Propagação e Radiação de Ondas Eletromagnéticas

2023/2024

Análise Circuitos AC; Circuitos Ressonantes

- 1) Revisão de álgebra complexa
 - Represente cada um dos seguintes complexos no plano e converta-os para representação polar.

$$A = 5 + j2$$
; $B = 2 - j3$; $C = -1 - j5eD = -3 + j3$;

- b) Realize as seguintes operações sobre os complexos anteriores:
 - i. Soma e subtração: A+B, A-B;
 - ii. Multiplicação e divisão: A x B e A/B. A multiplicação e divisão devem ser efetuadas usando dois métodos: O método algébrico tradicional e usando a representação polar.

[a)
$$A = 5.39 e^{j0.38}$$
, $B = 3.61 e^{j0.98}$, $C = 5.10 e^{j1.77}$, $D = 4.24 e^{j2.36}$; b) $AxB = 16 - j11$; $A/B = 0.31 + j1.46$]

- 2) Esboce graficamente em função da frequência:
 - a) A reactância de um condensador.
 - b) A reactância de uma bobina.
 - c) A reactância de um circuito constituído por uma bobina e um condensador em série.
 - d) A reactância de um circuito constituído por uma bobina e um condensador em paralelo.
- 3) Considere as seguintes impedâncias complexas $Z_1 = 100 + j 300 \Omega$ e $Z_2 = 50 j 30 \Omega$. Calcule:
 - a) A impedância equivalente do paralelo: Z₁//Z₂.
 - b) Calcule a admitância equivalente de cada uma das impedâncias.
 - c) Calcule a admitância do paralelo.
 - d) Calcule a impedância do paralelo à custa da admitância anterior.

[a)
$$Z = 55.97 - j \ 20.75 \ \Omega$$
; b) $Y_1 = 1 - j \ 3 \ mS$; $Y_2 = 14.7 + j \ 8.8 \ mS$; c) $Y = 15.7 + j \ 5.8 \ mS$]

- 4) Considere uma carga Z_L constituída por uma resistência de 100 Ω em série com um condensador de 10 pF. Determine a uma frequência de 100 MHz:
 - a) A impedância de carga ZL.
 - b) O valor da resistência R_{II} e da capacidade C_{II} que constituem um circuito paralelo equivalente a Z_L a esta frequência.
 - c) A indutância L_s a colocar em série com Z_L que torna o circuito ressonante.
 - d) A indutância L_P a colocar em paralelo com Z_L que torna o circuito ressonante.
- [a) $Z_L = 100 j$ 159.2 Ω ; b) $R_{II} = 353.3 \Omega$; $C_{II} = 7.2 pF$; c) $L_s = 253.3 nH$; d) $L_p = 353.3 nH$]

5) Considere o circuito da Figura 1 alimentado por um gerador sinusoidal de tensão $V_g=1\cos(\omega t)$ V de impedância interna $Z_g=50~\Omega$. Assumindo $C=\frac{100}{2\pi}$ pF, $L=\frac{1}{2\pi}$ μ H e R=75 Ω e a frequência do gerador de 50, 100 e 200 MHz.

Figura 1 Circuito com LC série em série

- a) Calcule a impedância da bobina e do condensador. Resp: $Zc=-j200; -j100; -j50 \Omega; ZL=+j50; +j100; +j200 \Omega$
- b) Calcule o fasor corrente, **I**, no circuito. Resp: I=3.3+j3.9; 8.0+j0; 3.3-j3.9 (mA)
- c) Calcule o fasor tensão aos terminais da resistência de 75 Ω . Resp: V_{out} =0.246+j0.295; 0.600+j0; 0.246-j0.295 (V)
- d) Represente o fasor tensão interna do gerador e os 3 fasores de corrente (alínea b) num plano complexo. Compare a corrente nos três casos anteriores (alínea b). Resp: Em avanço a 50 MHz (impedância com reactância capacitiva); a 100 MHz em fase com a tensão do gerador (ressonância) e máxima; em atraso a 200 MHz (impedância com reactância indutiva).
- e) Esboce em função do tempo a tensão do gerador e a corrente a cada uma das frequências.
- f) Calcule a potência dissipada na resistência de 75 Ω por dois métodos distintos: usando os fasores tensão e corrente ($P = Real(V.I^*)$) e usando apenas a corrente. Resp: P = 2; 4.8; 2 (mW)
- g) Diga qual a resistência externa R (que deverá substituir 75 Ω) e a frequência (para os valores de C e L anteriores) que conduzem à máxima transferência de potência do gerador ao circuito. Resp: $R=50~\Omega$ (impedância complexa conjugada da impedância do gerador) e frequência angular de ressonância $\omega_0=\frac{1}{\sqrt{LC}}$ (ou $f_0=100~MHz$).
- h) Como classificaria este circuito em termos de resposta em frequência se a saída do circuito se realizasse aos terminais da resistência externa? *Resp: Filtro Passa-banda*
- 6) Considere o circuito da Figura 2 alimentado por um gerador de tensão $V_g = 1 V$.

Figura 2 Circuito com LC paralelo em paralelo

- a) Escreva a expressão para a impedância do paralelo L//C, determine a frequência de ressonância f_{Res} em função de L e C e esboce graficamente a impedância deste paralelo em função da frequência.
- b) Determine a função de transferência $H(\omega)=V_R(\omega)/Vg$ onde V_R é a tensão na resistência R_L (assuma $R_L=R_g$). $Resp: H(\omega)=\frac{L\omega}{2L\omega+jR(\omega^2CL-1)}$

- c) Calcule o valor de C para uma frequência de ressonância paralelo de 100 MHz sabendo que L= 10 nH e repita o processo para L=5 nH. *Resp: C=253.3 pF e C=506.6 pF*
- d) Identifique a situação em que é entregue máxima potência à carga R_L e calcule essa potência. *Resp: P=5 mW*
- e) Represente graficamente a função de transferência em Matlab até 6 GHz para os dois casos anteriores. Reserve um gráfico para a resposta em amplitude (dB) em função da frequência num gráfico semi-logarítmico em x (semilogx) e um segundo gráfico para a resposta de fase.
- f) Como classificaria este circuito do ponto de vista de um filtro?
- 7) Considere o circuito da Figura 3.

Figura 3 Circuito com LC paralelo em série

- a) Deduza a função de transferência $H(f) = V_{out}(f)/Vg$ onde V_{out} é a tensão aos terminais de R_L . Assuma $R_L = R_g$.
- b) Identifique a condição ou condições para as quais a potência dissipada em RL é máxima.
- c) Que tipo de filtro realiza este circuito?
- 8) Considere o circuito da Figura 4 e os respetivos equivalente série e paralelo.

Figura 4 Circuito e equivalente série e paralelo

- a) Determine o valor nominal dos componentes do circuito série equivalente em função de R_L, C₁ e C₂ e da frequência angular de trabalho ω_1 . Resp: $Z = \frac{R}{1+\omega^2C_2^2R^2} + \frac{1}{j\omega C_1} \left[1 + \frac{\omega^2C_2C_1R^2}{1+\omega^2C_2^2R^2}\right]$ $R_{serie} = \frac{R}{1+\omega^2C_2^2R^2}$, $C_{Serie} = \frac{C_1}{1+\omega^2C_2^2R^2}$.
- b) Determine o valor nominal dos componentes do circuito paralelo equivalente em função de R_L , C_1 e C_2 e da frequência angular de trabalho ω_1 .
- c) Calcule o valor nominal dos componentes dos circuitos equivalentes para 100 MHz, R_L=50 Ω e C₁=C₂=30 pF. Resp: R_{serie}=26.5 Ωe C_{serie}=20.4 pF; R_{paralelo}=256.4 Ωe C_{paralelo}=18.3 pF.
- d) Determine o valor da indutância L a colocar em série com o equivalente série para conseguir

- a ressonância do circuito para f=100 MHz. Qual a impedância do circuito equivalente a esta frequência? Resp: Lserie=124.1 nH (circuito série) e a impedância será uma resistência de R=Rserie=26.5 Ω
- e) Repita a alínea anterior para o circuito paralelo. Resp: 138.4 nH e a impedância será uma resistência R=R_{paralelo}= 256.4 Ω(circuito paralelo).
- 9) Esboce o esquema genérico de um filtro com vários estágios, alternando circuitos L- C série e L-C paralelo, do tipo:
 - a) Passa-banda.
 - b) Rejeita-banda.
- 10) Desenvolva uma script Matlab para, dada uma indutância L e uma capacidade C, calcule:
 - a) A frequência de ressonância, f_r , do circuito LC.
 - b) Represente graficamente a resposta em frequência de um filtro passa-banda, entre uma frequência 3 décadas abaixo e 3 décadas acima da frequência de ressonância, admitindo o filtro atacado por um gerador de impedância interna $Z_g=50~\Omega$ e terminado por uma carga de $R_L=50~\Omega$.