Chapter 8

Steady-State Errors

Outline

- 1 Definition
- 2 Test input
 - 2.1 Step function
 - 2.2 Ramp function
 - 2.3 Parabola function
- 3 Steady-state errors
- 4 Steady-state errors for disturbances

Definition and test input

$$\theta(\infty) = \lim_{t \to \infty} \theta(t)$$

$$e(t) = L^{-1}[E(S)]$$

Waveform	Name	Physical interpretation	Time function	Laplace transform
r(t)	Step	Constant position	1	$\frac{1}{s}$
r(t) t	Ramp	Constant velocity	t	$\frac{1}{s^2}$
r(t)	Parabola	Constant acceleration	$\frac{1}{2}t^2$	$\frac{1}{s^3}$

Steady-state error

Step input

Steady-state error

Ramp input

Closed-loop control system error

- (a) general representation;
- (b) representation for unity feedback systems

Steady-State Error for Unity Feedback Systems

$$E(S) = \frac{R(S)}{1 + G(S)}$$

$$\theta(\infty) = \lim_{t \to \infty} \theta(t) = \lim_{s \to 0} SE(s)$$

Step input

$$\theta(\infty) = \theta_{step}(\infty) = \lim_{S \to 0} \frac{S(1/S)}{1 + G(S)} = \frac{1}{1 + \lim_{S \to 0} G(S)}$$

$$\theta(\infty) \to 0$$
 When $\lim_{S \to 0} G(S) = \infty$

Ramp input

$$\mathcal{C}(\infty) = \mathcal{C}_{ramp}(\infty) = \lim_{S \to 0} \frac{S(1/S^2)}{1 + G(S)} = \frac{1}{1 + \lim_{S \to 0} SG(S)}$$

$$\theta(\infty) \to 0$$
 When $\lim_{S \to 0} SG(S) = \infty$

Parabolic input

$$\theta(\infty) = \theta_{\textit{para}}(\infty) = \lim_{S \to 0} \frac{S(1/S^3)}{1 + G(S)} = \frac{1}{1 + \lim_{S \to 0} S^2 G(S)}$$

$$\theta(\infty) \to 0$$
 When $\lim_{S \to 0} S^2 G(S) = \infty$

Static Error Constants and System type

Position constant, K

$$K_p = \lim_{S \to 0} G(S)$$

Velocity constant, K

$$K_{V} = \lim_{S \to 0} SG(S)$$

Acceleration constant, K

$$K_a = \lim_{S \to 0} S^2 G(S)$$

Feedback control system for defining system type

		Type 0		Type 1		Type 2	
Input	Steady-state error formula	Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, tu(t)	$\frac{1}{K_{\nu}}$	$K_v = 0$	00	$K_{v} =$ Constant	$\frac{1}{K_{\nu}}$	$K_v = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	œ	$K_a = 0$	∞	$K_a =$ Constant	$\frac{1}{K_a}$

Steady-State Error Specifications

If a control system has the specification $K_v=1000$, we can draw a conclusions:

- 1. The system is stable.
- 2. The system is of type 1.
- 3. A ramp input is the test signal.
- 4. The steady-state error between the input ramp and the output ramp is 1/K_v per unit of input slope.

Steady-state Error for Disturbances

Feedback control system showing disturbance

R(s) = 0

Steady-state Error for Non-unity Feedback Systems

Forming an equivalent unity feedback system from a general nonunity feedback system

$$G(s) = G_{1}(s)G_{2}(s)$$

$$H(s) = H_{1}(s)/G_{1}(s)$$

Nonunity feedback control system with disturbance

Sensitivity

$$S_{F:P} = \lim_{\Delta P \to 0} \frac{Fractional\ change\ in\ the\ function\ ,\ F}{Fractional\ change\ in\ the\ parameter\ ,\ P}$$

$$= \lim_{\Delta P \to 0} \frac{\Delta F/F}{\Delta P/P} = \lim_{\Delta P \to 0} \frac{P}{F} \frac{\Delta F}{\Delta P}$$

$$S_{F:P} = \frac{P}{F} \frac{\delta F}{\delta P}$$

Example (Nise) Calculate the sensitivity of the closed-loop transfer function to changes in parameter "a"

Steady-state Error for System in State space

$$x = Ax + Bf$$
 $y = Cx$

$$E(S) = R(S) \left[1 - C(SI - A)^{-1} B \right]$$

$$\lim_{S \to 0} SE(S) = \lim_{S \to 0} SR(S) \left[1 - C(SI - A)^{-1} B \right]$$

Example (Nise) Find the steady-state errors for inputs of 5u(t), 5tu(t), and 5t² to the system shown below.

Example (Nise) Find the steady-state errors for inputs of 5u(t), 5tu(t), and 5t² to the system shown below.

Example (Nise) Find the value of K so that there are 10% error in the steady state for the system shown below.

Example (Nise) Find the steady-state error for a unit step input of the system shown below.

