WavLM: Large Scale Unsupervised Pre-Training for Various Speech Tasks

Presenter: Yu Wu

2022-02-28

Microsoft Research Asia

New Al Paradigm: (Self-supervised) Pre-trained Models

Limited (or even no) labeled data per task

An effective way to leverage unlabeled data Excellent Results on limited resource tasks

Task-specific Model (Layer)

Pre-trained Model

Focus of Previous Work

Previous Speech
Pre-train Models

Content Tasks:

Speech Recognition, Speech Translation

Goal of WavLM

Can we propose a model for full stack speech processing?

WavLM: Masked Speech Prediction and Denoising

Ablation Study: Algorithm

	Speaker Identification ACC↑	Speaker Verification EER↓	Speaker Diarization DER↓	Phoneme Recognition PER↓	ASR WER↓	Keyword Spotting Acc↑	Query by Example Spoken Term Detection MTWV↑	Intent Classification Acc↑	Slot Filling (Slot type) F1↑	Slot Filling (Slot value) CER↓	Emotion Recognition Acc↑
WavLM- Base	85.49	4.49	4.65	4.86	6.13	96.79	0.087	98.63	89.38	22.86	65.94
-structure change	84.74	4.61	4.72	5.22	6.80	96.79	0.0956	98.31	88.56	24.00	65.60
-denoising	84.39	4.91	6.03	4.85	6.08	96.79	0.0799	98.42	88.69	23.43	65.55

Pre-Training Data

Audio duration of different sets (hours)

Public unlabeled data = Libri-Light (60kh) + VoxPopuli (24kh) + GigaSpeech (10kh)

Ablation Study: Data

	Speaker Identification ACC↑	Speaker Verification EER↓	Speaker Diarization DER↓	Phoneme Recognition PER↓	ASR WER↓	Keyword Spotting Acc↑	Query by Example Spoken Term Detection MTWV↑	Intent Classification Acc↑	Slot Filling (Slot type) F1↑	Slot Filling (Slot value) CER↓	Emotion Recognition Acc↑
WavLM- Base 960h	85.49	4.49	4.65	4.86	6.13	96.79	0.087	98.63	89.38	22.86	65.94
WavLM- Base 60kh	85.54	4.53	4.5	4.49	5.93	96.85	0.071	98.52	89.57	22.8	66.07
WavLM- Base 94kh	89.42	4.11	3.5	3.92	5.6	97.37	0.098	99	90.58	21.2	68.65

- For a base model, only increasing data amount shows limited gains.
- The diversity matters!

SUPERB Evaluation

Fine-tuning for various downstream tasks

Vox1-O Vox-E Vox-H						
ECAPA-TDNN	1.08	1.2	2.127			
WavLM Large	0.383	0.480	0.986			

	DER
EEND-vector clustering	12.49
WavLM Large	10.92

DNSMOS P.808 DNSMOS P.835_SIG DNSMOS P.835_BAK DNSMOS P.835_OVR LSTM 3.050 3.689 3.687 3.110 WavLM Large 3.165 3.747 3.858 3.217

Speaker Verification (EER)

Train: VoxCeleb2 Dev Test: VoxCeleb1 Test

Speaker Diarization (DER)

Train-test: CALLHOME

Speech Enhancement (DNSMOS)

Train: 10-hour LibriSpeech data

Test: DNS Challenge

	0S	OL	OV10	OV20	OV30	OV40
Conformer	4.5	4.4	6.2	8.5	11	12.6
WavLM Large	4.3	4.2	5.0	6.3	8.2	8.8

	Test- Clean	Test- Other	
HuBERT Large	1.9	€	3.3
WavLM Large	1.8	3	3.2

Speech Separation (WER for different overlap ratios)

Train: WSJ
Test: LibriCSS

Speech Recognition (WER)

Train: 960-hour LibriSpeech data

Test: LibriSpeech

Analysis of SSL Transferability: Loss

• Setting:

- LibriSpeech 960 -> VoxCeleb Dev ASV task (Transformer + ECAPA_TDNN)
- Compare Different Loss
 - MSE pre-train is to reconstruct raw fbank feature instead of discrete label

Training from scratch

ASR Transfer SSL

Model	Vox1-O (EER ↓)	Vox1-E (EER ↓)	Vox1-H (EER ↓)
ECAPA-TDNN	1.01	1.24	2.32
ECAPA-TDNN + Transformer	3.69	3.71	6.034
ASR Pre-train	1.16	1.26	2.43
HuBERT Pre-train	0.84	0.87	1.72
Wav2vec 2.0 pre-train	0.973	0.933	1.83
MSE pre-train	0.979	1.075	1.98

Analysis of SSL Transferability: Quantizers

Compare Different Quantizers

Model	Vox1-O (EER ↓)	Vox1-E (EER ↓)	Vox1-H (EER ↓)
HuBERT 2 nd iter label	0.84	0.87	1.72
Phone Label	0.867	0.918	1.776
Fbank Clustering	0.883	0.903	1.675
VQVAE	0.878	0.939	1.734

• Different quantizers show comparable performance on SV

Conclusion

- WavLM is a general speech processing model for various task
 - Evaluation on SUPERB and other non-ASR tasks

- Investigate the SSL Transferability
 - Masked Speech + Pseudo label prediction is the key

Thanks!