Definitions

Vector Space

Assume that u, v, w are vectors in V, and a, b, c are scalars in \mathbb{R} . A **vector space** is a set V with the following properties:

Commutativity:

• u + v = v + u

Associativity:

- (u + v) + w = u + (v + w)
- (ab)v = a(bv)

Additive Identity:

• there exists $0 \in V$ such that v + 0 = v for all $v \in V$

Multiplicative Identity:

• for all $v \in V$, there exists $w \in V$ such that v + w = 0

Distributive Properties:

- a(u+v) = au + av
- (a+b)v = av + bv

Linear Combination

A linear combination of a list of vectors v_1, \ldots, v_n is itself a vector, taking the form:

$$a_1v_1 + \ldots + a_mv_m$$

where each $a_1, \ldots a_n \in \mathbb{R}$

Span

The set of all linear combinations of a list of vectors ν_1, \ldots, ν_n is called the **span** of ν_1, \ldots, ν_n , or $\mathrm{Span}(\nu_1, \ldots, \nu_n)$. Defined as:

$$\mathrm{span}(v_1, ..., v_n) = \{a_1v_1 + \cdots + a_nv_n : a_1, ..., a_m \in \mathbb{R}\}\$$

If the span is equal to some space $\operatorname{span}(\nu_1, \dots, \nu_n) = V$, then you could say that ν_1, \dots, ν_n spans V.

Linearly Independent

For $v_1, \ldots, v_n \in V$ and $a_1, \ldots, a_n \in \mathbb{R}$ such that:

$$a_1v_1 + \cdots + a_nv_n = 0$$

The list of vectors v_1, \dots, v_n is called **linearly independent** when

$$a_1 = \cdots = a_n = 0$$

for all possible values of v_1, \ldots, v_n .

Basis

A **basis** of V is a list of vectors in V that is both linearly independent and spans V.

The **Standard Basis** of the vector space \mathbb{R}^{\ltimes} is

$$(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1)$$

which could also be written, using matrix bracket notation, as:

$$\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Dimension

The dimension of a vector space is the length of any basis of the vector space. For example,

$$\dim \mathbb{R}^{\ltimes} = n$$

Linear Map

A linear map from vector space V to vector space W is a function $T: V \to W$ with the following properties:

Additivity

• T(u+v) = Tu + Tv for all vectors $u, w \in V$

Homogeneity

• $T(\alpha \nu) = \alpha(T\nu)$ for all $\alpha \in \mathbb{R}$ and all $\nu \in V$

Inner Product

For a pair of vectors $u, v \in V$ in the same vector space (they are both in \mathbb{R}^n for example), the Inner Product is defined as:

$$u \cdot v = u_1 v_1 + ... + u_n v_n$$

which is also sometimes written using angular brackets:

$$\langle u, v \rangle$$

Keep in mind that the dimension of $\mathfrak u$ and $\mathfrak v$ must be the same. Using matrix dimension notation:

$$u_{\{n\times 1\}} \cdot v_{\{n\times 1\}}$$

Norm

The norm of a vector \mathbf{v} is defined:

$$||x|| = \sqrt{x_1^2 + \ldots + x_n^2}$$

PROOFS 2

Linear Maps and Matrices

Suppose M is a linear map $f:\mathbb{R}^{\mathfrak{a}}\to\mathbb{R}^{\mathfrak{b}},$ then M can be written as b-by-a matrix:

$$\begin{bmatrix} x_{1,1} & \cdots & x_{1,a} \\ \vdots & \vdots & \vdots \\ x_{b,1} & \cdots & x_{b,a} \end{bmatrix}$$

Proofs

Law of Cosines

 TODO

Triangle Inequality

TODO

Cauchy-Schwartz Inequality

TODO