Homework 2

Pattern Mining and Social Network Analysis

BOUYSSOU Gatien , de POURTALES Caroline, LAMBA Ankit

18 octobre, 2020

Contents

Supervised VS Unsupervised	2
Principal Components Analysis	3
1	3
	3
	3
	3
On python with scikit-learn	7
Clustering	8
K-means	8
Within-cluster variation (squared Euclidean distance)	8
K-means algorithm	8
Choice of k	8
Example	8
On R	8
On python with scikit-learn	8
Hierarchical clustering	9
Interpreting a dendogram	9
Correlation-based distance	9
Euclidean distance	9
Correlation-based distance	9
Hierarchical clustering algorithm	9
Linkage	9
Example	0
On R	0
On python with scikit-learn	1
Validation techniques 12	2
Bootstrapping	2
Example	2
On R	
On python with scikit-learn	2

Supervised VS Unsupervised

Principal Components Analysis

Proportion of variance explained (PVE)

Deciding how many PCs to use

Example

The following dataset consists of 40 tissue samples with measurements of 1,000 genes. The first 20 tissues come from healthy patients (H) and the remaining 20 come from a diseased patient group (D).

On R

```
id <- "1VfVCQvWt121UN39NXZ4aR9Dmsbj-p90U" # google file ID
GeneData <- read.csv(sprintf("https://docs.google.com/uc?id=%s&export=download",id), header = F)
colnames(GeneData)[1:20] = paste(rep("H", 20), c(1:20), sep = "")
colnames(GeneData)[21:40] = paste(rep("D", 20), c(1:20), sep = "")
row.names(GeneData) = paste(rep("G", 1000), c(1:1000), sep = "")
head(GeneData)
##
               H1
                          H2
                                     НЗ
                                                 H4
                                                            Н5
                                                                       Н6
## G1 -0.96193340
                  0.4418028 -0.9750051
                                         1.4175040
                                                     0.8188148
                                                                0.3162937
## G2 -0.29252570 -1.1392670
                              0.1958370 -1.2811210 -0.2514393
                              0.5884858 -0.8002581 -1.8203980 -2.0589240
       0.25878820 -0.9728448
  G4 -1.15213200 -2.2131680 -0.8615249
                                        0.6309253
                                                    0.9517719 -1.1657240
       0.19578280 0.5933059
                              0.2829921
                                         0.2471472
                                                     1.9786680 -0.8710180
       0.03012394 - 0.6910143 - 0.4034258 - 0.7298590 - 0.3640986
                                                                1.1253490
##
                           Н8
               H7
                                       Н9
                                                  H10
                                                             H11
                                                                        H<sub>12</sub>
## G1 -0.02496682 -0.06396600
                              0.03149702 -0.3503106 -0.7227299 -0.2819547
## G2 -0.92220620
                   0.05954277 -1.40964500 -0.6567122 -0.1157652 0.8259783
## G3 -0.06476437
                   1.59212400 -0.17311700 -0.1210874 -0.1875790 -1.5001630
## G4 -0.39155860
                  1.06361900 -0.35000900 -1.4890580 -0.2432189 -0.4330340
## G5 -0.98971500 -1.03225300 -1.10965400 -0.3851423 1.6509570 -1.7449090
## G6 -1.40404100 -0.80613040 -1.23792400 0.5776018 -0.2720642
                                                                  2.1765620
##
              H13
                          H14
                                     H15
                                                 H<sub>16</sub>
                                                            H17
                                                                       H18
       1.33751500 0.70197980
                              1.0076160 -0.4653828
## G1
                                                     0.6385951
                                                                 0.2867807
       0.34644960 -0.56954860 -0.1315365
                                          0.6902290 -0.9090382
## G3 -1.22873700 0.85598900
                               1.2498550 -0.8980815
                                                      0.8702058 -0.2252529
  G4 -0.03879128 -0.05789677 -1.3977620 -0.1561871 -2.7359820
                                                                 0.7756169
## G5 -0.37888530 -0.67982610 -2.1315840 -0.2301718 0.4661243 -1.8004490
                                                     0.2046529 -1.1916480
       1.43640700 -1.02578100 0.2981582 -0.5559659
## G6
##
             H19
                         H20
                                     D1
                                                            D3
                                                                       D4
## G1 -0.2270782 -0.22004520 -1.2425730 -0.1085056 -1.8642620 -0.5005122
  G2 -1.6726950 -0.52550400
                              0.7979700 -0.6897930
                                                     0.8995305
## G3
                  0.55144040
       0.4502892
                              0.1462943 0.1297400
                                                     1.3042290 -1.6619080
                  2.01919400
                              1.0811390 -1.0766180 -0.2434181
       0.6141562
##
       0.6262904 - 0.09772305 - 0.2997108 - 0.5295591 - 2.0235670 - 0.5108402
##
       0.2350916
                  0.67096470
                              0.1307988
                                         1.0689940
                                                     1.2309870
                                                                1.1344690
                                                              D9
##
               D5
                           D6
                                      D7
                                                  D8
                                                                         D10
## G1 -1.32500800 1.06341100 -0.2963712 -0.1216457
                                                     0.08516605
                                                                  0.62417640
## G2 -0.67611410 -0.53409490 -1.7325070 -1.6034470 -1.08362000
                                                                  0.03342185
## G3 -1.63037600 -0.07742528
                              1.3061820 0.7926002
                                                     1.55946500 -0.68851160
  G4 -0.51285780 2.55167600 -2.3143010 -1.2764700 -1.22927100
                                                                  1.43439600
  G5
       0.04600274 1.26803000 -0.7439868 0.2231319
                                                     0.85846280
                                                                  0.27472610
       0.55636800 -0.35876640 1.0798650 -0.2064905 -0.00616453
```

```
##
                          D12
                                      D13
                                                 D14
                                                            D15
                                                                       D16
## G1 -0.5095915 -0.216725500 -0.05550597 -0.4844491 -0.5215811
                                                                1.9491350
## G2 1.7007080
                 0.007289556
                              ## G3 -0.6154720
                 0.009999363
                              0.94581000 -0.3185212 -0.1178895
                                                                 0.6213662
## G4 -0.2842774
                 0.198945600 -0.09183320 0.3496279 -0.2989097
                                                                1.5136960
## G5 -0.6929984 -0.845707200 -0.17749680 -0.1664908 1.4831550 -1.6879460
                              0.08863952
      1.1567370
                 0.241774500
                                          0.1829540
                                                      0.9426771 -0.2096004
##
              D17
                         D18
                                     D19
## G1
      1.32433500 0.4681471
                              1.06110000
                                         1.6559700
## G2 -0.16988710 -0.5423036
                             0.31293890 -1.2843770
## G3 -0.07076396  0.4016818 -0.01622713 -0.5265532
## G4 0.67118470 0.0108553 -1.04368900
                                         1.6252750
## G5 -0.14142960 0.2007785 -0.67594210 2.2206110
## G6 0.53626210 -1.1852260 -0.42274760 0.6243603
This matrix describes the "link" between each tissue sample and gene.
genematrix <- t(GeneData)</pre>
pca <- prcomp(genematrix, scale=TRUE)</pre>
summary(pca)
## Importance of components:
                              PC1
                                      PC2
                                              PC3
                                                      PC4
                                                              PC5
                                                                      PC6
                                                                              PC7
##
## Standard deviation
                          9.00460 5.87302 5.74347 5.61806 5.55344 5.50107 5.40069
## Proportion of Variance 0.08108 0.03449 0.03299 0.03156 0.03084 0.03026 0.02917
## Cumulative Proportion 0.08108 0.11558 0.14856 0.18013 0.21097 0.24123 0.27040
##
                              PC8
                                     PC9
                                            PC10
                                                    PC11
                                                            PC12
                                                                    PC13
                                                                           PC14
## Standard deviation
                          5.38575 5.3762 5.34146 5.31878 5.25016 5.18737 5.1667
## Proportion of Variance 0.02901 0.0289 0.02853 0.02829 0.02756 0.02691 0.0267
## Cumulative Proportion 0.29940 0.3283 0.35684 0.38513 0.41269 0.43960 0.4663
##
                             PC15
                                     PC16
                                             PC17
                                                     PC18
                                                             PC19
                                                                     PC20
## Standard deviation
                          5.10384 5.04667 5.03288 4.98926 4.92635 4.90996 4.88803
## Proportion of Variance 0.02605 0.02547 0.02533 0.02489 0.02427 0.02411 0.02389
## Cumulative Proportion 0.49234 0.51781 0.54314 0.56803 0.59230 0.61641 0.64030
##
                             PC22
                                     PC23
                                             PC24
                                                     PC25
                                                             PC26
                                                                     PC27
## Standard deviation
                          4.85159 4.79974 4.78202 4.70171 4.66105 4.64595 4.59194
## Proportion of Variance 0.02354 0.02304 0.02287 0.02211 0.02173 0.02158 0.02109
## Cumulative Proportion 0.66384 0.68688 0.70975 0.73185 0.75358 0.77516 0.79625
##
                             PC29
                                     PC30
                                            PC31
                                                    PC32
                                                            PC33
                                                                   PC34
                                                                           PC35
## Standard deviation
                          4.53246 4.47381 4.4389 4.41670 4.39404 4.3591 4.23504
## Proportion of Variance 0.02054 0.02001 0.0197 0.01951 0.01931 0.0190 0.01794
## Cumulative Proportion 0.81679 0.83681 0.8565 0.87602 0.89533 0.9143 0.93226
##
                            PC36
                                    PC37
                                           PC38
                                                   PC39
                                                            PC40
                          4.2184 4.12936 4.0738 4.03658 4.64e-15
## Standard deviation
## Proportion of Variance 0.0178 0.01705 0.0166 0.01629 0.00e+00
```

Cumulative Proportion 0.9501 0.96711 0.9837 1.00000 1.00e+00

biplot(pca, scale=0)


```
p=plot(pca_plot$x[,1:2], type = "n")
p=p+points(pca_plot$x[0:20,1:2], pch = "H", col='green')
p=p+points(pca_plot$x[21:40,1:2], pch = "D",col='red')
```


On python with scikit-learn

Clustering

K-means

Within-cluster variation (squared Euclidean distance)

K-means algorithm

Choice of k

Example

```
k2 <- kmeans(genematrix, centers = 2, nstart = 15)</pre>
k2$cluster
On R
```

```
H1
                                       H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
##
        H2
            НЗ
                 H4
                     Н5
                          Н6
                              H7
                                  Н8
##
         1
                      1
                           1
                               1
                                    1
                                        1
                                                 1
                                                     1
                                                         1
                                                              1
                                                                  1
                                                                       1
            DЗ
                 D4
                     D5
                          D6
                              D7
                                  D8
                                       D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
                                    2
     2
         2
                      2
                           2
                               2
                                        2
                                            2
                                                 2
                                                     2
                                                         2
                                                              2
                                                                  2
                                                                      2
                                                                           2
```

```
k2$tot.withinss
```

```
## [1] 38366.84
```

```
p2= plot(genematrix,
     col=(k2$cluster),
     main="K-Means Clustering Results with K=2",
     xlab="", ylab="", pch=15, cex=2)
```

K-Means Clustering Results with K=2

On python with scikit-learn

Hierarchical clustering Interpreting a dendogram Correlation-based distance Euclidean distance

Correlation-based distance

 $\label{thm:linkage} \mbox{Hierarchical clustering algorithm}$ $\mbox{Linkage}$

Example

```
c euclidean<-dist(genematrix, method = 'euclidean')</pre>
c_pearson <- cor(t(genematrix), method="pearson")</pre>
c_pearson <- as.dist(1-c_pearson)</pre>
#complete
clusters_complete_euclidean <- hclust(c_euclidean, method = "complete")</pre>
clusterCut <- cutree(clusters_complete_euclidean, 2)</pre>
clusterCut
On R
##
   H1
            НЗ
                H4 H5
                        Н6
                            H7
                                 Н8
                                     H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
                          1
                              1
                                      1
                                           1
                                               1
                                                   1
                                                       1
                                                           1
                                                                1
                                                                    1
                                                                        1
                                                                            1
         1
             1
                 1
                      1
                                  1
                                     D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
##
  D1
        D2 D3 D4 D5
                        D6
                            D7
                                 D8
     2
         2
             2
                 2
                      2
                          2
                              2
                                  2
                                      2
                                           2
                                               2
                                                   2
                                                       2
                                                           2
                                                                    2
clusters_complete_correlation <- hclust(c_pearson, method = "complete")</pre>
clusterCut <- cutree(clusters_complete_correlation, 2)</pre>
clusterCut
                                 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
   H1 H2 H3 H4 H5 H6 H7
         2
                                      2
                 1
                      2
                          1
                              2
                                  1
                                               1
                                                   1
                                                       2
                                                            1
                                                                1
                                                                    2
   D1 D2 D3 D4 D5 D6 D7
                                 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
##
     2
         2
                                  2
                                               2
#single
clusters_single_euclidean <- hclust(c_euclidean, method = "single")</pre>
clusterCut <- cutree(clusters_single_euclidean, 2)</pre>
clusterCut
##
   H1 H2 H3 H4 H5 H6 H7
                                 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
##
             1
                 1
                     1
                          1
                              1
                                  1
                                      1
                                           1
                                               1
                                                   1
                                                       1
                                                           1
                                                                1
                                                                    1
                                                                        1
   D1 D2 D3 D4 D5 D6 D7
                                 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
     2
         2
                 2
                                      2
                                               2
                                                       2
                                                            2
                                                                2
##
             2
                      2
                          2
                              2
                                  2
                                           2
                                                   2
                                                                    2
                                                                                 2
clusters single correlation <- hclust(c pearson, method = "single")</pre>
clusterCut <- cutree(clusters_single_correlation, 2)</pre>
clusterCut
## H1 H2 H3 H4 H5 H6 H7
                                 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
                 1
                      1
                          1
                              1
                                  1
                                      1
                                           1
                                               1
                                                   1
                                                       1
                                                            1
                                                                1
                                                                    1
                                                                            1
    D1 D2 D3 D4
                    D5
                        D6
                            D7
                                 D8
                                     D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
##
    1
         1
             1
                 1
                          1
                              1
                                      1
                                           1
                                               1
                                                   1
                                                       1
                                                            1
                      1
                                  1
                                                                1
                                                                    1
#average
clusters_average_euclidean <- hclust(c_euclidean, method = "average")</pre>
clusterCut <- cutree(clusters_average_euclidean, 2)</pre>
clusterCut
                                     H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
    H1 H2 H3
                H4
                    Н5
                        Н6
                             H7
                                 Н8
##
     1
         1
             1
                 1
                      1
                          1
                              1
                                  1
                                      1
                                           1
                                               1
                                                   1
                                                       1
                                                           1
                                                                1
                                                                    1
                                                                        1
                                                                            1
##
      D2 D3 D4 D5
                        D6 D7
                                 D8
                                    D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
    D1
                 2
                      2
                          2
                              2
                                  2
                                      2
                                           2
                                               2
                                                   2
                                                       2
                                                           2
                                                                    2
clusters_average_correlation <- hclust(c_pearson, method = "average")</pre>
clusterCut <- cutree(clusters_average_correlation, 2)</pre>
clusterCut
```

```
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
##
             НЗ
                     Н5
                          Н6
                                   Н8
                       2
                           2
                                    2
                                        1
                                                     2
                                                          2
                                                              2
                                                                   2
                                                                           2
##
          1
              1
                                1
                                              D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
##
        D2
             D3
                 D4
                     D5
                          D6
                                   D8
                                       D9 D10
     2
          2
                                        2
                                                 2
                                                     2
                                                          2
                                                              2
                                                                   2
                                                                       2
##
              2
                  2
                       2
                           2
                                2
                                    2
                                                                           2
                                                                                2
                                                                                        2
par(mfrow = c(2, 3))
plot(clusters_complete_euclidean)
plot(clusters_complete_correlation)
plot(clusters_single_euclidean)
plot(clusters_single_correlation)
plot(clusters_average_euclidean)
plot(clusters_average_correlation)
```


We can see that the use of euclidean distance in the three methods (complete, single, average) gives good results (no missclassification) but the use of correlation-distance gives very bad results.

Furthermore all methods, except Average with correlation-distance, divide the graph in two groups (healthy and non-healthy) which is very good.

On python with scikit-learn

Validation techniques

Bootstrapping

Example

On R

On python with scikit-learn