Inverter Chain Lecture 10

Advanced Digital IC Design **Khosrow Ghadiri**

Ideal Inverter

Switching Threshold

- The switching threshold defined as a voltage
- Where

$$V_{\scriptscriptstyle M} = V_{\scriptscriptstyle OUT} = V_{\scriptscriptstyle IN}$$

Since

$$V_{GS} = V_{DS}$$

- Both pMOS and nMOS are in saturation.
- For velocity saturation

$$V_{DS}(sat) < V_M - V_T$$

• Ignoring the channel modulation $\; \mathcal{\lambda} = 0 \;$

$$k_{n}V_{DSn}\left(sat\right)\left(V_{M}-V_{Tn}-\frac{V_{DSn}\left(sat\right)}{2}\right)$$

$$+k_{p}V_{DSp}\left(sat\right)\left(V_{M}-V_{DD}-V_{Tp}-\frac{V_{DSp}\left(sat\right)}{2}\right)=0$$

Switching Threshold

$$V_{M} = \frac{\left(V_{Tn} + \frac{V_{DSATn}}{2}\right) + r\left(V_{DD} + V_{Tp} + \frac{V_{DSATp}}{2}\right)}{1 + r}$$

Where r compares the relative strength of pMOS and nMOS

$$r = \frac{k_p V_{DSp}(sat)}{k_n V_{DSn}(sat)} = \frac{\upsilon_p(sat) W_p}{\upsilon_n(sat) W_n}$$

• For the $t_{ox}(pMOS) = t_{ox}(nMOS)$

$$V_{M} = \frac{V_{Tn} + r\left(V_{DD} + V_{Tp}\right)}{1 + r}$$

- Switching Threshold
- For comparable high and low noise margin

$$V_{M} \approx \frac{rV_{DD}}{1+r} = \frac{V_{DD}}{2}$$

- Which requires r=1
- Then the pMOS device should be seized to

$$\frac{\left(W/L\right)_{p}}{\left(W/L\right)_{n}} = \frac{k'_{n}V_{DSn}\left(sat\right)}{k'_{p}V_{DSp}\left(sat\right)}$$

• Making W_p wider results in r>1 and move V_M upper than the middle closer to V_{DD} and increasing the strength of nMOS move the switching voltage V_M closer to GND.

Switching Threshold

• For desired value of the threshold voltage $V_{\scriptscriptstyle M}$, the pMOS to nMOS transistor sizes to set

$$\frac{\left(W/L\right)_{p}}{\left(W/L\right)_{n}} = \frac{k_{n}^{\prime}V_{DSn}\left(sat\right)\left(V_{M}-V_{Tn}-\frac{V_{DSn}\left(sat\right)}{2}\right)}{k_{p}^{\prime}V_{DSp}\left(sat\right)\left(V_{DD}-V_{M}+V_{Tp}+\frac{V_{DSp}\left(sat\right)}{2}\right)}$$

• For $V_{DS}\left(sat\right) > V_{M} - V_{T}$ where the saturation velocity is not occur, then

$$V_{M} = \frac{V_{Tn} + r(V_{DD} + V_{Tp})}{1 + r}$$

$$r = \sqrt{\frac{-k_{p}}{k}}$$

Where

 $V_{\scriptscriptstyle DD}$

- Length Modulation
- Ignoring length modulation results in infinite gain
- Considering length modulation results in infinite gain

$$k_{n}V_{DSn}\left(sat\right)\left(V_{IN}-V_{Tn}-\frac{V_{DSn}\left(sat\right)}{2}\right)\left(1+\lambda V_{OUT}\right)$$

$$+k_{p}V_{DSp}\left(sat\right)\left(V_{IN}-V_{DD}-V_{Tp}-\frac{V_{DSp}\left(sat\right)}{2}\right)\left(1+\lambda_{p}V_{OUT}-\lambda_{p}V_{DD}\right)=0$$

Differentiating the output with respect to the input

$$\frac{dV_{out}}{dV_{in}} = \frac{k_{n}V_{DSn}(sat)(1 + \lambda_{n}V_{OUT}) + k_{p}V_{DSp}(sat)(1 + \lambda_{p}V_{OUT} - \lambda_{p}V_{DD})}{\lambda_{n}k_{n}V_{DSn}(sat)\left(V_{IN} - V_{Tn} - \frac{V_{DSn}(sat)}{2}\right) + \lambda_{p}k_{p}V_{DSp}(sat)\left(V_{IN} - V_{DD} - V_{Tp} - \frac{V_{DSp}(sat)}{2}\right)}$$

• Ignoring some second-order terms and setting $V_{_{I\!N}}=V_{_{M}}$ results in gain

$$g = \frac{1}{I_{DS}(V_M)} \frac{k_n V_{DSn}(sat) + k_p V_{DSp}(sat)}{\lambda_n - \lambda_p} = \frac{1 + r}{\left(V_M - V_{Tn} - \frac{V_{DSn}(sat)}{2}\right) \left(\lambda_n - \lambda_p\right)}$$

• Miller effect:

• The impedance Z can be replaced by two impedance Z_{in} connected between input node and ground and Z_{out} between the output node and ground

Miller effect:

$$I_{1} = \frac{V_{IN}}{Z_{in}} = I = \frac{V_{IN} - AV_{IN}}{Z} = \frac{V_{IN} - V_{OUT}}{Z}$$

$$Z_{in} = \frac{Z}{1 - A}$$

Miller effect:

$$I_{2} = \frac{0 - V_{OUT}}{Z_{OUT}} = \frac{0 - AV_{IN}}{Z_{OUT}} = I = \frac{V_{IN} - V_{OUT}}{Z} = \frac{V_{IN} - AV_{IN}}{Z} \qquad Z_{out} = \frac{Z}{1 - \frac{1}{A}}$$

$$Z_{out} = \frac{Z}{1 - \frac{1}{A}}$$

Modeling floating gate-drain capacitor by a capacitor from output to ground

• The capacitor C_{gd1} can be replaced by an equivalent capacitor $2C_{gd1}$ between output node and ground. $V_{I\!N}$ goes high and V_{OUT} goes low by the same amount. The voltage change across the capacitor C_{gd1} is twice the amount (A=2)

Modeling floating gate-drain capacitor by a capacitor from output to ground

• The capacitor C_{gd1} can be replaced by an equivalent capacitor $2C_{gd1}$ between output node and ground. $V_{I\!N}$ goes high and V_{OUT} goes low by the same amount. The voltage change across the capacitor C_{gd1} is twice the amount (A=2)

Modeling floating gate-drain capacitor by a capacitor from output to ground

• The capacitor C_{gd2} can be replaced by an equivalent capacitor $2C_{gd2}$ between output node and ground. $V_{I\!N}$ goes high and V_{OUT} goes low by the same amount. The voltage change across the capacitor C_{gd2} is twice the amount (A=2)

Modeling floating gate-drain capacitor by a capacitor from output to ground

- Transistor T_1 and T_2 are either in cut-off or in saturation mode during the first half of the output transient up to 50%.
- The capacitor C_{gd1} can be replaced by an equivalent capacitor $2C_{gd1}$ between output node and ground. $V_{I\!N}$ goes high and V_{OUT} goes low by the same amount. The voltage change across the capacitor C_{gd1} is twice the amount (A=2)

Modeling floating gate-drain capacitor by a capacitor from output to ground

- Transistor and are either in cut-off or in saturation mode during the first half of the output transient up to 50%.
- The capacitor C_{gd12} can be replaced by an equivalent capacitor $2C_{gd12}$ between output node and ground. $V_{I\!N}$ goes high and V_{OUT} goes low by the same amount. The voltage change across the capacitor C_{gd12} is twice the amount (A=2)

• The capacitor C_{gd12} can be replaced by an equivalent capacitor $2C_{gd12}$ between output node and ground. $V_{I\!N}$ goes high and $V_{O\!U\!T}$ goes low by the same amount. The voltage change across the capacitor C_{gd12} is twice the amount (A=2)

- Capacitor C_{db1} and C_{db2} has a terminal capacitor at a constant voltage.
- C_{db1} and C_{db2} can be replaced with equal capacitance from output node to ground.

The second inverter does not switch state. Input capacitors remain constant.

$$C_{g3} + C_{g4} = (WL)_3 C_{OX} + (WL)_4 C_{OX} + C_{gsov3} + C_{gdov3} + C_{gsov4} + C_{gdov4}$$

 C_{int} = internal capacitance of driver

 $C_{db,12}$ = junction capacitance

 $C_{gd,12}$ = gate capacitance (including Miller capacitance) $C_{int} = C_{db,12} + C_{gd,12}$

 C_{ext} = external capacitance

 $C_{g,43}$ = reciever gate capacitance

 $C_w = \text{interconnect capcitance(wire)}$ $C_{ext} = C_W + C_{g.43}$

$$C_{ext} = C_W + C_{g,43}$$

Inverter Chain

$$C_{L} = C_{OUT} + C_{W} + C_{IN}$$

$$C_{OUT} = 2C_{gd1} + 2C_{gd2} + C_{db1} + C_{db2}$$

$$C_{\scriptscriptstyle IN} = C_{\scriptscriptstyle g\,3} + C_{\scriptscriptstyle g\,4}$$

Inverter Chain

- The dynamic of performance of a logic circuit is characterized by the propagation delay of its basic inverter.
- The inverter propagation delay τ_p is defined as the average of the low-to-high and the high-to-low propagation delay.

$$\tau_p = \frac{\tau_{pLH} + \tau_{pHL}}{2}$$

- The propagation delay τ_{pLH} and τ_{pHL} are defined as the time required for output voltage to reach between the low and high levels (%50 of V_{DD} in CMOS logic).
- The intrinsic propagation delay of the CMOS inverter that is loaded only by its own output capacitance C_{out}

$$\tau_{p0} = \frac{\tau_{pLH0} + \tau_{pHL0}}{2}$$

- The pMOS and nMOS transistors can be replaced by equivalent resistance R_{eqp} and R_{eqn} when charging and discharging the capacitor C_{OUT} in simplified analysis.
- The pMOS acts as a resistor R_{eqp} when C_{OUT} is charged to and output switches from low-to-high. The intrinsic V_{DD} propagation delay is

$$\tau_{pLH\,0} = 0.69 R_{eqp} C_{OUT}$$

• The nMOS acts as a resistor R_{eqn} when C_{OUT} is discharged when output switches from high-to-low. The intrinsic propagation delay is

$$\tau_{pHL0} = 0.69 R_{eqn} C_{OUT}$$

$$\tau_{p0} = \frac{0.69R_{eqp}C_{OUT} + 0.69R_{eqn}C_{OUT}}{2}$$

$$\tau_{p0} = \frac{0.69 R_{eqp} C_{out} + 0.69 R_{eqn} C_{out}}{2}$$

$$\tau_{p0} = \frac{0.69 \left(R_{eqp} + R_{eqn} \right) C_{OUT}}{2} = \frac{0.69 \left(R_{eq} \right) C_{OUT}}{2}$$

$$R_{eq} = R_{eqp} + R_{eqn}$$

$$C_L = C_{\text{int}} + C_{ext}$$

$$C_{\text{int}} = C_{OUT} + C_W$$

$$C_{ext} = C_{IN}$$

$$C_L = C_{\text{int}} + C_{ext}$$

$$C_{\text{int}} = C_{OUT} + C_W$$

$$C_{ext} = C_{IN}$$

$$C_L = C_{\text{int}} \left(1 + \alpha \right)$$

Intrinsic delay of CMOS inverter

$$\tau_p = 0.69 R_{eq} C_L$$

$$C_L = C_{\text{int}} + C_{ext}$$

$$\tau_p = 0.69 R_{eq} (C_{\text{int}} + C_{ext})$$

$$\tau_p = 0.69 R_{eq} C_{\text{int}} \left(1 + \frac{C_{ext}}{C_{\text{int}}} \right)$$

$$\tau_p = t_{po} \left(1 + \frac{C_{ext}}{C_{int}} \right)$$

 τ_{po} = the intrinsic delay

- Impact of sizing on gate delay
- S= sizing factor
- R_{ref} = The resistance of reference inverter (Usually a minimum size inverter)
- Reference gate=minimum size gate
- C_{iref} = The internal capacitance of the reference gate

$$C_{\text{int}} = SC_{iref}$$

$$R_{eq}=rac{R_{ef}}{S}$$

$$t_{p} = 0.69 \left(\frac{R_{ef}}{S}\right) (C_{iref}) \left(1 + \frac{C_{ext}}{SC_{iref}}\right)$$

$$t_{p} = 0.69 \left(R_{ref}\right) \left(C_{iref}\right) \left(1 + \frac{C_{ext}}{SC_{iref}}\right)$$

$$t_{p} = t_{po} \left(1 + \frac{C_{ext}}{SC_{iref}}\right)$$

$$t_p = t_{po} \left(1 + \frac{C_{ext}}{SC_{iref}} \right)$$

Impact of sizing on gate delay

$$t_{p} = t_{po} \left(1 + \frac{C_{ext}}{SC_{iref}} \right)$$

- 1) Intrinsic delay is independent of gate sizing and determined only by technology and inverter layout
- 2) If S is made very large, gate delay approaches the intrinsic value but increases the area significantly.

Inverter Chain

- Given $C_{\scriptscriptstyle L}$
- 1) How many stages of inverter are needed to minimize the delay?
- 2) How to size the inverter?

- Inverter delay
- Minimum length devices, $L = 0.25 \mu m$
- Assumption : for example $W_p = 2W_N = 2W$
 - a) Same pull up and pull down currents
 - b) $R_N = R_P$: approximately equal resistance
 - c) $t_{pHL} = t_{pLH}$: equal rise and fall delay
- Analyze as an RC network
- Delay (D)

$$t_{pHL} = \ln 2R_N C_N$$

$$t_{pHL} = \ln 2R_N C_N$$

- $t_{pLH} = \ln 2R_p C_p$
- Load for the next stage

Voltage supply scaling

$$W_{unit} = 1$$
$$t_p = kR_W C_L$$

$$K = 0.69 = \text{constant}$$

Assumption:
 no load → zero delay

Inverter with load

$$t_{po} = kR_{W}C_{\text{int}}\left(1 + \frac{C_{ext}}{C_{\text{int}}}\right) = t_{po}\left(1 + \frac{C_{ext}}{C_{\text{int}}}\right)$$

Delay formula: inverter chain

$$C_{\text{int}} = \gamma C_{gin}$$
 $\gamma \approx 1$

$$f = \frac{C_{ext}}{C_{gin}} = effective \ fanout$$

$$t_{po} = 0.69 R_{eq} C_{\text{int}}$$

$$delay \approx R_{eq} (C_{\text{int}} + C_{ext})$$

$$t_p = 0.69 R_{eq} C_{\text{int}} \left(1 + \frac{C_{ext}}{C_{\text{int}}} \right) = t_{po} \left(1 + \frac{f}{\gamma} \right)$$

Apply to inverter Chain

$$t_{p} = t_{p1} + t_{p2} + \dots + t_{pN}$$

$$t_{p,j} = t_{po} \left(1 + \frac{C_{gin,j+1}}{\gamma C_{gin,j}} \right)$$

$$t_{p,j} = \sum_{j=1}^{N} t_{p,j} = t_{po} \sum_{i=1}^{N} \left(1 + \frac{C_{gin,j+1}}{\gamma C_{gin,j}} \right)$$

$$C_{gin,N+1} = C_L$$

Inverter

Advanced Digital IC Design

- Optimal tapering for given N
- Delay equation has N-1 unknowns, $\,C_{g,2},......C_{g,N}\,$
- Minimize the delay, find N-1 partial derivatives
- Results:

$$\frac{C_{g,j+1}}{C_{g,j}} = \frac{C_{g,j}}{C_{g,j-1}} \quad for \ j = 2, ..., N$$

Size of each stage is the geometric mean of two neighbours

$$C_{g,j} = \sqrt{C_{g,j-1}, (C_{g,j+1})}$$

- Each stage has the same effective fanout $= f_j = f = \frac{C_{ext}}{C_{g,j}}$
- each stage has the same delay

$$t_p = t_{po} \left(1 + \frac{f}{\gamma} \right)$$

Optimum delay and number of stages f

$$\frac{C_L}{C_{g,N}} = \frac{C_{g,N}}{C_{g,N-1}} = \dots = \frac{C_{g,2}}{C_{g,1}} = f$$

$$f^N = \frac{C_L}{C_{g,1}} = F$$

$$f = \sqrt[N]{F}$$

$$t_{p} = Nt_{po} \left(1 + \frac{\sqrt[N]{F}}{\gamma} \right)$$

- If N is too large, intrinsic delay of stages dominate, while if N is small, effective fanout of each stage(f) is large and the second term dominates.
- Example: How to choose N?
- $\frac{C_L}{C_L}$ has to be evenly distributed across N=3 stages

$$\frac{C_L}{C_{\text{int}}} = \frac{8C_1}{C_1} = 8$$

$$f = \sqrt[3]{8} = 2$$

Inverter

Advanced Digital IC Design

• For a given load C_L and given input capacitance C_{in} find optimal sizing f.

$$C_L = FC_{in} = f^N C_{in}$$

$$N = \frac{\ln F}{\ln f}$$

$$t_{p} = Nt_{po} \left(\frac{\sqrt[N]{F}}{\gamma + 1} \right) = \frac{t_{po} \ln F}{\gamma} \left(\frac{f}{\ln f} + \frac{\gamma}{\ln f} \right)$$

$$\frac{\partial t_p}{\partial f} = \frac{t_{po} \ln F}{\gamma} \bullet \frac{\ln f - 1 - \frac{\gamma}{f}}{\ln^2 f} = 0$$

- If self loading is ignored
- For $\gamma = 0, f = e, N = \ln F$

$$f = e^{1 + \frac{\gamma}{f}}$$

Optimum f for given process defined by y optimum tapering factor

$$f_{opt} = 3.6$$

for
$$\gamma = 1$$

Inverter

Advanced Digital IC Design

- Impact of self loading on t_n
- No self loading for $\gamma = 0$
- Optimal # of stages
- $N = \ln F$ $t_p(normalized) = \frac{t_p}{t}$ • With self loading $\gamma^p = 1$
- If $f < f_{ont}$ (too many stages) will result in delay to increase
- Normalized delay function of F

$$t_{p} = Nt_{po} \left(1 + \frac{\sqrt[N]{F}}{\gamma} \right)$$

$$\frac{t_p(opt)}{t_{po}} for \gamma = 1$$

Buffer design

Advanced Digital IC Design

- Buffer design
- N f t_p
 - 1 64 65
 - 2 8 18
 - 3 4 15
 - 4 2.8 15.

