Data Encryption Standard

Gianluca Dini

Dept. of Ingegneria dell'Informazione

University of Pisa

email: gianluca.dini@unipi.it

Version: 2022-03-16

1

Data Encryption Standard

- May 15, 1973
 - National Bureau of Standards (NBS) published a solicitation for cryptosystems in the Federal Register (mildly revolutionary act)
- 1974
 - IBM submitted LUCIFER (n = 64, k = 128)
 - DES was a modification of LUCIFER (n = 64, k = 56, resistant to differential cryptanalysis) under NSA guidance
- March 17, 1975
 - DES was published in the Federal Register

Mar-22 DES

Data Encryption Standard

- January 15, 1977 (FIPS PUB 46)
 - (called DEA) considered a standard for "unclassified" applications, after much public discussion
 - Reviewed every 5 years, being January 1994 the most recent review
 - Not a standard since 1998
- 1999 (FIPS PUB 46-3)
 - DES recommended for legacy systems
 - 3DES Recommend
 - DES replaced by AES

Mar-22

Confusion and diffusion

- Two primitives for strong ciphers (Shannon 1949)
 - Diffusion is an encryption operation where the influence of one PT symbol is spread over many CT symbols with the goal of hiding statistical properties of the PT
 - A simple diffusion element is the bit permutation (DES)
 - AES uses the more advanced MixColumn
 - Confusion is an encryption operation where the relationship between key and CT is obscured.
 - A common element to achieve confusion is substitution
 - AES and DES use substitution

Mar-22 DES 4

4

Mar-22

A good diffusion property

 (Informally) Changing of one bit of PT results on average in the change of half the output bits of the CT, i.e., If PT → PT' ⇒ CT → CT' s.t. CT' looks statistically independent of CT

Mar-22 DES 5

5

Confusion and diffusion

- Confusion only or diffusion only is not secure
 - Shift cipher and Enigma used confusion only
- Confusion and diffusion must be concatenated to build a strong cipher
- Product ciphers are composed of rounds which concatenate confusion and diffusion

Mar-22 DE

6

Data Encryption Standard (DES)

- The 56-bit input key K is specified as a 64-bit key
 - 8 bits (bits 8; 16, ..., 64) are used as parity bits
 - The key is actually 56-bit long
- Product cipher, 16 rounds

Mar-22

DFS

7

7

Feistel Network

Given functions $f_1, ..., f_d$: $\{0,1\}^n \longrightarrow \{0,1\}^n$

Goal: build invertible function $F: \{0,1\}^{2n} \longrightarrow \{0,1\}^{2n}$

9

Round f-function

- · Realizes diffusion and confusion
- Can be considered as a pseudorandom generator with two inputs:
 - 1. Right half of the input R_{i-1}
 - 2. The round subkey k_i

Mar-22

DES

10

11

13

Initial and final permutation

DES

- IP and IP-1
 - Very fast hw implementation
 - Don't increase DES security
 - Their rationale is not known

Mar-22

14

The f-function

- Expansion box E increases diffusion
- S-boxes provide confusion
- Permutation P increases diffusion
- Avalanche effect
 - Diffusion caused by E, S and P guarantees that every bit at the end of the 5-th round depends on every plaintext bit and key bit

Mar-22

DES

15

15

S-box

- Provide confusion
 - Core of the DES cryptographic strength
 - The motivations behind S-box were never motivated
- Lookup table: $\{0, 1\}^6 \to \{0, 1\}^4$
 - Larger tables would be better but 4-by-6 tables were close to the maximum size for ICs in the 70s
- The only non-linear element of the system
 - $S(a \oplus b) ≠ S(a) \oplus S(b)$
 - If S_i's were linear then DES could be described by a linear system where key bits are the unknowns

Mar-22

DES

16

S-box

- · Design criteria
 - Notation
 - Let in, denote the i-th input of s-box S
 - Let out, denote the j-th output of s-box S
 - Strict avalanche criterion
 - If in_i of S is commuted, then out_j commutes with probability 0.5, for all i, j
 - Bit independence criterion
 - If in_i of S is commuted, then out_j and out_k commute independently, for all i, j, and k

Mar-22 DES 1

17

S-box

- Design criteria (more refined)
 - 1. Each S-box has six input bits and four output bits.
 - 2. No single output bit should be too close to a linear combination of the input bits.
 - 3. If the lowest and the highest bits of the input are fixed and the four middle bits are varied, each of the possible 4-bit output values must occur exactly once.
 - 4. If two inputs to an S-box differ in exactly one bit, their outputs must differ in at least two bits. [%]

Mar-22 DES 18

S-box

- 4. If two inputs to an S-box differ in the two middle bits, their outputs must differ in at least two bits.
- 5. If two inputs to an S-box differ in their first two bits and are identical in their last two bits, the two outputs must be different.
- 6. For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs of inputs exhibiting that difference may result in the same output difference.
- 7. A collision (zero output difference) at the 32-bit output of the eight S-boxes is only possible for three adjacent S-boxes.

Mar-22 DES 19

19

21

23

Facts on key schedule

- The key schedule is a method to realize 16 permutations systematically
 - The key schedule is easy to implement in HW
 - The key schedule is such that each of the 56 key bits is used in different rounds
 - Each key bit is used in approximately 14 of the 16 rounds
- Every round key is a selection of 48 permuted bits of the input key
- Total number of rotations: $4 + 12 \times 2 = 28$
 - $-C_0 = C_{16}$, $D_0 = D_{16}$ (fundamental for decryption)

24

24

Mar-22

25

Decryption

- Given k it is easy to reverse the key schedule
 - $k_{16} = PC-2(C_{16}, D_{16}) = PC-2(C_0, D_0) = PC-2(PC-1(k))$
 - $k_{15} = PC-2(C_{15}, D_{15}) = PC-2(RS2(C_{16}), RS2(D_{16})) = PC-2(RS2(C_0), RS2(D_0))$
 - **–** ..
- · Reverse encryption round-by-round
 - Decryption round 1 reverses encryption round 16
 - Decryption round 2 reverses encryption round 15
 - **—** ...

Mar-22

DES

27

27

Decryption

- The input of the 1st decryption round is equal to the output of the last encryption
 - $\ (\mathsf{L^d}_0, \, \mathsf{R^d}_0) = \mathsf{IP}(\mathsf{Y}) = \mathsf{IP}(\mathsf{IP^{-1}}(\mathsf{R}_{16}, \, \mathsf{L}_{16})) = \mathsf{R}_{16}, \, \mathsf{L}_{16}$
 - Thus $L_0^d = R_{16}$ and $R_0^d = L_{16} = R_{15}$
- · The first decryption reverses the last encryption
 - $L1d = R_0^d = L_{16} = R_{15}$
 - $R_1^d = L_0^d \oplus f(R_0^d, k_{16}) = R_{16} \oplus f(L_{16}, k_{16}) = [L_{15} \oplus f(R_{15}, k_{16})] \oplus f(R_{15}, k_{16})] = L_{15}$
 - Iteratively
 - $L_i^d = R_{16-i}$
 - $R_i^d = L_{16-i}$
 - where i = 0, 1, 2,... 16

Mar-22

DES

28

Decryption

- After the last decryption round
 - $-L_{16}^{d} = R_{0}$
 - $R_{16}^{d} = L_{0}$
- Finally,
 - $IP^{-1}(R_{16}^d, L_{16}^d) = IP^{-1}(L_0, R_0) = IP^{-1}(IP(x)) = x$

Mar-22

DES

29

29

DES in practice

- DES can be efficiently implemented either in hardware or in software
 - Arithmetic operations are
 - · exclusive-or
 - E, S-boxes, IP, IP⁻¹, key scheduling can be done in constant time by table-lookup (sw) or by hard-wiring them into a circuit

DES

Mar-22

DES in practice

- One very important DES application is in banking transactions
 - DES is used to encrypt PINs and account transactions carried out at ATM
 - DES is also used in government organizations and for interbank transactions

Mar-22 DES

31

Empirical properties of DES

Empirically, DES fulfills these requirements:

- Each CT bits depends on all key bits and PT bits
- There are no evident statistical relationships between CT and PT
- The change of one bit in the PT (CT) causes the change of every bit in the CT (PT) with 0.5 probability

Mar-22 DES

Security of DES

- · Exhaustive key search or brute force attack
- Analytical attacks
 - Differential Cryptanalysis, Eli Biham and Adi Shamir, 1990
 - Linear Cryptanalysis, Mitsuru Matsui, 1993
 - Effectiveness of these attacks depend on S-boxes
 - Applicable to any block cipher
 - Not practical for DES
 - Require a large number of (CT, PT)s
 - Collecting and storing (PT, CT)s requires large amount of time and memory
 - Attacks recover just one key (key refresh)

Mar-22

DES

33

33

attack method	data complexity(***)		storage complexity	processing complexity
exhaustive precomputation	_	1	2 ⁵⁶	1 (table lookup)
exhaustive search	1	_	negligible	2 ⁵⁵
linear	2 ⁴³ (85%)	_	for texts	2 ⁴³
cryptanalysis(*)	2 ³⁸ (10%)	_	for texts	2 ⁵⁰
differential	_	2 ⁴⁷	for texts	2 ⁴⁷
cryptanalys(**)	2 ⁵⁵	_	for texts	2 ⁵⁵

- (*) Mitsuru Matsui, 1993
- (**) Eli Biham and Adi Shamir, 1990
- (***) First column: known-plaintex; second column: chosen-plaintext

Mar-22

DES

34

DES challenge (1981)

- Find $k \in \{0,1\}^{56}$ s.t. $c_i = DES(k, p_i)$, i = 1, 2, 3
 - 1997: Internet search 3 months
 - 1998: EFF machine (Deep Crack) 3 days (250K\$)
 - 1999: combined search 22 hours
 - 2006: COPACABANA (120 FPGAs) 7 days (10K\$)
- 56-bit ciphers should not be used

DES

35

Mar-22

Brute force attack

- In 1977, Diffie & Hellman hypothesized a \$ 20 mln dedicated parallel computer able to try 10⁶ key per second fnd find a key in 10 hours
- Currently, customary technology allows us to try 10⁹ keys per second
- Currently, supercomputer can try 10¹³ keys per second

Mar-22 DE

36

Performance of DES

- Software implementation
 - Desktop ÷ smart cards
 - Bit permutation (E, P, IP) are inefficient in sw
 - S-box moderately efficient in sw
 - Optimization through precomputation
 - Throughput: 100 Megabit/s
- Hardware implementation
 - Bit permutation are efficient in hw
 - S-box efficiently implemented in Boolean logic (on average a box requires 100 gates)
 - DES requires less than 3000 gates (fit RFIDs)
 - Optimizations: pipelining, FPGA, ASICS
 - Throughput: 100 Gigabit/s

Mar-22 DES

37

DES alternatives and variants

- 3DES (Triple encryption)
- DESX (Key whitening)
- AES
 - k = 128, 256, 512; n = 128
 - Finalists: Mars, RC6, Serpent, Twofish
 - · Efficient especially in SW
 - Mars, Serpent and Twofish are royalty-free
- PRESENT
 - Lightweight encryption, i.e., low complexity, especially in HW
 - Applications RFID tags and pervasive applications

Mar-22 DES 38

