Tercer Examen Parcial

Álgebra Superior 1, 2025-4

Ej. 1 (4 pts) Pruebe que para cualquier natural
$$n$$
 se cumple $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Ej. 2 (3 pts) Sean A y B conjuntos, con $B \subseteq A$. Prueba que, si B es finito y A infinito, entonces $A \setminus B$ es infinito.

Ej. 3 (4 pts) Sean $x, y \in \mathbb{R}$ y $a_{900}, a_{899}, \dots, a_1, a_0$ son los coeficientes (en orden) del polinomio $(x+y)^{900}$; es decir $(x+y)^{900} = a_{900}x^{900} + a_{889}x^{889}y + \dots + a_1xy^{889} + a_0y^{900}$. ¿Cuál de los siguientes números es mayor, a_{100} o a_{798} ? Demuestra todas tus afirmaciones.

Ej. 4 (+1 pts) *Este ejercicio es opcional y sólo se tomará en cuenta si no hay errores en la solución.* Sea $A \subseteq \mathbb{N}$ y supongamos que $\forall x (x \in A \to x + 1 \in A)$. Prueba que si $m \in \mathbb{N} \cap A$, entonces $\{n \in \mathbb{N} \mid n \geq m\} \subseteq A$.

Tercer Examen Parcial

Álgebra Superior 1, 2025-4

Ej. 1 (4 pts) Pruebe que para cualquier natural n se cumple $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$

Ej. 2 (3 pts) Sean A y B conjuntos, con $B \subseteq A$. Prueba que, si B es finito y A infinito, entonces $A \setminus B$ es infinito.

Ej. 3 (4 pts) Sean $x, y \in \mathbb{R}$ y $a_{900}, a_{899}, \dots, a_1, a_0$ son los coeficientes (en orden) del polinomio $(x + y)^{900}$; es decir $(x + y)^{900} = a_{900}x^{900} + a_{889}x^{889}y + \dots + a_1xy^{889} + a_0y^{900}$. ¿Cuál de los siguientes números es mayor, a_{100} o a_{798} ? Demuestra todas tus afirmaciones.

Ej. 4 (+1 pts) *Este ejercicio es opcional y sólo se tomará en cuenta si no hay errores en la solución.* Sea $A \subseteq \mathbb{N}$ y supongamos que $\forall x (x \in A \to x + 1 \in A)$. Prueba que si $m \in \mathbb{N} \cap A$, entonces $\{n \in \mathbb{N} \mid n \geq m\} \subseteq A$.