基于合一的Earley句法分析

詹卫东 zwd@pku.edu.cn

冯志伟、孙乐译《自然语言处理综论》电子工业出版社2005年版。第11章。

Daniel Jurafsky & James H. Martin, 2000, Speech and Language Processing, Pearson Education, Inc., Prentice Hall.

对Earley算法进行改进

- (1) 根据重写规后所附的合一约束为一个节点生成特征结构
- (2) 对chart中的状态进行改进
- (3) 对Predicator, Scanner, Completer等操作进行改进
- (4) 生成新状态时对特征结构的蕴涵关系进行检查

带合一约束的CFG规则

将重写规则中所附的合一约束转写为节点的特征结构 S → NP VP
 <NP HEAD AGREEMENT> = <VP HEAD AGREEMENT>
 <S HEAD > = <VP HEAD>

```
S [HEAD 1]

NP [HEAD [AGREEMENT 2]]

VP [HEAD 1 [AGREEMENT 2]]
```

• 特征结构可以表示为有向无环图(DAG)

为Earley分析法中的状态增加特征结构字段

- 改进后的状态包含4部分:
 - (1) 重写规则,代表分析子树
 - (2) 子树分析的完成状况,用点标记.表示
 - (3) 子树完成部分与输入中词的位置对应关系
 - (4) 特征结构

$$(1) \quad \frac{S \rightarrow \cdot NP \ VP}{(2)} \quad , \underbrace{[0,0]}_{(3)} \quad , \underbrace{DAG}_{(4)}$$

Predicator操作

• 每当一个状态被Predicator操作加入状态表时,该规则对应的特征结构也作为状态的一个字段加入。

Predicator: 对于状态 $Z \rightarrow \alpha \cdot X$ β [j, k] DAG, 其中X是非终结符

对于语法中每条形如 $X \rightarrow \gamma DAG_x$ 的规则,都可以形

成一个新状态: $X \rightarrow \gamma$ [k, k] DAG_x

Scanner操作

Scanner: 对于状态 $Z \rightarrow \alpha \cdot X \beta [j,k] DAG_z$ 其中X是终结符 如果X与输入字符串中第k个字符匹配,就将词典中 X的特征结构 DAG_x 跟 DAG_z 合一,若成功,则形成 一个新状态:

 $Z \rightarrow \alpha X \cdot \beta$ [j, k+1] New-DAG 否则,不改变当前状态集。

Completer操作

Completer:对于一个已经"完成"的状态 $Z \rightarrow \gamma$ · [j, k] DAG_z 如果已有状态集合中有形如 $X \rightarrow \alpha \cdot Z$ β [i, j] DAG_x 这样的状态,就将 DAG_z 跟 DAG_x 进行合一运算,二者合一的结果(记作New-DAG)若为成功,则形成一个新状态: $X \rightarrow \alpha Z \cdot \beta$ [i, k] New-DAG

否则,不改变当前状态集。

Completer操作

- 每当一个子树 (s_1) 完成分析时,触发Completer操作
- 检查当前状态集中是否有子树(s₂)等待子树(s₁)来完成分析
- 将 s_1 对应的特征结构与 s_2 对应的特征结构进行合一
- 若合一失败,不产生新的状态
- 若合一成功,则产生新状态,并把合一结果作为新状态的特征结构

Completer示例

• $NP \rightarrow Det \cdot Nominal, [0,1], DAG_1$

```
      NP
      [HEAD
      1]

      DET
      [HEAD
      [AGREEMENT 2 [NUMBER SG]]]

      NOMINAL
      [HEAD
      1]

      [AGREEMENT 2]
      ]
```

• Nominal \rightarrow Noun \cdot , [1,2], DAG_2

```
NOMINAL [HEAD 1]
NOUN [HEAD 1] [AGREEMENT [NUMBER SG]]]
```

• 将 DAG_1 中的Nominal同 DAG_2 中的Nomial进行合一

Completer操作中检查DAG蕴涵关系

- 为了保证不重复分析子树,在Earley算法中,如果新产生的状态和状态集合中的某个状态相同,新状态将不被加入状态集
- 在基于合一的Earley算法中,同时还要检查状态所附的特征结构是否具有蕴涵关系,若新状态的特征结构被状态集中的状态的特征结构蕴涵,则不被加入状态集。
 例如:

 $NP \rightarrow \cdot Det NP, [i,i], DAG$

若状态集中的状态对Det没有约束,而新产生的状态要求Det必须是单数的则新状态不必加入。

基于合一的Earley分析算法

设输入字符串长度为n,字符间隔可记做0,1,2,...,n

- (1) 将文法规则中形如 $S \rightarrow \alpha DAG_s$ 的规则形成为状态:
 - <S→ · α [0, 0] DAG_s> 加入到状态集合中(种子状态/seed state)
- (2) 对当前分析句子的每个词,依次进行循环: 对状态集中的每个状态,依次进行循环:
 - i) 如果当前状态是[未完成状态],且点后不是终结符,则 执行Predicator;
 - ii) 如果当前状态是[未完成状态],且点后是终结符,则 执行Scanner;
 - iii) 如果当前状态是[完成状态],则 执行Completer;
- (3) 如果最后得到形如<S $\rightarrow \alpha \cdot [0, n] DAG_s>$ 这样的状态,那么输入字符串被接受为合法的句子,否则分析失败

基于合一的Earley分析法示例

- ② $vp \rightarrow pp vp$
- \bigcirc pp \rightarrow p np
- 4 np \rightarrow v u n
- \bigcirc np \rightarrow n
- ⑥ vp → v
- \bigcirc vp \rightarrow p v
- \otimes np \rightarrow S u n

基于合一的Earley分析法示例

- (1) 迟到 [配价数:1] {施事:[语义类:人]}
- (2) 逗乐 [配价数:2] {施事:[语义类:人], 受事:[语义类:人]}
- (3) 冤枉 [配价数:2] {施事:[语义类:人], 受事:[语义类:人]}
- (4) 传开 [配价数:2] {施事:[语义类:人], 受事:[语义类:事]}

dag1: \$.语态=vp.语态, IF vp.语态=被动 THEN vp.受事=np

dag2: IF pp.lex=被 THEN vp.配价数>1, vp.施事=pp.宾语, \$.语态=被动

dag3: v.施事=n

dag4: IF p.lex=被 THEN v.配价数>1, \$.语态=被动

- 2 vp \rightarrow pp vp :: dag2
- \bigcirc pp \rightarrow p np
- \bigcirc np \rightarrow n
- \bigcirc vp \rightarrow v
- \bigcirc vp \rightarrow p v :: dag4
- \otimes np \rightarrow S u n

6	$S \rightarrow \text{np vp} \cdot \text{dag } 1 \text{-} (2)$	$vp \rightarrow pp vp \cdot dag2-(2)$				$vp \rightarrow v$.	归约
5		$vp \rightarrow pp \cdot vp$ $pp \rightarrow p np \cdot$	np → v u n · dag3-(1)			$vp \rightarrow \cdot v$ $vp \rightarrow \cdot pp vp$ $vp \rightarrow \cdot p v$ $pp \rightarrow \cdot p np$	预测 归约 扫描
4			np → v u · n				扫描
3		vp → p v · dag4 – (1)	$np \rightarrow v \cdot u n$ $vp \rightarrow v \cdot$				扫描
2		$pp \rightarrow p \cdot np$ $vp \rightarrow p \cdot v$	$S \rightarrow \cdot np \ vp$ $np \rightarrow \cdot S \ u \ n$ $np \rightarrow \cdot v \ u \ n$ $np \rightarrow \cdot n$				预测 扫描
1	$S \to np \cdot vp$ $np \to n \cdot$	$pp \rightarrow \cdot p np$ $vp \rightarrow \cdot v$ $vp \rightarrow \cdot pp vp$ $vp \rightarrow \cdot p v$					预测 归约 扫描
0	$np \rightarrow \cdot S u n$ $np \rightarrow \cdot v u n$ $np \rightarrow \cdot n$ $S \rightarrow \cdot np vp$						预测 种子
	0	1	2	3	4	5	6
		n 於师	•) 1 生	v ^区 乐了

6	$S \rightarrow np \ vp \cdot dag1-(4)$					vp → v ·	归约
5	$S \rightarrow np \cdot vp$ $np \rightarrow S u n \cdot$		np → v u n · dag3-(3)			$vp \rightarrow \cdot v$ $vp \rightarrow \cdot pp vp$ $vp \rightarrow \cdot p v$ $pp \rightarrow \cdot p np$	预测 归约 扫描
4	$np \rightarrow Su \cdot n$		np → v u · n				扫描
3	$np \rightarrow S u n$ $S \rightarrow np vp$ $dag1-(3)$	$vp \rightarrow p v + dag4 - (1)$	$np \rightarrow v \cdot u \ n$ $vp \rightarrow v \cdot$				归约 扫描
2		$pp \rightarrow p \cdot np$ $vp \rightarrow p \cdot v$	$S \rightarrow \cdot \text{ np vp}$ $np \rightarrow \cdot S \text{ u n}$ $np \rightarrow \cdot \text{ v u n}$ $np \rightarrow \cdot \text{ n}$				预测 扫描
1	$S \rightarrow np \cdot vp$ $np \rightarrow n \cdot$	$pp \rightarrow \cdot p np$ $vp \rightarrow \cdot v$ $vp \rightarrow \cdot pp vp$ $vp \rightarrow \cdot p v$					预测 归约 扫描
0	$np \rightarrow \cdot S u n$ $np \rightarrow \cdot v u n$ $np \rightarrow \cdot n$ $S \rightarrow \cdot np vp$						预测 种子
	0	1	2	3	4	5	6
		n zulet	I		U that	n ike #	V Ext. 7
	マ		被	冤枉	的	手情	专开了