# **Data Sheet**



V 1.1 / Jan. 2017

MSM261D4030H1AP

PDM digital output MEMS microphone with Multi-modes













# **GENERAL DESCRIPTION**

MSM261D4030H1AP is an omnidirectional, Top-ported, PDM digital output MEMS microphone. It has high performance and reliability.

MSM261D4030H1AP is available in a thin 4 mm  $\times$  3 mm  $\times$  1 mm proprietary OCLGA package. It is SMT compatible with no sensitivity degradation.

#### **APPLICATIONS**

- ♦ Mobile Phone
- ♦ Laptop
- ♦ Tablet computer
- ♦ Bluetooth headset
- ♦ Earphone
- ♦ Wearable intelligent equipment

#### **FEATURES**

- ♦ High SNR
- → Fourth-order Σ-Δ modulator
- ♦ Digital PDM output
- Compatible with Sn/Pb and Pb-free solder processes
- ♦ RoHS/Halogen free compliant
- Multiple performance modes (Sleep, Low-Power, Standard Performance)
- ♦ Sensitivity Matching within +/-1dB

#### **PRODUCT VIEW**











| Parameter                          | Maximum value | Unit   |
|------------------------------------|---------------|--------|
| Supply Voltage                     | -0.3 to 4.0   | V      |
| Sound Pressure Level               | 140           | dB SPL |
| Temperature Range                  | -40 to 100    | °C     |
| Electrostatic discharge protection | 2 (HBM)       | kV     |

# **ACOUSTIC & ELECTRICAL SPECIFICATIONS**

TEST CONDITIONS: 23  $\pm 2$ °C, 55 $\pm 20\%$  R.H., VDD=1.8 V,  $f_{CLOCK}$ =2.4 MHz, SELECT pin grounded, no load, unless otherwise indicate

# **General Microphone Specifications**

| Parameter             |                              | Symbol          | Conditions                   | Min                       | Тур | Max    | Units |
|-----------------------|------------------------------|-----------------|------------------------------|---------------------------|-----|--------|-------|
|                       | Supply Voltage               | V <sub>DD</sub> |                              | 1.6                       | -   | 3.6    | V     |
| Clock                 | Sleep Mode                   |                 |                              | 0                         |     | 50     | KHz   |
| Clock<br>Frequency    | Low-Power Mode               |                 |                              | 150                       |     | 900    | KHz   |
| Range                 | Standard Performance<br>Mode |                 |                              | 1.1                       |     | 4.0    | MHz   |
|                       | Sleep Current                | ISLEEP          | f <sub>CLOCK</sub> ≤ 50 kHz  | -                         | 1   |        | μΑ    |
|                       | DC Output                    |                 | Fullscale = ±100             | -                         | 4   | -      | % FS  |
| Directivity           |                              |                 |                              | Omnidirectional           |     | al     |       |
| Polarity              |                              |                 | Increasing sound             | increasing density of 1's |     | of 1's |       |
| Data Format           |                              |                 |                              | ½ Cycle PDM               |     |        |       |
| Short Circuit Current |                              | Isc             | Grounded DATA<br>pin         | 1                         | -   | 10     | mA    |
|                       | Output Load                  | CLOAD           |                              | -                         | -   | 200    | рF    |
| Fall-asleep Time      |                              |                 | f <sub>CLOCK</sub> ≤ 50 kHz  | -                         | -   | 30     | μs    |
| Wake-up Time          |                              |                 | f <sub>CLOCK</sub> ≥ 151 kHz | -                         | -   | 200    | μs    |
| Power-up Time         |                              |                 | V <sub>DD</sub> ≥ V(min)     | -                         | -   | 50     | ms    |
| N                     | lode-Change Time             |                 |                              | -                         | -   | 10     | ms    |











TEST CONDITIONS:  $f_{CLOCK} = 2.4 \text{ MHz}$ ,  $V_{DD} = 1.8 \text{ V}$ , unless otherwise indicated

| Parameter                       | Symbol | Conditions                                               |   | Тур | Max | Units   |
|---------------------------------|--------|----------------------------------------------------------|---|-----|-----|---------|
| Supply Current                  | Ірр    | f <sub>CLOCK</sub> =2.4 MHz                              |   | 670 | -   | μΑ      |
| Sensitivity                     | S      | 94 dB SPL @ 1 kHz                                        |   | -26 | -25 | dBFS    |
| Signal to Noise Ratio           | SNR    | 20 kHz bandwidth, A-weighted f <sub>CLOCK</sub> =2.4 MHz | - | 64  | -   | dB(A)   |
| Total Harmonic Distortion       | THD    | 94 dB SPL @ 1 kHz, S = Typ                               | - | 0.2 | -   | %       |
| Acoustic Overload<br>Point      | АОР    | 10% THD @ 1 kHz, S = Typ                                 | ı | 120 | -   | dB SPL  |
| Power Supply<br>Rejection Ratio | PSRR   | 200 mVpp sinewave @ 1 kHz                                | - | 50  | -   | dBV/FS  |
| Power Supply<br>Rejection       | PSR+N  | 100 mVpp square wave @ 217 Hz,<br>A-weighted             | - | -80 | -   | dBFS(A) |











# **Low-Power Mode**

TEST CONDITIONS:  $f_{CLOCK}$  =768 kHz,  $V_{DD}$ =1.8 V, unless otherwise indicated

| Parameter                       | Symbol      | Conditions                                              | Min | Тур | Max | Units   |
|---------------------------------|-------------|---------------------------------------------------------|-----|-----|-----|---------|
| Supply Current                  | <b>I</b> DD | f <sub>CLOCK</sub> =768KHz                              | -   | 290 | -   | μА      |
| Sensitivity                     | S           | 94 dB SPL @ 1 kHz                                       | -26 | -25 | -24 | dBFS    |
| Signal to Noise<br>Ratio        | SNR         | 94 dB SPL @ 1 kHz,<br>A-weighted(20Hz-8KHz)             | -   | 62  | -   | dB(A)   |
| Total Harmonic Distortion       | THD         | 94 dB SPL @ 1 kHz, S = Typ                              | -   | 0.2 | -   | %       |
| Acoustic Overload Point         | АОР         | 10% THD @ 1 kHz, S = Typ                                | -   | 120 | -   | dB SPL  |
| Power Supply<br>Rejection Ratio | PSRR        | 200 mVpp sinewave @ 1 kHz                               | -   | 50  | -   | dBV/FS  |
| Power Supply<br>Rejection       | PSR+N       | 100 mVpp square wave @ 217 Hz,<br>A-weighted(20Hz-8KHz) | -   | -80 | -   | dBFS(A) |

# **Microphone Interface Specifications**

| Parameter         | Symbol | Conditions              | Min                   | Тур | Max                 | Units |
|-------------------|--------|-------------------------|-----------------------|-----|---------------------|-------|
| Logic Input High  | Vıн    |                         | 0.7xV <sub>DD</sub>   | -   | 3.6                 | V     |
| Logic Input Low   | VIL    |                         | -0.3                  | -   | 0.3xV <sub>DD</sub> | V     |
| Logic Output High | Vон    | I <sub>OUT</sub> = 2 mA | V <sub>DD</sub> -0.45 | -   | -                   | V     |
| Logic Output Low  | Vol    | I <sub>OUT</sub> = 2 mA | -                     | -   | 0.45                | V     |
| Clock Duty Cycle  |        | -                       | 40                    | -   | 60                  | %     |











# **MICROPHONE STATE DIAGRAM**













# **TYPICAL FREQUENCY RESPONSE**



# **TIMING DIAGRAM**



| Parameter                      | Symbol            | Min  | Тур  | Max  |
|--------------------------------|-------------------|------|------|------|
| Clock Rise/Fall Time           | t <sub>EDGE</sub> | -    | =    | 13ns |
| Delay Time to High Z           | t <sub>DZ</sub>   | 3ns  | -    | 16ns |
| Delay Time to Data Line Driven | t <sub>DD</sub>   | 18ns | 28ns | 40ns |

% t<sub>HOLD</sub> and t<sub>DV</sub> are related to load.





# **SMT Parameters:**

# 1. Recommend PCB land pattern layout: (unit: mm)













# 2. Recommend reflow profile:



| Description                                   | Parameter                           | Pb-free           |
|-----------------------------------------------|-------------------------------------|-------------------|
| Average ramp rate                             | T <sub>L</sub> to T <sub>P</sub>    | 3 °C/sec max      |
| Preheat                                       |                                     |                   |
| Minimum temperature                           | T <sub>SMIN</sub>                   | 150 °C            |
| Maximum temperature                           | T <sub>SMAX</sub>                   | 200 °C            |
| Time(T <sub>SMIN</sub> to T <sub>SMAX</sub> ) | t <sub>s</sub>                      | 60 sec to 120 sec |
| Ramp-up rate                                  | T <sub>SMAX</sub> to T <sub>L</sub> | 1.25 °C/sec max   |
| Time maintained above liquidus temperature    | t <sub>L</sub>                      | 60 sec to 150 sec |
| Liquidus temperature                          | T <sub>L</sub>                      | 217 °C            |
| Peak temperature                              | T <sub>P</sub>                      | 260 °C max        |
| Time within 5°C of actual peak temperature    | t <sub>P</sub>                      | 20 sec to 40 sec  |
| Ramp-down rate                                | T <sub>L</sub> to T <sub>P</sub>    | 6 °C/sec max      |
| Time 25 °C (t25 °C) to peak temperature       | t                                   | 8 minutes max     |











# **OUTLINE DIMENSIONS AND PIN DEFINITION:**









**TOP VIEW** 

SIDE VIEW

**BOTTOM VIEW** 

PIN function description

| PIN#    | Function |  |
|---------|----------|--|
| 1       | VDD      |  |
| 2       | L/R      |  |
| 3       | CLK      |  |
| 4       | DATA     |  |
| 5,6,7,8 | GND      |  |

| Item       | Dimension | Tolerance |
|------------|-----------|-----------|
| Length (L) | 4.00      | ±0.10     |
| Width (W)  | 3.00      | ±0.10     |
| Height (H) | 1.00      | ±0.10     |
| Port (AP)  | Ø0.325    | ±0.05     |

Dimensions are in millimeters

Tolerance is ±0.15mm unless otherwise specified.





- **ADDITIONAL NOTES**
- (A) MSL (moisture sensitivity level) Class 2a.
- (B) Maximum of 3 reflow cycles is recommended.
- (C) In order to minimize device damage:

Do not board wash or clean after the reflow process.

Do not brush board with or without solvents after the reflow process.

Do not directly expose to ultrasonic processing, welding, or cleaning.

Do not insert any object in port hole of device at any time.

Do not apply air pressure into the port hole.

Do not pull a vacuum over port hole of the microphone.

#### **MATERIALS STATEMENT**

Meets the requirements of the European RoHS and Halogen-Free.

# **PACKAGING & MARKING DETAIL:**





Direction of Feed

#### Note:

- 1) Dimensions are in mm;
- 2) Don't put the vacuum suction nozzle alignment the port hole;
- 3) Tape &Reel Per EIA-481 standard;
- 4) Label applied to external package and direct to reel;
- 5) Static voltage <100V;

| Model Number    | Reel Diameter | Quantity Per Reel |
|-----------------|---------------|-------------------|
| MSM261D4030H1AP | 13 inch       | 5700              |



#### **RECOMMENDED INTERFACE CIRCUIT:**

Figuer 1. MSM261D4030H1AP electrical connections



Figuer 2. Electrical connections for stereo configurations



Power supply decoupling capacitors (100nF ceramic,10uF ceramic) should be placed as near as possible to VDD of the device.(common design practice)

| Label: | L/R: | Drives data after: | High-Z after:      |
|--------|------|--------------------|--------------------|
| Data2  | High | Rising clock edge  | Falling clock edge |
| Data1  | Low  | Falling clock edge | Rising clock edge  |











# **RELIABILITY SPECIFICATIONS**

| Test                         | Description                                                                                                                                                      |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermal Shock                | 100 cycles air-to-air thermal shock from -40°C to +125°C with 15 minute soaks. (IEC 68-2-4)                                                                      |
| High Temperature<br>Storage  | 1,000 hours at +105°C environment (IEC 68-2-2 Test Ba)                                                                                                           |
| Low Temperature Storage      | 1,000 hours at -40°C environment (IEC 68-2-2 Test Aa)                                                                                                            |
| Reflow                       | 5 reflow cycles with peak temperature of +260°C                                                                                                                  |
| ESD-HBM/LID-GND              | 3 discharges of ±2 kV direct contact to I/O pins. (MIL 883E, Method 3015.7)& 3 discharges of ±8 kV direct contact to lid while unit is grounded. (IEC 61000-4-2) |
| Vibration                    | 4 cycles of 20 to 2,000 Hz sinusoidal sweep with 20 G peak acceleration lasting 12 minutes in X, Y and Z directions. (Mil-Std-883E, Method 2007.2 A)             |
| Mechanical Shock             | 3 pulses of 3,000 G in the X, Y and Z direction (IEC 68-2-27, Test Ea)                                                                                           |
| High Temperature Bias        | 1,000 hours at +105°C under bias (IEC 68-2-2 Test Ba)                                                                                                            |
| Low Temperature Bias         | 1,000 hours at -40°C under bias (IEC 68-2-2 Test Aa)                                                                                                             |
| Temperature/Humidity<br>Bias | 1,000 hours at +85°C/85% R.H. under bias. (JESD22-A101A-B)                                                                                                       |
| Drop Test                    | To be no interference in operation after dropped to 1.0cm steel plate  18 times from 1.5 meter height                                                            |

**NOTE:** Sensitivity should vary within  $\pm 3$ dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at  $20\pm 2^{\circ}$ C, R.H  $60\%\sim70\%$ )

# MSM261D4030H1AP

PDM digital output MEMS microphone



Revision

1.0

1.1





Modified the Timing diagram





| HISTORY:                                     |            |
|----------------------------------------------|------------|
| Subjects (major changes since last revision) | Date       |
| Initial Release                              | 2016-10-31 |

2017-1-16

# 公司销售、技术支持联系方式

For English:

MEMSensing Microsystems(Suzhou, China) Co. Ltd.

No. 99 Jinji Lake Avenue, Bldg. NW-09, Suite 501 Suzhou Industrial Park, China 215123

Phone: +86 512 62956055

Fax: +86 512 62956056

苏州敏芯微电子技术股份有限公司

苏州工业园区金鸡湖大道 99 号, NW-09 楼, 501 室

(http://www.memsensing.com)

中国 215123

中文用户:

电话: +86 512 62956055 传真: +86 512 62956056

<u>Disclaimer</u>: specifications and characteristics are subject to change without notice. MEMSensing Microsystems Co. Ltd. assumes no liability to any customer, licensee or any third party for any damages or any kind of nature whatsoever related to using this technical data.