econotest7

December 1, 2020

1 Econometrics Final Case Project

Jacci Ferrantino

```
In [1]: import statsmodels.api as sm
    import statsmodels.stats as sms
    from statsmodels.stats import outliers_influence as oi
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
```

2 Background

This project is of an applied nature and uses data that are available in the data file Capstone-HousePrices. The source of these data is Anglin and Gencay, "Semiparametric Estimation of a Hedonic Price Function" (Journal of Applied Econometrics 11, 1996, pages 633-648). We consider the modeling and prediction of house prices. Data are available for 546 observations of the following variables:

- 1. sell: Sale price of the house
- 2. lot: Lot size of the property in square feet
- 3. bdms: Number of bedrooms
- 4. fb: Number of full bathrooms
- 5. sty: Number of stories excluding basement
- 6. drv: Dummy that is 1 if the house has a driveway and 0 otherwise
- 7. rec: Dummy that is 1 if the house has a recreational room and 0 otherwise
- 8. ffin: Dummy that is 1 if the house has a full finished basement and 0 otherwise
- 9. ghw: Dummy that is 1 if the house uses gas for hot water heating and 0 otherwise
- 10. ca: Dummy that is 1 if there is central air conditioning and 0 otherwise
- 11. gar: Number of covered garage places
- 12. reg: Dummy that is 1 if the house is located in a preferred neighborhood of the city and 0 otherwise
- 13. obs: Observation number, needed in part (h)

```
obs
         sell
               lot bdms
                          fb sty
                                   drv rec ffin ghw
                                                         ca
                                                            gar reg
0
    1 42000 5850
                        3
                            1
                                 2
                                           0
                                                      0
                                                          0
                                                                    0
                                      1
                                                 1
                                                               1
       38500
              4000
                        2
                            1
                                 1
                                      1
                                           0
                                                 0
                                                                    0
```

3 Questions

4 (a)

Consider a linear model where the sale price of a house is the dependent variable and the explanatory variables are the other variables given above. Perform a test for linearity. What do you conclude based on the test result?

```
In [4]: df.dropna()
    model = sm.OLS.from_formula("sell ~ lot+bdms+fb+sty+drv+rec+ffin+ghw+ca+gar+reg", data
    res = model.fit()
    print(res.summary())
```

Dep. Varia	ble:		ell R-squa	 red:		0.673
Model:			1	R-squared:		0.666
Method:		Least Squa	_	tistic:		99.97
Date:	T	ue, 01 Dec 2		(F-statisti	lc):	6.18e-122
Time:		00:58	:52 Log-Li	kelihood:		-6034.1
No. Observ	ations:		546 AIC:			1.209e+04
Df Residua	ls:		534 BIC:			1.214e+04
Df Model:			11			
Covariance	Type:	nonrob	ust			
=======	coef	std err	t	P> t	[0.025	0.975]
Intercept	-4038.3504	3409.471	-1.184	0.237	-1.07e+04	2659.271
lot	3.5463	0.350	10.124	0.000	2.858	4.234
bdms	1832.0035	1047.000	1.750	0.081	-224.741	3888.748
fb	1.434e+04	1489.921	9.622	0.000	1.14e+04	1.73e+04
sty	6556.9457	925.290	7.086	0.000	4739.291	8374.600
drv	6687.7789	2045.246	3.270	0.001	2670.065	1.07e+04
rec	4511.2838	1899.958	2.374	0.018	778.976	8243.592
ffin	5452.3855	1588.024	3.433	0.001	2332.845	8571.926
ghw	1.283e+04	3217.597	3.988	0.000	6510.706	1.92e+04
ca	1.263e+04	1555.021	8.124	0.000	9578.182	1.57e+04
gar	4244.8290	840.544	5.050	0.000	2593.650	5896.008
reg	9369.5132	1669.091 	5.614	0.000	6090.724	1.26e+04
Omnibus:		93.	454 Durbir	n-Watson:		1.604
Prob(Omnib	us):	0.	000 Jarque	e-Bera (JB)):	247.620

Kurtosis:	5.824	Cond. No.	3.07e+04
Skew:	0.853	Prob(JB):	1.70e-54

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.07e+04. This might indicate that there are strong multicollinearity or other numerical problems.

4.0.1 Conclusion:

The Durbin-Watson stat is used to test for autocorrelation. It is about 1.497. Usually, if the Durbin-Watson stat is between 1.5 and 2.5, it is a good sign that there is no autocorrelation. The Jarque-Bera test statistic is not significantly different than zero. This may indicate that our data does not have a normal distribution. The RESET test has an F-Test of approx 27 and a p-value of approx 0, indicating that the model may be misspecified. The R2 (percentage explained) of the model is about 67.3%.

5 (b)

Now consider a linear model where the log of the sale price of the house is the dependent variable and the explanatory variables are as before. Perform again the test for linearity. What do you conclude now?

```
In [6]: df["log_sell"]=np.log(df["sell"])
    model2 = sm.OLS.from_formula("log_sell ~ lot+bdms+fb+sty+drv+rec+ffin+ghw+ca+gar+reg",
    res2 = model2.fit()
    print(res2.summary())
```

OLS Regression Results

			=======================================
Dep. Variable:	log_sell	R-squared:	0.677
Model:	OLS	Adj. R-squared:	0.670
Method:	Least Squares	F-statistic:	101.6
Date:	Tue, 01 Dec 2020	Prob (F-statistic):	3.67e-123
Time:	00:58:55	Log-Likelihood:	73.873
No. Observations:	546	AIC:	-123.7
Df Residuals:	534	BIC:	-72.11
Df Model:	11		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	10.0256	0.047	212.210	0.000	9.933	10.118
lot	5.057e-05	4.85e-06	10.418	0.000	4.1e-05	6.01e-05
bdms	0.0340	0.015	2.345	0.019	0.006	0.063
fb	0.1678	0.021	8.126	0.000	0.127	0.208
sty	0.0923	0.013	7.197	0.000	0.067	0.117
drv	0.1307	0.028	4.610	0.000	0.075	0.186
rec	0.0735	0.026	2.792	0.005	0.022	0.125
ffin	0.0994	0.022	4.517	0.000	0.056	0.143
ghw	0.1784	0.045	4.000	0.000	0.091	0.266
ca	0.1780	0.022	8.262	0.000	0.136	0.220
gar	0.0508	0.012	4.358	0.000	0.028	0.074
reg	0.1271	0.023	5.496	0.000	0.082	0.173
Omnibus:	=======	 7	.621 Durb	======= in-Watson:		1.510
Prob(Omnibu	us):	0	.022 Jarqı	ue-Bera (JB)):	8.443
Skew:		-0	_	(JB):		0.0147
Kurtosis:		3	.461 Cond	. No.		3.07e+04
=========		========				========

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.07e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [7]: reset2=oi.reset_ramsey(res2, degree=2)
    print(reset2)
```

<F test: F=array([[0.27031433]]), p=0.6033368567016177, df_denom=533, df_num=1>

5.0.1 Conclusion:

Durbin-Watson stat is between 1.5 and 2.5, it is a good sign that there is no autocorrelation. The Jarque-Bera test statistic is not significantly different than zero. This may indicate that our data does not have a normal distribution. The RESET test has an F-Test of approx .27 and a p-value of approx 0.6033, indicating that the model may be correctly specified. The R2 (percentage explained) of the model is about 67.7%.

6 (c)

Continue with the linear model from question (b). Estimate a model that includes both the lot size variable and its logarithm, as well as all other explanatory variables without transformation. What is your conclusion, should we include lot size itself or its logarithm?

res3 = model3.fit()
print(res3.summary())

OLS Regression Results

=======================================			
Dep. Variable:	log_sell	R-squared:	0.687
Model:	OLS	Adj. R-squared:	0.680
Method:	Least Squares	F-statistic:	97.51
Date:	Tue, 01 Dec 2020	Prob (F-statistic):	6.43e-126
Time:	00:58:56	Log-Likelihood:	82.843
No. Observations:	546	AIC:	-139.7
Df Residuals:	533	BIC:	-83.75
Df Model:	12		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	7.1505	0.683	10.469	0.000	5.809	8.492
log_lot	0.3827	0.091	4.219	0.000	0.205	0.561
lot	-1.49e-05	1.62e-05	-0.918	0.359	-4.68e-05	1.7e-05
bdms	0.0349	0.014	2.442	0.015	0.007	0.063
fb	0.1659	0.020	8.161	0.000	0.126	0.206
sty	0.0912	0.013	7.224	0.000	0.066	0.116
drv	0.1068	0.028	3.752	0.000	0.051	0.163
rec	0.0547	0.026	2.078	0.038	0.003	0.106
ffin	0.1052	0.022	4.848	0.000	0.063	0.148
ghw	0.1791	0.044	4.079	0.000	0.093	0.265
ca	0.1643	0.021	7.657	0.000	0.122	0.206
gar	0.0483	0.011	4.203	0.000	0.026	0.071
reg	0.1344	0.023	5.884	0.000	0.090	0.179
Omnibus:		 7	 .927 Durb	 in-Watson:		1.525
Prob(Omnibu	ıs):	0	.019 Jarq	ue-Bera (JE	3):	9.364
Skew:		-0	.180 Prob	(JB):		0.00926
Kurtosis:		3	.531 Cond	. No.		4.27e+05

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.27e+05. This might indicate that there are strong multicollinearity or other numerical problems.
- In [9]: reset3= oi.reset_ramsey(res3, degree=2)
 print(reset3)

<F test: F=array([[0.06769]]), p=0.7948309729185185, df_denom=532, df_num=1>

6.0.1 Conclusion:

Durbin-Watson stat is between 1.5 and 2.5, it is a good sign that there is no autocorrelation. The Jarque-Bera test statistic is still not significantly different than zero. This may indicate that our data does not have a normal distribution. The RESET test has an F-Test of approx .067 and a p-value of approx 0.79483, indicating that the model may be correctly specified. This is larger than the previous models. The R2 (percentage explained) of the model is about 68.7%, also the highest of the models so far, indicating this model is the most relevant thus far and we should include its logarithm instead of lot itself.

7 (d)

Consider now a model where the log of the sale price of the house is the dependent variable and the explanatory variables are the log transformation of lot size, with all other explanatory variables as before. We now consider interaction effects of the log lot size with the other variables. Construct these interaction variables. How many are individually significant?

OLS Regression Results

Dep. Variable: Model:	-		_	R-squared: Adj. R-squared:		0.695 0.683	
Method:	L	east Squares	•	-		56.89	
Date:		01 Dec 2020			2	.26e-120	
Time:	•	00:58:58	Log-Like			89.971	
No. Observatio	ns:	546	AIC:			-135.9	
Df Residuals:		524	BIC:			-41.28	
Df Model:		21					
Covariance Typ	e:	nonrobust					
========	coef	std err	t	P> t	[0.025	0.975]	
Intercept	8.9665	1.071	8.375	0.000	6.863	11.070	
log_lot	0.1527	0.128	1.190	0.235	-0.099	0.405	
bdms	0.0191	0.327	0.058	0.953	-0.623	0.661	
fb	-0.3682	0.429	-0.858	0.391	-1.211	0.475	
sty	0.4889	0.310	1.579	0.115	-0.120	1.097	
drv	-1.4634	0.717	-2.040	0.042	-2.872	-0.054	
rec	1.6740	0.656	2.552	0.011	0.385	2.963	
ffin	-0.0318	0.446	-0.071	0.943	-0.907	0.843	
ghw	-0.5059	0.903	-0.560	0.575	-2.279	1.268	
ca	-0.3403	0.496	-0.686	0.493	-1.315	0.634	
gar	0.4019	0.259	1.554	0.121	-0.106	0.910	
reg	0.1185	0.480	0.247	0.805	-0.824	1.061	
log_lot:bdms	0.0021	0.039	0.054	0.957	-0.074	0.078	

log_lot:fb	0.0620	0.050	1.237	0.217	-0.036	0.161
log_lot:sty	-0.0464	0.036	-1.290	0.198	-0.117	0.024
log_lot:drv	0.1915	0.087	2.193	0.029	0.020	0.363
log_lot:rec	-0.1885	0.076	-2.468	0.014	-0.338	-0.038
log_lot:ffin	0.0159	0.053	0.301	0.763	-0.088	0.120
log_lot:ghw	0.0811	0.107	0.759	0.448	-0.129	0.291
log_lot:ca	0.0595	0.058	1.026	0.305	-0.054	0.174
log_lot:gar	-0.0414	0.030	-1.372	0.171	-0.101	0.018
log_lot:reg	0.0015	0.056	0.027	0.978	-0.108	0.112
Omnibus:	=======	7.141	 	======================================	=======	1.524
Prob(Omnibus):		0.028	Jarque-	Bera (JB):		8.203
Skew:		-0.173	Prob(JB):		0.0165
Kurtosis:		3.491	Cond. N	ο.		4.77e+03
===========	========		=======	=========	=======	=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.77e+03. This might indicate that there are strong multicollinearity or other numerical problems.

<F test: F=array([[0.01157078]]), p=0.9143799774375326, df_denom=523, df_num=1>

7.0.1 Conclusion:

With the addition of the new interaction terms, the model seems to be performing better with a R2 of 69.5% and a RESET F-Test value of 0.0115. However, when looking at the individual t-stats and corresponding p-values of the coefficients, only the driveway and rec-room dummy variables (drv and rec) and their interaction terms (multiplied by the log of lot size) drv* log_lot and rec* log lot, are statistically significant.

8 (e)

Perform an F-test for the joint significance of the interaction effects from question (d).

OLS Regression Results

Dep. Variable: log_sell R-squared: 0.692

OLD RESTOR RESULTS

Model:		OL	S Adj.	R-squared:		0.684
Method:]	Least Square	s F-sta	tistic:		91.79
Date:	Tue	, 01 Dec 202	0 Prob	(F-statistic):		1.32e-126
Time:		01:11:2	7 Log-L	ikelihood:		86.878
No. Observation	ons:	54	6 AIC:			-145.8
Df Residuals:		53	BIC:			-85.52
Df Model:		1	3			
Covariance Typ	pe:	nonrobus	t			
==========			=======	========		========
	coef	std err	t	P> t	[0.025	0.975]
			42.006		7 507	
1	8.7419	0.629			7.507	
log_lot	0.1791	0.077	2.323		0.028	0.330
bdms	0.0388	0.014	2.714	0.007	0.011	0.067
fb	0.1615	0.020	7.971	0.000	0.122	0.201
sty	0.0908	0.013	7.242	0.000	0.066	0.115
drv	-1.1900	0.665	-1.790	0.074	-2.496	0.116
rec	1.5025	0.626	2.402	0.017	0.274	2.731
ffin	0.1028	0.022	4.763	0.000	0.060	0.145
ghw	0.1845	0.044	4.223	0.000	0.099	0.270
ca	0.1653	0.021	7.792	0.000	0.124	0.207
gar	0.0469	0.011	4.107	0.000	0.024	0.069
reg	0.1326	0.023	5.880	0.000	0.088	0.177
log_lot:drv	0.1594	0.081	1.962	0.050	-0.000	0.319
•						

Omnibus:	7.976	Durbin-Watson:	1.526
Prob(Omnibus):	0.019	Jarque-Bera (JB):	9.237
Skew:	-0.189	Prob(JB):	0.00987
Kurtosis:	3.513	Cond. No.	1.23e+03

-2.314

0.021

-0.311

-0.025

Warnings:

log_lot:rec

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.23e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In []: #sum of squared residuals

-0.1683

```
ssr_unrestricted=res4.ssr
ssr_restricted=res5.ssr
```

```
f_testa=(ssr_restricted - ssr_unrestricted)/10
```

0.073

print("F-Test for Joint Significance:",f_test,'with p>.05 indicates joint significance

f_testb=ssr_unrestricted/524

f_test=f_testa/f_testb

(f)

Now perform model specification on the interaction variables using the general-to-specific approach. (Only eliminate the interaction effects.)

In [13]: ModelA=sm.OLS.from_formula("log_sell ~ log_lot+bdms+fb+sty+drv+rec+ffin+ghw+ca+gar+rej) res4 = model4.fit() print(res4.summary())

		OLS Regres		lts =======		
Model: Method: Least Date: Tue, 01 I Time: (No. Observations: Df Residuals: Df Model:		log_sel1 OLS east Squares 01 Dec 2020 00:59:00 546 524 21 nonrobust	R-squar Adj. R- F-stati Prob (F	ed: squared:		0.695 0.683 56.89 .26e-120 89.971 -135.9 -41.28
	coef	std err	t	P> t	[0.025	0.975]
Intercept log_lot bdms fb sty drv rec ffin ghw ca gar reg log_lot:bdms log_lot:fb log_lot:sty log_lot:rec log_lot:ffin log_lot:ghw	8.9665 0.1527 0.0191 -0.3682 0.4889 -1.4634 1.6740 -0.0318 -0.5059 -0.3403 0.4019 0.1185 0.0021 0.0620 -0.0464 0.1915 -0.1885 0.0159 0.0811	1.071 0.128 0.327 0.429 0.310 0.717 0.656 0.446 0.903 0.496 0.259 0.480 0.039 0.050 0.036 0.087 0.076 0.053	8.375 1.190 0.058 -0.858 1.579 -2.040 2.552 -0.071 -0.560 -0.686 1.554 0.247 0.054 1.237 -1.290 2.193 -2.468 0.301 0.759	0.000 0.235 0.953 0.391 0.115 0.042 0.011 0.943 0.575 0.493 0.121 0.805 0.957 0.217 0.198 0.029 0.014 0.763	6.863 -0.099 -0.623 -1.211 -0.120 -2.872 0.385 -0.907 -2.279 -1.315 -0.106 -0.824 -0.074 -0.036 -0.117 0.020 -0.338 -0.088 -0.129	11.070 0.405 0.661 0.475 1.097 -0.054 2.963 0.843 1.268 0.634 0.910 1.061 0.078 0.161 0.024 0.363 -0.038 0.120 0.291
<pre>log_lot:ca log_lot:gar log_lot:reg ====================================</pre>	0.0595 -0.0414 0.0015	0.107 0.058 0.030 0.056	1.026 -1.372 0.027	0.448 0.305 0.171 0.978	-0.054 -0.101 -0.108	0.174 0.018 0.112
Omnibus: Prob(Omnibus):		7.141 0.028	Durbin- Jarque-	Watson: Bera (JB):		1.524 8.203

Kurtosis:	3.491	Cond. No.	4.77e+03
Skew:	-0.173	Prob(JB):	0.0165

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.77e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [14]: #log_lot*reg eliminated

modelb = sm.OLS.from_formula("log_sell ~ log_lot+bdms+fb+sty+drv+rec+ffin+ghw+ca+gar+stresb = modelb.fit()
print(resb.summary())

OLS Regression Results

=======================================			
Dep. Variable:	log_sell	R-squared:	0.695
Model:	OLS	Adj. R-squared:	0.683
Method:	Least Squares	F-statistic:	59.85
Date:	Tue, 01 Dec 2020	Prob (F-statistic):	2.88e-121
Time:	00:59:02	Log-Likelihood:	89.970
No. Observations:	546	AIC:	-137.9
Df Residuals:	525	BIC:	-47.59
Df Model:	20		

Covariance Type: nonrobust

==========		========	========			=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	8.9679	1.068	8.394	0.000	6.869	11.067
log_lot	0.1525	0.128	1.191	0.234	-0.099	0.404
bdms	0.0195	0.326	0.060	0.952	-0.621	0.660
fb	-0.3677	0.428	-0.859	0.391	-1.209	0.474
sty	0.4872	0.303	1.607	0.109	-0.108	1.083
drv	-1.4679	0.697	-2.106	0.036	-2.837	-0.098
rec	1.6747	0.655	2.558	0.011	0.388	2.961
ffin	-0.0349	0.430	-0.081	0.935	-0.880	0.810
ghw	-0.5043	0.900	-0.560	0.575	-2.272	1.264
ca	-0.3395	0.495	-0.686	0.493	-1.312	0.633
gar	0.4023	0.258	1.560	0.119	-0.104	0.909
reg	0.1315	0.023	5.705	0.000	0.086	0.177
log_lot:bdms	0.0020	0.039	0.052	0.958	-0.074	0.078
log_lot:fb	0.0620	0.050	1.238	0.216	-0.036	0.160
log_lot:sty	-0.0462	0.035	-1.312	0.190	-0.115	0.023
log_lot:drv	0.1921	0.085	2.259	0.024	0.025	0.359
log_lot:rec	-0.1885	0.076	-2.473	0.014	-0.338	-0.039
log_lot:ffin	0.0163	0.051	0.319	0.750	-0.084	0.116
log_lot:ghw	0.0809	0.107	0.759	0.448	-0.128	0.290

log_lot:ca	0.0595	0.058	1.027	0.305	-0.054	0.173
log_lot:gar	-0.0414	0.030	-1.377	0.169	-0.100	0.018
=========	========		======	========	========	
Omnibus:		7.117	Durbin-	Watson:		1.524
<pre>Prob(Omnibus):</pre>		0.028	Jarque-	Bera (JB):		8.170
Skew:		-0.172	Prob(JB):		0.0168
Kurtosis:		3.490	Cond. N	ο.		4.73e+03
=========	========		=======	========	=======	=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.73e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [15]: #log_lot*bdrms removed

modelc = sm.OLS.from_formula("log_sell ~ log_lot+bdms+fb+sty+drv+rec+ffin+ghw+ca+gar+sec = modelc.fit()
print(resc.summary())

OLS Regression Results

			=======================================
Dep. Variable:	log_sell	R-squared:	0.695
Model:	OLS	Adj. R-squared:	0.684
Method:	Least Squares	F-statistic:	63.12
Date:	Tue, 01 Dec 2020	Prob (F-statistic):	3.57e-122
Time:	00:59:02	Log-Likelihood:	89.969
No. Observations:	546	AIC:	-139.9
Df Residuals:	526	BIC:	-53.89
Df Model:	19		

Covariance Type: nonrobust

						=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	8.9349	0.861	10.381	0.000	7.244	10.626
log_lot	0.1565	0.103	1.515	0.130	-0.046	0.359
bdms	0.0366	0.015	2.506	0.013	0.008	0.065
fb	-0.3775	0.386	-0.979	0.328	-1.135	0.380
sty	0.4820	0.286	1.685	0.093	-0.080	1.044
drv	-1.4625	0.689	-2.123	0.034	-2.816	-0.109
rec	1.6759	0.654	2.564	0.011	0.392	2.960
ffin	-0.0374	0.427	-0.088	0.930	-0.877	0.802
ghw	-0.5016	0.898	-0.559	0.577	-2.265	1.262
ca	-0.3387	0.494	-0.685	0.493	-1.309	0.632
gar	0.4010	0.257	1.563	0.119	-0.103	0.905
reg	0.1314	0.023	5.710	0.000	0.086	0.177
log_lot:fb	0.0631	0.045	1.405	0.161	-0.025	0.151
log_lot:sty	-0.0456	0.033	-1.372	0.171	-0.111	0.020

log_lot:drv	0.1914	0.084	2.277	0.023	0.026	0.357
log_lot:rec	-0.1887	0.076	-2.479	0.014	-0.338	-0.039
log_lot:ffin	0.0166	0.051	0.328	0.743	-0.083	0.116
log_lot:ghw	0.0806	0.106	0.758	0.449	-0.128	0.289
log_lot:ca	0.0594	0.058	1.027	0.305	-0.054	0.173
log_lot:gar	-0.0413	0.030	-1.380	0.168	-0.100	0.017
=========			=======	=======		======
Omnibus:		7.132	Durbin-	Watson:		1.524
<pre>Prob(Omnibus):</pre>		0.028	Jarque-	Bera (JB):		8.190
Skew:		-0.173	Prob(JB):		0.0167
Kurtosis:		3.491	Cond. N	ο.		2.83e+03
==========			=======	=========	=======	======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.83e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [16]: #log_lot*ffin removed

modelc = sm.OLS.from_formula("log_sell ~ log_lot+bdms+fb+sty+drv+rec+ffin+ghw+ca+gar+sec = modelc.fit()
print(resc.summary())

OLS Regression Results

Dep. Variable:	log_sell	R-squared:	0.695
Model:	OLS	Adj. R-squared:	0.685
Method:	Least Squares	F-statistic:	66.73
Date:	Tue, 01 Dec 2020	Prob (F-statistic):	4.54e-123
Time:	00:59:02	Log-Likelihood:	89.913
No. Observations:	546	AIC:	-141.8
Df Residuals:	527	BIC:	-60.08
Df Model:	18		
	_		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	8.8765	0.841	10.550	0.000	7.224	10.529
log_lot	0.1636	0.101	1.621	0.106	-0.035	0.362
bdms	0.0365	0.015	2.507	0.012	0.008	0.065
fb	-0.3819	0.385	-0.992	0.322	-1.138	0.375
sty	0.4885	0.285	1.713	0.087	-0.072	1.049
drv	-1.4502	0.687	-2.110	0.035	-2.801	-0.100
rec	1.6214	0.632	2.567	0.011	0.380	2.862
ffin	0.1023	0.022	4.691	0.000	0.059	0.145
ghw	-0.5160	0.896	-0.576	0.565	-2.276	1.244
ca	-0.3545	0.491	-0.722	0.471	-1.320	0.611

gar	0.4015	0.256	1.566	0.118	-0.102	0.905
reg	0.1323	0.023	5.786	0.000	0.087	0.177
log_lot:fb	0.0636	0.045	1.417	0.157	-0.025	0.152
log_lot:sty	-0.0464	0.033	-1.403	0.161	-0.111	0.019
log_lot:drv	0.1899	0.084	2.264	0.024	0.025	0.355
log_lot:rec	-0.1822	0.073	-2.481	0.013	-0.326	-0.038
log_lot:ghw	0.0825	0.106	0.778	0.437	-0.126	0.291
log_lot:ca	0.0612	0.057	1.066	0.287	-0.052	0.174
log_lot:gar	-0.0413	0.030	-1.383	0.167	-0.100	0.017
==========	========				=======	
Omnibus:		7.01	l7 Durbin-	-Watson:		1.525
Prob(Omnibus)	:	0.03	30 Jarque-	Bera (JB):		8.046
Skew:		-0.17	70 Prob(JE	3):		0.0179
Kurtosis:		3.48	37 Cond. N	lo.		2.78e+03
==========	========	========			========	=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.78e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [17]: #log_lot*ghw removed

modeld = sm.OLS.from_formula("log_sell ~ log_lot+bdms+fb+sty+drv+rec+ffin+ghw+ca+gar+sed= modeld.fit()
print(resd.summary())

========	========		:=======	:=======	=======	=======
Dep. Variabl	e:	log_sell	. R-squar	red:		0.695
Model:		OLS	Adj. R-	-squared:		0.685
Method:		Least Squares	F-stati	stic:		70.67
Date:	Tue	, 01 Dec 2020	Prob (F	-statistic)	:	7.16e-124
Time:		00:59:03	Log-Lik	celihood:		89.600
No. Observat	ions:	546	AIC:			-143.2
Df Residuals	:	528	BIC:			-65.75
Df Model:		17	•			
Covariance T	ype:	nonrobust	;			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	8.8086	0.836	10.530	0.000	7.165	10.452
log_lot	0.1716	0.100	1.710	0.088	-0.025	0.369
bdms	0.0366	0.015	2.513	0.012	0.008	0.065
fb	-0.3764	0.385	-0.978	0.329	-1.132	0.380
sty	0.4909	0.285	1.722	0.086	-0.069	1.051
drv	-1.4326	0.687	-2.086	0.037	-2.782	-0.083
rec	1.6306	0.631	2.583	0.010	0.390	2.871

ffin	0.1036	0.022	4.766	0.000	0.061	0.146
ghw	0.1799	0.044	4.098	0.000	0.094	0.266
ca	-0.3397	0.491	-0.692	0.489	-1.304	0.624
gar	0.3973	0.256	1.551	0.121	-0.106	0.900
reg	0.1311	0.023	5.750	0.000	0.086	0.176
log_lot:fb	0.0630	0.045	1.405	0.161	-0.025	0.151
log_lot:sty	-0.0467	0.033	-1.412	0.159	-0.112	0.018
log_lot:drv	0.1878	0.084	2.241	0.025	0.023	0.352
log_lot:rec	-0.1832	0.073	-2.496	0.013	-0.327	-0.039
log_lot:ca	0.0593	0.057	1.034	0.302	-0.053	0.172
log_lot:gar	-0.0408	0.030	-1.368	0.172	-0.099	0.018
Omnibus:		7.16	31 Durbin-	-Watson:		1.532
Prob(Omnibus)	:	0.02	28 Jarque	-Bera (JB):		7.984
Skew:		-0.18	36 Prob(JI	B):		0.0185
Kurtosis:		3.46	S2 Cond. 1	No.		2.73e+03
=========		=======		========	========	=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.73e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [18]: $\#log_lot*ca\ removed$

modele = sm.OLS.from_formula("log_sell ~ log_lot+bdms+fb+sty+drv+rec+ffin+ghw+ca+gar+stree= modele.fit()
print(rese.summary())

=======================================	======	=======	======			
Dep. Variable:		log_sell	. R-squ	ared:		0.694
Model:	: OLS		dj.	R-squared:		0.685
Method:	Le	ast Squares	s F-sta	tistic:		75.01
Date:	Tue,	01 Dec 2020) Prob	(F-statistic):		1.38e-124
Time:		00:59:03	B Log-L	ikelihood:		89.048
No. Observations:		546	AIC:			-144.1
Df Residuals:		529	BIC:			-70.95
Df Model:		16	3			
Covariance Type:		nonrobust	;			
	oef	std err	t	P> t	[0.025	0.975]
Intercept 8.7	822	0.836	10.503	0.000	7.140	10.425
log_lot 0.1	748	0.100	1.743	0.082	-0.022	0.372
bdms 0.0	352	0.015	2.428	0.016	0.007	0.064
fb -0.3	803	0.385	-0.988	0.324	-1.136	0.376
sty 0.4	720	0.285	1.659	0.098	-0.087	1.031

drv	-1.4286	0.687	-2.080	0.038	-2.778	-0.079
rec	1.5567	0.627	2.482	0.013	0.324	2.789
ffin	0.1034	0.022	4.756	0.000	0.061	0.146
ghw	0.1772	0.044	4.043	0.000	0.091	0.263
ca	0.1672	0.021	7.880	0.000	0.125	0.209
gar	0.3385	0.250	1.355	0.176	-0.152	0.829
reg	0.1330	0.023	5.848	0.000	0.088	0.178
log_lot:fb	0.0636	0.045	1.418	0.157	-0.025	0.152
log_lot:sty	-0.0443	0.033	-1.344	0.180	-0.109	0.020
log_lot:drv	0.1873	0.084	2.235	0.026	0.023	0.352
log_lot:rec	-0.1746	0.073	-2.395	0.017	-0.318	-0.031
log_lot:gar	-0.0339	0.029	-1.164	0.245	-0.091	0.023
=========		========		========	=======	
Omnibus:		6.94	6 Durbin	-Watson:		1.529
Prob(Omnibus)	:	0.03	31 Jarque	-Bera (JB):		7.810
Skew:		-0.17	7 Prob(J	B):		0.0201
Kurtosis:		3.46	7 Cond.	No.		2.71e+03
==========						

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.71e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [19]: #log_lot*gar removed

modelf = sm.OLS.from_formula("log_sell ~ log_lot+bdms+fb+sty+drv+rec+ffin+ghw+ca+gar+self = modelf.fit()
print(resf.summary())

========					=======	=======		
Dep. Variabl	e:	log_sel	ll R-squa	red:		0.693		
Model:		01	LS Adj. R	-squared:		0.685		
Method:		Least Square	es F-stat	istic:		0.685 79.87 2.96e-125 88.350 -144.7 -75.86 		
Date:	Tue	Tue, 01 Dec 2020		F-statistic)	:	2.96e-125		
Time:		00:59:04 Log-Likelihood:				88.350		
No. Observat	ions:	54	46 AIC:			-144.7		
Df Residuals	:	53	BIC:					
Df Model:		-	15					
Covariance T	ype:	nonrobus	st					
=======	coef	std err	t	P> t	[0.025	0.975]		
Intercept	8.7739	0.836	10.490	0.000	7.131	10.417		
log_lot	0.1758	0.100	1.753	0.080	-0.021	0.373		
bdms	0.0353	0.015	2.432	0.015	0.007	0.064		
fb	-0.3402	0.383	-0.887	0.375	-1.093	0.413		

sty	0.4682	0.285	1.645	0.101	-0.091	1.027
drv	-1.2369	0.667	-1.854	0.064	-2.547	0.073
rec	1.5141	0.626	2.417	0.016	0.283	2.745
ffin	0.1028	0.022	4.727	0.000	0.060	0.145
ghw	0.1800	0.044	4.112	0.000	0.094	0.266
ca	0.1670	0.021	7.869	0.000	0.125	0.209
gar	0.0480	0.011	4.200	0.000	0.026	0.070
reg	0.1299	0.023	5.750	0.000	0.086	0.174
log_lot:fb	0.0590	0.045	1.321	0.187	-0.029	0.147
log_lot:sty	-0.0439	0.033	-1.331	0.184	-0.109	0.021
log_lot:drv	0.1645	0.082	2.018	0.044	0.004	0.325
log_lot:rec	-0.1694	0.073	-2.327	0.020	-0.312	-0.026
=========	=======	========	=======	========		=======
Omnibus:		7.43	3 Durbin	-Watson:		1.523
Prob(Omnibus)	:	0.02	4 Jarque	-Bera (JB):		8.418
Skew:		-0.18	6 Prob(J	B):		0.0149
Kurtosis:		3.48	2 Cond.	No.		2.60e+03
=========	=======	========		=========		

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.6e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [20]: #log_lot*fb removed

modelg = sm.OLS.from_formula("log_sell ~ log_lot+bdms+fb+sty+drv+rec+ffin+ghw+ca+gar+sell resg= modelg.fit()
print(resg.summary())

=========		========				=======	
Dep. Variable	e:	log_sel	ll R-squar	red:		0.692	
Model:		OI	LS Adj. R-	Adj. R-squared:			
Method:		Least Square	es F-stati	istic:		85.33	
Date:	Tue	, 01 Dec 202	20 Prob (F	F-statistic)	:	0.684 85.33 7.43e-126 87.452 -144.9 -80.37 [0.025 0.975] 	
Time:		00:59:0	04 Log-Lil	kelihood:		0.684 85.33 7.43e-126 87.452 -144.9 -80.37 [0.025 0.975] 	
No. Observat:	ions:	54	46 AIC:			-144.9	
Df Residuals	:	53	BIC:	BIC:		-80.37	
Df Model:		1	14				
Covariance Ty	ype:	nonrobus	st				
========	coef	std err	t	P> t	[0.025	0.975]	
Intercept	8.2985	0.755	10.984	0.000	6.814	9.783	
log_lot	0.2309	0.091	2.529	0.012	0.052	0.410	
bdms	0.0362	0.015	2.497	0.013	0.008	0.065	
fb	0.1655	0.021	8.030	0.000	0.125	0.206	

sty	0.3842	0.278	1.384	0.167	-0.161	0.930
drv	-1.2546	0.667	-1.880	0.061	-2.566	0.056
rec	1.4725	0.626	2.352	0.019	0.243	2.702
ffin	0.1004	0.022	4.631	0.000	0.058	0.143
ghw	0.1809	0.044	4.130	0.000	0.095	0.267
ca	0.1662	0.021	7.831	0.000	0.125	0.208
gar	0.0475	0.011	4.155	0.000	0.025	0.070
reg	0.1313	0.023	5.812	0.000	0.087	0.176
log_lot:sty	-0.0340	0.032	-1.058	0.291	-0.097	0.029
log_lot:drv	0.1669	0.082	2.047	0.041	0.007	0.327
log_lot:rec	-0.1647	0.073	-2.263	0.024	-0.308	-0.022
		========				=======
Omnibus:		8.03		ı-Watson:		1.525
Prob(Omnibus)	:	0.0	18 Jarque	e-Bera (JB):		9.196
Skew:		-0.19	95 Prob(J	IB):		0.0101
Kurtosis:		3.50	O1 Cond.	No.		2.18e+03
=========						

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.18e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [21]: #log_lot*sty removed

modelh = sm.OLS.from_formula("log_sell ~ log_lot+bdms+fb+sty+drv+rec+ffin+ghw+ca+gar+sell resh= modelh.fit()
print(resh.summary())

=======================================							
Dep. Variable:		log_sell	. R-squa	ared:		0.692	
Model:		OLS	Adj. 1	R-squared:		0.684	
Method:		Least Squares	F-sta	tistic:		91.79	
Date:	Tue	, 01 Dec 2020	Prob	(F-statistic):		1.32e-126	
Time:		00:59:04	Log-L	ikelihood:		86.878	
No. Observations:		546	AIC:			-145.8	
Df Residuals:		532	BIC:			-85.52	
Df Model:		13	3				
Covariance Type:		nonrobust	;				
=======================================							
	coef	std err	t	P> t	[0.025	0.975]	
Intercept 8	.7419	0.629	13.906	0.000	7.507	9.977	
log_lot 0.	. 1791	0.077	2.323	0.021	0.028	0.330	
bdms 0	.0388	0.014	2.714	0.007	0.011	0.067	
fb 0	. 1615	0.020	7.971	0.000	0.122	0.201	
sty 0.	.0908	0.013	7.242	0.000	0.066	0.115	

drv	-1.1900	0.665	-1.790	0.074	-2.496	0.116
rec	1.5025	0.626	2.402	0.017	0.274	2.731
ffin	0.1028	0.022	4.763	0.000	0.060	0.145
ghw	0.1845	0.044	4.223	0.000	0.099	0.270
ca	0.1653	0.021	7.792	0.000	0.124	0.207
gar	0.0469	0.011	4.107	0.000	0.024	0.069
reg	0.1326	0.023	5.880	0.000	0.088	0.177
log_lot:drv	0.1594	0.081	1.962	0.050	-0.000	0.319
log_lot:rec	-0.1683	0.073	-2.314	0.021	-0.311	-0.025
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	7.97 0.01 -0.18 3.51	9 Jarque 9 Prob(JI			1.526 9.237 0.00987 1.23e+03
==========		0.01 =========	========	 =========		========

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.23e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [22]: #log_lot*rec removed

modeli = sm.OLS.from_formula("log_sell ~ log_lot+bdms+fb+sty+drv+rec+ffin+ghw+ca+gar+strength resi= modeli.fit()
print(resi.summary())

=========	========	=========	:======:	:=======		=======
Dep. Variable	e:	log_sell	. R-squai	red:		0.689
Model:		OLS	S Adj. R-	Adj. R-squared:		
Method:		Least Squares	F-stati	F-statistic: 98.		98.19
Date:	Tue	, 01 Dec 2020	Prob (I	-statistic)	:	1.83e-126
Time:		00:59:06	Log-Lil	xelihood:		84.143
No. Observat	ions:	546	AIC:			-142.3
Df Residuals	:	533	BIC:			-86.35
Df Model:		12	2			
Covariance T	ype:	nonrobust	;			
=========						
	coef	std err	t	P> t	[0.025	0.975]
Intercept	8.8348	0.630	14.026	0.000	7.597	10.072
log_lot	0.1696	0.077	2.194	0.029	0.018	0.321
bdms	0.0346	0.014	2.429	0.015	0.007	0.063
fb	0.1642	0.020	8.091	0.000	0.124	0.204
sty	0.0918	0.013	7.290	0.000	0.067	0.116
drv	-1.1161	0.667	-1.674	0.095	-2.426	0.193
rec	0.0561	0.026	2.157	0.031	0.005	0.107

ffin	0.1029	0.022	4.748	0.000	0.060	0.145
ghw	0.1790	0.044	4.087	0.000	0.093	0.265
ca	0.1658	0.021	7.787	0.000	0.124	0.208
gar	0.0468	0.011	4.083	0.000	0.024	0.069
reg	0.1307	0.023	5.777	0.000	0.086	0.175
log_lot:drv	0.1500	0.081	1.841	0.066	-0.010	0.310
=========	=======	========	======			
Omnibus:		7.294	Durbin	-Watson:		1.527
Prob(Omnibus):		0.026	Jarque	-Bera (JB):		8.228
Skew:		-0.184	Prob(J	B):		0.0163
Kurtosis:		3.476	Cond.	No.		1.22e+03
==========	=======	=========	======	=========		=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.22e+03. This might indicate that there are strong multicollinearity or other numerical problems.

9.0.1 Conclusion:

After ruling out interaction terms using the general to specific approach the final model should only include the interaction term: log of lot size* driveway dummy variable (see model i above).

10 (g)

One may argue that some of the explanatory variables are endogenous and that there may be omitted variables. For example, the 'condition' of the house in terms of how it is maintained is not a variable (and difficult to measure) but will affect the house price. It will also affect, or be reflected in, some of the other variables, such as whether the house has an air conditioning (which is mostly in newer houses). If the condition of the house is missing, will the effect of air conditioning on the (log of the) sale price be over- or underestimated? (For this question no computer calculations are required.)

10.0.1 Conclusion:

Since "condition of the home" is not included in the model, along with other factors which are correlated with the error term, epsilon, we conclude that house price (and log of house price) is endogenous, as well as several of the explanatory variables. The effect of air conditioning in this case will be overestimated as home condition will be included in the marginal effect of having air conditioning, overinflating our home price estimates.

11 (h)

Finally we analyze the predictive ability of the model. Consider again the model where the log of the sale price of the house is the dependent variable and the explanatory variables are the log transformation of lot size, with all other explanatory variables in their original form (and no

interaction effects). Estimate the parameters of the model using the first 400 observations. Make predictions on the log of the price and calculate the MAE for the other 146 observations. How good is the predictive power of the model (relative to the variability in the log of the price)?

11.1 Let "train" = first 400 observations of dataset (df) & let "test" = final 146 observations of dataset (df):

```
In [23]: train=df[0:400]
          test=df[400:]
          model_train = sm.OLS.from_formula("log_sell ~ log_lot+lot+bdms+fb+sty+drv+rec+ffin+ght)
          res_train = model_train.fit()
          print(res_train.summary())
```

OLS Regression Results

Dep. Variable:	log_sell	R-squared:	0.671
Model:	OLS	Adj. R-squared:	0.660
Method:	Least Squares	F-statistic:	65.64
Date:	Tue, 01 Dec 2020	Prob (F-statistic):	1.64e-85
Time:	00:59:09	Log-Likelihood:	37.367
No. Observations:	400	AIC:	-48.73
Df Residuals:	387	BIC:	3.156
Df Model:	12		
Covariance Type:	nonrobust		
=======================================	=======================================		=======================================

	-jpo.					
	coef	std err	t	P> t	[0.025	0.975]
Intercept	7.9123	0.879	9.006	0.000	6.185	9.640
log_lot	0.2818	0.116	2.422	0.016	0.053	0.511
lot	5.934e-06	2.06e-05	0.289	0.773	-3.45e-05	4.63e-05
bdms	0.0376	0.017	2.153	0.032	0.003	0.072
fb	0.1520	0.025	6.140	0.000	0.103	0.201
sty	0.0885	0.018	4.853	0.000	0.053	0.124
drv	0.0878	0.032	2.759	0.006	0.025	0.150
rec	0.0560	0.034	1.634	0.103	-0.011	0.123
ffin	0.1144	0.027	4.274	0.000	0.062	0.167
ghw	0.1987	0.053	3.744	0.000	0.094	0.303
ca	0.1780	0.027	6.520	0.000	0.124	0.232
gar	0.0530	0.015	3.577	0.000	0.024	0.082
reg	0.1503	0.042	3.553	0.000	0.067	0.233
Omnibus:		0.901	Durbi	n-Watson:		1.476
Prob(Omnibu	ıs):	0.637	Jarqu	ie-Bera (JB)	:	0.716
Skew:		-0.090	Prob((JB):		0.699
Kurtosis:		3.103	Cond.	No.		4.23e+05

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.23e+05. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

========	:========	ors veg	=======: ression v	======================================	========	
Dep. Varia Model: Method:		Least Squar	LS Adj. es F-sta	uared: R-squared: atistic:	`	0.731 0.707 30.13
Date:	Ti	ue, 01 Dec 20		(F-statistic	:):	3.41e-32
Time:		00:59:	0	Likelihood:		70.558
No. Observ			46 AIC:			-115.1
Df Residua	ıls:		33 BIC:			-76.33
Df Model:			12			
Covariance	V 2	nonrobu 				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	4.7505	0.972	4.890	0.000	2.829	6.672
log_lot	0.6643	0.127	5.217	0.000	0.412	0.916
lot	-7.859e-05	2.3e-05	-3.416	0.001	-0.000	-3.31e-05
bdms	0.0232	0.024	0.951	0.343	-0.025	0.072
fb	0.1955	0.034	5.691	0.000	0.128	0.263
sty	0.0841	0.015	5.608	0.000	0.054	0.114
drv	0.5375	0.113	4.736	0.000	0.313	0.762
rec	0.0355	0.035	1.011	0.314	-0.034	0.105
ffin	0.0787	0.033	2.354	0.020	0.013	0.145
ghw	0.1028	0.072	1.431	0.155	-0.039	0.245
ca	0.1145	0.030	3.757	0.000	0.054	0.175
gar	0.0379	0.017	2.289	0.024	0.005	0.071
reg	0.1083	0.031	3.511	0.001	0.047	0.169
Omnibus:		 1.7	======= 34	======== in-Watson:		1.712
Prob(Omnib	ous):	0.4	20 Jarqı	ue-Bera (JB):		1.381
Skew:		-0.0	48 Prob	(JB):		0.501
Kurtosis:		3.4	67 Cond	. No.		4.70e+05

Warnings:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 4.7e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Mean-Squared Error for train (n=400) data: 3.2955043626927334

In [26]: print(res train.summary2())

Results:	Ordinary	least	squares	
----------	----------	-------	---------	--

______ OLS Adj. R-squared: 0.660 Dependent Variable: log_sell AIC: -48.7330Date: 2020-12-01 00:59 BIC: 3.1560 Log-Likelihood: 37.367 F-statistic: 65.64 No. Observations: 400 F-statistic: 65.64 Prob (F-statistic): 1.64e-85 Df Model: 12 387 Df Residuals: R-squared: 0.671 Scale: 0.050204 ______ Coef. Std.Err. t P>|t| [0.025 0.975] ______ 7.9123 0.8786 9.0057 0.0000 6.1849 9.6397 Intercept log_lot

 0.2818
 0.1164
 2.4216
 0.0159
 0.0530
 0.5107

 0.0000
 0.0000
 0.2887
 0.7729
 -0.0000
 0.0000

 lot

 0.0376
 0.0175
 2.1528
 0.0320
 0.0033
 0.0720

 0.1520
 0.0248
 6.1399
 0.0000
 0.1033
 0.2007

 bdms fb 0.0182 4.8528 0.0000 0.0527 0.1244 sty 0.0885 0.0318 2.7595 0.0061 0.0253 0.1504 drv 0.0878 0.0560 0.0343 1.6338 0.1031 -0.0114 0.1235 rec 0.0268 4.2736 0.0000 0.0618 0.1671 ffin 0.1144 0.1987 0.0531 3.7444 0.0002 0.0944 0.3031 ghw

 0.1780
 0.0273
 6.5200
 0.0000
 0.1243
 0.2317

 0.0530
 0.0148
 3.5768
 0.0004
 0.0239
 0.0821

 ca gar reg Durbin-Watson: Omnibus: 0.901 1.476 Prob(Omnibus): 0.637 Jarque-Bera (JB): 0.716 Skew: -0.090 Prob(JB): 0.699 Kurtosis: 3.103 Condition No.: 422770

Predicted Log of Home Price for Test Data: 400 11.513638

401 11.474370 402 11.381008

 $[\]ast$ The condition number is large (4e+05). This might indicate strong multicollinearity or other numerical problems.

```
403
       11.186940
404
       11.325803
       11.358523
405
406
       11.298190
       11.304389
407
408
       11.466191
409
       11.528824
410
       11.290817
411
       11.523928
412
       11.605500
413
       11.042359
414
       11.029946
       11.413355
415
416
       11.542744
       11.267786
417
418
       11.792698
419
       11.331574
420
       11.413486
421
       11.379393
422
       11.124759
       10.854466
423
424
       10.994233
425
       10.986283
426
       10.968728
427
       10.840954
428
       10.785195
429
       11.125551
          . . .
516
       11.404139
517
       11.474269
518
       11.362657
       11.190575
519
       11.662842
520
521
       11.583297
522
       11.527259
       11.402234
523
       11.527259
524
525
       11.613323
526
       11.494522
527
       11.354422
       11.489631
528
529
       11.348101
530
       11.446655
531
       11.439996
       11.203667
532
533
       11.290028
534
       11.138776
535
       11.425899
```

```
11.436641
536
537
       11.126084
538
       11.373627
539
       11.183051
       11.338372
540
541
       11.422668
       11.436641
542
543
       11.545669
544
       11.368590
545
       11.160546
Length: 146, dtype: float64
In [28]: plt.plot(pred, "--m")
         plt.plot(test["log_sell"])
         plt.title("Actual(A) vs. Predicted(P) Home Prices")
         plt.ylabel("LOG(Sell Price)")
         plt.xlabel("Observation")
         plt.legend("PA")
         plt.show()
```


11.1.1 Conclusion:

As you can see from the performance metrics above (including mse, mae, r-squared, and adjusted r-squared) and visually by observing the predicted values on the "test" data (last 146 observations)

versus the actual values, our model does have some predictive ability, albeit not perfect. There are still many improvements that could be made to improve the model's predictive accuracy.