

PCT

WORLD NTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 221/02, 471/02, 491/02, 498/02, 211/70, 211/72, 211/82, 211/84, 213/62, 213/54, 213/44, 237/26, 237/28, 487/00, 401/00, 403/00, 239/02, 241/36, 471/00, 241/02, 257/00, 249/12, 231/10, 209/48, 209/38, C07C 211/00, 215/00, A01N 43/36, 43/38, 43/40, 43/42, 43/54, 43/58, 43/60, 43/64, 43/653

(11) International Publication Number:

WO 99/21837

(43) International Publication Date:

6 May 1999 (06.05.99)

(21) International Application Number:

PCT/US98/17197

A1

(22) International Filing Date:

21 August 1998 (21.08.98)

(30) Priority Data:

08/958.313

27 October 1997 (27.10.97) US

(US). TSUKAMOTO, Masamitsu [JP/US]; Apartment H-13, 1428 Golden Gate Boulevard, Mayfield Heights, OH 44124 (US). PULMAN, David, A. [GB/US]; Apartment E-5, 8120 Deepwood Boulevard, Mentor, OH 44060 (US). YING, Bai-Ping [CN/US]; 9778 Maidstone Drive, Mentor, OH 44060 (US). WU, Shao-Yong [CN/US]; Apartment 114-B, 28245 Bishop Park Drive, Willoughby Hills, OH 44092 (US).

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application

US Filed on 08/958,313 (CIP) 27 October 1997 (27.10.97)

(71) Applicant (for all designated States except US): ISK AMERICAS INCORPORATED [US/US]; 7474 Auburn Road, P.O.Box 759, Concord, OH 44077-0759 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GUPTA, Sandeep [IN/US]; 8050 Carriage Hills Drive, Concord, OH 44060

- (74) Agents: GUBINSKY, Louis et al.; Sughrue, Mion, Zinn, MacPeak & Seas, Suite 800, 2100 Pennsylvania Avenue, N.W., Washington, DC 20037-3202 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: SUBSTITUTED BENZENE COMPOUNDS, PROCESS FOR THEIR PREPARATION, AND HERBICIDAL AND DEFO-LIANT COMPOSITIONS CONTAINING THEM

$$X \downarrow Y Q \qquad (1)$$

(57) Abstract

Novel herbicidal and defoliant substituted aniline derived compounds represented by general structure (I) are described. W, X, Y, Z, and Q are as defined in the disclosure. Also described are the processes for the manufacture of these compounds and agriculturally suitable compositions containing these as active ingredients which are useful as herbicides for general or selective pre-emergent or post-emergent control of undesired plant species and defoliants at very low concentrations of these biologically active compounds.

W. A.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ľT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

.

5

10

15

20

25

30

SUBSTITUTED BENZENE COMPOUNDS, PROCESS FOR THEIR PREPARATION, AND HERBICIDAL AND DEFOLIANT COMPOSITIONS CONTAINING THEM

The present invention relates to substituted benzene compounds, process for their preparation, and herbicidal and defoliant compositions containing them.

BACKGROUND OF THE INVENTION

Use of uracils as herbicides has previously been reported. For example, US patents 4859229 and 4746352 describe 3-phenyl uracil derivatives as herbicides. However the phenyl ring in the described compounds carry only four substituents. US patent 4927451 describes herbicidal compounds carrying five substituents on the phenyl ring with a dihydrouracil ring. EP patent 0705829 describes uracil herbicides carrying pentasubstituted phenyl ring with a carbon linked substituent at position 2 of the phenyl ring. US patents 5346881, 5441925, 5169431, 5476834, 5602077, and WO patents 97/08170, 08171, 12886 and 42188 describe uracil herbicides carrying a fused pentasubstituted phenyl ring where the 2 position of the phenyl ring is substituted either with a carbon, oxygen or nitrogen. US patents 5116404 and JP patent 05025144 describe uracil compounds with a 3-phenyl group which may be pentasubstituted but none of these patents appears to make obvious the compounds of the present invention which carry a nitrogen linked substituent at position 2 of the phenyl ring alongwith substituents at positions 3, 4, and 6 and there appears to be no indication as to the criticality of the substitution pattern of the phenyl moiety in order to introduce the high herbicidal activity in combination with selectivity towards crops. Similarly use of pyrazole, tetrahydrophthalimide, triazolinone, tetrazolinone, and triazolidine derivatives as herbicides has been described before such as US patents 5281571, 4881967, 5084085, WO patent 85/01939, and Japanese patent 1-121290 respectively. Pyridazinones, pyridyls, bicyclic hydantoins, phthalimides, pyrimidinones, pyrazinones, and pyridinones have also been described as herbicides such as WO patents 97/07104, 95/02580, 95/23509, EP patent 0786453, WO patents 97/06150, 97/11060, and 97/28127. However, despite the broad coverage of these patents, the general structure of the present invention has not been described.

SUMMARY OF THE INVENTION

This invention delineates a method for the control of undesired vegetation in a plantation crop by the application to the locus of the crop an effective amount of a compound described herein. The herbicidal and defoliant compounds of the present invention are described by the following general formula I or its salts:

10

15

wherein X is hydrogen, halogen, nitro, amino, NHR, N(R)₂, amide, thioamide, cyano, alkylcarbonyl, alkoxycarbonyl, alkylsulfonamide, unsubstituted or substituted alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonylalkoxy, benzyloxy, aryloxy, or heteroaryloxy;

Y is hydrogen, halogen, or nitro;

W is hydrogen, OR, SR, NHR, N(R)₂, CH₂R, CH(R)₂, or C(R)₃, halogen, nitro, or cyano, where multiple R groups represent any possible combination of substituents described by R; R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, aryloxy, heteroaryloxy, alkylsulfonyl, benzyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, carboxyl; alkyl, haloalkyl, alkylsilyl, alkylcarbonyl, haloalkylcarbonyl, alkoxy, alkoxycarbonyl, haloalkoxy, haloalkoxycarbonyl, alkylsulfonyl, haloalkylsulfonyl, aryl, heteroaryl, or cycloalkyl;

Q is a heterocycle, examples of which are as follows:

wherein R₁ is hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, amino, alkoxyalkyl, acetyl, alkoxycarbonylamino, alkylcarbonylamino, or alkoxycarbonyl;

R₂ is alkyl or haloalkyl;

5

10

15

20

R₁ and R₂ could combine to form a five- or six-membered heterocyclic ring;

R₃ is hydrogen, halogen, nitro, amino, alkylamino, haloalkylamino, cyano, or amide;

R₈ and R₉ are independently oxygen, sulfur, or imino group;

Q6, Q7, and Q10 may optionally be unsaturated containing one or two double bonds in the 6-membered ring;

Z is amino, hydroxyl, thiol, formyl, carboxyl, cyano, alkylcarbonyl, arylcarbonyl, azido, or one of the following:

$$-N_{R_{5}}^{R_{4}}$$

wherein R₄ is alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, aryl-thiocarbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxycarbonylcarbonyl or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkynyloxycarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio,

1.

5

10

15

20

25

30

*** * *

heteroaryl, heteroaryloxycarbonyl or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; and R_5 is hydrogen or any one of the groups represented by R_4 ; or R_4 and R_5 could combine to form a 4-8 membered heterocyclic ring;

$$-N = \begin{pmatrix} R_6 \\ R_7 \end{pmatrix}$$

wherein R₆ represents alkyl, haloalkyl, dialkylamino, unsubstituted or substituted aryl and heteroaryl; and R₇ represents hydrogen, halogen or any of the groups represented by R₆;

wherein R_{10} is carboxyl, alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, arylthiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxycarbonylcarbonyl or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; provided that (1) Z is not alkyl, alkoxy, haloalkyl, haloalkoxy, alkylthio, haloalkylthio, alkenyl, haloalkenyl, amino, monoalkylamino, dialkylamino, alkoxyalkoxy or cyano, when Q is Q1 and R2 is haloalkyl,

(2) Z is not amino when Q is Q3, and

5

10

15

20

25

(3) Z is not hydroxyl, alkoxy, alkenyloxy, alkynyloxy, haloalkoxy, haloalkenyloxy, or -NR₄R₅, wherein R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, alkylsulfonyl, alkylcarbonyl, or cycloalkylalkyl, and R₅ is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkenyl, alkylcarbonyl, alkoxycarbonyl, or cycloalkylalkyl, when Q is Q14 or Q15.

DETAILED DESCRIPTION OF THE INVENTION

In the above definitions, the term alkyl used either alone or in compound words such as haloalkyl indicates either straight chain or branched alkyls containing 1-8 carbon atoms. Alkenyl and alkynyl include straight chain or branched alkenes and alkynes respectively containing 2-8 carbon atoms. The term halogen either alone or in the compound words such as haloalkyl indicates fluorine, chlorine, bromine, or iodine. Further a haloalkyl is represented by an alkyl partially or fully substituted with halogen atoms which may be same or different. A cycloalkyl group implies a saturated or unsaturated carbocycle containing 3-8 carbon atoms. A heterocycloalkyl group is a cycloalkyl group carrying 1-4 heteroatoms which are represented by oxygen, nitrogen, or sulfur atoms. An aryl group signifies an aromatic carbocycle containing 4-10 carbon atoms, and may be phenyl or naphthyl. A heteroaryl group is an aromatic ring containing 1-4 heteroatoms which are represented by oxygen, nitrogen, or sulfur atoms, and may for example be furanyl, pyridyl, thienyl, pyrimidinyl, benzofuranyl, quinolyl, benzothienyl or quinoxalyl.

The compound of the formula I may form a salt with an acidic substance or a basic substance. The salt with an acidic substance may be an inorganic acid salt such as a hydrochloride, a hydrobromide, a phosphate, a sulfate or a nitrate. The salt with a basic substance may be a salt of an inorganic or organic base such as a sodium salt, a potassium salt, a calcium salt, a quarternary ammonium salt such as ammonium salt or a dimethylamine salt.

The compound of the formula I may exist as geometrical or optical isomers and the present invention includes all of these isomeric forms.

Preferred compounds for the reasons of ease of synthesis or greater herbicidal efficacy are represented by the formula I wherein

- (1) $Z \text{ is -NR}_4 R_5 \text{ or -CH}_2 R_{10}$,
- 30 (2) X is halogen or cyano; Y is halogen; W is -OR; and R is alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, or carboxyl, or

.

5

10

15

20

30

Q is Q1 or Q6; R1 is alkyl, amino or haloalkyl; R2 is haloalkyl; R3 is hydrogen; and R8 and (3) R, are independently oxygen, sulfur, or imino group,

Still more preferred compounds for the reasons of greater herbicidal efficacy are represented by formula I wherein

X is halogen; Y is fluorine; W is OR; R is alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with halogen or cyano; Q is Q1 or Q6; R1 is alkyl, amino, or haloalkyl; R2 is haloalkyl; R3 is hydrogen; and R8 and R9 are independently oxygen, sulfur, or imino group; Z is -NR₄R₅, R₄ is alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxycarbonylcarbonyl, arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl, or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; and R_5 is hydrogen; or Zis -CH₂R₁₀; R_{10} is carboxyl, alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, 25 alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl, or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl.

Certain intermediates of the present invention are novel. These are 3-(2-amino-4chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione, 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-amino-6-trifluoromethyl-2,4(1H,3H)pyrimidinedione and represented by the following formulae (III-V):

10

15

20

25

wherein X, Y, W and Q are the same as defined above; and M is nitro.

$$X'$$
 R
 NO_2
 NO_2
 NO_2
 V

wherein X' and Y' are halogens; and R is the same as defined above.

The compounds described by the formula I can be prepared by the procedures as described herein. In general, the compounds described in this invention can be prepared by one of the two routes depending on whether the heterocyclic ring (e.g. uracil ring) is formed prior to or after the nitration at the 2 position of the phenyl ring in the final product.

As depicted in Scheme 1, the starting materials for these preparations are the compounds represented by the formula VIc. These compounds can be prepared starting from the nitro compound VIa via the amine VIb by the procedures described in literature, for example US patent 4859229 (1989). Nitration of VIc is typically carried out by its slow addition to a mixture of sulfuric acid and nitric acid in a ratio of 9:1. Typically 3-4 ml of the nitration mixture is used for 2-3 mmol of VI and the addition is carried out between 0 to -30°C followed by stirring at ambient temperature for 0.5-2 hr. Product (VII) is separated by addition of the solution to ice water and filtration of the precipitate. The product can also be extracted from aqueous layer into organic solvents such as ether or ethyl acetate and purified by crystallization or column chromatography. Alkylation of VII to VIII can be accomplished by treatment of VII with alkyl halide, haloalkyl halide, especially the respective chloride, bromide, or sulfate in the presence of a base such as potassium carbonate or sodium hydride in an inert solvent such as acetone, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, methyl ethyl ketone, or acetonitrile at a temperature range of 0 to 130°C. VIII can be reduced to the amine (IX) under typical reduction conditions such as treatment with iron in acetic acid or ethanolic hydrochloric acid; or by hydrogenation using palladium on carbon or platinum oxide as catalyst. The product IX is purified by typical purification procedures of recrystallization or column chromatography.

The amine (IX) can be derivatized to yield a variety of products generally represented by the formula X. For example amides can be prepared by treatment of IX with alkyl or aryl acid

. 3

5

10

15

20

25

30

halides, typically chlorides, or anhydrides in the presence of base in an inert solvent. Typically organic bases such as triethylamine, diisopropylethylamine, or pyridine can be used in inert solvents such as tetrahydrofuran, acetonitrile, or dioxane at a temperature range of ambient to reflux temperature for 2-24 hr. Pyridine can be used alone as solvent and base. Acylation catalysts such as dimethylaminopyridine (DMAP) can be added to facilitate the reaction. Typical work-up procedure includes removal of solvent followed by partitioning of the product between aqueous and organic solvents such as ether, ethyl acetate or methylene chloride. Depending upon the reactivity of the acid halide, the product typically consists of a monoamide, diamide, or a mixture of the two. These can be purified/resolved typically by column chromatography. Mono or dialkyl (amino) derivatives of IX can be prepared by its treatment with alkyl or haloalkyl halides in the presence of base such as potassium or sodium carbonate, or sodium hydride in an inert solvent such as tertahydrofuran or dimethylformamide at a temperature of ambient to 120°C for 2-24 hr. Mono or dicarbamoyl derivatives of IX can be prepared by its treatment with alkylhaloformates such as methyl or ethylchloroformate in the presence of base such as potassium or sodium carbonate in an inert solvent such as tertahydrofuran or dimethylformamide at a temperature of ambient to 120°C for 2-24 hr. Mono or di urea derivatives of IX can be prepared by its treatment with an alkyl or aryl isocyanate, for example methyl or ethyl isocayante, in the presence of a base such as triethylamine in an inert solvent such as toluene or tetrahydrofuran. Alternatively, IX is first converted into its isocyanate derivative by treatment with phosgene or triphosgene in toluene or tetrahydrofuran at reflux temperature for 2-6 hr. This isocyanate can, in turn, be treated with an alkyl or aryl amine such as methyl or ethyl amine in the presence of a base such as triethylamine in an inert solvent such as toluene or tetrahydrofuran at a temperature range of ambient to 130°C for 2-12 hr to furnish the corresponding urea. IX can be treated with an alkyl dihalide such as 1,4-diiodobutane in an inert solvent such as toluene or acetonitrile at reflux temperature in the presence of a base such as potassium or sodium carbonate to furnish the corresponding cyclized product such as a pyrrolidine derivative. IX can be treated with an aromatic or aliphatic aldehyde or ketone or its diethyl or dimethyl acetal derivative in an inert solvent such as toluene or methylene chloride to furnish the corresponding imino derivative. Alternatively, a monoacetyl derivative of IX can be treated with a dehydrochlorinating agent such as phosphorus pentachloride to furnish the corresponding iminochloride.

SCHEME 1

(a) catalytic reduction; (b) 1) triphosgene, 2) NaH, ethyl 3-amino-4,4,4-trifluorocrotonate; (c) H₂SO₄-HNO₃; (d) dimethyl sulfate, base (R₁=CH₃); (e) Fe-AcOH; (f) (CF₃CO)₂O, (e.g. Z=NHCOCF₃)

The starting uracil derivative represented by formula XI in Scheme 2 can be prepared according to the procedure as described before. The compound XI is nitrated with concentrated nitric acid at 0°C to ambient temperature for 15 ~ 30 minutes. Product (XII) is obtained by addition of the product mixture to ice-water followed by filtration.

SCHEME 2

10

5

The starting uracil derivative represented by formula XIII in Scheme 3 can be prepared according to the procedure as previously described. Compound XIII can be nitrated with nitric acid at 0° C for $15 \sim 30$ minutes. Product (XIV) is obtained by addition of ice followed by filtration.

SCHEME 3

The desired starting tetrazole derivatives represented by formula XV in Scheme 4 can be prepared according to the literature procedure of WO 85/01939. These compounds can be nitrated with nitric acid at ambient temperature or at 0°C for 15 ~ 30 minutes. Product (XVI) is isolated by addition of ice followed by extraction into an organic solvent such as ether or ethyl acetate and purified. XVII can be prepared by the reduction of XVI typically by catalytic hydrogenation in presence of catalysts such as palladium on carbon or by treatment with iron in acetic acid or in ethanolic hydrochloric acid. XVIII can be prepared by reacting XVII with a halide in presence of a base at 50 to 120°C for 1 ~ 5 hours. Further modification of XVIII to XIX is carried out according to the general procedures described for the preparation of X from IX

5

10

15

(Scheme I).

SCHEME 4

(a) HNO₃; (b) Fe-AcOH; (c) R-X, K_2CO_3 ; (d) $(CF_3CO)_2O$, (e.g. Z=NHCOCF₃)

The starting triazolinone derivative represented by formula XX in Scheme 5 can be prepared according to the literature procedure of US patent 4980480 (1990). The compound XX is nitrated with concentrated nitric acid at -15 to 0°C for 0.5-2 hr. Product (XXI) is obtained by addition of the product mixture to ice-water followed by filtration.

SCHEME 5

5

10

15

The desired starting pyrazole derivatives represented by formula XXII in Scheme 6 can be prepared according to the literature procedure of US patent 5281571 (1994). These compounds can be nitrated in sulfuric acid-nitric acid mixture (9:1) with a ratio of 3-4 ml of the nitrating solution to 3-4 mmol of XXII. The addition is carried out between -15 to -30°C followed by stirring at ambient temperature for 1-2 hr. Product (XXIII) is isolated by addition of water followed by extraction into an organic solvent such as ether or ethyl acetate and purified. XXIV can be prepared by the reduction of XXIII typically by catalytic hydrogenation in presence of catalysts such as palladium on carbon or by treatment with iron in acetic acid or in ethanolic hydrochloric acid. Further modification of XXIV to XXV is carried out according to the general procedures described for the preparation of X from IX (Scheme I).

SCHEME 6

$$\begin{array}{c} X \\ R. \\ O \\ \hline \\ N-N \\ R_1 \\ \hline \\ XXIII \\ \hline \\ R_1 \\ \hline \\ XXIII \\ \hline \\ R_1 \\ \hline \\ XXIII \\ \hline \\ R_2 \\ \hline \\ R_2 \\ \hline \\ R_3 \\ \hline \\ XXIII \\ \hline \\ R_1 \\ \hline \\ XXIII \\ \hline \\ R_1 \\ \hline \\ XXIII \\ \hline \\ R_2 \\ \hline \\ R_3 \\ \hline \\ R_4 \\ \hline \\ XXIV \\ \hline \\ R_1 \\ \hline \\ XXIV \\ \\ XXIV \\ \hline \\ XXIV \\ \\ XXIV \\ \hline \\ XXIV \\ \\ XXI$$

(a) H₂SO₄-HNO₃; (b) catalytic reduction; (c) (CF₃CO)₂O, (e.g. Z=NHCOCF₃)

. 1

5

10

15

20

The desired starting tetrahydrophthalimide derivative represented by formula XXVI in Scheme 7 can be prepared according to the literature procedure of US patent 4484941 (1984). The compound can be nitrated with nitric acid at 0°C to ambient temperature for half hour. The product (XXVII) is isolated by addition of ice followed by extraction into an organic solvent such as ether, ethyl acetate, or methylene chloride and purified. XXVIII can be prepared by the reduction of XXVII typically by catalytic hydrogenation in presence of catalysts such as palladium on carbon or by treatment with iron in acetic acid or in ethanolic hydrochloric acid. XXIX can be prepared by reacting XXVIII with (substituted)alkyl halide in the presence of a base such as potassium carbonate. Further modification of XXIX to XXX is carried out according to the general procedures described for the preparation of X from IX (Scheme I).

SCHEME 7

(a) HNO₃; (b) Fe-AcOH; (c) R-X, K_2CO_3 ; (d) $(CF_3CO)_2O$, (e.g. Z=NHCOCF₃)

Scheme 8 describes the preparation of intermediates represented by the formulae XXXIII and IV. The starting materials (amino phenols and alkyl derivatives represented by the formula VIb) are prepared according to the procedure as described in literature such as US patent 4670046 (1987) which upon treatment with phthalic anhydride in acetic acid can afford phthalimide derivative (XXXI). Nitration of XXXI can be carried out by its addition to a mixture of sulfuric acid and nitric acid (9:1) at -15 to -30°C followed by addition of water and extraction of the product (XXXII) in organic solvents such as ethyl acetate or ether. XXXII can be reduced to the corresponding amine (XXXIII) by conventional methods such as treatment with iron in acetic acid or ethanolic hydrochloric acid or by catalytic hydrogenation in the presence of palladium on carbon. Amino group of XXXIII can be derivatized as described

before in Scheme 1 to furnish XXXIV which in turn can be deprotected to furnish XXXV.

Removal of the protecting phthalimido group can be accomplished by several methods such as treatment with hydrazine in a polar solvent such as dimethylsulfoxide or by treatment with on organic amine such as methyl amine in ethanol. XXV can then be derivatized to the desired compound (X) according to the known procedures as described before in Scheme1.

5

10

Alternatively, XXXII can first be subjected to deprotection to afford the amine IV which can be modified to introduce the heterocyclic ring such as the uracil ring (U in XXXVI) according to the known procedures. Nitro group in XXXVI can then be reduced to afford the amine which can then be derivatized as described previously to afford X.

SCHEME 8

(a) AcOH, phthalic anhydride; (b) H₂SO₄-HNO₃; (c) Fe-AcOH; (d) dimethyl sulfate, base, [e.g. Z=N(CH₃)₂]; (e) DMSO-hydrazine; (f) 1) triphosgene, 2) NaH, ethyl 3-amino-4,4,4-trifluorocrotonate, 3) CH₃I (R₁=CH₃, R₂=CF₃); (g) 1) triphosgene, 2) NaH, ethyl 3-amino-4,4,4-

10

15

trifluorocrotonate, 3) CH₃I (R₁=CH₃, R₂=CF₃; U=uracil ring as in XIV); (h) 1) Fe-AcOH, 2) (CF₃CO)₂O, (e.g. Z=NHCOCF₃)

Scheme 9 delineates a process for the preparation of the intermediates represented by the formula V. Starting materials represented by the formula XXXIX are prepared by the nitration of XXXVII which gives XXXVIII which can be reduced to XXXIX according to the literature procedure of Japanese patent 01186849 (1989). The amino group in XXXIX is protected by forming amide or carbamate XL and the latter is nitrated to give XLI. Deprotection of XLI leads to the ortho-nitro aniline V. V can be converted into the desired compounds represented by XLV according to the procedures as shown in the scheme.

SCHEME 9

(a) H₂SO₄-HNO₃; (b) Fe-AcOH; (c) pyridine-ClCOOEt (e.g. J=NHCOOEt); (d) H₂SO₄-HNO₃; (e) HBr-AcOH; (f) 1) triphosgene, 2) NaH, ethyl 3-amino-4,4,4-trifluorocrotonate, 3) CH₃I (Q=uracil ring as in X, R₁=CH₃, R₂=CF₃); (g) ROH, base (e.g T=O, R=CH₃); (h) Fe-AcOH; (i) (CF₃CO)₂O, (e.g. Z=NHCOCF₃)

Scheme 10 describes the preparation of intermediate represented by the formulae XLVIII. The starting material (XLVI) can be prepared according to the method described in patents, such as US patent 5154755 (1992). XLVI reacts with ethyl chloroformate at basic condition to give

the carbamate XLVII. The latter is nitrated with a mixture of nitric acid and sulfuric acid to give the intermediate XLVIII which can be N-alkylated with an alkylhalide in the presence of base to furnish XLIX.

SCHEME 10

(a) ClCOOEt-K₂CO₃; (b) H₂SO₄-HNO₃; (c) CH₃I-K₂CO₃

5

10

15

Scheme 11 describes an alternative procedure for the preparation of compounds represented by the formula LVII with varying R groups. Reduction of L to LI is carried out using conventional procedures such as catalytic reduction or iron-acetic acid mixture. The aniline LI is reacted with phenyl chloroformate to afford a carbamte represented by the formula LII which is nitrated with an inorganic salt such as ammonium or potassium nitrate in an acid anhydride such as acetic anhydride according to published perocedure such as described in WO 97/42188. Resultant nitro derivative LIII is cyclized to furnish the uracil derivative LIV upon reaction with an appropriately substituted amino crotonate in the presence of an inorganic or organic base exemplified by 1,8-diazabicylo[5.4.0]undec-7-ene (DBU). LIV is N-derivatized to afford LV followed by reduction to aniline LVI according to conventional procedures as described before. LVII is then derivatized to afford the final compounds represented by the formula LVII according to the procedures as described before.

SCHEME 11

(a) catalytic reduction; (b) ClCO₂C₆H₅; (c) Ac₂O-NH₄NO₃; (d) ethyl 3-amino-4,4,4-trifluorocrotonate, DBU, DMF; (e) CH₃I; (f) Fe-AcOH (g) (CF₃CO)₂O, (e.g. Z=NHCOCF₃)

Scheme 12 desribes a process for the preparation of compounds represented by the formula LXII which are trisubstituted phenyl derivatives. Ortho-nitroaniline derivatives represented by the formula LVIII are the starting materials which are converted to a ortho-nitro uracil derivatives (LX) according to previously described procedures, e.g. via the NH uracil derivative (LIX). Nitro groups is then converted to an amino group (LXI) via conventional reduction

procedures such as cataytic or iron-acetic acid reduction followed by derivatization to furnish LXII.

SCHEME 12

(a) NaH, ethyl 3-amino-4,4,4-trifluorocrotonate; (b) CH₃I; (c) Fe-AcOH; (d) (CF₃CO)₂O, (e.g. Z=NHCOCF₃)

5

10

Scheme 13 describes a procedure for the preparation of trisubstituted phenyl derivatives represented by the formula LXVI. Direct nitration of LXIII, where X and Q (a heterocylce) are as previously defined, using nitration reagents such as nitric acid or a mixture of sulfuric acid-nitric acid leads to ortho-nitro compounds represented by the formula LXIV which are reduced to the corresponding aniline derivatives (LXV) by reduction procedures such as catallytic reduction or iron-acetic acid. Aniline (LXV) is then derivatized to furnish LXVI.

10

SCHEME 13

(a) AcOH-NH₄NO₃; (b) Fe-AcOH; (c) $(CF_3CO)_2O$, (e.g. Z=NHCOCF₃)

Scheme 14 delineates a procedure for the preparation of tetrasubstituted phenyl derivatives represented by the formula LXXIV. The process is akin to one described in scheme 11 for the prepration of pentasubstituted phenyl derivatives (LVII). The nitro intermediates (LXVII) are reduced to the anilines (LXVIII) via conventional procedures followed by derivatization to the phenyl carbamate (LXIX) by reaction with a phenylhaloformate. Nitration to LXX (inorganic nitrate-acid anhydirde) is followed by the uracil ring formation (appropriately substituted crotonate-DBU) (LXXI) and N-derivatization to furnish LXXII. Reduciton to the aniline (LXXIII) is carried out by procedures such as catalytic reduction or iron-acetic acid followed by derivatization to furnish LXXIV.

10

SCHEME 14

(a) catalytic reduction; (b) ClCO₂C₆H₅; (c) Ac₂O-NH₄NO₃; (d) ethyl 3-amino-4,4,4-trifluorocrotonate, DBU, DMF; (e) CH₃I; (f) Fe-AcOH (g) (CF₃CO)₂O, (e.g. Z=NHCOCF₃)

Scheme 15 describes vaious procedures for the derivatization of the amino group in LXXV via diazonium salts represented by LXXVI. The diazonium salts are prepared by treatment of the aniline with an inorganic nitrite solution such as sodium or potassium nitrite in an acid such as sulfuric or hydrochloric acid or by treatment of the aniline with an organic nitrite such as *t*-butyl nitrite in an organic solvent such as acetonitrile. Reaction is carried out between 10--15°C which results in a stable solution of the diazonium salt which is reduced to the

. %

5

10

15

corresponding hydrazine derivative represented by the formula LXXVII by reducing agents exemplified by stannic chloride. Hydrazine derivatives are then derivatized to a variety of compounds represented by the formula (LXXXVI) via conventional reacions such as acylation, alkylation, Schiff base formation, etc. The diazonium group in LXXVI is replaced by a hydroxyl to furnish the corresponding phenol (LXXVIII) by its treatment with an aqueous solution of cuprous oxide in presence of cupric nitrate or cupric sulfate at ambient temperature. LXXVIII is then derivatized to furnish LXXXVI via conventional reactions such as acylation, alkylation, etc. Treatment of the diazonium salts (LXXVI) with disulfides (RSSR) leads to the formation of corresponding thioethers represented by the formula LXXIX which can be further modified according to conventional procedures leading to sulfur analogs represented by the formula LXXXVI. LXXVI can be treated with inorganic cyanides leading to the formation of cyano derivatives (LXXXI) which can be oxidized via conventional routes to furnish carboxylic acids (LXXXV) which can then be derivatized leading to LXXXVI. The diazonium group can also be replaced with an azido group furnishing LXXX. LXXVI can be treated with inorganic iodides to afford the iodo compounds (LXXXII) which can be converted to the corresponding aldehydes (LXXXIII) (which are also directly obtainable from LXXVI via conventional procedures). LXXXIII can be reduced to furnish corresponding benzyl alcohols (LXXXIV) which can be derivatized to LXXXVI.

SCHEME 15

(a) H₂SO₄-NaNO₂, A=anion; (b) SnCl₂; (c) (CF₃CO)₂O, (e.g. Z=NHCOCF₃); (d) Cu₂O; (e) C₆H₅CH₂Cl (e.g. Z=OCH₂C₆H₅); (f) ethyl acrylate-CuCl₂(e.g. Z=CH₂CHClCOOC₂H₅); (g) RSSR; (h) MCPBA (e.g. Z=SO₂R); (i) NaCN; (j) H₂SO₄; (k) RNH₂ (e.g. Z=CONHR); (l) Oxime, CuSO₄-Na₂SO₃; (m) KMnO₄; (n) KI; (o) CO, Pd(II)acetate.triphenylphosphine; (p) NaBH₄; (q) e.g. RNCO (Z=CH₂OCONHR); (r) NaN₃

Scheme 16 describes an alternatived procedure for the formation of amides (XC).

Reaction of the ortho-amino phenol LXXXVII with an aliphatic or aromatic acyl halide in an organic solvent such as 1,4-dioxane or tetrahydrofuran in the absence or presence of an inorganic

15

20

or organic base such as potassium carbonate, sodium carbonate, or triethylamine, regioselectively leads to the formation of corresponding amide represented by the formula LXXXIX. LXXXIX can also be produced by the hydrolysis of a corresponding alkyl ether such as methyl ether (LXXXVIII) by treatment with strong Lewis acids such as boron tribromide or boron tribromide-dimethyl sulfide complex. Phenol group in LXXXIX is then derivatized by treatment with a halide in the presence of base such as sodium carbonate or potassium carbonate in an organic solvent such as as acetone, methyt-ethyl ketone, dimethylsulfoxide, or tetrahydrofuran at ambient to reflux temperatures.

SCHEME 16

10 (a) Acyl halide; (b) BBr₃.Me₂S; (c) R₁X, base, (e.g. R=2-naphthyl, R₁=CHF₂)

Scheme 17 describes a procedure for the preparation of pyridazinone derivatives represented by the formula XCVII and XCVIII. Desired starting pyridazinone derivatives represented by formula XCI and XCIV can be prepared according to the literature procedure of WO 97/07104. These compounds can be nitrated with nitric acid or a mixture of nitric acid and sulfuric acid at ambient temperature or at 0°C for $15 \sim 30$ minutes. The products XCII and XCV are isolated by addition of ice followed by filtration. XCIII and XCVI can be prepared by the reduction with iron in acetic acid or in ethanolic hydrochloric acid. Methylation of XCIII can be carried out by reacting XCIII with methyl iodide in presence of a base at 50 to 120°C for $1 \sim 5$ hours. Further modification of XCVI to XCVIII is carried out by treatment of the aniline with an organic nitrite (such as t-butyl nitrite) in an organic solvent (such as acetonitrile) and alkyl

10

15

acrylate in the presence of copper(II) chloride. Modification of XCVI to XCVII is carried out by treatment of the aniline with an alkyl or aryl acid halide at 50 to 120°C for 1 ~ 5 hours.

SCHEME 17

(a) HNO₃; (b) Fe-AcOH; (c) CH₃I, base; (d) H₂SO₄-HNO₃; (e) R₂X, base; (f) t-BuONO-ethyl acrylate-CuCl₂

EXAMPLE 1

Preparation of 3-(4-chloro-6-fluoro-3-methoxy-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-1)

3-(4-Chloro-6-fluoro-3-methoxyphenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (10.0 g, 29.5 mmol) was slowly added to a stirred mixture of con. sulfuric acid (36 ml) and con. nitric acid (4 ml) with stirring at -15°C. The solution was then slowly warmed to room temperature and allowed to stir for 2 hr. Addition of the solution to ice-water resulted in a light yellow precipitate which was separated by filtration to afford the title compound (9.1 g). NMR data for the compound are listed in Table XVIII.

" "

5

10

15

20

25

30

EXAMPLE 2

Preparation of 3-(4-chloro-6-fluoro-3-methoxy-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-5)

3-(4-Chloro-6-fluoro-3-methoxy-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (9 g, 23.5 mmol) was dissolved in dimethylformamide (90 ml) and to this were added potassium carbonate (3.9 g, 28.2 mmol) and dimethylsulfate (10.2 g, 47 mmol) with stirring. The solution was stirred at ambient temperature for 12 hr and water was added. Product was extracted in ethyl acetate and the organic layer was washed with water and dried over anhydrous sodium sulfate. Removal of the solvent afforded a crude product which was purified by column chromatography on silica gel. Elution of the column with methylene chloride afforded the title compound (7.8 g).

EXAMPLE 3

Preparation of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-4)

3-(4-Chloro-6-fluoro-3-methoxy-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (7.5 g, 18.9 mmol) was dissolved in acetic acid (75 ml) and 4.2 g (75.6 mmol) of iron powder was added. The solution was stirred at ambient temperature under nitrogen atmosphere for 6 hr and water was added. Extraction was carried out with ethyl acetate. Organic layer was washed with water, brine, and dried with anhydrous sodium sulfate followed by evaporation to afford the title compound (6.8 g).

EXAMPLE 4

Preparation of 3-[4-chloro-2-(2,4-difluorobenzoyl)amino-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-42)

3-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (2.0 g, 5.4 mmol) and triethylamine (0.66 g, 6.5 mmol) were dissolved in anhydrous tetrahydrofuran (30 ml) and stirred under ice cooling. To this solution was slowly added 2,4-difluorobenzoyl chloride (0.96 g, 5.4 mmol) and solution refluxed for 2 hr. Another batch of 2,4-difluorobenzoyl chloride (0.19 g, 1.1 mmol) was added and solution refluxed for 2 hr. Solvent was removed *in vacuo* and the product purified by column chromatography on silica gel using hexane-ethyl acetate (3:1) as the eluent to afford the title compound (2.2 g).

EXAMPLE 5

Preparation of 3-(4-chloro-2-diacetylamino-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-2)

· · · · ·

5

10

15

20

25

30

A mixture of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.5 g, 1.4 mmol), triethylamine (0.53 g, 5.6 mmol), acetic anhydride (0.57 g, 5.6 mmol), and anhydrous toluene (10 ml) was refluxed for 12 hr. Solvent was removed *in vacuo* and the product purified by chromatography on silica gel. Column was eluted with hexane-ethyl acetate (7:3) to furnish the title compound (0.34 g).

EXAMPLE 6

Preparation of 3-(4-chloro-2-dimehtylamino-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-11)

To a solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.6 g, 1.6 mmol) in toluene (10 ml) was added potassium carbonate (0.27 g, 1.92 mmol) followed by dimethylsulfate (0.69 g, 3.2 mmol). The solution was refluxed for 2 hr and solvent was removed *in vacuo*. Residue was chromatographed on silica gel and product eluted with methylene chloride to afford the title compound (0.12 g).

EXAMPLE 7

Preparation of 3-(4-chloro-6-fluoro-3-methoxy-2-methoxycarbonylaminophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 4-1)

A solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.25 g) and triethylamine (1 ml) in ethyl acetate (20 ml) was added to a solution of triphosgene (1.0 g) in ethyl acetate (15 ml) stirred under nitrogen. The mixture was heated at reflux for 2 hr, cooled, filtered and the filtrate evaporated under reduced pressure to give a buff colored solid (1.4 g). ¹H NMR (CDCl₃, 300 MHz) 3.58 (3H, s), 4.00 (3H, s), 6.38 (1H, s), 7.12 (1H, d, J=8.8 Hz) ppm.

The above isocyanate (0.5 g) dissolved in N,N-dimethylformamide (10 ml) was treated with dry methanol (2 ml) and stirred at room temperature for two days. Water and ethyl acetate were added and the solution separated. The organic phase was dried over sodium sulfate, evaporated, and chromatographed on silica gel eluting with ethyl acetate-hexane (1:3) to give the title compound as a white solid (0.17 g).

EXAMPLE 8

Preparation of 3-[2-bis(methylaminocarbonyl)amino-4-chloro-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 3-1)

To a solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.5 g, 1.4 mmol) and triethylamine (0.17 g, 1.7 mmol) in anhydrous toluene (10 ml) was added methyl isocyanate (0.1 g, 1.7 mmol) with

10

15

20

25

30

stirring. The solution was refluxed for 2 hr and solvent removed. Residue was chromatographed on silica gel in methylene chloride-methanol (99:1) to furnish the title compound (0.56 g).

26

EXAMPLE 9

Preparation of 3-[4-chloro-2-(dimethylaminomethynyl)imino-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-31)

A mixture of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.5 g, 1.4 mmol) and dimethylformamide dimethylacetal (0.8 g, 7 mmol) was refluxed for 4 hr under a blanket of nitrogen. Excess reagent was removed *in vacuo* and product extracted with ether. Solvent was removed to afford a residue which was chromatographed on silica gel. Elution of the column with hexane-ethyl acetate (6:4) afforded the title compound (0.22 g).

EXAMPLE 10

Preparation of 3-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-16)

3-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.1 g, 2.7 mmol) was dissolved in 50 ml of anhydrous 1,2-dichloroethane and 3.4 g (10.8 mmol) of borontribromide-dimethylsulfide complex was added to the solution.. The solution was refluxed for 16 hr and methylene chloride (100 ml) was added. Washing with water followed by drying (anhydrous sodium sulfate) and removal of the solvent afforded a residue which was triturated with ether to afford the title compound (0.6 g).

EXAMPLE 11

Preparation of 3-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-2)

3-(4-chloro-2-fluoro-5-hydroxyphenyl)-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione (2.5 g) was added to an ice cooled con. nitric acid (50 ml). After stirring for 1 hr, the reaction mixture was poured into ice-cold water. The yellow crystals were collected by filtration to afford the title compound (0.9 g). The filtrate was extracted by ethyl acetate (200 ml) and washed with brine. The organic phase was dried over anhydrous sodium sulfate. After removal of the solvent, 0.6 g of title compound was obtained as yellow crystal.

EXAMPLE 12

Preparation of 3-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-17)

10

15

20

25

30

3-(4-Chloro-2-fluoro-5-hydroxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.06 g) was added to ice-cold con. nitric acid (10 ml). After stirring for 30 min, crushed ice was added. The yellow crystals were collected by filtration to afford the title compound (1.2 g).

EXAMPLE 13

Preparation of 1-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-4-(3-fluoropropyl)-1,4-dihydro-5-oxo-5H-tetrazole (Compound no. 5-4)

1-(4-Chloro-2-fluoro-5-hydroxyphenyl)-4-(3-fluoropropyl)-tetrazolinone (2.91 g) was gradually added into an ice-cooled nitric acid (20 ml) and stirred for 30 minutes. Crushed ice was added followed by extraction with ethyl acetate. The ethyl acetate extract was washed with water, dried over sodium sulfate, concentrated, and filtered through a silica gel SPE column (2 g) to give the title compound as a yellow solid (3.4 g).

EXAMPLE 14

Preparation of 1-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-4-(3-fluoroproyl)-1,4-dihydro-5-oxo-5H-tetrazole (Compound no. 5-5)

Iron powder (2.3 g) was added to a solution of 1-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-4-(3-fluoropropyl)-1,4-dihydro-5-oxo-5H-tetrazole (3.4 g) in acetic acid (50 ml) and stirred at room temperature over night. The reaction mixture was filtered through a celite bed. The filtrate was concentrated under reduced pressure and purified by a silica gel column, eluted with hexane-ethyl acetate (2:1) to give yellow crystals (2.75 g).

EXAMPLE 15

Preparation of 1-(2-amino-4-chloro-6-fluoro-3-propargyloxyphenyl)-4-(3-fluoroproyl)-1,4-dihydro-5-oxo-5H-tetrazole (Compound no. 5-17)

The mixture of 1-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-4-(3-fluoropropyl)-tetrazolinone (0.28 g), propargyl bromide (0.13 g), and potassium carbonate (0.14 g) in acetonitrile (5 ml) was heated under reflux for 0.5 hour. The solvent and excess reagent were removed under reduced pressure. The residue was purified by a silica gel column, eluted with ethyl acetate to give the desired product (0.33 g).

EXAMPLE 16

Preparation of 1-(2-amino-4-chloro-6-fluoro-3-isopropyloxyphenyl)-4-(3-fluoropropyl)-1,4-dihydro-5-oxo-5H-tetrazole (Compound no. 5-18)

The mixture of 1-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-4-(3-fluoropropyl)-1,4-dihydro-5-oxo-5H-tetrazole (0.30 g), isopropyl iodide (1.2 ml), and potassium carbonate (0.14 g).

in acetonitrile (5 ml) was heated under reflux for 2 hours. The reaction mixture was evaporated and purified by a silica gel column, eluted with hexane-ethyl acetate (2:1) to give the desired product (0.29 g).

EXAMPLE 17

Preparation of 1-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-4-difluoromethyl-3-methyl-1,2,4-triazolinone (Compound no. 6-1)

5

10

15

20

25

30

1-(4-Chloro-2-fluoro-5-hydroxyphenyl)-4-difluoromethyl-3-methyl-1,2,4-triazolinone (0.21 g) was added to con. nitric acid (1.5 ml) at ambient temperature. The solution was vigorously stirred at ambient temperature for 15 min. Reaction mixture was poured into ice-cold water and yellow precipitate was collected by filtration to afford the title compound (0.17 g) as a 1:1 mixture with oxidative compound.

EXAMPLE 18

Preparation of 1-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-4-difluoromethyl-3-methyl-1,2,4-triazolinone (Compound no. 6-2)

To a stirred solution of 1-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenol)-4-difluoromethyl-3-methyl-1,2,4-triazolinone (0.15 g) in a mixed solvent of con. hydrochloric acid (5 ml) and methanol (5 ml) was added 0.3 g of iron powder at ambient temperature. The resulting mixture was refluxed for 1 hr and the solution was concentrated under reduced pressure. The residue was extracted with ethyl acetate (200 ml) and the organic phase was washed with brine and dried over anhydrous sodium sulfate. Solvent was removed under reduced pressure to give title compound as a brown oil.

EXAMPLE 19

Preparation of 4-chloro-3-(4-chloro-6-fluoro-3-methoxy-2-nitrophenyl)-1-methyl-5-trifluoromethyl-1H-pyrazole (Compound no. 7-1)

4-Chloro-3-(4-chloro-2-fluoro-5-methoxyphenyl)-1-methyl-5-trifluoromethyl-1H-pyrazole (1.2 g, 3.5 mmol) was slurried with 4 ml of con. sulfuric acid and was slowly added to a stirred 4 ml mixture of con. sulfuric acid-con. nitric acid (9:1) at -15°C. Solution was allowed to stir at ambient temperature for 2 hr and then added to ice water. Extraction with ethyl acetate and removal of the solvent afforded a crude product which was chromatographed on silica gel. Elution of the column with hexane-methylene chloride (4:6) furnished the title compound (0.72 g).

10

15

20

25

30

Preparation of 4-chloro-3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-5-trifluoromethyl-1H-pyrazole (Compound no. 7-2)

4-Chloro-3-(4-chloro-6-fluoro-3-methoxy-2-nitrophenyl)-1-methyl-5-trifluoromethyl-1H-pyrazole (0.48 g, 1.24 mmol) was dissolved in toluene (8 ml) and 0.05 g of 10% palladium on carbon was added. The solution was vigorously stirred under hydrogen atmosphere for 4 hr at ambient temperature and the catalyst was removed by filtration. Removal of the solvent afforded a residue which was chromatographed on silica gel. Elution of the column with hexanemethylene chloride (3:7) furnished the title compound (0.38 g).

EXAMPLE 21

Preparation of 6-chloro-4-fluoro-2-nitro-3-(tetrahydrophthalimido)phenol (Compound no. 8-1)

2-Chloro-4-fluoro-5-(tetrahydrophthalimido)phenol (5.0 g) was added into nitric acid (50 ml) at 0°C, warmed up to room temperature in 30 minutes. Crushed ice was added and the solution extracted with methylene chloride. The organic phase was washed with water, dried over anhydrous sodium sulfate, and purified by a silica gel column, eluted with methylene chloride-ethyl acetate (19:1) to give 3.67 g of the desired product.

EXAMPLE 22

Preparation of 2-amino-6-chloro-4-fluoro-3-(tetrahydrophthalimido)phenol (Compound no. 8-2)

Iron powder (2.48 g) was added into a solution of 6-chloro-4-fluoro-2-nitro-3- (tetrahydrophthalimido)phenol (3.67 g) in acetic acid (60 ml) and stirred at room temperature for two hours. The reaction mixture was diluted with ethyl acetate, washed with water, dried over anhydrous sodium sulfate, evaporated to give 3.6 g of the title compound.

EXAMPLE 23

Preparation of N-(2-amino-4-chloro-6-fluoro-3-propargyloxyphenyl)tetrahydrophthalimide (Compound no. 8-3)

A mixture of 2-amino-6-chloro-4-fluoro-3-(tetrahydrophthalimido)phenol (0.31 g), propargyl bromide (0.2 ml), potassium carbonate (0.14 g), and acetonitrile (5 ml) was heated under reflux for 0.5 hr. The solvent and excess reagent were removed under reduced pressure. The residue was purified by a silica gel column, eluted with ethyl acetate to give the title product (0.2 g).

Preparation of N-(2-amino-4-chloro-6-fluoro-3-isopropyloxyphenyl)tetrahydrophthalimide (Compound no. 8-4)

. 1,

5

10

15

20

25

30

A mixture of 2-amino-6-chloro-4-fluoro-3-(tetrahydrophthalimido)phenol (0.31 g), isopropyl iodide (1.2 ml), potassium carbonate (0.14 g), and acetonitrile (5 ml) was heated under reflux for 2 hr. The solvent and excess reagent were removed under reduced pressure. The residue was purified by a silica gel column, eluted with ethyl acetate to give the title product (0.21 g).

EXAMPLE 25

Preparation of N-(2-amino-4-chloro-3-cyclopentyloxy-6-fluorophenyl)tetrahydrophthalimide (Compound no. 8-5)

A mixture of 2-amino-6-chloro-4-fluoro-3-(tetrahydrophthalimido)phenol (0.31 g), cyclopentyl bromide (1.3 ml), potassium carbonate (0.14 g), and acetonitrile (5 ml) was heated under reflux for 2 hr. The solvent and excess reagent were removed under reduced pressure. The residue was purified by a silica gel column, eluted with ethyl acetate to give the title product (0.17 g).

EXAMPLE 26

Preparation of 2-chloro-4-fluoro-5-(phthalimido)methoxybenzene

4-Chloro-2-fluoro-5-methoxyaniline (10.0 g, 57 mmol) and phthalic anhydride (8.5 g, 57 mmol) were dissolved in glacial acetic acid (200 ml) and the solution refluxed for 2 hr. Water was added and the resultant precipitate was separated by filtration. The residue was washed with water and dried to afford the title compound (16.7 g); ¹H NMR (CDCl₃, 300 MHz) 3.89 (3H, s), 6.9 (1H, d, J=6.3 Hz), 7.33 (1H, d, J=9.0 Hz), 7.82 (2H, m), 7.97 (2H, m) ppm.

EXAMPLE 27

Preparation of 6-chloro-4-fluoro-2-nitro-3-(phthalimido)methoxybenzene

2-Chloro-4-fluoro-5-(phthalimido)methoxybenzene (5.0 g, 16.4 mmol) was slowly added to a stirred mixture of con. sulfuric acid-con. nitric acid (10:1, 20 ml) at -20°C. Solution was then warmed to ambient temperature and allowed to stir for 1 hr. Addition to ice-water resulted in a light yellow precipitate which was separated by filtration. Column chromatography on silica gel in hexane-methylene chloride (3:7) furnished the title compound (3.2 g); ¹H NMR (CDCl₃, 300 MHz) 4.06 (3H, s), 7.54 (1H, d, J=8.5 Hz), 7.84 (2H, m), 7.97 (2H, m) ppm.

EXAMPLE 28

Preparation of 3-chloro-5-fluoro-2-methoxy-6-(phthalimido)aniline

6-Chloro-4-fluoro-2-nitro-3-(phthalimido)methoxybenzene (0.5 g, 1.4 mmol) was dissolved in glacial acetic acid (5 ml) and reduced iron (0.32 g, 5.6 mmol) was added. The solution was stirred at ambient temperature under a stream of nitrogen for 12 hr. Water was added and the product extracted with ethyl acetate followed by washings with water, brine, and drying (anhydrous sodium sulfate). Removal of the solvent afforded the title compound (0.4 g); ¹H NMR (CDCl₃, 300 MHz) 3.87 (3H,s), 4.21 (2H, br s), 6.65 (1H, d, J=9.4 Hz), 7.81 (2H, m), 7.95 (2H, m) ppm.

EXAMPLE 29

Preparation of 4-chloro-6-fluoro-3-methoxy-2-nitroaniline

5

10

15

20

25

30

3-Chloro-5-fluoro-2-methoxy-6-(phthalimido)aniline (0.6 g, 1.7 mmol) was dissolved in dimethylsulfoxide (3 ml) and anhydrous hydrazine (0.22 g, 6.8 mmol) was added. The solution was stirred at ambient temperature for 12 hr under a stream of nitrogen. Water was added and the product extracted with ether. The organic layer was washed with water, dried (anhydrous sodium sulfate), and evaporated to furnish the title compound (0.22 g). ¹H NMR (CDCl₃, 300 MHz) 3.98 (3H, s), 5.09 (2H, br s), 7.2 (1H, d, J=10.5 Hz) ppm.

EXAMPLE 30

Preparation of 4-chloro-6-fluoro-3-methoxy-2-nitrophenyl isocyanate

4-Chloro-6-fluoro-3-methoxy-2-nitroaniline (0.5 g, 2.27 mmol) was dissolved in anhydrous toluene (30 ml) and triethylamine (0.46 g, 4.54 mmol) was added. This solution was slowly added to a stirred solution of triphosgene (0.67 g, 2.27 mmol) in toluene (30 ml) and the solution refluxed for 2 hr. The solution was cooled and filtered. Clear filtrate was evaporated *in vacuo* to afford the title compound. ¹H NMR (CDCl₃, 300 MHz) 3.96 (3H, s), 7.38 (1H, d, J=8.8 Hz) ppm.

EXAMPLE 31

Preparation of 3-[4-chloro-6-fluoro-3-methoxy-2-nitrophenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-5) from 4-chloro-6-fluoro-3-methoxy-2-nitrophenyl isocyanate

Sodium hydride (0.06 g, 2.27 mmol) was suspended in 10 ml anhydrous dimethylformamide and to this was slowly added a solution of ethyl-3-amino-4,4,4-trifluorocrotonate (0.42 g, 2.27 mmol) in anhydrous toluene (10 ml). The solution was stirred for 15 min. until the evolution of hydrogen gas ceased. The solution was cooled to -30°C and a solution of 4-chloro-6-fluoro-3-methoxy-2-nitrophenyl isocyanate (2.27 mmol) in anhydrous toluene (10 ml) was slowly added with stirring. The solution was then allowed to warm to room

, 3,

5

10

15

20

25

30

temperature and methyl iodide (1.31 g, 9.1 mmol) was added. After stirring for 4 hr at ambient temperature, water was added and product extracted with ethyl acetate. Column chromatography on silica gel in hexane:methylene chloride (4:6) afforded the title compound (0.13 g).

EXAMPLE 32

Preparation of 2-chloro-4-fluoro-5-(phthalimido)phenol

5-Amino-2-chloro-4-fluorophenol (3.0 g, 18.6 mmol) and phthalic anhydride (3.3 g, 22.3 mmol) were dissolved in glacial acetic acid (60 ml) and the solution refluxed for 2 hr. Water was added and the resultant precipitate was separated by filtration. The residue was washed with water and dried to afford the title compound (5.04 g); ¹H NMR (CDCl₃+CD₃OD, 300 MHz) 3.68 (1H, s), 6.93 (1H, d, J=6.6 Hz), 7.27 (1H, d, J=9.1 Hz), 7.84 (2H, dd, J=3.0, 5.5 Hz), 7.97 (2H, dd, J=3.0, 5.5 Hz) ppm.

EXAMPLE 33

Preparation of 6-chloro-4-fluoro-2-nitro-3-(phthalimido)phenol

2-Chloro-4-fluoro-5-(phthalimido)phenol (5.0 g, 17.1 mmol) was slowly added with stirring to con. nitric acid (50 ml) at -10°C. Solution was then warmed to ambient temperature and allowed to stir for 0.5 hr. Addition to ice-water resulted in a light yellow precipitate which was separated by filtration to afford the title compound (5.5 g); ¹H NMR (CDCl₃+CD₃OD, 300 MHz) 4.36 (1H, br s), 7.61 (1H, d, J=8.6 Hz), 7.88 (2H, dd, J=3.0, 5.5 Hz), 7.99 (2H, dd, J=3.0, 5.5 Hz) ppm.

EXAMPLE 34

Preparation of 4-chloro-2,5-difluoronitrobenzene (XXXVIII)

1-Chloro-2,5-difluorobenzene (31.7 g, 0.21 mol) was dissolved in sulfuric acid (110 ml) at -40°C, then a solution of sulfuric acid (20 ml) and nitric acid (30 ml) was added dropwise. The mixture was stirred for 1 hr while temperature slowly raised to 20°C. The product was forced to crystallize by mixing the reaction mixture with ice-water (500 ml), the yellow crystals were filtered, washed with cold water and dried in fume hood overnight. (38.0 g). ¹H NMR (CDCl₃, 300 MHz) 7.46 (1H, dd, J=9.8, 9.9 Hz), 7.96 (1H, dd, J=7.9, 7.9 Hz) ppm.

EXAMPLE 35

Preparation of 4-chloro-2,5-difluoroaniline (XXXIX)

1-Chloro-2,5-difluoro-4-nitrobenzene (XXXVIII) (17.5 g) was dissolved in acetic acid (150 ml) in a 1L 3-neck round bottom flask equipped with cooling condenser. To it iron powder (35.0 g) was added slowly while the solution was stirred by an overhead stirrer. The reaction was exothermic which occurred in less than 30 min and generated much heat that was absorbed by a

cooling bath. After that, ethyl acetate (300 ml) was added and the mixture filtered. The solution was washed with water and dried over sodium sulfate. The product was purified by column chromatography (silica gel, hexane:ethyl acetate, 4:1) (14.3 g). ¹H NMR (CDCl₃, 300 MHz) 3.89 (2H, br), 6.56 (1H, m), 7.02 (1H, m) ppm.

EXAMPLE 36

Preparation of ethyl 4-chloro-2,5-difluorophenylcarbamate (XL)

. ...

5

10

15

20

25

30

4-Chloro-2,5-difluoroaniline (XXXIX) (2.1 g, 12.8 mmol) was mixed with pyridine (20 ml) at 0°C, to it was dropwise added ethyl chloroformate (1.5 g, 13.8 mmol). After stirring for 2.5 hr while temperature slowly raised to room temperature, pyridine was evaporated and the residue crystallized in ice-water (100 ml). The crystals were filtered, washed with water and dried in fume hood overnight (2.7 g). ¹H NMR (CDCl₃, 300 MHz) 1.33 (3H, t, J=7.1 Hz), 4.23 (2H, q, J=7.1 Hz), 6.89 (1H, br), 7.12 (1H, dd, J=6.5, 6.5 Hz), 8.05 (1H, dd, J=7.8, 9.6 Hz) ppm.

EXAMPLE 37

Preparation of ethyl 4-chloro-3,6-difluoro-2-nitrophenylcarbamate (XLI)

Ethyl 4-chloro-2,5-difluorophenylcarbamate (XL) (2.4 g, 10.2 mmol) was added to a mixture of sulfuric acid (12.5 ml) and nitric acid (0.8 ml) at -30°C. After stirring for 1.5 hr (-30°C to r.t.), it was poured into ice water (50 ml) and yellow crystals formed immediately which were filtered, washed with water and dried in fume hood overnight (2.8 g). ¹H NMR (CDCl₃, 300 MHz) 1.30 (3H, t, J=7.1 Hz), 4.22 (2H, q, J=7.1 Hz), 6.97 (1H, br), 7.45 (1H, dd, J=6.3, 6.3 Hz) ppm.

EXAMPLE 38

Preparation of 4-chloro-3,6-difluoro-2-nitroaniline (V)

Ethyl 4-chloro-3,6-difluoro-2-nitrophenylcarbamate (XLI) (0.9 g, 3.2 mmol) was mixed with acetic acid (30 ml) and hydrobromic acid (48%, 25 ml), the mixture was stirred at 150°C for 4 hr and then

the volume reduced to half by evaporation. Ethyl acetate (50 ml) was added and the solution was washed with water (15 ml x 3) and dried over sodium sulfate. The product was purified by column chromatography (silica gel, hexane) (0.56 g). ¹H NMR (CDCl₃, 300 MHz) 5.73 (2H, br), 7.24 (1H, dd, J=6.1, 6.1 Hz) ppm.

EXAMPLE 39

Preparation of 3-(4-chloro-5-ethoxycarbonylamino-2-fluorophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (XLVII)

, 31,

5

10

15

20

30

Ethyl chloroformate (2.58 g) was dropwise added into a solution of 3-(5-amino-4-chloro-2-fluorophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (XLVI) in pyridine (25 ml) at 0°C, and stirred at room temperature for one hr. The reaction mixture was diluted with ethyl acetate, washed with 1N hydrochloric acid followed by water, and dried over sodium sulfate. After concentration, the crystals (5.46 g) were collected by filtration. ¹H NMR (CDCl₃, 300 MHz) 1.31 (3H, t, J=7.1 Hz), 4.22 (2H, q, J=7.1 Hz), 6.20 (1H, s), 7.14 (1H, br), 7.29 (1H, d, J=8.8 Hz), 7.36 (1H, d, J=6.0 Hz), 8.26 (1H, bd, J=6.4 Hz) ppm.

EXAMPLE 40

Preparation of 3-(4-chloro-3-ethoxycarbonylamino-6-fluoro-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-33)

3-(4-Chloro-5-ethoxycarbonylamino-2-fluorophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (XLVII) (1.0 g) was stirred with sulfuric acid (2 ml) at 0°C, then a mixture of nitric acid (1 ml) and sulfuric acid (1 ml) was dropwise added. After stirring at room temperature for 3 hr, it was poured into ice water (50 ml) and yellow crystals formed immediately which was filtered, washed with water and dried in fume hood overnight (0.5 g).

EXAMPLE 41

Preparation of 3-(4-chloro-3-ethoxycarbonylamino-6-fluoro-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-34)

3-(4-chloro-3-ethoxycarbonylamino-6-fluoro-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.96 g) was stirred with dimethyl sulfate (0.72 ml) and potassium carbonate (0.33 g) in N,N-dimethylformamide (10 ml) at room temperature overnight. The reaction mixture was diluted with ethyl acetate, washed with water, dried over sodium sulfate, evaporated to give the title compound (1.1 g, oil).

EXAMPLE 42

25 Preparation of 3-[4-chloro-6-fluoro3-methyl-2-(2-naphthoyl)aminophenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-122)

Preparation of 4-chloro-2-fluoro-5-methyl-N-phenoxycarbonylaniline

4-Chloro-2-fluoro-5-methylaniline (5 g, 31.4 mmol) was dissolved in tetrahydrofuran (100 ml) and potassium carbonate (6.0 g, 37.7 mmol) and phenyl chloroformate (5.9 g, 37.7 mmol) were added. Solution was refluxed for 3 hr and the solvent was removed under reduced pressure. Product was purified by column chromatography on silica gel (eluent, methylene chloride:hexane, 6:4; 7.15 g).

Preparation of 4-chloro-2-fluoro-5-methyl-6-nitro-N-phenoxycarbonylaniline

, 3,

5

10

15

20

25

30

4-Chloro-2-fluoro-5-methyl-N-phenoxycarbonylaniline (7.1 g, 25.4 mmol) was dissolved in chloroform (68 ml) and trifluoroaceticanhydride (13.5 ml) and ammonium nitrate (2.4 g, 30.5 mmol) were slowly added with stirring at ambient temperature. The stirring was continued for 18 hr when a second batch of ammonium nitrate (0.4 g, 5 mmol) was added and stirring continued for 8 hr. Water was added and solution was neutralized by slow addition of sodium bicarbonate solution followed by extraction with chloroform. Organic layer was dried and evaporated under reduced pressure to afford an oily product (8.5 g) which was used for the next step without purification.

Preparation of 3-(4-chloro-6-fluoro-3-methyl-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

Ethyl 3-amino-4,4,4-trifluorocrotonate (6.1 g, 33.1 mmol) was dissolved in dimethylformamide (47 ml) and stirred at -10 °C. To this solution was slowly added 1,8-diazabicyclo[5.4.0]undec-7-ene (6.3 g, 41.4 mmol) and solution stirred for 0.5 hr. To this solution was slowly added a solution of 4-chloro-2-fluoro-5-methyl-6-nitro-N-phenoxycarbonylaniline (8.5 g) in dimethylformamide (25 ml) followed by stirring at ambient temperature for 14 hr. Solution was then heated to 80 °C and stirred at this temperature for 4 hr. Water was added and pH adjusted to 4 by addition of dilute hydrochloric acid. Product was extracted with ethyl acetate followed by evaporation of the solvent to afford the crude product (10.1 g) which was subjected to N-methylation as follows.

Preparation of 3-(4-chloro-6-fluoro-3-methyl-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

3-(4-Chloro-6-fluoro-3-methyl-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (10.1 g) was dissolved in dimethylformamide (100 ml) and potassium carbonate (5.7 g, 41.3 mmol) and dimethylsulfate (11.9 g, 55.1 mmol) were added. Solution was stirred at ambient temperature for 14 hr, water was added and product extracted with ethyl acetate. The title compound was separated by column chromatography on silica gel (eluent, hexane-ethyl acetate, 9:1; 8.5 g).

Preparation of 3-(2-amino-4-chloro-6-fluoro-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

3-(4-Chloro-6-fluoro-3-methyl-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (2.0 g, 5.2 mmol) was dissolved in acetic acid (20 ml) and iron powder (1.2 g, 21.5 mmol) was added. Solution was stirred at ambient temperature for 14 hr. Water was added and product extracted with ethyl acetate followed by evaporation under reduced pressure. Title

5

10

15

25

30

compound was separated by column chromatography on silica gel (eluent, hexane-ethyl acetate, 7:3; 1.5 g).

Preparation of 3-[4-chloro-6-fluoro3-methyl-2-(2-naphthoyl)aminophenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

3-(2-Amino-4-chloro-6-fluoro-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.5 g, 1.4 mmol) was dissolved in 1,4-dioxane (20 ml) and triethyl amine (0.29 g, 2.9 mmol) and 2-naphthoyl chloride (0.41 g, 2.2 mmol) were added. Solution was heated under reflux for 4 hr and solvent removed under reduced pressure. Product was subjected to column chromatography on silica gel and the title compound was eluted with hexane-ethyl acetate (8:2; 0.3 g).

EXAMPLE 43

Preparation of N-[4-chloro-6-fluoro3-methoxy-2-(2-naphthoyl)aminophenyl]phthalimide (Compound no. 13-3)

3-Chloro-5-fluoro-2-methoxy-6-(phthalimido)aniline (0.32 g, 1 mmol), 2-naphthoyl chloride (0.23 g, 1.2 mmol), and triethyl amine (0.12 g, 1.2 mmol) were dissolved in tetrahydrofuran (20 ml) and solution refluxed for 3 hr. Solvent was then removed under reduced pressure and the residue subjected to column chromatography on silica gel. Title compound was eluted with hexane-ethyl acetate (7:3; 0.12 g).

EXAMPLE 44

20 Preparation of 3-(2-amino-4-chloro-3-difluoromethoxy-6-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 1-38)

3-(2-Amino-4-chloro-6-fluoro-3-hydroxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.41 g, 4.0 mmol) and potassium carbonate (0.69 g, 5.0 mmol) were suspended in dimethylformamide (50 ml) and stirred at 90 °C. Chlorodifluoromethane was bubbled through the solution for 4 hr and water was added. Product was extracted with ethyl acetate and subjected to column chromatography (silica gel; eluent, methylene chloridemethanol, 99.5:0.5) to furnish the title compound (0.78 g).

EXAMPLE 45

Preparation of 3-[4-chloro-6-fluoro-3-methyl-2-(phenoxycarbonylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 4-52)

3-(4-Chloro-6-fluoro-2-isocyanato-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

3-(2-Amino-4-chloro-6-fluoro-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.0 g, 2.9 mmol) and triethylamine (0.58 g, 5.7 mmol) were dissolved in ethyl acetate (15 ml) and the solution was slowly added to a solution of triphosgene (0.85 g, 2.9 mmol) in ethyl acetate (15 ml). Solution was heated under reflux for 2 hr and filtered. Solvent was evaporated to afford the title compound as a residue which was used for the next step.

3-(4-Chloro-6-fluoro-3-methyl-2-phenoxycarbonylaminophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

. . .

5

10

15

20

25

30

3-(4-Chloro-6-fluoro-2-isocyanato-3-methylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1.4 mmol) and triethylamine (0.14 g, 1.4 mmol) were dissolved in toluene (15 ml) and the solution was treated with phenol (0.13 g, 1.4 mmol). Solution was stirred for 0.3 hr at ambient temperature and water was added. Product was extracted with ethyl acetate. Removal of the solvent followed by column chromatography on silica gel (eluent, methylene chloride) afforded the title compound (0.3 g).

EXAMPLE 46

Preparation of 3-[4-chloro-6-fluoro-3-hydroxy-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-114)

3-(2-Amino-4-chloro-6-fluoro-3-hydroxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.50 g, 1.4 mmol) and 2-naphthoyl chloride (0.27 g, 1.4 mmol) were dissolved in 1,4-dioxane (10 ml) and the solution heated under reflux for 4 hr. Solvent was evaporated under reduced pressure and the product purified by column chromatography on silica gel (eluent, hexane-ethyl acetate, 8:2) to furnish the title compound (0.60 g).

EXAMPLE 47

Preparation of 3-[4-chloro-3-difluoromethoxy-6-fluoro-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-115)

3-[4-Chloro-6-fluoro-3-hydroxy-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.51 g, 1.0 mmol) dissolved in dimethylformamide (5 ml) was slowly added to a stirred suspension of sodium hydride (0.03 g, 1.3 mmol) in dimethylformamide (5 ml) at -10 °C. Chlorodifluoromethane was bubbled through the solution for 0.5 hr with stirring at -10 °C followed by addition of water. Product was extracted with ethyl acetate and solvent evaporated under reduced pressure. Residue was subjected ot column chromatography on silica gel (eluent, hexane-ether, 25:75) to furnish the title compound (0.03 g).

,

5

10

15

20

25

30

Preparation of 3-[4-chloro-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-131)

To a solution of triphosgene in anhydrous ethyl acetate (150 ml) was added dropwise a solution of 4-chloro-2-nitroaniline (10 g) and triethylamine (12 g) in anhydrous ethyl acetate (50 ml) at 0°C under nitrogen atmosphere. After addition, the resulting mixture was heated at reflux temperature for 1 hr, then allowed to cool to ambient temperature. The precipitate was removed by filtration through Celite and the filtrate was concentrated to give title compound as an brown solid.

To a suspension of sodium hydride (60 % dispersion in oil, 2.5 g) in anhydrous N,N-dimethylformamide (100 ml) was added dropwise a solution of ethyl-3-amino-4,4,4-trifluorocrotonate in toluene (50 ml)at 0°C under nitrogen atmosphere. After addition, the mixture was stirred for 20 min at same temperature, then cooled to -30°C. A solution of (4-chloro-2-nitrophenyl)isocyanate in toluene (50 ml) was added dropwise. After stirring for 20 min, the cold bath was removed and the resulting mixture was stirred overnight at ambient temperature. The reaction mixture was partitioned between ethyl acetate and 1N-hydrochloric acid. The organic phase was washed with brine (x2) and dried over anhydrous sodium sulfate. The solvent was removed in vacuo and the residue was purified by column chromatography on silica gel eluted with ethyl acetate and hexane (1:1) to afford 3-(4-chloro-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (10.2 g).as a yellow solid.

Preparation of 3-(4-chloro-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

A mixture of 3-(4-chloro-2-nitrophenyl)-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (3 g), dimethyl sulfate (1.7 g) and potassium carbonate (1.85 g) in N,N-dimethylformamide (100 ml) was stirred at 55°C overnight. The resulting mixture was allowed to cool to ambient temperature and filtered through Celite to remove unsoluble precipitate. The filtrate was diluted with a mixed solvent of ethyl acetate and hexane (1:1, 200 ml), washed with brine (x2) and dried over anhydrous sodium sulfate. After removal of the solvent, the residue was solidified. The yellow solid was recrystallized from ethyl acetate and hexane to give desired compound (2.3 g).

Preparation of 3-(2-amino-4-chlorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione

To a stirred suspension of 3-(4-chloro-2-nitrophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (1 g) in methanol (20 ml) and conc. hydrochloric acid (10 ml) was added iron (powdered, 0.48 g) unded vigorous stirring. After addition, the mixture was heated at reflux

. ./,

5

10

15

20

25

30

temperature for 1 hr. The oil bath was removed and the solution was allowed to cool to ambient temperature. Ethyl acetate (200 ml) was added, washed with brine (x2) and dried over anhydrous sodium sulfate. After removal of the solvent, the residue was purified by column chromatography on silica gel using ethyl acetate-hexane (1:3) as the eluent to give the title compound.

Preparation of 3-[4-chloro-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-131)

A solution of 3-(2-amino-4-chlorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.4 g), 2-naphthoyl chloride (0.29 g) and triethyl amine (0.19 g) in anhydrous tetrahydro furan (30 ml) was heated at reflux temperature overnight under nitrogen atmosphere. The reaction mixture was diluted with ethyl acetate (200 ml), washed with brine (x2) and dried over anhydrous sodium sulfate. The solvent was removed unded reduced pressure and the residue was purified by column chromatography on silica gel using ethyl acetate and hexane (1:3) as the eluent give a pale yellow solid. The solid was recrystallized from ethyl acetate-hexane to give the title compound as a white crystal (0.42 g).

EXAMPLE 49

Preparation of 3-[4-chloro-6-fluoro-2-(2-naphthoylamino)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-145)

A mixture of (2-amino-4-chloro-6-fluorophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.25 g), triethylamine (0.15 g) and 2-naphthoyl chloride (0.21 g) in anhydrous tetrahydrofuran (30 ml) was heated at refluxtemperature overnight under nitrogen atmosphere. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine and dried over anhydrous sodium acetate. The solvent was removed in vecuo and the residue was purified by column chromatography on silica gel using ethyl acetate- hexane (1:4) as the eluent to give the title compound as an white solid (0.26 g).

EXAMPLE 50

Preparation of N-[4-chloro-2-(2-naphthoylamino)phenyl]phthalimide (Compound no. 13-

A reaction solution of N-(2-amino-4-chlorophenyl) phthalimide (0.5 g), triethylamine (0.28 g) and 2-naphthoyl chloride (0.35 g) in anhydrous tetrahydrofuran (50 ml) was heated at reflux temperature for 6 hr under nitrogen atmosphere. The resulting mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine (x2) and dried over anhydrous sodium sulfate. The solvent was removed and the residue was purified by

•1•

5

10

15

20

25

30

column chromatography on silica gel using ethyl acetate-hexane (1:5) to give the title compound (0.35 g) as a yellow solid.

EXAMPLE 51

Preparation of 3-(2-benzylthioacetylamino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compoun no. 2-165)

A solution of benzylmercaptan (51.0 mg) in tetrahydrofuran (1.0 ml) was slowly added to a suspension of sodium hydride (16.4 mg) in tetrahydrofuran stirred under nitrogen at 0°C. The solution warmed to room temperature over 20 minutes and tetrabutylammonium bromide (11 mg) was added. The suspension was cooled to -78°C and a solution of 3-(2-chloroacetylamino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione(150 mg) added. After stirring for a further 30 minutes the mixture was allowed towarm to room temperature overnight. Water and ethyl acetate were added and the solution separated and the organic phase was washed with water, brine and dried over sodium sulfate. The solution was concentrated and chromatographed on silica gel eluting with methylene chloride: ethyl acetate, 10:1, to give a white solid (137 mg).

EXAMPLE 52

Preparation of 3-(2-aminocarbonylamino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 3-26)

A solution of the isocyanate (1 mM) in dioxane (20 ml), stirred at 0°C, was treated with a solution of 0.5 M ammonia in dioxane (3 mM) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (3 drops). The solution was allowed to warm to room temperature and stirred overnight.

Chromatography on silica gel eluting with ethyl acetate gave the product as a yellow solid (271 mg).

EXAMPLE 53

Preparation of 3-(4-chloro-6-fluoro-3-methoxy-2-thiomethylphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 17-1)

A solution of t-butylnitrile (73 mg) in methylene chloride (1 ml) was added to a stirred, ice cold solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (200 mg) and methyl disulfide (102 mg) in dry methylene chloride (4 ml). It was stirred at 0°C for 1.5 h and allowed to warm to room temperature overnight. 1 N Hydrochloric acid was added and the mixture extracted with ethyl acetate, washed with water, brine and dried over sodium sulfate. The solution was concentrated under reduced pressure and

the residue chromatographed on silica gel eluting with ethyl acetate: hexane, 5:1 gave the product as a yellow powder (189 mg).

11/10

5

10

15

20

25

30

EXAMPLE 54

Preparation of 2-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-2)

Nitric acid (70%, 12 ml) was added to the ice-cooled 2-(4-chloro-2-fluoro-5-hydroxyphenyl)-5-trifluoromethylpyridazin-3-one (1.25 g) and stirred at room temperature for 30 minutes. Crushed ice was added. The precipitate was collected by filtration and washed with water to give 1.20 g of the desired product, m.p. 146-8°C.

EXAMPLE 55

Preparation of 2-(2-amino-4-chloro-6-fluoro-3-hydroxyphenyl)-5-trifluoromethylpyridazin-3-one.(Compound no. 11-3)

To a stirred solution of 2-(4-chloro-6-fluoro-3-hydroxy-2-nitrophenyl)-5-trifluoromethylpyridazin-3-one (0.601 g) in acetic acid (6 ml) was added 0.38 g of iron powder at ambient temperature and stirred for 4 hours. The reaction mixture was partitioned between ethyl acetate and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane - ethyl acetate (2:1) to give 0.515 g of the title compound.

EXAMPLE 56

Preparation of 2-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-4) (BY715) and 2-(4-chloro-6-fluoro-3-methoxy-2-methylaminophenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-5)

2-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one (0.515 g), methyl iodide (0.248 g), and potassium carbonate (0.219 g) were mixed in acetonitrile (10 ml) and heated at reflux for 2 hours. The reaction mixture was partitioned between ethyl acetate and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane - ethyl acetate (4:1) to give 0.40 g of 2-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-4), m.p. 156-7°C and 2-(4-chloro-6-fluoro-3-methoxy-2-methylaminophenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-5)(7 mg).

EXAMPLE 57

Preparation of 2-(4-chloro-6-fluoro-3-methoxy-2-naphthoylamidophenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-6)

, s)•

5

10

15

20

25

30

2-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one (0.153 g) and 2-naphthoyl chloride (0.097 g) were mixed in dioxane (10 ml) and heated at reflux for 5 hours. The reaction mixture was partitioned between ethyl acetate and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane - ethyl acetate (4:1) to give 0.198 g of the title compound, m.p. 190-2°C.

EXAMPLE 58

Preparation of 2-(2,4-dichloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one (Compound no. 11-7) and 2-[4-chloro-2-(2-chloro-2-ethoxycarbonylethyl)-6-fluoro-3-methoxyphenyl]-5-trifluoromethylpyridazin-3-one (Compound no. 11-8)

Copper(II) chloride (0.119 g), *t*-butyl nitrite (0.115 g), and ethyl acrylate (3 ml) were placed in a flask, and cooled with a dry ice-acetone bath at -65°C. To this mixture 2-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one (0.25 g) in acetonitrile (4 ml) was added and stirred. The reaction mixture was gradually warmed up to room temperature over night. The reaction mixture was partitioned between ethyl acetate and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane - ethyl acetate (9:1) to give 0.077 g of 2-(2,4-dichloro-6-fluoro-3-methoxyphenyl)-5-trifluoromethylpyridazin-3-one and 0.033 g of 2-[4-chloro-2-(2-chloro-2-ethoxycarbonylethyl)-6-fluoro-3-methoxyphenyl]-5-trifluoromethylpyridazin-3-one.

EXAMPLE 59

Preparation of 2-(4-chloro-6-fluoro-3-hydroxy-2-naphthoylamidophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-194)

Boron tribromide-emthyl sulfide complex (5.15 g) was added to a solution of 2-(4-chloro-6-fluoro-3-methoxy-2-naphthoylamidophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione in 1,2-dichloroethane (150 ml) and heated at reflux for 1 hour. The reaction mixture was partitioned between methylene chloride and water. The organic phase was dried over anhydrous sodium sulfate. After removing the solvent under reduced pressure, the residue was purified by silica gel column chromatography, eluted with hexane - ethyl acetate (4:1 and 2:1) to give the title compound (4.127 g), m.p. 150-2°C.

EXAMPLE 60

Preparation of 2-(4-chloro-3-ethoxy-6-fluoro-2-naphthoylamidophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 2-196)

. ./.

5

10

15

20

25

30

2-(4-Chloro-6-fluoro-3-hydroxy-2-naphthoylamidophenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.203 g), ethyl iodide (75 mg) and potassium carbonate (55 mg) were stirred in methylethyl ketone (9 ml) and dimethyl sulfoxide (1 ml) at room temperature over night. The reaction mixture was filtered and evaporated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with hexane - ethyl acetate (4:1) to give the title compound (0.16 g).

EXAMPLE 61

Preparation of 3-[4-chloro-2-diazanyl-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 15-1)

3-(2-Amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.9 g, 2.4 mmol) was dissolved in conc. hydrochloric acid (5ml) and the mixture cooled to -15°C, a solution of NaNO₂ (0.2 g in 2 ml of H₂O) was added slowly. After stirred for 20 min, a solution of SnCl₂·2H₂O (1.5 g in 4 ml of conc. hydrochloric acid) was added and the reaction continued at -15°C for 30 min, then at room temperature for 30 min. The aqueous mixture was extracted with ethyl acetate (5 ml x 3) and the organic phase washed with brine and dried over Na₂SO₄. Column chromatography was used to purify the product (silica gel, hexane/ethyl acetate = 6/4). Yield: 0.5 g, 1.3 mmol.

EXAMPLE 62

Preparation of 3-[4-chloro-2-(2-cyclopropanecarbonyldiazanyl)-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 15-2)

3-[4-chloro-2-diazanyl-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.15 g, 0.4 mmol) was dissolved in dioxane (10 ml) and added with cyclopropanecarbonyl chloride (0.04 g, 0.4 mmol) and triethylamine (0.04 g, 0.4 mmol). After stirred for 1 hr, the mixture was poured into water (15 ml) and extracted with ethyl acetate (10 ml x 3). Organic phase was washed with brine and dried over Na2SO4. Final purification involved column chromatography (silica gel, ether). Yield: 0.15 g, 0.34 mmol.

EXAMPLE 63

Preparation of 3-{4-chloro-2-[2, 2-(cyclopropylmethylene)diazanyl]-6-fluoro-3-methoxyphenyl}-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 15-11)

, A.

5

10

15

20

25

30

3-[4-chloro-2-diazanyl-6-fluoro-3-methoxyphenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.12 g, 0.31 mmol) was added to a methanol (10 ml) solution of cyclopropanecarboxaldehyde (0.024 g, 0.34 mmol) and the mixture was stirred for 3 hr. After evaporation of solvent, the residue was purified by column chromatography (silica gel, hexane/ether = 3/2). Yield: 0.13 g, 0.31 mmol.

EXAMPLE 64

Preparation of 3-(4-chloro-6-fluoro-2-hydroxy-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 16-6)

An acetonitrile (10 ml) solution of copper (II) sulfate (0.52 g, 3.26 mmol), copper (I) oxide (0.47 g, 3.26 mmol) and copper (II) nitrate hemipentahydrate (0.76 g, 3.26 mmol) was stirred at -30°C, and added with tert-butyl nitrite (0.41 g, 3.97 mmol) and then an acetonitrile (3 ml) solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.94 g, 2.56 mmol). After stirred for 16 hr (-30°C to room temperature), the mixture was poured into cold 5% hydrochloric acid (30 ml) and then extracted with ethyl acetate (20 ml x 3). The organic phase was washed with brine and dried over Na₂SO₄. Preparative TLC was used for purification (silica gel plates, 2000 microns, ether). Yield: 0.16 g, 0.44 mmol.

EXAMPLE 65

Preparation of 3-[4-chloro-6-fluoro-3-methoxy-2-(2-naphthoyloxy)phenyl]-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compound no. 16-7)

3-(4-chloro-6-fluoro-2-hydroxy-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.10 g, 0.27 mmol) was dissolved in dioxane (10 ml) and the solution added with 2-naphthoyl chloride (0.062 g, 0.33 mmol), triethylamine (0.033 g, 0.33 mmol). After stirred for 2 hr, solvent was evaporated and the residue purified by column chromatography (silica gel, hexane/ether = 4/1). Yield: 0.12 g, 0.23 mmol.

EXAMPLE 66

Preparation of 3-{4-chloro-2-[2-chloro-2-(ethoxycarbonyl)ethyl]-6-fluoro-3-methoxyphenyl}-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (Compounds no. 14-4 and 14-5)

A solution of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H, 3H)-pyrimidinedione (0.94 g, 2.56 mmol) in acetonitrile (3 ml) was slowly added to an acetonitrile (9 ml) solution of ethyl acrylate (6 ml), tert-butyl nitrite (0.41 g, 3.97 mmol), and copper (II) chloride (0.42 g, 3.12 mmol) at -20°C. After stirred for 16 hr (-20°C)

to room temperature), the mixture was poured into cold 5% hydrochloric acid (30 ml) and extracted with ethyl acetate (20 ml x 3), the organic phase was washed with cold 5% NaHCO₃ and brine, dried over Na₂SO₄. Column chromatography was used for purification (silica gel, hexane/ether = 9/1) which also isolated two isomers. Yield: isomer-1 (eluted earlier), 0.23 g, 0.47 mmol; isomer-2 (eluted later), 0.14 g, 0.29 mmol.

5

Using the procedures as described in Schemes 1-17 and Examples 1-66, the compounds of this invention can be readily prepared. Tables I-XVII list structures for few representative compounds of this invention.

TABLE I

$$X \longrightarrow Y \\ W \longrightarrow R_{5} \\ R_{9} \longrightarrow R_{2}$$

No :	х	Y	w	Rı	R ₂	R ₃	R₄	R ₅		R,
No. 1-1	Cl	F	OCH,	Н	CF,	Н	O	0	0	0
1-1	Cl	F	OH	Н	CF,	H	0	O	0	0
1-2	Cl	F	OCH,	Н	CF,	H	H	Н	0	0
	Cl	F	OCH ₃	CH ₃	CF,	Н	H	Н	0	0
1-4 1-5	Cl	F	OCH,	CH ₃	CF ₃	Н	О	0	0	*******
	Br	F	OH	CH ₃	CF,	H	O	0	0	0
1-6 1-7	Br	F	OCH,	CH ₃	CF,	H	Н	H	0	0
	Br	F	OH	CH,	CF ₃	Н	Н	Н	0	
1-8	Cl	F	OCH,	CH ₃	CF,	NO ₂	0	O	0	0
1-9	Cl	F	OCH ₃	CH,	CF,	NH ₂	H	H	0	0
1-10	Cl	F	OCH ₁	CH ₃	CF,	Н	CH ₃	CH ₃	0	
1-11	Cl	F	OCH,	NH ₂	CF ₃	Н	0	0	0	O
1-12	Cl	F	OCH,	NH,	CF ₃	H	H	Н	0	0
1-13	Cl	F	OCH ₃	C ₂ H ₅	CF ₃	H	O	O	0	0
1-14	Cl	F	OCH ₃	C ₂ H ₅	CF,	Н	H	H	0	0
1-15	Cl	F	OH OH	CH,	CF ₃	H	H	H	0	0
1-16	aba *** *** ****	F	OH	CH,	CF ₃	Н	O	0	0	O
1-17	Cl Cl	F	OCH,CN	CH ₃	CF,	Н	H	H	0	0
	Cl	F	propargyloxy	CH,	CF,	Н	H	H	0	0
1-19 1-20	Cl	F	OCH,CH=CHCOOCH,	CH,	CF ₃	Н	H	Н	Ō	0
		F	cyclopentyloxy	CH,	CF ₃	Н	H	Н	O	0
1-21	C1 C1	F	benzyloxy	CH,	CF,	Н	H	H	0	0
1-22	Cl	F	3-nitro-2-pyridyloxy	CH,	CF,	Н	H	Н	0	0
1-23	Cl	F	OCH,	CH ₃	CHF	₂ H	H	Н	0	0
	Cl	F	OCH ₃	CH ₃	CF,	Cl	THE	Н	0	
1-25 1-26	Cl	F	OCH,	CH,	CF,	H	H	H	S	0
1-20	Cl	F	OCH ₃	CH,	CF		H	H	0	S
1-27	CN	F	OCH,	CH	CF		H	H	0	Ö
1-28	Cl	H	OCH ₃	CH	CF	, Н	H	11	O	
1-29	Cl	F	OCH,	CH			=C(CC	************	0	0
1-30	Cl	F	OCH ₃	СН	, CF	, Н	=C(H)N(0	
1-31	Cl	F	OCH ₃	CH	, CF		(CH ₂		0	
1-33	Cl	F	NHCOOCH,CH,	Н	CF	, Н	0	0	0	
1-34	Cl	F	NHCOOCH,CH,	CH	, CF		0		0	···••
1-34	Cl	F	CH ₃	Н	CF	, H	O	0	O	
1-35	Cl	F	CH,	CH	, CF		0	O	i	
	Cl	F	CH ₃	СН	i, CF	, Н	H	H	<u> </u>	
1-37 1-38	Cl	F	OCHF,	CH	i, Ci	, н		Н	C	
1-38	Cl	F	OCH ₂ -2-naphthyl	CF	I, CI			H	C	
1-39 1-40	Cl	F	OCH,			F, H	-N-1	N-	C) 0

5

1-41	н	н	н	CH,	CF,	Н	Н	н	0	0
1-42	H	Н	Н	CH,	CF,	Н	0	0	0	0
1-43	CN	H	H	CH ₃	CF,	Н	O	0	0	0
1-44	CN	Н	H	CH ₃	CF ₃	Н	H	H	0	O
1-45	Cl	Cl	ОН	CH,	CF ₃	Н	0	0	0	0
1-46	OCH,	F	H	CH ₃	CF,	Н	O	O	0	0
1-47	Cl	Cl	OCH ₃	CH ₃	CF ₃	Н	H	Н	0	0
1-48	OCH(CH ₃)C	Н	H	CH,	CF ₃	Н	Н	Н	0	O
1-40	OOCH,CH,									
1-49	OCH(CH ₃)C	Н	Н	CH,	CF ₃	H	0	0	О	0
• ,,	OOCH,CH,									
1-50	OCHF ₂	F	H	СН,	CF,	Н	0	0	0	0
1-51	OCHF ₂	F	Н	CH ₃	CF ₃	H	H	H	0	0
1-52	CF,	Н	Н	CH ₃	CF,	H	0	O H	0	0
1-53	OCHF ₂	F	H	CH ₃	CF,	H	CH(Me)CO₂Et		0	
1-54	Cl	F	Н	CH ₃	CF ₃	H	CH(Me)CO₂Et	Н	0	0
1-55	Cl	F	OCH ₃	CH ₃	CF ₃	Н	CH(Me)CO₂Et	Н	0	0
1-56	Cl	F	OH	NH ₂	CF,	Н	H	Н	0	0
1-57	C1	F	OCH₂CN	NH ₂	CF,	Н	Н	H	0	0
1-58	Cl	F	OCH,COOCH,	NH ₂	CF ₃	Н	H	H	0	0
1-59	Cl	F	OCH2COOCH2CH3	CH ₃	CF ₃	Н	H	Н	0	•
1-60	Cl	F	OCH(CH ₃)	CH ₃	CF ₃	Н	Н	Н	0	O
. 05			COOCH,CH,		<u> </u>	! !		<u></u>	<u> </u>	
1-61	Cl	F	OCH ₂ CH ₃	CH ₃	CF ₃	Н	Н	H	0	0
1-62	Cl	F	OCH ₂ CH ₃	CH ₃	CF ₃	Н	CH₂CH₃	H	0	0 0
1-63	C1	F	OCH(CH ₃) ₂	CH ₃	CF ₃	Н	Н	H H	0	0
1-64	Cl	F	OCH(CH ₃) ₂	CH,	CF,	Н	CH(CH ₃) ₂	i	0	Ö
1-65		H	H	Н	CF ₃	NO ₂	0	0	0	0
1-66	Cl	Н	ОН	CH ₃	CF ₃	H	0	0	0	0
1-67		NO ₂	ОН	CH ₃	CF ₃	Н	0	0		0
1-68		Н	Н	CH ₃	CF ₃	Н	0	0	0	0
1-69	4	NO ₂	OCH ₃	H	CF ₃	H	0	0	0	0
1-70		F	F	Н	CF ₃	H	0	0	0	0
1-71		Н	ОН	CH ₃	CF ₃	Н	H	H	0	0
1-72		Н	OCH,	CH ₃	CF ₃	H	H	Н	0	
1-73		Н	H	CH,	CF ₃	H	H	H	0	0
										

TABLE II

$$X \longrightarrow Y \\ \mathbb{R}_{4}^{\mathbb{N}} \times \mathbb{R}_{5} \\ \mathbb{R}_{9} \longrightarrow \mathbb{R}_{3}^{\mathbb{N}} \times \mathbb{R}_{1}$$

No.	х	Y	W	R ₁	R ₂	R ₃	R ₄	R ₅	$R_8 R_9$
No.	- Ĉi	F	OCH,	CH,	CF ₃	H	COCH,	Н	0 0
2-1		F	OCH ₃	CH ₃	CF,	Н	COCH,	COCH,	0 0
2-2	Cl Cl	F	OCH ₃	CH,	CF ₃	Н	CO-t-C ₄ H ₉	Н	0 0
2-3		F	OCH ₃	CH,	CF,	Н	acryloyl	acryloyl	0 0
2-4	Cl	F	OCH ₃	CH ₃	CF,	Н	methacryloyl	H	0 0
2-5	Cl		OCH ₃	CH ₃	CF ₃	H	methacryloyl	methacryloyl	0 0
2-6	Cl	F	OCH ₃	CH ₃	CF,	H	3,3-dimethylacryloyl	Н	0 0
2-7	Cl	F		CH,	CF ₃	H	3,3-dimethylacryloyl	3,3-	0 0
2-8	Cl	F	OCH ₃	CII3	O1 3		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	dimethylacryloyl	
2-9	Cl	F	OCH ₃	Н	CF ₃	Н	COCF ₃	Н	0 0
2-10	Cl	F	OCH ₃	CH ₃	CF,	H	COCF,	H	0 0
	Cl	F	OCH ₂ CN	CH ₃	CF,	Н	COCF ₃	H	0 0
2-11	Cl	F	OCH ₃	CH ₃	CF ₃	NHCO	COCF ₃	H	0 0
2-12	Ci	*	00223	,		CF ₃			
2-13	C1	F	OCH,	CH ₃	CF ₃	Н	COCH₂Cl	Н	0 0
2-13	Cl	F	OCH ₃	CH,	CF,	Н	COCH₂CN	Н	0 0
2-14	Cl	F	OCH,	CH,	CF ₃	Н	COCOOCH,	Н	0 0
	Cl	F	OCOCH ₂ CO	CH ₃	CF,	Н	COCH2COOCH2CH3	Н	0 0
2-16	Ci	1	OCH ₂ CH ₃	,	,		-		
2-17	Cl	F	OCH ₃	CH ₃	CF,	Н	c-C ₃ H ₅ -carbonyl	Н	0 0
2-17	Cl	F	OCH ₃	CH ₃	CF,	Н	c-C₃H₅-carbonyl	c-C ₃ H ₅ -	0 0
2-18	Ci	1 1	00,	,,				carbonyl	
2-19	Cl	F	OCH ₃	CH,	CF ₃	Н	cyclohexanoyl	H	0 0
2-19	Cl	F	OCH ₃	CH ₃	CF,	Н	cyclohexanoyl	cyclohexanoyl	0 0
2-20	Cl	F	OCH,	CH ₃	CF ₃	H	SO ₂ CH ₃	SO ₂ CH ₃	0 0
2-21	CI	F	OCH,	CH,	CF,	Н	SO ₂ CH ₃	Н	0 0
~~~~	Cl	F	OCH,	CH,	CF,	H	benzoyl	H	0 0
2-22 2-23	Cl	F	OCH ₃	CH,	CF ₃	Н	3-CH ₃ -benzoyl	H	0 0
	Cl	F	OCH ₃	CH,	CF,	H	4-CH ₃ -benzoyl	H	0 0
2-24		F	OCH,	CH,		Н	4-CH ₃ -benzoyl	4-CH ₃ -benzoyl	0 0
2-25		F	OCH,	CH,	****		4-CH ₃ -benzenesulfonyl	Н	0 0
2-26		F	OCH,	CH.		********	4-C ₂ H ₅ -benzoyl	H	0 0
2-27		F	OCH,CN	CH			4-C ₂ H ₅ -benzoyl	H	0 0
2-28		F	OCH ₃	CH			4-n-C ₃ H ₇ -benzoyl	4-n-C ₃ H ₇ -	0 0
2-29	Ci	1	0011,		,   _ ,			benzoyl	
2-30		F	OCH ₃	CH	CF,	Н	4-t-C ₄ H ₉ -benzoyl	H	0 0
*********	···	F		СН	, CF,	H	4-vinylbenzoyl	Н	0 0
2-31		F	OCH ₃	СН			3,4-(CH ₃ ) ₂ -benzoyl	Н	0 0
2-32	**************************************	F		CH			4-CF ₃ -benzoyl	H	0 0
2-33		F		СН			4-CF ₃ -benzoyl	4-CF ₃ -benzoy	
2-34		F		СН		****	3,5-(CF ₃ ) ₂ -benzoyl	3,5-(CF ₃ ) ₂ -	0 0
2-35	CI CI	r	00113	1011	., 🗀	, , , ,	, , , , , , , , , , , , , , , , , , , ,	benzoyl	
~ ~ ~		·······································	OCH,	CH	, CF	, Н	4-CH ₂ Cl-benzoyl	Н	0 0
2-30	****	Ī		CH	******	<b>.</b>	4-C ₆ H ₅ -benzoyl	Н	0 0
2-3	*****	I	OCH ₃	CH			4-C ₆ H ₅ -benzoyl	4-C ₆ H ₅ -benzo	
2-3	*****			CH			2-F-benzoyl	H	0 0
2-3	9   Cl	1		:	-y ;	- ;	•		

2-40	Cl !	F !	OCH ₃	CH,	CF,	Н	4-F-benzoyl	н	0 0	
2-41	Cl	F	OCH ₁	CH,	CF,	Н	2,3-F ₂ -benzoyl	Н	0 0	
*****	Cl	F	OCH ₃	CH,	CF ₃	Н	2,4-F ₂ -benzoyl	<u></u>	0 0	
2-42	Cl	F	OCH ₃	CH ₃	CF ₃	H	2,4-F ₂ -benzoyl	2,4-F ₂ -benzoyl	0 0	
2-43	Cl	F	OCH ₃	NH ₂	CF ₃	Н	2,4-F ₂ -benzoyl		0 0	
2-44	Cl	F	OCH ₂ CN	CH ₃	CF,	Н	2,4-F₂-benzoyl	2,4-F ₂ -benzoyl	0 0	
2-45		F	OCH,	CH,	CF,	H	2,4-F ₂ -thiobenzoyl		O S	
2-46	Cl	F	OCH ₃	CH,	CF,	H	2,6-F ₂ -benzoyl	H	0 0	
2-47	Cl	F	OCH ₃	CH,	CF,	H	3,4-F ₂ -benzoyl	H	0 0	
2-48	Cl		OCH ₃	CH ₃	CF,	H	3,4-F ₂ -benzoyl	3,4-F ₂ -benzoyl	0 0	
2-49	Cl	F F		CH ₃	CF,	H	3,5-F ₂ -benzoyl	H	0 0	
2-50	Cl	F	OCH ₃	CH ₃	CF,	H	3,5-F ₂ -benzoyl	3,5-F ₂ -benzoyl	0 0	
2-51	C1		OCH ₃	CH ₃		H	2,3,4,5,6-F ₅ -benzoyl	H	0 0	
2-52	Cl	F	OCH ₃	CH ₁	CF,	H	2-Cl-benzoyl	H	0 0	•
2-53	Cl	F	OCH ₃		CF,	H	3-Cl-benzoyl	H	0 0	•
2-54	C1	F	OCH ₃	CH ₃	CF ₃	H	3-Cl-benzoyl	3-Cl-benzoyl	0 0	•
2-55	Cl	F	OCH ₃	CH ₃	CF,		4-Cl-benzoyl	Н	0 0	•
2-56	Cl	F	OCH ₃	CH ₃	CF ₃	H	4-Cl-benzoyl	4-Cl-benzoyl	0 0	•
2-57	Cl	F	OCH ₃	CH ₃	CF ₃	H		Н	0 0	•
2-58	Cl	F	OCH ₃	CH ₃	CF ₃	H	2,4-Cl ₂ -benzoyl	H	0 0	•
2-59	Cl	F	OCH ₃	CH ₃	CF ₃	Н	3,4-Cl ₂ -benzoyl	3-Br-benzoyl	0 0	•
2-60	Cl	F	OCH ₃	CH ₃	CF,	Н	3-Br-benzoyl	H	0 0	
2-61	Cl	F	OCH,	CH ₃	CF ₃	Н	4-Br-benzoyl	4-Br-benzoyl	0 0	••
2-62	Cl	F	OCH ₃	CH ₃	CF ₃	H	4-Br-benzoyl		0 0	••
2-63	Cl	F	OCH ₃	CH ₃	CF ₃	H	4- OCH ₃ -benzoyl	H		••
2-64	Cl	F	OCH ₃	CH ₃	CF,	Н	4-(OC ₂ H ₅ )-benzoyl	H	0 0	••
2-65	Cl	F	OCH,	CH ₃	CF ₃	Н	4-(OC ₂ H ₅ )-benzoyl	4-(OC ₂ H ₅ )-	O C	,
2 00	-			•	<u> </u>	<u> </u>	***************************************	benzoyl		<u></u>
2-66	Cl	F	OCH ₃	CH,	CF ₃	Н	4-I-benzoyl	H	0 0	
2-67	Cl	F	OCH,	CH,	CF,	Н	4-CN-benzoyl	H	0 0	•••
2-68	Cl	F	OCH ₃	CH ₃	CF,	H	4-N(CH ₃ ) ₂ -benzoyl	Н	0 0	• • •
2-69	Cl	F	OCH,	CH,	CF,	H	4-NO ₂ -benzoyl	4-NO ₂ -benzoyl	0 0	•••
2-70	Cl	F	OCH ₃	CH,	CF ₃	Н	3,5-(NO ₂ ) ₂ -benzoyl	H	0 0	
2-70	Cl	F	OCH ₃	CH,	CF ₃	H	4-OCF ₃ -benzoyl	4-OCF ₃ -	0 (	)
2-71	٠.	_	J					benzoyl		
2-72	Cl	F	OCH ₃	CH ₃	CF,	Н	4-OCF ₃ -benzoyl	H	0 (	****
2-73	Cl	F	OCH ₃	CH,	CF,	Н	piperonyloyl	Н	0 (	****
2-74	Cl	F	OCH ₃	CH,	CF ₃	Н	1-naphthoyl	H	0 (	****
2-75	Cl	F	OCH ₃	CH,	****	Н	2-naphthoyl	Н	0 (	
2-76	Cl	F	OCH,	Н	CF,	Н	2-naphthoyl	H	0 (	
2-77	Cl	F	OCH,	NH	, CF,	Н	2-naphthoyl	H	0	
2-78	Cl	F	OCH,	CH	CF,	H	cinnamoyl	Н	0	
2-78	Cl	F	OCH,	СН		****	2,4-F ₂ -cinnamoyl	Н	0	
2-79	Cl	F	OCH,	СН		***	2-methylcinnamoyl	Н	0	
2-80	C1	F	OCH,	СН			α-methylcinnamoyl	H	0	
2-81	Cl	F	OCH ₃	СН	****	••• •••••	2-chlorocinnamoyl	H	Ο	*****
2-83	Cl	F	OCH ₃	СН		Н	2-chlorocinnamoyl	2-	О	O
7-02	i Ci	•						chlorocinnamo	y	
2-84	Cl	F	OCH,	СН	, CF	, Н	4-chlorocinnamoyl	H	0	
2-85	Cl	F	OCH,	СН			4-methoxycinna-moyl	Н	0	
2-85 2-86	CI	F	OCH,	СН	<del>. ,</del> , , , , , , , , , , , , , , , , , ,		3-phenylpropionyl	Н	О	*****
2-80	Cl	F	OCH ₂ CN				3-phenylpropionyl	H	О	******
2-87	CI	F	OCH ₃	CH			4-phenylbutyryl	H	О	
2-88		F	OCH,	CH		····•	COCH2OCH2C6H5	Н	O	
2-89		F	OCH ₃	CH			2-furoyl	H	O	
2-90 2-91	CI	F	OCH ₃		I ₃ CF		3-CH ₃ -2-furoyl	H	О	О
Z-91	1 0	1	; 55113	; 01	-s ;		•			

0.00 !	CI I	F	OCH,	CH,	CF,	Н	furylacryloyl	н	O	0
2-92	Cl Cl	F	OCH,	CH,	CF,	H	COCH ₂ -(2-thiophene)	Н	0	****
2-93	Cl Cl	F	OH OH	CH,	CF,	H	3- CH ₃ -2-thiophenoyl	H	0	
2-94	Cl	F	OCH ₃	CH,	CF,	Н	5- CH ₃ -2-thiophenoyl	H	O	****
2-95	Cl	F	OCH ₃	CH,	CF ₃	H	5- CH ₃ -2-thiophenoyl	5-CH ₃ -2-	O	Ö
2-96	Ci	Г	OCII	C.1.3	0.3		5 July 2 200 July 200	thiophenoyl	İ	
2 07	Cl	F	OCH ₃	CH,	CF ₃	H	thiophene-2- carbonyl	thiophene-2-	Ö	Ö
2-97	Ci	r	OCH	O223	023			carbonyl		
2-98	Cl	F	OCH ₃	CH,	CF ₃	H	3-pyridoyl	Н	O	Ö
2-99	CI	F	OCH,	CH,	CF ₃	Н	4-pyridoyl	Н	0	Ö
2-100	Cl	F	OCH,	CH ₁	CF ₃	H	2-Cl-5-pyridoyl	2-C1-5-	0	Ö
2-100	Cı		COIL	, O ,	,		• • •	pyridoyl		
2-101	Cl	F	OH	CH,	CF ₃	H	3-NO ₂ -2-pyridoyl	H	Ο	O
2-101	Cl	F	OH	CH,	CF ₃	H	2-pyrimidoyl	H	O	O
2-102	Cl	F	OCH ₃	CH ₃	CF ₃	H	benzothiophene-2-	H	O	Ö
2-103	Cı	^	0011,	,,	,		carbonyl			
2-104	Cl	F	OCH ₃	CH,	CF,	H	2-quinoyl	Н	0	O
2-105	Cl	F	OCH ₃	CH,	CF ₃	H	2-quinoxaloyl	Н	О	Ö
2-105	Br	F	OCH,	CH,	CF,	H	2,4-F ₂ -benzoyl	Н	О	Ö
2-107	Cl	F	OCH ₃	CH ₃	CHF,	H	2,4-F ₂ -benzoyl	Н	0	O
2-107	Cl	F	OCH ₃	CH,	CF,	Cl	2,4-F ₂ -benzoyl	Н	О	O
2-109	Ci	F	OCH ₃	CH ₃	CF,	H	2,4-F ₂ -benzoyl	H	S	O
2-110	Cl	F	OCH,	CH ₃	CF,	H	2,4-F ₂ -benzoyl	H	О	S
2-111	CN	F	OCH ₃	CH,	CF,	Н	2,4-F ₂ -benzoyl	Н	О	O
2-111	Cl	H	OCH,	CH ₃	CF ₃	Н	2,4-F ₂ -benzoyl	Н	О	Ö
2-112	Cl	F	OCH,	CH,	CF,	H	3-(2-thienyl)acryloyl	Н	Ö	Ö
2-113	Cl	F	OH	CH ₃	CF ₃	Н	2-naphthoyl	H	О	O
2-114	Cl	F	OCHF ₂	CH ₃	CF ₃	Н	2-naphthoyl	H	О	O
2-115	Cl	F	OCH ₃	CH ₃	CF ₃	Н	COCH ₂ OCOCH ₃	COCH ₂ OCOCH	, O	O
2-117	Cl	F	OCH ₃	CH ₃	CF ₃	Н	COCH ₂ OCOCH ₃	H	. I	Ο
2-118	Cl	F	OCH ₃	CH,	CF,	Н	COCOOCH ₂ CH ₃	Н	. i i	О
2-119	Cl	F	OCH,	CH,	CF ₃	Н	COCH ₂ OC ₆ H ₅	Н		0
2-120	Cl	F	OCH,	CH ₃	CF ₃	Н	COCH2OC6H5	COCH ₂ OC ₆ H ₅	. i i	O
2-121	Cl	F	OCH,	CH,	CF ₃	Н	COCOC₀H₅	Н	. i	O
2-122	Cl	F	CH ₃	CH,	CF ₃	Н	2-naphthoyl	Н		0
2-123	Cl	F	CH ₃	CH,	CF ₃	Н	cinnamoyl	Н		0
2-124	Cl	F	OCH,	CH ₃		H	CO-2,6-dimethylphenyl	Н	0	0
2-125	Cl	F	OCH,	CH ₃	CF,	Н	2-F-cinnamoyl	Н	O	0
2-126	Cl	F	OCH ₃	CH ₃	CF,	Н	2-nitro-cinnamoyl	H	О	0
2-127	Cl	F	OCH ₃	CH ₃	CF,	Н	2-methoxy-cinnamoyl	H		0
2-128	Cl	F	OCH ₃	CH,		Н	2,6-dichloro-cinnamoyl	Н	4	0
2-129	Cl	F	OCH,	CH ₃	CF ₃	Н	COCH₂CH₂-2-	H	0	0
2.12	0.	_	3				methylphenyl		<u>. ]</u>	<u>.</u>
2-130	Cl	F	OCH ₃	CH,	CF,	Н	COCH ₂ CH ₂ -2,5-	Н	0	0
							dimethylphenyl			
2-131	Cl	H	Н	CH	CF,	Н	2-naphthoyl	H		0
2-132	Cl	F	OCH,	CH	CF,	Н	COCH ₂ CH ₂ -2,5-	Н	C	0
							dimethylphenyl			<u>. </u>
2-133	Cl	F	OCH ₃	СН	, CF,	H	COCH ₂ O-4-F-phenyl	H		0
2-134	Cl	F	OCH ₃	CH	, CF,	Н	3-chlorocinnamoyl	Н		O
2-135	Cl	F	OCH ₃	CH	, CF,	H	COCH ₂ O-4-Cl-phenyl	Н		0
2-136	Cl	F	OCH ₃	CH	, CF,	Н	α-cyano-cinnamoyl	Н		0 (
2-137	Cl	Н	Н	СН	, CF,	Н	cinnamoyl	H	4	0 0
2-138	CN	Н	Н	CH	, CF ₃	Н	0	0		0 0
2-139	Н	Н	H	CH		Н	2-naphthoyl	2-naphthoyl	4	0
2-140	CN	Н	Н	CH	, CF,	Н	2-naphthoyl	H	1	O

	on i	TT 1	н	CH,	CF,	н	cinnamoyl	н	0 0	2	
2-141	CN	H H	<u> Н</u>	CH ₃	CF,	Н	2-naphthoyl		0 (		
2-142	H		H	CH ₃	CF ₃	H	2-naphthoyl		O (	****	
2-143	OCH ₃	H Cl	OCH,	CH,	CF,	Н	2-naphthoyl		0 (	_	
2-144	Cl		H H	CH,	CF ₃	H	2-naphthoyl		O (	ö	
2-145	Cl	F	H	CH ₃	CF,	H	2-naphthoyl		0		
2-146	OCH(CH ₃ )	Н	п	CII	C. 3	**	2p, -				
	COOCH ₂ C										
	Н,	F	Н	CH,	CF,	Н	cyclopropyl	H	O	ö	
2-147	Cl	F	H	CH ₃	CF,	H	2-naphthoyl	H	O	ö	
2-148	OCHF ₂		<u>н</u>	CH,	CF,	H	2-naphthoyl		O	ö	
2-149	CF,	Н		CH ₃	CF,	Н	phenylacetyl		Ö	****	
2-150	Cl	F	OH		CF,	<u>Н</u>	phenylacetyl		Ö	****	
2-151	CI	F	OCH ₃	CH ₃		H	3-methoxy-	H	O		
2-152	Cl	F	OCH ₃	CH ₃	CF ₃	п	2-naphthoyl	•			
***************************************		<b>.</b>				H	1-methoxy-	H	O	Ö	
2-153	C1	F	OCH ₃	CH ₃	CF,	п	2-naphthoyl			_	
*************						**************************************	2,4-dichloro-	H	O	Ö	
2-154	C1	F	OCH ₃	CH ₃	CF ₃	H	phenoxyacetyl	**		•	
	<u> </u>	<u> </u>					3-methyl-2-naphthoyl	H	O	Ö	
2-155	Cl	F	OCH ₃	CH ₃	CF ₃	H		H	O		
2-156	Cl	F	OCH ₃	CH ₃	CF ₃	Н	6-methyl-2-naphthoyl		O	*****	
2-157	Cl	F	OCH,	CH ₃	CF ₃	Н	3-chloro-2-naphthoyl	H	0	*****	
2-158	Cl	F	OCH,	CH ₃	CF,	Н	5-bromo-2-naphthoyl	<u>H</u>			
2-159	Cl	F	OCH ₃	CH ₃	CF ₃	Н	4-bromo-2-naphthoyl	H	0		
2-160	Cl	F	OCH ₃	CH ₃	CF ₃	Н	4-bromo-2-naphthoyl	4-bromo-2-	U	U	
					<u> </u>	<u> </u>		naphthoyl	O	~~~	
2-161	Cl	F	OCH ₃	CH ₃	CF ₃	H	8-fluoro-2-naphthoyl	H		*****	
2-162		F	OCH ₃	CH ₃	CF ₃	Н	5-chloro-2-naphthoyl	H	0	*****	
2-163	Cl	F	OCH ₃	CH ₃	CF ₃	H	5-cyano-2-naphthoyl	H		0	
2-164		F	OCH,	CH ₃	CF,	Н	chloroacetyl	H		0	
2-165		F	OCH,	CH ₃	CF ₃	Н	benzylthioacetyl	H		<u></u>	
2-166		F	OCH ₃	CH,	CF,	Н	bromoacetyl	H	ii	0	
2-167		F	OCH ₃	CH ₃	CF,	H	phenylthioacetyl	Н	ii	0	
2-168		F	OCH ₃	CH,	CF ₃	Н	methylthioacetyl	Н	i	0	
2-169		F	OCH ₃	CH ₃	CF,	H	2-naphthylthio-acetyl	H	i	0	
2-170		F	OCH ₃	CH,	CF ₃	Н	ethoxycarbonyl-	Н	О	0	
2-17	<i>.</i>	_					methylthioacetyl	i 			
2-17	i Cl	F	OCH,	CH,	CF ₃	H	ethoxycarbonyl-ethyl-2-	Н	О	0	
2-11		-					thioacetyl	; ; ; •	ļ	<u></u>	
2-17	Z Cl	F	OCH,	CH,	CF ₃	Н	ethylthioacetyl	<u>H</u>		0	
2-17		F	OCH ₃	CH		Н	i-propylthioacetyl	H	.4	0	•
2-17		F	OCH,	CH		H	propylthioacetyl	H		0	
2-17		F	OCH ₃	СН		H	2-cinnamoyl	Н	. 4	0	•
2-17		F	OCH ₃	СН			2-cinnamoyl	2-cinnamoyl		0	•
2-17		F	OCH ₃	СН			2-cinnamoyl	Н		0	
2-17		F	OCH ₃	СН			2-cinnamoyl	2-cinnamoyl		0	
2-17		F	OCH ₃	CH	****		2-cinnamoyl	H		) O	
		F	OCH ₃	CH			2-naphthoyl	Н	C	) O	•
2-18 2-18		F	OCH ₃	CH	*****		2-naphthoyl	H	C	0 (	ļ
*********	, <del> , , , , , , , , , , , , , ,</del>	F	OCH ₃	CH			4-vinylbenzoyl	Н	C	) O	)
2-18		F		CH	·····		4-vinylbenzoyl	4-vinylbenzoyl	C	) C	)
2-18		<b></b>		NI			2-naphthoyl	H		) C	
2-18		F		NI			2-cinnamoyl	Н	(	Ö	)
2-18		F			H ₂ CF		2-cinnamoyl	2-cinnamoyl	(	) C	ÿ
2-18		F			H ₂ CF		benzyloxyacetyl	H	(	Ö	ï
2-18		F				<del>-</del>	2-naphthoyl	H		o c	•••
2-13	88 Cl	F	OCH ₂ CN	1 141	H ₂ CF	3   11	* mprime j	:	•	:	

2-189	C1	F	OCH ₂ COOC H ₂ CH ₃	СН,	CF ₃	Н	2-naphthoyl	H	0	0
2-190	Cl	F	OCH ₂ COOC H ₂ CH ₃	СН,	CF ₃	H	2-cinnamoyl	H	O	о
2-191	Cl	F	OCH(CH ₃ )C OOCH ₂ CH ₃	СН3	CF ₃	Н	2-naphthoyl	Н		0
2-192	Cl	F	ОН	NH ₂	CF,	Н	2-naphthoyl	H		0
2-193		Н	Н	CH ₃	CF ₃	Н	2-naphthoyl	H	О	0
	pyridyloxy				·					
2-194		F	ОН	CH ₃	CF ₃	H	2-naphthoyl	Н	ii	0
2-195	<u> </u>	F	OCH ₂ C≡CH	CH ₃	CF ₃	Н	2-naphthoyl	<u>H</u>	á	0
2-196		F	OCH ₂ CH ₃	CH,	CF,	Н	2-naphthoyl	Н		0
2-197		F	OCH(CH ₃ ) ₂	CH ₃	CF,	Н	2-naphthoyl	<u>H</u>	ii	0
2-198		F	OCH ₃	CH ₃	CF ₃	Н	Hexanoyl	Н	ii	0
2-199		F	3-NO₂- pyridyloxy	СН3	CF ₃	Н	2-naphthoyl	Н		0
2-200	Cl	F	OCH ₂ CN	CH ₃	CF ₃	Н	2-naphthoyl	H	Ă	0
2-201	i	H	H	CH,	CF ₃	Н	2-naphthoyl	H	0	0
2-202		Н	OCH,	CH,	CF ₃	Н	2-naphthoyl	H	· • • • • • • • • • • • • • • • • • • •	0
2-203		H	H	CH ₃	CF ₃	H	2-naphthoyl	H	· 4 · · · · · ·	0
2-204	i	H	H	CH ₃	CF ₃	H	c-C₃H₅-carbonyl	H	.i	0
2-205	À	Н	H	CH,	CF,	Н	2-naphthoyl	H	.i	0
2-206	***************	F	OCH,	CH,	CF,	Н	c-C₃H₅-carbonyl	H	• • • • • • • •	0
2-207			H	CH ₃	CF ₃	H	2-naphthoyl	H	0	0

## TABLE III

$$\begin{array}{c} X \\ R \\ O \end{array} \begin{array}{c} Y \\ R_{8} \\ R_{1} \\ R_{5} \\ R_{9} \\ R_{3} \end{array} \begin{array}{c} R_{8} \\ R_{2} \\ R_{3} \end{array}$$

-NT- :	Х	Y	R	R ₁	R ₂	R ₃	R ₄	R ₅	R ₈	R,
No.	Cl	F	CH,	CH ₃	CF ₃	H	CONHCH ₃	CONHCH ₃	0	0
3-1	Cl	F	CH ₃	CH ₃	CF ₃	H	CONHCH ₂ CH ₂ CH ₃	Н	0	0
3-2	Cl	F	CH,	CH,	CF,	Н	CON[CH(CH ₃ ) ₂ ] ₂	H	0	0
3-3	Cl	F	CH ₃	CH ₃	CF,	Н	CONHC ₆ H ₅	H	О	0
3-4	Cl	F	CH,	CH,	CF,	Н	CON(CH3)C6H5	Н	0	0
3-6	Cl	F	CH ₃	CH,	CF,	Н	CONHCH₂C6H3	Н	0	0
3-7	Ci	F	CH,	CH ₃	CF,	Н	CONHCH(CH ₃ )-C ₆ H ₅	Н	0	<u>O</u>
3-8	Ci	F	CH,	CH,	CF ₃	H	CON(CH ₃ )CH ₂ C ₆ H ₅	H	0	<u>O</u>
3-9	Ci	F	CH,	CH,	CF,	Н	CONHCH ₂ -(4-CH ₃ )phenyl	H	0	<u>O</u>
3-10		F	CH,	CH ₃	CF,	H	CONH CH ₂ -2,4-F ₂ -phenyl	Н	0	0
3-10	Cl	F	CH ₃	CH ₃	CF,	Н	CONH CH₂CH₂C₅H₅	H	О	0
3-12	<b></b>	F	CH ₁	CH,	CF,	Н	CONH CH,CH,CH,C,H,	<u>H</u>	0	0
3-13	<b>i</b>	F	CH,	CH ₃	CF,	Н	CONH-2-naphthoyl	Н	0	0
3-14	<b></b>	F	CH₂CN	CH ₃	CF,	Н	CONHCH₂C ₆ H ₅	H	0	0
3-15	<b></b>	F	CH,	Н	CF ₃	Н	CONHCH ₂ C ₆ H ₅	Н	0	0
3-16	·	F	CH,	NH ₂	CF,	H	CONHCH ₂ C ₆ H ₅	Н	0	0
3-17		F	CH ₃	CH ₃	CHF ₂	Н	CONHCH₂C ₆ H ₅	H	0	0
3-18	. <b></b>	F	CH ₃	СН,	CF ₃	Cl	CONHCH2C6H5	H	0	0
3-19		F	CH,	CH ₃	CF,	Н	CONHCH2C6H5	H	S	S
3-20		F	CH ₃	CH ₃	CF ₃	Н	CONHCH ₂ C ₆ H ₅	H	0	0
3-21	. <del> </del>	F	CH ₃	CH,	CF,	Н	CONHCH ₂ C ₆ H ₅	H	0	0
3-22	. i	H	СН,	CH ₃	CF ₃	Н	CONHCH₂C6H5	H	0	O
3-23		F	CH,	CH ₃	CF,	Н	CON(C ₆ H ₅ )CH ₂ C ₆ H ₅	H	0	0
3-24		F	CH ₃	CH ₃	CF,	Н	CONHCH(C ₆ H ₅ )C ₆ H ₅	H	0	0
3-20		F	CH ₃	CH ₃	CF ₃	Н	CONH,	Н		<u>.                                     </u>

## TABLE IV

$$X \longrightarrow Y \\ W \longrightarrow R_4 \longrightarrow R_5 \\ R_9 \longrightarrow R_2$$

	<del></del> ;	<b>17</b> !	W	D :	R,	R ₃	R ₄	R ₅	R ₈	R,
No.	X	Y		R ₁ CH ₃	CF ₁	H	COOCH ₃	H	0	O O
4-1	Cl	F	OCH,		CF ₃	H	COOCH,	COOCH,	0	O
4-2	Cl	F	OCH,	CH,		H	COO-phenyl	H	O	O
4-3	Cl	F	OCH ₃	CH,	CF ₃	H	COO-[2,4-(CH ₃ ) ₂ ]-phenyl	H	0	O
4-4	Cl	F	OCH,	CH ₃	CF ₃	H	COOCH ₂ -phenyl	H	0	O
4-5	Cl	F	OCH ₃	CH ₃	CF ₃	H	COOCH ₂ -(2-F)-phenyl	H	0	O
4-6	Cl	F	OCH,	CH,	CF ₃	H	COOCH ₂ -(4-F)-phenyl	H	0	O
4-7	Cl	F	OCH ₃	CH ₃	CF ₃	H	COOCH ₂ -(2-CF ₃ )-phenyl	H	О	O
4-8	Cl	F	OCH ₃	CH ₃	CF,	H	COOCH ₂ -(4-CF ₃ )-phenyl	H	0	O
4-9	Cl	F	OCH ₃	CH ₃	CF,	H	COO-2-naphthyl	H	0	O
4-10	Cl	F	OCH,	CH ₃	CF,	H	COO-cyclohexyl	H	O	O
4-11	Cl	F	OCH ₃	CH ₃	CF ₃	H	COOCH ₂ -cyclohexyl	H	0	O
4-12	Cl	F	OCH,	CH ₃		H	C(O)-S-phenyl	H	0	O
4-13	Cl	F	OCH,	CH ₃	CF ₃	Н	COO-phenyl	H	0	0
4-14	Cl	F	OCH ₂ CN	CH ₃	CF ₃	H	COO-phenyl	H	О	O
4-15	Cl	F	OCH,	Н	CF,	H	COO-phenyl	H	O	O
4-16	Cl	F	OCH ₃	NH ₂	CF ₃	H	COO-phenyl	H	O	O
4-17	Cl	F F	OCH,	CH,	CF ₃	Cl	COO-phenyl	Н	0	0
4-18	C1	i	OCH ₃	CH,	CF ₃	H	COO-phenyl	H	S	O
4-19	Cl	F	OCH ₃	CH ₃	CF ₃	H	COO-phenyl	H	O	S
4-20	Cl	F F	OCH ₃	CH ₃	CF,	H	COO-phenyl	H	O	O
4-21	CN	i	OCH ₃	CH ₃	CF ₃	H	COO-phenyl	H	0	0
4-22	Cl	H		CH ₃	CF,	H	COOCH ₂ -phenyl	Н	0	O
4-23	Cl	F	OCH₂CN	CH,	CF,	H	COOCH ₂ -(2,6-di-Cl)-phenyl	H	O	0
4-24	Cl	F	OCH ₃	CH ₃	CF ₃	H	COO-[2,4,6-(CH ₃ ) ₃ ]-phenyl	Н	O	0
4-25	Cl	F	OCH ₃	A	CF ₃	H	COOCH ₂ -[3,4-(CH ₃ ) ₂ -	Н	0	0
4-26	Cl	F	OCH,	CH ₃	Cr ₃	11	phenyl			
			OCH ₃	CH ₃	CF ₃	Н	COO-(2-t-butyl)-phenyl	H	0	Ο
4-27	Cl	F	OCH,	CH ₃	CF,	H	COOCH ₂ -2-naphthyl	H	0	0
4-28	Cl Cl	F	OCH ₃	CH,	CF,	H	COOCH ₂ -(2,6-di-F)-phenyl	Н	0	О
4-29	Cl	F	OCH ₃	CH,	CF,	H	COOCH ₂ -(3,4-di-F)-phenyl	Н	О	0
4-30		F	OCH ₃	CH ₃	CF,	H	COOCH ₂ -(4-ethyl)-phenyl	Н	0	Ο
4-31	Cl	F	OCH ₃	CH ₃	CF,	H	COOCH ₂ -(3,4-di-Cl)-phenyl	Н	0	0
4-32	Cl	F	OCH ₃	CH ₃	CF,	H	COOCH ₂ -(2-CF ₃ )-phenyl	Н	0	0
4-33	Cl	F	OCH ₃	CH ₃	CF ₃	H	COOCH ₂ -(2-NO ₂ )-phenyl	Н	O	0
4-34	*********		OCH,	CH ₃	CF ₃	H	COOCH ₂ -(2-OCH ₃ )-phenyl	Н	0	
4-35		F	OCH ₃	CH ₃	CF ₃	H	COOCH ₂ -2-pyridyl	Н	0	0
4-36		F		CH ₃	CF ₃	H	COOCH ₂ -[3,5-(CH ₃ ) ₂ ]-	Н	O	0
4-37	Cl	F	OCH ₃	CII	<b>U</b> 13	**	phenyl			
4 20		F	OCH,	CH ₃	CF ₃	Н	COOCH ₂ -[2,5-(CH ₃ ) ₂ ]-	Н	O	0
4-38	Cl	r	JCII	J.1.3	- 3		phenyl			
4-39	CI	F	OCH,	CH ₃	CF,	Н	COOCH ₂ -(2,5-di-F)-phenyl	H	0	
**********	****			CH ₃		Н	COOCH ₂ -(4-OCH ₃ )-phenyl	H	C	
4-4(						H	COOCH ₂ -(3,4-OCH ₂ O)-	Н	C	0
4-41	'   C	r	0011	J,	,		phenyl		į	

4-42	CI !	F	OCH,	CH,	CF,	н	COOCH ₂ -(4-i-C ₃ H ₇ )-phenyl	H	0	0
4-43	Ci	F	OCH,	CH.	CF,	Н	COOCH ₂ -(4-CF ₃ )-phenyl	H	0	O
4-43	CI	F	OCH ₃	CH ₁	CF,	Н	COOCH ₂ -(3-F)-phenyl	Н	0	0
4-45	Cl	F	OCH ₁	CH,	CF,	Н	COOCH ₂ -(4-OCF ₃ )-phenyl	H	0	0
4-46	Cl	F	OCH,	CH,	CF,	Н	COOCH-(c-C3H5)-phenyl	H	0	O
4-47	CI	F	OCH,	CH,	CF,	Н	COOCH(CH ₃ )-phenyl	H	0	0
4-48	Ci	F	OCH,	CH,	CF,	Н	COOCH ₂ -(2,3,4,5,6-penta-	H	0	0
7-10	Ŭ.		<b>,</b>		_		F)-phenyl		<u> </u>	
4-49	CI	Н	Н	CH,	CF ₃	H	COOCH ₂ -(2-F)-phenyl	Н	0	0
4-50	CI	Н	H	CH,	CF,	H	COO-phenyl	H	0	0
4-51	Cl	F	CH ₃	CH,	CF,	H	COOCH2-(2-F)-phenyl	H	0	0
4-52	Cì	F	CH ₃	СН,	CF,	Н	COO-phenyl	Н	0	0
4-53	Cl	F	CH,	CH,	CF,	Н	COO-3,4-dimethylphenyl	Н	0	0
4-54	Cl	F	CH,	CH,	CF,	Н	COOCH ₂ -2-Cl-phenyl	Н	0	0
4-55	Cl	F	CH,	CH ₁	CF,	Н	COO-2,6-dimethylpheny	Н	0	0
4-56	Cl	F	CH,	CH,	CF ₃	Н	COOCH ₂ -2-methylphenyl	Н	0	0
4-57	Cl	F	CH,	CH ₃	CF ₃	Н	COOCH ₂ CH ₂ -phenyl	H	0	0
4-58	Cl	F	CH,	CH,	CF ₃	Н	COOCH ₂ -2-methoxyphenyl	H	0	0
4-59	Cl	F	CH ₃	CH,	CF,	Н	COO-2,6-dimethoxyphenyl	H	0	0
4-60	Cl	F	CH,	CH,	CF,	H	COOCH ₂ -4-methylphenyl	Н	0	0
4-61	Cl	F	CH,	CH ₁	CF,	H	COOCH ₂ -4-Cl-phenyl	H	0	0
4-62	Cl	F	CH,	CH,	CF ₃	Н	COOCH ₂ -2,4-	Н	0	0
4-02	<u> </u>						dichlorophenyl	* * * * * * * * * * * * * *		
4-63	Cl	F	CH,	CH,	CF,	Н	COOCH₂-3,4-	Н	0	0
. 02							dimethoxyphenyl			ļ
4-64	Cl	F	CH ₃	CH,	CF ₃	Н	COOCH ₂ -4-nitrophenyl	Н	0	0
4-65	CI	F	CH ₃	CH ₃	CF,	Н	COOCH ₂ -3-methoxyphenyl	H	0	0
4-66	Cl	F	CH ₃	CH ₃	CF ₃	H	COSCH ₂ -phenyl	Н	0	0
4-67	Ci	F	CH ₃	CH ₃	CF,	Н	COOCH ₂ -3-nitrophenyl	Н	0	i
4-68	Cl	F	CH ₃	CH ₃	CF,	Н	COOCH ₂ -3-methylphenyl	H	0	0
4-69	Cl	F	CH,	CH,	CF ₃	Н	COOCH ₂ -2,4,6-	H	0	0
					<u>:</u>		trimethylphenyl			O
4-70	Cl	F	СН,	CH,	CF ₃	H	COOCH ₂ -2-furanyl	Н	0	10

TABLE V

$$\begin{array}{c} X \\ R \cdot O \\ \\ R_{4} \\ \end{array} \begin{array}{c} Y \\ N \\ N = N \\ \end{array} \begin{array}{c} N - R_{1} \\ N = N \end{array}$$

No.	Х	Y	R	$R_i$	R ₄	R ₅
5-1	Cl	F	CH,	Н	0	<u>O</u>
5-2	Cl	F	H	Н	0	<u>O</u>
5-3	Cl	F	СН,	(CH ₂ ) ₃ F	H	<u>H</u>
5-4	Cl	F	Н	(CH ₂ ) ₃ F	0	0
5-5	Cl	F	H	(CH ₂ ) ₃ F	H	Н
5-6	Cl	C1	CH ₃	Н	0 i	<u> </u>
5-7	Cl	Cl	СН,	(CH₂)₃F	0	<u> </u>
5-8	Cl	Cl	Н	(CH₂)₃F	0	<u>O</u>
5-9	Cl	Cl	Н	(CH ₂ ) ₃ F	Н	Н
5-10	Cl	F	CH ₃	(CH ₂ ) ₃ F	COCH ₃	H
5-11	Cl	F	CH ₃	(CH ₂ ) ₃ F	benzoyl	H
5-12	Cl	F	CH,	(CH ₂ ) ₃ F	CH ₃	CH ₃
5-13	Cl	F	CH,	(CH ₂ ) ₃ F	COOCH,	Н
5-14	Cl	F	CH ₃	(CH ₂ ) ₃ F	CONHCH ₃	H
5-15	Cl	Cl	CH ₂ C≡CH	(CH₂)₃F	Н	<u>H</u>
5-16	Cl	Ci	CH(CH ₃ ) ₂	(CH₂)₃F	Н	H
5-17	Cl	F	CH ₂ C≡CH	(CH₂)₃F	H	<u>H</u>
5-18	CI	F	CH(CH ₃ ) ₂	(CH ₂ ) ₃ F	H	H
5-19	CN	F	СН,	(CH ₂ ) ₃ F	benzoyl	<u>H</u>
5-20	C1	Н	CH ₃	(CH ₂ ) ₃ F	benzoyl	H
5-21	Cl	F	CH ₃	(CH ₂ ) ₃ F	2,4-F ₂ -benzoyl	Н
5-22	Cl	F	CH,	(CH ₂ ) ₃ F	4-C₂H₅-benzoyl	<u>H</u>
5-23	Cl	F	CH ₃	(CH ₂ ) ₃ F	3-phenyl-propionyl	<u>H</u>
5-24	Cl	F	CH ₂ CN	(CH ₂ ) ₃ F	2,4-F ₂ -benzoyl	H
5-25	Cl	F	CH ₂ CN	(CH ₂ ) ₃ F	2-naphthoyl	H
5-26	Cl	F	CH,	(CH ₂ ) ₃ F	2-naphthoyl	Н
5-27	Cl	F	CH,	(CH ₂ ) ₃ F	2-naphthoyl	2-naphthoyl
5-28	Cl	F	CH ₃	(CH ₂ ) ₃ F	benzyloxyacetyl	H

TABLE VI

No.	X	Y	W	R ₁	R ₂	R ₄	R ₅
6-1	Cl	F	ОН	CHF ₂	CH ₃	O	0
6-2	Cl	F	ОН	CHF ₂	СН,	H	H
6-3	Cl	F	OCH ₃	CHF,	CH ₃	Н	H
6-4	Cl	F	OCH,	CHF ₂	CH ₃	COCH,	H
6-5	Cl	F	OCH,	CHF,	CH ₁	benzoyl	Н
6-6	CI	Cl	OCH,	CHF,	CH ₃	СН,	CH,
6-7	Cl	Cl	OCH ₃	CHF ₂	CH ₃	COOCH ₃	H
6-8	Cl	F	OCH,	CH ₃	CH,	benzoyl	H
6-9	Cl	F	OCH ₃	CHF ₂	CH ₂ CH ₃	benzoyl	, H
6-10		Cl	OCH ₃	CHF ₂	CH,	CONHCH ₃	Н
6-11		F	OCH,	CHF ₂	CH,	benzoyl	Н
		H	OCH,	CHF ₂	CH ₃	benzoyl	Н
6-12 6-13		Cl	Н	CHF ₂	CH,	2,4-difluoro-benzoyl	Н
		F	OCH,	CHF,	CH ₃	2,4-difluoro-benzoyl	Н
6-14 6-15		F	OCH,	CHF ₂	CH ₃	2-naphthoyl	Н
6-16		Cl	Н	CHF,	CH,	2-naphthoyl	H
6-17	i	Ci	OCH ₃	CHF ₂	CH ₃	2-naphthoyl	H
6-18	i	Ci	HNC(O)C ₂ H ₅	CHF ₂	CH ₃	О	0
6-19	÷	Cl	HNC(O)C ₂ H ₅	CHF ₂	CH ₃	H	Н
6-20	i	Cl	NH ₂	CHF ₂	CH ₃	Н	Н
6-21	À	F	H H	CHF,	CH ₃	O	0
6-22		F	H H	CHF ₂	CH ₃	H	Н
******		F	H	CHF,	CH,	2,4-F ₂ -benzoyl	H
6-23		F	H H	CHF,	CH,	2-naphthoyl	H

## TABLE VII

$$\begin{array}{c} X \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{1} \\ \end{array}$$

No.	X	Y	R	R ₁	R ₂	R ₃	R.	R ₅
7-1	Cl	F	CH,	CH,	CF,	Cl	0	0
7-2	Cl	F	CH ₁	CH,	CF,	Cl	Н	H
7-3	Cl	F	Н	CH ₁	CF,	Cl	Н	Н
7-4	C1	F	CH,	CH ₁	CF ₃	C1	COCH ₃	Н
7-5	Ci	F	CH,	CH,	CF,	C1	benzoyl	H
7-6	Cl	C1	CH,	CH,	CF,	Cl	СН,	CH,
7-7	Cl	Cl	CH,	CH,	CF,	Cl	COOCH,	H
7-8	Cl	Cl	CH,	CH ₁	CF,	Cl	CONHCH ₃	H
7-9	CN	F	CH ₃	CH,	CF ₃	Cl	benzoyl	H
7-10	CI	Н	CH,	CH,	CF,	Cl	benzoyl	Н
	Cl	F F	CH,	CH ₂ CH ₃	CF,	Cl	benzoyl	Н
7-11	Cl	F	CH ₃	CH,	OCHF ₂	C1	benzoyl	Н
7-12	i	F	CH ₁	CH ₁	CF,	Br	benzoyl	H
7-13	Cl	F	CH ₃	CH ₁	CF,	Cl	2-naphthoyl	H
7-14	Cl			CH,	CF ₃	CI	cinnamoyl	Н
7-15	Cl	F	CH,	: CH ₃	: 013	<u> </u>	<u> </u>	·

### TABLE VIII

No.	<u>ζ</u>	Y	W	R ₄	R _s
8-1 C	71	F	ОН	0	O
8-2 C		F	OH	Н	H
	1	F	OCH₂C≡CH	Н	Н
	71	F	OCH(CH ₃ ) ₂	H	Н
	i i	F	O-c-pentyl	Н	Н
	Zi -	F	OCH,	0	O
	ו וכ	F	OCH ₃	H	Н
	Ci T	F	OCH,	2,4-F ₂ -benzoyl	H
	CI T	F	OCH,	2-naphthoyl	H
	Ci	F	OCH ₃	4-C₂H₅-benzoyl	H
	ČI 💮	F	OCH ₃	3-phenyl-propionyl	H
	N	F	OCH ₃	2,4-F ₂ -benzoyl	H
	Ci	F	OCH ₂ C≡CH	2,4-F₂-benzoyl	H
	ci i	F	OCH₂C≡CH	2-naphthoyl	H
	Cl	F	OCH₂C≡CH	4-C ₂ H ₅ -benzoyl	Н
	C1	F	OCH₂C≡CH	3-phenyl-propionyl	Н
	CN	F	OCH₂C≡CH	2,4-F ₂ -benzoyl	H
	Ci	F	OCH(CH ₃ ) ₂	2,4-F ₂ -benzoyl	<u>H</u>
8-19	Cl	F	OCH(CH ₃ ) ₂	2-naphthoyl	Н
8-20	Cl	F	OCH(CH ₃ ) ₂	4-C ₂ H ₅ -benzoyl	Н
8-21	Cl	F	OCH(CH ₃ ) ₂	3-phenyl-propionyl	Н
8-22	CN	F	OCH(CH ₃ ) ₂	2,4-F ₂ -benzoyl	Н
8-23	Cl	F	OCH ₃	COCH₃	Н
8-24	Cl	F	OCH ₃	benzoyl	Н
8-25	Cl	F	OCH ₃	CH ₃	CH ₃
8-26	Cl	F	OCH ₃	COOCH,	H
8-27	Cl	F	OCH,	CONHCH ₃	Н
8-28	CN	F	OCH ₃	benzoyl	H
8-29	Cl	Н	OCH ₃	benzoyl	H
8-30	Cl	F	OCH ₃	4-vinyl-benzoyl	Н
8-31	Cl	F	OCH ₃	cinnamoyl	H
8-32	Cl	NO₂	Н	0	0
8-33	Cl	Н	Н	0	0
8-34	NO ₂	Н	Н	О	O
8-35	Cl	Н	Н	H	H
8-36	Cl	Н	H	2-naphthoyl	H

TABLE IX

$$\begin{array}{c} X \\ W \\ \\ K_4 \\ \end{array} \begin{array}{c} Y \\ R_5 \\ R_9 \\ \end{array} \begin{array}{c} R_8 \\ N \\ N \\ \end{array}$$

No.	Х	Y	W	R ₄	R ₅	R ₈	R,
9-1	Cl	F	OH	0	Ο	0	0
9-2	Cl	F	OH	Н	H	0	0
9-3	Cl	F	OCH ₃	0	O	0	0
9-4	Cl	F	OCH,	Н	Н	0	0
9-5	Cl	F	OCH ₃	COCH,	H	0	0
9-6	Cl	F	OCH,	benzoyl	Н	0	Ο
9-7	Cl	F	OCH ₃	CH ₃	CH ₃	0	О
9-8	Cl	F	OCH ₃	COOCH,	H	0	0
9-9	Cl	F	OCH ₃	CONHCH,	Н	0	0
9-10	CN	F	OCH,	benzoyl	Н	0	0
9-11	C1	H	OCH,	benzoyl	Н	0	0
9-11	Cl	H	Н	O	0	0	S
9-12	Cl	H	Н	Н	H	0	S
9-13	Cl	H	Н	2-naphthoyl	Н	0	S
9-14	CI	F	OCH,	2-naphthoyl	Н	0	0
9-15	Cl	F	OCH,	2,4-F ₂ -benzoyl	H	0	O
9-10	Cl	H	H	O	0	0	O
9-17	Cl	H	H	H	Н	0	0
9-18	Cl	H	H	2-naphthoyl	H	O	0

## TABLE X

No.	X	Y	R	R ₅	R ₄
10-1	Cl	F	Н	O	O
10-2	Cl	F	H	Н	Н
10-3	Cl	F	CH,	O	0
10-4	Cl	F	СН,	H	H
10-5	Cl	F	CH ₃	COCH,	Н
10-6	Cl	F	CH,	benzoyl	Н
10-7	Cl	F	CH,	СН,	CH ₃
10-8	Cl	F	CH,	COOCH,	Н
10-9	Cl	F	CH ₃	CONHCH,	Н
10-10	CN	F	CH ₃	benzoyl	Н
10-11	Cl	Н	CH ₃	benzoyl	Н

## TABLE XI

$$\begin{array}{c|c} X & Y & O \\ W & Z & N & R_2 \end{array}$$

				_		
No.	X	Y	W	R ₁	R ₂	Z
11-1	Cl	F	OCH,	Н	CF ₃	NO ₂
11-2	CI	F	ОН	Н	CF ₃	NO ₂
11-3	Cl	F	ОН	Н	CF ₃	NH ₂
11-4	Cl	F	OCH,	Н	CF,	NH ₂
11-5	Ci	F	OCH,	Н	CF,	NHCH ₃
11-6	Cl	F	OCH,	Н	CF,	NH-2-naphthoyl
11-7	Cl	F	OCH,	Н	CF,	Cl
11-8	Cl	F	OCH ₃	Н	CF ₃	CH2CHCICOOCH2CH3
11-9	Cl	F	ОН	CH,	CF,	NO ₂
11-10	Cl	F	OH	CH ₃	CF,	NH ₂
11-11	Cl	F	OCH,	СН,	CF,	NH ₂
11-12	Cl	F	OCH ₃	CH ₃	CF ₃	NHCH,
11-13	Cl	F	OCH,	CH,	CF ₃	NH-2-naphthoyl
11-14	Cl	F	OCH ₁	CH ₃	CF ₃	NO₂
11-15	Cl	F	OCH,	CH ₃	CF,	NHCOCH,
11-16	Cl	F	OCH,	CH ₃	CF ₃	NH-benzoyl
11-17	Cl	F	OCH,	CH ₃	CF,	N-(CH ₃ ) ₂
11-18	Cl	F	OCH,	CH ₃	CF ₃	NHCOO-phenyl
11-19	Cl	F	OCH,	CH,	CF,	NHCONHCH,
11-20	CN	F	OCH,	CH ₃	CF ₃	2-naphthoyl -NH
11-21	Cl	F	OCH,	CH ₃	CH,	2-naphthoyl -NH
11-22	Cl	H	OCH ₃	CH,	CF,	2-naphthoyl -NH
11-23	Ci	F	OCH,	CH,	CF,	Cl
11-24	CI	F	OCH,	CH,	CF,	CH,CHClCOOCH,CH,
11-24	<u> </u>		<u> </u>			

5

5

# TABLE XII

$$X \longrightarrow Y \longrightarrow R_{8}$$

$$R_{4} \longrightarrow R_{5} \longrightarrow R_{8}$$

No.	X	Y	W	R ₄	R ₅	R _s	R,
12-1	Cl	F	ОН	0	O	S	. 0
12-2	Cl	F	OH	Н	Н	S	0
12-3	Cl	F	ОН	Н	Н	S	0
12-4	Cl	F	OCH,	Н	H	S	0
12-5	CI	F	OCH ₃	2-naphthoyl	H	S	0
12-6	Cl	H	H	O	0	0	0
12-7	Cl	H	Н	Н	H	Ο	0
12-7	Cl	H	H	2-naphthoyl	H	0	0
12-9	Cl	F	OCH,	COCH,	H	S	О
	Cl	F	OCH,	benzoyl	Н	S	O
12-10	Cl	F	OCH ₁	CH,	CH ₃	S	0
12-11	Cl	F	OCH,	COO-phenyl	H	S	0
12-12		F	OCH ₃	CONHCH	H	S	0
12-13	C1	F	OCH,	2-naphthoyl	H	S	O
12-14	CN	i	<u> </u>	2-naphthoyl	H	S	O
12-15	Cl	H	OCH ₃	2-Haphuloyi	<u> </u>	<u> </u>	

## TABLE XIII

No.	X	Y	W	R ₄	R ₅
13-1	Cl	F	OH	О	0
13-2	Cl	F	OH	Н	Н
13-2	Cl	F	OCH,	2-naphthoyl	H
13-4	Cl	F	OCH ₁	2,4-difluorobenzoyl	H
13-5	Cl	Н	Н	2-naphthoyl	Н
13-6	Cl	F	OCH,	сосн,	H
13-7	C1	F	OCH,	benzoyl	H
13-8	Cl	F	OCH,	СН,	CH ₃
13-9	Cl	F	OCH,	COO-phenyl	H
13-10	Cl	F	OCH,	CONHCH,	Н
13-10	CN	F	OCH,	2-naphthoyl	H
13-11	Cl	H	OCH,	2-naphthoyl	H

### TABLE XIV

$$X \longrightarrow X$$
  $Q$ 

										<b>5</b> :	<del></del>
No.	X	Y	W	Q	$R_1$	R ₂	R,	•••••		R ₈	R ₉
14-1	Cl	F	OCH,	Q1	CH,	CF,	H		CH ₂ CH ₂ CO ₂ CH ₂ CH ₃	0	<u>O</u>
14-2	Cl	F	OCH,	Q1	CH,	CF ₃	Н		CH=CHCO ₂ CH ₂ CH ₃	0	<u>O</u>
14-3	Cl	F	OCH,	Q1	CH ₃	CF ₃	Н		CH₂CHClCO₂CH₃	0	<u>O</u>
14-4	Cl	F	OCH,	Q1	CH,	CF ₃	Н		CH₂CHClCO₂C₂H,	0	0
1-44	O.			`		-			(isomer-1)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
14-5	Cl	F	OCH ₃	Q1	CH ₃	CF,	H		CH₂CHClCO₂C₂H,	0	0
14-5	Ci	1 1	<b>0</b> 021.,	`					(isomer-2)		
14.6	C1	F	OCH,	Q1	CH ₃	CF,	Н	<b>!</b>	CH2CHClCO2-n-C3H2	0	0
14-6	Ci	1 1	00113	Α-	3	,			(isomer-1)		
	Cl	F	OCH,	Q1	CH,	CF,	Н	·	CH ₂ CHClCO ₂ -n-C ₃ H ₇	0	Ö
14-7	Ci	r	OCII3	٧.	Olly	J- ,			(isomer-2)		
		F	OCH,	Q1	CH,	CF,	Н	•	CH,CHClCO ₂ -n-C ₄ H,	0	O
14-8	Cl	r	OCn ₃	Ų١	C113	C1 3	**		(isomer-1)		
					CH,	CE	H	- <del> </del>	CH ₂ CHClCO ₂ -n-C ₄ H ₉	O	O
14-9	Cl	F	OCH,	Q1	Cn ₃	Cr ₃	**		(isomer-2)		
				<u> </u>		CE	Н	.ļ	CH ₂ CHClCO ₂ -n-C ₅ H ₁₁	О	O
14-10	Cl	F	OCH,	Q1	CH ₃	CF ₃	п		(isomer-1)	Ů	
				<u></u>	ļ <u></u>					0	O
14-11	Cl	F	OCH,	Q1	CH,	CF,	Н		CH ₂ CHClCO ₂ -n-C ₅ H ₁₁		
				<u>.</u>	<u>.</u>	<u>.</u>	.i <u>.</u>		(isomer-2)	O	0
14-12	C1	F	OCH₃	Q1	CH ₃	CF ₃	Н		CH ₂ CHClCO ₂ -n-C ₆ H ₁₃	U	U
				1	İ	<u> </u>			(isomer-1)	O	0
14-13	Cl	F	OCH ₃	Q1	CH ₃	CF,	Н		CH ₂ CHClCO ₂ -n-C ₆ H ₁₃	U	U
				•			<u> </u>		(isomer-2)	ļ	ļ
14-14	Cl	F	OCH,	Q1	CH ₃	CF,	H		CH₂CHClCO₂-i-C₄H ₉	0	0
14-14	Ů.	-		1					(isomer-1)		
14-15	Cl	F	OCH ₃	Q1	CH,	CF,	Н		CH₂CHClCO₂-i-C₄H,	0	0
14-15	Cı	•	, ,	`					(isomer-2)		
	Cl	F	OCH,	Q1	CH ₃	CF ₃	H		CH ₂ CHClCO ₂ -i-C ₅ H ₁₁	0	0
14-16	CI	I.	J Cons	ν.	,				(isomer-1)		
	Cl	F	OCH,	Q1	CH,	CF ₃	H		CH2CHClCO2-i-C3H11	О	0
14-17	CI	Г	OCI1,	Q.	OII,	0.,	'		(isomer-2)	<i>'</i>	
			OCII	Q1	CH ₃	CF.	Н	r i	CH,CHCICO2-1-C4H9	O	О
14-18		F	OCH ₃	****			<b>.</b>		CH2CHClCO2-CH2C≡CH	О	0
14-19	Cl	F	OCH ₃	Q1	CH,	Cr ₂	3   17	١.	(isomer-1)		
							, H	<del>,  </del>	CH2CHClCO2-CH2C≡CH	Ö	0
14-20	Cl	F	OCH ₃	Q1	CH ₂	CF	3 E	1	(isomer-2)		
								<del>,</del>	CH2CHCICO2CH2CF3	Ö	О
14-21	Cl	F	OCH ₃	Q1	****	****	****		CH ₂ CHClCO ₂ -CH ₂ CF ₂ CHF ₂	Ö	··· <del>·</del> ······
14-22	Cl	F	OCH ₃	Q1	**** **********	****					
14-23	Cl	F	OCH,	Q1	CH	, CF	, 1	I	CH2CHCICO2CH2CF2CF2CF3		
									(isomer-1)	C	O
14-24	4 Cl	F	. OCH ₃	Q1	CH	, CF	, I	H	CH2CHCICO2CH2CF2CF2CF3	٠ ا ر	,   0
	'								(isomer-2)		
14-2	5 C1	F	OCH,	Q1	СН	, CF	, 1	H	CH,CHClCO,CH,CH,OCH,	)	
14-2		F		Q1			7,	Н	CH2CHClCO2CH2CH2OC2H		
**********		F	****	Q	*****			Н	CH2CHClCO2CH2CH2OPh	(	0
14-2	/ CI		30113	*					(isomer-1)		
		F	OCH ₃	Q	i CF	I, CI	F.	H	CH2CHCICO2CH2CH2OPh	(	0
14-2	8 Cl	r	00113	1		-, 0.	- ,	-	(isomer-2)		
			OCU	Q	1 6	i, C	F.	H	CH,CHClCO2-CH2CH2CN	(	0 0
14-2	9 Cl	F	OCH ₃	<u> </u>	ı Cr	13 C	· 3 :	<u></u>	<u> </u>		

14-30	Cl	F	OCH ₃	Q1	CH,	CF,	Н	CH ₂ CHClCO ₂ CH ₂ CH ₂ BrCH ₂ B	0	O
		İ						r (isomer-1)		
14-31	Cl	F	OCH ₃	Q1	CH,	CF ₃	Н		0	0
					İ			г (isomer-2)		
14-32	Cl	F	OCH,	Q1	CH,	CF,	H	CH ₂ CHBrCO ₂ C ₂ H ₅ (isomer-1)	0	0
14-33	Cl	F	OCH,	Q1	CH,	CF,	H	CH ₂ CHBrCO ₂ C ₂ H ₅ (isomer-2)	0	0
14-34	Cl	F	OCH,	Q1	CH,	CF,	H	CH₂C(CH₃)ClCO₂C₂H₅	0	0
14-35	Cl	F	OCH,		CH,	CF,	H	CH ₂ C(CH ₃ )ClCO ₂ -n-C ₃ H ₇	0	0
14-36	Cl	F	OCH,	Q1	CH,	CF,	Н	CH ₂ C(CH ₃ )ClCO ₂ -n-C ₄ H ₉	0	O
	CI	F	OCH,		CH,	CF,	Н	CH ₂ C(CH ₃ )ClCO ₂ -n-C ₅ H ₁₁	0	O
14-37		F	OCH,	Q1	CH,	CF,	Н	CH ₂ C(CH ₃ )ClCO ₂ -n-C ₆ H ₁₃	0	Ö
14-38	Cl		,	Q1	CH,	CF,	Н	CH ₂ C(CH ₃ )ClCO ₂ -i-C ₃ H ₇	0	O
14-39	Cl Cl	F	OCH,		CH,	CF,	Н	CH ₂ C(CH ₃ )ClCO ₂ -i-C ₄ H ₉	O	O
14-40	Cl	F	OCH,	Q1		************	H	CH ₂ C(CH ₃ )ClCO ₂ -CH ₂ Ph	O	O
14-41	Cl	F	OCH,	Q1	CH,	CF,		CH ₂ C(CH ₃ )ClCO ₂ -CH=CH ₂	O	Ö
14-42	Cl	F	OCH ₃	Q1	CH,	CF,	H	CH ₂ C(CH ₃ )ClCO ₂ -	O	Ö
14-43	C1	F	OCH,	Q1	CH ₃	CF ₃	Н		"	Ů
							ļ <del></del> .	CH ₂ CH=CH ₂	О	Ö
14-44	C1	F	OCH ₃	Q1	CH,	CF,	Н	CH ₂ C(CH ₃ )ClCO ₂ -CH ₂ C≡CH		0
14-45	Cl	F	OCH ₃	Q1	CH,	CF,	H	CH ₂ C(CH ₃ )ClCO ₂ -	0	U
		_				<u></u>	ļ <u>.</u>	CH,CF,CHF,	ļ	O
14-46	C1	F	OCH,	Q1	CH,	CF,	Н	CH ₂ C(CH ₃ )ClCO ₂ -CH(CF ₃ ) ₂	0	*****
14-47	Cl	F	OCH,	Q1	$CH_3$	CF ₃	Н	CH ₂ C(CH ₃ )ClCO ₂ -	0	0
						<u>.</u>	<u>.</u>	CH ₂ CH ₂ OCH ₃	ļ <u>.</u>	
14-48	Cl	F	OCH ₃	Q1	CH,	CF,	H	CH ₂ C(CH ₃ )ClCO ₂ -	0	0
						<u> </u>		CH ₂ CH ₂ SCH ₃	<u> </u>	Ö
14-49	Cl	F	OCH,	Q1	CH ₃	CF,	H	CH ₂ C(CH ₃ )ClCO ₂ -	0	U
• • • • • • • • • • • • • • • • • • • •	-		-				<u> </u>	tetrahydrofurfuryl		<u> </u>
14-50	Cl	F	OCH,	Q1	CH ₃	CF,	Н	CH ₂ C(CH ₂ CO ₂ CH ₃ )ClCO ₂ C ₂ H	0	0
						1	<u>i</u>	5		ļ <u>.</u>
14-51	Cl	F	OCH ₃	Q1	CH,	CF,	Н		0	0
14-52	Cl	F	H	Q5	CHF	₂ CH	3 -	CH₂CHClCO₂C₂H₅		-
14-53	Cl	F	OCH,	Q6	-	-	-	CH,CHClCO,C,H,	0	0
14-54	Cl	F	CH,	Q1	CH ₃	CF,	Н	CH ₂ CClCOOCH ₂ CH ₃	O	0
	Cl	F	CH,	Q1	CH,	CF,	Н	CH ₂ CClCOOCH ₂ CH ₃	0	0
14-55	Cl	F	OCH,	Q3	CH,	CF,		CH ₂ CClCOOCH ₂ CH,	-	
14-56	Cl	H	Н	Q1	CH,				0	Ο
14-57	*******	H	<u>Н</u>	Q1	CH,				0	0
14-58	Cl	H	Н	Q1	CH,		*******		0	О
14-59	Cl	F	<u>Н</u>	Ql	CH,				0	0
14-60	C1	F			CH,				O	О
14-61	- Cl	ŀ	OCH ₃	Q5					О	0
14-62	Cl	F	OCH ₂ CH ₃	Q1	CH,				O	O
14-63	Cl	F	OCH ₂ CH ₃	Q1	CH				Ö	
14-64	Cl	F	OCH ₂ CH ₃	Q1	CH			CH,CHCICOOCH,CH,CH,	ō	
14-65	Cl	F	OCH ₂ CH ₃	Q1	CH			CH ₂ CHClCOOCH ₂ CH ₂ CH ₃ CH ₃	Ö	
14-66	Cl	F	OCH ₂ CH ₃	Q1	СН		3   I	1 Chacheleouchachacha	Ö	
14-67		F	OCH(CH ₃ )		CH	*****		H Cl	Ö	
14-68	B +	F	OCH(CH,	) ₂ Q1	CH		4	H CH,CHClCOOCH,CH,		
14-69	<b></b>	F	OCH(CH ₃	) ₂ Q1	CH	, CF		H CH2CHCICOOCH2CH3	0	
14-70	<b></b>	Н	Н	Q1	CH	, CI		H CH ₂ CHClCOOCH ₂ CH ₃	0	
14-71			Н	Q1	CH	, CI		H CH,CHCICOOCH,CH,CH,	O	
14-72	·	F	OCH,	Q8	****	•		H CH,CHCICOOCH,CH,CH,		
14-72		F	OCH,	QI	****		F,	H CH,CHCICOOH	C	) 0
14-74		F	OCH ₃	Q9	*****	·		CI NO ₂		
***********		F	OCH,	Q9		******	******	CI NH ₂		<u> </u>
14-75		F	OCH ₃	Q9	• • • • • • • • • • • • • • • • • • • •	******		Cl NH-2-naphthoyl		. <u> </u>
14-76				Q9	•••••			CI CH,CHClCOOCH,CH,		·
14-77	Cl	F	OCH ₃	<u> </u>		· ; C	- 3 :			

# TABLE XV

$$X \longrightarrow Y \\ W \longrightarrow N \cdot R_1 \\ R_4 \longrightarrow R_5 \\ R_9 \longrightarrow R_2$$

No.	X	Y	W	R ₁	R ₂	R ₄	R ₅	R ₈	R,
15-1	CI	F	OCH,	CH,	CF,	NH₂	Н	0	O
15-2	Ci	F	OCH,	CH,	CF ₁	c-C ₃ H ₅ -carbonyl-NH-	Н	0	O
15-3	Cl	F	OCH,	CH ₃	CF,	benzoyl-NH-	Н	Ο	O
15-3	Cl	F	OCH,	CH,	CF,	2,4-F ₂ -benzoyl-NH-	Н	0	O
15-5	Cl	F	OCH,	CH,	CF,	2-naphthoyl-NH-	Н	0	0
15-6	Cl	F	OCH,	CH,	CF,	ethoxycarbonyl-NH-	H	0	0
15-7	Cl	F	OCH,	CH,	CF,	phenoxycarbonyl-NH-	H	0	0
15-8	Cl	F	OCH,	CH ₃	CF,	2,4-F ₂ -PhNHC(O)-NH-	Н	0	0
15-9	Cl	F	OCH ₃	CH,	CF ₃	H ₅ C ₂ OC(O)N(CH ₃ )C(O)-NH-	Н	0	0
15-10	Cl	F	OCH,	CH,	CF,	H ₂ C=CHCH=N-	Н	0	0
15-11	Cl	F	OCH ₃	СН,	CF ₃	c-C₃H₅-CH=N-	Н	0	0
15-12	Cl	F	OCH,	CH,	CF ₃	H ₃ CC(CH ₃ )=N-	H	0	0
15-13	Cl	F	OCH ₃	CH ₃	CF ₃	H ₃ COCH ₂ C(CH ₃ )=N-	Н	0	0
15-14	Cl	F	OCH ₃	CH ₃	CF,	H,CS CH2CH2CH=N-	Н	0	0
15-15	Cl	F	OCH,	CH ₃	CF ₃	PhCH₂CH=N-	Н	0	0
15-16	Cl	F	OCH,	CH ₃	CF ₃	$H_3C_2OC(O)CH_2C(CH_3)=N$	H	0	0
15-17	Cl	F	OCH,	CH ₃	CF ₃	PhCH(CH ₃ )CH=N-	H	0	0
15-18	Cl	F	OCH,	СН,	CF,	₩.	Н	0	О
15-19	Cl	F	OCH,	СН,	CF,	₩-	Н	0	0
15-20	Cl	F	OCH,	CH,	CF ₃	2,4-F ₂ -PhCH=N-	Н	0	0
15-20	Cl	F	OCH,	CH,	CF,	F ₃ CC(CF ₃ )=N-	H	0	0
15-21	Cl	F	OCH,	CH,	CF,	2-naphthyl-CH=N-	H	0	0

5

# TABLE XVI

$$\begin{array}{c|c} X & Y & R_8 \\ W & N & N & R_1 \\ R_4' & R_9 & R_2 \end{array}$$

No.	X	Y	W	R,	R ₂	R ₄	$R_8$	R,
16-1	Cl	Cl	Н	CH,	CF,	H	Ο	0
16-2	Ci	Cl	Н	CH ₃	CF ₃	CH ₃	0	0
16-3	Cl	C1	Н	CH,	CF,	2,4-F ₂ -benzyl	Ο	0
16-4	Cl	Cl	H	CH,	CF ₃	2,4-F ₂ -benzoyl	Ο	0
16-5	Cl	Cl	Н	СН	CF ₃	2-naphthoyl	Ο	Ο
16-6	Cl	F	OCH,	CH,	CF,	H	Ο	0
16-7	C1	F	OCH,	CH,	CF,	2-naphthoyl	0	0
16-8	Cl	F	OCH ₁	CH,	CF ₁	CH ₂ -2-naphthyl	О	0
16-9	Cl	F	OCH,	CH,	CF,	2-naphthoyl	0	S
16-10	Cl	F	OCH,	CH,	CF,	2-naphthoyl	S	0
16-11	CN		OCH,	CH ₃	CF,	2-naphthoyl	0	Ο
16-12	Cl	H	OCH,	CH	CF,	2-naphthoyl	O	0
16-12	Cl	F	OCH,	CH	CF,	CONH-phenyl	O	0
	Cl	F	OCH ₁	CH,	CF,	CONHCH,	0	O
16-14	<u>UI</u>	<u> </u>	UCH ₃	: 0113	<u>;                                    </u>	<u>;                                      </u>	<u>-i</u>	<del></del>

## TABLE XVII

Y	V	w	R,	R,	R ₄	R ₈	R,
				CF,	methyl	O	0
			*******************************	CF,	isopropyl	Ο	0
				CF,	benzyl	О	Ο
				CF,	2-naphthyl	Ο	Ο
		************		CF,	2-hydroxyethyl	0	0
					benzyl	Ο	S
		L		CF,	benzyl	S	Ο
			į	CF,	benzyl	Ο	0
	·		CH ₁	CF,	benzyl	О	0
i	į			CF ₃	benzyl	0	0
	X Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl	Cl F Cl F Cl F Cl F Cl F Cl F Cl F Cl F	Cl F OCH ₃ Cl F OCH ₃ Cl F OCH ₃ Cl F OCH ₃ Cl F OCH ₃ Cl F OCH ₃ Cl F OCH ₃ Cl F OCH ₃ Cl F OCH ₃ Cl F OCH ₃ Cl F OCH ₃ Cl F OCH ₃	Cl F OCH ₃ CH ₃ Cl F OCH ₃ CH ₃ Cl F OCH ₃ CH ₃ Cl F OCH ₃ CH ₃ Cl F OCH ₃ CH ₃ Cl F OCH ₃ CH ₃ Cl F OCH ₃ CH ₃ Cl F OCH ₃ CH ₃ Cl F OCH ₃ CH ₃ Cl F OCH ₃ CH ₃ Cl F OCH ₃ CH ₃ Cl F OCH ₃ CH ₃	Cl F OCH ₃ CH ₃ CF ₃ Cl F OCH ₅ CH ₃ CF ₃ Cl F OCH ₅ CH ₅ CF ₅ Cl H OCH ₅ CH ₅ CF ₅	Cl         F         OCH3         CH3         CF3         methyl           Cl         F         OCH3         CH3         CF3         isopropyl           Cl         F         OCH3         CH3         CF3         benzyl           Cl         F         OCH3         CH3         CF3         2-naphthyl           Cl         F         OCH3         CH3         CF3         2-hydroxyethyl           Cl         F         OCH3         CH3         CF3         benzyl           Cl         F         OCH3         CH3         CF3         benzyl           CN         F         OCH3         CH3         CF3         benzyl           Cl         H         OCH3         CH3         CF3         benzyl	X         Y         W         K1         K2         q           Cl         F         OCH3         CH3         CF3         methyl         O           Cl         F         OCH3         CH3         CF3         isopropyl         O           Cl         F         OCH3         CH3         CF3         2-naphthyl         O           Cl         F         OCH3         CH3         CF3         2-hydroxyethyl         O           Cl         F         OCH3         CH3         CF3         benzyl         O           Cl         F         OCH3         CH3         CF3         benzyl         S           CN         F         OCH3         CH3         CF3         benzyl         O           Cl         H         OCH3         CH3         CF3         benzyl         O

Table XVIII lists some of the characterization data for a few representative compounds of this invention.

## TABLE XVIII

### 'H NMR data

NMR (CDCl., 300 MHz) ppm  1-1 (CDCl.+CD,OD) 4.04 (3H, s), 6.19 (1H, s), 7.57 (1H, d, J=8.6 Hz)  1-2 (DMSO-d,), 3.30 (2H, br s), 6.54 (1H, s), 8.12 (1H, d, J=9.2Hz)  1-3 (CDCl.+CD,OD) 3.85 (3H, s), 6.2 (1H, s), 6.58 (1H, d, J=9.2Hz)  1-4 3.57 (3H, br q, J=1.2 Hz), 3.86 (3H, s), 4.04 (2H, br s), 6.37 (1H, s), 6.66 (1H, d, J=9.4 Hz)  1-5 3.55 (3H, br q, J=1.1 Hz), 4.04 (3H, s), 6.33 (1H, s), 7.51 (1H, d, J=8.6 Hz)  1-6 3.57 (3H, q, J=1.1 Hz), 6.38 (1H, s), 7.85 (1H, d, J=8.0 Hz), 10.57 (1H, br)  1-7 3.52 (3H, q, J=0.7 Hz), 3.82 (3H, s), 4.13 (2H, br), 6.32 (1H, s), 6.79 (1H, d, J=9.1 Hz)  1-8 3.48 (3H, s), 4.90 (3H, br), 6.30 (1H, s), 6.69 (1H, d, J=9.0 Hz)  1-9 (Acctone-d,) 3.68 (3H, br q, J=1.4 Hz), 4.05 (3H, s), 8.03 (1H, d, J=9.1 Hz)  1-10 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)  1-11 2.74 (6H, s), 3.57 (3H, br s), 3.84 (3H, s), 6.35 (1H, s), 7.01 (1H, d, J=8.8 Hz)  1-12 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)  1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 6.55 (1H, m)  1-15 (CDCl,+CD,DOD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.55 (1H, m)  1-16 (CDCl,+CD,DOD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.55 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.28 (1H, d, J=1.7 , J=2.7 (1H, d, J=3.7 (3H, d, J=1.1 Hz), 3.75 (3H, d, J=1.2 Hz), 6.38 (1H, s), 6.50 (1H, d, J=9.6 Hz)  1-20 3.57 (3H, d, J=0.8 Hz), 3.78 (3H, s), 5.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-21 1.63 1.94 (8H, m), 3.55 (3H, s), 3.35 (3H, s), 6.31 (1H, s), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-23 3.58 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 6.34 (1H, s), 6.66 (1H, d, J=9.8 Hz)  1-24 3.54 (3H, d, J=0.9		'H NMR data
1-1 (CDCl,+CD,OD) 4.04 (3H, s), 6.19 (1H, s), 7.57 (1H, d, J=8.6 Hz)  1-2 (DMSO-d,), 3.30 (2H, br s), 6.54 (1H, s), 8.12 (1H, d, J=9.2Hz)  1-3 (CDCl,+CD,OD) 3.85 (3H, s), 6.2 (1H, s), 6.38 (1H, d, J=9.4 Hz)  1-4 3.57 (3H, br q, J=1.2 Hz), 3.86 (3H, s), 4.04 (2H, br s), 6.37 (1H, s), 6.66 (1H, d, J=9.4 Hz)  1-5 3.55 (3H, br q, J=1.1 Hz), 4.04 (3H, s), 6.33 (1H, s), 7.51 (1H, d, J=8.6 Hz)  1-6 3.57 (3H, q, J=1.1 Hz), 6.38 (1H, s), 7.85 (1H, d, J=8.0 Hz), 10.57 (1H, br)  1-7 3.52 (3H, q, J=0.7 Hz), 3.82 (3H, s), 4.13 (2H, br), 6.32 (1H, s), 6.79 (1H, d, J=9.1 Hz)  1-8 3.48 (3H, s), 4.90 (3H, br), 6.30 (1H, s), 6.69 (1H, d, J=9.0 Hz)  1-9 (Acetone-d,) 3.68 (3H, br q, J=1.4 Hz), 4.05 (3H, s), 8.03 (1H, d, J=9.1 Hz)  1-10 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)  1-11 2.74 (6H, s), 3.57 (3H, br s), 3.84 (3H, s), 6.35 (1H, s), 7.01 (1H, d, J=8.8 Hz)  1-12 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)  1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)  1-15 1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, d), J=9.5 Hz)  1-16 (CDCl,+CD,OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.51 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, s), 3.78 (3H, s), 3.97 (2H, s), 4.87 (2H, d, J=2.4 Hz), 6.35 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8 Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.67 (2H, dd, J=4.4 1.9 Hz), 6.28 (1H, dd, J=1.57, 1.9 Hz), 6.65 (1H, d, J=9.3 Hz), 7.01 (1H, dt, J=15.7, 4.4 Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.75 (3H, s), 6.38 (1H, s), 6.34 (1H, s), 6.66 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-24 1.63 (3H, d, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.62 (1H, d	No.	NMR (CDCl ₃ , 300 MHz) ppm
1-2 (DMSO-d ₂ ), 3.30 (2H, br s), 6.54 (1H, s), 8.12 (1H, d, J=9.2Hz)  1-3 (CDCI,+CD,OD) 3.85 (3H, s), 6.2 (1H, s), 6.58 (1H, d, J=9.4 Hz)  1-4 3.57 (3H, br q, J=1.2 Hz), 3.86 (3H, s), 4.04 (2H, br s), 6.37 (1H, s), 6.66 (1H, d, J=9.4 Hz)  1-5 3.55 (3H, br q, J=1.1 Hz), 4.04 (3H, s), 6.33 (1H, s), 7.51 (1H, d, J=8.6 Hz)  1-6 3.57 (3H, q, J=1.1 Hz), 6.38 (1H, s), 7.85 (1H, d, J=8.0 Hz), 10.57 (1H, br)  1-7 3.52 (3H, q, J=0.7 Hz), 3.82 (3H, s), 4.13 (2H, br), 6.32 (1H, s), 6.79 (1H, d, J=9.1 Hz)  1-8 3.48 (3H, s), 4.90 (3H, br), 6.30 (1H, s), 6.69 (1H, d, J=9.0 Hz)  1-9 (Acetone-d ₂ ) 3.68 (3H, br q, J=1.4 Hz), 4.05 (3H, s), 8.03 (1H, d, J=9.1 Hz)  1-10 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)  1-11 2.74 (6H, s), 3.57 (3H, br s), 3.84 (3H, s), 6.35 (1H, s), 7.01 (1H, d, J=8.8 Hz)  1-12 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)  1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)  1-15 1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, m)  1-16 (CDCL)+CD,OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, s), 6.65 (1H, d, J=9.3 Hz), 7.8 (3H, s), 3.94 (2H, s), 5.66 (2H, dr s), 6.34 (1H, s), 6.65 (1H, d, J=9.4 Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.66 (1H, d, J=9.4 Hz), 7.3-75 (5H, m)  1-23 3.58 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)  1-23 1.58 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-31 1.77 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.33 (1H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.8 Hz)  1-32	************	(CDCl.+CD,OD) 4.04 (3H, s), 6.19 (1H, s), 7.57 (1H, d, J=8.6 Hz)
1-3 (CDCl,+CD,OD) 3.85 (3H, s), 6.2 (1H, s), 6.58 (1H, d, J=9.4 Hz)  1-4 3.57 (3H, br q, J=1.2 Hz), 3.86 (3H, s), 4.04 (2H, br s), 6.37 (1H, s), 6.66 (1H, d, J=9.4 Hz)  1-5 3.55 (3H, br q, J=1.1 Hz), 6.38 (1H, s), 7.85 (1H, d, J=8.0 Hz), 10.57 (1H, br)  1-6 3.57 (3H, q, J=1.1 Hz), 6.38 (1H, s), 7.85 (1H, d, J=8.0 Hz), 10.57 (1H, br)  1-7 3.52 (3H, q, J=0.7 Hz), 3.82 (3H, s), 4.13 (2H, br), 6.32 (1H, s), 6.79 (1H, d, J=9.1 Hz)  1-8 3.48 (3H, s), 4.90 (3H, br), 6.30 (1H, s), 6.69 (1H, d, J=9.0 Hz)  1-9 (Acetone-d ₄ ) 3.68 (3H, br q, J=1.4 Hz), 4.05 (3H, s), 8.03 (1H, d, J=9.1 Hz)  1-10 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)  1-11 2.74 (6H, s), 3.57 (3H, br s), 3.84 (3H, s), 6.35 (1H, s), 7.01 (1H, d, J=8.8 Hz)  1-12 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)  1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)  1-15 1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, m)  1-16 (CDCl,+CD,OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, d, J=1.7, 1.9 Hz), 6.65 (1H, d, J=9.3 Hz), 7.01 (1H, dt, J=1.7, 4.4 Hz)  1-20 3.57 (3H, d, J=0.8 Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9 Hz), 6.28 (1H, dt, J=1.7, 7.9 Hz), 6.65 (1H, d, J=9.3 Hz), 7.01 (1H, dt, J=1.7, 7.4 Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, s), 6.65 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 6.34 (1H, s), 6.65 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.54 (3H, br s), 5.33 (1H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-31 1.26 (3H, t, J=7.1 Hz), 4.16 (2H,		(DMSO-d _c ), 3.30 (2H, br s), 6.54 (1H, s), 8.12 (1H, d, J=9.2Hz)
1-4 3.57 (3H, br q, J=1.2 Hz), 3.86 (3H, s), 4.04 (2H, br s), 6.37 (1H, s), 6.66 (1H, d, J=9.4 Hz)  1-5 3.55 (3H, br q, J=1.1 Hz), 4.04 (3H, s), 6.33 (1H, s), 7.51 (1H, d, J=8.6 Hz)  1-6 3.57 (3H, q, J=1.1 Hz), 6.38 (1H, s), 7.85 (1H, d, J=8.0 Hz), 10.57 (1H, br)  1-7 3.52 (3H, q, J=0.7 Hz), 3.82 (3H, s), 4.13 (2H, br), 6.32 (1H, s), 6.79 (1H, d, J=9.1 Hz)  1-8 3.48 (3H, s), 4.90 (3H, br), 6.30 (1H, s), 6.69 (1H, d, J=9.0 Hz)  1-9 (Acetone-d ₆ ) 3.68 (3H, br q, J=1.4 Hz), 4.05 (3H, s), 8.03 (1H, d, J=9.1 Hz)  1-10 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)  1-11 2.74 (6H, s), 3.57 (3H, br s), 3.84 (3H, s), 6.35 (1H, s), 7.01 (1H, d, J=8.8 Hz)  1-12 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)  1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)  1-15 (1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, m)  1-16 (CDCl ₁ +CD ₀ DD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.28 (1H, s), 6.65 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, s), 6.65 (1H, d, J=9.3 Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-24 3.54 (3H, br q, J=1.1 Hz), 3.75 (3H, br s), 6.31 (1H, s), 6.78 (1H, d, J=8.8 Hz)  1-30 3.52 (3H, br q, J=1.1 Hz), 4.16 (2H, q, J=7.1 Hz), 6.21 (1H, s), 6.36 (1H, d, J=8.9 Hz)  1-31 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 6.31 (1H, s), 7.52 (1H, d, J=8.8 Hz)	************	CDCL+CD-OD) 3.85 (3H, s), 6.2 (1H, s), 6.58 (1H, d, J=9.4 Hz)
1-5 3.55 (3H, br q, J=1.1 Hz), 4.04 (3H, s), 6.33 (1H, s), 7.51 (1H, d, J=8.6 Hz)  1-6 3.57 (3H, q, J=1.1 Hz), 6.38 (1H, s), 7.85 (1H, d, J=8.0 Hz), 10.57 (1H, br)  1-7 3.52 (3H, q, J=0.7 Hz), 3.82 (3H, s), 4.13 (2H, br), 6.32 (1H, s), 6.79 (1H, d, J=9.1 Hz)  1-8 3.48 (3H, s), 4.90 (3H, br), 6.30 (1H, s), 6.69 (1H, d, J=9.0 Hz)  1-9 (Acetone-d,) 3.68 (3H, br q, J=1.4 Hz), 4.05 (3H, s), 8.03 (1H, d, I=9.1 Hz)  1-10 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)  1-10 3.52 (3H, br), 3.57 (3H, br), 3.84 (3H, s), 6.35 (1H, s), 7.01 (1H, d, J=8.8 Hz)  1-11 2.74 (6H, s), 3.57 (3H, br), 3.84 (3H, s), 6.35 (1H, s), 7.01 (1H, d, J=8.8 Hz)  1-12 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)  1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)  1-15 1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, d)  1-16 (CDC1,+CD,OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3 Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.1 Hz), 3.54 (3H, s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, s), 3.72 (3H, s), 6.35 (1H, s), 6.36 (1H, d, J=8.9 Hz)  1-34 1.26 (3H, 1, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 6.31 (1H, s), 7.51 (1H, d,	************	3 57 (3H, br q, J=1,2 Hz), 3.86 (3H, s), 4.04 (2H, br s), 6.37 (1H, s), 6.66 (1H, d, J=9.4
1-5 3.55 (3H, br q, J=1.1 Hz), 4.04 (3H, s), 6.33 (1H, s), 7.51 (1H, d, J=8.6 Hz)  1-6 3.57 (3H, q, J=1.1 Hz), 6.38 (1H, s), 7.85 (1H, d, J=8.0 Hz), 10.57 (1H, br)  1-7 3.52 (3H, q, J=0.7 Hz), 3.82 (3H, s), 4.13 (2H, br), 6.32 (1H, s), 6.79 (1H, d, J=9.1 Hz)  1-8 3.48 (3H, s), 4.90 (3H, br), 6.30 (1H, s), 6.69 (1H, d, J=9.0 Hz)  1-9 (Acetone-d,) 3.68 (3H, br q, J=1.4 Hz), 4.05 (3H, s), 8.03 (1H, d, J=9.1 Hz)  1-10 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)  1-10 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)  1-11 2.74 (6H, s), 3.57 (3H, br s), 3.84 (3H, s), 6.35 (1H, s), 7.01 (1H, d, J=8.8 Hz)  1-12 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)  1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)  1-15 1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, m)  1-16 (CDCl,+CD,OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, s), 6.65 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8 Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9 Hz), 6.28 (1H, d, J=1.1 Hz), 3.54 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.66 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-33 3.58 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.08 (1H, s)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7	1	H ₂ )
1-6 3.57 (3H, q, J=1.1 Hz), 6.38 (1H, s), 7.85 (1H, d, J=8.0 Hz), 10.57 (1H, br)  1-7 3.52 (3H, q, J=0.7 Hz), 3.82 (3H, s), 4.13 (2H, br), 6.32 (1H, s), 6.79 (1H, d, J=9.1 Hz)  1-8 3.48 (3H, s), 4.90 (3H, br), 6.30 (1H, s), 6.69 (1H, d, J=9.0 Hz)  1-9 (Acetone-d,) 3.68 (3H, br q, J=1.4 Hz), 4.05 (3H, s), 8.03 (1H, d, J=9.1 Hz)  1-10 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)  1-11 2.74 (6H, s), 3.57 (3H, br s), 3.84 (3H, s), 5.25 (1H, d, J=8.6 Hz)  1-12 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)  1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br), 6.21 (1H, s), 6.55 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 6.55 (1H, d)  1-15 1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, m)  1-16 (CDCl ₃ +CD ₃ OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, s), 6.65 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8 Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9 Hz), 6.28 (1H, dt, J=1.5.7, 1.9 Hz), 6.65 (1H, d, J=9.3 Hz), 7.01 (1H, dt, J=1.5.7, 4.4 Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-22 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 6.30 (1H, s), 6.66 (1H, d, J=9.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.31 (1H, s), 7.51 (1H, d, J=8.5 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 6.33 (1	1_5	3.55 (3H, br g. J=1.1 Hz), 4.04 (3H, s), 6.33 (1H, s), 7.51 (1H, d, J=8.6 Hz)
1-7 3.52 (3H, q, J=0.7 Hz), 3.82 (3H, s), 4.13 (2H, br), 6.32 (1H, s), 6.79 (1H, d, J=9.1 Hz)  1-8 3.48 (3H, s), 4.90 (3H, br), 6.30 (1H, s), 6.69 (1H, d, J=9.0 Hz)  1-9 (Acetone-d _o ) 3.68 (3H, br), 6.30 (1H, s), 6.69 (1H, d, J=9.1 Hz)  1-10 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)  1-10 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)  1-11 2.74 (6H, s), 3.57 (3H, br s), 3.84 (3H, s), 6.35 (1H, s), 7.01 (1H, d, J=8.8 Hz)  1-12 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)  1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)  1-15 1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, m)  1-16 (CDCl,+CD,OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, s), 6.65 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-22 3.58 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 6.31 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.8 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 6.31 (1H, s), 7.51	***********	2 57 (3H g I=1 1 Hz), 6.38 (1H, s), 7.85 (1H, d, J=8.0 Hz), 10.57 (1H, br)
1-8	**********	3 52 (3H, g, J=0.7 Hz), 3.82 (3H, s), 4.13 (2H, br), 6.32 (1H, s), 6.79 (1H, d, J=9.1 Hz)
1-9 (Acetone-d _o ) 3.68 (3H, br q, J=1.4 Hz), 4.05 (3H, s), 8.03 (1H, d, J=9.1 Hz)  1-10 3.52 (3H, br s), 3.86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)  1-11 2.74 (6H, s), 3.57 (3H, br s), 3.84 (3H, s), 6.35 (1H, s), 7.01 (1H, d, J=8.8 Hz)  1-12 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)  1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)  1-15 1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, m)  1-16 (CDCl ₃ +CD ₃ OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, s), 6.65 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-22 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 6.33 (1H, s), 7.51 (1H, d, J=8.5 Hz)		3.48 (3H s) 4.90 (3H, br), 6.30 (1H, s), 6.69 (1H, d, J=9.0 Hz)
1-10		(Acetone-d.) 3.68 (3H, br q, J=1.4 Hz), 4.05 (3H, s), 8.03 (1H, d, J=9.1 Hz)
1-11 2.74 (6H, s), 3.57 (3H, br s), 3.84 (3H, s), 6.35 (1H, s), 7.10 (1H, d, J=8.8 Hz)  1-12 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)  1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)  1-15 1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, m)  1-16 (CDC1,+CD,OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3 Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-22 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-31 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.35 (1H, d, J=8.8 Hz)  1-31 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.35 (1H, d, J=8.8 Hz)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.73 (3H, s), 6.35 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, d, J=8.5 Hz)	**********	3 52 (3H br s) 3 86 (3H, s), 4.05 (2H, br s), 4.63 (2H, br s), 6.66 (1H, d, J=9.7 Hz)
1-12 4.05 (3H, s), 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)  1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)  1-15 1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, m)  1-16 (CDCl,+CD,OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-22 3.58 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.72 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.33 (1H, s), 7.51 (1H, d, J=8.5 Hz)	***********	2.74 (6H, s) 3.57 (3H, br s), 3.84 (3H, s), 6.35 (1H, s), 7.01 (1H, d, J=8.8 Hz)
1-13 3.78 (3H, s), 5.24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)  1-14 1.43 (3H, m), 4.06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)  1-15 1.15 (3H, m), 3.85 (3H, s), 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, m)  1-16 (CDCl,+CD,OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, s), 6.65 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-22 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.2 Hz), 4.15 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=8.8 Hz)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)	**********	4.05 (3H s) 4.61 (2H, s), 6.24 (1H, s), 7.52 (1H, d, J=8.6 Hz)
1-14	1 12	3 78 (3H s) 5 24 (2H, s), 5.41 (2H, br s), 6.21 (1H, s), 6.56 (1H, d, J=9.5 Hz)
1-15	1 1 1	1 43 (3H m) 4 06 (3H, s), 4.31 (2H, m), 6.32 (1H, s), 7.56 (1H, m)
1-16 (CDCl,+CD,OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)  1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, br s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, s), 6.65 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-22 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.2 Hz), 4.15 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)	1 15	1 15 (3H m) 3 85 (3H s) 3.35 (2H, m), 6.48 (1H, s), 6.55 (1H, m)
1-17 3.57 (3H, d, J=1.2 Hz), 6.38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, b) s)  1-18 3.51 (3H, br q, J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br s), 6.39 (1H, s), 6.65 (1H d, J=9.4 Hz)  1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, s), 6.65 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-22 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.2 Hz), 4.15 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)	1 16	(CDCI +CD, OD) 3.55 (3H, br q, J=1.1 Hz), 6.36 (1H, s), 6.61 (1H, d, J=9.2)
1-18	1 1 7	2.57 (2H d I=1 2 Hz) 6 38 (1H, s), 7.67 (1H, d, J=8.3 Hz), 10.47 (1H, or s)
1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35 (1H, s), 6.65 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-22 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.2 Hz), 4.15 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz), 7.68 (1H, s)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)	1_15	3.51 (3H, br.g., J=0.9 Hz), 4.94 (2H, s), 5.66 (2H, br.s), 6.39 (1H, s), 6.65 (1H d, J=9.4
1-19 2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.55 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-22 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.2 Hz), 4.15 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz), 7.68 (1H, s)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)		TT_\
(1H, s), 6.65 (1H, d, J=9.3 Hz)  1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 6.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-22 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.2 Hz), 4.15 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz), 7.68 (1H, s)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)	1-19	2.58 (1H, m), 3.55 (3H, br q, J=1.3 Hz), 4.17 (2H, br s), 4.7 (2H, d, J=2.4 Hz), 6.35
1-20 3.57 (3H, d, J=0.8Hz), 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 0.28 (1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d, J=9.6 Hz)  1-22 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.2 Hz), 4.15 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz), 7.68 (1H, s)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)	1.17	(1TL a) 6.65 (1H d I=9.3 Hz)
(1H, dt, J=15.7, 1.9Hz), 6.65 (1H, d, J=9.3Hz), 7.01 (1H, dt, J=15.7, 4.4Hz)  1-21	1-20	$\frac{1}{2}$ 57 (3H d I=0 8Hz) 3.78 (3H, s), 4.02 (2H, br s), 4.65 (2H, dd, J=4.4, 1.9Hz), 0.26
1-21		(111 dt 1-15 7 1 9Hz) 6 65 (1H d. J=9.3Hz), 7.01 (1H, QI, J=13.7, 4.4Hz)
J=9.6 Hz)  1-22 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4 Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.2 Hz), 4.15 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz), 7.68 (1H, s)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)	1-2	1 1.63-1.94 (8H, m), 3.55 (3H, s), 3.97 (2H, s), 4.8 (1H, m), 6.34 (1H, s), 6.65 (1H, d,
Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.2 Hz), 4.15 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz), 7.68 (1H, s)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)	•	I_0 ( II_0)
Hz), 7.3-7.5 (5H, m)  1-23 3.58 (3H, br q, J=1.2 Hz), 4.15 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22 (1H, m), 8.36 (2H, m)  1-30 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.8 Hz)  1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J=8.9 Hz), 7.68 (1H, s)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)	1-2	2 3.54 (3H, br q, J=1.1 Hz), 3.94 (2H, br s), 5.0 (2H, s), 6.34 (1H, s), 6.69 (1H, d, J=9.4
(1H, m), 8.36 (2H, m)  1-30		TI-) 72 75 (5H m)
(1H, m), 8.36 (2H, m)  1-30	1-2	3 3.58 (3H, br q, J=1.2 Hz), 4.15 (2H, br s), 6.38 (1H, s), 6.78 (1H, d, J=9.2 Hz), 7.22
1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J-8.5) Hz), 7.68 (1H, s)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J-8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)		(1H m) 8 36 (2H m)
1-31 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.86 (1H, d, J-8.5) Hz), 7.68 (1H, s)  1-32 1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J-8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)	1-3	0 3.52 (3H, br q, J=1.1 Hz), 3.75 (3H, s), 6.31 (1H, s), 7.22 (1H, d, J=8.6 Hz)
Hz), 7.68 (1H, s)  1-32   1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.86 (1H, d, J=8.9 Hz)  1-33   1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34   1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)	1-3	1 2.87 (3H, s), 2.96 (3H s), 3.53 (3H, s), 3.64 (3H, s), 6.30 (1H, s), 6.80 (1H, d, 3-8.)
J=8.9 Hz)  1-33 1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz)  1-34 1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)		11-) 769 (1H e)
1-33   1.27 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 6.21 (1H, s), 7.62 (1H, d, J=8.8 Hz) 1-34   1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)	1-3	1.83 (4H, m), 3.21 (4H, m), 3.55 (3H, br s), 3.72 (3H, s), 6.34 (1H, s), 6.60 (1H, d)
1-34   1.26 (3H, t, J=7.1 Hz), 4.16 (2H, q, J=7.1 Hz), 3.53 (3H, s), 6.35 (1H, s), 7.70 (1H, d, J=8.5 Hz)		J=8.9 Hz)
J=8.5 Hz)	1-3	$\frac{1.27 \text{ (3H, t, J=7.1 Hz), } 4.20 \text{ (2H, q, J=7.1 Hz), } 6.21 \text{ (1H, s), } 7.02 \text{ (1H, s), } 7.70 \text{ (1H, d)}}{1.21 \text{ (2H, s), } 7.70 \text{ (1H, d)}}$
1.26 D 40 (3H d I=1 1 Hz) 3.54 (3H, d, J=1.3 Hz), 6.33 (1H, s), 7.51 (1H, d, J=8.5 Hz)	1-3	
1-36 2.40 (3H, d, J=1.1 Hz), 3.54 (3H, d, J=1.3 Hz), 6.35 (1H, s), 7.51 (1H, d, J=9.4 Hz) 1-37 2.23 (3H, d, J=0.9 Hz), 3.57 (3H, d, J=1.1 Hz), 6.38 (1H, s), 6.74 (1H, d, J=9.4 Hz)		J=8.5 Hz)
1-37 [2.23 (3H, d, J=0.9 Hz), 3.57 (3H, d, J=1.1 Hz), 0.38 (1H, 5), 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.74 (1H, 3, 0.	1-3	36 2.40 (3H, d, $J=1.1 Hz$ ), 3.54 (3H, d, $J=1.3 Hz$ ), 0.53 (1H, s), 7.51 (1H, d, $J=9.4 Hz$ )
	1-	2.23 (3H, d, J=0.9 Hz), 3.57 (3H, d, J=1.1 Hz), 0.36 (1H, 3), 0.71 (114, 2, 0 311 == 7

1-38 3.57 (3H, d, J=1.1 Hz), 4.17 (2H, br s), 6.37 (1H, s), 6.50 (1H, t, J=74.0 Hz), 6.72 (1H,
d J=9.1 Hz)
1-40 3.56 (3H, d, J=1.1 Hz), 3.96 (3H, s), 6.36 (1H, s), 7.07 (1H, d, J=8.7 Hz)
1-41 3.54 (3H, d, J=1.1Hz), 6.38 (1H, s), 6.89 (2H, m), 7.00(1H, dd J=7.9, 1.5Hz), 7.26 (1H,
td, J=7.7, 1.5Hz), 7.85 (2H, br s)
1-42 3.55 (3H, d, J=1.2Hz), 6.38 (1H, s), 7.38 (1H, dd, J=7.9, 1.4Hz), 7.66 (1H, td, J=7.9,
1.4Hz), 7.79 (1H, td, J=7.9, 1.4Hz), 8.27 (1H, dd, J=7.9, 1.4Hz)
1-412), 1.3 (3.56) (3H, d, J=1.1Hz), 6.39 (1H, s), 7.58 (1H, d, J=8.2Hz), 8.05 (1H, dd, J=8.2,
1.8Hz), 8.54(1H, d, J=1.8Hz)
1-44 3.57 (3H, d, J=1.1Hz), 6.39 (1H, s), 7.13 (3H, m)
1-45 3.58 (3H, d, J=1.2Hz), 6.38 (1H, s), 7.87 (1H, s), 10.61 (1H, br s)
1-45 3.58 (3H, d, J=1.2Hz), 3.93 (3H, s), 6.37 (1H, s), 7.27 (2H, m), 7.77 (1H, dd, J=2.1,
1.0Hz)
1-47 3.50 (3H, d, J=0.9Hz), 3.81 (3H, s), 3.96 (2H, s), 6.31 (1H, s), 6.88 (1H, s)
1-47 5.30 (3H, t, J=7.1Hz), 1.58 (3H, d, J=6.8Hz), 3.55 (3H, d, J=1.1Hz), 3.64 (2H, br s),
1.27 (3H, t, 3=7.112), 1.35 (3H, g, 5-8Hz), 6.36 (1H, s), 6.38 (2H, m), 6.88 (1H, d, 4.22 (2H, m), 4.70 (1H, q, J=6.8Hz), 6.36 (1H, s), 6.38 (2H, m), 6.88 (1H, d, d, d, d, d, d, d, d, d, d, d, d, d,
J=9.2Hz) J=9.2Hz) 4 26 (2H m) 4 82
1-49 1.29 (3H, t, J=7.1Hz), 1.68 (3H, d, J=6.8Hz), 3.54 (3H, d, J=1.0Hz), 4.26 (2H, m), 4.82
(1H, q, J=6.8Hz), 6.36 (1H, s), 7.25 (2H, m), 7.74 (1H, m)
1-50 3.57 (3H, q, J=1.2Hz), 6.38 (1H, s), 6.65 (1H, t, J=71.1Hz), 7.37 (1H, dd, J=9.3,
2.7Hz), 7.85 (1H, dd, J=2.7, 2.5Hz)
1-51 3.49 (3H, d, J=1.0Hz), 6.30 (3H, m), 6.42 (1H, t, J=73.2Hz), 7.8 (2H, br s)
1-51 3.49 (5H, d, J=1.2Hz), 6.50 (5H, s), 7.57 (1H, d, J=8.2Hz), 8.04 (1H, dd, J=8.2,
1.6Hz), 8.53 (1H, m)
1.6Hz), 8.53 (TH, III) 1-53 1.27 (1.5H, t, J=7.1Hz), 1.28 (1.5H, t, J=7.1Hz), 1.44 (1.5H, d, J=6.9Hz), 1.45 (1.5H,
d, J=6.9Hz), 3.58 (3H, s), 4.08 (1H, m), 4.20 (2H, q, J=7.1Hz), 4.39 (0.5H, d,
d, J=6.9Hz), 3.38 (3H, 5), 4.08 (HI, III), 1.20 (2H, III), 6.39 (2H, III), 6.50 (1H, III), J=73.3Hz)  J=7.2Hz), 4.43 (0.5H, d, J=7.2Hz), 6.26 (1H, III), 1.44 (1.5H, d, I=6.9Hz), 1.46 (1.5H, IIII), 1.44 (1.5H, IIIII), 1.44 (1.5H, IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
1-54 1.27 (1.5H, t, J=7.1Hz), 1.28 (1.5H, t, J=7.1Hz), 1.44 (1.5H, d, J=6.9Hz), 1.46 (1.5H, d) 1.27 (1.5H, t, J=7.1Hz), 1.28 (1.5H, t, J=7.1Hz), 1.44 (1.5H, d) 4.35 (0.5H, d) 1=7.4Hz), 4.43
1-54 1.27 (1.5H, t, J=7.1112), 1.26 (1.5H, t, J=7.4Hz), 4.43 d, J=6.9Hz), 3.57 (3H, m), 4.11 (1H, m), 4.22 (2H, m), 4.35 (0.5H, d, J=7.4Hz), 4.43 d, J=6.9Hz), 6.26 (0.5Hz), 6.28 (0.5Hz), 6.49 (1H, m), 6.62 (1H, dd, J=9.1,
(0.5H, d, J=7.1Hz), 6.36 (0.5H, s), 6.38 (0.5H, s), 6.49 (1H, m), 6.62 (1H, dd, J=9.1,
2.0Hz) 1-55 1.22 (1.5H, t, J=7.1Hz), 1.23 (1.5H, t, J=7.1Hz), 1.36 (1.5H, d, J=6.9Hz), 1.38 (1.5H,
1-55 1.22 (1.5H, t, J=7.1Hz), 1.23 (1.5H, t, J=7.1Hz), 1.30 (1.5H, d, J=6.9Hz), 3.55 (3H, m), 3.82 (1.5H, s), 3.86 (1.5H, s), 4.0-4.4 (4H, m), 6.36 (1H, d, J=6.9Hz), 3.55 (3H, m), 3.82 (1.5H, s), 3.86 (1.5H, s), 4.0-4.4 (4H, m), 6.36 (1H, d, J=6.9Hz), 3.55 (3H, m), 3.82 (1.5H, s), 3.86 (1.5H, s), 4.0-4.4 (4H, m), 6.36 (1H, d, J=6.9Hz), 3.55 (3H, m), 3.82 (1.5H, s), 3.86 (1.5H, s), 4.0-4.4 (4H, m), 6.36 (1H, d, J=6.9Hz), 3.55 (3H, m), 3.82 (1.5H, s), 3.86 (1.5H, s), 4.0-4.4 (4H, m), 6.36 (1H, d, J=6.9Hz), 3.55 (3H, m), 3.82 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.86 (1.5H, s), 3.
d, J=6.9Hz), 3.55 (3H, m), 5.82 (1.5H, s), 5.86 (1.5H, s), 4.8 (1.5H, s), 4.8 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82 (1.5H, s), 5.82
s), 6.76 (0.5H, d, J=9.1Hz), 6.79 (0.5H, d, J=9.1Hz)
1-56 4.73 (2H, br s), 5.50 (3H, br), 6.16 (1H, s), 6.53 (1H, d, J=9.3 Hz)
1-56 4.73 (2H, br s), 5.30 (3H, br), 6.10 (1H, s), 6.60 (1H, d, J=9.1 Hz) 1-57 4.42 (2H, br s), 4.70 (2H, br s), 4.72 (2H, s), 6.16 (1H, s), 6.60 (1H, d, J=9.1 Hz)
1-57 4.42 (2H, of s), 4.70 (2H, of s), 4.87 (2H, s), 5.28 (2H, br s), 6.17 (1H, s), 6.52 (1H, d,
J=9.2 Hz) 1-59 1.29 (3H, t, J=7.1 Hz), 3.55 (3H, q, J=1.0 Hz), 4.23 (2H, q, J=7.1 Hz), 4.64 (2H, s),
1-59 1.29 (3H, t, J=7.1 Hz), 3.55 (3H, q, J=1.0 Hz), 4.25 (2H, q, 0 + 1.25)
4.82 (2H, br s), 6.35 (1H, s), 6.60 (1H, d, J=9.2 Hz)  1-60 1.27 (3H, t, J=7.1 Hz), 1.659(1.5H, d, J=7.0 Hz), 1.666(1.5H, d, J=7.0 Hz), 3.55 (3H, d, J=7.0 Hz), 4.73 (4H, m), 6.346(0.5H, s), 6.355(0.5H, s), 6.61 (1H, d, d, d, d, d, d, d, d, d, d, d, d, d,
1-60 1.27 (3H, t, J=7.1 Hz), 1.639(1.3H, d, J=7.0 Hz), 1.666(1.5H, s), 6.355(0.5H, s), 6.61 (1H, d, s), 4.20 (2H, q, J=7.1 Hz), 4.73 (1H, m), 6.346(0.5H, s), 6.355(0.5H, s), 6.61
J=9.3 Hz) 1-61 1.41 (3H, t, J=7.0 Hz), 3.52 (3H, q, J=1.0 Hz), 4.04 (2H, q, J=7.0 Hz), 4.10 (2H, br s),
COO (117 -) CCO (111 d I=0 5 Hz)
6.32 (1H, s), 6.62 (1H, d, J=9.5 Hz) 1-62 1.16 (3H, t, J=7.1 Hz), 1.42 (3H, t, J=7.1 Hz), 2.99 (2H, q J=7.1 Hz), 3.57 (3H, q, J=9.4 Hz), 4.14 (1H, br.s.) 6.35 (1H, s.) 6.63 (1H, d. J=9.4 Hz)
1-62 1.16 (3H, t, J=7.1 Hz), 1.42 (3H, t, J=7.1 Hz), 2.35 (2H, q = 1.1 Hz), 4.03 (2H, q, J=7.1 Hz), 4.14 (1H, br s), 6.35 (1H, s), 6.63 (1H, d, J=9.4
•
Hz)

1-63	1.35 (6H, d, J=6.2 Hz), $3.55$ (3H, q, J=1.2 Hz), $3.95$ (2H, br s), $4.50$ (1H, q, J=6.2 Hz),
	6.34 (1H, s), 6.66 (1H, d, J=9.4 Hz)
1-64	1.06 (3H, t, J=6.3 Hz), 1.37 (6H, d, J=6.2 Hz), 3.57 (3H, q, J=1.2 Hz), 3.83 (2H, br s),
	4.52 (1H, q, J= 6.2 Hz), 6.35 (1H, s), 6.70 (1H, d, J=9.3 Hz)
1-65	7.62(1H, d, J=8.5Hz), 8.37(1H, 2d, J=2.6Hz, 8.4Hz), 8.83(1H, d, J=2.6Hz)
1-66	3.56(3H, s), 6.37(1H, s), 6.86(1H, d, J=8.4Hz), 7.77(1H, d, J=8.4Hz), 10.75(1H,
	broad)
1-67	3.56(3H, s), 6.37(1H, s), 8.55(1H, s)
1-68	3.56(3H, s), 6.39(1H, s), 7.45(1H, d, J=8.7Hz), 7.64(1H, 2d, J=1.7Hz, 8.7Hz), 8.13(1H,
	d, J=1.7Hz)
1-69	4.15(3H, s), 6.14(1H, s), 8.51(1H, s), 12.8(1H, broad)
1-70	6.26(1H, s), 7.62(1H, 2d, J=6.1Hz, 8.3Hz), 8.3(1H, broad)
1-71	3.56(3H, s), 4.8(3H, broad), 6.38(1H, s), 6.59(1H, d, J=8.7Hz), 6.85(1H, d, J=8.7Hz)
1-72	3.56(3H, s), 3.89(3H, s), 6.37(1H, s), 6.75(1H, d, J=8.7Hz), 6.87(1H, d, J=8.7Hz)
1-73	3.55(3H, s), 3.75(2H, s), 6.36(1H, s), 6.73(2H, m), 7.01(1H, 2d, J=2.4Hz, 6.9Hz)
2-1	2.04 (3H, s), 3.57 (3H, br q, J=1.1 Hz), 3.86 (3H, s), 6.30 (1H, s), 7.22 (1H, d, J=9.6
<b>2-1</b>	Hz)
2-2	2.29 (3H, s), 2.33 (3H, s), 3.53 (3H, br s), 3.78 (3H, s), 6.3 (1H, s), 7.42 (1H, d, J=8.8
2-2	Hz)
2-3	1.14 (9H, s), 3.56 (3H, s), 3.82 (3H, s), 6.29 (1H, s), 7.19 (1H, d, J=9.0 Hz), 7.61 (1H,
2-3	br s)
2-4	3.49 (3H, br q, J=1.0 Hz), 3.75 (3H, s), 5.70-5.79 (2H, m), 6.26 (1H, s), 6.40-6.55 (4H,
2-4	m), 7.42 (1H, d, J=8.7 Hz)
2-5	1.95 (3H, s), 3.55 (3H, br s), 3.84 (3H, s), 5.45 (1H, s), 5.70 (1H, s), 6.27 (1H, s), 7.20
2-3	(1H, d, J=9.0 Hz), 7.62 (1H, br s)
2-6	1.90 (3H, s), 1.91 (3H, s), 3.49 (3H, br s), 3.79 (3H, s), 5.46 (2H, s), 5.64 (1H, s), 5.66
2-0	(1H, s), 6.27 (1H, s), 7.30 (1H, d, J=8.8 Hz)
· 2-7	1.86 (3H, s), 2.05 (3H, s), 3.56 (3H, br s), 3.82 (3H, s), 5.66 (1H, br s), 6.27 (1H, s),
2-1	7.17 (1H, d, J=9.0 Hz), 7.23 (1H, br s)
2-8	1.85 (6H, m), 2.12 (6H, m), 3.47 (3H, br q, J=1.0 Hz), 3.77 (3H, s), 5.91 (1H, m), 5.98
2-0	(1H, m), 6.25 (1H, s), 7.34 (1H, d, J=8.7 Hz)
2-9	$\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$
2.10	3.54 (3H, br.s.) 3.86 (3H, s.), 6.31 (1H, s.), 7.32 (1H, d, J=9.0 Hz)
2-10	
2 12	(CDCL+CD OD) 3.59 (3H, br s), 3.87 (3H, s), 7.37 (1H, d, J=8.8 Hz)
2-12	3.56 (3H, br q, J=1.1 Hz), 3.89 (3H, s), 4.08 (2H, s), 6.3 (1H, s), 7.25 (1H, d, J=9 Hz)
2-13	********** * * * * * * * * * * * * * *
	TT \ 0.00 (111)
2 15	Hz), 9.03 (1H, m) 3.56 (3H, s), 3.91 (3H, s), 3.95 (3H, s), 6.29 (1H, s), 7.24 (1H, d, J=9.0 Hz), 9.00 (1H,
2-13	s)
2 16	5) 1.27 (3H, t, J=7.1 Hz), 1.28 (3H, t, J=7.1 Hz), 3.42 (2H, s), 3.57 (3H, br s), 4.04 (2H,
2-10	s), 4.10-4.30 (4H, m), 6.40 (1H, s), 7.33 (1H, d, J=9.8 Hz), 8.07 (1H, s)
2 12	5), 4.10-4.30 (41; II), 6.10 (123, 6), 7 (123, 6), 7 (134, 6), 1.10 (2H, m), 1.50 (1H, m), 3.55 (3H, s), 6.37 (1H, s), 7.22 (1H, d,
2-1	J=9.0Hz), 7.92 (1H, br s), 8.41 (1H, br, s)
2-18	1 06 (111) 2 15 (111 m) 2 54 (2H br s) 3 75 (3H s) 6 35 (1H
_	s) 738 (1H d I=8.6 Hz)
2_10	9 1.40 (5H, m), 1.70 (5H, m), 2.25 (1H, m), 3.32 (3H, s), 3.82 (3H, s), 6.34 (1H, s), 7.17
2-13	(1H, d, J=9.0 Hz), 7.68 (3H, s)
	(, -, -

2-20	1.20 (10H, m), 1.70 (10H, m), 2.50 (2H, m), 3.50 (3H, s), 3.68 (3H, s), 6.31 (1H, s),
	7.36 (1H, m)
2-21	3.37 (3H, s), 3.44 (3H, s), 3.55 (3H, br s), 4.18 (3H, s), 6.33 (1H, s), 7.43 (1H, d, J=8.8
	Hz)
***************************************	3.2 (3H, s), 3.55 (3H, s), 3.96 (3H, s), 6.35 (1H, s), 6.48 (1H, br s), 7.29 (1H, d,
	J=8.8 Hz)
2-22	3.52 (3H, br s), 3.64 (3H, s), 6.29 (1H, s), 6.85 (1H, d, J=9.1 Hz), 7.4 (5H, m), 7.68
	(1H e)
2-23	2.39 (3H, s), 3.52 (3H, s), 3.82 (3H, s), 6.23 (1H, s), 7.20 (1H, d, J=9.0 Hz), 7.32 (2H,
	m), 7.53 (2H, m), 8.02 (1H, s)
2-24	2.42 (3H, s), 3.53 (3H, s), 3.82 (3H, s), 6.22 (1H, s), 7.20 (1H, d, J=9.0 Hz), 7.26 (2H,
	d, J=7.8 Hz), 7.67 (2H, d, J=7.8 Hz), 7.91 (1H, s)
2-25	2.32 (3Hx2, s), 3.28 (3H, s), 3.82 (3H,s), 6.02 (1H, s), 7.10 (4H, d, J=7.9 Hz), 7.20
	(1H, d, J=9.0 Hz), 7.73 (4H, m)
2-26	2.40 (3H, s), 3.44 (3H, s), 3.54 (3H, d, J=1.1Hz), 6.29 (1H, s), 6.55 (1H, br s), 7.18
	$\frac{1}{1}$ (117 d $\frac{1}{1}$ = 8 0 Hz) 7 25 (2H, d, $\frac{1}{2}$ = 8.3 Hz), 7.68 (2H, d, $\frac{1}{2}$ = 8.3 Hz)
2-27	(1H, d, J=0.7 Hz), 1.25 (2H, q, J=7.7 Hz), 3.54 (3H, s), 3.83 (3H, s), 6.23 (1H, s),
	7.21 (1H, d, J=9.0 Hz), 7.29 (2H, d, J=8.2 Hz), 7.70 (2H, d, J=8.2 Hz), 7.86 (1H, br s)
2-28	1.26 (3H, t, J=7.6 Hz), 2.71 (2H, q, J=7.6 Hz), 3.51 (3H, br s), 4.78 (2H, s), 6.25 (1H,
	s), 7.28 (3H, m), 7.73 (2H, m), 7.84 (1H, br s)
2-29	s), 7.28 (3H, III), 7.75 (2H, III), 7.8 (1H, III), 7.8 (3H, III), 8.00 (3H, III), 8.00 (3H, III), 8.00 (3H, III), 8.00 (3H, III), 8.00 (3H, III), 8.00 (3H, III), 8.00 (3H, III), 8.00 (3H, IIII),  8.00 (3H, IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	(1H a) 7.21 (1H d I=9.3 Hz), 7.27 (4H, m), 7.70 (2H, m), 6.00 (2H, m)
2-30	(1H, s), 7.21 (1H, d, s) 123, 123, 123, 123, 123, 123, 123, 123,
	Hz), 7.73 (2H, d, J=8.6 Hz), 7.88 (1H, br s)
2-31	3.54 (3H, s), 3.83 (3H, s), 5.40 (1H, d, J=10.9 Hz), 5.87 (1H, d, J=17.6 Hz), 6.78 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.6 Hz), 7.75 (1H, d, J=17.
	dd, J=17.6, 10.9 Hz), 7.22 (1H, d, J=9.0 Hz), 7.49 (2H, d, J=8.2 Hz), 7.75 (1H, d,
	J=8.2 Hz), 8.01 (1H, br s)
2-32	2 2.31 (3H, s), 2.32(3H, s), 3.54 (3H, d, J=1.0 Hz), 3.82 (3H, s), 6.23(1H, s), 7.19(1H, d,
	J=9.1 Hz), 7.22 (1H, d, J=7.8 Hz), 7.50 (1H, dd, J=7.8, 1.7 Hz), 7.56 (1H, br s),
	7.86(1H, br s)
2-33	7.80(11, b) 3 3.62 (3H, s), 3.84 (3H, s), 6.25 (1H, s), 7.25 (1H, d, J=8.9 Hz), 7.75 (2H, d, J=8.3 Hz),
	7.89 (2H, d, J=8.3 Hz), 7.92 (1H, br s)
2-34	7.89 (2H, d, J=8.5 Hz), 7.92 (11, 61.5) 4 3.54 (3H, br s), 3.84 (3H, s), 6.26 (1H, s), 7.30 (1H, d, J=9.3 Hz), 7.72 (4H, m), 7.94
	(2H, m), 8.17 (2H, m)
2-3	(2H, m), 8.17 (2H, m) 6 3.56 (3H, d, J=1.1 Hz), 3.85 (3H, s), 4.64 (2H, s), 6.25 (1H, s), 7.24 (1H, d, J=9.0 Hz),
	7.52 (2H, d, J=8.3 Hz), 7.79 (2H, d, J=8.3 Hz), 7.91 (1H, br s)
2-3	7.32 (2H, d, J=8.3 Hz), 7.79 (2H, s), 7.20 (1H, d, J=9.0 Hz), 7.45 (3H, m), 7.63 (4H, 3.53 (3H, s), 3,83 (3H, s), 6.25 (1H, s), 7.20 (1H, d, J=9.0 Hz), 7.45 (3H, m), 7.63 (4H, s)
**********	m), 7.84 (2H, d, J=8.2 Hz), 8.13 (1H, s)
2-3	8 3.32 (3H, s), 3.86 (3H, s), 6.08 (1H, s), 7.52 (15H, m), 7.95 (4H, m)
2-3	8 3.32 (3H, s), 3.80 (3H, s), 6.00 (1H, s), 7.15-7.3 (2H, m), 7.24 (1H, d, J=9.1 Hz), 9 3.56 (3H, br s), 3.89 (3H, s), 6.27 (1H, s), 7.15-7.3 (2H, m), 7.24 (1H, d, J=9.1 Hz),
*********	7.54 (1H, m), 7.92 (1H, m), 8.43 (1H, br d, J=13.8 Hz)
2-4	7.54 (1H, m), 7.92 (1H, m), 8.43 (1H, s), 7.12 (2H, m), 7.22 (1H, d, J=9.1 Hz), 7.79
	: /ATT\ 7 D7 (1 W BEC)
2-4	(2H, m), 7.97 (1H, 01 s) 11 3.57 (3H, br q, J=1.1 Hz), 3.9 (3H, s), 6.29 (1H, s), 7.2 (1H, m), 7.26 (1H, d, J=9.1
	Hz), 7.36 (1H, m), 7.63 (1H, m), 8.29 (1H, d, J=11.1 Hz) 42 3.56 (3H, br s), 3.89 (3H, s), 6.27 (1H, s), 6.97 (2H, m), 7.25 (1H, d, J=9 Hz), 7.97
2-4	42 3.56 (3H, br s), 3.89 (3H, s), 0.27 (1H, s), 0.77 (2H, m), 7.22 (2H, m)
	(1H, m), 8.37 (1H, br d, J=13.3 Hz)

2-43	3.44 (3H, br s), 3.96 (3H, s), 6.24 (1H, s), 6.64 (2H, m), 6.86 (2H, m), 7.35 (1H, d, J=8.8
	Hz), 7.78 (2H, m)
2-44	3.88 (3H, s), 6.26 (1H, s), 6.98 (2H, m), 7.23 (1H, d, J=9 Hz), 7.96 (1H, m), 8.46 (1H,
	m)
2-45	3.43 (3H, br q, J=1.3 Hz), 5.1 (2H, s), 6.36 (1H,s), 6.9-7.15 (4H, m), 7.77 (1H, d, J=9.1
	Hz), 7.7-7.9 (2H, m)
2-46	3.52 (3H, s), 3.91 (3H, s), 6.75-7.05 (2H, m), 6.95 (1H, s), 7.39 (1H, d, J=8.9 Hz), 8.03
	(1H, m), 8.56 (1H, m)
2-47	3.55 (3H, br s), 3.91 (3H, s), 6.32 (1H, s), 6.93 (2H, m), 7.25 (1H, d, J=8.9 Hz), 7.39
	(1H m) 8.03 (1H, br s)
2-48	3.55 (3H, br q, J=1.0 Hz), 3.83 (3H, s), 6.26 (1H, s), 7.24 (1H, d, J=9.1 Hz), 7.25
	(1H m), 7.54 (1H, m), 7.65 (1H, m), 8.05 (1H, br s)
2-49	3.39 (3H, br s), 3.77 (3H, s), 6.1 (1H, s), 7.10-7.40 (2H, m), 7.34 (1H, d, J=8.8 Hz),
	7.60-8.00 (4H, m)
2-50	3.54 (3H, br s), 3.81 (3H, s), 6.26 (1H, s), 7.01 (1H, m), 7.25 (1H, d, J=9.3 Hz), 7.31
	(2H, m), 8.28 (1H, s)
2-51	3.43 (3H, br s), 3.79 (3H, s), 6.15 (1H, s), 6.95-7.75 (7H, m)
2-53	$\frac{13.56 \text{ (3H d. J=1.2 Hz)}}{3.56 \text{ (3H, s)}}$ , 3.91 (3H, s), 6.32 (1H, s), 7.26 (1H, d, J=9.0 Hz), 7.35 (1H,
	$d_{Add} I=8.6.6.1.2.5 Hz$ ), 7.42 (2H, m), 7.52 (1H, dd, J=7.4, 1.2 Hz), 7.83 (1H, br s)
2-54	3.53 (3H, s), 3.82 (3H, s), 6.26 (1H, s), 7.22 (1H, d, J=9.0 Hz), 7.39 (1H, dd, J=7.8, 7.9
	H ₂ ) 7.53 (1H, m), 7.62 (1H, m), 7.77 (1H, m), 8.06 (1H, br s)
2-55	2.36 (3H, s) 3.81 (3H, s), 6.11 (1H, s), 7.30 (3H, m), 7.43 (2H, m), 7.76 (4H, m)
2-56	353 (3H, s), 3.83 (3H, s), 6.23 (1H, s), 7.23 (1H, d, J=9.0 Hz), 7.44 (2H, d, J=8.7 Hz),
	7.72 (2H, d, J=8.7 Hz), 7.92 (1H, s)
2-57	3.32 (3H s) 3.78 (3H, s), 6.06 (1H, s), 7.34 (5H, m), 7.80 (4H, m)
2-58	3.56 (3H, d, J=1.0 Hz), 3.89 (3H, s), 6.32 (1H, s), 7.27 (1H, d, J=9.0 Hz), 7.31 (1H, dd,
	T=0.1 1.0 Hz) 7.47 (2H m) 7.92 (1H, br s)
2-59	3.55 (3H, d, J=1.1 Hz), 3.84 (3H, s), 6.25 (1H, s), 7.25 (1H, d, J=9.1 Hz), 7.54 (1H, d, 3.55 (3H, d, J=1.1 Hz), 3.84 (3H, s), 7.25 (1H, d, J=2.0 Hz)
	7.60 (1H, dd. J=8.3, 2.0 Hz), 7.88 (1H, br s), 7.89 (1H, d, J=2.0 Hz)
2-60	3.54 (3H, br s), 3.83 (3H, s), 6.26 (1H, s), 7.24 (1H, d, J=9.0 Hz), 7.34 (2H, m), 7.65-
	7.75 (2H m) 7.02-8.25 (4H m)
2-61	3.53 (3H, s), 3.82 (3H, s), 6.23 (1H, s), 7.22 (1H, d, J=9.0 Hz), 7.61 (4H, m), 7.95 (1H,
	[ A
2-62	3.33 (3H, s), 3.80 (3H, s), 6.06 (1H, s), 7.31 (1H, d, J=9.0 Hz), 7.51 (4H, m), 7.73 (4H,
	m) 625 (2H d) 1=8 8 Hz)
2-63	m) 3.54 (3H, d, J=1.1 Hz), 3.83 (3H, s), 3.87 (3H, s), 6.22 (1H, s), 6.95 (2H,d, J=8.8 Hz),
	7.21 (1H, d, J=9.1 Hz), 7.75 (2H, d, J=8.8 Hz), 7.78 (1H, br. s)
2-64	7.21 (1H, d, J=7.1 Hz), 7.73 (2H, d, J=7.0 Hz), 6.22 (1H, s), 1.44 (3H, t, J=7.0 Hz), 3.52 (3H, s), 3.82 (3H, s), 4.06 (2H, q, J=7.0 Hz), 6.22 (1H, s),
	6.90 (2H, d, J=9.0 Hz), 7.20 (1H, d, J=9.0 Hz), 7.73 (2H, d, J=9.0 Hz), 7.91 (1H, s)
2-6	6.90 (2H, d, J=9.0 Hz), 7.25 (Hz, s), 7.25 (1H, d, J=9.1 Hz), 7.51 (2H, d, 3.55 (3H, d, J=1.0 Hz), 3.84 (3H, s), 6.25 (1H, br.s)
	J=8.6 Hz), 7.85 (2H, d, J=8.6 Hz), 7.88 (1H, br s)
2-6	7 3.85 (3H, s), 6.22 (1H, s), 7.25 (1H, d, J=9.9 Hz), 7.76 (2H, d, J=8.4 Hz), 7.85 (2H, d,
*******	J=8.4 Hz), 7.96 (1H, br s)
2-6	J=8.4 Hz), 7.96 (1H, 6f s) 9 3.40 (3H, br s), 3.79 (3H, s), 6.12 (1H, s), 7.36 (1H, d, J=8.7 Hz), 8.06 (4H, m), 8.25
**********	(4H, m) 0 3.50 (3H, br s), 3.87 (3H, s), 6.32 (1H, s), 7.51 (1H, d, J=8.8 Hz), 9.07 (2H, m), 9.12
2-7	0 3.50 (3H, br s), 3.8/ (3H, s), 0.52 (1H, s), 7.51 (1H, a, a, a, a, a, a, a, a, a, a, a, a, a,
	(1H, m), 9.91 (1H, br s) 1 3.33 (3H, s), 3.77 (3H, s), 7.20 (4H, m), 7.31 (1H, d, J=8.8 Hz), 7.92 (4H, m)
2-7	1 3.33 (3H, S), 3.77 (3H, S), 7.20 (4H, M), 7152 (22-7-27-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7

•	
2-72	3.54 (3H, s), 3.83 (3H, s), 6.24 (1H, s), 7.25 (3H, m), 7.82 (2H, m), 8.02 (1H, s)
2-73	3.54 (3H, br s), 3.83 (3H, s), 6.05 (2H, s), 6.23 (1H, s), 6.85 (1H, d, J=7.8 Hz), 7.21
	(1H d I=8 8 Hz), 7.25-7.34 (2H, m), 7.80 (1H, br s)
~ 74	3.52 (3H, s), 3.84 (3H, s), 6.25 (1H, s), 7.24 (1H, d, J=9.0 Hz), 7.50 (4H, m), 7.90 (3H,
2-74	
	m), 8.20 (1H, br s) 3.64 (3H, s), 3.85 (3H, s), 6.24 (1H, s), 7.24 (1H, d, J=9.0 Hz), 7.80 (7H, m), 8.32
2-75	i
	(1H, s)
	7 CO (OTT ) 7 CO O O (SIT) 9 29
2-76	3.87 (3H, s), 6.1 (1H, s), 7.31 (1H, d, J=9.0 Hz), 7.60 (2H, m), 7.80-8.05 (5H, m), 8.38
	(1U c)
2-77	3.83 (3H, s), 4.69 (2H, s), 6.21 (1H, s), 7.35 (1H, d, J=8.9 Hz), 7.50-7.60 (3H, m),
	7 00 7 95 (AH m) 8 07 (1H s)
2.70	3.56 (3H, s), 3.86 (3H, s), 6.28 (1H, s), 6.49 (1H, d, J=15.6 Hz), 7.21 (1H, d, J=9.0
2-78	Hz), 7.39 (4H, m), 7.50 (2H, m), 7.63 (1H, d, J=15.6 Hz)
	3.57 (3H, s), 3.86 (3H, s), 6.28 (1H, s), 6.54 (1H, d, J=15.7 Hz), 6.84-6.94 (3H, m),
2-79	7.22 (1H, d, J=9.0 Hz), 7.36 (1H, br s), 7.48 (1H, q, J=7.7 Hz), 7.67 (1H, d, J=15.7
	:
	Hz) (200 (111 a) 6 40 (111 d) 1-15 4 Hz) 7 19-7 32
2-80	HZ) 2.41 (3H, s), 3.57 (3H, s), 3.86 (3H, s), 6.29 (1H, s), 6.40 (1H, d, J=15.4 Hz), 7.19-7.32
	(4H, m), 7.33 (1H, br s), 7.53 (1H, d, J=7.2 Hz), 7.93 (1H, d, J=15.4 Hz)
2-81	(4H, III), 7.33 (1H, 61-3), 7.20 (1H, d, 2.12 (3H, d, J=1.3 Hz), 3.57 (3H, d, J=0.9 Hz), 3.88 (3H, s), 6.29 (1H, s), 7.20 (1H, d,
	To 1 He) 7.36 (5H m) 7.66 (1H, br s)
2-82	25.57 (2H hrs) 3.85 (3H s) 6.29 (1H, s), 6.48 (1H, d, J=15.0 Hz), 7.10 (1H, d, J=5.0
2-02	Hz), 7.28 (2H, m), 7.40 (1H, dd, J=7.9, 1.6 Hz), 7.53 (1H, dd, J=7.4, 1.6 Hz), 7.67
	1 (177 Lucy 7 00 (1H A I=15 6 Hz)
2 02	$\frac{1}{100}$ (CYY 1) 2.02 (2H c) 6.24 (1H c) 6.80 (1H, d, J=15.5 HZ), 0.91 (1H, d, J=15.5
2-83	7.30 (111, 00, 3-7.0, 1.0112)
	$= 60.411 \text{ d. } = 76.18 \text{ Hz} \cdot 18.18 \text{ (1H d. } = 15.5 \text{ Hz}) \cdot 8.20 \text{ (1D, U, J=15.5 112)}$
	$\frac{1}{2}$ 5.6 (21) $\frac{1}{2}$ 6.2 (21) 6.3 (11) 6.45 (11) 0, $\frac{1}{2}$ 13.0 $\frac{1}{2}$ 13.1 (11) 0, $\frac{1}{2}$ 3.3
2-84	Hz), 7.54 (2H, d, J=8.6 Hz), 7.40 (2H, d, J=8.6 Hz), 7.55 (1H, d, J=15.6 Hz), 7.59
	(1H, br s) 6.35 (1H, d, I=15.5 Hz), 6.89
2-85	3.56 (3H, br s), 3.84 (3H, s), 3.85 (3H, s), 6.28 (1H, s), 6.35 (1H, d, J=15.5 Hz), 6.89
	3.56 (3H, 6r s), 3.64 (3H, s), 5.65 (3H, e), 6.25 (1H, br s), 7.45 (2H, d, J=8.7 Hz), (2H, d, J=8.7 Hz), 7.19 (1H, d, J=9.0 Hz), 7.35 (1H, br s), 7.45 (2H, d, J=8.7 Hz),
	7.58 (1H, d, J=15.5 Hz)
2-86	7.58 (1H, d, J=13.5 Hz) 2.60 (2H, q, J=7.7 Hz), 2.91 (2H, t, J=7.7 Hz), 3.56 (3H, s), 3.69 (3H, s), 6.26 (1H, s),
	! a //TT
2 87	7.1-7.3 (6H, m) 7.2.66 (2H, m), 2.92 (2H, m), 3.55 (3H, s), 4.52 (2H, s), 6.28 (1H, s), 7.1-7.4 (6H, m)
2-07	·
	3 1.90 (2H, tt, J=7.5, 7.4 Hz), 2.29 (2H, d, J=7.4 Hz), 2.61 (2H, t, J=7.5 Hz), 3.52 (3H, d,
2-88	T 0 7 TT-) 2 04 (211 g) 6 28 (1H s) /.13-/.32 (/D, III)
**********	J=0.7 Hz), 3.84 (3H, s), 0.26 (1H, s), 4.55 (2H, s), 6.15 (1H, s), 7.16 (1H, d, J=9.0 g) 3.54 (3H, s), 3.82 (3H, s), 4.02 (2H, s), 4.55 (2H, s), 6.15 (1H, s), 7.16 (1H, d, J=9.0 g)
2-89	9 3.54 (3H, S), 5.82 (3H, S), 4.02 (2H, S), 4.33 (2H, S), 5.12 (, S)
	Hz), 7.4 (5H, m), 8.55(1H, s)  1.27 (2H, s) 6.26 (1H, s) 6.55 (1H, dd, J=3.6, 1.8 Hz), 7.17
2-9	Hz), 7.4 (5H, m), 8.35(1H, s) 0 3.56 (3H, d, J=1.1 Hz), 3.87 (3H, s), 6.26 (1H, s), 6.55 (1H, dd, J=3.6, 1.8 Hz), 7.17
	0 3.56 (3H, d, J=1.1 Hz), 5.87 (3H, s), 6.25 (1H, o), 7.54 (1H, dd, J=1.8, 0.5 Hz), 8.18 (1H, dd, J=3.6, 0.5 Hz), 7.22 (1H, d, J=9.1 Hz), 7.54 (1H, dd, J=1.8, 0.5 Hz), 8.18
	(4 T 1 )
2-9	(1H, br s) 1 2.25 (3H, s), 3.46 (3H, s), 3.81 (3H, s), 6.25 (1H, s), 6.39 (1H, s), 7.18 (1H, d, J=9.0
	Hz), 7.39 (1H, s), 8.30 (1H, s)

	(40 /11)
2-92 3.	56 (3H, d, J=0.8 Hz), 3.85 (3H, s), 6.28 (1H, s), 6.39 (1H, d, J=15.2 Hz), 6.48 (1H,
l d	ld. J=3.4, 1.8 Hz), 6.60 (1H, d, J=3.4 Hz), 7.19 (1H, d, J=9.0 Hz), 7.34 (1H, or s),
7	7.40 (1H, d. I=15.2 Hz), 7.48 (1H, d, J=1.8 Hz)
2-93 3.	
•	
2-94 2.	46 (3H, s), 3.56 (3H, s), 3.88 (3H, s), 6.26 (1H, s), 6.94 (1H, m), 7.20 (1H, d, J-9.0
	$(r_{-}) = 2.6 (10 \text{ m}) = 7.65 (10 \text{ s})$
2-95 2	45 (3H, s), 3.47 (3H, s), 3.78 (3H, s), 6.17 (1H, s), 6.70 (1H, m), 7.13 (1H, d, J=9.0
	rr=\ 7.22 (1U m) 7.63 (1H s)
2-96 2	.41 (6H, s), 3.26 (3H, s), 3.78 (3H, s), 5.97 (1H, s), 6.59 (2H, m), 7.24 (1H, d, J=9.0
	7.20 (2H m)
2-97 3	.31 (3H, s), 3.84 (3H, s), 6.03 (1H, s), 7.05 (2H, m), 7.40 (2H, m), 7.70 (3H, m)
0.00	$\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}$
•	$T_{1} = 0.01 / 1 \text{ M} \text{ A} = 7.7 \text{ Hz} \times 3.2 (1 \text{ Hz}) \text{ br s} \times 3.0 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1 \text{ Hz}) \times 3.01 (1  Hz$
	$\frac{1}{100}$ (211 - 1-10 Hz) 3.70 (3H s) 6.12 (1H, s), 7.35 (1H, d, J=8.0 Hz), 7.30 (111, d,
	I=8.0 Hz), 7.39 (1H, d, $J=8.0 Hz$ ), 8.15 (1H, dd, $J=8.0$ , 2.2 Hz), 8.16 (111, dd, $J=8.0$ , 9.15)
1	$0.077 \times 0.077 \times 111 \times 1111 \times 11111 \times 111111 \times 1111111$
2-101	50 (211 br a 1=1 2 Hz) 6 36 (1H, s), 6.99 (1H, dd, J=4.9, 8.3 Hz), 7.27 (111, d, J=6.7
•	$T_{-}$ 0 44 (111 44 $I=1$ 7 4 $X$ Hz) $X_1$ (111, QQ, $J=1$ , 0.3 112), $J=1$ (111, 01 0)
2-102	(CDCl ₃ +CD ₃ OD) 3.54 (3H, br s), 6.33 (1H, s), 6.82 (1H, t, J=5.0 Hz), 7.2 (1H, d, J=8.8
:	$a = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} $
2-103	Hz), 8.38 (2H, d, J=5.0 Hz) 3.55 (3H, q, J=1.0 Hz), 3.89 (3H, s), 6.26 (1H, s), 7.22 (1H, d, J=9.1 Hz), 7.45 (3H, m),
2-104	7.83 (3H, m), 7.99 (1H, 6Fs) 3.58 (3H, s), 3.92 (3H, s), 6.26 (1H, s), 7.20 (1H, d, J=9.0 Hz), 7.65 (1H, m), 7.85 (2H, s)
2-105	m), 8.17 (2H, m), 8.33 (1H, H), 10.03 (1H, 5) 3.60 (3H, br s), 3.92 (3H, s), 6.27 (1H, s), 7.27 (1H, d, J=9.0 Hz), 7.93 (2H, m), 8.20
	: '***
2-106	(2H, m), 9.60 (1H, s), 10.12 (11, s) 3.56 (3H, q, J=0.7 Hz), 3.86 (3H, s), 6.27 (1H, s), 6.95 (2H, m), 7.41 (1H, d, J=8.7 Hz),
	7.95 (1H, m) 6.26 (1H, d. l=15.2 Hz) 6.28 (1H, s), 7.05 (1H,
2-113	7.95 (1H, m) 3.56 (3H, q, J=1.0 Hz), 3.86 (3H, s), 6.26 (1H, d, J=15.2 Hz), 6.28 (1H, s), 7.05 (1H, d, J=3.6 Hz), 7.27 (1H, br s),
	dd. J=5.0, 3.6 Hz), 7.20 (1H, d, J=9.0 Hz), 7.25 (1H, d, 5 5.6 ===),
	7.38 (1H, d, J=5.0 Hz), 7.75 (1H, d, J=15.2 Hz) 3.56 (3H, d, J=0.9 Hz), 6.40 (1H, s), 7.28 (1H, d, J=9.21 Hz), 7.50-7.65 (2H, m), 7.70-
2-114	3.56 (3H, d, J=0.9 Hz), 6.40 (1H, s), 7.26 (1H, d, J ).21 (1H, br s)
	7.80 (3H, m), 7.80-8.0 (3H, m), 8.35 (1H, m), 8,63 (1H, br s) 3.54 (3H, d, J=0.9 Hz), 6.24 (1H, s), 6.51 (1H, t, J=73.1 Hz), 7.32 (1H, d, J=8.8 Hz),
2-115	3.54 (3H, d, J=0.9 Hz), 6.24 (1H, s), 6.31 (1H, t, 3 7511 Hz), 4511 Hz), 4521 (1H, br s), 8.29 (1H, br 7.50-7.65 (2H, m), 7.70-7.82 (1H, m), 7.85-7.95 (3H, m), 8.07 (1H, br s), 8.29 (1H, br s)
************	s) 2.09 (3H, s), 2.14 (3H, s), 3.50 (3H, d, J=1.0 Hz), 3.79 (3H, s), 4.8-5.0 (4H, m), 6.29
	(1H, s), 7.47 (1H, d, J=8.9 Hz) 2.18 (3H, s), 3.56 (3H, d, J=1.1 Hz), 3.86 (3H, s), 4,58 (2H, s), 6.30 (1H, s), 7.24 (1H,
2-117	2.18 (3H, s), 3.56 (3H, d, J=1.1 112), 3.66 (3H, s), 4,5 (4 7 7)
	d, J=9.0 Hz) 1.40 (3H, t, J=7.1 Hz), 3.56 (3H, d, J=1.0 Hz), 3.91 (3H, s), 4.39 (2H, q, J=7.1 Hz),
	277 (277 a) 156 (2H a) 674 (1H s), 0.05-7.40 (0H, M), 0.50 (,,,,,,,,
2-119	3.54 (3H, s), 3.72 (3H, s), 4.8-5.15 (4H, m), 6.27 (1H, s), 6.8-7.0 (6H, m), 7.20-730
	(4H, m), 7.48 (1H, d, J=8.7 Hz) 3.59 (3H, s), 3.93 (3H, s), 6.35 (1H, s), 7.26 (1H, d, J=9.0 Hz), 7.40-7.70 (3H, m), 8.20
2-121	(2H, m), 8.97 (1H, br s)
	(211, 111), 0.77 (111), 0. 57

2-122 2.33 (3H, s), 3.49 (3H, d, J=0.9 Hz), 6.24 (1H, s), 7.34 (1H, d, J=9.1 Hz), 7.50-7.62 (2H, m), 7.75-7.95 (5H, m), 8.31 (1H, br s) 2-123 2.28 (3H, s), 3.54 (3H, s), 6.29 (1H, s), 6.59 (1H, d, J=15.5 Hz), 7.20-7.50 (6H, m), 7.63 (1H, d, J=15.5 Hz) 2-124 2.29(6H, s), 3.56(3H, s), 3.93(3H, s), 6.32(1H, s), 7.05(2H, m), 7.20(2H, m), 7.47(1H, 2-125 3.57 (3H, s), 3.87 (3H, s), 6.29 (1H, s), 6.62 (1H, d, J=15.7Hz), 7.1-7.5 (5H, m), 7.72 (1H, d, J=15.7Hz)2-126 3.52 (3H, s), 3.80 (3H, s), 6.24 (1H, s), 6.32 (1H, d, J=15.6Hz), 7.11 (1H, br d, J=8.8Hz), 7.4-7.6 (4H, m), 7.95 (2H, m) (3H, s), 3.86 (3H, s), 3.89 (3H, s), 6.28 (1H, s), 6.64 (1H, d, J=15.7Hz), 6.95 (2H, m), 7.19 (1H, d, J=9.0Hz), 7.35 (2H, m), 7.46 (1H, dd, J=7.6, 1.4Hz), 7.88 (1H, d, J=15.7Hz)2-128 3.59 (3H, s), 3.88 (3H, s), 6.31 (1H, s), 6.65 (1H, d, J=15.9Hz), 7.20 (2H, m), 7.35 (2H, d, J=8.1Hz), 7.37 (1H, br s), 7.72 (1H, d, J=15.9Hz) 2-129 2.28 (3H, s), 2.53 (2H, t, J=7.3Hz), 2.88 (2H, t, J=7.3Hz), 3.56 (3H, s), 3.73 (3H, s), 6.26 (1H, s), 7.11 (5H, m), 7.35 (1H, br s) 2-130 2.33 (3H, s), 2.36 (3H, s), 3.57 (3H, s), 3.86 (3H, s), 6.29 (1H, s), 6.40 (1H, d, J=15.4Hz), 7.09 (2H, br s), 7.20 (1H, d, J=9.0Hz), 7.33 (1H, br s), 7.35 (1H, s), 7.90 (1H, d, J=15.4Hz)2-131 3.54 (3H, d, J=1.0Hz), 6.37 (1H, s), 7.21 (1H, d, J=8.6Hz), 7.33 (1H, dd, J=8.6, 2.1Hz), 7.60 (2H, m), 7.77 (1H, dd, J=8.6, 1.8Hz), 7.88 (3H, m), 7.98 (1H, br s), 8.01 (1H, d, J=2.1Hz), 8.26 (1H, d, J=1.3Hz) 2-132 2.21 (3H, s), 2.27 (3H, s), 2.48 (2H, t, J=7.8Hz), 2.81 (2H, t, J=7.8Hz), 3.57 (3H, s), 3.73 (3H, s), 6.27 (1H, s), 6.92 (2H, m), 7.02 (1H, d, J=7.6Hz), 7.12 (1H, br d, J=8.6Hz), 7.51 (1H, br s) 2-133 3.55 (3H, d, J=1.0Hz), 3.76 (3H, s), 4.52 (2H, s), 6.26 (1H, s), 6.88 (2H, dd, J=9.1, 2.4Hz), 7.02 (2H, dd, J=9.1, 8.1Hz), 7.20 (1H, d, J=9.0Hz), 8.48 (1H, br s) 2-134 3.57 (3H, s), 3.86 (3H, s), 6.28 (1H, s), 6.50 (1H, d, J=15.5Hz), 7.23 (1H, d, J=9.0Hz), 7.35 (4H, m), 7.50 (1H, br s), 7.58 (1H, d, J=15.5Hz) 2-135 3.55 (3H, d, J=1.0Hz), 3.76 (3H, s), 4.52 (2H, s), 6.26 (1H, s), 6.87 (2H, d, J=9.0Hz), 7.20 (1H, d, J=9.0Hz), 7.29 (2H, d, J=9.0Hz), 8.45 (1H, br s) 2-136 3.58 (3H, d, J=1.0Hz), 3.93 (3H, s), 6.33 (1H, s), 7.26 (1H, d, J=9.1Hz), 7.54 (3H, m), 7.95 (2H, d, J=8.3Hz), 8.14 (1H, s), 8.28 (1H, s) 2-137 3.55 (3H, s), 6.37 (1H, s), 6.40 (1H, d, J=15.5Hz), 7.16 (1H, d, J=8.6Hz), 7.19 (1H, br s), 7.29 (1H, dd, J=8.5, 1.9Hz), 7.38 (3H, m), 7.48 (2H, m), 7.70 (1H, d, J=15.5Hz), 2-139 [3.19 (3H, s), 5.98 (1H, s), 7.17 (1H, dd, J=8.0, 1.2Hz), 7.2-7.6 (7H, m), 7.7-7.9 (6H, 7.99 (1H, br s) m), 7.93 (2H, dd, J=8.6, 1.7Hz), 8.53(2H, br s) 2-140 3.56 (3H, d, J=1.0Hz), 6.40 (1H, s), 7.42 (1H, d, J=8.3Hz), 7.60 (3H, m), 7.78 (1H, dd, J=8.6, 1.8Hz), 7.92 (3H, m), 8.01 (1H, br s), 8.29 (1H, br s), 8.38 (1H, d, J=1.6Hz) 2-141 3.59 (3H, s), 6.41 (1H, s), 6.42 (1H, d, J=15.5Hz), 7.16 (1H, br s), 7.38 (4H, m), 7.52 (2H, m), 7.59 (1H, dd, J=8.2, 1.7Hz), 7.75 (1H, d, J=15.5Hz), 8.40 (1H, br s) 2-142 3.47 (3H, s), 6.29 (1H, s), 7.1-7.9 (11H, m), 8.21 (1H, s) 2-143 3.55 (3H, d, J=1.0Hz), 3.87 (3H, s), 6.38 (1H, s), 6.89 (1H, dd, J=8.9, 2.9Hz), 7.18 (1H, d, J=8.9Hz), 7.58 (3H, m), 7.79 (1H, dd, J=8.6, 1.7Hz), 7.90 (4H, m), 8.29 (1H, br s)

.,\.

2-144 3.54 (3H, d, J=1.0Hz), 3.87 (3H, s), 6.25 (1H, s), 7.60 (3H, m), 7.8-8.0 (5H, m), 8.30 (1H, br s) 2-145 3.57 (3H, d, J=1.0Hz), 6.38 (1H, s), 7.12 (1H, dd, J=9.3, 2.2Hz), 7.59 (2H, m), 7.78 (1H, dd, J=8.6, 1.8Hz), 7.8-8.0 (5H, m), 8.28 (1H, br s) 2-146 1.27 (1.5H, t, J=7.1Hz), 1.27 (1.5H, t, J=7.1Hz), 1.62 (3H, d, J=6.7Hz), 3.53(3H, s), 4.23 (2H, m), 4.79 (1H, m), 6.35 (1H, s), 6.85 (1H, m), 7.15 (1H, d, J=9.0Hz), 7.5-7.6 (3H, m), 7.77(1H, dd, J=8.6, 1.6Hz), 7.89 (4H, m), 8.26 (1H, s) 2-147 0.84 (2H, m), 1.03 (2H, m), 1.50 (1H, m), 3.58 (3H, d, J=1.0Hz), 6.36 (1H, s), 7.05 (1H, d, J=7.8Hz), 7.35 (1H, br s), 7.88 (1H, br s) 3.57 (3H, d, J=1.0Hz), 6.39 (1H, s), 6.61 (1H, t, J=72.7Hz), 6.88 (1H, dd, J=10.2, 2.6Hz), 7.59 (2H, m), 7.76 (2H, m), 7.90 (3H, m), 8.05 (1h, br s), 8.27 (1H, s) 2-149 3.56 (3H, d, J=1.0Hz), 6.38 (1H, s), 7.43 (1H, d, J=8.4Hz), 7.6 (3H, m), 7.78 (1H, dd, J=8.6, 1.8Hz), 7.90 (3H, m), 8.09 (1H, br s), 8.28 (2H, s) 2-150 3.41 (3H, d, J=1.1Hz), 3.71 (1H, s), 3.80 (2H, s), 6.11 (1H, s), 7.1-7.4 (6H, m), 8.88 2-151 3.50 (3H, d, J=1.0Hz), 3.58 (3H, s), 3.62 (2H, s), 6.15 (1H, s), 7.14 (1H, d, J=9.1Hz), 7.2-7.4 (6H, m) 2-152 3.58 (3H, s), 3.90 (3H, s), 4.14 (3H, s), 6.25 (1H, s), 7.21 (1H, d, J= 9.0 Hz), 7.26 (1H, s), 7.44 (1H, m), 7.55 (1H, m), 7.76 (1H, m), 7.85 (1H, m), 8.58 (1H, s), 10.10 (1H, s) 2-153 3.57 (3H, s), 3.91 (3H, s), 4.10 (3H, s), 6.22 (1H, s), 7.22 (1H, d, J= 9.0 Hz), 7.23 (1H, s), 7.64 (2H, m), 7.91 (1H, m), 7.99 (1H, d, J= 8.7 Hz), 8.22 (1H, m), 10.20 (1H, s) 2-154 3.56 (3H, s), 3.87 (3H, s), 4.55 (2H, s), 6.27 (1H, s), 6.82 (1H, d, J= 8.8 Hz), 7.21 (2H, m), 7.44 (1H, s), 8.72 (1H, s) 2-155 2.52 (3H, s), 3.56 (3H, s), 3.90 (3H, s), 6.31 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 7.55 (2H, m), 7.81 (4H, m), 10.15 (1H, s) 2-156 2.55 (3H, s), 3.52 (3H, s), 3.83 (3H, s), 6.22 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 7.41 (1H, m), 7.66 (1H, s), 7.79 (3H, m), 8.15 (1H, s), 8.26 (1H, s) 2-157 3.58 (3H, s), 3.94 (3H, s), 6.35 (1H, s), 7.25 (1H, d, J= 9.0 Hz), 7.61 (2H, m), 7.78 (2H, s), 7.92 (2H, m), 8.04 (1H, s) 2-158 3.55 (3H, s), 3.84 (3H, s), 6.24 (1H, s), 7.22 (1H, d, J= 9.0 Hz), 7.42 (1H, m), 7.90 (3H, m), 8.14 (1H, s), 8.32 (2H, m) 2-159 3.56 (3H, s), 3.96 (3H, s), 6.35 (1H, s), 7.13 (1H, d, J= 9.0 Hz), 7.70 (6H, m), 8.15 (1H, s)2-160 3.55 (3H, s), 3.86 (3H, s), 6.24 (1H, s), 7.22 (1H, d, J= 9.0 Hz), 7.74 (4H, m), 7.92 (4H, m), 8.10 (4H, m) 2-161 3.55 (3H, s), 3.86 (3H, s), 6.25 (1H, s), 7.23 (2H, m), 7.57 (1H, m), 7.72 (1H, m), 7.91 (2H, m), 8.18 (1H, s) 2-162 3.55 (3H, s), 3.85 (3H, s), 6.24 (1H, s), 7.23 (1H, d, J= 9.0 Hz), 7.49 (1H, m), 7.69 (1H, m), 7.90 (3H, m), 8.13 (1H,sm), 8.34 (2H, m) 2-163 3.56 (3H, s), 3.86 (3H, s), 6.25 (1H, s), 7.25 (1H, d, J= 9.0 Hz), 7.66 (1H, m), 8.05 (3H, m), 8.19 (1H, m), 8.32 (1H, d, J= 8.7Hz), 8.39 (1H, s) 2-164 3.35 (3H, s), 3.89 (3H, s), 4.10 (2H, s), 6.37 (1H, s), 7.25 (1H, d, J= 9.0 Hz), 8.33 (1H, 2-165 3.10 (2H, s), 3.57 (3H, s), 3.90 (2H, s), 4.11 (3H, s), 6.30 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 7.27 (5H, s), 8.65 (1H, s) 2-166 3.57 (3H, s), 3.90 (5H, s), 4.10 (2H, s), 6.37 (1H, s), 7.25 (1H, d, J= 9.0 Hz), 8.15 (1H, ....

2-167 3.50 (3H, s), 3.55 (3H, s), 3.69 (2H, s), 6.16 (1H, s), 7.18 (1H, d, J= 9.0 Hz), 7.28 (5H, m), 8.33 (1H, s) 2-168 2.14 (3H, s), 3.20 (2H, s), 3.56 (3H, s), 3.88 (3H, s), 6.29 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 8.67 (1H, s) 2-169 3.36 (3H, s), 3.52 (3H, s), 3.79 (2H, m), 5.96 (1H, s), 7.17 (1H, d, J= 9.0 Hz), 7.49 (3H, m), 7.75 (3H, m), 8.75 (1H, m) 2-170 1.28 (3H, t, J= 7.1 Hz), 3.32 (2H, s), 3.36 (2H, s), 3.55 (3H, s), 3.88 (3H, s), 4.18 (2H, q, J=7.1 Hz), 6.30 (1H, s), 7.21 (1H, d, J=9.0 Hz), 8.33 (1H, s) 2-171 1.26 (3H, t, J= 7.1 Hz), 2.62 (2H, m), 2.85 (2H, m), 3.26 (2H, s), 3.56 (3H, s), 3.88 (3H, s), 4.15 (2H, q, J=7.1 Hz), 6.35 (1H, s), 7.21 (1H, d, J=9.0 Hz), 8.66 (1H, s) 2-172 1.27 (3H, t, J= 7.4 Hz), 2.60 (2H, m), 3.27 (2H, s), 3.56 (3H, s), 3.88 (3H, s), 6.28 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 8.73 (1H, s) 2-173 1.28 (6H, m), 2.97 (1H, m), 3.29 (2H, s), 3.57 (3H, s), 3.87 (3H, s), 6.28 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 8.79 (1H, s)2-174 0.99 (3H, m), 1.60 (2H, m), 2.53 (2H, m), 3.25 (2H, s), 3.57 (3H, s), 3.90 (3H, s), 6.28 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 8.80 (1H, s)2-175 3.53 (3H, q, J=3.9 Hz), 3.79 (3H, s), 6.30 (1H, s), 6.90 (1H, d, J=15.7 Hz), 7.36 (3H, m), 7.53 (4H, m), 9.84 (1H, s) 2-176 3.41 (3H, s), 3.79 (3H, s), 6.23 (1H, s), 7.58 (1H, d, J= 8.5 Hz), 6.84 (1H, d, J=15.6 Hz), 6.90 (1H, d, J=15.6 Hz), 7.35 (6H, m), 7.50 (4H, m), 7.79 (1H, d, J=15.6 Hz), 7.82 (1H, d, J=15.6 Hz) 2-177 3.50 (3H, s), 3.79 (3H, s), 6.23 (1H, s), 7.30 (1H, d, J=8.7 Hz), 7.56 (2H, m), 7.85 (4H, m), 8.31 (1H, s), 8.40 (1H, s) 2-178 3.21 (3H, s), 3.88 (3H, s), 6.04 (1H, s), 7.59 (5H, m), 7.87 (8H, m), 8.50 (1H, s), 8.57 (1H, s)2-179 3.57 (3H, s), 4.03 (3H, s), 6.29 (1H, s), 6.52 (1H, d, J=15.6 Hz), 7.28 (1H, d, J= 8.4 Hz), 7.38 (3H, m), 7.47 (2H, m), 7.62 (1H, d, J=15.6 Hz), 7.80 (1H, s) 2-180 3.50 (3H, s), 4.00 (3H, s), 6.22 (1H, s), 7.27 (1H, d, J= 8.5 Hz), 7.59 (2H, m), 7.87 (4H, m), 8.32 (1H, s), 8.38 (1H, s) 2-181 3.52 (3H, s), 3.80 (3H, s), 6.23 (1H, s), 7.17 (1H, d, J= 9.1 Hz), 7.58 (2H, m), 7.87 (4H, m), 8.26 (1H, d, J=55.6 Hz), 8.31 (1H, s) 2-182 3.53 (3H, q, J=0.8 Hz), 3.80 (3H, s), 5.41 (1H, d, J=10.9 Hz), 5.87 (1H, d, J=17.6 Hz), 6.23 (1H, s), 6.75 (1H, dd, J= 17.6, 10.9 Hz), 7.37 (1H, d, J= 8.8 Hz), 7.47 (2H, d, J=8:3 Hz), 7.73 (2H, d, J=8.3 Hz), 8.00 (1H, s) 2-183 3.28 (3H, s), 3.80 (3H, s), 5.34 (1H, d, J=11.0 Hz), 5.35 (1H, d, J=11.0 Hz), 5.80 (1H, d, J=17.6 Hz), 5.81 (1H, d, J=17.6 Hz), 6.03 (1H, s), 6.67 (1H, dd, J=17.6, 11.0 Hz), 7.35(2H, d, J=8.0), 7.53 (4H, d, J=8.4 Hz), 8.11 (4H, d, J=8.4 Hz) 2-184 3.82 (3H, s), 4.75 (2H, s), 6.07 (1H, s), 7.16 (1H, d, J=9.1 Hz), 7.57 (2H, m), 7.76 (1H, m), 7.87(3H, s), 8.25 (1H, m), 8.27 (1H, s) 2-185 3.39 (2H, s), 3.78 (3H, s), 6.26 (1H, s), 7.3 - 7.6 (7H, m), 9.89(1H, s) 2-186 3.80 (3H, s), 4.58(2H, s), 6.14 (1H, s), 6.81(1H, d, J=15.5 Hz), 6.93(1H, d, J=15.5 Hz), 7.3 - 7.6(10H, m), 7.77(1H, d, J= 15.5 Hz), 7.82(1H, d, J= 15.5 Hz) 2-187 3.78 (3H, s), 3.78 (2H, s), 4.58(2H, s), 4.70(2H, s), 6.07 (1H, s), 7.14 (1H, d, J=9.1 Hz), 7.35 (5H, m), 8.58(1H, s) 2-188 4.67 (2H, s), 4.76 (2H, d J=5.3 Hz), 6.10 (1H, s), 7.26 (1H, d, J= 8.8 Hz), 7.57 (2H, m), 7.77 (1H, m), 7.87(3H, s), 8.19 (1H, m), 8.30 (1H, s) 2-189 1.28 (3H, t, J=7.1 Hz), 3.55 (3H, s), 4.26 (2H, q, J=7.1 Hz), 4.82 (2H, s), 6.22 (1H, s), 7.21 (1H, d, J=8.8 Hz), 7.57 (2H, m), 7.94 (4H, m), 8.52 (1H, s), 10.46 (1H, s)

	1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T	
2-190	1.30 (3H, t, J=7.1 Hz), 3.58 (3H, s), 4.31 (2H, q, J=7.1 Hz), 4.78 (2H, s), 6.27 (1H, s),	
	6.67(1H, d, J= 15.7 Hz), 7.15 (1H, d, J=8.9 Hz), 7.38 (3H, m), 7.95 (2H, m), 7.62	
	(1H, d, J=15.7 Hz)	
2-191	1.27 (3H, t, J=7.1 Hz), 1.29 (3H, t, J=7.1 Hz), 1.69 (3H, d, J=7.0 Hz), 1.70 (3H, d,	
	J=7.0 Hz), 3.56 (3H, s), 3.63 (3H, s), 4.25 (4H, m), 4.95 (2H, m), 6.12 (1H, s), 6.41	
	(1H, s), 7.19 (2H, d, J=8.9 Hz), 7.56 (4H, m), 7.95 (8H, m), 8.54 (1H, s), 8.69 (1H, s),	
	10.41 (1H, s), 10.65 (1H, s)	
2-192	4.95 (2H, s), 6.23 (1H, s), 7.25 (1H, d, J=10.0 Hz), 7.59 (2H, m), 7.87(4H, s), 8.27	
	(1H, m), 9.28 (1H, s)	
2-193	3.56 (3H, q, J=0.5 Hz), 6.40 (1H, s), 7.16 (1H, dd, J=8.7, 2.6 Hz), 7.34 (1H, d, J=8.7)	
	Hz), 7.5 - 7.7 (3H, m), 7.7 - 8.0 (6H, m), 8.10 (1H, dd, J=8.6, 1.6 Hz), 8.18 (1H, br d),	
	8.27 (1H, br s) 7.25 (1H, d I=0.1 Hz) 7.60 (2H, m) 7.76(1H, dd.	
2-194	3.53(3H, q, J=0.8 Hz), 6.36 (1H, s), 7.25 (1H, d, J=9.1 Hz), 7.60 (2H, m), 7.76(1H, dd,	
	J=8.7, 1.8 Hz), 7.90 (3H, m), 8.21 (1H, s), 8.33 (1H, d, J=1.5 Hz)	
2-195	2.45 (1H, d, J=2.4 Hz), 3.55 (3H, q, J=0.8 Hz), 4.77(2H, dd, J=6.1, 2.4 Hz), 6.23 (1H,	
	s), 7.23 (1H, d, $J=9.0$ Hz), 7.59 (2H, m), 7.90 (4H, m), 8.32(1H, d, $J=0.7$ Hz), 8.36	
	(1H, s) (1H, s) 4.05 (2H, c, I=7.1 Hz) 6.25 (1H, s).	
2-196	1.28 (3H, t, J=7.1 Hz), 3.51 (3H, q, J=0.5 Hz), 4.05 (2H, q, J=7.1 Hz), 6.25 (1H, s),	
	7.57 (2H, m), 7.88 (4H, m), 8.31 (1H, s), 8.38 (1H, s)	
2-197	1.20 (3H, t, J=6.2 Hz), 1.29 (3H, t, J=6.2 Hz), 3.54 (3H, q, J=0.6 Hz), 4.43 (1H, q, J=6.2 Hz), 6.23 (1H, s), 7.59 (2H, m), 7.80 (1H, m), 7.90 (3H, s), 8.20 (1H, s), 8.30	
	(1H, s) 3 0.89 (3H, t), 1.25 (4H, m), 1.53 (2H, m), 2.23 (2H, m), 3.56 (3H, q, J= 0.9 Hz), 3.83	
2-198	3 0.89 (3H, t), 1.25 (4H, m), 1.55 (2H, m), 2.25 (2H, m), 5.55 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t), 7.50 (3H, t),	
	(3H, s), 6.30 (1H, s), 7.20 (1H, d, J= 9.0 Hz), 7.58 (1H, br s) 3.54 (3H, q, J=0.7 Hz), 6.29 (1H, s), 6.73 (1H, dd, J=8.3, 4.5 Hz), 7.43 (1H, d, J= 9.9)	
2-199	3.54 (3H, q, J=0.7 Hz), 6.29 (1H, s), 6.75 (1H, dd, J=8.3, 1.7 Hz), 8.37 (1H, dd, J=4.5, Hz), 7.57 (2H, m), 7.86 (5H, m), 8.21 (1H, dd, J=8.3, 1.7 Hz), 8.37 (1H, dd, J=4.5, Hz), 7.57 (2H, m), 7.86 (5H, m), 8.21 (1H, dd, J=8.3, 1.7 Hz), 8.37 (1H, dd, J=4.5, Hz), 7.57 (2H, m), 7.86 (5H, m), 8.21 (1H, dd, J=8.3, 1.7 Hz), 8.37 (1H, dd, J=4.5, Hz), 7.57 (2H, m), 7.86 (5H, m), 8.21 (1H, dd, J=8.3, 1.7 Hz), 8.37 (1H, dd, J=4.5, Hz), 7.57 (2H, m), 7.86 (5H, m), 8.21 (1H, dd, J=8.3, 1.7 Hz), 8.37 (1H, dd, J=4.5, Hz), 7.57 (2H, m), 7.86 (5H, m), 8.21 (1H, dd, J=8.3, 1.7 Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=4.5, Hz), 8.37 (1H, dd, J=	
	1.7 Hz), 8.45 (1H, br s) 3.52 (3H, q, J=1.0 Hz), 4.82 (2H, d, J=1.5 Hz), 6.26 (1H, s), 7.31 (1H, d, J= 8.8 Hz),	
2-200	7.59 (2H, m), 7.93 (5H, m), 8.35 (1H, d, J=1.1 Hz)	
	7.59 (2H, m), 7.93 (3H, m), 8.53 (1H, d, 3 H) 1 2.43 (3H, s), 3.54 (3H, q, J=0.9 Hz), 6.36 (1H, s), 7.18 (2H, m), 7.59 (2H, m), 7.8 (6H,	
2-20	1 2.43 (3H, S), 3.54 (3H, q, J=0.9 112), 0.50 (111, 5), 7120 (223, 47)	
	m), 8.28 (1H, s) 2 3.51(3H, s), 3.87(3H, s), 6.24(1H, s), 7.12(1H, d, J=8.8Hz), 7.42(1H, d, J=8.8Hz),	
2-20	7.59(2H, m), 7.81(1H, m), 7.91(3H, m), 8.06(1H, s), 8.31(1H, s)	
	7.59(2H, m), 7.81(1H, m), 7.17(1H, m), 7.26(1H, m), 7.57(2H, m), 7.73(1H, 2d, 3.53(3H, s), 6.34(1H, s), 7.17(1H, m), 7.26(1H, m), 7.57(2H, m), 7.73(1H, 2d, 3.53(3H, s), 6.34(1H, s), 7.17(1H, m), 7.26(1H, m), 7.57(2H, m), 7.73(1H, 2d, 3.53(3H, s), 6.34(1H, s), 7.17(1H, m), 7.26(1H, m), 7.57(2H, m), 7.73(1H, 2d, 3.53(3H, s), 6.34(1H, s), 7.17(1H, m), 7.26(1H, m), 7.57(2H, m), 7.73(1H, 2d, 3.53(3H, s), 6.34(1H, s), 7.17(1H, m), 7.26(1H, m), 7.57(2H, m), 7.73(1H, 2d, 3.53(3H, s), 6.34(1H, s), 7.17(1H, m), 7.26(1H, m), 7.57(2H, m), 7.73(1H, 2d, 3.53(3H, s), 6.34(1H, s), 7.17(1H, m), 7.26(1H, m), 7.57(2H, m), 7.73(1H, 2d, 3.53(3H, s), 6.34(1H, s), 7.17(1H, m), 7.26(1H, m), 7.57(2H, m), 7.73(1H, 2d, 3.53(3H, s), 6.34(1H, s), 7.17(1H, m), 7.26(1H, s), 7.17(1H, m), 7.26(1H, s), 7.17(1H,	: * + CTT_ 0 CTT_) 7 00/AH m) 8 18(1H s) 8.23(1H, s)
	J=1.6Hz, 8.6Hz), 7.88(4H, III), 6.16(1H, 5), 6.24(1H, s), 7.12(1H, m), 7.24(1H, 4), 0.78(2H, m), 0.97(2H, m), 1.4(1H, m), 3.55(3H, s), 6.34(1H, s), 7.12(1H, m), 7.24(1H, m),	
	: \ \( \alpha \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rig	
	m), 7.43(1H, m), 7.85(1H, 610ad)  3.36(3H, s), 6.22(1H, s), 7.24(1H, d, J=8.4Hz), 7.41(2H, m), 7.65(4H, m), 7.86(1H, 2d, 2d, 2d, 2d, 2d, 2d, 2d, 2d, 2d, 2d	
	T A ATT - 9 AUG S S (1 & 2) (A H M	
	J=2.0Hz, 8.4Hz), 8.0-8.2(4H, m), 6.55(2H, s), 5.85(3H, s)6.31(1H, s), 7.19(1H, d, 0.76-0.93(4H, m), 1.50(1H, m), 3.55(3H, s), 3.85(3H, s)6.31(1H, s), 7.19(1H, d, 0.76-0.93(4H, m), 1.50(1H, m), 3.55(3H, s), 3.85(3H, s)6.31(1H, s), 7.19(1H, d, 0.76-0.93(4H, m), 1.50(1H, m), 3.55(3H, s), 3.85(3H, s)6.31(1H, s), 7.19(1H, d, 0.76-0.93(4H, m), 1.50(1H, m), 3.55(3H, s), 3.85(3H, s)6.31(1H, s), 7.19(1H, d, 0.76-0.93(4H, m), 1.50(1H, m), 3.55(3H, s), 3.85(3H, s)6.31(1H, s), 7.19(1H, d, 0.76-0.93(4H, m), 3.55(3H, s), 3.85(3H, s),	
	J=8.9Hz), 7.6(1H, broad)  7. 3.44 (3H, s), 3.82 (3H, s), 6.24 (1H, s), 7.32 (1H, d, J=8.3 Hz), 7.48 (2H, m), 7.6-7.8	
	· /// \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	(5H, m), 8.10 (1H, s), 6.25 (1H, s), 6.10 (1H, s), 3.23 (1H, br q, J=1.3 Hz), 3.83 (3H, s), 1 2.74 (3H, d, J=4.7 Hz), 2.76 (3H, d, J=4.7 Hz), 3.53 (3H, br q, J=1.3 Hz), 3.83 (3H, s),	
3-	$\frac{1}{2}$ (27) $\frac{1}{2}$ (11) $\frac{1}{2}$ (11) $\frac{1}{2}$ (11) $\frac{1}{2}$ (11) $\frac{1}{2}$ (11) $\frac{1}{2}$ (11) $\frac{1}{2}$	
3-	m), 6.33 (1H, s), 6.70 (1H, s), 7.14 (1H, d, J=9.0 Hz)	
	m), 0.33 (111, 5), 0.70 (111, 5), 7.2. (, -, -, -, -, -, -, -, -, -, -, -, -,	

3-3 1.22 (12H, m), 3.54 (3H, br s), 3.83 (3H, s), 3.86 (2H, m), 6.25 (1H, s), 6.45 (1H, s),
7.04 (1H, d, J=9.1 Hz)
3-4 3.52 (3H, s), 3.76 (3H, s), 6.30 (1H, s), 6.90-7.25 (6H, m), 7.37 (1H, s), 7.61 (1, s)
3-6 3.46 (3H, s), 3.77 (3H, s), 4.19 (2H, m), 5.75 (1H, m), 6.19 (1H, s), 6.90-7.30 (7H, m)
3-6 5.46 (311, 3), 5.77 (511, 5), 3-7 (rotameric mixture) 1.16 (3H, d, J=6.8 Hz), 1.23 (3H, d, J=6.8 Hz), 3.47 (3H, s), 3.53
(3H, s), 3.77 (6H, s), 4.72 (2H, m), 5.72 (2H, m), 6.11 (1H, s), 6.33 (1H, s), 6.95-7.35
(14H, m)
3-8 2.99 (3H, s), 3.55 (3H, s), 3.63 (3H, s), 4.38 (1H, d, J=16.2 Hz), 4.58 (1H, d, J=16.2
3-8 2.99 (311, 8), 3.55 (311, 8), 7.12 (1H, d, J=9.1 Hz), 7.19 (2H, m), 7.33 (3H, m) Hz),6.27 (1H, s), 6.58 (1H, s), 7.12 (1H, d, J=9.1 Hz), 7.19 (2H, m), 7.33 (3H, m)
3-9 2.31 (3H, s), 3.47 (3H, s), 3.79 (3H, s), 4.17 (2H, m), 5.58 (1H, m), 6.18 (1H, s), 6.74
(1H, s), 6.90-7.15 (5H, m)
3-10 (CDCl ₃ +CD ₃ OD) 3.52 (3H, br s), 3.82 (3H, s), 4.29 (2H, m), 6.23 (1H, s), 6.50 (1H,
m), 6.70-6.85 (2H, m), 7.14 (1H, d, J=9.0 Hz), 7.22 (1H, m)
m), 6.70-6.83 (2H, m), 7.14 (1H, d, 5) (2H, m), 3.21 (2H, m), 3.54 (3H, s), 3.74 (3H, s), 5.51 (1H, m), 6.27 (1H, s), 7.00-
7.30 (7H, m) 3.53 (3H, s) 3.85 (3H, s).
7.30 (7H, m) 3-12 (CDCl ₃ +CD ₃ OD) 1.72 (2H, m), 2.58 (2H, m), 3.11 (2H, m), 3.53 (3H, s), 3.85 (3H, s),
5.78 (1H, m), 6.28 (1H, s), 7.05-7.35 (7H, m)  5.78 (1H, m), 6.28 (1H, s), 7.05 (1H, m), 7.1 (1H, d, l=9.0 Hz), 7.25-7.45
3-13 3.55 (3H, s), 3.81 (3H, s), 6.35 (1H, s), 7.08 (1H, m), 7.1 (1H, d, J=9.0 Hz), 7.25-7.45
(3H, m), 7.55-7.80 (5H, m) 3-23 3.59 (3H, s), 3.64 (3H, s), 4.62 (1H, d, J=14.8 Hz), 4.98 (1H, d, J=14.8 Hz), 6.33 (1H,
3-23 3.59 (3H, s), 3.64 (3H, s), 4.62 (1H, d, J=14.6 1E), 4.56 (1H, d, J=14.6 1E)
s), 6.47 (1H, s), 6.95-7.50 (11H, m) 3-24 3.40 (3H, s), 3.78 (3H, s), 5.88 (1H, m), 5.98 (1H, m), 6.12 (1H, s), 7.00-7.30 (12H,
<b>!</b>
m)
3-26 3.56 (3H, s), 3.89 (3H, s), 4.86 (2H, s), 6.50 (1H, s), 6.33 (1H, s), 7.25 (1H, d, J=
i '
9.0 Hz) 4-1 3.54 (3H, s), 3.64 (3H, s), 3.84 (3H, s), 6.24 (1H, s), 7.25 (1H, s)
5. 07 (211 s) 2.06 (211 s) 3.53 (3H s) 3.63 (3H, S), 0.3 (111, S), 0.03 (111, W, S)
(477 1 7-0 0 Hz) 7 23 (1H m) 7 34 (2H m)
3 50 (2H d I=0 5 Hz) 3 94 (3H, s), 0.33 (1H, s), 0.72 (1H, dd, J 0.2, 2H
4-4 2.22 (6H, s), 3.50 (3H, d, J=0.3 Hz), 3.54 (3H, s), 6.55 (1H, d, J=8.2 Hz), 7.20 (1H, d, Hz), 6.77 (1H, d, J=2.5 Hz), 6.84 (1H, br s), 7.07 (1H, d, J=8.2 Hz), 7.20 (1H, d,
J=9.0 Hz)  4-5 3.49 (3H, d, J=1.0 Hz), 3.83 (3H, s), 5.05 (1H, d, J=12.3 Hz), 5.12 (1H, d, J=12.3 Hz),
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}$
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}$
· · · · · · · · · · · · · · · · · · ·
4.10, 2.48 (2H br s) 3.99 (3H, s), 6.37 (1H, s), 6.98 (1H, or s), 7.14 (111, dd, 3.65), 2.55
·
7.24 (1H, d, J=9.0 Hz), 7.43-7.51 (5H, M), 7.55 (1H, m), 6.32 (1H, s), 6.53 (1H, 4-11 1.20-1.85 (10H, m), 3.56 (3H, br s), 3.86 (3H, s), 4.57 (1H, m), 6.32 (1H, s), 6.53 (1H, m), 6.32 (1H, s), 6.53 (1H, m), 6.32 (1H, s), 6.53 (1H, m), 6.32 (1H, s), 6.53 (1H, m), 6.32 (1H, s), 6.53 (1H, m), 6.32 (1H, s), 6.53 (1H, m), 6.32 (1H, s), 6.53 (1H, m), 6.32 (1H, s), 6.53 (1H, m), 6.32 (1H, s), 6.53 (1H, m), 6.32 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53 (1H, s), 6.53
s), 7.17 (1H, d, J=9.0 Hz) 4-13 3.54 (3H, d, J=1.1 Hz), 3.78 (3H, s), 6.33 (1H, s), 7.15 (1H, br s), 7.17(1H, d, J=9.0
Hz), 7.43-7.52 (5H, m)
Hz), 7.43-7.52 (5H, m) 4-23 3.50 (3H, s), 4.75 (2H, m), 5.13 (2H, m), 6.24 (1H, s), 6.54 (1H, s), 7.25 (1H, d, J=8.7
Hz), 7.35 (5H, m)
Hz), 7.35 (5H, m)  4-24 3.57 (3H, s), 3.86 (3H, s), 5.37 (2H, m), 6.30 (1H, s), 6.70 (1H, s), 7.16 (1H, d, J=9.0
Hz), 7.20-7.40 (3H, m)

4-25	2.06 (6H, s), 2.25 (3H, s), 3.52 (3H, s), 3.94 (3H, s), 6.32 (1H, s), 6.83 (2H, s), 7.09
	(1H, br s), 7.20 (1H, d, J=9.0 Hz)
	2.25 (6H, s), 3.51 (3H, s), 3.83 (3H, s), 5.01 (2H, m), 6.21 (1H, s), 6.65 (1H, br s), 7.00-7.20 (4H, m)
4-27	1.30 (9H, s), 3.50 (3H, s), 3.96 (3H, s), 6.32 (1H, s), 6.84 (1H, m), 7.10-7.40 (5H, m)
4-27	3.43 (3H, s), 3.82 (3H, s), 5.25 (2H, m), 6.12 (1H, s), 6.73 (1H, br s), 7.16 (1H, d,
	! I=9 0 Hz) 7 30-7.55 (3H., m), 7.70-7.85 (4H, m)
4-29	3.57 (3H, s), 3.85 (3H, s), 5.17 (1H, d, J=11.9 Hz), 5.27 (1H, d, J=11.9 Hz), 6.28 (1H,
	s) 6.64 (1H, br.s), 6.92 (2H, m), 7.17 (1H, d, J=9.0 Hz), 7.34 (1H, m)
4-30	3.49 (3H, s), 3.84 (3H, s), 4.99 (1H, d, J=12.6 Hz), 5.06 (1H, d, J=12.6 Hz), 6.23 (1H,
	a) 6.64 (1H br.s) 7.00-7.25 (4H.m)
4-31	1.23 (3H, t, J=7.6 Hz), 2.64 (2H, q, J=7.6 Hz), 3.50 (3H, d, J=0.9 Hz), 3.83 (3H, s), 5.02
	(1H, d, J=12.1 Hz), 5.08 (1H, d, J=12.1 Hz), 6.22 (1H, s), 6.67 (1H, br s), 7.10-7.30
	(5H, m)
4-32	3.52 (3H, s), 3.85 (3H, s), 5.03 (2H, m), 6.24 (1H, s), 6.64 (1H, br s), 7.10-7.21 (2H,
	\ 7.29.7.44 (2H m)
4-33	3.52 (3H, d, J=0.8 Hz), 3.86 (3H, s), 5.22 (1H, d, J=13.2 Hz), 5.31 (1H, d, J=13.2 Hz),
	6.22 (1H, s), 6.71 (1H, br s), 7.18 (1H, d, J=9.0 Hz), 7.40-7.60 (3H, m), 7.68 (1H, m)
4-34	3.54 (3H, s), 3.88 (3H, s), 5.49 (2H, s), 6.28 (1H, s), 7.24 (1H, d, J=9.0 Hz), 7.45-7.70
***********	(3H, m), 8.09 (1H, m)
4-35	3.53 (3H, s), 3.83 (3H, s), 3.84 (3H, s), 5.12 (1H, d, J=12.5 Hz), 5.18 (1H, d, J=12.5 Hz), 7.20-
	Hz), 6.24 (1H, s), 6.72 (1H, br s), 6.80-6.95 (2H, m), 7.15 (1H, d, J=9.0 Hz), 7.20-
	7.40 (2H, m) 3.51 (3H, d, J=1.0 Hz), 3.87 (3H, s), 5.17 (1H, d, J=13.5 Hz), 5.24 (1H, d, J=13.5 Hz),
4-36	3.51 (3H, d, J=1.0 Hz), 3.87 (3H, s), 5.17 (1H, d, J=9.0 Hz), 7.20-7.29 (2H, m), 7.68 (1H, m), 6.24 (1H, s), 6.89 (1H, br s), 7.18 (1H, d, J=9.0 Hz), 7.20-7.29 (2H, m), 7.68 (1H, m),
	6.24 (1H, S), 0.89 (1H, 01 S), 7.18 (1H, d, 3 >10 Hz), 7.2
	8.58 (1H, m) 2.31 (6H, s), 3.52 (3H, s), 3.84 (3H, s), 5.01 (2H, m), 6.23 (1H, s), 6.65 (1H, br s), 6.92
4-3/	(211 hr a) 6 06 (1H hr s) 7 16 (1H, d, J=9.0 HZ)
4 20	$\frac{1}{2}$ 25 (211 c) 2.21 (3H c) 3.53 (3H d) $\frac{1}{2}$ (3H, 3), 3.84 (3H, 8), 5.04 (1H, 0, J-12.2)
4-38	2.25 (3H, s), 2.31 (3H, s), 5.35 (3H, d, v ot) 12/3 (1H, br s), 7.08 (3H, m), 7.16 (1H, d, Hz), 5.09 (1H, d, J=12.2 Hz), 6.25 (1H, s), 6.65 (1H, br s), 7.08 (3H, m), 7.16 (1H, d,
	I_O O II_O
4.20	3.53 (3H, br s), 3.86 (3H, s), 5.14 (2H, m), 6.27 (1H, s), 6.70 (1H, br s), 6.90-7.10 (3H,
	ν σ το /177 Δ Ι <u></u> Ο Ο ∐σ)
1-40	$\frac{1}{2}$ 5. (211 4 1–0.0 Hz) 3.81 (3H s) 3.82 (3H, s), 4.98 (1H, 0, J=12.0 Hz), 5.03 (111, 0,
4-40	J=12.0 Hz), 6.22 (1H, s), 6.63 (1H, br s), 6.87 (2H, m), 7.16 (1H, d, J=9.0 Hz), 7.25
4-4	$\frac{1}{2}$ 52 (2H d 1-0.0 Hz) 3.83 (3H s) 4.95 (1H, d, J=12.1 Hz), 5.01 (1H, d, J=12.1 Hz),
	: c oc (277 -) < 25 (111 c) 6 63 (111 br s) b./δ (3Π, III), /·1/ (111, U, J )·0 112/
4-4	3 50 (3H, d. J=0.9 HZ), 3.62 (3H, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
•	J=12.1 Hz), 5.08 (1H, d, J=12.1 Hz), 6.23 (1H, s), 6.70 (1H, br s), 7.15 (1H, d, J=9.0
4-4	Hz), 7.22 (4H, m)  3 3.48 (3H, d, J=1.0 Hz), 3.85 (3H, s), 5.10 (1H, d, J=13.0 Hz), 5.18 (1H, d, J=13.0 Hz),  3 3.48 (3H, d, J=1.0 Hz), 3.85 (3H, s), 5.10 (1H, d, J=13.0 Hz), 7.41 (2H, m), 7.60 (2H, m)
	: < 10 /1TT => 6 77 /1H hr c) / IX II H. (L. J-7.0 DAL /-7. (2.1., 11.), 1100 (,)
4-4	$\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}$
	(20) (1T a) 668 (1H hrs) 695-/ (0/3H, m), /.10 (111, u, 1-2.0 112), 7.30 (121, 122)
4-4	$\frac{15}{12} \frac{1}{12} $
	6.21 (1H, s), 6.79 (1H, br s), 7.10-7.20 (3H, m), 7.31-7.36 (2H, m)

4-46 0.89 (4H, br s), 3.54 (3H, d, J=1.0 Hz), 3.75 (3H, s), 4.15 (2H, m), 6.28 (1H, s), 6.56
(1H, br s), 7.15 (1H, d, J=9.0 Hz), 7.26 (5H, m)
4-47 1.50 (3H, d, J=6.6 Hz), 3.48 (3H, s), 3.84 (3H, s), 5.69 (1H, q, J=6.6 Hz), 5.97 (1H, s),
6.73 (1H, br s), 7.14 (1H, d, J=9.0 Hz), 7.20-7.40 (5H, m)
4-48 3.57 (3H, d, J=0.9 Hz), 3.86 (3H, s), 5.19 (1H, d, J=12.3 Hz), 5.25 (1H, d, J=12.3 Hz),
6.31 (1H, s), 6.61 (1H, br s), 7.20 (1H, d, J=9.0 Hz)
4-49 3.52 (3H, d, J=0.9 Hz), 5.22 (2H, s), 6.33 (1H, s), 6.53 (1H, br s), 7.00-7.45 (7H, m)
4-50 3.54 (3H, s), 6.36 (1H, s), 6.84 (1H, br s), 7.05-7.45 (8H, m)
4-50 5.34 (3H, s), 3.45 (3H, d, J=0.8 Hz), 5.10 (2H, m), 6.22 (1H, s), 6.90-7.10 (2H, m),
7.15-7.27 (3H, m)
4-52 2.42 (3H, s), 3.52 (3H, s), 6.37 (1H, s), 7.00-7.40 (6H, m)
4-52 2.42 (3H, s), 3.52 (3H, s), 6.57 (1H, s), 6.35(1H, s), 6.73 (2H, m), 6.84 (1H, 4-53 2.21(6H, s), 3.50 (3H, br d J=0.5Hz), 3.94 (3H, s), 6.35(1H, s), 6.73 (2H, m), 6.84 (1H, d-53 2.21(6H, s), 3.50 (3H, d-54 2.21(6H, s), 3.50 (3H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, m), 6.84 (1H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.73 (2H, d-54 2.21(6H, s), 6.
br s), 7.07(1H, d, J=8.1Hz), 7.20 (1H, d, J=9.0Hz)
4-54 3.53 (3H, br d, J=1.1Hz), 3.85 (3H, s), 5.16 (1H, d, J=12.9Hz), 5.25 (1H, d,
J=12.9Hz), 6.24(1H, s), 6.71 (1H, br s), 7.18(1H, d, J=9.0Hz), 7.2-7.4 (4H, m)
4-55 2.11 (6H, s), 3.52 (3H, s), 3.95 (3H, s), 6.33(1H, s), 7.03(3H, br s), 7.08(1H, br s),
7.22(1H, d, J=9.0Hz) 4-56 3.51(3H, br d, J=1.1Hz), 3.83(3H, s), 5.07(1H, d, J=12.3Hz), 5.14(1H, d, J=12.3Hz),
4-56 3.51(3H, br d, J=1.1Hz), 3.63(3H, s), 3.67(1H, d, 3 12.5222), 4.66(1H, br s), 7.1-7.3 (4H, m)
6.23(1H, s), 6.68(1H, br s), 7.1-7.3 (4H, m) 4-57 2.88(2H, t, J=6.5Hz), 3.55(3H, s), 3.77(3H, s), 4.25(2H, t, J=6.5Hz), 6.29(1H, s),
(62/111  hr s) 7.1.7.4(6H  m)
$\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{100000}$ $\frac{1}{10000000000000000000000000000000000$
4-58 3.52(3H, br d, J=1.0Hz), 3.83(3H, s), 3.64(3H, s), 5.12(1H, d, J=9.0Hz), 7.2- J=12.5Hz), 6.24(1H, s), 6.71(1H, br s), 6.90(2H, m), 7.15(1H, d, J=9.0Hz), 7.2-
7 0 (OTT)
4-59 3.50 (3H, s), 3.74 (6H, s), 6.32 (1H, s), 6.56 (2H, d, J=8.5Hz), 7.11 (1H, t, J=8.5Hz),
: = 4 / / / TT 1 = \ 7 10 / 1 U d I=U IIH7 \
4.60 2.34(3H s) 3.50 (3H, br d, J=1.1Hz), 3.83 (3H, s), 5.00 (1H, d, J=12.111z), 5.07 (1H,
1.7.13.17-16.20.(1H s).664.(1H br s).7.1-7.4(2H, III)
$\frac{1}{2}$ 50 (2H br.d. I=1 0Hz) 3 83 (3H, s), 5.01 (1H, d, J=12.5Hz), 3.07 (1H, d, J=12.5Hz),
: ( > c cc /111 h-a) 7 17 (1H d I=9 UHZ) /.2°/.2 (411 III)
$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}$
4-62 3.53 (3H, br d, J=1.0Hz), 5.65 (3H, s), 5.12 (1H, d, J=9.0Hz), 7.2-7.3 (2H, m), 7.41 (1H, d, 6.25 (1H, s), 6.67 (1H, br s), 7.19 (1H, d, J=9.0Hz), 7.2-7.3 (2H, m), 7.41 (1H, d, J=9.0Hz)
- 4 077 }
3.88 (3H, s), 3.89 (3H, s), 4.99 (1H, u,
4-63 3.51 (3H, br d, J=1.0Hz), 5.65 (3H, s), 5.65 (1H, br s), 6.8-6.9 (3H, m), J=12.0Hz), 5.04 (1H, d, J=12.0Hz), 6.20 (1H, s), 6.59 (1H, br s), 6.8-6.9 (3H, m),
7.16 (1H, d, J=9.0Hz) 4-64 3.51 (3H, br d, J=0.9Hz), 3.86 (3H, s), 5.15 (1H, d, J=13.5Hz), 5.21 (1H, d, J=13.5Hz), 7.21 (1H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, d, J=0.0Hz), 7.46 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz), 9.21 (2H, d, J=0.0Hz)
4-64 3.51 (3H, br d, J=0.9Hz), 3.80 (3H, s), 3.15 (1H, d, J=9,0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H, 6.21 (1H, s), 6.68 (1H, br s), 7.21 (1H, d, J=9,0Hz), 7.46 (2H, d, J=8.7Hz), 8.21 (2H,
d, J=8.7Hz) 4-65 3.50 (3H, br d, J=1.0Hz), 3.81 (3H, s), 3.85 (3H, s), 5.02 (1H, d, J=12.5Hz), 5.10 (1H, d, J=9.0Hz),
12.5Hz), 6.21 (1H, s), 6.67 (1H, br s), 6.8-6.9 (311, m), 7.17 (111, 4, 5)
7.25(1H, t, J=7.7Hz) 4-66 3.53 (3H, br d, J=0.9Hz), 3.82 (3H, s), 4.11 (2H, s), 6.29 (1H, s), 7.04 (1H, br s), 7.20
(1H, d, J=9.0Hz), 7.25 (5H, m) 4-67 3.52 (3H, br d, J=1.0Hz), 3.86 (3H, s), 5.17 (1H, d, J=13.2Hz), 5.21 (1H, d, J=13.2Hz), 7.20 (1H, d, J=9.0Hz), 7.53 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t, J=8.0Hz), 7.63 (1H, t,
4-67 3.52 (3H, br d, J=1.0Hz), 3.86 (3H, s), 5.17 (1H, d, J=9.0Hz), 7.53 (1H, t, J=8.0Hz), 7.63 (1H, 6.24 (1H, s), 6.65 (1H, br s), 7.20 (1H, d, J=9.0Hz), 7.53 (1H, t, J=8.0Hz), 7.63
6.24 (1H, S), 0.03 (1H, UI S), 7.20 (1H, G, V ).
d, J=8.0Hz), 8.18 (2H, m)

4-68	2.35 (3H, s), 3.50 (3H, br d, J=1.0Hz), 3.83 (3H, s), 5.02 (1H, d, J=12.2Hz), 5.10 (1H, d, J=12.2Hz), 6.22 (1H, s), 6.65 (1H, br s), 7.1-7.3 (5H, m)
	(0, J=12.2HZ), 0.22 (1H, 5), 0.03 (1H, 013), 7.1-7.3 (3H, H)
4-69	2.27 (3H, s), 2.30 (6H, s), 3.54 (3H, br d, J=1.1Hz), 3.83(3H, s), 5.10 (1H, d,
	J=11.8Hz), 5.16 (1H, d, J=11.8Hz), 6.25 (1H, s), 6.63 (1H, br s), 6.87 (2H, s), 7.13
	(1H, d, J=9.0Hz)
4-70	3.55 (3H, br d, J=1.1Hz), 3.83 (3H, s), 4.99 (1H, d, J=13.1Hz), 5.08 (1H, d, J=13.1Hz),
	6.27 (1H, s), 6.35 (2H, m), 6.63 (1H, br s), 7.17 (1H, d, J=9.0Hz), 7.41 (1H, m)
5-1	2.05 (1H, br s), 4.05 (3H, s), 7.66 (1H, d, J=8.8 Hz)
5_2	4.36 (2H, br.s.), 7.61 (1H, d, J=8.7 Hz)
5-3	2.30 (2H, dt, J=27.2, 5.6 Hz), 3.85 (3H, s), 4.22 (2H, t, J=6.8 Hz), 4.42 (2H, br s), 4.60
<b>J-</b> J	(2H, dt, J=46.9, 5.6 Hz), 6.65 (1H, d, J=9.5 Hz)
<i>E A</i>	2.24 (2H, dt, J=26.7, 5.7 Hz), 4.19 (2H, t, J=6.9 Hz), 4.61 (2H, dt, J=47.0, 5.7 Hz),
5-4	7.86 (1H, d, J=9.0 Hz)
	7.88 (1H, d, J=2.012) 2.30 (2H, dt, J=26.4, 5.7 Hz), 4.17 (2H, t, J=6.8 Hz), 4.55 (2H, dt, J=47.0, 5.7 Hz),
5-5	4.88 (2H, br s), 6.55 (1H, d, J=9.6 Hz), 8.07 (1H, br)
5-6	4.06 (3H, s), 7.87 (1H, s)
5-7	2.13 (2H, m), 3.06 (3H, s), 3.93 (2H, t, J=4.8 Hz), 4.60 (2H, br d, J=47.0 Hz), 7.53
	(1H, s)
5-8	2.30 (2H, dt, J=26.4, 5.6 Hz), 4.24(2H, t, J=6.7 Hz), 4.58(2H, dt, J=46.8, 5.6 Hz), 7.87
	(1H, s), 9.62 (1H, s)
5-9	2.06 (1H, s), 2.30 (2H, dtt, J=27.7, 6.8, 5.4 Hz), 4.24(2H, t, J=6.8 Hz), 4.60(2H, dt,
	1-46 0 5 4 Hz) 5 90 (2H, s), 6.77 (1H, s)
5-15	2 30 (2H dtt. J=26.0, 6.1, 5.5 Hz), 2.62 (1H, d, J=2.4 Hz), 4.21(2H, t, J=6.8 Hz), 4.48
•	(2H, s) 4 60(2H, dt J=46.9, 5.5 Hz), 4.73 (2H, d, J=2.4 Hz), 6.92 (1H, s)
5-16	$\frac{1}{1}$ 35 (6H d I=6.2 Hz), 2.29 (2H, dtt, J=27.7, 5.9, 5.5 Hz), 4.21(2H, t, J=6.8 Hz), 4.29
	(2H br s) 4 53 (1H, g, J=6.2 Hz), 4.59 (2H, dt, J=46.9, 5.3 Hz), 6.92 (1H, s)
	$\frac{1}{12}$ 20 (2H, dt. I= 26.4. 5.7 Hz) 2.75 (1H, t. J= 2.5 Hz), 4.19 (2H, t, J= 6.8 Hz), 4.01
5-17	(2H, dt, J = 47.0, 5.7 Hz), 4.72 (2H, d, J = 2.5 Hz), 5.02 (2H, br s), 6.61 (1H, d, J = 9.4)
	• "
	Hz) 1.35 (6H, d, J=6.0 Hz), 2.30 (2H, dtt, J= 26.9, 6.8, 5.4 Hz), 4.21(2H, t, J=6.8 Hz), 4.37
5-18	1.35 (6H, d, J=6.0 Hz), 2.50 (2H, dt, J=26.5, 6.6, 6t J=26.5, 5.4 Hz), 6.65 (1H, d, (2H, br s), 4.52 (1H, penta, J=6.0 Hz), 4.59 (2H, dt, J=46.5, 5.4 Hz), 6.65 (1H, d,
	J=9.6 Hz) 2.08 (2H, m), 3.84 (3H, s), 4.09 (2H, t, J=6.7 Hz), 4.31 (2H, dt, J=46.9, 5.6 Hz), 7.26
5-26	2.08 (2H, m), 3.84 (3H, s), 4.09 (2H, t, J=0.7 Hz), 4.51 (2H, dt, s) 8.53 (1H, br s)
	(1H, d, J= 9.1 Hz), 7.55 (2H, m), 7.89 (4H, m), 8.40 (1H, s), 8.53 (1H, br s)
5-27	1.67 (2H, dt, J=26.5, 5.8 Hz), 3.86 (3H, s), 3.89 (2H, s), 3.97(2H, dt, J=42.4, 5.6 Hz),
	7.27 (1H, d, J= 8.7 Hz), 7.52 (4H, m), 7.78 (4H, m), 7.88 (4H, m), 8.54 (2H, s)
5-28	$\frac{7.27 \text{ (HI, d, 3 = 0.7 \text{ Hz)}, Hz}}{2.22 \text{ (2H, dt, J= 26.2, 5.8 Hz), 3.81 (3H, s), 4.01 (2H, s), 4.13 (2H, d, J= 6.8 Hz),}}{2.22 \text{ (2H, dt, J= 26.2, 5.8 Hz), 3.81 (3H, s), 4.01 (2H, s), 7.36 (5H, m), 8.67}}$
	2.22 (2H, dt, J=26.2, 5.6 Hz), 5.61 (2H, s), 7.23 (1H, d, J=9.1 Hz), 7.36 (5H, m), 8.67 4.52(2H, dt, J=46.9, 5.6 Hz), 4.64 (2H, s), 7.23 (1H, d, J=9.1 Hz), 7.36 (5H, m), 8.67
	(1II he a)
6-1	2.48 (3H, s), 7.03 (1H, t, J=57.9 Hz), 7.65 (1H, d, J=8.6 Hz), 9.88 (1H, s)
6-2	$\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}$
• -	11_\
<u> </u>	$\frac{1}{10000000000000000000000000000000000$
0-13	7.33 (1H, d, J=2.2Hz), 8.21 (1H, ddd, J=9.1, 9.1, 6.5Hz), 8.57 (1H, d, J=2.2Hz), 8.72
	(1H, br d, J=16.5Hz)
	(111, Ut d, 3-10.572)

6-14	2.37 (3H, s), 3.88 (3H, s), 6.94 (1H, ddd, J=10.9, 8.3, 2.3Hz), 6.99 (1H, m), 7.05 (1H,
• • •	t, J=58.0Hz), 7.26 (1H, d, J=9.1Hz), 8.04 (1H, ddd, J=8.8, 8.8, 6.5Hz), 8.48 (1H, br d,
	I-13 AH2)
 6-15	2.31 (3H, s), 3.88 (3H, s), 7.03 (1H, t, J=58.0Hz), 7.25 (1H, d, J=9.4Hz), 7.60 (2H, m),
	17000(4H m) 825(1H, s), 8.40(1H, s)
	7.54(3H s) 7.12(1H d. J=58.0Hz), 7.35(1H, d, J=2.3Hz), 7.61(2H, m), 7.83(1H,
0-10	dd, J=8.5, 1.8Hz), 7.90 (3H, m), 8.29 (1H, s), 8.48 (1H, d, J=2.3Hz), 8.64 (1H, br s)
· 15	2.29 (3H, s), 3.89 (3H, s), 7.03 (1H, t, J=58.0Hz), 7.53 (1H, s), 7.60 (2H, m), 7.92 (4H,
6-17	m), 8.07 (1H, br s), 8.37 (1H, br s)
	1.29(3H, t, J=7.1Hz), 2.45(3H, s), 4.3(2H, q, J=7.1Hz), 6.7(1H, broad), 7.03(1H, t,
6-18	1.29(3H, t, J=7.1Hz), 2.45(3H, s), 4.5(2H, q, v 7.44-47)
	J=58.0Hz), 7.83(1H, s) 1.27(3H, t, J=7.0Hz), 2.48(3H, s), 4.18(2H, q, J=7.0Hz), 4.51(2H, s), 6.67(1H, s),
6-19	1.27(3H, t, J=7.0Hz), 2.48(3H, S), 4.18(2H, q, 3 7.0Hz), 10.121, 9, 9.11
	6.91(1H, s), 7.08(1H, t, J=58.0Hz)
6-20	2.38(3H, s), 4.77(4H, s), 7.16(1H, t, J=57.7Hz), 7.17(1H, s)
6-21	2.47(3H, s), 7.04(1H, t, J=7.2Hz), 7.59(1H, 2d, J=2.3Hz, 8.6Hz), 7.91(1H, t, J=2.1Hz)
6-22	2.47(3H, s), 7.04(1H, t, 3 1.212), 2.47(3H, s), 3.65(2H, s), 6.75(1H, 2d, J=2.2Hz, 9.4Hz), 7.07(1H, t, J=57.9Hz),
	7.20(1H, t, J=1.8Hz)
6-23	2.52(3H, s), 6.9-7.1(3H, m), 7.10(1H, t, J=57.9Hz), 7.14(1H, 2d), 8.06(1H, m),
	0.7((111.6)
6-24	2.51(3H, s), 6.93(1H, 2d, J=2.2Hz, 8.9Hz), 7.12(1H, t, J=58.0Hz), 7.12(1H, s),
	7.61(2H m) 7.9-8.0(3H, m), 8.07(1H, 2d, J=1./Hz), 8.08(1H, S), 9.74(111, S)
7-1	4.01 (3H s) 4.03 (3H, br q, J=1.0 Hz), 7.43 (1H, d, J=8.4 Hz)
7-2	3.84 (3H, s), 4.06 (3H, s), 4.57 (2H, s), 6.57 (1H, d, J=9.3 HZ)
7-3	14.07 (211 had 1-0.0 Hz) 6.61 (1H d. J=9.2 Hz)
7-14	
/-1-4	0.40 (177 b. a) 0.22 (1H hr c)
7 15	
7-15	(GH m) 760 (1H d J=15.6 Hz)
	1.84 (4H, m), 2.44 (4H, m), 7.62 (1H, d, J=8.5 Hz), 9.88 (1H, br)
8-1	
8-2	
8-3	: · · · · · · · · · · · · · · · · · ·
	Hz), 6.60 (1H, d, J=9.2 Hz) 1.35 (6H, d, J=6.2 Hz), 1.82 (4H, m), 2.43 (4H, m), 4.11 (2H, br s), 4.48 (1H, q, J=6.2
8-4	
	Hz), 6.60 (1H, d, J=9.4 Hz) 1.77 (4H, m), 1.82 (4H, m), 2.43 (4H, m), 2.34 (4H, m), 4.04 (2H, br s), 4.79 (1H, m),
8-5	1.77 (4H, m), 1.82 (4H, m), 2.43 (4H, m), 2.34 (4H, m), 1.84 (4H, m), 1.82 (4H, m), 2.45 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.34 (4H, m), 2.
	6.61 (1H, d, J=9.4 Hz)
8-6	1.82 (4H, m), 2.42 (4H, m), 4.03 (3H, s), 7.48 (1H, d, J=8.6 Hz)
8-7	1.82 (4H, m), 2.42 (4H, m), 4.03 (3H, s), 7.46 (1H, d), J=9.4 Hz) 1.80 (4H, m), 2.08 (2H, br s), 2.41 (4H, m), 3.83 (3H, s), 6.60 (1H, d, J=9.4 Hz)
8-8	1.78 (4H, m), 2.38 (4H, m), 3.86 (3H, S), 6.96 (2H, M), 7.23 (1H, G, G, G, G, G, G, G, G, G, G, G, G, G,
	: (477 ) 0 10 (11) d [=17 6 H7)
8-9	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}$
	:
8-1	$\frac{1.76 \text{ (4H m)}}{2.34 \text{ (4H m)}}$ 2.37 (1H, t, J=2.4 Hz), 4.77 (2H, t, J=2.4 Hz), 0.75(2H,
	: \ = 65 (177 1 T_0 () Ug) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
R_1	$\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}$
0-1	m), 7.24 (1H, d, J=9.0 Hz), 8.00 (1H, m), 8.31 (1H, br d, J=12.7 Hz)
	111/9 1 12 1 (12-9)

8-30	1.71 (4H, m), 2.33 (4H, m), 3.80 (3H, s), 5.39 (1H, d, J=10.9 Hz), 5.86 (1H, d, J=17.6
	Hz), 6.75 (1H, dd, $J=17.6$ , 10.9 Hz), 7.21 (1H, d, $J=9.0$ Hz), 7.47 (2H, d, $J=8.2$ Hz),
	777 (2H d I=8 2 Hz) 7.85 (1H.s)
8-31	1.76 (4H, m), 2.38 (4H, m), 3.82 (3H, s), 6.52 (1H, d, J=15.6 Hz), 7.19 (1H, d, J= 9.0
	Hz), 7.37 (3H, m), 7.47 (3H, m), 7.65 (1H, d, J=15.6 Hz)
8-32	1.05 (AU m) 2.45 (AH m) 8.31 (2H, s)
8-33	1.81 (4H, m), 2.43 (4H, m), 7.37 (1H, d, J=8.5Hz), 7.69 (1H, 2d, J=2.3Hz, 8.5Hz), 8.10
	(1U d I=2 3Hz)
8-34	1.86 (4H, m), 2.46 (4H, m), 7.72 (1H, d, J=8.8Hz), 8.56 (1H, 2d, J=2.6Hz, 8.8Hz), 8.92
0-24	(1 + d = 2.6 + z)
0 25	1 80 (4H m) 2 40 (4H m) 3.83 (2H, s), 6.79 (2H, m), 6.91 (1H, d, J=8.3Hz).
8-35	1.78 (4H, m), 2.40 (4H, m), 7.15-7.30 (2H, m), 7.6 (2H, m), 7.9 (4H, m), 8.14 (1H, d,
8-30	J=2.2Hz), 8.34 (1H, s), 8.59 (1H, s)
	1.91 (4H, m), 3.67 (4H, m), 7.65 (1H, d, J=8.3Hz)
9-1	1.87 (4H, m), 3.62 (4H, m), 4.03 (3H, s), 7.53 (1H, d, J=8.5Hz)
9-3	$\frac{1}{1}$ 98 (4H m) 3.65 (4H m) 3.85 (3H, s), 4.28 (2H, s), 6.64 (1H, d, J=9.5HZ)
9-4	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}$
9-12	(1H, J=8.5, 2.4Hz), 8.21 (1H, d, J=2.4Hz)
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}$
9-13	
	J=8.3Hz) 1.94 (4H, m), 3.69 (2H, m), 4.03 (2H, m), 7.27 (2H, m), 7.59 (2H, m), 7.94 (4H, m),
9-14	8.19 (1H, d, J=2.0Hz), 8.47 (1H, s), 9.11 (1H, br s)
	8.19 (1H, d, J=2.012), 8.47 (1H, 8), 911 (1H, d, J=9.0Hz), 7.59 (2H, m), 7.92
	: (ATT ) 0.24 (111 a) 9.42 (1H c)
	(4H, m), 8.34 (1H, s), 8.45 (1H, s) 1.82 (4H, m), 3.58 (4H, m), 3.87 (3H, s), 6.9-7.1 (2H, m), 7.27 (1H, d, J=9.0Hz), 8.07
9-16	[1.82 (4H, M), 5.36 (4H, M), 5.67 (5H, 6), 607 (1H, 6)
	(1H, m), 8.49 (1H, d, J=13.1Hz) 1.89 (4H, m), 3.65 (4H, m), 7.53 (1H, d, J=8.6Hz), 7.72 (1H, 2d, J=2.3Hz, 8.5Hz), 8.13
9-17	[1.89 (4H, m), 5.05 (4H, m), 7.55 (1H, d, 0 000000),
	(1H, d, J=2.3Hz) 3 1.85 (4H, m), 3.63 (4H, m), 4.03 (2H, s), 6.82 (2H, m), 7.09 (1H, 2d, J=0.6Hz, 8.0Hz)
9-18	1.85 (4H, m), 3.65 (4H, m), 4.05 (2H, 3), 6.02 (2-3, 3-7) 1.80 (4H, m), 3.60 (4H, m), 7.22 (1H, 2d, J=2.3Hz, 8.7Hz), 7.35 (1H, d, J=8.7Hz), 7.56
9-19	1.80 (4H, m), 3.60 (4H, m), 7.22 (1H, 2d, 3 2.3Hz), 8.43 (1H, s), 9.41 (1H, s) (2H, m), 7.89 (4H, m), 8.08 (1H, d, J=2.3Hz), 8.43 (1H, s), 9.41 (1H, s)
***********	(2H, m), 7.89 (4H, m), 8.08 (1H, d, J=2.5Hz), 6.15 (1H, d, J=2.1Hz) 4.05 (3H, s), 7.30 (1H, m), 7.53 (1H, d, J=8.7Hz), 8.01 (1H, d, J=2.1Hz)
11-1	1.4.05 (3H, s), 7.30 (1H, m), 7.35 (1H, d, J=0.7112), 0.07 (1H, d) = 2.1.Hz), 10.29 (1H, s)
11-2	7.33 (1H, m), 7.70 (1H, d, J=8.4 Hz), 8.06 (1H, d, J=2.1 Hz), 10.29 (1H, s)
11-3	3 6.53 (1H, d, J=9.5 Hz), 6.53 (3H, br), 7.40 (1H, s), 8.17 (1H, s) 3 6.53 (1H, d, J=9.5 Hz), 6.65 (1H, d, J=0.5 Hz), 7.34 (1H, dq, J=2.2, 1.0 Hz), 8.10
11-	3 6.53 (1H, d, J=9.5 Hz), 0.55 (5H, b), 7.54 (1H, dq, J=2.2, 1.0 Hz), 8.10 4 3.86 (3H, s), 4.33 (2H, br s), 6.65 (1H, d, J=9.5 Hz), 7.34 (1H, dq, J=2.2, 1.0 Hz), 8.10
	(1H, d, J=2.2 Hz) 5 3.31 (3H, s), 3.79 (3H, s), 4.33 (2H, br s), 7.21 (1H, d, J=1.1 Hz), 7.49 (1H, d, J=8.8
11-	5 3.31 (3H, s), 3.79 (3H, s), 4.33 (2H, or s), 7.21 (111, d, 3 111 112), 4.44
11-	Hz), 7.95 (1H, d, J=2.2 Hz) 6 3.86 (3H, s), 7.26 (1H, d, J=9.2 Hz), 7.27 (1H, dq, J=2.2, 1.1 Hz), 7.56 (2H, m),
	7.88(4H, m), 7.97 (1H, d, J=2.2 Hz), 8.38 (1H, s), 8.79 (1H, s)
11-	7.88(4H, III), 7.97 (111, d, 3 2.12 112), 3.93 (3H, s), 7.30 (1H, d, J=8.7 Hz), 7.35 (1H, dq, J=2.2, 1.1 Hz), 8.08 (1H, d, J=2.2
	Hz) 2.00 (2H s) 4.16 (2H g, J=7.1 Hz), 4.52
11.	Hz) -8 1.20, 1.23 (3H, t, J=7.1 Hz), 3.20 (2H, m), 3.94 (3H, s), 4.16 (2H, q, J=7.1 Hz), 4.52
	(1H, m), 7.32 (2H, m), 8.08 (1H, m)
11	(1H, m), 7.32 (2H, m), 8.06 (1H, m) -9 2.43 (3H, q, J=2.1 Hz), 7.67 (1H, d, J=8.5 Hz), 8.01 (1H, s), 10.2 (1H, br)
	46 6 46 (9TT = 1=1 V Hg) / 6 (19D DD), U.UU 1114 U.V / /// / / / /
11-	10 2.45 (3H, q, J=1.8 Hz), 2.65 (3H, s), 6.66 (1H, d, J=9.6 Hz), 8.06 (1H, s) 11 2.45 (3H, q, J=1.9 Hz), 3.87 (3H, s), 6.66 (1H, d, J=9.4 Hz), 8.03 (1H, s)
11-	11 2.45 (3H, q, J=1.9 Hz), 3.87 (3H, s), 3.84 (3H, s), 6.60 (1H, d, J=9.4 Hz), 8.03 (1H, s) 12 2.44 (3H, q, J=1.9 Hz), 2.58 (3H, s), 3.84 (3H, s), 6.60 (1H, d, J=9.4 Hz), 8.03 (1H, s)

	790(14
11-13	2.38 (3H, q, J=1.8 Hz), 3.88 (3H, s), 7.26 (1H, d, J=9.3 Hz), 7.59 (2H, m), 7.80 (1H,
	m), 7.91 (4H, m), 8.11 (1H, s), 8.30 (1H, s)
12-1	1.64 (3H, m), 1.91 (1H, m), 2.10 (1H, m), 2.35 (1H, m), 3.16 (1H, m), 4.17 (1H, m),
	4.82 (1H, m), 7.66 (1H, d, J=8.2Hz), 10.4 (1H, broad)
12-2	1.61 (3H, m), 1.91 (1H, m), 2.10 (1H, m), 2.38 (1H, m), 3.13 (1H, m), 4.11 (1H, m),
	4.14 (2H, s), 4.87 (1H, m), 5.49 (1H, s), 6.64 (1H, d, J=9.0Hz)
12-3	1.61 (3H, m), 1.90 (1H, m), 2.08 (1H, m), 2.35 (1H, m), 3.10 (1H, m), 4.07 (1H, m),
	4.2 (2H, broad), 4.88 (1H, m), 5.5 (1H, broad), 6.63 (1H, d, J=9.0Hz)
12-4	1.60 (3H, m), 1.89 (1H, m), 2.09 (1H, m), 2.34 (1H, m), 3.09 (1H, m), 3.85 (3H, s),
	4.11 (1H, m), 4.3 (2H, broad), 4.87 (1H, m), 6.63 (1H, d, J=9.3Hz) 1.4-1.7 (3H, m), 1.7-2.4 (3H, m), 2.95 (1H, m), 3.85 (3H, s), 3.97 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m), 4.71 (1H, m)
12-5	1.4-1.7 (3H, m), 1.7-2.4 (3H, m), 2.93 (1H, m), 5.03 (3H, s), 5.03 (1H, s), m), 7.26 (1H, m), 7.60 (2H, m), 7.93 (4H, m), 8.15 (1H, s), 8.44 (1H, s)
***************************************	m), 7.26 (1H, m), 7.60 (2H, m), 7.53 (4H, m), 6.16 (23.7); 1.54 (3H, m), 1.78 (1H, m), 2.07 (1H, m), 2.27 (1H, m), 2.95 (1H, m), 4.01 (1H, m),
12-6	1.54 (3H, m), 1.78 (1H, m), 2.67 (1H, m), 2.27 (1H, m), 4.22 (1H, m), 7.44 (1H, d, J=8.5Hz), 7.69 (1H, 2d, J=2.3Hz, 8.5Hz), 8.11 (1H, d,
	T 0 211-)
10.7	J=2.3Hz) 1.50 (3H, m), 1.78 (1H, m), 2.05 (1H, m), 2.28 (1H, m), 2.89 (1H, m), 3.90 (1H, m),
	$\frac{1}{2}$ of (2H a) $A$ 15 (1H m) 6.81 (2H m), 6.99 (1H, 0, $J=7.9HZ$ )
12.0	$\frac{1}{1}$ (1/211 m) 1 68 (1H m) 1 93 (1H m), 2.24 (1H, m), 2.83 (1H, m), 3.00 (1H, m),
12-0	4.11 (1H, m), 7.23 (2H, m), 7.54 (2H, m), 7.87 (4H, m), 7.97 (1H, s), 8.38 (1H, s),
	0.11 (1H s)
13-1	4.36 (1H, br s), 7.61 (1H, d, J=8.6 Hz), 7.88 (2H, m), 7.99 (2H, m)
	= 42 (1H brs) 6.58 (1H d I=9.4 Hz), 7.95 (4H, m)
13-3	3.86 (3H, s), 7.28 (1H, d, J=9.0 Hz), 7.50-7.95 (10H, m), 8.03 (1H, br s), 8.28 (1H, br
15 5	i .
13-4	$\frac{1}{2}$ 20 (2H s) 6 80 (2H m) 7 30 (1H d. J=9.0 Hz), 7.70-7.95 (3H, m), 8.34 (1H, m)
13-5	7.33 (2H, m), 7.56 (2H, m), 7.7-8.0 (8H, m), 8.19 (1H, d, J=1.4Hz), 8.32 (1H, s), 8.56
	(177 1
. 14-1	(1H, 6r s) 1.23 (3H, t, J=7.1Hz), 2.51 (2H, m), 2.75 (2H, m), 3.55 (3H, s), 3.90 (3H, s), 4.10 (2H,
	q, J=7.1Hz), 6.36 (1H, s), 7.20 (1H, d, J=8.9Hz)
14-2	1.30 (3H, t, J=7.1Hz), 3.56 (3H, s), 3.82 (3H, s), 4.23 (2H, q, J=7.1Hz), 6.36 (1H, s),
	6.60 (1H, d, J=16.2Hz), 7.31 (1H, d, J=8.6Hz), 7.36 (1H, d, J=16.2Hz)
14-3	6.60 (1H, d, J=16.2HZ), 7.31 (1H, d, J=6.6HZ), 7.55 (2H, d), 3.70, 3.73 (3H, 2s), 3.93, 3.94 (3H, 2s), 4.55
***********	(1H, m), 6.36, 6.37 (1H, 2s), 7.26 (1H, d, J=8.8Hz) 1.23 (3H, t, J=7.1Hz), 3.03 (1H, m), 3.22 (1H, m), 3.55 (3H, s), 3.94 (3H, s), 4.14 (2H, d, J=8.8Hz)
	: \ A = 1 / 1 T 1 \ 6 3 / / 1 H   C
	m), 4.51 (1H, m), 6.57 (1H, s), 7.26 (1H, m), 3.56 (3H, s), 3.93 (3H, s), 4.16 (2H, 1.24 (3H, t, J=7.1Hz), 2.95 (1H, m), 3.31 (1H, m), 3.56 (3H, s), 3.93 (3H, s), 4.16 (2H, d), 1.24 (3H, t, J=7.1Hz), 7.26 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d), 1.28 (1H, d)
	1 A 54 (111 m) 6 35 (1H s) / 26 (1H, Q, J=8,002)
 1 A C	$\frac{1}{1000}$ $\frac{1}{100}$ $1$
	(ATT -) 4 07 (ATT m) 4 53 (1H m) 6.37 (1H, S), 7.23 (1H, U, J 0.0112)
1.4.7	1000000000000000000000000000000000000
	: (ATT ) 4 00 (2H m) 4 56 (1H m) 0 30 (1H s), (23 (111, 4, 5 (1712))
14-5	3 00 (211 4 1-7 211a) 1 33 (2H m) 1 58 (2H m), 3.03 (1H, III), 3.22 (1H, III), 3.33
	: (2TT -\ 2 04 (2U c) 4 0X (7H m) 4.32 (1D, M), 0.37 (114, 07) (114, 07)
14-9	3 01 (21) 1 1-7 2Ug) 1 23 (2H m) 1 59 (2H m), 2.98 (1H, III), 3.32 (1H, III), 3.32
	(211 a) 2 02 (211 e) 4 11 (7H m) 4.30 (1H, m), 0.33 (1H, 9), 7.23 (1H, 0, 0, 0, 0, 0)
14-1	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}$
	(3H, s), 3.94 (3H, s), 4.09 (2H, m), 4.52 (1H, m), 6.37 (1H, s), 7.25 (1H, d, J=8.9Hz)

1

2 20 (1H m) 2 56
14-11 0.89 (3H, t, J=6.7Hz), 1.31 (4H, m), 1.61 (2H, m), 2.96 (1H, m), 3.30 (1H, m), 3.56
(3H, s), 3.93 (3H, s), 4.10 (2H, m), 4.56 (1H, m), 6.35 (1H, s), 7.26 (1H, d, J=8.9Hz)
14-12 0.87 (3H, t, J=6.4Hz), 1.27 (6H, m), 1.59 (2H, m), 3.03 (1H, m), 3.22 (1H, m), 3.56
(3H, s), 3.94 (1H, s), 4.08 (2H, m), 4.52 (1H, m), 6.37 (1H, s), 7.25 (1H, d, J=8.8Hz)
14-13 0.88 (3H, t, J=6.9Hz), 1.28 (6H, m), 1.59 (2H, m), 2.96 (1H, m), 3.32 (1H, m), 3.56 3H, s), 3.94 (3H, s), 4.10 (2H, m), 4.56 (1H, m), 6.35 (1H, s), 7.26 (1H, d, J=8.8Hz)
3H, s), 3.94 (3H, s), 4.10 (2H, m), 4.30 (1H, m), 3.23 (1H, m), 3.56 (3H, s), 3.87 (2H, m),  14-14 0.88 (6H, m), 1.90 (1H, m), 3.02 (1H, m), 3.23 (1H, m), 3.56 (3H, s), 3.87 (2H, m),
14-14 0.88 (6H, m), 1.90 (1H, m), 3.02 (1H, m), 5.25 (1H, m), 5.25 (1H, m), 5.86 (6H, m), 3.94 (3H, s), 4.54 (1H, m), 6.37 (1H, s), 7.25 (1H, d, J=8.9Hz)
14-15 0.89 (6H, m), 1.91 (1H, m), 2.96 (1H, m), 3.32 (1H, m), 3.56 (3H, s), 3.89 (2H, m),
$\frac{1}{2}$ 04 (211 a) A 58 (1H m) 6 35 (1H s), $\frac{1}{2}$ 0 (1H, 0, $\frac{1}{2}$ 0.9 $\frac{1}{2}$ 1
$1.6.60 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 \times 0.00 $
2 04 (217 c) A 13 (2H m) 4.52 (1H, m), 0.37 (1H, 8), 7.23 (111, u, 3 0.7112)
14.17 0.88 (6H, m) 1.49 (2H, m) 1.62 (1H, m), 2.96 (1H, m), 3.30 (1H, m), 3.30 (3H, s),
2 02 (2H a) A 14 (2H m) 4 56 (1H, m), 6.35 (1H, S), 7.25 (1H, U, J=6.51E)
14-18 1.44, 1.46 (9H, 2s), 2.90 (1H, m), 3.31 (1H, m), 3.56 (3H, s), 3.92, 3.93 (3H, 2s), 4.42
(111) 6 24 6 37 (1H 2s) 7 26 (1H, d, J=9,UHZ).
14-19 2.51 (1H, m), 3.05 (1H, m), 3.20 (1H, m), 3.56 (3H, s), 3.94 (3H, s), 4.59 (1H, m), 4.08
(arr) 6 27 (1H e) 7 26 (1H d J=8.9Hz)
14-20 2.51 (1H, m), 2.99 (1H, m), 3.29 (1H, m), 3.56 (3H, s), 3.94 (3H, s), 4.61 (1H, m), 4.70
(2H, m), 6.36 (1H, s), 7.26 (1H, d, J=8.9Hz)
14-21 3.0-3.3 (2H, m), 3.56 (3H, s), 3.93, 3.94 (3H, 2s), 4.3-4.6 (2H, m), 4.69 (1H, m), 6.35,
6.37 (1H, 2s), 7.28 (1H, d, J=8.8Hz) 14-22 3.06 (1H, m), 3.24 (1H, m), 3.56 (3H, s), 3.93, 3.94 (3H, 2s), 4.4-4.6 (2H, m), 5.86
: (477 ) (27 (27 (11 2c) 72X (1H (1 1=8.8HZ)
(1H, m), 6.36, 6.37 (1H, 2S), 7.28 (1H, ct, 5 51522) 14-23 [3.04-3.21 (2H, m), 3.56 (3H, s), 4.47, 4.65 (2H, 2m), 4.69 (1H, m), 6.37 (1H, s), 7.28
: // TT 1 T 0 711-1
(1H, d, J=8.7Hz) 14-24 3.02 (1H, m), 3.24 (1H, m), 3.56 (3H, s), 3.93 (3H, s), 4.61 (2H, m), 4.70 (1H, m), 6.35
14.25 2.08 (1H, m), 3.30 (1H, m), 3.34 (3H, s), 3.53 (2H, m), 3.30 (3H, s), 3.54 (3H, s),
: (OTT) 4 62 (1H m) 6 35 (1H s) /.20 (1D, U, J=0.7112)
3 27 (1H m) 3 27 (1H m) 3.4-3.0 (4H, III), 3.50 (3H, 5), 3.55, 3.55
14-26 [1.18 (3H, m), 3.03 (1H, m), 5.27 (1H, m), 6.35, 6.37 (1H, 2s), 7.26 (1H, d, J=8.8Hz) (3H, 2s), 4.29 (2H, m), 4.61 (1H, m), 6.35, 6.37 (1H, 2s), 7.26 (1H, d, J=8.8Hz)
(3H, 2s), 4.29 (2H, m), 4.01 (1H, m), 5.53 (3H, s), 4.10 (2H, m), 4.45 (2H, m), 4.61 14-27 3.04 (1H, m), 3.21 (1H, m), 3.54 (3H, s), 3.91 (3H, s), 4.10 (2H, m), 4.45 (2H, m), 4.61
(1H, m), 6.35 (1H, s), 6.92 (3H, m), 7.27 (3H, m) (1H, m), 6.35 (1H, s), 6.92 (3H, m), 7.27 (3H, m) 14-28 2.99 (1H, m), 3.30 (1H, m), 3.55 (3H, s), 3.90 (3H, s), 4.12 (2H, m), 4.46 (2H, m), 4.64
(1H, m), 6.34(1H, s), 6.93 (3H, m), 7.20 (3H, m) 14-29 2.66 (2H, m), 3.07 (1H, m), 3.21 (1H, m), 3.56 (3H, s), 3.95 (3H, s), 4.30 (2H, m), 4.63
14.20 5.00 (1H m) 3.22 (1H m), 3.56 (3H, s), 3.70 (2H, m), 5.93 (3H, s), 4.30 (114, m)
14.21 2.02 (1H, m), 3.42 (1H, m), 3.57 (3H, s), 3.72 (2H, m), 3.93 (3H, s), 4.25 (1H, m),
(2H, m), 4.66 (1H, m), 6.36 (1H, s), 7.27 (1H, s), 5.55 (3H, s), 3.95 (3H, s), 4.13 (2H, 14-32 1.22 (3H, t, J=7.1Hz), 3.13 (1H, m), 3.31 (1H, m), 3.55 (3H, s), 3.95 (3H, s), 4.13 (2H, s), 7.25 (1H, d, J=8.9Hz)
m), 4.46 (1H, m), 6.38 (1H, s), 7.25 (1H, d, J=8.9Hz). 14-33 1.23 (3H, t, J=7.1Hz), 3.08 (1H, m), 3.41 (1H, m), 3.57 (3H, s), 3.93 (3H, s), 4.12 (2H, s), 7.25 (1H, d, J=8.9Hz)
m), 4.49 (1H, m), 6.36 (1H, s), 7.25 (1H, d, s), 3.54 (3H, s), 3.61 (1H, m), 3.84 (3H, 14-34, 1.27 (3H, m), 1.61, 1.64 (3H, 2s), 7.27 (1H, 2d)
14-34 1.27 (3H, m), 1.61, 1.64 (3H, 23), 5.26 (1H, 2d) s), 4.18 (2H, m), 6.32, 6.37 (1H, 2s), 7.27 (1H, 2d)
5), 4.10 (211, 111), 010-7 510 (

,**,**,

.*

14-35 0.94 (3H, m), 1.62, 1.65 (3H, 2s), 1.67 (2H, m), 3.21 (1H, m), 3.54 (3H, s), 3.62 (1H, m), 3.84 (3H, s), 4.09 (2H, m), 6.33, 6.37 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.8Hz) 14-36 0.94 (3H, m), 1.41 (2H, m), 1.61, 1.65 (3H, 2s), 1.63 (2H, m), 3.21 (1H, m), 3.54 (3H, s), 3.60 (1H, m), 3.84 (3H, s), 4.12 (2H, m), 6.32, 6.37 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.9Hz)14-37 0.90 (3H, m), 1.33 (4H, m), 1.61, 1.64 (3H, 2s), 1.65 (2H, m), 3.20 (1H, m), 3.54 (3H, s), 3.59 (1H, m), 3.84 (3H, s), 4.12 (2H, m), 6.32, 6.37 (1H, 2s), 7.27 (1H, 2d, J=8.9Hz, 8.7Hz14-38 0.89 (3H, m), 1.30 (6H, m), 1.61, 1.64 (3H, 2s), 1.65 (2H, m), 3.20 (1H, m), 3.54 (3H, s), 3.59 (1H, m), 3.84 (3H, s), 4.11 (2H, m), 6.32, 6.36 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.8Hz)14-39 1.26 (6H, m), 1.59, 1.62 (3H, 2s), 3.20 (1H, m), 3.54 (3H, s), 3.63 (1H, m), 3.85 (3H, s), 4.98 (1H, m), 6.32, 6.37 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.8Hz) 14-40 0.94 (6H, m), 1.62, 1.65 (3H, 2s), 1.96 (1H, m), 3.21 (1H, m), 3.54 (3H, s), 3.62 (1H, m), 3.84 (3H, s), 3.92 (2H, m), 6.32, 6.37 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.8Hz) 1.63, 1.66 (3H, 2s), 3.22 (1H, m), 3.53 (3H, s), 3.63 (1H, m), 3.79 (3H, s), 5.16 (2H, m), 6.29, 6.36 (1H, 2s), 7.25 (1H, 2d, J=8.8Hz, 8.8Hz), 7.35 (5H, m). 14-42 1.64, 1.67 (3H, 2s), 3.23 (1H, m), 3.52, 3.55(3H, 2s), 3.66(1H, m), 3.84(3H, s), 4.71(1H, m), 5.00(1H, m), 6.33, 6.37(1H, 2s), 7.18(1H, m), 7.27(1H, 2d, J=8.8Hz, 8.8Hz) 14-43 1.63, 1.66 (3H, 2s), 3.21 (1H, m), 3.54 (3H, s), 3.62 (1H, m), 3.84 (3H, s), 4.63 (2H, m), 5.31 (2H, m), 5.89 (1H, m), 6.33, 6.37 (1H, 2s), 7.27 (1H, 2d, J=8.9Hz, 8.7Hz) 14-44 | 1.63 (3H, m), 2.52 (1H, m), 3.18 (1H, m), 3.56 (3H, s), 3.60 (1H, m), 3.84 (3H, s), 4.74 (2H, m), 6.34, 6.37 (1H, 2s), 7.26, 7.27 (1H, 2d, J=8.7Hz, 8.8Hz) 14-45 1.65, 1.68 (3H, 2s), 3.19 (1H, m), 3.51 (1H, m), 3.55 (3H, s), 3.83 (3H, s), 4.49(2H, m), 5.86(1H, m), 6.34, 6.37(1H, 2s), 7.28(1H, 2d, J=8.8Hz, 8.8Hz) 14-46 [1.67, 1.68 (3H, 2s), 3.18 (1H, m), 3.53, 3.55 (3H, 2s), 3.66 (1H, m), 3.82, 3.83 (3H, 2s), 5.73 (1H, m), 6.35, 6.37 (1H, 2s), 7.31 (1H, 2d, J=8.9Hz, 8.8Hz) 14-47 1.63, 1.65 (3H, 2s), 3.20 (1H, m), 3.36, 3.37 (3H, 2s), 3.55 (3H, s), 3.63 (3H, m), 3.84 (3H, s), 4.29 (2H, m), 6.33, 6.36 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 8.8Hz). 14-48 1.62, 1.64 (3H, 2s), 2.16 (3H, t, J=2.4Hz), 2.73 (2H, m), 3.20 (1H, m), 3.55 (3H, s), 3.59 (1H, m), 3.84 (3H, s), 4.30 (2H, m), 6.33, 6.36 (1H, 2s), 7.27 (1H, 2d, J=8.8Hz, 1.63,-1.65 (3H, 2s), 1.8-2.1 (4H, m), 3.20 (1H, m), 3.54 (3H, s), 3.61 (1H, m), 3.81 (2H, m), 3.84 (3H, s), 4.13 (3H, m), 6.33, 6.36 (1H, s), 7.27 (1H, 2d, J=8.7Hz, 8.9Hz) 14-50 3.05 (2H, m), 3.29 (1H, m), 3.52, 3.57 (3H, 2s), 3.59 (1H, m), 3.68 (3H, s), 3.76 (3H, s), 3.79, 3.80 (3H, 2s), 6.32, 6.35 (1H, 2s), 7.29 (1H, 2d, J=8.9Hz, 8.8Hz) 14-51 1.31, 1.35 (3H, 2t, J=7.2Hz, 7.1Hz), 3.50 (1H, m), 3.55, 3.57 (3H, 2s), 3.68 (1H, m), 3.92, 3.94 (3H, 2s), 4.31 (2H, m), 6.35, 6.38 (1H, 2s), 7.34 (1H, 2d, J=8.9Hz, 8.9Hz) 14-52 1.26 (3H, t, J=7.1Hz), 2.48 (3H, s), 3.07 (1H, m), 3.38 (1H, m), 4.21 (2H, q, J=7.1Hz), 4.51 (1H, m), 7.07 (1H, t, J=58.0Hz), 7.23 (2H, m) 14-53 | 1.24 (3H, t, J=7.1Hz), 1.90 (4H, m), 3.15 (1H, m), 3.43 (1H, m), 3.65 (4H, m), 3.92 (3H, s), 4.18 (2H, m), 4.48 (1H, m), 7.26 (1H, d, J=10.5Hz) 14-54 1.16 (3H, t, J=7.2 Hz), 2.36 (3H, s), 3.04 (1H, m), 3.26 (1H, m), 3.48 (3H, s), 4.00-4.25 (3H, m), 6.30 (1H, s), 7.20 (1H, d, J=8.8 Hz) 14-55 | 1.18 (3H, t, J=7.2 Hz), 2.37 (3H, s), 3.03 (1H, m), 3.31 (1H, m), 3.50 (3H, s), 4.00-4.25 (3H, m), 6.28 (1H, s), 7.20 (1H, d, J=8.7 Hz)

14-56 1.21 (3H, t, J=7.2 Hz), 3.10-3.45 (2H, m), 3.90 (3H, s), 4.07 (3H, br d, J=0.9 Hz), 4.16 (2H, q, J=7.2 Hz), 4.54 (1H, br t, J=7.3 Hz), 7.20 (1H, d, J=8.6 Hz) 14-57 3.45 (3H, d, J=1.1Hz), 6.21 (1H, s), 7.30 (1H, d, J=8.4Hz), 7.46 (2H, t, J=7.5Hz), 7.5-7.8 (5H, m) 14-58 3.31 (3H, d, J=0.9Hz), 6.29 (1H, s), 6.32 (1H, d, J=12.1Hz), 6.80 (1H, d, J=12.1Hz), 7.15 (1H, d, J=8.5Hz), 7.28 (2H, m), 7.35 (1H, dd, J=8.5, 2.3Hz), 7.42 (2H, m), 7.6-7.8 (4H, m) 14-59 3.48 (3H, s), 6.34 (1H, s), 6.72 (1H, d, J=16.0Hz), 7.02 (1H, d, J=8.4Hz), 7.18 (1H, d, J=16.0Hz), 7.30 (1H, dd, J=10.7, 2.3Hz), 7.39 (2H, m), 7.48 (1H, dd, J=8.7, 1.2Hz), 7.73 (5H,m) 14-60 1.25 (1.5H, t, J=7.1Hz), 1.26 (1,5H, t, J=7.1Hz), 2.92(1H, m), 3.26 (1H, m), 3.57 (3H, m), 4.22 (2H, m), 4.36 (1H, m), 6.37 (0.5H, s), 6.38 (0.5H, s), 7.2-7.3 (2H, m) 1.21 (3H, m), 2.49 (3H, s), 3.33 (2H, m), 3.90 (3H, s), 4.18 (2H, m), 4.52 (1H, t, J=7.2Hz), 7.05 (1H, t, J=58.0Hz)7.25 (1H, d, J=8.9Hz) 14-62 1.46 (3H, t, J=7.0), 3.58 (3H, s), 4.12 (2H, q, J=7.0 Hz), 6.37 (1H, s), 7.26 (1H, d, J= 8.7 Hz) 14-63 1.22 (3H, t, J= 7.2 Hz), 1.47 (3H, t, J=7.0), 3.00 (1H, dd, 14.2, 5.2 Hz), 3.23 (1H, dd, J=14.2, 8.4 Hz), 3.55 (3H, q, J=0.8 Hz), 4.12 (2H, q, J=7.0), 4.12 (2H, m), 4.57 (1H, dd, J=8.4, 5.2 Hz), 6.37 (1H, s), 7.26 (1H, d, J= 8.7 Hz) 14-64 1.23 (3H, t, J= 7.1 Hz), 1.46 (3H, t, J=7.0 Hz), 2.94 (1H, dd, 14.4, 6.4 Hz), 3.32 (1H, dd, J=14.4, 7.0 Hz), 3.55 (3H, q, J=0.8 Hz), 4.10 (2H, q, J=7.0 Hz), 4.17 (2H, q, J=7.1 Hz), 4.61 (1H, dd, J=7.0, 6.4 Hz), 6.34 (1H, s), 7.25 (1H, d, J=8.9 Hz) 14-65 0.89 (3H, t, J= 7.3 Hz), 1.46 (3H, t, J=7.0 Hz), 1.62 (2H, qt, J=7.3, 6.9 Hz), 3.03 (1H, dd, J=14.2, 5.4 Hz), 3.21 (1H, dd, J=14.2, 8.3 Hz), 3.55 (3H, q, J=1.0 Hz), 4.04 (2H, q, J=7.0 Hz), 4.10 (2H, m), 4.59 (1H, dd, J=8.3, 5.4 Hz), 6.37 (1H, s), 7.25 (1H, d, J= 8.8 Hz) 14-66 0.90 (3H, t, J= 7.3 Hz), 1.46 (3H, t, J=7.0 Hz), 1.63 (2H, qt, J=7.3, 6.9 Hz), 2.94 (1H, dd, J=14.4, 6.8 Hz), 3.32 (1H, dd, J=14.4, 6.9 Hz), 3.55 (3H, q, J=1.0 Hz), 4.07 (2H, q, J=7.0 Hz), 4.10 (2H, m), 4.64 (1H, dd, J=6.9, 6.8 Hz), 6.35 (1H, s), 7.25 (1H, d, J= 8.9 Hz) 14-67 1.38 (6H, t, J=6.2), 3.57 (3H, q, J=1.2 Hz), 4.58 (1H, q, J=6.2 Hz), 6.37 (1H, s), 7.27 (1H, d, J= 8.7 Hz)14-68 1.22 (3H, t, J=7.1 Hz), 1.34, 1.39 (6H, t, J=6.2 Hz), 3.03 (1H, dd, J=14.2, 5.3 Hz), 3.26 (1H, dd, J=14.2, 8.3 Hz), 3.55 (3H, s), 4.14 (3H, q, J=7.1 Hz), 4.58 (1H, dd, J=8.3, 5.3 Hz), 4.68 (1H, q, J=6.2 Hz), 6.36 (1H, s), 7.25 (1H, d, J= 8.9 Hz) 14-69 1.22 (3H, t, J=7.1 Hz), 1.35, 1.37 (6H, t, J=6.2 Hz), 2.94 (1H, dd, J=14.4, 6.5 Hz), 3.35 (1H, dd, J=14.4, 7.1 Hz), 3.56 (3H, s), 4.16 (3H, q, J=7.1 Hz), 4.64 (1H, q, J=6.2 Hz), 4.66 (1H, dd, J=7.1, 6.5 Hz), 6.34 (1H, s), 7.25 (1H, d, J= 8.9 Hz) 14-70 1.25 (3H, t, J=7.1 Hz), 2.39 (3H, s), 2.89 (1H, dd, J=14.8, 7.8 Hz), 3.23 (1H, dd, J=14.8, 6.1 Hz), 3.56 (3H, q, J=1.0 Hz), 4.17 (2H, q, J=7.1 Hz), 4.39 (1H, dd, J=7.8, 6.1 Hz), 6.37, 6.38 (1H, s), 7.00 (1H, d, J=8.0 Hz), 7.22 (1H, d, J=8.0 Hz), 7.27 (1H, 14-71 0.89 (3H, m), 1.63 (2H, m), 3.00 (1H, m), 3.30 (1H, m), 3.54, 3.55 (3H, s), 3.93 (3H, s), 4.09 (1H, m), 6.36, 6.38 (1H, s), 7.23 (1H, d, J=8.2 Hz), 8.07 (1H, dd, J=8.2, 1.9 Hz), 8.16 (1H, d, J=1.9 Hz) 14-72 0.86, 0.88 (3H, t, J=6.8 Hz), 1.57, 1.62 (2H, m), 2.43 (3H, s), 2.96 (1H, dd, J=14.2, 6.9 Hz), 3.39 (1H, dd, J=14.2, 7.2 Hz), 3.93 (3H, s), 4.05 (2H, m), 4.54 (1H, dd, J=7.2, 6.9 Hz), 7.28, 7.29 (1H, d, J=8.8 Hz), 8.02, 8.04 (1H, s)

14-73 3.14 (2H, m), 3.54 (3H, 2s), 3.94 (3H, 2s), 4.63 (1H, m), 6.38 (1H, 2s), 7.25 (1H, d,
I=8 9 Hz) 9.5(1H, broad)
14-74 4.06 (3H, s), 7.47 (1H, d, J=8.4 Hz), 8.10 (1H, m), 8.80 (1H, m)
14.75 2.87 (2H c) 6.61 (1H d J=9.4 Hz), 8.12 (1H, m), 8.88 (1H, m)
15.1 3.52 (2H s) 3.7 (2H broad) 6.4 (1H, broad), 6.29 (1H, S), 6.08 (1H, d, J-9.1112)
15-2 0.7-0.9 (4H, m), 1.23(1H, m), 3.51(3H, s), 3.87(3H, s), 6.24 (1H, s), 6.47(1H, s), 6.83
(1H, d, J=9.0Hz), 8.02(1H, s)
15-3 3.02 (3H, s), 3.92 (3H, s), 5.99 (1H, s), 6.74 (1H, s), 6.79 (1H, d, J=9.0Hz), 7.38 (2H,
$a_{1}$ , $a_{2}$ (111 24) 7 72 (2H d $(=/2H2)$ , 8.82 (1 $\Pi$ , 8)
26), 7.53 (1H, 2d), 7.72 (2H, 3, 3 122), 15-4 3.31 (3H, s), 4.05(3H, s), 6.20(1H, s), 6.86(2H, m), 6.89(1H, d, J=9.1Hz), 7.03(1H, m),
8.12(1H, m), 8.23(1H, m)
8.12(1H, m), 8.25(1H, m) 15-5 2.91 (3H, s), 3.91 (3H, s), 5.99 (1H, s), 6.76 (1H, d, J=9.0Hz), 6.81 (1H, s), 7.59 (2H,
m), 7.82 (4H, m), 8.32 (1H, s), 8.98 (1H, s)
m), 7.82 (4H, III), 8.32 (1H, 9), 6.28 (1H, bs), 15-6 1.21 (3H, t, J=7.1Hz), 3.55 (3H, s), 3.95 (3H, s), 4.07 (2H, q, J=7.1Hz), 6.28 (1H, bs),
6.31 (1H, s), 6.43 (1H, bs), 6.87 (1H, d, J=9.1Hz)
6.31 (1H, s), 6.43 (1H, os), 6.67 (1H, d, J=9.0Hz), 7.10 (3H, 15-7 3.46 (3H, s), 3.93 (3H, s), 6.29 (1H, s), 6.52 (1H, bs), 6.90 (1H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d, J=9.0Hz), 7.10 (3H, d,
m), 7.21 (1H, m), 7.34 (2H, m)
m), 7.21 (1H, III), 7.34 (2H, III) 15-8 3.28 (3H, s), 3.90 (3H, s), 6.11 (1H, s), 6.66 (1H, s), 6.84 (3H, m), 6.93 (1H, d,
J=8.9Hz), 7.87 (1H, s), 8.07 (1H, m)
J=8.9Hz), 7.87 (1H, s), 8.07 (1H, III) 15-9 1.33 (3H, t, J=7.1Hz), 3.16 (3H, s), 3.50 (3H, s), 4.05 (3H, s), 4.18 (2H, m), 6.29 (1H, s)
: -\ C CO (111 c) 6 X5 (1H (1 1=9 (112), 7./3 (114) 9/
15-10 3.54 (3H, s), 3.85 (3H, s), 5.40 (2H, m), 5.96 (1H, m), 6.32 (1H, s), 6.72 (1H, d,
J=9.2Hz), 7.32 (1H, d), 8.13 (1H, s) 15-11 0.51 (2H, m), 0.82 (2H, m), 1.27 (1H, m), 3.56 (3H, s), 3.83 (3H, s), 6.34 (1H, s), 6.67
15-11 0.51 (2H, m), 0.82 (2H, m), 1.27 (1H, m), 5.50 (5H, 5), 5.65 (5H, 5)
(2H, m), 7.82 (1H, s) 15-12 1.76 (3H, s), 1.80 (3H, s), 3.54 (3H, s), 3.87 (3H, s), 6.31 (1H, s), 6.69 (1H, d,
15-12 1.76 (3H, s), 1.80 (3H, s), 3.54 (5H, s), 5.67 (5H, s), 6.67 (5H, s)
J=9.1Hz), 7.63 (1H, s) 15-13 1.69 (3H, s), 3.39 (3H, s), 3.54 (3H, s), 3.83 (3H, s), 4.13 (2H, s), 6.30 (1H, s), 6.66
15-13 1.69 (3H, s), 3.39 (3H, s), 3.54 (3H, s), 5.65 (3H, s), 112 (2H, s)
(1H, d, J=9.3Hz), 9.79 (1H, s) 15-14 2.07 (3H, s), 2.33 (2H, m), 2.52 (2H, m), 3.56 (3H, s), 3.86 (3H, s), 6.33 (1H, s), 6.72
15-14 2.07 (3H, s), 2.33 (2H, m), 2.32 (2H, m), 5.30 (3H, s)
(1H, d, J=9.2Hz), 7.06 (1H, t, J=5.2Hz), 7.92 (1H, s) (15-15 3.30 (2H, d, J=5.9Hz), 3.52 (3H, s), 3.84 (3H, s), 6.33 (1H, s), 6.72 (1H, d, J=9.1Hz),
15-15 3.30 (2H, d, J=5.9Hz), 5.32 (3H, s), 5.34 (3H, s), 7.95 (1H, s) 7.07 (2H, d, J=7.5Hz), 7.28 (4H, m); 7.95 (1H, s)
7.07 (2H, d, J=7.5Hz), 7.28 (4H, III); 7.93 (1H, s) 15-16 1.25 (3H, t, J=7.1Hz), 1.91 (3H, s), 2.98 (2H, 2d), 3.54 (3H, s), 3.89 (3H, s), 4.11 (2H, d), 4.15 (1H, d), 4.15 (1H, d), 4.15 (1H, d), 4.15 (1H, d), 5.16 (1H, s)
q, J=7.1Hz), 6.30 (1H, s), 6.74 (1H, d, 3 ).1123, 15-17 1.24 (3H, m), 3.46 (1H, m), 3.50, 3.55 (3H, 2s), 3.84 (3H, s), 6.33, 6.37 (1H, 2s), 6.71
(1H, d, J=9.2Hz), 7.10 (3H, iii), 7.23 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, iii), 7.25 (3H, ii
(1H, d, J=9.1Hz), 7.18 (4H, m), 7.73 (1H, s) 15-19 2.46 (2H, m), 2.91 (2H, m), 3.25 (2H, m), 3.57 (3H, s), 3.87 (3H, s), 6.36 (1H, s), 6.69
(1H, d, J=9.1Hz), 7.19 (4H, m), 7.64 (1H, s) 15-20 3.51 (3H, s), 3.90 (3H, s), 6.35 (1H, s), 6.77 (3H, m), 7.25 (1H, m), 7.83 (1H, s), 8.36
(1H, s) 15-21 3.54 (3H, s), 3.86 (3H, s), 6.31 (1H, s), 6.37 (1H, s), 6.79 (1H, d, J=9.3Hz)
15-21 3.54 (3H, s), 3.86 (3H, s), 6.51 (1H, s), 6.57 (1H, d), J=9.2Hz), 7.39 (1H, m), 7.48 (2H, 15-22 3.53 (3H, s), 3.90 (3H, s), 6.41 (1H, s), 6.74 (1H, d), J=9.2Hz), 7.39 (1H, m), 7.48 (2H, m), 8.24 (1H, s)
16-1 3.55 (3H, s), 6.36 (1H, s), 6.01 (1H, d, 3-2.112), 7.16 (1H, d, J=2.0Hz) 16-2 3.56 (3H, s), 3.81 (3H, s), 6.35 (1H, s), 6.94 (1H, d, J=2.0Hz), 7.16 (1H, d, J=2.0Hz)
16-2 3.56 (3H, S), 3.61 (3H, S), 6.55 (1H, S), 655 (

16-3	3.54 (3H, s), 5.11 (2H, s), 6.34 (1H, s), 6.8-6.9 (2H, m), 6.96 (1H, d, J=2.0Hz), 7.19
	(1H, d, J=2.1Hz), 7.25 (1H, m)
16-4	3.53 (3H, s), 6.35 (1H, s), 6.86 (1H, m), 7.00 (1H, m), 7.49 (1H, d, J=2.2Hz), 7.71 (1H,
	$d = 2.94z \cdot 8.02 \cdot (1 + m)$
16-5	3.42 (3H, s), 6.31 (1H, s), 7.49 (1H, d, J=2.2Hz), 7.61 (3H, m), 7.93 (4H, m), 8.58 (1H,
	m)
16-6	3.54 (3H, s), 3.86 (3H, s), 6.35 (1H, s), 6.82 (1H, d, J=9.2Hz), 6.9 (1H, broad)
16-7	3.44 (3H, s), 3.88 (3H, s), 6.26 (1H, s), 7.29 (1H, d, J=8.9Hz), 7.63 (2H, m), 7.95 (3H,
	m), 8.09 (1H, 2d, J=1.7Hz, 8.6Hz), 8.71 (1H, s)
17-1	2.39 (3H, s), 3.56 (3H, s), 3.97 (3H, s), 6.37 (1H, s), 7.28 (1H, d, J= 9.0 Hz)
17-2	1.15 (6H, m), 3.56 (3H, s), 3.73 (2H, m), 3.95 (3H, s), 6.36 (1H, s), 7.28 (1H, d, J= 9.0
	H ₂ )
17-3	3.51 (3H, s), 4.01 (3H, s), 4.10 (2H, m), 6.32 (1H, s), 7.24 (5H, m), 7.30 (1H, d, J= 8.6
	Hz)
17-4	3.14 (3H, s), 3.83 (3H, s), 6.19 (1H, s), 7.46 (8H, m)
17-5	3.14 (2H, m), 3.57 (5H, m), 3.96 (3H, s), 6.40 (1H, s), 7.28 (1H, d, J= 9.0 Hz)

.5-

5

10

15

20

25

· ·

The compounds of the present invention exhibit excellent herbicidal effects when used as an active ingredient of a herbicide. The herbicide can be used for a wide range of applications, for example on crop lands such as paddy fields, upland farms, orchards and mulberry fields, and non-crop lands such as forests, farm roads, playgrounds, and factory sites. The application method may be suitably selected for soil treatment application and foliar application.

The compounds of the present invention are capable of controlling noxious weeds including grass (gramineae) such as barnyardgrass (Echinochloa crus-galli), large crabgrass (Digitaria sanguinalis), green foxtail (Setaria viridis), goosegrass (Eleusine indica L.), wild oat (Avena fatua L.), Johnsongrass (Sorghum halepense), quackgrass (Agropyron repens), alexandergrass (Brachiaria plantaginea), paragrass (Panicum purpurascen), sprangletop (Leptochloa chinensis) and red sprangletop (Leptochloa panicea); sedges (or Cyperaceae) such as rice flatsedge (Cyperus iria L.), purple nutsedge (Cyperus rotundus L.), Japanese bulrush (Scirpus Juncoides), flatsedge (Cyperus serotinus), small-flower umbrellaplant (Cyperus difformis), slender spikerush (Eleocharis acicularis), and water chestnut (Eleocharis kuroguwai); alismataceae such as Japanese ribbon wapato (Sagittaria pygmaea), arrow-head (Sagittaria trifolia) and narrowleaf waterplantain (Alisma canaliculatum); pontederiaceae such as monochoria (Monochoria vaginalis) and monochoria species (Monochoria korsakowii); scrophulariaceae such as false pimpernel (Lindernia pyxidaria) and abunome (Dopatrium Junceum); lythraceae such as toothcup (Rotala indica) and red stem (Ammannia multiflora); and broadleaves such as redroot pigweed (Amaranthus retroflexus), velvetleaf (Abutilon theophrasti), morningglory (Ipomoea hederacea), lambsquarters (Chenopodium album), prickly sida (Sida spinosa L.), common purslane (Portulaca oleracea L.), slender amaranth (Amaranthus viridis L.), sicklepod (Cassia obtusifolia), black nightshade (Solanum nigrum L.), pale smartweed (Polygonum lapathifolium L.), common chickweed (Stellaria media L.), common cocklebur (Xanthium strumarium L.), flexuous bittercress (Cardamine flexuosa WITH.), henbit (Lamium amplexicaule L.) and threeseeded copperleaf (Acalypha australis L.). Accordingly, it is useful for controlling noxious weeds non-selectively or selectively in the cultivation of a crop plant such as corn (Zea mays L.), soybean (Glycine max Merr.), cotton (Gossypium spp.), wheat (Triticum spp.), rice (Oryza sativa L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), sorgo (Sorghum bicolor Moench), rape (Brassica napus L.), sunflower (Helianthus annuus L.), sugar 30 beet (Beta vulgaris L.), sugar cane (Saccharum officinarum L.), Japanese lawngrass (Zoysia Japonica stend), peanut (Arachis hypogaea L.) or flax (Linum usitatissimum L.).

٠,٢٠

5

10

15

20

25

30

.:

For use as herbicides, the active ingredients of this invention are formulated into herbicidal compositions by mixing herbicidally active amounts with inert ingredients known to the art to facilitate either the suspension, dissolution or emulsification of the active ingredient for the desired use. The type of formulation prepared recognizes the facts that formulation, crop and use pattern all can influence the activity and utility of the active ingredient in a particular use. Thus for agricultural use the present herbicidal compounds may be formulated as water dispersible granules, granules for direct application to soils, water soluble concentrates, wettable powders, dusts, solutions, emulsifiable concentrates (EC), microemulsion, suspoemulsion, invert emulsion or other types of formulations, depending on the desired weed targets, crops and application methods.

These herbicidal formulations may be applied to the target area (where suppression of unwanted vegetation is the objective) as dusts, granules or water or solvent diluted sprays. These formulation may contain as little as 0.1% to as much as 97% active ingredient by weight.

Dusts are admixtures of the active ingredient with finely ground materials such as clays (some examples include kaolin and montmorillonite clays), talc, granite dust or other organic or inorganic solids which act as dispersants and carriers for the active ingredient; these finely ground materials have an average particle size of less than 50 microns. A typical dust formulation will contain 1 % active ingredient and 99% carrier.

Wettable powders are composed of finely ground particles which disperse rapidly in water or other spray carriers. Typical carriers include kaolin clays, Fullers earth, silicas and other absorbent, wettable inorganic materials. Wettable powders can be prepared to contain from 1 to 90% active ingredient, depending on the desired use pattern and the absorbability of the carrier. Wettable powders typically contain wetting or dispersing agents to assist dispersion in water or other carriers.

Water dispersible granules are granulated solids that freely disperse when mixed in water. This formulation typically consists of the active ingredient (0.1% to 95% active ingredient), a wetting agent (1-15% by weight), a dispersing agent (1 to 15% by weight) and an inert carrier (1-95% by weight). Water dispersible granules can be formed by mixing the ingredients intimately then adding a small amount of water on a rotating disc (said mechanism is commercially available) and collecting the agglomerated granules. Alternatively, the mixture of ingredients may be mixed with an optimal amount of liquid (water or other liquid) and passed through an extruder (said mechanism is commercially available) equipped with passages which allow for the formation of small extruded granules. Alternatively, the mixture of ingredients can be granulated

, J. -

5

10

15

20

25

30

į

using a high speed mixer (said mechanism is commercially available) by adding a small amount of liquid and mixing at high speeds to affect agglomeration. Alternatively, the mixture of ingredients can be dispersed in water and dried by spraying the dispersion through a heated nozzle in a process known as spray drying (spray drying equipment is commercially available). After granulation the moisture content of granules is adjusted to an optimal level (generally less than 5%) and the product is sized to the desired mesh size.

Granules are granulated solids that do not disperse readily in water, but instead maintain their physical structure when applied to the soil using a dry granule applicator. These granulated solids may be made of clay, vegetable material such as corn cob grits, agglomerated silicas or other agglomerated organic or inorganic materials or compounds such as calcium sulfate. The formulation typically consists of the active ingredient (1 to 20%) dispersed on or absorbed into the granule. The granule may be produced by intimately mixing the active ingredient with the granules with or without a sticking agent to facilitate adhesion of the active ingredient to the granule surface, or by dissolving the active ingredient in a solvent, spraying the dissolved active ingredient and solvent onto the granule then drying to remove the solvent. Granular formulations are useful where in-furrow or banded application is desired.

Emulsifiable concentrates (EC) are homogeneous liquids composed of a solvent or mixture of solvents such as xylenes, heavy aromatic naphthas, isophorone or other proprietary commercial compositions derived from petroleum distillates, the active ingredient and an emulsifying agent or agents. For herbicidal use, the EC is added to water (or other spray carrier) and applied as a spray to the target area. The composition of an EC formulation can contain 0.1% to 95% active ingredient, 5 to 95% solvent or solvent mixture and 1 to 20% emulsifying agent or mixture of emulsifying agents.

Suspension concentrate (also known as flowable) formulations are liquid formulations consisting of a finely ground suspension of the active ingredient in a carrier, typically water or a non-aqueous carrier such as an oil. Suspension concentrates typically contain the active ingredient (5 to 50% by weight), carrier, wetting agent, dispersing agent, anti-freeze, viscosity modifiers and pH modifiers. For application, suspension concentrates are typically diluted with water and sprayed on the target area.

Solution concentrates are solutions of the active ingredient (1 to 70%) in solvents which have sufficient solvency to dissolve the desired amount of active ingredient. Because they are simple solutions without other inert ingredients such as wetting agents, additional additives are usually added to the spray tank mix before spraying to facilitate proper application.

٠,٠

5

10

15

20

25

30

.

PCT/US98/17197

Microemulsions are solutions consisting of the active ingredient (1 to 30%) dissolved in a surfactant or emulsifier, without any additional solvents. There are no additional solvents added to this formulation. Microemulsions are particularly useful when a low odor formulation is required such as in residential turfgrass applications.

Suspoemulsions are combinations of two active ingredients. One active ingredient is made as a suspension concentrate (1-50% active ingredient) and the second active is made as a emulsifiable concentrate (0.1 to 20%). A reason for making this kind of formulation is the inability to make an EC formulation of the first ingredient due to poor solubility in organic solvents. The suspoemulation formulation allows for the combination of the two active ingredients to be packaged in one container, thereby minimizing packaging waste and giving greater convenience to the product user.

The herbicidal compounds of this invention may be formulated or applied with insecticides, fungicides, acaricides, nematicides, fertilizers, plant growth regulators or other agricultural chemicals. Certain tank mix additives, such as spreader stickers, penetration aids, wetting agents, surfactants, emulsifiers, humectants and UV protectants may be added in amounts of 0.01% to 5% to enhance the biological activity, stability, wetting, spreading on foliage or uptake of the active ingredients on the target area or to improve the suspensibility, dispersion, redispersion, emulsifiability, UV stability or other physical or physico-chemical property of the active ingredient in the spray tank, spray system or target area.

The compositions of the present invention may be used in admixture with or in combination with other agricultural chemicals, fertilizers, adjuvants, surfactants, emulsifiers, oils, polymers or phytotoxicity-reducing agents such as herbicide safeners. In such a case, they may exhibit even better effects or activities. As other agricultural chemicals, herbicides, fungicides, antibiotics, plant hormones, plant growth regulators, insecticides, or acaricides may, for example, be mentioned. Especially with herbicidal compositions having the compounds of the present invention used in admixture with or in combination with one or more active ingredients of other herbicides, it is possible to improve the herbicidal activities, the range of application time(s) and the range of applicable weed types. Further, the compounds of the present invention and an active ingredient of another herbicide may be separately formulated so they may be mixed for use at the time of application, or both may be formulated together. The present invention covers such herbicidal compositions.

The blend ratio of the compounds of the present invention with the active ingredient of other herbicides can not generally be defined, since it varies depending on the time and method

"،د-

5

÷

of application, weather conditions, soil type and type of formulation. However one active ingredient of other herbicide may be incorporated usually in an amount of 0.01 to 100 parts by weight, per one part by weight of the compounds of the present invention. Further, the total dose of all of the active ingredients is usually from 1 to 10000 g/ha, preferably from 5 to 500 g/ha. The present invention covers such herbicidal compositions.

As the active ingredients of other herbicides, the following (common name) may be mentioned. Herbicidal compositions having the compounds of the present invention used in combination with other herbicides, may occasionally exhibit a synergistic effect.

- 1. Those that are believed to exhibit herbicidal effects by disturbing auxin activities of plants, including a phenoxy acetic acid type such as 2,4-D, 2,4-DB, 2,4-DP, MCPA, MCPP, MCPB or naproanilide (including the free acids, esters or salts thereof), an aromatic carboxylic type such as 2,3,6 TBA, dicamba, dichlobenil, a pyridine type such as picloram (including free acids and salts thereof), triclopyr or clopyralid and others such as naptalam, benazolin, quinclorac, quinmerac or diflufenzopyr (BAS 654H).
- Those that are believed to exhibit herbicidal effects by inhibiting photosynthesis of plants including a urea type such as diuron, linuron, isoproturon, chlorotoluron, metobenzuron, tebuthiuron or fluometuron, a triazine type such as simazine, atrazine, cyanazine, terbuthylazine, atraton, hexazinone, metribuzin, simetryn, ametryn, prometryn, dimethametryn or triaziflam, a uracil type such as bromacil, terbacil or lenacil, an anilide type such as propanil or cypromid, a carbamate type such as desmedipham or phenmedipham, a hydroxybenzonitrile type such as bromoxynil or ioxynil, and others such as pyridate, bentazon and methazole.
  - 3. A quaternary ammonium salt type such as paraquat, diquat or difenzoquat, which is believed to be converted to free radicals by itself to form active oxygen in the plant and thus to exhibit quick herbicidal effects.
- 25 4. Those which are believed to exhibit herbicidal effects by inhibiting chlorophyll biosynthesis in plants and abnormally accumulating a photsensitizing peroxide substance in the plant body, including a diphenyl ether type such as nitrofen, lactofen, acifluorfen-sodium, oxyfluorfen, fomesafen, bifenox, or chlomethoxyfen, a cyclic imide type such as chlorphthalim, flumioxazin, cinidon-ethyl, or flumiclorac-pentyl, and others such as oxadiazon, sulfentrazone, thidiazimin, azafenidin, carfentrazone, isopropazole, fluthiacet-methyl, pentoxazone, pyraflufenethyl and oxadiargyl.
  - 5. Those which are believed to exhibit herbicidal effects characterized by whitening activities by inhibiting chromogenesis of plants such as carotenoids including a pyridazinone

, &-

5

.

type such as norflurazon, chloridazon or metflurazon, a pyrazol type such as pyrazolate, pyrazoxyfen or benzofenap, and others such as fluridone, fluramone, diflufencam, methoxyphenone, clomazone, amitrole, sulcotrione, mesotrione, isoxaflutole and isoxachlortole.

- Those which exhibit herbicidal effects specifically to gramineous plants including an aryloxyphenoxypropionic acid type (either as a mixture of isomers or as a resolved isomer) such as diclofop-methyl, pyrofenop-sodium, fluazifop butyl or fluazifop-p-butyl, haloxyfop-methyl, quizalofop p-ethyl, quizalafop p-tefuryl, fenoxaprop ethyl or fenoxaprop-p-ethyl, flamprop-M-methyl or flamprop-m-isopropyl or cyhalofop-butyl and a cyclohexanedione type such as alloxydim-sodium, sethoxydim, clethodim, tepraloxydim or tralkoxydim.
- Those which are believed to exhibit herbicidal effects by inhibiting amino acid biosynthesis of plants, including a sulfonylurea type such as chlorimuron-ethyl, nicosulfuron, metsulfuron-methyl, triasulfuron, primisulfuron, tribenuron-methyl, chlorosulfuron, bensulfuron-methyl, sulfometuron-methyl, prosulfuron, halosulfuron or halosulfuron-methyl, thifensulfuron-methyl, rimsulfuron, azimsulfuron, flazasulfuron, imazosulfuron, cyclosulfamuron,
   flupyrsulfuron, iodosulfuron, ethoxysulfuron, flucarbazone, sulfosulfuron, oxasulfuron a triazolopyrimidinesulfonamide type such as flumetsulam, metosulam, chloransulam or chloransulam-methyl, an imidazolinone type such as imazapyr, imazethapyr, imazaquin, imazamox, imazameth, imazamethabenz methyl, a pyrimidinesalicylic acid type such as pyrthiobac-sodium, bispyribac-sodium, pyriminobac-methyl or pyribenzoxim (LGC-40863), and others such as glyphosate, glyphosate-ammonium, glyphosate-isopropylamine or sulfosate.
  - 8. Those which are believed to exhibit herbicidal effects by interfering with the normal metabolism of inorganic nitrogen assimilation such as glufosinate, glufosinate-ammonium, phosphinothricin or bialophos.
  - 9. Those which are believed to exhibit herbicidal effects by inhibiting cell division of plant cells, including a dinitroaniline type such as trifluralin, oryzalin, nitralin, pendamethalin, ethafluralin, benefin and prodiamine, an amide type such as bensulide, napronamide, and pronamide, a carbamate type such as propham, chlorpropham, barban, and asulam, an organophosphorous type such as amiprofos-methyl or butamifos and others such as DCPA and dithiopyr.
  - 30 10. Those which are believed to exhibit herbicidal effects by inhibiting protein synthesis of plant cells, including a chloroacetanilide type such as alachlor, metolachor (including combinations with safeners such as benoxacor, or resolved isomeric mixtures of metolachlor including safeners such as benoxacor) propachlor, acetochlor (including combinations with

10

herbicide safeners such as dichlormid or MON 4660 or resolved isomeric mixtures of acetochlor containing safeners such as dichlormid or MON 4660), propisochlor or dimethenamid or an oxyacetamide type such as flufenacet.

11. Those in which the mode of action causing the herbicidal effects are not well understood including the dithiocarbamates such as thiobencarb, EPTC, diallate, triallate, molinate, pebulate, cycloate, butylate, vernolate or prosulfocarb and miscellaneous herbicides such as MSMA, DSMA, endothall, ethofumesate, sodium chlorate, pelargonic acid and fosamine.

A few formulation examples of the present invention are given as follows.

## Formulation example 1. Emulsifiable Concentrate

Ingredient	Chemical Name	Supplier	Function	% wt./wt.
Trade Name Compound 2-	Manne		Active Ingredient	5.0
75 Toximul H-A	Calcium sulfonate and nonionic surfactant blend	Stepan Co.	Emulsifier	2.5
Toximul D-A	Calcium sulfonate and nonionic surfactant blend	Stepan Co.	Emulsifier	7.5
Aromatic 200	Aromatic hydrocarbon	Exxon Chemical Co.	Solvent	QS to 100%

# Formulation example 2. Suspension Concentrate

Ingredient Trade Name Compound 2-	Chemical Name	Supplier	Function  Active Ingredient	% wt./wt. 10.00
75 Proylene gylcol			Anti-freeze	5.00 0.50
Antifoam 1530 Rhodopol 23	Silicone defoamer Xanthan gum	Dow Corning Rhone-Poulenc	Anti-foam Suspending Aid	0.25
Morwet D-425	Napthalene formaldehyde condensate	Witco Corp.	Dispersant	3.00
Igepal CA-720	Octylphenol ethoxylate	Rhone-Poulenc	Wetting agent	3.00
Proxel GXL Water	1,2 benziso-thiazolin-3-one	ICI Americas	Preservative Diluent	0.25 68.00

### Formulation example 3. Wettable Powder

Ingredient	Chemical	Supplier	Function	% wt./wt.
Trade Name Compound 2-	Name		Active Ingredient	50.00
75 Geropon T-77	Sodium -N-methyl-N-oleoyl taurate	Rhone-Poulenc	Wetting agent	3.00

Lomar PW

Napthalene Sulfonate

Henkel Corp.

Dispersant

5.00

Lomar PW Kaolin clay	Kaolin clay	J. M. Huber	Filler	42.00
Formulation exam	mple 4. Water Dispersible Gi	ranule		
Ingredient Trade Name Compound 2-	Chemical Name	Supplier	Function Active	% wt./wt. 50.00
75 Morwet EFW		Witco Corp.	Ingredient Wetting agent	2.00
Morwet D-425	Napthalene formaldehyde	Witco Corp.	Dispersant	10.00
ASP 400	condensate Kaolin Clay	Engelhard Corp.	Filler	38.00

#### Test Example

5

10

15

20

25

A standard greenhouse herbicide activity screening system was used to evaluate the herbicidal efficacy and crop safety of these test compounds. Seven broadleaf weed species including redroot pigweed (Amaranthus retroflexus, AMARE), velvetleaf (Abutilon theophrasti, ABUTH), sicklepod (Cassia obtusifolia, CASOB), ivyleaf morningglory (Ipomoea hederacea, IPOHE), lambsquarters (Chenopodium album, CHEAL), common ragweed (Ambrosia artemisiifolia L., AMBEL), and cocklebur (Xanthium strumarium, XANST) were used as test species. Four grass weed species including green foxtail (Setaria viridis, SETVI), barnyardgrass (Echinochloa crus-galli, ECHCG), johnsongrass (Sorghum halepense, SORHA), and large crabgrass (Digitaria sanguinalis, DIGSA) were also used. In addition, three crop species, field corn (Zea mays L., var. Dekalb 535, CORN), soybean (Glycine max L., var. Pella 86, SOY), and upland rice (Oryza sp., var. Tebonnet, RICE) were included.

#### Pre-emerge test

All plants were grown in 10 cm square plastic pots which were filled with a sandy loam soil mix. For pre-emerge tests, seeds were planted one day prior to application of the test compounds. For post-emerge tests, seeds were planted 8-21 days prior to the test to allow emergence and good foliage development prior to application of the test substances. At the time of the post-emerge application, plants of all species were usually at the 2-3 leaf stage of development.

All test compounds were dissolved in acetone and applied to the test units in a volume of 187 l/ha. Test materials were applied at rates ranging from 15 g ai/ha to 1000 g ai/ha using a track sprayer equipped with a TJ8001E even flow flat fan spray nozzle. Plants were arranged on a shelf so that the top of the canopy (post-emerge) or top of the soil surface (pre-emerge) was 4045 cm below the nozzle. Pressurized air was used to force the test solution through the nozzle as it was mechanically advanced (via electrically driven chain drive) over the top of all test plants/pots. This application simulates a typical commercial field herbicide application.

Post-emerge test

8.

5

10

15

20

25

In the post-emerge test, a commercial non-ionic surfactant was also included (0.25% v/v) to enhance wetting of the leaf surfaces of target plants. Immediately after application, test units of the pre-emerge applications were watered at the soil surface to incorporate the test materials. Subsequently, these test units were bottom-watered. Post-emerge test units were always bottom-watered.

At 14 days after application of the test materials, phytotoxicity ratings were recorded. A rating scale of 0-100 was used as previously described in *Research Methods in Weed Science*, 2nd edition, B. Truelove, Ed., Southern Weed Science Society, Auburn University, Auburn, Alabama, 1977. Briefly, "0" corresponds to no damage and "100" corresponds to complete death of all plants in the test unit. This scale was used both to determine efficacy against weed species and damage to crop species. Herbicide activity data for various compounds of this invention, which are shown by compound No. in Tables 1-8, are shown in Tables 11 and 12. The data demonstrate significant differences between compounds for both efficacy against weeds and selectivity for crop species. For selected compounds, excellent activity against a majority of the weed species was observed with minimal damage to at least one of the crop species.

Following table XIX shows comparative data for the pre-emerge herbicidal activity of compound 1.4 of present invention and the compound 2 reported in the Japanese patent Toku Kai Hei 5-25144 (1993). The data clearly shows the high level of activity observed with compound 1.4.

Table XIX

Comparative herbicidal activity of compounds 1.4 and 2

								- accent (1	· CUCG	SORHA	DIGSA	MAIZE	SOY	RICE
Cmpd.	Kate	AMARE	ABUTH	CASOB	IPOHE	CHEAL	XANST	SEIVI	ECHCO	30141				
no.	(g ai/ha)							·····		0	0	0	0	0
1 4	: 3.9	; 30	95	0	0	30	ļ <u>V</u>	60	0	0	30	0	0	0
	7.8	100	100			100	: 20	; x()	: 0	, ,	30	0	0	10
	15.6		100	100	0	100	1	80	10	30	30	0	<u>: 15</u>	20
	31.3	100	100	0	30_	: 100	<del></del>							

						100	- 60	100	30	40	95	0	40	50
	62.5	100	100	80	90	100	30	100			100	40	90	60
ļi	125		100 :	05	i ino :	100	50	100	95	93			100	65
i	125			100	100	100	90	100	100	100	100	95		<del> </del> <del></del>
li	250	100			· · · · · · · · · · · · · · · · · · ·	0	0	0		0	0	<u>:                                     </u>	<u>U</u>	······×
										0	0	0	0	0
	21.3		·····×	······	1 0	0	1 0	0	0	1 0	<u> </u>	<u>y</u>	ļ	i
ļ	125	0	0	30	<u> </u>	<u></u>	÷	ţ	†·····	0	0	: 0	0	15_
	250	0	50	50_	<u> </u>	50_	: 00	<u>: '                                   </u>	<u> </u>					

Tables XX and XXI show pre-emerge and post-emerge herbicidal activity data respectively for a few representative examples of the compounds described herein.

TABLE XX

Pre-emerge Herbicidal Activity

npd.		AMARE	ABU	TH CA	SOB IP	OHE	CHEAL	AMBEL	SETVI	ECHC	G SO	RHA	DIGSA	SOY	CO	RN	RICE
no.	g ai/ha		<u> </u>				0		20	-	+	0	0	0		0	0
1-2	63	0	50		90	0	0		0			0	30	0		0	10
••••••	250	0	10		00		100	100	100	100		85	100	90		70	60
1-4	63	100	10		<b>-</b>	100		100	100	100		inn	100	100	1	00	80 0
**********	250	100	10	0   1	00	100 0	100 60	0	0	0		0	0	0		0	0
1-5	63 250	20	30		0		100	20	90	0		20	70	10	···	0	10
*********		95	10		0	10	100	100	100	10			100	100	)	90	95
1-9	63	100	10		100	100 0	30	0	0	···•		100 0	0	0		0	0
1-10	63	70	10		20		100	60	100	0		0	30	50		0	0
	250	100	10		50	60 20	100	50	80	0		90	90	10		0	20
1-11	63	100	10	)0	20		100	100	100			98	100	70		60	70
*********	250	100	10	00	60	90 100	100	100	100			95	100	9:	5	60	95
1-13	63	100	10		80	100	100	100				100	100	10	0	95	100
•••••	250	100	10		0	00	40		70	10	j	0	0	0		0	10
1-15	63	0		0	0		50		70 80	(	)	20	90	0		0	30
	250	20		0	0	0	0	0	0		)		0	- 0	)	0	0
1-16	63	0		0	0	0	70	0	0		)	0	0	(		0	0
*********	250	0		0	70	100	100		9.		0	70	70	10		40	30
1-18	63	100		00	100	100	100		99	) [	0	100	90	9	5	90	70
	250	100		00		60	100		10		0	90	95		0	50	80 95
1-19	63	95		00	90	100	100		- 10		00	100	100		0	80	95
	250	100		00	100 100	40	100		- 8		50	30	50		0	15	60
1-20	63	100		100		100	100		- 10	00 1	00	70	90		70 0	65	70 0
*******	250	100		100	100	0	100	0	9		0	0	70		0	0	
1-21	63	98		70	<u>0</u>	40	100			00	95	90	10		0	0	10
********	250	10		100	<u>0</u>	0	95			0	0	0	0		0	0	50
1-22	63	95		100	0	20	100	······································		00	60	60	60		20	10	
	250		0	100 50	<u>0</u>	0	85			0	0	0	0		0	0	10 30
1-30	63	0		50	70	70	10			00	0	10	9	0	20	10	30 0
	25	0 6	<u> </u>	100	70 70	- 70	9:	<u> </u>		50	0	0	- C		0	0	10
1-31	63			100	70 95	80				00	40	90	9		90	50 0	20
********	25	0 10		100	95 40				Ö	0	0	0	(	)	0	0	4(
1-32	6.	3 (	)	90		0 50	10	in	0	00	95	30	10	00	20	0	
	25		00	100	40 80	100	0 10			00	90	90		00	90	15	60 90
1-3	7 6 25	3 1	00	100	100	10				00	100	100		00	100	90	9
••••••		0 1	00	100	100	10		00 -		100	95	90		00	80	70	10
1-3	8 6		00	100 100	100	10		00		100	100	100		00	90	90 0	
	2	50   1	00	90	0	5(		0	30	30	0	10		20	10	70	
1-5	1 - 6		00		30	80			80	90	50 0	60		90	60		
		*******	00	100	0	5			50	50	0	5(		40	50	95 100	
1-5	3 6		00	100	50	9		00	90	95	80	90		90	90	95	
			00	100					100	90	45	8	****	80	100		
1-5			00	100	80				100	100	100			100	100	1 10	
ļ			00 70	90	0		• • • • • • • • • • • • • • • • • • • •	95		0	10	2		50	0	10	
1-:			70 70	90	<del>-</del> 0		•	95		0	10	2		50	0	30	
		50	70 100	100	30			100		30	0		0	30	70 90	90	• •
1-			*********	100			00	100		90	70		5	90			
			100	100	*********			100		95	50		0	95	90		
1-		63	100	100		******		100		100	95		00	100	100 30		0
		250	********	100			60	100	60	95	75	• .	70	40	30 90		5
		63	95	100			90	100	100	100	99		99	99	90		0
l		250	100	100	*****		20	100		95	40		50	80 100	30		0
11	-63	63	100	100	<u>.</u> .		95	100		100	10	·	99		50		30
ļ		250		100	<del>.</del>		95	90	50	80	10		30	20	100		80
13	2-1	63 250	60 100	100		<b>-</b>	100	100	100	95	70		70	100	50		10
				10		0	90	100	40	90	30		60	90	90		70
ļ	2-2	63	100	10			100	100	100	100	9		90	95	4(		0
<b> </b>		250	100	10		0	60	100		90	C		10	30	80		30
1	2-3	63 250	100	: 10		00	100	100	***********	100	4	0 :	30	60	: 0/	<i>.</i>	<u></u>

			30	· · · · · · · · · · · · · · · · · · ·		0	50		ō		5	0	0	0		Ö	o ]
2-4	63 <b>25</b> 0	80 95	100				100		80		0	0	50	20		20	10
	63	90	10			0	100	<del></del>	100	<u>-</u>	0	60	50			10	70
2-5	03 250	100				00	100		100	9	0	90	95				0
	63	0	0		)	Ö	0		Ö		0	0	0	0		0	
2-6	250	50				0	0		80		Ö	20	10	0	ļ	0 10	0
2-7	63	90			0	70	100		95		10	90	95	70		10 70	90
2-1	250	100	******	0 1	00 1	00	100		100		00	95	100	95			50
2-8	63	40				0	60		90		0	40	80	60		15 15	50
2-0	250	100		0	0 1	00	100		90		0	40	80			0	30
2-10	63	50		0		60	100	100	40		0	0	90	45		40	30
	250	10	0 10	00		00	100	100	100	)	95	80	95 0	10		0	10
2-11	63	30			0	70	100		0		0	0	60	20		10	50
	250	10	0 10	00		00	100		100		40	50	********			0	
2-12	63	0			~ ~ <b>:</b>	40	0	0	0		0	0	0			0	<del>-</del>
	250	Ö			40	70	30	0	60		0	0	·····	0		0	<del>o</del>
2-14	63	50	0 9	0	0	0	50		10		0	30	20	6		0	30
	250	10		00		100	100					0	0		******	0	10
2-15	63	1 0		20	0	20	60	0	0	*****	0	0	0			0	0
	250	8	0 9	00	0	30	40	0	0		0		0	+		0	0
2-16	63	5	0	30	0	0	95					0 80	100		, <u>.</u>	20	15
	250	10	00 1		100	90	100		10		40 0	80	0		<u>,                                    </u>	0	0
2-18	63	4	0	0	0	0	10		. 0				0	<u>-</u>	0	0	20
	250			00	40	40	90		8		0	0	40		0	5	10
2-19	63			90	0	10	95		2			60	100		00	40	60
·····	250			00	10	100	100			00	50	60	70		25	60	80
2-23	63	i	00	00	70	100	100	100		00	80 100	90	100		00	100	95
	250	Ti i	00	100	100	100	100	100		00		95	100		90	95	90
2-24	63	i i	00	100	90	100	100	100		00	95	100	100		00	98	99
	250	<u> </u>		100	100	100	100	100		00	100	100	100		0	0	0
2-26	63		0	0	0	0	0	0		0 0		0	0		0	0	o
	250		80	0	0	0	90	0	•			30	95		30	20	70
2-27	63		100	100	60	80	100	100		00	50	80	100		70	90	90
	250	· · · · · ·	100	100	100	100	100	100		00	100	10	50		10	0	60
2-28	63		100	100	5	80	100			50		50	90		70	10	70
	250	·····	100	100	100	100	100			00	20	0	60	i	0	0	40
2-29	63		100	100	60	30	100	0		100	0 50	80	90	*****	45	15	65
	250		100	100	100	100	100	60		100	*********	0			0	0	0
2-30	63		0	0	0	0	0	0		0 20	0		0		0	0	0
	250	0	0	20	0	0	70	0		100	40	60	90		70	20	40
2-31	63	1	100	100	100	100	100			100	100	85	10		100	40	90
	25	Ö	100	100	100	100	100			100	99	90	10		90	40	80
2-32	6.	3	100	100	95	100	100	****		100	100		10	00	100	95	99
	25	0	100	100	100	100	100			**********	30	60	10	00	10	70	70
2-33	6		100	100	100	100	100			100	95	90			90	90	80
	25		100	100	100	100	100		~~	95	70	20		Ö	15	25	40
2-34	6	3	100	100	100	100	100		00	100	99	85		00	90	90	90
	- 25	50	100	100	100	100	100		0	25	0	0		0	0	0	0
2-36	6		100	100	10	60	100		30	90	10	20		0	10	0	40
<b>!</b>	2.	50	100	100	70	60			0	0	0	Ö		0	0	0	0
2-37	7 6	3	0	0	0	0	50		0		Ö		•••••	0	0	0	0
	2.	50	30	30	100	95	10		00	100	90		) [	99	70	70	90
2-39	9 6	3	100	100		100			00	100	10			00	90	95	99
	2	50	100	100	100	90	10		100	100	8.	5 6	0 0	90	95	50	95
2-40	0 (	53	100	100	80	100			100	100	10	0 10		00	100		100
[		50	100	100	100 80	90			100	95	50		0	70	80	35	50
2-4	1 (	63	100	100		100	<del>.</del>		100	100	10	0 10		100	100	95	90
	2	50	100	100	100	100			100	100	10	00 9		100	100		90
2-4	2	63	100	100	80 100	10	******		100	100	10		• • • • • • • • • • • • • • • • • • • •	100	100		
		250	100	100	i	90			100	90	<b>i</b>	0		60	80	10	20
2-4		63	100	100	60		<u></u>		100	100				100	100	70	******
		250	100	100	100			00		0			Ö	0	0	0	: 0
2-4	15	63	70	0	i	0		0		30		0	0	0	0	0	0
]		250	100	70	30		·	00	······	90	<del>i</del>	0	30	30	30		
2-	46	63	100	50			*******	00		100	) 1 3	50	90	70	10		
ļ		250	100	100				00	50	100	)	0	60	100	90		
2-		63	100	100		****		00	100	100	)		90	100	10		
[		250	100	100				00	100	10		85	95	95	10	0 9	0 90
	48	63	100	100	) : 10	. ; !	ו יַיַיי										

È

							:	·····	100	10	····	100	95	··· <u>·</u> ···i	00	00	99	99	)
	250		00	100	100 0	100		00	100	8		0	0		20	0	Ö	20	
2-49	63 250		00	100	100	90		00	100	9		10	Ö	<b></b>		40	15	60 25	
2-50	63		00	100	60	70		00	60	9		10	30			90	5 70	25 90	
	250		00	100	100	10		100	100 0		00	100	80 0		00	100 0	0	<u></u> 0	
2-52	63	<del>-</del>	00	10	95	0 10		50 100	80		0	0 40	40		90	95	25	80	
2-53	63		00	100	100	10		100	100		00	99	100	<b>i</b>		100	90	90	
2-54	250 63		100	100	100			100	100	1	00	90	90		100	90	90	70	
2-34	250		100	100	100			100	100		00	100	100		100 100	100 40	98 80	90 30	
2-56	63	···	100	100	100	10		100	100		00	90 100	10		100	90	95	95	
	250		100	100	100	10		100 100	100		00	50	70		90	15	40	80	
2-58	250		100 100	100	99		0	100	100		00	100	10	Ö	100	100	95	95	*****
2-59	63		100	100	30	2	0	100	50		00	40	4(	*****	70	10	10 70	25 75	
2-39	250		100	100	100		00	100	90		00	9 85	90		90	100 30	10	75	
2-61	63		100	100	40		0	100	80		10 00	100	10		100	80	95	95	
	250		100	100	10	<b>:</b>	00	100	10		00	95	9		100	95	60	95	
2-63	63		100	100	10		00	100	10		100	100	10	0	100	100	100	10	
2-64	250 63	<u>'</u>	100 90	100	0		0	90	Ö		100	0		0	40 70	0 20	0 35	10	
2-04	250	)	100	100	10		10	100	60	)	100	60 0		0 !	70 60	20 10	35	10	
2-66	63		100	100	3		10 80	100	6		95 100	60	9	5	99	20	15	6	ö
	25		100	100	90		00	100 100	10		100	50		0	100	100	90	9	
2-67	63 25		100	100	•		00	100	10		100	95		00	100	100	99	9	
2-69	6.	<u> </u>	90	100	****		0	100	5	0	70	0		0 30	20	<u>0</u>	0 10		0
2-09	25		100	100	8	0	40	100	6	0	95	10		0	90	0	0		5
2-70	6.	3	70	100	(	0	0 60	80		0	60	0		0	20	10	0		ō
	25	*******	100	90		0	20	100	<b>1</b>	<u> </u>	60	0		0	30	0	0		0
2-72	6. 25		100	100		0	20	100		0	100	50		50	100	50	5 50		<u>[</u> ]
2-73	6	1	100	100		00	90	100			100	90		75	100	40 100	95		00
2-73.	2		100	10		00	100	100			100 70	100		00 0	100	100	+ 6		30
2-74	6	3	100	10	******	10 70	.0 50	100			100	100	; <del> </del>	100	100	40	15	<b></b>	60
		50	100	10	<b>:</b>	00	20	100			100	20		20	70	0	0		30 80
2-75		3 50	100 100	10		00	60	100			100	100	)	60	100 0	20 0	0		80
2-77		3	70	30		0	0	90			0	0		0	30	20			20
		50	100	10		30	30	10			60 90	10		10	30	10	0		40
2-78		53	100	10	******	100	20	10			100	10		80	100	100	10		95
		50	100	10		90	100 60	10			100	7(	)	90	100	70	90		70
2-8	• •	63 50	100 100			100	100	10			100	10	0	90	100	80	90		90 10
2-8		63	100		00	80	0	10			80		<del>.</del>	20	80	- 0	1 0		10
		250	100		00	100	0	10	00		100 0			- <u></u>	† O	0	0		0
2-8		63	60		0	0	0		0		40	<del> </del> (	)	20	30	Ö	Ç		0
		250 63	100 80		00	-0	<u>0</u>		0		0		)	0	00	0			0
2-8		250 250	100		30	0	0		00		50		5	0 99	100	20			90
2-8	6	63	100	i	00	100	90		00		100		00	100	100	10	9	9	99
		250	100		00	95	100 90		00		90		00	50	80	15		5	40
2-8	37	63	100		00	100	100		00	<del></del>	10	Ö	0	85	100			5 0	90 40
ļ <u>.</u>	20	250 63	100		00	95	95	<u> </u>	00		10		50	60	100	20		0	90
2-8		250	10	0	00	100	100		00		10 30		90 0	<u>90</u>		0		Ö	Ö
2-	92	63	50		100	40	30		00		9(		20	40	20	9	0	20	10
	<u>-</u>	250	10		100	100	100		100	100	80		30	30	40	*********		70	60
2-	98	63 250	10	·	100 100	100	100	• •	100	100	10	0	00	95	95	*****	******	90 45	90 75
	100	63	10		100	30	100	<u> </u>	100	90	10		70	85 100	90			95	90
	100	250	10	0	100	100	100	0	100	100	10	)U	90 0	0	0		Ö	0	0
2-	102	63	3		0	0	0	******	0			<del></del>	·····	0	0		0	0	0
		250		)	0	0 30	20		100		1	00	20	40			0	10	50 70
2-	105	63		00	100	60	9		100			00	100	95			0	10	40
ļ <u></u>	-115	250 63		00	100	20	·· <del>·</del> Ö		100			0	80	30	) 9		0	<u>.</u>	40
}		125		ÖÖ	100	80	9		100			99 30	.95 .10	1(			10	10	30
····;	-117	63		0	100	80	10	00	100	1									

	250	100	100		100	100		100	70	60	90	95	35	90	0
2-118	63	40	90	90	10	90		0	0	0	0 20	25	10	30	
	250	100	100	40	80 70	100		50 100	0 70	75	70	30	20	70	
2-119	63	100	100	60		100		100	95	100	100	40	90	10	
	250	100	100 100	90 40	100 50	100		70	60	50	80	0	0		ö
2-120	63	90	100	70	80	100		100	90	95	100	60	90	9	5
	250 63	100	100	0	0	80		0	0	0	0	0	0		5
2-121		100	100	50	90	100		60	0	0	30	10	10		
	250	100	100	30	30	100	30	80	20	30	100	0	0	2	0
2-122	63 250	100	100	50	90	100	90	100	80	60	100	50	10		5
	63	100	100	60	100	100	95	80	40	30	60	0	0		10
2-123	250	100	100	90	100	100	100	100	80	70	100	90	15		30
	63	40	0	0	0	20		0	0	0	0	0	0		0
2-124	250	100	80	20	20	80		10	0	0	0	10	0	1	0
2-125	63	100	100	30	0	100		50	10	20	30	. 0	0	<b></b>	0 45
2-123	250	100	100	70	100	100		90	50	50	90	50	10		*******
2-126	63	100	100	10	10	100		40	10		30	0	0 5		10 60
2-120	250	100	100	70	90	100		100	40		90	30	0		0
2-127	63	90	100	0	0	100		20	0		30	0	0		10
	250	100	100	40	50	100		80	40		100	0	0		<u></u>
2-128	63	100	30	0	0	100	ļ <del></del>	30	0		20 70	10	5		·
	250	100	90	0	40	100	<u> </u>	100	30			40	50		40
2-129	63	90	100	60	50	100		90	30		60 100		90		80
	250	100	100	90	70	100		100 50	80		20	90			0
2-130	63	40	100	0	0	60		. :	30		90	25	· <u>-</u> <u>-</u> 5	•••••••	15
	250	100	100	40	30	100		100	10		40	10	ō	; <u>-</u>	15
2-131	63	90	85	60	30	90		90	60		80	20	1		50
	250	95	100	95	85 20	100		90	30	30	60	0	5	;	15
2-132	63	100	100	50	***********	100		100	40	50	100	:	1	5	45
	250	100	100	100	40 80			95	65	75	95		2	0	70
2-133	63	100	100	55	100	100		100	95	100		70		0	90
	250	100	100	100	20	100		35	0	0	20	0	(	0	10
2-134	63	100	60 80	30	30	100		80	30	30	90	Ö	[ (	0	20
	250	100			20	100		80	10		60	Ö		0	0
2-135	63	95 100	90	60	100	100		100	30		95	5		Ö	35
	250		80	0	0	90		10	0		0			0	0
2-136	63	40 90	100	40	100	100		40	0		- 10		) ; (	0	10
ļ <u></u> .	250	100	80	50	30	100		30	10	0	50	) 0		0	20
2-137	63 250	100	100	50	30	100		60	50		- 10			10	50
	63	100	100	40	10	100		50	40	10				0 15	30
2-140	250	100	100	100	100	100		80	80	60	9		<del>-</del>		85
2-141	63	100	100	30	40	100		30	30		- 3			0 45	<u>30</u> 70
2-141	250	100	100	90	100	100	)	70	95	*****	- 70				
2-142		0	0	0	0	40		0	0				<u></u>	0	<u>ö</u>
1	250	40	0	0	0	70		0	0				0	0	20
2-143		100	100	0	0	100	) —	30	3(				5	5	65
ļ	250	100	100	90	35	100	0	70		<b>:</b>			0	0	20
2-144		99	70	0	; 0	100		40	20 7.			0	0	Ö	45
····	250	100		20	30	10				5 3			10	0	10
2-145	63	100		40	10	10		- 60 - 10		******			10	0	60
1	250	100		90	100	10 9(					5	0	0	0	0
2-146	63	30		20	40			- 0 - 0		,			0	0	0
	250			0	20 80	10		*****	<u> </u>				90	100	99
2-147		10				10							00	100	10
[	250				100	10						95	0	0	Ö
2-14		10			50	10						00	0	0	60
	250				30							90	20	0	0
2-14		10	<b>•</b> • • • • • • • • • • • • • • • • • •		70		00 10	0 9	:			100	50	20	50
	250				- 70		0 -		)	0	0	0	0	0	Ö
2-15	1 63	C	30	!	40		80 -		0	Ö	40	40	0	30	3
	250	) (	10				)5 -		0		0	50	0	0	1 (
2-15				50	0		00 -		0	70	30	80	0	0	3
[	25 3 6				0		70 -		0	0	10	Ö	0	0	(
		1 10	00 20	) ! ()					00	0	0	40	0	0	2
2-15			***************************************			: 4	an : -	' '	<i>3</i> 0 :	<b>U</b> ,	• .				
2-15	25	0 10	00 50 00 10		80	,	90 -		70	50	80 95	85 95	80	10 90	3

2-155	63	100	100	0 :	0 :	100		60	50	30	85	0	0	30
	125	.100	100	30	40	100		95	70	70	100	10	15	60
2-157	63	100	100	30	40	100		30	30		35	10	0	30
	250	100	100	90	100	100		70	95		70	50	45	70
2-158	63	100	80	0	0	100		0	50	0	80	0	0	0
	250	100	95	0	0	100		95 100	80	20	95 95	10 0	0	10
2-161	63	100	100	0	20	100		100	90 99	0 30	100	10	0	40
	250	100	100	50	90	100		60	0	0	35	0	0	0
2-163	63	100	95	10 60	40 95	100	65 95	95	75	30	100	0	0	30
	250	100 i	100 60	30	40	100	93	10	0	0	0	0	0	20
2-168	63 250	100	100	80	90	100	-=	95	20	90	80	50		60
	63	70	0	20	10	65		0	0	0	0	0	0	10
2-169	250	80	90	30	20	100		30	0	20	80	20	0	40
2-170	63	70	90	30	40	100		60	0	20	30	30	10	10
	250	100	100	60	70	100		90	50	80	90	10	15	0
2-171	63	50	90	10	10	70		30	0	10	20	10	0	Ö
	250	100	100	30	60	100		90	10	30	80	10	0	10
2-172	63	70	90	20	60	30		20	0	0	20	30	0	10
	250	100	100	80	95	100		65	60	40	100	100	10	50
2-173	63	30	95	30	0	90		40	0	0	30	0	0	50
	250	100	100	70	40	100		80	20	10	80	95	20	10
2-174	63	90	100	40	30	80	10	20 90		10 90	20 70	90	60	50
	250	100	100	80	100	100	90		60 0	0	0	0	0	20
2-175	63	100	100	30 30	70 50	100		0	40	30	60	50	···	40
	250	100	100			100		60 0	0	0	0	0	0	
2-176	63	50 90	0 70	0	0 40	100		20	0	0	20	0	0	<del>ö</del>
	250		70 70	0	40	100		40	0	0	30	10	0	10
2-177	63 250	100	100	40	90	100		70	40	30	70	50	10	20
2 170	63	0	0	0	0	20		0	0	0	0	0	0	0
2-178	250	0	0	0	ō	0		0	0	0	0	0	Ö	0
2-179	63	100	100	30	60	100		50	20	30	20	0	0	20
	250	100	100	100	70	100		90	85	95	95	5	10	60
2-180	63	100	100	40	60	100		30	10		20	60	0	40
	250	100	100	50	100	100		90	80		90	100	5	70
2-181	63	100	100	10	30	100		70	40		60	80 70	0 5	15
·····	250	100	100	90	80	100		95	80		90 30	30	0	80 15
2-182	63	90	100	10	0	100		30	10		90	60	10	70
	250	100	100	60	100	100		90	60 0		0	0	0	0
2-183	63	0	0	0	0	0 40		0	0		0	0	0	0
	250	30	10	i	50			50	30		60	35	ō	30
2-184	63	100	100	50	100	100 100		100	80		100	70	30	60
	250	100	100	75	60	100		30	10	20	20	20	0	20
2-185	63	100	100	60	60	100		50	10	20	40	50	5	40
	250 63	100	100	60	75	100		50	20		90	35	0	40
2-187	- 250	100	100	100	100	100	<u> </u>	100	60		100	90	90	90
2-188	63	100	90	0	10	100		30	30	10	10	0	0	10
	250	80	100	0	90	100		50	60	30	60	20	0	10
2-189	40.5	95	70	0	0	100		0	0	0	0	0	0	0
	162	90	100	10	20	100		0	0	0	0	0	0	10
2-190	63	95	100	30	0	100	<u> </u>	0	0			20	0	20
1	250	100	100	70	90	100	ļ <del></del>	30		0	30	0	0	10
2-191	63	100	80	10	10	100	·	40 80	10	50	70	10	0	20
	250	100	100	30	40	100	ļ <del></del>	80			<u> </u>			
2-192	63	90		0	30	80		0	0	0	0	0	0	0
	250	90 75	85	0	0	40	0	0	0	0	0	0	0	0
2-194	63	100	90	10	20	85	0	20	0	0	10	.10	0	10
ļ <u></u>	250 63	100	100	0	20	100	30	90	40	10	90	10	0	20
2-196	250	100	100	60	70	100	90	100	85	20	100	0	0	50
2-197	63	100	90	0	30	100	100	50	0	0	80	0	0	30
2-19/	250	100	100	50	50	100	100	100	50	20	100	50	0	80
2-198	63	100	100	50	100	100	100	90	50	50	100	50 100	50	30 80
} <u>-</u>	250	100	100	100	100	100	100	100	100	99	100		90 95	99
					100	100	1	100	: 99	100	100	100	: 42	
2-199	63	100	100	100						······································		100	100	: 100
2-199	63 250 63	100		100 100 80	100	100	100	100	100 99	100 100	100 100	100	100 75	100

•	250	100	100	100	100	100		100	100	100	100	100	100	100
-201	63	95	98	0	55	98	30	0	15	0	45	0	0	0
	250	95	100	0		100	80	75	75	30	95	35	0	35
-202	63	100	100	30	100	100		40	90		30	0	0	40
	250	100	100	80	100	100		100	100	!	100	60	50	90
-203	63	70	75	30		100		20	0	0	60	0	0	10
	250	100	100	90	70	100		70	80	40	90	30	0	20
-204	63	100	99	60	50	70	50	95	20	40	35	20	50	Ö
	250	100	100	75	100	100	85	99	70	80	100	95	70	30
-205	63	100	100	0	0	100	80	70	80	40	70	0	0	20
-205	250	100	100	40	95	100	90	100	99	85	99	15	50	70
206		0	70	20	50	50		0	0	0	Ö	10	50	60
-206	63 250	80	100	60	90	100		70	90	40	80	100	100	80
	250				0	20	0	0	0	0	0	0	0	0
3-1	63	0 30	0 20	0	0	80	0	0	Ö	0	0	0	0	0
	250	30	0	0	0	0		20		0	0	0	Ö	0
3-4	63	0						60		10	10	10	Ö	<u>ў</u>
	250	100	100	60	50	100			40	30	30	10	0	30
3-6	63	90	100	100	100	100		100	**********			100	90	80
	250	100	100	100	95	100		100	80	80	100			
3-23	63	0	0	0	0	0		0	0	0	0	0	0	0
	250	0	40	0	0	70		0	0	0	0 [	0	0	0
3-26	63	80	75	40	50	80	10	0	0	0	0	0	0	0
J-2U	250	100	100	90	100	90	90	85	30	50	80	20	30	40
	63	100	100	95	100	100		100	10	60	60	70	10	50
4-1		100	100	100	100	100		100	100	100	100	100	80	95
	250		<u>.</u>		0	100	30	70	0	0	40	20	0	10
4-2	63	100	100	0 80			100	100	80	70	90	70	5	20
	250	100	100		100	100			70	80	100	10	60	70
4-7	63	100	100	70	80	100		100	90			40	95	100
**********	250	100	100	100	100	100		100		95	100	70		60
4-23	63	100	100	80	100	100		80	80	70	80		35	90
	250	100	100	100	80	100		100	95	90	100	40	90	********
4-24	63	100	50	0	20	100		90	10	10	30	0	0	10
	250	100	100	80	30	100		100	50	40	70	0	5	50
4-25	63	30	0	0	0	60		0	0	0	0	0	0	0
·····	250	100	60	20	0	100		50	0	0	10	10	0	0
	63	70	80	0	0	100		75	0	Ö	10	0	0	0
4-26	250	100	100	Ö	10	100		95	30	20	90	0	0	45
				0	20	80		30	0	0	0	10	0	10
4-27	63	70	80		50 50	100		50	0	<u>ö</u>	0	40	0	50
	250	100	100	30				20	0	0	0	0	0	0
4-28	63	40	20	0	0	70		60		0	0	0	0	15
	250	70	60	0	0	100			0		100	25	80	50
4-29	63	100	100	40	70	100		100	70	70			95	85
	250	100	100	80	90	100		100	90	90	100	50		90
4-30	63	100	100	90	60	100		100	60	30	90	20	30	
	250	100	100	95	100	100		100	90	80	100	45	70	90
4-31	63	100	30	0	0	90		90	10	10	50	0	0	10
J l	250	100	100	10	40	100		100	30	20	100	10	10	30
	<u>∠30</u> ⊢ 63	50	0	0	0	80		30	0	0	20	0	0	0
4-32			70	30	40	100	·	95	50	30	80	5	10	3(
	250	100	50	0	0	100	·	100	20	30	45	10	10	2
4-33	63	100		50	70	100		100	80	80	90	30	50	4
	250	100	100		30	.i	. <u>.</u>	80	50	40	90	25	10	5
4-34	63	100	100	40	. <del> </del>	100	<u> </u>	100	90	80	95	80	90	9
	250	100	100	95	80	100	. <b></b>		30		30	70	90	6
4-36	63	90	100	80	100	100		60			100	95	100	9
	250	100	100	100	100	100		100	90			95	0	<u> </u>
4-37	63	100	100	30	30	100		90	10		60 90		0	3
	250	100	90	40	50	100		100	60			15		
4-38	63	100	80	30	60	100		100	30		95	10	10	3
	250	100	100	60	50	100		100	60		100		20	
W 20	63	100	100	30	80	100	<u> </u>	100	60		100	30	.70	8
4-39	250		100	90	100	100		100	80		100	30	90	
		100		;	30	100		100	60		100	10	0	
4-40	63	100		60				100			100	80	75	
	250	100		90	90	100					100	40	15	
4-41	63	: 100		100	100	100		100			100	80	65	-
	250	: 100	100	100	100	100		100	90			10		
4-12		30	60	0	0	40		30	0		10		0	:
	250	90	100	100	40	100		100	************		60	0	0	
	63	10	20	0	0	30		0	0		. 0	10	0	
4-43						80		70	10				. 0	

	63	100	100	100	100	100		100	80		100	60	70	70
4-44	250	100	100	100	100	100		100	95		100		95	65
	63	30	50	0	10	50		0	0		0	50 0	0	0
4-45	250	100	90	40	40	95		50	40		70	15	20	10
	63	80	50	30	10	100		40	20	20	70	0	0	10
4-46					85	100		100	60	60	95	15	5	50
	250 63	100	100	40 0	30	100		80	60		70	0	30	20
4-47	63	70	100	70					98		100	15	90	70
	250	100	100	*********	100	100		100	50		*************		30	
4-48	63	100	100	40	80	100		100		60	100	40		20
	250	100	100	100	100	100		100	70	90	100	35	50	70
4-49	63	100	95	30	40	100	80	70	10	50	70	10	0	30
	250	100	100	60	100	100	60	100	75	90	100	10	15	25
4-50	63	20	20	0	0	40	0	0	0	0	0	0	0	0
	250	100	100	0	30	100	0	10	0	0	30	20	0	10
	*****	100	100	20	30	100		80	10	30	40	20	0	10
4-53	63 250		100	60	80	100		100	85	85	100	90	25	50
	250	100						90	50	30	60	0	0	10
4-54	63	100	100	30	30	90			***********		100	10	5	60
	250	100	90	80	70	100		100	85	80	ii			
4-55	63	30	80	0	20	90		40	0	0	0	0	0	0 60
	250	90	100	30	70	100		90	30	60	70	70	30	60
4-56	63	100	100	10	40	100		90	50	50	50	0	35	50
	250	100	100	100	100	100		95	80	90	95	50	80	90
A. 67	63	95	100	10	50	100		80	20	10	60	20	0	20
4-57	250	100	100	100		100		100	75	70	95	50	45	70
	i			70	30	100		80	30	20	30	10	0	30
4-58	63	100	100					100	70	60	100	50	25	70
	250	100	100	100	100	100			10	40	40	50	5	<u>/</u> 0
4-59	63	100	100	20	95	100		30						<del></del> 70
*************	250	100	100	90	100	100		90	90	95	100	90	80 0	
4-60	63	100	100	90	50	100		90	40	30	100	10		60
	250	100	100	100	100	100		100	70	50	100	60	30	70
4-61	63	100	60	40	30	100		80	30	20	50	0	. 0 :	0
4-01	250	100	70	30	60	100		75	50	50	90	0	Ö	50
		100	100	50	60	100		80	10	10	50	10	0	10
4-62	63		.ii		30	100		100	60	50	90	10	10	70
	250	100	100	100				70	30	30	70	10	0	40
4-63	63	100	100	40	40	100				50	95	75	35	90
	250	100	100	100	100	100		100	70				33	30
4-64	63	100	100	20	40	100		100	30	40	100	30		**********
	250	100	100	90	70	100		100	70	80	100	80	45	80
4-65	63	100	100	80	90	100		100	80		100	10	55	65
	250	100	100	90	100	100		100	90		100	70	75	90
4-66	63	100	100	30	60	100		70	30		80	30	0	20
	250	100	100	70	90	100		100	90		100	95	50	65
	63	100	100	40	80	100	ļ	90	40	·	100	10	5	60
4-67				60	90	100		100	80		100	10	15	40
	250	100	100		40		<u></u>		60		100	35	45	50
4-68	63	100	100	40	<u> </u>	100	ļ <del></del>	100					. <b> </b>	90
	250	100	100	100	100	100	<u> </u>	100	98		100	80	80	10
4-69	63	30	80	0	0	70		95	30		100	0	0	
	250	80	90	50	40	90		100	70		100	10	. 0	30
4-70	63	100	100	50	100	100		60	40		60	80	90	40
	250	100	100	80	100	100		100	95		100	95	95	70
<u>. 7</u>	63	60	100	0	0	100		70	0	0	30	0	0	20
5-3	250	100	100	30	10	100	·	100	20	95	100	10	0	20
	63	0	100	0	0	0	· • • • • • • • • • • • • • • • • • • •	0	0	0	0	0	0	0
5-15	:	. 0		0	0	0		0		0	0	0	0	0
	250		0				·	0	0	0	0	0	0	0
5-16	63	0	0	0	0	0			0	0				0
[	250	0	0	0	0	20		. 0		;				20
5-17	63	30	40	0	0	70		95	0	40	30	0		20 20
***************************************	250	100	100	30	0	100		100	40	70	50	0	. 0	
5-18	63	30	40	0	0	70		95	0	40	30	0	0	20
}	250	0	70	10	0	95		90	0	30	20	0	: 0	10
} <u></u>	;	100	70	10	0	100		60	20	0	30	0	0	15
5-26	63 250		100	80	40	100		90	30	30	80	10	0	40
ļ		100						50	30	20	30	15	10	30
5-28	63	100	100	100	60	100		*** \$4 *** *******				20	20	60
[	250	100	100	100	100	100		85	60	30	90			
	63	60	10	0	0	40		80	10		80	0	. 0	0
6-13		100	40	0	0	100		100	40		90	10	0	10
6-13	: 250					***********	***				100	70	90	90
	250 63	90	100	40	60	100		100	100		100			
6-13	250 63 250		100	40 60	60 100	100		100		·	100	****	100	100

······	250	100	100	80	40	100		100	80	100	100	30	5 :	60
6-16	63	30	10	0	0	100		60	10		30	0	0	0
li	250	50	20	0	0	100		90	30		90	0	0	20
6-17	63	90	30	0	0	100		70	10		30	0	0	0 40
	250	100	95	20 0	30 0	100		99 0	90		99 0	0	0	40 0
6-19	63	30 70	20		0	70 90		10		0		-0	0	
	250	10	50	0		50		0	0	0	0	Ö	0	0
6-20	63 250	0	0	0	0	30		0	0	0	0	0	0	0
6-22	63	30	20	0	0	40		10	0	0	0	0	0	0
0-22	250	100	100	60	0	100		50	0	10	20	0	0	10
6-23	63	50	0	0	0	30		0	0		0	0	0	0
	250	100	50	10	20	100		60	0		10 0	0	0	0
6-24	63	20	0	0	0	30 90		0	0		20	10	0	10
	250	100	70	0 30	60	100	80	40 95	70	95	100	50	20	20
7-2	63	100 100	95 100	30	80	100	100	100	100	100	100	10	40	30
7-14	250 63	40	40	10	30	70		0	0		60	15	0	5
/-14	250	80	60	50	20	100		70	40		70	10	0	20
7-15	63	80	40	0	0	100		0	0	0	0	0	0	0
	250	100	90	10	50	100		60	10	20	60	0 1	0	10
8-2	63	90	80	0	0	80		20	0	0	0 70	0 10	0 20	20
	250	100	100	90	0	100		100	40	20	30	0	10	30
8-3	63	99	98	30	30 10	99 100		95 98	0 10	20 30	60	0	0	<del>ö</del>
	250 63	100 60	100 0	50 0	0	80		30	0	0	20	0	0	0
8-4	250	100	90	0	0	99		70	0	20	20	0	0	20
8-5	63	40	0	0	0	0		70	Ö	0	0	0	0	0
	250	95	70	40	0	80		90	0	20	0	0	0	0
8-7	63	99	100	0	0	95		95	0	10	50	0	0	0
	250	100	100	0	0	100		99	70 0	70	80	0	10	10
8-13	63	50	90	0	0	100		20	30	0 30	0 40	0	0	10
	125	70	100	0	0	70 70		40 50	10	0	10	0	0	10
8-18	250	60 100	90	60	30	100		100	90	50	80	0	10	30
8-30	63	100	70	20	20	100		20	0	0	30	0	0	5
8-50	250	100	90	20	10	100		70	20	30	50	0	5	10
8-31	63	90	60	0	0	100		10	0	0	0	0	0	0
	250	100	95	20	30	100		10	0	10	10	0	10 0	30 20
8-36	63	100	80	10	10	100		0 30	0	0	0	0	0	40
	250	100	30	30	20	100		30	0	0	40	0	0	0
9-4	63	60	90	30 60	10	30 80		70	10	30	60	50	0	10
	250	100	100	0	0	80		0	0	0	0	0	0	0
9-14	63 250	65	85	0	10	100		30	40	10	30	0	0	10
9-15	63	100	100	10	70	100		20	0	0	10	0	0	25
	250	100	100	80	100	100	<u> </u>	60	30	20	40	10	10	60
9-16	63	70	100	20	70	100		30	0	10 40	10 40	40	90	80 90
	250	100	100	60	70	100	ļ	70 0	40	40	0	95 0	90	30
9-19	63	100	100	0 20	30 0	100		60	0	20	80	20	0	50
	250 63	100	100 95	20	0	100		100	90	0	100	20	0	0
11-6	250	100	100	99	80	100	-	100	100	40	100	20	20	50
11-13	63	100	95	0	65	100	30	70	30	0	60	0	0	0
} <u>-</u>	250	10	100	85	80	100	60	100	80	40	100	0 90	0	1 <i>5</i>
12-2	63	100	100	90	95	100		95	40	90	95	90	99	99
	250	100	100	100	100	100		100	99 0	100	100	100	0	10
12-3	63	95	100	30 70	0	100		30		0	30	20	0	20
	250	100 30	100 70	- 70	90	90		0	0		0	0	0	0
12-5	250	100	90	80	20	100		0	40		10	0	0	10
12-8	63	100	0	0	0	100		60	0	10	50	0	0	30
	250	100	100	20	40	100		100	40	40	100	0	0	40 0
13-3	63	100	0	0	0	90		10	0 10	0 10	30	0	0	0
	250	100	20	30	0	100		40 30		10	30	0	0	0
13-4	63	60	90	0	10	100		90	0 30	40	90	35	15	30
	250 63	100	100	50	90	20	0	30	0	0	0	0	0	0
13-5		30 95	0	0	0	50	0	50	0	30	10	0	0	0
	250	; 93	<u> </u>	<u> </u>	_ <u>``</u>		<u> </u>							

	63	100	75	0 :	30	98	0 1	15	15	0 !	40	20	0	15
14-1	250	100	100	Ö	75	100	0	55	30	90	85	60	10	45
14-2	63	100	35	0	50	100	0	20	0	10	0	0	0	Ö
	250	100	100	10	85	100	50	30	0	60	65	10	30	10
14-3	63	. 100	100	20	0	100	0	40	0	0	30	20	0	0
	250	100	100	80	50	100	65	80	40	60	90	90	90	50
14-4	63	90	50	20	0	60		10	0		20	0	0	0
	250	100	80	20	70	100		40	0		95	95	20	15
14-5	63	70	100	0	20	70		10	0		20	25	0	Q
	250	100	100	10	30	100		60	40		95	20	70	20
14-6	63	100	30	30	10	20		10	0	0	90	30	0	15
	250	100	100	30	20	100		100	70	30	100	50	5	50
14-7	63	90	100	20	0	40	0	10	0	0 [	90	0	10	0
	250	100	100	0	0	85	50	90	75	70	100	50	90	40
14-8	63	100	0	0	0	70	0	0	0	0	40	0	0	0
	250	99	40	0	0	95	40	0	20	0	100	0	0	0
14-9	63	80	0	0	0	60	0	0	0	0	90	0	0	0
	250	100	90	0	0	90	0	20	70	30	100	0	75	5
14-10	63	100	0	0	0	0	50	0	0	0	0	0	0	20
	250	100	90	0	70	100	100	0	0	30	90	50	40	30
14-11	63	100	50	0	30	70	0	0	0	0 [	50	0	0	0
·····	250	100	100	0	50	100	100	50	0	0	100	0	0	0
14-12	63	60	0	0	0	50	0	0	0	0	0	0	0	0
<b>!</b>	250	100	20	0	0	60	0	0	0	0	100	20	0	0
14-13	63	80	10	0	0	0	0	0	0	0	30	0	0	0
ļ	250	100	80	0	0	70	30	10	0	0	100	10	5	0
14-14	63	100	0	0	0	60		0	0	0	50	20	0	0
	250	100	20	0	20	100		50	10	0	90	30	0	20
14-15	63	100	50	0	0	20		0	0	0	70	0	0	0
	250	100	100	40	20	95		30	80	0	100	20	0	0
14-16	63	100	0	0	0	100		0	0	0	50	0	0	0
}	250	100	90	0	0	100		0	0	0	100	0	0	0
14-17	63	100	50	0	0	90		0	0	0	90	0	0	
	250	100	100	0	30	100		80	50	30	100	0	40	0
14-18	63	100	40	0	0	100	0	0	0	0	0	0	0	10
	250	100	70	20	20	100	70	20	20	10	90	0	<b></b>	
14-19	63	0	0	0	0	0		0	. 0	0	0	0	0	0
·····	250	90	50	0	0	80		0	0	0	80	50	·	
14-20	63	50	.0	0	0	0		0	0	0	0	0 20	0	0
	250	100	90	0	0	80		30	40	20	· 0	20	50 0	0
14-21	63	60	40	0	0	20	0	0	10	0 35		70	70	20
[	250	95	100	10	0	75	40	0	20		70	ļ	÷	0
14-22	63	100	0	0	0	20		0	0	0	50	30	0	10
	250	100	70	0	0	90		0	0	0	30	0	0	0
14-23	63	95	0	0	0	0		40	10	0	90		0	0
	250	100	80	.0	30	90			30	80	20	0	0	0
14-24	63	50	0	0	0	0	<u> </u>	0	0.	0	·	10	0	20
	250	100	80	30	0	50	<u> </u>	90	. <del>.</del>	80	80 70	80	95	90
14-25	63	100	100	50	70	100	<u> </u>		80	100	100	100	100	100
	250	100	100	100	100	100 70	ļ <del></del>	100	100	0	50	0	0	0
14-26	63	100	80	0			<b></b>	99	95	70	95	30	50	80
	250	100	100	20	0	100	ļ <del></del>	0	0	1 0	0	0	0	0
14-27	63	50	30	0	0	90	ļ		0	0	90	<del>                                     </del>	0	0
	250	100			0	90	ļ <del></del>	0	0	0	0	0	0	0
14-28	63	90	0	0		-\$	·•	0	20	40	100	40	20	0
	250	100	80	0	0	95	·	0	0		0	0	0	0
	: 63	20		0	0	50	·	0	0	0	50	20	10	20
14-29		~~~	80		0	0		0	0	0	0	0	0	0
	250	95		. ^				0	0	Ö	90	0	0	0
14-29	250 63	70	0	0	·	gΛ								
14-30	250 63 250	70 100	0 50	0	0	80 40		j		· · · · · · ·	0	0	0	0
	250 63 250 63	70 100 70	50 0	0 0	0 0	40		Ö	0	0		0 20	0 30	0
14-30	250 63 250 63 250	70 100 70 100	0 50 0 70	0 0 0	0 0 50	40 50		0	0	0	0	20 0	30 0	0
14-30	250 63 250 63 250 63	70 100 70 100 100	0 50 0 70	0 0 0	0 0 50	40 50 80		0 0 0 40	0	0 0 0 20	90 20 100	20	30 0 0	0 0 10
14-30 14-31 14-32	250 63 250 63 250 63 250	70 100 70 100 100	0 50 0 70 10	0 0 0 0 30	0 0 50 0	40 50 80 100		0 0 0 40	0 0 0 30	0 0 0 20	90 20	20 0	30 0 0	0
14-30	250 63 250 63 250 63 250	70 100 70 100 100 100	0 50 0 70 10 50	0 0 0 0 30	0 0 50 0 0	40 50 80 100		0 0 0 40	0 0 0 30 0	0 0 0 20 0	90 20 100	20 0 20	30 0 0 10 20	0 0 10 0
14-30 14-31 14-32	250 63 250 63 250 63 250 63 250	70 100 70 100 100 100	0 50 0 70 10 50 20	0 0 0 0 30 0	0 0 50 0 0	40 50 80 100 0		0 0 0 40	0 0 0 30	0 0 0 20	0 90 20 100 0 99	20 0 20 0 20 20 30	30 0 0 10 20	0 0 10
14-30 14-31 14-32	250 63 250 63 250 63 250 63 250 63	70 100 70 100 100 100 100 100	0 50 70 10 50 20 90	0 0 0 0 30 0 0	0 50 0 0 0	40 50 80 100 0 90		0 0 0 40 0 50 30	0 0 30 0 0	0 0 0 20 0	0 90 20 100 0	20 0 20 0 20	30 0 0 10 20	0 0 10 0
14-30 14-31 14-32	250 63 250 63 250 63 250 63 250 63 250	70 100 70 100 100 100	0 50 0 70 10 50 20	0 0 0 0 30 0	0 0 50 0 0	40 50 80 100 0		0 0 0 40 0 50	0 0 30 0 0	0 0 20 20 30	0 90 20 100 0 99	20 0 20 0 20 20 30	30 0 0 10 20	0 0 10 0 10

	250	100	100	0	0	100		100	99	50	95	20	25	10
14-36	63	75	100	0	0	75	10	10	0	0	30	0	0	10
	250	100	100	0	0	100	80	95	90	30	95	40	10	70
14-37	63	100	90	0	0	100		0	0	0	0	0	0	0
	250	100	100	0	0	100		95	99	0	100	0	0	80
14-38	63	99	40	0	0	90		0	0	0	0	0	0	0
	250	100	100	0	0	100		80	70	0	90	0	0	30
14-39	63	100	100	0	0	100		70	10	0	95	0	0	0
	250	100	100	20	0	100		100	95	60	100	0	0	80
14-40	63	100	100	0	0	95	30	50	10	0	60	0	0	20
	250	100	100	0	0	100	90	100	80	40	100	20	0	60
14-41	63	100	90	0	0	100		30	0	0 !	50	0	0	0 50
	250	100	100	0	40	100		100	80	0	100	50	0	
14-42	63	95	80	0	0	90	0	30	0	0	0	0	0	10
	250	100	95	0	30	100	100	80	20	0	50	95 0	20 0	30
14-43	63	100	90	0	0	100	0	30	0	20	80	70	20	10
	250	100	100	0	0	100	100	95	80	30	100	0	0	40
14-44	63	70	80	0	0	70		0 70	0	0	0		0	
	250	100	100	0	0	100			50		90	100		50
14-45	63	100	100	0	0	95		0 95	0 80	0	30 99	0 80	0 10	10 80
	250	100	100	0	0	100	50	95	80 0	50 0	0	0	0	0
14-46	63	60	80			0		0	0				************	
	250	95	100	0	0	90	100			0	0 30	.30 0	0	30 0
14-47	63	100	001	0	0	100		0 99	0	20	100	100	0	70
	250	100	100			100	0		95 0				0	30
14-48	63	90	90	0	0	50		0	50	0	0 70	0 95	40	
	250	100	100	0	0 50	100	80	50 50	0	20	50	0	10	40
14-49	63	100	100	70	90	100		100	100	90	100	100	95	95
	250	100	100			100		0	0	50	0	0	10	0
14-50	63 250	100	0 50	0 30	10 70	100		50	30	95	40	0	90	0
		100	10	0	0	90		0	0	0	0	Ö	0	0
14-51	63	100	100	0	50	100		0	0	Ö	0	0	Ō	0
	250 63	40	70	0	0	80		0	0	0	0	0	0	0
14-52	250	90	100	0	30	100		0	0	0	0	0	0	0
14-54	63	20	0	0	0	10	0	20	0	0	0	0	0	0
14-34	250	85	70	10	40	100	0	80	0	30	30	0	0	15
14-55	63	0	10	0	0	0	Ö	0	0	0	0	0	0	0
14-33	250	i	<u> </u>											
14-56	63	100	30	0	0	80		20	0	0	30	0	0	10
14-50	250	100	60	10	0	100		70	0	30	40	0	0	10
14-57	63	0	0	0	0	0		0	0	0	Ö	Ö	0	0
}	250	0	0	0	0	0		0	0	0	20	0	0	0
14-59	63	0	0	0	0	40		0	0	0	0	0	0	0
·····	250	0	0	0	0	0		0	0	0	0	0	0	0
14-60	63	100	100	0	90	100		10	0	0	0	0	0	0
·····	250	100	100	0	100	100		60	20	10	30	10	0	20
14-61	_ 63	30	0	0	0	0	0	0	0	0	0	0	0	0
···········	250	95	40	0	20	80	0	60	0	20	40	0	0	0
14-62	63	40	15	0	0	20	0	0	0	0	0	0	5	15
[	250	100	95	0	0	80	30	60	20	60	50	0	• • • • • • • • • • • • • • • • • • • •	
14-63	63	99	70	; 0	0	80	0	30	0	0 20	70	0	0	0
	250	100	100	50	0	99	60	99	50	20 0	100 50	0	0	0
14-64	63	100	90	0	0	60	20	0	0	. 1				10
	250	100	100	0	0	100	60	100	95	20 20	100	20	0	0
14-65	63	100	90	40	40	60	100	20	0	20	90 100	40	0	0
ļ	250	100	100	80	70 ·	100	70 0	90 20	80	0	90	0	0	0
14-66	63	100	90	0	0	90	. 4	100	50 100	30	100	0		20
<b></b>	250	100	100	100	60	100	0	100	99		100	95	95	90
15-1	63	100	100		100	. i		100	100	<u> </u>	100	100	100	100
	250	100		100	100	100		100	100	100	100	90	80	99
15-2	63	100	100	100	100	100	·	100	100	100	100	100	100	100
ļ	250 63	100	100		100	100	100	100	100	100	100	100	90	95
15-3			100	100	100	100	100	100	100	100	100	100	100	100
	250 63	100	100	100	100	100	100	100	80		100	90	90	80
15-4	250	100	100	100	100	100	+	100	100		100	100	100	100
15-5	63	100	100	100	100	100		100	70		100	90	80	70
	. 0.3	, 100	: 100											
13-3	250	100	100	100	100	100		100	99		100	99	99	99

.

15-7 2 15-8 2 15-9 2 15-10 2 15-11 2 15-13 15-14 15-15 15-16	63   250   63   250   63   250   63   250   63   250   63   250   63   250   63   250   46   185   63	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	100 100 100 100 100 100 100 100 100 100	90 100 100 100 20 80 90 100 80 100	100 100 95 100 0 70 99 100 100	100 100 100 100 60 100 100		99 100 100 100 20 0	100 80 100 0 40	100 95 100  100	100 100 90 100 30	95 95 95 100 10 80	100 85 100 0 90	100 90 100 15 90
15-7 2 15-8 2 15-9 2 15-10 2 15-11 2 15-12 2 15-13 3 15-14 3 15-15 15-16 15-17	63   250   63   250   63   250   63   250   63   250   63   250   63   250   646   185   185	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	100 100 40 100 100 100 100 100 100	100 100 20 80 90 100 80	95 100 0 70 99 100	100 100 60 100 100	  	100 100 20 0 100	100 0 40	100	100 30 100	95 100 10 80	100 0 90	100 15 90
15-8 2 15-9 2 15-10 2 15-11 2 15-12 3 15-13 15-14 15-15 15-16	63 250 63 250 63 250 63 250 63 250 63 250 63 185	100   60   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1	100 40 100 100 100 100 100 100	100 20 80 90 100 80	100 0 70 99 100	100 60 100 100		100 20 0 100	0 40	100	100 30 100	100 10 80	100 0 90	15 90
15-8 2 15-9 2 15-10 2 15-11 2 15-12 3 15-13 15-14 15-15 15-16	63 250 63 250 63 250 63 250 63 250 63 250 63 185	60   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1	40 100 100 100 100 100 100	20 80 90 100 80	0 70 99 100	60 100 100 100		20 0 100	0 40		30 100	10 80	0 90	90
15-10 15-10 15-11 15-12 15-13 15-14 15-15 15-16	250 63 250 63 250 63 250 63 250 63 250 46	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	100 100 100 100 100 100 100	80 90 100 80 100	70 99 100	100 100 100		0 100			100	80		90
15-10 15-11 15-12 15-13 15-14 15-15 15-16	63 250 63 250 63 250 63 250 46 185	100 100 100 100 100 100 100 100	100 100 100 100 100 100	90 100 80 100	99 100 100	100 100		100		·····		***********		
15-10 15-11 15-12 15-13 15-14 15-15 15-16	250 63 250 63 250 63 250 63 250 46	100 100 100 100 100 100 100	100 100 100 100	100 80 100	100 100	100				100 :	90	100	85	95
15-10 15-11 15-12 15-13 15-14 15-15 15-16 15-17	63 250 63 250 63 250 46 185	100 100 100 100 100 100	100 100 100	80 100	100			100	100	100	100	100	98	100
15-11 15-12 15-13 15-14 15-15 15-16	250 63 250 63 250 46 185	100 100 100 100	100 100 100	100	100		100	100	99	100	100	100	75	80
15-11 15-12 15-13 15-14 15-15 15-16	63 250 63 250 46	100 100 100 100	100 100		100 :	100	100	100	100	100	100	100	100	100
15-12 15-13 15-14 15-15 15-16	250 63 250 46 185	100 100 100	100	100	100	100		100	100	100	100	99	100	100
15-12 15-13 15-14 15-15 15-16 15-17	63 250 46 185	100 100		*******	100	100		100	100	100	100	100	100	100
15-13 15-14 15-15 15-16	250 46 185	100		100	100	100		100	100	100	100	99	100	99
15-13 15-14 15-15 15-16 15-17	46 185			100		100		100	100	100	100	100	100	100
15-14 15-15 15-16	185		100	100	100 100	100		100	99	99	100	60	35	90
15-14 15-15 15-16	185	100	100	100		100		100	100	100	100	100	100	100
15-15 15-16	63 :	100	100	100	100			100	100	100	100	99	40	99
15-16		100	100	90	100	100		100	100	100	100	100	99	100
15-16	250 63	100	100	100	100	100		100	100	100	100	100	95	95
15-16 15-17	63	100	100	100	100	100		100	100	100	100	100	100	100
15-17	250	100	100	100	100	100		100	80	100	100	90	65	90
15-17	63	100	100	90	90	100		100			100	100	100	100
	250	100	100	100	100	100		100	100	100	100	100	80	100
	63	100	100	100	100	100		100	100	100			80 95	100
******	250	100	100	100	100	100		100	100	100	100 100	100 75	95 80	90
15-18	63	100	100	100	90	100	<u> </u>	95	75	75			95	90
	250	100	100	100	100	100		100	100	100	100	100	95 80	99
15-19	63	100	100	100	100	100		100	100	100	100	95	100	100
	250	100	100	100	100	100		100	100	100	100	100 80		70
15-20	63	100	100	60	80	100		100	50		100		65 95	100
:	250	100	100	100	80	100		100	100		100	95	95	99
15-21	63	100	100	100	100	100		100	99	100	100	100		100
	250	100	100	100	100	100		100	100	100	100	100	100	30
15-22	63	100	100	100	50	100	<u></u>	90	60		100	40	25	99
	250	100	100	100	100	100	<u> </u>	100	100		100	90	95	99
16-2	63	40	75	0	10	80	<u> </u>	10	0	0	0	0	0	0
	250	100	100	60	50	100	<u> </u>	60	10	30	50	15	0 10	0
16-6	63	70	90	50	50	90		0	0	0	0	20		0
	250	100	100	70	90	100		40	50 0	50	70	60	90 0	70 0
16-7	63	0	0	0	0	0		0	0	0	0	0		0
	250	50	0	0	0			Ö	0	0	0	0	0	0
17-1	63	30	95	0	10	90		50	0	0	20	10	0	10
	250	90	100	80	70	100		80 0	70	60	80	10	10	30 0
17-2	63	30	0	0	0	60		0	0	0	0	0	0	
	250	60	20	0	0	90		0	0	0	0	0	0	0
17-4	63	30	0	0		20		0	0	0	0	0	0	0
		100	60	10	10	70		20	0	0	10	0	0	10
17-5	250	80	60	0	30	90			0	· · · · · · · · · · · · · · · · · · ·	0	0	0	0
	250 63		i DU	; U	∪د ؛	; yu	:	0 50	0	20	60	0	0	10

TABLE XXI
Post-emerge Herbicidal Activity

Cmpd. no.	Rate g ai/ha	AMARE	ABUTH	CASOB	IPOHE	CHEAL	AMBEL	SETVI	ECHCG	SORHA	DIGSA	SOY	CORN	RICE
1-4	63 250	30 95	100 100	60 100	100 100	60 95	50 90		0 40	0 70	0 50	80 100	0 20	0 35
	63	93	100	0	0	0	0	0	0	0	0	100		
1-5	250	40	60	30	70	50	30	0	0	0	0	50	0 5	<del>ŏ</del>
1-9	63	100	100	90	100	100	90	90	70	90	90	100	30	40
1-10	63	100	30	Ö	20	10	0	0	0	0	0	0	0	0
1410	250	30	90	10	70	50	30	0	0	0	0	40	0	0
1-1-1	63	40	70	0	40	50	10	0	0	0	0	10	0	0
	250	60	100	0	70	95	10	50	0	0	0	30	Ö	0
1-13	63	100	100	30	100	100	70	30	30	10	0	80	20	30
	250	100	100	70	100	100	85	90	70	90	75	100	80	80
1-15	63	Ö	30	0	0	0	0	0	0	0	0	0	0	0
	250	30	50	0	40	20	0	Ö	0	0	0	15	0	0
I-16	63	30	30	0	20	30	0	0	0	0	0	0	0	0
	250	70	50	0	50	60	0	0	0	0	0	10	0	0
1-18	63	70	100	30	80	70		70	0	50	50	50	0	0
	250	100	100	95	100	100	<u> </u>	70	0	50	50	100	0	0
1-19	63	30	100	10	30	30		20	0	0	0	40	5	25
*************	250	70	100	30	95	90		95	80	70	10	95	45	80
1-20	63	90	100	0	100	90	<u> </u>	0	30 80	10	10 20	1 <b>00</b> 100	10 40	20 50
	250	100 95	100	50 10	100 70	100 75	<u> </u>	60 10	80	70 0	0	40	40 5	10
1-21	63		100	30	90	95	10 30	30	0	0	0	40	5	10
	250	100	100	0	40	40	, JU	0	0	0	0	30	5	10
1-22	63 250	60 80	100	0	90	80	ļ	80	0	10	0	60	15	40
	63	10	30	0	20	0	0	0	0	0	0	0	0	0
1-30	250	30	100	30	100	60	70	0	0	0	0	20	10	20
1-31	63	10	20	0	10	0	0	0	0	Ö	0	0	0	0
1-31	250	30	50	0	50	40	Ö	0	0	0	0	20	0	10
1-32	63	10	30	Ö	0	0	0	0	0	0	0	0	0	0
	250	30	<u> </u>	Ö	70	60	30	0	0	0	0	10	0	0
1-37	63	90	100	65	100	95		20	30	10	10	60	10	25
	250	100	100	90	100	100	†	80	90	70	70	100	60	60
1-38	63	80	100	50	80	<u> </u>		10	0	0	10	80	25	35
	250	100	100	90	100			80	80	80	80	100	70	70
1-51	63	70	60	40	40	30	70	0	0		10	10	10	10
	250	70	80	60	95	95	90	30	10		20	50	20	30
1-53	63	80	100	60	95	50		0	0	0	0	95	0	10
	250	100	100	95	100	100		80	50	40	50	100	30	60
1-54	63	100	100	90	100	100	100	40	20		40	99	50	40
	250	100	100	100	100	100	100	60	75		70	100	70 0	45
1-55	63	10	80	10	30	0	70	0	0	0	0	0		
[	250	10	90	20	95	20	50	40	. 0	0	30	20	10	30
1-59	63	95	100	40	100	100		10 70	30	10	40	90	45 80	60
ļ	250	100	100	100		100	<del>.</del>	70	80	50	0	90	0	10
1-60	63 250	90	100	50	90	100		10	20	20	50	100	50	40
ļ		100 50	100	90	100	30	70	10	0		10	20	10	10
1-61	63 250	70	100	70	100	70	85	30	10		30	80	30	35
	63	10	70	0	95	20	0	0	0	0	0	0	0	10
1-63	250	10	100	0	90	50	50	20	30	0	0	80	0	40
2-1	63	50	100	50	100	95	30	0	0	0	0	90	10	30
}	250	100	100	100	100	100	85	30	10	0	0	100	15	70
2-2	63	90	95		95	60	0	0	0	0	0	50	0	20
	250	100	100		100	100	70	30	40	50	30	95	0	60
2-3	63	10	80	0	60	30		0	0	0	0	70	0	0
\	250	40	100	0	100	30	·-	0	0	0	0	90	10	40
2-4	63	0	0	0	0	50		0	0	10	0	30	0	0
·····	250	70	50	0	20	50	<u> </u>	0	0	10	0	30	0	0
2-5	63	20	90	10	50	40		0	0	0	0	60	5	30
1	250	40	100	50	90	70		0	0	30	0	60	10	40
2-6	63	0	0	0	0	0		0	0	0	0	0	0	. 0
	250	10	70	0	30	30		0	0	0	1 0	5	5	1 0

2-7	63	10	70	0	50	40		0	0	0	0	70	0	40
	250	50	95	30	90	50		30	0	0	0	90	10	40
2.8	63	0	0	0	0	0		0	0	0	0	10	0	0
	250	20	40	0	50	60		0	Ö	0	0	10	0	0
2-10	63	0	95	0	60	50	0	0	0	0	0	20	5	0
	250	30	100	10	100	90	50	70	60	20	40	65	0	5
2-11	63	0	80	[	50	40		0	0	0	0	5	5	0
	250	30	100		60	65		20	0	0	0	15	5	0
2-12	63	0	20	0 :	0	0	0	0	0	0	0	0	0	0
	250	10	65	0	50	40	10	0	0	0	0	0	0	0
2-14	63	40	90	10	40	30		0	0	0	Ö	15	0	10
	250	70	95	10	80	40		0	0	0	0	20	10	30
2-15	63	0	70	10	40	40	10	0	0	0	0 [	10	0	0
	250	20	90	10	90	60	40	0	0	0	0	30		0
2-16	63	50	100	10	99	80		50	90	40	20	70	70	40
	250	100	100	80	100	100	100	100	100	95	60	100	90	45
2-18	63	0	0	0	0	0 i		0	0	0	0	0	0	<u></u>
	250	95	40	10	30	50		0	0	0	0	20	0	*********
2-19	63	40	90	0	70	50		0	0	0	0	80	0	<u>0</u> 20
	250	75	100	10	100	50	30	30	0	0	0	100	0	
2-23	63	70	100	95	100	70	90		0	50	0	100	40	50
	250	100	100	100	100	90	100		30	90	70	100	90	95
2-24	63	100	100	100	100	99	100	20	70	60	10	100	70	70
***************************************	250	100	100	100	100	100	100	70	95	90	50	100	95	90
2-26	63	0	0	0	0	0	0	0	0	0	0	0	0	0
	250	20	40	0	30	20	0	0		0	0 10	100		
2-27	63	100	100	50	90	90	60		0	20			50	60 95
	250	100	100	90	100	100	90		80	85	70 0	100	95 15	
2-28	63	100	100	30	60	60		30	0	0	0	60		90
,	250	100	100	20	50	60		30	0			90	25 10	90 40
2-29	63	90	100	20	75	80	50	20	0	0 10	0 20	60	25	********
	250	100	100	40	100	90	60	50	20			90		60_
2-30	63	0	30	0	0	0	Ö	<del></del>	0	0	0	0 10	0	0
	250	20	·70	0	20	50	10		0	10	0	90	40	50
2-31	63	100	100		90	80		10	10		20	95	60	70
	250	90	100		100	95		20	40	30 50	0	100	30	30
2-32	63	100	100	80	100	95		0 90	90	95	70	100	95	80
	250	100	100	100	100	100 80	70	50	10	0	0	60	10	20
2-33	63	90	100	70	100				60	20	40	90	40	60
	250	95	100	80	100 75	95	95 70	40	00	40	10	90	60	65
2-34	63	95	100	100		85 90	85		30	80	30	95	90	85
	250	95	100	100	95	1			10	10	20	75	10	25
2-36	63	100	100	60	100	95	80	50 60	0	10	20	100	20	40
	250	100	100	60	100	100	95 0		0	0	0	0	0	0
2-37	63	0	0	0	0	0	·····		0	0	<del>-</del>	10	0	0
	250	10	30	60	0	20	50	20	0	10	0	95	20	30
2-39	63	70	100		99 100	90 95	95	<b>1</b>	60	60	50	99	70	70
	_ 250	95	100	90	À		80	80 10	0	30	10	100	40	50
2-40	63	90	100	50 90	100	80 95	100	90	100	100	90	100	90	95
	250	100	100	60	100	95	50	20	0	0	0	90	15	10
2-41	63	95	100	95	100	100	95	30	30	70	20	100	80	70
	250	100 95	100	65	100	90	70	50	30	10	0	100	10	60
2-42	63		100 100	100	100	100	95	80	80	95	30	100	60	90
	250	100	100	20	50	60	60	0	0	0	0	90	0	0
2-44	63	50 90	100	70	100	90	90	50	10	30	10	100	20	10
	250 63	10	30		20	30			0	0	0	10	0	0
2-45				20	30	30		40	0	0	0	20	5	1
	250 63	20 30	40 50	0	0	10		0	0	0	0	10	0	10
2-46		70	100	0	20			30	10	0	0	80	20	30
	250	90	100	70	70	80	50	20	0	0	0	100	10	2
2-47	63 250	100	100	100	100	100	90	30	10	0	0	100	15	4
	63	95	100	50	100	95	85	20	0	30	0	100	50	8
2-48			100	100	100	100	100	70	80	60	20	100	70	8
	250 63	100	90	30	70	60	50	· ···	0	0	0	70	0	
2-49	250	40	100	50	70	60	40		0	0	0	60	10	1
1		90	100	80	100	70	40	40	0	0	10	90	10	6
	: /1													
2-50	63 250	100	100	90	100	90	65	60 0	30 0	40 0	30 0	90 0	70	6

2-53	63	90 :	100	70 :	90 :	95 :	70	20 :	0 :	0 :	0	100	10	30
2-33	250	100	100	100	100	100	90	40	70	50	20	100	70	70
2-54	63	100	100	90	100	100	90	10	20	50	10	100	80	90
	250	100	100	100	100	100	100	50	90	80	20	100	80	95
2-56	63	100	100	100	100	100	70	80	0	0	0	100	30	45
	250	100	100	100	100	100	100	60	50	60	30	100	80	90
2-58	63	100	100	100	95	100	100	50	20	20	10	100	40	50
	250	100	100	100	100	100	100	60	90	90	40	100	90	85
2-59	63	100	100	90	100	100	70	20	0	30	0	75	70	70
	250	100	100	100	100	100	100	20	30	65	30	90	80	80
2-61	63	100	100	100	100	100	100	60	40	20	20	100	35	60
***************************************	250	100	100	100	100	100	95	90	70	70	50	100	90	90
2-63	63	100	100	100	100	99	80	50	10	20	0	100	50	70
	250	100	100	100	100	100	100	95	100	100	70	100	95	95 60
2-64	63	85	100	40	70	80	60	20	30	20	10 20	50	50	90
	250	100	100	70	90	100	90	50	40	20	10	60	60	<del>90</del>
2-66	63	100	100	100	100	100	100	90	70	10	20	95 90	15 70	90
	250	100	100	70	90	100	75	80	50 0	50	0	100	20	70
2-67	63	100	100	100	99	100	100	20 30	40	0 80	40	100	95	
	250	100	100	100	100	100		*********			0	20	0	-0
2-69	63	40	100	10 30	50	50	40 30	0	0	0	0	30	0	- <del>ö</del>
	250	50	100	*************	40 60	60 50	30 30	20	0	0	0	10	0	
2-70	63	70	100	10	********		***********	0	0	0	0	20	0	
	250	70 70	100	20 70	60 50	70 70	30 70	V	0	0	0	15	0	
2-72	63 250		100	95	60	80	60		0	0	0	30	10	20
		90 100	100	60	100	70	100	50	30	10	30	95	25	20
2-73	63 250	100	100	100	100	95	100	90	60	50	30	100	50	70
	63	95	100	30	60	70	70	0	0	0	0	60	0	25
2-74	250	100	100	70	60	70	95	20	0	0	0	100	15	50
2-75	63	100	100	100	100	100		30	10	20	0	100	10	70
2-13	250	100	100	100	100	100		80	50	40	20	100	15	80
2-77	63	10	100	40	60	100		0	0	0	0	40	0	20
2-11	250	100	100	100	95	80		0	0	0	0	90	10	40
2-78	63	100	100	70	80	100		30	10	0	0	80	25	50
2-70	250	100	100	100	100	100		30	10	10	0	100	30	65
2-81	63	100	100	70	100	90		40	50	20	20	90	30	60
2-01	250	100	100	100	100	100		60	90	80	80	100	90	90
2-82	63	100	100	100	60	90		40	20	0	0	60	10	50
	250	100	100	100	90	90		50	30	30	30	50	25	40
2-83	63	40	50	0	10	20		0	0	0	0	10	0	100
	250	90	70	0	20	50		0	0	0	0	10	0	0
2-84	63	80	30	20	30	30		30	0	0	0	10	10	0
	250	100	100	100	70	80		0	0	0	0	70	10	20
2-86	63	100	100	100	100	100		90	90	70	30	100	90	80
	250	100	100	100	100	100		100	100	100	95 10	100 95	100	100
2-87	63	100	100	40	100	80		30	10	10			30	*********
[	_ 250	100	100	100	100	90		40	50	50	50	100	80	75 60
2-89	63	70	100	50	90	60		20	0	0	0	80 99	0	60 70
	250	100	100	60	100	90	ļ <del></del>	20	10	10	0	10	0	10
2-92	63	20	100	0	20	20	<b></b>	0			0	80	30	60
ļ	250	50	100	30	100	80		<u>v</u>	0	0	0	100	20	40
2-98	63	75	100	100	100	70 90	80 100		20	90	50	100	90	90
	250	100	100	100	100	90 80	70	<u></u>	0	0	0	100	15	45
2-100	63	80	100	70	100	* • • • • • • • • • • • • • • • • • • •	90	60 70	30	60	20	100	80	70
	250	100	100	60	100	80	30	70	0	0	0	0	0	0
2-102	63		30	0	0	0	ļ <u></u>	0	0	0	0	40	0	0
ļ <u></u>	250	40	· · · · · · · · · · · · · · · · · · ·	80	100	80	100	70	10	0	<u>0</u>	100	0	0
2-105	250	100	100	80	100	90	100	100	30	30	10	100	10	30
		100	100	90	90	100		0	10 .	0	20	50	5	20
		: 100		95	95	100		0	20	0	50	50	5	50
2-115	63	100	; 100		. 73			0	0	Ö	0	30	5	10
	250	100	100		0n	i	:	, 17					; -	
2-115 2-117	250 63	10	80	40	90			0	0	0	0	90	20	40
2-117	250 63 250	10 70	80 100	40 95	100			0				90 40	20 10	40 10
	250 63 250 63	10 70 30	80 100 60	40 95 0	100 50			0	0	0 0 0	0	90 40 90	20 10 20	10 10
2-117 2-118	250 63 250 63 250	10 70 30 30	80 100 60 80	40 95 0 30	100 50 90			0	0	0	0	90 40	20 10 20 70	10 10 60
2-117	250 63 250 63 250	10 70 30	80 100 60	40 95 0	100 50	80 100		0	0 0 0	0 0 0	0 0 0	90 40 90	20 10 20	10 10

	250	100	100	30	100	80		60	30	50	60	90	70	90
2-121	63	90	70	10	100	60		0	Ö	0	0	25	10	15
	250	100	100	60	100	80		20	Ö	10	10	60	20	25
2-122	63	100	100	100	100	100		90	30	30	40	90	40	35
	250	100	100	100	80	100		95	50	60	60	100	40	60
2-123	63	100	100	100	100	100		20 30	10	10	10	70	35	60
	250	100	100	100	100	100			20	30	30	95	40	70
2-124	63	30	40	0	20	30		0	0	0	0	15	0	0
	250	90	95	20	30	50		0	0	0	0	15	5 10	0
2-125	63	100	100	90	100	100		40	20	30	20	90		40
	250	100	100	100	100	100		60	40	40	40	100	20	70
2-126	63	80	90	60	80	80 95		30	0 10	0 10	20	30	10 10	10
	250	100	100	<b>1</b> -	100	95 70		40 30	30	20	30 20	60 35		50 30
2-127	63	100	100	100	100						30	70	10	35
	250	100	100	60 60	95 100	100		40 50	20 10	20	10	60	15	<u></u> 10
2-128	63	100		80	100	100		60	20		35	60	15	10
	250	100	100		************	100		80	30		30	100	70	35
2 129	63	100	100 100	80 100	100	100		90	50		70	100	100	<u></u> 75
	250 63	100 100	100	80	100	100		60	50		30	80	100	20
2-130	63 250	100	100	70	100	100	_=	70	60		50	90	30	<u> 25</u>
	63	100	100	80	100	100		70	30		30	90	15	10
2-131	250	100	100	100	100	100		90	60		70	100	70	<del></del> 75
2-132	63	100	100	100	100	100		40	20		10	80	60	50
2-132	250	100	100	99	100	100		60	40		25	100	75	80
2-133	63	100	100	80	90	100		70	50		30	100	70	80
4-133	250	100	100	100	100	100		75	85		70	95	95	95
2-134	63	100	100	90	100	100		20	10	10	0	70	10	50
2-134	250	100	100	100	100	100		60	30	30	30	90	20	80
2-135	63	100	100	70	100	100		15	0		0	50	10	20
	250	100	100	100	95	100		40	20		10	90	25	40
2-136	63	100	100	60	80	95		20	0		0	70	15	5
	250	100	100	100	100	100		30	10		20	90	10	10
2-137	63	100	100	100	100	100		10	0		0	70	10	10
	250	100	100	90	90	100		30	30		10	90	60	70
2-140	63	100	100	100	100	100		40	30		20	100	10	50
	250	100	100	100	100	100		60	85		65	100	70 5	80
2-141	63	95	100	50	100	95		20	10		10	70		15
	250	95	100	95	95	100		40	30		30	70	10	65
2-142	63	0	0	0	0	20		0	0		0	15	10	10
**************	250	40	40	10	50	60		0	0		0	30	15	į
2-143	63	100	100	70	60			0	0	<del></del> -	0	100	10	40
	250	100	100	100	100			40	30		40	95	35 40	70 15
2-144	63	75	85	60	60			0	0		0 0	40 40	20	35
	250	90	100	85	70			30 0	10 0		<u> </u>			35
2-145	63	95	100	100	100				<b></b>	0	0 10	80 95	10 20	60
	250	100	100	100	100			40 0	20 0	10 0	0	10	10	10
2-146	63	30	70	20	40 50	30 40		0	0	0	0	10	5	10
	250	30	75	50	<del>.</del>	·	95	20	10		20	90	15	50
2-147	63	100	100	80 95	100	100	100	40	50	<u></u>	50	100	90	75
	250	100	100	95 95	100 80	100	100	50	50	0	40	80	25	0
2-148	63 250	100	100	100	90	100	:- <u></u> -	40	20	10	40	90	30	10
	63	90 80	100	95	70	90		10	20	0	0	80	0	0
2-149	250	80	100	95	95	95	· · · · · · · · · · · · · · · · · · ·	20	50	0	20	90	15	10
		10	0	10	30	10	20	0	0	0	0	0	0	0
2-151	250	20	50	50	100	10	30	0	Ö	0	0	0	0	10
7 167	63	100	100	100	100	98		30	30	20	20	60	15	40
2-152	250	100	100	100	100	100	<u> </u>	50	50	40	30	70	30	65
2-153	63	60	95	0	100	80	İ	20	10	0	0	70	5	0
£-133	250	90	100	30	95	95	·	30	20	20	10	50	5	10
2-154	63	100	100	50	100	100		40	80	<u> </u>	10	90	10	65
Z=134	250	100	100	100	100	100	<u> </u>	95	95	·	85	100	85	90
2-155	63	100	100	100	100	100	·	50	30	30	40	80	70	25
	125	100	100	100	100	100	† <del></del>	70	60	50	50	99	90	80
2-158	63	100	95	90	20	90	50	10	0	0	0	40	0	20
2-130	250	100	100	100	80	95	100	70	50	0	30	50	0	60
4	: 400													20
2-161	63	100	100	100	100	100	30	0 20	20 60	0	0	80	0	

1.168	2-163	63	100	99 :	90 :	98	100		50	55	0 1	30	80 :	35	20
					<b>_</b> _										55
250	2-168						30		0		0			5	10
							50		10	0	0 1		80	10	30
2-17	2-169	63			10		30		0		0	0	70	10	10
250		250	0	80	10	40					0	0	50	10	10
2-171	2-170				10										5
250				90	60	95	50		20	20	10	30		15	10
2-172	2-171		30	60			40		0	0		0			0
2-175															10
2.173	2-172	63				**************			i		************			************	0
2-174							60	80		0					10
2-174	2-173		<b>.</b>												10
250								50			······································				<u>10</u>
2-175	2-174				00		22						************		20
2-176															50
2-176	2-1/5	03												*************************	80
2.177   63   100   100   100   100   100   100									************						10
2.1177	2-1/6									<del></del>					30
2-178									***********	20	***********				50
2-178															60
2-179	2-178	63													····o
2-179	Z-1/0			*************							***********	0		0	····o
2-180	2-179	63										0		15	30
2-180						100						50	100		60
2-181   63   100   100   100   100   100	2-180				<b>.</b>	100	100		60	40		40	100	5	20
2-181				100	100	100				60		<del>-</del>	100	20	65
2-182	2-181		100	100	100	100	100		70	40		30		10	15
250   95   100   95   100   100			100	100	100	100						70			60
2-183   63   0   0   0   0   0   0   0   0   0	2-182	63								0					0
250		250	95	100	95	100	100			30		20			
2-184	2-183	63	0		0				0						0
250   100   100   100   100   100		250	10												0
2-185	2-184	63	100												40
250   100   100   60   80   100     20   0     10   75   5														75	65 20
2-187   63   99   100   70   100   100     40   20     10   100   15	2-185									************			***********		35
250   100   100   100   100   100     60   40     40   100   75   40		250		å					20						50
2-188	2-187		<b>:</b>	·											90
2-186						***********				**********			************	*********	20
2-189	2-188		<u>.</u>					******	20						40
162				4	1	<u> </u>			20					***********	0
2-190   63   95   90   20   50   90     0   0   0   0   20   5   10	2-189								<u>0</u>		***********				5
250   99   90   80   90   100     0   10   50   0   95   10		.j		·····	·····	***************************************			0	0				5	0
2-191   63   40   70   30   80       0   0   0   0   0   20   10   10   250   90   90   80   100       10   0   0   0   0   35   20   20   2-192   63   70   85   40   50   60     0   0   0   0   0   40   5   20   2-194   63   99   95   50   95   90   95   20   0   0   0   0   50   5   2-194   63   99   95   50   95   90   95   20   0   0   0   50   5   2-196   63   100   100   100   90   100   100   30   10   10   10   100   10   1	2-190				<b>:</b>	<u>.</u>	<b>:</b>		0	10	50	0	95	10	5
250   90   90   80   100       10   0   0   0   35   20	2-101				i		····		***********		0	0	20	10	10
2-192   63   70   85   40   50   60     0   0   0   0   40   5   2   2   2   2   2   2   2   2   2	2-171		·						10	0	0	0	35	20	20
250   70   85   60   70   50     0   0   0   0   70   15	2-192						60		0	0	0	0		5	0
2-194   63   99   95   50   95   90   95   20   0   0   0   50   5   5   2   2   2   2   2   2   2   2	<del></del>	250		85	60	70			<u>:</u> 0	0			70		20
2-196         63         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td>2-194</td> <td></td> <td>99</td> <td>95</td> <td>50</td> <td></td> <td></td> <td>95</td> <td></td> <td>0</td> <td></td> <td><u></u></td> <td>50</td> <td></td> <td>30</td>	2-194		99	95	50			95		0		<u></u>	50		30
2-190   0.5   100   100   100   100   100   90   20   10   10   20     15   2-197   63   100   100   80   90   100     10   0   0   10   100   10   1		250	99	100	70	99	100	90						· · · · · · · · · · · · · · · · · · ·	40
2-197         63         100         100         80         100         100          10         0         0         10         70         10           2-197         63         100         100         80         90         100          20         20         50         10         100         10           2-198         63         80         80         50         80         80          10         5         0         10         90         10           2-198         63         80         80         50         80         80          10         5         0         10         90         10           2-199         63         95         100         100         100         100          50         60         40         30         90         30           2-199         63         95         100         100         100         100          50         60         40         30         90         30           2-200         63         100         100         100         100          30         0         0	2-196	63				90	. <del>.</del>						100		30
2-197   33   100   100   80   90   100     20   20   50   10   100   10	<b> </b>	250		100				90		. <del>.</del>					20
2-198         63         80         80         50         80         80          10         5         0         10         90         10           2-198         63         80         80         50         80         80          10         5         0         10         95         40           2-199         63         95         100         100         100         100          50         60         40         30         90         30           2-199         63         95         100         100         100         100          50         60         40         30         90         30           2-200         63         100         100         100         100          90         100         95         95         100         90           2-201         63         100         100         100         100          50         0         0         0         95         20           2-201         63         99         95         60         95         95          20         50         0         35	2-197		100	100						0	0		. 1		20 30
2-198   33   36   36   37   38   38   38   38   38   38   38		250								20	50			10	
2-199         63         95         100         100         100         100          50         60         40         30         90         30           2-199         63         95         100         100         100         100          90         100         95         95         100         90           2-200         63         100         100         100         100          30         0         0         0         80         10           2-201         63         99         95         60         95         95          20         50         0         0         95         20           2-201         63         99         95         60         95         95          20         50         0         35         75         30           2-201         63         100         100         100         100          30         60         0         45         85         35           2-202         63         100         100         100         100          30         10          0         90 <td>2-198</td> <td></td> <td>10 30</td>	2-198														10 30
2-199   0.5									10		30				80
2-200         63         100         100         100         100         100	2-199		95			. <del>.</del>				- Å					90
250   100   100   100   100   100     50   0   0   0   95   20							-1	ļ <del></del>	¥0					**********	10
2-201         63         99         95         60         95         95         —         20         50         0         35         75         30           2-201         250         100         99         85         95         98         —         30         60         0         45         85         35           2-202         63         100         100         100         100          30         10          0         90         15           2-202         63         100         100         100         100          30         10          0         90         15           2-202         63         100         100         100         100          40         40          30         100         30         10           2-203         63         100         100         100         60         100          20         10         10         10         30         10           2-203         63         100         100         100          20         10         10         10         30         60 </td <td>2-200</td> <td> <del>.</del></td> <td></td> <td></td> <td></td> <td>100</td> <td></td> <td></td> <td>- 50</td> <td>·····</td> <td><del>                                     </del></td> <td></td> <td></td> <td></td> <td>20</td>	2-200	<del>.</del>				100			- 50	·····	<del>                                     </del>				20
250   100   99   85   95   98     30   60   0   45   85   35	ļ <u>.</u>	250							30	<u></u>	<del></del>	135		30	60
2-202         63         100         100         100         100         100          30         10          0         90         15           250         100         100         100         100         100          40         40          30         100         30           2-203         63         100         100         100         60         100          20         10         10         10         30         10           250         100         100         100         95         100          30         30         20         30         60         10	2-201							ļ <u></u>						35	65
250 100 100 100 100 100 40 40 30 100 30 2-203 63 100 100 100 60 100 20 10 10 10 30 10 250 100 100 100 95 100 30 30 20 30 60 10							100		30						20
2-203 63 100 100 100 60 100 20 10 10 10 30 10 250 100 100 100 95 100 30 30 20 30 60 10	2-202			•							;			30	60
250 100 100 100 95 100 30 30 20 30 60 10	2,202				:		;	· · · · · · · · · · · · · · · · · · ·			10			10	25
1 230 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1	12-203					95		·	30	30		- <del>I</del>		10	30
2-204 63 50 40 10 30 20 10 0 0 0 30 5	1			,	;	. ,,	,						***********		j

;	250	70	80	500	60	95	70	20	0	0	10	80	10	30
2-205	63	.90	100	90	100	70	70	10	0	0	10	40	10	30
	250	40	100	100	70	70	100	10	0	0	10	30	20	30
2-206	63	20	50	50	70	50		0	0	0	30	30	0	Ö
	250	50	90	80	90	70		0	30	0	20	70	0	70
3-1	63	0	0	0	0	0	0	0	0	0	0	0	0	0
	250	60	0	0	30	60	0	0	0	0	0	0	10	0
3-4	63	0	40	0	0	0		0	0	0	0	10	0	0
	250	Ö	50	0	0	0		0	0	0	0	20	0	10
	63	100	100	40	90	50		0	0	0	0	95	20	30
3-6			100	90	100	90		40	20	20	10	100	70	70
	250	100		20	60	50		0	0	0	0	15	3	10
3-26	63	50	60					0	0	0	0	30	10	30
	250	65	60	60	90	60	40	0	0	0	0	50	10	20
4-1	63	50	100	30	100	60				20			20	50
	250	95	100	50	100	98	90	10	0	0	0	100	0	0
4-2	63	50	70	0	70	40	0	0	0	0 :		40		30
	250	85	100	40	100	95	30	20	0	0	0	75	10	********
4-7	63	100	100	100	100	100		70	50	90	40	100	90	65
	250	100	100	100	100	100		100	100	90	90	100	100	90
4-23	63	100	100	80	100	80		40	20	10	10	95	35	60
	250	100	100	100	100	100		70	60	50	40	100	80	80
4-24	63	100	100	70	100	100		50		40	40	80	35	20
4-24	250	100	100	100	100	100		80		60	50	95	70	45
	250 63	70	70	20	40	75		20		0	0	30	5	0
4-25			95	30	60	85		30		10	Ö	80	15	20
	250	100		30 30	100	90		20	10	10	20	40	5	15
4-26	63	100	100	20				60	50	50	50	80	20	45
	250	100	100	60	100	100		ου 0	30 0	0	0	30	5	
4-27	63	60	70	20	70	60		0		0	0	50 50	10	10
	250	80	100	40	80	100		10	0				0	10
4-28	63	80	100	50	60	70		10	0	0	0	40		
	250	100	100	50	80	90		30	20	10	20	50	5	15
4-29	63	100	100	90	100	90		80	70	60	50	100	80	60
	250	100	100	100	100	100		99	90	100	90	100	100	85
4-30	63	100	100	100	100	100		80	50	50	50	100	90	80
	250	100	100	100	100	100		100	90	100	85	100	99	85
4-31	63	100	100	10	100	100	·····	20	10	0	Ö	40	10	20
	250	100	100	30	100	100	<u> </u>	40	10	10	10	80	25	40
	63	100	90	80	100	100		30	0	10	10	50	20	20
4-32	250	100	100	80	100	100	ļ <u>.</u>	50	20	30	20	80	30	40
		<b>4</b>		30	100	90		30	10	0	10	70	15	30
4-33	63	100	100	70	100	100	ļ	40	20	30	30	80	25	40
	250	100	100		. <del> </del>		ļ	50	20	30	35	90	25	40
4-34	63	100	100	90	100	100	ļ <del></del>	75	50	30	60	95	50	80
	250	100	100	100	90	100					30	100	50	60
4-36	63	100	100	100	100	100		90	20	10	70		100	100
	250	100	100	100	100	100		90	60	90		100 80	20	
4-37	63	100	100	90	100	100	ļ <del></del>	90	20	40	50		·	10 60
	250	100	100	100	100	100		90	60	60	70	100	60	
4-38	_ 63	100	100	90	100	100	<u> </u>	60	50		40	80	40	35
	250	100	100	100	100	100		80	50		40	100	85	50
4-39	63	100	100	100	100	100		80	60		50	100	70	60
	250	100	100	100	100	100		90	90		80	100	100	60
4-40	63	100	100	100	100	100	·	80	50	<del></del> -	40	90	30	4(
U	250	100	100	100	100	100	· i · · · · · · · · · · · · · · · · · ·	90	90		90	100	70	60
		. <del>.</del>	100	100	100	100		95	80	·	90	100	75	50
4-41	63	100	100	100	100	100		95	90	· :	100	100	90	8
	250			0	40	80	·•••••••••••••••••••••••••••••••••••••	0	0		0	20	0	0
4-42	63	75	100			90			10		0	40	Ö	· · · · · · · · ·
	250	100	100	0	30				0		0	30	0	
4-43	63	70	60	50	40	80						40	10	
	250	100	100	60	40	90		40	10				90	7
4-44	63	100	100	100	100	100		95	70		70	100		
 	250	100	100	100	100	100		90	90		95	100	100	
4-45	63	90	100	80	95	100		30	20		10	30	10	
	250	95	100	80	100	100		60	20		20	80	20	2
4-46	63	100	95	80	100	90	<u> </u>	10	20		0	50	10	<u> </u>
······	250	100	90	95	90	100		10	30		20	100	80	7
ļ <u>.</u>	63	75	100	100	85	100		40	30		40	90	30	3
	: 00	1		;				60	50		30	95	65	6
4-47		. ^-												
4-47	250 63	95 100	100	100 95	100			30	20		20	95	90	8

*********				**********		**********		*********	***********		***********			
4-49	63	100	100	80	80	100		30	10	10	10	40 90	20	10 70
	250	100	100	100	100	100		30	. 10		10		80	
4-50	63	30 70	60	20	30 90	40 95		0	0	0	0	15 20	0	0
	250		95					0 10		0	0	60	10	30
4-53	63	70	100	30	100	60		70	60	40	40	90	70	65
	250	100	100	90 [	100	90 100		80	70	40	30	70	40	90
4-54	63				100	100		90	80	70	60	100	75	100
	250	100	100	100	** ** *** ****	50		10	0	0	-00	30	10	
4-55	63	50 80	100	20 40	40				20	10	10	60	5	35
	250				85 100	90		40 90	50	40	20	100	80	65
4-56	63	100	100	100	*****	100			90	90	70	100	100	85
	250	100	100	100	100	100		100	30	30	10	95	40	50
4-57	63	100	100	60	100	95		50 90	40	50	60	100	90	80
	250	100	100	100	100	100			30	30	20	100	30	60
4-58	63	100	100	90	100	100		50 90	40	50	60	100	70	75
	250	100		100	100	100		0	0	0	0	60	5	50
4-59	63	90	100	30	100				20	30	20	90	25	60
	250	100	100	. 60	100	100		30	60	50	40	90	25	50
4-60	63	100	100 100	60	100	100		65 90	50	50	60	100	55	70
	250	100		100	100			70	40	50	50	100	50	40
4-61	63	100	100	100	100	100		80	60	70	70	95	70	80
	250	100	100	100 90	100	100					10	100	30	30
4-62	63	100	100		100			60 80	20 40	30 30	50	90	45	30
	250	100	100	100	100	100 80		0	0	0	0	90	10	10
4-63	63	100	100	60	100			30	20	10	10	100	30	60
	250	100	100	100	100	100		50	20	10	10	100	30	15
4-64	63	100	100	60	100	100		80	30	30	30	90	40	50
***************************************	250	100	100	100	100	100			**********	70	60	100	80	70
4-65	63	100	100	100	100	100		100	60 70	80	80	100	90	80
	250	100	100	100 20	100	100		100	0	0	10	40	15	30
4-66	63	80	100		100	80		60	40	50	50	80	60	70
	250	100	100	90	100 100	100		90	40		70	100	55	50
4-67	63	100	100	100		100		90	70		80	100	70	70
	250	100	100	100	100	**********		100	90		75	100	95	60
4-68	63	100	100	100	100	100		100	98		90	100	100	80
	250	100	100	100	100 70	100 90		40	20		20	40	5	0
4-69	63	100	100	40		*********		80	40		50	80	35	40
	250	100	100	70	100	100 90		60	40		30	100	40	30
4-70	63	90	100	60	100	100		95	80		70	100		70
		••••••					;	7,7	- 00				90 :	
5-17	250	100	100	90	100		***************************************		0	0			90 0	
	63	0	90	0	30	20		0	0 20	0	0	15	Ö	10
	63 250	0 30	90 100	0 30	30 40	20 60		0 80	20	10	0	15 70	0 10	10 50
5-18	63 250 63	0 30 0	90 100 70	0 30 0	30 40 0	20 60 10		0 80 0	20 0	10 0	0	15 70 10	0 10 0	10 50 20
5-18	63 250 63 250	0 30 0 10	90 100 70 70	0 30 0	30 40 0	20 60 10 10		0 80 0	20 0 0	10	0 0 0	15 70 10 20	0 10 0	10 50 20 20
	63 250 63 250 63	0 30 0 10	90 100 70 70 100	0 30 0 0 90	30 40 0 0 90	20 60 10 10		0 80 0 0 40	20 0 0 20	10 0	0 0 0 20	15 70 10 20 70	0 10 0 0	10 50 20 20 50
5-18 5-26	63 250 63 250 63 250	0 30 0 10 100 90	90 100 70 70 100	0 30 0 0 90	30 40 0 0 90 70	20 60 10 10 100 100		0 80 0 0 40 70	20 0 0 20 60	10 0	0 0 0 20 30	15 70 10 20 70 80	0 10 0 0 10	10 50 20 20
5-18	63 250 63 250 63 250 63	0 30 0 10 100 90	90 100 70 70 100 100	0 30 0 0 90 100	30 40 0 0 90 70 100	20 60 10 10 100 100		0 80 0 0 40 70	20 0 0 20 60 0	10 0	0 0 0 20 30	15 70 10 20 70	0 10 0 0	10 50 20 20 50 60 60
5-18 5-26 5-28	63 250 63 250 63 250 63 250	0 30 0 10 100 90 100	90 100 70 70 100 100 100	0 30 0 0 90 100 90	30 40 0 0 90 70 100	20 60 10 10 100 100 100		0 80 0 0 40 70 10	20 0 0 20 60 0	10 0 0 	0 0 0 20 30	15 70 10 20 70 80	0 10 0 0 10 15	10 50 20 20 50 60
5-18 5-26	63 250 63 250 63 250 63 250 63	0 30 0 10 100 90 100 100	90 100 70 70 100 100 100 100	0 30 0 0 90 100 90	30 40 0 0 90 70 100 100	20 60 10 10 100 100 100 100 85		0 80 0 40 70 10 30	20 0 20 60 0 50	10 0 0 	0 0 20 30 10 30 20	15 70 10 20 70 80 60 90	0 10 0 0 10 15 25	10 50 20 20 50 60 60
5-18 5-26 5-28 6-13	63 250 63 250 63 250 63 250 63 250	0 30 0 10 100 90 100 100 70	90 100 70 70 100 100 100 100 90	0 30 0 90 100 90 100 0	30 40 0 0 90 70 100 100 50	20 60 10 10 100 100 100 100 85 90		0 80 0 40 70 10 30 50	20 0 0 20 60 0 50 0	10 0 0   0 10	0 0 0 20 30 10	15 70 10 20 70 80 60 90	0 10 0 0 10 15 25 70	10 50 20 20 50 60 60 70
5-18 5-26 5-28	63 250 63 250 63 250 63 250 63 250 63	0 30 0 10 100 90 100 70 90 80	90 100 70 70 100 100 100 100 90	0 30 0 0 90 100 90 100 0 30	30 40 0 0 90 70 100 50 60	20 60 10 10 100 100 100 100 85 90		0 80 0 0 40 70 10 30 50 90	20 0 0 20 60 0 50 0 30 20	10 0 0   0 10 30	0 0 0 20 30 10 30 20 30 60	15 70 10 20 70 80 60 90 30	0 10 0 10 15 25 70 15	10 50 20 20 50 60 60 70 10
5-18 5-26 5-28 6-13	63 250 63 250 63 250 63 250 63 250 63 250	0 30 0 10 100 90 100 70 90 80	90 100 70 70 100 100 100 100 100 90 100	0 30 0 90 100 90 100 0 30 60	30 40 0 90 70 100 50 60 100	20 60 10 10 100 100 100 100 85 90 100		0 80 0 0 40 70 10 30 50 90	20 0 0 20 60 0 50 0 30 20	10 0 0   0 10	0 0 0 20 30 10 30 20 30 60	15 70 10 20 70 80 60 90 30 45	0 10 0 10 15 25 70 15 20	10 50 20 20 50 60 60 70 10 30
5-18 5-26 5-28 6-13	63 250 63 250 63 250 63 250 63 250 63 250 63 63	0 30 0 10 100 90 100 70 90 80 100	90 100 70 70 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60	30 40 0 90 70 100 50 60 100	20 60 10 10 100 100 100 100 85 90 100 100		0 80 0 40 70 10 30 50 90	20 0 0 20 60 0 50 0 30 20 90	10 0 0   0 10 30	0 0 20 30 10 30 20 30 60 90	15 70 10 20 70 80 60 90 30 45	0 10 0 0 10 15 25 70 15 20 60 100	10 50 20 20 50 60 60 70 10 30 60 90
5-18 5-26 5-28 6-13 6-14	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250	0 30 0 10 100 90 100 70 90 80 100 100	90 100 70 70 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90	30 40 0 0 90 70 100 100 50 60 100 100 100	20 60 10 10 100 100 100 100 85 90 100 100 100		0 80 0 0 40 70 10 30 50 90 100 50 85	20 0 0 20 60 0 50 0 30 20 90 40	10 0 0   0 10 30	0 0 0 20 30 10 20 30 20 30 60	15 70 10 20 70 80 60 90 30 45 100 100	0 10 0 0 10 15 25 70 15 20 60 100	10 50 20 20 50 60 60 70 10 30 60 90 60 90 20
5-18 5-26 5-28 6-13	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63	0 30 0 10 100 90 100 70 90 80 100 100 100	90 100 70 70 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90 100 100	30 40 0 0 90 70 100 50 60 100 100 100 100	20 60 10 10 100 100 100 100 85 90 100 100 100 100		0 80 0 40 70 10 30 50 90 100 50 85	20 0 0 20 60 0 50 0 30 20 90 40 70 20	10 0 0   0 10 30	0 0 0 20 30 10 30 20 30 60 60 20	15 70 10 20 70 80 60 90 30 45 100 100 90	0 10 0 10 15 25 70 15 20 60	10 50 20 20 50 60 60 70 10 30 60 90 60 90 20 70
5-18 5-26 5-28 6-13 6-14 6-15	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250	0 30 0 10 100 90 100 70 90 80 100 100 100	90 100 70 70 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90 100 100 80	30 40 0 90 70 100 50 60 100 100 100 100 100	20 60 10 100 100 100 100 100 85 90 100 100 100 100		0 80 0 40 70 10 30 50 90 100 50 85 30	20 0 0 20 60 0 50 0 30 20 90 40 70 20 40	10 0 0   0 10 30	0 0 0 20 30 10 30 20 30 60 90 30 60 20	15 70 10 20 70 80 60 90 30 45 100 100 90 90 40 70	0 10 0 10 15 25 70 100 115 25 20 35 5	10 50 20 20 50 60 60 70 10 30 60 90 60 90 20
5-18 5-26 5-28 6-13 6-14	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63	0 30 0 10 100 90 100 70 90 80 100 100 100 100 90	90 100 70 100 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90 100 100 80 60	30 40 0 90 70 100 50 60 100 100 100 100 100 50	20 60 10 100 100 100 100 85 90 100 100 100 100 100 90		0 80 0 0 40 70 10 30 50 90 100 50 85 30 60	20 0 0 20 60 0 50 0 30 20 90 40 70 20 40	10 0 0   0 10 30	0 0 0 0 20 30 10 30 30 60 20 30 60 20 30 0	15 70 10 20 70 80 60 90 30 45 100 100 90 90 40 70	0 10 0 10 15 25 70 100 115 25 20 35 5	10 50 20 20 50 60 60 70 10 30 60 90 60 90 20 70
5-18 5-26 5-28 6-13 6-14 6-15 6-16	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250	0 30 0 10 100 90 100 70 90 80 100 100 100 100 90 60	90 100 70 70 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90 100 100 80 60	30 40 0 0 90 70 100 50 60 100 100 100 100 75 50	20 60 10 100 100 100 100 85 90 100 100 100 100 100 90		0 80 0 40 70 10 30 50 90 90 100 50 85 30 60 0	20 0 0 20 60 0 50 0 30 20 90 40 70 20 40 0	10 0 0  0 10 30 90 	0 0 0 20 30 10 30 20 30 60 90 30 60 20	15 70 10 20 70 80 60 90 30 45 100 100 90 90 40	0 10 0 10 15 25 70 15 20 60 100 15 25 20 35	10 50 20 20 50 60 60 70 10 30 60 90 60 90 70 10 0
5-18 5-26 5-28 6-13 6-14 6-15	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 63 63 63 63 63 63 63 63 63	0 30 0 10 100 90 100 70 90 80 100 100 100 100 90 60	90 100 70 100 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90 100 100 80 60 50	30 40 0 90 70 100 50 60 100 100 100 100 75 50 70	20 60 10 100 100 100 100 85 90 100 100 100 100 100 90 90		0 80 0 	20 0 0 0 50 0 50 0 30 20 90 40 70 20 40 0 30 0	10 0 0  0 10 30 90   0	0 0 0 20 30 10 30 20 30 60 90 30 60 20 30 0 0	15 70 10 20 70 80 60 90 30 45 100 100 90 90 40 70 20	0 10 0 10 15 25 70 15 20 60 100 15 25 20 35 5 5	10 50 20 20 50 60 60 70 10 30 60 90 60 90 70 10 0 10 0
5-18 5-26 5-28 6-13 6-14 6-15 6-16 6-17	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 63 63 63 63 63 63 63 63 63	0 30 0 10 100 90 100 70 90 80 100 100 100 100 90 60 70	90 100 70 100 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90 100 80 60 50 70	30 40 0 90 70 100 50 60 100 100 100 100 75 50 70 0 30	20 60 10 100 100 100 100 85 90 100 100 100 100 90 90 0		0 80 0 0 40 70 10 30 50 90 100 50 85 30 60 0	20 0 0 20 60 0 50 0 30 20 90 40 70 20 40 0 30 0	10 0 0   0 10 30 90   0 0	0 0 0 20 30 10 30 20 30 60 90 30 60 20 30 0 0	15 70 10 20 70 80 60 90 30 45 100 100 90 90 40 70 20 20 0	0 10 0 10 15 25 70 15 20 60 100 15 25 20 35 5 15	10 50 20 20 50 60 60 70 10 30 60 90 60 90 70 10 10 10 10 10 10 10 10 10 1
5-18 5-26 5-28 6-13 6-14 6-15 6-16	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 63 63 63 63 63 63 63 63 63	0 30 0 10 100 90 100 70 90 80 100 100 100 90 60 70 0	90 100 70 100 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90 100 100 80 60 50	30 40 0 90 70 100 100 50 60 100 100 100 100 75 50 60 100 100 100 100 100 100	20 60 10 100 100 100 100 85 90 100 100 100 100 100 90 0 60		0 80 0 0 40 70 10 30 50 90 100 50 85 30 60 0	20 0 0 20 60 0 50 0 30 20 90 40 70 20 40 0 0 0	10 0 0  0 10 30 90   0 0	0 0 0 20 30 10 30 20 30 60 90 30 60 20 30 0 0	15 70 10 20 70 80 60 90 30 45 100 100 90 90 40 70 20 20 0	0 10 0 10 15 25 70 15 20 60 100 15 25 20 35 5 5	10 50 20 20 50 60 60 70 10 30 60 90 60 90 20 70 10 0 0 0 0
5-18 5-26 5-28 6-13 6-14 6-15 6-16 6-17 6-19	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 63 63 63 63 63 63 63 63 63	0 30 0 10 100 90 100 70 90 80 100 100 100 90 60	90 100 70 100 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90 100 100 80 60 50 70 0	30 40 0 90 70 100 100 50 60 100 100 100 100 100 100 100	20 60 10 100 100 100 100 85 90 100 100 100 100 100 90 90 60		0 80 0 	20 0 0 20 60 0 50 0 30 20 90 40 70 20 40 0 30 0 0	10 0 0 	0 0 0 20 30 10 30 20 30 60 90 30 60 20 30 0 0	15 70 10 20 70 80 60 90 30 45 100 100 90 90 40 70 20 20 0	0 10 0 10 15 25 70 15 20 60 100 15 25 20 35 5 15	10 50 20 20 50 60 60 70 10 30 60 90 60 90 70 10 0 0 0
5-18 5-26 5-28 6-13 6-14 6-15 6-16 6-17	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 63 63 63 63 63 63 63 63 63	0 30 0 10 100 90 100 100 70 90 80 100 100 100 90 60 70	90 100 70 100 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90 100 80 60 50 70 0 0	30 40 0 0 70 100 100 50 60 100 100 100 100 75 50 70 0 30 0 40 20	20 60 10 100 100 100 100 85 90 100 100 100 100 100 90 90 60 60		0 80 0 -0 -10 30 50 90 90 -100 50 85 30 -60 0 0 0	20 0 0 20 60 0 50 0 30 20 90 40 70 20 40 0 0 0 0 0 0	10 0 0  0 10 30 90   0 0 0	0 0 0 30 30 30 30 30 60 90 30 60 20 20 30 0 0	15 70 10 20 70 80 60 90 30 45 100 100 90 90 40 70 20 0 10 10	0 10 0 10 15 25 20 35 5 15 0 0 0 0 0 0	10 50 20 20 50 60 60 70 10 30 60 90 60 90 20 70 10 0 0 0 0
5-18 5-26 5-28 6-13 6-14 6-15 6-16 6-17 6-19 6-20	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250	0 30 0 10 100 90 100 70 90 80 100 100 100 90 60 70 0 30 0 60	90 100 70 100 100 100 100 100 100 100 100	0 30 0 90 100 0 30 60 90 100 100 80 60 50 70 0	30 40 0 90 70 100 100 50 60 100 100 100 100 100 100 100	20 60 10 100 100 100 100 85 90 100 100 100 100 90 90 0 60 60 50		0 80 0 -0 -10 30 50 90 90 -100 50 85 30 -60 0 0 0	20 0 0 20 60 0 50 0 30 20 90 40 70 20 40 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0   0 10 30 90    0 0 0 0	0 0 0 30 30 30 30 30 60 90 30 60 20 30 0 0	15 70 10 20 70 80 60 90 30 45 100 100 90 90 40 70 20 20 0 10 10 10 30 30 45 10 30 45 10 40 10 10 10 10 10 10 10 10 10 1	0 10 0 10 15 25 70 15 20 60 100 15 25 20 35 5 15 0 0	10 50 20 20 50 60 70 10 30 60 90 60 90 20 70 10 0 0 0 0 0 0 0 0 0 0 0 0 0
5-18 5-26 5-28 6-13 6-14 6-15 6-16 6-17 6-19	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 63 63 63 63 63 63 63 63 63	0 30 0 10 100 90 100 70 90 80 100 100 100 90 60 70 0 60 70	90 100 70 100 100 100 100 100 100 100 100	0 30 0 90 100 0 30 60 90 100 100 80 60 50 70 0 0	30 40 0 90 70 100 100 50 60 100 100 100 100 100 30 0 40 20 70 10	20 60 10 100 100 100 100 85 90 100 100 100 100 90 90 0 60 60 50		0 80 0 -0 -10 30 50 90 90 -100 50 85 -30 0 0 0 0	20 0 0 20 60 0 50 0 30 20 90 40 70 20 40 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0  0 10 30 90   0 0 0 0 0	0 0 0 30 30 30 30 30 60 90 30 60 20 30 0 0 0	15 70 10 20 80 60 90 30 45 100 90 90 90 90 90 100 100 100	0 10 0 10 15 25 70 15 20 60 100 15 25 20 35 5 15 0 0	10 50 20 20 50 60 70 10 30 60 90 60 90 10 10 0 0 0 0 0 0 10 10 10
5-18 5-26 5-28 6-13 6-14 6-15 6-16 6-17 6-19 6-20 6-22	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 63 63 63 63 63 63 63 63 63	0 30 0 10 100 90 100 70 90 80 100 100 100 90 60 70 0 30 60 70	90 100 70 100 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90 100 100 80 60 50 70 0 0	30 40 0 0 70 100 100 50 60 100 100 100 100 100 100 30 0 40 20 10 30	20 60 10 100 100 100 100 85 90 100 100 100 100 90 90 0 60 60 50 70		0 80 0 -0 -10 30 50 90 90 -100 50 85 30 -60 0 0 0 0	20 0 0 20 60 0 30 20 90 40 70 20 40 0 0 0 0 0 0	10 0 0  0 10 30 90   0 0 0 0 0 0	0 0 0 30 10 30 20 30 60 90 30 60 20 20 0 0 0 0 0	15 70 10 20 80 60 90 30 45 100 90 90 90 90 20 20 0 10 0 10 10 30 10 30 10 30 10 30 10 30 40 40 40 40 40 40 40 40 40 4	0 10 0 15 25 20 35 15 0 0 0 0 0 0 0 15	10 50 20 20 50 60 70 10 30 60 90 60 90 10 10 0 0 0 0 0 0 10 10 10
5-18  5-26  5-28  6-13  6-14  6-15  6-16  6-17  6-19  6-20  6-22	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 63 63 63 63 63 63 63 63 63	0 30 0 10 100 90 100 70 90 80 100 100 100 90 60 70 0 100 100 90 60 70 100	90 100 70 100 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90 100 100 80 60 50 70 0 0	30 40 0 0 70 100 100 50 60 100 100 100 100 100 100 30 0 40 20 70 10 30 0	20 60 10 100 100 100 100 85 90 100 100 100 100 90 90 0 60 60 70 20 70		0 80 0 	20 0 0 20 60 0 30 20 90 40 70 20 40 0 0 0 0 0 0 0 0	10 0 0   0 10 30 90   0 0 0 0 0	0 0 0 30 30 30 30 30 60 90 30 60 20 0 0 0 0 0	15 70 10 20 70 80 60 90 30 45 100 90 90 90 40 70 20 20 0 10 10 10 10 10 10 10 10 10	0 10 0 15 25 20 35 15 0 0 0 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0 0	10 50 20 20 50 60 60 70 10 30 60 90 60 90 10 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
5-18 5-26 5-28 6-13 6-14 6-15 6-16 6-17 6-19 6-20 6-22	63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 250 63 63 63 63 63 63 63 63 63 63	0 30 0 10 100 90 100 70 90 80 100 100 100 90 60 70 0 30 60 70	90 100 70 100 100 100 100 100 100 100 100	0 30 0 90 100 90 100 0 30 60 90 100 100 80 60 50 70 0 0	30 40 0 0 70 100 100 50 60 100 100 100 100 100 100 30 0 40 20 10 30	20 60 10 100 100 100 100 85 90 100 100 100 100 90 90 0 60 60 50 70		0 80 0 -0 -10 30 50 90 90 -100 50 85 30 -60 0 0 0 0	20 0 0 20 60 0 30 20 90 40 70 20 40 0 0 0 0 0 0	10 0 0  0 10 30 90   0 0 0 0 0 0	0 0 0 30 10 30 20 30 60 90 30 60 20 20 0 0 0 0 0	15 70 10 20 80 60 90 30 45 100 90 90 90 90 20 20 0 10 0 10 10 30 10 30 10 30 10 30 10 30 40 40 40 40 40 40 40 40 40 4	0 10 0 15 25 20 35 15 0 0 0 0 0 0 0 15	10 50 20 20 50 60 70 10 30 60 90 60 90 10 0 0 0 0 0 0 0 10 10 10

	250	100	100		100	100	10	50	90	40	70	80	10	20
7-14	63													
	250	70	95	60	100	90		20	10		10 0	40 30	25 10	15 0
7-15	63	100	100	40	70 70	100		10 10	0 10	0	0	30 30	10	30
8-2	250 63	100 95	99 100	80 50	50	40	30	40	20	10	30	40	10	20
8-2	250	100	100	30	90	80	90	60	30	0	30	80	20	15
8-3	63	90	90	0	40	70		0	0	0	0	20	0	20
	250	100	100	50	60	90		70	0	20	0	30	0	80
8-4	63	70	60	0	0	70		0	0	0	0	30	0	50
	250	90	80	10	20	90		30	0	0	0	50 20	0	50 40
8-5	63	40	70	0	0 40	70 70		0 20	0	0	0	50	0	50
	250 63	100 95	90 95	10	10	95		0	0	0	0	50	10	<del></del>
8-7	250	100	100	90	70	99		90	20	0	10	90	10	90
8-13	63	100	100	30	50	90		30	20	10	20	30	10	30
	125	100	100	50	60	90		30	40	20	10	60	40	70
8-18	63	100	100	30	50	70		30	10	10	10	30	5	50 60
	250	100	100	40	60	80		30 40	30 30	30 30	20 20	70 90	30 10	40
8-30	63	100	100	80	100	100 100		<del>40</del>	30 70	50 50	40	95	15	35
0 21	250 63	100 100	100 100	100 60	100 100	100		<u>70</u>		10	10	80	10	45
8-31	63 250	100	100	80	100	100		20		30	30	90	10	30
8-36	63	95	100	70	100	95		10	0	0	10	30	10	10
	250	90	100	95	85	100		10	20	10	5	40	15	20
94	63	50	50	20	45	70		20		0	0	40	5 10	10 40
	250	80	100	60 40	100 80	85 95		30 10	0	10	0	90 60	10 15	40 0
9-14	63 250	85 100	100 100	40 40	90	95 100		20	10		10	90	50	40
9-15	63	100	100	100	100	100		10	0	0	0	100	5	40
3-13	250	100	100	100	100	100		35	10	10	20	100	10	70
9-16	63	30	100	50	90	65		0	0	0	10	90	5	30
***************************************	250	75	100	85	100	80		20	10	0	0	100	65	70
9-19	63	80	100	80	75	100		10 20	0 10	0	0 10	60 80	10 10	15 25
	250	98	100	95 100	90 70	100 80	100	10	50	0	0	10	0	20
11-6	63 250	100 100	100 100	100	100	100	100	50	80	0	Ö	40	20	60
11-13	63	100	95	85	98	100		55	65	0	40	65	45	45
	250	100	100	85	98	100		40	55	15	60	85	45	65
12-2	63	30	100	50	90	100		0	30	10	0	60	10	20 80
	250	100	100	95	100	100		50	80	90	70 0	100 20	100 5	80
12-3	63	95	90	20 80	50	90 100	ļ <del></del>	0	10	50	0	95	10	5
	250 63	99 70	90 100	80 40	90 100	100		20	10		0	40	25	20
12-5	250	85	100	60	99	99		10	10		10	30	20	15
12-8	63	80	100	50	90	95		20	10	0	10	40	5	20
	250	90	100	70	80	99		25	10	10	0	80	10	15
13-3	63	90	100	90	75	100		10	0 20	<u> </u>	0 10	30 40	10 10	25 20
	250	90	90	100	70	100		30 20	10		0	70	5	30
13-4	63 250	100 95	100	95 100	85 85	95 100	ļ <u></u>	40	30		10	90	5	50
13-5	63	70	70	40	50	95		0	0	0	0	10	7	10
	250	75	70	30	60	90		10	0	0	20	25	15	20
14-1	63	100	85	55	85	80		40	85	25	80	100	85	40
	250	100	98	70	100	98		70	95	75 0	95 20	100 35	100 35	80 25
14-2	63	100	80	50 60	75 100	95 95		30 20	45	30	40	40	45	30
	250 63	100 95	100	10	50	90		30	99	80	99	100	100	5
14-3	250	100	100	75	100	100		70	100	70	100	100	100	80
14-4	63	100	80	50	50	100	·	30	85		75	100	70	15
ļ	250	100	100	100	60	100	<u> </u>	65	99		95	100	80	40
14-5	63	100	100	10	30	100		60	40		95	20	70	20 30
[	250	100	100	50	100	100	40	95 30	100	50	100 50	95 100	100 50	- 30 0
14-6	63	95	90	50	70 100	80 100	80	80	100	65	75	100	60	35
14-7	250 63	100 95	100	100	20	90	50	60	100	70	80	85	95	10
14-/	250	100	100	20	60	99	90	85	100	90	100	99	100	25
14-8	63	90	60	30	30	70	10	10	95		40	95	40	5
······	250	100	100	80	95	99	50	40	99		85	100	80	30

14-9	63	90	70	0	0	60	10	30	98		75	80	70	5
	250	99	100	0	80	99	70	60	100		75	90	99	20
14-10	63	90	80	80	70	90		50	95	20	80	100	20	0
:	250	100	100	90	80	100		90	100	50	100	100	60	20
14-11	63	95	80	50	90	50		80	100	80	99	60	100	10
	250	100	100	70	100	100		100	100	99	100	100	100	20
14-12	63	85	10	20	40	90	80	30	98		50	95	30	0
	250	90	85	80	70	99	80	40	99		60	100	85	10
14-13	63	90	30	0	40	60	30	20	100		65	75	55	0
	250	100	80	20	60	100	40	40	99		90	98	100	15
14-14	63	50	50	0	30	50	70	50	100	0	90	100	10	0
	250	100	100	60	50	90	70	70	100	20	100	100	50	30
14-15	63	100	60	0	50	50	20	70	100	50	95	40	20	0
	250	100	90	50	90	100	100	80	100	40	100	100	60	0
14-16	63	60	60	20	40	95		0	95	0	95	100	0	0
	250	100	100	40	50	100		30	100	30	100	100	70	10
14-17	63	100	100	20	20	90		20	100	50	100	80	70	0
	250	100	100	30	70	100		70	100	90	100	100	95	0
14-18	63	100	30	20	30	99	0	10	99	10	20	10	20	10
	250	100	60	60	60	100	10	20	100	30	60	40	50	25
14-19	63	90	60	40	30	90		0	100	0	100	100	0	0
17-17	250	100	100	70	90	100		30	100	0	100	100	40	20
14-20	63	95	99	0	50	80		0	100	10	100	70	0	0
17-40	250	100	100	50	70	100		50	100	90	100	100	80	10
14-21	63	90	100	30	40	70	50	10	99	10	70	95	50	10
14-21	03 250	100	95	60	50	95	95	40	100	70	98	100	100	45
	!	50	30	0	10	50	100	30	100	40	80	95	10	0
14-22	63	100	100	50	80	90	100	60	100	60	95	100	50	10
	250				80		50	60	100	40	50	100	0	0
14-23	63	50	50 90	20 70	95	50 80	40	70	100	50	95	100	40	20
	250	100									95	30	10	10
14-24	63	40	70	0	20	80	50	0 50	100	0 50	100	100	20	50
.,	250	90	100	0 50	40 70	90	50		100	40	95	100	100	10
14-25	63	95	100			80	100	50	100	************	100	100	100	50
	250	100	100	80	100	100	100	80 0	100	95 30		100	40	10
14-26	63	90	70	50	20	60	100		100	- 30 - 70	100			
	250	100	100	90	100	100	100	0	100	*****	100	100 95	100 5	10
14-27	63	50	70	50	70	90		0	99	0	70		10	
••••••	250	90	80	30	50	100		20	100	10	95	100	i	0
14-28	63	90	100	30	50	95		0	100	0	20	80	10	0
*************	250	100	100	30	70	100		30	100	50	50	100	70	4(
14-29	63	90	50	0	80	30	100	20	100	50	70	100	15	0
*************	250	100	100	40	80	60	100	70	100	70	95	100	50	1 10
14-30	63	70	60	20	0	50		0	100	0	60	100	10	
	250	100	100	60	50	100		30	100	50	100	100	20	
14-31	63	90	90	50	10	70		0	100	0	95	50	10	(
	250	100	100	50	70	90		50	100	20	100	100	50	1 (
14-32	63	95	90	20	0	Ö	40	40	100.	0	70	70	0	
	250	100	95	40	20	80	40	70	100	10	90	100	0	• (
14-33	63	100	90	0	20	20	0	40	100	10	70	10	10	
	250	100	100	0	20	70	100	90	100	95	100	70	95	
14-34	63	100	99	40	60	100	40	100	100	60	70	99	80	2
	250	100	100	100	90	100	100	100	100	80	99	100	100	7
14-35	63	100	95	0	70	100	100	50	100	30	50	100	100	8
14-33	250	100	100	90	100	100	100	95	100	70	95	100	100	ī
14-36	63	100	95	20	30	99	100	85	99	20	40	95	95	1
14-30	250	100	100	40	70	100	95	99	100	40	65	100	95	
	63	100	100	20	30	100	100	90	100	0	80	90	20	-
14-37			100	50	100	100	100	100	100	30	100	100	95	1
	250	100	100	0	70	100	1	90	100	0	95	0	50	
14-38	63	100	100	0	70	100	·	100	100	30	100	20	100	
	250	100				100	50	95	100	30	60	90	30	
14-39	63	100	99	60	20	100	. <b>.</b>	100	100	40	100	100	50	
	250	100	100	100	50		50				20	50	35	
14-40	63	100	90	20	30	100	90	85	100	20 20	40	95	70	
***********	250	100	100	60	60	100	100	99	100					
14-41	63	100	100	0	30	100	ļ <del></del> .	90	100	40	100	100	100	
	250	100	100	0	50	100		100	100	70	100	100	100	
14-42	63	100	100	60	100	100		100	100	60	95	100	100	
	250 63	100	100	90	100	100		100	100	95	100	100	100	
		100	i	40	95	100		90	100	80	80	100	95	

l	250	100	100	90	100	100			100					
14-44	63	100	100	0	50	100		100 100	100 100	95 30	100 100	100 100	100	100 90
	250	100	100	0	90	100		100	100	80	100	100	100	
14-45	63	100	100	30	100	100	100	70	100	70	90	90	100 70	100 70
	250	100	100	30	100	100	100	95	100	90	100	100	100	100
14-46	63	95	100	60	100	100	100	90	100	80	80	100	95	60
	250	100	100	90	100	100		100	100	95	100	100	100	100
14-47	63	100	100	0	80	100	100	90	100	70	95	100	40	100
	250	100	100	70	100	100	100	100	100	80	100	100	100	100
14-48	63	100	100	0	0	100	80	50	50	0	70	95	40	70
	250	100	100	100	100	100	***************************************	100	100	90	90	100	100	100
14-49	63	100	100	70	100	100	100	80	100	70	70	95	80	50
	250	100	100	95	100	100	100	100	100	95	95	100	100	95
14-50	63	100	30	90	0	50		0	0	0	Ö	0	10	30
	250	100	50	100	0	100		0	0	0	50	20	30	50
14-51	63	0	0	0	0	0	0	0	10	0	0	0		
	250	0	50	0	30	10	20	0	20	0	0	30	0	0 0
14-52	63	20	90	0	100			0	0	0	0	0	0	0
	250	50	100	70	100			0	10	0	0	100	10	0
14-54	63	40	60	0	30	20		10	30	0	0	30	5	10
	250	50	80	30	80	60		10	30	0	10	35	15	10
14-55	63	30	70	10	70	30		0	10	0	0	10	5	20
	250								****					
14-56	63	100	70	30	100	99	90	30	20	30	10	40	10	0
ļ	250	100	100	40	100	100	80	70	80	70	50	50	30	25
14-59	63	20	50	0	30	10		0	0	0	0	0	0	0
ļ <u>.</u>	250	20	30	10	30	10		0	0	0	0	10	0	0
14-60	63 250	70	100	40	100	99		20	50	20	10	100	10	10
	250 63	100 20	100 30	70 0	100	100 40		30 0	75	50	60	100	60	20
14-61			************		20			!	0	0	0	0	0	0
14.65	250 63	60 30	60 40	30 0	50 30	75 10	40	20 0	60 0	20	70 0	40	70 5	30 0
14-62	250	50 50	40 60	30	30 50	20	40 30	0	0		0	15 15	<u> </u>	5
14 63					70	20 80	<u> </u>				40	95	35	5
14-63	63 250	95 100	90 100	95 100	70	100	20 50	50 70	100 99		90	100	80	15
14-64	63	100	100	100	30	70	30	30	100	***************************************	40	90	99	5
14-04	250	100	100	20	80	99	40	70	100		99	90	100	10
14-65	63	100	100	90	50	90	40	100	100	30	99	100	0	0
14-05	250	100	100	100	70	100		100	100	60	100	100	50	10
14-66	63	95	100	80	70	80		95	100	60	100	80	90	0
	250	100	100	90	90	99		100	100	80	100	99	100	10
15-1	63	100	100	100	100	100		80	80		90	100	80	75
	250	100	100	100	100	100	<u> </u>	100	99		100	100	95	95
15-2	63	20	80	10	90		<u> </u>	0	0	0	0	40	15	50
	250	95	100	75	100		<u> </u>	80	90	70	80	100	80	75
15-3	63	95	100	70	95	95	<del></del> -	30	10	0	20	90	25	50
	250	100	100	100	100	100	<u> </u>	80	90	90	80	100	80	90
15-4	63	70	100	50	100	100	<del></del> -	50	40		30	90	50	70
***************	250	100	100	80	100	100		80	90		70	100	90	95
15-5	63	70	100	40	90	100		40	40		30	100	70	60
	250	100	100	80	100	100	<u> </u>	80	90 .		70	100	90	90
15-6	63	50	100	30	50			30	20		0	60	25	60
	250	85	100	70	100			75	95		90	100	80	95
15-7	63	100	100	60	100	100		30	40		20	90	60	50
	250	100	100	100	100	100		90	95		75	100	80	90
15-8	63	20	70	0	50	95		0	0		: 0	60	0	10
ļ	250	60	100	40	90∙	90		30	20		0	90	55	60
15-9	63	10	80	10	100		<u> </u>	0	0		0	40	30	50
ļ	250	95	100	60	85		ļ	80	90		80	95	70	90
15-10	63	100	100	100	100	100	ļ	30	10	30	60	95	45	50
	250	100	100	100	100	100	ļ	75	80	70	90	95	65	80 65
15-11	63	95	100	90	100	100	ļ <del></del>	40 80	50	50	50 95	95	45 85	99
ļ <u></u>	250	100	100	100	100	100	<b></b>		99	99		100		80
15-12	63	95	100	90	100	100	<b></b>	70	70	80	95	100	80	44
ļ	250	100	100	100	100	100	ļ <del></del>	100	100	99 10	100	95	95 15	99
15-13	63	80	100	60	100 100	95		20 60	20 85	70	70	100	50	90
16 14	250	95	100	100 80	100	100	·		20	20	20	100	20	40
15-14	63 250	100	100	100	100	100		20 55	90	70	60	100	65	50
	: Z3U	100	: 100	100	: 100	: 100	i	دد ۽	1 30	, ,,	, 😶	, 100	; 00	: 20

15-15	63	100	100	80	90	100		40	30	30	40	95	45	70
	250	100	100	100	100	100		95	100	99	100	100	90	95
15-16	63	80	100	80	100	100		30	10	10	20	95	15	40
	250	100	100	100	100	100		60	90	70	80	100	45	80
15-17	63	90	100	80	100			40	50	20	40	90	35	75
	250	100	100	100	100			90	99	95	99	100	80	90
15-18	63	100	100	40	90	100		20	10	0	10	90	20	30
	250	100	100	100	100	100		80	95	99	100	100	80	85
15-19	63	100	100	75	100	100		40	50	40	50	90	35	65
************	250	100	100	100	100	100		100	100	100	100	100	85	90
15-20	63	100	100	80	100	100		80	50		30	95	40	35
************	250	100	100	100	100	100		100	100		90	100	85	80
15-21	63	95	100	100	100	100		50	60	40	30	90	30	80
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	250	100	100	100	100	100	••••	90	100	95	95	100	90	90
15-22	63	100	100	70	100	100		40	40		30	90	30	50
************	250	100	100	100	100	100		95	100		90	100	90	90
16-2	63	60	40	0	0	30		0	0	0	0	10	0	0
***************************************	250	60	70	10	0	70		0	0	0	0	40	10	20
16-4	63	0	0	0	0	0		0	0	0	0	0	0	0
	250	0	0	0	0	0		0	0	0	0	0	0	0
16-6	63	70	70	0	30	0		0	0	20	20	0	0	0
	250	70	100	0	70	70		0	0	40	80	0	0	10
16-7	63	0	0	0	0	0		0	0	0	0	0	0	0
	250	0	0	30	30	0		0	0	0	0	0	0	0
17-1	63	10	70	20	80	30		0	0	0	0	10 30		0
	250	30	70	10	80	60	<u> </u>	0	0	0	0		5	0
17-2	63	0	0	0	0	0		0	0	0	0	0	0	0
***************************************	250	30	50	10	20	40	<u></u>	0	0	0	0	10	0	0
17-4	63	20	35	10	40	20		0	0	0	0	10	0	0
	250	70	70	20	80	40	<u></u>	0	0	0	0	15		0
17-5	63	10	50	10	30	40		0	0	0	0	20	0	0
	250	40	80	20	70	80	<u> </u>	0	0	0	0	35	10	0

10

15

### Claims

1. A compound represented by the formula I or its salts

$$X \longrightarrow Y$$
 $Z$ 
 $Q$ 

wherein X is hydrogen, halogen, nitro, amino, NHR, N(R)₂, amide, thioamide, cyano, alkylcarbonyl, alkoxycarbonyl, alkylsulfonamide, unsubstituted or substituted alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonylalkoxy, benzyloxy, aryloxy, or heteroaryloxy;

Y is hydrogen, halogen, or nitro;

W is hydrogen, OR, SR, NHR, N(R)₂, CH₂R, CH(R)₂, C(R)₃, halogen, nitro, or cyano, where multiple R groups represent any possible combination of substituents described by R; R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, aryloxy, heteroaryloxy, alkylsulfonyl, benzyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkylsilyl, alkylcarbonyl, haloalkylcarbonyl, alkoxy, alkoxycarbonyl, haloalkoxy, haloalkoxy, haloalkoxy, alkylsulfonyl, haloalkylsulfonyl, aryl, heteroaryl, or cycloalkyl;

Q is a heterocycle, examples of which are as follows:

wherein  $R_1$  is hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, amino, alkoxyalkyl, acetyl, alkoxycarbonylamino, alkylcarbonylamino, or alkoxycarbonyl;

R₂ is alkyl or haloalkyl;

5

10

15

20

R₁ and R₂ could combine to form a five- or six-membered heterocyclic ring;
R₃ is hydrogen, halogen, nitro, amino, alkylamino, haloalkylamino, cyano, or amide;
R₈ and R₉ are independently oxygen, sulfur, or imino group;

Q6, Q7, and Q10 may optionally be unsaturated containing one or two double bonds in the 6-membered ring;

Z is amino, hydroxyl, thiol, formyl, carboxyl, cyano, alkylcarbonyl, arylcarbonyl, azido, or one of the following:

$$-N$$

wherein R₄ is alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxycarbonylcarbonyl or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio,

1807 100 m s S

5

10

15

20

25

30

heteroaryl, heteroaryloxycarbonyl or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; and  $R_5$  is hydrogen or any one of the groups represented by  $R_4$ ; or  $R_4$  and  $R_5$  could combine to form a 4-8 membered heterocyclic ring;

$$-N = \langle R_6 \rangle$$

wherein  $R_6$  represents alkyl, haloalkyl, dialkylamino, unsubstituted or substituted aryl and heteroaryl; and  $R_7$  represents hydrogen, halogen or any of the groups represented by  $R_6$ ;

-OR₄,
-SR₄,
-CH₂R₁₀,
-CH(R₁₀)₂,
-C(R₁₀)₃, or
-CH=CHR₁₀

wherein R₁₀ is carboxyl, alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, arylthiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxycarbonylcarbonyl or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; provided that (1) Z is not alkyl, alkoxy, haloalkyl, haloalkoxy, alkylthio, haloalkylthio, alkenyl, haloalkenyl, amino, monoalkylamino, dialkylamino, alkoxyalkoxy or cyano, when Q is Q1 and R, is haloalkyl,

(2) Z is not amino when Q is Q3, and

- (3) Z is not hydroxyl, alkoxy, alkenyloxy, alkynyloxy, haloalkoxy, haloalkenyloxy, or -NR $_4$ R $_5$ , wherein R $_4$  is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, alkylsulfonyl, alkylcarbonyl, alkoxycarbonyl, or cycloalkylalkyl, and R $_5$  is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, alkylcarbonyl, alkoxycarbonyl, or cycloalkylalkyl, when Q is Q14 or Q15.
- 2. The compound according to claim 1 wherein Z is represented by the following:

$$-N$$

wherein R4 and R5 are the same as defined in claim 1;

- wherein  $R_{10}$  is the same as defined in claim 1.
  - 3. The compound according to claims 1 or 2 wherein X is halogen or cyano;

Y is halogen;

W is OR;

R is alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, or carboxyl.

4. The compound according to claim 1 wherein Q is



20

15

5

wherein R, is alkyl, amino, or haloalkyl;

R, is haloalkyl;

R, is hydrogen;

 $R_8$  and  $R_9$  are independently oxygen, sulfur, or imino group.

5. The compound according to claim 1wherein X is halogen;

Y is fluorine;

W is OR; R is alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with halogen or cyano;

Q is

$$R_9$$
 $R_2$ 
 $R_3$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_5$ 
 $R_6$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_9$ 
 $R_9$ 
 $R_9$ 

5 wherein R₁ is alkyl, amino, or haloalkyl;

R₂ is haloalkyl;

R, is hydrogen;

R₈ and R₉ are independently oxygen, sulfur, or imino group;

Z is represented by the following:

$$-N$$

10

20

wherein R₄ is alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkoxycarbonyl, or arylcarbonylcarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxycarbonylcarbonyl, or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, alkylaminocarbonyl, alkoxycarbonyl, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl, or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; and R₅ is hydrogen;

wherein R₁₀ is carboxyl, alkyl, alkenyl, or alkynyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio,

5

10

15

20

25

30

alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl, or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl.

- 6. A compound selected from the group consisting of 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-methyl-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione and 3-(2-amino-4-chloro-6-fluoro-3-methoxyphenyl)-1-amino-6-trifluoromethyl-2,4(1H,3H)-pyrimidinedione.
- 7. A herbicidal composition, characterized in that it contains at least one compound according to claim 1 and an agricultural adjuvant.
  - 8. A method for controlling undesired vegetation which comprises applying to a locus to be protected a herbicidally effective amount of a compound of claim 1.
  - 9. The method of claim 8 wherein the locus to be protected is a cereal crop field.
  - 10. The method of claim 9 wherein the compound of claim 1 is applied to soil as a preemergent herbicide.
  - 11. The method of claim 9 wherein the compound of claim 1 is applied to plant foliage.
  - 12. A method to defoliate potato and cotton using a compound of claim 1.
  - 13. A process for preparing a compound represented by the formula I-1 or its salts:

$$X$$
 $Y$ 
 $Q$ 
 $Z'$ 

wherein X is hydrogen, halogen, nitro, amino, NHR, N(R)₂, amide, thioamide, cyano, alkylcarbonyl, alkoxycarbonyl, alkylsulfonamide, unsubstituted or substituted alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonylalkoxy, benzyloxy, aryloxy, or heteroaryloxy;

Y is hydrogen, halogen, or nitro;

W is hydrogen, OR, SR, NHR, N(R)₂, CH₂R, CH(R)₂, C(R)₃, halogen, nitro, or cyano, where multiple R groups represent any possible combination of substituents described by R; R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, aryloxy, heteroaryloxy, alkylsulfonyl, benzyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl,

iki si

5

10

haloalkyl, alkylsilyl, alkylcarbonyl, haloalkylcarbonyl, alkoxy, alkoxycarbonyl, haloalkoxy, haloalkoxycarbonyl, alkylsulfonyl, haloalkylsulfonyl, aryl, heteroaryl, or cycloalkyl;

Q is a heterocycle, examples of which are as follows:

wherein  $R_1$  is hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, amino, alkoxyalkyl, acetyl, alkoxycarbonylamino, alkylcarbonylamino, or alkoxycarbonyl;

R₂ is alkyl or haloalkyl;

R₁ and R₂ could combine to form a five- or six-membered heterocyclic ring;

R, is hydrogen, halogen, nitro, amino, alkylamino, haloalkylamino, cyano, or amide;

R₈ and R₉ are independently oxygen, sulfur, or imino group;

Q6, Q7, and Q10 may optionally be unsaturated containing one or two double bonds in the 6-membered ring;

Z' is one of the following:

E,

5

10

15

20

25

30

$$-N$$
 $R_{5}$ 

wherein R₄ is alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxycarbonylcarbonyl, or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkoxythiocarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl, or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; and R₃ is hydrogen or any one of the groups represented by R₄; or R₄ and R₅ could combine to form a 4-8 membered heterocyclic ring;

$$-N = \langle R_6 \\ R_7 \rangle$$

wherein  $R_6$  represents alkyl, haloalkyl, dialkylamino, unsubstituted or substituted aryl and heteroaryl; and  $R_7$  represents hydrogen, halogen or any of the groups represented by  $R_6$ ;

 $-CH(R_{10})_{2}$ 

 $-C(R_{10})_3$ , or

-CH=CHR₁₀

wherein R₁₀ is carboxyl, alkyl, alkenyl, alkynyl, amino, cycloalkyl, heterocycloalkyl, alkylsulfonyl, arylsulfonyl, benzyl, aryl, heteroaryl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkylthiocarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, arylthio-carbonyl, aryl-thiocarbonyl, heteroaryloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkoxycarbonylcarbonyl or arylcarbonylcarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, dialkylamino, hydroxyl, carboxyl, alkyl,

ĕ.,

5

alkenyl, alkynyl, cycloalkyl, alkylcarbonyl, alkylcarbonyloxy, alkoxy, alkoxycarbonyl, alkylthio, alkylthiocarbonyl, alkynyloxycarbonyl alkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryl, arylcarbonyl, aryloxy, aryloxycarbonyl, arylthio, heteroaryl, heteroaryloxycarbonyl or methylenedioxy, wherein the alkyl moiety or aryl moiety may be substituted with halogen, cyano, nitro, alkyl, alkoxy, haloalkyl, haloalkoxy, alkoxycarbonyl, cycloalkyl, aryl, or heterocycloalkyl; provided that (1) Z' is not alkyl, haloalkyl, alkenyl, haloalkenyl, monoalkylamino, or dialkylamino, when Q is Q1 and R₂ is haloalkyl, and

(2) Z' is not -NR₄R₅, wherein R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkyl, haloalkenyl, alkylsulfonyl, alkylcarbonyl, alkoxycarbonyl, or cycloalkylalkyl, and R₅ is alkyl, alkenyl, alkynyl, cycloalkyl, haloalkyl, haloalkenyl, alkylcarbonyl, alkoxycarbonyl, or cycloalkylalkyl, when Q is Q14 or Q15,

which comprises of reacting a compound represented by the formula II:

with a compound selected from the group consisting of an alkyl halide, alkyl acid halide, aryl acid halide, alkyl acid anhydride, aryl acid anhydride, alkylhaloformate, alkyl isocyanate, aryl isocyanate, alkyl dihalide, aliphatic aldehyde, aliphatic ketone, aromatic aldehyde, and aromatic ketone.

14. A compound represented by the formula III:

20

25

15

wherein X is hydrogen, halogen, nitro, amino, NHR, N(R)₂, amide, thioamide, cyano, alkylcarbonyl, alkoxycarbonyl, alkylsulfonamide, unsubstituted or substituted alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxycarbonylalkoxy, benzyloxy, aryloxy, or heteroaryloxy;

Y is hydrogen, halogen, or nitro;

W is hydrogen, OR, SR, NHR, N(R)₂, CH₂R, CH(R)₂, C(R)₃, halogen, nitro, or cyano, where multiple R groups represent any possible combination of substituents described by R; R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, aryloxy,

(

5

15

ŧ.

heteroaryloxy, alkylsulfonyl, benzyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkylsilyl, alkylcarbonyl, haloalkylcarbonyl, alkoxy, alkoxycarbonyl, haloalkoxy, haloalkoxycarbonyl, alkylsulfonyl, haloalkylsulfonyl, aryl, heteroaryl, or cycloalkyl;

Q is a heterocycle, examples of which are as follows:

wherein R₁ is hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, amino, alkoxyalkyl, acetyl, alkoxycarbonylamino, alkylcarbonylamino, or alkoxycarbonyl;

R₂ is alkyl or haloalkyl;

 $R_1$  and  $R_2$  could combine to form a five- or six-membered heterocyclic ring;  $R_3$  is hydrogen, halogen, nitro, amino, alkylamino, haloalkylamino, cyano, or amide;  $R_8$  and  $R_9$  are independently oxygen, sulfur, or imino group;

Q6, Q7, and Q10 may optionally be unsaturated containing one or two double bonds in the 6-membered ring;

M is nitro.

5

10

## 15. A compound represented by the following formulae IV or V:

$$R \rightarrow NO_2$$
 $NO_2$ 
 $NO_2$ 
 $NO_2$ 
 $NO_2$ 

wherein X' and Y' are halogens; and R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, alkoxy, cycloalkyloxy, aryloxy, heteroaryloxy, alkylsulfonyl, benzyl, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, or heteroaryloxycarbonyl, where any of these groups may be unsubstituted or substituted with any of the functional groups represented by one or more of the following: halogen, cyano, nitro, amino, carboxyl, alkyl, haloalkyl, alkylsilyl, alkylcarbonyl, haloalkylcarbonyl, alkoxy, alkoxycarbonyl, haloalkoxy, haloalkoxycarbonyl, alkylsulfonyl, haloalkylsulfonyl, aryl, heteroaryl, or cycloalkyl.

International application No. PCT/US98/17197

A. CLASSIFICATION OF SUBJECT MATTER								
IPC(6)	:Please See Extra Sheet.							
	:Please See Extra Sheet.							
	According to International Patent Classification (IPC) or to both national classification and IPC							
	DS SEARCHED							
Minimum d 	ocumentation searched (classification system followe	d by classification symbols)						
U.S. :	Please See Extra Sheet.							
			<del></del>					
Documental	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched					
Pleaternia	data hasa samultad dustra at a transition of the							
l	data base consulted during the international search (n	ame of data base and, where practicable	e, search terms used)					
CAS ON	LINE							
C. DOC	UMENTS CONSIDERED TO BE RELEVANT	•						
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.					
x	WO 97/07104 A1 (SUMITOMO	CHEMICAL COMPANY	10 5 7 10					
Λ.	LIMITED) 27 February 1997, page 45	CHEMICAL COMPANY	1-3, 5, 7-12					
	Eliviries) 27 residary 1997, page 4.	o, iorinua (05), pages 63-64.						
x	WO 97/12883 A1 (BASF AKTIEN	CECELL COUNTY 10 April	1 7 10					
^	1997, see page 30, compound no. 1.4		1, 7-12					
	1997, see page 30, compound no. 1.4.	29.						
X	KATO, S. et al. Synthesis of	of 4-Chloro-7-ethoxy-2(3H)-	1, 14					
<b>^</b>	benzoxazolone-6-carboxylic Acid. Journ		1, 14					
	July-August 1996, Vol. 33, No. 4, pag							
		es 11/1-11/6, especially page						
	1172, formulae 10c and 11c							
			<u> </u>					
X Furth	ner documents are listed in the continuation of Box (	C. See patent family annex.						
• Sp	ecial categories of cited documents:	"T" later document published after the inte						
	cument defining the general state of the art which is not considered be of particular relevance	date and not in conflict with the appl the principle or theory underlying the						
	rlier document published on or after the international filing date	"X" document of particular relevance; the						
	sument which may throw doubts on priority claim(s) or which is	considered novel or cannot be conside when the document is taken slone	red to involve an inventive step					
	ed to establish the publication date of another citation or other scial reason (as specified)	"Y" document of particular relevance; the	e claimed invention cannot be					
"O" do	cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such						
<b>,</b>		being obvious to a person skilled in t	he art					
	cument published prior to the international filing date but later than a priority date claimed	*&* document member of the same patent	t family					
Date of the	actual completion of the international search	Date of mailing of the international sea	arch report					
11 0000	UARY 1999	01 MAR 1999						
11 FEBR	VAR 1 1777	ענו אאווע ניטו						
	mailing address of the ISA/US ner of Patents and Trademarks	Authorized officer						
Box PCT		DEEPAK RAO	ا ر					
Washington Facsimile N	n, D.C. 20231	J	Kon					
Lucanime L	lo. (703) 305-3230	Telephone No. (703) 308-1235						

International application No.
PCT/US98/17197

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
x	MEEGALLA, S.K. et al. Synthesis and Pharmacological Evaluation of Isoindolo[1,2-b]quinazolinone and Isoindolo[2,1-α]benzimidazole Derivatives Related to the Antitumor Agent Batracylin. Journal of Medicinal Chemistry. 30 September 1994, Vol. 37, No. 20, pages 3434-3439, especially page 3436, formula 13a.	14
x	US 4,881,967 A (SEMPLE) 21 November 1989, col. 28, lines 30-31 and 48-49, compounds 41B and 41C.	1-3, 7-12
x	Chem. abstr., Vol. 96, No. 24, 14 June 1982 (Columbus, OH, USA) page 43, column 1, the abstract No. 200709g, CHERNIKOV, A.Y. et al. 'Thermostable composition.' FR 2,476,068, 21 August 1981.	1
x	WITTEK, P.J. Synthetic Studies of the Antitumor Antibiotic Streptonigrin. 3 synthesis of the C-D Ring of Streptonigrin by an Unsymmetrical Ullmann Reaction. Journal of Organic Chemistry. March 1979, Vol. 44, No. 5, pages 870-872, especially page 870, formula 9.	1
X	HALL, J.H. et al. Formation of cis, cis-1,4-dicyano-1,3-butadienes by Thermal Decomposition of 1,2-Diazidobenzenes. Journal of the American Chemical Society. 08 November 1967, Vol. 89, No. 23, pages 5856-5861, especially page 5860, col. 2, lines 6 and 33.	1
x	Chem. abstr., Vol. 69, No. 23, 02 December 1968 (Columbus, OH, USA) page 8993, column 1, the abstract No. 96206v, AGRIPAT, S.A. '2-Nitro-3(and 5)-phenoxy(and phenylthio)anilines and their ophenylenediamine derivatives.' FR 1,499,717, 27 October 1967.	15
x	Chem. abstr., Vol. 45, No. 16, 25 August 1951 (Columbus, OH, USA) page 1951 column 1, the abstract No. 7033i, FINGER, G.C. et al. 'Aromatic Fluorine compounds. II. 1,2,4,5-Tetrafluorobenzene and related compounds' J. Am. Chem. Soc., 1951, 73, 145-9.	15
Y	US 5,281,571 A (WOODARD et al) 25 January 1994, col. 1, lines 60-67, formula I.	1-3, 7-14
A	US 5,116,404 A (ISHII et al) 26 May 1992, col. 2, lines 27-35, formula (I).	1-15

International application No. PCT/US98/17197

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.:     because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
$\cdot$
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest X The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

International application No. PCT/US98/17197

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

C07D 221/02, 471/02, 491/02, 498/02, 211/70, 211/72, 211/82, 211/84, 213/62, 213/54, 213/44, 237/26, 237/28, 487/00, 401/00, 403/00, 239/02, 241/36, 471/00, 241/02, 257/00, 249/12, 231/10, 209/48, 209/38; C07C 211/00, 215/00; A01N 43/36, 43/38, 43/40, 43/42, 43/54, 43/58, 43/60, 43/64, 43/653

A. CLASSIFICATION OF SUBJECT MATTER: US CL:

504/236, 238, 243, 244, 254, 273, 280, 287; 544/235, 236, 238, 311, 312, 349, 350, 408; 546/112, 113, 121, 295, 329, 339; 548/251, 263.2, 264.6, 375.1, 476, 513

#### **B. FIELDS SEARCHED**

Minimum documentation searched Classification System: U.S.

504/236, 238, 243, 244, 254, 273, 280, 287; 544/235, 236, 238, 311, 312, 349, 350, 408; 546/112, 113, 121, 295, 329, 339; 548/251, 263.2, 264.6, 375.1, 476, 513

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s) 1-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is as set forth in Q1, Q12 or Q13.

Group II, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is as set forth in Q2 or Q11.

Group III, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is as set forth in Q3.

Group IV, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is Q4.

Group V, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is Q5.

Group VI, claim(s) 1-5 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is Q6 or Q7.

Group VII, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is Q8.

Group VIII, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is Q9, Q14 or Q15.

Group IX, claim(s) 1-3 and 7-14, drawn to compounds, compositions, method of use and process of preparing compounds of formula I where Q is Q10.

Group X, claim(s) 15, drawn to compounds of formulae IV and V.

The inventions listed as Groups I-IX do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the variable core created by varying definitions of Q in the compounds of formula I do not belong to a recognized class of chemical compounds in the art.

Form PCT/ISA/210 (extra sheet)(July 1992)*



## NOTIFICATION OF DECISION CONCERNING PROTEST

International application No. PCT/US98/17197

Applicant's Protest of the Holding of Lack of Unity of Invention has been denied for the following reasons:

Applicant's protest of the Invitation to Pay Additional Fees asserts that a common core structure is present and that the Examiner's assertion that due to the variability in the Q moiety that no common core was present is in error. However, applicant does not set forth a precise description of what he views as the core. The only structurally defined portion of the claimed compounds is a benzene ring. If this is the common core then unity of invention is lacking because benzene is well known in the art and thus no special technical feature as defined by PCT Rule 13.2 linking all the compounds is present.

Moreover, a common core must represent a substantial portion of the claimed compounds. In this instance the presence of the heterocyclic rings of the Q moiety represent elements contributing at least as much as the putative benzene core to the structure of the compounds. Indeed, a consideration of the myriad other possible moieties embraced by X, W and Z suggests that the benzene ring does not represent a substantial portion of the compound.

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

**☐** OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.