Fast Point Cloud Sampling Network

Tianxin Huang^a, Yong Liu^{a,*}, and Jie Liang^{a,b}

 ^a Laboratory of Advanced Perception on Robotics and Intelligent Learning, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
 ^b Beijing Institute of Mechanical and Electrical Engineering, Beijing, China

Abstract

The increasing number of points in 3D point clouds has brought great challenges for subsequent algorithm efficiencies. Down-sampling algorithms are adopted to simplify the data and accelerate the computation.

1 Introduction

1(b) and 1(c).

Existing works [5] - [2] often use random sampling and the farthest point sampling (FPS) to down-sample the point clouds.

The differences between our work and former learning-based works are presented in Fig 1.

The discrepancy between progressnet and our method is presented in Fig

Figure 1:(a) shows the differences between learning-based sampling strategies, while (b) and (c) present the discrepancy between progress-net and our method in multiresolution sampling

^{*}Corresponding author

Our contributions can be summarized as:

- We propose a novel learningbased point cloud sampling framework named fast sampling network (FPN) by driving existing randomly sampled points to better positions;
- We introduce a hybrid training strategy to help FPN adapt to different sampling resolutions by randomly introducing selecting the resolution of initial points during training;

2 Methodology

2.1 Basic pipeline

The basic pipeline of FPN is presented in Fig 2 We aggregate global features from the input points with a set of multilevel perceptions (MLPs) and Max Pooling following PointNet [4].

The achievement of HTS is presented as Algorithm 1.

2.2 Loss fuction

The range constraint can be presented as

$$L_{rc} = \frac{1}{N} \sum ||S_o - S_i||_2, \quad (1)$$

For reconstruction related tasks, it may be Chamfer Distance or Earth Mover Distance [3] defined as

$$L_{task} = L_{CD}(S_1, S_2)$$

$$= \frac{1}{2} \left(\frac{1}{|S_1|} \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2 + \frac{1}{|S_2|} \sum_{x \in S_2} \min_{y \in S_1} ||x - y||_2 \right),$$
(2)

or

$$L_{task} = L_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \frac{1}{|S_1|} \sum_{x \in S_1} ||x - \phi(x)||_2,$$
(3)

where S_1 and S_2 are input and output. ϕ is a bijection from S_1 to S_2 .

3 Experiments

$\begin{array}{cccc} 3.1 & Dataset & and & imple-\\ & mentation & details \end{array}$

Table 1

The number of neurons in networks. f_1 , f_2 , f_3 are modules in Fig

Table 2

The comparison on optimal cluster-

ing.

Center	iterations	1	10	100
16	FPS	2.43	2.00	1.98
	Ours	2.16	1.98	1.96
32	FPS	1.20	1.02	1.00
	Ours	1.11	1.00	1.00
	16	16 Ours FPS	16 FPS 2.43 Ours 2.16 32 FPS 1.20	16 FPS 2.43 2.00 Ours 2.16 1.98 FPS 1.20 1.02

The hyper-parameter λ is tuned on the validation split of ShapeNet. Detailed network structures are shown in Table 3.1.

Figure 2: The whole pipeline of FPN. The + denotes element-wised addition. f_1 and f_2 aggregate features by MultiLayer Perceptrons(MLPs) and pooling, while f_3 is a group of MLPs to predict offsets from coordinates and features. The task network is corresponding to the specific task, such as point cloud recognition and reconstruction. L_{task} is the loss constrained the task network

3.2 Discussion about clustering

Except down-stream tasks such as reconstruction or recognition, downsampled points can also be adopted as the initial clustering centers. [1]

The results are presented in Table 3.1.

Algorithm 1 Training with Hybrid Training Strategy

Input: data X the number of iterations iter, the number of resolutions m;

$$prob_1, prob_2, \dots, prob_m$$

$$=\frac{1}{m},\frac{1}{m},\ldots,\frac{1}{m};$$

$$= \frac{1}{m}, \frac{1}{m}, \dots, \frac{1}{m};$$
for $i = 1$ to $iter$ **do**

Select the resolution r according to $prob_1, \ldots, prob_m;$

Train FPN by descending gradient: $\delta_{\theta_{FPN}} L_{loss}(Y_{X,r})$ end for

3.3 Ablation study

The influence of range constraint.

Note that this is only conducted to observe the influence of range constraint weight λ on sampling performances instead of the tuning of λ , which is chosen according to the val set introduced in Section 3.2.

Data availability

Data will be made available on request

Acknowledgement

We thank all reviewers and the editor for excellent contributions. This work is supported by the Key Research and Development Project of Zhejiang Province under Grant 2021C01035.

References

- [1] "Clustering to minimize the maximum intercluster distance, Author links open overlay panelTeofilo F. Gonzalez". In: (1985).
- [2] "Deep Hough Voting for 3D Object Detection in Point Clouds, Charles R. Qi, Or Litany, Kaiming He, Leonidas J. Guibas; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 9277-9286". In: (2019).
- [3] "KPConv: Flexible and Deformable Convolution for Point Clouds, Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, Francois Goulette, Leonidas J. Guibas; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 6411-6420". In: (2019).
- [4] "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 652-660". In: (2017).
- [5] "Pointnet++: Deep hierarchical feature learning on point sets in a metric space CR Qi, L Yi, H Su, LJ Guibas Advances in neural ..., 2017 proceedings.neurips.cc". In: (2017).