KTH Matematik Σ p G/Ubonus Examinator: Maurice Duits pnr Efternamn förnamn programkod Kontrollskrivning 4A till Diskret Matematik SF1610, för CINTE, vt2016Inga hjälpmedel tillåtna. Minst 8 poäng ger godkänt. Godkänd KS nr n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), $n = 1, \ldots, 5$. 13–15 poäng ger ett ytterligare bonuspoäng till tentamen. Uppgifterna 3)-5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning. Spara alltid återlämnade skrivningar till slutet av kursen! Skriv dina lösningar och svar på samma blad som uppgifterna; använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.)

Kryssa för om påståendena a)-f) är sanna eller falska (eller avstå)!

		sant	falskt
a)	Det finns en linjär binär kod med 6 kodord.		
b)	Ett RSA-krypto med offentlig parameter n och krypteringsnyckel e kan ha $n=105.$		
c)	I Boolesk algebra håller det alltid att $(x+y)\bar{x}\bar{y}=0$.		
d)	Det finns ett RSA-krypto med krypteringsnyckel $e=11.$		
e)	Orden 10101010 och 11111010 kan tillhöra samma 1-felsrättande kod.		
f)	Det finns 16 olika Booleska funktioner i de fyra variablarna $x,y,z,w. \\$		

poäng uppg.1

Namn	poäng uppg.2

2a) (1p) Ett RSA-krypto har krypteringsnyckel e=11. Vilket/vilka av talen i mängden $\{64,65,66,67,68\}$ kan den offentliga parametern n vara? (Det räcker att ange rätt svar.)

b) (1p) Fyll i matrisen **H** nedan så att den blir kontrollmatrisen (parity-check matris) till en 1-felsrättande kod.

$$\mathbf{H} = \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 0 & \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & & & 1 & \end{array}\right)$$

(Det räcker att ange rätt svar.)

 $\mathbf{c})$ (1
p) Bestäm värdet på den Booleska funktionen

$$f(x,y,z,w) = zw + (x+w+yz)(\bar x + \bar y)$$

i punkten (x, y, z, w) = (1, 0, 1, 0).

(Det räcker att ange rätt svar.)

Namn	poäng uppg.3

3) (3p) Ett RSA-krypto har de offentliga parametrarna n=33 och e=9, där e är krypteringsnyckeln. Ett meddelande a krypterades till talet 2 enligt kryptot. Dekryptera meddelandet, d.v.s. bestäm a.

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Namn	poäng uppg.4

4) (3p) Matrisen **H** nedan är kontrollmatrisen till en linjär 1-felsrättande kodC.

$$\mathbf{H} = \left(\begin{array}{ccccc} 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array}\right)$$

- a) Hur många kodord finns det i koden?
- b) En mottagare tar emot orden 011111 och 011100. Rätta dessa ord till kodord i C enligt närmaste-granne-principen.

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Namn	poäng uppg.5

5) (3p) Bestäm antalet Booleska funktioner f(x,y,z)sådana att

$$(y + x\bar{z})yzf(x, y, z) = 0$$

för alla värden på x,y,z. OBS. En komplett lösning med fullständiga motiveringar skall ges.