

Aprendizaje Estadístico Alfredo Garbuño

Primer examen parcial

Equipo: Carlos Lezama Jorge Rizo Alejandro Chávez

Índice general

1.	Parte teórica																1													
	1.1.	Proble	Problema 1]											
	1.2.	Proble	ema	. 2																										Ş
		1.2.1.	a																											S
		1.2.2.	b																											3
p;	hlion	rafía																												,
Bibliografía															-															

Capítulo 1

Parte teórica

1.1. Problema 1

Sabemos que una función convexa f es β -suave si satisface que $f(v) \leq f(w) + \langle \Delta f(w), v - w \rangle + \frac{\beta}{2} \|v - w\|^2$, $\forall v, w \in D_f$.

Sean:

- A un algoritmo de aprendizaje.
- $S(\sim D^m) = (z_1, \dots, z_m).$
- $S^{(i)}=(z_1,\ldots,z_i,z',z_{i+1},\ldots,z_m)$ con z' independiente de los anteriores y $z'\sim D^m$.
- $\ell(\cdot, z_i)$ una función de pérdida.

Tenemos, pues, lo siguiente:

$$\ell(A(S^{(i)}), z_i) \leq \ell(A(S), z_i) + \langle \Delta \ell(A(S), z_i), A(S^{(i)}) - A(S) \rangle + \frac{\beta}{2} ||A(S^{(i)}) - A(S)||^2$$

$$\Leftrightarrow \ell(A(S^{(i)}), z_i) - \ell(A(S), z_i) \leq \langle \Delta \ell(A(S), z_i), A(S^{(i)}) - A(S) \rangle + \frac{\beta}{2} ||A(S^{(i)}) - A(S)||^2$$

$$\leq ||\Delta \ell(A(S), z_i), A(S^{(i)}) - A(S)|||A(S^{(i)}) - A(S)|| + \frac{\beta}{2} ||A(S^{(i)}) - A(S)||^2$$

$$\leq ||A(S^{(i)}) - A(S)||\sqrt{2\beta\ell(A(S^{(i)}), z_i)} + \frac{\beta}{2} ||A(S^{(i)}) - A(S)||^2$$

Dada la simetría de cada $z_i \in (S \cup S^{(i)})$ i
id, se cumple para $\ell(\cdot, z_i)$ que:

$$\ell(A(S^{(i)}), z_i) - \ell(A(S^i), z_i) \le ||A(S) - A(S^{(i)})||\sqrt{2\beta\ell(A(S^{(i)}), z_i)} + \frac{\beta}{2}||A(S) - A(S^{(i)})||^2$$

De la demostración del lema sobre convexidad fuerte (vista en clase), sabemos que:

$$\lambda \|A(S^{(i)}) - A(S)\|^2 \le \frac{\ell(A(S^{(i)}), z_i) - \ell(A(S), z_i)}{m} + \frac{\ell(A(S), z') - \ell(A(S^{(i)}), z')}{m}$$

$$\Rightarrow \lambda \|A(S^{(i)}) - A(S)\| \le \frac{1}{m} \left(\|A(S^{(i)}) - A(S)\| \sqrt{2\beta\ell(A(S), z_i)} + \frac{\beta}{2} \|A(S^{(i)}) - A(S)\|^2 + \|A(S^{(i)}) - A(S)\| \sqrt{2\beta\ell(A(S), z')} + \frac{\beta}{2} \|A(S^{(i)}) - A(S)\|^2 \right)$$

$$\Rightarrow \|A(S^{(i)}) - A(S)\| \le \frac{1}{\lambda m} \left(\sqrt{2\beta} \left(\sqrt{\ell(A(S), z_i)} + \sqrt{\ell(A(S^{(i)}), z')} \right) + \beta \|A(S^{(i)}) - A(S)\|^2 \right)$$

$$\Rightarrow \|A(S^{(i)}) - A(S)\| \left(1 - \frac{1}{\lambda m} \right) \le \frac{\sqrt{2\beta}}{\lambda m} \left(\sqrt{\ell(A(S), z_i)} + \sqrt{\ell(A(S^{(i)}), z')} \right)$$

$$\Rightarrow \|A(S^{(i)}) - A(S)\| \le \frac{\lambda m \sqrt{2\beta}}{\lambda m (\lambda m - \beta)} \left(\sqrt{\ell(A(S), z_i)} + \sqrt{\ell(A(S^{(i)}), z')} \right)$$

Si asumimos que $\lambda \geq \frac{2\beta}{m}$, tenemos que:

$$||A(S^{(i)}) - A(S)|| \le \frac{\sqrt{8\beta}}{\lambda m} \left(\sqrt{\ell(A(S), z_i)} + \sqrt{\ell(A(S^{(i)}), z')} \right)$$

Así pues,

$$\ell(A(S^{(i)}), z_i) - \ell(A(S), z_i) \leq ||A(S^{(i)}) - A(S)|| \sqrt{2\beta\ell(A(S^{(i)}), z_i)} + \frac{\beta}{2} ||A(S^{(i)}) - A(S)||^2$$

$$\leq \left(\frac{4\beta}{\lambda m} + \frac{8\beta^2}{\lambda^2 m^2}\right) \left(\sqrt{\ell(A(S), z_i)} + \sqrt{\ell(A(S^{(i)}), z')}\right)^2$$

$$\leq \frac{8\beta}{\lambda m} \left(\sqrt{\ell(A(S), z_i)} + \sqrt{\ell(A(S^{(i)}), z')}\right)^2$$

$$\leq \frac{24\beta}{\lambda m} \left(\ell(A(S), z_i) + \ell(A(S^{(i)}), z')\right)$$

Podemos entonces acotar el error de generalización para $\lambda \geq \frac{2\beta}{m}$ como sigue:

$$\mathbb{E}(\ell(A(S^{(i)}), z_i) - \ell(A(S), z_i)) \le \frac{24\beta}{\lambda m} \mathbb{E}\left((\ell(A(S), z_i) + \ell(A(S^{(i)}), z'))\right)$$
$$= \frac{48\beta}{\lambda m} \mathbb{E}\left(L_S(A(S))\right)$$

Tenemos el siguiente teorema de clase:

Teorema 1. Supongamos que D es una distribución. Sea $S(\sim D^m) = (z_1, \ldots, z_m)$, y sea $z' \sim D^m$ una observación independiente. Denotamos como U(m) a la distribución uniforme en el conjunto de índices $\{1, \ldots, m\}$. Entonces

$$\mathbb{E}_{S}(L_{D}(A(S)) - L_{S}(A(S))) = \mathbb{E}_{\substack{S \sim D^{m} \\ i \sim U(m)}}(\ell(A(S^{(i)})), z_{i}) - \ell(A(S)), z_{i}))$$

Por lo tanto, juntando el teorema con la última ecuación, tenemos que

$$\mathbb{E}_{\substack{S \sim D^m \\ i \sim U(m)}} (L_D(A(S)) - L_S(A(S))) \le \frac{48\beta}{\lambda m} \mathbb{E} (L_S(A(S)))$$

•

1.2. Problema 2

1.2.1. a

Al asumir $\ell(0,z) \leq C$ con C > 0, $\forall z \sim D$, tenemos que:

$$L_S(A(S)) \le L_S(A(S)) + \lambda ||A(S)||^2$$

$$\le L_S(0)\lambda ||0||^2$$

$$= L_S(0)$$

$$< C$$

Concluimos que

$$\mathbb{E}_{\substack{S \sim D^m \\ i \sim U(m)}} (L_D(A(S)) L_S(A(S))) \le \frac{48\beta}{\lambda m} C$$

1.2.2. b

Dada la propiedad de linealidad del valor esperado, podemos reescribir el riesgo esperado de un algoritmo de aprendizaje como sigue: $\mathbb{E}_S(L_D(A(S))) = \mathbb{E}_S(L_S(A(S))) + \mathbb{E}_S(L_D(A(S)) - L_S(A(S)))$. De eso, sabemos que $\mathbb{E}_S(L_D(A(S)) - L_S(A(S)))$ denota nuestro error de generalización o estabilidad del algoritmo; y $\mathbb{E}_S(L_D(A(S)))$, nuestro error de ajuste. Nótese que todo eso concuerda con que "a mayor regularización, mejor estabilidad, pero mayor sesgo" [1]

Antes acotamos superiormente la estabilidad de un algoritmo en aprendizaje bajo el principio de ERM con regularizador $\lambda ||w||^2$.

Con el fin de acotar el riesgo esperado, podemos utilizar el enfoque de aprendizaje no-uniforme tal que, siguiendo el principio inductivo de minimización de riesgo estructural (SRM), busquemos el predictor que minimice $L_D(A(S)) \leq L_S(h) + \epsilon$.

Sabemos que $L_D(A(S)) \le L_S(h) + \lambda ||A(S)||^2 \le L_S(u) + \lambda ||u||^2$, con u un vector arbitrario. Nota: por el principio de RLM, $A(S) = \arg\min(L_S(u)\lambda ||u||^2)$.

Es fácil ver que $\mathbb{E}_S(L_D(A(S))) \leq L_D(u) + \lambda ||u||^2$. Para $\mathbb{E}_S(L_S(A(w))) = L_D(w)$, sustituyendo en x, tenemos $\mathbb{E}_S(L_D(A(S))) \leq L_D(u) + \lambda ||u||^2 + \mathbb{E}_S(L_D(A(S))) - L_S(h)$. Para nuestro caso de estudio con una función convexa β -suave, tenemos que para $\lambda \geq \frac{2\beta}{m}$:

$$\mathbb{E}_{S}(L_{D}(A(S))) \leq \left(1 + \frac{48\beta}{\lambda m}\right) \mathbb{E}_{S}(L_{S}(A(S))) \leq \left(1 + \frac{48\beta}{\lambda m}\right) (L_{D}(w) + \lambda ||w||^{2}$$

Es fácil ver que podemos llegar a un resultado similar, acotando el riesgo esperado a través del principio de SRM.

Bibliografía

[1] Goodfellow, Ian and Bengio, Yoshua and Courville, Aaron. *Deep Learning*. MIT Press, Reading, Cambridge, 2017, p. 107-117