

Problema 1 – numar 100 de puncte

Pentru un număr dat cu \mathbf{k} cifre $\mathbf{c_1}\mathbf{c_2}$... $\mathbf{c_k}$, se numește algoritm de deplasare circulară spre dreapta de la o cifră inițială $\mathbf{c_i}$, la o cifră finală $\mathbf{c_j}$, deplasarea din cifră în cifră spre dreapta de $\mathbf{c_i}$ ori $(1 \le \mathbf{i}, \mathbf{j} \le \mathbf{k})$. Dacă pe parcursul deplasării s-a ajuns la cifra $\mathbf{c_k}$, se continuă deplasarea circulară spre dreapta cu cifra $\mathbf{c_1}$.

Un număr cu **k** cifre se numește număr "circular" dacă îndeplinește următoarele două cerințe:

- toate cifrele sunt nenule;
- pornind de la cifra **c**₁, aplicând algoritmul de deplasare circulară spre dreapta de exact **k** ori, se ajunge din nou la **c**₁, fiecare dintre cifrele numărului fiind exact o singură dată cifră inițială.

De exemplu, numărul **2396** este un număr "circular", pentru că are doar cifre nenule și algoritmul de deplasare circulară spre dreapta se aplică astfel:

- 1. Se pornește de la cifra inițială 2 (2 3 9 6) și se numără două cifre spre dreapta, ajungând la cifra finală 9: 2 3 9 6.
- 2. Se pornește de la cifra inițială 9 și se numără nouă cifre spre dreapta, ajungând la cifra finală 6: 2 3 9 6.
- 3. Se pornește de la cifra inițială **6** și se numără șase cifre spre dreapta, ajungând la cifra finală **3**: <u>2 3 9 6</u>.
- 4. Se pornește de la cifra inițială **3** și se numără trei cifre spre dreapta, ajungând la cifra finală **2**: 2 3 9 6. Astfel, se ajunge la prima cifră din număr, adică la cifra **2**, după exact 4 aplicări ale algoritmului, iar fiecare dintre cifrele numărului este exact o dată cifră inițială.

Cerință

Scrieți un program care citește numărul natural nenul n, apoi numerele naturale x_1, x_2, \ldots, x_n , și determină:

- a) cel mai mare număr din șir în care există cel puțin o cifră care apare de minimum două ori, iar în cazul în care în șir nu există un astfel de număr, se va afișa cel mai mare număr din șir;
- b) un șir a₁, a₂, ..., a_n de n numere naturale pentru care un element a_i (1≤i≤n) se calculează astfel:
 - este egal cu x_i, dacă x_i este număr circular;
 - este numărul cel mai apropiat de **x**_i (număr mai mare sau mai mic decât **x**_i), cu proprietatea că este număr circular; dacă pentru un număr din șir se identifică un număr circular **y**, **y>x**_i și un număr circular **z**, **z**<**x**_i, pentru care **y**-**x**_i=**x**_i-**z**, atunci se va alege numărul **y**.

Date de intrare

Fișierul **numar.in** conține pe prima linie numărul \mathbf{n} , iar pe următoarele \mathbf{n} linii numerele naturale $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$.

Date de ieşire

Fișierul **numar.out** va conține pe prima linie un număr natural determinat conform cerinței a), iar pe următoarele n linii șirul de numere determinat conform cerinței de la punctul b), fiecare număr pe câte un rând.

Restricții și precizări

- 0<**n**<100
- 9<**x**_i<999589, **1≤i≤n**
- pentru rezolvarea corectă a cerinței a) se obține 30% din punctaj, iar pentru rezolvarea corectă a cerinței b) se obține 70% din punctaj.

Exemplu

numar.in	numar.out	Explicație
5	515	a) 515 este cel mai mare număr dintre cele cinci numere citite, număr ce conține o
15	15	cifră care apare de minimum două ori.
123	117	b) Pentru 15 : de la cifra inițială 1, se numără o cifră și se ajunge la cifra finală 5, apoi
1972	1959	începând de la cifra 5 ca cifră inițială, se numără cinci cifre și se ajunge la cifra finală
222	222	1. Astfel cifrele 1, 5 sunt o singură dată cifre inițiale și după două aplicări ale
515	522	algoritmului de deplasare se ajunge la prima cifră, deci 15 este număr circular.
		Pentru 123: de la cifra inițială 1, se numără o cifră și se ajunge la cifra finală 2, apoi
		începând de la cifra 2 ca cifră inițială, se numără două cifre și se ajunge la cifra finală
		1. Astfel, se ajunge din nou la prima cifră, însă algoritmul de deplasare s-a aplicat doar
		de două ori și nu trei ori, iar cifra 3 nu a fost cifră inițială. Ca urmare, 123 nu este
		număr circular. Se determină cele două numere circulare, y=141 și z=117, cel mai
		apropiat de 123 dintre ele fiind 117.
		Cu celelalte numere se procedează în același mod.

Timp maxim de executare/test: 1 secundă

Limite de memorie: total memorie disponibilă 2 MB, din care pentru stivă maximum 2 MB

Dimensiunea maximă a sursei 5 KB