Umetna inteligenca

Odločitvena drevesa

- Gradnja drevesa
- Ocenjevanje atributov
- Binarizacija atributov
- Kratkovidnost
- Učenje iz šumnih podatkov
- Rezanje drevesa

Odločitveno drevo

- ponazarja relacijo med vhodnimi vrednostmi (atributi) in odločitvijo (ciljna spremenljivka – razred)
 - notranja vozlišča: test glede na vrednost posameznega atributa
 - listi: odločitev (vrednost ciljne spremenljivke)
 - pot: konjunkcija pogojev v notranjih vozliščih na poti, ki vodi do lista
- poseben primer: binarna klasifikacija (razred ima dve možni vrednosti (npr. pozitivni/negativni, strupen/užiten itd.)

Example	Attributes								Target		
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	555	F	T	French	0-10	T
X_2	T	F	F	T	Full	5	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	T	T	Full	5	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	555	F	T	French	>60	F
X_6	F	T	F	T	Some	55	T	T	Italian	0-10	T
X_7	F	T	F	F	None	5	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	55	T	T	Thai	0-10	T
X_{2}	F	T	T	F	Full	5	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	555	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	5	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	5	F	F	Burger	30-60	T

Gradnja odločitvenega drevesa

- cilj: zgradi čim manjše drevo, ki je konsistentno z učnimi podatki
- prostor iskanja: kombinatoričen, vsa možna drevesa (neučinkovito!)
- hevristični požrešni algoritem:
 - izberi najbolj pomemben atribut tisti, ki najbolj odločilno vpliva na klasifikacijo primera
 in razdeli vse učne primere v poddrevesa glede na njegove vrednosti,
 - rekurzivno ponovi za poddrevesa (na ustreznih podmnožicah primerov),
 - če vsi elementi v listu pripadajo istemu razredu ali vozlišča ni možno deliti naprej (ni razpoložljivih atributov), ustavi gradnjo.
- imenovano tudi Top Down Induction of Decision Trees (TDIDT)
- primeri implementacij: ID3, CART, Assistant, C4.5, C5, ...

Izbor najbolj pomembnega atributa

- najboljši atribut je tisti, ki razdeli učno množico v najbolj "čiste" podmnožice (glede na razred)
- uporabimo lahko mero entropije:

$$H = -\sum_{k} p_k \log_2 p_k$$

- mera nečistoče oz. mera nedoločenosti naključne spremenljivke (Shannon in Weaver, 1949)
- enota: količina informacije v bitih, ki jo pridobimo
- primeri:
 - met kovanca: 1 bit informacije
 - poskus s štirimi enako verjetnimi možnimi izidi: 2 bita informacije
 - poskus z dvema izidoma, od katerih je eden 99%: ~ 0 bitov informacije

Informacijski prispevek

- dejansko nas zanima znižanje entropije (nedoločenosti) ob delitvi učne množice glede na vrednosti atributa A
- informacijski prispevek:

$$Gain(A) = I - I_{res}(A)$$

$$I_{res} = -\sum_{v_i \in A} p_{v_i} \sum_{c} p(c|v_i) \log_2 p(c|v_i)$$

• najbolj informativni atribut maksimizira informacijski prispevek (minimizira I_{res})

Izbor najbolj pomembnega atributa

Example	Attributes									Target	
	A/t	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	555	F	T	French	0-10	T
X_2	T	F	F	T	Full	5	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	5	F	F	Burger	0-10	T
X_4	T	F	T	T	Full	5	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	555	F	T	French	>60	F
X_6	F	T	F	T	Some	55	T	T	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	55	T	T	Thai	0-10	T
X_2	F	T	T	F	Full	5	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	555	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	5	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	5	F	F	Burger	30-60	T

slab atribut (slabo loči pozitivne in negativne primere)

- znižanje entropije ob delitvi učne množice glede na vrednosti atributa A
- $Gain(A) = I I_{res}(A)$

$$I = -p(T)\log_2 p(T) - p(F)\log_2 p(F) = -\frac{6}{12}\log_2 \frac{6}{12} - \frac{6}{12}\log_2 \frac{6}{12} = -\log_2 \frac{1}{2} = 1$$

$$I_{res}(Type) = -\frac{2}{12} \left[\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} log_2 \frac{1}{2} \right] - \frac{2}{12} \left[\frac{1}{2} log_2 \frac{1}{2} + \frac{1}{2} log_2 \frac{1}{2} \right] - \frac{4}{12} \left[\frac{2}{4} log_2 \frac{2}{4} + \frac{2}{4} log_2 \frac{2}{4} \right] - \frac{4}{12} \left[\frac{2}{4} log_2 \frac{2}{4} + \frac{2}{4} log_2 \frac{2}{4} \right] = 1$$

$$I_{res}(Patrons) = -\frac{2}{12} \cdot 0 - \frac{4}{12} \cdot 0 - \frac{6}{12} \left[\frac{2}{6} \log_2 \frac{2}{6} + \frac{4}{6} \log_2 \frac{4}{6} \right] \approx 0,46$$

$$Gain(Type) = 1 - 1 = 0$$

$$Gain(Patrons) = 1 - 0.46 = 0.54$$

Primer

 naučeno odločitveno drevo (levo) je krajše od ročno zgrajenega drevesa (desno)

- obe drevesi sta konsistentni s primeri
- v zgrajenem drevesu ne nastopajo vsi atributi (npr. Raining in Reservation), zakaj?

Večvrednostni atributi

 težava z atributi, ki imajo več kot dve vrednosti: informacijski prispevek precenjuje njihovo kakovost (entropija je nižja na račun večjega števila vrednosti in ne na račun kakovosti atributa)

• rešitve:

- normalizacija informacijskega prispevka (relativni informacijski prispevek, bolje: mera razdalje)
- binarizacija atributov

Relativni informacijski prispevek

information gain ratio (sistem C4.5 Quinlan, 1986)

$$Gain(A) = I - I_{res}(A)$$

$$I(A) = -\sum_{v} p_{v} \log_{2} p_{v}$$

$$GainRatio(A) = \frac{Gain(A)}{I(A)} = \frac{I - I_{res}(A)}{I(A)}$$

v – vrednost atributa,

c - razred

informacija, ki jo potrebujemo za določitev vrednosti atributa A (entropija atributa)

Problem: I(A) = 0 (oziroma zelo majhen)

Rešitev: upoštevaj samo atribute z nadpovprečnim Gain (A)

Binarizacija atributov

- alternativa za reševanje problematike z večvrednostnimi atributi
- zalogo vrednosti atributa lahko razbijemo v dve množici
- primer: atribut $barva \in \{rde\check{c}a, rumena, zelena, modra\}$
- strategije:
 - {{rdeča}, {rumena, zelena, modra}} (one-vs-all)
 - {{rdeča, rumena}, {zelena, modra}}
 - vpeljava binarnih atributov za vsako barvo
 - itd.
- prednost: manjše vejanje drevesa (statistično bolj zanesljivo, možna višja klasifikacijska točnost)
 - različne binarne verzije atributa lahko nastopajo kot samostojni atributi, ki se v drevesu pojavijo večkrat

Kratkovidnost algoritma TDIDT

- TDIDT je požrešni algoritem, ki "lokalno" izbira najboljši atribut in ne upošteva, kako dobro drugi algoritmi dopolnjujejo izbrani atribut
- prednosti in slabosti zgornjega pristopa?

A_1	A_2	Razred
0	0	0
0	1	1
1	0	1
1	1	0

$$Gain(A1) = ?$$

 $Gain(A_2) = ?$

Učenje dreves iz šumnih podatkov

- vir: nepopolni podatki, napake v učnih primerih
- težave:
 - učenje šuma in ne dejanske (skrite) funkcije, ki generira podatke
 - pretirano prilagajanje vodi v velika drevesa
 - slaba razumljivost dreves
 - posledica: nižja klasifikacijska točnost na novih podatkih
- rešitev: rezanje odločitvenega drevesa

Rezanje odločitvenih dreves

- premislek: nižji deli drevesa (bližji listom) predstavljajo večje lokalno prilagajanje učnim podatkom, ki so lahko posledica šuma
- ideja: odstranimo (režemo) spodnje dele drevesa, da dosežemo boljšo posplošitev naučenega drevesa (in klasifikacijsko točnost na nevidenih podatkih)
- primer nizke točnosti drevesa pri skrajnem primeru pretiranega prilagajanja:
 - dva razreda, c_1 in c_2 , $p(c_1) = 0.7$, $p(c_2) = 0.3$
 - privzeta točnost (točnost večinskega razreda) = 0,7
 - drevo, zgrajeno do konca (en primer v vsakem listu)
 - pričakovana točnost: $0.7 \times 0.7 + 0.3 \times 0.3 = 0.58$ (manj kot privzeta točnost!)

Rezanje odločitvenih dreves

- cilj: maksimiziraj pričakovano točnost (minimiziraj pričakovano napako) drevesa
- vprašanja:
 - kako to doseči,
 - kje rezati,
 - kombinatorično število možnih porezanih dreves
- primeri:

primer iz prakse: lociranje primarnega tumorja (domena *Primary tumor*

	Klas. točnost
Pretirano pril. drevo (150 vozlišč)	41%
Porezano drevo (15 vozlišč)	45%
Privzeta točnost	24,7%
Zdravniki	42%

Rezalna množica

- ocenjevanje točnosti poddrevesa pri rezanju:
 - na učnih podatkih
 - na posebni množici testnih primerov (rezalna množica, validacijska množica) če imamo dovolj podatkov (ostane manj podatkov za gradnjo)
- tipična delitev podatkov
 - učna množica (70%): od tega množica za gradnjo (growing set) 70% (torej 49%) in rezalna množica (pruning set) 30% (torej 21%)
 - testna množica (30%)

Strategije rezanja

- **rezanje vnaprej** (angl. *forward pruning, pre-stopping, pre-prunning*): uporaba dodatnega kriterija za zaustavitev gradnje grevesa glede na obseg šuma (na podlagi: števila primerov, večinski razred, smiselnost delitve v poddrevesa glede na informacijski prispevek itd.)
 - hitrejše
 - kratkovidno, upošteva samo zgornji del drevesa
- rezanje nazaj (angl. post-pruning): rezanje, ki po gradnji celotnega drevesa, odstrani manj zanesljive dele drevesa (opisujejo šum, zgrajeni iz manj podatkov in z manj informativnimi atributi)
 - počasneje, oblika post-procesiranja
 - upošteva informacijo iz celega drevesa
 - pristopa:
 - rezanje z zmanjševanjem napake (reduced error pruning, REP)
 - rezanje z minimizacijo napake (minimal error pruning, MEP)

Rezanje z zmanjševanjem napake

- angl. reduced error pruning (REP)
- uporablja rezalno množico, potrebna primerna velikost za zanesljivost
- postopek:
 - potuj od listov navzgor (prični s starši listov)
 - za vsako notranje vozlišče izračunaj dobitek rezanja: št. napačnih klasifikacij v drevesu T št. napačnih klasifikacij v vozlišču v
 - če je dobitek pozitiven, obreži in nadaljuj postopek s staršem sicer ustavi postopek
- Učna: Yes/No; Rezalna: [Yes,No]

Rezanje z minimizacijo napake

- angl. minimal error pruning (MEP) (Niblett in Bratko, 1986; Cestnik in Bratko, 1991)
- uporablja množico za gradnjo drevesa (in ne ločene rezalne množice)
- cilj: poreži drevo tako, da je ocenjena klasifikacijska točnost maksimalna (napaka minimalna)
- za vozlišče *v* izračunamo:
 - statično napako (verjetnost klasifikacije v napačni razred) $e(v) = p(razred \neq C|v)$, C je večinski razred v v
 - vzvratno napako (angl. backed-up error) $\sum_i p_i E(T_i) = p_1 E(T_1) + p_2 E(T_2) + \cdots$
- režemo, če je statična napaka manjša od vzvratne napake
- napaka optimalno obrezanega drevesa je torej $E(T) = \min(e(v), \sum_i p_i E(T_i))$ E(T) = e(v), če je v list

Ocenjevanje verjetnosti

- kako oceniti statično napako v vozlišču v?
- primeri uporabe relativne frekvence (N št. primerov v vozlišču, n št. primerov, ki pripadajo večinskemu razredu C):
 - $N = 1, n = 1 \rightarrow \text{točnost} = 100\%$
 - $N = 2, n = 1 \rightarrow \text{točnost} = 50\%$? (samo z enim dodatnim primerom)
- težave:
 - potrebujemo oceno verjetnosti, ki je stabilna tudi pri manjšem številu primerov
 - smiselno je, da ocena verjetnosti upošteva tudi apriorno verjetnost (verjetnost, ki jo poznamo o problemu – npr. 50% za izid meta kovanca)

Ocenjevanje verjetnosti

boljši oceni verjetnosti:

• Laplaceova ocena verjetnosti:

$$p = \frac{n+1}{N+k}$$

n – št. primerov, ki pripadajo razredu C,

N -št. vseh primerov

k – št. vseh razredov

• k je problematičen parameter; ocena ne upošteva apriorne verjetnosti

m-ocena verjetnosti

delež upoštevanja delež upoštevanja apriorne verjetnosti relativne frekvence

$$p = \frac{n + p_a m}{N + m} = p_a \cdot \frac{m}{N + m} + \frac{n}{N} \cdot \frac{N}{N + m}$$

 $p_a\,$ – apriorna verjetnost razreda C

m – parameter ocene (vpliva na delež upoštevanja apriorne verjetnosti)

- malo šuma majhen m malo rezanja / veliko šuma velik m veliko rezanja
- posplošitev Laplaceove ocene za m=k in $p_a=1/k$

- primer: Bratko: Prolog Programming for Al
- Podano je odločitveno drevo za klasifikacijo v razrede x z naslednjimi apriornimi verjetnostmi razredov: $p_a(x) = 0.4$, $p_a(y) = 0.3$, $p_a(z) = 0.3$. Številke v oglatih oklepajih [x, y, z] predstaljajo frekvence primerov v vozlišču, ki pripadajo ustreznim razredom. Obreži drevo s postopkom MEP in vrednostjo m = 8.

klasifikacijske točnosti v listih B1, B2 in B3:

•
$$p(x|B1) = \frac{n+m \cdot p_a(x)}{N+m} = \frac{5+8 \cdot 0.4}{5+8} = 0.6308$$

•
$$p(y|B2) = \frac{1+8\cdot0.3}{1+8} = 0.3778$$

•
$$p(z|B3) = \frac{2+8\cdot0.3}{3+8} = 0.4$$

- vzvratna točnost v vozlišču B: $\frac{5}{9} \cdot 0.6308 + \frac{1}{9} \cdot 0.3778 + \frac{3}{9} \cdot 0.4 = 0.5257$
- statična točnost v vozlišču B: $p(x|B) = \frac{6+8\cdot0.4}{9+8} = 0.5412$
- statična točnost je večja od vzvratne točnosti → porežemo
- nadaljujemo z vozliščema C in A ...

• klasifikacijske točnosti v listih C1, C2 in C3:

•
$$p(x|C1) = \frac{n+m \cdot p_a(x)}{N+m} = \frac{1+8 \cdot 0.4}{1+8} = 0.4667$$

•
$$p(y|C2) = \frac{{}^{N+m}}{5+8} = 0.4154$$

•
$$p(z|C3) = \frac{{}^{5+8}_{4+8\cdot0,3}}{{}^{4+8}} = 0,5333$$

- vzvratna točnost v vozlišču C: $\frac{1}{10} \cdot 0,4667 + \frac{5}{10} \cdot 0,4154 + \frac{4}{10} \cdot 0,5444 = 0,4677$
- statična točnost v vozlišču C: $p(z|C) = \frac{6+8\cdot0.3}{10+8} = 0.4667$
- vzvratna točnost je večja od statične točnosti → ne porežemo
- nadaljujemo z vozliščem A ...

- klasifikacijske točnosti v podrevesih s koreni v B in C:
- $E(B) = \min(e(B), \sum_{i} p_i E(B_i)) = 0.5412$
- $E(C) = \min(e(C), \sum_{i} p_i E(C_i)) = 0.4677$
- vzvratna točnost v vozlišču A: $\frac{9}{19} \cdot 0,5412 + \frac{10}{19} \cdot 0,4677 = 0,5025$
- statična točnost v vozlišču A: $p(z|A) = \frac{8+8\cdot0.3}{19+8} = 0.3852$
- vzvratna točnost je večja od statične točnosti → ne porežemo

Obravnava atributov

potrebno je nasloviti še naslednja problema:

- manjkajoči podatki v atributih:
 - ignorirati cele primere z neznanimi vrednostmi?
 - uporabiti vrednost NA/UNKNOWN?
 - nadomestiti manjkajočo vrednost (povprečna, najbolj pogosta, naključna, napovedana)
 - primer obravnavamo verjetnostno glede na vse možne vrednosti atributa (s tako utežjo lahko sodeluje pri gradnji modela in klasifikaciji)

	_			
			les	
v	ап	a D	1100	
•	aı,	av	11-6	۰

Respondent	Α	В	С	D
1	1	2	3	4
2	1	2	3	4
3	4	3	2	1
4	4	3	2	1
5	1	2		1
6		2	2	1
7	1	2	2	
8	1		2	1

- **obravnava numeričnih atributov**: običajno izvedemo diskretizacijo v dva (binarizacija) ali več diskretnih intervalov
 - intervali z enako frekvenco primerov (equal-frequency)
 - intervali enake širine (equal-width)
 - intervali, ki maksimizirajo informacijski dobite

Regresijska drevesa

- zvezna ciljna spremenljivka regresijski problem
- regresijska drevesa so podobna odločitvenim drevesom, le za regresijske probleme
- sistemi: CART (Breiman et al. 1984), RETIS (Karalič 1992), M5 (Quinlan 1993), WEKA (Witten and Frank, 2000)
- listi v regresijskem drevesu predstavljajo:
 - povprečno vrednost označb ("razreda") primerov v listu
 - preprost napovedni model (npr. linearna regresija) za nove primere

Regresijska drevesa

Gradnja regresijskih dreves

- atribut delimo glede na izbrano mejno vrednost
- drugačna mera za merjenje nedoločenosti/nečistoče: srednja kvadratna napaka v vozlišču v:

$$MSE(v) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

 cilj: minimiziramo rezidualno nedoločenost po delitvi primerov glede na vrednosti atributa A

 p_{right}

 I_{right}

 I_{left}

pričakovana rezidualna nečistost

$$I_{res}(A) = p_{left} \cdot I_{left} + p_{right} \cdot I_{right}$$

Rezanje regresijskega drevesa

uporabimo prirejeno m-oceno:

$$e = \frac{n}{N+m}e_v + \frac{m}{N+m}e_k$$

n – število primerov v vozlišču,

N – število vseh primerov

 e_v – povprečna napaka modela na teh primerih, če list

 e_k – povprečna napaka tega istega modela na vseh učnih primerih.

Growing a Regression Tree

Leaves: 1, MSE = 41.46

The most simple tree.

Growing a Regression Tree

Leaves: 1, MSE = 41.46

Leaves: 2, MSE = 36.32

Growing a Regression Tree

Overfitting a Regression Tree

Further increasing the size of the tree may result in overfitting and a higher error.

Decision Tree Pruning

An Unpruned Classification Tree

Oncology Training Dataset

Independent Pruning Dataset

We use the Brier score to measure the error.

Pruned Tree

None of the remaining nodes justifies pruning.