

Pr. ALIBRAHMI EL MEHDI

Travaux Dirigés d'Optique Géométrique Filière MIP - Semestre 2 Série n° 4

Exercice 1: Lentilles minces

Soit une lentille de distance focale f'= +3 cm.

- 1) On considère un objet perpendiculaire à l'axe optique de taille 2 cm respectivement à 4 cm et 2 cm en avant du centre optique.
 - a. Déterminer graphiquement l'image de l'objet dans chaque cas (échelle 1/1).
 - **b.**Retrouver les résultats précédents par le calcul algébrique.
- 2) Mêmes questions avec un objet virtuel situé à 10 cm du centre optique.
- 3) Soit une lentille de distance focale f' = -3 cm.
 - a. Trouver l'image d'un objet réel de taille 2 cm situé à 5 cm du centre optique.
 - **b.** Même question avec un objet virtuel situé à 1,5 cm puis 5 cm du centre optique.

Exercice 2 : Lentille divergente

Un objet virtuel de taille 1 cm est placé à 5 cm du centre optique d'une lentille divergente de 10 cm de distance focale.

- 1) Déterminer la position et la taille de l'image. Faire une construction géométrique.
- 2) Même question pour un objet virtuel situé à 20 cm.

Exercice 3 : Association de deux lentilles convergentes

Soit un système optique constitué de l'association de deux lentilles convergentes identiques de distance focale égale à 40 cm. Le centre optique O_1 de la première lentille L_1 est distant de 40 cm du centre optique O_2 de la deuxième lentille L_2 .

Soit un objet AB de 1 cm de taille situé à 30 cm derrière la première lentille sur l'axe optique.

- 1) Quelles sont la position et la taille de l'image intermédiaire A_1B_1 de l'objet AB par rapport à la première lentille.
- 2) Déterminer la position et la taille de l'image finale A₂B₂.
- 3) Faire une construction géométrique.

Exercice 4: Foyers d'un doublé de lentilles convergente et divergente

On considère un ensemble de deux lentilles, l'une convergente et l'autre divergente, de distance focales respectives f_1 et f_2 . La distance entres les centres optiques de ces lentilles est d telle que $d > f_1 + f_2$. Déterminer les foyers objet et image de cet ensemble.

Exercice 5: Foyers d'un doublé de lentilles

Un doublet est formé de deux lentilles convergentes de distance focales respectives $f_1 = 15$ cm et $f_2 = 10$ cm, les centres optiques des deux lentilles étant distants de 5 cm. Déterminer la position foyers image et objet.

Exercice 6: Lunette de Galilée

La lunette de Galilée est formée d'une lentille objective $((L_1): O_1, f_1 = 20 \text{ cm})$ et d'une lentille oculaire divergente ((L): O, f' < 0). Le foyer objet F de (L) coïncide avec le foyer image F_1 de (L_1) . La longueur $l = O_1O$ vaut 15 cm.

- 1) On pointe un objet AB de 2 cm à 30 cm devant l'objectif (utilisation en viseur).
 - **a.** Construite l'image A'B' de AB. Est-elle réelle ou virtuelle ?
 - **b.** Calculer la position OA' et la taille A'B' de l'image
 - **c.** Le grandissement de l'ensemble dépend-il de la position de AB ? On tracera un rayon issu de B et arrivant sur le système parallèlement à l'axe optique.
- 2) Cet appareil est destiné à voir des objets éloignés. Soit α le diamètre angulaire apparent d'un objet à l'infini et α ' celui de son image, calculer le grossissement G de cette lunette.

Travaux Dirigés d'Optique Géométrique Filière SMPC - Semestre 2 Corrigé de la série n° 3

Exercice 1 : Lentilles minces

1) a. construction graphique de l'image.

L'objet AB à 4 cm en avant du centre optique

L'objet AB à 2 cm en avant du centre optique

b. Objet réel à 4 cm.

$$\frac{1}{-} - \frac{1}{-} = \frac{1}{-} = > - \frac{1}{-} + \frac{1}{-} = \frac{1}{-} = > \overline{OA'} = +12 cm$$

$$OA' \quad OA \quad f \qquad -4 \quad OA' \quad 3$$

$$\gamma = \frac{\overline{A'B'}}{\underline{AB'}} = \frac{\overline{OA'}}{\underline{AB'}} = \frac{12}{\underline{AB'}} = -3$$

$$AB \qquad OA \qquad -4$$

L'image est 3 fois plus grande que l'objet (A'B'= 3x2 = 6 cm) et renversée.

Objet réel à 2 cm.
$$\frac{1}{\overline{OA'_1}} - \frac{1}{\overline{OA_1}} = \frac{1}{f'} = > -\frac{1}{-2} + \frac{1}{\overline{OA'_1}} = \frac{1}{3} = > \overline{OA'_1} = -6 \text{ cm}$$

(Image virtuelle)

Grandissement : $\gamma = +3$

L'image est 3 fois plus grande que l'objet (6 cm) et de même sens (image droite).

2) objet virtuel situé à 10 cm

$$\frac{1}{\overline{OA'_2}} - \frac{1}{\overline{OA_2}} = \frac{1}{f'} = > -\frac{1}{10} + \frac{1}{\overline{OA'_2}} = \frac{1}{3} = > \overline{OA'_2} = +2.3 \ cm \ (\text{Image réelle})$$

Grandissement : $\gamma \approx +0.23$

L'image est droite et a une taille d'environ 0,46 cm.

- 3) Distance focale f'= -3 cm<0: lentille divergente.
 - a. objet réel de taille 2 cm situé à 5 cm du centre optique..

$$\frac{1}{2} - \frac{1}{2} = \frac{1}{2} = -\frac{1}{2} = -$$

$$\gamma = \frac{A'B'}{\overline{AB}} = \frac{OA'}{\overline{OA}} = +0.375$$

L'image est plus grande que l'objet (A'B'= 0.75 cm) et droite.

b. Objet virtuel situé à 1,5 cm du centre optique.

Grandissement : $\gamma = +2$

L'image est 2 fois plus grande que l'objet (4 cm) et de même sens (image droite).

Objet virtuel situé à 5 cm du centre optique.

Grandissement : $\gamma = -1.5$: L'image est inversée et a une taille de 3 cm.

Exercice 2: Lentille divergente

1) objet virtuel de taille 1 cm placé à 5 cm du centre optique d'une lentille divergente de 10 cm de distance focale.

$$-\frac{1}{\overline{OA}} + \frac{1}{\overline{OA_1}} = \frac{1}{f'_{1}} = -\frac{1}{5} + \frac{1}{\overline{OA_1}} = \frac{1}{-10} = \overline{OA_1} = 10 \text{ cm}$$

(Image réelle)

Année universitaire 2019/2020

Taille de l'image A₁B₁

$$\gamma = \frac{\overline{A_1B_1}}{\overline{AB}} = \frac{\overline{OA_1}}{\overline{OA}} = \frac{10}{5} = 2 = > \overline{A_1B_1} = 2 cm$$

L'image est 2 fois plus grande que l'objet (2 cm) et de même sens (image droite).

Construction géométrique : image réelle

2) . Objet virtuel à 20 cm

$$-\frac{1}{\overline{OA}} + \frac{1}{\overline{OA_2}} = \frac{1}{f_1'} = > -\frac{1}{20} + \frac{1}{\overline{OA_2}} = \frac{1}{-10} = > \overline{OA_2} = -20 \text{ cm}$$

Taille de l'image A₂B₂

$$\gamma = \frac{\overline{A_2 B_2}}{\overline{AB}} = \frac{\overline{OA_2}}{\overline{OA}} = \frac{-20}{20} = -1 = > \overline{A_1 B_1} = -1 cm$$

Construction géométrique : image virtuelle

Exercice 3: Association de deux lentilles convergentes

Taille de l'image A₁B₁

$$\overline{A_1B_1} \quad \overline{O_1A_1} \quad \underline{17,14}$$

$$\gamma = \frac{}{\overline{AB}} = \frac{}{\overline{O_1A}} = \frac{}{30} = 0,57 => A_1B_1 = 0,57 cm$$

2) Position de l'image finale A₂B₂

$$\frac{\overline{O_2 A_1}}{\overline{O_2 A_1}} = \overline{O_2 O_1} + \overline{O_1 A_1} = -40 + 17,14 = -22,68cm$$

$$-\frac{1}{\overline{O_1 A_1}} + \frac{1}{\overline{O_1 A_1}} = \frac{1}{f'} = > -\frac{1}{-22,86} + \frac{1}{\overline{O_1 A_1}} = \frac{1}{40} = > \overline{O_2 A_2} = -53,35cm$$

$$\frac{2}{\overline{O_2 A_1}} = \overline{O_2 O_1} + \overline{O_1 A_1} = -40 + 17,14 = -22,68cm$$

$$\frac{1}{\overline{O_1 A_1}} + \frac{1}{\overline{O_1 A_1}} = \frac{1}{f'} = > -\frac{1}{-22,86} + \frac{1}{\overline{O_1 A_1}} = \frac{1}{40} = > \overline{O_2 A_2} = -53,35cm$$

Taille de l'image A_2B_2 A_2B_2

$$O_2A_2$$

$$\gamma = \frac{-53,}{35} = -\frac{-53,}{0A} = -22,86 = 2,33 = A_2B_2 = 1,33 cm$$

Année universitaire 2019/2020

3) Construction géométrique

Exercice 4: Foyers d'un doublé de lentilles convergente et divergente

Foyer objet F du doublet

F2 est l'image de F par rapport à L1

$$\frac{1}{OF} = \frac{1}{OF} \text{ avec } OF = OO + OF = d + f = d - f'$$

$$\frac{1}{OF} = \frac{1}{OF} =$$

Foyer image F' du doublet $F_{I} = F_{I} \qquad F_$

$$\frac{1}{O F'} = \frac{1}{O F'} \text{ avec } O F' = O O + O F' = -d + f'$$

$$\frac{1}{O F'} = \frac{1}{O F'} + \frac{1}{O F'} + \frac{1}{O F'} = \frac{1}{O F'} + \frac{1}{O F'} + \frac{1}{O F'} + \frac{1}{O F'} = \frac{1}{O F'} + \frac$$

Exercice 5: Foyers d'un doublé de lentilles

La construction géométrique du chemin des rayons à travers le doublet montre que :

F' est l'image de F'₁ à travers la lentille L₂

D'après la relation de Newton on peut écrire :
$$\bar{F}\bar{F}'$$
. \bar{F}' \bar{F}' $= -f'^2$ on a $\bar{\bar{F}}'$ $\bar{\bar{F}}'$ $= \bar{\bar{F}}'$ $\bar{\bar{O}}$ $= \bar{\bar{F}}'$ $\bar{\bar{O}}$ $= \bar{\bar{F}}'$ $= \bar{\bar{C}}'$ $= \bar{\bar{C}}'$

Le foyer image du doublet est donc situé à 5 cm en arrière de L₂.

F2 est l'image de F à travers la lentille L1

D'après la relation de Newton on peut écrire

on a
$$\vec{F}' = \vec{F} = \vec{F}' =$$

Le foyer objet du doublet est donc situé à 3.75 cm en avant de L₁.

Exercice 6: Lunette astronomique

1) a. En utilisant la notion d'image intermédiaire, on trace A₁B₁ telle que : $AB-(L_1) \rightarrow A_1B_1-(L_2) \rightarrow A'B'$ l'image finale A'B'.

Pour que F soit confondu avec F'_1 , il faut que

$$\bar{\bar{0}}\bar{\bar{F}}^{\dagger}=-\bar{\bar{0}}\bar{\bar{F}}=-\bar{\bar{0}}\bar{\sigma}_{\bar{1}}-\bar{\bar{0}}_{\bar{1}}\bar{\bar{F}}=15-20=-5cm$$

On remarque que l'mage est virtuelle.

b. Position de l'image A'B'

$$AB-(L_1) \rightarrow A_1B_1-(L_2) \rightarrow A'B'$$
.

Relation de conjugaison pour L_1 :

Année universitaire 2019/2020

$$\frac{1}{\frac{O(A)}{O(A)}} - \frac{1}{\frac{O(A)}{O(A)}} = \frac{1}{f'} = > \frac{1}{\frac{O(A)}{O(A)}} - \frac{1}{-30} = \frac{1}{20} = > \overline{O_1 A_1} = 60 cm$$

Relation de conjugaison pour L₂:

$$\frac{1}{OA'} \quad \frac{1}{OA_1} \quad \frac{1}{f} \quad \frac{f' \cdot \overline{OA_1}}{f' + OA_1}$$

On a
$$\bar{\bar{O}}\bar{A}_{\mathrm{T}} = \bar{\bar{O}}\bar{O}_{\mathrm{T}} + \bar{\bar{O}}_{\mathrm{T}}\bar{A}_{\mathrm{T}} = -15 + 60 = 45 \, cm$$

Donc $\overline{OA} = \frac{-5x45}{-5+45} = -5.6 \, cm$

c. Taille de l'image A'B'

$$A'B'$$
 $A'B'$ A_1B_1 OA' O_1A_1 -5.6 60
$$\gamma = \underline{\qquad} = \underline{\qquad} x \underline{\qquad} = \underline{\qquad} x \underline{\qquad} = 0.25 \Rightarrow A'B' = 0,5 cm$$
 AB A_1B_1 AB OA_1 O_1A 45 30

Image est donc droite et quatre fois plus petite que l'objet.

Comme le système est afocal, le grandissement de l'ensemble ne dépend pas de la position de l'objet AB (voir rayon partant de B et parallèle à l'axe optique).

2) On peut travailler sur le rayon passant par F_1 , I puis J pour définir α et α '.

Dans l'approximation de Gauss, $\tan \alpha = \frac{i\theta_1}{\underline{}} \approx \alpha$ et $\tan \alpha' = \frac{j\theta'}{\underline{}} \approx \alpha'$

$$\alpha' \quad fo \quad F_{11} \quad F_{1}^{I} f'$$
D'où le grossissement $G = \frac{1}{\alpha} = \frac{1}{f'O} x \frac{1}{IO_1} = \frac{1}{f'} = 4$