以下での(*)とは,次のもの:

- integral,
- separated,
- noetherian, and
- regular in codimention one.

また, (†) は次のもの: X :: noetherian scheme, S :: graded \mathcal{O}_X -algebra となっている. また, $d \in \mathbb{Z}, d \geq 0$ について, \mathcal{S}_d :: homogeneous part of S を $U \mapsto \mathcal{S}(U)_d$. X, S は次をすべて満たす.

- S :: quasi-coherent.
- $S = \bigoplus_{d>0} S_d$.
- $S_0 = \mathcal{O}_X$.
- S_1 :: coherent \mathcal{O}_X -module.
- S :: locally generated by S_1 as \mathcal{O}_X -algebra.

Ex7.1 Surjective Mophism between Invertible Sheaves is Isomorphic.

X:: locally ringed space, \mathcal{L} , \mathcal{M} :: invertible sheaves on X, $f:\mathcal{L} \to \mathcal{M}$:: surjective mophism, とする.

■Proof 1. 任意の点 $x \in X$ をとり, $A = \mathcal{O}_{X,x}$ とおく. $f_x : \mathcal{L}_x \to \mathcal{M}_x$ は同型写像を合成することで $\phi : A \to A$:: surjective A-morphism と同一視出来る. ϕ :: surjective より, $\phi(\alpha) = 1 \in A$ となる $\alpha \in A$ がとれる.また ϕ は A-module morphism だから, $\alpha\phi(1) = 1$.そこで $\psi : A \to A$ を $a \mapsto \alpha a$ と 定義すれば,これが ϕ の逆写像になる.よって ϕ , f_x は同型.Prop1.1 から,f :: iso.

■Proof 2. Matsumura, Thm2.4 から分かる. これは NAK (or Nakayama's Lemma) からの帰結である.

注意 Ex7.1.1

k(x) :: residue field と $f_x: \mathcal{L}_x \to \mathcal{M}_x$ をテンソルすると, $f_x \otimes \operatorname{id}_{k(x)}$:: surjective k(x)-module morphism が得られる.よって $\ker(f_x \otimes \operatorname{id}_{k(x)}) = 0$. しかし,ここから NAK をつかって $\ker f_x = 0$ を 導くことは出来ない.k(x) が flat $\mathcal{O}_{X,x}$ -module でなく,したがって $\ker(f_x \otimes \operatorname{id}_{k(x)})$ と $(\ker f_x) \otimes k(x)$ の間に同型があることが言えないからである.このことは flat \Longrightarrow torsion-free に気をつければすぐ に分かる.同様の議論が f_x :: injective(と $\operatorname{coker} f_x$)の場合に出来ることにも気づくが,このときは $\mathbb{Z}_2 \to \mathbb{Z}_2; 1 \mapsto 3$ という反例がある.

Ex7.2 Two Sets of Global Generators and Corresponding Morphisms.

k:: field, X:: scheme /k, \mathcal{L} :: invertible sheaf on X, $S = \{s_0, \ldots, s_m\}$, $T = \{t_0, \ldots, t_n\}$:: global generators of \mathcal{L} . とする.ここで S, T は同じ線形(部分)空間 $V \subseteq \Gamma(X, \mathcal{L})$ を張るとする.また $n \leq m, d = \dim_k V$ とする.

S,T からそれぞれ Thm7.1 のように定まる morphism を ϕ_S,ϕ_T とする. ϕ_S が次のように分解できる

ことを示す.

$$X \xrightarrow{\phi_T} \operatorname{im} \phi_T \xrightarrow{} \mathbb{P}^m - L \xrightarrow{\pi} \mathbb{P}^n \xrightarrow{\alpha} \mathbb{P}^n$$

 $22 \text{ T} = \pi$, α is the linear projection is automorphism of α .

 $X \to \mathbb{P}^n$ の morphism を考えることは, $k[y_0,\ldots,y_n]$ の元 y_0,\ldots,n の変換を考えることと同じである.これは Thm7.1 の証明を観察すれば分かる.二つの k-linear map は ϕ_S^*,ϕ_T^* はそれぞれ, $y_i \mapsto s_i (i=0,\ldots,n), \ y_i \mapsto t_i (i=0,\ldots,m)$ で定まっている.したがって問題は, t_0,\ldots,t_m を s_0,\ldots,s_n へ変換する projection と automorphism をつくる問題,と言い換えられる.

今,次のような(m+1)×(n+1)行列Qが存在する.

$$\begin{bmatrix} s_0 \\ \vdots \\ s_n \end{bmatrix} = Q \begin{bmatrix} t_0 \\ \vdots \\ t_m \end{bmatrix}.$$

S,T が V の生成系であることから $\mathrm{rank}\,Q=\dim V=:d.$ Q は基本行列をいくつもかける(あるいは基本変形を繰り返し行う)ことにより、次の形に分解できる.

$$Q = LP_dR$$
 where $L \in PGL(m, k), R \in PGL(n, k)$

ただし行列 P_r $(r=1,\ldots,n+1)$ は $r\times r$ -identity matrix I_r をもちいて $P_r=\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ と定義される行列である.(TODO: P_d を P_{n+1} に交換しても問題ない?) L,P_{n+1},R が誘導する morphism をそれぞれ $\beta,\tilde{\pi},\alpha$ とすれば, α,β は automorphism であり, $\tilde{\pi}$ は projection である.

$$\mathbb{P}^m \xrightarrow{\beta} \mathbb{P}^m \stackrel{i}{\longrightarrow} \mathbb{P}^m - L \xrightarrow{\tilde{\pi}} \mathbb{P}^n \xrightarrow{\alpha} \mathbb{P}^n$$

求める写像はこの α と, $\pi=\beta\circ i\circ \tilde{\pi}$ である.また, $L=\mathcal{Z}_p(y_0,\ldots,y_n)\subseteq \mathbb{P}^m$ の次元は m-(n+1) である.

Ex7.3 Morphism of $\mathbb{P}^n \to \mathbb{P}^m$ can be Decomposed into Common Ones.

 $\phi: \mathbb{P}^n_k \to \mathbb{P}^m_k$ を考える. $\mathcal{O}_{\mathbb{P}^m}(1), \mathcal{O}_{\mathbb{P}^n}(1)$:: invertible sheaves \mathcal{O} global generator をそれぞれ $\{x_0,\ldots,x_m\},\{y_0,\ldots,y_n\}$ とする.

(a) $\operatorname{im} \phi = pt$ or $m \geq n$ and $\operatorname{dim} \operatorname{im} \phi = n$.

 $s_i = \phi^*(x_i) \ (i = 0, ..., m)$ とおくと、 $s_0, ..., s_m$ は $\mathcal{L} := \phi^*(\mathcal{O}_{\mathbb{P}^m}(1))$ の global generator である。 \mathcal{L} は \mathbb{P}^n 上の invertible sheaf だから、Cor6.17 より、 $\mathcal{L} \cong \mathcal{O}_{\mathbb{P}^n}(d)$ となる $d \in \mathbb{Z}$ が存在する。Example 7.8.3 同様、 $\mathcal{O}_{\mathbb{P}^n}(d)$ は |d| 次斉次単項式で生成される。

- $\blacksquare m < n \implies \dim \operatorname{im} \phi = 0.$
- $\blacksquare m \ge n \implies \dim \operatorname{im} \phi = n.$

Ex7.4 If X Admits an Ample Invertible Sheaf, then X is Separated.

(a) Assumption of Thm7.6 $\implies X ::$ separated.

A:: noetherian ring, X:: scheme of finite type A とする. \mathcal{L} :: ample invertible sheaf on X が存在したとする. Thm7.6 から, immersion $i: X \to \mathbb{P}^n_A$ (n>0) が存在する. これは X から \mathbb{P}^n_A \mathcal{O} locally closed subscheme \mathcal{O} isomorphism である. これに projection $\mathrm{pr}: \mathbb{P}^n_A = \mathbb{P}^n_\mathbb{Z} \times_\mathbb{Z} \mathrm{Spec}\,A \to \mathrm{Spec}\,A$ を合成したものは、quasi-projective.

$$X \stackrel{\sim}{-\!\!\!\!-\!\!\!\!-} U \stackrel{\sim}{-\!\!\!\!-\!\!\!\!-} Z \stackrel{\sim}{-\!\!\!\!\!-\!\!\!\!-} \mathbb{P}^n_A \stackrel{\operatorname{pr}}{-\!\!\!\!\!-\!\!\!\!-} \operatorname{Spec} A$$

Z は \mathbb{P}^n_A の closed subscheme, U は Z の open subscheme である. A,X についての仮定から $\operatorname{Spec} A,X$:: noetherian scheme がわかる † から、Thm 4.9 より、この写像 $X \to \operatorname{Spec} A$ は separated.

k:: field, X:: affine with doubled origin /k とする. より詳細に, X は $X_1 = \operatorname{Spec} k[x], X_2 = \operatorname{Spec} k[y]$ を $U_1 = X_1 - \{O_1\}, U_2 = X_2 - \{O_2\}$ で貼りあわせたものとする. ただし $O_1 \in X_1, O_2 \in X_2$ は原点である. X_i, U_i, O_i (i=1,2) はすべて X の部分集合とみなす. また $U = X_1 \cap X_2 = X - \{O_1, O_2\}$ とする. 明らかに $U = U_1 = U_2 \cong \mathbb{A}^1 - \{0\} = \operatorname{Spec} k[x, x^{-1}]$. また $x|_U = y|_U$.

■Plot. まず、X 上の invertible sheaf 全体 $\operatorname{Pic} X$ がどのようなものか調べる.これは $\operatorname{Pic} X \cong \mathbb{Z}$ となる. $n \in \mathbb{Z}$ に対応する $\operatorname{Pic} X$ の元を \mathcal{L}_n とする.次に,generated by global section であるような invertible sheaf を考える.これは $\mathcal{L}_0(=\mathcal{O}_X)$ しかない.すると任意の $r \neq 0, n > 0$ について

$$\mathcal{L}_0 \otimes (\mathcal{L}_r)^{\otimes n} = \mathcal{L}_{rn} \neq \mathcal{L}_0.$$

したがって ample になりうるのは $\mathcal{L}_0(=\mathcal{O}_X)$ のみ. しかしこれも $\mathcal{L}_1\otimes\mathcal{L}_0^{\otimes n}=\mathcal{L}_1$:: not generated by global section なので、ample でない.

- ■X:: noetherian integral scheme. $X_1, X_2 \cong \mathbb{A}^1 = \operatorname{Spec} k[x]$ と reduced が local な性質であること から X:: noetherian reduced scheme. X:: irreducible も明らかだから、X:: noetherian integral scheme.
- ■Pic $X \ni \mathcal{L} = \mathcal{L}(D)$. $\mathcal{L} \in \operatorname{Pic} X$ を任意にとる. X :: integral と Prop6.15 より, $\mathcal{L} = \mathcal{L}(D)$ となる $D \in \operatorname{CaCl} X$ が存在する. Prop6.13 の証明から D がどのような形のものか考えよう. Example 6.3.1, Cor 6.16 より,Pic X_1 , Pic X_2 . なので $\mathcal{L}|_{X_1} \cong \mathcal{O}_{X_1}$, $\mathcal{L}|_{X_2} \cong \mathcal{O}_{X_1}$ となる. Prop6.13 の証明から,D は次のような形をしている.

$$D = \{ \langle X_1, f_1 \rangle, \langle X_2, f_2 \rangle \} \text{ where } f_1 \in \Gamma(X_1, \mathcal{K}_{X_1}^*) = (k(x))^*, f_2 \in \Gamma(X_2, \mathcal{K}_{X_2}^*) = (k(y))^*.$$

■ $D \sim \{\langle X_1, x^n \rangle, \langle X_2, 1 \rangle\}$. Cartier divisor の定義から, $U = X_1 \cap X_2$ において $f_1/f_2 \in \Gamma(U, \mathcal{O}_U^*)$ となっている. $U \subseteq X_1 = \operatorname{Spec} k[x]$ と考えると, $U = \operatorname{Spec} k[x]_x = \operatorname{Spec} k[x, x^{-1}]$.($U \subseteq X_1$ と見れば $U = \operatorname{Spec} k[y, y^{-1}]$ であるが,どちらでも同じである.)そして

$$\Gamma(U, \mathcal{O}_U^*) = (k[x, x^{-1}])^* = \{\alpha x^n \mid \alpha \in k^*, n \in \mathbb{Z}\}.$$

^{†1} $f: X \to \operatorname{Spec} A$ が finite type ならば $f^{-1}\operatorname{Spec} A = X$ は finite affine open cover をもち、各 affine open cover は finitely generated A-algebra $\mathcal O$ Spec である。finitely generated A-algebra は A から noetherian を受け継ぐから、X:: noetherian.

であるから、 $f_1/f_2 = \alpha x^n (\iff f_2/f_1 = (\alpha y^n)^{-1})$ と書ける. よって

$$D = \{ \langle X_1, \alpha x^n f_2 \rangle, \langle X_2, f_2 \rangle \}$$
 where $f_2 \in \Gamma(X_2, \mathcal{K}_{X_2}^*) = (k(y))^*$.

再び X :: integral から、 \mathcal{K}_X は constant sheaf であり、したがって $f_2 \in K = \Gamma(X,\mathcal{K}_X^*)$ となる。なので $\{\langle X_1,f_2\rangle,\langle X_2,f_2\rangle\}$ は principal. 加えて $\{\langle X_1,\alpha\rangle,\langle X_2,1\rangle\}\in\Gamma(X,\mathcal{O}_X^*)$ なので $^{\dagger 2}$ 、結局 $D\sim\{\langle X_1,x^n\rangle,\langle X_2,1\rangle\}$.

■ $\operatorname{Pic} X \cong \mathbb{Z}$. 以上から、 $\operatorname{Pic} X (\cong \operatorname{CaCl} X)$ と \mathbb{Z} の間には集合としての全単射が存在する.これが準同型であることを確かめよう. $n \in \mathbb{Z}$ に対し、次のように定める.

$$D_n = \{\langle X_1, x^n \rangle, \langle X_2, 1 \rangle\}, \mathcal{L}_n = \mathcal{L}(D_n).$$

明らかに $D_m + D_n = D_{m+n}$, $\mathcal{L}_m \otimes \mathcal{L}_n = \mathcal{L}_{m+n}$. よって加法群として $\operatorname{Pic} X \cong \operatorname{CaCl} X \cong \mathbb{Z}$.

- ■Globally Generated Invertible Sheaf on X. $n \in \mathbb{Z}$ とする. \mathcal{L}_n は, $\mathcal{L}_n|_{X_1}$ が \mathcal{O}_{X_1} -module として x^n で生成され, $\mathcal{L}_n|_{X_2}$ が \mathcal{O}_{X_2} -module として 1 で生成される. したがって \mathcal{L}_n :: generated by global section は $x^n, 1 \in \Gamma(X, \mathcal{L}_n)$ と同値である. $x^n \in \Gamma(X, \mathcal{L}_n)$ ならば $x^n \in \mathcal{O}_{X,O_2} = k[y]_{(y)}$ となるが,これが成立するのは n = 0 の時である(必要)。逆に n = 0 ならば $x^n = 1, 1 \in \Gamma(X, \mathcal{L}_n)$ は自明(十分).よって X 上の globally generated invertibel sheaf は $\mathcal{L}_0(=\mathcal{O}_X)$ しかない.
- ■資料. 詰まったところでは次のページを参考にした: https://math.stackexchange.com/questions/70042.

$$\mathcal{L}(\{\langle X_1, \alpha \rangle, \langle X_2, 1 \rangle\}) = \mathcal{O}_X = \mathcal{L}(\{\langle X_1, 1 \rangle, \langle X_2, 1 \rangle\})$$

故に $\{\langle X_1, \alpha \rangle, \langle X_2, 1 \rangle\} = \{\langle X_1, 1 \rangle, \langle X_2, 1 \rangle\}$, と理解しても良い.

^{†2} ここの部分は Prop6.13c を用いて

- Ex7.5 Ample and Very Ample are Inherted by Tensor Products.
- Ex7.6 The Riemann-Roch Problem.
- Ex7.7 Some Rational Surfaces.
- Ex7.8 Sections of $\pi: \P(\mathcal{E}) \to X \leftrightarrow \text{Quotient Invertible Sheaves of } \mathcal{E}.$
- Ex7.9
- Ex7.10 P^n -Bundles Over a Scheme.
- Ex7.11 Different Sheaves of Ideals can Give Rise to Isomorphic Blow Up Schemes.
- Ex7.12
- Ex7.13 * A Complete Nonprojective Variety.
- Ex7.14