EE 491 Power Systems

Midterm I 7.45 AM to 9.00 AM, 9/26/2019

- 1) Suppose a load is operating at its rated voltage of 22 kV-LL, and it is consuming 24 MW at 0.8 pf lagging.
 - a) How much is the load reactive power QL?

(5 points)

b) We want to improve the load power factor by shunt compensation. How much shunt compensation do we have to switch in to improve the net load power factor to 0.95 pf lagging? (15 points)

Assume 100 MVA power base.

a) Starting from the load base voltage at 6 kV, assign all per unit base voltages.

(5 points)

b) What are the load bus voltage and current phasors in per unit? (5 points)

c) Convert all impedances to their per unit values and draw the per unit circuit diagram. (10 points)

d) What is the generator voltage? What are the real and reactive power outputs of the generator? (10 points)

3) Consider the three-bus power system below.

a) Compute the network admittance matrix $Y_{\mbox{\footnotesize Bus}}$.

(15 points)

b) Find the DC power-flow solution.

(15 points)

4) Consider a 70-mile single circuit three-phase transmission line that is composed of *Cardinal* conductors with spacing as shown. Assume 20⁰ C wire temperature.

a) What are the series impedance and shunt admittance of the line?

b) Draw the Π circuit for the line.

n teet

(15 points) (5 points)

·				
	•			
-				

Bonus questions (one point each)

1.	Name one energy Secretary in President Obama administration.
2.	Name one of the hydro power plants in Spokane downtown riverfront.
3.	What is the rated capacity (within 10 MW) of the Palouse wind project on the way from Colfax to Spokane?
4.	What percentage of total load is required by renewable power generation sources in the state of Washington by 2020?
5.	Which country faced a severe power grid blackout in 2015 that was caused by a cyberattack?

TABLE A.3
Electrical characteristics of bare aluminum conductors steel-reinforced (ACSR)†

					Resistance	е .				
						,	c, 60 Hz		Reactanc 1-ft spacin	e per conducte ng, 60 Hz
Code word	Aluminum area, cmil	Stranding AI/St	Layers of aluminum		Dc, 20°C, Ω/1,000 ft	20°C, Ω/mi	50°C, Ω/mi	GMR D _s , ft	Inductive X_a , Ω/mi	Capacitiv X'_a ,
Waxwing Partridge Ostrich Merlin Linnet Oriole Chickadee Ibis Pelican Flicker. Hawk Hen Osprey Parakeet Dove Rook Grosbeak Orrake Cern Gail Cardinal Ortolan Sluejay inch iittern cheasant clobolink lover apwing alcon luebird	266,800 266,800 300,000 336,400 336,400 397,500 397,500 477,000 477,000 477,000 556,500 556,500 636,000 795,000 795,000 954,000 1,033,500 1,113,000 1,272,000 1,431,000 1,431,000 1,590,000 2,156,000	26/7 45/7 45/7 54/7 45/7 45/7	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.914 0.927 0.977 0.990 1.108 1.1063 1.165 1.196 1.293 1.259 1.293 1.345 1.382 1.427 1.465 1.502 1.515 0	0.0120 0.0109 0.0108	0.3488 0.3452 0.3070 0.2767 0.2737 0.2719 0.2342 0.2323 0.1957 0.1943 0.1919 0.1669 0.1663 0.1461 0.1454 0.1172 0.1188 0.0997 0.0988 0.0924 0.0856 0.0762 0.0751 0.0684 0.0673 0.0623 0.0612 0.0476	0.3831 0.3792 0.3372 0.3037 0.3006 0.2987 0.2572 0.2551 0.2148 0.2134 0.2120 0.2107 0.1843 0.1832 0.1826 0.1603 0.1596 0.1603 0.1596 0.1092 0.1092 0.1092 0.1091 0.0937 0.0832 0.0821 0.0746 0.0735 0.0667	0.0198 0.0217 0.0229 0.0222 0.0243 0.0255 0.0241 0.0264 0.0264 0.0284 0.0289 0.0304 0.0284 0.0327 0.0335 0.0373 0.0352 0.0366 0.0402 0.0402 0.0402 0.0406 0.0444 0.0466 0.0470 0.0498 0.0523	0.476 0.465 0.465 0.458 0.462 0.451 0.445 0.452 0.441 0.432 0.430 0.424 0.432 0.423 0.420 0.415 0.412 0.399 0.406 0.395 0.390 0.390 0.386 0.380 0.372 0.371 0.365 0.364	MΩ·mi 0.1090 0.1074 0.1057 0.1055 0.1040 0.1032 0.1031 0.1015 0.1004 0.0992 0.0988 0.0980 0.0981 0.0965 0.0950 0.0946 0.0912 0.0925 0.0897 0.0890 0.0885 0.0847 0.0866 0.0855 0.0847 0.0837 0.0829 0.0822

TABLE A.4 Inductive reactance spacing factor X_d at 60 Hz† (ohms per mile per conductor)

						Separation	I		***************************************		*************************************	
	Inches											
Feet	0	1	2	3	4	5	6	7	8	9	10	11
0	ġ	-0.3015 0.0007	-0.2174	-0.1682	-0.1333	-0.1062	-0.0841	-0.0654	-0.0492	-0.0349	-0.0221	-0.0106

[‡]Data, by permission, from Aluminum Association, Aluminum Electrical Conductor Handbook, 2nd ed., Washington, D.C., 1982.

TABLE A.4 Inductive reactance spacing factor X_d at 60 Hz \dagger (ohms per mile per conductor)

						t 60 Hz†						
	Inches				- 1		. 1	7	8	9	10	11
Feet	0	1	2	3	4	5	6	-0.0654	-0.0492	-0.0349	-0.0221 0.0735	-0.0106 0.0789
0 1 2 3 4 5	0 0.0841 0.1333 0.1682 0.1953 0.2174 0.2361	-0.3015 0.0097 0.0891 0.1366 0.1707 0.1973 0.2191 0.2376	-0.2174 0.0187 0.0938 0.1399 0.1732 0.1993 0.2207 0.2390	-0.1682 0.0271 0.0984 0.1430 0.1756 0.2012 0.2224 0.2404	-0.1333 0.0349 0.1028 0.1461 0.1779 0.2031 0.2240 0.2418	-0.1062 0.0423 0.1071 0.1491 0.1802 0.2050 0.2256 0.2431	-0.0841 0.0492 0.1112 0.1520 0.1825 0.2069 0.2271 0.2445	0.0558 0.1152 0.1549 0.1847 0.2087 0.2287 0.2288	0.0620 0.1190 0.1577 0.1869 0.2105 0.2302 0.2472	0.0679 0.1227 0.1604 0.1891 0.2123 0.2317 0.2485	0.1264 0.1631 0.1912 0.2140 0.2332 0.2498	0.129 0.165 0.193 0.215 0.234 0.251
6 7 8 9 10 11 12 13	$\begin{array}{c} 0.2523 \\ 0.2666 \\ 0.2794 \\ 0.2910 \\ 0.3015 \\ 0.3112 \\ 0.3202 \end{array}$											
15 16 17 18 19	0.3286 0.3364 0.3438 0.3507 0.3573 0.3635 0.3694 0.3751 0.3805 0.3906				At 60 For	O Hz, in Ω/m $X_d = 0.2794$ $d = \text{separa}$ three-phase I $d = D_{eq}$	ni per condu i log d tion, ft ines	etor				
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	0.3953 0.3999 0.4043 0.4080 0.412 0.416	3 3 6 7				•						
31 32 33 34 35 36	0.420 0.424 0.427 0.431 0.434 0.438	5 3 9 4									× *	
40 41	0.45	14 15 76 06										
42 43 44 45 46	$0.45 \\ 0.45 \\ 0.46$	64 92 319 346										

[†]From Electrical Transmission and Distribution Reference Book, by permission of the ABB Power T & D Company, Inc.

[†]Most used multilayer sizes. [‡]Data, by permission, from Aluminum Association, Aluminum Electrical Conductor Handbook, 2nd ed., Washington, D.C., 1982.

										so ber con			
	Ī					Separatio	n						
Feet		Inches											
	0	1	2	3	4	5	6	7	8	9			
0 1 2 3 4 5 6 7 8 9	0.0206 0.0326 0.0411 0.0478 0.0532 0.0577 0.0617 0.0652 0.0683	-0.0737 0.0024 0.0218 0.0334 0.0417 0.0482 0.0536 0.0581	-0.0532 0.0046 0.0229 -0.0342 0.0423 0.0487 0.0540 0.0584	-0.0411 0.0066 0.0241 0.0350 0.0429 0.0492 0.0544 0.0588	-0.0326 0.0085 0.0251 0.0357 0.0435 0.0497 0.0548 0.0591	-0.0260 0.0103 0.0262 0.0365 0.0441 0.0501 0.0552 0.0594	-0.0206 0.0120 0.0272 0.0372 0.0446 0.0506 0.0555 0.0598	-0.0160 0.0136 0.0282 0.0379 0.0452 0.0510 0.0559 0.0601	-0.0120 0.0152 0.0291 0.0385 0.0457 0.0515 0.0563 0.0604	-0.0085 0.0166 0.0300 0.0392 0.0462 0.0519 0.0567 0.0608	-0.0054 0.0180 0.0309 0.0309 0.0467 0.0523 0.0570 0.0611	-0.0026 0.0193 0.0318 0.0405 0.0473 0.0527 0.0574 0.0614	
38 39	0.0711 0.0737 0.0761 0.0783 0.0803 0.0823 0.0841 0.0858 0.0874 0.0989 0.0903 0.0917 0.0930 0.0943 0.0955 0.0967 0.1019 0.1028 0.1037 0.1046 0.1055 0.1071 0.1079 0.1087 0.1094 0.1094 0.1094				d For thre	z, in MΩ·m = 0.06831 = separatic e-phase line = Deq	m fd	ctor					

From Electrical Transmission and Distribution Reference Book, by permission of the ABB Power T & D Company, Inc.