# Esercizio nº 1 - Dato il circuito in figura determinare:



|                                                                |        | 24  |
|----------------------------------------------------------------|--------|-----|
| Z1=                                                            | 3,5+3i | ohm |
| Z2=                                                            | 14+12i | ohm |
| G1=                                                            | 60,000 | V   |
| Fase G1 =                                                      | 0,000  | rad |
| Generatore trifase (G1, G2, G3) simmetrico di sequenza inversa |        |     |
| T=                                                             | 9,000  | h   |

- 1. Modulo del fasore IA (S1 chiuso)
- 2. Potenza attiva erogata dal generatore trifase (S1 chiuso)
- 3. Modulo del fasore IG1 (S1 chiuso)
- 4. Eneregia reattiva stella Z2 più a destra al tempo T (S1 aperto)
- 5. Modulo del fasore V2 (S1 aperto)



# Esercizio nº 1 - Dato il circuito in figura determinare:



|                                                                |        | 24  |
|----------------------------------------------------------------|--------|-----|
| Z1=                                                            | 3+2,5i | ohm |
| Z2=                                                            | 12+10i | ohm |
| G1=                                                            | 50,000 | V   |
| Fase G1 =                                                      | 0,000  | rad |
| Generatore trifase (G1, G2, G3) simmetrico di sequenza inversa |        |     |
| T=                                                             | 8,000  | h   |

- 1. Modulo del fasore IA (S1 chiuso)
- 2. Potenza attiva erogata dal generatore trifase (S1 chiuso)
- 3. Modulo del fasore IG1 (S1 chiuso)
- 4. Eneregia reattiva stella Z2 più a destra al tempo T (S1 aperto)
- 5. Modulo del fasore V2 (S1 aperto)

| Punti | _    |
|-------|------|
| 5     | Α    |
| 5     | W    |
| 4     | Α    |
| 5     | varh |
| 5     | V    |
|       | •    |

## Esercizio nº 1 - Dato il circuito in figura determinare:



2,5+2i ohm Z1= Z2= 10+8i ohm G1= 40,000 V Fase G1 = 0,000 rad Generatore trifase (G1, G2, G3) simmetrico di sequenza inversa 7,000 h

- 1. Modulo del fasore IA (S1 chiuso)
- 2. Potenza attiva erogata dal generatore trifase (S1 chiuso)
- 3. Modulo del fasore IG1 (S1 chiuso)
- 4. Eneregia reattiva stella Z2 più a destra al tempo T (S1 aperto)
- 5. Modulo del fasore V2 (S1 aperto)

| Punti |      |
|-------|------|
| 5     | Α    |
| 5     | W    |
| 4     | Α    |
| 5     | varh |
| 5     | V    |
|       |      |

# Esercizio nº 1 - Dato il circuito in figura determinare:



|                                                                |        | 4   |
|----------------------------------------------------------------|--------|-----|
| Z1=                                                            | 2+1,5i | ohm |
| Z2=                                                            | 8+6i   | ohm |
| G1=                                                            | 30,000 | V   |
| Fase G1 =                                                      | 0,000  | rad |
| Generatore trifase (G1, G2, G3) simmetrico di sequenza inversa |        |     |
| T=                                                             | 6,000  | h   |

- 1. Modulo del fasore IA (S1 chiuso)
- 2. Potenza attiva erogata dal generatore trifase (S1 chiuso)
- 3. Modulo del fasore IG1 (S1 chiuso)
- 4. Eneregia reattiva stella Z2 più a destra al tempo T (S1 aperto)
- 5. Modulo del fasore V2 (S1 aperto)

| Punti |      |
|-------|------|
| 5     | Α    |
| 5     | W    |
| 4     | Α    |
| 5     | varh |
| 5     | V    |
|       |      |

# Esercizio nº 1 - Dato il circuito in figura determinare:



|                                                                |        | 24  |
|----------------------------------------------------------------|--------|-----|
| Z1=                                                            | 1,5+i  | ohm |
| Z2=                                                            | 6+4i   | ohm |
| G1=                                                            | 20,000 | V   |
| Fase G1 =                                                      | 0,000  | rad |
| Generatore trifase (G1, G2, G3) simmetrico di sequenza inversa |        |     |
| T=                                                             | 5,000  | h   |

- 1. Modulo del fasore IA (S1 chiuso)
- 2. Potenza attiva erogata dal generatore trifase (S1 chiuso)
- 3. Modulo del fasore IG1 (S1 chiuso)
- 4. Eneregia reattiva stella Z2 più a destra al tempo T (S1 aperto)
- 5. Modulo del fasore V2 (S1 aperto)

| Punti | _    |
|-------|------|
| 5     | Α    |
| 5     | W    |
| 4     | Α    |
| 5     | varh |
| 5     | V    |
|       |      |

# Esercizio nº 1 - Dato il circuito in figura determinare:



|                                                                |        | 24  |
|----------------------------------------------------------------|--------|-----|
| Z1=                                                            | 1+0,5i | ohm |
| Z2=                                                            | 4+2i   | ohm |
| G1=                                                            | 10,000 | V   |
| Fase G1 =                                                      | 0,000  | rad |
| Generatore trifase (G1, G2, G3) simmetrico di sequenza inversa |        |     |
| T=                                                             | 4,000  | h   |

- 1. Modulo del fasore IA (S1 chiuso)
- 2. Potenza attiva erogata dal generatore trifase (S1 chiuso)
- 3. Modulo del fasore IG1 (S1 chiuso)
- 4. Eneregia reattiva stella Z2 più a destra al tempo T (S1 aperto)
- 5. Modulo del fasore V2 (S1 aperto)

| Punti |      |
|-------|------|
| 5     | Α    |
| 5     | W    |
| 4     | Α    |
| 5     | varh |
| 5     | V    |
|       |      |