User Manual

SHS1000 Series Handheld Digital Oscilloscope

UM03010-E07B

Declaration

Copyright © SIGLENT TECHNOLOGIES CO.,LTD. All rights reserved.

Contents in this manual are not allowed to copied, extracted and translated without permission by the company.

Voltage

Safety Information

Carefully read the following safety information before using the SHS1000.

Specific warning and caution statements, where they apply, appear throughout the manual.

A "Warning" identifies conditions and actions that pose hazard(s) to the user. A "Caution" identifies conditions and actions that the user should notice.

The following international symbols are used on the SHS1000 and in this manual:

Earth Ground

Switch

- ♦ Use only insulated voltage probes, test leads and adapters supplied with the SHS1000, or accessories appointed by the company.
- ◆ Before use inspect voltage probes, test leads and accessories for mechanical damage and replace when damaged.
- ♦ Always connect the battery charge first to the AC outlet before connecting it to the SHS1000.
- ◆ Do not apply voltages that higher than 600 V from earth ground to any input when using scope ports in a CAT III environment. Do not apply voltages that higher than 1000 V from earth ground to any input when using scope ports in a CAT II environment.
- ◆ Do not apply voltages that higher than 600 V from earth ground to the isolated inputs when using scope ports in a CAT ||| environment. Do not apply voltages that higher than 1000 V from earth ground to the isolated inputs when using scope ports in a CAT || environment.
- ◆ Do not apply input voltages above the rating of the instrument. Use caution when using 1:1 test leads because the probe tip voltage will be directly transmitted to the SHS1000.
- ◆ Do not apply voltages that higher than 600 V from earth ground to any input when using multimeter ports in a CAT III environment. Do not apply voltages that higher than 1000 V from earth ground to any input when using multimeter ports in a CAT II environment.
- ◆ Do not apply voltages that higher than 600 V from earth ground to the isolated inputs when using multimeter ports in a CAT Ⅲ environment.

Do not apply voltages that higher than 1000 V from earth ground to the isolated inputs when using multimeter ports in a CAT || environment.

- Do not insert metal objects into connectors.
- Always use the SHS1000 only in the manner specified.

The terms 'isolated' is used in this manual to indicate a measurement in which the SHS1000 input BNC or banana jacket is connected to a voltage different from earth ground. The isolated input connectors have no exposed and are fully insulated to protect against electrical shock.

Use of the SHS1000 in a manner not specified may impair the protection provided by the equipment. Before use, inspect the test leads for mechanical damage and replace damaged test leads!

Whenever it is likely that the safety has been impaired, the SHS1000 must be turned off and disconnected from the line power. The matter should then be referred to qualified personnel.

Introduction of SHS1000 Series Handheld Digital Oscilloscope

This manual mainly introduces SHS1000 series Handheld Digital Oscilloscope.

Adopting bandwidth isolation technique, SHS1000 realizes that all input ports are isolated so that high-voltage signals can be measured safely. This series combines functions of scope, multimeter and recorder. It provides real time sampling rate as high as 1GSa/s, maximal bandwidth 100MHz, 2Mpts memory depth, small volume, compact interface and etc. It satisfies the most needs of outside measurement and improves working efficiency greatly.

Function Characteristics

- The SHS1000 combines the functions of oscilloscope, multimeter and recorder (including trend plot and waveform recorder) along with isolated double channels.
- ◆ Adopt bandwidth isolation technique, SHS1000 realizes that both scope and multimeter input channels' isolation.
- CATII1000V and CATIII600V between two channels references, between channels reference and earth ground
 CATII600V and CATIII300V between channels reference and Multimeter
- ◆ CATII300V and CATIII150V input direct

 CATII1000V and CATIII600V input with 10: 1 probe
- ♦ 5.7 inches color TFT LCD.

input reference

- ◆ It provides maximal bandwidth 100MHz, real time sample rate 50GSa/s, memory depth 2Mpts.
- ◆ The multimeter display resolution is 6000 points and can measure voltage, current, resistance, capacitance, diode, continuity.
- Support scope measure parameters trend plot, multimeter measure parameter trend plot and scope waveform recorder.
- ◆ 3 types of trigger mode: auto, normal and single; 5 types of trigger function: edge, pulse, video, slope and alternative.
- ♦ 32 types of auto-measurement function and 3 types of cursor measure mode.
- ◆ 4 kinds of digital filter mode: +, -, *, /, FFT.

- Unique digital filter function and waveform recording function.
- ♦ 2 groups of reference waveform, 20 groups of common waveform, 10 groups of setting inside save / recall; Support waveform, setting, CSV and bitmap file save and recall with USB flash driver.

Accessories of SHS1000

- ♦ A Quick Start
- A product guaranty card
- ♦ A certification
- ♦ Two 10:1 probes
- ♦ An USB cable
- ♦ A Probes calibrated device
- ◆ A CD (including EasyScope3.0 computer software system)

Contents

Safety Information	II
Introduction of SHS1000 Series Handheld Digital Oscillosc	opeIV
Function Characteristics	IV
Accessories of SHS1000	
Chapter 1 Accidence	1
Accidence of the Front Panel and User Interface	1
Function Check	
Probe	
Chapter 2 Using the Scope	6
Menu and Control Buttons	
Automatic Settings	
CH1/CH2 Channel Functions	
Scope's Function Menu	
Acquire Signals System	
Display System	
Math Waveform	
Horizontal System	16
Reference waveform	18
Cursor and Measure System	19
Cursor measure	19
Parameter Measure	21
Trigger System	26
Save and Recall System	34
Utility System	38
Chapter 3 Using the Multimeter	44
Making DC and AC Voltage Measurement	45
Making Resistance Measurement	46
Making Diode Measurement	47
Making Continuity Measurement	47
Making Capacitance Measurement	48
Making DC and AC Current Measurement	49
Chapter 4 Using the Recorder Functions	51
Oscilloscope Trend Plot	52
Waveform Recorder	55
Multimeter Trend Plot	58
Chapter 5 Prompting and Troubleshooting	61
System Prompting Messages Instruction	61
Troubleshooting	63

Chanter & Service and Support	(5
Chapter 6 Service and Support	05
Maintain Summary	65
Contact SIGLENT	65
Appendix A: Specifications	66
Appendix B: Default Setup	75
Appendix C: Battery Installation	77
Appendix D: Daily Maintaining and Cleaning	78

Chapter 1 Accidence

About this Chapter

This chapter mainly covers the following contents:

- Get a primary understanding of the front panel and user interface
- A brief function check
- Probe compensation

Accidence of the Front Panel and User Interface

You'd better get an understanding of the front panel before you operate the SHS1000 series Handheld Digital Oscilloscope. The following contents introduce the function of the front panel. With its help you could be familiar with the operations of the SHS1000 in a short time.

Figure 1-1 Front Panel

Description

- 1. power on/off key
- 2. CH1 vertical range and position key
- 3. CH1 on /off key
- 4. Scope, Meter, Recorder function menu
- 5. option keys
- 6. Handle
- 7. LCD
- 8. LOGO
- 9. BW and sample rate

- 10. menu on/off key
- 11. arrow keys
- 12. Auto, Run/Stop, Cursor function keys
- 13. CH2 on/off key
- 14. Trigger, User, Save/Recall function keys
- 15. CH2 vertical range and position keys
- 16. time base and horizon position keys
- 17. multimeter input ports

Notes:

The arrow keys include these functions: direction keys, moving trigger level, setting the trigger level to zero, choosing menu, setting horizontal position to zero, moving cursor.

Figure 1-2 Isolated Inputs Channels

Figure 1-3 Side Panel

Description

- 1. USB Device
- 2. USB Host
- 3. power input port

Figure 1-4 User Interface

Description

1. Trigger state

Armed: The scope is acquiring data of pre-trigger ,please ignore all triggers under this state.

Ready: The scope has sampled all pre-triggers data and is ready to accept trigger.

Trig'd: The scope has found a trigger and is sampling data after trigger.

Stop: The scope stops sampling data.

Auto: The scope is sampling waveform without trigger under automatic mode.

Scan: The scope samples and displays waveform under scan mode.

- 2. Shows location of current waveform in the memory
- 3. Shows the trigger position in the memory
- 4. **9**: Print Key option chooses to print figure
 - : Print Key option chooses to save figure
- 5. USB Device option chooses to connect computer
 - S: USB Device option chooses to connect printer
- 6. Shows power state
- 7. Shows current time
- 8. Horizontal position
- 9. Frequency Counter
- 10. Shows the trigger level
- 11. Shows the time base

- 12. "B" shows the BW limited is on
- 13. Channel's vertical range
- 14. Channel's coupling states
- 15. "2" is a symbol of channel 2
- 16. "1" is a symbol of channel 1
- 17. "T "shows the trigger level

Function Check

Let's make a quick function check to make sure whether the SHS1000 works normally. Please do the following steps:

- 1. Power the SHS1000. The SHS1000 performs all the self check items and makes sure that it passes the self check.
- Connect the probe to the CH1 of the SHS1000. Align the slot of the probe
 connector with the salient on the CH1 BNC, push down and twist right to lock the
 probe. Connect the probe tip and reference lead to the Probe Comp connectors.
- 3. Press **[Auto]**, you will see a square wave with 1 KHz frequency and about 3V peak-peak in a few seconds.
- 4. Press **[CH1]** twice to cancel channel 1, then press **[CH2]** to display channel 2 and repeat step 2 and 3.

Probe

Probe Safety

There is high-voltage protected material around the probe and no metal exposed to the air. Don't use probe with broken insulation.

Probe Compensation

When you connect the probe to an arbitrary channel for the first time, please make the following adjustment to make the probe match with the channels. Probe without compensation or compensation warp may lead to imprecise or false measurements. You can perform the adjustments manually to match your probe with the input channels.

- Set the probe option attenuation in the channel menu to 10X and connect the probe to channel 1 on the scope. If you use the probe hook-tip, make sure that the hook-tip is fixed on the probe firmly.
- Attach the probe tip to the Probe Comp~3V connector and the reference lead to the Probe Comp Ground connector. Display the channel and then push button [Auto].
- 3. Check the shape of the waveform displaying on the screen.

Under Compensated Correctly Compensated Over Compensated

Please adjust your probe or repeat all the operations above if necessary.

Multimeter meter pen

To avoid obtaining no measurements or unnecessary damage to the SHS1000, you should use the right jack when measuring current, voltage and other measure.

Chapter 2 Using the Scope

About this Chapter

This chapter provides a step-by-step introduction to the scope functions of SHS1000 series. The introduction gives basic examples to show how to use the menus and perform basic operations without d covering all of the capabilities of the scope functions.

In order to use the SHS1000 effectively, we need to know the functions of the SHS1000 below. Menu and control buttons, connector and control, auto-settings, Scope, measurement system, trigger system, storage system and utility system.

Menu and Control Buttons

Table 2-1 Function Menu

CH1, CH2	channel menu	
Acquire	sample menu	
Display	display menu	
Math	math menu	
Horizon	horizon menu	
Ref	reference waveform menu	
MEAU OFF	on/off menu	
Auto	automatic setting control menu	
Run/Stop	sample/Stop button	
Cursor	cursor menu	
Measure	automatic measurement menu	
Trigger	trigger menu	
Save/Recall	save/Recall menu	
User	utility menu	

Automatic Settings

When measuring unknown signals and having no idea about its voltage, range, frequency, trigger and other information, you can use the automatic setting function.

Automatic Setting Application Example

Operating steps:

- 1. Input a signal to CH1 or CH2 and then press 【Auto】.
- 2. The SHS1000 adjusts its settings automatically to display the best peak-peak, average, period, frequency and other information according to the characteristics of the signals.
- 3. Adjust time base and voltage range manually to obtain waveforms needed if necessary.

Figure 2-1 Automatic Setting

CH1/CH2 Channel Functions

Press [CH1] / [CH2] to enter CH1/CH2 channel menu.

Figure 2-2 Channel Menu 1

Table 2-2 CH1/CH2 function Menu 1

Option	Setting	Instruction
	DC	DC passes both AC and DC
	DC	components of the input signals.
Coupling		AC blocks the DC component of the
Coupling	AC	input signals and attenuates signals
		below 10 Hz.
	GND	GND disconnects the input signal.
		Limit the bandwidth above 20M to
BW Limit	On Off	reduce display noise; filter the signals to
DVV LIITIIL		reduce noise and other unwanted high
		frequency components.
	Coarse	Change the range of voltage by .1-2-5
V/div	Coarse	sequence.
V/GIV	Fine	Fine changes the resolution by small
		steps under the coarse settings.
Probe	1X、5X、10X、50X、	Set to match the type of probe you are
1 1006	100X、500X、1000X	using to ensure correct vertical readouts.
Next Page	Page1/2	Enter the second page of CH1/CH2
Next Fage	1 age 1/2	menu.

Figure 2-3 Channel Menu 2

Table 2-3 CH1/CH2 Function Menu 2

Option	Setting	Instruction
Invert	On/Off	Turn on/off invert function.
Filter		Enter the FILTER menu.
To Zero		Set waveform vertical position and trigger level to zero.
Next Page	Page 2/2	Return to the first page of CH1/CH2 menu.

Figure 2-4 Digital Filter Function Menu

Table 2-4 Digital Filter Function Menu

Option	Setting	Introduction
D: 11 LETH	On	Turn on the digital filter.
Digital Filter	Off	Turn off the digital filter.
	₽→f	Setup as LPF (Low Pass Filter).
Turno	└ ─,f	Setup as HPF (High Pass Filter).
Туре	tf	Setup as BPF (Band Pass Filter).
	₽Ċł	Setup as BRF (Band Reject Filter).
Llo Limit		Use the up and down arrow keys to set
Up_Limit		Upp_Limit.
Low Limit		Use the up and down arrow keys to set
Low_Limit		Low_Limit.
Return		Return to the CH1 or CH2 menu.

Digital Filter Application Example

Operation steps:

- 1. Input a signal to CH1 and press 【AUTO】.
- 2. Press **[CH1]** to enter CH1 menu.
- 3. Press **[F5]** to enter the second page of the CH1 menu.
- 4. Press **[F3]** to enter the digital **Filter** function.
- 5. Press **F2** to choose a filter type. For example: input a signal with BW 20M and choose Upp_Limit.
- 6. Use up and down arrow keys to set the filter range.
- 7. Press **[F1]** to turn on the filter

Figure 2-5 Before Turn On the Digital Filter

Figure 2-6 After Turn On the Digital Filter

Scope's Function Menu

The button **[Scope]** includes the following functions:

Figure 2-7 Scope Function Menu

Acquire Signals System

Press **[Scope]** and choose **Acquire** to enter acquiring system. See Figure 2-8.

Figure 2-8 Acquire Signals system function menu

Table 2-5 Acquiring Signals System Function Menu

Option	Setting	Introduction
	Sampling	Sample and display most waveforms accurately.
Acquisition	Peak Detect	Detect burr and reduce fake wave phenomena.
	Average	Reduce random and irrelative noise.
Averages	(4, 16, 32, 64,128,256)	Select the times of averages.
Cinyly	sinx	Use sin interpolation
Sinx/x	х	Use liner interpolation
Mode	Equ time	Set the Sampling mode to Equ time.
Real time		Set the Sampling mode to Real time.
Sa Rate		Display system sampling rate.

Sampling: To construct the waveform, the scope samples the signals in equal interval.

Peak Detect: The scope captures the maximum and minimum values of the signals in every interval to display the waveform.

Average: The scope acquires several waveforms, averages them, and displays the final waveform. The more average times the smoother of the waveform.

Equivalent Time Sampling: This mode is good for observing repetitive period waveforms. The sampling rate is up to 50GSa/s.

Real Time Sampling: The scope has the highest real-time sampling rate up to 1GSa/s.

Interpolation (Sinx/x) Application Example

Operation steps:

- 1. Press **[Scope]** and choose **Acquire** to enter acquiring system.
- 2. Press **[F4]** to choose **Ream Time**.
- 3. Press [F3] to choose Sinx/x.

Figure 2-9 Sinx Interpolation

Figure 2-10 X Interpolation

Display System

Press **[Scope]** and choose **Display** to enter display system. See Figure 2-6.

Figure 2-11 Display Menu 1

Table 2-6 Display System Function Menu

Option	Setting	Introduction	
	Vectors	Vectors fill the space between adjacent	
Туре	vectors	sample points in the display.	
	Dots	Dots: display sample points directly.	
	Off		
	1 sec	Sets the length of time each displayed sample point remains displayed.	
Persist	2 sec		
	5 sec	sample point remains displayed.	
	Infinite		
Intensity	v <intensity></intensity>	Set waveform intensity.	
Brightness	* <brightness></brightness>	Set grid brightness.	
Novt Daga	Page 1/2	Enter the second page of DISPLAY	
Next Page	Page 1/2	menu.	

Figure 2-12 Display Menu 2

Table 2-7 Display system function menu 2:

Option	Setting	Introduction
	YT	YT format displays the vertical voltage in
	11	relation to time (horizontal scale).
Format		XY format displays a dot each time a
	XY	sample is acquired on channel 1 and
		channel 2.
Coroon	Normal	Set to normal mode.
Screen	Inverted	Set to invert color display mode.
	\Box	Display grids and axes on the screen.
Grid		Turn off the grids.
		Turn off the grids and axes.
Menu	2sec, 5sec, 10sec,	Set display time of many on the garage
Display	20sec, Infinite	Set display time of menu on the screen.
Next Page	Page 2/2	Return to the first page of DISPLAY menu.

XY Waveform Application Example

Observe XY waveform, operation steps:

- 1. Input 2 sine signals to the channels with the same frequency, range and phase 90 degree difference, press the button [Auto].
- 2. Press **[Scope]** and choose **Display** to enter the display system.
- 3. Press [Next Page] to enter the second page of DISPLAY menu.
- 4. Press **[F1]** to choose XY mode.
- 5. Adjust the vertical range of CH 1 and CH 2 to obtain the best XY waveform.

Figure 2-13 XY Waveform

Math Waveform

Press **[Scope]** and choose **Math** to enter the math waveform function menu.

Figure 2-14 MATH Menu

Table 2-8 Math Menu Function

Option	Setting	Instruction
	+	CH1+CH2
	_	CH1-CH2、CH2-CH1
Operation	*	CH1*CH2
	1	CH1/CH2、CH2/CH1
	FFT	Fast Fourier Transform.
la.com	On	Invert the waveform.
Invert	Off	Turn off the invert function
Next Page	Page1/2	Enter the second page of MATH menu.

Figure 2-15 MATH Function Menu

Table 2-9 Addition operation

Option	Setting	Instruction
ბ .∿.‡		Use arrow keys to move the waveform upright.
•ა~₽∿		Use arrow keys to adjust the scale of math waveform.
Waveform	On	Turn on the math waveform
Math Switch	Off	Unique key turn off the math waveform.
Next page	Page2/2	Return to the first menu off math waveform.

Waveform Math Application Example

Operation steps of adding two waveforms:

- 1. Input two signals to the channels and press 【Auto】.
- 2. Press **[Scope]** and choose **Math** to enter waveform operation.
- 3. Press **[F1]** to choose "+" operation.
- 4. Press **[F5]** to enter the second page of waveform operation menu.
- 5. Use the parameter to display the best waveform.
- 6. Press **[F4]** to exit the math waveform operation.

Figure 2-16 Result of Two Waveforms Add

About FFT operation

Using FFT math operation can translate time field signal to frequency field signal.

Figure 2-17 FFT Function Menu 1

Figure 2-18 FFT Function Menu 2

Table 2-10 FFT Window Function

Window	Characteristic	Advantage content
	The best frequency	Symmetric transients or bursts.
	resolution but the worst	Equal-amplitude sine waves with
Rectangular	magnitude resolution. It	fixed frequencies. Broadband
	is essentially the same	random noise with a relatively
	as no window.	slowly varying spectrum.
	Better frequency,	Sine, periodic, and narrow-band
Hanning	poorer magnitude	random noise.
	accuracy than	
	rectangular	
	Hamming has a slightly	Transients or bursts pulse. The
Hamming	better frequency	ranges of the signals have great
	resolution than	difference from before to after.
	Hanning.	
	Best magnitude	Single frequency waveforms, to
Blackman	resolution but worst	find higher order harmonics.
	frequency resolution.	

FFT Zoom: zoom in FFT waveform vertically by 1X, 2X, 5X and 10X.

Scale: choose dBVrms or Vrms as a measure unit.

Display: Spilt or **Full Screen** FFT waveform display mode.

FFT Waveform Operation Application Example

Operation steps:

- 1. Input a signal to CH1 and press 【Auto】.
- 2. Press **[Scope]** and choose **Math** to enter waveform operation.
- 3. Press [F1] to choose FFT.
- 4. Press **[F5]** to enter the second page of the menu and adjust the setups.
- 5. Adjust the channel vertical scale and complete FFT waveform's vertical position and vertical scale settings.
- 6. Press **[F5]** to exit waveform operation.

Figure 2-19 FFT Waveform

Horizontal System

Press **[Scope]** and then choose **Horizontal** to enter the horizontal function menu.

Figure 2-20 Horizontal System Menu

Delay scan: zoom in the waveform being chosen.

Memory depth: normal memory and long memory.

Delay Scan Application Example

Operation steps:

- 1. Input a waveform to CH1 or CH2.
- 2. Adjust time base to display the best waveform.
- 3. Press **[Scope]** and then choose **Horizontal** to enter horizontal system.
- 4. Press **[F1]** to turn on delay scan.
- 5. Change time base and choose a window waveform to zoom in and analyze.
- 6. Press **[F1]** to turn off delay scan.

Figure 2-21 Delay Scan Waveform

Normal Memory and Long Memory under Real Time Sample Application Example

Operations steps:

- 1. Input a sine signal with 100M bandwidth and 4V Vpp to CH1 or CH2, adjust time base to 50nS. The common storage sampling rate will be 1GSa/s while the long storage is 500MSa/s at this time.
- 2. Press 【Run/Stop 】 respectively at common storage and long storage.
- 3. Change time base to let the whole waveform display on the screen.
- 4. Count memory depth. Sampling Points=Sampling Rate *Sampling Time

Figure 2-22 Normal Memory

Figure 2-23 Long Memory

Reference waveform

Press **[Scope]** and choose **Ref** to enter the reference waveform function menu.

Figure 2-24 Reference waveform Menu

Table 2-11 REF Waveform Function Menu

Fatia.a	Fig. 1. Outton Instruction		
Function	Setting	Instruction	
Signal	CH1/CH2	Choose the waveform to be saved.	
Ref A/Ref B		Choose to save or recall the reference position of	
Rei A/Rei B		the waveform	
Carra		Save the source waveform to the pointed	
Save		reference position.	
Ref A/Ref B	On	Display the reference waveform on the screen.	
	Off	Clean the reference waveform on the screen.	

Reference Waveform Application Example

Operation steps:

- 1. Input a waveform to CH1 or CH2.
- 2. Adjust time base to display the best waveform.
- 3. Press **[Scope]** and choose **Ref** to enter horizontal system.
- 4. Choose the reference waveform need to save and press **[F4]** to save.
- 5. Press **[F5]** to show the reference waveform.
- 6. Press **[F5]** to exit the reference waveform.

Figure 2-25 Reference Waveform

Cursor and Measure System

Cursor measure

Press **[Cursor/Measure]** once to enter the cursor measure system.

There are three modes of measure: manual, track, automatic.

Manual mode: horizontal or vertical cursors appear in couple and we use them to measure voltage or time parameters. The space between two cursors can be adjusted.

Figure 2-26 Manual Cursor Measurement

Table 2-12 Manual Mode Function Menu

Option	Setting	Instruction
Cursor Mode	Manual	In this menu, set the manual cursor measure.
Туре	Voltage Time	Use cursors to measure voltage parameters. Use cursors to measure time parameters.
Source	CH1、CH2 MATH REFAREFB	Choose the signal to be measured by cursors.
Cur A		Use arrow keys to adjust t position of cursor
も		A.
Cur B		Use arrow keys to adjust t position of cursor
も		B.

Track mode: In this mode, the screen displays two cross cursors. The cross cursor sets the position on the waveform automatically. You could adjust cursor's horizontal position on the waveform by turning the arrow kyes " . The oscilloscope displays the values on the top of the right screen.

Figure 2-27 Cursor Trace Menu

Table 2-13 Trace Mode Function Menu

Option	Setting	Instruction
Cursor Mode	Track	In this mode, set track cursor measure.
Cursor A	CH1、CH2	Set the input signal channel that the Cursor A will
Cursor A	NONE	measure.
Cursor D	CH1、CH2	Set the input signal channel that the Cursor B will
Cursor B	NONE	measure.
Cur A		Use arrow keys to adjust the position of cursor A.
も		Ose arrow keys to adjust the position of cursor A.
Cur B		Use arrow keys to adjust the position of cursor B.

Track Mode Application Example

Operation steps:

- 1. Press **[Cursor/Measure]** once to enter cursor system.
- 2. Press **[F1]** to choose **Tracke** mode.
- 3. Adjust cursor A and cursor B to trace waveform with arrow keys,

Figure 2-28 Cursor Trace Menu

Automatic measure mode: This mode will take effect with automatic measurements. The instruments will display cursors while measuring parameters automatically. These cursors demonstrate the physical meanings of these measurements.

Automatic Measure Application Example

Operation steps:

- 1. Press [Cursor/Measure] once to enter cursor system.
- 2. Press **[F1]** to choose **Auto** mode.
- 3. Press [Cursor/Measure] again and choose parameter types to be measured.

Figure 2-29 Auto Measure

Parameter Measure

Press **[Cursor/Measure]** twice and any key of $F1 \sim F5$ to enter parameter measurement system.

Figure 2-30 Parameter Measure Function Menu

Table 2-14 Parameter Measure Function

Option	Instruction
Voltage	Press this button to enter the Voltage measure menu.
Time	Press this button to enter the Time measure menu.
Delay	Press this button to enter the Delay measure menu.
All Mea	Press this button to enter the All Measurement menu.
Return	Return to the home page of MEASURE menu.

Voltage parameter measure

Figure 2-31 Parameter Measure Function Menu

Table 2-15 Voltage Measure Function

Option	Setting	Instruction
Course	CH1,CH2	Select input signal source for
Source	CH1,CH2	voltage measure.
	Vpp, Vmax, Vmin, Vamp, Vtop,	Press F2 or use the arrow keys to
Type	Vbase, Vavg, Mean, Vrms, FOV,	select voltage measure
	FPRE, ROV, RPRE,	parameter.
	<u> </u>	Display the corresponding icon
loon	1 111, 1 11, 1 11, 111, 111, 111, 111	and measure value of your
Icon	^VV , f VV , ₹ 2 22 2 3	selected Voltage measure
	The part of	parameter.
Return		Return to the home page of
Retuill		MEASUREMENT menu.

Time parameter measure

Figure 2-32 Time Measure Function Menu

Table 2-16 Time Measure Function

Option	Setting	Instruction
Source	CH1, CH2	Select input signal source for Time
Jource	CITI, CITZ	measure.
Type	Period, Freq, +Wid, -Wid, Rise Time, Fall Time, BWid, +Dut, -Dut	Press F2 or use the arrow keys to select time measure parameter.
		Display the corresponding icon and
	¥ ¾ _4	measure value of your selected
	किंग्यू किंग्यू	time measure parameter.
Return		Return to the home page of MEASURE menu.

Delay parameter measure

Figure 2-33 Delay Measure Function Menu

Table 2-17 Delay Measure Function

Option	Setting	Instruction
Source	CH1, CH2	Select input signal source for delay
Source	CHT, CHZ	measure.
	Phase、FRR、FRF、FFR、FFF、	Press the "Type" button or use
Type	LRR, LRF, LFR, LFF	arrow keys to select delay
	LIMA EIG VEITA EIT	measure parameter.
	W. <u>1</u> 1	Display the corresponding icon
		and measure value of your
		selected Delay measure
	□ 0040 / □ 000 C / □ 0040	parameter.
Return		Return to the home page of
Netum		MEASURE menu.

All parameters measure

Figure 2-34 All Measure Function Menu

Table 2-18 All Measure Function Menu

Option	Setting	Instruction	
Source	CH1、	Salast input signal channel	
Source	CH2	Select input signal channel.	
Voltag	On/Off	Turn on/off the all voltage parameters measure function	
е	Oll/Oll	Turn on/off the all voltage parameters measure function.	
Time	On/Off	Turn on/off the all time parameters measure function.	
Dolov	On/Off	Turn on/off the all delay parameters measurement	
Delay	On/On	function.	
Return		Return to the "All Measure main menu".	

Table 2-19 All Measure Function Menu

Measure Type		Introduction
TJUC	Vmax	The positive peak voltage.
*21,57,5	Vmin	The negative peak voltage.
ĮJŲĮ.	\ /m m	The absolute difference between positive peak voltage
*54.54.5	Vpp	and negative peak voltage.
#JUL	Vtop	The maximal voltage during the measure.
±-√];r^[;r°	Vbase	The minimal voltage during the measure.
#::[]:]:[]:::::	Vamp	The difference between the Vtop and the Vbase voltage.
₽₩₩	Vavg	The arithmetic mean over the first cycle of the waveform.

The arithmetic mean over the entire waveform. Virtual value: the true Root Mean Square voltage of the first cycle in the waveform. The true Root Mean Square voltage over the entire waveform. Defined as (Vmax-Vhig)/Vamp after the waveform rising. Defined as (Vmin-Vlow)/Vamp after the waveform falling. Defined as (Vmin-Vlow)/Vamp before waveform falling. The time between the first voltage level rising from 10% to 90%. The time between the first voltage level falling from 90% to 10% The time between the first sing edge and the next falling edge of 50% voltage level. The ratio between the first positive pulse width and the period. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first f	_ ^ ^	- · · · · · · · · · · · · · · · · · · ·
first cycle in the waveform. The true Root Mean Square voltage over the entire waveform. Defined as (Vmax-Vhig)/Vamp after the waveform rising. Defined as (Vmin-Vlow)/Vamp after the waveform falling. Defined as (Vmin-Vlow)/Vamp before waveform falling. PRREshoot FPREshoot First Time The time between the first voltage level rising from 10% to 90%. The time between the first voltage level falling from 90% to 10% The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first rising edge and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and	-^-√- Mean	The arithmetic mean over the entire waveform.
The true Root Mean Square voltage over the entire waveform. Defined as (Vmax-Vhig)/Vamp after the waveform rising. Defined as (Vmin-Vlow)/Vamp after the waveform falling. Defined as (Vmin-Vlow)/Vamp before waveform falling. Defined as (Vmin-Vlow)/Vamp before waveform falling. Defined as (Vmax-Vhig)/Vamp before waveform falling. The time between the first voltage level rising from 10% to 90%. The time between the first voltage level falling from 90% to 10% The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling ed	r Crms	
ROVShoot Defined as (Vmax-Vhig)/Vamp after the waveform rising. Defined as (Vmin-Vlow)/Vamp after the waveform falling. Defined as (Vmin-Vlow)/Vamp before waveform falling. Defined as (Vmin-Vlow)/Vamp before waveform falling. Defined as (Vmax-Vhig)/Vamp before waveform falling. The time between the first voltage level rising from 10% to 90%. The time between the first voltage level falling from 90% to 10% The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2		-
POVShoot rising. Defined as (Vmin-Vlow)/Vamp after the waveform falling. Defined as (Vmin-Vlow)/Vamp before waveform rising. Defined as (Vmax-Vhig)/Vamp before waveform falling. The time between the first voltage level rising from 10% to 90%. The time between the first voltage level falling from 90% to 10% The time between the first voltage level falling from 90% to 10% The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The phase ifference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	^√√ Vrms	
FOVShoot Defined as (Vmin-Vlow)/Vamp after the waveform falling. Defined as (Vmin-Vlow)/Vamp before waveform rising. Defined as (Vmax-Vhig)/Vamp before waveform falling. The time between the first voltage level rising from 10% to 90%. The time between the first voltage level falling from 90% to 10% The time between the first voltage level falling from 90% to 10% The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	* D. S. BOVOL 1	Defined as (Vmax-Vhig)/Vamp after the waveform
FOVShoot falling. Defined as (Vmin-Vlow)/Vamp before waveform rising. Defined as (Vmax-Vhig)/Vamp before waveform falling. The time between the first voltage level rising from 10% to 90%. The time between the first voltage level falling from 90% to 10% The time between the first voltage level falling from 90% to 10% The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	_ S ROVShoot	rising.
Defined as (Vmin-Vlow)/Vamp before waveform rising. Defined as (Vmax-Vhig)/Vamp before waveform falling. The time between the first voltage level rising from 10% to 90%. The time between the first voltage level falling from 90% to 10% The time between the first voltage level falling from 90% to 10% The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.		Defined as (Vmin-Vlow)/Vamp after the waveform
Phase The phase difference between two waveforms. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2.	FOVSHOOL	falling.
Defined as (Vmax-Vhig)/Vamp before waveform falling. The time between the first voltage level rising from 10% to 90%. The time between the first voltage level falling from 90% to 10% The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2.	PDDE choot	Defined as (Vmin-Vlow)/Vamp before waveform
FRESHOOT Rise Time The time between the first voltage level rising from 10% to 90%. The time between the first voltage level falling from 90% to 10% BWid The duration of a burst over the entire waveform. The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The phase difference between two waveforms. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first first in gedge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.		rising.
Rise Time The time between the first voltage level rising from 10% to 90%. The time between the first voltage level falling from 90% to 10% The duration of a burst over the entire waveform. The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	-2	Defined as (Vmax-Vhig)/Vamp before waveform
Rise Time 90%. The time between the first voltage level falling from 90% to 10% The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first filling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	FPRESHOOT	falling.
The time between the first voltage level falling from 90% to 10% The time between the first voltage level falling from 90% to 10% The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	Z Dies Time	The time between the first voltage level rising from 10% to
BWid The duration of a burst over the entire waveform. The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	— ⁷ → Rise lime	90%.
BWid The duration of a burst over the entire waveform. The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.		The time between the first voltage level falling from 90%
The time between the first rising edge and the next falling edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	+F— Fall Time	to 10%
+ Wid edge of 50% voltage level. The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	-₹□Ū‡ BWid	The duration of a burst over the entire waveform.
The time between the first falling edge and the next rising edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	-	The time between the first rising edge and the next falling
edge of 50% voltage level. The ratio between the first positive pulse width and the period. The ratio between the first negative pulse width and the period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	→ + Wid	edge of 50% voltage level.
### Houty	7 F	The time between the first falling edge and the next rising
The ratio between the first negative pulse width and the period. Phase The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	→ - Wid	edge of 50% voltage level.
period. The ratio between the first negative pulse width and the period. The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	f7 5 .	The ratio between the first positive pulse width and the
Phase The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	_— + Duty	period.
The phase difference between two waveforms. The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	7-5-	The ratio between the first negative pulse width and the
The time between the first rising edge of source 1 and the first rising edge of source 2. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	- Duty	period.
FRR first rising edge of source 2. The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	⁷ ₩ Phase	The phase difference between two waveforms.
The time between the first rising edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	±∩ FDD	The time between the first rising edge of source 1 and the
FRF first falling edge of source 2. The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	#TUTE FRR	first rising edge of source 2.
The time between the first falling edge of source 1 and the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	# <u></u>	The time between the first rising edge of source 1 and the
the first rising edge of source 2. The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	□+r'1 r LKL	first falling edge of source 2.
The time between the first falling edge of source 1 and the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	## CCD	The time between the first falling edge of source 1 and
the first falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.	A MY LLK	the first rising edge of source 2.
The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2.		The time between the first falling edge of source 1 and
Iast rising edge of source 2. The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and	7+r4 r LLL	the first falling edge of source 2.
The time between the first rising edge of source 1 and the last falling edge of source 2. The time between the first rising edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and	#T I DD	The time between the first rising edge of source 1 and the
last falling edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 1 and	TATE FLK	last rising edge of source 2.
The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and the last rising edge of source 2. The time between the first falling edge of source 1 and	±7-₩ 1DC	The time between the first rising edge of source 1 and the
the last rising edge of source 2. The time between the first falling edge of source 1 and	⊐ t√4t FL/L	last falling edge of source 2.
The time between the first falling edge of source 1 and	_R	The time between the first falling edge of source 1 and
	⊐ copt LIT	the last rising edge of source 2.
the last falling edge of source 2.	-P	The time between the first falling edge of source 1 and
	_ LQ7L LII	the last falling edge of source 2.

Parameter Measure Supplication Example

Operation steps:

- 1. Press 【Cursor/Measure】 twice and any key of F1∼F5 to enter parameter measurement system.
- 2. Choose any key out of **F1~F5** to choose measure type. For example: **Voltage.**
- 3. Press **[F2]** to choose measure parameter. For example: **Vpp**.
- 4. Press [F5] to return.

Figure 2-35 All Measure Function Menu

32 types of parameters measure application example

Operation steps:

- 1. Input two sine signals respectively to CH1 and CH2 with the same frequency, amplitude and different phases,
- 2. Adjust time base and vertical scale to obtain the best waveform.
- 3. Press [Cursor/Measure] and choose All.
- 4. Turn on **Voltage**, **Time**, **Delay** and will display 32 types of parameter measure.

Figure 2-36 32 Types of Parameter Measure

Trigger System

There are 5 kinds of trigger function: edge, pulse, video, slope, alternative. Press **【Trigger】** to enter the trigger system.

Edge Trigger

Figure 2-37 Edge Trigger Function Menu

Table 2-20 Edge Trigger Function Menu

Option	Setting	Instruction
Туре	Edge	Trigger on the rising or falling edge of the input signal.
Source	CH1, CH2	Set CH1 or CH2 as a trigger source.
Slope	+ +	Trigger on rising edge of the trigger signal. Trigger on falling edge of the trigger signal. Trigger on rising and falling edge of the trigger signal.
Mode	Auto	Use this mode to let the acquisition free-run in the absence of a valid trigger; This mode allows an un-triggered, scanning waveform at 100 ms/div or slower time base settings.
	Normal	Use this mode when you want to see the valid trigger waveforms only; the scope will not acquire waveform until satisfied trigger.
	Single	The setup detects a trigger and acquires waveform, then stop.
Setting		Enter the "Trigger Setup Menu".

Figure 2-38 32 Trigger Setting Function Menu

Table 2-21 Trigger Setting Menu

Option	Setting	Instruction
	DC	Passes all components of the signal
	AC	Blocks DC components and attenuates
	AC	signals below 170Hz.
Coupling	HF Reject	Attenuates the high-frequency components
		above 140kHz.
	LF Reject	Blocks the DC component and attenuates the
		low-frequency components below 7 kHz.
Hold off		Using the arrow keys to adjust hold off
も		time(sec), the hold off value is displayed.
Hold off		Deact hold off time to 100ne
Reset		Reset hold off time to 100ns.
Return		Return the first page of the menu.

Figure 2-39 Signal Rise Trigger Menu

Pulse Trigger

Figure 2-40 Pulse Trigger Function Menu 1

Table 2-22 Pulse Trigger Function Menu 1

Option	Setting	Instruction
Туре	Pulse	Select the pulse to trigger the pulse match the trigger condition.
Source	CH1、CH2	Select input signal source.
Condition	(Positive pulse width less than pulse width set) (Positive pulse width larger than pulse width setting) (Positive pulse width equal to pulse width setting) (Negative pulse width less than pulse width setting) (Negative pulse width larger than pulse width setting) (Negative pulse width setting) (Negative pulse width setting) (Negative pulse width setting)	Compare the trigger conditions of pulse. It triggers as soon as matching the conditions.
Set Width	20.0ns∼10.0s	Selecting this option can turn the arrow keys to set up the pulse width.
Next Page	Page 1/2	Ente r the second page of the menu.

Figure 2-41 Pulse Trigger Function Menu 2

Table 2-23 Pulse Trigger Function Menu 2

Option	Setting	Instruction
Туре	Pulse	Select the pulse to trigger the pulse match the trigger condition.
Mode	Auto Normal Single	Select the type of triggering; Normal mode is best for most Pulse Width trigger applications.
Setup		Enter the "Trigger setup menu".
Next Page	Page 2/2	Return to the first page of the menu.

Pulse Trigger Application Example

Operations steps:

- 1. Input a pulse signal.
- 2. Press 【Trigger】 to enter trigger menu.
- 3. Press **[F1]** to choose **pulse** trigger.
- 4. Press **[F3]** to set pulse trigger conditions.
- 5. Press **[F4]** and use arrow keys to set pulse width.
- 6. Move trigger level line with the up and down arrow keys. It will trigger as soon as it meets the trigger conditions.

Notes:

We can't adjust trigger level line under the **SetWidth** menu as we use the up and down arrow keys to set both the pulse width and trigger level line. If you want to adjust the trigger level, please make sure that you have exited the **SetWidth** menu.

Figure 2-42 Pulse Trigger

Video Trigger

Figure 2-43 Video Trigger Menu 1

Table 2-24 Pulse Trigger Function Menu 2

Option	Setting	Instruction
		When you select the video type, put the couple set
Туре	Video	to the AC, then you could trigger the NTSC, PAL
		and SECAM video signal.
Source	CH1、CH2	Select the input source to be the trigger signal.
	Մ(Normal)	Normal triggers on the negative edge of the sync
Polarity		pulse.
Polarity	☐(Inverted)	Inverted triggers on the positive edge of the sync
		pulse.
	All Lines	
Syno	Line Num	Soloot appropriate video evre
Sync	Odd Field	Select appropriate video sync.
	Even Field	
Next Page	Page 1/2	Enter the second page of "Video trigger menu".

Figure 2-44 Video Trigger Menu 2

Table 2-25 Pulse Trigger Function Menu 2

Option	Setting	Instruction
		When you select the video type, put the
Typo	Video	couple set to the AC, then you could
Туре	video	trigger the NTSC, PAL and SECAM
		video signal.
Standard	NTSC,	Select the video standard for sync and line
Standard	PAL/SECAM	number count.
		Use this mode to let the acquisition free-run in
	Auto	the absence of a valid trigger; This mode
		allows an un-triggered, scanning waveform at
		100 ms/div or slower time base settings.
Mode	Normal	Use this mode when you want to see only valid
iviode		triggered waveforms; when you use this mode,
		the oscilloscope does not display a waveform
		until after the first trigger.
	Single	when you want the oscilloscope to acquire a
	Single	single waveform, press the "SINGLE "button.
Set up		Enter the "Trigger setup menu".
Next Page	Page 2/2	Return the first page of "Video Trigger menu".

Video Trigger Application Example

Operation steps:

- 1. Input a video signal.
- 2. Press [Trigger] to enter trigger menu.
- 3. Press [F1] to choose Video.
- 4. Press **[F5]** to enter the second page of video trigger menu.
- 5. Press [F2] to set the video standard PAL/SECAM or NTSC meeting with the input signal.
- 6. Press **[F5]** to return to the first page of video trigger menu.
- 7. press **[F4]** to choose the type of **Sync.** If you choose Line Number, use the up and down arrow keys to set the number of line.
- 8. Move trigger level line with the up and down arrow keys to set the trigger position.

Notes:

We can't adjust trigger level line under the Line Number menu as we use the up and down arrow keys to set both the pulse width and trigger level line. If you want to adjust the trigger lever, please make sure that you have exited the Line Number menu.

Figure 2-45 Video Trigger

Slope trigger

Figure 2-46 Slope Trigger 1

Table 2-26 Slope Trigger Function Menu 1

Option	Setting	Instruction
Туре	Slope	Trigger on positive slope of negative slope according to setup time of the oscilloscope.
Source	CH1、CH2	Select trigger source.
Condition	具具具具制	Select trigger conditions.
Time	ð	Use the arrow keys to set slope time. Time
Tillic	⟨Set time⟩	setup range is 20ns-10s.
Next Page	Page 1/2	Enter the second page of the slope trigger menu.

Figure 2-47 Slope Trigger 2

Table 2-27 Slope Trigger Function Menu 1

Option	Setting	Instruction
Туре	Slope	Trigger on positive slope of negative slope according to setup time of the oscilloscope.
Vertical		Select the trigger level that can be adjusted by "LEVEL" knob. You can adjust "LEVEL A", "LEVEL B" or adjust them at the same time.
Mode	Auto	Use this mode to let the acquisition

		free-run in the absence of a valid trigger; This mode allows an un-triggered, scanning waveform at 100 ms/div or slower time base settings.
	Normal	Use this mode when you want to see only valid triggered waveforms; when you use this mode, the oscilloscope does not display a waveform until after the first trigger.
	Single	When you want the oscilloscope to acquire a single waveform, press the "SINGLE" button.
Set up		Enter the "Trigger setup menu".
Next Page	Page 2/2	Return to the first page of slope trigger.

Alternative trigger

The trigger signal comes from two vertical channels when you use alternative trigger. In this mode, you can observe two irrelative signals at the same time. You can select different trigger types for two vertical signals, and selected types cover edge, pulse, video and slope trigger. Trigger information of two channel signals display on the bottom right of the screen.

Figure 2-48 Alternative Trigger Menu

Table 2-28 Slope Trigger Function Menu 2

Option	Setting	Instruction
Туре	Alternative	The trigger signal comes from two vertical channels when you use alternative trigger. In this mode, you can observe two irrelative signals at the same time.
Source	CHX CHY	Set trigger type information for CHX signal Set trigger type information for CHY signal
Mode	Edge	Set trigger type of the vertical channel signal to Edge
Slope	4 1 →	Triggering on rising edge. Triggering on falling edge. Triggering on rising edge and falling edge.
Set up		Enter the "Trigger setup menu".

Save and Recall System

SHS1000 can save 2 groups of reference waveforms, 20 groups of setups and 10 groups of waveforms in its internal memory. There is an USB Host interface in the front panel of the SHS1000 and you can save setup data, waveform data, waveform interface image, CSV file to an USB flash drive. The postfix of setup data is SET while waveform data is DAV. The waveform data can be recalled to the current SHS1000 or SHS1000 with the same the model. Figure data and CSV file can't be recalled to the SHS1000, but it can be opened on the computer through correlative software. CSV can be opened by EXCEL software on computer.

Saving Setups

Saving Setups to Device

All setups are stored in nonvolatile memory. When recall the setups, the SHS1000 will be under the setup save mode.

Figure 2-49 Saving Setups to Device Menu

Table 2-29 Saving Setups to Device Function Menu

Option	Setting	Introduction
Туре	Setups	Menu for the Save/Recall setting in the SHS1000.
Save to	Device	Save setups to the scope's internal memory.
Setup	No.1 to No.20	Choose the position number to save/recall setups.
Save		Accomplish the operation of saving setups.
Recall		Recall the saved setups.

Saving Setups to USB Flash Drive

Figure 2-50 Saving Setups to USB Flash Drive Menu

Table 2-30 Saving Setups to USB Flash Drive Function Menu

Option	Setting	Instruction
Туре	Setup	Used to save/recall the SHS1000's setup menu
Save to	File	Save the setup data of the SHS1000 to USB flash drive.
Save		Enter the waveform save/recall interface.

Saving waveform

Saving waveform to device

Figure 2-51 Saving Waveform to Device Menu

Table 2-31 Saving Waveform to Device Function Menu

Option	Setup	Introduction	
T	Waveforms	Menu for the Storage/Recall waveforms in the	
Туре	vvaveioiiiis	scope.	
Sava Ta	Dovice	Save waveforms to the SHS1000's internal	
Save To	Device	memory	
waveform	No.1 to	Change the position number to save/recall ceture	
wavelonii	No.10	Choose the position number to save/recall setups.	
Save		Accomplish the storage.	
Recall		Recall the storage in the "waveform" operation	

Saving waveform to USB Flash Drive

Figure 2-52 Saving Waveform to USB Flash Drive Menu

Table 2-32 Saving Waveform to USB Flash Drive Function Menu

Option	Setup	Introduction
Туре	Waveforms	Menu for the Storage/Recall waveforms.
Save to	File	Save waveforms to USB flash drive.
Save		Accomplish the storage.

Saving Picture

Waveform interface image can be saved to USB flash drive, but they can't be recalled. You can view them on correlative computer software.

Figure 2-53 Saving Picture Menu

Table 2-33 Saving Picture Function Menu

Option	Setting	Introduction
Type	Picture	Menu for the Storage/Recall waveform interface
Туре		image.
	Print Picture	Choose Print Picture option and press
	Print Picture	Save/Recall for 4 seconds to print the picture
	Save Picture	while the SHS1000 connects to the printer.
Print Key		Choose Save Picture option and press
		Save/Recall for 4 seconds to save the picture
		while you insert an USB flash driver to the
		SHS1000.
Save		Go to the Save/Recall interface.

Saving CSV

Figure 2-54 Saving CSV Menu

Table 2-34 Saving CSV Function Menu

Option	Setting	Introduction	
Туре	CSV	Menu for the Storage CSV file to USB flash drive.	
Data Depth	Displayed	Set to store displayed waveform data to CSV file.	
	Maximum	Set to store maximum waveform data to CSV file.	
Para Save	On/Off	Set whether store parameters to CSV file or not.	
Save		Go to the Save/Recall interface.	

Recall Factory Setups

Press Recall you can recall factory setups.

Table 2-35 Factory Setups Function Menu

Option	Setting	Instruction	
Туре	Factory	To view the Factory setup.	
	Load	Recall the Factory setup.	

Save/Recall Waveform to USB Flash Drive Application

Operation steps:

- 1. Press [Save/Recall] and press [F1] (Type) to choose Waveforms.
- 2. Insert USB flash drive to USB host (you will get the message: **USB flash driver** connects successfully!).
- 3. Press [F2] (Save to) to choose File.

- 4. Press **[F4]** (Save) to enter save/recall interface.
- 5. Press [F1] (Modify) to choose File.
- 6. Press **[F2]** (New File) and input the mane of the file according to the prompts to create a new file. Then press **Confirm**.

Figure 2-55 Input the Name of the File

7. File saves successfully.

Figure 2-56 File Saves Successfully

Recalling a file:

Choose the file to be recalled and press **Recall** at the memory interface, which you complete the recalling operation.

Notes:

The picture in the SHS1000 with a "BMP" postfix can't be recalled, but you can open it in computer with relative software.

Utility System

Press **[User]** to enter utility system menu. See figure 2-57.

Figure 2-57 Utility System Menu 1

Table 2-36 Utility System Function Menu 1

Option	Setting	Introduction
System		Displays the main information
Status		of the SHS1000.
Sound	⊲ 0€	Open the key-press voice.
Souria	≪ 0×	Close the key-press voice.
Counter	On/Off	Turn on/off the frequency
Counter	Olivoli	counter
	Simplified Chinese, English,	
Language	Traditional Chinese, Arabic,	
	French, German, Russian,	Select the interface language.
	Spanish, Portuguese, Japanese	
	Korean, Italian	
Next	Page 1/4	Enter the next page of the
Page	Faye 1/4	menu.

Table 2-37 Utility System Function Menu 2

Option	Setting	Introduction
Do self Cal		Do a self calibration to calibrate the channels.
Do Self Test	Screen Test	Run the screen detect program
Do Seil Test	Keyboard Test	Run the keyboard detect program
Print Setup		Enter the print setup menu to set print options.
		SHS1000 connects to the printer through USB
	Printer	cable. When you execute print function,
		please select Printer . At this time the print
USB Device		icon displays on the top of the screen.
OSP Device	Computer	SHS1000 connects to the computer through
		USB cable. When you execute EasyScope
		software, please select Computer. At this
		time the computer icon displays on the screen.
Next Page	Page 2/4	Enter the third page of the menu.

Figure 2-58 Utility System Menu 2

Figure 2-59 Utility System Print Setup

Figure 2-60 Utility System Menu 3

Table 2-38 Utility System Function Menu 3

Option	Setting	Introduction
Update		You can update the SHS1000 by using USB flash
Firmware		driver (About two minutes).
Record		Press this button to enter the waveform record menu.
Next Page	Page 3/4	Enter the fourth page of the menu

Figure 2-61 Utility System Menu 4

Table 2-39 Utility System Function Menu 4

Option	Setting		Introduction
	1min	2min	
	5min	10min	
Screen saver	15min	30min	Set the time of screen saver
	1hour	2hour	
	5hour	Off	
Date/Time			Set the date and time of the SHS1000.
Next Page	Page4/	4	Return to the first page of the menu.

Self Calibration

Self Calibration is operated to calibrate the relative data of SHS1000 to decrease the mistake during the measure. If the operating temperature changes by or more than 5° C or the instrument runs more than thirty minutes, you should do the self calibration. When you do the self calibration, you should cut off all the probes and leads. Then press **[User]** button to choose **Do self cal** to show the self calibration menu, and do self calibration program according to the prompts on the screen.

Figeure 2-62 Self Calibration

Print Setting

The SHS1000 supports PictBridge compatible printers. You can connect the side USB Device of the SHS1000 to the USB Device of the PictBridge compatible printer through USB cable. After setting the print settings, press **[Save/Recall]** button for 4 seconds to complete the print operation.

Figure 2-63 Print Setting Menu 1

Table 2-40 Print Setup Function Menu 1

Option	Setting	Introduction
Ink Saver	On	Print the screen image on a white
	Off	background when you select On .
Layout	Portrait/Landscape	The output direction of the printer.
Paper Size	Set the type of the paper.	Displays settings available on your PictBridge compatible printer.

Drint Kov	Print Picture	Choose Print Picture option and press Save/Recall for 4 seconds to print the picture while the SHS1000 connects to the printer.
Print Key	Save Picture	Choose Save Picture option and press Save/Recall for 4 seconds to save the picture while you insert an USB flash driver to the SHS1000.
Next Page	Page 1/2	Enter the second page of the menu.

Figure 2-64 Print Setting Menu 2

Table 2-41 Print Setting Function Menu 2

Option	Setting	Introduction
Image Size	Set the type of the paper.	Set the paper size available to the
image Size	Set the type of the paper.	PictBridge compatible printer.
Donor Type	Default, Plain,	
Paper Type	Photo,FastPhoto	
Print Quality	Default, Normal, Draft, Fine	
ID Print	Default, On, Off	
Novt Dago	Dogo 2/2	Return to the first page of the
Next Page	Page 2/2	menu.

Waveform Record

Waveform record: record waveform with a designated interval until reaching the end frame.

When recording CH1 or CH2 waveform, users can set the interval between frames. The recorder can record 2500 frames waveform.

Figure 2-65 Waveform Record Menu

Table 2-42 Waveform Record Menu

Option	Setting	Instruction
	Record	Set recorder function menu.
Mode	Replay	Set replay function menu.
	Off	Turn off waveform record menu.
Source	CH1、CH2	Choose recorder source.
Interval	¢	Set interval of recorder waveform
End Frame	も	Set the max value of recorder frame.
Operate	•(record)	Start to record
Operate	■ (stop)	Stop recording

Figure 2-66 Waveform Play Back Menu 1

Table 2-43 Waveform Play Back Function Menu 1

Option	Setting	Instruction
Mode	Play Back	Set the Play Back function menu.
Operate	(Run)	Press to start playback playing.
Operate	■ (Stop)	Press to stop playing.
Play Mode	ß	Set circular play mode.
Play Mode	→ →■	Set single time play mode.
Interval	P	Set interval between frames.
Next Page	Page 1/2	Enter the second page of the menu.

Figure 2-67 Waveform Play Back Menu 2

Table 2-44 Waveform Play Back Function Menu 2

Option	Setting	Instruction
Start Frame	Ç	Set start frame.
Curr_Frame	¢	Select current frame to be played.
End Frame	¢	Set end frame.
Doturn		Press to return the waveform recorder main
Return		menu.
Novt Dogo	Page 2/2	Return to the first page of Play Back function
Next Page		menu.

Waveform Record Application Example

Operation steps:

- 1. Input a waveform to be recorded.
- 2. Press **[User]** to enter utility system.
- 3. Press **[F5]** to enter the third page of the menu and enter waveform recording menu.
- 4. Press **[F1]** to choose **Record** mode.
- 5. Use up and down arrow keys to set [Interval] and [End] Frame.
- 6. Press **[F5]** to perform waveform recording.

Waveform Play Back Application Example

Operation steps:

- 1. Press **[F1]** to choose **Replay** mode.
- 2. Press **[F5]** to enter the second page of the menu.
- 3. Set replay Start Frame, Curr_frame, End Frame and return to the first page of the menu.
- 4. Set **[Replay]** Mode, Interval and press **[F2]** to perform waveform replay.
- 5. Press **[F1]** to choose **Off** mode to exit waveform record.

Figure 2-68 Waveform Record

Figure 2-69 Waveform Play Back

Chapter 3 Using the Multimeter

About this Chapter

This chapter provides a step-by-step introduction to the multimeter functions of SHS1000 series Handheld Digital Oscilloscope. The introduction gives basic examples to show how to use the menus and perform basic operations.

The digital multimeter provides the following functions: making DC voltage, AC voltage, resistance, diode, continuity, capacitance, DC current, and AC current measurements.

Notes:

- 1. You should use the multimeter with correct connections as instructions.
- 2. The key 【Rub/Stop】 can hold the screen.

Figure 3-1 Multimeter User Interface

- 1. the range of the multimeter
- 2. staffs
- reading value
- 4. input ports
- 5. relative value
- 6. the indicate of input connection
- 7. test type
- 8. operation type

Making DC and AC Voltage Measurement

Table 3-1 DC and AC Function Menu

Option	Setting	Instruction		
		Save the current input value as a reference and		
Relative Value	On	record again. Real value equals relative value plus		
Relative value		measurement value		
	Off	Real value equals measurement value		
	Auto	Choose the best measurement scale		
Mode		automatically		
	Manual	Choose measurement scale manually		
		Choose the best measurement scale		
	Auto	automatically according to the measurement		
Scale		value.		
	Manual	Choose measurement scale manually and there		
		will be a warring when over the scale.		
Tendency Plot	On	Plot with the measurements according to time		

Figure 3-2 DC Voltage Measurement

Figure 3-3 AC Voltage Measurement

Operation Steps:

- Press [Meter] to enter multimeter mode, press [F1] to choose DCV, ACV measurement.
- 2. Insert the red probe to the **V.Ω.C** banana jack input and the black probe to the **COM**. Connect the other end of probes to the power or load to be measured.
- 3. Turn on /off the relative according to the real demand.
- 4. Choose Manual or Auto according to the real demand.
- 5. Read voltage value.

Making Resistance Measurement

Figure 3-4 Resistance Measurement

Operation steps:

- 1. Press [Meter] to enter multimeter mode, press [F1] to choose Res. measurement.
- Insert the red probe to the V.Ω.C banana jack input and the black probe to the COM. Connect the other end of probes to the power or load to be measured.
- 3. Turn on /off the relative according to the real demand.
- 4. Choose Manual or Auto according to the real demand.
- 5. Read resistance value.

Notes:

When measuring resistant, please make sure that the circuit is power off and the capacitance is discharged to avoid damage to the SHS1000.

Making Diode Measurement

Figure 3-5 Diode Measurement

Operation steps:

- Press [Meter] to enter multimeter mode, press [F1] to choose Diode measurement.
- 2. Insert the red probe to the $V.\Omega.C$ banana jack input and the black probe to the COM. Connect the other end of probes to the diode to be measured.
- 3. Read the value.

Making Continuity Measurement

Figure 3-6 Continuity Measurement

Operation steps:

- Press [Meter] to enter multimeter mode, press [F1] to choose Continuity measurement.
- Insert the red probe to the V.Ω.C banana jack input and the black probe to the COM. Connect the other end of probes to the object to be measured.
- 3. When the measured object is under $50\,\Omega$, the multimeter will alarm and read value.
- 4. When the measured object is above 50 Ω , the multimeter will not alarm and read value.

Making Capacitance Measurement

Figure 3-7 Capacitance Measurement

Operation steps:

- Press [Meter] to enter multimeter mode, press [F1] to choose Cap. measurement.
- Insert the red probe to the V.Ω.C banana jack input and the black probe to the COM. Connect the other end of probes to the measured object.
- 3. Turn on /off the relative according to the real demand.
- 4. Read measurement value.

Making DC and AC Current Measurement

Figure 3-9 DC Current "A" Measurement

Manual

Figure 3-10 AC Current "mA" Measurement

Figure 3-11 AC Current "A" Measurement

Operation steps:

- 1. Press [Meter] to enter multimeter mode, press [F1] to choose DCI/ACI measure.
- 2. Insert the red probe to the $V.\Omega.C$ banana jack input and the black probe to the COM. Connect the other end of probes to the power or load to be measured.
- 3. Turn on /off the relative according to the real demand.
- 4. Choose Manual or Auto according to the real demand.
- 5. Read current value.

Chapter 4 Using the Recorder Functions

About this Chapter

This chapter provides a step-by-step introduction to the recorder functions of SHS1000 series Handheld Digital Oscilloscope. The introduction gives basic examples to show how to use the menus and perform basic operations.

The recorder mainly includes the following functions:

Trend Plot: Trend plot is to save the measurements in the memory and then plot a graph of Scope or Meter measurements as a function of time.

Waveform Recorder: Record real time waveform without gap or space. That is to say every time the SHS1000 can save all captured waveform data and then replay them. The maximal recording length of waveform recorder is 7M data points.

Oscilloscope Trend Plot

Figure 4-1 Scope trend plot user interface

- 1. current recorded time
- 2. the percentage of recorded date take in the whole memory
- 3. Value of the latest recorded data point A
- 4. Value of the latest recorded data point B
- 5. real time
- 6. sampling time of the cursor point
- 7. parameter measurement of the cursor point
- 8. vertical scale
- 9. vertical scale

Figure 4-2 Scope Trend plot Function Menu 1

Table 4-1 Scope Trend plot Function Menu 1

Option	Setting	Instruction
Trend Plot	Restart	Quilt the current data and start to
Heliu Flot	Restart	record afresh.
Parameter A/B	Choose the parameter	Voltage , time and delay
Parameter A/B	to be measured.	measurement
Run/Stop		Stop or continue recording data
Next Page	Page 1/2	Enter the second page of the menu.

Figure 4-3 Scope Trend plot Function Menu 2

Table 4-2 Scope Trend plot Function Menu 2

Option	Setting	Instruction
Diaplay Mada	Normal	Display the data up to the minute.
Display Mode	View all	Display all date in a compressing proportion
	Off	Record data automatically
Manual	On	Record data manually. A Record presses a
		record.
Waveforms		Memory data transfer to exterior storage device
Return		Return to the oscilloscope interface
Next Page	Page 2/2	Return to the first page of the menu.

First choose a measurement in scope or meter mode. You can choose the recorder functions from the waveform recorder main menu. To open the main menu, do the following:

Press **[Recorder]** to open the recorder main menu.

Figure 4-4 Recorder Function Main Menu

Scope Trend Plot Application Example

Operation steps:

Open trend plot function

- 1. Input a signal to CH1 or CH2.
- 2. Press **[Recorder]** to enter the recorder main menu.
- 3. Press **[F1]** to choose **Scope Plot**.
- 4. Choose measured parameter A/B and start recording the trend plot. The scope
- 5. Press **[F5]** to pause or continue recording data.

Figure 4-5 Trend Plot record Curve

Display recorded data

- 6. Press **[F5]** to enter the second page of trend plot menu.
- 7. Press **[F1]** to choose data display mode.

Normal: the screen displays the data up to the minute.

View All: the screen displays all data in the memory.

- 8. Zoom function: under full screen mode, press time base to zoom in or zoom out.
- 9. Data analysis: move cursor, analyzing data over time.

Figure 4-6 Analyzing Trend Plot

- 10. Save waveform: save the recorded waveform to exterior storage device to make more detailed analysis.
- 11. Press **Return** to exit trend plot.

Waveform Recorder

Press **[Recorder]** to enter recorder main menu under scan time base, then press **[F2]** to choose Scope recorder.

Figure 4-7 Waveform Recorder Menu

Table 4-3 Waveform Recorder Function Menu

Option	Instruction
Record	Record waveform without gap.
Replay	Replay the recorded waveform.
Option	Setup the parameters of waveform recorder.
return	Exit waveform recorder function.

Figure 4-8 Waveform Recorder Saving Mode Menu

Table 4-4 Waveform Recorder Saving Mode Function Menu

Option	Instruction
Start	Begin to record waveform.(record waveform under 100mS and
Start	above scan time base)
replay	Replay the recorded waveform.
Сору	Copy the waveform saved in the memory to the USB flash disk.
Save mode	Choose a place to save record, including memory USB flash disk. USB flash driver saves only under 2.5s/div and above time base.
return	Exit the submenu and return to the waveform recorder main menu.

Figure 4-9 Waveform Recorder Replaying Mode Menu

Table 4-5 Waveform Recorder Replaying Mode Function Menu

Option	Instruction
	Pause or contnue playing waveform automatically, you can
Stop/Continue	change the time base to observe the waveform in the
	memory.
Restart	Replay the waveform
Previous	Back the waveform and then play.
Next	Speed the playing of the waveform.
Return	Exit the replaying menu.

Viev	wer	Record	Replay	Ī
Sp	olit	continuous	By point	

Figure 4-10 Waveform Recorder Setting Menu

Table 4-6 Waveform Recorder Setting Menu

Option	Setting	Instruction
	Full screen	Record and replay channel waveform with full
Viewer		screen
mode		Record and replay channel waveform with divided
mode	Split	screen. The up half of the screen displays CH1
		while the down half displays CH2.
	continuous	Record circularly, when the waveform recorder is
Record	Continuous	full, the after data will cover the pre-data.
mode	Single	Stop recording data when the waveform recorder
		memory is full.
	By Point	When replaying, the screen waveform updates
	Бу Ропп	every dot from left to right.
Replay mode	By frame	When replaying, the screen waveform updates the
		whole screen according to the time of sampling
		every frame data.
return		Exit the recorder setup interface.

Waveform recorder application example

Startup the waveform recorder function:

- 1. Under 100mS or above time base.
- 2. Press **[Recorder]** to open the main menu.
- 3. Press [F2] to choose scope recorder.
- 4. Press **[F3]** to set the waveform recorder. Such as
- 5. Press **[F5]** to return to the waveform recorder main menu.
- 6. Press **[F1]** to enter record interface.
- 7. Press **[F4]** to set storage mode. Interior and USB flash disk storage mode.

8. Press **[F1]** to start recording data.

The waveform will not move right and the recorded data saved to memory. The recorded time will be different according to the time base. You can pause or stop at any time.

Figure 4-11Waveform Recorder Interface

Waveform replay

- Press **[F2]** to replay waveform.
 You can replay the recorded waveform for several times and you can Advance or back off at any time.
- 10. Press **[F5]** to exit the waveform recorder.

Multimeter Trend Plot

Figure 4-12 Multimeter Trend Plot User Interface

- 1. current recorded time
- 2. the percentage of the current data take in the whole memory
- 3. the parameter value of the recorded data up to the minute
- 4. DC/AC
- 5. manual/auto
- 6. the real time
- 7. the sample time of the cursor point.
- 8. the parameter measurement value of the cursor point
- 9. vertical scale
- 10. vertical scale

Figure 4-13 Multimeter Trend Plot Menu 1

Table 4-6 Multimeter Trend Plot Function Menu 1

function	setting	Instruction
Restart		Quilt the current data and start to record afresh.
Sa Rate	10Sa0.005Sa	Set sampling rate
Display	normal	Display the recorded data up to the minute.
mode	All view	Display all dots.
Record	Run	Record data automatically

mode	Stop	Stop record data
Next Page	Page1/2	Enter the second page of the menu.

Figure 4-14 Multimeter Trend Plot Menu 2

Table 4-7 Multimeter Trend Plot Function Menu 2

Function	Setting	Instruction
Waveform		Data in the memory transferred to the
storage		exterior storage device.
Record manually	Off	Record data automatically
	On	Record data manually. A Record presses
		a record.
Return		Return to the multimeter function state
Next Page	Page2/2	Return to the first page.

Multimeter trend plot application example

Start plot function

Operation steps:

- 1. Input a measured signal correctly. See **chapter 3 Using the Multimeter**.
- Press 【F5】 to enter Trend Plot at the multimeter main menu.
 The SHS1000 will record the measurement value of the input port continuously and plot measurements over time.

Figure 4-15 Multimeter Trend Plot Recording Curve

- 3. Press **[F4]** to stop or run recording data.
- 4. At the second page of the menu you can choose manual or auto mode to record the data.

Display the record data

- 5. Press **[F3]** to choose data display mode.
 - Normal mode: the screen displays the data up to the minute. The recorded data before saved in the memorizer.
 - Full view mode: the screen display all recorded data in the memorizer.
- 6. Zoom function: under full screen mode, press time base to zoom in or zoom out.
- 7. Data analysis: move cursor, analyzing data over time.

Figure 4-16 Analysis Trend Plot Data

- 8. Save waveform: save the recorded waveform to exterior storage device to make more detailed analysis.
- 9. Press Return to exit trend plot.

Chapter 5 Prompting and Troubleshooting

About this Chapter

This chapter gives a detailed instruction of every system prompting appears on the screen as well as some basic troubleshooting.

System Prompting Messages Instruction

- ◆ Trig level at limit! : Mention you that the trigger level is at a limit when you turn the Trig level knob.
- ◆ Horizon position at limit! : Mention you that the horizontal position is at a limit when you turn the horizon position knob.
- ◆ Volts/Div at limit! : Mention you that the vertical voltage have already touched the Min 5mV/div or the Max 100V/div.
- ◆ **Volts position at limit!** : The system would display this information when the vertical position is at a limit.
- Sec/Div at limit! : Prompts that the Volts/Div is at full range while turning the vertical scale knob.
- Holdoff time at limit! : Use the arrow keys when holdoff time has been to max or min value, now the system will clew this information.
- ◆ Function isn't useable! : Under several special modes, the some functions could not be running.
- ◆ **No signal!** : The system would clew this information when the signal could not match the auto set condition. (Using in the auto set)
- ◆ Adjust at limit! : You could adjust the pulse width by the arrow keys till the pulse width has reached min20.0ns or max 10.0s.
- ◆ Location Empty! : If you have no stored waveforms or setups on some location, the screen will display this information when you press the "Recall" button on this location.
- ◆ USB Flash Drive Plug In! : This information will appear when you invert the USB Flash Drive to the USB Host port.
- ◆ USB Flash Drive Pull Out! : This information will appear when you pull out the USB Flash Drive.

- ◆ Store Data Success! : Save setup data, waveform data or Figure data to the internal of the oscilloscope or USB flash successful.
- Ready Data Success! : Read setup data or waveform data from the internal of the oscilloscope or USB flash successful.
- ◆ Please set USB Device to printer! : Press the "S/div" knob will appear this information on the screen when the "Print Key" option is set to "Print Figure" and the "USB Device" option is set to "Computer".
- ◆ USB Flash Drive isn't connected!: When the "Save To" option is set to "File" or the "Print Key" option is set to "Save Figure" in "Save/Recall" menu, Press the "Save" option button or the "S/div" knob before inverting the USB Flash Drive to the USB Host port will appear this information on the screen.
- ◆ Record Wave Success! : This message will appear when you finish recording waveforms.

Troubleshooting

- 1. After the Handheld Digital Oscilloscope is powered on, the screen remains dark, please do as following steps:
 - 1) Check the power cable's connection.
 - 2) Ensure the power switch is turned on.
 - 3) After the inspections above, restart the Handheld Digital Oscilloscope.
 - 4) If the Handheld Digital Oscilloscope is still not used after the checking, please connect with MY company
- 2. If there is no signal wave in the screen after gathering the signal, please do as following steps:
 - 1) Check the probe connecting with the signal cable or not
 - 2) Check the signal cable connecting with the BNC connector or not.
 - 3) Check the probe whether connect with the goods tested or not.
 - 4) Check the tested goods produce the signal or not.
 - 5) Gather the signal again.
- 3. The value of the tested voltage is 10 times higher/lower than the real one, please do as following steps:

Check the attenuation quotient whether match the probe attenuation proportion or not.

- 4. Display the wave, but not steady, please do as following steps:
 - 1) Check the signal source on the trigger interface whether or not matches the signal channel.
 - 2) Check the trigger mode: normal signal should use the "edge" trigger mode. The video signal should use the "Video" Trigger mode. The signal would display steady, only using the matching trigger mode.
 - 3) Attempt to change the "coupling" into "HF Reject" or "LF Reject" display, so that the High/low frequency noise disturb the trigger should be filtrated
- 5. Press "RUN/STOP" button, but no display.

Check the trigger mode on the trigger interface whether or not in the "normal" or "single", and check the trigger level is whether or not over the wave range. If yes, please put the trigger level to the middle position or set the trigger mode to the "Auto" position. In another hand, you could choose the "Auto" button to set up automatically.

6. After the Acquisition is set to Averages or Display Persistence time is set too long, the waveform refreshes slowly.

It is normal in these settings

7. The signal is displayed as ladder like waveform

- This phenomenon is normal. The time base maybe is too slow .you should turn the horizontal SCALE knob to increase horizontal resolution to improve the display.
- **2)** Maybe the display Type is set to "Vectors", You could set it to Dots mode to improve the display.

8. The multimeter measurements aren't correct

- 1) Check that if the range of the SHS1000 matches with the measured item.
- 2) Make sure that if the multimeter is beyond the calibration date. if the measurements and the real values are beyond the relevant precision, please contact with the calibration site warranted by SIGLENT company to calibrate the SHS1000.
- 3) If you can't use the SHS1000 normally all the same, please contact with **SIGLENT** servicing center, we will provide service for you.
- The other kind of trouble, please contact with SIGLENT servicing center. For more details please see service and support.

Warning: person without warranty by SIGLENT Company shouldn't disconnect the machine for inspection or you will lose the quality guarantee.

Chapter 6 Service and Support

About this Chapter

This chapter covers basic maintain procedures that can be performed by the user. You should have a detailed understanding of the content below to use and maintain you legal rights.

Maintain Summary

Each **SIGLENT** product is warranted to be free from defects in material and workmanship under normal use and service. The warranty period is three years and begins on the data of shipment. This warranty extends only to the original buyer or ender-user c of a SIGLENT authorized reseller. If a product or CRT proves defective within the warranty period, SIGLENT will provide repair or replacement as described in the complete warranty statement.

To arrange for service or obtain a copy of the complete warranty statement, please contact with the nearest SIGLENT sale and service office.

Except this summary or the applicable warranty statement, SIGLENT makes no warranty of any kind of express or implied, including without limitation the implied warranties of merchantability and fitness for a particular purpose. In no event shall SIGLENT be liable for indirect, special or consequential damages.

Contact SIGLENT

SIGLENT TECHNOLOYIES CO., LTD

Address: 3/F , No. 4 BUILDING, 3rd LIUXIAN Rd, ANTONGDA INDUSTRY GARDEN, BAO'AN DISTRICT, SHENZHEN,518101, CHINA

Tel: 0086 755 36615186 E-mail: sales@siglent.com http://www.siglent.com

Appendix A: Specifications

All specification applies to 10X attenuation switch setup probe and SHS1000 series Handheld Digital Oscilloscope. To verify if the SHS1000 meets with the specifications, it must meet the following conditions first:

- ◆ The oscilloscope must have been operating continuously for thirty minutes within the specified operating temperature.
- ◆ You must perform the **Do Self Cal** operation, accessible through the **【User】** menu, if the operating temperature changes by or more than 5° C.
- ◆ The SHS1000 must be within the factory calibration interval
- ◆ The SHS1000 should be calibrated once every year.

All specifications are guaranteed except those noted "typical".

Oscilloscope Specifications

Inputs System		
Input Coupling	AC, DC, GND	
Input Impedance	$1M\Omega$ +/-2% $18pf\pm 3p$	f
Probe Attenuator	10X	
Voltage Probe Attenuator Factors	1X、5X、10X、50X、	100X、500X、1000X
Channels from earth ground,	Overvoltage Category	Maximum Voltage
between two channelsreferences	CAT I&CAT II	1000Vrms
	CAT III	600Vrms
Between Multimeter input	Overvoltage Category	Maximum Voltage
reference and the ground	CAT I&CAT II	600Vrms
	CAT III	300Vrms
	Overvoltage Category	Maximum Voltage
	1x CAT I&CAT II	300Vrms
Max. input Voltage for BNC	1x CAT III	150Vrms
	10x CAT I&CAT II	1000Vrms
	10x CAT III	600Vrms
	Voltage port	DC 1000V, AC 750V
Max. input Voltage for Multimeter	Current port(mA)	AC 250V/10A
input port	Current port(A)	AC 250V/600mA
Channel Common Mode Rejection	>100:1 50MHz	

Isolation	Degree	between	>35dB
Channels			>33dB

Acquisition System					
Sample	Real time, Equivalent time				
Types	Real time, Equiva	alent time			
	Single Channel 3	2K, double chan	nels	16K	
	Channel Mode	Sampling Dat		Common	Deep
	Charmer wode	Sampling Rat		Storage	Storage
Memory	Single Channel	1Gsa/s		40kpt	Don't
	Single Charmer	1054/5		s	support
Depth	Single Channel	500MSa/s	or	20kpt	2Mpts
	Single Charmer	below		s	Zivipts
	Double	500MSa/s	or	20kpt	1Mpts
	Channels	below		s	TIVIPIS
Sample	Sample Book Measure Average				
Mode	Sample, Peak Measure, Average				
Averages	4, 16, 32, 64, 128, 256				

Vertical System			
Vertical Sensitivity	5mV/div \sim 100V/div(1-2-5 order)		
	5mV ~200mV : ±1.6V		
Channel Voltage Offset Range	206mV ∼10V : ±40V		
	10.2V ∼100V : ±400V		
Vertical Resolution	8 bit		
Channels	2		
Bandwidth	60 MHz, 100 MHz		
Single-shot Bandwidth	60 MHz (SHS1062), 100 MHz(SHS1102)		
Lower Frequency Limit (AC -3dB)	≤10Hz (BNC input)		
DC Gain Accuracy	5mv/div-100v/div:≤±3%		
DC Measurement Accuracy:	±[3%X (reading + offset) +1% of offset		
All Gain settings≤100mv/div +0.2div+2mv]			
DC Measurement Accuracy:	±[3%X (reading + offset) +1% of offset		
All Gain Settings>100mv/div	+0.2div+100mv]		
Rise Time (BNC value)	<3.5ns (SHS1102)		
Trise Time (BIVC Value)	<5.8ns (SHS1062)		
Math Operation	+, -, *, /, FFT		
	Window Modes: Hanning, Hamming,		
FFT	Blackman, Rectangular		
	Sampling points: 1024		
Bandwidth Limit	20MHz (-3dB)		

Horizontal System		
Real Time Sampling	Single channel below 50ns/div:1GSa/s; double	
Rate	channel: 500MSa/s	
Equivalent Sampling	< 50GSa/S	
Rate	< 50G3a/3	
Measure Display Modes	MAIN, WINDOW, WINDOW ZOOM, SCAN, X-Y	
Time Base Accuracy \pm 50ppm measured over 1ms interval		
	2.5nS/div ~50S/div(SHS1102)	
Horizontal Scan Range	5.0nS/div \sim 50S/div(SHS1062)	
	Scan: 100mS/div \sim 50S/div (1-2.5-5 order)	

Trigger System		
Trigger Types	Edge, Pulse Width, Video, Slope, Alternative	
Trigger Source	CH1,CH2	
Trigger Modes	Auto, normal, Single	
Trigger Coupling	AC, DC, LF reject, HF reject	
Trigger Level Range	CH1,CH2: ±6 divisions from the center of the screen	
Trigger	Pre-trigger: (Memory depth/ (2*sampling)),	
Displacement	Delay Trigger: 268.04 div	
Holdoff Range	100ns ∼1.5s	
Edge Trigger Edge type: Rising, Falling, Rising and Falling		
	Trigger Modes: $(>,<,=)$ Positive Pulse Width, $(>,<,$	
Pulse Width Trigger	=)Negative Pulse Width	
	Pulse Width Range: 20ns \sim 10s	
	Support Signal Formats: PAL/SECAM, NTSC	
Video Trigger	Trigger Conditions: odd field, even field, all lines, pointed	
	line	
Slope Trigger	(>,<,=) Positive slope, $(>,<,=)$ Negative slope	
Slope Higgel	Time: 20ns∼10s	
Alternative Trigger	CH1 trigger types: Edge, Pulse, Video, Slope	
Alternative myger	CH2 trigger type: Edge, Pulse, Video, Slope	

X-Y Mode		
X-pole Input / Y-pole Input	Channel 1 (CH1) / Channel 2 (CH2)	
Sampling Frequency	Support 25KSa/s \sim 250Msa/s sampling rate (1-2.5-5 order)	

Measure System		
	Vpp, Vmax, Vmin, Vamp, Vtop, Vbase, Vavg,	
	Mean,Crms, Vrms, ROVShoot, FOVShoot,	
Auto Measure (32 types)	RPREShoot, FPREShoot, Rise, Fall, Freq, Prd,	
	+Wid, -Wid, +Dut, -Dut, BWid, Phas, FRR, FRF,	
	FFR, FFF, LRR, LRF, LFR, LFF	
Cursor Measure	Manual mode, Track mode and Auto mode	

Control Panel Function	
Auto Set	Auto adjusts the vertical, horizontal system and
	trigger position
	Support 2 groups of referenced Waveforms, 20
Save/Recall	groups of setups, 10 groups of captured waveforms
Save/Recall	internal storage/recall functions and USB flash driver
	storage function.

Hard Ware Frequency Counter		
Reading resolution	1Hz	
Range	DC coupling, 10Hz to maximal bandwidth	
Signal Types	It's to all trigger signals(Except pulse width and video trigger)	

Digital Multimeter Specifications

Environment Temperature: $23\pm5^{\circ}$ C Relative Humidity:<75%

Max. Display	6000	
Measure Function	DC voltage, AC voltage, resistance, diode, continuity,	
Measure Function	capacitance, DC current, AC current	
May Input Voltage	AC (virtual value): 750V (AC Frequency:20Hz~1kHz)	
Max. Input Voltage	DC:1000V	
Max. Input Current	AC (virtual value): 10A (AC Frequency:20Hz~1kHz)	
Max. Input Current	DC:10A	
Input Impedance	10M	

DC Voltage		
Range	Resolution	Definition
60mV	10uV	±(1%+15digit)
600mV	100uV	
6V	1mV	
60V	10mV	±(1%+5digit)
600V	100mV	
1000V	1V	

AC Voltage		
Range	Resolution	Definition
60mV	10uV	±(1%+15digit)
600mV	100uV	
6V	1mV	
60V	10mV	±(1%+5digit)
600V	100mV	
750V	1V	

Resistance		
Range	Resolution	Definition
600Ω	0.1Ω	
6K	1Ω	
60K	10Ω	1/40/ 1 Edicit\
600K	100Ω	±(1%+5digit)
6M	1ΚΩ	
60M	10ΚΩ	

Diode and Continuity Measure	
Name	Range
Diode	0~2V
Continuity	<50Ω alarm

Capacitance		
Range	Resolution	Definition
40nF	10pF	± (3%+10digit) measurements>
40115		5nF
400nF	100pF	
4uF	1nF	(49/ LEdigit)
40uF	10nF	± (4%+5digit)
400uF	100nF	

DC Current		
Range	Resolution	Definition
60mA	10uA	1/10/ 1 Edicit)
600mA	100uA	±(1%+5digit)
6 A	1mA	1/4 F0/ 1 Edicit\
10A	10mA	±(1.5%+5digit)

[&]quot;A "range: measure period≤10 seconds, interval period≥15 minutes.

AC Current		
Range	Resolution	Definition
60mA	10uA	1/10/ 1 Edicit)
600mA	100uA	±(1%+5digit)
6 A	1mA	1/1 F0/ 1 Edicit)
10A	10mA	±(1.5%+5digit)

[&]quot;A "range: measure period≤10 seconds, interval period≥15 minutes.

Recorder Specifications

In total: 7M original points Single channel: 7M Double channel: each 3.5M

Scope Trend Plot		
Display Mode	full view and normal	
Record Length	800K points, >24 hours	
Record Channel Num.	2	
Cursor and Zoom	support	
Record Manual	support	

Multimeter Trend Plot	
Display Mode	full view and normal
Record Length	1.2 M dots, >24 hours
Record Channel	1
Number	
Cursor and Zoom	Support
Record Manual	Support

Safety

Designed for measurements on 1000 V Category II Installations, 600 V Category III Installations, Pollution Degree 2, per:

- ANSI/ISA S82.01-1994
- EN61010-1(1993)(IEC1010-1)
- CAN/CSA-C22.2 NO.1010.1-92
- UL3111-1

Maximal Input Voltage VS Frequency

Notes:

Overvoltage Category $\rm III$ refers to distribution level and fixed installation circuit inside a building, overvoltage Category $\rm II$ refers to local level, which is applicable for appliances and portable equipment.

Safe Handling: Maximal Input Voltage Between Scope Reference and Between **Scope Reference and Multimeter Reference**

Maximal Voltage From Probe Tip to G round and From Probe Tip to Probe Reference

Safe Handling: Maximal Voltage From Probe Reference to Ground

Generic Specification

Display System		
Display Mode	Color TFT 5.7 inches(145mm) diagonal Liquid	
Display Mode	Crystal Display	
Resolution	320 (horizontal) pixels * 234 (vertical)pixels	
Display Color	24 bit	
Display Contrast (typical)	150:1	
Backlight Intensity (typical)	300 nit	
Waveform Display Range	8 x 12 div	
Wave Display Mode	Dots, Vectors	
Persist	Off, 1 sec, 2 sec, 5 sec, Infinite	
Menu Display	2 sec, 5 sec, 10 sec, 20 sec, Infinite	
Screen-Saver	Off,1 min,2 min,5 min,10 min,15 min,30 min,1	
Screen-Saver	hour,2 hour,5 hour	
Skin	Classical, Modern, Traditional, Succinct	
waveform Interpolation	Sin(x)/x, Linear	
Color model	Normal , Invert	
	Simplified Chinese, Traditional Chinese, English,	
Language	Arabic, French, German, Russian, Spanish,	
	Portuguese ,Japanese, Korean, Italian	

Power			
A do reto a Coura do c	Input Voltage	100-240 V 50/60Hz	
Adapter Power	Supply	Output Voltage	9V 4A
Battery Supply Power 5000		5000mAh, 7.4V	DC, persisting about 4 hours
Charging time About 4 hours			

Environments	
Tanananahuna	Work: 0~40℃
Temperature	Storage: -20°C ~70°C
Cooling	Forcing it cold with a fan.
Humidity	85%RH, 40℃,
Height	3000m

Mechanical		
	Length	259.5mm
Dimension	Width	163.2mm
	Height	53.3mm
Weight	1.5 kg	

Appendix B: Default Setup

Menu or system	Options, Knobs or Buttons	Default setup
CH1, CH2	Coupling	DC
	BW Limit	Off
	Volts/div	Coarse
	Probe	1X
	Invert	Off
	Filter	Off
	Volts/div	1.00V
MATH	Operation	CH1+CH2
	CH1 Invert	Off
	CH2 Invert	Off
	FFT Operation:	
	Source	CH1
	Window	Hanning
	FFT Zoom	1X
	Scale	dBVrms
	Display	Split
	Window	Main Time Base
HORIZONTAL	Position	0.00µs
	Sec/div	500µs
	Window Zone	50.0µs
	Trigger knob	Level
CURSOR	Туре	Off
	Source	CH1
	Horizontal (voltage)	+/-3.2divs
	Vertical (time)	+/-5divs
ACQUIRE	Three Mode Options	Sampling
	Averages	16
	Sampling Method	Real Time
	Туре	Vectors
	Persist	off
	Gird	
DISPLAY	Intensity	60%
	Brightness	40%
	Format	YT
	Menu Display	Infinite
SAVE/RECALL	Туре	Setups
	Save To	Device

	Setup	No.1
REF	Source	CH1
	REFA	Off
	REFB	Off
UTILITY	Sound	On
	Frequency Counter	On
	USB Device	Computer
	Record	Off
TRIGGER (Edge)	Туре	Edge
	Source	CH1
	Slope	Rising
	Mode	Auto
	Coupling	DC
	Level	0.00V
	Туре	Pulse
	Source	CH1
TRIGGER	Condition	=
(Pulse)	Set Pulse Width	1.00ms
, ,	Mode	Auto
	Coupling	DC
TRIGGER (Video)	Туре	Video
	Source	CH1
	Polarity	Normal
	Sync	All Lines
	Standard	NTSC
	Mode	Auto
TDIOGED	Туре	Slope
	Source	CH1
TRIGGER	Condition	_+> ←
(Slope)	Time	1.00ms
	Mode	Auto
TRIGGER (Alternative)	Туре	Alternative
	Source	CH1
	Mode	Edge
	Coupling	DC
	Slope	Rise

Appendix C: Battery Installation

The battery of the SHS800 is separated from it's host, please install the battery according to following steps:

- 1. Dismantle the two screws of the battery cap by using screw knife, as figure 1 shows...
- 2. Draw back the packing block of the Handheld Digital Oscilloscope, and then dismantle the battery cap, as figure 2 shows.
- 3. Put battery into the battery bin stably, as figure 3 shows.
- 4. Cover the battery cap, and tightly twist the two screws which are dismantled from the battery cap forward, such as figure 3 shows.
- 5. Successful installation of the battery depends on whether the Handheld Digital Oscilloscope could be normally turned on or not.

Notes:

The battery plug is designed to prevent from connecting reversely, it prefers operating slightly to powerfully.

Make a caution at the direction of the battery cap, logo of the battery is attached to the external end.

If The Handheld Digital Oscilloscope can not be turned on normally after correctly installation, it is likely that the battery quantity of electricity has been used off, please refresh for the battery right away.

In the case of not working, battery must be charged once every three months.

Appendix D: Daily Maintaining and Cleaning

Daily Maintaining

Do not let the LCD exposed in the sun directly for a long period when storing or placing the SHS1000.

CAUTION: To avoid damage to the instrument or probes, do not expose them to sprays, liquids, or solvents

Cleaning

If this instrument requires cleaning, disconnect it from all power sources and clean it with a mild detergent and water. Make sure the instrument is completely dry before reconnecting it to a power source.

To clean the exterior surface, perform the following steps:

- 1. Remove loose dust on the outside of the instrument and probes with a lint-free cloth. Use care to avoid scratching the clear plastic display filter.
- 2. Use a soft cloth dampened with water to clean the instrument. Use an aqueous solution of 75% isopropyl alcohol for more efficient cleaning.

Note:

To avoid damage to the surface of the instrument or probes, do not use any abrasive or chemical cleaning agents