Data extraction & analysis example

To demonstrate the usage of the Data extraction & Data analysis tools, we performed an example analysis of 3 aspirin structures included in the CSD:

- ACSALA02 (aspirin I),
- ACSALA13 (aspirin II),
- ACSALA24 (asprin IV).

Directory structure

To start with, we create the necessary directories within the main working directory (e.g. Documents): Crystal_Math

```
CSD_DB_Analysis

DB_Data
Plots
Source_Code

input_files
input_data_extraction.txt
input_data_analysis.txt
Source_Data
fragment_list.json
```

All the code files *.py provided should be placed in the Source_Code directory. The input files input_data_extraction.txt, input_data_analysis.txt are placed in the input_files directory and the user generated fragment_list.json is placed in the Source_Data directory.

Fragments preparation

The first step is to run the <code>crystal_math_reference_fragments.py</code> that will convert the user generated fragment list into the standardized fragments format that will be written in the file <code>reference_fragment_list.json</code> within the <code>Source_Data</code> directory. The user generated <code>fragment_list.json</code> must contain all the fragments of interest. For aspirin, the fragments of interest are: <code>acetic_acid</code>, <code>benzene</code> and <code>methyl_acetate_L</code>.

The data extraction input file

Once the reference_fragment_list.txt is generated we can create the input_data_extraction.txt file to extract data from the CSD. In this example the input file is as follows:

Below is the explanation of the entries in the input file.

- save_directory: The directory in which the extracted data will be saved.
- structure_data_file: The file to write structure data.
- contacts_data_file: The file to write contacts data.
- h-bonds_data_file: The file to write H-bonds data.
- plane_intersection_data_file: The file to write the data for the intersection of the fragment principal planes to the edges of the unit cell.
- fragments_geometry_data_file: The file to write the fragments geometry data.
- structures_list: The first entry is set to CSD since we read structures from the CSD database, while the second entry is a list of the structures that will be examined.
- target_species: The allowed atomic species. In case a structure has an atom not included in the list, the structure will not be examined.
- target_space_groups: The allowed space groups. In case a crystal is in a space group not included in the list, the structure will not be examined.
- target_z_prime_values: The allowed Z' values. In case a structure has a Z' value not included in the list, the structure will not be examined.
- molecule_weight_limit: The maximum allowed molecular weight.
- add_full_component: Set to True if we need to get the properties of the complete molecule as a single fragment.
- center_molecule: Set to True if we want the reference molecule to be translated within the reference unit cell.
- fragments_to_check_alignment: A list of the specific fragments we need to analyze. If set to [], the algorithm will search for all the fragments in the fragment_list.json file,
- alignment_tolerance: The maximum allowed RMSD value to align fragments when estimating the principal axes of inertia.

- visualize_eigenvectors: Set to True if we need to visualize the principal axes/planes of inertia.
- proposed_vectors_n_max: The maximum value of n for the equivalent vectors set \mathbf{n}_c .

Extract data

The next step is to extract the data for the target structures by running crystal_math_csd_data_extraction.py. Once the extraction is completed, it will generate 5 files in the save_directory.

Data extraction output files

Each entry in the structure_data_file has 16 columns:

- 1. Structure name.
- 2. Space group.
- 3. Z value.
- 4. Z' value.
- 5. Composition (atomic species only not formula).
- 6. Scaled a value (always 1.0).
- 7. Scaled b value.
- 8. Scaled c value.
- 9. Actual cell a value (Å).
- 10. Actual cell b value (Å).
- 11. Actual cell c value (Å).
- 12. Cell α value.
- 13. Cell β value.
- 14. Cell γ value.
- 15. Unit cell volume ($Å^3$).
- 16. vdW free volume (%).
- 17. Solvent accessible surface (%).

Each entry in the contacts_data_file has 9 columns:

- 1. Structure name.
- 2. Atom 1 label.

- 3. Atom 2 label.
- 4. Atom 1 species.
- 5. Atom 2 species.
- 6. Contact type.
- 7. Is in line of site.
- 8. Contact length.
- 9. Contract strength.

Each entry in the h-bonds_data_file has 12 columns:

- 1. Structure name.
- 2. Atom 1 label (Donor).
- 3. Atom 2 label (H atom).
- 4. Atom 3 label (Acceptor).
- 5. Atom 1 species.
- 6. Atom 2 species.
- 7. Atom 3 species.
- 8. Contact type.
- 9. Is in line of site.
- 10. Contact length.
- 11. Donor-acceptor distance.
- 12. Bond angle.

Each entry in the plane_intersection_data_file has $39N_f+2$ columns (in our case 119 columns), where N_f the number of fragments:

- 1. Structure name.
- 2. Fragment name.
- 3-5. Fragment 1 principal plane 1 normal vector.
- 6-41. Fragment 1 principal plane 1 intersections.
- 42-44. Fragment 2 principal plane 2 normal vector.
- 45-80. Fragment 2 principal plane 2 intersections.

- 81-83. Fragment 3 principal plane 3 normal vector.
- 84-119. Fragment 3 principal plane 3 intersections.

Each entry in the fragments_geometry_data_file has $51 + 3N_a$ columns, where N_a is the number of atoms in the fragment:

- 1. Structure name.
- 2-4 Scaled cell vectors.
- 5-7. Cell angles.
 - 8. Fragment name.
 - 9. N_a .
- 10-12. Components of the first inertia tensor eigenvector \hat{e}_1 (physical coordinates).
- 13-15. Components of the second inertia tensor eigenvector \hat{e}_2 (physical coordinates).
- 16-18. Components of the third inertia tensor eigenvector \hat{e}_3 (physical coordinates).
- 19-21. Components of the first inertia tensor eigenvector \hat{w}_1 (fractional coordinates).
- 22-24. Components of the second inertia tensor eigenvector \hat{w}_2 (fractional coordinates).
- 25-27. Components of the third inertia tensor eigenvector \hat{w}_3 (fractional coordinates).
- 28-30. Components of the nearest eigenvector in the set \mathbf{n}_c to \hat{e}_1 .
 - 31. Respective angle.
- 32-34. Components of the nearest eigenvector in the set \mathbf{n}_c to \hat{e}_2 .
 - 35. Respective angle.
- 36-38. Components of the nearest eigenvector in the set \mathbf{n}_c to \hat{e}_3 .
 - 39. Respective angle.
- 40-42. Components of the nearest eigenvector in the set \mathbf{n}_c to \hat{w}_1 .
 - 43. Respective angle.
- 44-46. Components of the nearest eigenvector in the set \mathbf{n}_c to \hat{w}_2 .
 - 47. Respective angle.
- 48-50. Components of the nearest eigenvector in the set \mathbf{n}_c to \hat{w}_3 .
 - 51. Respective angle.
 - 52-. Coordinates of the atoms in the fragment $(x_1, y_1, z_1), (x_2, y_2, z_2), \ldots$