Project

project groups

- groups of 3-4
- if needed, feel free to use "Search for Teammates!" feature on Piazza (pinned)
- send me an email (mvasconcelos@eng.ucsd.edu) stating who are the group members (please use your official UCSD name) as soon as you know it, with deadline Tuesday, 1/18

project proposal

- due Tuesday, 2/1 @ 11:59pm
- one-page <u>maximum</u> stating:
 - problem
 - data you will use
 - draft of proposed solution (can be updated later)
 - experiments you will run (can be updated later)
 - references (you can use an <u>additional</u> page for this)

ECE 271B – Winter 2022 Optimization

Disclaimer:

This class will be recorded and made available to students asynchronously.

Manuela Vasconcelos

ECE Department, UCSD

Optimization

- many engineering problems boil down to optimization
- ▶ goal: find maximum or minimum of a function
- **Definition:** given functions f, g_i , i=1,...,r and h_i , i=1,...,m defined on some domain $\Omega \in \mathbb{R}^n$

$$\min_{\mathbf{w}} f(\mathbf{w}), \mathbf{w} \in \Omega$$
subject to
$$g_i(\mathbf{w}) \le 0, \forall i$$

$$h_i(\mathbf{w}) = 0, \forall i$$

- ▶ $f(\mathbf{w})$: cost; h_i (equality), g_i (inequality): constraints
- ▶ for compactness, we write $g(\mathbf{w}) \le 0$ instead of $g_i(\mathbf{w}) \le 0$, $\forall i$ and similarly $h(\mathbf{w}) = 0$
- ▶ note that $g(\mathbf{w}) \ge 0 \Leftrightarrow -g(\mathbf{w}) \le 0$ (no need for ≥ 0)

Optimization

- ▶ **note**: maximizing $f(\mathbf{w})$ is the same as minimizing $-f(\mathbf{w})$, so this definition also works for maximization
- ▶ the **feasible region** is the region where $f(\cdot)$ is defined and all constraints hold

$$\Re = \{ \mathbf{w} \in \Omega \mid g(\mathbf{w}) \le 0, h(\mathbf{w}) = 0 \}$$

 \blacktriangleright w* is a global minimum of $f(\mathbf{w})$ if

$$f(\mathbf{w}) \ge f(\mathbf{w}^*), \forall \mathbf{w} \in \Omega$$

 \blacktriangleright w* is a local minimum of $f(\mathbf{w})$ if

$$\exists \varepsilon > 0 \text{ s.t. } \|\mathbf{w} - \mathbf{w}^*\| < \varepsilon \Rightarrow f(\mathbf{w}) \ge f(\mathbf{w}^*)$$

Derivative

- ightharpoonup a function f(w) is **differentiable** if it has derivatives for all w
- ▶ the derivative at point w is defined as

$$\frac{\partial f}{\partial w} = \lim_{\alpha \to 0} \frac{f(w + \alpha) - f(w)}{\alpha}$$

note that the magnitude of the derivative is a measure how much the

function is growing at point w

▶ for a multivariate function $f(\mathbf{w})$, $\mathbf{w} \in \mathbb{R}^n$

- the problem is more complex because we can compute the derivative in many directions
- e.g. contour plot of

$$f(\mathbf{w}) = \|\mathbf{w}\|^2 = w_1^2 + w_2^2$$

Directional Derivative

▶ the directional derivative of $f(\mathbf{w})$ at \mathbf{w} , along direction \mathbf{d} is

$$D_{\mathbf{d}}f(\mathbf{w}) = \lim_{\alpha \to 0} \frac{f(\mathbf{w} + \alpha \mathbf{d}) - f(\mathbf{w})}{\alpha}$$

- (note that we are assuming that \mathbf{d} is a unit vector $\|\mathbf{d}\| = 1$, otherwise we have to divide by $\|\mathbf{d}\|$)
- this measures how much the function grows if we give an infinitesimal step along d
- from Taylor series expansion of $f(\mathbf{w})$,

$$f(\mathbf{w} + \alpha \mathbf{d}) = f(\mathbf{w}) + \alpha \mathbf{d}^T \nabla f(\mathbf{w}) + O(\alpha^2)$$

where

$$\nabla f(\mathbf{z}) = \left(\frac{\partial f}{\partial w_0}(\mathbf{z}), \cdots, \frac{\partial f}{\partial w_{n-1}}(\mathbf{z})\right)^T$$

is the gradient of a function $f(\mathbf{w})$ at \mathbf{z}

The Gradient

 $f(\mathbf{w} + \alpha \mathbf{d}) = f(\mathbf{w}) + \alpha \mathbf{d}^T \nabla f(\mathbf{w}) + O(\alpha^2)$

$$f(\mathbf{w} + \alpha \mathbf{d}) - f(\mathbf{w}) = \alpha \mathbf{d}^T \nabla f(\mathbf{w}) + O(\alpha^2)$$

▶ it follows that

$$D_{\mathbf{d}}f(\mathbf{w}) = \lim_{\alpha \to 0} \frac{f(\mathbf{w} + \alpha \mathbf{d}) - f(\mathbf{w})}{\alpha}$$

can be written as

dot-product of the gradient with the direction vector

$$D_{\mathbf{d}}f(\mathbf{w}) = \mathbf{d}^T \nabla f(\mathbf{w}) = \sum_i d_i \frac{\partial f(\mathbf{w})}{\partial w_i}$$

- note that each partial derivative is a function
- the **gradient** is a set of n basis functions (the **partial derivatives**) that you can use to reconstruct the derivative along **any** direction

The Gradient

an important consequence is that

$$D_{\mathbf{d}}f(\mathbf{w}) = \mathbf{d}^T \nabla f(\mathbf{w}) = \|\mathbf{d}\| \|\nabla f(\mathbf{w})\| \cos \theta$$
$$= \|\nabla f(\mathbf{w})\| \cos \theta$$

• this implies that the direction of maximum derivative \mathbf{d}_0 is that of the gradient $(\theta = 0)$

$$\mathbf{d}_{o} = \arg \max_{\mathbf{d}} D_{\mathbf{d}} f(\mathbf{w}) = \frac{\nabla f(\mathbf{w})}{\|\nabla f(\mathbf{w})\|}$$

the derivative along this direction is

$$D_{\mathbf{d}_{0}}f(\mathbf{w}) = \max_{\mathbf{d}} D_{\mathbf{d}}f(\mathbf{w}) = \|\nabla f(\mathbf{w})\|$$

- ▶ in summary
 - the direction of the gradient is that of <u>steepest growth</u> of the function
 - the magnitude of the gradient is a measure how much the function is growing at point w (in that direction)

The Gradient

- ▶ note that if $\nabla f = 0$
 - there is **no** direction of growth
 - also $-\nabla f = 0$, and there is <u>no</u> direction of decrease
 - we are either at a local minimum or maximum or "saddle" point
- conversely, at local min or max or saddle point
 - no direction of growth or decrease
 - $\nabla f = 0$
- ▶ this shows that we have a **critical point** if and only if $\nabla f = 0$
- ▶ to determine which type, we need second—order conditions

The Hessian

ightharpoonup if $\nabla f = 0$, by Taylor series,

$$f(\mathbf{w} + \alpha \mathbf{d}) = f(\mathbf{w}) + \underbrace{\alpha \mathbf{d}^T \nabla f(\mathbf{w})}_{0} + \frac{\alpha^2}{2} \mathbf{d}^T \nabla^2 f(\mathbf{w}) \mathbf{d} + O(\alpha^3)$$

and

$$\frac{f(\mathbf{w} + \alpha \mathbf{d}) - f(\mathbf{w})}{\alpha^2} = \frac{1}{2} \mathbf{d}^T \nabla^2 f(\mathbf{w}) \mathbf{d} + O(\alpha)$$

- maximum at w if and only if $\mathbf{d}^T \nabla^2 f \mathbf{d} \leq 0, \forall \mathbf{d} \neq \mathbf{0}$
- minimum at w if and only if $\mathbf{d}^T \nabla^2 f \mathbf{d} \geq 0$, $\forall \mathbf{d} \neq \mathbf{0}$
- saddle, otherwise
- this proves the following theorems

Minima Conditions (Unconstrained)

- Theorem: Let $f(\mathbf{w})$ be continuously differentiable. \mathbf{w}^* is a **local** minimum of $f(\mathbf{w})$ if and only if
 - f has zero gradient at w*

$$\nabla f(\mathbf{w}^*) = 0$$

• and the Hessian of f at \mathbf{w}^* is positive—semidefinite

$$\mathbf{d}^T \nabla^2 f(\mathbf{w}^*) \mathbf{d} \ge 0, \forall \mathbf{d} \in \mathbb{R}^n$$

where

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_0^2}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_0 \partial x_{n-1}}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_{n-1} \partial x_0}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_{n-1}^2}(\mathbf{x}) \end{bmatrix}$$

Maxima Conditions (Unconstrained)

- Theorem: Let $f(\mathbf{w})$ be continuously differentiable. \mathbf{w}^* is a local maximum of $f(\mathbf{w})$ if and only if
 - f has zero gradient at w*

$$\nabla f(\mathbf{w}^*) = 0$$

• and the Hessian of f at \mathbf{w}^* is negative—semidefinite

$$\mathbf{d}^T \nabla^2 f(\mathbf{w}^*) \mathbf{d} \leq 0, \forall \mathbf{d} \in \mathbb{R}^n$$

where

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_0^2}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_0 \partial x_{n-1}}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_{n-1} \partial x_0}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_{n-1}^2}(\mathbf{x}) \end{bmatrix}$$

Example

consider the functions

$$f(\mathbf{x}) = x_1 + x_2$$

$$h(\mathbf{x}) = x_1^2 + x_2^2$$

▶ the gradients are

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\nabla h(\mathbf{x}) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}$$

- ▶ f has no minima or maxima
- ▶ h has a critical point at the origin $\mathbf{x} = (0,0)$ and, since the Hessian is positive—definite

$$\nabla^2 h(\mathbf{x}) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix},$$

this is a minimum

makes sense because

$$f(\mathbf{x}) = x_1 + x_2$$

is a plane, gradient is constant

▶ makes sense because

$$h(\mathbf{x}) = x_1^2 + x_2^2$$

is a quadratic, positive everywhere but the origin

▶ note how gradient points towards largest increase

Convex Functions

▶ Definition: $f(\mathbf{w})$ is convex if $\forall \mathbf{w}, \mathbf{u} \in \Omega$ and $\lambda \in [0,1]$

$$f(\lambda \mathbf{w} + (1 - \lambda)\mathbf{u}) \le \lambda f(\mathbf{w}) + (1 - \lambda)f(\mathbf{u})$$

Theorem: $f(\mathbf{w})$ is convex if and only if its Hessian is positive—definite for all \mathbf{w}

$$\mathbf{y}^T \nabla^2 f(\mathbf{w}) \mathbf{y} \ge 0, \forall \mathbf{y} \in \Omega$$

- ► Proof:
 - requires some intermediate results that we will not cover
 - we will skip it

Concave Functions

Definition: $f(\mathbf{w})$ is **concave** if $\forall \mathbf{w}, \mathbf{u} \in \Omega$ and $\lambda \in [0,1]$ $f(\lambda \mathbf{w} + (1 - \lambda)\mathbf{u}) \ge \lambda f(\mathbf{w}) + (1 - \lambda)f(\mathbf{u})$

Theorem: $f(\mathbf{w})$ is concave if and only if its Hessian is negative—definite for all \mathbf{w}

$$\mathbf{y}^T \nabla^2 f(\mathbf{w}) \mathbf{y} \leq 0, \forall \mathbf{y} \in \Omega$$

- ► Proof:
 - $-f(\mathbf{w})$ is convex
 - by previous theorem, Hessian of $-f(\mathbf{w})$ is positive—definite
 - Hessian of $f(\mathbf{w})$ is negative—definite \blacksquare

Convex Functions

Theorem: If $f(\mathbf{w})$ is convex, any local minimum \mathbf{w}^* is also a global minimum.

► Proof:

 \mathbf{w}^* is a global minimum of $f(\mathbf{w})$ if $f(\mathbf{w}) \ge f(\mathbf{w}^*), \forall \mathbf{w} \in \Omega$

- we need to show that, $f(\mathbf{w}^*) \leq f(\mathbf{u}), \forall \mathbf{u}$,
- for $\forall \mathbf{u}$ and $\lambda \in [0,1] : \|\mathbf{w}^* [\lambda \mathbf{w}^* + (1-\lambda)\mathbf{u}]\| = (1-\lambda)\|\mathbf{w}^* \mathbf{u}\|$
- and, making λ arbitrarily close to 1, we can make

$$\|\mathbf{w}^* - [\lambda \mathbf{w}^* + (1 - \lambda)\mathbf{u}]\| \le \varepsilon, \forall \varepsilon > 0$$

 \mathbf{w}^* is a local minimum of $f(\mathbf{w})$ if $\exists \varepsilon > 0$ s.t. $\|\mathbf{w} - \mathbf{w}^*\| < \varepsilon \Rightarrow f(\mathbf{w}) \ge f(\mathbf{w}^*)$

- since \mathbf{w}^* is local minimum, it follows that $f(\mathbf{w}^*) \leq f(\lambda \mathbf{w}^* + (1 \lambda)\mathbf{u})$ and, by convexity, that $f(\mathbf{w}^*) \leq \lambda f(\mathbf{w}^*) + (1 \lambda)f(\mathbf{u})$
- or $(1 \lambda)f(\mathbf{w}^*) \le (1 \lambda)f(\mathbf{u})$

 $f(\mathbf{w})$ is **convex** if $\forall \mathbf{w}, \mathbf{u} \in \Omega$ and $\lambda \in [0,1]$ $f(\lambda \mathbf{w} + (1 - \lambda)\mathbf{u}) \le \lambda f(\mathbf{w}) + (1 - \lambda)f(\mathbf{u})$

• and $f(\mathbf{w}^*) \leq f(\mathbf{u}) \blacksquare$

Constrained Optimization

- ▶ in summary:
 - we know what are conditions for <u>unconstrained</u> max and min
 - we like **convex** functions (find a minima, it will be global minimum)
- what about optimization with constraints?
- a few definitions to start with
- **Definition:** An inequality $g_i(\mathbf{w}) \leq 0$ is **active** if $g_i(\mathbf{w}) = 0$, otherwise is inactive
- inequalities can be expressed as equalities by introduction of slack variables

$$g_i(\mathbf{w}) \le 0 \iff g_i(\mathbf{w}) + \xi_i = 0 \text{ and } \xi_i \ge 0$$

Convex Optimization

- Definition: A set Ω is convex if ∀ w, u ∈ Ω and λ ∈ [0,1] then λ w + (1 − λ)u ∈ Ω
- \blacktriangleright "a line between any two points in Ω is also in Ω "

- **Definition:** An optimization problem where the set Ω , the cost f and all constraints g and h are convex is said to be **convex**
- ▶ **note:** linear constraints g(x) = Ax + b are always convex (zero Hessian)

Constrained Optimization

we will consider general (not only convex) constrained optimization problems, start by the case with only equalities

► **Theorem:** Consider the problem

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{arg min}} f(\mathbf{x}) \text{ subject to } h(\mathbf{x}) = 0$$

where the constraint gradients $\nabla h_i(\mathbf{x}^*)$ are linearly independent. Then, \mathbf{x}^* is a solution if and only if there exits a unique vector $\boldsymbol{\lambda}$ such that

```
gradient condition i) \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0 "constraint gradients & Hessians" ii) \mathbf{y}^T [\nabla^2 f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla^2 h_i(\mathbf{x}^*)] \mathbf{y} \geq 0, \forall \mathbf{y} s.t. \nabla h(\mathbf{x}^*)^T \mathbf{y} = 0 condition
```

 $h_i, i = 1, ..., m$ $h_i(\mathbf{x}) = 0, \forall i$

Alternative Formulation

stating the conditions through the Lagrangian

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x})$$

the theorem can be compactly written as

i)
$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

i)
$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

ii) $\nabla_{\boldsymbol{\lambda}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$ this just means that $h_i(\mathbf{x}) = 0, \forall i$
iii) $\mathbf{y}^T \nabla_{\mathbf{x}\mathbf{x}}^2 L(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{y} \geq 0, \forall \mathbf{y} \text{ s.t. } \nabla h(\mathbf{x}^*)^T \mathbf{y} = 0$

iii)
$$\mathbf{y}^T \nabla_{\mathbf{x}\mathbf{x}}^2 L(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{y} \ge 0$$
, $\forall \mathbf{y}$ s.t. $\nabla h(\mathbf{x}^*)^T \mathbf{y} = 0$

 \blacktriangleright the entries of λ are referred to as Lagrange multipliers

The Gradient (Revisited)

ightharpoonup recall that derivative of f along \mathbf{d} is

$$\lim_{\alpha \to 0} \frac{f(\mathbf{w} + \alpha \mathbf{d}) - f(\mathbf{w})}{\alpha} = \mathbf{d}^T \nabla f(\mathbf{w}) = \|\mathbf{d}\| \|\nabla f(\mathbf{w})\| \cos(\mathbf{d}, \nabla f(\mathbf{w}))$$

- this means that
 - greatest increase when $\mathbf{d} \parallel \nabla f$
 - no increase when $\mathbf{d} \perp \nabla f$ since there is no increase when \mathbf{d} is tangent to iso—contour $f(\mathbf{x}) = k$
 - the gradient is perpendicular to the tangent of the iso—contour

allows geometric interpretation of the Lagrangian conditions

Lagrangian Optimization

geometric interpretation:

- since $h(\mathbf{x}) = 0$ is an iso-contour of $h(\mathbf{x})$, $\nabla h(\mathbf{x}^*)$ is perpendicular to the iso-contour
- $\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$ says that $\nabla f(\mathbf{x}^*) \in span\{\nabla h_i(\mathbf{x}^*)\}$
- i.e. $\nabla f \perp$ to tangent space of the constraint surface $h(\mathbf{x}) = 0$

intuitively

- direction of largest increase of f is ⊥ to constraint surface
- the gradient is zero along the constraint
- no way to give an infinitesimal gradient step, without violating the constraint
- it is impossible to increase f and still satisfy the constraint

Example

consider the problem

$$\min x_1 + x_2$$
 subject to $x_1^2 + x_2^2 = 2$

▶ it leads to the following picture

$$f(\mathbf{x}) = x_1 + x_2$$

$$h(\mathbf{x}) = x_1^2 + x_2^2 - 2$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\nabla h(\mathbf{x}) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}$$

consider the problem

$$\min x_1 + x_2$$
 subject to $x_1^2 + x_2^2 = 2$

▶ $\nabla f \perp$ to the iso—contours of $f(x_1 + x_2 = k)$

consider the problem

$$\min x_1 + x_2$$
 subject to $x_1^2 + x_2^2 = 2$

▶ ∇h ⊥ to the iso—contour of h ($x_1^2 + x_2^2 - 2 = 0$)

recall that derivative along d is

$$\lim_{\alpha \to 0} \frac{f(\mathbf{w} + \alpha \mathbf{d}) - f(\mathbf{w})}{\alpha} = \mathbf{d}^T \nabla f(\mathbf{w}) = \|\mathbf{d}\| \|\nabla f(\mathbf{w})\| \cos(\mathbf{d}, \nabla f(\mathbf{w}))$$

 moving along the tangent is descent as long as

$$\cos(tg, \nabla f) < 0$$

i.e.

$$\pi/2 < \measuredangle(tg, \nabla f) < 3\pi/2$$

- can always find such **d** unless $\nabla f \perp tg$
- critical point when $\nabla f \parallel \nabla h$
- to find which type, we need 2nd order (as before)

Alternative View

- rightharpoonup consider the tangent space to the iso-contour $h(\mathbf{x}) = 0$
- ▶ this is the subspace of first—order feasible variations

$$V(\mathbf{x}^*) = \{ \Delta \mathbf{x} \mid \nabla h_i^T(\mathbf{x}^*) \Delta \mathbf{x} = 0, \forall i \}$$

i.e. space of Δx for which a step $x + \Delta x$ satisfies the constraints $h_i(x)$ up to first-order approximation

Feasible Variations

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$$

ightharpoonup multiplying our first Lagrangian condition by Δx

$$\nabla f^{T}(\mathbf{x}^{*}) \Delta \mathbf{x} + \sum_{i=1}^{m} \lambda_{i} \underbrace{\nabla h_{i}^{T}(\mathbf{x}^{*}) \Delta \mathbf{x}}_{\mathbf{0}} = 0$$

▶ it follows that

$$\nabla f^T(\mathbf{x}^*) \Delta \mathbf{x} = 0, \forall \Delta \mathbf{x} \in V(\mathbf{x}^*)$$

- ▶ this is a generalization of $\nabla f(\mathbf{x}^*) = 0$ in the unconstrained case
 - here, all that matters is that $\nabla f(\mathbf{x}^*)$ has no projection in $V(\mathbf{x}^*)$
 - implies that $\nabla f(\mathbf{x}^*) \perp V(\mathbf{x}^*)$ and therefore $\nabla f(\mathbf{x}^*) \parallel \nabla h(\mathbf{x}^*)$
 - note:
 - Hessian constraint only defined for y in $V(x^*)$
 - makes sense: we cannot move anywhere else, does not really matter what Hessian is outside $V(\mathbf{x}^*)$

Feasible Variations

returning to our optimality conditions

i)
$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$$

$$\nabla^2_{\mathbf{x}\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*)$$
ii) $\mathbf{y}^T [\nabla^2 f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla^2 h_i(\mathbf{x}^*)] \mathbf{y} \ge 0, \forall \mathbf{y} \text{ s.t. } \nabla h(\mathbf{x}^*)^T \mathbf{y} = 0$

- ▶ this explains the "extra stuff" in the Hessian condition
 - it restricts the Hessian constraint to y in $V(x^*)$
 - the Lagragian only has to be positive—definite in $V(\mathbf{x}^*)$
 - makes sense: we cannot move anywhere else, does not really matter what Hessian is outside $V(\mathbf{x}^*)$

In Summary

- ► for a constrained optimization problem with **equality** constraints
- **Theorem:** Consider the problem

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{arg min}} f(\mathbf{x}) \text{ subject to } h(\mathbf{x}) = 0$$

where the constraint gradients $\nabla h_i(\mathbf{x}^*)$ are linearly independent. Then, \mathbf{x}^* is a solution if and only if there exits a unique vector λ such that

i)
$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$$

i)
$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$$

ii) $\mathbf{y}^T [\nabla^2 f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla^2 h_i(\mathbf{x}^*)] \mathbf{y} \ge 0$, $\forall \mathbf{y}$ s.t. $\nabla h(\mathbf{x}^*)^T \mathbf{y} = 0$

Alternative Formulation

stating the conditions through the Lagrangian

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x})$$

the theorem can be compactly written as

i)
$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

(ii)
$$\nabla_{\lambda}L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

i)
$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

ii) $\nabla_{\boldsymbol{\lambda}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$
iii) $\mathbf{y}^T \nabla_{\mathbf{x}\mathbf{x}}^2 L(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{y} \ge 0, \forall \mathbf{y} \text{ s.t. } \nabla h(\mathbf{x}^*)^T \mathbf{y} = 0$

 \blacktriangleright the entries of λ are referred to as Lagrange multipliers

General Optimization

what about problems with <u>both</u> equality and inequality constraints?

$$\min_{\mathbf{w}} f(\mathbf{w}), \mathbf{w} \in \Omega$$
subject to
$$g_i(\mathbf{w}) \leq 0, \forall i$$

$$h_i(\mathbf{w}) = 0, \forall i$$

► inequalities can be expressed as equalities by introduction of slack variables

$$g_i(\mathbf{w}) \le 0 \iff g_i(\mathbf{w}) + \xi_i = 0 \text{ and } \xi_i \ge 0$$

- \blacktriangleright so, the solution is <u>similar</u>, but we have to figure out the values of the ξ_i
- we will talk about this later