PART

FURTHER TOPICS

-
J

30	ENSEMBLE LEARNING	343
31	ONLINE LEARNING	355
32	CONFIDENCE OF PREDICTION	365
33	SEMISUPERVISED LEARNING	375
34	MULTITASK LEARNING	391
35	LINEAR DIMENSIONALITY REDUCTION	405
36	NONLINEAR DIMENSIONALITY REDUCTION	429
37	CLUSTERING	447
38	OUTLIER DETECTION	457
39	CHANGE DETECTION	469

Part 5 is devoted to introducing various advanced topics in machine learning.

In Chapter 30, methods of *ensemble learning* are introduced, which are aimed at combining multiple *weak* learning algorithms to produce a *strong* learning algorithm. In Chapter 31, methods of *online learning* are introduced, which provide computationally efficient means to learn from training data given sequentially. In Chapter 32, methods to estimate the *confidence of prediction* are introduced.

Then various techniques for improving the performance of supervised learning based on *side information* are discussed. In Chapter 33, the framework of *semisupervised learning* is discussed, which tries to make use of additional input-only samples. This chapter also includes methods of *transfer learning*, which are aimed at utilizing training data of other related learning tasks. In Chapter 34, methods of *multitask learning* are introduced, which solve multiple related learning tasks simultaneously by sharing common information.

In Chapter 35, methods of *dimensionality reduction* are introduced for extracting useful low-dimensional feature representations, covering linear supervised and unsupervised methods. Then Chapter 36 focuses on non-linear dimensionality reduction methods.

Finally, various unsupervised learning methods are covered. In Chapter 37, methods of *clustering* are introduced, which are aimed at grouping data samples based on their similarity. In Chapter 38, methods of *outlier detection* are introduced, which try to identify anomalous samples in a given data set. In Chapter 39, methods of *change detection* between data sets are introduced.