ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

- 1. Прямая на плоскости
- 2. Кривые второго порядка
- 3. Прямая и плоскость в пространстве
- 4. Поверхности второго порядка

1. Прямая на плоскости

Если на плоскости задана прямоугольная декартова система координат Oxy, то уравнение первой степени относительно x и y

$$Ax + By + C = 0, (A^2 + B^2 \neq 0)$$

является уравнением прямой, лежащей в плоскости *Оху*. Это уравнение называется *общим уравнением прямой*.

И наоборот, всякая прямая в плоскости Oxy определяется уравнением первой степени относительно x и y. В зависимости от особенностей (используемой информации) расположения прямой эти уравнения имеют разный вид. Их вид и характеристика приведены ниже в таблице.

Виды уравнений прямой на плоскости

Buod ypudnenuu np	
Данные, определяющие прямую	Уравнение прямой
$k = tg\alpha$ - угловой ко- эффициент прямой	y = kx + b
Прямая с угловым коэффициентом	
проходит через точку $M_0(x_0; y_0)$	$y - y_0 = k(x - x_0)$
Прямая проходит через две заданные точки $M_1(x_1; y_1)$ и $M_2(x_2; y_2)$	$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$

Прямая отсекает на осях Ox и Oy отрезки a и b

$$\frac{x}{a} + \frac{y}{b} = 1$$

Общее уравнение прямой

$$Ax + By + C = 0, \ A^2 + B^2 \neq 0,$$
 $k = -\frac{A}{B}, \ \vec{n} = (A, B)$ - нор-мальный вектор прямой

Прямая параллельна оси Oy и проходит через точку (a; 0)

$$x = a$$

Прямая параллельна оси Ox и проходит через точку (0; b)

$$y = b$$

Рассмотрим прямые l_1 и l_2 , которые заданы уравнениями:

$$l_1: A_1 x + B_1 y + C_1 = 0$$

$$l_2: A_2x + B_2y + C_2 = 0,$$

или
$$l_1: y = k_1 x + b_1$$
,

$$l_2: y = k_2 x + b_2$$
.

Взаимное расположение прямых l_1 и l_2 на плоскости

Расположение	Условия
Прямые l_1 и l_2 совпадают	$\begin{cases} k_1 = k_2, \\ b_1 = b_2 \end{cases}$ или $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$
Прямые параллельны: $l_1 \parallel l_2$	$k_1 = k_2$ или $\frac{A_1}{A_2} = \frac{B_1}{B_2}$

Прямые l_1 и l_2 перпендикулярны: $l_1 \perp l_2$	$A_1A_2+B_1B_2=0$ или $k_1=-rac{1}{k_2}$
Прямые l_1 и l_2 пересека-	$\int A_1 x_0 + B_1 y_0 + C_1 = 0,$
ются в точке $M_0(x_0; y_0)$	$\begin{cases} A_1 x_0 + B_1 y_0 + C_1 = 0, \\ A_2 x_0 + B_2 y_0 + C_2 = 0, \end{cases}$
под углом φ , $0 < \varphi < \frac{\pi}{2}$	$\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$, $tg\phi = \left \frac{k_2 - k_1}{1 + k_1 k_2} \right $
Расстояние $d = d(M_0, l)$ от точки $M_0(x_0; y_0)$ до прямой $l: Ax + By + C = 0$	$d = d(M_0, l) = \frac{ Ax_0 + By_0 + C }{\sqrt{A^2 + B^2}}$

2. Кривые второго порядка

Пусть на плоскости задана декартова прямоугольная система координат Oxy. Линии на плоскости, определяемые алгебраическими уравнениями второго порядка относительно переменных x и y, т. е. уравнениями вида

$$Ax^{2} + By^{2} + Cxy + Dx + Ey + F = 0$$
, $(A^{2} + B^{2} \neq 0)$,

называются линиями (кривыми) второго порядка.

Линиями второго порядка являются окружность, эллипс, гипербола, парабола. В настоящем параграфе рассматриваются уравнения этих линий в наиболее простом (каноническом) виде, который достигается определенным выбором системы координат.

Окружностью называется множество всех точек плоскости, удаленных от заданной точки $N\left(a;b\right)$ (центра) на одно и тоже расстояние R (радиус).

Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек F_1 и F_2 , называемых **фокусами**, есть величина постоянная (большая, чем расстояние между фокусами).

Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек F_1 и F_2 , называемых **фокусами**, есть величина постоянная (меньшая, чем расстояние между фокусами).

Параболой называется множество всех точек плоскости, каждая

из которых равноудалена от данной точки, называемой ϕ окусом F, и данной прямой, называемой ϕ окусом ϕ 0.

Канонический вид уравнения эллипса, гиперболы и параболы принимают в канонической системе координат, которая строится следующим образом:

- а) для эллипса и гиперболы: ось абсцисс Ox проводится через фокусы с направлением от одного фокуса F_1 к другому, ось ординат Oy через середину отрезка F_1F_2 с направлением вверх (если F_1 слева, а F_2 справа);
- б) для параболы: ось Ox через фокус F перпендикулярно директрисе с направлением от директрисы к фокусу, ось Oy через середину перпендикуляра, опущенного из фокуса на директрису перпендикулярно Ox с направлением вверх (если директриса слева, а фокус справа от оси Oy).

Кривые второго порядка

	кривые второго порядка			
	Назва-	Вид кривой	Аналитическое представ-	
1.	Окруж ность	$y \land N \qquad y \land R \qquad 0 \qquad x \qquad 0 \qquad x$	ление $(x-a)^2 + (y-b)^2 = R^2$ $N(a;b) - \text{центр}, R - \text{ради-}$ yc $x^2 + y^2 = R^2$ $O(0;0) - \text{центр}, R - \text{ради-}$ yc	
2.	Эллипс	$ \begin{array}{c c} & y \\ \hline & B \\ \hline & C \\ \hline & A \\ \hline & D \\ & D $	Каноническое уравнение: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > 0, b > 0$ $a - \mathbf{большая}, b - \mathbf{малая}$ полуоси эллипса; $(a,0),(-a,0),(0,b),(0,-b)$ — вершины эллипса $c^2 = a^2 - b^2$. $\varepsilon = \frac{c}{a} \ (\varepsilon < 1) - \mathbf{эксцентри-cutet}$ эллипса	
		0 x_0 x		

			$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1 -$ уравнение эллипса с осями, параллельными координатным, и центром симметрии $O_1(x_0; y_0)$
3.	Ги-пер-бола	F_1 F_2 F_3 F_4 F_4 F_5 F_6 F_6 F_7 F_8	Каноническое уравнение: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$ $a - $ действительная, $b - $ мнимая полуоси; $(a,0),(-a,0)$ — вершины гиперболы; $c^2 = a^2 + b^2, \ \epsilon = \frac{c}{a} \ (\epsilon > 1)$ $\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$ уравнение гиперболы с осями, параллельными координатным осям

3. Прямая и плоскость в пространстве

Если в пространстве задана прямоугольная декартова система координат, то всякое уравнение первой степени относительно x, y, z

$$Ax + By + Cz + D = 0, (A^2 + B^2 + C^2 \neq 0)$$

определяет плоскость в пространстве и называется *общим уравнением плоскости*. Вектор $\vec{n} = \{A; B; C\}$ будет перпендикулярен этой плоскости. Он называется *вектором нормали (нормалью)* к плоскости.

Расположение плоскости в зависимости от значений коэффициентов A, B, C, D.

Расположение плоскости	Ее уравнение
Плоскость проходит через	D=0:
начало координат (0;0;0)	Ax + By + Cz = 0
Плоскость параллельна Ох	A=0:
$\vec{n} \perp Ox \Rightarrow A = 0$	By + Cz + D = 0
Плоскость проходит через Ох	A = 0, D = 0:
-	By + Cz = 0

Плоскость параллельна осям Ох и Оу	A = 0, B = 0: Cz + D = 0
Координатная плоскость Оху	A = 0, B = 0, D = 0: z = 0
Координатная плоскость Оуг	x = 0
Координатная плоскость Охг	y = 0

Кроме общего уравнения, плоскость может быть задана и другими уравнениями. Они приведены ниже.

Уравнения плоскости в пространстве

Данные, определяющие плоскость	Уравнение плоскости
Три точки $M_1(x_1;y_1;z_1)\in Q,$ $M_2(x_2;y_2;z_2)\in Q,$ $M_3(x_3;y_3;z_3)\in Q$	$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$
$ \operatorname{Top} \vec{n} = \{A; B; C\} \perp Q $	$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$
Плоскость Q отсекает отрезки a , b , c на осях Ox , Oy и Oz соответственно	$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

Взаимное расположение плоскостей \mathcal{Q}_1 и \mathcal{Q}_2 в пространстве

Пусть две плоскости Q_1 и Q_2 заданы общими уравнениями:

$$A_1 x + B_1 y + C_1 z + D_1 = 0,$$

$$A_2x + B_2y + C_2z + D_2 = 0,$$

$$A_{1}x + B_{1}y + C_{1}z + D_{1} = 0, A_{2}x + B_{2}y + C_{2}z + D_{2} = 0,$$

$$Q_{1}: Q_{1} \perp \vec{n}_{1} = \{A_{1}; B_{1}; C_{1}\} Q_{2}: Q_{2} \perp \vec{n}_{2} = \{A_{2}; B_{2}; C_{2}\}$$

$$Q_2$$
: $Q_2 \perp n_2 = \{A_2; B_2; C_2\}$

Рассмотрим их взаимное расположение.

Расположение	Условия
--------------	---------

Плоскости Q_1 и Q_2 парал-	
лельны	A_2 B_2 C_2
$Q_1 \parallel Q_2 \Leftrightarrow \overrightarrow{n_1} \parallel \overrightarrow{n_2}$	
Плоскости Q_1 и Q_2	$A_1 = B_1 = C_1 = D_1$
совпадают	$ \frac{1}{A_2} - \frac{1}{B_2} - \frac{1}{C_2} - \frac{1}{D_2} $
Плоскости Q_1 и Q_2	$A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$
перпендикулярны	
$Q_1 \perp Q_2 \Leftrightarrow \overrightarrow{n_1} \perp \overrightarrow{n_2}$	
Плоскости Q_1 и Q_2	$\vec{n}_1 \cdot \vec{n}_2$
пересекаются под углом ф	$\cos \varphi = \frac{n_1 \cdot n_2}{\left \vec{n}_1 \right \cdot \left \vec{n}_2 \right }$
Расстояние <i>d</i> от точки	$ Ax_0 + By_0 + Cz + D $
$M_0(x_0; y_0; z_0)$ до плоскости	$d = d(M_0, Q) = \frac{ Ax_0 + By_0 + Cz + D }{\sqrt{A^2 + B^2 + C^2}}$
Q: Ax + By + Cz + D = 0	$\sqrt{A^2 + B^2 + C^2}$

Прямая в пространстве

Ниже приведены различные виды уравнения прямой l в пространстве в зависимости от данных, однозначно определяющих эту прямую.

Виды уравнений прямой l в пространстве

Duggi ypublicana apawon i b apoet punctibe		
Данные, определяющие прямую	Уравнения прямой $\it l$	
Две пересекающиеся плоскости	$l: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0, \end{cases}$ прямая как пересечение двух плоскостей	
Точка $M_1(x_1; y_1; z_1) \in l$ и вектор $\vec{s} = \{m; n; p\} \parallel l$ — направляющий вектор прямой	$l: \frac{x-x_1}{m} = \frac{y-y_1}{n} = \frac{z-z_1}{p}$ — каноническое уравнение прямой	

Точка $M_1(x_1; y_1; z_1) \in l$ и направляющий вектор прямой $\vec{s} = \{m; n; p\} \parallel l$	$l: \begin{cases} x = x_1 + mt, \\ y = y_1 + nt, - \text{параметрическое} \\ z = z_1 + pt, \end{cases}$ уравнение прямой, $t \in R$
Две точки $M_1(x_1; y_1; z_1) \in l$, $M_2(x_2; y_2; z_2) \in l$	$l: \frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$ уравнение прямой по двум заданным точкам

Взаимное расположение прямых l_1 и l_2 в пространстве

Пусть заданы две прямые l_1 и l_2 каноническими уравнениями:

$$\frac{x - x_1}{m_1} = \frac{y - y_1}{n_1} = \frac{z - z_1}{p_1}, \qquad \frac{x - x_2}{m_2} = \frac{y - y_2}{n_2} = \frac{z - z_2}{p_2}$$

$$l_1: \quad l_1 \parallel \vec{s}_1 = \{m_1; n_1; p_1\} \qquad l_2: \quad l_2 \parallel \vec{s}_2 = \{m_2; n_2; p_2\}$$

Расположение	Условия
Прямые параллельны (или совпадают):	$l_1 \parallel l_2 \Leftrightarrow \overrightarrow{s_1} \parallel \overrightarrow{s_2} \Leftrightarrow \frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2}$
Прямые перпендикулярны	$ \begin{array}{c} l_1 \perp l_2 \Leftrightarrow \overrightarrow{s_1} \perp \overrightarrow{s_2} \Leftrightarrow \\ m_1 m_2 + n_1 n_2 + p_1 p_2 = 0 \end{array} $
Расположены под углом φ $\left(0 < \varphi < \frac{\pi}{2}\right), \ \varphi = \overrightarrow{s_1} \cdot \overrightarrow{s_2}.$	$\cos \varphi = \frac{\left \vec{s}_1 \cdot \vec{s}_2 \right }{\left \vec{s}_1 \right \cdot \left \vec{s}_2 \right }$

Отметим, что в последних двух случаях часто дополнительно требуется, чтобы прямые l_1 и l_2 лежали в одной плоскости.

Пусть заданы плоскость Q общим уравнением и прямая l каноническим уравнением:

Q:
$$Ax + By + Cz + D = 0$$
 $l: \frac{x - x_1}{m} = \frac{y - y_1}{n} = \frac{z - z_1}{p}$

$$\vec{n} = \{A; B; C\} \perp Q$$

$$\vec{s} = \{m; n; p\} \parallel l$$

Взаимное расположение прямой l и плоскости Q

Расположение	Условия
l параллельна плоскости Q (лежит в плоскости)	$l \parallel Q \Leftrightarrow \vec{s} \perp \vec{n} \Leftrightarrow Am + Bn + Cp = 0$
Прямая l перпендикулярна плоскости Q	$l \perp Q \Leftrightarrow \vec{s} \parallel \vec{n} \Leftrightarrow \frac{A}{m} = \frac{B}{n} = \frac{C}{p}$
Прямая l образует с плоскостью Q угол ϕ	$\sin \varphi = \cos(\vec{s} \cdot \vec{n}) = \frac{ \vec{s} \cdot \vec{n} }{ \vec{s} \cdot \vec{n} }$

4. Поверхности второго порядка

1. Поверхности эллиптического типа

Эллипсоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

2. Поверхности гиперболического типа

Однополостный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

Двуполостный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1.$$

Коническая поверхность

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

3. Поверхности параболического типа

Эллиптический параболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z.$$

Гиперболический параболоид

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -z.$$

4. Цилиндрические поверхности 2-го порядка (с образующими, параллельными оси Oz)

Эллиптический цилиндр

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Гиперболический цилиндр $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Параболический цилиндр $y^2 = 2px$

$$y^2 = 2 px$$

