PROJECT REPORT

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION

submitted by

PNT2022TMID25102

KAVIARASU K -210519205021

KARUNA P - 210519205020

RAHUL P - 210519205038

TABLE OF CONTENTS

1 INTRODUCTION	1
1.1 PROJECT OVERVIEW	1
1.2 PURPOSE	1
2 LITERATURE SURVEY	2
2.1 EXISTING PROBLEM	2
2.2 REFERENCES	2
2.3 PROBLEM STATEMENT DEFINITION	4
3 IDEATION AND PROPOSED SOLUTION	6
3.1 EMPATHY MAP CANVAS	5
3.2 IDEATION & BRAINSTORMING	6
3.3 PROPOSED SOLUTION	7
3.4 PROBLEM SOLUTION FIT	8
4 REQUIREMENT ANALYSIS	9
4.1 FUNCTIONAL REQUIREMENTS	9
4.2 NON- FUNCTIONAL REQUIREMENTS	10
5 PROJECT DESIGN	11
5.1 DATA FLOW DIAGRAM	11
5.2 SOLUTION & TECHNICAL ARCHITECTURE	13
5.3 COMPOMENTS AND TECHNOLOGIES	14
5 4 LISER STORIES	15

6 PROJECT PLANNING AND SCHEDULING	16
6.1 SPRINT PLANNING AND ESTIMATION	16
6.2 SPRINT DELIVERY SCHEDULE	18
6.3 REPORT FROM JIRA	18
7 CODING & SOLUTIONING	19
7.1 FEATURE 1	19
7.2 FEATURE 2	20
7.3 FEATURE 3	20
8 TESTING	21
8.1 TEST CASES	21
8.2 USER ACCEPTANCE TESTING	23
9 RESULTS	24
9.1 PERFORMANCE METRICS	24
10ADVANTAGES & DISADVANTAGES	26
ADVANTAGES	26
DISADVANTAGES	26
11 SION	CONCLU 27
12 SCOPE	FUTURE 28
APPENDIX	29
SOURCE CODE	29
SCREENSHOTS	39
GITHUB	40

CHAPTER 1 INTRODUCTION

1.1 PROJECT OVERVIEW

Handwritten Digit Recognition is the capacity of a computer to interpret the manually written digits from various sources like messages, bank cheques, papers, pictures, and so forth and in various situations for web-based handwriting recognition on PC tablets, identifying number plates of vehicles, handling bank cheques, digits entered in any forms etc. Machine Learning provides various methods through which human efforts can be reduced in recognizing the manually written digits.

Deep Learning is a machine learning method that trains computers to do what easily falls into place for people: learning through examples. With the utilization of deep learning methods, human attempts can be diminished in perceiving, learning, recognizing and in a lot more regions. Using deep learning, the computer learns to carry out classification works from pictures or contents from any document. Deep Learning models can accomplish state-of-art accuracy, beyond the human level performance. The digit recognition model uses large datasets in order to recognize digits from distinctive sources.

1.2 PURPOSE

The main objective was to actualize a pattern characterization method to perceive the handwritten digits provided in the MINIST data set of images of handwritten digits (0-9). The goal of our work is to create a model that will be able to recognize and classify the handwritten digits from images by using concepts of Convolution Neural Network. Though the goal of our research is to create a model for digit recognition and classification, it can also be extended to letters and an individual's handwriting. With high accuracy rates, the model can solve a lot of real life problems.

The main applications are vehicle license-plate recognition, postal letter-sorting services, Cheque truncation system (CTS) scanning and historical document preservation in archaeology departments, old documents automation in libraries and banks, etc. All these areas deal with large databases and hence demand high recognition accuracy, lesser computational complexity and consistent performance of the recognition system.

CHAPTER 2 LITERATURE SURVEY

2.1 EXISTING PROBLEM

The fundamental problem with handwritten digit recognition is that handwritten digits do not always have the same size, width, orientation, and margins since they vary from person to person. People can struggle to read others' handwriting. The handwritten digits are not always of the same size, width, orientation as they differ from writing of person to person, so the general problem would be while classifying the digits.

Additionally, there would be issues with identifying the numbers because of similarities between numerals like 1 and 7, 5 and 6, 3 and 8, 2 and 5, 2 and 7, etc. Finally, the individuality and variation of each individual's handwriting influence the structure and appearance of the digits.

2.2 REFERENCES

Handwritten Digit Recognition using CNN (2019)

Vijayalaxmi R Rudraswamimath 1, Bhavanishankar K2

Digit Recognition is a noteworthy and important issue. As the manually written digits are not of a similar size, thickness, position and direction, in this manner, various difficulties must be considered to determine the issue of handwritten digit recognition. The uniqueness and assortment in the composition styles of various individuals additionally influence the example and presence of the digits. It is the strategy for perceiving and arranging transcribed digits. It has a wide range of applications, for example, programmed bank checks, postal locations and tax documents and so on. The aim of this project is to implement a classification algorithm to recognize the handwritten digits. The after effects of probably the most broadly utilized Machine Learning Algorithms like SVM, KNN and RFC and with Deep Learning calculation like multilayer CNN utilizing Keras with Theano and Tensorflow. Utilizing these, the accuracy of 98.70% utilizing CNN (Keras + Theano) when contrasted with 97.91% utilizing SVM, 96.67% utilizing KNN, 96.89% utilizing RFC was obtained.

Handwritten Digit Recognition Using Machine And Deep Learning Algorithms (2021)

Pashine, Samay and Dixit, Ritik and Kushwah, Rishika

In this study, they developed three deep and machine learning-based models for handwritten digit recognition using MNIST datasets. In their research, they discovered that CNN produced the most precise outcomes for handwritten digit recognition. This led them to the conclusion that CNN is the most effective 5 solution for all types of prediction issues, including those using picture data. Next, by comparing the execution times of the algorithms, they determined that increasing the number of epochs without changing the configuration of the algorithm is pointless due to the limitation of a certain model, and they discovered that beyond a certain number of epochs, the model begins over-fitting the dataset and provides biased predictions.

An Efficient And Improved Scheme For Handwritten Digit Recognition Based On Convolutional Neural Network (2019)

Ali, Saqib and Shaukat, Zeeshan and Azeem, Muhammad and Sakhawat, Zareen and Mahmood, Tariq and others

This study uses rectified linear units (ReLU) activation and a convolutional neural network (CNN) that incorporates the Deeplearning4j (DL4J) architecture to recognize handwritten digits. The proposed CNN framework has all the necessary parameters for a high level of MNIST digit classification accuracy. The system's training takes into account the time factor as well. The system is also tested by altering the number of CNN layers for additional accuracy verification. It is important to note that the CNN architecture consists of two convolutional layers, the first with 32 filters and a 5x5 window size and the second with 64 filters and a 7x7 window size. In comparison to earlier proposed systems, the experimental findings show that the proposed CNN architecture for the MNIST dataset demonstrates great performance in terms of time and accuracy. As a result, handwritten numbers are detected with a recognition rate of 99.89% and high precision (99.21%) in a short amount of time.

Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN) (2020)

Ahlawat, Savita and Choudhary, Amit and Nayyar, Anand and Singh, Saurabh and Yoon, Byungun

This paper's primary goal was to enhance handwritten digit recognition ability. To avoid difficult pre-processing, expensive feature extraction, and a complex ensemble (classifier combination) method of a standard recognition system, they examined different convolutional neural network variations. Their current work makes suggestions on the function of several hyper-parameters through thorough evaluation utilizing an MNIST dataset. They also confirmed that optimizing hyper-parameters is crucial for enhancing

CNN architecture performance. With the Adam optimizer for the MNIST database, they were able to surpass many previously published results with a recognition rate of 99.89%. Through the trials, it is made 3 abundantly evident how the performance of handwritten digit recognition is affected by the number of convolutional layers in CNN architecture. According to the paper, evolutionary algorithms can be explored for optimizing convolutional filter kernel sizes, CNN learning parameters, and the quantity of layers and learning rates.

A novel method for Handwritten Digit Recognition with Neural Networks(2020) *Malothu Nagu*1, N Vijay Shankar#2, K.Annapurna*

Character recognition plays an important role in the modern world. It can solve more complex problems and makes humans' job easier. An example is handwritten character recognition. This is a system widely used in the world to recognize zip code or postal code for mail sorting. There are different techniques that can be used to recognize handwritten characters. Two techniques researched in this paper are Pattern Recognition and Artificial Neural Network (ANN). Both techniques are defined and different methods for each technique is also discussed. Bayesian Decision theory, Nearest Neighbor rule, and Linear Classification or Discrimination is types of methods for Pattern Recognition. Shape recognition, Chinese Character and Handwritten Digit recognition uses Neural Network to recognize them. Neural Network is used to train and identify written digits. After training and testing, the accuracy rate reached 99%. This accuracy rate is very high.

2.3 PROBLEM STATEMENT DEFINITION

The problem statement is to classify handwritten digits. The goal is to take an image of a handwritten digit and determine what that digit and character is. It is easy for the human to perform a task accurately by practicing it repeatedly and memorizing it for the next time. Human brain can process and analyze images easily. Also, recognize the different elements present in the images.

The handwritten digit recognition is the capability of computer applications to recognize the human handwritten digits. It is a hard task for the machine because handwritten digits are not perfect and can be made with many different shapes and sizes. The handwritten digit recognition system is a way to tackle this problem which uses the image of a digit and recognizes the digit present in the image. Convolutional Neural Network model created using Python library over the MNIST dataset to recognize handwritten digits. Handwriting number recognition is a challenging problem researchers had been research into this area for so long especially in the recent years.

CHAPTER 3

IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

KAVIARASU

Detects the scanned images of handwritten digits

Improve response system Feature extraction from processed image

Using CNN to predict real time hand written valu CNN has hidden layers that detects the digits

Creating and training the model

Image segmentation Plays an important role in modern world

KARUNA

Import libraries and loading the dataset

Preprocessing of dataset

Train the predictive model with the large dataset

the model takes images and classifes them in a certain category Feature extraction from processed image

Classifcation and recognition of digits

accurate and effective makes human job easer in banking system

RAHUL

Using CNN predict real hand written digits

Image Classification and recognition Convert handwritten digit into machine readable formats

Preprocessing the data analyse the image clearly

train with many vareity of handwrittings Applying statistical techniques for preprocessing and recognizing the digits

High accuracy

JAYA KRISHNAN

Importing large dataset

Evaluating the model

Acquisition of image

Can be used in many applications like postal mail sorting

the digits can be classified from words,letters and characters

use different algorithms the digits can be identified from the given text

ldentifes digits automatically

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	The problem statement aims at developing a novel handwritten recognition system using ML. The handwritten digit recognition system is a way to tackle the problem which uses the image of a digit and recognizes the digit present in the image.
2.	Idea / Solution description	Developing an AI predictive model to predict the handwritten digits and to construct a neural network with hidden layers and train to detect the digits.
3.	Novelty / Uniqueness	The system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style.
4.	Social Impact / Customer Satisfaction	Handwritten digits can be recognized easily without any strenuous efforts. This reduces time and improves productivity for people.
5.	Business Model (Revenue Model)	It is used in the detection of vehicle numbers, banks for reading cheques, post offices for arranging letters, and many other tasks.
6.	Scalability of the Solution	To attain higher performances in the domain of character recognition and pattern recognition, due to its excellent feature extraction and working as best classifier characteristics. There is no limit in the number of digits that can be recognized.

3.4 PROBLEM SOLUTION FIT

CHAPTER 4

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail Registration through LinkedIn
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	Upload image	Image upload via files Image upload via folders Image upload via drive Image upload via web Image upload via scan/camera
FR-4	Spelling support	Identifies handwriting of different styles and fonts Spelling check
FR-5	Translation	Handwritten digits from the image are extracted. Conversion of handwritten digits into machine readable form
FR-6	Log out	Log out / sign out.

4.2 NON-FUNCTIONAL REQUIREMENTS

FR	Non-Functional Requirement	Description
No.		
NFR-1	Usability	The proposed system gives good results for images that contain handwritten text written in different styles, different size and alignment with varying background
NFR-2	Security	Only authorized people can access the system data and modify the database.
NFR-3	Reliability	The Database is frequently updated with handwriting of different styles and size and will rollback when any update fails.
NFR-4	Performance	The proposed system is advantageous as it uses fewer features to train the neural network, which results in faster convergence.
NFR-5	Availability	The system functionality and services are available for use with all operations.
NFR-6	Scalability	The website traffic limit must be scalable enough to support 2 lakhs users at a time

CHAPTER 5 PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

DFD Level-0

The DFD Level-0 consists of two external entities, the UI and the Output, along with a process, representing the CNN for Digit Recognition .Output is obtained after processing.

DFD Level-1

The DFD Level-1 consists of 2 external entities, the GUI and the Output, along with five process blocks and 2 data stores MNIST data and the Input image store, representing the internal workings of the CNN for Digit Recognition System. Process block imports MNIST data from library. Process block imports the image and process it and sends it to block where regression model is built. It sends objects with probabilities to CNN where weights are updated and multiple layers are built. Block trains and evaluates the model to generate output.

DFD Level-2

The DFD Level-2 for import data(figure 4) consists of two external data and one entity UI along with three process blocks, representing the three functionalities of the CNN for Digit Recognition System. It imports data from MNIST data store and stores on the system.

5.2 SOLUTION & TECHNICAL ARCHITECTURE

MNIST DATASET PROCESSING WITH PYTHON

5.3 COMPONENTS & TECHNOLOGIES:

S.No	Component	Description	Technology	
1.	User Interface	How user interacts with application e.g., Mobile Application	HTML, CSS, JavaScript	
2.	Application Logic-1	Logic for a process in the application	Java / Python	
3.	Application Logic-2	Logic for a process in the application	IBM Watson STT service	
4.	Application Logic-3	Logic for a process in the application	IBM Watson Assistant	
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.	
6.	Cloud Database	Database Service on AI in cloud	IBM DB2	
7.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or local file system	
8.	External API-1	Purpose of External API used in the application	IBM Weather API, etc.	
9.	Internet of Things Model	Purpose of AI Model is for integrating the sensors with a user interface	IBM AI Platform	
10.	Machine Learning Model	Purpose of Machine Learning Model	Digit Recognition Model	

5.4 USER STORIES

User Type	Functional Requiremen t	User Story Number	User Story / Task	Acceptance Criteria	Priority	Release
	Building the application	USN-1	As a user, I should beable to access the application from anywhere and use onany devices	User can access the application using thebrowser on any device	High	Sprint-4
Customer	Uploading Image	USN-2	As a user, I should beable to upload images to predict the digits	User can upload images	High	Sprint-2
	Viewing the Results	USN-3	As a user, I should beable to view the results	The result of the prediction is displayed	High	Sprint-3
	Viewing Other Prediction	USN-4	As a user, I should beable to see other close predictions	The accuracy of othervalues must be displayed	Medium	Sprint-1
	Usage Instruction	USN-5	As a user, I should have a usage instruction to knowhow to use the application	The usage instruction is displayed on the homepage	Medium	Sprint-3

CHAPTER 6

PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	As a user, I can collect the dataset from various resources with different handwritings.	10	Low	Kaviarasu karuna
Sprint-1	Data Pre- processing	USN-2	As a user, I can load the dataset, handling the missing data, scaling and split data into train and test.	10	Medium	Kaviarasu Karuna Rahul
Sprint-2	Model Building	USN-3	As a user, I will get an application with ML model which provides high accuracy of recognized handwritten digit.	5	High	Kaviarasu Karuna Rahul
Sprint-2	Add CNN layers	USN-4	Creating the model and adding the input, hidden, and output layers to it.	5	High	Kaviarasu Karuna Rahul
Sprint-2	Compiling the model	USN-5	With both the training data defined and model defined, it's time to configure the learning process.	2	Medium	Kaviarasu Karuna Rahul
Sprint-2	Train & test the model	USN-6	As a user, let us train our model with our image dataset.	6	Medium	Kaviarasu Karuna Rahul

Sprint-2	Save the	USN-7	As a user, the model is saved &	2	Low	Kaviarasu
	model		integrated with an android			Karuna
			application or web application			Rahul
			in order to predict something.			
			_			

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-3	Building UI Application	USN-8	As a user, I will upload the handwritten digit image to the application by clicking a upload button.	5	High	Kaviarasu Karuna Rahul
Sprint-3		USN-9	As a user, I can know the details of the fundamental usage of the application.	5	Low	Karuna
Sprint-3		USN-10	As a user, I can see the predicted / recognized digits in the application.	5	Medium	Kaviarasu Karuna
Sprint-4	Train the model on IBM	USN-11	As a user, I train the model on IBM and integrate flask/Django with scoring end point.	10	High	Kaviarasu Karuna Rahul
Sprint-4	Cloud Deployment	USN-12	As a user, I can access the web application and make the use of the product from anywhere.	10	High	Kaviarasu Karuna

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on	Sprint Release Date (Actual)
					Planned End Date)	
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 REPORT FROM JIRA

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Average Velocity =
$$20 / 6 = 3.33$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile <u>software development</u> methodologies such as <u>Scrum</u>. However, burn down charts can be applied to any project containing measurable progress over time.

CHAPTER 7 CODING & SOLUTION

7.1 FEATURE 1 – FLASK FILE UPLOADING

Handling file upload in Flask is very easy. It needs an HTML form with its enctype attribute set to 'multipart/form-data', posting the file to a URL. The URL handler fetches file from request.files[] object and saves it to the upload folder.

```
from werkzeug.utils import secure filename
UPLOAD FOLDER = 'C:/Users/Dell/PycharmProjects/A-novel-method-for-digit-recognition-
def index():
```

7.2 FEATURE 2 – UPLOAD IMAGE WITH PREVIEW

A preview refers to a feature that lets you glimpse or view something in part or whole without it being opened. A picture preview would show a small version of the picture and give you a good idea what each picture is without opening each picture it is a useful feature created using JavaScript.

```
function preview() {
    frame.src=URL.createObjectURL(event.target.files[0]);
}
```

7.3 FEATURE 3 – CLEAR IMAGE

This feature can be used to clear the image if we uploaded a wrong image or if we need to change the image. The clear button clears both the image value and the preview of the image in script tag.

CHAPTER 8

TESTING

8.1 TEST CASES

Test caseID	Feature Type	Component	Test Scenario	Expected Result	Actual Result	Status
HP_TC_001	UI	Home Page	Verify UI elements in the Home Page	The Home page must be displayed properly	Working as expected	FAIL
HP_TC_002	UI	Home Page	Check if the UI elements are displayed properly in different screen sizes	The Home page must be displayed properly in all sizes	The UI is not displayed properly in screen size 2560 x 1801 and 768 x 630	FAIL
HP_TC_003	Functional	Home Page	Check if user can upload their file	The input image should be uploaded to the application successfully	Working as expected	PASS
HP_TC_004	Functional	Home Page	Check if user cannot upload unsupported files	The application should not allow user to select a non image file	User is able to upload any file	FAIL
HP_TC_005	Functional	Home Page	Check if the page redirects to the result page once the input is given	The page should redirect to the results page	Working as expected	PASS

BE_TC_001	Functional	Backend	Check if all theroutes are working properly	All the routes should properly work	Working as expected	PASS
M_TC_001	Functional	Model	Check if the model can handle various image sizes	The model should rescale the image and predict the results	Working as expected	PASS
M_TC_002	Functional	Model	Check if the model predicts the digit	The model should predict the number	Working as expected	PASS
M_TC_003	Functional	Model	Check if the model can handle complex input image	The model should predict the number in the complex image	The model fails to identify the digit since the model is not built to handle such data	FAIL
RP_TC_001	UI	Result Page	Verify UI elements in the Result Page	The Result page must be displayed properly	Working as expected	PASS
RP_TC_002	UI	Result Page	Check if the input image is displayed properly	The input image should be displayed properly	The size of the input image exceeds the display container	FAIL
RP_TC_003	UI	Result Page	Check if the result is displayed properly	The result should be displayed properly	Working as expected	PASS
RP_TC_004	UI	Result Page	Check if the other predictions are displayed properly	The other predictions should be displayed properly	Working as expected	PASS

8.2 USER ACCEPTANCE TESTING

8.2.1DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not Reproduced	0	0	0	1	1
Skipped	0	0	0	1	1
Won't Fix	1	0	1	0	2
Total	6	1	4	3	14

8.2.2TEST CASE ANALYSIS

Section	Total Cases	Not Teste d	Fail	Pass
Client Application	10	0	3	7
Security	2	0	1	1
Performance	3	0	1	2
Exception Reporting	2	0	0	2

CHAPTER 9 RESULTS

9.1 PERFORMANCE METRICS

CHAPTER 10

ADVANTAGES & DISADVANTAGES

ADVANTAGES

- Reduces manual work
- More accurate than average human
- Capable of handling a lot of data
- Can be used anywhere from any device
- Neural Network is used to train and identify written digits for greater efficiency.
- The accuracy rate is very high.
- Speed of data entry
- It is much easier to dictate the machine than to write
- Easier data retrieval

DISADVANTAGES

- Cannot handle complex data
- All the data must be in digital format
- Requires a high performance server for faster predictions
- Prone to occasional errors
- There is a wide range of handwriting good and bad.
- It is tricky for programmers to provide enough examples of how every character might look.
- Customers must try with clear image and neat handwriting to get accuracy in digits.
- Unclear image will not give accurate results.

CHAPTER 11 CONCLUSION

Convolutional Neural Network (CNN) adds its significant improvement to the Manuscript Document Recognition System. This paper tells us the effectiveness of CNN-based classification of data and pre-processing methods. Our model clearly sees handwriting and achieves outgoing predictions of up to 82.16% and accurate predictions of up to 69.16%. However the model can be continuously developed using multiple training samples. This will help the model to learn as well as the generalize better. There are many images in the training set that are completely invisible to the human eye.

This project demonstrated a web application that uses machine learning to recognize handwritten numbers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposed project is scalable and can easily handle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely useful in real-world scenarios such as recognizing numberplates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on.

Through extensive evaluation using a MNIST dataset, the present work suggests the role of various hyper-parameters. Fine tuning of hyper-parameters is essential in improving the performance of CNN architecture. We achieved a recognition rate of 99.89% with the Adam optimizer for the MNIST database, which is better than all previously reported results. The effect of increasing the number of convolutional layers in CNN architecture on the performance of handwritten digit recognition is clearly presented through the experiments.

CHAPTER 12 FUTURE SCOPE

This project can be enhanced with a great field of machine learning and artificial intelligence. The world can think of a software which can recognize the text from a picture and can show it to the others, for example a shop name detector. Or this project can be extended to a greater concept of all the character sets in the world. This project has not gone for the total English alphabet because there will be more and many more training sets and testing values that the neural network model will not be enough to detect. Think of a AI modeled car sensor going with a direction modeling in the roadside, user shall give only the destination.

All of these enhancement is an application of the texture analysis where advanced image processing, Neural network model for training and advanced AI concepts will come. These applications can be modeled further .As this project is fully done by free and available resources and packages this can be also a limitation of the project. The fund is very important because all machine learning libraries and advanced packages are not available for free. Unless of those the most of the visualizing platforms like on which developers are doing some works like Watson Studio or Aws. These all are mainly paid platforms where a lot of ML projects are going on.

This project is far from complete and there is a lot of room for improvement.

Some of the improvements that can be made to this project are as follows:

- Add support to detect from digits multiple images and save the results
- Add support to detect multiple digits
- Improve model to detect digits from complex images
- Add support to different languages to help users from all over the world

This project has endless potential and can always be enhanced to become better. Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

APPENDIX

SOURCE CODE

MODEL CREATION:


```
In [49]: x_train[0]
Out[49]: array([[ 0,
                   0,
                       0,
                           0,
                               0,
                           0,
                               0,
                                   0,
                                       0,
                                               0,
               0,
               0,
                   0],
                                      0,
                                  0,
                                                  0,
            [ 0,
                       0,
                           0,
                              0,
                                          0,
                                              0,
                                                      0,
                                                          0,
                                                              0,
               0,
                   0,
                       0,
                           0,
                               0,
                                   0,
                                       0,
                                          0,
                                              0,
                                                   0,
                                                          0,
                   0],
             [ 0,
                       0,
                               0,
                                  0,
                   0,
                           0,
                                       0,
                                          0,
                                              0,
                                                   0,
                                                      0,
                                                          0,
                                                              0,
                   0,
                       0,
                           0,
                               0,
                                   0,
                                       0,
                                          0,
                                              0,
                                                   0,
                                                      0,
                                                          0,
                                                              0,
                   0],
                   0,
                           0,
                               0,
                                   0,
                                       0,
                                          0,
                                               0,
                                                   0,
                   0,
                       0,
                           0,
                               0,
                                   0,
                                       0,
                                          0,
                                               0,
                                                   0,
                                                          0,
                                                              0,
                  0],
                      0, 0,
                              0,
                                  0,
                                       θ,
                                          0,
                                              0,
                                                  0,
                      0,
                          0,
                              0,
                                  0,
                                       0,
                                          0,
                                              0,
                                                  0,
                  0],
                  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
              18, 18, 18, 126, 136, 175, 26, 166, 255, 247, 127, 0, 0,
               0, 0],
             [ 0, 0, 0, 0, 0, 0, 0, 0, 30, 36, 94, 154, 170,
             253, 253, 253, 253, 253, 225, 172, 253, 242, 195, 64, 0, 0,
            0, 0],
```


Reshaping Dataset

```
In [52]: #Reshaping to format which CNN expects (batch, height, width, channels)
x_train=x_train.reshape (60000, 28, 28, 1).astype('float32')
x_test=x_test.reshape (10000, 28, 28, 1).astype ('float32')
```

Applying One Hot Encoding

Add CNN Layers

```
In [55]: #create model
model=Sequential ()

In [56]: #adding modeL Layer
model.add(Conv2D(64, (3, 3), input shape=(28, 28, 1), activation='relu'))

In [57]: #flatten the dimension of the image
model.add(Flatten())

In [58]: #output layer with 10 neurons
model.add(Dense(number_of_classes,activation = 'softmax'))
```

Compiling the model

```
In [59]: #Compile model
model.compile(loss= 'categorical_crossentropy', optimizer="Adam", metrics=['accuracy'])
In [62]: x_train = np.asarray(x_train)
y_train = np.asarray(y_train)
```

Train the model

```
In [63]: #fit the model
  model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=5, batch_size=32)
  Epoch 1/5
  0.9730
  Epoch 2/5
  0.9780
  Epoch 3/5
  0.9755
  Epoch 4/5
  0.9791
  Epoch 5/5
  Out[63]: <keras.callbacks.History at 0x222d90d9db0>
```

Observing the metrics

```
In [64]: # Final evaluation of the model
metrics = model.evaluate(x_test, y_test, verbose=0)
print("Metrics (Test loss &Test Accuracy) : ")
print(metrics)

Metrics (Test loss &Test Accuracy) :
[0.1144733875989914, 0.97079998254776]
```

Test The Model

Save The model

```
In [70]: # Save the model
model.save('models/mnistCNN.h5')
```

CNNPREDICTION:

```
In [2]: from tensorflow.keras.models import load_model
        from keras.preprocessing import image
        from PIL import Image
        import numpy as np
In [3]: model = load_model("mnistCNN.h5")
In [4]: img = Image.open("C:/Users/Dell/PycharmProjects/A-novel-method-for-digit-recognition-system/data/1.png").convert("L") # convert
        img = img.resize( (28,28) ) # resizing of input image
In [5]: img
Out[5]:
In [6]: im2arr = np.array(img) #converting to image
        im2arr = im2arr.reshape(1, 28, 28, 1) #reshaping according to our requirement
In [7]: pred = model.predict(im2arr)
        print(pred)
        1/1 [======] - 0s 182ms/step
        [[2.5381066e-09 4.9758598e-01 6.5878254e-07 3.7901787e-06 5.3061078e-05
          2.5423644e-06 2.0804979e-10 9.8954014e-02 1.2672696e-03 4.0213263e-01]]
```

TRAIN THE MODEL ON IBM:

HOME PAGE(HTML) – index.html

```
rel="stylesheet">
rel="stylesheet">
 ink
href="https://fonts.googleapis.com/css?family=Calistoga|Josefin+Sans:400,700|Pacifico&displa
  <link rel="stylesheet"</pre>
crossorigin="anonymous"></script>
  <script
integrity="sha384-U02eT0CpHqdSJQ6hJty5KVphtPhzWj9W01clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
 <script
integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy60rQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
</head>
<script>
  function preview() {
    $ (document) . ready (function() {
```

</script>

```
<div id="team id">TEAM ID: PNT2022TMID27424</div>
applications.
                                                 Web application is created where the user can
 </section>
       <div class="leftside">
       <input id="image" type="file" name="image" accept="image/png, image/jpeg"</pre>
           <button type="submit" class="btn btn-dark" id="predict button">Predict</button>
          </div>
       </form>
 </section>
```

</html>

HOME PAGE(CSS) – style.css

```
#confidence{
.welcome{
#title{
```

```
webkit-appearance: none;
#frame{
p {
  .leftside{
```

PREDICT PAGE (HTML) – predict.html

```
<!DOCTYPE html>
    background-image: url('static/images/index6.jpg');
    background-repeat: no-repeat;
    width:400px;
    left:50%;
   </div>
</body>
```

FLASK APP - app.py

```
from PIL import Image
def index():
       num = np.argmax(pred, axis=1) # printing our Labels
```

GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-50898-1660928761

VIDEO LINK: