Lógica

Para todos los ejercicios donde sea oportuno se debe considerar el siguiente marco conceptual:

MC = { ae: Ana estudia; at: Ana trabaja; fe: Ana es feliz }

Ejercicio 1 (3 ptos.) La proposición P1: "Es necesario que Ana trabaje o estudie para que sea feliz".

a) Se **formaliza**, según MC, como:

```
Fbf-P1: fe \rightarrow ae \lor at
```

b) Se <u>interpreta</u> como:

i	a)	Falsa, si Ana trabaja y estudia pero no es feliz		
	b)	Verdadera, si Ana trabaja y estudia pero no es feliz		
c) Tautología si A		Tautología si Ana trabaja, estudia y es feliz		

c) Es **equivalente** a la proposición:

a)	Si Ana es feliz entonces estudia o trabaja		
b)	Es suficiente que Ana estudie o trabaje para que sea feliz		
c)	Ana estudia o trabaja a menos que sea feliz		

d) Cuando **P2: "Ana es feliz"** de las proposiciones P1 y P2 se deduce (si es el caso, marca con círculo la(s) Pi):

```
a) Nadab) P3:" Ana estudia, P4: "Ana trabaja", P5: "Ana trabaja o estudia"
```

e) Cuando **P2: "Ana no es feliz"** de las proposiciones P1 y P2 se deduce (si es el caso, marca con círculo la(s) Pi):

a)	Nada
b)	P3:" Ana no estudia, P4: "Ana no trabaja", P5: "Ana ni trabaja ni estudia"

f) Escribe una interpretación **contraejemplo** I de la fbf-P1:

```
I = { fe = V, ae = F, at = F }
```

Lógica

Ejercicio 2 (2 ptos.) **Clasifica semánticamente** como tautología, contradicción o indeterminación, la siguiente fórmula lógica utilizando tablas de verdad. Justifica tu respuesta y define los tres términos semánticos.

$$(p \rightarrow \neg q) \lor (q \rightarrow \neg p)$$

Solución

р	q	¬p	¬q	A: p → ¬q	B: q → ¬p	$A \vee B$
V	V	F	F	F	F	F
V	F	F	V	V	V	V
F	V	V	F	V	V	V
F	F	V	V	V	V	V

La fórmula lógica dada se clasifica como indeterminación ya que tiene interpretaciones que la hacen verdadera y otras que la hacen falsa.

Tautología: todas las posibles interpretaciones hacen que la fórmula sea verdadera

Contradicción: todas las posibles interpretaciones hacen que la fórmula sea falsa.

Ejercicio 3 (3 ptos.) Se debe estudiar la **validez** del siguiente razonamiento:

R1:
$$\neg A \rightarrow B$$
, $B \rightarrow C \land D \land \neg E$, $\neg D \lor S \Rightarrow \neg S \rightarrow A$

- a) Demuestra si la interpretación I_1 = {A=F, B=F, C=V, D=V, S=F} es un **contraejemplo** de R1. Justifica tu respuesta.
- b) Define interpretación contraejemplo.
- c) En caso de que I_1 no sea contraejemplo busca una interpretación I_2 que lo sea o bien explica su no existencia.
- d) Según los resultados anteriores ¿R1 es válido? ¿Por qué?

Solución

a) Con la interpretación I_1 las fbfs de R1 se interpretan de la siguiente forma:

$$\neg A \to B = F, \quad B \to C \wedge D \wedge \neg E = V, \quad \neg D \vee S = F, \quad \neg S \to A = F.$$

 I_1 no es contraejemplo de R1.

- b) Una interpretación contraejemplo de un razonamiento hace que éste interprete sus premisas como verdaderas y la conclusión como falsa.
- c) Interpretación contraejemplo no existe
- d) R1 es válido porque no existe una interpretación contraejemplo.

Lógica

Ejercicio 4 (2 ptos.) Usando deducción natural

Demuestra si la proposición **Q**: ¬**G** se puede obtener de las proposiciones:

P1:
$$C \lor \neg D$$
, P2: $A \to C \to \neg D$, P3: $G \to D \land A$

Deducción

$$-2 A \rightarrow (C \rightarrow \neg D)$$

$$\text{-3 G} \to \mathsf{D} \land \mathsf{A}$$

4 G

5 D ∧ A MP, 3, 4

6 A EC, 5

 $7 C \rightarrow \neg D$ MP, 2, 6

8 D EC, 5

9 ¬C MT, 7, 8

10 ¬D SD, 1, 9

11 D ∧ ¬D IC, 8, 10

11 ¬G IN, 4-11