(gunakan g = 9.8 m/s²)

1. Dari titik asal O(0,0) sebuah bola dilempar dengan laju awal v_0 dan sudut kemiringan awal θ_0 terhadap sumbu horizontal sehingga lintasan bola berupa parabola. Data v_y (komponen kecepatan bola dalam arah sumbu vertikal y) sebagai fungsi dari posisi horisontal x diperlihatkan pada grafik.

- a. Dari grafik tentukan besarnya komponen kecepatan awal v_{0v}dan v_{0x}
- b. Tentukan sudut kemiringan kecepatan awal θ_0
- c. Tentukan koordinat titik tertinggi pada lintasan bola
- 2. Sebuah mobil bak terbuka (*pick-up*) mengangkut kotak bermassa 50 kg mendaki jalan dengan kemiringan 5°. Koefisien gesek statik antara kotak dengan lantai mobil adalah 0,5.
 - a. Gambarkanlah diagram gaya-gaya yang bekerja pada kotak tersebut
 - b. Hitunglah gaya gesek statik maksimum antara kotak dan lantai mobil
 - c. Berapakah percepatan maksimum yang boleh dilakukan mobil tersebut agar tidak ada gerak relatif antara kotak dan lantai mobil.
- 3. Sebuah bandul terdiri dari bola besi bermassa 2 kg yang berayun padasebuah tali yang massanya dapat diabaikan dan memiliki panjang 4 m.Bola tersebut memiliki laju 8 m/s ketika tali membentuk sudut θ = 60°terhadap vertikal. Pada bandul tersebut bekerja gaya hambat angin **F**yang besar dan arahnya konstan sehingga bola hanya dapat mencapaisudut maksimum α = 30° seperti padagambar. Tentukan:

- a. besar gaya **F**
- b. kecepatan bandul saat di titik terendah kedua kalinya(setelah bandul berayun dari posisi sudut α).
- 4. Dua buah bola (A dan B) bertumbukan pada bidang horisontal yang licin. Kecepatan kedua bola sebelum tumbukan dan kecepatan bola A sesudah tumbukan ditunjukkan pada gambar. Jika massa bola A dua kali lebih besar dari massa bola B, maka

- a. tentukan kecepatan bola B sesudah tumbukan (besar dan arah).
- b. apakah tumbukan ini bersifat elastik? Buktikan jawabanmu.
- c. tentukan kecepatan pusat massa sistem sebelum dan sesudah tumbukan.
- 5. Balok 1 dengan massa m_1 dari keadaan diam pada ketinggian h =2,5 m, meluncur sepanjang lintasan miring yang licin dan kemudianbertumbukan dengan balok 2 (m_2 = 2 m_1) yang diam pada lantai datar yang kasar (μ_k = 0,5) sejauh 1 m dari ujung lintasan miring.Akibat tumbukan, balok 2 bergerak dan akhirnya berhenti setelahmenempuh jarak sejauh 1 m. Tentukan:

- a. kecepatan m₁ sebelum menumbuk m₂?
- b. kecepatan m₁ setelah bertumbukan dengan m₂?