Opakovanie lineárnej algebry

Príklad 1

Máme sústavu vektorov: $x_1 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$, $x_2 = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$ a $x_3 = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$.

- a/ Určte, či sú vektory x_1 a x_2 závislé alebo nie (t.j. či tvoria závislú alebo nezávislú sústavu vektorov v E_2)?
- b/ Určte hodnosť sústavy vektorov x_1 a x_2 (resp. hodnosť matice, vytvorenej z týchto vektorov)!
- c/ Tvoria vektory x_1 a x_2 bázu vektorového priestoru E_2 ?
- d/ Určte, či sú vektory x_1 a x_3 závislé alebo nie (t.j. či tvoria závislú alebo nezávislú sústavu vektorov v E_2)?
- e/ Vyjadrite koeficienty rozkladu vektora \mathbf{x}_1 v báze tvorenej vektormi \mathbf{x}_2 a \mathbf{x}_3 !

Príklad 2

Máme sústavu vektorov: $\mathbf{x}_1 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{x}_2 = \begin{pmatrix} 9 \\ 6 \\ 4 \end{pmatrix}$, $\mathbf{x}_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ a $\mathbf{x}_4 = \begin{pmatrix} 8 \\ 6 \\ 5 \end{pmatrix}$.

- a/ Tvoria vektory x_1 až x_4 bázu vektorového priestoru E_3 ?
- b/ Tvoria vektory \mathbf{x}_1 až \mathbf{x}_4 bázu vektorového priestoru E_4 ?
- c/ Určte hodnosť sústavy vektorov x1 až x4!
- d/ Na základe riešenia c/ určte, či je možné z vektorov x1 až x4 zostaviť bázu vektorového priestoru E3!
- e/ Určte všetky bázy vektorového priestoru E_3 , ktoré možno zostaviť z vektorov \mathbf{x}_1 až \mathbf{x}_4 !
- f/ Vyjadrite koeficienty rozkladu vektora \mathbf{x}_4 v báze tvorenej vektormi \mathbf{x}_1 až \mathbf{x}_3 !
- g/ Je vektor \mathbf{x}_4 lineárnou kombináciou vektorov \mathbf{x}_1 až \mathbf{x}_3 ?
- h/ Je vektor \mathbf{x}_4 konvexnou kombináciou vektorov \mathbf{x}_1 až \mathbf{x}_3 ?
- i/ Je vektor $\mathbf{x}_5 = (2, 2, 2)^T$ konvexnou kombináciou vektorov \mathbf{x}_1 , \mathbf{x}_3 a \mathbf{x}_4 ?
- j/ Je vektor $\mathbf{x}_6 = (1, 1, 1)^T$ konvexnou kombináciou vektorov \mathbf{x}_1 , \mathbf{x}_3 a \mathbf{x}_4 ?

Príklad 3

Riešte sústavu lineárnych rovníc, ktorá má práve jedno riešenie:

$$-5x_1 + 3x_2 + 6x_3 = 11$$

 $4x_1 - x_3 = 17$
 $-10x_2 + 20x_3 = 0$

Príklad 4

Riešte sústavu lineárnych rovníc, ktorá má práve nekonečne veľa riešení:

$$-5x_1 + 3x_2 + 6x_3 = 11$$

 $10x_1 + 4x_2 - 32x_3 = -22$
 $5x_2 - 10x_3 = 0$

Príklad 5

Riešte sústavu lineárnych rovníc, ktorá nemá žiadne riešenie:

$$5x_1 + 3x_2 - 4x_3 = -3$$

 $4x_2 + 8x_3 = 3$
 $5x_1 + 7x_2 + 4x_3 = 20$