Prendre les bonnes décisions avec les Processus markoviens décisionnnels

Tiffany Cherchi

Doctiss 2019, Montpellier

Modèle décisionnel Formalisme Problème d'optimisation Résultats numériques Conclusions un Résultats numériques

Le quotidien des doctorant.e.s

Modèle décisionnel Formalisme Problème d'optimisation Résultats numériques Conclusion

Le quotidien des doctorant.e.s

Modèle décisionnel Formalisme Problème d'optimisation Résultats numériques Conclusion

Le quotidien des doctorant.e.s

Définition d'un MDP

Un processus markovien décisionnel est défini par :

- L'ensemble des états. $\mathbb{X} = \{ biblio, research, publish, relax, sleep \}.$
- L'ensemble des actions. $\mathbb{A} = \{ relax, study, sleep \}.$
- La fonction de récompenses R à valeurs réelles dépendant du couple ($\acute{e}tat x$, action a).
- ▶ Un noyau de transition $Q(\cdot \mid x, a)$ qui permet de calculer les transitions aléatoires du système lorsque celui-ci se trouve dans l'état x et que l'action a est choisie.

décisionnel Formalisme Problème d'ontimisation Résultate numériques

Construction du processus

- Comment choisir ma suite d'actions?
- ▶ Quelle meilleure *récompense cumulée* puis-je espérer obtenir?

èle décisionnel Formalisme Problème d'optimisation Résultats numériques Conclusions

Qu'est-ce qu'une politique?

	Biblio	Research	Publish	Relax	Sleep
Step 1	a _{1,1}	a _{,21}	a _{1,3}	a _{1,4}	a _{1,5}
Step 2	$a_{2,1}$	a _{2,2}	a _{2,3}	a _{1,4}	a _{1,5}
Step 4	$a_{3,1}$	$a_{3,2}$	a _{3,3}	$a_{1,4}$	$a_{1,5}$
Step N	$a_{N,1}$	$a_{N,2}$	a _{N,3}	$a_{N,4}$	a _{N,5}

Table - Politique à horizon fini N.

Problème de contrôle optimal

La récompense totale partant de l'état x et suivant la politique π jusqu'à l'horizon N est

$$v_N(\pi,x) = \mathbb{E}\Big[\sum_{n=0}^N R(x_n,a_n) \mid \pi, x\Big].$$

Le problème est de **maximiser**, sur l'ensemble des politiques admissibles Π , la fonction :

$$\pi \to v_N(\pi, x).$$

L'optimum est donné par : $v(x) = \sup v_N(\pi; x)$.

La politique $\pi^* \in \Pi$ est *optimale* si elle vérifie $V_N(\pi^*, x) = V(x)$.

Programmation dynamique

Algorithme 1: Programmation dynamique

```
Entrées: États X, actions A, transitions Q, Récompenses R
  début
        pour tout x \in X faire
              v[N+1,x]=0
3
        pour k de N à 0 faire
4
               pour tout x \in \mathbb{X} faire
5
                    v[k,x] = \max_{a \in \mathbb{A}(x)} \left[ \frac{R(x,a)}{k} + \sum_{y \in \mathbb{X}} v[k+1,y]Q(y \mid x,a) \right]
6
                    \pi[k,x] = \underset{a \in \mathbb{A}(x)}{\operatorname{argmax}} \left[ \frac{R(x,a) + \sum_{x \in \mathbb{R}} v[k+1,y]Q(y \mid x,a)}{R(x,a)} \right]
7
         retourner v_0, \pi^*
```

ele décisionnel Formalisme Problème d'optimisation Résultats numériques Conclusions

Résultats numériques

	Biblio	Research	Publish	Relax	Sleep
R max	6	8	11	-3	-1
Policy					
Step 1 Step 2 Step 3	Study Relax Relax	Study Study Relax	Sleep Sleep Sleep	Study Study Study	Study Study Study

Table − Récompense et politique optimales, pour un horizon N=3

décisionnel Formalisme Problème d'optimisation Résultats numériques Conclusions

Vérifions:

lèle décisionnel Formalisme Problème d'optimisation Résultats numériques Conclusions

Résultats numériques

	Biblio	Research	Publish	Relax	Sleep
R max	7	7	16	4	6
Policy					
Step 1 Step 2 Step 3 Step 4 Step 5	Study Study Study Relax Relax	Study Study Study Study Relax	Sleep Sleep Sleep Sleep Sleep	Study Study Study Study Study	Study Study Study Study Study

Table – Récompense et politique optimales, pour un horizon N=5

lécisionnel Formalisme Problème d'optimisation Résultats numériques Conclusions

Conclusions

- Outil pour modéliser la prise de décision séquentielle.
- Méthode numérique pour résoudre le problème d'optimisation.

Dans le cadre de ma thèse

- ► Thèse Cifre avec l'entreprise Thales.
- Application à de l'optimisation de maintenance.

ole décisionnel Formalisme Problème d'optimisation Résultats numériques Conclusions

Évolution de la Maintenance

décisionnel Formalisme Problème d'optimisation Résultats numériques Conclusions

Problématique industrielle

Modéliser la dynamique d'équipements

- à plusieurs composants, et plusieurs états,
- requis pour des missions, sujets à des pannes aléatoires,
- $\mathbb{X} = \{x = (e_i, r_i); e_i \in \{\text{stable}, \text{dégradé}, \text{panne}\}, r_i \in \mathbb{R}^+\}.$

Trouver une politique de maintenances ..

- quelle action : mission / atelier (entretenir ou remplacer)?
- ► quand?

.. qui optimise un certain critère

- minimiser coûts de maintenance
- maximiser la disponibilité

Problèmes: Espace d'états infini, et noyau non explicite :

bilemes. Espace d'états minn, et noyau non explicité.

-tc[Red] PROGRAMMATION DYNAMIQUE

décisionnel Formalisme Problème d'ontimisation Résultats numériques Conclusions

Merci de votre attention!

Tiffany Cherchi
Doctiss 2019, Montpellier

