Mathematical Analysis. Assignment 8. Definite Integral & Its Applications

- 1. Calculate the integral $\int_{0}^{\pi/2} \sin x \, dx$ as a limit of integral sums.
- 2. Prove that Dirichlet function $D(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q} \end{cases}$ is not integrable on any interval on the real line.
- 3. Compare the integrals:

(a)
$$\int_{0}^{\pi/2} \frac{\sin x}{x} dx$$
 and $\int_{0}^{\pi} \frac{\sin x}{x} dx$; (b) $\int_{1}^{2} \frac{dx}{\sqrt{1+x^2}}$ and $\int_{1}^{2} \frac{dx}{x}$.

- 4. Prove that changing the value of a function at one point of the interval does not change the value of the integral of this function over this interval.
- 5. Find the following derivatives: (a) $\frac{d}{dx} \int_{a}^{b} \sin x^{2} dx$; (b) $\frac{d}{da} \int_{a}^{b} \sin x^{2} dx$; (c) $\frac{d}{db} \int_{a}^{b} \sin x^{2} dx$; (d) $\frac{d}{dx} \int_{x^{2}}^{x^{3}} \frac{dt}{\sqrt{1+t^{4}}}$.

Answer: (a) 0; (b)
$$-\sin a^2$$
; (c) $\sin b^2$; (d) $\frac{3x^2}{\sqrt{1+x^{12}}} - \frac{2x}{\sqrt{1+x^8}}$.

- 6. Let f(x) be a continuous function on [-l; l]. Prove that
 - (a) if f(x) is odd then $\int_{-l}^{l} f(x) dx = 0$;

(b) if
$$f(x)$$
 is even then $\int_{-l}^{l} f(x) dx = 2 \int_{0}^{l} f(x) dx$.

7. Prove that for any function f(x) continuous on [0;1] the following equalities hold:

(a)
$$\int_{0}^{\pi/2} f(\sin x) dx = \int_{0}^{\pi/2} f(\cos x) dx$$
; (b) $\int_{0}^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx$.

- 8. Let f(x) be a periodic function with period T, continuous on the whole real line. Prove that $\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx$ for any real value of a.
- 9. Prove that $\int_{0}^{1} (1-x)^{m} x^{n} dx = \frac{m! n!}{(m+n+1)!}, m \in \mathbb{N}, n \in \mathbb{N}.$
- 10. Explain why the following equalities are incorrect:

(a)
$$\int_{-1}^{1} \frac{d}{dx} \left(\arctan \frac{1}{x} \right) dx = \arctan \frac{1}{x} \Big|_{-1}^{1} = \frac{\pi}{2};$$

(b)
$$\int_{0}^{2\pi} \frac{dx}{\cos^2 x(2+\tan^2 x)} = \frac{1}{\sqrt{2}} \arctan \frac{\tan^2 x}{\sqrt{2}} \Big|_{-1}^{1} = 0.$$

- 11. Prove that (a) $\sin 1 < \int_{-1}^{1} \frac{\cos x}{x^2 + 1} dx < 2 \sin 1$; (b) $\frac{2}{\pi} \ln \frac{\pi + 2}{2} < \int_{0}^{\pi/2} \frac{\sin x}{x(x+1)} dx < \ln \frac{\pi + 2}{2}$.
- 12. Calculate the following integrals: (a) $\int_0^1 \frac{x^2 dx}{x^6 + 1}$; (b) $\int_{0.75}^2 \frac{dx}{\sqrt{2 + 3x 2x^2}}$; (c) $\int_0^{0.5} \arcsin x \, dx$; (d) $\int_0^e \sin \ln x \, dx$;

(e)
$$\int_{-\pi}^{\pi} e^{x^2} \sin x \, dx$$
; (f) $\int_{-\pi/2}^{\pi/2} (\cos^2 x + x^4 \sin x) \, dx$; (g) $\int_{\pi/3}^{\pi/2} \frac{dx}{3 + \cos x}$; (h) $\int_{0}^{3} \arcsin \sqrt{\frac{x}{x+1}} \, dx$; (i) $\int_{0}^{e} x^2 \ln^2 x \, dx$.

Answer: (a) $\frac{\pi}{12}$; (b) $\frac{\pi}{2\sqrt{2}}$; (c) $\frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1$; (d) $\frac{1}{2}e(\sin 1 - \cos 1)$; (e) 0; (f) $\frac{\pi}{2}$; (g) $\frac{1}{\sqrt{2}}\left(\arctan\frac{1}{\sqrt{2}} - \arctan\frac{1}{\sqrt{6}}\right)$; (h) $\frac{4\pi}{3} - \sqrt{3}$; (i) $\frac{5e^3}{27}$.

13. Find the area of the domain bounded by lines $y = \ln(1+x)$, $y = -xe^x$ and x = 1.

Answer: $\ln 4 - \frac{2}{e}$.

14. Find the area of the domain bounded by parabola $y = x^2 + 4x + 9$ and two lines tangent to this parabola at points $x_1 = -3$ and $x_2 = 0$.

Answer: $\frac{9}{4}$.

15. A chord parallel to y-axis is drawn through a focus of a curve L (with a positive abscissa) given by (a) $\frac{x^2}{2} + y^2 = 1$, (b) $\frac{x^2}{16} - \frac{y^2}{9} = 1$. Find the area of a segment cut off by this chord.

Answer: (a) $\frac{\pi-2}{2\sqrt{2}}$; (b) $\frac{45}{4} - 12 \ln 2$.

16. Find the lengths of the following curves¹: (a) $y = \frac{x\sqrt{x+12}}{6}$, $-11 \leqslant x \leqslant -3$; (b) $y = \cosh x$, $0 \leqslant x \leqslant a$; (c) $y = \frac{x^2}{2} - \ln \frac{x}{4}$, $1 \leqslant x \leqslant 3$; (d) $x = (t^2 - 2) \sin t + 2t \cos t$, $y = (t^2 - 2) \cos t - 2t \sin t$, $0 \leqslant t \leqslant \pi$; (e) $x = a \cosh t$, $y = b \sinh t$, z = at, $0 \leqslant t \leqslant t_0$.

Answer: (a) $\frac{25}{3}$; (b) $\sinh a$; (c) $4 + \frac{\ln 3}{4}$; (d) $\frac{\pi^3}{3}$; (e) $\sqrt{a^2 + b^2} \sinh t_0$.

- 17. Find the volume of a solid obtained by rotating figure F around x-axis if
 - (a) F is bounded by $y = \sqrt{x}e^{-x}$, y = 0, x = a;
 - (b) F is given by inequalities $0 \leqslant y \leqslant \sqrt[4]{1 + e^{2x}}$, $\frac{1}{2} \ln 3 \leqslant x \leqslant \frac{3}{2} \ln 2$;
 - (c) *F* is bounded by y = x, $y = \frac{1}{x}$, y = 0, x = 2.

Answer: (a) $\frac{\pi}{4} (1 - e^{-2a} (1 + 2a));$ (b) $\pi + \frac{\pi}{2} \ln \frac{3}{2};$ (c) $\frac{5\pi}{6}$.

18. Find the volume of a solid obtained by rotating a figure bounded by $y = 2x - x^2$ and y = 0 around y-axis.

Answer: $\frac{8\pi}{3}$.

19. Find the area of a surface formed by rotating a curve around x-axis: (a) $y = \sqrt{x}$, $\frac{5}{4} \leqslant x \leqslant \frac{21}{4}$; (b) $y = \sqrt{x^2 + 1}$, $0 \leqslant x \leqslant \frac{1}{4}$.

Answer: (a) $\frac{98\pi}{3}$; (b) $\sqrt{2}\pi \frac{3+4\ln 2}{16}$.

20. Find the area of a surface formed by rotating a curve around y-axis: (a) $3x = 4\cos y$, $-\frac{\pi}{2} \leqslant y \leqslant 0$; (b) $x = a\arcsin\sqrt{\frac{y}{a}} + \sqrt{y(a-y)}$, $\frac{a}{4} \leqslant y \leqslant \frac{3a}{4}$.

Answer: (a) $\frac{\pi}{9}(20 + 9 \ln 3)$; (b) $\frac{\pi a^2}{6}(11 - 9\sqrt{3} + 2\pi(2\sqrt{3} - 1))$.

¹All parameters in this and further problems are positive.