Znajdowanie zer wielomianu w postaci Beziera za pomocą przycinania sześciennego

Maciej Pacut

Wrocław 2010

0.1 Wstęp

!!!!!!!! Wstęp napisz na końcu, powinien on opisywac , co zostanie zawarte w pracy.

Jakie zastosowania ma znajdowanie zer? Szukanie przeciec krzywej z prosta. Szukanie najblizszych punktow na prostej. Niniejsza praca daje pogląd na to, czym jest szukanie zer wielomianu i jak napisać metodę szukania zer.

0.2 Numeryczne znajdowanie zer

0.2.1 Znajdowanie jednego zera

Metoda znajdowania jednego zera funkcji dostaje argumenty:

- 1. pewien opis funkcji f, który umożliwia obliczenie wartości tej funkcji dla dowolnego argumentu
- 2. przedział początkowy P_0 , czyli przedział w którym szukamy zera funkcji f; metoda nie znajdzie żadnego zera spoza tego przedziału
- 3. żądana dokładność ε znalezienia zera funkcji f

Metoda numerycznego znajdowania jednego zera funkcji f generuje ciąg przedziałów $\langle P_0, P_1, ..., P_n \rangle$ o własnościach:

1. każdy przedział jest podprzedziałem poprzedniego przedziału:

$$P_k \subset P_{k-1} \qquad (1 \leqslant k \leqslant n)$$

- 2. każdy przedział zawiera zero funkcji f z przedziału P_0 Adnotacja na dole strony: odnosnie zbioru pustego. Jesli w przedziale P0 nie ma zera funkcji f to stwierdzenie, ze przedzial pusty (porazka) zawiera zero funkcji f z przedzialu P0 jest prawdziwe.
- 3. ostatni przedział P_n jest pierwszym przedziałem krótszym niż 2ε

Jeśli w przedziałe P_0 metoda nie znalazła zera, to ostatnim przedziałem w ciągu jest przedział pusty; wtedy wynikiem jest brak zer. W przeciwnym przypadku wynikiem jest środek przedziału P_n , który jest odległy od zera funkcji f o conajwyżej ε . W przypadku istnienia zera w przedziałe P_0 , udało się znaleźć zero funkcji f z dokładnością ε .

Przedstawiona została w powyższym schemacie pewien zbiór metod znajdowania jednego zera funkcji f. Metody w tym zbiorze różnią się realizacją funkcji generującej ciąg $\langle P_0, P_1, ..., P_n \rangle$. Przykładem metody znajdowania jednego zera funkcji jest bisekcja. W bisekcji przedział P_{k+1} otrzymuje się

dzieląc P_k na pół i jako P_{k+1} wybierając tę połowę, w której jest możliwość wystąpienia zera. W przypadku, gdy w żadnej połowie nie ma możliwości wystąpienia zera, P_{k+1} jest przedziałem pustym i metoda kończy działanie. W bisekcji należy określić realizację operacji określającej możliwość wystąpienia zera w danym przedziałe (w danej połowie przedziału P_k). Przykładową taką operacją jest sprawdzenie, czy funkcja f ma w końcach sprawdzanego przedziału różne znaki.

! rysunek bisekcji

W niniejszej pracy zajmiemy się inną metodą z wyżej przedstawionego zbioru metod szukania zer funkcji. Przykładem metody nie należącej do wyżej opisanego zbioru metod jest metoda Newtona. Znaczącą różnicą między metodą Newtona a metodami opisanymi wyżej jest generowanie ciągu przybliżeń zera funkcji zamiast generowania ciągu przedziałów zawierających zero. q

0.2.2 Znajdowanie wielu zer

Zmodyfikujmy powyższy schemat znajdowania jednego zera. Zamiast generowania ciągu przedziałów, metoda szukania wielu zer generuje drzewo przedziałów. Drzewo przybliżeń ma własności:

- 1. w korzeniu znajduje się przedział początkowy P_0 q
- 2. każdy potomek jest podprzedziałem swojego rodzica
- 3. zawieranie zer na kazdej sciezce
- 4. każdy liść L jest pierwszym przedziałem na ścieżce od korzenia do L, który ma długość mniejszą niż 2ε

Niektore sciezki moga sie konczyc przedzialami dluzszymi niz 2 eps, wtedy sa to porazki.

!! zmodyfikuj schemat 1 zera tak, aby mial mozliwosc porazki (ost przedzial dluzszy niz 2 eps lub zaznaczanie przedzialem pustym). !! odwolywanie sie do schematu. W tym momencie masz dwa schematy i nie mozesz sie odwolywac do "powyzszego" schematu.

W wypadku 1 zera drzewo moze sie degenerowac do listy, ktora mozna traktowac jako ciąg z poprzedniego schematu.

!! Rysunek drzewa przedziałów w bisekcji przy dwóch podprzedziałach, rysunek drzewa przedziałów zdegenerowanego do listy

MEtody z tego zbioru roznią sie realizacja operacji znajdowania potomków przedzialu.

Dzielenie przedziału na wiecej czesci, gdy moze wystapic wiecej niz 1 zero w przedziale (np. gdy jest zbyt długi, czyli przedzial nie kurczy się tak szybko jak by to wynikało z szybkości zbieżności metody).

Inną realizacją może być np. w przypadku wielomianów: izolacja zer. Zwykla metoda znajdowania zera ignoruje dodatkowe zera.

0.2.3 Jakość metody znajdowania zer

Szybkosc zbieznosci jest jakoscia metody. Jak z kazdym krokiem kurczą się przedziały. Krok jest liczony w zaleznosci od liczby operacji znaczacych tj. obliczenie wartosci funkcji.

0.3 Znajdowanie zer wielomianów

Wzory analityczne na zera wielomianów niskiego stopnia (2 i 3 napisac, 4 wspomniec ze są) * Wyższego stopnia nalezy szukac numerycznie ** http://mathworld.wolfram.com/A

Gdy mamy informację, że funkcja, której zer szukamy jest wielomianem, możemy skorzystać z własności wielomianów do: * przyspieszenia metody * upewnienia się, że znajdujemy wszystkie zera ** ograniczenie na liczbę zer rzeczywistych - stopień ** ustalenie pewnego przyblizenia poczatkowego

0.4 Wielomiany w formie Beziera

Baza Bernsteina. Również jest bazą wielomianów, co oznacza, że każdy wielomian w bazie potęgowej ma odpowiadające przedstawienie w bazei Bernsteina.

Zastosowanie: krzywe i powierzchnie w programach CAD (takze miejsce wymyslenia). Rysunek krzywej, rysunek powierzchni. W formie potegowej nie ma wyraznego powiazania geometrii wielomianu z jego wspolczynnikami.

Postac Beziera ma wiele ciekawych własności: * Otoczka wypukła. Krótki dowód jako kombinacja wypukła * Dzielenie przedziału. Algorytm de Casteljau. Poddziedzina. Rozszerzona definicja wielomianu Beziera ze względu na dziedzine.

Metoda bezclip. Szybkosc metody bezclip. Wykorzystujemy właściwości wielomianu: podziedziena (do nowej otoczki wypuklej) Metoda pasuje do schematu w/w.

0.5 Aproksymacja wielomianu wielomianem

Bez wglebiania sie w samą aproksymacje? Mozna przedstawic aproksymacje jako zagadnienie geometryczne.

Przyblizenie wielomianu wysokiego stopnia wielomianem niskiego stopnia. "Redukcja stopnia".

Aproksymujac wielomian upraszczamy go, tracac informacje (punkty krańcowe,) ale jednoczesnie zyskujac mozliwosc latwiejszego przetwarzania go.

Macierz redukcji. Obliczanie macierzy redukcji metodą Lewanowicza-Woźnego.

0.6 n-clip

Maksymalna różnica między wielomianami.

Podnoszenie stopnia.

Dwa wielomiany ograniczające.

Modyfikacja n-clip jest modyfikacja bisekcji. Wykorzystuje fakt, ze funkcja, ktorej zer szukamy jest wielomianem. Wykorzystujemy takze pewne wlasnosci wielomianow Beziera tj. podzial wielomianu w punkcje czy poddziedzina. (Potrzebne jest to przy wielokrotnym wykorzystaniu tej samej macierzy redukcji, zauwazmy rozwniez, ze po znalezieniu pierwszego zera nie warto szukac zer wielomianu P(x)/(x-r0), gdyz nie mozna wykorzystac tej samej macierzy redukcji)

0.6.1 cubiccliping

0.6.2 podsumowanie

!! na koncu

0.7 Dodatek 1: Operacje na przedziałach

- odejmowanie przedziałów od siebie