浙江水学

本科实验报告

课程名称:	数字逻辑设计
姓 名:	颜晗
学 院:	计算机科学与技术学院
系:	
专业:	计算机科学与技术
学 号:	3200105515
指导教师:	蔡铭

2021年 12 月 20 日

浙江大学实验报告

课程名称:	数字逻辑设计	<u> </u>
实验项目名称:	多路	选择器设计及应用
学生姓名:	<u> 颜晗</u> 专业	:计算机科学与技术学号:3200105515
同组学生姓名:		
实验地点:	东四 509	实验日期: <u>2021</u> 年 <u>12</u> 月 <u>12</u> 日

- 一、 实验目的和要求
- 1.掌握锁存器与触发器构成的条件和工作原理
- 2.掌握锁存器与触发器的区别
- 3.掌握基本 SR 锁存器、门控 SR 锁存器、D 锁存器、SR 锁存器、D 触发器的基本功能
- 4.掌握基本 SR 锁存器、门控 SR 锁存器、D 锁存器、SR 锁存器存在的时序问题
- 二、实验内容和原理

实验内容:

任务一: 实现基本 SR 锁存器, 验证功能和存在的时序问题

任务二: 实现门控 SR 锁存器,并验证功能和存在的时序问题

任务三: 实现 D 锁存器,并验证功能和存在的时序问题

任务四:实现 SR 主从触发器,并验证功能和存在的时序问题

任务五: 实现 D 触发器,并验证功能

实验原理:

1. 锁存器

构成锁存器的充分条件:能长期保持给定的某个稳定状态;有两个稳定的状态: 0、1;在一定条件下能随时改变逻辑状态,置0或置1。

锁存器有两个稳定状态,又称双稳态电路;

最基本的锁存器: SR 锁存器、D 锁存器

1.1 基本 SR 锁存器

将两个具有 2 输入端的反向逻辑器件的输出与输入端交叉连起来,另一个输入端作为外部信息输出端,就构成最简单的 SR 锁存器。

使用或非门实现的 SR 锁存器,原理图与真值表如下:

RS	$Q \overline{Q}$	说明
0 0	$Q\overline{Q}$	保持
01	10	置1
10	01	置0
11	0 0	未定义

使用与非门实现的 SR 锁存器,原理图与真值表如下:

RS	$Q\overline{Q}$	说明
0 0	11	未定义
01	01	置0
10	10	置1
11	$Q\overline{Q}$	保持

需要注意的是:两种设计的逻辑是完全相反的。

1.2 门控 SR 锁存器

相比基本 SR 锁存器,增加了时钟控制,仅当 C 输入为 1 时,输入信号 S、 R 才能改变输出。原理图和真值表如下:

CRS	$Q\overline{Q}$	说明
$0 \times \times$	$Q\overline{Q}$	保持
100	$Q\overline{Q}$	保持
101	10	置1
110	01	置0
111	11	未定义

注意到,无论是门控还是基本锁存器,都存在一个未定义逻辑,实质是输出 11 的状态是不稳定的,无法保持,且之后的状态由于电路的时延不同可能会有不同状态,即无法判断,这就造成了一定的危险性。因此输入时应尽量避免 11 的输入。

1.3 D 锁存器

不同于 SR 锁存器, D 锁存器消除了不确定状态; 利用一个输入和反相器消除了非法的输入, 也就消除了不确定状态。Q 的输出与输入 D 相同, 原理图和真值表如下:

2. 触发器

直接在电路中使用 D 锁存器会存在空翻现象(当使能控制,即 C 有效时间较长时,元件内部的状态可能有多次改变而不是保持原始状态),而理想情况下,我们希望每次触发(一个时钟周期)都仅使锁存器的的内部状态改变一次。

触发器:在锁存器的基础上使每次触发仅使状态改变一次的锁存电路(双稳态)

触发器分为主从触发器(用两个锁存器,主锁存器在脉冲控制下接收输入数据,从锁存器在脉冲结束后改变并保持状态)和边沿触发器(利用时钟上升沿或下降沿变换状态,其他时间保持状态)

2.1 SR 主从触发器

SR 主从触发器由两个门控 S-R 锁存器串联构成,第二个锁存器的时钟通过 反相器取反;当 C=1 时,输入信号进入第一个锁存器(主锁存器);当 C=0 时,第二个锁存器(从锁存器)改变输出。

使用的门控 SR 左下的圆并不表示反相器,而表示两个输出逻辑相反。

2.2 正边沿维持阻塞型 D 触发器

共四项输入,随时钟上升沿触发。RS 输入 11 时,Q 随 D 触发改变,其余情

况 Q 为确定值,原理图和真值表如下:

异步控制		上升沿 触 发			
R	S	Cp	D	Q	Q
0	1	×	×	0	1
1	0	×	×	1	0
1	1	1	0	0	1
1	1	1	1	1	0

三、实验过程和数据记录

1.基本 SR 锁存器

- 1.1 新建工程和源文件,由于此次设计所用到的元件并不多,可以使用原理 图方式进行设计。
 - 1.2 对照实验原理部分进行设计

1.3 进行波形仿真,代码如下:

```
initial begin
S = 0;
R = 0;
R=1;S=1; #50;
R=1;S=0; #50;
R=1;S=1; #50;
R=0;S=1; #50;
R=1;S=1; #50;
R=0;S=0; #50;
R=1;S=1; #50;
R=0;S=0; #50;////
R=1;S=1; #50;
R=1;S=0; #50;
R=1;S=1; #50;
R=0;S=1; #50;
R=1;S=1; #50;
end
```

- 2. 门控 SR 锁存器
 - 2.1 新建源文件,采用原理图设计

- 2.2 生成逻辑符号和.vf 文件:点击 Process 窗口下 Design Utilities -> Create schematic symbol,在工程文件夹里可以找到相应的.sym 文件。
 - 2.3 进行波形仿真,激励代码如下:

```
initial begin
      C = 0;
      R = 0;
      S = 0;
C=1;R=1;S=1; #50;
R=1;S=0; #50;
R=0;S=0; #50;
R=0;S=1; #50;
R=1;S=1; #50;
R=0;S=0; #50;
R=1;S=1; #50;
C=0;R=1;S=1; #50;
R=1;S=0; #50;
R=1;S=1; #50;
R=0;S=1; #50;
R=1;S=1; #50;
R=0;S=0; #50;
R=1;S=1; #50;
   end
```

- 3. D 锁存器
 - 3.1 新建源文件并用原理图进行设计

3.2 进行波形仿真,激励代码如下:

```
initial begin
D = 0;
C = 0;
C = 1;D=1; #50;
D=0; #50;
C=0;D=1; #50;
D=0;
```

- 4. SR 主从触发器
 - 4.1 新建源文件并用原理图设计

4.2 进行波形仿真,激励代码如下:

```
initial begin
R=1;S=1; #50;
R=1;S=0; #50;
R=1;S=1; #50;
R=0;S=1; #50;
R=0;S=0; #50;
R=0;S=0; #50;
R=1;S=1; #50;
end
always begin
C=0;#20;
C=1;#20;
end
```

5. 正边沿维持阻塞型 D 触发器

5.1 新建源文件并用原理图设计

5.2 进行波形仿真,激励代码如下:

```
initial begin
   S = 1;
   R = 1;
   D = 0;
          #30;
   D = 1;
          #30;
   s = 1;
   R = 0;
   D = 0; #30;
   D = 1; #30;
    = 0;
    = 1;
   D = 0; #30;
   D = 1; #30;
   S = 0;
   R = 0;
   D = 0; #30;
   D = 1; #30;
end
always begin
   C=0; #10;
   C=1; #10;
end
```

四、实验结果分析

1. 基本 SR 锁存器

2. 门控 SR 锁存器

3. D 锁存器

4. SR 主从触发器

5. 正边沿维持阻塞型 D 触发器

通过仿真代码对多种输入进行仿真, 对照真值表可以发现结果均符合预期。

五、实验总结与反思

本次实验较为简单,通过原理图可以轻松将锁存器和触发器设计出来,要注意设计 SR 主从触发器使用门控 SR 锁存器时各条线的对应位置,可能和实验原理中的有所错位;本次实验主要是理解锁存器和触发器这两种电子元件的原理,通过真值表理解并记住它们的输入输出逻辑,什么输入对应什么输出,什么时候可以变,什么时候不可以变要弄明白。