

#### Star Trek

La Federazione dei Pianeti Uniti è un'alleanza di N pianeti, indicizzati da 1 a N. Alcuni pianeti sono connessi da tunnel spaziali. In un tunnel spaziale, un'astronave può viaggiare molto velocemente in entrambe le direzioni. Ci sono esattamente N-1 tunnel spaziali e si può viaggiare fra ogni coppia di pianeti nella Federazione usando questi tunnel.

È risaputo che ci sono D universi paralleli aggiuntivi. Questi sono copie esatte del nostro universo, hanno gli stessi pianeti e gli stessi tunnel spaziali. Sono indicizzati da 1 a D (il nostro universo ha indice 0). Indichiamo con  $P_x^i$  il pianeta x nell'universo i. Si può viaggiare da un universo ad un altro usando portali dimensionali. Per ogni i ( $0 \le i \le D - 1$ ), verrà posizionato un portale che permette di volare da  $P_{A_i}^i$  a  $P_{B_i}^{i+1}$ , dove  $A_i$  e  $B_i$  sono indici planetari (ovvero  $1 \le A_i, B_i \le N$ ).

Quando tutti i portali sono stati posizionati, l'astronave Batthyány inizierà il suo viaggio inaugurale. Al momento sta volando in orbita attorno a  $P_1^0$ . La Capitano Ágnes e il Luogotenente Gábor hanno deciso di fare il seguente gioco: scelgono, alternandosi, una destinazione (un pianeta) verso cui dirigersi. Il pianeta può essere nello stesso universo, se uno dei tunnel spaziali porta lì, o in un altro universo, se è collegato da un portale. Il loro obiettivo è quello di visitare luoghi dove nessuno è mai giunto prima. Per questo motivo, dopo aver visitato un pianeta  $P_x^i$ , loro non ci ritornano mai più (ma possono visitare il pianeta x in un altro universo). La Capitano Ágnes sceglie la prima destinazione (poi Gábor, successivamente Ágnes e così via). Uno di loro perde se, durante il proprio turno, non può scegliere un pianeta dove non sono ancora stati in precedenza.

La Capitano Ágnes e il Luogotenente Gàbor sono entrambi molto intelligenti: conoscono tutte le posizioni di tutti i tunnel e di tutti i portali ed entrambi giocano in modo ottimale. In quanti modi possono essere posizionati i portali dimensionali in modo che la Capitano Ágnes vinca il gioco? Due posizionamenti sono diversi se esiste almeno un indice i ( $0 \le i \le D-1$ ) tale che l'i-esimo portale collega coppie diverse di pianeti nei due posizionamenti (ovvero  $A_i$  o  $B_i$  sono differenti).

Questo numero può essere molto grande, quindi siamo interessati a tale numero modulo  $10^9+7$ .

## Input

La prima riga contiene due interi separati da spazio, N e D.

Ciascuna delle seguenti N-1 righe contiene due interi u e v, separati da spazio; essi indicano che  $P_u^i$  e  $P_v^i$  sono connessi da un tunnel spaziale per ogni i ( $0 \le i \le D$ ).

## Output

Devi stampare un solo numero intero, il numero di possibili posizionamenti dei portali tali per cui la capitano Ágnes vince il gioco, modulo  $10^9 + 7$ . Il risultato è quindi uno fra  $0, 1, 2, \ldots, 10^9 + 6$ .

1

v4



## Esempi

Input Output

3 1 4
1 2
2 3

## Spiegazione

C'è un solo portale e  $3 \cdot 3 = 9$  posizionamenti differenti.

I quattro posizionamenti che seguono sono quelli in cui la Capitano vince.



2

#### Assunzioni

 $\begin{aligned} 2 &\leq N \leq 10^5 \\ 1 &\leq D \leq 10^{18} \\ 1 &\leq u,v \leq N \end{aligned}$ 

Limite di tempo:  $0.2 \mathrm{\ s}$ 

Limite di memoria: 32 MiB

v4



# Punteggi

| Subtask | Punti | Assunzioni                         |
|---------|-------|------------------------------------|
| 1       | 0     | Casi d'esempio                     |
| 2       | 7     | N=2                                |
| 3       | 8     | $N \le 100 \text{ e } D = 1$       |
| 4       | 15    | $N \le 1000 \text{ e } D = 1$      |
| 5       | 15    | D=1                                |
| 6       | 20    | $N \le 1000 \text{ e } D \le 10^5$ |
| 7       | 20    | $D \le 10^5$                       |
| 8       | 15    | Nessuna limitazione aggiuntiva     |

3