Zadanko z Grafów

WWI 2024 – grupy 2 i 2¹/₂ Dzień 0 – 14 sierpnia 2024

Michałek, młodzian pełen zapału i ambicji, znów stąpa po cienkiej linii zawieszonej nad przepaścią cyfrowej otchłani.

W sercu tej nieskończonej walki, gdzie gałęzie kodu splatają się w mroczne labirynty pełne tajemnic, stanął na polu bitwy z przeciwnikiem wzbudzającym wśród mu podobnych nieopisane poziomy trwogi – *Zadankiem z Grafów*.

Kod zadania:

Limit pamięci:

zad

512 MiB

Choć początkowo wydawało się, że zwycięstwo jest na wyciągnięcie ręki, że wystarczy tylko jeden błysk geniuszu, by rozwikłać ten węzeł gordyjski, złudzenie to rozpadło się w proch, gdy na ekranie, niczym runy wyryte w szkarłacie ujawniły się litery:

WA

– wizja rodem z najczarniejszych koszmarów. Michałek pojął bolesną prawdę swej sytuacji dopiero, gdy kadra, zacierając ręce w swym nieograniczonym okrucieństwie, bezlitośnie zakpiła z prośby o przekazanie testów – nie toczył walki z byle jakim błędem, lecz z zadankiem zaprojektowanym z premedytacją, by złamać jego ducha, zdusić każdą iskrę nadziei na triumf w brutalnym starciu z bezlitosną maszyną...

W tym właśnie momencie, zapisanym w księgach przeznaczenia każdego informatyka, Michałek, niczym cyberwojownik z minionych dziejów, zadecydował że zmierzy się z wyzwaniem, stanie na wysokości zadania, napisze testerkę, i odniesie upragniony *accept*. Spojrzenie w otchłań ujawniło, że zadanko na pewno kryje w sobie nieprzychylne pułapki, dlatego interesują go tylko testy najwyższej możliwej klasy. Twoim zadaniem jest wesprzeć Michałka w tej decydującej godzinie, pomagając mu generować losowe grafy o następujących własnościach:

Typ grafu	Opis grafu
1	Graf jest drzewem o <i>n</i> wierzchołkach
2	Graf jest "ścieżką" (drzewem o maksymalnym stopniu wierzchołka 2) o <i>n</i> wierzchołkach
3	Graf jest "gwiazdą" (drzewem o tylko jednym wierzchołku o stopniu większym od 1) o n wierzchołkach
4	Graf ma dokładnie <i>n</i> wierzchołków i <i>m</i> krawędzi
5	Graf jest kliką (każdą parę wierzchołków łączy krawędź) o <i>n</i> wierzchołkach
6	Graf jest kliką bez kilku krawędzi, o <i>n</i> wierzchołkach i <i>m</i> krawędziach
7	Graf jest grafem gęstym, około połowy rozmiaru kliki, o n wierzchołkach i m krawędziach
8	Graf jest DAGiem (skierowanym grafem bez cykli) o <i>n</i> wierzchołkach i <i>m</i> krawędziach
9	Graf jest drzewem binarnym o n wierzchołkach, gdzie i-ta "warstwa", poza ostatnią, ma 2^{i-1} wierzchołków
	(każdy wierzchołek oprócz korzenia ma ojca, i każdy wierzchołek ma maksymalnie dwóch synów)
10	Graf ma dokładnie n wierzchołków i m krawędzi, oraz k spójnych, każda o niezerowej liczbie krawędzi
	(wierzchołki znajdują się w jednej spójnej, wtedy i tylko wtedy, gdy istnieje pomiędzy nimi ścieżka)

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite t i c ($c \le 10$), oddzielone pojedynczym odstępem, oznaczające kolejno żądany typ grafu, oraz liczbę grafów tego samego typu do wygenerowania.

W każdym z kolejnych c wierszy znajdują się zapytania o wygenerowanie grafu.

Dla $t \in \{1, 2, 3, 5, 9\}$: każde zapytanie składa się z jednej liczby całkowitej n, oznaczającej liczbę wierzchołków w grafie. Dla $t \in \{4, 6, 7, 8\}$: każde zapytanie składa się z dwóch liczb całkowitych n oraz m, oddzielonych pojedynczym odstępem, oznaczających kolejno liczbę wierzchołków i liczbę krawędzi w grafie.

Dla t=10: każde zapytanie składa się z trzech liczb całkowitych n, m, oraz k, oddzielonych pojedynczymi odstępami, oznaczających kolejno liczbę wierzchołków, liczbę krawędzi, i liczbę spójnych w grafie.

Wyjście

Na wyjściu powinno znaleźć się c opisów grafów typu t, każdy oddzielony pojedynczym pustym wierszem.

Każdy opis powinien zaczynać się od wiersza zawierającego dwie liczby całkowite *n* i *m*, oddzielone pojedynczym odstępem, oznaczające odpowiednio liczbę wierzchołków i liczbę krawędzi w grafie.

Następnie opis powinien zawierać m wierszy, każdy zawierający po dwie oddzielone pojedynczym odstępem liczby całkowite a_i oraz b_i ($1 \le a_i$, $b_i \le n$) oznaczające, że między wierzchołkiem a_i i b_i istnieje krawędź.

Przykład

Wejście dla testu zad0:

	sjecie ala testa zaao.	_
4	2	
3	3	
3	2	

Wyjście dla testu zad0:

VV.	yjscie	ula	testu	zadu.			
3	3						
1	2						
2	3						
3	1						
3	2						
1	2						
3	2						

Ocenianie

Podzadanie	Ograniczenia	Limit czasu	Liczba punktów
1	$t = 1, 1 \le n \le 10^4$	3 s	10
2	$t = 2, 1 \le n \le 10^4$	3 s	10
3	$t = 3, 1 \le n \le 10^4$	3 s	10
4	$t = 4, 1 \le n \le 10^4, 0 \le m \le 10^4$	6 s	10
5	$t = 5, 1 \le n \le 500$	10 s	10
6	$t = 6, 1 \le n \le 500, m \ge n \cdot (n-1)/2 - 10$	10 s	10
7	$t = 7, 1 \le n \le 500, m \approx n \cdot (n-1)/4$	6 s	10
8	$t = 8, 1 \le n \le 10^4, 1 \le m \le 5 \cdot 10^4$	3 s	10
9	$t = 9, 1 \le n \le 10^4$	3 s	10
10	$t = 10, 1 \le n \le 10^3, 0 \le m \le 5 \cdot 10^4, 1 \le k \le 10$	3 s	10

