LABORATOR #3

- **EX#1** Fie $a, b, c, d \in \mathbb{R}$. Creați un fișier în Python[®] prin care:
 - (a) să se estimeze numeric (frecvenționist) probabilitatea ca un număr x generat aleator uniform în [a, b] să aparțină intervalului $[c, d] \subseteq [a, b]$;
 - (b) să se apeleze (a) pentru $a, b, c, d \in \mathbb{R}$ aleşi arbitrar.
- **EX#2** Fie $a_i, b_i, c_i, d_i \in \mathbb{R}$, $i = \overline{1,2}$. Creați un fișier în Python[®] prin care:
 - (a) să se estimeze numeric (frecvenționist) probabilitatea ca (x, y) să aparțină domeniului $[c_1, d_1] \times [c_2, d_2] \subseteq [a_1, b_1] \times [a_2, b_2]$, unde x este un număr generat aleator uniform în $[a_1, b_1]$, iar y este un număr generat aleator uniform în $[a_2, b_2]$, independent de x;
 - (b) să se apeleze (a) pentru $a_i, b_i, c_i, d_i \in \mathbb{R}, i = \overline{1,2}$, aleşi arbitrar;
 - (c) să se reprezinte grafic simulările realizate la (b).
- **EX#3** Fie $B(\mathbf{0},r) = \{\mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\|_2 \le r\}$ (i.e. bila d-dimensională centrată în $\mathbf{0} = (0,\ldots,0) \in \mathbb{R}^d$ și de rază r > 0). Creați un fișier în Python[®] prin care, folosind faptul că $B(\mathbf{0},r) \subset [-R_1,R_1] \times \ldots \times [-R_d,R_d], R_i \ge r, i = \overline{1,d},$
 - (a) să se estimeze numeric (frecvenționist) aria discului $B(\mathbf{0}, r) \subset \mathbb{R}^2$;
 - (b) să se apeleze (a) pentru r=1;
 - (c) să se estimeze numeric (frecvenționist) volumul bilei $B(\mathbf{0}, r) \subset \mathbb{R}^d$;
 - (d) să se apeleze (c) pentru r = 1 și $d = \overline{1, 10}$;
 - (e) să se reprezinte grafic simulările realizate la (b) și (d) pentru cazul d=2.
- **EX#4** Fie discul eliptic $E(\mathbf{0},a,b)=\{(x,y)\in\mathbb{R}^2:\frac{x^2}{a^2}+\frac{y^2}{b^2}\leq 1\}$ (i.e. discul eliptic centrat în $\mathbf{0}=(0,0)$ de semiaxe a>0 și b>0). Creați un fișier în Python® prin care, folosind faptul că $E(\mathbf{0},a,b)\subset[-\tilde{a},\tilde{a}]\times[-\tilde{b},\tilde{b}],\,\tilde{a}\geq a,\,\tilde{b}\geq b,$
 - (a) să se estimeze numeric (frecvenționist) aria discului eliptic $E(\mathbf{0}, a, b)$;
 - (b) să se apeleze (a) pentru a și b aleși arbitrar;
 - (c) să se reprezinte grafic simulările realizate la (b).
- **EX#5** Fie discul $B(\mathbf{P}, r) \subset \mathbb{R}^2$ centrat în $\mathbf{P} = (2, 2)$ de rază $r = \sqrt{2}$ și discul eliptic $E(\mathbf{0}, a, b)$ centrat în $\mathbf{0} = (0, 0)$ de semiaxe a = 3 și b = 2. Creați un fișier în Python® prin care, folosind faptul că $B(\mathbf{P}, r) \cap E(\mathbf{0}, a, b) \subset [-4, 4] \times [-4, 4]$,
 - (a) să se estimeze numeric (frecvenționist) aria $B(\mathbf{P},r) \cap E(\mathbf{0},a,b)$;
 - (b) să se reprezinte grafic simulările realizate la (a).

EX#6 Fie domeniile mărginite $D_i \subset \mathbb{R}^2$, $i = \overline{1,3}$, date de

$$D_1 = \{(x, y) \in [-3, 3] \times [-3, 3] : f_1(x, y) \le 0\},$$

$$D_2 = \{(x, y) \in [-5, 5] \times [-5, 5] : f_2(x, y) \le 0\},$$

$$D_3 = \{(x, y) \in [-2.5, 2.5] \times [-2.5, 2.5] : f_3(x, y) \le 0\},$$

unde $f_1(x,y) = x^2 + y^4 + 2xy - 1$, $f_2(x,y) = y^2 + x^2 \cos x - 1$, $f_3(x,y) = e^{x^2} + y^2 - 4 + 2.99 \cos y$. Creați un fișier în Python® prin care:

- (a) se estimeze numeric (frecvenționist) aria fiecărui domeniu D_i , $i = \overline{1,3}$;
- (b) să se reprezinte grafic simulările realizate la (a).
- **EX#7** Fie discul $B(\mathbf{0},r)$ centrat în $\mathbf{0}=(0,0)$ de rază r>0, și pătratul $P(\mathbf{0},R)$ centrat în $\mathbf{0}=(0,0)$ de latură $R\geq 2r$. Știind că $\pi=\frac{Aria(B(\mathbf{0},r))}{Aria(P(\mathbf{0},R))}\cdot \frac{R^2}{r^2}$, creați un fișier în Python® prin care să se estimeze numeric (frecvenționist) numărul π .
- **EX#8** Creați un fișier în Python[®] prin care să se estimeze numeric (frecvenționist) numărul π folosind experimentul lui Buffon (Buffon's needle problem).

Indicație: Fie $a_i, b_i \in \mathbb{R}$, $i = \overline{1, d}$. Fie $D = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_d, b_d] \subset \mathbb{R}^d$ și $M \subseteq D$ domeniu măsurabil Lebesgue. Probabilitatea ca \mathbf{x} generat aleator uniform în D să aparțină lui M este $\frac{\lambda(M)}{\lambda(D)}$, unde $\lambda(A) =$ măsura Lebesgue a mulțimii A.

Indicaţii Python®: numpy, numpy.random.rand, numpy.random.uniform, matplotlib,
matplotlib.pyplot