

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE MATEMÁTICA

1 / 3

Brasília, 24 de Maio de 2023.

1^a Avaliação de Geometria Riemanniana - 01/2023

Nome: Matrícula:

Questões	Nota
A	
B	
C	
D	

Prof. Tarcísio Castro Silva e-mail: tarcisio@mat.unb.br

Office: A1-433/12

ATENÇÃO:

A prova é individual e sem consulta. Haverá avaliação quanto à clareza, apresentação e formalização na resolução das questões da prova. A **nota** do aluno **poderá ser diminuída** em razão da inobservância desses parâmetros.

Este caderno de questões contém quatro grupos, A, B, C e D, onde cada grupo contém três questões. Escolha **uma única questão em cada grupo** e solucione. A prova vale, no máximo, 10 (dez) pontos.

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE MATEMÁTICA

GRUPO A

Questão A.1 (2.5 pts) Dada uma função diferenciável $f: U \to \mathbb{R}, U \subset \mathbb{R}^n$, o gráfico de f é definido como

$$G_f = \{(x, f(x)) \in \mathbb{R}^{n+1} : x \in U\}.$$

Prove que G_f é uma variedade diferenciável. Prove também que a aplicação projeção

$$\pi: G_f \to U, \quad \pi(x, f(x)) = x,$$

é um difeomorfismo.

Questão A.2 (2.5 pts) Prove que o círculo $S^1 = \{z \in \mathbb{C} : ||z|| = 1\}$ é um grupo de Lie abeliano sob a operação de multiplicação de números complexos.

Questão A.3 (2.5 pts) Sejam S^2 a esfera unitária e TS^2 o fibrado tangente de S^2 . Podemos afirmar que TS^2 é equivalente a $S^2 \times \mathbb{R}^2$? Isto é, são difeomórficos como variedades diferenciáveis?

GRUPO B

Questão B.1 (2.5 pts) Introduza uma métrica riemanniana no toro $T^2 = S^1 \times S^1$.

Questão B.2 (2.5 pts) Considere M_1 a imagem da parametrização $\phi:(0,+\infty)\times\mathbb{R}\to\mathbb{R}^3$ definida por

$$\phi(u, v) = (u\cos(v), u\sin(v), v),$$

e seja M_2 a imagem da parametrização $\psi:(0,+\infty)\times\mathbb{R}\to\mathbb{R}^3$ dada por

$$\psi(u, v) = (u \cos(v), u \sin(v), \log(u)).$$

Considere em M_1 e M_2 as métricas riemannianas induzidas pela métrica euclidiana de \mathbb{R}^3 . Mostre que a aplicação $f: M_1 \to M_2$ definida por $f(\phi(u, v)) = \psi(u, v)$ não é uma isometria local.

Questão B.3 (2.5 pts) Prove que as isometrias da esfera unitária $S^n \subset \mathbb{R}^{n+1}$, com a métrica

induzida, são as restrições a S^n das transformações lineares ortogonais de \mathbb{R}^{n+1} .

GRUPO C

Questão C.1 (2.5 pts) Considere a esféra unitária S^2 munida com a métrica riemanniana $g_{S^2} = dr^2 + sen^2(r) d\theta^2$, em coordenadas $(r, \theta) \in (0, \pi) \times (0, 2\pi)$. Determine a conexão, ∇ , de (S^2, g_{S^2}) e os correspondente símbolos de Christoffel.

Questão C.2 (2.5 pts) Prove que a conexão de Levi-Civita de (\mathbb{R}^n, g_0), onde g_0 é o produto escalar usual de \mathbb{R}^n , ou seja, a métrica euclidiana n-dimensional, é dada por $\nabla_X Y = dY(X)$, para quaisquer campos de vetores diferenciáveis X e Y.

Questão C.3 (2.5 pts) Se $S \subset \mathbb{R}^3$ é uma superfície regular e $\langle \cdot, \cdot \rangle$ é a métrica induzida em S pelo espaço euclidiano tridimensional, então, para cada $p \in S$, prove que

$$(\nabla_X Y)_p = dY_p(X_p) - \langle X_p, A_p Y_p \rangle_p N_p = (dY_p(X_p))^T,$$

onde N é a aplicação de Gauss local de S e $A_p=-dN_p$ o correspondente endomorfismo de Weingarten.

GRUPO D

Neste grupo, as Questões **D.1**, **D.2** e **D.3** consistem no desenvolvimento de uma mini-dissertação (no **máximo** 5 páginas) sobre o correspondente tópico apresentado nas mesmas. Esse texto será avaliado por sua capacidade de síntese, e serão observados os seguintes pontos: motivação (0,5); definição (0,5); pelo menos um resultado (0,5) sobre o tema (contendo uma ideia da demonstração (0,5)) e pelo menos um exemplo (0,5).

Questão D.1 (2.5 pts) Variedades diferenciáveis.

Questão D.2 (2.5 pts) Métricas riemannianas.

Questão D.3 (2.5 pts) Conexões riemannianas.

Prof. Tarcísio Castro Silva e-mail: tarcisio@mat.unb.br Office: A1-433/12