Generic Prompts for Robust Vision-Language Models

Mohammed Azz

Raza Imam

Dmitry Demidov

1. Introduction & Problem Statement

Introduction

- +Rise of Vision-Language models.
- +Encoder training required for the models
- +CLIP
- +Advantage:
 - +Improved Performance over older classification methods.
 - + Pre-trained models can be used for zero shot classification.
- +Disadvantages:
 - +Inference: results rely heavily on the introduced text prompts

How CLIP Works

+ Notes: Fine-tuning the pre-trained CLIP model often leads to worse results due to hardware/process limitations (CLIP is trained with potentially the largest pool of images with a self-supervised process).

Motivation

- +What the issue with the CLIP:
 - + Manual prompt preparation, time inefficient.
 - +Unreliable results.
 - +Limited transferability to other datasets.
- +Can we provide a prompt engineering cost-effective way to produce good results with limited training?

Related work

- +Baseline:
 - +A photo of "label"
- +Manual prompt generation with fine-tuned selection(*):
 - +Introduce many prompt templates. (Requires a lot of manual work)
 - + Fine-tune the best subset selection of those templates.
- +Optimized prompt Generation (CoOp)(**):
 - +With a template, it finetunes the words of the template using a dictionary.
 - +Results are unreliable and result in random words and symbols.

Learning to Prompt for Vision-Language Models

11

Table 4 The nearest words for each of the 16 context vectors learned by CoOp, with their distances shown in parentheses N/A means non-Latin characters.

UCF101	DTD		fordPets	Ox	Food101		mageNet	Iı	#
meteorologist (1.5377)	(0.9433)	boxed	(2.5952)	tosc	(0.6752)	lc	(1.7136)	potd	1
exe (0.9807)	(1.0498)	seed	(1.2635)	judge	(0.5305)	enjoyed	(1.4015)	that	2
parents (1.0654)	(0.8127)	anna	(1.6099)	fluffy	(0.5390)	beh	(1.2275)	filmed	3
masterful (0.9528)	(0.9509)	mountain	(1.3958)	cart	(0.5646)	matches	(1.4864)	fruit	4
fe (1.3574)	(0.7111)	eldest	(2.2948)	harlan	(0.6993)	nytimes	(1.5863)	,	5
thof (1.2841)	(0.8762)	pretty	(1.3055)	paw	(0.5905)	prou	(1.7502)	0	6
where (0.9705)	(0.7872)	faces	(1.2215)	incase	(0.5390)	lower	(1.2355)	excluded	7
kristen (1.1921)	(1.8414)	honey	(1.5454)	bie	N/A		(1.4654)	cold	8
imam (1.1297)	(1.6680)	series	(1.1578)	snuggle	(0.5672)	minute	(1.6085)	stery	9
near (0.8942)	(1.5571)	coca	(1.8298)	along	(0.5529)	~	(1.3055)	warri	10
tummy (1.4303)	(1.2775)	moon	(2.3495)	enjoyment	(0.5659)	well	(1.5638)	marvelcomics	11
hel (0.7644)	(1.0382)	lh	(1.3726)	jt	(0.6113)	ends	(1.7387)	.:	12
boop (1.0491)	(0.9314)	won	(1.3198)	improving	(0.5826)	mis	N/A		13
N/A	(1.1429)	replied	(1.6759)	srsly	(0.6041)	somethin	(1.5015)	lation	14
facial (1.4452)	(1.3173)	sent	(1.3395)	asteroid	(0.5274)	seminar	(1.4985)	muh	15
during (1.1755)	(1.5198)	piedmont	N/A		N/A		(1.9340)	.#	16

Possible Approaches

- +Related work-specific areas of work:
 - + General prompts: Introduce a more diverse list of templates for selection (Manual work, limited robustness).
 - + Prompt optimization: Filter symbols and unreasonable constructions (Unpredictable results, requires heavy training).
- +Make class specific prompts:
 - + Gives potential uniqueness to each class (possibly more class specific during inference).
 - + Incorporates more information about the class.
 - + Requires access to prompts of each class.

2. Methodology

Prompt Engineering

Generic Prompts

- +Replace hard labels with meta-level descriptions to improve robustness and generalization of CLIP.
- +Use automatically gathered labels to provide more **generic** and descriptive prompts to the model.
- +Avoid human-intensive techniques such as **manually** prepared sentences or learnable tokens.

Generic Prompts

- +Replace hard labels with meta-level descriptions to improve robustness and generalization of CLIP.
- +Use automatically gathered labels to provide more **generic** and descriptive prompts to the model.
- +Avoid human-intensive techniques such as **manually** prepared sentences or learnable tokens.

Data Source

The UMBC WebBase corpus is a dataset:

- +derived from 2007 by the Stanford WebBase project;
- +containing English paragraphs with over 3 billion words;
- +consists of text from **100 million** web pages from more than **50,000** websites;
- +extracted from textual content from HTML tags;
- +compressed, it is about 13GB in size.

Load ImageNetV2-1k images, Load UMBC prompts Format data into {Class1: {Prompt: Score}, Class2: {...}} Pre-process images (resize and normalize) Map images and text into shared feature space using CLIP with ViT-B/32 encoder Pass text-image pairs through CLIP for all 12 classes Evaluate performance

How we're making prompts

Transferability

Robustness

Generalization to new data:

- 4 Generic prompts generated show higher transferability and generalization to new datasets.
- + Generated prompts can be used to achieve good performance on different datasets without the need for manual adaptation.
- + Potentially captures more general features of the images, making it more robust to changes in data distribution and able to handle diverse datasets.

3. Experiments & Results

Setup

- +Model: Pre-trained CLIP (ViT-B/32)
- +Dataset: ImageNet v2 (Evaluation Set)

Hyperparameters:

- Length of prompts
- Prompt's number per class
- Filtering rules for final prompts

,		lma		lidation Su lasses)	ubset	ImageNet Validation Set		Random Images	
	Method	12 classes only		12 classes among 1000		1000 classes		12 classes only	
,		Тор-1	Тор-5	Тор-1	Тор-5	Тор-1	Тор-5	Тор-1	Тор-5
17	CLIP (ImageNet prompts)	92.50	100.00	60.83	79.17	55.93	83.40	100.00	100.00
/	CLIP (A photo of {})	93.00	100.00	52.50	75.83	51.92	78.80	100.00	100.00

Quantitative Results: 12 classes

\		lma		lidation Su lasses)	ubset	lmage Validati		Random Images	
111111	Method	12 class	classes only 12 cla		12 classes among 1000		1000 classes		ses only
<i>j</i>		Тор-1	Тор-5	Тор-1	Тор-5	Тор-1	Тор-5	Тор-1	Тор-5
	CLIP (ImageNet prompts)	92.50	100.00	60.83	79.17	55.93	83.40	100.00	100.00
/	CLIP (A photo of {})	93.00	100.00	52.50	75.83	51.92	78.80	100.00	100.00
	Ours (100p, 1 word)	94.17	100.00	35.83*	76.67*	-	-	98.33	100.00
	Ours (100p, 1 word, A photo of {})	94.17	100.00	63.33*	85.00*	-	-	98.33	100.00

	lma	\sim	lidation Su classes)	ubset	ImageNet Validation Set		Random Images	
Method	12 classes only		12 classes among 1000		1000 classes		12 classes only	
	Top-1	Тор-5	Тор-1	Тор-5	Top-1	Тор-5	Тор-1	Тор-5
CLIP (ImageNet prompts)	92.50	100.00	60.83	79.17	55.93	83.40	100.00	100.00
CLIP (A photo of {})	93.00	100.00	52.50	75.83	51.92	78.80	100.00	100.00
Ours (100p, 1 word)	94.17	100.00	35.83*	76.67*	-	-	98.33	100.00
Ours (100p, 1 word, A photo of {})	94.17	100.00	63.33*	85.00*	-	-	98.33	100.00
Ours (1000p, 1 word)	92.50	100.00	37.50*	80.00*	-	-	98.33	100.00
Ours (1000p, 1 word, A photo of {})	93.33	100.00	63.33*	88.33*	-	-	100.00	100.00

Method		ImageNet Validation Subset (100 classes)						
	100 class	ses only	100 classes	1000 classes				
	Top-1	Тор-5	Тор-1	Тор-5	Top-1	Top-5		
CLIP (ImageNet prompts)	84.9	97.2	59.3	85.6	55.93	83.40		
CLIP (A photo of {})	80.8	96.1	55.6	81.3	51.92	78.80		

Quantitative Results: 100 classes

Method		ImageNet Validation Subset (100 classes)					
	100 clas	ses only	100 classes	among 1000	1000 classes		
	Тор-1	Тор-5	Top-1	Тор-5	Top-1	Тор-5	
CLIP (ImageNet prompts)	84.2	97.3	58.3	85.7	55.93	83.40	
CLIP (A photo of {})	80.1	95.8	54.2	81.4	51.92	78.80	
Ours (100p, 1 word)	78.0	94.9	42.4*	76.0*	-	-	
Ours (100p, 1 word, A photo of {})	80.4	95.3	57.9*	84.0*	-	-	

	ImageNet Validation Subset (100 classes)					geNet tion Set
Method	100 class	es only	100 classes a	1000 classes		
	Top-1	Тор-5	Top-1	Top-5	Top-1	Тор-5
CLIP (ImageNet prompts)	84.2	97.3	58.3	85.7	55.93	83.40
CLIP (A photo of {})	80.1	95.8	54.2	81.4	51.92	78.80
Ours (100p, 1 word)	78.0	94.9	42.4*	76.0*	-	-
Ours (100p, 1 word, A photo of {})	80.4	95.3	57.9*	84.0*	-	_
Ours (100p, 2 words)	77.9	95.4	42.0*	73.9*	-	-
Ours (100p, 2 words, A photo of {})	79.3	95.2	59.4*	84.8*	-	-

Qualitative Results

Maximum similarity score for each class

4. Conclusion

Conclusion

- +The proposed idea indeed works;
- +The optimal prompt's length is 3-10 words;
- +The optimal prompt number per class is 100-1000 prompts;
- +The results can be further improved by tweaking and polishing the search pipeline;
- +The solution can work incredibly faster if optimized for multi-core processing;
- +The code will be released.

Future work

Future Work

- +Use all 1000 ImageNet classes;
- +Do better class names pre-processing (e.g., search by more common synonyms to find sentences easier);
- +Filter sentences in a better way (e.g., remove "and/or", etc.);
- +Check on other datasets (e.g., CIFAR, Fine-Grained datasets, etc.);
- +Pick Top-N prompts (e.g., top-10 %);
- +Consider a publication out of the project.

Thank you for attention