BOZ780 Assignment 1

$\begin{array}{c} \mathrm{DS~de~Gouveia} \\ 15003079 \end{array}$

September 12, 2020

Contents

1 Question 1							
2 Q	uestion						
2.	1 Quest	ion 2 (a) - General formulation $\dots \dots \dots \dots \dots \dots \dots$					
	2.1.1	Sets					
	2.1.2	Parameters					
	2.1.3	Variables					
	2.1.4	Objectives					
	2.1.5	Constraints					
2.	2 Quest	ion 2 (b) - Basic goal programming					
	2.2.1	Sets					
	2.2.2	Parameters					
	2.2.3	Variables					
	2.2.4	Objectives					
	2.2.5	Constraints					
	2.2.6	Solution					
2.	3 Quest	ion 2 (c) - Pre-emptive goal programming					
	2.3.1	Sets					
	2.3.2	Parameters					
	2.3.3	Variables					
	2.3.4	Objectives					
	2.3.5	Constraints					
	2.3.6	Solution					
2.	4 Quest	ion 2 (d) - Weighted sum goal programming $\ldots \ldots \ldots \ldots$					
	2.4.1	Sets					
	2.4.2	Parameters					
	2.4.3	Variables					
	2.4.4	Objectives					
	2.4.5	Constraints					
	2.4.6	Solution					
2.	5 Quest	ion 2 (e) - Basic goal programming efficiency adjustment					
	2.5.1	Sets					
	2.5.2	Parameters					
	2.5.3	Variables					
	2.5.4	Objectives					
	255	Constraints					

2.5.6	Solution			•																																7	7
-------	----------	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

Question 1

Question 2

Question 2 (a) - General formulation

Sets

set of facility types $I \in (1, ..., 4)$ as (Golf, Swimming, Gymnasium, Tennis) set of sites $J \in (1, \ldots, 6)$

Parameters

user days for facility i on site j d_{ij} $i \in I, j \in J$ available land on site j in ft^2 construction cost for facility i in $i \in I$ c_i required land for facility i in ft^2 $i \in I$ r_i

Variables

$$x_{ij}$$

$$\begin{cases} 1 & \text{facility } i \text{ is built on site } j \\ 0 & \text{if else} \end{cases}$$
 $i \in I, j \in J$

Objectives

$$\min \quad \sum_{i \in I} \sum_{j \in J} x_{ij} c_i \qquad (construction cost) \tag{1}$$

$$\min \quad \sum_{i \in I} \sum_{j \in J} x_{ij} a_j - x_{ij} r_i \qquad \text{(unused land cost)}$$
 (2)

min
$$\sum_{i \in I} \sum_{j \in J} x_{ij} a_j - x_{ij} r_i$$
 (unused land cost) (2)
max $\sum_{i \in I} \sum_{j \in J} x_{ij} u_{ij}$ (user days)

Constraints

$$\sum_{i \in I} x_{ij} r_i \le a_j \qquad \forall j \in J \qquad \text{(land capacity)} \qquad (4)$$

$$x_{i1} + x_{i6} = 0$$
 $\forall i \in (2, 3, 4)$ (no facilities on site 1 and 6) (5)
 $x_{1j} = 0$ $\forall j \in (2, 3, 4, 5)$ (no golf on site 2 to 4) (6)

$$x_{1i} = 0$$
 $\forall j \in (2, 3, 4, 5)$ (no golf on site 2 to 4) (6)

$$x_{11} + x_{16} \le 1$$
 (either site 1 or 6 can build golf) (7)

Question 2 (b) - Basic goal programming

Sets

Kset of objectives $K \in (1, 2, 3)$

set of facility types $I \in (1, ..., 4)$ as (Golf, Swimming, Gymnasium, Tennis)

set of sites $J \in (1, \ldots, 6)$

Parameters

user days for facility i on site j $i \in I, j \in J$

available land on site j in ft^2

construction cost for facility i in $i \in I$ c_i

required land for facility i in ft^2

Variables

$$x_{ij}$$

$$\begin{cases} 1 & \text{facility } i \text{ is built on site } j \\ 0 & \text{if else} \end{cases}$$
 $i \in I, j \in J$

deficiency variable for objective $k \quad k \in K$

Objectives

$$\min \sum_{k \in K} d_k \qquad \text{(construction cost)} \tag{8}$$

Constraints

$$\sum_{i \in I} \sum_{j \in J} x_{ij} (a_j - r_i) - d_1 \le 40 \ 000 \ \text{ft}^2$$
 (P1: unused land cost) (9)

$$\sum_{i \in I} \sum_{j \in J} x_{ij} c_i - d_2 < \$1.2 \text{ million}$$
 (P2: construction cost) (10)

$$\sum_{i \in I} \sum_{j \in J} x_{ij} u_{ij} + d_3 \ge 200 \ 000 \ \text{days}$$
 (P3: user days) (11)

$$\sum_{i \in I} x_{ij} r_i \le a_j \qquad \forall j \in J \tag{12}$$

$$x_{i1} + x_{i6} = 0$$
 $\forall i \in (2, 3, 4)$ (no facilities on site 1 and 6) (13)
 $x_{1j} = 0$ $\forall j \in (2, 3, 4, 5)$ (no golf on site 2 to 4) (14)

$$x_{1j} = 0$$
 $\forall j \in (2, 3, 4, 5)$ (no golf on site 2 to 4)

$$x_{11} + x_{16} \le 1$$
 (either site 1 or 6 can build golf) (15)

Question 2 (c) - Pre-emptive goal programming

Sets

set of objectives $K \in (1, 2, 3)$

set of facility types $I \in (1, ..., 4)$ as (Golf, Swimming, Gymnasium, Tennis)

set of sites $J \in (1, \ldots, 6)$

Parameters

user days for facility i on site j $i \in I, j \in J$

available land on site j in ft^2

construction cost for facility i in \$ $i \in I$ c_i

required land for facility i in ft^2

Variables

$$x_{ij}$$

$$\begin{cases} 1 & \text{facility } i \text{ is built on site } j \\ 0 & \text{if else} \end{cases}$$
 $i \in I, j \in J$

deficiency variable for objective $k \in K$

Objectives

$$\min \quad d_1 \tag{16}$$

$$\min \quad d_2 \qquad \qquad \text{(subject to } d_1) \tag{17}$$

min
$$d_3$$
 (subject to d_1 and d_2) (18)

Constraints

$$d_1 = 0 \qquad \text{(used in } d_2 \text{ and } d_3) \tag{19}$$

$$d_2 = 0 (used in d_3) (20)$$

$$\sum_{i \in I} \sum_{j \in J} x_{ij} (a_j - r_i) - d_1 \le 40 \ 000 \ \text{ft}^2$$
 (P1: unused land cost) (21)

$$\sum_{i \in I} \sum_{j \in I} x_{ij} c_i - d_2 < \$1.2 \text{ million}$$
 (P2: construction cost) (22)

$$\sum_{i \in I} \sum_{j \in J} x_{ij} u_{ij} + d_3 \ge 200 \ 000 \ \text{days}$$
 (P3: user days) (23)

$$\sum_{i \in I} x_{ij} r_i \le a_j \qquad \forall j \in J \tag{24}$$

$$x_{i1} + x_{i6} = 0$$
 $\forall i \in (2, 3, 4)$ (no facilities on site 1 and 6) (25)
 $x_{1j} = 0$ $\forall j \in (2, 3, 4, 5)$ (no golf on site 2 to 4) (26)

$$x_{1j} = 0$$
 $\forall j \in (2, 3, 4, 5)$ (no golf on site 2 to 4)

$$x_{11} + x_{16} \le 1$$
 (either site 1 or 6 can build golf) (27)

Question 2 (d) - Weighted sum goal programming

Sets

Kset of objectives $K \in (1, 2, 3)$

set of facility types $I \in (1, ..., 4)$ as (Golf, Swimming, Gymnasium, Tennis)

set of sites $J \in (1, \ldots, 6)$

Parameters

user days for facility i on site j $i \in I, j \in J$ d_{ij}

available land on site j in ft^2 $j \in J$

construction cost for facility i in \$ $i \in I$ c_i

required land for facility i in ft^2 $i \in I$

Variables

$$x_{ij}$$

$$\begin{cases} 1 & \text{facility } i \text{ is built on site } j \\ 0 & \text{if else} \end{cases}$$
 $i \in I, j \in J$

deficiency variable for objective $k \in K$

Objectives

$$\min \quad 1000d_1 + 10d_2 + d_3 \tag{28}$$

Constraints

$$\sum_{i \in I} \sum_{j \in J} x_{ij} (a_j - r_i) - d_1 \le 40 \ 000 \ \text{ft}^2$$
 (P1: unused land cost) (29)

$$\sum_{i \in I} \sum_{j \in J} x_{ij} c_i - d_2 < \$1.2 \text{ million}$$
 (P2: construction cost) (30)

$$\sum_{i \in I} \sum_{j \in J} x_{ij} u_{ij} + d_3 \ge 200 \ 000 \ \text{days}$$
 (P3: user days) (31)

$$\sum_{i \in I} x_{ij} r_i \le a_j \qquad \forall j \in J$$
 (land capacity) (32)

$$x_{i1} + x_{i6} = 0$$
 $\forall i \in (2, 3, 4)$ (no facilities on site 1 and 6) (33)
 $x_{1j} = 0$ $\forall j \in (2, 3, 4, 5)$ (no golf on site 2 to 4) (34)

$$x_{1i} = 0$$
 $\forall i \in (2, 3, 4, 5)$ (no golf on site 2 to 4)

$$x_{11} + x_{16} \le 1$$
 (either site 1 or 6 can build golf) (35)

Question 2 (e) - Basic goal programming efficiency adjustment

Sets

Kset of objectives $K \in (1, 2, 3)$

set of facility types $I \in (1, ..., 4)$ as (Golf, Swimming, Gymnasium, Tennis)

set of sites $J \in (1, \ldots, 6)$

Parameters

user days for facility i on site j $i \in I, j \in J$

available land on site j in ft^2

construction cost for facility i in \$ $i \in I$ c_i

required land for facility i in ft^2

Variables

$$x_{ij} \quad \begin{cases} 1 & \text{facility i is built on site j} \\ 0 & \text{if else} \end{cases} \quad i \in I, j \in J$$

$$d_k \quad \text{deficiency variable for objective k} \quad k \in K$$

Objectives

A small number 0.001 has been selected as the adjustment factor with positive and negative signs applied for minimisation and maximisation respectively.

$$\min \sum_{k \in K} d_k + 0.001(\sum_{i \in I} \sum_{j \in J} x_{ij} c_i) + 0.001(\sum_{i \in I} \sum_{j \in J} x_{ij} a_j - x_{ij} r_i) - 0.001(\sum_{i \in I} \sum_{j \in J} x_{ij} u_{ij}) \tag{36}$$

Constraints

$$\sum_{i \in I} \sum_{j \in J} x_{ij} (a_j - r_i) - d_1 \le 40 \ 000 \ \text{ft}^2$$
 (P1: unused land cost) (37)

$$\sum_{i \in I} \sum_{j \in J} x_{ij} c_i - d_2 < \$1.2 \text{ million}$$
 (P2: construction cost) (38)

$$\sum_{i \in I} \sum_{j \in J} x_{ij} u_{ij} + d_3 \ge 200 \ 000 \ \text{days}$$
 (P3: user days) (39)

$$\sum_{i \in I} x_{ij} r_i \le a_j \qquad \forall j \in J \tag{40}$$

$$x_{i1} + x_{i6} = 0$$
 $\forall i \in (2, 3, 4)$ (no facilities on site 1 and 6) (41)
 $x_{1j} = 0$ $\forall j \in (2, 3, 4, 5)$ (no golf on site 2 to 4) (42)

$$x_{1j} = 0$$
 $\forall j \in (2, 3, 4, 5)$ (no golf on site 2 to 4) (42)

$$x_{11} + x_{16} \le 1$$
 (either site 1 or 6 can build golf) (43)