- 1. Viz řešení písemky z 4.5.2004. Je důležité si uvědomit, že se snažíme nejen, aby nová gramatika generovala vše co gramatika původní, ale také to, aby negenerovala nic navíc. Důkaz by měl ukázat jak k odvození v nové gramatice nalezneme odvození v gramatice původní (permutace provádění pravidel tak, abychom dostali posloupnost bloků použitých pravidel, kde každý blok odpovídá jednomu původnímu pravidlu).
- 2. Jednoduchou úvahou zjistíme, že se jedná o jazyk slov obsahujících buď aabb nebo bbaa. Takový automat dostaneme konstrukcí dosažitelných stavů kartézského součinu automatu přijímajícího slova obsahující aabb a automatu přijímajícího slova obsahující bbaa (liší se jen přehozením písmen $a \leftrightarrow b$). Vzniklý automat můžeme již při konstrukci zredukovat ztotožněním koncových stavů (v nichž automat setrvává). Standardním postupem zkontrolujeme, že automat je již zredukovaný (tabulka viz příklady z předchozích let).
- 3. To že pumping lemma vyvrátí jak regularitu tak bezkontextovost jazyka $\{a^{n^2}\}$ nebude těžké ukázat. Je-li k delší než maximální možný součet délek pumpovaných částí v dostatečně dlouhém slově $x \in \{a^{n^2}\}$, pak nutně pumpováním dostáváme posloupnost slov, jejichž rozdíl délek je nejvýš k. Vezmemeli v této posloupnosti slovo $y=a^{m^2}$ delší než k^2 (pak nutně následující prvek do $\{a^{n^2}\}$ nepatří protože $(m+1)^2-m^2=2m+1>k$.

Nebudeme se proto pokoušet hledat gramatiku typu 3 či 2, pokusíme se nalézt gramatiku typu 1 tedy monotónní. Slova délky 0 či 1 vygenerujeme přímo, slova délky aspoň 2^2 budeme generovat "programem". Nejprve vygenerujeme zarážky # a mezi nimi stejný počet symbolů \to a \leftarrow s tím, že \leftarrow jsou vždy napravo od \to . Pak necháme postupně "šipky" běžet směrem, kam ukazují s tím, že při každém překřížení šipek vznikne neterminál A, který se nakonec přemění v a. Šipky mohou beztrestně přeskakovat A, přeskočením zarážky # je šipka nahrazena aa. Zarážky # mohou přeskakovat A, ale přeskokem se z A stává a. Dvě sousedící zarážky ## jsou nahrazeny aaaa (existuje mnoho jiných rovnocenných programů/gramatik):

$$S \rightarrow \lambda |a| \# \# \# S' \#$$

$$S' \rightarrow S' \leftarrow | \rightarrow \leftarrow$$

$$\rightarrow \leftarrow \rightarrow \leftarrow A \rightarrow$$

$$\rightarrow A \rightarrow A \rightarrow$$

$$A \leftarrow \rightarrow \leftarrow A$$

$$\# \leftarrow \rightarrow aa \#$$

$$\rightarrow \# \rightarrow \# aa$$

$$\# A \rightarrow a \#$$

$$A \# \rightarrow \# a$$

$$\# \# \rightarrow aaaa$$

Kolik znikne symbolů a? Je-li nejprve vygenerováno k dvojic šipek, pak při jejich křížení vznikne k^2 neterminálů A. Každá šipka zanikne přeskočením zarážky, takto vznikne 4k písmen a. Z každého A vznikne přeskokem zarážky a, a s dvojicí zarážek změněnou na aaaa to je dohromady $(k+2)^2$ písmen a.

4. Automat s jedním kamínkem ... převod na nedeterministický (jednocestný) automat:

Začneme jinou konstrukcí převodu z nedeterministického dvoucestného automatu A_0 na jednocestný nedeterministický automat A:

Definujeme směrové přechodové funkce. Jsou to funkce závislé na jednostranném kontextu pozice ve vstupním slově. δ_w^{\leftarrow} a δ_w^{\rightarrow} jako funkce $Q_0 \rightarrow P(Q_0)$ následovně: $q' \in \delta_w^{\rightarrow}(q)$ právě když existuje výpočet dvoucestného automatu vzniklého z A_0 náhradou q za počáteční stav na slově w, který toto slovo opustí vlevo ve stavu q'. Obdobně $q' \in \delta_w^{\leftarrow}(q)$ právě když existuje výpočet dvoucestného automatu vzniklého z A_0 náhradou q za počáteční stav a změnou směrů pohybu na slově w^R , který toto slovo opustí vlevo ve stavu q'. Triviálně $\delta_{\lambda}^{\leftarrow}$ a $\delta_{\lambda}^{\rightarrow}$ jsou konstantně \emptyset .

Stavem automatu A bude trojice znaků abecedy rozšířené o blank a^{\leftarrow} , a, a^{\rightarrow} , dvojice směrových přechodových funkcí δ^{\leftarrow} , δ^{\rightarrow} a množina stavů S automatu A_0 uzavřená jak na $\bigcup_{q \in S} \delta_{A_0}(q,a)^{\wedge} \{\rightarrow\} \circ \delta^{\rightarrow}$, tak na $\bigcup_{q \in S} \delta_{A_0}(q,a)^{\wedge} \{\leftarrow\} \circ \delta^{\leftarrow}$.

Velikost množiny stavů automatu A je konečná — přesněji menší než

$$\Sigma^3 \cdot \left(2^{|Q_0|}\right)^{|Q_0|} \cdot \left(2^{|Q_0|}\right)^{|Q_0|} \cdot 2^{|Q_0|} = \Sigma^3 \cdot 2^{2|Q_0|^2 + |Q_0|}.$$

Interpretace významu stavu automatu v přijímacím výpočtu je následující: Je-li hlava automatu pod k-tým písmenem slova $x_1x_2\dots x_n$, pak $a^\leftarrow=x_{k-1},\ a=x_k,\ a^\rightarrow=x_{k+1},\ \delta^\leftarrow=\delta^\leftarrow_{x_1\dots x_{k-1}},\ \delta^\rightarrow=\delta^\rightarrow_{x_{k+1}\dots x_n}$ a S je množina stavů, do nichž se automat A_0 může dostat na k-té pozici slova $x_1\dots x_n$.

Stav automatu A je počáteční, pokud a^{\leftarrow} je blank, δ^{\leftarrow} je konstantně \emptyset a S je uzávěrem množiny počátečních stavů automatu A_0 vůči $\bigcup_{a \in S} \delta_{A_0}(q, a)^{\wedge} \{ \rightarrow \} \circ \delta^{\rightarrow}$.

počátečních stavů automatu A_0 vůči $\bigcup_{q \in S} \delta_{A_0}(q, a)^{\wedge} \{ \rightarrow \} \circ \delta^{\rightarrow}$. Stav automatu A je koncový, pokud a^{\rightarrow} je blank, δ^{\rightarrow} je konstantně \emptyset a (\star) : $\bigcup_{q \in S} \delta_{A_0}(q, a)^{\wedge} \{ \rightarrow \}$ obsahuje koncový stav.

Přechodová funkce automatu A:

Musíme stanovit, za jakých podmínek pro stavy $(a_1^\leftarrow,a_1,a_1^\rightarrow,\delta_1^\leftarrow,\delta_1^\rightarrow,S_1),\ (a_2^\leftarrow,a_2,a_2^\rightarrow,\delta_2^\leftarrow,\delta_2^\rightarrow,S_2)$ automatu A platí $(a_2^\leftarrow,a_2,a_2^\rightarrow,\delta_2^\leftarrow,\delta_2^\rightarrow,S_2)\in \delta_A((a_1^\leftarrow,a_1,a_1^\rightarrow,\delta_1^\leftarrow,\delta_1^\rightarrow,S_1),x)$:

Nutnou podmínkou je $x=a_1=a_2^{\leftarrow},\,a_1^{\rightarrow}=a_2.$

Další nutná podmínka je kompatibilita δ_2^{\leftarrow} , δ_1^{\leftarrow} a a_1 a kompatibilita δ_1^{\rightarrow} , δ_2^{\rightarrow} a a_2 : Předpokládáme, že pro nějaké w^{\leftarrow} je $\delta_1^{\leftarrow} = \delta_{w^{\leftarrow}}^{\leftarrow}$ a ověřujeme, že pro totéž w^{\leftarrow} je $\delta_2^{\leftarrow} = \delta_{w^{\leftarrow} \cdot a_1}^{\leftarrow}$. (obdobně předpokládáme, že pro nějaké w^{\rightarrow} je $\delta_2^{\rightarrow} = \delta_{w^{\rightarrow}}^{\rightarrow}$ a ověřujeme, že $\delta_1^{\rightarrow} = \delta_{a_2 \cdot w^{\rightarrow}}^{\rightarrow}$). Tato podmínka znamená $q'' \in \delta_2^{\leftarrow}(q')$ právě když pro uzávěr S množiny $\{q'\}$ vůči $\bigcup_{q \in S} \delta_{A_0}(q, a_1)^{\wedge} \{\rightarrow\}$ (obdobně $q'' \in \delta_1^{\rightarrow}(q')$ právě když pro uzávěr S množiny $\{q'\}$ vůči $\bigcup_{q \in S} \delta_{A_0}(q, a_2)^{\wedge} \{\rightarrow\} \circ \delta_2^{\rightarrow}$ je $q'' \in \bigcup_{q \in S} \delta_{A_0}(q, a_2)^{\wedge} \{\leftarrow\}$). Poslední nutnou podmínkou je vzájemná kompatibilita S_1, a_1, S_2, a_2 a δ_2^{\rightarrow} (a kompatibilita S_2, a_2, S_1, a_1 a δ_1^{\leftarrow}). Musí být S_2 uzávěrem množiny $\bigcup_{q \in S_1} \delta_{A_0}(q, a_1)^{\wedge} \{\rightarrow\}$ vůči $\bigcup_{q \in S_2} \delta_{A_0}(q, a_2)^{\wedge} \{\rightarrow\} \circ \delta_2^{\rightarrow}$ (a S_1 musí být uzávěrem množiny $\bigcup_{q \in S_2} \delta_{A_0}(q, a_2)^{\wedge} \{\leftarrow\}$ vůči $\bigcup_{q \in S_1} \delta_{A_0}(q, a_1)^{\wedge} \{\leftarrow\}$

Pokud existuje přijímací výpočet automatu A, pak existuje i přijímací výpočet automatu A_0 : Přechodové funkce garantují, že znaky abecedy byly uhodnuty v souladu s interpretací. Přechodové funkce δ zakódované ve stavech v průběhu výpočtu odpovídají uvedené interpretaci, protože počáteční stav jí odpovídá a kompatibilita garantovaná přechodovou funkcí zajišťuje indukční krok dle vzdálenosti hlavy od počátku slova. Obdobně přechodové funkce δ zakódované ve stavech v průběhu výpočtu odpovídají uvedené interpretaci, protože koncový stav jí odpovídá a kompatibilita garantovaná přechodovou funkcí zajišťujě indukční krok dle vzdálenosti od konce slova. Vzhledem k tomu, že množiny S vznikají jako uzávěry z množiny počátečních stavů stroje A_0 kompatibilně s přechodovou funkcí stroje A_0 i se směrovými přechodovými funkcemi odpovídajícími vstupnímu slovu a vzhledem k vlastnosti (\star) koncového stavu stroje A, přijímací výpočet automatu A garantuje existenci přijímacího výpočtu stroje A_0 .

Na druhou stranu, existuje-li přijímací výpočet stroje A_0 , pak stavy, uhodnuté v souladu s interpretací budou na sebe dle přechodové funkce navazovat a slovo bude přijato strojem A.

Poznámka: Funkci δ^{\leftarrow} a uzavřenost "doleva" jsme v důkazu nepotřebovali. Indukcí zleva je vlastnost množin S možno dokázat i bez nich (poté co zprava ověříme interpretaci δ^{\rightarrow}).

Nyní máme již jednodušší část za sebou a můžeme se pustit do převodu dvoucestného automatu A_1 s jedním kamínkem na jednocestný automat A:

Nejprve definice dvoucestného automatu s kamínkem: Přechodová funkce je $(Q \times \{0,1\}) \times (\Sigma \times \{0,1\}) \rightarrow P((Q \times \{0,1\}) \times \{0,1\} \times \{\leftarrow,\rightarrow\})$ s omezením, že pro $((q',k'_1),k'_2,s) \in \delta((q,k_1),(a,k_2))$ platí $k_1+k_2=k'_1+k'_2 \in \{0,1\}$. Interpretace je taková, že stroj může na nějaké políčko položit kamínek a když se na políčko vrátí, kamínek tam bude ležet. Stroj dokáže reagovat jak na to, že má kamínek u sebe tak na to, že leží na daném políčku. Počáteční konfigurace je $Q_0 \times \{1\}$, v koncové konfiguraci stroj kamínek mít nemusí.

Zjednodušení zápisu: $Q' = Q \times \{0,1\}$ přechodová funkce je $(Q' \times \Sigma \times \{0,1\}) \rightarrow P(Q' \times \{0,1\} \times \{\leftarrow, \rightarrow\})$, s omezením, že pro $(q',k',s) \in \delta(q,a,k)$ platí $k' \leq k \in \{0,1\}$ a $(k=k_1+k_2$ a $k'=k'_2)$ dle původní definice. Interpretace je opět taková, že stroj může na nějakém políčku zanechat kamínek (k'=1) a když se na políčko vrátí, kamínek tam bude ležet. Zápis nedokáže rozlišit, zda má kamínek u sebe či leží na daném políčku.

Nechť A_1 je dvoucestný automat s kamínkem zapsaný dle zjednodušeného zápisu.

"Kamínkový výpočet" jsou ty kroky výpočtu, kdy je kamínek zdvižen. Definujeme kamínkové přechodové funkce. Jsou to funkce $\kappa_{(w^{\leftarrow},a,w^{\rightarrow})}$ závislé na oboustranném kontextu pozice ve vstupním slově jako funkce $Q_1 \to P(Q_1)$ následovně: $(q',s) \in \kappa(q)$, pokud se nedeterministický stroj A_1 může poprvé vydat s kamínkem ve směru s ve stavu q' (odpovídá nejbližšímu možnému kroku nějakého "kamínkového výpočtu").

Na kontextu $(w^{\leftarrow}, a, w^{\rightarrow})$ závisí výpočet, kdy se stroj A_1 pohybuje bez kamínku. Dobrá zpráva je, že výpočet bez kamínku stroje A_1 můžeme uhádnout tak, jak jsme jej hádali při simulaci stroje A_0 uhodnutím bezkamínkových směrových přechodových funkcí δ^{\leftarrow} , δ^{\rightarrow} . Kamínkovou přechodovou funkci $(q'', s) \in \kappa(q')$ jsme při znalosti $\delta^{\leftarrow}_{w^{\leftarrow}}$, a a $\delta^{\rightarrow}_{w^{\rightarrow}}$ již schopni lokálně dodefinovat: Nechť S je současný uzávěr

 $\{q'\} \text{ vůči } \bigcup_{q \in S} \delta_{A_1}(q,a,1)^{\wedge} \{(\to,1)\} \circ \delta_{w^{\to}}^{\to} \text{ a } \bigcup_{q \in S} \delta_{A_1}(q,a,1)^{\wedge} \{(\leftarrow,1)\} \circ \delta_{w^{\leftarrow}}^{\leftarrow}, \text{ pak nutnou a postačující podmínkou je } (q'',s,0) \in \bigcup_{q \in S} \delta_{A_1}(q,a,1). \text{ Formálně můžeme zavést značení } \kappa(q') = K(\delta_{w^{\to}}^{\to},a,\delta_{w^{\leftarrow}}^{\leftarrow})(q').$ Kde funkce $K: (2^{Q_1})^{Q_1} \times \Sigma \times (2^{Q_1})^{Q_1} \to (2^{Q_1 \times \{\leftarrow,\to\}})^{Q_1}.$

Simulace "kamínkového výpočtu" bude probíhat obdobně jako simulace automatu A_0 . Potíž je v tom, že kamínkové směrové přechodové funkce κ^{\leftarrow} , κ^{\rightarrow} závisejí na proměnných přechodových funkcích κ (které závisejí na oboustranném kontextu). Definujeme $\kappa^{\rightarrow}_{\kappa_1,\ldots,\kappa_\ell}$ pro libovolný seznam přechodových funkcí κ_i (nemusí odpovídat žádnému levému kontextu). Definujeme $q' \in \kappa^{\rightarrow}_{\{\kappa_i\}}(q)$ právě když existuje výpočet dvoucestného automatu s počátečním stavem q na slově délky i který se na i-té pozici slova řídí přechodovou funkcí κ_i a který toto slovo opustí vlevo ve stavu q'. Symetricky je definováno $\kappa^{\leftarrow}_{\{\kappa_i\}}$.

Simulaci celého výpočtu můžeme rozložit na část, kde je simulován kamínkový výpočet a na část, od posledního položení kamínku (pokud je kamínek položen na konci výpočtu).

Stavem automatu A bude trojice znaků abecedy rozšířené o blank $a^{\leftarrow}, a, a^{\rightarrow}$, dvojice směrových přechodových funkcí $\delta^{\leftarrow}, \delta^{\rightarrow}$, (to určuje jednoznačnou kamínkovou přechodovou funkci $\kappa = K(\delta^{\leftarrow}, a, \delta^{\rightarrow})$), dvojice kamínkových směrových funkcí $\kappa^{\leftarrow}, \kappa^{\rightarrow}$, množina stavů S^{\bullet} automatu A_1 uzavřená jak na $\bigcup_{q \in S} \kappa(q)^{\wedge} \{\rightarrow\} \circ \kappa^{\rightarrow}$, tak na $\bigcup_{q \in S} \kappa(q)^{\wedge} \{\leftarrow\} \circ \kappa^{\leftarrow}$, směr s k případnému místu posledního položení kamínku z $\{\leftarrow, \circ, \bullet, \rightarrow\}$, a množina stavů S automatu A_1 následující vlastnosti v závislosti na s: Pro $s = \bullet$ je $S = \emptyset$, pro $s = \circ$ je S uzávěrem S^{\bullet} na $\bigcup_{q \in S} \delta_{A_1}(q, a)^{\wedge} \{(\rightarrow, 1)\} \circ \delta^{\rightarrow}$, tak na $\bigcup_{q \in S} \delta_{A_1}(q, a)^{\wedge} \{(\leftarrow, 1)\} \circ \delta^{\leftarrow}$ pro $s = \circ$, pro $s = \leftarrow$ je S uzavřená na $\bigcup_{q \in S} \delta_{A_1}(q, a)^{\wedge} \{(\rightarrow, 0)\} \circ \delta^{\rightarrow}$ a pro $s = \rightarrow$ je S uzavřená na $\bigcup_{q \in S} \delta_{A_1}(q, a)^{\wedge} \{(\leftarrow, 0)\} \circ \delta^{\leftarrow}$ pro $s = \rightarrow$.

Velikost množiny stavů automatu A je konečná — přesněji menší než

$$\Sigma^3 \cdot \left(2^{|Q_1|}\right)^{|Q_1|} \cdot \left(2^{|Q_1|}\right)^{|Q_1|} \cdot \left(2^{|Q_1|}\right)^{|Q_1|} \cdot \left(2^{|Q_1|}\right)^{|Q_1|} \cdot 2^{|Q_1|} \cdot 2^{|Q_1|} \cdot 4 \cdot 2^{|Q_1|} = 4\Sigma^3 \cdot 2^{4|Q_1|^2 + 2|Q_1|}.$$

Zavedme značení $\kappa_{x_1...x_n|k} = \kappa_{x_1...x_{k-1},x_k,x_{k+1}...x_n}$.

Interpretace významu stavu automatu v přijímacím výpočtu je následující: Je-li hlava automatu pod k-tým písmenem slova $w=x_1x_2\dots x_n$, pak $a^-=x_{k-1}$, $a=x_k$, $a^-=x_{k+1}$, $\delta^-=\delta_{x_1\dots x_{k-1}}^+$, $\delta^-=\delta_{x_k+1\dots x_n}^-$, (čemuž odpovídá jednoznačně $\kappa=K(\delta^-,a,\delta^-)=\kappa_{w|k}$), $\kappa^-=\kappa_{\kappa_{w|1},\dots\kappa_{w|k-1}}^-$, $\kappa^-=\kappa_{\kappa_{w|1},\dots\kappa_{w|k-1}}^-$,

Stav automatu A je počáteční, pokud a^{\leftarrow} je blank, δ^{\leftarrow} je konstantně \emptyset , κ^{\leftarrow} je konstantně \emptyset a S^{\bullet} je uzávěrem množiny počátečních stavů automatu A_1 vůči $\bigcup_{q \in S^{\bullet}} \kappa(q)^{\wedge} \{ \rightarrow \} \circ \kappa^{\rightarrow}$ a $s \in \{ \circ, \bullet, \rightarrow \}$.

Stav automatu A je koncový, pokud a^{\rightarrow} je blank, δ^{\rightarrow} je konstantně \emptyset , κ^{\rightarrow} je konstantně \emptyset a buď $s = \bullet$ a (\star^{\bullet}) : $\bigcup_{q \in S^{\bullet}} \kappa(q)^{\wedge} \{\rightarrow\}$ obsahuje koncový stav automatu A_1 nebo $s \in \{\leftarrow, \circ\}$ a (\star) : $\bigcup_{q \in S} \delta_{A_1}(q, a)^{\wedge} \{(\rightarrow, 0)\}$ obsahuje koncový stav automatu A_1 .

Přechodová funkce automatu A:

Musíme stanovit, za jakých podmínek pro dané stavy $(a_1^\leftarrow,a_1,a_1^\rightarrow,\delta_1^\leftarrow,\delta_1^\rightarrow,\kappa_1,\kappa_1^\leftarrow,\kappa_1^\rightarrow,S_1^\bullet,s_1,S_1),$ $(a_2^\leftarrow,a_2,a_2^\rightarrow,\delta_2^\leftarrow,\delta_2^\rightarrow,\kappa_2,\kappa_2^\leftarrow,\kappa_2^\rightarrow,S_2^\bullet,s_2,S_2)$ platí $(a_2^\leftarrow,a_2,a_2^\rightarrow,\delta_2^\leftarrow,\delta_2^\rightarrow,\kappa_2,\kappa_2^\leftarrow,\kappa_2^\rightarrow,S_2^\bullet,s_2,S_2)$ \in $\delta_A((a_1^\leftarrow,a_1,a_1^\rightarrow,\delta_1^\leftarrow,\delta_1^\rightarrow,\kappa_1,\kappa_1^\leftarrow,\kappa_1^\rightarrow,S_1^\bullet,s_1,S_1),x)$:

Nutnou podmínkou je $x=a_1=a_2^{\leftarrow},\,a_1^{\rightarrow}=a_2.$

Další nutná podmínka je kompatibilita δ_2^{\leftarrow} , δ_1^{\leftarrow} a a_1 a kompatibilita δ_1^{\rightarrow} , δ_2^{\rightarrow} a a_2 : Předpokládáme, že pro nějaké w^{\leftarrow} je $\delta_1^{\leftarrow} = \delta_{w^{\leftarrow}}^{\leftarrow}$ a ověřujeme, že pro totéž w^{\leftarrow} je $\delta_2^{\leftarrow} = \delta_{w^{\leftarrow}.a_1}^{\leftarrow}$. (obdobně předpokládáme, že pro nějaké w^{\rightarrow} je $\delta_2^{\rightarrow} = \delta_{w^{\rightarrow}}^{\rightarrow}$ a ověřujeme, že $\delta_1^{\rightarrow} = \delta_{a_2\cdot w^{\rightarrow}}^{\rightarrow}$). Tato podmínka znamená $q'' \in \delta_2^{\leftarrow}(q')$ právě když pro uzávěr S množiny $\{q'\}$ vůči $\bigcup_{q \in S} \delta_{A_1}(q, a_1)^{\wedge} \{\rightarrow\}$ o δ_1^{\leftarrow} je $q'' \in \bigcup_{q \in S} \delta_{A_1}(q, a_1)^{\wedge} \{\rightarrow\}$ obdobně $q'' \in \delta_1^{\rightarrow}(q')$ právě když pro uzávěr S množiny $\{q'\}$ vůči $\bigcup_{q \in S} \delta_{A_1}(q, a_2)^{\wedge} \{\rightarrow\}$ o δ_2^{\rightarrow} je $q'' \in \bigcup_{q \in S} \delta_{A_1}(q, a_2)^{\wedge} \{\leftarrow\}$).

Další nutná podmínka je kompatibilita κ_2^- , κ_1^- a κ_1 a kompatibilita κ_1^- , κ_2^- a κ_2 : Předpokládáme, že pro nějaké slovo funkcí k^- je $\kappa_1^+ = \kappa_{k^-}^+$ a ověřujeme, že pro totéž k^- je $\kappa_2^+ = \kappa_{k^-,\kappa_1}^+$. (obdobně předpokládáme, že pro nějaké slovo funkcí k^- je $\delta_2^- = \delta_{k^-}^-$ a ověřujeme, že $\delta_1^- = \delta_{\kappa_2^-,k^-}^-$). Tato podmínka znamená $q'' \in \kappa_2^-(q')$ právě když pro uzávěr S množiny $\{q'\}$ vůči $\bigcup_{q \in S} \kappa_1(q)^{\wedge} \{-\} \circ \kappa_1^-$ je $q'' \in \bigcup_{q \in S} \kappa_1(q)^{\wedge} \{-\}$ (obdobně $q'' \in \kappa_1^-$ (q') právě když pro uzávěr S množiny $\{q'\}$ vůči $\bigcup_{q \in S} \kappa_2(q)^{\wedge} \{-\} \circ \kappa_2^-$ je $q'' \in \bigcup_{q \in S} \kappa_2(q)^{\wedge} \{-\}$).

Další nutnou podmínkou je vzájemná kompatibilita S_1^{\bullet} , κ_1 , S_2^{\bullet} , κ_2 a κ_2^{\rightarrow} (a kompatibilita S_2^{\bullet} , κ_2 , S_1^{\bullet} , κ_1 a κ_1^{\leftarrow}). Musí být S_2^{\bullet} uzávěrem množiny $\bigcup_{q \in S_1^{\bullet}} \kappa_1(q)^{\wedge} \{ \rightarrow \}$ vůči $\bigcup_{q \in S_2^{\bullet}} \kappa_2(q)^{\wedge} \{ \rightarrow \} \circ \kappa_2^{\rightarrow}$ (a S_1^{\bullet} musí být uzávěrem množiny $\bigcup_{q \in S_2^{\bullet}} \kappa_2(q)^{\wedge} \{ \leftarrow \}$ vůči $\bigcup_{q \in S_1^{\bullet}} \kappa_1(q)^{\wedge} \{ \leftarrow \} \circ \kappa_1^{\leftarrow})$.

Poslední nutnou podmínkou je vzájemná kompatibilita $s_1, S_1, a_1, s_1, S_2, a_2, \delta_2^{\rightarrow}$ a δ_1^{\leftarrow} . Je-li $s_1 = \circ$, pak musí být $s_2 = \leftarrow$ a S_2 ("kompatibilita doprava") je uzávěrem množiny $\bigcup_{q \in S_1} \delta_{A_1}(q, a_1)^{\wedge}\{(\rightarrow, 1)\}$ vůči $\bigcup_{q \in S_2} \delta_{A_1}(q, a_2)^{\wedge}\{(\rightarrow, 0)\} \circ \delta_2^{\rightarrow}$. Je-li $s_2 = \circ$, pak musí být $s_1 = \rightarrow$ a S_1 ("kompatibilita doleva") musí být uzávěrem množiny $\bigcup_{q \in S_2} \delta_{A_1}(q, a_2)^{\wedge}\{(\leftarrow, 1)\}$ vůči $\bigcup_{q \in S_1} \delta_{A_1}(q, a_1)^{\wedge}\{(\leftarrow, 0)\} \circ \delta_1^{\leftarrow}$) Není-li ani jedno z s_1, s_2 rovno \circ , pak $s_1 = s_2$ a je-li $s_1 = s_2 = \leftarrow$, pak ("kompatibilita doprava") S_2 je uzávěrem množiny $\bigcup_{q \in S_1} \delta_{A_1}(q, a_1)^{\wedge}\{(\rightarrow, 0)\}$ vůči $\bigcup_{q \in S_2} \delta_{A_1}(q, a_2)^{\wedge}\{(\rightarrow, 0)\}$ vůči $\bigcup_{q \in S_1} \delta_{A_1}(q, a_1)^{\wedge}\{(\leftarrow, 0)\} \circ \delta_1^{\leftarrow}$).

Poznámka: Vzhledem k tomu, že dle naší definice přijímací výpočet končí na pravém konci slova, není důvod zavádět stavy kde $S \neq \emptyset \land s = \rightarrow$ (informace, do jakých stavů se stroj mohl dostat v nepřijímajícím výpočtu). A není ani potřeba hlídat "uzavřenost doleva".

Pokud existuje přijímací výpočet automatu A, pak existuje i přijímací výpočet automatu A_1 :

Přechodové funkce garantují, že znaky abecedy byly uhodnuty v souladu s interpretací.

Přechodové funkce δ^{\leftarrow} zakódované ve stavech v průběhu výpočtu odpovídají uvedené interpretaci, protože počáteční stav jí odpovídá a kompatibilita garantovaná přechodovou funkcí zajišťuje indukční krok dle vzdálenosti hlavy od počátku slova. Obdobně přechodové funkce δ^{\rightarrow} zakódované ve stavech v průběhu výpočtu odpovídají uvedené interpretaci, protože koncový stav jí odpovídá a kompatibilita garantovaná přechodovou funkcí zajišťujě indukční krok dle vzdálenosti od konce slova.

Proto jsou jednoznačně dopočítávané κ určeny v souladu s interpretací a přechodové funkce κ^{\leftarrow} zakódované ve stavech v průběhu výpočtu odpovídají uvedené interpretaci, protože počáteční stav jí odpovídá a kompatibilita garantovaná přechodovou funkcí zajišťuje indukční krok dle vzdálenosti hlavy od počátku slova. Obdobně přechodové funkce κ^{\rightarrow} zakódované ve stavech v průběhu výpočtu odpovídají uvedené interpretaci, protože koncový stav jí odpovídá a kompatibilita garantovaná přechodovou funkcí zajišťujě indukční krok dle vzdálenosti od konce slova.

Vzhledem k tomu, že množiny S^{\bullet} vznikají jako uzávěry z množiny počátečních stavů stroje A_1 kompatibilně s přechodovou funkcí stroje A_1 , jsou i ony v souladu s interpretací a končí-li výpočet v koncovém stavu s $s = \bullet$, pak všechny stavy výpočtu obsahují $s = \bullet$ a přijímací výpočet automatu A garantuje existenci přijímacího výpočtu stroje A_1 končící se zdviženým kamínkem kvůli podmínce (\star^{\bullet}) . Končí-li výpočet v koncovém stavu s $s \in \{\leftarrow, \circ\}$, pak mezi stavy výpočtu musel být právě jeden stav s $s = \circ$ (před ním vždy $s = \to$ a za ním vždy $s = \leftarrow$) a vzhledem k tomu, že na této pozici S vzniká jako uzávěry z množiny stavů S^{\bullet} , dá se indukcí doprava dle vzdálenosti od této pozice ukázat, že S odpovídá interpretaci. K tomu je třeba využít uzavřenosti S a kompatibility "doprava" garantované přechodovou funkcí. Vzhledem k vlastnosti (\star) koncového stavu pak stroj A_1 přijímá.

Na druhou stranu, existuje-li přijímací výpočet stroje A_1 , pak stavy, uhodnuté v souladu s interpretací budou na sebe dle přechodové funkce navazovat a slovo bude přijato strojem A.