Data Science Portofolio

Yodi Ramadhani Alfariz

Working Experience

Indah Logistik Cargo Ahmad Yani Bandung Exp. Leader
Jan 2019 - Present

PDAM Tirta Raharja Kab. Bandung
Internship
Aug 2016 - Oct 2016

BPS Porvinsi Jawa Barat Oct 2016 - Dec 2016
Input Correction / Data Entry
Oct 2016 - Dec 2016

Skills and Proficiency

SQL Database

Data Visualization

Machine Learning

Python Coding

Dashboarding

Data Science Project

Customer
Segmentation

Product
Recommendation

Tableau

Dashboarding

SQL in BigQuery

Online Retail Product

Recommendation

Introduction

The following datasets from kaggle is Online Retail Transaction From 2009–2011, but I have cleaned before in my last portofolio <u>Customer Segmentation</u>, and I have split on 2011 only. The cleaned dateset you can get here.

Objective

We will build product reccomendation using Alternating Least Square to offering for Sales Improvement.

Dataset Information

371.722 record

- InvoiceNo: number code of the transacation
- StockCode: the code of item
- Description: the description of item
- Quantity: count of item buying.
- InvoiceDate: date of customers transcation.
- UnitPrice: the price per item.
- CustomerID : ID of customers
- Country: country of customers live.
- TotalTrx: total transcation (quantity x UnitPricce)
 qtylog: qty after log transformation
- invDate : date without time

19 columns

- year : year of transaction
- month: month of transaction
- day: day of transaction
- hour: hours of transaction
- cluster : cluster of customerID
- class: class of customerID (cluster description)
- encust: encoding customerID
- encprod : encoding StockCode

Methodolgy

Recommendation System Using Collaborative Filtering

Before we going through to main topic, I will explain first about reccomendation system.

A recommender system, or a recommendation system (sometimes replacing 'system' with a synonym such as platform or engine), is a subclass of information filtering system that provide suggestions for items that are most pertinent to a particular user. source Wikipedia

Alternating Least Square*

- 1	1	m	n
	u.		п

	W	X	Y	Z
Α		45	2.0	

User

W	X	Υ	Z
	4.5	2.0	
4.0		3.5	
	5.0		2.0
	3.5	4.0	1.0

Rating Matrix

	Α	1.2	0.8
=	В	1.4	0.9
	С	1.5	1.0
	_		

User Matrix

1.2 0.8

,	W	X	Y	Z
	1.5	1.2	1.0	0.8
	1.7	0.6	1.1	0.4

Item Matrix

Source here

Alternating Least Square (ALS) is also a matrix factorization algorithm and it runs itself in a parallel fashion. ALS is implemented in Apache Spark ML and built for a larges-scale collaborative filtering problems. ALS is doing a pretty good job at solving scalability and sparseness of the Ratings data, and it's simple and scales well to very large datasets.

Feature Engineering

We need rating for Matriks Factorization

In our datasets didn't have rating, so we will using K-Means for Feature Engineering, and we will using Qty and Total Transaction to get Rating as feature.

+-		+-	+-	+
e	encust er	ncprod	ty	grand
+-	+	+-	+-	+
1	4005	1473	6 9	9.89999999999999
ĺ	966	2155	5	4.25
+-	+-	+-	+-	+

First of all we will grouping by customer, and product with aggregate sum of qty and sum of total transaction

But as you can see, the data didn't normal distribution We have to normalized using log transformation

Data distribution after Transformation

we will find rating using k-means, and first we will find k potensial.

And we got 4 for k potensial, then we will fitting into dataset.

encust encprod

And we got rating like this

1473 | 0.7781512503836436 | 0.9956351945975499 | [0.77815125038364... 2155 | 0.6989700043360189 | 0.6283889300503115 | [0.69897000433601... 677 | 1.255272505103306 | 1.5774917998372253 | [1.25527250510330...

logaty

logtrx

but we only need rating(prediction), encust, and encprod for features. We will getting column like this

We will split data into 3 segment, train, validation and test. with 60% train, 20% validation, and 20% test

Modellling

Try Hyperparameter Tunning to find Best Paramaeter With train and validation data


```
20 latent factors and regularization = 0.01: validation RMSE is 1.106612668230327
20 latent factors and regularization = 0.05: validation RMSE is 0.8884571735723852
20 latent factors and regularization = 0.1: validation RMSE is 0.8348978928649736
20 latent factors and regularization = 0.2: validation RMSE is 0.8357110913866176
50 latent factors and regularization = 0.01: validation RMSE is 1.0103233409673376
50 latent factors and regularization = 0.05: validation RMSE is 0.8601728532689794
50 latent factors and regularization = 0.1: validation RMSE is 0.829443568380284
50 latent factors and regularization = 0.2: validation RMSE is 0.8357865788921208
```

The best model has 50 latent factors and regularization = 0.1 Total Runtime: 389.21 seconds

We getting rank = 50 and lambda = 0.1 for the lowest rmse

We will see learning curve

And we try with test data

The out-of-sample RMSE of rating predictions is 0.8289320259848187

Try to predict Product Recommendation

Recommendations for JUMBO BAG ALPHABET:

- 1: JUMBO BAG PINK VINTAGE PAISLEY
- 2: CRYSTAL STUD EARRINGS ASSORTED COL
- 3: JUMBO BAG SCANDINAVIAN PAISLEY
- 4: JUMBO STORAGE BAG SUKI
- 5: HAIRCLIPS FORTIES FABRIC ASSORTED
- 6: ANTIQUE GLASS PLACE SETTING
- 7: JUMBO BAG APPLES
- 8: JUMBO BAG OWLS
- 9: WHITE FRANGIPANI HAIR CLIP
- 10: JUMBO BAG PINK POLKADOT

Notebook can be accessed here

bit.ly/3Fa0fmV

Thank You

CONTACTS

Github : https://github.com/yodialfa/

LinkedIn : https://www.linkedin.com/in/yodialfariz/

Email : yodialfariz@gmail.com

Phone : <u>082218293933</u>

Twitter : <a>@yodiumh