

ELEC-E8125 Reinforcement Learning Reinforcement learning in discrete domains

Ville Kyrki 8.10.2019

Today

- Reinforcement learning
- Policy evaluation vs control problems
- Monte-Carlo and Temporal difference

Learning goals

- Understand basic concepts of RL.
- Understand Monte-Carlo and temporal difference approaches for policy evaluation and control.
- Be able to implement MC and TD.

Reinforcement learning

Reinforcement learning

MDP with unknown dynamics (T) and reward function (r)

figure out the dynamics

- Model based RL: Estimate MDP, apply MDP methods.
 - Estimate MDP transition and reward functions from data.
- Can we do without T and r?
 - Can we evaluate a policy (construct value function) if we have multiple episodes (in episodic tasks) available?

- Monte-Carlo policy evaluation only for episadic tasks, which has
- Complete episodes give us samples of return R.
- Learn value of particular policy from episodes under that policy.

$$V_{\pi}(x) = E_{\pi}[R_t|x_t = x]$$
 $R_t = \sum_{k=0}^{H} \gamma^k r_{t+k+1}$

- Estimate value as empirical mean return.
 - Each time state s visited in an episode,

$$N(x)=N(x)+1$$
 $S(x)=S(x)+R_{t}$ $V(x)=S(x)/N(x)$

When number of episodes approaches infinity,

$$V(x)$$
 converges $V(x) \rightarrow V_{\pi}(x)$

Every-visit vs first-visit, incremental and running mean Firet-visit vs.

- First-visit version
 - Instead of every "visit" of state s, only update N(x) and S(x) on first visit per episode.
 - Both approaches converge to $V_{\pi}(x)$.
- S(x) does not need to be stored

We can also track a running mean ◀

$$V(x) = (1 - \alpha)V(x) + \alpha R_t = V(x) + \alpha (R_t - V(x))$$

Temporal difference (TD) – learning without episodes

inhinite sequence

• For each state transition, update a guess towards a guess: applicately make the markoton assumption

$$V(x_{t}) = V(x_{t}) + \alpha \left(r_{t+1} + \gamma V(x_{t+1}) - V(x_{t})\right)$$

Approach called TD(0)

Estimated return.

• Compare to MC $V(x_t) = V(x_t) + \alpha (R_t - V(x_t))$

for system which are not Markentan, MC is better approach.

Batch learning

- For limited number of trials available:
 - Sample episode k.
 - Apply MC or TD(0) to episode k.

MC vs TD

MC

- Needs full episodes. Only works in episodic environments.
- High variance, zero bias → good but slow convergence.
- Does not exploit Markov property → often better in non-Markov env.

• TD (esp. TD(0))

- Can learn from incomplete episodes and on-line after each step.
- Works in continuing environments.
- Low variance, some bias → often more efficient than MC, discrete state TD(0) converges, more sensitive to initial value.
- Exploits Markov property → often more efficient in Markov env.

where efficient than MC, less sensitive to Markovan property capacel to total k-step return: $R_t^{(k)} = \sum_{i=1}^k \gamma^{i-1} r_{t+i} + \gamma^k V(x_{t+k})$

actual, final return

Combine returns in different horizons.

$$R_t^{\lambda} = (1 - \lambda) \sum_{k=1}^{\infty} \lambda^{k-1} R_t^{(k)}$$

$$= V(x_t) + \alpha \left(R_t^{\lambda} - V(x_t)\right)$$

$$V(x_t) = V(x_t) + \alpha \left(R_t^{\lambda} - V(x_t)\right)$$

Weight

 $1-\lambda$

 $(1-\lambda)\lambda$

 $\sum_{i=1}^{n} = 1$

 $TD(\lambda)$, λ -return

 $(1-\lambda) \lambda^2$

Causes and effects – eligibility traces

- Which state is the "cause" of a reward?
- Frequency heuristic: most frequent states likely.
- Recency heuristic: most recent states likely.
- Eligibility trace for a state combines these:

$$E_t(x) = \gamma \lambda E_{t-1}(x) + \mathbf{1}(x_t = x)$$

150 7 70(r)

Backward-TD(λ)

- Extend TD time horizon with decay (λ).
- After episode, update

$$V(x) = V(x) + \alpha E_t(x) \left(r_{t+1} + \gamma V(x_{t+1}) - V(x_t) \right)$$

• TD(1) equal to MC.

What if
$$\lambda=0$$

$$E_{t}(x) = \gamma \lambda E_{t-1}(x) + \mathbf{1}(x_{t} = x)$$

 Eligibility traces way to implement backward TD(λ), forward TD(λ) requires episodes.

Slightly different in on-line case.

Control / decision making?

- So far we only found out how to estimate value functions for a particular policy.
- Can we use this to optimize a policy?

Monte-Carlo Policy iteration

 Can we implement greedy policy improvement as in previous lecture?

$$\pi'(x) = arg \ max_u \sum_{x'} \underline{T(x, u, x')} (\underline{r(x, u, x')} + \gamma V(x'))$$

• Greedy policy improvement using action-value function Q(x,u) does not require model.

$$\pi'(x) = arg max_u Q(x, u)$$

• Estimate Q(x,u) using MC (empirical mean).

Ensuring exploration

- Simple approach: ε-greedy exploration:
 - Explore: Choose action at random with probability ε .
 - Exploit: Be greedy with probability 1- ϵ .

$$\pi(u|x) = \begin{cases} \epsilon/m + 1 - \epsilon & if \ u = arg \ max_u' \ Q(x, u') \\ \epsilon/m & otherwise \end{cases}$$

- How to converge to optimal policy?
 - Idea: reduce ϵ over time.
 - For example, for k:th episode $\epsilon = \frac{a}{a + k}$ "Greedy in Limit with Infinite Exploration" (GLIE)

SARSA (XURXU @)

- Idea: Apply TD to Q(X,U).
 - With ε-greedy policy improvement.
 - Update each time step.

$$Q(x, u) = Q(x, u) + \alpha (r + \gamma Q(x', u') - Q(x, u))$$

Compare with
$$V\left(x_{t}\right) = V\left(x_{t}\right) + \alpha \left(r_{t+1} + \gamma V\left(x_{t+1}\right) - V\left(x_{t}\right)\right)$$

- SARSA converges under
 - GLIE policy,

$$-\sum_{t=0}^{\infty} \alpha_t = \infty \quad \sum_{t=0}^{\infty} \alpha_t^2 < \infty$$

SARSA(λ)

- Instead of TD(0) update in SARSA, use TD(λ) update.
- Backward SARSA(λ)

$$E_{t}(x, u) = \gamma \lambda E_{t-1}(x, u) + \mathbf{1}(x_{t} = x, u_{t} = u)$$

$$Q(x, u) = Q(x, u) + \alpha E_{t}(x, u) (r_{t+1} + \gamma Q(x_{t+1}, u_{t+1}) - Q(x_{t}, u_{t}))$$

Compare to

$$E_{t}(x) = \gamma \lambda E_{t-1}(x) + \mathbf{1}(x_{t} = x)$$

$$V(x) = V(x) + \alpha E_{t}(x) (r_{t+1} + \gamma V(x_{t+1}) - V(x_{t}))$$

Path taken

Action values increased by one-step Sarsa

Action values increased by Sarsa(λ) with λ =0.9

On-policy vs off-policy learning

- On-policy learning (methods so far)
 - Use a policy while learning how to optimize it.
 - "Learn on the job".
- Off-policy learning
 - Use another policy while learning about optimal policy.
 - Can learn from observation of other agents.
 - Can learn about optimal policy when using exploratory policy.

Q-learning

- Use ε-greedy behavior policy to choose actions.
- Target policy is greedy with respect to Q.

$$\pi(x) = arg \, max_u \, Q(x, u)$$

Update target policy greedily:

$$Q(x, u) = Q(x, u) + \alpha \left(r + \gamma \max_{u'} Q(x', u') - Q(x, u)\right)$$

Q converges to Q*.

Assume we take greedy action at next step.

Summary

- In reinforcement learning, dynamics and reward function of MDP are unknown.
- MC approaches sample returns from full episodes.
- TD approaches sample estimated returns (biased).

Next: Extending state spaces

- What to do if
 - discrete state space is too large?
 - state space is continuous?
- Readings
 - Sutton & Barto, ch. 9-9.3, 10-10.1

