Investment opportunities as options
The option to defer
More real options
Some extensions

Real Options Analysis Valuing the flexibility of investments in real assets

Nico van der Wijst

Investment opportunities as options
The option to defer
More real options
Some extensions

- 1 Investment opportunities as options
- 2 The option to defer
- 3 More real options
- 4 Some extensions

The essential economic characteristic of options is:

the flexibility to exercise or not

- possibility to choose best alternative
- walk away from bad outcomes

Stocks and bonds are passively held, no flexibility

Investments in real assets also have flexibility, projects can be:

- delayed or speeded up
- made bigger or smaller
- abandoned early or extended beyond original life-time, etc.

Real Options Analysis

- Studies and values this flexibility
- Real options are options where underlying value is a real asset
- not a financial asset as stock, bond, currency

Flexibility in real investments means:

- changing cash flows along the way:
- profiting from opportunities, cutting off losses

Discounted cash flow (DCF) calculation cannot handle flexibility:

- assumes passive, not flexible, position
- accepts cash flows as they come

Example option analogy of investment decision:

- Company has exclusive 5 year license to develop a project say a natural resource (oil well)
- Investment can be estimated accurately
- Revenue is subject to price uncertainty

The license gives company flexibility to wait and see:

- defer development until some price uncertainty is resolved
- then make a better decision

Situation analogous to holding an American call option:

- o company has right, not obligation, to 'buy' project's revenue
- by paying required investment within 5 years

Option characteristics can be represented as follows:

Determinant	Stock option	Real option
underlying	stock	project revenue
strike	exercise price	investment
time to maturity	maturity	license validity
volatility	stock σ	price volatility
interest rate	r_f	r_f

Option analogy not restricted to calls, some puts:

- abandon project and sell assets in second hand market
- down-size a project, etc.

Some more examples:

Call options	Put options	
delay	default	
expand	contract	
extend	abandon	
re-open	shut down	

Notice: not every investment opportunity is a real option:

- there has to be a source of option value
 - either a lower exercise price than competitors
 - or a higher underlying value than competitors
- The opportunity to buy or sell at market prices on some future date is not a valuable option!

Value of financial options follows from contract:

- difference between
 - fixed exercise price
 - uncertain market value

Also the case for some real options:

- option to extend a rent or service contract
- at predetermined price

However, for most real options, value springs from:

- exclusiveness of investment opportunity
- which varies from
 - completely exclusive
 - completely shared (first come, first served)

Major sources of real option value are:

- Patents and copyrights
- Mineral (extraction) rights
- Surface (development) rights
- Other property rights
- The firm's know-how:
 - technical
 - commercial
 - managerial
- The firm's market position, reputation or size
- Market opportunities

Exclusive options are called *proprietary options* the opposite is *shared options*

- Patents and copyrights are proprietary
- marked opportunities are shared

Distinction not as sharp as it seems:

- Patent value eroded by close substitutes
- Market opportunities not always easily exploitable:
 - who competes with MS-Windows, Intel, Oil companies?
 - or with SIT Tapir (bok, mat, kantine)?

Option character of real options can be limited:

- Real options can be less clearly defined:
 - underlying value may be project in planning
 - no clear time to maturity
 - no clear exercise price
- Input data may be difficult to obtain
 - underlying not traded value?
 - volatility of underlying even more difficult
 - exercise possibilities may be unclear
- Underlying project may be difficult to replicate

We look away from practical obstacles

- assume real options can be valued as financial ones
 - assume market is, at least locally, complete
 - and prices are arbitrage free
 - means projects and their options can be replicated

Not a wild assumption:

- very few, if any, projects expand the investment universe
- most projects are 13 in a dozen

Look at some common real options

The option to defer

- A very common real option
- usually discussed as possibility to postpone a project
- but notice proper option formulation:
 - is NOT decision to postpone accepted project
 - but postponement of decision to accept a project until more information is available

So valuing the option to defer means

valuing the opportunity to do a project!

Re-use our old example and re-define it as real option

- Project is an oil well that can be taken into production
 - size of reserve is accurately measured
 - value depends on oil price
 - develops over time as binomial lattice
- Value is properly discounted present value of future production
 - not cash flows
 - after two periods price uncertainty is resolved
 - ⇒ stable values

Background and setting Valuing the real option Comparison with discounted cash flow valuation

Binomial tree for the value of an oil well

Further details:

- Market data:
 - risk free interest rate is 7%
 - real probability of upward movement is 80%
 - risk adjusted discount rate for oil production from wells like this is 16%.
- Investment
 - 375 to bring well into production
 - amount increases with the risk free rate over time
 - investment is irreversible
- Project is profitable from the start:
 - 400 375 = 25, a positive net present value

Firm has exclusive one-period license to develop the well ⇒ can defer decision to develop with one period

License gives firm a real option:

- has the right, but no obligation, to develop the well
- firm has flexibility, or future decision making opportunity, to profit from real option

Project has the ingredients that make options valuable:

- Time without time, becomes now-or-never decision as in DCF
- Uncertainty
 without uncertainty, situation in 1 year exactly same as today

Reformulate project as option:

- License gives the right to 'buy' the oil in the well
 - ⇒ option is a call
- by paying development costs
 - \Rightarrow exercise price = 375.
- License expires in 1 year
 - ullet \Rightarrow option has a time to maturity of 1 year
- Volatility follows from binomial process
- interest rate = 7%

All ingredients necessary to value the option

The parameters of binomial process are:

$$u = 1.25, d = .8, r = 1.07$$

 $p = \frac{r-d}{u-d} = \frac{1.07 - .8}{1.25 - .8} = .6 (1-p) = .4$

Begin with values at maturity, i.e. at t = 1

- option value is max[0, S X]
- exercise price is $375 \times 1.07 = 401.25$

$$O_u = \max[0.500 - 401.25] = 98.75$$

•
$$O_d = \max[0,320-401.25] = 0.0$$

$$\max[0,500-401.25] = 98.75$$
55.374
$$\max[0,320-401.25] = 0.0$$

$$t=0$$

$$t=1$$

Value of the option is:

$$O = \frac{.6 \times 98.75 + .4 \times 0}{1.07} = 55.374$$

Opportunity to do project is more valuable than project itself!

How can option to defer be more valuable than project itself?

- Project very profitable in up node
- loss making in down node
- both included in t_0 value of 25.

Real option analysis values the flexibility to avoid losses in down node:

- wait a period, see how value develops:
 - If oil price goes up, develop well and profit from opportunity
 - If oil price goes down, do not develop and avoid loss
- Don't lose much by waiting one period
 - oil is still in well
 - license still valid

That is essence of real option valuation!

After one period, the license expires

- time runs out (option expires)
- source of option value disappears
- decision gets now-or-never character inherent in discounted cash flow approach

Similarly, if oil price would become fixed

- volatility would disappear
- source of option value would disappear
- option to defer would have no value

What is wrong with DCF valuation of flexibility?

It can be argued:

- DCF can capture value of flexibility
- by calculating NPV as if project started one period later
- decide to abandon project if NPV is negative
- gives same 98.75 in upper node and 0 in lower node

Result is a decision tree

Decision trees are analysed by:

- weighting branches with real probabilities of 0.8 and 0.2
- discounting expected value at risk adjusted discount rate of 16%

$$NPV = 500 - 401.25 = 98.75 \Rightarrow \text{accept project}$$
 12.07
$$NPV = 320 - 401.25 = -81.25 \Rightarrow \text{refuse project}$$
 t=0
$$t=0$$

Value of the project opportunity is:

$$\frac{.8 \times 98.75 + .2 \times 0}{1.16} = 68.103$$

Different from 55.374 we found with real options analysis!

How can we determine which value is correct? Answer in modern finance: by making a replicating portfolio

Assume payoff structure in tree can be constructed in market

here we need assumption of locally complete market

Option's delta and D are:

$$\Delta = \frac{O_u - O_d}{(u - d)S} = \frac{98.75 - 0}{500 - 320} = 0.5486 \text{ and}$$

$$D = \frac{uO_d - dO_u}{(u - d)r} = \frac{1.25 \times 0 - .8 \times 98.75}{1.25 \times 1.07 - .8 \times 1.07} = -164.07$$

At time t_1 portfolio pays off either:

$$(0.5486 \times 500) - 164.07 \times 1.07 = 98.745$$
 or $(0.5486 \times 320) - 164.07 \times 1.07 = 0$

So payoff pattern is replicated. Value of portfolio now is

$$(0.5486 \times 400) - 164.07 = 55.37$$

Real option value correct:

- no rational investor pays 68.10
- for payoff pattern that can be replicated for 55.37

Where does discounted cash flow approach go wrong?

- The error we made was:
 - applying risk adjusted discount rate for oil production from the well
 - to the opportunity to develop the well.
- The opportunity to do a project seldom has same risk as project itself,
- precisely because flexibility embedded in opportunity is used to change the risk:
 - upward potential is enhanced
 - downside risk is reduced

Once well is in production, then:

- fortunes tied to oil price
- proper discount rate for cfl's and values is 16%
- Values move through time with uncertainty of
 - up factor of 1.25
 - down factor of 0.8

Opportunity to do project has much larger uncertainty

- ullet moves through time from 25 at t_0
 - to either $98.75 \Rightarrow \text{upfactor } 3.95$
 - or $0 \Rightarrow$ down factor 0.

In principle, correct option value can be calculated using:

- real probabilities of 0.8 and 0.2
- risk adjusted discount rate

But that rate must be calculated from replicating portfolio:

- \bullet $\Delta S = 0.5486 \times 400 = 219.44$ in twin security S
- risk free loan of -164.07.

Gives weighted average portfolio return of:

$$\frac{219.44}{219.44-164.07}\times0.16+\frac{-164.07}{219.44-164.07}\times0.07=0.427$$

i.e. $> 2.5 \times$ discount rate for the project

Discounting exp. payoff with this rate gives correct value:

$$\frac{0.8 \times 98.75 + 0.2 \times 0}{1.427} = 55.36$$

However, with ΔS and D, we already know the option value:

$$O = \Delta S + D = 219.44 - 164.07 = 55.37$$

Boils down to calculating rate given option value:

$$55.37 = (0.8 \times 98.75)/r_{adj} \Rightarrow r_{adj} = 1.427$$

Moreover:

- ullet Δ and D likely to differ between nodes
- must be calculated for each node in tree
- makes correct use of decision trees highly impractical

General conclusions:

- Discounted cash flow approach cannot properly capture dynamic aspects of risk
- Discounted cash flow represents passive attitude:
 - accept the cash flows as they come
 - without exploring the possibilities to change them
- Adapting approach to include flexibility (decision trees):
 - makes original discount rate useless
 - very cumbersome to calculate a new one
- Verdict on decision trees has to be:
 - they are outdated
 - should not be used for investment problems

Real option pricing is the proper approach to valuing flexibility.

Follow-up investments are very common

- Successfully completed projects give advantage over competition
- opportunity to exploit same technology, distribution channels, market base, know-how & experience
- clear real option value:
 - re-use gives lower exercise price
 - market base gives higher payoff
 - than competitors starting from scratch
- examples are abundant:
 - MicroSoft DOS, Windows -95. -NT, -XP, -7, ...
 - Intel 8086, 80286, 80386, 80486, Pentium, ...
 - Telenor's mobile networks in Russia, Pakistan, Bangla Desh, ...

To illustrate, adapt our old example in three ways:

- Technology project instead of oil well
 - empty oil well has little follow-up
- 2 Investment required is 450
 - gives project negative NPV: 400 450 = -50
- 3 Project can be repeated on double scale after 2 periods
 - first project is prerequisite for follow-up e.g. extension of technology
 - invest 2× exercise price, get 2× market value

In DCF terms, this simply doubles expected loss!

In real options terms, after 2 years:

- firm has opportunity to double value of underlying project
- by investing 2× exercise price
- risk free rate is 7%
- as before exercise price increases with risk free rate:
 - investment is $2 \times 450 \times 1.07^2 = 1030.4$

Further details as before:

- real probabilities are .8 and .2
- risk adjusted discount rate 16%

Gives following value tree:

Follow-up project is loss making in DCF terms expected payoff with real probabilities is:

$$(.8^2) \times 1250 + (2 \times .8 \times .2) \times 800 + (.2^2) \times 512 = 1076.5$$

$$PV = \frac{1076.5}{1.16^2} = 800$$
 so the $NPV = 800 - (2 \times 450) = -100$

Real options analysis gives different picture:

- models flexibility to profit from favourable market developments
- follow-up investment is out-of-the-money call option
- only exercised if profitable
- but out-of-the-money options are valuable

The parameters of binomial process are as before:

$$u = 1.25, d = .8, r = 1.07$$

 $p = \frac{r - d}{u - d} = \frac{1.07 - .8}{1.25 - .8} = .6 (1 - p) = .4$

Follow-up option matures after 2 periods, at t=2

- option value is max[0, S X]
- exercise price is $2 \times 450 \times 1.07^2 = 1030.4$
- payoff at maturity are:

$$\max[0, 1250 - 1030.4] = 219.6$$

•
$$\max[0,800 - 1030.4] = 0.0$$

•
$$\max[0,512-1030.4]=0.0$$

$$\max[0, 1250 - 1030.4] = 219.6$$

$$123.14$$

$$\max[0, 800 - 1030.4] = 0.0$$

$$\max[0, 512 - 1030.4] = 0.0$$

$$t=0$$

$$t=1$$

Option value of follow-up project

Value of the option is

- at t=1: $(.6 \times 219.6)/1.07 = 123.14$
- at t=0: $(.6 \times 123.14)/1.07 = 69.05$

The follow-up opportunity is so valuable

- that it gives whole project NPV>0
- -50+69.05=19.05

Makes it a classic among real options

- particularly valuable in volatile (fast growing) markets
- used to be called 'strategic value'
- can now be priced properly!

Abandonment is another common option

- No need to continue loss making projects
- assets can be sold, used alternatively
- (cf. general purpose assets in bankruptcy)
- gives higher 'bottom' in project value

Abandonment option can be modelled in various ways

- separate tree for second hand value
 - lower starting point, less volatile
 - primary / secondary values cross in down nodes
 - more profitable to abandon
- simpler: fixed second hand value

Extend our example with abandonment option

- possibility to sell project's assets second hand
- at any time for a fixed price of 325

Thus formulated, option is American put

Valued by including exercise condition:

max[continue, abandon]

in all nodes of the value tree Recall:

- tree contains project values, not cash flows
- ⇒ exercise condition also in last node

Starting in the end nodes:

Option exercised lower node t=2 (alive < dead)

Then we calculate the values alive at t=1: upper node is, of course:

$$\frac{.6 \times 625 + .4 \times 400}{1.07} = 500$$

lower node:

$$\frac{.6 \times 400 + .4 \times 325}{1.07} = 345.79$$

and compare them with the values dead:

t=0 value found by repeating procedure:

$$\frac{.6 \times 500 + .4 \times 345.79}{1.07} = 409.64$$

and checking the t=0 values dead and alive: max[409.64,325] = 409.64

- Value without abandonment option is 400
- flexibility to abandon has value of 9.64

Option value can also be calculated separately:

- American put with an exercise price of 325
- exercise condition is $\max[0,325 project\ value]$

Values at t=2 are:

•
$$\max[0,325-625]=0$$

$$\max[0,325-400] = 0$$

$$max[0,325-256] = 69$$

The t=1 value alive is

$$\frac{.6 \times 0 + .4 \times 69}{1.07} = 25.794$$

and the t=0 value alive is

$$\frac{.6 \times 0 + .4 \times 25.794}{1.07} = 9.64$$

Phasing investments also gives flexibility

- Firms may not commit themselves to entire project at once
- but to successive stages, one at a time

Common practice for certain types of projects

- Construction industry:
 - preparation phase: licenses, groundwork
 - construction phase: building
 - finishing stage: fixtures, plumbing, etc.
- Very pronounced in pharmaceutical research:
 - basic research: search for potential drugs
 - preclinical tests (on rats)
 - clinical tests (on humans)
 - approval and production

Notice: option refers to

- decision to accept project's next phase
- not implementation of already accepted next phase
- means next phase can be rejected, project abandoned

With a project structured in phases:

- each phase is call option on the next
- accepting first phase buys option on second
- second phase buys option on third, etc.

Means they are compound options:

- compound options are options on options
- notice: value of option on 3rd phase included in value of 2nd phase

To illustrate, we adapt, again, our binomial example

- project's investment of 375
- can be made in two stages:
 - 50 now (preparation phase)
 - rest (325) next period
- as before, investment grows with risk free rate over time
 - investment t = 1 is $1.07 \times 325 = 347.75$

Option modelled by including in t=1 nodes:

Looks obvious in option context, not in practice

Value tree for flexible (phased) project:

$$\max[0,500 - 347.75] = 152.25$$

$$\max[0,85.37 - 50] = 35.37$$

$$\max[0,320 - 347.75] = 0$$

$$I = -50$$
 $I = -347.75$ $t=0$ $t=1$ $t=2$

t=0 value found with familiar procedure:

$$\frac{.6 \times 152.25 + .4 \times 0}{1.07} = 85.37 - 50 = 35.37$$

Value of flexibility is 10.37, project's value increase from 25

Option can also be modelled separately

- Is the option a call or put? How do we formulate the exercise condition?
- The option is a put
 - by not investing we 'keep' the investment amount
 - and give up the project value
- exercise condition:

max[0, investment - project value]

Option's value tree becomes

$$\max[0,347.75-500] = 0$$

$$10.37$$

$$\max[0,347.75-320] = 27.75$$

$$I = 347.75$$

$$t=0$$

$$t=1$$

Option value is:

$$\frac{.6 \times 0 + .4 \times 27.75}{1.07} = 10.37$$

Option has counter-intuitive elements:

- Why only consider investment for next stage?
 - we know later investments are required
 - why not include them in exercise decision?

That is what DCF does! Real option analysis does not ignore later investments

- included as exercise prices of later options
- determine value of later options
- but exercise decision made later
- at expiration, when more information is available

Why not include previous investments in decision?

- If the project is abandoned
- would not they be wasted?

Is 'sunk cost fallacy'

- if previous investments are irreversible (they usually are)
- they are wasted already

If much is already invested, will not a small extra investment produce large project?

- that is precisely what Real Options Analysis models
- but project should be large in future cash flows, not past investments

A classic: follow-up investments The abandonment option The option to phase investments Option to default a loan

Defaulting a loan is financial option

- underlying is financial asset
- often discussed with real options, part. phased investments
- not always correctly treated

Can easily be included in our binomial example Assume initial investment of 375 financed with:

- a zero coupon loan of 300
- an equity investment of 75

Further details of the loan:

- nominal interest rate 9.5%
- matures after 2 periods
- lenders provide 300 today
- against promise of 359.71 (300×1.095^2) after 2 periods
- no interest payments in between

Assume owners have limited liability:

- means they have option to default the loan
- will do so when

project value < debt obligations

When owners default a loan:

- firm will be declared bankrupt
- lenders become the new owners
- receive the remaining project value

We model perfect markets:

- means transfer of ownership is costless
 - no bankruptcy costs
- no taxes or information asymmetry either

Means that capital structure must be irrelevant

Set up separate value trees for equity and debt:

$$\max[0,625 - 359.71] = 265.29$$

$$163.82$$

$$\max[0,400 - 359.71] = 40.29$$

$$22.59$$

$$\max[0,256 - 359.71] = 0$$

$$t=0$$

$$t=1$$

The value of levered equity

Loan is defaulted lower node at t = 2

t = 1 values calculated as usual:

$$\frac{.6 \times 265.29 + .4 \times 40.29}{1.07} = 163.82 \quad \frac{.6 \times 40.29 + .4 \times 0}{1.07} = 22.59$$

so that t = 0 value is

$$\frac{.6 \times 163.82 + .4 \times 22.59}{1.07} = 100.31$$

Project's NPV is 100.31 - 75 = 25.31 as before (allowing 0.31 rounding)

Value of debt calculated in same way:

- Payment in lower node t = 2 is remaining project value
- lower than promised payment of 359.71

Total project value remains 100.31 + 299.69 = 400

- changing capital structure does not add value
- divides it differently

We can calculate effective market interest rate for risky loan:

calculate expected payoff with real probabilities:

$$.8^2 \times 359.71 + 2 \times .8 \times .2 \times 359.71 + .2^2 \times 256 = 355.56$$

• then solve $355.56/r^2 = 300$ for r, gives r=1.089

Does this mean that option to default has no value? NO! option redistributes value

To illustrate, first calculate value of option to default separately

- reformulate option as a put
- owners can 'sell' project to lenders
- by keeping amount due to the lenders
- exercise condition is

$$max[0, amount due - project value]$$

- option only exercised in lower node
- value at exercise is max[0,359.71 256] = 103.71

The value of the option to default

The t=0 value is
$$(.4^2 \times 103.71)/1.07^2 = 14.49$$

Economic interpretation:

- by giving the loan
- lenders have written put as part of the deal

But put is included with proper price:

- without default option, loan would be risk free
- value would be $359.71/1.07^2 = 314.18$
- lenders supplied only 300

Without the put, equity would have unlimited liability

- means it can have negative value
- can calculate value of unlimited liability equity:

$$625 - 359.71 = 265.29$$

$$163.82$$

$$85.81$$

$$400 - 359.71 = 40.29$$

$$-16.18$$

$$256 - 359.71 = -103.71$$

$$t=0$$

$$t=1$$

$$t=2$$

The value of unlimited liability equity

We see that:

lim. liab. equity = unlim. liab. equity + value default option

$$100.31 = 85.81 + 14.49$$

risky debt = safe debt - value of default option

$$299.69 = 314.18 - 14.49$$

Default option transfers value from debtholders to equityholders

- but transfer is anticipated (perfect market!)
- and properly included in prices

Modelling corporate securities (debt and equity) as options has other, far reaching consequences

Can you guess which?

- option prices increase with volatility
- means equity holders prefer risky projects

Interacting real options

Background and problem

ZX Co is international dredging contractor Core activities are:

- construction and maintenance of ports and waterways
- land reclamation, coastal defences and riverbank protection

ZX Co operates fleet of dredging & support vessels

Company negotiates harbour renovation project with port authority in Middle East

involves largest bucket dredger in fleet:

Project details:

- takes dredger $1\frac{1}{2}$ year to complete the project
- 3 periods of 6 months, standard time unit in dredging

The state of negotiations:

- port authority willing to pay current world market rate
 - €30 million per half year for the dredger
 - for the entire $1\frac{1}{2}$ year period
- ZX Co operates dredger for much less
 - is inclined to accept price
- Negotiations are about additional clauses

Port authority wants to include one or both of the following two clauses in the contract:

- the clause that it can extend the contract with one half year period at the same rate; extra half year used to construct small marina adjacent to harbour;
- ② the clause that it can terminate the contract at beginning of 2^{nd} and 3^{rd} half year period by paying penalty of $\in 2.5$ million per remaining period; reduction may be necessary because of budget cuts.

Required:

Help negotiating team of engineers by calculating how clauses affect project value, both separately and in combination.

Background information:

- world market rate for dredging very volatile, corresponding to yearly standard deviation of 25%
- rates only adjusted at beginning of each half year period
- constant until beginning of next period
- risk free interest rate is 6% per year
- market for dredging projects such that
 - vessels can be redeployed immediately at market prices
 - cost of idle capacity can be ignored

Analysis

The clause to extend:

- ullet gives port authority the right, but not the obligation, to buy dredging services $1\frac{1}{2}$ years from now at price fixed today
- What kind of real option, if any, is this?
 - is a real option, long European call

The clause to terminate contract after six and twelve months:

- gives the right, but not the obligation:
 - to 'sell back' the obligation to pay $\in 30$ m. per $\frac{1}{2}$ year
 - in return for paying €2.5 million
 - plus market price for dredging services (have to be bought elsewhere if contract is terminated)
- Is also real option, a?long American put

Port authority asks ZX Co to write the two options

- project value changes with option values
- should be included at proper prices
 (is not always obvious to sales people)

We have the information necessary to value the options:

- underlying value is the contract
- maturities and exercise prices specified in clauses
- volatility is that of world market rate for dredging projects
- risk free rate is given

Rates only adjusted at beginning each $\frac{1}{2}$ year:

- binomial method proper way to calculate option values
- parameters of binomial process:

$$u = e^{25\sqrt{.5}} = 1.193$$
 $d = 1/u = 0.838$ $r = \sqrt{1.06} = 1.03$ $p = \frac{1.03 - .838}{1.193 - .838} = 0.541$ $1 - p = 0.459$

Notice: volatility & interest rate re-scaled to half year values

Parameters give following value tree for half year dredging rates:

The option to extend

European call without complications

Option value found with familiar binomial procedure

- calculate pay-offs at maturity
- option only exercised if: marked rate > contract rate
 - option ends in-the-money in 2 upper end nodes
- then working back through lattice

Gives option value now of 5.17

The option to terminate

American put, bit more complicated

- can be exercised on two moments
- penalty if exercised

Valuation procedure as American call with dividends:

compare the values 'dead' and 'alive'

Start at end of tree, is at beginning 3^{rd} period (exercise only possible after six and twelve months)

Inputs require extra attention Consider lower node t=2, dredging rate is 21.07

- If option exercised, port authority
 - reverses obligation to pay €30m (saves €30m.)
 - instead has to pay €2.5m. penalty + market rate of 21.07
- payoff is then max[(30 (21.07 + 2.5)), 0] = 6.43
- option is exercised

Same calculation 2 upper nodes gives zero values

option is not exercised

Discounting values back gives t_1 values 'alive': $(.459 \times 6.43)/1.03 = 2.87$ and 0

If the option is exercised in lower node t=1 there are 3 pay-offs:

- ① price advantage over second period: 30 25.14 = 4.86.
- ② PV(expected price advantage 3^{rd} period): $(.459 \times (30 21.07))/1.03 = 3.98$.
- 3 penalty of $2 \times -2.5 = -5$ million

Total value 'dead' is 4.86 + 3.98 - 5 = 3.84

Value dead > value alive (2.87), option should be exercised Gives a value now of $(.459 \times 3.84)/1.03 = 1.71$.

Combined option value

Value now (t=0) of both options combined is NOT sum of the two (1.71 + 5.17 = 6.88)

- The options interact
- makes combined value less than sum of separate values

Easy to see why:

- optimal decision was: exercise option to terminate in lower node t=1
- comparing value trees for both options we see that option to extend ALSO has value in this node
- exercising option to terminate eliminates this value: cannot extend contract that was cancelled two periods ago.

Calculate combined option value:

- adjust 'dead' value of option to terminate at t=1 with lost value of option to extend: 3.84 1.60 = 2.24
- makes value 'dead' < value 'alive'(of 2.87)
- optimal decision becomes not to exercise
- t=0 value becomes $(.459 \times 2.87)/1.03 = 1.28$
- total value options combined is 1.28+5.17=6.45, 0.43 less than sum of separate values
- option to terminate at t=2 only exercised in lower node t=2 where option to extend has no value. So no correction needed.

Result highlights some general aspects of real options in contracting:

- real options in contract can constitute considerable value, should be treated with caution
- in this case, combined option value of €6.45 million likely to be lion's share of project's profits
- options increase in value with time and volatility:
 - makes them very valuable for unlikely events far in future
 - in contracting, these events tend to be neglected unless explicitly valued

Financial options seldom interact

- traded independently from underlying
- exercising doesn't affect
 - value underlying
 - value other options

Most real options interact, in several ways:

- option value > 0, increases value underlying
 - ullet different effects on puts (-) and calls (+)
- exercising affects value underlying
 - calls increase value underlying
 - puts decrease value underlying
- this affects value later options
 - different effects on puts and calls:

Theoretical (ceteris paribus) effects also apply to real options but without ceteris paribus condition

- real options not only change value underlying
- also specifications later options

To illustrate, look at dredging project again, suppose:

- can be doubled or halved after 1 period
- terminated after 2 periods
- extended after 3 periods

Gives following tree:

If project is doubled at t=1

- extension option at t=3 refers to double project
- port authority can hire 2 dredgers at fixed rate
- not the same as 1 option on underlying with double value
- difference is double exercise price

Similarly, if project is halved at t=1

- only half project can be terminated at t=2
- ullet \pm halves option value

Endogenous competition: game theory

So far, we modelled price (market) uncertainty

- can partly spring from competitors' actions
- but competition not modelled explicitly

If real options are shared (and most are)

- exercise decision depends on competitors' decisions
- have to be included, option pricing no longer sufficient
- we need elements from game theory

Game theory founded in 1940s John von Neumann and Oskar Morgenstern: Theory of Games and Economic Behaviour

- game theory studies decision making behaviour
- when participants' choices depend on choices of other participants

Basic theory developed in 1950s and 1960s Now a mature scientific discipline

- Nobel prizes in 1994 and 2005
- including John Nash (1994)

Link with real options elaborated by Smit, H.T.J. and L. Trigeorgis:

Strategic Investment: Real Options and Games

Look at 1 example, the prisoners dilemma:

- 2 suspects, A and B, interrogated separately by police
- Each is offered following deal:
 - confess: sentence reduced to 10 years
 - confess while other denies:
 - confessor further reduction to 2.5 years
 - denier full sentence of 20 years
- If both deny, sentence will be 5 years (the evidence is weak)

Gives following choices and consequences

		В	
		confess	deny
A	confess	10, 10	2.5, 20
	deny	20, 2.5	5, 5

Data for B are in bold

Both suspects have dominant strategy:

- gives better result than other strategies
- no matter what other suspect chooses

In this example:

- If B confesses
 - A is better off confessing than denying (10 vs. 20 years)
- but if B denies
 - A is also better off confessing (2.5 vs. 5 years)

Same is true for B

Result: both confess (would be better off denying)

Resulting equilibrium known as Nash equilibrium:

- no participant wants to change strategy
- if strategy of other participant(s) become known

Choices with similar payoff structures

- found in many situations in economics and finance
- shared real options are good example

To illustrate, adapt our binomial example again

- look at option to defer once more
- but now as a shared option by two market participants, A & B

Assume value tree stays as before, but:

- ullet investment increases over time with risk adjusted rate of 16%
- exercise now gives NPV 400-375=25, as before
- \bullet exercise price at t=1 is $1.16 \times 375 = 435$
- Value of option to defer becomes:

$$\max[0,500-435] = 65$$
36.45
$$\max[0,320-435] = 0$$

$$t=0$$

$$t=1$$

Assume market has first mover advantage:

- if a firm enters market alone it gets whole market
 - e.g. because technological leadership
 - or monopoly over distribution channels
 - or loyal customer base (high switching costs)
- if both firms enter simultaneously they equally share the market
 - if both invest now, each gets 25/2=12.5
 - if both defer, each gets 36.45/2 = 18.22

Gives following payoff structure

			В
		invest	defer
Α	invest	12.5, 12.5	25, 0
	defer	0, 25	18.22, 18.22

Data for B are in bold

Both firms have dominant strategy, leads to Nash equilibrium:

- If firm B invests
 - A is better off investing than deferring (12.5 vs. 0)
- But if firm B defers
 - A is also better off investing than deferring (25 vs. 18.22)

Same is true for firm B

- B is better off investing than deferring
- no matter whether A invests or defers

Both firms will invest now, although deferring would be better Is more general result, using game theory leads to early exercise

We have seen 3 influences on investment decision:

- Option nature (financial option analogy)
 - tends to favour late investment
 - keep flexibility, uncertainty resolves over time
- ② Real options nature
 - tends to favour early exercise
 - sources of option value erode over time
- Game theoretic extensions
 - tend to lead to early exercise
 - anticipation of action competitors leads to pre-emptive action