Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №4

Выполнение комплекса программ

Вариант 1602

Выполнил:

Шмунк Андрей Александрович

Группа Р3108

Преподаватели:

Ткешелашвили Нино Мерабиевна

Клименков Сергей Викторович

Содержание

Задание	. 3
Подпрограмма:	. 4
Описание программы	. 4
Область представления	. 4
Область допустимых значений	. 5
Трассировка программы	. 5
Вывод	. 5

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы и подпрограммы (программного комплекса), определить предназначение и составить его описание, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программного комплекса

0D4: +	- 0200	1	0E2:	6E0D	ī	0F0:	0FD9	1	660:	00F8
0D5:	EE1A	- 1	0E3:	EE0C	i.			-	0001	0010
0031										
0D6:	AE18	-	0E4:	AE09	1	654:	AC01	-		
0D7:	0C00	- 1	0E5:	0740	1	655:	F206	1		
OD8:	D654	Ĺ	0E6:	0C00	Ĺ	656:	F005	Ĺ		
0D9:	0800	Ĺ	0E7:	D654	Ĺ	657:	7E07	Ĺ		
ODA:	4E15	Ĺ	0E8:	0800	Ĺ	658:	F903	Ĺ		
ODB:	EE14	Ĺ	0E9:	0700	Ĺ	659:	4C01	Ĺ		
ODC:	AE10	Ĺ	OEA:	6E05	Ĺ	65A:	6E05	Ĺ		
ODD:	0740	Ĺ	0EB:	EE04	Ĺ	65B:	CE01	Ĺ		
ODE:	0C00	Ĺ	0EC:	0100	Ĺ	65C:	AE02	Ĺ		
ODF:	D654	Ĺ	0ED:	ZZZZ	Ĺ	65D:	EC01	Ĺ		
0E0:	0800	Ĺ	0EE:	YYYY	Ĺ	65E:	0A00	Ĺ		
0E1:	0700	Ĺ	0EF:	XXXX	Ĺ	65F:	0FD9	Ĺ		
•		-			-			-		

Адрес	Код команды	Мнемоника	Комментарии
0D4	0200	CLA	Очистка аккумулятора
0D5	EE1A	ST IP+26	Очистка результата. R = 0
0D6	AE18	LD IP + 24	Загрузка в аккумулятор
000	AE10	LD IP + 24	AC = X
0D7	0C00	PUSH	Вызов функции
0D8	D654	CALL 654	F(X)
0D9	0800	POP	Загрузка результата в
003	0800	ror	аккумулятор
0DA	4E15	ADD IP + 21	Сложение возвращаемого
			значения функции с R,
0DB	EE14	ST IP + 20	сохранение в R
			R = F(X)
0DC	AE10	LD IP + 16	Загрузка в аккумулятор
0DD	0740	DEC	AC = Z – 1
0DE	0C00	PUSH	Вызов функции
0DF	D654	CALL 654	F(Z - 1)
0E0 0800		POP	Загрузка результата в
ULU	0800	FUF	аккумулятор
0E1	0700	INC	Вычитание R из F(Z – 1) + 1,
0E2	6E0D	SUB IP+13	сохранение в R
0E3	EE0C	ST IP+12	R = F(Z - 1) + 1 - F(X)
0E4	AE09	LD IP + 9	Загрузка в аккумулятор
0E5	0740	DEC	AC = Y - 1
0E6	0C00	PUSH	Вызов функции
0E7	D654	CALL 654	F(Y - 1)
0E8	0800	POP	Загрузка результата в
UEO	VOUU	FUF	аккумулятор
0E9	0700	INC	Вычитание R из F(Y - 1) + 1,
0EA	6E05	SUB IP+5	сохранение в R
OEB	EE04	ST IP+4	R = F(Y - 1) + 1 - (F(Z - 1) + 1 -
UED	LLU4	31 1774	F(X))
0EC	0100	HLT	ОСТАНОВ
0ED	ZZZZ	Z	Значение Z

0EE	YYYY	Υ	Значение Ү
0EF	XXXX	Х	Значение Х
0F0	0FD9	R	Результат

Подпрограмма:

Адрес	Код команды	Мнемоника	Комментарии
654	AC01	LD (SP+1)	Загрузка аргумента
655	F206	BMI 6	
656	F005	BEQ 5	Если ≤ 0, то переход на 65С
657	7E07	CMP IP+7	Если АС ≥ Q, то переход на 65C
658	F903	BGE 3	$C \ge Q$, to nepexod Ha osc
659	ADD (CD. 1)		Сложение аккумулятора с
059	4C01	ADD (SP+1)	аргументом
65A	6E05	SUB IP+5	Вычитание W
65B	CE01	JUMP IP+1	Переход на 65D
65C	AE02	LD IP+2	Загрузка Q
65D	EC01	ST (SP+1)	Сохранение результата
65E	0A00	RET	Возврат
65F	0FD9	0FD9	Константа Q = 4057
660	00F8	00F8	Константа W = 248

Описание программы

Назначение программы: нахождение значения функции:

$$R = F(Y-1) + 1 - (F(Z-1) + 1 - F(X))$$

$$R = F(Y-1) + 1 - F(Z-1) - 1 + F(X)$$

$$R = F(Y-1) - F(Z-1) + F(X)$$

$$f(x) = \begin{cases} 2x - 248, 0 < x < 4057 \\ 4057, x \le 0, x \ge 4057 \end{cases}$$

График:

Область представления

X, Y, Z, Q, W, R – целые знаковые шестнадцатеричные числа в дополнительном коде.

Область допустимых значений

$$Q = 0FD9_{16} = 4057$$

 $W = 00F8_{16} = 248$

Для того чтобы определить ОДЗ, проанализируем данную функцию. При значении аргумента функции в промежутке [- 2^{15} ; 0] и [4057, 2^{15} - 1], функция вернет значение 4057. При использовании любого значения из заданного промежутка в функции не возникнет переполнения.

При оставшихся значениях аргумента функция вернет выражение 2x - 248. На промежутке [1, 4056] эта функция монотонно возрастающая, поэтому рассмотрим минимальное и максимальное значение:

$$f_{min} = f(1) = -246$$

 $f_{min} = f(4056) = 7864$

что означает, что на всем промежутке значений аргумента, результат функции будет находиться на отрезке [-246; 7864].

Так как основная программа вычисляет следующее выражение:

$$R = F(Y - 1) - F(Z - 1) + F(X)$$

то минимально мы можем получить $-246 - 7864 - 246 = -8356 > -2^{15}$, а максимально: $7864 - 246 + 7864 = 15482 < 2^{15} - 1$. В обоих случаях переполнения нет. Значит, ОДЗ:

- $X \in [-32768; 32766]$ (T. e. $[-2^{15}; 2^{15} 1]$);
- Z, Y \in [-32767; 32767] (T. e. [-2¹⁵+1; 2¹⁵-1]);
- Результат R ϵ [–8356; 15482] (с учетом заданных Q и W).

Трассировка программы

Вывод

В ходе лабораторной работы я научился писать подпрограммы, работать со стеком, изучил команды call, push и pop.