Završni ispit iz Matematike 2

26. lipnja 2014.

1. (5 bodova) Zadane su jednadžba $x^2+y^2+z^2-x-2y-e^z=0$ i točka T(2,1,0).

- (a) Dokažite da je u okolini točke T'(2,1) moguće definirati funkciju z=z(x,y) koja zadovoljava početnu jednadžbu i z(2,1)=0.
- (b) Izračunajte $\frac{\partial z}{\partial x}$ i $\frac{\partial z}{\partial y}$ u okolini točke T'.
- (c) Izračunajte $\frac{\partial^2 z}{\partial x^2}$ u okolini točke T'.
- 2. (5 bodova)
- (a) Zadana je funkcija $f: R \to R$, $f(x,y) = \sin(2x) + \cos y x + \frac{\sqrt{3}}{2}y$, uz $(x,y) \in [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}]$. Odredite d^2f u stacionarnoj točki zadane funkcije, te ispitajte njegovu definitnost.
- (b) Dokažite Sylvesterov kriterij za kvadratnu formu $Q(h, k) = ah^2 + 2bhk + ck^2$.
- 3. (5 bodova) Odredite točku T na paraboloidu $z=x^2+y^2$ koja je najbliža točki M(5,5,0).
- 4. (5 bodova) Nađite sve krivulje koje imaju svojstvo da je površina trapeza određenog pozitivnim dijelovima koordinatnih osi, tangentom na tu krivulju u točki $T_0(x_0, y_0), x_0, y_0 > 0$ i pravcem $x = x_0$, jednaka kvadratu ordinate dirališta.
- 5. (5 bodova)
- (a) Zadana je diferencijalna jednadžba P(x,y)dx+Q(x,y)dy=0. Da bi postojao Eulerov multiplikator $\mu=\varphi(xy)$ pokažite da mora biti

$$\frac{\varphi'(t)}{\varphi(t)} = \frac{Q_x' - P_y'}{xP - yQ},$$

pri čemu je desna strana funkcija od t = xy.

(b) Koristeći tvrdnju pod (a) odredite Eulerov multiplikator oblika $\mu = \varphi(xy)$ tako da jednadžba

$$(3x + \frac{y^2}{x})dx + (\frac{x^2}{y} + 3y)dy = 0$$

bude egzaktna, te riješite zadanu jednadžbu.

7. (5 bodova) Riješite Cauchyjev problem
$$y'' + y = \frac{1}{\cos^3 x}$$
, $y(0) = 1$, $y'(0) = 2$.

- 8. (5 bodova)
- (a) Definirajte determinantu Wronskoga za funkcije $y_1, ..., y_n \in C^{(n-1)}[a, b]$.
- (b) Ako su $y_1, ..., y_n$ rješenja homogene linearne diferencijalne jednadžbe n-tog reda, iskažite povezanost linearne nezavisnosti tog skupa funkcija i pripadne determinante Wronskoga.
- (c) Nadite opće rješenje homogene linearne diferencijalne jednadžbe

$$y''' + 2y'' + 3y' + 6y = 0,$$

te pokažite da su dobivena rješenja y_1, y_2, y_3 linearno nezavisna.

Vrijeme pisanja ispita je 120min.

Nije dozvoljena uporaba računala. Dozvoljena je isključivo uporaba službenih formula.

ZX ZX XXX