REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_{*}$ Input: a differentiable policy parameterization $\pi(a|s,\theta)$

Input: a differentiable state-value function parameterization $\hat{v}(s,\mathbf{w})$ Algorithm parameters: step sizes $\alpha^{\theta} > 0$, $\alpha^{\mathbf{w}} > 0$

Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ and state-value weights $\mathbf{w} \in \mathbb{R}^{d}$ (e.g., to 0)

Loop forever (for each episode):
Generate an episode
$$S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$$
, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$

Generate an episode
$$S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$$
, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$
Loop for each step of the episode $t = 0, 1, \dots, T-1$:
$$G \leftarrow \sum_{k=t+1}^{T} R_k$$

Loop for each step of the episode
$$t=0,1,\ldots,I-1$$
: $G \leftarrow \sum_{k=t+1}^T R_k$ $\delta \leftarrow G - \hat{v}(S_t,\mathbf{w})$

 $\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S_t, \mathbf{w})$