Projekt zaliczeniowy

Patryk Blacha, Karolina Nitsch

2025-01-30

Wstęp

Projekt polegał na opracowaniu statystycznym wyników porównania działania wybranych algorytmów minimalizacji stochastycznej. Do porównania wybraliśmy:

- Algorytmy:
 - Poszukiwanie przypadkowe (Pure Random Search, PRS)
 - Algorytm genetyczny (GA) implementacja z pakietu ecr dostępnego w CRAN
- Funkcje:
 - Alpine01 $(f_{\min} = 0)$
 - Alpine
02 ($f_{\min}(n) \approx -2.18277 \cdot 2.80813^{n-1}$, n liczba wymiarów)

Wyniki

Alpine01 2D

PRS:

• średnia: 0.0690072

wartość najmniejsza: 0.0021416
wartość największa: 0.2803454

mediana: 0.0444809dolny kwartyl: 0.0225754górny kwartyl: 0.0987503

GA:

• średnia: 0.004257

wartość najmniejsza: 1.351649e-07
wartość największa: 0.0397486

• mediana: 0.0016337

dolny kwartyl: 4.848291e-04górny kwartyl: 0.0041466

Alpine01 10D

PRS:

• średnia: 9.7843879

wartość najmniejsza: 4.8921031wartość największa: 12.9152699

mediana: 10.0507467dolny kwartyl: 9.1524957górny kwartyl: 10.6839559

GA:

• średnia: 3.2833722

wartość najmniejsza: 1.2381581wartość największa: 5.655311

mediana: 3.4068332dolny kwartyl: 2.3548123górny kwartyl: 4.0155272

Alpine01 20D

PRS:

• średnia: 28.9029524

wartość najmniejsza: 22.6738747wartość największa: 35.3698332

mediana: 28.9070256dolny kwartyl: 26.6246978górny kwartyl: 31.1696377

GA:

• średnia: 10.5712228

wartość najmniejsza: 5.2486543wartość największa: 14.8307543

mediana: 10.6032982dolny kwartyl: 9.3697654górny kwartyl: 11.9216801

Alpine02 2D

PRS:

• średnia: -6.0698837

wartość najmniejsza: -6.1287558
wartość największa: -5.9019024

mediana: -6.0813313
dolny kwartyl: -6.1146802
górny kwartyl: -6.0570271

GA:

• średnia: -6.1217208

wartość najmniejsza: -6.1295039
wartość największa: -6.0804494

mediana: -6.1291978dolny kwartyl: -6.1295009górny kwartyl: -6.1174882

Alpine02 10D

PRS:

• średnia: -903.4830969

wartość najmniejsza: -3969.5109317
wartość największa: -287.5261382

• mediana: -667.1008579

dolny kwartyl: -1027.5745228górny kwartyl: -468.0355977

GA:

• średnia: -1158.8920016

wartość najmniejsza: -4110.1045545
wartość największa: -185.6856338

mediana: -800.5969163dolny kwartyl: -1356.8480057

• górny kwartyl: -492.3344757

Alpine02 20D

PRS:

• średnia: -3.514881e+04

wartość najmniejsza: -4.333258e+05
wartość największa: -3.115338e+03

mediana: -1.679838e+04
dolny kwartyl: -3.798711e+04
górny kwartyl: -9.999615e+03

GA:

• średnia: -1.25902e+05

wartość najmniejsza: -3.58297e+06
wartość największa: -1.66068e+03

- mediana: -3.175866e+04 - dolny kwartyl: -7.913689e+04

• górny kwartyl: -1.350041e+04

Histogramy

Alpine01 2D, PRS

Alpine01 2D, GA

Znalenione minimum

Alpine01 10D, PRS

Alpine01 10D, GA

Alpine01 20D, PRS

Alpine01 20D, GA

Alpine02 2D, PRS

Alpine02 2D, GA

Alpine02 10D, PRS

Alpine02 10D, GA

Alpine02 20D, PRS

Alpine02 20D, GA

Wykresy pudełkowe

Funkcja Alpine01, 2D

Funkcja Alpine01, 10D

Funkcja Alpine01, 20D

Funkcja Alpine02, 2D

Funkcja Alpine02, 10D

Funkcja Alpine02, 20D

T testy

Dla hipotezy zerowej twierdzącej że średnie są sobie równe

Funkcja Alpine01, 2D

```
##
## Paired t-test
##
## data: alpine01prs2D and alpine01ga2D
## t = 6.8048, df = 49, p-value = 0.00000001331
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.04562829 0.08387201
## sample estimates:
## mean difference
## 0.06475015
```

Funkcja Alpine01, 10D

```
##
## Paired t-test
##
```

```
## data: alpine01prs10D and alpine01ga10D
## t = 22.47, df = 49, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 5.919608 7.082423
## sample estimates:
## mean difference
## 6.501016</pre>
```

Funkcja Alpine01, 20D

```
##
## Paired t-test
##
## data: alpine01prs20D and alpine01ga20D
## t = 33.604, df = 49, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 17.23546 19.42800
## sample estimates:
## mean difference
## 18.33173</pre>
```

Funkcja Alpine02, 2D

```
##
## Paired t-test
##
## data: alpine02prs2D and alpine02ga2D
## t = 6.4609, df = 49, p-value = 0.0000000454
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.03571393 0.06796025
## sample estimates:
## mean difference
## 0.05183709
```

Funkcja Alpine02, 10D

```
##
## Paired t-test
##
## data: alpine02prs10D and alpine02ga10D
## t = 1.6992, df = 49, p-value = 0.09563
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -46.65886 557.47667
## sample estimates:
## mean difference
## 255.4089
```

Funkcja Alpine02, 20D

```
##
## Paired t-test
##
## data: alpine02prs20D and alpine02ga20D
## t = 1.2644, df = 49, p-value = 0.2121
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -53483.91 234990.32
## sample estimates:
## mean difference
## 90753.21
```

Wniosek:

GA okazało się istotnie lepsze dla funkcji Alpine01 we wszystkich badanych wymiarach. Dla funkcji Alpine02 istotną różnicę odnotowaliśmy jedynie dla 2 wymiarów. Podsumowując na podstawie przeprowadzonych testów można stwierdzić że algorytm genetyczny(GA) w większośći przypadków osiąga lepsze wyniki niż metoda czysto losowa(PRS).