```
Subject: 資料結構 - 單元 |
 遞迴:精檢·能解相同且重複問題。
 Box trace
   void writeBackward (string s, int size)
   if (size > 0)
    cout << s.substr(size-1,1);→輸出最後-個字元
    writeBackward (s, size-1) j → 呼叫遞迴
   } 11 end if
   Il do nothing
string S: "ABC" -> output : "CBA"
int size: 3
苹最大公因數
方法一:
                                      除到○結束
int gcd (intx, inty) {
 if (7=0) return x_i
 else if (4>x) return gcdl(x, 4%x);
  else return god ( y, x % y);
```

整除就為東 方法二: int gcd 2 (intx, inty) { 1 4>x時和gcd | if! (x% f) return y; 次數相同 else return gcd 2 (4, x % 4); 線性漁迴 終止條件 2只有一路線 河内塔 個數 起點 終點 輔助點 solve Towers (count, source, Sestination, spare) if (count is 1) else print => move a disk from source to destination (count-1, source, spare, destination) (1, source, destination, spare) (count-1, spare destination, source)

Subject :	No. : Date :
使用線性一黄氏 LF(1	4)
if (k=1)	input: k
return (k,0)	output: (Fk, Fk-1)
else	(LA.C.B)
(iij)= LF(k-1)	-
return (i+j,i)	AT (Agel o)
	(Bu2.3 5)

Subject: 單元 2 抽象化	No.:
物件導向 2-1 概念 = 大 特 约 、 厂	4
三大特徵: Encapsulation 封裝· Inheritance 繼polymorphism 多型	
: can hide inner details	
: can reused	
can find correct method	
2-2 物導設計概念	
'目的 '假設 3. 輸入 4. 輸出	
2-3 抽象化原理	
模組化:有条紙·容易修	
高内聚 Cohesion:每個模組做一件事	,互勤多。
低耦合 Coupling: 傳遞參數少, 好組	養。

	No.: Date:
z-4 資料形態. predecessor 先行者 successor 後繼者	置换:先remove再 insert retrieve:只讀資料
ex. 久類別 コ sphere 子類別 コ colorsphere	矢類別: base dass ナ類別: derived class 車 電車 電車
protected: 讓原 private的 d	data 繼承可使用
overriding 覆載 3 參數原	列相同一部是增加程式彈人
overloading 多載 > 參數及	 到不同

Subject: 單元3 鏈結串列 ex.	No.: Date:/
Array 陣列: 需移動資料 Linked list 鏈結串列: 不需移動資料	
指標: int *p => 門牌號碼 Memory cells Pointer P Addresses	
int χ ; $p=8\chi$; $\Rightarrow \Box$ χ $= \pm 3$	2的門牌
p= new int > >	()A WA = P
tip: if the operator new cannot allocate memory, it the exception to:: bad_alloc (in the (new 要不到記憶時可使用 delete p; 歸還 p=NULL; 清空 > 以光淚用	throws w) header)
p= NULL; 清型	1100 29 3

Subject:	No. : Date :///
p= hew int ; *p=7;	A hald one should
cout << *p << " " << *q << end ; // 7	
delete p; cout << *p << " " << * q << end ;	dangling reference
p = NULL; q = NULL; memory leak	
動態(配置)陣列	
int arraysize = 50; double * an Array = new double [arraysize	e];
an Array [z] = * (an Array + z); B	車列名稱 = 指標
double * old Array = an Array; an Array = new double [3 * arraySize];	配置更大空間
, (Zo	
for ()	
an [] = old [] ill copy	
	<u> </u>
lelete [] old Array; #1 15-1	<u> </u>


```
Subject: 深層複製建構子
                                                     No.:
                                                     Date: ...../..../
# include < cstddef > 11 for NULL
# include < new> 11 for bad_alloc
# include "ListP.h" 11 header file
using hamespace std;
List:: List (const List& aList) 複製建構
 : size (al. ist. size)
                                   節點數
 if (alist head = = NULL)
   head = NULL;
 else
   head = new List Node;
   List Node * new Per = head;
for (List Node * origPer = alist. head -> next; origPer != NULL;
          OrigPer = origPer -> next ) {
         newPtr -> next = new ListNode;
         newPtr = newPtr -> next;
        newPtr -> item = origPtr -> item >
   3 11 end for
hewPer > next = NULL;
```

Subject:	
鏈結串列: size有彈性、費空間(多存位置)、線、性時間で	TABLE OF THE PARTY
Double Linked list:雙向,多加一個指標 但要多維護一個指標	
struct Node { int item; Node * precede; Node * next; };	
\$ 6 mm = 489 gm = 499 gm	

中房運算式 Infix expression operator 運算子 A+b, A+b×C÷d perand 運算元 前序 Prefix 校序 Postfix Ab+C×d÷ 新序和後序的優點: No precedence rules 不用優先權 No association rules 不用結合率 No porentheses 不用結合於 Simple grammars Straightforward recognition and evaluation algorithms	Subject: 單元4 以迴圈解題	No.: Date:
使序 Postfix (本) 大田	中序運算式 Infix expression ex. a+b, a+b×c+d	
前序和後序的優點: No precedence rules 不用優先權 No association rules 不用結合率 No parentheses 不用括弧 Simple grammars		梅查 左括弧
No precedence rules 不用優先權 No association rules 不用結合率 No parentheses 不用括弧 Simple grammars		<u>梅</u>
No association rules 不用 結合率 No parentheses 不用 括例 Simple grammars	前序和後序的優點:	
Straightforward recognition and evaluation algorithms	No association rules 不用 { No parentheses 不用 {	卷台率
	Straightforward recognition and	evaluation algorithms