Take Test: Quiz 6.2. Hilbert spaces

two vectors are equal in the Hilbert space.

* Test Information		
Description		
Instructions		
Multiple Attempts This test allows multiple attempts.		
Force Completion This test can be saved and resumed later.		
Your answers are saved automatically.		
QUESTION 1	0.02 points	✓ Saved
A vector space has a metric if and only if the equality $\langle x, x \rangle = 0$ is satisfied only for $x = 0$.	0.02 points	Saved
Yes, because if we define a metric in a space whose dot product does not satisfy this property, vector \${\bf x=0}\$ may have a nonzero		
norm. No. A metric can be defined in any vector space, but it cannot be called distance.		
No. You can always define a metric, but in a non-strict space, it will be biased.		
Yes, because if we define a metric in a space whose dot product does not satisfy this property, two different vectors may have a distance		
equal to zero.		
QUESTION 2	0.02 points	✓ Saved
	0.02 points	Saved
A matrix A is positive semi-definite if		
All its eigenvalues are positive or zero.		
\bigcirc If it can be expressed as $\mathbf{A} = \mathbf{B}^{T}\mathbf{B}$		
\bigcirc If for any vector a , the product $a^T A a$ is nonnegative.		
on for any vector a, the product a rat is normegative.		
All the answers are correct.		
QUESTION 3	0.02 points	✓ Saved
The Mercer's theorem says that		
\checkmark If a function $k(x,x') \in \mathbb{R}$ is a kernel, then it must be a positive semidefinite function.		
\bigcap If $k(x,x') \in \mathbb{R}$ is positive semidefinite, then we can express a mapping function from it.		
\square If a positive semidefinite function $k(\mathbf{x}, \mathbf{x}') \in \mathbb{R}$ exists, then an explicit transformation into a Hilbert space exists.		
if a positive semidentifile function $K(\mathbf{x},\mathbf{x}) \in \mathbb{R}$ exists, then an explicit transformation into a filibert space exists.		
\checkmark Any positive semidefinite function $k(x,x')\in\mathbb{R}$ is a dot product in a Hilbert space.		
QUESTION 4	0.00	AA Cavai
QUESTION 4	0.02 points	✓ Saved
Two different Mercer's kernels		
Can be used to construct another kernel by subtracting one from another.		
Cannot be used together if one is a kernel of an infinite-dimensional Hilbert space and the other is finite.		
Can be used to construct another kernel by a linear combination of them with positive coefficients		
✓ Can be used to construct another kernel by multiplying them		
QUESTION 5	0.02 points	⋘ Saved
The square exponential kernel is a dot product in an infinite dimension Hilbert space because		
The dot product between vectors is less than one, except in the case both vectors are the same in the input space, which proves that		
any two different vectors of the input space are mapped in the Hilbert space in such a way that they describe a nonzero angle.		
The dot product between vectors is never zero, which proves that no two vectors in that space are orthogonal. None of the answers are true.		
None of the answers are true.The dot product between vectors is less than one, except in the case both vectors are the same in the input space, which proves that no		
, i		