

Report on Back Propagation

Course Name: CSE-837 Machine Learning

Submitted by

Amran Hossain BSSE 0917

Submitted To

Dr. B. M. Mainul Hossain Associate professor Institute of Information Technology University of Dhaka

Submission date

27.01.2021

Contents

Problem Statement	3
Calculations	3
1st iteration	4
Forward Pass	4
Error Calculation:	4
Backward Pass	4
Adjusting 3rd year CGPA(w3):	4
Adjusting up to 3rd year CGPA(w4):	5
Adjusting bias SPL2(b2)	5
Adjusting 1st year CGPA(w1)	6
Adjusting 2 nd year CGPA (w2)	6
Adjusting bias SPL1(b1)	7
2 nd iteration	8
Forward Pass	8
Error Calculation:	8
Backward Pass	9
Adjusting 3rd year CGPA (w3)	9
Adjusting up to 3rd year CGPA (w4)	9
Adjusting bias SPL2(b2)	10
Adjusting 1st year CGPA (w1)	10
Adjusting 2 nd year CGPA(w2)	11
Adjusting bias SPL2(b1)	11

Back Propagation

Problem Statement:

Calculate the updated value for all parameters (weights and biases) two times using two iterations of back propagation

Calculations

Let,

Here i= iteration, b=bias, w=weight, o= output, h= hidden layer

Weight and bias	Expression	Value
1 st year CGPA	w1	3.56/4=0.89
2 nd year CGPA	w2	3.40/4=0.85
3 rd year CGPA	w3	3.46/4=0.87
upto 3 rd year CGPA	w4	0.852
SPL1	b1	3.5/4=0.88
SPL2	b2	3.75/4=0.9375

SSC CGPA = i1 = 1, HSC CGPA = i2=1

IIT = h, SPL3 = o1, BSSE CGPA = o2

Output,

$$Actual_{o1}=1, Actual_{o2}=1$$

Learning rate, $\eta = 0.01$

Here, all the values have been converted in the range of 0 to 1.

1st iteration

Forward Pass

neth/net_{IIT} = (SSC CGPA* 1st year CGPA + HSC CGPA*2nd year CGPA+SPL1*1)

$$= i\mathbf{1} * w\mathbf{1} + i\mathbf{2} * w\mathbf{2} + b\mathbf{1} * \mathbf{1} = (1 * 0.89) + (1 * 0.85) + (0.88 * 1) = 2.62$$

$$outh = \frac{1}{1 + e^{-neth}} = \frac{1}{1 + e^{-2.62}} = 0.932$$

$$net_{o1} = outh*w3 + b2*1 = 0.932*0.86 + 0.9375*1 = 1.73902$$

$$out_{o1} = \frac{1}{1 + e^{-\text{net}_{o1}}} = \frac{1}{1 + e^{-1.73902}} = 0.85$$

$$net_{02} = outh * w4 + b2 * 1 = 0.932 * 0.852 + 0.9375 * 1 = 1.73156$$

$$out_{o2} = \frac{1}{1 + e^{-\text{net}_{o2}}} = \frac{1}{1 + e^{-1.73156}} = 0.85$$

Error Calculation:

$$E_{\text{total}} = \Sigma (Actual output - Desired output)^2$$

$$= (Actualo1-outo1)2 + (Actualo2-outo2)2$$

$$=(1-0.85)^2+(1-0.85)^2$$

$$=0.045$$

Backward Pass

Adjusting 3rd year CGPA(w3):

Considering w3 to know how much a change in w3 affects the total error.

$$\frac{\partial E_{total}}{\partial w3} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w3}$$

Now,

$$\frac{\partial Etotal}{\partial outo1} = -2(Actualo1 - outo1) = -2(1 - 0.85) = -0.30$$

$$\frac{\partial \text{outo1}}{\partial \text{neto1}} = outo1(1 - outo1) = 0.85(1 - 0.85) = 0.1275$$

$$\frac{\partial \text{neto 1}}{\partial w^3} = outh = 0.932$$

So,

$$\frac{\partial Etotal}{\partial w^3}$$
 = (-0.30) *0.1275*0.932= -0.0356

So, we get,
$$w3 + = w3 - \eta * \frac{\partial Etotal}{\partial w3}$$

= 0.87 - 0.01*(-0.0356) = 0.8703

Adjusting up to 3rd year CGPA(w4):

Considering w4 to know how much a change in w4 affects the total error.

$$\frac{\partial Etotal}{\partial w4} = \frac{\partial Etotal}{\partial outo2} * \frac{\partial outo2}{\partial neto2} * \frac{\partial neto2}{\partial w4}$$

$$\frac{\partial Etotal}{\partial outo2} = -2 (Actual_{o2} - out_{o2}) = -2(1 - 0.85) = -0.30$$

$$\frac{\partial \text{outo } 2}{\partial \text{neto } 2} = out_{o2}(1 - out_{o2}) = 0.85(1 - 0.85) = 0.1275$$

$$\frac{\partial \text{neto2}}{\partial w^4} = out_h = 0.932$$

$$\frac{\partial Etotal}{\partial w4}$$
 = (-0.30) *0.1275*0.932= -0.0356

So, we get,
$$\mathbf{w}4+=\mathbf{w}4-\boldsymbol{\eta}*\frac{\partial E total}{\partial \mathbf{w}4}$$

= $0.852-0.01*(-0.0356)=0.8523$

Adjusting bias SPL2(b2)

Considering w4 to know how much a change in w4 affects the total error.

$$\frac{\partial Etotal}{\partial b2} = \frac{\partial Eo1}{\partial b2} + \frac{\partial Eo2}{\partial b2} = \left(\frac{\partial Eo1}{\partial outo1} * \frac{\partial outo1}{\partial neto1} * \frac{\partial neto1}{\partial b2}\right) + \left(\frac{\partial Eo2}{\partial outo2} * \frac{\partial outo2}{\partial neto2} * \frac{\partial neto2}{\partial b2}\right)$$

$$\frac{\partial Eo1}{\partial \text{outo1}} = -1$$

$$\frac{\partial Eo2}{\partial \text{outo2}} = -1$$

$$\frac{\partial \text{outo1}}{\partial \text{neto1}} = outo1(1 - outo1) = 0.85(1 - 0.85) = 0.1275$$

$$\frac{\partial \text{outo2}}{\partial \text{neto2}} = outo2(1 - outo2) = 0.1275$$

$$\frac{\partial \text{neto1}}{\partial b2} = 1$$

$$\frac{\partial \text{neto2}}{\partial b2} = 1$$

$$\frac{\partial Etotal}{\partial h^2} = -0.255$$

So, we get,
$$\mathbf{b2} + = \mathbf{b2} - \boldsymbol{\eta} * \frac{\partial E total}{\partial b2}$$

= 0.9375 - 0.01*(-0.255) = 0.8703 = 0.94005

Adjusting 1st year CGPA(w1)

Considering w1 to know how much a change in w1 affects the total error.

$$\frac{\partial E total}{\partial w1} = \frac{\partial E total}{\partial outh} * \frac{\partial outh}{\partial neth} * \frac{\partial neth}{\partial w1} = \left(\frac{\partial E o1}{\partial outh} + \frac{\partial E o2}{\partial outh}\right) * \frac{\partial outh}{\partial neth} * \frac{\partial neth}{\partial w1}$$

$$\frac{\partial E o1}{\partial outh} = \frac{\partial E o1}{\partial outo1} * \frac{\partial outo1}{\partial neto1} * \frac{\partial neto1}{\partial outh} = (-1) * 0.1275*w3 = -0.1275* 0.87 = -0.1089$$

$$\frac{\partial E o2}{\partial outh} = \frac{\partial E o2}{\partial outo2} * \frac{\partial outo2}{\partial neto2} * \frac{\partial neto2}{\partial outh} = (-1) * 0.1275*w4 = -0.1275*0.852 = -0.1086$$

$$\frac{\partial outh}{\partial neth} = outh (1 - outh) = 0.932*(1 - 0.932) = 0.063$$

$$\frac{\partial neth}{\partial w1} = iI = 1$$
Now,
$$\frac{\partial E total}{\partial w1} = -0.0137$$

So, we get,
$$\mathbf{w1} + = \mathbf{w1} - \boldsymbol{\eta} * \frac{\partial E total}{\partial w \mathbf{1}}$$

= $0.89 - 0.01*(-0.0137) = 0.890137$

Adjusting 2nd year CGPA (w2)

Considering w2 to know how much a change in w2 affects the total error.

$$\frac{\partial Etotal}{\partial w^2} = \frac{\partial Etotal}{\partial outh} * \frac{\partial outh}{\partial neth} * \frac{\partial neth}{\partial w^2} = \left(\frac{\partial Eo1}{\partial outh} + \frac{\partial Eo2}{\partial outh}\right) * \frac{\partial outh}{\partial neth} * \frac{\partial neth}{\partial w^2}$$

$$\frac{\partial Eo1}{\partial \text{outh}} = \frac{\partial Eo1}{\partial \text{outo1}} * \frac{\partial \text{outo1}}{\partial \text{neto1}} * \frac{\partial \text{neto1}}{\partial \text{outh}} = (-1) *0.1275*w3 = -0.1275* 0.87 = -0.1089$$

$$\frac{\partial Eo2}{\partial \text{outh}} = \frac{\partial Eo2}{\partial \text{outo2}} * \frac{\partial \text{outo2}}{\partial \text{neto2}} * \frac{\partial \text{neto2}}{\partial \text{outh}} = (-1) *0.1275*w4 = -0.1275*0.852 = -0.1086$$

$$\frac{\partial \text{outh}}{\partial \text{neth}} = outh (1 - outh) = 0.932*(1-0.932) = 0.063$$

$$\frac{\partial \text{neth}}{\partial w2} = i2 = 1$$

$$\text{Now},$$

$$\frac{\partial E total}{\partial w2} = -0.0137$$

So, we get, **w2**+ =w2-
$$\eta * \frac{\partial E total}{\partial w2}$$

= 0.85 - 0.01*(-0.0137) = 0.850137

Adjusting bias SPL1(b1)

Considering b1 to know how much a change in b1 affects the total error.

$$\frac{\partial E total}{\partial b1} = \frac{\partial E total}{\partial outh} * \frac{\partial outh}{\partial neth} * \frac{\partial neth}{\partial b1} = \left(\frac{\partial E o1}{\partial outh} + \frac{\partial E o2}{\partial outh}\right) * \frac{\partial outh}{\partial neth} * \frac{\partial neth}{\partial b1}$$

$$\frac{\partial E o1}{\partial outh} = \frac{\partial E o1}{\partial outo1} * \frac{\partial outo1}{\partial neto1} * \frac{\partial neto1}{\partial outh} = (-1) * 0.1275*w3 = -0.1275* 0.87 = -0.1089$$

$$\frac{\partial E o2}{\partial outh} = \frac{\partial E o2}{\partial outo2} * \frac{\partial outo2}{\partial neto2} * \frac{\partial neto2}{\partial outh} = (-1) * 0.1275*w4 = -0.1275*0.852 = -0.1086$$

$$\frac{\partial outh}{\partial neth} = outh (1 - outh) = 0.932*(1-0.932) = 0.063$$

$$\frac{\partial neth}{\partial b1} = 1$$
Now,
$$\frac{\partial E total}{\partial b1} = -0.0137$$

So, we get, **b1**+ =b1-
$$\eta * \frac{\partial Etotal}{\partial b1}$$

= 0.88- 0.01*(-0.0137) = 0.880137

After 1st iteration adjusted values are –

Weight and bias	Expression	Value
1st year CGPA	w1	0.890137
2 nd year CGPA	w2	0.850137
3 rd year CGPA	w3	0.8703
upto 3 rd year CGPA	w4	0.8523
SPL1	b1	0.880137
SPL2	b2	0.94005

SSC CGPA =
$$i1 = 1$$
, HSC CGPA = $i2 = 1$,

IIT =
$$h$$
, SPL3 = $o1$, BSSE CGPA = $o2$

$$Actual_{o1} = 1, Actual_{o2} = 1$$

Learning rate, $\eta = 0.01$

These values will be used to adjust the weights and biases for 2nd iteration.

2nd iteration

Forward Pass

neth = (SSC CGPA* 1st year CGPA + HSC CGPA*2nd year CGPA+SPL1*1)

$$= i\mathbf{1} * w\mathbf{1} + i\mathbf{2} * w\mathbf{2} + b\mathbf{1} * \mathbf{1} = (1 * 0.890137) + (1 * 0.850137) + (0.880137 * 1) = 2.6204$$

$$outh = \frac{1}{1 + e^{-neth}} = \frac{1}{1 + e^{-2.6204}} = 0.932163$$

$$neto1 = outh * w3 + b2 * 1 = 0.932 * 0.8703 + 0.94005 * 1 = 1.7513$$

$$out_{o1} = \frac{1}{1 + e^{-\text{net}_{o1}}} = \frac{1}{1 + e^{-1.7513}} = 0.852$$

$$net_{02} = outh*w4 + b2*1 = 0.8523*0.852+0.94005*1 = 1.67$$

$$out_{o2} = \frac{1}{1 + e^{-\text{net}_{o2}}} = \frac{1}{1 + e^{-1.67}} = 0.84$$

Error Calculation:

$$E_{total} = \Sigma (Actual \textit{output} - Desired \textit{output})^2$$

$$= (Actual_{o1}\text{-}out_{o1})^2 + (Actual_{o2}\text{-}out_{o2})^2$$

$$=(1-0.852)^2+(1-0.84)^2$$

=0.0475

Backward Pass

Adjusting 3rd year CGPA (w3)

Considering w3 to know how much a change in w3 affects the total error.

$$\frac{\partial E total}{\partial w3} = \frac{\partial E total}{\partial outo1} * \frac{\partial outo1}{\partial neto1} * \frac{\partial neto1}{\partial w3}$$

Now,

$$\frac{\partial Etotal}{\partial outo1} = -2(Actualo1 - outo1) = -2(1 - 0.852) = -0.30$$

$$\frac{\partial \text{outo1}}{\partial \text{neto1}} = outo1(1 - outo1) = 0.852(1 - 0.852) = 0.1261$$

$$\frac{\partial \text{neto 1}}{\partial w3} = outh = 0.932163$$

So,

$$\frac{\partial Etotal}{\partial w^3}$$
 = (-0.30) *0.1261*0.932163= -0.0353

So, we get,
$$w3 + = w3 - \eta * \frac{\partial E total}{\partial w3}$$

= $0.8703 - 0.01*(-0.0353) = 0.8707$

Adjusting up to 3rd year CGPA (w4)

Considering w4 to know how much a change in w4 affects the total error.

$$\frac{\partial Etotal}{\partial w4} = \frac{\partial Etotal}{\partial outo2} * \frac{\partial outo2}{\partial neto2} * \frac{\partial neto2}{\partial w4}$$

$$\frac{\partial Etotal}{\partial outo2} = -2 (Actual o2 - outo2) = -2(1 - 0.84) = -0.32$$

$$\frac{\text{douto2}}{\text{dneto2}} = outo2(1 - outo2) = 0.84(1 - 0.84) = 0.1344$$

$$\frac{\partial \text{neto 2}}{\partial w4} = outh = 0.932163$$

$$\frac{\partial Etotal}{\partial w^4}$$
 = (-0.32) *0.1344*0.932153= -0.0401

So, we get,
$$\mathbf{w}4 + \mathbf{w}4 - \mathbf{\eta} * \frac{\partial E total}{\partial \mathbf{w}4}$$

= $0.8523 - 0.01*(-0.0401) = 0.8527$

Adjusting bias SPL2(b2)

Considering wb2 to know how much a change in b2 affects the total error.

$$\frac{\partial Etotal}{\partial b2} = \frac{\partial Eo1}{\partial b2} + \frac{\partial Eo2}{\partial b2} = \left(\frac{\partial Eo1}{\partial outo1} * \frac{\partial outo1}{\partial neto1} * \frac{\partial neto1}{\partial b2}\right) + \left(\frac{\partial Eo2}{\partial outo2} * \frac{\partial outo2}{\partial neto2} * \frac{\partial neto2}{\partial b2}\right)$$

$$\frac{\partial Eo1}{\partial \text{outo1}} = -1$$

$$\frac{\partial Eo2}{\partial \text{outo2}} = -1$$

$$\frac{\partial \text{outo1}}{\partial \text{neto1}} = outo1(1 - outo1) = 0.1261$$

$$\frac{\partial \text{outo2}}{\partial \text{neto2}} = outo2(1 - outo2) = 0.1344$$

$$\frac{\partial \text{neto1}}{\partial b2} = 1$$

$$\frac{\partial \text{neto2}}{\partial b2} = 1$$

$$\frac{\partial Etotal}{\partial b2} = -0.2605$$

So, we get,
$$\mathbf{b2} + = \mathbf{b2} - \boldsymbol{\eta} * \frac{\partial Etotal}{\partial b2}$$

= $0.94005 - 0.01*(-0.2605) = 0.94266$

Adjusting 1st year CGPA (w1)

Considering w1 to know how much a change in w1 affects the total error.

$$\frac{\partial E total}{\partial w1} = \frac{\partial E total}{\partial outh} * \frac{\partial outh}{\partial neth} * \frac{\partial neth}{\partial w1} = \left(\frac{\partial E o1}{\partial outh} + \frac{\partial E o2}{\partial outh}\right) * \frac{\partial outh}{\partial neth} * \frac{\partial neth}{\partial w1}$$

$$\frac{\partial E o1}{\partial outh} = \frac{\partial E o1}{\partial outo1} * \frac{\partial outo1}{\partial neto1} * \frac{\partial neto1}{\partial outh} = (-1) * 0.1261*w3 = -0.1261* 0.8703 = -0.1097$$

$$\frac{\partial E o2}{\partial outh} = \frac{\partial E o2}{\partial outo2} * \frac{\partial outo2}{\partial neto2} * \frac{\partial neto2}{\partial outh} = (-1) * 0.1344*w4 = -0.1344*0.8523 = -0.1145$$

$$\frac{\partial outh}{\partial neth} = outh (1 - outh) = 0.932*(1 - 0.932) = 0.063$$

$$\frac{\partial neth}{\partial w1} = i1 = 1$$
Now,
$$\frac{\partial E total}{\partial w1} = -0.0141$$

So, we get,
$$\mathbf{w1}$$
+ =w1- $\boldsymbol{\eta} * \frac{\partial Etotal}{\partial w1}$
= 0. 890137- 0.01*(-0.0141) = 0.8903

Adjusting 2nd year CGPA(w2)

Considering w2 to know how much a change in w2 affects the total error.

$$\frac{\partial E total}{\partial w2} = \frac{\partial E total}{\partial \text{outh}} * \frac{\partial \text{outh}}{\partial \text{neth}} * \frac{\partial \text{neth}}{\partial w2} = \left(\frac{\partial E o 1}{\partial \text{outh}} + \frac{\partial E o 2}{\partial \text{outh}}\right) * \frac{\partial \text{outh}}{\partial \text{neth}} * \frac{\partial \text{neth}}{\partial w2}$$

$$\frac{\partial E o 1}{\partial \text{outh}} = \frac{\partial E o 1}{\partial \text{outo}1} * \frac{\partial \text{outo}1}{\partial \text{neto}1} * \frac{\partial \text{neto}1}{\partial \text{outh}} = (-1) * 0.1261*w3 = -0.1261* 0.8703 = -0.1097$$

$$\frac{\partial E o 2}{\partial \text{outh}} = \frac{\partial E o 2}{\partial \text{outo}2} * \frac{\partial \text{outo}2}{\partial \text{neto}2} * \frac{\partial \text{neto}2}{\partial \text{outh}} = (-1) * 0.1344*w4 = -0.1344*0.8523 = -0.1145$$

$$\frac{\partial \text{outh}}{\partial \text{neth}} = outh (1 - outh) = 0.932*(1 - 0.932) = 0.063$$

$$\frac{\partial \text{neth}}{\partial w2} = i2 = 1$$

$$\text{Now},$$

$$\frac{\partial E total}{\partial w2} = -0.0141$$

So, we get,
$$\mathbf{w2}$$
+ =w2- $\boldsymbol{\eta} * \frac{\partial E total}{\partial w2}$
= 0.850137- 0.01*(-0.0141) = 0.8503

Adjusting bias SPL2(b1)

Considering b1 to know how much a change in b1 affects the total error.

$$\frac{\partial E total}{\partial b1} = \frac{\partial E total}{\partial outh} * \frac{\partial outh}{\partial neth} * \frac{\partial neth}{\partial b1} = \left(\frac{\partial E o1}{\partial outh} + \frac{\partial E o2}{\partial outh}\right) * \frac{\partial outh}{\partial neth} * \frac{\partial neth}{\partial b1}$$

$$\frac{\partial E o1}{\partial outh} = \frac{\partial E o1}{\partial outo1} * \frac{\partial outo1}{\partial neto1} * \frac{\partial neto1}{\partial outh} = (-1) * 0.1261*w3 = -0.1261* 0.8703 = -0.1097$$

$$\frac{\partial E o2}{\partial outh} = \frac{\partial E o2}{\partial outo2} * \frac{\partial outo2}{\partial neto2} * \frac{\partial neto2}{\partial outh} = (-1) * 0.1344*w4 = -0.1344*0.8523 = -0.1145$$

$$\frac{\partial outh}{\partial neth} = outh (1 - outh) = 0.932*(1-0.932) = 0.063$$

$$\frac{\partial neth}{\partial b1} = 1$$

$$\frac{\partial Etotal}{\partial b1} = -0.0141$$

So, we get, **b1**+ =b1-
$$\eta * \frac{\partial Etotal}{\partial b1}$$

= 0.880137- 0.01*(-0.0141) = 0.8803

After 2nd iteration adjusted values are -

Weight and bias	Expression	Value	
1st year CGPA	w1	0.8903	
2 nd year CGPA	w2	0.8503	
3 rd year CGPA	w3	0.8707	
upto 3 rd year CGPA	w4	0.8527	
SPL1	b1	0.8803	
SPL2	b2	0.9427	