Bull. Soc. (2) **43.** 363)

Ammonium erbium selenate, (NH₄)₂SeO₄, Er₂(SeO₄)₃+4H₄O. Easily sol. in H₄O. (Cleve.)

Ammonium ferrous selenate, (NH₄)₂Fe(SeO₄)₂ +6H₆O.

Easily sol. in H₂O. (Topsoe.) +2H₂O Ammonium lanthanum selenate, (NH₄)₂SeO₄, La₂(SeO₄)₂+9H₂O.

Sol. in H₂O (Cleve.) Ammonium magnesium selenate, (NH₄)₂Mg(SeO₄)₂+6H₂O.

Easily sol. in H₂O. (Topsoe)

Ammonium manganous selenate, (NH₄)₂SeO₄,
MnSeO₄+6H₂O.

Not deliquescent. Easily sol. in H₂O. (Topsoë.)

Ammonium nickel selenate, (NH₄)₂SeO₄.

NiSeO₄+6H₂O Sol. in H₂O. (Topsoe.)

Ammonium samarium selenate, (NH₄)₂SeO₄, Sm₂(SeO₄)₂+6H₂O Easily sol. in H₂O. (Cleve.)

Ammonium thallium selenate, (NH₄)₂SeO₄, Tl₂(SeO₄)₁+SH₄O. Sol. in H₂O. (Fertini, C C. 1903, II. 706.)

Ammonium uranyl selenste, (NH₄)₂SeO₄, (UO₂)SeO₄+2H₂O. Essily sol, m H₂O. (Sendiner)

Ammonium yttrium selenate, (NH₄)₂SeO₄, Y₁(SeO₄)₁+6HO. Very sol. in H₂O. (Cleve.)

Ammonium zinc selenate, (NH₄)₂SeO₄, ZnSeO₄+6H₂O. Sol. in H₂O. (Topsoe.)

Antimony selenate.

Insol in H₂O. Not very sol in acids. Sol, in H₂SeO₄. (Cameron and Macallan.)

Barium selenate, BaSeO4.

Somewhat more sol in H₂O and dil. aoids than BaSO₄. (Rose.) 100 ccm, H₂O dissolve, 11 8 mg in the cold, and 13 8 mg. at 100°. (Petersson, Z anal 12, 287) Not decomp by H₄SO₄. Insol. in HNO₄+

Aq (Berzelius), but decomp by solution of alkali carbonates at ordinary temp. Very slowly decomp by HCl+Aq. (Rose, Pogg. 95. 426.)

Bismuth selenate.

Cæsium selenate, Cs2SeO4

Insol. in, and not decomp. by cold or hot H₂O. (Cameron and Macallan.)

Sol. in H₂O. (Peterson, B. 9. 1561.)
100 g. H₂O at 12° dissolve 244 S g. Ca₂SeO₄.
(Tutton, Chem. Soc. 1897, 71. 850.)
Sp. gr. of Ca₂SeO₄+Aq at 20° compared with H₂O at 4°, contaming:

% Ca₂SeO₄ 45 94
Sp. gr. 1.8841 1.7432

(Tutton.)

Cæsium hydrogen selenate, CsHSeO.

Ppt Very hygroscopie. (Norris, Am Ch.
J. 1901. 26, 322.)

Cæsium chromic selenate, Cs₂Cr₂(SeO₄)₄+ 24H₂O Sol in H₂O. (Fabre, C. R. 105, 114.)

Cæssum cobaltous selenate, Cs2Co(ScO4)2+ 6H2O.

Sol. in H₂O. (Topsoë.)

Cassium indium selenate, CsIn(SeO₄)₂+

12H₂O.
Efflorescent; sol. in H₂O. (Mathers, J. Am. Chem. Soc. 1908, **30**, 215.)

Cæsium iron (ferric) selenate. Cs₂Fe₃(SeO₄)₄

+24H₂O Sl. sol. in H₂O (Roneogliolo, Gazz. ch. it. 1905, **35**. (2) 553)

Cæsium magnesium selenate, Cs₂SeO₄, MgSeO₄+6H₂O. (Tutton, Chem. Soc. 1905, 87, 1163.)

Caesium zinc selenate, Cs₂Zn(SeO₄)₂+6H₂O. (Tutton, Zeit. Kryst. 1900, **33**. 14.) Cadmium selenate, CdSeO₄+2H₂O Very sol. in H₂O (v Hauer, W. A. B. 39. 299.)

Cadmium potassium selenate, CdSeO₄, K₂SO₄ +2H₂O₅.

Sol in H₂O₅ can be recrystallized without decomp. (v. Hauer, W. A. B. 54, 209.)

Calcium selenate, CaSeO.+2H2O.

Less sol in hot than in cold H2O. (v.

Hauer, J pr. 80. 214.) Sat. CaSeO₄+Aq contsuns at.

Sat. CaSeO₄+Aq contains at. -1° +5° 20° 37° 67° 7.4 7.3 7.6 6.8 5.1% CaSeO₄ (Étaid, A, ch. 1894, (7) 2. 551.)

Cerous selenate, Ce₂(SO₄)₃+6H₂O, 9H₂O, or 12H₂O

More sol in cold than hot H₂O (Jolin) +4H₂O. Very easily in cold, al sol, in hot H₂O (Cingolani, C C 1908, I 1606.)

Stable above 100°. +5H₂O. Stable at 92-100°. +7H₂O. Stable at 80-92°.

+8H₂O. Stable at 50-78°. +10H₂O. Stable at 34-40°.

+11H₂O. Stable at 12-28°. +12H₂O. Stable at 0-12°. (Cingolani, C. A. 1908. 2658.)

Solubility of Ce₂(SeO₄)₃ in H₂O at t°.

(G. salt calculated as anhydrous Ce₂(SO₄)₄
dissolved in 100 cc. H₂O.)

t°	Section 1110	#00 100 100 100 100 100 100 100 100 100		"ప్రేచ *	1,30
1	- F	28.1	t°	Ces(Sec +11H	Cen(Sec +4Had
12.6 26 6 28 8 34.2	33 84 33 15 32 16	39 55 36 9 33 2 31 89	60° 60 8 78 2 80 5 91 95 4 98 100	13.68 5 52 2.02 1 53	13 12 4 56 1.785 2 513

(Cingolani, l c)

Cerous potassium selenate, Ce₂(SeO₄)₂, 5K₄SeO₄.

More solum H₂O than the corresponding

More sol in H_2O than the corresponding sulphate. (Jolin)

Cerous sodium selenate, Ce₂(SeO₄)₃, Na₂SeO₄ +5H₂O₂

Quite sol. in H₂O. (John.) Chromic potassium selenate, Cr₂K₂(SeO₄)₄+ 24H₄O.

Resembles the sulphate in every particular. 1907, I. 86.)

Chromic rubidium selenate, Cr₂Rb₂(SeO₄)₄+ 24H₂O. Sol. in H₂O.

Chromic sodium selenate, Cr₂Na₂(SeO₄)₄+ 24H₂O Sol in H₂O. (Fabre, C. R. **105**, 114.)

Chromic thallous selenate, Cr₂Tl₂(SeO₄)₄+ 24H₂O₂

Sol. in H₂O. (Fabre, C R. 105, 114)

Chromic selenate potassium sulphate, $Cr_2(SeO_4)_3$, $K_2SO_4+24H_2O$. Sol. in H_2O . (v. Gerichten)

Cobaltous selenate, basic, 4CoO, 3SeO₃+ H₂O. Insol. in H₂O; sol. in acids (Bogdan, Bull. Soc. (3) **9**, 588 Co₃(OH)₂(SeO₄₎₃, Insol. in H₂O. Sol. in acids, (Bogdan, C. C. **1895**, 630.)

Cobaltous selenate, CoScO₄+5H₂O. Easily sol. in H₂O. (Topsoe.)

+6H₂O. Essily sol. in H₂O (Topsoe.) +7H₂O. Efflorescent Extremely sol. in H₂O. (Topsoe.) +18H₂O Very unstable. (Copaux, A.

ch. 1905, (8) 6. 553.)

Cobaltous potassium selenate, CoSeO₄,
K-SeO₄+6H₂O.

More sol. in H₂O than corresponding sulphate. (v. Hauer, W. A. B. 39, 837)

Cohaltous rubidium selenate. CoRb₂(SeO₂),

+6H₂O. Sol. in H₂O. (Topsoš) Cobaltous thallous selenate, CoTl₂(SeO₄)₂+

6H₂O. Sol. in H₂O. (Topsoc)

Cupric selenate, basic, 3CuO, 2SeO, +4H₂O.

Insol in H₂O; sol. m acids. (Bogdan, Bull.
Soc (3) 9, 588.)
+5H₂O Sl sol in cold H₂O. (Metzner,
C. R. 1898, 127. 55.)

Cupric selenate, CuSeO₄+5H₂O. Solubility in H₂O:—

257 g salt in 1 l. sat. solution at 15°.
346 " " 11 " " " 35°
435 " " 11 " " " 55°
Aq. solution decomp. at 70°. (Metzner,
C. R. 1898, 127. 55.)
+H₃O, and +2H₃O. (Metzner.)

Cupric hydrazine selenate, N₂H₄.H₂SeO₄, CuSeO₄+½H₂O. Decomp in aq. solution (Rimini, C. C. 1907, I. 86.) Cupric magnesum selenate, CuMg₂(SeO₄)₄+ 28H₂O. Sol. m H₂O. (Woblwill.)

Cupric nickel selenate, CuScO₄, NiScO₄+ 14H₂O. Sol. in H₂O. (Wohlwill.)

Cupric potassium selenate, CuSeO₄, K₂SeO₄+6H₂O. Sl. sol. in H₂O. (Topsoe.)

Cupric zinc selenate, $CuZn_2(SeO_1)_4+28H_2O$. Sol. in H_2O (Wohlwill)

Cupric selenate ferrous sulphate, 2CuSeO₄, 3FeSO₄+35H₂O. Sol in H₂O (Wohlwill)

Cupric selenate magnesium sulphate, CuSeO., 3MgSO.+28H2O Sol. in H2O. (Wohlwill.)

Cupric selenate zinc suiphate, CuSeO₄, 3ZnSO₄+28H₂O Sol. in H₂O. (Wohlwill) Didymium selenate. D₁₆(SeO₄)₄+5H₅O₄ and

6H₂O Sol. in H₂O. +8H₂O Easily sol. in H₂O. (Cleve.) +10H₂O. Sol. in H₄O. (Cleve.)

 $\begin{array}{lll} \mbox{Didynium potassium selenate,} & \mbox{Di}_2(\mbox{SeO}_4)_{3}, \\ & \mbox{K}_2\mbox{SeO}_4 + 9\mbox{H}_2\mbox{O}. \\ \mbox{Not deliquescent} & \mbox{Easily sol. in $H_2\mbox{O}$.} \\ \mbox{(Cleve)} & \mbox{} \end{array}$

 $\begin{array}{ccc} \mbox{Didymium} & \mbox{sodium} & \mbox{selenate,} & \mbox{Di}_2(\mbox{SeO}_4)_{2g} \\ \mbox{Na}_2\mbox{SeO}_4 + 4\mbox{H}_2\mbox{O}. \\ \mbox{Easily sol in } \mbox{H}_2\mbox{O}. & \mbox{(Cleve)} \end{array}$

Dysprosium selenate, Dy₂(SeO₄)₂+8H₂O.
Eastly sol. in H₂O; msol. in alcohol.
(Jantsch, B 1911, 44, 1275.)

Erbium selenate, Er₂(SeO₄)₃+8H₂O, and 9H₂O. Easily sol in H₂O. (Topsoe)

Erbium potassium selenate, Er₂(SeO₄)₃, K₂SeO₄+8H₂O. Easily sol. in H₂O. (Cleve)

Gadolinium selenate, Gd₂(SeO₄)₁+10H₂O. Decomp. in the air. (Benedicks, Z. anorg. 1900, 22, 410.)

Gadolinium potassium selenate, Gd₂(SeO₄)₂, 3K₂SeO₄+4H₂O. Sol. in H₂O. (Benedicks, Z. anorg. 1900, 22. 412)

Glucinum selenate, GlSeO₄+4H₂O Very sol in H₂O (Atterberg.)

Gold (auric) selenate, Au₂(SeO₄)_s.

Insol in H₂O Sol in hot conc. H₄SeO₄+
Aq Somewhat sol in H₅SO₄ and HNO₃+
Aq. Decomp by HCl+Aq. (Lenher, J. Am.
Chem Soc 1902, 24, 355)

Indium selenate, In₂(SeO₄)₄+10H₂O Hydroscopic; easily sol in H₂O (Mathers, J Am Chem Soc 1908, 30, 214.)

Iron (ferrous) selenate, FeSeO₄+5H₂O. Sol in H₂O (Wohlwill, A. **114**. 169) +7H₂O Efflorescent, and sol in H₂O. (Topsot.)

Iron (ferrous) potassium selenate, FeSeO₄, K_2 SeO₄+6H₂O. Easily sol. mH₂O. Solution decomp. somewhat on standing. (Topsoe.)

Iron (fernc) rubidium selenate, Rb₂Fe₂(SeO₄)₄, +24H₂O. (Roncogliolo, Gazz, ch 1t. 1905, 38. (2) 553.)

Iron (ferric) selenate potassium sulphate, Fe₂(SeO₄)₂, K₂SO₄+24H₂O. Sol in H₂O. (v. Gerichten.)

Lanthanum potassium selenate, La₂(SeO₄)₁, K₂SeO₄+9H₂O. Quite sol. in H₂O. (Cleve.)

Lanthanum sodium selenate, La₂(SeO₄)₂, Na₂SeO₄+4H₂O₄, Easily sol. in H₂O₄ (Cleve)

Lead selenate, basic, 2PbO, SeO₂.

Decomp. by acids with separation of

PbSeO. 3PbO, PbSeO.+H.O. Ppt. (Strömholm, Z anorg 1904, 38. 443.)

Lead selenate, PbSeO₄
Insol. in H₂O or HNO₅+Aq. (Schafarik, W. A. B. 47. 256)
Min. Kerstenate

Lithium selenate, La₂SeO₄+H₂O.

Not deliquescent. Easily sol. in H₂O.
(Topsoš.)

Magnesium selenate, MgScO4+6HcO. Solubility resembles closely that of MgSO. (Topsoë.)

Magnesium potassium selenate, MgK, (SeO4), +6H.O. Easily sol. in H₀O (Topsoe.)

Magnesium rubidium selenate, MgSeOs. Rh-ScO++6H-O (Tutton, Chem. Soc. 1905, 87, 1163)

Manganous selenate, MnSeO.+2H2O.

Easily sol in H₂O. (Tonsoé.) +5H₂O. Easily sol. in H₂O. Solution decomp on warming or standing (Topsoé)

Manganous potassium selenate, K2SeO4, MnSeO. Not deliquescent. Easily sol. in H₀O

Mercurous selenate, 6Hg2O, 5SeO2.

(Topsoe)

Very sl sol in H2O Sl attacked by boiling HNO₁. Insol. in HCl+Aq. (Kohler, Pogg. 89, 146 Hg₂SeO₄ Very sl. sol m H₂O; insol, m HCl+Aq. (Cameron and Davy, C N 44. 63.)

Mercuric selenate, basic, 6HgO, 2SeO2+HgO Insol, in H.O. or cold HNO. +Aq Sol, in hot HNOs or HCl+Aq. (Köhler) HgScOs, 2HgO Sol. in 10,330 pts HsO (Cameron and Davy.)

Mercuric selenate, HgSeO4+HeO.

Decomp, by H2O with formation of basic salt. (Köhler. Sol. in H₂SeO₄, H₂SO₄, HNO₂, or HCl+Aq, but decomp. by H₂O to 2HgO, HgSeO₄. (Cameron and Davy, C. N. 44. 63.)

Nickel selenate, NiSeO4+6H2O. Very easily sol, in H.O. (v. Hauer, W. A. B 39. 305.)

Nickel potassium selenate, NiSeO4, K2SeO4+ Sol. in H2O. (Topsoë.)

Nickel thallium selenate, NiSeO, Tl-SeO,+ 6H₂O. Sol in H2O. (Petersson.)

Platinum selenate.

Sol. in boiling H₂O. Sol. in HCl+Aq. Insol. in alcohol. (Cameron and Macallan, Lond. R. Soc Proc 46, 13)

Potassium selenate, KaSeO. Nearly equally sol in cold and hot H₂O.

Nearly educates and the first results of the C. (Mitschelich, Pogg 9, 623.)
100 g H₂O dissolve 110.5 g. K₂SeO₄ at 0°; 112.8 g at 20°, 122.2 g. at 100°. (Etard, C. R. 1888, 106. 741)

Sat. K.SeO.+Aq contains at. --20° -5° 45°

51.5 51.7 52.0% K2SeO4

54.9% K-SnO. (Étard, A. ch. 1894, (7) 2, 550)

100 g. H₂O at 12° dissolve 115.0 g K₂SeO₄. (Tutton, Chem Soc. 1897, 71. 850) Sp. gr of K2ScO4+Aq at 20° compared with H2O at 4°, containing: % K-SeO. 35 76 41.79 Sp gr

1.3591 1.4385 1,5590 (Tutton, Chem. Soc 1897, 71, 851.)

Potassium hydrogen selenate, KHSeO. Sol. in H₂O.

Potassium praseodymium selenate, 3KoSeO4. $Pr_2(SeO_4)_2 + 4H_3O_4$ Sl sol in H₂O. (von Scheele, Z. anorg. 1898, 18, 361)

Potassium samarium selenate, K2SeO4, $Sm_e(SeO_4)_a + 6H_eO$

Easily sol. in H₂O. (Cleve, Bull. Soc. (2) 43. 166.)

Potassium sodium selenate, 3K2SeO., Na₂SeO₄ Sol in H₂O. (Topsoë.)

Potassium thallium selenate, KaSeO4. $Tl_2(SeO_4)_3 + 8H_2O_4$ Very sol. in dil. acids. (Fortini, C. C. 1903, II. 706.)

Potassium uranyl selenate, K2SeO4, $(UO_2)SeO_4 + 2H_2O_4$ Sl sol. in cold, easily in hot H2O. (Sendtner.)

Potassium yttrium selenate, KaSeO4, $Y_2(SeO_4)_3 + 6H_2O_4$ Very sol in H2O. (Cleve.)

Potassium zinc selenate, K2SeO4, ZnSeO4+ 2H₂O. Sol, in H₂O. (Topsoe.) +6H₂O, Sol. in H₂O, (Topsos.)

Potassium selenate aluminum sulphate. K_2SeO_4 , $Al_2(SO_4)_8+24H_2O$. Sol in H₂O. (v. Gerichten)

Potassium selenate chromic sulphate, K₂SeO₄, Cr₂(SO₄)₈+24H₂O. Sol. in H₂O. (v. Gerichten.)

Potassium selenate ferric sulphate, K-SeO.

Fe₂(SO₄)₅+24H₂O. Sol, in H₂O. (v Gerichten)

Potassium selenate manganous sulphate, K₂SeO₄, MnSO₄+6H₂O. Sol. in H₂O. (v. Gerichten, A. **168**, 225)

Potassium selenate manganic sulphate, K₂ScO₄, Mn₂(SeO₄)₃+24H₂O. Sol. in H₂O. (v. Gerichten)

Praseodymium selenate, Pr₂(SeO₄)₂
Sol. in H₂O. (von Schule, Z. anorg. 1898, 18. 360.)
+8H₂O. Sl. sol. in H₂O; sol. in H₂SO₄.

(von Schule.)

Rubidium selenate, Rb,SeO. Sol, m H,O. Petersson) 100 g, H,O at 12° dissolve 158.9 g Rb,SeO. (Tutton, Chem Soc. 1897, 71. 850) Sp. gr of Rb,SeO.+ $\Delta \alpha$ at 20° compared with H,O at 4°, containing:

47.07

1 5806

% Rb₂SeO₄ 40.60 Sp. gr 1.4688 (Tutton.)

Rubidium hydrogen selenate, RbHSeO₄. Sol in equal pts. H₂O; very hydroscopic. (Norris, Am Ch. J. 1901, 26, 321)

Rubidium zinc selenate, Rb₂Zn(SeO₄)₂+

6H₂O. (Tutton, Zeit. Kryst, 1900, 33. 8.)

Samarium selenate, Sm₂(ScO₄)₃+8H₂O. More sol. in H₂O than Sm₂(SO₄)₃. +12H₂O. Efflorescent. (Clove)

Scandium selenate, $So_2(SeO_4)_1+2H_2O_1$, and $+8H_2O_2$.

(Crookes, Roy. Soc. Proc. 1908, 80, A. 518.)

Silver selenate, Ag₂SeO₄.

As Ag₂SO₄. (Mrtscherlich, Pogg. 12, 138.)

Silver selenate ammonia, Ag₂SeO₄, 4NH₃.

Easily sol. in H₂O or NH₄OH+Aq without decomp. (Mitscherlich, Pogg. 12, 141.)

Sodium selenate, Na₂S₀O₄.

Very sol. in H₁O, forming supersat. solutions. Cryst. also with 10H₂O, which effloresce. Maximum point of solubility is at 33°. (Mitsoherhech.)

Bollothey				
t°	% NasSeO4	Mols H ₂ O to I mol NasSeO ₄	Mols anhy- drous salt to 100 mols Hs0	
35 2 39 5 50 75 00	45 47 45 26 44 49 42 83 42 14	12 59 12.70 13 10 14 00 14 42	7.94 7.87 7.63 7.14 6.93	

Solubility in H₂O at t^o.

(Funk, B 1900, 33. 3697.)

+10H ₂ O Solubility in H ₂ O at t°.			
t°	% NasSeOs	Mols H ₂ O to 1 mol Na ₂ SeO ₁	Mols anhy- drous salt to 100 mols H ₂ O
0 15 25 2 27 30	11 74 25 01 36 91 39 18 44 05	79.08 31.48 17.95 16.30 13.33	1 26 3 18 5.57 6.13 7.50

(Funk.)

Sp. gr. of sat. solution at 18°=1.315. (Funk.)

Sodium selenate vanadate.

Sec Selenovanadate, sodium.

Strontrum selenate, SrSeO₄
Insol. in H₂O or HNO₂+Ag; decomp. by

long boiling with HCl+Aq

Tellurium selenate, 2TeO₂, SeO₃

As sulphate. (Metzner, A. ch. 1898, (7)

15. 203)

Thallous selenate, Tl\SeO.

Sl. sol in cold, much more in hot H₂O.
Insol. in alcohol and other. (Kuhlmann.)

100 g. H₂O dissolve 2.13 g. at 9.3; 2.4 g.
at 12; 10.38 g. at 100°. (Tutton, Proc.
Roy. Soc. 1907, 79. A, 381.)

2 S. g. are sol in 100 g. H₂O at 20°, 8.5 g.

at 80°. (Glauser, Z. anorg. 1910, 66, 437.)

Thallous hydrogen selenate, HTISeO₄+ 3H₄O. (Oettinger.)

Thallous zinc selenate, Tl₂SeO₄, ZnSeO₄+ 6H₂O₂. Easily sol. in H₂O, but less than the corresponding sulphate. (Werther, Bull. Soc

1865. 60.)

Thorium selenate, Th(SeO₄)₄+9H₄O_.

100 pts. H₂O dissolve 0.498 pt, Th(SeO₄), at 0°, and 1.972 pts. at 100°. (Cleve.) Tin (stannic) selenate, basic, SnO(SeO4)+ H_{*}O Deliquescent, Sol. in H₂O, (Ditte, C. R. 104, 231)

Uranvi selenate, (UO2)SeO4, H2SeO4+ 18H₂O.

Very deliquescent. 2(UO₄)SeO₄, H₂SeO₄+12H₂O Efflores cent. Sol. in H₂O (Sendtner, A. **195**. 325.) Efflores-

Ytterbium selenate, Ybs(SeO4)3.

Anhudrous. +15H₂O (?), +8H₂O Ppt, (Cleve, Z anorg 1902, 32, 145)

Yttrium selenate, Y2(SeO4)2

Anhadrous Sol, in H.O with hissing and evolution of heat. (Popp.)
+8H₂O. Easily sol in H₂O. (Cleve.)
+9H₂O Efflorescent.

Zinc selenate, ZnSeO4+5H4O.

Sol in H₄O. (Topsoe) +6H₄O. Sol. in H₂O. (Topsoë.) +7H₂O. Sol. in H₂O.

Selenious acid, H.SeO1. Deliquescent in moist, efflorescent in dry

air. Very sol in cold, and in nearly every proportion in hot H₂O Easily sol, in alcohol. (Berzelms)

So gr of H₂SeO₂ and of H₂SeO₂+Ag at t^o Two series of experiments.

	t°	Sp. gr at to
$\begin{array}{c} H_4 SeO_6 + Aq \; (A) \\ I \; vol \;\; \begin{array}{c} A + 0 \; 5 \; vol. \; H_6 O \\ \text{"} + 1 \; 0 & \text{"} \\ \text{"} + 1 \; 5 & \text{"} \\ \text{"} + 2 \; 0 & \text{"} \\ \text{"} + 2 \; 5 & \text{"} \\ \text{"} + 3 \; 0 & \text{"} \end{array}$	18 0 18.0 17 7 16.6 14.0 17.0 19.2	1.4386 1.3179 1.2337 1 2045 1 1984 1 1712 1.1600
$\begin{array}{c} H_2SeO_3+Aq \; (B) \\ 1 \; vol \; B+O5 \; vol. \; H_2O \\ \ \ \stackrel{\prime\prime}{} +1 \; 0 \\ \ \ \stackrel{\prime\prime}{} +1 \; 5 \ \ \stackrel{\prime\prime}{} \\ \ \ \stackrel{\prime\prime}{} +2 \; 0 \ \ \stackrel{\prime\prime}{} \\ \ \ \stackrel{\prime\prime}{} +2 \; .5 \ \ \stackrel{\prime\prime}{} \\ \ \ \stackrel{\prime\prime}{} +3 \; .0 \ \ \stackrel{\prime\prime}{} \end{array}$	15.8 16.5 13 0 14 2 17 0 16 5 14 2	1.4698 1.3191 1 2515 1.2074 1.1992 1.1793 1 1678

(de Connck, C. C. 1905, I. 1693.) See also Selenium dioxide.

Insol. in liquid NII₄. (Gore, Am. Ch. J. 1898, **20.** 830)

Selenites.

Alkalı selenites are sol. in H₂O. The other Cadmium selenite, CdSeO₂. neutral selemtes are msol. in H2O, but sol. in, HNO2+Aq, Pb, and Ag salts slowly. The pratt, Chem Soc. 2. 65.)

neutral salts are insol, in HCl+Aq. The acid salts of the heavy metals are sol in H.O.

Aluminum selenite, basic, 4Al₂O₂, 9SeO₂+ 36H.O

Precipitate. (Nilson, Unsala, 1875.)

Aluminum selenite, Ala(SeOa)a.

Prempitate. (Berzelius) +7H₂O. Sl sol in H₂O. (Nilson.) Sol. in H₂SeO₃+Ag. +3H₂O. Insol m H₂O: sol. in acids.

(Boutzoureano, A. ch (6) 17, 289.) Aluminum selenite, acid, Al₂O₈, 4SeO₄+ 3H₂O

(Boutzoureano) 2Al₂O₄, 9SeO₄+12H₄O. Sol. in H₂O. (Nil-Al₂O₃, 6SeO₂ Very sol. in H₂O. (Ber-

zelius) +5H₂O. (Nilson.) +2H₂O (Boutzoureano)

Ammonium selenite, (NH₄)₃SeO₃,

Deliquescent. Very sol. in H.O. Precipitated from aqueous solution by alcohol. Insol, in ether. (Muspratt, A. 70. 275)

Ammonium hydrogen selenite, NH4HSeOs. Not deliquescent Sol. in H₂O. (Berzelius.)

Ammonium /r/hydrogen selenite. NH4H4(SeOs)2.

Deliquescent. (Berzelius.)

Ammonium vanadium selenite. See Vanadioselenite, ammonium.

Ammonium uranyl selenite, (NH4):SeO2, (UO2)SeO3. Completely insol, in H₂O. (Sendiner)

Antimony selenite, Sb₂(SeO₃)₅, SeO₂

(Nilson, Bull. Soc. (2) 23, 494.) Barium selenite, BaSeO₂,

Sl. sol. in H2O. Sol. in H2SeO2+Aq. So in acids. (Nilson) $+H_{1}O$ (Nilson)

Barium pyroselenite, BaSe₂O₄

Very al. sol. in cold, more in warm HiO. (Berzelius)

Bismuth selenite, Bi2(SeO4)2, H2SeO2. (Nilson) Bia(SeOa)s. (Nilson.)

Insol in H₂O. Sol in H₂SeO₃+Aq. (Mus-

(moa

2CdO, 3SeO2+H2O. Insol. in H2O, sol. Cobaltous selenite, CoSeO3. in acids. (Boutzoureano.) + 1/2H₂O. Insol, in H₂O; sol, in dil. acids (Boutzoureano.)

Cadmium selenite ammonia, CdSeOs, NHs. Insol. m cold or hot H₂O. (Boutzoureano, A, ch. (6) 17, 289.)

Calcium selenite, CaSeOs+4/2H2O. Very al. sol in H₂O. (Berzelius) More sol. in H₂SeO₃+Aq. +2H₂O. (Nilson.)

Calcium hydrogen selenite, CaH2(SeO1)2+ Quite sol. in H₄O. (Nilson.)
Ca₂H₂Se₄O₁₁. Easily sol. in H₂O. (Nil(Boutzoureano.)
Sol un acido.)

Cerous selenite, basic, 2Ce₂O₃, 5SeO₂+ Cupric selenite, CuScO₃+1/2H₂O. 30H.O. Precipitate. (Nilson.)

Cerous selenite, Ce₁(SeO₈)₃+3H₂O. Insol. in H.O. Sol. in much selenious acid. (Jolin.)

Cerous selenite, acid, Ce2O3, 4SeO2+5, or 6 H.O. i. Insol, in H2O, but sol. in selenious, and other acids. (John.) Ce₂O₄, $6SeO_2 + 5H_4O$. Not decomp. by H_2O . (Nilson.)

Ceric selenite, Ce(SeO₂)₂.

+12H₂O. (Nilson.)

Insol in H₂O. Sl. sol. m conc. HNOs. Sol m dil, acads. Sol. in H₂O₂+Aq. (Barbieri, B. 1910, 43.

Chromium selenite, basic, 4Cr₂O₂, 9SeO₂+ 64H.O.

Precipitate, (Nilson.)

Chromic selenite, Cr2(SeO3):+3H2O. (Boutzoureano.)

+15H₂O. (Nilson.) Very al. sol. or insol. in H2O, al. sol in H.SeO.+Aq; sol. in hot conc. HCl+Aq (Taquet, C. R. 96, 107.)

Chromic selenite, acid, Cr2O3, 4SeO2+13H2O. Slowly sol. in HCl+Aq Insol. in H2O. (Nilson.) Cr₂O₄, 5SeO₄+9H₂O. Insol. in H₂O. (Nilson.)

Chromic disclenite.

Insol, in HaO; sol. in acids. (Taquet, C R. 97, 1435.)

Insol in H₂O. (Berzelius) +1/3H₂O. Insol. in H₂O; sol. in acids. (Boutzoureano, A ch (6) 17. 289)

Cobaltous hydrogen selenite, CoH2(SeO1)2.

Sol. in H₂O. (Berzelius.) +2H₂O Sol. in H₂O with decomp. (Boutzoureano.)

Cuprous selenite. Insol, in H₂O. Sol. in NH₄OH+Aq. (Berzelius)

Cupric selenite, basic, 2CuO, SeO: Insol in H.O; sol, in NHOH+Aq Sol in acids.

Insol. in H₂O or H₂SeO₂+Aq. (Berzelius.) +H₂O, and 2H₂O. (Boutzourcano.) +2H₂O Mm. Chalcomenite Insol. m H₂O or H₂SeO₃+Aq. (Friedel and Sarasm, Zeit. Kryst 1881, 6, 300.)

Cupric selenite, acid, CuO, 2SeO2+H2O= CuHa(SeOa)s. Insol. in H₂O. Sol. in acids. (Nilson)

+2H₂O. As above (Boutzoureano.) +4H₂O As above. (B.)

Cupric selenite ammonia, CuSeO₂, NH₃+ H2O. Decomp. by H₂O. (Boutsourcano, A. ch. (6) 17. 289.)

Didymium selenite, basic, 3D12O2, 8SeO2+ 28H2O. Precapitate. (Nilson.) Insol in H2O (Cleve, Bull. +21H₂O Soc. (2) 43. 363.)

Didymium selenite, D12(SeO2)2+6H2O. Precmitate. (Smith.)

Didymium selenite, acid, Di₂O₂, 4SeO₂+ 5H2O. Precipitate (Cleve.) Composition is Di₂(SeO₂)₂+6H₂O. (Smith.) +9H.O. (Nilson.) 2Di₂O₄, 9SeO₅+18H₄O₄ (Nilson.)

Erbium selenite, Er2(SeO3)3+5H2O, and 9H.O. Precipitate, (Nilson.)

Erbium hydrogen selenite, Er2H2(SeO4)4+ 4H.O. Decomp. by hot H2O

```
Gadolinum hydrogen selenite
    Gd2(ScO2)2, H2SeO2+6H2O.
```

Ppt. (Benedicks, Z anorg. 1900 22 413.)

Glucinum selenite, basic, 5GlO, 2SeO2+ 10H₀O. Precipitate (Nilson.) According to Atter-

berg, is 7GlO, 3SeO₂+14H₂O. 2GlO, SeO₂+4H₂O. (Atterberg, Bull Soc. (2) 19. 497.) 3GlO, 2SeO2+6H2O. Insol. in H2O (Atterberg.)

Glucinum selenite, GlSeO4+2H2O. Sol. in little H2O, decomp. by excess. (Nilson.)

Glucinum selenite, acid.

(a) 3GlO, 5SeO₂+3H₂O; (b) GlO, 2SeO₂ +H₂O; (c) 3GlO, 7SeO₂+5H₂O; (d) GlO, 3SeO₂+2H₂O All are very sl. sol. in cold or warm H_2O . a, b, and c are sol in warm H_2O containing HCl; d is sol only in boiling dil. HCl+Aq. (Nilson)

Indium selenite, basic, In₈Se₉O₅₀+64H₂O. (Nilson)

Indium selenite, Ing(SO₃)₄+6H₂O. Sl. sol, in H.O. (Nilson.)

Indium hydrogen selenite, In2(SeO1)4. 3H₂SeO₃+4H₂O. Sol. in H₂O. (Nilson) $2In_2(SeO_8)_8$, $3H_2SeO_3+12H_2O$. Sol in Lithium vanadium selenite. H_2O . (Nilson.)

Iron (ferrous) selenite. Put Sol. in HCl+Aq with partial separation of Se. (Berzehus.)

Iron (ferrous) hydrogen selenite. Sl. sol. in H2O. (Berzelius)

Iron (ferric) selenite, basic, 2Fe₃O₅, 3SeO₂+ zH₂O Insol in H₂O. (Berzelius) Fe₂O₄, 2SeO₂ Insol in H₂O, easily sol in

acids. (Boutzoureano, A. ch. (6) 17. 289.) 3Fe₂O₅, 8SeO₂+28H₂O. Insol. in H₂O. (Nilson.) Iron (ferric) selenite, Fc2(SeO3)3+4H2O. Insol in H₂O. (Muspratt, Chem. Soc. 2.

+H₂O. Insol in H2O. (Boutzoureano, A. ch (6) 17, 289) +3H₂O Insol, in H₂O

+10H₂O. Insol in H₂O (B.)

Iron (ferric) selenite, acid, Fe₂O₃, 6SeO₂+ xH₂O. Insol. in H.O. Sol. in HCl+Aq (Berzeltus. +2H₂O (Boutzoureano, A. ch. (6) 17, 289.) Fe₂O₃, 4SeO₂+H₂O. Insol. in H₂O, sol in acids (Boutzoureano)

Lanthanum selenite, basic, 3La₂O₂, 8SeO₂+ 28H₀O Precipitate. (Nilson.)

Lanthanum selenite, La₂(SeO₃)₃+9H₂O, or 12H.O Insol in H₂O. (Nilson)

Lanthanum selenite, acid, La2H4(SeO.).+ 4H.O. (Nilson)

 $La_2H_6(SeO_8)_8+2H_2O$. (Cleve.)

Lead selenite, PbSeO.

Scarcely sol in H₂O, even when it contains H₂SeO₄ Sl. sol in HNO₃+Aq. (Berzelius)

Lithium selenite, Li₂SeO₃+H₂O. Difficultly sol. in H2O. (Nilson, Bull. Soc. (2) 21. 253.)

Lithium hydrogen selenite, LiHSOs. Very sol, in H₂O. (Nilson)

Lithium trihydrogen selenite, LiHs(SeOs)3. Not deliquescent. Sol. in H₂O. (Nilson.)

See Vanadioselenite, lithium.

Magnesium selenite, MgSeOz+2HzO. Insol. in H₂O; sol. in dil acids, especially if warm, also in H₂SeO₃+Aq. (Boutzour-eano, A. ch. (6) 18. 302) +3H₂O. Very sl. sol in hot H₂O. (Berzelina)

+6H₂O. As the 2H₂O salt. (Boutzour-+7H₂O. Sl. sol in H₂O. Easily sol. in acetic, and mineral acids. (Hilger, Z. anal. 13, 132.)

Magnesium hydrogen selenite, MgH2(SeO2)2 +8H₂O. Very deliquescent. Easily sol. in H₂O.

(Nilson.) Insol. in alcohol. (Muspratt.) MgO, 2SeO₂. Insol. in H₂O; sol. in acids. (Boutzoureano.)

Magnesium tetrahydrogen selenite, MgH4(SeO3)3, and +3H2O. Sol. in H₂O. (Nilson.)

Manganous selenite, MnSeO₂+H₂O. Precipitate (Nilson.)

Precipitate (Nilson.) +2H₂O Insol in H₂O. (Berzelius) Sol in cold HCl+Aq. (Muspratt) +½H₂O. Insol in H₂O; sol, in dil. acids. (Boutzoureano.)

Manganous selenite, acid, MnSe₂O₃. Sol. in H₂O. (Berzelius, Nilson.) MnO, 2SeO₂+H₂O = MnH₂(SeO₃)₂ (Boutzoureano, A ch (6) 17, 289.)

(Boutzoureano, A ch (6) 17. 289.) +5H₂O Decomp by H₂O to MnSeO₂. (Boutzoureano.) Manganic selenite, basic, Mn₂O₃, 2SeO₂.

Insol. in H₂O, cold H₂SO₄, or IINO₂+Aq, nsol. in hot dtl. H₂SO₄ or HNO₂+Aq (Laugier, C. R. 104. 1508) Sol in warm HCl+Aq with decomp

Manganic selenite, Mn₂(SeO₃)₃+5H₄O.
(Laumer.)

Manganic selenite, acid, Mn₂O₃, 4SeO₂ Insol. in H₂O, cold H₂SO₄, and HNO₃+Aq Insol in dtl. hot H₂SO₄, and HNO₃+Aq. Sol. m cold HCl+Aq; and in H₂SO₃+Aq with separation of Se. (Laugier, C. R. 104, 150s.)

Mercurous selenite, basic, 3Hg₂O, 2SeO₂+ 5H₂O.

(Boutzoureano.) Mercurous selenite, Hg₂SeO₈

Insol. in H₂O or H₂SeO₃+Aq. Sol. in hot HNO₃+Aq. (Köhler, Pogg. 89, 146) Sl. sol. in HCl+Aq, and KOH+Aq (Berzelus.)

Mercurous selenite, acid, 3Hg₂O, 4SeO₂. Insol. in H₂O or H₂SeO₃+Aq. Sl sol in bolling HNO₃+Aq. (Köhler)

Mercuric selenite, basic, 7HgO, 4SeO₂. Insol. in H₂O. Sl. sol. in HNO₄+Aq. Easily sol in HCl+Aq (Köhler, Pogg 88. 149.)

Mercuric selenite, HgSeO₃.

Insol. in H₂O. (Berzelius.) Nearly insol. in HNO₃+Aq. Sol. in K₂SeO₃+Aq. (Divers, Chem. Soc. 48. 585.)

Insol in dil, HNO₁+Aq; sol. in HCl+Aq. (Rosenheim and Pritze, Z. anorg. 1909, 63, 278.)

Solubility in Na₂SeO₃+Aq at 25°.

NasSeO2+Aq Normality	% HgSoO:
2 0	2 73
1.0	1,39
0.5	0.70
0.25	0.53
0 125	0.32
0 0625	0.18

(Rosenheim and Pritze, Z. anorg. 1909, 63.

HgSeO₃, H₄SeO₃ Fasuly sol. in H₂O; very sl sol. in alcohol. (Berzelius) See also selenium dioxide.

Mercuric sodium selenite, HgSeO₃, Na,SeO₄. Decomp by H₂O and alkalies with pptn. of HgSeO₂ (Rosenheim and Pritze, Z anorg 1999, 63, 279)

Mercuric selenite sodium chloride, HuSeOs, NaCl+2HoO

Decomp. by H₂O. (Rosenheim and Pritze, Z anorg 1909, 63, 280.)

Nickel selenite, NiSeOa+H2O.

Insol in H_2O ; sol, in H_3SeO_3+Aq . (Muspratt, Chem. Soc. 2. 52.) + $\frac{1}{2}H_2O$. Insol. in H_2O . (Boutzoureano, A. ch. (6) 17. 28.)

Nickel selenite, acid. Sol in H₂O. (Berzelius.)

Potassium selenite, K₂SeO₂+H₂O

Very deliquescent. Sol. in nearly all proportions in H₂O

Insol in alcohol, which separates it as oil from aqueous solution.

(Muspratt, Chem Soc. 2. 52.)

Potassium hydrogen selenite, KHSeO₃. Very deliquescent Very sl sol. in alcohol. (Muspratt, Chem Soc 2, 52)

Potassium trihydrogen selenite, KH₁(SeO₃)₂. Very deliquescent. Pptd from H₂O by aleohol. (Muspratt) Not delquescent. (Nilson)

Potassium hydrogen pyroselenite, KHSe₂O₆ +H₂O. (Muthmann, B 1893, **26**, 1015.)

Potassium uranyl selenite, K₂SeO₃, (UO₂)SeO₂. Absolutely insol, in H₂O. (Sendtner.)

Praseodymium hydrogen selenite, Pr₂(SeO₂)₂, H₂SeO₂+3H₂O

Sol. in H₂O (von Scheele, Z. anorg. 1898, 18. 362.)

Samarium selenite, basic, 3Sm₂O₃, 8SeO₂+

7H₂O
Precipitate. (Cleve.)

Samarium selenite, acid, Sm₂O₃, 4SeO₂+ 5H₂O. Precipitate. (Cleve.)

Scandium selenite, Sc₂(SeO₄)₄+H₂O. Insol. precipitate, Scandium hydrogen selenite, Sc₂(SeO₃)₃, 3H₂SeO₃.

Insol. in H₂O Not attacked by cold dil. acids, but casily if warmed

Silver selenite, Ag₂SeO₃.

Very sl sol. m cold, somewhat more sol in hot H₂O. Essily sol in hot HNO₃+Aq, from which it is precipitated by H₂O. (Berzelius) Insol. m K₂SeO₃+Aq, sl sol. m dil HNO₃+ Aq. (Divers, Chem. Soc. 49. 885.)

Silver selenite ammonia, Ag₂SeO₃, NH₃.

Insol. in boiling H₂O. (Boutzoureano, A

Sodium selenite, Na₂SeO₃.

ch. (6) 17, 289.)

Very sol in H₂O Insol. in alcohol. (Berzelius) +5H₂O

Sodium selenite, acid, NaHSeO4.

Permanent. Sol. in H₂O Na₄Se₅O₄ Sol in H₂O. (Sace, A ch (3) 21. 119) NalI₄(SeO₂)₂ Not deliquescent Sol in

H₂O.

Sodium vanadium selenite. See Vanadioselenite, sodium.

Strontium selenite, SrSeO₁+7H₂O Precapitate. Insol. in H₂O. Sol. in HNO₁ +Aq. (Muspratt)

Strontum hydrogen selenite, $SrH_2(SeO_3)_2$ Easily sol. in hot or cold H_2O . (Nilson:) Nearly insol. in hot or cold H_2O . (Berzelius.)

Thailous scienite, Tl₂SeO₂.

ether. (Kuhlmann, Bull. Soc. (2) 1. 330.)

Thallous hydrogen selenite, TlHSeO₃.

More sol in H₂O than the above comp.

(Kuhlmann)

Thallic selenite, Tl₂(SeO₃)₃.

Insol. in H₂O Sol. in dul. HNO₂.

Easily decomp. by HCl and H₃SO₄. (Ma-

rino, Z. anorg. 1909, **62**. 177.)

Thorium selenite, Th(SeO₃)₂+H₂O, or 8H₂O.

'Insol in H₂O; easily sol in HCl+Aq (Nilson.)

Thorium selenite, acid, 2ThO₂, 7SeO₂+ 16H₂O.

ThO2, 5SeO2+8H2O. (Nilson.)

Tin (stannıc) selenite.

Insol in H₂O; sol in HCl+Aq, from which
it is pptd by H₂O (Berzelius.)

Uranic selenite, U₂O₃, SeO₂. Insol in H₂O. (Boutzoureano) +2H₂O. (B)

Uranic selenite, acid, 2U₂O₅, 3SeO₂+7H₂O Insol in H₂O. (Boutzoureano, A. ch. (6) 17, 289.)

Uranyl selenite, (UO₂)SeO₃+2H₂O Precipitate. (Nilson)

Uranyl selenite, acid, 3UO₃, 5SeO₂+7H₂O, or 9H₂O

Insol. in H_2O . UO_3 , $2SeO_2+H_4O=(UO_2)H_2(SeO_3)_2$. Absolutely insol. in H_2O and H_2SeO_2+Aq . (Sendtner, A. 195. 325)

Vanadium selenite. See Vanadioselenious acid.

Ytterbium selenite, Yb2(SeO3)8

Insol. precipitate

Ytterbum hydrogen selemite, Yb₂H₂(SeO₂),
+4H₂O.

Insol in H₂O
Yttrium selenite, Y₂(SeO₁)₂+12H₂O.

Insol. in H₂O or H₂SeO₃+Aq. (Berzelius.) Sol in hot H₂SeO₈+Aq (Nilson.) Yttrium hydrogen selenite, Y₂H₄(SeO₂)₄+

3H₂O, Sl. sol. in H₂O Easily sol. in HCl or HNO₂+Aq (Cleve.)

Zinc selenite, ZnSeOs.

Insol. in H₂O, sol. in acids (Boutzoureano.)

A. ch. (6) 18. 289.) +2H₂O. Insol. in H₂O. Sol in H₃SeO₂, or HNO₂+Aq. (Muspratt, Chem. Soc. 2. 52.)

Zinc hydrogen selemte, ZnH₂(SeO₃)₂.
Easily sol in H₂O. (Berzehus.)

+2H₂O. Sol m cold H₂O. (Boutzoureano.) ZnO, 4SeO₁+3H₂O Easily sol. in H₂O. (Wöhler, A. **63**, 279.)

Zinc selenite ammonia, ZnSeO₅, NH₅.

Insol. in cold or hot H₂O. (Boutzoureano, A ch. (6) 17, 289)

Zirconium selenite, basic, 4ZrO₂, 3SeO₂+

Precipitate. Sl. sol. in HCl+Aq. (Nil-, son.)

Zirconium selenite, Zr(SeO3)2

Absolutely insol, in H_{*}O: difficultly sol, in boiling HCl+Aq. (Nilson) +H₂(). (Ntlson.)

Selenium, Se.

Insol in H₂O Schultz (J. pr. (2) 32, 390) has obtained a soluble colloidal modification which can be isolated by dialysis.

Insol in IICl+Aq Decomp by HNO2+ Aq Sol. in fuming H₂SO₄. (Schultz-Sellac,

B. 4. 113) 1000 pts, CS, dissolve 1 pt, ervst. Se at boiling-point (46.6°), and 0.16 pt at 0° (Mitscherlich, J. B. 1855. 314) Solubility of Se in CS, is variable-1 pt Se is sol, in 1376-2464-3746 pts. CS2 at 20° (Rammelsberg, B. 7. 669). Cryst Se, which is sol, in CS2, be-comes insol. in CS2 after heating to 110°, but

after fusion is again sol (Otto). Four modifications .- (1) Amorphous red. (2) crystalline red, (3) granular gray, (4) laminated. 1 and 2 are sol. in CS2, 3 and 4 are insol. in CS2. All forms are sol in SeCla from which crystallizes a black modification, insol. in CS2. CCl4 with trace of CS2 dissolves red Se slightly, black Se not at all Se(C2H4)2 dissolves all modifications in small but apparently equal quantities. (Rathke, A 152, 181)

According to Saunders (J phys. Chem. 1900. 4, 428) selenium exists in three modifications.

 Liquid, including vitreous, amorphous, and colloidal selenium. . Vitreous.

Sol, in liquid NH, at 25° (Franklin, Am Ch J. 1898, 20. 820)
Insol, in liquid NH_s between —30° and +10°. Franklin's results are due to impure

selenium and not completely dry NHs. (Hugot, A. Ch. 1900, (7) 21. 5.)

Almost insol, in CS2. (Schutzenberger Chimie générale 1. 438.)

Action of light increases solubility in CS. (Saunders, J. phys. Chem. 1900, 4, 456)

Solubility in methylene rodide at 12° is 1.3 pts in 100 (Retgers, Z. anorg. 1893, 3, 343.)

Sol in CScs, ethyl selenide, and in ethyl sulphide. Very sol. in Se₂Cl₂. (Rathke, A. 1869, 152.

181.) b. Amorphous.

Completely sol. in CS₂ at ord, temp. if Se has not been heated. If heated or extracted with warm CS2 it becomes partly insol. (Peterson, Z. phys. Chem. 1891, 81.

Passes into 1ed crystalline form in solution in CS₂, C₆H₆, isobutyric acid, acetophenone, acetone, CHCl₃, thiophene, toluene, ben-zonitrile, ethyl acetate, and alcohol. (Saunders, J. phys. Chem 1900, 4, 463,)

Solution in quinoline, aniline, pyridine,

etc., cause conversion into gray metallic form

e Colloidal Forms colloidal solution with H2O.

A colloidal solution of Se in H2O can be obtained. It is not decomp, by boiling, but is decomp. by electrolytes with separation of red selenium. (Gutbier, Z. anorg. 1902. 32. 106.)

2. Red crystalline Sol. in CS₂

3 Gray, crystalline or metallic

Sol in selenium chloride and other solvents as vitreous Se. (Rathke, A. 1869, 152.

Sl. sol. in CS₂, toluene, nitrobenzene, quinoline, aniline, and KOH. Pptd. from conc. KOH+Aq in long needles with mpt. 219°. (Coste, C. R. 1909, 149, 674.)

Sol, in many organic substances at high temp as quinoline, ethyl benzoate, aniline and naphthaline (Saunders, J. phys. Chem. 1900, 4. 469)

Completely insol. in CS2. (Saunders, J. phys. Chem. 1900, 4, 474.)

Solubility of the two modifications of gray crystalline Se in CS;

100 cc. boiling CS2 dissolve mg Se

Mg So	Mg. Se	Mg Se
3 2 2 8 3 6 3.3 2 2	4 1 4 0 2 9 2 8 2 9 4 0	2 7 2 2 1 9 1 0 2 0

Se heated 1 hr. at 140°. Modification A Modification A. III Se heated 48 hrs. at 190°-200°. Modification B

(Mare, Z. anorg, 1907, 53, 302.)

Se_{*}Br_{*} dissolves 22% Se (Schneider, Pogg. 128, 327) Red Se is sol. in (NH4),SO2+Aq (Uels-

mann, A. 116. 122.) Sol, in alkalies and Mg sulphites+Aq.

365 pts K₂SO₃+Aq dissolve 102 pts. Se. 360 pts. MgSO₈, 3H₂O+Aq dissolve 116

pts. Se. Insol. in BaSO1+Aq (Rathke and Zechie-

sche, J pr 92, 145.)
Sol in KCN+Aq with formation of KSeCN (Franklin, Am Ch. J. 1898, 20. 830 1

100 pts. methylene iodide dissolve 1.3 pts. Se at 12°. (Retgers, Z. anorg. 3. 343.)

Sol, in quinoline, but reacts with the solvent with evolution of H (Beckmann and Gabel, Z anorg. 1906, 51. 236.)

Selenium monobromide, Se₂Br₂

'Iusol, m H₂O, but gradually decompthereby Decomp, by absolute alcohol and benzene Sol m C_{H-1}, but soon decomposed. Miscible with C₂; less sol in CHCl₂ and C3H6Br (Schneider, Pogg. 128, 327.)

Selenium tetrabromide, SeBr.

Sol. in H₂O with decomp Decomp. by alcohol. Sol. in HCl+Aq; sl. sol. in CS₂, CHCl₂, and C₂H₄Br. (Schneider, Pogg. 129. 450) Decomp. by C2H4I.

Selenium bromotrichloride, SeClaBr

Insol. in CS2 (Fvans and Ramsav. Chem Soc 45, 62.)

Selemum tetrabromide sulphur traoxide, SeBr., 2SOs Decomp. by H2O. (Prandtl, Z anorg

1909, 62, 242)

Selenium tribromochloride, SeClBr. See Selenium chlorotribromide.

Selenium monochloride, SegCl2

Gradually decomp. by H₂O Dissolves all modifications of selenium on heating (Rathke, A. 152. 181). Insol in conc. H₂SO₄, easily sol in fuming H₂SO₄ Sol in CHCl₃, C₅H₄, CCl₄ Gradually decomp. by H₂O, sleohol, and ether. (Divers and Sumosé, B. 17. 862.) Sol in CS₂ (Evans and Ramsay, Chem Soc. 45, 62)

Selenium tetrachloride, SeCl4

Deliquescent on most air Decomp. with H₂O. (Berzelius, A. oh. 9. 225) Insol. in CS₂. Easily sol. in hot POCl₂, from which it crystallizes on cooling. (Michaelis, Zeit. Chem (2) 6. 460.) Very al sol in CS2 (Evans and Ramsay, Chem Soc. 45, 62)

Selenium dichlorobromide, SeCl2Br2.

(Evans and Ramsav, Chem. Soc. 45, 62)

Selenium chlorotribromide, SeClBr₈.

Very sl. sol in CS2. (Evans and Ramsay) Selenium trichlorobromide, SeCl. Pr. See Selenium bromotrichloride.

Selenium fluoride.

Sol, in conc. HF+Aq Decomp, immediately by H₀O (Knox.)

Selenium monoiodide, Sc. I.

Decomp. by H₂O. All solvents of 10dine dissolve out that element. (Schneder, and Macallan)

Selenium *tetra*iodide, Sel₄.

Slowly decomp, by much H₂O. Iodine is dissolved out by all solvents of that element. (Schneider, Pogg, 129, 627)

Selenium nitride. See Nitrogen selenide.

Selenium manoxide, SeO (?). Sl. sol m H₂O, (Berzehus) Does not exist. (Sacc.)

Selenium dioxide, SeO.

Deliquescent. Easily sol in H2O and alcohol Sol. in glacial HC2H2O2 (Hinsbeig, A. 260, 40) Solubility in H2O between -3° and +36° =45 0+0.7692t, (Etard, C R 1888, 106,

1 pt is sol. in 2.67 pts. H₂O at 11.3.° 1 pt. """ 2.60 """ 14.° 1 pt """ 2.54 """ "15.6.°

(de Coninck, C R 1906, 142 571.) Sp. gr of SeO2+Aq at to.

t.º % SeO₈ Sp gr 15 I 0 9923 15 3 $\hat{2}$ 1 0068 13 0 3 1 0200 4 1.0302 13 0 14 5 1 0346 14 8 6 1 0402 14 1 1 0535 15 0 1 0571 15 6 9 1 0719 15 2 10 1 0743

(de Connck, C R. 1906, 142, 571.) See also Selenious acid.

1 pt. SeO, is sol, in 9 84 pts, alcohol (93°) at 14° 1 pt. SeO, is sol in 15.0 pts, methyl alco-

hol at 11.8 1 pt. SeO₂ is sol in 23.0 pts acetone at 15.3 ⁵

1 pt. SeO, is sol, in 90.0 pts acetic acid at 129 ° (de Coninck, C. R. 1906, 142,

Traces dissolve in acetic anhydride. Sol. in phenyl mercaptan. (Hinsberg, A. 1890. 260. 40.) Insol in pure CaHa. (Clausnizer, A. 1879, 196, 271)

See Selenious acid.

Selenium trioxide, SeO.

Not obtained in a puic state. (Cameron See Selenic acid.

Selenium dioxide hydrobromic acid, SeO₂, 4HBr Decomp. at 55° (Ditte, A. ch. (5) 10.

Decomp. at 55 ° (Ditte, A. ch. (5) 10. 82.) SeO₄, 5HBr. Decomp. at 65 ° (Ditte, A. ch. (5) 10. 82.)

Selenium dioxide hydrochloric acid, SeO₂, 2HCl.

Decomp. at 26° SeO₂, 4HCl. Decomp. at 0°. Sol in H₂O without evolution of gas (Ditte, A. ch (5) 10, 82)

Selenium dioxide sulphur trioxide, SeO₂, SO₃.

Decomp. violently by H₂O. (Weber, B 19. 3185.) Composition may be (SeO)SO₄ (?)

See Selenyl compounds.

Selenium diphosphide, P₂Se.
Ses Phosphorus monoselenide.

Selenium tetraphosphide, P₄Se. See Phosphorus semiselenide.

Selenium monosulphide, SeS.
Insol in H₂O and ether. Sol in CS₂.

Decomp. by alcohol. (Ditte, C R 73, 625, 660.)
Other compounds of Se and S are probably mixtures of the two elements

Selenium disulphide, SeS₁.
Compound of this formula is a mixture of SeS and S. (Ditte, C. R. 73, 625, 660.)

Selenium sulphoxide, SeSO₂. Decomp. by H_2O Sol. in fuming H_2SO_4 , onc. H_2SO_4 . Sol. m_1SO_4 or 1 806 sp. gr without decomp. (Weber, Pogs. 156, 531.) Decomp. by H_2O_7 sol. in H_2SO_4 . (Divers and Shumosé, B. 17, 858).

Seleniuretted hydrogen, H₂Se. See Hydrogen selenide.

Selenoarsenic acid.

Potassium selenoarsenate, KAsScs+2H₂O. Only sl. sol. in cold H₂O; sol. in warm H₂O with decomp.; more stable in KOH+Aq. (Clever, Z. anorg 1898, 10. 132.)

Sodium selenoarsenate, Na₂A₃Se₄+9H₅O. Very sol. in H₂O; very unstable. (Szarvasy, B. 1895, **28**, 2658) Selenoarsenious acid.

Sodium selenoarsenite, Na₂AsSe₂+9H₂O. Moderately sol. in H₂O. (Clever and Muthmann, Z. anorg. 1895, **10**, 139.)

Selenobismuthous acid.

Potassium melaselenobismuthite, Bi₂Se₈, K₂Se
or KBiSe₈.

Insol. in cold dil HCl+Aq. Sol. on warming, with evolution of H.Se. (Hilger and van Scherpenberg, Mitt. Pharm. H. 4)

Selenocyanhydric acid, HSeCN. Known only in aqueous solution.

Ammonium selenocyanide, NH₄SeCN. Very deliquescent, and sol. in H₂O.

Barium —, Ba(SeSCN)₂. Very sol. in H₂O.

Lead —, Pb(SeCN)₁.

Sl sol in cold, sol, with sl. decomp. in boiling H₁O. Insol, in alcohol.

Mercurous ----, Hg₂(SeCN)₂.

Mercuric ----, Hg(SeCN)2.

Sl sol in cold H₂O Easily sol. in MCN; MSCN, or MSeCN+Aq, also sol. in hot HgCl₂+Aq. (Cameron and Davy, C. N. 44, 83)

Decomp by hot H₂O. (Rosenheim, Z. anorg. 1909, 63. 276.)

Mercuric potassium ——, Hg(SeCN)₂, KSeCN. Easily sol in H₂O. Sl. sol. in cold alcohol, (Cameron and Davy, C. N. 44, 63)

Mercuric selenocyanide chloride, Hg(SeCN)₂, HgCl₂.

Sol, in boiling H₂O and in abs, alcohol, Decomp. by long boiling with H₂O. (Rosenheim and Pritze, Z. anorg. 1909, **63**, 276.)

Platinum potassium — (Potassium platinoselenocyanide), K₂Pt(SeCN)₄. Sol. in H₂O and alcohol. (Clarke, B. 11,

Sol. in H₂O and alcohol. (Clarke, B. 11. 1325.)

Potassium ----, KSeCN.

Very deliquescent, and sol. in H₂O with absorption of heat. More sol. in H₂O than KSCN. Sol. in alcohol.

Potassium --- mercuric bromide, KSeCN, HgBr₂.

Sl. sol. in cold, more easily in hot H₂O or alcohol. (Cameron and Davy, C. N. 44. 63.)

KSeCN, HgCl2. As the bromide.

Potassium - mercuric iodide, KSeCN, Hgl: SI sol. in cold, easily in hot H2O or alcohol

Potassium - mercuric sulphocyanide, KSeCN, Hg(SCN)2.

Sl. sol. in cold, much more in hot HaO or alcohol, Somewhat sol, in ether, (Cameron and Davy.)

Silver ----, AgSeCN Insol. in H₂O. Almost insol. in NH₄OH+ Aq or cold dil. acids Quickly decomp by hot cone, acids

Sodium ----, NaSeCN Very sol. in H₄O.

(Cameron and Davy)

Selenomolybdic acid.

Potassium selenomolybdate, 5K2O, 6SeO2, 17MoO3.

Readily sol. in H₂O without decomp. (Gibbs, Am Ch. J 1895, 17, 177)

Selenopentathionic acid.

Sodium selenopentathionate, NacSaSeOs. A dil solution may be boiled for some time without change (Norris and Fay, Am. Ch. J. 1900, 23, 121.)

Selenophosphoric acid.

Ammonium selenophosphate, 2(NH₄)₂O, P₂O₅, 2SeO₅+3H₅O Sol. in H2O with decomp (Weinland, B. 1903, 36, 1402.)

Potassium selenophosphate 2K2O, P2O6, 2SeO6+3H2O Sol. in H2O with decomp. 3 5K₂O, P₂O₅, 5SeO₂+5.5H₂O. sol, in H₂O. (Weinland.) Easily

Rubidium selenophosphate, 2Rb2O, P2Os, 2SeOs+3H2O Sol, in H2O with decom (Weinland.)

Triselenophosphorous acid.

Potassium triselenophosphite,

K₂HPSe₂+2½H₂O. Decomp. by moist air and dil. acids, sol in conc. KOH+Aq ; sl sol. in cold, easily sol. m hot H2O (Muthmann, Z. anorg. 1897, 13. 198)

Potassium selenocyanide mercuric chloride, Selenosamic acid, HSeO2NH2 Known only in its salts.

> Ammonium selenosamate, (NH4)SeO2NH2. Deliquescent Decomp, slowly by H2O into (NH₄)₂SeO₂.

1 pt is sol, in 116 pts, cold alcoholic ammonia at 12° More sol, in hot alcoholic ammonia. Sl. attacked by cold HCl or HNOs. (Cameron and Macallan, C. N. 1888, 57, 163.)

Ammonium hydrogen selenosamate, NH,H(SeO2NH2)2.

Deliquescent. Sol in 14 pts. alcohol at 14° (Cameron and Macallan, Proc Roy. Soc 44, 112.)

Selenostannic acid.

Ammonium selenostannate, 3SnSe₂, (NH₄)₂Se $+3H_{1}O.$

Sol. in H₂O. (Ditte, C. R. 95, 641.) Platinum potassium ----, K2Şe, 3PtSe, SnSe2. Insol in hot or cold H:O, NH,OH, or

KOH+Aq Not attacked by hot HCl+Aq (Schneider, J. pr. (2) 44, 507.) Platinum sodium --- Na₂Se, 3PtSe, SnSe₂

Properties as the corresponding K salt. (Schneider)

Easily sol. in H₂O. (Ditte, C. R. 95. 441.) Selenosulphantimonic acid.

Sodium selenosulphantimonate, Na₂SbSeS₃+ 9H:O.

Sol. in H₂O (Hofacker, A. 107. 6.) Na₈SbS_{1.8}Se_{2.5}+9H₂O Somewhat sol, in H₂O. (Pouget, A. ch 1899, (7) 18, 564.)

Selenosulphantimonous acid.

Potassium ----, K₂SnSe₂+3H₂O

Potassium selenosulphantimonite, Sb. S. Sc. K 10 +4H 2O. Sol. in H₂O. (Pouget, A. ch. 1899, (7) 18. 563.)

Sodium selenosulphantimonite, Na₂SbS_{1.5}Se_{1.5} +9H₂O.

Sol in H₂O. (Pouget, A. ch. 1899, (7) 18. 564.)

Selenosulpharsenic acid,

Potassium selenosulpharsenate, 3K, As, Se, +12H₂O.

Very unstable in the air. Very sol. in H₂O. Fairly stable in aqueous solution. Decomp by acids (Clever, Z anorg 1895, 10. 134)

Sodium selenosuipharsenate, Na, AsS, Sc+ SH.O.

Decomp. by acids; stable in dry air. (Messinger, B. 1897, 30, 801.) 3NasS, AsiSe₄+18H₂O Quite sol, in H₂O;

quite stable in air. (Clever, Z. anorg. 1895, 10. 140.) Na₄As₂S₆Sc₄+16H₂O, Sl. sol. in H₂O; de-

comp. by acids (Messinger, B. 1897, 30,

Na,As,S;Se+16H₂O. Stable in dry air; easily sol. in H₄O; decomp. by acids. (Mes-singer, B. 1897, 30, 800.) Na,AsS₃Se₁+9H₂O. Decomp in ag solution by dil. acids. (Messinger, B 1897, 30.

802.) NaAsSSea+9H₂O. Sol in H₂O, decomp. by aq acids, hydroscopic, (Messinger,)

Selenosulphophosphorous acid.

Potassium selenosulphophosphite. 2K48. P₂Se₂+5H₄O.

Sol, in H₂O, decomp. by acids. (Muthmann, Z, anoig 1897, 13, 198,)

Selenosulphostannic acid.

Ammonium selenosulphostannate, (NH₄)₈S. 3SnSe2+3H2O Easily decomp (Ditte, C. R. 1882, 95.

643)

Potassium --- K.SnSc.S+3H.O. Very easily sol. in H2O. (Ditte, C R 95. 641.)

Sodium ---. Na₂SnSe₂S+3H₂O. Sol, in H2O. (Ditte, C. R. 95. 641)

Selenosulphoxyarsenic acid.

Sodium selenosulphoxyarsenate, Na. AsO. SSc. +10H₂O.

Easily sol, in H₂O but solution rapidly decomp (Messinger, B 1897, 30, 798.) Na₄As₂S₂SeO₄+24H₂O Sol. in H₂O.

(Messinger.) Na₂As₂SeS₂O₄+20H₂O. Stable in dry air. Sl. sol in H2O; decomp, by dil. acids (Messinger)

NaAs2S1Se2O1+20H2O. Ppt. (Messinger.) NaAssS:Se2Os+36H2O. Decomp. by aq acids; sol. in H2O; quite stable. (Messinger.)

Selenosulphur trioxide, SeSO. See Selenium sulphoxide.

Selenosulphuric acid, H.SeSO. Known only in its salts.

Potassium selenosulnhate, K-SeSO, +zH-O Deliguescent in moist air; decomp by H.O. (Rathke, J pr 95. 1)

Selenotrithionic acid, H2S2SeO4.

Known only in solution, which is stable in dark (Schulze, J pr. (2) 32, 390.)

Barium selenotrithionate. Sol in H₂O. (Rathke)

Potassium —, $K_2SeS_2O_6$. Sol in H-O with gradual decomp. (Rathke

J. pr 95. 8; 97. 56.)

Diselenotrithionic acid, H₂SSe₂O₄. Exceedingly unstable. (Schulze.)

Selenovanadic acid.

Lithium selenovanadate, 4Li₂O, 6V₂O₄, 5SeO₂ +30H2O Very sol in H₂O. (Prandtl and Lustig, Z

anorg, 1907, 53, 401.)

Potassium selenovanadate, 2K2O, 3V2Os, 12SeO2+12H2O. (Prandtl and Lustig.)

3K₂O, 5V₂O₆, 16SeO₂+40H₂O. and Lustig 4K₂O, 6V₂O₃, 21SeO₂+37H₂O (Prandtl

and Lustig)
5K₂O, 10V₂O₄, 26SeO₂+43H₂O. (Prandtl

Sodium selenovanadate, 4Na₂O, 6V₂O₅, 5SeO₂ +20H.O

Very sol, in H₂O Solution decomp gradually. (Prandtl and Lustig) 2Na₂O, 7V₂O₄, 10SeO₂+13H₂O. (Prandtl and Lustig.) 2Na2O, 7V4Os. 12ScO+45H+O, and +90H.O (Prandtl and Lustig.)

Selenoxvarsenic acid.

Ammonium selenoxvarsenate, 2(NH₄),O. 2SeO₅, As₂O₆+3H₂O.

Sol in H₂O with decomp. (Weinland, B. 1903, 36, 1403.)

Barium sodium selenoxyarsenate.

BaNaAsO₂Se+9H₂O Ppt (Weinland, Z. anorg, 1897, 14, 56.)

Potassium selenoxyarsenate, 2K₂O, 2SeO₂, $As_2O_6 + 3H_2O$

Sol. in H2O with decomp (Weinland and Barttlingck, B. 1903, 36, 1403.)
7K₄O, 10SeO₃, 2As₂O₅+11H₂O. Ver
m H₂O. (Weinland and Barttlingck.) Very sol.

3K2O, As2Ses+10H2O. Easily decomp. by

moisture Very sol m H₂O. (Clever, Z sanorg 1895, 10. 126)

Rubidium selenoxyarsenate, 2Rb₂O, 2SeO₃, As₂O₄+3H₂O

Sol in H₂O with decomp (Weinland and Barttlingek)

Sodium selenoxyarsenate, Na₂AsSeO₂.
Fairly stable in air and in ag solution.

(Wemland, B 1896, 29, 1010.) Na₃AsSeO₃+12H₂O Stable in the air when pure; sol. in H₂O with decomp (Weinland, Z anorg 1897, 14, 50)

Na₄As₅eO₅+12H₂O. Very sol m H₂O, very unstable (Szarvasy, B. 1895, 28, 2657.) 3Na₄O₅, 3Na₅O₅, 48O₄+50H₂O. Easily sol. in H₂O. Solution may be boiled for a long time without decomp. (Clever, Z. anorz. 1895, 10, 135.)

Selenoxyphosphoric acid.

Ammonium triselenmonoxyphosphate,

(NH₄)₃PSe₃O +10H₂O Ppt (Ephraum, B 1910, **43**, 280)

Ammonium hydrogen biselenmonoxyphosphate, (NH₄)₅H(PSe₅O)₂+18H₂O. Put. (Ephraum)

Barrum hydrogen diselendroxyphosphate, BaHPSe₂O₂+14H₂O₂

Decomp in moist air (Ephraim)

Potassium selenoxyphosphate, KaPSes.sO: 4

+H₂O

Decomp by HNO₃ Insol in alcohol and
ether (Ephraim)

Sodium monoselentrioxyphosphate, Na₃PSeO₃+20H₂O.

Decomp by H₂O (Ephraim)

Sodium triselenmonoxyphosphate, Na_sPSe₃O +10H₂O.

Sol, in H₂O, Decomp, in aq. solution.
Easily sol, in cone NaOH+Aq. (Muthmann, Z. anorg. 1897, 13, 199)

Selenyl bromide, SeOBr₂ (?). (Schneider, Pogg 129, 450)

Selenyl bromide sulphur trioxide, SeOBr₂, SO₃ (Prandtl, Z. anorg. 1909, **62**, 242.)

Selenyl chloride, SeO₂Cl₂.

Easily decomp by H₂O (Weber, Pogg. 118, 615.)

Selenyl sulphur chloride.

See Sulphoselenyl chloride.

Selenyl stannıc chloride, 2SeOCl, SnCl, Extremely deliquescent. Completely sol. in H₂O. (Weber, B. A. B. **1865**, 154.)

Selenyl titanium chloride, 2SeOCl₂, TiCl₄
Decomp, by H₂O with separation of an insol residue Decomp by NH₄OH+Aq (Weber, B. A. B 1865, 154)

Sesquiauramine. See Sesquiauramine.

Sesquihydraurylamine, (HOAu), N, NHs.

Silicic acid, S1O2, xH2O.

See also Silicon dioxide.

Silicic acid is sol in 1000 pts. pure H₂O, (Kirwan) When pptd from alkali silicates+Ag by

CO₂, 0 021 pt. SiO₂ remains dissolved in 100 pts H₂O (Struckmann, A. 94, 341.)

When pptd. as above, 100 pts. H₂O dassolve 0.09 pt 80; n 3 days; 100 pts H₂CO₃+d₄O dassolve 0.078 pt 80; n 3 days But if heated much more dissolves, the elly itself becoming laquid, such jelly containing 2.49 pts 80; to 100 pts H₂O. This solution is not pptd by considerable quantities of alcohol, but come (NH₂)₂CO₃, NaCl₃ or CoCl₃ pts. 20 days generally considerable quantities of alcohol, but come (NH₂)₂CO₃, NaCl₃ or CoCl₃ pts. 20 days generally considerable quantities of alcohol, but come (NH₂)₂CO₃, NaCl₃ or CoCl₃ pts. 20 days (NH₂)₂ pts. 20 days (NH₂)₂ pts. 20 days (NH₂)₃ pts. 20 days (NH₂)₄ pts. 20 days (NH₂)

Solutionary in H₃O depletas on the fault. Of H₂O, in presence of which the slide add h₂O, in presence of which the slide add h₃O if H₃O is present in sufficient quantity to retain the slide acid, much more will remain in solution than can be dissolved by digesting the gelatinous acid with H₃O afterwards. 1 pt SiO₂ can thus be held in solution by SiO₂ pits H₃O. Presence of NH₂OH; (NH₃)₁CO₃, or NH₂CI (in solutions of which SiO₂ is the present the contraction of th

Silicic acid from the coagulation of the colloidal form (see p. 802) is sol in about 5000 pts. H₂O when formed from a 1 $^{\circ}C_{\nu}$ solution, and 10,000 pts. when formed from a 5 $^{\circ}C_{\nu}$ solution, but is insol after being dried. (Graham, A 121.36)

Since and is more sol in dil, adde than in HAO, because, when add is added in excess to moderately dil K-SOU-1-Aq, the solution remans clear, but if only enough and is remained to the contraction of the contraction of early will gradually segmate out. If a cid is added to one R-SSO₁-4Aq, silten and switch added to one R-SSO₁-4Aq, silten and switch per added to the contraction of the contraction of the per contraction of the contraction of the contraction of the siltent contraction of the contraction of the contraction of the siltent obstanced with HOL, INNO, HSO₄, or HC2H2O2+Aq. These solutions may dissolve a neutral salt until saturated and no silicic acid will separate out. Therefore it is the acid that holds the SiO, in solution, and not the H.O. (C. J. B. Karsten, (1826) Pogg. 6, 353.)

Even CO. has the power of holding SiO.

in solution. (Karsten, l c.) Solubility in acids of silicic seid of Struckmann (see above), 100 pts dil HCl+An of 1,088 sp. gr. dissolve 0.0172 g. SiO₂ in 11 days,

100 nts. H.O sut. with CO2 dissolve 0.0136 g. SiO2 in 7 days. Silicic acid obtained by passing SiF, into H₂O is sol, while still moist in 11,000 pts cold, and 5500 pts boiling HCl+Aq of 1,115

sp gr. (Fuchs, A. 82, 119.)

Silicic acid at the moment of separation (as in dissolving cast-iron, steel, etc.) is abundantly sol in aqua regia (3 pts. HCl+An of sp gr. 1.13 and 1 pt, HNO₃+Aq of sp. gr. 1.33). (Wittstein, Z. anal. 7, 433.)

The sq. solution obtained by the hydrolysis of ethyl silicate is more stable in acids+ Ac or alkalı than in pure H.O. (Jordis, Z.

anorg 1903, 35. 16.)

NH₄OH+Aq dissolves considerable freshly precipitated silicic acid. (NH₄)₄CO₂ only a very little (Karsten, Pogg. 6. 357.)

Dry or ignited SiO2 is sol. in NHOH+ Ag. 100 pts. NH₄OH+Ag containing 10% NH dissolve: 0.714 pt. SiO from gelatinous silicic acid; 0,303 pt. from artificially dried sulicio acid; 0.377 pt. from amorphous SiO2: 0.017 pt, from quartz. (Pribram, Z anal. 6. 119)

NH₄OH+Aq dissolves 0.382 pt. SiO₂ from dry silicic acid. 0 357 pt. from ignited SiO:

0.00827 pt. from quartz. (Souchay, Z. anal 11, 182.)

Silicic acid precipitated from alkali silicates +Aq with CO2 is sol as follows, 100 pts. TAQ what Col is sol as follows. 100 pis. pure H₂O dissolve 0.021 pt SiO₂; 100 pis. (NH₄)₂CO₃ + Aq contaming 5% (NH₄)₂CO₃, 0.020 pt.; 100 pis. contaming 1%(NH₂;CO₃, 0.062 pt.; 100 pis. NH₄OH + Aq contaming 19.2% NHs, 0.071 pt; 100 pts. containing 1.6%, 0.0986 pt. (Struckmann, A. 94. 341.)

100 pts. NH4OH+Aq (10% NH4) dissolve of: crystallised SiO2, 0.017 pt.; amorphous SiO₂, ignited, 0.38 pt.; amorphous 3SiO₂, 4H₂O, 0.21 pt.; amorphous silicic acid in form of jelly, 0.71 pt Upon evaporation no ppt is formed, even when 80 mols, SiO, are present to 1 mol. NH₂. (Wittstein, J. B. 1866, 192) Sol. in KOH or NaOH+Aq, especially if

warm. (Dumas.)
Sol. in K₂SiO₂ or Na₂SiO₃+Aq. (Fuchs.) Easily sol. in boiling Na₂CO₃+Aq, separat-

mg as a jelly on cooling. (Pfaff.) NH₄Cl or other NH₄ salts ppt. SiO₂ from

solution in Na₂CO₂+Aq
100 pts. Tl₂O in H₂O dissolve 4.17 pts. ming, Jena. Zeit. 4. 36.)

Sol. in butvl amine (Wurtz, A. ch (3) 42. Not more sol. in H2O containing sugar than

in pure H.O. (Petzholdt, J. pr. 60, 368.)

Soluble solacic acad.

Colloidal form by dialysis Solutions con-taining 4.9% SiO₂ may be evaporated until they contain 14% SiO₂. The SiO₂ is separated from its solution thus made in many ways—
(1) By standing This happens the more easily the more conc. the solution is, and is hastened by heat. A 10-12% solution gelatinizes at ordinary temp, in a few hours, and immediately upon heating. A 5-6% solution may be kept 5-6 days, a 2% solution, 2-3

months, and a 1% solution may be kept 2 or more years without gelatinizing (2) When the solution is evaporated to dry-

ness in vacuo at 15° a transparent glass is left which is insol in H₀O.

(3) The coagulation of colloidal silicic and is accelerated by powdered graphite and other indifferent bodies, and it is brought about in a few minutes by a solution of the alkali carbonates, even when only 1/10,000 pt, of the carbonate is present (Graham, A 121. 36.) (4) Congulation is also brought about by

nassing CO₂ through the solution. (Liebig.) CO2 does not cause coagulation. (Maschke. Congulation is not caused by HaSO4, HCl.

HNO₃, HC₂H₂O₂, H₂C₄H₄O₅, or NH₄OH+ Aq, or by neutral or acid salts+Aq. (Graham. NaCl and Na2SO4+Aq coagulate the solu-

tion. (Maschke.) Alcohol, sugar, glycerine, or caramel do

not coagulate Soluble Al-O.H. Fe-O.H. albumen, and

casem precipitate soluble SiO2. (Graham, A. 121, 36.) The felly from colloidal SiO_{*} is very sol, in slightly alkaline H₂O 1 pt NaOH in 10,000 pts. H₂O dissolves in an hour at 100° an amt. of the relly corresponding to 200 pts. SiO.

(Graham.) Other colloidal forms.

Various solutions of silicic acid may be obtained as follows.

The jelly formed when SiF, is passed through H2O dissolves in a large amt. of H2O and SiOs separates out on evaporation This is still sol in H2O, but is made insol, by evaporation with HCl or H₂SO₄. (Berzelius.)

When SiF₄ is absorbed by crystallized

H₄BO₅, and the HF and H₄BO₅ removed by

a large excess of NH₄OH+Aq, a silicic and is obtained which is very sol. in H₂O. solution is not decomp by boiling, but on evaporation an insol, powder remains. (Berzelius, A. ch 14, 366.

When K2S1O2+Aq is precipitated by CuCl2, the precipitate washed and dissolved in HCl+ amorphous SiO2 in 24 hours' boiling. (Flem- Aq, the solution treated with H2S filtered and | boiled, a solution of silicic acid is obtained

which gelatinizes with KOH or NH4OH+Aq. guti), is converted thereby into double sili-(Doven, A. ch (3) 21. 40.)

When Na2SiO4+Aq containing at most 3% SiO. is saturated with HCl+Aq of 1.10 sp gr., and Na2SiO2 added until the solution is slightly opalescent and carefully warmed to 1899, II. 1063.) 30°, a gelatinous mass is obtained which will dissolve in H₂O by 12-16 hours' boiling if treated before being exposed to the au. The solution is slightly opalescent. The solution can be evaporated by heat until it contains 6% SiO₂ In a vacuum or over H₂SO₄, solutions containing 10% may be obtained. The electric current, freezing, alcohol, or H-SO. precipitate or coagulate the solution (Kuhn. J. pr 59. 1

SiS2 with H2O gives off H2S, and forms a solution of SiO2 which, after dilution, can be kept for months. But when boiled or evangrated, or when a sol silicate is added, it becomes gelatinous It leaves an insol. residue when evaporated to dryness. (Fremy,

A ch. (3) 38 314)

Various forms of silicic acid have been described as definite compounds of SiO. with varying amounts of H2O, but it is doubtful if any true definite compounds exist, as the percentage of H2O varies with the moisture of the air to which it is exposed. (See Ebelmen, A. ch. (3) 16, 129; Dovers, A. ch. (3) 21, 40, Fuchs, A. 82. 19, Merz, J pr. 99, 177; van Bemmelen, B. 11, 2232, etc.)

Silicates.

The silicates are insol, in H₂O with the exception of the alkalı salts, and these are sol only when the ratio of the base to the acid is above a certain limit.

Aluminum silicate, 2Al₂O₂, S₁O₂+10H₂O Mm. Collunte. Sol in acids, with forma-

tion of SiO2, xH2O. Becomes transparent in H₀O and is decomp

4Al₄O₅, 3SiO₅. Mm Dittrice.

Al₄O₁O₅ SiO₂ Min Andalusile, Chastolite,

Insol, in Sillimannite, Disthene or Cuanite. Insol. in acida +5-7 H₂O. Mm. Allophane. Completely

sol. in dil. acids; decomp. by conc. acids with separation of SiO2, vH2O. 2Al2O2, 3S1O2+4H2O. Min Pholerite. In-

sol in HNO₂+Aq +6H₂O. Min Glagerite. Al₂O₃, 2SiO₂+2H₂O. Min Kaolin, Clay. Insol. in dil HCl or HNOs+Aq; moderately dil. H.SO. +Ag, when heated to evaporation. extracts Al₂O₃ and some SiO₂, and leaves the rest of the SiO2, sol, in boiling Na2CO2+Aq. All the Al2O1 is dissolved by heating with 5-8 pts. H,SO,+1pt H2O until H4SO, evaporates, and then treating with H₂O

Quickly attacked by H₂SiF₃+Aq. Decomp. by boiling KOH+Aq, with resi-

due of SiO: (Rammelsberg KOH+Ac extracts 1/2 of the SiO, (Mala-) cianate.

cates of K and Al, which are sol. in HCl+Aq (Lemberg)

Solubility in KOH and HCl increased if first heated to a low glow (Glinka, C C.

Collordal clay (Schlösing, C R 79, 473) +4H₂O. Hallousite Decomp, by acids 4Al₂O₄, 9SiO₂+12H₂O. Min. Porcelain

clay from Passau Al₂O₃, 3SiO₂+3H₂O₃ Min Razoumoffskine.

Al₂O₃, 4SiO₂+7H₂O. Min Monimoril-nute Not decomp by HCl+Aq, but by lonste hot H₂SO₄.

+H₂O Min Puranhullite. Not decomp. by H.SO.

+3H₂O. Mm. Anauxite

2Al₂O₅, 9S₁O₂+6H₂O Min Cimolite
"Aluminum silicate" is insol in acetone. (Naumann, B 1904, 37, 4328); ethyl acetate (Naumann, B. 1910, 43, 314.)

Aluminum barium silicate, Al-O2, BaO, 2SiO2 +H₂O (?).

Min Edingtonite. Decomp, by HCl+Aq with separation of SiO₂, xH₂O

5Al₂Ô₃, 4BaO, 10SiÕ₂. (Fremy and Feil, R 85, 1033.) 2Al₂O₃, 4BaO, 7SiO₂ Min Barulite Very sl. decomp. by alkalı carbonates+Aq (Blomstrand)

Aluminum barium potassium silicate, Al₂O₃, (Ba, K₂)O, 5SiO₂+2H₂O.

Min. Harmotome When finely powdered. difficultly decomp by HCl+Aq with senaration of pulverulent SiO2, zH2O. AlsO2 (Ba.K2)O. 4SiO2. Min Hagalophane. Scarcely attacked by acids.

Aluminum cæssum silicate, H₂C₃₂Al₃Si₄O₁₅ (?) Min, Pollucite, Very sl. decomp. by HCl+

Aluminum calcium silicate, Al₂O₃, CaO, 2SiO₂. Min Anorthite Completely decomp, by HCl+Aq with separation of pulverulent SiO2, xH20.

Min Barsowite. Instantaneously decomp. by HCI+Aq, with separation of gelatinous SiO₂, xH₂O +4H₂O.

Min. Gismondite. Gelatinizes with HCl+Ag WIEL TAMES AND ASSIO2+8H₂O. MILL Scoresce. Easily sol. in HCl+Aq, without formation of relatinous SiO₂. Sol. in H₂C₂O₄+Aq with

pptn, of CaC2O4. Decomp. by, and sol to a certain extent in H₂CO₂+Aq, and decomp. also even by pure

(Rogers, Am J. Sci. (2) 5, 408.) +5H2O. Min. Levyn. Decomp. by acids without gelatinizing

Al₂O₃, CaO, 4SiO₂+3H₂O. Mm. Capor-ante. Leonhardite Efflorescent. Easily

sol in acids, with moth, of gelatinous SiO₂,

Al-O. CaO, 4SiO, +4H.O. Mm. Laumon-(vic. Easily gelatimizes with incl. of Aq, but is not affected by H.SO, unless hot

bite. Gelatinizes with cone HCl+Aq. (Goldschmidt, Z. anal 17, 267

Scarcely decomp by builing conc HCl+ q. (Janusch and Tenne, Miner, Jalub 1880, 1. 43)

+6H2O. Stilbite. Heulambte. Slowly but completely gelatinized by HCl+Aq. AlaOs, 2CaO, 3SiOo+HoO Min Prehate Imperfectly decomp, by acids before ignition,

but easily afterwards Al₂O₅, 3CaO, 3SiO₂ Lime alumina garnet ossubrite. Partially decomp by acids Grossulmule.

before ignition, but easily afterwards 2Al-O_z, CaO, 2S₁O₂+H₂O Margarite. Not attacked by aculs

3Al₂O₃, 4CaO, 6SiO₂+H₂O Zoisite. Par-3Al₂O₃, 4Cao, mac₂, 1 tially decomp by HCl+Aq 08iO. Mm. Motomic Completely sol in HCl+Au

Aluminum calcium ferric silicate, 2Al₂O₂, 4CnO, Fc₂O₂, 6SiO₂+H₂O

Mm. Epidote Only sl attacked by HCl+ An before ignition

Aluminum calcium ferric magnesium silicate, H. (Ca, Mg) o(Ab, Fco) oSissO(47. Min Vesiwianite, Idiocrase Only partially decomp, by HCl+Au before ignition.

Aluminum calcium iron, etc., silicate borate, H₂R¹¹₈(Al₂, B₂)₂S₁₈O₃₂

Min Azimite Not attacked by HCl+Aq before ignition.

Aluminum calcium magnesium silicate, $4H_4Cn_2Mg_3Sh_0O_{24}, 5H_2CnMgAh_0O_{12} = 15Ah_2O_{3}, 13CnO, 37MgO, 24SnO_2 +$ 13H₂O.

Mm Clintonite. Completely decomp by HC1+Aq without gelatinization. 3H4Ca2Mg9ShO24, 4H2CaMgAl4O12 Not attacked by HCl+Aq Brendisite. Slowly decomp by boiling cone. H₂SO₄
5H₁Ca₂Mg₂Si₂O₂, SH₂CaMgAl₆O₁₂ Min
Xanthophyllite Very sl decomp by hot HCl+Aq

3(Ca, Mg)O, Al₂O₄, 2S₁O₂, Min, Gehlenge Easily decomp by acids,

Aluminum calcium potassium silicate, (H, K) CaAl₂Si₂(Î₁₂+6H₂O.

Min. Chabaste Decomp. by HCl+Aq. (K₂, Ca)Al₂Si₄O₁₀+4H₂O. Min Zeagonste. Completely sol in HCl+Aq.

Aluminum calcium sodium silicate, 3Al₂O₃, 8CaO, Na₂O, 9StO₂,

Min. Sarcolite Decomp. by acids.

2Al₂O₁, 12(Ca,Na₂)O, 9SiO₂ (?) fellable Gelatinized by acids Na₂CaAl₂Si₂O₁₂ (?) Min. Margarite Na₂CaAl₂Si₁₀O₂₈ Min. Faujasite. Min Mellilite

comp by HCl+Aq. (Na, Ca)Al,S14O12. Mm. Gmelinte. Decomp. by HCl+Aq

De-

comp. by HCi+Aq. (Cn, Nn₂)Al₂Sh₀O₁₀+6H₂O Mm. For estle Difficultly decomp. by HCl+Aq. Difficultly decomp. The Mm. Thom-

sonte Gelatinizes with HCl+Aq xNa₂Al₂Si₆O₁₆, yCaAl₂Si₂O₈ Min Oligo-

clase, Labradorite. Sl decomp by saids, more easily the larger the amt, of Ca present Aluminum calcium sodium silicate sulphate.

2(Na2, Ca)Al2(SiO4)2, (Na2, Ca)SO4 Min Haum. Gelatinizes with HCl+Aq

Aluminum glucinum silicate, Al₂O₃, 3GlO, 6S1O2

Min Revil Emerald. Not decome by acids, excepting partially by H2SO4 after being ignited Al₂O₃, 2GlO, 2S₁O₂+H₂O. Min. Euclase Not attacked by acids.

Aluminum ferrous silicate, Al-Fe(SO.).

Mm. Garnet SI decomp by HCl+Aq. H.FeAl.SiO. Min Chluriford. Not attacked by HCl+Aq. Completely decomp

by H.SO. Al-O. 3FeO, 3SiO.+3H.O Min. Voigitie

Aluminum iron lithium potassium silicate. K2L12Fe4Al12S120O61

Min Zimualdite Sl decomp by acids Aluminum ferrous magnesium silicate,

6Al₂O₃, 3(Mg, Fe)O, 6S₁O₂+H₂O, Mm, Staurolite Not attacked by acids,

Aluminum ferric magnesium silicate, 2(Al₂, Fe₂)O₃, 2MgO, 5SiO₂

Min Corductite SI attacked by acids +xII2O. Min Esmarkite, Chlorophyllite.

Aluminum ferrous manganous silicate, Al-O. FeO, 2MnO, 3SiO, Mm. Partschimte

Aluminum ferrous sodium, etc., silicate borate, $R_t^i(Al_t)(B_2)S_{14}O_{20} + \hat{R}_t^{ij}(Al_2)_2(B_2)S_{14}O_{20}$ etc

Min. Townmaline Not decomp. by HCl+ Aq; very sl decomp by H₂SO₄

Aluminum lithium silicate, Al₂O₃, Li₂O, 5SiO₂. Not attacked by acids. (Hautefeuille, C R 90, 541.)

Al₂O₁, Li₂O, 6SiO₂. Al2O4, Lt2O, 4SiO2, [Min. Spedimens. Not

attacked by acids.

attacked by acids

Aluminum lithium potassium silicate. (Li, K)1, AligS116O62.

Min Lendolite Si decomp by acids.

Alummum magnesium silicate, 5Al+O+. 4MgO. 2SiO.,

Min Samhnine

Phlogopite

Aluminum magnesium potassium silicate. 2:H4K2AleSieO24, yMg12SieO21.

Min. Lepidomelane Easily decomp by HCl or HNO++Ag, with residue of a skeleton of S1O2. 3Al₂O₈, 12MgO, 2K₈O, 12SiO₈+H₂O Min. 7Al₂O₃, 35MgO, 7K₂O, 36S₁O₂, Mm

Aluminum manganous silicate, 2Al₂O₂, 6MnO. 6S1O2.

Not decomp by very dil HCl+Aq. (Gorgeu, C R 97, 1303)

Aluminum potassium silicate, Al₂O₈, K₂O, S10:

Very slowly decomp, by cold H₄O, 12% is dissolved by hot H2O Sol in alkalı hydroxides + Aq, but msol in carbonates + Aq. K₂O, Al₂O₃, 2S_iO₂. Insol in cold H₂O, but 6% dissolves on boiling Sol in dil, acids, Insol in alkali hydroxides or carbonates + Aq (Gorgeu, A ch (6) 10 45)

(Cotigea, A. cn. 16), 20 40)

K.O. Al₂O₃, 3810.;+3H₂O. Eastly sol in HNO₂+Aq (Deville, A ch. (3) 61. 313.)

K.Q. Al₂O₃, 4SiO₄. Min Leucite

Lecomp by HCl+Aq with separation of pul
sol in dl. HCl+Aq (v. 7H₂O 17H₂O erulent S1O2. +4H₂O. Ppt. (Deville, C R 54. 324)

H.K.AleSieO24 Min. Muscoute, "Mica" Not attacked by HCl or H₂SO₄+Aq. K₂Al₂Si₂O₁₇+3H₂O. Min. Pinite. Partly decomp. by HCl+Aq.

K.Al-ShO10 Min Orthoclase Feldspar Scarcely attacked by acids. Slowly sol. in H₂SO₄ or HCl+Aq when finely powdered (Rogers)

Aluminum notassium sodium silicate. $K_2Al_2(SiO_3)_4$, $5Na_2Al_2(SiO_4)_2$ (?)

Min Nepheline. Decomp. by HCl+Aq.

Aluminum silver silicate, Al-Ag₄Si₄O₆ Insol. in NH4OH+Ag. (Silber, B. 14, 941)

AlaAg2Na4SlaO4. As above (Silber)

Aluminum sodium silicate, Al₂O₃, Na₂O, SiO₂, Insol in cold H₂O, but 38-40% dissolves in hot H₂O (Gorgeu) Al₂O₃, Na₂O, 2S₁O₂ Insol, in cold H₂O,

boiling H₂O dissolves 1-2% Sol. in HCl or HNO₃ diluted with 10-20 vols. H₂O. Insol 82.)

4ALO, 3Li-O, 30SiO, Min Petalate Not in alkali hydroxides or carbonates+Aq. (Gorgeu, A ch (6) 10, 145.) Not attacked by H₂O. (Silber, B 14. 941.) +3H2O. Easily sol in HCl+Aq (v.

Ammon.) Al₂O₄, Na₂O, 3S₁O₂+3H₂O Decomp by (Deville, A. ch. (3) 61, 326)

Al₂O₃, Na₄O, 4SiO₂+3H₂O Easily sol. in HCl+Aq. (v Ammon) 2Al₂O₃, 3Na₃O, 3SiO₂. Insol in cold H₂O, but 27-30% dissolves on boiling. (Gorgeu.) Mm Paragonite.

H₄Na₂Al₆Sl₄O₂₄. M comp. by conc. H₅SO₄. Na.Al.S14O12+2H2O Min. Readily decomp. by HCl+Aq Na₂Al₂Si₄O₁₀+2H₂O Min Natrolite. Sol.

in H₂O with separation of SiO₂. Also sol in H.C2O4+Aq Na2Al2S15O16. Min Albite Not attacked by acids

Aluminum sodium silicate chloride,

3Na₂Al₂(S₁O₄)₂, 2NaCl Min Sodalite Easily decomp by HCl, and HNO2+Aq

Alummum sodium silicate sulphate.

3Na2Al1(SiO4)2, Na2SO4 Mm, Nosean Easily decomp by HC1+

Aluminum sodium silicate sulphide. See Ultramarine.

Somewhat sol, in boiling H₂O Completely sol in dil. HCl+Aq (v Ammon) +6H₂O, or 7H₂O Boiling H₂O decomposes, and dissolves about ½ the weight of this substance. (le Chatelier, C R 92, 931.) 2BaO, SiO₂ Decomp. by H₂O into BaSiO₈ +6H2O (Laudrin)

Bismuth silicate, 2Bi₂O₈. 3SiO₂

Min Eulutite. Decomp. by HCl+Aq.

Bismuth ferric silicate, BioFesStsO17. Min Bismuthoferrite.

Boron calcium silicate.

See Borate suicate, calcium, and Silicate borate, calcium.

Cadmium silicate, CdSiOs+116H-O.

Sol in HCl+Aq with deposition of pulverulent SiO₂, xH₂O (Rousseau and Tite. C. R 114, 1262)

Cæsium sılıcate, Cs.SiOz.

(Kahlenberg, J. phys. Chem. 1898, 2.

Calcium silicate, CaSiO.

Slowly sol in HaO: sol in HCl+An Sol, in about 100,000 pts. H₄O (Gorgeu,

A. ch. 1885, (6) 4. 550) 100 cc. sat. aq. solution of air dried calcium silicate contains 0.0046 g. CaO = 0.0095 g. CaSiO, at 17° (Weisberg, Bull. Soc.

1896, (3) 15. 1097.) 100 cc. sat. solution of air dried calcium silicate in 10% sugar solution at 17° contains 0.0065 g. CaO = 0.0135 g. CaSiO₄; 20% sugar

solution, 0 0076 g CaO = 0.0175 g. CaSiO₂.

After boiling and filtering hot, 10% sugar solution contains 0.0094 g CaO = 0.0195 g. CaSiO₄; 20% sugar solution, 0.0120 g CaO = 0.0249 g. CaSiO₄ (Weisberg)

Insol in methyl acetate. (Naumann, B.

CaO, 3StO2+2H2O, (H1eldt, J pr 94. 2CaO, 9SiO₂+3H₂O. Ppt.

CaSiO. Min. Wollastonite. Gelatinizes with HCl+Aq CaS12O+2H2O Mm. Okenite. Eastly de-

comp. by cold HCl+Ag when powdered Calcium glucinum sulcate sodium fluoride. (Ca, Gl):0Si:4O42, 6NaF.

Min Leucophane 7(Ca, Gl), St. O., 6NaF Min. Melinophane.

Calcium ferrous silicate, CaSiOs, FeSiOs. Min, Hedenbergite, Puroxene. Sl decomp by acids.

Calcium ferric silicate, CasFe_{*}(SiO_{*}). Min Garnet Sl. decomp by HCl+Aq.

2CaSiOs, 11 Feg(SiOs)s. Min. Szabote SI attacked by HCl+Aq, and still less by H.SO.+Aa.

Calcium ferroferric silicate, 2CaO, 4FeO, Fe₂O₃, 4SiO₂+H₂O = H₂Ca₂Fe₄Fe₂Si₄O₁₈ Min Lievrite, Ilvaite. Easily gelatinizes with HCl+Aq

Calcium ferrous magnesium silicate. (Ca. Fe. Mg)SiO.

Min. Amphibole, Hornblende, Asbestos. Actinolite, Tremolite. Only sl. attacked by

Calcium ferroferric sodium silicate, CaSiOs, FeSiOs, Fe2(SiOs)s, Na2SiOs. Min. Accirite.

Calcium magnesium silicate, CaO, MgO, 4SiO2.

(Mutschler, A. 176, 86.) Ca₄SiO₄, Mg₂SiO₄, Min. Completely sol, in dil. HCl+Aq

Min. Monticellite.

Min. Diopside, Pyroxene. (Ca,Mg)SiO₈. Very sl. attacked by acids

Calcium manganous silicate, CaSiOs, 2MnSiO₁ Min Bustamite.

Calcium potassium silicate. See under Glass.

Calcium sodium silicate, (Ca, Na2, H2)SiO1. Min. Pectolite. Decomp by HCl+Aq. See under glass.

Calcium sodium silicate zirconate. Na₄Ca(S₁,Z_T)₉O₂₁+9H₂O.

Min Wohlevile, Decomp. by HCl+Ag.

Calcium uranyl silicate, 3CaO, 5UO, 6SiO+ 18H.O. Min. Uranophane. Gelatinizes with acids. CaO, 3UO, 3SiO2+9H2O Min Uranotile.

Calcium silicate chloride, 2CaO, SiO₂, CaCl₂. Insol, in HaO or alcohol Sol in HCl+Ao. (le Chatelier, C R 97. 1510.)

Calcium silicate fluoride, 2CaO, 3SiO, 6CaF. (Deville, C. R. 52, 110.)

Calcium silicate potassium fluoride, 4H,CaSi,Oa, KF+4H,O.

Min Apophyllite.. Decomp by HCl+Aq. Calcium silicate stannate. Ses Silicostannate, calcium,

Calcium silicate titanate, CaO, SiO, TiO, (Hautefeuille, A. ch. (4) 4, 154) Min. Twanste. Incompletely decomp. by

Cerous silicate, Cer(SiOs)a More or less attacked by HCl, HNOs, or H₂SO₄+Aq, according to the concentration. (Didier, C R. 101. 882.)

Cerium didymium lanthanum silicate,

HCl+Aq, wholly by H2SO4+Aq

2(Ce,La,D1)2O2, 3S1O2 Min. Cente. Gelatinizes with HCl+Aq.

Cerium glucinum yttrium silicate, (Y,Ce,Gl)₂SiO₅ Mm. Gadolinite. Easily gelatinized by HCl+Aa

Cerous silicate chloride, 2Ce2Os, 3SiO2, $4\text{CeCl}_3 = \text{Ce}_4(\text{SiO}_4)_3$, 4CeCl_3 .

Insol. in H₂O, but slowly decomp thereby. (Didier, C. R. 101, 882.)

Cobaltous silicate, Co2S1O4.

Gelatinizes with HCl+Aq. (Bourgeois, C. R. 108. 1077)

Cupric silicate, CuH2S1O4.

Min Dioptase Sol in HCl, HNO₃, or NH₄OH+Aq with separation of SiO₂. Not attacked by KOH+Aq. CuSiO+2H+O. Min. Chrusocolla, De-

comp. by HCl+Aq +3H₂O. Min. Asperolite, Easily decomp. by HCl+Aq.

"Cupric silicate" is insol, in methyl acetate. (Naumann, B. 1909, 42, 3790)

Cupric silicate ammonia, CuSigOs, 2NHs. Ppt (Schiff, A. 123. 38)

Glucinum silicate, GloSiO4.

Min. Phenacite Not attacked by acids. Glucinum ferrous manganous silicate ferrous

manganous sulphide, 3(Gl, Fe, Mn)2S1O4, (Mn, Fe)S Min. Helmne. Decomp by HCl+Aq.

Iron (ferrous) silicate, Fe-SiO4

Min Fayalite, Gelatinizes with HCl+

Aq. FeSiO₃. Min Grunerite +6H_{*}O Min. Chlorophute 4FcO, SiO₂. (Zobel, Dingl 154, 111.)

Iron (ferric) silicate, Fe₂Si₂O₂+5H₂O. Min. Nontronute Gelatinizes with hot acids.

4Fe₂O₈, 9SiO₂+18H₂O. Min. Hisingerite. 2Fe₂O₂, 9S₁O₂+2H₂O, Min Anthosider-

Iron (ferroferric) magnesium silicate, (Fe, Mg)₈Fe₂Si₂O₁₀+4H₂O Min. Cronstadtite. Gelatimizes with acids.

Iron (ferroferric) sodium silicate, 5Na2SiO2, 2FeSiO₃, 4Fe₂(SiO₃)₃

Min, Aknite Sl decomp. by acids. Iron (ferrous) magnesium silicate, Fe-SiO.

Mg2SiO4 Min. Olivene, Chrysolite, Peridote, Gelatinizes with HCl or H₂SO₄+Aq (Fe, Mg)SiO₂+¹/₂H₂O. Min. Picrophyllule.

+1/H.O. Min. Monradite. (Fe,Mg)SiOs. Min. Bronzite, Hupersthene. Not attacked by acids. xMgSiOs, yFeSiOs. Min. Anthophyllite. Not attacked by acids.

Iron (ferrous) manganous silicate, FerSiO4. MnoSiO. Min. Knebelite. Gelatinizes with HCl+ Λa.

Iron (ferrous) manganous silicate chloride, 7(Fe,Mn)SiO₂, (Fe,Mn)Cl₂+5H₂O Min. Pyrosmalite. Completely decomp. by cone HNO.+Aq.

Iron (ferric) potassium silicate, Fe(SiO₄)₃, K₂SiO₂

(Hautefeuille and Perrey, C R 107, 1150.) Iron (ferric) sodium silicate, Na₂Fe₂Si₄O₁₂. Min, Crokudolite, Not attacked by

acids. Lead silicate.

Insol in acetone. (Naumann, B. 1904, 37. 4329); methyl acetate (Naumann, B. 1909. 42, 3790.) See under Glass.

Lithium silicate, Li₂S₁₄O₁₁ LaSiO.

Li2SiO2 More stable towards H₂O than the other alkalı metasılıcates. (Rieke and Endell, C C. 1911, I. 7) Decomp. by boiling H2O and acids. (Friedel, C. C. 1901, H. 89.) Scarcely attacked by cold H2O. (Friedel, Bull. Soc. Min. 1901, 24 141.)

Insol in ethyl acetate. (Naumann, B. 1904, 37. 3601); methyl acetate (Naumann, B. 1909, 42, 3790.)

Magnesium silicate, $Mg_3Si_2O_7 + 2H_2O$. Min. Serpentine Decomp. by HCl+Aq. more easily by H2SO4 Min Chrysotile

Mg.S1sO10+6H2O. Min. Gymnite, Soap-Decomp. by H2SO4. stone MgSiO₂. Not completely decomp by HCl+Aq. +1/4H2O. Min. Aphrodits. Decomp. by hot ands.

+½H₂O. Min. Picrosmine. +1½H₂O. Sol. in dil. acids (v. Ammon.) Min. Forsterite 3MgO, 4SiO₂+H₂O or 4MgO, 5SiO₂+ H₂O. Min Tale or Steatite. Not at-MgSi₂O₁ sum Take or Steathte. Not attacked by HCl or H₂SO₄+Aq.

MgSi₂O₁+4H₂O Min. Spadaite. Decomp. by cone HCl+Aq.

MgSi₂O₁+4H₂O. Min. Meerschaum. 3/H₂O.

Decomp. by HCl+Aq. "Magnesium silicate," is insol, in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Magnesium potassium silicate, MgO, K₂O, 3SiO₂

Easily sol, in acids with decomp (Du-boin, C. R. 1895, 120, 681)

Magnesium silicate fluosilicate, Mg.St.O. MgsSisF1s. Min Humite. Chondrodite. Gelatinizes with HCl or HaSO4+Aq.

Manganous silicate, Mn₂SiO₄.

Min Tephroite Decomp by HCl+Aq with formation of a stiff jelly. MnSiO₃. Min. Rhodomie, Hermannite Not attacked by HCl+Ag.

 $Mn_4Sl_3O_{10} + 2H_9O$. Min Friedelite

Easily gelatimized by HCl+Aq
"Manganous silicate" is insol in ethyl acetate. (Naumann, B. 1910, 43, 314)

Manganous zinc silicate, (Mn,Zn)₂SiO₄ Min Transtita

Manganous silicate chloride, MnSiOa, MnO, MnCl.

Decomp by H₂O (Gargeu)

Nickel silicate, N12S1O4. Easily decomp by acids. (Bourgeois, C. R.

108, 1077.) Potassium silicate, K-SiOa.

Completely sol. in H₂O. (Ordway, Sill. Am J. (2) 33. 34.) Insol in methyl acetate. (Naumann, B.

1909, 42, 3790) K-StoO. Sol in HoO. Cone, K-StoO6+Aq contains 28% of the salt, and has sp gr 1.25. (Fuchs)

Hydroseopic, Decomp. at once by H₈O, (Morey, J. Am, Chem, Soc. 1914, 86, 222.) K₂Si₃O₄₇, Partially sol in H₂O as K₂Si₃O₄₈+16H₃O Insol, m H₂O (Forch-

hammer)
The K silicates are pptd, from their aqueous solution by alcohol with partial decomp., but less readily than Na silicates.

Na salts (Ordway, Sill Am J (2) 32 155) Solution can be obtained which is perfectly clear when 4128:02 are present to 1K2O, if there are no impurities present (Ordway) The K silicates resemble the Na salts, which see for further data

Potassium hydrogen silicate, KHS12O6

Not readily affected by H_2O , even by treatment at 100° for several hours Decomp. by heating with dil HCl (Morey, J Am. Chem. Soc 1914, 36, 222)

Potassium zinc silicate.

(Duboin.)

Sol. in KOH+Aq. (Schindler) K₂O, 6ZnO, 4SiO₂. Sol. in HCl+Aq. (Du-bon, C. R. 1905, 141, 255) 8K,O, 9ZnO, 17SiO, Sol. in HCl+Aq.

Potassium zirconium silicate, K2O, Z1O2,

Decomp. by HCl+Aq (Melliss.)

Rubidium silicate, Rb-SiO. (Kahlenberg, J. phys. Chem. 1898, 2, 82.). solution of Na₂SiO₂.

Silver silicate, Ag₂S₁O₂.

Decomp. by all acids, sol in NH4OH+Aq. (Hawkins, Sill Am. J. 139, 311.)

Sodium silicate, NasSiO4.

Rapidly decomp. by H₂O Am. Chem Soc 1914, **36.** 224) (Morey, J Insol in methyl acetate (Naumann B. 1909, 42, 3790)

+5, 6, and 8H₂O. Easily sol. in H₂O. +9H₂O. Solubility in ½-N NaOH+

100 ccm, of the solution contain 25,56 g. Na2S1O2+9H2O at 17 5.0

Sp gr. of the solution = 1.129 (Vester-berg, C C 1913. 777.)

100 ccm. of a sat. solution of sodium sili-cate in ½-N NaCl+Aq contain 3 83 g. Na₂SiO₃+9H₂O at 17 5 ° Sp gr. of solution 100 ccm, of a sat solution of sodium silicate

in sat. NaCl+Aq contain 20 64 g Na₂SiO₈ +9II₂O at 17 5° (Vesterberg) Na₂Si₂O₄ Sol. in H₂O.

Slowly decomp by cold H₂O J. Am Chem. Soc. 1914, 36, 223.) (Morey Na S16O11.

Na₃S₁₃O₇ Na₂Si₄O₀. Slowly sol in H₂O +12H2O.

Above compounds are all more or less indefinite

Water glass xNu₂O, ySiO₂+zH₂O. Sol. in H₂O, but solution is decomposed by all weak neids, even CO2. Fused water glass is but little acted on by

cold H₂O, but when pure, easily dissolves in More sol. in H₂O than the corresponding H₂O by long boiling (Ordway, Am. J. Sci. (2) 32, 337.) When the SiO₂ is present in greater proportion than in Na₂O, 3SiO₂, it is very difficult

to dissolve in II.O. Na silicate is less easily sol in H₂O than

the corresponding K compound Solubility of water glass in H₂O is much impaired by earthy impurities, so that traces

have great effect in preventing the solubility. NH, salts decomp, water glass solutions. A solution containing ½% Na₂SiO₂ is scarcely precipitated by NH₄Cl, but easily by NH₄NO₂ (Fluckinger) Precipitated by NH₄OH+Aq as Na₂SiO₄.

Many sodium and potassium salts, especially the chlorides and acetates, form precipitates in solutions of water glass; these precipitates are larger the more concentrated the solution is, and the greater amount of SiO: it contains. Heating hustens the precinitation by chlorides, nitrates, and sulphates, but delays that by acetates. KOH+

Aq does not precipitate.
Cold sat Na₂SO₄+Aq does not precipitate even on heating, but 1 pt. anyhydrous Na₂SO₄

NoNO, dissolved in 1 pt H₀O precipitate NasSiOs+Aq of 1 392 sp. gr., NaNOs in 2 pts H₂O when mixed with a solution of Pptd. water glass, as mentioned above, is N₂-S₁O₂, as above, if the two are present in much more sol in H₂O than ordinary water equal vois, causes no ppt in the cold, but glass, and dissolves in H4O without decomp. solidifies when warmed to 54°, and redis- For numerous further details, see articles by solves on cooling rapidly, but if 2 vols, NaNO, Ordway in Sill Am. J. Sci. vols 32 and 33; +An me present to 1 vol. Na-SiO+An also Storer's Diet.

but by increasing the amt of NH₄OH+Aq to 2 pts. the greater pt. of the Na₂SiO₂ is pared at 18° is 1 2600, and I litre contains 4 5 pptd, but redissolves on heating to 90°, separ-gramme-equivalents 12Na₂SiO₃ ating again on cooling When 1 pt NH₄OH. Sp. gr of sat solution of Na ating again on cooling When I pt NH,OH Sp. gr of sat solution of Na₂O, 3 4SiO, is +An is added to 6-8 pts Na₂SiO₂+An I 306, and 1 litre contains 3.7 gammeand heated to 3°C, a clear liquid is formed (equivalents ±/Na₂O, 3 4SiO₂) (Kohlwhich separates into two layers at ordinary rausch, Z. phys Ch 12, 773)

The most sol K, Na, Li, and NH₄ sults separate SiO₂ from conc. Na₂SiO₂+Aq. Most of these salts lose this power by dilution, but the NH4 salts and KSON keep this power until the solution is very dil This is especially the case with NH4Cl and NH.NO.

Bromine, chlorine, propyl amine, ciecsote, phenole dissolved in glycurine, chloral hy-diate, dil ulbumen solution, and glue solution ppt SiO2 from Na2SiO2+Aq; but sugar, dextrine, glycerine, urea, sl alkaline solution Z. anorg. 1903, 35. 90) of mea nitrate, comme, nicotine, saponine, convolvuline, jalappine, and colophonium 38rO, 8iO₂ dissolved in KOH+Aq do not ppt 8iO₂ (Vauquelin) (Fluckinger, Arch Pharm (2) 144. 97

Alcohol ppts water glass as such from its aqueous solution, even when this is very dil. but there is some decomposition, the alcohol tending to hold in solution a portion of a silicate more alkaline than that previously dissolved in H2O, while the ppt formed con-

tains more SiO₂ than the original silicate
Many neutral K or Na salts ppt. water dass as such when added to aqueous solutions Like alcohol, these solutions exert a decomposing action, the ppt being always more siliceous than the original silicate cate yields a larger deposit than K silicate: when a silicate of one base is pptd. by a salt of the other, both bases enter into the composition of the ppt, and the relative proportion of Na and K is very nearly the same as in the average of the liquids mixed.

Different salts have very unequal pptg power, the acetates and chlorides being particularly efficient Heat increases the pptg power of the chlorides, sulphates, and nitrates, and diminishes that of the acetates The alkalı acetates are somewhat more efficient than the chlorides, but NaC2H2O2 gives only a slight ppt. with Na₂O, 2¹/₄SiO₂, even after some time

NaNOs has but little effect on the more alkaline silicates.

Na₂CO₃ has no pptg power, and Na₂AsO₄ or NasPOs have very little effect

MHSO₄, MHCO₂, M₂HPO₄, M₂HAsO₄ ppt SiO₂. NH₄ salts also have that effect

the precipitate dees not disappear on cooling.

Sp gr of water glass solution containing
If 1 by NH_O(H+Aq (0 921 sp gr)) is 14-15% SiO₅, 13-14% Na₂O₅, and 70-72%
added to 10 pts. Na₂SiO₄Aq, no ppt forms, [H₂O is 130-135] (Hager, Comm. 1883.) Sp. gr of sat. Na₂SiO₂+Aq freshly pre-

Sodium zirconum silicate, Na₂O, ZrO₂, SıO₂.

Decomp by hot H₀O or HCl+An (Gibbs. Pogg. 71, 559.) Na₂O, SZrO₂, SiO₂+11H₂O Decomp by H₂SO₄ (Melhss.)

Strontium silicate, SrSiO₃

(Stein, Z. anorg. 1907, 55. 164)

+H_{*}O Sol in H_{*}O. (Jordis and Kanter, Sr₂SiO₄ (Stein, Z. anorg 1907, 55. 167) 2SrO₁ SiO₂. Sl sol in H₂O Sol in acids.

Thallous silicate, 3Tl₂O, 10SiO₂.

100 pts of a solution of Tl₂O dissolve 4 17 pts SiO₂ by 24 hours' boiling. Sol. in H₂O. (Flemming, J. B 1868, 251)

Thorium silicate, ThO2, SiO2.

Yttrium silicate, Y₁O₃, SiO₂.

Attacked by KHSO4 Insol in acids (Troost and Ouvrard, C. R 105. 255.) +11/2H2O. Min Thorite Decon Decomp. by

ThO₂, 2SiO₂ Insol, in acids or KHSO₄ (T and O.) Attacked by HCl, HNO2, or H2SO4+Aq

(Duboin, C R. 107. 99)

Zinc silicate, ZnSiO1. (Stem, Z. anorg 1907, 55, 165) Zn2SiO, Min Willemite. Gelatinizes with HCl+Aq; sol, in KOH+Aq

Decomp, by cold sat. citric acid+Aq (Bolton, C. N. 1881, 43, 34) +H₂O Min, Calamine. Sol. in HCl+Aq with separation of gelatinous SiO2, 2H2O.

Sol. in HC₂H₂O₂+Aq, and KOH+Aq Insol in NH₄OH+(NH₄)₂CO₂+Aq Na₄SO₄ has still less power than NaNO₄ (Brandhorst, Zeit. angew. Ch. 1904, 17, 513.) ZnO, 3SiO₂ (Borntrager, Ch Z. 1893, 8.

186)

Zirconium silicate, SiO., ZrO.,

Min. Zurcon. Insol. in acids, except H.SO. in which it is very slowly and at sol 3SiO2, 2ZrO2 Min. Auerbachite,

" Silicium oxide," SiaHoOs.

(Geuther, J. pr. 95, 430) This substance is identical with silicoformic anhydride according to Otto-Graham's Handb anorgan.

Siliciuretted hydrogen. See Silicon hydride.

Silicobromoform, HSiBra.

Fumes on air, decomp by H.O.

Silicochloroform, HSiCla.

Decomp by H.O and alcohol Completely muscible with CS2, CCl4, CHCl4 C.H. SiCl. SnCl. TiCl, and AsCl. (Ruff, B 1905, 38, 2230)

Silicoethone

See Silicon hydride.

Silicofluoroform, SiIIF.

Decomp. by H₂O. Decomp. by NaOH and abs alcohol with evolution of hydrogen. Decomp. by abs. ether. Sol. in toluene. (Ruff. B. 1905, 38, 63)

Silicoformic anhydride, $H_sS_{1s}O_s = (HS_1O)_sO$

ch. 1906, (8) 7, 140.) Somewhat sol. in II₂O. Acids, even conc HNO.+Ag, have no action, except HF, which dissolves it easily with evolution of hydrogen, Solutions of alkalı hydrates, ammonium hydrate, and alkalı carbonates+Ag also dissolve with evolution of hydrogen, (Ruff and Wöhler, A. 104, 101.)

Silicoiodoform, HSiI.

Decomp. by H₂O. Sol. in CS₂. (Friedel. A. 149. 96.) Miscible with CaHa and CS. (Ruff. B. 1908, 41, 3739)

Silicomethane, SiH. See Silicon hydride.

Silicomethyl chloride, SiH,Cl.

Decomp by H₂O and by alkalies. (Besson and Fournier, C. R. 1909, 148, 556.)

Silicomethylene chloride, SiH2Cls. Decomp. by H₂O and by alkalies. (Besson

and Fournier, C. R. 1909, 148, 556.)

Silicomolybdic acid, SiO2, 12MoO2+ 26H2O.

Very easily sol, in H₂O and dil acids. (Parmentier, C. R. 94. 213)

Forms a solution with a little ether, which corns a sommon with a little ether, which separates into two layers by addition of H₂O or more ether. (Parmentier, C. R. 104, 686.) (Copaux, Bull Soc Min. 1906, 29, 79) +32H₂O. Decomp. by alkalı (Asch, Z. anorg 1901, 28, 293.)

+33H4O. (Copaux, Bull Soc Min. 1906. 29, 79

Aluminum silicomolybdate, 2AloO3, 3(SiOo, 12MoO_1+93H_O.

(Consux, A. ch. 1906, (8) 7, 118.)

Aluminum sodium silicomolybdate, 4(Na₂O, Al₂O₃, 2S₁O₂), Na₂MoO₄+7H₂O. Sol in HCl+Aq. (Thugutt, Z. anorg 1892. 2, 87.)

Ammonium silicomolybdate.

Sol in H₀O (Parmentier, C. R. 94, 213) Barium silicomolybdate, 2BaO, SiO, 12MoO,

+16H.O. (Copaux, A. ch. 1906, (8) 7, 118.) +22H₂O Sol. in 4 pts. H₂O (Copaux, Bull. Soc. Min. 1906, 29. 80.) +24H₂O. Efflorescent Very sol. in H₂O.

(Asch, Z. anorg 1901, 28, 282) +29H₂O Efflorescent (Copaux, A. ch. 1906. (8) 7. 118.)

Cadmium silicomolybdate, 2CdO, SiO2, 12MoOa+22HaO. Very unusually sol, in H2O. (Copaux, A.

Cæsum silicomolybdate.

Sl. sol. in H₂O. msol in silicomolybdic acid + Aq.

Calcium silicomolybdate, 2CaO. 8iO. 12MoO3+24H2C Efflorescent. Very sol. in H₂O. (Asch, Z. anorg. 1901, 28. 282.) +26H₂O. (Copaux, A ch. 1906, (8) 7. 118.)

+31H₂O. (Consux.) Chromium silicomolybdate, 2Cr2O2, 3(SiO2, 12MoO₂)+93H₂O.

(Copaux.)

Cupric silicomolybdate, 2CuO, SiO₂, 12MoO₃ +31H₂O. Very sol. in H₂O. (Copaux.)

Lithium silicomolybdate, 2Li₂O, SiO₂, 12MoO₂

+29H₂O Very sol. in H₂O. (Copaux)

Magnesium silicomolybdate, 2MgO, SiO2, 12MoO2+30H2O.

(Asch, Z. anorg. 1901, 28, 282.) +31H₂O Very efflorescent and sol in H₂O. (Copaux.)

Potassium silicomolybdate, 2K₂O, SiO₂, 12MoO+16H+0

Efflorescent, Very sol, in H₂O (Asch, Z anorg 1901, 28. 282. 1 5K₂O, SiO₂, 12MoO₃+14H₂O (Asch.) Sol in H.O with decomp (Copaux)

Potassium silver silicomolybdate, 3Ag₂O, 2(SiO₂, 12MoO₃)+14H K.O. 12MoO₂)+14H₂O, +22H₂O, +30H₂O

Sol, in H-O with decomp Sol unchanged in dil mother liquor. (Copaux, Bull, Soc. Min 1907, 30, 293.)

Rubidium silicomolybdate. Sl. sol in H₀O.

Silver silicomolybdate, 1.5AgoO. SiOo. 12MoO₃+11H₂O

Sol. in cold H.O. (Asch.) 2Ag₂O, SiO₂, 12MoO₃+12H₂O D by boiling H₂O Sol in NH₄OH+Aq Decomp 4Ag₂O, SiO₂, 12MoO₃+15H₂O (Asch.)

Sodium sulcomolybdate, 2Na,0, SiO, 12MoO+14H+O.

Conaux 2Na₂O, SiO₂, 12MoO₈+21H₂O Very sol H₂O. Efflorescent. (Asch.)

+22H₂O. (Copaux) 15Na₂O, SiO₂, 12MoO₃+17H₂O, (Asch.) 3Na₂O, 2(SiO₂, 12MoO₃)+17H₃O (Co-

Strontium silicomolybdate, 2S1O, S1O2, 12MoO₂+26H₂O. (Copaux.)

Zinc silicomolybdate, 2ZnO, SiO2, 12MoO2+ 31H.O Extremely sol. in H.O (Copaux)

Silicon, Si.

Amorphous. Insol. in H₂O Sol. before igniting in cold HF. Insol. in other mineral acids and aqua regia. Sol. in conc. KOH+Aq. When amorphous S₁ is ignited, it becomes insol, in HF and KOH+Aq.

Amorphous Si is sol. in aqua regia and in a mixture of HNO, and HF (Vigouroux-Moissan, C R. 1895, 120. 367.) Insol. in liquid CO₁. (Buchner, Z. phys

Ch 1906, 54. 674) Insol. in liquid NH2. (Gore, Am. Ch J.

1898, **20**. 830) *Graphitic*, Sol. in HNO₃+HF. (Berzelius, A 49. 247.)

Crystalline Insol, in all acids, except a mixture of HF and HNOs. Sol, in moderately conc. KOH+Aq even when cold. (Devalle) Although it has been generally understood that crystallized Si is not attacked by HF. Aq. Gaseous HF readily attacks cryst Si. (Newth, C. N. 1896, 72, 287)

Si cryst. from Ag & incompletely sol. in According to the temp, to which the Ag Si mixture has been heated, the following percentages of Si are dissolved in HF: 970 58.02%; 1150°, 27.66%; 1250°, 19%; 1470°, 16%. (Moissan and Siemens, C. R. 1904. 138. 657, 1300.)

Insol in liquid NH2. (Goie, Am, Ch. J. 1898, 20, 830.

Silicon amide, Si(NH2)4.

Unstable, decomp. by H2O and partially decomp. by HNO1; sol. m most organic solvents (Lengfeld, Am. Ch J. 1899, 21, 531.) Decomp by H₂O; insol m liquid NH₂. (Vigouroux, C. R. 1903, 136, 1670)

Silicon traboride, SiB.

Slowly attacked by HNO: Decomp, by hot cone H-SO, or fused KOH. (Moissan. C R. 1900, 181, 142.)

Silicon hezaboride, SiB.

Readily attacked by HNO₂. Slowly decomp by hot conc H₂SO₄ Not attacked by fused KOH. (Moissan, C. R. 1900, **131**, 142.)

Silicon tribromide, SigBra. Decomp. by KOH+An

(Friedel and Ladenburg, A. 203. 253 HSiBra Ses Silicobromoform.

Silicon tetrabromide, SiBr.

Rapidly decomp, by H2O; decomp, in several days by H2SO4. (Friedel and Ladenburg, A. 147. 362)

Silicon bromide, SizBra. (Besson, C R 1910, 151, 1056) Si₂Br_{16.} (Besson.)

Disilicon hydrogen pentabromide, HSi.Br. or Si.Br. (?) Decomp by H₂O (Mahn, Zeit, Chem. (2) 5, 279.)

Silicon tetrabromide ammonia, SiBr4, 6NH₃, Decomp. by H₂O. (Lay, Dissert 1910.) SiBr₄, 7NH₂ Decomp. by H₂O. (Besson, C. R. 110, 240)

Silicon bromoiodide, SilBr₁

Decomp by H2O. Sol in CS2. (Friedel, B. 2. 60) SiBr₂I₂. As above. (F.) SiBil. As above (F)

Silicon bromosulphide, SiSBr2.

Decomp in moist air. Violently decomp. by H2O. Sol in CS2 and other organic solit is now found that this applies only to HF+ | vents (Blix, B 1903, 36. 4218.)

Silicon carbide, SiC.

Very stable, insol in H-8O; and HNO: sol, in fused KOH af red heat. (Moissan, Bull. Soc 1894, (3) 11, 997)

Cryst, modification. Insol. in acids; sol in fused alkalies. (Moissan, C. R. 1893, 117.

Insol in all acids, sol, in molten alkalies (Muhlhacuser, Z. anorg 1894, 5, 116.) See Silundum.

Silicon subchloride, SiCl2 (?). Decomp by H₀O (Troost and Haute-

femile, A. ch (5) 7, 463)

Silicon trichloride, St.Cr.

Decomp by H₂O and alkalies. (Troost and Hauteicuille, A ch (5) 7, 459) SiHCla. See Silicochloroform.

Silicon tetrachloride, SiCl. Decomp by H₂O and alcohol.

Silicon actachlande, Si-Cla "Perchloraticonronane," Decomp. by H.O. (Gattermann, B 1894, 27, 1947.)

Silicon chloride, St.Cl.o.

(Besson, C. R. 1909, 149, 36.) St₄Cl₂. "Perchlorsilicobutane." Decomp by H₄O Fumes in the air (Besson.) St₄Cl₁₄. "Perchlorsilicohexane." Decomp "Perchlorsilicobutane." Decomp. by H.O (Besson, C. R. 1909, 148, 841.)

Silicon trichloride ammonia, SuCla, 5NH2 Slowly decomp by H₂O (Besson, C. R. 110, 516.)

Silicon tetrachloride ammonia, SiCl4, 6NH3. Decomp, by HsO (Persoz, A ch. 44, 319.)

Silicon tetrachloride hydrazine, SiCl4, 4N2H4. Extremely hygroscopic and quickly decomp by H2O. (Lay, Dissert 1910.)

Silicon chlorobromide, SiClaBr

burg, A 145, 187) SiCl₂B₁₂, As above (Friedel and Ladenburg.) SiB1 Cl. Decomp by H₂O, (Reynolds, Chem. Noc. 51, 590)

Silicon chlorobromide ammonia, 28iClaBr, 11NH₈

Dec mp by H₂O. (Besson, C. R. **112**. 788.) SiCl₂Br₂, 5NH₃. As above (B.) 2SiClBr₃, 11NH₃. As above (B.)

Silicon chlorohydrosulphide, SiCl.SH.

Decomp by H2O or alcohol. (Pierre, A. ch. (3) 24. 286.)

Silican chlorosodide, SiClaI.

Decomp by H₂O (Besson, C. R. 112, 611.) SiCl₂I₂. As above. (B.) SiClI₈ As above (B.)

Silver chloroiodide ammonia, 2SiCl.J. 11NH. (Besson) StCLL, 5NH,

Silicon chloronitride, SixNcCl. (Schützenberger, C. R. 92, 1508.)

Silicon chlorosulphide, Si2Cl2S2

Decomp. violently by H₂O. Sol. in CCl., (Besson, C. R 113, 1040.) SiSCl₂. Violently decomp. by H₂O; sol in CS. (Blix, B 1903, 36, 4223.)

Silicon defluoride, SiF.(?) Decomp. by H₄O or NH₄OH+Aq. (Troost and Hautefeuille, A ch (5) 7. 464)

Silicon tetrafluoride, SiF. Abundantly absorbed by H.O with decomp 100 pts H₂O absorb 140.6 pts. SiF, m 24

hours (Berzelius); 124.1 pts SiF4 in 24 hours (Davy) Absorbed abundantly by HNOs+Aq (Kuhlmann, A. 39, 319)
Absorbed abundantly by alcohol, without

separation of silicic acid. if the alcohol contams less than 8% of water,
Sol. in conc. HF+Aq Absorbed by ether
Sl sol, in naptha, and oil of turpentine.

Silicon hydrogen fluoride, H.S.F. See Bluosilicic acid

Silicon fluoride with MF. See Fluosilicate, M.

Silicon fluoride ammonia, SiF4, 2NH3. Decomp by H.O. (Davy.)

Decomp by H₂O. (Friedel and Laden-Silicon hydride, SiH₄

Insol in H₂O Decomp by KOH+Aq. Not changed by NH₂OH+Aq. H₂SO₄+Aq. or HCl+Aq Si₂H₂. "Silicoacetylene"

Sol in 20% NaOH+Aq. with evolution of H (Bradley, C N. 1900, 82, 149)
SuH₄ "Silicoethane" (Lebeau, C. R.

1909, 148, 44) Sl. sol. in H2O. Best solvent is ethyl or thosilicate. (Moissan, Bull Soc. 1903, (2) 29. 443)

Silicon nitrogen hydride, SiHN, Decomp. by H₂O and NaOH. (Ruff, B.

1905, 38, 2241.)

Silicon hydroxide, SiO2, aH2O.

See Silicic acid.

S12H2O4. See Silicooxalic acid. St.H.O. See Silicoformic anhydride. See Silicone. St.H.O.

Silicon mude, (Si(NH)2.

Decomp. by H₂O (Vigouroux, C R 1903, 136, 1671)

Silicondumide, Si(NH)2.

Decomp, by H₂O with evolution of much heat. (Bhx, B. 1903, 36, 4224)

Silicon imide hydrochloride, Si(NH2)2, 2HCl. Rather stable in an. (Blix, B. 1903, 36. 4225)

Silicon dilodide, Sil.

Insol in CS₂, CHCl₃, C₄H₆, and SiCl₄. (Friedel and Ladenburg, A. 203, 247)

Silicon traiodide, Stale

Decomp, with H₂O even at 0° 100 pts. CS2 dissolve 19 pts Stala at 19°; 26 pts. Si₂I₆ at 27°. (Filedel and Ladenburg, Bull Soc (2) 12, 92) HSil₈ See Silicoiodoform.

Silicon tetraiodide, SiI4.

Decomp by H₂O. Acts on alcohol and 1 pt. CS₂ dissolves 2.2 pts SiI₄ at 27° (Friedel, A. 149, 96.)

Silicon nitrade, SaN.

Partially decomp, by boiling with cone H2801. Not attacked by dil, acids with the excen-

tion of HF. Decomp by HF Partially decomp by boiling with alkalies+

(Weiss, Z. anorg 1910, 65. 89.) ₁₂N₂. Partially decomp by boiling with cone H.SO. Not attacked by dil. acids with the ex-

ception of HF. Decomp by HF. Partially decomp by boiling with alkalies+ Aq (Weiss, Z anorg. 1910, 65. 89) St₃N₄. Not attacked by H₂O.

Partially decomp, by boiling with conc Not attacked by dil acids with the excep-

tion of HF Decomp, by HF. Partially decomp by boiling with alkalies+ Ac (Weiss, Z anorg 1910, 65, 89.)

Silicon nitrimide, SigNaH.

"Silicam"

Sol in HF, and rapidly in KOH+Ao. (Schutzenberger, C. R. 92, 1508.) Decomp, by cold, more rapidly by hot H_2O and much more rapidly by alkalies. Sol. in $H_1 + A_2O$ by twee boiling, 2.43% of moderately finely and much more rapidly by alkalies. Sol. in $H_1 + A_2O$ both tatacked by HNO_3 . Decomp by one co boiling, 9.7% of uniquited hyalite by conc. H₂SO₄. (Lay, Dissert. 1910.)

Not decomposed by H₂O. Sol in hot alkalies+Aq with decomp.

(Bhy, B. 1903, 36, 4227.) Silicon suboxide, St.O.

(Hongschmid, M. 1909, 30, 509.)

Silicon monoxide, SiO.

Much less easily sol, in HF+Aq but more casily sol malkalies+Aq than SiO₂. (Potter, C. C. 1907, II 1952.)

Silicon dioxide, SiO. See also Silicic acid.

(a) Crystalline Min. Quartz. Tridymite Insol in H₂O, and acids, except HF Sl. sol, in boiling K₂CO₃+Aq, and KOH+

Ag. see below. Insol. in cold KOH+Aq; extremely slowly sol in boiling KOH+Aq (Fuchs)

Sol, in HF with formation of SiF4 and H.O. Insol in sugar +Aq, contrary to assertion Verdeil and Rissler. (Petzholdt, J pr. 60. 368)

(b) Amorphous Min Opal, etc

Insql. in H2O, and acids except HF 100 pts H₂O containing CO₂ dissolve 0 078 pt amorphous SiO2 (Maschke); 0 0136

pt (Struckmann 100 pts. cold HCl+Aq of 1 088 sp. gr dis-

solve 0 017 pt SiO₂ (Struckmann.) 100 pts HCl+Aq of 1.115 sp ga dissolve in the cold 0 009 pt SiO₁, and 0.018 pt. on boiling 100 pts. NH₄OH+Aq (containing 10% NH₈) dissolve 0 017 pt. quartz and 0 38 pt. ignited SiO₂ (Pribram, Z anal 6, 119)

Sol. in boiling K₂CO₃ or Na₂CO₃+Aq. separating out on cooling as a gelatinous mass. (Pfaff, Schw J 29, 383) The different torms of SiO2 have different degrees of solubility in K₂CO₂+Aq Unignited amorphous SiO₂ from SiF₄ dissolves most readily, then come opal, ignited amorphous SiOs, fused SiO2, and tridymite, quartz powder is the most difficultly soluble (Rose) similar behaviour is shown to KOH+Aq

Opal is much more sol in KOH+Ag than quartz, and hyalite is the least sol. of the varieties of opal. (Fuchs)

Opal is easily sol in KOH+Aq, even after intion (Schaffgotsch, Pogg 68, 147.) Rammelsberg (Pogg 112 177) made the ignition following experiments on the solubility of SiO. in KOH+Aa The KOH+Aa used con-

tamed 1 pt. KOH to 3 pts H2O. 1 pt of the powdered mineral was boiled half an hour in a silver dish with such an amount of the KOH+Aq that 20 pts KOH were present 7.75% of milky white quartz was dissolved

by repeating the above process three times. 12 8-15% of gray hornstone was dissolved

remained undissolved after thrice boiling;

21% of ignited hyalite remained undissolved after thrice boiling; 7.21% of semi-opal of 2.101 sp. gr. remained undessolved after three boiling; 18.5-19.2% of impure semiopal of 2.101 sp. gr. remained undissolved after thrice boiling, 79.9% of chalcedony of 2.624 sp. gr. remained undissolved after three boiling; 6.12% of chalcedony of 2 567 sp gr remained undissolved after fourth boiling; 14.4% chrysophrase of 2 623 sp. gr. remained undissolved after once boiling; 49.41% of chrysophrase of 2.635 sp gr. remained undussolved after thrice boiling, 6.62% of flunt of 2.608 sp. gr. remained undissolved after twice boiling, 38.1% of fireopal of 2 625 sp. gr remained undissolved after fourth boiling; 28.6% of fire-opal of 2.625 sp. gr. remained undissolved after fifth boiling.

Insol. in liquid CO2 (Büchner, Z phys Ch. 1906, 54, 674)

Insol, in acctone (Naumann, B, 1904, 37. 4329.) The solubility of crystals of quartz on different faces in HF has been determined by Lebrun. (Belg Acad, Bull, 1913, 953.)

Silicon thorium oxide. See Silicate, thorsum.

Silicon zirconium oxide. See Silicate, zirconium.

Silicon oxychloride, SigOCls. Decomp, by H₂O and alcohol

with CS2, SiCl., CCl., CHCl., or (Friedel and Ladenburg, A 147, 355.) Si₄O₄Cl₁₀; Si₄O₄Cl₈, Si₆O₁₀Cl₁₂; (Si₂O₃Cl₂)n. Si₄O₇Cl₂. Sol, in above oxychloride (Troost and Hautefeuille, Bull Soc. (2) 35.

Silicon oxyfluorhydrin, Si₂O_{3D}.

(Landolt, A. Suppl. 4, 27.) Silicon selenide, SiSe2.

Decomp, by H₂O or KOH+Aq. (Sabstier, C. R. 113, 132.) Silicon sulphide, SiS,

Sol. in H2O with decomp. Acts on alcohol or ether in the cold. (Fremy, A. ch. (3) 38. SiS. Decomp. by H₂O; easily sol. in dil.

alkalies, (Schützenberger, Bull, Soc. (2) 38.

Silicon sulphodiamide, SiS(NH2)2. Slowly decomp, in the air. Insol. in cold liquid NH₂. (Blix, B 1903, 36, 4219.)

Silicon sulphobromide. See Silicon bromosulphide. Silicon sulphochloride. See Silicon chlorosulphide.

Silicon sulphourea, SiS(NH2)2

Slowly decomp in air Decomp, by H₂O Insol. in cold liquid NH2. (Blix, B. 1903. 36. 4219.)

Silicone, StaH4O3.

Insol. in H2O, but gives off hydrogen when warmed therewith. Not attacked by chloring or nitric or sulphuric acids even on heating, but is gradually sol in HF. Decomp by alkalies, even by the most dil, NH₄OH+Aq. with greatest violence and evolution of heat and hydrogen gas Insol. in alcohol, SiCl.

and nydrogen gas Iniso. In account, SiCl₄, PCl₃, or CS₂. (Wohler, A 127, 257.) H₃S₃O₂, Decomp. by H₃O and by dil. acids. Violently decomp by furning HNO₂. Not attacked by come H₃SO₄. Very slowly decomp by cone HCl, rapidly by alkalies+ Aq and by pyridine (Honigschmid, M. 1909, 30, 509)

Miscible

1909, 30, 509) discolor. SiCls, PCls, and CS. Not attacked by acids except HF. (Donath and Liesner, C. C. 1909, H 1707). H₁₅H₂O₃. Senreely attacked by acids but easily decomp. by hot H₂O, NaCH+Ad, etc. but not by NH₁OH+Aq (Kolb, Z. anorg. 1909, 64, 538.)
HaSla₀J₈ (Kolb). HaSla₀O₃ (Kolb)

Silicomesoxalic acid, Si(OH):(SiO.OH): Insol, in cold H2O, decomp by hot H2O

(Gattermann, B. 1899, 32, 1116)

Silicooxalic acid, Si₂H₂O₄=Si₂O₂(OH)₂. Decomp by bases with evolution of hydrogen. Takes up HNOs to form compound, but not HCl or H.SO. (Troost and Hautefeuille, A. ch (5) 7. 463)

Silicophosphoric acid, SiO2, P2O8. Slowly decomp. by H₂O. Unchanged by alcohol Exists also in two modifications which are not attacked by H₂O (Hautefeuille and Margottet, C. R. 99, 789)

SiO₂, 2P₂O₅+4H₂O. Decomp. by moist air. Sol in H₂O at 0°, but decomp by warming to ordinary temp. (Hautefeuille and Margottet, C R. 104. 56.)

Calcium silicophosphate. See Phosphate silicate, calcium.

Silicostannic acid.

Calcium silicostannate, Ca(Si,Sn)O₃. Not attacked by acids, KHSO4, or alkalies +Aq. (Bourgeois, Bull, Soc (2) 47, 297)

Silicodecitungstic acid, H₃W₁₉SıO₃₆+ 3H₂O = 4H₂O, SiO₃, 10WO₃+3H₂O. Sometimes sol in H₂O, but usually separates out gelatinous silica. (Marignac, A.

ch (4) 3. 55)

See also Silicoduodecitungstic acid.

Ammonium silicodecutungstate, (NH₄)₈W₁₈SiO₃₆+8H₄O

Sol in 4 5 pts. H₂O at 18° Very sol in hot H₂O (Marignac, A ch. (4) 3. 59.) (NH₄)₄H₂W₁₀SiO₃₄+9H₂O. (Marignac.)

Ammonium potassium ——, (NH₄)₃K₄HS₁W₁₀O₃₄+15H₂O. (Marignae.)

Barium —, Ba₄SiW₁₀O₅₈+22H₂O Precipitate. Insol in H₂O. (Marignac)

 $\begin{array}{lll} \mbox{Potassium} & \longleftarrow, & K_0 \mbox{Si} \mbox{W}_10 \mbox{O}_{20} + 17 \mbox{H}_2 \mbox{O} & \\ \mbox{Sol}_1 \mbox{in} & \mbox{H}_2 \mbox{O}_{10} & \mbox{Marignae} & \mbox{Sol}_1 \mbox{in} & \mbox{H}_2 \mbox{O} & \mbox{In} & \mbox{H}_2 \mbox{O} & \mbox{In} & \mbox{H}_2 \mbox{O} & \mbox{In} & \mbox{H}_2 \mbox{O} & \mbox{In} & \mbox{H}_2 \mbox{O} & \mbox{In} & \mbox{H}_2 \mbox{O} & \mbox{In} & \mbox{H}_2 \mbox{O} & \mbox{In} & \mbox{H}_2 \mbox{O} & \mbox{In} & \mbox{H}_2 \mbox{O} & \mbox{In} & \mbox{In} & \mbox{H}_2 \mbox{O} & \mbox{In}$

Potassium — silicotungstate (?), K₃SiW₁₁O₃₂+14H₂O. K₃H₈SiW₁₁O₃₂+10H₂O. (Marignac.)

Silver ——, Ag₈W₁₉SiO₃₆+3H₂O Not appreciably and in cold H₂O. (Marignac, A. ch. (4) 3, 65)

Silicotungstic acid or Silicoduodecrtungstic acid, H₂S₁W₁₂O₄₂.

(H₄SiW₁₉O₄₅, according to Copaux. (Bull. Soc. 1908, (4) 3. 101.) +20H₄O Sol in H₄O; very sol in sleehol; behaves with ether as the acid with 22H₂O

(Marigme, A. ch. (4) 3, 10). +22H,O. Solubility as and with 29H,O. 100 pbs. deiguesce with 13 pts ether. To this mixing 20-25 pts of ether can be added, but for the mixing 20-25 pts of ether can be added, but float above the mixture. Ethersel solution is miscible with H₂O. Ether is taken up by a saturated aqueous solution with evolution of heat, until the volumen has become properly and the saturate of the control of the

+29H₂O. Efflorescent, Sol in H₂O. Saturated solution at 18° contains 1 pt. crystal-lized acid to 0 104 pt H₂O, and has 2.843 sp. gr Melts in crystal H₂O. Easily sol in absolute alcohol and anhydrous ether +xH₂O. (Drechsel, B. 1887, **20**. 1452.)

Aluminum silicotungstate, Al₄H₁₂(SiW₁₂O₄₂)₁ +75H₅O. Not deliquescent; e very sol · in H₂O.

(Marignae), Al₄(StW₁₁O₄₀)₃+60H₂O (Wyrouboff Chem. Soc. 1897, **72**, (2) 174.) +87H₂O. (Wyrouboff)

+93H₂O. Very efflorescent. (Wyrouboff.)

Aluminum ammonium ——, Al₄(NH₄)₁₅(SiW₁₂O₄₂)₅+75H₂O. Sol in H₂O (Marignac)

Ammonium —, basic, (NH₄)₆SiW₁₂O₄₀ 4NH₄OH+14H₂O (Wyrouboff, Chem. Soc. 1897, 72. (2) 174.)

Ammonium —, (NH₄)sNu₁₁O₄₁+16H₃O. Very sol. in hot H₂O. (Maugnac, A. ch. (4) 3. 17.) (NH₄).H₅Nu₁₁O₄₁+6H₂O. Less soluble in H₂O than the preceding salt. (Maugnac.) (NH₂).SN₂O. 1.45H₂O. (Western

H₂O than the preceding sait. (Marignac.) (NH₄),SiN₂O₄-8-H₃O. (Wyrouboff, Chem. Soc. 1897, **72**. (2) 174.) Barium —, Ba₂H₄SiW₁₂O₂+14H₂O.

Sol in H₂O, +22H₂O. Gradually efflorescent. (Marigiac.) Sol in cold H₂O, 1 0.7 pts. (Copaux. Bull.

Soc. Min. 1906, 29, 80.)

Sol. in 4 pas. cold H₂O. (Wyrouboff, Bull
Soc Min. 1896, 19, 278.)

Ba₈SiW₁₇O₄₇+27H₂O Nearly msol. in
cold, sl sol in hot H₂O. (Marignac.)

Ba₂S₁W₁₂O₄₀+16H₂O. (Wyrouboff.)

Barium potassium ——, Ba₂K₂S₁W₁₂O₄₀+
17H₂O

(Wyrouboff, Chem Soc 1897, 72. (2) 176.)

Barium sodium ——, Na. Ba₂SiW₁₂O₄+
28H.O.

H₂O gradually dissolves out sodium silicotungstate

Cadmium —, Cd₂SiW₁₂O₄₀+23H₂O, and +27H₂O (Wyrouboff.)

4CdO, 3(SiO₂, 12WO₅)+4H₂O. (Wyrouboff.)

Cæsium —. Cs₆SiW₁O₄₂.

100 pts. H₂O dissolve only 0 005 pt at 20°; 0.52 pt. at 100°. Completely insol. in alcohol, and HCl+Aq. Somewhat sol. in dil NH,OH+Aq (Godef-

froy, B. 9. 1363.)

Cadmium hydrogen —, 2Cd₂SiW₁₂O₄₀,
H₄SiW₁₅O₄₀+42H₂O.

H₄SiW₁₂O₄₀+42H₂O. (Wyrouboff.) Calcium silicotungstate, Ca2H,S1W12O42+ Mercurous silicotungstate, basic, 20H.O Not deliquescent, *Extremely casily sol in H₂O (Marignac.) Ca₂SiW₁₂O₂₀+18, 21 and 27H₂O. (Wyrou-

boff.) Calcium silicotungstate nitrate, Ca-SiW:+O.s.

 $Cn(NO_1)_2 + 15H_2O$. (Wyrouboff.) Cerous ----, Ce2S1W12O40+27H2O.

(Wyrouboff) Ce2S1W12O40, CeH2S1W12O2+34H4O (Wyrouboff.)

Chromium ----, Cr4(StW12O40)2+60, 87 and 93H.O. (Wyrouboff)

Cupric ---- Cu-StW +Om + 18, 27 and 29H2O. Very efflorescent (Wyrouboff)

Didymium ---- D1-S1W : 20 and 27H 20. (Wyrouboff) DisSiW12O.0, DiH2SiW12O10+34H2O (Wyrouboff)

93H₂O (Wyrouboff.)

Glucinum ----, Gl4(SiW12O40)3+45, 87 and (Wyrouboff) Indium ----. In₂O₂, H₂O₂ 2(S₁O₂, 12WO₂)+

40H4O. (Wyrouboff.) 2In₂O₄, 3(S₁O₅, 12WO₄)+63 and 93H₂O

(Wyrouboff) Iron (ferric) --- Fe₄(S₁W₁₉O₄₀)₂+60 and 93H₂O.

Lanthanum --- , La2SiW11040+27H10. Efflorescent (Wyrouboff.) Lu₂SiW₁₂O₄₀,LaH₂SiW₁₂O₄₀+34H₂O. (Wyrouboff)

(Wyronboff.)

Lead ----, basic, Pb2SiW12O40, 2PbO+20H2O Sl. sol. m H₀O. (Wyrouboff.)

Lead ----, Pb₂S₁W₁₂O₄₂+21 H₂O. Sol. in H₂O. (Wyrouboff.)

Lithium ----, Li₂O, SiO₂, 12WO₂+14 and 24H₂O (Wyrouboff.)

Magnesium --- Mg-H-StW-O++16H-O. Stable on the air (Marignac.)

Hg S1W12O so, 2Hg2O +5H2O Insol in H₂O. Insol in dil. HNOa Slowly sol in cone, warm HNOa (Wyrouboff)

Mercurous ----, HgsStW12O40 Insol, in H2O. Scarcely sol, in dil, HNO.4-Aq (Marignac, A ch (4) 3. 43)

Mercuric --- ... Hg-SiW := O40 + 15H-O. Very sol in H₂O Solution decomp, on boiling (Wviouboff)

Potassium ----, basic, K4SiW12O40, 4KOH+

12H₂O 1 pt. is sol in 10 pts. H₂O at 18°, (Wyrouboff.

Potassium ----, K₉S₁W₁₂O₄₂+14H₂O. Sol m 10 pts H₂O at 18°, and less than 3 pts at 100°. (Manignac) +20H₂O. Much less sol in cold than hot. H₂O Extremely sol in hot H₂O More sol than above comp (Marignac)

K,H,S1W12O42+7H2O Solubility as preceding salt K4II,StW12O42+16H2O Sol. in 3 pts. H2O Gallium ---, Ga₄(SiW₁₂O₄₀)₂+60, 87, and

K₆H₂₉(S₁W₁₂O₁₂)₂+25H₂O dussolving in H₂O (Mangnac) Decomp by K₆S₁W₁₂O₆+6 and 15H₂O (Wyrouboff) K₆S₁W₁₂O₄₀, K₂H₂S₁W₁₂O₄₀+29H₂O (Wyrouboff.)

Rubidium ----, Rb₈SiW₁₂O₄₂ Sol. m 145-150 pts H₂O at 20° and m 19-20 pts at 100° Insol in alcohol; difficultly sol. in easily in ammoniacal · · 9. 1363.)

(Wyrouboff) ${
m Rb_4SiW_{12}O_{46}}, {
m Rb_2H_2SiW_{16}O_{46}} + 22{
m H_2O}$ (Wyrouboff)

Silver —, $Ag_4H_4S_1W_{12}O_{42}+7H_2O$. Very sl sol in H₂O; sol in dil. HNO₂₊₁-Au (Marignac.) Sl. sol in H2O (Wyrouboff)

Sodium ---, basic, Na₄SiW₁₂O₄₀, 4NaOH+ 5H₂(), (Wyrouboff.)

Sodium ----, Na₈S₁W₁₂O₄₂+7H₂O The saturated solution at 19° contains 0.21 pt. H2O to 1 pt of the salt dried at 100°, and pt. 1120 to 1 pt of the sate orner at 100°, and has sp. gr. =3.05 (Marganac). Na₂H₂SiW₁₂O_{c1}+11H₂O Stable on air. +18H₂O Efforescent. (Marganac) Na₂H₂SiW₁₂O_{c1}+14H₂O. Decomp by dis-solving in 11° C 15°.

Na SiW · 1000 (Wyrouboff.)

SILVER 817

Sodium silicotungstate nitrate, 3Na4HeSiW12O42, 4NaNO4+39H2O. Slightly deliquescent. (Marignac)

Strontium ----, Sr₂SiW₁₂O₄₀+16, 17, 23 and 27H2O. (Wyrouboff)

Thallium ----, Tl2H2S1W12O40+9H2O. (Wyrouboff.)

Thorium ---, basic. Insol, in H2O. (Wyrouboff.)

Thorsum --- , Th₂SiW₁₂O₄₀+27H₂O. Very sol in H₂O (Wyrouboff) The SIW 12O 40, 2H4SIW 10O 40+45H2O. (Wyrouboff.)

Uranium -

(Wyrouboff)

Thirteen salts are described by Wyrouboff.

Uranvl --Seven salts are described by Wyrouboff.

Zinc ----, Zn₂SiW₁₂O₄₂+18, 27 and 29H₂O.

Silicovanadiomolybdic acid.

Ammonium silicovanadiomolybdate,

3(NH₄)₉O, SiO₈, V₉O₈, 9M₉O₉+20H₂O. Sp. gr. of sat. solution containing 0 32016 g. salt in 1 ccm. at 18° =1 21322. (Friedheim, B. 1900, 33, 1624)

3(NH4)2O, SiO2, V2O4, 10M0O5+21H2O. Sp. gr. of sat, solution containing 0.35026 g of salt in 1 ccm at 18°=1.25275. (Friedheim.

3(NH₄)₂O, V₂O₅, SiO₂, 11M₀O₈+27H₂O Sp. gr. of sat. solution containing 0.38086 g salt in 1 ccm. at 18° = 1.29266. (Friedheim) 3(NH₄)₂O, V₂O₅, SiO₂, 15M₀O₂+24H₂O. Sp. gr of sat. solution containing 0 48997 g. salt in 1 ccm at 18°=1.43761 (Friedheim)

Ammonium potassium ----, (NH4)2O, 2K2O, SiO2, V2O5, 9MoO3+20H2O. Sp. gr. of sat solution containing 0.24021

g. salt in 1 ccm, at 18°=1 17031, (Friedheim (NH₄)₂O, 2K₂O, S₁O₂, V₂O₅, 10M₀O₃+ 21H₂O. Sp. gr of sat. solution contain-

ing 0.25914 g, salt in 1 ccm at 18°=1.19184. (Friedheim)

(NH₄)₂O, 2K₂O, SiO₂, V₂O₆, 11MoO₃+ 12H₂O. Sp. gr of sat. solution contan-ing 0.27914 g. salt in 1 ccm. at 18°=1.21878. (Friedheim.)

Ammonium zinc ---2SiO₅, 3V₅O₅, 18MoO₅+15H₂O. Sl sol, in H₂O, (Blum, Dissert, 1904.)

Silicovanadiotungstic acid.

Ammonium silicovanadiotungstate, 3(NH4),0. StO2, V2O4, 9WO3+24H2O.

Can be cryst, from H₂O (Friedheim, B. 1902, 35. 3244.

(NH₄)₆S₁V₂W₁₀O₄₀+21H₂O 1 cc. of sat. solution in H₂O at 17.5° contains 0.6652 g. of the hydrated salt Sp. gr. of this solution = 1.4505. Decomp. by conc. acid and alkali. (Friedheim.)

Ammonium barium potassium - $(NH_4)_2K_2BaSiV_2W_{10}O_{40} + 25H_2O.$

Sl. sol. in H.O. Decomp, by conc. acids and alkalies. (Friedheim.)

Ammonium potassium – (NH4)K4SiV2W10O40+23H2O.

I cem, of sat, solution at 17.5° contains 0.5072 g. of the salt. Sp. gr. of the solution at 20°=13462. Can be cryst from H2O. Decomp. by cone. acids and alkalies. (Friedheim.)

Barium ----, Ba₂S₁V₂W₁₀O₄₀+28H₂O.

1 ccm, of the sat solution in H₀O at 17.5° contains 0 3884 g of the salt Sp. gr. of the solution = 1 0807. Decomp. by conc. acids and alkalies (Freedheim, B 1902, 36, 3245) 6BaO, 284O, 3V,O₅, 18WO₂+50H₂O. St. sol. m H₂O, (Freedheim, B 1902, 36, 3245) 18. sol. m H₂O, (Freedheim, B 1902, 36, 3245) 18. sol. m H₂O, 284O₃, 3V₂O₅, 18WO₃+83H₂O. St. sol. in H₂O. (Freedheim)

Potassium ----, K₉S₁V₂W₁₀O₄₉+22H₂O. Sol. in H2O. Can be cryst from H2O without decomp. Decomp by conc. acids and alkalies. (Friedheim.)

6K₂O, 2S₁O₂, 3V₂O₅, 18WO₃+31H₂O Sol. in H₂O. (Friedheim) 7K₂O, 2S₁O₃, 3V₂O₄, 18WO₃+42H₂O. Sol.

in H.O. (Friedheim.)

Sodium ----, Na₆S₁V₂W₁₀O₄₀+29H₂O. Very sol, in H2O. Decomp by cone acids and alkalies (Friedheim)

Silundum, SizCy. Not attacked by hot Cl or conc. acids. (Amberg, Z. Elektrochem, 1909, 15, 725)

Silver, Ag.

Not attacked by H₂O. Absolutely insol. in HCl or HC₂H₃O₂+Aq. (Lea, Sill. Am. J. 144, 444.) Easily sol in HNO₃+Aq on warmmg, if not too conc. Only a minute trace is dissolved in an hour by cold dil HNO₃+Aq (1 pt. HNO₃+Aq of sp. gr 1.40 · 10 pts. H₂O). (Lea.) Sol in hot conc. H₂SO₄ with evolution of SO₂. Sl. sol. in dil. H₃SO₄+Aq (1 4), but 4(NH₄)₂O, 2ZnO, with more dll. H₂SO₄+Aq the different forms of Ag behave differently. (Lea) Sol. in HI+Aq at ordinary temperature.

Sol. in KI+Aq with access of air. Sol. in hot | Silver bromide, AgBr. KCN+Aq. (Christomanos, Z. anal 7. 301)

acids. Dil. HeSO, alone is incapable of dissolving finely divided Ag, and the seeming sol, therein above 33°, but if granular only solvent action is due to the oxygen of the air, oxygen dissolved in the acid, or derived from some external source. (Hendrixson, J. Am.

Chem. Soc 1903, 25, 637) Boiling H₂SO₄ dissolves pure Ag only when concentration equals 60° B More dil. acid dissolves only the impure metal (Pannani,

Gazz. ch. 1t. 1909, 39. (2) 234) Slowly decomp into AgCl by alkalı chlorides +Aq, also by CuCl2, etc. +Aq

Somewhat sol, in NH₄OH+Aq in presence of O. (Lea, Sill Am J 144, 444)

Sol. in KMnO4+dil H2SO4+Aq. (Friedheim, B. 20. 2554.) Sol. in Fe₂(SO₄)₄+Aq, especially on heat-

ing, but completely insol. in FeSO₄+Aq (Vogel.)

Insol. in liquid NII3. (Gore, Am. Ch J. 1898, 20, 829,

Allotropic forms—(a), Very sol, in H_{*}O. Solution is pptd, by saline solutions or almost any neutral substance. Alkali sulphates, nitrates, and citrates ppt. it in a sol. form, while MgSO₄, CuSO₄, FeSO₄, NiSO₄, K₂Ci₂O₇, K₄Fe(CN)₄, Ba(NO₄)₂, and even AgNO₂+Aq ppt. it in an insol form, which, however, may be made sol again by treatment with many substances, as Na₂B₄O₇, K₂SO₄, or Na₂SO₄+ Aq NaNO₂+Aq ppts, the Ag from its solu-tion in a perfectly insol, form

(β) The ppt. from aqueous solution by salts is sol. in NH₄OH +Aα (Lea, Sill. Am. J. 137, 476.) Many other allotropic forms exist. (Lea.)

Pure colloidal silver is also sol, in alcohol Schneider, B. 25. 1164) Entirely sol. in H2O, even when dry.

(Schneider, Z. anorg. 1894, 7, 339.)

Silver acetylide, Ag, C. Sol. in KCN+Ag with evolution of C.I

Decomp. by HCl+Aq (Arth. C. R. 1897. 124, 1535)

Silver amide, AgNH2.

Ppt., sol. in ammonium salts+Aq and m xcess of potassium amide. Sol. in liquid NH₁. Insol. in Ag salts+Aq. (Franklin, J Am. Chem. Soc. 1905, 27, 833.) Sol. in excess of KNH₂. (Franklin, Z.

anorg, 1905, 46, 16,)

Silver antimonide, AgeSb or AgeSb

Min. Discrasite. Sol. in HNOs+Aq. Ag.Sb. Insol. in HCl+Aq; decomp. by HNO₂+Aq. (Christofie.)

Silver azoimide, AgNa.

Insol. in hot or cold H₂O or dil. acids, sol. in conc. mineral acids. Sol. in NH₄OH+Aq. (Curtius, B. 23, 3023.)

CN+Aq. (Christomanos, Z. anal 7. 301) Insol in H₂O, or H₂O acidulated with Sol. in chromic, iodic, chloric and bromic HNO₂, H₂SO₄, or HC₂H₃O₂ between 0° and 33°. If flocculent or pulverulent, it is sensibly soli, therein above 50°, and then very slightly. (Stas, A. ch (5) 3, 289.) Ag can be detected as AgBr in 10,000,000 pts. H₂O (Stas.)

Calculated from the electrical conductivity

of AgBr+Aq, AgBr is sol. in 1,971,658 pts H2O at 20 2°, and 775,400 pts at 38°. (Holle-

man, Z phys. Ch. 12, 133.) By same method Kohlrausch and Rose calculate that 1 l, H₂O dissolves 0.4 mg, AgBr (Z phys Ch. 12, 240)

Solubility in H2O = 0.109 mg. per l. (Prudhomme, J chim Phys 9. 519. Solubility in H₂O = 6 6×10-7 at 25°. (Good-

wm, Z phys. Ch 1894, 13. 645.) Solubility of AgBr in H₂O at 25° equals 81×10-7 g. mols. per l. (Thiel, Z. anorg.

1900, 24, 57.) Aq solution sat. at 21.1° contains 0.57× 10-6 gr. equiv. per litre. (Kohlrausch, C. C.

1901, II. 1299 H₂O dissolves 0.000137 g. AgBr at 25°. (Abegg and Cox, Z. phys. Ch. 1903, 46. 11.) 0.84×10⁻⁴ g. are dissolved per liter of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903,

46, 603.) 1 l.H₂O dissolves 0 107 mg. AgBr at 21°. (Kohlrausch, Z. phys. Ch 1904, 50, 356) 3.7 mg. AgBr are contained in 1 liter of sat. solution at 100°. (Bottger, Z. phys. Ch. 1906, 56, 93.)

I mg in 1 l. of sat. solution at 21° (Kohl-rausch, Z. phys Ch 1908, 64. 168.)

rausca, Z. phys Cal 1905, 28, 108-7 Solubility in H₂O = 8 × 10⁻⁷ g. mol. per litre at 25°. (A. E. Hill, J. Am. Chem. Soc. 1908, 30. 74.) Boiling H₂O dissolves 0.000003502 of its weight of AgBr. HNO₈+Aq (1% HNO₈)

dissolves 0.00000543 of its weight of AgBr at 100° with sl. decomposition The solution is pptd. by AgNOs+Aq or HBr (or MBr)+ Aq, but not completely. I pt. of AgBr m solution requires 3 pts. of Br as MBr (or HBr), or of Ag as AgNO₂ in order to be wholly precipitated. (Stas.)

Not attacked by boiling HNO.+Aq; sl. sol. in cone. HBr or HCl+Aq (Löwig). Boiling conc H2SO4 decomposes it (Balard

hardly acts on it (Dumas), dissolves a small quantity, which is repptd. by H₂O (Berze-

Very sl. sol. in dil, easily in conc. NH₄OH +Aq. 100 pts. NH₄OH+Aq (0.986 sp gr.) dissolve 0.51 pt. AgBr (dried at 100°) at 80°, and about double that amount of freshly pptd. AgBr. (Pohl, W. A. B. 41. 267.) 1 g. freshly pptd. AgBr is sol in 250 ccm.

10% NH,OH+Aq, but insol. in an ammonia-cal solution of AgCl (Seiner, Pharm. J. Trans (3) 14. 1

1 g. AgBr dissolves in 8779.4 g. 5% NH.OH +Aq (sp. gr. =0.998) at 12°, and in 288 5 g. 10% NH,OH+Aq (sp gr.=0.96) at 12° (Longi, Gazz ch it. 18. 87.)

Solubility of AgBr in NH₄OH+Aq at 15°. G mols. per l.

NHa	AgBr	8p gr 155°
1.085	0 0011	0 9932
2.365	0.0031	0 9853
3.410	0 0050	0 9793
4.590	0 0074	0 9720
5.725	0 0101	0 9655

(Bodlander, Z. phys. Ch. 1892, 9, 734.) Solubility in NH₄OH+Aq at 0°.

10 ccm of the solution contain g NH3 and mg. Ag Br.

g NHs	Mg AgBr	g NHz	Mg AgBr
0.307	8.0	2 627	108.7
0.488	9.6	3 126	156 8
0 669	17.2	3 389	198 7
0 829	21.2 34.9	3 652 3 722	266 9
1 151 1 532	55.7	3 772	288.8 293 0
1 809	72 2	3 926	289 2
1 953	74 1	3 995	285 0
	·		

(Jarry, A ch 1899, (7) 17. 364) Solubility of AgBr in NH₄OH+Ag at 25°.

G. mols. per l. NHa AgBr NHs AgBr 0.1932 0.000601 965 0.00692 0.3849 0.00120 3.024 0.01163 0.7573 0.00223 5.244 0.02443

(Bodlander and Fittig, 1902, Z. phys. Ch. 39.

Solubility in NH4OH+Aq at 25°.

g. at Ag per l	Mols. NH ₂ per l.
0.00170	0.450
0 00159	0 497
0 000941	0 268
0.00107	0 273
0.000391	0 115
0.000386	0.118
0.000276	0 0764
0.000264	0.0777

(Whitney and Melcher, J. Am. Chem. Soc. 1903, 25. 79.)

Sol. In hot NH₄Cl+Aq. Very 8l. sol. In NH₄ carbonate, sulphate, or succunate+Aq, and still less in nitrate. (Wittstein.) Not very easily sol in Na₂S₂O₃+Aq when suspended in much H₂O₃ and is separated out again by KBr+Aq. (Field C. N. 3. 17)

KBr, NaCl, NaBr, NH₄Cl, or NH₄Br+Aq; but insol when dilute.

Traces only dissolve in alkali nitrates+Aq.
(Fresenius, Quant. Anal.)
Abundantly sol in Hg(NO₃)₂+Aq. 100

Hg(NO₄)₂+Aq. 100 ccm. H₂O containing 10 ccm. normal Hg(NO₄)₂+Aq dissolve 0.0383 g. AgBr. (Stas.)

Solubility of AgBr in Hg(NO₃)₂+Aq at 25°. G. mols, per l.

HNO; was present in all cases, and it was found that there was no difference in solubility of AgBr with concentrations between 0.1N and 2N HNO;. Cryst. and amorphous AgBr showed the same solubility. (Morse,

Z. phys. Ch. 1902, 45, 708.)
Difficultly sol. in hot cone. AgNO₃+Aq.
(Risse, A. 111, 39.)

100 ccm of a 3-N solution of AgNO₃ dissolve 0.04 g. AgBr at 25°. Much less sol., in AgNO₄+Aq than AgI (Hellwig, Z, anorg. 1900, 25, 176)

Solubility in AgNO₂+Aq.
Volumetric measurements

G AgBi N/10 KBr Opalretained ArNO. escent per 100 g. cem nt. 0.65 22° 0.1290.7235 0.14410 g made up to 0.8 44 0.1590.9 62 0.178 32 g per 100 g 1 0 of solution 67 0.188î 1 0.2072 79 0.2266 0 1.13 37 8 1.50 0 53 10 O 67 1.88 11 25 72 10 g made up to 2.12 70 g per 100 g. 12 0 2.26of solution 12 75 79 2.40 13 5 82 2.54 15 5 85.5 2.92 17 5 90 3 29

G AgNO:	cem H ₂ O	Strength of AgNO ₃	G. AgBr re- tained per 100 g. AgNO.
7.326	9 82	44	0 144
8.290	7 65	52	0 185
7.255	4 84	60	0.283
7.35	3.95	65	0 365

Gravimetric measurements at 14 59

Sol. in KCN+Aq. Sl sol. in conc. KCl, (Lowry, Roy. Soc. Proc 1914, 91. A, 65.)

100 g, KBr in cone, KBr+Aq dissolve 3019 mg, AgBr at 15°; 95 g, NaCl+10 g, KBr dis-solve only 75 mg, AgBr at 15°. (Schierholz, W. A. B. 101, 25, 4.)

	Ac at 250

Editionity in it	continuity in resor (and so so .		
Mol KBr in 1 litre	G. AgBr in 1 litre		
4 864	26 44		
4 44	17 95		
4 18 3.68	13 50 7.50		
2.81	2.34		
2.76	2 20		

(Hellwig, Z anorg, 1900, 25, 183)

Sol m cone, KBr or NaBr+Aq (Lowig), but less than AgI in KI+Aq (Field). 100 g. NaCl in conc. NaCl+Aq dissolve 474 mg. AgBr at 15°; 100 g NaCl in 21% NaCl+Aq dissolve 188 mg. AgBr at 15°. (Schierholz, W. A. B. 101, 2b. 4.)

Solubility of AgBr in Na₂SO₂+Aq at 25°. G. formula weights per l.

0.232	0.0025	0.466	0 0053
0.406	0.0023	0.474	0 0055
0.448	0 0023	0.675	0 0084

(Luther and Leubner, Z. anorg. 1912, 74. 393.)

Solubility of AgBr in Na₂SO₃ at (?)°. (g salts per l of solution.)

Nas80s	AgBr	Na ₀ SO ₂	AgBr	
83.75	0 790	2.08	0 0159	
70 75	0 570	1.13	0 0086	
38 2	0 265	0 59	0 0045	
17 65	0.116	0.3	0 0039	
9.47	0 0526	0.17	0 0022	
4 85	0 0329	0.08	0 00075	

(Mees and Piper, Photog J 1912, 36, 234.)

Solubility in NasS₂O₄+Aq at 35.°

g, Na ₂ S ₂ O ₂ in 1 liter	to each g Na ₂ S ₇ O ₆ .
100	0 376
200	0 390
300	0 397
500	0.427

(Richards and Faber, Am. Ch. J. 1899, 21. 169.)

(NH4)2S2O1+Aq. dissolves AgBr more rapidly than does Na₂S₂O₃+Aq. (Lumiére and Seyewitz, C. C. 1908, II, 1138.)

Solubility in salts+Aq.

Solvent	Cone	AgBr sol in 100 grams solvent
Sodium thiosulphate	1	0 35)
" " '	5	1 90 /
	10	3 50
tt of fi	15	4.20 20°
и и и	20	5.80
Sodium sulphite	10	0 041
ii ti	20	0 08 25°
Ammonium sulphite	10	Traces
Potassium evanide	5	6.55
Ammonium sulphocyanide	5	0 21
	10	2.04 20°
41 44 41	15	5.30
Potassium " "	10	0.731
Calcium " "	10	0 53 [
Barium " "	10	0.35
Aluminum " "	10	4 50 250
Thiocarbamide	10	
Thiosinamine	1	0 08
	5	0.35

0...

(Valenta, M. 1894, 15, 250.)

10 0.72

Solubility of AgBr i	n salts+Aq at (?)°. 1% solution of salts.)
NaSCN NH.SCN	2.06
(NH ₄) ₂ CO ₃ Na ₂ SO ₄	0.004 0.055

(Mees and Piper, Photog J., 1912, 36, 234.)

In a solution of NaC₂H₁O₂+Aq, containing 10 ccm. of sat NaC₂H₂O₂+Aq at 15° and 20 ccm normal HC₂H₃O₂+Aq mixed with 970 ccm. H2O, about double the amt. of flocculent AgBr is dissolved in the cold that is dissolved by boiling H₂O from granular AgBr This solution required 3 pts of Ag or Br to ppt. the AgBr in solution. Pulverulent or granular AgBr are wholly insol. in dil. or

100 ccm H₂O containing 10% of normal Hg(C₂H₃O₂)₂+Aq dissolves 0.0122 g, AgBr at 20°. (Schierholz.) Very sol in liquid NH₃ (Franklin, Am. Ch. J 1898, 20, 829.)

(Stas)

conc. acetates+Aq (Stas)
Sol. in Hg(C₂H₂O₃)₂+Aq.

Solubility in 10 cc. methylamine+Aq of different concentrations at 11.5 ° g. NH₂CH₂ 4 844 3.2584 211 3 562

mg, AgBr 289 127 55 g. NH₂CH₃ 1 797 1.513 1 317 1.101 mg. AgBr 2816

(Jarry, A. ch. 1899, (7) 17. 378.)

Solubility in methylamine+Aq at 25°		
G mol per i.		
CH ₀ NII ₀	AgBr	
0 02 0 04 0 074 0 0947 0 1950	0 00026 0 00034 0 000395 0 00041 0 00045	

(Wuth, B. 1902, 35, 2416)

Solubility of AgBr in methylamine +Aq at 25°

CH ₀ NH ₁	AgBr	CH ₁ NH ₂	AgBr
1 017 0 508 0 203	0 0025 0 0013 0 00049		0 00026 0.00012

Solubility in ethylamine+Aq at 25°

C ₁ H ₆ NH ₂	AgBr
0 01272	0.0000867
0 03942	0.000137
0 05512	0.000193
0 06572	0.000258
0 10300	0.000711

(Wuth, B. 1902, 35, 2416)

At 25°, 1 1 ethylamine+Aq containing 0.483 g. mol. C₂H₄NH₂ dissolves 0.00231 g. mol. AgBr; 0.200 g. mol. C₂H₃NH₃, 0.0097 g. mol. AgBr (Bodlander and Eberlein, B. 1993, 36. 3948.)

Insol in benzonitrile, (Naumann, B. 1914, 47, 1370.)

Insol. in acetone. (Eidmann, C. C 1899, , 1014), (Naumann, B 1904, 37, 4329.) Sol in alcoholic thiourea. (Reynolds, Chem. Soc. 1892, 61, 251.)

Malnsol. in methyl acetate (Bezold, Dissert. 1906); (Naumann, B. 1909, 42, 3790.) ethyl acetate (Hamers, Dissert. 1906); (Naumann B. 1910. 43, 314.) 1.49 g AgBr is dissolved in 1 l. of 1% thio-

carbamide+Aq. (Mees and Piper, Photog J. 1912, 36, 239) Insol in warm pyridine.

Mol wt. determined in piperidine. (Werner, Z anorg. 1897, 15. 16.) Min Bromyrite, Bromite.

Silver bromide ammonia, AgBr, NH₃

AgBr, 1½NH, (Jarry, A ch. 1899, (7) 17, 356.)

2AgBr, 3NH₂ (Joannis and Crozier.) AgBr, 3NH₂. Decomp by H₂O Sl. sol. in liquid NH₂ (Jarry.) AgBr, 5NH, (Jarry, C. R. 1898, 126. 1141.)

Silver carbide, Ag₄C.

(Gav-Lussac) AgrC(?) Sol in HNO.+Aq with residue of C C (Liebig, A. 38. 129.) Ag₃C₂. Sol. in HNO₃+Aq with residue of

(Regnault, A 19. 153.)

Silver subchloride, Ag. Cl.

NH4OH+Aq dissolves the greater part, the residue (20%) being sol in HNO. + An KCN dissolves the greater part; H2SO4 dissolves about 2%; acetic acid and KOH are without action (Bibra, J pr. 1875, (2) 12. 52)

Argentous chloride, Ag₂Cl.

Obtained in a pure state by Guntz (C. R. 112. 861). Dil. HNO₂+Aq does not attack but warm conc. HNOa+Aq decomp Easily sol in KCN+Aq (Guntz, C R. 112, 1212.) The following data are for a more or less impure Ag₂Cl

Boiling cone HCl+Aq, NaCl+Aq, or NH,OH+Aq dissolve out AgCl, and leave Ag (Scheele, Wetzlar, Dulk, Wohler) According to Bertholist, wholly sol in NH₂OH +Aq. Sol for the most part in NH₂OH +Aq. and the residue is sol in HNO₃+Aq (-Ag+AgCl) (v Bibra, B 7, 741)

Silver chloride, AgCl

Nearly meal, in H₂O.

When AgCl is left in contact for some hours with pure H₂O at 20-22°, and especially at 75°, traces go into solution; more Cl is dissolved than Ag. When 1 pt. Ag is pptd as AgCl in presence of 1 million pts H₂O a slight bluish milkiness is observed, but in order to have a distinct ppt. 4 pts Ag should be present.

Dil. HNO.2+Aq does not increase the solu-bility of AgCl, but AgCl is not absolutely insol in stronger HnO.4+Aq (Mulder.) I pt. AgNO., when mixed with HCl+Aq in presence of 120,000 (Paff.) 240,000 (Hart-ing), pts. H₂O, causes an opalescence

In J., pis. 140, cases at observative with HGl+ Aq in presence of 200,000 pts. H₂O, a scarcely oplescent cloudiness with 400,000 pts. H₂O, and the same after the lapse of 15 minutes in presence of 800,000 pts. H₂O (Lassaigne) I pt. Ag can be detected as AgCl in 1 mil-

lion parts H2O at ordinary temp., but not in 2 million parts. In NaNO: +Aq containing 0.79 pt. NaNO, in 200,000 pts H2O, 1 pt Ag can be detected as AgCl. This dissolves at 75°, and is visible again on cooling.

If the same liquid contains 1574 pts NaNOs. (Joannis and Crozier, C. R. 894, 118. 1150.) the AgCl remains in solution after cooling.

as AgCl

3, 323.)

In 100 ccm H2O containing 0 787 g. NaNO4, 13 drops of NaCl and silver solution, each limits of temp. (0°-30°). These solvents, if drop of which contains 0.05 mg. Ag. cause a precipitate at 5°, 20 drops at 15-17°, 60 drops at 45-55°

AgCl is somewhat less sol, in HNO+Aq than in NaNO++Aq when the amount of H2O

remains the same

Therefore, if HCl is used instead of NaCl, about 1/2 less AgCl remains in solution In 100,000 pts, of H2O, which contain HNO:

and an amount of HCl corresponding to the amount of Ag salt, 1 596 pts AgCl dissolve amount of Agenty, 1930 pis Agent unstance at 25°. The solution is precipitated by either AgNO₃ or HCl (Mulder, Sulber Probirmethode, Leipzig, 1859. 62.)
(For further older data, see Storer's Dic-

White flaky AgCl is appreciably sol in hot H₄O, 1000 ccm, boiling H₂O dissolving about 2 mg, AgCl. Far less sol, in H4O containing AgNO2, being practically insol in H2O containing 0.1 g. AgNO₃ in a litre Solubility is also duminished one-half by addition of HCl (Cooke, Sill. Am. J. (3) 21, 220.)

Solubility in H-O rapidly diminishes as the

temp, falls. (Cooke. l. c.)

Not completely insol, in H₂O. According to Stas (C 1), 73, 998) there are four modifications: (1) gelatinous; (2) cheesy-flocculent; (3) pulverulent; (4) granular, crystalline, or fused. (4) is almost absolutely insol. in H₂O at the ordinary temp., but the solubility increases with the temp., and is considerable at 100°; (2), which is formed by the pre-cipitation of a cold dilute Ag solution, has the greatest solubility in pure H₂O, and it changes its solubility by standing, or if made pulverulent by shaking with H.O; (3) is also sol in H₂O, the solution of (2) or (3) in pure H₂O, or H₂O acidified with HNO₃, is precipi-tated by AgNO₃ or NaCl+Aq.

In order to ppt 1 pt AgCl in above solu-tion 3 pts. of Cl as chloride or Ag as nitrate are necessary; the pptn is then complete Solubility of granular variety in boiling H₂O is proportionately large, and pptn. is

brought about by 3 pts. Cl or Ag as above, but the pptn. in this case is not complete The salts formed simultaneously with the AgCl have no influence on the solubility of the AgCl. Presence of HNO, does not increase

the solubility of (2), but has that effect on (3) in proportion to the amt, of HNO, present. (Stas, C R. 73. 998.) Further determination by Stas are as

follows:--

Between 0° and 30° granular AgCl is msol. in pure H₂O, or H₂O acadulated with HNO₁.

Between 0° and 30° the flocculent and pulverulent forms of AgCl dissolve without alteration in pure H2U, in acidulated H2O, in alkali acetates + Aq, and in Hg(C2H2O2)2 +Aq containing an alkali acetate. degree of solubility is a function of the state

at 13 8°, and 384,100 pts. at 26.5°. (Holleman, Z phys. Ch 12, 132) Calculated in the same way, 1 l. H2O dissolves 0.76 mg at 2°: 0 97 mg at 10°, 1.52 mg at 18°, 2 24 mg. at 26°, 3 03 mg at 34°; 4,05 mg, at 42°. (Kohlrausch and Rose, Z. phys. Ch 12. 242 Solubility in $H_0O = 1.25 \times 10^{-3}$ mol./l. at 25°. (Goodwin, Z. phys Ch. 1894, 13, 645) Solubility of AgCl in H₂O at 25° is 1 41× 10-4 (in normality), (Thiel, Z. anorg, 1900.

and quantity of the solvent within these

they contain either Ag in the state of an Ag

salt, or Cl as chloride or HCl in an amount

three times that which they can dissolve as

ArCl. exercise no solvent action on any of the

modifications of AgCl And reciprocally sat. AgCl+Aq is pptd instantly by a decinormal solution of AgNO₃ or MCl (or HCl). The

AgCl is wholly pptd, when the quantity of

the Ag or Cl thus added is equal to three

times the quantity of the Ag or Cl dissolved

Between 50° and 100°, however, decinormal solutions of Ag or chlorides, which cause instant ppts in solutions sat, with any of the modifications of AgCl, do not eliminate all the dissolved AgCl. At 100°, they only ppt.

60% of the amt, dissolved. (Stas. A. ch. (5)

AgCl +Aq, AgCl is sol in 715,800 pts. H₂O

Calculated from electrical conductivity of

2.16×10 to moles are sol in 1 liter H2O at 25°. · (Noves and Kohr. Z. phys. Ch. 1903. 42, 341.)

1.53×10-2 g. per liter are dissolved in sat. aq. solution at 20°. (Böttger, Z. phys. Ch. 1903, 46. 603.) 1 l H₂O dissolves 1.6 mg. AgCl at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50. 356.)

21.8 milligrams are dissolved in 1 liter of sat. solution at 100°. (Pottger, Z phys. Ch. 1906, 56, 93.) 1.34 mg. are contained in 1 l. of sat. solu-tion at 18°. (Kohlrausch, Z. phys Ch. 1908.

64. 168.) 1 l. sat. solution at to contains mg. AgCl.

Ì	t°	mg AgCl	t°	mg, AgCl
-	1 55	0.56	17.51	1.31
	4.68	0.66	25.86	1 935
	9 97	0.89	34.12	2 74

(Kohlrausch, Z. phys Ch 1908, 64, 168,)

Solubility in $H_2O = 1.6 \times 10^{-6}$ g.-mol. per litre at 25°. (A. E. Hill, J. Am. Chem Soc. 1908, 30. 74.)

1 1 H₂O dissolves 0 00154 g AgCl at 21°; 0.0217 g at 100°. (Whitby, Z. anorg, 1910, of the chloride, of the temp., and of the nature | 67. 108

" 100°.

Pts HCI

Calculated from electrical conductivity of AgCl+Aq, 1 l H₂O dissolves: 0.0105 milli-equivalents AgCl at 18° " 50°

0.0365 .. 0.147 (Melcher, J. Am., Chem. Soc. 1910, 32, 55.)

1 1 HaO dissolves 1.02×10-5 g, comy at 18°; 1.429 × 10 °s. equiv. at 25°. (van Rossen, C. C. 1912, I 1539.)

The most probable average value for solubility of AgCl in H₂O is 1.04×10-5 g, equiv bility of AgCi in H₂O is 1.04 × 10⁻⁸ g, equiv per l at 18°, and 1.43×10⁻⁵ g, equiv, per l. at 25°. (van Rossen, C. C. 1912, H. 1807.) 1.20×10⁻⁵ g. AgCl are sol in 1 l. H₂O at 18°. (Glowczynski, C. A. 1915, 741.) Mote sol, in H₂O than AgSCN. (Normand,

Chem Soc. 1912, 101. 1853.)
Sol in conc. HCl+Aq, and also when not very conc., thus the solution of 1 pt. AgNO++ Ag in 15,000 pts, H₂O is clouded by a little HCl+Aq, but clears up by the addition of more. (Reinsch, J pr. 13. 133.)

1 pt AgCl dissolves in 200 pts conc. HCl+ Aq and in 600 pts. HCl+Aq diluted with 2 pts H₂O. (Pierre, J. Pharm (3) 12. 237) Somewhat sol, in hot alcohol, to which HCl has been added, but is precipitated on cooling. (Erdmann, J pr 19. 341)

(Ermann, 5 pr 19, 541) 100 pts. sat. HCl+Aq (sp gr. 1 165) dis-solve 0.2980 pt. AgCl, or AgCl is sol in 336 pts HCl+Aq at ord temp., 100 pts HCl+ Aq (sp gr. I 165) at b-pt dissolve 0.56 g

AgCl, or AgCl is sol, in 178 pts HCl+Ag. Solubility of AgCl in dil, HCl+Aq. 100 ccm HCl+Aq (sp gr. 1 165), to which the given amt. H2O has been added, dissolve g ÁgCl

HCi	H ₂ O ,	AgC1	which di solve 1 p AgCl
100	10	0 056	1,785
	20	0 018	5,555
100	30	0 0089	11,235
100	50		18,571

(Vogel, N. Rep. Pharm. 23, 335)

If HCl is added to a solution in which 1/1.16000 pt Ag is suspended, the milkness disappears Solubility in HCl+Aq increases with the temp, the AgCl separating out on cooling. (Mulder.)

The amounts of AgCl which dissolve in HCl+Aq are directly proportional to the volumes of acid (of fixed concentration) used. (Barlow, J. Am. Chem. Soc. 1906, 28, 1448.)

11. 1% HCl dissolves 0.0002 g. AgCl at 21°.
 11. 5% HCl dissolves 0 0033 g AgCl at 21°
 11. 10% HCl dissolves 0 0555 g AgCl at 21°

(Whitby, Z anorg, 1910, 67, 108)

Solubility in HC1+Ag at 25°

condition in fact that the bott			
HCl g -equivalents per l	Ag × 10 ⁻³ g -equivalents per l		
0 649 1 300 1 911 2 149 2 569 2 975 3 576 4 182 4 735 5 508	0 032 0.126 0.266 0 374 0 610 0 814 1.358 2.147 3.168		
0 000	7.120		

(Forbes. J Am. Chem. Soc. 1911, 33, 1941.)

Solubility in 20% HCl +Ag

HCl AgNO ₃ Opalescent at to			G. AgCl to 100 g. anhy- drous HCl
20 g. of 20% acid	1.0 1 1 2 0 3 0 3 75 4 25 4 75 5 80	0 0 29 5 51 5 70.0 82 0 90 0 107 0	0 39 A 0 72 1 1 076 1 346 1 525 1 74 2 08

(Lowry, Roy, Soc. Proc. 1914, 91. A, 62.)

Sl sol, in cone, HBr+Aq (Löwig.) Insol in HNO3+Aq (Wackenroder.) Entirely unacted upon by HNO2 of 1.43

(Wurtz, Am. J. Sci (2) 25, 382.) Solubility in dil. HNO+Aq is the same as solubility in H2O, s. 6 1/2,000-100 pt. of Ag cannot be detected in H2O with or without HNO. but 1/1,000,000 pt. can be detected in both cases. (Mulder)

1 pt. Ag m the form of AgCl dissolves at 25° in 83,000 pts, H₂O containing free HNO₃ and 0.33 pt. of HCl (Mulder)

100,000 pts cone HNOa+Aq dissolve about 2 pts. AgCl, and solubility is not sensibly affected by lower nitrogen oxides, (Thorpe, Chem. Soc. (2) 10. 453.)

Solubility of AgCl in HNO₂+Ag at 25°.

G per liter			
IINO:	AgCl		
0.0315 0.063 0.630	0.001647 0.001705 0.00176	18 9 94 5	0:00225 0 0245

(Glowczynski, Kolloidchem. Beih. 1914. 6. 147.)

Insol. in cold cone H2SO4, but on boiling is in part decomp, and in part dissolved, and

does not separate on cooling.

AgCl is not more sol in dil, H₂SO₄+Aq than in dil. HNO3-Haq.
Unacted upon by cold H₃SO₂+Aq, and but slightly decomp. on heating. (Vogel.)
Abundantly sol. in H₂PtCl₄+Aq without

decomp. (Birnbaum, Z. Ch. 1867. 520.) Insol. in cold dil. caustic alkalies+Aq but

decomp. by hot cone. solutions. (Gregory)

Decomp. by K₂CO₂+Aq. Sl. sol. in cold K₂CO₂+Aq

Easily sol. even in dil. NH4OH+Aq 1 pt. AgCl dissolves in 1288 pts NH,OH+

Aq of 0.89 sp. gr (Wallace and Lamont, Chem. Gaz. 1893, 137.) 100 pts. NH₂OH+Aq of 0.986 sp gr dis-

solve at 80° 1.492 pts. AgCl, dried at 100°. (Pohl, W. A. B. 41. 627.) 1 l. NH₄OH+Aq of 0.949 sp. gr dissolves

51.6 g. Ag as freshly precipitated AgCl, and 47.6 g, when diluted with 11 H₂O.

11. NH,OH+Aq of 0.924 sp. gr. desorives 5g. Ag as freship preceptated AgCl; 1. NH,OH+Aq of 0.899 sp. gr. dissolves 496 gr. 5a. 1. NH,OH+Aq of 0.899 sp. gr. dissolves 496 gr. 5b. 1. NH,OH+Aq of 0.899 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.499 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.499 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 i. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 ii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. NH,OH+Aq (of 0.949 sp. gr.) + 0.5 iii. N NH₄OH+Aq of 0.924 sp. gr. dissolves

1 g. AgCl dissolves in 428.64 g. 59 NH,OH+Aq (sp. gr. 0 998) at 12°; 1 g AgCl dissolves in 12 76 g. 10% NH4OH+ Aq(sp. gr 096) at 18°. (Longi, Gazz. ch it. 13. 87) 1 g freshly pptd, AgCl is sol, in 17 ccm, 10% NH₄OH+Aq. Solubility is diminished y presence of AgBr. (Senier, Pharm, J Trans. (3) 14, 1.)

Solubility in NH₄OH+Aq at 0° Cl. new 100 or notice

G. per 100 g solution.			
NH.	AgCl	NH ₃	AgCl
1 45 1.94 5 60 6.24 11 77 16 36	0.49 1.36 3.44 4 00 4 68 5 18	28.16 29.80 30.19 32.43 34.56 37 48	5.69 7 09 7 25 5.87 4.77 3.90

(Jarry, A. ch. 1899, (7) 17. 342.)

Solubility in NH4OH+Aq increases with the temp. (Jarry.)

Solubility in NH4OH+Aq at 25°.

g at Ag per l	Mols NHs per l	g at Ag per l	Mols NH1 per l
0 151 0 149 0 147 0 0616 0 0583 0 0584 0 0572 0 0569 0 0555 0 0541 0 0240 0 0227	2 042 2 017 2 013 1 991 0 961 0 996 0 993 0 896 0 873 0 863 0 818 0 428 0 416 0 411 0 397	0 0140 0 0140 0 0140 0 0139 0 00621 0 00621 0 00619 0 00625 0 00304 0 00297 0 00300 0 05149 0 00142 0 00141	0 253 0.253 0.252 0.252 0.118 0 118 0 118 0.0590 0.0589 0.0589 0.0287 0.0288

(Whitney and Melcher, J. Am. Chem. Soc. 1903. 25, 78.)

l			_
Ag	NHt	Cope	Solid phase
0 023 0 025 0 1197 0 1308 0 372 0 378 0 .574 0 .609 0 633 0 745 0 757 0 760 0 .775 0 780 0 .775 0 988	0 437 0 428 1 700 1 682 3 945 5 10 5 33 5 545 6 25 6 25 6 25 6 52 8 28 8 28 11 78	0.391 0.378 1 461 1 426 3 038 3 181 4 279 4 77 4 76 4 74 4 77 4 78 4 77 6 58 9 25 9 25 9 82	AgCl " " " " " " " " " " " AgCl+2AgCl, 3NH, " 2AgCl, 3NH,
0.980 0 978 0 965 1 03 1.09 1.049 1.039	11 78 12 23 12 26 12 68 12 96 14 34 14.47	9.82 10 27 10 33 10 62 10.78 12 24 12.39	11 11 11 12 11

(Straub, Z. phys. Ch. 1911, 77, 332.)

Easily (Brett), difficultly (Wittstein), sol in NH4Cl+Aq, but not in other NH4 salts.

Solubility in NH4Cl+Aq at 15°		
% NH4Cl % AgCl		
10.0 14 29 17 70 19 23 21 98 25 31 28 45 Sat.	0 0050 0 0143 0 .0354 0 .0577 0 .110 0 228 0 340* 0 177	

(Schierholz, W. A. B., 1890, 101, 2b, 8) Solubility in NH,Cl+Ac (26, 31%) at to

t°	% AgCi	
15	0 276	
40	0 329	
60	0 421	
80	0 592	
90	0 711	
100	0 856	
110	1 053	

(Schierholz.)

At 25°, 11. NH₄Cl+Aq containing 0.00053 g. NH₄Cl dissolves 0.001604 g. AgCl; 0.00530 g. NH₄Cl, 0.002379 g. AgCl. (Głowczynski, Kolloidchem. Beih. 1914, 6. 147.)

See also Forbes, page \$26. 1 l. KClO₄+Aq dissolves 1 8 mg. (Guye, J. Chim. Phys. 10, 145)

Sl sol, in conc. KCl+Aq, NaCl+Aq, and certain other chlorides

dissolve appreciable quantities of AgCl, especially if hot and concentrated, but it separates out for the most part on cooling Sol, in solutions of all the metallic chlorides which are sol in H₂O, thus NaCl, KCl, CaCl₂.

SrCl₂, and BaCl₂+Aq all dissolve AgCl, espe-cially if hot MgCl₂, NH₄Cl, and HgCl₂ (least) also dissolve AgCl (Mulder) Sol in conc. CaCl2+Aq. (Wetzlar.)

Sol. in rosecocobaltic chloride+Aq. (Gibbs | (Glowezynski, Kolloidchem. Beih. 1914, 6. and Genth.)

Insol, in SnCl₄, HgCl₂, CuCl₂, ZnCl₂, CdCl₂, N1Cl₂, or CoCl₂+Aq. (Vogel) Solubility of AgCl in sat solutions of chlorides

at ordinary temperatures

Salt	100 pts sat solution dissolve pts AgCl	required to dis solve I pt AgCl
BaCl ₂ SrCl ₂ SrCl ₂ CaCl ₂ NaCl NaCl NCl NCl NH ₄ Cl MgCl ₂ HCl	0 0143 0 0884 0.0930 0.0950 0 0475 0 1575 0.1710 0 2980	6,993 1,185 1,075 1,050 2,122 634 584 336

(Vogel, N. Rep Pharm, 23, 335.)

Experiments by Hahn give different results from those of Vogel as follows:-

Solubility in various salts+Aq.

	Salt			% salt	Sat, at to	% AgCl
KCl NaCl NH ₄ Cl CaCl ₂ MgCl ₂ BaCl ₂ FeCl ₃ FeCl ₃ MnCl ₄ ZnCl ₂ CuCl ₂ PbCl ₃	: : :	:	:	24 95 25 96 28 45 41 28 36 35 27 32	19 6 24 5 " " 24.5 24.5	0 0776 0 1053 0 3397 0 5713 0.5313 0.0570 0.1686 0.0058 0 1996 0.0134 0.0532 0 0000

(Hahn, Wyandotte Silver Smelting Works, 1877.)

1 l. 4-N KCI+Aq dissolves 0 915 g. KCl at 25°. (Hellwig, Z. anorg, 1900, 25, 166.)

Solubility in KCl+Ac at to.

. (Ag×10-3	KCI		
1 0 25 0 35 0	1 734 2 415 2 786	3 325 3 083 2 955		

NaCl, KCl, NH,Cl, CaCl₂, ZnCl₂+Aq₂ etc., (Forbes, J. Am. Chem Soc. 1911, 33. 1937.)

Solubility in KCl+Ag at 25° G. per liter.

KCI	AgCi	KCI	AgCl
0.00236	0 00184	0 01491	0 00305
0.00471	0 00218	0 02984	0.00321

147.)

Solubility in CaClo+Aq.

	G equiv per I			
t°	Ag×10 ⁸	CnCl ²		
1 0 25 0 35 0	0 964 1 514 1 806	3.512 3.320 3.221		

(Forbes, 1 c.)

Sat. CuCl₂+Aq at 0° dissolves 2.835 g. AgCl per l; at 100°, 8.147 g Solubility in sat. MgCl2+Aq is still greater. (Hahn, Eng. Min. J. 65. 434.)

More sol, in HgCl₂+Aq than in H₂O. (Finzi, Gazz ch, it 1902, 32, (2) 324.) At 15°, 100 g, NaCl in 280 cem, H₂O dis-

Solubility it	saus+Aq	at 25°,	
=concentration -equivalents pe	of the salt r litre.	in salt solutio	n

solve 485 mg. AgCl; 100 g. KCl in 300 ccm H ₂ O dissolve 334 mg.; 100 g NH ₄ Cl in 280			in gequivalents per litre.			
cem M ₂ O dissolve 105 The solubility de	1 mg.			Salt	С	Ag×10 ⁻² g -equivalents per_l
inputly at first until H ₁ O has been added, slowly to a minimum dilution is 1: 10 for Ni for NH-Cl. 100 g NaCl in 280 mg. AgCl at 169°, 100 H ₂ O line 100°, 100 H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100°, 100° H ₃ O line 100° H ₃	about: and tin quaract and to quaract and quaract and to quaract a	in equa- hen rub titty, w. KCl, an local disso local d	l vol. of ch more hen the ad 1 20 lve 2170 280 ccm ; 100 g dissolve at 104° Aq de- ation of	NaCl	0 933 1 190 1 433 1 617 2 694 2 274 2 448 2 658 2 840 3 747 3 747 4 170 4 188 4 188 5 639	0 085 0 130 0 134 0 245 0 346 0 470 0 851 1 040 1 194 1 184 1 184 1 897 2 879 3 835 4 268 6 069
Strength of sult solution 15% NaCl 20% NaCl	G. AgCl retained per 100 g NaCl			CuCl ₂	2 201 2 741 3 264	0 289 0 501 0 900 1 463
20% NaCl 0 134 28% NaCl 0 279				3 737 4 033 4.538 5 005	2 182 2 802 4 175 5.823	
NaCl	N/10 AgNO: cem.	Opal- escent at to	G AgC retained per 100 g. NaCi	NH ₄ Cl	0 513 0 926 1 141	0 042 0 113 0 172
20 g of 15% solution	$\begin{smallmatrix} 0 & 25 \\ 0 & 4 \\ 0 & 7 \\ 1 & 0 \\ 1.25 \\ 1 & 7 \end{smallmatrix}$	28 40 64 78 89 102.5	0.119 0 191 0 335 0.478 0.598 0 812		1 574 2 143 2 566 2 918 3 162 3 510 4 363	0 365 0 842 1 425 2 160 2 795 4 029 9 353
$20 \mathrm{~g.}$ of 20% solution	0 65	17 0 26 0 37.0	0 156 0 234 0 295		4 902 5.503 5.764	14 92 24 04 30 17
	1 2 1 6 2 12 2 52 3 08 3.52	51.5 67.0 79.5 88.5 97.0 105.0	0 430 0 524 0 765 0.910 1.10 1.27	SrCl ₂	0.550 0.989 1.359 1.572 1.698 1.818	0.033 0 092 0 173 0.236 0.284 0.348
20 g. of 28% solution	2 25 2.75 3.5 4 5 5.5 6 5 7.75	36 5 45 0 56.0 69 0 84.0 94.0 107 5	0.675 0.704 0.896 1.153 1.411 1.664 1.958		2 140 2 476 2.992 3 494 4.152 5.216 5.775	0.510 0.747 1 252 2 018 3.594 8 174 12 04

⁽Lowry, Roy, Soc. Proc. 1914, 91. A, 61.)

Solubility	in salts+Aq a	t 25°—Continued
Salt	С	Ag×10-1 gcquivalents per l
KCl	1 111 1 425 1 713 2 022. 2 396 2 628 2 850 3 081 3 424 3 843	0 141 0 235 0 39J 0 616 1 050 1 390 1 845 2 435 3 602 5 725
BaCl ₂	1 248 1.610	0 186 0 339

(Forbes, J. Am Chem. Soc. 1911, 53, 1940) Sol m NaNO₃, KNO₃, Ca(NO₂)₂, Mg(NO₂)₂, and NH₄NO₂+Aq, sl sol. at ord temp., but

1 274 2 366

2 676

3 260

solubility is much increased by heat.

Solubility in NaNO₂+Ag at 15-20°.

0cm, H ₂ O	g NaNOs	mg AgCl dissolved
100	0 787	1 33
200	0 787	1 93
300	2 361	3 99
100	2 787	2 53

Solubility increases with ascending temp.

Temp.	eem H ₁ O	g. NaNO:	mg AgCl dissolved
5° 15–17° 18° 30° 45–55°	100 100 100 100 100	0 787 0 787 0 787 0 787 0 787 0 787	0 86 1.33 1.46 2 33 3 99

(Mulder)

At 25°, 100,000 pts. H₂O containing a little free HNO₃ and 0.787 g NaNO₃ dissolve 2.128 mg. AgCl. By adding 2 g more NaNO₃ to above solution, 2 5269 mg. (¹/₈ more) AgCl are dissolved. (Mulder) Solubility in H₂O is not appreciably in-

fluenced by ¹/₁₀ N to N-KNO₂ or NH₄NO₂+ Aq. (van Rossen, C. C. 1912, II 1807) In presence of NaNO₅ and excess of HCl, 1 l. H₄O dissolves 0 03 mg. AgCl (Richards and Wells)

Hg(NO₂)₂+Aq dissolves considerable quantities of AgCl, but the other nitrates do not (Mulder)

Much more sol in hot than in cold $Hg(NO_s)_2+Aq$, and much more sol. therein than in NH_4NO_3+Aq . NaCl ppts AgCl from this solution, much less sol. therein in

presence of NaC₂H₂O₂ or NH₄OH +Ac AgCl is pptd. from above solution by NaC₂H₃O₂+ Ac (Mulder.)

Sol in Hg(NO₂)₂+Aq (Wackenroder, A. 41. 317); in conside able amount (Liebig, A. 81. 128); and is precipitated by HCl, NHc(), NaCl, KC₂H₂O₂ (Debray, C. R. 70. 849); mcompletely precipitated by AgNO₂ and not by HNO₃ (Wackenroder).

Solubility of AgCl in Hg(NO₂)₂+Aq at 25°.
(G. mols, per l.)

Hg(NOs): HNOs	AgCl	Hg(NOa)2 HNOa	AgCi
0 0100	0.00432	0.050	0 00914
0.0125	0 00499	0 100	0 01395
0.025	0 00690	1.000	0 04810

HNO₁ was present in all cases, and it was found that there was no difference in solubility of AgCl with concentrations between 0.1N and 2N HNO₁. (Morse, Z. phys. Ch. 1902, 45, 708.)

Not sol. to appreciable extent in Cu(NO₃);, Fe₂(NO₂), Mn(NO₃);, Co(NO₃), Zn(NO₃);, or Ni(NO₃);+Aq, usol or exceedingly sl. sol in Pb(NO₃);+Aq. (Mulder.) Imperfectly sol in AgNO₃+Ao. (Wacken-

roder) Conc. AgNO₃+Aq dissolves AgCl perceptibly.

Less sol in AgNO₂+Aq than AgBr (Risse, A. 111, 39) Solubility in 0 02N AgNO₂+Aq=0.15×

10-7 g. mols. per J. (Böttiger)
100 ccm of 3-N solution of AgNO; dissolve 0 68 g. AgCl at 25° More dal. solutions dissolve very sight amounts of AgCl. (Hellwig, Z. anorg 1900, 25. 177.)
Solubility in 2-N AgNO; +Aq at ord. temp. =0.03 X10-3 g. equiv. AgCl. (Forbes, J. Am. Chem. Soc. 1912, 33. 1946.)

Solubility in $AgNO_3+Aq$ at t° .

(Det. by volumetric method.)

AgNOT HIO = 2 1					
G. AgNO ₃	n/10 NaCi cem	t°	g AgCl ro- tained per 10 g AgNO ³		
6 7 8 9 11 7 10 10	2 2 2 2 2 1 1 4 5	57 45 40 35 30 26 22 65 86	0 478 0.410 0 359 0 319 0.261 0.205 0.143 0 572 0 715		

Solubility in AgNO + Ag at to -Continued

AgNO ₂ H ₂ O = 1 1			
5 6 7 8 9 5.5 6.5	1 1 1 1 0 5 0 5 0 5	94 84 75 66 58 48 40 23	0 286 0 239 0 205 0 179 0 150 0 130 0 110 0 060

AgNO ₃ H ₂ O = 1 2			
6 7 8 10 12 8	0 5 0 5 0 5 0 5 0 5 0 5 0 25 0 25	104 92 85 73 61 45 28	0 120 0 103 0 090 0 072 0 060 0 045 0 030

(Lowry, Roy, Soc. Proc. 1914, 91. A 58.)

Solubility in AgNO₂+Aq at 20°. (Det. by gravimetric method)

g AgNO ₃	g H _t O	g AgCl retained per 100 g AgNO ₁
220 220 220 220 220 220	110 165 220 330 440	0.1372 0 1009 0 0722 0.0402 0.0294

(Lowry, Roy Soc Proc 1914, 91, A. 56)

Insol in Na-SO, +Ao.

Solubility of AgCl in Na SO + Ag at 25°. G. formula weights ner l.

SO ₃	Ag	SO ₁	Λg
0 080	0.011	0.483 *	0.059 *
0.106	0 017	0 470	0.070
0.220	0 038	0.652	0.103
0.234	0 036	0.890	0.140
0 478*	0 057	0 937	0.142

* In presence of 0.05 Cl.

(Luther and Leubner, Z. anorg. 1912, 74, 393

Easily sol in Na₂S₂O₃ or KCN+Aq When freshly pptd., very sol. in solutions

of soluble throsulphates, and especially in cone on Sabota three-modates, and especially in control Sabota three-modates, and tespecially in Sabota three-modates as readily as H₂O dissolves sugar. K₂SO₂+A₃O, even when very dil, also thesolves AgCl; also SrSO₂+A₃O. (Hersachel, 1830 SrSO₂+A₃O. (Hersachel, 1830 SrSO₂+A₃O. (Hersachel, 1830 SrSO₂+A₃O. (Hersachel) and Sabota the amount of AgCl. (Rosenbein and Stembel amount of AgCl. (Rosenbein amount of AgCl. (Rosenbein and Stembel amount of AgCl. (Rosenbein amount of AgCl. (R

häuser, Z. anorg. 1900, 25. 78.)

Sol. in cold sat. (NH₄)₂S₂O₃+Aq. (Rosen-containing 49.511 g. KCN per liter dissolve

heum and Steinhauser, Z. anorg. 1900. 25. 103)

Solubility in Na thiosulphate + Aq at 16°.

. Na:S-Oa 5H1O	g dussolved AgCl		
in 100 cc. water	experimental	calculated	
2 08 4 16 6 24 8 35 16 70 20 83	0 29 0 64 0 88 1 26 2 54 3 28	0 80 1 60 2 40 3 21 6.42 7 99	

(Abney, Z. phys. Ch 1895, 18. 65.)

A solution of Na₂S₂O₅+Aq containing 200 g Na₂S₂O₃ per liter, dissolves 0.454 g AgCl per g. of Na₄S₂O₃ at 35° (Richards and Faber, Am. Ch. J. 1899, 21. 170.)

Calability in salts 4 Ac

٠,	Solubility in saits+Aq		
	Solvent	% Conc.	Grams AgCl sol in 100 grams solvent
-)	Sodium thrombphate """ Armsonium thrombphate """ Armsonium thrombphate """ Sodium sulphite Armsonium sulphite Armsonium sulphonate Armsonium sulphonate Armsonium sulphonate Armsonium sulphonate Potassum cyanida Armsonium sulphonaude Potassum cyanida Armsonium "" Potaveuim "" Alumnum "" A	1 5 10 20 1 5 10 20 10 10 10 10 15 5 10 10 10 10 10 10 10 10 10 10 10 10 10	0.40 2.00 4 4 10 6 10 20° 0.57 1 32 3.92 9 0.44 0 0.95 Trace 0.05 1 40 25° 7 58 0 50 1 50 15 0 15 0 15 0 15 0 15 0 1
	Thiosinamine	5	1 90
3.)		10	3 90

(Valenta, M. 1894, 15, 250.)

Solubility in salts+Aq.

31 71 cc. of a solution of sodium thiosulphate containing 31.869 g. Na₂S₂O₃ per liter (t. e. 5 g. of the hydrate in 100 cc. of the solu-tion) dissolve 0.6124 g. AgCl.

21.88 cc. of a solution of ammonium thiosulphate containing 50 g. (NH₄)₂S₂O₈ per

liter dissolve 0 7024 g. AgCl. 27.34 cc. of a solution of potassium cyanide

date. (Cohn.) Sl. sol. in liquid NH2 (Franklin, Am. Ch. J. 1898, 20, 829.)

Insol, in moderately dil Pb(C2H+O0)++Aa 10 cem normal Hg(C2H2O2)2+Aq containmg 0 1 g. Hg dissolve 0 01892 g AgCl at 15°. (Stas)

100 ccm, of a solution of a mixture of Na and Hg acetates dissolve 0 00175 g. AgCl

(Stas. A. ch. (5) 3. 145)

Only 8, so in inqud NH₁, Solubility curve for AgCl, AgCl, 3NH₂, AgCl, 5NH₃. (Jarry, A ch 1899, 17, 342.) Insol m alcoholic ammoma. (Bodlander, Z. phys. Ch. 1892, 9, 731.)

Nearly insol in ether (Mylius and Hutt-ner, B 1911, 44, 1316.)

Perceptably sol, on warming with solution of tartaric acid, but nearly the whole is deposited on cooling.

Insol. in acetone. (Naumann, B 1904, 37. 4329); msol in accione and in methylal. (Eldmann, C. C. 1899, II 1014.)

Insol, in methyl acetate. (Bezold, Dissert 1906; Naumann, B 1909, 42, 3790)

Insol. in ethyl acetate. (Hamers, Dissert 1906; Naumann,B. 1910, 43, 314.) Sol. in methylamine+Aq. (Wurtz, A ch (3) 30. 453)

Solubility of AgCl in methylamine at 11.5°.

% CH:NH:	% AgCI	% CH*NH1	% AgCl
1.78 4 44 5 51 7 66	0.16 0.62 0.83 1.32	13 70 18 69 36.69	3.29 5 43 9 93

(Jarry, A. ch. 1899, (7) 17, 342.) Solubility in methylamine+Aq at 25°. G. mols, per l.

CH ₁ NII ₁	AgCl
0 0200	0 000300
0 0400	0 000370
0 0740	0 000424
0 0947	0.000447
0 1950	0 000481

(Wuth. B. 1902, 35, 2416.) Solubility in methylamine+Ag at to. G. mols, per l.

t°	CH ₁ NH ₂	Ag
18	0 93	0.0315
25	0 93	0.0338
25	0 98	0.0335

(Euler, B. 1903, 36, 2880.)

14920 g. AgCl (Cohn, Z. phys. Ch. 1895, 18.63.) At 28°, 1 l. methylamme+Aq, containing 18.63. Solubility of AgCl m sodium thosulphate and potassium cyande solutions may be de-limited without telerence to experimental 1903, 28.3948.

Solubility in ethyamine+Ag at 25°. G. mols, per.l.

C:H:NH:	AgCl
0 01272	0 000114
0 03942	0 000156
0 05512	0 000235
0 06572	0 000312
0 10300	0 000824

(Wuth, B. 1902, 35, 2416.)

Solubility in ethylamine+Ao at to. G. mols, per l

£°	C2H4NH2	Ag
18	0 094	0 00458
25	0 093	0 00474
25	0 094	0 00478
18	0 236	0 0132
25	0.234	0 0136
18	0 462	0 0251

(Euler, B. 1903, 36, 2880.)

At 25°, 1 l. ethylamine+Aq, containing 0.483 g. mol. C₂H₂NH₂, dissolves 0.0314 g. mols. AgCl; 0.200 g mol. C₂H₂NH₂, 0.0115 g. mol. AgCl; 0.100 g. mol. C₂H₂NH₂, 0.0062 g. mol. AgCl. (Bodlander and Eberlein.) Sol in amylamine+Aq, but less than in NH₄OH +Ao.

Sol in caprylamme + Aq Easily sol on warming in ethylene diamine +Aq (Kurnakow, Z. anorg. 1898, 17. 220.) Easily sol. in alcoholic solution of thiaceta-

mide, (Kurnakow, J. pr 1895, (2) 51, 251.) Insol. in benzonitrile. (Naumann. B. 1914, 47, 1370.)

Solubil	ity in pyridi	ne at t°.
ţ°	g AgCl sol. in 100 g pyridine	Solid phase
-52 -49 -35 -30 -25 -22 ransition point	0 70 0.77 0 99 1.36 1.80 2.20 2 75 3 71	AgCl, 2C ₈ H ₆ N

35

5 05

5 60

AgCl, C₆H₆N

tr -18-10

— 5

- 1

Solubility in pyridine at to.—Continued		
t°	g AgCl sol m 100 g pyndine	Solid phase
transition point 0 10 20 30 40 50 60 70 80 90 100	5 35 3 17 1 91 1 20 0 80 0 53 0 403 0 32 0 25 0 22 0 18	AgCl

Easily sol. in warm piperidine. (Varet, C. R. 1892, 115, 335) Mol. wt. determined in piperidine. (Wer-

ner, Z. anorg. 1897, 15. 16.)

Quinoline dissolves traces of AgCl. (Varet.

C R 1893, 116. 60.)
As sol in contine+Aq as in NH₄OH+Aq
(Blyth, Chem Soc 1, 350.)

Sol, in sinamme, and thiosinamine+Aq. Min. Cerargyrile.

Silver chloride ammonia, AgCl, 2NH₃.

Decomp. by H₂O (Terrerl, A Phys.

Beild 7, 149)

2AgCl, 3NH₂ Decomp on air and in H₂O

to AgCl. Sol in cone NH₄OH+Aq, from

which it can be crystallised (Rose.)
Insol, in alcohol (Bodlander, Z. phys. Ch.
9, 730.)

AgCl, 3NH₃. More easily decomp. than 2AgCl, 3NH₃. Sl, sol in liquid NH₃. (Jarry, A. ch. 1899.

(7) 17, 343.)
AgCl, 5NH₃. Si. sol. in liquid NH₃.
(Jarry, A. ch, 1899, (7) 17, 336.)

Silver chlorobromoiodides.

(Rodwell, Proc. Roy. Soc. 25, 292.)

Silver subfluoride (argentous fluoride), Ag₂F Decomp. by H₂O into Ag and AgF. (Guntz, C. R. 110, 1337.)

Decomp. by H₂O.
Insol. in abs alcohol, ether, acetone and xylene. (Wohler and Rodewald, Z. anorg.

1909, 61. (33.)
Decomp. by H₂O until the solution contains 64.5% AgP, independent of temp. (Guntz, C. R. 1913, 167, 981.)

Silver fluoride, AgF.

Extremely deliquescent. (Gore.)

Sol. in 0.55 pt. H₂O at 15.5° with evolution of heat. Sp. gr. of sat solution at 15.5° = 2.61. (Gore.)

ontinued Solubility of AgF in H₂O at t°.
G. per 100 g. H₂O.

t°	AgF	Solid phase
-14 2 +18 5 18 65	60 165 169 5	Ice+AgF, 4H ₂ O AgF, 4H ₂ O " +AgF, 2H ₄ O
20 24 25	172 178 179 5	AgF, 2H ₂ O
28.5 32	215 198	"
39.5 108	222 205	AgF, 2H ₂ O+AgF

(Guntz, A. ch. 1914, (9) 2. 101.)

Sp. gr AgF+Aq at 18°.

7 20	1 07
29.60	1 38
49 20	1 82
56 40	2 09
66 20	2 62

(Guntz, A. ch. 1914, (9) 2. 104)

Data on solubility of AgF in HF+Aq are given by Guntz (l. c.).
SI soi in liquid NH₄. (Gore, Am. Ch. J. 1898 20, 829)

St 501 in H₂-1 1898, 20, 329.) +H₂O. Deliquescent. Sol in H₂O. (Gunts, A. ch 1914, (9) 2, 101.) +2H₂O. Deliquescent. Sol. in H₂O

(Guntz) +4H₂O. Not deliquescent. Sol. in H₂O. (Guntz) +³/₃ H₂O. Unstable in the presence of crystals of AgF+2H₂O (Guntz, A. ch. 1914,

(9) 2. 101) Silver hydrogen fluoride, AgF, HF.

(Guntz.) AgF, 3HF. Very

AgF, 3HF. Very unstable. Sol in HF. (Guntz, Bull. Soc. 1895, (3) 13. 114)

Silver stannic fluoride. See Fluostannate, silver.

Silver tungstyl fluoride.

See Fluoxtungstate, silver. Silver, fulminating.

See Silver nitride.

Silver hydride, AgH.

Not decomp. by H₂O. (Bartlett, Am. Ch. J. 1896, **19**. 52.)

Argentous hydroxide, Ag₄O₂H₂.

Sol. in H₂O. Known only in solution.
(Weltzein, A. 142, 105.)

Silver hydroxide, AgOH.

Decomp into Ag₁O and H₂O above -40°. See Silver oxide. 40.0

0.80

Argentous iodide, Ag₂I (Guntz, C. R. 112, 861)

Silver imidosulphamide, AgN(SO,NH,),+

Decomp slowly in the air Somewhat sol in hot, more sol in boiling H₂O, from which it cryst unchanged on cooling. In aqueous solution is stable toward alkali. Decomp. by acids. Difficultly sol. in dry pyriding. easily sol. in pyridine+Aq. (Hantzsch, B

SO.) N.H.Ag. +516H.O. Nearly maol. in hot H₂O. (Ephraim and Michel, B 1909, 42, 3845

 $(SO_s)_4\dot{N}_7H_8Ag_5+4H_2O$. (Ephram and Michel) SO₂), N. HAge +11/2, 11, and 28 H.O

Easily sol, in HNO, and NH,OH+Ao. Sl. sol. in pyridine. Very sol. in pyridine containing pyridine nitrate and can be recryst. therefrom. (Ephraim and Michel) (SO₂)₄N₄Ag₇+8H₂O. (Enhraim Michel.)

Silver iodide, AgI.

Insol in II.O Calculated from electrical conductivity of AgI+Aq, AgI is sol. in 1,074,040 pts H₂O at 28.4°, and 420, 260 pts at 40° (Holleman,

Z phys Ch 12, 130.) I. H2O dissolves 01 mg AgI at 18° (Kohlrausch and Rose, Z phys Ch. 12, 241) Solubility in H₂O = 1×10⁻⁸N. (Rolla.)

Solubility in $H_2O = 0.97 \times 10^{-8}$ g, mols, per l. at 25°. (Goodwin, Z. phys. Ch. 1894, 13. 645.) Solubility of AgI in H2O at 25° is 1 05×10-8 (m normality), (Thiel, Z anorg, 1900, 24, 57

A sat ag solution at 20 8° contains 0 0020 ×10⁻⁶ g. equiv per l. (Kohlrausch, C. C. 1901, H. 1299.)

1 I H₂O dissolves 0 0035 mg, AgT at 21° (Kohlrausch, Z. phys. Ch. 1904, 50, 356.) 1 l. HaO dissolves 0.00253 mg. AgI at 60° (Sammet, Z. phys. Ch. 1905, 53, 644.)

Solubility in $H_2O = 1.23 \times 10^{-3}$ g.-mol. er litre at 25°. (A E Hill, J Am. Chem. Soc. 1908, 30. 74.)

0.003 mg, are contained in 1 l, of sat. soluion at 21°. (Kohlrausch, Z. phys. Ch. 1908, 64. 168.)

Insol, in dil HNO3+Aq or H3PO4+Aq Decomp by hot. conc HNO3+Aq or H1SO4 Easily sol in conc. HI+Ao

1 pt. AgI dissolves in 2510 pts. NH4OH+ Aq of 0 96 sp. gr (Martin, Schw. J. 56, 154); m 2483 pts. of 0.89 sp gr. (Wallace and La-mont, Ch. Gaz. 1859, 137).

1 g AgI dissolves in 26,300 g. 10% NH.OH+Aq (sp. gr = 0.96) at 12°. Insol. in 5% NH,OH+Aq. (Longs, Gazz, ch. st. 13.

Coefficient of solubility in NH4OH+Aq (density, 0.926) is found lower than previously obtained and of the order of 1/2000 at 16°, (Banbigny, Bull, Soc. 1908, (4) 3, 772.)

According to Field, insol, in cold conc. KCl or NaCl+Aq, and only in traces on boiling. and separates out on cooling

100 g. NaCl in conc. NaCl+Aq dissolve 0.95 mg AgI at 15°; 100 g. NH₄Cl in cone NH₄Cl+Aq dissolve 2 9 mg. AgI at 15°; 95 g. NaCl+10 g. KBr m cone, solution dissolve 12 mg AgI at 15°; 100 g. KBr+225 g H₂O dissolve 430 mg AgI at 15°, 100 g. KBr in cone KBr+Aq dissolve 525 mg. AgI at 15°; 100 g. KI+69 g. H.O dissolve 89 8 g. AgI at 165; 100 g. K1+93 g. H₂O dissolve 55 40 g. AgI at 15°; 100 g. K1+92 g. H₂O dissolve 540 g. AgI at 15°; 100 g. K1+366 g. H₂O dissolve 725 g. AgI at 15.° (Schierholz, W. A. B. 101, 2b. 4)

Sol. in cone. KI+Aq, from which it is pre-cipitated by H₂O (Field, C. N. 3. 17) KI gives a ppt, with AgNO₃ in presence of 30,000 pts, HoO (Harting)

Solubility in KI+Aq at 15°			
% KI	% AgI	%KI	% AgI
59 16 57.15	53 13 40 25 0	33 3 25 0 21 74	7 38 2 75 1 576

20 (Schierholz, W. A. B. 1890, 101, 2b, 10.)

13 C

Solubility in KI+Ag at 25° Mol KI per L g AgI per l.

1.937	46 42
1.6304	24.01
1 482	15.46
1 406	12 55
1 018	3 47
1 008	3 32
0 734	1 032
0 586	0 512
0 335	0 0853

Hellwig, Z anorg 1900, 25, 180.)

Solubility in KI+Aq.

t=50°		
% AgI	% KI	Solid phase
2 5 16 0 28 0 39 0 51 8 53 5 53 5 53 5 53 5 53 4 45 0 38 0 22 8 10 7	24 8 33 8 36 7 38.1 36.2 36.5 36.6 37.1 37.6 40.2 43.2 47.1 55.5	AgI " " " " " AgI-AgI, KI AgI, KI KI+AgI, KI " " " " "

	£ = 30-	
% AgI	% KI	Solid phase
0.1 10.0 29.4 42.8 49.7 49.6 47.7 46.3 44.1 42.8 35.8 16.0	10 2 31 4 37 6 38 8 38 6 39 5 40 9 41 4 43 2 43 9 46 9 55 5 60 35	AgI " AgI+AgI, 2KI AgI, 2KI AgI, 2KI+KI KI "
	£ =0°	
% AgI	% KI	Solid phase
0 2 1 5 6 5 26 6 28.1 38.0 37.9 37.6 37 9 31.3 21.7	9 8 20 5 26 1 34 6 36 4 41 3 42 0 42 7 44 0 46 6 50 5	AgI " " AgI+AgI, KI AgI, KI AgI, KI+KI KI

+ - 200

56 1 48 7 50.3 (Van Dam and Donk, Chem Weekbl 1911, 8, 848.)

51 2

53 0

18.0

9 0

ñ

27.5

21 0

Very sol, in KI,+Aa (Muth, Dissert, 1895) Very sol. in H2O in presence of NaI (Kurnakow, Ch. Z. 1900, 24, 60.)

AgI, 2KI+KI

Agl. 2KI

Solubility in KI+Aq at 15°.		
solution i	n of the sat. a mels per lols. H ₂ O	Solid phase
Mola Na ₂ l ₂	Mols, Agri:	
35.63 40.54 61.55 80.55 94.25 107.52 117.96 134.40 125.83 133.81 129.02 122.56 117.11	8 14 10.94 25.15 38 19 47.79 57.52 51 70 46 82 46 36 43.03 34.85 22 82 11.93	AgI "" AgI+AgI, NaI, 3½H ₂ O AgI, NaI, 3½H ₂ O AgI, NaI, 3½H ₂ O+NaI NaI "" ""
111.52		1 "

(Krym, J. Russ. Phys Chem Soc 1909, 41. 382.)

Traces are dissolved by alkalı nitrates + Aq Easily sol in bot KOH + Aq, from which it is pptd. by H₂O or alcohol. Not decomp. by boiling KOH + Aq. (Vogel, N Rep. Pharm. 20, 129.)

100 pts. of AgNO₂+Aq sat. at 11° dissolve 2.3 pts AgI in the cold, and 12.3 pts. on boiling (Schnauss.)

Solubility of AgI in AgNO, +Ag at 25°. g AgI m 1 L Solid phase in II 0 20 0.06800 25 0.080 0 000 0.30 0.35 0 125 0 40 0 167 0 45 0 224 AgI 0.50 0 299 0 55 0.400 0 60 0 528 0.65 0.70 0.850 1 215 3.08 Ap.INO. 1.63 6.26 10 90 2 04 2.54 3 115 22 7 33 2 3.75 AgaI(NOa) 4 055 40.0

53 2 5 90 85 0 (Hellwig, Z. anorg 1900, 25, 171.)

4 60

0.0125

0.025

Solubility of AgI in 25% AgNOa+Aq reaches a maximum at about 60° and at the point of maximum solubility the quantity dissolved amounts to about 5 g. AgI per 100 AgNO2. (Lowry, Roy. Soc Proc. 1914,

91, A, 66.) Sol in hot Hg(NO₃)₂+Aq, from which it erystallizes on cooling.

Solubility of AgI in Hg(NO₄)₂+Aq at 25°. Mob Mols Hg(NOs)s g AgI Hg(NOs): g AgI per l. DEL per l per I 0.010 0.8000.0501 737

0 100

1 000

2 730

25.160

Solubility is not affected by presence of 0 1 to 2N HNO.

0.841

1 118

(Morse, Z. phys. Ch. 1902, 41, 708.)

Sol m KCN+Aq. Sl. sol. in Na₂S₂O₃+Aq when suspended in much H2O, but separates again on addition of KI+Aq. (Field.) Insol in Na₂S₂O₂+Aq. (Fogh, C. R.

1890, 110, 711)

Solubility in salts + Aq		
Solvent	Conc	grams AgI sol in 100 grams solvent
Sudum thosulphate Sodum sulphate Sodum sulphate Amnonium sulphate Potassum sande Amnonium sulphoryande Calcium sulphoryande Sudum sulphoryande Sudum sulphoryande Sudum sulphoryande Sudum sulphoryande Sudum sulphoryande Sudum sulphoryande Sudum sulphoryande Sudum sulphoryande Sudum sulphoryande Sudum sulphoryande Sudum sulphoryande	1 5 10 15 20 10 20 10 5 5 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	0 03 0 15 0 30 20 0 40 0 60 0 0 1 0 0 1 0 0 1
Aluminum Theoreteamide Theoreteamine	10 10 1 5 10	0 02 0 79 0 008 0 05 0 09

0.3.3.3.1.5...31...1.4.

(Valents, M 1894, 15, 250.)

Very sol, in hourd NH₂ (Franklin, Am. Ch. J. 1898, 20, 829, Jarry, A. ch. 1899, (7) 17, 370.) Easily sol, in liquid NHs. (Ruff and Gersel, B. 1905, 38. 2662.)

Insol in acetone (Eidmann, C. C. 1899, II, 1014); (Naumann, B. 1904, 37, 4329.) Insol. in methyl acetate. (Bezold, Dis-sert. 1906); (Naumann, B 1909, 42. 3790) Insol, in CS. (Arctowski, Z. anorg, 1894. Much less sol in hot alcoholic thioures than

AgCl and AgBr (Reynolds, Chem Soc 1892, 61, 253. Insol, in benzonitrile (Naumann, B.

1914, 47, 1870. Slowly sol in piperidine at 100° (Varet,

C. R. 1892, 115. 336) 0.10 pts, is sol, in 100 pts, pyridine at 10° 8.60 pts. are sol. in 100 pts. pyridine at 121°. (Laszczynski, B. 1894, 27, 2288)

Mol. wt determined in piperidine (Werner. Z anorg. 1897. 15, 16.) Mm Iodyrite.

Silver hydrogen iodide, 3AgI, HI+7H2O. (Berthelot, C. R 91, 1024)

Silver sodium iodide, 2AgI, NaI, Very sol in acctone. (Marsh, Chem. Soc

(7) 17. 371.)

1913, 103. 784) AgI, NaI+31/4H2O. (Krym, J. Russ. Phys. Chem. Soc. 1909, 41. 382.) See AgI+NaI under AgI

Silver sodide ammonia, AgI, NH₃.

Sol m liquid NH2. (Jarry, A. ch. 1899,

2AgI, NH2. (Rammelsberg, Pogg, 48.

Composition is Agl. NH. (Longi, Gazz. ch. it. 13, 86 Sol in liquid NHs. (Jarry, A. ch. 1899, (7)

17, 371 AgI, 2NH₃ (Terreil, C R. 98, 1279.)

Silver nitride, AgaN

Berthollet's "knallsilber." Very explosive. Insol. in H₄O. Sol in KCN+Aq. Slowly sol in NH₄OH+Aq. (Raschig, A. 233. 93.) (Angeli, Chem Soc 1894, 66, (2) 93.)

Argentous oxide, AgeO

Insol. in HaO Decomp. by acids into augentic oxide and silver. Insol in NH4OH+ Ag or HC₂H₂O₃. (v. der Pfordten, B 20, 1458.1

Contains H, and is a hydroxide AgaHsO. (v. der Pfordten, B. 21, 2288) The above substance is a mixture, according to Friedheim (B 20, 2557.)

Silver oxide, Ag-O.

Somewhat sol in H₂O (Bucholz.)

Sol in 3000 pts H₂O (Bineau, C R 41 509); sol in 96 pts. H₂O (Abl) Sol. in 15,360 pts. HaO. (Levi, Gazz, ch. it.

1901, 31. (1) 1.) Solubility in H₂O at 25° = 2.16×10-4 mols AgOH per litre (Noves, J. Am. Chem.

Soc. 1902, 24, 1147) 1 liter sat aqueous solution at 19.96° con-

tains 2.14×10-2 g.; at 24 94° contains 2.5× 10-2 g. Ag₂O. (Bottger, Z phys Ch. 1903, 46. 603. 1 1 H₂O at 25° dissolves 1 8×10⁻⁴ gram-

atoms of silver Determined from its solubility in NH₂ (Abegg and Cox, Z. phys. Ch. 1903, **46**, 11.) I. H₂O dissolves 0 0215 g. Ag₂O at 20°.

(Whitby, Z. anorg. 1910, 67. 108.) The solubility of Ag2O in H2O varies with

the method of preparation, Solubility of AgyO (prepared by action of NaOH, freshly prepared by the solution of Na in H2O, on a dil. solution of AgNOa) = 2 16×10-4 g-mol, in 1 l. H₂O at 25⁸; 2 97× 10-4g.-mol at 50'

Solubility of Ag₂O (prepared by action of aqueous barum hydroxide on AgNO₄) = 2,23×10-4 g.-mol. in 1 l. H₂O at 25°: 3 09×10-4 g,-mol, m 1 l H₂O at 50°. Solubility of Ag-O (prepared by action of

cone NaOH+Aq on moist, freshly pptd. AgCl) = 2.32 × 10-7 g.-mol in 1 l. H₂O at 5°; 3.55×10⁻⁴ g -mol. at 50°. Solubility of Ag₂O (prepared by action of

conc NaOH+Aq on moist, freshly pptd. Ag₂CO₃ = 295×10⁴ g mol in 1 l. H₂O at 25°; 389×10⁴ g -mol at 50° (Rebière, Bull. Soc 1915, (4) 7. 311)
Sol. m acrds, NH₂OH, and (NH₄)₁CO₃+

Ag. Decomp. by alkali chlorides, bromides.

and iodides + Aq. Sol. in alkali cyanides, and thiosulphates+Aq. SI sol. in mtrates+Aq; msol. in sulphates+Aq. When freshly pptd., sol. in NH₄SCN+Aq. Sl. sol. in When freshly pptd., sol. in NHSCN+Aq. Sl. sol in NHAO2+Aq. Abundantly sol. in Ba(NO2)+Aq. Abundantly sol. in Ba(NO2)+Bollang Mn(NO2)2, N1(NO2)2, Co(NO2)4, Cu(NO2)2, and Ce₂(NO2)4+Aq with pptn Sol m

of oxides. (Persoz.)

in BaO ₂ H ₂ +Aq. (Berzelius (?).		
Solubility in NI	HOH+Aq at 25°.	
G at. Ag per l	Mol NH ₁ per l	
0.0654 0.0658 0.134 0.140 0.205 0.205 0.225 0.224 0.251 0.248	0.214 0.220 0.458 0.469 0.671 0.684 0.720 0.733 0.811 0.827	
0 257 0 278	0 876 0 899	
0 276 0 299 0 343	0.915 0.999	
	1 147	

(Whitney and Melcher. Melcher, J. Am. Chem. Soc 1903. 25, 78.)

0 454

0 470

Insol. in liquid NHs. (Franklin, Am. ch. J 1898, 20. 829.) Insol. in acetone. (Eidmann, C. C. 1899, 1014); (Naumann, B. 1904, 37, 4329.) Insol in ethyl acetate. (Hamers, Dissert.

1 498

1 522

1906; Naumann, B. 1910, 43, 314.) Sl. sol in amylamme+Aq, easily in methylamine+Aq (Wurtz, A. ch. 30, 453); also in ethylamine, and thiosinamine+Aq.

Solubility in methylamine + Ac. at 18°

G. mols, per l,		
CH ₁ NH ₁	Ag	
0,1 0 5 1 0	0 0221 0 118 0 228	

(Euler, B, 1903, 36, 2879) Solubility in ethylamine+Aq at 18°.

CaHaNHa	Ag
0.1 0.5 (interpolated) 1.0 0.561 0.927	0.0322 0 160 0.314 0.180 0.291
(Euler.)	

Silver peroxide, Ag₂O₂

Sol. in cone H₃SO₄ (Rose), and in pure HNO₁+Aq without decomp. Sol. in NH₄OH +Aq. (Schonbein, J. pr. 41, 321.) Sol. in HNO₄ and H₂SO₄ with decomp. (Mulder, R. t. c. 1898, 17, 151.) Insol, in liquid NH, (Gore, Am Ch. J.

1898, 20, 829,5 Silver oxide ammonia. See Silver nitride.

Silver oxybromide, Ag₇OBr₇. Insol. in H₂O Insol. in HNO₈. Sol. in hot ammonia and in NaOCl+Aq. (Sevewetz. C. R 1912, 154, 357.)

Silver oxyfluoride, AgF, AgOH,

Decomp, by H₂O with separation of Ag₂O. (Pfaundler.)

Silver ps oxyfluoride, 2Ag₃O₄, AgF. (Tanatar, Z. anorg. 1901, 28, 335) 4Ag₂O₄, 3AgF (Tanatar, Z. anorg, 1901, 28, 335.)

Silver oxylodide, AgsO, AgsI7, (Seyewitz, Bull. Soc. 1894, (3) 11. 452.)

Silver phosphide, AgP₂. Sol. in HNOs. Attacked by aqua regia. John H. LINOs. Attacked by aqua regia. (Granger, C. R. 1897, 124, 897.) Ag.P. Insol, in HCl+Aq; osally sol, in HNO;+Aq. (Schrotter, J. B. 1849, 247.) Ag.P. (Hackspill, C. R. 1913, 157, 720.) Ag.P. (P). (Fresemus and Neubauer, Z. anal. J. 349.)

Silver phosphoselenide, Ag₂Se, P₂Se,

Insol. in H₂O or HCl+Aq. Sol. in HNO₈+ Aq. Insol in cold, decomp by hot alkalies+ Aq. (Hahn, J. pr. 93, 436.)

2Ag₂Se, P₂Se₃ Insol. in H₂O, HCl, or
HNO₃+Aq; slowly sol in red fuming HNO₃. (Hahn, J. pr. 93, 440.) 2Ag₈Se, P₂Se₅ Sol only in fuming HNO₅.

(Hahn.) Silver phosphosulphide, 2Ag₂S, P₂S.

Ag₂S, P₂S (Berzelius, A. 46, 254.) 2Ag₂S, P₂S₂. Easily sol in HNO₂+Aq without separation of P. (Berzelius.) Ag. PS. (Berselms.)
Ag. PS. Easily attacked by hot conc.
HCl. Sl. decomp. Insol in hot HNOs. De-

comp. by aqua regia. (Ferrand, A. ch. 1899, (7) 17. 413.) Silver selenide, Ag-Se.

Sol. in boiling HNO1+Aq as Ag;SeO1 which separates out by dilution with H₂O. (Berzelius.) Insol. in Hg2(NOs)2+Aq. (Wackenroder. A. 41, 327,)

Min Naumannie. Insol. in dil., but s in cone HNO₃+Aq.

Silver sulphamide (silver thionyl amide), SO₂(NHAg)₂

Insol. in pyridine (Hantzch and Holl, B. 1901, 34, 3436) + H₂O. (Ephraim and Gurevitsch, B. 1910, 43, 146.)

Argentous sulphide, AgeS

Easily sol in warm dil. HNO₃+Aq, and in cone H₂SO₄ without separation of S Sol in cone. KCN+Aq. (v der Pfordten, B. 20. 1458, Guntz, C. R. 112. 861.)

Silver sulphide, Ag₂S.

Less sol. in H_2O than AgI. (Lucas, Z. anorg. 1904, 41. 210) 1 1. H_2O dissolves about 4×10^{11} g. at Ag ss $A_{\rm RS}S$ at 18°. (Bernfeld, Z. phys. Ch. 1898,

gs Ag₂S at 18°. (Bernield, Z. phys. Ch. 1898,
 25, 72.)
 1. H₂O dissolves 0.8×10 g mols at 10-18°. (Bilts, Z. phys. Ch. 1907, 58. 291.)
 1. H₂O dissolves 0.552×10 g. mols. Ag₂S at 18° (Weigel, Z. phys Ch. 1907, 58.

294)
Sol. in cone HNO₃+Aq with separation of S. Sol. in hot cone HCl+Aq. Not decomp. by CuCl₂+Aq, but by CuCl₄+NaCl+Aq. Insol. in NH₄OH+Aq. Insol. in NH₄OH+Aq. Insol.

+Aq. Insol. in NHAUH-Aq. Insol. in HsSO₂-Aq. Insol in HsSO₃-Aq. Insol in H₂O, dl. neids, alkalies, and alkali sulphides+Aq. (Fresemus)
Sol. in HCN+Aq. (Hahn, C. C. 1870.

Soi. in HCN+Aq. (Hann, C. C. 1870. 240)
Pptd. Ag:S is very sol. in HNO₃ containing more than 5% HNO₃. (Gruener, J. Am

Chem. Soc. 1910, 32. 1032)
Only very sl sol in AgNO₂+Aq, even at 100°. (Lowry, Roy. Soc. Proc. 1914, 91, A

70) Sol. m KCN+Aq. (Hahn, C. C 1870.

Difficultly sol. m KCN +Aq; less difficultly if AgS is pptd. from a very dil solution Amt. of KCN present also has influence on the solubility. AgS dissolved in conc KCN +Aq separates out on dilution. (Béchamp, J. pr. 60. 64.)

insol, in NH₄Cl or NH₄NO₃+Aq (Brett.) Min Argentite. Acanthite. Sol in cone. HNO₄+Aq with separation of S Sol in citric acid+Aq with addition of KNO₂. (Bolton, C. N. 37. 48)

Silver disulphide, Ag₂S₂,

Sol. in H₂O with decomp.; also sol. with decomp in HCl, HNO₃. CS₂ does not dissolve out S. (Hantzsch, Z. anorg. 1898, **19**, 105.)

Silver sodium sulphide, 3Ag₂S, Na₂S+2H₂O. Sol. in conc. Na₂S+Aq with decomp.; sol in H₂O with decomp. (Ditte, C. R. 1895, 120, 93.)

Insol. in dil., but sol. Silver zinc sulphide, Ag₂S, 3ZnS. (Schneider, J. pr. (2) 8, 29)

Silver sulphimide (silver thionyl imide), SO₂NAg.

Very sl. sol in cold, more sol in hot H₂O Very sol, in dil. HNO₂ (Traube, B 1892, 25, 2474.)

Silver sulphophosphide. See Silver phosphosulphide.

ove our er paospaosaspaide

Silver telluride, Ag₂Te.

Min Hessite. Sol. in warm HNO₃+Aq

Sodammonium, Na₂(NH₂)₂, 100 g. liq. NH₂ dissolve 60.5 g. at -23°;

100 g. liq. NH; dissolve 60.5 g. at -23°; 56.4 g. at 0°; 56 g. at +5°; 55 g. at 9°. (Joannis A. ch. 1906, (8) 7. 41.)

Sodium, Na2.

Violently decomposes H₂O, alcohol, etc Insol in hydrocarbons. Easily sol in acids with violent action

Solubility in fused NaOH.

G sol in 100 g fused NaOH at temp.

t°	G per 100 g NaOH	
480	25 3	
600	10 1	
610 670	9 9	
760	7 9	
800	6 9	

(Hevesy, Z. Elektrochem 1909, 15. 531.)

Insol. in liquid CO₂. (Buchner, Z. phys. Ch. 1906, **54**, 674)
Sol. in liquid NH₃. (Franklin, Am Ch. J. 1898, **20**, 829.)

1 gram atom dissolves,-

at +22° in 6 14 mol. liquid NH3.

(Ruff, B 1906, 39. 839.)

½ ccm. olcic acid dissolves 0.0449 g Na m 6 days (Gates, J. phys. Chem. 1911, 15. 143.) Insol. in ethylamine and in secondary and

tertiary amines (Kraus, J. Am. Chem. Soc. 1907, 29. 1561)

Scdum acetylide acetylene, Na₂C₂, C₂H₂.
Very deliquescent. Decomp by H₂O and
by absolute alcohol Insol in ether, ligroin,
etc. (Mosssan, C. R. 1898, 127, 915.)

Sodium amalgam.

NaHgs. Stable in contact with the liquid amalgam from 0°-40 5° Can be cryst from

Hg without decomp, at any temp between these limits

NaHga Stable in contact with the liquid

amalgam from 40 52-150°. Can be cryst from Hg without decomp. at any temp between these limits (Kerp, Z. anorg. 1900, 25, 68)

Sodium amide, NaNH2

Decomp. by H₂O and alcohol.

Sodium amidochloride, Na₂NH₂Cl.

Sol in H₂O with decomp (Joannes, C. R. C. R. 98, 1432) 112, 392)

Sodium arsenide, NaaAs

Decomp. H₂O. (Lebeau, C. R 1900, 130.

504.)

Sodium arsenide ammonia, Na₂As, NH₂.
Easily sol. in liquid NH₃ (Lebeau, C. R.

1900, 130, 502.) Sl. sol, in liquid NH₂ (Hugot, C R. 1898, 127, 554.)

Sodium azoimude, NaN₂
Not hygroscopie. Sol in H₂O. Insol in alcohol and ether. (Curtus, B. 24, 3344)

40,16 pts, are sol, in 100 pts, H₂O at 10°, 40,7 " " " 100 " H₂O " 15 2 41,7 " " 100 " H₂O " 17 0° 0,3153 pt. is sol in 100 pts abs alcohol at

Insol in pure ether. (Curtius, J pr 1898, (2) 58, 279.

Sodium bromide, NaBr, and +2H₂O Not deliquescent Solubility in H₃O differs according as NaBı or NaBr+2H₂O is used The following data for anhydrous NaBr were found

Pts. NaBr dissolved by 100 pts H₂O at t°

t°	Pts NaBr	to	Pta NaBr	10	Pts NaBr
51.5 55.1	115 6 116 2 116 8 117 0 117 3	80.5	118.6	97.2 100.3 110.6 114.3	120 6 122.7

Solubility is represented by a straight line of the formula S=110.34+0.1075t.

Below 50° the salt usually crystallizes with (Oppenheimer, Z. phys. Ch. 1898, 27, 452.)

2H₂O, of which the solubility in 100 pts H₂O was found to be as follows.

t°	Pts NaBr	t°	Pts. NaBr	t°	Pts NaBr
-21 -20 -15		+5 10 15 20	82.0 84.5 87.3 90.3	30 35 40 45	97 3 101 3 105.8 110.6
~ 5	77 I 79 5	25	93 8	50	116 0

(Coppet, A ch (5) 30. 420.)

If solubility S=pts. NaB1 in 100 pts. solution, S=40 0+0 1746t from -20° to +40°; S=52 3+0 0125t from 50° to 150°. (Etard

100 pts. H₂O dussolve at 0°, 77 5 pts NaBr, at 20°, 88.4 pts; at 40°, 104.2 pts, at 60° 111.1 pts.; at 80°, 112 4 pts; at 100°, 114.9 pts. (Kremers)

pts. (Kremers)
Sat solution boils at 121°. (Kremers, Pogg. 97, 14)

Set NaBr+Aq contains at -22° -10° +140° 163° 40 1 42 5 56 5 57.5% NaBr,

180° 180° 210° 212° 230° 59.5 59.0 60 9 61.0 62 0% NaBr. (Étaid, A. ch. 1894, (7) **2**, 539.)

100 g. sat NaBr.+Aq at 16.4° contain 47 g. NaBr. (Greensh, Pharm J. 1900, 65. 190.) Solubility of NaBr.+2H₂O in H₂O at 30° = 65.5% anhydrous NaBi (Cocheret, Dissert. 1911.)

Sp. gr. of NaBr+Aq at 19 5° containing. 5 10 15 20 25 % NaBr, 1.040 1.080 1.125 1.174 1 226

30 35 40 45 50 % NaBr. 1 281 1 334 1 410 1 483 1.565 (Gerlach, Z anel, 8, 285)

NaBr+Aq containing 17.15% NaBr has sp. gr. 20°/20°=1 1473 NaBr+Aq containing 22.72% NaBr has sp. gr 20°/20°=1 2000. (Le Blane and Robland, Z phys. Ch. 1896,

Sp. gr of NaBr+Aq at 20.5°.

19, 278.)

ormality of NaBr+Aq g. of solution		Sp gr 20 5°/4°
4 33	33 57	1 3284
3.00	25 10	1.2284

1.99 17 77 1 1526 0.98 9 41 1 0750

Sn or at	20° of	NaBr+Aq	containing
Sp. gr at Mg mols Na	Br per	litei.	_

M Sp. gr	$\substack{0.01 \\ 1.000732}$	$\substack{0.025 \\ 1.002177}$	$0.05 \\ 1\ 004074$	$\substack{0.075 \\ 1.005972}$
M Sp gr.	0 10 1.00788	0 25 1.01964	0 50 1.03908	$\begin{smallmatrix} 0.75 \\ 1.05811 \end{smallmatrix}$
M	1.0	15	2.0	

Sp. gr. 1 07632 1 11963 1 15240 (Jones and Pearce, Am. Ch J 1907, 38. 728)

Sol in H2SO4 (Walden, Z. anorg. 1902,

29. 384. 100 pts NaBi+Aq sat at 18-19° contain 40.05 pts NaBi; 100 pts NaBi+NaCl+Aq sat, at 18-10° contain 45.05 pts of the two salis, 100 pts NaBr+Nal+Aq sat at 18-10° contain 45.15 pts of the two salis; 100 pts NaBr+Nal+Nal+Aq sat at 18-10° contain 63.20 pts, of the two salis; 100 pts NaBr+NaCl+Nal+Aq sat at 18-10° contain 63.20 pts, of the three salis (v. Hauer, Jpr. 98. 137) pr. 98. 137) pr. 98. 137.

Solubility of NaBr m NaOH+Aq at 17°.

(G. per 100 g H₂O)

NaOH	NaBr	NaOH	NaBr	
0 0 3 26 9 24 13 43 17 17 19 12	91 38 79 86 68 85 64 90 63 06 62 51	22 35 24 74 28 43 36 61 46 96 54 52	59 60 55 03 48 00 38 41 29 37 24 76	

(Ditte, C R 1897, 124, 30)

Easily sol in liquid HF (Franklin, Z anorg. 1905, 46. 2) Very sl. sol. in alcohol.

NaBr+2H₂O is sol. in 1.10 pts. H₂O at 15°; in 159 pts absolute sloohol at 15°; in 1200 pts. absolute ether at 15°. (Eder,

Dingl. 221. 89.)

NaBr+2H₂O is sol in 2.25 pts 60% alcohol, and 7 pts. 90% alcohol. NaBr is sol in 3 pts 60% alcohol, and 10 pts. 90% alcohol. (Hager.)

100 pts. absolute methyl alcohol dissolve 17.35 pts. at 19.5.° (de Bruyn, Z. phys. Ch. 10, 783.)

100 g. NaBr+CH₄OH contain 0 9 g NaBr at the critical temp (Centnerszwer, Z. phys. Ch 1910, 72. 437.) At room temp, 1 pt. NaBr by weight is sol. in:

4 6 pts. methyl alcohol D¹⁵ 0 7990. 14 0 " ethyl " D¹⁵ 0 8100. 49 7 " propyl " D¹⁵ 0.8160.

(Rohland, Z. anorg. 1898, 18. 325.)

Solubility in ethyl alcohol at 30°.

Wt	-% -1	
Alcohol NaBr		Solid planse
0 11.79 31.78 43.22 54 59 65 51 72 36 76 92 87 35 97 08	59. 4 42 90 32 12 26 79 20. 83 16. 08 13 41 12 03 7 44 3 01	NaBr ₂ ,2H ₂ O " " " " " " " " " " " NaBr, 2H ₂ O+NaBr NaBr

(Cocheret, Dissert 1911.)

Solubility in mixtures of methyl and ethyl alcohol at 25°.

P = % methyl alcohol in the solvent G = g. NaBr in 10 ccm of the solution. S = Sp gr. of the sat. solution.

0 00 4.37 10 40 41 02 80 69 84.77 91 25 100 00	0 293 0.365 0.404 0.724 1 251 1 286 1 432	0.8189 0.8265 0.8273 0.8593 0.9079 0.9104 0.9235 0.9238

(Herz and Kuhn, Z. anorg. 1908, 60, 155.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = % propyl alcohol in the solvent. G=g NaBr in 10 ccm. of the solution S=Sp gr. of the sat. solution.

P	G	S 25°/4°
0 11 11 23 8 65 2 91 8 93 75	1 440 1 243 1 053 0 442 0 147 0 126 0 074	0.9238 0 9048 0 8887 0.8390 0.8153 0.8144 0 8093

(Herz and Kuhn, Z. anorg. 1908, 60. 156.)

Solubility in mixtures of propyl and ethyl alcohol at 25°

P = % propyl alcohol in the solvent. G = g. NaBr in 10 ccm, of the solution. S=Sp. gr. of the sat solution.

P	G	8 25°/4°
0 8 1 17 85 56.6 88.6 91.2 95 2	0 293 0 249 0 247 0 190 0 111 0 .083 0 082 0 074	0 8189 0 8147 0 8145 0 8107 0 8116 0 8083 0 8090 0 8093

(Herz and Kuhn, Z. anorg, 1908, 60, 159.)

2 05 g are sol. in 100 g propyl alcohol (Schlamp, Z. phys. Ch. 1894, 14, 276) Sl. sol in acctone. (Krug and M'Elroy, J Anal Ch 6, 184.)

100 g. 95% formic and dissolve 22.3 g. NaBr at 18.5°. (Aschan, Ch. Ztg. 1913, 37. Insol, in methyl acetate. (Naumann, B.

1909, 42. 3790); ethyl acetate (Naumann. B. 1910, 43, 314); benzonitule. (Naumann. B. 1914, 47, 1370.) The composition of the hydrates formed by

NaBr at different dilutions is calculated from determinations of the lowering of the frpt. produced by NaBr and of the conductivity and sp gr of NaBr+Aq. (Jones, Am. Ch. J. 1905, 34, 303.)

Sodium stannic bromide.

See Bromostannate, sodium.

Sodium uranous bromide, Na₂UBr₂

As K salt. (Aloy, Bull. Soc 1899, (3) 21. 264 1 Sodium zinc bromide, NaBr, ZnBr2+H2O.

Hygroscopie. (Ephraim, Z. anorg. 1908, 59, 63.) 2NaBr.

 $ZnBr_2 + 5H_2O$. Hygroscopic. (Ephraim)

Sodium carbide, Na₂C₂.

Insol, in all neutral solvents; decomp, on heating and by H.O. (Matignon, C. R. 1897, 125, 1034,)

Sodium carbonyl, Na₂C₂O₅.

Decomp. by H2O with explosion. (Joannis, C. R. 116. 1518.)

Sodium subchloride, Na₄Cl₂.

Decomp. by H₂O into NaCl and NaOH+ Aq. (Kreutz, B. 1897, 30, 403.)

Sodium chloride, NaCl.

Sol. in H.O.

100 nts. HoO at to dissolve nts. NaCl Pts. NaCl Authority

n More than at 13 89° 35 81 35 88 13 89 Gay-Lussac, A ch (2) 11, 16 90 37 14 40 38 109 73 35 91 Fehing, A. 77, 382 18 75 37 731 Buchof 10-15 35 42 Bergmann. Creffiths, 1825. 100 4 42 86 20 35 9 Schiff, A. 109, 326 All temps 97 Fuchs and Reschonback 1826. 25 25 7 Kopp. A 34, 282

C J. B Karsten 1840

hv

36 121 36 724 18 75 G. Karston 100 41 070 1 25 38 119 39 324 Boiling Unger, J. pr 8, 285. 18 75 Karsten (?), cited 100 36 95 Unger, L 34 2-35 42 18 58 100 Ure's Diet

95 997

18 75 36 53

15

Michel and Krafft 1 pt. NaCl is sol. in 2789 pts. H₂O at 16° (Geriach), in 3 pts. H₂O at 18.78° (Abl), in 2 8235 pts. H₂O at 19.78° (Abl), in 2 8235 pts. H₂O at ord. temp (Bergmann), in 2 837 pts. hot or cold H₂O (Fournoy) Not deposted from botting aqueous solition unless the vessel containing it is open to the sir (Unger, i. c)

Solubility in 100 pts. H-O at to.

10 Ptu NaCl Pts. NaCl 13 75 33 0 38.1 108 5

(Nordenskjöld, Pogg 136, 315)

Solubility in 100 nts. HoO at to Pts. NaCl Pts NaCl 13 89 35 8 59 93 109 73 37 1 40 4

(Gay-Lussac, A ch 11, 298.)

Solubility of NaCl at various pressures The figures represent pts. NaCl in 100 pts sat NaCl+Aq at t and A pressure in atmospheres

no. 15° 250 30° A 1 26 25 20 28.35 40 26 44 26 32 26 35 30 26 37 26 47 28 53 26 37 28 47 26 40

(Müller, Pogg 117, 386)

100 pts. H ₂ O dissolve at t°.				
t°	Pts. NaCl	€°	Pts NaCl	
-15 -10 - 5 0	32 73 33 49 34 22 35 52 35 63	40 50 60 70 80	36 64 36 98 37 25 37 88 38 22	
9 14 25	35 74 35 87 36.13	90 100 109 7	38.87 39.61 40.35	

(Poggiale, A, ch. (3) 8, 649)

100 pts. H₂O dissolve at: 0° 9° 12° 15° 35 59 35 72 35 77 35 68 pts. NaCl.

100 pts. H₂O dissolve 35.76–36.26 pts. NaCl at 15.6°, and the sp. gr. of sat. solution = 1.204. (Page and Keightley, Chem. Soc. (2) 10.566.) 100 pts. NaCl+Aq sat. at 18–19° contain 26.47 pts. NaCl. (v. Hauer, J. pr. 98, 137.)

Solubility of NaCl in 100 pts. H2O at to

t°	Pta NaCl	t°	Pts NaCi	t°	Pts NaCl
0	35 7	30	36 3	60	87.8
ï	35.7	31	36 3 36 3 36 3	61 62	37 3
2	35.7	32	36 3	62	37 4
ã	35 7	33	36 4	63	37 4
ă.	35.7 35.7 35.7	34	36 4	64	37 5
ŝ	35 7	35	36.4	65 66	37 5
š	35 7	36	36.5	66	37 6
7	35 7	37	36.5	67	37 7
Ŕ	35.7	38	36 5	68	27 7
9	35 7	39	36 6	69	37.8
1 2 3 4 5 6 7 8 9 10 11 12 13	35 8	40	36 6	68 69 70 71 72 73	37.8 37.9
īĭ	35 8 35 8	41	36 6	71	37 9
12	35 8	42	36 7	72	38 0
13	35.8	43	36.7	73	38 0
14 15	35.8	44		74	38.1
15	35.9	45	36 8 36 8 36 8	74 75 76 77 78 78	38 2
16 17	35.9	46	36 8	76	38 2
17	35.9	47	36 9	77	88 2
18	35 9	48	36 9	78	38 2
19	36 0	49	36 9	79	38 3
20	36.0	50	37 0	80	38 4
21 22	36 0	51	37 0	81	38 4
22	36.0	52	37 0	82	38.5
23	36.1	53	37 1	88	38.6
23 24 25	36.1	54	37 1	83 84	38.6
25	36.1	55	37 1	85 86 87 88	38 7
26 27 28 29	36.1	56	37.2	86	38 7
27	36.2	57	37.2	87	38 8
28	36.2	58	37 2	88	38.9
20	26.2	59	37 3	80	30.0

Solubility of NaCl in 100 pts. H₂O at t°.—

	Continued.				
t°	Pts NaCl	t°	Pts NaCl	t°	Pts NaCi
90 91 92 93 94 95 96	39.1 39.1 39.2 39.3 39.3 39.4 39.4	97 98 99 100 101 102 103	39.5 39.6 39.7 39.8 39.8 39.9 40.0	104 105 106 107 108 109 109 7	40.0 40.1 40.1 40.2 40.3 40.3 40.4

(Calculated by Mulder from his own and other observations, Scheek, Verhandel. 1864, 37)

Solubility in 100 pts, H₂O at: 0-4° 20° 40° 60° 80° 35 630 35 825 36.32 37.06 38 00 (Andreae, J. pr. (2) 29.456.)

Solubility in 100 pts. H₂O from most careful experiments.

0° 20° 60° 80° 35 571 35.853 37 091 38.046 (Raupenstrauch, M. Ch. 6. 563.)

Solubility of NaCl in 100 pts. H2O at to.

t°	Pts. NaCl	t°	Pts NaCl
-14 0	32.5	44 75	36.64
-13.8	32 15	52.5	37 04
- 6.25 - 5.95	34 22 34 15	55.0 59.75	36.99 37.31
0	35 7	71.3	37 96
3.6	35.79	74 45	37 96
5.3 14.45	35 8 35.94	82 05 86 7	38.41 38.47
20.85	35 63	93.65	38.90
25.45	35 90	101 7	40.76
38 55	36 52		

Solubility above 20° is represented by the formula S=34 359+0.0527t. (Coppet, A. ch. (5) 30, 426.)

Solubility of NaCl in 100 pts H₂O at high temp.

to.	Pts. NaCl	t°	Pts NaCl
118	39 8	160	43 6
140	42 1	180	44 9

(Tilden and Shenstone, Phil Trans 1884. 23.)

%

Sat	NaCl+Aq	contains	%	NaCl	at	ŧ

t°	% NaCle	t°	% NaCl
-21	23 7	77	28 0
-21 -18	23 4 23 5	90 115	28 2 20 1
- 18	23 3	135	28 9
- 7	25.5	140	28 8
, ,0	25.8	150 180	29 6 30 2
+15	26.7	215	31 A

(Étard, A. ch. 1894, (7) 2. 532)

100 g. H₂O dissolve 0 616 gram-equivalent NaCl at 25° (Van't Hoft and Meyerhoffer, Z. phys. Ch. 1904, 49, 315.)

Solubility of NaCl in H₂O at t°. Most careful experiments.

tº	g NaCl per 100 g H ₂ O	Sp gr	t°	g NaCl per 100 g H ₂ O	Sp. gr
15.20 30.05	35 75 35 84 36.20 36.60	1 2020 1 1956	75.65	37 82 38.53	1.1823 1 1764 1 1701 1.1631

(Berkeley, Phil. Trans. Roy Soc. 1904, 203.

Sat. NaCl+Aq. at 25° contains 26.5% NaCl. (Foote, Am. Ch. J. 1906, 35. 239.) 100 g. H₂O dissolve 35.80 g. NaCl at 25°, Cameron, Bell and Robinson, J. phys. Ch. 1907, 11, 396.)

100 g. NaCl+Aq. sat. at 15° contains 26.3 g. NaCl; at 30°, 26.47 g. (Schreinemakers, Arch. neér. Sc. 1910, (2) 15. 81) 5.456 g mol. are contained in 1 l NaCl+

5.456 g mol. are contained m 1 l NaCl+Aq sat. at 25°. (Herz, Z anorg 1911, 73. 274.)
5.40 g. mol. are contained in 1 l. NaCl+Aq

sat. at 30°. (Masson, Chem Soc 1911, 99, 1136.)
26.47 g NaCl are contained in 100 g. NaCl+Aq. sat. at 30°. (Cocherct, Dissert.

35 79 g. NaCl are sol, in 100 g. H₂O at room temp. (Frankforter, J. Am. Chem Soc. 1914, 36, 1108.) 100 mol. H₂O dissolve at:

19.3° 29 7° 40 1° 54 5° 11.04 11 06 11 15 11 35 mol. NaCl.

(Sudhaus, Miner. Jahrb. Bed Bd. 1914, 37.

Solubility of NaCl in H₂O at 24.5° at varying pressures

S=g NaCl in 100 g solvent.
P=pressure in atmospheres.

P	s	100 g. of solution contains g. NaCi
1	35 90	26 42
250	36 25	26 61
500	36 55	26 77
1000	37 02	27 02
1500	37 36	27 20

(Cohen, Inouye and Euwen, Z. phys. Ch.

Sp gr of NaCl+Aq containing 15% NaCl is 1 109 at 18° (Francesor), 1 116 at 16° (Souberman); 1 1107 at 15° (Coulser), 1 111 at 16° (Baudein, C R. 88, 932) Sp gr, of NaCl+Aq asturated at 15° is 1 20715 (Alichol and Kraffl); at 17 5° is 1.2046 (Karston), at 2° is 1.206 (Anthon).

Sp gr of NaCl+Aq.

NaCl	Sp gr	% NaCl	Sp gr	% NaCl	Sp.gr
5	1 037	15	1 112	25	1 192
10	1 074	20	1 154	26.43	1.204

(Dahlmann, J. B 7 321.)

Sp. gr of NaCl+Aq at 20°.

1			
% NaCl	Sp gr	% NaCt	8p gr
1	1.0066	15	1 1090
2	1.0133	16	1 1168
3	1.0201	17	1 1247
4	1 0270	18	1 1327
5	1 0340	19	1 1408
6	1.0411	20	1 1490
7	1.0483	21	1 1572
8	1.0556	22	1.1655
و ا	1 0680	23	1.1738
10	1 0705	· 24	1 1822
11	1 0781	25	1 1906
12	1 0857	26	1.1990
13	1 0934	27	1 2075
14	1.1012		

(Schiff, A 110, 76.)

Sp. gr. of NaCl+Aq at 19.5°.

% NaCl	Sp gr	% NaCl	Sp gr
6.402 12.265 17.533	1 0460 1 0895 1 1303	22 631 26.530	1 1712 1 2036

(Kremers, Pogg. 95, 120)

Sp gr. of NaCl+Aq at 15°.

% NaCl	Sp gr	% NaCi	Spgr
1	1 00725	15	1 11146
2 3	1 01450	16 17	1 11938 1 12730
4 5	1 02899	18 19	1 13523 1 14315
6	1 04366	20	1 15107
7 8	1 05108 1 05851	21 22	1 15931
9	1 06593 1 07335	23 24	1 17580
10 11	1 08097	25	1.19228
12 13	1 08859	26 26 395	1 20098 1 20433
14	1 10384	-5 000	1 =0100

(Gerlach, Z anal 8, 279.)

Sp. gr of NaCl+Aq at 18°.

% NaCl	Sp gr	% NaCl	Sp gr
5	1 0345	25	1 1898
10	1 0707	26	1 1982
15	1 1087	26 4	1 2014

(Kohlı ausch, W. Ann 1879. 1)

Sp. gr. of NaCl+Aq at 20°, containing n mols H₂O to 1 mol, NaCl

n	n Sp. gr		Sp. gr	
12.5 25 50	1.15292 1.08207 1.04227	100 200	1 02069 1 00965	

(Marignac, J. B. 1870, 110.)

Sp gr. of NaCl+Aq at 0°. NaCl=g NaCl to 100 g. H₁O, d°=sp. gr. at 0°; d^x= maximum sp. gr.; T=temp. of maximum

G. NaCl	d ₀	dr	T
0	.1.00000	1.000130	+ 4°
0 5	1.003925	1 003988	+ 8
1	1.007634	1 007666	+ 1.77
2	1.015366	1 015367	- 0 58
3	1.023530	1 023583	- 3 24
4	1.030669	1.030890	- 5 63
6	1.045975	1 046952	-11 07

(Rosetti, A. ch (4) 17, 382)

Sp. gr. of NaCl+Aq at 20°, τ =mols, NaCl to 100 mols, H₂O.

2	Sp gr	2	Sp gr	
0 5 1 0 2 0	1 01145 1 02255 1 04393	4 0 5 0	1.08408 1.10276	

(Nicol, Phil. Mag. (5) 16, 122)

Sp. gr of NaCl+Aq at 0°. S=weight of salt in 100 g, of solution of the given sp gr, $S_1=N_0$. mols. of salt contained in 100 mols, of the solution.

S	Sı	Sp gr.
23 0821 19 1932 14 3415	8.627 6.769 4.898	1 1821 1 1502 1 1111
9.4120	3.097	1 0722

(Charpy, A ch. (6) 29. 23.)

G -equivalents

Sp. gr. of NaCl+Aq.

NaCl per liter	٠,	NP 8- 170
0 005028	18 549	1.0002119
0 01005	18 550	1 0004258
0 02005	18 538	1.000848
0 04983	18 509	1 002101
0 09873	18 525	1 004143
0 19388	18 542	1 008093
0 28999	18 559	1 012053
0.47574	18 558	1 019627
0.49860	18 06	1 02054
4 9860	17 85	1.18783
0 00259	14 07	1.0001108
0 005178	14 076	1 0002210
0 010318	14 097	1 0004401
0 12580	14 097	1 005315
0 25019	14 076	1 010505

(Kohlrausch, W Ann 1894, 53. 26.)

Sn er of NaCl ± 4 c at 109/100

bp. gr of MaCr+Ad at 18 /18			
g -equivalents of NaCl in 1 liter of solution	Sp gr.		
0 005 0 010 0 020 0 050 0 100	1 0002104 1 0004206 1 0008476 1 002109 1 004205		

(Tammann, Z. phys Ch 1895, 16. 93)

Sp. gr. of NaCl+Aq sat. 180°, when p=percent strength of solution; d=observed density; and w = volume conc. in grams

per ce.

D	d	w
25 37	1 1928	0.30263
• 21 25	1 1592	0 24637
17 35	1 1277	0 19503
13 25	1 .0958	0 14518
9 34	1 0665	0 09960
4 810	1 0332	0.04969
2 991	1 0202	0 03052
2.593	1 0178	0 2638
1 746	1 0111	0 01765

(Barnes, J. Phys. Chem. 1898, 2, 544.)

Sp gr, of NaCl+Au at 20.5°.

_	Normality of NaCl+Aq	G. NaCl in 100 g of solution	Sp gr. 20 5°4
_	3.97	20 22	1 1489
	2.96	15 56	1 1124
	2.01	10 90	1 0775
	0.97	5.49	1 0373

(Oppenheimer, Z. phys. Ch. 1898, 27, 451.)

Sp. gr. of NaCl+Ag at 15°.

Per cent NaCl	Sp gr.		
0	1 00000		
5	1.03624		
10	1.07335		
15	1.11146		
20	1 15107		
25	1 19228		
Sat. at 15°	1.20433		

622.)

(H C Hahn, J. Am. Chem Soc. 1898, 20. Sp. gr of NaCl+Aq at 18°/4°.

g. NaCl in 160 g of solution	Sp. gr.
0 19560	1 0001
0 097952	0 9994
0.065410	0 99918
0.048977	0.99905

(Jahn, Z. phys. Ch. 1900, 33, 572)

Sp. gr. 20°/4° of a normal solution of NaCl =1.03866. (Haigh, J. Am. Chem. Soc. 1912, 34, 1151.)

Sp (gr_	10	Sat.	NaCi	+Aq	at t	
t°		8	Na 100	Cl sol	un	Sp	. gı

t°	100 g H ₂ O	Sp. gr
10°	32.90	1 200
10	35 63 35 69	1 210 1,205
20	35 82	1.202
30	36 03	1 198
40 50	36 32 36.67	1 193 1 189
60	37 06	1 184

37.511 178 (Tschernat, J. Russ, Phys Chem. Soc. 1912. 44. 1565.)

Sp. gr. of dil. NaCl+Aq at 20.004° Cone =g. equiv. NaCl per l. at 20.004° Sp gr. compared with H₂O at 20.004°=1.

Coap.	Logor Str.	
0 0000	1 000,000,0	
0 0001	1.000,004,2	
0.0002	1.000,008,5	
0.0005	1.000,021,3	
0 0010	1 000,042,7	
0 0020	1.000,085,1	
0 0040	1.000,169,6	
0 0050	1 000,211,7	
0 0100	1 000,423,3	

(Lamb and Lee, J. Am. Chem Soc 1913. 35. 1686)

The saturated solution boils at 109°, (Kremers.)

NaCl+Aq containing 42.9 pts. NaCl to 100 pts. H₂O boils at 100.8° (Griffiths); containing 41.2 pts NaCl to 100 pts. H₂O boils at 108.2° (Legrand); containing 40.38 pts. NaCl to 100 pts. H₂O boils at 109.73° (Gay-Lussac); containing 38.7 pts. NaCl to 100 pts H₁O forms a crust at 108.3°; highest point observed, 108.8° (Gerlach, Z anal. 26, 426)

1	Boiling-point of NaCl+Aq.			
	% NaCl	B-pt according to		
1		Buechof	G. Karatea	
	5 10 15 20 25 29 4	101.50° 103.03 104.63 106.26 107.93 107.9-108.99	101 10° 102.38 103.83 105.46 107.27	
	% NaCl	Bpt according to		
		Legrand	Gerlach	
	5	100 80°	100.9°	

101 75

103.00

104 60

106 60

101 9

103 3

105.3

107.6

10

15

20

25

B.-pt. of NaCl+Aq containing pts. NaCl to 100 pts H₂O G=according to Gerlach (Z anal 26. 438; L=according to Legrand (A ch (2) 59. 431).

_					
B-pt	G	L	B-pt.	G	L
100 5° 101 101 5 102 102 5 103 103 5 104 104 5	3 4 6 6 9 6 12 4 14 9 17 2 19.4 21.5 23.5	4 4 7 7 10 8 13 4 15.9 18.3 20.7 23 1 25 5	105 5° 106 106.5 107 107 5 108 108 4 108 5 108 8	27 5 29 5 31 5 33.5 35.5 37 5 39 5 40 7	29 8 31 8 33 9 35 8 37 7 89 7 41 2
105	25 5	27 7			

B-pt of NaCl+Aq containing g. NaCl in 100 g. H₂O. g. NaCl 7 6 11 0 14 9 16 1 18 8 B.-pt 102 2° 103 104 2 104 8 106 1

B.-pt 102 2° 103 104 2 104 8 106 1 g. NaCl 22 3 24 0 26 0 28 7 B-pt. 107 1 107 7 108 7 109 5 (Richmond, Analyst, 1893, 18. 142)

If NaCl is dissolved in 15 pts. H₂O, heat is absorbed if the temp is 15°, but much less fremp. is 86°; at 100° there is noither absorption nor evolution of heat. (Berthelot, per 1,000 g. H₂O

C. R. 78. 1722.) 36 pts. NaCl mixed with 100 pts. H₂O at 12.6° lower the temp. 2.5°. (Rüdorff, B. 2. 68)

33 pts NaCl with 100 pts. snow at —1° give a temp. of —21.3°. (Rudorff, Pogg. 122. 337.)
The freezing-point of NaCl +Aq is lowered 0.60° for every gism NaCl up to 10 g. When more conot the freezing-point sinks proportional to NaCl, 24p. 0, 342° for every

(Rüdorff, Pogg 113.

gram of that salt. (Rti 163.) Insol in conc. HCl+Aq.

Solubility of NaCl in HCl+Aq at 0°. NaCl= mols. NaCl (in milligrams) dissolved in 10 cem. of liquid, HCl=mols. HCl (in milligrams) dissolved in 10 cem. of liquid.

. NaCl	HCl	Sum of mols.	Sp. gr
53.5	1	54 5	1 2045
52.2	1 85	54 05	1 2025
48.5	5 1	53 6	1 196
44.0	9.275	53.275	1 185
37.95	15.05	53 00	1 1725
23.5	30 75	54 95	1 141
6.1	56 35	62 45	1 1159

(Engel, Bull. Soc (2) 45. 654.)

Solubility in HCl+Aq at 10-10.5°

g. per 100 ce G. per			.00 cc.
HCi	NuC!	HCI	NaCl
0 0 9 84 12 76 15.68 20 78	35 77 38 76 33 19 32 71 31 77	26 06 94.77 102 1 120 6	30 89 20 01 19.04 16 08

(Enklaar, R. t c. 1901, 20, 183.)

Solubility in HCl+Aq at 30°

Composition of the solution

% by wt HCl	% by wt NaCl
0	26 47
6 93	16 16
12 50	9 35
17 35	4 52
35 60	0 11

(Schreinemakers, Z phys Ch. 1909, 68. 85.)

Solubility in HCl+Aq.

Conc = concentration of HCl. g. mol. per 1,000 g. H₂O NaCl = wt NaCl dissolved in 1,000 g H₂O.

to.	Cone	NaCl	Molecular solubility
0	0	357 75	6 13
	0 25	341 70	5 85
	0 50	324.45	5 56
	1 C0	291 20	4.99
25	0	360 80	6 18
	0 25	344 50	5 90
	0 50	329 05	5 64
	1 00	298 10	5 10

(Armstrong and Eyre, Proc. R. Soc. 1910, (A) 84. 127)

Solubility in HCl+Aq at 30°. G. mols, per l.

HCI	NaCi	Sp. gr. 30	HCI	NaCl	Sp gr 30°
0.969	4 932 4 386 3 589	1.2018 1 1906 1 1801 1.1633 1.1512	4 152 5.950 7 205	1.628	1.1289

(Masson, Chem. Soc. 1911, 99, 1132.)

Solubility in HCl+Aq at 25° Millimols HCl in 10 ceme Millimols NaCl in 10 ce				

(Herz, Z anorg 1912, 73, 274)

23 43

32 83

Moderately dil H₂SO₄ or HNO₃+Aq pre-cipitate NaCl from NaCl+Aq (Karsten.) Sol. in H₂SO₄ (Walden, Z. anorg. 1902. 29. 384.)

Solubility of NaCl m NH_OH+Ag at 30°

(G. in 1 I sat. solution.)

Sp gr	NHa	NaCl	Sp gr	NHs	NaCl
1 1656	10 655	202 5	I 1406 1 1395 1 1301 1 205	70 715	200 00
(Hempel and Tedesco, Z anorg. 1911, 24.					

2467

Solubility of NaCl in NH,Cl+Aq at to.

t°	G per	Sp. gr				
	NHACI	NaCl	op. gr			
0	0 148 1	356 3 286 4	1 185			
15	0 57.3 118 9 186.4 198.8	357.6 326.4 300 271.6 266.8	1.200 1.191 1.183 1.176 1.175			
80	0 255 4	360 3 249	1 i66			
45	0 327.1	365 233 9				

(Fedotieff, Z. phys. Ch. 1904, 49, 168.) See also under NH.Cl.

Solubility in NaOH+Aq at 0°. NaCl=mole NaCl (in milligrams) in 10 ccm. solution; Na₂O = mols. Na₂O (in milligrams) in 10 ccm. solution

10 000	to cere sommon						
NaCl	Na ₂ O	Na ₄ O + NaCl	Sp gr.				
54 7 49 375 47 212 42 375 39 55 24.95 19 3	0 4 8 6 725 10 406 14 78 30 5 37 875	54 7 54 175 53 937 52 781 54 33 55 45 57.175	1.207 1 221 1.225 1 236 1 249 1.295 1 314				
9 408	53 25	62 66	1 362				

(Engel, C. R. 112, 1130.)

Solubility in NaOH+Ag at 20°.

G	NaOH m 1 liter	G NaCl m 1 liter	Sp gr	deg Baumé
	10	308	1 200	28 5
	20	308	1 210	24.0
	30	3.06	1.215	25.5
	40	302	1 225	26 4
	50	297	1 230	26.9
	60	286	1 235	27.4
	70	277	1 240	27 9
	80	269	1.245	28.4
	90	261	1 250	28.8
	100	253	1 250	28.8
	110	244	1.252	29 0
	120	236	1 252	29.0
	130	229	1 260	29.7
	140	221	1.265	30.2
	150	213	1.270	30.6
	160	205	1.275	81 1
	170	197	1 275	31.1
	180	189	1 280	31 5
	190	181	I 285	32 0
	200	173	1 290	32 4
	210	165	1 295	32 8
	220	159	1.295	29.0

1.300

1 303

I 305

1.310

1 315

1 320

1.325

1.330

1 333

1 335

1.340 96

1.360

1 365

380 40.0

385 40.2

33.3

33.5

38 7

34 2

34 6

35.0

35 4

35 8

86 0

36.2

36.6

37.0

37 4

37 8

38 2

38.6

39 0

39.4

40.6

230

240

250

260

280

290

300

320

330

340

350

360

380

390

400

410

420

430

152

146

139

134

129

124

118

112

107

101

90 1 345

85 1.350

80 76 1.355

88 1.370

61 1 375

56

52

48 1.390

Solubility in NaOH+Aq at 20°.—Continued						
G NaOH in 1 liter	G NaCl in 1 liter	Sp. gr	deg Baumé			
440	45	1.395	41 0			
450	42	1 400	41.5			
460	39	1 405	41 9			
470	37	1 410	42 0			
480	34	1 415	42 3			
490	32	1 420	42 6			
500	30	1 425	43 0			
510	28	1 430	43 5			
520	27	1 435	43.7			
530	27	1.440	44 0			
540	26	1 445	44 3			
550	26	1 450	44 6			
560	25	1 450	44 6			
570	24	1 455	45 0			
580	23	1 460	45 5			
590	23	1 465	45 9			
600	22	1 470	46 2			
610	21	1 475	46 5			
620	20	1 480	46 8			
630	19	1 485	47 0			
640	18	1 490	47 5			

(Winteler, Z Elektrochem, 1900, 7. 360) Solubility in Na₂O+Ag at 30°

Composition	of the solution		
% by wt. Na ³ O	% by nt NaCl	Solid phase	
0 4 47 12 22 24 48 29 31 37 85 41 42	26.47 21 49 13 62 4 36 2 40 1 12 0 97	NaCl "" "" "" NaCl+NaOH, H ₂ O NaOH, H ₂ O	

(Schreinemakers, Z phys Ch. 1909, 68 85) The presence of other salts increases the

solubility of NaCl in H₂O. Sol in sat. NH₄Cl+Aq with pptn of NH₄Cl When the reaction is complete. the solution has sp. gr. 1 1788, and contains 32.62% mixed salts, or 100 pts. H₂O dissolve 48.42 pts mixed salts, viz , 26.36 pts NaCl and 22 06 pts NH₄Cl (Karsten.) (See under NH₄Cl.)

Sol in sat, BaCla+Aq with pptn of BaCla until a state of equilibrium is reached, when 100 pts H₂O at 17° dissolve 38.6 pts. of mixed salts, of which 4 1 pts, are BaCl₂. (Karsten)

(See under BaCl₂.)
Insol. in sat CaCl₂+Aq. (Vauquelin, Ann de Chim, 13, 95) Much more sol in hot than in cold H₂O ontaining MgCl; or CaCl; but NaCl is pptd. ereasing in the same ratio as the amount of from sat NaCl+Aq when that solution is NaCl present (Foureroy and Vauquelin, mixed with MgCl; or CaCl; +Aq. (Fuchs and Ann de Chin 11. 139.)

G. Reuchenbach, 1826.) (See under MgCl;)

Sol. in sat KNO+Aq; the solution thus

Less sol. in cone CaCl2+Aq than in H2O. (Hermann)

Solubility of NaCl+CaCl2 in H2O at 25°. G. per 100 g. H₂O.

NaCl	CaCl:	Sp. gr. 25°/25°	Solid phase
0 1 846 1 637 1 799 7.77 10 70 18.85 32 48 35 80	84 78 49 58 48 53 47 36 80 30 08 19 53 3 92 0	1 4441 1 3651 1 3463 1 2831 1 2653 1 2367 1 2080 1 2030	CaCl ₂ , 6H ₂ O " +NaCl NaCl " " " " "

(Cameron, Bell and Robinson, J. phys. Chem. 1907, 11. 396.)

Solubility of NaCl in NaHCOs sat, with COo at to.

,.	G. per 1000 g H ₂ O			
	NaHCO2	NaCl		
0 15 30 45	6 0 7 7 0 0 10 0 0.0 13.9 0 0 0 23	356 3 350 1 357 6 354 6 360 3 358 1 356 0 361 5		

(Fedotieff, Z. phys. Ch 1904, 49, 170)

Sol. in sat. KClO₂+Aq; the solution can then dissolve more KClO₂ (Margueritte, C. R. 38, 305) In solution containing Na, K, Cl and NO, ions, the solubility-relations between the four salts NaCl, KCl, NaNO; and KNO; have been studied (Uyeda, Z anoig, 1911, 71.2)

Sol. in sat. NH4NOs+Aq, without causing pptn. (Karsten.

Sol. in sat. NH₄NO₃+Aq, from which solu-tion it is not pptd. by salts which would cause its pptn in aqueous solution (Margueritte, C. R. 38. 307.)

Sol. in sat. Ba(NO₃)2+Aq without causing Insol in Ca(NO_d)2+Aq

Sol in Mg(NO₃)₂+Aq with pptn of small portion of Mg(NO₃)₂. Sol. in sat. KNOs+Aq, the mixed solution

having the power to dissolve more KNO3, and the solubility of the KNOs apparently in-creasing in the same ratio as the amount of

4

obtained at 18 13° contains 40 34% of the mixed salts, or 100 pts H₂O dissolve 67 72 pts, of the mixed salts, viz., 38 25 pts, NaCl and 29 45 pts KNO. (Karsten.)

Solubility of NaCl in KNO2+An at 25°.

KNO ₃ =g KNO ₃ in 100 cc of solution. NaCl=g mol. per l					
KNO:	NaCl	KNO ₃	NaCl		
0	5 44	12	5.28		

16

5 21

5 52 5 15 5.45 (Ritzel, Z. Krist, 1911, 49, 152) (See also under KNO3.)

Solubility of NaCl in NaNOa+Aq at 15.5°

	g, per	100 cc. eac e	Olumon
Sp gr	NaNOa	NaCl	H ₂ O
1.2025 1.2305 1.2580 1.2810 1.3090 1.3345 1.3465 1.3465	0 7.53 13 24 21 58 28.18 33.80 37 88* 37 64*	31 78 27 89 26.31 23 98 22.30 20 40 19 40* 19 67*	88.47 87 63 86 25 82.66 80 42 79 25 77 37 77 34

*Solutions sat with both salts.

(Bodlander, Z. phys Ch 1891, 1, 361) Sol. in sat. NaNO2+Aq with pptn of

NaNO. Solubility of NaCl in NaNO2+Aq.

Conc. - concentration of NaNO: in g. mol. per 1,000 g, H₂O NaCl = g, NaCl dissolved in 1,000 g, H_4O .

Molecular 40 NaCl Cone solubility O ٥ 350 85 6 16 0.25 355 90 6 09 0.50 351 20 6.02 342 15 5 86 25 n 362 95 6.20 0 25 356.65 6 11 0.50 352 30 6 03

325 50 (Armstrong and Eyre, Proc. R. Soc. 1910, A. 84, 127,)

343 65

5 88

5 58

1 2 (See also under Na.NO..)

Sol. in sat. KCl+Aq with elevation of

temp. (Vauquelin.) 100 g. H₂O sat. with KCl dissolve 0.494 ram-equivalent NaCl at 25°. (Fuler, Z. phys. Ch. 1904, 49, 315.)

Solubility in KCI+Ag at to.

t°	Sat. solution	on contains
	% NaCl	% KCI
-20	21.3	5 7
-10	21 3 21 3	6.7
0 +10	21 3	7.7 8 6
20	21 3	9.6
30	21 3	10 6
40	21 3	11 5
50	21.3	12.5
60	21 3	13 5
70	21 3	14.4
80	20 7	15.8
90	19 9	17 8
100	18 8	19 8
110 120	17 2 16 5	22 4 24 I
130	16 4	25 1
140	16 4	26.1
150	16 4	27 1
160	16 4	28.0
170	16 4	29 0
180	16 4	30 0

(Étard A. ch. 1894, (7) 3. 277) (See under KCl.)

100 pts NaCl+NaI+Aq sat. at 18-19° contain 62.33 pts. of the two salts. (v. Hauer.) Sol. in sat. Alg(SO4)2+Aq with no pptn. (Vauquelin)

Sol m sat (NH4)28O4+Aq with pptn. of considerable amt. of (NH4)2SO4+Aq. (Vauquelin)

Sol. in sat. CuSO4+Aq 100 pts. H2O dissolve 36 71 pts NaCl and 7.19 pts. K₂SO₄ at 15°, and solution has ap

gr. 1.24. (Page and Keightey) NaCl is sol. in KaSO4+Aq, and vice versa, without separation of a salt. 100 pts H₂O dissolve 7.03 pts, K₂SO₄ and

37 60 pts. NaCl, when warmed and cooled to 14°. (Rudorff) Solubility of NaCl and K2SO, in H2O at to

100 pts. H₂O contain pts. NaCl, K₂SO₄, and KCl.

t°	Pts. NaCl	Pts K:804	Pts KCl
10	33 43	8 10	3.18
20	34 01	8 90	3 06
30	34.56	9 56	2 95
40	35 16	10 38	2 81
50	35 77	11.07	2.84
60	36 40	11.93	2 72
70	36.64	12.82	3 20
80	36 04	12 26	5 06
90	35 86	12 42	6.98
100	35 63	12.56	8.79

(Precht and Wittgen, B. 15, 1666.)

Sol in cold sat. NaSO4+Aq at first without ptn., afterwards Na₂SO₄ separates out. (Karsten)

Solubility in Na₂SO₄+Aq containing 7 45 g. No SO, in 100 g of the solution

148504 III 100 g. or uno conduction					
t°	g NaCl in 100 g. of the solution				
14 80 17 90 24 85 25 60 27 75 32 18	23 30 23 33 23 45 23 485 23 525 23 555				
34 28	23.68				

(Marie and Marquis, C. R. 1903, 136, 684.) See also under Na2SO4.

Sol, in sat, ZnSO4+Aq with separation of Na₂SO₄, ZnSO₄ (Karsten) Insol, in liquid CO2. (Büchner, Z. phys. Ch 1906, 54, 674.)

Moderately sol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, **20**, 829.) 12 2 pts. NaCl are sol. in 1 pt. hydrazine at 12 5-13°. (de Bruyn, R. t. c 1899, 18. 297

100 g. hydroxylamine dissolve 14.7 g. NaCl at 17.5°. (de Bruyn, Z. phys Ch. 1892, 10. 100 g. 95% formic acid dissolve 5.8 g. at 19.7°, (Aschan, Ch. Ztg. 1913, 37, 1117.)

Solubility in alcohol.

100 pts. alcohol of 0 900 sp. gr. dissolve 5 8 pts. NaCl; of 0 872 sp. gr. dissolve 3 67 pts. NaCl, of 0.834 sp. gr dissolve 0 5 pt. NaCl (Kirwan.) 100 pts alcohol containing given % by weight of

ab	absolute alcohol dissolve pts NaCl at 25°.				
% alcohol	Pts. NaCl	% sleohol	Pts. NaCl	alcohol	Pta NaCl
0 0 8 4 16.7 25 1	35 70 30 49 24 84 19 30	33 4 41 8 50 2 58 5	16 08 13 28 11 28 7 98	66 9 75 2 83 6	5 95 3 75 1 59

(Kopp, A 40 206)

100 pts, alcohol of 75% by weight dissolve at 14° 0 681 0.736 1.033 pts NaCl

100 pts. alcohol of 95 5% by weight dissolve at: 150 0.171 pts. NaCl.

(Wagner, A. 64, 293.)

100 pts, alcohol containing % alcohol by weight dissolve pts. NaCl at 15°, or 100 pts. solution contain % NaCl. 10 20 30 40 % alcohol 17 51 13 25 pts. NaCl,

28.53 22.55

22,2 18 4 14.9 11.7 % NaCl, 80 % alcohol. 9.77 5.93 1.22 pts. NaCl, 1 2 % NaCl. 8.9 5.6

(Schiff, A. 118, 365.)

Solubility of NaCl in alcohol increases with the temperature. 100 pts (by weight) of alcohol of 0.9282

sp gr. (50.5% by weight) dissolve at: 10° 13° 23°

10.9 11.1 11.43 11.9 12.3 pts. NaCL 33° 44° 51° 60°

12.5 13.1 13.8 14.1 pts. NaCl. (Gerardin, A. ch. (4) 5. 146.)

Solubility in alcohol at 13°

	100 com. contain in g				
Sp gr	Alcohol	Water	Salt		
1 2030 1 1348 1 1144 1 0970 1 0698 1 0295 0 9880 0 9445 0 9075	0 11.81 15.99 19.39 24.95 32.33 40.33 49.28 57.91	88.70 78.41 74.64 71.45 65 80 57 96 49 34 38 54 29 37	31 60 23 26 20 81 18 86 16.23 12.66 9.13 5 93 3 47		
0 8700 0 8400	63 86 72.26	21 62 11 24	1 52 0 50		

(Bodlander, Z. phys Ch. 7, 317)

Solubility in ethyl alcohol+Aq at 30°.

wt % alcohol	g NaCl per 100 g		mrt 67.	g NaCl per 100 g	
	solution	H ₁ 0	alcohol	solution	H:0
0 5 10 20 30 40	26 50 24.59 22.56 19.05 15.67 12.45	36.05 34.29 32.57 29.40 26.53 23.70	50 60 70 80 90	9 34 6 36 3.36 1 56 0 43	20.60 16 96 12 75 7 95 4 30

(Taylor, J. phys. Ch. 1897, 1. 723.)

Solubility in ethyl alcohol+Ag at 40°.

wt % alcohol	g. NaCl per 100 g		wt %.	g NaCl+100 g.	
	solution	H ₁ 0	alcohol	solution	H ₂ O
0 5 10 20 30 40	26 68 24.79 22 90 19 46 16.02 12.75	36.38 34 69 33 00 30 20 27.25 24 37	50 60 70 80 90	9.67 6.65 3.87 1 69 0 50	21 42 17 82 13.10 8 68 5 10

(Taylor, l c.)

11

Solubility of NaCl in ethyl alcohol+Aq at Solubility of NaCl in propyl alcohol+Aq. 28°.

C.H.OH	% H ₂ O	NaCI	Сийон	% H:0	NaCl	
0	73 53	26 47	45 35	45 35	9.3	
3 8 7.7 16.1	71 6 69.7 64.6	24 6 22.6 19 3	56 2 67.4 78.8	37 5 28 9 19 7	3 7 1 5	
25.3 35.0	58.9 52.5	15 8 12 5	89 6	10	0 4	

(Fontem, Z. phys. Ch. 1904, 73, 212.)

Solubility of NaCl in ethyl alcohol + Aq at 25°. Conc. = concentration of alcohol in g mol. per 1,000 g, H₂O. NaCl=g, m 1,000 g H₄O.

Conse	NaCl	Molecular solubility
0	359 65	6 16
0.25	355 15	6.08
0 50	349 65	5.98
1	337 80	5.79
3	301 60	5.16

(Armstrong and Eyre, Proc R Soc 1910, (A) 84, 127.)

100 pts. absolute methyl alcohol dissolve 1.41 pts. at 18.5°; 100 pts. absolute ethyl alcohol dissolve 0.065 pt. at 18.5°. (de Bruyn, Z. phys. Ch 10. 782.) 100 pts. wood-spirit of 40% (by weight) dissolve 13 0 pts NaCl. (Schiff, A 118, 365) 100 g. NaCl+CH₂OH contain 0.1 g NaCl at the critical temp (Centnerszwer, Z phys

Solubility of NaCl in methyl alcohol+Au. at 25°.

Cone, = concentration of alcohol in g. mol per 1,000 g. H₂O. NaCl=g. in 1,000 g H₂O.

Ch 1910, 72, 437.)

10	Cone.	NaCl	Molecular solubility
0.	0 0.25 0.50 1	357.75 355.20 353.10 347.45	6.13 6.08 6.05 5.95
25°	0 0 25 0 50 1	362.95 359.40 357.60 353.20 336.25	6 20 6 14 6 11 6 04 5 75

(Armstrong and Eyre, Proc. R. Soc. 1910, (A) 84, 127.)

Traces dissolve in propyl alcohol. (Schlamp Z. phys. Ch 1894, 14. 276.)

Cone, = concentration of alcohol in g, mol per 1,000 g. H₂O. NaCl=g NaCl in 1,000 g. H.O.

to.	Cone	NaCl	Molecula solubility
0	0 0.25 0.50	357 75 351 20 345 55	6 13 6.01 5 91
25	0 0 25 0 50	362 95 355 75 350 20	6.20 6 10 6 00

(Armstrong and Evre, Proc. R. Soc 1910, A. 84, 127)

Solubility of NaCl in propyl alcohol+Aq at 28-25°

NaCl	същон	H#0	NaCi	с.н.он	H%
2 23 3 55 3.90 5.27	18.99 14.78 12.77	46.20 77.46 81.32 81.96		4 47 3 88 3 27	80 23 79 47 70.14 78 09 76.61
8.04 0.49 2.20	7.79	82 47 81 72 81 23	24 50	2 64 2.13 2.3	75.01 75.37 72.80

(Frankforter and Frary, J phys. Ch 1913, 17, 402.)

100 g. sat. solution of NaCl in 99.6% propy alcohol contain 0 04 g. NaCl at 25°. (Frankforter and Frary.) Insol. in fusel oil. (Gooch, Am Ch. J. 9.

53.) Solubility of NaCl in amyl alcohol+Aq

Liquid phases confugated at 28°. Upper layer Lower layer amyl NaCl H₂O NaCl H₀O 0 05 95 45 4.5 26 36 0 22 73 42 94 1 5 9 19 0 4 80 4 92.97 1 12.7 õ s 86.5 91 6 8 4 6 2 1.5 92 3 9 8 2.3 97.7 90 2 0

(Fontein, Z. phys. Ch. 1910, 73, 226.)

At room temp. 1 pt. by weight is sol, in: 75 pts, methyl alcohol D11 0,7990. D15 0 8100. 588 ° " ethyl 3000 " propyl D15 0 8160. (Rohland, Z. anorg. 1898, 18. 325)

100 g. methyl alcohol dissolve 1.31 g. NaCl at 25°.

0-1-19

0 19

0 15

0 12

88.99

90.23

90.94

	ethyl alcohol	dissolve	0.065	g.	NaCl
at 25°	propyl alcoho	l dissolve	0.012	ar	NoCi
n+ 25°	propyrationic		. 0.012	ь	11401

100 g isoamyl alcohol dissolve 0.002 g NaCl at 25°.

(Turner and Bissett, Chem. Soc. 1913. 103. 1909.)

Solubility of NaCl in ethyl+amyl alcohol at

	Opper laye	ır	L	ower laye	er .	l
% NaCt	% amyl alcohol	% ethyl alcohol	% NaCl	% amyl alcohol	% ethyl alcohol	ĺ
0 05 0 10 0 25 0 58 1 23 2 81 6 56	95 45 86 6 75 4 59 9 47 0 31 6	0 9 5 19 1 30 9 38 7 44 8	26 35 25 30 24 02 22 64 21 19 19 26 15 81	0 22 0 25 0 3 0 4 0 5 1 3 3 69	0 1 9 9 5 6 9 10 3 15 2 22 1	

Critical solution, amyl alcohol, ethyl alcohol, 32 5%, NaCl, 11%; H2O. 46.5%.

(Fontein, Z phys. Ch. 1910, 73, 244)

Ether ppts NaCl from NaCl+Aq. (Gmelin.)

Very al. sol in a mixture of equal pts. of absolute alcohol and other. (Berzelius.) 500 mg. NaCl treated with above mixture yielded only 0.5 mg to the liquid. (Lawrence Smith, Am J. Sci (2) 16, 57

100 pts of a mixture of 1 pt. 96% alcohol and 1 pt 98% ether dissolve 0 11 pt. NaCl. (Mayer, A. 98, 205.)

Insol in acetone (Krug and M'Elroy, J. Anal. Ch 6. 184, Eidmann, C. C. 1899, II 1014)

Solubility in acetone +Aq at 20°. A = ccm acetone in 100 ccm, of the solvent. solution.

A	NaCl
0 10 20 30 32 to 2 phases 87 90 100	537 9 464 6 394.8 330.1 lower layer 308.5 upper layer 7.7 7 3 5 6 4 3

(Herz and Knoch, Z. anorg, 1904, 41, 318.)

Solubility in acctone+Aq at 20				
% NaCl	% H ₂ D	% acctone		
25.9	73 06	1.04		
24.19 25.06	71 18 72.00	4 03 2 94		
20 85	66.78	12 37		
20 17 18 32	66.01 63.16	13 82 18.52		
20 44	66 19	13.37		
17 89	62 21	19.90		

1 1 1 1 000

10 82 9 62 8 94 (Frankforter and Cohen, J. Am. Chem. Soc. 1914, 36, 1127.)

Solubility in glycol at 148°=317% (de Coninck, Belg. Acad Bull 1905, 275) Sol. in glycerine (Pelouze)

Solubility of NaCl in glycerine+Aq at 25°. G=g. glycerme in 100 g. glycerine+Aq NaCl=millimols NaCl in 100 cc. of the solution.

G	NaCl	Sp. gr.
0	545 6	1 1960
13 28	501 1	1 2048
25 98	448 4	1 2133
45 36	370 2	1 2283
54 23	333 9	1 2381
83 84	220 8	1 2696

(Herz and Knoch, Z. anorg, 1905, 45, 267.)

Insol in benzonitrile, (Naumann, B. 1914, 47, 1370.) Insol in methyl acetate (Naumann, B. 1909, 42, 3790), ethyl acetate (Naumann, B, 1904, 37, 3602.)

NaCl = millimols NaCl in 100 ccm, of the Solubility of NaCl in solutions of HgCl2 in ethyl acetate.

	100 mgs, etnyt accente diagove					
Mols. HgCl:	Mols NaCl	Mols HgCl ₂	Mols. NaCl			
40 0 38 1 36.0 34 9 34 8 32 1 28 0 22 8 22 9	20.0 19.6 19.2 18.5 18.3 13.8 9.1 7.0 7.0	18 0 16 4 14 1 13 2 12 4 12 0 12 2 12.9	5 1 4 3 3 8 2 9 2 3 1 6 1.3 0.8			

(Linebarger, Am. Ch. J. 1894, 16, 215)

Solubili	ty of NaCl i	in urea+A	q at 25°.	Sodium stannic chloride, 2NaCl, SnCl ₄ +
% urea	% NaCl	% urea	% NaCl	See Chlorostannate, sodium.
0 5 9.6 13	31 80 30 63 29 05 28 46	18 23 28	27 65 27 24 26 56	Sodium thallic chloride, 3NaCl, TiCl ₂ + 12H ₂ O. Very sol in H ₂ O. (Pratt, Am J. Sei, 1895, (3) 49, 404)
Solubili g=g. ur sol.=inc	, Z. Kryst. M ty of NaCl i ea in 100 cc. crease of s cc of the so	in urea + Ac of solution olubility o	1 at (?)°.	Sodium uranium chloride, 2NaCl, UCl ₄ . Non volatile and not hydroscopic. (Mois-
5 10 15	0 044 0 124 0 234	30 35 40	0 709 0 910 1 134	Sodium uranyl chloride, Na ₂ (UO ₂)Cl ₄ . As K salt. (Aloy, Bull. Soc. 1899, (3) 21 264) Sodium zinc chloride, 2NaCl ZnCl ₅ +3H.O.

1 370

1.602

1912, 23, (Fastert, N. Jahrb. Min Beil 288)

0.372

0.529

20

25

Solubility of NaCl in formamide+Aq at 25°					
% HCONH:	% NaCi	% HCONH;	% NaCl		
0 2.3 5 3	31.80 30.98 30.86	11 15 18 8	29 11 28.52 27.76		

(Ritzel, Z. Kryst, Min. 1911, 49, 152.) Insol, in anhydrous and in 97% pyridine

Very sl. sol in 95% pyridine+Ao. Sl. sol. in 93% pyridine+Aq. (Kahlenberg, J. Am Chem. Soc. 1908, 30, 1107.)

Insol. in oil of turpentine (T. S Hunt, Am. J. So. (2) 19. 417.) 100 g. H₂O dissolve 236.3 g. sugar +42.3 g. NaCl at 31.25°, or 100 g. sat aq solution contain 62.17 g. sugar+11.13 g NaCl. (Köhler, Z. Ver Zuckerind, 1897, 47, 447)

Solubility of NaCl in glucose+Aq at 25°. Conc = concentration of glucose + Aq in g.

mol, per 1,000 g. H₂O Sol. = Solubility in 1,000 g. H.O.

Cone.	Sol.	Molecular solubility
0	361 40	6 18
0.25	364.15	6 22
0.50	364 30	6 23
1 0	369 90	6 32

(Armstrong and Eyre, Proc. R. Soc. 1910, (A) 84. 127.)

Min. Halite. +2H₂O. Efflorescent below 0°, sl deliquescent at temps. above 0°. (Fuchs, 1826.) The solubility in H₂O at -12.25° core

sponds to 32 9 pts. of NaCl per 100 pts. H2O (Matignon, C. R. 1909, 148, 551.)

Sodium zinc chloride, 2NaCl, ZnClo+3H-O. Deliquescent Easily sol, in H₂O, (Schindler, Mag. Pharm 36. 48.)

Sodium zirconium chloride, 2NaCl, ZrCl4. (Paykull.)

Sodium chloroiodide, NaCl4I+2H2O. Easily decomp, by alcohol or ether. (Wells and Wheeler, Sill. Am J 143, 42.)

Sodium fluoride, NaF. Very sl. sol. in cold, and not more abundantly in boiling H2O. (Rose) 106 pts. H₂O dissolve 4.78 pts. at 16°. (Berzelius)

100 pts H₂O dissolve 4 pts at 15°, (Fremy, A ch. (3) 47. 32.) Sp. gr. of aqueous solutions containing in 100 pts H₂O. 2 2162 3,3243 pts. NaF.

1.1081 1 0110 1.02211.0333 Sat. solution has sp. gr 1.0486. (Gerlach, Z anal. 27. 277.) Sp. gr. of solution sat. at 18°=1.044, containing 4.3% NaF. (Mylius and Funk, B.

1897, **30.** 1718.) Solubility of NaF in HF+Aq at 21°.

g per 10	00 g. H ₁ O	g. per 100	0g H _f O
HF	NaF	HF	NaF
0.0 10 0 45 8 56 5	41 7 41 4 22.5 22 7	83 8 129 7 596 4 777 4	22 9 23 8 48 8 81.7

(Ditte, C. R. 1896, 123, 1282.)

Easily sol, in liquid HF, (Franklin, Z. anorg. 1905, 46. 2.) Sl. sol. in conc. KC2H4O2+Aq. (Strom-

ever.) Almost insol, in alcohol. (Berzelius, Pogg.

Insol, in methyl acetate. (Naumann, B. 1909, 42, 3790,)

SODIUM H	YDRO:	XIDE		851
Sodium hydrogen fluoride, NaHF ₂ Rather difficultly sol in cold, more easily			ibility	of NaOH in H ₂ O.
ın hot H ₂ O. (Berzelius, Pogg. 1. 13) Sodium tantalum fluoride. See Fluotantalate, sodium.	t°	Solu- tion	H _i O	Solid phase
Sodium tin (stannous) fluoride, 2NaF, 3SnF ₂ . Sol. in H ₂ O (Wagner, B 19. 896.)	- 7 8 -20 -28 -24	8.0 16.0 19.0 22.2	19.1 23.5	Ice +NaOH 7H2O NaOH 7H2O +NaOH 5H2O
Sodium tin (stannic) fluoride. See Fluostannate, sodium.		24 5	32 5 42 0	NaOH 5H ₂ O +NaOH 3H ₂ O NaOH 4H ₂ O NaOH 4H ₂ O +NaOH 3H ₂ O
Sodium tantalum fluoride. See Fluotantalate, sodium.	10	34 0 38 9	51 5 63 53 83 5	NaOH.334HsO "f. pt NaOH 334HsO+NaOH 2HsO
Sodium tellurium fluoride, NaF, TeF ₄ . Decomp by H ₂ O (Berzelius)	12 20 30	50 7 52 2 54 3	103 0 109	NaOH 2H ₂ O + NaOH H ₂ O NaOH H ₂ O
Sodium titanium fluoride. See Fluotitanate, sodium.	40 50 60	56.3 59.2 63.5	129 145	41
Sodium tungstyl fluoride. See Fluoxytungstate, sodium.	64 3	69 0 74 2 75 8	222 3 288	" f, pt NaOH H2O+NaOH NaOH (*)
Sodium uranium fluoride, NaF, UF ₄ (?) Somewhat soluble in H ₂ O. (Bolton.)	110 192	78 5 83 9	365	**
Sodium uranyl fluoride. See Fluoxyuranate, sodium.	and F	unk, V	₹ A. E	Soc. 1893, 63 . 890; Mylius 3, 1900, 3 . 450, Calc. by 2d Edition, p 653.)
Sodium vanadium sesquifluoride. See Fluovanadate, sodium.	100	, g. sat.	NaOH	+Aq at 15° contain 46.36
Sodium zinc fluoride, NaF, ZnF ₂ . Sol. in H ₄ O. (R. Wagner)	R. Nat			prand, C R. 149. 1344.) b-pt of NaOH+Aq.
Sodium zirconium fluoride, 5NaF, 2ZrF4.	~	1	T	11 01

	op gr and 0-pt of NaO11-7Aq.								
	% Na ₂ O	Sp. gr	B-pt	% Nt.0	Sp gr.	B-pt			
3.	4 7 9 0 13 0 16 0 19 0 23 0 28 0 29 0	1 06 1 12 1 18 1 23 1 29 1 32 1 36 1 40	100 56° 101 11 102 78 104 44 106 66 108 89 112 78 116 66	31 0 34 0 36 8 41 2 46 6 53 8 63 6 77 8	1 44 1 47 1 50 1 58 1 63 1 72 1 85 2 00	120 00° 123 89 129 44 137 78 148 89 204 44 315 56 red heat			

(Dalton)

(Dano))							
Sp gr of NaOH+Aq at 15°.							
% Ns:0	Sp gr	% Na ₂ 0	Sp gr	% Nas0	Sp. gr		
0 302 0 601 1 209 1 813 2 418 3 022 3 626 4 231 4 835 5 440	1 0040 1 0081 1 0163 1 0246 1 0330 1 0414 1 0500 1 0587 1 0675 1 0764	13 901 14 506 15 110 15 714 16 319	1 2178 1 2280 1 2392 1 2453 1 2515	21 154 21 758 21 894 22 363 22 967 23 572 24 176 24 780 25 385 25 989	1 3053 1 3125 1 3143 1 3198 1 3273 1 3349 1 3426 1 3505 1 3586 1 3688		
6 044 6 648 7 253 7 857 8 462 9 066 9 670 10 275	1 0855 1 0048 1 1042 1 1137 1 1233 1 1830 1 1428 1 1528	16 923 17 528 18 132 18 730 19 341 19 954 20 550	1 2578 1 2942 1 2708 1 2775 1 2843 1 2912 1 2982	26 594 27 200 27 802 28 407 29 011 29 616 30 220	1 3751 1 3836 1 3923 1 4011 1 4101 1 4193 1 4285		

(Tünnerman, N J Pharm 18 2)

See Fluozirconate, sodium. Sodium fluoride vanadium pentoxide.

See Fluoxyvanadate, sodium. Sodium hydrazide, NH2, NHNa.

Decomp. by H2O with explosive violence Decomp by alcohol (Schlenk, B. 1915, 48

670.)

Sodium hydride, NaH.

Decomp by H2O and by acids. Sol in fused Na or Na amelgam. Insol. in liquid NH₃ Insol in CS₂, CCl₄, C₄H₆ and terebenthene. (Moissan, C. R. 1902, **134**.

Na₂H₄ Decomp violently by H₂O.

Sodium hydrosulphide, NaSH.

Deliquescent Sol. in H₂O and alcohol +3H₂O. Difficultly sol. in H₂O. (Damoiseau, C. C 1885. 36.)

Sodium hydroxide, NaOH.

Very deliquescent 100 pts. NaOH under a bell jar with H2O at 16-20° absorb 552 pts. m 56 days. (Mulder.)

Very sol. in H₂O with evolution of much heat. Sol. in 0.47 pt H₂O. (Bineau, C. R. 41, 509.)

802				001	10h 11	12110222			
	8	p gr of N	FHOs	-Aq		Sp gr. o	f NaOH+A	q at 15°(Continued
% Nn	10 Sp. gr	% Nato	Sp g	r. % Na	O Sp gr	% NaOH	Sp ga	% NaOH	Sp gr.
	12 1 04 89 1 06 69 1 08 13 1 10 10 1 12	11 78 16 73 18 71 20 66 22 58 21 47 26 33	1 16 1 18 1 20 1 22 1 24 1 26 1 28	29 9 31 6 32 4 33 0 34 4	1 32 7 1 31 9 1 35 8 1 36	7 66 8 0 8 34 8 68 9 0 9 42	1.0868 1.0909 1.0951 1.0992 1.1030 1.1077	24 81 25.3 25 8 26 31 26 83 27,31	1 2748 1 2800 1 2857 1 2905 1 2973 1 3032
		(Riel				9 74	1 1120 1 1158	27.8 28 31	1 3091 1.3151
	Sp. gr	of NaO	H+A			10 5	1 1195	28 83	1.2311
%	Sp gr if % in Na.O e	Sp gr if % is NaÖH	%	Spgr if % is NacO	Sp. gr. if % is NaOH	10 97 11 42 11.84	1 1250 1 1294 1 1339	29.38 30 0 30 57	1 3272 1.3339 1.3395
1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	1 015 1 020 1 043 1 058 1 074 1 089 1 104 1 119 1 135 1 165 1 165 1 120 1 203 1 219 1 233 1 245 1 200 1 315 1 329 1 329	1 012 1 023 1 035 1 046 1 059 1 070 1 081 1 1092 1 1092 1 1082 1 115 1 126 1 127 1 181 1 181 1 181 1 192 1 192 1 192 1 193 1 123 1 1	32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 55 55 55 55 56 57 58 58 58 58 58 58 58 58 58 58 58 58 58	1 450 1 462 1 475 1 488 1 500 1 515 1 533 1 558 1 570 1 162 1 623 1 650 1 663 1 678 1 690 1 745 1 770 1 785 1 785 1 885 1 785 1 885 1 785	1 351 1 363 1 374 1 394 1 405 1 405 1 426 1 447 1 447 1 458 1 488 1 478 1 519 1 520 1 500 1 500 1 501 1 611 1 632	12 24 13 0 13 15 13 86 14 75 15.0 15 5 15 5 15 5 16 38 16 72 17 612 18 58 19 58 20 0 20 59 21 42 22 64 23 167 24 24	1 1383 1 1423 1 1474 1 1520 1 1520 1 1566 1 1681 1 1682 1 1697 1 1755 1 1803 1 1882 1 1901 1 2101 1	31 22 31 85 32 47 33 0 33 69 34 38 35 0 35 65 36 25 36 25 37 47 38 13 38 8 40 75 41 41 42 42 42 43 66 44 43 86 44 43 86 44 45 87 47 47 68 48 81 49 72 48 81 48 81 49 72 48 81 48 br>81 81 81 81 81 81 81 81 81 81 81 8	1.3458 1.3521 1.3525 1.3624 1.3714 1.3750 1.3858 1.3918 1.3918 1.4049 1.4187 1.4267 1.4328 1.4187 1.4267 1.4328 1.419 1.4472 1.4545 1.4619 1.4769 1.4922 1.5040 1.5070 1.5079 1.5158
29	1 410	1 321	60	1.830	1 643		Hager, Co	mm. 1883.)	
30	1 422	1 332	70		1 748	The sp.	gr. increase	s or diminis	hes for eac

from

(Gerla

œh,	\mathbf{z}	anal.	8.	279	, cal	cu	ated

Sp. gr of NaOH+Aq at 15°.					
% NaOH	Sp gr.	% NaOH	Sp. gr		
0 61 0 9 1 0 1 2 1 6 2 0 2 36 2 71 3.0 3.35 3.67	1 0070 1.0105 1.0107 1 0141 1 0177 1 0213 1 0249 1 0286 1 0318 1 0360 1.0397	4 0 4 32 4 64 4 96 5 29 5 58 5 87 6 21 6 76 7 31	1 0435 1.0473 1.0511 1.0549 1 0588 1.0627 1 0667 1 0706 1.0746 1 0787 1 0827		

degree as follows.

% NaOH	Corr			
40-50 30-39 20-29 10-19	0.00045 0 0004 0 0003 0 0002			
Hager, Comm. 1883.)				

Sp. gr. of NaOH+Aq at 15°. % NaOH Sp gr | % NaOH

2.5	1.0280	20	1.2262
5	1 0568	25	1.2823
10	1 1131	30	1,3374
15	1.1790	l l	

(Kohlrausch, W. Ann. 1879.)

Sp gr of NaOH+Aq at 20° containing 2 mols NaOH to 100 mols H₂O=1 04712 (Nicol. Phil Mag. (5) 16, 122.)

Sp. or of NaOH+Ag at 15°.

5	1.069	25	1 353
10	1 139	30	1 426
15	1 210	35	1 500
00	1 221	1	l'

C NasO

1 281 (Hager, Adjumenta Varia, Leipsic, 1876.)

Sp gr. of NaOH+Aq at 15°.

NaOH	Sp gr	NaOH	Sp gr	NaőH	Бр gr
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0 999180 1 010611 1 021920 1 033109 1 044317 1 055463 1 066602 1 077733 1 088856 1 099969 1 111069 1 122165 1 133250 1 144353 1 155450 1 166538	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	1 188707 1 199783 1 210861 1 221933 1 233062 1 234119 1 255134 1 266002 1 277063 1 287990 1 298877 1 309708 1 320496 1 331213 1 311879	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	1 373453 1 383815 1 394092 1 404279 1 414363 1 424353 1 434299 1 444161 1 453929 1 473249 1 473249 1 492406 1 501927 1 511412 1 520868
16	1 177619	33	1 362991	50	1 530282

(Pickering, Phil Mag. 1894, (5) 37, 373)

Sp. gr. of a N solution of NaOH+Aq at 18°/18° = 1 0418. (Loomis, W. Ann. 1896, 60. 550.)

Sp. gr. of NaOH+Aq %NaOH 8.73 3.67 3.82 Sp gr. 20°/20° 1 0968 1.0416 1.0464 (Le Blanc and Rohland, Z. phys. Ch. 1896, 19, 272)

Sp gr. of NaOH+Aq at t°. H₂O at 4°=1, Sp gr of Na₂CO₁+NaOH+Aq at t°. H₂O The solutions contained a small amount of Na₂CO₂

t°	% NaOH	% Na ₂ CO ₂	Sp. gr
60	22 57 20 04 17 04 14 16 10 92	0 61 0 48 0 35 0 38 0 36	1 2312 1.2026 1 1692 1.1374 1 1020
80	22 81	0 55	1.2207

(Wegscheider and Walter, M. 1905, 26, 691.) (Wegscheider and Walter, M. 1905, 26, 692.)

Sat. NaOH+Ag bods at 215.5° (Graffiths.)

Sat NaOH+Ag houls at 310°. (Gerlach. Z anal 26, 427) NaOH+Aq of 1 500 sp gr contains 36 8% NaOH and boils at 130°

B.-pt of NaOH+Aq containing pts. NaOH

to 100 pts H ₂ O					
B-pt.	Pts NaOH	B-pt.	Pts. NaOH		
105°	17	210°	425 5		
110	30	215	475 5		
115	41	220	526 3		
120	51	225	583.3		
125	60 1	230	645 2		
130	70 J	235	714.3		
135	81 1	240	800		
140	93 5	245	888 8		
145	106 5	250	1000		
150	120 4	255	1142.8		
155	134 5	260	1333.3		
160	150 8	265	1534		
165	168 8	270	1739 1		
170	187	275	2000		
175	208 3	280	2353		
180	230	285	2857		
185	254 5	290	3571 4		
190	281 7	300	4651.1		
195	312 3	305	6451 6		
200	345 -	310	10526 3		
205	380 9	314	22222 2		

(Gerlach, Z anal 26, 463.)

Insol in liquid NH₃. (Franklin, Am Ch. J 1898 20, 829)

Sp. gr. of Na₂CO₂+NaOH+Aq at 11 5° H₂O at 4°=1.

% Na ₂ CO ₂	% NaOH	Sp. gr
3 845	14 10	1 196
3 171	13 63	1 182
2 204	12 51	1 164
1 642	10 17	1 136
0 2686	16 64	1 186

(Wegscheider and Walter, M. 1905, 26, 693.)

t°	% Nu ₄ CO ₃	% NaOH	Sp gr
60°	15 38 13 79 12 10 9 965 9 47 7 69	10 63 9.52 8 29 6 86 6 70 5 22	1.2621 1 2302 1 1952 1 1594 1 1521 1 1158
80°	15 26 9 48	11 14 6 93	1 2510

Solubility of NaOH+Na ₂ SbS ₄ at 30°.					
% NaOH	% NasSbS ₄	Solid phase			
0 9.9 24 8 32.9 42 6 47 2 49.5	27.1 13. 5 9 10 5 16 4 17 7 9 1	Na ₂ SbS ₄ , 9H ₂ O " " " " "+NaOH, H ₂ O NaOH, H ₂ O			

(Donk, Chem, Weekbl, 1908, 5, 529, 629, 767.)

Eastly sol. in alcohol or wood spirit; sol in fusel-oil. Sol. in an aqueous solution of mannite (Favre, A. ch. (3) 11. 76.)

Easily sol in glycerine.

Sol to a certain extent in ether Insol. in acctonc. (Eidmann, C. C. 1899, II 1014, Naumann, B. 1904, 37, 4329.) Insol. in methyl acctate (Naumann, B.

1909, 42. 3790); ethyl acetate (Naumann, B 1904, 37. 3602); benzonitrile (Naumann, B. 1914, 47, 1370) +H2O. 100 g solution in H2O sat at 25

ontain 42 g. Na₂O. (Schreinemakers, Arch Néer. Sc 1910, (2) 15. 81) Mpt 64 3°. (See above.)

+11/4H4O. (Cripps, Pharm J. Trans. (3)

14. 883.)

+2H₂O. See above. +31/2H2O. Deliquescent Sol. in H2O with absorption of much heat Melts at 6°

(Hermes.) Mnt 155°, (See above.)

+4, 5 and 7H₂O. (See above) The composition of the hydrates formed by NaOH at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by NaOH and of the conductivity and sp. gr. of NaOH+Aq (Jones, Am. Ch. J 1905, 34, 336.)

Sodium perhydroxide, NaO2H. "Natryl hydroxide"

Decomp by H2O. Sol. in cold alcoholic agetic soid (Tafel, B. 1894, 27, 2300.)

Sodium sodide, NaI, and +2H₂O.

Solubility of NaI and of NaI+2H₂O in H₂O differ. Below 65°, NaI+2H₂O usually separates out, and above that temp. NaI separates.

Solubility of NaI in 100 pts H₀C at t°. l Pts il

v	NaI	10	NaI	10	NaI	
71.3	294 4	92.4	300 2	124.7	317 5 317 3	
74.1	295 3	97.1	300.3	132.5	317 3	
81.6	296 8	101.7	302.5	138 1	319.2	

of the formula S=264 19+0 3978t.

lubil	sty of I	VaI+21	J₂O in	100 pts	at to,
t°	Pts NaI	t°	Pts NaI	t°	Pta NaI
17 15 5 0 5 10	149.4 150 3 155 4 158 7 163 6 168 6	15 20 25 30 35 40	173.7 178 7 184 2 190 3 197 0 205.1	45 50 55 60 65	215 6 227.8 241 2 256.8 278.4
(Copnet, A ch. (5) 50, 424.)					

If solubility S = pts. NaI in 100 pts solution, S=61.3+0.1712t from 0° to 80°, S= 75+0.0258t from 80° to 160°. (Etard, C. R. 98. 1432.)

NaI+2H₂O is sol in 0.55 pt H₂O at 15°. (Eder, Dingl **221**. 89.) 100 pts. NaI+Aq at 18-19° contain 62.98 pts. NaI (v. Hauer, J. pr 98, 137.)

100 pts. H₂O dissolve at.

80°

303

40° 60° Uo. 200 158.7 1786 208 4 256.4 pts. NaI.

> 100° 126° 140° 312 5 333 3 pts. NaI. 322.5(Kiemers, Pogg. 97, 14,)

Transition pt. for NaI+2H₂O to NaI is 64.3°, and sat. solution containing 74.4% NaI. (Panfiloff, J. Russ. Phys Chem. Soc. 1893, 25, 162.)

100 g, H₂0 dissolve 172 4 g NaI at 15°, and sp. gr of sat. solution=1.8937 (Greensh, Pharm J. 1900, 65. 190.) 100 g, solution of NaI+2H₂O sat. at 30° contains 65.5 g anhyd. NaI. (Cocherct,

Dissert. 1910.) Sp gr. of NaI+Aq at 19.5° containing 5 10 15 20 25 30 % I 30 % NaI, 1.040 1 082 1 128 1,179 1,234 1,294

55 60 % NaI. 1.360 1.432 1.510 1.60 1.70 1.81 (Gerlach, Z. anal, 8, 285)

Sat solution boils at 141° Sol in liquid SOs. (Walden, B. 1899, 32 2864); POCl₂. (Walden, Z anorg 1900, 25-

Very easily sol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20**, 829)

Sol in 12.0 pts absolute alcohol; in 360 pts. ether (Eder, Dingl. 221. 89.) Sol. in 3 pts 90% alcohol. (Hager

100 pts. absolute methyl alcohol dissolve 7.7 pts NaI at 22 5°: ethyl alcohol, 43 1 pts. (de Bruyn, Z. phys. Ch. 10. 783.)

Very sol. m abs, methyl alcohol and is not pptd. therefrom on the addition of a large volume of abs. ether, while wet ether produces Solubility is represented by a straight line immediate separation. (Loeb, J. Am, Chem. Soc. 1905, 27. 1020.)

Solubility of NaI in ethyl alcohol (g. NaI in 100 g. alcohol.)

t°	NuI	t°	NaI
10	43 77	200	42.3
30	44 25	220	38.5
50 80	44 50 45 0	230 240	36.2 32.7
100	45 1	250	26 2
120	45 2	255	21 0
160	45 0	260	10 8
180	44 3	261.5*	8 6

^{*}Critical temp of solution.

(Tyrer, Chem. Soc. 1910, 97, 626.)

100 g. sat solution of NaI in ethyl alcohol at 30° contains 30 9 g. (Cocheret, Dissert, 1910.)

Solubility in ethyl alcohol+Aq at 30°

% NaI	% alcohol	Solid phase
65 52	0	NaI, 2H ₂ O
64	3 40	- 44
54 2	18.5	1 "
54	18.8	**
48 8	28 5	44
42 35	41.7	66
38.5	53 2	44
37.91	54 7	44
		N. T. OTT O 1 N. 3
37 49	55 37	NaI, 2H ₂ O+Nal
35 65	59 24	NaI
33 24	61 78	"
30 90	68 70	44

(Cocheret, Dissert. 1911.)

At room temp 1 pt by weight is sol in:

1 2 pts. methyl alcohol D18 0 7990

1 7 " ethyl " D18 0 8100

3 8 " propyl " D18 0 8160.

(Rohland, Z. anorg. 1898, **18**, 325.)

100 g, methyl alcohol dissolve 90 35 g. NoI at 25° 100 g ethyl alcohol dissolve 46.02 g. NaI at 25° 100 g propyl alcohol dissolve 28 22 g NaI at 25° 100 g, propyl alcohol dissolve 28 22 g NaI at 25° 100 g, isoamyl alcohol dissolve 16.30 g NaI at 25° NaI at 25° 100 g.

(Turner and Bissett, Chem. Soc. 1913, 103.

Solubility in methyl alcohol+ethyl alcohol at 25°.

P=% methyl alcohol in the solvent G=g NsI in 10 ccm. of the solution S=Sp gr of the sat solution at 25°

P	G	S 25°/4°
0 00 4 37 10 40 41 02 80 69 84 77 91 25	3 515 3 768 3 971 4 598 5 744 5 892 6 110	1.0806 1 1029 1 1123 1 1742 1 2741 1 2886 1 3056
100 00	6 322	1 3250

(Herz and Kuhn, Z. anorg. 1908, 60. 154.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = % propyl alcohol in the solvent.
G = g. NaI in 10 ccm of the solution
S = Sp gr of the sat solution.

P	G	S 25°/4°
0 11 11	6 322 5 845	1 3250
23 8	5 464	1 2853 1.2528
65 2 91.8	4 071 2 914	1 138 1.0420
93.75	2 649	1 0178

(Herz and Kuhn, Z. anorg. 1908, 60, 156.)

Solubility in mixtures of propyl and ethy alcohol at 25°.

P=% propyl alcohol in the solvent. G=g NaI in 10 ccm. of the solution. S=Sp gr, of the sat, solution

P	G	S 25°/4°
0 8 1 17 85 56 6 88 6 91.2 95 2	3 515 3 460 8 405 2 841 2 613 2 588 2 474 2 411	1 0806 1 0732 1 0720 1 0276 1 0130 1 0104 1 0020 0 9968

(Herz and Kuhn, Z. anorg. 1908, 60, 159.)

Sol. in normal propyl alcohol. (Loeb, J Am. Chem. Soc. 1905, 27, 1020.) 28.74 g. are sol. in 100 g. propyl alcohol. (Schlamp, Z. phys. Ch. 1894, 14, 276.)

28.74 g. are sol. in 100 g. propyl alcohol.
 (Schlamp, Z. phys. Ch. 1894, 14, 276)
 Sol. in methyl acetate. (Naumann, B. 1909, 42, 3789)
 Sol in ethyl acetate. (Casaseca, C. R. 30.

821.)
Insol. in ethyl acetate. (Naumann, B. 1910, 43, 314.)

41, 287

Sodium peroxide carbonate, Na2CO. (Naumann, B Sl sol, in benzonitrile 1914, 47, 1369.)

Solubility in organic solvents at to.

sat solution.

L=no, of liters which at the saturation temp hold in solution 1 mol NaI.

Salvent ŧª. 0.597 Furfurol 25 25 10 25 18 43 0.813Acetonitrile ō 22 09 0.679 Propionitrale 25 6 230 2 406 9.091 1 649 Nitromethane 25 31,36

n (Walden, Z. phys Ch. 1906, 55, 718.)

0.33944.27

Very sol. in acetone. (Walden.) +5H₂O. Transition point of NaI+5H₂O to NaI+2H₂O is -13.5°, and sat. solution contains 60.2% NaI. (Panfiloff, J. Russ. Phys. Chem. Soc. 1893, 25, 162.) Sodium tın (stannous) 10dide, NaI, SnI2.

Very sol, in H2O. When treated with little H2O, NaI is dissolved out, but a larger aint, of H₂O dissolves it completely (Boullay, A. eh (2) 34, 375)

Sodium zinc iodide, 2NaI, ZnI2+3H2O. Deliquescent. Very $NaZnI_s + 2H_sO$. hydroscopie. (Ephraim, Z. anore, 1910, 67, 383.)

Sodium nitride. Decomp, by heat. (Franz Fisher, B 1910: 43, 1468.)

Sodium suboxide, Na₄O.

Decomp. by HaO. (de Forciand, C. R. 1898, 127, 365)

Sodium oxide, Ns2O.

Very deliquescent, and sol in H₂O with evolution of heat See Sodium hydroxide.

Sodium peroxide, Na2O2.

Deliquescent, and very sol, in H₂O with partial decomp.

Solution decomp. on boiling. Cryst. with 2H₂O, and 8H₂O. (Fairley, Chem. Soc. 1877, 125.)

Forms hydrate Na₂O₂(OH)₄+4H₂O. Easily sol. in H₂O or dil. acids without

decomp. (Schone, A. 193, 241,)

Easily decomp. (Woffenstein, B. 1908

41. 285. C=pts by wt. of NaI in 100 ccm of the Sodium peroxide dicarbonate, Na₂C₁O₄ Easily decomp. (Woffenstein, B. 1908,

Sodium traoxide, NaO2

Sol, in H₂O forming a solution of Na₂O₂. (Joannis, C R. 1893, **116**, 1371)

Sodium traoxide carbonate, Na₂CO₄ (Woffenstein, B 1908, 41, 296.) Sodium trioxide dicarbonate, NaHCO.

Two isomeric modifications. (Woffenstein, B. 1908, 41. 390)

Sodium trioxide hydrate, NaO OH. See Sodium perhydroxide.

Isomeric with Tafel's sodyl hydroxide, O.Na OH (B. 27, 2297) Insol, in alcohol

Very unstable. (Woffenstein, B 1908, 41.290) Sodium phosphide, NaPa.

Easily decomp, by H₂O (Hugot, C. R. 1895, **121**. 208.) Sodium hydrogen phosphide, Naff-P.

Decomp by HgO. (Joannis, C. R. 1894. 119. 558.)

Na₂H₄P₂. Decomp by acids and H₂O. (Hugot, C. R., 1898, **126**, 1721.)

Sodium selenide, Na-Se Very deliquescent. Decomp. by H₂O. (Uelsmann, A. 116, 127) Insol. in liquid NH₄; sol. in air free H₂O to a colorless liquid. (Hugot, C R 1899, 129. 299.)

Cryst with 16H₂O, 9H₂O, and ³/₂H₂O. (Fabre, C. R. **102**, 613) +10H₂O Very sol. in H₂O; very unstable in the air (Clever, Z. anorg 1895, 10. 145.)

Sodium diselenide, NasSes.

(Jackson, B. 7, 1277) Sodium triselenide, NasSea

Sol. in H2O. (Mathewson, J Am. Chem. Soc. 1907, 29, 873.)

Sodium hexaselenide, Na₂S₅. Sol. in H₂O. (Mathewson, J. Am. Chem. Soc. 1907, 29, 873.)

Sodium monosulphide, NasS. Sol. in H₂O Much less sol. in alcohol than in HgO. Insol in other (Roussin.)

+5H ₂ O. Tr. p	t. from l	Va ₂ S-l	-5	₩±C), 94°
+5½H₂O. The sat. solu	tion gon	forno -			
28 48% a				ene	
	miyarou	s sait	146	90	
29 27		44		55°	
29 92	44	44	44	60°	
31 38	**	**	44	70°	
33 95	44	11		80°	
	46	44		00°	
37 20		**		90-	
Labile from 48	0-01 5°	etabi	lo.	from	01 5
neo	0 01.0	Detailor	••		01.0

(Perrayano and Fornami, C. C. 1908, I. 5.)

⊥6H₂O Less efflorescent than with 9H₂O. Sol in H.O and alcohol.

ıe			ution cor			
	26	7 9	anhydi a	ous salt	at	50°
	28				14	60°
	30	22	66	***		70°
	32	95	**	tt	44	80°
	36	42	44	H	"	900

Tr. pt. to Na₂S+5½H₂O, 91.5°. (Parrayano and Fornaini.)

+9H₂O Efflorescent, Much loss sol in II, 580) alcohol than H2O When dissolved in H.O. temp sinks from +22 to-61° (Finger,

Pogg. 128. 635)
The sat solution contains —

9	34%	anhydrous	Na ₂ S	at .	10°
13	36	" "	11	**	+10°
14	36	44	44	**	15°
	30	47	- 11	**	18°
16		**	44	44	22°
	73	- 11	- 11	- "	28°
19	09	44	**	"	32°
	98	64	"	11	37°
	19	11	и	**	45°
		VasS+51/4H	60. 48	3 9°.	

(Parrayano and Fornami.)

Sodium disulphide, Na₂S₂ Sol, in H₂O and alcohol +5H₂O. Not efflorescent

Sodium trisulphide, Na₂S₃

Sol. in H₂O with decomp Cryst with 3H2O from an alcoholic solution (Böttger, A 223, 355)

Sodium tetrasulphide, Na₂S₄+6H₂O. Very deliquescent, and sol. in H₂O. Diffi-

cultiv sol, in absolute alcohol Insol, in other. (Schone +8H₂O, Efflorescent. (Bottger.)

Sodium pentasulphide, Na₂S₄+6H₂O. Sol. in H₂O. (Schone.)

Sol in alcohol.

+8H₂O (Bottger) Solution is easily decomp by warming. (Jones, Chem. Soc 37, 461)

Sodium tellurium sulphide.

See Sulphotellurate, sodium.

Sodium stannic sulphide. See Sulphostannate, sodium.

Sodium yttrium sulphide, Na₂S, Y₂S₃,

Decomp by dil. acids, even by HC1H2O2+ Ag. (Duboin, C R. 107, 243)

Sodium zinc sulphide, Nass. 3ZnS

Not so stable as the corresponding K sait. (Schneider, J. pr (2) 8. 29.)

Sodium sulphoselenide, Na SSe₂+5H₂O Hydroscopic and decomp in the air (Mes-

singer, B 1897, 30, 806) Sodium telluride, Na₂Te.

Sol m H₂O. (Demarçay, Bull. Soc. (2) 40. 99)

Sodium tratelluride, Na Te.

Sol m H₂O Sol m haud NH2. (Hugot, C. C. 1899,

Stannic acid, H2SnO2

Insoi in H₂O Sol in HCl, and H₂SO₄+ Aq, even when dil. (Fremy.) Easily sol in acids, from which solution it may be pptd by dilution or boiling. While moist it is sol, in HNO₄+Aq, but gradually separates on standing, and coagulates at once when heated to 50°. If NH,NO, be added to the solution, it remains clear at old temp. (Berzelius)

Easily sol. in HNO₂+Aq, when previously treated with NH4OH+Aq (Thénard.)
Easily sol in KOH+Aq, but addition of large excess ppts K2SnO3, insol in KOH+

Aq.
Easily sol. in NaOH+Aq, and not pptd by
(Barfoed, J. B. 1867. 267.)

Sl. sol in NH4OH+Aq or (NH4)2CO2+Aq Completely sol, in K-CO+Aq, but not in Na₂CO₂+Aq Insol in alkalı hydrogen carbonates or

NH₄Cl+Aq. Sol. in alkalı sulphides+Aq (Berzelius.) Sol. in triethyltoluenyl ammonium hy-

drate+Aq Not pptd, by NH4OH+Aq in presence of Na citrate+Aq

SnO₂, 2H₂O. (Weber, Pogg. 122 358.)
"a-Orthostannic acid" Easily sol in HCl+Aq. (Neumann, M. 12. 515.)

H₁₀Sn₄O₁₄ (?) Metastannic acid Insol, in H.O. HNOs. or H2SO4+Aq. Insol. in HCl+Aq, but converted thereby into metastannic chloride,

which dissolves after excess of HCl has been removed. (Fresenius.) Insol in HCl+Aq of sp. gr 11 (Barfoed.) Sol, in large amount of cone, HCl+Aq. (Allen, Chem. Soc (2) 10. Calcum stannate, CaSnO2+4H2O. 274.)

In contact with HCl+Aq, metastannic acid is converted into stannic acid. (Barfoed.)

Insol, in HNO1+Ag even after treatment

with NH₄OH+Aq. Insol, in NH₄OH+Aq

Sol. m KOH or NaOH+Ag with formation Sol. in NOA of NROH + Aq with 10 masses of metastanates, which are insol. in dil NaOH+Aq, but sol. in H₂O or KOH+Aq, therefore KOH+Aq dissolves metastanne acid, while NaOH+Aq does not, but if the clear solution in KOH+Aq is treated with a large excess of that reagent, a further pptn.
occurs. (Barfoed, J. pr 191, 368)
Insol in K₂CO₂+A₂ (Rose); alkalı car-

bonates+Aq. (Fremy.) Insol, in NH₄Cl+Aq even after long boil-

Sol, in Fe(NO₃)₃+Aq containing HNO₃. (Lepèz and Storch, W. A. B. 98, 2b. 270) Also in Cr(NO₃)₄+Aq, but not in Ce(NO₃)₅, Al(NO₃)₂, Co(NO₂)₂+Aq, etc. (L and S) A colloidal metastannic acid sol in H₂O can be obtained. (Lepèz and Storch) According to Weber (Pogg 122, 358),

stannic and metastannic acids are only different hydrates of same oxide, and it is not a case of allotropic modification. Colloidal. H.SnO. in colloidal state can be

obtained in aqueous solution containing 5.164 g SnO₂ in a litre This solution is great evess; easily by dil H₂SO₄+Aq.
but not by cone HCl+Aq. NH₄OH+Aq. large excess causes coagulation; also NH4Cl NaOH, NaCl, Na2SO4, etc. (Schneider, Z anorg, 5. 83.)

Parastannic acid, H2Sn8O11+3H2O. (Engel, C. R. 1897, 125, 711)

Stannates.

Stannates of alkali metals are sol, in H₂O: others are insol. All metastannates, except-ing Na, K, and NH₄ salts, are insol. in H₂O (Fremy, A. ch. (3) 12. 474.)

Ammonium stannate, (NH₄)₄O, 2SnO₅, Sol, in H2O. Insol, in dil, NH4OH+Aq. (Berzelius.)

+zH_{*}O. (Moberg, 1838.)

Ammonium cupric stannate. (NH₄)₄O. $CuSnO_{\bullet}+2H_{\bullet}O_{-}$ Insol. in H.O. Sol in acids. (Ditte. C. R. 96, 701)

Barium stannate, BaSnO++6H₂O.

Ppt. (Moberg) +5H₂O. Insol in H₂O. Sol. in acids. (Dutte, C R. 96. 701) 2CaO, SnO₂. (Zulkowski, Chem. Ind. 1901, 24, 422.)

Cohaltons stannate, CoSnO:+6H-O. Insol. m H.O Sol in acids. (Ditte.)

Cupric stannate, CuSnO₃+3H₂O.

(Moberg) +4H₂O, Insol. in H₂O. (Ditte)

Cuprous stannous stannate, Cu₂O. 3SnO. $SnO_* + 5H_*O$. Slowly decomp by dil acids, and NH4OH+ Aq; completely decomp by conc acids. (Lenssen, J. pr 79. 90)

Gold (surous) stannate. See Gold purple.

Lead stannate, RbSn(OH), Ppt (Bellucci, Chem. Soc. 1905, 88, (2) 40.)

Lithium stannate hexatungstate, 2Li2O, SnO2, 6WOs = LisSnOs, LisWeOs

Insol in H₂O. (Knorre, J. pr. (2) 27, 49.) Magnesium stannate.

Ppt. (Moberg.) Manganous stannate.

Ppt. (Moberg.)

Mercurous stannate, Hg-SnO++5H-O Ppt.

Mercuric stannate, HuSnO.+6H.O. Ppt (Moberg, J. pr 28, 231.)

Nickel stannate, NiSnO₂+5H₂O. Insol. in H₀O. Sol. in acids. (Ditte, C. R.

96. 701.) Platinous sodium stannous stannate, 2PtO. Na₂O, SnO, SnO₂(?).

(Schneider, Pogg. 136, 105.) Platinous stannous stannate, PtO. 2SnO.

SnO2. Decomp, by conc. alkalies (Schneider.) Pogg. 136, 105.)

Potassium stannate, K₂SnO₂+3H₂O.

100 pts. H₂O dissolve 106.6 pts at 10°, Ppt. Sol. in HCl+Aq (Moberg)
Ba₈SnO₄+10H₂O, Insol. in H₂O. Sol. in acids. (D1te, C. R. 96. 641).

(Ordway, Sil. Am. J. (2) 40, 173.

```
Very sl. sol in conc KOH+Aq.
  Insol in KCl+Aq. (Fremy.)
  Insol, in alcohol
Pptd. from aqueous solution by the ad-
dition of any soluble salt, especially those
of K, Na, and NH4 (Fremy); by NH4Cl, but
not by KCl or NaCl (Ordway).
  Insol in acctone. (Naumann, B. 1904.
37, 329)
Potassium metastannate, K<sub>2</sub>O, 10SnO<sub>2</sub>.
  K.O. 7SnO++3H.O. Sol in H.O. Solu-
tion gelatinises on heating (Rose.)
  K2O, 6SnO2+5H2O. Sol in H2O, but loses
its solubility by drying. (Fremy, A ch. (3)
12.475)
K<sub>2</sub>O, 5SnO<sub>2</sub>+4H<sub>2</sub>O. Completely sol in
H<sub>2</sub>O. Insol. in alcohol. (Fremy, A ch. (3)
```

23, 396.) K₂O, 3SnO₂+3H₄O Deliquescent. (Fremy) Silver stannate, Ag₂SnO₈.

Insol in H2O. Unacted upon by NH4OH or HCl+Aq. (Ditte.) Silver (argentous) stannous stannate (?), Ag4O, SnO, 3SnO2+3H2O (?)

Cold dil HNO2+Aq slowly dissolves all Ag, hot HNO₂+Aq rapidly
Easily sol. in boiling conc H₂SO₄ (Schulze, J. B 1857, 257)

Sodium stannate, Na-SnO-+3H-O More easily sol in cold than in hot H₂O (Fremy)

Sol, in 2 pts H2O at 20° and 100.° (Maiignac.) 100 pts H₂O dissolve 67 4 pts at 0°, 61 3 pts. at 20°, and solutions have sp. gr. = 1.472 and 1.438 at 15.5° (Ordway, Sill Am. J

(2) 40. 173.) Pptd. from Na2SnO2+Aq by salts of K, Na, and NH4. Insol, in acetone. (Naumann, B 1904, 37.

4329.) $+4H_{\circ}O$ (Prandtl. B 1907, 40, 2129.) +8H₂O (Haeffely, J B 1857, 650) (Jones, C. C. 1865, 607) +9H₂O

Very efflorescent. (Scheurer-+10H₂O. Kestner, Bull. Soc. (2) 8, 389.) Sodium

metastannate, Na₂O, 9SnO₂+ 8H2O. Sol. in H₂O Insol. in NaOH+Aq or alcohol (Barfoed, J. B 1867, 267) Na₂O, 5SnO₂ Very difficultly sol. in H₂O.

(Fremy, A. ch (3) 23, 399.) Insol. in KOII+Aq

+8H2O (Haeffely, Chem. Gaz 1855. 59.)

Sodium stannate vanadate. Na₂SnO₂, 3Na₃VO₄+32H₂O.

Na₂SnO₃, 4Na₃VO₄+48H₂O. Na₂SnO₃, 5Na₅VO₄+64H₂O. Na₂SnO₃, 6Na₃VO₄+80H₂O

(Prandtl. B. 1907, 40, 2128.)

Strontium stannate, 3SrO, 2SnO2+10H2O, Ppt. Insol. in H2O. Sol. in acids. (Ditte, C. R. 95, 641) SrSn(OH)₀. (Belluci, Chem. Soc. 1905. 88 (2) 40,)

Tin (stannous) stannate, SnO, 6SnO2+5H2O. Insol. in H2O. Decomp. by HNO3+Aq

into metastannic acid. (Schiff, A. 120, 53.) Sol, in HCl+Aq, and in KOH+Aq,

Tin (stannous) metastannate, SnO, 7SnO2. SnO, 6SnO₂+9H₂O. Sol. in KOH+Aq or in HCl+Aq. (Fremy.) +4H₂O. (Schiff.)

Zinc stannate, ZnSnO₂+2H₂O.

Ppt. (Moberg, 1838.) 3ZnO, 2SnO₂+10H₂O. Insol. in H₂O. Sol. in acids. (Ditte.)

Perstannic acid, H₂Sn₂O₇. See Perstannic acid.

Stannophosphomolybdic acid.

Ammonium stannophosphomolybdate, 3(NH₄)₂O, 4SnO₃, 3P₂O₅, 16MoO₃+ 28H₂O

Quite msol, even in boiling H2O, (Gibbs, Am, Ch J. 7, 392.)

Stannophosphotungstic acid.

Ammonium stannophosphotungstate. 2(NH₄)₂O, 2SuO₂, P₂O₃, 22WO₂+15H₂O. Precipitate. Sl. sol. in boiling H₂O. (Gibbs, Am. Ch. J. 7, 319.)

Stannosulphuric acid. See Sulphate, stannic.

Stibine. See Hydrogen antimonide.

Strontium, Sr.

Decomp, by H₂O with violence, H₂SO₄, and HCl+Aq decomp and dissolve; cold H.SO, attacks slowly. Fuming HNO. has scarcely any action even when boiling.

(Franz, J. pr. 107. 253.) Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, 20. 829.5 Sol. in excess of liquid NH₃ at —60° form-

mg Sr(NH_s)₆. (Roederer, C. R. 1905, 140. 1252.)

Strontium amalgam, SrHg12.

Stable below 30°. Above 30° the composition of the amalgam varies. Can be cryst, from Hg at any temp, below 30°. (Kerp, Z. anorg, 1900, 25, 68.)

Strontium amide, Sr(NH₂)₂.

(Roederer, Bull. Soc. 1906, (3) 35. 715.)

Strontium arsenide, Sr. As-

Decomp. by H.O. (Lebeau, C. R. 1899. 129, 47.)

Strontum azoimide, SrNa

Hydroscopic. 45.83 pts, are sol. in 100 pts, H₂O at 16°. 0.095 " " " 100 " abs alcohol at

Insol. in pure ether. (Curtius, J. pr. 1898, (2) 58, 287.

Strontium boride, SrBs. Sol, in fused oxidizing agents; not decomp-

by H2O, insol, in aq. acids; sl. sol in conc. 2SO; sol. in dil. and conc HNO2. (Moissan, C. R. 1897, 125, 633.)

Strontium bromide, SrBr2, and +6H2O. 100 uts. H_{*}O dissolve at:

0° 20° 38° 59° 83° 110° 87.7 99 112 133 182 250 pts. SrB:

(Kremers, Pogg 103. 65.) Sat SrBr2+Aq contains at. +7° --I1° -1° 18°

51.7% SrBr₂, 43.1 46.85 20° 107° 93° 97° 51.8 68.5 68.7 69.8% SrBr2. (Étard, A. ch. 1894, (7) 2. 540.)

Sp. gr. of SrBr2+19.5° containing 10 25 % SrB 15 20

1.266 1.046 1.094 1.146 1.204 50 % SrB 20 35 40 45 1.332 1.41 1.492 1 59 1.694

(Kremers, Pogg. 99. 444; calculated by Gerlach, Z. anal 8. 285.)

Somewhat sol in absolute alcohol (Lowis Solubility of anhydrous SrBr2 in alcoh is practically constant between 0° and 40 100 ccm, of abs, alcohol dissolving about 64 g, of the anhydrous salt and forming a sol tion having a sp gr. = 1.210 at 0°. (Fonze Diacon, Chem. Soc. 1895, 68 (2) 223.) Much more sol, than BaBr₂ in boiling am

alcohol. Insol in benzonstrile. (Naumann, B. 191

47. 1370.) Difficultly sol, in methyl acetate. (Na

mann, B. 1909, 42, 3790) Strontium stannic bromide.

See Bromostannate, strontium.

Strontium bromide ammonia, 2SrBrz, NHz Sol. in H.O. (Rammelsberg, Pogg. 55, 23) Strontum bromide hydrazine, SrBrs, 3NaH Very sol. in H2O. (Franzen, Z. ano:

1908, 60, 290,) Strontium bromofluoride, SrFs. SrBrs. Decomp. by H₂O. (Defacqz, A. ch. 1904.

(8) 1. 356)

Strontium carbide, SrC2.

Easily decomp, by H₂O and dil. acids. (Moissan, Bull. Soc. 1894, (3) 11. 1008.)

Strontium carbonyl, Sr(CO)2. (Roederer, Bull, Soc. 1906, (3) 35, 725.)

Strontium chloride, SrCls, and +6H2O.

Deliquescent in moist air

Sol :m 15 pts H:O at 15°, and 0.8 pt. at boiling (Dunnes), in 1986 pts H:O at 16° (Gerfach), i pt analydrous SrCh is sol in 2.2 pts H:O at 0°, in 1.88 pts at 20°, in 15 pts at 40°, in 1.18 pts, at 90°, in 1.68 pts at 80°, in 0.98 pt. at 100°. (Kremens, Pogg 103 66

100 pts. H₂O dissolve 106.2 pts SrCl₂+ 6H₂O at 0°, and 205.8 pts. at 40°. (Tilden, Chem. Soc. 45. 409.)

Solubility in 100 pts. H₂O at t°

- 1						
г2	t°	Pts SrCi ₂	t°	Pts SrCla	t°	Pts SrCh
1	0	44 2	41	67 4	81	92 7
- 1	1	44 5	42	68 2	82	93 1
- 1	2	44 8	43	68.9	83	93 4
	3	45 2	44	69.7	84	93.7
- 1	4	45 6	45	70 4	85	94.1
- 1	5	46 0	46	71 2	86	94.5
	6	46 5	47	72 0	87	94.9
- 1	7	46 9	48	72 8	88	95 4
	8	47 4	49	73 6	89	95 8
	8	47 8	50	74 4	90	
Γ22	10	48.3	51	75 3	91	96 2 96 7
	11	48 8	52	76 1	92	97.2
ra.	12	49 4	53	77 0	93	97.9
- 2.	13	49 9	54	77 9	94	98 2
	14	50.4	55	78 7	95	98 8
	15	51.0	56	79 6	96	99.4
	16	51 5	57	80 4	97	100.0
g.)	17	52 1	58	81 3	98	100 8
lor	18	52 7	59	82 2	99	101 8
D°,	19	53 3	60	83 1	100	101.9
0°,	20	53 9	61	84 0	101	102.6
u-	21	54.5	62	84 9	102	103 3
8 -	22	55 1	63	85 8	103	104 0
	23	55 7	64	86.6	104	104.7
ıyl	24	56 3	65	87.5	105	105.4
	25	56 9	66	88.4	108	106 1
14,	26	57 5	66.5	88 8	107	106.9
	27	58 1	67	88 9	108	107 6
ш-	28	58 7	68	89 1	109	108 4
	29	59 3	69	89 3	110	109 1
	30	60 0	70	89.6	111	109 9
	31	60.6	71	89.8	112	110 7
	32	61.3	72	90.1	113	111 4
	33	61 9	73	90 3	114	112.2
8.	34	62 5	74	90 6	115	113.0
	35	63 2	75	90 9	116	113.8
4-	36	63 9	76	91.2	117	114 6
rg.	37	64 6	77	91.5	118	115 5
.0,	38	65 3	78	91 8	118.8	116 4
	39	66 0	79	92 1	1 -3.0	1 223 1

(Mulder, Scheik, Verhandel, 1864, 118.)

100 pts. $\mathrm{H}_2\mathrm{O}$ (Gerardin)	dissolve 52 4 pts	SrCl ₂ at 18°.

Sat SrC	ls+Aq con	tams % Sr0	Cl₂at t°
t°	% SrCh	t°	% StCls
- 17	26 5	75	46 5
- 11	28 6	80	47 1
- 5	29 3	92	47.5
- 1	30 8	98	49 6
+ 2	31 3	104	50.7
7	31 7	105	50 7
18	33.7	118	52 0
21 5	34 7	132	52 5
35	37 8	144	
44 5	39 8	153	54 7 55 7
54	42 8	175	60 5
55	43 8	215	64 1
59 64	47 7	222	65 4

(Étard, A ch 1894, (7) 2, 535)

46 1 SrCb+Aq sat. at So has ap gr =1 379 (Anthon, A 24 211)

70

Sp gr of SrCl2+Aq.

Pts, SrCh to 100 pts H ₂ O	Sp gr	Pts SrCl ₂ to 100 pts H ₂ O	Sp gr
9 81 20 12 30 57	1 0823 1 1032 1 2401	41 04 51 69	1 3114 1 3816

(Kremers, Pogg 99, 444)

Sp gr of SrCl2+Aq at 15°

% SrCt ₂	Sp gr.	% SrCi2	Sp gr
5 10 15 20	1 0453 1 0929 1 1439 1 1989	25 30 33	1 2580 1 3220 1 3633

(Gerlach, Z. anal. 8, 283.)

Sp gr. of SrCl2+Aq at 24 7°, a=no, of molecules in grms dissolved in 1,000 g. H_4O , b = sp gr when $a = SrCl_2 + 6H_2O$, b'_2 mol $SrCl_2 + 6H_4O = 133$ 5 g.; c = sp gr. when $a = SrCl_2$, b'_2 mol = 79 5 g

1 1.063 1.067 7 1.304 1.	
2 1 118 1 130 8 1.330 3 1 166 1 190 9 1 354 4 1 207 1 247 10 1 376 5 1 243 1 301 11 1 396 6 1 .275 1 .352	

(Favre and Valson, C. R. 79. 968.)

Sp gr of SrCl ₂ +Aq at 18"					
%8rCl ₂	Sp. gr	" SrCl3	Sp gr		
5 10 15	1 0443 1 0932 1 1456	20 22	1 2023 1 2259		

(Kohlrausch, W. Ann, 1879, 1)

Sp gr of SrCl₂+Aq at 0° S=pts. SrCl₂ in 100 pts solution

s	Sp gr	8	Sp. gr
31 8193	1 3609	18 2629	1 1915
27 7170	1 3086	12 9997	1 1284
23 2300	1 2515	6 7243	1 0637

(Charpy, A ch. (6) 29. 24)

Sat. SrCl₂+Aq boils at 114° (Kieners); 118 8° (Mulder); 117 45°, and contains 117.5 pts SrCl₂ to 100 pts. H₂O (Legiand), forms a crust at 115.5°, and contains 120 7 pts. SrCl₂ to 100 pts. H₂O; highest temp. observed, 119°. (Gerlach, Z anal. 26. 436.)

B-pt. of SrCl₂+Aq containing pts SrCl₂ to 100 pts. H₂O G=according to Gerlach (Z anal. 26, 442); L=according to Legrand (A. ch (2) 59. 436.)

B-pt	G	L	B-pt	G	I,
101°	11	16 7	110°	71 4	68 9
102	20 5 28 9	25.2 32 1	111	76 5 81 6	74.1
104	36 2	37 9	113	87	85 3
105	43 2 49 6	43 4 48 8	114	93 1 99 5	91 2
107	55 4	54 0	116	105 9	104 0
108	60 8	59 0	117	112 3	110.9
109	66 2	63 9	117 5		

Melts in its crystal H₂O at 112° (Tilden, Chem Soc 45, 409.)

Sp. gr. of SrCl.+Ag at 25°.

Concentration of SrCl _i +Aq	Sp gr
1-normal 1/2- " 1/4- " 1/5- "	1 0676 1 0336 1.0171 1 0084

(Wagner, Z. phys. Ch. 1890, 5. 40.)

SrCl₂+Aq containing 3.24% SrCl₂ has sp. gr. 20°/20° = 1.0284. SrCl₂+Aq containing 7.08% SrCl₂ has sp. gr. 20°/20° = 1.0638.

(Le Blanc and Rohland, Z. phys, Ch. 1896) 19, 279.)

Sp. gr.	of SrCl ₂ +Aq	at 20°.
---------	--------------------------	---------

g mols SrCls per l	- Sp gr
0 01 0 02937 0 03987 0 05017 0 07077 0 10 0 25 0 .50	1 0012284 1 0088306 1 0058332 1 007028 1 009560 1 013205 1 034433 1 068379 1 101760
1.00	1,135423

(Jones and Pearce, Am. Ch. J. 1907, 38, 697.)

Cone. HCl+Aq ppts part of the SrCl2 from SrCl.+Ag. (Hope.)

Solubility of SrCl2 in HCl+Aq at 0°. SrCl2= 1/2 mols, SrCl. (in miligrammes) dissolved in 10 ccm of hquid; HCl=mols HCl (in milligrammes) dissolved in 10 ccm, of liquid.

SrCl ₂	HCI	Sum of mols	Sp gr.
55	0	55 0	1 334
48.2	6 1	54 3	1.3045
41 25	12 75	54 00	1.2695
30 6	23 3	53 9	1 220

(Engel, Bull, Sec. (2) 45, 655.) Solubility of SeCl. in HC1 + Ac at 0°

Mg, mols	per 10 ec tion	Sp. gr of	G per 100 ce solution		
SrCl ₂	HCI	solution	SrCl ₂	HCI	
51 6 44 8 37.85 27 2 22 0 14 0 4 25	0 6 1 12 75 23 3 28 38 37 25 52 75	1.334 1 304 1 269 1 220 1 201 1 167 1 133	40 9 35 5 30 0 21 56 17 44 11 09 3 37	0 0 2 22 4.65 8.49 10 35 13.58 19 23	

(Engel, A. ch. 1888, (6) 13, 376) Insol. in liquid NHs. (Franklin, Am. Ch. J. 1898, **20**, 829,)

Sol in 6 pts alcohol of 0 833 sp gr. at 15° (Vau-Sol in 24 pts absolute alcohol at 15° and in 19 pts at boiling. (Bucholz.) Sol in 2.5 pts. of boiling alcohol Anhydrous SrCl₂ is sol in 111.6-116 4 pts. alcohol of 99.3% at 14.5°, and in 28.2 pts. of the same alcohol at boiling. (Fresenius, A

59. 127.) 100 pts. alcohol of given sp. gr. at 0° dissolve pts. SrCl. at 18°

0.990 0.985 0.973 0.966 0.953 sp. gr. 49.81 47.0 39.6 35.9 30.4 pis. SrCl2, 0.939 0.909 0.846 0.832 sp. gr

26.8 19.2 4.9 3.2 pts. SrCl.

Insol in absolute alcohol, (Gerardin, A. ch (4) 5, 156.) 100 pts. absolute methyl alcohol dissolve

63.3 pts. SrCl₂+6H₂O at 6°; ethyl alcohol, 3.8 pts (de Bruyn, Z. phys Ch. 10. 787.) Sl. sol, in boiling amyl alcohol. (Browning, Sill Am. J. 144, 459.)

100 g, 95% formic acid dissolve 23 8 g. SrCl. at room temp. (Aschan, Ch. Ztg. 1913, 37. 1117) Absolutely insol, in acetic ether. (Cann.

C. R. 102, 363.) Very sl. sol. in acetone. (Krug and M'Elroy.) Sol. in acctone. (Eidmann, C. C. 1899, II 1014.)

Insol in methyl acetate. (Naumann. B. 1909, 42, 3790,)

Insol in benzonitrile (Naumann, B. 1914. 47 1370. SI sol in anhydrous pyridine Sol in

Si soi in anayutous pyridine Soi in 97%, 95% and 93% pyridine Aq. (Kahlen-berg, J Am Chem. Soc. 1998, 30. 1107.) +2H₂O. Tr. pt. from +6H₂O is 61.5°. (Richards and Churchill, Z. phys. Ch. 1899, 28, 313)

+6H.O. See above

Strontium thallic chloride, SrCl., 2TlCl.+ (Gewecke, A. 1909, 366, 223.)

Strontium tm (stannous) chloride, SrCl2, SnCl₁+4H₂O. Sol, m H₂O. (Poggiale, C R. 20, 1183.)

Strontium tin (stannic) chloride. See Chlorostannate, strontium.

Strontium uranium chloride, SrClo, UCL Decomp, by H₂O, (Aloy, Bull, Soc. 1899, (3) 21, 265.)

Strontum zinc chloride, SrZnCl.+4H.O. Very sol in H₂O. (Ephraum, Z. anorg. 1910. 67, 380)

Strontium chloride ammonia, SiCls, SNH3. Decomp. by H.O. (Rose, Pogg. 20, 155.) Strontium chloride hydrazine, SrCl2, 2N2H4 $+H_{\bullet}O.$

Hydroscopic. (Franzen, Z. anorg. 1908, 60, 289.)

Strontium chloride hydroxylamine, 2SrCl₂, 5NH2OH+2H2O. As Ca comp. (Antonow, J. Russ, Phys.

Chem. Soc 1905, 37, 482) Strontium hydrogen chloride hydroxylamine, 28rCl, 3HCl, 9NH,OH+H,O.

(Antonow, J. Russ. Phys. Chem. Soc. 1905, 37. 482.) Strontium chlorofluoride, SrF2, SrCl2.

Decomp. by H₂O, by very dil HCl, HNO: or acetic acid, by hot dil, or conc. HaSO4

	_						
Sol	m	conc	HC1	or	HNO	. Insol	ın, and alcohol.
DOI.	***	COMC	****	٠.	******	1 1110011	1 1 1
not	de	comp.	by	col	d or	boiling	alcohol.
(Del	acc	12. A	ch. 19	104.	(8) 1.	355)	i

Strontium fluoride, SrFo.

Somewhat sol. in H.O. (Fr. Roder.) 1 L. H₂O dissolves 113.5 mg. SrF₂ at 0.26°; 117.3 mg. at 17.4°; 119.3 mg. at 27.4° (Kohhausch, Z. phys Ch. 1908, 64. 168) Insol in HF+Aq (Berzehus) Boiling HCl+Aq dissolves; sl attacked by boiling HNO₅+Aq; decomp. by hot H₂SO₄. (Poulenc, C. R. 116, 987)

Strontium stannic fluoride.

See Fluostannate, strontium.

Strontum titanum fluoride.

See Fluotitanate, strontium. Strontum fluorodide, SrFs, SrIs.

Decomp. by cold H₂O, more rapidly by hot H₂O Decomp. by dil HCl, dil. HNO₃, dil. H2SO4 or cone, H2SO4, also by alcohol and by ether, if not absolute. (Defacoz, A. ch. 1904. (8) 1, 358)

Strontium hydride, SrH.

Decomp. by H₂O or HCl+Aq. (Winkler, B 24, 1976) SrH+. Decomp. by H₂O. (Gautier, C. R.

1902, 134, 100) Strontium hydroselenide.

Sol. in H₂O

Strontium hydrosulphide, S1S2H2.

Sol in H2O; decomp by boiling. Strontium hydroxide, SrO2H2, and +8H2O.

Deliquescent.

Sol in 50 pts cold, and 24 pts boiling HsO (Bu-chols); in 50 pts, HsO at 15.56° (Dalton), in 51 4 pts HsO at 15.56°, and 2 pts, at 100° (Hope); in 52 pts HsO at 15°, and 2.4 pts at 100° (Bernelius), in 48 pts. HsO at 18 75° (Abl) at 18 75" (Ani) 100 pts. H₂O at 20° dissolve 1 49 pts SrO. (Binesu, C R 41, 599)

100 pts. aqueous solution of SrO₂H₂ contain pts SrO and pts. SrO2H2+8H2O at to.

t°	Pts SrO	Pta SrO:H2 +8II:0	t°	Pts. SrO	Pts. SrO ₂ H ₂ +8H ₂ O
0 5 10 15 20 25 30 35 40 45 50	0 35 0 41 0 48 0 57 0 68 0 82 1 00 1 22 1 48 1 78 2 13	0 90 1 05 1 23 1 46 1 74 2 10 2 .57 3 .13 3 .80 4 .57 5 46	55 60 65 70 75 80 85 90 95 100	2 54 3 03 3 62 4.35 5 30 6.56 9.00 12.00 15.15 18.60	6 52 7.77 9.29 11.16 13.60 16.83 23.09 30.78 38.86 47.71

(Scheibler, J. pharm. Chim. 1883, (5) 8. 540

Sp gr. 25°/25°	G SrO as Sr(OH) in 100 g H ₂ O	G Sr(NO ₂); in 100 g. H ₂ O
1.481	0.0	79.27
*1.506	1 76	81.06
1.490	1.71	74.27
1 450	1 55	66 88
1 419	1 51	63 71
1 403	1.47	60.37
1 381	1 41	56 30
1 359	1 34	52 90
1 327	1 27	46 97
1 317	1 20	44 03
1 291	1.14	40 83
1 267	1 11	37 81
1 239	1.03	32 41
1 217	1 01	28 80
1.206	0.96	26 58
1.178	0 95	23 83
1 148	0 91	17 96
1.126	0.87	16 21
1.108	0 84	12 78
1 079	0 81	8 96
1.059	0.79	6 29
1.033	0.78	4 45

Solubility in Sr(NO₂)₂+Aq at 25°

*Solution is sat, with respect to both sub-(Paisons and Perkins, J. Am. Chem. Soc.

1910. 32, 1388.) Sol in methyl alcohol. At room temp. 1 l. contains 31.5 g SiO. (Neuberg and Re-wald, Biochem. Z. 1908, 9. 540.)

Insol. in acetone (Eidmann, C. C 1899, II. 1014) Sol in an aqueous solution of cane sugar.

(Hunton, Phil. Mag. (3) 11, 156.)

Solubility in H₂O containing 10 g. sugar at to. g SrO:H:+8H:0 r. SrO.H.+8H.O

4 79 3.79 40 9 70 (Sidersky, C. C. 1886, 57.)

+8H4O. 0.0835 mol. is sol. in 1 l H4O at 25°. (Rothmund, Z phys. Ch. 1909, 69, 589.)

Solubility in organic compds.+Aq at 25° Mol SrO:H:+8H:O

3		BOI IN THUSE
9 8 6 1 0.)	water 0 5-N methyl alcohol " ethyl alcohol " propyl alcohol " tert. amyl alcohol " acctone " ether	0 0835 0 0820 0 0744 0 0708 0 0630 0 0692 0 0645

Dalmani

Solubility in organic compds. + Aq at 25° .-Continued.

Solvent	Mol SrOrHs+8HrO sol at 1 litre
0.5-N glycol "glycerine "mannitol "urea ammonia "diethyl amine "pyridine	0 0922 0 1094 0 1996 0 0820 0 0785 0 0586 0 0694

(Rothmund, Z. phys. Ch. 1909, 69, 539) Insol, in agetone. (Naumann, B 1904, 37.

4329.) See also Strontum oxide.

Strontium iodide, SrIs, and +6, or 7HoO. 100 pts II2O dissolve at 0° 20° 40° 70° 100° 164 179 196 250 370 pts. SrI₂ (Kremers, Pogg. 103, 65.)

Sat. aq. solution contains at: -20° -10° -3° +7° 11° 18° 38° 60 0 60.3 62 2 63.0 63.4 63 5 64 8% SrI₂, 52° 63° 77° 81° 97° 105° 120 175° 66.0 68.5 70 5 74 0 79 2 79 4 80 8 85.6% SrI2,

(Étaid, A. ch. 1894, (7) 2, 543) Sp gr of SrI2+Aq at 19.5° containing. 20 30 % SrI, 10

1.045 1 091 1.200 1.330 65 % S₁I₂. 50 60 1491 1695 1.955 2.150 (Kremers, Pogg. 103. 67; calculated by Gerlach, Z anal 8, 285.)

Sat. solution in abs. ethyl alcohol contains. at:

---200 +40 399 26 3.1 43 4.7% SrI. (Etard, A. ch. 1894, (7) 2, 565,)

Strontium periodide, SrI:+15H:O. (Mosnier, A. ch. 1897, (7) 12, 399.) SrI₄. (Herz and Bulla, Z. anorg. 1911, 71.

Strontium stannous iodide, Very sol, in H2O. (Boullay)

Strontium zinc sodide, SrZnL-+9H-0 Hydroscopic. (Ephraim, Z. anorg. 1910, 67. 385.)

Strontium nitride, Sr2Na Decomp. H₂O violently, but not alcohol. (Maquenne, A. ch (6) 29, 225)

Strontium oxide, SrO

Decomp by H₂O to SrO₂H₂, which see

Sol in 100 pts H₂O at 15 50° (Dalton); in 50 pts, at 100° (Dalton), in 130 pts at 20° (Beneau), in 40 pts cold, and 20 pts hot H₂O (Dumas)

Very sl sol, in alcohol. Insol in ether 1 l. methyl alcohol dissolves 11 2 g. SrO. (Neuberg and Rewald, Biochem Z. 1908. 9.

Insol, in methyl acetate (Naumann, B. 1909. 42. 3790)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C C 1899, II. 1014.) Sol. in cane sugar + Aq.

Solubility in H ₂ O containing 10 g, sugar at to.					
to.	g SrO	t°	g. BrO		
8	1 21 1 48	24	1.87		

(Sidersky, C C. 1886, 57)

See also Strontium hydroxide.

Strontium peroxide, SrO2 Sl. sol, in H₀O Easily sol in acids and

St. 801, in 190 Eastly 801 in Scious and NH₄Cl+Aq Insol in NH₄OH+Aq (Con-roy, Chem Soc. (2) 11. 812.) Insol in acetone (Naumann, B. 1904, 37. 4329, Eidmann, C C 1899, II. 1014.)

Strontium oxybromide, SrBr2, SrO+9H2O. Not hydroscopic; sol. in H_{*}O (Tassilly. C R. 1895, 120, 1339)

Strontium oxychloride, SrCl2, SrO+9H2O. Very easily decomp by H₂O and alcohol. (André A ch. (6) 3 76)

Strontium oxynodide, 28rI₂, 58rO+30II₂O. Not hydroscopic; sol. in H2O. (Tassilly, C. R. 1895, 120, 1339.)

Strontium oxysulphide, Sr₂OS₄+12H₂O. Decomp by H₄O.

Insol. in alcohol, ether, and CS₂ (Schone.) Mixture of SrS₂O₃ and SrS₂. (Geuther, A 224, 178)

Strontium phosphide, SrsPa.

Crustalized. Sol in dil acids, insol. in cone, acids; decomp by H.O Insol, in orgame solvents at ord. temp. (Jaboin, C. R. 1899, 129, 764.)

Strontium selenide, SrSe. Sl sol in H₂O. (Fabre, C R. 102, 1469.)

Strontium silicide, SrSi2 Decomp. by H₂O. (Bradley, C N. 1900,

82, 150.)

Strontium sulpinde, SrS
Sol m H₂O with decomp, into SrO₂H₂ and
SrS₂H₂.
Insol. in acetone. (Eidmann, C C 1899,
II 1014; Naumann, B. 1004, 37, 4329)
insol. in methyl acetate. (Naumann, B. 1909. 42, 376)

Strontium tetrasulphide, SrS₄
Very deliquescent, and sol in H₂O and alcohol Aqueous solution decomp. on aii.
Cryst with 2, or 6H₂O. (Schöne, Pogg 117.
50)

Strontium pentasulphide, SrS₆ Known only in solution

Strontium stannic sulphide. See Sulphostannate, strontium.

Sulphaluminic acid.

Silver sulphaluminate, 4Ag₂S, 5Al₂S₂ (Cambı, Real Ac. Linc. 1912, (5) **21**, II

837.) Sulphamic acid, HOSO₂NH₂.

See Amidosulphonic acid. Ammonium sulphamate, 2NH₂, SO₃

(Woronin)
Is ammonum mudosulphonate, which see
(Beiglund)

Ammonium suiphamate, acid, 3NH₂, 2SO₂. (Woronin)

Is basic ammonium inudosulphonate, which see (Berglund.)

Barium sulphamate, basic, 2BaO, 3SO₃, 2NH₄ Somewhat sol in H₂O, enally in HCl+Aq (Jacquelan, A. ch. 13) 8, 304) BaS₂O₄(NH₂); Sl. sol in H₂O Decomp by heating with H₂O. (Woronin, J. B. 1860. 80)

Is barium imidosulphonate. (Berglund)

Sulphamide, SO2(NH2)2.

Very sol. in H₂O. (Regnault, A. ch. 69. 176); Mente, A. 248. 267)
Insol. in alcohol, ether, etc. (Traube, B. 26. 507)

Very sol. in H₂O. Sl. sol. in abs. alcohol.

Sl. sol. in abs. alcohol. Sl. sol in dry ether. (Divers and Ogawa, Chem. Soc. 1902, 81. 504.) Very sol. in liquid NH₃. (Franklin and Stafford, Am. Ch. J. 1902, 28. 95.)

Stafford, Am. Ch J. 1902, 28, 95.) Sol. in alcohol; very sol. in H₂O. (Hantzsch, B. 1901, 34, 3436.)

Silver sulphamide, SO₂(NHAg)₂.

Sl. sol. in cold H₂O. Sol. in HNO₃, and (NH₄)₂CO₃+Aq (Traube, B. 26, 607.) 3NH₅₁ 2SO₃. (Jacquelnin.)

Is basic ammonium imidosulphonate, which see. (Berglund.)

Sulphamidic acid.

(Fremy.) See Imidosulphonic acid.

Sulphaminoplatinous acid.

Ammonium tetrosulphaminoplatinite, [Pt(SO₄NH₂)₄](NH₄)₂+6H₂O. SI. sol. m cold H₂O. (Ramberg, B. 1912, 45, 1512.)

Potassium —, [Pt(SO₃NH₂)₄]K₂+2H₂O, Very sl. sol. in cold H₂O. (Ramberg.)

Sodium ----, Easily sol, in cold H₂O. (Ramberg.)

Sulphammonic, and Metasulphammonic acids.

(Fremy.) See Nitrilosulphonic acid.

Monosulphammonic acid.
(Claus.)
See Amidosulphonic acid.

Disulphammonic acid. (Claus)

See Imidosulphonic acid.

Trisulphammonic acid.

(Claus.) See Nitrilosulphonic acid.

Tetrasulphammonic acid.

Does not exist. See Nitrilosulphonic acid,

Sulphammonium, S(NH₂)₂, 2NH₂.

Sol. in liquid NH₁. Sol. in abs. alcohol and anhydrous ether. (Moissan, C. R. 1901, **132**. 517.)

Sulphantimonic acid.

Sulphantimonates.

The alkali sulphantimonates are sol. in H_iO , but the solutions decomp. on the air; most of the other sulphantimonates are insol. in H_iO ; all sulphantimonates are insol. in alcohol. (Rammelsberg.)

Ammonium sulphantimonate, (NH₄)_sSbS₄, Sol, in H2O. Sol. in dil. acids with decomp. (Stanek. Z. anorg. 1898, 17. 122.) +4H₂O. (Stanek.)

Solubility of (NH ₄) ₈ ShS ₄ +4H ₂ O in H ₂ O at t*.				
to (NH4)4ShSt		Solid phase		
- 1.9 - 5 - 8 -13 5 0 +20 30	9.9 20.0 30.2 41.6 41.6 47.7 54.5	Ice "" Ice+(NH ₄) ₃ SbS ₄ , 4H ₂ O (NH ₄) ₃ SbS ₄ , 4H ₂ O ""		

(Donk, Chem. Weekb), 1908, 5, 529.)

Solubility of (NH₄), SbS₄ in algohol at 10°. Solid phase, (NH₄)₈SbS₄+4H₄O.

C2H4OH	(NH ₄) ₂ ShS ₄	C ₂ H ₆ OH	(NH4)3Sh84
0 5.1 19.1	43.2 35.9 23.1	43 1 53.1 93 3	8 7 4.1 0

(Donk. 1. c)

Antimonyl sulphantimonate, (ShO), ShS, Sol. in HCl. (Rammelsberg, Pogg. 1841, **52.** 236.)

Barium sulphantimonate, Bas(SbSs)+3Hs(). Sol. in H₂O. Insol. in alcohol.

Barium potassium sulphantimonate, KBaSbS₄+6H₂O.

Easily sol, in H.O. Decomp. by acids. (Glatzel, Z. anorg. 1911, 72, 100.)

Bismuth sulphantimonate. Ppt.

Cadmium sulphantimonate. Ppt. (Rammelsberg, Pogg. 52, 236.)

Calcium sulphantimonate, Ca₂(SbS₄)₂. Partially sol. in H₂O. Insol, in alcohol.

Cobaltous sulphantimonate, Cos(SbS4)2. Ppt. Decomp. by HCI+Aq. (Rammels-

·Cupric sulphantimonate, Cua(SbS4)2. Ppt. (Rammelsberg, Pogg. 52, 226.)

Iron (ferrous) sulphantimonate.

berg, Pogg. 52. 236.)

Ppt.

Iron (ferric) sulphantimonate, Fe-(ShS.), (Rammelsberg, Pogg. 52, 234)

Lead sulphantimonate, Phy(ShS₄), Ppt. Decomp. by KOH+Aq. (Rammelsberg, Pogg. 52, 223)

Lithium sulphantimonate, Lisbba+816H.O. 100 g. sat. solution in H-O contain 50 8 g. anhyd. LishS Solubility in alcohol at 30°

alcohol LaSbS Solid phase n 50.8 Li₃ShS₄, 8½H₂O 13 3 46 3 51 9 30 7 54.8 29 9 58 4 30 8 LigShS4, 81/2H2O+LigShS4 58 6 32 3

Li-SbS.

79 5 20.5 (Schrememakers and Jacobs, Ch. Weekbl.) 1910. 72, 213)

29 31 65 26

74 3 24 1

+9H₂O. Very sol in H₂O. (Brinkmann, Dissert. 1891.)

+10H2O. Solubility of LisSbS4+10H2O in H2O at to.

t°	Lusbs,	Solid phase
- 1 7 - 3 2 - 5 1 -10.8 -15.9 -26.2 -42 0 +10 30 50	7.1 12.8 17.5 23.2 28.5 35.3 40.4 45.5 46.9 50.1 51.3	Ice "" "" "" Ice+Li ₂ SbS ₄ , 10H ₂ O Li ₂ SbS ₄ , 10H ₂ O

(Donk, Chem. Weekbl. 1908. 5, 629.)

At 10°, 100 g. sat Li₃SbS₄+10H₂O m 10.7 % alcohol contam 41.8 g. Li₃SbS₄; 28 2% alcohol, 36.5 g. Li₃SbS₄. (Donk, l. c.)

Magnesium sulphantimonate, Mg3(SbO4)2 Deliquescent. Sol. in H.O. Decomp, by alcohol.

Mercurous sulphantimonate, (Hg2)3(SbS4)2. Ppt.

Mercuric sulphantimonate, Hga(SbS4)2.

Mercuric sulphantimonate chloride, Hg ₁ (SbS ₄) ₂ , 3HgCl ₂ , 3HgO,	
	(Ram-

Nickel sulphantimonate, N₁₃(SbS₄)₂.

Ppt. Decomp. by hot HCl+Aq. (Rammelsberg, Pogg. 52, 226)

Potassium sulphantimonate, K₃SbS₄, Sol. in H₂O.

Solubility of K-SbS, in H-O at to.

t°	K2SbS4	Solid phase
- 13	9.5	Ice
- 26	17 1	ii
- 4	24 2	u
- 72	35 4	u
-10 6	42 9	
-13 5	48 8	es
-18 5	52 6	et
-28 8	59.6	et
-34	62	Ice- -K4SbS4, 6H2O
-10	65 5	K ₂ SbS ₄ , 6H ₂ O
~ 4 5	69 1	11,0000,011,011,0
ô	75 4	K₃SbS₂, 5H₂O
+10	76 2	21303031 02220
30	77 1	
50	77 7	K ₄ SbS ₄ , 3H ₂ O
80	79 2	32,000,000

(Donk, Chem. Weekbl. 1908, 5, 529, 629, 767)

Solubility of KaSbS, in KOH+Ag at 25°.

KaSbS4	кон	Solid phase
75 68 4 56.8 50 9 37 7 19 8 11.5 9.4 00.0	0 3 4 11 0 16.1 25 5 40 5 46 9 49 9 56 3	K ₃ SbS ₄ , 5H ₂ O K ₃ SbS ₄ 3H ₂ O K ₄ SbS ₄ " " K ₁ SbS ₄ +KOH, 2H ₄ O KOH, 2H ₄ O

(Donk.)

Solubility of K ₄ SbS ₄ in alcohol+Aq at 10°.				
Сэңон	KiSbS	Solid phase		
94 90 5	0	K _s SbS _{tt} 5H _s O		
0'8	69.2 76.1	u u		

^{*} Two liquid layers are formed.

Composition of the liquid layers. .

Alenho	l laver	H.O layer		
C.H.OH K.S.S.		nlcohol	K _i SbS ₄	
85 54.7 2 2 46 9 16 27.4		1 1 3 4 3 8 31 1	67 4 49 0 45 6 12 7	

(Donk, l, c.)

+4½H₂O. Deliquescent Sol. in H₂O; more sol. than the Na salt

+3, 5, and 6H₂O. See Donk above. 2K₂S, Sb₂S₃. Decomp. by cold H₂O. (Critte, C. R. 102. 162. K₂S, 2Sb₂S₃+3H₂O. Sl. sol. in H₂O.

(Ditte.) K.S. Sb₂S₂. Decomp. by H₂O. (Ditte.) K.S. 28b₂S₃. (Ditte.)

Silver sulphantimonate, AgaSbS4,

Insol. in H₂O or scids. Decomp. by KOH +Aq. (Rammelsberg, Pogg. **52**. 218.)

Sodium sulphantimonate, Na₈SbS₄+9H₂O. (Schippe's salt.) Sol. in 2 9 pts. H₂O at 15°. Aqueous solution is precipitated by alcohol (Rammelsberg.) Sol. in 3 pts. cold H₂O. (van den Corput.)

Sol, in 3 pts. cold H₂O. (van den Cor Sol, in 4 pts cold H₂O (Duflos.) Sol in 1 pt. beiling H₂O. (Duflos.)

Solubility of Na₂SbS₄+9H₂O in H₂O at t°.

• t°	% NasSbSt	Solid phase
- 0.1 - 0 65 - 0 9 - 1 26 - 1 45 - 1 75 0 15 30 38 49 6 59.6	0.5 4 5.7 7.8 9.2 11 2 11.3 19 3 27 1 32 38 9 45	Ice (4 Na ₈ SbS ₄ , 9H ₂ O
69 6	50 7	1 "

(Donk, Chem Weekbl. 1908, 5. 529, 629, 767.)

79 5 | 57 1

Solubility of Na ₂ SbS ₄ +Na ₂ S ₂ O ₃ in H ₂ O.			
NassbS4 NasS2O2			Solid phase

Nassb84	Na2S2O2	Solid phase
	1	$t^a = 10^a$.
11 8 4 4 0.8 0 1 0 0	0 4.9 14.6 27.3 33.6	Na ₉ SbS ₄ , 9H ₂ O ' '' '' '' Na ₂ S ₂ O ₄ , 5H ₂ O
		t° = 30°
10.0	1 77 1	Ma Shg OH O

				to = 300
10 (1	7	7	Ne SI

19.9	7.7	Nagodo, 9H ₂ U
12.5	16 4	1 ""
4 2	37 7	"
1 -	43 8	
Ť i	47	
4	47.8	Na ₃ SbS ₄ +Na ₂ S ₂ O ₂ , 5H ₂ O
1		N832DO4-TARSO2OS, 01130
0	45 8	Na ₂ S ₂ O ₃ , 5H ₂ O

(Donk, l. c)

Solubility of Na.SbS, in alcohol+Au at to. Solid phase, Na₃SbS₄+9H₂O.

t = 0°		t-	30°	t° → 65°	
e, CHOH	52 Nassbise	™, C₁P₁OH	e, Nusbs	% CABLOH	% Nai8b84
0 3 7 12 7 29. 60.8	11 8 8 2 3 2 0 9	5 10 3 24 8 46 76 2	19 3 14 6 6 4 1 2 0	0 47 8 *54 1 81	47 9 39 3 36 5 4 1

^{*} Two layers are formed.

Composition of above layers

Alcohol layer		H ₂ O layer		
° alcohol	% Nusbbs.	% alcohol	% NasSbS4	
54.1 40.4 33.5	4 1 10 2 14 1	8.0 14.3 18.8	36 5 27 8 24 1	

(Donk, l, c,)

Solubility of NasSbS, in methyl alcohol at to Solid phase, Na₂SbS₄+9H₂O,

t = 0°		t = 30°		
сь‰п	NaiSbS1	% СН ₁ ОН	NeaSbS ₁	
3 4 15 5 23 1 50.3 57 81 7 92 95 9	8.6 2.8 2.1 0.3 0.1 0.05 0.2 2.0	0 18 1 33 1 65 7 84 2 91 2 94.	27 1 12 8 5 8 0 1 0 1 1 2 3.9	

(Donk, I. c.) Sodium sulphantimonate thiosulphate,

Na₂SbS₄, 2Na₂S₂O₂+20H₂O Efflorescent, and decomp. by HgO. (Unger, Aich Pharm (2) 147. 193. No double salt eysts See Donk, NasSbS.

+Na₂S₂O₂ under Na₂SbS₄. Strontum sulphantimonate. Sol in H₂O, pptd, by alcohol,

Uranium sulphantimonate. Pnt

Zinc sulphantimonate, Znz(SbS4)2.

Ppt Sol in hot Na₂SbS₄+Aq; insol in ZnSO₄+Aq. Partially sol in KOH+Aq; sol in hot HCl+Aq. (Rammelsberg, Pogg 52, 233.)

Sulphantimonous acid.

Ammonium metasulphantimonite, NH SbS2 Insol. in H₂O. (Rouget, C. R. 1898, 126, 1145.) +2H₂O. Insol. in H₂O and alcohol Decomp. in the air. (Stanek, Z. anorg. 1898, 17, 119.)

Ammonium orthosulphantimonite. (NH4)2SbS2

Easily decomp Stable only in presence of (NH4)28. Sol. in H2O. Insol. in alcohol. by which it is pptd. from aqueous solution, (Pouget, A. ch 1899, (7) 18, 536.)

Ammonium parasulphantimonite, (NH4)2Sb4S7.

Stable in the air.

Insol in H₂O. Decomp. by acids. (Stanek, Z. anorg. 1898, 17, 120,

Stable, cryst. from hot solutions. (Pouget C. R. 1898, 126, 1145,)

Ammonium silver orthosulphantimonite, NH, Ag, ShS, Decomp. by H₂O. (Pouget, A. ch. 1899,

(7) 18. 551.) Barium metasulphantimonite, BaSb₂S₄

+41/2H2O. Insol, in H₂O. (Pouget, A. ch. 1899, (7) 18, 541.)

Barium orthosulphantimonite, BasSbsSs +8H2O. Decomp, in the air and by H₂O Some

what sol, in BaS+Aq. (Pouget, C. R. 1898 **126**, 1792.) Barium purosulphantimonite, Ba2Sb2Sa +8H,O.

Decomp. by H₂O Nearly insol, in BaS+Ao. (Rouget.)

Barium sulphantimonite, BagSbgSg+10HgO. Pptd. from aq solution of ortho and pyro-barum salts. (Pouget.)

Ba₈Sb₄S₁₁+16H₂O. (Pouget, A. ch. 1899, (7) 18, 538.) Calcium sulphantimonite basic, Ca(OH)SbS2.

Insol. in H₂O Sol. in conc. HCl. (Pouget, A. ch. 1899, (7) 18, 544.)

Calcium pyrosulphoantimonite, Ca₂Sb₃S₄ +15H₂O.

Sol. in H₂O without decomp. (Pouget, C. R. 1898, 126, 1793.)

Cobaltous orthosulphantimonite, Co. Sb. S. Ppt (Pouget, A. ch. 1899, (7) 18, 554.) Cuprous metasulphantimonite, CuSbS₂.

Sol. in myture of HNOs and tartaric acid with separation of S. Insol in NH₄OH+Aq. Decomp. by hot KOH and alkalı sulphides+Aq. (Sommerlad, Z anorg. 1898, 18. 430) Min. Wolfsber ite Sol. in HNOs+Aq

Cuprous orthosulphantimonite, Cu₂SbS₃. (Sommerlad, Z. anorg. 1898, 18, 432) Ppt. Insol in H₂O. Decomp. by H₂O. (Pouget, A. ch. 1899, (7) 18. 556.)

Cuprous sulphantimonite, Cu₂Sb₄S₇. Mm. Guejarste. Cupric orthosulphantumonite, Cu₂Sb₂S₂.

with separation of S and Sb₂O₃.

Ppt. (Pouget, A. ch. 1899, (7) 18, 557.) Cuprous lead sulphantimonite, Cu,SbS,

2Pb,SbS. Min. Bournonite. Decomp. by HNO:+ Aq, and aqua regia.

Cuprous potassium orthosulphantimonite, Cu₂KSbS₃.

Ppt.; easily decomp. by H2O. (Pouget, C. R. 1899, 129, 104.) +3H₂O. Ppt., decomp. by H₂O. (Pouget, A. ch. 1899, (7) 18, 556.)

Iron (ferrous) orthosulphantimonite, Fea(SbaS)2.

Ppt. (Pouget, A. ch 1899, (7) 18. 554.) Min. Bertherite. 81 and ... 1701 easily sol. m aqua regia.

Lead orthosulphantimonite, Pbs(SbSs)1. Ppt. Very sl. sol. in H₂O. Decomp. by H₂O (Pouget, A ch 1899, (7) **18**, 553.) Min. Boulanyerite. Completely sol. in hot HCl+Aq; decomp. by HNOa+Aq.

Lead sulphantimonite. \ Sol, in boiling cone. HNO2+Aq (Four-

Pb(SbS₂)₂ Min. Zimanon by hot HCl+Aq. Sb₂S₃. Min. Plagionite. Temasorate Min. Zinckemie. Decomp.

APDS, Sb.5a. Mm. Plagionite.
2PbS, Sb.5a. Mm Jamesonite Dec
by hot HCl+Aq
4PbS, Sb.5a. Min Menoghinte.
5PbS, Sb.5a. Min Menoghinte.
6PbS, Sb.5a. Min Kibnekenite (?).

Lead potassium orthosulphantimonite, PbKSbS; Very sl. sol. in H_2O . Decomp. by H2O (Pouget, A. ch. 1899,

Lead silver sulphantimonite, (Ag2, Pb) Sb S11. Min Freeslebenite.

Lithum arthosulphantimonite, Li₂SbS₂ +3H₂O. Very deliquescent Very sol in H₂O. (Pouget, A. ch 1899, (7) 18. 530.)

Lithium parasulphantimonite, $L_{13}Sb_{4}S_{7} + 3H_{4}O$.

(7) 18, 554.)

Ppt (Pouget, A. ch. 1899, (7) 18, 531.)

Lithium silver orthosulphantimonite, LiAg-SbS.

Decomp. by H₂O. (Pouget, A. ch. 1899, (7) 18. 551.)

Manganous orthosulphantimonite, Mn₁Sb₂S₆. Ppt. Sl. sol in H₂O. (Pouget, A. ch 1899, (7) 18. 553)

Manganous potassium orthosulphantimonite, MnKSbS₂. Sl. sol, in H₂O. Decomp. by H₂O. (Pouget. A. ch. 1899, (7) 18, 553.)

Nickel orthosulphantimonite, N18Sb2Sc Ppt. (Pouget, A. ch. 1899, (7) 18. 554.)

Potassium metasulphantimonite, KSbS2-Insol, m cold H.O. Decomp, by hot H2O. (Pouget, A. ch. 1899, (7) 18. 513.) +116H.O. Sol, in H.O. but decomp.

ouickly. Sol. in H₄O. (Stanck, Z. anorg. 1898, 17-110)

Potassium orthosulphantimonite, KaSbSa. Very deliquescent.

Very sol in H₂O Decomp, by acids (Pouget, A ch 1899, (7) 18, 518.)

Potassium sulphantimonite, K₂Sb₄S₇+3H₂O. Sl. sol. in H2O and not decomp. thereby. (Pouget, A ch. 1899, (7) 18. 522.)

Decomp. in the air. Sol. in K₂S+Aq. (Stanek, Z anorg. 1898, 17. 120.)
 2K₂S, Sb₂S₃. Sol. in H₂O. (Ditte, C. R. 102. 68.)

xK₄S, ySb₂S₂. Deliquescent. When K₂S is in excess, sol in H₂O, when Sb₂S₂ is in excess, partially sol Aqueous solution is decomp. by all acids, even CO2, and by K2CO2, Na2CO2, NaHCO2, KHCO2, NH4HCO2+Aq. Insol. in absolute alcohol. (Kohl.)

Potassium hydrogen sulphantimonite, KHSb₄S₇.

(Pouget, A. ch. 1899, (7) 18. 522.)

Potassium silver orthosulphantimonite, Ag2KSbS2.

1897, 124, 1519.) Potassium zinc orthosulphantimonite,

Decomp, by H2O. (Pouget, A. ch. 1899, (7) 18, 552.) Silver orthosulphantimonite, Ag-SbS2.

Ppt. Sl. sol. in H₂O. (Pouget, A. ch. 1899, (7) 18. 547.) Min Pyrargyrite. Sol. in HNO₁+Aq with residue of S and Sb₂O₈. KOH+Aq dissolves out Sb2S2.

Silver sulphantimonite.

KZnSbS2.

AgSbS, Min. Miargyrute.
5Ag,S, SbS, Min. Siephaniis. Easily
decomp. by warm HNO₃+Aq.
12Ag,S, SbS, Min. Polyargyrite.
Sol. in H₂O and sloohol. I evaporation.

Silver sodium orthosulphantimonite. AgaNaSbS.

Decomp. by H₂O. Pouget, A. ch. 1899,

Sodium metasulphantimonite, NaSbS2. Deliquescent. Decomp. by hot H₂O. When Na₂S is in excess, sol. in H₂O, but partially sol. if Sb₂S₃ is in excess. (Unger, Arch. Pharm. (2) 148. 1) Ppt Insol. in H₂O. (Pouget, C. R. 1898. 126. 1145.)

Sodium orthosulphantimonite, Na₂SbS₃ +9H,0

Decomp in solution in H2O. (Pouget. C R. 1898, 126, 1144.)

Sodium sulphanumonite, Na₂Sb₄S₇+2H₄O. Sol. in H₂O (Pouget, C. R. 1898, 126. 1145.) Na₅Sb₆S₀ (Pouget, C R 1898, **126**. 1144.) 4Na₅S, 3Sb₅S₁+3H₂O. Permanent; sol in H₂O Insol in alcohol and other. (Kohl.)

Strontium orthosulphantimonite. Sr.Sb.Se +10H2O. Sol in H.O. (Pouget, C. R. 1898, 126. 1793)

Strontium pyrosulphantimonite, Sr₂Sb₂S₄ +15H₂Ö Sol in H₂O without essential decomp. (Pouget, C. R. 1898, 126, 1793.)

Zinc orthosulphantimonite, ZngSb2St. Ppt. (Pouget, A. ch 1899, (7) 18. 552.)

Orthosulpharsenic acid, HAASA. Ppt. Loses H.S by prolonged boiling with H.O. (Nilson, J. pr (2) 14. 145. See also Sulphoxygrsenic acid,

Decomp, by boiling HaO (Pouget, C. R. Ammonium sulpharsenate, (NH4) AsiSi-Known only in solution in H2O. Decomp. on boiling into-NH₄AsS₃, Sol. in alcohol. (NH₄)₂AsS₄. Sol. in H₂O. Precipitated

by alcohol (NH.)-S. 12As-S. Ppt. Insol. in H2O.

Ammonium magnesium sulpharsenate, (NH₄)₂S, MgS, As₂S₅.

Ammonium sodium sulpharsenate, (NH4) ASS4, NagAsS4 Much more sol. in H2O than Na2AsS4; sl. sol. in cold, more sol. in hot alcohol. (Berzelius.)

Sol. in H₂O and alcohol. Decomp. by BasAssS2. Sol. in H2O in all proportions with decomp. Decomp. by alcohol. Bas(AsS4)2. Sol. in H2O. Insol. in alco-

hol. ReS Side-S. Pot Insol in H.O. Barium potassium sulpharsenate, KBaAsS₄+6H₂O

Easily sol. in H₂O.

Decomp, by acids with separation of As₂S₆. (Glatzel, Z anorg. 1911, 71, 209.)

Barium sulpharsenate sulpharsenite, Bas(AsS4)2, Ba2As2S6+4H2O.

SI sol in cold, more easily in hot H2O. (Nilson.)

Bismuth sulpharsenate, 2Bi2S2, 3As2S2. Sol. in Na₂AsS₄+Aq. Bi₂S₅, 3As₂S₅. As above. (Berzelius.)

Cadmium sulpharsenate.

Ppt. (Berzelius, Pogg. 7. 88.)

Calcium sulpharsenate, CarAs₂S₇. Sol, in H2O and alcohol. Cas(AsS4)2. Easily sol. in H2O. Insol. in alcohol.

+10H₂O Easily sol. in H₂O. (Nilson, J. pr (2) 14, 169.) 5CaS, 2AsS2Sa+6H2O. Easily sol. in H2O. (Nilson,, J pr. (2) 14, 163.)

Cerous sulpharsenate, CesAssS7.

Ppt. Ce₃(AsS₄)₂. Ppt. Ce4(As2S7)1. Ppt.

ate+Aq.

Cobaltous sulpharsenate, Co₂As₂S₇. Ppt. Sol. in excess of sodium sulpharsen- | Potassium sulpharsenate, KAsS₂.

Cuprous sulpharsenate, Cu2AsS4.

Ppt. (Preis, A. 257. 201.)
Min. Engrate. Clarite. Not wholly decomp. by HCl+Aq Sol. in HCl+Aq with residue of As2O2. Not attacked by KOH+Aq.

Cupric sulpharsenate, Cu2As2S7.

Ppt. Sol. in (NH4)2S+Aq. Decomp. by NH₄OH+Aq. (Berzelius.) Cu₃(AsS₄₎₂. Ppt. (Preis, A. 257, 201) Silver sulpharsenate, Ag₂AsS₄.

Glucinum sulpharsenate. Sl. sol. in H.O.

Gold sulpharsenate, AuAsS. Sol. in pure H₂O Insol in Na₂AsS₄+Aq. 2Au₂S₈, 3As₂S₈. Sol. in H₂O. (Berzelius.)

Iron (ferrous) sulpharsenate, Fe2As2S1. Ppt. Sol. in Na₂AsS₄+Aq. (Berzelius.)

Iron (ferric) sulpharsenate, Fe4(As2S7)8-Ppt. Sol. in Na₃AsS₄+Aq. (Berzelius.)

Lead sulpharsenate, Pb₂As₂S₇.

Ppt (Berzelius.) Pbs(AsS4)2. Ppt. Lithium sulpharsenate, Li, AsS.

Easily sol, in hot, less sol, in cold H₂O. Insol. in alcohol.

LasAs2S7. Completely sol. in H2O. Decomp. by alcohol LiAsS1. Known only in acid solution.

Magnesium sulpharsenate, Mg2As2S7. Sol. in all proportions of H2O, and in al-

Mg,(AsS,) Sol. in H₂O. Decomp. alcoho 3MgS, As₂S₅. Nearly insol. in H₂O. 5MgS, 2As₂S₄+15H₂O. Very sol. in H₂O.

(Nilson.) Manganous sulpharsenate, Mn₂As₂S₁. Sl. sol. in H₂O. Mn₂(AsS₄₎₂ Permanent. Sl. sol. in H₂O.

6MnS, AsoSt. Sl. sol. in H1O. Mercurous sulpharsenate, (Hgs) AssSr. Ppt.

Mercuric sulpharsenate, Hg₂As₂S₇. Ppt. (Berzelius, Pogg. 7, 29.) Hg₂(AsS₄)₂. Ppt. (Press, A. 257. 200.)

Nickel sulpharsenate, Ni₃(AsS₄)₂. Ppt Not decomp. by HCl+Aq. Sol. in Na₃A₈S₄+Aq. (Berzelius.)

2NiS. As S. As above. Known only in alcoholic solution

K4As2S7. Deliquescent. Sol. in H2O, from which alcohol ppts. K.AsS. K.AsS. Deliquescent. Very sol. in H.O. from which it is precipitated by alcohol. +H₂O. Very deliquescent. (Nilson, J.

Potassium sodium sulpharsenate. Sol. in H₂O.

pr. (2) 14. 159.)

Ppt. (Berzelius, Pogg. 7, 29.) AgaAsaS, Ppt.

Sodium sulpharsenate, NaAsS₁. Known only in alcoholic solution. Na₄As₂S₇. Sol. in H₂O. Alcohol ppts. Na₂AsS₄ from H₄O solution. Na₂AsS₄+7½H₂O. Easily sol. in H₄O | Nu₃ASS₁+1/2H₃O. Desuly SOI. In H₃O₃ | from which it is precipitated by alcohol. | +8H₂O. Insol. in alcohol; very sol. in | H₂O. (McCay, Z. anal. 1895, 34, 726.) | +BH₂O. (Nilson, J. pr. (2) 14, 160.) | Na₂S, 12As₂S₃ (?). Insol. in H₂O.

Sodium zinc sulpharsenate, NaZnAsS.+ 4H₂O. Sol. in hot H₂O with decomp. (Preis, A. 257. 202.)

Strontium sulpharsenate, Sr₂(AsS₄)₂.

Easily sol in H₂O; msol, in alcohol.

Sr₂As₂S₇. Easily sol in H₂O, from which

alcohol ppts. Sr₃(AsS₄)₂
Strontium sulpharsenate sulpharsenite.

Sr_t(AsS₄)₂, Sr₂As₂S₄+4H₂O Easily sol. in H₂O. (Nilson, J. pr (2) **14**. **16**2.)

Thallous sulpharsenate, TlaAsSa.

Not decomp. by H₂O. Decomp by dl. acids. Insol. in dil. alkalı sulphides. Partially decomp. by boiling with a conc solution of sodium sulphide (Hawley, J Am. Chem., Soc. 1907, 29, 1013)

Tin (stannous) sulpharsenate. Pnt.

Tin (stannic) sulpharsenate. Pnt.

Uranic sulpharsenate, 2U₂S₅, A₈₂S₅.

Ppt. Sol. in Na₂AsS₄+Aq.

Zinc sulpharsenate, Zu₃(A₅S₄)₂. Ppt (Berzelius) 2ZnS, A₅S₄ Ppt. (Berzelius) ZnS, A₅S₆ (Wohler)

Disulpharsenic acid. See Disulphoxyarsenic acid.

Sulpharseniosulphomolybdic acid.

Ammonium sulpharseniosulphomolybdate, (NH₄), Ass₅7(MoS₉)₂+5H₂O. Very unstable. Sol. in H₂O with decomp. (Weinland, Z

anorg. 1897, 15. 49.)

Barium ----, Ba₂Aa₂S₇(MoS₂)₂+14H₂O.

Sol, in H₂O with decomp. (Weinland.) Potassium ----, KAsS₃(MoS₄)+4H₅O

(Weinland.)

K₄As₂S₇(MoS₃)₃+8H₂O. Sol. in H₂O.

Decomp. by mineral acids. Insol. in alcohol.

(Weinland.)

Sodium ——, NaAsS₂(MoS₂)+6H₂O.
Insol. in H₂O. Easily sol. in dil. NaOH and NH₂+Aq. (Weinland.)
Na₄A₃S₇(MoS₂)₂+14H₂O. Sol. in H₂O Decomp. by mineral acids. (Weinland.)

Sulpharseniosulphoxymolybdic acid.

Barium sulpharseniosulphoxymolybdate, Ba₂As₂S₇(Mo₂S₁O₂)+12H₂O.

Sol. in H₂O. (Weinland, Z. anorg. 1897, 15. 60.)

Magnesium sulpharseniosulphoxymolybdate, Mg₂As₂S₇(Mo₂S₃O₃)+16H₂O, Very sol. in H₂O. (Weinland)

Potassium —, KAsS₃(MoSO₂)+2½H₃O. Sol in H₃O with decomp. (Weinland.) K₄As₅S₇(Mo₂S₂O₃)+6H₂O. Very sol. in H₃O. Weinland.)

Sodium —, NaAsS₄(MoSO₂)+5H₂O St. sol. in cold, very sol in hot H₂O. (Weinland) Ns₄As₅S₇(Mo₅S₄O₄)+15H₂O. Very sol. in H.O. (Weinland)

Sulpharsenious acid.

Ammonium sulpharsenite, NH₄As₂S₃+2H₄O. Insol. in H₂O. Ppt. Sol. in KOH or NH₄OH+A₄. SI stateaded by boiling HCl+ A₄. (Nilson, J. pr. (2) 14. 42.) (NH₂)As₃S₅ = 2(NH₂)A₅S₅. Sol. in H₃O, from which sloohol ppts. (NH₄)As₃S₅. (NH₂)As₃S₅ = 3(NH₂)As₃S₅. Decomp.

on arr sol. m H₂O. Insol. n alcohol (NL₁)Ass⁵₂₀ Sol in H₂O. (Nilson, J. pr. (2) 14. 169)

Barium sulpharsenite, Ba₁Ass₅b. (Nilson, J. pr. (2) 14. 169)

Barium sulpharsenite, Ba₁Ass₅b. (Nilson, J. pr. (2) 14. 46)

1. 160, Sl. sol. in H₂O. (Nilson, J. pr. (2) 14. 46)

1. 161, D. Sl. sol. in Cold H₂O. (Nilson, J. pr. (2) 14. 46)

2. 162, Sl. sol. m H₂O. (Nilson, J. pr. (2) 14. 46)

2. 163, Sl. sol. m H₂O. (Nilson, J. pr. (2) 14. 46)

by alcohol. +14H₂O. Sl. sol. in cold, easily in hot H₂O. (Nilson.)
Ba(AsS₂)₂+2H₂O. Insol. in H₂O. (Nilson.), Jpr. (2) 14.44
BaAs₁S₂, Insol. in HCl+Ag (Nilson.)

Bismuth sulpharsenite, 2Bi₂S₁, As₂S₁. Ppt.

Cadmium sulpharsenite. Ppt. (Berzelius, Pogg. 7. 146.)

Calcium sulpharsenite, Ca₂A₈₂S₄.
Sol in H₂O, from which alcohol ppts.
Ca₂(A₈S₁)₂.
Ca₃(A₈S₂)₃. Sol in H₃O.

Cas(AsS)₂.
Cas(AsS)₂.
Sol. m H₂O.
+15H₂O. Presupitated by alcohol
Ca(AsS)₂+10H₂O. Sol. in H₂O. (Nilson,
J. pr. (2) 14, 54.)
CacAsS₂-140H₂O. (O). Insol. in cold H₂O.
Decomp. by hot H₂O. (Nilson,
CacAs₂)₂-140H₂O. (Nilson,
CacAs₃)₂-140H₂O. (Nilson,
CacAs₃)₂-140H₂O. Sol. on not H₂O.
(Nilson.)

H₂O. (Nilson.)

Cerous sulpharsenite, Ce-As-S₁.

Ppt.

Chromic sulpharsenite, 2Cr-S2, 3AseS4, Ppt. Insol. in Na₂S+Aq.

Cobaltous sulpharsenite, 2CoS, AspSg. Ppt Sol in excess of sodium sulpharsenite+Aq.

Cuprous sulpharsenite 3Cu₂S, 2As₂S₃ = Cu₂As₄S₁,

Min. Binnite. Decomp. by hot acids and KOH+Aq 2Cu₂S, As₂S₂=Cu₄As₂S₄. Decomp. by acids, KOH and K₂S+Aq. (Sommerlad, Z.

anorg. 1898, 18, 434)

Cupric sulpharsenite, Cu-AsS-.

Insol. in H2O or HCl+Aq. Sol. in NagAsSa

Cu₂As₂S₅. Ppt (Berzelius.)

Glucinum sulpharsenite, 2GlS, As₈S₈, Ppt. Sol. in acids, partly sol. in NH₂OH +Aq.

Gold sulpharsenite, 2Au₂S₂, 3As₂S₂ Ppt. (Berzelius.)

Iron (ferrous) sulpharsenite.

Ppt. Sol. in Na-AsS.+Ag. (Berzelius.) Iron (ferric) sulpharsenite.

Ppt. Sol. in excess of a ferric salt, or Na₂AsS₂+Aq. (Berzelius.)

Lead sulpharsenite, Ph.As.Ss. Ppt. Min Dufreynastle $Pb(AsS_2)_2 = PbS, As_2S_3.$ Min. Sartorite. Ph.As.S. Min. Jordanite.

Lithium sulpharsenites. Resemble K salts

Magnesium sulpharsenite, Mg.As.S. Almost completely sol. in H₂O. Easily sol. m alcohol. (Berzelius) +8H₂O. Sl sol. in H₂O. (Nilson.) Mg(AsS₂)₂+5H₂O. Slowly sol. in both cold and hot H₂O. (Nilson, J. pr. (2) 14.

 $\dot{M}g_s(AsS_s)_s + 9H_sO$. (Nilson.)

Manganous sulpharsenite, Mn2As2S5. Ppt. Decomp. by HCl+Ag.

Mercurous sulpharsenite, (Hg2)2As2S6. Ppt (Berzelius.)

Mercuric sulpharsenite, Hg2As2Sa.

Hg(AsS₂)₂, Ppt. (Berzelius, Pogg. 7, 149.)

Nickel sulpharsenite, Ni₂(AsS₂)₂, Ppt. (Berzelius.)

Platinum sulpharsenite, Pt.As.S.

Potassium sulpharsenite, K.As.S. Decomp. by H₂O or alcohol. (Berzelius.)

K2AsS2. Sol in H2O. Insol in alcohol. (Berzelius)

K1As6S1. Sol. in H1O and alcohol, (Berzelms) K2AsS2 Decomp by H2O. (Berzelius.)

+21/2H2O Not wholly sol in H2O. (Nilson, J. pr (2) 14. 30.)

K.As,S, +8H₂O. (Nilson)

KAs,S,+H₂O. Insol. in H₂O. Slowly at-

tacked by hot HCl+Aq. Sol. in KOH+Aq. (Nilson.)

Silver sulpharsenite, 12Ag.S. As.S. Ppt (Sommerlad, Z, anorg 1898, 18.

428 5Ag,S. As,S. = Ag,AsS. (Sommerlad.) Ag,AsS, Min. Proustite. Sol. in HNO₁+ Aq. KOH+Aq dissolves out Sb,S. (Senarmont, A. ch. (3) 32, 129; Wöhler, A. 27, 159.) 2Ag₂S, As₂S₂ Partially sol. m HNO₂+

Aq. (Berzelius) AgAsS2. (Berzelius, Pogg. 7, 150.)

Sodium sulpharsenite, NaAsS₂+1/2H₂O.

Attacked by HCl+Aq with difficulty. (Nilson, J. pr. (2) 14. 37.) +112H3O. Forms coagulum with cold, sol. in hot H₂O. (Nilson.) Na₂As₂S₇+6H₂O. Sol. in much H₂O; not

easily decomp by HCl+Aq. (Nilson.) NaAs₃S₃+4H₂O Ppt (Nilson, J. pr. (2) 14. 3.)

Strontium sulpharsenite, 3SrS, As₂S₂+ 15H₂O.

Sol. in H₂O+A₃: insol in alcohol (Voigt and Gottling.) 2SrS, AsiSz. Sol. in H2O; decomp, by alcohol

+15H₂O. (Nilson, J pr. (2) 14. 53.) Sr(AsS₂)₂+2½H₂O. Sl. sol in H₂O. (Nil-

Thallous sulpharsenite, TlAsS. Ppt Decomp by KOH+Aq (Gunning, J. B. 1868, 247.)

Above compound is a mixture of As₂S₂ and (Hawley, J. Am. Chem. Soc. 1907, 29. 1012) Min Lorandite (Kuenner and Loezka, C. C. 1904, II, 844.)

Tin (stannous) sulpharsenite, Sn. As. Sz. Ppt.

Tin (stannic) sulpharsenite, SnAs₂S₅. Ppt. (Berzelius, Pogg. 7. 147.)

Uranic sulpharsenite, 2U2S2, As2S2. Ppt.

Zinc sulpharsenite.

Ppt (Berzehus, Pogg. 7, 145)

Zirconium sulpharsenite, 2Zr.S. As:S. Pot. Insol, in solutions of alkalı sulpharsenites. Sl. sol. in Na2S Aq Not decomp. by acids (Berzelius.)

"Sulphatammon," 2NH, SO₃,

Is ammonium imidosulphonate, which see. (Berglund.)

"Parasulphatammon," 3NHz, 2SOz.

Te besie ammonum imidosulphonate, which see. (Berglund.)

Sulphatoiodic acid.

Potassium sulphatoiodate, K.HO.SIO, or KIO, KHSO.

Decomp. by H₂O. (Blomstrand, J. pr. (2) See Iodate sulphate, potassium.

Sulphatooctamine cobaltic carbonate (SO₄)₂Co₂(NH₄)₃CO₂+4H₂O.

Sol. in H.C. (Vortmann and Blasberg, B 22, 2650.) Sol. in

(SO₄)CO₂(NH₃)₈(CO₅)₂+8H₂O. Sol. in H₂O. (V. and B.) See Carbonatotetramine cobaltic sulphate. (Jörgensen.)

Sulphatoplatinamine sulphate, SO,Pt(NH,)2SO,+3H2O. Easily sol, in H₂O Sol. in H₂SO₄+Aq.

Sulphatoplatindamine sulphate. SO.Pt(NaH.)aSO.+HaO. Ingol. in HaO.

Sulphatopurpureocobaltic bromide, Co(SOA)(NH4),Br.

Sol. in HaO, from which it is precipitated by conc. HBr+Aq. (Jörgensen, J. pr (2) 25. 94.)

--- carbonate, [(SO₄)Co(NH₈)₈]₂CO₈+ 4H,0.

Sol. in H₂O. (Vortmann and Blasberg, B. 22, 2648.)

—— chloroplatinate, 2Co(SO₄)(NH₃)₄Cl, PtCl₄+2H₂O.

Sl. sol. in cold H.O. (Jörgensen.)

- nitrate, Co(SO₄)(NH₄)₅(NO₃). Somewhat sl. sol, in cold H.O. (Jörgensen.) 241, 161.)

Sulphatopurpureocobaltic sulphate, (Co(SO4)(NH2)43SO4+H4O.

Very easily sol. in H₂O. (Jorgensen, J. pr. (2) 25. 94 Co(SO₄)NH₄)₄(HSO₄)+2H₂O. Sol. in about 25 pts. of cold H₂O. Sol. in dil., msol. in cone. NH,OH+Aq. (Jorgensen.)

Sulphazic acid, H.S.N.O. SO₂H-N(OH)-O-N-(OH)SO₄H, Known only in its salts. (Raschig, A. 241.

Potassium sulphazate, $K_3HS_2N_4O_9 = (SO_2K)(OK)N-O-N(OH)-(SO_3K)$.

Sol. in H₂O, but decomp. on standing. (Raschig, A. 241, 161.)

Sulphazidic acid.

(Fremy)
See Hydroxylamine monosulphonic acid.

Sulphazilinic acid. See Oxysulphazotic acid.

Metasulphazilinic acid. See Trisulphoxyazotic acid.

Sulphazinous acid.

(Fremy.) See Dihydroxylamine sulphonic acid.

Sulphazotic acid, H6N2S4O14= (80,H), NH-NO=OH(80,H). Known only in its salts. (Claus, A. 158. 52 and 194). Has the formula (SO₃H)₂NH<0>NH(SO₃H)₃.

(Raschig, A. 241, 161.)

Lead potassium sulphazotate. Insol. in cold. decomp. by hot H2O. Insol. in alcohol and ether. (Fremy, A. ch. (3) 15.

439.) Potessium sulphazotate, KsHNsS4O14+H2O $=(SO_8K)_2NK < O > NH(SO_8K)_2$

Very sol. in hot, less in cold H₂O. chig, A. 241, 161) Decomp. gradually by boiling (Claus.) Insol. in alcohol or ether (Fremy, A. ch. (3) 15, 428) HON(SO,K); True composition 18 KON(SO,K),+H2O. Potassium hydroxyl-(Divers and Haga, amine disulphonate. Chem. Soc 1900, 77, 432.)

Forms basic salt (SO,K),NK<0>NK(SO,K), which easily sol and decomp. by H2O. (Raschig.)

Potassium sodium sulphazotate, K.NaHNaS.O. +2H.O.

Quite easily sol, in H2O. (Raschig, A.

Known only in its salts. (Claus. A. 158. 52 and 194.) Correct composition is hydroxylamine sulphonic acid HON(SO2H)2, which see. (Raschig, A. 241. 161.)

Sulphhydroxylamic acid.

See Hydroxylamine monosulphonic acid.

Disulphhydroxyazotic acid.

(Claus.) See Hydroxylamine disulphonic acid.

Sulphides.

The sulphides of the alkalı metals are sol. in H.O: those of the alkali-earth metals are much less sol., and are decomp, upon solution into hydrosulphide and hydroxide.

The other sulphides are insol. in H2O For each sulphide, see under the respective element.

Sulphimide, SO₂NH See Imidosulphamide.

Trisulphimide, OHSO NSO OH N

(SO,NH), Sol. in methyl alcohol; sl. sol in ether; insol in chloroform and benzene. (Hantzsch B 1901, 34, 3440,)

Ammonium sulphimide, SO₂N(NH₄). Sol. in H₂O: insol in alcohol. (Traube.)

Barium ---- (SO₂N)₂Ba+2H₂O₂ Sol, in H₂O. (Traube.)

Potassium ----, SO2NK.

Not very sol. in H₂O.

Silver --- SO.NAg.

hot H.O. Sol. in acids.

Sodium ---, SO2NNa. Very sol. in H.O.

"Sulphitammon," NH2, SO. See Thionamic acid.

Sulphobismuthous acid.

Cuprous sulphobismuthite, AuBiSa,

Mm. Emplectite. Sol. in HNOs+Aq. CusBi4Ss Mm. Klaprothite. Completely Cu₈Bi₄S₅ Min. Klaprothits. Completely sol. in HCl+Aq. Cu₃BiS₅. Min. Wittichenits. Sol. in HCl

+Aq and in HNO:+Aq.

Disulphhydroxyazotic acid, ONH(SO₂H)₂. Cuprous lead sulphobismuthite, Cu₂S, 2PbS, B12S2

> Mm. Patrinite. Sol, in HNO2+Aq with residue of S and PbSO₁.

Lead ---- 2PbS. Bi₂S₂.

Min. Cosable. 2PbS, 3Bi2S1. Min. Chwatite.

Potassium ----, KBiS

Decomp by H₂O. Sol, in HCl+Aq. (Schneider, Pogg. 1869, 136, 464.)

Metasulphoboric acid, B₂S₂H₂S.

Decomp. by H2O and alcohol. 1 pt. is sol in 5 pts. benzene 1 pt. is " " 5 " CS₂ 1 pt. is "" 5 " Co₂ Very sl. sol in CS₂ at -20°. (Stock, B. 1901, 34, 401.)

Sulphocarbonic acid-

Ammonium cuprous sulphocarbonate, CS2CuNH4

This salt was formerly described as cupric sulphocarbonate ammonia, CS₂Cu, NH₂. (Hofmann, B. 1903, 36. 1146.)

Cuprous potassium sulphocarbonate, CS₂CuK.

Nearly meol. m cold H₂O. Somewhat sol, in hot H₂O, NaOH and NH₂OH+Aq (Hofmann.)

Cupric sulphocarbonate ammonia, CS,Cu, NH. Very sl. sol. in strong NH₄OH+Aq.; insol.

in cold H₂O, sl sol, in hot H₂O. (Hormann, anorg, 1897, 14, 295.) Is ammonium cuprous sulphocarbonate. (Hofmann, B. 1903, 36, 1146.)

Sol in 500-600 pts. cold, more easily in Cuprous sulphocarbonate potassium cyanide, CS₂Cu₂, 2KCN+2H₂O. Sol, in H₂O and dil. alkalies on warming.

(Hofmann, B. 1903, 36, 1148.) Zinc sulphocarbonate ammonia, CS₂Zn, 2NH₃.

Ppt. (Hofmann, Z. anorg. 1897, 14, 277.)

Sulphochromic acid, H2CrO4, SO3. (?)

Sol. in H₂O. (Bolley, A. 56, 113) (SO₃)₄Cr₂O₂(OH)₂. Sol in H₂O. All salts en alkali salts are insol. in H₂O. (Recours, Bull. Soc. 1896, (3) 15. 315.)

[Cr₂O₂(OH)₂(SO₂)₂O₃, Cr₂O(OH)₂(SO₃)₃ (OH)₂(OH)₃. Sol. in H₂O. (Wyrouboff, Bull. Soc. 1902, (3) 27. 721.)

Chromium sulphochromate

Cr2O2(OH)4(8O1)4O2(OH)2Cr2(OH)6 pt; decomp by boiling H₂O. (Wyrouboff, Bull Soc. 1902, (3) 27, 720)

Sulphochromous acid.

Ferrous sulphochromite, FeCreSa

Insol. in H₂O, and nearly so in HCl+Aq. Ch. 1866. 190. (Groger, W. A B. 81, 2, 531.)

Manganous --- , MnCr2S1.

Insol, in H₂O and HCl+Aq. (Groger.)

Potassium ---, K₂Cr₂S₄

Insol in H2O and in hot HCl+Aq. Easily sol. in aqua regia . Slowly sol. in cold, rapidly sol. in hot dil. HNO₈+Aq. (Milbauer, Z. anorg. 1904; 42. 443) Cr.S7. Stable in the air, sol. in HNO and aqua regia with decomp. (Schneider, J. pr. 1897, (3) 56, 407.)

Silver ---, Ag₂Cr₂S₁

Not attacked by HCl+Aq even on heating. Decomp. by cone HNO₃. (Schneider, J. pr. 1897, (2) 56, 401.)

Sodium --- , Na₂Cr₂S₄

Insol. in H₂O. Sl. attacked by dd. HCl or H2SO4+Aq Sol. in cold cone. HNO2 or aqua regia. Sol in hot dil. HNO2+Aq (Groger.)
Sol m acids with decomp. (Schneider, J. pr. 1897, (3) 56, 415,)

Zinc --- , ZnCr2S4.

Insol in H2O; sol in traces in boiling cone. HCl or dil, H₂SO₄+Aq; sol m HNO₂+Aq (Grdger, W. A. B. **81**, **2**, 531)

Sulphocyanhydric acid, HSCN.

Sol. in H₂O Sat. HSCN+Aq has sp gr.=1.022. (Por-rett, 1814.) HSCN+Aq containing 12.7% HSCN has sp. gr. 1 040 at 12 7°. (Hermes, Z. Ch. 1866. 417.)

Sulphocyanides

Most sulphocyanides are sol, in H₂O, but Cu, Pb, Hg, and Ag sulphocyanides are insol.

Aluminum sulphocyanide, Al(SCN)s.

Known only in solution. Al(SCN)2(OH)4. Known only in solution (Suida.)

Aluminum potassium sulphocyanide, K₈Al(SCN)₆+4H₂O.

Very hydroscopic.

Sol, in H2O and alcohol. (Rosenhenn, Z. anorg. 1901, 27. 302.)

Ammonium sulphocyanide, NH4SCN.

Deliquescent, and very sol. in H₂O. 100 pts H₂O dissolve 128.1 pts, at 0° and

162.2 pts. at 20°.

NH_SCN+Aq sat at ord. temp. has density of 1.138 and 100 ce. contains 69.16 g. NH_SCN. (Klason, J pr. 1887, (2) 36.67) By dissolving 90 g. NH_SCN in 90 g. H₂O at 17° the temp. falls to -12° (Clowes, Z.

133 pts NH₂SCN+100 pts H₂O at 13.2° lower the temp. 31.2°. (Ridorff, B. 2. 68.) Sol. in liquid SO₂. (Walden, B. 1899, 32.

Difficultly sol. in AsBr₃. (Walden, Z. anorg. 1902, 29, 374.)

Very easily sol. in liquid NH2 (Franklin, Am. Ch J 1898, 20, 826)

Easily sol in alcohol Easily sol. in acctone. (Krug and M'Elroy.

Sl. sol in benzonitrile. (Naumann, B. 1914, 47. 1369.)
Sol. m methyl acetate. (Naumann, B. 1909. 42. 3789.

Difficultly sol in ethyl acetate (Nau-mann, B. 1910, 43. 314.)

Ammonium bismuth sulphocyanide. (NH4)2B1(SCN)2

As K salt. (Rosenheim and Vogelgesang Z anorg. 1906, 48. 215.)

Ammonium cadmium sulphocyanide, (NH4)2Cd(SCN)4+2H2O.

Somewhat deliquescent Melts in crystal H₂O at 25°. Insol. in alcohol. (Grossmann, B. 1902. 35, 2667.)

Ammonium cadmium molybdenyl cvanide, NH-SCN, Co sulpho-Cd(SCN)2 Mo(OH)(SCN),+3HaO

(Mass and Sand, B. 1908, 41, 1513.)

*Ammonium cobaltous sulphocyanide, (NH₄)2Co(SCN)1.

Decomp. in moist air. Cannot be recryst, from H₂O. (Treadwell. Z. anorg. 1901, 26, 109 +4H₂O Sol. in H₂O

Sol in methyl, ethyl and amyl alcohol, in acetone and in other + Aq.

Can be recryst, from H₂O or alcohol with-

out decomp (Rosenheim and Cohn, Z. anorg. 1901, 27. 289)

Ammonium iron (ferric) sulphocyanide, 9NH₄SCN, Fe(SCN)₂+4H₂O.

Deliquescent, and sol. in H₂O (Krüss and Moraht, A 260, 207) 3NH SCN, Fe(SCN), Extremely deliquescent.

Ammonium mercuric sulphocyanide, 2NH,SCN, Hg(SCN)2

Easily sol. in H₂O. (Fleischer, A, 179, 228.)

NH.He/SCN). Insol in cold: sol, in hot Barum casium currous sulphocyanide. II.O. (Rosenheim, Z anorg 1901, 27, 284.)

Ammonium molybdenyl sulphocyanide, 3NH₂SCN, Mo(OH)(SCN)₃+3H₂O. (Sand and Mass, B, 1907, 40, 4507)

Ammonium nickel sulphocyanide,

(NH₄)₄N₁(SCN)₆+4H₂O. Sol in H₂O with decomp

Sl. sol. in cold; easily sol in hot alcohol (Rosenheim, Z. anorg 1901, 27, 292.)

Ammonium silver sulphocyanide, NH₄SCN, AgSCN. Decomp, by H₂O.

Ammonium vanadium sulphocvanide. V(SCN), SNH,SCN+4H,O.

Sol. in H.O; sol. m alcohol, sl. sol m ether. (Ciocci, Z. anorg 1898, 19, 311.)

Ammonium vanadyl sulphocyanide, (NH,).VO(SCN),+5H.O.

Sol in H₂O, alcohol, ether, acetone, amyl alcohol and ethyl acetate. (Koppel, 2

Ammonium zınc sulphocyanide.

anorg. 1903, 36. 290.)

(NH₄)₂Zn(SCN)₄+3H₄O Easily sol, in H₂O and in alcohol. (Walden,

Z. anorg. 1900, 23, 374.) +4H2O Easily sol. in cold H2O, acetone alcohols and ether. (Rosenheim and Huldschinsky, B 1901, 34, 3913.)

Ammonium sulphocyanide mercuric bromide, NH SCN, HgBr.

Very sol. in H2O. Sol. in alcohol. (Grossmann, B. 1902, 35. 2NH4SCN, HgBr1+H1O, Somewhat de-

liquescent Very sol. in H2O.

Sol. in alcohol. (Grossmann)

Arsenic sulphocyanide, As(SCN)₄. Decomp. by H₂O. Insol in all ordinary solvents (Miguel, A. ch. (5) 11. 341.)

Barum sulphocyanide, Ba(SCN)2+2H2O. Deliquescent. Easily sol. in H2O and alcohol. Boiling solution in alcohol contains 32 8% anhydrous salt Solution sat. at 20° contains 30%. (Tschernisk, B. 16, 349.) Cryst with 3H₂O. (Tschernisk, B. 25. 2627.)

Barium cadmium sulphocyanide, 4Ba(SCN)2, Cd(SCN)2+10H2O.

Deliquescent, (Grossmann, B. 1902, 36 2669)

Ba(SCN), 3CsSCN, 2CuSCN,

Rapidly decomp. by, H₂O. (Wells, Am. Ch J, 1902, 28, 273.)

Barium cæsium silver sulphocyanide. Ba(SCN)₂, 3CsSCN, 2AgSCN.

100 pts H₂O dissolve 92 pts, at 19°. Decomp. by much H2O, (Wells. Am. Ch. J. 1902, 28, 272.)

Barium cobaltous sulphocyanide. BaCo(SCN),+8H₂O.

Ppt. (Rosenheim, Z. anorg. 1901, 27-290.)

Barium mercuric sulphocyanide, BaHg(SCN)

Very sol, in H₂O and in alcohol. (Rosenheim, Z. anorg. 1901, 27, 286) Ba Hg(SCN)₈]₂+2H₂O. Ppt Nearly insol, in cold, easily sol in hot H2O. (Rosenheim.)

Barium potassium silver sulphocyanide, Ba(SCN), 4KSCN, 2AgSCN+H₂O.

Very sol in a little H₄O. Decomp by much H₄O (Wells, Am. Ch. J. 1902, 28. 283)

Barium rubidium silver sulphocyanide, BaRbaAga(SCN)a+2HaC

Very sol. in H2O. (Wells, Am Ch. J. 1903, 30. 186.) BaRb Ag (SCN) + H.O. Sol. in H.O. (Wells.)

Barium silver sulphocyanide, Ba(SCN)2, 2AgSCN +2H+0.

Stable in the air. (Wells, Am, Ch J. 1902. 28. 269.)

Barium zinc sulphocyanide, BaZn(SCN). +3H₂O.

Easily sol. in alcohol. (Walden, Z. anorg. 1900, 23, 374.)

Barium sulphocyanide mercuric bromide. Ba(SCN)2, 2HgBr2+5H2O. Very sol, in H2O. (Grossmann, Z. anorg. 1903, 87, 420.)

Bismuth sulphocyanide, basic, Bi(OH)(SCN)2+5H2O.

(Rosenheim and Vogelgesang, Z. anorg, 1906. 48, 214.)

Bi(SCN)₃, 2B₁₂O₃ Insol. in H₂O, but when recently pptd. decomp. by boiling therewith, Insol. in HSCN+Aq. (Mestzendorf.)

Bismuth sulphocyanide, Bi(SCN)s.

Insol or al sol in H2O. Sol in HNOs. HCl, and HSCN+Aq. (Meitzendorf, Pogg. 56, 83.)

+14H₂O. Extremely deliquescent, Decomp. by H₂O. (Rosenheim and Vogelgesang, Z. anorg. 1906, 48, 214.)

Bismuth potassium sulphocyanide, KsBi(SCN)s.

Decomp, by H2O. (Rosenheim and Vogelgesang, Z anorg. 1906, 48, 215.)

Not hydroscopic.
Decomp. by H₂O.
Easily sol. in alcohol. (Vanino, Z. anorg 1901, 28, 220.)
Bi(SCN), 9(KSCN. Very hydroscopic.
Decomp. by H₂O.

Sol. in alcohol. (Vanino, Z. anorg, 1901, 28. 221.)

Bismuth sodium sulphocyanide, Na₂Bi(SCN)₆.

As K salt. (Rosenheim and Vogelgesang, Z. anorg. 1906, 48, 215.)

Boron sulphocyanide, B(SCN)₂, Sol. in benzene and ether. (Cocksedge, Chem. Soc. 1908, (2) 93. 217.)

Cadmium sulphocyanide, Cd(SCN)2. Sl. sol in H2O. Sol. in NH4OH+Aq with combination

Cadmium cæsium sulphocyanide, CsCd(SCN)a.

Recryst from H₂O. (Wells, Am. Ch. J. 1903, 80. 148.) Ca₄Cd(SCN)₆+2H₂O. Very sol. in H₂O. Can be recryst, from cone, solution but decomp. on dilution to CsCd(SCN)2. (Wells,)

Cadmium cæsium silver sulphocyanide, Cs2CdAg2(SCN)4.

(Wells.) +2H₂O, (Wells.) Cs₂CdAg₄(SCN)₃+2H₂O, (Wells.) Cs₄Cd₂Ag₁₀(SCN)₁₀+6H₂O (Wells.)

Cadmium mercuric sulphocyanide, Cd(SCN)2. Hg(SCN). Very sol, in hot H₂O. (Grossmann, Z.

anorg, 1903, 37, 414.)

Cadmium molybdenum sulphocyanide, Cd(SCN), Mo(SCN), +2H,O. (Mass and Sand, B. 1908, 41, 1513.) +3H₂O. (Mass and Sand.)

Cadmium molybdenyl potassium sulpho-cyunide, KSCN, 4Cd(SCN₂), 3Mo(OH)(SCN)₂+18H₃O. (Mass and Sand, B. 1908, 41, 1513.)

Decomp. by cold H₂O. (Bender, B. 20 | Cadmium molybdenyl sulphocyanide ammonia, 3Cd(SCN)₂, 2Mo(OH)(SCN)₂. 13NH₈. (Mass and Sand, B. 1908, 41. 1512.)

+2H2O. (Mass and Sand.)

Cadmium potassium sulphocyanide, K₂Cd(SCN)₄+2H₂O.

Very sol, in H₂O. (Grossmann, B. 1902, 35, 2668)

Cadmium rubidium sulphocyanide,

Rb2Cd(SCN)4+2H2O. Very sol. in H₂O (Grossmann, B, 1902, 35, 2668)

Cadmium sodium sulphocyanide, NaCd(SCN).+3H.O. (Grossmann, B. 1902, 35, 2668,)

Cadmium sulphocyanide ammonia, Cd(SCN),

Decomp by H₂O, (Grossmann, B, 1902, 35. 2666.) Cd(SCN)₂₁ 2NH₃. Decomp. by pure H₂O.

Cadmium sulphocyanude ammonium bromide, Cd(SCN)₅, NH₄Br+H₂O.

Can be recryst from H₂O. Decomp. in dil solution, (Grossmann, Z. anorg, 1903, 37, 425.) Cd(SCN)2, 2NH Br. Easily splits off NH.Br (Grossmann.)

Cadmium sulphocyanide ammonium chloride, Cd(SCN)2, 2NH,CL

Can be recryst from H₂O. Decomp in dil. solution. (Grossmann, Z. anorg. 1903, 37. 423.)

Cadmum sulphocyanide potassium bromide, Cd(SCN)2, KBr+H2O. Recryst, from H.O. (Grossmann, Z. anorg,

1903, 37, 425.) Cd(SCN)2, 2KBr. Recryst. from H2O. (Grossmann)

Cadmium sulphocyanide potassium chloride, Cd(SCN)2, 2KCl. Recryst from H₂O. Decomp, in dil. solu-

tion. (Grossmann, Z. anorg. 1903, 37. 423.)

Cadmium sulphocyanide potassium iodide, Cd(SCN)₂, 2KI. Recryst from H_tO. (Grossmann.)

2CsSCN, Ca(SCN)2, 2AgSCN+2H1O. Recryst. from H₂O. (Wells, Am, Ch J. 1902, 28. 275)

Cæsium chromium sulphocyanide.

See Chromisulphocyanide, cæsium.

Casium cobaltous sulphocyanide, Cs₂Co(SCN)₄+2H₂O.

Stable in the air. (Shinn and Wells, Am. Ch. J. 1903, 29, 476)

Cæsium cobaltous silver sulphocyanide, Cs₂CoAg₃(SCN)₆+2H₂O.

Slowly attacked by H₂O; decomp. by boiling H₂O. Very sl. sol. in CsSCN or Co(SCN)₃+Aq. (Shinn and Wells, Am. Ch. J. 1903, 29, 478.)

Cessum cuprous sulphocyanide, CaSCN, CuSCN. H₂O separates CuSCN. (Roberts, Am. Ch. J. 1902, 28, 262.)

Cessium cuprous nickel sulphocyanide, 2CsSCN, Ni(SCN)₂, 2CuSCN+2H₂O. Sl. sol. m H₂O. (Roberts and Wells, Am. Ch. J. 1902, 28, 277.

Cessium cuprous strontium sulphocyanide, 3CsSCN, 2CuSCN, Sr(SCN)₂. As Ba salt. (Wells, Am. Ch. J. 1902, 28. 275)

Cæstum magnesium ailver sulphocyanide, 2CsSCN, Mg(SCN)₂, 2AgSCN+2H₂O. As Ca comp. (Wells, Am. Ch. J. 1902, 28. 275.)

Casium manganous silver sulphocyanide, Cs₂MnAg₂(SCN)₆+2H₂O Rather si sol in H₂O. (Wells.)

Cassum mercuric sulphocyanide, CsSCN, Hg(SCN)₂. Sl sol. in hot H₂O. (Bristol and Wells, Am. Ch. J. 1902, 28. 260.)

Cesium mercuric sulphocyanide, 2CsSCN, Hg(SCN)₂+H₂O. Moderately sol. in H₂O, especially when warm. Recuyst. without decomp. (Bristol

and Wells, Am. Ch. J. 1902, 28. 260.)

Cæsium nickel silver sulphocyanide,

Cs₂NiAg₂(SCN)₀+2H₃O.

Slowly decomp. by hot H₂O. (Wells, Am. Ch. J. 1902, 28. 277.)

Cassium silver sulphocyanide, CsSCN, AgSCN.
Essily forms supersat. solution. (Wells, Am. Ch. J. 1902, 28. 264) 2CsSCN, AgSCN. Stable in the air. (Wells.) 3CsSCN, AgSCN. Stable in the air. (Wells.)

Cæsium silver strontium sulphocyanide, 3CsSCN, 2AgSCN, S1(SCN)₂. As Ba comp. (Walls 2

Casium silver zinc sulphocyanide, CsZnAg(SCN)₄+H₂O. (Wells,)

Cs,ZnAg(SCN)₃. Ppt. Stable in the arr. (Wells.) CsZn₂Ag₂(SCN)₃. Decomp. by cold, more rapidly by hot H₂O. (Wells.) CsZn₂Ag₃(SCN)₃. Slowly decomp. by H₃O. (Wells.)

Cæsium zinc sulphocyanide, Cs₂Zn(SCN)₄+ 2H₂O.
Moderately sol, in H₂O and can be recryst.

therefrom. (Wells.)

Calcium sulphocyanide, Ca(SCN)₂+3H₂O.

Deliquescent. Very sol. in H₂O and alcohol.

Calcium silver sulphocyanide, Ca(SCN), 2AgSCN+2H₂O. (Wells.)

Calcium stannic sulphocyanide, CaSn(SCN)₈ +7H₂O. Very sol. in H₂O. Can be recryst therefrom. Sol in alcohol and acetone. (Weinland and Bames. Z. anorg. 1909, 62, 258)

Cerous sulphocyanide, Ce(SCN)₂+7H₂O.
Deliquescent. Sol in H₂O and alcohol (John, Bull. Soc. (2) 21. 534.)

Chromous sulphocyanide with MSCN.

See Chromosulphocyanide, M.

Chromic sulphocyanide, Cr(SCN)₁.

Deliquescent, and sol. in H₂O.

Somewhat sol in organic solvents. (Speransky, C. C 1897, I. 141.

See also Chromisulphocyanhydric acid.

Chromic sulphocyanide with MSCN. See Chromisulphocyanide, M.

Cobatinus sulphocyanide, Co(SCN),++/SH,O. Sol. m H₂O and alcohol; also m ether. Sol. in liquid SO₂. (Walten, B. 1899, **23**, 2894). Sol. in accione. (King and M. Elroy.) Sol. in methyl acetate. (Naumann, B. 1909, **22**, 5780). The H₂O and m alcohol. (Rosenheim and Cohn, Z. anorg. 1901, **27**, 288.)

Cobaltous mercuric sulphocyanide, Co(SCN)₂, Hg(SCN)₂. Very sl. sol. in H₂O and dil. HCl+Aq. Easily sol. in HNO₂+Aq. (Clave I pr. 91

Easily sol, in HNO₄+Aq. (Cleve, J. pr. 91, 227.)

Cobaltous potassium sulphocyanide, CoK₂(SCN)₄.

Decomp, by H₂O, (Treadwell, Z anorg. 1901, 26, 109, -4H.O. Sol. in H.O. Sol. in methyl. ethyl and amyl alcohol, in acctone and in ether+Aq. Can be recryst, from H₂O or

alcohol without decomp. (Rosenheim and Cohn, Z. anorg. 1901, 27, 289.) Cobaltous silver sulphocyanide, CoAg(SCN):

+2H₂O. Decomp. by H₂O. (Shma and Wells, Am Ch. J. 1903, 29, 476) Ag₄Co(SCN)₄. Almost msol. in H₂O and in alcohol. (Rosenheim, Z. anorg. 1901, 27. 291.)

Cobaltous sodium sulphocyanide,

Na₄Co(SCN)₄+8H₂O Sol. in H₂O and m alcohol. (Rosenherm.)

Cobaltous sulphocyanide ammonia, Co(SCN)2 2NHa and Co(SCN)2, 6NHa.

(Peters, B, 1908, 41, 3178.) Co(SCN)2, 4NH3. Sol in H2O and alcohol (Sand, B, 1903, 36, 1439.)

Cobaltous sulphocyanide mercuric chloride, 2Co(SCN)2, 2HgCl2 (Hantzsch and Shibata, Z. anorg. 1912, 73.

32Ò 2Co(SCN)₂, 3HgCl₂ (Hantsch and Shibata.) 3HgClo. Easily decomp.

Cuprous sulphocyanide, CuSCN

1 l. H₂O at 18° dissolves 0.004 mg. mols. or 0.5 mg CuSCN. (Kohlrausch and Rose, Z. phys. Ch. 1893, 12. 241.) Insol in dil. acids. Sl. sol. in cold, easily in warm conc. HCl+Aq H₂SO₄ or HNO₂+Aq. Sol. with combination in NHOH+Aq Insol. in KSCN+Aq. NH₄OH+Aq Insol. in KSCN+Aq. Less sol in H₂SO₂ and H₂SO₄+Aq than in

HNO₂. (Kuhn, Ch. Z. 1908, 32, 1056.) Sol m Feg(SO4)3+Aq. (Johnson, J. Soc. Chem. Ind 1889, 8, 603.1

KSCN+Aq (85-90 g in 50 g. H₂O) dissolves 18 g. CuSCN. (Thurnauer, B. 1890. 23, 770)

Sol. in ether. (Skey, C. N. 1867, 16, 201.) Cupric sulphocyanide, Cu(SCN)2.

Decomp by H2O to cuprous salt. Sol. in warm HCl, H₂SO₄, or HNO₂+Aq. Sol. in MSCN+Aq, but solutions decomp. by dilu-tion Sol. in NH₄OH+Aq

Solubility in NH_{*}OH+Aq at 25° and at 40° At 25°.

	One gro	an of solution (contains	1000 mols. I
/25°	g NH ₂	g Cu(SCN):	g H ₂ O	Mols NH;

	One gram of solution contains			1000 mols. H ₂ O dissolve		Composition of solid	
Sp. gr. 25°/25°	g NH ₃	g Cu(SCN)2	g H,O	Mols NH;	Mols, Cu(SCN):	salt in contact with solution	
0 99853 0 99871 1.00703 1 01336 1.01506 1.01705 1.02132 1.01661 1.00816	0 2147 0 1655 0 0993 0.0639 0.0535 0.0426 0 0250 0.0198 0.0079	0.1522 0.1124 0.0798 0.0659 0.0622 0.0596 0.0511 0.0408 0.0245	0 6331 0.7221 0.8209 0 8702 0 8843 0 8978 0.9239 0.9394 0 9676	358 04 242 02 127 76 77.51 64.05 50 21 28 55 22.27 18.61	24.09 15.60 9.74 7.59 7.04 6.65 5.55 4.35 2.54	Cu(SCN) ₂ , 4NH ₂	

At 40°.

0 1802	0.1976	0.6222	306 28	01.00	1
				31.83	
0 1398	0.1658	0.6944	213.10	23 93	11
0 0758	0.1299	0.7943	101 00	16 38	ll o com arm
0 0550	0 1207	0.8243	70 59	14 67	Cu(SCN)2, 4NH2
0 0435	0.1178	0 8388	54 82	14.07	11
0 0352	0.0876	0.8772	42 53	10.00	[]
0.0257	0.0655	0.9088	30 00	7.22	11
0 0177	0.0418	0.9405	19 86	4.46	Cu(SCN)2, 2NH3
0.0094	0.0281	0.0625	10.31	9 02	

(Horn, Am. Ch. J. 1907, 37, 471.)

Insol. in methyl acetate. (Naumann, B. | Cuprocupric sulphocyanide, Cu(SCN)2, 1909, 42. 3790.)

Cus(SCN): Not attacked by hot HCl+Aq. Insol. in KSCN+Aq.

Almost insol, in cold H2O and in alcohol: sl. sol in boiling H.O (Rosenheim, Z. anorg. 1901, 27, 286)

Cuprous potassium sulphocyanide, CuSCN. SKSCN.

Deliquescent Decomp, by H.O. (Thurnauer, B. 1890, 23. 770.)

Cuprous sulphocyanide ammonia, Cu2(SCN)2,

Decomp, in the air. (Richards, Z. anorg. 1898, 17, 247.) Cu₂(SCN)₂, 5NH₂, Very unstable in the air. (Richards)

Cupric sulphocyanide ammonia, Cu(SCN)2. 2NH.

Sol. in little H2O, but decomp, by dilution with putn, of basic salt. Sol. in NH,OH+Ac. m H₀ with separation of CasCo. Litter-sched, Arch Pharm. 1901, 239, 337.)
Insol in H₀ Sol in H₀ containing a small energy of c By long standing a small amount dissolves small amount of ammonia (Horn, Am.

Ch J. 1907, 37, 477.) Cu(SCN), 4NH, Very unstable in the sulphocyanides (Krüss and Moraht.)

with pptn, of a basic salt. (Horn) 100 pts. N/10 NH₄OH+Aq dissolve 10.4 nts, anhydrous salt at 25°. (Pudschies, Dissert.)

Loses NH2 in the air. Sol. in H_{*}O. (Kohlschutter, B, 1904, 37. 1156.)

Decomp, in the air and by H₂O and dil and cone. acids, sol in cold cone. HNO; and NH4OH+Aq. Sol. in boiling cone. HCl. (Richards, Z. anorg 1898, 17, 250.)

Didymium sulphocyanide, Di(SCN)++6H+0 Deliquescent, and sol, in H2O.

Erbium sulphocyanide, Er(SCN),+6H,O. Deliquescent, Sol. in H.O. (Höglund.)

Glucinum sulphocyanide, Gl(SCN)2 (?). Sol. in H_{*}O (Hermes, J pr. 97, 465.)

Gold (aurous) potassium sulphocyanide, AuSCN, KSCN. Easily sol. in H₂O, less in absolute alcohol.

(Cleve, J. pr. 94, 16) Gold (aurous) notassium sulphocyanide

ammonia, KAu(SCN)2, 5NH4. (Peters, B. 1908, 41, 3178.)

Gold (auric) potassium sulphocyanide ammonia, KAu(SCN)4, 4NH3. (Peters.)

Cupric mercuric sulphocyanide, CuHg(SCN)4. Gold (aurous) silver sulphocyanide, AuSCN, AgSCN

Insol in H₀O. Sol. in NH₂OH+Aq.

Gold (auric) potassium sulphocyanide. Sol. in H.O. alcohol, and other. (Cleve.)

Gold (aurous) sulphocyanide ammonia, AuSCN, NH. Very sl. sol in cold. decomp, by hot H₂O.

Iron (ferrous) sulphocyanide, Fe(SCN)2+ 3H.O.

Very sol. in H₂O, alcohol, or ether. Sol. in acetone. (Krug and M'Elroy.)

Iron (ferric) sulphocyanide, Fe(SCN)++3H+0. Deliquescent. Very sol. in H₂O, alcohol, or ether Ether extracts the salt from

Fe(SCN)₂+Aq. Decomp. by much H₂O if pure. Not decomp. by monobasic acids, but cone. H₂SO₄, and H₂PO₄, also oxalic,

More deliquescent than the other ferric

Sol. in H2O, but decomp. by much H2O Iron (ferrous) mercuric sulphocyanide. Fe(SCN)2, Hg(SCN)2+2H2O. Moderately sol. in hot H-O (Cleve, J.

pr. 91, 227.)

Iron (ferric) potassium sulphocyanide, Fe(SCN), 3KSCN+xH₂O.

Extremely deliquescent, and sol. in H₂O, (Krüss and Moraht.) Fe(SCN)₄, 9KSCN+4H₂O. Hygroscopic. Sol. in H₂O without decomp. Insol. in pure anhydrous ether, but decomp, by ether containing traces of H2O into Fe(SCN), and KSCN. (Kritss and Moraht, A. 260, 204.)

Iron (ferrous) sodium sulphocyanide, Na₄Fe(SCN)₄+12H₂O. Sol. in H₂O and alcohol. (Rosenheim, Z. anorg 1901, 27, 299.)

Iron (ferric) sodium sulphocyanide, Fe(SCN), 9NaSCN+4H₂O. Less deliquescent than the corresponding

NIL or K salt. (Kruss and Moraht.) Na₂Fe(SCN)₄+12H₂O. (Rosenheim, Z. anorg. 1901, 27. 297.)

Lanthanum sulphocyanide, La(SCN):+ 7H₂O Deliquescent, sol. in H₂O. (Cleve.)

Lead sulphocyanide, basic 6PbO, Pb(SCN)2+2H2O. Ppt.

Pb(SCN)₂, PbO+H₂O, Insol. in H₂O, (Stromholm, Z anorg, 1904, 38, 440.)

Lead sulphocvanide, Pb(SCN): Nearly insol in cold, decomp by boiling

H₂O. (Liebig. Sl. sol. in H.O. 4.5×10 g, are dissolved in 1 liter of sat.

solution at 20°. (Böttger, Z phys Ch. 1903. 46, 603.) Lead sulphocyanide bromide, Pb(SCN)2,

8PbBra (Grissom and Thorp, Am. Ch. J. 10, 219)

Lead sulphocyanide chloride, PbSCNCi Sl. sol. in cold, easily sol in hot H₂O. (Murtry, Chem. Soc. 55. 50.) Sol. in H₂O. (Grissom and Thorp, Am. Ch. J. 10, 229.)

Lead sulphocyanide iodide, 3Pb(SCN), PbI. Sol in H.O. (Grissom and Thorn, Am. Ch. J. 10, 229.)

Lithium sulphocyanide, LiSCN.

Very deliquescent. Sol. in H-O and alcohol. (Hermes, Z. Ch. 1866, 417. Sol. in methyl acetate. (Naumann, B. 1909, 42, 3789,)

Magnesium sulphocyanide, Mg(SCN)2+ Deliquescent. Easily sol. in H₂O and

Magnesium stannic sulphocyanide.

alcohol.

MgSn(SCN),+6H,O. Hygroscopic. Sol. in H.O. alcohol and acetone. (Weinland and Bames, Z. anorg. 1909. 62, 258.)

Manganous sulphocyanide, Mn(SCN),+ Deliquescent. Easily sol. in H2O and alcohol

Mercurous sulphocyanide, Hg2(SCN)2. Insol, in H2O. Sol. in hot HCl+Aq. Slowly decomp, by hot agua regia. Sol. in hot KSCN+Aq.

Mercuric sulphocyanide, basic, Hg(SCN), 3HgO.

Insol. in H₂O. Easily sol. in HCl+Aq. Insol. in H₂SO₄ or HNO₃+Aq. (Fleischer.) Hg(SCN)₂, 2HgO. Insol. in H₂O Sl. attacked by acids. (Claus, J. pr. 15. 491.)

Mercuric sulphocyanide, Hg(SCN);

Very al. sol. in cold, much more easily in hot H₂O. Easily sol. in dil. HCl+Aq. (Crookes, Chem. Soc. 4. 18.) Solubility in H₂O = 0.00218 mol. in 1 l. (Grossmann, Z. anorg. 1904, 43, 358.) More sol. in H₂O than in alcohol. (Peters, B. 1908, 41, 3180.)

Very sl sol, in H₂O at 25°. Appreciably sol, only in boiling H₂O (Jander, Dissert. 1902.) Sol in Hg(NO₂), or KSCN+Ag, also in

NH.Cl+Aq. Sol. in many sulphocyanides Easily sol. in cold HCl, NH4Cl, KCl or BaCl₂+Aq. (Hermes, J. pr. 1866. (1) 97.

Very sol, in liquid NH2. (Franklin, Am. Ch. J. 1898, 20, 829.) Sl. sol. in benzonitrile, (Naumann. B. 1914, 47, 1369.

Mercuric hydrogen sulphocyanide, Hg(SCN)2, 2HSCN.

Easily decomp. (Hermes, Dissert, 1866.) Mercuric nickel sulphocyanide, Hg(SCN)2,

Ni(SCN),+2H,O. Moderately sol, in hot H2O (Cleve, J. pr 91, 227.) Very sol. in MSCN+Aq (Orloff, C C. 1906, I. 1411.)

Mercuric potassium sulphocyanide, Hg(SCN)₂, KSCN

Sol, in cold, more easily in hot H.O. Sol. m alcohol and ether. Very sol, in NH4Cl or KCl+Ac (Claus.) KaHg(SCN)4 Very sol. in HaO: sol. in alcohol. Insol. in anhydrous ether. (Rosenheim. Z. anorg. 1901. 27, 285.)

Mercuric rubidium sulphocyanide.

1904, 37, 1259.)

3178.)

Hg(SCN)2, RbSCN. Sol, in alcohol without decomp. Decomp. by H₂O Hg(SCN), 2RbSCN+1/2H2O. Easily sol, in H₂O without decomp. (Grossmann, B.

Mercuric sodium sulphocyanide. Na₂Hg(SCN)₂.

Very hydroscopic, (Rosenheim, Z. anorg. 1901, 27, 286.)

Mercuric zinc sulphocyanide, Hg(SCN)2. Zn(SCN)2. Scarcely sol, in cold H₂O. Easily sol, in HCl+Aq. (Cleve.)

Mercuric sulphocyanide ammonia, 2Hg(SCN)₂, 3NH₂+½H₂0. Decomp. by H₂O and alcohol. Hg(SCN)₂, 4NH₃. (Peters, B. 1908, 41.

Mercuric sulphocyanide ammonium bromide, Hg(SCN)₂, NH₆Br.

Decomp. by H2O. Sol in alcohol. (Grossmann, Z. anorg. 1903, 37. 418.)

Mercuric sulphocyanide ammonium chloride, $Hg(SCN)_2$, NH_4Cl . Decemp by H2O. Sol. in warm alcohol

from which it can be cryst (Grossmann.)

Mercuric sulphocyanide bromide, HgSCNBr. Insol in cold H2O; sol in hot H2O and in alcohol. (Rosenheim, Z anorg. 1901, 27. 282.)

Mercuric sulphocyanide chloride, HgSCNC1. Insol in cold H₂O Sol in hot H2O and alcohol, (Rosenheim)

Mercuric sulphocyanide potassium bromide, Hg(SCN), 2KBr. Very sol. in H2O. (Grossmann, Z. anorg. Platinous sulphocyanide, Pt(SCN)2(?). 1903, 37, 418.)

Mercuric sulphocyanide potassium chloride, Hg(SCN)₂, KCl.

Decomp by H₂O Not decomp by regrest, from warm alcohol (Grossmann.)

Molybdenum sulphocyanide, Mo(SCN):(?). Sol. in H₂O and ether. (Braun, Z. anal. 6.

Molybdenum potassium sulphocyanide, K₂Mo(SCN)₆+4H₂O

Cryst, from boiling H2O and alcohol (Chilesotti, Gazz. ch. 1t 1904, 34. (2) 493)

Molybdenum sodium sulphocyanide, Na₃Mo(SCN)₆+12H₂O, (Rosenheim, B. 1909, 42, 154)

2388.)

Molybdenum thallous sulphocyanide. MoTla(SCN). (Rosenheim and Garfunkel, B. 1908, 4)

Molybdenum sulphocyanide zinc amine. 2Mo(SCN), 3Zn(NHs).

(Rosenheim and Garfunkel, B. 1908, 4: 2390.)

2Mo(SCN)₆(OH), Zn₃(NH₅)₁₁. Can be cryst. from boiling NH₂OH+Aq. Air-dried probably has the composition 2Mo(SCN)₈ (OH), 3Zn(NH₃)₄+2H₂O. (Maas and Sand, B. 1908, 41. 1510.) 2Mo(SCN)s(OH), Zns(NHz)13. (Maas and Sand.)

Nickel sulphocyanide, Ni(SCN)2.

Sol. in H₂O. (Grossmann, B. 1904, 37.) 565.) +½H₂O. Sol. in H₂O and alcohol. Insol. in acetone. (Krug and M'Elroy.)
+1½H₂O. Sol in H₂O (Rosenheim and Cohn, Z. anorg. 1901, 27, 292.)

Nickel potassium sulphocyanide, K₄Ni(SCN)₅+4H₄O.,

Sol, in H.O with decomp. Sl sol, m cold, easily sol, m hot alcohol. (Rosenheim, Z anorg. 1901, 27. 292.)

Nickel sodium sulphocyanide, NiNa₂(SCN)₄+8H₂O.

Sol in H₂O with decomp Sl. sol. cold, readily sol hot alcohol. (Rosenheim, Z. anorg. 1901, 27. 292.)

Nickel sulphocyanide ammonia, Ni(SCN)2. 3NH.

(Peters, B. 1908, 41, 3178) Ni(SCN)₂, 4NH₂. Decomp. by H₂O.

Insol. in H₂O. See Platinosulphocyanides, and Platinososulphocyanides.

Potassium sulphocyanide, KSCN, Deliquescent, Very sol. m H₂O. pts. H₄O dissolve 177,2 pts at 0°, and 217,0 pts. at 20°. 100 g. sat, KSCN+Aq contain 70.5 g.

KSCN at 25°. (Foote, Z. phys Ch. 1903, 46. 150 pts KSCN+100 pts, H₂O at 10.8° lower the temp. 34.5°. (Rüdorff, B. 2. 68.)

Solubility of KSCN+AgSCN at 25°.

	KSČN	AgSCN	Solid phase
	70.53 66.55	0 00 9 32	KSCN KSCN+2KSCN, AgSCN
	64.47	10 62	2KSCN, AgSCN
	61.25 58.34	11 76 13 55	"
1.	53.21 50 68	17 53 20 43	2KSCN, AgSCN+KSCN,
1,	49 43	20 32	AgSCN KSCN, AgSCN
	32 51 24.68	18 34	"
1.	23.86	16 07	KSCN, AgSCN+AgSCN

(Foote, Z. phys. Ch. 1903, 46. 81) See also AgSCN.

Sol. in alcohol, especially easily if boiling, Sol. in acetone. (Krug and M'Elroy.) Sol. in liquid SO₂. (Walden, Z anorg. 1902. 30, 160.)

100 g. acetone dissolve 20.75 g. KSCN at 22°, and 20.40 g. at 58°. 100 g. amyl alcohol dissolve 0.18 g. KSCN at 13°; 1.34 g. at 65°; 2.14 g. at 100°; 3.15 g. at 133.5.°

100 g. ethyl acetoate dissolve 0.44 g. KSCN

at 0°; 0.40 g. at 14°; 0.20 g. at 79°. 100 g. pyridine dissolve 6.75 g. KSCN at 0°; 6.15 g. at 20°, 4.97 g. at 58°; 3.88 g. at

97°; 3.21 g at 115°. (Laszeynski, B. 1894, 27, 2285.)

100 g. acetonitrile dissolve 11.31 g. KSCN at 18°. (Naumann and Schier, B. 1914, 47.

Sl. sol. in benzonitrile (Naumann, B. 1914, 47, 1369.)

Sol. in methyl acetate. (Naumann, B 1909, **42**, 3789)

Potassium ssium molybdenyl sulphoc 3KSCN, Mo(OH)(SCN)₄+4H₂O sulphocyanide, Sol. in H2O. (Sand and Maas, B 1908, 41. 1508)

Potassium silver sulphocyanide, KSCN,

AgSCN. Decomp, by H₂O,

See Donk under KSCN. 2KSCN, AgSCN. Stable in the air. (Wells, Am. Ch. J. 1902, 28. 265.)

See Donk under KSCN 3KSCN, AgSCN (Wells,)

Potassium stannic sulphocyanide,

K₂Sn(SCN)₄+4H₂O Very sol. in H₂O.

Sol. in alcohol and acctone. (Weinland and Bames, Z. anorg, 1909, 62, 258)

Potassium titanyi sulphocyanide, 2KSCN, TiO(SCN)₂+H₂O.

Sol, in cold H_{*}O without immediate decomp. but slowly decomp. (Rosenheim and Cohn, Z. anorg 1901, 28, 169.)

Potassium vanadium sulphocyanide, 3KSCN, V(SCN)₈+4H₂O.

Sol. in H₂O. Sol. in alcohol with a green color. Sl. sol. in ether. (Ciocci, Z. anorg.

1898, 19. 309.)
Sol in H₂O with decomp ; stable in aq solution in the presence of an excess of KSCN; sol. in alcohol. (Locke, Am. Ch. J. 1898, 20. 604.)

Potassium vanadyl sulphocyanide, K2VO(SCN),+5H2O.

Sol. in H₂O, alcohol, ether, amyl alcohol and ethyl acctate (Koppel, Z. anoig. 1903, 36. 292.)

Potassium zinc sulphocyanide, 2KSCN, Zn(SCN)₂+3H₂O.

Easily sol, in alcohol. (Walden, Z. anorg. 1900, 23, 374.)

Potassium sulphocyanide mercuric bromide, KSCN, HgBr2.

Very sol. in H₂O. Sol. in alcohol. (Grossmann, B. 1902, 85, 2945) 2KSCN, HgBr₂. Very sol. in H₂O. Sol. in alcohol. (Grossman.)

Potassium sulphocyanide mercuric iodide. Undecomp by solution in cone alcohol, or in KSCN+Aq (Grossmann, Z. anorg. 1903, 37, 421)
1903, 37, 421)
Decomp. by H₂O. (Philipp,

Silicon sulphocyanide, Si(SCN)4.

2KSCN, HgI2

Decomp, by H₂O and alcohol. Sol in CS₂, CHCl₃ and ligroin, (Reynolds, Proc Chem. Soc 1906, 22, 17.)

Silver sulphocyanide, AgSCN.

1 H₂O dissolves 1.08×10.4 g. mols. AgSCN at 25° (Kuster and Thiel, Z. anorg. 1902, 33, 139.) 1 H₂O dissolves 1.25×10.6 gram-atoms

of silver at 25° (Abegg and Cox, Z. phys. Ch. 1903, 46, 11.) Sl. sol in H₂O

1 liter of sat, solution at 19 96° contains 1 37×10 4 g. Z. phys. Ch. 1903, 46, 603.) 6.4 milligrams are dissolved in 1 liter of sat solution at 100°. (Bottger, Z. phys Ch.

1906, 56. 93) Solubility product of AgSCN is 0.49 and 1.16×10-11 mols, per l. at 18° and 25° respectively. (Kirschner, Z. phys. Ch. 1912.

79. 245 Solubility in H₂O=1.2×10⁻⁴ g mol per hter at 25° (A. E. Hill, J. Am. Chem. Soc. 1908, 30° 74.) 1 l. H₂O dissolves 0 00025 g. AgSCN at

1 1. H₃O GISSOIVES O'UOZO E. AGSCIN AT 21°. (Whitby, Z. anorg. 1910, 67°. 108.) Insol. in acids, excepting conc. H₂SO₄ or HNO₅. Insol. in dil, sol. in conc. NH₄OH+ Aq. Sol. in KSCN+Aq. Insol. in AgNO₇, or NH₄SCN+Aq. Sol. in Hg₅(NO₇)₂+ Aq.

Solubility in KSCN at 25°

Mol. KSCN in 1 litre	g AgSCN in 1 litre
1 25 1 20	22 34 19 93
1 12 1 066	16 18
0.626	14 10 2.80
0 573	2 06

(Hellwig, Z anorg 1900, 25, 184)

Solubility in N/10 KSCN+Aq at 18°=2.5 ×10 . (Kuschner, Z. phys Ch 1912, 79. 247.)

See also KSCN. 1 l. of a 3-N solution of AgNO; dissolves 0 432 g AgSCN at 25° Nearly insol, in less dil. solution. (Fellwig, Z. anorg, 1900, 25.

Insol, in methyl acetate (Naumann, B. 1909, 42, 3790)

Insol, in ethyl acetate, (Hamers, Dissert, 1906; Naumann, B 1910, 43, 314.)

Silver strontum sulphocyanide, 2AgSCN, Sr(SCN)₂+2H₂O.

Stable in the air. (Wells, Am Ch. J. 1902, cyanides.

Silver zinc sulphocyanide, 2AgSCN, Zn(SCN)₂ Decomp. by hot H₂O. (Wells)

Silver sulphocyanide ammonia, AgSCN, $2NH_3$. Decomp. by H_2O . Samarium sulphocyanide, $Sim(SCN)_3+6H_2O$.

Very deliquescent. (Cleve.)
Sodium sulphocyanide, NaSCN.

1909, 42. 3789.)

Very deliquescent. Very sol in H₂O and alcohol Sol, in benzonitrile. (Naumann, B 1914, 47, 1369) Sol, in methyl acetate (Naumann, B

Sodium stannic sulphocyanide, Na₂Sn(SCN)₄ +6H₂O. Very sol. in H₂O. Sol. in alcohol and ace-

tone (Weinland and Barnes, Z. anorg. 1909, 62, 257)

Sodium vanadium sulphocyanide, 3NaSCN, V(SCN)₄+12H₂O.

Very hygroscopic Sol m H₂O and alcohol. (Clocci, Z. anorg. 1898, 19, 313.)

Strontum sulphocyanide, $Sr(SCN)_2+3H_2O$. Very deliquescent, and sol in H_2O and alcohol.

Strontium stannic sulphocyanide, SrSn(SCN)₆ +12H₂O. Sol. in H₂O, alcohol and acetone. (Wein-

land and Bames, Z. anorg. 1909, 62, 259.)

Thallium sulphocyanide, TISCN.

Sl. sol. m H₂O. 3 15 g. are contained in

1 liter of sat. solution at 20°; 3.905 g. at 25°; 7 209 g. at 39,75°. Insol. in alcohol. (Böttger, Z phys. Ch. 1903, 46, 603.)

Titanyl sulphocyanide, $T_1O(SCN)_2+2H_2O$. Sol. m cold H_2O .

Tin (stannous) sulphocyanide, Sn(SCN)₂. Sol. in H₂O and alcohol. (Classen, J. pr. 96, 349.) Sol. in cold H₂O. (Rosenheim, Z. anorg. 1901, 28, 168.)

Yttrium sulphocyanide, Y(SCN)₈+6H₂O.

Not deliquescent. Very sol. in H₂O, alcohol, or ether.

Zinc sulphocyanide, Zn(SCN)₂. Less sol. in H₂O and alcohol than most other

Zmc sulphocyanide ammonia, Zn(SCN);

12NH₄.

Decomp. by H₄O. Sol, in NH₄OH+Aq.

Sulphocyanoplatinic acid. See Platinosulphocyanhydric acid.

Sulphocyanoplatinous acid. See Platinososulphocyanhydric acid.

Sulphohypophosphoric acid.

Aluminum sulphohypophosphate, Al₁(PS₁)₁.

Unstable in the air. Sol. in H₂O with decomp. (Friedel, C. R. 1894, 119. 262.)

Cadmium —, Cd₂P₂S₆.

Partially decomp in moist air. Decomp. by H₃O, cold HNO₃ or alkalis+Aq. (Ferrand, A. ch 1899, (7) 17, 423, Bull. Soc 1895, (3) 13, 116.)

Chromium ——, Cr₂P₂S₆. Insol in HNO₅. Very sl. attacked by aqua regia. (Ferrand)

Cupric ——, Cu₂P₂S₆ Ppt. (Friedel, C. R. 1894, **119**, 262.)

Lead —, Pb₂P₂S₅.

Not decomp. by boiling H₂O. (Friedel.)

Mercuric —, Hg₂P₂S₄.

Slowly decomp. by boiling H₂O, more rapidly by KOH+Aq. (Friedd.)

Nickel ——, N₁₂P₂S₆.

Not attacked by boiling H₂O or hot or cold acids. SI, attacked by aqua regia (Ferrand, A. ch. 1899, (7) 17. 416.)

Silver —, Ag₄P₂S₆. Ppt. (Friedel, C. R. 1894, **119**, 263.)

Tin (stannous) hypophosphate ——, SnPS₁.

Decomp. by boiling H₂O. Sol m dil. KOH
+Aq. (Friedel, C. R. 1894, 119, 264.)

Tin (stannic) —, SnP₂S₈.

Easily decomp by boiling H₂O. Sol. in dil. KOH+Aq. (Friedel)

Zinc sulphohypophosphate, Zn₂P₂S₄. Decomp in moist arr. Insol. in H₂O. Partially decomp. by boiling H₃O. Violently attacked by HNO₄. Sol in aqua regis. Not attacked by HCl. (Ferrand, A. ch. 1899, (7) 17. 421.)

Zinc ——, Zn₂P₂S₆.
Insol. in H₂O. Partly decomp. by boiling H₂O Not decomp. by HCl or HNO₂ but by aqua regia (Ferrand, Bull. Soc. 1895, (3) 13.
115.)

Sulphomolybdic acid.

Ammonium sulphomolybdate, (NH₄)₂MoS₄. Easily sol. in H₂O; very sl. sol. in alcohol (Berzelius, Pogg. 83. 261)

Ammonium cupric sulphomolybdate. Sl. sol, in H₂O. (Debray, C. R. 96, 1616.)

Barium sulphomolybdate, BaMoS,
More sol. in H₃O than BaMo₂S₁₀. Known
only in solution. (Berzehus.)
BaS, 3MoS₂=BaMo₂S₂₀. Sl. sol. in cold,
easily sol. in hot H₄O. Not decomp. by conc.
cold HNO₁+Aq, but more easily by dil.
HNO₁+Aq. (Berzehus.)

Cadmium sulphomolybdate. Insol. in H₂O. (Berzelius)

Cæsium sulphomolybdate, Cs₂S, 3MoS₄+ 7H₂O. As Rb comp (Herschfinkel, Dissert 1907.) 3Cs₃S, 5MoS₄ (Herschfinkel.)

Calcium sulphomolybdate, CaS, 3MoS₁.

Sol. in H₂O. (Berzelius.)
CaMoS₄ More sol. in H₂O than CaS,
3MoS₃. Known only in solution. (Berzelius.)

Cerium sulphomolybdate. Precipitate. (Berzelius.)

Cobalt sulphomolybdate, CoMoS₄. Sol. in K₂MoS₄+Aq. (Berzelius.)

Cupric sulphomolybdate. (Debray, C. R. 96. 1616.)

Ferrous sulphomolybdate, FeMoS₄.
Sol. in H₂O. (Berzelius.)

Ferric sulphomolybdate, Fe₂(MoS₄)₄. Sol. in K₂MoS₄+Aq.

Lead sulphomolybdate. Ppt. (Berzelius.) Lithium sulphomolybdate. Not deliquescent, but very easily sol in H_2O . (Berzelius.)

Magnesium sulphomolybdate, MgMoS₄, Sol. in K₂MoS₄+Aq (Berzelius)

Manganous sulphomolybdate, MnMoS_t. Sol in H₂O. (Berzelius.)

Mercurous sulphomolybdate, Hg₂MoS₄ (?), Ppt

Mercuric sulphomolybdate, HgMoS₄. Insol. in K₂MoS₄+Aq.

Nickel sulphomolybdate, NiMoS₄. Sol. in K₂MoO₄+Aq. (Berzelius.)

Potassium sulphomolybdate, basic, K_tMo₅S₆. Easily sol. in H₂O. Insol in alcohol and ether. (Kruss, B. 16. 2050.)

Potassium sulphomolybdate, K₂MoS₄. Sol. in H₂O, from which it is precipitated by alcohol. (Berzelius)

Rubidium sulphemolybdate, 3Rb₂S, 8MoS₂+ 30H₂O Very sl. sol. in H₂O. Sol. by addition of NH₂. (Herschfinkel, Dissett, 1907.)

5Rb₂S, 6MoS₂. (Herschinkel)

Silver sulphomolybdate, Ag₃MoS₄.

Ppt.

Sodium sulphomolybdate, Na₂MoS₄.

Sol. in H₂O, and not precipitated by al-

cohol from aqueous solution. (Berzelius.)

Strontium sulphomolybdates.

Exactly analogous to the Ba salts, which

Zinc sulphomolybdate.

Ppt. Insol. in H₂O. (Berzelius.)

Monosulphomolybdic acid.

Sodium monosulphomolybdate, Na₂MoO₂S. Rather hygroscopic. Sol. m H₂O; forms deep blue solution with H₂SO₄. Sol. m HC₂H₂O₂+Aq. (Krus, A 225. 1.)

Disulphomolybdic acid.

see (Berzelius.)

Ammonium disulphomolybdate, (NH₄)₂MoO₂S₂.

Sl. sol. in cold, easily in hot H₂O. Insol. in sat. NH₄Cl+Aq and absolute alcohol. Aqueous solution is decomp by boiling. (Bodenstab, J. pr. 78, 186.) Potassium disulphomolybdate, K2MoO2S2, Very sol. in H₂O and alcohol. Sol. in HC₂H₃O₂+Aq (Kruss, B. 16, 2046.)

Trisulphomolybdic acid.

Ammonium hydrogen trisulphopuromolybdate, NH, HMo, O.S.

Precipitate. Insol. in alcohol or CS2. (Kriss, B 16, 2047.)

Potassium hydrogen trisulphopyromolybdate, KHMo.O.S.

Very easily sol, in H₂O. (Krüss, B. 16. 2048.)

Sodium hydrogen trisulphoppromolybdate. NaHMosO.S.

Precipitate. Much more sol, in H-O than the NH4 compound. (Krüss, B. 16, 2047.)

Potassium sulphomolybdate, K.Mo.S.O. Sol in H.O. HC, H.O. and H.SO. (Kruss. B. 17, 1771.)

Pentasulphomolybdic acid.

Potassium pentasulphomolybdate, KMoS5, Sol. in warm H.O (Hofmann, Z. anorg, 1896, 12. 62.)

Persulphomolybdic acid, H2MoS4. Precipitate. Insol. in H2O, alcohol, ether,

CS2, and acetic acid. Decomp. slowly by hot H₂SO₄. Sol. in warm KOH+Aq, and cold K₈S+Aq. Not attacked by cold KSH+Aq, but dissolves on warning. (Kruss, B. 17. 1773.)

Ammonium persulphomolybdate, (NH₄),MoS₅.

Very al sol, in cold, more easily in hot H₀O. Insol in NH₄OH+Aq. (Berzelius.)

Barium —, BaMoSs. Insol. in boiling H₂O or dil HCl+Aq.

(Berzelius.)

Calcium ----Difficultly sol. in H₂O. (Berzelius.)

Cerium ----Precipitate. (Berzelius.)

Ferrous ----.

Insol. in Fe salts + Ag. but sol. in K. MoS. + Ag. (Berzelius.)

Ferric ----. Pot.

Lithium persulphomolybdate. Sl. sol. in cold, easily sol. in hot H2O. (Borzelins)

Magnesium ----.

Insol, precipitate. (Berzehus.) Nickel ---

Ppt. Sol. in K2MoSs+Aq, from which it separates in 24 hours (Berzelius.)

Potassium ----. K.MoSs. Almost insol, in cold, more sol, in hot HrO. Insol, in cold KOH+Aq. (Berzelius.)

Potassium hydrogen ---- KHMoS. Sol. in H₂O, (Krüss.)

Sodium --- NasMoSc. Sl. sol in cold, easily in hot H₄O. (Berzelius.)

Sodium hydrogen --- NaHMoS. (Krúss.)

Persulphomolybdic acid, HMoS. Sol in H.O. (Hofmann, Z. anorg. 1896, 12. 59.)

Ammonium ---- NH₄MoS₄+H₂O₄ Sl. sol, in HoO and in alcohol with decomp. (Hofmann.)

Cæsium — CsMoS Almost insol, in H₂O, (Hofmann,)

Potassium ----, KMoSo. Sol, in H.O. (Hofmann.) Thallium --- TIMoSa Insol. in H₂O. (Hofmann.)

Sulphonosmic acid.

Potassium sulphonosmate, 7K,O. 40sO, 10 SO, Sol, in H₂O. (Rosenheim, Z, anorg, 1899, 21. 127.) +3H₂O. Sol. in H₂O. (Rosenheim.) +7H₂O Easily sol. in H₂O; decomp. in aq. solution at 70°. (Rosenheim.)
11K₂O, 4OsO₈, 14SO₂+7H₂O. Sol. in H₂O.

(Rosenheim.) Sodium sulphonosmate.

3Na₂O, OsO₃, 4SO₂+5H₂O. Easily sol, in H₂O; decomp, in ag solution, (Rosenheim.)

(Glatzel)

Sulphopalladic acid.

Potassium palladious sulphopalladate, K₂S, Pd₂S, PdS₂=K₂Pd₂S₄.

Insol, in H₂O. Moderately conc. HCl+Aq dissolves out K without evolution of H₂S. (Schneider, Pogg. 141. 526.)

Silver sulphopalladate, Ag:PdS: (Schneider.)

Silver palladious sulphopalladate, Ag₂S, Pd_2S , $PdS_2 = Ag_2Pd_2S_4$. Extraordinarily stable. (Schneider.)

Sodium sulphopalladate, Na₂PdS₂. Slowly sol, in H₂O. Insol, in alcohol. (Schneider, Pogg. 141, 520.)

Sulphophosphide of M. See M phosphosulphide.

Sulphophosphamic acid, PS(OH)a(?). See Thiophosphamic acid.

Sulphophosphod:amic acid, PS(NH₂)₂(?). See Thiophosphodiamic acid.

Sulphophosphotriamide, PS(NH2)2 See Thiophosphoryl triamide.

Sulphophosphoric acid, H-PSO-See Thiophosphoric acid. HaPS4. Known only in its salts,

Ammonium sulphophosphate, (NH,),PS, Stable in the air. (Ephram, B. 1911, 44, 3408.)

Antimony sulphophosphate, SbPS.

Insol. m H₂O, alcohol, ether, CS₂, HCl+ Aq, dil. H₂SO₄+Aq, C₅H₆, or HC₂H₆O₂. Decomp. by boiling with conc. HNO₂+Aq, H₂SO₄, aqua regis, KOH, NaOH or NH₄OH +Aq. (Glatzel, B. 24, 3886.)

Arsenic sulphophosphate, AsPS, Insol. in H2O, alcohol, HCI+Aq, etc. Decomp. by warm HNO₃, agus regis, dil. H₂SO₄; also sol in KOH or NH₄OH+Aq. (Glatzel, Z. anorg. 4. 186.)

Barium sulphophosphate, Bas(PSs) + zHsO. (Ephram, B. 1911, 44. 3409.)

Bismuth sulphophosphate, BiPS. Insol in H₄O, alcohol, ether, CS₃, benzene, HC₃H₅O₄, or dil. H₃SO₄+Aq. Decomp. by boiling HCl+Aq, conc. H₅SO₄, HNO₅, or aqua regiz, also by NaOH, KOH, or NH₄OH +Aq. (Glatzel, Z. anorg. 4, 186.)

Cadmium sulphophosphate, Cd2(PS4)2. Insol in H.O. alcohol, ether, benzene CS2, and HC2H2O2. Decomp by hot HC1+ Aq Very sl attacked by dil H2SO4+Aq. Slowly sol in hot HNOs, rapidly in aqua regia or hot cone. H2SO4 (Glatzel, Z. anorg 4.

Cuprous sulphophosphate, Cu1PS4. Insol in H2O, alcohol, etc.; also in HCl or dil. H₂SO₄+Aq. Decomp by HNO₅, aqua regia, etc., not by KOH or NaOH+Aq.

Ferrous sulphophosphate, Fe₃(PS₄)₂.

Insol. in H₂O, alcohol, ether, etc.; insol. in HCl or hot dil. H₂SO₄+Aq Decom HNO₂, aqua regia, or conc H₂SO₄. Decomp. by H-SO₄. Not attacked by KOH or NH-OH+Ag. (Glatzel.)

Lead sulphophosphate, Pb3(PS4)2

Insol. in H2O, alcohol, etc. Decomp by warm HCl+Aq, conc. HNO₂+Aq; not at-tacked by NH₄OH+Aq; sl. decomp. by KOH +Aq. (Glatzel.)

Manganous sulphophosphate, Mn₃(PS₄)₂, Insol in H₁O, alcohol, ether, benzene, CS₂, or HC₂H₂O₂. Not attacked by HCl+Aq. Sol. in HNO₂ or aqua regia, with separation of S. Not attacked by dll H₂SO₄+Aq. (Glatzel, Z. anorg 4. 186.)

Mercuric sulphophosphate, Hg₂(PS₄), Insel in H2O, alcohol, etc.; also in HCl, dil. HNOs, or HsSO4+Aq. Not attacked by cone. HNO3 or aqua regia; easily sol in HNO₂+Br₂+Aq. (Glatzel.)

Nickel sulphophosphate, Ni₂(PS₄)₂. As the ferrous salt. (Glatzel.)

Potassium sulphophosphate, K,PS,+H,0 Easily sol in H2O. (Ephraim, B. 1911, 44. 3407)

Silver sulphophosphate, Ag. PS. Insol in H₂O, alcohol, etc.; also in HCl, HNO₂, or dil. H₂SO₄+Aq. Decomp by conc. H2SO4, and aqua regia. (Glatzel)

Sodium sulphophosphate, Na₄PS₄+8H₅O. Decomp. by H₂O. Sol. in Na₂S+Aq. (Glatzel, Z anorg. 1905, 44, 65)

Thallous sulphophosphate, Tl. PS.

Insol. in H₂O, alcohol, etc. Sol. in HCl, l. H₂SO₄+Aq, etc. Not attacked by dil. H,SO4+Aq, etc Not attacked by NH4OH+Aq; sl. decomp. by conc. KOH+ Ag. (Glatzel.)

Tin (stannous) sulphophosphate, Sn₂(PS₄)₂ Insol. in H₂O, alcohol, etc. Insol. in dil. H₂SO₄ or HCl+Aq. Decomp. by HNO₃+ Aq. aqua regia, NH₄OH, or KOH+Aq. (Glatzel)

Zinc sulphophosphate, Zu₂(PS₄)₂.

Insol in H₂O, alcohol, ether, etc. Sol. in HCl+Aq or dil. H₂SO₄+Aq. Easily attacked by KOH+Aq; sl. decomp by NH₄OH +Aq. (Glatzel.)

Sulphopyrophosphoric acid.

Aluminum sulphopyrophosphate, Al₂P₂S₇.

Decomp in moist air Violently decomp. by H₂O or acids. (Ferrand, A ch. 1899, (7) 429.)

Cadmium ---, Cd2P2S7.

Decomp. in moist air. Not attacked by cold acids. (Ferrand)

Chromium ---- Cr. P.S.

Decomp. in most air. Not readily attacked by acids. (Ferrand.)

Cuprous ----, Cu₄P₂S₇.

Not attacked by cold H₂SO₄ or boiling HCl. (Ferrand) Sol. in hot conc HNO₂. (Ferrand.) Sol in alkalies, and mall acids except HCl. (Ferrand, C. R. 1896, 122. 886.)

Ferrous ----, Fe₂P₂S₇

Insol. in cold acids. Sl. attacked by boiling HCl or hot KOH+

Decomp. by fused KOH. (Ferrand, A. ch. 1899, (7) 17. 410.)

Lead ----, Pb₂P₂S₇.

Not attacked by cold HNOs. (Ferrand,)

Mercurous ——, Hg₄P₂S₇.

Decomp. by most air or hot HNO₃. (Ferrand)

Almost insol. in acids; decomp. by H₂O

and moist air. (Ferrand, C R. 1896, 122. 888)

Nickel ----, Ni₂P₂S₇.

Decomp by H₂O and by cone. HNO₂ at 150° m a sealed tube. (Ferrand, A ch.

150° m a sealed tube. (Ferrand, A ch. 1899, (7) 17. 418.)

Silver ——, Ag₄P₂S₇.

Not decomp. by H₂O. Decomp by aqua regia. Not attacked by HNO₃. (Ferrand.)

Zinc —, Zn₂P₂S₂. Decomp, in moist air.

Decomp. by H₂O.

Violently attacked by cold HNO₃. (Ferrand)

Sulphophosphorous acid,

 $II_3PSO_3 = SPOH(?)$.

See Thiophosphorous acid. H₂PS₂ Known only in its salts.

Aluminum sulphophosphite, Al₂(PS₃)₂ Verv unstable.

Decomp. in the air. (Ferrand, C. R. 1896, 122. 622.)

Barium sulphophosphite, Ba₂(PS₂)₂+xH₂O. Sol. in dil, acids. Insol in alcohol (Ephraim, B. 1911, 44. 3412)

Chromous sulphophosphite, Cr₅(PS₃)₂.

Easily attacked by hot cone. HNO₁ or aqua regia Decomp by boiling NaOH+Aq. (Fer-

rand, A ch. 1899, (7) 17, 419)
Quite stable in moist air, very slowly attacked by acids (Ferrand, C. R. 1896, 122, 622)

Cuprous sulphophosphite, Cu₃PS₃.

Not attacked by H₂O or hot cone. HCl. Sl attacked by cold fuming HNO₃ Violently attacked by HNO₃, aqua regia

and boiling cone H₈SO₄

Not attacked by boiling NaOH+Aq.

(Perrand, A. ch. 1899, (7) 17. 398.)

Fairly stable, decomp by damp air. (Ferrand, C. R. 1896, 122. 621)

Iron (ferrous) sulphophosphite, Fe₈(PS₈)₂.

Very stable and resists the action of alkalies and acids. (Ferrand, C. R. 1896, **122**, 622.)

Insol in cold acids or hot NCl.

Sol. in hot fuming HNO₂ Insol. in hot 40% KOH+Aq (Ferrand, A. ch 1899, (7) 17, 412.)

Mercuric sulphophosphite, Hg₃(PS₃)₂.

Decomp. in moist air.

Not attacked by cold HNOs Decomp.
by hot HNOs (Ferrand.)

Unstable in the air

Very slowly attacked by acids. (Ferrand, C. R. 1896, 122, 622.)

Nickel sulphophosphite, Nig(PSa)2.

Unstable in the air. Attacked slowly by HNO₂. (Ferrand.)

Silver sulphophosphite, Ag₂PS₂.

Insol. in most reagents. (Ferrand, C. R.

1896, **122**. 622.) Not decomp. by H₂O.

Not easily attacked by acids. (Forrand, A. ch. 1899, (7) 17. 414) Sodium sulphophosphite, Na₂PS₃+xH₂O. Very sol. in H₂O, probably with decomp. (Ephraim, B. 1911, 44, 3410)

Zinc sulphophosphite, Zn₂(PS₂)₂,

Decomp. in moist air SI attacked by H₂O.

Decomp. by HNO₃. 1899, (7) 17, 422.) (Ferrand, A. ch.

Very unstable in the air, and attacked is pptd, by alcohol. (Schneider.) violently by acids. (Ferrand, C. R. 1896, 122, 622.)

Sulphoplatinic acid, H,Pt,S.

Insol, in H₂O, but decomp, on air. (Schneider, Pogg. 138. 604.) H₄Pt₂S₁ Insol. in H₂O, but decomp. very rapidly on air. (Schneider.)

Copper sulphoplatinate, 2CuS, 2PtS, PtS2. Insol, in H2O. HCl, HNO, or aqua regia dissolve out part of the Cu (Schneider, Pogg. 139, 661.)

Lead sulphoplatinate, 2PbS, 2PtS, PtS2. Insol, in hot or cold H2O or HCl+Aq. HNO.+Aq dissolves out Pb partly: aqua regia dissolves completely with difficulty. (Schneider, Pogg. 139, 662.)

Mercuric sulphoplatmate chloride, 2HgS, 2PtS, PtS₂, 2HgCl₂

Insol. in H₂O; not attacked by HCl+Aq, and only partially sol. in boiling aqua regia. (Schneider.)

Potassium sulphoplatinate, K₂Pt₄S₆, Insol, in H2O. HCI+Aq dissolves out K without evolution of H.S.

Composition its potassium platinous sulphoplatinate, K2S, 3PtS, PtS2. (Schneider, Pogg. 138, 604.) K₂PtS₂.

Silver sulphoplatinate, 2Ag2S, 2PtS, PtS2 Insol. in H2O or HCl+Aq. HNO3+Aq dissolves out Ag on warming. Aqua regia decomp, with formation of AgCl. (Schneider, Pogg. 138. 664.)

Sodium sulphoplatinate, Na₄Pt₄S₄ = 2Na₂S, 2PtS, PtS.

Decomp. by hot H₂O, with residue of PtS₂. (Schneider.) Na₂Pt₂S₂ = Na₂S₂ PtS₂ 2PtS₂. I: H₂O. (Schneider, J. pr. (2) 48, 418.) Insol. in

Thallium sulphoplatinate, 2Tl₂S, 2PtS, PtS₂. Insol, in cold HaO. Dil, acids dissolve out all the thallium. (Schneider, Pogg. 138. 626.)

Sulphoplatinous acid, H2PtS2 Known only in solution in H2O, which soon decomposes. (Schnader, J. pr. (2)

48, 424.)

Sodium sulphoplatinite, Na₂PtS₂.

Sol. in H2O with decomp. (Schneider, J. pr (2) 48, 420) H₄Na₂(P(S₂)₃. Sol in H₂O, from which it

Sulphoselenantimonous acid. See Selenosulphantimonous acid.

Sulphoselenarsenic acid. See Selenosulpharsenic acid.

Sulphoselenostannic acid.

See Selenosulphostannic acid. Sulphoselenoxyarsenic acid. See Selenosulphoxyarsenic acid.

Sulphoselenyl chloride, SSeOsCl4 Deliquescent; decomposed by H₂O. (Clausnitzer, B 11, 2007.)

Metasulphosilicic acid.

Sodium metasulphosilicate, Na₂SiS₂. Decomp. by H₂O. (Hempel, Z. anorg. 1900, 23, 41.)

Sulphostannic acid, H2SnSa. Ppt (Kühn, A 84, 110.)

124)

Does not exist. (Storch, W. A. B. 98. 2b. 236)

Ammonium sulphostannate, (NH4)2S, 3SnS1+6H2O.

Easily sol. in H_2O , and easily decomp. (Ditte, C. R. 95. 641.) (NH₄)₈SnS₈+3H₂O, and +7H₂O. Decomp. by acid. (Stanek, Z. anorg. 1898, 17.

Barium sulphostannate, BaSnS++8H₂O. Sol, in cold H₂O. (Ditte, C. R. 95, 641.)

Calcium sulphostannate, 2CaS, SnS2+14H2O.

Sol. in H₂O. (Ditte, C. R. 95, 641.)

Tetraplatinous sulphostannate, 4PtS, SnS2, Not decomp, by acids. (Schneider, J. pr. (2) 7. 214.)

Platinum potassium sulphostannate, 3PtS, K₂S, SnS₂. Insol. in cold H₂O. Dil. HCl or HC₂H₂O₂ +Aq dissolves out all the potassium. (Schneider, Pogg 136, 109.)

```
Platinum sodium sulphostannate, 3PtS, Cobalt sulphotellurite, Co. TeS.
     Na<sub>2</sub>S, SnS<sub>2</sub>.
                                                              Ppt
   Insol in cold H.O. (Schneider, Pogg. 136.
109)
                                                           Copper - CusTeSs. 3
                                                              Ppt.
Potassium sulphostannate, K2SnSt.
Sol in H<sub>2</sub>O. (Kühn, A. 84, 110)
+3H<sub>2</sub>O. (Ditác, C R. 95, 641.)
K<sub>2</sub>SnS<sub>4</sub>+4H<sub>2</sub>O. Sol. in H<sub>2</sub>O pptd by
alcohol. (Weinland, Z anorg. 1898, 17, 419.)
                                                           Ferrous ----
                                                              Ppt.
                                                           Ferric ---
                                                              Ppt.
Sodium sulphostannate, Na<sub>2</sub>SnS<sub>2</sub>+2H<sub>2</sub>O.
   Sl. sol, in H<sub>2</sub>O, (Kühn, A. 84, 110)
    +3H<sub>2</sub>O (Ditte, C R. 95. 641)
                                                           Lead ----
    +7H2O. Sol in H2O. (Horing, Zeitsch.
                                                              Ppt.
 Pharm, 1851, 120.)
Na<sub>4</sub>SnS<sub>4</sub>+12H<sub>2</sub>O. Melts in crystal H<sub>2</sub>O on
heating Very sol. in H<sub>2</sub>O. (Kühn.)
                                                           Lithium ----
                                                              Sol. m H<sub>2</sub>O.
Strontium sulphostannate, SrSnS2+12H2O
                                                           Magnesium ----.
   Sol in H<sub>2</sub>O. (Ditte, C. R. 95, 641.)
                                                              Sol. m H<sub>2</sub>O and alcohol.
 Thallium sulphostannate, Tl<sub>4</sub>SnS<sub>4</sub>.
                                                            Manganous -----.
   Ppt. Practically insol, in H<sub>2</sub>O
                                             (Hawley,
 J. Am. Chem Soc 1907, 29, 1011.)
                                                               Ppt.
                                                           Potassium ----, 3K2S, TeS2
 Disulphopersulphuric acid.
                                                               Sol. m H<sub>*</sub>O
 Sodium disulphopersulphate, Na<sub>2</sub>S<sub>4</sub>O<sub>8</sub>.
                                                            Silver ----, 3Ag<sub>2</sub>S, TeS<sub>2</sub>.
    Sol. in H<sub>2</sub>O. Cryst. in cold with 2H<sub>2</sub>O.
 (Villiers, C R 106, 851, 1354)
                                                               (Berzehus.)
 Contains 4H more and is sodium tetra-
thionate, NaS<sub>4</sub>O<sub>4</sub>, 2H<sub>2</sub>O. (Villiers, C R
                                                           Sodium ----.
 108. 402)
                                                               Sol. in H<sub>2</sub>O
 Sulphotelluric acid.
                                                            Strontium ----
                                                               Sol. in H<sub>2</sub>O.
 Mercurous sulphotellurate, 3Hg<sub>2</sub>S, TeS<sub>2</sub>.
    Ppt.
                                                            Zinc - 3ZnS, TeS,
                                                               Ppt. (Berzelius.)
 Mercuric ---, 3HgS, TeS2.
    Ppt. (Berzelius)
                                                         . Sulphotungstic acid.
 Potassium -, K2TeS4.
                                                            Ammonium sulphotungstate, (NH4)2WS4
    Sol. in H<sub>2</sub>O. (Oppenheim, J. pr 71, 279.)
                                                               Very dehousement. Easily sol in H<sub>2</sub>O, and
                                                            still more easily in NH<sub>4</sub>OH+Aq. (Corleis,
 Sodium ----.
                                                            A. 232, 244.)
    Sol. in H2O. (Oppenheim.)
                                                               More sol. in pure H2O than in H2O acidified
                                                            with HCl. Decomp. slowly on air. (Ber-
 Sulphotellurous acid.
                                                            zelius.)
 Ammonium sulphotellurite, 3(NH<sub>4</sub>)<sub>2</sub>S, TeS<sub>2</sub>
                                                            Barum ----
    Decomp. on air. Sol, in H2O.
                                                               Sol. in BaS+Aq.
 Barium -----
                                                            Cadmium ---. CdWS.
    Very slowly sol, in H<sub>2</sub>O.
                                                               Ppt. (Berzelius.)
 Calcium ----
                                                            Calcium ----
    Somewhat sol, in H<sub>2</sub>O,
                                                               Sol. in H2O and alcohol (Berzelius.)
  Cerium ----.
                                                            Cobalt ----, CoWS4.
                                                             Sl. sol. in H<sub>0</sub>O.
    Insol ppt.
```

Copper sulphotungstate, CuWS.

rpt

Glucinum —, GIWS₄, Sol in H₂O(?).

Ferrous —, FeWS₁. Sol in H₂O.

Ferric ——. Ppt.

Lead ----, PbWS₄.
Ppt. (Berzelius.)

Magnesium —, MgWS₄. Easily sol in H₂O or alcohol.

Manganous ----, MnWS₄. Sol. in H₂O. (Berzelius.)

Mercurous ----.

Ppt (Berzelius)

Mercuric —, HgWS,
Ppt (Berzelius.)

Nickel ----, NiWS₄. Ppt. (Berzelius)

Potassium ----, K₂WS₄.

Sol. in H₂O Alcohol precipitates from aqueous solutions, but is not entirely insol in alcohol (Berzelius.) Very sol. in H₂O. (Corleis, A 232, 264)

Potassium — nitrate, K₂WS₄, KNO₅.

Very sol. in cold or hot H₂Q, from which it is precipitated by alcohol. (Berzelius)

Potassium — tungstate, K₂WO₂S₂=
K₂WS₄, K₂WO₄.

Easily sol. in H₂O. Not precipitated by alcohol. (Berzelius.) Is potassium trisulphotungstate, K₂WOS₂, which see (Corleis, A. 232, 244.)

Silver ----, Ag₂WS₄.
Ppt. (Berzelius)

Sodium —, Na₂WS₄.

Very sol in H₂O; less sol, in alcohol. (Berzelme)

zeinus.)
Very deliquescent (Corleis, A. 232, 264.)

Stannous —, SnWS₄.

Ppt. (Berzelius.)

Stannic —, SnWS₅.

Ppt. (Berzehus.)

Zinc sulphotungstate, ZnWS4.

Sol in H₂O with subsequent pptn (Berzelius.)

Monosulphotungstic acid.

Potassium monosulphotungstate, K.WOS+H.O.

Deliquescent in moist air. Very sol. in H₂O. (Corleis, A. 232, 244.)

Disulphotungstic acid.

Ammonium disulphotungstate, (NH₄)₂WO₂S₂.

Sol in H₂O and alcohol (Berzelmann)

Decomp easily when moist (Corleis, A.

Trisulphotungstic acid.

232. 264)

Potassium trisulphotungstate, K₂WOS₂+ H₂O

Hygroscopic Effloresces on dry air and easily decomposed. Easily sol. in H₂O (Corleis, A. 232, 244.)

Sulphovanadic acid, V₂O₄, 3SO₄+3H₂O. See Vanadiosulphuric acid, and Sulphate, vanadium.

Sulphovanadates.

Alkalı sulphovanadates are sol. in H₂O

Ca. Si, and Be sulphovanadates are sl. sol. in H.O. and all other sulphovanadates are insol. in H₂O (Berzelius.)

Ammonium sulphovanadate, (NH₁)₂VS₄

Easily sol. in H₂O. Very sl. sol. in conc.

NH.SH+Aq. Insol m ether, CS₂, or CHCl₃. (Krtiss and Ohnmats, A. 263, 46.) See also Sulphoxyvanadic acid.

Sodium pentasulphopyrovanadate, Na₈V₂O₂S₅. Hydroscopic; sol. in H₂O with rapid decomp. (Locke, Am. Ch. J. 1898, **20**. 375.)

Sulphoxyantimonic acid.

Potassium sulphoxyantimonate, K₂HSbO₂S₂ +2H₂O.

Sol. in hot, less sol in cold H₂O. Decomp. by cold H₂O. (Weinland and Gutmann, Z. anorg. 1898, 17. 414.)

Sulphoxyarsenic acid, H₁A₈O₃S. Known only in squeous solution. (McCay, Am. Ch. J. 10. 459.)

Ammonium monosulphoxyarsenate, (NH₄)₄AsSO₈+3H₅O.

Decomp. in the air; sol in H₂O, decomp. on boiling. (Weinland, B. 1896, 29, 1009.) Very sol. in H₂O; insol. in alcohol; decomp in aq. solution and also in the air (Weinland, Z. anorg. 1897, 14. 53) Decomp in the air. (McLauchlan, B 1901, 34. 2166.)

Ammonium hydrogen monosulphoxyarsenate, (NH₄)-HASSO₃. SI efflorescent Insolated (NH₄)-HASSO₃. SI efflorescent Insolated (NH₄)-HASSO₃. NACH | Amonium hydrogen monosulphoxyarsenate, | Z. anorg. 1902, 29, 42 |

Ppt. (McLauchlan, B 1901, 34. 2168.)

Barium monosulphoxyarsenate, BaHAsO₃+ 10H₂O. (Preis, A 257, 184)

Ba₂(AsSO₃)₂+6H₂O. Ppt. (Weinland, Z. anorg. 1897, **14**. 54)

Barium disulphoxyarsenate, Ba₃(AsS₂O₂)₂+ 4H₂O.
Ppt. (Pres. A. 257, 185)

+6H₂O (Weinland and Rumpf, Z. anorg 1897, 14. 64.)

Barium potassium trasulphoxyarsenate, KBaAsS₃O+7H₂O.

Ppt (McCay, Z. anorg. 1904, 41. 469.) Barium sodium monosulphoxyarsenate,

BaNaAsSO₃+9H₂O. Ppt. (Weinland, Z. anorg. 1897, **14.** 55)

Barium sodium sulphoxyarsenate, Ba₇Na₂As₅O₃S₁₄+12H₂O.

(McCay and Foster, Z. anorg. 1904, 41. 467.) Calcium trisulphoxyarsenate, Ca₂(AsS₂O)₂+

20H₂O.

Ppt. (McCay and Foster, Z. anorg. 1904, 41, 463.)

Potassium monosulphoxyarsenate, K_kAsSO_k. Hydroscopic (Weinland, B. 1896, **29**. 109.)

Sol. in conc. KOH+Aq, free from carbonate; very hydroscopic. (Weinland, Z. anorg 1897, 14. 51)

Potassium hydrogen monosulphoxyarsenate, $K_2HAsSO_3+2\frac{1}{2}H_2O$

Very hygroscopic. (Weinland and Rumpf, Z. anorg. 1897, 14. 59.) KH_4AsSO₃. Sol in H₂O; solution slowly decomp on standing. (McCay, Am. Ch. J. 10. 459.)

459.)
 Formula given by Bouquet and Cloez (A. ch. (3) 13. 44) is K₂H₄As₂S₂O₄.

Potassium disulphoxyarsenate, K₃AsS₂O₂+ 10H₄O. Very hydroscopic; decomp. by H₄O. (Wenland, Z. anorg, 1897, **14**, 63.)

Potassium trisulphoxyarsenate, $K_3AsS_3O + 7H_4O$.

Yellow oil which cryst. at —20° (McCay and Foster, Z anorg. 1904, 41. 468) Sodium monosulphoxyarsenate, Na₂AsSO₂+ 12H₂O. Easily sol. in H₂O. ★Preis, A. **257**. 180.)

(McLaughlan, B. 1901, 34, 2170)
Sol. m H₂O. (Weinland, B. 1806, 29, 1009.)
Sl efflorescent Insol in alcohol. (McCay,
Z. anorg. 1902, 29, 42)
Sol. in NaOH+Aq; decomp. by boiling
with conc. NaOH (Weinland, Z. anorg.

1897, 14. 49.)

Sodium hydrogen monosulphoxyarsenate,

NaH₂AsSO₃
Decomp. by H₂O; insol. in alcohol. (Weinland, Z. anorg. 1897, 14, 58.)
Na₂HAsSO₃+SH₂O. Easily sol. in H₂O. (Press.)

Sodium disulphoxyarsenate, $Na_2AsS_5O_2$ + $10H_2O_1$

Easily sol. in H₂O. (Press.) Sol. in H₂O; pptd. by alcohol. (McCay, B. 1899, 32. 2472) Not decomp. by boiling NaOH+Aq.

Weinland, Z. anorg. 1897, 14, 62.) Insol. in alcohol (McCay, Z. anorg. 1900, 25, 461.) +11H₂O. (McLaughlan, B. 1901, 34. 2170.) Insol. in alcohol. (McCay, Z. anorg. 1902,

29. 46.)

| Sodium trisulphoxydiarsenate, As₇O₅S₂, 3Na₂O+24H₃O. | Geuther, A. 240, 208.) | Easily sol. in H₂O. (Geuther, A. 240, 208.) | 2As₂O₂S₄, Na₂O+7H₃O. Sol. in H₂O. (Nilson, J. pr. (2) 14. 14.) | Correct composition is Na₃As₁S₂O₂O₇+

Sodium sulphoxyarsenate, Na₈As₁₈S₂₄O₇+ 30H₂O = 4Na₂O, 6As₂S₂, 3As₂S₄O+ 30H₄O.

Decomp. by H₂O. Sol in NH₄OH or KOH +Aq. (Pres, A. 257, 187.) =Sodium oxytrisulpharsenate of Nilson.

Sodium pentasulphoxytetrarsenate, Na₁₂As₄S₄O₁₁+48H₂O.

30H2O. (Preis)

Less sol, in H₂O than other sulphoxyarsenates (Preis)

Sodium strontium trisulphoxyarsenate, NaSrAsS₄O+10H₂O.

Unstable. (McCay and Foster, Z. anorg. 1904, 41, 462.)

Trisulphoxyazotic acid, ON(SO,H), Known only in its salts. (Claus, A , 158.

52 and 194.) Has the formula $(SO_3H)_1N < () > N(SO_2H)_3$.

(Raschig, A. 241, 161.) Potassium trisulphoxyazotate, ON(SO₄K)₅+

 $H_4O = (SO_4K)_3N < {\atop c} > N(SO_4K)_3$

Easily sol. in H₂O without decomp, even on boiling. (Claus, A. 157, 210.)

Sulphoxyphosphorous acid,

 $H_3PS_2O = OPSH$ (?).

See Thiophosphorous acid.

Sulphoxyvanadic acid.

Ammonium pyrohazasulphoxyvanadate, (NH₄)₁V₂S₅O

Sol. in H₂O. (Krttss and Ohnmass, A. 263.

Potassium pyrohexasulphoxyvanadate, K, V,S,O+3H,O.

Melts in crystal H2O. (Kruss and Ohn-K₈V₄S₁₂O₂+3H₂O. More sol. in H₂O than

preceding comp. (K. and O.) Sodium orthotrisulphoxyvanadate, NaaVSaO

Very deliquescent, and easily sol. in H2O Somewhat sol. in alcohol (Krüss and Ohn-

Sodium orthomonosulphoxyvanadate, Na₃VSO₃+10H₂O.

dates. (K. and O.)

Sulphur, S.

The various modifications of sulphur have been classified in many different ways, and there is a difference of opinion as to whether certain forms are true allotropic modifications

The data, as far as concerns the solubility, may be arranged as follows:-

A. Sol. in CS₂. 1. Rhombic, octahedral, or alpha sulphur, ordinary sulphur Easily sol. in CS2, etc. See below for solubility in

various solvents. Prismatic, monoclinic, or beta sulphur.

Sol. in CS2 but is converted into A, 1. Prismatic sulphur obtained by melting brimstone is not wholly sol, in CS, on account of admixture of gamma sulphur.

Monoclinic modification is more sol, than rhombic in CHCl₃, ether and benzene. (Meyer C. C. 1903, II. 481.)

3. Soft sulphur, milk of sulphur. 4 Amorphous sol. sulphur is also a sens-

rate modification, according to Berthollet.

B. Soft sulphur, obtained by strongly heating and quickly cooling, is sol in CS; but becomes insol. therein by repeatedly dis-solving and evaporating. More easily sol in CS₂ than A, 1.

C. Insol. in CS2. 1. By action of strong light on S in CS:

2 By heating to b.-pt., cooling suddenly, and allowing to stand until hard. Has been called gamma sulphur, but is a mixture of ²/s A, 4 and ¹/₃ msol. S.
3 Insol. S in flowers of sulphur. Con-

verted into A. 1 by standing 3 days with According to Berthelot (A. ch. (3) 49, 430)

there are only two varieties of S. I. "Octa-hedral," II. "Amorphous" I. Octahedral. Sol, in CS2. Scarcely acted

upon by KHSO4+Aq. Converted by oxidising agents into II.
II. Amorphous. Insol. in neutral solvents,

viz H₂O, alcohol, ether, CS₂, etc.
Sol with tolerable rapidity in KHSO₄+Aq.

By long action of Na₃S+Aq, a portion is dissolved, and the remainder converted into I Less easily oxidised by HNO₃+Aq than I. Some varieties of this modification are

sol to a certain extent in alcohol and ether, and by boiling the rest of the sulphur is con-verted into I; also by long-continued con-tact with cold alcohol. Berthelot holds that the modification is changed before dissolving. Solutions of the alkalies, alkali salts, and alkali sulphides change insol. into sol, sulphur. (Berthelot.)

Elastic sulphur obtained by pouring mol-ten sulphur at a temp. of over 260° into H₂O contains 35%, or more of a modification of S which is insol in CS₂, hot or cold, but sol. in absolute alcohol, this modification can Less sol in H₂O than other sulphoxyvana-be converted back into ord sulphur by heating to 100°. (Pelouze and Fremy) (See C. 2.)

This modification can be obtained also by action of HCl on throsulphates (Fordos

and Gélis)

The soft pasty sulphur obtained by decom-position of H₂S by SO₂ forms an almost clear emulsion (pesudo-solution) with H₂O from which it is pptd. by various salts and substances which have no chemical affinity for it 23 pts 8 combine in this way with 100 pts H₂O. When pptd by saline solutions, some of the S remains in solution. When solution is exposed to the light, S gradually separates out; also on boiling the same takes place. The above pseudo-solu-tion is pptd. by mineral acids, and the pptd. S may still be dissolved in fresh water, if not left in contact for some time with the acid, Also pptd. by K salts, with loss of power of forming pseudo-solutions. Pptd. by NH. and Na salts without losing that power. SULPHUR 805

Alkalı hydrates, carbonates, or sulphides convert it into insol. S

The solution may be mixed with alcohol without change. Decomp. by long shaking with nanthha or oil of turpentine. The pseudo-solution combines with CS. forming an emulsion which subsequently decomposes. The S itself is only partially sol in CS2. (Selmi, J. pr. 57, 49)

with CS2 or CCl4, a small part goes into solution, the amount being dependent on the time of contact with the temp., and nature of the solvent, but independent of the amount of the solvent It is assumed that this is due to a partial change of the "insoluble" into soluble S (Wigand, Z. phys Ch 1910, 75.

235.)
"Delta" sulphw. Partly sol. in H₂O.
(Debus, Chem. Soc 53. 18.) A colloidal form wholly sol, in H₀O exists,

which, however, decomposes very easily. (Engel, C R 112, 866)

Black sulphur. Insol. in alcohol, ether, CS₂, fatty oils even at 200°, cold alkali hydroxides +Aq, H2SO4, HNO3, or aqua regra (Knapp, J. pr. (2) 43. 305) Green modification. Five times more sol.

then ordinary sublimed sulphur in a mixture of salicylaidehyde and benzene (Orloff, C. C. 1902, I. 1264.)

The following data relate to octahedral or ordinary sulphur (A. 1). Sol. in warm liquid H₂S (Niemann); warm

P₂S₂, SBr₂, SCl₂, Br₂, NCl₂, BaS+Aq (Dumas); in alcoholic solution of K₂S₃, but is repptd. by addition of H₂O to sat. solution.

Sol in liquid SO2.

Sol, in aqueous solution of alkali sulphates. pecially when hot. Sl. sol, in boiling cone HSCN+Ag, from which it mostly separates on cooling. Na₂CO₈+Aq (56% Na₂CO₈) dissolves no

S at 20°: 0 06775% at 100°. (Pohl, Dingl. 197. 508.)

The solubility of S in Na_{*}S+Aa between 0° and 50° diminishes slightly with increase in temp, but moreases with dilution of the solution, having its largest value in a N/16 solution of Na₂S+Aq when the relation of Na₂S to dissolved S equals about 1.4. (Küs-

ter, Z. anorg 1905, 43. 56.)
Sol. in AlBr₁. (Isbekow, Z. anorg. 1913,

Insol, in liquid CO₂, (Büchner, Z. phys. Ch. 1906, 54. 674.) Sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20, 822.)

Sol. in liquid NH₃. 1 gr S is sol. in 3-4 ccm. liquid NH₃. (Hugot, A. ch. 1900, (7) 21.

The solubility of S in liquid NH, is constant from -23° to -84° and equals 39%. (Ruff, Z. angew, Ch. 1910, 23, 1830,)

Solubility in liquid NH₃

(g S in 100 g solution.)						
to.	S1	t°	s			
-78 -20 5 0	38 6 38 1 32 34	16 4 30 40	25.65 21 0 18 5			

By treatment of amorphous "insoluble" S (Ruff and Hecht, Z anorg 1917, 70, 62)

Sl. sol in liquid NO₂. (Frankland, Chem. Soc. 1901, 79, 1361) S₂Cl₂ dissolves 66.74% S at ord. temp. to

form a liquid of 1.7 sp gr. (Rose.) Solubility of S in S₂Cl₂ varies according to

the variety of sulphur used. Aten has published an extended investigation on the subject, which see for details. (Z. phys. Ch. 1905-14, 54, 86, 124; 81, 268; 83, 443; 86, 1; 88, 321,) Solubility in SnCl.

100 g. SnCl, dissolve at. oo.

9.4 99 17.0 pts. hquid S. (Gerardin.)

Sol, in alkalies+Ag with decomp. Sol in 1926.7 pts. absolute alcohol at 15°. (Pohl, W. A. B 6. 600.)

Sol in 20 pts hot nearly absolute alcohol, less sol in weaker alcohol (Laurogau) Sol in 200 pts boling alcohol of 40° B (Chevallier, J ch méd 2 SS7), in 500 pts alcohol (Messner), 200 pts, alcohol (Pelsons and Fremy)

100 pts, absolute alcohol dissolve 0 42 pt. at b.-pt., and 0.12 pt. S at 16°; 100 pts. ether dissolve 0.54 pt. at b.-pt., and 0.19 pt. S at 16°, 100 pts. benzene dissolve 17.04 pts at b.-pt., and 1.79 pts. S at 16°; 100 pts. oil of turpentine dissolve 16.16 pts at b-pt., and 1.35 pts. S at 16°; 100 pts. CS₂ dissolve 73.46 pts. at b.-pt., and 38. 70 pts. S at 16°; 100 pts. naphtba dissolve 10.56 pts. at b.-pt., and 2.77 pts. S at 16°; 100 pts tar-oil dissolve 28.98 pts. at b.-pt, and 1 51 pts S at 16°. (Payen, C. R. 34. 456)

100 pts. absolute methyl alcohol dissolve 0.028 pt. at 18 5°; 100 pts. absolute ethyl alcohol dissolve 0.053 pt. at 185°, (de Bruyn, Z. phys. Ch 10, 781.)

Solubility in amyl alcohol 050 110°

26 5.3 pts. liquid S. (Gerardin, A. ch. (4) 5. 134.)

Quickly sol, in 12.5 pts. ether. (Favre.) 100 pts. benzene dissolve 0 965 pt S at 26°: 100 pts. benzene dissolve 4.377 pts. S at 71° 100 pts. toluene dissolve 1 479 pts. S at 23° 100 pts. ethyl ether dissolve 0.972 pt. S at 23.5°; 100 pts. chloroform dissolve 1 205 pts. S at 22°; 100 pts. phenol dissolve 16 35 pts. S at 174°; 100 pts. anline dissolve 85 27 pts. S at 130°. (Cossa, B. J. 139.)

896

Solubility	in	hongono	n+	4.0

Solubility in	penzene at t.
t°	g S in 10 g of solution
15.17 19.29 ·	0 1480 0 1692

(Bronated, Z. phys. Ch. 1906, 55, 377.)

A mixture of S and toluene separates into two layers, containing 33 and 92 5% S respectively. (Haywood, J. phys Ch 1897, 1. CS, dissolves 0 35 pt ordinary sulphur;

some varieties of S, however, are not entirely sol in CSs, thus-# 65 10 100 Variety of Subshire ÷ ē Octahedral, from Sicily 0 335 0.000 Crystallised in dry way, 1e-0 415 cently prepared 0 029 Do , prepared 8 years 0.33 0.004 Do , prepared 9 years 0 020 Do , prepared 15 years 0.051Red needles, recently prepared 0.382 0.023 0 353 Soft vellow. do Do., prepared 2 years 0.316 0 157 Soft red, recently prepared 0.3740.157 Do , prepared 5 years 0 181 0 351 Flowers of sulphur 0 113 Do , another sample 0 234 Roll brimstone, outside 0 029

Do , made

The pt. msol in CS2 is sol in hot absolute alcohol, crystallising on cooling; less sol. in

chloroform or ether (Deville) 100 pts pure CS, dissolve pts S at to

t°	Pts S	to	Pts S
-11 - 6 0 +15 18 5	16 54 18 75 23 99 37 15 41 65	22 38 48 5 55	46 05 94 57 146 21 181 34

(Cossa, B. 1, 138.)

Neither ordinary stick S nor flowers of S is completely sol, in CS₂. Pptd. S is completely sol, in 5 pts. CS₂. (Tittenger, C. C. 1894, II. 267.)

2.99 g. Saje sol in 100 grams CS, at --- 116° (Arctowski, C. R. 1895, 121, 124.)

Solubility in CS: 100 g, of the sat, solution contain at.

-84.5° ---80° ---116° 4.29 4.84 4.46 2.99 g S. (Arctowski, Z. anorg, 1896, 11, 274.)

When 20 pts S dissolve in 50 pts. CS, at. 22° the temp, is lowered 5°. (Cossa.) Sat. solution of S in CS, boils at 55°. (Cossa.)

Sp. or of S dissolved in CS, at 15°. (Pts S per 100 pts CS2,) Pts S

Sp gr. I Pts S So er

0 073

302

303

304 8 0 345

305 2 1 346 18 386 33.8

306 8.5 347

307 8.7

202 8 9 1 349 18 9 389 36 1

310 ä 4

1 311 ğ ŝ

ğ 309 2 1 Ptn 8

Sp gr

> 350 1 351 (Mascagno, C. N. 43, 192)

343

.344

ì

383

384 32 6

1.387 34.5

1.388 35.2

0 1 385

18 4

18 6 1 348

> 19 0 390 36 7

> 19 3 1 391 37 2

33 2

	8 Sp gr. 6 1.2764 6 1.2764 0 1.2764 0 1.2733 0 1.3734 4 1.3430 6 1.3440 8 1.3450 6 1.3440 1 3450 6 1.3450 6 1.3450 1 3450 6 1.3450 6 1.3450 6 1.3450 6 1.3450 6 1.352 6 % 8 1,2 1,4 1,6 1,4 2,1 1,4 4,1 1,4 8,1 1,5 1,5 1,5 1,5 1,5 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7	Solvent CS ₂	n organic solv	Sat solute contains 27 4 .6 .4 .4 .4 .4 .4 .4 .4 .4 .4 .1 .1 .5 .1 .1 .5 .1 .1 .5 .1 .1 .5 .1 .1 .5 .1 .1 .2 .4 .1 .1 .3 .7 .2 .1 .1 .2 .5 .9 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	
Sp sr 75,8 Sp sr 75,1	6 1.2764 8 1.2774 0 1 2783 0 1 3409 1 2783 0 1 3409 1 34	1.2 1 4 4 6 1 1 4 6 6 1 1 4 8 6 1 1 5 0 8 6 1 6 8 1 7 0 2 1 7 4 6 1 8 8 8 1 9 0 0 1 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 9 6 1 9 9 9 9	CS ₂	-61 -51 -61 -61 -61 -61 -61 -61 -61 -61 -61 -6	contains 72 3.6 contains 72 3.6 10.6 10.6 10.6 10.6 11.5 12.4 13.3 13.5 17.2 19.5 23.1 17.2 23.7 23
1	6 1.2764 8 1.2774 0 1 2783 0 1 3409 1 2783 0 1 3409 1 34	1.2 1 4 4 6 1 1 4 6 6 1 1 4 8 6 1 1 5 0 8 6 1 6 8 1 7 0 2 1 7 4 6 1 8 8 8 1 9 0 0 1 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 9 6 1 9 9 9 9	Cos	-55 -19 -18 -17 -17 -11 -11 -11 -11 -11 -12 -13 -14 -14 -14 -17 -19 -20 -27 -29 -29 -30 -5 -44 -44 -44 -48 -48 -58 -58 -58 -58 -58 -58 -68 -68 -88 -88 -88 -88 -88 -88 -88 -8	4.4 10.6 10.8 11.5 11.3 13.5 17.2 23.1 25.9 27.2 28.9 28.5 29.7 33.4 42.2 48.7 56.2 57.5 56.2 57.5 56.0 67.9 79.4 87.8 90.1
Sol, in acctone. (Edman 1014.) Solubility of S in accton	8 1 3709	20 0		22 40	4 4
Solubility of S in acetor				50 72 95 108	6.4 12 4 30 2 60 0
A⇒g. acetone in 100 g. a	c. of the sol	1	Benzene	8 10 21 30 39 47 54	1.2 1.3 1.8 2.6 3.3 4.0 4.9
A S	Sp gr			65 72	6.8 8.6
100 65 0 95 36 45 0 90 62 33.0 85 38 25.3	0 785 0 791 0 816 0 829	14 54		100 123 127 150	17 5 31 9 34 0 36.8
(Herz and Knoch, Z. anorg			Hexane	-20 0 +26 +68 +130 +142 +184	0.07 0.16 0.41 1.2 5.2 6.2 8.3

t ^o		g S in 10 g of solution			
12 25 19.29		0.0744 0.0918			
(Brönsted, Z.	phys. (Ch. 1906, 5	5. 377.)		
Solubility of octorgal	ahedra ic solv	l and prist ents at t°.	natie S i		
Solvent	t°	prismatic 8	octahedral		
Benzene	18.6 25.3	2 004 2 335	1 512 1 835		
Chloroform	0 15 5 40	1 101 1.658 2 9	0 788 1.253 2.4		
Ethyl ether	0 25 3	0.113 0.253	0 080 0 200		
Ethyl bromide	0	0.852	0 611		

25 3 (Bronsted, Z. phys. Ch. 1906, 55, 377.) Solubility in organic solvents at 25°. (G. S. dissolved in 1 g. mol. of solvent.)

0.066

0.052

e S

25.3 1 676 1 307

Ethyl formate

Ethyl alcohol

Ethylene chloride	0 831
Tetrachlorethane	2 063
Dichlorethylene	1 237
Pentachlorethane	2.421
Trichlorethylene	2.43 2.537
Perchlorethylene Carbon tetrachloride	1.354

Solvent

(Hoffmann et al. 1910, B. 43, 188,)

100 g. trichlorethylene dissolve 1.19 g. S at 15°. (Wester 1914, 51, 1443.) (Wester and Bruins, Pharm. Weekbl

	g. S per 100	g of solution	
r.	ın upper layer	in lower layer	
0	0.99		
17	1 78		
35	2 57	1	
46 1	3.61	ì	
63.3	6.15	1	
78.0	9 88		
99.1	19.89	00.00	
109.6 114.6		90 62	
118.8	37.29	87.99	
121.4	40.04	85.02	
130.0	49.71	80.07	
134.2	56.20	72 23	

benzyl chloride in all proportions, below this temp, two layers are formed (Bogusky, J Russ Phys. Chem. Soc. 1905, 37, 92-99; C. C. 1905, I, 1207)

Easily sol, in boiling acetic anhydride.

(Rosenfeld, B. 13, 1475.) Sol. in considerable amount in warm cond. HC.H.O.+Ag, but very al, sol, if dil. (Lac-

hermann, B. 10, 866.) Sol, in stearic acid+Aq. (Vulpius, Arch.

Pharm. (3) 13, 38) Agetic ether dissolves 6% S (Favre.)

Difficultly sol, in methyl acetate. (Nau-

mann, B. 1909, 42, 3790.)
Sol. in ethyl acetate. (Naumann, B. 1904, **37.** 3601)

Sl. sol in benzonitrile at ord, temp., much more sol. at higher temp. (Naumann, B. 1914, 47. 1369.)

Sol. in 12 pts. hot petroleum from Amiano, but nearly insol. in cold. (de Saussure.) 100 pts, meetine at 100° dissolve 10 58 pts.

S, but this separates out as the solution cools. (Klever, C C. 1872. 434.) Sol in warm aniline. (Barral, A. ch. (3)

Easily sol, in hot, less sol, in cold aniline,

(Fritzsche) Very sol in amiline and quinoline, especially when warm. (Hofmann.)

Sol, in quinoline but reacts with the solvent with evolution of H. (Beckmann and Gabel. Z. anorg. 1906, 51, 236.)

4 ccm, olein acid dissolves 0.0335 g. S in 6 days. (Gates, J. phys. Chem. 1911, 15.

Sol. in 2.6 pts. of boiling, sl. sol. in cold creosote. Sol, by digestion in 2 pts, oil of turpentine. Sol in hot oil of copaiba, crystallising on

cooling Sol. in hot oil of mandarin, crystallising

on cooling Sol in hot oil of caraway, crystallising on

Somewhat sol. in hot, less in cold woodspirit.

Sl sol. in lignone, bromoform, cold ben-zene, but easily in hot benzene. (Mansfield, Chem. Soc. 1. 262.)

Sol. in ethyl sulphide, and carbon chlole (Rathke, A. **152**. 187.) Sol in mercuric methyl.

Sol. in 20 pts. ethyl nitrate, from which is is not pptd. by H₂O. Sol in naphtha, aldebyde, iodal, bromal, chloroform, warm chloral, sinkaline+Aq, ethyl chloride, warm benzoyl chloride.

100 pts methylene iodide dissolve 10 pts.

S at 10° Melted sulphur is miscible with hot methylene iodide. (Retgers, Z. anorg.

S dissolves in 2000 pts. glycerine. (Cap and Garot, J Pharm. (3) 26, 81.) Glycerine dissolves 0.10%S (Klever, C. C.

1872. 434.)

100 g. glycerine dissolve 0 14 g. at. 15.5°. (Ossendowski, Pharm. J. 1907, 79. 575.) Sol in butyl sulphydrate, and warm retinole

Sol in ethyl sulphydrate. Very sol. in comine, hexyl alcohol, warm allyl sulphocyanide, cacodyl oxide. what sol, in hot styrene, separating out on cooling.

Readily sol, in warm, less readily in cold toluene or resm-oil. Sol. in olive oil at 115°, from which it mostly separates on cooling.

Sol, in hot oil of amber, crystallising upon cooling. Sol. in 2 pts. hot. sl. sol. in cold caoutchin.

Insel, in valerianie acid, amyl valerate. valeryl hydride.

Linaced oil dissolves or S at to						
t°	%8	tº	% S	to.	% S	
25 60	0 630 1 852	95 130	2 587 4 935	160	9 129	
(Pohl.)						

Solubility in olive oil (sp. gr = 0 885) 100 pts dissolve pts Sat to Pts S Pts S Pte S

2 3 65 5 6 jņ. 100 25 0 130

(Pelouze, C. R. 68, 1179.) Solubility in 100 pts coal-tar oil at to Pts S m

20 6 110 30.3

43 2

t.o	Oil of 0 870 sp gr B-pt 80-100°	Oil of 0 880 ap gr B -pt 85-120°	Oil of 0 882 Sp gt B -pt 120-200
15 30 50 80 100 110 120 130	2 1 3 0 5 2 11 8 15 2	2 3 4 0 6.1 13 7 18 7 23 0 27 0	2 5 5.3 8.3 15 2 23 0 26 2 32 0 38.7
		Pts S in	

130			38.7
		Pts S m	
	Oil of 0.885 sp gr B-pt. 150 200°	Oil of 1 010 ep gr B -pt 210 300°	Oil of 1 020 sp gr B -pt 220-300°
15 30 50	2.6 5.8 8.7	8.5 10 0	7.0 8.5 12.0
80 100 110	21 0 26 4 31 0	37 0 52 5 105 0	41 0 54 0 115.0
120 130	38 0 43 8		

(Pelouze, C. R. 89. 56)

Sulphur bromide, S.Br.

Decomp, gradually with H₂O Dissolves S on warming, which crystallises out on cooling Sol. in CS.

Decomp, by current of dry air into S and Br. (Hannay, Chem. Soc. 35. 16.) Decomp. slowly by cold H₂O, rapidly by hot H₂O. Decomp. by dil KOH+Aq or NaHCO, +Aq. (Korndorfer, Arch. Pharm.

1904, 242, 156.) A study of the mpt. curve of a series of mixtures of sulphur and bromine gave no evidence for the existence of the compounds SBr2 and SBr4. (Ruff, B. 1903, 36, 2446.)

Sulphur monochloride, S.Cla.

Slowly decomp, by H₂O Miscible with CS2 and CaH4 Sol, in alcohol and other with subsequent decomposition. Sol, in oil of tur-

pentine Moderately sol, in liquid NH₂. (Franklin, Am. Ch. J. 1898, 20, 830.)

Sol. in CCls, and CoHs. (Oddo, Gazz. ch. it. 1899. 29. (2) 318.)

Sulphur dichloride, SCla.

Decomp. slowly with H₂O, immediately by alcohol or ether.

Sulphur tetrachloride, SCl4

Violently decomp. by H₂O. Decomp. at temperatures above —22°. (Michaelis, A. 170. 1.)

Sulphur stannic chloride, 28Cl4, SnCl4. Decomp. by H.O. Sol. in dil. HNO.+Aq.

Forms a mass with furning HNO2 which is sol. in HNO2+Aq. Sol. in POCla. (Cassel-00 mann.) Very hydroscopic. Fumes in moist air.

Very easily sol. in dry abs. ether and in benzene. Sol in CHCls, SO₂Cls, CS₂, POCls ligrom and petroleum other. (Ruff, B. 1904. 37. 4517.)

Sulphur titanium chloride, SCL, 2TiCl.

Very deliquescent Easily sol, in dil. HNO₂+Aq. (Weber, Pogg. 132. 454.) SCl₄, TiCl₄ Sol. in SO₄Cl₂, CHCl₃, CS₂

and petroleum ether. (Ruff, B. 1904, 37. 4516.)

Sulphur chloride ammonia, S₂Cl₂, 4NH₃.

Insol in H₂O, but gradually decomp. thereby; sol. without decomp. in absolute alcohol, from which it is pptd. by H2O.

(Mertens.) Does not exist. (Fordos and Gélis, C. R.

31, 702.) SCl_{2j} 2NH₄ Decomp. by H₂O. Sol. in (Southerran, A. ch. 67, 71.) Not a true chemical compound, but a mixture. (Fordos and Gélis, C. R. 31, 702.)

SCl., 4NH., Decomp. by H.O. Sl. sol. in absolute alcohol and ether (Soubeiran, A. ch. 67, 71); mixture (Fordos and Gélis).

Sulphur chloride nitrogen sulphide. See Nitrogen sulphochloride.

Sulphur perfluoride, SFa.

Very al. sol. in H₂O: al. sol. in alcohol. (Moissan, C. R. 1900, 130, 868.)

Sulphur monoiodide, SoI1.

Insol. in H₂O Decomp. by alcohol, which dissolves out I₂ Sl sol. in cold caoutchin, ussorves out 1₂ Sl sol. in cold caoutchin, the solution decomposing when boiled. Freely sol. in glycerine Sol. in 60 pts, glycerine, and 82 pts, clive oil. (Cap and Garot, J. Pharm. (3) 26. Sl.)
Very sol. in liquid NH., (Franklin, Am. Ch. J. 1888, 20. 830.)
Sol. in CS., (Linebarger, Am. Ch. J. 1895,

17, 58.)

Sulphur hexiodide, SI.,

Decomp. on air. Alcohol or alkalies dis-solve out iodine. (vom Rath, Pogg. 110, 116.) Does not exist. (M'Leod, Rep. Brit. Assn. Advn. Sci. 1892, 690.)

Sulphur stannic iodide. See Tin sulphur 10dide.

Sulphur sesausoxide, S₂O₂, Deliquescent. Violently decomp. by H₂O at ordinary temp. Sol. in furning H₂SO₄. Insol. in SO₅. Decomp. by alcohol or other. (Weber, Pogg. **156**. 531.)

Sulphur dioxide, SO2.

Liquid Insol. in H2O if brought in cohtact therewith below the b-pt of SOs.

Sol. in 3 vols CS, on warming, separating out on cooling. Dissolves some P, little S, and no sulphuric or phosphoric acids Dissolves ether, chloroform, P, Br, S, I, CS₂, colophonium, and other gums; also benzene when warmed. (Sestini, Bull. Soc.

(2) 10, 226.) Miscible with liquid SO₃, but not with

H.SO. Gas

1 red. H.O. hamile 20 value 30, page 41 15° (Dayer). 200 vel. at ord tomorp. Dabaton). 45° vel. at at ord tempt (in Soussarte). 30° reds. 41° 20° and 7:01 mm. (Pebause and Pressy). 35° vis. 41° vid. from 71° and 71° page 11° vid. 20° page 11° vid

Solubility of SO2 gas in HgO to temp , V = solution of SO₂ gas in H₂O $^{\circ}$ t = temp, $^{\circ}$ vels. SO₂ reduced to 0° and 760 mm. contained in 1 vol. sat. SO₂+A $^{\circ}$ q, $^{\circ}$ 1 v = vols. SO₂ gas reduced to 0° and 760 mm, dissections. solved by 1 vol H2O under 760 mm, pres-

t°	v	V ₁	to	v	V1
0	68 861 67 003	79.789 77 210	21 22	34 986 33 910	37 970 36 617
2	65 169	74 691	23	32 847	85 302
3	63 360	72 230	24	31 800	34 026
4	61 576	69 828	25	30 766	32 786
- 5	59 816	67 485	26	29 748	31.584
6	58 080	65 200	27	28 744	30 422
7	56.369	62.973	28	27 754	29.314
8	54 683	60 805 58 697	29	26 788	28 210
10	53 021	58 697 56 647	30	25.819 24 873	27 161 26 151
11	49.770	54 655	32	23 942	25 178
12	48 182	52 723	33	23 025	24 244
13	46.618	50.849	34	22 122	23 347
14	45 079	49 033	35	21.234	22 489
15	43 564	47 276	36	20 361	21 668
16	42 078	45 578	37	19.502	20 886
17	40 608	43 939	38	18 658	20 141
18	39 165	42 360	39	17 827	19.435
19	37 749	40 838	40	17 013	18 766
20	36.206	39 374			

(Schonfeld, A 95, 5)

This table may be formulated as follows. 1 vol. H₂O absorbs 79 789 - 2 6077t-0.029349t° vols SO₂ at temp, between 0° and 20°, or I vol. sat. solution contains 68 861-1.87025t+0.01225t³ vols. SO₂. Coefficient of absorption between 21° and 40°=75.182— 2.1716t+0.01903t² vols SO₂ or 1 vol. sat. solution between 21° and 40° contains 60.952

—1.38898t+0.00726t3 vols. 80a.

Solublity of SO₂ in H₂O at various temps and 760 mm, t°=temp, G=grammes SO₂ dissolved in 1 g H₂O; V=vols SO₂ dissolved in 1 g H₂O

٠	f.o	G	V	t°	G	v
	8	0 168	58.7	30	0.078	27.3
	10	0 154	53.9	32	0.073	25 7
	12	0.142	49.6	34	0.069	24 3
	14	0.130	45.6	36	0.065	22 8
	16	0 121	42.2	38	0.062	21.6
	18	0.112	39.3	40	0.068	20.4
	20	0 104	36.4	42	0.055	19 3
	22	0.098	34.2	44	0.053	18 4
	24	0 092	32.3	46	0.050	17 4
9	26	0 087	30 5	48	0 047	16 4
	28	0 083	28 9	50	0 045	15 6

(Sims, A. 118, 340)

700 mm.						
	7°					
P	G at P	G at 760	V at P	V at 760		
30	0 010	0.263	3 634	92 06		
40	0 013	0.242	4.451	84 55		
50	0 015	0 223	5 129	77 95		
60	0 017	0 818	6 024	76 28		
70	0 020	0 213	6 868	74 55		
80	0 022	0 210	7 743	73 55		
90	0 025	0 208	8 598	72.62		
100 120	0 027	0 205 0.201	9 421 11 09	71.60 70.20		
140	0 032	0.201	12 71	70 20 69 00		
160	0.041	0 197	14 34	68 15		
180	0.046	0.193	15.97	67.40		
200	0.050	0 191	17 59	66 83		
220	0 055	0 190	19 19	66 30		
240	0 059	0 188	20 79	65 84		
260	0 064	0 187	22 40	65 44		
280	0 069	0 186	23 99	65 10		
300	0 073	0 185	25 59	64 81		
350	0 085	0 184	29.55	64 16		
400	0 096	0 182	33 51	63 65		
450	0.107	0 181	37 44	63.25		
500	0 118	0 180	41.42	62 94		
550	0 130	0 179	45 31	62.60		
600 650	0 141 0 152	0.178	49 20	62 32		
700	0 152	0 178	53 10 56 98	62 09		
750	0 174	0 176	60.88	61 69		
760	0 178	0 176	61.65	61.65		
800	0 185	0 176	64 74	61.50		
850	0.196	0 175	68 57	61.30		
900	0.207	0 175	72 41	61 15		
950	0 218	0.175	76 25	61 00		
1000	0 229	0.174	80 01	60 88		
1050	0 240	0 174	83 97	60 77		
1100	0 251	0 174	87 80	60 65		
1200	0 273	0 173	95 45	60.45		
1300	0 295	0 172	103.00	60 25		

	T	20°				
P	G at P	G at 760	V at P	V at 760		
40	0.007	0 143	2 637	50 09		
50	0 009	0 138	3 171	48 20		
60	0 011	0 135	3 718	47 10		
70	0.012	0 131	4 205	45 64		
80	0 013	0 127	4 663	44 30		
90	0.015	0 125	5.169	43 65		
100	0.016	0 124	5.692	43 25		
120	0 019	0 121	6 683	42.33		
140	0.022	0 119	7.690	41.75		
160	0 025	0 118	8.666	41.17		
180	0 028	0 117	9 652	40.75		
200	0 030	0 116	10 62	40.35		
220	0 033	0 115	11 59	40.03		
240	0 036	0 114	12 54	39.70		
260	0.038	0.112	13 45	39 30		
280	0 041	0.112	14 41	39.10		
300	0 044	0 111	15 34	38.87		
350	0 050	0.110	17.66	38.35		
400	0.059	0 109	20 56	38 10		
450 500	0.064	0.108	22 37 24 67	37 77 37 50		
550	0.071	0.107 0.106	24 67 26 93			
600	0 083	0 106		37 20 36 90		
650	0 090	0.105	29 14	36 70		
700	0 096	0.105	33 62	36 50		
750	0 103	0 103	35.94	36 43		
760	0 104	0 104	36.43	36 43		
800	0 110	0 104	38.32	36 40		
1000	0 137	0 104	47 85	36 37		
1300	0 178	0.104	62 10	36 31		
1600	0 218	0.104	76 35	36 27		
1900	0 259	0.104	90 53	36 21		
	0 200	0 101	50 00	00 21		
	T	39.	So.			
P						
	GatP	G at 760	V at P	V at 760		
200	0 016	0.062	5,675	21.57		
300	0.024	0.061	8 368	21 20		
. 400	0 031	0.060	11 03	20 95		
500	0 039	0.059	13 67	20 77		
600	0 047	0 059	16.29	20 64		
760	0 059	0 059	20 50	20 50		
800	0 062	0 059	21 58	20 50		
1000	0 077	0.058	26 84	20 40		

1000	0 077	0 058	26 84	20 40
1500	0.113	0.057	39.65	20 09
2000	0 149	0 057	52 11	19 80
		0		
P	GatP	G at 760	V at P	V at 760
200	0 012	0.045	4 156	15 '97
400	0 024	0 045	8 275	15 72
600	0 035	0 045	12.36	15.65
760	0 045	0 045	15 62	15.62
800	0 047	0.045	16 43	15.60
1000	0 059	0 045	20.51	15.59
1500	0 088	0.044	30 73	15.57
2000	0 012	0.044	39 07	15.55

(Sims, A. 118, 340.)

0 176

0 168

1 g. H₂O dissolves 0.0909 g SO₂ = 34.73 cc. (at 25°) at 25° and 748 mm, pressure. (Walden and Centnerszwer, Z. phys. Ch 1901, 42.

and the second of the second o

Domoniey	pres		ma 100 mii
t°	G SO ₂ per 1 g H ₂ O	t _o	G SO ₁ per lg H ₂ O

0 218 $\dot{2}$ 8 0 201 10 0 154 4 ã 0 184 12 0 142

236

(Roozeboom, R. t c 1884, 3, 29)

From a gas containing 10% by vol. of 80_2 at 10° , 1.63% by wt. is dissolved by 1 litre of H_2O ; if the pressure is increased to 5 atmospheres, 8.14% by wt is dissolved. (Harpf, Chem. Zeitsch., 1905, 4, 136)

Solubility of SO2 in H2O at to. C = g, SO_1 in 1 cc of the solution.

r - rr	essure to man		
t°	c	P	C ×104
0	0 000537 0 00237 0 01227 0 03834	0 4 3 5 29 4 109 4	13 4 . 6 78 4 17 3 48
25	0 000534 0 00234 0 01212 0.03750	1 4 11 75 87 9 313 0	3 81 2 00 1.379 1 198
50 "	0 000525 0 002276 0 01181 0 03628	4 9 30.5 204 5 696 0	1 07 0 746 0 577 0 521

(Lindner, M. 1912, 33, 645.)

Sp. gr. of sat solution at-20° 1.06091 1.05472 1.02386 0.95548 (Bunsen and Schonfeld, A. 95, 2.)

Sat. SO₂+Aq has sp. gr. = 1.0040, (Berthollet.)

	Sp. gr of sat. SU2+Aq at t".										
t°	Sp. gr	fo.	Sp. gr	t°	Sp. gr						
0 1 2 3 4 5 6 7	1.0609 1.0596 1.0585 1.0576 1.0569 1.0562 1.0557 1.0552	9 10 11 12 13 14 15 16	1 0548 1.0547 1 0528 1 0505 1 0481 1 0454 1.0424 1 0392	17 18 19 20 21 22 23 24	1 0358 1 0321 1 0281 1 0289 1 0195 1 0147 1 0099 0 9991						

(Schiff, A. 107, 312.)

Sp. gr. of SO2+Aq at 4°.

ső,	Sp. gr.	ső:	Sp gr.	%,	Sp gr
1	1 0024	8	1 0217	15	1 0445
2	1 0049	9	1 0247	16	1 0480
3	1 0075	10	1 0278	17	1 0517
4	1 0102	11	1 0311	18	1 0553
5	1 0130	12	1 0343	19	1.0591
6	1 0158	13	1 0376	20	1.0629
7	1 0187	14	1 0410	21	1 0667

(Schiff, calculated by Gerlach, Z. anal. 8, 292)

Sp. gr of SO₄+Ac

% 80. Temp Sp. gr 0 99 15 5° 1 0051 2.05 " 1 0102 2.87 " 1 0148 4 01 " 1.0204	-	b Pr gr pof la	
2.05 " 1 0102 2.87 " 1 0148	% SO ₁	Temp	Sp. gr
2.87 " 1 0102			
4 99 " 1 0252	4 01		
5 89 " 1 0297	5 89		1 0297
7 01 " 1 0353 8 08 " 1 0399	8 08		
8 68 " 1 0438 9 80 " 1 0492	8 68		
10 75 " 1 0541	10 75		1 0541
11.65 12.5° 1.0597 13.09 11.0° 1.0668		12 5° 11 0°	

(Giles and Schearer, Jour. Soc. Ch. Ind 4.

Sp gr of SO2+Aq

80:	Sp. gr.	ső:	Sp. gr	ső:	Sp. gr.
1 2	1 0052 1.0094	4 5	1.0167 1 0208	7 8	1.0283 1 0329
3	1.0134	6	1 0242	١ğ	1 040

(Anthon.)

Sp gr. of SO2+Aq.

%:	Sp. gr	ső:	Sp gr	50°	Sp. gr.
1 2 3 4	1.0042 1.0083 1.0125 1.0167	5 6 7	1.0210 1 0252 1 0295	8 9 10	1 0348 1 0392 1.0438

(Hager, Adjumenta varia, Leipzig, 1876.

146)

Sp gr. of SO ₂ +Aq	Solub	olity of S	30 ₂ in 3	H ₂ SO ₄	of 1.84	sp. gr.	
So. Sp gr So. Sp gr 0 5 1 0028 4 0 1 0221 1 0 1 0056 4 5 1 0248	7 5 1 0401 8 0 1.0426	t°	Sp gr of sut solution	Coeff of absorption (760 mm.)	, _{t°}	Sp gr of sat solution	Coeff of absorption (760 mm)
1 5 1 0085 5 0 1 0275 2 0 1 0113 5.5 1 0302 2.5 1 0141 6.0 1 0328 3 0 1 0108 6 5 1 0353 3 5 1 0194 7.0 1 0377	8 5 1 0450 9 0 1.0474 9 5 1 0497 10.0 1 0520	0 10 20 25 30	1 8232 1 8225 1 8221 1 8216	53 35 0 25 0 21 0 18 0	50 60 70 80 90	1.8186 1 8165 1 8140 1 8112 1 8080	9.5 7.0 5.5 4.5 4.0
(Scott, Polyt Centralbl	40	1 8205	13 0	070	Cale by	0.12.7	
Conc. H ₂ SO ₄ absorbs 0.00	(Dun		lubilitie			овиси,	

(58 vols.), and SO₂ is more soluble in dilute H₂SO₄+Aq, the more H₂O there is present. (Kolb, Dingl. 209. 270)

Solubility in H2SO4

Sp gr of	Absorbs 80;	Absorbs SO ₂
H:SO ₄	per kg	per litre
1 841	0 009	5 8
1 839	0 014	8 9
1 540	0 021	11 2
1 407	0 032	15 9
1 227	0 068	29 7
1 020	0 135	49 0

(Kolb, Bull Soc Ind. Mullhouse, 1872, 224.)

Coefficient of absorption for H₂SO₄ (1.841) and 28.86 at 16°. (Dunn, C. N. 43.121.) coefficient of absorption in H₂SO₄ (sp. gr. al.889) = 8.9. (Lunge.)

Solubilities, 1st Ed.)

Solubility of SO₂ in H₂SO₄+Aq.

t°	Sp gr of H ₃ SO ₄ solution	Approx 9, H.SO,	Coeff of absorption	t°	Sp. gr. % H ₃ SO ₄ solution	Approx.	Coeff. of absorption
8.6 9.8	1 703	58 78 10	45 38 39 91 29 03 36 78	15.2 16 8 14 8 15 1 15 6 15 0	1.151 1.277 1.458 1.609	21 36 56 70	31 56 30 41 29 87 25 17

(Dunn, C. N. 1882, 45. 272, Seidell, Solu-bilities, 1st Ed.)

Solubility in salts+Aq at 35°.

I = coefficient of absorption of SO2 in the given salt solution at 35°. lo = coefficient of absorption of SO₀ in water at 35° = 22.43.

Salt	T	3-normal	2 5-normal	2-normal	1 5-normal	1-normal	0.5-normal
KI	1	45.43	41.87	38.04	34.64	30.25	26.80
	l-lo	28.00	19.44	15.61	12.21	7.82	3.87
KBr	1	36 14	34.12	31.93	29.64	27 49	24.88
	l-lo	13 71	11.69	9.50	7.21	5.01	2 40
KCl	1	30 02	28.98	27.94	26.54	25.15	28.74
	l-lo	7.59	6.50	5 31	4.11	2 72	1.31
KCNS	1	42.94	38.13	35.05	32.03	28.79	25.63
	l-lo	18.51	15 70	12.62	9.60	6.36	3.20
NH ₄ NO ₅	1	27 43	26.66	25.57	24.78	24.23	23.35
	l-lo	5.00	4.23	3.14	2.35	1.80	0.92
KNO,	1	27 33	26.54	25 72	24.79	24.03	23 27
	l-lo	4.90	4.11	3 29	2 36	1.60	0.84

KCI

1 42 27 40 96 39.32 37.76 36 05 24 42

l-lo 9.51 8.20 6 56 5 00 3.29 1.66

Solubility in salts+Aq at 35° .- Continued

l= coefficient of absorption of SO_2 in the given salt solution at 35° lo= coefficient of absorption of SO_2 in water at 35°= 22 43 Salt 3 normal 2 5-normal 2 normal 1 5-normal 1-normal 0.5-normal 23 49 23 14 1/2(NH4),804 24 60 24 23 23 93 22 91 1-10 2 17 1.80 1 50 1.06 0.71 0.48 1/2CdI2 1 24 30 23 99 23 71 23.3828 06 22 75 1-lo 1 87 1.56 1 28 0 95 0.630.32 20 81 21 35 1/6Na.SO. 19 27 19 79 20 20 21.881-lo -3 16 -2 64 -2 23 -1.62-1.08-0.551 19 70 20 60 20 81 21.46 21 88 1/4CdBr. 19 17 l-lo -3.26-2 73 -1.83 -1 62 -0.97-0.551 1/4CdCl2 18.68 19 23 20.02 20 55 21 23 21.73l-lo -3.75-3 20 -241-1.88-1 20 -0.7016.25 17.41 18 31 19.42 20 43 21 45 1/4CdSO. l-lo -6.81-502-412-301-2 00 -0.98

Solubility in salts+Aq at 25°. 1-coefficient of absorption of SO ₂ in the given solution at 25°. 1a-coefficient of absorption of SO ₂ in water at 25° = 32.76.									
Salt	, and or pu	3-normal	2 5-normal	2-normal	1 5-normal	1-normal	0 5-normal		
KI	1	68 36	62.63	56.75	50.58	44 76	38 66		
	l-lo	35.60	29.87	23 99	17.82	12.00	5 90		
⅓CdI₂	1	35.77	34 98	34 74	34 16	33 76	33 27		
	I-lo	3 01	2 22	1 98	1 40	1.00	0.51		
NH ₄ Br	1	52.25	49.17	46.06	42.78	39 46	36.28		
	l-lo	19.49	16.41	13.30	10 02	6.70	3.52		
KBr	1	52.26	48.87	44.96	42 41	39 11	35.94		
	l-lo	19.00	15.71	12.70	9.15	6.35	3.18		
NaBr	I	37.74	36.84	36.26	35 27	34 54	33.76		
	l-lo	4.98	4.08	3.50	2.51	1.78	1.00		
½CdBr ₂	1	27 46	28 15	29.27	30 17	31.01	31 91		
	l-lo	-5 30	-4.61	-3.49	-2.59	-1.75	-0 85		
NH ₄ Cl	1	42.78	41 37	39.76	38.06	36 37	34.58		
	1-lo	10.02	8.61	7.00	5.30	3 61	1.80		

Solubility in salts + Aq at 25°—Continued. l= coefficient of absorption of SO_2 in the given solution at 25°. l= coefficient of absorption of SO_2 in water at 25°= 32 76.

(Fox, Z. phys. Ch. 1902, 41, 462.)

Sol. in Cl_2+Aq . Sol. in Br_2 Solidification curves determined (Van der Goot, Z. phys. Ch. 1913, 84. 419.)

t° and 760 mm, dissolves V vols SO₄ gas at 0° and 760 mm.

t°	V	t°	V	t°	v
0	328 62	9	201 33	17	130 61 124 58
2 3	311.98 295.97	10	100 31 179 91	18 19	119 17
3 4 5	280 58 265 81	12 13	170 13 160 98	20 21	114.48 110 22
6	251 67 238 16	14	152.45 144.55	22 23	106 68 103 77
7	225 26	16	137 27	24	101.47

137 27 (Bunsen's Gasometry.)

212 98

100 pts. absolute methyl alcohol dissolve 247 pts. SO₂ at 0° and 760 mm.; 47 pts. at 26° and 760 mm.; 100 pts. absolute ethyl alcohol dissolve 115 pts. SO₂ at 0° and 760 mm.; 32.3 pts. at 26° and 760 mm. (de Bruyn, Z. phys. Ch. 10. 783.) Sol. in ether.

Absorbed by oil of turpentine.

Rapidly absorbed by anhydrous aldebyde in the cold, 11 pts. aldehyde absorbing 19 pts.

SO₂.

Absorption coefficient of aldehyde for SO₂

that of alcohol, and s 1.4 times greater than that of alcohol, and 7 times greater than that of H.O. (Geuther and Cartmell, Proc. Roy. Soc. 10, 111.)

1 pt. campior dissolves 0.880 pt. by weight (=308 vols.) SO₂ at 0° and 725 mm.; 1 pt. glacial HC₂HO₂ dissolves 0.961 pt. by weight (=318 vols.) SO₂ at 0° and 725 mm.; 1 pt. formic acid dissolves 0.821 pt by weight (=351 vols.) SO₂ at 0° and 725 mm.;1 pt. acetone dissolves 2 07 pts by weight (=589 vols.) SO₂ at 0° and 725 mm.; 1 pt. sulphuryl chloride dissolves 0.323 pt. by weight (=187 vols.) SO₁ at 0° and 725 mm. (Schulze, J. pr. (2) 24, 168.)

Solubility of SO₂ in CHCla. C = g. SO_2 in 1 cc of the solution P = Pressure in mm Hg.

t°	c	P	C×104
0	0.000701 0.001790 0.006982 0.03097 0.08217	2.7 5 6 22.0 90.2 219 6	2.6 3 14 3 17 3 43 3 74
25 "	0 000669 0.001712 0 006728 0.02954 0 07839	5 7 12 9 48.0 208 2 488 8	1 17 1 37 1 40 1 47 1 60

(Lindner, M. 1912, 33, 645.)

Solubility of SO₂ in alcohol. 1 vol alcohol at Distribution of SO₃ between H₂O and CHCl. at 20°.

> c1 = g. SO2 per 1 of H2O solution. c1 = g, SO2 per l. of CHCl2 solution.

C ₁	C ₂	C ₁ /C ₂
1 738	1.123	1.55
1 753	1.122	1 56
2 326	1 704	1 37
2 346	1.703	1 38
2 628	1.897	1 38
3.039	2 395	1 27
3 058	2 385	1.28
3 686	3 063	1.20
3.735	3 062	1 22
4 226	3 626	1 17
5 269	4 798	1.10
5 372	4 813	1.12
6 588	6 183	1 07
31.92	33 84	0.94
33 26	37.25	0.89

(McCrae, Z. anorg, 1903, 35, 12)

Distribution of SO₂ between HCl+Aq and CHCl₂ at 20°.

e1=g. SO2 per l. of HCl+Aq solution ca = g SOa per l. of CHCla solution. HCl=normality of HCl+Aq used

IICI	C ₁	C ₂	C ₁ /C ₂
0 05-N	1 86	1.46	1 28
	3 076	2.830	1 08
	4 277	4 07	1 04
	5 340	5.42	0 96
0.1 -N	1.25	1 41	0.88
	1 324	1.416	0.93
	2 78	3.08	0.90
	3 86	4.08	0.94
	5 161	5 715	0.90
0 2 -N	1 268	1 509	0 84
	1.914	2 274	0 84
	2 464	3.040	0.81
	3 967	4 898	0.81
0 4 -N	1.202 1.894	1.614	0.79

(McCrae, Z. anorg 1903, 35. 14.)

Sulphur dioxide ammonia, SO₂, NH₃. Very hydroscopic. Easily sol, in H₂O with decomp. (Schumann, Z. anorg, 1900, 23.

SO2, 2NH1. Somewhat hydroscopic Sol. in HaO with evolution of NHs. (Schu-

man, Z. anorg. 1900, 23. 50.)
580s, 4NH₁. Very deliquescent.
Very sol. in H₂O. (Divers and Ogawa, Chem. Soc. 1901, 79. 1103.)

Sulphur trioxide, SO1.

Fumes on air. Miscible with H₂O, with evolution of much heat Sol, in H₂SO₄. Decomp. by alcohol and ether.

Exists in two modifications, one of which is
haud and miscible with H.SO4, while the
solid form is only slowly sol therein.
Miscible with CS, at 30°, but at 15° CS,
dissolves only 1/2 nt. SO2, and SO2, 1/2 nt.
CS ₂ (Schultz-Sellack, Pogg. 139, 480.)

There is only one modification, the liquid. which shearbs H.O and becomes solid. (Rebs. A. 246, 356,)

Muscible with liquid SO₄. (Schultz-Sellack.)

See also Sulphuric acid. Sulphur heptoxide, SoOr

Fumes on air. Slowly decomp. at 0°, m-

Fumes on air. Slowly decomp. at U, instantaneously on warming Sol, in conc. H₂SO₄. (Berthelot, J. pr. (2) 17. 48.)
Forms compound S₂O₄, 2H₂O₂.
Formula is SO₄, according to Traube (B. 24. 1764), and S₂O₇ is SO₂+SO₄. See also Marshall (Chem. Soc. 59, 771). Traube (B. 26. 148) denies the existence of

Sulphur oxybromide, SOBrs. See Thionyl bromide.

SO4.

Sulphur oxychloride, SOCls. See Thionyl chloride.

See Throny: Condide.
So(Cl₂. See Sulphuryl chloride.
So(Cl₃. See Sulphuryl chloride.
HSO(Cl₄. See Sulphuryl hydroxyl chloride.
So(Cl₄. Decomp. by H₄O and alcohol.
(Ogier, C. R. 94. 46d.)
Mixture of about 27SCl₂+2SOCl₃ and 58O₄Cl₂. (Knoll, B. 1898, 31, 2183.)

Sulphur oxviet: achieride, S2OxCla.

Violently decomp. by H₂O, dil. actds, or alcohol. (Millon, A. ch. (3) 29, 327.) Sol. in warm S₁Cl₂. (Carius, A. 106, 295.) Decomp, violently with CS2.

Sulphur oxyfluoride, SO₂F₂, See Sulphuryl fluoride. SOF2. See Thionyl fluoride.

Sulphur dephosphide, P.S. See Phosphorus monosulphide.

Sulphur tetraphosphide, P.S. See Phosphorus semisulphide.

Sulphuretted hydrogen, H2S. See Hydrogen sulphide.

Sulphuric acid, H-SO. Miscible with H₂O in all proportions.

	The first of The Card							
Baume degrees	Sp gr	H'so'	Banne	Sp. gr.	H ₂ SO ₄			
66 60 55 50 15 40 35 30 25 20 15	1 842 1 725 1 618 1 524 1 166 1 375 1 315 1 260 1 210 1 102 1 114 1 076	100 84 22 74 32 60 45 58 02 50 41 43 21 36 52 30 12 24 01 17 39 11 73	68 50 55 54 33 52 51 50 19 48 48 46	1 841 1 717 1 618 1 603 1 586 1 566 1 530 1 532 1 532 1 500 1 482 1 406	100 82 34 74 32 72 70 71 17 69 30 68 03 66 45 64 37 62 80 61 32 59 85			
5 1 023 6 00 (Vauquelin, A, ch			45 (F)	1 454 arcet, A	ch			

Sp gr. of H-SO ₄ +Aq								
Higo!	Sp gr at 15°	Sp gr. at 25°	Hiso.	Sp gr at 15°	Sp. gr. nt 25°			
0 2 5	0 9986	0 9955	50 55	1 3886	1 3780			
5 10	1 0284	1 0272	80 65	1 4860	1 4767			
15 20	1 0000	1 3311	70 75	1 5946	1 5863			
25 30	1 1767	1 2078	80 85	1 7092	1 6996			
35 40	1 2562 1 2976	1 2898	90 95	1 8050	1 7940			
45	1 3409	1 2895	100	1 8406	1 8286			

(Delegenne, 1823)

	Sp	gr. at	15.56°.	and bp	t of	H:80:+.	Aq.
Ξ	m	er 80	. n	nt II So		E 80.	B-n

Sp. gr	% SO:	B-pt	Sp gr	% SO:	B-pt
1 850	81	328°	1 769	67	2170
1 849	80	318	1 757	66	210
1 848	79	310	1 744	65	205
1 847	78	301	1 730	64	200
1 845	77	293	1 715	63	195
1 842	76	285	1 699	62	190
1 838	75	277	1 684	61	186
1 833	74	268	1 670	60	182
1 827	73	200	1 630	58 B	177
1 819	72	253	1 520	50	143
1 810	71	245	1 408	40	127
1 801	70	238	1 300	30	115
1 791	69	230	1 200	20	107
1 780	68	224	1 1 100	10	103

(Dalton, N. Syst 2, 210.)

Sp gr of HaSU4+Aq at 10".						
Sp. gr.	s0.	H.504	Sp. gr	ső.	н.‱	
1 8485 1 8460 1 8410 1 8336 1 8233 1 8115 1 7962 1 7774 1 7570 1 7360	81 54 79 90 78 28 76 65 75 02 73 39 71 75 70 12 68 49 66 86 65 23	100 98 96 91 92 90 88 86 84 82	1 5975 1 5760 1 5503 1 5280 1 5086 1 4860 1 4460 1 4460 1 4460 1 473 1 3884	57 08 55 45 53 82 52 18 50 55 48 92 47 29 45 66 44 03 42 40 40 77	70 68 68 64 62 60 58 56 54 52 50	
1 7120 1 6870 1 6630 1 6415	65 23 03 60 61 97 60 34 58 71	80 78 76 74 72	1 3697 1 3530 1 3345 1 3165	39 14 37 51 35 88 34 25	48 46 44 42	

Sp	Sp gr of H:SO:+Aq at 15° -Continued						
Sp gr	8Ű4	H ₈₀₄	Sp gr	ς, śυ,	H ₂ 804	8 0	
1 2999	32 st	40	1 1410	16 31	20	-	
1 2823	30 98	38	1 1246	14 68	18		
1 2554	20 35	35	1 1000	13 05	16		
1 2199	27 72	31	1 0953	11 41	14		
1 2334	20 09	32	1 08:10	9 78	12		
1 2184	24 16	30	1 0182	8 15	10	St	
1 2032	22 83	28	1 0514	6 52	8		
1 1876	21 20	26	1 0405	4 89	6		
1 1706	10 57 17 94	24 22	1 0248	3 23	4 2	2	

(Uro, Sohw J 35, 144)

Sp gr of H ₂ SO ₄ +Aq							
_		At	0°	As	15°		
Degroes Baume	Sp gr	Sပိုး	H2SO4	ຮົບໍ່:	H280,		
50 115 120 120 120 120 120 120 120 120 120 120	1 0076 1 116 1 0776 1 116 1 120 1 131 1 202 1 132 1 322 1 345 1 322 1 345 1 327 1 140 1 327 1 140 1 327 1 140 1 327 1 150 1 351 1 453 1 551 1 55	51 1 3 5 2 2 4 8 8 5 1 1 5 5 2 2 7 3 4 8 8 5 7 1 5 6 0 9 4 4 4 1 7 3 3 7 0 9 4 4 4 1 7 3 3 7 0 9 4 4 4 1 7 3 3 7 0 9 4 4 1 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 + 7 - 3 2 + 7 - 0 1 - 2 3 5 - 6 7 K 9 1 - 3 5 6 5 7 K 9 1 - 3 5 6 5 7 K 9 1 - 3 5 6 5 7 K 9 1 - 3 5 6 5 7 5 7 6 6 6 6 6 6 6 7 7 7 7 7 7 7	5 4 9 1 15 4 4 1 1 15 1 15 1 1 1 1 1 1 1 1 1	1 8 9 13 3 3 1 18 3 3 3 1 18 3 3 3 1 18 3 3 3 1 18 3 3 3 1 18 3 3 3 1 1 18 3 3 3 1 1 1 1		

(Bineau A eh; (3) 25, 121)

	ted for a					
	Sp gr or and at o°	Core	Sp gr. of acid at 0°	Corr	Sp gr of acid at 0°	Core
	1 04 1 07	0 002 0 003	1 15 1 20	0 005	1 45 1 70	0 008 0 000 0 000

(Binesu)

45 1 451 1.351 95 1.8376 46 1.465 1.361 96 1.8384 47 1 478 1 370 97 1.840 48 1 490 1.379 98 1 8406	2 1 017 1 018 52 1 545 1 418 3 1 023 1 019 53 1 545 1 545 1 418 4 1 0341 1 0236 54 1 575 1 558 1 428 4 1 0341 1 0236 54 1 575 1 585 1 428 5 7 1 035 1 019 5 5 1 575 1 585 1 585 7 1 035 1 0454 57 1 615 1 690 1 4486 7 1 055 1 045 6 57 1 615 1 690 1 4486 7 1 055 1 045 6 57 1 615 1 690 1 4486 7 1 055 1 045 6 57 1 615 1 690 1 4866 7 1 055 1 045 6 57 1 615 1 690 1 4866 7 1 057 1 055 6 58 1 695	٦.	a	ь	٠ (a	ь	c
48 1 490 1.379 98 1 8406	48 1 490 1.379 98 1 840 at 49 1 501 1.3886 99 1.842		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 24 22 25 26 30 33 33 33 33 33 33 33 33 33 33 33 33	1 009 1 017 1 025 1 034 4 1 041 1 04	1 0094 1 0113 1 0131 1 023 1 0	51 52 53 54 55 56 57 58 60 61 62 63 64 65 66 67 77 77 77 77 77 77 77 77 77 77 77	1.530 1.545 1.573 1.573 1.585 1.600 1.615 1.627 1.642 1.675 1.675 1.700 1.716 1.730 1.742 1.770 1.781 1.770 1.781 1.792 1.802 1.802 1.819 1.830 1.830 1.837 1.837 1.837 1.839	1.408 1.418 1.418 1.418 1.428 1.438 1.458 1.460 1.450 1.450 1.450 1.510
		nt	47 48 49	1 478 1 490 1 501	1 370 1.379 1.3886	97 98 99		1.840 1.840 1.842

Sp. gr. of H ₂ SO ₄ +Aq at 15°, H ₂ O at 0°=1.						1 8	Sp. gr o	f H ₂ SO ₄	, etc.—(Continue	d
п.50.	Sp gr	и.so.	Sp gr.	H.SO.	Sp gr	Sp gr	s8,	п го.	Sp. gr	s0,	H.SO
1 2 3 4 4 5 6 6 7 7 8 8 9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 24 24 5 26 26 28 30 31 32 2 29 33 33 34 (Fraction of the first o	1.006 1.002 1.002 1.003 1.003 1.004 1.002 1.003	35 36 37 38 39 40 41 41 42 43 44 44 45 50 51 52 53 54 55 66 67 67	1 204 1 272 1 281 1 280 1 290 1 290 1 307 1 31 1 31 1 32 1 36 1 37 1 39 1 40 1 40 1 40 1 40 1 40 1 40 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 5	68° 69° 70° 71° 72° 73° 74° 75° 76° 77° 78° 80° 81° 82° 83° 84° 85° 86° 99° 91° 99° 998° 991° 100° 100° 100° 100° 100° 100° 100	ding to	1 150 1 155 1 100 1 105 1 175 1 170 1 175 1 185 1 170 1 185 1 190 1 1 200 1 1 205 1 200 1 205 1	17 07 59 18 11 17 59 18 11 19 69 20 21 18 19 69 20 22 23 33 33 21 24 36 88 25 25 88 22 25 88 25 26 83 31 31 52 31 59 62 33 31 52 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35	11 50 91 1 20	1 455 1 440 1 470 1 470 1 470 1 470 1 480 1 485 1 480 1 485 1 485 1 480 1 485 1 480 1 1 485 1 1 480 1 48	45 31 45 69 460 47 21 47 57 48 34 49 12 147 57 55 60 56 56 57 57 55 58 48 48	55 50 50 55 50 55 50 643 55 50 643 55 69 20 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50
anal 2	7 316.)		5° comp		٠.	1 335 1 340 1 345 1 350	35 71 36 14 36 58	43.74 44.28 44.82	1 640 1 645 1 650 1 655	58 74 59 10 59 45 59 78	71 99 72.40 72.88 73.23
op gr	at 4°	and 0	nm. pre	ssure		1 355 1 360 1 365	37 02 37 45 37 89	45 35 45 88 46 41	1 660 1 665 1 670	60 11 60 16 60 82	73.64 74.07 74.51
Sp. gr	ső,	H3804	Sp gr	ső,	H.SO.	1.370	38 32 38 75	46 94 47 47	1 675 1 680	61.20	74 97 75 42
1 000 1.005 1.010 1.015 1.020 1.025 1 030 1.035 1 040 1 045 1 050 1.055 1.060 1 060	0 07 0 68 1 28 1 88 2 47 3 07 4 27 4 87 6 02 6 59 7 16 7 73 8 32	0.09 0.83 1.57 2.30 3.76 4.49 5.23 5.96 7.37 8.07 8.77 9.47 10.19	1 075 1 080 1 085 1 090 1 .095 1 100 1 105 1 110 1 115 1 .120 1 125 1 130 1 135 1 140 1 145	8 90 9 47 10 04 10 60 11 16 11 71 12 27 12 82 13 36 13 89 14 42 14 95 15 48 16 01 16 54	10.90 11.60 12.30 12.99 13.67 14.35 15.07 16.70 17.66 18.31 18.96 19.61 20.26	1 380 1 385 1 390 1 895 1 400 1 405 1 410 1 415 1 420 1 425 1 430 1 445 1 440 1 445 1 445	39 18 39 62 40 05 40 48 40 91 41 33 41 76 42 17 42 57 42 96 43 36 43 75 44 14 44 53 44 92	48 00 48 53 49 06 49 59 50 11 50 63 51 15 52 15 52 15 52 63 53 11 53 59 54 67 54 55 55 03	1 685 1 690 1 695 1 700 1 705 1 710 1 715 1 720 1 725 1 735 1 736 1 745 1 750 1 755	61 93 62 29 62 64 63 00 63 35 63 70 64 07 64 43 64 78 65 14 65 50 66 58 66 94	75 86 76 30 76.73 77.17 60 78.04 78 48 78 92 79 36 80.24 80 68 81 12 81 56 82 00

On an o								
բոր ցբ. ս	of H ₂ SO ₄ ,	etcCon-	tınucd	.	Sp. gr. o	f cone. H	₂ SO ₄ , etc –	-Continued
Sp. gr SOs	H _s SO _n	Sp. gr	sδ	11,804	% H:804	Sp. gr	% H ₂ SO ₄	. Sp. gr
1 760 67 67 87 177 188 47 177 188 49 177 188 69 17 177 188 49 17 177 188 49 17 177 188 49 17 179 179 179 179 179 179 179 179 179	82 44 82 88 83 32 83 39 84 50 85 10 85 10 86 90 87 60 88 30 89 05 90 20 90 60 90 80 91 10 91 150 91 70	1 S29 7 1 S30 7 1 S31 7 1 S31 7 1 S31 7 1 S32 7 1 S35 7 1 S35 7 1 S36	75 03 75 19 75 35 75 75 35 75 75 53 75 76 27 76 27 77 23 77 25 77 25 77 25 77 25 77 36 77 39 79 79 79 79 79 76 80 16 80 58 81 18 81 39 81 59	91 90 92 10 92 30 92 52 92 75 93 43 93 80 94 20 94 20 95 60 95 95 97 00 97 70 98 20 99 20 99 95 99 99 99 99 99 95	95 61 95 55 96 50 95 45 95 35 95 35 95 25 95 21 95 12 95 12 95 12 95 14 95 04 94 92 94 88 94 84 94 69 94 69 94 69 94 69 94 69 94 69 94 69 95 16 96 94 95 96 94 96 97 94 69 98 94 69 99 94 69 90 90	1. 8414 1. 8413 1. 8412 1. 8411 1. 8410 1. 8400 1. 8406 1. 8405 1. 8405 1. 8405 1. 8402 1. 8401 1. 8403 1. 8402 1. 8403 1. 8402 1. 8403 1. 840	93.32 93.29 93.29 93.20 93.17 93.14 93.19 93.00 93.00 92.95 92.95 92.97 92.87 92.87 92.77 92.77 92.73 92.71 93.66	1 8352 1 8351 1 8351 1 8348 1 8347 1 8348 1 8343 1 8343 1 8343 1 8343 1 8343 1 8343 1 8343 1 8343 1 8343 1 8336 1 8336 1 8333 1 8333 1 8331 1 8332 1
Sp. gr. c	of cone. H	I₂SO₄+Aq	at 15	٠.	94.57 94.53 94.49	1 8390 1 8389 1 8388	92 63 92 61 92 59	1 8327 1.8326 1 8325
% H:SO4	Sp gr	% H ₂ SO ₄	Sp	gt	94 46 94 42	1 8387 1 8386	92 56 92 54	1 8324 1 8323
99 98 99 94 99 94 99 90 99 90 99 88 99 88 99 81 99 78 99 76 99 77 99 64	1, 8384 1, 8386 1, 8386 1, 8386 1, 8386 1, 8386 1, 8386 1, 8386 1, 8396 1, 8391 1, 8392 1, 8393 1, 8394 1, 8394 1, 8395 1, 8396 1, 8496 1, 849	99. 02 98. 98 98. 94 98. 84 98. 84 98. 71 98. 56 98. 56 98. 56 98. 40 98. 22 98. 92 97. 50 97. 70 96. 63 97. 50 97. 50 97. 50 98. 44 98. 22 99. 96. 93 99. 96. 39 98. 34 98. 34 98. 56 99. 40 99. 50 99. 50 90. 50	1.0	54178 5418 5418 5419	94 38 94 34 94 31 94 27 94 24 94 29 94 10 94 10 94 10 94 03 7 94 00 93 97 93 99 93 89 93 87 93 71 93 65 93 br>93 65 93 93 93 93 93 93 93 93 93 93 93 93 93	1 8385 1 8384 1 8383 1 8382 1 8382 1 8381 1 8378 1 8376 1 8376 1 8376 1 8376 1 8377 1 8377 1 8377 1 8377 1 8377 1 8377 1 8376 1 8376 1 8376 1 8376 1 8376 1 8365 1 8366 1 8366	92 49 92 49 92 49 92 41 92 41 92 87 92 87 92 82 92 22 92 22 92 22 92 21 92 21 92 11 92 11 92 11 92 10 93 15 94 91 95 91 96 91 97 91 98 91	1 \$322 1 \$321 1 \$321 1 \$321 1 \$318 1 \$318 1 \$317 1 \$316 1 \$315 1 \$314 1 \$313 1 \$313 1 \$310 1 \$305 1

Sp. m. c	of some II St) ata — C	antinued 1	O		100 11	.1.150
		·					
% H,SO4	Sp gr.	% H ₂ SO ₄	Sp gr.			-	
% H.SO. 91 72 91 72 91 73 91 70 91 70 91 70 91 70 91 70 91 80 91 61 91 61 91 61 91 61 91 61 91 61 91 61 91 61 91 61 91 61 91 61 91 62 91 6	of cone. H _s Ss Sp. ir. 1. S298 1. S298 1. S286 1. S286 1. S286 1. S286 1. S286 1. S286 1. S286 1. S286 1. S286 1. S286 1. S286 1. S286 1. S286 1. S286 1. S286 1. S286 1. S288 1. S288 1. S288 1. S273 1. S273 1. S273 1. S273 1. S273 1. S273 1. S273 1. S273 1. S273 1. S273 1. S273 1. S273 1. S273 1. S273 1. S276 1. S266 1. S266 1. S266 1. S267 1. S268 1. S	7; H.Sc., 90 78 80 78 91 80 78 91 80 78 91 90 78 90 78 90 70 91 90 90 70 90 90 90 90 90 90 90 90 90 90 90 90 90	Sp gr. 1. \$244 1. \$244 1. \$244 1. \$244 1. \$241 1. \$241 1. \$240 1. \$24	78 H.Seb. 9 20 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	15 503 gner, W. An gr. of H.S gr. of H	\$\mathbb{K}\$ \$\ma	Sp. sr 1 8400 1 8410 1 8411 1 8411 1 8411 1 8411 1 8412 1 8412 1 8412 1 8412 1 8412 1 8412 1 8412 1 8412 1 8412 1 8412 1 8412 1 8412 1 8411 1 8412 1 8411 1 8412 1 8411 1 8412 1
				0.4980	17	73	1 01634
	1			0 0051 0 0103 0 0155 0 1264 0 2515 0 3767 0 5050	5 13 1 13 8 13 1 13 2 13	031 011 007 998	1.0002108 1 000411 1.000603 1 004438 1 008565 1 012639 1 016758
				(1/Of	irausen, W.	Ann. 1894	t, va. 28.)

Sp. gr. of H	80 ₄ +Aq.	00.00 07.55		Sp gr.	of fumi	ng H ₂ SO	4 at 35	i°.
% H ₂ SO ₄ Sp. gr. 20°/20°		60.98 35.77 1.5181 1.2719	Total	Free SO ₁ %	Sp gr	Total SO ₄ %	Free SOi%	Sp gr
% H-SO.	10.10	4.78	801 %	501%				
Sp. gr 20°/20°	1.0685	1.0317 phys. Ch. 1896,	81 63 81 99	0 2	1 8186 1 8270	91 18 91 55	52 54	1 9749
(Te Distit aut	19. 268.)	лиув. Оп. 1000,	81 99 82 36	4	1 8360	91 91	56	1 9760
		$18^{\circ}/4^{\circ} = 1.0306$.	82 73	6	1 8425	92 28	58	1 9754
	nn. 1896 , 60. 55		83 09 83 46	8 10	1 8498 1 8565	92 65 93 02	60	1 9738
Sp. gr. of H ₂	SO ₄ +Aq at 19	4°, when p=	83 82	12	1 8627	93 38	64	1 9672
density, y	v = volume con	on; d=observed c. in grams per	84 20 84 56	14 16	1 8692 1.8756	93 75 94 11	66	1 9636 1.9600
ec (pd =	<u>:</u> w)		84 92	18	1 8830	94 48	70	1 9564
(100	"/		85 30 85 66	20	1 8919	94 85 95 21	72	1 9502
p	d	w	86.03	24	1 9092	95.58	76	1 9379
94.10	1 8380	1 7295	86.40 86.76	26 28	1.9158	95 95 96 32	78	1 9315
84 59	1 7998	1 5223 1 2235	87 14	30	1 9280	96 69	82	1.9251
73 08 61 35	1.6743	1 2235 0 9412	87 50	32	1 9338	97 05	84	1 9115
40 72	1 3220	0 5383	87 87 88 24	34 36	1 9405 1 9474	97 42 97 78	86 88	1 9046 1 8980
31 94 23 77	1 2430 1 1747	0 3970	88 60	38	1 9534	98 16	90	1 8888
14.72	1 1023	0 1623	88 97 89 33	40 42	1 9584 1 9612	98 53	92	1 8800 1 8712
9 802 4 826	1 0670	0 1046	89 70	44	1 9643	99 26	96	1 8605
	Phys Chem 1		90 07	46 48	1 9672 1 9702	99 63 100 00	98 100	1 8488 1 8370
,	of H ₂ SO ₄ +Aq	,	90 81	50	1 9733	100 00	100	2 0010
Normality of	% H ₁ SO ₄	Sp. gr.		(Knie	sch, B	1901, 34.	4101.)	1
H ₂ SO ₄ +Aq			g.,		T 00 1		0/150	
11 53 9 01	70 07 59 26	1 6129 1 4901			I ₂ SO ₄ +1			
6 95	49 10	1 3872	Sp gr 9	% H ₂ SC ₄	Sp gr 9	% H ₂ SO ₄	Sp gr	% H ₁ SO ₄
4 77 3 008	36 68 25 00	1 2756 1 1791	1 000	0.00	1 028		056	8 19
1 002	9 25	1 0612	1 002	0 31	1 030	4 41	1.058	8 33 8 47
(Forchheme	, Z phys. Ch.	1900, 34 27)	1 003	0 46		4 56		8 62 8 76
Sp gr. of conc. a	and furning H ₂ S()4 at 15° and 45°	1 005	0.73	1 033	4.85	061	8 90
% Total H ₂ SO ₄ SO ₂ %	Free Sp gr at	15° Sp gr at 45°	1 000	0 87		5 00 1		9 04 9.18
			1.008	1 15	1 036	5 29	064	9 33
95 98 78 35 96 68 78 92	1 8418	1.	1 009	1.30		5 44 1		9 47 9 61
96 99 79 18	1 8431	1.	1 011	1 60	1.039	5 73 1	.087	9 75
97 66 79 72 98 65 80.53	. 1 8434 m	ax.	1 012	1 75		5 88 1 6.03 1		9 89 10 04
99 40 81 14	. 1 8388 n	nin	1 014	2 04	1 042	6 17		10 18
99 76 81 44 100 00 81 63	0.01.8418	1 822	1 015	2 19 2 34		6.32		10.31
83 46								10.45 10.59
85 30	10.0 1 888	1 858	1 017	2 49		6 60 ll1	073	
	20 0 1 920	1 858 1 887	1 017 1.018	2 49 2 64	1 045 1 046	6 75 1	074	10 73
87 14 88.97	20 0 1 920 30.0 1 957 40 0 1 979	1 858	1 017	2 49 2 64 2 79	1 045 1 046 1 047	6 75 1	074 075	10 73 10 87
87 14 88.97 90.81	20 0 1 920 30 0 1 957 40 0 1 979 50 0 2 009	1 858 1 887 1 920 1 945 1 964 max.	1 017 1.018 1.019 1 020 1 021	2 49 2 64 2 79 2 93 3 08	1 045 1 046 1 047 1 048 1 049	6 75 1 6 89 1 7 04 1 7 18 1	074 075 076 077	10 73 10 87 11 00 11 14
87 14 88.97 90.81 92 65 94.48	20 01 920 30.01 957 40 01 979 50 02 009 60 02 020 ms 70 02 018	1 858 1 887 1 920 1 945 1 964 max. 1 959 1 942	1 017 1.018 1.019 1 020	2 49 2 64 2 79 2 93	1 045 1 046 1 047 1 048 1 049 1 050	6 75 1 6 89 1 7 04 1 7 18 1 7 32 1	074 075 076 077 078	10 73 10 87 11 00 11 14 11.28
87 14 88.97 90.81 92 65 94.48 96.32	20 0 1 920 30.0 1 957 40 0 1 979 50 0 2 009 60 0 2 020 ms 70 0 2 018 80 0 2 008	1 858 1 887 1 920 1 945 1 964 max. xx. 1 959 1 942 1 890	1 017 1.018 1.019 1 020 1 021 1 022 1 023 1 024	2 49 2 64 2 79 2 93 3 08 3 23 3 3.38 3 53	1 045 1 046 1 047 1 048 1 049 1 050 1 051 1 052	6 75 1 6 89 1 7 04 1 7 18 1 7 32 1 7 47 1 7 61 1	074 075 076 077 077 078 079 080	10 73 10 87 11 00 11 14 11.28 11.42 11 56
87 14 88.97 90.81 92 65 94.48 96.32 98.16	20 01 920 30.01 957 40 01 979 50 02 009 60 02 020 ms 70 02 018	1 858 1 887 1 920 1 945 1 964 max. 1 959 1 942	1 017 1.018 1.019 1 020 1 021 1 022 1 023	2 49 2 64 2 79 2 93 3 08 3 23 3 3.38	1 045 1 046 1 047 1 048 1 049 1 050 1 051 1 052 1 053	6 75 1 6 89 1 7 04 1 7 18 1 7 32 1 7 47 1 7.61 1 7.76 1	074 075 076 077 078 079 080 081	10 73 10 87 11 00 11 14 11.28 11.42 11 56 11 69
87 14 88.97 90.81 92 65 94.48 96.32 98.16 100 00	20 0 1 920 30.0 1 957 40 0 1 979 50 0 2 009 60 0 2 020 ma 70 0 2 018 80 0 2 008 90 0 1 990	1 858 1 887 1 920 1 945 1 964 max. 1 959 1 942 1 890 1 864 1 814	1 017 1.018 1.019 1 020 1 021 1 022 1 023 1 024 1 025	2 49 2 64 2 79 2 93 3 08 3 23 3 38 3 53 3 67 3 82	1 045 1 046 1 047 1 048 1 049 1 050 1 051 1 052 1 053 1 054	6 75 1 6 89 1 7 04 1 7 18 1 7 32 1 7 47 1 7.61 1 7.76 1	074 075 076 077 078 079 080 081 082	10 73 10 87 11 00 11 14 11.28 11.42 11 56

111

11111111

See 75 16:50 18 18 19 17 18 18 18 19 18 18 19 18 18	Sp. gr. of H	SO ₄ +Aq at 15° Continued.	7/15° in an —	Sp gr. of H ₂ SO ₄ +Aq at 15°/15° in air Continued	_
1.452 55 14	Sp gr % H ₄ SO ₁		Sp. gr % H,804		H ₂ 80 ₄
1.010 00 09 1.071 06 14 1.632 71 40 1 693 76 56 1.754 81 92 1.815 88 95	1 447 55 504 1 447	1	1	1	011 111 31 411 511 31 411 51 31 411 51 31 411 51 31 411 51 31 51 31 51 51 51 51 51 51 51 51 51 51 51 51 51

Sp. gr. of H_2SO_4+Aq at t°. Sp. gr. of H_2O at $15^\circ=1$

yell or 10° 15° 20° 22° 30° 10° 50° 60° 0 1,00074 1,00000 1,00000 1,00000 1,00000 1,00038 1,000888 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>										
1 1,00838 1,00757 1,00938 1,00954 1,00465 1,00485 1,00581 0,00985 0,00982 0,09983 1,00763 1,00858 1,00140 0,00859 1,00140 0,00		0°	10*	15°	20°	25°	30°	10°	50°	00°
1 1,00838 1,00757 1,00938 1,00954 1,00465 1,00485 1,00581 0,00985 0,00982 0,09983 1,00763 1,00858 1,00140 0,00859 1,00140 0,00										
2 10.1683 1.01460 1.01851 1.01266 1.01126 1.00663 1.00665 1.00147 0.06664 1.00256 1.	0	1.00074			0.99910	0.99794	0 99654	0.99311	0.98895	0.98418
2 10.1683 1.01460 1.01851 1.01266 1.01126 1.00663 1.00665 1.00147 0.06664 1.00256 1.	ī	1.00833	1.00773	1.00698	1.00504	1.00465	1.00312	0.00050	0.00522	0.99034
4 1.09001 1.02941 1.02728 1.02950 1.09428 1.02950 1.00428 1.02951 1.01848 1.01838 1.01838 1.01839 1.0350 1.	ô.									0.00644
4 1.09001 1.02941 1.02728 1.02950 1.09428 1.02950 1.00428 1.02951 1.01848 1.01838 1.01838 1.01839 1.0350 1.	- 2									
6 1.06738 1.08353 1.08409 1.08258 1.08606 1.02602 1.02487 1.02013 1.01485 1.02618 1.02	3									
6 1.04401 1.04222 1.04022 1.03024 1.07056 1.03856 1.05902 1.02457 1.02013 1.04457 1.0502 1.03024 1.03022 1.03024 1.03024 1.03025 1.03024 1.03025 1.030	4	1.03001	1.02841	1.02728	1.02590	1 02428	1.02251	1.01848	1.01383	1.00865
7 1,06199 1,04989 1,04788 1,04618 1,04494 1,04235 1,03796 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,	5	1.03728	1.03533	1.03408	1.03258	1.03086	1.02902	1.02487	1.02013	1.01484
7 1,06199 1,04989 1,04788 1,04618 1,04494 1,04235 1,03796 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,02726 1,03302 1,	a									
8 1.09942 1.05852 1.05856 1.05806 1.05116 1.04816 1.05802 1.03802 1.	2									
9 1,09889 1,09370 1,09182 1,09022 1,07996 1,05885 1,05119 1,04905 1,04941 1,01037 1,05816 1,04906 1,04907 1,0787 1,05816 1,04906 1,04907 1,0787 1,05816 1,04906 1,04907 1,07816 1,04906 1,04907 1,07816 1,04906 1,04907 1,07816 1,04906 1,04907 1,07816 1,04906 1,04907 1,07816 1,04906 1,04907 1,07816 1,04906 1,04907 1,07816 1,04907 1,04	7									
10 107489 1.07080 1.06908 1.06702 1.06490 1.06287 1.05787 1.05894 1.04690 1.03387 1.10181 1.05181 1.05181 1.0452 1.05181 1.03381 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03581 1.03681 1.03581 1.0581 1.07784 1.07344 1.04738 1.07344 1.04738 1.03581 1.03681 1.03581 1.05831 1.05831 1.07344 1.04738 1.03481 1.	8									
10 107489 1.07080 1.06908 1.06702 1.06490 1.06287 1.05787 1.05894 1.04690 1.03387 1.10181 1.05181 1.05181 1.0452 1.05181 1.03381 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03481 1.03581 1.03681 1.03581 1.0581 1.07784 1.07344 1.04738 1.07344 1.04738 1.03581 1.03681 1.03581 1.05831 1.05831 1.07344 1.04738 1.03481 1.	9	1.06689	1.06370	1.03192	1.06002	1 05799	1.05585	1.05119	1 04605	1.04041
11 10.8114 10.7821 1.07619 1.07608 1.07180 1.08685 1.08462 1.08408	10	1.07430	1.07003	1.06903	1.08702		1.06267	1.05787	1.05264	1.04696
12 1.08694 1.08555 1.08482 1.08120 1.07860 1.07650 1.07451 1.06604 1.09021 1.08131 1.09331 1.09331	11				1 07400			1.00400		
13 1.09718 1.09204 1.09071 1.08890 1.08904 1.08832 1.07884 1.07824 1.09736 1.07814	11			1.07013	1.07400	1.07100		1.00102		
14 1.0488 1.0040 1.09803 1.09654 1.09310 1.09803 1.09805 1.09767 1.07735 1.07355 1.05110 1.0710 1.0775 1.07355 1.05110 1.0710 1.0775 1.07355 1.05110 1.0775 1.07355 1.05110 1.0775 1.07355 1.07110	12			1.08342						
15 1.1291 1.1079 1.10546 1.10295 1.10396 1.09776 1.09233 1.0896 1.089775 1.08123 1.08121 1.08121 1.08121 1.08123 1.08121 1.08123 1.08121 1.08123 1.08123 1.08121 1.08123 1	13				1 08839					
15 1.1291 1.1079 1.10546 1.10295 1.0039 1.00776 1.09233 1.0890 1.089775 1.08133 1.0810 1.08171 1.0813 1.0818 1.08481 1.08381 1.08772 1.0813 1.08181	14	1.10488	1 10040	1.09805	1.09564	1.09316	1.09061	1 08530	1.07971	1.07385
10 1.10949 1.11647 1.11262 1.11033 1.10768 1.10468 1.09874 1.0938 1.09771 1.01470	15		1 10790				1.00776	1.09233	1.08666	1.08075
17 1.2823 1.1290 1.2945 1.1777 1.1505 1.1228 1.0961 1.10077 1.09475 1.09481 1.10077 1.09475 1.09481 1.10077 1.09475 1.09481 1.10077 1.09475 1.09481 1.10078 1.1007	10									
18	10									
1,14402 1,18448 1,15566 1,18282 1,12965 1,12704 1,12115 1,11514 1,10905 1,10915 1,10	17	1.12823						T 1000T		
20 1.15199 1.14025 1.14535 1.14443 1.13748 1.13451 1.12941 1.12971 1.12835 1.12835 1	18				1.12526					
20 1.15199 1.14025 1.14535 1.14443 1.13748 1.13451 1.12941 1.12971 1.12835 1.12835 1	19	1 14402	1 13848	1.13566	1 13282	1 12995	1.12704	1.12115	1.11514	1.10902
22 1, 15696 1, 15697 1, 15159 1, 15699 1, 14698 1, 14205 1, 13594 1, 12977 1, 12852 22, 1, 15890 1, 116104 1, 15888 1, 15881 1, 15873 1, 15985 1, 15873 1, 15985 1, 1	วัก									1 11825
224 1.174611 1.16969 1.16973 1.16590 1.16945 1.15731 1.15100 1.14467 1.14510 1.14617 1	01					1.10740				
224 1.174611 1.16969 1.16973 1.16590 1.16945 1.15731 1.15100 1.14467 1.14510 1.14617 1	21								7.10710	
28 1.22770 1.21019 1.20075 1.20332 1.1900 1.19650 1.18973 1.18302 1.17435 1.18414 1.18412 1.1745 1.18414 1.18412 1.1745 1.18414 1.18412 1.18414 1.18412 1.18414 1.18412 1.18414 1.1841	22							1 14343	1.13718	
28 1.22770 1.21019 1.20075 1.20332 1.1900 1.19650 1.18973 1.18302 1.17435 1.18414 1.18412 1.1745 1.18414 1.18412 1.1745 1.18414 1.18412 1.18414 1.18412 1.18414 1.18412 1.18414 1.1841	23								1.14467	
28 1.22770 1.21019 1.20075 1.20332 1.1900 1.19650 1.18973 1.18302 1.17435 1.18414 1.18412 1.1745 1.18414 1.18412 1.1745 1.18414 1.18412 1.18414 1.18412 1.18414 1.18412 1.18414 1.1841	24	1 18424	1 17784	1.17464	1.17143	1.16823	1.16503	1 15862	1.15221	1.14579
28 1.22770 1.21019 1.20075 1.20332 1.1900 1.19650 1.18973 1.18302 1.17435 1.18414 1.18412 1.1745 1.18414 1.18412 1.1745 1.18414 1.18412 1.18414 1.18412 1.18414 1.18412 1.18414 1.1841	25	1 10240								1 15335
28 1.22770 1.21019 1.20075 1.20332 1.1900 1.19650 1.18973 1.18302 1.17435 1.18414 1.18412 1.1745 1.18414 1.18412 1.1745 1.18414 1.18412 1.18414 1.18412 1.18414 1.18412 1.18414 1.1841	00									
28 1.22770 1.21019 1.20075 1.20332 1.1900 1.19650 1.18973 1.18302 1.17435 1.18414 1.18412 1.1745 1.18414 1.18412 1.1745 1.18414 1.18412 1.18414 1.18412 1.18414 1.18412 1.18414 1.1841	20	1,20001	1.19095		1.10/20					
30 1,22370 1,22961 1,22388 1,21677 1,21607 1,21607 1,21607 1,21607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,11607 1,116080 1,11607	27									
30 1,22370 1,22961 1,22388 1,21677 1,21607 1,21607 1,21607 1,21607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,11607 1,116080 1,11607	28								1.18302	
30 1,22370 1,22961 1,22388 1,21677 1,21607 1,21607 1,21607 1,21607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,116080 1,11607 1,11607 1,116080 1,11607	29	1.22539	1.21838	1.21489	1.21142	1.20796	1.20452	1 19767		
33 1,24204 1,23457 1,23131 1,22776 1,2423 1,22071 1,21371 1,20577 1,19593 1,2231 1,2231 1,2231 1,2311	30	1 23370	1 22661	1 22308	1 21957	1 21607	1 21259	1 20566	1.19879	1.19198
38 1, 23873 1, 23151 1, 24739 1, 24499 1, 24099 1, 28713 1, 25939 1, 22025 1, 24, 259 38 1, 26723 1, 25900 1, 26500 1, 2	21									
38 1, 23873 1, 23151 1, 24739 1, 24499 1, 24099 1, 28713 1, 25939 1, 22025 1, 24, 259 38 1, 26723 1, 25900 1, 26500 1, 2	90						1 00007			
84 1.26723 1.25969 1.26238 1.26861 1.24601 1.28422 1.28322 1.28310 1.28321 1.2	02	1.20035		1,20907					1 214/0	
86 1.27577 1.28584 1.25468 1.28102 1.26738 1.28575 1.24602 1.22033 1.28213 1.24517 1.24701 1.24515 1.24701 1.24515 1.24701 1.24515 1.24701 1.24515 1.24701 1.24515 1.24701 1.24515 1.24701 1.24515 1.24701 1.24515 1.24701 1.24515 1	33					1.24069			1 22292	
38 1.29424 1.27083 2.12734 1.29147 1.26530 1.29214 1.29447 1.26530 1.29248 1.29483 1.29483 1.29484 1.27083 2.29445 1.29483 1.29483 1.29484 1.29483 1.29484 1.29483 1.29484 1.2	34	1.26723	1.25990	1 25626	1.25263	1.24901			1.23109	
38 1.29424 1.27083 2.12734 1.29147 1.26530 1.29214 1.29447 1.26530 1.29248 1.29483 1.29483 1.29484 1.27083 2.29445 1.29483 1.29483 1.29484 1.29483 1.29484 1.29483 1.29484 1.2	35	1 27571	1 28834	1 26468	1.26102	1 25738	1.25375	1.24652	1.23933	1.23219
87 1.20983 1.28858 28167 1.27777 1.27429 1.27061 1.26829 1.25701 1.24878 1.26721 1.26829 1.26820 1.2	26	1 20424	1 27892			1 26590			1 24763	1 24045
88 1,30149 1,29400 1,2907 1,29855 1,28394 1,27915 1,27779 1,29448 1,25772 30 1,31022 1,30088 1,29884 1,39502 1,31018 1,32948 1,25785 1,25878 1	27									
40 1.31001 1.31144 2.30767 1.30892 1.30018 1.39846 1.28905 1.28169 1.27440 1.32878 3.30018 1.30846 1.38907 1.38169 1.38169 1.39169 1.3	9/									
40 1.31001 1.31144 2.30767 1.30892 1.30018 1.39846 1.28905 1.28169 1.27440 1.32878 3.30018 1.30846 1.38907 1.38169 1.38169 1.39169 1.3	68			1.29027	1.28000		1.2/919			
40 1.31001 1.31144 2.30767 1.30892 1.30018 1.39846 1.28905 1.28169 1.27440 1.32878 3.30018 1.30846 1.38907 1.38169 1.38169 1.39169 1.3	39		1.30268	1,29894				1,28038	1,27304	
41 1.32788 1.32017 1.3267 1.32168 1.31271 1.30896 1.30922 1.29779 1.32942 1.29831 42 1.33836 1.32017 1.3257 1.32165 1.31752 1.33467 1.3000 1.29924 1.29831 43 1.34587 1.33817 1.33457 1.32167 1.32276 1.32276 1.32200 1.31533 1.3013 1.3013 1.30976 1.32000 1.31533 1.3013 1.3013 1.30976 1.32000 1.31533 1.3013 1.30976 1.32976 1.32000 1.31533 1.3013 1.30976 1.30976 1.32000 1.31533 1.3013 1.30976 1.30976 1.32000 1.3242 1.3210 1.30976 1.30976 1.32000 1.3242 1.32110 1.30976 1.30000 1.30000 1.30000 1.30000 1.30000 1.30000 1.30000 1.30000 1.30000 1.30000 1.30000 1.30000 1.33000 1.	40	1.31901	1:81144	1 30767	1.30392	1.30018	1.29646			
42 1.33683 1.33917 1.32876 1.32916 1.3376 1.33926 1.33906 1.33902 1.29924 1.29932 4.39913 4.3497 1.33983 1.33917 1.33912 1.33913 1.339	41		1 32027	1 31648	1 31271	1 30598	1 30522	1.29779	-1.29042	1.28311
43 1.84587 1.33817 1.33845 1.33954 1.39976 1.32890 1.31558 1.30813 1.30918 1.40818 1.40818 1.30813 1.400818 1.30813 1.400818 1.30813 1.40818 1.30813 1.30813 1.30813 1.30818 1.30813 1.30818 1	49									1 29193
44 1.385601 1.34727 1.34542 1.33907 1.33550 1.33202 1.32452 1.32170 1.39075 45 1.33202 1.32452 1.32170 1.39075 46 1.33452 1.32451 1.34571 1.34546 1.34146 1.34145 1.33381 1.33818 1.3818 1.31818 1.31818 1.328	40									
46 1.389425 1 35047 1.38293 1 244577 1.34469 1 244119 1.383963 1.329118 1 31831 46 1.37861 1.36879 1 36119 1.38596 3 3612 1.3622 1 38040 1 34294 1.38396 1.362797 47 1.383968 1.37622 1.37132 1.38744 1.38539 1.38577 1 38216 1.34464 1.36731 48 1.38027 1.38376 1.38364 1.37604 1.27756 1.37596 1.35922 1 35103 1.34464 1.36732 1 48 1.38027 1.38376 1.38376 1.37604 1.37604 1.37756 1.39578 1.38578	43			1.33%35						
44 1.37961 1.38779 19310 1.35805 13.5422 135040 134294 1.33385 1.32779 47 1.38896 1.37722 1.3712 1.3744 1.38398 1.38575 1.32777 47 1.3896 1.3722 1.3712 1.3744 1.38399 1.35875 1.3215 1.3444 1.33721 1.3444 1.33721 1.3440 1.3472 1.3816 1.34921 1.39167 1.38401 1.34505 1.36167 1.38401 1.34505 1.36167 1.38401 1.34505 1.36167 1.38401 1.34505 1.36167 1.38401 1.34505 1.36167 1.38401 1.38405 1.38504 1.37721 1.37108 1.38401 1.35900 1.36167 1.38401 1.34505 1.36167 1.38401 1.38405 1.38506 1.38721 1.38411 1.38401 1.38405 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38507 1.38506 1.38506 1.38507 1.385	44									
44 1.37861 1.38079 1.39191 1.35095 1.35422 1.35040 1.34234 1.33305 1.32774 1.33306 1.37722 1.37122 1.38744 1.38339 1.35975 1.38215 1.34464 1.33721 1.3446 1.33721 1.3446 1.33721 1.3446 1.33721 1.3446 1.33721 1.3446 1.33721 1.3446 1.33721 1.3446 1.33721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.3456 1.34721 1.34721 1.3456 1.34721 1	45	1.36425	1 35647	1.35261						
47 1.38396 1.37502 1.37132 1.38744 1.38359 1.38975 1.38215 1.34464 1.38721 48 1.39237 1.38476 1.3804 1.37004 1.37306 1.38027 1.38157 1.38476 1.38054 1.37006 1.38027 1.38157 1.38540 1.34655 1.38027 1.38157 1.37108 1.36349 1.36500 1.41219 1.40418 1.40021 1.38627 1.38236 1.38345 1.38737 1.37310 1.36550 1.142214 1.4407 1.44107 1.40107 1.40215 1.38233 1.38047 1.38280 1.37324	46				1.35805	1 35422	1 35040	1.34284		
48 1.09267 1.28476 1.28084 1.37694 1.37696 1.39621 1.361.67 1.356401 1.34655 49 1.40238 1.39441 1.39047 1.38364 1.3264 1.32771 1.3708 1.38344 1.3655 65 1.34214 1.34018 1.40021 1.39627 1.39235 1.38845 1.38073 1.37310 1.36556 51 1.42214 1.41407 1.414007 1.40216 1.40215 1.38923 1.38923 1.38947 1.38280 1.3736	47	1 20200							1 24464	1.33721
49 1.40238 1.39441 139047 1.38654 138264 1.37877 1.37108 1.38349 1.38600 50 1.41219 1.40418 1.40021 1.39627 1.39237 1.38245 1.38047 1.38731 1.37310 1.36556 51 1.42214 1.41407 1.41007 1.40610 1.40615 1.38232 1.38047 1.38286 1.37524	4/									
50 1.41219 1.40418 1.40021 1.39627 1.39235 1.38845 1.38073 1.37310 1.36556 51 1.42214 1.41407 1.41007 1.40610 1.40215 1.39823 1.39047 1.38280 1.37524	9.8				1.57094					
51 1.42214 1.41407 1.41007 1.40610 1.40215 1.39823 1.39047 1.38280 1.37524	49							1.5/108		
51 1.42214 1.41407 1.41007 1.40610 1.40215 1.39823 1.39047 1.38280 1.37524	50	1.41219	1.40418	1.40021	1.39627					
	51				1.40610	1.40215	1.39823	1.39047		1.37524
02 1 30220 1.92000 1.92000 1.91000 1.90019 1.20000 1.00019	50								1.39262	1.38502
	04	+ 40440	1.962900	1.74000	7,21000		-120024			

Sp. gr of H₂SO₄+Aq, at t°. Sp. gr. of H₂O at 15°=1 Continued

н.50.	()o	10°	150	20°	250	30°	40°	50°	60°
53	1.44239	1.43420	1.43014	1.42611	1.42211	1.41814	1.41028	1,40254	1.39490
.54	1 45269	1.44443	1.44034	1 43628	1.43225	1.42825	1.42034	1.41255	1.40488
55	1 46311	1.45477	1.45065	1 44656	1.44250	1.43847	1 43051	1.42268	1.41497
56	1 47364	1.46523	1.46107	1 45695	1.45285	1.44880	1.44078	1.43290	1.42515
57	1 48427	1.47578	1 47159	1.46743	1.46331	1.45922	1.45115	1.44322	1.43542
58	1.49499	1.48643	1.48221	1,47802	1.47387	1.46975	1.46162	1 45364	1.44579
59	1.50583	1.49719	1 49292	1.48870	1.48452	1.48037	1 47218	1.46415	1.45626
60	1.51676	1.50804	1.50374	1.49949	1.49527	1 49109	1 48285	1.47476	1.46683
61	1 52778	1.51899	1.51465	1 51036	1.50611	1.50190	1.49360	1.48546	1.47748
62	1.53889	1.53002	1 52564	1 52132	1.51703	1.51278	1,50442	1.49622	1.48819
63	1.55008	1.54113	1.53672	1.53236	1.52804	1.52376	1 51533	1.50708	1.49900
64	1.56135	1 55233	1.54788	1,54348	1.53913	1 53481	1.52632	1.51801	1 50988
65	1.57270	1.56360	1.55912	1 55469	1.55030	1.54595	1.53740	1.52903	1 52084
66	1.58414	1.57496	1 57044	1 56597	1 56154	1.55716	1.54854	1 54011	1.53187
67	1.59565	1 58640	1 58184	1 57733	1.57287	1 56846	1.55978	1.55128	1.54298
68	1.60724	1.59792	1 59332	1,58878	1.58427	1 57981	1.57104	1.56246	1.55408
69	1.61892	1.60951	1 60488	1 60030	1.59577	1.59129	1.58247	1.57384	1.56541
70	1.63068	1.62118	1.61651	1,61189	1.60732	1 60280	1.59391	1.58521	1 57672
71	1.64251	1 63293	1 62821	1 62355	1.61894	1.61437	1.60540	1.59663	1.58806
72	1,65439	1 64473	1.63997	1 63527	1.63062	1 62601	1.61696	1.60811	1.59946
73	1.66633	1 65658	1.65178	1.64704	1.64234	1.63769	1.62855	1.61961	1.61087
74	1.67831	1 66847	1 66362	1.65883	1.65408	1.64939	1 64015	1.63111	1.62227
75	1.69030	1.68037	1 67547	1.67063	1 66584	1.66109	1.65175	1.64260	1.63366
76	1 70228	1.69225	1 68731	1.68242	1 67757	1 67278	1.66332	1.65405	1.64498
77	1.71424	1 70411	1 69911	1 69416	1 68926	1.68439	1.67481	1.66540	1.65617
78	1.72615	1 71589	1 71083	1 70582	1 70085	1.69591	1.68616	1.67658	1.66717
79	1.73798	1 72758	1.72243	1.71735	1 71231	1 70731	1.69741	1.68767	1.67809
80	1.74970	1.73909	1.73386	1.72868	1.72856	1.71847	1.70842	1.69854	1.68881
81	1.76120	1.75038	1.74504	1.73979	1.73458	1.72942	1.71921	1.70916	1.69930
82			1.75595 1.76642	1.75057	1 74524	1.73998	1.72962	1.71945	1.70950
83 84	1.78312	1.77193		1 76097	1.75557	1.75022	1.73972	1.72943	1.71987
85	1.80250	1.79123	1.77636	1.77087	1.76543	1.76006	1.74943	1,73902	1.72883
86 86	1.81108	1.79123	1 78567 1.79428	1.78016	1.77470	1.76929	1.75863	1.74816	1.73789
87	1 81887	1.80767	1.80214	1.79666	1 78331 1.79123	1.77789	1.76721 1.77519	1.75674	1.74642
88	1.82589	1.81476	1.80926	1.80381	1.79123	1.78584	1.77519	1.76473	1.75445 1.76176
89	1.83216	1.82111	1.81564	1.81022	1.80484	1.79950	1.78242	1.77199	1.76176
90	1.83771	1.82677	1.82135	1.81597	1 81063	1.80532	1.79483		
91	1.84263	1.83179	1.82642	1.82109	1.81580	1.81054	1.80013	1,78448 1,78985	1.77429
92	1.84691	1.83619	1.83088	1.82561	1.82037	1.81516	1.80013	1.78985	1.77972 1.78470
93	1.85059	1.83997	1 83471	1.82950	1.82432	1.81918	1.80902	1,79900	1.78470
94	1,85363	1.84311	1 83790	1.83275	1.82432	1.82255	1.80902	1.80266	1.78914
95	1.85598	1 84555	1.84040	1.83526	1.83022	1.82255	1.81203	1.80200	1.79296
96	1.85765	1.84729	1.84217	1.83709	1.83207	1.82708	1 81724	1.80758	1.79809
97	1.85854	1,84816	1.84305	1.83798	1.83297	1.82800	1.81822	1.80758	1.79809
98	1.85836	1.84789	1.84275	1.83766	1.83264	1.82767	1.81792	1.80840	1.79924
99	1.85671	1.84612	1.84093	1,83581	1.83076	1.82578	1.81604	1.80658	1.79741
100		(1.84255)	(1.83729)	(1.83213)	(1.82705)	(1.82205)	(1 81991)	(1.80288)	/1 70201
			(2.23, 20)	(2.00210)	(2102700)	(* 02200)	(4.01201)	(1,00200)	(1110001)

Auszug aus Band 5 der wissenschaftlichen Abhandlungen der Normaleichungskommission Berlin 1904, P. 257. Springer's publication.

(Domke, Z. anorg. 1905, 43, 176.)

Sp	gr	of H2SO4+Aq at 15°/15° in air
		Continued from page 915.

Sp gr % H ₂ SO ₄	Sp gr.	% H ₂ SO ₄	Sp gr	%II.SO4
1 816 89.11	1 828	91 30	1 840	94 57
1 817 89 27 1 818 89 44	1 829 1 830	91 74	1 841 1.842	94 96 95 40
1 819 89 61 1 820 89 79	1 831 1 832	92 22	1 843	96.02
1 821 89 97 1 822 90 15	1 833		1 8442	97.50
1 823 90 33 1 824 90 51	I 835 1 836	92 98	1 843 1 842	99 84
1 825 90 70 1 826 90 90	1 837	93 56	1 841 1 840	98 61 98 88
1 827 91 10	1 839			100 00

(Lunge, calculated by Marshall, J Soc. Chem. Ind. 1902, 21, 1509

Sp. gr. at 20° of H₂SO₄+Aq containing

*** P. ****	TO MALOON DO		
M.	0 01	0 025	0.05
Sp. gr. M.	1 000719	1 001907	1.003551
M.	0.075	0 10	0.25
Sp. gr.	1 005152	1 00677	1.01618
Sp. gr. M.	0.50	0.75	1.0
Sp gr.	1.03218	1 04760	1 06307
M.	1.5	2.0	
Sp. gr.	1 09345	1,12316	

(Jones and Pearce, Am. Ch. J. 1907, 38, 733.)

Boiling-point of H2SO4+Aq

% H ₂ SO ₄	B-pt.	% H ₁ SO ₄	B-pt
5	101.0°	70	170 0°
10	102.0	72	174 5
15	105 5	74	180 5
20	105.0	76	189 0
25	106 5	78	199 0
30	108.0	80	207 0
35	110 0	82	218 5
40	114 0	84	227 0
45	118 5	86	238 5
50	124 0	88	251 5
53	128 5	90	262.5
56	133 0	91	268.0
60	141 5	92	274 5
62.5	147 0	93	281 5
65	153.5	94	289 5
67 5	161.0	95	295 0

(Lunge, B. 11, 370.)

Freezing- and melting-points of H₂SO₄+Aq

8p gr at 15°	F-pt	M -pt
1 671 1 691 1 712 1 727 1 732 1 749 1 767 1 790 1 807 1 822 1 842	hq at -20° -7 5 -8 5 -0 2 +1 6 +4 5 -9 0 liq.at -20°	-7 5 -8 5 +4 5 +6 5 +8 0 -6 0

(Lunge, B. 15. 2644.)

Effect of impurities on sp. gr. of H₂SO₄+Aq.

The figures show the increase in sp. gr. of H₃SO₄+Aq caused by adding 0.1% of an impurity to acid of different strengths.

Salt	100 %	98 %	94 %	80 %	70 %
Na:804 Ca804	0 0011	0 0010	0 0007	0 0008	0 0007
Ala(8O4)a	0 0012 insol	0 0011 msol	insol	0 0012?	
Fe ₁ (8O ₄) ₄ Pb8O ₄	0 0017	0 0014	0 00007	msol	0 0007 insol
MgSO ₄ As ₂ O ₃	0 0011	0 0010	0 0012	0 0000	0 0009
HSNO ₂	10 00020	10 00027		0 00023	

(Marshall, J Soc Chem. Ind. 1902, 21, 1508.)

Sp gr of mixtures of H₂SO₄ (96 5%) and HNO₂ (94%) at 18°/18° in air

	% HNO3in mixture	Sp gr	% HNOsin maxture	Sp. gr
	0 00 0 57 1 05 4 67 7 17 7 37 7 75 9 10 11.33 12.71 16 52	1.8437 1.8456 1.8476 1.8586 1.8618 1.8620 1.8619 1.8605 1.8557 1.8520 1.8414	22 51 25 56 27 29 32 53 37 03 39 49 57 78 72 89 90 76 98 19 100.00	1 8215 1.8112 1.8053 1 7863 1 7700 1 7601 1 6879 1 6227 1 5408 1 5080 1 5009
ľ	10 02	1 0114	100.00	1 0000

(Marshall, J Soc Chem Ind. 1902, 21. 1508.)

Miscible with alcohol, with evolution of heat and formation of ethylsulphuric acid. +H₂O=H₂SO₅, also called tetrahydroxyl sulphuric acid. (Marignac, A. ch. (3) 39.

184.)
Mpt. 8.35° (Pickering.)
+2H₂O=H₄SO₆, also called perhydroxyl

sulphuric acid.

Mpt. — 38.9°. (Biron, J. Russ. Phys. Chem. Soc. 1899, 31. 517.)

+3H₂O. (Pickering, Chem. Soc. 1890, 57, 331.)

+4H.O. Mpt. -75°. (Pickering, Chem. Soc. 1890, 57, 331.)

Sp. gr. and fr. pt of hydrates of H2SO4.

Hydrate	H SO	Sp gr of the liquid	Fr-pt.
H ₂ SO ₄ (pure) H ₂ SO ₄ +H ₂ O H ₂ SO ₄ +2H ₂ O H ₂ SO ₄ +4H ₂ O H ₂ SO ₄ +6H ₂ O	100 84 48 73.08 57 65 47 57	1 842 1 777 1 650 1 476 1 376	+10 5 + 3 5 -70 0 -40 0 -50 0
H ₂ SO ₄ +8H ₂ O H ₂ SO ₄ +10H ₂ O H ₂ SO ₄ +11H ₂ O H ₂ SO ₄ +12H ₂ O H ₂ SO ₄ +13H ₂ O	40 50 35 25 33 11 31 21 29 52 28 00	1 311 1 268 1 249 1 233 1 219 1 207	-65 0 -88 0 -75 0 -55 0 -45 0 -40 0
H ₂ SO ₄ +14H ₂ O H ₂ SO ₄ +15H ₂ O H ₂ SO ₄ +16H ₂ O H ₂ SO ₄ +18H ₂ O H ₂ SO ₄ +20H ₂ O H ₂ SO ₄ +25H ₂ O	28 00 26 63 25 39 23 22 21 40 17 88	1 196 1 187 1 170 1 157 1 129	-40 0 -34 0 -25 6 -19 0 -17.0 - 8 5
H ₂ SO ₄ +50H ₂ O H ₂ SO ₄ +50H ₂ O H ₂ SO ₄ +100H ₂ O H ₂ SO ₄ +300H ₂ O H ₂ SO ₄ +1000H ₂ O	9 82 6 77 5 16 1.78 0 54	1.067 1.045 1.032 1.007 1.007	- 3 5 0 0 + 2 5 + 4 5 + 0 5

(Pictet, C. R. 1894, 119, 645)

Sulphuric acid, anhydrous, SO: See Sulphur trioxide.

Disulphuric (Pyrosulphuric) acid, H₂S₂O₇. Very deliquescent. Miscible with H₂O. Sol. in furning H₂SO₄. SO₂. (Schultz-Sellack) Miscible in liquid H₂S₂O₇, 2H₂SO₄. Fumes on air. (Jacquelain, A. ch. (3) 30. 343.)

Tetrasulphuric acid, H.S.O.

Fumes on air. (Weber, Pogg, 159, 313)

Sulphates.

Most sulphates are easily sol, in H₂O: but Ag₂SO₄, Hg₂SO₄, and CaSO₄ are only sl. sol., while BaSO₄, SrSO₄, and PbSO₄ are nearly insol. therein. All sulphates are sol. in conc. H2SO4. Basic sulphates are insol in H₂O. Most sulphates are insol. in alcohol. Insol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, 20, 823,)

Aluminum sulphate, basic, 2Al₂O₂,SO₂+ 5H₂O.

Slowly sol in 10 mols. HC2H4O2. (Schlumberger, Bull. Soc. 1895, (3) 13. 41, +7H₂O. Easily sol. in 8 mols. dil. HCl+ Aq. or m 10 mols. 10% acetic acid in 24 hours. (Schlumberger.) +10H₂O. Insol in H₂O; easily sol. in cold

dil, mineral acids, and HC1H1O2+Aq. (Crum, A. 89, 174.)

Mın. Felsöbanvite. Min. Paraluminute. +15H.O.

8Al₂O₄, 5SO₄+25H₂O. Insol. in H₂O; sol. in dil. acids (Lowe, J. pr 79, 428) 5Al₂O₃, 3SO₃+20H₂O. Easily sol. in acids. (Debray, Bull. Soc. (2) 7. 9)

3Al₂O₃, 2SO₃+9H₂O. Nearly maol. m conc. H₂SO₄. (Bayer, Dingl. **263**, 211.) +20H₂O. Ppt.

4Al₂O₈, 3SO₃+36H₂O. Insol. in H₂O. Easily sol. in dil. mineral acids, and hot HC2H2O2+Aq. (Debray, Bull. Soc. (2) 7. 1.) Al_2O_3 , $SO_3 + 6H_4O = (AlO)_2SO_4 + H_4O$. Insol in H_2O or $HC_4H_4O_2+Aq$. Sl sol in hot HCl, easily sol in warm KOH+Aq. (Bottanger, A. 244, 225) +9H₂O. (Athanasesco, C R. 103. 27.)

Min Alumente. [Al₂(OH)₃|SO₄+2H₂O.

Sol, in HCl+Aq, in the cold with decomp, Very unstable. (Schlumberger, Bull Soc. 1895, (3) 13, 60)

3Al₂O₃, 4SO₃+9H₂O. (Athanasesco, C. R. 103, 271

+30H₂O. Sol. m 144 pts. cold, and 30.8 pts. boiling H₂O Easily sol. in HCl, and HNO₃+Aq. (Rammelsberg, Pogg. 43, 583.) 2Al₂O₅, 3SO₃. Decomp. by H₂O into 3Al₂O₅, SO₅ and Al₂(SO₄)₈. (Maus.)

 Al_2O_3 , $2SO_3 = Al_2O(SO_4)_3$. Min. Alumaine.

+H2O. Sol in small quantity of H2O, but decomp. by a large quantity into (AlO)₂SO₄ and Al₂(SO₄)₃. (Maus, Pogg. 11. 80.) +12H₂O. Easily sol in hot or cold H₂O. Sat. solution contains 45% salt at 15°, which crystallises unchanged on evaporating. (Mar-

guerite, C. R. 90, 354.) Above basic compounds are mixtures. (Pickering, C. N. 45, 121, 133, 146.)

Aluminum sulphate, Al₂(SO₄)₃.

100 pts. H₂O dissolve (a) pts. Al₂(SO₄)₂ and (b) pts. Al₂(SO₄)₈+18H₂O at: 00 10° 20° 30° 33.5 36 15 40 36 45.73 52 13 a 31.3

b 86 85 95 8 107 85 127 6 167 6 201 4 60° 80° 70° 90° a 59 09 66.23 73 14 80 83 b 262 6 348 2 467.3 678 8 1182.

(Poggiale, A. ch. (3) 8, 467.) See also +18H₂O.

Sp. gr. of Al₂(SO₄)₄+Aq

07.	iopage as						
¥12(8O4)3	15°	25°	35°	45°			
5 10 15 20 25	1.0569 1 1071 1 1574 1 2074 1 2572	1 0503 1.1022 1.1522 1 2004 1 2487	1 045 1.096 1 146 1 192 1 2407	1.0356 1 085 1 1346 1 1801 1.2295			

(Reuss, B. 17, 2888.)

_	~	2 17 /6	10.1		150	_
	Sp gr	of Ala(c	SU4)8+	Ag a	15° containing 2(SO ₄) ₂ +18H ₂ (٤.
	10	20	3	U%A1	2(SU4)2+18H2(۰,
1	0535	1,1105	1.1	710		
_	40	50%	Al ₂ (S)	D4)a+	18H ₂ O,	
	1 2355	1 3050				
	8	p. gr. of	sat.	solutio	n = 1 34.	

(Gerlach, Z. anal, 28, 493.)

Sp gr, of Al ₂ (SO ₄₎₂ +Aq, at 25 . Strength of Al ₂ (SO ₄₎₂ +Aq			
Strength of Ala/SO4)a+Aq	Sp gr		

(Wagner, Z. phys. Ch 1890, 5. 35.)

100 pts. of a mixture of 1 vol. H2SO4+2 H₂O dissolve only 6.45 pts. Al₂(SO₄)₃. (Baud, C. R. 1903, 137. 494.) Al₂(SO₄): 18 completely pptd. from $Al_1(SO_4)_4$ +Aq by an excess of glacual $HC_2H_1O_2$. (Persoz, A. ch. (2) 63. 444.)

Solubility of $Al_2(SO_4)_+ + (NH_4)_4Al_2(SO_4)_4$. Solubility of $Al_2(SO_4)_+ + 18H_2O$ in $H_4SO_4 + Aq$ at 25° . Solubility of Al₂(SO₄)₂+K₂Al₂(SO₄)₄. See

under K2Al3(SO4)4.

Solubility in Fe₂(SO₄)₃+Ag at 25°

100 g of the sc	elution contain
g, Al ₈ (SO ₄) ₈	g Fc:(SO4)3
27 82	0
26 01	6 064
24 21	9 819
21 64	13 02
15 22	23 28
10 70 1	31 91
10 23	31 90

*Solution sat with respect to both salts (Wirth and Bakke, Z. anorg. 1914, 87. 48.) See also under Feg(SO4)2

Solubility of Al₂(SO₄)₂+Li₂SO₄ at 30°.

Composition of

					,
Solution		Residue			
	Lago.	Als(%0)3	Lusso.	Ali(804)3	Solid phase
	13 63 13 24 11 73 6 75 3 44	14.89 20.76 21.71 22.08 24.34 26.12	63.70 14.72 61.24 6.92 3.77	7 22 33.54	Li ₂ SO ₄ , H ₂ O+ Al ₂ (SO ₄) ₃ , 18H ₂ O Li ₂ SO ₄ , 4H ₂ O Al ₂ (SO ₄) ₃ , 18H ₂ O
	0 00	28 0			

(Schrememakers and de Waal, Ch. Weekbl. 1906, 3. 539.)

100 g. of sat. solution of Al₂(SO₄)₃ in glycol contain 14.4 g. Al₂(SO₄₎₂. (de Coninck, Bull. Ac. Roy. Belg 1905, 359.) Insol. in ethyl acetate (Naumann, B.

1910, 43. 314.) Insol. in acetone. (Naumann, B. 1904. 87, 4328.)

+6H₂O. Very slowly sol. in cold, com-pletely sol in hot H₂O. +8H₂O. (Margueritte-Delarcharbonny, C. R. 112, 229.)

+10H₂O. Deliquescent. (v. Hauer, W. A. B. 13, 449.) +16H.O. Sol. in conc. H.SO. (Baud. C. R. 1903, 137, 494.) +17H₂O. (Gawalowski, C. C. 1885.

721.) +18H₂O. Permanent. (Berzelius.) 100 g. of the aqueous solution contain 27.82 g. Al₂(SO₄), at 25°. (Wirth, Z. anorg. 1913, 79. 361.)

H ₂ SO ₄ +Aq % H ₂ SO ₄	100 g of the solution contain g Al ₂ (80 ₄):
0	27 82
5.23	29 21
9 90	26 .21
18 70	20 44
25 50	15 40
40 70	5 07
52.25	1 216
63.70	1 243
73 64	2.915

(Wirth, Z anorg, 1913, 79, 361.)

Hydrous salt is scarcely sol, in alcohol, (Berzelius) Min. Alunogen

+27H₂O, Efflorescent. (Margueritte-Delarcharbonny, C. R. 99. 800.)

Aluminum sulphate, acid, Al₂O₂, 4SO₂+ 4H₂O.

Extremely slowly sol. in cold, more rapidly in hot H₂O. (Baud, C. R. 1903, 137. 493.) Al₂O₄, 6SO₂+10H₂O. Sol in H₂O; solution soon decomp. into Ala(SO4)3+H2SO4. (Silberberger, M. 1904, 25, 221.)

Aluminum ammonium sulphate (Ammonia alum), (NH4)2Al2(SO4)4+24H2O,

salt at 0° ; 207.7 pts. anhydrous salt at 110.6°. (Mulder.) 100 pts. H₂O dissolve 8.74 pts. anhydrous

salt at 17.5.° (Pohl, W. A. B. 6. 597.)

100 pts.	H ₂ O at t° dissol	ve pts.

(14114)2112(1004)41				
60	P ^F rq (NH ₄) ₂ Al ₃ (SO ₄),	Pts (NH4)*Als(SO4)4+ 24HzO		
0 10 20 30 40 50 60 70 80 90	2 10 4.99 7.74 10 94 14 88 20 09 26 70 35 11 45 66 58 68 74 53	3 90 9.52 15 13 22 01 30 92 44.11 66.65 90 67 134.47 209.31 357.48		

(Poggale, A. ch. (3) 8, 467.)

According to Locke (Am. Ch. J. 1901, 26. 174), Poggiale's tables for NH, and K alums are evidently transposed, and the above data

are applied by Poggiale to K alum.

1 H₂O dissolves 91.9 g. anhydrous, or 191.9 g. hydrated salt, or 0.387 mols. anhydrous salt at 25°. (Locke, Am. Ch. J. 1901. 28. 175.)

Solubility in H₂O at t°.

(°	G (NH ₄): Al ₂ (8O ₄) ₄ per 100 g. H ₂ O	G (NH ₄) ₂ Al ₂ (SO ₄) ₄ +24H ₂ O per 100 g H ₂ O	G mol. (NH ₄) ₂ Al ₂ (8O ₄) ₄ por 100 g H ₂ O
0 5 10 15 20 25 30 40 50 60	2 10 3.50 4 99 6 25 7.74 9.19 10 94 14.88 20 10 26 70	3 90 6 91 9 52 12 66 15 13 19 19 22 01 30 92 44.10 66 65	0 0044 0 0074 0 0105 0 0132 0 0163 0 0194 0 0231 0 0424 0 0569
95	109 7	00	0 2312

(Mulder, Poggale, Locke, Marmo, Gazz. ch. tt 1905, 35. II, 351; Berkeley, Trans. Roy Soc 1904, 203. A, 214, calc by Seidell, Solubhites.)

B.-pt. of sat. solution is 110.6°.

M.-pt. of (NH₄)₂Al₂(SO₄)₄+24H₄O=92°. (Tilden, Chem. Soc. 45. 409.);=95°. (Locke, I. c.)

Sp. gr. of aqueous solution at 15° contain ing:

3% 6% 1 0423 1.0141

6% 9% 1.0141 1.0282 hydrous salt. (Gerlach, Z. anal. 28, 495.) Solubility of NH₄ alum in presence of (NH₄)₂SO₄ and Al₂(SO₄)₃.

Mixture used	100 g oat solution contains			
	g (NH4),SO1	g Al ₂ (SO ₄) ₃		
Sat. NH ₄ alum at 18 5° 20 cc above sol-	1 42	3 69		
ution+6 g. cryst Al ₂ (SO ₄) ₃ 20 cc above sol-	0 45	16.09		
ution+4g. (NH ₄) ₂ 8O ₄	20 81	0 29		

(Rüdorff, 1885, B. 18. 1160.)

Insol n alcohol. (Mulder.)
Solubility of Al(NH₄)(S(0)₂+12H₄O m a
myture of 93.3 g, H₄O and 23.33 g, glycerine
=6 15 g, (Dunlop, Pharm J. 1910, 85.
Solubility in 93 3g, H₄O+22 3 g, glycerine
+3 9 g, phenol=5.59 g Al(NH₄)(SO₄)₂
+12H₄O. (Dunlop, harm
Min. Tschemronde

Aluminum ammonum chromium sulphate, Al₂(SO₄)₃, (NH₄)₂SO₄, Cr₂(SO₄)₃+ 48H₂O.

Sol. in H₂O; decomp. by boiling. (Vohl, A. 94, 71.)

Aluminum cæsium sulphate, Al₂CS₂(SO₄)₄+ 24H₂O. 100 pts. H₂O at 17° dissolve 0.619 pt. cæsium alum. (Redtenbacher, J. pr. 94. 442.)

Solubility in 100 pts. H₂O at t° (calculated for solt dried at 130°)

t°	Pta alum	to	Pts alum	t°	Pts slum
0 10 17	0.19 0.29 0.38	25 35 50	0.49 0.69 1.235	65 80	2 38 5 29

(Setterberg, A 211. 104)

Solubility in H₂O.

t*	Pts anhydrous salt per litre	G mols anhydrous salt per litre	
25	4 7	0 013	
30	5.89	0.0167	
35	7.29	0 0207	
40	9 00	0 0256	

(Locke, Am Ch J 1901, 26, 180.)

Solubility of Al ₂ Cs ₂ (SO ₄) ₄ in H ₂ O at t°. (G. Al ₂ Cs ₂ (SO ₄) ₄ +24H ₂ O in 100 g. solution.)									
t°	t° % salt t° % salt								
0 15 30 45 60	0 21 0 35 0 60 1 04 1 96	75 80 90 100.4	4 12 5 21 9 50 18 60						

(Berkeley, Trans. Roy. Soc. 1904, 203. A, 214.)

Solubility in 100 g. H₂O at t°.

Solubility in 100 g. 1190 at t .							
t°	G AICa(SO ₄₎₁	t°	AlOs(804)3	ţ°	AICs(804);	t°	G G AICe(SO ₄) ₂
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27 27 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 .27 0 .28 0 29 0 31 0 32 0 34 0 35 0 38 0 39 0 40 0 42 0 43 0 43 0 47 0 49	26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	0 50 0 51 0 52 0 55 0 57 0 59 0 60 0 62 0 62 0 69 0 72 0 87 0 87 0 87 0 87 1 101 1 101 1 17 1 21 1 30 1 39	52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77	1 45 1 51 1 58 1 65 1 71 1 77 1 80 1 92 2 14 2 25 2 25 2 25 2 25 2 25 2 25 3 13 3 3 67 4 30 4 72 4 95	78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	5 15 5.40 5.78 6.05 6 4 7 7 0 7 7 7 8 0 8 8 8 9 0 9 2 9 9 10 1 10 8 11 1 5 12 0
7	Walnes from 0.70 obtained by intermalation						

Values from 0-7° obtained by interpolation using Setterberg's values for 0°(A. 1882, 211. 100)

From 80-100° they were calculated by extrapolation. (Hart and Huselton, J. Am Chem. Soc. 1914,

36. 2084)

Melts in crystal H₂O at 106° (Tilden, Chem. Soc 45. 409); at 120.5° (Erdmann);

at 122° (Locke.)

Aluminum calcium sulphate, basic, Al₂O₂, 6CaO, 3SO₂+32H₂O. Min. Ettringste. Mostly sol. in H₂O; sol. in HCl+Ag.

Aluminum chromium sulphate, AI₂Cr₂(SO₄)₆. Insol. in H₂O. AI₂Cr₂(SO₄)₈, H₂SO₄. Insol. in H₂O (Éterd C. R. 86, 1400.)

Aluminum chromium potassium sulphate, Al₂(SO₄)₂, Cr₂(SO₄)₂, 2K₂SO₄+48H₂O. Sol. in H₂O, but decomp on boiling. (Vohl.)

Aluminum copper sulphate, 2Al₂O₂, 9CuQ, 3SO₃+21H₂O. Min Cyanotrichite. (Percy, Phil. Mag. (3) 36, 103.)

Aluminum hydroxylamine sulphate,

Al₂(SO₄)₂, (NH₂OH)₂SO₄+24H₂O. Sol. in H₂O. (Meyeringh, B. 10. 1946.)

Aluminum iron (ferrous) sulphate, Al₂(SO₄)₂, FeSO₄+24H₂O.

Sol. in H₂O. (Klauer, A. 14. 261.) Min. Halotrichite.

Al₂(SO₄)₅, 2FeSO₄+27H₂O Sol. in H₂O. (Berthier) Al₂O₅, 2SO₅, 6FeSO₄. Easily sol. in H₂O.

(Phillips.) Al₂(SO₄)₅ 2FeSO₄, H₂SO₄ Insol. in H₂O. (Etard. C. R. 87, 602.)

Aluminum iron (ferric) sulphate, Alg(SO₄)₃,

Fe₂(SO₄)₂.

Insol in H₂O. (Étard, C. R. 86, 1399.)

Al₂(SO₄)₂, Fe₂(SO₄)₂, H₂SO₄. As above (Étard)

See Al₂(SO₄)₃+Fe₂(SO₄)₃, under Al₂(SO₄)₃ and Fe₂(SO₄)₃ Aluminum ferrous potassium sulphate, Al₂(SO₄)₃, 12Fe₃O₄, 2K₃SO₄+24H₃O.

Permanent. SI sol. in H₂O. (Dufrenoy.)

Aluminum lead sulphate, Al₂Pb₂(SO₄)₂+,

20H₂O.

Permanent; insol. in H₂O. (G. H. Bailey

Aluminum lithium sulphate, Li₂Al₂(SO₄)₄+ 24H₂O.

J. Chem. Soc. Ind. 6, 415)

Sol in 24 pts. cold, and 0 87 pt. hot H₂O. (Kralovansky, Schw. J. 54. 349) Does not exst. (Rammelsberg, J. B. 1847– 48. 394; Arfvedson; Gmelin.)

Aluminum lithium potassium sulphate (?).

Sol. in H₂O, from which it crystallises on cooling. (Joss, J. pr. 1. 142.)

Aluminum magnesium suiphate, MgSO₄, Al₂(SO₄)₃+22H₂O₅, Mm. Pickerinoite.

2MgSO₄, Al₂(SO₄)₂+22H₂O. Min, Picroluminute. 3MgSO₄, Al₂(SO₄)₂+36H₂O. Very sol. in H₂O. (Klauer, A. 14. 264.)

т

Aluminum magnesium manganous sulphate, Al₂(SO₄)₃, MgSO₄, MnSO₄+25H₂O.

As sol. in H₂O as K alum. (Kane.) Very sol. in H₂O. (Smith, Sill. Am. J. (2) 18, 379.) Min. Bosjemanste.

Aluminum manganous sulphate, Al₂(SO₄)₃, MnSO₄+25H₂O. Sol. in H₂O. (Berzelius.)

+24H₂O. Min. Appointe

Aluminum manganic sulphate, 2Al₂(SO₄)₈,

Mn₂(SO₄)₃.

Insol in H₁O. (Étard, C. R. 86, 1399)

Aluminum nickel sulphate, Al₂(SO₄)₃, 2NiSO₄.

H₂SO₄.

Insol. in H₂O, but gradually decomp thereby. (Étard, C. R. 87. 602.)

Aluminum potassium sulphate, basic, $3(AiO_3, SO_4)$, $K_2SO_4+6H_2O=K_3SO_4$, $3Al_5(SO_4)/(OH)_4$.

Min. Alumte. Insol. in H_2O . Insol. in

Min. Alautte. Insol. in H₄O. Insol. in cone. RG+Aq.
Sol. in boiling H₅O₄ of 1.845 sp. gr., but more easily in a mixture of 12 g. H₂SO₄ and Li g. H₂O, and also in weaker and gi heated to 210°. (Mitscherlich, J. pr. 81. 108.) +9H₂O. Mitscherlich, J. pr. 81. sol. in boiling HG1-Aq. (Mitscherlich, J. pr. 83. 455.) Nearly insol. in HGI or cone. HNO₁+Aq.

Nearly insol. in HCI or conc. HNO₂+Aq, but sol. in a mixture of 1 pt H₂SO₄ and 1 pt. H₄O. (Debray, Bull. Soc. (2) 7. 9)

Al₂O(SO₄)₂, K₂SO₄. Sol. in H₂O, but decomp. by heating.

comp. by neating. With varying composition. Precipitates. Insol in H₂O. Very sl. sol in cold, gradually in hot acids. (Bley, J pr 39, 17.) Very difficultly sol. in warm conc. HCl+Aq, but easily sol. in KOH+Aq. (Nsumann, B. 8, 1630.)

Aluminum potassium sulphate (Potash alum), $KAl(SO_4)_2+12H_2O$ or $K_2Al_2(SO_4)_4=K_3SO_4$, $Al_2(SO_4)_3+24H_2O$.

Sol. in H₂O with absorption of heat. When 100 pts. H₂O at 10.8° are mixed with 14 pts. alum, the temp. is lowered 1.4.° (Rudorff, B. 2. 98.)

Burnt alum is very slowly sol. in H₂O.

100 pts H₂O at t° dissolve P pts. K₂Al₂(SO₄)₄+24H₂O

to.	P	t°	P
12 5	7 6	50 0	48 7
21 25	10 4	62 5	230 0
25 0	22 0	75 0	920 0
37 5	44 1	87 5	1566,6

(Brandes, 1822.)

Sol in 18 pts cold, and 1 0 pts boding H₂O (Fourcoy), in 14.12 pts, cold, and 0.75 pt. boding H₂O (Bergmann), in 15 pts, cold, and 0.75 pt, boding H₂O (Bergmann), in 15 pts, cold, and 0.75 pt, boding H₂O (Bergmann), in 15 pts, cold, and 0.75 pt, boding H₂O (Bergmann), in 15 pts, cold, and 0.75 pt, boding H₂O (Bergmann), in 15 pts, cold, and 0.75 pt, boding H₂O

KAL(SO4) +Aq sat, in cold contains 5.2% alum (Fourerpy), 8.7% (Boerhave)

100 pts. H₂O dissolve (a) pts. anhydrous alum, and (b) pts. crystallised at to 0° 10° 20° 30° 40 40° a 2 62 4.50 6.57 9 05 12 35 b 5.22 9.16 13 66 19 29 27.3 36.5 70° 80° 90° 60° a 21 1 26 95 35 2 50.3 70 83 103 1 187.8 421 9 b 51 3 71 97

(Poggiale, A. ch. (3) 8. 467.)
According to Locke (Am. Ch. J. 1901, 28, 174), Poggiale's tables for NH, and K alums are evidently transposed, and the above date are applied by Poggiale to NH₄ alum.
100 pts. H₂O dissolve K₂Al₄'SO₃+24H₃O

00 pts. H₂O dissolve K₂Al₂'SO₄)₄+24H₂O corresponding to pts anhydrous K₂Al₂'SO₄)₄

Temp	Pts K ₂ Al ₂ (8O ₄) ₄	Temp.	Pts K ₂ Al ₁ (SO ₄) ₄
0	3.0	60	25
5	3.5	70	40
10	4.0	80	71
15	5.0	90	109
20	5.9	92 5	119 5
30	7.9	100	154
40	11.7	110	200
50	17.0	111 9	210 6

(Mulder, Scheik, Verhandel 1864, 90.)

100 pts. H₂O at 17° dissolve 13 5 pts. K₂Al₂(SO₄)₄+24H₂O, or 7 36 pts. K₂Al₂(SO₄)₄. (Redtenbacher, J. pr. 94, 442)

Forms supersaturated solutions very easilysupersat. Solutions are brought to crystallisation by addition of a crystal of alum or an anomorphous substance, as chrome or iron alum. Other substances as NaCl, set. have 1 in 11. Ho. Giasolives 72.3 c, anhydrous or 138.4 g, hydrated salt, or 0.28 g, mol. of anhydrous salt at 25° (Locke, Am. Ch.

J. 1901, 26. 175) Solubility in H-O et t°

(g. alum in 1000 g H ₂ O.)					
to.	g. alum	to.	g slum		
0 5 10 15 20 25 30 36 40 45 50	57 0 76 3 84 9 103 6 120 3 131 3 184 9 204.3 250.0 290.2 367.8	75 76 77 78 79 80 82 84 84 6 85 1 85 3	1280 9 1412 1 1517 9 1680 1 1775.2 1950.0 2273 5 2661 5 2816 0 3166.6 3337 2		
55 60 65 70	457 7 585 4 708 4 943 8	85.6 86 87 88	3372 2 3997.8 4825.4 6639 6		

(Marino, Gazz. ch. it. 1905, 35. (2) 351)

Solubility in H_{*}O at t°.

t°	g K ₁ Al ₂	g K ₁ Al ₂	g mol
	(SO ₄) ₄ per	(SO ₄) ₄ +24H ₂ O	KaAla(SO4);
	100 g H ₂ O	per 100 g H ₂ O	per 100 g. Ha
0 5 10 15 20 25 30 40 50 60 70 80 90 92 5	3 0 3 5 4 0 5 0 5 9 7 23 8 39 11 70 17 00 24.75 40 00 71 0 109 0	5 65 6 62 7 60 9 59 11 40 14 14 14 16 58 23 83 38 40 57 35 110 5 321.3 2,275 0	0 0058 0 0068 0 0077 0 0097 0 0114 0 0162 0 0227 0 0329 0 0479 0 0774 0 01374 0 2110 0 2318

(Mulder, Poggiale, Locke; Marino, Gazz ch it 1905, 35. (2) 351; and Berkeley, Proc Roy Soc. 1904, 203. A, 214, calc. by Scidell, Solubilities, 1st Ed.)

M.-pt. of K₂Al₂(SO₄)₄+24H₂O=84.5° (Tilden, Chem. Soc. **45**. 409.); = 92.5° (Erdmann); =91°(Locke).

mann); =91 (Locke). Sp. gr. of sat. K₈Al₈(SO₄)₄+Aq at 8°= 1.045 (Anthon); at 15°=1.0458 (Muchel and Krafft); at 15°=1.0458 (Subba) Sp. gr. of K₈Al₈(SO₄)₄+Aq at 15° containing 5% K₂Al₈(SO₄)₄=1.0477. (Kohlrauseh, W Ann. 1879. 1.)

rausen, w Ann. 1615. 1.)

Sp. gr. of $K_2Al_2 \circ SO_4)_4 + Aq$ at 15°. a=pts $K_2Al_2 \circ SO_4 + 24H_2O$ in 100 pts. solution; b=pts. $K_2Al_2 \circ SO_4)_4$ in 100 pts solution, e=pts. $K_2Al_2 \circ SO_4)_4$ for 100 pts, H_2O

a	b	e e	Sp gr.		
4	2 1792	2 2277	1 0210		
8	4 3584	4 5570	1 0420		
12	6 5376	6 9950	1 0641		
13	7 083	7 622	1 0690		

(Gerlach, Z anal 27 280.)

Saturated solution boils at 111.9°, and contains 210.6 pts. K₂Al₂(SO₄)₄+24H₂O to 100 pts. H₂O, (Mulder.)

100 pts. A₂O. (Munder.) 100 pts. H₂O contain 52 pts. K₂Al₂(SO₄)₄, and boils at 104 5°. (Griffiths.) Crust forms at 106,3°, when the solution contains 114.2 pts. K₂Al₂(SO₄) to 100 pts. H₂O (Gerlach, Z. anal. 26, 426.)

B.-pt. of K₂Al₂(SO₄)₄+Aq containing pts K₂Al₂(SO₄)₄ to 100 pts. H₂O

B-pt	Pts. K2Al2(8O4)4	B-pt	Pts K ₂ Ai ₂ (SO ₄) ₄
100 5° 101 0 101 5 102 0 102 5 103 0 103.5	17 0 30 2 41 8 51 6 60 4 68 7 76 7	104 0° 104 5 105 0 105 5 106 0 106 5 106 7	83 9 90 7 97 6 103 9 110.5 116.9

(Gerlach, Z anal, 26, 435.)

K2Al2(SO4)4+Al2(SO4)3.

K₂Al₂(SO₄)₄+Al₂(SO₄)₅. K₂Al₂(SO₄)₄ is nearly insol. in sat. Al₂(SO₄)₈
+Aq. (Crum. A. 89, 156.)

Solubility in Al₂'SO₄)₃+Aq. Solid Phase = K alum+Al₂'SO₄)₂.

t°	g Al ₂ (SO ₄) ₃ +18H ₂ O in 1000 g H ₂ O	g K ₂ SO ₄ m 1000 g. H ₂ O
0 20 35 50 65	234 73 824 25 911 02 1,243 21 1,598 00	28 45 30.85 35 29 59 55 119 43
77	1 879 11	183 80

(Marino, Gazz ch. it. 1905, 35. (2) 351)

Solubility is decreased by presence of Na alum. (Venable, C. N. 1879, 40. 198.) Nearly completed pptd. from sat. aq. solution by addition or Fc or Cr alum. (v. Hauer. J. B. 1866, 59)

K2Al2(8O4)4+Mg8O4.

K₂Al₂'SO₄)₄+Aq sat. at 10°, and then sat. with MgSO₄ at 9°, contains for 100 pts. H₂O—

	At 10°		At 9°
Alum (anhydrous) MgSO ₄	4 0	2 7 31 2 33 9	31 1

(Mulder)

K2Al2(SO4)4+K2SO4

K₂Al₂(SO₄)₄+Aq at 10°, and then sat, with K₂SO₄ at same temp., contains for 100 pts. H₂O—

		At	10°	Γ		A	90
Alum (anhydrous) K ₂ SO ₄	-	4	0	9	86 16 20	1	7

(Mulder)

Solubility in K ₂ SO ₄ +Aq Solid phase= K alum+K ₂ SO ₄ .					
t°	Al:(5(14) 5 +18H ₂ O in 1000 g II ₂ O	g K ₂ 8O ₄ in 1000 g, H ₂ O	t°	Al ₂ (SO ₄) ₂ +18II ₂ O in 1000 g II ₂ O	g K ₂ SO ₄ m 1000 g H ₂ O
0 0 5 5 10 15 30	5 06 8 658 16 07 18 52 20 56 39 60	75 83 75 18 85.78 96 50 109 30 147 80	40 50 60 70 80	73 88 126 00 249 70 529 01 1,044 04	163 10 195 40 238 80 323 74 517 27
(Mouno 1 a)					

(Marino, l, c.)

K,Al2(SO4)4+Na2SO4

K.Al.(SO₄)₄+An sat at 10°, and then sat with Na₂SO at 9°, contains for 100 pts H₄O--

	At 10°		At 9°
Alum (anhydrous) Na ₂ SO ₄	4 0	4 1 8 8	8 4

(Mulder)

Solubility of K2Al2(SO4)4+Tl2Al2(SO4)4 in H.O at 25°.

G KrAlr(SO4)4 per l.	G Tl ₂ Ab(SO ₄) c per i	Solid phase Mol % K ₂ Al ₂ (SO ₄) 4	Sp gr	
69 90 74 56 67 90 65 30 64 95 53 23 45 32 38 02 34 54 28 35 10 94 0 00	0 00 0 48 1 72 4 52 9 60 18 44 24 60 32 48 35 59 42 99 66 12 75 46	100 99 61 98 48 95 45 91 73 82 54 75 12 65 73 61 36 51 93 21 34 0 00	1 0591 1 0601 1 0598 1 0603 1 0609 1 0609 1 0611 1 0623 1 0654 1 0674	

(Foch, Z. Kryst, Min. 1897, 28, 397.)

Insol. in alcohol of 0.905 sp. gr. or less.

(Anthon, J. pr. 14, 125.) Insol. in acctone. (Naumann, B. 1904, 37. 4328.)

Insol. in methyl acetate. (Naumann, B. 42. 3790 Solubility in H₂O is increased by glycerine. (Dunlop, Pharm. J, 1910, 31. 6.) Min. Kalınıle.

+8H₂O. Stable in dry air. (Maring, l. c.) +14H₂O, Converted into ord, alum in air. (Marmo.)

Aluminum rubidium sulphate, Al-Rh.(SO.). ±24H_0

100 pts. H₂O dissolve 2 27 pts' at 17° very sol in hot H.O. (Redtenbacher, J. pr. 94, 442.)

Solubility in 100 pts, H₂O at to (calculated for salt dued at 130°).

t°	Pts alum	t°	Pts alum	ŧ°	Pts alum
0 10 17	0 71 1 09 1 42	25 35 50	1 85 2 67 4 98	65 80	9 63 21 60

(Setterberg, A. 211, 104)

Solubility in H₂O.

t°	Pts per litre	G mols anhydrous salt per litre
25 30 35 40	18 1 21 9 26 6 32 2	0.059 0 072 0 087

(Locke, Am. Ch. J 1901, 26 180)

Melts in crystal H₂O at 99° (Tilden, Chem. Soc. 45, 409); at 105° (Erdmann); at 109° (Locke.)

Aluminum silver sulphate, Al-Ag-(SO₄),+ 24H.O. Decomp. by H₂O (Church and North-

Aluminum sodium sulphate, AlaNas(SO₄)₄+ 24H+0.

Very sl. efflorescent.

cote, C. N. 9, 155.)

Sol m 2 14 pts H₂O at 13°, or 100 pts H₂O dissolve 46 7 pts socia atum Sol m 1 pt behing H₂O (Zellner, Schw J 36 183) 100 pts H₂O dissolve 110 pts. at 15 5°, and form a ligual of 1 295 sp gr. (Ure)

100 pts. H₂O dissolve 51 pts. soda alum at 16°. (Augé, C. R. 110. 1139.) 100 pts. H₂O dissolve 110 pts. soda alum at 0° (Tilden, Chem Soc. 45, 409.)

100 g H₂O dissolve at . 0° 15° 20° 25° 30° 10°

36 7 38.7 40.9 43 145 8 g. anhydrous salt. (Smith, J Am. Chem Soc 1909, 31, 247.) M.-pt. of Na₂Al₂(SO₄)₄+24H₂O=61°. M.-pt. of N82A1s(SU4),+"24H5U=01". (Tilden, Chem. Soc. 45. 409.); =63.° (Locke, Am. Ch. J. 1901, 26. 183.) Insol. in absolute alcohol. (Zellner.)

Min Mendozte.

Aluminum thallous sulphate, $TlAl(SO_4)_2$. 0.177 g. mols. of anyhydrous salt are sol. in 1. H_3O at 25°; or 11. H_2O dissolves 75 g. of the anhydrous, or 117.8 g of the hydrated salt at 25°. (Locke, Am. Ch. J. 1901, 26.

Solubility in H₂O at t°.

f _o	G. Al ₂ Tl ₂ (SO ₄) ₄ in 100 g. H ₂ O	G Al ₂ Tl ₂ (8O ₄) ₄ +24H ₂ O in 100 g H ₂ O
0	3.15	4.84
5	3.80	5.86
10	4.60	7.12
20	6.40	10.00
25	7.60	11.95
30	9.38	14.89
40	14.40	23.57
50	22.50	38.41
60	35.36	65.19

(Seidell, Solubilities, 1st Ed., p. 15.)

3Al₂(SO₄)₈, Tl₂SO₄+96H₂O. Sol in H₂O. (Lamy.)

Aluminum zinc sulphate, Al₂(SO₄)₂, ZnSO₄+ 24H₂O. Sol. in H₂O. (Kane.)

Aluminum sulphate chromium chloride, Al(OH₂)_c(SO₄)₂CrCl₂(OH₂)₄+2H₂O. (Werner, B 1906, **39**, 337.)

Aluminum sulphate sodium fluoride.

Decomp. by H₂O. (Weber, Dingl. 263, 112.)

Ammonium sulphate, (NH₄)₂SO₄. Sol. in H₂O with absorption of heat. 75 pts. (NH₄)₂SO₄ mixed with 100 pts. H₂O lower the temperature from 13 2° to 6.8°, that is, 6.4.° (fiddorff, B. 2. 68.)

Sol. in 1.31 pts H.O. at 19° (Schiff, A 109. 326) Sol in 2 pts H.O. at 18° (Schiff, A 109. 326) Sol in 2 pts H.O. at 18° (Abl. 19° (Abl.

Sol. in 1.3 pts. cold H₂O. (Vogel, N. Rep. Pharm, 10. 9). Sol. in 1.37 pts. cold H₂O at 10°. (Mulder, J. B. 1866. 67). Sol. in 1.34 pts. H₂O at 16-17°. (v. Hauer, W. A. B. 53, 2, 221.) 100 pts. H₂O dissolve at:

0° 10° 20° 30° 71 00 73 65 76 30 48 95 pts. (NH₄)₂SO₄, 40° 50° 60° 70° 81 60 84 25 86 90 89 55 pts. (NH₄)₃SO₄, 90° 100°

92 20 94 85 97.50 pts. (NH₄)₂SO₄.

(Alluard, C. R. 59, 500.)

Solubility in 100 pts. H₂O at to.

t°	Pus (NH4)sSO4	t°	Pts (NH4):804	t _o	Pts. (NH4)5504
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 8 19 20 22 22 22 22 22 22 22 22 22 23 33 34 5 36	70.6 70.9 70.9 71.1 71.4 71.8 72.8 72.8 72.8 73.0 74.2 74.7 74.7 74.7 74.7 76.9 77.8 78.9 77.8 78.9 77.8 78.9 77.8 78.9 78.9	37 38 40 41 42 43 44 44 45 46 47 48 49 50 50 51 55 56 66 67 68 69 69 70 71 72 73	$\begin{array}{c} 80.1\\ 80.7\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0$	74 75 77 77 78 80 81 82 83 84 85 86 87 90 91 92 93 94 101 102 103 104 105 106 108 108 9	93.1 4 94.5 94.9 94.5 94.5 94.5 94.5 94.5 94

(Mulder, calculated from his own and other observations, Scheik Verhandel. 1864. 60.)

100 g. (NH₄)₅SO₄+Aq contain 41.4 g. (NH₄)₅SO₄ at 0². (de Waal, Dissert. 1910); 44.27 g. at 30². (Schrichemakers, Z. phys. (Ch. 71, 110); 47.81 g. at 70². (de Waal) (NH₄)₅SO₄+Aq sat. at 15⁵ has sp. gr. 1.248. (Michel and Krafit, A. cb. (3) 41.471.)

	Sp. gr. of (NH ₄) ₂ SO ₄ +Aq at 15°.				
08(*HN) %	Sp gr	75 (NH4) 504	e Sp. gr	°2 (NH4) 804	Sp gr
1, 2 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,	1 0067 1.0115 1.0172 1.0230 1 0287 1.0345 1 0460 1.0518 1 0575 1.0692 1.0692 1.0747 1.0802 1.0920 1.0920 1.0977	18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	1 1035 1 1092 1 1149 1 1207 1 1265 1 1323 1 1381 1 1439 1 1496 1 1554 1 1612 1 1670 1 1724 1 1780 1 1836 1 1892 1 1948	35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	1 2004 1 2060 1 2116 1 2172 1 2228 1 2284 1 2343 1 2402 1 2462 1 2583 1 2644 1 2705 1 2706 1 2828 1 2828
(Sch	(Schiff, calculated by Gerlach, Z. anal. 8. 280.)				

Sp. gr. of (NH ₄) ₂ SO ₄ +Aq at 15°.					
% (NH,) 50.	Sp gr	% (NH4) abo.	Sp gr	% (NH4)280,	Sp. gr
5 10	1.0292 1.0581	20 30	1 1160 1 1730	31	1.1787

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of (NH4) SO4+Aq at 15°.

% (NH4)*SO*	Sp gr	% (NH4)#SO4	Sp gr	% (NH0sSO.	Sp gr.
8	1.0181	10	1.0600	30	1.1773
6	1.0359	20	1.1190	40	1.2352

(Gerlach, Z. anal. 28, 493.)

gr. of sat. solution = 1.248.

Sp.	gr.	of	(NH) ₂ SO,	+4	4-

i⊈(NH4)±SO4 g mol in 1600 g of solution	Sp gr 16°/16°
0 0.5514 1.1251 2.3114 4.5840 10 0893	1.000000 1 000347 1.000704 1.001436 1.002823 1.006093
20.0138	1 012023
40 5236	1 024117
56 9536	7.033690

(Dijken, Z. phys. Ch. 1897, 24. 107.)

Sp. gr of (NH4)2SO4+Aq at 20°.

Normality of (NH ₄) ₂ SO ₄ +Aq	% (NH4):804	Sp gr.
3 75	40.28	1 2289
2.964	32 99	1 1858
1 978	23 01	1 1319
0 876	10 88	1 0626
0 492	6.275	1 0352

(Forchheimer, Z. phys. Ch. 1900, 34, 22,)

Sp. gr of (NH4) SO4+Ag at 20°.

Solution	Sp gr	weight of 10 ccm of the solution	(NII%804
sat 2/4 " 1/2 " 1/4 " 1/8 "	1.248 1.196 1.139 1.077 1.039	12.5062 g. 11.9034 " 11.3377 " 10.7232 "	53.2 39.9 26.6 13.3 6.65

(Wiener, Z. phys. Chem 1911, 71 120.)

B.-pt. of sat. solution: crust formed at 106.2° , solution containing 88.2 pts. $(\mathrm{NH}_4) \mathrm{s}04$, to 100 pts. $\mathrm{H}_4\mathrm{O}$: highest temp, observed, 108.2° . (Gerlach, Z. anal. 26, 426.)

B.-pt of (NH₄)₂SO₄+Aq containing pts. (NH₄)₂SO₄ to 100 pts. H₂O.

Bpt.	(NH4):804	B-pt	(NH4)4804
100.5°	7.8	105.0°	71.8
101 0	15.4 22.8	105.5	78.7 85.5
102.0	30.1	106.5	92.3
102.5	37.2	107 0	99.1
103.0 103.5	44.2 51.1	107.5	105.9 112.6
104.0	58.0	108.2	115.8
104.5	64.9		

(Gerlach, Z. anal, 26, 431.)

Sol. with decomp, in HCl+Aq.

										02
	Solubi	hty	in H	S	O4+Aq at 25°.	Solubil	ity	of (NE	I ₄) ₂ S	O, in H ₂ SO,+Aq at 25°
100 g	of the	golu n	ition	_		In 100	0 g duti	of the		2
Moi HaSC	, ,	NH	lol s)sSO.		Solid phase	Mol 80a	(N	Mol H4):SO4		Solid phase
0.0 0 2 0 4 0.9	0 4 7	2. 3. 3.	28 25 19 15	1	(NH ₄) ₃ SO ₄	4 29 4 57 4.85 5.25 5.66		2 17 1 83 1 60 1 36 1 22		(NH4)HSO4
1.1	3	3	15 22 18	1		6.16 6.47 6.51		1.26 1.55 1.95		(NH ₄)HSO ₄
1 7 2.2 2.6 2.7	0	3	02 97 00	ĺ	(NH ₄) ₂ H(SO ₄) ₂	6.43 7.28		2 37 2 50 1.64	(NB	I4)HSO4+(NH4)H4(SO4)
2 8 2 9 3.2	2 6 0	3.	03 10 19		(1111)311(304)3	7 99 (7.60) (8.00)	{	1 38 1.74) 1.42)		(NH ₄)H ₁ (SO ₄) ₂
3.4	7	3	25 32	1		9.02 9.21 9.60 9.68		0.96 0.832 0.977 1.00		$(NH_4)HS_2O_7$
3.5 3.7 4.2	8	2	20 84 26	1	$(NH_4)HSO_4$	9 67 10 43		1.26 0.894		(NH ₄)HS ₂ O ₇ +?
5 0	9	1.	44	J						rg. 1913, 80 241.)
					1909, 65. 229.)	Very Aq. (0	es Fir	asily so ard, Bu	l, e dí. S	ven in conc. NH4OH+ oc. (2) 43 . 522.)
	Solubi	lity	ın H	S	O ₄ +Aq at 30°.	Solubil	ity			O4in NH4OH+Aqat25°
Compos	tion of	the	solution	a				In 10	00 g	of the solution
by wt	by w	. 1	by wt	_	Solid phase	M	-	NH4)\$8C)4	Mol (NH ₁) ₁
	(NH4)2		H ₂ O	-			2	.28		0 1 02
10.63 10.70	43.5 43.2	59	46.0		(NH4):804		2	13		1 95 3 44
13.18	44.1		42.7		(NH4):804+	l	1			5 35
10.07	40.0	. 1	41 01	١.	3(NH ₄) ₅ SO ₄ , H ₂ SO ₄ 3(NH ₄) ₅ SO ₄ , H ₂ SO ₄	i	0			7 13
16 67 25.82	42 0		41 27 33.08		**		0			9 47
27.33	41.1	.6	31.5	ij						Z. anorg. 1910, 67. 438
32.32 33.12	44.6 45.5	i0	22.26	3		100 p	ots.	. H₂O c ots. NH	lisso.	lve 46.5 pts. (NH4) ₂ SO. at 21.5°.
33 84 33.96	45.5 45.3		20 64 20.78		(NH4)HSO4					O ₄ in NH ₄ Cl+Aq at 30°
38 51 42.12	35.3	7	26.12 27.78	ıΙ	"	NH ₄ C	_	(NH3s		Solid phase
45.80	24 8	8	29.32	3	0	- NH ₄ C	-	(NHos	804	
45 77 56.55	24.3 16 9		29.98 26.37			6.80	,	44 36 1		(NH ₄) ₂ SO ₄
62.43	20.4	1	17.16	3		14.6		28 6		44
62.46	24.4 24.2	0	13 14			17 60		25 6		(NH ₄) ₂ SO ₄ +NH ₄ Cl
62.57	27 6		9.76		**	17 98 19 07		25 8 23 2		NH ₄ Cl
62.83	29.7	5	8 42	3	"	19 97		21 3		"
62.56	30 2 31.8		7.28		,,	22 3 24 00	, !	16 3 12 7		44
62.59	33.7	0	3 71	:		29 5	'	0 '	-	r.
61.63 62 23	36.7	5	1.72 0.82	3			nen		Arcl	n. Néer. Sc. 1910, (2) 15
		_		_!	Ch. 1910, 73 . 285.)			under	ξ	(2.)

(NH₄)₄SO₄+CuSO₄. Solubility of (NH₄)₂SO₄+CuSO₁ m H₂O at . 16°

Solution	ď	Cago.	ĮŞ	(NH) SO.
Both salts in excess 15 cc. sat sol +3 g (NH ₄) ₂ SO ₄ 15 cc. sat. sol +3 g. CuSO ₅ SH ₂ O	8 1 15		7 18 5	

(Rüdorff, B 6. 482)

Solubility of (NH4)2SO4+CuSO4 in H2O at 30°.

(NH4),804	Cuso.	Solid phase
0	20 32	CuSO ₄ 5H4O
2 45	20 19	
5 79	20 53	CuSO ₁ , 5H ₂ O +CuSO ₄ , (NH ₄) ₄ SO
	1	GH ₂ O
6 98	16 77	CuSO ₄ (NIL)+SO ₄ 6H+O
8 19	13 65	**
9 33	11.03	
17 53	4 05	
29 27	1 57	
38 32	0.77	
43 29	0.49	CuSO ₃ (NH ₃) ₃ SO ₄ 6H ₂ O +
		(NH4)4804
14	0	(NH ₄) ₂ 80 ₄

(Schreinemakers, Arch Née: Sc 1910, 15.

See also under CuSO4.

(NH₄)2SO4+FeSO4 Solubility of (NH₄)₄SO₄+FeSO₄ in H₂O+ Aq at 30°

Compos	ution of the	Solid phase		
% by wi. FeSO:	% by wt.	Solid phase		
24 90 25 24 25 22	0 5 24 5 93	FeSO ₄ , 7H ₄ O		
25 26	5.89	FeSO4, 7H ₂ O +, FeSO4, (NH ₄) ₂ SO ₄ , 6H ₂ O		
23.59 17.64	6.44 8 90	FrSO4, (NH4)4SO4, 6H4O		
13 13 7.95	11.45 16.29			
5.70 1 72	19 64 34 24	"		
0.79	43 86 43 90	FeSO ₄ , (NH ₄) ₂ SO ₄ , 6H ₂ O + (NH ₄) ₂ SO ₄		
0 ''	44 27	(NH4):804		

(Schrememakers, Z. phys. Ch. 1910, 71, 111)

(NII,)2SO4+L12SO4 Solubility of (NH4) SO4+L4.SO4. Temp =30°

LasSO4 Solid phase	LaSO.	NH3so.
0 (NH ₄) ₂ SO ₄	0	44.1 40.8
6.6 (NH ₄) ₄ SO ₄ +NH ₄ LiSO ₄ 10 NH ₄ LiSO ₄		39 5 30
15 " 20 "	15	21 6 15
21 9 NH,LiSO ₄ +Li ₃ SO ₄ , H ₂ O Li ₂ SO ₄ , H ₂ O	21 9	12 5 8 9
25.1	25.1	o v

Temp =50°. (NH₄)₂SO₄)₂SO₄+NH₄LiSO₄ NH₄LiSO₄ 45 7 43 05 5 86 (NH_4) 19 65 16.35 13 90 21 20 13 97 21.23 NH4LiSO4+Li2SO4, H2O 21 75 L12SO4, H2O 22.79 9 63 8 58 23 09 7 56 23 86 24.3

(Schreinemakers and Cocheret, Chem. Weekbl. 1905, 2, 771) $(NH_a)_sSO_a + MnSO_a$

Solubility of (NH4)2SO4+MnSO4 in H2O G per 100 g sat. solution.

	or por 100 g ade, northered.					
Temp =30°						
Mn804	(NH ₄):804	Solid phase				
39 3	0	MnSO ₄ , 5H ₂ O				
38 49	3 64	MnSO ₄ , 5H ₂ O+MnSO ₄ ,				
00.41		(NH ₄) ₂ SO ₄ , 6H ₂ O				
33.44 22.06	4 91 9 65	1 "				
9 02	20 36					
2.91	37 42	ii ii				
1.75	42 58	MnSO4, (NH4)2SO4, 6H2O				
2.10	12 00	+(NH ₄) ₂ SO ₄				
1.77	43 24	(NH ₄) ₂ SO ₄				
0	48 4	1				
	Temp =50°.					
36 26	0	MnSO ₄ , H ₂ O				
35 35	2.95	$MnSO_4$, $H_2O + 2MnSO_4$.				
		(NH ₄) ₂ SO ₄				
30.57	5.14	2MnSO ₄ , (NH ₄) ₂ SO ₄				
16.86	17.62	1 "				
6.92	35 98	l "				
6.29 5.70	39.71					
5 70	43.24	2MnSO, (NH,)2SO,+				
3.49	44.02	(NH ₄) ₂ SO ₄ (NH ₄) ₂ SO ₄				
0.93	45 7	(14114)8004				

45.7

(Schreinemakers. Chem. Weekbl, 1909, 6. 131.)

(NH4)-804+K-804

100 pts. (NH₄)₂SO₄+K₂SO₄+Ao sat at 16 17° contain 38.41 pts. of the two salts. of which 5.45 pts are K₂SO₄, and 32.96 pts.

or when 3.45 pts are K₂SO₄, galt 32.95 pts. (NH₄)₄SO₄. (v Hauer, J. pr 28. 137.) 100 pts. H₂O dissolve 50 6 pts. (NH₄)₂SO₄ and 7 2 pts. K₂SO₄ at 11.° (Mulder, J. B. 1866, 67.

solution, so that by adding one of these gr. less than 0 850. sults to a seconngly saturated solution of the other, it is dissolved with pptn, of the other salt, (Rudorff, B, 6, 485.)

Solubility of (NH₄)₂SO₄+K₂SO₄ at 19 1°.

Solution	t ^e	K ₂ SO ₄	ß	(NH, SO	
Both salts in excess 15 cc sat sol +4 g K ₂ SO ₄ 15 cc sat sol +1 g (NH ₄) ₄ SO ₄	39 4 2	3 94 05	37 33 40	97 26 80	
(Rudorff, B 6. 482)	-			_	l

Solubility of (NH₄)₄SO₄+K₄SO₄ in H₂O at

-	28	s°.		
g K-SO ₁ per i	g (NH ₁)SO ₁	g K;804 p.a l	g (NH ₄) ₂ SO ₄ per l.	-
127 9 135 7 84 2	0 0 115 7 281 1	59.28 40.27	355 0 482 7 342 3	

Results are also given for 14°, 15°, 16°, 30°, 46° and 47°

(Fock, Z. Kryst Min. 1897, 28, 365)

(NH4)2SO4+Th(SO4)2.

Solubility of (NH₄)₂SO₄+Th(SO₄)₅ at 16° Pts per 100 pts, H₂O.

(NH ₄₎ ,SO ₄	Th(SO4);	Solid phase
2 13	3 361	Th(SO ₄)2.9H2O
4 80	5.269	
10 02	8 947	11
16 56	13 330	Th(SO4)2, 9H2O+Th(SO4)2,
	i	(NH ₄) ₄ SO ₄ 4H ₂ O
28 00	10 359	Th(SO ₄) ₂ . (NH ₄) ₂ SO ₄ . 4H ₂ O
35 20	9 821	" +Th(SO ₄) ₂ , 2(NH ₄) ₂ SO ₄
	1	2H ₂ O
45 14		Th(SO ₄) ₃ , 2(NH ₄) ₂ SO ₄ , 2H ₂ O
49 05	5 750	
52 88	4 583	Th(SO ₄) ₂ , 3(NH ₄) ₂ SO ₄ . 3H ₂ O
69 74		
	(Burno	A ab 1011 (8) 94 980)

(Barre, A. ch. 1911, (8) 24. 239.)

Insol, in liquid NH₂. (Franklin, Am. Ch. J. 1898, 20. 826.) Insol in absolute alcohol. Sol. in 500 pts

linson in assorbe arction. Soi, in 300 pts alcohol of 0 872 sp. gr, and in 62.5 pts of 0 906 sp. gr (Anthon, J pr 14, 125) Sol in 2174 pts of 66 8% alcohol (sp. gr. = 0.88) at 24 3° (Pohl, J pr 56, 219) Tolerably sol in alcohol, the sp. gr of which (NHA) SO4 and K2SO4 replace each other in a greater than 0 860. Insol in alcohol of sp.

Solubility in dil alcohol

When (NH₄)₂SO₄ is dissolved in dil. elephol two lavers are formed, the compositions of which are as follows:

Lower lawer

	100 com, contain in g					
Sp. gr	alcohol	water	salt			
1 2240 1 1775 1 1661 1 1655 1 1735	8 85 10 62 11 29 11 42	71 43 68 26 67 70 67 34 66 54	74 16 59 54 56 56 56 30 59 20			
Sp gr	100	Upper layer com contain	ing.			
	nlechol	water	salt			
0 9530 0 9512 0 9440	41 37 44 20 44 27	48 47 45 95 45 61	5 45 4 97 4 51			

0 9098 52 64 1 56 36.780 8750 62 61 24 60 0 30 0 8549 67 04 18 36 0.09 0.8308 77 55 5 53 0.00

(Bodlander, Z. phys. Ch. 7, 3, 8)

Solubility in ethyl alcohol +Aq

Temp.	g H ₄ O	g. nleohol	g. salt
16 6°	52 80	40 21	6 99
33 0°	47 99	46 75	5 26
41 8°	47 34	47 67	4 99
55 7°	45 90	49 47	4 63

16.6°	60 33	10 19	29.48
33 0°	61 02	9 80	29 18
41 8°	61 16	9 74	29 10
55.7°	61 59	9 46	28 95

(Traube, Z. phys Ch 1887, 1. 509.)

Solub	ulity of	(NH4	$)_{2}SO$	4 in a	lcohol at 3	Ů.
Two	liquid	layers	are	form	ed between	al-
cohol c	oncent	rations	of 5	8 and	1 62°.	

Composition of lavers.

Upper layer			L	ower laye	er e
(NHÚSO,	aleohot	.Ç	'Os ⁴ ('HN')	alcohol	E _O
2 2 2 6 3 4 13 2 17	56 6 54 5 52.3 31 8 25	41 2 42 9 44 3 55 58	37 1 35 7 33 8 21 7 17	5 8 6 3 7 4 18 4 25	57 1 58 58 8 59 9 58

At concentration of 62% alcohol, the liquid is homogeneous and contains 1.3% (NH₄)₂SO₄.

(Wibaut, Chem Weekbl. 1909, 6. 401.)

Softwire of (Solubility of (Nrt.4)25O4 in alcohol ac oo			
'n (NH4):SO4	c, alcohol	% H2O	1	
43.02	2 32	54 66		
41.1	4 1	54 8		
1.2	64 5	34 3	1	
0.2	75 5	24 3		

Between 4 1° and 64.5°, two liquid layers are formed

Composition of lavers.

U	Upper layer			ower luve	ır
(NH,550,	al So	ng Or	(NH41580)	al obcl	"E
1 2 1.6 3 8 7.4 10	64.5 60 50 40 34 4	34 3 38 4 46 2 52 6 55 6	41 1 36 8 30 8 26 6 23 6	4.1 6 9 12 15	54.8 57.2 60.2 61.4 61 4

(Schreinemakers, Z. phys. Ch. 1907, 59. 641.)

Solubility in alcohol + Aq at 0°.

% (NH4)±804	% alcohol	% H ₂ O
41.4 30.0	0 9 41	58 6 60 59
	::	
0 14	73 03	26 83

Two layers are formed between alcohol concentrations of 9.41 and 73.03%. (de Waal, Dissert 1910.)

Solubility in propyl alcohol+Aq at 20°.			
% propyl alcohol	% (NH4)4SO4		
20 30 40 50 60	6 7 4 8 3 2 2 0 1 0		

(Linebarger, Am. Ch. J. 1892, 14, 380.)

100 g. 95% formic and dissolve 25 4 g. (NH_d)₂SO₄ at 16 5°. (Aschan, Ch. Ztg. 1913, 37, 117.) Insol. m acetone. (Eidmann, C. C. 1898,

II. 1014; Naumann, B. 1904, 37. 4329)
 Insol in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43. 314.)
 Insol in CS₂ (Arctowski, Z. anorg. 1894

6. 257.)

Ammonium hydrogen sulphate, NH₄HSO₄.

Sl. deliquescent. Sol. in 1 pt. cold H₂O.

(Lnik) Very sl. sol in alcohol (Gerhardt, A ch. (3) 20. 255) Insol. in acetone. (Naumann, B. 1904, 37. 4329, Fridmann, C. C. 1899, II, 1014.) (NH₂), H(SO₃). Not deliquescent. Sol. in H₂O (Mitscherlich, Pogg. 39. 198.) (NH₃)SO₃ Shas and Schenener,

(NH₄)₂SO₄, 3H₂SO₄.) D'Ans and Schren Z anorg 1913, 80. 241.)
Ammonium pynosulphate, (NH₄)₂S₂O₇.
Decomp. by H₂O. (Schulze.)

NH₄HS₂O₂. (D'Ans and Schreiner, Z. anorg. 1913, 80, 241)

Ammonium obv. H.O. (Weber P. 17, 2407)

Decomp. by H₂O. (Weber, B. 17. 2497.)

Ammonium antimony sulphate, (NH₄)₂SO₄, Sb₂(SO₄)₃.

Behaves toward H₂O and abs. alcohol as a mixture of the components (Metzl, Z anorg, 1905, 48, 152.) Decomp. very slowly by H₂O (Gut-

mann, Arch. Pharm. 1898, 236. 479.)

Ammonium bismuth sulphate, NH₄Bi(SO₄)

Ammonium bismuth sulphate, NH₄Bi(SO₄)₈ +4H₂O.

Easily sol. in IICl, and HNO₃+Aq; less sol. in cone. H₂SO₄, and hot dil. ands. Slowly decomp by cold HC₂H₂O₂, and dil H₂SO₄+ Aq. (Lüddecke, A. 140, 277.)

Ammonium cadmum sulphate, (NH₄)₄SO₄, CdSO₄+6H₂O.

Can be recrystallised from a little H₂O. (v. Hauer.) 1 l. H₂O dissolves 723 g. anhydrous salt

at 25°. (Locke, Am Ch. J. 1902, 27. 459.)

3(NH₄)₂SO₄, CdSO₄+10H₂O (André, C. Ammonium chromic sulphate, (NH₄)₂SO₄, R. 104. 987)

Ammonium calcium sulphate, $(NH_1)_2Ca(SO_4)_2+H_2O$.

Decomp. by H₂O (Fassbender, B. 11. Sol m (NH₄)₂SO₄+Aq (Rose, Pogg.

110. 292.) This double salt is stable between 0° and 100° in solutions containing an excess of (NH4)2SO4 It is not formed if the solution

contains less than 35% (NH₁)₂SO₄ (Barre, C. R. 1909, 148, 1605.) (SO4)2Cn2(NH4)2. Decomp, by H2O (D'Ans. B 1907, 40, 192)

This double salt is formed in the presence of an excess of CaSO4 and at temp. above 80°. (Barre, C R. 1909, 148, 1605)

 $Ca_3(NH_4)_2(SO_4)_6+H_2O$ Decomp. by H_2O . (D'Ans, B 1907, 40. 192.)

Ammonium calcium cupric sulphate, CR2Cu(NH4)2(SO4)4+2H2O Very stable. (D'Ans, B. 1908, 41. 1778.)

Ammonium calcium potassium sulphate,

NH, CaK(SO,) + H,O. Decomp by cold H₂O. (Fassbender, B.

11, 1968

Ammonium cerous sulphate, (NH₄)₂Ce₂(SO₄)₄ +8H₂O.

More sol, in cold than in hot H₂O (Czudnowicz).

100 g. H2O dissolve at: 22 3° 22 35° 35 1° 45 2°

5 331 5 328 5 184 4 993 g. anhydrous salt,

2 994 2 240 2 187 g. anhydrous salt,

75 4° 1 482 1 184 g. anhydrous salt (Wolff, Z. anorg. 1905, 45. 102.)

5(NH₄)₂SO₄, Co₂(SO₄)₂. (Barre, C R. 1910, 151, 873.)

Ammonium ceric sulphate, 3(NH₄)₂SO₄, Ce(SO₄)₂+4H₂O Slightly efflorescent. Easily sol. in H₂O.

(Mendelejeff, A. 168. 50) 3(NH₄)₂SO₄, 2Ce(SO₄)₂+3H₂O. Sl. sol. in H₂O. (Mendelejeff.)

Ammonium chromous sulphate, NH₄Cr(SO₄)₂. 0.407 g mol. anhydrous salt is sol in 1 l. H₂O at 25°. (Locke, Am. Ch J 1901, 26.

alcohol (Laurent, C. R. 1911, 131. 112.)

Cr2(SO4)2

Not attacked by boiling H-O or cone, HCl +Aq. Very slowly attacked by boiling KOH +Aq (sp gr.=13). Insol. in CrCl₂+Aq or SnCl₂+Aq (Klobb, Bull Soc. (3) 9. 664.)

+5H₂O. Is ammonium chromosulphate. which see

 $+24H_{2}O$ Chrome Alum.

Violet modification. Efflorescent Sol. in cold H2O, but solution is decomp. on heating with formation of green modification. The dil. solution of green modification is grad-ually converted into violet modification by

shading. Alcohol ppts it from aqueous solution (Schrotter, Pogg. 53. 526.)
100 cc H₂O dissolve 10.78 g anhydrous, or 21 21 g hydratel-slat 425° Melisi ucrystal H₂O at 45° (Locke, Am Ch. J. 1901 26. 174.)

Solubility in H2O. Saturation is very slowly reached owing to

transition between violet and green modifications. If time of saturation is taken at 21/2 hours, 100 g. of the solution contain at: 300 40°

3 77 106 15.5 g. (NH₄)₂Cr₂(SO₄)₄,

This is assumed to be the solubility of the violet modification

In 300 hours, 15.96 g. salt are dissolved at 30°, and 24.64 g. m 250 hours at 40° (Koppel, B 1906, 39. 3741)

Cale from electrical conductivity measurements, a solution containing 38 g. of the sulphate in 100 g. contains 48% of the green compound at 40° and 61%, at 55°. With solutions of 6-7 times the above concentration equilibrium is reached at 40° with 30-

40% green alum. (Koppel) Sp gr. of aqueous solution of violet modification at 15°

5°, containing: 12% (NH₄)₂Cr₂(SO₄)₄+24H₂O. 1.020 1.0405 1.0610 Sat solution at 15° has sp. gr. = 1.070.

(Gerlach.) Green modification. Sol. in H2O and alcohol. When in aqueous solution, it gradually changes to violet modification

Sp. gr of aqueous solution of green modification at 15°, containing: 10 20 30% (NH₄)₂Ct₂(SO₄)₄+24H₂O, 1.044 1 091 1 142

60% (NH₁)₂Cr₂(SO₄)₄+24H₂O, 50

1.197 1.255 1.317 70 80 90% (NH₄)₂Cr₂(SO₄)₄+24H₂O.

1.384 1 456 1.532 (Gerlach, Z anal, 28, 498.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

3(NH₄)₂SO₄, Cr₂(SO₄)₃. Only sl. attacked +6H₂O. 100 ccm. of sat. aqueous solution by boiling H₂O Not attacked by boiling contain 55 g. of the salt at 20°. Insol. in conc. (NH₄)₂SO₄+Aq. (Klobb, Bull. Soc. (3) 9. 663.)

Ammonium cobaltous sulphate, $(NH_s)_sC_0(SO_s)_s+6H_sO_s$ 100 pts. H₂O dissolve at:

0° 10° 18° 23° 35°

8.9 11.6 15.2 17 1 19.6 pts. anhydrous salt,

40° 45° 50° 60° 75° 22.3 25 28.7 34.5 43.3 pts. anhydrous salt. (Tobler, A. 95, 193.)

100 pts. saturated solution contain at: 60° 20° 400 800 20.8 256 33 pts. anhydrous salt

(v Hauer, J. pr. 74. 433.) H₂O dissolves 147 2 g. anhydrous salt at 25°. Tobler's results are inaccurate. (Locke, Am. Ch. J 1902, 27. 459.)

Pptd. from aqueous solution by alcohol.

Ammonium cobaltic sulphate,

(NH₄)₂Co₂(SO₄)₄+24H₂O Sol. in ILO with decomp (Marshall,

Chem. Soc 59 760) Ammonium cobaltous cupric sulphate

2(NH₄)-SO₄, CoSO₄, CuSO₄+12H₂O₄ Ourte easily sol in hot H₂O, but on long boiling a basic salt is potd. (Vohl. A 94, 58)

Ammonium cobaltous ferrous sulphate. 2(NH₄)₂SO₄, CoSO₄, FeSO₄+12H₂O

Sol. in H.O (Vohl. A. 94, 57) Ammonium cobaltous magnesium sulphate,

2(NII₄)SO₄, CoSO₄, MgSO₄+12H₂O Sel. in H₂O (Vohl, A. 94, 57.)

Ammonium cobaltous manganous sulphate. 2(NH₄)SO₃, CoSO₄, MnSO₄+12H₂O. Sol. in H₂O. (Vohl. A. 94, 57)

Ammonium cobaltous nickel sulphate 2(NH₄)SO₄, CoSO₄, NiSO₄+12H₂O Sol in H2O. (Vohl, A 94. 57.)

Ammonium cobaltous zinc sulphate, 2(NH₄)₂SO₄, CoSO₄, ZnSO₄+12H₂O Sol. in H₂O. (Vohl, A. 94, 57.)

Ammonium cupric sulphate, (NH₄)₂SC₄, CuSO4+6II2O Efflorescent in warm air.

Sol. in 1.5 pts. boding H₂O, and separates almost wholly on cooling (Vogel, J pr 2, 194 Sol in 1.55 pts H₂O at 18.75² (Abl.)

100 pts. II-O at 19° dissolve 26 6 pts , and sat. solution has sp. pr. = 1.1337. (Schiff, A.

109. 426. 100 g. sat. solution at 30° contain 30.36 g.

anhydrous salt (Schreinemakers, Arch, Néer, Sci. 1910, (2) 15, 92.)

Solubility of (NH₄)₂Cu(SO₄)₂, 6H.0+ (NH₄)₂N₁(SO₄)₅, 6H₂O in H₂O at 13-14° Mols, per 100 mols, H₂O.

Cu salt	Nı selt	% Cu salt in solid phase
0 0 1476 0 2664 0 4165 0 4785 1 0350	0 521 0 295 0 2089 0 1449 0 1202	0 10 29 30 59 52 23 78 80

(Fock, Z. Kryst, Min. 1897, 28, 365.)

olubility of $(NH_4)_2Cu(SO_4)_2$, 6 $K_2Cu(SO_4)_2$, $6H_2O$ in H_2O at $13-14^\circ$ Mols. per 100 mols. H_2O . Solubility 6H,O+

K snlt	. NH: salt	% K salt in solid phase
0 897 0 2269 0 2570 0 2946 0 3339 0 4560 0 4374	1 035 0 8618 0 6490 0 5887 0 5096 0 3319 0 1961	0 5 06 16 76 30 40 36 63 50 15 69 93 100

(Fock.)

Solubility (NH4)2Cu(SO4)2. 6H₄O+ (NH₄)₂Zn(SO₄), 6H₅O in H₅O at 13–14°. Mols per 100 mols H₂O.

Cu salt	Zn salt	% Cu salt in solid phase
0 0422 0 0666 0 1218 0 2130 0 3216 1 035	0 8069 0 5638 0 5115 0 4924 0 4022	2 39 4.52 9 03 14.67 22.62 100.

(Fock.) (NH₄)₂SO₄, 2CuSO₄ (Klobb, C. R. 115, 220) Very sol in H₄O

Ammonium cupric ferrous sulphate.

Sol in H2O without decomposition. (Vohl, A 94.61)

Ammonium cupric magnesium sulphate, 2(NH₄)₂SO₄, CuSO₄, MgSO₄+12H₂O Sol in H₂O. (Vohl. A. 94, 57)

Ammonium cupric magnesium potassium sulphate, (NH4)2SO4, CuSO4, MgSO4, K4SO4 +12H₂O.

Sol in H₂O (Schiff.) 2(NH₄)₂SO₄, CuSO₄, 2MgSO₄, K₂SO₄+ 18H2O. Sol. in H2O (Schiff)

801.)

Ammonium cupric manganous sulphate, 2(NH₁)₂SO₄, CuSO₄, MnSO₄+12 H₂O. Sol in H₂O. (Vohl, A 94. 57.)

Ammonium cupric nickel sulphate, 2(NH₄)₄SO₄, CuSO₄, NiSO₄+12H₂O Sol m H₂O (Vohl)

Ammonium cupric potassium suiphate, NH₄KSO₄, CuSO₄+6H₂O. Soi m H₂O. (Schiff.)

Ammonium cuprıc zinc sulphate, 2(NH₄)₂SO₄, CuSO₄, ZnSO₄+12H₂O. Sol. in H₂O. (Vohl.)

Ammonium cupric sulphate ammonia, (NH₄)₂SO₄, CuO, 2NH₂.

Sol in 15 pts cold H₂O, but decomp on exposure to air or dilution. Insol in alcohol. (Kuhn)

Ammonium didymium sulphate, (NH₄)₂SO₄, D₁₀(SO₄)₂+8H₂O.

Sol. in 18 pts H₂O, and less easily in (NH₄)₂SO₄+Aq (Marignac) Moderately sol in H₂O. (Cleve, Bull Soc. (2) **43**. 362)

Ammonium erbium sulphate, (NH₄)₂SO₄, Er₂(SO₄)₃+8H₂O Sol. m H₂O (Cleve)

Ammonium gallium sulphate, (NH₄)₂Ga₂(SO₄)₄+24H₂O.

Sol in cold water and dilute alcohol. Conc solution clouds up on boiling, but clears on cooling. Dil solution separates out a basic solution and M. O. (Poisburgers).

salt, insol. in hot or cold H₂O. (Boisbaudran.)

Ammonium glucinum sulphate, (NH₄)₂SO₄,

GlSO₄+2H₂O Sol. in H₂O. (Atterberg.)

Ammonium indium sulphate,

(NH₄)₂In₂(SO₄)₄+24H₂O. 100 pts. H₄O dissolve 200 pts salt at 16°,

and 400 pts at 30°.

Insol in alcohol

Malts in crustal H.O at 36° (Bössler

Melts in crystal H₂O at 36° (Rössler, J. pr (2) 7. 14.) +8H₂O. (Rossler.)

Ammonium iridium sulphate, (NH₄)₂SO₄, Ir₂(SO₄)₄+24H₂O. Easily sol in H₂O. (Marino, Z. anorg.

Ammonium iron (ferrous) sulphate,

1904, 42, 221)

(NH₄)₂Fe(SO₄)₂+6H₂O.

Much less sol, in H₂O than FeSO₄+7H₂O. (Vogel, J. pr. 2, 192.) 100 pts H₂O dissolve at: 0° 12° 20° 30° 36°

12.2 17.5 21.6 28 1 31.8 pts. anhydrous salt, 45° 55° 60° 65° 75°

36 2 40.3 44.6 49.8 56.7 pts, anhydrous salt. (Tobler, A. 95, 193.)

100 pts. H₂O at 16.5° dissolve 35.9 pts. hydrous salt. 1 l. H₂O dissolves 351 pts or 1.044 g. mol.

anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27, 459.)
Sol. in H₂O without decomp. Aq solution at 30° contains 13.13% FeSO₄ and 11.45% (NH₄)₂SO₄ (Schreimemakers, C. C. 1910, I.

Sp gr. of (NH₄)₂FeSO₄+Aq at 19° %=%(NH₄)₄FeSO₄+6H₄O

$\% = \%(NH_1)_2 FeSO_4 + 6H_2O$					
%	Sp gr	970	Sp gr	%	Sp gr
1 2 3 4 5 6 7 8 9	1.006 1.013 1.018 1.024 1.030 1.036 1.042 1.047 1.054 1.060	11 12 13 14 15 16 17 18 19 20	1 066 1.073 1.080 1 085 1 092 1 097 1 104 1 110 1.116 1 124	21 22 23 24 25 26 27 28 29 30	1 130 1 136 1 143 1 150 1 150 1 164 1 171 1 179 1 185 1 193

(Schiff calculated by Gerlach, Z. anal 8.

Insol. in acctone

Ammonium ferric sulphate, basic.

Extremely difficultly sol. in HCl+Aq. Not decomp. by KOH+Aq. (Berzelius.) 5(NH₄)₂O, 3Fc₂O₃, 12SO₃+18H₄O or 2(NH₄)₂O, Fc₈O₃, 4SO₃+4H₂O. Sol. in 2.4 pts. cold H₄O. (Maus, Pogg. 11. 79.)

Ammonium iron (ferric) sulphate, (NH₄)₂SO₄, Fe₂(SO₄)₃.

Attacked slowly by cold H₂O. (Lachaud and Lepierre) Nearly insol in H₂O. (Weinland, Z. anorg.

1913, 84, 363) +24H₂O. Iron alum. Sol in 3 pts H₂O at 15° (Forchhammer, Ann Phil 5, 406.)

as 15° (Foreinammer, Ann Fini 5, 400.) 100 cc. H₂O dissolve 44.15 g. anhydrous 124.40 g. hydrated salt at 25°, or 1.659 g. mols. anhydrous salt are sol. in 1 l. H₂O at 25°. (Locke, Am. Ch. J. 1901, 26. 174.)

Sp. gr. of aqueous solution at 15° containing

5 10 15% (NH₄)₂Fe₂(SO₄)₄+24H₂O, 1.023 1.047 1 071

20 25 30% (NH₄)₂Fe₂(SO₄)₄+24H₂O, 1,096 1.122 1.148

35 40% (NH₄)₂Fe₂(SO₄)₄+24H₂O. 1.175 1.203

40% solution is sat. at 15°. (Gerlach, Z. Ammonium magnesium sulphate, anal. 28, 496.)

Melts in crystal H₂O at 40° (Locke.) 3(NH4)2SO4, Fe2(SO4)2. Insol. in cold H.O. (Lachaud and Lepierre.)

Ammonium iron (ferroferric) sulphate, 4(NH₄)₂SO₄, FeSO₄, Fe₂(SO₄)₈+3H₂O

Sl sol, in cold H2O; decomp, into basic salt by hot H₂O; insol in alcohol. (Lachaud and Lepierre, C. R. 114, 916.)

Ammonium ferrous magnesium sulphate, 4(NH₄)₂SO₄, 3FeSO₄, MgSO₄+24H₂O₄ Sol. in H₂O. (Schiff, A. 107, 64.) 2(NH₄)₂SO₄, FeSO₄, MgSO₄+12H₂O. Sol.

Ammonium ferrous manganous sulphate, 2(NH₄)₂SO₄, F₆SO₄, MnSO₄+12H₂O. Sol, in H.O. (Vohl, A. 94, 57.)

m H₂O. (Vohl, A. 94, 57.)

Ammonium ferrous nickel sulphate, 2(NH₄)₂SO₄, F₀SO₄, N₁SO₄+12H₂O. Sol, in H2O. (Vohl, A. 94, 57.)

Ammonium ferrous zinc sulphate, 2(NH₄)₂SO₄, FeSO₄, ZnSO₄+12H₂O Sol in H_{*}O. (Bette, A. 14, 286.)

Ammonium lanthanum sulphate, (NH₄) SO₄.

La2(SO4)3+8H2O Sl. sol. in H₂O. (Musago). Quite sol. in H₂O. (Cleve.) +2H₂O. (Barre, C. R. 1910, 151, 872.) m NH₄)₂SO₄+Aq of concentrations above 60% (Barre, A. ch 1911, (8) 24, 246.) 5(NH₄)₂SO₄, Ln₂(SO₄)₃. (Barre)

Ammonium lead sulphate, (NH4)2SO4, PbSO4, Decomp, by HaO into its constituents, (Wohler and Litton, A. 43. 126.) Decomp. by H2O. Only stable in contact

with solutions containing. 13.86 pts. (NH4)2SO4 per 100 pts. H2O at

19.25 pts. (NH₄)₂SO₄ per 100 pts. H₂O at 50°.

24.31 pts. (NH₄)-SO₄ per 100 pts. H₂O at 29.42 pts. (NH4)2SO4 per 100 pts. H2O at 100°.

(Barre, C. R. 1909, 149, 294.)

Ammonium lithium sulphate, NH4LiSO4. Solubility in H₂O=35,25% at -10.° and 36.18% at 70°. (Schreinemakers, C. C. 1906, I. 217.)
This is the only double salt which

s is the only double salt which 280, forms with Li280, below 100°. (Spielrein, C. R. 1913, 157, 48.)

(NH4), Mg(SO4), +6H2O.

100 pts H₂O dissolve 15.9 pts. anhydrous double salt at 13°. (Mulder) 100 pts H₂O dissolve at.

0° 10° 15° 20° 30° 9.0 14.2 15.7 17.9 19.1 pts anhydrous salt, 45° 50° 55° 60° 75°

25.6 30 0 31.9 36.1 45.3 pts. anhydrous salt. (Tobler, A. 96, 193.)

More sol, in H₂O than (NH₄)₂SO₄ or MgSO₂ (Graham. H₂O dissolves 199 pts anhydrous salt. at 25°. Tobler's results are maccurate. (Looke, Am. Ch. J. 1902, 27. 459.)

100 g. H₁O dissolve at: 34° 41° F 18.22 20.72 g. (NH₄)₂SO₄, MgSO₄, 6H₂O. 59° F.

50° 224824 08 g. (NH₄)₂SO₄, MgSO₄, 6H₂O₅ 60° 70° F.

24.81 28.26 g, (NH₄)₂SO₄, MgSO₄, 6H₂O,

33 33 g. (NH₄)₂SO₄, MgSO₄, 6H₂O (Lothian, Pharm, J. 1910, (4) 30, 546.) Lothian's results for solubility in H2O

probably incorrect because of maccuracy of experimental method. (Seidell, Pharm. J. 1911, (4) **33**, 846) Solubility of (NH₄)₂Mg(SO₄)₂ in H₂O at t².

to	g anhydrous salt par 100 g.				
	solution 10 58 12.75 15.23 16 45 17.84 20 51	H ₂ O			
0	10 58	11.83			
10	12.75	14.61			
30	15.23	17 96			
25 30	16 45	19 69			
30		21.71			
40 l	20 51	25 86			
50	23.18	30 17			
60	26.02	35 17			
80	32 58	48 32			
100	39 66	65 72			

(Porlezza, Att. Acc. Line. 1914, (5) 23. II, 509)

Min. Cerbolite.

Ammonium magnesium nickel sulphate 2(NH₄)₂SO₄, MgSO₄, N₁SO₄+12H₂O₅ Sol. in H₂O. (Vohl. A. 94, 57.)

Ammonium magnesium potassium zinc sul-phate, 2(NH₄)₂SO₄, 3MgSO₄, 3K₂SO₄, 2ZnSO₄+30H₂O.

Sol. in H2O. (Schiff, A. 107. 64.)

Sol. in B.SO. (Solinis, A. AVI, 682, (NH₄), Sol., 2MgSol., 2K₂SO₄, ZnSO₄+ 18H₂O. Sol. in H₂O. (Soliff.) (NH₄), SO₄, MgSO₄, K₂SO₄, ZnSO₄+12H₂O Sol. in H₂O. (Soliff.)

Ammonium magnesium zinc sulphate 2(NH₄)₂SO₄, MgSO₄, ZnSO₄+12H₂O Sol in H₂O (Vohl, A. 94. 57.)

Ammonium manganous sulphate, (NH4)2SO4 $MnSO_4+6H_2O$

Deliquescent. Easily sol. in H₂O. (Jahn.) H₂O dissolves 372 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27, 459.) (NH₄)₂SO₄, 2MnSO₄. Readily decomp. by H₂O. (Lepierre, C. R. 1895, **120**, 924.)

Ammonium manganic sulphate, (NH4)2SO4. Mn₂(SO₄)₃.

Decomp by H2O Insol, in ether, C6H6, and conc H₄SO₄ Sol in dil. H₂SO₄+Aq. (Le-pierre, Bull. Soc. 1895, (3) **13**. 596.) +24H₂O Decomp, by H₂O. (Mitscherlich.)

Ammonium manganous nickel sulphate, 2(NH₄)₂SO₄, MnSO₄, NiSO₄+12H₂O Sol. in H2O. (Vohl, A 94.57)

Ammonium manganous zinc sulphate. 2(NH₄)₂SO₄, MnSO₄, ZnSO₄+12H₂O. Sol. in H₂O. (Vohl)

Ammonium mercuric sulphate, (NH4) SO4. $3HgSO_4+2H_9O$.

Hirzel, J. B. **1850**. 333) NII₄)₂SO₄, HgSO₄. Difficultly sol. in H₀O. Easily sol, in NH₄OH+A₀.

3Hg₂O, 2(NH₄)HgSO₄, 2NH₅. Insol in hot or cold, dil. or conc. H₂SO₄ and HNO₁ Sol in HCl. (Tarugi, Gazz. ch. it. 1903, 33. (1) 131.)

Ammonium nickel sulphate, (NH4)2SO4, NiSO4+6H4O.

Sol, in 4 pts cold H₂O (Link, 1796.) 100 pts. H2O dissolve at

3.5° 10° 16° 20° 30° 1.8 3.2 5.8 5.9 8.3 pts. anhydrous salt,

40° 50° 50° 68° 85° 11.5 14.4 16.7 18.8 28.6 pts anhydrous salt. (Tobler, A. 95. 193.)

100 pts. sat. solution contain at 20°, 9.4; at 40°, 13 2; at 60°, 18.6; at 80°, 23.1 pts. anhydrous salt. (v. Hauer, J. pr. 74, 433.) H₂O dissolves 75.7 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)
 Nearly insol. in a weak acid solution of (NH4) SO4. (Thompson, C. C. 1863. 957)

Ammonium nickel zinc sulphate, 2(NH₄)₂SO₄. NiSO₄, ZnSO₄+12H₂O. Sol. in H₂O. (Vohl. A. 94, 57.)

Ammonium nickel sulphate ammonia, (NH₄)₂SO₄, NiSO₄, 6NH₂+3H₂O₄ (Andié, C. R. 106, 936.)

Ammonium platmic sulphate, 2(NH4), SO4. Pta(804) +25H+0. Sol. in H2O. (Prost, Bull Soc. (2) 46, 156.)

Ammonium potassium sulphate, (NH4)2SO4, K₂SO₄+4H₂O. Soluble in H₂O 100 pts. H₂O at 16° dissolve 13.68 pts. salt. (Thomson, 1831.)

Ammonium praseodymium sulphate,

Min. Taylorile.

(NH₄)₂SO₄, Pr₂(SO₄)₈+8H₂O. Sl. sol in H.O. (von Scheele, Z. anorg. 1898, 18. 359.)

Ammonium rhodium sulphate. $(NH_4)_2SO_4$, $Rh_2(SO_4)_3+24H_2O$

Very sol H2O; melts in crystal H2O at 102–103°. (Piccini, Z. anorg, 1901, 27, 67.)

Ammonium samarium sulphate, (NH4)2SO4 $Sm_2(SO_4)_2 + 8H_2O_1$ Sl sol, in H₂O. (Cleve, Bull. Soc. (2) 43. 166.)

Ammonium scandium sulphate, (NH4)2SO4, Sc2(SO4)3

Sol. in H₂O. (Cleve.) Sol. in H₂O and in dil. (NH₄)₂SO₄+Aq. (R. J. Meyer, Z anorg, 1914, 86, 279.)

Ammonium mercurous sulphate ammonia, Ammonium sodium sulphate, NH4NaSO4+ 2H.O. 100 pts. H₂O dissolve 46.6 pts. of cryst. salt at 15°, and the solution has a sp. gr. of 1,1749.

Sp. gr. of aqueous solution containing 24 44 15 9% NH4NaSO4+2H2O, 1 1749 1 1380 1 0849 12 72 6.36 % NH4NaSO4+2H2O.

1.0679 1 0337 (Schiff, A. 114, 68.)

Ammonium strontium sulphate.

Insol. in excess of (NH4)2SO4+Aq. (Rose, Pogg. 110. 296.) NH4)2SO4, SrSO4 This double salt is only stable in contact with nearly sat. solu-

tions of (NH4)2SO4. (Barre, C R. 1909, 149. 293.) Ammonium tellurium sulphate,

(NH₄)HSO₄, 2TeO₂, SO₂+2H₂O. As K salt. (Metgner, A. ch. 1898, (7) 15. 203.)

Ammonium thallic sulphate, NH₄Tl(SO₄)₂. (Marshall, C. C. 1902, II. 1089.) +4H₂O. Decomp. by H₂O. Easily sol. in dil. acids. (Fortini, Gazz. ch. it. 1905, 35.

(2) 450.)

zelius.)

Ammonium thorium sulphate, 2(NH4)2SO4 Th(SO4)2 Easily sol. in H₂O and sat. (NH₄)₂SO₄+

Aq. (Čleve) +2H₂O. (Barre.) (NH₄)₂SO₄, Th(SO₄)₂+4H₂O. (Barre, A.

ch. 1911, (8) 24, 240.) 3(NII₄)₂SO₄, Th(SO₄)₂+3II₂O. (B)

Ammonium titanium sulphate, (NH₄)₂SO₄, T₁O, SO₄+H₂O.

Very sol, in H₃O with decomp.

Insol. in cone, H₃SO₄ (Rosenheim, Z. anorg. 1901, 26, 252)
(NH₄)O, 2TiO₂, 2SO₃+3H₂O. Slowly decomp, by H₄O. (Blondel, Bull. Soc 1899, Slowly (3) 21. 262)

Ammonium titanium sesquisulphate, (NH₄)₂SO₄, 3T₁₂(SO₄)₃+18H₂O.

Insol. in H₂O; sol. in HCl. Insol. in H₂SO₄. Decomp. by boiling with cone. H₂SO₄. (Stabler, B. 1905, **38**, 2623.)

Ammonium uranous sulphate, 2(NH4)28O4, U(SOA)». Easily sol, in H₂O (Rammelsberg.)

Sol. in H2O but solution rapidly decomp. (Kohlschutter, B. 1901, 34. 3630.) Ammonium uranyl sulphate, (NH₄)₂SO₄, (UO₂)SO₄+2H₂O.

Quite difficultly sol, in H2O (Arfvedson)

Ammonium vanadous sulphate, (NH₄)₂SO₄, VSO₄+6H₂O.

Decomp in the air Sol. in H2O. (Piccini, Z. anorg, 1899, 19. 205) Less sol. in H₂O than VSO₄+7H₂O.

cini and Marino, Z. anorg. 1902, 32. 60.) Ammonium vanadic sulphate.

(NH₄)₂SO₄, V₂(SO₄)₃+12H₂O. Insol, in H2O

Insol in H2SO4. Decomp. by boiling with conc. H2SO4

Sol. in HCl. (Stahler, B. 1905, **38**. 3980) +24H₂O Very sol. in H₂O; decomp. in the air. (Piccini, Z. anorg. 1896, **11**. 108.) 100 pts H₂O dissolve 39.76 pts. salt at 10°

100 pis 14,0 dissolve 39.76 pis. salt at 10⁵ Sp. gr of sat. solution at 4°20°=1.687 (Piccini, Z. anorg. 1897, 13, 446.)
1 1. H₂O dissolve 31.09 g. anhydrous or 78.51 g. hydrated salt at 25°, or 1.210 g. mols. anhydrous salt are sol. in 11. H₂O at 25°. Mpt of crystals 46°. (Locke, Am. Ch. J. 1901, 26.114)

Ammonium vanadyl sulphate, (NH₄)₂SO₄, VOSO₄+3½H₂O.

Easily sol, in H₂O and in a mixture of a lcohol and cone. H2SO4, but cannot be recryst. therefrom. (Koppel and Behrendt, Z. anorg. 1903, 35, 176.)

(NH₄)₂SO₄, 2VOSO₄+H₂O Deliquement. Slowly but abundantly sol. in H2O, but cannot be recryst, from it except by addition of H₂SO₄ (Koppel and Behrendt, Z anorg. 1903, **35**. 172.)

Ammonium vitrium sulphate, 2(NH₄)₈SO₄. $Y_2(SO_4)_3 + 9H_4O.$ Sol. in H₂O, (Cleve)

Ammonium zinc sulphate, (NH4) SO4, ZnSO4 +6H₂O.

100 pts, H₂O dissolve pts. (NH₄)₂SO₄, ZnSO, at Oo. 10° 13° 150

7 3 8 8 10 0 12 5 12 6 pts, salt, 45° 80° 60° 75° 85° 16 5 21 7 29 7 37 8 46 2 pts salt. (Tobler, A 95, 193.)

 H₂O dissolves 140.8 g. anhydrous salt at 25°. (Locke, Am Ch. J. 1902, 27. 459) +7H₂O (André, C. R. 104, 987)

Ammonium zirconium sulphate. Sol. in cold or hot H2O or m acids. (Ber-

Ammonium sulphate antimony fluoride, (NH4),SO4, 2SbFa. Very sol in H₂O. (Mayer, B. 1894, 27. R. 922.)

Ammonium sulphate chromic chloride, 2(NH4)2SO4, CrCl2+6H2O.

Sol in H.O. (Weinland, B. 1907, 40, 3768.) Ammonium sulphate hydrogen peroxide,

(NH₄)₂SO₄, H₂O₂ Efflorescent in air. Easily sol. in H₂O. (Willstattor, B. 1903, 36, 1829.)

Antimony sulphate basic,, 7Sb₂O₂, 2SO₂+ 3H.O.

Insol, in, and not decomp, by hot or cold H₂O (Adic, Chem. Soc. 57. 540.) 5Sb₂O₃, 2SO₃+7H₂O. Insol. 5Sb₃O₅, 2SO₅+7H₂O. (Hensgen, R. t. o. 4, 401) Insol. in H₂O. 2Sb₂O₃, SO₃+xH₂O. cold H₂O. (Adie.) Not decomp, by

Sb₂O₃, SO₃ = (SbO)₂SO₄. Decomp. by hot ₂O. (Peligot, J. B. **1847**, 426.)

H₃O. (Peligot, J. D. 1081, 240.) +H₄O. As above. (Adie.) Sb₂O₃, 2SO₃, and +H₂O, and +2H₂O. Scarcely decomp. by cold, slowly by boiling H₂O. Slowly sol. in dil. HCl+Aq. (Adie.)

Antimony sulphate, Sb2(SO4)z.

Very deliquescent. Combines with H₂O to a hard mass with evolution of heat; with more H2O it becomes liquid, and by repeated treatment with much boiling H2O it is wholly decomp, into H2SO4 and Sb2O2 (Hensgen, R. t. c. 4, 401)

Antimony sulphate, acid, Sb₂O₂, 4SO₃,

Decomp by H₂O (Adie) Sb₂O₃+8, or 9SO₃ Decomp by H₂O. (Adie)

Antimony barium sulphate Sb2(SO4)2, BaSO4+6H2O.

As Ca comp (Kühl, Z. anorg, 1907, 54, 257.

Antimony cæsium sulphate, SbCs(SO4)+ Arch Pharm, 1908, 246, 188)

Antimony calcium sulphate Sb2(SO4)2, CaSO4+6H4O.

Pharm. 1898. 236, 478)

Decomp. by H2O. (Kuhl, Z. anorg, 1907. 54. 257.)

Antimony lithium sulphate, SbLi(SO4)+. Decomp by H.O (Gutman, Arch. Pharm 1908, 246, 187.)

Antimony potassium sulphate, KSb(SO4)2. Decomp, by H₀O (Gutmann, Arch.

Antimony rubidium sulphate, SbRb(SO4)2. Slowly decomp by cold H.O. (Gutman.)

Antimony silver sulphate, SbAg(SO₄) Slowly decomp. by H2O. (Kuhl, Z. anorg 1907. 54. 258.)

Slowly decomp. by cold H₂O (Gutman Arch. Pharm 1908, 246, 189.)

Antimony sodium sulphate, NaSh(SO₄)₀. Easily decomp, by H₂O (Gutmann. Arch. Pharm. 1898, 236, 478.)

Antimony strontium sulphate, Sb2(SO4)3, SrSO. +6H2O. As Ca comp. (Kühl, Z. anorg. 1907, 54. not by H₂O alone

257.) Antimony thallium sulphate, SbTl(SO₄)₂,

Slowly decomp, by cold H₂O. Decomp, by conc. H-SO, (Gutman, Arch, Pharm 1908, 246, 189.)

Arsenic sulphate.

See Arsenic sulphur trioxide.

Barium sulphate, BaSO4.

Sol. in 43,000 pts HzO (Kirwan); in 200,000 pts HzO 0 0075 g. BaSO4 from 0 577 g. BaSO4 with (Margaentte, C R 38 308) and (Margaentte, C R 38 308) boiled 5 minutes. (Siegle, J. pr. 69, 142)

BaCls+Aq containing I pt Bat) to 71,000 pts H₂O, when treated with H₂SO₆, becomes turbul in ¹5 hour (Hasting, J pt 22, 32) —
Ba(NO2): ¹1 q continuing I pt. BaO to 25,000 pts H₂O gives a destinct cloud with H₂SO₂ or NasSO₄+A₄), with 50,000-100,000 pts H₂O a shebt turbulity is produced, with 20,0000-100,000 pts H₂O a shebt turbulity is produced, with 20,0000-100,000 pts H₂O be instanted.

becomes turiad in a few minutes, while with 800,000 p's H₂O no action is visible (Lassuigne, J Chim Mid

Sol. in 800,000 pts, H₂O (Calvert); in 400,000 pts. cold or hot H₂O (Fresenius). Calculated from the electrical conductivity of the solution, BaSO, is sol in 429,700 pts.

H₂O at 18.4°, and 320,000 pts, at 37.7°,

57.)

ntimony cassium sulphate, SbCs(SO₄),
ntimony cassium sulphate, SbCs(SO₄),
Slowly decomp by cold H₂O. (Gutman,
roli Pharm. 1908, 246. 188)

11. H₂O dissolves 1.72 mg at 2°, 197 mg
at 196°, 200 mg at 26°,
291 mg at 34°. (Kohlrausch and Rosc, Z.
phys. Ch 12, 241).

Calculated from the electrical conductivity of the solution, BaSO4 is sol in 425,000 pts Results of Fresenius and H₂O at 18.3° Hintz (Z. anal 1896, 35, 170) are incorrect.

(Küster, Z. anorg 1896, 12 267.) Sat aq solution contains 2 29 mg. BaSO. per liter at 25° when particles of salt are not less than 1.8a m diameter.

Sat aq. solution contains 4 15 mg BaSO4 per liter at 25° when particles of salt are 0.1µ in diameter (#=0.0001 cm) (Hulett, Z phys Ch. 1901, 37, 398-9.)

In general the influence of the size of the grain on the solubility of the substance is negligible when the solubility exceeds 2% The increase of normal solubility by using finely divided solids, amounts to 80% in the case of BaSO4. (Hulett. Z. phys. Ch. 1904. 47, 366

 1 l. H₂O dissolves 2.3 mg, BaSO₄ at 18°. (Kohlrausch, Z. phys Ch 1904, 50. 356.) Calculated from electrical conductivity of BaSO₄+Aq

0.0190 milli-equivalents are sol, in 1 liter H_{*}O at 18°, 0.0212 at 25°, 0.0288 at 50°; 0.0334 at 100°

(Melcher, J. Am. Chem. Soc. 1910, 32, 55.) Not attacked by cold HCl or HNOs+Aq after several hours, and only in traces after several days. On boiling, traces of BaSO, dissolve, and the liquid after cooling can be precipitated by BaCl2 or H2SO4+Aq, but (Rose, Pogg. 95, 108)

By washing BaSO₄ long enough with H₂O containing HCl or HNO₂ (HC₂H₂O₂ (Siegle)], the filtrate can be precipitated by H₂SO₄ or BaCl₂. (Piria, J. B. **1856**, 334.) 1000 pts. 3% HCl+Aq dissolve 0.06 pt.

BaSO, in the cold, and still more on

230 ccm HCl+Aq of 1.02 sp. gr. dissolve 0.048 g. BaSO, from 0 679 g. BaSO, when boiled 1/4 hour

168 ccm HCl+Aq of 1.03 sp gr. dissolve 0 0075 g. BaSO, from 0 577 g. BaSO, when

No cc HCl+Aq containing	Mg BaSO, per 1 mg	g per 100	ce solution
equiv IICI	HGI	HCl	BaSO ₄
2.0 1 0 0 5	0 133 0 089 0 056	1 82 3 65 7 29	0 0067 0 0089 0 0101
·0 2	0 017	18 23	0.0086

(Banthisch, J. pr. 1884, 29, 54)

100,000 pts H₂O dissolve 0.124 pt. BaSO₄; 1000 pts. HNO₃-|-Aq of 1.167 sp. gr. dissolve 2 pts. BaSO₄; 1000 pts. HNO₃+Aq of 1.032 sp. gr. dissolve 0.062 pt BaSO₄. (Calvert, hem. Gaz. 1856. 55 When 04 g. BaSO4 is heated 1/4 hour with 150 ccm. HNOs+Aq of 1.02 sp. gr., 0.165 g.

is dissolved. (Siegle, J. pr. 69, 142.)

Solubility of BaSO ₄ in HNO ₄ +Aq			
No ec IINO ₃ +\(\hat{\lambda}\)q BaSO ₄ containing per 1 mg.	G per 100	cc. solution	
Ing equiv	equiv of BaSO ₄	HNO ₄	BaSO ₄
2 0 1 0 0 5 0 2	0 140 0 107 0 085 0 048	3 15 6 31 12 61 31 52	0 0070 0 0107 0 0170 0 0241

(Banthisch, J pr 1884, 29 54.)

Acetic acid has less solvent power than other ands 80 cem. HC₂H₂O₂+Aq of 1.02 sp. gr. boiled wth 0.4 g. BaSO₄ ½ hour dis-solve 0.002 g (Siegle, J. pr. 69, 142) Sol. m boiling conc. H₂SO₄. (See (See BaH (SO.)2).

Sol. in furning H2SO4. (See BaS2O7.) Sol in 2500 pts. boiling 40% HBr+Aq; in 6000 pts. boiling 40% HI+Aq. (Haslam, C. N. 53, 87.)

Sol. in considerable amount in metaphosphoric acid+Aq. (Scheerer and Drechsel,

J. pr. (2) 7, 68.) Not attacked by boiling cone, KOH+Aq if CO2 is not present. (Rose, Pogg. 95, 104) Very al. decomp. by standing a long time

with cold cone, alkali carbonates+Aq Decomp. by boiling Na₂CO₃ or R₂CO₃+ Aq, not by (NH₄)₂CO₃+Aq. (See Storer's

Diet, for analytical data.)

Very sl. sol. in NH,Cl+Aq. 1 pt. dissolving in 230,000 pts sat. NH,Cl+Aq.

500 ccm. sat. NH,NO₃+Aq with 50 ccm. sat. NH,LCl+Aq dissolve 2 g. BaSO₄. 100 ccm. sat. NH,NO₃+Aq with 100 c NH.CI+Aq dissolve only 0.08 g. BaSO, therefore above solubility is due to free chlorine. (Mittentzwey, J. pr. 75, 214.)

BaSO, cannot be precipitated from solutions containing free Cl. (Erdmann, J. pr. 75, 215.)

Poto is retarded al. by tartaric and racemia acids. (Spiller.) Na metaphosphate prevents pptp of BaSO.

but not ortho- or pyrophosphate, (Scheerer, J. pr. 75. 114) Not precipitated in presence of alkalı ci-

trates. (Spiller.) Much less sol m NH4Cl+Aq than in

NH₄NO₂+A_G Insol in warm cone. Na₄S₂O₈ +A_G (Diehl, J. pr. 79. 431.) Not appreciably sol. in H₂O containing ammonum or sodium chloride. (Brett, Witt-

stein, Wackenroder.) Not appreciably sol in H2O at 250°, or in H₂O containing Na₂S. (Senarmont.) Solubility is increased by alkali nitrates.

but not appreciably by NaCl, KClO₈, or Ba(NO₃)₂. (Fresenius, Z. anal. 9, 52.) Scarcely sol. in boiling cone. (NH₄)₂SO₄+A₀.

resenius) Solubility in H₂O increased by presence of MgCl₂ (Fresenius); cerium salts (Marignac). Sol. in Fe₂Cl₆+Aq. (Lunge, Z anal. 19.

Solubility in various salts+Aq at 20-25°

g snlt per l.	Mg BaSO ₄ dissolved per l in		
	FeCh	AlCl ₂	MgCls
1 2 5 5 10 25 50 100	58 72 115 123 150 160 170	33 43 60 94 116 170 175	30 30 33 33 50 50

(Frans. Am. Ch. J. 1902, 27, 290.) Solubility in sat. solution of various salts+

Salt	G. BaSO ₄ sol. in 1 l of the solvent
NaNO ₃	0 2940
NaCl	0 00783
NH ₂ Cl	0 00827

(Ehlert, Z. Elektrochem, 1912, 18, 728.) Conc. CrCl.+An dissolves 40-120 times as much BaSO, as H2O, when boiled therewith for 5 days; cone, CrCl₃+Aq acidified with HCl, 450 times as much in 10 days.

(Kuster, Z. anorg. 1905, 43, 348.) Insol. in liquid NH₂ (Franklin, Am. Ch. J. 1898, 20, 827.)

Sol. in H₂O₂+Aq. (Gawalowski, C. C. 1906, II. 7.) 100 cc. 95% formic acid dissolve 0.01 g. BaSO, at 18 5°. (Aschan, Ch. Zig 1913, 37.

Insol. in methyl acetate. (Naumann, B.

1909, 42. 3790); in ethyl acetate. (Naumann, B. 1904. 37, 3601.) Min. Barite.

Barium hydrogen sulphate, BaH₂(SO₄)₂.

100 pts. H₂SO₄ dissolve 2 22 pts. BaSO₄

(Lies-Bodart and Jacquemin, C. R. 46, 1206); 5 69 pts. BaSO₄ (Struve, Z. anal. 9, 34). Boiling H.SO₄ dissolves 10–12% freshly

precipitated BaSO₄ without separating crystals on cooling H₂SO₄ at 100° dissolves more than boiling H₂SO₄, and becomes cloudy if heated to boiling. (Schultz, Pogg 133. 146.)

1 g BaSO₄ pptd. from BaCl₂ is sol. in 3153 g, 91% H₂SO₄, from Ba(NO₂)₂ is sol. in 1519 g, 91% H₂SO₄. (Varenne and Pauleau, C R. 93, 1016)

100 pts hot conc. H₂SO₄ dissolve approx. 6 pts BaSO₄ (Rohland, Z anorg. 1910, 66.

10 ccm of sat. BaSO₄+absolute H₂SO₄ contain approx. 2.851 g. BaSO₄. (Bergus, Z. phys. Cb. 1910, **72**. 355.)

Equilibrium in the system BaSO₄+H₂SO₄+

HIO NO DO .		
Composition of the solution		
% H ₂ SO ₄	g BaSO, per l	Solid phase
73 83 78 04 80 54 83 10 85 78 88 08	0 030 0 135 0 285 0 800 3 215 12 200	BaSO ₄ " " BaSO ₄ , 2H ₂ SO ₄ H ₂ O
93 17	49 665	BaSO ₄ , H ₂ SO ₄

(Volkhonski, C. C. 1910, I. 1954, C A. 1911.

Decomp by H₂O, alcohol, or ether. +2H₂O. (Schultz.) BaSO₄, 2H₂SO₄+H₂O. (Volkhonski.)

Barium pyrosulphate, BaS₂O₇.

100 pts. fuming H₂SO₄ dissolve 15.89 pts.

BaSO₄. (Struve, Z. anal. 9, 34.)

Very deliquescent.

Decomp with H₂O with hissing (Schultz-Sellack, B 4. 111)

Barium calcium sulphate, 3BaSO4, CaSO4.

Barium platinic sulphate (?).

Min. Dreelste

Insol in H₂O or boiling HCl or HNO₃+Aq. Sol in hot cone H₂SO₄ or aqua regin (E. Davy)

Barium tin (stannic) sulphate, BaSO,

Sn(SO₄)₂+3H₂O.
Decomp. by H₂O Insol. in HCl (Weinland and Kühl, Z. anorg 1907, 54, 249.)

Barrum titanium sulphate, 2BaSO₄, 3Ti(SO₄)₂.

Ppt. Decomp. by H₂O, giving titanic acid.
(Weinland, Z. anorg. 1907, **54**, 255.)

Barium sulphate potassium chloride, 3BaSO₄, KCl

Ppt (Silberberger, M, 1904, 25. 233)

Bismuth sulphate, basic, (BiO)₂SO₄. Insol in H₂O. Sol. in HNO₄ or H₂SO₄+

Insol in H₂O. Sol. in HNO₃ or H₂SO₄+ Aq. +2H₂O (Hemtz, Pogg. **63**, 55.)

4Bi₂O₃, 3SO₃+15H₂O. Insol. in H₂O. (Leist.) (BiO)HSO₄+H₂O. Insol. in H₂O. Sol. in

dil. H₂SO₄+Aq +2H₂O Decomp. by H₂O with separation

of (BiO)₃SO₄+2H₂O. (Hemts.) 3Bi₂O₃, 2SO₄+2H₂O. Insol. in H₂O. (Athanseseo, C. R. 103. 271.) 5Bi₂O₃, 1iSO₄+17H₂O. This sulphate crystallizes out from sulphuric acid of any strength between H SO. 4H O. and H SO.

ongo, 1150, 1171, 171, 181 Suprace crystallizes out from sulphuric acid of any strength between H₅SO, 6H₅O and H₅SO, 12H₅O (Ade, Proc Chem. Soc 1899, 15.

Bi₂O₂, 2SO₂, 2½H₂O is in equilibrium at 50° with 5.4–51.4% H₂SO₄+Aq. Bi₂O₂, SO₃ is in equilibrium at 50° with acid solutions weaker than 5.4% H₂SO₄. (Allan, Am, Ch. J. 1902, **27**, 287.

Bismuth sulphate, Bis(SO4),

Very hyproscopic Takes up H₂O with strong evolution of heat to form 2Bi₂(SO₂)+3H₂O at 17H₂O, which becomes Bi₃(SO₂)+3H₂O at 100°. Decomp. by boiling H₂O into Bi₂O₃, SO₂+H₂O. (Hensgen, J. B 1885, SO₂ Insol in methyl acetate (Naumann, B. 1909, 42, 3790.)

Bismuth sulphate, acid, Bi₂O₃, 4SO₃.

Bi₄O₅, 4SO₅ is in equilibrium at 50° with
51.4-90% H₂SO₄+Aq. (Allan, Am. Ch. J.
1902_27.287.)

+H₃O Crystallizes out from sulphuric

+H₂O Crystallizes out from sulphune acid at temp. above 170°. (Adie, Proc. Chem. Soc. 1899, 15, 226.)

+3H₂O. Crystallizes from sulphuric acid of any strength between H₂SO₄, H₂O and H₂SO₄, 2H₂O. (Adic.) +7, or 9H₂O = BiH(SO₄)₂+3H₂O. Insol. in H₂O. Easily sol in acids, especially HCl,

in H.O. Tessily sol in acids, especially HCl, and HNO₁+A₀. (Lest, A 160, 29) +7H₂O. Crystallizes out from sulphuric and of any strength between H₂SO₄, 3H₂O +10H₂O. Crystallizes out from sulphuric acid at temp. below 170°. (Adic.)

Bismuth potassium sulphate, Bi₂(SO₄)₈, 3K₂SO₄ (?).

Decomp. by H₂O; insol. in sat. K₂SO₄+Aq. (Heintz.) Bl₂(SO₄)₂, 2K₂SO₄.

 $B_1(SO_4)_2 = B_{12}(SO_4)_2$, K_2SO_4 . Insol. in cold H_2O , decomp. by boiling. (Brigham, Am. Ch. J. 14. 170.)

Bismuth sodium sulphate, BisNas(SOs)a. (Lüdecke, A. 140, 277)

Boron sulphate.

See Borosulphuric acid.

91, 1987.)

Bromomolybdenum sulphate.

Sec under Bromomolyhdenum compounds.

Cadmium sulphate, basic, 2CdO, SO₂, and +H.O. Difficultly sol, in H₂O. (Stromeyer.) Sl. sol. in hot H₂O. (Habermann, M 5. 432) 4CdO, SO2. (Pickering, Chem. Soc 1907,

Cadmium sulphate, CdSO4.

(Étard, A. ch. 1894, (7) 2. 552.)

Sat CdSO. +Aq contains at. 650 24° 300 35.9 41.5 42.0

49.7% CdSO. 900 94° 130° 165° 188° 200° 43.5 91.6 27.7 14.7 7.1 23% CdSO4. CdSO, ensily forms supersat, solutions, |-

Solubility in H ₂ O		
t°	Per cent CdSO4 in sat solution	Solal phrase
-18 -10 0 +10 15 20 30 40 60 62 72 73 5 74.5 75 77 78 5	43 35 43 27 43 01 43 18 43 20 43 75 43 99 45 06 46 6 46 6 46 5 48 5 48 5 48 5 48 5 48 5 48 5 48 5 48	Ice CdSO ₆ */ ₃ H ₃ O
85 90	39.6 38.7	" "
95 100	38 1 37 8	"

(Mylius and Funk, B 1897, 30, 825) See also under CdSO4+22/4H4O, and 7H4O Sp. gr. at 0°/4° of CdSO4+Aq containing

Sp. gr. at 0'/4* of CaSU₂+Aq containing 14.0 g. CdSO₃, in 1000 g. H₂O = 1.0122. Sp. gr. at 12'/4* of CdSO₃+Aq containing 4.0 g. CdSO₃, in 100 g. H₂O = 1.0121. Sp. gr. at 12'/4* of CdSO₃+Aq containing 7.2 g. CdSO₃, in 1000 g. H₂O = 1.0544 containing 8.7 g. gr. at 0'/4* of CdSO₃+Aq containing 18.5, gr. at 0'/4* of CdSO₃+Aq containing 18.5, gr. at 0'/4* of CdSO₃+A = 1.1552.

Sp. gr. at 13°/4° of CdSO4+Aq containing

183.1 g. CdSO₄ in 1000 g H₂O = 1.1529. (Fouqué, Ann Observ. 1868, 9, 172.) Sp gr of CdSO4+Aq at 18°.

% Cd80. Sp. gr. 1.0084 1.0486 1 1026 1 1607 % Cd80a

10. 15

So gr 1 2245 1 295 1.3725 1 4575 % CdSO4 26

1.4743 Sp. gr. (Grotrian, W. Ann. 1883, 18. 193.)

Sp. gr. of CdSO4+Aq at room temp. contaming 22.011% CdSO4 14 66

7 14 1 1591 1.2681 1.0681 (Wagner, W. Ann. 1883, 18, 268.)

So, gr. of CdSO4+Ag at 25°

Concentration of CJSO: +Aq	Sp gr.
1~normal 1/2~ " 1/4~ "	1 0973 1 0487 1 0244

(Wagner, Z. phys Ch. 1890, 5. 36.)

Sp gr of CdSO4+An.

% CHSO+	t°	Sp grat t	Sp gr at 18°
0 0289	17 29 23 65	0 99908 0 99776	0.99898
0 0498 0 0999 0 495 0 981	18 00 18 00 18 00 18 00	-	0 99915 0 99961 1 0034 1 0084

(Wershofen, Z. phys. Ch. 1890, 5. 494.)

Sp. gr at 16°/4° of CdSO4+Ag containing 29.4654% CdSO₄=1.36289; containing 21.3671% CdSO₄=1.24211. (Schonrock, Z. phys Ch. 1893, 11. 781.

Sp. gr. of CdSO.+Aq at 18°/4°.

% CdSO4 25 121 18.172 Sp. gr. 1 297 1.200 % CdSO. 9 952 5 630 Sp. gr. 1 101 1.055

(de Muynek, W. Ann. 1894, 53, 561

CdSO₄+Aq containing 13.40% CdSO₄ has sp gr. 20°/20°=1.1429. CdSO₄+Aq containing 16.79% CdSO₄ has sp. gr. 20°/20°=1.1847. (Le Blanc and Rohland, Z. phys Ch 1896, 19, 282.)

Sn gr of CdSO, at 18 2°, when p = per cent strength of solution; d = observed den-

p	d	"
39 86	1 5639	0 6231
31 53	1 4080	0 4439
26 85	1.3310	0 3574
24 17	1 2901	0 3118
18 35	1 2084	0 2217
13 27 9 97	1 1437 -1 1045	0 1518
7 46	1 0764	0 0803
6 12	0 0619	0.0650
2 52	0 0242	0 0259
1 45	0 0132	0 0147
0 464	0 0033	0 0046

(Barnes, J. phys. Ch. 1898, 2, 543.)

Sp. gr of CdSO4+Au sat, at 25° and 1 atm. =1617 (Sinnige, Z phys Ch 1909, 67. 518.)

See also under CdSO4+22/4H2O, and +4H₂O

Insol in liquid NH₂. (Franklin, Am. Ch J 1898, 20, 827.) Insol. in acctone. (Naumann, B 1904, 37. 4329); methyl acetate. (Naumann, B. 1909.

42. 3790); ethyl acetate. (Naumann, B. 1910, 43, 314.) +H2O. See Myhus and Funk, under

CdSO. +11/2 H2O. (Worobieff, Bull Soc. 1896, (3) 16, 1754.)

+22/2H2O 1 pt H₀O dissolves 0.59 pt. anhydrous salt at 23°, and not much more on heating Sat solution boils at 102° Precipitated by alcohol (v. Hauer)

100 g HoO dissolve g CdSO, at to.

t°	G Cd8O ₄
0	75 52
5	75 65
7 1	65 73
9	75 85
11 5	75 94
13	76 04
15	76 11
16	76.16
17	76 13
18	76 14
19	76 18
	76 79
25	/0 /9

(Kohnstamm and Cohen, W. Ann 1898, 65. 352)

100 pts H2O dissolves at: 13.7° 14.98° 15.0° 16.0°

sity, w=volume cone in grams per 76.06 76.09 76.14 76.13 pts. anhydrous salt, 16.96° 18.0° 19.0° 25.0°

76.26 76.32 76.39 76.81 pts anhydrous salt. (Steinwehr, W. Ann. 1902, (4) 9, 1050)

100 g. H₂O dissolve 76.02 g CdSO₄ at 25° (Stortenbecker, Z. phys. Ch. 1900, 34, 109.)

Solubility of CdSO4+28/2H2O at 25° and varying pressures

G CdSO ₄ in 100 g II ₁ O
76 80
77 85 78 08
78 77 78 68

Det by another method Pressure in atmospheres G CdSO₄ m100 g H₂O 250 77 53 500 78 02

78 60

78 96

(Cohen and Sinnige, Trans. Farad. Soc. 1910, 5. 269)

750

1000

Sp. gr at 21.6°/0° of CdSO4+Aq containmg 11 47% CdSO₄+8/8H₂O=1 0944. (Kanonnikoff, J. pr. 1885, (2) 31, 346.) 100 g. H₂O dissolve 57 61 g. CdSO₄+ 10 63 g. FeSO₄ at 25°. (Stortenbecker, Z.

phys. Ch. 1900, 34, 109.) +4H₂O (Lescoeur, A ch. 1895, (7) 4. 222.)

Sp gr. at 15° of CdSO₄+Aq containing 10 g CdSO₄+4H₂O in 100 c.c of solution= 1.0790; containing 20 g. CdSO₄+4H₂O in 100 cc of solution=1 1522 (Traube, J. pr 1885, (2) 31. 207.) Could not be obtained (Mylius and

Funk) +7H₂O Solubility in H₂O

to.	% Cd8O4
-17 -16 -12 -10 - 7 - 5 - 4 5	44 45 44 5 45 3 46 1 47 5 48 5 48 7
(Myline and Funk	R 1897 30 828)

(Mylius and Funk, B 1897, 30, 828) Cadmium cesium sulphate, CdSO4, C82SO4+ 6H,O.

Sol. in H₄O. (Tutton, Chem. Soc. **63.** 337.) 1 l. H₂O dissolves 1399 g. anhydrous salt at 25° (Locke, Am. Ch. J. 1902, 27, 459.) Cadmium calcium potassium sulphate, $Ca_2CdK_4(SO_4)_4+2H_2O_4$ (D'Ans, B, 1908, 41, 1778.)

Cadmium cerium sulphate, CdSO4, Cea(SO4)3

+6H.O. Sol. in H_{*}O. (Wyrouboff.)

Cadmium hydrazine sulphate. " CdH (SO4), 2N2H4.

1 pt. 18 sol. in 202 5 pts. H₂O at 12° Not attacked by dil acids Easily sol. in NH₂OH +Aq. (Curtius, J. pr 1894, (2) 50. 331.)

Cadmium magnesium sulphate, CdSO4, MeSO + 14H.O.

Very efflorescent Sol. in H₂O. (Schiff, A. 104, 325)

Cadmium potassium sulphate, K2SO4, CdSO4 4-135H.O.

Sol. in H₂O (v. Hauer, Pogg 133, 176.) 100 pts H2O dissolve 42 50 pts, anhydrous salt at 26 100 pts H₂O dissolves 42.80 pts anhydrous salt at 31

100 pts. H₂O dissolve 43.45 pts anyhydrous

solt of 40' 100 pts H₂O dissolve 44.90 pts anyhydrous salt at 64° (Wyrouboff, Bull Soc. Mm 1901. 24, 68.)

1901, 28, 65., +2H₂O. 100 pts. H₂O dissolve 42.89 pts anhydrous salt at 16°; 46.82 pts. at 31°; 47.40 pts. at 40°. (Wyrouboff.) +4H₂O. Efflorescent (Wyrouboff, Bull

Soc. Mm 1891, 14, 235) +6H₂O. Very efflorescent, and easily decomp. (Schiff) Does not exist (Wyrouboff.)

Efflorescent

Cadmium rubidium sulphate, CdSO4. Rb₂SO₄+6H₂O.

Sol. in H₂O. 1 l H₂O dissolves 767 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27, 459.)

(Tutton.)

Cadmium sodium sulphate, CdSO4, NacSO4+ Sol, in H₂O. (v. Hauer.)

Solubility of CdNa₂(SO₄)₂+2H₂O in 100 g H2O at to.

to.	Grams CdSOs	Grams Na ₅ SO ₄
24	35 49	24 04
25	35 88	24 46
30	36 28	24 605
35	36 69	24 99
40	37 24	25 455

(Koppel, Z. phys. Ch. 1905, 52, 413.) Decomp, by H₂O below 20 5°.

2	Solubility of CdNs ₂ (SO ₄) ₂ , $2H_2O + CdSO_4$, $^{8}/_{3}$ H_2O in 100 g. H_2O at t°							
t°	Gram- CdSO,	Grams Na-SO ₄	Į.o	Grams CdSO,	Na ₁ SO ₄ Grams	to	Grams CdSO,	Grams Na.850,
0 5	73 51 73 38 72 76	9 85 8 677 3 53	15 20 25	73 765 13 81 73 71	9 4°5 9 455 10 18	30 35 40	70 915 75 01 75 385	11 10 12 32 13 75

(Koppel)

Solubility of CdNa₂(SO₄)₂, 2H₄O+Na₄SO₄, 10H₂O in 100 g H₂O at t

10112	O III 100 g 1140	, 400
t°	Grama CdSO4	Grams Na ₂ SO ₄
-14 8	72 68	8 32
0	66 325	11 625
5	61 78	12 97
10	55 34	14 785
12	51 615	15 95
15	46 60	17 99
19 8	36 13	22 16
20	36 25	23 52
24	27 82	29 17
25	25 59	31 06
30	14 62	44 145

(Koppel)

Solubility of CdNa₂(SO₄)₂, 2H₂O+Na₂SO₄ (anhydrous) in 100 g H2O at to.

t°	Orams CdSO4	Grams Na ₂ SO ₄
35	13 26	47 06
40	16 25	46 27

(Koppel.) Cadmium sulphate ammonia, CdSO4, 6NH+. Sol, in HaO with separation of CdO (Rose,

Pogg. 20. 152) CdSO4, 4NH2+4H2O Decomp. by H2O. (Malaguti and Sarzeau, A. ch. (3) 9. 431. +2H₂O Ppt. (André, C. R. **104**, 987.) +21/2H₂O. Sol. in H₂O with separation of basic sulphate. (Müller, A. 149. 70) CdSO4, 3NHs. (Isambert, C. R. 1870, 70,

Cadmium sulphate cupric oxide, CdSO4, 3CuO+2H.O.

(Recoura, C. R. 1901, 132.1415.) 2CdSO₄, 3CuO+SH₂O. (Mailhe, A. ch. 1902, (7) 27. 383.) +12H₂O. (Mailhe) 6CdSO₄, 2CuO+2H₂O. (Recoura, C. R. 1901, 132.1415.)

Cadmium sulphate hydrazine. CdSO.

 $2N_2H_4$ Easily sol in NH,OH+Aq but cannot be cryst. therefrom. (Franzen, Z. anorg. 1908, 60, 282.)

Cadmium sulphate hydrogen chloride,

3CdSO4, 4HCl+4H2O. Very deliquescent (Baskerville and Harris, J. Am. Chem. Soc 1901, 23, 896.) 3CdSO₄, SHCl Very deliquescent. (Baskerville and Hanis)

Cæsium sulphate, Cs₂SO₄.

Not deliquescent. 100 pts. H₂O dissolve 158.7 pts. Cs₂SO₄ at 100 cc. H2O at 17-18° dissolve 163.5 Cs₂SO₄. (Tutton, Chem. Soc. 1894, 65.

Solubility in H.O.

	Dolubility in 1140						
	G. C	%:8O; 100 g	80°-	t°	G C per	8:SO: 100 g	10gs
_	Solu- tion	H ₂ O	CesSO.		Solu- tion	H ₂ O	CsaSO, per 1
10	62 6 63 4	167 1 173 1	3 42 3 49	60 70	66 7 67 2	199 9 205 0	
20 30	64 1	178 7 184 1	3 56 3 62	80	67 8 68 3	210 3 214 9	3 88
40 50	65 5	189 9 194 9		100 108.6	68 8 69 2	220 3 224 5	3 97
-					_		

(Berkeley, Trans Roy Soc. 1904, 203. A 210)

Solubility in Na₂SO₄+Aq Sat. solution contains 54.7% Cs.SO.+ Na₂SO₄ at 25°. (Foote, J. Am Chem Soc 1911, 33, 467.)

Insol in alcohol. (Bunsen.) Insol in methyl acetate. (Naumann, B.

1909, 42, 3790) Insol. in acetone. (Naumann, B 1904, 37, 4329); (Eidmann, C. C. 1899, II. 1014.) Solubility in glycol at ord. temp. = 3.0-(de Coninck, Belg. Acad Bulk

Cæsium hydrogen sulphate, CsHSO4. Sol in H₀O.

Cesium pyrosulphate, Cs₂S₂O₇. Decomp. by H2O.

Cæsium octosulphate, Cs2S8O25. Decomp. by H₂O. (Weber, B. 17, 2497)

Cæsium calcium sulphate, Ca2Cs2(SO4)2. esium calcium sulphate, Ca₂Cs₁(SO₄)z. 1 l. H₂O dissolves 1011 g. anhydrous salt Very stable, (D'Ans, B. 1908, 41. 1776.) at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

+24H₂O. Melts in crystal H₂O at 116°. (Locke.)

Тешр	G per htm	G mols anhydrous sult per l
25°	5 7	0 015
30°	9 6	0 025
35°	12 06	0.032
40°	15 3	0.0405

(Locke, Am Ch J 1901, 26, 180.) .

Cæsium cobaltous sulphate, Cs₂SO₄, CoSO₄+ 6H₂O.

Sol in H₂O. (Tutton, Chem Soc. 63, 337.) 1 l. H₂O dissolves 4188 g. anhydrous salt at 25° (Locke, Am Ch. J. 1902, 27. 459.)

Cæsium cobaltic sulphate, Cs2CO2(SO4)4+ 24H.O.

Melts in crystal H₂O at 116°, (Locke, Am. Ch J. 1901, 26, 183.)

Casium copper sulphate, Cs-SO4, CuSO4+ 6HO. Sol, in H2O. (Tutton.)

1 l H₂O dissolves 460 g anhydrous salt at 25°. (Locke, Am. Ch. J 1902, 27, 459.)

Cæsjum gallium sulphate, Cs₂Ga₂(SO₄)₄+ 24H.Ö. (Soret, Arch. sc. phys. nat. 1888, (3) 20. 531.)

Cæsium indium sulphate, Cs2In2(SO4)4+ 24H.O.

75.7 g. anhydrous (117.39 hydrated) salt or 0.172 g. mols of anhydrous salt are sol. in 1 l. H₂O at 25°. (Locke, Am. Ch. J. 1901, 26. 175) 100 pts. H₂O dissolve 3 04 pts. at 16.5° (Chabrie and Rengade, C R. 1900, 131, 1301.)

Cæsium iridium sulphate, Cs2SO4, Ir₂(SO₄)₃+24H₂O.

Mpt. 109-110.° Very sl. sol in cold. More easily sol. in hot H₂O. (Marino, Z anorg. 1904, 42, 218.)

Cæsium iron (ferrous) sulphate, CsiSO4. FeSO4+6H2O.

Sol. in H2O. (Tutton.)

Cæsium chromium sulphate, Cs2Cr2(SO4)4 Cæsium iron (ferric) sulphate, Cs2Fe2(SO4)4 +24H₂O.

Melts in crystal H₂O at 71° (Locke.)

Ca₂SO₄

I 1306)

459.)

Casium

1903, 32. (2) 52d.)

8	olubility in H ₂ 0)
t°	G yes litte	G muls anhydrous salt per litre
25 30 35 40	17 1 25 2 37 5 60 4	0 045 0 066 0 099 0 156

' (Locke, Am Ch. J 1901, 26, 180)

Cæsium lanthanum sulphate, Cs₂SO₄, Lo₄(SO₄)₂+2H₂O.

(Baskerville, J. Am Chem. Soc. 1904, 26, 67)

2Cs₂SO₄, 3La₂(SO₄)₃. (Baskerville.) Cessum magnesium sulphate, ·Cs₂SO₄.

MgSO₄+6H₂O Sol. in H₂O. (Tutton.) 1 l H₂O dissolves 533 g anhydrous salt at 25° (Locke, Am. Ch. J. 1902, 27, 459.)

Cæsium manganous sulphate, MnSO₄+8H₂O.

Sol. in H₂O (Tutton) Sol in H₂O and acids with decomp. (Piecini, Z. anoig. 1899, 20. 14) 1. l. H₂O dissolves 804 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 45

Cæsium manganıc sulphate, Cs₂SO₄, Mn₂(SO₄)₃+24H₂O

Decomp by H₂O and dil, acids with separation of MnO₂ Sol in 1.3 H₂SO₄+Aq and in cone HnO₃ Insol in acetic acid Sol in 0.xalic acid+Aq (Christensen, Z anorg. 1901, 27, 332)

Cæsium neodymium sulphate, Cs₂SO₄, Nd₂(SO₄)₃+3H₂O.

(Baskerville, J. Am. Chem. Soc. 1904, 26. 74.)

Cæsium nickel sulphate, Cs_2SO_4 , $NiSO_4+6H_2O$.

Sol in H₂O. (Tutton.) 1 l H₂O dissolves 255.8 g. anhydrous salt at 25°. (Locke, Am Ch J. 1902, 27. 459.)

Casium praseodymium sulphate, Cs₂SO₄, Pr₂(SO₄)₃+2H₂O

(Baskerville, J. Am. Chem. Soc. 1904, 26. 73.) +4H₄O. (Baskerville,)

Cæsium rhodium sulphate, Cs₂SO₄,Rh₂(SO₄)₃ +24H₅O

Sl. sol in cold, sol. in warm H₂O; mpt non-saturated or supen 110-111° (Picemi, Z. anorg 1901, 27. 64.) be tabulated as follows

1½H₂O Hygroscopic. (Locke, Am. Ch. J. 1902, 27, 283) +3H₂O. Very sl. sol. in cold; easily sol.

thallic sulphate, CsTI(SO,),4

27.283) $+3H_2O$ Very sl. sol in cold; easily sol. in hot H_2O . Can be recryst, from H_2SO_4+ Aq The recryst, sait is at once decomp by H_2O or 95% alcohol (Locke.)

Cessium thorium sulphate, Cs₂SO₄,Th(SO₄)₂+ 2H₂O. Sl. sol. in H₂O (Manuelli, Gazz, cb. st.

Cesium titanium sulphate, Cs₂SO₄,Ti₂(SO₄)₃ +24H₂O.

Deliquesess in the air and is decomp. SI sol in cold H₂O, decomp by hot H₂O. (Piccini, Gazz ch it. 1895, 25. 542.) SI sol in cold H₂O, more sol in hot H₂O

acidified with H₂SO₄
Decomp in neutral ac. solution. (Piccini, Z. anorg 1898, 17, 356.)

Cæsium uranyl sulphate, Cs₂(UO₂)(SO₄)₂+ 2H₂O. As Na salt. (de Coninck, C C 1905,

Cæsium vanadium sulphate, Cs₂V₂(SO₄)₄+ 24H₂O.

771 g. anhydrous (131 g. hydrated) salt, or 0 0204 gr. mols. of the anhydrous salt are sol m 1 1 H₂O at 25° (Locke, Am. Ch. J. 1901, 26, 175) Sl. sol in cold, easily sol. in hot H₂O (Pic-

enn, Z. anoig. 1896, 11. 114.)

100 pts. H₂O dissolve 0 464 pts. of the salt at 10° and sp gr. of the solution at 4°/20° = 2 033. More sol. in hot H₂O than in cold.

(Piecim, Z. anorg 1897, 13, 446)

Cæsium zunc sulphate, Cs₂SO₄, ZnSO₄+ $_{\rm OH_2O}$ Sol in H₂O. (Bunsen and Kopp, Pogg. 113, 337.)
1 H₂O dissolves 386 3 g. anhydrous salt at 25°. (Locke, Am Ch. J 1902, 27.

Czesium zirconium sulphate, Zr₂O₃,(CsSO₄)₂ +11H₂O. Ppt. (Rosenheim, B 1905, 38, 815.)

Calcium sulphate, CaSO4, and +2H2O.

The older determinations of the solubility of CaSO₄ in H₂O have little, but historical, value, as the solutions were usually either non-saturated or supersaturated. They may be tabulated as follows

CaSO, and I	for 1 pt.	CaSO ₄ +	2H₂O at t°
t°.	A	В	Authority
Hot or cold Cold Boiling	500 500 450		Foureroy Bergmann
All temp.	322		Lassaigne
(?)	438		Anthon
(?)	250–300		Dumas
Hot or cold	578 5	461 5	Bucholz
Cold	480	380	Giese
Hot	491	388	Tipp
15-20°	492	388	
12.5°	503	397	

A=pts, H₂O required for dissolving 1 pt

100 pts	H ₂ O at t°	dissolve pts	CaSO ₄
---------	------------------------	--------------	-------------------

t°	Pts CnSO ₄	t°	Pta CaSO ₄	fa.	Pts. CnSO ₄
0 5 12 20 30	0 205 0 219 0 233 0 241 0 249	35 40 50 60	0 254 0 252 0 251 0 248	70 80 90 100	0 244 0 239 0 281 0 217

(Poggiale, A. ch (3) 8, 469)

Poggiale worked with supersat, solutions. (Droeze, B. 10, 330.) 0.40

180

H₂O dissolves CaSO₄ most abundantly at 35° (Poggiale), at 32-41° (Marignac). 1 pt. CaSO₄+2H₂O dissolves at:

in 415	386	378	371	368 pt	s. H ₂ O,
41° in 370	53° 375	72° 391	86° 417	99° 451 pt	s H ₂ O,
or (by	calcula	tion) 1	pt an	hydrous	CaSO ₄

0°	18°	24°	32°	38°
in 525	488	479	470	466 pts. H₂C
41°	53°	72°	86°	99°
in 468	474	495	528	571 pts. H ₂ C

The above nonsat, solutions are obtained by using a large excess of CaSO₄+2H₂O. The undissolved part retains its water of crystallisation CaSO4, dehydrated at 130-140°, forms a supersaturated solution with H₂O in 10 minutes, containing 1 pt. CaSO₄ to 110 pts H2O, which soon deposits crystals. The undissolved part takes up its water of crystallisation. Ignited CaSO4 dissolves very slowly in H2O, so that in 24 hours the solution contains 1/131 to 1/100 anhydrous CaSO4. By longer contact solution continues with formation of supersaturated solutions, which contain after 10-30 days 1/272 to 1/223 CaSO4, but these become normal as the anhydrous CaSO gradually takes up its water of crystallisation. The mineral anhydrite behaves similarly, water taking up 1/682 CaSO4 in 1 day, 1/381 in 40 days and 1/467 in 8 months

Supersaturated solutions are also obtained

by evaporation of a saturated solution. By evaporation with heat, solutions are obtained containing 1/see CaSO, and in the cold with '/ir2 CaSO₄, in the solution over the separated CaSO_{4+2H₂O Neutralising dil H₂SO₄₊Aq} with CaCO3 gives a solution containing 1/114 CaSO₄, which crystallises out partly in 24 hours, leaving ¹/_{\$18} CaSO₄ dissolved.

Supersaturated solutions containing 1/116 to 1/160 CaSO4 deposit crystals rapidly; those under 1/450 do not crystallise spontaneously. A solution containing 1/282 shows crystals in 14 days, and contains 1/212 in 1 month, 1/414 in 2 months, 1/44 m 3 months, in spite of repeated shaking

Boiling diminishes the supersaturation without however removing it entirely. (Margnac, A ch. (5) 1, 274)

1 pt .CaSO4+2H4O is sol in 443 pts. H4O at 13.7°, in 447 pts H₂O at 14.2°; in 421 pts. H₂O at 20 2°; in 419 pts. H₂O at 21 2°, and m 445 pts. H2CO2+Aq sat. at 18.7°. (Church, J. B. 1867 192) Church's solutions were not sat. (Droeze, B 10, 330)

1000 pts. H₂O dissolve 2 19 pts. CaSO₄+ 2H₂O at 16.5°; 2 352 pts. CaSO₄+2H₂O at (Cossa, Gazz, ch it. 1873, 135.) Cossa's solutions were not saturated.

CaSO₄+2 H₂O is sol in 415 pts. H₂O at 0°

CasO₁+2 H₂O is soi in 415 pts. H₂O at 10°; in 412 pts H₂O at 5°; in 407 pts. H₂O at 10°; in 398 pts H₂O at 15°; in 371 pts. H₂O at 20°; in 355 pts. H₂O at 35°; in 361 pts. H₂O at 30°; in 359 pts. H₂O at 35°. (Drocze, B. 10, 330.) Sol. in 500 pts H2O at 12 5°. (From Marignac's and his own results, de Boisbaudran, A ch. (5) 3, 477

CaSO₄ is sol in 564 5 pts H₂O at 0.8°; 506 27 pts. at 14°; 472-3 pts. at 32.5-38 8°, 498.73 pts at 64°; 533.92 pts. at 79.6°. (Raupenstrauch, M 6. 563.)

According to Goldammer (C. C. 1888, 708) H₄O is fully saturated with CaSO₄ by shaking the finely-powdered substance 5 minutes therewith

The following results were obtained. Figures denote pts. H₂O in which 1 pt CaSO₄ was dissolved at t° (a) from pptd CaSO₄ "ipse fact.," (b) from pptd. CaSO, "gehe," (c) from "glacies mariae pulv.," (d) from "glacies Mariae pulv.," containing less than 2H₂O

1	t°	a	b		to.	d
١	0	561 5	558	557 5	0	476 5
	7 5 15	526 497 5	526 497.5	520 493	20	436
il	22 5	481	481 5	479	1 20	200
	30 37 5	475 463	475 469	470 465 5	40	450
,	45	473 5	474 5	470.5		
r	60 75	484 507 5	486 5 508	482 503	80	476 502.5
7	90	533 5	530	534		
1	100	556	557	534 5	100	547

CaSO₄

Burnt gypsum easily forms supersat, solutions containing nearly 1% CaSO. It forms supersat, solutions more readily at 0°, and that tendency decreases with increase of temp., hence figures in (d) which contained burnt gypsum (Goldammer, C C 1888.

708.) Calculated from electrical conductivity of CaSO₄+Aq, 1 l. H₂O dissolves 2 07 g CaSO₄ (Kohlrausch and Rose, Z phys Ch

at 18°. 12. 241.)

The anhydrous salt varies in solubility. Solubility depends (1) upon temp, and time of drying, (2) upon the relative amount of salt, (3) upon time of shaking. Possibly α and β modifications. (Potilizin, C C. 1894,

II. 515.) 2.04 gr. are dissolved in 1 liter of sat. solu-

tion at 20°. (Bottger, Z. phys. Ch. 1903, 46. 603.

At 15° and after 5 minutes shaking, the highest degree of supersaturation which can be obtained with pure sol. calcium sulphate = 9.47 g. of the anhydrous salt or 11.976 g. CaSO₄+2H₂O in 1 l. of H₂O. (Cavazzı, C. C. 1905, I. 1694.)

Solubility of CaSO₄ in 100 pts H₂O at high temp

140 165	0 078 0 056	175–185 240	0 027 0 018	250	0 016

(Tilden and Shenstone, Phil. Trans. 1884, 31)

Pptn of CaSO₄ which has been started by heating solution to 140-150° continues even after solution has cooled. (Storer.) CaSO4 is completely most, in sea water or

oure H2O at temperatures between 140° and 150.º (Cousté.)

Solubility of CaSO₄ in sea water at tempera-tures over 100°. t°=temp.; P=pressure in atmospheres; % = per cent CaSO4 in sat solution.

1,140	out boardious.					
t°	P	%	t°	P	%	
103 103 8 105 15 108 6 111 113.2 115.8	1 1 1 1.25 1.25 1.25 1.50	0 500 0.477 0 432 0.395 0 355 0 310 0 267	118 5 121 2 124 127 9 130 ° 133 3	1 50 1 5 2 2 2 5 2 5	0 226 0 183 0 140 0 097 0 060 0 023	

(Cousté, Ann. Mm. (5) 5. 80.)

Solubility of CaSO4 in H2O at various pres-100 g. sat. CaSO₄+Aq at 1 atmos. pressure and 15° contain 0.206 g. CaSO₄, at 20 atmos.

pressure and 15° contain 0.227 g. CaSO₄, at 1 atmos. pressure and 16.2° contain 0.213 g CaSO₄. (Möller, Pogg. 117. 386.)

Soluble anhudrate.

1 I. H₂O dissolves 22.8 milliequivalents at

1 l. H₂O dissolves 6.4 milliequivalents at Anhudruie:

 1 L H₂O dissolves 9.2 milliequivalents at 1 l. H₀O dissolves 2.7 milliequivalents at

 H₂O dissolves 0.7 milliequivalents at 218°

(Melcher, J. Am. Chem, Soc. 1910, 32, 63.)

See also under gypsum, p. 953. Maximum solubility is at 37.5°. (Cameron, J. phys. Chem. 1901, 5, 572.)

Sp. gr. of sat. CaSO₄+Aq at 15°=1 0022. (Stolba, J. pr. 97. 503) Sp. gr. of sat. CaSO₄+Aq. at 31°=1.0031.

1 pt CaSO₄ is sol. in 218 pts. H₂O containing CO₂ (Beyer, Arch. Pharm. (2) 150, 193.) Sl. sol. in cold HCl+Aq; completely sol. in boiling dil HCl or HNO, +Aq. (Rose, Pogg. 95, 108.)

Solubility of CaSO, in HCl+Aq. 100 com 100 cem. % HC1 dissolve % HC dissolve g of CaSO 6.12 0.77 0 6405 1 6539 1.1209 25 1.56 0.8821 25 3.06 2639 102 3 06 3 1780 25 4 70 1 5342 6 12 4.6902

(Lunge, J. Soc. Chem Ind 4, 31.)

Solubility in HNO2+Aq at 25° g CaSO4 per g HNO2 g CaSO4 per HMO. рл 100 сс 0.56 8 1.70 1.84 0.821.02 12 1 98 1.20

(Banthisch, J. pr. 1884, 29. 52.) For solubility in H₂SO₄ see CaH₂(SO₄)₂,

Solubilit	y in H ₃ PO ₄ +A	q at 25°
G. P:Os per l	G CaSO ₄ per l.	Sp gr. 25°/25°
0 0 5 0 10 5 21 4 46 3 105.3 145 1 204 9	2 126 3 138 3.734 4 456 5 760 7 318 7 920 8.383	1 002 1 007 1 016 1 035 1 075 1,106 1 145
312 0 395.7	7 965 6.848	1 221 1 230
494 B	5 573	1 344

(Taber, J. phys Chem 1906, 10, 628) Solubility in formic acid at 25°.

100 cc. of solution of acid containing 4%

dissolve 0.24 g. CaSO, (Banthisch, J. pr. 1884, 29, 52.)

Solubility of CaSO, in chloracetic acid at 25°, 100 cc, of solution of and containing

4% dissolve 0.22 g. CaSO₄; 10%, 0.25 g. (Banthisch, J. pr. 1884, 29, 52) Solubility in H₂O is increased by presence of NH4Cl (Vogel, J. pr. 1, 196), ammonium of NHAI (Voge, 5, pr. 1, 189), animonium succinate (Wittstein, Repert 57, 18), (NH₄)₂SO₄, (NH₄)₂B₄O, (Popp, A. Suppl. 8, 11); also KNO₄ (Vogel, Jun.), Ne₂SO₄ (Henry, J. Pherm 12, 31), NaCl (Trommsdorf, N. J. Pharm 18, 1, 234.)

Decomp by alkalı carbonates +Aq. (See Storer's Dict.)

1 g, CaSO, is sol in 162 ccm. sat, KCl+Aq ; 8°: in 147 ccm. sat, NaCl+Aq at 8.5°: in 93 ccm. sat. NH4Cl+Aq at 12.5°; in 94 ccm. Solubility of CaSO4 in H4O containing various sat, KNO+Aq; in 92 ccm. sat NaNO+Aq; in 320 ccm sat, NH,NO,+Ag; in 54 ccm. 2/e sat. NH4NO3+Aq; m about 2000 ccm.

sat. K₂SO₄+Aq. (Droezc)

More sol. in Fe₂Cl₅, Cr₂Cl₆, CuCl₃, ZnCl₂ Ag than in H2O, but not more sol. in CaCl2+

Aq. (Gladstone.)

NH4Cl+Aq. 1 g. CaSO₄ is sol. in 92 ccm, sat. NH₄Cl+ Aq at 13 5°; in 94 ccm ½ sat. NH₄Cl+Aq at 13.5-15.5°; in 200 ccm. ½ sat. NH₄Cl+Aq at 13.5°; m 183 ccm. 1/3 sat. NH4Cl+Aq at 100°. (Fassbender, B. 9, 1360)

Solubility	of CaSO ₄	in 25%	NH ₄ Cl+Aq
t°	% Ca8O4	ţo.	% CaSO4
8 9 25	1 030 1 023 1 096	60 80 120	1 333 1 026 1 000

39 | 1 126 || Roy. Soc. Proc. (Tilden and Shenstone. 38, 335)

Solubility in NH4Cl+Aq increases with percentage of NH Cl, but if solution contains . more than 60 g. NH₄Cl per I. more CaO dis-solves than SO₂. With 333 g. NH₄Cl per I., the solution contains 4.9 g. SO₂ and 4 4 g. CaO, while the SO3 content requires only 3.4 g. CaO (Ditte, C. R. 1898, 126, 694.)

Solubility of CaSO4 in NH4Cl+Ac at 25°

Grams NH4O! per liter	Grams CaSO, per lit
10 8	3 90
24 4	5 38
46 7	7.07
94 5	8.80
149 7	10 30
198.6	10 85
210 0	10 88
275 0	10.60
325.0	9 40
375.3 (saturated)	7 38

(Cameron and Brown, J. phys. Chem. 1905. 9. 211.)

CaCl2+Aq Solubility of CaSO, in CaCls+Aq at to.

t°	CaCl ₂	100 ccm dissolve g of CaSO ₄	t°	CaCls	100 cem dissolve g of CaSO ₄
23 24 25 25	6 94 10 36	0.1225 0.0963 0.0886 0.0734	102 5	3 54 10 36	0 0702 0 1370 0 1428 0.1301

(Lunge, l c.)

amts. of CaCl₂ at 20° 100 pts H₂O contaming pts CaCl, dissolve pts CaSO,

Pts CaCl ₂	Pts CaSO4	Pts CaCls	Pts CaSO4
0 00	0 225	19 80	0 041
11 50	0 078	51 00	0 000
14 39	0 063	67 05	0.000

(Tilden and Shenstone)

Solubility of CaSO₄ in CaCl₂+Ac at t^a

t°	CaCla	CaSO:	t°	CaCls	Caso.
15 21 39 72	15 00 14 70 15 00 14 90	0 068	94 138 170 195	15 16 14 70 14 82 14 70	0.071

(Triden and Shenstone, I c)

Solubility in CaCl2+Aq at 25°

g per l	of solution	g per 1 of solution		
CaCl ₂	CaSO ₄	CaCl ₂	CaSO ₄	
0 00 7 49 11 96 25.77 32 05	2.06 1 24 1 18 1 10 1 08	51 53 97 02 192 71 280 30 367 85	1 02 0 84 0 47 0 20 0 03	

(Cameron and Seidell, J. phys. Ch. 1901, 5. 643)

1000 pts. of 1% CaCl₄+Aq. dissolve 1.1414 pts. CaSO₄, 40% CaCl₅, 0.2130 pts. CaSO₄. (Orloff, Chem. Soc. 1903, 84. (2) 211.)

Solubility in CaO ₂ H ₂ +Aq at 25°.			Solubility of CaSO ₄	in NH4NOs+Aq at
G CaSO ₄	G CaO pea l	Solid phase	G NH ₄ NO ₂ per l.	G CaSO ₄ per l
0 0 0 391 0 666 0 955 1 214 1 588 1 634 1 722 1 853 1 918 2 030 2 126	1 166 1.141 1 150 1 215 1 242 1 222 0 939 0 611 0 349 0 176 0 062 0.0	Ca(OH) ₂	10 25 55 100 150 200 300 400 550 750 1000 1200	3 18 3 93 5 80 7 65 8 88 9 85 10 80 11 40 12 02 12 20 11 81 - 11 10
(Camero	n and B	ell, J. Am Chem Soc 1906,	saturated	7 55

(Cameron and Bell, J. Am Chem Soc 1906, 28, 1221)

(Cameron and Brown, J. phys Chem. 1905, 9, 213)

MgCl₂+Ag Sol. in 324 pts. MgCl. + Aq (34.1% MgCl.)

at 19°. (Karsten.) 1 g. CaSO4 is sol, in 146 ccm 1/2 sat. MgCl2 +Aq at 13.5°. (Fassbender.)
1 l. ½ sat. MgCl₂+Aq dissolves 6.83 g.
CaSO₄+2H₂O at 13.5°. (Droeze.)

Ca(NOs)s+Aq.

Solubility of CaSO₄ in Ca(NO₃)₂+Aq at

37TY 37O 1 4

of solution	Ca(NOs)s per l	CaSO ₄ per L
998 1 1013 8 1031 7 1067.3 1136 9 1203 5 1265 6 1328 1 1352 0	0 25 50 100 200 300 400 500 514	2.084 1 238 1 196 1 134 0 929 0 759 0 569 0 403 0.346

Solubility of CaSO₄ in MgCl₂+Aq

t°	% MgCl ₂	% CaSO ₄
9 39 80	19 7 11 1 9 99	0 765 2 744 1.038

(Tilden and Shenstone, l. c.)

(Seidell and Smith, J. phys. Chem. 1904, 8. 498)

Solubility in MgCl2+Aq at 26°

g per l of solution g per l of solution McCl- CaSO₄ H_{*}O McCl. CaSO₄ H-O 0.0 2 08 997.9 972 28 50 4 26 996 5 206 98 6 57 949.9 19 18 5 69 994 5 337 0 908 7

46 64 7 59 989 1 441 0 1 39 878 6 (Cameron and Seidell, J phys Ch 1901,

 $Mg(NO_8)_2+Aq.$ Solubility of CaSO₄ in Mg(NO₈)₂+Aq at

Weight of 1000 cc G. Mg(NO₂). G CaSO of solution grams per l per l 998 1 2 084 1020 5 25 772 50 7 884 1039 8 100 1078.6 9 920 200 13 340 1149.814 000 1219.0 300 14 683 1282.1 400 1355 3 15 040

5. 645) 1 l. sat. MgCl₂+Aq at 25° containing 476.5 g. MgCl₂ dissolves 1.09 g. CaSO₄. (Cameron

and Brown, J. phys. Ch. 1905, 9. 214.) $NH_*NO_* + Aq.$

at 13.5°. (Fassbender)

(Seidell and Smith, J. phys Chem. 1904, 8. 497.)

1 g. CaSO, as sol in 320 ccm sat NH₄NO₂ 1 l. sat. Mg(NO₂)₂+Aq at 25° containing +Aq at 8-9°; in 54 ccm. ²/₁ sat. NH₄NO₂+ 615.1 g. Mg(NO₂)₂ sissolves 15.26 g. CaSO, Aq at 13.5°; in 103 ccm. ²/₁₇ sat. NH₄NO₂+Aq (Cameron and Brown, J. phys. Ch. 1905, 9. 214.)

 $KNO_0+Aq.$

1 g. CaSO, is sol. in 94 ccm. sat. KNO++ Aq at 13.5°, in 82 cem. sat. KNO₁+Aq at at 8°, in 295 cem. ½ sat. KCl+Aq at 9°. 15.5°, m 68 ccm nearly sat. KNO2+Aq at 20°. (Fassbender.)

Solubility in KNO₂+Aq at 25°.

of solution grams	g KNO ₂	G CaBO ₄ per l
998 1	0 0	2 084
1008 1	12 5	3 284
1015 4	25 0	4 080
1032 1	50 0	5 255
1062 5	100 0	6 855
1092 4	150 0	7 907
1122 4	200 0	8 688
1153 9	260 0	a 6 278 12 112

" Probably due to formation of double salt of calcium and potassium sulphates, CaK2(SO4)2+H2O

B. 10, 338.)

(Seidell and Smith, J. phys. Chem. 1908. 8. -NaNO3+Aq.

1 g. CaSO, is sol. in 92 ccm. sat. NaNO++ Aq at 8.5°; in 318 ccm. ¹/₈ sat. NaNO₂+ Aq at 8.5°; in 318 ccm. ¹/₈ sat. NaNO₂+ Aq at 13.5°. (Fassbender.) 100 ccm. sat. NaNO₃+Aq dissolve 1.086 g. CaSO₄+2H₂O₂; 100 ccm. ¹/₈ sat. NaNO₃+ Aq dissolve 0.314 g CaSO₄+2H₂O (Droeze,

Solubility in NaNO₂+Ag at 25°.

Wt of 1000 ccm of solution grams	G NaNOs per l.	G CaSO ₄ per l.
998 1	0	2 084
1016 3	25	4 252
1034 0	50	5 500
1058 4	100	7 100
1133 6	200	8 790
1191 6	300	9 282
1363 9	600	7 886
1390 4	655	7.238

(Seidell and Smith, J. phys. Chem. 1904, 8.

 l. sat. NaNO₃+Aq at 25°, containing 668 4 g. NaNO₅, dissolves 5.52 g. CaSO₄. (Cameron and Brown, J. phys. Ch 1905, 9. 214.)

Solubility in KBr+Aq at 21°

G KBr	G CaSO ₄	G KBr	G CaSO ₄ per J.
per l	per l	per l	
0 10 20 40 60 80	2 05 3 1 3 6 4 5 5 2 5 9	100 125 150 200 250	6 3 6 7 7 0 7 3 Double salt

(Ditte, A ch. 1898, (7) 14. 294.)

KCl+Ao

g per l.

I g. CaSO, is sol. in 162 ccm. sat. KCl+Aq

Solubility in KCl+An at 21°

		8	
KCI	CaSO ₄	KCI	CaSO ₄
0 10 20 40	2 05 3 6 4 5 5 8	60 80 100 125	6 6 7 2 7 5 Double Salt

(Ditie, A ch. 1898, (7) 14. 294

Solubility in KI+Aq at 21°

G KI per l	G CaSO ₄	G KI per l	G CaSO ₄ per l
0	2 05	100	5 1
10	2 8	125	5 45
20	3 2	150	5.8
40	3 9	200	5 95
60	4 5	250	6 00
80	4 85	300	Double salt.

(Ditte, l. c.)

NaCl+Aq

Sol in 122 pts. sat NaCl+Aq. (Anthon.) Insol in sat NaCl+Aq, but more sol. in dil NaCl+Aq than in H₂O. Maximum solubility in NaCl+Aq is when the sp. gr. is

1 g CaSO4 is sol. in 147 ccm of sat NaCl+ Aq at 8 5°, in 150 ccm of sat NaCl+Aq at 13.5°; in 149 eem of ½ sat NaCl+Aq at 13.5°; in 244 eem of ½ sat NaCl+Aq at 13.5° (Fasshender)

100 ccm. sat NaCl+Aq dissolve 0.6785 g.

CaSO₄+2H₂O at 85°, 0 6665 g CaSO₄+ 2H₂O at 135° 100 ccm ¹/₂ sat NaCl+Aq dissolve 0 671 g CaSO₄+2H₂O at 135°, 1/s sat NaCl+Aq dissolve 0 4085 g CaSO4+ 2H₂O at 13 5° (Drocze)

Solubility of CaSO₄ in NaCl+Aq at t°.

to	NaCi	CoSO ₄	£°	NaC1	caso
20 44 67 85 101	19 93 19 95 19 90	0 823 0 830 0 832 0 823 0 682	130 165 169 179 225	19 92 20 04 20 05 20 10 21 00	0 25 0 24 0 22

(Tilden and Shenstone, Roy. Soc. Proc

38, 331.)

0.00 0 225

0 52 0 301

2.03 0 441

Solu	bility o	f CaSO ₄	ın NaC	1+Aq:	at to.		1	Solubil	ıty ır	NaCl	+Aq		
t°	%Cl	100 cem. dissolve g. of	t°	NaCl	100 cem dissolve g of	30		52		70		8:	
21 5 19 5 21 18	3.53 7 35	6,30, 0 5115 0 6429 0 7215 0 7340		17 46 3 53 14 18 17 46	0 7369 0 4891 0 6248 0 6299	0 5 10 3	3 6	O 5 1 1	70880 5 2 3 2 4	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.4	1.0	7080 0 2 07 2 18
	s H _s O	J. Soc. C contain ots CaS	ng pts	NaCl		30 3 47 3 73 4 126 9 192 4	6 1 6 9 7 3	5 0 10 1 29 6 48.3 75.7	5 8 6 6	29 6 48 8 132 7 195 0	7 4	29 5 48 8 74 9	3 30 4 68 5 5 54 6 23
Pts.	Pts Cs804	Pts NoCl	Pts CaSO ₄	Pts NaCl	Pts			131.6 195 9] .:	128 7 195 1	7.00 7.18

24 40 0 820

35 10 0 734

35 86 0 709

10 00 7 38 20 00 0.823 5 02 6.15 (Tilden and Shenstone.)

Solubility in NaCl+Aq at 26°

g pe	er I	wt. of	g pet	1	wt of 1 cc.
NaCl	CaSO ₄	solution	NaCl	CaSO ₄	solution
	6 66 7 18	0 9998 1 0644 1 0981 1.012	176 50 228 76 264.17 320.49	6.50	1 1488 1 1707

(Cameron, J phys Ch 1901, 5. 556)

Solubility in NaCl+Aq at 15°.

G CaSO ₄ per l	G. NaCl per l
2 3 2 5 3 1 3 7 4 8 5 6	0.6 1.1 5.1 10 6 31 1 51 4
7 4	139 9

(Cameron, J. phys. Ch. 1901, 5. 559.)

Solubility in NaCl+Aq at 26°

NaCi in 100 g 1140	CasO4 in 100 g H ₂ O
0 0000	0 2126
9 4307	0 6886
15.2056	0 7581
15.6859	0.7575
18.8570	0.7605
25 0478	0.7439
29 3509	0 7219
36 5343	0 6515

(Cameron, J. phys. Ch. 1901, 5, 564.)

(Cameron, J phys. Ch 1901, 5. 562.)

1 l. sat. NaCl+Aq at 25° containing 318.3 g, NaCl dissolves 5.52 g. CaSO₄. (Cameron and Brown, J. phys. Ch. 1905, 9. 214.)

Solubility in NaCl+Ag.

NaCl per l	G anhydrous (CaSO: dissolved litre
	at 14°	nt 20°
0 0 2.925 5 850 11 70 14 62 29.25 58.50 87 75 102 3 117 0	1 70 2,32 2 79 3 41 3 68 4 40 5.72 6 58 6 90 7 10	2 10 2.70 3 15 3 75 4 00 4 70 6.00 6.85 7 15 7 30
131 6 146.2 160 8 175 6 204 7 234 0 263.2 292.6	7 20 7 10 7 00 6 80 6 30 5.90 5.50 5 30	7 30 7 13 7 05 6 80 6 30 5 90 5 52 5 30

(d'Anselme, Bull, Soc 1903, (3) 29, 373)

Solubility in NaCl+Aq.

G NaCl in 100 ec solution	G CaSO ₄ +2H ₂ O
0 00	0 200 g.
2 44 g	0.635 g.
4 77 g	0.826 g.
9 50 g.	1.056 g
14 22 g.	1 193 g.
23 . 15 g	1 275 g.
31 . 30 g.	1 583 g.

(Cloez, Bull. Soc. 1903, (3) 29, 167.)

Solubility in NaCl+Aq at to When a sat. solution of NaCl is shaken

with a mixture of solid NaCl and CaSO4+ 2H₄O, the calcium sulphate dissolved, calculated from the amount of CaO in solution, is always greater than that calculated from the sulphuric acid in solution. Similar results are obtained when solid calcium sulphate alone is shaken with a sat solution of NaCl.

	In 100 g of the solution				
t _o	CI	CaSO ₄ calc from CaO	CaSO ₄ calc from SO ₂		
0	15 253	0.4464	0 4334		
10	15 920 15 967	0 4477	0 4428		
25 40	15 967	0.4609	0 4542		
50	16 270	0 5093	0 4832		
60	16.324	0 5305	0 5047		
62 5	16 361		0 5091		
65	16 459	0 5435	0 3749		
71	16 486	0 5578	0 3631		
75	16 524	0 5603	0 3587		
85 99	16 670 17 128	0.5399	0 3519		

(Arth, Bull Soc. 1906, (3) 35, 780)

Within a temp. range from 25°-80° CaSO₄ CaSO₄ forms no double salt in solutions of NaCl. At any concentration with respect to the latter maximum solubility occurs with 155 g. NaCl per l. and amounts to 7.3 g. CaSO₄ at 80°. (Cameron, J. phys. Chem. 1907, 11. 496.)

See also under Gypsum, p. 653.

Solubility of CaSO, in NaCl+Aq in contact with solid Ca(HCO*)*.

G. CaSO ₄	G Ca(HCO ₂) ₂	G NaCl
per l	per l.	per l.
1.9298	0 0603	0 000
2.7200	0 0724	3.628
3.4460	0 0885	11.490
5 1560	0 1006	39 620
6 4240	0 0603	79.520
5.2720	0 0563	121 900
4 7860	0 0482	193 800
4 4620	0 0402	267 600

(Cameron and Seidell, J. phys. Chem. 1901, 5. 653)°

(NH₄)₂SO₄+Aq. Sol in 287 pts. (NH₄)₂SO₄+Aq (14). (Fresenius, Z. anal 30 593.) 1 g CaSO4 is sol in 327 ccm (NH4)4SO4

+Aq at 9°, in 369 ccm ½ sat. (NH₄)₂SO₄+ Aq at 13.5° (Fassbender.) Solubility in sat (NH₄)₂SO₄, or Na₂SO₄ is the same as in H₂O (Droeze, B. 10. 330.) Solubility in (NH₄)₂SO₄+Aq at 25°.

g. per l solution			g pe		1
(NH4)5804	CaSO,	wt of 100 ec solution	(NH4),804	CaSO.	wt. of 100 cc solution
0 00 0 129 0.258 0.821 1 643 3 287	0 199 0 181 0 166	99.91 99.91 99.92 99.95 99.99 100.10	6 575 13.15 26.30 84 9 169 8 339 6	0 146 0 162 0 233 0 333	100 36 100 82 101 76 105 34 110 32 119 15

(Sullivan, J. Am Chem Soc. 1905, 27, 529.)

Solubility in (NH ₄) $_{5}$ SO ₄ +Aq at 50°					
р gr	(NH4) SO4	CaSO ₄ per l	Solid phase		
 0026 0113 0440 0819 1108 1385 1653 1972 1964 2043 2187 2437 2437 2430 2502	0 15 65 30.67 91.6 160 4 221 6 280 6 340 6 415 6 416 5 428 4 479 4 530 8 558 0 564 7	2 168 1 609 1 750 2 542 3 402 4 068 4 690 5 084 5 336 5 354 4 632 2 152 1 98	CaSO ₄ +2H ₂ O CaSO ₄ , (NH ₄) ₂ SO ₄ + 2H ₂ O		
2508	566 0	1 08	(NH4)28O4		

1.2510 | 566 7 (Bell and Taber, phys. Chem. 1906, 10.

I 2508 | 566 0

Excess of (NH₄)₂SO₄

Solubility of CaSO, in (NH4)2SO4+Aq at to.

t.o	Ca.50.	(NH,),80	ţ°	CesSO.	08*('HN)
40.5 58 78	0.1529 0 1569 0 1662 0.1968 0.2546	41 82 44 55 46 07 47 51 49 45	3 81 60 75 80	0.3782 0 4070 0 5083 0 5898 0.6108	36.65 35.50 34.95 34.86 34.88

(Barre, C. R. 1909, 148, 1605.)

0 4895

The solubility of CaSO4 in H2O is considerably increased by the presence of (NH4)2SO4 but decreased by the presence of KoSO4. (Barre, C. R. 1909, 148, 1806.)

CuSO.+An. Solubility in CuSO4+An at 25°

Sp gr. of the	g Cu8O4	g CaSO ₄
solution 25°/25°	per l	per l.
• 1 002 1 005 1 007 1 007 1 009 1 016 1 021 1 030 1 041 1 051 1 061 1 098 1 146	1 144 3 564 6 048 7 279 14 814 19 729 29 543 39 407 49 382 58 880 97,950	2 068 1 986 1 944 1 858 1 760 1 736 1 688 1 718 1 744 1 782 1 931 2 048
1 192	196.021	2 076
1 218	224 916	2 088

(Bell and Taber, J. phys. Ch. 1907, 11, 637.)

MgSO₁+Aq Insol, in sat MgSO4+Aq

(Karsten)

1 g. CaSO₄ is sol in 1162 cem. 1/10 sat MgSO₄+Aq at 13 5°. (Fassbender, B 9. Sol m 635 pts, sat MgSO4-LAg at 19°

Absolutely insol in sat, MgSO₄+Aq, and pptd from aqueous solution by the addition of MgSO, (Droeze, B 10, 340) 1 l 1/10 sat MgSO4+Aq dissolves 0 86 g CaSO4+2H4O (Droeze)

Solubility in MgSO₄+Aq at 25°.

g. pe	rl	Sp. gr	g per l		Sp gr	Ī
$MgSO_1$	CaSO ₄	25°/25°	MgSO ₄	CaSO.	25°/25°	l
0 0 3 20 6 39 10 64 21 36 42 68 64.14 85 67 128.28	1 507 1 471 1 478 1 558 1 608 1 617	1 0055 1 0090 1 0118 1 0226 1.0419 1 0626 1.0833	149 67 165 7 171 2 198 8 232 1 265 6 298 0 330 6 355 0	1 597 1.549 1 474 1 422 1.254 1.070 1.860 0.647 0 501	1 1537 1 1813 1 2095 1 2382 1 2624 1 2877	

(Cameron and Bell, J phys. Ch. 1906, 10.

K₁SO₄+Aq. 1 g. CaSO₄ is sol. in 2325 ccm. sat. K₂SO₄+ at 13.5.

g per L		wt of I or of
K:804	Ca80:	solution
0 0 4 88 5 09 9 85 19 57 28 35 30 66 32 47*	2 08 1 60 1 56 1 45 1 49 1 55 1 57 1 58	0 9981 1 0036 1 0038 1 0075 0 151 1 0229 1 0236

Solubility in K-SO. + Ag at 25°

*Solid phase syngenite. (Cameron and Breazeale, J.phys Ch. 1904, 8.

Solubility in K2SO4+Aq, at 25°. In 1000 g. of the solution mole CaSO 3 223 0 223

(D'Ans. Z. anore, 1909, 62, 151.) Solubility of CaSO, in K2SO,+Aq at to.

	Excess of K	ress of K ₀ SO ₄ Excess of Cu _S O ₄		
i°	Ca80.	к.30.	Ca£O,	K.SO.
0 8 1 80	0 1296 0 1531 0 1754 0 1922 0 1980	2 00 2 79 4 21 5 00 5 39	0 0229 0 0271 0.0300 0 0349 0 0371	6 99 9 81 14 18 17 55 19 70

(Barre, C R. 1909, 148, 1606)

 Ag_2SO_4+Aq

5

8

1 l. of the solution contains 2.31 g. CaSO₄ +7.23 g. Ag₂SO₄=9.54 g mixed salts at 17°. gr. = 1.0083. 1 L of the solution contains 2.61 g. CaSO4+

8 11 g. Ag₂SO₄=10.72 g. mixed salts at 25 Sp. gr. = 1.010. (Euler, Z phys. Ch. 1904, 49, 313.)

Na₂SO₄+Aq 1 g. CaSO₄ is sol in 398 ccm, sat. Na₂SO₄+

Aq at 105° Solubility of CaSO₄ in Na₆SO₄+Ag at 22°

G CaSO, per l.	G Na ₂ 80 ₄ per l
2 084	0.000
1 583	2 771
1 433	13 820
1.408	16 360
1 569	39 310
I 841	77 320
2 185	133 00
2 414	193.800
*2 578	*222.580

*Both CaSO, and Na2SO, as solid phases in contact with the solution Aq. at 13.5°; in 664 ccm. 1/4 sat. K₂SO₄+Aq (Cameron and Seidell, J phys. Chem. 1901, 5. 2 503

2 650

Solubility in Na ₂ SO ₄ +Aq at 25°.					
wt of 1000 ccm of solution grams	g NasSO4 per l	g CaSO4 per l			
1001 26 1007 59 1011 45 1020 46 1031 48 1039 12 1079 47	2 390 9 535 14 132 24 369 36 979 46 150 94 220	1 650 1 457 1 388 1 471 1 563 1 650 1 980			
1079 47 1096 47 1142 66	115 084 146 612	2 096 2 234			

146 612 205 105 257 100 (Cameron and Breazeale, J. phys. Chem. 1904. 8 340)

1 l. sat Na-SO.+Ag at 25° containing 254 09, Na₂SO₄ dissolves 2.58 g. CaSO₄. (Cameron and Brown, J. phys. Ch. 1905, 9

Hydration is retarded by dil. solutions and accelerated by conc. solution of sodium, potassium, ammonium and magnesium sul-phates. (Rohland, Z Elektrochem. 1908.

14. 422)

1176 47

1212 00

More than 10 times as much CaSO, dissolves in sat, Na₂S₂O₃+Aq as in H₂O. (Diehl. Insol. in alcohol. of 0.905 sp. gr. or less. Insol, in alcohol, of U.909 sp. gr. or iess.
(Anthon, J. pr. 14, 125)
Solubility in 10% alcohol=0.0970 g.
CaSO, per 100 g. solution. (Magnanin,
Gazz, Ch. it. 1901, 31. (2) 544)
Sol. in dil. alcoholo solutions of NH₄NO₃.

KNOs, NaNOs, NH4Cl, KCl, and NaCl (Margueritte, C. R. 38, 308.) Sol, to considerable extent in NH4C2H4O2 + Aq, especially if freshly pptd. More sol.

in NH₄C₂H₄O₂+Aq than in NH₄Cl+Aq (Weppen, J. p. 11, 182.) (Weppen, J. pi. 11. 182.) Mote sol. in NH_cGH₃O₃+Aq than in other NH_s salts (Cohn, J. pr. (2) **35.** 43.) More sol. in NaC₃H₃O₃+Aq or KCl+Aq than in H₂O (Midder)

Solubility in N/200 potassium hydrogen tartrate+Aq=0.2323 g. CaSO4 per 100 g. solution. (Magnanini, Gazz. ch. it. 1901, 31.

(2) 544.) 72.61 millimols per l of CaSO4+2H2O are sol at 25° in ammonium citrate+Aq (con-

centration = 0 5 millimols. per 1. 36.39 millimols per l. of CaSO4+2H2O are sol. at 25° in sodium citrate+Aq (Con- (Hulett and Allen, J. Am Chem. Soc. 1902, centration = 0 25 millimols per l. (Rindell,

Z. phys. Ch. 1910, 70. 452.) 100 pts. glycerine dissolve 0 957 pt. CaSO.

temp. (Asselin, C. R. 76. 884.)

g. solution.

Solubility in N/200 KHC+H₂O₄+A₇+ - 5% tartarie acid = 0.2556 g. CaSO, per 100 g solution.

Solubility m 10% a alcoholic N/400 KHC2H4O6+5% tartarie acid=0.1086 g. CaSO, in 100 g. solution. (Magnanini.) Insol. in methyl acctate (Naumann, B. 1909, 42, 3790); ethylacetate. (Naumann, B. 1910, 43, 314,

Solubility in sugar + Aq at to

ez	G C	90° qp	anived 11	n 1 l sug	car soluti	ions
sugar	30°	100	50°	60°	70°	80°
0 10 20	1 808	1 730 1 652	1 730	1 574 1 380	1 419	1 613 1 263
27 35 42 49 55		0 564	1 088 0 777 0.739	1 108 0 816 0 564		0 729 0 486

(Stolle, Z Ver Zuckerind, 1900, 50. 331)

Min. Anhudrite. +2H₄O. Min Gyp:um,

Gypsum. A sat. sq. solution of gypsum of particles not less than 2# contains 2,085 g. CaSO, per litre at 25°

A sat. aq. solution of gypsum of particles not smaller than 0.3μ contains 2.476 g. CaSO₄ per liter at 25° (μ =0.0001 cm) (Hulett and Allen Z. phys. Ch 1901, 37, 391 and 393.)

Solubility in II-O at to.

t°	g. CaSO ₄ in 109 ccm of the solution	Density of the solution at t ^o
0	0 17590	1 001970
10	0 19285	1 001727
18	0 20160	1 000590
25	0 20805	0 999109
30	0 23935	0 997891
35	0 20960	0 998122
40	0 20970	0 994390
45	0 20835	0 992370
55	0 20095	0 987960
65 3	0 19320	0 982560
75	0 18475	0 977724
100	0 16195	

24.674)

1 1 H₂O dissolves 2.13 g. CaSO₄+2H₂O at +2H.O. and solubility increases with the 25°. (Euler, Z phys. Ch 1904, 49. 314)

2023 mg, are dissolved in 11 of sat, solution

Solubility in 10% alcoholic N/200 at 0°; 2684 g, at 35°; 2.662 g, at 50°; and KHC₂H₂O₂+Aq=0.866 g, CaSO₄ per 100 2.155 g, at 100°. (Cavazzi, C. C. 1905, L. 1693.)

 H₂O dissolves 29.5 milliequivalents at 18°; 30 at 50°; 23.3 at 190°. (Melcher, J. Am. Chem. Soc. 1910, 32. 63.)

See also under CaSO...

Solubility of pulverized gypsum in NaCl+Aq at 23

Grams gypsum	G. NaCl per !	G CaSO ₄ per l
• 2 99	0 99	2 37
3 82	4 95	3 02
4 48	10.40	3 54
6 31	30 19	4 97
7 51	49 17	5 94 6 74
8 53 9 42	75 58 129 50	7 50
9 42	197 20	7.25
8 88	229 70	7 03
7 19	306.40	5 68
6.79	315.55	5 37

(Cameron, J phys Chem 1901, 5. 559) See also under CaSO.

+1/4H₂O Plaster of Paris contains 1/4H₂O according to Chatcher (C. C. 1889, 1. 203).

Calcium hydrogen sulphate, CaH₂(SO₄)₂. 100 pts. HsSO4 of 1 82 sp gr dissolve about

2 pts CaSO₄; 100 pts fuming H₂SO₄ dissolve 10.17 pts CaSO, (Struve, Z anal. 9, 34); 100 pts H₄SO, dissolve 2.5 pts CaSO, (Lies-Bodart and Jacquemin, C R 46, 1206); CaSO4 is precipitated by H₂O from H₂SO4 solution

100 pts. boiling H2SO4 dissolve 10 pts. CaSO, (Schultz, Pogg. 133 137)

Solubility of CaSO₄ in H₂SO₄+Aq.

wt. of 1000 com. of	g. H ₂ SO ₄	g CaSO4 per l. at			
solution at	per !	25°	35°	43°	
999.1067 1002.493 1002.553 1005.091 1009.787 1030 151 1043 470 1075 613	0.00 0.48 4.87 8.11 16.22 48.67 75 00 97 35 146 01 194 70	2.126 2.128 2.144 2.203 2.382 2.727 2.841 2.779 2.571 2.313	2 209 2 451 3 397 3.606 3.150	2 145 2 236 2 456 2 760 3 116 3 843 4 146 4 139 3 551	
1141.755 1168 143	243 35 292 02	1 901 1 541	: :	2.959	

1903, 7, 574.)

100 pts. hot conc. H₂SO₄ dissolve approx, 10 pts CaSO₄. (Rohland, Z. anorg. 1910, 66. Decomp. by H2O.

Calcium herahydrogen sulphate, CaHa(SO4)4. Decomp. by H2O. (Schultz, Pogg. 133. 137.)

Calcium cupric potassium sulphate, CaoK,Cu(SO₄),+2H₀O. (D'Ana B. 1908, 41, 1778.)

Calcium magnesium potassium sulphate, 2CaSO₄, MgSO₄, K₂SO₄+2H₂O₂ Min. Poluhalite. Sol. in H₂O with residue of CaSO4.

4CaSO4, MgSO4, K4SO. Krugste. Decomp. by H4O. MgSO4, KsSO4+2HsO. Min.

Calcium potassium sulphate, CaK2(SO4)2+ Min. Syngenite. Sol in 400 pts, H₂O. (Zepharovitch.) Less sol, than K₂SO. Decomp. by heating with separation of CaSO. Decomp, by H₂O until 25 g. K₂SO₄ are dissolved in a litre, after which there is no de-

Easily sol, in dil, acids. (Phillips.) Solubility of syngenite, CaK₂(SO₄)₂+H₄O in K-SO4+Ag at 25°.

composition. (Ditte, C. R. 84. 86.)

of solution grams	g. KaSO4 per l.	g CaSO. per l
1013 08 1015 78 1029 01 1024 54 1036 82 1058 10 1085 91	16 31 19 87 25.01 30 88 46.99 75 45 112 87	*1 495 1 529 1 537 1 565 0 810 0 451 0 330

*In first four determinations syngenite completely decomposed. (Cameron and Breazeale, J. phys. Chem.

1904. 8 339.)

This double salt is stable between 0° and m the presence of an excess of either 197 in the presence of an excess of either CaSO, or K520. In this temp interval the carbon temp interval the surface of the carbon temp interval the surface of the carbon temperature of the carbon tem

1904. 935)

Calcium potassium zinc sulphate, Ca2K,Zn(SO4)4+2HO (D'Ans, B. 1908, 41, 1778.)

Calcium rubidium sulphate, Ca₂Rb₂(SO₄)₂.

(D'Ans, B. 1907, 40, 4913.) +3H₂O. Decomp. by H₂O. (Ditte, C. R. 84, 86.)

CaRb₂(SO₄)₂+H₂O, (D'Ans.)

Calcium sodium sulphate, CaNa₂(SO₄)₂.

Min Glauberite. Gradually sol in H₂O, but crystals of CaSO₄+2H₂O soon separate out. (Fritzsche.) Insol in alcohol, and cone. NaC₈H₂O₈+

Aq; decomp. by H₂O (Folkhard, C. N. 43. 6.) CaNa₄(SO₄)₈+2H₂O. Decomp. by H₂O.

CaNa₄(SO₄)₈+2H₂O. Decomp. by H₂O (Fritzsche.)

Calcium titanium sulphate, CaSO₄, T₁(SO₄)₂.
Ppt.; decomp. by H₂O giving titanic acid.
(Weinland, Z anorg. 1907, 54, 254.)

Calcium uranium sulphate.

Min Uranochalcute

Min. Medjidate. Easily sol. in dil. HCl+ Aq.

Cerous sulphate, Ce2(SO4)3.

Anhydrous cerous sulphate is much more sol in H₂O than the hydrated salt.

Easily sol, in cold H_2O if added thereto in small amounts If leage amount of $Ce_2(SO_4)$, is treated with a little H_2O it hardens with evolution of heat, and becomes very difficultly soluble. 100 pts. H_2O dissolve 1cl pts. $Ce_2(SO_4)$, at 0° and 17.86 pts. at 19°.

Ce₂(SO₄)₂+Aq sat. in cold deposits Ce₂(SO₄)₃ at 75°, and only 2.25 pts. remain in solution at 100°. (Jolin, Bull. Soc. (2) 21. 536.)

100 pts. H₂O dissolve 8 31 pts. Ce₂(SO₄)₂ at 20°; 8.08 pts. at 45°; 4.95 pts. at 60°; 0.504 pt. at 100°. (Bührig, J pr. (2) **12**, 240°) 60 pts. anhydrous salt dussolve quekly at

0-3° in 100 pts. H₂O.

At 15° the solution solidifies, and the mother liquor contains only 27.88% Ce₂(SO₄)₈. At 15° the maximum attainable strength is 31.62% Ce₂(SO₄)₈. (Brauner, Chem. Soc. 53.

100 pts. H₂O dissolve 10.747 pts. Ce₂(SO₄): at 16°; 9 648 pts at 19°; 6.949 pts at 33°. The solubility of Ce₂(SO₄): in H₂O is dminshed by the addition of (NH₄):SO₄, K₂SO₄ or Na₂SO₄. (Barre, C. R. 1910, 151. S72.)

Sp. gr of Ce₂(SO₄)₁+Aq was found to be constant whether Ce₂(SO₄)₂ or Ce₂(SO₄)₂+8H₂O was used The following results were obtained at 15°.

Pts. Ce ₂ (SO ₄) ₂ to 100 pts. H ₂ O	Sp gr.	Pts. Cos(SOs) s to 100 pts HsO	Sp gr
3 17 6 11 8 35 9 61 10 55 11 66	1 03005 1.05812 1 07910 1 09085 1 09939 1 10987	12 66 14 56 15 64 21 19 31 62	1 11917 1.13665 1 14623 1 19640 1 28778

(Brauner, Chem Soc. 53. 357.)

4.5 pts. Ce₂(SO₄)₃ dissolve in 100 pts. H₂SO₄. (Wyrouboff, Bull, Soc. (3) 2, 745.) 1

Solubility in (NH₄)₂SO₄+Ag at 16°.

Per 100 nts H₂O

(NH ₄) ₄ SO ₄	Ces(8O4)4
0 00	10 747
3 464	1 028
9 323	0 782
19 240	0 748
29 552	0 701
45 616	0 497
55 083	0.194
63 920	0.090
72 838	0.035

(Barre, A. ch. 1911, (8) 24, 252,)

Solubility in Na₂SO₄+Aq at 19°-20°.

Per 100 pts It₀O

Na ₂ SO ₄	Ce2(8O4)3
0 00 0 328 0 684 1 091 1 392 1 699 2 640 3 589	9 64 0 637 0 259 0 0937 0 057 0 0303 0 012 0 0065

(Barre, A. ch. 1911, (8) 24. 251)

Solubility in K₂SO₄+Aq at 16°.

Par 100 pts H'sO

 K ₂ SO ₄	Ces(8O4) s	
0 00 0 178 0 510 0 726	10.747 0.956 0.432 0.250	
1 200	0.0410	

(Barre, A. ch. 1911, (8) 24. 248.)

+4H₄O 100 g. H₄O dissolve at: 35° 40° 50° 57° 8.5 6.04 3.43 2.34 g. Ce₂(SO₄)₃.

65° 70° 82° 100.5° bpt. of sat. solution. 1.883 1.38 1.01 0.48 g. Ce₂(SO₄)₃. (Koppel, Z. anorr. 1904. 41, 399.) +5H₂O.

100 nts H₂O descrive nts Co₂(SO₂)₂ at t°

roo paga rago da	abor to p	c. 003(0304)3 46 6
t°	•	Pts Ce ₂ (SO ₄) ₃
100 80 60		0 775 1 70 · 3 45
50 40		5.56 8 20

(Muthmann and Rohg, Z anorg 1898, 16.

100 g H₂O dissolve at:

45° 60° 70° 8 833 3 247 1.929 g. Ce₂(SO₄)₂. 80° 90° 100.5° bpt. of sat. solution.

1,207 0.8355 0.469 g. Ce₂(SO₄)₂.

Muthmann and Rolig's determinations are

inaccurate (Koppel.) +8H₂O₁ 100 pts. H₂O dissolve 14 92 pts Ce₂(SO₄)₁ at 20° from Ce₂(SO₄)_s+8H₂O₄ (John.)

100 pts H₂O dissolve pts Ce₂(SO₄)₃ at t^o

t^o Pts
(Cou(SO₄)₃ t t^o Pts
(Cou(SO₄)₃ t t^o

(° C₂₄(SO₄); (° C₂₄(SO₄); 0 19 10 50 12 48 18 17 32 60 9 40 30 16 13 70 4 24

(Muthmann and Rolig)

100 g. H₂O dissolve at.

0° 15° 20 4° 10 09 11 06 9.525 g. Ce₂(SO₄)₃,

30° 40° 50° 60° 7.388 5.947 4.785 4.064 g. Ce₂(SO₄₎₃. Previous determinations are maccurate. (Koppel, Z. anorg. 1904, 41. 395.) 100 g. sat. solution at 25° contain 7.60 g.

anhydrous salt. (Wirth, Z anorg. 76, 174.) Solubility in H₂SO₄+Aq at 25° Solid phase

Ce2(SO4)2+8H2O In 100 g of the lagued are dissolved Normality H-SO4 e Ceou g CratSOala 4 604 7 60 7 618 0 1 4 615 1 1 3 64 6 00 3 01 2 16 5 018 3 301 4 32 2.0 6 683 0.9115 1 505 0.733 0.68 U T330 15 15 0 145 0 239

(Wirth, Z. anorg 1912, 76, 191.)

+9H₂O. 100 pts. H₂O dissolve 17.52 pts. in concentration of the acid. (Meyer, B. Ce₂(SO₄)₂ from Ce₂(SO₄)₃+9H₂O. (Brauner. 1904, 37. 146.)

100 g. H₂O dissolve at. 0° 15° 21° 30° 31 2° 20.98 11 87 9725 7.353 7.185 g. Ce₅(SO₄)₈ 31.6° 45° 50° 60° 65° 7.164 5.13 4 673 3.88 3.595 g. Ce₅(SO₄)₄ (Koppel)

+12H₂O 100 pts H₂O dissolve pts. Ce₂(SO₄)₃ at t°. 100 pts H₂O dissolve pts. Ce₂(SO₄)₃ at t°.

0 21 40 18 18 44 25 16 22

(Muthmann and Rolig, Z. anorg. 1898, 16, 457.)

100 g H₂O dissolve at: 0° 18.8° 19.2°

16.56 17.52 17.70 g. Ce₂(SO₄)₂.

Previous determinations are inaccurate.
(Koppel.)

Ceroceric sulphate, Ce₂(SO₄)₂, 2Ce(SO₄)₂+ 24H₂O. Decomp. by H₂O. Sol. in HCl+Aq with decomp (Mendelejeff, A. 168, 45.)

Ce₂(SO₄)₂, 3Ce(SO₄)₂+31H₂O. (Jolin.) Ceric sulphate, basic, CoO₂, SO₈+2H₂O.

Very sl. sol. in H₂O. Sol. in 2500 pts. H₂O (Mosander.) Boiling H₂O gradually dissolves out H₂SO₄.

(Erk.)
Sol. in acids.
Sol. of acids.
SCeO₂, 7SO₁+12H₂O; SCeO₂, 7SO₃+
15H₂O; 6CeO₂, 5SO₁+5H₂O; 4CeO₂, 3SO₃+
7H₂O; and 3Ce(SO₄)₂, 5Ce(OH)₃. All are

Cenc sulphate, Ce(SO₄)₂.

Anhydrous. Very slowly sol. in cold, more rapidly in hot H₂O. When solution has once

msol ppts.

begun, almost unlimited quantities may be dissolved. Insol. in conc. H₂SO₄. (Meyer, B 1904, 37, 144.)

+4H₂O Sol, in H₂O with immediate decomp (Rsimmelsberg.)

Decomp by H₂O. (Muthmann, B. 1900, 33. 1764.)

Cerous hydrogen sulphate, Ce₂(SO₄)₈, 3H₂SO₄.

Decomp by H₂O. (Wyrouboff, Bull. Soc. (3) 2. 745; Brauner, Z. anorg. 1904, 38. 329.)

Ceroceric hydrogen sulphate, Ce₂H(SO₄)₄+ 13H₂O.
Sol. in H₂O Forms very supersat solu-

tions.

Solubility in H₂SO₄ decreases with increase in concentration of the acid. (Meyer, B.

Cerous potassium sulphate, Ce2(SO4)2, K2SO4 by further addition of H2O, which redissolves +2H₀O

Sl sol in H₂O, msol. in sat. K₂SO₄+Aq. (Czudnowicz, J. pr 80. 26.) 2Ce₂(SO₄)₄, 3K₂SO₄. As above (Her-

mann, J. pr. 30. 188.) +8H₂O. (Barre, A. ch 1911, (8) **24.** 249.) Ce₂(SO₄)₃, 2K₂SO₄+3H₂O. As above.

(John Ce₂(SO₄), 3K₂SO₄. Sol in about 56 pts. H₂O at 9-20°. Easily sol. in acidified H₂O. Nearly insol. in sat. K₂SO₄+Aq. (Jolin.)

Ce2(SO4)3, 5K2SO4. Insol. in K2SO4+Aq. (Barre, l.c.) Ceric potassium sulphate, Ce(SO4), 2K,SO4

+2H₂O.

Sl. sol. in H₂O with decomp. Insol in sat $K_sSO_s + Aa$.

Ceric silver sulphate, 10Ce(SO₄)₂, 6Ag₂SO₄ Only sl. sol. in cold H2O; decomp. by hot H₂O in which it is readily sol (Pozzi-Escot, C. R. 1913, 156, 1074.)

Cerous sodium sulphate, Ce2(SO4)2, Na2SO4+ 2H₀O.

Very sl sol, in H₂O, and still less in Na₂SO₄ +Aq. 100 ccm. sat. Na₂SO₄+Aq dissolve an amount corresponding to 6.2 mg. Ce₂O₃

Sl. sol. in HCl+Aq. (Czudnowicz)

Cerous thallous sulphate, Ce2(SO4)2, 3Tl2SO4. Ce₂(SO₄)₃, Tl₂SO₄+2H₂O. Sol. in H₂O. (Zschresche, J. pr. 107. 98.) +4H₂O. Very sl. sol. in cold, somewhat

more in warm H₂O. (Wyrouboff, Bull. Soc. Min. 14, 83.)

Cerous tin (stannic) hydrogen sulphate, CeHSn(SO₄)₄ Decomp. by H₂O. Sol, in very dil, HCl (Weinland, Z. anorg 1907, 54, 251.)

Chromous sulphate, CrSO₄+7H₂O.

100 pts. H₂O dissolve 12.35 pts. CrSO₄+ 7H₂O. Aqueous solution can be boiled without decomp Sl. sol. in alcohol.

+H₂O (Moissan, Bull. Soc. 37. 296.) Chromic sulphate, basic, 3Cr₂O₂, 2SO₂+

 $12H_2O = 2Cr_3(SO_4)(OH)_4$ Cr2(OH)a+ 5H2O. Insol. in H₀O. Sol. in acids. Slowly decomp. by KOH+Aq or K2CO2+Aq.

5Cr2O2, 3SO2, Sol, in H2O. (Recours, C R. 112. 1439.) Cr_2O_9 , $SO_3 = Cr_2O_2(SO_4)$. Ppt. (Schiff, A. 124, 167.)

little H₂O, but a precipitate is thrown down Z. anorg. 1906. 49. 157.

on evaporation. 5Cr₂O₃, 12SO₃ (?) (Siewert.)

2Cr2O2 5SO2+15H2O Sol in H2O; insol. in alcohol and acetone by which it is ppt. from aqueous solution. (Nicolardot, C. R. 1907, 145, 1338.)

Chromic sulphate, Cr₂(SO₄)₃.

Anhydrous. Insol. in H2O, HNOs, HCl. H2SO4, aqua regia, and NH4OH+Aq. Decomp. by boiling caustic alkalies, and slowly by alkalı carbonates+Aq. (Schrotter.) According to Traube (A. 71. 92) and Stewert (A. 126. 94), Schrötter's salt is an acid sulphate, $\operatorname{Cr}_4(\operatorname{SO}_4)_6(\operatorname{OSO}_7\operatorname{OH})_2 = 2\operatorname{Cr}_2(\operatorname{SO}_4)_8$, $\operatorname{H}_2\operatorname{SO}_4$. According to Etard (Bull. Soc. (2) 31, 200) both salts exist, and formula of above salt is $Cr_2(SO_4)_0Cr_2$. Formula is $2[(Cr_2O_3)_3, (SO_4)_6]$, $17H_0SO_4$ (?). (Cross and Higgins, Chem. Soc 41, 113.)

Insol in methyl acetate (Naumann, B. 1909, 42, 3790); ethyl acetate (Naumann,

B. 1910, 43. 314.)

+6H₂O (?). Green modification. Readily sol in H2O or alcohol. Sol in conc H2SO4. H₂O solution is converted into the violet modification by standing 3-4 weeks. (Schrötter.) +11H₂O (?). Extremely deliquescent; be-comes liquid in moist air in 2 minutes. Not pptd. by BaCl₄+Aq. (Recoura, C. R. 113. 857.)

+18H₂O. Violet modification. Sol. in 0.833 pt. H₂O at 20° When the H₂O solution is heated to 65-70° it begins to be converted into the green modification. This conversion is also brought about by cold HNO₈, H₂SO₄, PCl₂. (Étard, C. R. 84. 1090.)

Sp. gr. of aqueous solution of violet modification of Crs(SO4), containing: 20% Cr₂(SO₄)₂+18H₂O,

1.0275 1.11501.0560 50% Cr₂(SO₄)₂+18H₂O. 1.3250 1 1785 1.2480

Sp. gr. of aqueous solution of green modification of Cr2(SO4); containing: 20 30% Cr₂(SO₄)₂+18H₂O,

1.1680 1.0510 1.1070 60% Cr₂(SO₄)₈+18H₂O, 1.3825 1.3055 1.2340

70 80% Cr₂(SO₄)₈+18HO₂. 1.4650 1.5535

(Gerlach, Z. anal. 28, 494)

See also Chromosulphuric acid.

Chromic hydrogen sulphate, Cr2(SO4)3, H2SO4 $+16H_{2}O.$

+10H₀O or (Cr(OH)₂(OH₂)₄(SO₄). Nearly insol. in H₂O, (Wenner, B. 1998, 41 3451) GCr₂O₄, 8SO₄ (?). (Slewert, A. 126, 97.) Cr₂O₅, 2SO₂ -(Cr₂O₅, 2SO₂). Easily sol. in a tion on heating Sol. in H₂O. (Wenland, Cr₂O₅) and H₃O.

+24H₂O. Decomp. by alcohol, giving the normal sulphate. (Weinland.) Cr₂(SO₄)₃, 2H₂SO₄+18H₂O. Hygroscopic. Decomp. by H₂O. (Weinland.)

 $2Cr_2(SO_4)_1$, $H_2SO_4 = Cr_4 \frac{(OSO_2OH)_2}{(SO_4)_4}$.

Correct composition of Cr₂(SO₄)₂ (Traube), which see. See also Chromosulohuric acid.

Chromic cupric sulphate, Cr₂(SO₄)₂, 2CuSO₄, H₂SO₄.

Insol in H₂O, but gradually decomp. thereby. (Étard, C. R. 87. 602) Cr₂O₃, CuO, 4SO₃. Insol. in H₂O. (Recours, C. R. 1893, 117.

Ansol. in H₂O. (Recours, C. R. 1893, 117. 39.)

Chromous hydrazine sulphate. CrSO₄, 2N₂H₄.

H₂SO₄.

Only al. sol. in H₂O. Sol. in acids. (Traube

B. 1913, 46. 1507.)

Chromic hydroxylamine sulphate, Cr₂(SO₄)₂,

(NH₂OH)₂SO₄+24H₂O. Sol. m H₂O. (Meyeringh.)

Chromic iron (ferrous) sulphate, Cr₂(SO₄)₃, 2FeSO₄, H₂SO₄+2H₂O. As above (Étard, l.c.)

Chromic iron (ferric) suiphate, Cr₂(SO₄)₂, Fe₂(SO₄)₂. Insol. in H.O. (Étard. C. R. 86, 1399.)

Cr₂(SO₄)₃, Fe₂(SO₄)₁, H₂SO₄. Insol. in H₂O (Etard.)

Resembles the corresponding K salt. (Wermoke.)

Chromic manganous sulphate, Cr₂(SO₄)₂,

3MnSO₄. (Étard, C. R. 86. 1402.)

Chromic manganic sulphate, Cr₂(SO₄)₃, Mn₂(SO₄)₄. Insol. in H₂O. (Étard, C. R. 86, 1399.)

Cr₂(SO₄)₃, Mn₃(SO₄)₃, 2H₂SO₄. Sl deliquescent. Sol. in H₂O with decomp (Étard.) Chromic nickel sulphate, Cr₂(SO₄)₃, NiSO₄.

2H₂SO₄+3H₂O. Insol. in H₂O, but gradually decomp. there-

by. (Étard, C. R. 87. 602.)

Chromous potassium sulphate, CrSO₄, K_{*}SO₄

+6H₂O.

Sol. in H₂O; less sol. in alcohol. (Peligot, A. ch. (3) 12, 546.)

Chromic potassium sulphate, K₂Cr₂(SO₄)₄.

Anhydrous. a. Sol. in H₂O when not heated over 350°

β. Insol. m cold H₂O and cold acids. When ignited is insol. in bot H₂O and scids, except slightly in boiling cone. H₂O₄C, (Fischer.) +2H₂O (?). Insol. m cold H₂O or dil. acids. Sol. by long boiling with H₂O, and more quickly when H₂C is added. (Hertwig.)

quickly when HCl is added. (Hertwig.) +4H₂O. Is potassium chromosulphate, which see. +24H₂O. Chrome-alum. Violet modification. Efflorescent at 29°. Sol. in 6-7 pts.

toon. Efficescent at 22°. Sol. in 6-7 pts. cold HyO. When the Hid 90 litton as heated to 60°-70° its partially decoupt in 60°-70° its partially decoupt in 60°-70° its partially decoupt in 60°-70° its partially decoupt in 60°-70° its partially decoupt in 60°-70° its period in 60°-70° it

125.1 g. anhydrous, or 243 9 g. hydrated selt, or 0.441 g. mols. anhydrous salt are sol. in 1 l H₂O at 25°. (Locke, Am Ch. J. 1901, 26. 175.)

H₂O. (Ldwel, A. ch. (3) 44. 313.)

Melts in crystal H₂O at 89°. (Tilden, Chem. Soc. 45. 409.) Sp. gr. of aqueous solution of violet modi-

fication at 15° containing.

5 10 15% K₄Cr₂(SO₄)₄+24H₂O.
1 02725 1.05500 1.08350

Sp. gr. of sat solution at $15^{\circ} = 1.0985$.

Sp. gr. of aqueous solution of green modification at 15° containing:

10 20 30% K₂Cr₂(SO₄)₄+24H₂O, 1.050 1.103 1.161

40 50 60% K₂Cr₂(SO₄)₄+24H₂O, 1.225 1.295 1.371 70 80 90% K₂Cr₂(SO₄)₄+24H₂O.

1.453 1.541 1.635 (Gerlach, Z. anal 28. 497.)

Sp. gr of chrome-alum solutions at 15° containing: 5 10 15 20 25 % selt,

1 0174 1 0342 1.0524 1.0746 1.1004 1 30 35 40 45 50 % salt, 1 1274 1.1572 1.1896 1.2352 1.2894 55 60 65 70 % salt.

1,3704 1,4566 1.5462 1.6362 (Frans, J. pr. (2) 5, 298.)

Insol. in alcohol.

3K₂SO₄, Cr₂(SO₄)₃. Insol. in H₂O, acids, or dl. alkalies. Decomp. by boiling with conc. KOH+Ag. (Wernicke, Pogg. 159, 576.)

Chromic rubidium sulphate, Rb₂Cr₂(SO₄)₄+ 24H₂O.

Sol. in H2O. (Petersson.)

s	Solubility in H ₂ O			
Temp.	G anhydrous salt per l	G molt of anhy- drous sait per l		
25° 30°	25 7 31 7	0 079		
35° 40°	41.1 59 7	0 128 0 181		

Melts in crystal H₂O at 107°

(Locke, Am. Ch. J. 1901, 26, 180.)

Chromic sodium sulphate, Na₂Cr₂(SO₄)₄+ 10H₄O

Is sodium chromosulphate, which see, 18 somum enromosuphate, which see, +24H₂O More differement than K or NH₄ salt. Sol. in H₂O, and properties resemble the corresponding K salt. Cr₂(SO₂)₃, 3Na₂SO₄. Resembles the corresponding K salt.

Chromic thallous sulphate, Tl₂Cr₂(SO₄)₄+ 24H₄O.

0.212 mols, of anhydrous salt are sol, in I. H₂O at 25°.
 I. H₂O dissolves 104.8 g. of anhydrous or 163.8 g. hydrated salt at 25°. Melts in crystal H₂O at 92°. (Looke, Am. Ch J 1901, 26, 175.)

Chromic sulphate chloride, Cr4(SO2)0Cl4+ $2H_2O$

Slightly hydroscopic, Sol, in H.O. (Schiff, A. 124, 176 (CrSO4, 5H2O;Cl. Sol in H2O, (Weinland, Z. anorg, 1908, 58, 176,)

Chromyl sulphate, (CrO2)SO4.

Decomp. by H₂O. (Pictet and Karl, Bull. Soc. 1908, (4) 3. 1114)

Cobaltous sulphate, basic.

Ppt. Insol in H₂O. (Berzehus) 6CoO, SO₈+10H₂O. (Athanasesco, C. R. 103 271) 5CoO, SOs+4H2O. Ppt Very sl sol. in

H₂O (Habermann, M Ch 5, 432,)

Cobaltous sulphate, CoSO4, 100 pts. H_{*}O dissolve at: 3° 10° 20° 24° 29°

26.2 30.5 36 4 38.9 40 pts. anhydrous salt,

35° 44° 50° 60° 70° 46.3 50.4 55.2 60.4 65.7 pts. anhydrous salt. (Tobler, A. 95, 193.)

100 pts. H₂O at 11-14° dissolve 23 88 pts. anhydrous salt (v. Hauer, J pr 103 114)

Solubility in 100 pts. H₂O at to, using CoSO₄+ 7H.O

	4/H ₂ O.					
_	t _o	Pta CoSO ₄	t°	Pts CoSO ₄	t°	Pts. CoSO.
	0 1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 6 17 18 19 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 24.6 \\ 6.5 $	36 37 38 39 41 41 42 43 44 44 45 46 47 48 49 50 51 55 55 55 55 55 60 61 62 63 64 65 67 77 71	43.5 0 1 4 4 5 2 8 4 4 0 0 1 6 2 6 3 6 6 6 6 2 6 8 6 8 6 6 6 6 2 6 8 6 8 6 6 6 6	72 73 74 75 76 77 80 81 82 83 84 85 88 88 88 88 89 90 101 102 103 104 105 106 106 106 106	65 0 66 2 2 66 8 4 6 8 6 9 2 8 6 9 2 8 6 70 1 4 0 7 71 2 6 2 7 77 9 6 7 76 6 6 8 3 3 3 8 1 9 6 8 6 9 8 6 6 9 8 6 6 9 8 6 6 9 8 6 6 8 6 9 8 8 6 8 6

(Mulder, calculated from his own and Tobler's determinations, Scheik. Verhandel 1864.

100 g. H₂O dissolve 37.8 g. CoSO₄ at 25°. (Wagner, Z phys. Ch. 1910, 71. 430.) See also +7H₂O.

Sp. gr. of CoSO4+Aq at to. S=pts. CoSO4 in 100 pts. solution; S1 = mols CoSO4 in 100 mols of solution

8	Sı	Sp. gr
6 8910	0 852	1.0765
5.8140	0.711	1.0841
4.7095	0.570	1.0517
3 5792	0 429	1.0392
2 4273	0 288	1 0263
1 2099	0.141	1 0131

(Charpy, A. ch. (6) 29, 26)

Sp. gr. of CoSO.+Ag at room temp. containing: 7.23914,156 21.167% CoSO. 1.0860 1.1591 1 2398 (Wagner, W. Ann, 1883, 18, 269.)

So, or of CoSO. + Ag at 25°

op. gr	, ,
Concentration of CoSO ₄ +Aq	Sp gr
1-normal 1/g- " 1/g- " 1/g- "	1.0750 1 0383 1 0193 1 0110

(Wagner, Z. phys. Ch. 1890, 5, 37.)

100 pts, sat solution of CoSO4 and CuSO4 contain 22 70 pts. of the two salts

Solubility of CoSO₄, 7H₂O+Na₂SO₄, 10H₂O in H₂O at t° 100 g H₂O dissolve grams

to.	grams CoSO ₄	grams NasSO
0	21 855	10 07
5	23 94	13 155
10	25 41	16 665

(Koppel, Z. phys. Ch. 1905, 52, 396.) See also under CoNa₂(SO₄)₂+4H₂O.

Insol. in liquid NH2. (Franklin, Am Ch. J. 1898, 20. 827) HC₂H₄O₂ ppts. it completely from CoSO₄+

(Persoz 100 pts. absolute methyl alcohol dissolve 1.04 pts. CoSO4 at 18°. (de Bruyn, Z. phys.

100 pts. absolute methyl alcohol dissolve 100 pts. absolute methyl alcohol dissolve 54.5 pts. CoSO₄.+7H₂O at 18°; 100 pts. ab° solute methyl alcohol dissolve 42.8 pts. CoSO₄.+7H₂O at 3°; 100 pts. 95.8 methyl alcohol dissolve 13.3 pts. CoSO₄.+7H₂O at 3°; 100 pts. 95.8 methyl alcohol dissolve 1.8 pts. CoSO₄.+7H₂O at 3°; 100 pts. 50% methyl alcohol dissolve 1.8 pts. CoSO₄.+7H₂O at 3°.

100 pts. absolute cthyl alcohol dissolve 2.5 pts. CoSO₄+7H₂O at 3°. (de Bruyn, Z. phys. Ch. 10. 786)

100 g. solution in glycol contain 2.5 g. CoSO₄. (de Coninck, Bull. Ac Belg. 1905. 359.) Insol. in benzonstrile. (Naumann, B. 1914,

47. 1370.) Insol in ethyl acetate. (Naumann, B. 1904, 37. 3602.) +H2O SI sol in cold, and only very slowly sol. in hot H₂O. (Vortmann, B 15.

+4H₂O. (Frolde, Arch. Pharm. (2) 127. 92.)

+6H₄O (Marignae.)

Ch. 10, 784.)

+7H2O. Sol. in 24 pts cold H2O Insol m alcohol. (Persoz)

Solubility of CoSO4+7H2O in H2O at to. 100 g. H₂O dissolve grams CoSO₄.

t°	g CoSO,	to.	g CoSO ₄	t°	g Co804
0 5 10	25 53 28 05 30 55	15 20 25	33 045 36 21 39 35	30 35 40	42 26 45 80 48 85
/T	7 1 77		CIL 100	- 50 4	los v

(Koppel, Z. phys. Ch. 1905, **52**, 395)

M -pt of CoSO ++7H2O = 96-98° (Tilden. Chem Soc. 45, 409)

Cobaltocobaltic sulphate, Co2O2, 6CoO, SO2+ 15H.O. Insol. in boiling CoSO4+Aq Precipitate or NH₄OH+Aq. (Gentele, J. pr. 69. 130.)

Cobaltic sulphate, Co2(SO4)2+18H2O.

Sol. in H2O with immediate decomp. and liberation of O. Sol, in dil H₂SO₄+Aq with-out immediate decomp Sol. in conc. HNO₄, H2SO4, or HC2H2O2+Aq (Marshall, Chem. Soc. 59, 760.)

Cobaltous cupric sulphate, 2CoSO4, CuSO4+ 21H.O. Easily sol, in H2O. (v. Hauer, Pogg. 125.

+36H₂O. (Liebig.) 2CoSO₄, 2CuSO₄, H₂SO₄. (Étard.)

Cobaltous cupric magnesium potassium zinc sulphate, CoSO₄, CuSO₄, MgSO₄, 4K₂SO₄, ZnSO₄+24H₂O (?). Sol. in H₂O, (Vohl.)

Cobaltous cupric potassium sulphate, CoSO4, CuSO₄, 2K₂SO₄+12H₂O (?).

Sol. m H2O, (Vohl.) Does not exist. (Aston and Pickering. Chem. Soc. 49, 123)

Cobaltous hydrazine sulphate, CoH2(SO4)2, 2N2H4.

1 pt. 18 sol. in 305,16 pts. H2O at 12°. in HNO₃ with decomp. Insol. in HCl. (Curtus, J. pr. 1894, (2) 50. 331.)

Cobaltous iron (ferrous) potassium sulphate, CoSO4, Fe2SO4, 2K2SO4+12H2O. Sol. in H.O. (Vohl, A 94. 57.) 2CoSO4, 2FeSO4, H2SO4. (Étard.)

Cobaltous magnesium sulphate, 3CoSO4, MgSO4+28H.O.

Easily sol, in H₂O. (Winkelblech.)

Cobaltous	magnesium	potassium	n sulphate,
CoSO	, MgSO, K	2SO4+12E	[20.
Sol. in F	CO. (Vohl.	A. 94, 57.	

Does not exist. Chem. Soc. 49, 123.)

Cobaltous manganous potassium sulphate, CoSO₄, MnSO₄, 2K₄SO₄+12H₂O. Sol. m H₂O. (Vohl, A. 94. 57)

Cobaltous nickel potassium sulphate, CoSO4 NiSO, 2K2SO, +12H2O.

Sol. in H₂O. (Vohl, A. 94, 57.) Does not exist. (Thomson, Rep. Brit. Assn. Adv. Sol. 1877, 209.)

Cobaltous potassium sulphate, CoSO4, K2SO4 +6H.O.

Less sol. in H2O than CoSO4. 100 pts. H₂O dissolve at. 0° 12° 15° 20° 25°

19.1 30 32.5 39.4 45 3 pts. anhydrous salt,

25° 40° 49° 51.9 55.4 64.6 81.3 pts. anhydrous salt. Solubility of CoNa₂(SO₄)₂₁ 4H₂O+NaSO₄, (Tobler, A. 96, 126)

100 pts saturated solution contain at: 600 40° 809

19.5 24.4 31.8 pts. anhydrous salt 14 (v. Hauer, J pr. 74. 433.)

1 l. H₂O dissolves 128.8 g. anhydrous salt at 25°. (Locke, Am Ch J 1902, 27, 459.)

Cobaltic potassium sulphate, K2Co2(SO4)4+ 24H2O. Sol in H2O with decomp. (Marshall, Chem. Soc 59. 760.)

Cobaltous potassium zinc sulphate, CoSO4 2K2SO4, ZnSO4+12H2O.

Sol. in H₂O (Vohl, A. 94. 57.)

Cobaltous rubidium sulphate, CoSO₄, Rb₆SO₄ +6H₂O.

Sol. in H₂O. (Tutton.) 1 l. H₂O dissolves 92.8 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27, 459.)

Cobaltic rubidium sulphate, Rb2Co2(SO4)2+ 24H.O.

Decomp. by H₂O. Sol. in dil. HCl and H₂SO₄ Decomp. by conc. HCl or H₂SO₄. (Howe and O'Neal, J. Am. Chem. Soc. 1898, 20. 762.) Melts in crystal H₂O at 47°. (Locke, Am.

Ch. J. 1901, 26, 183,)

Cobaltous sodium sulphate, CoNa2(SO4)2+ 4H2O.

e, Solubility of CoNas(SO4)2, 4H2O in H2O at to. 100 g. H₂O dissolve grams CoSO₄ and

grams N	a ₂ SO ₄ . ,	
tº	g CoSO4	g Na ₂ SO ₄
20	26 65	24.91
25 30	25 365 23 13	23.325 21.61
35	22.55	20 85
40	20 975	20 055

(Koppel, Z. phys. Ch 1905, 52, 397.)

Solubility of CoNa₂(SO₄)₂, 4H₂O+CoSO₄, 7H₂O in H₂O at t°. 100 g, H₂O dissolve grams CoSO₄ and grams Na₂SO₄

t°	Coso.	NasSO4	t°	C504	Na SO.
20	28 61 29 42 30 73	$\begin{array}{c} 23 \ 82 \\ 23 \ 015 \\ 20.575 \end{array}$	30 35 40	32 695 34 065 35 01	15.61

(Koppel, Z phys. Ch 1905, 52, 397.)

10H₂O m H₂O at t°. 100 g H₂O dissolve grams CoSO, and grams Na SO,

t°	g Co8O4	g. Na ₂ SO ₄
18 5	25 50	25 65
20 25	23.18 16.07	27 26 35 18
30	9 20	43.74

(Koppel.)

Solubility of CoNa₂(SO₄), 4H₂O+Na₂SO₄ (anhydrous) in H₂O st t° 100 g. H₂O dissolve grams CoSO4 and grams Na2SO4.

	g C0504	E MESOU
35 40	7 204 7 456	50 79 50 095
	600	

(Koppel.)

See also CoSO4+Na2SO4 under CoSO4.

Cobaltous zinc sulphate.

Efflorescent, Decomp, on air, (Link, Crell. Ann. 1790, 1. 32.)

Cobaltous sulphate ammonia, CoSO4, 6NH+. Sol, in H.O with separation of ppt. (Rose, Pogg. 20, 152.) Very easily sol, in NH₄OH+ Aq. (Fremy.) Decomp. by alcohol

Cobaltous sulphate hydrazine, CoSO4, 3N2H4, Insol, in H2O. Decomp. by boiling with H₂O. Very sol, in dil. acids and NH₄+Aq. (Franzen, Z. anorg, 1908, 60, 272.) Cobaltous sulphate hydroxylamine, CoSO4, NH₂OH+2H₂O.

Insol. in cold: solain hot HaO with decomp. (Feldt, B. 1894, 27, 403.)

Columbium sulphate. Sol. in H₂O. (Blomstrand.)

Cuprous sulphate, CugSO4

Decomp by HaO Sol, in conc. HCl, in ammonia and al sol. in glacial acetic acid. (Recoura, C R. 1909, 148, 1107)

Cupric sulphate, basic, 10CuO, SOs.

(Pickering, Chem. Soc. 1907, 91, 1984.) 8CuO, SO₂+12H₂O. Ppt. (Kane, A, ch. 72. 269.)

72. 209.)
5CuO, SO₃+6H₂O Ppt. (Smith, Phil Mag, J. 23. 196.)
4CuO, SO₂+3H₂O. Insol in H₂O. (Roucher, J. Pharm. (3) 37. 50.)

Min Brochantite, Sol. in acids and

MH₂OH+Aq. +31;H₂O. Insol. in H₂O Easily sol. in dil. acids, even HC₂H₃O₂+Aq. Sl. sol in CuSO₄+Ag. Insol in NaC₂H₂O₂+Ag. (Casselmann, Z. anal 4. 24.) +4H₂O. Insol m H₂O (Proust.)

in $(NH_4)_2SO_4+Aq$, and more easily in NH_4Cl , and NH, NO, +Aq (Lea.) 11 cold H₂O dissolves 0.017 g. (Pickering,

C. N. 1883, 47, 182) +5H₂O. Min. Languts +16H₂O. (André, C. R. 100, 1138.) 7CuO, 2SO₃+5H₂O (Reindel, J. pr. 100.

+6H₂O. Wholly insol in cold or hot H₂O. (Habermann, M Ch. 5. 432.)

+7H₂O. Insol. in H₂O; easily sol. in acids. Insol. in boiling CuSO₄+Aq (Reindel.) 3CuO, SO₂+1½H₂O. Insol. in H₂O; easily sol, in acids, (Stemmann, B 15, 1412,

sol. in adds. (Scenarian, 5 10. Art.).
+2H_O. Insol. in H_O; sol. in dil. H_SSO. 4
Aq. (Shenstone, Chem. Soc. 47, 375.)
+212H_O. (Reindel, J. pr. 102, 204.)
+4H_O. Insol. in H_OO. (Grimbert and Barré, J. Pharm. (5) 21, 414.) (Grimbert and

5CuO, 2SO₈+3H₂O. (Wibel, Dissert. 1864

11CuO, 4SO₃+8H₂O. (Clowes, C. N 1898, 78, 155.) 8CuO, 3SO₄+10H₂O. (Marchlewski and

Sachs, Z. anorg. 1892, 1. 405.) 7CuO, 3SO₂+12H₂O. (Étard, C. R. 1887, 104. 1615.)

2SO₂+5H₂O. (Sabatier, Gm K 5CuO. 5. 1, 839.) 6H₂O. Min. Arnamite. (Weisbach, J. B.

2CuO, SO₄. Decomp. by cold CuSO₄ and 4CuO, SO₃. (Roucher.) Decomp, by cold H.O into

Insol. in H₂O. Decomp. by hot H₂O. Sol. in dil. sods. (Pozzi-Escot, Bull. Soc. 1913 (4) 13, 816. According to Pickering (C. N. 47. 181) only 10°. (Pfaff, A. 99. 224.)

3CuO, SO₂+2½H₂O and 4CuO, SO₄+4H₄O are true chemical compounds.

There is at 25° no definite basic sulphate of copper, all the basic sulphates being solid solutions The solutions in contact with these basic sulphates contain SO₂ and CuO in equivalent quantities and are all sl. acid in reaction. (Bell, J. phys Chem. 1908, 12. 179.)

Cupric sulphate, CuSO4.

Anhydrous. Absorbs HgO from the air. Combines with, and dissolves in H₂O with great evolution of heat +H₂O Permanent Sol. in H₂O (Etard,

C R 87, 602) +2H₂O (?) (Storer's Dict.) +3H₂O (Etard, C B 104 1614.) Does not exist. (Cross, C N 49. 220)

See Foote, p. 965 +5H₄O. Superficially efflorescent in dry

Sol in 2 34 pts H40 At 18° and sat solution has ap .cr 1344°, (Schaff A. 19° 200) in .102 2° contain 45 pts of the day and .cr 10 pts H 101 nt 102 2° dissolve S1 32 pts CuSO₄ (Graffata, Q. 1 Son 13 00). Slot of the day and .cr 10 pts H 101 nt 102 2° dissolve S1 32 pts CuSO₄ (Graffata, Q. 1 Son 13 00). Slot in 4 pts. cold, and 2 pts lot H₂ (Schaftacth) . Slot in 4 pts. cold, and 2 pts lot H₂ (Schaftacth) . Slot in 4 pts. cold, and 2 pts lot H₂ (Schaftacth) . Result of the slot of the

24 210 1 1 pt CuSO₄+5H₂O dissolves at 19° 37 5° 910 ın 3 32 181 1 14 pts, HsO.

62.5° in 1.27 tore 107 0.55 0 47 pts H₂O 0.75 (Brandes and Gruper, 1826)

Sol at 17 5 in 2 412 pts H₂O (Kursten)

100 pts. H2O dissolve at.

Qo 100 200 30° 31.61 36.95 42.31 48.81 pts. CuSO4+5H2O,

40° 50° 60° 70° 56.90 65.83 77.39 94.60 pts. CuSO4+5H2O,

80° 100° 118.03 156 44 203 32 pts. CuSO4+5H2O. (Poggiale, A. ch. (3) 8, 463.)

100 pts. H2O dissolve at

n٥ 35° 20° 17 24 3 28.6 36.1 pts. anhydrous CuSO4. (Tobler, A. 95. 193.)

100 pts. CuSO4+Ag sat, at 11-14° contain 16.23 pts. anhydrous CuSO₄ (v Hauer, J. pr 103, 114)

100 pts H₂O dissolve 15.107 pts. CuSO₄ at

100 pts. H₂O dissol	ve pts CuSO, at t°.
t°,	Pts CaSO ₄
0	14 99
17 9	20 16

(Diacon, J. B. 1866, 61.)

100 pts H_sO dissolve pts CuSO_s at t^o

t°	Pts CuSO ₄	t°	Pts CuSOs	t°	Pts CuSO ₄
0 10 20 30	14 15 17 50 20 53 24 34	40 50 60 70	28 50 33 31 39 01 45 74	80 90 100	54 53 64 35 75 22

(Patrick and Aubert, Transactions of Kansas Acad of Sci. 1874. 19)

Solubility in 100 pts. HaO at to.

Dotability in 100 pts 1120 at 0 .					
t°	Pts CuSO ₄	t°	Pts CuSO ₄	t°	Pts CuSO ₁
0 1 2 3 4 5 6 6 7 8 9 10 11 12 12 13 14 15 16 17 18 19 20 22 22 22 22 22 22 22 22 22 22 23 23 23	15 5 16 3 16 9 17 2 17 5 17 8 18 1 18 1 19 3 19 6 19 9 20 2 20 8 21 1 21 7 22 0 22 3 22 3 23 7 24 4 24 4 24 7 25 5 9	35 36 37 38 39 40 41 42 42 43 44 44 45 50 51 51 52 53 54 55 60 61 62 63 63 64 65	$\begin{array}{c} 27,5\\ 27,9\\ 33,29,15,\\ 29,15,19,33,11,53,11,53,$	70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 87 89 90 91 92 93 94 95 98 99 99 99 99 99 90 90 90 90 90 90 90 90	45 7 46 4 47 2 47 2 47 2 47 2 47 2 47 2 50 3 1 51 9 9 5 53 5 54 3 1 555.9 9 60 7 60 7 60 7 60 7 60 7 7 1 3 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7
32 33	25 9 26 3 26.7	66 67 68	42 9 43 6 44.3	101 102 103	74 6 75 7 76 8

If solubility S=pts anhydrous CuSO4 in 100 pts solution, 8=11.6+0 2614t from --2° to 55°, S=26.5+0.3700t from 55° to 105°; S=45.0-0 0293t from 105° to 190°. (Etard,

C R. 104, 1614) Solubility decreases above 120°, owing to formation of basic salt (Tilden and Shen-

stone, Phil. Trans 1884, 23) 100 ccm, H₄O dissolve 14 92 g CuSO₄ at 0°. (Engel, C. R. 102, 113.) 100 ccm. H₂O dissolve 22 28-22,30 g. CuSO₄ at 20°. (Trevor, Z. phys Ch 7, 468)

Sat CuSO4+Aq contains % CuSO1 at to

to .	% Cu8O4	t°	% Cu8O4
-1	12 1	88	38 8
-7	14 1	89	38 9
9	14 5	94	41 8
18	16.9	96	41 9
20	17 2	97	42 0
20	17 4	100	43 6
35	21 3	108	43 8
39	21.8	110	43 4
45	23 9	116	43 8
54	26 9	116	44 0
54	26 6	120	44.8
61	28 8	132	44.8
63	29 1	133	44.7
65	30 0	143	45.0
70	31 6	160	44 2
71 7	32 6	165	44.5
76	34.5	179	42 9
80	36 6	189	42 2
86	37.8		

(Étard, A. ch. 1894, (7) 2. 554)

Solubility in H2O at to.

t°	g CuSO ₄ per 100 g H ₂ O
0	14.15 -
10	17.68
15	19 25
20	20 78
25	22 29 (by interpolation)

(Cohen, Z. phys. Ch. 1907, 60, 713.)

1.399 mol. are sol. in 1 l H₂O at 25°. (Herz, Z. anorg. 1910, 67, 366) 100 g CuSO₄+Aq sat. at 30° contain 20.32 anhyd. CuSO₄. (Schreinemakers, Z. phys. Cb 1910, 71, 110)

+7H₂O. (Bossbaudran, C. R. **65**. 1249.) +6H₂O (Bossbaudran, C. R. **66**. 487.)

104 77.95

34

Cor

Sp. 1	gr of C	uSO. CuSC	+Aq at 04+5H10.	18°	%=%
%	Sp gr	%	Sp gr	%	Sp gr
1 2 3 4 5 6 7 8 9	1.0063 1.0126 1 0190 1.0254 1.0319 1.0384 1.0450 1 0516 1.0582 1 0649	11 12 13 14 15 16 17 18 19 20	1.0716 1.0785 1.0854 1.0923 1.0993 1.1063 1.1135 1.1208 1.1281 1.1354	21 22 23 24 25 26 27 28 29 30	1 1427 1 1501 1 1585 1 1659 1 1738 1 1817 1 1898 1 1980 1 2063 1 2146

(Schiff, calculated by Gerlach, Z anal. 8, 288)

Sp. gr of CuSO₄+Aq at 23.9°. a=no of $\frac{1}{2}$ mols in grms dissolved in 1000 grms H₄O₅ b=sp gr if a is CuSO₄=5H₂O₅ ($\frac{1}{2}$ mol wt.=125); c=sp gr if a is CuSO₄ ($\frac{1}{2}$ mol wt =80)

a	b	c
1	1 076	1 080
2	1 142	1 154
3	1 200	1 225

(Favre and Valson, C R 79. 968.)

Sp. gr of CuSO₄+Aq at 15° %=% CuSO₄+5H₂O

%	Sp gr	%	Sp gr
5 10 15	1,0335 1 0688 1 1060	20 25 mother liquor	1 1443 1 1848 1 185

(Gerlach, Dingl 181. 131.)

Sp. gr. of CuSO4+Aq at 18°.

op. gr. or Cubott 1 and an in .				
% Cu8O ₄	Sp gr.			
5 10	1 0513 1 1073	15 17 5	1 1675 1 2003	

(Kohlrausch, W. Ann 1879. 1)

Sp. gr. of CuSO₄+Aq at 0°. S=pts. CuSO₄ in 100 pts solution

s	Sp gr.	8	Sp. gr.
11 9815 9.8159 7 5474	1 1371 1.1108 1 0833	5.2181 2.6460	1 0578 1 0290

(Charpy, A. ch (6) 29. 26.)

Sp. gr. of CuSO4+Aq at room to	emp.
--------------------------------	------

% CuSO ₄	Sp gr
6 79 12 57	1.055 1.1151
17 40	1.1101

(Wagner, W. Ann 1883, 18. 265.)

Sp. gr. of CuSO₄+Aq at 25°.

+Aq	Sp. gr
1-normal 1/s- " 1/e- " 1/s- " 1/s- "	1 0790 1 0402 1 0205 1 0103 1 0050

(Wagner, Z. phys. Ch 1890, 5. 38.)

B-pt CuSO.+Aq containing pts. CuSO. to 100 pts H.O.

B-pt	Pts Cu8O:	B-pt	Pts. CuSO ₄
100.5° 101 0 101 5 102 0 102 5	21 3 36 9 48 0 56 2 63 0	103 0° 103 5 104 0 104 2	69 0 74 9 80 1 82 2

(Gerlach, Z. anal 26, 434.)

Sat CuSO₄+Aq boils at 102 2°, and contains 81 8 pts CuSO₄ to 100 pts H₂O.
(Griffiths)

Crust forms at 102.3°, and solution contains 60 3 pts. CuSO, to 100 pts. H₂O; highest temp. observed, 104.8° (Gerlach, Z, and 26. 426.) Sol. in HCl+Aq, causing a reduction of temperature of about 17°.

Very al sol. in conc. H₂SO₄. (Schulz.)
Solubility in H₂SO₄+Aq at 0°.

G per 10	Spgr		
H ₂ 804	CuSO ₄	DP 8.	
0 00 2 03 7 16 15 20 26 57 27 57 35 2	14 85 14 29 15 65 9 90 6 43 6 19 3 99	1 144 1 143 1 158 1 170 1 195 1 211 1 224	

(Engel, C R. 1887, 104, 507)

			_	SULPHATI	s, Cupb	пĊ		965
S	Solubility in H ₂ SO ₄ +Aq at 25°.			Solubility of CuSO ₄ in CuCl ₂ +Aq at 30°.				
	Solution			Solid phase	% CuCl ₂	% CuSO		Solid phase
Sp gr. 1 2142 1 2248 1 2593 1 2934 1 4061 1 4256	% CuO 9 17 5 91 3.39 1 82 1 32	9 26 15.90 23.00 28 75 39 74 41 29	5000	CuSO ₄ +5H ₂ O	0 6 58 15 68 25 67 39.48 42 47 43 25 43 95	20 32 13 62 8 93 4 77 3 21 2 90 1 14	CuSO.	GuSO ₃ , 5H ₂ O "" 4, 5H ₂ O+CuCl ₂ , 2H ₂ C CuCl ₂ , 2H ₂ O
1.4249 1 4516 1 4915 1 5124 1 5408 1 5643	1 38 1 02 0 38 0 368	41 04 43 63 47 82 49.07 51 46 53 51	3	CuSO ₄ +3H ₂ O		oility of C	15 . 1: CuSO₄i	in LiCl+Aq at 25°.
1 6824 1 7752	0 109	68.3	1	CuSO ₄ +H ₂ O	l	(G. mol	s. per l	aSO₄, 5H₂O. . of solution)
1 8118 1 8266	0.15	72 43 74 20		CuSO ₄		LiCl	_	CuSO ₄
These results show that the hydrates of CuSO ₄ which are stable at 25° are CuSO ₄ +5H ₂ O,+3H ₂ O and+H ₂ O		0 0 78 1.40 2 83			1.399 1.257 1.176 1.067			
	(Bell and Taber, J. phys. Chem 1908, 12 . 175.) Solubility in H ₂ SO ₄ +Aq at 25°		(Herz, Z. anorg. 1910, 67. 366.) Solubility of CuSO ₄ in KCl+Aq at 25°. Solid phase, CuSO ₄ +5H ₃ O.					
% CuS	tion contr	H ₂ SO ₄		Solid phase		(G. mo		l. of solution)
18 47 12 65 5 95 3 24	7 n 2 11 2 28 5 36	one 14 53		CuSO ₄ +5H ₂ O		0.56 1.17 2 34		CuSO ₄ 1 496 1 561 1 819
2.65 2.55 2.85 2.85 2.76 2.19 2.11 2.11	33 42.15 53 49.00 53 49.20 54 49.20 55 CuSO ₄ +5H ₄ O and CuSO ₄ +3H ₄ O		* Solubility of CuSO ₄ in NaCl Solid phase, CuSO ₄₊ (G. mols per l. of sol		in NaCl+Aq at 25°. CuSO ₄ +5H ₂ O. l. of solution)			
2.1 0.9	5 1 58	5 60 L 79	ł	CuSO ₄ +H ₂ O		NaCl		CuSO:
0 1 0 1 0 1 0 4	7 77 5 81 9 81 4 81	7 93 3 29 5 46 5 72		$CuSO_4+H_4O$ $CuSO_4+H_3O$ and		0 0 36 1 32 2 53		1.399 1.404 1.426 1.507
0 4 0 4 0.1	9 9	5 81 3 04 2 70		CuSO ₄			(He	
Thes	e result	s show	y bl	that the hydrates of	Solu	bility of ning 1.09	CuSO,	in RbCl+Aq at 25 nols, per l.=1.568

Chose results show that the hydrates of the control

Solubil	nty of C	uSO, m	(NH ₄),	80 ₄ +A	lq at 0°.
g per sol	100 ce ition	^	g per l	inn ee tion	
OS(*HN)	Cas Da	Sp gr	(NRa),SO,	Cu8O,	Sp. gt
0 3.61 4 63 4 90	14.79 16.09 8 38 7 26	1 144 1 190 1 108 1 099	5 59 7 51 12.31 20.65	5 13 2 95 0.94 0 80	1 081 1 071 1 082 1 116

(Engel, C. R. 1886, 102, 114)

Solubility of CuSO₄ in L₁₂SO₄+Aq at 30°.

Composition of the solution		Solid phase	
% by wt. CuSO.	% by at Li ₂ SO ₄	John phise	
20.32 17.50 16.10 13.55 12.14 11.04 10.05 10.08 10.07	0 3 54 6 08 11 94 15 72 17 92 20 55 20 51 20 49	CuSO ₄ , 5H ₂ O " " " " " CuSO ₄ , 5H ₂ O + Li ₃ SO ₄ , H ₂ O	
6 41 3 39 0	22 23 23.59 25 24	Li ₂ SO ₄₂ H ₂ O	

(Schreinemakers, Z phys. Ch 1909, 66. 692)
 Sol. in CuCl₂, (NH₄)₂SO₄, NH₄Cl+Aq at 30°. (Schreinemakers, Z. phys. Ch. 1909, 69. 565.)

Sol. in (NH₄)₂SO₄, Li₂SO₄+Aq. at 30°. (Schrememakers, Z. phys Ch. 1909, 68. 694.) 100 pts. sat. solution of CuSO₄ and FeSO₅ contain 17.43 pts. of the salts at 11-14.6 (v. Hauer, J. pr. 103. 114.)

(v. Hauer, J. pr. 108, 114.)
100 pts H₂O dissolye 10.85 pts CuSO₄, 17.47 pts. MgSO₄, and 5.78 pts. Na₂SO₄ at 0°.
(Diacon.)
100 pts. H₂O dissolve 7.169 pts. CuSO₄, 21.319 pts. MgSO₄ at 0°.
(Plaff)
(Plaff)

Slowly and sl. sol, in sat. MgSO₄+Aq. (Karsten.)

(Marsten.)
Solubility of CuSO₄ in H₂O in presence of

No		Mg8O4		CuSO ₄	
1 2 3 4	0 2 64 4 75 9.01	26 37 25 91 25 30 28 54	5 6 7	12 03 13 61 14.99	

In 1, 2, and 3, MgSO, was in excess and given tions, 5.41 pts. K₃SO, to 10.13 pts. CuSO, amt. CuSO, added; in 4, both CuSO, and would be required.

MgSO₄ were in excess; in 5, 6, and 7, CuSO₄ was in excess (Diacon, l c) 100 pts sat solution of CuSO₄ and MgSO₄

contain 28 58 pts of the salts at 11-14° (1 Hauer, J pr 103. 114)
100 pts sat. solution of CuSO, and MnSO.

contain 37.90 pts. of the salts at 11-14. (v. Hauer)

Solubility of CuSO₄+MnSO₄ in H₂O at 25°.

G per 16	0g H ₂ O	G per 1	00 g H ₂ O
Cuf04	MnSO ₄	CuSO ₄	MnSO
20 2 19 76 13 65 11 61	0 3 69 31 52 39 41	9.39 6 47 3 01 0 0	46 77 53 39 58 93 61 83

(Stortenbecker, Z phys Ch. 1900, 34, 112) 100 pts, sat, solution of CuSO₄ and NiSO₄

contain 31.03 pts. of the salts at 11-14.° (v. Hauer.)

Solubility of CuSO₄+NiSO₄ in H₂O.

	g per 100 g	H ₂ O	Mol %	CuSO ₄
t°	CuSO ₁	N1804	Solution	Solid phase
35	9 62 41 66 75 39 106 40 172.0 186 9	583 9 484.4 553 5 508.5 483 8 468 8	1 57 7 69 11 66 16 92 25 6 27 90	0 35 2 12 4 77 6 52 13.88 {18.77 94.91
67	20 04 66.01 88 08 147.94 249 9	729 3 706 2 501 6 675 0 747 8	2.65 8.31 13.55 16.39 24.46	0.93 2.86 3.92 6 66 23 32

(Fock, Z Kryst. Min. 1897, 28, 387.)

More easily sol in sat. K₂SO₄+Aq than in Na₅SO₄ or MgSO₄+Aq, forming a double sulphate, which separates out. (Karsten.) K₃SO₄ and CuSO₄ mutually displace each other in saturated solutions. (Rüdorff, Pogg. 148, 555)

When K,SO₄ and CuSO₄, both in excess, are dissolved in H₂O₄ amazimum of solubility of 15 G pts. of the two salts in 100 pts. H₂O₄ at 25° in reached in 30 munuts, after which the solubility decreases. This result as obsults with H₂O at 25°, or cooling solutions of the two salts ast, at higher temp. to 25°, The salts are in the proportion of 5.2 pts. K,SO₄ to 10.4 pts. CuSO₄. If present in that same proportion as in their saturated solu-

If sat, solution of one salt is added to sat. Solubility of CuSO4+ZnSO4 in HaO at 25° solution of the other, K₂Cu(SO₄)₂+6H₂O separates, as it is less sol, than either simple salt, until a state of equilibrium is reached. after which there is no separation, contrary to Rüdorff (see above) (Trevor, Z. phys. Ch. 7, 486.)

CuSO4+Na4SO4

Solubility of CuSO4 in presence of Na₂SO₄ at 0° 100 pts H₂O dissolve-

No	CuSO ₄	Na ₂ 80 ₄	No	CuSO ₄	NnaSO4
1 2 3 4	0 6 01 9 81 16 67	4 53 5 34 5 73 6 48	5 6 7	15 84 15 33 14 99	3 55 1 98 0

In 1, 2, and 3, Na₂SO₄ was in excess and given amt. CuSO4 added, in 4, both CuSO4 and Na2SO4 were in excess; in 5, 6, and 7 CuSO4 was in excess and Na4SO4 added.

(Diacon, J. B. 1866, 61 100 pts, H₂O dissolve 8.038 pts CuSO, and 6.31 pts, Na₂SO₄ at 0° (Pfaif, A, 99, 224.) 100 pts. H₂O dissolve 20 7 pts. CuSO₄ and

15.9 pts. Na₂SO₄ at 15°. (Rudorff, B. 6. 484.)

Solubility of CuSO4+Na2SO4

 Solid phase, 3 mol. CuSO₄+1 mol. Na SO Solid phase, 1 mol CuSO₄+1 mol.

Na₂SO₄ 3 Solid phase, 1 mol CuSO₄+3 mol.

Na₂SO₄ (G. in 100 g. H₂O.)

10						
	Cu801	Na ₁ 80 ₄	CuSO ₄	NegSO:	CuSO ₄	Na::80
15 30	20.69 22.03	12.49 15.88 16 36 11 75	20.75 21 00	15.90 20.14	20.70 15 28	15.95 22.70

(Massol and Maldes, C. R. 1901, 133, 287.)

Solubility of CuSO ₄ , 5H ₂ O+Na ₂ SO ₄ , 10H ₂ O.			
t°	% CuSO ₄	% NasSOs	
0	13.40 14.83	6 23	
12	24.00	002	

(Koppel, Z. phys. Ch. 1903, 42, 8.) See also under CuNa2(SO4)2+6H2O.

CuSO4+ZnSO4.

Very alowly sol in sat. ZnSO,+Aq, forming a double salt which separates. (Karsten.) 100 pts, sat, solution of CuSO, and ZnSO, contain 32 70 pts. of the salts at 11-14°. (v. Hauer.)

Mols	per 100 '	Mola.	pu 100
mols	H ₃ O	mol	s II ₂ O
Cu	Zn	Cu	Zn
2 28	0	0 82	5 03
1 83	2 08	0 51	5 59
1 41	3 60	0 30	5 56
1 19	5 01	0 00	6 42
1 86	3 36	1 19	5 01,
1 22	4 45	0 51	5 59
1 01	4 72	0 267	5 77

(Stortenbecker, Z. phys. Ch. 1897, 22, 62.)

Insol. in liquid NH₁. (Franklin, Am. Ch. J. 1898, 20, 827.) Insol, in liquid CO. (Buchner, Z. phys.

Ch. 1906, 54, 674,) 100 pts of a sat. solution in 40% alcohol contains 0.25 pt. CuSO₄+5H₂O; 20% alcohol, 3 1 pts.; 10% alcohol, 13 3 pts. (Schiff, A.

118, 362.) Anhydrous CuSO, is sol. in absolute methyl alcohol, but insol. in absolute ethyl alcohol. CuSO₄+xH₂O is insol, in methyl or ethyl alcohol. (Klepl, J pr. (2) 25. 526.) 100 pts. absolute methyl alcohol dissolve 1.05 pts anhydrous CuSO4 at 18°

100 pts, absolute methyl alcohol dissolve 15 6 pts CuSO.+5H2O at 18°, 100 pts. 93.5% methyl alcohol dissolve 0.93 pt. CuSO₄+5H₂O at 18°; 100 pts. 50% methyl alcohol dissolve 0.4 pt CuSO₄+5H₂O at 18°; 100 pts. absolute methyl alcohol dissolve 13.4 pts. CuSO4+5H2O at 3°

100 pts. absolute ethyl alcohol dissolve 1.1 pts CuSO₄+5H₂O at 3°. (de Bruyn, Z. phys. Ch. 10. 786) Methyl alcohol dissolves II.5% CuSO₄+

5H₂O at 0°. (Auger, C. R. 1906, 142, 1272.) Glacial acetic acid precipitates CuSO, completely from CuSO,+Aq

100 g. 95% formic acid dissolve 0.05 g. CuSO₄+5H₂O at 18 5°. (Aschan, Ch. Ztg 1913, 37, 1117.) Sol in glycerine (Pelouze), picoline (Univer-

dorben) 100 g. glycerme dissolve 36.3 g CuSO₄+ 5H₂O at 15-16°. (Ossendowski, Pharm J. 1907, 79, 575)

100 g glycerine dissolve 30.0 g. CuSO4 at

100 g, solution of CuSO, in glycol contain 7 6 g. at 14.6° (de Coninck, Bull. Ac. Belg. 1905, 257.)

Anhydrous CuSO, is mool, in acetone. (Krug and M'Elroy, J Anal. Ch. 6, 184.) Insol. in acetone. (Eidmann, C. C. 1899, II. 1014); methyl acetate. (Naumann, B.

1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43. 314); benzonitrile. (Naumann, B. 1914, 47. 1370.) Min. Chalcanthite.

20H₂O. Sol. in H.O. (Klatzo, J. B. 1868, 205.) Does not exist. (Marignac, A. ch. (4) 30.

9CuSO4, GISO4+50H2O. As above. Does not exist. (Marignac, l. c.)

hydrazine sulphate, CuHg(SO4)2, 2N,H4 I pt. 15 sol. in 1148 pts, H2O at 10°.

Cupric iron (ferrous) sulphate, CuSO4, FeSO4. Insol, in H₂O. (Étard, C. R. 87. 602.) +2H₂O. (Étard.) CuSO 4, 2FeSO 4+21H2O. Sol in H2O. (v

Hauer.) CuSO₄, 3FeSO₄+28H₂O. 100 pts. H₂O dis-solve 75 pts. salt at 7° (Lefort) Cupric nickel potassium sulphate, CuSO₄, 4CuSO4, FeSO4+34H4O. 100 pts. H4O at 15 5° dissolve 75 91 pts. (Thomson)

Cupric iron (ferric) sulphate, CuSO₄, Fe₂(SO₄)₂ H₂O +24H₂O. Sol. in H.O. (Bastick.)

Cupric iron (ferrous) potassium sulphate, CuSO, FeSO, 2K2SO++12H2O. Sol. in H2O (Vohl)

Cupric lead sulphate, CuO, PbO, SO₂+H₂O. Min Lanarite 3CuO, 7PbO, 5SO2+5H2O. Mm. Caledonite Sol, in HNO1+Aq.

Cupric magnesium sulphate, CuSO4, MgSO4 +14H20. Efflorescent. Sol. in H2O (Vohl, A 94. 57.)

+2H₂O. (Ar1ot, 1834.) CuSO₄, 2MgSO₄+21H₂O. Sol in H₂O. (v. Hauer, Pogg. 125, 638.) CuSO₄, 7MgSO₄+56H₂O. Sol in H₂O. (Schiff, A. 107, 64)

Cupric magnesium manganous potassium sulphate, CuSO₄, MgSO₄, MnSO₄, 3K,SO.+18H,O. Sol, in H2O. (Vohl.)

Cupric magnesium potassium sulphate, CuSO, MgSO, 2K2SO, +6H2O. Sol. in H₄O. (Vohl, A. 94. 57.) Does not exist. (Aston and Pickering, Chem. Soc. 49, 123.)

Cupric magnesium potassium zinc sulphate, CuSO₄, MgO₄, 3K₂SO₄, ZnSO₄+18H₂O₅ Sol. in H2O. (Vohl.)

Cupric glucinum sulphate, CuSO4, 4GISO4+ Cupric manganous sulphate, 5CuSO4. 2MnSO4+35H2O.

Sol. in H₂O (Schäuffele, J B **1852**, 340.) 2CuSO₄, 3MnSO₄+25H₂O, As above (S.) CuSO4, MnSO4+HtO (Etard, C R 87.

Cupric manganous potassium sulphate, CuSO₄, MnSO₄, 2K₂SO₄+12H₂O. Sol. in H₂O. (Vohl)

Decomposition of the comp. (Curcustant Curcustant Curcu CuSO₄, 2N₁SO₄+21H₂O (v. Hauei.)

+18H₂O Sol in H₂O. (Boisbaudran, C. R. 66. 497) 2CuSO₄, 2N₁SO₄, 3H₂SO₄. (Étard)

Sol in H₂O (Vohl.) Sol in 4 pts. H₂O, insol in alcohol (Bette) 4CuSO₁, K₂SO₄+4H₂O. Very sl sol in K₂O, 4CuO, 4SO₃+4H₂O. Insol in H₂O, but decomp, by boiling H₂O into 3CuO, SO₂

Cupric potassium sulphate, K₂Cu(SO₄)₂+ 6H₂O 100 pts H₂O dresolve 66 666 pts at 102 8° (Grif-100 pts nrv deserved fifth) (Piorre.)
Much prore sol. in hot than cold HyO. (Piorre.)
Easily sol in HyO. by buling, de comp into basic sait
(Person, A. ch. (3) 28, 272.)

100 pts $H_{\pi}O$ dissolve 11.14 pts anhydrous salt at 25° (Trevor, Z phys. Ch. 7, 470) 1 l. $H_{\pi}O$ dissolves 116.9 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.) See also CuSO.+K.SO.

* Min. Cyanochroite.

Cupric potassium zinc sulphate, CuSO4, 2K2SO4 ZnSO4+12H2O. Sol. in H₂O. (Vohl.)

Cupric rubidium sulphate, CuSO4, Rb2SO4+ 6H₂O.

Sol. in H₂O. (Tutton.) 1 l. H₂O dissolves 102.8 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459)

Cupric sodium sulphate, basic, Na.SO. Cu(OH), 3CuSO, +2H,O. Min. Natrochalcite.

Sl sol. in H₂O; easily sol. in acids. (Pa lache and Warren, Am. J. Sci. 1908, (4) 26. 346.)

Cupric sodium sulphate, CuSO₄, Na_{*}SO₄+ 2H₂O

Solubility of the pure double salt CuSO4, Na₂SO₄+2H₂O

t°	100 grams solution contain		
	CuSO4 grams	Na ₂ SO ₄ grams	
17.7 19.5 23 30 40.15	14 34 14 54 14 36 14.07 13 73	13 34 12 90 12 76 12 37 12 26	

(Koppel, Z. phys. Ch 1903, 42. 8) Solubility of the mixture of CuSO4, NasSO4+ H₀O and CuSO₄.

to.	100 g solution contain				
	CuSO ₄ grams	Na ₂ 80 ₄ grams			
17 7 19.5 23 30 40 15	14 99 15 62 16 41 17 97 20 56	13 487 12 06 11 35 9 95 8 00			

(Koppel.)

Solubility of the mixture of CuSO4, NaoSO4+ 2HO and NasSO

to.	160 g solution contain			
-	CuSO ₄ grams	NasSO ₄ grams		
18 19 5 20 23 25 26 28	13 53 11 847 11 339 8 185 6 284 5 507 3 746	13.844 15 116 15 697 18 723 21 198 22 44 24 963		
28° 3 30 30 2 32 2 33 9 35 3 37.2	3 661 2 607 2 422 1 465 1 475 1 471 1 494	28 383 32 442 32 299 32 072 31 96		

(Koppel)

Solubility of CuSO4, Na₂SO₄+2H₂O in presence of varying amounts of Na₂SO₄.

40	100 g. solution contain			
	CuSO ₄ grams	NasSO4 grams		
30 30 30 1 40.15 30	5 38 5 41 3 69 3 97 1 57	22 17 21 92 25 37 23 90 32 09		

(Koppel.)

Copper sulphate and sodium sulphate unite to form a double salt, CuSO4, Na2SO4+ 2H₂O, which is stable in the presence of the solution above 16.7°. In the presence of copper sulphate the solubility of Na₂SO₄+ 10H₂O is greater than that of the pure salt. (Koppel.)

Cupric thallous sulphate, CuSO4, Tl2SO4+

Decomp. by recrystallising from H₁O. (Willm, A. ch. (4) 5. 55.) 1 l. H₂O dissolves 81 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.) -

Cupric zinc sulphate, CuSO4, 3ZnSO4+28H4O Efflorescent, 100 pts. H₂O dissolve 80 pts. salt at 8°. Sol. in all proportions in boiling H₂O (Lefort.) CuSO4, 2ZnSO4+21H2O. (v. Hauer, Pogg. 125. 637.) CuSO₄, ZnSO₄+12H₂O. (Boisbau-2CuSO₄, 2ZnSO₄, H₂SO₅. (Etard.) (Boisbaudran.)

Cuprous sulphate ammonia, Cu₂SO₄, 4NH₃. Sol. in NHOH+Aq, decomp by pure HoO. (Péchard, C. R. 1903, **136**, 504.) +H₂O Decomp by H₂O. (Foerster and

Blankenburg, B. 1906, 39, 4434.) Cupric sulphate ammonia, basic, CuSO4, 3CuO, 2NH++5H+O. Decomp by hot H2O, (Picketing, Chem,

Cupric sulphate ammonia (Cuprammonium sulphate), CuSO4, NH2.

Decomp, by H₂O, (Kane.)

Soc. 43, 336.)

Decomp. by H₂O giving a basic sulphate, (Bouzat, C. R. 1902, 185, 535.) CuSO₄, 2NH₃ [CuSO₄, 2NH₃+3H₂O. (Mendelejeff, B. **3**, 422.)]. Decomp. by ex-

cess of H.O into-CuSO₄, 4NH₃+H₂O. Sol. in 1 5 pts. H₂O, but decomp by much H₂O. Insol. in alcohol Insol in conc. NHOH+Aq. (André,

C. R 100. 1138.) Sol in small quantity of H.O: decomp. in dil. solution. (Bouzat)

100 g. H₂O dissolve 44.55 g. anhydrous comp. at 25°. (Pudschies, Diasert.) 100 g. H₂O dissolve 18.05 g. at 21-22°. (Horn and Taylor, Am. Ch. J. 1904, 32, 288.) CuSO₂, 5NH₃. Completely sol. in H₂O.

(Rose, Pogg. 20. 150.) Sol. in small amt. of H₂O; decomp. in dil. solution. Insol in liquid NH₂. (Bouzat, C. R. 1902, 135, 535.)

Cuprous sulphate carbon monoxide, Cu2SO4. 2CO+H₃O. Very unstable. (Joannis, C. R. 1903, 136. 615.)

Cupric sulphate zinc oxide, CuSO4, 2ZnO+ 21H.O.

(Laisen, Ch. Z. Repert. 1896, 20. 317.) 2CuSO₄, 3ZnO+12H₂O. (Mailhe, A. ch. 1902, (7) 27. 169.)

Didymium sulphate, basic, D10O2, SO3= (DiO)2SO4

Insol in cold or boiling H.O. (Marignac) Slowly sol, in hot dil. HCl+An Easily sol. in cone, acids.

+8H2O, Precipitate (Hermann) Composition is 2DiaO3, 3SO3+3H2O or Di₂(SO₄)₂+D₁₂O₅H₈. (Frerichs and Smith.) Composition is 5D₁₂O₅, 3SO₅+2H₂O (Cleve, B 11. 910.)

Didymium sulphate, D12(SO4)2.

Anhydrous. By saturating cold H2O and warming the solution, the following results were obtained—100 pts H₂O dissolve at. 12° 18° 25° 38° 50°

43.1 25 8 20 6 13.0 11 0 pts. Dis(SO₄)a +6H2O H2O dissolves this salt very slowly; 100 pts H₂O dissolve 13 pts D₁₄(SO₄)s in 24 hours, and 16.4 pts m 2 days If solution is evap in vacuo until D₁₄(SO₄)s+ 8H₄O separates out, 34 pts. D₁₂(SO₄)₃ remain dissolved in 100 pts. H₂O

+5H₂O (Cleve.)

+8H₂O Solutions of this salt contain at 40° 50° 100° 11 7 8 8 6.5 1.6 pts. Di₂(SO₄)₂.

(Marignae, A. ch. (3) 38. 170.) +9H₂O. (Zschiesche, J. Pr 107, 75)

Didymium potassium sulphate, K18O4

Dia(SO₄)₃+2H₂O Sol in 63 pts H.O. Insol in sat. K.SO.+ Aq. (Marignac.)

3K₂SO₄, Di₄(SO₄)₃ Sol. in S3 pts. H₂O at

18° Insol. in cold, sl. sol in boiling aat.

18 Insai, in cold, st. soft in bounds eat.

K₂SO₄+Aq, 100 ccm. of which retain 55 mg.

Di₄O₃ in solution.* (Cleve.)

4K₂SO₄, Di₂(SO₄)₂ (Cleve.)

9K₂SO₄, 2Di₂(SO₄)₃+3H₂O (Cleve.)

Didymium sodium sulphate, Diz(SO4), Na₂SO₄, and +2H₂O

Sol. in 200 pts. H₂O (Marignae), and still less in sat. Na₂SO₄+Aq, 100 ccm. of which dissolve only 70 mg Di₂O₄ at ord. temp (Cleve)

Didymium thallous sulphate, (DisSO4)s. 3T1-SO4.

Di₂(SO₄)₁, Tl₂SO₄+2H₂O. Sol. in H₂O. (Zschiesche, J. pr. 107. 98)

Erbium sulphate, Er₂(SO₄)₃.

Anhydrous. Easily and rapidly sol. in H₂O. 100 pts. H₂O dissolve 43 pts. anhydrous salt at 0°.

-i-8H_{*}O. Less sol. in H_{*}O than anhydrous 100 pts H₂O dissolve 30 pts. Er_s(SO), +8H₂O (=23 pts. Er_z(SO₄)_z) at about 20°; at 100°, 100 pts. Er_z(SO₄)_z+8H₂O remain dissolved. Sat. solution deposits crystals when heated to 55°. (Hoglund)

100 g. of sat. solution of Er₂(SO₄)₂+8H₂O t 25° in H₂O contains 11.94 g. anhyd. Er₂(SO₄)₂. (Wirth, Z. anorg, 1912, 76, 174.)

Solubility of E1s(SO4)2+8H4O in H4SO4 at

N=equiv g H2SO in 1 l, of solvent. C=g oxide in 100 g of solution.

1	C-=g annyd, sait in 100 g of soldsion								
l.	N C C		N	С	C1				
Ŀ	11	3 64	7 618 6.00	6 685	0 9115	0.733			

(Wirth, Z. anorg 1912, 76, 174)

Insol. in methyl acetate. (Naumann. B. 1909, 42, 3790)

Erbium potassium sulphate, Er2(SO4)8, 3K-SO. Slowly sol, in H₂O. (Höglund.)

Erbium sodium sulphate, Er2(SO4)8, 5Na2SO4 +7H₂O. Sol, in H2O. (Cleve.)

Europium sulphate, Eu₂(SO₄)₃+8H₂O. Stable in the sir. (Urbain and Lacombe, C. R. 1904, 138, 628.)

Gadolinium sulphate, Gd₂(SO₄)₈+8H₂O.

Solubility in H2O

Temp	Pts of Gd ₂ (SO ₄)s in 100 pts H ₂ O
0° 9 3–10 6° 14 0° 25 0° 34 4°	3.98 3.33 2.80 2.40

(Benedicks, Z. anorg 1899, 22, 409-410.)

100 g. sat solution of Gd(SO₄)₃+8H₂O at 25° in H₂O contain 2,981 g. anhyd. Gd₂(SO₄)₅. (Wirth, Z. anorg. 1912, **76**. 174.)

8H ₂ O
N=equiv. g H ₂ SO ₄ in 1 l of solvent.
C=g, oxide in 100 g, of solution
0

C,=	g. =α	anhyd	Gda(S	04)4	m	100	Œ	of	sol
tion							Ŭ		

N	С	G)	N	С	CI
0 0 1 0 505 1 1	1 98 2 365	2 981 3 291 3 931 3 807	2 16 6 175 12 6	1 789 0 528 0 0521	0 8777

(Wirth)

Sol in sat, K2SO4+Aq.

Gadolinium potassium sulphate, Gd₂(SO₄)₈, K₂SO₄+2H₂O.

100 grams sat. solution in KaSO4+Aq contains 0 87—0.77 grams Gd₂O₂. (Benedicks, Z. anorg 1900, 22, 410.)

Gallium sulphate, Ga₂(SO₄)₂,

Not deliquescent, but very sol in H₂O. Sol. in 60% alcohol; msol, in ether. (Boisbaudran.)

Aqueous solution decomp into basic salt by boiling, which redissolves, however, on

Gallium potassium sulphate, Ga2K2(SO4)4+ 24H₂O.

(Soret, Arch. sc. phys. nat. 1885, 14. 96.)

Gallium rubidium sulphate, Rb2Ga2(SO4)4 $+24H_{2}O$ (Soret, Arch, sc. phys. nat. 1885, 14, 96)

Glucinum sulphate, basic, 3GlO, SO₃+4H₂O. Sol, in H.O. but decomp, by heating or dilution. (Berzelius.) 2GlO, SO₂+3H₂O Sol. in H₂O.

9GlO, SO₂+14H₂O (?) Precipitate. Insol, in H₂O. (Berzelius.) According to Debray, this salt when care-fully washed is GIO₂H₂.

Glucinum sulphate, GISO4.

Anhydrous. Nearly insol in H2O, but slowly attacked by cold, rapidly by hot H2O, and is converted into GISO4+4H2O before dissolving. (Parsons, Z. anorg. 1904, 42. 253.)

Sp. gr. of GISO4+Ag at 25°.

+Aq	Sp gr.
1—normal 1/2— " 1/4— " 1/4— "	1.0451 1 0229 1 0114 1 0027

(Wagner, Z. phys. Ch. 1890, 5, 35.)

H ₁ 80 ₄ +A ₁ % H ₂ 80 ₄	100 g of the solution con tnin g GISO.	Solid phase
5 23 9 61 18 70 34 00 40 35 45 51 50 63 56 59 63 24 65 24 73 64	8 212 8 429 7.944 6.603 5.631 5.773 6 628 5 438 3 640 2 244 2 128 2 185	 GISO ₄ +8H ₂ O

(Wirth, Z. anorg. 1913, 79, 359.) See also under +2, 4, and 6H₂O.

Insol. in liquid NHs. (Gore, Am. Ch. J., 1898, 20. 828. +H₂O. (Levi-Malvano, Z. anorg 1906, 48. 447.)

 $+2H_{2}O.$

Solubility in H₂O at t°.

e e	G GISO, per 100 g.			
	IT ₂ O	Solution		
80 91 4 105 119	84 76 97.77 118 4 149 3	45.87 49 42 54 21 59 88		

(Levi-Malvano.)

+4H₂O. Very sol. in H₂O. Sol. in its own weight of H2O at 14°, and in every proportion of boiling H₂O. Less sol. in dil. H₂SO₄+Aq than in water. (Debray, A. ch. (3) 44. 25.)

Solubility in H₂O at t°.

t°	g GISO, per 100 g (*			g GISO, per 100 g		
	H ₂ O	solution		H ₂ O	solution	
30 40 68 85	46 74 61 95	30 45 31 85 38 27 43 28	95 4 107 2 111	90 63 115.3 128.3	47 55 53 58 56 19	

(Levi-Malvano)

Sl. sol. in dilute, insol in absolute alcohol. Can be completely pptd. from GISO.+Aq by HC2H2O2. (Persoz.) Insol. in acetone. (Naumann, B. 1904, 37. 4329)

+6H.O Solubility in H₂() at t°

to	g Gl80, per 100 g			
	H ₂ O	solution		
31 50 72 2 77 4	52 23 60 67 74 94 81 87	34 32 37 77 42 85 45 01		

(Levi-Malyano.)

100 g, of the aqueous solution contain at $25^\circ, 8\ 212$ g, GlSO $_4$. (With, Z anorg, 1913, $79,\ 358.)$

Glucmum, iron (ferrous) sulphate, GISO4, FeSO+171/6H-0. Sol. in H₂O. (Klatzo, J. B. **1868**, 204.)

3GISO4, FeSO4+28H2O, Sol, in H.O. (Klatzo.) Do not exist. (Marignac, A ch. (4) 30.

Glucinum nickel sulphate, (Gl,N1)SO4+ 4H2O, or 7H2O. (Klatzo, J. B. 1868, 205.) Does not exist. (Atterberg, Sv. V. A. F. 1873, 4, 81.)

Glucinum potassium sulphate, GlSO₄, K₂SO₄ Indium potassium sulphate, InK(SO₄)₂+ +2H₂O₂ Sl. sol. in cold, slowly but more sol. in hot H.O. (Debray.) +3H₂O. (Klatzo.)

Glucinum potassium hydrogen sulphate. GIH2(SO4)2, 2K2SO4+4H2O. Easily sol. in H₂O. Partly decomp. by recrystallisation. (Atterberg.)

Glucinum sodium sulphate, 2GlSO4, 3Na2SO4

Glucinum zinc sulphate, 2GlSO4, 3ZnSO4+

+18H₂O. Sol, in H₄O, (Atterberg.)

35H₂O. Sol. in H₀O (Klatzo, J. B. 1868, 205) Does not exist. (Atterberg.)

Gold (auroauric) sulphate, Au₂(SO₄)₂, Decomp by moist air, H₂O, glacial acetic acid, or HNO₃+Aq (1.42 sp. gr.) Insol. in cone. H₂SO₄. (Schottlander, A. 217. 375.)

Gold (auric) sulphate, AugOs, 28Os+HgO. or Auryl hydrogen sulphate, (AuO)HSO4, Deliquescent Decomp. by H₂O. Sol. in HCl+Aq; not attacked by conc. HNO₃+ Aq. Sol. in 6 pts. conc. H₂SO₄. (Schottlander)

Gold (auric) potassium sulphate, Au₂(SO₄), K.SO. Not decomp, immediately by cold H₀O. (Schottlander.)

Hydrazine mercuric sulphate hydrazine. (N2H4)2SO4, 3HgSO4, 2N2H4. Insol. in H₂O. Sol. in H₂O containing HCl. (Ferratini, Gazz. ch. it. 1912, **42**. (1) 142.)

Hydroxylamine uranyl sulphate, (NH₂OH)₂, H₂SO₄, 2(UO₂)SO₄+5H₂O.

Extremely sol, in HoO from which it can be cryst. (Rimbach, Dissert, 1904.)

Indium sulphate, In₂(SO₂)₂ Easily sol, in H₀O. +9H₂O. Easily sol. in H₂O.

Indium hydrogen sulphate, InH(SO₄),+ Very deliquescent. (Meyer.)

Sol. in H_2O , but decomp. by boiling. (Rossler, J. pr. (2) 7. 14) (InO)₃K(SO_4)₂+3 H_2O . Insol. in H_2O . (Rossler.)

Indium rubidium sulphate. Ing(SO4)3, Rb2SO4+24H2O. 44.28 pts. are sol. in 100 pts. H₂O at 15°. (Chabrié, C. R. 1901, **132**. 473.) Melts in crystal H₂O at 42°. (Locke,

Am. Ch. J. 1901, 26, 183)

Indium sodium sulphate, InNa(SO₄)₀+4H₂O₄ Sol. in H₂O. (Rossler, J pr. (2) 7, 14.)

Iodine sulphate, I2(SO4)2. Decomp. by H₂O. (Fichter, Z. Ppt. anorg. 1915, 91. 140.)

Iodvi sulphate, (IO)2(SO4)2. Possible composition of Weber's (B. 20. 86) I2Os, 3SOs.

				1-1	ate.	
11	IQ:	ш	u s	uipi	unte.	

Sol, in H₂O or alcohol. (Berzelius.) Ir(SO₄)₃. Sol. in H₂O. (Rimbach, Z anorg. 1907, **52**. 409)

Iridium potassium sulphate, Ir2(SO4)2. K2SO4+24H2O.

Mpt. 102-103°.

Easily sol. in H2O. (Marino, Z. anorg. 1904, 42, 220.)

Ir.(SO4), 3K.SO4, Sol. in H2O or dil H₂SO₄+Aq; nearly insol. in sat. K₂SO₄+ Ag. (Boisbaudran, C. R. 96, 1406)

Iridium rubidium sulphate, Ir₂(SO₄)₄Rb₂, Sol. in cold; very sol, in hot HaO. (Marino,

Gazz. ch. rt 1903, 32, (2) 511.) Mpt. 108-109°. (Marino, Z. anorg. 1904, 42, 219.)

Tridium thallium sulphate, Ir. (SO4)3, Tl-SO4+

Very sol. in H2O. (Marino, Z. anorg. 1904, 42, 222.)

Iron (ferrous) sulphate, FeSO4.

 $+H_{\bullet}O$

Diet)

+2H₂O Not more sol, in H₂O than gyp-(Mitscherlich) sum.

+3H₂O Sol, in H₂O (Kane) -4H₂O Separates from conc FeSO₄+Aq

at SO +7H.O Efflorescent at 33°.

1 pt FeSO4+7H4O dissolves in 1 6 pts cold, and 0 3 bothing H2O

1 pt FeSO₄+7H₂O dissolves at 10° 15° 25° 33° 46° 60° 84° 96° 100° in 1 64 1 43 0 87 0 66 0 41 0.38 0 47 0 27 0.3 pts H₂O

(Brandes and Firnhaber, Br Arch 7 83) When hotled with insufficient HsO for solution a When boiled with manificant HaO for solution a wint by distals is formed which separates out Solubility mercesses up to 87.5°, and thus diminishes, owing to the above separation (Brandes, Pegg 20 831). Sol in 2 pis cold, and 1 pi boiling HiO (Foureroy), sol in 2 pis cold HaO at 18.75° (Abl); sol in 0 pis HaO at moderate heat, and 0.75 pt at 100° (Bergmann). 100 pis HaO at 16.5° dissolve 45–50 pts (Ure's 100°) (De's College 100°).

100 pts H2O dissolve pts FeSO4 at to

tº	Pts FeSO ₄	t°	Pts FeSO ₄	ţ°	Pts FeSO ₄
0 10 12 20	15 8 19 9 21 3 26 0	21 30 37	27 4 32 6 36 5	45 55 70	42 9 47 0 56 5

(Tobler, A. 95 198)

100 pts FeSO4+Aq sat. at 11-14° contain 17 02% FeSO4 (v. Hauer, J pr 103. 114.) 100 pts FeSO₄+Aq sat at 15° contain 37.2% FeSO₄+7H₂O; solution has sp. gr 1.2232. (Schiff, A 118. 362.)

Solubility in 100 pts H₂O at to.

t°	Pts FeSO ₄	t*	Pts FeSOs	t _o	Pts FeSO ₄
0 1 1 3 4 5 6 7 8 9 10 11 12 13 14 14 15 16 16 17 18 18 20 21 22 22 23 24 22 25 26 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	7 9 7 5 101.2 0 9 7 111.2 0 9 7 111.2 0 9 113 7 5 1 15 3 2 0 117 0 0 118 7 7 1 15 3 2 117 0 0 1 17 18 7 1 15 3 2 1 17 0 0 1 17 18 7 1 15 18 18 18 18 18 18 18 18 18 18 18 18 18	34 35 36 37 38 39 41 41 42 43 44 44 45 50 51 55 55 55 60 61 62 63 63 63 63 63 63 63 63 63 63 63 63 63	$\begin{array}{c} 37.1 \\ 0.1 $	67 68 69 70 71 72 73 74 75 76 77 80 81 82 83 84 85 88 89 91 92 92 98 99 99 99 99	65 1 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

(Mulder, Scheik Verhandel 1864. 141)

If solubility S=pts, anhydrous FeSO4 in 100 pts solution, S=13 5+0 3788t from -2° to +65°; S=37 5 constant from 65° to 98° S=37.5-0 6685t from 98° to 156°. Practi-cally insol at 156°. (Étard, C. R. 106. 740.)

Sat. FeSO.+Aq contains at:

--1° +5° 24° 34° 22 7 32.5% FeSO4. 13.0 15 1 26 3 37 7 37.8 37.8 36 7% FeSO. 36 4 152° 102° 112° 130° 17 3 2.5% FeSO4. 34 7 28 0

(Étard, A. ch. 1894, (7) 2. 553.)

100 g H₂O dissolve 26 69 g. FeSO, at 25° (Stortenbecker, Z phys. Ch. 1900, 34. 109.)

19 84

Solubility of FeSO₄ in H₂O at t°. 100 g H₂O dissolve g FeSO₄

t°	G FeSQ ₄	t°	G FeSO ₄
0 00	15 65	52.00	50 20
10 00	20 51	54 03	52 07
15,25	23 86	60 01	54 95
20 13	26 56	65 00	55 59
25 02	29 60	68 02	52 31
30 03	32 93	70 04	56 08
35,07	36 87	77 00	45 90
40 05	40 20	80 41	43 58
45 18	44 32	85 02	40 46
50 21	48 60	90 13	37 27

FeSO₄+7H₂O ₁₈ stable from —1 82° to +56 6°; FeSO₄+4H₂O from 56 6° to 64.4°, FeSO₄+H₂O above this point

(Fraenckel, Z anorg 1907, 55, 228.)

FeSO₄+Aq sat. at 30° contains 24.9 g. FeSO₄ in 100 g. of solution. (Schreine-makers, Z. phys. Ch. 1912, 71, 110.)

Sp gr of FeSO4+Ag at 15° $07 = 97 \text{ ReSO} = 47 \text{H} \cdot \text{O}$

. 6 - 6 1 000 14 - 1 111 O					
%	Sp gr	%	Sp gr	%	Sp gr.
1 2 3 4	1 005 1.011 1.016 1 021	15 16 17 18	I 082 I 088 I 094 I 100	28 29 30 31	1 161 1 168 1 174 1 180
5 6 7 8	1 027 1.032 1 037 1 043	19 20 21 22	1 106 1 112 1 118 1 125	32 33 34 35	1 187 1 193 1 200 1 206
9 10 11	1.048 1.054 1.059	23 24 25	1 131 1 137 1 143	36 37 38 39	1.213 1 219 1 226
12 13 14	1 065 1 071 1 077	26 27	1 149 1 155	40	1 232 1 239

(Gerlach, Z. anal. 8, 287)

Sp. gr. 16.6° of sat. solution = 1.219. (Greenish and Smith, Pharm. J. 1903, 71.881.) Sat. FeSO₄+Aq boils at 102.2° (Griffiths), and solution contains 64% FeSO4. Crust forms at 102.3°; highest temp. observed, 104.8°. (Gerlach, Z. anal. 26, 428.)

B.-pt of FeSO4+Aq containing pts, FeSO4

to 100 pts. H ₂ O						
Bpt.	Pts FeSO ₄	B-pt	Pts F			
100.5° 101.0	17 7 34 4	101.5°	50 58			

(Gerlach, Z. anal, 26, 433.)

e804

50 4

58 2

100 g. of the sat, solution contain 22.84 g. FeSO, at 25°. (Wirth, Z. anorg. 1913, 79. 364.)

(Kane.) Sol in hot HCl+Aq Somewhat sol. in conc H2SO4. (Bussy and Lecann)

Solubility in H₂SO₄+Aq at 25°. 100 g. of the H-SO:+Aq solution Solid phase contain g FeSO Normality 0 22.842.25 19 03 FeSO: +7.H2O 6 685 13 40 10 2 10 30 12 46 7 26 15 15 4 015 FeSO4+H4O

(Wirth, Z anorg. 1913, 79, 364)

0 1522

More sol in water containing NO than in pure H₂O (Gay, Bull Soc. (2) 44. 175.) Completely pptd from FeSO₄+Aq by glacual HC₂H₃O₂ (Persoz.)
Solubility in (NH₄)SO₄+Aq. See under (NH₁)₂SO₄.

Solubility in Li-SO. 4-Ag at 30°

ĺ		otuminty	In Piezo4+vd at on.
Ì	Compos the so	ution of lution	
	by wt FeSO ₄	% by wt LasSO4	Solid phuse
	24 87 22 45 21 15 18 79 16 51 16 18 16 04 15 39 12 68 5 32 3 74	0 4 00 5 58 11.16 15 81 16 52 16 49 16 80 18 31 22 15 23 15 25 1	FeSO _{4,} 7H ₂ C " " " " " " " " " " " La ₂ SO _{4,} H ₂ O " " " " "

(Schreinemakers, Z. phys. Ch. 1910, 71, 110.)

Solubility of FeSO₄, H₂O+Na₂SO₄, 10H₂O₄, in 100 g. H₂O at t

t°	Grams FeSO ₄	Grams NacSO4
0	18 06	6.13
15 5	25 05	15 97

(Koppel, Z. phys. Ch. 1905, 52, 405.) See also under FeNas(SO₄).

Insol. in liquid NH2. (Franklin, Am. Ch. J. 1898, 20. 828.) Insol. in liquid CO2. (Buchner, Z. phys. Ch. 1906, 54, 674) 100 pts. sat. solution of FeSO4 in 40% alcohol contains 0.3% FeSO4. (Schiff.)

(Anthon, J. pr. 14. 125) Alcohol and H₂SO₄ precipitate FeSO₄ from 1 2.614. (Wirth, Z anorg. 1914, **87**. 37.) FeSO4+Aq, also glacial acetic acid.

Anhydrous FeSO, is insol, in acetone. (Kiug and M'Elroy, 1893.)

Insol in acetone (Eidmann, C. C. 1899, II. 1014.)

100 g. sat. solution in gycol contain 6.0 g FeSO4 at ord, temp. (de Coninck) Insol in methyl acetate. (Naumann, B.

1909, 42. 3790); ethyl acetate (Naumann, B, 1904, 37. 3601.)

Tron (ferrous) sulphate, acid, 2FeO, 3SO₃,

This salt exists in contact with solutions containing SO1+1 637 H2O to about SO2+ 2.186 H₂O (Kenrick, J. phys. Chem 1908, 12, 704)

FeO. 2SO₂+H₂O This compd exists with solutions containing SO1+1 342 H2O to (about) SO₃+1.595 H₂O. (Kenrick) FeO, 4SO₃+3H₂O. This compd. is stable

with solutions containing from SO₁+1.122 G H₂O to (about) SO₃+1.342 H₂O Rapidly H sol in H₂O with ppt, of FeSO₄+H₂O. (Ken-Mm. Melanterite.

Iron (ferric) sulphate, basic, 10Fe₂O₃, SO₂+ H.O

(Athanasesco, C. R 103. 27.) 6Fe₂O₃, SO₃+10H₂O Insol in H₂O sol. in warm HCl+Aq (Scheerer, Pogg. 45. 188.)

4Fe₂O₂, SO₂+11H₂O. (Anthon, Repert. 81. 237) 3Fe₂O₃, $80_1 + 4H_2O$, Insol. in H₂O.

Rather easily sol, in acids. (Scheerer, Pogg. 44. 453; Meister, B 8. 771.)

2Fe₂O₃, SO₃+6H₂O. When pptd. from cold solutions, is sol. in Fe₂(SO₄)₃+Aq, but

insol, therein when pptd from hot solutions (Maug.) Only basic sulphate which is a true chem-

ical compound. (Pickering, Chem. Soc. 37. Min, Glockerte, Insol, in H2O, Sol, in

conc. H₂SO₄. +7H.O. (Meister.)

 $0_{c}H8+$ (Mühlhauser.) +15H2O. Min Pissophamite.

 Fe_2O_3 , $SO_3 = (FeO)_2SO_4 + 3H_2O$. Insol in H₂O. (Souberran, A. ch. 44. 329.) 3Fe₂O₃, 4SO₃+9H₂O. (Athanasesco.)

2Fe₂O₃, 3SO₃+8H₂O. Insol in H₂O. (Wittstein.) +18H₂O. Mun. Pibroferrite. Sl. sol in

cold, more easily in hot H2O Fe₂O₃, 2SO₄+10H₂O. Min. Stypticite. +15H₂O. Sol. in H₂O; decomp. by heat

or evaporation. (Muck, J. pr 99. 103.) 2Fe₂O₃, 5SO₂+13H₂O. Min. Copiapite $Fe_4S_4O_2+18H_2O=2Fe_2O_3$, $5SO_4+18H_2O$

a-Copiapit. This salt is in equilibrium at 25° | 1898, 20. 828.)

Insol, in alcohol of 0 905 sp., gr or less, with solutions in which the molecular ratio

(OH) Fe₂(SO₁)₄+13H₂O₃ β-Copiapit. This salt is in equilibrium at 25° with solutions in which the molecular ratio Fe₂O₂ SO₃ lies between 1:3.472 and 1:2.889. (Wirth, Z. anorg 1914, 87. 37.)

According to Pickering (Chem. Soc. 37. 807), all basic ferric sulphates are mixtures excepting 2Fe₂O₂, SO₂

Iron (ferric) sulphate, Fe₂(SO₄)₃,

18° (Z. anal. 27. 280).

Anhudrous. Slowly deliquescent. Nearly insol in H₄O, and HCl+Aq Insol in conce H₂SO₄. Very rapidly sol. in FeSO₄+Aq, even when very dil. (Barreswil, C. R. 20, 1366.) Sp. gr. of Fe₂(SO₄)₄+Aq. According to F =Franz at 17.5° (J. pr. (2) 5. 280); G=Ger-lach at 15° (Z. anal 28. 494); H=Hager at

10 20 % Fe₂(SO₄)₈, 1.0426 1.0854 1.1324 1.1826 1 096 1.205 H 1.046 1.097 1.151 1.208

40 % Fe₂(SO₄)₃, 1 2426 1.3090 1.3782 1 4506 1 331 1 478 1.271 1 337 1.411 1.490

50 60 % Fe₂(SO₄)₈. 1.5298 1.6148 1 7050 1.8006 G 1.650

Solubility in H-SO₄+Ac at 25°.

H ₂ SO ₄ +Aq	100 g of the solution
Normality	contain g Feg(SO ₄);
2 25	25 02
6 685	14 58
19 84	0 05

(Wirth, Z. anorg, 1913, 79, 364)

Solubility in Al₂(SO₄)₂+Aq at 25° 100 g of the solution contain

G. Al ₂ (SO ₄) ₂	G Fe ₂ (SO ₄) ₂
2 342 5 200 6 626 8 819 10 03 *10 23 10 70	44 97 12 14 38 83 35 82 34 02 32 42 31 90 31 91

*Solution sat with respect to both salts. (Wirth and Bakke, Z. anorg 1914, 87, 48,) See also under Al₂(SO₄)₃

Insol in liquid NH₁. (Gore, Am. Ch. J.

Completely pptd from Fe2(SO4)2+Aq by Iron (ferrous) hydrazine sulphate, FeH2(SO4)0. HC2H3O2. Sol, to large extent in alcohol. Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, J. pr. 1894, (2) 50. 331.) B. 1910, 43, 314) Insol in acetone

 $+xH_{*}O$ Very deliquescent, and sol. in H2O Conc. Fe2(SO4)3+Aq may be boiled without decomp., but dil. solutions are decomp. on heating. A solution containing 1 pt salt to 100 pts H₂O becomes turbed at 76°, 1 pt. to 200 pts., at 56°, 1 pt. to 400 pts., at 47°; 1 pt. to 800 pts., at 40°; 1 pt. to 1000 pts, at 38°; 1 pt. to 10,000 pts., at 14°. (Scheerer.)

+9H2O. Min. Coquimbite.

81.43 pts. are sol in 18 57 pts H₂O. (Wirth, Z. anorg. 1914, 87. 23) This salt is stable at 25° only in contact with solutions in which the molecular ratio

Fe₂O₃:SO₃ lies between 1:3.472 and 1: 6.699. (Wirth, Z. anorg. 1914, 87. 35.) +10H₂O Slowly sol in H₂O. (Oudemans, R. t. e 3. 331.)

Iron (ferroferric) sulphate, 6FeSO4,

 $Fe_{s}(SO_{s})_{a}+60H_{s}O.$ Sol in all proportions in H₂O. (Poumarède,

C. R. 18. 854) 3FeSO4, 2Fe2(SO4)a+12H2O Decomp by H₂O. Easily sol in dil HCl+Aq. Insol in

alcohol. (Abich, 1842.) FeSO₄, Fe₂(SO₄)₃+12H₂O. Mm. Voltaite Difficultly sol in H₂O.

FeO, Fe₂O₃, 6SO₃+15H₂O. Deliquescent. (Lefort, J Pharm. (4) 10.87)

Iron (ferrous) purosulphate, FeSOT. Deliquescent. Decomp by H₂O. (Bolas, Chem. Soc. (2) 12, 212.)

Iron (ferric) hydrogen sulphate, Fe2(SO4)2, H-SO4+8H-O.

This salt is in equilibrium at 25° only with solutions where the molecular ratio Fe₂O₃: SO, is more acid than 1.6.609 (Wirth and

Bakke, Z. anorg. 1914, 87. 34.)
Sat. solution of Fe₂(SO₄)₃, H₂SO₄+8H₂O
m abs. alcohol at 25° contains 8 g Fe₂O₄+ 17.18 g. SO, per 100 g. sat. solution. (Wirth

and Bakke. Decomp. by H2O. (Recouna, C. R. 1903, 137, 118.)

In contact with solutions containing 25% to 28%SO₄ at 25°, the stable solid is Fe₂O₄, 3SO:+10H2O. In contact with solutions containing more than 28%, the stable solid is Fe₂O₃, 4SO₃+10H₂O (Cameron and Robinson, J. phys. Chem 1907, 11. 650.)

Iron (ferroferric) hydrogen sulphate, Fe₂(SO₄)₃, FeSO₄, 2H₂SO₄,

Insol. in H₂O, but slowly decomp. thereby. Sol. in H2SO4. (Etard, C. R. 87, 602.)

2N2H4 1 pt. is sol. in 325 pts H₂O at 12°. (Curtius,

Iron (ferrous) magnesium sulphate, FeSO. MgSO₄+4H₂O₅ Sol. in H₂O. (Schrff.)

Iron (ferric) magnesium sulphate, Fe₂(SO₄), $MgSO_4 + 24H_0O_1$ (Bastick)

Iron (ferrous) magnesium potassium sulphate, 2K₂SO₄, FeSO₄, MgSO₄+12H₂O₅ Sol. in H.O. (Vohl. A 94, 57.)

Iron (ferric) manganous hydrogen sulphate, Feg(SO4) 2, 2MnSO4, H2SO4,

Insol in oold H₂O. (Étard.) Fe₂(SO₂)₃, 2MnSO₄, 3H₂SO₄. Sol. in H₂O. (Étard, C. R. 86, 1399.)

Iron (ferric) manganic sulphate, Fe₂(SO₄)₄, $Mn_2(SO_4)_3$ Insol in cold H2O; decomp. by hot H2O and HCl +Aq (Étard.)

Iron (ferrous) manganous potassium sulphate, FeSO₄, MnSO₄, 2K₂SO₄+12H₂O. Sol. in H₂O, (Vohl, A. 94. 57)

Iron (ferrous) nickel sulphate, 2FeSO4, 2NiSO4, H.SO4. (Etard, C. R., 87, 602.)

Iron (ferric) nickel sulphate, Fe2(SO4)3, NiSO4. 2H2SO4.

Insol. in H₂O, but gradually decomp. thereby. (Étard, C. R. 87, 602.)

Iron (ferrous) nickel potassium sulphate, FeSO4, NiSO4, 2K2SO4+12H2O. Sol. in H₂O. (Vohl. A. 94, 57.)

Iron (ferrous) potassium sulphate, FeSO, K2SO4.

+2H₂O (Marignac, Ann. Min. (5) 9, 19.)

Solubility in H₀O at t^o.

to.	% FeK ₁ (80 ₄₎₂	to.	% FcKs(SO4)
0 5 17 2 40 1 60	22.79 31.98 40.86 42.63	80 90 95	42.34 42.73 41.01

(Kuster and Thiel, Z. anorg. 1899, 21, 116.)

+4H ₂ O. Solubility in H ₂ O at t°.						
to.	% FeK ₂ (S() ₄) ₂	to.	% FaK:(SO:):			
0 5 17.2 40.1 60	22 94 26.79 32 41 35.68	80 90 95	40 46 43 82 44.11			

(Küster and Thiel.)

+6H₂O, 100 pts. H₂O dissolve at t°: 0° 10° 14.5° 16° 25°

19.6 24.5 29.1 30.9 36.5 pts. anhydrous salt, 35° 40° 55° 65° 70° 41 45 56 59.3 64.2 pts. anhydrous salt.

(Tobler, A. 95. 193.)

Solubility in H₂O at t°.

t°	% FeK ₃ (SO ₄) ₂	tº	% FeK:(801):
0 5 17.2 40 1	18.36 25 16 36 72	60 80	42 93 45 29

(Küster and Thiel.)

Iron (ferric) potassium sulphate, basic, $4Fe_2O_3$, K_2O , $7SO_3+9H_2O=4(Fe_2O_3$, $2H_2O$, SO_3), $K_2SO_4+7H_2O$.

Insol. in boiling H₂O. Sl. sol. in HCl+Aq, more readtly in squa regia. (Rammelsberg.) 3Fe₂O₂, K₂O₃ 4SO₄+6H₂O = K(FeO)₂(SO₂) +3H₂O. Min. Jarostde. Fe₂O₃, H₂O₃ 2SO₂, 2K₂SO₄+5H₂O. Sol. in 6 pts. cold H₂O. Solution soon decomposes.

(Maus, Pogg 11. 78.) Sol in 12.5 pts H₂O at 10°. (Anthon, Repert. 76. 361.)

Formula is given as 3Fe₂O₃, 5K₂O, 12SO₂+18H₂O by Marignac. 3Fe₂O₃, 6SO₃, 2K₂SO₄+22H₂O. Sol. when moist in H₂O. Solution soon decomposes.

Insol. in alcohol. (Soubeiran, A. ch. 44. 329.) 3Fe₂O₃, 7SO₃, 5K₃SO₄+12H₂O, and +17H₂O. (Scheerer, Pogg. 87. 81.) 2Fe₂O₃, 5SO₄, 3K₂SO₄+9H₃O. (S.)

2Fe₂O₈, 5SO₈, 3K₂SO₄+9H₂O. (S.) 3Fe₂O₈, 8SO₈, 4K₂SO₄+20H₂O and 24H₂O (S.)

Iron (ferric) potassium sulphate, K₂SO₄,

Insol. in H₂O, but is gradually decompthereby. (Grimm and Ramdohr, Å. 98. 127.) +2H₂O. Nearly usol. in H₂O. (Weinland, Z. anorg 1913, 84. 364.)

K₃Fe₃(SO₄₎₄+24H₂O. Iron alum. Sol, in 5 pts. H₂O at 12.5°. (Anthon.) Aqueous solution is decomp, by heating. Insol, in alcohol.

Sp. gr. of aqueous solution. According to

G=Gerlach, at 15° (Z. anal. 28, 496); F= Franz, at 17.5° (J. pr. (2) 5, 288), containing: 5 10 15% K₂Fe₂(SO₄)₄+24H₂O, F 1.0268 1.0466 1.0672 G 1.025 1.0507 1.0773

20 25 30% K₂Fe₂(SO₄)₄+24H₂O, F 1.0894 1.1136 1.1422 G 1.1050 1.1340 1,1645

> 35 % K₂Fe₂(SO₄)₄+24H₂O. G 1.1967.

G 1.1967.

Melts in crystal H₂O at 28°. (Locke, Am. Ch. J. 1901, 26. 183.) Fe₃(SO₂)₄, 3K₃SO₄. Insol. in H₄O, but slowly decomp. thereby. (Étard, C. R. 84. 1089.)

Iron (ferric) potassium sulphate sulphite. See Sulphite sulphate, ferric potassium.

Iron (ferrous) potassium zinc sulphate, FeSO₄, 2K₂SO₄, ZnSO₄+12H₂O.
Sol. in H₂O.

Iron (ferrous) rubidium sulphate, FeSO, RbsSO,+6HsO.

Sol. in H₂O (Tutton, Chem. Soc. **63**, 337.) 1 1 H₂O dissolves 242 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27, 459.)

Iron (ferric) rubidium sulphate, Rb₂Fe₃ (SO₄)₂+24H₂O.

Solubility in H₂O.

Temp.	G per litre	Gram mols. of anhydrous salt per litre
25 30 35	97 4 202 4 Basic salt formed	0 294 0 617

(Locke, Am. Ch. J 1901; 26. 180.)

Iron (ferrous) sodium sulphate, FeSO₄, Ns₂SO₄+4H₂O. Sol. in H₂O. (Marignac, Ann. Min. (5) 9. 25.)

Solubility of FeNa₂(SO₄)₂+4H₂O in 100 g H₂O at t⁹

t°	Grams Fe804	Grams Na ₂ SO ₄
21.8	24 34	22.51
24.92	23 62	22 04
34.95	23 91	21 83
40	24 01	22 62

(Koppel, Z. phys Ch. 1905, 52, 406.)

978	SULPHATE, IRON SODIUM, BASIC							
Solubility of FeNa ₂ (SO ₄) ₂ 4H ₂ O+FeSO ₄ 7H ₂ O in 100 g H ₂ O at t°.			Iron (ferrous)	sulphate nitric oxide, FeSO4,			
f.o	grams FeSO ₄	grany; Na ₂ SO ₄	t°	Frams PoSO ₄	grams Na ₂ SO ₄	dimini	shed by	lity of NO in FeSO ₄ +Aq is the presence of H ₂ SO ₄ , HCl, id and by the presence of cer-
18 8 23 27	26 63 28 82 30 95	20 28 18 40 16 68	31° 35° 40°	33 99 35.66 39 98	14.41 13.85 11.92	tain se	lts. (1\ (0)SO4	fanchot, A. 1910, 372, 157.) , FeSO ₄ +13H ₂ O. Decomp. in in water. (Manchot)
(Koppel.) Schubility of FeNa ₂ (SO ₄) ₂ 4H ₄ O + Na ₂ SO ₄ 10H ₄ O in 100 g H ₂ O at t°.		Lanthanum sulphate, basic, 2La ₂ O ₃ , 3SO ₃ + 3H ₂ O. Precipitate. (Frerichs and Smrth.)						
~ t°	grams FeSO:	grams NasS0	ţo.	grams FeSO ₄	grams NasSO ₄	B 11.	nula is	3La ₂ O ₅ , SO ₅ +xH ₂ O. (Cleve,
18 8 23	27 28 20.31	22 16 26 48	28° 31°	11 28 6 95	35 94 44 75	Anh	udrous.	dphate, La ₂ (SO ₄) ₃ . Much less sol. in warm than
	anhydr	ous) in l	2(SO ₄)2 100 g. H	[₂O at t		in cold H ₂ O, 1 2–3°, a to 13°;	H₂O. f added and the but if I	1 pt. is sol. in less than 6 pts 1 in small portions thereto at temperature not allowed to rise neated to 30°, La ₂ (SO ₄) ₂ +9H ₂ O
	to	grams	FeSO ₄	grums	Na ₂ 80 ₄	separa (Mosa	tes out	until the solution is solid,
3		6		46 46		100 at 16.5	pts. H ₁	O dissolve 2.208 pts. La ₂ (SO ₄) ₂) pts. at 18°; 1.641 pts. at 34°
Sec.	lee und	(Kor				The	solubili	ler $+9H_2O$, ty of $La_2(SO_4)_8$ in H_2O is dim-
See also under FeSO ₄ Iron (ferric) sodium sulphate, basic, 2Na ₂ O, Fe ₂ O ₅ , 4SO ₅ +7H ₂ O.			2Na₂O,	inished by the presence of (NH ₄) ₁ SO ₄ , K ₂ SO ₄ or Na ₁ SO ₄ . (Barre, C. R. 1910, 151 . 871.)				
Only sl, sol, in H ₂ O with decomp. (Skrabal,		Solubility in (NH ₄) ₂ SO ₄ +Aq at 18°.						
Z. anorg. 1904, 38, 319.) +8H ₂ O. Min Urusite. Insol. in H ₂ O; easily sol. in HCl+Aq.			Pts per H	100 pts sO				
3Na ₂ with de	O, Fe ₂ C), 680s (Skrabs	+6H ₂ O	. Sol.	in H ₂ O	ĝ.	3	Solid phase
4Fe ₂ (Ο ₃ , Νε ₂ (), 5SO ₂ -	+9H ₂ O			NE0,580	(SO4)	
(Scheer	er, Pog), diffica 3. 45. 19	1111y 801 0.)	mH	л+Aq.	S	-3	
Iron (f	arric) so 3H ₂ O.	dium s	ulphate,	[Fe(SC	$_{4})_{5}]\mathrm{Na}_{5}$	0.00 4.011	2 130	La ₂ (SO ₄) ₃ +9H ₂ O La ₂ (SO ₄) ₃ , (NH ₄) ₂ SO ₄ +2H ₂ O
Ppt. Nearly insol. in H ₂ O. (Weinland, Z.			8.727	0.279	11479-047-21140			
	1913, 84			-14-	T-00	18.241 27 887	0 476	"
773	sO_4+6					36 112 47 486		2La ₂ (SO ₄) ₃ , 5(NH ₄) ₂ SO ₄
A ch.	y decom (4) 5. 56	p. by 80	lution ir	ı H₂O. (Willm,	53 823	0 067	La ₂ (SO ₄) ₃ , 5(NH ₄) ₂ SO ₄
Iron (ferric) thallium sulphate, Tl ₂ Fe ₂ (SO ₄) ₄ +24H ₂ O.		65 286 73 782		и				
Not efflorescent. Very easily sol, in H ₂ O., 361.5 g. anhydrous, or 646 g. hydrated		(Barre)						
sait are	sol. in	1 I. H ₂ C	at 25°.	. or 0.79	99 mol. l	-		in K ₂ SO ₄ +Aq at 16 5°
of the s	nhydro n crysta	us salt is al H ₂ O	sol. in ;	11 H ₂ O	at 25°.	K ₂ SO ₄	Int(SO	—] Sond Phase
Iron (fe			hate, F	eSO ₄ , Zi	nSO ₈ +	0.00	2.19	B La ₂ (SO ₄) ₂ +9H ₂ O
		804, H ₂ 8	O. (É	tard, C.	R. 87.	0.247 0.496 0.846	0.72 0.26 0.18	7 La ₂ (SO ₄) ₃ , K ₄ SO ₄ +2H ₂ O
Iron (fe	erric) zis 24H ₂ O.	nc sulph	ate, Fe	(SO ₄),	ZnSO4	1 029 1 516	0 05	Ł La ₂ (SO ₄) ₃ , 5K ₂ SO ₄
(Bast	ick.)							(Barre.)

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Sol	ubility i	n Na ₂ SO ₄ +Aq at 18°.
0 00 2 130 La ₂ (SO ₂) ₂ +9H ₂ O 3 935 5 0 997 La ₂ (SO ₂) ₃ , Na ₂ SO ₄ 0.689 0 353 0.774 0 299 1.136 0 129 " 2 480 0 044 4 " 3 802 0 019 "	Pts pet 100 pts H ₂ O		Solid phase
0 395 0 907 La ₂ (SO ₄) ₅ Na ₂ SO ₄ 0.689 0 353 0.774 0 299 1.136 0 129 " 2 480 0 044 " 3 802 0 019 "	Nas804	Las(SO4)s	
9.046 0 010	0 395 0.689 0.774 1.136 2 480	0 997 0 353 0 299 0 129 0 044	La ₂ (SO ₄)3, Na ₂ SO ₄ " " " " " "

(Barre)

Insol. in liquid NH₃ (Gore, Am. Ch. J. Lead sulphate, basic, 2PbO, SO₃. 1898, 20, 830.) Insol. in acetone. (Naumann, B. 1904,

37, 4329.) +9H₂O. Sol. in 42.5 pts. H₂O, calculated as anhydrous salt, at 23°, and 115 pts. H₂O at 100°. (Mosander.)

Solubility in H₂O.

100 pts H ₂ O dissolve	pts La ₂ (SO ₄) ₂ at t ^o .
(°	Pts L12(SO4):
0	3.02
14 30	2 60 1 90
50	1 49
75	0 94

0 68 (Muthmann and Rolig, B. 1898, 31, 1723.)

Solubility in H₂SO₄+Aq at 25°.

Normality H-SO ₄	In 100 g of the hquid are dissolved		Solid phase
115:04	g, oxide	g sulphate	
0	1 43	2 483	Lea(80.) +9H.(

0 0.505 1 10 2 16 3 39 4 321 6 685	1.43 1 69 1.796 1 818 1.42 1 11 0 5309	2.483 2 934 3 118 3.156 2 465 1.927 0 9217	La ₂ (SO ₄) ₃ +9H ₂ O
6 685 9 68 12 60 15 15	0 5309 0 2659 0 2136 0 177	0 9217 0 4617 0 3709 0 3073	и и и

(With, Z anorg 1912, 76, 189)

Lanthanum hydrogen sulphate, La(SO4H)2. (Brauner, Z. anorg, 1904, 38, 330,)

Lanthanum potassium sulphate, La2(SO4)2. K,SO4+2H,O. La₂(SO₄)₁, 5K₂SO₄. (Barre, C. R. 1910, **151.** 872.) Lag(SO4), 3K2SO4. Sl. sol. in H2O. Insol.

in sat. K₂SO₄+Aq. (Cleve.)

La₂(SO₄)₄, 4K₂SO₄. As above. 2La₂(SO₄), 9K₂SO₄. As above. (Cleve.)

Lanthanum rubidium sulfhate. La₂(SO₄)₂, Rb₂SO₄.

(Baskerville, J. Am. Chem. Soc. 1904, 26. +2H₂O, (Baskerville.)

3La₁(SO₄)₈, 2Rb₁SO₄, (Baskerville.)

Lanthanum sodium sulphate, La2(SO4)3, Na2SO4+2H2O. Sl. sol. in H₂O. (Cleve.) (Barre, C. R. 1910, 151, 872.)

Not completely insol, in H2O. Decomp. by acids, even dil. HC₂H₂O₂+Aq, with formation of PbSO₄. (Barford, 1869.)
0.050 millimole calc. as Pb 18 sol. in 1 l.

H₂O at 18°. (Pleissner, C. C. 1907, II. 1056.) 5PbO, 3SO₃. (Frankland, Proc Roy Soc

46. 364 Pb₃O₄, 2SO₃. (Frankland)

3PbO, PbSO₄+H₂O. Ppt. (Strömholm, Z. anorg. 1904, 38, 442) Pb4(SO4)(OH)2. 0.106 millimole calc. as Pb is sol, in 1 liter H₂O at 18°. (Pleissner, C. C. 1907. II, 1056.)

Lead sulphate, PbSO4.

Sol in 22.816 pts. H₂O at 11°. (Fresenius,

A 59, 125) Sol in 31,569 pts. H₂O at 15° (Rodwell, C N. 11, 50)

Sol. in 13,000 pts. H₂O. (Kremers, Pogg. 85. 247.) Calculated from electrical conductivity of

PbSO₄+Aq, 11 H₄O dissolves 46 mg. PbSO₄ at 18°. (Kohlrausch and Rose, Z. phys Ch. 12. 241.)

4.23×10-2 gr. are dissolved in 1 liter of sat. solution at 20°; 4.41×10° at 25°. (Böttger,

Z. phys. Ch. 1903, 46, 604) 1 1 H₄O dissolves 41 mg. PbSO₄ at 18° (Kohlrausch, Z. phys Ch. 1904, 50. 356)

0 126 millimole Pb is sol. in 1 liter H₂O at 18°. (Pleissner C. C. **1907**, II. 1056.)

40 mg. are dissolved in 1 l. of sat. solution at 18°. (Kohlrausch, Z phys Ch 1908, 64. 0.0824 g. PbSO₄ is sol. in 1000 cc. H₂O

at 18° and also at 100°. The fact that PbSO dissolves in H₁O is ascribed to hydrolysis, and in support of this it is shown that the solubility of hydrated oxide of lead, PbO, H₂O, in dil H₂SO₄ is the same as the solubility of PbSO₄ in H₂O (Schnal, C. R. 1909, 148. 1895.)

1 I H₂O dissolves 26 mg. at 18°; 30 mg. at 25°; 38 mg. at 37°. (Beck and Stegmuller, Arb. K. Gesund, Amt. 1910, 34, 447.)

Solubility in H₂O at t°.

(Mıllimols per l)				
	t°	0	PbSO ₄	
	18 25 37		0 126 0 144 0 183	

(Beck and Steemuller, Ath. Gesund Amt. 1910, 34, 446.)

Sol. in hot conc. HCl+Aq. (Fresenius.) Solubility of PbSO4 in HCl+Aq

Sp gr. of	% HCl in	Pts HCl+Aq
HCl+Aq	HCl+Aq	for 1 pt PbSO ₄
1 0519	10 602	681 89
1 0800	16 310	281 73
1 1070	22 010	105 65
1 1359	27 525	47 30
1 1570	31 602	35 03

(Rodwell, Chem. Soc. 15, 59.) Solubility of PbSO4 in HCl+Aq at to. (Mullimola near 1)

	(Millituois, pet 1)				
t °	0 1N	0 2 N	0 an	0 4N	
18 25 37	0 126 0 144 0 183	1 72 2 07 2 63	2 67 3 14 4 06	3 63 4 29 5 43	

(Beck and Stegmuller, Arb. K. Gesund Amt. 1910. 34, 446)

Above measurements in HCl+Ao show solubility directly proportional to the hydro-gen ions (Beck and Stermuller.) Sol. in HNO1+Aq, and more sol. in hot or

cone, than in cold or dil, HNOs+Aq. Sol in 172 pts. HNO1+Ag of 1 144 sp. gr. at 12.5°. (Bischof.) Pptd. from HNO; solution by dil. H;SO;+

Ag and not by H.O. (Bischof, 1827.)

Solubility of PbSO4 in HNO3+Aq

Sp gr of	% HNOs in	Pts HNOs+Aq
HNO+Aq	HNOs+Aq	for 1 pt. PbSOs
1 079	11 55	303 10
1.123	17.50	173 75
1.250	34.00	127 48
1 420	60 00	10282 78

(Rodwell, Chem. Soc. 15, 59.) Solubility in HNO₂ at 18°. (Mıllimols per l)

HNO:	Pb8O4
0.1N	0.506
0.2N	0.844
0.3N	1.13
0.4N	1.44

(Beck and Stegmüller)

Sol. in 36,504 pts. dil. HoSO4+An. (Prosenius.) See also under solubility in alcohol Sl. sol. in cone. H₂SO₄, from which it is partially pptd. by H₂O or completely by alcohol (Presenius.)

100 pts cone H₂SO₄ dissolve 6 pts. PbSO₄. (Schultz, Pogg 133, 137.) Cone, H₂SO₄ dissolves 0 005 pt. PbSO₄.

(Ure) 100 pts HoSO dissolve 0 13 pt. PbSO and 100 pts furning H2SO4 dissolve 4.19 pts.

(Struve, Z anal 9. 31.) More sol in commercial H-SO, than in the

more conc. acid. (Hayes) 100 pts H₂SO₄+Aq of 1 841 sp gr dissolve 0 039 pts PbSO₄; of 1.793 sp. gr dissolve 0.011 pt PbSO₄; of 1.540 sp. gr. dissolve 0 003 pt PbSO4. Presence of SO₂ does not increase the solu-

rissource of SU3 coses not increases the soil-bility; HNO, increases the soil-bility some-what, : e, 100 pts H₂SO₄+Aq of 1.841 sp. gr. with 5 pts HNO₂ of 1.825 sp. gr. dussolve 0.044 pt PbSO₄; 100 pts H₂SO₄ of 1.749 sp. gr with 5 pts HNO₂ of 1.825 sp. gr. dussolve 0.014 pt PbSO₅; 100 pts H₂SO₅ of 1.812 sp. gr. with 5 pts HNO₄ of 1.832 sp. gr. dussolve gr. with 5 pts HNO₄ of 1.832 sp. gr. dussolve

only a trace Nitrous oxides do not increase the action. (Kolb, Dingl. 209, 268)

Solubility in dil. HoSO4+Aq at 18°. (G. per 1.)

H ₂ SO ₄	PbSO ₄	H ₂ SO ₄	PbSO ₄
0	0.0382	0 0245	0 0194
0.0049	0.0333	0 0490	0 0130
0 0098	0.0306	0 4904	0.0052

(Pleissner, Arb. K Gesund. Amt. 1907, 26.

A trace of H2SO4 has a considerable effect in reducing the solubility of PbSO, in HaO. (Sehnal, C. R. 1909, 148, 1395.)

Solubility in dil. HoSO4+Aq at 20°. (G. per I.)

+OScH	PbSO4	H28O4	PbSO.
0	0.082	0 0980	0.013
0 0098	0.051	0 4900	0 006
0 0196	0.025	0 9800	0

(Sehnal.)

Pptd. from solution in H₂SO₄ by HCl. (Bolley, A. 91, 113.)

Not more most, in dil. HC2H2O2+Aq than in H₂O. (Bischof.)

Solubility in other acids is prevented by great excess of H₂SO₄. (Wackenroder) Sol. in warm NH₄OH+Aq, separating on Completely sol in warm KOH or ooling. NaOH+Aq.

Decomp. by boiling with K2CO2, Na2CO3, and (NH4)2CO3+Aq. Sol in NH4 salts +Aq, but repptd. by

H₂SO₄+Aq. (Fresenius, A 59, 125) The best solvents of the NH, salts are the nitrate, citrate, and tartrate; the two latter should be strongly alkaline with NHOH+Ag (Wackemoder

Sol, in NH₄Cl+Aq at 12 5-25° Sl. decomp by NaCl+Aq (Bley)

11, sat NaCl+Aq dissolves 0.66 g PbSO. (Becquerel.) Sol. in 100 pts. cold cone NaCl+Aq, and

PbCl₂ is deposited after a few hours (Field) Solubility of PbSO4 in NaCl+Aq at 18°. (Millimols ner 1)

NaCl	PbSO ₄
0 1N 0 2N 0 3N 0 4N	0 546 0 904 1 28 1 68

(Beck and Stegmüller, Arb A. Gesund. Amt 1910, 34, 446)

Sol in Fe₂Cl₅+Aq. (Fresenius, Z anal 19. 419) Sol in Na₂S₂O₃+Aq (Lowe)

Sol in (NH₄)₂SO₄+Aq. (Rose) Solubility of PbSO₄+PbSO₄, K₂SO₄ in H₂O

K-SO4 g in 100 Mol in Solid phase cc of 100 cc of solution solution 0 195 | 0 0112 | K₂SO₄, PbSO₄+PbSO₄ 0.396 0 0227

(Bronsted, Z phys Ch. 1911, 77. 316.) Sol m 47 pts NH₄C₂H₄O₂+Aq) 1 036 sp gr), and 969 pts NH₄NQ₂+Aq (1.269 sp. gr);

gr), and sous pris INILLANGS TANGEL 2008 SP. BT.), trom the solution in NH₄CSH₁O₂ to its pptid by H₂SO₄ on K₂SO₄, from solution in NH₄NO₂ by K₂SO₄, but not by H₂SO₄. (Bischof.) Sol. in acctates of NH₄, Na, K, Ca, Al, and Mg. (Mercer.)

Solubility in NH₄C₂H₄O₂+Aq Excess of PbSO4 was boiled with solution of NH.C.H.O.+Aq of varying conc

Q.,	g PhSO4 contained in 5 cc solution		
NH C:H:O:	Hot	Cooled	Cooled 24 hrs
28 30 32 35 37 40 45	0 356 0 418 0 494 0 513 0 529 0 539 0 555	0 451 0 452 0 488	0 224 0 242 0 238 0 263

(Dunnington and Long, Am Ch. J 1899, 22. dissolve l pt PbSO4. (Stadel, Z anal. 2, 180)

Solubility in ammonium acetate+Aq at 25°.

NILCoH-Os	* Solubility o	f PbsO ₄
0 0 103 5 207 1	Millimols (Nr 1	g. pet l
103 5	0 134 2 10 4 55 10 10	0 041 0 636 1 38 3 06

(Noves and Whitcomb, J Am Chem. Sos. 1905, 27, 756.)

Solubility in KC₂H₄O₂+Aq at 25°. Solid phase PhSO. + PhK. (SO.).

100210	berraci r so	04 1 x -> xxx/(
	Composition of	f the solution	6
4 33 9 03 17 81	Pb(C ₂ H ₃ O ₃); 2 54 3 55 5 43	KC ₄ H ₃ O ₂ 26.58 28.82 28.93	9.83 11 40 19 41

(Fox. Chem. Soc. 1909, 95. 887.)

100 pts HaO containing a drop of HC2HaO2 and 2.05 pts NaC₂H₂O₂ dissolve 0.054 pt PbSO₄, containing 8.2 pts NaC₂H₂O₂ dissolve 0.900 pt. PbSO4; containing 41 0 pts NaC2H4O2 dissolve 11 200 pts PbSO4 (Dibbits, Z. anal, 1874, 13, 139)

Solubility in NaC2H2O2+Aq at 25°.

	Composition of	f the solutions	,
% Na acetato	% Po acctate	% NasSOs	% H ₁ O
6 69	0.78	0 34	92.19
11 76	2 73	1 26	84.25
16 90 19 92	5 70 8 24	2 49 3 60	68 24
21.51	10 75	4 68	63 10
6 95	0.81	0.35	91 90

The proportion of sulphate in solution in each case corresponded with the amount of Pb present, but was calculated to sodium sulphate, since Na₅SO₄+10H₂O cryst from the solutions on cooling. The solid phase in these solutions was PbSO₄

(Fox, Chem. Soc. 1909, 95, 887.)

m Mn(C₂H₃O₂)₂, Zn(C2H2O2)2 Ni(C2H2O2)2, and Cu(C2H2O2)2, but not in Hg(C2H2O2)2 or AgC3H3O2+Aq

Solubility in KC2H4O2+Aq is not less than that in NaC2H4O2+Aq. (Dibbits, Z. anal 13, 137) Insol in Pb(C2H3O2)2+Aq (Smith.)

Sol. in basic lead acetate +Aq, but not in neutral Pb(C2H3O2)2+Aq. (Stammer, Z. anal 23, 67 12 2 pts Ca(C2H4O2)2 in very dil solution

Sol in Al(C2H2O2) +Aq (Lennsen)

Very easily and abundantly sol in NH4 tartrate +Aq. (Wohler A 34, 235)

Even when native, easily sol, in NH4 citrate +Aq. (Smith.) •

Insol in alcohol (18%) and H2SO4 when NH, acetate, K tartrate, or NH, succinate are present Insol. in alcohol (18%) and H2SO4 or (NH4)2SO4 when Na acetate, Na or NH4 oxalate are present Sol. in NH. dicutrate and K trigitrate in presence of H-SO4, in NH4 successed and NH4 acctate in presence of (NH4)2SO4; and in NH4 citrate in presence of H₂SO₄ or (NH₄)₂SO₄ (Storer, C. N. 21. 17)

Alcohol (59%) alone, or with ethylsulphuric acid or sugar, does not dissolve Pb by 3 months action. (Storer)

(Naumann, B. 1904, acetate (Naumann, Insol. in acetone. 4329), methyl acetate (Naumann, B. 1909, 42, 3790); ethyl acetate (Naumann, B. 1910, 43, 314.)

Min. Anglesite Sol in cold citric soid +Ac. (Bolton, C. N. 37, 14)

Lead hydrogen sulphate, PbSO4, H2SO4+H2O. Decomp by H₂O.

Lead pyrosulphate, Pb S₂O₇ Decomp. by HaO. (Schultz.)

Lead potassium sulphate, PbSO4, K2SO4.

When PbSO4 is added to potassium acetate +Aq at 25° a double salt, PbK₂(SO₄)₂ is formed. This salt is insol, in the solution which contains only potassium acetate and lead acetate. (Fox, Chem. Soc 1909, 95.

882.) Decomp, by H₂O. Stable only in solutions of K.SO., containing at least 0.56% K.SO., at 7°, 0.62% at 17°; 1.09% at 50°; 1.37% at 75°; 1.69% at 100°. (Barre, C R 1909, 149. 2941

Lead sulphate chloride, PbSO4, 2PbCl2+ H,0.

Insol in H₂O or NaCl+Aq (Becquerel, C. R. 20, 1523)

Lead sulphate fluoride, PbSO4, 2PbF2. Not decomp by H2SO4. (Lonyet, C. R 24. 434)

Lithium sulphate, L₁₂SO₄.

More sol, in cold than in hot H₂O. 100 pts. HrO dissolve 34 6 pts LigSO4 at 18° (Wittstein.)

100 pts. H₂O dissolve pts L₁₂SO₄ at t⁶

t°	Pts. LisSOs	f.o	Pts LagSO4	t°	Pta LuSO4
0 20	35.34 34.36	45 65	32 38 30 3	100	29.24

(Kremers, Pogg. 95, 468)

Sat. Li-SO. + Ag contains at: -20° -16° -15° -12° 18 4 22.5 22 6 24 4.% Li.SO.

_____0 -L15° 4-90° 25.7 25 3 23 9 % Li₂SO₄, (Étard, A. ch. 1894, (7) 2, 547.)

Sat. solution boils at 105°. (Kremers.) Sp. gr. of Li₂SO₄+Aq at 19.5° containing: 6 5 7.4 12 5 15 3% Li₂SO₄, 1.098 1.05 1.06 1 118

24.4 29.4 % L₁₂SO₄. 22 6 1 167 1.178 1.208 (Kremers, Pogg. 114, 47.)

Sp. gr. of LigSO4+Aq at 15° containing 5% Li₂SO₄=1 0430, 10% Li₂SO₄=1 0877. (Kohlrausch, W. Ann 1879, 1)

Sp. or. of Li-SO. - Ac at 25°

whi Bu or sartes i	1 4 1
Concentration of LasSO ₄	Sp gr.
1—normal 1/2— " 1/4— "	1.0453 1.0234 1.0115 1.0057

(Wagner, Z. phys. Ch. 1890. 5. 38.)

au 1097109

Sp. gr. of Li₂SO₄+Aq.

36 LasSO₄ g in 1000 g

0 1 000000 2.9198 1 002589	of solution	Op. 81 10/10
16 0461 1.014093		

(Dirken, Z. phys. Ch. 1897, 24, 109)

Sp. gr of Li2SO4+Aq at 20°.

Normality of LisSO ₄ +Aq	% LaSO:	Sp gr
2 60	23 48	1 2330
1 96	18 53	1 1650
1.708	16 41	1.1449
1 320	13 01	1 1133
0 747	7 71	1.0678

(Forchheimer, Z. phys Ch 1900, 34, 24)

Insol, in SO₄. (Weber, B 17, 2497.) 10 ccm. of sat. Li₂SO₄ in absolute H₂SO₄ contain approx 2 719 g. Li₂SO₄. (Bergius, Z. phys. Ch 1910, **72**, 355.)

Solubility in H₂SO₄+Aq at 30°.

Composition,	of the solution	
% by wt II ₄ SO ₄	% by wt. LagSO4	Solid phase
5 05 12 23 15 37 16 60 32 70 36 90 42 98 48 90 52 72 54 54 55 08 61 46 61 82 62 14 62 49 65 70 69 40 77 30	22 74 20 45 19 11 19 10 13 37 11 90 10 57 10 20 11 44 12 92 13 69 13 87 17 10 17 97 18 89 16 55 13 75	LipSO4, HpO
78 23 81.20 81 70	11 64 13 28 13 85	# #
82 30 83 43	15 50 15 65	ii ii

(Van Dorp, Z phys Ch 1910, 73, 289.)

Solution in H₂SO₄ contains 17 2% Li₂SO₄ at 30° (Van Dorp, Z. phys Ch 1913, **86**, 112)

Solubility of $\text{Li}_2\text{SO}_4+\text{Th}(\text{SO}_4)_2$ in H_2O at $^2_9\text{25}^\circ$.

Solid phase, Th(SO₄)₂. G in 100 g, H₂O

LasO4	Th(804)2	LaSO	Th(804):
0.0	1 722	11.13	11 05
2.57	4 13	13.18	12 54
4.93	6 20	16.12	14 52
6 98	7 95	20 49	16.92
9 23	9 68	16 92	18.87

(Barre, Bull. Soc. 1912, (4) 11, 647.)

Easily sol (Kastner), sl. sol (Berzelius) in alcohol

Solubility of Li₂SO₄ in alcohol+Aq at 30°. Solid phase Li₂SO₄, H₂O.

G per 100 g ant solution					
C1H1OH	L12804	C2H4OH	LasSOs		
. 0 11.75 21.19 29 40 33 31	25 1 16 16 11.52 8.17 6 66	47 28 58.59 69 39 80 74 94 11	3 04 1 22 0.4 0 0		

(Schreinemakers and van Dorp, Chem. Weekbl. 1906, 3, 557.)

Insol. in methyl acetate (Naumann, B. 1909, 42, 3790), ethyl acetate (Naumann, B. 1904, 37, 3601); acetone (Eidmann, C. C, 1899, H. 1014, Naumann, B. 1904, 37, 4320.) + H.O Very sl. efflorescent. (Rammels-

berg.) Ad. solution contains 25 1% Li₂SO₄ at 30°. Ad. solution contains 25 1% Li₂SO₄ at 30°. (Sohreinemakers, C. C. 1910, I. 1891); 24.3 g. at 50°. (Sohreinemakers and Cocheret, Chem. Weekbl. 1905, 2. 771.)

Lithium hydrogen sulphate, LiHSO4.

Decomp by H₂O Cryst. from H₃SO₄. (Gmelin.) LiH₃(SO₄)₂. Cryst. from H₂SO₄. (Schultz,

Pogg 133. 137.) Li₄SO₄, 7H₂SO₄. (Bergius, Z. phys. Ch. 1910, **72**. 355.)

Lithium potassium sulphate, Li₂SO₄K₁SO₄.
This is the only compd of Li₂SO₄ and K₂SO₄ which exists below 100°. (Spelrein, C. R. 1913, 187, 48.)
K₁J₂(SO₄)₃. (Knobloch.) Has the formula K₂Li₃(SO₄)₃. + (Shobloch.) Has the formula K₂Li₃(SO₄)₃. + SH₂O₂ according to Rammelsberg.

Lithium sodium sulphate, Na₂Li(SO₄)₂+ 6H₂O

Na₄Li₂(SO₄)₃+9H₂O. Na₅Li₂(SO₄)₁+5H₂O. (Rammelsberg.) Do not exist. (Troost) Li₂SO₄, Na₂SO₄+5.5H₂O. Exists from

0°-16°. +3H₂O. Exists from 32°-100°. Li₃SO₄, 3Na₂SO₄+12H₂O. Exists from

16°-24°. 4Li₃SO₄, Na₂SO₄+5H₂O. Exists from 24°-32°.

(Spielrein, C. R. 1913, 157. 47.)

Lithium thallic sulphate, LiTl(SO₄)₁+3H₂O.
(Meyer and Goldschmidt, C. C. 1903, I. 495.)

Lithium titanium sulphate. L12T1O2(SO4)2+7H2O.

Less hygroscopic than compound. (Mazzuchelli and Pontanelli, C. C. 1909, II. 420.

Lithium uranvl sulphate, Lt-SO4, UO-SO4+ 4H20.

(de Coninck, Chem. Soc 1905, 88, (2) 530.

Magnesium sulphate basic, 6Mg(OH)2, MgSO4+3H2O.

'Sl sol, in cold or hot H2O Sol. in HCl+Aq (Thugutt, Z. anorg 1892, 2, 150)

Magnesium sulphate, MgSO4.

Anhydrous. Very slowly sol. in H₂O, sol in hot conc. H-SO4, less in HCl, and HNO2+ Aq

+H₂O. Min Kieserite Easily sol. in warm, but slowly dissolved by cold H2O. 100 g. sat, solution at 83° contain 40 2 g. MgSO₄. (Geiger, Dissert 1904.) +6H₂O, and +7H₂O. The latter exists in

two modifications; (a) hexagonal, and (b) the ordinary or rhombic salt.

MgSO4+Aq, which on cooling or keeping in closed vessels has deposited MgSO₄+6H₂O, always contains for 100 pts H1O at.

If only hexagonal MgSO4+7H4O has been deposited, then the mother liquor contains for 100 pts H₂O at:

Solutions prepared from rhombic MgSO4+ 7H-() contain for 100 pts H-O at:

These results may be given in tabular form as follows.

Temp.	A sat aqueous solution of MgSO ₄ +7HgO (b) contains for 100 pts HgO		
	Anhydrous MgSO ₄	7H ₂ O (b) salt	
00	26.0	73.31	
10°	30 9	93.75	
20°	35 6	116.54	

Temp	MgSO ₄ +7H ₂ O (a) contains for 100 pts H ₂ O		
	Anhydrous MgSO:	7H ₂ O (a)	
0°	34 67	111 74	
10°	38.71	133 67	
20°	42 84	159 61	

Trmp	A sat aqueous solution of MgSO ₄ +6H ₂ O contains for 100 pts H ₂ O			
remp	Anhydrous MgSO ₄	6HzO salt	7H ₉ O sult	
0°	40 75	122 22	146 02	
10°	42 32	129 44	155 58	
20°	42 97	127 79	187 97	

It is seen from table that at the same temp the 6H2O salt is more sol than the 7H2O (b) sult, and the latter is more sol than 7H₂O (a) salt; that the solubility of the 7H₂O (b) salt increases rapidly from 0° to 20°; that the 6H2O salt is not much more sol, at 20° than at 0°, and at 20° the 7H₂O (b) salt is nearly as sol as the 6H₂O salt (Löwel, A ch. (3) 43. 405)

100 pts H₂O at t^o dissolve pts MgSO₄ G L=according to Gay Lussar (A ch. (2) 11 311), T=according to Tobler (A 95, 198)

t ^e	GL	T	t°	GL	T
0 10 20 25 30 40	25 8 30 5 35 9 39 8 45 2	24 7 37 1	50 55 60 70 80 90	49 7 55 9 60 1 65 1 70 3	52 8

100 pts H₂O at 105.5° dissolve 135.2 pts MgSO₄. (Griffiths.)

MgSO₄+Aq sat at 17 5 has sp. gr = 1 2932, and contains 55 57 % MgSO₄+7H₂O, or 100 pts H₂O dissolve 125 00 pts. MgSO₄+7H₂O, or 60 pts. MgSO₄ at 17 50 (Knrsten) 34 If F (American) 100 pts H₂O at 0° dissolve 53.8 pts and 125 pts at ord tsup. (Otto-Graham) Sol in 2 pts cold, and 0.5 pt booking HaO (Four-Sol in 2 pts cold, and 0.5 pt bothing H4O (Four-cory.)
The aqueous solution contains for 100 pts. H:0 217 pts. MgSO₄+7H:O at 15° (Michel and Krafftc) I pt MgSO₄+7H:O bs sol in 0.933 pt. H:O at 15° (Gerisch), in 0.22 pt. H>O at 23° (Schill) 100 pts. H=O dissolve 25°037 pts. MgSO₄ at 0°. (Ptsf., A. 99° 224)

100 pts H₂O dissolve pts. MgSO₄ at t°.

t ^o	Pts MgSO4
0 17 9 24.1	26 37 33 28 35.98

(Diacon, J. B. 1886, 62.) 100 pts. MgSO₄+Aq sat at 18-20° contain

25 67-26.38 pts. MgSO, (v. Hauer, J. pr. 98. 137.)

Solubility in 100 pts. H₂O at to, using $MgSO_4 + 7H_2O$

		-			_
t°	Pts MgSO.	t°	Pts MgSO ₄	t°	Pts MgSO ₄
0 1 2 3 4 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 22 23 22 25 26 26 30 30 33 34 35 36 36	20 9 27 4 27.9 28 3 27.4 28 3 29 8 3 29 7 5 30 6 6 3 30 6 6 3 30 6 6 3 30 6 6 3 30 6 7 3 30 6 7 3 30 6 7 3 30 6 7 3 30 6 7 3 30 6 7 3 3 3 3 3 4 3 4 3 4 3 4 3 7 4 4 4 8 3 4 4 3 7 4 5 3 5 6 7 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	87 88 89 40 41 42 43 44 44 45 46 47 48 49 50 51 52 53 54 55 55 56 66 67 68 69 69 70 77 72 73	44.27 45.26 46.15 47.00 48.49 48.49 48.49 49.83 49.83 49.83 49.83 50.73 53.26 55.55 56.88 57.77 58.60 60.00	745 76 777 78 778 79 80 81 82 83 84 85 86 87 88 99 91 92 93 94 100 101 102 103 104 105 107 108	61 4 9 62 8 63 62 7 64 2 64 6 65 7 6 67 5 6 68 4 66 6 0 67 5 6 67 5 6 68 4 6 68 6 7 7 6 7 7 7 7 9 6 7 7 7 7 9

(Mulder, calculated from his own and other) observations, Scheik Verhandel 1864, 52).

100 pts $\rm H_2O$ dissolve 72.4 pts. MgSO₄+7 $\rm H_2O$ at 0°, 178 pts. at 40° and 212.6 pts. at 40° (Tilden, Chem Soc. 45, 400.) Supersat. MgSO₄+Aq is brought to crystallisation by addition of crystal of MgSO4+ 7H₂O, or an isomorphous substance as ZnSO₄+7H₂O, NiSO₄+7H₂O, FeSO₄+7H₂O, or CoSO₄+7H₄O (Thomson, Chem. Soc 35, 199.)

Sat. MgSO₄+Aq contams at: 23° 67° 81° 26 0

145° 164° 188° 41 5 45.3 38 0 29.3 20 4% MgSO4. Readily forms supersat, solutions. (Etard, A. ch. 1894, (7) 2, 551.)

35.6 38 6% MgSO4.

M.-pt. of MgSO4+7H2O is 70°. (Tilden, Chem. Soc. 45, 409.)

MgSO₄+Aq with sp gr \$\begin{array}{l} 150 contains 44.4 % MgSO₄, sp gr. 1.42, 39%, sp gr. 1.30, 30% MgSO₄ (Dalton)

Sp. gr of MgSO₄+Aq sat, at $15^{\circ}=1.275$ (Michel and Krafft), at $8^{\circ}=1.267$ (Anthon); at 18 75° = 1.293 (Karston.)

Sp gr. of MgSO4+Aq at 15°.

% MgSO4	Sp gr	% MgSO4	Sp gr.
5	1 054	30	1 326
10	1 108	35	1 384
15	1 161	40	1 446
20	1 215	45	1 511
25	1 269	50	1 580

(Calculated from Anthon by Schiff, A 107. 303)

Sp. gr of MgSO₄+Aq at 23°

% MgSO. +711 ₂ 0	Sp gr	7 Mg8O4 +7HsO	Sp. gr.
1	1.0048	28	1 1426
2	1 0096	29	1 1481
2 3 4 5 6 7	1 0144	30	1 1536
4	1 0193	31	1 1592
5	1 0242	32	1 1648
ñ	1 0290	33	1.1704
7	1 0339	34	1 1760
8	1.0387	35	1.1817
9	1 0437	36	1 1875
10	1.0487	37	1 1933
11	1 0537	38	1 1991
12	1 0587	39	1 2049
13	1 0637	40	1 2108
14	1.0688	41	1 2168
15	1.0739	42	1 2228
16	1 0790	43	1 2288
17	1 0842	44	1 2349
18	1 0894	45	1 2410
19	1 0945	46	1.2472
20	1 0997	47	1 2534
21	1 1050	48	1 2596
22	1 1103	49	1.2659
23	1 1156	50	1 2722
24	1 2109	51	1.2786
25 26	1 1261	52	1.2850
26	1 1316	53	1 2915
27	1 1371	54	1 2980

(Schiff, A. 113, 185.)

Sp.	gr. of	MgSO.	+Aa	at 12°.

% MgSO ₄ +7H ₂ O	Sp gr	% Mg804 +7H ₂ O	Sp. gı
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 0046 1 0096 1 0146 1 0196 1 0246 1 0246 1 0346 1 0346 1 0346 1 0446 1 0548 1 0548 1 05650 1 0702 1 0754 1 0754 1 0807	21 22 23 24 25 26 27 28 29 30 31 32 32 34 35 36	1.1071 1 1125 1 1179 1 1234 1.1289 1 1344 1 1510 1 1566 1 1622 1 1679 1 1736 1.1793 1 1850 1 1908
17 18 19	1 0859 1 0911 1.0964	37 38 39 40	1 1965 1 2023 1 2082 1 2140

(Oudemans, Z anal. 7. 419.)

Sp. gr. of MgSO4+Aq at 15°.

% MgSO ₄	Sp gr	% Mg804	Sp. gr.
1 2 3 4 5 6 7	1.01031 1.02062 1.03092 1.04123 1.05154 1.06229	14 15 16 17 18 19 20	1 15083 1 16222 1.17420 1 18618 1.19816 1 21014 1 22212
8 9 10 11 12 13	1 07304 1 08379 1 09454 1.10529 1 11668 1.12806 1 13945	20 21 22 23 24 25 25 25 248	1 22212 1 23465 1 24718 1 25972 1 27225 1 28478 1 28802

(Gerlach, Z. anal. 8. 287)

Sp gr. of MgSO₄+Aq at 23.5°. a=no. of ½ mols. in grms. dissolved in 1000 g. H₂O₇b=sp gr if a is MgSO₄+7H₂O₇½ mol. wt.=123; c=sp gr if a is MgSO₄, ½ mol. wt.=60.

2	b	e	a	b	e
1 2 3 4	1.103		6 7	1 203 1 229 1 252 1 273	1.260

(Favre and Valson, C. R. 79, 968.)

Sp gr of MgSO ₄ +Aq at 15°.				
% MgSO.	Sp. gr	% Mg804	Sp gr	
5 10 15	1 0510 1 1052 1 1602	20 25	1 2200 1 2861	

(Kohlrausch, W Ann 1879, 1.)

Sp. gr of MgSO ₄ +Aq at 0° S≈pts. MgSO ₄ in 100 pts solution.			
8	Sp gr	8	Sp gr
13 800 11.7458 9 6218	1 1586 1 1329 1 1072	7.4046 5 0447 2 5907	1.0826 1.0557 1.0284

(Charpy, A. ch (6) 29. 26.)

Sat. MgSO₄+Aq boils at 105° (Griffiths), 108.4° (Mulder). Crust forms at 103.5° (solution containing 48.4 pts MgSO₄ to 100 pts H₂O), highest temp observed, 105° (Gerlach, Z. anal. 28.

426)

B-pt of MgSO₄+Aq containing pts. MgSO₄
to 100 pts. H₂O.

B pt	Pts MgSO ₄	B-pt	Pts MgSO ₄	B-pt	Pts MgSO ₄
100 5°	8 8	102 5°	34 7	104.5°	51 3
101 0	16 7	103 0	39 5	105	54.6
101 5	23 5	103 5	43 8	108	75(?)

(Gerlach, Z anal 26. 432)

Sp gr. of MgSO₄+Aq at 9.5°. Mass of salt per unit Density of solution (g. per co) 0 00191 1.00170

1.00346

1.00526

0 01132 | 1.01060 (McGregor, C N. 1887, **55.**6)

0.00380

0.00569

0.00758

Sp. gr. of MgSO ₄ +Aq at 25°.		
Concentration of MgSO ₄ +Aq	Sp gr	
1—normal 1/s- " 1/s- " 1/s- "	1.0584 1 0297 1 0152 1.0076	

(Wagner, Z. phys. Ch. 1890, 5. 38.)

Sp. gr. at 16°/4° of MgSO₄+Aq containing 11.0222% MgSO₄=1.11471, containing 8.343% MgSO₄=1.08558. (Schönrock, Z. phys Ch. 1893, 11. 782.)

Sp. gr of MgSO ₄ +Aq.				
Gequivalents MgSO4 per liter	t°	Sp gr to/to		
0.002548 0.005093 0.01015 0.02023 0.05023 0.05023 0.09950 0.19773 0.29459 0.48671	17.989 18 020 17 995 17 980 18.047 18.033 18.014 17.997 17.994	1.0001625 1 000324 1 000639 1 001274 1 003117 1 006122 1 012035 1 017806 1 029101		
0 5022 5 0220	17 90 17 95	1.03000 1 26970		
0 002616 0 005230 0 01042 0 02077 0.12462	14.096 14.109 14.098 14.092 14.199	1 0001672 1 0003311 1 000659 1 001306 1 007682		

14 092 (Kohlrausch, W. Ann. 1894, 53, 27.)

1 014980

0.24567

Sp. gr. of MgSO4+Aq.

⅓ MgSO₄ g in 1000 g. of solution	· Sp gr 16°/16°
0 5368 1 0917 2 1076 4 1367 9 0608 18 0846 37 1342 52 1362	1 000000 1 000570 1 001157 1 001141 1 002234 1 004372 1 009523 1 018954 1 038983 1 054867

(Duken, Z. phys. Ch. 1897, 24, 108.)

Sp. gr. of MgSO₄+Aq at 18.2°, when p = per cent strength of the solution, d = observed density; and w=volume conc.

in grams per cc.

р	d	w
26.25 25.91 24.53 21.60 18.41 13.79 12.63 11.29 8.08 2.01	1.2903 1.2860 1.2693 1.2330 1.1950 1.1423 1.1291 1.1147 1.0803 1.0204	1 3374 1 3319 1 3101 1 2650 1 2187 1 1562 1 1413 1 1246 1 0859 1 0191
2 01	1 0201	1.0191

(Barnes, J. phys. Chem. 1898, 2, 542.)

*** *** *** ****

Normality of MgSO4+Aq	% MgSO	Sp gr
2 73	25.46	1 2879
1.86	18 61	1.2019
0 934	10 14	1.1049

(Forchheimer, Z phys Ch. 1900, 34, 24.)

Sp. gr. of dil. MgSO.+Ag at 20,004°... Conc. = g. equiv. per l. at 20 004°. So gr. compared with H.O at 20,004° = 1.

Cone	Sp. gr
0 0000	1 000,000,0
0 0001	1 000,006,4
0 0002	1 000,012,9
0 0003	1 000,019,4
0 0004	1 000,025,9
0.0005	1 000,032,4
0 0010	1 000,064,8
0 0020	1 000,129,4
0 0050	1.000,322,4
0 0100	1.000,642,1

Am. Chem. Soc 1913. 35. (Lamb and Lee, J. 1684.)

More sol in HCl+Aq than in H₂O. (Rich-

In sat. HCl+Aq, anhydrous MgSO4 is scarcely sol.; MgSO4+7H4O dissolves, but is precipitated by a current of HCl gas. (Hensgen, B. 10. 259.1

Margueritte (C R 43, 50) denies the precipitation For solubility in H2SO4, see MgH2(SO4)2.

Completely pptd from MgSO4+Aq by conc. HC.H.O.+Aq (Persoz. Somewhat sol in sat, NELCI+Ac with separation of a double sulphate.

Rapidly sol. in KCl+Aq with separation of K,SO.

Sol, in sat NaCl+Ag without pptn, of the latter.

Easily sol, in sat, KNOa+Aq without causing any pptn.
Sol in sat NaNO₃+Aq (Karsten)
Rapidly sol in sat. CuSO₄+Aq; when

saturation is reached, a double salt separates out. (Karsten.

100 pts sat. MgSO4+NiSO4+Aq at 18-20° contain 30.93 pts. of the two salts; 100 pts. sat. MgSO₄+ZnSO₄+Aq at 18-20° contain 35.45 pts, 100 pts. sat. MgSO₄+N₈SO₄+ ZnSO₄+Aq at 18-20° contain 35.02 pts (v. Hauer, J. pr. 98. 137.)

100 pts H₂O dissolve 14 1 pts. MgSO₄ and 9.8 pts K₂SO₄, if sat MgSO₄+Aq is sat. with K_2SO_4 , 32.4 pts MgSO₄ and 8.2 pts K_2SO_4 , if sat. K_2SO_4+Aq is sat. with MgSO₄, all at (Mulder, J. B. 1866.)

100 pts H₂O dissolve 25.95 pts. MgSO, and 5 21 pts Na₂SO₄ at 0°. (Diacon, J. B. 1866.

100 pts. H₂O dissolve 15.306 pts. MgSO₄ and 13.086 pts. NaoSO4 at 0°. (Pfaff, A 99.

See also under MgNaa(SO₄)₀+4H₆()

Solubility of mixtures of MgSO4 and MgNa₂(SO₄)₂+4H₂O at t^o.

ŧ0	g per 100 g H ₂ O		
	Na ₂ SO ₄	MgSO,	
22 24 5 30 35	23 3 27 2 36 1 33 9	31 4 24 2 19 1 18 44	
(Possehoom	1000 7 phen	Ch 9 519 \	

See also under MgNa (SO4) +4H4O.

Slowly sol in sat ZuSO +Ac without pptn until saturation, when a double salt separates

Insol. in liquid NH₂, (Franklin, Am. Ch J. 1898, 20, 828.) 100 pts. dil. alcohol containing at 15°:

20 40 % alcohol 10 contain 39.3 21.3 1.62% MgSO₄+7H₂O. (Schiff, A. 118, 365.)

At higher tenio, the solubility increases proportional to the temp (Gerardin, A. ch. (4) 5. 145.)

100 pts absolute methyl alcohol dissolve 1.18 pts, MgSO₄ at 18°. (de Bruyn, Z phys Ch 10, 783.)

100 pts absolute methyl alcohol dissolve 41 pts. MgSO4+7H₅O at 17°; 100 pts absolute methyl alcohol dissolve 29 pts. MgSO₄+ 7H₂O at 3-1°, 100 pts. 93% methyl alcohol dissolve 9.7 pts MgSO+7H₂O at 17°: 100 ; 100

pts. 50% methyl alcohol dissolve 4.1 pts. MgSO₄+7H₄O at 3-4° (de Bruyn, R t. c. 11. 112.) 100 pts. absolute ethyl alcohol dissolve 1 3 pts MgSO₄+7H₅O at 3° (de Bruyn) Insol. in CS₂ (Arctowski, Z anorg. 1894,

6. 257 Insol. in methyl acetate (Naumann, B 1909, **42.** 3790.), ethyl acetate (Naumann, B

1910, 43. 314.); acetone (Naumann, 1904, 37, 4329) 100 g. 95% formuc acid dissolve 0.34 g. MgSO₄ at 19°. (Aschan, Ch. Ztg. 1913, 37.

1117.) 100 g. sat solution of MgSO₄ and sugar in H₂O contains 46 52, g. sugar +14.0 g. MgSO₄, or 100 g. H₂O dassolve 119.6 g. sugar +36.0 g MgSO₄. (Kohler, Z Ver. Zuckernd, 1897, 47, 447.)

Magnesium hydrogen sulphate, MgH₂(SO₄)₂, Decomp. by H₂O. Sol. in H₂SO₄. Insol. in methyl acctate (Naumann, B 1909, 42, 3790)

Boiling H-SO, dissolves MgHa(SO₄)₄ about 2% MgSO4, from which this compound crystallises. (Schultz, Pogg 133, 437.)

Magnesium pyrosulphate, MgS2O7. Decomp by HoO.

Magnesium manganous sulphate, MgSO, 2MnSO4+15H4O. Mm. Fauserite.

Magnesium manganous zinc sulphate, MgSO4. MnSO, ZnSO, +21HoO Sol. in H₂O (Vohl. A. 99, 124)

Magnesium nickel sulphate, MgSO4, 3NiSO4 +28H,O. Sol in H₂O. (Schiff)

Magnesium nickel potassium sulphate, MgSO4, NiSO4, 2KgSO4+12HgO. Sol in H.O. (Vohl. A. 94, 57.)

Magnesium potassium sulphate, $MgK_2(SO_4)_2+6H_9O$

100 pts H₂O dissolve 22.7 pts. anhydrous salt at 16 5°. (Mulder) 100 pts. H₂O dissolve at: 0° 10° 20° 30°

14 1 19 6 25.0 30 4 33 3 pts. aphydrous salt. 65°

40 5 47 0 50 2 53 0 59 8 pts. anhvdrous salt. (Tobler, A. 95, 193.)

100 g. H₂O dissolve 30.52 g. MgK₂(SO₄)₂+ 6H2O at 15°. (Lothian, Pharm. J. 1909, 82. 292.)

Solubility in II-O at to.

Sat. solut contain			Mols KaSO ₄ mols	100 pts H ₂ O dissolve		
		‰801	% Мg80а	MgSO ₄ in the solu- tion	K ₂ 80.	MgSO4
10 20 30 44 50 67 88 89	000000000000000000000000000000000000000	9 4 10 9 12 4 13.8 14 7 15 2 15 6 16.0 16 6 17 2	9 8 10 8 11 8 13 1 14 8 16 3 16 8 17.1 18 1 18 2	1 1.52 1:1 43 1 1 38 1:1 37 1.1 46 1:1 55 1:1 52 1:1 56 1:1.58 1:1 54	11.63 13 92 16 36 18 88 20 85 22.19 23 07 23 91 25 42 26 62	12 13 13 79 15 56 17 92 20 99 23 79 24.85 25.56 27 72 28 17

(Precht, B. 1882, 15, 1668.)

Sp. gr	of aqu	eous solu	rtion at 15° contain-
2	4	6	8% hydrous salt,
1 0129	12	1 0394	16% hydrous salt,

1 1094

22% hydrous salt. 1 124 1.1388 1 1539 (Schiff, A. 113. 183, calculated by Gerlach,

1 0668 1,0808 1 095

Z. anal. 8, 287.) Sp. gr. of MgK2(SO4)2+Aq at 18°.

G-equiv of salt per l.	Sp gr
1 0010	1 0633
0 8345	1.0531
0.6688	1 0427
0 3744	1 0243
0 0998	1.0040
0 02004	1.0015
0.01004	1 0004

that in dil solutions the double salt is decomp. into its constituents. (McKay, Elektrochem. Zest. 1899, 6. 115.) Min Picromerite

+4H₂O. (van der Heide, B 26, 414) 2MgSO4, K2SO4 Min Langbeinste Deliquescent Absorbs 56 26% H2O from crystallisations. (Werther) air to form K₂SO₄, MgSO₄+6H₂O (Mallet, Chem. Soc 1900, **77.** 220) 4MgSO₄, K₂SO₄+5H₂O (van't Hoff and

Kassatkin, B A. B 1889, 951.) Magnesium potassium zinc sulphate, MgSO4 2K.SO. ZnSO.+12H.O.

Sol. in H₂O (Vohl, A 94. 57.) Magnesium potassium sulphate chloride,

MgSO4, K2SO4, MgCl2+6H2O. Min. Kainite.

Magnesium rubidium sulphate, MgSO4, Rb₂SO₄+6H₂O. Sol. in H2O (Tutton, Chem Soc 63, 337.) 1 1 H₂O desolves 202 g anhydrous salt at 25°. (Locke, Am Ch J 1902, 27. 459) 2MgSO, Rb₂SO, Deliquescent (Mallet, Chem Soc 1900, 77. 223)

Magnesium sodium sulphate, MgSO4, Na2SO4 +4H₂O.

Mm. Blodite, Simonyite Blödite is efflorescent, Sımonyıte, deliquescent

+5H₂O. Min Löunte +6H₂O. Decomp on air. Sol in 3 pts. cold H2O

Na₄Mg(SO₄)₄ Mm. Vanthoffite. (van't Hoff, B A, B, 1902, 414.)

MgNa₂(SO₄)₂+4H₂O. Min. Astrakamte.

100 mols. H₂O hold mols, salt in solution , at to.

t°	MgSO ₆	Na ₃ SO ₄
22	4 70	2 95
24.5	3 68	3 45
30	3 60	3.60
35	3.69	3 69
47	3.60	3 60

(Roozeboom, R. t. c. 1887, 6, 333.) >

Solubility of mixtures of MgNa₂(SO₄)₂+ 4H2O and Na2SO4 at to

to.	g per 100 g H ₂ O		
t.	Na ₂ SO ₄	MgSO.	
18 5 22 24 5 30 35	43 0 35 2 32 5 25 9 23 5	45 5 48.9 50 3 55 0 59 4	

These results lead the author to conclude (Roozeboom, Z phys Ch. 1888, 2. 518) See also under MgSO4.

> Magnesium thallous sulphate, MgSO, TloSO, +6H₂O.

Sol in H2O, but decomp by repeated re-

Magnesium uranyl sulphate MgSO4, (UO2)SO4+5HO2

(de Connck, Chem Soc. 1905, 88. (2) 530.)

Magnesium zinc sulphate, MgSO4, ZnSO4+ 14H2O Sol. in H₂O (Pierre, A ch (3) 16. 244) +10H₂O (Pierre)

3ZnSO₄, 5MgSO₄+56H₂O (Schiff.) There are only two compounds, 2(MgSO4, 7H₂O), ZuSO₄, 7H₂O and MgSO₄, 7H₂O, ZuSO₄, 7H₂O (Hollmann, Z phys Ch 1901, **37**, 212, and 1902, **40**, 577.

Magnesium sulphate potassium chloride, MgSO₄, KCl+3H₂O or MgSO₄, K₂SO₄, MgCl2+6H2O Min. Kainite

100 pts. H₂O dissolve 79 56 pts at 18°. (Krause, Arch Phaim, (3) 6. 326.) Not sol in a mixture of abs alcohol and ether, which dissolves out MgCl₂ (Lehmann, J B. 1867, 416.)

Alcohol dissolves out MgCl2, also little Much H₂O dissolves completely. (Zincken, Miner Jahrb 1865. 310)

Magnesium sulphate potassium chromate, 2MgSO4, K-CrO4+9HgO.

Sol. in H₂O. (Éta<u>rd.</u> C. R. 85. 443)

49 33

SH.O

Insol. in H2O, but slowly decomp thereby (Gorgen, C. R. 94, 1425.)

Manganous sulphate, MnSO4.

Anhudrous.

6 25

61 20

Absorbs H₂O from the air to form MnSO₄+4H₂O 1 nt MnSO₄ is sol in nts (I₂O at to

20	Pts. H ₂ O	t°	Ptn H ₂ O	t°	Pts H ₂ O
6 25	1 77	18 75	1 667	75	1 494
10	1 631	37 5	1 457	101 25	2 031

0r								
	100 pts II:	O dissu	lve pts	MaS)ı at	t ^o		
t°	Pts MnSO ₄	t°	Pts MnSC		t°	Pts MnSO ₄		

00.00

37 5 68 63 101 25 (Brandes, Pogg 20 575)

Sol in 2.5 pts H₂O at 18.75°, at 62.5° it is difficult to dissolve 1 pt. MaSO₄ in 3 pts H₂O, but the sat solution at 62.5° does not become cloudy on heating to 100°. (Jaha)

100 pts MnSO₄+Aq sat at 11-14° contain 37 5 pts. MnSO₄. (v. Hauer, J. pr. 103. 114) Sat. MnSO4+Ag contains at. -8° -5° +5° 18°

30 0 31.0 34.1 38 3 38.2% MnSO4

52° 39.1 41 7 44 2 36 4 41 1% MnSO4,

110° 115° 128° 130° 140° 36 3 18 4 21 5 16.7 13 6 9.4% MnSO₄.

(Étard, A. ch. 1894, (7) 2. 553.) Solubility in H₂O increases from 0-55°, and decreases from 55-145° The increasing solubility is that of MnSO4+5H2O, and MnSO4+

2H₂O separates out at 35°, and is completely insol at 145°. (Etard) If solubility S = pts anhydrous MnSO, in 100 pts. solution, S=30.0+0.2828t from -8°

to 57°; S = 48.0 - 0 4585t from 57° to 150° Practically insol in HiO at 180° (Etard. C. R. 106, 208)

Solubility varies according to the hydrate used. Above results of Etard show the solubility of MnSO₄+7H₂O at 0°, and MnSO₄+3H₂O at 57°. Anhydrous MnSO₄ is stable only above 117° (Linebarger)

100 pts. H₂O dissolve pts anhydrous MnSO₄ at to

t°	Pts. MnSO ₄	t°	Pts. MnSO:	to	Pts. MnSO ₄
120	67.18	141	41.18	155	26 49
132	63.16	146	38.83	170	16 15

(Linebarger, Am. Ch. J 15, 225.) +H2O. Stable only between 57° and 117°. +4H2O (Jahn)

Manganous sulphate, basic, 3MnO, 2SO+ 100 pts H2O dissolve pts. MnSO4 from MnSO + H O at to

t°	Pts MnSO ₄	t°	Pts MnSO ₄	t°	Pts MnSO ₄
48 53 65 72	87.98 86.10 84.33 82.73	78 90 100 106	79 13 75 63 71 27 70 14	115 117	69 78 68 81

(Linebarger.)

| Pta MnSO₄ |

Min Szmikite.

Solubility of MnSO4+HoO in HoO at to

Pta MnSO.

t°	per 100 pts H ₂ O	t°	per 100 pts. H ₂ O
41.5 50 1 67 1	61 06 58 01 51 37	75 84 8 95 99 6	49 45 44 87 38.71 34.27

Av. of varying results.

(Cottrell, J. phys Ch 1900, 4, 652.)

Linebarger's determinations are maccurate. (Cottrell)

+2H₄O. Stable between 40° and 57°

100 pts. H₂O dissolve pts MnSO₄ from MnSO₄+2H₂O at t⁹

to.	Pts. MnSO:	t°	Pts Mn80 ₄	t°	Pts MnSO ₄				
35 40	68 88 75 31	42 45	77 63 80 07	50 55	83.16 86 27				

(Linebarger)

+8II-O Stable between 30° and 40°.

100 pts, H₂O dissolve pts MnSO₄ from MnSO4+3HO at to

t°	Pts MnSO4	t°	Pts. Mn804	ŧ°	Pts. MnSO.
5 12 16 19	54 68 60.56 63 41 65.12	25 30 35 40	66 85 67 38 68 31 70 63	68 53 57	71 89 72 81 73 17

(Linebarger)

+4H4O. Sl. efflorescent. Less sol. in boiling than in cold HiO.

100 pts H₂O at 4.4° dissolve 31 pts. MnSO.

			1	SULPH	ATE, I	MANGA	NOUS	3			991
100 p	ts H ₂ O a	t to dissol	ve pts M	in80.+4	H ₁ O	Solub	ility of	MnSO,	+4H ₂ O	n H ₂ O	at to.
t°	'Ma	Pts. iSO ₄ + H ₂ O	t°	M	Pts nSO ₄ + H ₁ O	t°	Pr	is MnSO. er 100 pts H ₂ O	• to	per	MnSO ₄ 100 pts I ₂ O
6 25 10 18 73	1 11	13 22 23 22	37 5 75 101 2	5	149 144 93	16 0 17 7 18 5		63 97 64 16 64 19	35 0 35 5 39 0	6	7 87 8 09 8 81
Solubili	ty of M	InSO ₄ 1	gg. 20 , 57 n 100 p O ₄ +4H	ts. H ₂ () at t°,	25 0 30 0 32 2		65.32 66.43 66.83	49 9 50 0	7	2 48 2 62
t°	Pta MnSO:	t°	Pts MnSO ₄	t°	Pts. Mn80	(Coti	nell, J	phys	Ch 19	00, 4.	651.)
0 1 2	55 4 55.9 56.5	35 36 37	71 9 72 2 72 4	70 71 72	61.5 61.5 61.5	Linel rate.	oarger' (Cottre	s detern ell.)	nination	s are	inaccu-
2 3 4	57 1 57.7	38 39	72 7 72 9	73 74	61.5 61.5		Sol	ubility ir	H ₂ O at	t°.	
5	58.2 58.8	40 41	73 1 73 3	75 76	61 5 61 5		t°		-) of for 100	g, H ₁ O
7	59 4 60 0	42 43	73 5 73 7	77 78	61 5		30 1 35	5		36.38 38.22	
9 10 11 12	60 5 61 1 61 7 62 2	44 45 46 47	73.9 74.0 74.2 74.4	79 80 81 82	61 5 61 5 61 5 61 5	(Richai	ds and	l Fraprie	Am C	h. J. 19	901, 26.
13 14 15 16 17	62 7 63 3 63 8 64 3 64 8	48 49 50 51 52	74.6 74.7 74.8 74.9 75.1	83 84 85 86 87	61 5 61 4 61 3 61 2 61.0	+5H (Jahn, Stabl	A. 28.	Sol. in 1 110) 8° to 18	-	l₂O at	18.75°
18 19 20	65.3 65.8 66.3	53 54 55	75.2 75.3 74.7	88 89 90	60 8 60 6 60 3	100 1		O dissol			from
21 22 23	66 7 67 2 67 6	56 57 58	74.0 72.9 71.5	91 92 93	59 6 59 2	t°	Pts MnSO	t°	Pts MnSO ₄	f.o	MnSO4
24 25 26 27 28 29	68 1 .68 5 68 9 69 3 69.7 70 0	59 60 63.5 64 65	69 5 65 9 61 3 61 5 61.5	94 95 96 97 98 99	58.6 57 9 57 2 56 3 55.4 54.3	0 2 5 4 7 10 15	58 05 62 41 64 22 66 83 68 05 72 38	25 30 32 34	75.16 78 63 79 16 80 38 82 04 83 91	40 42 45 47 7 53 54	84.63 85 27 86 16 86 95 88 89 89 08
30 31 32 33	70 4 70 7 71 0	66 67 68	61.5 61.5 61.5	100 101 102 102 5	52 9 51 2 49 3 47 4			(Lineb	arger)		

102 5 47 4 (Mulder, Scheik, Verhandel, 1864, 137

100 pts. H₄O dissolve pts. MnSO₄ from MnSO₄+4H₂O at t°.

61 5

33

34 71 6

to	Pts MnSO ₄	to.	Pts. MnSO ₄	t°	Pts. MnSO ₄
2 2 7.3 11 15 20	57 88 61 78 64 01 67 12 69 93	25 30 35 5 40 45	72 23 74 67 78 81 79 63 83 06	48 52 56	84.33 86.16 88 19
-		/F . I.			

Stable in aqueous solution between 25° and 31° (Schieber, M 1898, 19, 281)

(Linebarger) Stable in ageous solution between 15° and 20°. (Schieber, M 1898, 19. 281.)

Solubility of MnSO₄+5H₂O at t°.

t°	Pts MnSO ₄ per 100 pts H ₂ O	t°	per 100 pts. H ₂ O
5 9 12 12 3 15	58.06 59 23 60 19 60 16 61 08	16 25 30 31 1 35 5	61 59 64 78 67 76 67 92 71 61
(Cott	rell, J. phys.	Ch. 1900,	4. 651.)

Linebarger's determinations are inaccurate (Cottrell.)

8.

Solubility in H₂O at 25° = 65.09 g. MnSO₄ for 100 g H₂O. (Richards and Fraprie, Am. Ch. J 1901, 26. 77.)

+6H2O. Stable from - 5° to +8° 100 pts. H₂O dissolve pts. MnSO₄ from

	MnSO ₄ +6H ₂ O at t ^o .									
to.	Pts MnSO ₄	t°	Pts. MnSO ₄	t°	Pts MnSO ₄					
-4 0 3 5	55 87 64 21 66 87 67 49	9 15 20 25	70 88 72 45 74 35 75 38	30 34 35 38	76.24 77 02 77 23 7 481					

(Linebarger)

+7H₂O. Efflorescent Sol. in less than 0.5 pt H₂O at 18.75° (Jahn.) Stable between - 10° and - 5°

100 pts H₂O dissolve pts MnSO₄ from MnSO4+7H2O at to

t°	Pts MnSO ₄	t°	Pta MnSO ₄	t°	Pts MnSO ₄
-10 -8	50 11 50 93 51 53	0 5 7	53 61 54 83 56 62	10 15	59.91 64 34

(Linebarger.)

Stable in aqueous solution below 0° (Schieber, M 1898, 19, 281)

Solubility of MnSO4+7H2O in H2O at to

t°	Pts MnSO ₄ per 100 pts H ₁ O	t°	Pts MnS0 per 100 pt H ₂ O
-10	47 96	9	59 33
0	56.23	12	61 78
5	56.38	14 3	63 93

(Cottrell, l c)

M -pt. of MnSO₄+7H₂O 18 54° (Tilden, Chem Soc. 45, 409.)

Sp. gr. of MnSO4+Aq at 15°.

% MnSO ₄ +4H ₂ O	Sp. gr	% MnSO: +4H:O	Sp. gr
1	1 006	29	1 208
á	1 013	30	1 2150
2 3	1.020	31	1 224
4	1.025	32	1.231
5	1 0320	33	1.244
5 6	1 038	34	1.250
7	1 044	35	1 2579
7 8 9	1 050	36	1.268
ő	1 056	37	1 276
10	1 0650	38	1.285
11	1 072	39	1.295
12	1 079	40	1 3038
13	1.085	41	1.313
14	1.093	42	1.322
15	1.1001	43	1.331
16	1 106	44	1.340
17	1 114	45	1 3495
18	1 121	46	1.360
19	1.129	47	1 370
20	1.1363	48	1.380
21	1.144	49	1 389
22	1.150	50	1 3986
23	1 160	51	1.410
24	1.166	52	1 420
25	1 1751	53	1.430
26	1 183	54	1.440
27	1 190	55	1 4514
28	1 200		1 2022

(Gerlach, Z anal 8, 288.)

Sp. gr. of MnSO₄+Aq at 23°. a=no. of ½ mols. in grms. dissolved in 1000 g H₂O; b=sp. gr if a is MnSO₄+5H₂O, ½ mol wt.=120 5; c=sp. gr. if a is MnSO₄, 1/2 mol wt. = 75.4

a.	b	0	a	b	٥
1 2 3 4 5	1.128 1.181 1.227	1.071 1 139 1.202 1 262 1.320	6 7 8 9	1 306 1 341 1 371 1 399 1 426	3.576 1.429

(Favie and Valson, C. R. 79, 968)

Above table recalculated by Gerlach (Z anal.

1		110)		
	% Mn804 +5H ₁ 0	Sp. gr.	% Mn804 +5H40	Sp gr.
	10 20	1 0630 1 1325	40 50	1.2900

1 2070

Sp. gr. of MnSO4+Aq at 15°. a=%; b= +5H₂O; e=sp gr if a is MnSO₄+ 7H.0

n	b		d	0
5 10 15 20 25	1 0500 1 1035 1 1605 1 2215 1 2870	1.0340 1 0690 1 1055 1 1435 1 1835	1 0310 1 0630 1 0965 1 1315 1 1685	1 0270 1.0545 1 0830 1 1130 1 1440
35 40 45 50 55	1 3575	1 2255 1.2695 1 3155 1 3640	1 2070 1 2470 1 2885 1 3315 1 3760	1 1765 1 2105 1 2455 1 2815 1 3185 1 3505

(Gerlach, Z anal 28, 475.)

Sp. gr of MnSO4+Aq at 0°. S=pts. MnSO4 m 100 pts. solution

S	Sp gr	s	Sp gr
16.7450	1 1834	8.8295	1.0928
14 0462	1.1519	6.0172	1.0622
11 5804	1 1239	3.0865	1.0315

(Charpy, A. ch. (6) 29, 26)

Sp. gr. of MnSO4+Aq at room temp. containing: 11.45 18 8 22 08 % MnSO.

1 1469 1 2513 1.3082 (Wagner, W. Ann. 1883, 18, 271.)

Sp. gr. of MnSO4+Ag at 25°.

Concentration of MnSO: +Aq		Sp gr
1—normal 1/5— " 1/4— " 1/8— "	•	1.0728 1 0365 1.0179 1.0087 1 0041

(Wagner, Z. phys. Ch. 1890, 5, 39.)

Sp gr at 16°/4° of MnSO4+Aq containng 30.819% MnSO₄=1.36267 (Schonrock, Z. phys Ch. 1893, 11, 781) Sat. MnSO4+Aq boils at 102 4°; crust

forms at 1016°, and solution contains 48.7 pts MnSO, to 100 pts H2O.

B -pt. of MnSO₄+Aq containing pts. MnSO₄ to 100 pts H2O.

B-pt.	Pts MnSO.	B-pt	Pts MnSO
100 5° 101 0 101 5	17 1 32 1 46 2	102 0° 102 4	58 9 68 4
	2 1 1 0	1 00 101	

(Gerlach, Z. anal, 26, 434.)

Sol. in about 20 pts. boiling H2SO4, and sp. gr if a is MnSO₄, c=sp. gr. if a is more sol in boiling H_2SO_4 +Aq of 1 6 sp. gr. MnSO₄+ $4H_2O$; d=sp. gr if a is MnSO₄ (Schultz, Pogg. 133, 137.) Completely pptd from solution by HC2H3O2.

For solubility in (NH₄)₂SO₄, see under

(NH4)2SO4 MnSO4+Aq sat. at 10°, then sat. with

K2SO4 at same temp, contains for 100 pts. H2O 16.7 pts MnSO4 and 44 3 pts K2SO4 (Mulder)

Solubility of MnSO, + Na₂SO, in H₂O at 35.

g per 100 g sat solution				
MnSO4	NasSO4	Solid phase		
39.45 33.92 33.06	0 5 23 7 97 7 42	MnSO ₄ , H ₂ O MnSO ₄ , H ₂ O+9MnSO ₄ , 10Na ₂ SO ₄		
32.92 31.05 27 67 22 14 14.58 13.96 12.19	9 20 10.76 14 28 20 01 21 91 22 49	9MnSO ₄ , 10Na ₄ SO ₄ " " 9MnSO ₄ , 10Na ₅ SO ₄ +		
10.45 7.43 5 69 5 11 2 96 0	23 41 26 58 29 31 30 52 31 33 33	MnSO ₄ , 3Ne ₂ SO ₄ MnSO ₄ , 3Ne ₂ SO ₄ MnSO ₄ , 3Ne ₂ SO ₄ +Ne ₂ SO ₄ Ne ₂ SO ₄		

(Schreinemakers and Provije, Proc. Ak. Wet. Amsterdam, 1913, 15, 326.)

Insol in hound NH₂. (Franklin, Am Ch. J*1898, 20, 828.) Anhydrous MnSO4 in insol, in absolute alcohol

1000 pts, alcohol of 0.872 sp gr, dissolve 63 pts. MnSO4.

Sol in 50 pts of 50% alcohol. Insol. in absolute alcohol (Brandes, Pogg. 20, 556.) 100 pts. solution saturated at 15° in dil. alcohol containing:

60 % alcohol, contain 56.25 51.4 2 0 0.66 pts. MnSO4+5H2O.

(Schiff, A. 118, 365.)

When MnSO₄+7H₂O is boiled with absolute alcohol none is dissolved, but MnSO. +3H2O is formed.

When MnSO4+7H2O is dissolved in 15-50% alcohol, the liquid separates into two layers, the lower containing less (12-14%) alcohol and more (47-49%) salt; me upper containing

50

7 69

18 70 29 20

solid salt at to.

t.º

more (50-55%) alcohol and less (1.3-22%) If the alcohol has the above strength (15-50%) the separation takes place at ordinary temp., but with 13-14% or 60% or more alcohol, warming is necessary to effect the separation. (Schiff, A. 118, 363.)

Solubility of MnSO4+H2O in alcohol+Aq

at to Composition of two layers sat. with the

t°	Alcoho	layer	Water layer	
	% alcohol	% MnSO	% alcohol	% MaSO
30 31 35 37 41 42 43	45.20 43.90 41.71 38.26 34.01 32.37 31.42	2.49 2.74 3.44 4.84 5.86 6.89 8.51	8 69 8 47 9 24 11 03 11 93 13 57 14 33	30 15 30 10 28.61 26 47 24 97 23.09 22.01

(Schrememakers and Deuss, Z. phys. Ch. 1912, 79, 559,)

Composition of alcohol solutions sat. with MnSO.+H.O at to.

% alcohol

5.09 33.66

5 96 8 69 *33 26 30.15

45 20

54.19

68 97

% MnSO.

2.49

0.98

0.08

0.01

% H₁O

61.25

60 78

*61.16

*52.31

44 83

30 95

9 19 90 80

50	63.74	0	36 26
	65.21	6 67	28 12
	65.23	16 02	18 75
	64.83	22.63	12.54
	59.41	36 47	4.12
35	61.4	0	38.6
	62:13	5.50	32.37
	62:06	6.48	31.48
	62:01	7.48	30.51
	*62:15	9.24	28.61
	*54:85	41 71	3.44
	50:69	47 78	1.58
	50:16	48 27	1.57
30	61.4	0	38 6
	61.43	2 26	36.31

*The solutions also sat. with respect to one another. (Schreip ... kers and Deuss.)

Composition of the solutions sat. with respect to one another. water layer alcohol laver +0 % alcohol % alcohol 1% MnSO4 % MnSO. t5.68 34 95 †53.64 30 99

145 83 2.19 141 93

0.97

3.11

	T11 85	24.84	[80.10	5 95
35	†8.38	29 52	†42 38	3 07
	*9.24	28 61	*41.71	3 44
	10 75	26 33	36 89	5 19
	15 09	21 85	30 06	9.03
30	†7 60	32 40	†50 97	1.74
	*8 69	30.15	*45 20	2 49
	10 46	27 58	40.71	3 93
	11 86	25 75	37 54	5 20
	16 18	20 86	29 89	9 64

(Schreinemakers and Deuss.) †Metestable solutions.

*Solutions also sat with respect to MnSO4. H.Õ. Solubility of MnSO4+4H2O in alcohol+Aq.

g. H₂O g, alcohol Mn804, 4H10 55 86 30 03 14.11 52.25 43.59 4 16 47.66 2 94 49 41 45 34 53 00 1 66 42 56 56 24 1 20

(Linebarger, Am. Ch. J. 1892, 14, 380.) Solubility of MnSO4+5H2O in alcohol+Aq.

Composition of the solution sat, with MnSO₄+5H₂O. alcohol laver water layer to alcohol M1804 aloohal Magn. 37.06 10 .44 13 78 25.25 15 44 56 79 q 25 29.79 17 6 47.11 2 22 53 30 88 21 53 55 10 10 35 05 25 53 09 23 6 81 33 72

Composition of solution sat, with solid substance at 25° % H₁O % slooholl % MnSO. Solid phase 60.7 MnSO₄+5H₂O *59 47 6.81 33 72 *45 68 53 09 1.23 42 05 57 39 0.5623.30 76.70 0.0 MnSO4+H2O

*The two liquids are sat, with respect to one another.

respect to one another at 25°.

Water layer		Alcohol layer	
% alcohol	% MnSO4	% alcohol	% MnSO ₄
*6 81 8 48 15 02	*33 72 31 51 22 61	*53 09 49 76 32 75	1 23 1 83 8 01

*Also sat with MnSO4, 5H2O. (Schreinemakers and Deuss.)

Insol. in absolute ether between 5° and 7°, and no crystal H₂O is removed thereby Insol. in boiling oil of turpentine, but 1 mol crystal H2O is removed from MnSO4+4H2O (Brandes, Pogg. 20, 568) Insol in benzonitrile (Naumann, B 1914.

47. 1370.), ethyl acetate. Naumann, B. 1910, 43. 314); acetone. (Naumann, B. 1904, 37. 4329, Eidmann, C.C. 1899, II. 1014.) 100 g. sat. solution in glycol contain 0 5 MnSO4 (de Coninck, Bull Ac. roy, Belg. 1905, 359

MnSO₄+7H₂O occurs as the min Mallar-

Manganomanganic sulphate, MnO, MnO2, $480_1 + 9H_2O$ Deliquescent Decomp. by H₂O. Sol. in little dil. H₂SO₄+Aq (Fremy. C. R. 82.

Manganic sulphate, Mng(SO4)2.

475)

Extremely deliquescent. Sol. in H₄O with evolution of heat, and decomposition into a basic sulphate Behaves similarly with dilute acids Sol in traces in cold conc H2SO4. Insol in cold cone. HNOa+Aq Sol in cone HCl+Aq Decomp. by absolute alcohol. (Carius, A. 98. 53)

Manganyi sulphate, MnO2, SO3.

Sol. in HoSO, but solution decomp helow 40-60° Baumé. Solubility in 40° Baumé acid = 15%: 55°, 4-5%. Solution can be heated to 60-80° without decomp. (Bad. Anılın u. Sodafabrık, C. C. 1905, H. 1398.)

Manganous hydrogen sulphate.

MnSO4 is sol. in 20 pts boiling cone, H+SO4. more sol. in boiling H₂SO₄+Aq of 1.6 sp. gr (Schultz.)

 $MnH_2(SO_4)_2$, and $+H_2O$. Sol. in H_2O with decomp. (Schultz.)

MnH₂(SO₄)₄. Sol in H₂O with decomp. (Schultz.)

Manganic hydrogen sulphate, Mn2H2(SO4)4+ 8H2O.

8H₂O. MnSO₄, 3CuO+xH₂O Deliquescent. Decomp. by H₂O. Sol in 1901, **132**, 1415.) dil. H.SO. +Aq. (Francke, J pr. (2) 36. 251.) MnSO., 24CuO+zH

Composition of the two solutions sat. with | Manganous hydrazine sulphate, MnH2(SO4)2. 2N2H4

> 1 pt is sol in 60 pts. H₂O at 18° Stable in the air at 100°. (Curtius, J. pr. 1894, (2) 50, 331)

Manganous nickel potassium sulphate.

MnSO₄, NiSO₄, 2K₂SO₄+12H₂O in H₂O (Vohl, A. 94, 57.)

Manganous potassium sulphate, K2SO4 MnSO4+2H2O.

+4H₂O. Efflorescent. (Pierre, A. ch. (3) 16. 239.) 2MnSO₄, K₂SO₄ (Mallet, C. N. 1899, 80. 301)

Manganic potassium sulphate, K1Mp1(SO4)4 +24H₂O.

Decomp. by dissolving in H₂O. (Mitscherltch.)

Manganomanganic potassium sulphate, $Mn_s(SO_4)_2$, $5K_2SO_4 = 3Mn(SO_4)_2$, $2MnSO_4$, $5K_2SO_4$.

Decomp by much H₂O Sol. in dil. or cone. H2SO, Insol. in alcohol or ether. (Francke, J pr. (2) 36, 166)

Manganous potassium zinc sulphate, MnSO4, 2K.SO. ZnSO.+12H.O Sol. in H₂O. (Vohl.)

Manganous rubidium sulphate, MnSO. Rb₂SO₄+6H₂O.

Sol. in H₂O (Tutton, Chem. Soc **63**, 337.) 1 l H₂O dissolves 357 g anhydrous salt at 25° (Locke, Am. Ch. J. 1902, **27**, 459.) +2H₂O (Wyrouboff, Bull. Soc Min. 1891, 14, 242.)

2MnSO₄, Rb₂SO₄. (Wyrouboff.)

Manganic rubidum sulphate, Mn₂(SO₄)₄, Rb₂SO₄+24H₂O. Deliquescent. (Christensen, Z anorg. 1901, 27, 333)

Manganous sodium sulphate, MnSO4, Na₂SO4. +2H₂O. Deliquescent in moist air. (Geiger.) $+4H_{1}O.$ Sol. in 12 pts. boiling H₀O. (Geiger.)

Manganous sulphate ammonia, MnSO4, 4NH2, Decomp. by H₂O. (Rose, Pogg. 20, 148.) Manganous sulphate cupric oxide, MnSO4,

2CuO+3H2O. (Mailbe, A. ch. 1902, (7) 27. 392.) (Recoura, C. R.

(Recours.)

Manganous sulphate hydrazine, MnSO₄, 2N₂H₄.

Very unstable

Somewhat sol. of NH₄OH+Aq (Franzen, Z. anorg. 1908, 60, 285.)

Manganous sulphate hydroxylamine, MnSO₄, NH₂OH+2H₂O.

Insol in H₂O. (Feldt, B 1894, **27.** 405)

Mercurous sulphate, basic, 2Hg₂O, SO₃+ H₂O. Sol m 25,000 pts. H₂O at 20° (Gouy, C -R. 1900, 130, 1401.)

Mercurous sulphate, Hg:SO4

Sol m 500 pts. cold, and 300 pts hot H₂O (Wackenroder, A. 41. 319.) Solubility in H₂O at 18° = 7 8×10⁻⁴ g mol per hter (Wilsmore, Z phys Ch 1900, 35.

305)

1 l. H₂O dissolves 11.71×10-4 g.-mol Hg₂SO₄ at 25° (Drucker, Z anorg 1901, **28**. 362)

Solubility in H₀O at t°.

	In 100 pts of the soluti							
16.5	HgsSO4	H ₂ SO ₄						
16.5 33 50 75 91	0 055 0 060 0 065 0 074 0 084 0 092	0 008 0 018 0 037 0 063 0 071 0 071						

(Barre, A. ch. 1911, (8) 24, 203)

Solubitty in H₂O at 25° is 20% greater than at 18° and al 1712.10° g, mol, per l. By addition of increasing smis, of H₂SO, the solubitty is somewing, but not regularly decreased, K₂SO, lowers solubitty less than H₂SO, (Dirucker, Z. anorg, 1901, 28, 362.) Easily sol. in dil. HNO₂+Aq, from which solution it is separated by dil. H₂SO, +Aq.

(Wackenroder, A 41.319.)
Abundantly sol. in hot, less sol in cold dil.
H₂SO₄+Aq (Berzelius.)

Solubility in H₂SO₄+Aq at 25°.

H₂SO₄ normality | g,-mol H₂sSO₄ per htre

0.0400	8.31 × 10-4
0.1000	8.78 × 10-4
0.2000	8.04 × 10-4
(Daniel 11 11 11 11 11 11 11 11 11 11 11 11 11	1001 00 000

(Drucker, Z. anorg. 1901, 28. 362.)

Partially decomp. by hot NH₄ salts+Aq (Miahle, A. ch. (3) 5. 179.)
5 times more sol in sat. CdSO₄+Aq then in H₄O (Hulett, Phys. Rev. 1907, **25**. 16.)

than pure H₂O, yet the solubility of H₂SO₂ m these solutions is greater, ι. ε., 0.8 g m 1 1 ZnSO₄+Δq and 1 1 g m 1 1. CdSO₄+ Aq at 20°. (Gouy, C. R. 1900, 130, 1402) Solubility in 0.2N (H₂SO₄+Δq = 9 05 × 10·4 g mol per 1 at 25° (Drucker, Z anorg. 1901, 28. 362.)

Solubility of Hg-SO4 in K-SO4+Au.

	g p	lution	
,	KaSO ₄ HgaSO ₄		free H ₂ SO ₄
15	2 90 5.70 8 22 8.77 9 44	0 0475 0.0703 0 0912 0 0994 0 1080	0 0080 0 0093 0 0098 0 0110
33	2 94 5 68 8 30 10 70 11 90	0 0677 0 1015 0.1364 0 1724 0.1902	0 0250 0 0350 0 0441 0 0438 0 0420
75	3.10 5.75 8.50 13.20	0.1344 0 2120 0 2951 0.4610	0 1681 0 2135 0 2514 0 2503

(Barre, A. ch. 1911, (8) 24. 202.)

17 30 | 0 6440

About 3 times as sol. in sat ZnSO₄+Aq as in distilled H₂O. (Wright, Phil. Mag (5) 1885, **19**. 29.)

Mercuric sulphate, basic, 2HgO, SO₃. (Mailhe, A. ch. 1902, (7) **27.** 394)

3HgO, SO₂ (Muneral two peth)
Sol in 2000 pts cold and 600 pts boiling H₂O.
(Foureray, A ch 10 307)

Sol in 43,478 pts. H₂O at 16° when pptd. cold, and in 32,258 pts. at 16° when pptd. at 100°. (Cameron, Z anel 19. 144.)
Sl. sol. in warm dil H₂SO₄+Aq. (Rose.)

Solubility in H₂O is increased by addition of H₂SO₄ up to an acid content of 4.3 mol SO₅ to 93.7 mols. H₂O. (Hostsema, Z. phys. Ch. 1895, 17, 665)

Sol. in warm cone. HCl or HBr+Aq.

(Ditte)

Sol m alkali chlorides+Aq (Miahle) Sol, in dil. HNO; or in HCl+Aq. More easily sol, in the warm acids. (Ray, Chem. Soc. 1897, 71, 1999.) 3HgO, 2SO₁+2H₂O. (Hoitsema, Z. phys.

Ch. 1895, 17. 659.)

Ch. 1895, 17. 659.)

4HgO, 3SO₈. (Hopkins, Sill. Am. J. 18. 364.)

Mercuric sulphate, HgSO4.

5 times more sol in sat. CdSO₄+Aq than H₂O (Hulett, Phys. Rev. 1907, **25**. 16). Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄ or ChSO₄+Aq attack much less Sat. ZnSO₄+Aq
Sol in warm conc HCl or HBr+Aq; very sl. sol in boiling cone. HI+Aq (Ditte, A. ch (5) 17. 124) cn (a) 11. 12x1, Very sl. sol in hot cone HF (Ditte, A ch. 1879, (5) 17. 125.) Sol in HCN+Aq (Mohr.) Sol. with decomp. in NaCl+Aq (Mishle.)

Insol. in hquid NH₂ (Franklin, Am. Ch. J. 1898, 20, 829.

Insol. in conc. alcohol Insol. in acetone (Naumann, B 1904

 4329.), methyl acetate. (Naumann, B' 1909. 42. 3790.); ethyl acetate. (Naumann, B. 1910, 43, 314.) Insol, in benzonitrile (Naumann, B. 1914. 47, 1370)

Insol in pyridine. (Schroeder, Dissert. 1901. +Ĥ₂O. Decomp by H2O. (Eisfeldt,

Pharm Centr 1853, 812.) Mercuromercuric sulphate, Hg2O, 2HgO, SO2. Insol in cold H2O; not decomp. by boiling in hot conc HNOs. H₂O. Decomp. by HCl+Aq. (Brooke, Pogg

66. 63 1 Hg₂SO₄, HgSO₄ (Baskerville, J. Am Chem. Soc. 1897, 19, 875.)

Mercuric hydrogen sulphate, HgH2(SO4)2. (Braham, C N. 42, 163)

Mercuric potassium sulphate, 3HgSO4. K.SO.+2H.O.

Sol in H₂O. (Hurzel, J B 1850, 332) Mercuric sulphate chloride ammonium chloride, 2HgSO4, HgCl2, 2NH4Cl.

Decomp with H2O. Ether dissolves out HgCl₂. (Kosmann, A ch (3) 27, 238.)

Mercuric sulphate cyanide, HgSO4, Hg(CN)2 +5H₂O. Decomp by conc. or warm acids. (Rupp, Jacobson, Pogg. 1846, 68, 412. Arch Pharm, 1912, 250, 280)

Mercuric sulphate hydrazine, HgSO4, N2H4. Ppt. (Holmann and Marburg, A. 1899, 305, 216,)

Mercuric sulphate hydrobromide, HgSO4, 2HBr.

Sol. in H2O without separation of basic sulphate. (Ditte, A ch. (5) 17. 122.) 3HgO, SO₂, 6HBr Sol. in H₂O. (Ditte.)

Mercuric sulphate hydrochloride, HgSO4, HCl. Not attacked by HCl. Sl sol in HNO.

(Baskerville, J. Am Chem Soc. 1901, 23. HgSO4, 2HCl. Sol. in H₂O without sep-aration of a basic salt Very sol in warm H₂SO₄, solidifying on cooling if very conc., or crystallising if dil (Ditte.)

Very deliquescent. Very sol in H₂Q (Baskerville, J. Am. Chem. Soc 1901, 23, 895. (Baskerville, J Am. Chem. Soc. +H_{*}O.

1901, 23, 895) 3HgO, SO₂, 6HCl Sol in H₂O. (Ditte.)

Mercuric sulphate hydroxylamine, HgSO4 2NH₂OH+H₂O Decomp by cold H₂O. (Adams, Am Ch J 1902, 28, 209)

Mercuric sulphate iodate iodide, 6(3HgO, 2SO₂), 6HgI₂, Hg(IO₂)₂. Decome by H2O and acids. (Bruckner,

M 1907, 28, 961.)

Mercuric sulphate iodide, basic, 3HgO, 2SO₂, HgI2.

3(3HgO, 2SOs), 2HgIs+10HsO. 2(3HgO, 28O₄), HgI₂+10H₂O Very sol. 3HgO, 2SO₃, HgSO₄, (Ditte, C. R 1905, **140**, 1167.) HgI_2+10H_2O .

Mercuric sulphate iodide, HgSO4, HgI2. Decomp, by H₂O, not by alcohol or ether. (Riegel, J B pr. Pharm 11, 396.) 3HgSO₄, HgI₂. Decomp by cold or hot H₂O. Sol in H₂SO₄+Aq (Ditte, C. R. 1905, 140, 1165.) 4HgSO4, HgI2+15H2O, and +18H2O De-

comp by cold or hot H.O. Sol in H2SO4. (Ditte) Mercuric sulphate phosphide. .

See Dimercuriphosphonium mercuric sulphate. Mercuric sulphate sulphide, basic, 2HgO,

SO₄, HgS. Somewhat sol. in HCl, H2SO4 and HNO3. 4HgO, 3SO₃, 2HgS+4H₂O. sol. in H₂SO₄. (Estrup, Z. anorg. 1909, **62**. 169.)

Mercuric sulphate sulphide, 2HgSO4, HgS. Sl sol in hot HCl, H₃SO₄, or HNO₂+Aq. Easily sol. in hot aqua 1egia. (Jacobson, Pogg 68. 410.) 2HgSO4, HgS. (Palm, C C. 1863, 122.)

HgSO₄, 2HgS. (Barford, J. B. 1864, 282) Sol. in aqua regna. (Deniges, Bull. Soc. 1915, (4) 17, 355) HgSO4, 3HgS. Insol. in H₂O Easily sol in aqua regia, decomp by HNO₃ into— 3HgSO₄, HgS. Insol. in all acids except aqua regia (Spring, A. 199. 116.)

Molybdenum sesquisulphate (?),

Basic Insol. in H₂O. Neutral Decomp. by H2O into acid and basic salts. Acid Sol in H2O. (Berzelius.)

Molybdenum disulphate (?).

Sol. in H₂O.

Molybdenum sulphate, Mo.Os. 2SOs. Very slowly sol in cold, more quickly sol in hot H.O. (Bailhache, C. R. 1901, 132, 476) 7MoO₂, 2MoO₂, 7SO₃+Aq (Péchard, C R. 1901, 132, 630.

Molybdic sulphate, MoOs, SOs.

Deliquescent. Sol in H₂O. (Schultz-Sellack, B. 4. 14) MoO's, 3SO3+2H2O. Deliquescent. Partially sol, in H.O (Anderson, Berz J. B. 22. 161

Does not exist (Schultz-Sellack.)

Molybdenum sulphate ammonia,

5NH₄, MoO₃SO₃, 7MoO₃+8H₄O. 3NH₄, MoO₃SO₃, 7MoO₃+10H₂O Both very sol. in water but less sol in H₂O containing ammonium salts (Péchard, C. R. 1901, 132, 630.)

Neodymum sulphate, basic, Nd₂O₄, SO₈.

Insol. in H₂O. Nearly msol. in dil. acids. (Wohler, B 1913, 46, 1730) Insol. in H₂O (Matignon, C R 1902,

Neodymium sulphate, Nd2(SO4)2+8H2O.

134. 658)

Solubility in 100 pts. H₂O at t°. pts. Nd2(SO4) a 0 9.50

7.05 5 04 30 50 3.72 ŘΛ 2.70 100 2.21

(Muthmann and Rolig, B. 1898, 31, 1728.)

Neodymium hydrogen sulphate, Nd(SO,H); (Brauner, Z. anorg. 1904, 38, 331.)

Neodymium potassium sulphate.

Cryst. modification more sol, in cold than in hot H₂O. (Boudouard, C. R. 1898, 126,

Nickel sulphate, basic.

Very sl. sol. in H2O. (Berzelius) 6NiO, 5SO1+4H1O. (Athanasesco, C. R. 103. 271.)

7NiO, 7H₂O, SO₃+3H₂O. Nearly insol. in H₂O. (Habermann, M. 5, 432.) 5NiO, SO₁; 5NiO, 2SO₃; and 5NiO, (Pickering, Chem. Soc. 1907, **91**, 1985.)

6NiO, SO. (Strömholm, C.C. 1906, 1, 1222)

Nickel sulphate, NiSO4. 100 nts HaO dissolve pts NiSO, at to

2° 16° 200 230 31° -39 7 45 3 pts NiSO4.

410 54 4 572 61.9 pts NiSO 491 (Tobler, A 95 193)

100 pts of sat, solution contain at 11-14°, 28 84; at 18 20°, 30 77 pts anhydrous salt. (v. Hauer, W. A. B 33, 221)
100 pts HrO at 112 5° dissolve 185 71 pts NiSO4 (Gniffiths)
NiSO4+THrO is sol in 3 pts HrO at 12.5° (Tup-100 pts. H₂O at 15.5° chesolve 75.6 pts NiSO₄+

Sat. NiSO₄+Aq contains at: -8° +2° 5° 11° 17°

-3° +2° 21 7 22.7 23.1 25.2 26.6 33.6% NiSO. 68° 74° 92° 97° 110° 117° 119°

38.2 38.7 42.4 44.2 46.5 48.8 49.4% NiSO. (Étard, A. ch. 1894, (7) 2. 552.)

See also below under hydrated salts. Sp. gr. of NiSO₄+Aq containing g. NiSO₄+ 7H₂O in 1000 g. H₂O at 23.5°

140.5 g. (= 1/2 mol.) 281 421.5 562 1.136 1.190 1.238 602.5 843 983 5 1124

1.280 1.317 1.349 1.378 Containing NiSO₄ (anhydrous): 77.5 g.(=1/2mol.) 155 232.5 310 387.5 465 1.079 1,153 1,224 1,292 1 358 1,421

(Gerlach, Z. anal. 28, 468.)

Sp. gr. of NiSO.+Aq at 0°. S=pts NiSO. in 100 pts solution; S1 = mols. NiSO, in 100 mols solution

S	Sı	Sp. gr.
4.2930	0 581	1.0522
3.9591	0 476	1 0431
3.2845	0 392	1.0357
2.5043	0.297	1 0271
1.6131	0 189	1.0173

(Charpy, A. ch. (6) 29. 26.)

Sp. gr. of NiSO₄+Aq at room temp. containing:

25.35% NiSO4. 10.62 18.19 1.0925 1.1977 1.3137

(Wagner, W. Ann. 1883, 18, 272.)

ı	Sp. gr. of NiSO	+Aq at 25".
	Concentration of NiSO ₄	Sp. gr
	1-normal 1/2- " 1/4- "	1 0773 1.0391 1.0198

(Wagner, Z. phys. Ch. 1890, 5. 39.)

For solubility of NiSO4+Na₂SO₄ in H₂O. see under NiSO₄+7H₂O and NiNa₂(SO₄)₂ 100 pts sat NiSO₄+ZnSO₄+Aq at 18-20° contain 35 45 pts. of the two salts (v Hauer.) Insol, in hound NH₂ (Franklin, Am. Ch.

J. 1898, 20, 828.) HC2H3O2 precipitates it completely from aqueous solution. (Persoz.)
100 pts. absolute methyl alcohol dissolve

0.5 pt NiSO, at 18°. (de Bruyn, Z phys. Ch 10. 783.)

Solubility of NiSO4, 3CH4O+3H4O in methyl alcohol at 14°

P = % anhydrous NiSO4 in the sat. solutions

Alcohol		In 1000	solution	l_	
% by wt	P	Mol NiSO ₄	Mol CH40	Mol H ₂ O	-
100 97.5 95 92 5 90 89 88 88	3 72 0 77 0 455 0.50 0.70 1 01 1.25 1 48	7.75 1 65 0 96 1.0 1.6 2 0 2 4 2 9	969 950 908 871 830 814 800 781	23 2 48 5 91 128 168 184 198 216	N NNNNNN N
86 85	1 73	3 2	767 755	230	NX

(de Bruyn, R. t. c. 1903, 22, 418)

This salt is more sol in ethyl alcohol than in methyl alcohol.

See also under hydrated salts For solubility of NiSO4 in ethyl alcohol, see under hydrated salts. 100 g. sat solution in glycol contain 9.7 g.

Insol in methyl acetate (Naumann. B. 1909, 42. 3790); ethyl acetate, (Naumann, B. 1904, 37, 3602)

Very al. sol. in acetone. (Krug and M'Elrov.) Insol. in acetone. (Naumann, B. 1904, 37, 4329; Eidmann, C. C. 1899, II. 1014). +H₄O. Very sl. sol. in abs. methyl alcohol. After standing in contact with it for

8-9 months, the solution contains 1.34% NiSO4. (de Bruyn. R. t. c. 1903, 22. 414.) +2H₂O. Cryst. from sat. NiSO₄+Aq at 131°. (Steele and Johnson.) +4H2O. Solubility in methyl alcohol+ Ac at 10°. Time=24 hrs. P=% anhydrous

salt in the sat, solutions. Alcohol of 100% 80% 50% 7.38 0.66 1.43 14.8

(de Bruyn, R. t. c. 1903, 22. 414.)

α-blue, $+6H_{*}O.$ Two modifications.

tetragonal; β -green, monoclinic. Solubility of a- NiSO4, 6H4O in H4O at to. NISO.

Salt used		t°	in 100 g H ₂ O	Salt remaining
	NiSO ₄ +6H ₂ O (blue)	32.3	43 57	NaSO4+6H2O (blue)
		33 0	43 35	(blue)
	NiSO4+7H ₂ O	34 0	43.84	
	1	35.6	43 79	" "
	N1SO4+6H2O	144 7	48 05	
	NiSO ₄ +7H ₂ O	44.7	47 97	
	$N_1SO_4+6H_2O$ (blue)	50.0	50 15	- 4
		51.0	50 66	*
		52 0	52 34	" •
		53 0	52 34	

(Steele and Johnson) C. I. I. D. V. C. A. C.

Solubility of \$\beta\$- NiSO4, 6H2O in H2O at to.					
Salt used	t°	g NiSO4 per 100 g H ₂ O	Salt remaining		
$N_1SO_4+6H_2O(blue)$		52.50	NiSO4+6H2O (green)		
N1SO4+6H2O(blue) N1SO4+7H2O		53 40	"		
NiSO ₄ +6H ₂ O(blue) NiSO ₄ +7H ₂ O	15000	54.84	:		
NiSO4+7H2O	69 0 70 0	58 38 59.44	*		
N1SO4+6H2O(blue) N1SO4+6H2O(blue)	73.0 len n	60.72	:		
N ₁ SO ₄ +7H ₁ O N ₂ SO ₄ +7H ₁ O	89 0	67 90			

00 0 (Steele and Johnson, Chem. Soc. 1904, 85. 118.)

Tr. point from α - to β - salt = 53.3°. (Steele and Johnson.) 100 pts. absolute methyl alcohol dissolve 31.6 pts. NiSO₄+6H₂O at 17°; 100 pts. 93.5% methyl slcohol dissolve 7 8 pts NiSO₄+

6H₂O at 18°: 100 pts. 50% methyl alcohol dissolve 1.9 pts. NiSO4+6H4O at 18°. (de NiSO₄ at ord temp. (de Coninck, Bull. Ac Bruyn, Z. phys. Ch. 10. 786.) Roy. Belg. 1905. 359)

a-Salt. Solubility in methyl alcohol+Aq at 14°. Time = 5 to 6 hrs.

	Alcohol % by wt.		In 1000 mol of the solution			
		N:504	Mol. NiSO4	Mol. CH4O	Mol. E ₁ O	
	100 97.5 95	12 4 10 6 6.5	26 22 3 14	794 808 817	180 170 169	
	92.5 90	3.06 1.18 0.315	5.9 2.3 0.57	838 821	156 177	
	85 80 60	0 25 0 46	0.4	757 688 453	242 312 546	
	40 20 0 (water)	2.43 14.7 26.0	3.5 21 39	265 105 0	732 874 961	

(de Bruyn, R. t. c. 1903, 22, 412.)

β -salt.	Solubility	ın	methyl	alcohol+Aq	$^{\mathrm{at}}$	Solubi	lity

14	14°. Time = 24 hrs				
Alcohol	~-	In 1000	solution		
% by wt.	NiSO.	Mol NiSO4	Mol. CH ₄ O	Mol. H ₂ O	
100 97 5 95 92 5 90 89 88 88 87 56 85 80 40 40 20 (water)	15 7 12 4 10 0 5 61 2 35 1 79 0 .97 0 .785 0 .61 0 415 0 75 1 14 1 27 2	1 3	763 781 784 800 810 755 682 453 264 105 0	203 193 196 189 185 244 317 546 732 874 960	

(de Bruyn)

 $+7H_{2}O$

Solubility in 100 pts. H₂O at t°, using NiSO₄+7H₂O. Pts Pts Pts

6.	N1SO4		NiSO4		NaSO4
0 1 2 3 3 4 5 5 6 7 7 8 8 9 10 11 12 12 13 14 15 16 16 17 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20	29.3 29.7 30.5 31.5 32.0 32.5 33.5 34.5 35.5 36.5 37.0 38.5 38.0 38.5 40.5 40.5 40.5 41.5 42.5	33 34 35 36 37 38 38 38 38 38 40 41 42 43 44 45 50 51 50 51 52 53 54 55 66 57 58 66 57 58 66 57 58 66 57 58 58 58 58 58 58 58 58 58 58 58 58 58	N:SO ₄ 45 5 46 0 40 5 47 5 48 0 49 6 50 1 50 6 51 2 51 2 51 2 51 2 51 3 52 3 52 8 53 4 55 6 55 6 55 6 60 7	86 67 68 69 70 71 73 72 74 75 76 77 78 80 81 82 83 84 85 86 87 90 91 92 93	83 6 64 1 7 65 3 6 65 67 0 68 2 2 68 8 8 6 67 0 68 2 7 7 1 1 7 7 7 7 2 9 5 7 6 4 4 7 7 6 6 4 7 8 2 7 9 0 4 1
26	42 0	11 58	59.0 59.6	91	77.0 77.6 78.2 78.8 79.4 80.1 81.3 81.3

Solubility in 100 pts. H₂O at to -Continued

t°	Pts NiSO ₄	t°	Pts. NiSO4	t°	Pts NiSO
99 100 101 102	83 1 83 7 84 3 84 9	103 104 105 106	85.6 86.2 86.8 87.5	107 108 108 4	88 1 88 7 88 7

(Mulder, calculated from his own and Tobler's determinations, Scheik. Verhandel. 1864. 70)

Solubility in H₂O at t°.

Salt used	t°	g Ni804 in 100 g H ₂ 0	Salt remaining
N1SO4+7H2O "" "" "" "" "" "" "1 N1SO4+6H2O N1SO4+7H2O "	-5 0 9 15 22 6 22 8 30 0 30 0 32.3 33.0 34 0	25 74 27 22 31 55 34 19 37 90 38 88 42 46 42 47 44 02 45 74 45 5	NiSO1+7H,0

H.C

(Steele and Johnson, Chem. Soc 1904, 85. 116.)

M -pt. of NiSO₄+7H₂O = 98-100°. (Tilden, Chem Soc. 45. 409.)

Tr. point from a-6H₄O salt to 7H₄O salt = 31.5°. (Steele and Johnson.) Exasts also in an unstable, more soluble modification. (Fedorov, C. C. 1903, II. 95)

Solubility of NiSO4.7H2O+Na2SO4.10H2O

in 100 g H ₂ O at t [∞] .						
to grams NiSO4 grams NasSO4						
0	22 46	10 09				
5	25 28	15 245				
10	· 28 26	1 20 64				

 28 28 (Koppel, Z. phys. Ch 1905, **52.** 401.) See also under NiNa₂(SO₄)₄.

100 pts. absolute methyl alcohol dissolve 46 pts. NSO_4+TR_5 0 at 17°; 100 pts. absolute methyl alcohol dissolve 24.7 pts. NSO_4+TR_5 0 at 4°; 100 pts. 83 5% methyl alcohol dissolve 20.1 pts. NSO_4+TR_5 0 at 4°; 100 pts. 93 6% methyl alcohol dissolve 2 pts. NSO_4+TR_5 0 at 4°; 100 pts. 90% methyl alcohol dissolve 2 pts. NSO_4+TR_5 0 at 4°. (de Bruyn, Z. phys Ch. 10.786.)

Time 5 to 6 hre

Alcohol		In 1000	mol of	solution
% by wt.	Nigo4	Mol NiSO ₄	Mol CH ₄ O	Mol H ₂ O
100 97 5 95 92 5 90 85 84 83 82 81 80 60	16 8 13 9 11 6 8 12 5 78 1 52 1 06 0 985 0 665 0 653 0 805	35 7 29 23 6 16 2 11 2 3	714 734 742 760 758 744	250 237 234 5 224 231 253 312 546
45 40 35 30 20 0 (water)	1 73 2 78 4 55 6 33 13 7 26 4	4 20 39 5	264 105 0	732 875 960.5

⁽de Bruyn, B t. c 1903, 22, 411)

100 g. absolute ethyl alcohol dissolve 1.3 g, NiSO₄+7H₂O at 4°, and 2 2 g, at 17°. (de Bruyn, Z, phys, Ch 10, 786) Min Morenanie

Nickel hydrazine sulphate, NiH+(SO4)2. 2NaHa

1 pt. is sol in 275 5 pts H_{*}O at 18°. Si sol in hot H₂O. Sol in HNO₂ with decomp.; insol, in HCl Sol, in NH₂OH+Ag. (Curtius, J pr 1894, (2) 50. 331.)

Nickel notassium sulphate, NiSO, K-SO,+

Sol. in 8-9 pts. HrO (Tupputs.) 100 pts. H₂O dissolve at: 0° 10° 14° 20° 30°

5.3 8.9 10.5 13.8 18.6 pts. anhydrous salt.

26° 49° 55° 60° 75° 20.4 27.7 32.4 35.4 45.6 pts. anhydrous salt. (Tobler, A. 95, 193.)

Saturated solution contains at: 60° 80° 8.7 12.3 17.6 22.0% anhydrous salt. (v. Hauer, J. pr. 74, 433.)

1 l H.O dissolves 68.8 g. anhydrous salt at 25°. (Locke, Am. Ch. J 1902, 27. 459.)

Nickel potassium zinc sulphate, NiSO4 2K2SO4, ZnSO4+12H2O. Sol in H2O. (Vohl, A 94. 51.)

Solubility in methyl alcohol+Ao at 14° Nickel rubidium sulphate, NiSO, Rh-SO,+ 6HaO

Sol in H₂O. (Tutton, Chem. Soc. **63**. 337) 1 1 H₂O dissolves **79** 8 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902. **27**. 459.) Nickel sodium sulphate, NiNa, (SO₄), +4H₆O₄ Solubility of NiNa, (SO,), 4H,O in 100 or H,O ot to

\$°	grams NiSO4	grams Na ₂ 80 ₄
20	29 31	26 87
25	27.33	25 33
30	24 64	22.58
35	23.66	21 67
40	21 88	20.65

(Koppel, Z. phys. Ch. 1905, 52, 401.) of N1Na₂(SO₄)₂4H₂O+N1SO₄

Solubility of NiNa₂(SO₄)₁,+22₂, 7H₂O in 100 g. H₂O at t°. grams NISO grams NaSO. grams N/SO 20.70 19 825 25 805 30 16 435 31 59 25 355 35 36 01 25 33 11 23 07 40 37 935 14 295

(Koppel.)

Solubility of NiNas(SO₄)₃,4H₅O+Na₅SO₄ 10H-O in 100 g. H-O at t°.

t°	grams NiSO4	grams NaSO4
18 5	26 14	29.455
20	24 07	31.365
25	18 81	37.13
30	9 87	44.25

(Koppel.)

Solubility of NiNas(SO₄), 4H₂O+Na₂SO₄ (enhydrone) in 100 or H₂O et t

t°	grams NiSO4	grams Na ₂ SO ₄
35	7 13	49 595
40	7 245	49 03

(Koppel)

Nickel thallium sulphate, NiSO4, TloSO4+ 6H.O.

Easily sol, in H₂O. Can be recryst, from little H₂O without decomp (Werther, J. pr. 1 l. H₂O dissolves 46.1 g anhydrous salt at 25°. (Locke, Am. Ch. J. 1902. 27, 459.)

Nickel zinc sulphate, NiSO4, ZnSO4+13H2O. Sol. in 3-4 pts. cold H₂O Insol. in alcohol. (Tupputi, 1811.)

Completely sol. in NH4OH+Aq 2NiSO4, 2ZnSO4, H2SO4. (Étard, C R. 87, 602.)

Nickel sulphate ammonia, NiSO4, 6NHs.

Sol. in H₂O with separation of hydroxide

(Rose, Pogg 20, 151.) NiSO₄, 5NH₄+3',2H₂O. Deliquescent. (André, C R 106, 936.)

NiSO4, 4NH3+2H2O Easily sol. in H2O Can be recrystallized out of little H₂O Insol even in dil. alcohol. (Erdmann.)

Nickel sulphate cupric oxide, NiSO4, 2CuO+ 6H₂O.

(Mailhe, Bull. Soc. 1902, (3) 27. 172) 2NiSO4, 3CnO+10H2O, and +12H2O

(Maille.)
5NiSO, 18CuO+xH₂O (Recoura, C. R. 1901, 132, 1415)
(Recoura, C. R. 1904, 1415) NiSO4, 20CuO+xH2O (Recours)

Nickel sulphate, hydrazine, NiSO4, 3NaH4. Ppt. (Curtius, J pr. 1894, (2) 50, 343.)

Nickel sulphate hydroxylamine, NiSO4. 6NH₂OH.

Decomp. by H₂O. (Uhlenhut, A 1899, 307. 334.)

Nitrosvi sulphate, H(NO)SO4. See Nitrosulphonic acid.

Osmious sulphate.

(Kane.)

Easily sol in H2O and alcohol.

Osmic sulphate.

Sol m H2O. (Berzelius)

Palladous sulphate, basic, PdSO4, 7PdO+ 6H2O, and 10H2O. Insol. in H₂O. Easily sol in HCl+Aq.

Palladous sulphate, PdSO4+2H2O.

Deliquescent in moist air; very sol, in H₂O. but decomp. by much H1O, with separation of a basic salt. (Kane.)

Phosphoryl sulphate, (PO) (SO4), (?).

Possible composition of Weber's (B. 20. 86) P₂O₄, 3SO₃ (?). 3P₂O₄, 2SO₃. Immediately decon H₂O. (Adie, C. N. 1891, **63**, 102.) Immediately decomp. by

Platinic sulphate, Pt(SO4)2.

Deliquescent. Sol. in H2O, alcohol, or ether; also in H3PO4, HCl, and HNO3+Aq. (Berzelius, H₂PtO₂SO₄. Sol in H₂O. (Blondel, A. ch. 1905, (8) 6, 109.)

PtO₄, SO₄+4H₄O. Ppt. Decomp. by H₂O. Sol. in H₂SO₄.
PtSO₄(OH)₂, 4Pt(OH)₄+3H₂O. Ppt

(Prost, Bull. Soc. (2) 46, 156.) Pt₈SO₂O₁₃+16H₂O₂ As above. (Prost.)

Platinum hydroxylamine sulphate. Pt(NH,OH),SO4.

Only sl. sol in H₂O, sol in dil H₂SO₄+Aq. (Uhlenhut, A 1900, 311, 123.)

Platinic potassium sulphate, basic.

Insol. m boling H₂O, HNO₃, H₂SO₄, H₂PO₄, HC₂H₂O₃, or NH₄OH+Aq. Easily sol in boling HCl+Aq Sl. decomp. by aqua regis (E. Davy.)
Pt₃₄(SO₄)₂O₁₃, 3K,SO₄+34H₂O Insol. m
H₂O (Prost, Bull Soc. (2) 46, 156.)

Pt18(SO4)O22, 5K4SO4+34H2O. As above, (Prost)

Platinum rubidium sulphate, Pt₂Rb₂(SO₄)₄+ 17H₂O.

Sol. in H.O. (Prost. Bull Soc (2) 46, 156) Platinum sulphate sulphocarbamide, PtSO.

4CS(NH₂)₂, Insol, in H₂O. Sol in cone, H₂SO₄ without decomp. (Kurnakow. J. pr 1894, (2) 50,

Potassium sulphate, K.SO.

Not hygroscopic in the ordinary sense of the word. 100 pts K₂SO₄ over H₂O at 14-20° absorb 58 pts H₄O in 22 days, and finally deliquesce completely (Mulder.)
12 pts K₂SO₄ mixed with 100 pts. H₂O lower the temp. 3 3° (Rüdorff, B. 2. 68.)

100 pts H₂O dissolve with absorption of heat at 0°

8.36 pts. K₂SO₄. (Gay-Lussac.) 8.46 ũ (Mulder.) 8.5 " (Gerardin.) 7.31 " (Möller, Pogg. 117. 386.) 7.3-7.9 " (Nordenskiold. 136. 314.)

100 pts H₂O at 0° dissolve 8 36 pts. K₂SO₄, at 12 72°, 10 57 pts., at 49 05°, 16.91 pts., at 63.90°, 19.29 pts.; at 101 50°, 26 33 pts. (Gay Lussec, A ch. (2) 11 311.)

Solubility in 10% pts HaO at to.

t*	K ₂ SO ₄	t°	KiSO.
0 15 65 28 1	7 8 10 3 12 8	. 47 0 70 2 98 0	16 0 20 3 23 9

(Nordenskiöld, Pogg. 136, 341)

(NOTOMERSHOOM, 1992, 186-39).

100 pts. ant. Kg-S0, 1101.7° contain 17.5 pts. Kg-S0, 101.0° contain 17.5 pts. Kg-S0, 101.0° contain 17.5 pts. Kg-S0, 101.0° contain 17.5 pts. Kg-S0, 100 pts. Hg d. 101.25° dessive 29.12 12 pts. Kg-S0, 100-20, at. 15°, 7.5-25 pts. (Ure 2 Dect), at. 100°, 20 pts. (Ure 3 Dect), at. 100° 3.0 pts. (Ure 3 Dect), at. 100° 3.0 pts. (Ure 3 Dect), at. 100° 3.0 pts. (Ure 3 Dect), at. 100° degregamen), in 18 pts. cofd, and 5 pts. at. 100° (Bergamen), in 18 pts. cofd, and 5 pts. bellois Hg (Ourcorp), in 15 pts. cofd, and 4 pts. bellois Hg (Ourcorp), in 15 pts. cofd, and 4 pts. bellois Hg (Our 100), in 12 pts. Hg 3 at 0°, and 4 pts. bellois Hg (Our 100), in 12 pts. Hg 3 at 0°, and 4 pts. bellois Hg (Our 100), in 12 pts. Hg 3 at 0°, and 4 pts. bellois Hg (Our 100), in 12 pts. Hg 3 at 0°, and 4 pts. bellois Hg (Our 100), in 12 pts. Hg 3 at 0°, and 4 pts. bellois Hg (Our 100), in 12 pts. Hg 3 at 0°, and 4 pts. bellois Hg (Our 100), in 12 pts. Hg 3 at 0°, and 4 pts. bellois Hg (Our 100), in 12 pts. Hg 3 at 0°, and 4 pts.

(Abb) K₂SO₄ sat. at 15° hns sp. gr = 1.0774, and contains 10,056 pts K₂SO₄ up 100 pts H₂O (Michel and Krafft, A. ch. (3) 41 478)

100 pts. H₂O dissolve 9.28 pts. K₂SO₄ at 15.6°, and sat solution has sp. gr. = 1 177. (Page and Keightley, Chem. Soc. (2) 10. 566.)

	Solubili	ty in	100 pts.	H₂O at t°	
t°	Pts KaSO	t°	Pta. KaSOa	t°	Pts K ₈ SO ₁
0	8.5	35	13.1	70	19.8
0 1 2 3 4 5 6 7 8 9 10 11 12 13	8.5 8 6 8 7 8 8 9.0	36	13.3	71	20 0
2	8 7 8 8	37	13.4	72	20 2
3	8.8	38	13 6	73	20 4
4	9.0	39	13 8	74	20 6
5	9 1 9 2 9 3 9 4	40	14 0	75	20 8
6	92	41	14 2	76 77 78	21 0 21.2
- 7	93	42	14.3	77	21.2
8	9 4	43	14 5	78	21.4
. 9	9 5 9 7	44	14 7	79	21 6 21 8
10	97	45	14 9	80 81	21 8
11	98	46	15 1	81	22 0 22 2
12	10 0	47	15.3 15.5	82 83	22 2
10	10 0 10 2	48 49	15 5 15 6	84	22 4
14 15 16 17 18 19	10.3	50	15 0	85	22 8
10	10.3	51	15 8 16 0	86	23.0
10	10 5	52	16 2	87	23.2
10	10.7	53	16.4	- 88	23 4
10	10.8	54	18 6	90	23 6
18	10.9	55	16.6 16.8 17.0 17.2 17.4	89 90 91	23 9
20 21 22	11.1	56	17 0	91	24 1
22	11.2	57	17 2	92	24 3
-23-	-11-3	58-	17.4	-98 -	24-5
24	11 5	59	17 6	94	24 7
24 25	11.6	60	17 8	95	25 0
28	11.7	61	18 0	96	25 2
26 27	11 9	62	18 2	97	25 5
28 29	12 0	63	18 4	98	25 7
29	12 2	64	18 6	99	25 9
30	12 3	65	188	100	26.2
31	12 5	66	19 0	101	26.4
32	12.6	67	19.2	102	26 6
33	12.8	68	19.4	102 25	26 75
-34	130	69	19-6 -	~~	

(Mulder, calculated from his own and other experiments, Scheik Verhandel 1864. 50.)

If solubility S = pts. anhydrous salt in 100 4667.) pts. of solution, S=75+0.1070t from 0° to 163°. Solubility from 163° to 220° is constant at 25. (Etard, C. R. 106, 208)

Solubility of K.SO, in 100 pts. H.O at to.

t°	Pta, KaSO4	to -	Pts. K ₂ SO ₄	-to -	Pts. K:SO:
16 20 28 36	9.76 10 30 12.59 13 28	39 54 98	14 21 17 39 23 91	120 143 170	26 5 28.8 32 9

(Tilden and Shenstone, Phil Trans. 1884, 23.)

Solubility of K₂SO₄ in H₂O. 100 pts H₂O dissolve at:

.-10.8 --- 19.7 pts. K₂SO₄.-(Andreae, J. pr. (2) 29, 456.)

100 ccm. H₂O dissolve 12.04 g. K₂SO, at CTrevor, Z phys Ch. 7, 468.) Sat, K.SO. + Aq contains at:

21° 23° 99° 130° 60° 10.3 21.1% K₂SO. 0.1 14.5 19.1

152° 1950 220° 1.3 22.8 24.5 23.8 24.6% KaSO4. (Étard, A. ch. 1894, (7) 2, 549.)

> Solubility of K₂SO₄ in H₂O at t°. G. K2SO4 per 100 g. H2O

t°	K:80:	Sp gr	t°	K ₁ SO ₄	Sp gr.
15 70	10.37	1 0021	58.95 74.85 89.70 101.1*	22 80	1 1157

* = b.-pt

88 90

Berkeley, Phil. Trans. Roy. Soc. 1904, 203. A, 189.)

100 g H₂O dissolve 0.133 gram-equivalent K₂SO₄ at 25° (Van't Hoff and Meyerhoffer, Z, phys. Ch. 1904, 49, 315.) I l. sat K₂SO₄+Aq at 25° contains 0 617 mols. K₂SO₄. (Heiz, Z anorg 1911, 73, 274.)

Solubility of K2SO4 in H2O at to. % K₂SO₄ 7 82 4.7811 43 14 77 30 05 54 20

16 40

Le Blanc and Schmandt, Z. phys. Ch. 1911, 77, 614.)

100 g. H₂O dissolve 12.10 g. K₂SO₄ at 25° (Amadori, Rend Acc. Linc. 1912, (5) 21. II.

Solubility of K2SO4 in H2O at various pressures Figures denote pts. K2SO4 con-tained in 100 pts. sat. K2SO4+Aq at to and A pressure in atmospheres

-	A	00	15°	15.5°	16.2°
-	1 20 30 ·	6 81 7.14 7.14	9 14	9 24 9 44	9 35 9 54

(Möller, Pogg. 117, 386.)

Sat. K₂SO₄+Aq boils at 101.5° and contains 26 33 pts K₂SO₄ to 100 pts. H₂O (Gay-Lussao); at 101.7° and contains 21.2 pts. K₃SO₄ to 100 pts. H₄O (Chriffiths); at 102.26°, and contains 25 75 pts (K₃SO₄ to 102.26°, and contains 26 75 pts (K₃SO₄ to 102.26°); and contains 26 75 pts (K₃SO₄ to 102.26°); and solution concrust forms 45 cts. 101.7° and solution concrust.

teins 25.3 pts. K₂SO₄ to 100 pts. H₂O; highest

(

temp. observed, 102.1° (Gerlach, Z. anal. 26, 426.)

B.-pt. of K2SO4+A4 containing pts. K2SO4 to 100 nts HoO

Bpt	Pts K ₂ SO ₄	B-pt	Pts. Ka904
100 5° 101 0 101 5	7 14 5 22 I	102° 102 I	30 0 31.6

(Gerlach, Z anal, 26, 430)

Sp. gr of KaSO4 at 19 5° 9% K+80. Sp gr oz. KASO. Sp gr 2 401 4 744 6 968 1 0763 0385 1 0568

10 945 (Kremers, Pogg 95 120)

Sp gr and B-pt of KaSOs+Aq at 12.50					
Pts KaSO to 100 pts HeO	Sp gr	B,∗pt.	Pts KsSO to 100 pts HrO	Sp. gr.	B -pt
1 2 3 4 5	1 0079 1 0151 1 0231 1 0305 1 0391	100 38° 100 62° 100 75° 100 88° 101°	6 7 8 9	1 0456 1 0524 1 0599 1 0676 1 0735	101 12 101 24 101 24 101 34 101 5

(Brandes and Gruner, 1827.)

K-SO.+Aq sat. at 8° has 1.072 sp gr. (Anthon, A. 24, 211.) K2SO4+Aq saturated at 12° contains

K. SO. +Ad saturated at 12 contains 10.38% K. SO. and has sp. gr 10716 (Struve, Zeit. Ch. (2) 5. 323); saturated at 15° contains 11.01% K. SO. and has sp. gr. 1.0831 (Gerlach); saturated at 18.75° contains 10.74% K₂SO₄ and has sp gr. 1 0798 (Karsten).

op grost 19004+rad at 10.	Sp	gr	of K ₂ SO ₄ +Aq at 15°.
---------------------------	----	----	---

K.50.	Sp. gr.	K-SO.	Sp gr	K.50.	Sp gr
1 2 3 4	1 0082 1.0163 1.0245 1.0328	5 6 7	1 0410 1 0495 1 0579	8 9 9,92	1.0664 1.0756 1.0836

(Gerlach, Z. anal. 8. 287.)

Sp. gr. of K ₂ SO ₄ +Aq at 18°.		
%K ₂ 8O ₄	Sp. gr.	
5 10	1 0395 1 0815	

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of K₂SO₄+Aq at 15°/J5° K₂SO₄ in 100 pts of the solution, b = pts. K-SO, in 100 pts H₂O.

ß.	b	Sp gr
1	1 010	1 00808
3 5	3 093 5,263	1 02447
7	7.527 9.890	1 05776 1 07499
9 9 92	11 013	1 08805

(Gerlach, Z. anal 28, 493.)

Sp gr, of K₂SO₄+Aq at 20° containing 0.5 mol. K₂SO₄ to 100 mols. H₂O = 1.03758; containing 1 mol K₂SO₄ to 100 mols. H₂O = 1 06744 (Nicol, Phil. Mag. (5) 16, 122)

Sp. gr. of K2SO4+Aq. at 25°

Concentration of KaSO4 +Aq	Sp. gr
1-normal 1/g- " 1/g- " 1/g- "	1 0664 1 0338 1.0170 1 0084

(Wagner, Z. phys. Ch. 1890, 5. 37.)

K₂SO₄+Aq containing 6.7% K₂SO₄ has gr. 20°/20°=1.0549 (Le Blanc and sp gr. 20"/20 = 1.05 x Rohland, Z. phys. Ch. 1896, **19.** 278)

Sp. gr. of K2SO4+Aq at 20.1°, when p= per cent strength of solution, d=observed density; w = volume cone in πď gr per cc.

p 9.83 1.0800 0 10615 1 0857 0.08708 8.1720.071446 779 1 0539 1.0394 0 05218 5 021 1 0238 0 03202 3 127 0 02554 2 508 1 0186 0.01463 1 448 1.0100 1.0070 0.01087 1 079 1 047 1 0066 0.01053 0 00456 0.4551 0018

(Barnes, J. phys. Chem. 1898, 2. 543.) Sp. gr, of K4SO4+Aq at 18°.

1/4 KaSO, g -equiv. per l

Sp. gr at 18°

0 8327	1.0567
0 7975	1.0539
0.6688	1 0456
0 5029	1.0344
0.5016	1 0340
0.2508	1 0173
0 01001	1 0006

(McKay, Elektrochem. Zeit. 1899, 6. 115.)

Sp gr. of sat K ₂ SO ₄ +Aq at t°.			
t°.	g K ₂ SO ₄ sol in 100 g H ₂ O	Sp gr	
0 10 20 30 40 50 60 70	7 35 9 22 11 11 12.97 14.76 16 50 18 17 19.75	1 058 1.069 1 081 1 089 1 097 1 106 1 114 1 121	

(Tschernaj, J Russ. phys Chem Soc. 1912, 44, 1565)

Sol in cone acids; not pptd. by glacial $\mathrm{HC}_2\mathrm{H}_3\mathrm{O}_2$ Insol in KOH+Aq of 1.35 sp. gr. (Liebig, A. 11, 262.)

Solubility of K₂SO₄ in H₂SO₄+Aq at 18°.

Mols. per 100 mols solution		Solid phase
K ₂ SO ₄	H ₃ SO ₄	
1 10 1 59 2 49 2 75 2 75 2 83 2 80 2 61 2 25 1 08 0 77 0 44	0 95 2.70 3.17 3.74 5 08 5 79 5 61 6 19 7 94 9 2 22.7	K ₅ SO ₄ " K ₄ SO ₄ , " K ₄ SO ₄ , KHSO ₄ " K ₅ SO ₄ , 3KHSO ₄ K ₅ SO ₄ , 6KHSO ₄ " KHSO ₄ " KHSO ₄ "

(Stortenbecker, R. t. c. 1902, 21, 407.) Solubility in H₂SO₄+A₀ at 0°.

	l phase
Mois H ₂ SO ₄ Mois K ₂ SO ₄	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SO4 K ₂ H(SO4)2 (SO4)2 (O ₄)2+K8 +Kb Kb KHSO4

These results show that at 0° there exist (Sullivan.)

between K₅H(SO₄)₂ and KHSO₄, two acid sulphates, Ka and Kb. Ka is probably K₂SO₄, 3KHSO₄ and Kb is probably K₂SO₄, 6KHSO₄.

(D'Ans, Z. anorg, 1909, **63.** 228.)

3.1 mols. K₂SO₄ are sol. in absolute H₂SO₄ at 25°. (Bergus, Z. phys Ch. 1910, 73. 353.)

Solubility in H₂SO₄+Ac at 25°.

Millimols H ₂ SO ₄ in 10 ccm.	Millimols KaSO4 * in 10 cem
3 97 7 57 14 35	6 17 8 92 10 82 14 86

(Herz, Z. anorg, 1912, 73, 276.)

Solubility in H2SO4+Aq at 25°.

In 1000 g of the solution		Solid planse		
Mois 80s	Mola KaSU4	Sour June		
6 42 6 60 6 91 7 26 7 68 8 00 8 10 8 15 8 29 8 33 8 62 8 57 8 78 8 78 8 63 8 63 8 98 9 80 9 80 9 80	0 171 0 190 0 266 0 182 0 157 0 267 0 250 0 362 0 364 0 322 0 322 0 384 0 412 0 580 0 899 0 889 0 861 0 365 0 365 0 365	KHSO ₄ KHSO ₄ +RH ₃ (SO ₄) ₂ , H ₂ O " " " " " " KH ₃ (SO ₄) ₂ , H ₂ O KH ₄ (SO ₄) ₃ , H ₂ O KH ₄ (SO ₄) ₃ , H ₂ O KH ₄ (SO ₄) ₃ , H ₂ O KH ₅ (SO ₄) ₃ KH ₅ (SO ₄) ₃ +KHS ₅ O KHS ₄ O ₇ (metastable solution) " " KHS ₂ O ₇ " " " " " " " " " " " " " " " " " "		
9 80 9 66 9 66	0 904 0 987	KHS ₂ O ₇ "		

(D'Ans, Z anorg. 1913, **80.** 239.)

Pptd from K₂SO₄+Aq by NH₄OH+Aq, (Sullivan.)

Solubility of K2SO4 in NH4OH+Aa at 20°.

G K ₂ SO ₄ in 100 ccm. H ₂ O
10 804 4 100 0 828 0 140 0 0.042

(Girard, Bull, Soc. (2) 43, 522.)

"I l. sat. solution in H₂O contains 105.7 g. K₂SO₄ at 20°; m NH₄OH +Aq (5.2% NH₃), 45.2 g. (Konowalow, J. Russ. Phys. Chem. Soc. 1894, **31**, 985.)

Solubility of KaSO, in KOH+Aq at 25°.

In 1000 g of the solution		
Mols K:804	Mols (KOH)2	
0.617 0.433 0.280 0.137 0.035 0.009	0.0 0 258 0 433 1 13 2 86 3 42 4 809	

(D'Ans and Schreiner, Z. anorg 1910, 67. 438.)

Sol. in sat. NH₄Cl+Aq without pptn. (See NH_C(L)

Sl. sol. in sat. KCl+Aq without pptn. 100 g. sat KCl+Aq, at 25° dissolve 0.0167 g. equiv. KsO, at 25° (Van't Hoff and Meyerhoffer Z. phys. Ch. 1904 49, 315.) Sl. sol, in sat KNO. + Ag without causing

pptn. 11. of the solution contains 50.7 g, K2SO4+ 216.5 g. KNO₄=267.2 g. mixed salts at 15° Sp. gr. K₂SO₄+KNO₄+Aq=1.165.

I. of the solution contains 47.66 g. KoSO. +308.5 g. KNO₃=356.2 g. mixed salts at 25°. Sp. gr. of K₂SO₄+KNO₃+Aq=1,210. (Euler, Z. phys. Ch. 1904, 49, 313.)

See also under KNO. Sol. in sat. NaNOs+Ag without causing

pptn at first, but soon KNO₃ is pptd. (Karsten.) (See NaNO₃.) Sol. in (NH4)2SO4+Aq with pptn. of NH4)2SO4. (Rudorff, B. 6, 485) (See

(NH,),SO,) More sol. in aqueous solutions of other salts, as Na,SO, MgSO, CuSO, etc, than in pure H.O. (Pfaff, A. 99, 227.)
Sol. m sat Na,SO, +Aq, MgSO, +Aq,

NaCl+Aq. (See MgSO, and NaCl.)

Solubility of K₂SO₄ in Na₂SO₄+A₀. Temp -34° Temp -60° % Na₂SO₄ % NasSO₄ % K₂SO₄ % K-80. 11.9 0 15.3 10 7 7 1 6 6 13 9 31 4 4.3 27.18.2 31 3 33 1 ñ

(Nacken, B. A. B. 1910, 1016.)

100 g. H₂O sat. with both K₂SO₄ and Tl2SO4 dissolve.

4.74 g, Tl-SO4+10.3 g, K-SO4 at 15°. +16.4 g. 11.5 0. " 100°. 18.52 g +26.2 g.

(Rabe, Z. anorg, 1902, 31, 156.) Sl. sol. in sat, ZnSO4 or CuSO4+Aq with separation of double salt.

separation of the saturation is a constant (Blarez, C R. 112, 939.)

Solubility of K2SO4+Th(SO4)2 at 16°. Solid phase, Th(SO₄)₂

Pts. per 1	00 pts H ₁ O	Pts per 10	00 pts HsO
K ₂ SO ₄	Th(804)3	K2SO4	Th(804)2
0.000 0.424 1 004 1 152 1 224 1 283 1 348 1 378	1.390 1.667 2.193 3.191 2.514 2.222 1.706 1.637	1 487 1.633 1 844 2 512 3 092 4 050 4.825	0.870 0 635 0 370 0.128 0 070 0 027 0 003

(Barre, C. R. 1911, 150, 1555.)

Difficultly sol, in 20% KCsHsOs+Aq. (Stromeyer)

Solubility in K acetate+Aq at 25°.

Composition of the solutions			
% K acetate	% K ₁ SO ₄	% H ₂ O	
6.11	6 65	87.24	
8 68 11 29	5 09 3 99	86.23 84.72	
15.59	2.35	82.06	
20 12 29.95	1.23 0.39	78 65 69 66	

The solid phase in these solutions is KaSO4. (Fox. Chem. Soc. 1909, 95, 885.)

100 g. hydroxylamine dissolve 3.5 KaSO, at 17-18°. (de Bruyn, Z. phys. Ch. 1892, 10, 782.)

SULPHATE, POTASSIUM 1007				1007	
Easily sol. in liquid anorg 1905. 46. 2)	HF. (Franklın, Z	Solubility in orga	nic substa	ances+Aq	at 25°.
Insol. in liquid NH	ı. (Franklın, Am		Composit	on of the s	olutions
	r attacked by liquid hem. Soc 1901, 79.	Organic substance	% organic substance	% K±8O4	% H _t O
1361) Insol. in absolute ale Insol. in alcohol, the 0.905 (Anthon) Solublity in dil. alco- temp 100 pts. alcohol of 0 vol., 45% by weight) d 4 8 0.16 0.21 (Gerardun, A. o 100 pts. of the sat. sol	Alcohol	1 35 4.80 7.80 9.70 12.34 14.51 15.26 20.50 26.91 35.97 43.90 69.26	9 17 6 90 4 96 4 .32 3 57 2 71 2 66 1 83 0 97 0 41 0 22 0 016	89.48 88.30 87.24 85.98 84.09 82.78 82.08 77.67 72.19 63.62 55.88 30.72	
of: 10 20 3	0 40% by weight, .56 0.21 pts. K ₂ SO ₄ .	Pyridine	4 23 13.90 24 51 34 19	7 95 4 77 2 75 1 47	87.82 81.33 72.74 64.34
Solubility in acetic Concentration of the acetic acid Mol /Liter	s acid+Aq at 25°. Solubility of K ₁ SO ₄ Mol/Liter		46 29 55 93 75 90	0 45 0 12 0 006	53.26 43.95 24.09
0 000 0 070 0 137 0 328 0 578	0.6714 0.6619 0.6559 0.6350 0.6097	Ethylene glycol	3 16 9 89 18 47 32 11 49 03	9 67 7 69 5 74 3.57 1.83	87.17 82.53 75.79 64.32 49.14
1.151 2 183	0 5556 0 4743	Chloral hydrate	9 09	9 13 8.41	84.43 82.50
(Rothmund and Wilsm 40. (Solubility in ph			12.38 13 20 22 07	7 79 7.31 5.88	79 83 79 49 72.05
Concentration of the phenol Mol/Liter	Solubility of K ₂ SO ₄ Mol/Liter		33 15 44 40 47.30	4.54 3 36 2 92	62 31 52 24 49.78
0 000 0.016 0 021 0 032	0 6714 0 6650 0 6614 0 6598		62.82 70.28 80.36 85.26	2 00 1 75 1 40 1 08	35.18 27.97 18 24 13.66
0 040 0.047 0.064 0.076 0.127 0.122 0.236 0 252 0 308 0.409 0.464 0.486	0 6555 0 6522 0.6502 0.6494 0.6310 0.0251 0.6042 0.5956 0.5834 0.572 0.6480 0.5425 0.5389	Glycerol	8 96 13 36 20 34 24 15 33 73 40 40 43 52 50 18 57 22 67 94 78 18 98 28	7 69 6 47 5 83 4 44 3 365 3 38 2 69 2 07 1 1.53 0 .98 0 .73	82 17 78 95 73 19 70.02 61.83 55.95 53 10 47 13 40.71 30.53 20 84 0.99
(Rothmund and Wilst 40.		3 20 5.82 8 35 11 26	10 07 9.61 9.19	86.48 84.11 82.04 79.55	
100 g. 95% formic K ₂ SO ₄ at 21°. (Asolt 1117.)	t	14 30 17 22	8.66	77 04 74 43	
			`\		

1900 .	bom main, rorner	10111 1	***	0210 010		
			_			۰
Solubility in organ	ic substances + Ag at 25°.	Insol	m	methyl	acetate.	

	Continued.				ŀ
		Composition of the solutions			١.
	Organic substance	% organie substance	% K ₁ SO ₁	% H ₂ O	
	Sucrose	9 56 18 55	9.65 8.65	80 79 72 80	ľ
	,	28.16 37 24 47 55	7.42 6.35 5.21	64 42 56 41 47 24	,
		57 00	4.24	38 76	١
•	Acetone	4 92 10 06	7 20 5 02	87 88 84 92	
		16 23 24 31 37 19	2.96 1.50 0.47	80 81 74 19 62 34	ľ
		46 29 62 40	0 20	53 51 37.57	1

(Fox and Gage, Chem Soc. 1910, 97, 381) 1909. 42. 3790.) Sol. in 76 pts glycerine of 1.225 sp. gr. at ordinary temp. (Vogel, N Repert. 16, 557) Insol in acetone. (Krug and M'Elroy;

Eidman, C C 1899, II. 1014) .Insol. in CS₂ (Arctowski, Z anorg 1894, 6.257); benzonitule (Naumann, B 1914, 47. 1370); methyl acetate (Naumann B 1903, 1909, 42, 3790), ethyl acetate (Naumann B 1904, 37, 3602.) log H₂O dissolve 104 g. KsSO₄+219.0

g. sugar at 31 25°, or 100 g sat solution con-tam 3 8 g. K.SO₁+66 74 g. sugar (Köhler,

Z. Ver. Zuckerind 1897, 47, 447) Min Glaserite +)4H₂O. 100 pts H₃O dissolve 9.82 pts (Ogier, C R. 82, 1055)

Tripotassium hydrogen sulphate, K₃H(SO₄)₂. Sol. in H₀O.

Potassium hydrogen sulphate, KHSO4. 1.07 pts, KHSO₄ (=1 pt, K₂S₂O₇) dissolve:

at 0° in 2.95 pts. H₂O.
" 20° " 2.08 " " 40° " 1.59

" 100° " 0.88 (Kremers, Pogg. 92, 497.)

Sp gr. of KHSO4+Aq at 15° containing: 5 10 15 % KHSO₄, 1.0354 1.0726 1.1116

6 KHSO. 1.1516 1.1920 1,2110 (Kohlrausch, W. Ann. 1879, 1.)

Sat solution boils at 105 5° (Gruffiths); 108° (Kremers). Alcohol dissolves out HaSO4.

K2SO4 crystallises from dilute solutions. 100 g. 95% formic acid dissolve 14.6 g. KHSO, at 19.3° (Aschan, Ch. Ztg. 1913, 37. 1117.)

1909, **42**, 3790) Min Misinite +51/2H2O Deliquescent. (Senderens.

Bull Soc. (3) 2. 278.)

(Naumann B.

Potassium dihydrogen sulphate, K4H2(SO4), Sol in H₂O. (Phillips, Phil Mag 1, 429)

Composition is 4K₂O, 7SO₁+3H₂O, according to Beithelot (A ch. (4) 30, 442). Potassium trihydrogen sulphate, KHz(SO4)2. Sol in H₂O with rise of temperature. (Schuliz, Pogg. 133, 137) +116H.O. (Lescour, C. R 78, 1044.)

Potassium disulphate (pyrosulphate), K₂S₂O₇. When dissolved in exactly the necessary amount of hot H₂O for solution, it crystallises on cooling without decomp. Decomp by excess of H₂O. (Jacquelain, A ch. 70. 311.) Insol. in methyl acetate. (Naumann, B.

Potassium hydrogen disulphate, KHS₂O₇. Sol in furning H2SO4 without decomposi-

Potassium octosulphate, K.S.O... Decomp, by H₂O (Weber.)

Potassium praseodymium sulphate, 3K₂SO₄, Pr2(SO4)8+H2O Si sol. in H_{*}O.

Sol. in conc HCl and HNO; (Von Scheele Z anorg 1898, 18, 358)

Potassium rhodium sulphate, 3K2SO4 Rh₂(SO₄)₂.

Does not exist (Leidié, C R 107, 234) K₂SO₄, Rh₂(SO₄)₄+24H₂O, Verv sol, in H₂O. (Piccini, Z. anorg. 1901, 27. 66.)

Potassium samarium sülnhate, 9K-SO. $2Sm_2(SO_4)_8 + 3H_2O$. Sl sol. in H₀O.

Sl sol in sat. K₂SO₄+Aq. 1 l. sat K₂SO₄+Aq dissolves 0 5 g Sm₂O₃. (Cleve, Bull Soc (2) 43, 166)

Potassium scandium sulphate, 3K2SO4 Se₂(SO₄)₈.

Very slowly sol. in cold, more easily sol in warm H₂O Insol. in sat K₂SO₄+Aq. Sol in H2O and in dil. K2SO4+Aq (Meyer, Z. anorg. 1914, 86, 279) 2K₂SO₄, Sc₂(SO₄)₃ Sol in K₂SO₄+A₀;

(Cleve.) Does not exist. (Nilson)

Potassium sodium sulphate, 3K2SO4, Na2SO4. 100 pts H₂O dissolve 40 8 pts at 103 5°.

(Penny, Phil. Mag (4) 10. 401.) 5K₂SO₄, Na₂SO₄ 100 pts. H₂O at 100° dissolve 25 pts. ; at 12 7°, 10.1 pts ; at 4.4°, 9.2 pts (Gladstone, Chem. Soc 6, 111.) Potassium strontium sulphata, K.Sr.(SO.). Decomp by (NH₄)₂CO₂+Aq. Pogg. 93. 604.

igg. 93, 00%.) K.SO. SrSO. This is the only double salt formed from these two components between 0° and 100°

100 ats of the sat, solution in equilibrium with SrSO4 and the double salt contain at. 17.50

1 27 1.88 2.71 3 0 nts K-SO. (Barra, C. R. 1909, 149, 292)

Potassium tellurium sulphate, KHSO4, 2TeO2, SO.+2H4O. (Metzner, A, ch 1898, (7) 15, 203.)

Potessium terbium sulphate.

Easily sol in HaO. Sl. sol, in KaSO4+Au (Delefontame, Zent, Chem. (2) 2, 230.)

Potensium thellic sulphate, KTI/SO.).-4H.O.

Decomp by H₂O. (Fortini, Gazz ch. it. 1995, **35**. (2) 453.) 2K₂O, Tl₂O₃, 4SO₄. Insol in H₂O. Very difficultly sol. in warm dil. H₂SO₄+Aq (Strecker, A 135, 207.)

Potassium thorium sulphate, K2SO4, Th(SO4)2 +4H₀0.

Sol. in hot H₂O containing a few drops HCl (Barre, A ch. 1911, (8) 24, 227.) 2K₂SO₄, Th(SO₄)₂+2H₂O. Slowly sol in cold. easily and abundantly in hot H2O, cold, easily flux monomitted in ready and a gradually decomp, by bounks, I said, 1820, 182

Potassium tin (stannic) sulphate, K2Sn(SO4)3 Easily sol in H₂O with decomp

(Marignac.)

Sol in HCl. (Weinland, Z. anorg 1907, 54, 250.)

Potassium tin (stannous) sulphate chloride, 4K2SO4, 4SnSO4, SnCl2. Can be recrystallised from H₂O. (Marig-

nac, Ann. Min (5) 12, 62.)

Potassium titanium sulphate, K1SO4, Ti(SO4)2 +3H.O. Difficultly sol, in H₀O or HCl+Aq.

comp. by much H2O. (Wallace, Pogg. 102. Potassium fitanvi sulphate, 2K,SO4, 3TiO,

SO4+10H.O. Very sol, in H₂O with decomp. Insol, in conc. H2SO4. (Rosenheim, Z. anorg. 1901, 26, 251.

K₅SO₄, TiO₂SO₄+7H₂O. Very hygroscopic and sol. in H₂O. (Mazzuchelli and Pontanelli, C. C. 1909, H. 420.) K₂SO₄, (T₁O)SO₄ (Sponce, C. C. 1901, H.

Potassium uranous sulphate, K.SO., II/SO.A. TH.O

Very al sol in H.O. (Rammelcherg)

Potassium uranyl sulphate, K-SO, (TIO-)SO, +2H.0

Sol. in 9 pts H₂O at 22° and in 0.51 pt. at 0°. Insol. in alcohol. (Ebelmen, A. ck. 1000 (3) 5 211) 100 pts of ameous solution set, at 25°

contain 10.5 pts. salt. at 70 5° contain 23.98 nte selt (Rimbach B 1004 87 478) +3H.O. (de Coninck, Chem Soc. 1905, 88. (2) 394

2K-SO4. (UOa)SO4+2H4O. Decomp. by πō. Cannot be cryst from rather cone H-SO.

as it is completely decomp, by it, (Rimbach, as it is completely decomp. by it. (Kimbach, B 1905, 38, 1572)

K₂O, 2UO₂, 3SO₂ Ppt. Identical with UO₃, OK, SO₃H of Scheller, (A. 1867, **144**. 238). (Kohlschütter, A. 1900, 311, 11.)

2K₂SO₄, 3(UO₂)SO₄+H₂O. Sol. in H₂O

Insol. in alcohol (Berzelius) Does not exist. (Ebelmen.)

Potassium vanadium sulphate, K.O. V.O. $28O_{\bullet} + 6H_{\bullet}O = K(VO_{\bullet})8O_{\bullet} + 3H_{\bullet}O$

1897, 13, 446.)

Potassium vanadyl sulphate. K₂SO₄, (VO)₂(SO₄)₄,

Very slowly sol. in H₂O, stall less sol. in dil. alcohol. (Gerland)

K₃SO₄, VOSO₄+3H₂O. Easily sol. in H₂O.

Sol. in alcohol+conc. H₄SO₄. (Koppel,

Z. anorg. 1903, 35, 178.) K₂SO₄, 2VOSO₄ Very hygroscopic. Very

sol. in H₂O but goes into solution slowly. (Koppel and Behrendt, B. 1901, **34**, 3935.) Easily sol. in H₂O. (Koppel, Z. anorg. 1903, 35, 174)

Potassium yttrium sulphate, 4K,SO,,. Y.(SO.).

Sol in 16 pts, cold H₂O, and in 10 pts, sat. K-SO. + Ag, and more abundantly if the latter solution contains ammonium salts or free acid (Berlin.) 3K2SO4, 2Y2(SO4)2. 100 ccm. cold sat. 459.)

K₂SO₄+A₃ dissolve an amount of this salt corresponding to 4.685 g. Y Oz. (Cleve)

Potassium zinc sulphate, K-SO4, ZnSO4+ BH.O.

Sol. in 5 pts. cold HrO. (Bucholz, N. J. Pharm. 9 2 26) 100 pts. H₂O dissolve at:

10° 15° 25° 260 12.6 18.7 22.5 28.8 39.9 nts. hydrous salt. 45° 50° 58° 65° 70° 51.2 54.0 67.6 81.3 87.9 pts. hydrous salt. (Tobler, A. 95, 193.)

100 nts. H₂O at 15° dissolve 14.8 nts. K₂SO₄. ZnSO₄+6H₂O; sp. gr of sat H₂O solution at 15°=1.0939. (Schiff, A. 109, 328.)

1 l. H₂O dissolves 131.9 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27.

Potassium zirconium sulphate, 2K2O, 6ZrO2, 7SO++9H₂O.

Decomp, by H₂O. 3K₂O, 3ZrO₂, 7SO₃+9H₂O Insol. in H₂O. Zr₂O₃(KSO₄)₂+8H₂O Ppt (Rosenheim, B. 1905, 38, 815.)

Potassium sulphate vanadate.

Very difficultly sol, in H₂O. Insol. in alcohol (Berzelius)

Potassium sulphate antimony trifluoride. See Antimony trifluoride potassium sulphate.

Praseodymium sulphate, basic, (PrO), SO4. Insol. in H₂O (Matignon, C. R. 1902) 184, 660.) Insol, in H₂O. Nearly msol, in dil. acids. (Wöhler, B. 1913, 46, 1730.)

Praseodymium sulphate, Pra(SO4)2.

Sol in H₂O, very hydroscopic. 23 64 pts are sol. in 100 pts H₂O at 0° and 17 7 pts. at 200 (von Scheele, Z. anorg. 1898, 18, 357-358.) +5H₂O Sol. in HgO (von Scheele, Z.

anorg. 1898, 18. 357) and it is a second of the seco

Sol. in H₂O. (von Scheele, Z. anorg 1898, 18. 357.)

Solubility in H₀O at to. Pts. Pre(8Oa) 19 79 1š 14.10 35 10.31 7 09 55 75 4 13

(Muthmann and Rolig, B. 1898, 31, 1727)

+1516H₂O Sol. in H₂O. (von Scheele Z anorg, 1898, 18, 357)

Praseodymium hydrogen sulphate, Pr(SO.H). (Brauner, Z anorg, 1904, 38, 330.) Solubility in boiling cone. H2SO4

of the solution contain 1.02 g of the acid sulpliate. (Matignon, C R. 1902, 134. 659.) Radium sulphate.

Less sol. in H2O than corresponding Ba

comp. (Curie, Dissert. 1903.)

Rhodium sulphate, Rho(SO₄)+12H₂O. Easily sol in H₂O. (Berzelius.)

SI sol. in, but not decomp. by H₂O when not more than 16 pts H₂O are present to 1 pt. salt. Decomp, by hot HaO to-Rh₂(SO₄)₃, Rh₂O₃. Insol in H₂O. (Leidić, C R. 107, 234.)

Rhodium rubidium sulphate, Rh₂(SO₄), Rb₂SO₄+24H₂O.

Sol. in H₂O; m-pt, 108-109° (Piecini. Z. anorg. 1901, 37, 65)

Rhodium thallium sulthate, Rho(SO4), TloSO4 +24H₂O. Very sol. H.O. (Piccini, Z. anorg, 1901, 37, 69.)

Rhodium sodium sulphate, RhaNa2(SO4)4. Insol, in H2SO4 or aqua regia (Seubert and Kobbe, B. 23, 2560)

Rubidium sulphate, Rb₂SO₄.

100 pts. H₄O dissolve 42.4 pts. at 10°, (Bunsen.) 100 cc. H₂O at 17-18° dissolve 44.7 g. Rb₂SO₄ (Tutton, Chem. Soc. 1894, **65**. 632.) Sat. Rb₂SO₄+Aq contains at:

37.3 48.9 49.2% Rb₂SO₄. (Etard, A. ch. 1894, (7) 2, 550.)

	Solubility of Rb ₂ SO ₄ in H ₂ O at t°.				
+0	g Rb ₂ SO ₄ per 100 g		t°.	g Rb ₂ SO ₄ per 100 g	
	H ₂ O	solution	١.	H ₁ O	solution
0 10 20 30 40 50	36.4 42.6 48.2 53.5 58.5 63.1	27 3 29 9 32 5 34 9 36 9 38.7	60 70 80 90 100	67.4 71.4 75.0 78.7 81.8 82.6	40 3 41 7 42 9 44 0 45 0 45 2

* B -pt. at 742.4 mm.

(Berkeley, calc. by Seidell, Solubilities, 2nd 26, 175) Ed., p. 587.)

Sp gr. of RbsSO4+Aq sat at 10°=1 2978 (Eidmann, Arch. Phaim 1894, 232, 16) G.-equiv. salt per l, at 18° = 0 501 Sp. gr. 6°/6° 1.05587 1.11047 18°/18° 1.05496 1.10896 30°/30°

1.05433 1.10810 G.-equiv. salt per l. at 18° = 2.043 3.168 Sp. gr. 6°/6° 1,21888 1,33276 18°/18° 1.21613 1.32912 30°/30° 1.21443 1.32750 (Clausen, W. Ann. 1914, (4) 44. 1071.)

10 ccm. of sat Rb₂SO₄+absolute H₂SO₄ Rubidium zurconium sulphate, Zr₄O₄, contam approx 5 881 g Rb₂SO₄. (Bergus, (RbSO₄)₂+15H₂O₄... (RbSO₄)₂+15H₂O₄... (RbSO₄)₂+15H₂O₄... (RbSO₄)₂+15H₂O₄... (RbSO₄)₂+15H₂O₄... (RbSO₄)₂+15H₂O₄... (RbSO₄)₂+15H₂O₄... (RbSO₄)₂+15H₂O₄... (RbSO₄)₂+15H₂O₄... (RbSO₄)₂+15H₂O₄... (RbSO₄)₃+15H₂O₄... (RbSO₄)₄+15H₂O₄... (Insol in methyl acetate (Naumann, B. 1909, 42. 3790), acetone (Naumann, B 1904,

37. 4329; Eidmann, C. C. 1899, II. 1014.) Rubidium pyrosulphate, Rb₂S₂O₇.

Decomp. by H₂O Rubidium octosulphate, Rb:S:Oox.

Decomp. by H2O. (Weber, B 17, 2497.)

Rubidium hydrogen sulphate, RbHSO4. Sol. in H₀O.

Rubidium tin (stannic) sulphate, Rb2Sn(SO4), Decomp. by H2O. Sol in HCl (Weinland, Z. anorg 1907, 54, 250.)

Rubidium thallic sulphate, RbTl(SO4)2. (Marshall, C. C. 1902, II. 1089)

+4H₂O. (Fortini, Gazz. ch. it. 1905, 35, (2) 455)

Rubidium thorium sulphate, Rb2SO4, Th(S4O)1 +2H2O. Sl. sol. m H₂O (Manuelli, Gazz ch. it. 1903, 82. (2) 523)

Rubidium titanium sulphate, Rb₂SO₄, Ti2(SO4)3+24H1O.

Sol in H2O acidified with H2SO4. Decomp. in neutral aq solution. (Piccini, Z. anorg 1898, 17. 359.)

Insol in H₄O. Sol. in HCl. Insol. in ₂SO₄. Decomp., by boiling with conc. H₂SO₄. H₄SO₄. (Stähler, B 1905, 38, 2623.)

Rubidium uranyl sulphate, Rb2(UO2)(SO4)2+ 2H2O.

Somewhat less sol in H2O than K salt. (Rimbach, B. 1904, 37, 479.)

Rubidium vanadium sulphate, Rb₂V₂(SO₄)₄+

24H₂O. 0 177 gram mols of anhydrous salt are sol in 1 l H₂O (Locke, Am. Ch. J 1901,

Insol in H₂O Insol in H2SO4. Decomp. by boiling with cone H2SO4

Sol in HCl (Stahler, B 1905, 38, 3980.) 100 pts. H₂O dissolve 2.56 pts salt at 10°. Sp. gr. of solution at 4°/20° = 1 915. (Pic-cini, Z. anorg. 1897, 13. 446)

Rubidium zinc sulphate, Rb₂SO₄, ZnSO₄+ 6H₀O

Sol. in H2O (Bunsen and Kopp, Pogg. 113, 337 1 I. H₂O dissolves 101 g anhydrous salt at 25° (Locke, Am. Ch. J 1902, 27, 459.)

Ppt (Rosenheim, B 1905, 38. 815.)

Ruthenic sulphate, Ru(SO4)2. Deliquescent, and easily sol in H₄O. (Claus, A 59, 246.)

Samarium sulphate, basic, (SmO)₂SO₄. Insol in H2O and in cold dil. H2SO4. (Matignon, C R 1905, 141, 1231.)

Samarium sulphate, $Sm_2(SO_4)_4 + 8H_2O_4$

 Difficultly sol. in H₂O. Much less sol. than Dig(SO₄)₂+8H₂O₄ (Cleve)

2 05 pts anhydrous salt are sol. in 100 pts. H₂O at 25°. (Keyes and James, J. Am. Chem. Soc. 1914, 36. 635.) 100 g Sm₂(SO₄)₃+Aq sat at 25° contain 3.426 g anhvd Sm₂(SO₄)₃ (Wirth, Z anorg.

1912, 76, 174) Solubility in H₂SO₄+Ag at 25°. n=equiv. g of H2SO4 in 1 l. of solvent. c=g Sm₂O₅ in 100 g of solution.

c1=g. Sm2(SO4)3 in 100 g of solution. n 2.029 3 426 2.16 1.43 2 416 6.175 0 416 0.70250.1 2 038 3 441 0.505 1 985 3 352 12.6 0 0656 0 1107

(Wirth, Z. anorg, 1912, 76, 174.)

1 821 3 075

S	Solubility in (NH ₄) ₂ SO ₄ +Aq at 25°				
Pts Smr(SO4)a per 100 pts. H ₂ O	Pts. (NH4)sSO4. per 100pts HrO	c Solid phase			
2.1 2.0 2.8	0 3 0 8 1 1	Sm ₂ (SO ₄) ₂			
1.5 1.2 0.8 0.8 0.8 0.8 0.8 0.8 0.9 1.0	1 9 2.7 7 4 9 5 8.7 18 8 12 2 12 3 32 5 46 3 40 3	Sm ₂ (SO ₄) ₃₅ (NH ₄) ₂ SO ₄₆ 7H ₂ O			
1 3 0 2 0.3	77 5 77.2 77 3	(NH ₄) ₂ SO ₄			

(Keyes and James, J. Am. Chem. Soc. 1914, 36, 637.) Solubility in Na2SO4+Aq at 25°.

0 6 76.8

Pts NasSOs per 100 pts HsO	Pts Sms(SO ₄) ₂ per 100 pts H ₂ O	Solid phase
0.1 0.5 1.9 6.44 7.00 9.02 10.51 11.48 13.58 14.71 14.47 20.02 23.42 23.68	0.018	Sm ₂ (SO ₂) ₂ 2Sm ₂ (SO ₂) ₃ , 3Ne ₂ SO ₄ +6H ₂ O
25.98 27.40	0.015	"

These results seem to indicate that there is only one double salt formed by the union of Sm2(SO4): with Na2SO4. Formula of this salt is 2Sm2(SO4)2, 3Na2SO4, 6H2O. (Keves and James, J. Am. Chem. Soc. 1914, 36. 635.)

Samarium hydrogen sulphate, Sm(HSO₄)₂. Sl. sol. in H₂O. (Matignon, C. R. 1905, 141, 1230.)

Ppt (Brauner, Z. anorg. 1904, 38, 331.)

Samarium sodium sulphate, Sm3(SO4), Na-SO4+2HO SL sol, in set Na₂SO₄+Aq, (Cleve, Rull Soc. (2) 43, 166

2Sm₂(SO₄)₃, 3Na₉SO₄+6H₂O Only double salt formed at 25°. (Keyes and James, J. Am. Chem. Soc 1914, **36**, 365.)

Scandium sulphate, basic, Sc.O(SO.). (Crookes, Roy. Soc. Proc. 1908, 80, A, 518.)

Scandium sulphate, Sc.(SO.).

Anhudrous Easily sol, in H.O.

+5H₂O, 54.61 g. of pentahydrate are sol. in 100 cc H₂O at 25°. (Wirth, Z anorg 1914. 87, 10)

Solubility in H2SO4+Aq at 25°.

H ₂ SO ₄ +Aq	g. Sc ₂ (SO ₄) s in 100 g of the solution
0 00	28 52
0 5-n	29 29
1 0-n	19 87
4.86-n	8 363
9 73-n	1 315

In 22.35-n H₃SO₄ the solid phase 18 So₂(SO₄)₈, 3H₂SO₄ and 100 g. sat. solution contain 0.484 g. Sc. (SO4).

(Wirth, Z. anorg. 1914, 87, 10)

+6H₂O. Extremely sol, in H₂O, but not deliquescent Scandium hydrogen sulphate, Sca(SO4)3+ 3H.O.

(Wirth.) Scandium sulphate. sodium Sc.(SO4). 3Na₂SO₄+12H₂O.

Sol. in H₂O. (Cleve.) +10H₄O. Sol. in H₂O and in excess of Na₂SO₄+Aq. (Meyers, Z. anorg. 1914, 86. 279.)

Silver (argentoargentic) sulphate, AgeSO4, Ag.SO. +H.O. Gradually sol. in conc, but not attacked by dil., HNO₂+Aq. Not attacked by hot cone. H₂SO₄ (Lea, Sill Am. J. **144.** 322.)

Silver sulphate, Ag-SO₂, Sol. in 200 pts. cold, and less than 100 pts boiling

Soi. in 200 pts. coid, and less than 100 pts boiling H₂O. (Wittstein) Soi in 88 pts boiling H₂O (Sohnaubart); in 87 25 pts. boiling H₂O (Wenzel); in 68.85 pts. H₂O at 100°

pts. bosing H₂O (Wenzel); in 68.85 pts. H₂O at 100° (Kremers). 100 pts. H₂O at 15.5° dissolve 1 15 pts. Ag₂SO₄. (Ure's Di et.) Sol in 160 pts. H₂O at 18.75°. (Abl.)

H₂O dissolves 2 57 × 10 - 2 g -mol Ag₂SO₄

at 25°. (Drucker, Z. anorg. 1901, 28, 362.) 1 l. H₂O dissolves 7.707 g. Ag₂SO₄ at 17°. (Euler, Z. phys. Ch. 1904, 49, 314) 1 l. H₂O dissolves 0 0267 mol. Ag₂SO, at 25°, (Rothmund Z. 1

(Rothmund, Z phys. Ch. 1909, 69. 539.) H₂O dissolves 8.35 g. Ag₂SO₄ at 25°. (Hill and Simmons, Z. phys. Ch. 1909, 67-803.) 11 H₄O dissolves 8.344 g. Ag₂SO₄ at 25° Sp. gr of solution=10052. (Harkins J

Am Chem. Soc 1911, 33. 1812.)

Solubility in H₂O at t°.

to.	Pts AgsSO4 in 100 pts of the solution
14.5 33 51.5 75	0.730 0 909 1.062 1.237 1.393

(Barre, A. ch. 1911, (8) 24, 211,) More sol in H₂SO₄+Aq than in pure H₂O. Still more sol in HNO₂+Aq and still more in

cone H2SO4, from which it is pptd. by H2O (Schnaubart) Solubility in H-SO, +Aa at 25°.

14H28O4+Aq.	Solubility of Ag ₂ SO ₄
Normality	gmol per litre
0 02	2.60×10 ⁻²
0.04	2.64×10 ⁻²
0.10	2.71×10 ⁻²
0 20	2.75×10 ⁻²

(Drucker, Z. snorg, 1901, 28, 362.) Solubility of Ag₂SO₄ in acids+Aq at 25°. C=concentration of acid in acid+Aq in millieguivalents per l.

S=Solubility of Ag₂SO₄ in seid+Aq in millieguivalents per l

Acid	О	8
HNO ₃ .	0.0 15.89 31.78 63 57	53 98 59.86 65 32 75 90
H ₂ SO ₄	0.0 29.02 58.02 105 26	53.98 54.88 55 64 56.82

(Swan, J. Am. Chem. Soc. 1911, 33, 1814) Solubility in HNOs+Ag at 25°.

Normality HNOs	Sp gr of the solution	g Ag ₂ SO ₄ dassolved per l
0.000 1.0046 2.0452 4.017 4.209 5.564 8.487	1 0054 1.061 1 1069 1 1871 1 1956 1 2456 1.3326 1.3676	8.350 34 086 49.010 71.166 73.212 84.609 94 671 90 806

(Hill and Summons, Z phys. Ch. 1909, 67. 603.

Sol, in NH4OH, and (NH4)2CO2+Aq.

100 pts. H₂O dissolve 0.58 pt. at. 18°. 100 pts. (NH₄)₂SO₄+Aq (15%) dissolve 0 85 pt. Ag₂SO₄ at 18° Other sulphates have little effect (Eder, J pr (2) 17. 44.

Determinations of the solubility of Ag₂SO₄ in (NH₄)₂SO₄ at temp. between 16 5° and 100° show that no double salt is formed by these two sulphates (Étard, A. ch 1911, (8) 24. 221.)

Solubility of Ag₂SO₄ in (NH₄)₂SO₄+Aq. G. ner 100 g. H.O. (NH4):SO4 | Ag:SO4 | (NH4):SO4 | Ag SO4

Temp	. = 33°	Temp =51°		
8.85 1.101 15.90 1.331 22.22 1.500 27.25 1.585 30.80 1.619 35.88 1.627 39.46 1.600 43.22 1.557		8.90 1 362 16.27 1 680 22.43 1.887 32 10 2 061 35 38 2 095 39 03 2 082 42 37 2 055 45.05 2 026		
Temp	. ≈75°	Temp -100°		
8.80 15.23 22.30 28 25 32 00 35.82 41 16 46 46	1 758 2 155 2 490 2 734 2 823 2 889 2 929 2 902	9 23 15 00 22 01 27 00 34 90 38 70 44 15 47.63	2 221 2.626 3.075 3.325 3.663 3.772 3.854 3.867	

(Barre, A. ch. 1911, (8) 24. 149, 202, 210.)

Solubility of Ag₂SO₄ in K₂SO₄+Aq. G. per 100 g H.O.

1 Apr80, 1 Ks80, 1 Apr80,

	ACSOIDE INGLICA		112001	2162001
	Temp	=33°	Temp	=51°
	3.22 0 863 5.62 0 940 8.37 1.046 10 41 1.117 11.80 1.177 		3.20 1.023 5.61 1.127 8.40 1.247 10.55 1.340 13.16 1.450 14.37 1.524	
Į			Temp.	=100°
	3.12 5.78 8 43 10.55 13 17 17.06	1 273 1.406 1.554 1 665 1 806 2 021	3 23 5.60 8.45 11.30 15.07 18.58	1.488 1 675 1 890 2.115 2.410 2.677

(Barre, A. ch. 1911, (8) 24. 149, 202, 210.)

1014	14 SULPHATE, SILVER						
_		Solubility in K ₂ SO ₄ +Aq at 25°.			solubility curves for various temp all end at a concentration of 40% Na ₂ SO ₄ , that is, the		
	Normality	Aq	Solu	bility of Ag ₂ SO ₄ mol. per htre	mixed crystals formed at this concentr are equally sol at all temp.		is concentration
	0.02 0.04 0.10 0.20			2.46×10-2 2.36×10-2 2.31×10-2 2.32×10-2		e, C. R. 1910, 15 Lity in Na ₂ SO ₄ +	
		Z ano		1, 28. 362.)	to.	100 pts H	O dissolve
					·	Na ₂ SO ₄	Ags804
	Solubili			Aq at t°.	18	0 0	0 766 0.712
-	.tº .	AgsS 100°pt	04 IR 8 H±0	Na _i SO ₄ in 100 pts, H ₂ O		0.51	0.682
-	14.5	0.7	41	5 278		0.74 1 00	0.675 0.665
-	-	0.9	004 nna –	10 103 13 045		1 48 2.01	0 670 0 673
						2.50	0 689
	33	0.9		5 345 10.056		3 04 4 00	0 703 0 736
		1 3	320	15 185		4 99	0.768
		1.4		20 093 25 412		10 10 - 13 04	0.932 1 028
		1 6		29 556 34 732	33	0.0	0 917
-		1 1	162	39 447	00	0 25	0 861
	-	0.9		44.693 46 976		0 51 0 75	0 835 0.825
						0.98	0.816
	51	1 1 1		5.407 10.116		1.50 2.01	0 820 0.832
		1.8	72	15 146		2 48	0 849
		1 7		20 247 25 196		3 00	0 867
		1.8		29 230	-51	-0 00 0 25	1 081
r.		1.8	540	39 302		0 49	1.032
		0.8	88	42 914 44 464		0.68	0 000 0 995
_						1 51	1.002
	75	1.0		5 368 9 813	i	1 ,90 2 46	1 017 1 034
		1 1 1	334	15 260 ^		2 92	1 053
		2	775 L61 .	19 978 25 556		3 95	1 103
		2	138	29 662 - 85 278	75	0.00	1 267
- ~		1 1	303	38 944		0.20 0.47	1 215 1 208
-		1	156	41.365		0 80 0.98	1 206 1,210
	100		351	5 336		1.52	1 222
		2.	012 312	10.153 15 532	-	1 96 2 50	1 238 1.269
		1 5	251	25 451	1	0.00	1.208

.1 687 1 158 Up to 33°, the solubility of Ag₂SO₄ in Na₂SO₄+Aq increases with the concentration of Na₂SO₄; above 33° the solubility of Ag₂SO₄ rises to a maximum at a certain concentra-tion of NaSO, dependent on the temp. The

26.451 29 714 34.718 38.635 40.160

100

1 44 1 94 3.02 (Barre, A. ch. 1911, (8) 24, 215.)

2 50 2.98 4.08

0 00

0.50

1 01

1.269 1.296

1 366

1.404

1.418 1.494 Solubility in salts+Aq at 25°. Solub

C=concentration of salt in salt+Aq in milliequivalents per l.

d₁=sp gr 25°/4° of salt+Aq. S =solubility of Ag₂SO₄ in salt+Aq expressed in milhequivalents per l.

d₂=sp. gr. 25°/4° of Ag₂SO₄+salt+Aq

Salt	С	dı	S	dı	
none			53 52		
KNO;	24 914	0 9986	57.70	1.0072	
	49.774	1 0002	61 13	1.0092	
	99 870	1 0034	67 93	1.0034	
Mg(NO ₃) ₂	24 764	0.9985	59 44	1 0073	
	49 595	0.9999	64 32	1 0094	
	99 460	1 0026	72 70	1 0133	
AgNO ₄	24.961	1.0007	39.09	1 0065	
	49.86	1 0044	28.45	1 0084	
	99.61	1 0112	16 96	1 0137	
K ₂ SO ₄	25.024	0 9989	50 66	1 0064	
	50 044	1 0006	49 35	1.0079	
	100 0	1 0041	48 04	1 0112	
	200.03	1 0110	48 30	1 0180	
MgSO ₄	20 22	0 9984	52 21	1.0061	
	50 069	1 0002	50 98	1 0079	
	100 04	1 0032	49 95	1.0105	
	200 05	1 0092	49 60	1 0164	

(Harkins, J. Am. Chem. Soc. 1911, 33, 1813.)

Solubility of Ag₂SO₄ in salts+Aq at 25°.

C=concentration of salt in salt+Aq in milliequivalents per l.
S=solubility of Ag₂SO₄ in salt+Aq in milliequivalents per l⁹

Salt	С	B
KH804	0 0 52 64 105 26	53.98 52.18 51.76
K₂SO₄	0.0 27.18 54.34	53.98 50.90 49.30

(Swan, J. Am. Chem Soc. 1911, 33, 1814.)

Decomp. by alkali throsulphates+Aq. (Herschell) 100 com, Ag.SO₄+Ag.C₄H₂O₅+Aq. sat. at 17° contain 3.95 g. Ag.SO₄ and 8.30 g. Ag.C₄H₂O₅ and solution has sp. gr. = 1.0094. (Euler, C. C. 1994, I. 131) Insp. 100 in liqued NH₃. (Franklin, Am. Ch. J. 1898 20, 829.)

Solubility in organic compds.+Aq at 25°.

	Solvent 7	Mol. AgsSO4 sol I litre	ın
0 5 31	Water	0.0267 0.0249	
0.5-10	Methyl alcohol	0.0249	
	Ethyl alcohol		
и	Propyl alcohol	0.0218	
	Tert. amyl alcohol	0.0204	
4	Acetone	0.0220	
	Ether	0 0206	
64	Formaldehyde	0.0227	1
44	Glycol	0.0259	
11	Glycerme	0.0263	
**	Mannitol	0 0297	
44	Glucose	0 0283	•
**	Sucrose	0.0270	
**	Urea	0.0303	
16	Dimethylpyrone	0 0216	
**	Urethane	0 0227	
**	Formamide	0 0270	
cc	Acetamide	0 0258	
**	Acetonitrile	0 0525	
	Glycocoll	0 0488	
11	Acetic acid	0 0252	
**	Phenol	0 0379	
11	Chloral .	0 0233	
"	Chiora	0.0205	
	Methylal		
	Methyl acetate	0.0212	

(Rothmund, Z. phys. Ch. 1909, 69, 539.)

Insol m methyl acetate (Bezold, Dissert, 1906; Naumann, B. 1909, 42, 3790); ethyl acetate (Naumann, B. 1904, 37, 3601); hquid methylamine (Franklin, J. Am. Chem. Soc. 1906, 28, 1420); acetone. (Naumann, B. 1904, 37, 4329; Eidmann, C. C. 1899, H. 1014.)

Very sol. in a hot mixture of H₂SO₄ and monobrombenzene, less sol. in cold (Couper, A. ch. (3) **52.** 311)

Silver hydrogen sulphate, AgHSO.

 $\begin{array}{c} {\rm Decomp~by~H_2O;~sol.~in~H_2SO_4~(Stas.)} \\ {\rm Ago,~3H_2O,~4SO_4-2H_4O=AgH_4(SO_4)_2+} \\ {\rm H_2O} & {\rm As~above.~(Schultz,~Pogg.~133.~137.)} \\ {\rm 2Ag_2O,~3H_2O,~5SO_8+2H_2O=Ag_4H_4(SO_4)_8} \\ {\rm +2H_2O.~As~above.~(Schultz.)} \end{array}$

Silver pyrosulphate, Ag₂S₂O₇.

Decomp by H₂O. (Weber, B. 17, 2497.)

Silver thallic sulphate, AgTl(SO₄)₂.
(Lensius, Chem. Ztg. 1890, 1327.)

Silver tin (stannic) sulphate, Ag₃Sn(SO₄)₄+ 3H₂O.

Ppt. Decomp. by H₂O. Sol. in HCl, (Weinland, Z. anorg. 1907, **54**, 250.)

Silver sulphate acetylide, Ag₂SO₄, 2Ag₂C₂. (Phmpton, Proc. Chem. Soc. 1892, **8.** 109.) Silver sulphate ammonia, Ag₂SO₄, 2NH₃, Completely sol, in H₂O (Rose, Pogg 20, 153.) Ag₂SO₄, 4NH₈, Easily sol, in H₂O or

NH.OH+Aq without decomp. (Mitscherlich.)

Silver sulphate mercuric oxide, Ag₂SO₄, HgO. Insol. in H2O, but decomp even in the cold. Sol. in HNOs and H.SO. (Finci, Gazz. ch. it. 1911, 41, (2) 548.)

Silver sulphate sulphide, AgiSO4, AgiS. Decomp. by hot HgO or cold HCl+Aq Sol. m boiling HNO₃+Aq Thummel, B. 16, 2435.) (Poleck and

Sodium sulphate, Na₂SO₄. Anhydrous.

1 pt. NasSO is not in 7 387 pts. H.O at 15° (Garhach), in 8.52 pts. H.O at 13° (Pergementor); in 10 pts. H.O at 13°, and in 3.3 pts. H.O at 52° (Wester), 100 pts. H.O at 0° dissolve 5 155 pts. NasSO(176R, A. 99° 220), at 100 6° dissolve 46.985 pts. NasSO (Conflithe).

See below for further data.

+7H₂O. Efflorescent. Insol. in alcohol See below for further data. +10H_{*}O

Na₂SO₄+10H₂O is sol. in H₂O with absorption of heat; 20 pts. Na₂SO₄+10H₂O mixed with 100 pts. H₂O at 12.5° lower the temperature 6.8°. (Rüdorff, B **2**, 68)

Sol in 2 33 pts. H₂O at 19°, or 100 pts H₂O at 19° dissolve 42 8 pts Na₂SO₄+10H₂O (Schiff, A 109

100 pts H₂O dissolve a pts. Na₂SO₄ and b pts Na₂SO₄ +10H₂O at t^o t° ь h 0 5 02 33.88 40 15 45 04 50 04 312 11 0 11.67 13.30 17.91 25.05 28.76 30.75 10 12 11 74 16 73 28 11 37.35 43 05 28 31 48 78 291 44 276 91 262 35 31.33 48 28 99 48 47 81 46 82 50 40 59 79 45 42 44 35 161 53 215 77 270 22 322 12 70 61 84 42 103 17

(Gay-Lussac, A. ch (2) 11. 312.)

42 85

31 84 32.73 47 37 50 65

Maximum solubility is at 33° from experiment and theoretical considerations. At this temp Na₂SO₄+ 10H₂O is converted into Na₂SO₄. (Kopp, A 34, 271.)

100 pts. H₂O at to dissolve pts. Na₂SO₄+10H₂O.

t°	Pts. Na ₂ SO ₄ +10H ₂ O	to.	Pts Na ₂ SO ₄ +10H ₂ O	t°	Pts Na ₂ SO +10H ₂
2 5 7.5 12 5 18 75 25 31.25	11 39 16.38 29 03 70.78 143 38 479.97	37 50 43.75 50 56.25 62 5 68.75	294 04 281 04 285 06 248 11 222 22 242 88	75 81 25 87 50 93 75 100	241 68 217 20 220 68 225.46 241 66

(Brandes and Firnhaber, 1824.)

1 pt. NSO 1-10H4O is soi. in 6 1 pts. H4O at 7.6° at 2.6° (Marger) job at 18.70°; and 172 pts. at 2.6° (Marger) job at 18.70°; and 172 pts. at 2.6° (Marger) job at 18.70°; and 172 pts. at 2.6° (Marger) job at 18.70°; and 18.70°; at 2.6° (Marger) job at 18.70°; at 2.6° (Marger) job at 18.70°; at 2.6° (Marger) job at 18.70°; at 2.6° (Marger) job at 18.70°; at 18.70°; at 2.6° (Marger) job at 18.70°; at 2.6° (Marger) job at 18.70°; at 2.6° (Marger) job at 18.70°; at 2.6° (Marger) job at 18.70°; at 2.6° (Marger) job at 2.6° (Marger)

•	100 pts. H ₂ O dissolve pts. Na ₂ SO ₄ at t ^o						
i	t°	Pts Na ₃ SO ₄	t*	Pts. Nas804			
i	0 17 9	4.53 16.28	24 1 33	25 92 50 81			

(Discon, J. B 1866, 61.)

Solubility of Na₂SO₄ in H₂O at various pressures and temp. Pts. Na₂SO₄ contained in 100 pts. sat, Na₂SO₄+Ag at A pressure in atmos and to are given

Α.	0°	15°	15 4°	A	15°
1	4 40	11.32	11 4	30	10.05
20	4 53	10.78	10 74	40	10 33

(Möller, Pogg 117, 386.)

The solubility of Na₂SO₄+10H₂O increases with the temperature from 0 to 34° At 34° and above, it is converted into the anhydrous salt, the solubility of which is least at 103.17° which is the boiling point of the saturated solution, and increases by cooling from that temp. down to 18-17°. Below the latter temperature the anhydrous salt cannot exist in the presence of H₂O, but is converted into Na₄SO₄+7H₂O, or Na₂SO₄+10H₂O. The solubility of Na₄SO₄+7H₂O increases with the temperature from 0-26°, and at 27° it is

converted into the anhydrous salt. Thus there are two different rates of solubility for Na₁SO₄ for temperatures from 0-18°, three different rates from 18-26°, two

from 26-34°, and only one above 34°.

1. By heating Na₂SO₄+10H₂O to fusion and raising the heat until the liquid boils, placing in a closed vessel and cooling, the greater part of the anhydrous salt, which separates out on heating, redusolves on cool-

ing, and the amount increases as the temp falls until 18° is reached. Below 18° Na₂SO₄ +7H₄O is formed. Saturated Na₃SO₄+Aq thus obtained contains for 100 pts. HO at:

By allowing the boiling saturated solution free from undissolved salt to cool to 0° with exclusion of air until crystals of Na₂SO₄ 55 pts Na₂SO₄ to 100 pts. H₂O cannot be +7H₂O are formed, then removing the obtained, but one with 49 53 pts. is formed greater part of the mother liquor with a warm (Löwel, A ch. (3) 49, 32) pipette, and warming the rest of the mother liquor with the excess of crystals, the crystals 100 pts. H2O dissolve at dussolve in increasing quantity between 0° and 35° 28–27°, so that at 27° the solution contains 50 2 56 pts Na₂SO₄ to 100 pts H₂O The remaining undissolved crystals of Na₂SO₄+7H₂O begm to melt very slowly at 27°, more quickly at higher temperatures, and cause the separation of anhydrous crusts, and thus the strength of the solution is gradually lowered to the normal Saturated solutions prepared in this way contain for 100 pts H2O at

10° 19 62 30.49 34.27 pts. Na₂SO₄, 78.9 92.9 pts. Na₂SO₄+7H₂O. or 44.89 15° 16° 17° 37.43 38.73 39.99 pts. Na₂SO₄, or 105.8 117.4 111.0 pts. Na₂SO₄+7H₂O₅ 180 19° 44.73 pts. Na₂SO₄, 140.0 pts. Na₂SO₄+7H₂O₇ 41.63 43.35 or 124.6 133.0 25° 260 54.97 pts. Na₂SO₄. 52.94 202.6 pts. Na₂SO₄+7H₂O. or 188.5 3. Solutions obtained by shaking H₂O with

Na₂SO₄+10H₂O contain for 100 pts. H₂O at: n٥ 10° 15° 5.02 9.00 13.20 pts. Na₄SO₄. or 12.16 23.04 35.96 pts. Na₂SO₄+10H₂O,

19.40 28.00 pts. Na₂SO₄, 16.80 or 48.41 58.85 98.48 pts. Na₂SO₄+10H₂O, 260

18° 20°

30.00 40.00 pts. Na₂SO₄, or 109.81 184.1 pts. Wa2SO4+10H2O. 33° 34°

50.76 55.0 pts. Na₂SO₄ 412.2 pts. Na₂SO₄+10H₂O₄ or 323.1

At 34°, Na₂SO₄+10H₂O begins to melt in its crystal HaO As long as there is a considerable quantity of unchanged crystals present, the solution contains 55 pts Na₂SO₄ for 100 pts H₂O, but as the hydrous salt decreases in amount and becomes converted into the anhydrous salt, the solution becomes weaker and contains only 49.53 pts Na₂SO₄ for 100 pts. H₂O after warming for 6 or 8 hours at 34° In the same way temporary solutions can be obtained at 36-40° with 55-56 pts Na₂SO₄ to 100 pts. H₂O, but this amount sinks to the normal even more quickly than

 Na₂SO₄ dehydrated at 100-150°, after the addition of 12/1-11/2 pts H4O, gives a solution between 0° and 32° of the same strength as (Tilden and Shenstone, Lond. R. Soc. Proc. Na.SO. +10H.O. but at 34° a solution with Na2SO4+10H2O, but at 34° a solution with

4 Solubility of anhydrous salt. Above 34°,

4Uo ĸΩ° 45° 48.8 47.7 46.7 45.9 pts. Na₂SO₄, 65° 70° 75° 80° 45.3 44.8 43.7 pts. Na₂SO₄. 44.4 44.0 90° 95° 100° 103.5° 43 2 43.1 42.8 42.5 42.2 pts. Na₄SO₄. (Mulder.)

Solubility in 100 pts. H ₂ O at t°. •					
t°	Pts Na ₂ SO ₄	60	Pts NasSO4	t°	Pts. NasSO4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32	$\begin{array}{c} 4 \ 8 \\ 5 \ 1 \\ 6 \ 6 \\ 8 \ 3 \\ 7 \ 7 \\ 8 \ 4 \\ 9 \ 0 \\ 7 \ 7 \\ 8 \ 4 \\ 9 \ 0 \\ 7 \\ 10 \ 5 \\ 112 \ 4 \\ 4 \ 5 \\ 7 \\ 9 \ 10 \\ 13 \ 4 \\ 5 \ 7 \\ 12 \ 25 \\ 9 \ 9 \\ 1 \\ 13 \ 35 \ 0 \\ 8 \ 35 \\ 10 \ 9 \\ 10 \ 10 \$	35 36 37 38 38 40 41 42 43 44 45 46 47 48 49 50 51 55 53 56 57 60 61 62 63 64 66 66 67	2 49 9 6 49 8 1 48 8 5 448 8 3 1 47 7 5 47 8 6 9 7 46 6 4 45 5 2 1 0 44 6 5 2 1 44 6 5 2 1 44 6 7 6 4 6 7 6 6 6 6 6 6 6 6 6 6 6 6	70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 90 91 92 93 94 99 96 97 98 99 100 101 102	44.4 44.3 44.2 44.2 44.1 44.0 43.9 43.7 43.5 43.5 43.5 43.2 43.1 43.2 43.2 43.1 43.2 43.2 43.2 43.2 43.1 43.5 43.5 43.2 43.2 43.1 43.5 43.5 43.5 43.5 43.5 43.5 43.5 43.5
32 75 33	50 65 50.6	68 69	44 5 44 5	103 103.	42.2 42.2

(Mulder, Scheik Verhandel. 1864, 123.)

100 pts dissolve at: 0° 34° 100°

120° 5 78 8(?) 42.7 41.95 pts. Na₂SO₄,

180° 160° 42.0 42.9 44 25 46 4 pts. Na₂SO₄. 4.1 6.2

Solubility decreases above 230°. (Étard. C. R. 113, 854)

Sat. Na₂SO₄+Aq contains at: 13° 240 280 300 9.9

aao 134° 150° 400 31.3 30.0 29.7 29.4 29.8% Na₂SO₄

190° 240° 279° 320°

29.9 30.0 24.5 17.8% Na₂SO₄. (Etard, A. ch. 1894, (7) 2, 548,)

Solubility of Na₂SO₄ in H₂O at t°.

-	G. per 100 g. H ₂ O.					
t°	Na ₂ SO ₄	Sp. gr	t°	Nas904	Sp gr	
0 70 10.25 15.65 24.90 27.65 30.20 31.95	9 21 14.07 27.67 34 05 41.78	1.0432 1 0802 1.1150 1 2067 1.2459 1 2894 1 3230	44 85 60.10 75.05	48 47 47 49 45.22 43 59 42.67	1.3307 1 3229 1.3136 1 2918 1 2728 1.2571 1.2450	

^{*} B .-nt.

127.)

(Berkeley, Phil. Trans. Roy. Soc. 1904, 203. A. 189.)

Transition point from Na₄SO₄+10H₂O to Na₄SO₄=32.5° (Berkeley); 32.383°. (Richards and Churchill, Z. phys. Ch. 1899, 28.

100 g Na2SO4+Aq sat. at 15° contain 11.5 g. anhydrous Na₂SO₄; 21.9 g. at 25° (Schreinemakers, Arch. Néer, Sc. 1910, (2) 1 l. Na₂SO₄+Aq sat. at 25° contains 1.881 mols. Na₂SO₄. (Herz, Z. anorg 1911, 70.

Solubility in H_2O at t° .		
t° .	Mol. % Na ₉ SO ₄	
62 70 72 80 120 190 192 208 241 250 279 319	5.39 5.27 5.25 5.104 5.5.04 5.27 5.39 5.39 5.04 4.12 2.56	
252 310 340 365	4.9 3 2 1.8 0 0	

(Wuite, Z. phys Ch. 1913, 86, 364.)

Supersaturated solutions of NaSO4 are easily formed; when Na₂SO₄+Aq sat, at its b -pt is hermetically sealed, no crystals are deposited on cooling (Lowel). Supersat NasSO4+Aq may also be obtained by cooling hot sat. Na₂SO₄+Aq in flasks loosely stop-pered with cotton wool (Schroeder, A. 109, 19.3 25.2 29.5% Na₂SO₄, 45), or by covering the containing vessel with

a glass plate, watch-glass, card, etc., or by covering the liquid itself with a layer of oil. and then allowing to cool.

Hot Na₂SO₄+Aq containing 1 pt. H₂O to 1 pt. Na₂SO₄+10H₂O does not crystallise on slowly cooling or on being quickly cooled by immersion in cold water, if it is contained in a barometer tube freed from air by boiling. or in an exhausted well-closed vessel, or in an open vessel with a layer of oil of turnenting on it (Gay-Lussac); or in a vessel containing air, either well stoppered or furnished with a loose cover (Schweigger); or in an open vessel under a bell jar full of air and closed at the bottom with a water joint; or in open bottles placed in a quiet situation; or in an open glass enclosed in a stoppered vessel, containing air and some KOH for drving; in this case NasSO4+10H4O effloresces from the solution, and when washed down again does not cause instant crystallisation, but redissolves.

The crystallisation of a solution cooled in this way may often be brought about instantaneously, or often again after a short time; (1) by agitation, when the solution has been cooled in an open vessel; (2) by access of air caused by opening the vessel, the crystallisation taking place the more rapidly the larger the opening In this case the crystallisation begins at the top, where the solution, the vessel, and the air come in contact; when a particle of dust falls in the liquid the crystallisation begins a little under the surface. When the solution has been cooled in vacuo, a bubble of air, hydrogen, carbonic acid, or natrous oxide is sufficient to set up the crystallisation; (3) by contact with a solid body. The latter do not cause crystallisation when _ cooled in contact with the liquid, nor (excepting a crystal of Na2SO4+10H2O) when they are moistened or warmed before contact with

the solution Na2SO4+Aq is brought to Supersat crystallisation by addition of a crystal of Na₂SO₄+10H₂O, or an isomorphous substance Nasco 4+10H₂O, or Maisomorphous successes as Nasco 4+10H₂O, or Na₂OrO₄+10H₂O.
Other crystals, as MgSO₄+7H₂O, etc., have no action. (Thomson, Chem. Soc 35, 192)
See also Hartley, Jones and Hutchison, Chem. Soc. 1908, 93, 825, or "Spontaneous" crystallisation of sodium sulphate solutions," and de Coppet (A. ch. 1907, (8) 10, 457) on same subject. A more extended discussion of the pheno-

mens and causes of supersaturation is not considered to the within the scope of this work

 Na_2SO_4+Aq sat. at 15° has sp. gr. 1.10847 (Michel and Krafft); at 15° has sp. gr. 1 119 (Stolba); at 16°

has sp gr. 1.1162 (Stolba), at 10° contains 29 pts NasSO₄ to 100 pts H₂O (supersaturated?), and has sp. gr 1 1259 (Karston)

Sp gr of Na ₂ SO ₄ +Aq at 19.5°.				
N82804	Sp gr	NasSO4	Sp. gr.	
2 894 5 589 7 995	1 0262 1 0509 1 0733	10 538 12 473	1 0977 1.1162	

(Kremers, Pogg. 95 120.)

Sp gr of Na₂SO₄+Aq

Na ₁ 8O ₄ +10H ₁ O	Sp gr	Na ₂ SO ₄ +10H ₂ O	Sp gr
1 262	1 005	13 744	1 055
2 522	1 010	14 975	1 060
3 780	1 015	16 203	1 065
5 035	1 020	17 426	1 070
6 288	1 025	18 645	1 075
7 538	1 030	19 860	1 080
8 786	1 035	21 071	1 085
10 030	-1 040	22 277	1 090
11 272	1 045	23 478	1 095

(Schmidt, Pogg 132 132)

Sp. gr of Na₂SO₄+Aq at 19°.

% Na ₂ SO ₄ +10H ₂ O	Sp gr.	% Na ₂ SO ₄ +10H ₂ O ₄	Sp. gr
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 0040 1 0079 1 0118 1 0188 1 0198 1 0232 1 0278 1 0318 1 0358 1 0398 1 0479 1 0520 1 0560 1 0600	16 17 18 19 20 21 22 23 24 25 26 27 28 29	1 0642 1 0683 1 0725 1 0766 1 0807 1 0849 1 0890 1 0931 1 1015 1 1057 1 1100 1 1142 1 1184 1 1228

(Schiff, A. 110, 70)
Sp. gr. of Na₂SO₄+Aq at 15°.

%	Sp gr. if Na ₂ SO ₄	Sp. gr if NagSO ₄ +10H ₂ O	%	Sp. gr if NagSO ₄ +10HgO	%	Sp. gr if Na ₂ SO ₄ +10H ₂ O
1 2 3 4 5 6 7 8	1 0091 1 0182 1 0274 1 0365 1 0457 1 0550 1 0644 1 0737	1 004 1.008 1.013 1 016 1 020 1 024 1 028 1 032	11 12 13 14 15 16 17 18	1 044 1 047 1.052 1.056 1 060 1 064 1 069 1 073	21 22 23 24 25 26 27 28	1.086 1 090 1 094 1.098 1.103 1.107 1 111 1 116

(Gerlach, Z. anal, 8, 287)

30 1 125

10 | 1.0927 | 1.040 | 20 | 1.082 |

Sp. gr of Na₂SO+Aq at 24 8°. a=no. of g., equivalent to ½ mol. w; dissolved in 1000 g H₂O, b=sp. gr if a is Na₂SO₄+ 10H₂O₂ ½ mol wt. gr 161; c=sp. gr. if a

IS Na ₉ SO ₄ , ½ mol. wt =71.					
а.	ь	c	0.	ь	c
1 2		1 059 1 114	4 5	1.163	1 213
3	1 134		l 6	1 200	

(Favre, and Valson, C. R 79, 968)

Sp. gr of Na ₂ SO ₄ +Aq at 18°.				
% NasSO ₄	Sp. gr	% Na:80.	Sp gr	
.5	1 0450	15	1.1426	
10	1 0915		l	

(Kohlrausch, W. Ann, 1879. 1)

Sp. gr. of Na₂SO₄+Aq at 20° containing 0.5 mol. Na₂SO₄ to 100 mols. $H_2O = 1$ 03466; 1.0 mol. Na₂SO₄ to 100 mols. $H_2O = 1$ 06744. (Nicol, Phi Mag (5) 16. 122.)

| Sp. gr. of Na₆SO₄+Aq at 25°.
| Concentration of Na_.SO₄ | Sp gr | 1-normal | 1.0606

1/2- "	1 0309 -
1/4- 11	1 0156
1/8 "	1 0079

(Wagner, Z. phys. Ch. 1890, 5. 39)

Sp. gr at 16°4° of Na₈SO₄+Aq containing 9 4043% Na₈SO₄=1 08655. (Schönrock, Z. phys Ch 1883, 11.781.) Na₈SO₄+Aq containing 25.51% Na₈SO₄+Aq containing 10.14%, Na₈SO₄ has p. gr. 20°20° = 1.2827. Na₈SO₄+Aq containing 10.14%, Na₈SO₄ has p. gr. 20°20° = =1 0838. (Le Blane and Rohland, Z. phys.

Sp. gr. of Na₈SO₄+Aq at 17.5°, when p= per cent strength of solution; d=observed density; and w=volume conc. in

grs. per oc.
$$\left(\frac{p\alpha}{100} = w\right)$$

Ch 1896, 19. 278.)

, p.	d.	W.
13.06	1 1226	0.14662
11 75	1 1094	0 13043
10 68	1 0990	0 11737
8 544	1 0784	0 09214
6 762	1.0615	0.07178
4 015	1.0358	0.04159
2 599	1.0225	0.02658
2 375	1.0204	0.02423
1 818	1.0154	0.01846
1 349	1 0109	0.01364
0.5204	1 0037	0.00522
0 2921	1 0014	0.00293

Sp. or of Na₂SO₄+An at 20°

1.0				to 100 p
Normality of Na ₈ SO ₄ +Aq	% NasSO	Sp. gr.	Bpt	Pts NasSO4
0 97 0.48	12 36 6 41	1 1138 1 0570	100 5°	9.5 18 0

(Forehheimer, Z. phys. Ch. 1900, 34, 23.)

Sp. gr. of sat. Na₂SO₄, 10H₂O+Aq at t°.

**	wt of 1 cem of the solution	100 g H ₂ O dissolve g. Na ₂ SO ₄ +10H ₂ O
0 5 10 15 18 20 25 26	1.040 1.058 1.078 1.109 1.137 1.156 1.209 1.222 1.287	12 16 21.04 35.96 48 41 58 35 98 48 109 81 184.1
30 33 34 35	1 312 1 317 1 317	323.1 413.2

(Tschernaj, J. Russ Phys. Chem. Soc. 1914, 46. 8.)

Sp gr. and b.-pt. of NasSO₄+Aq NasSO₄+Aq containing P pts. NasSO₄+10H₂O for every 100 pts. H₂O has given sp. gr and b.pt

P	Sp gr.	Bpt	P	Sp gr.	B-pt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 005 1 008 1 014 1 020 1 021 1 028 1 030 1 032 1 030 1 040 1 043 1 055 1 050 1 055 1 060	100.5° 100 62 100 62 100 75 .100 75 .100 87 100 87 101 0 101 0 101 12 101 12 101 .25 101 25	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 084 1 087 1 070 1 072 1 074 1 078 1 078 1 082 1 082 1 082 1 090 1 092 1 095 1 1 098	101 25° 101 25 101 27 101 37 101 37 101 37 101 5 101 5 101 5 101 5 101 63 101 63 101 63 101 63 101 63

(Brandes and Gruner, 1827.)

Saturated solution boils at 103.17° (Lowel) 103.5° (Mulder), 105° (Kremers), 100.56 (Griffiths), 100.8° (Gerlach)

Crust forms at 102.9°; highest temp, 103.2°, and solution contains 43.9 pts Na₂SO₄ to 100 pts H₄O. (Gerlach, Z. anal. 26, 426.)

B.-pt of Na2SO4+Aq containing pts, Na-SO4 pts H₂O

Bpt	Pts NasSO4	B-pt.	Pts Na ₂ SO ₄
100 5° 101 0 101 5 102 0	9.5 18 0 26 0 33 0	102 5° 103 0 103 2	39 0 44 5 46.7

(Gerlach, Z. anal. 26, 430.)

M.-pt. of $Na_2SO_4+10H_2O=34^\circ$. (Tilden, Chem. Soc. 45. 409.) Sol, with decomp, in HCl+Aq.

Solubility in H₂SO₄+A₀ at 25°.

1000 g, of the solution contain		Sold phase
Mols H ₂ SO ₄	Mols NasSO4	Count pulses
0 286 0 338 0 884 1 576 1 666 2 611	1.539 1.671 1.742 2.256 2.363 2.437 2.091	Na ₂ SO ₄ , 10H ₂ O+Na ₂ SO ₄

(D'Ans. Z. anorg 1906, 49. 356.)

Solubility of Na₂SO₄ in H₂SO₄+A₂ at 25.0

	be solution r	Solid phase
Mol Na ₂ 80,	Mol. H:804	
1 55	0.08	Na ₂ SO ₄
1 59 1 85	0.147	Na ₂ SO ₄ , 10H ₂ O
2.00	0.763 4.23	NaHSO4, H4O
0.47	4.96	u
0 32	6.61	Na ₂ HSO ₄
0 07	7.18	Na ₈ H(SO ₄) ₂
0.79	8.78	

(D'Ans. Z anorg 1909, 61, 92.)

10 ccm, of sat, Na₂SO₄+absolute H₂SO₄ contain approx. 2.999 g Na₂SO₄. (Bergius, Z. phys. Ch. 1910, 72 355)

			SULPHATI	s, sodi	JM		1021
S	olubility	m H	SO ₄ +Aq at 25°	S	olubilit	y in NaOH+A	q at 25°.
Solid Phase, Na ₂ SO ₄ +10H ₂ O.		1000 g of the ,					
Millimols H ₂ SO ₄ Millimols Na ₂ SO ₄ in 10 ccm in 10 ccm.		Mols (NaOH):	Mols NasS0	Solid	phase		
	, .		18 81	0	1 54	·	, 10H ₂ O
	5 10 7 79		22 38 24 65	0.074	1 41	1	44
	Horz Z	97070	. 1912, 73. 276.)	1 47 2 02	0.59		I ₂ O+Na ₂ SO ₄ ₂ SO ₄
,	,1012, 1	enior 8	. 1012, 10. 210.)	2 82 3 52	0 24		er •
S	Solubility	in H ₂	SO₄+Aq at 25°	5 83 6.62	0.013	NaOI	ii, H₂O ,
1000 g	of the					reiner, Z. anorg H.Cl+Aq.	. 1910, 67. 437.)
Mols	Mols		Solid phase	Rapid	ly and	abundantly sol	. m sat. KCl+
80:	Ne ₂ SO.			Na ₂ S0)+10E	of K ₂ SO ₄ . LO is sol in	sat. NaCl+Aq
5 91 6 30	0.409		NaHSO4		f NaCl	is caused at fi	Na ₂ SO ₄ is used, rst, and subse-
6 64	0.297		O4+NnH3(SO4)2, H2O NnH8(SO4)2, H2O	Sol. 11	boiling	804+10H20. g sat. NaCl+A	q with pptn of
7 36 7.74	0 071		4	NaCl, l	out from	m cold solution rst. (Vauqueli	ns the Na ₂ SO ₄
7 82 8 12	0.044			Less s	ol in N	rst. (Vauqueli aCl+Aq than i 25. 368.)	nH₁O (Hunt,
8.29	0.042		45	1		ity in NaCl+A	a at t°.
8.40 8.70	0.046			t-		g NaCl peri 100 g. HzO	g. Na ₂ SO ₄ per 100 g H ₂ O
8.86 8 93	0 156 0 259			10		0 00	9 14
8 93 8 93	0 269			1	'	4.28	6 42
8.84 8 78	0 527	1		Į		9 60 15 65	4.76 3.99
8.70 8.62	0.808 0.834	1	NaH ₂ (SO ₄) ₂ , H ₂ O metastable solutions	ĺ	1	21.82 28.13	3.97 4.15
8 62	0 844	11	*	}	- 1	30.11 32.27	4 34 4 59
8.61 8.87	0 899		h(804) s, HsQ+Nas804,			33 76	4 75
8.93	0 437		H ₁ 80 ₄ Na ₁ 80 ₄ , 4.5H ₂ 80 ₄	21	5	0 00	21 33 15 48
9.08 9.36	0.394	Na ₂ St	" 04, 4 5H ₂ SO ₄ +N ₈ HS ₂ O ₇	1		9.05 17.48	13 73
9 18 9 42	0 567 0.728		NaHS ₂ O ₇	ļ	- {	20.41 26 01	13 62 15.05
9 48	0.760	ļ	"	Į	- [26 53 27 74	14 44 13.39
9 55 9.48	0 775		NaHS ₂ O ₇ +?	1		31 25 31 80	10.64 10.28
9.85 9.98	0.787	1	?		-	32 10	8.43
(9 77) 10.16	(1 03)		Metastable			33 69 34 08	4 73 2 77
10.10	0.302		?			35 46	0.00
(D'Ans,	Z. anor	g. 1913, 80. 236.)	25	5	0.00 2.74	28.74 26.57
					1	8 15 19.86	23.15 20.52
Sl. s	ol. m ee	nc. H	C ₂ H ₃ O ₂ . (Ure's Dict.)		Ì	24.58 31 21	14.86 9.95
Not pp	td. by a +Aq	ddition	a of glacial HC2H3O2 to			32 02	9.61

Solubility in NaCl+Aq at to-Continued. Solubility in NaCl+Aq at 15°

t° .	g NaCl per 100 g H ₂ O	g NasSO ₄ per 100 g HA)
	0 00 2 66 5 29 7 90 16 13 18 91 19 64 20 77 32 33	31 10 28 73 27 17 26 02 24 83 21 39 20 11 19 29 9 53
- 30	0 00 2 45 5 61 7 91 10 61 12 36 15 65 18 44 20 66 32 43	39 70 38 25 36 50 35 96 31 64 29 87 25 02 21 30 19 06 9 06
33	0.00 1 22 1 99 2 64 3 47 12 14 21 87 32 84 33 99 34 77	48 48 46 49 45 16 44 09 42 61 29 32 16 83 8 76 4 63 2 75
35	0 00 2 14 13 57 18.78 31.91 35 63	47 94 43 75 26 26 19 74 8 28 0 00

At 38° and shows the values represent the solubility of Na₂O₄ in Na₂O₁ + At 10° the solid phase in contact this solution is and as the solid phase in the solution is and 32° the solid phase as other Na₂O₄ 10H₂O or Na₂O₄ takes place at vanous temp. below 33° depending on the amount of NaCl contained in the solution in contact with the solid spilms subthate.

(Seidell, Am. Ch. J. 1902, 27, 55.)

Composit	ion of the	
% by wt NaSO:	% by wt. NaCl	Solid Phase
11 5 7 86 5 87 5 23 5 26	0 5 42 11.51 15 97 21 03	Na ₂ SO ₄ +10H ₂ O
5 84	22 20	No.SO. IOFLO I NoOL

(Schreinemakers and de Baat, Z. phys. Ch. 1909, 67, 554.)

NaCl

2.26 25 21

26 3

Sol in sat NH4NO++Aq (Margueritte, C. R. 38. 307.)

Sol. in sat. KNO₃+Aq with pptn. after several hours (Karsten.) Na₂SO₄+10H₂O is sol. in sat. NaNO₃+Aq

without pptn, but if efforesced Na₂SO₄ is used, NaNO₂ is pptd. at first, and subsequently Na₂SO₄+7H₂O₂.

The presence of CaSO₄ does not affect the

solubility of Na₂SO₄ in H₂O to any great extent. (Barre, A ch. 1911, (8) **24.** 160.) More sol. in K₂SO₄, CuSO₄, MgSO₄+Aq. then in H₂O. (Pfaff, A. **99**. 226.)

then in H.O. (Pfaff, A. 99, 226.)
100 pts H₂O dissolve 20.7 pts. CuSO₄ and
15.9 pts. Na₅SO₄. (Rudorff, B 6, 484.)
Sol. in sat. MgSO₄, K₂SO₄, CuSO₄+Aq,
but if more Na₅SO₄ than can be dissolved is
added to the CuSO₄+Aq, a large quantity of

a double sulphate separates out. (Karsten.)
The solubility of Na₂SO₁ in KSO₂ + Aq has
been determined at 15°9 25°, 40°, 50°, 60°, 70°
and 80°. From the results the conclusion is
drawn that sodium and potassum sulphates
form a double salt of the formula KaNa(SO₄),
(Okada, Chem. Soc. 1915, 108. (2) 3415, 108.

See also under CuSO₄, MgSO₄, and K₂SO₄. Slowly but abundantly sol. in sat. ZnSO₄+Aq, with separation of a double salt after a

few days

Solubility of ZnSO₄ 7H₂O+Na₂SO₄ 10H₂O in 100 g, H₂O at t°.

- to	grams ZnSO;	grams NasSO:
0 5	40 305 42 285	7 905 9 515

(Koppel, Z. phys. Ch 1905, **52.** 409.)

See also under Na₂Zn(SO₄)₄+4H₂O.

SULPHATE, SODIOM												
Solubility of Na ₂ SO ₄ +Th(SO ₄) ₂ at 16° Solid phase Th(SO ₄) ₂				8	olubil				4 In 8		l+Aq a	t t°
Pts per 100	pts H ₁ O	Pts per	100 pts. H ₂ O	to	% alcohol	E II:			l Nas		eold plu	90
NasSO ₄ 1 094 1 960 2 84 2 98	Th(SO ₄): 1 743 2 387 3 800 3 962	5 79 9 35 12 24 15 36	2 136 1 379 1 169 1 048	15	0.7 9 2 19.4 39.7 58 9	88 85 78 60 41	7 1 6 0	0 0 8.6 18.9 39 5	11 6 2 0 0	3 Na 3 9 5	2SO4+1	0H ₂ O
4.11	3 375 re, C R. 1	911, 150.	155.)		72 0 0 0 11 2 20 6 30 2	28 72 76 74 68	8	72 (0.0 9.1 19.1 29 (27 14 6	2 Na 0 5	12SO₁+′	т ₄ д
	ty in Na a l phase, N		-	25	0.0 10 6 24 0 54 0	78	1 5 5 8.8 6	0 9 22 54	12	9 Na 2 3 4	.80.+1	O ₂ H0
	omposition o			36			7.0	0			NasS	04
% Na acetat 0 4 10 7.71 12.58	21 17 16	9 72 48 50	78.10 78.18 75.81 73.92		8 8 12 8 17 9 18 1 28 9 48 7	71 71 71 66	1.2	6 10 15 15 28 48	18 13 7 13 4 5	3 4	11 41 41	
16 26 20.63	8	50 10	72.24 71.27	45	0.0 9.0 14.5	17	7.6 1.3 1.8	0 7 12	1 21	.6	11 11	
, ,	(Fox, Chem. Soc 1909, 95. 888)			_	20 6	70	5.6	18.	4 10		"	
wan.)		rO from the cold s and Firshaber) 000 sp gr (Kir-	th 36	e ha	ud :	sepa	arate	e fol	two lowing	ons of a layers : compo	at 25°,	
NasSO4 at 12 NasSO4 at 12	5-15°, of 0 5-15° ahol of 0 83-	905 sp. gr.	dissolve 3.8 pts	١	,	g 10	_		g aso,	H ₂ O	acohol	Na ₂ SO ₄
crystals wit	th 7H ₂ O ε	re forme	on in alcohol, d. (Schiff, A.	2	5 66 68	3.5 3.1 3.3	27 23	7.3	6.2 8.0 8.6	67 4 68 5 68 3	6.0	27.5 25.5 25 0
pts. Na ₂ SC contain 5.6 at 15° conta A 118.365	04+10H10 pts Na ₂ S(un 1 3% N)	20% t 04+10H ₂ a ₂ SO ₄ +1	alcohol at 15° O; 40% alcohol 0H ₂ O. (Schiff,		6	7.7 5 0 8 1	28	3.4 3.3 1.2	3 9 6 7 10 7	66 6 68 8 68 9	5 9	29 3 25 3 21 7
somewhat sparingly, s H.SO. (F	more, th sol. in abs. resenius)	alcohol a	at ord. temp.; ill exceedingly acidulated with rvstal H ₁ O of	1	6	1 8 5 8 6 0	25	2 9 5 3 1 0	5 3 8.9 10 0	68 4 68 6		22 8 21 3
Alcohol does not affect crystal H ₄ O o Ns ₄ SO ₄ +10H ₄ O.			1	(de	Bru	yn,	Z. p	ıys C	Ch. 19	00, 32.	101)	

Solubility in alcohol+Aq at 25°						
Composition of the			•			
% by wt. H ₂ O	% by wt alcohol	% by wt. NasSO:	Solid phase			
63.41 49.0 46 6 34 9	34 84 50 5 53 0 64.95	1.75 0.5 0 4 0 15	Na ₂ SO ₄ , 10H ₂ O Na ₂ SO ₄ , 10H ₂ O+Na ₂ SO ₄ Na ₂ SO ₄			

(Schreinemakers, Z. phys. Ch. 1909, 67. 552.)

Solubility data for solution of NaCl in ethyl alcohol+Aq at 15°, 25°, and 30° are given by Schreinemakers (Z. phys. Ch. 1909, 67. 556.)

Solubility in proper sleeded + Ag at 20°

normonia)	to brobly	Luc no .	
% propyl aluchol	g Na ₂ SO ₄ per 100 g solution	% propyl alcohol	g Nas80a per 100 g. solution
42.20 49.77 55 65	1 99 1 15 0.72	56 57 60.64 62 81	0.55 0.44 0.38

(Linebarger, Am Ch. J. 1892, 14. 380) Sol in glycerine.

Insol in acetone, (Naumann, B 1904 37, 4329, Eidmann, C. C. 1899, II, 1014.); benzoutrile. (Naumann, B. 1914, 47, 1370) methyl acetate (Naumann, B. 1909, 42, 7790); ethyl acetate. (Naumann, B. 1910, 43.

100 g. H₂O dissolve 183.7 g sugar +30.5 g. Na₂SO₄ at 31.25°, or 100 g sat. solution contain 52 2 g. sugar + 9.6 g. Na₂SO₄ (Köhler, Z. Ver. Zuckerind, 1897, 47. 447 Min. Anhydrous, Thenardite. +10H₂O, Maaddite.

Sodium hydrogen sulphate, NaHSO4.

Not deliquescent Very sol, in H₂O with

decomposition. Sol. in 2 pts. H_2O at 0° (Link); 1 pt H_2O at 100° (Schuberth) 100 pts. H_2O at 15.5° dissolve 92.72 pts Sol. in 2 pts. H_2O at 18.75° (Abl); decomp by alcohol.

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**, 829) +H₂O. Deliquescent, and decomp. by the

H₂O which it takes up.
NaH₄(SO₄)₂ Decomp. by H₂O. (Schultz.)

Trisodium hydrogen sulphate, Na₂H(SO₄)₂.

Sol. in H₂O with decomp. +H₂O. (Rose)

Sodium pyrosulphate, Na₂S₂O₇. Sol. in fuming H₂SO₄ without decomp.

Sodium thallic sulphate, Na₂SO₄, Tl₂(SO₄)₂. Sol. in H₂O. (Strecker, A. **135**. 207.) Sodium therium sulphate, Na₂SO₄, Th(SO₄)₂ +6H₂O.

Sol. in H₂O 100 pts cold sat Na₂SO₄+Aq dissolve 4 pts of this salt. (Cleve) See also under Na₂SO₄+ThSO₄.

Sodium titanium sesquesulphate, Na₂Ti₂(SO₄)₄
+5H₂O.
Sol. up. H.O. (Spange, Chem. Soc. 1994)

Sol. in H₂O (Spence, Chem Soc. 1904, 86. (2) 412.) Insol in alcohol (Knecht, B. 1903, 86, 169.)

Sodium titanyl sulphate, Na₂TiO₂(SO₄)₂+
10H₂O.

Hygroscopic (Mazzuchelli and Pantanelli, C C 1909, H. 420.)

Sodium uranyl sulphate, Na₅(UO₂)(SO₄)₁+

3H₂O. (de Coninck, C. C. **1905**, I. 919)

Sodium vanadium suiphate, Na₄V₂(SO₄)₄+ 24H₂O. Very sol in H₂O (Piccini, Z. anorg 1897, 13, 444.)

Sodium vanadyl sulphate, Na₂SO₄, VOSO₄+

Easily sol. in H_2O and alcohol + cone. H_3SO_4 (Koppel, Z anorg 1903, **35**, 177.) $N_{82}SO_{4}$, $2VOSO_4+2J_2H_2O$ Slowly sol. in H_2O . Can be cryst. from H_2SO_4 at 100° . (Koppel.)

Sodium yttrium sulphate, Na₂SO₄, Y₂(SO₄)₃+

2H₂O. Quite sol m H₂O. (Cleve) The only double salt capable of existing at 25°. (James and Holden, J. Am. Chem. Soc. 1913, **35**, 562.)

Sodium zinc sulphate, Na₂SO₄, ZnSO₄+ 4H₂O.

Deliquescent in moist air.

Decomp into constituents on dissolving in

H₂O. (Graham, Phil. Mag. 18, 417.)

H₂O. (Graham, Phil. Mag. **18.** 417.) Solubility of Na₂Zn(SO₄)₂.+4H₂O in 100 g. H₂O at t^o.

t°	grams ZnSO4	grams Na ₂ SO ₄
25	26.32	23.40
30	26.475	23.445
35	26.365	23.525
40	26.68	23.63

(Koppel, Z. phys. Ch. 1905, 52, 409.)

Solubility of Na ₂ Zn(SO ₄) ₂ 4H ₂ O+ZnSO ₄ . 7H ₂ O in 100 g. H ₂ O at t°.						
t°	gram's ZnSO:	grams Na ₂ SO ₄	to.	grams ZnSO4	grams NasSO4	
10 15 20	45 79 48 81 52 34	11 24 10 175 8 625	25 30 35	56 155 60 55 65 25	7 215 6 34 5 64	

(Koppel)

Solubility of Na₂Zn(SO₄)₂.4H₂O+ZnSO₄. 6H₂O in 100 g H₂O at t^o

t°	grams ZnSO4	grams NasSO4
38 40	66 64 64 89	4 98 4 71
	(Koppel.)	

Solubility of Na₂Zn(8O₄)₂ 4H₂O+Na₂SO₄. 10H.O in 100 g. H.O at to.

t°	grams ZnSO4	grams NasSO4	l
10	43 495	12 35	
15	36 925	16 71	
20	28 77	21.98	
25	19 935	29.875	
30	10 67	42.515	

(Koppel.)

Solubility of Na₂Zn(SO₄)₂ 4H₂O+Na₂SO₄ (anhydrous) in 100 g HaO at to.

grams ZnSO ₄	grams NasSO:
8 725 9 16	46 61 43 835
	8 725

Sodium sulphate fluoride, NasSO4, NaF. Cryst, from H2O without decomp. (Marignac, Ann Min. (5) 15. 236)

Sodium sulphate antimony trifluoride. See Antimony traffuoride sodium sulphate.

Strontium sulphate, SiSO4.

Very sl. sol. in cold, and still less in boiling H₂O.

1 l. H₂O at 11-15° dissolves 0 066 g. SrSO₄ (Brandes and Silber), 0.145 g. SrSO. (Fresenius); 0 154-0.167 g. SrSO4 (Marignac); 0.187 g SrSO₄ (Kremers); 0.278 g. SrSO₄ (Andrews).

1 l boiling H₂O dissolves 0.104 g SrSO (Fresenius): 0.282 g. SrSO4 (Brandes and

When a Sr salt is precipitated by H_1SO_4 , 1 pt. SrSO, remains dissolved in 700 pts H2O. (Marignac.)

Sol. in about 8000 pts H₂O (Schweitzer, J. B 1877, 1054.) , Calculated from electrical conductivity of

the solution, SrSO, is sol in 10,070 pts. H_2O at 16.1° and 10,990 pts at 20 1° (Holleman, Z phys Cb 12, 131.) 1. H_2O dissolves 107 mg, SrSO, at 18° and

not much more at higher temp. (Kohlrausch and Rose, Z. phys. Ch. 12, 241.) 100 g. H.O dissolve

0°-5° 10°-12° at to g. SrSO. 0.0983 0.0994 0.1479 1.0600

95-98° g, SrSO₄ 0.1629 0.1688 0.1727 0.1789 (Wolfmann, C. C. 1897, I. 632.)

I l H₂O dissolves 114 mg, SrSO₄ at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50, 356.); 114.3 mg at 18°. (Kohlrausch, Z. phys. Ch. 1908, 64, 168)

Sol. in 6895 pts. cold, and 9638 pts. boiling H₂O, in 11,000-12,000 pts. H₂O containing H₂SO₄; in 474 HCl+Aq containing 8.5%

BSO₅: In 4/4 and contaming 8.5% RC; in 432 pts. HNO₁-4Aq contaming 4.8 % NA₂; in 7848 pts. HC₂H₂O₂-4Aq contaming 15.6% HC₂H₃O₂-4Aq contaming 15.6% HC₂H₃O₂-4Aq contaming 15.6% HC₂H₃O₂-4Aq contaming 15.6% HC₂H₃O₂-4Aq of 4.8% Na₂O₃ ansolves 2.31 g. SrSO₅; 11 cold HC₂H₃O₂+4Aq of 15.0% HC₃H₃O₂+4 HC₃H₃O₂+4 HC₃H₃O₂+4 HC₃H₃O₂+4 HC₃H₃O₂+4 HC₃H₃O₃+4 HC₃ SrSO. (Fresenius)

Solubility of SrSO4 in HCl+Aq.

No ec. HCl+	g. per 100 ec. solution			
1 mg equiv HCl	HCI	SrSO ₄		
0 2 0 5 1 0 2 0 10 0	18 23 7 29 3 65 1.82 0.36	0.161 0 207 0 188 0 126 0.048		

(Banthisch, J. pr. 1884, (2) 29, 54.)

Solubility of SrSO, in HNO,+Au. on HNO. I

Į	Aq containing	g. per 100 cc solution		
	1 mg equiv. HNOs	HNO;	StSO ₄	
	0.2 0.5 1.0 2.0 10.0	31 52 12.61 6.30 3.15 0 63	0.381 0.307 0 217 0.138 0.049	

(Banthisch, J. pr. 1884, (2) 29. 54.)

Sol. in conc. H2SO4 See under SrH2(SO4)2. Insol, in NH,Cl+Ag or conc. (NH,) SO,+

Aq. (Rose.) Slowly but completely sol. in NaCl+Aq. (Wackenroder.)

H₂O containing Na₂SO₄ dissolves less SrSO₄

1014)

than pure H₂O; H₂O containing H₂SO₄ still (Andrews, Phil Mag. Ann 7, 406.) Insol, in Na₂S₂O₃+Aq

Insol. in Na₂₀Co₃+Aq Insol. in boiling, conc. (NH₄)₂SO₄+Aq (Rose, Pogg 110. 292) Sol. in 16.949 pts (NH₄)₂SO₄+Aq (1·4) (Fresenius, Z anal. 32. 195.)

Pptn. 18 hindered by alkalı metaphosphates and citrates, but not by citric acid Decomp, at ord, temp., and more rapidly

on boiling by alkalı carbonates+Aq.
Sol. in MgCl₂ or KCl+Aq, solubility increasing with strength of solution; sol. in NaCl or CaCl2+Aq, maximum solubility occurring when the solutions are of a medium concentration. The numerical results are as follows.

100 pts. of the salt solutions containing given

pts. salt dissolve pts SrSU ₄ .				
Salt	Pts salt	Pts. 8:804		
NaCl	22.17 15.54 8.44	0.1811 0 2186 0 1653		
KCl	18.08 12.54 8.22	0 2513 0 1933 0 1925		
MgCl ₂	13 63 4 03 1 59	0.2419 0 2057 0 1986		
CaCl ₂	33, 70 16.51 8 67	0 1706 0 1853 0 1756		

(Virck, C. C. 1862, 402.)

Solubility in H₂O, and in solutions of the sulphates chlorides and nitrates of the alkalies and alkaline earths and in solutions of salts of the alkalies with strong organic acids has been determined. No data in abstract (Wolfmann, Chem Soc. 1898, (2) 74. 220.)

Solubility in H2O is considerably degreased by the presence of K.SO. (Barre, A ch. 1911, (8) 24. 175.)

Solubility of SrSO₄ in Ca(NO₃)₂+Aq at ord. temp. G. per 100 cc. sat. solution

Ca(NO ₄):	- SrSO4 "	Ca(NOs)s	- SrSO4
0.5	0.0483 0.0619	-4 5	0 1489 0 1689
3	0.1081 0 1275	6	0.1955

(Raffo and Rossi, Gazz. ch. it. 1915, 45. (1) 45.)

Insol. in liquid NH₃. (Franklin, Am Ch J. 1898, 20. 829) 100 g. 95% formic acid dissolve 0.02 g SrSO4 at 18.5°. (Aschan, Chem. Ztg. 1913) 37. 1117.)

Insol in absolute alcohol; scarcely sol, in

dil. alcohol. Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); acetone (Naumann, 1904, 37. 4329, Eidmann, C. C. 1899, II.

Min. Celestite

Strontium hydrogen sulphate, SrH2(SO4)2.

100 pts H₂SO₄ dissolve 2 2 pts. SrSO₄ (Lies-Bodart and Jacquemin); 100 pts. H2SO, dissolve 5.68 pts (Struve, Z anal 9. 34), 100 pts fuming H₂SO, dissolve 9 77 pts

(Struve) 1 g SrSO₄ dissolves in 1256 g 91% H₂SO₄+ Aq (Varenne and Pauleau, C. R 93, 1016); boiling HoSO4 dissolves about 15% SrSO4, and stall more at 100° (Schultz, Pogg. 133, 147)

Sol. in 1519 pts 91% H₂SO₄ and Pauleau, C. R 93, 1016.) (Varenne 100 pts. H₂SO₄ (sp. gr. 1.843) dissolve 14 pts SrSO₄ at 70°. (Garside, C N **31**, 245)

Decomp by H.O. 100 pts hot conc. H2SO4 dissolve about 90 pts SrSO4 (Rohland, Z. anorg. 1910.

66, 206) 10 ccm of sat SrSO4+absolute H2SO4 contain approx 2.17 g SrSO4 (Bergius, Z phys. Ch. 1910, 72, 355)

+H₄O Decomp by H₂O

Strontium tin (stannic) sulphate, SrSO4, $Sn(SO_4)_2 + 3H_2O_1$ Decomp. by H₂O Sol in HCl (Wein-

land and Kühl, Z. anorg, 1907, 54, 249.) Strontium titanium sulphate, SrSO4, Ti(SO4)2. Ppt; decomp by H₂O giving titanic acid.

(Weinland and Kühl, Z. anorg, 1907, 54, 254,) Tantalum sulphate, 3Ta₂O₄, SO₄+9H₂O. (Hermann, J. pr. 70, 201)

Tellurium sulphate, basic, TeO2, SO3. Sol. in cold dil H2SO4 Decomp. by hot H₂O. (Klein, C R 99, 326)

Terbium sulphate, Tr2(SO4)4+8H2O. Sol. in H2O

Söl. in H₂O, pptd. by alcohol. (Urbain, C. R 1908, **146**, 127.)

Thallous sulphate, Tl-SO4.

L pt. dissolves at t° in pts. H₂O, according to C=Crookes; L=Lamy: 15° 18° 62° 100° 101.2°

21.1 20.8 8.7 5.45.22 pts. H₂O.

£	Solubility of Tl ₂ SO ₄ in H ₂ O						
t°	% TI SO4	60	% Tl ₂ 80;				
0 10 20 30 40 50	2 63 3 57 4 64 5 80 7 06 8 44	60 70 80 90 99 7*	9 85 11 31 12 75 14 19 15 57				

B -pt. at 748 mm

Berkeley, Phil. Trans. Roy Soc. 1904, 203. 1, 189; calc. by Landolt-Bornstein.)

100 g. H₂O dissolve 3.36 g. Tl₂SO₄ at 6.8°, 1.8 g at 12°, 1.9 14 g at 110°, (Tutton, Proc. 3oy. Soo. 1907, 79. A, 351)
1. H₂O dissolves 0.1928 equivalents Γl₂SO₄ at 20°, or 48.56 g in 1 l. of solution Noyes, J. Am. Chem. Soc. 1911, 33, 1857)
1. H₂O dissolves 0.1083 g. equiv. Tl₂SO₄ at 25°, or 27.28 g in 1 l. of solution. (Noves.)

Solubility in H2SO4+Aq at 25°.

Strength of H SO1+Aq g, mols per l	g mols Tl SO; per l.
0 0494 0 0987	0 1172 0 1249

(Noyes, J Am. Chem. Soc. 1911, 33. 1662.)

1 l. TlClO₃+Aq containing 0.1058 equivalents TlClO₃, dissolves 0.1366 equivalents Tl₈SO₄ at 20°. (Noyes.)

See also TlClO₃

Solubility in salts + Aq at 25°.

g. mols. per l.	g mois per l Tl SO4 dissolved
0 0996 TINO ₄	0 08365
0.0497 Na ₂ SO ₄	0 1080
0.1988 Na ₂ SO ₄	0 1173
0 1010 NaHSO ₄	0 1161

(Noyes)

Thallous hydrogen sulphate, TiHSO₄.
Sl. hydroscopic.
Solublate in H-SO₂ ± 4g at 25°

Solubility in H₂SO₄+Aq at 25°.

Mols. H ₂ SO ₄	Mols. Tls80.
4 55 4 79 4 89 4 92 4 78 4 26 4 03	0 56 0 55 0 59 0 66 0 75 1 01 1 08

(D'Ans, Z. anorg. 1910, 65. 232.)

Tl₂SO₄, TlHSO₄ Sol. in H₂O. (Stortenbecker, R t c. 1902, 21. 90.)

Thallous pyrosulphate, Tl₂S₁O₇.

Decomp by H₂O (Weber, B. 17, 2502.) Thallous actosulphate, Th.S.O.

Decomp. by H₂O (Weber, B. 17. 2502.)

Thallic sulphate, basic, Tl₂O₃, 2SO₅+3H₂O. Sol in H₂O.

+5H₂O As above (Willm, A ch (4) 5.

Thallic sulphate, Tl₂(SO₄)₃+7H₂O.

Decomp by cold H₂O with separation of

TlO(OH) (Crookes.)

Thallothallic sulphate, 2Tl₂O, 3Tl₂O₄, 12SO₄+

25H₂O Gradually efflorescent. (Willm.)

Tl₁(SO₄)₂. (Lepsius, Chem Ztg. 1890.

TlH(SO₄)₂. (Lepsius.)

Thailous uranyl sulphate, Tl₂(UO₂)(SO₄)₂+3H₂O.
Sl. sol in cold H₂O.
Easily forms supersat, solutions. (Kohn,

Z. anorg 1908, 59. 112)
Thallium vanadium sulphate. Tl₂V₂(SO₄)₄+

24H₂O. 100 pts H₂O dissolve 11 06 pts salt at 10°. Sp gr. of solution at 4°/20° = 2.342

Very sol in hot H₂O (Piccini, Z. anorg. 1897, **13**, 446.) 256 g. anhydrous, or 433 g. hydrated salt, or 0.573 g. mols. of anhydrous salt are sol, in

11 H₂O at 25°.
Melts in crystal H₂O at 48°. (Locke, Am. Ch. J. 1901, 26, 175.)

Thallous zinc sulphate, Tl₂Zn(SO₄)₂+6H₂O.

1 1 H₂O dissolves 86 g anhydrous salt

at 25°. (Locke, Am. Ch. J. 1962, 27. 459.)

Thallothallic sulphate bromide, Tl₂Br₂SO₄.

Very sol in cold H₂O Decomp by much
H₂O. (Meyer and Goldschmidt, B. 1903, 36.

242.)
Thorium sulphate, basic, $3[Th(SO_4)_2+2H_2O]$,

Th(SO₄)O+2H₂O.
Insol. in H₂O; very slowly attacked by dil.

acids. (Demarcay.)
ThO(SO₄)+2H₂O. Stable in aq. solution
at 100°. (Hauser, B. 1910, 43, 2776)
+5H₂O. Somewhat sol in hot conc.
MgSO₄+Aq. (Halla, Z. anorg 1912, 79, 280)

Thorium sulphate, Th(SO4)2.

Anhydrous Easily sol. if brought into a large amount of H₂O, but very slowly sol. if only a little H₂O is added to the salt.

1020				200	DI 3111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, 1110	,,,,,,	0111					
100 pts H ₂ O dissolve about 4.86 pts. Th(SO ₄) at 0 ² (Cleve) When-heated, a hydrous salt separates out, which redissolves on cooling. (Cleve.) Solubility of anhydrous salt cannot be determined, as it begins to separate out						100 p	ots.	H ₂ O d	hssol ted a	remely ve pts s Th(S	slov	(SO ₄) , at t	pts H ₂ 0 I in H ₂ 0 2+9H ₂ 0
Th(S	$(O_4)_2 + 9$	H ₂ O be	fore a satu	ırateo	i solution	t°	Th	Pts. (SO ₄)s	t°	Pts Th(80	24):	t°	Pts. Th(SO ₄):
pts Th(S (Roo	Th(SO ₄) O ₄) ₂ we zeboom) ₂ in 15 : re disso , Z. phy	00 pts. H ₂ O minutes; at lved in 5 m rs. Ch 5. 19	25°, inute 98)	27 00 pts s	0 10 20	1	88 02 25	30 40	1 8 2 8	3	50 55	4 86 6 5±
drous Th(S	s salt. 104)2 fro naximu	100 pts om this m solub	same beha . H ₂ O disso salt at 1°, ulity (Ro	lved but t ozebo	35 50 pts. this is not som)	(D	ems	areay C	Roo	96. 18 zebooi	60, c n.)	alcul	ates out
ouss	olution	; also for	oy alcohol f rmed by he solution ab	ating	Th(SO ₄) ₂	100 j		calculat	lissol ted a	Th(SO ₄);	(SO.)	2+9H ₂ O
100	pts H	O dissol	ve pts. Th Th(SO.), marcay (C.	(SO,) ₂ +4H ₂ O,	t°	Th	Pte. (SO ₄)s	t°	Pts Th(80	24)2	t°	Pts. Th(SO ₄):
	conding R = acc Ch. 5.	ording	narcay (C. to Rooseb	R. s	96. 1860); (Z. phys.	0 10 20	(74 98 38	30 40	1 9 2 9	95 98	51 55	5 22 6.76
£°	Pts Th(SO): tº	Pts Th(SO ₄)2	t°	Pts Th(SO ₄) ₂	Abov		50°, Th					ates out
17 35 40	9 41 I 4 50 I 4 04 I	55	2.54 R 1 94 D 1 634 R	70 75 95	1 09 R 1.32 D 0 71 D	of th	r fu 5. 1 e s	urther o 98), wi	lata, here	see R there	ooze is a	boom full	(Z.phys discussion
	+6H ₂ O Behaves as the anhydrous salt, but action is much slower.					100 H ₂ O	g at	sat. s	ontai	n 1.59	93 g	anl	⊢9H ₂ O 11 1yd. salt
100]	pts H _d	O dissol	ve pts. Th	(SO.) ₂ +6H ₂ O,	-	_		_		H ₂ S	O ₄ +	Aq at t
	.	Pts. Th(SO ₄):	1	1	Pta.	- t°	-	% H ₂ SC	-		mı	Solid	
1	0 5 0	1.50 1.63 2.45	45 60	1	3 85 6 64	30		0 00 0.46 0 72 1.46 2.98	6 2 8 2 8 2	152 055 085 267 311	1n		
boon +	(Roozeboom) This determination gives too low figures, especially at the higher temperatures (Roozeboom) +8H.O.					-		4 38 4 97 9.95 15 03 18 95 23 64 32 68	1 1 1 0	367 323 961 484 .078 .7196 3364	Th		14 14 14
100	pts. H ₂	ulated	lve pts Ti	1(SO,)2+8H2O, t°			37.80 43 28 45 69	0	077 0213 0047		,	16
-	t°	Pts Th(SO4)	ı tº	_	Pts. Th(804):			74 0 80 5	0	1208		:	
	0 15	1.00	25 44		1 85 3.71	20)	5 15	1 0	722 .9752	Th	(SO ₄)	+8H ₂ O
_10	00 g. Ti	1(804)	ozeboom.) +Aq sat. w	nth T	Th(SO ₄) ₂ +			25 40	0	3838 0103	Th	(SO ₄)	1. 12+4H2O
Th() anor	O at 3 SO ₄) ₂ , rg. 1910 NO g. H.	30° con (Kopt 5, 67. 27 O dissol	tain 2 152 pel and 1 4.) ve 1.722 g	g. Holzk	anhydrous ampf, Z.	tem	ng ip.	5 10 15	0	7407 4808 3882			14
Bull	Soc. 1 -9H ₂ O.	912, (4)	11.) by alcol			(Kor	pel	and F	Iolzk	ampf, 274.)	Z. a	norg.	1910, 67

Per 100 g of solution						
g Th(SO ₄) ₂	g H ₄ SO ₄					
1 722 1 919 2 017 2 060 2 061 2 085 1 863 1 702	0 000 1.072 1 941 2 821 3 843 5.212 8.055 10 105					

Solubility in H-SO.-LAg at 25°

(Barre, Bull Soc. 1912, (4) 11, 647.)

Solubility in H2SO4+Aq at 25°.

Normality	liquid are	g of the dassolved	Solid phase	
H ₁ SO ₄	g. oxide	anhydrous sulphate		
0 1 1 2 16 4 32 6.68 9 68 10 89 15 15	1.015 1.14 0.9265 0.545 0.2685 0.0651 0.0396 0.0192	1.831 1 488 0 8751 0.4312 0 1045 0 0636	Th(SO ₄) ₂ +9H ₄ O " Th(SO ₄) ₂ +8H ₄ O Th(SO ₄) ₂ +4H ₄ O	
			·	

(Wirth, Z. anorg 1912, 76, 186)

Solubility of Th(SO4)2 in HCl+Aq at 30°.

% HCi	% Th(SO4):	Solid phase
0 0 4.55 6.95 12 14 15 71 18 33 20 23 9	2.15 3.541 3.431± 2.811 2.360 2.199 2.13 1.277	Th(SO ₄) ₂ +8H ₂ O " " " Th(SO ₄) ₂ +4H ₂ O

(Koppel and Holzkampf, Z. anorg, 1910, 67, 274.)

Solubility of Th(SO₄)₂ in HNO₃+Aq at 30° or HNO. Let Thesonal

/6 111101	76 111(304)1	Dona bures
0 0 5 17	2 15 3 68	$Th(SO_4)_{ij}^2 + 8H_2O$
10.04 16 68 21.99	4 20 4.84 4 47	a a
28.33 28.51	3 96 3 88	u
33.17 38 82	3.34 2.51	Th(SO ₄) ₂ +4H ₂ O

(Koppel and Holzkampf, Z. anorg. 1910, 67. 274.)

The presence of phosphoric acid increases the solubility of thorsum sulphate in HCl and

HNO₃. (Koppel and Holzkampf, Z. anorg 1910, 67, 280) For solubility of Th(SO4), in (NH4),SO4.

Li₂SO₄, and K₂SO₄, see respective sulphates. Insol. in liquid NH₂. (Gore, Am. Ch. J. 1898. 20, 830 1

Thorium hydrogen sulphate, ThH₂(SO₄).

Hydroscopic. Sol. in excess of hot H-SO₄; insol. in cold H₂SO₄. (Brauner, Z anorg 1904, 38, 333.)

Thulium sulphate, Tm₂(SO₄), +8H₂O. Insol. in alcohol. (James, J. Am, Chem. Soc. 1911, 33, 1343.)

Tin (stannic) sulphate, basic, (SnO)SO.+

Ĥ₁O. Easily sol. in cold H2O, but quickly decomp with separation of stannic hydroxide. (Ontte, C R. 104. 178.)

| Shot, SO₃. Easily sol. in dil. acids. |
| (Ditte, A. ch. 1882, (5) 27, 159.) +1 %H2O. Not decomp, by cold H2O.

Tin (stannous) sulphate, SnSO4.

(Ditte)

Sol. in 5.3 pts. H₂O at 19°, and 5 5 pts. at 100°. (Marignac) Solution soon decomposes with separation of a basic salt Sol, in H2SO4+Aq. (Bouquet.)

Insol, in acctone (Naumann, B. 1904, 37. 4329)

Tin (stannic) sulphate, Sn(SO₄)₂+2H₂O.

Deliquescent, Easily sol, in H.O; decomp. by much H₂O. Sol in dil. H₂SO₄+Aq. Slowly sol in HCl+Aq. Decomp by absolute alcohol. (Ditte, C R. 104, 178.)

Titanium sulphate, Ti(SO₄)₀+3H₄O. Deliquescent, and sol, in H2O. The aqueous solution is decomp, on boiling. (Glatzel, B. 9, 1833)

Titanium sesquisulphate, Ti2(SO4)1. Very deliquescent, and easily sol. in H2O.

Aqueous solution is decomp by boiling. (Ebelmen.) Insol. in H₂O, alcohol, ether and cone. H₂SO₄. Slowly sol. in dil. H₂SO₄ and HCl. (Stabler, B 1905, 38, 2624) Not sol in alcohol. (Knecht, B. 1903, 36.

+8H₄O. Sol in H₄O. (Glatzel, B 9. 1833) Titanium hydrogen sesquisulphate, $3\text{Ti}_2(SO_4)_4$, H₂SO₄+25H₂O.

Gradually sol. in H₂O Insol, in 60% H₂SO₄, alcohol, ether and glacial acetic acid (Stahler, B 1905, 38.

	ilphate, (TiO			1	Solubility in		
Decom	 by H₂O. 	.Slowly	sol. m cold,	1 pt. U	(SO4) 18 sol. 1n	pts. acid s	at t°.
99. 157.) +2H ₂ C	warm HCl	H ₀ O. (B.	Merz, J pr. londel, Bull.	t°	A⇔d	Concentra- tion of seid	Pts seed
Soc 1899 2TiO ₂ ,	, (3) 21. 262.	Sol. in l	H ₂ O acadafied	9 7 9.2	HCl	1,4	5 74 5 8
262.) 5T ₁ O ₂ , 7T ₁ O ₂ .	SO ₂ +5H ₂ O. 2SC ₂ +7H ₂ O.	(Blondel)	11 2 10 3	HNO ₄	1:4	5 4 5 53
 2TiO₂, 	SO_z+xH_2O	(Blondel.	.)	11 4	H ₂ SeO ₄	1:4	4.57
Insol. 1	sulphate, bas n H_2O . H_2O	dissolves		10.7	(sp gr 1,4)	**	4.66
+5H ₂ C Pptd.	, A. ch (3) 5 Sol in alc by ether.	ohol.	m, Z. anorg.	15 14 2	HBr "	1:4	4 4.23
	sulphate, U(S			15 5 14 4	HC ₂ H ₂ O ₂	1:4 5	4 1 4 3
Easily schutter,	H ₂ O with sol. in dil. B 1901, 34.	H_9SO_4+ 3629.)	Aq. (Kohl-	16 5 15.9	44	1:2	3 72 3.85
acid salt.	p by H_2O m Sol m dil y sol m cone 215)	. H ₂ SO ₄ (n HCl+Aq	11 7 10 9 10 1	H ₂ SO ₄	1.4	6.36 6.42 6.45 6.5
Solubili	ty of U(SO ₄) ₂	+4H ₂ O II	H ₂ O at t°.			<u> </u>	4
to.	% U(SO ₄):	£°	% U(80):	(de Conin	ick, Chem. So	c 1902, 82	(2) 459
29 37	9 8 8 3	48 2 63	8.1 7 3	$d_1 = Sp$.	of U(SO ₄) ₂ +H gr. referred to gr. referred to	H ₂ O.	46) at t°.
(Giolitti	and Bucci, (łazz. ch. 62.)	ıt. 1905, 35.	t°	% salt	d ₁	d∎
at 11 3°; 1903, (7) +8H ₂ C	sol. in 4.23 p 4 4 pts. at 9 1 28. 12.)	ts H ₂ O at ". (de Co		16 17 18 18 4 17 6	3 4	1 0525 1 0572 1 0619 1 0667 1 0714	1 0063 1 0109 1 0154 1 0199 1 0248
to to	% U(SO ₄) ₂	to	% U(804)2	(de C	oninck, A chi	1903, (7) 2	8. 11).
18 10,17 48 2 28.72 25 6 13 32 62 28 72				Sp. gr. o	of U(SO ₄) ₂ +H gr referred to	sO4(d=1.	

COMBINE	U 01 0 (1304)1	Lowin II	THOUSE P	
t°	% U(SO ₄) ₁	t°	% U(804)	
18	10,17	48 2	28.72	

13 32 19 98 93 63 2 (Giolitti and Bucci, Gazz. ch. it. 1905, 35.

(2) 102)								
Sp. gr. of U(SO ₄) ₂ +Aq at t°								
t° ·	% salt	Sp. gr						
16 16 8 16 17.8 17.2 18	1 2 3 4 5	1 0058 1.0107 1 0165 1.0218 1 0272 1.0320 1 0379						
40.0		1 03/9						

1 0429

1 0485

1 0539

9 10 .. (de Coninck, A ch' 1903, (7) 28. 11.)

17 4

15 2

15 6

t°	% salt	dı	d ₂
16	1	1 0525	1 0063
17	2	1 0572	1 0109
18	3	1 0619	1 0154
18 4	4	1 0667	1 0199
17 6	5	1 0714	1 0248

dg=Sp. gr referred to H2SO4.

to .	% salt	d ₁	da
18 7 18 3 17 4 17 6 18 1	1 2 3 4 5	1 1442 1.1494 1 1539 1 1583 1.1626	1 0038 1 0083 1 0123 1 0162 1 0204
(de Cor	nnck, A. c	h. 1903, (7)	28. 11)

1 pt. 18 sol. in 8 pts. alcohol (94°)+Aq. (1:4) at 10.4°. (de Coninck.)
Solubility in glycol at 14.8°=3.15% (de Coninck. C C. 1905, II. 883.)
Min Johannite. Sl. sol. in H₂O

Uranous hydrogen sulphate, U(SO4)2, H2SO4 +10H₂O.

(Giolitta, C C. 1905, II. 1226.)

Uranyl sulphate, basic, 3UO₄, SO₃+2H₂O₄ (Athanasesco)

+14H₂O. Sol in W₂O (Ordway, Sill Am. J (2) 26, 208)

4UO., SO.+7H.O (Athanasesco, C R 103.271.)
UO., 4UOSO.+8H.O. Less sol. in min. ands, especially dil H.SO.+Aq, than UOSO.+2H.O. (de Conneck, C C 1901, II. 1038)

Uranyl sulphate, (UO2)SO4.

 $+H_2O$. (de Connek.) $+3H_2O$. Efflorescent. Very sol. in H_2O

and alcohol

1 pt. is sol. in 0 6 pt. cold H₄O; in 0.45
pt. bothing H₂O; in 25 pts cold absolute
alcohol; in 20 pts boiling absolute alcohol.

(Bucholz.)
Sol. in 0.47 pt. H₂O at 21°, and 0.28 pt. boiling H₂O (Ebelmen.)

100 pts. H₂O at 15.5° dissolve 160 pts, and at 100°, 220 pts (Ure's Diet) I pt is sol in 5.3 pts H₂O at 13.2°; 516 pts at 14.1°; 4.96 pts. at 15.1°; 4.88 pts at

15 5° (de Coninck, A. ch 1903, (7) 28. 8)

Sp. gr. of (UO₂)SO₄+Aq at t°

t.	% (00):80:	ap gr.
14	1	1 0062
15 5	2	1 0113
11 3	3	1 0172
10 2	4	1 0229
10 2	5	1 0280
10	6	1 0338
14	7	1 0389
15 6	8	1 0442
11	9	1 0503
10.3	10	1.0557
11.4	111	1.0612
11.6	12	1.0669

(de Coninck, A. ch. 1903, (7) 28.7)

Solubility in acids +Aq.

1 pt (UO₂)SO₄ is sol, in: 3.4 pts. conc. HCl at 12.8°

3.25 " " " " 13.6° 5.9 " HBr(d=1 21) " 12.9° 6.1 " " " 11.2° 10.8 " cone, HNO_{\$} " 12.3°

11.2 " " " 10 8° 4 3 " H₂SO₄(d=1 38)" 12.7° 4 1 " " 14.0°

 $^{5.6}$ "aqua regia (equal vol. $HCl+HNO_4$) at $^{15.4}$ " pts. aqua regia (equal vol. $HCl+HNO_4$) at $^{16.4}$ " at $^{16.4}$ ".

 (NO_8) at 16 4°. 3.7 pts. seleme and (d=1.4) at 15.3°.

(de Coninek, A. ch. 1903, (7) 28. 8.)

Sp. gr. of $(UO_2)SO_4+H_2SO_4(d=1 168)$ at t°. $d_1=Sp$ gr. referred to H_2O . $d_2=Sp$ gr. referred to H_4SO_4 .

f.o	% sult	" dı	dz
20 6	1	1.1738	1.0050
22 2	2	1 1775	1.0082
21 1	3	1 1880	1.0129
22.7	4	1 1872	1.0165
22 3	5	1 1918	1.0204

(de Connek, A. ch. 1903, (7) 28. 7.)

I pt is sol. in 37.9 pts. alcohol (85°) at 167°, 38 6 pts at 158° (de Coninck; A. ch 1903, (7) 28, 8.)

Very sl. sol. in formic and glacial acetic acids (de Comnek, A ch 1903, (7) 28. 9.) Completely pptd from (UO₂)SO₄+Aq by HC₂H₂O₂. (Persoz)

Uranyi hydrogen sulphate, (UO2)SO4, H2SO4.

Very deliquescent. (Schultz-Sellack.) 2(UO₂)SO₄, H₂SO₄+5H₂O. Very deliquescent. (Wyrouboff, Bull. Soc Min 1909, **32**.

Uranyl pyrosulphate, (UO2)S2O7.

Very deliquescent. Hisses with H₂O. (Schultz-Sellack.)

Uranouranyt sulphate, USO4, (UO2)SO4.
Sol. in H₂O. (Ebelmen.) Decomp. by boiling. (Berzelius)
Min Voglanute.

Uranyl sulphate ammonia, (UO2)SO4, 2NH2.

(v. Unruh, Dissert. 1909.) (UO₂)SO₄, 3NH₅. (v. Unruh) (UO₂)SO₄, 4NH₅. (v. Unruh)

Vanadous sulphate, V₂O₃, 4SO₄+9H₂O. Sol. in H₂O. (Brierley, Chem. Soc. 49. 882)

Vanadium sulphate, V₂O₅, 2SO₈=(VO₂)₂S₂O₇.
Deliquescent. Easily sol in H₂O.

V₂O₃, 3SO₃ Deliquescent. Sol. in H₂O and alcohol. +3H₂O Deliquescent. Very sol. in H₂O,

+3H₂O Deliquescent. Very sol. in H₂O, but decomp. by boiling. Sol. in alcohol: (Ditte, C. R. 102, 757.)

VSO₄+7H₂O. Decomp. by air; very unstable; sol. in H₂O. (Piccini, Z. anorg. 1899, 19, 204.)

Vanadium sesquisulphate, V2(SO4)3.

Anhydrous. Insol. in H₂O.

Insol in conc. H₂SO₄, but slowly sol. in boiling dil H₂SO₄. Sol. in HCl. Insol in alcohol and ether. (Stähler, B. 1905, 38, 3979)

Vanadium hydrogen sulphate. V2(SO4)1, H2SO4+12H4O.

Sol. in H₂O.
Sol in HCl. Insol. in 60% H₂SO₄+Aq.
alcohol, ether and acetic acid. (Stähler, B 1905, 38, 3978.)

Divanadyl sulphate, V2O2(SO4)2.

Insol. in H₂O, HCl, or H₂SO₄+Aq, but on heating to 400° becomes sol. in H₂O if heated to 130° therewith (Gerland.) +4H₂O Very slowly sol in H₂O at 10°.

quickly at 60°, and still more rapidly at 100°. Deliquesces in warm most air more quickly than it dissolves in H₂O at 10°. Insol in absolute alcohol. Very sol. in alcohol of 0 833

sp. gr. (Berzelius) +5H₂O (Kopp (Koppel and Behrendt, anorg. 1903, 35. 168.) +7H₂O, and 10H₂O. +13H₂O. Efflorescent (Gerland)

2V2O4, 5SO2+18H2O. (Gain, C. R. 1906,

143. 1154.) V₂O₄, 3SO₂+10H₂O. (G) 2V₂O₄, 7SO₂+20H₂O. (G.) 2V₂O₄, 9SO₃+22H₂O. (G.)

V2O4, 5SO2+12H2O. (G.)

Divanadyl hydrogen sulphate, $(V_2O_2)H_2(SO_4)_3 = V_2O_4$, $3SO_3 + H_2O_4$

+2H₂O. +3H₂O. Deliquescent. Very slowly sol. in cold H₂O or alcohol. Easily sol in hot H₂O.

(Gerland)

(Geriand)
+5H₂O. Deluquescent. Insol in ether.
+5H₂O. Deluquescent. Insol in ether.
Scarcely sol. in alcohol Slowly sol in cold,
easily in hot H₂O. (Crow.)
+14H₂O Easily sol. in cold H₂O or dil
alcohol. (Geriand ol. in H₂O. (Koppell
and Behrendt, Z. anorg. 1993, 85, 163.)
10. (1.50 + 1.40 -

1903, **35**, 163.) 2VOSO₄, 3H₂SO₄+15H₂O. (Gain, C. R.

1906, 143, 1156.) 2VOSO4, 4H2SO4+16H2O. (G)

2VOSO4, 5H₂SO₄+15H₂O. (G.) 2VOSO4, 7H₂SO₄+15H₂O. (G.) 2VOSO4, 8H2SO4+16H2O. (G.)

Ytterbium sulphate, Yb2(SO4)2+8H2O. Quite slowly sol, in H₂O even at 100°. Anhydrous salt is easily sol, in much H₂O, but if little H₂O is used the hydrous salt is formed, which only slowly dissolves. Sol. in K₂SO₄+Aq.

100 pts. H₂O dissolve at:

15.5° 35° 55° 60° 44.2 34.6 19.1 11.5 10.4 pts. Yb₂(SO₄)₃, 7.22 6.93 5.83 4.67 pts, Yb₂(SO₄)₃,

(Cleve, Z. anorg, 1902, 32, 143.)

Vitrium sulphate, basic, Y₂O₂, SO₄ ≈ (YO),SO4

Insol. in H₂O (Berzelius.) 2Y2Os, SOs+10H2O (Cleve)

Yttrium sulphate, Y2(SO4)s.

Anhudrous More sol in H₂O than the hydrous salt, and more sol in cold than hot H2O Solution sat at 0° separates Y2(SO4) + SH₂O at 50°. 100 pts. H₂O dissolve 15.2 pts. anhydrous salt at old, temp.

5 38 pts. are sol. in 100 pts. H₂O at 25°, James and Holden, J. Am. Chem. Soc. 1913. 35, 561.)

Easily sol in large amount of sat. K2SO4+ Aq, from which 3K, SO, 2Y (SO,) is pptd on warming (Cleve and Höglund, Sv. V. A H. Bib. 1. No. 8.)

Solubility of Ya(SO4)a in NaaSO4+Aa at 25°.

sSO4 Solid phase	Pts. NesSO4 per 100 pts HsO	Pts. fs(SO ₄)s por 100 ots. H ₂ O
.85 21 .53 57	1.29 3.85 6 21 8.53 7 57 7.72	5 61 6 38 7 40 8 43 5 86 4 75
. 1.4 .36 .42 .89 .89 .89 .89 .89 .89 .89 .89	1.72 10.14 11.36 13.42 14.89 16.51 18.44 19.96 21.05 27.14 28.22 28.13	3 42 2 36 2 02 1 90 1 79 1 86 2 99 3 04 2 27 1 52 1 61
0.0 Na ₂ SO ₄ +10H ₂ O	0.0	5 38

(James and Holden, J. Am. Chem. Soc. 1913, 35, 560.)

+8H₂O 100 pts H₂O dissolve 9.3 pts. of cryst. salt at ord. temp., and 4.8 pts at 100°. (Cleve, Bull. Soc (2) 21. .344.) Less sol, in H₂O containing H₂SO, than in pure H_{*}O (Berzelius) Completely pptd. by HC2H2O2+Aq. In-

sol. m sleohol Yttrium hydrogen sulphate, Y2(SO4H)2.

(Brauner, Z. anorg 1904, 38, 332.)

Zinc sulphate, basic, 8ZnO, SO4+2H2O. Insol. in H2O. (Schindler, Mag. Pharm. 181.)

6ZnO, 8Oa+10HaO, Insol. in HaO, (Kane, A. ch. 72, 310.) 4ZnO, SO₄+2H₂O. Scarcely sol. in hot or cold HaO. Sol. in ZnSO4+Ag. (Kühn. Schw. J. 60, 337.)

+3H ₂ O.	(Werner, B. 1907, 40,	4443.)
+5H ₂ O.	(Werner, B. 1907, 40. Nearly insol. in H ₂ C	(Hab
16 E	490)	

+6H₂O (Kraut, Z. anorg 1897, 13. 5) (Athanasesco, C. R. 103. 271) +7H₂O +8H₂O. Extremely slowly decomp by O. (Reindel, J. pr 1869, (1) **106**, 373.)

+10H₂O (Schindler) 3ZnO, SO; H₂O (Vogel.) Insol. in cold, sl. sol in hot

2ZnO, SO₃ (Athanasesco.) 5ZnO, SO₃ (Pickering, Chem. Soc 1907,

91, 1986 +4H.O (Moody, Am J. Sci 1906, [4] 184.) 9ZnO, 2SO₂+12H₂O (Reindel, J. pr. 1869,

(1) 106, 374) Zinc sulphate, ZnSO4.

Sol in H2O with evolution of heat.

Sol. in HCl+Aq. +H.O. (Etard.) +2H₂O Insol, in alcohol. (Kuhn.)

+3½H₂O. +5H₂O 1 (Anthon) Insol. in boiling alcohol of 0.86 sp. gr. (Kuhn.) +6H₂O. (Marignac)

+7H₂O. Slowly efflorescent

M.-pt of $ZnSO_4+7H_*O=50^\circ$ (Tilden. Chem. Soc. 45, 409) For solubility data on hydrated salts, see Sol in 2+ pts, H₂O at ord, temp, and in less at 100°

(Bergmann) 100 pts H₂O at 104 4° dissolve 81.81 pts, ZnSO₄ (Griffiths.) (Griffids.)

100 pts Hr0 at ord temp. dagsolve 140 pts ZnSO₄+
ZHrO. (Dumas.)

Sol im 2.29 pts HrO at 18 75° (Abl.)

100 pts HrO at 18 75° (Abl.)

100 pts HrO at 18 75° dassolve 140 pts ZnSO₄+TH₂O

Urés Diet.)

100 pts HrO at 15° dassolve 140 pts ZnSO₄+TH₂O

HrO, and has sp gr. = 14442 (Michol and Krafts)

1 pt of the crystals dissolves in 0.923 pt H₂O at 17.5°, and forms a solution of 1.4353 gr. (Karsten)

100 pts. ZnSO4+Aq sat. at 18-20° contain 35.36 pts ZnSO4 (v. Hauer, J B 1866, 59.) 100 pts. H₂O dissolve at: 209 50°

41.3 66 9 80 4 pts. ZnSO4 (Tobler, J. B. 1855, 309.)

100 pts. H₂O at 20.5° dissolve 163.2 pts. ZnSO₄+7H₂O. (Schiff, A. 109, 336.) 100 pts, H₂O at to dissolve pts, aphydrona

ZnSO4, and pts ZnSO4+7H4O.					
t°	Pts ZnSO4	Pts. Zn8O ₄ + 7H ₂ O	60	Pts. ZnSO4	Pts ZnSO4+ 7H4O
0 10 20 30 40 50	43 02 48 36 53 13 58 40 63.52 68.75	115 22 138.21 161 49 190 90 224 05 263 84	60 70 80 90 100	74.20 79.25 84 60 89.78 95 03	313 48 369 36 442 62 533.02 653 59

(Poggiale, A. ch (3) 8, 467.)

Solubility of ZnSO, in 100 pts H₂O at t°

t°	Pts ZnSO4	t°	Pts. ZnSQ4	t°.	Pts ZnSO ₄
0 1 2 3 4 5 6 7 8 9 10 11 12 13	44 0 44 6 45 2 45 8 40 4 47.0 47.6 48 3 48 9 49.5 50 2 50 8 51 5 52 2	14 15 16 17 18 19 20 21 22 23 24 25 26	52 8 53 5 54 2 54 9 55 6 56 3 57 0 57 7 58 4 59 2 59 9 60 7 61 4	27 28 29 30 31 32 33 34 35 36 37 38 39	62 1 62 8 63 6 64 3 65 1 65 8 66 6 67 3 68 1 78 8 69 3 70 4 71 2

Decomp into basic salt above 40°

(Mulder, Scheik Verhandel 1864, 74.)

If solubility S represents number of pts. anhydrous sait in 100 pts. of solution, S = 27 6+0.2604t from -5° to +81°; S=50.0-0.2244t from 81° to 175° (Etard, C R. 106. 207)

Sat. ZnSO.+Aq contains at:

13° 20° 41° 49° 29 1 32 6 34 8 40.2 40 9% ZnSO4.

62° 100 43 4 45 0 47 0 46.5 44.7% ZnSO4

111° 12° 137° 144° 160° 171° 43.0 40 7 38 0 37 4 30 0 29 0% ZnSO4

(Étard, A. ch. 1894, (7) 2. 551)

 Transition point from +6H₂O to +1H₂O 18 70° (Etard.)

Solubility of ZnSO4+6H2O in H2O at to.

t°	g ZnSO4 in 100 g, H ₂ O
5.0	47.08
+0.1	49.48
9 1	54.20
15 0	57 15
25 0 .	63 74
30 0	65 82
35 0	67 99
39 0	70 08

(Cohen, Z phys. Ch. 1900, 34, 182.)

Solubility of the hepta-and hexa-hydrates of ZnSO₄ at t^a.

p = wt. of salt expressed in percent of solu-

	to.	D
	0	29 43
	0	29 53
	Ó	29 49
	15 00	33 66
•	15 88	. 33 85
	30 70	38 46
	39 92	41 36
	89 95	41 37
•	40 73	41 43
	41 49	41 70
	48 40	42 68
	49 97	43 51
-	49 99	43 41
	50 00	43 50
		40 00
	50 02	43 51

Transition point from $+7H_2O$ to $+6H_2O$ is 30° . The formula representing the change of solubility between 0° and 30° is p=20 5+0 2700+O 00068t² while the expression for the hexahydrate above 40° is

p=41 35+0 210t+0.00070t³ (Barnes, J phys Chem 1900, 4. 19)

Solubility of $ZnSO_4+7H_4O$ in H_4O at t° .

t*	g. ZnSO4 in 100 g. HaC
-5 +0 1 9 1 15 0 25 0 35 0	39 30 41 93 47 09 50 88 57 90 66 61
39 0	70 05

(Cohen, Z. phys Ch. 1900, 34, 182.)

Solubility in H₂O at high pressures:

Pressure	t°	g ZnSO4 in	Solubility
on atm		100 g HsO	at 25°
500 500 1000 1000	26 26 25 8 25 8 25 8 25.8	57.95 58 43 58 32 57 95 57 95	57.95 57.92 57.91 57.55 57.55

(Cohen and Sinnige, Z. phys. Ch. 1909, 67.

Liable to form supersaturated solutions

Sat ZnSO₄+Aq at 8° has sp. gr. = 1 421. (Anthon.)

Sp. gr. of ZnSO₄+7H₂O at 20 5°, % = % ZnSO₄+7H₄O.

%	Sp gr	%	Sp. gr	%	Sp. gr
1 2 3 4 5 6	1.0057 1.0115 1.0173 1.0231 1.0289 1.0348 1.0407	21 22 23 24 25 26 27	1 1288 1 1355 1 1423 1 1491 1 1560 1 1629 1 1699	41 42 43 44 45 46 47	1 2754 1.2834 1 2917 1.3000 1.3083 1.3167 1 3252
7 8 9 10 11 12 13 14 15 16	1 0407 1 0467 1 0527 1 0588 1.0649 1 0710 1 0772 1 0835 1 0899 1 0962	27 28 29 30 31 32 33 34 35 36 37	1.1699 1.1770 1.1842 1.1914 1.1987 1.2060 1.2134 1.2209 1.2285 1.2362 1.2439	47 48 49 50 51 52 53 54 56 57	1 3252 1 3338 1 3424 1 3511 1 3599 1 3688 1 3779 1 3871 1 3964 1 4057 1 4151
18 19 20	1 1091 1 1156 1 1222	38 39 40	1 2517 1 2595 1 2674	58 59 60	1 4246 1 4342 1 4439

(Schiff, A 110. 72.)

Sp. gr. of $ZnSO_4+Aq$ at 15°. $\% = \% ZnSO_4+7H_*O$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	% = % ZHOO4+7H2O						
2 1.013 22 1.137 42 1.288 3 1.019 22 1.187 42 1.288 44 1.205 45 1.187 42 1.288 45 1.205 45 1.	%	Sp. gr	%	Sp gr. ,	%	Sp gr	
19 1,116 39 1,263 59 1,435 20 1 1236 40 1,2709 60 1 4451	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1 006 1.013 1.013 1.024 1 028 1 035 1 047 1 0593 1 066 1 073 1.079 1 085 1 095 1 090 1 103	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	1.130 1.137 1 143 1 150 1 1574 1 164 1 177 1 177 1 185 1 200 1 200 1 200 1 200 1 216 1 244 1 241 1 240 1 246 1 246 1 253	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	1 280 1 288 1 294 1 304 1 3100 1 320 1 337 1 346 1 352 1 362 1 380 1 390 1 390 1 398 1 416 1 425	

(Gerlach, Z. anal. 8. 288.)

Sp. gr of ZnSO4+Aq at 23 5° a=no. of g,
equivalent to ½ mol wt, dissolved in
1000 g H ₂ O; b=sp gr if a is ZnSO ₄ +
7H ₂ O, ½ mol. wt = 143.5; c=sp gr if a
18 ZnSO4, 1/4 mol wt. = 80 5

18	18 ZnSO ₄ , ½ mol wt. =80 5							
8	b	e	8.	b				
1 2 3 4 5	1 077 1 143 1 199 1 249 1 294	1 084 1 162 1 236 1 307 1 376	7 8 9 10 11	1 368 1 400 1 428 1 453 1 476				

6 | 1 333 | 1 443 | | | (Favre and Valson, C. R. 79, 968.)

Sp. gr of ZnSO ₄ +Aq at 18°.						
% ZnSO4	Sp gs ZwSO,		Sp gr	% ZnSO.	Sp gr	
5 10	1 0509 1 1369	15 20	1 1675 1 2313	32 50	1.3045 1 3788	

(Kohlrausch, W. Ann 1879, 1.)

Sp. gr. of ZnSO₄+Aq at room temp. containing: 7 12 16 64 23 09% ZnSO₄.

1 1064 1 1953 1.2814 (Wagner, W. Ann 1883, 18. 271)

Sp gr. of ZnSO₄+Aq at 19 5°.

Mass of salt per unit	Density of solution,
mass of solution	(g per cc)
0.00186 0.00371 0.00556 0.00740 0.01469 0.01829 0.02187 0.02542 0.02895	1.00179 1.00356 1.00550 1.00530 1.00711 1.01065 1.01410 1.01753 1.02112 1.02446 1.02798

(McGregor, C. N 1887, 55. 4.)

Sp. gr. of ZnSO₄+Aq at 25°.

Concentration of ZnSO₄

1—normal 1 0792

1/r " 1 0492

1/r " 1 0094

1/r " 1 0094

(Wagner, Z. phys. Ch. 1890, 5. 40.)

Sp	gr	of	ZnSO.	+Aq
 	_			

salt in 100 g solution	Sp, gr.		
24 7170	•	1 3152	
21.4444		1.2665	
17.7573	i	1 2145	
14 0307	Į.	1.1645	
9.7426	1	1 1106	
5 1110	ı	1 0565	

(Charpy, A. ch. 1893, (6) 29. 27.) Sp. gr. of ZnSO₄+Aq

g equivalents ZnSO4 per liter	t*	Sp. gr. tº/tº
0 001309	13 59	1.0001126
0 002616	13 575	1 0002258
0 005212	13 573	1 0004451
0 01039	13 585	1 000886
0 09818	13 621	1 008189
0 18842	13 642	1 015587
0 1890	16 11	1 01550
2 493	15 88	I 19385

(Kohlrausch and Hallwachs, W. Ann. 1894.

Sp. gr of ZnSO₄+Aq at 18.5°, when p= percent strength of solution, d=observed density; and w=volume cone.

in grams per cc $\left(\frac{pd}{100} = w\right)$

р	d	w
29.22 25 14 21 28 17 08 11 20 8 44 6 65 3 82 3 18 1.46	1 3718 1 3091 1 2528 1 1957 1 1220 1 0894 1 0696 1 0387 1 0318 1 0138	0 40057 0 32910 0 20659 0 20422 0 12567 0 09195 0 07112 0 03968 0 03281 0 01480
0.577	1 0045	0 00580

(Barnes, J phys Chem. 1898, 2. 542)

Sp gr of dil ZnSO₄+Aq at 20 004°. Conc = g. equiv per l. at 20.004°. Sp gr. compared with H₂O at 20 004°=1•

Cone	Sp. gr
0.0000	1 000,000,0
0.0001	1 000,008,6 1 000,017,2
0.0002 0.0005	1 000.043.2
0.0010	1 000,086,3
0 0020 0 0050	1 000,172,3 1.000,429,1
0 0060	1 000,514,3
1 0100	1 000,853,9

(Lamb and Lee, J. Am Chem. Soc. 1913, 35.

1690.)

Sat ZnSO₄+Aq boils at 104.4°, and solution contains 45 pts ZnSO₄ to 100 pts. H₂O. (Griffiths.)

Crust forms at 103.5°, the solution containing 68 pts. ZnSO, to 100 pts. H₂O. Hughest temp observed, 105°. (Gerlach, Z. anal. 26. 426.)

B.-pt. of ZnSO₄+Aq containing pts. ZnSO₄ to 100 pts H₂O

	Bpt.	Pts ZnSO4	B-pt.	Pts ZnSO
•	100 5°	13.1	103.0°	61 0
	101 0	25.0	103.5	68 0
	101 5	37 7	104.0	74 9
	102 0	45 4	104.5	80 7
	102 5	53 9	105.0	85 7

(Gerlach, Z. anal. 26 432.)

B,-pt. of ZnSO4+Aq.

g. ZnSO ₄ m 100 g. H ₄ O	Rise of the bpt.	Barometric pressure mm.
2 886	0.080	743 0
6 647	0 169	- 11
10 139	0 266	- 44
13 389	0.372	"
17 713	0.461	- 11
22.202	0.591	et.
25 199	0 690	
28.249	0 811	
30.470	0 899	742.0
32 89	0.995	u
35.18	1 122	111
37.36	1.240	u
39.83	1 381	- 11
		- 11
41.30	1.459	
44.56	1.671	1 "

(Kahlenberg, J. phys. Chem. 1901, 5. 370.)

1 l. absolute H₂SO₄ dissolves 0.0021 mois.
 ZuSO₄ at 25°. (Bergius, Z phys. Ch. 1912,
 72. 353.)
 Completely putd from ZnSO₄+Aq by

Completely pptd from ZnSO₄+Aq by HC₂H₂O₂. (Persoz.)

Solubility of ZnSO4 in KOH+Aq.

Mols. KOH to 1 mol. ZnSO4	per cent ZuO in ppt
0.25 0.50 1.00 1.62 2.00 3.00 5.00 7.00 13.20	17. 11 35. 10 68. 08 100. 00 98. 49 96. 79 89. 76 68. 87 0. 00

(Linebarger, J. Am. Chem. Soc. 1895, 17. 360.)

Difficultly and slowly sol. in sat NH₄Cl+ Aq, with separation of a double sulphate Sol. in considerable quantity in sat. NaCl

+Aq, without pptn at first, but finally Na₂SO₄ separates out. See under NaCl Sol in sat. NaNO₅+Aq as in NaCl+Aq.

See under NaNO₃
Sol. in sat. KNO₃+Aq with immediate
pptn. of double sulphate. (Karsten) See

under KNO₃
Very rapidly sol in sat, K₂SO₄+Aq, with separation of a double salt. (Karsten.) See under K₂SO₄.

Abundantly, in sat. CuSO.+Aq.

Slowly sol in sat. MgSO₄+Aq Very rapidly and abundantly sol. in sat.

NaSO₄+Aq For solubility of ZnSO₄+Na₂SO₄ see under

Na₂SO₄ and Na₂Zn(SO₄)₂+4H₂O. Insol in liquid NH₄. (Franklin, Am. Ch. J. 1898, **20**. 830.)

Insol, in alcohol of 0.88 sp gr; 1000 pts. alcohol of 0.905 sp. gr. dissolve 2 pts (Anthon.)

100 pts. of a saturated solution in 40% alcohol contain 3.48 pts. ZnSO₄+7H₂O; 20%, 39 pts , 10%, 51.1 pts. (Schiff, J. B **1861**. 87.)
100 pts. absolute methyl alcohol dissolve

100 pts. absolute methyl alcohol dissolve 0.65 pt. ZnSO₄ at 18°. (de Bruyn, Z. phys. Ch. 10. 783) 100 pts. absolute methyl alcohol dissolve

100 pts. absolute metriy section deserve 59 pts. CBSO₄+TH₂O at 17° 100 pts 50% methyl alcohol dissolve 15.7 pts ZBSO₄+TH₂O at 17°. (de Bruyn.)
Insol. in acetone (Eidmann, C. C. 1899, H. 1014; Naumann, B. 1904, 37, 4329)

Insol. in acctone (Edimann, C. 1898) II. 1014; Naumann, B 1904, 37, 4329) 100 pts glycerine dissolve 35 pts ZnSO, at ord, temp (Klever, Bull. Soc. 1872, (2) 18, 372.)

Insol. in methyl acetate (Naumann, B. 1909, 42, 3790); ethyl acetate. (Naumann, B. 1904, 37, 3601.)
Min. Gosslarite.

Zinc hydrogen sulphate, ZnH₃(SO₄)₂+8H₂O.
Somewhat difficultly sol. in cold, easily in hot H₂O (v. Kobell, J. pr 28. 492.)

Zinc sulphate ammonia, basic, 4NH₂, 4ZnO, SO₄+4H₄O.

Ppt. (Schindler)

Zinc sulphate ammonia, ZnSO₄, 2NH₃. +H₂O. Decomp. by H₂O into basic zinc

sulphate ZnSO₄, 4NH₃+4H₂O Sol. in H₂O. (Kane, A. ch. **72**, 304.)

+3H₄O. (André, C. R. 100, 241) ZnSO₄, 5NH₁ Sol in H₂O with partial decomp (Rose, Pogg. 20, 149.)

Zinc sulphate cupric oxide, ZnSO₄, 2CuO+ 5H₂O.

(Mailhe, A. ch. 1902, (7) 27. 169.) ZnSO₄, 3CuO+xH₂O. (Recoura, C. R. 1901, 132. 1415.)

+5H _* O	1
2ZnSO₄, 3CuO+12H₂O.	(Mailhe, A. ch.
1902. (7) 27. 169.)	
7ZnSO ₄ , 24CuO+xH ₂ O.	(Recoura, C R.

Zinc sulphate hydrazine, ZnSO4, 2N2H4.

Sol in NHOH+Aq (Franzen, Z. anorg

Soi in NH₂OH+Aq (Franzen, Z. anorg 1908, **60**, 278) Sol in NH₄OH+Aq without decomp. (Curtus, J. pr 1894, (2) **50**, 345.) ZnH₄(SO₄)₁₅, N₂H_a. 1 pt. is sol in 185 pts. H₂O at 12°, Sl. sol, in dil, acids Decomp. by cone. HNO₃ and by hot cone. H₂SO₄. Very sol. in NH.OH+Aq. (Curtius, J. pr. 1894, (2) 50, 331.)

Zirconium sulphate, basic, 3ZrO₆, 2SO₈, Insol in HoO. Sol, in HCl+Aq. (Pay-

kull, B 12. 1719.)
4ZrCo, 3SO₂+14H₂O. Ppt. Dufficulty sol. in H₂O. (Hauser, B. 1904, 37. 2024.)
3ZrCo, SO₃ Insol. in boiling H₂O. (Franz,

B. 3. 58.) 7ZrO2, 6SOs. Insol. in H2O. (Endemann,

J. pr (2) 11. 219.) ZrO2, SO3. Sol. in very little H2O More H₂O decomp into 3ZrO₂, 2SO₂ and Zr(SO₄)₂. (Berzelius,

3ZrO₂, 4SO₃+15H₆O, Sol, in H₆O, (Pay-6ZrO₂, 7SO₃+19H₂O Sol in H₂O. (Paykull)

Zirconium sulphate, Zr(SO4)2.

Anhudrous. Slowly but completely sol. in cold, quickly in hot HaO

Sol. in warm H2SO4, but separates on cooling Precipitated from aqueous solution by alcohol. +4H₂O. Easily sol. in H₂O.

100 pts. of the solution contain 59.3 pts. of the hydrated salt at 39 5°. (Hauser, B. 1904, 37, 2025.

Solubility of Zr(SO₄)₂+4H₂O in H₂SO₄+ Aq at to.

100 g of the solution contain.

t°	g, ZrO1	g. SO:
39.5	19 5	25 46
	19.3 19.6	25 6 25 99
	19 3	26 5 27 0
	18 15 17 3	27 6 25 3
	16 2	29 1
	9 6 5 3	32.3 34.7
	3 51 1.03	36 01 38.2
	0.46	39 8 42 0
	0.01	720

Solubility of Zr(SO ₄) ₂ +4H ₂ O in H ₂ SO ₄ + Aq at t ^o .—Continued.				
t°	g ZrO:	g SOa		
	0 33 0.14 0 13 0 15 0 20 0 27 0 50 0 60 2 00 3 25 4 40	42.1 46.8 47.1 56.7 56.8 57.1 57.5 57.8 59.5 60.4 61.4		
22	0 10 0 13 0 21	56 1 46 5 57 2		

(Hauser, Z. anorg 1907, 54, 197)

Zirconium hydrogen sulphate, Zr(SO4), H,SO4+H2O

Solubility in H2SO4+Aq. at 39.5°.

100 g, of the solution contain 0 11 0 10 0.10 g. ZrO. 81.4 81.6 81.5 g. SO1. (Hauser, Z. anorg, 1907, 54, 200.)

+3H₂O.

Solubility in H2SO4+Aq at to. 100 g of the solution contain:

t°	g. ZrO;	g SO ₂
39 5	4 55 3 25 3 33 3 35 1 80 1 60 1 55 1 12 0 96	61.5 62.5 63.8 63.8 64.2 64.6 65.0 66.8 68.4
22	0.80 0.65 0.60	66.4 67.5 68.1

(Hauser, Z anorg. 1907, 54. 200)

Persulphuric acid, HSO4 See Persulphuric acid.

Purosulphuric acid and pyrosulphates. See under Sulphuric acid and sulphates.

Sulphuric boric acid. See Borosulphuric acid.

Sulphuric vanadic acid, V2O5, 3SO2+8HO2. See Sulphate, vanadium.

Sulphurous acid, anhydrous, SO₂.

See Sulphur dioxide.

Sulphurous acid, HaSO4.

Known only m aqueous solution, from which SO₂ is given off upon heating. Crystallizes in cold, with various amounts of water, forming compounds which approximately compared to the superior of the superior

dioxide Sulphites.

Normal. Only the alkalı sulphites are sol. in H_2O , and they are insol or only sl sol in alcohol.

Insol. in liquid NH₃ (Franklin, Am ch. J. 1898, 20. 824.)

Acid. All the acid sulphites are sol. in H₂O.

In general it is rarely possible to determine whether the compd described is a pure chemical compound or not. It is probable that many substances described by Svenses and others are isomorphic mixtures whose composition depends upon the temp and cone. of the solution in which it was pptd (Rosenheim, Z. amorg 1900, 25. 72)

Aluminum sulphite, basic, Al₂O₃, SO₂+4H₂O. Insol. in H₂O; sol. in H₂SO₃+Aq. (Four-

eroy and Vauquelin.)
6Al(OH)₃,Al₂(SO₃)₄+9H₂O Ppt. (Seubert,
Z. anorg. 1893, 4, 66)

Ammonium sulphite, basic, (NH₄)₁SO₂, NH₃ +³/₂H₂O.

Sol in H₂O. | Pptd. from aqueous solution by alcohol. (Muspratt.) Does not exist (Marignac.)

Ammonium sulphite, (NH4)2SO4,

Very hydroscopic (Divers, Chem. Soc. 1900, 77, 336.) Insol. m acetone. (Eidmann, C.C. 1899.

II. 1014.) +H₂O. Slowly sol. in H₂O. (Muspratt,

A. 50. 268)
Sol. in 1 pt. H₂O at 12°. (Fourcroy and Vauquelin, Crell. Ann. 1800, 2, 415.)

More sol. in hot H₂O with evolution of NH₃. Sl sol. in absolute alcohol. (Muspratt.) Much more sol. in alcohol than K₂SO₈.

(Pierre)
Loses NH₃ in the air.

Sol. m H₂O. Cone solution charged with NH, will deposit salt on evaporation over KOH. Dil. solution decomp. on evaporation (Divers, Chem Soc 1900, 77, 335.)

Insol in acetone (Naumann, B 1904, 37. 4329)

Ammonium hydrogen sulphite, NH₄HSO₅. Insol. in acctone. (Eidmann, C.C. **1899**, II. 1014; Naumann, B 1904, **37**, 4329.)

Ammonium pyrosulphite, (NH₄)₂S₂O₄.

Deliquescent. Very sol. in H₂O and alcohol. Insol in ether (Fock and Kluss,

B. 23. 3149) Very sol. in H₂O; very hydroscopic Aq solution is sl decomp. on evaporation. (Divers, Chem. Soc. 1900, 77, 336.)

Ammonium cadmium sulphite, (NH₄)₂SO₃, CdSO₃

Nearly msol in H₂C Partly sol in excess of H₂SO₄+Aq, but separates out on boiling. (Schuler, A 87. 34)

Ammonium cobaltous sulphite, (NH₄)₄SO₂, CoSO₃+xH₄O. Decomp. on any. (Berglund, B. 7, 469.)

Ammonium cobaltocobaltic sulphite.

See Cobaltisulphite, ammonium cobalt.

See Considering Ammonium consider. Ammonium cuprous sulphite, (NH₄)₂SO₃,

2Cu₂SO₃+2H₄O (Bottinger, A. **51**, 411.) (NH₄)₂SO₃, Cu₂SO₃ Insol in cold, de-

comp. by boiling H₂O (Rogojski, J B **1851**. 366)

Decomp. by warning with H₂O, in which

Decomp. by warning with H₂O, in which it is insol. Sol. in acids with evolution of SO₂. (Rosenheim and Steinhäuser, Z. anorg. 1900, **25**. 99) +2H₄O (Commalle, J B **1867**. 300)

2(NH₀)₂SO₃, Cl₂SO₃+3H₂O. Very sol. in H₂O. Solution decomp. on standing. Decomp by acids. (Rosenheum and Steinhruser.)

5(NH₄)₃50₃, Cu₁SO₅+2H₂O. Decomp. on air Sol in H₂O with decomp. (Svensson.) 6(NH₂)₃SO₅, Cu₂SO₂+4H₄O Easily decomp. (Rosenbern and Steinhauser.) 7(NH₂)₃SO₅, Cu₃SO₃+4H₄O. Very sol. in H₂O. Solution soon decomp. (Rosenbeim

and Stemhäuser.)
+10H₂O Decomp. on air. Sl. sol m
warm, less sol in cold H₂O (de Saint-Gilles)
+14H₄O. Decomp. on air. Sol. in H₂O,

+14H₂O. Decomp. on air! Sol. in H₂O, but solution decomp. Very easily sol in mother liquor. (Svensson, Acta Lund 1899. 13)

Ammonium cuprocupric sulphite, (NH₄)₂SO₂, 2Cu₂SO₃, CuSO₃+5H₂O.

Insol. in H₂O and weak acids Sol. in NH₄OH+Aq (de Saint-Gilles, A. ch. (3) 42, 31.)

+61/2H₂O. Ppt (Rosenheim and Steinhauser, Z. anorg. 1900, 25. 98.)

Ammonium glucinum sulphite (NH₄)₂O, 2GlO, 3SO₂+4H₂O.

Very unstable in the air (Rosenheim, Z anorg 1897, 15. 310)

Ammonium gold (aurous) sulphite, 3(NH4)2SO2, Au2SO2

Very easily sol. in H₂O. Insol. in alcohol. (Haase, Z Ch 1869, 535)

Ammonium gold (aurous) sulphite ammonia, (NH₄)₂SO₃, 3Au₂SO₃, 6NH₂+H₂O. Decomp. by H₂O Sol. in warm NH₄OH+ Aq, but decomp. by boiling (NH4)Au3(SO2)2, 3NH3+4H2O. Decomp.

by H₂O. (Rosenheim, Z anorg, 1908, 59. 201.) Ammonium iridium sulphite.

See Iridosulphite, ammonium. Ammonium iron (ferrous) sulphite. (NH₄)₂SO₂, FeSO₂+xH₂O. (Berglund.)

Ammonium iron (ferric) sulphite sulphate, FeSO₄SO₄NH₄+H₂O

Sl. sol. in cold H₂O Decomp. by cold dil HCl (Hofmann, Z. anorg 1897, 14. 287)

Ammonium magnesium sulphite, (NH₄)₄Mg₃(SO₃)₄+18H₂O

Very sl sol in H2O. (Fourcroy and Vauquehn) Sol. in H₂SO₂+Aq.

+5H₂O. Much more sol in H₂O than MgSO₃ (Rammelsberg.)

Ammonium manganous sulphite, (NH₄)₂SO₃, MnSO. Relatively easily decomp by H₂O. (Berg-

lund, Bull Soc. (2) 21, 213) Not easily decomp. (Gorgeu, C R. 96. 376.)

Ammonium mercuric sulphite, (NH4)2SO2, HgSO: Very easily sol in H2O, but H2O solution

gradually decomp, even in the cold. Ammonium nickel sulphite, (NH₄)₂SO₂,

3N₁SO₄+18H₂O. Sol in H₂O. (Berglund, B 7.469)

Ammonium platinous sulphite. See Platosulphite, ammonium.

Ammonium potassium sulphite, 10(NH4), SO3. Antimony sulphite, Sb2O3, 3SO3(?), K₂SO₃+11H₂O.

Decomp. by H₂O, etc. (Hartog, C. R. 109, 221

Ammonium scandium sulphate (NH4)2SO3, Sc2(SO3)2+7H2O Insol in HaO. Difficulty sol in HaSO.+ Aq. (Meyer, Z anorg 1914, 86, 281)

Ammonium silver sulphite, (NH4)2SO2, Ag₂SO₂. Insol. in H₂O, but gradually decomp. thereby. (Svensson, B 4, 714) 6(NH₄)₂SO₃, Ag₃SO₃+19H₂O Sol in H₂O

without decomp (Svensson.) 3(NH₄)₂SO₂, 4NH₄HSO₂, Ag₂SO₃+18H₂O.* Easily sol in H2O, but decomp. by warming.

Ammonium sodium hydrogen sulphite, NH4Na2H(8O2)2+4H2O

Not deliquescent | (Marignac, Ann. Min. (5) 12, 29,) 100 pts H₂O dissolve 42.3 pts salt at 12 4° and 48 5 pts. at 15° (Schwicker, B 22, 1732) +5H₂O = 2Na₂SO₂, (NH₄)₂ (Tauber, Techn. J. B 1888, 444) (NH4)2S2O4+H2O.

Ammonium tellurium sulphite, (NH4)2SO2. $TeSO_1+xH_2O$ Sol. in H₂O. (Berglund, B. 7, 469.)

Ammonium uranyl sulphite, NH (UO2)(OH)SO2.

Insol in pure H2O More sol. in H2SO1+ Aq than the K salt, and less than the Na salt (Scheller, A. 144. 240) (NH₄)₂O, 2UO₄, 3SO₂

(NH₄)₂O, 4UO₄, 5SO₂. (NH₄)₂O, 3UO₄, 2SO₂. (NH₄)₂O, UO₄, 2SO₂. (NH₄)₂O, UO₄, 2SO₂. 1900, **311**. 10) (Kohlschütter, A.

Ammonium vanadıum sulphite. See Vanadiosulphite, ammonium.

Ammonium vanadyl sulphite, (NH₄)₂SO₃, VOSO₈+2H₂O.

Sol. in H₂O with decomp. (Koppel, Z. anorg. 1903, 35. 184.) (NH₄)₂O, 3VO₂, 2SO₂+H₂O Sol. in cold

H.O without decomp. Easily sol in mineral acids and alkalies Sl. sol in alcohol and ether. (Konnel Z anorg 1903, 35. 182)

Ammonium zinc sulphite, (NH4)28O2, ZnSO2. Sol. in H.O. (Berglund, B 7, 469)

Ammonium sulphite mercuric chloride, 2(NH₄)₈SO₅, HgCl₅, Sl sol. in cold, decomp. by boiling H2O.

(de St-Giles, A. ch (3) 36, 95)

Insol. in H₂O (Berzelius.) Could not be obtained. (Röhrig, J pr (2) 37, 241.) .

quelin, A. ch 24. 301) Sol in about 46,000 pts H₂O at 16° (Autenrieth, Z anil 1898, 37, 294.)

Barium sulphite, BaSO.

Insol, in acetone.

Sol. in H₂SO₂+Aq. (Naumann B 1904, 37.

4329); methyl acetate (Naumann, B 1909, **42.** 3790)

Solubility in sugar+Aq at to.

Solvent		to.	100 ccm of solution con- tain g BaSOs
rater +Aq 10° l '' 20° '' 30° '' 40° '' 50° '' 60°	Brix " "	20	0 01974 0 01040 0 00968 0 00782 0 00484 0 00298 0 00223
water +Aq 10° I '' 20° '' 30° '' 40° '' 50° '' 60°	Brix " "	80	0 00177 0.00335 0 00289 0 00223 0 00158 0 00149 0.00112

(Rogowicz, C. C. 1905, II 1223.)

Barium cobaltic sulphite.

See Cobaltisulphate, barium.

Barium gold (aurous) sulphite, 3BaSOs, $Au_2SO_4+xH_2O$. Ppt. (Haase)

Barium mercuric sulphite, BaSO., HgSO.+ H₂O.

Ppt. (Barth, Z. phys. Ch. 9, 196)

Barium mercuric sulphite chloride. BaSOs, BaCls, 2HgSOs+31/4HgO. (Barth, Z. phys. Ch 1892, 9, 208.)

Bismuth sulphite, basic, Bi2O2, 3SO2+5H2O. Insol. in H₂O, alcohol, or ether. Sl. sol. in H₃SO₃+Aq. (Rohrig, J. pr. (2) **37**, 241.) (BiO)₃SO₃, 3(BiOH)₃SO₄+H₂O (Seubert and Elten Z. anorg. 1893. **4**, 72-5.) 2(BiO)2SO2, 3(BiOH)SO2+2H2O (S and

3(BiO)₂SO₃, 7(BiOH)SO₄+10H₂O. (S. and

4(BiO)₂SO₃, (BiOH)SO₂+5H₂O. (S. and 9(B1O)2SO2, (BiOH)SO2+2H2O. (S. and

Bismuth cobaltic sulphite. See Cobaltisulphite, bismuth. Cadmium sulphite, CdSO.

Very sl. sol in H₂O (Foureroy and Vau-Difficultly sol, in H₂O₄ Easily sol in dil

acids. (Rammelsberg, Pogg 67, 256.) +2H₂O. Difficultly sol, in H₂O Sol. in H₂SO₄+Aq Sol. m NH₄OH+Aq Insol m alcohol. (Muspratt, Phil. Mag. (3) 30, 414) Insol in acetone, (Naumann, B 1904, 37,

Contains 21/2H2O (Deniges, Bull Soc. (3) 7. 569)

Cadmium sodium sulphite, 3CdSOs, NasSOs. Sol. in H.O. (Berglund, B. 7, 469)

Cadmium sulphite, ammonia, CdSO₂, NH₃, Decomp, by HoO Sol without decomp, in hot NHOH+Aq (Rammelsberg, Pogg 67. 256)

Caesium sulphite, Cs2SO3

Easily sol. in H2O. Sl. sol. in alcohol. (Chabrié, C. R. 1901, 133. 297.)

Cæsium hydrogen sulphite, CsHSO3. Eastly sol. in H₂O. Sl. sol. in alcohol. (Chabrié, C. R. 1901, 133, 297.)

Calcium sulphite, basic, CadSaOia = 6CaO. 580. (Schott, Dingl. 202. 52.)

Calcium sulphite, CaSO.+2H.O

Slowly effloresces. Sol in 800 pts. cold H.O. (Berzehus) Insol. in H₂O (Rohrig, J. pr. (2) **37.** 230) 0 043 g is sol. in 1 l H₂O at 18°. (Weis-

0 943 g is soi. in 1 1 1420 at 10. (weisberg, Bull. Soc. 1896, (3) 15. 1249)
CaSO₂ equiv. to 78 mg CaO is soi. in 1 l.
H₂O at 100°. (Robart, C. A. 1913, 2500.)
Very soi. in H₂SO₃+Aq. See CaH₂(SO₂)₂.
Insol. in liquid NH₂. (Franklin, Am. Ch. J.

1898, 20, 827.) CaSOs equiv to 37 mg. CaO is sol, in 1 l

cane sugar + Ao at 100°. (Robart, C. A. 1913, 2500.) 0 0825 g. is sol. in 1 l. 10% sugar +Aq at 18°, 0.0800 g. is sol. in 1 l. 30% sugar +Aq. at 18°. (Weisberg, Bull Soc 1896, (3) 15. 1249.) Insol in acetone. (Krug and M'Elrov) Insol. in methyl acetate. (Naumann, B

1909, 42. 3790; ethyl acetate. (Naumann, B 1904, **37.** 3601.) +1/2H2O. (Rammelsberg.)

Calcium hydrogen sulphite, CaH₂(SO₂)₂.

Know only in solution. 100 ccm. H₂O containing 9 g. SO₂ dissolve 0 553 g CaSO₂ to form a solution of 1.06 sp. gr. (Gerland, J. pr. (2) 4, 119.)

Calcium cobaltic sulphite. See Cobaltisulphite, calcium. Cerous sulphite, Ce_{*}(SO_{*})_{*}+3H_{*}O. More sol, in cold than hot H₂O.

Solution gradually decomposes (Berthier, A, ch (3) 7. 77.)

Chromous sulphite, CrSO. Precipitate. Insol. in H.O. (Moberg.)

Chromium sulphite, basic, Cr.O., SO. Colloidal modification, Sol. in H₂O. 2Cr₂O₂, SO₂, Ppt. (Recours, Bull. Soc.

1898, (3) 19, 169) Chromic sulphite.

Known only in aqueous solution, which precivitates a basic salt on boiling. 2Cr2Os, 3SO2+16H2O. Precipitate. (Danson, Chem. Soc. 2, 205.)

Chromic potassium sulphite, K₂O, Cr₂O₂, 280, +xH,O. Precipitate. (Berglund, B. 7, 470.)

Cobaltous sulphite, basic. Decomp. by H.O. (Berthier) Co(OH)2, 5CoSO2+10H4O Ppt (Seubert and Elten, Z. anorg. 1893, 4, 89.) Co(OH), 10CoSO,+15H,O. (Scubert and

Cobaltous sulphite, CoSO₈,

+3H₂O. Nearly insol. in H₂O. Sol. in J. B 1851, 365. H₂SO₂+Aq. (Rammelsberg.)
Partly sol. in NH₄OH+Aq.
+5H₂O. Insol. in H₂O. Sol. in H₂SO₂+ Aq. (Muspratt, A 30. 282.)

Cobaltocobaltic sulphite. See Cobaltisulphite, cobaltous.

Cobaltic sulphite with 3M2SO. See Cobaltisulphite, M.

Cobaltous potassium sulphite, CoSO₂, K₂SO₂ $+xH_1O$. Insol. in H₂O; easily sol in HCl+Aq.

(Schultze, J. B 1864 270.) Cobaltic potassium sulphite, Co2(SO2)2.

K,801. Sl. sol. in H₂O; easily sol. in H₂SO₂+Aq or

Cobaltous sodium sulphite, 3CoO, Na₂O, 3SO₄.

Insol. in H2O. Easily sol. in HCl+Aq. (Schultze.)

Cobaltic sodium sulphite, Co2O2, Na2O, 3SO₂. Sl. sol. in H2O. (Schultze.)

HCl+Aq. (Schultze.)

Cuprous sulphite, CuoSOs+HaO.

(a) Red. Sl. sol. in H₂O. Sol in NH₄OH. or HCl+Aq. (Rogoiski, J. B. 1851, 366.) Could not be obtained by St. Gilles or Svensson (B. 4, 713)

Insol. in H2O, alcohol, or ether. (Etard, C. R 95, 38.) Composition is (Cu₂)₈H₁₈(SO₄)₈, "Cuprous

isosulphite," according to Etard. +1/sH.O. Etard's formula, Cu-SO.+H.O

is moorrect. The salt is almost colorless. (Ramberg Z. phys. Ch. 1909, 69, 512) (6) White Normal salt. Insol. in H.O. alcohol, or ether. (Etard.)

Cupric sulphite, basic, 4CuO, SO₂+7H₂O, Insol. in H₂O, and decomp by washing therewith. (Millon and Commaille.) 7CuO, 4SO₂+8H₂O. Sol. in dil. H₂SO₄. (Seubert and Elten, Z. anorg. 1893, 4. 48.) 3CuO, 2SO₂+1½H₂O. Sl. sol. in H₂O.

(Newbury, Am. Ch J 14. 232) 7CuO, 4SO2+8H2O, or 4CuSO2, 3Cu(OH)2 +5H₂O. Sol. in dil. H₂SO₄+Aq. (Seubert and Elten, Z. anorg. 1893, 4. 50.)

Cuprocupric sulphite, CuSO_{*}, Cu_{*}SO_{*}+2H_{*}O_{*} Nearly insol in cold H2O. Decomp. by

horling Sol in H2SO2+Aq, HCl, or NH4OH+Aq. (Berthier.)

Sol in very dil. HNO:+Aq (Dopping, Insol. in HaSOs, HC2H3O2, or Cu salts+Aq. 18301. In 13.503, 10.213.02, or Cut satts + Aq. (de St. Gilles)
+5H₂O Insol. in H₂O. Easily sol. in H₃O₃+Aq, HC₃H₂O₂+Aq, in cupric salts + Aq, NH₂O₃H₃O₃O₃O₄O₄Cl O₅St. Gilles, A. ch. (3) 42. 34.

Composition is (Cu₂)Cu₁₈H₁₀(SO₄)₈+21H₂O,
"acid cuprosocupric octosulphite." (Etard C. R 96, 1475)

Cuprous ferroferric sodium sulphite, Cu2O. 2FeO, Fe₂O₈, Na₂O, 6SO₂+16H₂O.

Sol in about 1000 pts. H₂O. Sol, in cold dil. H2SO4+Aq; sol, in cold dil. HCI+Aq with a residue of Cu2Cl2. (Stromeyer, A. 109, 237.)

Cuprous lithium sulphite, Cu2SO3, Li2SO2+ 2H.O.

Insol, in HaO, but gradually decomp. thereby. (Etard, C. R. 95, 138.)

Cupric mercuric sulphite, CuSOs, HgSOs. Sol. in H₂O in all proportions, but decomp. on boiling.

Cuprous potassium sulphite, Cu₂SO₂, K₂SO₂ (?).

(Vohl, J. pr. 95. 219.) +2H2O. Sol. in H2O with decomp,

25. 92-95.)

(Rosenheim and Steinhauser, Z. anorg. 1890, (Rosenheim and Steinhäuser, Z. anorg. 1900.

Cu2SO3, 2K2SO3. (Chevreul, Graham, etc)

Does not exist (Svensson) Cu2O, 3K2O, $68O_2 + 7H_2O = 4KHSO_3$ K₂SO₂, Cu₂SO₂+5H₂O Decomp. by H₂O. (Svensson, B. 4. 713.)

Could not be obtained. (Rosenheim and Steinhauser.) Cu_2O , $4K_2O$, $8SO_2+3H_2O=6KHSO_3$, K_2SO_3 , Cu_2SO_3 Decomp. by H_2O . (Svens-

Could not be obtained. (Rosenheim and

Steinhäuser.) Cu₂SO₈, 8K₂SO₂+16H₂O Sol m H₂O with decomp. (Rammelsberg, Pogg 57. 391) Does not exist, according to Svensson

Cuprocupric potassium sulphite, 3Cu₂SO₃, 3CuSO₅, K₂SO₂

Properties as cuprous potassium sulphite (Rogojski, J. B. **1851**, 367) 2Cu₃SO₃, CuSO₃, K₂SO₂+5H₂O Insol. in H₂O and weak soids (de St-Gilles.) Cu₃SO₅, 4CuSO₅, K₃SO₅+16H₂O. De-Insol. comp. by H₂O. (Rosenheim and Steinhäuser

Cuprous sodium sulphite, Cu₂SO₂, Na₂SO₂, +2H₂O. Decomp by H₂O. (Syensson, 1870.)

h₄ + 11H₂O Insol. in cold H₂O, but decomp. by excess. (Etard, C. R. 95. 138) 2Cu₂SO₂, 3Na₂SO₂+29H₂O Insol. in H₂O. (Rosenheim and Steinhäuser, Z anorg 1900,

Cu₂SO₃, 5Na₂SO₂+38H₂O. Decomp by H₂O. (Svensson.) Cu₂SO₃, 7Na₂SO₂+19H₂O Completely

sol. m H₂O, but solutions decomp, on stand-"Cuprous sodium octosulphite,

(Cu₂)₂H₁₀Na₁₆S₈O₃₂+43H₂O. (Etard) 5Cu₂SO₁, 2Na₂SO₂+30H₂O (Rosenheim and Steinhäuser, Z anorg. 1900, 25, 94:)

Cuprocupric sodium sulphite, Cu₂SO₂, 2CuSO₂, 2Na₂SO₃+6H₂O

Nearly insol. in cold, decomp. by hot H₂O. Rosenheim and Stemhäuser, Z anorg 1900. 25, 95.) +8H₂O. Decomp. by H₂O. (Rosenheim

and Steinhäuser.) Cuprocupric sodium hydrogen sulphite,

 $Na_8Cu_{10}^{11}(Cu_1^1)H_2(SO_4)_{8,6}H_4(SO_4) + 5H_2O$ Insol. in H₂O. (Etard, C R. 94, 1422.) (Cut)CuuNagH18(SO4)8. (Étard.)

Copper sodium sulphites.

Doubtless many of the compds, described Gold (auric) sodium sulphite in this class are in reality isomorphic mixtures whose composition depends upon the temp and cone. of the solution in which pptd. anorg 1908, 59. 199.)

Didymium sulphite, Di₂(SO₈)₃+3H₂O, or

6H2O. Precipitate. Insol in H₂O Sol. in H₂SO,

+Aq, from which it is reprecipitated by heating, redissolving on cooling. (Marignac, A ch (3) 38, 167.)

Erbium sulphite, Er₂(SO₃)₃+3H₂O. Precipitate

Glucinum sulphite, basic, 2GlSO₃, 9Gl(OH)₂ $+6H_{\circ}O$

Ppt (Seubert, Z anorg 1893, 4 52.) GISO3, GIO Decomp. by H2O or alcohol (K and M) 3GISOs, GIC Sol. m alcohol (K and M)

Glucinum sulphite, GlSO₂. Decomp. by H₂O or alcohol (Krtiss and Moraht, B 23, 734.)

Glucinum potassium sulphite, 2GISO, K,SO,+9H,O

Unstable in the air. (Rosenheim, Z. anorg. 1897. 15, 310)

Gold (aurous) potassium sulphite, Au₂SO₅, SK-SO. Very sol, in H₂O, insol, in alcohol (Hasse.)

Gold (auric) potassium sulphite, Au₂O₃, 5K₂O, 8SO₂+5H₂O=5K₂SO₃, Au₂(SO₃)₂ +5H₂O. Sol. in H.O with decomp.

Decomp. by acids; insol. in alkalies. (Fremy, A. 79, 46.)

Easily de- Gold (auric) potassium sulphite,

Au₂(SO₂)₃, 5K₂SO₃+10H₂O (Rosenheim and Hertzmann, Z. anorg, 1908, **59.** 199.)

Gold (auric) potassium sulphite ammonia. Au₂(SO₂)₂, 3K₂SO₃, 4NH₂+4H₂O. As the corresponding NH, salt. (Rosenheim and Hertzmann, Z anorg 1908. 59.

Gold (aurous) sodium sulphite, Au₂SO₂, 3Na₂SO₃+3H₂O.

Sol, in less than 1 pt. H₂O. Insol. in alcohol (Hasse.) +5H₂O. (Himly.)

Au₂(SO₃)₅ 5Na₂SO₃+28H₂O As K salt. (Rosenheim and Hertzmann, Gold (aurous) sulphite ammonia, 3Au₂O, 4SO₂, 8NH₃+4H₂O. Sl. sol. in H₂O with decomp. Decomp. by

acids
Sl sol, in cold, more easily in hot NH₄OH +
Aq. Decomp by boiling. (Hasse, Zeit Ch
1869, 535.)

Gold (auric) sulphite ammonia, Au₂(SO₂)₂, 4NH₂+4H₂O.

Ppt Decomp. in moist air and in neutral solution (Herzmann, Z. anorg 1908, 59.

Indium sulphite, 2In₂O₃, 3SO₂+8H₂O.
Insol in H₂O (Bayer, A. 158, 372.)

Iridium sulphite, Ir₂(SO₈)₃+6H₂O. Scarcely sol. in H₂O: easily sol. HCl+Ac.

(Birnbaum, A 136 179)

Iridvl sulphite. (IrO)SO₈+4H₂O.

Insol. in H₂O. Sol. in HCl or H₂SO₄+Aq. (Birnbaum)

Iridous potassium sulphite, IrO, 3K₂O, 5SO₂(?)

Sl. sol. in H_2O , more sol. in KOH+Aq Easily sol in HCl+Aq (Claus, J pr. 42. 359)

Iridous sulphite potassium chloride. See Iridosulphite, potassium.

Iridium sulphite with M2SO3. See Iridosulphite, M.

Iron (ferrous) sulphite, FeSO₃+2½H₂O. Very si sol in H₂O. Easily sol. in H₂SO₃+ Ar. Insol in alcohol, but sol. therein in presence of SO₂. (Musiratt.)

Iron (ferroferric) potassium sulphite, FeSO₃, (FeO)₂SO₃, 2K₂SO₃ Ppt. (Berglund)

Iron (ferric) potassium sulphite, K₂O, Fe₂O₃, 3SO₃+2H₂O.

Sol in H₄SO₂+Åq. (Koene, Pogg. **63**. 453.) Fe₂O₃, 2K₂O₅ 3SO₂+5H₂O. Ppt. (Muspratt, Phil. Mag. (3) **30**. 414.)

Iron (ferric) potassium sulphite sulphate, FeSO_sSO₄K. Sl. sol. in cold H₂O.

Sol. in 20% HCl; decomp on boiling. +Aq dissolve 15-17 pts (Gorgeu, C. R. 96. (Hofmann, Z anorg. 1897, 14. 286.)

 $F_6(SO_3)_sSO_4K_1$ Almost insol. in cold H_2O Decomp by boining with dil. acids. (Hofmann) $F_{61}(SO_3)_sSO_4K_4+5H_2O$ Insol in cold H_2O_1 sol. in cold 20% HCI+Aq; decomp on bolung with HoO. (Hofmann)

Iron (ferric) sodium sulphite sulphate, Fe(SO₂)₂SO₄Na₂+6H₂O

Almost insol. in H₂O Decomp by boiling with dil. acids. (Hofmann, Z. anorg. 1897, 14, 289.)

Iron (ferric) sodium hydrogen sulphite sulphate, FeSO₄(SO₂)₄H₄Na₂+2H₂O. • Only very sl. sol in H₂O. (Hofmann)

Lanthanum sulphite, La₂(SO₃)₃+4H₂O.
Precipitate (Cleve)

Lead sulphite, PhSO₃.

Insol. in H₂O Decomp. by acids Sl sol in H₂SO₃+Aq. (Röhrig, J. pr. (2) **37.** 233.)

Lithium sulphite, Li₂SO₅+6H₂O.

Sol. in H₂O; precipitated from aqueous solution by abs alcohol. (Danson, Chem.

Soc 2. 205) Sol. in H₂SO₂+Aq. +H₂O Sl. sol. in alcohol, and still less sol in ether (Rohrig, J. pr (2) 37. 225.) +2H₂O. (Röhrig)

Lithium potassium sulphite, LiKSO₆+½H₂O. Eastly sol in H₄O. (Röhrig, J pr (2) 37. 251.)

Lithium sodium sulphite, 6L₁₂SO₂, Na₂SO₂+ 8H₂O. Sol in H₂O (Röhrig)

Magnesium sulphite, MgSO₃+6H₂O.

Sol. in 20 pts cold, and in less hot H₂O. (Four-roy and Vauquelin.)

Sol. in 80 pts. cold, and in 120 pts. boiling
 H₂O. (Hager, C. C. 1875, 135)
 More easily sol in H₂SO₂+Aq
 Insol in hquid NH₂. (Frankin, Am. Ch.

J. 1898, 20. 828)
Precipitated from aqueous solution by alcohol
+3H₂O. (Rohng, J. pr. (2) 37. 234)

Toll20: (Rolling, 5: pr. (2) 01: 201)

Manganous sulphite, MnSOs+2H2O.

Insol. in H₂O, alcohol, or ether Easily sol. in acids, also in H₂SO₂+Aq. Insol in acetone. (Naumann, B. 1904, **37**. 4329)

+2½H₄O. (Rammelsberg.) +3H₂O. Soh. in 10,000 pts. cold, and 5000 pts. hot H₂O; more sol. in conc. Mn salts+Aq, sol in 1000 pts. H₂CO₂+Aq 100 pts. H₂SO₃ +Aq dissolve 15–17 pts (Gorgeu, C. R. 96.

Salt with 214H.O is the only one which Mercuric silver sulphite, HgSO. Ag.SO. + exists (Rohrig, J. pr. (2) 37, 2)

Insol in H.O even when boding (Gorges) C P 98 978 MnSO₃, K₂SO₃ Sol. in H₂O, (Gorgen.)

Manganous sodium sulphite, MpSO, NasSO, TH.O

Insol. in hot HaO but decomp by cold HaO. (Gorgen) 4MnSO₄, Na₄SO₄, Insol. in H₂O. (Gor-

Mercuric sulphite, 2HgO, SO₂,

Insol in H.O. Sol in HCl wikely suitphites with subsequent decomp, and in KCN +Aa (de St-Gilles, A ch. (3) 36. 80.) HgSO₂. Decomp. by cold H₂O (de St-

Does not exist (Divers and Shirmdau, Chem. Soc. 49, 553 HgO, 2SO₂+H₄O Sol. in H₄O, but de-comp. by boiling (de St-Gilles) Exists only

in aqueous solution. (Divers and Shimidzu.) Mercuromercuric sulphite, Hg2(SO2)2+

2H.O = Hg.SO., HgSO. Very effiorescent. Insol. in H₂O. Decomp. by hot H₂O. Insol. in dil. HNO₂ or H₂SO₄+ Aa.

+4H.O Very efflorescent.

Hypomercurosic sulphite, Hg.(SO₂)₂+H₂O. Insol. in H.O. but easily decomp, on standing therewith. Almost absolutely magol in dil. HNO, or HoSO4+Aq. (Divers and Shimidau.)

Mercuric oxusulphite, Hg(SO₂OHgO)₂Hg+ H.O.

Insol, in H₂O Decomp by hot H₂O. Insol. in dil HNO₃ or H₂SO₄+Aq. Sol. in H.SO₂+Aq. (Divers and Shimidgu.)

Mercuric notassium sulphite, basic, K.O. 2HgO, 280.

(Barth, Z. phys. Ch. 1892, 9, 210.) K₂O, 3HgO, 3SO₂. Insol. in H₂O Partly sol in KOH+Aq. (Barth)

Mercuric potassium sulphite, HgSO2, K2SO2 +H₂O, Sl sol. in cold H₂O. Decomp. on boiling (de St-Gilles, A. ch (3) 36, 90.)

Mercuric potassium sulphite mercuric chloride, K2Hg(SO1)2, HgCl2, Decomp. by H₂O. (Barth, Z. phys Ch 1892. 9, 206.)

SH-U Manganous potassium sulphite. 2MnSOs. Z phys Ch. 9, 195.)

Manganous potassium sulphite. 2MnSOs. Z phys Ch. 9, 195.)

> Morenese godinm gulphyte HoSO, No.SO .: H.O.

Sol in H.O. (de St-Gilles) Sol. in 25 pts cold H₂O. and decomp on (Divers and Shimidan) heating +2H₀O = Na₀(SO₈)₀Hg+2H₀O.

Z. phys. Ch. 9, 193.) 2HgSO₁, Ns₂SO₂+H₂O. Much more sol in H₂O than the above comp. especially on

heating. (de St-Gilles) Does not exist. (Divers and Shimidan)

Mercuric strontium sulphite, HoSO. SrSO. 4 2HO Pot (Barth.)

Mercuric sulphite ammonium bromide. HgSOs, NHaBr.

As NH Cl comp. (Barth, Z. phys. Ch. 1802 9 215

Mercuric sulphite ammonium chloride, HgSO₅, NH₄Cl. As K salt. (Barth)

Mercuric sulphite potassium chloride, HeSO, KC Sol in H.O (Barth.)

Mercuric sulphite sodium chloride, HaSO. NaCI+H-O Sol. in H.O. (Barth.)

Nickel sulphite, basic, 2NiSO., Ni(OH).+ 6H. O. Ppt. (Seubert and Elten, Z. anorg 1893, 4.91)

Nickel sulphite, NiSO, +4H,O. Insol, in HoO. Sol, in HCl+Aq, with evolution of SO₂ (Muspratt, A. 50. 259.) +6H₂O Insol. in H₂O Sol in H₄SO₈+ Aq (Rammelsberg, Pogg. 67, 391)

Nickel sulphite ammonia, NiSOs, 3NHs+ 3H.O.

Sol. in little H.O. Decomp, by much H.O. or heat (Rammelsberg, Pogg. 67, 245.)

Osmious sulphite, OsSOs. Insol. in H2O. Easily sol. in HCl+Aq without evolution of SO₂ Very slowly de-comp. by KOH+Aq (Claus.)

Osmious potassium sulphite, OsSO, 2K, SO, 2KHSO+4H-0 Nearly insol, in H₂O.

Osmious notassium sulphite chloride, OsO. 2SO2, 6KCl.

Easily sol, in H.O.

Palladous sodium sulphite, PdSO3, 3Na2SO3 +2H2O = Na2Pd(SO2)4+2H2O

Sol in hot H.O. Sol in NaOH+Ag or H2SO1+Aq. (Wohler and Frerichs, A 174.

Platinous sulphite, PtOs, 28Os,

Easily sol, in H2O or alcohol (Döbereiner, J. pr. 15. 315) Formula is PtSO₂. (Gmelin.) PtSO₈, H₂SO₈ (Birnbaum, A. 139, 172.)

Platinic potassium sulphite, PtO₂, SO₃, See Vanadiosulphite, potassium. K₂SO₃+H₃O.
Sol. in KOH+Aq. (Birnbaum, A. 139.) Potassium vanadyi sulphite, K₂SO₃,

Platinic sodium sulphite, PtO2, SO2, 2Na2SO2 +2H₂O. Sol in H.O. (Birnbaum.)

Platinous sulphite with MoSOs. See Platosulphite, M.

173)

Platinum sulphite ammonium chloride. See Chloroplatosulphite, ammonium.

Potassium sulphite, KiSOs+2H2O. Somewhat deliquescent. Sol in 1 pt. cold, and still less hot H₂O. (Foureroy and Vauquelin, A ch 24, 254.) Insol in liquid NH3 (Franklin, Am. Ch.

J. 1898, 20. 829) Very slightly soluble in alcohol. Insol in ethyl acetate (Casaseca, C. R. 30, 821.)

Potassium hydrogen sulphite, KHSOs. Sol in H2O. Insol, in absolute alcohol.

Potassium pyrosulphite, K₂S₂O₅, Slowly sol, in H₂O Very sl. sol in alcohol; insol, in other. (Muspratt, A. 50, 259)

Potassium rhodium sulphite, 3K2SO2, $Rh_2(SO_3)_3 + 6H_2O_4$ See Rhodosulphite, potassium.

Potassium ruthenium sulphite, $O[Ru(SO_8)_4K_6]_2+2H_4O$. Ppt. (Miolati, C. C. 1901, I. 501.)

Potassium sodium sulphite, KNaSO, Sol. in H₂O. (Spring, B. 7. 1161.) +1, and 2H₂O. (Schwicker, B. 22. 1731.) Isomeric salts, KSO₂Na and NaSO₂K. (Barth, Z. phys Ch. 9. 176.)

Potassium sodium hydrogen sulphite. KNa3H(SO2)2+4H2O.

Easily sol in H₂O; 100 pts H₂O dissolve 69 pts. salt at 15° (Schweker, B 22, 1731.) KaNaH(SOa)2+3H2O (Schwicker.)

Potassium uranyl sulphite, K(UO₂)(OH)SO₂, Insol. in H2O, but sol. in H2SO1+Aq.

(Scheller. (Sceneier.)
K₄O, 2UO₃, 3SO₄ (Kohlschütter, A 1900,
311. 10 et seg.)
K₄O, 4UO₃, 5SO₄ (K.)
K₄O, 3UO₃, 2SO₄ (K)
K₄O, 3UO₃, 2SO₄ (K)

Potassium vanadium sulphite.

VOSO +51/4H2O.

Sol, in H-O without decomp, and can be recryst, therefrom, (Koppel and Behrendt, B. 1901, **34**, 3932) K₂0, 3VO₂, 2SO₂. Sol without decomp. in cold and hot H₂O.

Insol in alcohol and other (Koppel, Z. anorg. 1903, 35. 182)

Potassium zinc sulphrte, K₂SO₂, 3ZnSO₂+ 716H.O. Sol, in H₂O with decomp. (Berglund, Acta. Lund. 1872.)

Rhodium sulphite, Rh2(SO2)2+6H2O. Sol, in H₂O. Insol, in alcohol. (Claus)

Rhodium sodium sulphite. See Rhodosulphite, sodium.

Ruthenium sulphite, Rus(SOs)2. Colloidal substance, sol in a large quantity of H₂O. (Lucchesi, Gazz. ch. it. 1900, 30. (2) 71.)

Ruthenium sodium sulphite, Na₇Ru(SO₈)₄ +2H₂O. Ppt. (Miolati, C. C. 1901, I. 501.

Samarium sulphite, Sma(SOa)a. Amorphous precipitate. (Cleve.)

Scandium sulphite, Sca(SO₃)3.

Insol in cold H2O. Si sol in hot H2O Sol. in excess of sodium sulphite when heated (Crookes, Phil. Trans 1910, 210. A. 363.)

+6H₂O. Very sl. sol. in H₂O. Decomp. by boiling with H₂O with separation of H2SO4. (R J Meyer, Z. anorg. 1914, 86. 281)

Selenium sulphite, SeSO₂.

Correct composition for "selenium sulphoxide," (Divers, Chem. Soc 49, 583)

Silver sulphite, Ag, SOs.

Very al sol in cold H.O. Decomp. on

heating.
Solubility in H₂O ₁₈ <1:20,000 (Baubigny, C. R. 1909, **149**, 858.)
Easily sol. in NH₂OH+Aq, and alkali

comp by strong acids, but not by acetic acid. (Berther, A ch (3) 7. 82 Easily sol in alkali thiosulphates+Aq.
(Herschel.)

Cold NaHSO1+Aq dissolves a considerable amount of Ag-SO+ (Rosenheim and Stein-

hauser, Z. anorg. 1900, 25. 78) Practically insol. in HNO₁+Aq or dil. AgNO₂+Aq, also in H₂SO₃+Aq. (Divers, Chem. Soc 49. 579.)

Silver sodium sulphite, Ag₂SO₂, Na₂SO₄+ H₂O.

Decomp. by H.O. (Svensson, B 4, 714.)

Sodium sulphite, Na2SO1.

100 pts. dissolve at 0°, 14.1 pts.; at 20°, 25.8 pts , at 40°, 49 5° pts. Na₂SO₂. (Kremers, ogg. 99, 50.) Maximum solubility is at 33. (Mitscherheh.)

Solubility in 100 ats TLO at to

normality in rot	pus. Myo us s
• t _a	Pts Na ₂ SO ₃
60 4	28 29
59 8	28 29
59 8	28 65
59 8	28 75
37 0	28 01
37.0	28 07
47 0	28 19
47 0	28 07
55.6	28 21
84 0	28 26

The temp, at which Na₂SO₂+7H₂O changes into Na.SO, is about 21.6° (Hartley and Barrett, Chem. Soc. 1909, 95.

1183) See also +7H₂O.

Sp. gr. of sat. solution at 15°=1.21. (Greenish and Smith, Pharm. J. 1901, 66. 774.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20, 829.) Insol. in alcohol.

Insol. m ethyl acetate. (Casaseca, C. R 821.); methyl acetate.
 1909, 42. 3790.) (Naumann,

Insol, in benzonitrile. (Naumann. 1914, 47, 1370)

+7H₂O Decomp slowly on air. Sol in 4 pts H₂O at 15° with absorption of heat (Dumas), and in 1 pt boiling Ha() (Foureroy)

Solubility in 100 nts HaO at to

60	Pts Na ₂ SO ₃
37 2	44.08
33 5	39 64
29 0	34 99
23 5	29 92
18.2	25 31
10 6	20 01
5 9	17 61
2 0	14 82
-1 9	13 09

Supersolubility curves have also been plotted for ice and Na2SO++7H-0 (Hartley and Barrett, Chem. Soc. 1909, 95. 1181)

+10H₂O Efflorescent, Somewhat less sol than above salt (Muspratt.)

Sodium hydrogen sulphite, NaHSO.

More difficulty sol in H₂O than NaHCO₂. and is precipitated by alcohol from aqueous solution (Muspratt Insol in scetone. (Eidmann, C. C. 1899,

II 1014; Naumann, B 1904, 37, 4329) methyl acetaic (Naumann, B. 1909, 42, 3790

+4H₂O. (Clark)

Sodium purosulphite, Na₂S₂O₅. Decomp. gradually on the air

Sodium uranvi sulphite, Na(UO2)(OH)SO3. Sl. sol. in H₂O. More sol. in H₂SO₂+Aq than the K salt (Scheller)

Na₂O, 2UO₂, 3SO₂ Na₂O, 3UO₃, 2SO₂ (Kohlschütter, A. 1900, 311. 10 et seg)

Sodium vanadyl sulphite, Na₂O, 2SO₂, VO2+5H20

Sol. in H₂O with decomp. Na₂O, 2SO₂, 3VO₂+4H₂O. Na₂O, 2SO₂, 3VO₂+4H₂O. Sol. in cold H₂O; decomp on heating (Koppel, B 1901, 34, 3933.)

Sodium zinc sulphite, Na₂SO₃, 3ZnSO₃+

71/2H₂O. Sol. in H2O with decomp. (Berglund, Acta Lund, 1872.)

Sodium sulphite silver chloride, 3Na₂SO₂, AgC1+21H₄O

Sol, in H.O. (Svensson.)

Strontium sulphite, SrSOs.

Precipitate Almost insol in H₂O. Sol. in H₂SO₄+Aq , (Muspratt)

Sol. in about 30,000 pts. H₂O at 16–18° (Autenrieth, Z anal 1898, 37, 293.) Abundantly sol. in H₂SO₃+Aq (Röhrig)

Tellurium sulphite, TeSOs.

Correct composition of "tellurium sulphoxide" (Divers, Chem. Soc 49, 583)

Thallous sulphite, Tl2SO4.

Sl. sol in cold easily in hot H₂SO₁+Aq. (Rohrig, J. pr (2) **37**, 229.) 100 pts. H₂O dissolve 3 34 pts. at 15.5°. Easily sol. in hot H₂O; msol. in alcohol. (Scubert and Eften, Z. anorg **2**, 434)

Thallous vanadyl sulphite, 2Tl₂SO₃, V₂O₃SO₂+4H₄O. (Gain, A. ch 1908, (8) **14.** 278.) Tl₂SO₃, 3V₂O₃SO₂+8H₂O (Gain)

Thorium sulphite, Th(SO₃)₂+H₂O. Precipitate. (Cleve.)

Tin (stannous) sulphite, 5SnO, 2SO₂+xH₂O.

Ppt. Partly sol in H₂SO₃+Aq (Rohng,
J. pr (2) 37, 240)
+20H₄O. (Röhrig.)

+20H₂O. (Ronrig.) 8SnO, 2SO₂+20H₂O 11SnO, 2SO₂+20H₂O. (Röhrig.)

Uranous sulphite, basic, $U(OH)_2SO_4+H_2O$. Insol. in H_2O . Easily sol in acids. Sol. in H_3SO_3+Aq , but is soon decomp. (Rammelsberg)

Uranyl sulphite, basic, 3UO₂(OH)₂, 5(UO₂)SO₃+10H₂O.

(Seubert and Elten, Z anorg. 1893, 4. 80)

Uranyl sulphite, (UO₂)\$O₈+4H₂O.
Insol. in H₂O Sol. in H₂SO₃+Aq or alco-

hohe solution of SO₂ (Rohrig, J pr (2) 37.

Vanadyl sulphite, 3VO₂, 2SO₂+4½H₂O.

Decomp. slowly on standing
Sol in H₂O without apparent decomp
(Koppel, Z anorg. 1903, **35**. 186.)

2V₂O₄, 3SO₂+10H₂O Sol in H₂O; aq.

sol decomp. on boiling giving off SO₂ and forming V₂O₄, 2H₂O_. (Gain, C. R. 1906, **143**. S24.)

Vanadyl zinc sulphite, ZnO, 3VO₂, 2SO₂

Vanadyl zinc sulphite, ZnO, 3VO₂, 2SO₂ Decomp. slowly in the air.

Sol. in H₂O without decomp. (Koppel, Z. anorg. 1903, **35**. 183)

Ytterbium sulphite, Yb₂(SO₃)₃+9H₂O. Insol in H₂O. (Cleve, Z. anorg. 1902, **32**, 143.)

Yttrium sulphite, Y₂(SO₂)₈+3H₂O. Sl sol. in H₂O. (Cleve.)

Zinc suiphite, basic, 2ZnSO₃, 3Zn(OH)₂. (Scubert, Arch. Pharm. 229, 321.) ZnSO₃, Zn(OH)₂+H₄O. (Scubert.)

Zinc sulphite, ZnSO₃+2, and 2¹/₂H₂O. Very al sol. in H₂O. 100 pts H₂O dissolve 0 16 pt ZnSO₃+2H₂O. (Henston and Tich-

0 16 pt ZnSO₂+2H₂O (Henston and Troborne, Brit. Med J. **1890**. 1063) Easily sol. in H₄SO₂+Aq. (Koene.) Sol in NH₄OH+Aq. Insol in alcohol.

Decomp. into basic salt by boiling H₂G. (Seubert, Arch. Pharm. 229. 1)

Zinc sulphite ammonia, ZnSO₅, NH₃.

Decomp. by H₂O. Sol in NH₄OH+Aq.
(Rammelsberg, Pogg. 67, 255.)

Zirconium sulphite.

Insol. in H₂O Somewhat sol in H₂SO₃+ Aq, from which it is reppted on boiling. Sol. in (NH₄)₂SO₃+Aq, from which Zr hydroxide is ppted on bouling. (Berzelius) Zr(SO₃)₂+7H₂O Ppt. (Venable, J. Am. Chem Soc. 1895, 17, 449.)

Sulphuryl bromide, SO₂Br₂.

(Odling, Chem. Soc. 7, 2.) Does not exist. (Sestim, Bull. Soc. 10, 226, Melsens, C. R. 76, 92; Michaelis.)

Sulphuryl chloride, SO2Cl2.

Decomp by H₂O and alcohol Decomp by most air, water, or abs. alcohol; more rapidly by alkalies, HCl, SO₂, etc (Schiff, A 102, 111')

+H₃O. Only sl sol m H₂O at 0° with slow decomp (Baeyer, B 1901, 34, 737.) + +15H₂O. Sl. sol in H₂O at 0° and stable therein for several hours. (Baeyer.)

Disulphuryl chloride (Pyrosulphuryl chloride), S₂O₄Cl₄.

Decomp. slowly with H₂O. (Rose, Pogg 44, 291) Sol. in CCl₄ and CHCl₄; miscible with louid SO₅.

Sulphuryl hydroxyl chloride, $SO_4HCl = \overset{HO}{Cl}SO_2$.

Decomp on most air, and violently with H_2Q . Not miscible with CS_2 . Decomp with alcohol.

Sulphuryl titanium chloride, SO₃, T₁Cl₄= TiCl₂OSO₂Cl.

Slowly deliquescent (Clausnitzer, B. 11. 2011.)

Disulphuryl chloride stannic oxychloride, 5S₂O₅Cl₂, 4SnOCl₂.

Sol. in a little H₂O, but decomp. by more na H₃O. (Rose, Pogg. 44, 320.)

Sulphuryl fluoride, SO₂F₂,

1 pt. is sol. in 10 pts. H₄O at 9°. 3 vol. are sol. in 1 vol. alcohol at 9°; insol. in conc. H₅SO₄ at 66°; sol. in aq. solution of KOH, Ca(OH)₂, Ba(OH)₂ and in alcoholo solution of alkalies. (Moissan, C. R. 1901, 132, 377.)

Sulphuryl hydroxyl fluoride, HSO₁F.

Violently decomp by H₂O. (Thorpe and Kirwan, Z. anorg. 3, 63)

Sulphuryl peroxide, SO₄. See Sulphur hentoxide.

Sulphydric acid, See Hydrogen Sulphide.

Sulphydroxyl.

See Sulphhydroxyl.

Tantalic acid, H₄Ta₂O₇ (?). Sol in HF (Rose), and KH₂(C₂O₄)₂+Aq (Gahn, Solw. J. 16, 437). At the instant of precipitation is sol in various acids. (Rose.)

Aluminum tantalate.

Insol, in H₂O. (Berzelius.)

Ammonium hexatantalate, (NH₄)₂H₇Ts₇O₁₉ +H₂O. Somewhat sol. in H₂O. (Rose, Pogg. 102.

Barium hexatantalate, Ba₁Ta₂O₁₉+6H₂O.
Sl sol, in H₂O. (Rose.)

Cesium tantalate, 4Cs₂O, 3Ta₂O₄+14H₄O.
Completely sol. in a small amount of hot
H₂O (E. F Smuth, J. Am Chem. Soc 1908,
30. 1666.)
7Cs₂O, 6Ta₂O₄+38H₂O. Pptd. from its
source is solution by alcohol. (Smith.)

Ferrous tantalate, Fe(TaO₃)₂.
Min. Tantalite.

64.)

5FeO, 4Ts₂O₅. Min Taprolite.

Magnesium hezatantalate, Mg.(Ta₆O₁₉+9H₄O.

Ppt. (Rose, Polg. **102**. 61.)

4MgO, Ta₂O₂. Insol. in H₂O. (Joly, C. R.

31, 286.)

Mercurous tantalate, 5Hg₄O, 4Ta₁O₄+5H₂O.
Decomp. by warm HNO₃+Aq (1.21 sp. gr.)
with separation of Ta₂O₅. (Rose, Pogg. 102.

Potassium tantalate, KTaO2.

Insol, in H₂O Sol, in KOH+Aq. (Marigpac, A ch. (4) 9, 249.)

Potassium hexatantalate, K₃Ta₄O₁₉+16H₄O. Sol. without decomp. in moderately warm H₂O. Decomp by boiling (Marignac, A. ch. (4) 9, 259.)

Rubidium tantalate, 4Rb₂O, 3Ta₂O₁+14H₂O. Sol. in H₂O. (E. F. Smith, J. Am. Chem Soc. 1908, **30**, 1666.)

Silver tantalate, 4Ag2O, 3Ta2Os.

Completely sol. in NH₄OH+Aq HNO₅+ Aq dissolves Ag₂O, and Ta₂O₅ separates out. (Rose, Pogg 102. 64.)

Sodium tantalate, NaTaO₂. Insol, in H₂O₂. (Rose.)

Sodium hezatantalate, Na₆Ta₆O₁₂+25H₂O.

1 pt. salt dissolves in 493 pts. H₂O at 13.5°, and in 162 pts. at 100°. Very slightly sol. in alcohol Insol. in alkaline solutions. (Rose.)

Pertantalic acid.
See Pertantalic acid.

Tantalum, Ta.

Not attacked by HCl, HNO,, aqua regia, or hot cone. H₂SO₄ Easily sol. in a mixture of HNO, and HF (Berzelius, Pogg. 4. 6, Rose). Also sol. in HF alone (Berzelius) Not attacked by alkali hydrates+Aq.

Insol. in single scales and in aqua regis. Oxidized by a mxture of HF and aqua regis. (Moissan, C R. 1902, 134, 21)

Fure Ta is used. irrboiling H₂SO₄, HNO₃, HCl, aqua regis or mxtures of these acids; slowly sol. in HF+Aq. (V. Bolton, Zeit. Elektrochem, 1905, 11, 45)

Tantalum bromide, TaBrs.
Decomp. by H₂O. (Rose)

Tantalum dichloride, TaCl₂+2H₂O.
Sol. in H₂O when freshly prepared. (Chabrie, C. R. 1907, **144**, 805.)

Tantalum pentuchioride, TaCla.

Takes up H₂O from the sir without deliquescing. Decomp. by H₂O. Sol. in H₂SO₄. Sol in cold HGL+Aq to a cloudy liquid, which gelatinises after a time. Not completely sol. in boding HGL+Aq and the solution does not gelatinise by the subsequent addition of water, but all goes into solution. Partly sol in KOH +Aq. Insol in K₂SO₂+Aq. Sol. in absolute alcholi.

Tantalum	pentafluoride,	Tars.	
Very hy	droscopic; sol	ın H ₂ O.	(Ruff, B.

Tantalum fluoride unth MF. See Fluotantalate, M.

Tantalum hydroxide, Ta2Os, xH2O. See Tantalic acid.

Tantalum nitride, TaN.

Not sol. in any acids, except a mixture of HF and HNO₃. (Rose, Pogg. **100**, 146.) Ta₂N₅. (Joly, Bull. Soc. (2) **25**, 506.)

Tantalum dioxide, Ta₂O₂(?).

Sol. in HF with evolution of hydrogen. _ (Hermann, J. pr. (2) 5. 69.)

Tantalum tetroxide, Ta₂O₄.

Not attacked by any acid, not even a mixture of HNO, and HF. (Berzelius, Pogg. 4. Decomp. by HCl. (Smith, Z anorg, 1894, 7, 98.)

Tantalum pentoxide, Ta₂O₅ Insol. in any acid, even boiling H2SO4 or in

(Berzelius Sol in fused KHSO, 10 pts. being necessary

to dissolve 1 pt Ta₂O₅ Tantalum silicide, TaSi2.

Insol, in most inorganic acids. Sol, in

HF and in HF+HNO Decomp. by fused alkalı hydroxides. (Hönigschmid, M. 1907, 28, 1027)

Not attacked by HG14-Aq. Oxidased by boiling with HNO₂+Aq. Oxidased by KG14-Aq. more rapidly with GN1₂-Aq. more rapidly with again regin. Attacked by HASQ on heating.

Not completely sol. in HF or a mixture of HF, and HNO₂.

Telluretted hydrogen, TeH: See Hydrogen telluride.

Telluric acid, H2TeO4.

Insol. in H₂O, cold conc. HCl, hot HNO₃, or boiling KOH+Aq, but when heated with H₂O is gradually converted into H₂TeO₄+

2H₂O and dissolved +2H₂O. Very slowly sol. in cold H₂O, but sol. in hot H₂O in every proportion. Insol. in absolute alcohol; sol. in dil slowlo according to the amount of H₂O present. Sol. in acids and alkalies Insol. in alcohol or ether.

Insol. in alcohol; sol. in NaOH+Aq. (Mylus, B. 1901, 34. 2216)

Stable in the air Sol in H₂O; pptd by HNO₂, mater, Z anorg. 1895, **10**: 191.) (Stauden-

Solubility in H₂O

Solid phase	Temp.	н.Тю.	Mois H ₂ O to 1 mol H ₂ TeO ₄	Mols H ₂ TeO ₄ to 100 mols H ₂ O
H ₂ TeO ₄ +6H ₂ O " " " " " " " " " " " " " " " " " "	0° 5° 10° 15° 10° 18° 30° 40° 60° 80° 100°	13 92 17 84 26 21 32 79 25 29 28 90 33 36 36 38 43 67 51 55 60 84	66 2 49.2 30 2 21 9 31 7 26 2 21.4 18 8 14.2 10 07 6.89	1.51 2.03 3.31 4.55 3.15 3.82 4.67 5.33 7.04 9.93 14.52

(Mylius, B. 1901, 34, 2211)

+6H₂O Obtained from solutions at 0°. (Staudenmaier, Z. anorg 1895, 10, 191)

Allotelluric acid, H₂TeO₄.

Miscible with H₂O.

Sol. in alcohol, pptd. by NaOH+Aq but sol in excess (Mylius, B 1901, 34, 2216.)

Tellurates.

Neutral alkalı salts are sol in H₂O: the acid salts are only sl. sol. therein, but dissolve in HCl+Aq.

Aluminum tellurate.

Ppt. Sol. in excess of aluminum salts+Aq. (Berzelius.)

Ammonium tellurate, (NH4)2TeO4.

Slowly but completely sol. in H2O. Sl. sol. in NH₄OH+Aq or NH₄Cl+Aq. Sl. sol. in alcohol (Berzelius.)

Barium tellurate, BaTeO4+3H2O.

Sl. sol in cold, more in boiling H₂O. Easily sol. in HNO₃+Aq (Berzelius)
BaH₂(TeO₄)₂+2H₂O. More sol. in H₂O than BaTeO4. Decomp by H2O. (Ber-

zehus. BaO, 41eO2. More sol. in H2O than either BaTeO4 or BaH2(TeO4)2 (Berzehus)

Bismuth tellurate, Bi₂TeO₆+2H₂O.

Min. Montante. Sol. in HCl+Aq with evolution of Cl.

Cadmium tellurate, CdTeO.

Ppt. Sol. in HCl+Aq (Oppenheim.)

Casium hydrogen tellurate, CsHTeO4+ 1/2H2O.

1 pt is sol. m 30 pts. H₂O. (Norrs, Am. Ch J 1901, 26, 321.)

Calcium tellurate, CaTeOs, · Ppt. Sol in hot H2O. (Berzelius)

Chromic tellurate, Qr:(TeO4)8. Ppt Sol. in excess of Ci salts+Aq

Cobaltous tellurate.

Ppt. (Berzelius.) Cupric tellurate, CuTeO4.

Ppt (Berzelius)

CuO, 2TeO₃. Ppt. (B.) Cu₃TeO₅. Insol in H₂O. Sol. in HCl, HNO₃ NH₄OH, KCN and acetic acid (Hutchins, J Am. Chem Soc. 1905, 27, 1181)

Glucinum tellurate, GlTeO4. Insol. in H2O.

Iron (ferrous) tellurate, FeTeO4. Ppt. Min. Ferrotellurate

Iron (ferric) tellurate, Fe₂(TeO₄)₈, Ppt. Sol. in ferric salts+Aq. (Berzelius)

Lead tellurate, basic.

Not completely insol. in H₂O

Lead tellurate, PbTeO4 Somewhat sol in H₂O PbO, 2TeO3 More sol. than PbTeO4 PbO, 4TeO, Si sol in H2O. Sol m hot than in cold H2O HNO3 Aq less sol in HC2H3O2+Aq. (Ber-

zelius.) Lithium tellurate, $\text{Li}_4\text{TeO}_6+x\text{H}_2\text{O}$. SI sol in H2O with decomp. (Myhus, B. 1901, 34, 2209.)

Magnesium tellurate, MgTeO4

Ppt. More sol, in H₂O than the Ba, Sr or Ca salts.

MgTe₂O₁. More sol. in H₂O than MgTeO₄.

Manganous tellurate. Ppt

Mercurous tellurate, basic, 3Hg₂O, 2TeO₂. Ppt (Hutchins, J. Am. Chem. Soc. 1905, 27, 1178)

Mercurous tellurate, Hg. TeO.

Ppt. Mm. Magnolite

Mercuric tellurate, HgTeO. Ppt. Very easily decomp. by H₂O (Hutchins, J. Am Chem. Soc. 1905, 27. 1179.) +2H₂O. Slowly decomp by cold H₂O.

Rapidly decomp by boiling H₂O. (Hutchins.

Hg.TeOs. Insol, in H.O Unchanged by boiling with HO

Sol in HNO3, but more readily sol in HCl. (Hutchins)

Mercuric tellurate. Ppt (Berzehus.)

Mercurous hydrogen tellurate, HgHTeO4 +3H₂O.

Stable in the air if protected from the light Insol in H₂O. Decomp by boiling H₂O or by an excess of cold cone. HgNO₃+Aq Sol. in dil. HNO₃ or dil. acetic acid (Hutchins, J. Am Chem Soc 1905, 27, 1177.)

Nickel tellurate. Ppt.

Potassium tellurate, K₂TeO₄+5H₂O.

Deliquesces. Sol. in H₂O. Verv al. sol. in H₂O containing KOH. 100 g. H₂O dissolve at:

Λ° 200 8 82 27.53 50 42 g. K2TeO4. (Rosenheim and Weinheber, Z. anorg 1911, 69, 264.)

Insol in alcohol. (Berzelius.) K2O, 2TeO2 Insol in H2O, acids, or alkalies. (B). KHTeO₄+1₂H₂O Sl sol. in cold, more sol in hot H₂O (Be₁zehus)

K₂O, 3TeO₂+5H₂O Much more sol in (Hutchins, J. Am. Chem Soc 1905, 27. 1174.)

K₂O, 4TeO₈ Insol. in H₂O, HCl, or HNO₈ +Aq. Sol by long heating with cone HNOs

KHTeO4, H2TeO4+1/2H2O. Sl sol in H₁O Rubidium tellurate, Rb₂TeO₄+3H₂O.

Sol in about 10 pts. H₂O (Noriis, Am. Ch. J. 1901, 26. 322.)

Rubidum hydrogen tellurate, RbHTeO4 +1/2H2O. Sol. in about 20 pts. cold H₂O Sl. more sol in hot H₂O. (Norris, Am; Ch J 1901,

Silver tellurate, 3Ag₂O, TeO₃.

26. 320.)

Sol. in NH₄OH+Aq. 3Ag₂O, 2TeO₄. Insol. in boiling H₄O. +3H₂O. Ppt. Unchanged by cold H₂O. Gradually decomp. by boiling H₂O. (Hutchins, J Am Chem Soc 1905, 27, 1169)
Ag₂TeO₄ Decomp. by H₂O into 3Ag₂O,

TeO: Sol. in NH,OH+Aq. 1ec; Sol. in NH,OH+Aq, +2H₂O. Insol. in hot and cold H₂O. Sol. in NH₄OH, KCN, Na₂S₁O₃, HNO₂, H₂SO₄ and HC₂H₃O₂+Aq Decomp. by conc. HNO₃ H₂SO₄ or acctac acid. [Hutchms, J. Am.

Chem. Soc. 1905, 27. 1165.)

Ag-TeO. Ppt. Ag₂O, 4TeO, Ppt. Could not be obtained. (Hutchins, J Am Chem. Soc 1905, 27, 1168)

Sodium tellurate, Na₂TeO₄+2H₂O.

Very al. sol. in hot or cold H₂O heated to drive off 2H2O becomes msol. in H₂O, but sol in dil. HNO₂+Aq (Berzelius.) 1 pt. 18 sol, in about 130 pts. H2O at 18°;

15, H₂O at 100°. +4H₂O. 1 pt is sol. in about 70 pts. H₂O at 18°, 40 pts. H₂O at 50°. (Mylius, B. 1901, 34, 2209.) $Na_2Te_2O_7 + 4H_2O = NaHTeO_4 + 1\frac{1}{2}H_2O$. Slowly but completely sol in H2O. Sl sol

in NaC2H3O2+Aq Insol in alcohol (Berzelius.) Na₂O. 4TeO₂ Insol. in H2O, acids, or

alkalies, except by long boiling with HNOa+ (a) Slowly sol, in H₂O. (β) 0,Hx+Insol. even in boiling H₂O Na₄TeO₄+8H₂O. Very sol. in H₂O but

with decomp (Mylus) Strontium tellurates.

Resemble Ca salts.

Thallous tellurate, Tl-TeO4.

Sl. sol in H.O (Dennis, J Am Chem Soc 1898, 18, 975,)

Thorium tellurate.

Ppt. Insol. in excess of thorium salts +Aq

Uranium tellurate, U_{*}(Te_{*}O)_{*}(?), Insol in H₂O or UO₂(NO₂)₂+Aq.

Yttrium tellurate.

Ppt Insol. in H₂Q or Yt salts +Aq

Zinc tellurate, Zn. TeO.

Insol, in H.O. Sol. in HNO2 HCl, H2SO4 and acetic acid. (Hutchins, J. Am Chem Soc 1905, 27, 1181)

Zirconium tellurate.

Ppt (Berzelius.)

Tellurium, To

Insol in H₂O or HCl+Aq Sl. sol in hot cone. H2SO4, but separates out on cooling. Sol. in boiling cone H2SO4. Easily oxidised by HNO, or aqua regia. Sol. in boiling very cone. KOH+Ao, separating out again on cooling.

Not attacked by boiling cone HNO₃+Aq, according to Hartung-Schwartzkoff (Ann. Mm. (4) 19. 345).

Sol. in warm cone KCN+Aq Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 830.)

100 pts. methylene iodide dissolve 0.1 pt. Te at 12° (Retgers, Z anorg 3.343.) 1/2 com oleic acid dissolves 0.0014 g. Te in 6 days (Gates, J phys Ch. 1911, 15. 143)

A colloidal solution of Te in H₀O can be obtained It exists in two modifications. a brown and a blue-gray. Both can be diluted with H₂O or concentrated by boiling without decomp They are, however, decomp. by electrolytes, especially NH4Cl. (Gutbier, Z. anorg, 1902, 32, 53.)

Tellurium dibromide, TeBro.

Decomp on air or by H.O (Rose, Pogg. 21 443) Cone tartaric acid dissolves partly without decomp. (Brauner, M 1891, 12, 34)

Tellurium terrabromide, TeBra.

Sol in a little, but decomp by much H-O Completely sol. in tartaric acid+Aq (1.1), (Brauner, M. 1891, 12. 34.)

Tellurium hydrogen bromide, TeBr., HBr+ 5HO. Fumes in the air Deliguescent. Stable in an atmos. of HBr (Metzner, C. R. 1897, 124. 1951.)

Tellurium dichloride, TeCl2 Decomp on air, or by H₂O or HCi+Aq. (Rose, Pogg. 21, 443)

Tellurium tetrachloride, TeCl4.

Extremely deliquescent. Decomp. by cold H4O, with separation of owechloride and tellurous acid Sol in hot H2O with decomp. Sol. m dil. HCl+Aq without decomp. (Rose, Pogg. 21. 443)

Insol. in sulphur chloude and in CS₂. (Lenher, J. Am. Chem. Soc 1902, 24, 188.)

Tellurium hydrogen chloride, TeCl4, HCl+ 5H2O.

Easily decomp. (Metzner, C R. 1897, 125. 24.)

Tellurium chloride with MCl. See Chlorotellurate, M.

Tellurium tetrachloride ammonia, TeCl., 3NH₃.

Decomp. by H₂O. (Metzner, C. R. 1897. 124. 33.) TeCl., 4Nh., Not deliquescent Decomp by H₂O. (Espenschied, J. pr. 80. 480.)

Tellurium tetrachloride sulphur trioxide. TeCl₄, SO₃.

Ppt. ((Prandtl, Z. anorg, 1909, 62, 247.) TeCl₄,2SO₃. Decomp by moisture. Or heating at 120°, it gives TeCl₄,SO₃. (Prandtl

Tellurium tetrafluoride, TeF4.

(Metzner, C R. 1897, 125, 25.)

+H2O (Högbom, Bull. Soc. (2) 35. 60.) Tellurium hexafluoride, TeFa.

Decomp. by H₂O slowly but completely. (Prideaux, Chem Soc 1906, 39, 322)

Tellurium zirconium fluoride. See Fluozirconate, tellurium.

Tellurium diodide, Tell2.

Insol. in H2O. (Rose, Pogg. 21. 443)

Tellurium tetraiodide, Tell.

Insol in cold, decomp by hot H2O or alcohol. Sol in HI, but only sol, in MI+ Aq. (Berzelius.) Data on solubility of TeL in HI+I+Aq are given by Menke (Z. anorg. 1912, 77. 283.)

Tellurium hydrogen iodide, TeL, HI+ 8H₂O, and +9H₂O.

Deliquescent. (Metzner, A. ch. 1898, (7) 15. 203.)

Tellurium nitride.

Two forms. a. Stable at ord, temp.

b. Unstable at ord. temp.

(Franz Fischer, B. 1910, 43. 1472) TeN. Not attacked by H₂O or dil. acetic

Insol. in liquid NHs. Decomp. by KOH+ Ag. (Metzner, A. ch. 1898, (7) 15, 203)

Tellurium manoxide, TeO.

Sl. sol. in cold dil HCl or H2SO4+Aq. Easily oxidised by HNOs+Aq or aqua regia. Decomp. immediately by boiling conc. HCl+ Aq. Slowly decomp. by KOH+Aq. (Divers and Shimosé, Chern. Soc. 35, 563.)

Tellurium dioxide, TeO2.

Very al sol in H2O. Sl. attacked by acids. Sl. sol. in NHOH or alkalı carbonates +Aq Easily sol in NaOH or KOH+Aq. Not sol. in less than 150,000 pts. H₄O Esaily sol. in warm dil. HNO₃+Aq. Sol. in warm H₅O₄+Aq. (Kleun and Morel, Bull. Soc. (2) 43, 203)

20% H₄SO₄+Aq, dissolves on warming about 0.7%; 30% H₄SO₄+Aq, about 0.85%; 50% H₄SO₄+Aq, about 4.4%.

These solutions are supersat, and TeO₂ separates from the more dil. acids on standing. (Brauner, M. 1891, 12, 34.) Min. Tellurite.

Tellurium dioxide hydrobromic acid, TeO2,

(Ditte, C R. 83, 336.)

Tellurium dioxide hydrochloric acid, TeO1. 2HCl.

(Ditte, C R 83, 336.) TeO₂, 3HCl (Ditte)

Tellurium trioxide, TeO.

Insol. in cold or hot H2O, cold HCl+Aq, or cold or hot HNO₂+Aq Insol. in moderately cone KOH+Aq, but, when the KOH+Aq is very conc., is sol if boiling

Tellurium oxide, 2TeO2, TeO3. "Tellurium tellurate."

(Metzner, A. ch. 1898, (7) 15. 203.)

Tellurium oxybromide. Insol. m H2O. (Ditte, A ch. (5) 10, 82)

Tellurium oxybromide sulphur traoxide. TeOBra, 280a.

Deliquescent. (Prandtl, Z. anorg. 1909, 62. 247)

Tellurium oxychloride, TeOCl. Insol. in H.O. (Ditte.)

Tellurium oxyfluoride, TeF4, TeOs+2H4O Sol in H₂O containing HNO₂ Decomp,

by H₂O. 2TeF4, 3TeO2+6H4O Decomp by H4O. (Metzner, C. R. 1897, 125, 25.)

Tellurium sulphide, TeS.

Insol. in CS2; very unstable, (Snelling, J Am. Chem. Soc. 1912, 34, 802.)

Tellurium disulphide, TeS2.

Insol. in H2O or dil. acids. Sol. in alkali hydrates or sulphides+Aq CS₂ dissolves out S, so that the substance ic probably a mixture (Becker, A. 180, 257.)

Tellurium trisulphide, TeS.

Insol in H₂O. Sol in K₂S+Aq.

Tellurium sulphoxide, TeSOs. Decomp. by H₂O. Sol in H₂SO₄. (Weber,

J. pr. (2) 25. 218) Is tellurium sulphite. (Divers, Chem. Soc. 49. 583.)

Tellurous acid, H2TeOa.

Appreciably sol, in H2O and acids. Sol. in alkali hydrates or carbonates+Ag.

Tellurites.

The neutral and acid tellurites of the alkalı metals are sol. in H₂O. Ba, Sr, Ca, and Mg tellurites are sl sol, and the other salts insol. in H2O. Most tellurites are sol. in HCl+Aq

..... TERBIUM 1053

Aluminum tellurite.

Ppt. Insol. in Al salts+Ag. (Berzelius)

Ammonium tellurite, (NH4)HTeO2, H2TeO4+ 31/4H4O.

Sol. in H2O, from which it is precipitated by NH₄Cl+Aq or alcohol (Berzelius)

Barium tellurite, BaTeO₂.

Sl. sol, in H₂O when prepared in the moist way. (Berzelius.) BaO, 4TeO

Cadmium tellurite.

Ppt. Sol in HNO2, and HCl+Aq. (Oppen-

Calcium tellurite, CaTeOs.

Sl. sol m cold, more sol, in hot H2O. (Berzelius.)

CaO, 4TeO2. Chromium tellurite.

Ppt. Sol. in excess of chromic salts +Au.

Cobaltous tellurite.

Ppt.

Cupric tellurite.

Insol in H₂O (Berzelius.)

Glucinum tellurite.

Insol. in H₀O.

Indium tellurite, In₂(TeO₃, 2In(OH)₂. Ppt. (Renz. Dissert, 1902.)

Ferrous tellurite. Ppt.

Ferric tellurite.

Ppt.

Lead tellurite, PbTeOs.

Ppt. Easily sol. in acids. (Berzehus)

Lithium tellurite, LizTeO:

Sol. in H₂O. (Berzehus.) Li₂O, 2TeO₂. Decomp by cold H₂O into Li₂TeO; and Li₂O, 4TeO₂. (B.)
Li₂O, 4TeO₂. Sol in hot, much less in cold H₂O (B.)

Magnesium tellurite, MgTeOs.

Precipitate. Much more sol. in H₂O than the Ba, Sr, or Ca salt (Berzelius)

Manganous tellurite.

Ppt. Mercurous tellurite.

Ppt.

Mercuric tellurite.

Ppt

Nickel tellurite. Ppt.

Potassium tellurite, K₂TeO₄.

Not delquescent. Slowly sol. in cold, more quickly in boiling H₂O. (Berzelius.) K₂O, 27e-O₂. Completely sol. in boiling H₃O, from which K₂O, 47e-O₃ crystallises. (B.) K₂O, 47e-O₃ +HE₃O. Decomp. by cold H₂O into K₃O, 47e-O₃ and K₄O, 27e-O₃, which dissolve, and H₂Pe-O₃ which is insol (B.)

Potassium hexatellurite, K2O, 6TeO2+2H2O. Not decomp by, but sl. sol in H₂O. (Klein and Morel, C R. 100. 1140.)

Silver tellurite, Ag₂TeO₂.

Ppt. Sol. in NH₄OH+Aq (Berzelius) The freshly pptd. salt is msol. in H₂O; sol. in H_NO₃, H₃SO₄, acetic and tartaric acid; decomp. by HCl. (Lenher, J. Am. Chem

Soc 1913, **35.** 727.) AgHTeO₃. Insol in H₂O. Sol. in HNO₃ +Aq. (Rose, Pogg. **18.** 60)

Sodium tellurite, Na₂TeO₂.

Slowly sol in cold, more quickly in hot H_2O Precipitated from aqueous solution by alcohol. (Berzelius) Na₂O, 2TeO₂. Decomp. by H₂O as K salt (B)

Na₂O, 4TeO₂+5H₂O. As above. •(B.)

Strontium tellurite, SrTeOx.

Resembles Ba salt. SrH₂Te₄O₁₀. Very sl. sol. m H₂O, more easily in HNOs+Aq.

Thorium tellurite. Precipitate. Insol, in H₂O or Th salts+Aq

Stannous tellurite. Pptd in presence of 60,000 pts H₂O.

(Fischer.) Uranium tellurite, U2(TeO2)3.

Ppt. Insol. in U salts+Aq

Yttrium tellurite. Precipitate. Ppt.

Zinc tellurite, ZnTeOs.

Zirconium tellurite.

Ppt.

Terbium, Tb.

Metal has not been isolated.

Has been decomp. into two or more elements by Krüss (Z. anorg. 4, 27)

Terbium chloride, TbCl1+6H2O. Sol. in H₂O, very hydroscopic; sol in alcohol. (Urbain, C. R 1908, 146, 128)

Terbium hydroxide.

Sol in dilute acids Decomposes NH4 salts +Aq.

Terbium oxide, ToO1.

Sol in dil. acids, even after ignition

Terbium peroxide, Tb4O7.

Sol. in HNO3 and in hot HCl (Urbain, .C. R. 1907, 146. 127)

Tetramine chromium compounds.

Bromotetramine chromium compounds. Chlorotetramine chromium compounds. Iodotetramine chromium compounds.

Tetramine cobaltic compounds, Co(NHs),Xs.

See-

Bromotetramine cobaltic compounds. Carbonatotetramine cobaltic compounds. Chlorotetramine cobaltic compounds. Croceocobaltic compounds. Fuscocobaltic compounds. Flavocobaltic compounds. Iodotetramine cobaltic compounds. Nitratotetramine cobaltic compounds. Prasescobaltic compounds. Roseotetramine cobaltic compounds. " Sulphatotetramine cobaltic compounds. See also under octamine cobaltic salts for many tetramine salts as yet unclassified.

Tetramine cobaltic nitrite with MNO2, Co2(NH2)4(NO2)6, 2MNO2

See Diamine cobaltic natrite.

Tetrathionic acid, H2S4O6. Known only in aqueous solution

Dil solution can be boiled without decomp. Cone. solution decomp. by boiling Addition of H2SO4 or HCl makes solution more stable. (Fordos and Gélis, C R 15.

920.) Tetrathionates.

Tetrathionates are all easily sol in H₂O, but insol, in alcohol

Barium tetrathionate, BaS₄O₆+2H₂O.

Very sol. in H₂O, but precipitated by addition of alcohol

Cadmium tetrathionate.

Deliquescent. Solution in H2O gradually decomposes. (Kessler, Pogg 74, 249.)

Cesium tetrathionate, Cs.S.O. (J. Mever. B 1907, 40, 1361.) Cuprous tetrathionate, Cu2S4O5.

Decomp by HgO (Chancel and Diagon. C. R. 1863, 56, 711.)

Cupric tetrathionate, CuS4O6

Sol. in H₂O Decomp by long boiling, (Curtius and Henkel, J. pr 1888, (2) 37, 148.)

Lead tetrathionate, PbS₄O₆+2H₉O. Sol in H₂O

Manganous hydrogen tetrathionate, MnH2(S4O6)2.

Dehquescent Very sol. in H₂O and al-diol (Curtus and Henkel, J rr (2) 37. cohol 148)

Nickel tetrathionate ammonia, NiS₄O₄, 6NH₂. Ppt. Decomp, by H2O. Insol, in alcohol. (Enhraim, B. 1913, 46, 3109.)

Potassium tetrathionate, K₂S₄O₆, Soluble in H2O. Insol in alcohol. Difficultly sol in H.O (Kessler, Pogg. 1847, 74. 254)

Rubidium tetrathionate, Rb_{*}S₄O_{*}. Not hydroscopic (J Meyer, B 1907, 40,

Sodium tetrathionate, Na₂S₄O₄,

Sol in H2O. Precipitated therefrom by a great excess of alcohol. (Kessler, J. pr 95. 13.)

+2H₂O. (Berthelot, A ch. (6) 17. 450.)

Strontium tetrathionate, SrS.O.+6H.O. Sol. in H₂O. (Kessler, Pogg. 74. 255.) More sol. in H.O than Ba salt.

Zinc tetrathionate.

1356.)

Sol in H₂O. (Fordos and Gélis.)

Zinc hydrogen tetrathionate, ZnH2(S4O4)2. Extremely sol, in H₂O and alcohol. (Curtrus and Henkel, J. pr. (2) 37. 147)

Zinc tetrathionate ammonia, ZnS₄O₆, 3NH₂, Ppt. (Ephraim, B. 1915, 48, 641.)

Thallic acid.

Potassium thallate.

Known only in aqueous solution. (Carstanjen, J. pr. 101. 55.) Does not exist. (Lepsius, Chem. Ztg. 1890, 1327)

Thallium, Tl.

Not attacked by pure H₂O Easily sol in dil H₂SO₁ or HNO₃+Aq. Difficultly sol. in HCl+Aq. Absolute alcohol dissolves considerable quantity in a short time, also methyl alcohol, and accure ether (Bottger) Not easily attacked by HF+Aq. (Kuhl-

mann.)
Insol. in liquid NH₃. (Franklin, Am Ch. J. 1898, **20**. 830)

J. 1898, 20. 830) ¹/₂ ccm oleuc acid dissolves 0 0424 g Tl in 6 days (Gates, J phys. Chem 1911, 15. 143.)

Thallium arsenide, TIAs.

Decomp by H₂SO₄ (Carstanjen.)

Thallous azoimide, TiNa Sl. sol. in H.O

0.1712 pt. is sol. in 100 pts. H₂O at 0° 0.1965 pt. is sol. in 100 pts. H₂O at 5°; 0.3 pt is sol. in 100 pts. H₂O at 16°.

Insol. m abs. alcohol and ether. (Curtius, J. pr. 1898, (2) 58. 284.)

Thallothallic azoimide, TlN₂, TlN₂.

Evplosive. Decomp by hot H₂O and by acids (Dennis, J. Am Chem Soc 1896, **18**. 973.)

Thallous bromide, TIBr

Nearly maol in cold, sl. sol in boiling H₂O. (Willin, Bull Soc (2) 2, 89)

1.1. H₂O. dissolves 0.09869 g. mol. TiBr at 68.5° (Noyes, Z. phys. Ch. 6, 248.)

Slaol, in H₂O. 0.48×10⁻⁴g, is dissolved in a liter of sat. solution at 20°. (Böttger, Z.

a liter of sat solution at 20°. (Böttger, Z. phys. Ch. 1903, 46. 603.)

1 I H₂O dissolves 420 mg TiBr at 18°. (Kohlrausch, Z. phys. Ch. 1904, **50**, 356.)

238 mg. TiBr are contained in 1 l. sat.

(Kohirausch, Z. phys. Ch. 1904, **50**, 356.) 238 mg. TiBr are contained in 1 1. sat. solution at 0.13°; 289 mg. at 9.37°; 423 mg at 18°; 579 mg. at 25.68°. (Kohirausch, Z. phys. Ch. 1908, **64**, 163.)

Solubility of TiBr in Tl(NO₄)+Aq at 68.5°, comp. by hot H₂O (Meyer.)

g mols per l.		g mols per l.	
TiNO:	TiBr	TINOs	TiBe
0 0.0163 0 0294 0 0955	0.00869 0 00410 0 00289 0 00148	0 4 336 7 820 25 400	2 469 1 164 0 821 0 420

(Noyes, Z. phys Ch. 1890, 6. 248.)

Insol. in acetone (Naumann, B. 1904, 37, 4329); pyridine (Naumann, B. 1904, 37, 4610), acetone (Eidmann, C. C. 1899, II. 1014).

Thallic bromide, TiBrs.

Deliquescent Easily sol. in H₂O and alcohol. (Willm.)
Insol. in methyl acetate (Naumann, B. 1909, 42, 3790.)
+H₂O Very unstable. Sol in H₂O,

alcohol and ether (Meyer, Z. anorg 1900, 24, 353) +4H₂O. Very sol, in H₂O. (Thomas.

C R 1902, 134. 546.)

Thallothallic bromide, TlBr, TlBr₃.

Decomp. by H₂O. (Meyer, Z anorg 1900, 24, 354)

3TlBr, TlBr₃. Decomp. by H₂O into TlBr

and TiBr₃. Decomp. by ri₂O into TiB and TiBr₃.

Thallic hydrogen bromide, TiBr₂. HBr

Very sol. in H₂O. (Thomas, C. R. 1902, 134, 546) Thallic bromide ammonia, TiBr₂, 3NH₂.

Decomp by H₂O

Thallium bromochloride, TlClBr.

Decomp. by H₂O (Thomas, C. R. 1901, 132, 1489) TlClBr₂+4H₂O. Ppt

TICIBs, +4H,O. Ppt
TICIBs, +4H,O. Ppt
TICIBs, +4H,O. Ppt
TICIBs, +4H,O. Ppt
TICIBs, -4H,O. Ppt
TICIBs, Decounp by H,O. H,SO. or
HNO, (Thomas, C. R. 1900, 131, 894;
C. R. 1901, 132, 1489)
TICIBs, Sol in H₂O. (Thomas, C. R. 1910, 1911

1901, 132, 82.)
TIClBr₂, 3TlCl. Cryst. from H₂O contaming HNO₃. (Cushmann, Am Ch. J. 1900, 24, 222)
TICl. 3TlBr. Sol in H₂O without decomp.

TiCls, 3TiBr. Sol in H₂O without decomp. (Cushmann) TiBr₈, 3TiCl. Decomp. by H₂O. (Cush-

TiBr₅, TiCl. Sol. in H₂O with decomp.
(Cushmann.)
TiCl₃, 2TiBr, TiCl Sol in H₂O. (Meyer,

Cusminian.
TiCla, ZTiBr, TiCl Sol in H₂O. (Meyer, Z anorg 1900, 24, 355-360.)
TiBra, 2TiCl, TiBr Ppt. Decomp. by H₂O (Meyer.)
(TiCls, TiCl), 2(TiBra, TiBr) Ppt. (Meyer.)
2(TiCla, TiCl), (TiBra, TiBr) Ppt. Decomp. 2(TiCla, TiCl), (TiBra, TiBr) Ppt. De-

Thallium bromofluoride, TIFBr₂.

Decomp. in moist air.

Sol. m abs alcohol (Gewecke, A. 1909, 366, 233.)

Thallium bromofluoride ammonia,

TIFBr₂, 4NH₄.

Decomp. by moisture.
Difficultly sol. in abs alcohol. (Gewecke,
A. 1909, 366, 234.)

Thallous chloride, TlCl. Solubility in pts. H₂O at t°, according to

H=Hebberling; C=Crookes; L=Lamy. 0° 15° 16° 16.5° 504 283.4 377 359 pts. H₂O, H C H H

100° 100° 100° about 50 52 5 63 pts, H₂O.

Cone

C

mill

 1 l. H₂O dissolves 0.0161 g. mol. TlCl at
 (Noves, Z. phys. Ch. 6, 249.) 3.26×10 grams are dissolved in 1 liter of sat. solution at 20°. (Böttger, Z. phys.

Ch. 1903, 46, 603.) 1 l. H₂O at 25° dissolves 0.01606 g, mol

TiCl (Geffeken, Z. phys. Ch. 1904, 49, 296)

Solubility in H₂O at t°.

1911, 33, 1665.)

0 0560

100 cc. sat. solution contain at: 50° 100 200 30° g, TICl 0.17 0.24 0 34 0.46 0 60 0.80 60° 80° 90° 70 g, TICl 1 02 1 29 1.60 1 97 2.41 (Berkeley, Trans. Roy. Soc. 1904, 203, A,

l. H₂O dissolves 3 040 TlCl at 18° (Kohlrausch, Z phys. Ch. 1904, 50, 356.) 2.27 g. are dissolved in 1 l. of sat. solution at 9.54°, 3 05 g. at 17.7°; 3.97 g. at 25.76°. (Kohlrausch, Z. phys. Ch. 1908, 64. 168.) 0.01629 mol. is sol. in 1 l. H₂O at 25°. (Hill, J. Am. Chem. Soc. 1910, 32. 1385.) 0.01607 g. equiv. is sol. in 1 l. HaO at 25°. (Bray and Winninghoff, J. Am Chem. Soc

Much less sol, in H₂O containing HCl or HNO.

Solubility in HCl+Aq at 25°. 1 l. dissolves g. mol. TlCl. g. HCl g HCl TICI TICL 0.00316 0 01610 0 1468 0 0283 0 00200 0.008361 000

0.00565

0.20

(Noves, Z. phys. Ch. 6. 249.)

Solubility in HCl+Aq, at 25°. Solubility of TiCl, Concentration of HCl, equivalents per liter equivalents per liter 0.01612 0.0250.00869 0.00585 0.05 0.10 0 00384

0.00254

(Noyes, Z. phys. Ch. 1892, 9, 614) Solubility in HNOa+Aq at 25°

Normality HNO ₂	Normality Sp. gr of the HNO: Solution	
0.000	0 996	3 952
0.4977	1 0184	5 937
1.0046	1 0359	6.883
2.0452	1 0705	8.143
4.017	1 1362	9.926

(Hill and Simmons, Z. phys. Ch. 1909, 67.

Nearly insol. in NH4OH+Aq More sol, in K₂CO₃+Aq than in H₂O. 3.86 g. TICl are sol. in 1 l. H₂O at 25°. 21.84 g. TICl are sol. in 1 l. 5N-K₂CO₂+Aq at 25°. (Spencer and Le Pla, C. C. 1908, II. 198.)

Solubility in KNOa+Aq at 25°.

Concentration of KNO: Solubility of TICI milhoguivalents per l milliennysients ner L 16 07 10 20 17 16 50 18 26 19 61 23 13 300 1000 30 72

(Bray and Winninghoff, J. Am. Chem. Soc. 1911, 33, 1670.)

Solubility in K2SO4+Aq at 25°.

entration of K ₂ SO ₁ liequivalents per l.	milhequivalents per l.		
10	16 07		
20	17 79		
50	19 42		
100	21 37		
300	26 00		
1000	34 16		

(Bray and Winninghoff, J. Am. Chem. Soc. 1911, 33, 1670.)

Solubility in Tl₂SO₄+Ag at 25°

oncentration of TLSO:	Solubility of TICI
miliequivalents per l	milliequivalents per l.
10	16 07
20	10 34
50	6 77
100	4 68

(Bray and Winninghoff, J. Am. Chem. Soc. 1911, 88, 1670.)

Solubility of TICl in salts+Aq at 25°.

Salt	Concentration of salt g equiv pgr l	TiCl dissolved g equiv. per l.	
NH ₄ Cl	0 025 0 05 0 2	0 00872 0.00593 0 00271	
CaCl ₂	0 025 0 05 0 10 0 20	0.00899 0.00624 0.00417 0.00284	

Solubility of TICl in salts+Aq at 25° .- Solubility of TICl in HC:H:O:+Aq at 25°. Continued (g. equiv. per l.)

Salt	Concentration of	TiCl dissolved g equiv. per l	Acid	TICI			
CdCl ₂	0 025 0 05 0 10 0 20	0 01040 0 0078 0 00578 0 00425	0.000 0.5134 1 013 2 016 4.180 8.130	0 01629 0 01580 0 01495 0 0132 0 0099 0 0054			
CuCl ₂	0 025 0 05 0 10 0 20	0.00905 0.00614 0.00422 0.00291	11 49 14 31 16 01	0.0026 0 0012 0 0005			
MgCl ₂	0 025 0 05 0 10 0 20	0 00904 0 00618 0 00413 0 00275	Insol. in pyridine. (Naumann, B. 1904, 37 4610); acetone. (Naumann, B. 1904, 37 4329)				
MnCl ₂	0 025 0 05 0 10 0 20	0 00898 0 00617 0 00412 0 00286	vents.	and in most ord. sol-			
KCI	0.025 0.05 0.1 0.2	0 00872 0.00593 0.00399 0.00265	In contact with most air, it rapidly b comes hydrated (Thomas, C. R. 1902, 13 1053.) Difficultly sol. in methyl acetate (Na mann, B. 1909, 42, 3790.) Very sol, in acetone (Renz, B. 1902, 3				
NaCl	0 025 0.05 0 10 0 20	0.00869 0.00592 0.00395 0.00271	1110) Difficultly sol. in 1904, 37. 4328.)	acetone. (Naumann, B. sent, and very easily sol.			
ZnCl ₂	0 025 0 05 0 10 0.20	0 00899 0 00627 0 00412 0 00281	Deliquescent, and (Werther.) +4H ₄ O. 86.2 pts	very easily sol in H_2O , are sol in 100 pts. H_2O at aq. solution at $17^\circ =$			
TICIO:	0 025	0 00897	Very hydroscopu	. 1902, 130. 1052.) 3. (Meyer, Z. anorg.			
TINO:	0 025 0.05 0 10	0 00883 0 00626 0 00423	— 1900, 24. 336.) Very sol. in alcohol and ether. (Meye anorg. 1900, 24. 338.) +7244;0. Deliquescent. (Werther.)				
(Noyes	Z phys Ch. 18	92, 9. 609.)	Thallothallic chlorid	e, 3TiCl, TiCls.			

Solubility of TICl in salts+Ag at 25°.

	Mols TiCl sol. in 1 liter of				
Salt	O 5-N solution	N solution	2-N solution	3-N solution	4-N solution
NH4NOs KNOs NaNOs LINOs KCIOs NaCIOs	0 02566	0 03084	0.03851 0.03785	0 04544	

(Geffcken, Z phys Ch. 1904, 49, 295)

Insol, in alcohol, Easily sol in hot HgCl2+Aq. (Carstanjen.)

Thallothallic chloride, 3TlCl, TlCl,

1 pt dissolves in pts. H₂O at t°, according to C=Crookes, H=Hebberling; L=Lamy. 15° 170 100° 100°

346 52.9 20-25 pts. H₂O. 380.1 H Sl, decomp. by dissolving. (Lamy.)

Thallic hydrogen chloride, TlCl_s, HCl+ 3H₂O.

Very hygroscopic. Decomp. by H₂O. (Meyer, Z. anorg. 1900, 24. 337.)

Thallium tungsten chloride, TlaW2Cla. Nearly msol. in H₂O.

Sol, in a hot mixture of equal pts H2O and conc. HCl.

Sl. sol. in cone HCl.	Solubility of TIOH in H ₂ O at to		
Nearly insol. in most organic solvents. (Olsson, B 1913, 46. 575.)	t°	g equiv. TIOH per l	Sp gr 15°/4°
Thallic zinc chloride, 2TlCl_3 , $2\text{nCl}_2+6\text{H}_2\text{O}$. Can be cryst from H_2O (Gewecke, A. 1909, 366, 224.)	0 18 5 19.5 29 23 1	1.151 1.554 1.582 1.803 1.861	1 231 1 317 1 322 1 342 1 377
Thallic chloride ammonia, TlCl ₃ , 3NH ₃ . Decomp. by H ₂ O. Sol. m HCl +Aq (Willm.)	33 1 36	1 967 2 075 2 240 2 442	1 400 1 417 1 446
Thallium chlorofluoride, TIFCl2.	54 I 59 4	2 940 3 281	

99 2 (Bahr, Z. anorg 1911, 71. 87)

64 6

78 5

90.0

6 708 The solubility of Tl₂O in H₂O at these temperatures is the same as that of TlOH.

3 601

4 673

5 705

A L L UL APPROTE TE O . . .

+H₂O (Willin, Bull, Soc (2) 5, 354.) Thallic hydroxide, Tl_2O_3 , $H_2O = TlO(OH)$, Insol, in H₀O. Sol in dil. acids and am-

monium salts+Aq. Insol in caustic alkalı solutions Tl(OH)₂ Easily sol. in dil. HCl or H₂SO₄ +Aq. (Carnegie, C. N. 60, 113)

Thallous iodide, TII.

Very sl. sol. in H₁O 1 pt TlI is sol in pts. H₂O at t°. C=ac-cording to Crookes; H=according to Hebberling, L=according to Lamy; W=according to Werther 35° 15° 16° 16-17° 10 4°

20,000 4450 16,000 11,676 14,654 pts. H₂O,

100° 804 pts, H₂O.

Sol. in 17,000 pts. H₂O at 20°. (Long, Z. anal. 30. 342.)

Sat. solution at 20.15° contains 63.6 mg.or 1.92×10 4 g. mol TH per l (Böttger, Z phys. Ch. 1903, 46, 603)

1 l. H₂O dissolves 56 mg. TH at (Kohlrausch, Z phys. Ch 1904, 50. 356)

38.2 mg are dissolved in 1 1.0 fast, solution at 9.00°; 58 mg, at 18.1°; 84.7 mg, at 26°. (Kohirausch, z. Diyas, Ch. 1908, 64. 168.) Solubihity in H₂O at 25° = 1.76×10° mol per litre. (Spencer, Z. phys Ch. 1912, 80. 708.)

Not decomp. by dil H2SO4, HCl, or alkalies +Aq. Decomp. by hot dil HNO4+Aq, and cold cone HNO4 Sol in aqua regia. Also less sol in acetic acid than in H₂O. (Carstanien.)

Very hydroscopic.

Decomp, by moist air. Easily sol in abs alcohol (Gewecke, A.

1909, **366.** 230.) +3H₂O. Not hydroscopic

Decomp, by H₂O, alcohol and ether (Gewecke.)

Thellium chlorofluoride ammonia, TIFClo. 4NH

Decomp. by H2O. Difficultly sol. in abs. alcohol and in other (Gewecke, A. 1909, 366, 232.)

Thallium chlorofluoride potassium chloride,

2TIFCls, KCl. Ppt. (Gewecke, A. 1909, 366, 231.)

Thallous fluoride, TIF.

Sol. in 1½ pts. H₂O at 15°, and in much less hot H₂O. Difficultly sol in alcohol. (Buchner, W A. B. **52. 2.** 644.) +1/2H2O Deliquescent. (Willm)

Thallic fluoride, TIF2.

Insol. in H₂O and cold HCl+Aq (Willm.) Cannot be obtained in pure state wecke, A. 1909, 366. 218.)

Thallous hydrogen fluoride, TIF, HF. Sol. in 1 pt. HaO. (Buchner.)

Thallous tungstyl fluoride. See Fluoxytungstate, thallous.

Thallous vanadium fluoride. See Fluovanadate, thallous.

Thallous vanadyl fluoride. See Fluoxyvanadate, thallous.

Thallous hydroxide, TlOH. Sol. in HaO and alcohol.

Insol in NHOH+An (Werther.) Not

Insol in dil KI+Aq (1% KI) (Ban-

Much more insol in KI+Ag than in H₂O: pt dissolves in 75,000 pts dil. KI+Aa (Lamy) Nearly insol, in Na-S-O+Aq, and abso-

lutely insol therein in presence of Ph salts (Werner, C N. 53. 51.)

Sol in 56,336 pts. 85% alcohol at 13° (Werther.) Sol. in 18,934 pts. 98% alcohol

at 19°. (Hebborling.) When TII is shaken with alcohol of 78°B (1 vol. H₂O+3 vols. 98% alcohol) at 22°, and let stand with TII for 24 hours, and then evaporated to 1/2 vol , there is shown no ppt by NH SH+Aq (Baubigny)

Sol. in 260,000 pts. 90% 37,000 pts 50% alcohol at 20°. alcohol, and (Long.) Insol in methylene iodide (Retgers, Z anorg. 3, 343)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C C, 1899, II. 1014.) Insol. in pyridine. (Naumann, B. 1904, 37. 4601.)

Thallic jodide, TlIa.

43, 1470.)

Sol, in alcohol. Decomp. slowly in the air. (Wells, Z anorg 1894, 6, 313)
Sol. in ether

Thallothallic iodide, Tlal4 = 5Til, Tlla. Sol. in H₂O. (Jörgensen, J. pr. (2) 6, 82.)

Thallum nitride. Very unstable. (Franz Fischer, B. 1901.

Thallous oxide, ThO. Deliquescent. Sol. in H₂O.

See Thallous hydroxide.

Thallic oxide, Tl₂O₈, Insol. in H₂O. Not attacked by cold H₂SO₄. Sol. in hot H₂SO₄. Sol. in cold HCl Insol. in alkalics+Aq. (Werther, J. pr.

91. 385) Black modification Less sol. in dil. acids than the brown

modification. Solution is accompanied by a slight reduction to thallous salt.

More sol. in 10% HCl than in 10% H₂SO₄ or HNO,

More sol. in cone. than in dil. acids. (Rabe, Z. anorg 1908, 48. 431.)

Easily sol. in dil_mineral acids on warming, with slight reduction to thallow salt.

More sol. in conc. acid, (Rabe.)

Brown modification

Insol. in H2O (Piccini, Gazz, ch. it. 17. 450.)

Thallic oxide ammonia, Tl-O., 6NH.

Decomp, by much H.O. Insol, in alcohol, (Carstanien)

Thallic oxvfluoride, TIOF.

Insol. in H.O. Slowly decome by holling with H.O. Sol in mineral acids. Almost insol, in HF. (Gewecke, A. 1909, 366, 226.)

Thallium phosphide (?).

Ppt. (Crookes) Thallous selenide, Tl-Se.

Insol, in H2O. Scarcely attacked by cold dil. H.SO4+Ag, but dissolves when heated. (Carstanien)

Thallothallic selenide.

Not attacked by cold cone, or boiling dil. H₂SO₄+Aq Conc. H₂SO₄ decomposes. (Carstanien)

Thallous sulphide, Tl₂S

Insol. in H₂O, (NH₄)₂S+Aq, NH₄OH+Aq, KCN+Aq, and in alkali carbonates, and hydrates +Aq. Difficultly sol. in a solution of oxahe acid or acetic acid. (Crookes.) Easily sol in HNO₄, and H₂SO₄+Aq. Difficultly sol, in HCl+Aq. (Willm.) Sl. sol. in H.O.

0 21 × 10-4 g. is dissolved in 1 l. sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, 46.

Insol. in acetone. (Naumann, B 1904, 37, 4329.)

Thallic sulphide, Tl₂S₂.

Insol. in H₄O Insol. in cold, sol. in warm dil. H.SO.+An without separation of S Sol. in other dilute acids with separation of S. (Carstanjen.)

Thallium ventasulphide, Tl.Ss. Ppt. (Hofmann, B. 1903, 36, 3092,)

Thallothallic sulphide, 5Tl2S, 3Tl2S2.

Very slowly decomp, by cold dil, H2SO4+ Aq

Tl₂S_s. (Carstanjen.) 2Tl₂S_s. Decomp. by dil. acids. (Schneider, J. pr. (2) 10. 55.)

Thallium telluride, Tl.Te. (Fabre, C. R. 105, 673.) Thio-

For compounds with prefix thio-, see also under sulpho-.

Thioantimonic acid.

See Sulphantimonic acid.

Thioarsenic acid. See Sulpharsenic acid.

Thiomolybdic acid. See Sulphomolybdic acid.

Thionamic acid, $NH_0SO_2 = NH_0SO(OH)$. Very deliquescent, and sol in H_0O . H_0O solution decomp gradually. (Rose, Pogg. 33. 275; 42. 425.)

Ammonium thionamate, NH₂SO(ONH₄).

Deliquescent. Sol. in H₂O; easily decomp.
when in solution. (Rose.)
Very sol. in slcohol with decomp. Sl. sol.
in dry ether. (Drvers and Ogawa, C. C. 1900,
1. 1259.)

Dithionic acid.
See Dithionic acid.

Trithionic acid.

See Trithionic acid.

Tetrathionic acid.

See Tetrathionic acid.

Pentathionic acid.

See Pentathionic acid.

Thionyl bromide, SOB_{F2}.

Unstable. Decomp. by H₄O. (Besson, C R. 1896, 122, 322.)

Thionyl bromochloride, SOCIBr.

Decomp. slowly in the cold, rapidly at 115°.

Decomp. slowly in the cold, rapidly at 115°. Decomp. by H₂O. (Besson C. R. 1896, 122. 321.)

Thionyl chloride, SOCl2.

Sol. in CHCl₄, and C₅H₆. (Oddo, Gazz. ch. it. 1899, 29, (2) 318.)

Thionyl fluoride, SOF1.

Decomp. by H₂O.
Sol. in AsCl₃, C₆H₅, ether and oil of turpentine. (Moissan, C. R. 1900, **130**. 1439.)

Ferric ——.
Insol. in l

Thiophosphamic acid, H₂PNH₂O₂S (?).

Known only in its salts. (Gladstone and Holmes, Chem Soc. (2) 3. 1)

Cadmium thiophosphamate, CdPNH₂O₂S.
Sol in dil. acids, and NH₄OH+Aq. (G. and H.)

Lead ——, PbPNH₂O₂S.

Ppt. Sol. in dil. HNO₂+Aq (Gladstone and Holmes, Chem. Soc. (2) 3. 1.)

Thiophosphodiamic acid, H₂PN₂H₄OS. Known only in solution, which soon decomposes. (G. and H.)

Cadmium thiophosphodiamate,

Cd(PN₂H₄OS)₂. Insol in H₂O; sol. in dil. acids, and NH₄OH +Aq. (G. and H)

Cupric ——, Cu(PN₃H₄OS)₄.

Insol. in H₂O, dil. HCl, or NH₄OH+Aq.
Sol. in KCN+Aq. (Gladstone and Holmes,
Chem Soc. (2) 8. 1).

Lead ----, Pb(PN₂H₄OS)₂.
Insol. in H₄O Sol. in dil. HNO₂+Aq.

Nickel —, Ni(PN₂H₄OS)₂.

Sol. in dil. acids, and NH₄OH+Aq. (Gladstone and Holmes, Chem. Soc. (2) 3. 1.)

Zmc ---, Zn(PN₂H₄OS)₂.

Ppt. Sol. in dil. acids, and NH4OH+Aq. (Gladstone and Holmes)

Thiophosphonitrie, PSN.

Not decomp. by cold H_2O . Slowly decomp. by boiling H_2O . Easily decomp. by boiling dil HCl. (Stock, B. 1906, **39**, 1974.)

Thiophosphoric acid, H₂PSO₈=PS(OH)₈.

Known only in its salts.

Ammonium magnesium thiophosphate,

NH₄MgPSO₆+9H₂O Sl sol. m cold H₂O. (Kubierschky, J. pr. (2) 31. 100)

Barium —, Bas(PSOs)s. Insol. in H₂O. (Wurtz, A. ch. (3) 20, 473.)

Cobalt ——.
Insol. in H₂O, but partially decomp when boiled therewith. (Wurtz.)

Cupric —.

Insol. in H₂O; very easily decomp. (Wurtz.)

Ferric ----. Insol. in H₂O. (Wurtz.)

Magnesium —, Mg₃(PSO₃)₂+20H₂O. Sl. sol. in cold H₂O. (Kubierschky, J pr. (2) **31.** 99.) Nickel thiophosphate.

Insol. in H₂O, but decomp. when boiled therewith. (Wurtz.)

Potassium -, K,PSO₃.

Very sol. in H₂O. Known only in aqueous solution. (Wurtz.)

Sodium —, Na₁PSO₅+12H₂O.
Easily sol. in boiling H₂O. Cryst. out on cooling. (Wurtz, A. ch. (3) 20. 472.)
Insol. in sloohol.

Strontium ---.
Insol in H₂O. (Wurtz.)

Dathiometaphosphoric acid.

Drumo*men*aphosphoric acid. Ammonium dithiometanhosphate.

NH₄PS₂O Decomp. by H₂O. (Stock, B. 1906, 39.

Monothioorthophosphoric acid.

Monoammonium monothioorthophosphate, O:P(SNH4)(OH)2.

Sol. in H₂O.
Insol m alcohol. (Stock, B. 1906, **39.** 1990.

Triammonium monothioorthophosphate, SNH₄ PO (ONH₄)₂ (Stock.)

Dithioorthophosphoric acid.

Ammonium dethiophosphate, (NH₄)₈PS₂O₂+
2H₂O.
SI officerount Sol w H₂O. (Kubier.)

Sl. efflorescent. Sol. in H₂O. (Kubier-schky, J. pr. (2) 31, 93.)

Ammonium magnesium —, NH₄MgPS₂O₂

+6H₂O Sl sol. in cold, H₂O. (Kubierschky.)

Barium —, Ba₂(PS₂O₂)₂+8H₂O. Precipitate. (Kubierschky, J. pr. (2) **31.** 103.) +18H₂O. As the *trithio* compound. (Ephraim, B. 1910, **43.** 287.)

Calcium ----

Very easily decomposed. (Kubierschky.)

Sodium ——, Na₃PS₂O₂+11H₂O.
Very sol. in H₂O. (Kubierschky, J. pr. (2) 31. 93.)

Trithioorthophosphoric acid.

Ammonium trathioorthophosphate, (NH4)₃PS₃O+H₂O. (Stock, B. 1906, **39**, 1985.) Barium trithieorthophosphate, Bas(PS:0):+ 20H:0.

Decomp. by H₂O and dil acids. Sol. in conc. HNO₃ with oxidation of the sulphur to H₂SO₄. (Ephraim, B. 1910, 43, 286)

Magnesium ----, Mg₃(PS₃O)₂+20H₂O.
Decomp. by H₂O and dil acids. (Ephraim.

Thiophosphorous acid.

Ammonium thiophosphite (?), (NH₄)₄P₂S₂O₁ +3H₂O.

Sol. in H₂O. (Lemonne, C. R. 98. 45.) +6H₂O.

Sodium thiophosphite (?), Na₄P₂S₄O₃+5H₂O =P₅O₃, 2Na₅S+5H₂O. Sol m H₁O. (Lemoine, C R. 98. 45.) Na₄P₂S₂O₄+4H₂O =P₅O₃, 3Na₅O₂, 2H₂S+

2H₂O. Sol in H₂O. (Lemoine, l. c)

Thiophosphoryl triamide, PS(NH₂)₁

Rapidly decomp. by H₂O. Scarcely sol. in alcohol, ether, or CS₂. (Chevrier, C. R. 66.

748.)
Metathiophosphoryl bromide, PS₂Br.
Decomp. by H₂O. Insol. in ether. (Mich-

aclis, A. 164. 9.)

Orthothiophosphoryl bromide, PSBr.

Slowly decomp by cold, rapidly by test H₂O but volatile with only partial decomp. with

but volatile with only partial decomp, with steam Easily sol. in ether, CS, PCls, PBr.-Decomp, by cold alcohol. Forms hydrate PSBr₃+H₂O. (Michaelis, A. 164. 9.) Pwothiophosohoryl bromide, PsS₂Br₄.

Decomp. by H₂O and alcohol. Sol. in CS₂ and ether. (Michaelis.) Thiophosphoryl phosphorus bromide,

PSBr₂, PBr₂.

Decomp. by H₂O into PSBr₂. (Michaelis.)

Thiophosphoryl dibromochloride, PSClBr₂.

Decomp by H₂O and alkalies.

Fumes in the air. (Besson, C. R. 1896, 122, 1059)

Thiophosphoryl bromodechloride, PSCl₂Br.

Decomp. by H₄O and alkalies Reacts violently with HNO₂. (Besson, C R. 1896, 120. 1058.)

Thiophosphoryl chloride, PSCI₃.

Very slowly decomp. by H₂O, and may be distilled with steam without much decomp. Decomp. by alcohol. Misochle with CS₂. (Baudrimont, J. pr. 87, 391.).

Sol. m CCl₄ and CsH₅. (Oddo, Gazz. ch. it. 1899, 29. (2) 318.)

Thiophosphoryl pentachloride, PS₂Cl₅ (?).

Decomp. by H₂O. Sol. in alkalies with residue of S. Attacked violently by HNO₃, alcohol, ether, oil of turpentine. Miscible with CS₂ (Gladstone, Chem. Soc 3. 5.)

Thiophosphoryl fluoride, PSF,

Slowly sol. in H₂O with decomp. Sl. sol. in ether.

Insol in H₂SO₄, CS₅, or benzene. (Thorpe and Rodger, Chem. Soc. 55, 306.) ^{*} More sol. in KOH or NaOH+Aq than in H₂O.

Thiophosphoryl iodide, PaSIa.

Very sol. in CS₂ Unstable when heated. Fumes in the air. (Besson, C. R 1896, 122. 1201.)

Thiosulphuric (formerly Hyposulphurous) acid, H₂S₃O₅.

Known and a sections solution, which as ottamely impatable, and decomposes very quickly after its formation. The time before decomposition is exactly proportional to the ratio of the weight of H₂O to the weight of H₂O to the weight of H₂O to the weight of H₂O to the weight of H₂O to the weight of H₂O to the weight of H₂O to the weight of H₂O to the weight of H₂O to the weight of H₂O to the weight of H₂O to the weight of the weight of the weight of the weight of the H₂O to the weight of the weight of time the length of time to the weight of time to the weight of time to the weight of the

Thiosulphates.

The thiosulphates of the alkalies and of Ca and Sr are easily sol. in H₂O; Be, and Sr salts are al. sol. and the other salts insol. The salts of the metals dissolve in alkali thosulphates + Aq. All are insol. in alcohol.

Double Salts of Thossulphure aced It is mpossible to determine whether substances of this class are true chem individuals. Many described by Svensson and others are doubless isomorphic mixtures, whose comp depends on the temp, and cone of the solution in which pptd. (Rosenheim, Z anorg 1900, 25, 72.)

Ammonium thiosulphate, (NH₄)₂S₂O₃.
Very deliquescent. Very sol. in H₂O

Not deliquescent. (Fock and Kluss, B 1889, 22, 3099.) Crystallises with 1/4H4O. (Rammelsberg.

Crystallises with 1/sH₂O. (Rammelsberg, Pogg 56, 298.) Anhydrous. (Arppe, A 96, 113.)

Insol in alcohol. (Arppe) Sol. in acetone. (Eidmann, C. C. **1899**, II. 1014)

II. 1014) Difficultly sol. in acetone. (Naumann, B. 1904, 37, 4328.)

Ammonium cadmium thiosulphate,

3(NH₄)₂S₂O₅, CdS₂O₅+3H₂O

Can be recryst. from warm H₂O (Fock

and Klüss, B 23. 1758.) +H₂O (F. and K.) (NH₄)₂S₂O₃, CdS₂O₄ (F. and K.)

Ammonium cuprous thiosulphate, (NH₄)₂S₂O₂, Cu₂S₂O₃+2H₂O

Less sol in H₂O than $2(NH_4)_2S_1O_3$, $Cu_2S_2O_3+11_2G_3O$. (Rosenbeim and Stembauser, Z. anorg. 1900, 25. 91) $2(NH_4)_2S_2O_5$, $Cu_2S_2O_3+11_2G_3O$. Very sol, in H₂O. Insol, in alcohol. (Rosenbeim and Steinhauser)

Ammonium cuprous thiosulphate cuprous iodide, 7(NH₄)₂S₂O₂, Cu₂S₂O₂, SCuI+ 4H₂O.

Insol. in H₂O. (Brun, C. R. 1892, **114**, 668.) Could not be obtained (Rosenheim and Steinhäuser, Z. anoig 1900, **25**, 107.)

Ammonium cuprous sodium thiosulphate ammonia, 3Cu₂S₂O₂, 4Na₂S₂O₂, (NH₄)₂S₂O₃, 6NH₅.

Ppt When dry is fairly stable in the air. Partially decomp. by H₂O. Sol. in dil H₂SO₄ or acetic acid. (Shinn, J Am. Chem. Soc. 1904, 26, 948.)

Ammonium lead thiosulphate, 2(NH₄)₂S₂O₈, PbS₂O₈+3H₂O.

Easily and completely sol. in cold H₂O, but deposits PbS₂O₃ by standing or warming. (Rammelsberg, Pogg **56**. 312.)

Ammonium magnesium thiosulphate, (NH₄)₂Mg(S₂O₄)₂+6H₂O.

Very deliquescent, and sol. in H₂O. (Kessler, Pogg. **74**. 283.) Not deliquescent. (Fock and Klüss, B. **23**. 540.)

Ammonium mercuric thiosulphate, $4(NH_4)_2S_2O_5$, $HgS_2O_2+2H_2O$.

Sol in H₂O, from which it is precipitated by alcohol. Extremely easily decomp (Rammelsberg, Pogg. **56**, 318)

Ammonium potassium thiosulphate, NH₄KS₂O₄.

Sol in H₂O (Fock and Klüss, B. 23. 536.)

Ammonium salver thiosulphate, 2(NH₄)₂S₂O₄, Ag₂S₂O₄+zH₂O.

Easily sol. in H₂O. Somewhat sol. in alcohol (Herschel, Edinb. Phil. J. 1. 398.) (NH₄)₃S₂O₃, Ag₅S₂O₄+zH₄O Nearly insol. in H₂O; sol. in NH₄OH+Aq, from which it is repptd. by an acid (Herschel.)

Ammonium zinc thiosulphate,

(NH₄)₄S₂O₈, ZnS₂O₈+H₄O. Very sol in H₄O. (Rosenheum and Davidsohn, Z anorg. 1904, **41**, 238)

Ammonium thiosulphate ammonium cuprous bromide, CuBr, NH₄Br, 4(NH₄)₂S₂O₈. Sol in H₂O (Rosenbeum, Z anorg. 1900.

25.107.)
The double salts of ammonium thiosulphate with silver and copper haloids are true chemical compounds and may be recryst. from H-O without decomp. (Rosenheim, Z.

anorg. 1900, 25. 100.)

Ammonium thiosulphate ammonium silver bromide, AgBr, NH,Br, 4(NH,):520s.

Sol in H₀O. (Rosenheim)

Ammonium thiosulphate ammonium cuprous chloride, CuCl, NH₄Cl, 4(NH₄)s₇0₄. Sol. in H₂O and in NH₄OH+Aq. (Rosenhem.)

Ammonium thiosulphate ammonium silver chloride, AgCl, NH₄Cl, 4(NH₄)₂S₂O₄.

Sol. in cold H₂O and NH₄OH+Aq.
Decomp by boiling with H₂O and by dil.

Ammonium thiosulphate ammonium cuprous cyanide.

Composition not constant (Rosenheim.)

Ammonium thiosulphate ammonium silver

cyanide.
Composition not constant (Rosenheim)

Ammonium thiosulphate ammonium cuprous iodide, CuI, NHaI, 4(NHa), 520.

Sol in HaO. (Rosenheim.)

Ammonium thiosulphate ammonium cuprous iodide, 4(NH₄₎₂S₁O₃, NH₄I, CuI. Very sol. in H₄O Decomp. by boiling. (Brun, C R. 1892, **114**. 668.)

Ammonium thiosulphate ammonium silver iodide, AgI, NH₄I, 4(NH₄)₂S₂O₈. Scl. m H₂O (Rosenheim.)

Ammonium thiosulphate ammonium cuprous sulphocyanide, CuSCN, NH₄SCN, 4(NH₄)₂S₄O₄.

Sol. in H₂O (Rosenheim.)

Ammonium thiosulphate ammonium silver sulphocyanide, AgSCN, NH₆SCN, 4(NH₄)₂S₂O₃.

Sol. in H₂O (Rosenheim.)

Ammonium thiosulphate cuprous iodide, (NH_d)₂S₂O₂, 2CuI+H₂O. Insol in H₂O. *(Brun, C. R. 1892, 114, 668.)

Could not be obtained (Rosenheim and Steinhauser)

Barium thiosulphate, BaS,O,+H,O.

Sl. sol. in H₂O. (Rose, Pogg. 21, 437.) Insol in alcohol.

In alcohol.

1 pt cannot be dissolved in 2000 pts. H₄O.

Sol. in dil HCl+Aq without decomposition.
(Herschel, 1819.)

Pptd from BaS₂O₂+Aq by dil. alcohol. (Sobrero and Selmı, A. ch. (3) **28**. 211.) Insol in acetone (Naumann, B. 1904, **67**. 4329)

Barium bismuth thiosulphate, Ba₆[Bi(S₂O₁)₁]₂.

Sol. in H₂O with decomp. (Hauser, Z. anorg. 1903, **35**. 9)

Barium cadmium thiosulphate, 2BaS₂O₂, CdS₂O₈+8H₂O.

Sl. sol in H₂O. (Fock and Klüss, B. 23. 1761.) 3BaS₂O₃, CdS₂O₂+8H₂O. Sl. sol. in H₂O.

Barium cuprous thiosulphate.

Easily sol. in hot, difficultly sol. in cold H_2O (Cohen, Chem. Soc. 51. 38) $2BaS_2O_3$, $Cu_2S_2O_2+7H_2O$ Nearly insol. in H_2O (Vortmann, M 9. 165)

Barium gold thiosulphate.

Sl. sol. in H₂O. Insol in alcohol. (Fordos

Barium lead thiosulphate.

and Gélis.)

Difficultly sol in H₂O. (Rammelsberg, Pogg. **56**, 313)

Barium thiosulphate chloride, BaS₂O₃, BaCl₂+2H₂O.

Sol in H₂O. (Fock and Klüss, B 23. 3001.) Bismuth cæsium thiosulphate, Cs₀Bi(S₂O₂)₂.

Sol. in H₂O. Insol. in alcohol. (Hauser, Z. anorg. 1903, 35. 8)

Bismuth potassium thiosulphate, $K_4Bi(S_2O_4)_4$ + $\frac{1}{2}H_4O$.

Solubility in H₂O. 100 cc of the sat. solution contain 3.5 g. at 2°, 7.0 g. at 18°. At 18° the solution decomposes.

More sol. in Na₂S₂O₃+Aq than in pure H₂O Insol. in alcohol (Hauser, Z anorg. 1903,

35. 5) +H₂O Sol in H₂O. Insol in alcohol, (Carnot, C R. 83. 390.)

Bismuth rubidium thiosulphate,

RbaBi(SaOa)a+1/2HaO.

Sol. in H.O. Insol. in acid alcohol (Hauser, Z anorg 1903, 35. 7.) +H₂O. Sol. in H₂O. (Hauser, Z anorg 1903, 35, 8.)

Bismuth sodium thiosulphate.

Very sol. in H₂O, and also in alcohol. (Carnot, C. R. 83, 338.) Na₈Bi(S₂O₂)₂, Decomp. by H₂O. Easily sol in 50% alcohol. (Hauser, Z. anorg, 1903. 35. 3.)

Cadmium thiosulphate, CdS₂O₃+2H₂O. Sol. in H.O. Insol. in alcohol. (Vortmann and Padberg, B. 22. 2638)

Cadmium potassium thiosulphate, 3CdS2O2,

5K2S2O1 Cannot be recryst without decomp (Fock and Klüss, B. 23. 1753.) CdS₂O₄, 3K₂S₂O₄+2H₂O. Can be crystal-

lised from H₂O without decomp (F. and K.) Cadmium sodium thiosulphate, CdS2O2, 3Na₂S₂O₂+16H₂O.

Not dehauescent. Sol in H2O. (Jochum. C C. 1885, 642) +9H₂O. (Vortmann and Padberg, B. 22,

+3H-O. Deliquescent (Fock and Klüss, B. 23. 1187)
2CdS₂O₃, Na₂S₂O₃+7H₂O (V. and P.)
3CdS₂O₃, Na₂S₁O₃+9H₂O. (V. and P.)

Cadmium strontium thiosulphate, CdS₂O₃, $3SrS_{\bullet}O_{\bullet} + 10H_{\bullet}O_{\bullet}$

(Fock and Kluss, B. 23. 1763) Casium thiosulphate, Cs1S1O1.

Easily sol. in H2O. (Chabrie, C R. 1901, 133, 297.) +2H₂Ó Very hydroscopic. (J. Meyer, B. 1907, 40, 1360.)

Cæsium cuprous thiosulphate, Cs2S2O2.

Cu₂S₂O₄+2H₂O. Easily sol. in H₂O with decomp. Meyer, B. 1907, 40, 1361.)

Cæsium lead thiosulphate, Cs:S:O2. PbS:O3 +2H₂O.

Not hydroscopic. 2Cs₂S₂O₂, PbS₂O₃+3H₂O. Hydroscopie.

Cæsium magnesium thiosulphate, Cs2S2O3,

MgS,O,+6H,O. Easily sol, in H₂O. (Meyer.)

(J. Meyer.)

Cosium silver thiosulphate, 2CsoS1O1. Ag₂S₂O₃+3H₂O.

Not hydroscopic Decomp by hot H-O (J. Meyer)

Calcium thiosulphate, CaSoOs+6HoO. Sol in 1 pt HaO at 3°

Aqueous solution saturated at 10° has an gr. 1 300. Solution with sp. gr. 1 11437 at 15.5° contains 0 2081 of its weight in CaS₁O₂.

Decome on heating. Insol in alcohol Decomp on heating. Insol in alcoh (sp gr 0.8234). (Herschel, A ch. 14. 355.) 100 g. sat. solution contains 29.4 g. CaS₂O₃ at 9°, and 34.7 g. CaS₂O₃ at 25°. (Kremann and Rodemund, M. 1914, 35. 1065.)

Solubility of CaS₂O₂+Na₂SO₂ in H₂O

t°	Na ₄ S ₁ O ₁	Ca8;O;	Solid phase
9	0 11 04 25 21 31 01	29 4 22 64 15 84 7.70	CaS ₂ O ₂ , 6H ₂ O " +Na ₂ S ₂ O ₃ , 5H ₂ O Na ₂ S ₂ O ₃ , 5H ₂ O
25	0 9 24 15 67 18 34 28.24 30 19 31.24 35.04	34 7 29 69 21.41 25.18 21.14 20.33 18 43 11 61	CaS ₂ O ₃ , 6H ₂ O "" "+Na ₅ S ₂ O ₃ , 5H ₂ O Na ₂ S ₂ O ₃ , 5H ₂ O

(Kremann and Rodemund, M. 1914, 35, 1065.) Calcium lead thiosulphate, 2CaS₂O₄, PbS₂O₄

+4H2O. Decomp. by H2O. (Rammelsberg.)

Calcium notassium thiosulphate, CaS2O2. 3KaSaOa+5HaO. Sol in H2O (Fock and Kluss, B 24, 3016.)

Calcium silver thiosulphate, 2CaSaOa, AgaSaOa +2H,O.

Easily sol. in H₂O; less sol. in alcohol. CaS₂O₄, Ag₂S₁O₅+zH₂O Sl sol. in H₂O, abundantly in NH₄OH+Aq (Herschel, 1819.)

Calcium sodium thiosulphate nitrate, CaNa₈(S₂O₈)₂NO₄+11H₂O.

(J.

(Kremann and Rothemund, M. 1914, 35. 1065.)

Cobaltous thiosulphate, CoSaOa+6HaO. Sol. in H.O. (Rammelsberg.)

Cobaltous sodium thiosulphate, 2CoS2O2, 5Na₂S₂O₃+25H₂O.

Efflorescent Sol in H₂O. (Jochum.) Could not be obtained by Vortmann and Padberg.

CoS2O2, 3Na2S2O0+15H2O Sol. in H2O. (Vortmann and Padherg, B 22, 2641)

Currous thiosulphate, Cu₂O, 3S₂O₂+2H₂O = Cu2H4(S2O3)2.

Sl. sol. in H₂O Abundantly sol. in Na₂S₂O₃ Aq. NH₄Cl + Aq. NH₄OH + Aq. or - Aq. (NH_c)₂CO₃+Aq. Sol in HCl or HNO₃+Aq. (v. Hauer, W. A. B. 13, 443.)

Cuprous hydrazine thiosulphate, Cu2S2O2, (N2H4)2H2S2O3+12H2O.

Insol, in H.O; sol, in NH,OH+Aq and in dil acids. (Ferratini, C. C. 1912, I. 1281.)

Cupric lead thiosulphate, Pb(CuS₁O₁)₂ +3H₂O₁ (?)

Very sol in H₂O and quickly decomp (Girard, C. C. 1904, I. 253)

Cuprous mercurous thiosulphate, 5Cu₂S₂O₃, 3Hg2S2O2

Insol or st. sol. in cold, decomp by boiling H₂O HNO₃+Aq dissolves out Cu. (Ram-

Cuprous potassium thiosulphate, Cu2S2O2, K2S2O2+2H2O.

melsberg, Pogg. 56, 319)

Meyer.)

Sl. sol, in H₂O; decomp on heating with pptn of CuS. Easily sol in K₂S₂O₃+Aq. (Rammelsberg, Pogg. 56, 321.) Cu₂S₂O₃, 2K₂S₂O₃. Very sol m cold H_2 O; insol in K_2 S₂O₃. +Aq (Cohen, Chem. Soc

51. 39) +3H₂O. Scarcely sol. in cold, sol with al decomp in hot HaO. Sol in HCl+Aq with evolution of SO:

Cu₂S₂O₃, 3K₂S₂O₂+3H₂O More sol. in 120 than Cu₃S₂O₃, K₂S₂O₃+2H₂O Solution is not decomp by boiling. Sol. in excess of NH₂OH+Aq. (Rammelsberg.)

Cuprous rubidium thiosulphate, Rb2S2O2, Cu2S2O8+2H2O.

Ppt (J. Meyer, B. 1907, 40, 1357) 2Rb₂S₂O₃, Cu₂S₂O₃+2H₂O. Ppt. Meyer.) Ppt (J. 3Rb₂S₂O₃, Cu₂S₂O₃+2H₂O.

Cuprous silver sodium thiosulphate ammonia, Cu2S2O2, 2Ag2S2O2, 5Na2S2O2, 6NHs.

Ppt. Becomes dark when exposed to light. Decomp. by H2O. Sol in NH4OH+Aq (Shinn, J. Am. Chem. Soc. 1904, 26. 949.)

Cuprous sodium thiosulphate, 2Cu₂S₂O₃, 7Na,S,O,+2H,O.

Ppt. from aqueous solution by alcohol. (Jochum, C. C. 1885, 642.) +12H2O. Sol. in very dil HCl+Aq. (Jochum)

Cu₂S₂O₃, 3Na₂S₂O₃+2H₄O Sol. in H₂O, insol in alcohol. (Rammelsherg.)

+6It O (Jochum) 3Cu₂S₂O₃, 2Na₂S₂O₃+8H₂O Decomp. by H.C (Vortmann)

+5H₂O, (Lenz, A 40, 99.) Formula according to Jochum 18-

5Cu₂S₂O₃, 4Na₂S₂O₃+8H₂O. Insol. in H₂O or alcohol. Sol in HCl+Aq without evolution of SO₄, also in dil H₄SO₄ or HNO₄+Aq. Sol. in NH₄OH+Aq. (Jochum.)

+6H₂O. As above. (Jochum.) Cu₂S₂O₃, Na₂S₂O₂+H₂O. Insol. in H₂O; sol. in Na₂S₁O₃+Aq. (Russell, Ch Ztg. 9.

+2H₂O. Insol. in H₂O and alcohol Decomp. by dil. acids. (Rosenheim and

Steinhauser, Z anorg 1900, 25, 84.) +2½H₂O Sol. in H₂O. Pptd by alcohol. (Bhaduri, Z. anorg. 1898, 17. 1.) +3H₂O. Decomp. by H₂O (Vortmann, M 1888, 9. 168.)

3Cu₂S₂O₃, 2Na₂S₂O₃. (Gerard, C. C 1904, +5H₂O Sol. in 352 pts. H₂O. (Russell,

Ch. Z. 1885, 9. 223) 100 cc. 5% " 7 5% " "10% Na₂S₂O₂+Aq dissolve 12 28 g. 17 46 g. 22 54 g.

(Russell, Ch. Z. 1885, 9. 223.)

4Cu₂S₂O₅, 3Na₂S₂O₃+6H₂O. Insol. in H₂O and alcohol

Decomp. by dil acids (Rosenheim and Steinhauser, 7. anorg 1900, 25, 84)
+9H₂O, Sol. in H₂O. Pptd by school. (Bhaduri, Z. anorg. 1898, 17, 1.)

7Cu,S₂O₃, 5Na₂S₂O₃+16H₂O. Decomp. by H₂O and by alcohol (Bhadurı, Z anorg. 1898, 17. 1.) It is impossible to determine whether any of these compds are complex or double salts.

As a class they are not easily sol. and decomp, in solution. They may therefore be mixtures whose comp, depended upon the temp, and cone, of the solution in which they were pptd. (Rosenheim, Z anorg 1900, 25. 81)

(J. | Cuprocupric sodium thiosulphate ammonia, Cu₂S₂O₃, CuS₂O₃, 2Na₂S₂O₃, 4NH₃.

Insol in, but decomp. by hot H₂O Sol. in HC₂H₃O₂+Aq. Sol in NH₄OH+Aq or Na₂S₂O₃+Aq. (Schutte, C. R. 42, 1267)

Cuprous sodium thiosulphate cuprous chlor-ide, Cu₂S₂O₈, 2Na₂S₂O₈, 2CuCl. (Rosenheim and Steinhäuser, Z. anorg. 1900, 25, 86.)

Cupric sodium thiosulphate cupric sulphide, Cu-S.O. Na2S2Os, CuS+4H2O.

Sl. sol. in H₂O; easily sol. in Na₂S₂O₂+Aq, and NH OH+Aq; msol. in alcohol. (Lenz, A. 40. 99.)

Cu₂S₂O₅, Na₂S₂O₅, 2CuS Sol in H₂O or dil. HCl+Aq (Kessel, B. 11. 1585.)

Cuprous sodium thiosulphate sodium chloride, 3Cu₂S₂O₂, 2Na₂S₂O₂, 4NaCl+8H₂O. Sol in Na-S-O++An. (Siewert Zeit ges

Naturwiss. 26. 486.). Ppt. (Bhaduri, Z. anorg. 1898, 17. 3.)

Cupric thiosulphate ammonia, CuS.O. 4NHa. 100 pts. H₂O dissolve 21.79 pts at 25°

(Pudschies, Dissert)

Cuprocupric thiosulphate ammonium chloride, Cu2O, CuO, 382O2, 2NH4Cl. Sol in HNO++Ag with separation of S

(v. Hauer, W A B 13, 447.) Glucinum thiosulphate, GIS₀O₀+11H₀O₁ (Faktor, C C, 1901, II 878)

Gold (aurous) hydrogen thiosulphate, Au.S.O. 3H.S.O.

Known only in solution. (Fordos and Gélis, A. ch. (3) 13. 394.)

Gold (aurous) sodium thiosulphate, Au₂S₂O₃, 3Na-S-Oa+4H2O. Sol. in H.O; solution decomp. on heating.

Insol in absolute, sl. sol, in dil. alcohol, (Fordos and Gélis Au₂S₂O₃, 6N_{E2}S₂O₈+10H₄O Very sol. in HaO, but decomp by boiling (Jochum, C

Iron (ferrous) thiosulphate, FeS2O4+5H2O. Deliquement. Very sol in H₂O or alcohol. (Koene, Pogg. 63, 241.)

Iron (ferrous) sodium thiosulphate, FeS₂O₂, 3Na₂S₂O₃+8H₂O. Very sol. in H2O, and easily decomp (Vortmann and Padberg, B 22, 2641)

Lead thiosulphate, PbS2O3.

C. 1885, 642.)

Sol, in 3266 pts. H.O. Sol in alkalı throsulphates +Aq (Rammelsberg, Pogg. 56.

308.) Lead lithium thiosulphate, PbS2O2, Li2S2O2.

Very hydroscopic. Decomp. by H₂O with separation of PbS. (J. Meyer, B. 1907, 40, 1355)

Lead potassium thiosulphate, PbS2O3, 3K2S2O3+2H2O.

Sol. in H₂O with partial separation of PbS₂O₃. Sol. in K₂S₂O₃+Aq. (Rammelsberg, Pogg. 56, 310.)

Lead rubidium thiosulphate, 2Rb₂S₂O₃, PbS₁O₃+2H₁O. Difficultly sol, in cold $H_i\Omega$.

Decomp, by H.O. (J Meyer, B. 1907, 40. 1358.)

Lead sodium thiosulphate, PbS2O2, 2Na2S2O2. Si sol in H.O. Very easily sol in NaC.H.O. and Na-S-Oa+Aq (Lenz, A 40, 98) Insol in alcohol

2PbS₂O₃, 5Na₂S₂O₃+60H₂O. Easily decomp. (Jochum, C. C **1885**. 642.) PhS₂O₃. 3Na₂S₂O₃+12H₂O Decomp in boiling aqueous solution. (Vortmann and Padberg, B 22, 2637)

Lead strontium throsulphate.

Sol. in H₀O Precipitated as a syrup by alcohol. (Rammelsberg.)

Lithium thiosulphate, LagS2O3+3H2O. Very deliquescent, and sol in H₂O and absolute alcohol. (Fock and Kluss, B. 22. 3099.)

Lithium silver thiosulphate, LigS2O2, Ag1S2O2 +H.O.

Hygroscopic. Decomp by boiling H₂O and by acids. (Meyer and Eggeling, B. 1907, 40, 1355)

Magnesium thiosulphate, MgS₂O₂+6H₄O₄ Very easily sol in H2O Precipitated from conc. solution by alcohol. (Rammelsberg, Pogg 56, 303.)

Magnesium potassium thiosulphate, MgK+(S+O+)2+6H2O.

Deliquescent, and sol. in H₂O Less sol. than K₂S₂O₃ (Rammelsberg, Pogg **56.** 304.) Not deliquescent (Fock and Klüss, B. 23, 539)

Magnesium rubidium thiosulphate, MgS.O. Rb.S.O.+6H.O.

Eastly sol. in H₂O. (Meyer, B. 1907, 40. 1358)

Manganous thiosulphate, MnS2O3. Sol in H2O, from which it is pptd. by alcohol (Rammelsberg, Pogg. 56. 305. +5H₂O. Decomp very easily. (Vort-mann and Padberg, B. **322**, 2641.)

Manganous sodium thiosulphate, MnS2O2, 2Na₂S₂O₄+16H₂O. Sol. in H.O Insol or but sl sol in alcohol.

(Jochum, C C. 1885. 642) Mercuric potassium thiosClphate, 3HgS1O2,

5K2S2O4. Sol m 10 pts H2O at 15°, and 1/2 pt at 100° Aqueous solution decomp on standing or heating Insol. m alcohlol (Kirchhoff, Scher J.

2, 30.) HgS₂O₂, 3K₂S₂O Kluss, B. **24.** 1353.) 3K₂S₂O₃+3H₂O (Fock and

HgS2O2, 5K2S2O2+H2O. (F. and K.)

Nickel thiosulphate, NiSoO. +6HoO. Permanent, Sol. in H₂O (Rammelsberg,

Pogg. 56, 306) Nickel sodium thiosulphate, 2NiSoOo. 5Na-S-O++25H-O

Efflorescent Sol in H₂O. (Jochum)

Nickel thiosulphate ammonia, NiSoOo, 4NHo 46H.O

Decomp. on air Sol in NH-OH+Ag (Rammelsberg, Pogg 56, 306) NiS₂O₃, 5NH₃+H₂O. (Ephraim, B 1913. 46, 3108.) NiS₂O₁, 6NH₃+3H₂O (Vortmann and Padberg, B. **22**, 2641.)

Platinous sodium thiosulphate.

See Platothiosulphate, sodium,

Potassium thiosulphate, K.S.O.+1/1. 12/2H2O, and 2H2O.

Very deliquescent Very sol. in H₂O with absorption of heat Solution is stable on the air. Insol in alcohol

100 pts. H₂O dissolve pts K₂S₂O₃ at t².

t°	Pts K ₂ S ₂ O ₂	Solid phase
0	96 1	K ₂ S ₂ O ₃ ,2H ₂ O
17	150 5	
17		3K ₂ S ₂ O ₃ ,5H ₂ O
20	155 4	
25	165 0	и
30	175 7	а
35	202 4	3K ₂ S ₂ O ₄ 5H ₂ O + K ₂ S ₂ O ₄ H ₂ O
40	204.7	K ₂ S ₂ O ₄ H ₂ O
45	208 7	11/2/2014 11/20
50	215 2	"
55	227.7	и
60	238.3	и
56 1	234 5	K ₂ S ₂ O ₃ ,H ₂ O+3K ₂ S ₂ O ₃ H ₂ O
65	245 8	3K ₂ S ₂ O ₃ .H ₄ O
70	255 2	u u
75	268.0	u •
78 3	292 0	3K.S.O. H.O+K.S.O.
80	293 1	K ₂ S ₂ O ₃
85	298.5	1190308
90	312 0	

(Inohiko Io, Mem Coll Sc Kioto, 1911, 3. 212,)

Sol, in dil. HC2H3O2+Aq without decomp (Mathieu-Plessy, C. R. 101. 59) Insol in cthyl acetate (Casaseca, C. R. 80. 821.)

Potassium silver thiosulphate, 2K2S2O2, Ag₂S₂O₈.

Sol. in H₂O (Cohen.) KaSaOa, AgaSaOa, Sl sol. in HgO (Herschel.) 3K₂S₂O₃, Ag₂S₂O₃+2H₂O Rather sl. sol. in H₂O. (Rosenheim and Steinhäuser, Z.

anorg. 1900, 25. 76) Sl. sol. in H₂O. (Rosenheim.) Potassium silver thiosulphate ammonia. KAgS2O1, 2NH1.

Very sl sol in H₂O. Easily sol in hot NH₄OH+Aq. (Schwicker, B 22, 1735) 5K2S2O2, 3Ag2S2O2, NH2 Difficultly sol. m H₂O with decomp. Sol. in hot NH₄OH+Aq with partial de-

comp. (J. Meyer, B. 1907, 40, 1359.)

Potassium sodium thiosulphate.

(a) KNaS₂O₂+2H₂O Very sol in H₂O. 100 pts. H.O dissolve 213.7 pts salt at 15°. (Schwicker, B 22, 1733) (b) NaKS₂O₃+2H₂O. 100 pts. H₂O dissolve 205 3 pts selt at 15° (Schwicker.)

Potassium strontium thiosulphate, KaSaOa. SrS.O.+5H.O.

Sol in H.O. (Fock and Kluss, B. 24, 3017.)

Potassium zinc thiosulphate, K2S2O3, ZnS₂O₃+H₂O.

Very sol in H₂O. (Rosenheim and Davidsohn, Z anorg 1904, 41, 238)

Potassium thiosulphate sodium chloride. K₂S₂O₄, NaCl.

Sol in H.O (Pane, Pogg. 139, 238.) Rubidium thiosulphate, Rb2S2O2+2H2O.

Very hydroscopic; easily sol. in H2O (J. Meyer, B. 1907, 40, 1356) Rubidium silver thiosulphate, 2Rb₂SeO₈,

Ag2S2O2+2H2O.

Pnt Not hydroscopic, Difficultly sol, in cold H₂O. Decomp. by warm H₂O. (J. Mever.)

Rubidium silver thiosulphate ammonia, Rb,S2O2, Ag2S2O2, NH2.

pt (J. Meyer.) 3Rb₂S₂O₃, 4Ag₂S₂O₃, NH₃. Ppt Decomp. in the air. (J. Meyer.)

Samarium thiosulphate. (Cleve)

Scandium thiosulphate, basic, Sc(OH)StO. Ppt. (R. J. Meyer, Z. anorg. 1914, 86. 282.)

Silver thiosulphate, Ag₂S₂O₈.

Sl. sol. in H₂O. Sol in NH₄OH or alkali thiosulphates+Aq. (Herschel, Edinb. Phil. J. 1. 26)

Silver sodium thiosulphate, Ag2S2O2, Na₂S₂O₃+H₂O.

Sl sol. in H₂O. Easily sol. in NH₄OH+ Aq, also in Na₂S₂O₃+Aq to form— Ag,S₂O₃, 2N₃S₂O₃+2H₂O Easily sol. in H₂O or NH₄OH+Aq, somwehat sol. in al-

85

70

75

80

50

55 63 85 176 60

60 65 68 191.30

66.5

68 04 212 90

(Bhaduri.)

oohol, especially if warm or dilute (Lens, 440, 94).

Ags30,0; 6Nas30,+21H,0 Sol in H₂0.

g. Na Sc0.; e1885, 642.

g. Na Sc0.; per 100 g.

AgsS₁O₃, 6NasS₁O₃+2H₂O Sol in H₂O. (Jochum, C. C 1886, 642)

Silver sodium thiosulphate acetylide acetylene, 2Na₂S₂O₃, 7AgsS₂O₃, 18Ag₃O₃.

32C₂H₂.

Decomp. by H₂O. Sol in NH₄OH+Aq.
Insol in alkalies. (Bhaduri, Z anorg 1913, 79, 356.)

7Na₃S₂O₃, 5Ag₂S₄O₃, 86Ag₃C₂, 13C₂H₂.

Silver sodium thiosulphate ammonia,

NaAgS₂O₄, NH₃. Very unstable (Schwicker, B. **22**. 1736.)

Silver strontium thiosulphate, Ag₉S₂O₈, SrS₂O₈. Nearly insol, in H₂O Very 8l, 80l, in

Nearly insol. in H_4O Very sl. sol. in SrS_2O_3+Aq , easily sol in NH_4OH+Aq (Herschel.)

Sodium thiosulphate, Na₂S₂O₃ and +1, 2 and 5H₂O.

100 pts. H_oO dissolve. At 16° 65 pts. Na₂S₂O₂. "20° 69 20°, 75 "30° 20 " 35° 80 " 40°. 40", 98 "45°, 109 "47°, 114 (Mulder.)

100 pts. H₂O dissolve at 0°, 47.6 pts. Na₂S₂O₃; at 20°, 69 5 pts ; at 40°, 104 pts.; at 60°, 192.3 pts (Kremers, Pogg 99. 50) 100 pts H₂O dissolve 171 pts. cryst. (= 108.9 pts. anhydrous)salt at 19.5° to form a solution of 1.3875 sp. gr (Schiff, A. 113.

350.)

By supersaturation 100 pts. H₂O may dissolve 217 4 pts. Na₂S₂O₃ at 0°. (Kremers)

Solubility m H₂O

40	% Na ₂ S ₂ O ₂	Solid phase
0 10 20 30 40 45 50 60 72 80.5	34 43 37 89 41.17 45.86 50.65 54.49 62.92 67.39 71.33 71.76	Na ₂ S ₂ O ₂ +5H ₂ O
100	72 68	es .

(Taylor, Proc. Edinburgh Soc. 1898, 22, 49.)

g. Na S2O2 per 100 g. Solution HO 4N 67.40 206 70 45 67.60 208 60 50 67 76 210 20 55 68 15 214 00 80 68 48 217.30

220.50

223 10

226.30

231 80

(Young and Burke, J. Am. Chem. Soc. 1906, 28, 327.)

68 80

69 05

69 35

69 80

The solubility of the hydrates of Na,S₀O₄ are exceedingly complicated. There are five groups of hydrates, [D primary, (II) secondary, (III) tertiary, (IV) quaternary, and (V), quintary, and transitions occur between membes of the same and different groups sulphate. The relations and solubility of the various hydrates is shown in the following table.

Solubility of Na₂S₂O₃ in H₂O at t°. I. Primary hydrates.

t² | g. NasSeO₃ per | Solid phase | Soli

0		33		50	15	$Na_2S_2O_3$, $5H_2O(1)$
- 5		35	.33	54	.64	44
10		37	.37	59	.69	e "
15		39	.11	64	.22	rr -
20		41			07	er
$\frac{15}{20}$ $\frac{25}{25}$		43	15	75	90	rr .
30			.19		.45	"
35			71		.24	ee
40			83	105		rr .
45			33	123		ee
48	17	ŀ	٠.			" +Na ₂ S ₂ O ₈ , 2H ₂ O(I
-	17	-	73	111	. 60	,
0	17	52	73 45	111		" +Na ₂ S ₂ O ₃ , 2H ₂ O(I Na ₂ S ₂ O ₂ , 2H ₂ O(I)
0 5	17	52 53	.45	114	90	,
0 5 10	17	52 53 53	.45 .94	114 117	90	Na ₂ S ₂ O ₂ , 2H ₂ O(I)
0 5 10 20	17	52 53 53 55	.45 .94 .15	114 117 122	.10 .68	Na ₂ S ₂ O ₂ , 2H ₂ O(I)
0 5 10 20 25	17	52 53 53 55 56	.45 .94 .15	114 117 122 127	90 .10 .68 .43	Na ₅ S ₂ O ₅ , 2H ₂ O(I)
0 5 10 20 25 30	17	52 53 53 55 56 57	.45 .94 .15 .03	114 117 122 127 133	90 .10 .68 .43 27	Na ₅ S ₂ O _{5,} 2H ₂ O(I)
0 5 10 20 25	17	52 53 55 56 57 59	.45 .94 .15	114 117 122 127 133 146	90 .10 .68 .43 .27	Na ₂ S ₂ O ₂ , 2H ₂ O(I) "" "" "" ""

"

" +Na₂S₂O₃

165 11

	Na ₂ S ₂ O ₂ in H ₂ O at t°.— Contanued.	Solubility of Na ₂ S ₂ O ₃ in H ₂ O at t° — Continued.
II. Se	ondary hydrates.	IV. Quaternary hydrate.
t° g Na,S20s p 100 g Solu Hz	Solid phase	$ \begin{array}{c c} g. \ Na_S S_{O_1} \ per \\ 100 \ g. \\ \hline \\ Solut \ \ & H_7O \end{array} \qquad \begin{array}{c c} \\ Solid \ phase \\ \end{array} $
0 41 96 72 5 43 56 77 10 45 25 82 15 47 27 89 20 49 38 97 25 52 15 108 30 56 57 130 30 22	17 " 65 " 36 " 55 " 98 "	0 57 63 136 00 Na ₂ S ₂ O ₃ , " ₁ H ₂ O(IV) 6 57 63 138 60 10 88 69 140 90 20 69 67147 50
	48 Na ₂ S ₂ O ₃ , 4H ₂ O(II) 23 " 82 " +Na ₂ S ₂ O ₃ , H ₂ O(II)	40 62 95 169 90 "
0 60 47 153 5 60 74 154 10 61 04 156 15 61.57 160 20 62 11 163 25 62 73 168 30 63.56 174 35 64 32 180 40 65 22 187 45 66.02 194 50 66.82 201 50 67.90 211 56 5	70	V. Quintary hydrates. 0 37 38 38 00 Na ₂ S ₁ O ₃ , 2H ₂ O(V) 5 58 33 30 01 01 01 01 01
	80 "	35 04 07 17 8 40 17 17 18 10 17 18 10 18 18 10 18 18 18
57 42 134 5 57 84 137 10 58 28 139 15 58 80 142 20 59 28 145 25 60 181 30 60.78 155 40 62 60 167 45 63 97 177 47.5 64 68 183 48.5	80 Ns ₄ S ₂ O ₂ , ¹ / ₂ H ₂ O(III) 20 70 " 70 " 60 " 1.10 " 2.20 " 4.40 " 50 "	44 56 50 100 82 41 50 50 50 60 62 104 50 60 50 60 62 104 50 60 50 60 62 104 50 60 60 60 60 60 60 60 60 60 60 60 60 60
47 5 64.78 185 50 65.30 185 52.5 65.89 195 55 66.45 195 60 68 07 215	20 .20 .10	lower temp, from 10.7° to 8°. (Rudorff, B 2, 68.) 2, 69.) 4, 69.) 6, 69. 7, 69. 7, 69. 7, 69. 8, 69.

4-2H-0 M.-pt. 41.60°. '(Young and +4H₂O.

Burke) +5H₂O. M.-pt. 45° (Kopp); 48° (Kremers), 50° (Mulder); 48 5° (Tilden, Chem. Soc. 45, 409); 47.9° (Taylor, Proc. Edmburgh. Soc. 1898, 22. 249); 48.09° (Richards and Churchill, Z. phys. Ch. 1899, 28. 314); 48.45° Young and Burke, J. Am. Chem. Soc. 1906.

28, 324) Labile modification melts at 32°. (Parmentier and Amat. C. R. 98, 735.)

Sp. gr of Na₂S₂O₃+Aq at 19°.

$\% = \% Na_2S_2O_3 + 5H_2O$					
%	Sp gr	%	Sp gr	%	Sp gr.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 0052 1.0105 1.0158 1.0211 1.0264 1.0370 1.0423 1.0423 1.0476 1 0529 1 0584 1 0639 1 0695 1 0751 1 0807 1 0863	18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	1 0975 1 1031 1 1087 1 1145 1 1204 1 1263 1 1322 1 1381 1 1440 1 1499 1 1558 1 1617 1 1676 1 1738 1 1800 1 1862	35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	1 1986 1 2048 1 2110 1 2172 1 2234 1 2297 1 2362 1 2427 1 2427 1 2558 1 2624 1 2690 1 2756 1 2822 1 2888 1 2954
17	1.0919	34	1.1924		

(Schiff, A. 113, 118.)

B.-pt. of Na₂S₂O₃+Aq. P=pts. Na₃S₂O₃ to 100 pts. H₂O.

B-pt	P	B-pt.	P	B-pt	P
101° 102 103 104 105 106 107 108 109	14 27 39 49 5 59 68 77 86 95	110° 111 112 113 114 115 116 117 118	104 113 . 122 131 .5 141 .5 152 164 175 .75 188	119° 120 121 122 123 124 125 126	201 214 5 229 244 262 283 311 348

(Gerlach, Z. anal. 26, 436.)

Moderately sol in liquid NH4 (Franklin, Am Ch J 1898, 20, 829.) 100 pts. absolute ethyl alcohol dissolve at room temperature 2.5 mg Na₂S₂O₂. (Bödtker, Z phys. Ch. 1897, 22, 410.)

100 pts absolute ethyl aleohol dissolve at room temperature 34 mg Na₂S₂O₃+ 5H₂O. (Bödtker, Z phys Ch 1897, 22, 510) Sol. in oil of turpentine (Edison, Am Chemist, 7, 127). Insol. therein (Techn.

J B. 27, 1003) Insol. in ethyl acetate (Casaseca, C. R 30.821)

Sedium thallous thiosulphate, 3Na₂S₂O₂ 2TlsS2O2+10H2O. Sol. in H₀O. (Werther) +8H₂O (Jochum) 2Na₂S₂O₁, Tl₂S₂O₃+8H₂O

and Padberg, B 22, 2638)

Sodium zine thiosulphate, Na₂S₂O₃, 2ZnS₂O₄ +23H2O. Sol in HaO (Jochum C. C. 1885, 642)

(Vortmann

3Na₂S₂O₁, 2ZnS₂O₃+10H₂O. Deliquescent. (Vortmann and Padberg, B 22, 2640.)

Sodium thiosulphate mercuric iodide,

2Na2S2O2, HgI2. Decomp by H.O and by alcohol. (Eder and Ulm. M 1882. 3, 197

Strontium thiosulphate, SrS₂O₂+5H₂O. Permanent. Sol in 6 pts. cold H₂O (Gay-Lussac), in 4 pts H₂O at 13°, and 1.75 pts.

boiling H₂O (Herschel, 1819) 1 g is sol, in 3.7 cc. H₂O at room temp. (Antenrieth, Z. anal. 1898, 37. 293.) Gradually efflorescent. Insol in alcohol.

Thallous thiosulphate.

Pnt Sl. sol. in cold, easily sol, in hot HaO, (Crookes.) Easily sol. in Na-S-O++Aq (Jochum.)

Tin thiosulphate (?). Sol. in H₂O.

(Herschel)

Uranyl thiosulphate, (UO2)S2O3. Ppt. (Faktor, C. C 1901, II 878.)

Zinc thiosulphate, ZnS₂O₄+zH₂O. Very deliquescent, and very sol, in H₂O and alcohol. (Rammelsberg)

Zinc thiosulphate ammonia, ZnS2O2, 2NH2, Decomp by H2O. Sol. in NH4OH+Aq. from which it is pptd. by alcohol (Rammelsberg, Pogg 56. 62.)

Thiotrithiazvl bromide, N.S.Br.

Decemp. H₂O and alkalies. Stable in the au (Muthmann, B. 1897, 30, 630.)

Thiodithiazvl dichloride, S.N.Cl., See Nitrogen sulphochloride.

Thiotrathuazyl chloride, S4N4Cl. See Nitrogen sulphochloride.

Thiotrathiazyl iodide, N.S.I.

Decomp spontaneously in the air. Very unstable. (Muthmann, B 1897, 30, 631)

Thiotrethiazyl nitrate, S₄N₂NO₃. Sol in H₂O with decomp Sol in HNO₃+

Aq. (Demarcay, C. R. 91, 1066) Sol. in cold H₂O with decomp Completely used in organic solvents, as CS₂, CHCl₃, acetone, and acetic ether.

(Muthmann and Settler, B 1897, 30, 629.)

Thiotrithiazyl sulphate (S₄N₄)HSO₄.

Stable on air Sol in H₂O with decomp (Demarcay, C. R. 91 854, 1086.)

Thiotrithiazyl sulphocyanide, N₂S₄CNS.

Stable in the air.
Sol in benzene and chloroform. (Muthmann and Seitter, B. 1897, 30, 631.)

Dithiotetrathiazyl dichloride, SeN₄Cl₂. See Nitrogen sulphochloride.

Thorium, Th.

Not oxidised by boling H₂O Quickly sol (Chydenius, Pogg 119, 43), very slowly sol. by long boiling (Berzelius, Pogg, 16, 385) in HNO₁+Aq. Insol. in cold, easily sol in warm dil. H₂SO₄+Aq. Slowly sol. in cold, rapidly in hot HCl+Aq Easily oxidised by aqua regia. Insol. in KOH+Aq

or HF+Aq
St. sol in dil H₂SO₄+Aq; decomp. by
conc. H₂SO₄ Very sl. sol in dil, and less in
conc. HNO₇+Aq Easily sol. in conc. HCl+
Aq, and aqua regin. (Nilson, B. 15. 2521)

Thorsum B

Somewhat sol in hot H₂O, which dissolves 70% in an hour More rapidly sol. in dil. acids or hot KI+Aq. Somewhat sol. in organic solvents Insol. in C5₂ and in methylene nodide (Hogley, Phil. Mag. 1913, (6) 25. 331.)

Thorium C.

Somewhat sol in hot H₂O. More rapidly sol in hot K1+Aq and in dil acids More sol in organic solvents than thorum B. 20% sol. in CS₂ or methylene iodide in 10 minutes (Hogley, Phil. Mag 1913, (6) **25**. 331)

Thorium tetraboride, ThB.

Sol in cold cone. HNOs and HCl and in hot cone. H₂SO₄. (Jassonneix, C. R. 1905, **141**, 192.)

Thorium hexaboride, ThBra

Sol. in hot dil. or conc. HNO₄; insol in H₂SO₄, HCl, HF and aq. alkalies. (Jassonneix, C. R. 1905, **141.** 193.)

Thorium dibromide, ThBr2.

 Sol. in H₄O with partial decomp (Troost and Ouvrard, A ch. (6) 17. 227.)

Thorium tetrabromide, ThBr.

Sol in H₂O. (Berzelius.)

Very hygroscopae, and sol in H₂O with
partial decomp (Troost and Ouyrard. A.

(Lesinsky, Z anorg, 1897, 15, 82)

ch. (6) 17, 229.) 2 SI sul. in organic solvents (Matthews, J Am. Chem Soc. 1898, 20, 840.) +7H.O. Sol, in alcohol. (Recombing R.

+7H₂O. Sol m alcohol. (Rosenheim, B. 1990, **33**, 979.) +8H₂O. Very sol. in alcohol and H₂O Insol. in chloroform and light petroleum

Thorium tetrabromide ammonia, ThBr₄,

Insol. in organic solvents. (Matthews, J. Am. Chem. Soc 1898, 20, 840)

Thorium carbide, ThC2.

Almost insol in conc. acids; decomp. by H₂O and by dil. acids (Moissan, C. R. 1896, **122**, 577.)

Thorium tetrachloride, ThCl.

Anhydrous Extremely deliquescent, and sol, in H₂O with evolution of heat. Sol, in alcohol.

Sol. in ether (Matthews, J. Am Chem Soc. 1898, **20.** 824.) +7H₂O Deliquesces in the air. Very sol in H₂O and alcohol. Insol in ether. (Krüss,

Z anorg 1897, 14. 368)
+8H₂O Hydroscopic Easily sol in H₂O
and absolute alcohol Not pptd. from solution
in alcohol by ether.

+9H₂O. As above (Rosenheim, Z. anorg. 1903, **35**, 426)

Thorium tetrachloride ammonia, ThCl4, 6NH3. Insol. in ether Decomp. by H.O.

ThCl₄, 8NH₄. Fumes in most air. Decomp. by H₂O (Matthews, J. Am. Chem. Soc. 1898, **20**, 824)

The compds of ThCl, with NH₃ are of the e type ThCl, nNH₃ and may be classified into three groups (1) n=4, 6, 7, 12, 18. Compds. are de-

comp. by H_2O' (2) n = 4, 6, 7 Compds. are not decomp. by H_2O

(3) n=6, 7, 12, 18 The first two compds. of this series are identical with the last two of group (2). ThCl₄, 4NH₂ of group (2) is the only one in the whole series stable above 120°. (Chauve-

net, C R 1910, 151, 387.)

Thorium fluoride, ThF₄+4H₂O.

Insol in H₂O or HF+Aq.

Thorium hydride, ThH2.

Decomp. by dil. HCl+Aq (Winkler, B. 24, 873.)

Thorium hydroxide, Th(OH)4.

Insol in H₂O.

Sol in acids, except evalue, melybdic, and hydrofluoric acids

Insol m alkalı hydroxudes, but easily sol n alkalı carbonates+Aq More sol ın NH₄OH+(NH₄)₂CO₃+Aq thanin (NH₄)₂CO₃+Aq, alone. (Berzelius.) Not pptd. in presence of tartarıc and ctric acids. (Chydenius, Pogg 119, 43.) 4ThO₃, H₄O₂. Insol. in water and acids at

boiling temp.

Thorium hydroxybromide, Th(OH)₂Br₂+

Sol, in alcohol. (Rosenheim, B 1900, 33, 979.)

Thorium hydroxychloride; (OH)ThCl₄+ 11H₂O.

Sol in alcohol. (Rosenheim, B. 1900, 33 978.) Th(OH)₂Cl₂+5H₂O. Slowly takes up H₂O

from the air. Sol. in H₂O without decomp

Soi in alcohol. Pptd from solution in alcohol by ether (Rosenheim, Z. anorg 1903, 35, 425) + +8H₂O. Hydroscopic, sol. in alcohol (Rosenheim, B 1900, 33, 978)

Thorium hydroxyiodide, Th(OH)I₃+10H₂O Evolves iodine in the light (Rosenheim, Z. anoig 1903, **35**, 430.)

Thorium iodide. Sol. in H₂O.

Thorium nitride, Th.N.

Decomp. by H₂O. (Matignon, C. R 1901, 132, 37.)

Thorium oxide, ThO2.

When ignited is insol, in HCl, and HNO₂+ Aq. Sol, in H₈SO₄ by heating to boiling and subsequent addition of H₂O Insol in alkah hydrates or carbonates+Aq

Thorium metoxide, Th₂O₅+H₂O. Sl. sol. in HCl. (Locke, Z. anorg 1894, 7.

Sl. sol. in HCl. (Locke, Z. anorg 1894, 7. 348.), +2H₂O. Loses I H₂O at 100°, Sol in H₂O; msol. in NH₄OH+Aq (Locke.)

Metathorium oxide.

Sol. in H₂O after having been treated with cone. HNO₃ or HCl+Aq, even if previously ignited. ThO₃ xTh(OH)₄. Compare Th₂O₄. (Locke) (Stevens, Z anorg. 1901, 27. 42.)

Thorium peroxide, Th₂O₇.

Precipitate. (Cleve, C. R. 100. 605.)

Thornum oxychloride.

Decomp. by H₂O into ThCl₄ and ThO₅. ThOCl₅ Sol in H₂O. Insol in abs alcohol (Matignon, A. ch. 1907, (8) **10**. 133)

+5H₂O. (Matignon, A. ch. 1907, (8) 10.

Metathorium oxychloride, ThO₂, xThCl₄.

Hydroscopie; sol in H₂O; insol in abs. alcohol. (Stevens, Z anorg. 1901, **27.** 47.)

Thorium oxyfluoride, ThOF2.

Insol. in H₂O Sol in H₂SO, with decomp. (Chauvenet, C. R. 1908, **146**. 974)

Thorum oxysulphide, ThS₂, 2ThO₂. (Chydenius)

Thorum phosphide.

Thorium silicide, ThSi₂. Sol. in aq. min, acids; insol. in aq. alkalies Decomp. by fusion with NaOH or KOH (Höngschmid, C. R. 1906, **142**, 158.)

Thorium sulphide, ThSo.

Insol in warm H₂SO₄ Very slightly attacked by HNO₄ or HCl+Aq. Sol. in hot aqua regia (Berzelius)

Thoromolybdic acid.

Ammonium thoromolybdate, (NH₄)₈Th(Mo₂O₇)₀+8H₂O.

(NH₄)₈ In(MO₂O₇)₆+8H₂O. Insol. in H₂O; sol. in dil. acids. (Barbieri, C. A. 1913, 3724.) (NH₄)₆H₂Th(MO₂O₇)₆+11H₂O. Insol. in

H₂O; sol. in dil. acids (Barbieri.) Silver thoromolybdate, Ag₈Th(Mo₂O₇)_a.

Insol. in H₂O; sl. sol. in HNO₂+Aq, but nearly insol. in presence of AgNO₃. (Barbieri)

Sodium thoromolybdate, $Na_8Th(Mo_2O_7)_5+15H_2O$.

Insol. in H_2O ; sol. mddl. acids. (Barbieri.) $Na_6H_2Th(Mo_2O_7)_0+17H_2O$. Insol. m H_2O ; sol. in dil. acids. (Barbieri.)

Thulium, Tm.

Thulium chloride, Tm₂Cl₆+14H₂O.

Very sol. in H₂O and in alcohol (James, J. Am. Chem Soc. 1911, **33.** 1342.)

Thulium hydroxide,

Easily sol. in dil. acids. (James, J. Am. Chem Soc. 1911, 33, 1342.)

Thulium oxide, Tm2O2

Slowly sol. in hot cone acids. (James, J. Am Chem Soc. 1911, 33, 1342.)

Tin, Sa.

Insol in H2O. Tin is not atacked by distilled H₂O when air is passed through it for a

Slowly sol in dil. cold HCl+Aq, but rapidly sol if hot and cone Slowly sol. in hot dil. H₂SO₄+Aq, but decomp by hot conc. H2SO4.

Readily sol, in cold aqua regia. Attacked violently by conc. HNO₈+Aq with pptn. of SnO₂. Completely sol. in dil. cold HNO₈+ SNO₂. Completely soi. In this control of Aq (1 pt. HNO₂: 1 pt. H₂O) at 22°. (Hay, C N 22. 298.) Not attacked by pure conc. HNO₂+Aq of 1.512-1.419 sp. gr., but volently attacked by less conc. acid. Also attacked by most conc. acid if it contains NO: (Millon, A. ch. (3) 6, 95.)

If Sn is placed in dil. HNO.+Ag of 1.15 sp gr. it is al dissolved, but soon pptd. again as SnO2. If a small amt. of NH4Cl is added, the Sn remains permanently in solution, HCl+ Aq has a similar action. (Ordway, Am J. Sci (2) 23. 220.) Easily sol in the cold in mixture of 1 vol H₂SO₄, 2 vols. HNO₅, and 3 vols. H₂O. (Basset, C. N **53.** 172.)

HNOa+Aq containing less than 12% HNOa attacks Sn and forms a stannous salt, which decomposes, giving a turbid solution 'HNO₃ +Aq (12-45% HNO₃) completely dissolves Sn. but solution becomes turbid on standing HNOs+Aq containing more than 45% HNOs does not dissolve Sn, but forms a white substance, which is sol in HaO if over 70% acid is used, this solution soon becomes turbid. (Montemartini, Gazz. ch it 22, 384)

Sn dissolves in HNO₁+Aq at low temps. (0-21°). When very dil. HNO₂+Aq (14% HNO₃) is used, the amount of stannous salt formed decreases only slightly with increase of temp. while with 30-40% acid it falls to zero at 21°. (Walker, J. Soc. Chem. Ind. 1893, 845.)

In presence of Fe, Cr or Al, HNOs+Aq acts on Sn to form soluble products, from which cone HNO: ppts. all Sn as metastannic acid. (van Leent, C. C. 1899, I. 101.) Much more sol, in acids when small quanti-

ties of metallic salts have been added. This is most noticeable when PtCl, or tartar emetic 18 added to HCl+Aq. HCl+Aq with tartar emetric exerts 11 times, and with PtCl4 13 times the action schibited by pure acid. (Millon, C R. 21, 47.)
Sol. in 2N HClo₄+Aq. (Hendrixson, J. Am. Chem Soc. 1904, 26, 755.)

Pyrosulphuric acid dissolves Sn on warm-Hot telluric acid attacks Sn. (Hutchins, (Divers, Chem. Soc. 1885, 47, 639.) J Am. Chem. Soc. 1905, 27, 1183)

(Kraus, J. Am. Chem Soc 1907, 29, 1562) Insol, in liquid NHg. (Gore, Am. Ch. J.

1898, 20, 830 Sol in boiling alum + Aq (1 pt. alum to 4

pts. H₂O), Sol. in KHSO, NH,Cl (1.4), and K2C,H4Oe +Aq Sl sol, m KC₂H₂O₂+Aq, but not at-

tacked by MgSO₄, K₂SO₄, KNO₂, or Na₂SO₄ +Aq. (Cludius, J. pr. 9. 161.) Sol, in alkalies+Aq

Attacked easily by conc. NaCl, KCl, or NH4NO4+Aq; not attacked by NH4Cl+Aq. (Hallock, Am. Ch. J 6. 52.)

Sol in Fe(NOs)s+Aq in presence of HNOs +Aq in proportion of 1 atom Sn to 1 atom Fe. (Lepez and Storch, W. A. B 98, 2b. 268.)

Solubility in dil saline solutions 100 ccm H₂O containing 0.5 g NaCl or KCl dissolve 6 mg, Sn from 11.8 sq cm. in one week when air without CO2 is passed through the solution, but none at all when the air con-

tains CO. 100 ccm H₂O containing 1 g NH₂Cl dissolve 5 mg. Sn under above conditions without CO2, and none with CO2.

With 1 g. MgCl₂, 1 mg. Sn was dissolved without CO2, and none with CO2.

With 1 g. K₂SO₄, 2 mg. Sn were dissolved without CO2, and none with CO2

With 1 g. KNO₃, 3 mg. Sn were dissolved without CO₂, and 1 mg. with CO₂ With 1 g Na₂CO₃, 7 mg. Sn were dissolved

without CO2.

With 1 g NaOH, 220 mg Sn were dis-solved without CO₂. CaO₂H₂+Aq did not dissolve. (Wagner, Dungl. 221, 280.) Not attacked by sugar+Aq. (Klein, C. R.

102. 1170.) ½ ccm oleic acid dissolves 0.0134 g. Sn in 6 days. (Gates, J. phys. Chem. 1911, 15.

Tin antimonide, SnSb.

(Stead, J. Soc Chem. Ind. 1897, 16. 205.)

Tin arsenide, Sn.As.

(Stead, J Soc. Chem. Ind. 1897, 16. 206.) Tin (stannous) bromide, SnBra

Sol. in H₂O Sol in pyridine. (Naumann, B. 1904, 37.

4609.1 Mol. weight determined in pyridine and ethyl sulphide. (Werner, Z. anorg 1897, 15.

Tin (stannic) bromide, basic, SrBr₂OH+ 3H₂O.

Sol in H₂O Decomp, in aq. solution when warmed. Sol in ether, methyl alcohol, ethyl alcohol, Sn is attacked by 17% HN₁-Aq. (Cursucus acetime, acetic acid and esters of organic true and Rissom, J. pr. 1898, (2) 55, 299 acids. Nearly insol. in benzeue, ligroin and Sol. in a solution of Ns in hough NH₂ (CHCl., (Pfeifer, Z. anorg. 1914, 87, 242.) acetone, acetic acid and esters of organic acids Nearly insol. in benzene, ligroin and Tin (stannic) bromide, SnBr.

Deliquescent. Sol in H2O without evolution of heat. (Balard)

5000 of field. (Shifted)

Decomp. by H.50 much more quickly than

SnCl. (Lorenz, Z. anorg 1895, 9, 378.)

Easily sol. in AsBr₂. (Walden, Z. anorg

1902, 29, 374.); PCl₃, PBr₁ and S₂Cl₂. (Walden, Z. anorg, 1900, 25, 217.) Sol in acetone. (Naumann, B. 1904, 37, +4H.O (Preis and Raymann, C. C. 1882. .773)

Stannic hydrogen bromide, SnBr., 2HBr. See Bromogtonnic acid.

Stannic bromide with MBr. See Bromostannate, M.

Tin (stannic) bromochloride, SnClBrs.

Fumes in moist air: decomp by H2O. (Besson, C. R. 1897, 124, 685)

SnCl₂Br₂ Fumes in moist air Decomp by (Besson.) SnClaBr. Fumes in moist air. Decomp. by

H_{*}O (Besson.)

Tin (stannic) bromoiodide, SnBr₂I₂.

Sol in cold H₂O. Decomp. in aq. solution at 80. SnBraI.

SnBrIs. (Lenormand, C. C. 1899, II. 521. J. Pharm, 1899, 10, 114)

Tin (stannous) chloride, SnCl₂, and +2H₂O Not deliquescent. 100 pts. H₂O dissolve 83.9 pts. SnCl₂ at 0° (Engel, A. ch. (6) 17. 347) 100 pts. H₂O dissolve 269.8 pts. SnCl₂ at 15°, and sat. solution has sp. gr. 1827 (Michel and Krafft, A. ch. (3) 41. 478.) Sol. in a certain amount of H2O without decomp., but more H₂O causes pptn. of SnO, SnCl₂. SnCl₂+Aq absorbs O from air

Melts in crystal H₂O at 46°. (Ordway) Sat. solution boils at 121.7°

Sp gr. of SnCl2+Aq at 15° containing: 20 % SnCl₂+2H₂O, 15 1.0881 1.0684 1.1050 1.1442

40 % SnCl₂+2H₂O, 1,1855 1,2300 1,2779 1,3298

60 % SnCl2+2H2O, 1.3850 1.4451 1.5106 1.5828

75 % SnCl2+2H4O. 70 1.6598 1.7452 1.8399 (Gerlach, Dingl. 186, 131.)

Solubility of SnCl2 in HCl+Aq.

1/4 molecules SnCl2 in milligrammes in 10 ccm solution, HCl = molecules HCl in milligrammes in ditto, H₀O = amt, H₀O present in grammes.

$\frac{\mathrm{SnCl_2}}{2}$	HCI	Sum of equiv	Sp gr. of solu- tion	H:0
74	0	74	1.532	8 33
66 7	6 6	73 3	1.489	8 35
63 75	13 54	77.29	1.472	8 198
68 4	24 8	93 2	1.524	7 869
81 2	34 9	116 1	1.625	7 305
94 2	40 0	134 2	1.724	6 880
117 6	44	161.6	1.883	6 108
147.6	49 4	197 0	2.114	5 387
156.4	66	222 4	2.190	4 715
157	78	235	2.199	4 309

(Engel, A ch. (6) 17, 347.)

Solubility is thus diminished by HCl+Aq. while there are less than 8-10 mols, HCl for 1 mol. SnCl₂ When that limit is passed the solubility rapidly increases. (Engel.)
Sol. in very dil. HCl or tartaric acid +Aq. Sol. in KOH+Aq. Sol. in conc. SnOCl₂+Aq. (Gerlach.) Sol. in NH₄Cl+Aq

Anhydrous SnCl₂ is partially sol. in liquid NH₃. (Gore, Am. Ch. J. 1898, 20, 830.) Sol. in absolute alcohol. Insol in oil of

turpentine. 11 41 pts. SnCl, are sol, in 100 pts, ether at

11.38 pts. SnCl₂ are sol, in 100 pts. ether at 16°

11.38 pts. SnCl2 are sol. in 100 pts. ether at (Laszczynski, B 1894, 27, 2286.) Anhydrous SnCl₂ is sol in ether. Jong, Z. anal. 1902, 41. 596.)

1 g, anhydrous $SnCl_2$ is sol, in 1.8 g, acetone at 18°. Sp. gr of sat solution $18^6/4^\circ = 1.6$. (Naumann, B. 1904, 37. 4336.) Sol. in acetone and in methylal. (Eid-

mann, C C 1899, II 1014) Anhydrous SnCl₂ is sol, in methyl acetate to the extent of 15.7% (Schröder and

Steiner, J. pr. 1909, (2) 79. 63.) 31,20 pts SnCl₂+2H₂O are sol. in 100 pts. ethyl acetate at-2

35 53 pts SnCl.+2H.O are sol, in 100 pts.

ethyl acetate at +22° 73.44 pts. SnCl2+2H2O are sol. in 100 pts.

ethyl acetate at 82°. (Laszczynski, B. 1894. 27. 2286.) 1 pt. anhydrous SnCl2 is sol in 22.40 pts.

ethyl acetate at 18°. $D18^{\circ}/4^{\circ} = 0.9215$. (Naumann, B. 1910, 43, 319.)

(Shinn, J. phys. Insol in ethyl amine Ch 1907, 11. 538); pyridine (Naumann, B. 1904, 37. 4609); benzonitrile (Naumann, B. 1914, 47. 1369)

Insol. in CS2. (Arctowski, Z. anorg, 1894. 6. 257) Sol in urethane (Castoro, Z. anorg 1899,

20.61) Mol weight determined in pyridine and ethyl sulphide. (Werner, Z anorg 1897,

Tin (stannic) chloride, basic, SnCl₂OH+3H₂O. Hydroscopic.

Sol. in H₂O.

Sol in ether, alcohol, acetone, acetic acid. Nearly insol. in ligroin and benzene (Pfeiffer Z anorg, 1914, 87, 241)

Tin (stannic) chloride, SnCl4.

(a) Ordinary modification.—Deliquescent. Sol. in H₂O. On diluting SnCl₄+Aq and boiling, SnO: separates out SnCl4+Aq is not pptd by HNO2, HCl, or H2SO4+Aq; H₄PO₄+Aq ppts. in a few days, and H₂AsO₄+ Aq in a short time No ppt is formed by K₂SO₄, Na₂SO₄, KCl, NaCl, NH₄Cl, KNO₅, etc. + Aq.

Sp. gr. of SnCl₄+Aq at 15°.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	april Brit on somotif I and the to 1					
4 1 0.94 86 1 242 88 1 8.06 8 1 8.06 8 1 8.06 8 1 8.06 9 1 8.0 1 8	% SnCl ₄ +5H ₉ O	Sp. gr		Sp. gr	SnCl ₄ +5H ₂ O	Sp gr
32 1 210 64 1.514 95 1 988	4 6 8 10 12 14 16 18 20 22 24 26 28	1 024 1 036 1 048 1 059 1 072 1 084 1 097 1 110 1 124 1 137 1 151 1 .165 1 .180	36 38 40 42 44 46 48 50 52 54 56 58	1 242 1 259 1 276 1.293 1 310 1 329 1 347 1 366 1 366 1 406 1 426 1 447 1 468	68 70 72 74 76 78 80 82 84 86 88 90 92	1 563 1 587 1 614 1 641 1 669 1 698 1 727 1 759 1 791 1 824 1 859 1 894 1 932

(Gerlach, Dingl, 178, 49.)

	Sp. gr. of SnCl ₄ +Aq.						
Deg. Baumé	% Sn	Deg. Baumé	% Sn	Deg. Baumé	% Sn		
65 7 65 64 63 62 61 60 59 58 57	29.45 29 12 28 64 28.17 27.70 27.24 26.77 26 30 25 84 25 38	55 54 58 52 51 50 49 48 47 46	24 47 24.02 23.56 23.11 22.65 22.20 21.74 21.29 20.83 20.38	34 33 32 31 30 29 28 27 26 25	14.90 14 45 14 00 13 56 13.11 12 67 12.23 11.79 11.35 10 91		

(Heermann, Ch. Z. 1907, 31, 680.)

56 24 93

Sol in S₂Cl₂, (Walden, Z. anorg, 1900, 26. 217)Easily sol in PCls and PBis. (Walden,

Z anorg. 1900, 25, 211.) Very sol. in figurd NH2. (Gore, Am. Ch. J. 1899, 20, 830.)

Very sol in absolute alcohol, from which it is pptd by H₅O Easily sol in ether; decomp. by oil of turpentine Miscible with CS1 and B11 Sol in acetone (Naumann, B. 1904, 37.

4328 Sol. in acetone and in methylal (Eids mann, C C. 1899, II. 1014.)

Sol in ethyl acetone. (Naumann, B. 1904, 37. 3601.) Distribution of SnCl4 between H4O and

xvlene n=pts by wt of Cl in 100 pts of H₂O

m=pts. by wt of Cl in 100 pts. of xylene

k = partition coefficient

68 80

10

50 cc. xvlene+60 g SnCl 5H₀O.

_	n	m	k
° 5°	40.35 39.95 40.24	0 08 0 175 0 33	504 4 228 5 122 1

(Smirnoff, Z phys. Ch 1907, 58. 377.)

50 cc xylene+60 g SnCl ₄ 4H ₂ Cm					
t°	n	m	k		
66° 80°	41.905 41.915 41.845	0 925 1.555 2 515	45 3 27 0 16 7		

(Smirnoff.)

50 cc. xylene+60 g SnCl4 3H2O.

t°	n	m	k
80° 94° 100° 111°	43 205 42 545 42 645 42 31	9 95 9 325 10.56 10 03	4 4 4.6 5 1 4.2

(Smirnoff)

+2H₂O. Sol in H₂O. +3H₂O. Tr. pt. 83°. (Meyerhoffer, Bull. Soc. 1891 (3) 6, 85.)

+4H₁O. Tr. pt. 63°. (Meyerhoffer.) +5H₁O. Very deliquescent, and sol. in +4H₂0. H₂O Decomp. by alcohol. Sol in HCl+Aq.

Tr. pt. 56°. (Meyerhoffer.) +8H₂O. More deliquescent than the 5H₂O salt Tr. pt. 19°. (Meyerhoffer.)

+9H₄O. (Nollner, Z. Ch. 1865, 45.)

(b) Metastannic chloride - Sol, in cold H2O; Tin (stannic) chloride phosphine, 3SnCl., (b) Melastannic churrae — 101, 12 conc. HCl+
solution coagulates on boiling. Conc. HCl+
'a — 12 from SnCl.+Aa. When solution solution coagulates on botting. Conc. HCl+ Aq ppts from SnCt+Aq. When solution does not contain HCl, the addition of HCl+ Aq causes a ppt, which dissolves in H₂O HNO₃ and H₃SO₄+Aq also ppt K₃SO₅. Na₂SO₄, and NaCl+Aq produce ppts, insol in H₂O, but sol in HCl+Aq NH₄Cl or KCl+Aq do not ppt KNO2+Aq ppts. alowly. (Bose)

Tin (stannous) hydrogen chloride, SnCla. HCl+3H2O

Decomp, by H.O. Melts at -25°. (Engel, C R 106, 1398.)

Tin (stannic) hydrogen chloride. See Chlorostannic acid.

Tin (stannous) hydrazine chloride, SnCl., 2N2H4, HCl Very hydroscopic.

Sol in H.O and abs alcohol (Curtius J. pr 1894, (2) 50, 341)

Tin (stannic) chloride with MCl. See Chlorostannate, M.

Tin (stannous) chloride ammonia, SnCl2, NH3. (Berzelms) SnCls, 4NH, Ppt. (Naumann. B. 1904,

37. 432b) Tin (stannic) chloride ammonia, SnCl.,

Sol in cold H₂O without decomp., but decomposes by heating

Tin (stannous) chloride arsenate. See Arsenate chloride, stannous.

2HCN. Decomp on moist air or with H2O. (Klein, A. 74, 85)

Tin (stannous) chloride hydrazine, SnCl2, 2N.H. Decomp. by H₂O.

Insol in NH,OH+Aq. (Franzen, Z. anorg. 1908, 60, 286.)

Tin (stannic) chloride nitrogen sulphide, SnCl., 2N.S.

Insol in most solvents. Decomp by warm NH,OH+Aq Decomposes in the air anorg, 1908, 57, 284.) (Wölbling, Z.

2PH. Decomp. by H2O (Rose, Pogg. 24, 159)

Tin (stannous) chloride potassium stannous sulphate. See Sulphate, potassium stannous stannous chloride.

Tin (stannic) chloride sulphur tetrachloride. SnCL, 28CL

Very hygroscopic Sol in CHCl₂, ligroin, petroleum ether, CS₃, POCl₃; very sol. in completely dry absolute ether, in benzene, acctacetic ester and in SCl₂ (Ruff, B. 1904, **37**, 4517.)

Tin (stannic) chloride sulphide, 2SnCl., SnSo. See Stannic sulphochloride.

Tin (stannic) chlorobromide, SnCIBr. Decomp. by H₂O. (Ladenburg, A. suppl 8, 60.) SnCl₂Br₂ Decomp. by H.O. (Ladenburg)

Tin (stannous) chloroiodide, SnCII. Decomp immediately by H₂O (Henry.

Phil. Trans. 1845, 363.) Tin (stannic) chloroiodide, SrCloIa.

Firmes in the air

37. 681.)

Decomp by H₂O (Lenormand, J. Pharm 1898. 8) SnCII. (Lenormand, J. Pharm, 1899, 10.

Tin (stannous) fluoride, SnF2. Easily sol in H.O. (Berzelius, Pogg. 1, 34.)

Tin (stannic) chloride cyanhydric acid, SnCl4, Tin (stannic) fluoride, SnF4. Very hydroscopic. Sol. in H₂O Slowly decomp. in aq. solution with separation of SnO₂ (Ruff, B 1904,

> Tin (stannic) fluoride with MF. See Fluostannate, M.

Tin (stannous) hydroxide; 2SnO, H₂O.

Decomp to SnO when bouled with H_{*}O. More easily sol. in acids than Sn or SnO. Sol in NaOH, and KOH+Aq, even when dil. Insol. or very sl sol. in NH₄OH, (NH₄)₂CO₅, and K₂CO₃+Aq; sol in cold CaO₂H₂, and BaO₂H₂ with decomposition anorg, 1908, **57**, 284.)
Decomp. by H₂O. (Davis, Chem. Soc., sl. sol. in NH,Cl+Aq hot or cold: (Brett.) 1906, **98**, 1576)

Sl. sol. in NAC,H,O₂+Aq. (Mercer.)

Solubility in	Solubility in NaOH+Aq.		
G Na m 20 eem	G Sn in 20 ccm		
0.2480	0 1904		
0 3680	0 2614		
0 6394	0 4304		
0 8326	0 5560		
0 9661	0 7849		
2 1234	1 8934		

(Rubenbauer, Z. anorg. 1902, 30. 335.)

Not pptd in presence of Na catrate (Spiller)

Sol in water-glass +Aq (Ordway.) SnO₂H₂. Solubility in 1 l. H₂O = 0 0000135 g, mol at 25° (Goldschmidt, Z. phys Ch. 1906, 56, 389)

Tin hydroxide, SnO, 6SnO. +5H2O. +9H.O (Schiff, A. 120, 153,

Tin sesquihydroxide, Sn₂O₂, xH₂O. Insol in H₂O Sol. in NH₄OH+Aq. (Fuchs, J pr. 5, 318)

Tin (stannic) hydroxide.

"a" modification. Obtained by pptn by alkalı in stannic chloride solution.

Freshly pptd, substance when air dried contains 73 5% H2O; when dried over H2SO4 or m a vaccum for 1 month 126% HaO. Heated to glowing loses all H₂O and passes into the anhydride The "a" form is capable of existing in all degrees of hydration. (Loienz, anorg 1895, 9. 372-375.)

"a" stannic hydrate is a white amorphous substance which is very sol in HNOs when moist, sol in H2SO4 even dil., sol in HCl and not pptd by an excess Very sol in NaOH+Aq and is not pptd by an excess

A solution of a stannic acid in HCl is identical with a solution of freshly prepared aqueous stannic chloride and gives no ppt with dil HCl, H₂SO₄, HNO₃ or arsenic acid even on long standing
"β" modification.

Obtained by oxiding and dissolving Sn in HNOs, and from solution of sodium stannate by pptn Freshly pptds from HNO4 when air dried contains 21.3% H₂O, and when dried over H₄SO₄ or in a vacuum 11 3%, corresponding to Sn(OH)₄ and SnO(OH)₂ respectively.

Freshly pptd. from sodium stannate solution and air dried contains 22 5% HaO and when dried over H1SO4 or in a vacuum contains 12.1%,—corresponding to Sn(OH)₄ and SnO(OH)₁ Passes into the anhydride when heated to glowing

The "B" form is capable of existing in al degrees of hydration. It is a white amouphous substance which is insol in HNOs; in- (Young, J. Am. Chem Soc. 1897, 19. 851.)

sol in H2SO4 even when conc.; insol in HCl but changed by contact with the acid in that when the acid has been removed the ppt. is readily sol in H2O, though pptd. again from solution by addition of HCl When freshly prepared the "β" form is sol in NaOH+Ao, but is potd by an excess of NaOH

A solution of "β" stannic acid in HCl behaves quite differently from an aq solution of stannae chloride in that it ppts metas-tannic sulphate when treated with H₂SO₄. This ppt dissolves when heated with dilufe HNO or HCl, but the solution on standing spontaneously forms another ppt A solution of "B" stannic acid in HCl gives a ppt when treated with arseme acid (Lorenz, Z anore 1895, 9, 372.) See also Stannic acid.

Tin hydroxyl chloride, SnO(OH)Cl. See Chlorostannic acid.

Tm (stannous) sodide, SnI1, and +2H2O. SI sol in cold, more abundantly in hot H2O, without decomp

Solubility in H.O.

t°	100 pts solution	t ^o	100 pts solution
98 5 84 9 73 9 60 1 51 5 41.0 30 5 20 8	3 43 3 05 2 56 2 09 1.79 1 50 1.21 1.03	97 3 87.4 77 6 67 5 59 7 49 5 39 4 29 6	\$ 70 \$ 24 2 75 2 34 2.03 1 72 1 38 1 11
		19.8	0.96

(Young, J. Am. Chem Soc 1897, 19. 846.)

Solubility of SnI₂ in HI+Aq at t^o. Pts. SnI₂ per 100 pts. solvent.

to	5.83% HT	%09 6	15.20% HI	20 44 % HI	24 80% HI	30 40% HI	30 SZ% HI
40 50 60 1 70 1 80	1 16 1 40 1 69 2 07 2 48 2 95	0 23 0 33 0 46 0 66 0 91 1 23	0.64 0.71 0 82 1 11 1.37 3 1 83 5 2 40	1 81 1.90 2 12 2.51 2 92 3 70 1 58	4.06 4.12 4.34 4.78 5.48 6.38 7.82	10.28 10.06 10.35 11.03 11.97 13.30 15.52	23.15 23.76 24.64 25.72 27.23 29.84

Solubility of SnI, at low temp, in 29 95% HI+Aq.

Temp	Pts in 100 pts splution	Pts. m 100 pts solvent
1.5 1 5 6 0 10 5 15 2 24 8 30 7 34 8 40 3	12 96 13 15 12 35 11 01 10.48, 9.36 8.78 8 70 9 51	14 89 15 14 14.09 12 36 11 70 10 33 9 62 9 50 10 50

(Young, J Am. Chem. Soc 1897, 19. 854)

Solubility of SnI. at low temp, in 396%

HI+Aq.					
	Pts in 100 pt	Pts in 100 pts.			
Temp	I	II	of solvent		
0°	13 52	13 56	15 66		
5.7° 10.5°	16 44 19 47	16 37 19 60	19.71 24.27		
15 7° 20 3°	23 56 25 50	23 68 25 60	30 92 34 30		

(Young, J Am. Chem. Soc. 1897, 19. 852-853.)

Sol. A SnCl2+Aq Sol m warm alkali chlorides or iodides + Aq, also in dil HCl+ Aq. Very sl. sol. in CHCl₂, CS₂, or C₆H₈. (Personne, C. B. **54**, 216)

Sol. in KOH+Aq. (Rose.) Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Tin (stannic) iodide, SnI4. Decomp. by H₂O into SnO₂ and HI. Very sol in PCls. (Beckmann, Z. anorg 1906, 51. 110.)

Sol. in POCls. (Walden, Z. anorg. 1900, 25, 212,) Easily sol. in PCls and PBrs (Walden,

Z anorg 1900, 25. 211)
Sol in liquid AsBr; forming a solution with sp. gr = 3.731 at 15°. (Retgers, Z phys Ch 1893, 11. 342.)

pmys Cn 1893, 11. 482.)
Sol. in SOCla, Scl.2 and SO₂Cl₂. (Walden,
Z. anorg 1900, 25. 215.)
Sol. in SnCl₄. (Walden.)
Sol. in anhydrous alcohol, ether, and
benzene. 1 pt. CS₂ dissolves 1 45 pts. SnI₄.

at ordinary temp. (Schneider, Pogg. 127.

100 pts methylene iodide, CH₂I₂, dissolve 22.9 pts. SnI₄ at 10°. Sp. gr. of solution = 3.481. (Retgers, Z. anorg. 3. 343.)

Solubility	m	organic	sorver	158	at	τ.	
7.1	- î	0.0-1.	100	ī	_	_	-

Solvent	ţ°	g. of the sat	Sp gr of the sat solution
CCl ₄	22.4	5 25	1 59
CCl ₄	50.0	12 50	1.63
CHCl ₈	28.0	8 21	1.50
C ₆ H ₄	20.2	12.65	0.95

(McDermott, J. Am. Chem. Soc. 1911, 33. 1964)

Sol in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Sol in acctone. (Eidman, C. C 1899. II. 1014) Solubility in CS.

100 g, of the sat. solution contain at: 58° -84° -89° -94° -114 5° -94° 16.27 10.22 9 68 10.65 9.41 g. SnI. (Arctowski, Z. anorg, 1896, 11, 274.)

Sol in allyl mustard oil (Mathews J phys Ch 1905, 9, 647.)

Tin (stannous) hydrogen iodide, SnI., HI. Not obtained in pure state. (Young, J. Am. Chem. Soc. 1897, 19, 856.)

Tin (stannous) iodide ammonia, SnI₂, 2NH₂, (Ephraim and Schmidt, B 1909, 42, 3857.) SnI4, 8NH2. (Ephraim and Schmidt.)

Tin (stannic) iodide ammonia, SnI4, 3NH2. (Personne, C. R. 54, 218.)

SnI₄, 4NH₃. (Personne) SnI4, SNH3 (Rammelsberg, Pogg 48. 169.)

Tin iodosulphide. See Tin sulphoidide.

4329)

Tin monoxide (Stannous oxide), SnO. Insol. in H₂O. Sol in acids. Very sl. sol. in boiling NH₄Cl+Aq. (Rose.) Insol. in NaOH or KOH+Aq.

Insol in liquid NH₂. (Gore, Am. Ch. J. 1898, 20, 830 Insol in acetone. (Naumann, B 1904, 37,

Tin dioxide (Stannic oxide) SnO.

Insol. in H₂O or conc acids except conc H-SO₄. Insol. in cone alkalies or NH₄OH+

Aq.
Not absolutely meol, in dil. HNO₂+Aq. (Mulder.)

Insol, in liquid NH4. (Gore, Am. Ch. J. 1898, 20, 830.) Min. Cassiterite (Tin stone). Not, attacked by acids.

Tin sesquioxide, Sn.O.

122. 33)

While moist, easily sol in NHOH+Ao. Sl sol, in dil, more easily in conc HCl+Aq (Berzelius)

Tin (stannic) oxybromide, Sn. Br. O+12H.O. Decomp by H₀O into SnB₁, and H₂SnO₂ Sn₂Br₈O₂ As above (Press and Ravmann, C C. 1882, 773.)

Tin (stannic) oxybromide nitrogen penioxide, SnO2, 3Br2, N2O5. Decomp by H₂O (Thomas, C R, 1896,

Tin (stannous) oxychloride, SnO, SnCla+ SH₂O. Insol. in H₂O Sol in HCl, HC₂H₃O₂, and

dil HNOs, or HoSOs+Aq. (J. Davy, Schw. SnsCl₁₄O₈+10H₂O. Easily sol, in H₂O or alcohol.

Can be recrystallized from alcohol but not from H₂O (Tschermak, W. A. B. 44. 2. 736) 3SnO₂, 2SnCl₂+6H₂O. Very sl. sol. m H.O. Sol. in dil. acids (Ditte, A ch. 1882.

(5) 27. 146.) 4SnO, SnCl₂+6H₂O, (Ditte)

Tin (stannic) oxychloride, SnO₂, SnCl₄, Sol. m H₂O (Scheurer-Kestner, A ch. (3) 47, 6.)

Tin (metastannic) oxychloride, 3SnO₂, SnCl₄ +3H.O.

Sol. in little, decomp by much H₂O. (Weber, Pogg. 122. 368.) 4SnO₂, SnCl₄+7H₂O. (Weber)

"Metastannul chloride B." Sn.O.Clo. Deliquescent Sol. without decomp. in a small amount of H₂O or in a large amount of H₂O containing a few drops HC

Sol. m abs alcohol. (Engel. C R. 1897.

+4H₂O and +9H₂O. Sol. in H₂O acidified with one drop of HCl. Pptd. by excess HCl. (Engel, C. R. 1897, **124**, 768) "Parastannyl chloride," Sp.O.Cl.+2H.O.

Decomp. by excess H₂O.
Sol in H₂O; pptd. by HCl (Engel, C. R.
1897, **125**, 465.)

Tin (stannic) oxychloride nitrogen pent-oxide, SnOCl₂, 3SnCl₄, N₂O₅.

Hydroscopic; sol. m H₂O. Decomp. by heat. (Thomas, C. R 1896, 122, 32.)

Tin (stannous) oxylodide, SnO, 3SnI2; 2SnO, 3SnI2; SnO, SnI2; and 2SnO, SnI2. Decomp. by much H₂O (Personne, C. R. 54. 216)

Tin oxysulphide, Sn.S.O+11H.O.

Very sol. in (NH₄),CO₃-I-Aq; slowly sol. in H₂O. (Schmidt, B. 1894, 27, 2739.)

Tin phosphide, Sn.P.

(Ragg, C C, 1898, II 170.)

SnP. Sol. in HCl+Ag. Insol. in HNO. +Aa

SnP. Not attacked by HCl. Easily attacked by aqua regia. (Emmerling, B. 1879, 12. 155,)

SnP₃. Insol, in HCl. Slowly attacked by dil. HNO₃ at 50°. Oxidized by furning HNO₃ with ignition. (Jolibois, C R 1909, 148.

Sn₂P₂. Insol. in mercury. Decomp. by HCl (Stead, J. Soc. Chem. Ind 1897, 16, 206)

Sn.4Ps. Attacked by HCl, HNOs and al-kalies. (Jobilois, C. R. 1909, 148, 637.) The only true compounds are Sn.4Ps and SnP. (Jolibois, C. R. 1909, 148, 637.)

Tin phosphochloride, Sn.P.Cl. (Mahn, Jena, Zeit, 5, 1660.)

Tin (stannous) selenide, SnSe.

Decomp. by boiling HCl+Aq. Slowly oxidised by boiling HNO₃+Aq, and easily dissolved in aqua regia (Schneider, Pogg. 127. 624) Easily sol in alkalies+Aq (Uelsmann, A. 116, 122), or scarcely even on boiling (Schneider), according to method of preparation. Sol. in alkali sulphides or selenides +Aq.

Tin (stannic) selenide, SnSea.

Not attacked by H2O or dil. acids; scarcely attacked by boiling conc. HCl+Aq; gradually decomp by hot HNOs+Aq; easily dissolved by warm aqua regia, and hot conc. H₂SO₄. Sol in cold, more easily in warm KOH.

NaOH. or NH₂OH+Aq. (Uelsmann, A. 116. 122)

Tin (stannous) sulphide, SnS.

 1 l. H₂O dissolves 0.14×10-6 mols. SnS at 18°. (Weigel, Z. phys. Ch. 1907, 58, 294.) Insol. in dil., sol. in cone HCl+Aq Sl

sol in hot conc HNO1+Aq Insol in KOH +Aa+H₂O. Insol in H₂O. H₂S+Aq. or dil. acids; sol. with decomp. in conc. acids; easily sol. in hot conc. HCl+Aq. Insol.

easily sol. in hot conc. HCl+Aq. Insol. in H-SO₈+Aq. Insol in NH₂OH+Aq. in H₂SO₂+Aq. Insol in NH₄OH+Aq. Insol in NH₄Cl, or NH₄NO₂+Aq. Scarcely sol in (NH4)2S+Aq, but easily sol. in the same on addition of S. (Rose.) 10% NaOH+Aq dissolves SnS by violent

boiling. Insol. in cold, at sol. in hot Na₂SO₂+Aq, (Materne, C. C. 1906, II. 557.)

Sol. in alkalı polysulphides + Aq. Insol. in acetone. (Eidmann, C. C. 1899, II. 1014); (Naumann, B. 1904, 37. 4329.) ethyl acetate. (Naumann, B. 1910, 43. 314.)

Tin (stannic) sulphide, SnS.

Anhydrous (Morate gold.) Insol. in HCl or HNO₁+Ag, but decomp by aqua regia. Sol. in hot KOH+Aq or K₂CO₃+Aq; also in hot K₁S, Na₅+Aq, and (NH₄)S+Aq. 1. l. H₂O dissolves 1.13×10⁴ mols. SnS₃ at 18°, (Weigel, Z. phys Ch. 1907, 58. 294.)

+xH₂O SL sol in NH₂OH+Aq, but readily in KOH, K₂S, or Na₂S+Aq, also in het conc. HCl+Aq Decomp by hot HNO₂ +Aq. Insol in KHSO₃+Aq. Sol. in K₂CO₃ +Aq. Insol in NH₄Cl, and NH₄NO₃+Aq (Brett.)

Pptd SnS₂ is insol in cold, sol. in hot Na₂B₄O₇ +Aq Sol in Na₂CO₃+Aq. Very sol in NaOH+Aq (Materne, C C. 1906, II. 557) Sol. in boiling conc. H2C2O4+Aq (Clarke,

C N. 21, 124.) Insol in methyl acetate (Naumann, B. 1909, **42.** 3790), ethyl acetate (Naumann, B. 1910, **43.** 314); acetone (Naumann, B. 1904, **37.** 4329, Eidmann, C. C. **1899**, II

1014) Tin sesquisulphide, Sn₂S₃.

Sol. in moderately cone. HCl (Antony and Niccoli, Gazz ch. it. 1892, 22. (2) 408.)

Tin sulphochloride, SnS2, 2SnCl4.

H₂O dissolves out SnCl₄. (Dumas, Schw. J. **66**, 409.) SnS₂Cl₁₂=SnCl₄, 2SCl₄. Sol in H₂O with separation of S Gradually sol in dil HNO++Au Sol. in POCl₃ (Casselmann, A 83, 267.)

Tin sulphoiodide, SnS2I4.

Decomp. by H2O into SnO2, S, and HI by cold cone HCI+Aq with separation of S. also by aqua regia, and HNO₂+Aq Cold KOH+Aq separates S and SnO₂

Completely sol in hot KOH+Aq Sol in cold, more easily in hot CS2 or

CHCl: Decomp by alcohol. (Schneider, Pogg. 111, 249.

Tin sulphophosphide, Sn₂P₂S. Insol in HCl, HNOs and agua regia.

Sol. m ag alkalı hydroxides, containing Cls or Brs in solution. (Granger, C. R. 1896, 122, 322)

Tin (stannous) telluride, SnTe. Not attacked by conc. HCl+Aq. (Ditte, aqua regia with separation of TiO2 C. R. 97, 42.)

Titanic acid, TiO2, zH2O.

When dried in the cold, is completely sol in | 578.)

acids, especially HCl, or dil H2SO4+A0, but when the solution in acids is boiled, it is converted into β-titame and Very sl sol even when moist in H₂SO₂+Aq. (Berthier.) Sl. sol. in alkali carbonates +Aq A complete solution in an alkali carbonate +Aq can only be obtained by adding a Ti salt drop by drop to the alkaline solution, and allowing the ppt to dissolve entirely before adding more Ti salt On boiling the solution in (NH4)2CO +Aq (or in K2CO, or Na2CO,+Aq with

NH.Cl) the titanic acid is pptd Relatively easily sol in mineral acids, dereasing in the following order HCi, HNOs, H₂SO₄. Insol. in perchloric acid (Landecker, Z anorg 1909, **64**. 67). Sol. in dil. H₂SO₄. 40 g. H₂O + 70 g.

H₂SO₄ (sp. gr. 1 145) dissolves 0.33 g TiO₂ in 15 min. (Hall and Smith, Proc Am. Phil. Soc. 1905, 44. 193) Insol in liquid NH₁ (Gore, Am Ch. J.

1898, 20. 830.)
β-Tutanic acid. Metatitanic acid.—Insol. in H₂O, acids except HF, or alkali hydrates or carbonates +Aq When digested with conc. H2SO4 until acid is evaporated, the residue is sol in H₂O. (Berzelius)

γ-Titanic acid -Sol in pure H₂O, but β-acid is pptd by boiling (Knop, A. 123 351.) Colloidal TiO: zH2O+Aq has been prepared by Graham (Chem Soc. 17, 325)

Barium titanate, 2BaO, 3TiO,

(Bourgeois, C. R. 103, 141.) Barium pertitanate peroxide.

See Pertitanate, barium peroxide.

Calcium titanate, CaTiOs.

(Ebelmen, C. R. 32, 711.) Min Perofskite. Searcely attacked by HCl +Aq or other acids, except hot H2SO4, which decomposes it.

CaO, 2TiO, Min Tstanomorphite, Partially decomp. by HCl+Aq, completely by H₂SO₄

Cobaltous titanate, CoTiOs, (Bourgeois, C C 1893, I 226)

Ferrous orthotitanate, FerTiO. (Hautefeuille, C. R. 59, 733)

Ferroferric titanate, FeTiO₄, xFe₂O₄. Min. Menaccanite. Very sl sol. in HCl or

Ferric titanate.

Not attacked by boiling H2SO4 or conc. a-Titanic acid -Insol in H₂O or alcohol | HCl+Aq. (Wöhler and Liebig, Pogg. 21.

Magnesium titanate, MgT1O3.

Insol in H₂O and acids (Hautefcuille, A ch (4) 4, 169

Min. Gerkiehte When finely powdered, is easily sol in hot

HCl, or in cold HF in a few hours (Dick. Mmer, Mag 1894, 10. 146.)

Slowly decomp by boiling with HNO3+Aq (Hautefeuille, A. ch (4) 4. 169.)

Potassium titanate, K2TiOs.

Anhydrous, Decomp with H.O

+4H2O. Deliquescent. Very sol. in H2O. Precipitated from aqueous solution by alcohol. (Demoly, Compt. chim. 1849, 325.)

Potassium titanate, acid, K2O, 3TiO2+2H2O Insol, in H₂O (Demoly)

K₂O, 6T₁O₂+2H₂O (Demoly) K₂O, 3T₁O₂+3H₂O. Insol in H₂O. Completely sol in HCl+Aq if only cold H₂O is used for washing. When heated to 100°, no longer completely sol in HCl+Aq. (Rose, Pogg. 74, 563.)

KgO, 12TrOg (Rose, Gilb Ann. 73. 78)

Sodium titanate, Na₂TiO₃.

Anhydrous. Decomp. by H₂O into NaOH, and an acid titanate, insol in H2O +4H2O Deliquescent Very sol. in H2O. recipitated from aqueous solution by alcohol (Demoly.)

Sodium titanate, acid, 2Na₂O, 9T₁O₂+5H₂O. If not heated to 100°, is sol. in cold HCl+ (Rose, Gilb Ann. 73. 78)

2Na2O, 3T1O2 Insol. in H2O; slowly sol in cold, easily in hot HCl+Aq (Cormin-bour, C. R. 115, 823.) Na₂O, 2T₁O₂. As above (C)

Insol in HaO, and nearly Na₂O, 3T₁O₂ so in boiling HCl+Aq. (C.)

Strontium titanate, 2SrO, 3TiO₂. (Bourgeois, C R. 103, 141.)

Zinc titanate, ZnO, TiO2(?).

(Lévy, A. ch. (6) 24 456.) 2ZnO, TiO₄(?). (Lévy) 3ZnO, 2TiO₅. Slowly attacked by warm

H₂SO₄ or HNO₁+Aq, and by H₂SO₄+HF.
Wholly sol in cold HCl+Aq (Lévy)
4ZnO, 5TiO₂ Not attacked by cold conc.

acids, but sol. by boiling except in HCl+Aq-(Lévy) ZnO, 3TiO₂. Insol in H₂O, alcohol, or her. Dil. HNO₃, H₂SO₄, or HCl+Aq do ether. not attack even on boiling; boiling H₂SO₄ dis-

solves with difficulty; not attacked by conc. boiling alkalies+Aq (Lévy, A. ch (6) 25. 471)

Pertitanic acid. See Pertitanic acid.

Titanium, Tı.

Decomp. H₂O even under 100° (Wbhler): not attacked by H₂O under 500°, (Kern, C. N 83. 57).

not decomp? H₂O at 100°. Does (Schneider, Z anorg. 1894, 8. 85)

Sol. in HCl+Aq if warmed. Rapidly sol. in HF+Aq. Sol. in cold dil. H₂SO₄+Aq, HNO2+Aq, or HC2H3O2+Aq Dissolves almost instantaneously in HF+Aq. (Merz.)

Sol. in molten lead and iron; sol. in HCl. HNO, and aqua regia (Moissan, C R. 1895, 120. 293.)

Amorphous. Loses its spontaneous inflammability when left for a time in contact with H.O. (Schneider, Z. anorg, 1895, 8, 85.)

Titanium amide, Ti(NH2)4.

Violently attacked by H₂O. (Stahler, B. 1905, **38**, 2629.)

Titanium tribromide, TiBr2+6H2O.

Very hydroscopic. (Stabler, B. 1904, 37. 4409.)

Titanium tetrabromide, TiBra.

Deliquescent. Decomp. by H₂O. (Dupps. R. 42, 352 Sol, in absolute alcohol and in dry ether

(Rosenheim and Schutte, Z. anorg 1900, 24. 238.)

Titanium bromonitride, TiNBr.

Decomp. by a small amount of \$20. On addition of more H2O, a part dissolves forming a solution which decomp on warming with separation of titanic acid. It behaves similarly toward dil. HNO3, dil. HCl and dil. H₂SO₄. Completely sol. in warm dil. H₂SO₄. (Ruff, B 1908, 41, 2262.)

Titanium carbide, TiC.

Sol in HNO₈+Aq (Shimer, C. N 55.71.) Insol in HCl Slowly sol. in aqua regia. (Moissan, C R 1895, 120, 295.)

Titanium carbide nitride, $Ti_{10}C_2N_8 = Ti(CN)_2$, 3TisN2.

Insol. m, and not attacked by boiling HNOs or H₂SO₄ (Wollaston), but sol. in HNO₂+HF (Berzelius)

Titanium dichloride, TiCl₂.

Very deliquescent Decomposes H2O with Insol in ether, CS2, or CHCl1. violence Decomp by 99 5% alcohol.

Titanium trichloride, TiCle.

Deliquescent. Sol in H₂O with evolution of heat +4H₂O

(Glatzel, B. 9. 1829.) Very sol in H₂O. (Polidori, Z. +6H₂O. anorg. 1898, 19. 307.)

Titanium tetrachloride, TiCla.

much heat, +5H₂O Deliguescent

Titanium sulphuryl chloride, TiCl.SO:=

TiChOSO CI Dehouesees gradually in moist air (Clausnitzer, B. 11. 2011.)

Titanium chloride ammonia, TiCl, 4NH1. Dehauescent Solution in H₂O is not quite clear, (Rose) According to Persoz (A. ch 46, 315), is

TiCl, 6NH TiCl4, 6NH2 and TiCl4, 4NH2.

Both compds, are unstable in moist air, insol, in ether. (Rosenheim, Z anorg. 1901, TiCl4, 8NH4. Violently decomp. by H2O.

Titanium tetrachloride cvanobromide, TiCl. NCClBr

(Schneider, Z. anorg, 1894, 8, 92.)

of heat (Wohler, A 73, 226.)

(Stahler, B. 1905, 38, 2627.)

Titanium chloride cvanhydric acid, TıCle, Deliquescent. Sol. in H₃O with evolution

Titanium inchloride nitrogen sulphide, 2TiCls, NoSt.

Decome rapidly in air (Davis, Chem. Soc 1906, 89. (2) 1576)

Titanium tetrachloride nitrogen sulphide, TiCl, N.S. Hydroscopic

Decomp, by H₂O, HNO₈, HCl, KOH and alcohol. (Wolbling, Z anorg 1908, 57, 282)

Titanium chloride phosphine.

Decomp by H2O, HCl+Aq, KOH+Aq, K₂CO₂+A_G, or (NH₄)₂CO₂+A_G (Rose)

Titanium tetrachloride phosphoryl chloride, TiCl, 2POCl,

(Ruff, B. 1903, 36, 1783.)

Titanium chloronitride, TiNCl.

Decomp. by small amount cold H₂O. On the addition of more H₂O it is only partially decomp. For complete solution, the addition of dil. HCl or a mixture of warm dil H₃SO₄ and HF is necessary. Easily sol in conc. HNO₂ and in conc. H₃SO₄. (Ruff, B. 1998, 41, 2259.)

Titanium diffuoride. (Hautefeuille, C. R. 57, 151.) Probably sesquifluoride.

Titanium sesquifluoride, TizFa. Anhydrous. Sol. in H₂O with evolution of

Appears to be two modifications, one sol in H₂O, and the other insol in H₂O (Hautefeuille, C. R. 59, 189, Insol. in H₂O (Weber, Pogg. 120, 292)

Titanium tetrafluoride, TiFa. Decomp. by H₂O. (Unverdorben.)

Sol. in H₂O, but solution decomp, upon evaporation (Marignac, Ann Min (5) 15. 258.)

Sol in H₂O (Emich, M. 1904, 25, 910.) Very hydroscopic Sol in H₂O. Sl sol in conc. HF+Ag.

Sol in cold POCla without decomp. Decomp. in warm POCla

comp. in warm FCC1;
Sol m alcohol and dry pyridine.
Insol. m ether, CS2, CC14, SiC14, SiBr4,
SO₂Cl3, SOC15, SC15, AsC13, SO3, CrO5, PC13
(Ruff, B 1903, 36. 1780) +2H₂O. Sol in H₂O. (Ruff, B 1903, 36. 1780)

Titanium hydrogen fluoride, 2HF, TiF.= HaTiFa

Sol in H₂O with decomposition and separation of a basic salt Corresponds to fluosilicic acid, and may be considered as fluotitanic acid HaTiFa.

Titanium fluoride with MF. See Fluotitanate, M.

Titanium tetrafluoride ammonia, T1F4, 2NH2, Sol. in H₂O; decomp in aq. solution on boiling. (Ruff. B. 1903, 36, 1781.)

Titanium monohydroxide, TiO.H. Ppt. (Wohler, A. 73, 49.)

TiaO.H. Not attacked by cold cone, acids; sl. attacked on warming. Insol. in cold or hot KOH+Aq. (Winkler, B. 1890, 23. 2659.)

Titanium sequihydroxide, T12O3, xH2O. " Decomposes very quickly with HO, form-

ing titanium dihydroxide TiO.H. (Polidori, Z. anorg, 1899, 19, 306.)

Titanium dihydroxide. See Titanic acid.

Titanium hydroxychloride, TiCla(OH).

Deliquescent. Easily sol in H₂O and alcohol Sol, in ether

TiCl₂(OH)₂+1½H₂O. Deliquescent. Sol. in H₂O, alcohol, and ether. Aqueous solution decomp, by boiling, Nearly insol in H2O. $T_1CI(OH)_s + H_sO$ Insol in alcohol and ether, (Konig and v. der Pfordten, B. 21, 1708.)

See also Titanium oxychloride.

Titanium dziodzde, TiI2.

Very hydroscopic; insol, in organic solvents; sol in conc. HF and boiling HCl, decomp, by

H₂O, alkahes, H₂SO₄ and HNO₅. (Defacqz, Titanium oxide, Ti₃O₅. C R. 1908, 147. 66)

Titanium truodide, Til3+6H2O.

Very hydroscopic. (Stähler, B. 1904, 37. 4410)

Titanium tetraiodide, Til.

Fumes on air, and dissolves rapidly in H₂O with evolution of heat. Solution decomposes on standing. (Weber)

Titanium nitride, T12N4.

Difficultly sol. in warm HNOs+Aq. More easily sol. in aqua regia. (Rose.)
Insol. in dil. seids. Decomp. by hot cone. lisol. in dil. acids. Decomp. by hot conc. H.SO., and by conc. HNO₂, especially when HF is added, and by boning KOH+Aq. (Ruff and Essner, B. 1908, 41. 2252)

Decomp by H₂O and dil acids

Insol. in all ordinary indifferent organic solvents (Ruff, B. 1912, 45. 1339) T.Ns. Insol. in H₂O. (Wohler.) Is T.N., according to Guern (C R. 82. 972.)

Titanium monoxide, TiO.

(Moissan, C. R. 1895, 120, 290.)

Titanium sesqueoxide, Ti₂O₃.

Insol. in HCl or HNO₂+Aq Difficultly sol. in H₂SO₄ (Ebelmen, A ch. (3) **20**. 392.) When moist, insol. in H₂O or NH₄OH+Aq, but quickly decomp. to TiO₂ Sol. in oxygen acids, but quickly decomp (Berzelius.)

Titanium dioxide, TiO2.

Amorphous, Insol. in H₂O, HCl, or dil. H2SO4+Aq, even when heated for a long

Sol in cone. H.SO. by long digestion. ThO2, strongly ignited at 1000°, is practi-cally insol. in cone. H₂SO₄ and HF When less strongly ignited (by heating ortho or metatitanic scid to 700°) it is easily sol, therein. (Bornemann and Schirrmeister, C. C. 1910, II. 1870)

Ignited TiO2 is very difficultly sol. in HF (Pennington, J Am. Chem Soc. 1896, 18.

The solubility of ignited TiO2 in H2SO4 is helped by H2O2. (Weiss and Landecker,

Z. anorg. 1909, 64. 71.)
The solubility in H₂SO₄ is increased by addition of HoO2, HaO2 brings TiO2 quickly and completely into solution in the presence of NH₄OH, NH₄Cl, NaOH, Na₂CO₂ and Na₂HPO₄. (Weiss and Landecker, Z. anorg. 1909, 64. 71)

Insol. in liquid NH4. (Gore, Am. Ch. J. 1898, **20.** 830.) Min. Ruttle, Brookste, and Crystalline.

Anatase. Solubility as above See also Titanic acid.

A 237, 201)

(Deville, C R 53. 163)

True formula is TirO12 (v. der Pfordten,

Titanium peroxide, TiOs.

Sol in acids. Solution in H-SO, is very stable, but the HCl solution decomposes very easily. (Weber, B. 15. 2599; Piccini, B. 15. 2221; Classen, B. 21. 370.)

Titanium oxychloride, TiO₀, TiOCl₀+8H₂O. Sol. in much H₂O (Merz, Bull, Soc. 1867.

401.) Ti2O2Cl2. Insol in H2O. Sol. in NH4OH+ Aq with separation of TiO2 See also Titanium hydroxychloride.

Titanium oxyfluoride.

Insol, in H_{*}O (Berzelius)

Titanium oxyfluoride with MF. See Fluoxypertitanate, M.

Titanium phosphide, TiP.

Sl. sol in boiling aqua regia Insol, in dil or cone acids and alkabes. Sl. attacked by furning HNO₂ in sealed tube at 250°-300°. (Gewecke, A. 1908, 361. 84.)

Titanium phosphochloride.

See Phosphorus titanium chloride.

Titanium silicide, TiSi2.

Sol in HF; msol in other min. acids Slowly sol in 10% KOH+Aq. (Honigschmid, C. R. 1906, 143, 226.)

Titanium monosulphide, TiS.

Insol, in alkalies Difficultly sol, in nitric acid and aqua regia Insol. in HF. (v. der Pfordten, A 234.

Titanium disulphide, TiS2.

Decomp. slowly on moist air. Insol in HCl or dil. H₂SO₄+Aq. (Ebelmen.)
Sol in aqua regia or HNO₁+Aq. Decomp
by KOH+Aq or NaOH+Aq. Insol. in

KSH+Aq (Rose.) Sol, in HF at 100°. (v. der Pfordten, A. 234, 257.)

Titanium sesquisulphide, Ti₂S₃.

Insol in caustic alkalies+Aq. Sol. in HF at a high temp. Insol in aqua regia. (v der Pfordten, A. 234. 257.)

Titanomolybdic acid, T_1O_2 , $12M_0O_3+22H_2O$. Very sol. m H₂O

Sol in ether. (Pechard, C. R. 1893, 117. 790.)

Ammonium titanomolybdate,

2(NH₄)₂O, TiO₂, 12M₀O₃+10H₂O. Sol in H₂O and acids; completely insol in solutions of ammonium salts (Pechard.)

Potassium titanomolybdate, 2K2O, TiO2, 12M0O3+16H2O.

Efflorescent. Sol in H₂O. (Pechard.)

Titanodecatungstic acid, HaTiW10O2+ a xH₂O. (Lecarme, Bull. Soc (2) 36, 17.)

Titanotungstic acid or Titanoduodecitungstic acid, H.TIW11O42+2H4O (Lecarme, Bull. Soc. (2) 36. 17)

Titanous acid.

Sodium titamte, Na₂TiO₃=3Na₂O, Ti₂O₃. Sol in dil acids (Koenig and v. der Pfordten, B 22. 2075)

Titanyl compounds.

See Titanium oxy-compounds.

Triamine cobaltic compounds. See Dichrocobaltic compounds.

Trithionic acid, H2S2O4

Known only in aqueous solution Solution in H₂O gradually decomposes in the cold, rapidly at 80°. Not decomp. if very dilute or in presence of acids, except HNO₂, HClO₂, and HIO₂ (Fordos and Gélis, A. ch (3) 28, 451.)

Trithionates. The trithionates are all sol in H₀O, and

very easily decomposed.

Ammonium trithionate, (NH4)2S2O6 Very deliquescent and unstable.

Very sol. in H₂O

Chem. Soc. 1900, 77. 337.) Barium trithionate, BaS₂O₆+2H₂O.

Very sol, in H.O. Precipitated from aqueous solution by large excess of alcohol Aqueous solution is very unstable. (Kessler.

Pogg 74, 250.) Lead trithionate, PhS.Os.

Very al. sol. in HaO. Sol. in NaaSaOa+Ag

(Fogh, C. R 110, 524) Potassium trithionate, K2S3O6.

Sol. in H₂O. Insol. in alcohol. (Kessler, Pogg 74. 270)

Sol in H2O with decomp Insol. m alcohol. (Langlois, A. 1841, 40, 102.)

Sodium trithionate, Na2S2Os. Very sol in H2O

+3H₂O, (Villiers, C R 106, 1356,) Thallous trithionate, Tl2S2O6.

Sol in H₂O. (Bevan, C. N 38, 294.)

Zinc trithionate. Sol in H2O, but decomposes upon warming the solution. (Fordos and Gélis, C. R. 16.

Tungsten, W.

Metallic Not attacked by heating with fuming HNOs, aqua regia, or other acids, or by boiling KOH+Aq Sol in KOH+Aq and NaClO+Aq (v. Uslar, A. 94. 255)

Not easily acted upon by moist air, if no O₂ present. Sol. in a mixture of HF and HNO₂. Very slowly sol. in H₂SO₄, HCl and HF. (Moissan, C. R. 1896, **123**, 15)

Very slowly attacked by HNO3, H3SO4 Very Slowij Bakerkeu by Arros, 119004, HCl and even Cr0, A mukture of Cr0, and H₂SO₄ dissolved 1 67 g. in 16 his. from a fine were and 1.30 g. in 14 hours (Fink, Met. Chem Eng. 1910, 8, 341) Compact tungsten is not attacked by dil.

and only al dissolved by conc H₂SO₄ Not attacked by dil. or conc. HCl HNO₂ and HNO₃+HCl attack slowly by long heating, forming thin layer of WO₃ Slowly sol in HNO₃+HF. (Weiss, Z. anorg. 1910, **65**, 339.)

Aluminothermic tungsten is insol in acids and in squa regia. Sol. in fused KOH (Stavenhagen, B 1899, 32, 1515.) Insol. in HCl of any concentration at room

temp and only very sl. sol. at 110°. After being in contact with hot conc. HCl (sp. gr. 1.15) for 175 hrs. the metal lost 0.5% of its weight. Sl. sol. in del HCl at 110°. Insol. in conc. H₂SO₄ at room temp. and

in dil. H-SO4 at 110°. Somewhat sol, in conc. H₂SO₄ at high temp Insol. in conc. HNOs, and hot or cold HF.

Sl. sol. in aqua regia.

Very sol in HF+HNO₂. (Ruder, J. Am.

Chem. Soc. 1912, 34, 387) Insol in aqua regia and acids; sol. in fused Insol. in abs alcohol (Divers and Ogaws, KOH. (Stavenhagen, B 1899, 32, 1514.)

Insol in KOH+Ao Sol in fused KOH Slowly sol. in fused Na₂CO₃, K₂CO₃ or

mixture of the two. Somewhat sol. in NaOCl+Aq. (Ruder, J. Am. Chem Soc 1912, 34, 388.)

Insol in liquid NHa. (Gore, Am. Ch. J. 1898, 20, 830, Crystalline. Insol. in H.O, HCl, or H.SO.

Oxidised by HNO; or aqua 'regia' (D'Elhu-

Sol. in boiling KOH+Aq. (Riche, A. ch. (3) 50. 5.) Amorphous. Easily oxidised by HNOs+ Ag. (Zettnow.)

Tungsten amide. See Tungsten nitride.

Tungsten arsenide, WAs2.

Insol in H₂O and other solvents Not attacked by boiling HF or HNO; Sol in cold HF+HNO, and in hot aqua regia attacked by hot KOH+Aq or NaOH+Aq Decomp. by fused KOH or NaOH. (Defacqz, C R 1901, 132, 139)

Tungsten boride, WB2.

Slowly attacked by cone acids; vigorously attacked by aqua regia (Tucker and Moody, Chem Soc 1902, 81, 16)

Tungsten dibromide, WBr2.

Partly sol in H2O, the rest decomposing to WO2 and HBr.

Tungsten pentabromide, WBr₅.

Decomp by moist air or H-O Sol. in caustic alkalies + Aq.

Very hydroscopic Fumes in the air Decomp, by H.O

Sol in HF, or conc. HCl. Sl. sol, in furning HBr Decomp by dil. HCl, conc. HNO₄ or dil. H₂SO₄. Readily attacked by fused alkalies or alkalies + Aq. Sol in CCl4, CHCl3, CHBr₃, abs alcohol, ether, essence of tere-benthine and benzene (Defacez, C R. 1809, 128, 1232)

Tungsten hexabromide, WBrs.

Decomp by H2O and in the air Sol in NH₂OH+Aq. (Smith, J Am. Chem Soc. 1897, **18.** 1100.)

Tungsten bromochloride, WCl, WBro.

Decomp. by H₂O. Sol in HF. Decomp. by HNO; or H₂SO. Violently attacked by

fused alkalı or alkalı+Aq. Sol, in most

organic solvents.

WCls, WBrs. Properties like those of WCls, WBrs. (Defaqar, C. R. 1899, 129, 516.)

Decomp by H.O. Sol in 40% HF+Aq. (22° B HCl. +Aq gives as l ppt of WCs. Decomp by H.O. and by H.SO. Sol in the solvents of the solvents abs alcohol, ether, CS2, C4H6 and glycerine. Sol in CCl₄ only on warming Nearly insol in oil of turpentine (Defacqz.)

Tungsten bronze.

See-

·Tungstate tungsten oxide, barium. Tungstate tungsten oxide, barium potas-

Tungstate tungsten oxide, barium sodium. Tungstate tungsten oxide, calcium potas-

Tungstate tungsten oxide, calcium sodium. Tungstate tungsten oxide, lithium.

Tungstate tungsten oxide, lithium potas-Tungstate tungsten oxide, potassium.

Tungstate tungsten oxide, potassium sodium.

Tungstate tungsten oxide, potassium strontium.

Tungstate tungsten oxide, sodium, Tungstate tungsten oxide, sodium stron-

Tungsten carbide, W2C.

Sol in boiling HNO₃, very slowly acted upon by other acids. (Moissan, C R. 1896,

123, 16.)
WC. Insol. in the acids, only st sol in HNO. sol in fused KClOs and KNO₁. (Williams, C. B 198, 126, 1724)

Tungsten dichloride, WCl.

Decomp on the air or with H₂O (Roscoe)

Tungsten tetrachloride, WCl.

Deliquescent Partly sol in HiO, with subsequent decomposition (Roscoe)

Tungsten pentachloride, WCls.

Very deliquescent. Decomp with H2O with hissing and evolution of heat and separation of W2Os.

Very sl. sol in CS2 (Roscoc.)

Tungsten hexachloride, WCls.

Not decomp, by most air of H₂O De-comp, by alcohol Very sol in CS₂ (Ros-

Easily sol in POCl₃ (Teclu, A 187, 255) Tungsten chloride nitrogen sulphide, WCl4,

(Davis, Chem. Soc. 1906, 89, (2) 1575)

Tungsten chloroarsenide, W2AsCl9.

Hydroscopic, decomp by H₂O and acids: sol in aq solution of alkalies; insol in anhydrous organic solvents. (Defacqz, C. R. 1901. 132. 139)

Tungsten chlorosulphide, W2S7Cl3.

Decomp by H₂O Sol. in S2Cl2. (Smith and Oberholtzer, Z. anorg, 1894, 5, 68.

WCl, 3WS, Decomp by H2O. Insol. in CS2, alcohol and CoH5. (Defacqz, A. ch. 1901, (7) 22, 266)

Tungsten hexafluoride, WFt.

Fumes in the air Decomp by H2O. Easily sol, in aq. alkalies. (Ruff, B. 1905, 38. 747)

Tungsten diiodide, W.I.

Not decomp, by H₂O. (Roscoe, A. 162. 366.)

Insol. in H₂O, CS₂ and alcohol. Decomp. by boiling H₂O, HNO₃, H₂SO₄ and aqua-regia; sol. in fused KOH, and alkalı carbonates (Defacqz, C. R. 1898, 126, 936)

Tungsten tetraiodide, WI.

Insol. in H2O, ether, chloroform and turpentine, sol in abs alcohol, decomp when boiled with H.O: sol, with decomp in dil. HCl and H2SO4, in HNO3 and aqua regia, and in alkalı hydroxides and carbonates fused or in ag. solution. (Defacez, C. R. 1898, 127.

Tritungsten nitride, WaN2.

(Uhrlaub)

WaNa. Insol in HNOs, dil HaSOs and NaOH+Aq (Rideal, Chem Sor 1889, 55.

Tungsten_nitride amide, WaNaH4=2WN2, W(NH_o)_o

Not attacked by acids or caustic alkalies+ Ag. (Wöhler, A 73, 191.)

Tungsten nitride amide oxide, W7N2H4O4= 3WN2, W2(NH2)2, 2WO2.

Not attacked by acids or alkalies (Wöh-

Tungsten monoxide, WO.

Insol in H₂O. Not attacked by HCl. HF, H₂SO₄, or KOH+Aq HNO₃+Aq or aqua regia convert it into WO₂ (Headden, Sill. Am. J 145, 280)

Tungsten dioxide, WO2

(a) When prepared in the dry way, is attacked only by aqua regia, which oxidises to WOs.

(b) When moist, is sol. in HCl or H2SO4-Aq, also in KOH+Aq Insol. in NH₂OH+ Aq. (Riche, A. ch. (3) 50. 5.)
Cryst. Insol. in HCl, H₂SO₄ and conc. ac

alkalies; sol. in HNOs. (Hallopeau, C R. 1898, 127, 135.)

Tungsten oxide, blue.

W₂O₆ (Riche, A. ch. (3) **50.** 33); W₂O₈ (v. Uslar), W4O11 (Gmelin). All are probably the same substance. Not attacked by boiling HNO₃ or aqua regia

Slowly sol. in boiling KOH+Aq. Tungsten trioxide, WO2.

Insol in H₂O or acids. Sl. sol in dil KOH +Aq, NaOH+Aq, Na₂CO₂+Aq, or H₂CO₃+ Aq, but easily sol. in conc boiling solutions of same. NH₄OH+Aq when boiling has a

solvent action. Insol in cone, and dil HoSOs. (Desi, J. Am. Chem. Soc 1897, 19, 214.)

Min. Tungstite. Insol. in acids. Sol in NH.OH+Ao.

Tungsten oxide, W2O1.

1897, 19. 214)

W₁O₃. Insol. in acids and alkalies (Desi, J Am. Chem Soc 1897, 19. 228.) +H₂O. Like W₂O₁₄+H₂O. (Allen and Gottschalk, Am. Ch. J. 1902, 27. 336.) W₄O₃. (Desi, J. Am. Chem Soc 1897, 19.

 $W_3 \cup_3$. (Dest.) $W_5 \cup_{14} + H_2 O$. Insol in $H_2 O$ containing a little HClSlowly attacked by cold, conc. MOH+Aq

(Allen and Gottschalk, Am Ch. J 1902. 27. 333.)

Tungsten trioxide ammonia, WO, 3NH2. (Rosenheum and Jacobsohn, Z. anorg. 1906, 50. 306)

Tungsten oxybromide, etc. Ses Tungstyl bromide, etc.

Tungsten monophosphide, WP. Not attacked by HF or HCl

Sol in warm HNO2+HF. Slowly attached by hot HNO2.

Not attacked by KOH+Aq or NaOH+Aq. (Defacqz, C. R. 1901, 132, 34.)

Tungsten diphosphide, WP2.

Insol in HaO and in most organic solvents; insol, in HCl and HF; sol in a mixture of HF and HNOs in the cold, and in aqua regia on warming. (Defacqz, C. R. 1900, 130. 916.)

Tungsten phosphide, W4P2.

Not attacked by any soid, not even by aqua regia _(Wohler and Wright, A. 79. 244) W₂P₄. (Wöhler and Wright.)

Tungsten diselenide, WSe2. (Uelsmann.)

Tungsten triselenide, WSes.

Easily sol, in alkalı sulphides or selenides +Aq. (Uelsmann, Jahrb f. Ch. 1860, 92.)

Tungsten silicide. Sol. in HF

Only very sl. sol. in other acids (Warren, N. 1898, 78. 319.)

WSi. Not attacked by ordinary acids and scarcely by warm aqua regia, but violently attacked by HNO₃+HF. Sl. attacked by 10% alkalies+Aq. (Honigschmid, M. 1907, 28, 1017.)

Not attacked by dil. or conc HCl, HF, HNOs or H₂SO₄, nor by not aqua regia.

Attacked by HNO₃+HF or by fused

alkalies. (Defacqz, C. R. 1907, 144, 850.) WSi₃. Violently attacked by HNO₈+HF Not attacked by HNOs, H2SO4, HCl or HF. (Frilley, Rev Met. 1911, 8. 509.)

W₂Si₃ Insol in acids including HF; sol, in a mixture of HF and HNO₃; sol in fused Sol. in alkalies (Desi, J. Am. Chem. Soc. alkali hydroxides and carbonates. (Vigouroux, C. R. 1898, 127. 394.)

Tungsten disulphide, WS. Oxidised by HNO+Ag. (Berzelius)

Insol, in min acids Sol. in a mixture of HF and HNO, and in fused alkahes and alkalı carbonates

facoz, C R 1899, 128, 611.) Tungsten trisulphide, WS:

Somewhat sol in cold, abundantly in hot H.O. but separated out by the addition of salts, especially NH4Cl, or acids. Sol. in alkalı sulphides, and hydrosulphides+Aq. Sol in caustic alkalies, and alkali carbonates +Aq Slowly sol, in NHOH+Aq in the cold.

Tungstic acid, HoWO4

Insol, in H₂O Sol, in HF Insol in tung-

states +Aq 44.7% H₂WO₄ is sol. in 50% HF+Aq at 55 3% H.WO4 is sol in 50% HF +Ag at

100 g sat. H₂WO₄+HCl+Aq contain 0.68 g H₂WO₄ at 80° 9.8 % H₂WO₄ is sol in sat alcoholic HCl at 75°.

Insol in alcoholic solutions of HBr and HI (Rosenheim, Chem Soc 1911, 100. (2) 402.) Freshly pptd tungstic acid dissolves in H₂O₃ (Kellner, Dissert 1909.) Insol in liquid NH₃. (Gore, Am. Ch. J.

1898, 20, 830) H₄WO₈ Precipitate Sl sol. in H₂O and aqueous solutions of the tungstates. Sol in 250-300 pts H₄O. When freshly pptd, sol, in alkalı hydrates or carbonates+Aq. (Anthon, J. pr. 9. 6)

Metatungstic acid, H₂W₄O₁₈+9H₂O.

Sol in H2O. Solution may be boiled and evaporated to a syrupy consistency, when it suddenly gelatinises and ordinary tungstic acid is precipitated

Sol in H₂O. When heated to 50°, it becomes insol, in H₀O. (Soboleff, Z. anorg, 1896, 12. 28.)

Solubility in HaO at to

t°	100 ccm H ₂ O dis- solve g of the tryst. acid	Sp gr of the solution
0 22 43 5	41.46 88.57 111.87	1.6025 2.5239 3.6508
	(Scholeff	1

Sp. gr. of solution of metatungstic acid at 17.5° containing: 2.79 12.68 27.61 43.75% WO.

1.0257 1.1275 1.3274 1 6343 (Scheibler, J. pr. 83. 273.) Sp. gr. of aqueous solution calculated by M = M endelejeff, and G = (G erlach (Z, anal. 300), containing.

'25% WO. 10 15 20 M 1.047 1 098 1.159 1.214 1.285 G 1.0469 1 0980 1.1544 1.2172 1.2878

35 40 45 50% WO. M 1.366 1.458 1.555 1.581 (?) G 1.3660 1,4540 1,5527 1,6630 1,7860

Solubility in ether at to.

t*	100 ccm. ether dissolve g of the cryst acid
7.8 18.2 24 3	83.456 88.389 99.66 110.76

(Soboleff, Z. anorg, 1896, 12, 32.)

Colloidal Sol. in H.O Not precipitated by acids or alcohol. Can be evaporated to drvness and heated to 200°, and still remains sol. in H₀O Sol. in ½pt. of H₂O

Sp. gr of adueous solution containing: 50 66.5 79.8% WO. 1.0475 1.2168 1.8001 2.596 3.243 (Graham, Chem. Soc. 17. 318.)

Perhaps paratungstic acid, 'H10W11O41. (Klein, Bull Soc (2) 36, 547)

Tungstates.

Few normal tungstates are sol in H2O, even some of the K and NH4 salts are very sl sol. Most of the metatungstates, however, are easily sol in H₂O Tungstates insol in H₂O are usually insol

in dil. acids. Aluminum tungstate, Al₂(WO₄)₈+8H₂O.

Precipitate. Insol. in H₃O and Na₂WO₄+ Aq. Sol. in (NH₄)₂Al₂(SO₄)₄+Aq, NaOH+ Aq. NH₄OH+Aq

Easily sol. in H_2PO_4 , $H_2C_2O_4$, and $H_2C_4H_4O_6+Aq$. (Lotz, A. 83. 65.) Sol. in 1500 pts. H₂O at 15°. (Lefort, C. R. 87 748)

Al₂O₂, 4WO₂+9H₂O. Sol. in 400 pts H₂O at 15°. (Lefort, C. R. 87. 748.) Al₂O₃, 5WO₃+6H₂O. Sol. in H₂O, from which it is pptd by alcohol. (Lefort.) Formula according to Lefort is Al₂O₁, 3WO₁

+3H₂O, 2WO₃ See also Aluminicotungstic acid.

Aluminum paratungstate, 5Al₂O₃, 36WO₃+ 46H₂O = Al₂O₂, 7WO₂+9H₂O (?).

Easily sol in an alum solution. (Lotz, A. 83. 65.)

Aluminum ammonium tungstate, 3(NH4)2O, Al₂O₄, 9WO₄+4H₂O.

Sol. in conc HNO; and in conc. HCl (Balke and Smith, J. Am. Chem. Soc. 1903. 25, 1230.)

Aluminum ammonium antimony tungstate. See Aluminicoantimoniotungstate, ammonintro.

Aluminum antimony tungstate. See Aluminicoantimoniotungstic acid.

Aluminum zinc tungstate, Al₂O₈, ZnO, 9WO₈ +20H₂O.

Very sol in H₂O (Dapiels, J. Am Chem. Soc 1908, 30, 1850)

2Al₂O₃, 3ZnO, 18WO₃+16H₂O. Sol in influeh H₂O

Sol, in very dil, mineral acids or in acetic acid. (Daniels.)

Ammonium tungstate, (NH4), WO4.

Known only in solution $(NH_4)_4W_3O_{11}+3H_2O=2(NH_4)_2O$, $3WO_4+3H_4O$. Sol in H_2O with decomp Decomp on air with evolution of NH₃, and formation of paratingstate. Sol. in NH₄OH+Aq (Marignee, A, ch. (3) 69. 23.)

(NH₄)W₄O₂+5H₂O=2(NH₄)₂O₃ 5WO₃+

5H2O. Sol at ordinary temp. in 26-29 pts H₂O with partial decomposition. (Marignac.) +2½H₂O, +3H₂O, +4H₂O, +4½ and +5H₂O. (Pinagel, Dissert, **1904.**) +412H2O, (NH4)6W5O27+8H2O=3(NH4)2O, 8WO8+

8H₂O Sol. in H₂O. (Marignac.)

Colloidal (NH₄)₂O, 6WO₈+4 or 6H₂O

Miscible with water in nearly all proportions (Taylor, J. Am. Chem Soc. 1902, 24. 632.)

Ammonium metatungstate, (NH4)2W4O11. +6H₂O. (Marignac, A ch. (4) 3, 74.) +8H₂O. Efflorescent. Very sol, in H₂O 1 pt. dissolves at 15° in 0.84 pt. H₂O. (Lotz.)

1 pt. dissolves at ordinary temp in 0.35 pt. H.O. (Riche.) Solubility increases iapidly with the tem-

perature Saturated solution at 40° is solid on cooling.

St. sol in ordnary, insol, in absolute alcohol (Lotz.) Insol in other (Riche.) ([NH₄)₂W₃O₃₊5H₂O₃ of Margueritte.) (NH₄)₄W₃O₃₊17H₄O = 3(NH₄)₂O, 16W₃O₃ + 17H₄O = 3(NH₄)₂O, 16W₃O₃ + 17H₄O. Very efflorescent. Decomp by dissolving in pure H₂O. (Marguac, A. ch. (4) 75)

Ammonium paratungstate, (NH4)10W11O41= 5(NH4)2O, 12WOs.

(Maugnac, A ch. (3) 69. 25) (J. pr. 80, 208), formula is (NH₄)_WV₂O₂=
3(NH₄)₄O, 7WO₄
+5H₂O. (Scheibler, J. pr. 48, 232)
+11H₄O. Sol. in 25-28 pts. cold H₄O.

(Anthon)

Sol. in 26.1 pts. H₄O at 10.7°, and 5.8 pts at 100° (Lotz.) Sol. in 33.3 pts. cold H.O. and 96 pts at 100°. (Riche.)

Sol. in 22-38 pts H₂O at 15-18° The solution gradually decomposes, with the formation of a more soluble salt (Marignac) Not much more sol. in NH4OH+Aq than in H₂O Insol in alcohol (Anthon) (Kellner, Dissert, 1909.) Sol in H₂O₂

Ammonium bismuth tungstate. See Bismuthicotungstate, ammonium.

Ammonium cadmium paratungstate, 3(NH4)2O, 12CdO, 35WOs+35H2O.

Ppt. Sol. in H2O acidulated with HNOs. (Lotz, A. 91, 49.)

Ammonium cerium tungstate. See Cericotungstate, ammonium,

Ammonium cobaltous tungstate, 8(NH₄),O. 2CoO, 15WO₈+3H₂O (Carnot, C R. 109, 147,)

Ammonium hydroxylamine tungstate, NHOWO,NHA

Sol in H₂O. (Hofmann, Z anorg. 1898, 16. 465)

Ammonium iron (ferric) tungstate, 5(NH₄)₂O. Fe₂O₅, 5WO₂+5H₂O Sol in H₂O. (Borck.)

Ammonium lanthanum tungstate. See Lanthanicotungstate, ammonium.

Ammonium magnesium paratungstate, 2(NH₄)₂O, 3MgO, 12WO₂+24H₂O. Very slightly sol in H.O. (Marignac, A. ch. (3) 69. 58 (NH₄)₂O, 2MgO, 7WO₄+10H₂O Very sl. sol in H₂O; sol. in H₂O acidulated with-HNO. (Lotz.)

Ammonium mercuric tungstate, (NH4)2WO4. HeWO+HO. Insol. in H2O. Decomp. by acids or alkalies (Anthon)

Ammonium neodymium tungstate.

See Neodymicotungstate, ammonium. Ammonium nickel tungstate.

See Nickelicotungstate, ammonium.

Ammonium votassium varatungstate. 5K(NH4)O, 12WO4+11H4O. Sol. in boiling H₂O, sl. sol. in cold H₂O. (Hallopeau, C R. 1896, **123**. 180)

Ammonium potassium sodium paratungstate, $5(K, Na, NH_4)_2O, 12WO_8+13H_2O, where K \cdot Na \cdot NH_4=3:3:4.$ 10(K, Na, NH₄)₂O, 24WO₃+26H₂O, where K. Na: NH₄=3:3:14. (Laurent.) Ammonium sodium priatungstate, 4(NH₄)₂O,
Na₂O, 12WO₂+5H₂O.
Na₂O, 12WO₂+5H₂O.
Na₂O, 12WO₂+5H₂O.
Na₂O, 10O com H.d.

Can be crystallised from H₂O without decomp (Lotz, A 91.57.) +14H₂O. Sol. in warm H₂O. (Hallopeau,

C. R 1899, 123, 181:)
(NH₂)₂0, 4Na₂O, 12WO₁+25H₂O, St. sol.
In H₂O. (Hallopeau, C. R 1895, 120, 1344)
5Na₂O, 15(NH₂)₂O, 48WO₂+48H₂O.
(Marignac, A. ch. (3) 69, 53)

(Mariganc, A cn. (3) 69, 58) 2Na₂O, 3(NH₄)₂O, 12WO₃+15H₂O. (Mariganc) 3(NH₄)₂O, 2Na₂O, 12WO₃+15H₂O. 3(NH₄)₄O, 3Na₄O, 16WO₃+22H₂O. Sol

In H₄O without decomp. (Hallopeau, C. R 1896, **123**, 181.) 3Na₂O, 4(NH₄)₂O, 16WO₅+18H₂O. (Gibbs, Am. Ch. J. **7**, 236)

Is 2Na₂O, 3(NH₄)₂O, 12WO₃+13H₄O, according to Knorre (B 19. 823)

Very sol in hot H₄O (Knorre, B 1886.

Very sol in hot H₂O (Knorre, B 1886, 19. 823), NH₂O, 3Na₂O, 16WO₂+38H₂O. (Wyrouboff, Bull Soc Min 1892, 15. 85.) 6(NH₂)O, 2N8₂O, 20WO₂+24H₂O. Can

6(NH₄)₂O, 2Na₂O, 20WO₃+24H₂O. Can be cryst from boiling H₂O. (Baragiola, Dissert, 1902.) 4Na₂O, 16(NH₄)₂O, 50WO₃+50H₂O Sl

4Na₂O, 16(NH₄)₂O, 50WO₂+50H₂O Si scl. in cold H₂O (Gibbs, Proc. Am Acad 15. 12)

Ammonium zinc paratungstate, (NH₄)₂O, 2ZnO, 7WO₈+13H₂O.

Sl sol. in boiling H₄O, but more easily on addition of ovalic, tartaric, phosphoric, or dil. nutric acids, or of ammonium tungstate. (Lotz, A 91. 49.)

Ammonium zirconium tungstate. See Zirconotungstate, ammonium.

Ammonium metatungstate nitrate.

See Nitrate metatungstate, ammonium.

Ammonium tungstate vanadate. See Vanadiotungstate, ammonium.

Antimony tungstate, Sb₂O₃, 5WO₄+4H₂O.
Sol in H₂O without decomp (Lefort)
Sb₂O₃, 6WO₃+8H₂O. Ppt
See also Antimomorphics acid.

Barium tungstate, BaWO.

Anhydrous. Insdl. in H₂O. Decomp by boiling HNO₃+Aq. (Geuther and Forsberg, A **120**, 270.) +½H₂O. Insol in H₂O or boiling H₃PO₄+ Aq. Sol in boiling, less sol in cold H₂C₂O₄+

Aq (Anthon.)

+2½HO. Insol precipitate (Scheibler.)

Pptd BaWO4 is attacked by dil acids.

More sol an NH₄NO₃+Aq than in H₂O.

(Smith and Bradbury, B 24. 2930)

Barium ditungstate; BaWzOr+HzO (?). Nearly insol. in H₂O. 100 ccm. H₂O dissolve about 0.05 g 'at 15°. (Lefort, A. ch. (5) 15. 325)

Barium tratungstate, BaW2O10+4H2O (?),

Sol in about 300 pts. H_2O at 15° Decomp. by bohing H_2O into an insol salt. (Lefort, C. R. 88, 798) $+6H_4O$ (Scheibler)

Barium metatungstate, BaW₄O₁₈+9H₂O. '
Efficiescent Quite sol, in hot H₂O.
Partly decomp by cold H₂O into BaW₃O₁₈ and
W₅O₁₈, which recombine on heating. (Schelbler, J pr. 80, 204.)

Barium tungsfate, BaWaO25+8H2O.

Insol. in H₂O or HCl+Aq. (Zettnow.) BaW₄O₁₅. Barium bionze. (Hallopeau, A. ch. 1900, (7) 19, 121)

Barium paratungstate, Ba₆W₁₂O₄₁+14H₂O, or Ba₃W₇O₂₄+8H₂O.

Insol, in cold H₂O; when freshly pptd. is sl. sol. in HNO₃+Aq. (Lotz, A. 91. 60) Sol in NH₄Cl+Aq. (Wackenroder.) +27H₂O = Ba₂W₁O₂C+16H₂O Insol. in cold, sl sol. in hot H₂O (Knorre, B 18. 327.)

Barium silver metatungstate. (Scheibler)

Barium sodium parbtungstate, 2BaO, 3Na₂O, 12 WO₂+24H₂O. (Marignae), or BaO, 2Na₂O, 7WO₃+14H₂O (Scheibler). Insol. in H₂O

Barium sodium tungstate tungsten oxide, 2BaW4O12, 3Na₂W₄O15.

BaW4O₁₃, 5Na₂W₅O₉ (Engels, Z. anorg. 1903, **37**. 131)

Bismuth tungstate, B₁₂O₈, 6WO₂+8H₂O. Very sol in H₂O with decomp. Pptd by alcohol from aqueous solution. (Lefort, C. R. 87, 748.)

Cadmium tungstate, CdWO₄. Anhudrous

+H₂O. Sol. in about 2000 pts. H₂O (Lefort.) +2H₂O. Insol in H₂O Sol in hot phosphoric or oxalic acids, or in NH₂OH+Aq. (Anthon, J. pr 9. 341.) Sol in KCN+Aq (Smith and Bradbury, B. 24. 239) Cadmium detungstate, CdWaOr+3HaO (2) Sol. in about 500 pts. HaO at 15° (Lefort, A. ch (5) 15, 346.)

Cadmium tritungsfate, CdWaO10+4H2O (?). (Lefort.)

Cadmium melatungstate, CdO, 4WOs+

10H,O Not efflorescent (Scheibler, J. pr. 83, 273.) Somewhat less sol in H.O than the Mn salt.

Cadmium paratungstate, Cd₃W₇O₂₄+16H₂O. 823) Ppt. (Gonzalez.) Insol. in H₂O Sol m NH₄OH+Aq, and Cerium tungstate chloride, 3Ce₅(WO₄).

hot H.PO., H.C.O., or HC.H.O. +Au Cadmium sodium paratungstate, 2CdO, Na₂O,

7WO1+18H.O. Difficultly sol in cold H₂O. (Knorre, B. 19, 824.)

Calcium tungstate, CaWOs.

Insol. in H2O or dil. acids Sol in about Chromic tungstate, Cr2(WO4)3+7, and 13H4O. 500 pts. H₂O. (Lefort) Decomp. by KOH+Aq (Anthon When freshly pptd, sol, in NH4Cl+Aq

(Wackenroder) Sol m Mg, and NH4 salts, also Na2WO, H2O at 15° +Aq (Sonstadt, C. N 11. 97. Min. Scheelite. Decomp by HCl or HNO. +Aq, with separation of WOs.

Calcium ditungstate, CaW2O7+3H2O (?). Sol. in 30 pts. H₂O at 15°. (Lefort, A. ch. (5) 15, 328.)

Calcium tratungstate, CaW3O10+6H2O (?). Sol. in cold H_{*}O. (Lefort.)

Calcium metatungstate, CaW4O13+10H2O. Easily sol in H₂O (Scheibler)

Calcium paratungstate, Ca2W7O24+18H2O (or CasW10O41+30H0O). Much more sol, than Er or Ba salt (Knorre B. 18, 328.)

Easily sol. in H₂O₂. (Knorre, B 1885, 18.

Calcium potassium tungstate tungsten oxide, CaW, O12, 5K2W, O12. (Engels, Z. anorg, 1903, 37,149)

Calcium sodium paratungstate, 2CaO, 3Na₂O,

12WO₁+3H₂O. (Gonzalez, J. pr. (2) 36, 44)

Calcium sodium tungstate tungsten oxide, CaW4O12, 5Na2W4O15 Engels, Z anorg. 1903, 37, 145.)

Cerium tungstate, Ceo(WO₄)+H₂O. Promitate (Cossa and Zecchino, Gazz ch. it 10, 225)

Cerium metatungstate, Ce-Os. 12WOs-t-30H.O Permanent. Sol. in H.O. (Scheibler)

Cerium sodium tungstate, CeoNga(WOs). Insol, in H.O. Slowly sol in dil. acids. easily in HCl+Aq (Hoghom, Bull, Soc. (2)

Wvrouboff, Bull Soc. Min 1892, 15, 84) Ce*(WO4)4, 3Na2WO4, (Didier, C. R. 102.

> 2CeCl. (Didier, C. R. 102, 823.)

Chromic tungstate, basic, Cr.O., 2WO.+ 5H₀O Sol in 400 pts H₂O at 15°, (Lefort, C. R. 87, 748.)

Sol in CiCls+Ag, and in phosphoric. oxalic, or tartaric acids +Aq (Lotz) +3H₂O (Lefort, C: R. 87, 748) Cr₂O₃, 4WO₃+6H₂O Sol in about 50 pts.

(Lefort) Cr.Os. 5WO. Not attacked by agua regia (Smith and Oberholtzer, Z. anoig 5, 63.)

Chromic raratungstate, Cr. W.O. +9H.O. Insol. in H₂O or NH₄ paratungstate+Aq: sol in CrCl₂+Aq (Lotz.)

Cobaltous tungstate, CoWO, Anhudrous. Insol in H2O and acids +2H2O. Insol. in H2O and cold HNO2+ Aq. Sl. sol. in H₂C₃C₄+Aq. Completely sol. in warm H₂PO₄, HC₂H₃O₂, or NH₄OH+Aq. (Anthon, J pr 9. 344)

Sol in about 500 pts, H₂O. (Lefort.) Cobaltous ditungstate, CoW2O7 (?). +3H₂O. Insol in H₂O Sl sol, in H₂C₂O₄+Aq Completely sol. in H₂PO₄,

HC₂H₂O₂, or NH₄OH+Aq. (Anthon.) +5H₂O. Sol in about 100 pts H₂O. (Lefort) +8H₂O(?) (Lefort)

Cobaltous tritungstate, CoWaO10+4H2O (?). Sol m H₂O (Lefort, C. R. 88, 798)

Cobaltous metatungstate, CoW4O18+9H2O.

Sol in H.O. (Scheibler, J pr. 83, 317.) Cobaltous paratungstate, Co₂W₇O₂₄+25H₂O₄

(Gonzalez, J pr. (2) 36, 44)

Cobaltous sodium paratungstate, 2CoO, Iron (ferrous) tungstate, FeWO. 3Na₂O, 12WO₂+30H₂O. (Gonzalez.)

Cupric tungstate, CuWO.

+2H₂O Insol. in H₂O Sol. in H₂PO₄, HC₂H₂O₂, or NH₄OH+Aq. Insol in H₂C₂O₄ +Aq. (Anthon.) 100 ccm. H₂O at 15° dissolve 0.1 g. (Lefort)

Cupric ditungstate, CuW2O7 (?),

+4H2O Insol. in H2O and HNO2. Sol NH,OH+Aq. (Anthon, J. pr. 9. 346.) +5H₂O Sol. in about 300 pts. H₂O (Lefort)

Cupric metatungstate, CuW4O13+11H2O. Sol. in H₂O (Scheibler)

Cupric paratungstate, CuaW7O14+19H1O. Insol. m H₂Q (Knorre, B. 19, 826.)

Cuprocupric tungstate, CuoWOs, 2CuWOs. Insol. in H₂O (Zettnow, Pogg 130, 255,)

Cupric sodium paratungstate. Cu₃Na₄(W₂O₂₄)₂+32H₂O.

Ppt (Knorre, B 19 826.) CuO, 4Na₂O, 12WO₃+32H₂O. Ppt. (Gonzalez, J pr. (2) 36. 52.)

Cupric tungstate ammonia, CuWO4, 2NH4+

Schiff, A. 123, 39) CuWO₄, 4NH₁ Gives off NH₁ at old temp Sol in H₂O Sol in dil NH₄OH+ Aq. (Briggs, Chem Soc. 1904, 85, 676) CuO, 4WO₁, 6NH₁+SH₂O. Insol in H₂O Nearly insol in dil NH₄OH+Aq (Briggs,

Didymrum tungstate, Dig(WO4)1. Precipitate. (Frenchs and Smith. A. 191.

Didymium metatungstate.

Chem. Soc 1904, 85, 676.)

355)

Sol in H₂O. (Scheibler)

Didymium sodium tungstate, DiNas(WO4)2. Insol in H2O. Slowly sol, in dil, acids Sol. in cone HCl+Aq DiNa(WO₄)₂. As above. (Högborn, Bull. Soc. (2) 42. 2.)

Erbium sodium tungstate, Na₆Er₄(WO₄)₉. Insol. in H₂O. (Högborn.)

Glucinum metatungstate.

Very sol. in H₂O. Indium tungstate, In2(WO4)4+8H2O.

Insol. 10. HaO. Decomp. by acids. (Renz, Dissert 1902.)

Mm. Ferberite, Remnie

+3H₂O Insol 'm H2O Sol, m cold HaSO4, HCl, or HNO4+Aq. Decomp. by boiling acids with separation of WO₄ Sol. in boiling H₂PO₄+Aq or warm H₂C₂O₄+Aq. (Anthon, J pr 9. 343)

O:H3+ Very unstable (Lefort, A. ch. (5) 15, 314.)

Iron (ferrous) ditungstate, FeW.O. (?). Insol. in H_2O Sol. in hot H_2PO_4+Aq or $H_2C_2O_4+Aq$ Decomp. by dil HCl+Aq or by KOH+Aq (Ebelmen, C. R. 17. 1198)

+vH₂O Very unstable. (Lefort.)

Iron (ferrous) tritungstate, FeW.O. + 4H₂O (?),

Ppt. Decomp. by cold, more rapidly by hot H₂O (Lefort)

Iron (ferrous) metatungstate.

Sol. in H.O. (Scheibler, J. pr 83, 315)

Iron (ferric) tungstate, basic, Fe₂O₃, 2WO₃+ 4H₂O.

Sol in about 50 pts H_zO. (Lefort.) 2Fe₂O₃, 3WO₃+6H₂O Sol in about 300 pis H₂O at 15°. (Lefort)

Iron (ferric) tratungstate (?), Fe₂O₃, 4WO₂+ $4H_2O = Fe_2O_2$, $3WO_1 + WO_2$, $4H_2O$ (?). Sol. in H₂O without decomp (Lefort.)

Iron (ferric) metatungstate. Sol. in H₂O. (Scheibler, J. pr 83, 273.)

Iron (ferrous) manganous tungstate, 7FeWO. MnWO.

(Geuther and Forsberg, A 120, 277.) 4FeWO4, MnWO4. (G and F) 3FeWO4, MnWO4. HCl+Aq. (G. and F.) Partially sol. in conc.

3FeWO4, 2MnWO4 (G. and F) FeWO4, MnWO4. (Zettnow, Pogg. 130.

FeWO₄, 2MnWO₄. (G. and F.) FeWO₄, 7MnWO₄ (G. and F) xFeWO4, yMnWO4. Min. Wolframite. Sol. in HCl+Aq, and boiling H,PO,+Aq.

Lanthanum tungstate, Lag(WO4),

Precipitate

Lanthanum melatungstate. Sol in H₂O (Scheibler.)

Lanthanum silver tungstate. See Lanthanicotungstate, silver.

Lanthanum sodium tungstate, NasLa2(WO4)7. Insol in H₂O. Slowly sol in dil. acids, Sol. in HCl+Aq LasNac(WOs) As above. (Högbom. Bull. Soc (2) 42. 2.)

Lead tungstate, PbWO4.

Insol in H₂O or cold HNO₄+Aq Sol. in KOH+Aq. Decomp by hot HNO₄+Aq (Anthon, J pr 9, 342)
Sol in about 4400 pts. H₂O (Lefort.)
Min Scheelentie, Stolzite. Sol. in KOH+Aq; decomp. by HNO₅.

Absolutely insol. in NH₄NO₂+Aq (Smith and Bradbury, B 24. 2930.)

Lead ditungstate, PbW2O7+2H2O (?). e Sol in about 80 pts. H₂O at 15°. (Lefort)

Lead tritungstate, PbWsO10+2H2O (?). Ppt. (Lefort)

Lead metatungstate, PbW4O13+5H2O. Sl. sol in cold, more in hot H2O Sol in hot HNO,+Ag (Scheibler, J. pr 83, 318)

Lead varatungstate, PbsWrO24.

Insol. in H₂O, dil. HNO₂+Aq, (NH₄)₂WO₄ +Aq, or Pb(NO₃)₂+Aq. Sol. in NaOH+ Aq or boiling H₃PO₄+Aq. (Lotz, A. 91. 49)

Lead sodium varatungstate, PbO, 4Na₂O. 12WO3+28H.O. (Gonzalez)

Lithium tungstate, LigWO4.

Rather easily sol in H₂O (Gmelin.)

Lithum metatungstate, L12W4O13. Insol in H₂O (Knorre, J. pr (2) 27. 94.) +xH₂O, Syrup. (Scheibler.)

Lithium paratungstate, Li₁₀W₁₅O₄₁+33H₂O (or LisWrO24+19H2O). According to Scheibler, more sol, than the paratungstates of the other alkalı metals

Lathum bronze Insol in H.O. Lithium potassium tungstate tungsten oxide,

Li₂W₈O₁₈, 3K₂W₄O₁₂ Lithium potassium bronze. Insol in H₂O. (Fest. B. 21, 135.)

Lithium sodium tungstate, Li2WO4+3H2O, 3(Na₂WO₄+3H₂O).

(Traube, N. Jahrb Miner, 1894, I. 190.)

Magnesium tungstate, MgWO. Anhydrous, Insol. in H2O Gradually decomp. by boiling conc. HNOs+Aq. (Geuther

and Forsberg, A. 120, 272)
+3H₂O Very sol. in H₂O; nearly msol in alcohol. (Lefort, A ch. (5) 15. 329) +7H₂O. Slowly sol in cold, very easily in hot H₂O. (Ullik, W A. B. 56. 2. 152.)

Magnesium ditungstate, MgW2O7+8H2O (?). Sol'm about 100 pts, H₂O (Lefort)

Magnesium tratungstate, MgWgOze+4HgO(?). Easily sol in H₂O with gradual decomp. (Lefort)

Magnesium metatungstate, MgW.O.,+8FLO Sol. in H.O. (Scheibler)

Magnesium paratungstate, Mg₃W₇O₂₄+ 24H.O. Very difficultly sol in cold, somewhat sol. in hot H₂O (Knorre, B. 19, 825)

Magnesium potassium tungstate, MgWO, K₂WO₄,

+2H₂O Very al sol in H₂O. (Illik) +6H₂O Precipitate

Magnesium potassium paratungstate 5(2/8K2O, 1/8MgO), 12WO3+24H2O. Insol in cold, sol in hot H₂O. (Hallo-peau, C. R 1898, **127**. 621.)

Magnesium sodium paratungstate, 3MgO, 3Na₂O, 14WO₂+33H₂O.

Nearly insol in H₂O, (Knoric, B 19. 825)

Manganous tungstate, MnWO4. Min Hubnerite Partially sol, in HCl+ +2H₂O Insol. in H2O; sol in warm H₂PO₄ and H₂C₂O₄+Aq, sl sol in HC₂H₂O₂ +Aq. Insol, in cold HCl+Aq. (Anthon.) +H₂O Sol in about 2500 pts. H₂O at

15° (Lefort) Manganous ditungstate, MnW2O7+3H2O (?). Sol. in about 450 pts H2O at 15° (Lefort, A. ch (5) 15, 333)

Lithium tungstate tungsten oxide, Li₂W₅O₁₅. Manganous tritungstate, MnW2O10+5H2O(?), Decomp by H.O into MnW.O. and MnW₄O₁₈ (Lefort, A ch (5) 17. 480.)

> Manganous metatungstate, MnW₂O₁₄+ ĭ0H₂O.

Very sol in H₂O , (Wyrouboff, Bull. Soc Mm 1892, 15, 82)

Manganous paratungstate, 5MnO, 12WO++ 34H₂O.

(Gonzalez, J pr. (2) 36. 44) $Mn_2W_7O_{24}+11H_2O$. When recently pptd. sol. in a small amt. of H₂O acidulated with HNOs. (Lotz.)

Manganous potassium tungstate, 2MnO, 3K₂O, 12WO₂+16H₂O. Completely insol in H_{*}O. Hallopeau.

Bull. Soc. 1898, (3) 19, 955.)

Manganous sodium paratungstate, 3Na₂O, Potassium tungstate, K₂WO₄.
3MnO, 14WO₃+36H₂O.

Anhadrous. Rather delays Sol in H₂O (Knorre, B 19, 826.)

Manganic sodium tungstate. See Permanganotungstate, sodium.

Mercurous tungstate, Hg2WO4

Insol in H₂O (Anthon) Impossible to obtain pure, as it is decomp. 2Hg₂O, 3WO₃+8H₂O Sol, in 100 pts.

Mercurous metatungstate, Hg2W4O12+ 25H.O.

Ppt (Scheibler, J pr 83, 319.)

H.O at 15°. (Lefort)

Mercuric tungstate, HgWO, Sl sol in H₂O and very unstable. (Lefort,

A. ch. (5) 15, 356.) A. ch. (5) 16, 395.)

Algio, 2000, Insol. in H₂O. (Anthon.)

Algio, 3000, Insol. in H₂O. (Anthon.)

Algio, 5000,+5H₂O. Sol. in about 250

pta H₂O at 15° (Lefort).

Potassium metatransstate, K₁W₂O₁₁+5H₂O.

Potassium metatransstate, K₂W₂O₁₁+5H₂O.

2HgO, 5WO₃+7H₂O Decomp by hot or cold H₂O. (Lefort, C R 88.798.)

Mercuric tratungstate, HgWaOze+7H2O (?). Sol in about 120 pts H₂O at 15°. (Lefort, A ch (5) 15, 360)

Molybdenum tungstate.

Easily sol. in H₂O. Insol in NH₄Cl+Aq or in alcohol of 0.87 sp. gr (Berzelius)

Neodymium tungstate, Nd2(WO4)2

Very sl. sol in H2O. 1 pt. is sol, in 52630 pts. H₂O at 22°, 59580 pts at 65°; 66040 pts at 98°. (Hitchcock, J Am Chem Soc. 1895. 17, 532)

Nickel tungstate, NiWO4.

+3H₂O Sol in about 1000 pts. H₂O at 15°. (Lefort) +6H₂O Insol in H₂O or H₂C₂O₄+Aq. Sol in boiling H₂PO₄+Aq, HC₂H₃O₂+Aq, or

in warm NH₄OH+Aq. (Anthon) Nickel dstungstate, NsW2O7+5H2O (?).

Sol in about 250 pts. H.O (Lefort)

Nickel tratungstate, N1W2O10+4H2O (?). Sol in H.O. Pptd. by alcohol Decomp. by cold or warm H2O after above pptn. (Lefort)

Nickel metatungstate, N1W4O11+8H2O. Sol. in H₂O (Scheibler, J pr. 83, 273.)

Nickel paratungstate, Ni₃W₇O₂₄+14H₂O. Insol in H₂O Sl sol in H₂C₂O₄+Aq. Completely sol in warm H₂PO₄ or HC₂H₃O₂+ Aq (Anthon.)

Anhydrous. Rather deliquescent. Easily sol in H.O. +H₂O. Easily sol. in H₂O Insol in alcohol +2H₅O Very sol, in H₅O with absorption of heat.

1 nt. dissolves in 1.94 nts cold, and 0.66 pt. boiling H.O Alcohol does not mix with conc. ag. solution, but slowly separates out the salt from it Acids, even H-SO, HC-H-O or H₂C₂O₄, separate out WO₁ from solution. (Riche, A. ch (3) 50, 45)

Potassium ditungstate, $K_*W_*O_*+2H_*O$. Sol in about 8 pts H2O at 15°, but on heating is converted into-

+3H₄O 100 pts. H₂O dissolve only 2-3 pts. at 15°. (Lefort, A. ch. (5) 9. 102)

Potassium tritungstate, K2W3O10+2H2O. Sol, in 5-6 pts. H₂O at 15° Can be re-

Not efflorescent. Easily sol in H₂O. (Marignac.)

(K₄W₅O₁₇±8H₂O of Margueritte) +8H₂O Extremely efflorescent (Scheib-

Potassium octotungstate, K2W8O21.

Insol. in H.O. (Knorre, J pr. (2) 27, 49) Potassium tungstate, $K_8W_{10}O_{34}+9H_2O =$

4K2O, 10WO2+9H2O. Properties resemble the paratungstate. (Gibbs, Proc Am Acad. 15. 11) +8H₂O=K₄W₄O₁₇+4H₂O Sol in 15 pts.

H₂O at 15°, but decomposed by heating into K2W2O7 and K2W3O10 (Lefort, A. ch. (5) 9.

Very difficulty sol. in cold, K₁₀W₁₄O₄₇ appreciably sol in hot H₂O, probably with decomposition (Knorre.)

Potassium paratungstate, K₁₀W₁₂O₄₁+11H₂O (or K₀W₇O₂₄+6H₆O, according to Lotz and Scheibler)

Much more sol an hot than cold HaO. (Anthon) in 100 pts HeO at 10°, in 8 5 pts at 100° (Anthon)
Sol in 46.5 pts. cold, and 15.15 pts boiling H₂O.

By shaking the crystals several days at 20°, 1 pt dissolves in 71 pts H2O If the salt is treated with boiling water, more goes into solution the longer it is boiled, until after several days' boiling 1 pt of the salt dissolved in 5 52 pts H₂O at 18°. Kept in a closed flask, this solution contained after 26 days 1 pt of salt to 11 9 pts H2O; after 153 days, 1 pt of salt to 15.6 pts H₂O; after 334 days, 1 pt of salt to 15.6 pts H₂O Insol in alcohol (Marignac) +8H₂O.

Potassium sodium tungstate, K₂WO₄, 2Na₃WO₄+14H₂O.

hot H.O. (Anthon.)

Easily Sol in hot and cold H₂O (Ullik, W. A B. 56, 2, 150.) Deliquescent. Sol in 1 pt cold, and ½ pt.

Potassium sodium paratungstate, Na₂O,

4K₂O, 12WO₁+15H₄O. Sol in H₄O (Marignat.) */₁₁Na₄O, */₁₁K₂O, 12WO₁+25H₂O. Sol in

R₂O. (Marignae)

Potassium strontium tungstate tungsten oxide, 5K₂W₄O₁₂, SrW₂O₁₂.

(Engels, Z. anorg. 1903, 37, 143)

Potassium uranous tungstate.

See Uranosotungstate, potassium.

Potassium zirconium tungstate.

See Zirconotungstate, potassium.

Potassium tungstate tungsten oxide, K₂WO₄, W₂O₅. Potassium tungsten bronze. (Scheibler, J. pr. 83 321)

Formula is K₂W₄O₁₂. Not attacked by acids, and only very sl. by alkahes (Knorre, J. pr. (2) 27. 49.)

K₃WO₄, 4WO₂. Not attacked by acids,

even HF, or by alkalies+Aq. Insol in alcohol (Zettnow, Pogg, 130, 262) Does not exist (Knorre)

Potassium sodium tungstate tungsten oxide, 5K₂W₄O₁₂+2Na₄W₅O₁₅. Potassium sodium tungsten bronze Prop-

erties as potassium bronze. 3K₂W₄O₁₂, 2Na₂W₄O₃. As above (Knorre, J pr (2) 27. 49)

Praseodymium tungstate, Pr2(WO4)s.

Very sl. sol in H₂O. Insol in H₂O at 20°; at 75°, 1 pt. is sol in 23,300 pts. H₃O (Hitchcock, J. Am. Chem. Soc. 1895, 17. 529.)

Rubidium metatungstate, Rb₂O, 4WO₃+ 8H₄O.

Sol in about 10 pts. cold H₂O. Moderately sol in warm H₂O. (Wyrouboff, Bull. Soc Min. 1892, **15**. 69.)

Rubidium peniatungstate, Rb₂W₃O₃₆. Almost insol. in hot H₂O. When finely powdered, it is sol. in alkalı carbonates+Aq (Schaeffer, Z anorg. 1904, 38. 163.)

Rubidium octoungstate, Rb₂W₈O₂₁. Insol. in H₂O, acids, and alkalies (Schaeffer, Z anorg. 1904, 38, 103.)

Rubidium paratungstate, 5Rb₂O, 12WO₂+ 18H₂O Very sl sol. in H₂O (Schaeffer, Z anorg.

1904, **38.** 178.) Samarium melatungstate, Sm₂O₈, 12WO₅+
35H₈O

Easily sol in H₂O. (Cleve.)

Samarium sodium tungstate, Na₂Sm₄(WO₄), Insol. in H₂O Slowly sol. in dil. acids, easily in conc HCl+Aq. (Högbom, Bull

Soc. (2) 42. 2)

Silver (argentous) tungstate, Ag₄O, 2WO₃

HNO₃+Aq separates WO₃ KOH+Aq

dissolves out WO₃ and separates Ag₄O

dissolves out WO₃ and separates Ag₄O³ (Wöhler and Rautenberg, A **114**, 120)

Does not exist. (Muthmann, B **20**, 983.)

Silver tungstate, Ag₂WO₄.

Sol in about 2000 pts H₂O at 15° Easily decomp. by NaCl+Aq or BNO₃+Aq (Lefort.)

Ag₂W₂O₇ Insol in H₂O. Nearly insol in HC₂H₂O₂ or H₂PO₄+Aq. More sol. in KOH, NH₄OH+Aq, or H₂C₂O₄+Aq. (Anthon, J. pr. 9. 347)

+H₂O Sol in about 5000 pts H₂O at 15° (Lefort)

Silver metatungstate, Ag₂W₄O₁₀+3H₂O. SI sol. in H₂O. (Scheibler, J pr. 83, 318.) Nearly insol in H₂O. (Rosenheim, Z. anorg. 1911, 69, 250)

Silver paratungstate, Ag₁₆W₁₂O₄₁+8H₂O. (Gonzalez, J pr (2) **36.** 44.)

Silver tungstate ammonia, Ag: WO4, 4NH2.

Sol in H: O with rapid decomp (Widmann, Bull. Soc (2) 20, 64.)

Sodium tungstate, Na₂WO₄+2H₂O
Sol. in 4 pts. cold, and 2 pts boiling H₂O.
(Vauquelin and Hecht.)

Sol m 1 1 pts. cold, and 0 5 pt. boiling H₂O. (Anthon.) Sol. in 2.44 pts. H₂O at 0°, 1.81 pts. at 15°; 0 81 pt. at 100°. (Riche.)

Solubility in 1120 at t .				
t°	% Na ₂ WO ₄	Mois. H ₂ O to 1 mol Na ₂ WO ₄	Mois of anhydrous salt to 100 mols H ₂ O	
-3 5 +0 5 21.0 43 5 80.5	41 67 41.73 42.27 43 98 47.65	22.87 22.80 22.30 20.80 17.95	4.37 4.39 4.48 4.81 5.57	
100 0	49 31	16.79	5.95	

(Funk, B. 1900, 33. 3701:) See also +10H₂O.

Sp. gr.	of Na ₂ W	O4+Aq at 24.5° containing
5	10	15 % Na ₂ WO ₄ +2H ₂ O
1.036	1 075	1.119
20	25	30 % Na ₂ WO ₄ +2H ₂ O
1 166	1.215	1 274
35	40	44 % Na ₂ WO ₄ +2H ₂ O
1.349	1.430	1 492
	(Franz,	J. pr. (2) 4. 238.)

Sp gr of Na₂WO₄+Ag at 25°

8p. gr. at 20°	Per cent NasWO4	Per cent Na ₂ WO ₄ ,2H ₂ O
1 02016	2 21	2 48
1 03945	4 26	4 78
1 04292	4 59	5 15
1 05831	6.25	7 01
I 07449	7 83	8 79
1.08209	8 61	9 66
1 09687	10.08	11 31
1 12114	12 30	13 81
1 13036	13 16	14 77
1 14392	14 44	16 21
1.16896	16 56	18 62
1 19154	18.52	20.79
1 19938	19 10	21 44
1 20787	19.74	22 16
1.21720	20.59	23 11
1 25041	23.16	25 99
1 25083	23 30	26 15
1 26234	24 05	27 00
1.28143	25 46	28 58
1 33993	29 50	33 11
1.38826	32 68	36 68
1 41072	33 91	38 06
1 47193	37 30	41 87
1 48481	38 20	42 87
1 48595	38 43	43.14

(Pawlewski, B 1900, 33, 1224.)

Na₂WO₄+Aq is pptd by HCl, HNO₃, or H₂SO₄+Aq, but not by H₂SO₃, HI, HCN, oxalic, or tartaric acids + Aq, but pptn. by the former acids is not prevented by presence of the latter, but when heated with HC₂H₃O₂+ Aq, or in presence of H₃PO₄+Aq, mineral acids cause no ppt. (Eettnow, Pogg, 130.

Much more sol in H2O2 than in H2O. (Kellner, Dissert, 1909.) Sl. sol in liquid NH₂. (Franklin, Am Ch

1898, 20. 829.) Insol. in alcohol. (Riche, A. ch (3) 50.

Insol, in methyl acetate (Naumann, B 1909, **42.** 3790.) +10H₂O.

Solubility in H ₂ O at t°.				
t°	Na ₂ WO ₄	Molv H ₂ O to 1 mol Na ₂ WO ₄	Mols anhy- drous sult to 100 mols H ₂ O	
-5 -4.0 -3.5 -2.0 0.0 +3.0 +5.0	30 60 31 87 32 98 34 52 36.54 39 20 41 02	37 04 34.92 33.19 30.90 28.37 25.33 23 48	2.70 2.86 3.01 3.23 3.52 3.95 4.26	

(Funk, B. 1900, 33, 3701.)

Sodium ditungstate, Na₂W₂O₇.

Sol. in H₂O by heating several hours to 13C-150° (Knorre, J. pr (2) 27. 80.) +6H₂O. Sol. in 13 pts H₂O at 15°. (Lefort, C R. 88, 798)

Sodium tritungstate, Na₂W₂O₁₀+4H₂O.

Sol in 1 pt H₂O Decomp, on standing into sol tetratungstate and insol ditung-state (Lefort, C R. 88. 798.) Neither this nor the other tritungstates of Lefort exist, according to Knorre (J pr. (2)

Sodium metatungstate, Na₁W₄O₁₈

27.49)

Anhydrous. Insol in H₂O +10H₂O. Sol. at 13° in 0.935 pt. H₂O to form a solution of 3 02 sp. gr. (Scheibler.) Sol. at 19° m 0.195 pt H₂O. (Forcher.) Precipitated by alcohol.

Sodium pentatungstate, Na₂W₄O₁₆,

Si sol, in H₂O by heating 3 hours at 150°, (Knorre, J pr. (2) 27. 49)

Sodium octotungstate, Na2W3O25. Insol m H₂O Very difficultly attacked

by acids and alkalies. (Knorre) +12H₂O Easily sol. in cold H₂O, and can be recryst without decomp. (Ullik, W. A. B.

56, 2. 157) 3Na₂O, 8WO₄+17H₄O. Very efflorescent. Very sol. in hot H₂O. (Wells, J. Am. Chem. Soc. 1907, 29, 112)

Sodium tungstate, NacWrOvz (?)

+16H₂O (?). (Marignac, A. ch. (3) 69.

+21H₄O (?). Much more sol. and much more rapidly than the paratungstate (Marignac.

Na₄W₄O₁₁+7H₄O(?). Mixture of Na₂W₄O₁₈ and Na₂WO₄. (Knorre, J. pr. (2) **27**, 49.) Na₄W₆O₁₇+11H₄O Efflorescent Sol. in H₂O (Marignac.)

100 pts H2O dissolve 16 pts at 15° (Lefort, A. ch (5) 9. 97) Formula is 4Na₂O, 10WO₈+23H₂O, according to Gibbs (Proc. Am. Acad. 15, 5) Sodium paratungstate, Na₁₀W₁₂O₄₁+21H₂O. +25H₂O. +28H₂O.=3Na₄W₇O₂₄+16H₂O, according to Lotz and Scheibler.

Sol. in 8 pts cold H₂O (Anthon), in 12 6 pts at 22° (Forehor)

Sol. in about 12 pts. H₂O (Marignae) The aqueous solution saturated at 35-40°

ontained to 1 pt. of the salt, after 1 12 77 227 410 days,

1 12 77 227 410 days, at 18° 18° 18° 16° 20° ′ 9.25 11.26 10 92 11 90 11.74 pts. H₂O.

The solution saturated by very long boiling, after a part of the salt had crystallised out, contained, after:

1 2 12 days, 0.68 0 91 2 59 pts. H₂O to 1 pt. salt, 72 222 405 days, 6.88 9 75 8 80 pts. H₂O to 1 pt. salt. (Marsnac.)

Decomp by boiling with H₂O (Knorre, B. 18, 2362.)

Sodium strontium paratungstate, Na₂O, 4SrO, 12WO₁+29H₁O (Gonzalez, J. pr (2) **36.** 44.)

Sodium strontium tungstate tungsten oxide, 5NaW₂O₁₄, SrW₄O₁₂. 12Na₁W₂O₃, SrW₄O₁₂ (Engels, Z anorg

1903, 37. 138.)

Sodium thorium tungstate, Ns₄Th(WO₄)₄.

Insol m H₂O. Slowly sol m dil acids.

easily in cone. HCl+Aq (Högbom, Bull Soc. (2) 42. 2.)

Sodium ytterbium tungstate, Yb₂O₃, 9Na₂O, 12WO₃ 11sol. in H₂O. (Cleve, Z. anorg 1902, 32. 154.)

154.) 2Yb₂O₃, 4Na₂O, 7WO₃. Ppt. (Cleve)

Sodjum yttrium tungstate, Na₄Y₂(WO₄)₇ Insol ₁₀ H₂O, and very slowly attacked by dil. acids. (Högbom, Bull. Soc (2) **42.** 2.)

Sodium zinc paratungstate, Na₂O, 2ZnO, 7WO₃+15H₄O.
Difficultly sol. in cold, more sol in hot H₂O.

(Knorre, B. 19. 823) +21H₂O. (Knorre.)

Sodium tungstate tungsten oxide, Na₂WO₄, Thorium tungstate.

Yellow tungsten bronze. Gradually deliquesces on air. Not decomp by any acid, even aqua regia, except HF, or by alkalies. (Wöhler, Pogg 2. 350)

(Wöhler, Pogg 2. 350)
Correct formula is Na₅W₅O₁₈, according to Philhp (B, **15**, 499)

Sol in ammoniacal silver solution with separation of Ag Easily sol, in boiling alkaline potassium ferricyanide+Aq (Phillip, B 12. 2234.)

Na₂WO₄, 2W₂O₅. Blue tungsten bronze. Not attacked by acids or alkalies (Scheibler.) Correct formula is Na₂W₅O₁₅, according to Phillip (B **15**. 506)

to Phillip (B 10. 50b)
Sol. in ammoniscal silver solution with
separation of Ag

Na₄W₅O₁₈ Properties as above. (Phillip, B. **15**. 499.) Na₂W₃O₉ Properties as above (Phillip.)

Strontum tungstate, SrWO₄.

Precipitate (Schultze.)

Sol in about 700 pts H₂O. (Lefort)

Strontium d₂tungstate, SrW₂O₇+3H₂O (?). 100 ccm H₂O dissolve 0.35 g at 15°. (Lefort, A. ch. (5) **15**, 328.)

Strontum tritungstate, SrW₂O₁₀+5H₄O (?).
Sol. in H₂O with decomp. into SrW₂O₇ and
SrW₄O₁₂ (Lefort, A. ch. (5) 17. 477)

Strontium metatungstate, SrW₄O₁₆+8H₂O. Solubility as calcium metatungstate.

(Scheibler.) Extraordinarily sol. in H₂O (Wyrouboff, Bull Soc Min 1892, **15**. 63)

Strontium paratungstate, Sr₈W₇O₂₄+16H₂O, or Sr₈W₁₂O₄₁+27H₂O.

Insol in cold, sl. sol in hot H₂O. (Knorre, B 18. 327)

Thallous tungstate, Tl₂WO₄.

Very sl. sol in H₂O Sol in hot Na₂CO₈+
Aq. (Flemming, J B 1868, 250.)

Thallous melatungstate, Tl₂W₄O₁₅+3H₂O. Nearly mool. in H₂O (Rosenheim, Z. anorg 1911, **69**. 251.)

Thallous paratungstate, 5Tl₂O, 12WO₂.

Insol in H₂O.
Sol. in Na₂CO₃+Aq and FOH+Aq.
decomposed by mineral acids (Schaeffer, Z
anorg 1904, 38, 171)

Thallous hydrogen tungstate, TlHWO.

Insol in H.O. Difficultly sol in NH.OH+
Aq Easily sol in boiling alkalı carbonates
or hydrates +Aq. (Octimger, J. B. 1864.

254.)
Thorium tungstate.
Precupitate (Berzelius)

Insol, in H₀O.

Tin (stennous) timestate, SnWO₄+6H₀O.

Tin (stannous) tungstate, SnWO₄+6H₂O.

Insol in H₂O Sol in oxalic acid and in KOH+Aq Slowly sol, in hot H₃PO₄+Aq.

(Anthon, J. pr. 9, 341.)

Tin (stannic) tungstate, 9SnOs. 13WOs. Insol in ammonium tungstate+Aq. Sol. in tin salts+Aq, also in phosphoric, oxahe, or tartaric scids + Aq (Lotz, A. 91. 49.)

Tungsten tungstate, WO2, WO4 = W2O4. See Tungsten oxide, W2Os

Uranous tungstate, UO2, 3WO2+6H2O. Decomp. by NaOH+Aq or HNO2+Aq. Sol in HCl+Aq, but not in H2SO4. (Rammelsberg)

Tranvi tungstate, UOs, WOs+2HoO. Sol in about 100 pts. H2O. (Lefort. C. R. UO₈, 3WO₃+5H₂O (?) Sol. in about 200 pts. HaO (Lefort)

Vanadium tungstate. Sl sol in H₄O.

Ytterbium tungstate basic, (YbO)2WO4. Ppt. (Cleve, Z. anorg, 1902, 32, 153.)

Ytterbium metatungstate, Yb2O2, 12WO3+ 35H.O.

Very sol. in H2O. (Cleve.)

Yttrium tungstate, Yo(WO4)4+6H2O. ttrium tungstate, Y₂(WO₄)₃+6H₂O. Insol in organic solvents Very sl. sol in H₄O, but more sol in anorg. 1914, 88. 62) Na, WO, +Aq (Berlin)

Zinc tungstate, ZnWO4.

Insol in H₂O. (Geuther and Foisberg, A. +H₂O Sol, in 500 pts H₂O.

Zinc ditungstate, ZnW2O7+3H2O (?). Sol in 10 pts. H₂O at 15°, but solution soon decomposes. (Lefort.)

Zinc tratungstate, ZnWaO10+5H2O. Insol in boiling H2O. Sol in ZnSO4+Aq. or Na₄W₄O₁₇+Aq (Gibbs)

Zinc metatungstate, ZnWcO13+10H2O. Easily sol in H₂O Loses crystal H₂O by

ignition, and becomes insol in H₂O (Scheibler, J pr 83. 273.) +8H₄O More sol. in H₂O than magnessum comp. (Wyrouboff, Bull Soc. Min 1892, 15. 72)

Zinc tungstate, $Zn_4W_{10}O_{34}+18H_2O=4ZnO$, 10WO1+18H2O. Insol, in H₂O Sol in excess of zinc sulphate or of sodium tungstate+Aq. (Gibbs,

Proc. Am Acad 15, 14.) +29H₂O. (Gibbs)

Zinc paratungstate, 5ZnO, 12WO₄+37H₂O. (Gonzalez, J pr (2) 36, 44.)

Zinc tungstate, 'Zn₉W₂₂O₇₅+66H₂O=9ZnO, 22WO₃+66H₄O. Insol in H₂O, '(Gibbs.)

Zinc tungstate ammonia, ZnWO4, 4NH++ 3H₂O. Decomp in the air (Briggs, Chem Soc. 1904. 85, 677)

Pertungstic acid: See Pertungstic acid.

Tungstoarsenic acid. See Arseniotungstic acid.

Tungstoboric acid. See Borotungstic acid.

Tungstocyanhydric acid, H.W(CN),+ 6H.O.

Hydroscopic Sol in H₂O and abs. alcohol Insol in ether, benzens etc. (Clsson, Z. anorg, 1914, 88, 71)

Ammonium tungstocvanide, (NH4)4W(CN)4. Easily sol in H2O Aqueous solution decomp slowly (Olsson, Z.

Cadmium tungstocvanide, Cd2W(CN)s+

8H₂O. Nearly mail, in H₂O. Sl, sol in dil. HCl. Sol, in cone NH4OH+Aq Insol in organic solvents (Olsson, Z. anorg, 1914, 88, 68.)

Casium tungstocyanide, Cs. W(CN)s. Easily sol, in II-O forming stable solutions Insol in alcohol and other organic solvents (aoselO)

Calcium tungstocyanide, Ca₂W(CN)₃+8H₂O. Easily sol in H2O. Aqueous solution decomp. slowly

Insol, in organic solvents. (Olsson.) Lead tungstocvanide, Pb2W(CN)s+4H2O. Sol. in H₂O Solution decomp. after short

Insol, in organic solvents. (Olsson.)

Magnesium tungstocyanide, Mg₂W(CN)₈+ 6H.O. Easily sol in H₂O Aqueous solution decomp on heating

Insol in organic solvents (Olsson.) Manganous tungstocyanide, Mn₂W(CN)₈+

8H₂O. Insol in H₂O and in acids Insol, in organic solvents. (Olsson.)

Potassium tungstocvanide. K.W(CN),+ Potassium tungstoperiodate. 2H,O.

Easily sol in H₂O from which it can be cryst. 10 ccm H₂O dissolve 13-14 g salt at 18°.

solvents. (Olsson.) Rubidium tungstocvanide, Rb,W(CN)++

3H₄O. Easily sol in H₂O. Can be cryst from H₂O. Insol in alcohol and other organic solvents. (Olsson)

Silver tungstocyanide, Ag4W(CN)s.

Insol in H₂O. Insol in acids. Decomp by dil HCl Sol, in hot cone. NH4OH+Aq. Insol. in organic solvents. (Olsson)

Sodium tungstocyanide, Na₄W(CN)₈+ 21/4H₂O. ,

Hydroscopic. Ensily sol, in H₂O.

Insol, in organic solvents. (Olsson.) Strontium tungstocvanide, $Sr_*W(CN)_*+$

8H₂O, +9H₂O. Easily sol. in H₂O. Aqueous solution decomp. on standing

Insol in organic solvents. (Olsson.) Thallium tungstocyanide, Tl4W(CN)s. Difficultly sol in cold H₄O, more sol in hot HOO

Insol in organic solvents (Olsson.) Zinc tungstocyanide, ZnoW(CN)s-4-4HoO. Insol in H₂O, and acids Sol. in conc. NHOH+Ag. (Olsson.)

Metatungstoiodic acid.

Ammonium metatungstojodate, 2(NH₄)₂O, 2I₂O₅, 4WO₅+12H₂O. Very sl sol in H2O. (Chrétien, A. ch. 1898. (7) 15, 431)

Potassium tungstoiodate, K2H2WIO2. (Blomstrand, J. pr. (2) 40, 327.) 2K₂O, 2I₂O₃, 4WO₃+8H₂O. 5 13 g. are sol in 1 l. H₂O at 15°; 8.25 g. at 100°. (Chrétien, A. ch. 1898, (7) 15. 431.)

Tungstoperiodic acid.

Ammonium sodium tungstoperiodate, 2(NH₄)₂O, Na₂O, I₂O₇, 2WO₃+16H₂O. Ppt. (Rosenheim, A. 1899, 308, 64)

Barium tungstoperiodate, 5BaO, I2O7, 12WO2+12H2O. Ppt. (Rosenheim.)

5K,O, I2O2, 12WO2+8H.O. Sol in H.O. (Rosenheim.)

Sodium tungstoperiodate. 3Na₂O. I₂O₂, 2WO₂+4H₂O.

Ppt 5Na₂O, I₂O₇, 12WO₃+16H₂O Sol. m H₂O (Rosenheim)

Strontium tungstoperiodate, 5SrO, I₂O₂, 12WO₃+28H₂O. Sol. in H₂O. (Rosenheum)

Tungstonhosphoric acid. See Phosphotungstic acid.

Tungstosilicic acid. See Silicotungstic acid.

Tungstotungstic acid.

Lithium tungstotungstate, Li₂O, WO₄+ WO2, 3WO2. Insol, in boiling H₂O and cone, HCl. (Halloneau, C. R. 1898, 127, 514)

Potassium tungstotungstate, K2O, WOs+ WO2, 3WO2. Insol, in hot H2O, and cone, HCl (Hallo-

Tungstous acid.

Sodium tungstite, NayWaOs. See Tungstate tungsten oxide, sodium.

peau. Bull Soc. 1899, (3) 21, 267.)

Tungstovanadic acid. See Vanadiotungstic acid.

Tungstyl dibromide, WO2Bra. Not decomp by cold H2O. (Roscoe.)

Tungstyl tetrabromide, WOBr. Extremely deliquescent. Decomposes at once in moist air or with H.O.

Tungstyl dichloride, WO2Cl2. Not decomp. by cold, and but slowly by boiling H₂O. Sol in alkalies and ammonia,

Tungstyl tetrachloride, WOCl.

Easily decomp, by H₂O or moist air. Very sol in CS2 and S2Cl2. Sl. sol, in benzene. (Smith, J Am. Chem Soc 1899, 21. 1008)

Tungstyl tetrafluoride, WOF. Sol in H₄O with decomp. Very hydrosconic.

Insol, in carbon tetrachloride.

Sl. sol in carbon bisulphide, dry benzene Bismuth uranate, BisOs, UO++HsO. and ether. Easily sol in chloroform and absolute alcohol (Ruff, Z anorg, 1907, 52, 265)

Tungstyl tetrafluoride ammonia, 2WOF4,

Sol in H₂O with decomp. Insol in liquid NH2. (Ruff, Z. anorg 1907. 52, 266.)

Ultramarine blue, 2Na₂Al₂Sl₂O₈, Na₂S₂ (?) Not attacked by solutions of alkalies or NH4OH+Aq. Decomp by acids or acid salts +Au Decomp by alum +Au.

Ultramarine green, NasAlsSisOs, NasS (?), Decomp by mineral acids Not attacked by alkalies Decomp by alum +Aq

Ultramarine white, 2Na2Al2Si2Oa, Na2S (?),

Uranic acid, H. UO.

Insol in H₂O Sol in acids. Very sol in cold dil. HNO +Aq. Sl. sol. in boiling NH₄Cl+Aq. Insol in KOH, NaOH, or NH₄OH+Aq Easily sol in (NH₄)₂CO₃, $NH_4OH + Aq$ Easily sol in $(NH_4)_4CO_3$, $KHCO_3$, and $NaHCO_3 + Aq$; less in $K_2CO_3 +$ Aq. (Ebelmen.)

Easily sol, in malic and tartaric acids to form complex compds (Itzig, B. 1901, 34. H.ÚOs. Insol. in H₀O; sol in acids. (Ebelmen)

Transfer

Insol in H2O; sol in acids.

Ammonium uranate.

SI sol, in pure H2O; insol, in H4O contain-Sol. in (NH₄)₂CO₃+Aq (Peligot, A. ch (3) 5. 11.)

(NH₄)₂O, 4UO₈+7H₂O. (Grubler, Dis-rt, **1908.**)

sert, 1908.)
(NH.)₂O, 6UO₂+10H₂O. Insol in cold and not H₂O and alkalies+Aq. Very sol in H₂SO₄, HCl and acetic acid +Aq. (Zehenter, M. 1900, 21, 235.)

Barium uranate, BaUO4.

Insol in H.O. Sol in dil. acids

BaU₂O₇ As above (Ditte, C. R. 95, 988) BaU₃O₁₀+4½H₂O. Nearly msol. in H₂O, KOH+Aq. and alcohol.

Easily sol. in cold dil. HCl or HNO, and in hot acetic acid (Zehenter, M. 1904, 25. 200.) Ba₂U₄O₁₇+8H₂O Nearly msol. in hot or cold H₂O, KOH+Aq, and alcohol.

Easily sol in cold dil. HCl or HNO₂ and in hot acetic acid. (Zehenter.)

Ba₂U₂O₂₃+11H₂O BaUsO₁₀. (Zehenter.) Min Uranosphaerite.

Calcium uranate, CaUO4.

Insol in H₂O: sol. in dil. acids (Ditte. C. R. 95, 988) CaU₂O₇. Inscl in H₂O; sol, in dil. acids. (Ditte)

Cobalt uranate.

Insol, m H₂O, sol m Pb(C₂H₃O₂)₂+Aq, (Persoz. J. pr. 3, 216) Sol in HNO2+Aq, insol. in KNO2+Aq. (Ebelmen, A. ch. (3) 5. 222.)

Cupric uranate, CuU2O7.

Insol. in H₂O (Debray, A. ch (3) 61. 451.)

Lead uranate, PbUO.

If ignited, very difficultly sol in HC2H2O2+ (Wertheim, J. pr 29, 228)

Insol. in Pb(C₂H₃O₂)₂+Aq. (Persoz) 3PbO, 2UO₃ Sol. in dil HNO₂+Aq. (Ditte, A. ch (6) 1, 338.) PbU₂O₁₀ Insol in H₂O Sol in HNO₅.

Insel in KOH+Aq, NH,OH and cold acetic acid Sol, in hot acetic acid. (Zehenter, M. 1904, 25, 215.) Pb₄U₈O₁₀+4H₂O.

Pb₄U₈O₁₀+4H₂O. Insol. in hot or cold H₂O. Sol. in HNO₃. Insol. in KOH+Aq, NH₄OH, alcohol and ether. Sl sol. in cold, more easily sol, in hot acctic acid. (Zehenter.)

Lithium uranate, Li-UOs.

Insol in HaO', but decomp thereby. Sol. in dil acida

Magnesium uranate, MgUO4

Insol in H₂O. Nearly insol, in cold HCl+ Ag Slowly sol in HCl+Ag on warming, and more rapidly by addition of a little HNOs +Aq. (Ditte)

MgU₂O₂ Ppt. (Berzehus.)

Neodymium uranate, Nd2(U2O10)2+18H2O. Ppt (Orloff, Ch Z. 1907; 31, 1119.)

Potassium uranate, K₂UO₄ (?).

Insol in H2O; sol. in dil acids, etc., exactly

as Na_2UO_4 (Ditte) $K_2U_2O_7+6H_2O$ Insol in H_2O . Sol. in dil. acids, even acetic acid (Zimmermann, B. 14, 440.)

Insol, in K₂CO₂+Aq, but easily sol, in kall bydrogen carbonates+Aq. Sol, in alkalı hydrogen carbonates+Aq. Sol. in HCl+Aq (Ebelmen, A. ch. (3) 5. 220.) K₂O, 4UO₃+5H₂O. (Zehenter, M. 1900, 21. 235.)

K₂O, 6UO₃+6H₂O. Insol in H₂O (Drenckmann, Zeit. ges. Nat 17. 113.) +10H₂O. Nearly insol. in cold and hot

H₄O Easily sol. in hot acetic acid, dil. H₄SO₄ Same properties as HCl and HNO3 Insol. in KOH+Aq, alcohol and ether ((Zehenter, M. 1900, 21, 235.)

Potassium hydroxylamine uranate, UO4(NH4O)(NH4OK)+H4O.

Sl. sol, in H.O. insol, in fleohol (Hofmann, A. 1899, 307, 318)

Rubidium uranate, RhIIO,

Insol in H₂O (Ditte, A. ch. (6) 1, 338)

Silver uranate, AgoUoO7.

Insol. in H2O Easily spl in acids. (Alibegoff, A. 233, 117.)

Sodium uranate, Na₂UO₄ (?).

Insol. in H2O, sol in dil acids. Sol in alkalı carbonates+Aq (Ditte.)
Na₂U₂O₇+6H₂O Insol m H₄O. Sol. m
dil. acids. (Stolba, Z. anal. 3. 74.)

dll. acids. (Stolba, Z. anal. 3, 74.)

Na₂O, 3UO₃. Insol. m H₂O Easily sol m
very dll acids. (Drenckmann.)

Na₂O, 5UO₃+5H₂O. Insol in H₂O, alcohol, NH₄OH, KOH+Aq Sol. m HCl, HNO₃, H₂SO₄. Sl. sol. even on boiling in cone acetic acid. (Zehenter, M 1900, 21, 235.)

Sodium hydroxylamine urangie.

UO4(NH4O)(NH4ONa)+H2O. Sol. in H₂O (Hofmann, A. 1899, 307, 319) UO₄(NH₂ONa)₂+6H₂O. Very sol in H₂O (Hofmann)

Strontium uranate, SrUO4.

Insol in H.O Sol in dil acids. SrU₂O₇ As above. (Ditte, C R 95, 988) Very sl. sol. in H₂O. Sol. in all acids especially-oxalic.

+H₂O Very sl sol. in H₂O Sol in all acids especially oxalic. (J. C. C. 1896, II. 512)

Thallous uranate.

(Bolton, Am Chemist, 1872, 2, 456.5

Zmc uranate.

Insol. in H₂O; sol. in Pb(C₂H₄O₂)₈+Aq (Persoz, J. pr **3.** 216) Sol in HNO₂+Aq, insol. in KNO₃, and NH₄NO₄+Aq (Ebelmen, A, ch (3) 5. 221)

Peruranic acid. See Peruranic acid.

Uranium, U.

Not attacked by H₂O Slowly decomp by cold dil. H2SO4+Aq, rapidly on warming, Easily sol. in dil. or conc. HCl+Aq. Fused U is slightly attacked by conc or fuming HNO₂, or conc. H₂SO₄ Amorphous U, how-ever, is easily attacked thereby. Not at-tacked by acetic acid, KOH, NaOH, or NH₂OH+Aq. (Zimmermann, B. **15**. **349**)

When finely divided, it is decomp by H₂O slowly at ordinary temps, and rapidly at 100°. (Moissan, C. R. 1896, 122, 1091.)

Uranium antimonide, U.Sh. Violently attacked by cone HNO: (Colani C R. 1903, 137, 883)

Uranium arsenide, U.As.

Violently attacked by conc HNO. (Coani, C. R. 1903 137, 383)

Uranium boride, UB₂.

Sol in HNOs and HF. Decomp by fused alkalies (Wedekind, B 1913, 46, 1204.)

Uranium trabromide, UBr. Very hygroscopic. Sol in H₂O with his 3ing (Albegoff, A 233, 117)

Uranium tetrabromide, UBr.

Anhydrous. Vory deliquescent. Sol in H₂O with hissing (Hermann) Insol in alcohol. (v Unruh, Dissert, 1909.) Sol. in acctone (Edmann. C. C 1899, II 1014); methyl acetate (Naumann, B 1909.

42. 3790); ethyl acetate. (Naumann, B. +8H₂O Very deliquescent, and sol. in нό` (Rammelsberg)

Uranium carbide, UC1.

(Ruff and Hemzelmann, Z anorg. 1911. 71, 72)

Attacked slowly by H2O. Slowly attacked by cold dil HCl, H2SO4 or HNO2+Aq. Conc acids, except HNO2, react sl in the cold, violently on heating. (Moissan, Bull Soc 1897, (3) 17, 12) Sol, in fused KNO, and KClO, sol, in dil.

acids in the cold and in cone acids on heating; decomp by H₂O. (Moissan, C R, 1896, 122, 276.)

Uranium trichloride, UCl.

Very sol, in H.O (Peligot) Very unstable (Zurmermann

Very hygroscopic Sol in H₂O with demuch more stable than aqueous one (Rosenheim and Loebel, Z. anorg. 1908, 57, 234)

Uranium tetrachloride, UCla.

Anhydrous Extremely deliquescent Sol in H₂O with evolution of heat Decomp. on boiling Sok in NH4Cl+Aq without decomp.

HCl increases its solubility in H₂O (Aloŷ, Dissert 1901.)

Sol in alcohol, acetone, acetic ether, benzoic ether Insol. in ether, CHCl and CoHo (Loebel) Sol in ethyl acetate (Naumann, B. 1904, 37. 3601.)

Uranium pentachloride, UCl₅.

Deliquescent Sol. in HoO with evolution of heat and decomposition. (Roscee, B. 7. 1131 /

Sol. in acetic acid, acetic ether, benzaldehyde, glycerine, benzyl alcohol (trace), nitrobenzene (trace), xylidine and p-toluidine

(on warming)
Insol. in amiline, ligroin, pyridine, quinoline,
thioethyl ether, thioamyl ether and CS₂

(Pimmer, Dissert 1994.)
Sol m abs alcohol Insol in ether, CaHe,
nitrobenzone, ethylene bromide. Sl sol
in Ckl and CklCl, Sol in benzone ethocactone and trichloracetic acid. Best solvents
are ethyl accetate and benzonitale. Sol
in many organic compounds containing oxygen.
(fleashed, Dissert, 1997.)

Uranium diffuoride, UF1+2H0O.

Ppt (Giolitti and Agamennone, C C. 1905, I 1130)

Uranium tetrafluoride, UF4.

Insol in H₂O Very sl sol in dil. acids Sol in hot cone H₂SO₁, and slowly in warm cone HNO₃+Aq (Bolton, J B. **1866**. 209.)

Uranium herafluoride, UFa.

Very sol m H₂O (Ditte, A. ch (6) 1.

Fumes in the aur Very hydrospopic; sol. in H-O (Ruff. B

Very hydrosopic, soi. in 1120 (tetti, 15 1909, 42, 495)

Very hydrosopic. Soi. in H₂O Nearly insoi. in CS₂ Insoi. in paraffine oil Soi in symmetrical tetrachlorethane (best solvent),

CHCl₃, CCl₄, and mtrobenzene (v Unruh, Dissert. **1909**.) Decomp. by H₂O, alcohol and ether Nearly insol in CS₂

Sol in CHCl₂, CCl₄, nit obenzene and C₂H₂Cl₄ (Ruff, Z. anorg 1911, **72.** 81.)

Uranium hydrogen fluoride, UF₆, 8HF (?). Sol in H₂O. (Ditte) Is UO₂F₂, HF+H₂O. (Smithells.)

Uranous hydroxide, UO; xH2O,

Easily sol in dil. acids
Insol in alkali hydrates and carbonates

+Aq (Berzelius)
Sol. in alkali carbonates+Aq (Rammelsberg.)
U(OH), Sol in dil acids (Aloy, Bull. Soc 1899, (3) 21. 613)

Uranouranic hydroxide, U2O8, 6H2O (?).

Easily sol. in Acids
Decomp by (NH₄)₂CO₄+Aq, which dissolves out UO₈. (Berzelius)

Uranic hydroxide.

See Uranic acid.

Uranium tetraiodide, UI4

Sol. of H₂O. (Guichard, C. R. 1907, **145**. 921.)

Uranium iodide.

Sol m ethyl acetate.. (Naumann, B. 1904 37, 3601.)

Uranium nitride, U₁N₄. ,

(Colani, C. R. 1903, 137, 383.)

Uranium suboxide, UO (?).

the air (Peligot)

Uranium dioxide (Uranous oxide), UO2.

Insol. in dil. HCl or H₂SO₄+Aq. Sol. in cone H₂SO₄, and easily in HNO₂+ Aq. (Peligot.)

Insol. in NH₄Cl+Aq (Rose.)
Only sl. sol. in H₄SO₄, but a considerable
amount is converted into the sulphate which

should be converted into the sulphate which is nearly insol in H₀SO₄
Slowly sol in HCl, the arsount dissolved in a given time varying widely with the

method of preparation of the oxide. (Colam, C. R. 1912, 156, 1251.) Sl. more sol. in HNO₂ than in aqua regia. (Raynaud, Buil Soc 1912, (4) 11, 802.) Very sol. in cone HNO₂; less sol in dil.

HNOs. 1 gram is sol in 3100 grams HCl (117) at 17°, 4650 grams HBr(1 52) at 17°, 2200 grams H₃SO₄(1.79) at 17°, 12,000 grams acetic acid at 19° (Raynaud, C. R. 1911, 183 1481).

153. 1481.)
SI attacked by liquid NH₂. (Goie, Am. Ch. J. 1898, 20, 830.)
Min. Uraninite. Easily sol. in warm.

HNO₃+Aq Not attacked by HCl+Aq Uranium traoxide (Uranic oxide), UO₃.

Sol in HNO₈+Aq. (Peligot.) Insol. in boiling K tartrate +Aq. (Kahlenberg and Hillyer, Am. Ch. J. 1894, **16**, 102.) Sol. in oleic acid. (Gibbons, Arch. Pharm.

1883, **221.** 621) See Uranic acid.

Uranium tetroxide, UO4.

Decomp. by HCl+Aq (Fairley, Chem Soc. 31, 133.) +2H₂O. Very hygroscopic (Zimmermann) +3H₂O

Uranium pentoxide, U2O5.

Sol. in acids. (Peligot.) Mixture of UO₃ and U₃O₈ (Rammelsberg, Pogg. **59**. 5.)

berg, Pogg. 59. 5.)
Mixture of UO₂ and U₃O₈ (Zimmermann, A. 232, 273.)

Uranouranic oxide, U₂O₅.

Green wransum oxide. Very slowly and slightly sol in dil. HCl or H₂SO₄+Aq, more easily when conc. Completely sol in boiling H₂SO₄ Easily sol in HNO₁+Aq.

1130.)

Uranous oxychloride, UOz, UCl4+H2O.

Moderately sol in H₂O. (Aloy, Dissert 1901.) 2UO₂, UCl₄+H₂O Very sol. in H₂O and alcohol (Orlow, C. C **1903**, II 484.)

+13H₄O Very sol in H₂O and alcohol (Orloff) 4UO2, UCl4. Very sol. in H2O and alcohol. (Orloff.) 5UO2, UCL+10H₂O Insol in H₂O. (Aloy, Dissert, 1901.)

Uranous oxyfluoride, UOF2+2H3O. (Giolitti and Agamennone, C C 1905, I

Uranous oxysulphide, U2O2S4 = UO2, 2US2. Shightly attacked by dil, easily by conc HCl+Aq Sol in cold HNO₃+Aq (Her-mann, J B **1861**, 258)

Uranic oxy-compounds. See Uranyl compounds.

Uranium phosphide, U2P2. cone. HNOa.

Violently attacked by (Colan, C. R. 1903, 137, 383) U.P. Slowly attacked by H.O, not by dil. HCl+Aq. More easily attacked by cone HCl+Aq. Quickly decomp. by boil-ing cone HNO; and HNO;+HCl. (Colam, A. ch 1907, (8) 12. 59)

Urantum selenide, USe.

Spontaneously inflammable. Sol. in fuming HNO₃. (Colani, C. R. 1903, **137**, 383)
USe₃. As US₄. (Colani, C. C. **1903**, II U.Se. (Colani.)

Uranium disilicide, US:2.

Sol in cold or hot cone HF, insol, in HCl HNO₃, H₂SO₄ and aqua regia. (Defacqz, C. R. 1908, **147**. 1051)

Uranium monosulphide, US. (Alibegoff, A. 233, 117)

Uranium sesquisulphide, U2S1. Not attacked by HCl or dil. HNOs+Aq Oudised by furning H2SO4 or aqua regia. (Alabegoff, A. 233, 117.)

Uranium disulphide, US2. Insol, in cold or boiling dil. HCl+Aq. Sol. in cold conc. HCl+Aq. Decomp. by HNO₃+Aq. (Hermann, J. B. **1861**. 258.)

Uranium telluride, U.Tes. Violently attacked by cone, HNO: (Colani, C. R. 1903, 137, 383.)

Uranosotungstic acid.

Potassium uranosotungstate, 9K2O, 6UO. 8WO₃+34H₂O Insol in H₂O and in HCl (Gibbs, Am.

Ch J. 1895, 17, 175) Sodium uranosotungstate, 12Na2O, 6UO2. 8WOa+25H2O.

Insol. in cold H2O (G1bbs.)

Uranyl bromide, UO2Br2.

Sol in H₂O (de Coninck, C C 1903, I. 693) Sol m ether (v. Unruh, Dissert. 1909) +7H₂O. Deliquescent. Sol in H₂O

Uranyl bromide ammonia, UO2Br2, 2NH2.

(v Unruh, Dissert 1909.) UO₂B₁, 3NH₃. (v Unruh) UO₂B₁, 4NH₃ (v. Unruh.)

Uranyl chloride, UO2Cl2. Anhydrous. Very deliquescent. Sol. in H₂O, alcohol, and ether. Very sol in HO.

Sp. gr. of UO2Cl2+Ag at to

t°	% UO ₂ Cl ₂	Sp. gi
14 6 16 3 13 7 13 1 14 2 15.2 14 3 14 5	1 2 3 4 5 6 7 8	1.0056 1.0112 1.0161 1.0215 1.0260 1.0313 1.0366 1.0418
14 8	10	1.0517

(de Coninck, A. ch. 1904, (8) 3. 500)

r Sol. in cone HCl. cone HNO, and in selenic acid. Decomp by H2SO4. (de Coninck, A. ch 1904, (8) 3. 504.) in methyl acetate (Naumann, B

1909, 42. 3790), acctone. (Naumann, B 1904, 37. 4328) +H2O. Sol. in H2O, alcohol, and other

+3H₂O. Deliquescent. Very sol. in H₂O 1 pt. 18 sol. in 0 134 pts. Very 801. In Hay 1 pt. 18 801. In 0 107 pro-HayO at 18° and solution, which is saturated, contains 76 2% UO₂Cl₂ or 88.2% UO₂Cl₂+ 3H₂O. Sp. gr of solution = 2740 The solubility increases with rise in temp.

Sol, in alcohol and in ether. (Mylius and Dietz, B. 1901, 34, 2775)

Uranyl hydrogen chloride, UO₂Cl₂, HCl+ 2H₂O. Cryst at -10° from sat. solution of UO₂Cl₂ in HCl+Aq.

Fumes in the air (Aloy, Bull. Soc. 1901, Metavanadic acid, HVO. (3) 25, 154)

Uranyl chloride ammonia, UOo(NH₂Cl)₂,

Decomp by H.O. (Regelsberger, A. 227. UOs(NH3.NH3Cl)NHsCl. Decomp. by H₂O (Regelsberger) UO₂(NH₄ NH₃Cl)₂. Decomp. by H_{*}O.

(Regelsberger)

91, 115.)

Uranyl fluoride, UO.F., Very sol in H2O. (Smithells, Chem. Soc

43. 125.) Insol in H₂O or dil acids. Very sl. sol in HF+Aq. Sol in H₂SO₄+aqua regia (Ditte, A. ch. (6) 1, 339.) Insol in ether and amyl alcohol. (v Unruh, Dissert, 1909.)
UOF 4. Very sol in H₂O. (Ditte, C R. Aluminum divanadate.

True composition is UO2F2 (Smithells) Uranvi hydrogen fluoride, UO,F2, HF+H2O. Very sol, in H2O. (Smithells, Chem. Soc.

43. 131) Uranyl fluoride ammonia, UO2F2, 2NH2.

(v Unruh, Dissert, 1909.) UO2F2, 3NH1 (v. Umuh.) UO,Fo. 4NH, (v. Unruh)

Uranyl iodide, UO2I2.

Ppt. Deliquescent (Alov. A, ch. 1910, ---(7) 24, 417.) Deliquescent

Sol, in alcohol, ether and benzene. (Aloy, Dissert. 1901.)

Sol. in acetone (Eidmann, C C 1899, II 1014; Naumann, B 1904, 37, 4328), methyl acetate. (Naumann, B 1909, 42. 3790.)

Uranyl iodide ammonia, UO2I2, 2NH2.

(Aloy, Dissert. 1901.) UO₂I₂, 3NH₃. (Aloy.)

UO212, 4NH3 (Aloy)

Uranvi selenide, UO2Se.

Very slowly decomp. by H₂O Easily sol. in vold HCl. Violently attacked by cold HNO₃. Not attacked by dil. alkalies (Milbauer, Z. anorg 1904, 42, 450.)

Uranvi sulphide, UO:S.

Sl. sol. in pure H₂O. Sol in dil., insol in absolute alcohol Sol. in conc HCl+Aq, also in the acuts. Decomp by caustic al-Hauer.)

Extremely al sol in sat. 1 Hauer.)

Hauer.)

Insol in sat. NH4Cl+Aq.

Insol in sat. NH4Cl+Aq.

Insol in H₂O, sol in acids and alkahes. Insol in liquid NH₃ (Gore, Am Ch. J. 1898. 20, 830 j

 $+\frac{1}{2}H_2O$ See Vanadium ventoxide.

Purovanadic acid, H₄V₂O₇,

Insol in H2O Sol, in acids and alkahes

Vanadates

The alkalı, Ba, and Pb metavanadates are sl. sol. in H2O, the others are more easily sol. Insol in alcohol.

Aluminum me'ayanadata.

Very sl sol, in H_{*}O (Berzelius.)

R. 102, 918)

Very sl. sol in H₂O. (Beazelius)

Ammonium metavanadate. (NH₄)VO.

(a) Very slowly and sparingly sol. in cold H₂O. Easily sol. in hot H₂O. (Berzelius) Easily sol. in H₂O at about 70°. Very sl sol at above and below that temperature (Guyard, Bull. Soc. (2) 25. 355.) 10 g dissolve in 1 litre cold, and 63 g, in 1 litre hot H2O with partial decomp (Ditte, C.

Solubility in H₂O at to

t°	Solubility, mol per litre
18	0 03715
25	0 05189
35	0 08980
45	0 13406
55	0 17041
70	0 25994

(Meyer, Z Elektrochem, 1909, 15, 266.)

Solubility in NHLOH +Ag at to

	NH ₄ OH+Aq	t°	Solubility, mol per litre
	0.0677-N 0 2452-N 0 5872-N	18	0.04763 0.06798 0.1029
d s.	0 0677-N 0 2452-N 0.5872-N	25	0.06026 0 07303 0 1080

(Meyer, Z Elektrochem, 1909, 15. 268)

Extremely al sol in sat. NH,Cl+Aq. (v.

Solubility in salts + Aq at t°.			
Salt solution	· tº	Solubility, mol. per litro	
0.05-N NH ₄ Cl+Aq	18 25 35 45 55	0.01419 0 02248 0 04445 0 07575 0.09544	
0.1-N NH ₄ Cl+Aq	7 18 25 35 45 55	0 00356 0 00995 0 02347 0 04507 0 06314	
0 05-N NH ₄ NO ₃ +Aq	18 25	0 01483 0.02364	
0.1-N NH ₄ NO ₄ +Aq	18 25	0.00497 0.01050	

⁽Meyer, Z Elektrochem, 1909, 15. 267.)

Insol. in alcohol. (v. Hauer)

(b) Sol in cold H₂O, from which it is pptd by alcohol (Berzelius) Ammonium devanadate, (NH₄)₂V₄O₁₁+4H₂O.

Sol in H₂O, from which it is precipitated by sat NH,Cl+Aq or alcohol. (v. Hauer, W. A. B. 21, 337) Correct formula is (NH₄)₃V₇O₁₀+2H₃O,

Correct formula is (NH₂)₃V₇O₁₀+2H₃O₇ according to Rammelsberg (B. A. B. **1883.** 3) +3H₂O. Very sol. in H₂O. (Ditte, C. R. **102.** 918.)

Ammonium trivanadate, (NH₄)₂V₅O₁₆. Anhudrous. Nearly insol. in hot or cold

H₂O. (Norblad, B. 8. 126.) 1.5 g dissolve in 1 litre of boiling H₂O. (Ditte, C. R. 102. 918.)

+5H₂O. Very sl sol. in H₂O. (Ditte.) +6H₃O (?). Very sol. in H₂O. (v. Hauer, W. A. B 39, 455.)

Could not be obtained (Norblad; also Rammelsberg, B A. B. 1883. 3.)

Ammonium vanadate, (NH₄)₄V₁O₁₀+2H₂O.
Correct formula of v Hauer's divanadate, according to Rammelsberg (B A B, **1883**. 3).
Sl. sol. in H₂O

Ammonium sesquavanadate, $(NH_4)_4V_6O_{17}$ + 4 or $6H_2O$.

Very sol. in H₂O (Ditte, C. R. 102, 918.) Ammonium pentavanadate, (NH₄)₄V₁₀O₄₂+

10H₂O. Sol. in H₂O. (Rammelsberg, B A. B. **1883**.

Ammonium hydroxylamine vanadate, VO₄N₈H₁₀.

Rapidly decomp by H₂O (Hofmann and Kohlschutter, Z. anorg 1898, **16.** 472.)

HVO₃, 3NH₃O, 2NH₃=VO₃N₃H₁₆. Rapudly decomp by H₂O (Holmann and Kohlschütter)

Ammonium potassium vanadate, K₂V₄O₁₁, (NH₄)₄V₆O₁₇+9H₂O. Sol in H₂O (Ditte, C R. **104**. 1844.)

Ammonium sodium vanadate, Na₂V₄O₁₁, (NH₄)₄V₅O₁₇+15H₂O. Sol in H₂O. (Ditte, C R. **104**. 1841)

Ammonium uranyi vanadate, (NH₄)₂O, 2UO₃, V₂O₃+H₂O. Insol in H₂O, NH₄OH+Aq, or dil. HC₂H₂O₃+Aq (Carnot, C. R. **104**. 1850.)

Barium mejavanadate, Ba(VO₃)₂+H₂O.
Somewhat sol in H₂O before ignition
Sol in conc H₂SO₄ (Berzelius)

Barium pyrovanadate, Ba₂V₂O₇. Somewhat sol. in H₂O. (Roscoe.)

Barium vanadate, Ba₂V₆O₁₇+14H₅O. (Ditte, C. R. 104, 1705.)

 $\dot{B}_{a,V} _{10}O_{st} + 19H_{s}O.$ 1 pt. is sol. in 5200 pts $H_{s}O$ at 20-25° Much more sol. in hot, but decomp by boiling $H_{s}O$ (v Hauer, W. A B 21. 344) Sol in about 5000 pts. $H_{s}O$ (Manasse, C.

Sol m about 5000 pts. H₂O (Manasse, C. 1886, 773.) Ba₄V₁₆O₂₉+2H₂O. (Norblad.)

Bismuth vanadate, Big(VO4)s.

Min Picherite Sol. in HCl+Aq with

evolution of Cl

Cadmium vanadate, Cd(VO₈)₂.

(Ditte, C. R. 102. 918.)

CdV₈O₁₀+24H₂O Sl. sol in H₂O. (Ditte, C' R 104, 1705) Cadmium potassium vanadate, CdK₃V₈O₁₇+

+9H₂O. (Radau, A. **251**, 148.) Cd₃V₁₀O₂₈, K₆V₁₀O₂₉+27H₂O 1000 pts. H₂O dissolve 5 4 pts. at 18°. (Radau.)

Cadmium vanadate bromide, 3Cd₂(VO₄)₂, CdBr₂.

Very sol, in dil. acids. (dg. Schulten, Bull. Soc. 1900, (3) 23, 160.)

Cadmium vanadate chloride, 3Cd₁(VO₄)₂, CdCl₂. Very sol, in dil acids. (de Schulten, Bull. Soc 1900, (3) 23. 159.)

Cæsium mejavanadate, CsVO:

(Chabrié, A. ch. 1902, (7) 26, 228)

Calcium metavanadate, Ca(VO₂)₂+4H₂O.

Much more sol. than Sr(VO₂)₂, and solution is not precipitated by alcohol (Berzelius.)

+3H₂O Sol in H₂O₂, insol in alcohol (Scheuer. Z anorg 1898, **16**, 304.)

Calcium pyrovanadate, Ca₂V₂O₇+5H₂O

Precipitate. +2H₂O Very sol. in dil acids. (Ditte C R 104, 1705) +2¹/₂H₂O. (Roscoe)

Calcium divanadate, CaV₄O₁₂+9H₂O.
Easily sol in H₂O. (v Hauer.)
When fused is nearly insol, in H₂O.

Hauer.) +6H₂O. (Manasse, A. **240**. 23.)

Calcium trivanadate, CaV₀O₁₇+12H₂O.
Very sol in H₂O. (Ditte, C R. 104, 1705)

Calcium vanadate, Ca₄V₈O₂₂+15H₂O.
Sol in H₂O. (Manasse, A. 204. 23.)
Ca₅V₁O₃+7H₂O (7). Sl. sol in H₂O.
Probably a mixture. (Manasse, A. 240. 23.)
Ca₇V₁₀O₁₃+26H₂O. Sol in H₂O. (Manasse, A. 240. 23.)

Calcium copper vanadate, (Ca, Cu)₄V₂O₅+ H₂O. Min. Volborthite Sol. in HNO₃+Ao

Calcium potassium vanadate, CaK₃V₂₀O₅₅+ 22H₂O.

Sol in H₂O. (Manasse, A 240, 23.) Calcium vanadate chloride, Ca₂(VO₄)₂, CaCl₂. (Hautefeuille, C. R. 77, 896)

Chromium vanadate, CrVO₄.

Absolutely unsol in H₂O containing NH₄C₂H₁O₂ and HC₂H₂O₃ (Carnot, C. R. 104. 1850)

Cobaltous metavanadate, Co(VO₃)₂+3H₂O. Easily sol in H₂O. (Ditte, C. R. 104. 1705)

Cobaltous potassium vanadate, CoKV₆O₁₄+ +8H₂O 1000 pts H₂O dissolve 4.8 pts. of this salt. (Radau, A. 251. 140.)

Co₃K₂V₁₄O₃₀+27H₃O. (Radau.)

Cupric metavanadate. Sol in H₂O. (Berzelius.)

Cupric pyrovanadate, Cu₂V₂O₇+3H₂O. Sol. in hot H₂O. (Ditte, C. R. 104. 1705.) Could not be obtained. (Radau, A 251. 150.) Cupric lead vanadate, 5(Cu, Pb)O, V₂O₅+ 2H₂O.

Min Mottramite, 3CuO, V₂O₄, 3(3PbO, V₂O₄), 6CuO₂H₂+ 12H₂O. Min. Psittacannig.

Cupric potassium vanadate, CuKV₁O₂₄+
17H₂O.

Moderately sol. in warm H₂O. 100 pts. H₂O dissolve 11.1 pts. at 18°. (Radau, A. 251, 151)

Didymium vanadate, Di₂(VO₄)₂.

Precipitate (Cleve.)
Di₂V₁₀O₂₀+28H₂O. Precipitate. (Cleve,
Bull. Soc. (2) 43. 365.)

Glucinum metavanadate (?).
Difficultly sol. in H₂O (Berzelius.)

Glucinum divanadate (?).

Difficultly sol. in H₂O. (Berkelius)

Indium metavanādate, In(VO₂)₂+2H₂O.
Ppt. (Renz. Dissert. 1902.)

Iron (ferrous) metavanadate.

Ppt. Sol. in HCl+Aq. (Berzelius)

Iron (ferric) metavanadate. Somewhat sol in H₂O. (Berzelius)

Lead metavanadate, Pb(VO₃)₂.
Si sol in H₂O. Easily sol in warm dil.
HNO₃+Aq. Not completely decomp. by
H₂SO₄ or by boiling with K₂CO₂+Aq. (Berzelius)
Min. Dechemite Easily sol. in dil. HNO₃+

Lead pyrovanadate, basic, 2Pb₂V₂O₇, PbO.

Insol. in boiling H₂O or HC₂H₂O₂. Decomp. by HNO₂+Aq with separation of V₂O₄, which dissolves on warming. (Roscoe)

Lead pyrovanadatė, Pb₂V₂O₁. Sol. in warm dil. HNO₂+Aq. (Ditte, C. R. 104. 1705.) Min Descloizite. Sol in cold dil. HNO₂+

Lead divanadate, PbV₄O₁₁.
(Ditte, C. R. 104, 1705)

Aq.

Ag, and decomp, by HCl+Ag.

Lead orthovanadate, Pb₂(VO₄)₂. Insol. in H₂O. (Roscoe, A. suppl. 8, 109.)

Lead zinc orthovanadate, 4Pb₃(VO₄)₂, 3Zn₂(VO₄)₂ Min Eusynchute Easily sol. in HNO₂+

Aq. Eusynchite Easily sol, in HNC

Lead zinc vanadate, (Pb., Zn), V2O2+H2O. Min. Desclosute. Sol in excess of HNOs+ Aα.

Lead vanadate chleride, 3Pbs(VO4)2, PbCl2. Min. Vanadantie. Easily sol in HNOs+

Lithium vanadate, basic, Li₅V₂O₅+6H₂O.

Sol. in H₂O. (Datte, C R. 104, 1168.) L_{bb}V₂O₂+H₂O, and 14H₂O. Sol in H₂O (Ditte.)

Lithium metavanadate, LiVOs.

Easily sol. in H₂O. (Berzelius) · +2H2O Quite easily sol in H2O. (Rammelsberg, B. A. B. 1883. 3.)

Lithium diyanadate, Li₂V₄O₁₁+9H₂O.

Very sol in H₂O. (Norblad) Correct formula is Li3V3O14+12H2O

(Rammelsberg.) +8, or 12H₂O. (Ditte, C. R. **104**, 1168)

Lithium orthovanadate, Li, VO4. Insol. in H₂O. (Rammelsberg, B A B

1883.3) Lithium pyrovanadate, Li₄V₂O₇+4H₂O. Very sol, in H₂O. (Rammelsberg, B. 16.

+3H₂O. (Ditte, C. P. 104, 1168.)

Lithium vanadate, LisVsO14+7H1O.

Difficultly sol in H₂O (Rammelsberg.) +12H₂O. Very efflorescent Correct for-mula for v. Hauer's divanadate. (Rammels-

Li4V4O17+16H4O. Sol. in H5O. (Ditte. C. R. 104, 1168.)

+15H₂O (Rammelsberg) +11H₂O (R.)

i-3H.Ō Li₈V₄O_{1s}+15H₂O Not very easily sol. in H₄O (Rammelsberg) Li₈V₈O_{2s}+12H₂O Moderately sol. in H₂O

(Rammelsberg.) Li₁₀V₁₂O₄₅+30H₂O. Efflorescent. Very sol, in H₀O (Rammelsberg.)

Magnesium metavanadate, Mg(VO₃)₂.

Very casily sol. in H₂O. (Berzelius) +6H₂O. Very sol in H₂O. (Ditte, C R.

104, 1705.)

Magnesium divanadate, MgV₄O₁₁+8H₂O. Difficultly sol. in H₂O, but much more sol. than barium divanadate. (v Hauer) +9H₂O. (Ditte, C R. **104.** 1705.)

Magnesium travanadate, Mg2V4O17+41/2H2O.

Very sl. sol. in H2O (Manasse, A. 240. 23.)

Magnesium vanadate, Mg₈V₁₀O₁₀+28H₂O. Sol. in H₂O. (Suguira and Baker, Chem. Soc 35. 715)

metavanadate, Mn(VO_z),+ Manganous

4H.O. Very al, sol, in cold, somewhat more sol, in hot H2O. Easily sol in dil. acids. (Radau, A 251. 125.)

Sl sol in H2O2 msol in alcohol (Scheuer. Z. anorg. 1898, 16, 304)

Manganous purovanadate, Mn₂V₂O₇. Sl. sol, in hot dil. HNO++Aq (Ditte, C. R.

96, 1048.) Manganous potassium vanadate, MnKV.O.,

+8H₂O. 100 pts. H₂O dissolve 1.7 pts salt at 18° Easily sol. in acids (Radau, A. 251, 129) 3Mn₁V₈O_{2s}, K₈V₅O_{2s}+54H₂O. (Radau.) 7Mn(VO₃)₂, 2KVO₃+25H₂O (Radau.) 11Mn(VO₃)₂, 2KVO₃+48H₂O (Radau.)

Mercuric vanadate. Si, sol in HoO.

Nickel vanadate, Ni(VOs): Sol in H₂O. (Ditte, C R. 104, 1705.)

Nickel orthovanadate, Nig(VO4)2. Insol in H₂O, sol. in HNO₃+Aq (Ditte,

C R. 96, 1049.) Nickel divanadate, $NiV_4O_{11}+3H_2O$.

Sol in H₂O (Ditte, C R. 104, 1705.) Nickel potassium vanadate, 5Ni(VOs)2,

2KVO2+25H2O. N1gK2V10O20+17H2Q. Very sl sol. in hot H₂C NiKV,O4+8H,O

2N₁₄V₁₆O₂₈, K₈V₁₄O₂₉+69H₂O. 1000 pts. H₂O dissolve 1.7 pts. of salt at 17 5° (Radau, A 251, 137.) Potassium vanadate, basic, K₈V₂O₂+20H₂O.

Sol. in H₀O (Ditte, C R. 104, 902) Potassium metavanadate, KVOs.

Anhydrous. Slowly sol. in cold, more easily in hot H2O. Insole in alcohol. (Berzelius) Completely sol, in a little cold H₂O (Nor-

blad) $+H_{\bullet}0.$ Sol. in H₂O. (Rammelsberg)

+11/H₂O +11/H₂O. (Ditte.) +2H.O. (Ditte.)

+3H₂O. +3H₂O. (Ditte, C R. **104.** 902_e) +7H₂O. (Rammelsberg.) Potassium divanadate, K2V4O11+4H2O. Sol. in cold or lukewarm H2O. Decomp. by hot H₂O. (Rammelsberg)

+3H₂O (Berzelius.) +3½H₂O. Sol in warm H₂O. (Norblad.) +8 or 10H₂O (Ditte, C. R. **104**. 902.) +6H₂O. (Ephraim, Z. anorg. 1903, 35. 76.) Samarium vanadate, Sm₂O₂, 5V₂O₄+28H₂O.

Potassium travanadate, K2V4O16. Anhydrous. Nearly insol. in H₂O. (Norblad) +6H₂O Insol in cold or hot H₂O (Norblad)

+1, and 5H₂O. (Ditte, C. R 104, 902.) Potassium orthovanadate, KaVO4+41/2 or 6H2O.

Deliquescent. Sol. in H₂O (Ditte, C. R. 104. 902.) Decomp by H₂O into K₄V₂O₇ and KOH. (Rammelsberg, B. A. B. 1883, 3.)

Potassium pyrovanadate, K4V2O7+3H2O. Deliquescent Easily sol. in H₂O Insol in alcohol (Norblad +4H₂O. (Ditte, C R. 104, 902)

Potassium vanadate, K₂V₄O₁₄+5H₂O. 100 pts. H₂O dissolve 19.2 pts at 17.5°

(Radau, A 251, 120.) +4½H2O. (Radau)

K₄V₆O_n+2H₂O. Slowly sol. in H₂O (Rammelsberg.) +6H₂O. (Ditte, C. R **104**, 902.)

+7H₂O. (Friedheim, B. 23, 1526) K.V.₁₆O₂₇+12H₂O Very sol in H₂O. (Manasse, A. 240, 42) $K_{10}V_{3}O_{25}+7H_{2}O$. Sol. in $H_{2}O$. (Rammels-

berg.)
K₂V₁O₂₁+1½H₂O. Very sl sol in H₂O
(Ephraim, Z. anorg. 1903, **35**. 75.)

**Robresim. Z anorg 1903 K₄V₁₈O₄₇ (Ephreym, Z anorg 1903, 35, 78)

Potassium sodium vanadate, 2(2K2O,3V2Os), 3(2Na₂O, 3V₂O₄)+30H₂O.

(Friedheim, Z. anorg 1894, **5**, 442) 2K₂O, 3V₂O₅, 4(2Ns₄O, 3V₁O₅)+35H₂O Efflorescent. (Friedheim, Z. anorg 1894, 5, 441)

Potassium strontium vanadate, K2Sr3V14O10+ 20H2O.

Sol in H₂O. (Manasse, A. 240, 23) K2Sr3V14Om+30H2O As above (Man-K4Sr2V14O20+18H2O. As above. (Manasse)

Potassium zinc vanadate, KZnV₆O₁₄+8H₂O. 1000 pts H₂O dissolve 4.1 pts of the salt (Radau, A 251. 145)

2KsV14Om, 3Zn4V14Om+90H2O (Radau) but easily sol. on addition of acids.

Potassium vanadate cyanide, K4V2O2, 4KCN +14H₂O.

Easily decomp 4 Insol. in alcohol (Petersen, 'Z. anorg. 1904, 38, 343.)

(Cleve.) +24H₂O (Cleve)

Samarium orthovanadate. Precipitate

Silver metavanadate, AgVO₂ Sol. in HNO2 or dil. NH4OH+Aq. (Ber-

zelius) Insol. in liquid NH1. (Gore, Am. Ch. J 1898, 20, 829.)

Silver orthovanadate, AgaVO4. Ppt. Easily sol in HNO2 or NH4OH+Aq. (Roscoe, Proc Roy Soc. 18, 316.)

Silver pyrovanadate, Ag. V.O.

Ppt . (Roscoe.) Sol in NH,OH+Aq. (Ditte, C R. 104. 1705)

Silver vanadate, Ag₆V₄O₁₂. Sol. in 21,414 pts H2O at 14°, and 13,617 pts. at 100° (Carnelley, A. 166, 155.)

Silver vanadate ammonia, 6AgVOs, 4NHs+ 8H₂O.

Sodium vanadate, basic, Na₈V₂O₈+26 or 30H.O.

(Ditte, C R. 104, 1705) Very sol, in H_{*}O. (Ditte) Sodium metavanadate, NaVO.

Anhydrous. Slowly sol in cold, very easily in hot H.O. (Norblad) 100 g. H₂O dissolve at:

40° 60° 21.10 26.23 32.97 38.83 g. NaVO (McAdam and Pierle, J. Am Chem. Soc. 1912, 34, 606.)

+2H₂O. Easily sol. in H₂O. 100 g. H₂O dissolve at: 25° 40°

15.23 29.93 68.36 g, NaVO₅. At 75° a value was obtained which showed that the solid phase had changed into the less sol, modification. (McAdam and Pierle. J Am. Chem. Soc. 1912, 34, 607.) +3/2H₂O (Ditte, C R 104, 1061) +3, 4, and 5H₂O (Ditte.)

Sodium divanadate, Na₂V₄O₁₁. Anhudrous Sl. sol. even in warm H.O.

+9H₄O Easily sol in cold H₂O. Insol m alcohol. (Norblad.) +5H₂O (Ditte, C. R. 104, 1061.) Not obtained by Rammelsberg (B A B 1883, 3.)

Sodium trivanadate, Na₂V₅O₁₆+9H₂O. Insol. in cold or hot H2O. (Norblad.) Composition is Na₆V₁₅O₄₅+24H₄O. (Ram-

melsberg) +3H_cO (Ditte, C. Rt. 104, 1061.)

Sodium orthovanadate, Na. VO. +16H.O.

Easily sol m H₂O, but decomp into Na,V₂O and KOH Precipitated by an excess of alcohol. (Roscoe, A. suppl 8, 102.) +7H₂O. (Hall, Chem. Soc 51, 96.) +10, and 12H₂O. Less sol in dil. NaOH blad) +Aq than in H₂O. (Baker, A. 229, 286.)

Sodium pyrovanadate, Na.V.O.+18H.O. Easily sol. in HaO. Insol. in alcohol. (Norblad) Sol. in alcohol. (Ditte, C, R 104, 1061.)

+8H2O. (Ditte.)

Sodium sesquevanadate, Na₄V₆O₁₇, Anhydrous. Insol. in H2O or NH4OH+Aq

(Rammelsberg (Norblad) +10H₂O

+16H₂O Efflorescent. (Rammelsberg.) +18H₂O (Ditte)

Sodium pentavanadate, Na₄V₁₀O₂₇+3¹/₂H₂O. Scarcefy sol, in H₂O (Rammelsherg) Sodium vanadate, NasV4O11+6H2O.

Difficultly sol. in cold H₂O. (Carnelley, A. 166. 155.) +2H₂O (Carnelley.) Na₆V₁₀O₄₂+24H₂O (

Correct formula for Norblad's trivanadate. (Rammelsberg) Na₂O, 4V₄O₅+7½H₄O. (Baragiola, Dissert. 1902.)

+8½H2O. (Baragiola,) 3Na₂O, 5V₂O₆+22H₂O. (Prandtl and Lustig, Z. anorg. 1907, 53, 405) 4Na₂O, 7V₄O₅+33H₂O. (Fri (Friedheim, Z anorg. 1894, 5, 443.) 5Na₂O, 8V₂O₅+39H₂O. Sol. in H₂O (Friedheim, Z. anorg 1894, 5. 441.)

Sodium vanadate fluoride, 2Na₂VO₄, NaF+ 19H₂O. Sol. in H₂O (Rammelsberg, W. Ann. 20.

Stontium metavanadate, Sr(VO₃)₂+4H₂O.

Difficultly sol. in cold H2O. (Norblad.)

Strontium divanadate, SrV4O11+9H2O. Sl. sol. in H2O, but much more sol, than barium divanadate. (v. Hauer.)

Sol in H₀O₀+Aq free from H₀SO. Insol in alcohol. (Scheuer, Z. anorg 1898, 16. 303.)

Strontium trivanadate, SrV₅O₁₆+14H₂O₁ Sol in H₂O, but decomposes slowly on boiling Easily sol in hot H₂O acidified with HC₂H₂O₂, and crystallizes therefrom

without decomp. (v Hauer, J. pr 76. 156.) Strontium tetravanadate, SrV₈O₂₁+11H₂O. Sol in hot H₂O with partial decomposition. (Manasse, A 240. 34)

Strontium vanadate, Sr₂V₈O₂₅+14H₂O. Sol. m H.O. (Manasse, A 240. 23) Sr₄V₁₄O₄₀+30H₂O. Sol. in H₂O. (Nor-

Thallous metavanadate, TlVOs. Sol. in 11.534 pts H₂O at 11°, and 4756

pts. at 100°. (Carnelley.) Thallous orthovanadate, TlaVO4. Sl. sol in H₂O Sol. in 999 pts H₂O at 15°,

and 574 p's. at 100° (Carnelley, Chem. Soc (2) 11. 323.) Thallous purovanadate, Tl.V2O7.

Sol in 4996 pts. H₂O at 14°, and 3840 pts. H₂O at 100° (Carnelley)

Thallous vanadate, Tl₁₂V₅O₁₆. Sol in 3406 pts. H₂O at 14°, and 533 pts. at 100° (Carnelley.) TheVisOat. Sol. in 9372 pts HaO at 11°. and 3366 pts at 100°. (Carnelley) TluV14O41 Ppt. (Carnelley)

Thorium vanadate, Th₂O₁₂(VO)₄, 16V₂O₅+ 24H₂O (?).

Sol. in H₂O (Cleve,) ThO2, V2O8+6H2O. Sol. in acids. (Volck, Z. anorg 1894 6, 167.

Uranyl vanadate, 2UO₈, V₂O₅, (UO₂)₂V₂O₇, Insol in H.O. (Carnot, C R 104, 1850.)

Vanadium vanadate, $2VO_2$, $V_2O_5 = V_4O_2$. Insol in H.O. Sol in dil H.SO. or HNOs

Insol in 14,0 . So in in in 15,00 or 1100 s
+A1 (Rammesiberg)
Slowly oxidised by LNO₄+Aq Slowly
sol in NH₀0H+Aq Reasily sol. in HCl+4Q
(Drtte, C. R. 101, 1487.)
+29/₃H₂O. (Bruerley.)
2VO_{2b} 2V₂O₃+8H₂O. Insol in H₃O.

(Brierley, Chem. Soc 49. 31)

Ytterbium vanadate, $3Yb_4O_5$, $5V_2O_5+3H_2O$. Yb₂O₈, 15V₂O₅, Ppt, (Cleve, Z. anorg. 1902, 32, 150.)

Yttrium vanadate.

Precipitate. (Berzelius.)

Zinc vanadate, Zn(VO₂)₂+2H₂O. Sol. in H₂O. (Ditte, C. R. 104, 1705.)

Zinc pyrovanadate, Zn2V2O7.

Appreciably sol. in H₅O. (Ditte, C. R. 96, 1048.)

Pervanadic acid. See Pervanadic acid.

Vanadicotungstic acid.

Ammonium vanadicotungstate 3(NH₄)₂O, V₂O₈, 8WO₈+10H₂O.

Very sol in H₂O Insol in organic solvents. (E F. Smith, J. Am Chem Soc. 1903, 25, 1227.)

Vanadicovanadic acid.

Ammonium vanadicovanadate, (NH4)2O 2VO2, 4V2O5+8H2O.

Sl sol. in cold and warm H₂O (Gıbbs, Am. Ch J 7. 209.) (NH₄)₂O, 2V₂O₄, 2V₂O₅+14H₂O. (2O. (Brierley, Chem. Soc. **49**, 30.) 3(NH₄)₂O, 2V₂O₄, 4V₂O₅+6H₂O.

Insol in II.O (Brierley.) Potassium ----, 2K2O, 2V2O4, V2O5+6H2O

Sol. in hot H2O. (Brierley, Chem. Soc. 49. 30.) 5K2O, 2V2O4, 4V2O5+H2O. Insol in H2O

(Brierley.)
K₂O, V₂O₄, 8V₂O₅ Insol. in H₂O
Sol in cone H₂SO₄ (Prandtl, B. 1905, **1891.**)

Sodium ----, 2Na₂O, 2V₂O₄, V₂O₅+13H₂O. Easily sol in H2O. Insol in cone soluions of salts, especially acetate. (Brierley,

Chem Soc. 49, 30.)

Vanadioarsenic acid. See Arseniovanadic acid.

Vanadioiodic acid. See Iodovanadıc acid.

Vanadiomolybdic acid, 8MoOs, V2Os+ 5H₀O.

Very sl. sol, in H₂O, and sl. sol in boiling HNO₃+Aq. (Ditte, C. R. 102, 757) Could not be obtained. (Friedheim, B. 24. 1173)

Ammonium vanadiomolybdate,

Castendyck, B. 1900, 33, 1615.)

(NH₄)₄O, 2V₂O₅, 2MoO₅+8H₂O. Nearly msol. in H₂O. (Friedheim and Castendyck.) 2(NH₄)₂O, V₂O₅, 2MoO₅+6H₂O. (Euler-Chelpin, Dissert, 1895.)

(NH4)2O, V2Os, 3MoOs+17H2O. (Euler-Chelpun) $_{2(NH_{3})_{2}O_{5}}$ $V_{2}O_{5}$, $_{4}M_{0}O_{3}+7H_{4}O$ and $_{+}$

8H₂O (Euler-Chelpin, 3(NH₄)₁O₁ 2V₂O₅, 4MoO₅+7H₂O. (Milch, Dissert Berlin, 1887.)

+9H₂O. Sol. in H₂O. (Ditte, C. R. 102. 1019.)

+11H₂O. Easily sol. in H₂O. Correct, composition of above compounds (NH₄)₂O, 2V₂O₅+2[NH₄)₂O, 2M₂O₃]+11H₄O. (Friedheim, B. **24.** 1173.)

Moderately sol, in H₂O and can be reeryst, therefrom (Euler-Chelpin, Dissert,

2(NH₄)₂O, 3V₂O₅, 4MoO₈+11H₈O. Nearly insol. in H₅O. (Friedheim and Castendyck, B. 1900, **33**. 1615.)

(Gibbs, 1800, 30, 1013.)
(Chbbs, 1800, 27,05, 5MoOs. Nearly insol in cold H₂O. (Euler-Cheipin, Dissert. 1895.)
Sol m

Nearly insol in H₂O. (Fried-lem and Castendyck, B 1900, 33, 1615.) 3(NH₂), 2Y₂O₃, 5Mo₃+83/4H₂O. Very easily sol in H₂O. (Laebert, Disseit. 1891.) 4(NH₂O₁) 2Y₂O₃, 5Mo₃+24H₂O. Prac-tically msol in H₂O. (Friedheim and Casten-

dyck, B. 1900, 33. 1615.) $2(NH_4)_2O$, V_2O_8 , $6MoO_3+5H_4O$ Sol m a large amount of H_3O . (Gibbs, Am. Ch. J 5. 361

+6H₂O. Rather al. sol. in H₂O. Easily sol. in acids. (Liebert, Dissert, Composition is double the above formula,

4(NH₄)₂O, 2V2Ot, 12MoO₁+12H₂O. Rather difficultly sol in H₂O Composition (NH₄)₂O, 2V₂O₄+3[NH₄)₂O, 4MoO₅]. (Friedheim.)

Caser Doug, 96, 204/ Og. Insel in H.O. Sel. (Friedment) V.O., 6MoO₁+7H₂O. (Isen-RNacO, V.O.) Not stated by boling in Dissert, 1905. Not stated by boling in Dissert, 1905. (Not Lip. Og. 1904) Not the Note of Caser

+16H₀O. Sol. in H₀O and can be recryst. therefrom. (Toggenburg, Dissert, 1902.) 5(NH₀O, 3V₂O, 8M₀O₃+14H₂O. (Stamm, Dissert, 1905.) 5(NH₀O, 2V₂O, 12M₀O₃+10H₂O, Quite castly sol in H₀O. Composition is (NH₀O, 2V₂O, 14(NH₀O, 3V₂O, 12M₀O₃)+10H₂O. (Stamp, Dissert) 6(NH₀O, 3V₂O, 12M₀O₃)+2H₃O, 3V₂O₃+8(NH₀O, 3V₂O₃, 12M₀O, 4V₂O₃) 3V₂O₃+8(NH₀O, 4V₂O₃O, 4V₂O₃O, 4V₃O₃O, 4V₃O, (NH₄)₂O, 12MoO₃ (F.

8(NH₂)₂O₁ 4V₂O₂, 13M₂O₃+21H₄O. Sol. in H₂O (Isenburg, Dissert, 1901.) 8(NH₂)₂O₁ V₂O₂, 18M₂O₃+15H₂O. Decomp. by hot H₂O₂ (Gabbs.) Could not

mmonium vanadiomolybdate, (NH₀)₂O, V₂O₃, 2MoO₁+4H₂O. (Nearly fine) in H₂O. (Friedheim and in H₂O. (Mileh.) Could not be obtained. (Friedheim.)

Ammonium barium vanadiomolybdate. 5(NH₄)2O, 15BaO, 6V2O5; 36MoO1.

(Milch.) (NH₄)₂O₁ BaO₂ V₂O₅ MoO₃+6H₂O (Euler-Chelpin, Drsert, 1895.) 3(NH_d)₂O, BaO, 3V₂O_b, 5MoO₂+9H₂O. SI sol. n cold and hot H₂O (Euler-Chelpin)

Ammonium potassium —, (NH₄)₂O, 3K₂O, 2V₂O₅, 4M₀O₃+5H₂O.

Decomp by H.O. (Euler-Chelpin.) (NH₄)₂O, 3K₂O, 3V₂O₄, 5M₀O₃+9H₂O (Euler-Chemin.) 1/2(NH₄)₂O, 31/2K₂O, 16H₄O Sol, in H₄O 3V.Os. 5MoOs+ (Jacoby, Dissert. 1900.)

Ammonium sodium ---(NH₄)₂O, Na₂O, 2V2Os 6MoO3+12H2O. (Euler-Chelpin, Dissert, 1895.)

Barium ----, BaO, V2Os, MoO3+7H2O. (Euler-Chelom)

Barium - 3BaO, 2V2Os, 6MoOs. (Milch) (Euler-Chelpin.)

+8H₂O TOLEY (LOWE-CHEPUL)

Filed, 447,0, 6M004-2BH,0. Sol in hot H,0 (Euler-Chepun).

ShaO, 4-0, 8M004-2BH,0, H,0, V,0, 8M004-2BH,0 Sol in hot H,0 (Gabs, 4-22H,0. Sol in hot H,0 (Gabs, 4-22H,0 Am. Ch J 5. 361.) 7Ran. 3V₂O₅ $18M_0O_4 + 16H_4O = BaO_4$ 3V₂O₄+6(BaO, 3MoO₄)+16H₂O, Sl. sol

in H₀Oe +36H₂O and +48H₂O. (Liebert, Dissert. 1891.)

Potassium ---- K.O. V.O. 3MoO.+15H.O. Nearly meel in cold H₂O. (Euler-Chelpin, Dissert, 1895.)

3K₂O, 2V₂O₅, 4MoO₂+8H₂O=K₂O, 2V₂O₅ +2(K₂O, 2MoO₃)+8H₂O Very sol. in H₄O. (Friedheim) +7H₂O. Easily sol in cold H₂O. Œuler-Chelpin.)

+9H₂O. Easily sol in cold H₂O Œuler-Chelpin.) 2K₂O, 2V₂O₅, 5M₀O₃+10H₆O Nearly insol, in cold, very al sol in hot H2O (Euler-Chelpin.)

3K2O, V2Os, 6MoOs+5H2O. (Euler-Chelpin. 2K2O, V2O6, 6M0O4+6H4O. Very sl sol.

2V₂O+4(K₂O, 3MoO₃)+12H₂O. Rather sk sol. in H₂O. (Friedheim.)

Sl. sol. in cold. easily sol. in hot H₂O. (Laebert, Dissert, **1891**.)

3K₂O, V₄O₅, 12MoO₄+15H₂O. (Liebert.)

Potassium sodium vanadiomolybdate, K.O. 4Na₂O, 2V₂O₆, 12MoO₂+18H₂O. (Euler-Chelpin, Dissert 1895.)

Sodium ----, 2Na₂O, V₂O₅, 6MoO₂+16H₂O (Euler-Chelpin, Dissert, 1895.)

Vanadiophosphoric acid. See Phosphovanadic acid.

Vanadioselenious acid, 3V2O6, 4SeO2+ 4H₂O.

Difficultly sol. in H2O. Can be $+6H_{2}O$ cryst from H₂O Difficultly sol. in H₂O. Can be +10H₂O cryst from H₂O (Prandtl, B. 1905, 38. 1307)

Ammonium vanadioselenite. 4(NH₄)₂O, 6V₂O₅, 5SeO₂+13H₂O.

Sl sol. in H₄O Decomp by boiling H₄O. 3(NH₄)₂O, 3V₂O₄. 6SeO₂+2H₄O. Ppt (Prandtl, B. 1905, 38, 1309 (NH₄)₃HV₆O₁₇, 12SeO₂+2H₂O Ppt. +4H2O, Ppt (Prandtl, Z anorg 1911

73, 231.)

Lithium ----, 4L12O, 6V2Os, 5SeO2+30H2O. Very sol, in H₂O (Prandtl)

Potassium ---, 4K₂O, 6V₂O₆, 5SeO₅+ 13H,O. 3K₂O, 3V₂O₅, 6SeO₂. (Prandtl, B 1905.

38, 1309.) Sodium ---, 4Na₂O, 6V₂O₅, 5SeO₂+20H₂O. Very. sol in H2O. (Prandtl, Z. anorg 1907, 53, 403)

Vanadiosulphuric acid, V2Os, 3SOs+3H2O. Deliquescent Sol in H.O. but is decomp. by boiling (Ditte, C. R. 102, 757.) See Sulphate, vanadium.

Vanadiosulpurous-acid.

Ammonium vanadiosulphite, 3(V₂O₄,SO₂), (NH₄)₂O, SO₂+4H₂O. (Gain, C. R. 1907, 144, 1158.)

Cæsium —, (V_2O_4,SO_2) , $3(C_{82}O_1SO_2)+$ 8H₀O. (Gain.)

Lithium ----, (V2O4,SO2), 5(Li2O,SO2)+ 8H4O. (Gain)

Potassium vanadiosulphite, 3SO2, (V2O4), $SO_{2}(K_{2}O) + 5H_{2}O$ (Gain) .

Rubidium —, (V_2O_4,SO_2) , $2(Rb_2O_1SO_2)$ + 2HO. (Gain.)

Sodium ---, 5(V2O4,SO2), (Na2O,SO2)+ 2H2O. (Gain.)

Thallium \longrightarrow , $3(V_2O_4SO_2)$, $(Tl_2O.SO_2)+$ (Gain.)

Vanadiotungstic acid, 6H2O, V2Os, 10WOs +16H₂O. Very sl. sol. in cold, more easily in hot H₂O (G₁bbs, Am. Ch. J. **5**, 361) 6H₂O. V₂O₅, 16WO₃+30H₂O sol. m H₂O (G₁bbs.) Readily

17H2O, 4V2O6, 16WO8+24H2O in cold, easily in hot H₂O. (Rosenbern, A

251, 228) Aluminum sodium vanadiotungstate, 7AlaOz, $27\text{Na}_2\text{O}$, $36\text{V}_2\text{O}_4$, $144\text{WO}_3 + 504\text{H}_2\text{O} = 3(\text{Al}_2\text{O}_3, 9\text{Na}_2\text{O}, 48\text{WO}_4)$, $4(\text{Al}_2\text{O}_3, 9\text{V}_2\text{O}_5)$

+504H₂O Sol in H₂O (Rothenbach, B 23, 3055.) Ammonium ----, (NH₄)₂O, 3V₂O₅, WO₃+

6H2O. Sol in H₂O. (Rammelsberg, B 1. 158) Soi in H₂O. Valon, 4WO₂+4H₂O. Friedheim and Löwy, Z anorg 1984, 6, 24). 4(NH₂)O. 2H₂O. Vol., 5WO₂+11H₂O. Soi in H₂O. (Gibbs Am. Ch. J. 5, 361.) 2(NH₂)O. Vol., 5WO₂+10H₂O. Soi in H₂O. (Ditte, C. R. 402. 1019).

31(NH₄)₂O, $14V_3O_4$, $60WO_3 + 58H_2O =$ 5[5(NH₄)₂O, 12WO₄], 2[3(NH₄)₂O, 7V₂O₄)]. Sol m H₂O. (Rothenbach, B. **23.** 3051.) 7(NH₄)₂O, 4V₂O₅, 14WO₃+16H₂O. Sol. in H₂O. (Rosenheim, A 251, 197.) 8(NH₄)₂O, 4V₂O₅, 16WO₅, 9H₂O+4H₄O. Efflorescent, Very sol. in H₂O. (Rosenbeim, A. 251, 216)

Barium —, 19BaO, $10V_2O_5$, $36WO_8+$ 94H₂O=3(5BaO, 12WO₃), 2(2BaO, 5V2Os)+94H2O.

8BaO, 4V₂O₅, 16WO₅, 9H₂O +44H₂O. 2Na₅t Efflorescent. Not very sol. in H₂O. (Rosen in H₂O. heim, A. 251. 218.) "3aO. 12WO1, 3V2O5+

6BaO, 3V2O, 12WO, +34H2O. Not easily sol. in H₂O . (Friedheim and Löwy, Z anoig 1894, 8-18)

4BaO, 4V₂O₃, 12WO₄+4HH;977 Less sol. 8Na₂O, 4V₂O₅, 16WO₅, 9H₂O+48H₂O.

than preceding salt Decomp. by boiling or by_mineral acids (Rosenheim) Composition is 4BaO, 12WOs, 3VaOs+ 30H₂O. (Friedheim)

Calcium vansdiotungstate, 2CaO, VaO, 2WO₂+12H₂O. (Friedheim and Lowy, Z. anorg. 1894, 6.

Magnesium sodium , MgO, 6Na₂O, 3V₂O₅, 12WO₅+42H₂O, =5Na₅O, 12WO₅+MgO, Na₂O, 3V₂O₅+42H₂O. Sol in H₂O (Rothenbach, B. 23, 3054,

Potassium ---, 4K2O, 3V2O4, 12WO3+

30H₂O. Sol. in H₂O.

Composition is potassium metatungstate vanadate, 3(K₂O, 4WO₄)+K₂O, 3V₂O₅+ 30H₂O (Friedheim, B, **23**, 1515.) 8K₂O, 4V₂O₅, 16WO₅, 9H₂O+24H₂O Very efforescent Easily sol in H₂O, (Rosen-

beim, A. 251, 214.)

Formula is 6K₂O, 12WO₄, 3V₂O₄+24H₂O, which as a double salt, 5K₂O, 12WO₈+K₂O, 3V₂O₅ (Friedheim, B. 23, 1505.)

+22H₂O

(Friedheim and Löwy, Z anorg. 1894, 6. 4(5Na₂O, 3V₂O₅, 6WO₂+24H₂O), 3(5K₂O 3V2O6, 6WO2+24H2O.) (Friedheim and

5(5Na₂O, 3V₂O₅, 6WO₅+24H₂O), 5K₂O 3V₂O_s, 6WO_s+24H₂O (Friedheim and

Silver ---, 8Ag₂O, 4V₂O₅, 16WO₃, 9H₂O,

Somewhat sol in cold H₂O, more easily upon addition of little HNO₁. Decomp. by waim H₂O (Rosenheim, A. 251. 224.) 3Ag₂O, 2V₂O₄, 6WO₈+3H₂O Nearly insol in cold H₂O Decomp by addition of HNO, or upon warming (Rosenheim.)

Sodium ----, 5Na₂O, 3V₂O₅, 6WO₂+36H₂O. Sol in II.O.

Composition is 3(Na₂O, 2WO₈)+2(Na₂O, 3V₂O₅)+36H₂O. (Friedheim, B. 28. 1527) +38H₂O. Sol in 1 25 pts. H₂O at 13.8°. Sl sol. m H₂0¹ (Rothenbach, B. **23**, 3052.) (Friedheim and Lowy.) 8BaO. 4V₂O₃, 16WO₃, 9H₂O + 44H₂O. 2Na₂O, 2V₂O₅, 3WO₃+20H₂O. Very sol.

Composition is Na₂O, 3WO₂+Na₂O, 2V₂O₅ +20H₂O, double salt of sodium tritungstate

and dvanadate. (Friedbeim, B. 23, 1523.) 4Na₂O, 3V₂O₅, 12WO₂+38H₂O = 3(Na₂O, 4WO₃)+Na₂O, 3V₂O₅+38H₂O Sol. in H₂O. (Rothenbach, B. 23, 3050.)

Efflorescent Easily sol, in H2O. (Rosenheim, A 251, 210,

Formula is 6Na₂O, 12WO₃, 3V₂O₄+42H₂O, rorming is ovasto, 12WO₃, 87 20±24.207, and is a double sait of sodium partungslate, 5Na₂O, 12WO₃, and sodium travanadate Na₂O, 3V₂O₅. (Friedheim, B 23, 1505).
7Na₂O, V₂O₅, 12WO₅+29H₂O. Easily sol in H₂O. (Friedheim and Löwy, Z anorg.

1894, 6, 15.) 8Na₂O, V₂O₅, 14WO₅+60H₂O and +66H₂O (Friedheim and Lowy.)

Strontium vanadiotungstate, 19SrO, $36WO_{0}$, $10V_{2}O_{5}+122H_{2}O=3(5SrO, 12WO_{5})$, $2(2SrO, 5V_{2}O_{5})+122H_{2}O$. 12WO₁), Sol. in H₂O. (Rothenbach, B. 23, 3053.)

Vanadious acid. See Hypovanadic acid.

Vanadiovanadicomolybdic acid. Ammonium vanadiovanadicomolybdate

11(NH₄)₂O, 4V₂O₄, VO₂, 28MoO₈+ 48H.O. Sl. sol in cold, sol. in hot H2O without decomp. (Gibbs, Am. Ch. J 5, 391)

Barium ----, 14BaO, 2V2Os, 3VO2, 30MoO8

+48H₄O. Precipitate. Very sl. sol in cold, decomp by hot H₂O (Gibbs)

Vanadiowanadicotungstic acid.

Ammonium vanadiovanadicotungstate.

6(NH₄)₂O₅ 2V₂O₅ 3VO₂ 12WO₃+ 12H₂O. Sol. in H₂O. (Gibbs, Am. Ch. J. 5. 391.)

Silver ----, 6Ag₂O, 2V₂O₄, 3VO₂, 12WO₂+ 8H₂O.

Precipitate Very sl. sol. in cold, sol in much warm H₂O. (Gibbs.)

Sodium ---, 6Na₂O, 2V₂O₄, 3VO₂, 12WO₄. Very sol in H₂O. (Gibbs)

Vanadium, V.

Insol. in H₂O, HCl, dil. H₂SO₄+Aq, and cold cone. H₂SO₄. Sol. in hot cone H₂SO₄. Slowly sol. in HF+Aq. Easily sol. in dil or cone. HNO;+Aq. Not attacked by hot cone. HNO;+Aq. Not attacked by hot cold NoOH or KOH+Aq. (Rosco, A. suppl. 7. 85.)

Does not alter in the air; not acted upon by HCl and very slowly by H₂SO₄. (Moissan, C. R. 1896, 122, 1299.)

Vanadium boride, VB.

Sol in HF and HNO: Decomp. by fused Vanadium trifluoride with MF. alkalies. (Wedekind, B. 1913, 46, 1203.)

Vanadium tribromide, VBr.

Very deliquescent; quickly decomposes (Roscoe, A suppl 8.99) +6H₂O. Sol in H₂O with decomp. (Locke and Edwards, Am Ch J 1898, 20, 600.) Sol. in H₂O, alcohol and ether Insol in HBr. (Piccini, Z. anorg. 1899, 19. 398)

Vanadium carbide, VC.

Insol, in HCl and H2SO4. Sol in HNOs in the cold, and in fused KNO₂ and KClO₂. (Moissan, C R, 1896. **122.** 1300)

Vanadium dichloride, VCl2.

Very deliquescent. Sol. in H₂O, alcohol. and other. (Roscoe, A suppl 7.79)

Vanadium trachloride, VCls. Dehouescent. Sol in HaO, absolute alco-

hol, and ether +6H2O. Sol in H2O, sl, sol, in conc. HCl+ Aq.

Sol. in alcohol and ether. (Piccini, Z. anorg 1899, 19. 395.)

Vanadium tetrachloride, VCl4.

Sol, with decomp, in H.O. alcohol, and ether. (Roscoe) Sol in H₂O with decomp.

Sol in fuming HCl with decomp Sol. in anhydrous CHCl2 or glacial acetic acid apparently without chemical change (Koppel, Z. anorg 1905, 45, 346.)

Vanadium difluoride, VF2,

Sol. in HF with evolution of H2 and formation of VFs. (Manchot, A. 1907, 357. 135)

Vanadium trafluoride, VF.,

Nearly insol, in H₀O and organic solvents. Nearly insol. in H₃J and organic solvents. (Ruff, B 1911, 44. 2544.)
+3H₂O. Efflorescent Easily sol. in cold, extremely sol. in hot H₁O with decomp. Can be recryst from HF+Aq. Insol. in strong alcohol. (Petersen, J. pr. (2) 40. 48.)

Vanadium tetrafluoride, VF4.

Very hydroscopic. Easily sol. in H₂O Difficultly sol. in SQ2Cl2 and SiCl4 Sol. in POCIs with evolution of gas.

Sol in acetone and acetic acid.

Vanadium pentafluoride, VF4.

Easily sol in H₂O.
Easily sol in alcohol, CHCl₃, acetone, and ligroin. Insol. in CS₂. Decomp. toluene and ether. (Ruff, B. 1911, 44. 2549.)

See Fluovanadate, M.

Vanadium hydride,

(2) 40, 49.)

Stable Does not react with boiling H2O. Not attacked by boiling HCl, but oxidized by hot H₂SO₄. Sol in boiling HNOs. (Muthmann, A. 1907, 355, 86.)

Vanadium dihydroxide, VO, xH₀O.

Insol in KOH or NaOH+Aq V(OH)2. Sol. in HCl (Locke and Edwards, Am Ch. J 1898, 20, 598.)

Vanadium trahydroxide, V2O2, xH2O. Easily sol. in all acids. (Petersen, J. pr

Vanadium tetrahydroxide (Hypovanadic hydroxide), $V_2O_2(OH)_4+5H_2O$. Easily sol, in acids or alkalies. (Crow.

Chem Soc 30. 453) Vanadium trilodide, VI.+6H.O.

Very hydroscopic, sol in H₂O. Only sl sol in cold cone HI+Aq Sol in alcohol (Piccini, Z. anorg 1899, 19, 399)

Vanadium nitride, V.N.

m nixOi+nisOi.
Decomp by fusing with KOH. (Muth-mann, A 1907, 355, 33.)

(Muth-(Mossan, C. R. 1902, 135, 496.) Insol. in H₂O, HCl, and KOH+Aq Sol Insol, in liquid NH₂, (Gore, Am., Ch. J. 1898. **20.** 830)

VN. (Roscoe, A. suppl 6. 114.) VNa. Not attacked by cold HNOs+Aq (Uhrlaub, Pogg, 103, 134)

Vanadium dioxide, VO.

Insol, in H₂O; easily sol in dil. acids (Roscoe, A. suppl. 6, 95.)

Vanadium trioxide, V2O2.

Oxidized in H₂O in contact with air and then dissolves. Insol. in acids, except HNO s, and in alkahes + Aq (Roscoe, A suppl. 6. Éasily sol. in HF (Petersen, J pr (2) 40. 48)

Vanadium tetroxide, VOs. Sol in acids and alkalies+Aq.

Vanadium pentoxide, V2Os.

Sol, m about 1000 pts. H₂O (Berzelius.) Sol in acids, alkali hydrates, and carbonates +Aq Insol in absolute, very sl. sol. in dil. alcohol.

Insol. in glacial HC2H2O2 Sol in conc. KF+Aq. (Ditte, C. R. 105.

1067) Sol. 10 H₂C₂O₄+Aq and alkalı oxalates+ (Halberstadt, Z. anal. 22. 1)

Aq. (Halberstadt, Z. anal. 20. 1) Three modifications.—(x) Forms hydrates 1905, 45. 357.)

with 2, and 5H₂O: Sol in H₂O. 11 of sat. solution contains 8 g. V₂O₈ (β) V₂O₈, 2H₂O₂, Very sl sol in H₂O 1 l. of sat. solution contains 0.5 g. V₂O₅ (γ) V₂O₆, 5H₂O Less sol in H2O than β I l. H₂O contains 0.05 g. V₂O₄ when saturated (Ditte, C R 101, 698.)

See Vanadic acid. Vanadium oxide, V₄O₆=2VO₇, V₂O₅,

See Vanadate, vanadium. V₂O₄, V₂O₅+8/₃H₂O. Soc **49.** 30.) (Brierley, Chem

See also Vanadiovanadic acid. V₂O₄, 2V₂O₄+8H₂O. See Vanadate, vanadium,

Vanadium ventoxide with MF. See Fluoxyvanadate, M.

Vanadium oxy compounds. See Vanadyl compounds. .

Vanadium sılicide. V.Si.

Insol. m H₂O. Not attacked by HCl, HNO or H2SO4. Readily attacked by HF

Not attacked by KOH+Aq, NaOH+Aq or NH₄OH. Decomp by fused KOH.

kalies. Decomp by fused KOH. (Moissan, C R. 1902, 135, 78)

Vanadium d_1 sulphide, V_2S_2 .

Insol in boiling dil or cone. HCl, dil H2SO4+Aq, or cold conc H2SO4. Easily sol, in hot dil or cone, HNO1+Aq, or in boiling cone. H2SO4. Insol in alkalies+Aq. Sl sol in KSH+Aq; sol, in NH4SH+Aq. (Kav. Chem. Soc. 37, 728.)

Vanadium trisulphide, V₂S₂.

Insol, in cold HCl or dil. H₂SO₄+Aq. Very sl. sol. in hot HCl or dil. H₂SO₄+Aq. More sol. in HNO₃+Aq or conc. H₂SO₄. Sl. sol in NaOH or NH₄OH+Aq. Essaly sol in (NH₄)₂S or NH₄SH+Aq, also in K₂S+Aq (Kay, Chem Soc 37. 728.)

Vanadium pentasulphide, V_2S_4 .

Sl. attacked by hot cone. HCl or hot dil. H2SO4+Aq; sol. in hot cone. H2SO4 Sol. in hot dil. HNO:+Aq. Sl sol. in NH:OH+Aq, but easily dissolved by NaOH+Aq. Sl. sol in Na₂S+Aq Sol. in NH₄SH+Aq (Kay.)

Vanadium sulphochloride sulphur chloride, 4VSCl₂, S₂Cl₂.

Decomp, in the air. (Koppel, Z. anorg

Vanadous acid.

Ammonium vanadite, basic, 2(NFL),0.

V.O. Sl sol un cold, easily in hot H₂O. (Ditte.

C. R. 102, 1310.) Ammonium vanadite, (NH4)2V4O2+3H2O.

Sol, in H.O. (Crow, Chem. Soc. 30, 460) +xH2O. Sol in H2O.

Insol in alcohol, ether and ammonia (Koppel, Z anorg 1903, 36, 297)

"+3H₂O Easily sol. in H₂O. (Mawrow, Z. anorg. 1907, 55. 150.)

Barium vanadite, BaV4O2+4H2O.

Ppt. (Koppell, Z. ahorg, 1903, 36, 300.) +5H₂O. Precipitate Easily sol in HNOs, or HCl+Aq, (Crow, Chem Soc. 30, 460.)

Lead vanadite, PhV Os. Ppt. (Crow.)

Potassium vanadite, K2V4O9+4H2O.

Sol in II.O.

South Higo.

Insol in alcohol, ether and an monia
(Koppel, Z. anorg 1903, 36, 300)

+7H₂O. Easily sol. in H₂O. Insol. in
cold, sol. in hot KOH+Aq Insol. in alcohol. (Crow.

+H₂O (Ditte, C. R. 102, 1310.)

Silver vanadite, Ag₂V₄O₆, Ppt. (Crow)

Sodium vanadite, Na₀V₄O₀+4H₂O₁

Sol. in H₂O Insol in alcohol, ether and ammonia. (Koppel, Z. anorg. 1903, 36. 299.) +7H2O. Easily sol, in H2O. (Crow, Chem. Soc. 30, 459.)

Vanadosotungstic acid.

Ammonium vanadosptungstate, 5(NH₄)₂O, 2V₂O₄, 14WO₄+13H₂O.

Very sol in HoO (E. F. Smith, J Am. Chem. Soc. 1903. 25, 1228)

Vanadous acid.

See Hypovanadic acid.

Vanadovanadic acid. See Vanadicovanadic acid.

Vanadyl bromide, VOBr. 'Very al sol, in H2O, acetic anhydride,

ethyl acetate, and acetone. Insol. in alcohol, ether, acetic acid, CHCls, toluene and CCl4. (Ruff, B. 1911, 44, 2537.)

Vanadyl dibromide, VOBr₃.

Very delibuescent, and sol, in H.O. (Roscoe)

Vanadyl tribromide, VOBr.

Very deliquescent, and quickly decomposes in moist air Sol in H2O. (Roscoe.)

Vanadyl bromide, V.O.Br., 2HBr+7H.O. Very deliquescent (Ditte, C. R. 102, 1310)

Vanadyl semichloride, V2O2Cl.

Insol in H₂O. Easily sol in HNO₁+Aq. (Roscoe, A. suppl 6, 114.)

Vanadyl monochloride, VOCI.

Insol, in H₂O. Easily sol in HNO₂+A₂. (Roscoe.)

Vanadyl dichloride, VOCla.

Deliquescent Slowly decomp. by H.O. Easily sol. in HNO2+Au (Roscoe)

Vanadyl trichloride, VOCI, Deliguescent. Sol. in H4O and alcohol with

decomp. (Bedson, A 180, 235.) Sol in ether with combination.

Divanadyl chloride, V2O4Cl2+5H2O. Deliquescent, and sol in H₂O, fuming

HCl. or alcohol (Crow, Chem. Soc. 30, 457.)

Vanadyl chloride, V2O2Cl2+4H2O. Very deliquescent (Ditte, C. R 102. 1310)

Vanadvi platinum chloride. See Chloroplatinate, vanadyl.

Vanadyl trichloride ammonia, VOCl₁, xNH₂. Decomp by H.O. (Roscoe)

Vanadyl diffuoride, VOF2. Insol in H2O. Inspl. in alcohol, ether, Sl. sol, in acetone, (Ruff, B. 1911. 44. 2546.)

Vanadyl influoride, VOF3.

Very hydroscopic Essily sol. in H₂O. Sol. in POCl₂ with evolution of gas. Difficulty sol. in PCl₂ and AsCl₃. Sol. in hot CHCl₂ and acetic anhydride. (Ruff, B. 1911, 44. 2547)

Vanadyl fluoride with MF.

See Fluoxyvanadate, and Fluoxhypovafia-

Vanadvi iodide, V₂O₂I₂, 3HI+10H₂O.

Very deliquescent, and sol. in H₂O. (Ditte, C. R. 102, 1310.) V₂O₅I₂, 2HI+8H₂O As above

Vanadyl sulphide, VOS (?).

 (a) Insol. in H₂O, alkalies, alkalı sulphides
 +Aq. Sol. in acids, except nitric acid and sous regia. (Berzeliuss).

(b) Sol. in alkalies, alkalı carbonates, and Xanthochromum chloride, sulphides + Aq Insol. in acids. (Berzelius.)

Water, H2O.

Water is the most universal solvent. It absorbs all gases, usually with an increase of volume, seldom, as in the case of NH2, with a diminution of volume It dissolves almost all solids in greater or less quantity, and mixes with or dissolves considerable amounts of many liquids

Miscible with alcohol. Sol in 36 pts. ether Sol in 30-33 vols, ethyl acetate. (Becker.) Sol. in 5 vols 10dhydrin

Sl. sol in most of the fatty oils

Solubility in organic solvents at to.

Solvent	t°	G H ₂ O m 100 g of the solution
Benzene	+3 23 40 55 66 77	0 030 0 060 0 114 0 184 0 255 0 337
Petroleum bpt. 190-250° at atmos. pressure	-2 +18 23 30 36 53 59 61 66 67 98 85 94	0 0012 0 005 0 007 0 008 0 012 0 026 0 031 0 035 0 043 0 063 0 075 0 097
Paraffin oil bpt. 200-300° at 10 mm. pressur	+16 50 65 78 77 94	0 003 0 013 0 022 0 030 0 035 0 055

(Groschuff, Z Elektrochem, 1911, 17. 350.)

White precipitate, fusible.

See Mercuridiammonium chloride.

White precipitate, infusible. See Mercuris, chloramide.

Xanthochromium bromide, Cr(NO2)(NH3),Br2.

Sol. 12 H2O. Resembles the chloride (Christensen, J., pr. (2) 24, 74.) 1

m a ni ay q carbonate, Cr(NOt)(NHs) COs. Easily sol. in H404- (Christensen.) 11 Local and Genth)

Cr(NO2)(NH3)6Cl2.

More sol, in H3O than the roseo, but less than the purpureo salt

Solution decomp, by light or boiling. Decomp by dil acids. Sol in NaOH+Aq and

NHOH+Aq (sp. gr. 091) Insol in alcohol (Christensen, J. pr (2) 24. 74.)

--- chloroplatinate, Cr(NO2)(NH2)2PtCl2

Insol. in pure H₂O, but sol. when warmed with H₂O containing HCl, with formation of a new double salt. (Christensen)

 mercuric chloride, Cr(NO₂)(NH₈)₆Cl₂ 2HgClo.

Precipitate. Decomp by long contact with H₂O (Christensen.)

—— chromate, Cr(NO₂)(NH₃)₅CrO₄. Difficultly sol in H₂O. (Christensen)

—— dichromate, Cr(NO₂)(NH₈)₅Cr₂O₇. Difficultly sol. in H₂O (Christensen.)

Insol. in cold H₂O. (Christensen)

---- nitrate, Cr(NO2)(NH2)5(NO2)2.

--- hvdroxide, Cr(NO2)(NH2)1(OH)2 Known only in solution. (Christensen.)

iodide, Cr(NO₂)(NH₂)₃I₂. Quite difficultly sol. in H₂O. (Christensen.)

Sol. in about 150 pts H₂O. (Christensen.) ---- sulphate, Cr(NO2)(NH2)4SO4+H2O. Sol. in H₂O and (NH₄)₂SO₄+Aq (Chris-

Xanthocobaltic bromide, Co(NH₃)₅(NO₂)Br₂

tensen.)

Easily sol. in cold HaO. (Werner and Miolati, Gasz, ch it 23, 2, 140)

--- bromonitrate, Co(NO2)(NH2)5(NO2)Br. Sl. sol in cold, more easily in hot H₂O. (Gibbs)

---- chloride, Co(NO₂)(NH₂),Cl₂.

Sl. sol in cold HaO, and decomp. by boiling therewith. Insol. in HCl+Aq and alkali chloudes+Aq. Easily decomp. by boiling with acids, even dilute (Gibbs and Genth Sol m 50 pts cold HaO. (Joigensen, Z. anorg. 5. 172.)

— mercuric chloride, Co(NO₂)(NH₃)₆Cl₂ 2HgCl2+H2O.

Insol. in cold, sl sol in hot H2O without decomp More sol, in acidified H.O. (Gibbs

Xanthocobaltic chloraurate, Co(NO2)(NH2)4Cl2, AuCl2+H2O.

Can be easily crystallised out of hot H2O (Gibbs and Genth, Sill Am J (2) 24. 90.)

- ---- chloronitrate, Co(NO2)(NH2)6(NO2)Cl. Sl. sol in cold, more easily in hot H2O.
- ---- chloronstrate gold chloride, Co(NO₂)(NH₂)₅(NO₃)Čl, AuCl₂.
- chloronitrate platinic chloride, 2Co(NO₂)(NH₃)₅(NO₃)Cl, PtCl₄.
- ---- chloroplatmate, Co(NO2)(NH2)5Cl2, PtCl.+H.O.

Scarcely sol, in hot or cold H₂O. Can be recryst from dil HNO₂+Aq. Sol, in hot dil. HCl+Aq. (Gibbs and Genth, Sill Am. J. (2) 24. 91)

- chromate, Co(NO₂)(NH₁)₄CrO₄+H₂O Very al. sol in cold, and but slightly sol, in hot H₂O. (Gibbs)
- —— dichromate, Co(NO2)(NH3)5Cr2O1. Easily sol, in hot H₂O
- ferrocvanide, [Co(NO₂)(NH₃)₆]₂Fe(CN)₆ +7H₂Ö. Nearly msol in cold, decomp by warm H₂O
- +6H_{*}O. (Braun, A. 132, 47.) --- iodide, Co(NO₀)(NH₀)₈I₁.
 - Sol in H₀O. (Gıbba.)
- iodosulphate, [Co(NO₂)(NH₂)₄]₂(SO₄)I₂ Sol in H₂O
- ---- periodosulphate, $[Co(NO_2)(NH_2)_5]_2(SO_4)I_4$. Easily decomp. by hot H2O
- --- nitrate, Co(NO2)(NH3)5(NO3)2. Sl. sol. in cold, moderately sol. in hot H₄O Decomp. by boiling. Much less sol than NH₄Cl or (NH₄)₂SO₄ in cold H₂O Insol. in HNO2. (Gibbs and Genth.)
- nitrite, Co(NO₂)(NH₃)₃(NO₂)₂+2H₂O.
- Sol in H₄O. (Gibbs) - cobaltic nitrite, Co(NO2)(NH2)5(NO2)2
- +2H₂O. Sl. sol. in H2O. (Gibbs, Proc Am. Acad.
- 11. 8.) Is nitratopurpureocobaltic cobaltic nitrite, lized from dil. HiSO4+Aq.

 $[(NO_3)C_0(NH_3)_{5]3}[C_0(NO_2)_5]_2+2H_5O$ (Jörgensen, Z. anorg. 5, 175.) [Co(NO₂)(NH₃)₅]₅[Co(NO₂)₆]₂. difficultiv sol. as the luteo salt. (Jorgensen.)

Kanthocobaltic tetramine cobaltic nitrate, Co₂(NO₂)₂(NH₂)₁₀(Co₂(NH₃)₄(NO₂)₃|₂.

Can be recryst from hot H4O. (Gibbs. Proc. Am Acad 11. 8.) $=(NO_2)Co(NH_3)_5[(NO_2)_2(NH_3)_2Co(NO_2)_2]_2.$ Xanthocobaltic diamine cobaltic nitrite, Very sl. sol. in cold H₄O (Jorgensen, Z anorg. 5, 180.)

---- oxalate, Co(NO2)(NH2)4C2O4. Nearly mool, in cold, sl. sol, in hot H2O

- sulphate, Co(NO2)(NH3)5SO4.

Moderately sol, in hot, much less in cold HaO. Sol without decomp. in HaSO4+Aq. (Gibbs and Genth) Sol in 25 pts hot H2O acadified with HC₂H₃O₂ (Jorgensen, Z. anorg. **5.** 172) 4Co(NO₂)(NH₃)₆SO₄, 3H₂SO₄. Decomp. by H2O, not by absolute alcohol (Jörgensen.)

Xanthorhodium bromide,

(NO2)Rh(NH3)5Br2. Moderately sol, in H₂O, (Jörgensen, J pr (2) 34. 394)

— chloride, (NO₂)Rh(NH₂)₂Cl₂.

Much more sol, in H₂O than the nitrate

- chloroplatinate, (NO₂)Rh(NH₃),PtCl₃. Ppt Extremely sl. sol, in cold H₂O —— dithionate, (NO₂)Rh(NH₂)₂S₂O₄+H₂O.
- Nearly insol in H₂O.
 - -fluosilicate, (NO₂)Rn(NH₂)₂S₁F₂. Ppt.
 - ---hydroxide, (NO2)Rh(NH3)4(OH)2.
 - nitrate, (NO₂)Rh(NH₂)₅(NO₃)₂. Moderately sol, in cold, easily in hot H₂O. Insol, in alcohol. Less sol, in conc. NH₄OH+ Aq than in H₂O Insol. in dil HNO₂+Aq; sol in HNO₂+Aq
- of 1.4 sp. gr.
- oxalate, (NO₂)Rh(NH₂), C₂O₄. Nearly insol. in cold H2O. Very sl. sol in warm H₂O. Easily sol in dil HC₂H₃O₂+Aq.
- --- sulphate, (NO₂)Rh(NH₂)₂SO₄. Slowly sol. in cold, quite easily in hot H₂O 4(NO₂)Rh(NH₃)SO₄, 3H₂SO₄. Sl. sol. in cold, easily in hot H₂O. Can be recrystal-

ZINC

Xenon, Xe. Absorption by H₂O at to . . .

ţ.	Absorption coefficient
0 10 20 30 40 50	0 2189 0 1500 0 1100 0 1100 0 0900 0 0812 0 0878

(Antropoff, Roy, Soc. Proc. 1910, 83, A. 480.)

Ytterbium, Yb.

Ytterbium bromide, YbBr2+8H2O. Very sol. in H₂O Hydroscopic, (Cleve, Z. anorg. 1902, 32, 135)

Ytterbium chloride, YbCl.+6H.O.

Very sol. in H2O. (Cleve, Z. anorg 1902. Mpt. 150-155°. Anhydrous salt is sol in H₂O and in alcohol. (Matignon, A ch 1906,

Ytterbium oxide, Yb2O1.

Slowly attacked by cold or warm acids, but easily sol at 100°

Ytterbium oxychloride, YbOCl. Pnt. (Cleve, Z. anorg, 1902, 32, 135.)

Yttrium, Y

(8) 8, 442)

Decomposes H₂O. (Cleve, Bull. Soc. (2) 21, 344.) Decomp. H₂O slightly at ord. temp., more rapidly by boiling. Easily sol. in dil acids, even acette acid. Slightly acted upon by cone. H₂SQ₄. Decomposes hot KOH+Aq and cold NH₂Cl+Aq. Not attacked by NH OH +Aq (Popp, A 131, 179) Popp's vttrium contained erbium

Yttrium bromide, YBr₂.

Sol in H2O with evolution of heat (Du-

boin, C. R. 107. 243.)
+9H₂O. Deliquescent. Easily sol in H₃O and alcohol. Insol in ether. (Cleve)

Yttrium carbide, YC2.*

Decomp by H₂O and by dil acids; very slowly attacked by cone, acids, (Moissan, C R. 1896, 122, 575.) Decomp by H₂O and dil. acids. (Petters-

son, B. 1895, 28. 2421)

Yttrium chloride, YCl₃,

Anhydrous. Sol. in H₂O with evolution of heat. (Cleve.) +6H₂O Deliquescent. Very sol in H₂O

Sl. sol, m alcohol. Insol, m ether. (Cleve.) least Mpt. 156-160°; sol. in alcohol.

60.1 grams aphydrous salt are sol, in 100 grams of abs, alcohol at 15°. 6.5 grams are sol in 100 grams pyridine. (Matignon, A. ch. 1906, (8) 8, 437.)

Yttrium fluoride, YF2+16H2O.

Nearly insol. in dil. acids (Cleve.)

Yttrium hydroxide, YaOa, 6HaO or YaOaHa+ 3H₂O

Insol in H₂O. ^a Insol in KOH or NgOH+Aq. Easily sol, in scids. Sol, in alkali carbonates+Au. When freshly pptd., easily sol. in NH Cl+

Yttrium iodide, YI.

Very deliquescent. Easily sol. in H₂O and

Sl. sol. in ether '(Cleve) Yttrium oxide, Y₂O₃.

Insol. in HaO Sl. sol. in cold HCl. HNO. or dil H₂SO₄+Aq, but gradually completely sol. on warming Insol. in NH₄OH and sl sol in KOH+Aq Sol. in HC₂H₃O₂+Aq Somewhat sol in K₂CO₂+Aq

Yttrium peroxide, YaOa. . (Cleve, Bull. Soc (2) 43. 53.)

Yttrium oxychloride, Y.O.Cl., Insol in HiO. (Popp.)

Yttrium sulphide, Y₂S₃. Not prepared in pure state. Impure is msol. in H2O, and partially decomp. thereby. Easily sol in acids with decomp (Popp.)

Zinc, Zn.

Not attacked by pure cold H₂O. Slowly oxidised by boiling H₂O. Pure H₂O free from O dissolved nothing from 2500 sq. mm. Zn Presence of air containing CO2 caused a solution of 3.5 mg. Zu, which maximum was reached in 2 days Air without CO₂ also caused a slight action (Snyders, B. 11. 936.) 100 ccm distilled H₂O dissolved 14 mg Zn from 11.8 sq cm in one week, during which air free from CO2 was passed through the liquid, and 19 mg, when air containing CO:

was used. (Wagner, Dingl. 221. 260) Filtered rain water was found to contain 20 mg, Zn per l (Burg, Isis, 1873, 119) Very pure H₂O, when conducted through a great length of galvanized iron pipe, con-

tained 1.7 pts. Zn to 100,000 pts H₂O. (Davies, J. Soc. Chem Ind. 1899, 18, 102) Action of H₂O on Zn in galvanized pipes is caused by electrolysis (Smetham, C. N.

1879, **39,** 236) All kinds of H₂O attack Zn, rain water the

In distilled HoO exposed to air Zn is abun-

1118 ZINC

dantly coated with ZnCO₃, 2ZnO+3H₂O allowing 32 g Zn to stand in 270 cc. distilled H₂O in a flask loosely stoppered with filter paper, 1 2 pts. Zn to 100,000 pts H₂O was found in solution in 1-2 days (Smith, J. Soc Chem Ind 1904, 23, 475.) Sol in all acids Very slowly sol in dil

HCl or H2SO4+Aq in glass vessels if Zn is pure. According to Jacquelain, 24 hours were necessary to dissolve 6 g. pure sinc. When fused at the lowest possible temperature, it is much more slowly sol than when heated to a red heat In both cases it is much more rapidly dissolved if cooled quickly. (Bolley, A. 95. 294, Rammelsberg)

Dil. H2SO4+Aq dissolves given % zinc in the same length of time (B=according to Bolley, R=according to Rammelsberg)

•	Slowly ecoled		Rapidly cooled	
	В	R	В	R
Cast at the melt- ing point Cast at a red heat	42 5	74,1 69 4	13.0 85.5	0.9 9 5

50 ccm. H₂SO₄+Aq dissolved in 2 hours the following amts from 1 sq. cm Zn at to.

, t°	Strength of acid	Grms dissolved
20 130	H ₂ SO ₄	0.000 0.075
150	tt.	0 232
20	H ₂ SO ₄ +H ₂ O	0 002
130 150	и	0 142 0 345
20	H ₂ SO ₄ +2H ₂ O	0 002
130	- 10	4 916
150 20	H ₂ SO ₄ +3H ₂ O	5 450 0 005
130		3.080
20	H ₂ SO ₄ +4H ₂ O	0 049
130	TT CO I FTT O	0 456
130	H ₂ SO ₄ +5H ₂ O	0.337
20	H ₂ SO ₄ +6H ₂ O	0 018
100	0 '	3 16

(Calvert and Johnson, Chem Soc. 19, 437)

C P. zine is more quickly sol, in dil acids in vacuo than under normal pressure, the ratio being about 1:65. The rate of solubility increases slowly with rise of temp from 0° to 98°, when it amounts to about 4 times that at 0°, but from 98°-100° the increase is thirteenfold Thus, as an average of 6 experments, dil. H₃SO₄+Aq (1:20) dissolves in 30 minutes 2.1 mg, Zn at 0°; 4.9 mg at 20°; 7.4 mg, at 60°; 9.3 mg, at 91°; 5 but 122 1 mg, at 100° If, however, the acid was prevented from boiling by mcreasing the pressure, the sudden increase between 98° and 100° does not take place.

The rate of solubility in dil H₂SO₄+A₀ (1:20) as also increased 175 times by the addition of CrO₂ and 306 times by the addition of H₂O₂ The above phenomena are explained by assuming the formation of a condensed hydrogen atmosphere around the metal, which prevents the further action of the acid. (Weeren, B. 24. 1785)

Not attacked by HNO₄+Aq of 1.512 to 1.419 sp. gr. at a temp of -18° or less, but violently attacked if temp is raised HNO3+ Ac of 1419-1401 sp gr does not attack Zn at temp of a freezing mixture, but violently at 0°. More dil HNOs+Aq attacks Zn even at -20°. (Millon, A. ch (3) 6, 99.)

Sol. in II, CO, +Aq. (Berzelius.)

Solubility of Zn in acids is very much affected by the presence of small quantities of various metallic salts. Small amts. of PtCl₄+Aq accelerated the action of H₂SO₄+ Aq 149 times, and As₂O₂ 123 times. HgCl₂ has a strong retarding action owing to pptn of Hg on the Zn.

The rate of solution of Zn in acids and the

effect of changes in concentration and temperature and of the presence of morganic salts and organic substances on this rate has been studied, 26 Tables are given. (Ericson-Aurén, Z anorg, 1901, 27, 209-253.)

Speed of solution in H₈SO₄ and in HCl

(Centnerszwei, Z. phys Ch 1914, 87, 692) Various saline solutions have a strong solvent power in presence of PtCl₄, i.e. KCl, NaCl, Na₂SO₄, K₂SO₄, MgSO₄+Aq PtCl₄ also causes Zn to decompose distilled H₂O. CuSO4 has a similar but less energetic

effect In all the above cases the disengagement of hydrogen is slower in the dark than in the light. (Millon, C. R. 21, 37.)

According to Barreswill (C R 21, 292) the above reactions are all caused by galvanic action due to pptd metal, and a piece of Pt in contact with the Zn cruses the same action as the PtCls in solution.

Easily sol in alkalies + Aq, even NH4OH+ Aq, especially when the Zn is in contact with Fe Sol in NaCl+Aq with pptn of ZnO.

(Stersch, J. B. 1867, 257.) Sol. in sat alkalı and alkalı-earth chlorides

+Aq. (Post, 1872.) Sol. in NH, salts+Aq. (Lorin, J. B. 1865.

Sol in sat Na₂SO₄, \hat{K}_2 SO₄, MgSO₄, NaNO₈, NO₈, Ba(NO₈)₂, CaCl₂, MgCl₃, and H_4 NO₈+Aq. Chlorides and sulphates Ba(NO₃)₂, CaCl₂, -+Aq. Chlorides NH₄NO₃+Aq. Chlorides and sulphates (especially Na₂SO₄ and MgCl₂) have strongest action, MgSO, and nitrates the least The action was greatly increased by heat ders, B. 11, 936)

Sol. in boiling NH4Cl+Aq. Sol. in neutral FeCl₂+Aq with pptu, of Fe, especially easily at 100° (Capitaine, C. R. 9, 737.) Sol in NiSO₄+Aq with pptu of NiO.

(Tupputa.)

Sol. in cone hot ZnCl2+Aq, but Zn oxy-

chloride is pptd on diluting. (Ordway, Am J. Sci (2) 28, 222.) Sol, in GlSO4+Aq. (Debray)

Solubility of Zn in dilute solutions of salts. 100 ccm of solutions of the given salts were allowed to act one week on 118 sq. cm. Zn while a current of air with or without CO: was passed through the solution

Salt	G salt	Mg. Zn	Mg Zn
	in 100 ccm	dissolved	dissolved
	solution	without CO ₂	with CO:
NaCl or KCl NH,Cl MgCl; K,SO ₄ KNO ₃ Na;CO ₃ Na;CO ₄	0 5 1 0 0 83 1 0 1 0 1 0 0 923 Sat	7 51 18 30 9 13 60	38 36 54 53 37

(Wagner, Dingl. 221. 260.)

Action of dil. salt solutions (1%) on Zn The following amts, of Zn in mg were dissolved from 2500 sq mm Zn in 14 days by 400 ccm. 1% solution of the given solts.

Salt	Mg Zn	Sult	Mg. Zn
NaCl KCl CaCl: MgCl: BaCl: K;SO: MgSO: KNO:	11 2 14 8 15 2 17 2 13 2 12 0 8 8 6.8	NaNO ₃ Ba(NO ₄) ₂ NH ₄ Cl (NH ₄) ₂ SO ₄ NH ₄ NO ₃ NaHCO ₃ Na ₂ CO ₃ Na ₄ CO ₃	6 8 24 0 31 6 26 0 0 0

Sl. attacked by H₂O at 80°, by hot conc. NH4OH; attacked by H2PO4 or NaCl+Aq; very sl attacked by NaNO2+Aq or KNO2+ Ag at 100°. (Smith, J. Soc. Chem Ind. 1904, 28, 476.) ½ ccm, oleic acid dissolves 0 0240 g. Zn

in 6 days. (Gates, J. phys. Chem 1911, 15. Attacked by cane sugar+Aq at 115°

(Klein and Berg, C. R. 102, 1170.)

Zinc amide, Zn(NH₂)₂.

Decomp. by H₂O and alcohol. Insol. in ether (Frankland, Phil Mag (4) **15**. 149)

Zinc antimonide, ZnSb.

Does not decomp boiling H₂O except slightly. Not attacked by dil. mineral acids, but decomp by cone. HCl or HNO₃+Aq (Cooke, Proc Am Acad. 5, 348) Zn₂Sb₂ Decomp. H₂O rapidly at 100° 1909, 42, 3790.)

Violently decomp. by dil HCl or H2SO4+Aq, also by HNO2+Aq Completely sol. in HCl +Aq mixed with a little HNO (Cooke)

Zinc azoimide, basic, ZA(OH)N₂,

Very al sol in H₂O. Decomp. by hot H₂O. (Curtius, J. pr. 1898, (2) 58, 293)

Zinc azoimide ammonia, ZnNa, 2NHa,

Insol, in H₂O; but gradually decomp, thereby. (Dennis, J. Am. Chem. Soc. 1907 29, 20.1

Zinc bromide, ZnBr2.

Very deliquescent, and sol, in H-O. Sat. ZnBr2+Aq contains at:

---20° +4° 66 3 68.8 83.6% ZnBr. 170° 210° 375° (mpt.) 100% ZnBr2. 83 8 85.0 89 3 (Ftard, A. ch. 1894, (7) 2, 541.)

Solubility in HiO.

100°g, of the sat, solution contain at: 40° 80° 25° 60° 100° 85.45 85 53 86 08 86 57 87.05 g, ZnBr₄, (Dietz, Z, anorg. 1899, 20. 250.)

See also below under hydrated salts

Sp. gr. of ZnBr2+Aq at 19 5° containing 43.2 % ZnBr2, 31 7 18 3 1 3519 1 5276 1 1849

59 1 68 % ZnBr₂. 52 6 2 1027 1.70821.8525 (Kremers, Pogg. 108, 117.)

Sp. gr. of ZnBr2+Ag at 19.5°.

ZuBra	Sp. gr	ZnBra	Sp. gr.	ZnBr2	Sp gr
5	1 045	30	1 265	45	1 560
10	1 093		1 330	50	1 650
15	1 196		1 400	55	1 755
20	1 204		1 475	60	1 875

(Kremers, calculated by Gerlach, Z. anal. 8.

Sol in conc HCl or HC2H2O2+Aq. also in NH₄OH+Aq. Sol in AlBra. (Isbekow, Z anorg 1913. 84. 27) Very sl. sol. in liquid NH₁. (Franklin, Am. Ch. J. 1898, **20**. 830) Sol m alcohol and ether. (Berthemot, J. Pharm 14. 610)

Sol in methyl acetate. (Naumann, B.

Insol, in ethyl acetate. (Naumann, B | Solubility in H₂O at t°.

1910, 43. 314) More sol. in anhydrous ether than in abs		100 g. H₂O dıs		
alcohol Insol in CS ₂ . (Hampe, Ch. Z.		Solid phase	ZnČt ₂	
Sol in quimoline (Beckmann and Gabel, Z. anorg 1896, 51, 286). Mol. weight determined in pyridine. (Werner, Z. anorg, 1897, 15, 22) + H.O. (Lescoeur, A. ch. 1894, (7) 2. 78) + 2.24. (Very Dygroscopic) - 2.24. (Very Dygroscopic) - 2.25. (Very Dygroscopic) - 3.25. (Very Dygrosc	-10 -40 -62 -50 -40 -30 -10 0 +5 6 5	100 440 2nCl2+4H ₃ O 4aq 3aq 2nCl2+3H ₂ O 2nCl2+3H ₂ O 2nCl2+25/H ₂ O 2nCl2+25/H ₂ O 2nCl2+25/H ₂ O 2nCl2+25/H ₂ O 2nCl2+25/H ₂ O 2nCl2+25/H ₂ O	14 25 83 104 113 127 160 189 208 230 252 282 309 235	eryohydrate point transition point mpt eutectic point
+3H ₃ O Solubility in H ₃ O. 100 g. of the sat. solution contain at -1.5° -1.0° -5° (mpt.) 77.13 78 45 80 46 g. ZhB ₃ (Dietz, Z. anorg 1899, 20. 250.)	6 5 10 12 5 11 5 9 6 -6 +10 20 28 28 3	214aq 11/aq 214aq 1aq ZnCl2+214H2O ZnCl2+114H2O	252 272 303 335 360 385 298 330 368 423 433 342	transition point impt eutectic point outsche point transition point transition point
Zinc bromide ammonia, ZnBr ₃ , 2NH ₃ . Decomp, by H ₂ O. Si. sol. in cold, more easily in warm NH ₄ OH+Aq. (Ranimelsberg, Pogg. 56, 240). +1/H ₂ O. Decomp. by H ₃ O with separation of ZnO. (Andié C. R. 98, 703). +H ₃ O Above salt of Rammelsberg's has this composition. (André.)	10 20 28 31 25 40 60 80 100 202	laq ZnCl ₁ ZnCl ₂ +H ₂ O ZnCl ₁	364 396 436 477 432 452 488 543 615	transition point
3ZnBr ₂ , 8NH ₃ +2H ₂ O Decomp. by H ₂ O. (André.) 3ZnBr ₂ , 10NH ₃ +H ₄ O Decomp by H ₂ O. (André.) 2ZnBr ₂ , 10NH ₃ Efforescent Decomp.	See als	so below under sp. gr of ZnCl	hydrat +Aq :	at 19 5°
by H ₂ O. (André)	% ZnCl	Sp. gr.	% Zn	
Zinc bromide cupric oxide, ZnBr ₂ , 3CuO+ 2H ₂ O.	25 8	1 2466	49	2 1 5551
+4H ₂ O (Mailhe, C. R 1901, 133, 227.)		(Kremers, Po	,	
Zinc bromide hydrazine, ZnBr ₂ , 2N ₂ H ₄ . Decomp by H ₂ O.	% ZnCis	Sp. gr. of ZnCl ₂ Sp. gr. %, ZnCl-		% ZnClo Sp gr.
Sol in NH ₂ OH+Aq (Franzen, Z. anorg. 1908, 60. 277.) Zinc chloride, ZnCl ₂ . Very deliquescent, and sol. in H ₂ O	1 5 10 15	1.010 25 1.045 30 1.091 35 1.137 40 1.186 .	1.238 1 291 1 352 1 420	45 1 :488 50 1 566 55 1 650 60 1 740
Sol in 0 333 pt H ₂ O at 18.75° Abl.) ZnCl ₂ +Aq sat at 12.5° contains 78 5% ZnCl ₂ (Hassenfrats, A. ch. 28 . 291.)	(Gerlach	, Z. anal. 8. Krem	283,	calculated from
Solubility in H ₃ 0. 100 g. of the sat. solution contain at: 15° 20° 41° 60° 100° 79.12 81.19 82.21 83.51 86.01 g. ZnCl ₂ . (Dietz, Z. anorg. 1899, 20 , 245.)	Sp. gr t° ZnCl Sp. gr.	of ZnCl ₁ +Aq 15° 2 5 1 024 1	at t°. 15° 1.89 046	15° 15° 10.0 20.0 1.094 1.190
ZnCl ₂ +Aq containing 1 pt ZnCl ₂ in 1 8205 pts. H ₂ O at 18° has sp gr. = 1.3666. (Hit- torf, Z. phys. Ch. 1902, 39 . 628.)	% ZnCl. Sp gr.	15° 29.86 4 1 297 1 ong, W. Ann	15° 0 0 423 . 1880,	15° , 58 88 1.728 , 11. 38.)

Sp gr. of ZnCl2+Ag at room temp, contaming: 23 487 15 334 33 752% ZnCl₂.

1 1459 1 2288 1 2431 (Wagner, W. Ann, 1883, 18, 267)

Sp. gr. of ZnCl₂+Aq at 25°.

Concentration of ZnCl ₂ +Aq	Sp gr
1—normal	1 0590
· 1/2— "	1 0302
1/4— "	1 0152
1/8— "	1 0077

(Wagner, Z phys Ch. 1890, 5, 40.) Sp. gr of ZnCl+Aa

⅓ ZnCl₂ g in 1000 g. of solution	Sp gr 16°/16°
0 5994 2 3163 5 0406 9 8988 19 4914	1 000000 1 000560 1 002163 1 004708 1 009243 1 018228

(Duken, Z. phys. Ch. 1897, 24, 108.)

Insol. in SbCla (Klemensiewicz, C. C. 1908, II 1850)

Insol in hound NHs. (Franklin, Am. Ch. J. 1898, 20, 830.) Easily sol. in hot absolute alcohol, and

ether. Sol. in 1 pt. strong alcohol at 12 5°

(Wenzel) Sol in 0 35 pt absolute alcohol. (Graham) Sol in butyl (Wurtz), and hexyl (Bouis) alcohol at ord, temp, but decomp, on heating Very sol in acetic ether with evolution of

heat. (Cann, C. R. 102, 363) Easily sol in acetone. (Krug and M'El-

roy, J. Anal. Ch. 6. 184.) 1 g. ZnCl, is sol in 2 3 g acetone at 18°. Sp. gr. of sat solution 18°/4°=1 14 (Nau-

mann, B 1904, 37, 4338.) Sol in acetone and in methylal (Eidmann, C. C 4899, II 1014)

Sol, m methyl acetate. (Naumann, B. 1909, 42, 3790.)

Sol. in hot benzonitrile, also in other aromatic nitriles.

Sol, in methyl sulphide and in ethyl sul-Very sol. in piperidine. (Werner, Z. phide anorg. 1897, 15, 7,

Sol. in benzylvalcohol, furfurol, methylpropylketone, acetophenone, ethyl monochloracetate, ethyl cyanacetate, ethyl acetoacetate, ethyl benzoate, ethyl oxalate, amyl nitrite, pyridine, piperidine, and quinoline. Insol. in salicylic aldehyde, ethyl nitrate,

and netrobenzene. (Lincoln, J. phys. Chem. 1899. 3. 460) Sol. in quincline (Beckmann and Gabel

Z. anorg 1906, 51, 236.)

Sol. in 2 pts. glycerine at ord temp. (Clever, Bull Soc. 1872, (2) 18, 372) 100 g. glycerol thisolve 50 g. ZnCl₁ at 15 5°. (Ossendowski, Pharm J. 1907, 79. 575.) Insol in CSo. (Arctowski, Z. anorg 1894,

6. 257) Sol. in urethane. (Castoro, Z. anorg, 1899. 20. 61)

Mol weight determined in piperidine: pyridine and methyl sulphide. (Werner, Z. anorg 1897, **15**. 18.) +H₂O Very deliquescent. Contains 1½ H₂O (Engel, C. R. **102**. 1111.)

Solubility in H2O.

100 g of the sat, solution contain at: 27° (mpt) 74 33 78 25 84 61 g. ZnClo. (Dietz, Z. anorg. 1899, 20. 245.)

+13/H₂O. Solubility in HaO. 100 g of the sat, solution contain at:

100 20° 26° (mpt.) 67 45 73 65 80 08 83 43 g, ZnCl₂. (Dietz, Z anorg. 1899, 20, 245.)

+2H₂O. Sat. ac. solution contains at. -4° -20° -14° -10° ---10 57.4 57.9% salt. 54 7 55 4 56 5

15° 33° 42 59 1 68 3% salt. 60 2 62 0 66 8 (Etard, A. ch. 1894, (7) 2, 536.)

Solubility in H₀O. 100 g, of the sat solution contain at: 10° 19° (mpt)

79 07 g, ZnCl. 67 56 73.70 (Dietz, Z anorg 1899, 20, 245) +21/2H₂O. Solubility in H₂O.

100 g, of the sat, solution contain at: ñ٥ 80 13° (mpt.) 67.4271 96 75 14 g. ZnCl. (Dietz, Z. anorg, 1899, 20, 245.)

+3H₂O. Sol in 12.5 pts. H₂O at 0°. (Engel)

Solubility in H.O 100 g. of the sat. solution contain at: -5° +7° (mpt.) 71.57 g ZnCl2. 64 5 67 58

(Dietz, Z. anorg, 1899, 20, 245.) Zinc hydrogen chloride, 2ZnCl₂, HCl+2H₂O. Deliquescent. (Engel, C. R. 102, 1068) ZnCl2, HCl+2H2O. (Engel)

Zinc hydrazine chloride, ZnCl2, N2H4, HCl. Very hydroscopic Sol in H.O. (Curtius, J pr. 1894, (2) 50. 338.)

ZnCl₂, 2(N₂H₁, HCl) Hydroscopic; very sol, in H₂O. Sol. in hot alcohol and NH4OH+Ag. (Curtius, J pr. 1894, (2) 50. 338.)

Zinc chloride ammonia, ZnCl2, 5NH2+H2O. Easily sol. in little, but decomp. by much

H₂O. Still more sol in ZnCl₂+Aq with decomp. (Divers, C N 18, 13)
ZnCl₃ 4NH₄+H₂O. (Kane.)
ZnCl₃ 2NH₄. Not completely sol in H₂O. can be recryst. from hot NH,Cl+Aq. (Ritt-

hausen, J. pr. 60, 473.) Insol in H₂O. Sol in NH₄Cl or NH₄OH+ (Thomas, B 20. 743.)

+V,H,O. +²/,H,O. +²/,H,O.

Decomp. by H₂O. +H₀O

(André, C. R. 1882, 94, 964.)

ZnCl2, NH3. Decomp by H2O. (Kane, A. ch. 72, 290)

-Zinc chloride cupric oxide, ZnCl2, 3CuO+ 4H,0. (Mailbe, C. R 1901 134, 226)

Zinc chloride hydrazine, ZnCl2, 2N2H4. Ppt (Franzen, Z anoig 1908, 60, 275.)

ZnCl₂, 2N₂H₄ Insol in H₂O. Easily sol. in NH₄OH+Aq (Curtius, J. pr. 1894, (2) 50. 345)

Zinc chloride hydroxylamine, ZnCl₃, 2NH₂OH, Sl. sol, in cold, somewhat more in warm H₂O. Very sol. in NH₂OH+Aq Very sl sol. in alcohol and other organic solvents. Solubility of ZnO2H2 in NH4OH and am-

(Crismer, Bull. Soc (3) 3. 116.) 1 pt is dissolved in 100 pts aq. solution sat at 20°. (Antonoff, C. C. 1905, II. 810

Zinc fluoride, ZnF₂.

Sl. sol. in cold, more easily in hot H₄(
Insol. in 95% alcohol. Sol in boiling HNO
HCl, or H₂SO₄. (Poulenc, C. R. 116, SS)
Contrary to older statements, ZnF₂ is quite sol, in H2O. (Kohlrausch, Z phys. Ch. 190

44. 218.) Insol. in liquid NH2. (Gore, Am. Ch.

1898, 20. 830.) Insol. in methyl acetate (Naumann, 1

+4H₂O Difficultly sol, in H₂O what more sol, in H₂O containing HF, HCl. or HNO₅. Easily sol. in NH₄OH+Aq. (Berzelius, Pogg 1, 26.) 1 l, H₂O dissolves 16 g, at 18°, (Dietz)

Zinc hydrogen fluoride.

Known only in solution.

Zinc zirconium fluoride. See Eluozirconate, zinc.

Zinc hydrophosphide, Zn₂H₂P₂.

Decomp. by cold H2O and by dil HCl+Aq. (Drechsel and Finkelstein, B. 1871, 4, 353)

Zinc hydroxide, ZnO₂H₂.

Insol, in H₄O Sol in acids Sol, in KOH NaOH, NH4OH, or (NH4)2CO2+Aq. H₂O dissolve 0.01 g. ZnO₂H₂ at 25°

(Bodlander, Z. phys. Ch. 1898, 27, 66) Solubility in H.O is calculated to be 2.6 × 10° g mols. per l. (Herz, Z. anorg. 1900, 23. 227)

1 1. H2O dissolves 0 0042 g. ZnO2H2 at 18°. (Dupre and Bialas, Z. angew. Ch. 1903, 16. See also Zinc oxide.

Solubility in NH4OH+Aq at 25°.

ZnO2H2 used	NH2 norm	G ZnO per l
prepared from ZnSO ₄	1 287 0.825 0 311	7 28 3 84 0.85
prepared from Zn(NO ₄) ₂	0 321 0 643 1 215 1 928 2.570 3 213	0 34 0 845 2 70 5 07 7 01 10 16

(Bonsdorff, Z. anorg 1904, 41, 189)

monnim bases + Ac at 17°-10°

n	montum bases	and we as -to .		
()	Normality of the base	G ZnO in 20 cc. of the solution		
0. (1.) te (3, J.	0 0942 NH ₆ 0.236 NH ₃ 0 707 NH ₃ 0.0944 NH ₅ CH ₂ 0.472 NH ₂ CH ₃ 0.944 NH ₂ CH ₆ 0 068 NH ₂ C ₂ H ₆ 0.51 NH ₂ C ₃ H ₄ NH(C ₂ H ₃) NH(C ₃ H ₃) NH(CH ₃) ₂	0.00185 0 01795 0 0959 0 0008 0.01325 0 0484 0.0005 0 0074 0.01605 msol.		

(Herz, Z. anorg, 1902, 30, 280.)

Solubility in NH4OH+Aq increases with increasing concentration of NH4OH. (Euler, B. 1903, 36. 3401.)

2 pts. ZnO₂H₂ dissolve in 5 pts KOH+Aq. (sp. gr =1.3) (Bonnet.)

Solubility of ZnO ₂ H ₂ in NaOH+A				
*	G. Na in 20 com	G. Zn m 20 sem		
_	0 1012 0 1978 0 4278 0 6670 0 9660 1 4951 2 9901	0 0040 0.0150 0.0442 0.1771 0.9630 0 2481 0 3700		

When zine hydroxide is treated with alkalı, more dissolves at first than corresponds with the true equilibrium under the prevailing conditions, for such solutions spontaneously deposit more or less zinc hydroxide according to the concentration (Rubenbauer, Z. anorg 1902, 30, 333)

Solubility of ZnO2H2 in NaOH+Aq at 25°.

Na	Zu
0 2636	0 00311
0 3871	0 0057
0 5414	0 0129
0 9280	0 0425

(Wood, Chem. Soc. 1910, 97, 884.) Freshly pptd ZnO2H2 is easily sol. in

KOH+Aq, but it gradually goes over into a stable form which is difficultly sol, in KCH+ Aq. (Herz, Z anorg 1901, 28, 474)

Freshly pptd ZnO₂H₂ is sol. in dil. salt solutions (1 %) as follows. The given amts in mg (calculated as Zn) were disolved per l, at t°.

	Salt		Mg Zn	t°
NaCl .			51	18
KCl CaCl			43 57 5	20 16
MgCl ₂		•	65	16
BaCl ₂ K ₂ SO ₄			38 37 5	18 20
MgSO4 .			27	21
KNO. NaNo.			17 5 22	15 15
Ba(NOa)a			25	21
K ₂ CO ₃ NH ₄ Cl			0 95	15 20
NH ₄ NO ₃		•	77 88	20 20

(Snyders, B. 11, 936)

+H₀O. See also Zinc oxide.

'Zinc 'hydrosulphide, Zn(SH)2 Very unstable. Decomp. by H₂O. (Zotta, Zinc tetraiodide, ZnI4.

M 10.807) Sol in NaSH+Aq. (Thomsen, B. 11. Repert. 14. 412.) Sol. in fenchone Zn₂H₂S₄. (Zotta.)

Zinc iodide, ZnI:..

Debauescent Easily sol in HoO. Sat. ZnI2+Aq contains at

-18° -5° +17° 47° 62° 73° 70 9 74 0 80 4 80 8 81 3 81 2% ZnI₂, 100° 107° 138° 140° 82 1 83.0 82 6 83.8% ZnIs. (Étard, A. ch. 1894, (7) 2, 544)

Solubility in H₂Q.

100 g. of the sat. solution contain at: 18° 40° 60° 80° 100°

81 11 81.20 81.66 82.37 83.05 83 62 g. Znfa. (Dietz, Z. anorg 1899, 20, 251.) See also under +2H₂O

Sp. gr. of ZnI2+Aq at 19.5° contaming 23 1 42 6 56 3 63 5 76.0% ZnI₂. 1 2340 1.5121 1 7871 1.9746 2 3976 (Kiemers, Pogg. 111, 61.)

Sp gr of ZnI2+Aq at 19 5° containing: 10 15 20 25 % ZnI2, 1.045 1 091 1.140 1 196 1 255 40 50 % ZnI2, 45

1.368 1.390 1 420 1 560 1.650 60 65 70 75 % ZnI2. 1.754 1 875 2 020 2 180 2 360

(Kremers, calculated by Gerlach, Z anal, 8. 285)

Sol. in (NH₄)₂CO₅+Aq. Moderately sol. in liquid NH, (Franklin, Am Ch. J 1898, 20, 830) Sol in alcohol.

100 pts. glycerine disolve 40 pts at ord, temp. (Klever, Bull Soc. 1872, (2) 18, 372.) 100 g. glycerol dissolve 40 g. Znl₂ at 15.5°. (Ossendowski, Pharm. J. 1907, **79**, 575.)

More sol in anhydrous ether than in abs. alcohol Insol m CS, (Hampe, Ch. Z. 1887, **11**. 846.) Sol. in methyl acetate (Naumann, B. 1909, **42**. 3790); acetone. (Edmann, C. C.

1899, II 1014, Naumann, B 1904, 37. Sol, in quinoline. (Beckmann and Gabel,

Z. anorg 1906, 51, 236) Mol weight determined in methyl sul-phate (Werner, Z anorg 1897, 15. 25.) +2H₄O. Solubility in H₄O.

100 g, of the sat. solution contain at:
-10° -5° 0° +10° 22° 27°(mpt.) 80 50 80.77 81.16 82.06 83.12 89.52 g. ZnI₂. (Dietz, Z anorg, 1899, 20, 251)

+4H₂O (Lubarski, Z. anorg 1898, 18. 387.)

Known only in aqueous solution. (Baup, (Rimini and Olivari,

C. C. 1907, II. 241.)

Zinc iodide ammonia, ZnI., 4NH.

Decomp by cold H2O Easily sol in acids and NH₄OH+Aq. (Rafomelsberg, Pogg 48, 152.) ZnI2, 5NH3. Decomp. by cold H2O. Sol

in NH₄OH+Aq. (Rammelsberg) 3ZnI₂. 5NH₃+3H₂O. (Tassily, C R. 1896, 122. 324.)

Zinc iodide hydrazıne, ZnI*, 2N*H*.

Decomp. by H₂O. Sol. m NH.OH+Ag. (Franzen, Z anorg. 1908, 60. 277.)

Zinc nitride, ZnaNa.

Decomp by H₂O with the greatest violence (Frankland, Phil Mag (4) 15, 149) Easily decomp by H₂O when finely pow-dered (Rossel, C R 1895, **121**. 942) (Fischer, B. 1910, 43, 1468) Sol in HCl

Zinc oxide, ZnO. Insol. in H₂O. Some preparations of ZnO are sl. sol in H₂O, nover, however, in less than 1 million pts H₂O. (Bineau, C R 41.

Calculated from electrical conductivity of ZnO+Aq 1 pt ZnO is sol. in 286,000 pts, H₂O at 18°. (Dupre and Bialas, Zeit. angew. Ch 1903, 16, 55.)

See also Zinc hydroxide.

Easily sol in acids, even after ignition Easily sol in acids, even H2SO2, or H2CO3+

Solubility of ZnO in CrO₂+Aq at 25°

1 l. of th	1 l. of the solution contains.						
G CrO ₂	G ZnO	G CtOa	G.ZnO				
0.010	0.013	101	44.9				
0 010	0.013	151	66 1				
0 010	0 013	192	83 8				
0 604	1.16.		83.6				
2.14		285 392	123				
4 19	2 24		168				
11 4	5.84	450	193				
11 5 22 2	5.89 10.7	461 463	196				
31 4	14 9	475	197 202				
43 1	20 1	574	240				
57 5	26 7	660	274				
66.5	30 3	769	318				
66.7	30 4	879	354				
70.6	32 2	970	389				
03.3	41 5	810	909				

(Groger Z. anorg 1911, 70, 136.)

When most is easily sol in KOH, NaOH, and NHOH+Aq, but only sl sol therein Partially repptd from soluafter ignition. atter ignition. Patially repptd from solu-tion in NH,OH+Aq by dluttion with H₂O. Anhydrous ZnO is used in dil., but sol. in conc. alkali bydrates+Aq, but the hy-droxide is easily sol., even in dil. alkalies+Aq. (Fremy, A. ch. (3) 23, 390.)

Very sl. sol. in NH4OH+Aq After igni-

tion its solubility is greatly increased by traces of K and NH₄ salts. Phosphates have the strongest action, then, in the following order arsenates, chlorides, sulphites, mtrates, acetates, carbonates, tartrates, citrates, and sulphates. Succinates and benzoates merease the solubility in NH4OH+ Aq, only when it is very dil., borates, iodides, chlorates, arsenites, gallates, and oxalates

do not increase the solubility (Schindler) ZnO is sol in NH4OH+Aq, only in presence of NH4 salts (Brandhorst, Zeit. angew. Ch 1904, 17. 513)

Solubility in KOH, NaOH, and NH,OH+

Aq.
An excess over 4 mols KOH to 1 mol ZnO is necessary for solution, but that excess may be neutralised after solution, until only 4 mols are left, without pptn. of ZnO. Solu-tion is pptd by addition of 12 vols H₂O. KOH+Aq containing 16.5 g. KOH to a litre H₂O is the weakest solution which will dis-solve ZnO. Three times as much alkali are necessary for solution at 50° as at 16-17° Less excess of NaOH than of KOH is necessarv. 3 mols NH₂OH will dissolve 1 mol ZnO, and the temp and dilution are in this case of little influence. (Prescott)

100 cc of 20% NaOH+Aq dissolve in many hours at most 2.97 g. ignited ZnO. Pptd ZnO is more quickly dissolved but the

action becomes very slow after 100 cc of the solution contain 3.87 g, of Zn. (Forster and Günther, Z. Elektrochem 1900, 6. 301.) Solubility of ignited ZnO in NaOH+Aq gradually decreases. (Kunschert, Z anorg. 1904, 41, 343)

Sol. in hot NH,Cl+Aq, either when moist

Somewhat less sol. in NH+NO++Aq. Somewhat sol in water glass+Aq. (Ord-

Slowly sol in cold, easily in hot NaCl+Ag. (Stersch, J B 1867, 255.)

Solubility of ZnO in ZnCl2+Aq at room temp. 1 G ZnClaper 100 g, HaO G ZnO per 100 g HaO

3 Zifeli per 100 g. 1130	G Zuo per 100 g	17.20
8 22	0 0137	r
23 24	0 138	
45.95	0.497	
51.50	0 604	
56 90	0.723	
62 85	0.884	
96 00	1 792	
124 70	3 213	
144 80	r 2 640	
203 00	1.590	

The solubility curve has a maximum at a point corresponding to about 125 g ZnCl, per 100 g. H₂O. On the first branch of the curve the solid phase in equilibrium with the colution is ZnCl2, 4ZnO, 6H2O; on the second branch it is ZnCl2, ZnO, 1.5H2O.

(Driot, C R 1910, 150, 1427.)

Sol. in boiling Fe(NO₃)₃, and Pb(NO₃)₂+ An with pptn of oxides Not attacked by Co(NO₃)₂, N₁(NO₃)₂, and Ce(NO₃)₂+Aq. (Persoz)

Sol in boiling KCN+Aa

Insol. in boiling K tartrate +An lenberg and Hillyer, Am. Ch. J. 1894, 16, 101.) Insol in liquid NH, (Franklin, Am Ch. 1898. 20. 830.)

Tartaric acid somewhat hinders the path. of ZnO₂H₂ Insol, in methyl acetate. (Naumann, B.

1909, 42, 3790.) Insol in acetone. (Naumann, B 1904, 87, 4329, Eidmann, C C, 1899, II 1014) Sol in methyl amine, but insol, in amyl

amme+Aq. (Wurtz.) 1 l solution containing 174 4 g. sugar and 14.1 g. CaO dissoolves 0.24 g ZnO. (Bodenbender, J. B. 1865, 600) Min. Zincite. Sol in acids

Zinc peroxide.

1 pt. sol. in 45,000 pts \(\mathbf{H}_0\). Very sol. in acids. (Foregger and Philipp, J. Soc. Chem Ind. 1906, 25. 300.) ZnO₂ (?) Ppt Decomb. by a Decomp, by acids with evolution of H₂O₂. (Haass, B. 17, 2249.)

ZnO, H₂O, H₂O₂ 1902, (7) **27**. 58.) (de Forcrand, A. ch.

02, (7) 27, 38, 3 3ZnO, 2H₂O₂, (de Forerand) 3ZnO, H₂O, 2H₂O₂, (de Forerand) 4ZnO, H₂O, 3H₂O₂ (de Forerand) ZnO₂, ZnO₂H₂ Insol. in NH₂OH+Aq.

4ZnO₂, ZnO₂H₂ Insol. in NH₂OH+Aq. (Kouriloff, A ch. (6) **23.** 431.)

3ZnO₃, Zn(OH)₂. Sol. in NaOH+Aq with evolution of O (En]kman, C. C. **1905**, I ZnO₃. Zn₄O₇, 3ZnO+4H₉O, Completely sol, in

dil HaSO4 (de Forerand.) 10ZnO2, 4ZnO+5H2O Ppt (Teletow, Zinc oxylodide, ZnI2, 3ZnO+2H2O. C. C. 1911, I. 1799)

Zinc oxybromide, ZuBr2, ZnO+13H2O. ZnBr2, 4ZnO+10, 13, and 19H2O. comp. by HaO into-

ZnBr2, 6ZnO+35H2O. (André) ZnBr₂, 5ZnO+6H₂O (André.) Al oxybromides are sol in KOH and NH₄OH+Aq. (André, C R 96. 703.)

Zinc oxybromide ammonia, ZnBr2, 3ZnO, 2NH+5HO.

 Decomp. by H₂O. (André, C. R. 96, 703) Zinc oxychloride, ZnO, 3ZnCl2+H2O.

Decomp, by H2O. Very sol in dil. acids. (Ephraim, Z. anorg. 1908, 59. 67.)

+4H₂O. Sl sol in H₂O; more sol, in $ZnCl_2+Aq$. Basily sol, in acids, or NH4OH, or KOH+ Aq. (Schindler, Mag. Pharm 36. 45.)

+5H2O and 8H2O. (André, A. ch. (6) 3. 94.)

ZnO, ZnCla+136HaO. (Driot, C. R. 1910, 150. 1427.) 3ZnO, ZnCl₂+2H₂O Sl. sol. in H₂O, more easily sol. in ZnCl₂+Aq. Easily sol. in acids and in NH₂OH or KOH+Aq. (Schindler, Mag. Phana 36, 45.)

+3H₂O (Werner, B 1907, 40. 4443.) +5H₂O (Mailhe, A ch. 1902, (7) 27. 367.) 3ZnO, 2ZnCl₂+11H₂O. (André, C. R. 1888, 106, 854

4ZnO, ZnCl₂+6H₂O (André, C. R. 1888, 106, 854 +11H₂O. (André, A ch. (6) 3. 94.)

5ZnO, ZnCl2+6H2O (Perrot, Bull. Soc. 1895, (3) 13, 976) 1880, (9) 16. 3757 +8H₂O (André, C. R. 1882, 94. 1524.) 5ZnO, 2ZnCl₂+26H₂O Sol. in KOH or NH₄OH+Aq Decomp by H₂O into—

5ZnO, ZnCl₂+26H₂O. Sol. in KOH or NH₄OH+Aq. Decomp by H₂O into— 6ZnO, ZnCl₂+6H₂O. Instit. in H₃O.

0ZnO, ZnCl₂+9tH₂O. Ins91. in H₂O. (Kane, A. ch. 72. 296.) 8ZnO, ZnCl₂+10H₂O. (Mailhe, A. ch. 1902, (7) 27. 367) 9ZnO, ZnCl₂+3H₂O Insol. in H₂O. Less soi in NH₂OH+Aq than ZnCl₂, 3ZnO+

2H₄O, but easily sol m +14H₂O. 9ZAO, 2ZnCl₂+12H₂O Insol. in hot or cold H₂O, (Habermann, M 5. 432.)

Zinc oxychloride ammonia, 6ZnCl₂, ZnO, 12NH₁+4H₂O.

Decomp by H₂O and boiling alcohol. (André, Å ch. (6) 3. 90.) ZnCl₂, 3ZnO, 2NH₂+5H₂O Decomp. ZnCl_s, 3ZnO, (André.) ZnCl₂, 2ZnO, 2NH₂+3H₂O 6ZnCl₂, 3ZnO, 10NH₃+13H₂O. (André.) (André. 4ZnCl₂, ZnO, 8NH₄+2H₅O, (André.)

Insol in cold, sl. sol in boiling H₂O (Mfiller, J pr 96, 441)
ZnI₃, 9ZnO+24H₂O. Insol in cold H₂O. ZnI₃, 6ZnO+11H₂O. Decomp. by H₂O (Tassilly, C. R. 1896, 122, 324)

Zinc oxynhosphide, ZnP2O.

(Renault, A. ch. (4) 9. 162) Probably is a mixture of zinc phosphate and phosphorus. (Vigier, Bull. Soc. 1861.

Zinc oxysulphide, ZnO, ZnS.

Sol. in HCl+Aq (Arfvedson, Pogg. 1. 59.) 4ZnS. ZnO. Not decomp. by boiling HC₂H₃O₂+Aq Min. Volzte (Kersten, Schw. J 57, 186.) Sol in HC1+Aq.

Zinc phosphide, ZnP.

Less easily attacked by HCl+Aq than ŽnP. Not attacked by hot HCl+Aq. (Hvoslef, A. 100, 99)

ZnP. Insol. in dil HCl+Aq. (Renault.)

 $Z_{n_3}P_2$. Insol in H_2O Sol, in dil HCl, H_3SO_4 , or HNO_3+Aq , with evolution of PH_3 . (Renault, A ch. (4) 9. 162.) $Z_{n_3}P_4$ Insol. in HCl+Aq (Renault)

Zinc selenide, ZnSe.

Cold dil HNO, +Aq dissolves out Zn. and Se separates out, which dissolves on warming as H₂SeO₃. (Berzelius.)

+xH₂O. Insol in H₂O. (Berzelius.)

Zinc sulphide, ZnS. Anhydrous Insol in H2O. Sol in HCl+ Aq, insol, in HC₂H₂O₂+Aq (Ebelmen, A ch. (3) 25, 97.) Sol. in H2S+Aq under pressure in a sealed

tube. (Scnarmont, A ch (3) 32, 168) Mm. Blende, Sphalerite, Sl. attacked by acids, expectang aqua regia

 H₂O classolves 6.65×10-6 mols, zinc blende at 18° H₂O dissolves 6.63×10⁻³ mols, artificial cryst, ZnS at 18°. (Wiegel, Z. phys.

Ch. 1907, 58, 294.) Sol, in an alkaline solution of NaClO Sadtler, Trans Am. Electrochem. Soc (Sadtler, 1902, 1, 142.)

Insol. in liquid NH₃ (Franklin, Am. Ch. J. 1898, 20. 830

+1/s, */s, or 1H₂O Pptd. ZuS. 1 1 H₂O dissolves 70 60×10-4 mols. pptd ZnS at 18°. (Wiegel, Z phys Ch. 1907, 58.

Insol. in alkali hydrates, carbonates, and sulphides Aq Insol in NHOH, HCl, or (NH₄)₂CO₂+Aq. Easily sol. in very dil. HCl and HNO₃+Aq, but H₂S ppts. ZnS in pres-ence of very dil. HCl+Aq, or H₂SO₄+Aq. (Eliot and Storer.)
More easily sol m HNO₃+Aq than in HCl+Aq (Fresenius.)

Only sl sol, in acetic acid. (Wackenroder.) When still moist is sol, in H₂SO₂+Aq.

Insol. in NH₄Cl or NH₄NO₃+Aq K₂S+Aq when added to ZnSO₄+Aq pro-duces a ppt in presence of 10,000 pts H₂O₃ and a slight opalescence with 20,000 pts. (Lassaigne) Slowly sol in conc KCN+Aq. (Halm,

J B. 1870. 1008.) Sl. sol. in Na₈S+Aq; sol. in NaSH+Aq (Becker, Sill Am J (3) 33, 199)

Zinc pentasulphide, ZnS, Sol in acids, with separation of S. (Schiff,

Zinc sulphosilicide, ZnSiS.

Decomp. by acids and by alkalies. (Fraenkel, Metall, 1909, 6, 683.)

Zinc telluride, ZnTe.

A 115.74)

Decomp. by acids. (Fabre, C R. 105, 277.) Sol. in Bi2+Aq. Zincic acid.

Zinc hydroxide shows weak acid properties. and forms the following salts.

Ammonium zincate, 3ZnO, 4NH₈+12H₂O = 3ZnO, 2(NH4)2O+10H2O. Decomp by much H₂O

Barium zincate, BaH₂Zn₂O₄+7H₂O. Decomp. by H₂O. (Bertrand, C R, 115. 939.)

Calcium zincate, CaH2Zn2O4+4H2O. Decomp by H₂O. Sol. in NH₄OH+Au. (Bertrand, C R. 115, 939.)

Cobaltous zincate, xCoO, yZnO.

Rinman's green. Sol in acids H2CO2+Aq dissolves out ZnO (Comey.)

Potassium zincate, ZnO, K₂O, Easily sol. in H₂O, but decomp. by boiling. (Laux, A. 9. 183)
2ZnO, K₂O. Decomp immediately by cold H₂O (Fremy, C. R. 15. 1106)

Sodic zincate, Na₂O, 2ZnO+8H₂O, or 2NaHZnO2+7H2O. Decomp by H₂O or alcohol (Comey and Jackson, Am. Ch. J. **11**. 145) +7H₂O. (Förster and Günther, Z. Elck-

Triago, (Porster and Guntaler, Z. Eliga-trochem, 1899, 6. 301.)

2Na₂O, 3ZnO+18H₂O or Zn₂O₄Na₄H₂+
17H₄O. Decomp by H₂O or slochol Insol. in ether. (Comey and Jackson)

Strontium zincate, SrH₂Zn₂O₄+7H₂O. Decomp by H₂O. (Bertrand.)

Zirconic acid. See Zirconium hydroxide.

Barium zirconate, BaZrOs.

Insol. in acids. (Ouvrard, C. R. 113, 80.) Calcium zirconate, CaZrOs.

Insol in acids. (Ouvrard, C. R. 113, 80.) Calcium zirconate, acid.

Insel. in H2O or HCl+Aq. (Hiordthal, A. **137.** 237.)

Calcium potassium zirconate, (Ca.K)LaO. (small quantity of CaO substituted by K₂O), Sol in HCl. (Venable, J. Am. Chem. Soc.

1896, 18, 444.)

Cupric zirconate. (Berthier, A. ch. 59, 195.)

Lithium zirconate, Li₂ZrO₅ Easily attacked by acids (Ouvrard, C. R. 112. 1444.)

Magnesium zirconate.

Insol in H₂O or HCl+Aq. (Hiordthal, C. R. **61.** 215.)

Potassium zirconate. Decomp by HCl+Aq. (Knop, A, 159, 44)

Sodium zirconate, Na₂ZrO₃.

Decomp by H₂O Na₄ZrO₄ Decomp. by HCl+Aq, and is dissolved by subsequent addition of H₂O Na₄O, 8ZrO₂+12H₂O. (Hiordthal)

Strontium zirconate, SrZrO₃.

Zirconium, Zr.

Crystallazed. Attacked by conc HCl+Aq above 50°, but very slowly even at 100°; brapidly by hot aqua regna. Soi. in cold conc. HF+Aq. (Troost, C.R. 61, 109.)

Very violently attacked by a mixture of HNOs and HF. (Berzelius, Pogs. 4. 117.)

Amorphous. Slowly attacked by boiling

Amorphous. Slowly attacked by boiling aqua regia, H₂SO₄, or conc. HCl+Aq. (Ber-

Easily sol. in HF or HNO4+HF

Zirconium bromide, ZrBr4.

Very hygroscopic. Violently decomp. by H₂O to form oxybromide (Melliss, Zeit. Ch (2) **6.** 296.)

Sl sol, in organic solvents (Matthews, J Am. Chem. Soc 1898, 20, 840)

Zirconium bromide ammonia, ZrBr₄, 4NH₈.

Ppt Insol in organic solvents. (Matthews, J. Am. Chem. Soc. 1898, 20. 840.)

ZrBr₄, 10NH₃. Very hydroscopic.

Decomp by H₂O (Stabler, B 1905, 38.

2612)

Zirconium carbide, ZrC.

Insol, in H₂O and NH₄OH+Aq and HCl Aq even when heated. Sol in HNO₃, H₂SO₄ and fused alkali nitrates, chlorates, or hydroxides. (Moissan, C. R. 1896, 122, 663.)

Zirconium chloride, ZrCl4.

Sol in H₂O with evolution of much heat to form ZrOCl₂ Sol in alcohol (Hinsberg, A. 239, 253.) Very unstable.

Probably substances so described in the literature by Nylander and others were oxychlofides. (Venable, J. Am Chem. Soc. 1894, 16, 471)

Sol. nl ether. (Matthews, J Am. Chem. Soc 1898, 20, 821.)

Zirconium chloride ammonia, ZrCl₄, 2NH₂.

Fumes in the air. Decomp. by H₂O. (Matthews, J Am Chem. Soc 1898, **20**, 821.) ZrCl., 3NH₄. (Stähler, B 1905; **38**, 2611.) ZrCl., 4NH₄. Decomp. by H₂O. (Paykull)

Unstable. Decomp. by H₂O (Matthews, J Am Chem. Soc 1898, **20**, 821) ZrCl₄, 8NH₂. Stable in the air Decomp. by H₂O. Insol. in ether. (Matthews, J.

by H₂O. Insol. in ether. (Matthews, J. Am. Chem Soc 1898, **20.** 821.)

Very hydroscopic. Decomp. by H₂O. (Stähler, B. 1905, **38.** 2611.)

Zirconium fluoride, ZrF.

Anhydrous. Insol in H₂O and acids. (Deville, A. ch. (3) 49. 84.)
Only sl. sol. in H₂O.

1 388 g. dissolve in 100 ec H₂O without hydrolysis On warming the solution, zirconium hydrate begins to ppt. out at about 50°. (Wolter, Ch. Z. 1908, 32. 606.)

+3H₂O. Sol. in H₂O, but solution decomposes on diluting, with pptn of an insol. basic salt. Sol. in dil. HF+Aq. (Berzelius.)

Zirconlum fluoride ammonia, 5ZrF₄, 2NH₂. (Wolter, Ch. Z. 1908, **32**, 607.)

Zirconium hydride, ZrH2.

Not attacked by acids. (Winkler, B. 24,

Zirconium hydroxide, Zr(OH)4.

Insol. in H₂O or alcohol. Sol 12 5000 pts. H₂O. (Melliss.) Sol. in acids, even oxalic or tartaric acid,

when precipitated cold. If precipitated hot, it is slowly dissolved upon heating with conc. acids.

Sol. in dil or conc. min acids except HI.

Readily sol. in oxalic, only sl sol. in acetic acid.

Much less sol when pptd. from hot solu-

ton than when pptd. from cold solution (Venable, J. Am. Chem. Soc. 1898, 20. 274) Sl. sol. in (NH₀)CO₁+Aq. Insol. in K₂CO₂ and N_ECO₂+Aq. Insol. in NaOH, IKOH, and NH₂OH+Aq. Sol. in (NH₂)₂C₂H₂O₂+NH₄OH+Aq. In-

sol m NH, salts+Aq. Zirconium iodide, ZrI4.

Fumes in the air.
Sol in H₂O and acids with violent reaction.

Decomp by alcohol. Sol in abs. ether. Sl sol. in benzene and CS₂. (Stähler, B. 1904, 37. 1137) Insol m H₂O, HNO₅, HCl, aqua regia,

and CS₂.
Sol. in H₂SO₄ with decomp; unchanged by boiling H₂O. (Dennis, J. Am. Chem. Soc. 1896, **18**. 678.)

Zirconium iodide ammonia, ZrI., 6NHa, ZrI., 7NH1; ZrI., 8NH2; ZrI., 10NH3.
Potassium zirconomolybdate, 2K2O, ZrO2, 12MoO3 +18H2O All above comps are hydroscopic and lose NH, in the air (Stahler, B. 1905, 38. 2615)

Zirconium nitride.

Searcely attacked by acids, aqua regia, and caustic alkalies Slowly decomp. by long contact with H2O. (Mallet, Sill. Am. J (2) 28. 346.)

Decomp when heated in the air; sol in HF; insol, in other min, acids. (Matthews, J Am Chem. Soc. 1898, 20. 844.)
Zr₃N₈ Decomp. when heated in the air.
Sol. in HF, insol. in other min. acids (Mat-

thews, J. Am. Chem. Soc. 1898, 20, 844.)

Zirconium oxide, ZrO2.

When agaited, is insol, in all acids except HF and H.SO. Sl. sol. in HF; sol. in HeSO. only when very finely powdered and heated with a mixture of 2 pts. H.SO, and 1 pt. H.O until the H2SO, volatilises. (Berzelius.)

Zirconium peroxide, ZrO.

(Cleve, Bull. Soc (2) 43. 53), or ZrgOt according to Bailey (Chem. Soc 49. 150). Not attacked by cold dil H2SO4+Aq. (Bailey.) ·

Min. Zurcon. See Silicate, zirconium.

Zirconium silicon oxide.

Zirconium oxy-compounds. See Zirconvi compounds.

Zirconium phosphide, ZrP+. Insol. in dil. or conc. acids and alkalies Sl. sol. in aqua regia. (Gewecke, A. 1908, 361, 85.)

Zirconium silicide, ZrSi:

Sol in HF, msol, in other min, acids Not acted upon by 10% KOH+Aq or NaOH+Aq Decomp. by fusion with KOH. (Hongs-child, C. R. 1906, **143**, 225)

Zirconium sulphide.

Insol, in H.O Sol in HF; slowly sol in aqua regia Insol in HNO₄, HCl, H₂SO₄, or KOH+Aq. (Berzelius.) Insol, in dil. acids Sol in conc. HNO.+ Aq (perhaps an oxysulphide). (Fremy.)

Zirconomolybdic acid.

Ammonium zirconomolybdate. 2(NH₄)₂O, ZrO₂, 12MoO₂+10H₂O. Sol, in H.O (Pechard, C. R. 1893, 117. 790.)

Sol, in H2O (Pechard)

Zirconotungstic acid.

(Hallopeau.)

Ammonium zirconodecatungstate. 3(NH₄)₂O, ZrO₂, 10WO₃+13H₂O

Very sol. in H2O. Efflorescent (Hallopeau, Bull Soc 1896. (3) 15, 921) 3(NH4)2O, H2O, ZrO2, 10WO3+13H2O. Sol in H₂O, unstable; effloresces in the air.

Potassium zirconotungstate, 4K2O, ZrO3, $WO_s + 20H_sO$.

Sol. in hot H₂O. (Hallopeau.) 4K₂O, ZrO₂, 10WO₂+15H₂O More sol. in hot than in cold H₂O Sol. in fused alkalı carbonates. (Hallopeau)

Potassium dizirconodecatungstate 4K₂O, 2Z₂O₄, 10WO₄+20H₂O. More sol, in hot than in cold H₂O

Sol in fused alkali carbonates (Hallopeau.) Zirconyl bromide, ZrOBr2+3H2O.

Deliquescent, Decomp. in moist air. ery sol in H₂O (Venable, J. Am. Chem. Very sol in H₂O Soc 1898, 20, 324) +7H₂O Sol. in H₂O. (Melliss.) +8H₂O. Deliquescent. Decomp. in moist

Very sol in H2O (Venable, J Am. Chem Soc. 1898, 20. 324) +13H₂O. Deliquescent. Decomp, in

moist air Very sol in H.O. (Venable.) Decomp, in $+14H_{5}O$ Deliquescent most air. (Venable.)

Very sol in H₂O. (Venable.) •ZrBr(OH)2+H4O, and +2H2O Deliquescent, and decomp. in moist air. (Venable.)

Zirconvl chloride, ZrOCl2.

Sol. in H2O, insol in HCl. Am. Chem Soc. 1894, 16, 475.) +2H₂O. (Chauvenet, C R 1912, 154.

822.) +3H₂O, Sol in H₂O, (Venable.)

+3 5H₂O. (Chauvenet, C. R. 1912, 151. +6H₂O (Chauvenet.)

Sol. in H₂O . Insol. in HCl (Venable.)

+4½H₂O, 6½H₂O, and 8H₂O Efficrescent Easily sol. in H₂O and alco-hol Very sl sol. in cone HCl+Aq. (Berzelius)

+8H₂O. Sol in H₂O. (Venable, J Am. Chem. Soc. 1898, **20**, 321) Effloresces in the air.

on, in fig. Less soi in HCl+Aq, and nearly insoi, in cone HCl (Chapwenet, CR, 1912, 184, 822). In CR, 1912, 184, 822). Zr₁OCl₂ Soi in H₂0 and alcohol. (Endemann, Cross of the Classical Cone of the Cone of Insol. in H₂O

Very sol, in H_{*}O and alcohol. ann, o. pr (2) 24. 26.)
Not decomp by H₂O
Sol in dil HCl. (Chauvenet, C R. 1912, S7. 1138)

7 very sol. in H₂O and alconol. ((Stahler, B. 1904, S7. 1138) ZrI(OH)₂+3H₂O, Easily sol. in H₂O. 154, 1236)

(Hinsberg, A 239, 253.)
Ppt Sl sol. in HI+Aq. (Venable, J (Chauvenet, C. R. 1912, 154, $+H_2O.$ 1236.)

12300. Decomp. by H₂O. Sol. m dil HCl (Chauvenet) 8ZrO₁, 7HCl. Sol m H₂O. (E.) Zr₂O₂, 7HCl. Sol m H₂O. (E.) Zr₂O₂O₃ ThCl. Sol m H₂O. (E.) Zr₂O₂O₃ ThO₄ (Troost and Hautefeulle, C. R.

Decomp. by HNO₃ with separation of S. (Fremy, A. ch. (3) 38, 326.) 73. 563)