New Research Computing Facilities for Comp Sci.

Dr Paul Richmond

Overview

☐ The department has invested in HPC computing facilities □All hosted within ShARC ☐ Private DCS access ☐ Full ShARC software suite and support ☐Big memory nodes ☐ Scalable ML with Apache Spark □ Suited for problems which require large in memory computation ☐ A GPU Supercomputing system in a box (DGX-1) ☐ Deep Learning Machine... ☐ Much faster at training DL Networks

Big Memory Nodes

- □3 x Dell R730 nodes. Each has;
 - ☐ 768GB DDR4 RAM,
 - □OmniPath connection (100Gb/s),
 - ☐ Xeon E5-2630 v3s (AVX2, FMA, 16-core)
- ☐ 48GB/core vs 4GB/core for standard ShARC nodes.

- □Currently being tested
- ☐ Used on Scalable ML course

The DGX-1

- ☐ Single Node (custom built)
 - ■8 x NVIDIA P100 GPUs (16GB each)
 - □Dual 20-core Intel Xeon E5-2698 v4
 - 2.2Ghz
 - **□**512GB RAM
- ☐ Huge amount of performance
 - □170 TFLOPS
 - □Number 1 spot in top500 in 2004

DGX-1 Use Cases

- ☐ Deep Learning
- ☐ Deep Learning
- ☐ Deep Learning
- ☐ Deep Learning
- **U**...
- ☐GPU Computing

Why Deep Learning on GPUs

- ☐ Training Deep Learning Network = Matrix Multiplications
 - ☐GPUs are fantastic at this
 - □Addition of fast memory bandwidth avoids this being memory bound
- □DL does not require high precision
 - ☐GPUs have optimised FP16 performance
- ☐ Training can be distributed
 - ☐You can get near linear speedups by using more GPUS

DGX-1 Special DL Use Cases

- ☐ Bigger data sets
 - ☐Get results faster
 - ☐ Distribute between the 8 GPUs on the node
- ☐ Bigger Networks
 - ■NVLink between the GPU devices
 - ☐ up to 12x faster than PCle
- □Up to 732GB of addressable space
 - □ virtually unified

NVIDIA® NVLink™ Hybrid Cube Mesh

Deep Learning Platforms & Frameworks

☐Supported on ShARC ☐ Theano — Python, low-level ☐Tensorflow – Python, lowlevel with some built-in ML/DL features and visualiser ☐ Caffe — High-level, CLI, C++ with Python and Matlab interface ☐Torch — High-level, LUA interface

- ☐ High-level Wrappers
 - ☐ Keras Theano & Tensorflow
 - ☐ Lasanga (for Theano)
 - □sklearn-theano
 - □DIGITS GUI for Caffe and Torch **Training**

Let me at it...

- ☐ Available to all Comp Sci staff and students □ShARC access ☐ Need to be on the list ☐ See ShARC docs for software guidance (http://docs.hpc.shef.ac.uk/en/latest) **□**Big Memory Nodes ☐ Details soon... □DGX-1 (https://github.com/RSE-Sheffield/GPUComputing) ☐ Request software and updates (via GitHub issue tracker) ☐ Ask for help (via GitHub issue tracker) ☐1 to 1 support ☐RSE Support ☐ EPSRC want to see specialist SE and support costed in this way
- □All queries: <u>rse@shef.ac.uk</u>

