Google's PageRank Algorithm

General Process

- 1. Crawl the WWW
- 2. Index
- 3. Global Ranking of Webpages (PageRank) (This is what we are looking at)
- 4. Query → Find subset of pages (subset of WWW)

Pages → Nodes

Connections → directed arcs

Create a directed graph

In-Link = Link to a page

Out-Link = Link from a page

An Example

Let \boldsymbol{x}_i be 'importance' of page i

4 pages

Let importance = number of in-links of page i

 $x_1 = 2$

 $x_2 = 1$

 $x_3 = 3$

 $x_4 = 2$

However, I can artificially boost my ranking by making a load of dummy pages and making them link to my page

If there is a link from Page i to Page j, the value of this link = x_i/N_i , where N_i = number of out-links from page i, and x_i = importance of page i

$$x_1 = x_3 + x_4/2$$

$$x_2 = x_1/3$$

$$x_3 = x_1 + x_2/2 + x_4/2$$

$$x_4 = x_1/3 + x_2/2$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 1/3 & 0 & 0 & 0 & x_2 \\ 1/3 & 1/2 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$$

Solution = Eigen vectors for eigen value = 1

$$\begin{bmatrix} 12 \\ 4 \\ E_1 = \text{span} \left\{ \begin{array}{c} 4 \\ 9 \\ 6 \end{array} \right\}$$

$$P_1 > P_3 > P_4 > P_2$$

Problems?

- 1. What if a page has no in-links?
- 2. What if a page has no out-links?
- 3. What if $\dim(E_1) > 1$?
- 4. A is huge. Is it computationally feasible to compute the eigen space E₁?

Dealing with Problem 3

All columns of A add up to 1

A = column-stochastic

1.
$$a_{ij} \geq 0 \ \forall i, j$$

$$2. \sum_{i=1}^{n} a_{ij} = 1 \forall j$$

Row-stochastic = Similar

$$det(A) = det(A^T)$$

A and A^T have the same eigen values

If A is column-stochastic, then 1 is an eigenvalue of A

Dealing with Problems 1 and 2

'Damping'

Like Taxation

$$M = (1 - d)A + dS$$

where S =
$$\begin{bmatrix} 1/n & 1/n & \dots & 1/n \\ 1/n & 1/n & \dots & 1/n \\ \vdots & \ddots & \ddots & \ddots & 1/n \\ 1/n & 1/n & 1/n & 1/n \end{bmatrix} = \text{nxn matrix}$$

and where $0 \le d \le 1$

Technique = Smoothing of Probability

M = still column-stochastic

Every entry is > 0

An Example

$$A = \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 1/3 & 0 & 0 & 0 \\ 1/3 & 1/2 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

$$d = 1/2$$

M = (1 - d)A + dS = 0.5A + 0.5S =
$$0.5\begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 1/3 & 0 & 0 & 0 \\ 1/3 & 1/2 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$
 + 0.5

$$\begin{bmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{bmatrix}$$

Back to General case...

$$M = (1 - d)A + dS$$

M = column-stochastic

Every entry is > 0

Solving Problem 4

Take two arbitrary eigenspaces $E_{\lambda_1}(M)$ and $E_{\lambda_2}(M)$

Where $\lambda_2 > \lambda_1 > 0$

Dominant Eigen space, $\forall \lambda |\lambda| < |\lambda_d|$

Power Convergence Theorem: $\lim_{k\to\infty} M^k x_{0} \in E_{\lambda_d}$

To show: $E_1(M)$ is the dominant Eigenspace

If λ is an eigenvalue of M, then $|\lambda| \leq 1$

Assume there exists \lambda > 1 is the dominant eigenvalue of M

Let $x \in E_{\lambda}(M^T)$

$$M^T x \rightarrow \lambda x \rightarrow$$

Let x_{max} be the maximum entry in $x\rightarrow$

 $x_{max} < \lambda x_{max}$ is the maximum value in $\lambda x \rightarrow$

$$M^{T}_{X} = \begin{bmatrix} \sum_{j=1}^{n} m_{j1} x_{j} \\ \sum_{j=1}^{n} m_{j2} x_{j} \\ \vdots \\ \sum_{j=1}^{n} m_{jn} x_{j} \end{bmatrix}$$

$$\sum \, _{j\,=\,1}^{\,n}\, m_{\,j\,i} x_{\,j} \, < \, \sum \, _{j\,=\,1}^{\,n}\, m_{\,j\,i} x_{\,max} \, = \, x_{\,max} \, \sum \, _{j\,=\,1}^{\,n}\, m_{\,j\,i} \, = \, x_{\,max}$$

So max value of M $^{T}x \leq x_{max}$

Contradiction!

Summary

1.
$$M = (1 - d)A + dS$$

1. In original paper, d = 0.15

2. $M^k x_{0}$ converges to $x^{(+)} \in E_1(M)$

2. x^{*→}= PageRank values