1 WHAT WE CLAIM IS: 2 3 1. A process for upgrading a Fischer–Tropsch feedstock which comprises 4 5 (a) recovering from a Fischer-Tropsch reactor a Fischer-Tropsch 6 wax fraction containing paraffins and a Fischer–Tropsch 7 condensate fraction, wherein the Fischer–Tropsch condensate 8 fraction contains alcohols boiling below about 370°C; 9 10 (b) contacting the Fischer-Tropsch condensate fraction with a 11 dehydration catalyst in a dehydration zone under dehydration 12 conditions selected to convert at least some of the alcohols 13 present in said fraction into olefins and recovering a first 14 intermediate effluent from said dehydration zone; 15 16 (c) pyrolyzing the Fischer-Tropsch wax fraction in a thermal cracking 17 zone under thermal cracking conditions pre-selected to crack 18 paraffins molecules in the Fischer-Tropsch wax to form olefins and collecting a second intermediate effluent from the thermal 19 20 cracking zone; 21 22 (d) passing the first and second intermediate effluents recovered 23 from steps (b) and (c) to an oligomerization zone containing an 24 oligomerization catalyst under oligomerization conditions to form 25 an oligomerization mixture having a higher molecular weight than either of said first and second intermediate effluent; 26 27 28 (e) hydrofinishing the oligomerization mixture in a hydrofinishing 29 zone; and 30 31 (f) recovering from the hydrofinishing zone a C₁₀ plus hydrocarbon 32 product.

1		
2	2.	The process of claim 1 wherein the C ₁₀ plus hydrocarbon product
3		comprises a lubricating base oil.
4		
5	3.	The process of claim 1 wherein the C ₁₀ plus hydrocarbon product
6		comprises diesel.
7		
8	4.	The process of claim 1 wherein naphtha is also recovered from the
9		hydrofinishing zone.
10		
11	5.	The process of claim 1 wherein at least a part of the oligomerization
12		mixture boiling below about 370°C is separated prior to hydrofinishing
13		and is recycled to the thermal cracking zone.
14		
15	6.	The process of claim 1 wherein at least part of the second intermediate
16		effluent boiling above about 290°C is passed to an isomerization zone
17		where it is contacted with an isomerization catalyst under isomerizing
18		conditions, whereby an isomerized effluent having a lowered pour point
19		is recovered.
20 21	7.	The process of claim 6 wherein the part of the second intermediate
22	1.	effluent that is sent to the isomerization unit includes a C_{20} hydrocarbon
23		fraction.
24		naction.
25	8.	The process of claim 6 wherein the isomerization catalyst contains an
26		intermediate pore SAPO.
27		·
28	9.	The process of claim 8 wherein the SAPO is selected from the group
29		consisting of SAPO-11, SAPO-31, and SAPO-41.
30		
31	10.	The process of claim 9 wherein the SAPO is SAPO-11.

1 11. The process of claim 6 wherein the isomerization catalyst contains an 2 intermediate pore zeolite. 3 12. The process of claim 11 wherein the intermediate pore zeolite is 4 selected from the group consisting of ZSM-22, ZSM-23, SSZ-32, 5 ZSM-35, and ZSM-48. 6 7 13. The process of claim 6 wherein the isomerized effluent is passed to the 8 hydrofinishing zone. 9 10 14. The process of claim 1 wherein the oligomerization mixture recovered 11 from the oligomerization zone has an average molecular weight at least 12 10 percent higher than either of said first and second intermediate 13 effluents. 14 15 15. The process of claim 14 wherein the oligomerization mixture recovered 16 from the oligomerization zone has an average molecular weight at least 17 20 percent higher than either of said first and second effluents. 18 19 16. The process of claim 15 wherein the oligomerization takes place in an 20 ionic liquid media. 21 22 17. The process of claim 1 including the additional step of removing 23 contaminants that will deactivate the oligomerization catalyst from the 24 first intermediate effluent prior to passing it into the oligomerization zone. 25 26 18. The process of claim 1 wherein the Fischer–Tropsch wax fraction is in 27 the vapor phase when it is pyrolyzed in the thermal cracking zone. 28 29 19. The process of claim 18 wherein the temperature in the thermal cracking

zone is within the range of from about 510°C to about 870°C.

30

31

2	20.	zone is within the range of from about 0 atmospheres to about
3		5 atmospheres.
4	21.	The process of claim 20 wherein the pressure in the thermal cracking
5		zone is within the range of from about 0 atmospheres to about
6		2 atmospheres.
7		
8	22.	The process of claim 1 wherein the thermal cracking zone is contained
9		in a continuous flow through reactor.
10	0.0	
11	23.	The process of claim 22 wherein steam is present in the thermal
12		cracking zone.
13	24	
14 15	24.	The process of claim 22 wherein the residence time of the wax fraction in the reactor is in the range of from shout 1.5 accords to shout
16		in the reactor is in the range of from about 1.5 seconds to about 500 seconds.
17		Jou seconds.
18	25.	The process of claim 24 wherein the residence time of the wax fraction
19	20.	in the reactor is in the range of from about 5 seconds to about
20		300 seconds.
21		
22	26.	The process of claim 1 wherein the cracking conversion in the thermal
23		cracking zone of the paraffins in the wax fraction is greater than 30% by
24		weight.
25		
26	27.	A process for increasing the yield of lubricating base oil from a Fischer-
27		Tropsch plant which comprises:
28		
29		(a) contacting a syngas with a Fischer–Tropsch catalyst under
30		Fischer-Tropsch reaction conditions pre-selected to yield a
31		Fischer-Tropsch product having an olefinicity of at least 20% by
32		weight;

•		
2	(b)	recovering from the Fischer–Tropsch product a Fischer–Tropsch
3		wax fraction containing paraffins and a Fischer–Tropsch
4		condensate fraction, wherein the Fischer–Tropsch condensate
5		fraction contains alcohols boiling below about 370°C;
6		
7	(c)	contacting the Fischer–Tropsch condensate fraction with a
8		dehydration catalyst in a dehydration zone under dehydration
9		conditions selected to convert at least some of the alcohols
10		present in said fraction into olefins and recovering a first
11		intermediate effluent from said dehydration zone;
12		
13	(d)	raising the temperature the Fischer–Tropsch wax fraction
14		sufficiently to vaporize the fraction;
15		
16	(e)	steam cracking the vaporized Fischer–Tropsch wax fraction in a
17		flow through reactor under thermal cracking conditions pre-
18		selected to achieve a cracking conversion of the paraffin
19		molecules in the Fischer–Tropsch wax of greater than 30% by
20		weight and collecting a second intermediate effluent from the flow
21		through reactor;
22		
23	(f)	passing the first and second intermediate effluents recovered
24		from steps (c) and (e) to an oligomerization zone containing an
25		oligomerization catalyst under oligomerization conditions to form
26		an oligomerization mixture having a higher molecular weight than
27		either of said first and second intermediate effluent;
28		
29	(g)	hydrofinishing the oligomerization mixture in a hydrofinishing
30		zone; and
31		

1		(h)	recovering from the hydrofinishing zone a lubricating base oil
2			product.
3			
4	28.	-	rocess of claim 27 wherein the temperature in the flow through
5 6		reacto	or is within the range of from about 510°C to about 705°C.
7	29.	The p	rocess of claim 27 wherein the pressure in the flow through reactor
8 9		is with	nin the range of from about 0 atmospheres to about 5 atmospheres.
10	30.	The p	rocess of claim 29 wherein the pressure in the flow through reactor
11 12		is with	nin the range of from about 0 atmospheres to about 2 atmospheres.
13	31.	The p	rocess of claim 27 wherein the residence of the wax fraction in the
14		reacto	or is in the range of from about 1.5 seconds to about 500 seconds.
15			
16	32.	-	rocess of claim 27 wherein the residence of the wax fraction in the
17 18		reacto	or is in the range of from about 5 seconds to about 300 seconds.
19	33.	The p	rocess of claim 27 wherein the cracking conversion in the thermal
20		cracki	ing zone of the paraffins in the wax fraction is greater than 50% by
21		weigh	ıt.
22			
23	34.	The p	process of claim 33 wherein the cracking conversion in the thermal
24		cracki	ing zone of the paraffins in the wax fraction is greater than 70% by
25		weigh	ıt.
26			
27	35.	The p	rocess of claim 27 wherein the olefinicity of the Fischer–Tropsch
28		conde	ensate fraction is at least 40% by weight.
29			
30	36.	The p	process of claim 35 wherein the olefinicity of the Fischer–Tropsch
31		conde	ensate fraction is at least 50% by weight.
32			

1	37.	The	process of claim 27 wherein the oligomerization takes place in a an
2		ionic	liquid media.
3			
4	38.	The	process of claim 27 further including the step of removing any
5		nonv	aporized Fischer–Tropsch wax prior to steam cracking the
6		vapo	rized Fischer–Tropsch wax in step (e).
7			
8	39.	The	process of claim 27 wherein the Fischer–Tropsch catalyst contains
9		coba	lt as an active metal.
10			
11	40.	The	process of claim 27 wherein the Fischer–Tropsch catalyst contains
12		iron a	as an active metal.
13			
14	41.	A pro	ocess for increasing the yield of olefins from a Fischer-Tropsch
15		plant	which comprises:
16			
17		(a)	contacting syngas with a Fischer–Tropsch catalyst under
18			Fischer-Tropsch reaction conditions pre-selected to yield a
19			Fischer-Tropsch product having an olefinicity of at least 20% by
20			weight;
21			
22		(b)	recovering from the Fischer–Tropsch product a Fischer–Tropsch
23			wax fraction containing paraffins;
24			
25		(c)	raising the temperature the Fischer–Tropsch wax fraction
26			sufficiently to vaporize the fraction;
27			
28		(d)	steam cracking the vaporized Fischer–Tropsch wax fraction in a
29			flow through reactor under thermal cracking conditions pre-
30			selected to achieve a cracking conversion of the paraffin
31			molecules in the Fischer–Tropsch wax of greater than 30% by
32			weight: and

1		
2		(e) collecting an effluent having increased olefin content from the flow
3		through reactor.
4		
5	42.	The process of claim 41 wherein the temperature in the flow through
6		reactor is within the range of from about 510°C to about 870°C.
7		
8	43.	The process of claim 41 wherein the pressure in the flow through reactor
9		is within the range of from about 0 atmospheres to about 5 atmospheres.
10		
11	44.	The process of claim 43 wherein the pressure in the flow through reactor
12		is within the range of from about 0 atmospheres to about 2 atmospheres.
13		
14	45.	The process of claim 41 wherein the residence time of the wax fraction
15		in the reactor is in the range of from about 1.5 seconds to about
16		500 seconds.
17		
18	46.	The process of claim 41 wherein the residence time of the wax fraction
19		in the reactor is in the range of from about 5 seconds to about
20		300 seconds.
21		
22	47.	The process of claim 41 wherein the cracking conversion in the thermal
23		cracking zone of the paraffins in the wax fraction is greater than 50% by
24		weight.
25		
26	48.	The process of claim 47 wherein the cracking conversion in the thermal
27		cracking zone of the paraffins in the wax fraction is greater than 70% by
28		weight.
29		
30	49.	The process of claim 41 wherein the olefinicity of the Fischer–Tropsch
31		condensate fraction is at least 40% by weight.
32		

1	50.	The process of claim 49 wherein the olefinicity of the Fischer–Tropsch
2		condensate fraction is at least 50% by weight.
3		
4	51.	The process of claim 41 wherein the Fischer–Tropsch catalyst is an iron-
5		based catalyst.
6		
7	52.	The process of claim 41 wherein the effluent having increased olefin
8		content recovered from the flow through reactor is passed to an
9		oligomerization zone wherein the olefins are contacted with an
10		oligomerization catalyst under oligomerization conditions and an
11		oligomerization product having increased molecular weight as compared
12		to the effluent is recovered.
13		
14	53.	The process of claim 52 wherein the oligomerization product is used to
15		prepare a lubrication base oil.
16		
17	54.	The process of claim 41 further including the step of removing any
18		nonvaporized Fischer–Tropsch wax prior to steam cracking the
19		vaporized Fischer-Tropsch wax in step (d).
20		
21	55.	The process of claim 41 wherein the Fischer–Tropsch catalyst contains
22		cobalt as an active metal.
23		
24	56.	The process of claim 41 wherein the Fischer–Tropsch catalyst contains
25		iron as an active metal.