- **23**. Let A be a commutative ring with unity and $a(x) \in A[x]$. Determine if the following statement is true or false. Either prove it or find a counterexample: If every coefficient of a(x) is a zero divisor of A, then a(x) is a zero divisor in A[x].
 - A counterexample is a(x) = 2 + 3x in $\mathbb{Z}_6[x]$. The elements 2 and 3 are both zero divisors, but a(x) is not.
- **24.** Let A be a commutative ring with unity and $a(x) \in A[x]$. Determine if the following statement is true or false, then either prove it or find a counterexample: If $a_0 \neq 0_A$ is not a zero divisor of A, then a(x) is not a zero divisor in A[x].

This is true. Suppose A is a commutative ring with unity and $a(x) \in A[x]$ with $a_0 \neq 0_A$ and

27. Suppose A is a commutative ring with unity. Let $S = \{a(x) \in A[x] : a_0 \neq 0_A\}$. Determine if S is an ideal of A[x]. Either prove that it is an ideal or find a counterexample showing it fails to be an ideal.

This is false. Consider the ring $(\mathbb{Z}, +, \cdot)$, and a(x) = 1 + 2x, b(x) = -1 + 3x in $\mathbb{Z}[x]$. Clearly $a(x), b(x) \in S$ but a(x) - b(x) = 0 + 5x which is not in S. Thus S is not an ideal of $\mathbb{Z}[x]$.

47. Let K be a field. Prove: The only units in K[x] are the nonzero constant polynomials.

Suppose K is a field. Assume $a(x) \in K[x]$ and a(x) is a unit. Thus there exists $b(x) \in K[x]$

- with a(x)b(x) = 1(x). Clearly $a(x) \neq 0(x)$ and $b(x) \neq 0(x)$, so let n = deq(a(x))
- and m = deg(b(x)). Now since K is an integral domain deg(a(x)b(x)) = n + m, but if
- - a(x)b(x)=1(x) this would mean that deq(a(x)b(x))=0. The only way this can happen is if

 - n=0=m. Thus a(x) is a nonzero constant polynomial.

- **52.** Let A be a commutative ring with unity. Prove that the function $f:A[x]\to A$ defined by $f(a(x)) = a_0$ is a homomorphism. What is the kernel of f?
 - Let A be a commutative ring with unity and define the function $f:A[x]\to A$ by $f(a(x)) = a_0$. Let $a(x), b(x) \in A[x], c(x) = a(x) + b(x)$ and d(x) = a(x)b(x). We know $f(a(x)) = a_0$ and $f(b(x)) = b_0$, so $f(a(x)) + f(b(x)) = a_0 + b_0$ and $f(a(x))f(b(x)) = a_0b_0$. Now $f(c(x)) = c_0 = a_0 + b_0$ so f(a(x) + b(x)) = f(a(x)) + f(b(x)). Also $f(d(x)) = d_0 = a_0b_0$

and so f(a(x)b(x)) = f(a(x))f(b(x)). Thus f is a homomorphism.

The kernel of f is the set of all polynomials with constant term equal to 0_A .

Problem: Let \mathbb{C} denote the complex numbers,

 ${a + bi : a, \text{ and } b \text{ are real numbers, and } i^2 = -1}.$

Let \mathbb{R} denote the real numbers. Define $T: \mathbb{R}[x] \longrightarrow \mathbb{C}$ by T(f) = f(i).

- 1. Prove that T is a homomorphism.
- 2. Prove that the kernel of T is $\langle x^2 + 1 \rangle$.
- 3. Prove that $\mathbb{R}[x]/\langle x^2+1\rangle$ is isomorphic to \mathbb{C} .

Solutions:

- 1. We know that the evaluation map $h_i: \mathbb{C}[x] \longrightarrow \mathbb{C}$ defined by $h_i(f) = f(i)$ is a homomorphism by theorem 7.35. We ask know that the inclusion map $\iota: \mathbb{R}[x] \longrightarrow \mathbb{C}[x]$ is a homomorphism (this was an exercise last term). Finally, since our function $T = h_i \circ \iota$ is a composition of homomorphisms, it must be a homomorphism also (another exercise).
- 2. We must prove that $f(x) \in \langle x^2 + 1 \rangle$ if and only if f(i) = 0.

Assume $f(x) \in \langle x^2 + 1 \rangle$. Then by definition, $f(x) = g(x)(x^2 + 1)$ for some $g(x) \in \mathbb{R}[x]$. So,

$$f(i) = g(i)(i^2 + 1) = g(i)(-1 + 1) = 0,$$

as desired.

Now assume that f(i) = 0. We need to show that there is some $g(x) \in \mathbb{R}[x]$ such that $f(x) = g(x)(x^2 + 1)$. Use the division algorithm to write f(x) as a multiple of $x^2 + 1$ plus a remainder:

$$f(x) = g(x)(x^{2} + 1) + r(x), \tag{1}$$

where deg(r(x)) < 2 or r(x) = 0(x).

This forces r(x) to be a linear polynomial or a constant polynomial (either degree 0 or $-\infty$). Evaluating equation 1 at i yields

$$0 = f(i) = g(i)(i^2 + 1) + r(i),$$

so that r(i) = 0.

In either case, we can write r(x) = ax + b where $a, b \in \mathbb{R}$, and ai + b = 0.

If $a \neq 0$, then $i = -\frac{b}{a}$ which is absurd since $i \notin \mathbb{R}$. So a = 0.

Now a = 0, so ai + b = 0 forces b = 0, so that r(x) = 0(x), and $f(x) = g(x)(x^2 + 1)$ as desired.

3. Noether's First Isomorphism theorem from last term tells us that a **surjective** homomorphism

$$f:A\longrightarrow B$$

has the property that $A/\ker f$ is isomorphic to B.

It remains then to prove that our homomorphism T is surjective. Let $a + bi \in \mathbb{C}$; we have to find an element $p(x) \in \mathbb{R}[x]$ such that T(p(x)) = a + bi.

Let p(x) = a + bx. Then T(p(x)) = a + bi, so T is surjective. Noether's theorem then proves that

$$\mathbb{R}[x]/\langle x^2 + 1 \rangle \cong \mathbb{C}.$$