

Agenda

- Introduction
- CNN overview
- Baseline results
- Building specialist models
- Data augmentation techniques & performance
- Model evaluation & final results
- Future refinements

The Kaggle competition

Objective:
To predict 15 keypoint positions on face images

Applications:

- Tracking faces in images and video
- Analysing facial expressions
- Detecting dysmorphic facial signs for medical diagnosis
- Biometrics / face recognition

Challenges:

- Facial features vary greatly
 - o 3D pose
 - o Size
 - Position
 - Viewing angle
 - Illumination conditions

Technology leveraged for the project

- AWS G2.2x.large EC2 instance
 - vCPU 8
 - o ECU 26
 - o Memory 15 GB
 - o GPU 4 GB
 - Ubuntu OS with Python 3
 - o Cost/hr \$0.65
- W205 security rules + Jupyter port
- EC2 Instance access tools:
 - O Windows:
 - Babun (windows shell)
 - PSCP (to upload files)
 - OSX/Unix
 - Terminal shell & ssh

	Baseline Model	Specialist Model	Total	
Time	1.6 Hrs	81 Hrs	82.6 Hrs	
Cost	\$1.1	\$52	\$53.1	

J			ECU Memory (GiB)	
g2.2xlarge	8	26	15	60 SSD
o3.16xlarge	64	188	488	EBS Only
3.8xlarge	32	94	244	EBS Only
3.2xlarge	8	23.5	61	EBS Only
2.16xlarge	64	188	732	EBS Only
2.8xlarge	32	94	488	EBS Only
o2.xlarge	4	12	61	EBS Only

Convolutional Neural Net Overview

Convolution layer

Kernel filters convolve over length and width, computes dot product between filter and input to develop map of activation filters that activate when feature is present

Convolution

Max-pooling

Convolution

Pooling / downsampling

Reduce spatial size by consolidating larger sampling area to smaller area.

Ex: 2x2 max pooling scans each 2x2 and assigns the max value per each pooling stride

Flattening

Convert feature maps, which process the 2D information, into non-spatially related vector for final classification output

Fully

connected

Max-pooling

Convolution

Max-pooling

Flatten

Tuning our CNN's parameters

Neural Network with 16561502 learnable parameters

Layer information

#	name	size
		55555555
0	input	1x96x96
1	conv1	32x94x94
2	pool1	32x47x47
3	dropout1	32x47x47
4	conv2	64x46x46
5	pool2	64x23x23
6	dropout2	64x23x23
7	conv3	128x22x22
8	pool3	128x11x11
9	dropout3	128x11x11
10	hidden4	1000
11	dropout4	1000
12	hidden5	1000
13	output	30

Epoch max: 3,000

Batch size: 128

Early stopping: 200 epochs

	Start	Stop	Rate
Learning	0.03	0.001	0.03
Momentum	0.90	0.999	0.90

Baseline results

Final Valid Loss 1.3491330549652989

Exploratory Data Analysis

- Majority of training set did not have data for all 30 points
- Filtered images for completeness before training model

Specialist Overview

Sp	ecialist O	AGT ATGA	V				
	Specialist Name	Specialist Number	Time per Epoch	Sample size	Total Seconds	Total Hrs	Best RSME
00	L/R eye centers	0	25 sec	6,839	75,000	21	1.95
	Nose tip	1	25 sec	6,849	75,000	21	2.75
	R-mid-L mouth	2	7 sec	2,060	21,000	6	2.10
	Mouth center bottom	3	25 sec	6,816	75,000	21	2.50
	Eye Corner	4	7 sec	2,047	21,000	6	1.85
	L/R eyebrows	5	8 sec	1,990	24,000	7	2.00
		Total	97 sec	7, 049	291,000	81	2.04

Building the specialist models

- Pickle update
 - Each specialist model targeted specific points
 - pickle files for each model
- Debugging datashape for NN code
 - Both the type and shape of input data to model had to be standardized
- Writing a new load function
 - Minor tweaks required for loading data into training set, including reshaping image pixel data
- Trouble shooting specialist model
 - visual correction
 - kaggle update
 - changing the number of inputs/outputs

Data Augmentation Techniques: Part I

Fingerprint motif (Contrast)

Inverse Blur

Data Augmentation Techniques: Part II

Adaptive Filter (9x9)

Adaptive Filter (3x3)

Performance of Augmentation

epoch

Final Result

Pre Data Augmentation

Mean Validation Loss: 1.92

Post Data Augmentation

Mean Validation Loss: 2.04

Final Result

Model o

Model 0: Averaging -- Predict same key points for every image

Model o

MSE Train: 0.004052768 MSE Dev: 0.0044381749

Worst 4 Labels :

mouth_center_top_lip_y 0.0094488077 mouth_center_bottom_lip_y 0.0090680355 nose_tip_y 0.0089065293 mouth_left_corner_y 0.0076697934

Best 4 Labels :

right_eye_inner_corner_x 0.0012303042 right_eye_inner_corner_y 0.001285556 left_eye_inner_corner_x 0.0013126049 left_eye_center_x 0.0013908964

Best 4 Images

Model 1: Neural Net Input Nodes: 96 by 96 Output Nodes: 30 Max Epochs: 1000 Hidden Layer 1 Nodes: 100

MSE Train: 0.0022756304

MSE Dev: 0.0019805911-Leaked

Worst 4 Labels :

mouth_center_bottom_lip_y 0.005132813 nose_tip_y 0.0041158358 mouth_right_corner_x 0.0034587171 nose_tip_x 0.0033688443

Best 4 Labels :

left_eye_inner_corner_y 0.00074552454 right_eye_inner_corner_y 0.00078256853 left_eye_center_y 0.00087295735 right_eye_inner_corner_x 0.00091137283

Best 4 Images

Model 2: Convolutional Neural Net

Input Nodes: 96 by 96 Output Nodes: 30

Max Epochs: 1000

Convolutional Filters: (32, 64,128) **Filter size**: (3 by 3, 2 by 2, 2 by 2)

Pool size: 2 by 2

Hidden Layer 1 Nodes: 500

32 Convolution Filters 3 by 3

64 Convolution Filters 2 by 2

128 Convolution Filters 2 by 2

Model 2: Convolutional Neural Net

Input Nodes: 96 by 96 Output Nodes: 30

Max Epochs: 1000

Convolutional Filters : (32, 64,128) Filter size : (3 by 3, 2 by 2, 2 by 2)

Pool size: 2 by 2

Hidden Layer 1 Nodes: 500

Applying 32 convolution filters (5by5) on Image[3]

MSE Train: 0.00081224559

MSE Dev: 0.0007239112-Leaked

Worst 4 Labels :

mouth_center_bottom_lip_y 0.0016280584 left_eyebrow_outer_end_y 0.0012390522 right_eyebrow_outer_end_y 0.0012163228 nose_tip_y 0.0011951106

Best 4 Labels :

right_eye_inner_corner_y 0.00032786198 left_eye_inner_corner_y 0.00034015084 left_eye_center_y 0.00037150242 left_eye_inner_corner_x 0.00038773104

Worst 4 Images

Best 4 Images

Model 3: Convolutional Neural Net

Input Nodes: 96 by 96 Output Nodes: 30

Max Epochs: 10000

Convolutional Filters: (32, 64,128) **Filter size**: (3 by 3, 2 by 2, 2 by 2)

Pool size: 2 by 2

Hidden Layer 1 Nodes : 1000 Hidden Layer 2 Nodes : 1000 Dropout: (0.1,0.2,0.3,0.5) update_learning rate update_moment

flip half of images per batch of 128 images

32 Convolution Filters 3 by 3

4 Convolution Filters 2 by 2

28 Convolution Filters 2 by 2

Model 3: Convolutional Neural Net

Input Nodes: 96 by 96 Output Nodes: 30 Max Epochs: 10000 **Convolutional Filters**: (32, 64,128) **Filter size**: (3 by 3, 2 by 2, 2 by 2)

Pool size: 2 by 2

Hidden Layer 1 Nodes: 1000 Hidden Layer 2 Nodes: 1000 Dropout: (0.1,0.2,0.3,0.5) update_learning rate update_moment

flip half of images per batch of 128 images

Applying 32 convolution filters (5by5) on Image[3]

MSE Train: 0.00085637317 MSE Dev: 0.00098517188

Worst 4 Labels :

mouth_center_bottom_lip_y 0.005132813 nose_tip_y 0.0041158358 mouth_right_corner_x 0.0034587171 nose_tip_x 0.0033688443

Best 4 Labels :

left_eye_inner_corner_y 0.00074552454 right_eye_inner_corner_y 0.00078256853 left_eye_center_y 0.00087295735 right_eye_inner_corner_x 0.00091137283

Best 4 Images

Model 4: Convolutional Neural Net * 6

Data: ~7000

Input Nodes: 96 by 96 Output Nodes: 30 Max Epochs: 10000

Eye Centers Specialist

Eye Corners Specialist

Eyebrows Specialist

Convolutional Filters: (32, 64, 128) Filter size: (3 by 3, 2 by 2, 2 by 2)

Pool size: 2 by 2

Hidden Layer 1 Nodes: 1000 Hidden Layer 2 Nodes: 1000 **Dropout**: (0.1,0.2,0.3,0.5) update_learning rate update_moment flip half of images per batch of 128 images

Mouth Corners Specialist

MSE Train: 0.00055848644 MSE Dev: 0.00084981503

Worst 4 Labels :

nose_tip_y 0.0029636011 left_eyebrow_outer_end_y 0.0020160379 mouth_center_bottom_lip_y 0.0019226527 right_eyebrow_outer_end_y 0.0015255155

Best 4 Labels :

left_eye_inner_corner_y 0.00026280512 right_eye_inner_corner_y 0.00026981242 left_eye_center_y 0.00028459064 right_eye_inner_corner_x 0.00035192835

Worst 4 Images

Best 4 Images

Model 5: Convolutional Neural Net * 6

Data: ~28000

Input Nodes: 96 by 96 Output Nodes: 30 Max Epochs: 10000

Convolutional Filters: (32, 64, 128) Filter size: (3 by 3, 2 by 2, 2 by 2)

Pool size: 2 by 2

Hidden Layer 1 Nodes: 1000 Hidden Layer 2 Nodes: 1000 **Dropout**: (0.1,0.2,0.3,0.5) update_learning rate update_moment

flip half of images per batch of 128 images

Eye Centers Specialist

Eyebrows Specialist

Mouth Corners Specialist

MSE Train: 0.0010119774 MSE Dev: 0.0010905139

Worst 4 Labels :

nose_tip_y 0.0029636011 left_eyebrow_outer_end_y 0.0020455536 mouth_center_bottom_lip_y 0.0019226527 right_eyebrow_outer_end_y 0.0017795484

Best 4 Labels :

right_eye_center_y
0.00033021756
left_eye_center_y
0.00047810798
left_eye_center_x
0.0005514645
right_eye_inner_corner_y
0.00058127748

Best 4 Images

Future Refinement

Lessons Learned

- How to split work on local machine vs AWS for cost savings
- CNN architecture
- Save parameters on each model built to hedge against AWS crashes
- Consider run time and efficiently applying transformations for all data augmentations
- The importance of a balanced train|dev split that is representative of the data

Next Steps

- Try Tensorflow|Keras implementation instead of lasagne to increase speed (?)
- Remove fingerprint Motif data transformation
- Align tilted images using linear techniques
- Build an additional model for the cases that have 5 facial features labeled instead of specialist models for each of 6 facial features
- Increase sample size on development dataset for evaluation of data augmentations
- Test accuracy improvements for handling outliers

Questions?