

Triangles Ex 4.5 Q21 Answer:

It is given that, girl height = 90cm, speed = 1.2m/sec and height of lamp = 3.6m.

We have to find the length of her shadow after $4\,sec$

Let $\it AB$ be the lamp post and $\it CD$ be the girl.

Suppose DE is the length of her shadow.

Let DE = x

And

 $BD = 1.2 \times 4$

= 4.8 m

Now in $\triangle ABE$ and $\triangle CDE$ we have

$$\angle B = \angle D$$
 and $\angle E = \angle E$

So by AA similarly criterion $\triangle ABE \sim \triangle CDE$

$$\frac{BE}{DE} = \frac{AB}{CD}$$

$$\frac{4.8+x}{x} = \frac{3.6}{0.9} = 4$$

$$\Rightarrow 3x = 4.8$$

$$\Rightarrow x = 1.6$$

Hence the length of her shadow after 4 sec is 1.6 m.

Triangles Ex 4.5 Q22

Answer:

It is given that trapezium ABCD with $AB \parallel DC$. O is the point of intersection of AC and BD.

We have to prove that $\frac{OA}{OC} = \frac{OB}{OD}$

Now, in $\triangle AOB$ and $\triangle COD$

(Vertically opposite angles)

(Alternate angles)

∴ ΔΑΟΒ ΔCOD (AA Similarity)

Hence, $\frac{OA}{OC} = \frac{OB}{OD}$

(Corresponding sides are proportional)

Triangles Ex 4.5 Q23

Answer:

(1) It is given that $\triangle ABC$ and $\triangle AMP$ are two right angle triangles.

Now, in $\triangle ABC$ and $\triangle AMP$, we have

$$\angle MAP = \angle BAC$$
 (Given)

$$\angle AMP = \angle B = 90^{\circ}$$

 $\Delta ABC \sim \Delta AMP$ (AA Similarity)

(2) $\triangle ABC \sim \triangle AMP$

So,
$$\frac{CA}{PA} = \frac{BC}{MP}$$

(Corresponding sides are proportional)

******* END *******