

(https://swayam.gov.in)

d22180@students.iitmandi.ac.in >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Pattern Recognition And Application (course)

Click to register for Certification

/2023_10 /exam_form /dashboard)

If already registered, click to check your payment status

Course outline

> How does an **NPTEL** online course work? ()

Week 0 ()

Week 1 ()

Week 2 ()

Lecture 04 : Bayes Decision Theory - I

 $\underset{\text{(https://examform.nptel.ac.in}}{\text{(https://examform.nptel.ac.in}} \text{Week 2: Assignment 2}$

The due date for submitting this assignment has passed.

Due on 2023-08-09, 23:59 IST.

As per our records you have not submitted this assignment.

1) 2 points

For a two class problem the decision surface is shown in figure 1, which of the following could be the best classifier design?

Figure 1

- a) Linear classifier
- b) Quadratic classifier
- c) MLP classifier
- d) Hyper-box classifier
- O a)
- O b)
- O c)
- \bigcirc d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

b)

1 of 6 13/08/23, 16:14 (unit?unit=22& lesson=23)

Decision
Theory - II
(unit?unit=22&
lesson=24)

Quiz: Week 2 : Assignment 2 (assessment? name=109)

Feedback
Form for Week
2
(unit?unit=22&

lesson=25)

Assignment 2
Solution
(unit?unit=22&
lesson=114)

Week 3 ()

Week 4 ()

Download Videos ()

Text Transcripts ()

Books ()

2) **2 points**

For a two class problem the decision surface is shown in figure 2, which of the following could be the best classifier design?

Figure 2

- a) Linear classifier
- b) Quadratic classifier
- c) MLP classifier
- d) Hyper-box classifier

(a)

O b)

O c)

O d)

No, the answer is incorrect. Score: 0

Accepted Answers:

c)

3) 2 points

For a two class problem the decision surface is shown in Figure 3, which of the following could be the best classifier design?

Figure 3

- a) Linear classifier
- b) Quadratic classifier
- c) MLP classifier
- d) Hyper-box classifier

(a)

(b)

O c)

2 of 6 13/08/23, 16:14

(d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

d)

4) 2 points

Which of the following expression relates to Bayes Theorem?

a)
$$P\left(\frac{\omega_1}{X}\right) = P\left(\frac{X}{\omega_1}\right)P(\omega_1)$$

b)
$$P\left(\frac{X}{\omega_1}\right) = P\left(\frac{\omega_1}{X}\right)P(\omega_1)$$

c)
$$P\left(\frac{X}{\omega_1}\right) = \frac{P\left(\frac{\omega_1}{X}\right)P(\omega_1)}{P(X)}$$

d)
$$P\left(\frac{\omega_l}{X}\right) = \frac{P\left(\frac{X}{\omega_l}\right)P(\omega_l)}{P(X)}$$

O a)

(b)

O c)

 \bigcirc d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

d)

5) 2 points

For a two class problem, which of the following is/are correct?

I.
$$P\left(\frac{\omega_1}{X}\right) > P\left(\frac{\omega_2}{X}\right)$$
, then $X \in \omega_1$

II.
$$P\left(\frac{\omega_1}{X}\right) > P\left(\frac{\omega_2}{X}\right)$$
, then $X \in \omega_2$

III.
$$P\left(\frac{\omega_1}{X}\right) = P\left(\frac{\omega_2}{X}\right)$$
, then X lies on decision surface

- a) Only I
- b) Only II and III
- c) Only I and III
- d) All I, II and III

(a)

O b)

O c)

O d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

c)

6) *2 points*

For a two class problem, the posterior probability distribution $P\left(\frac{\omega_i}{X}\right)$ is given in Figure 4, where

 $i = \{1,2\}$. For an unknown feature vector X_1 which of the following is correct?

- a) $X_1 \in \omega_1$
- b) $X_1 \in \omega_2$
- c) X_1 lies on decision surface
- d) Cannot be classified
- (a)
- O b)
- O c)
- O d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

a)

7) 2 points

For the following pattern, which of the following is the simplest classifier for classifying the following pattern?

- a) Cubic classifier
- b) Quadratic classifier
- c) Linear classifier
- d) None of these
- (a)
- (b)
- O c)

1 of 6

(d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

c)

8) *2 points*

For a two class problem, if $R\binom{\alpha_i}{X}$ is the risk function $\lambda\binom{\alpha_i}{\omega_j}$ is the risk involved in classifying an unknown vector to class ω_i , whose actual class is ω_j . Which of the following is correct?

$$\text{a)} \quad R \bigg(\frac{\alpha_i}{X} \bigg) = \sum_{i=1}^2 \left[\lambda \bigg(\frac{\alpha_i}{\omega_j} \bigg) P \bigg(\frac{\omega_i}{X} \bigg) \right]$$

b)
$$R\left(\frac{\alpha_i}{X}\right) = \sum_{i=1}^{2} \left[\lambda \left(\frac{\alpha_i}{\omega_j}\right) P\left(\frac{\omega_j}{X}\right)\right]$$

c)
$$R\left(\frac{\alpha_i}{X}\right) = \sum_{j=1}^{2} \left[\lambda\left(\frac{\alpha_i}{\omega_j}\right)P\left(\frac{\omega_j}{X}\right)\right]$$

- d) None of these
- O a)
- O b)
- O c)
- O d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

c)

9) **2 points**

For a two class problem, if $R \begin{pmatrix} \alpha_i / \chi \end{pmatrix}$ is the risk function. Which of the following is correct?

a)
$$R\left(\frac{\alpha_1}{X}\right) > R\left(\frac{\alpha_2}{X}\right)$$
, then $X \in \omega_1$

b)
$$R\left(\frac{\alpha_1}{X}\right) > R\left(\frac{\alpha_2}{X}\right)$$
, then $X \in \omega_2$

c)
$$R\left(\frac{\alpha_1}{X}\right) = R\left(\frac{\alpha_2}{X}\right)$$
, then $X \in \omega_2$

- d) None of the above
- (a)
- O b)
- O c)
- \bigcirc d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

b)

10) 2 points

In case of linearly separable classes,	
	 a) a straight line separates the two classes in 2-D. b) a parabola separates the two classes in 2-D. c) a hyper-plane separates the two classes for dimensions greater than 3. d) Both a and c.
O a)	
O b)	
O c)	
O d)	
No, the ans	swer is incorrect.
Accepted A	Answers:

6 of 6 13/08/23, 16:14