Time-series Modeling, Analysis, Interface, and Insight from Entomological Electropenetrography

Auburn-USDA

Team: Zachary Traul (TL-S),

Devanshi Guglani,

Milo Knell,

Lillian Vernooy,

Mehrezat Abbas (TL-F)

Advisor: Prof. Gabriel Hope

Liaisons: Dr. Elaine Backus (USDA),

Dr. Anastasia Cooper (Auburn),

Dr. Kathryn Reif (Auburn)

Outline

01 Background

02 Project Goals

O3 Accomplishments

94 Future Work

Aphid

Sharpshooter

Mosquito

Pierce's Disease caused by Sharpshooters (University of California)

Aphid

Sharpshooter

Mosquito

We can't directly observe what the mouthparts are doing

Electropenetrography (EPG)

Leafhopper ready for EPG

EPG Circuit

EPG Recording

EPG Recording

EPG Recording

EPG Recording

EPG Recording

Our task: Automate EPG labelling and make it accessible

Deliverables

Train predictive ML models for waveform segmentation

- Explore approaches to automated EPG labeling
- Accurately label EPG recordings
- . Integrate seamlessly with GUI

Present it with an accessible user interface

- . Simple visualization of data
- User oversight of the automated labeling
- . Tools for manual labeling

Why ML?

- Labeling is a tedious process for humans
- For automated recognition, we need:
 - Consistency
 - Speed
- Makes it perfect for a ML model!

Why do they need a GUI?

- Windaq is inefficient and cumbersome
- Doesn't work with ML
- Not extendable
- Can't plug models in

Workflow

Visualization (data-to-user)

- . Labeled EPG data in time series
- Color-coded regions highlighted
- Overall modernized experience compared to Windaq

Characterization (user-to-data)

- . Apply the ML model to data
- . Adjust, delete, modify labels
- . Characterization without alterations to dataset

The Software

Supervised

Classification of

Insect

Data and

Observations

Opening Files

Probe Splitting

ML Labeling

Viewing & Editing

Chart Visuals

Saving Files

The Data

- Annotated EPG recordings
- 62 files
- 94 probes
- about 11 hours of probing data

Highly imbalanced data

L: searching for a blood vessel

M: sucking blood

W: withdrawal

Convolutions

Kernel

Input

Output

Convolutions

Kernel

Input

Output

What is a UNet

A Problem: Receptive Field

Adding Attention

The Best Model: UNet (+ Attention)

Pros:

- Can see a lot of the data at once (large receptive field)
- Powerful

Cons:

Can memorize the training data (overfitting)

The Best Model: UNet (+ Attention)

Accuracy: ~82%

F1 score by waveform type:

	J	K		M	Ν	V
UNet	0.88	0.67	0.83	0.87	0.32	0.62

The Best Model: UNet (+ Attention)

Observe barcodes

Post Processing

- Problem: "Barcodes"
- Solutions
 - Smoothing filter
 - Barcode cutter
 - o HMM
 - o HSMM
- Project for next interns

Example: HMM Postprocessor

Limitations

- Liaisons are experts in biology but not computer science
- Model output is never perfect, needs some manual adjustment
- Important to convey system limitations
 - Potential for negative impact on science if blindly trusted

Future Work

- User Interface
 - Make more comprehensive by integrating live view
 - Render long recordings more efficiently
 - Integrate post-processing
- Machine Learning
 - Other post-processing and data augmentation methods
 - Adapt models for other insects

Thank you!

Questions/comments/suggestions?

We'd love to touch on ML models we've tried or the project's future!

Acknowledgements

USDA (58-2034-3-445)

USDA (58-3022-4-034)

NSF (DBI - 2304787)