Ideal Efficiency Derivation

Helpful Hints

Begin with the T-V Diagram for an Ideal Cycle

- Label all work/heat interactions
- Plug into $1 / \eta = Qin / Wnet$
 - ENSURE you keep it in terms of 1/η to help math later on
- Four important terms
 - o Q12
 - W23 (work output)
 - W14 (work input)
 - Q23 (W23=Q23 -> in order to remain at T_H heat entering system must equal work leaving system)

Helpful Hints when Solving For Terms

- Q12
 - Must be in terms of R rather than Cv or Cp
 - For ideal gas: Cp = 1.4Cv
- W23 & W14
 - o W=∫PdV
 - Helpful relation: PV = mRT
 - Should result in natural logs -> utilize natural log rules for simplification
- Final result should be in terms of $\eta = [$]⁻¹