(1) Veröffentlichungsnummer:

0 008 653

A₁

1

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 79102580.2

(2) Anmeldetag: 21.07.79

(51) Int. Cl.3: C 07 D 235/08

C 07 D 233/36, C 07 D C 07 D 235/18, C 07 D C 07 D 239/96, C 07 D C 07 D 413/12, A 61 K 07 D 233/36, C 07 D 233/56 07 D 235/18, C 07 D 239/88 07 D 239/96, C 07 D 249/18

31/41

A 61 K 31/415, A 61 K 31/505

- (30) Prioritāt: 28.07.78 DE 2833140
- (43) Veröffentlichungstag der Anmeldung: 19.03.80 Patentblatt 80/6
- Benannte Vertragsstaaten: AT BE CH DE FR GB IT LU NL SE
- (1) Anmelder: C.H. BOEHRINGER SOHN Postfach 200 D-6507 Ingelheim am Rhein(DE)
- (72) Erfinder: Schromm, Kurt, Dr. In der Dörrwies 35 D-6507 Ingelheim(DE)

- (72) Erfinder: Mentrup, Anton, Dr. Steinernstrasse 25 D-6508 Mainz-Kastel(DE)
- (72) Erfinder: Renth, Ernst-Otto, Dr. Frankenstrasse 11 D-6507 Ingelheim(DE)
- (2) Erfinder: Fügner, Armin, Dr. lm Hippel 31 D-6535 Gau-Algesheim(DE)
- (72) Erfinder: Streller, Ilse, Dr. Stromberger Strasse 6a D-6531 Dörrebach(DE)
- (S) N-Substituierte Heterocyclen, Verfahren zu ihrer Herstellung, diese Verbindungen enthaltende Arzneimittel und ihre Verwendung.
- (57) Die Erfindung betrifft neue Verbindungen der allgemeinen Formel

darin bedeuten Het:

n: eine ganze Zahl von 1 bis 4

R1: H oder Acyl,

R2: H, R1O, NHSO2R7, NHCOR8, NHCONHR8, NH-CH 2-C₆H₄-R₈, CH₂OH, CH₂SO₂R₇, CONHR₈, Halogen oder CN.

R₃: H, Halogen, R₇ oder OR₇ R₂ und R₃ gemeinsam auch:

R4: H, CH3 oder C2H6

Rs und Rs (die gleich oder verschieden sein können): H oder CH₃

R7: C1-C4-Alkyl

Ra: H oder C1-C4-Alkyl

Re: H, C1-C4-Alkyl oder gegebenenfalls durch Sauerstoff unterbrochenes C1-C4-Alkoxy

./. . .

Der Gegenstand der Erfindung ist in den Patentansprüchen gekennzeichnet.

Von den Verbindungen nach Anspruch 1 sind die in den Ansprüchen 2, 3 und vor allem 4 genannten besonders 5 hervorzuheben.

Zur Herstellung der neuen Verbindungen eignen sich die an sich bekannten Verfahren nach Anspruch 6. Beim Verfahren a) verwendet man Lösungsmittel, die unter den Reaktionsbedingungen ausreichend inert sind, z.B. Alkohole wie 10 Methanol, Äthanol, und übliche Hydrierungskatalysatoren, beispielsweise Palladium, Platin, Raney-Nickel. Als Reduktionsmittel verwendbare Hydride sind Natriumborhydrid und andere komplexe Hydride oder Diboran. Die Reaktionstemperatur liegt zwischen etwa 0°C und der Siedetemperatur 15 des Reaktionsgemischs. Sofern die zentrale (in der Seitenkette) enthaltene Aminogruppe oder die Substituenten R70 und/oder R₂ im Ausgangsstoff eine hydrogenolytisch abspaltbare Schutzgruppe, z.B. eine gegebenenfalls substituierte Benzylgruppe aufweisen, wird diese während oder 20 nötigenfalls nach der Reduktion der CO-Gruppe entfernt.

Die Ausgangsstoffe II gewinnt man beispielsweise durch Umsetzung von Aminen III mit Bromketonen IV in Lösungsmitteln wie Acetonitril oder Essigester in Gegenwart eines säureabfangenden Hittels wie Natriumcarbonat 25 oder Aminüberschuß:

$$\begin{array}{c} R_1^{10} \\ R_2 \\ R_3 \end{array} \qquad \begin{array}{c} R_4 \\ R_5 \\ HN - C - (CH_2)_n - Het \\ R_6 \end{array}$$
(III)

5

 $R_1^{'}$ bedeutet R_1 oder einen hydrogenolytisch abspaltbaren Rest wie Benzyl, $R^{'}$ bedeutet H oder einen hydrogenolytisch abspaltbaren Rest wie Benzyl, die übrigen Symbole sind wie oben definiert.

Bei Verfahren b) kann VI auch in Form eines Halbacetals eingesetzt werden, d.h. in Form von Verbindungen der Formel

$$R_1^0$$
 R_2
 R_3
 R_3

worin R_1 , R_2 und R_3 die oben angegebene Bedeutung haben und Alkyl für gegebenenfalls substituierte, vorzugsweise C_1 - C_6 -Alkylreste steht.

Die eventuell als Zwischenverbindungen auftretenden Schiffschen Basen VIII:

$$\begin{array}{c}
R_{1}O \\
R_{2}
\end{array}$$

$$\begin{array}{c}
CO-CH=N-C - (CH_{2})_{n}-Het \\
R_{6}
\end{array}$$
(VIII)

worin die einzelnen Symbole wie oben definiert sind, 5 können auch isoliert und dann der Reduktion unterworfen werden.

Als Reduktionsmittel werden komplexe Hydride, vorzugsweise Natriumborhydrid, oder Wasserstoff in Gegenwart
von Hydrierungskatalysatoren wie Platin, Palladium oder
10 Raney-Nickel verwendet.
Stellen R₁O und/oder R₂ phenolische OH-Gruppen
dar, die durch eine hydrogenolytisch abspaltbare Gruppe,
etwa Benzyl, geschützt vorliegen, werden diese Gruppen
nötigenfalls nach der Reduktion auf übliche Weise ent
15 fernt.
Die Amine IV sind beispielsweise zugänglich, indem die
Heterocyclen Het-H an der Aminogruppe mit Verbindungen

der Formel X: $^{15}_{15}$ $^{$

20 X: Chlor, Brom, Methyl-oder Tolylsulfonsäurerest;

B: funktionelle Gruppe, wie NO₂, Dibenzylamino oder Benzalamino, die durch katalytische Hydrierung oder Hydrolyse in die Aminogruppe umgewandelt werden kann in Gegenwart von Natriumhydrid in Lösungsmitteln wie Hexamethylphosphorsäuretriamid alkyliert werden und danach der funktionelle Rest B in die Aminogruppe übergeführt wird.

5 Die als Ausgangsstoffe dienenden Phenylglyoxale VI bzw. die entsprechenden Halbacetale VII können beispielsweise durch Oxidation der Acetophenone IX:

$$R_1^{O}$$
 CO-CH₃ (IX)

(R₁, R₂ und R₃ sind wie oben definiert) mit Selendioxid 10 in wässrigem Dioxan und Kristallisation aus Wasser oder Alkoholen erhalten werden.

Bei Verfahren c) erfolgt die Abspaltung der Schutzgruppen mit Wasserstoff und Hydrierungskatalysatoren wie Palladium, Platin, Raney-Nickel bei Temperaturen 15 zwischen O^OC und der Siedetemperatur des Reaktionsgemischs. Als Lösungsmittel dienen vorzugsweise niedere Alkohole, vor allem Nethanol.

Die Ausgangsstoffe XI können entsprechend Verfahren a) .
oder b) hergestellt werden. Eine andere Möglichkeit
20 besteht darin, in Verbindungen XII:

$$R_{1}^{'0}$$
 $R_{4}^{'1} = R_{5}^{'1}$
 $CH-CH-II - C - (CH_{2})_{n}-Het$
 $R_{3}^{''}$
 $R_{4}^{''} = R_{5}^{''}$
 $CH-CH-II - C - (CH_{2})_{n}-Het$
 $R_{6}^{''}$

worin n, Het, R', R' und R3 bis R6 die obige Bedeutung haben und R2 für Vorstufen von R2 gleich NH-CONH-R8, NHCOR8, NHSO2R7, LH-CH2-C6H4-R9 (z.B. NH2) oder gleich CH2OH, CONHR8 (z.B. COOC2H5) steht, nach üblichen Methoden die Vorstufen in die entsprechenden Gruppen R2 umzuwandeln.

So können aus Verbindungen XII und R₂ gleich NH₂, mit Kaliumcyanat Verbindungen XI mit R₂ gleich NHCONH₂ oder mit (R₈CO)₂O die Verbindungen mit R₂ gleich NH-COR₈ erhalten werden. Verbindungen mit R₂ gleich COOC₂H₅ ergeben durch Reduktion mit Lithiumaluminiumhydrid Verbindungen XI mit R₂ gleich CH₂OH, durch Umsetzung mit Aminen H₂NR₈ Verbindungen XI mit R₂ gleich CONHR₈.

Die erfindungsgemäßen Verbindungen sind als Arzneistoffe verwendbar. Sie haben insbesondere broncholytische, spasmolytische und antiallergische Wirkung und können daher bei Bronchitis und Asthma, bei Urticaria, Conjunktivitis, Heufieber und Erkältungskrankheiten angewendet werden, ferner als Relaxantien der Uterusmuskulatur, z.B. bei 20 Beschwerden vor der Geburt. Außerdem eignen sich die neuen Verbindungen zur Behandlung cardiovaskulärer Störungen wie Bluthochdruck, periphere Gefäßkrankheiten und Herzarrhythmien.

Zu erwähnen sind schließlich die hemmende Wirkung auf die Hagensekretion und die - vor allem antidepressive -Wirkung auf das Zentralnervensystem.

Hervorzuheben ist die starke und lange anhaltende 5 broncholytische Wirkung, die mit nur geringer Nebenwirkung auf Herz und Skelettmuskulatur verbunden ist.

Die Verbindungen der Formel I mit R₂ gleich CONHR₈ wirken blutdrucksenkend, während die übrigen Verbindungen die anderen angegebenen Wirkungen zeigen.

Die therapeutische Dosis ist abhängig von der verwendeten Verbindung, von der Art des Krankheitszustandes, von der Verabreichungsart und auch vom Körpergewicht, sofern nicht eine örtliche Ληwendung erfolgt.

Für einen Erwachsenen kommen die folgenden Dosierungen
pro Tag in Betracht:
Zur Broncholyse: oral 2-20 mg, inhalativ 0,1-1,5 mg,
subcutan 0,2-1,5 mg. Zur Uterusspasmolyse: oral 10-50 mg,
als Infusionslösung 0,1-1 mg in Ampullen mit 10 ml
Lösung. Zur Gefäßerweiterung können oral 20-100 mg, in
Form von Lösungen für die intramuskuläre Injektion
20-40mg, zur Blutdrucksenkung oral 200-1800 mg gegeben
werden.

Für die Verabreichung werden aus den erfindungsgemäßen Verbindungen die üblichen galenischen Zubereitungen hergestellt, z.B. Kapseln, Tabletten, Dragees, Lösungen, Suspensionen, Pulver, Crems, Salben, Emulsionen und Sprays. Bei der pulmonalen Gabe werden vorzugsweise Pulver mit einem Teilchendurchmesser von 0,5 bis 7 / m als Aerosol mit der Atemluft, gegebenenfalls auch mit zusätzlichen Treibgasen, in den Bronchialbereich gebracht.

Die parenterale Anwendung erfolgt bevorzugt in Form steriler isotonischer wässeriger Lösungen, während für die lokale Anwendung vor allem Lotionen, Crems, Salben, Emulsionen und Sprays dienen.

Die günstigen Wirkungsverhältnisse bei den erfindungsgemäßen Verbindungen werden durch die nachstehenden Daten belegt.

1. Bronchospasmolyse

Die Wirkung wurde an Meerschweinchen in Urethan-Narkose geprüft. Bestimmt wurde durch Körperplethysmographie die Beeinflussung des Acetylcholin-Bronchospasmus nach intravenöser und oraler Application. Außerdem wurde die Herzfrequenz kontrolliert.

15	Verbindung	Broncholy ED ₅₀ //g/ka intravenös,		Resorptions- verhältnis intra- oral/ venös
;	Tabelle Seite 41 4. Verbindung	1,2	7,6	6,3
20	Tabelle Seite 29 2. Verbindung	1,8	66	37
	Tabelle Seite 41 3. Verbindung	0,9	14	16
	Tabelle Seite 30 2. Verbindung	7,6	190	25
25	Beispiel 6	3,6	7	1,9
;	Tabelle Seite 43, 4. Verbindung	0,09	5,4	60
	Salbutamol	9,2	1000	109

Die erfindungsgemäßen Verbindungen zeigen ein hervorragendes Verhältnis zwischen intravenöser und oraler Wirkung. Der Einfluß auf die Herzfrequenz ist gleichzeitig gering. Außerdem ist die Toxizität so niedrig, daß sich eine beträchtliche therapeutische Breite ergibt; z.B. ist für die Verbindung nach Beispiel 6 die LD50 an der Maus i.v. 29 mg/kg, p.o. 330 mg/kg.

2. Uterusrelaxation

5

30

Die Uterusrelaxation wurde an narkotisierten Ratten untersucht. Bestimmt wurde die intravenöse ED₅₀ der Uterusrelaxation in 'ig/kg (50 % der geprüften Tiere reagieren) sowie die (unerwünschte) Zunahme der Herzfrequenz beim ED₅₀-Wert. Vergleichsverbindung ist Fenoterol

15	Verbindung	rela	rus- axation o[g/kg] v.	Zunahme der Herzfrequenz [Schläge/ min.]	Zunahme der Herzfrequenz im Vergleich zu Fenoterol
20	Tabelle Seite 2.Verbindun		0,82	19	1/2
	Tabelle Seite 2. Verbindu		0,76	18	1/2
	Tabelle Seite l. Verbindu		0,44	23	2/3
25	Tabelle Seite 5. Verbindu		0,5	18	1/2
	Fenoterol		0,45	36	1

Die Verbindungen gemäß der Erfindung bewirken somit bei Application der ED₅₀ Uterusrelaxation eine erheblich geringere Steigerung der Herzfrequenz als das Handelsprodukt Fenoterol.

Formulierungsbeispiele:

<u>Tabletten</u>

Zusammensetzung einer Tablette

	Wirkstoff gemäß der Erfindung	20	mg
5	kolloidale Kieselsäure	10	mg
	Milchzucker	118	mg
	Kartoffelstärke	60	mg
	Polyvinylpyrrolidon	6	mg
	Na-Celluloseglykolat	4	mg
10	Magnesiumstearat	2	m _f z
		220	mg

Ampullen

Zusammensetzung der Lösung pro Ampulle

	Wirkstoff ger	näß der	Erfindung	10 mg
	Sorbit			40 mg
15	destill. Was:	ser ad		30 ml

Suppositorien

Zusammensetzung pro Suppositorium

Wirkstoff gemäß der Erfindung	100 mg
Suppositorienmasse (Kakaobutter)	1600 mg
	1700 mg

Inhalationspulver

Pro Hartgelatine-Steckkapsel werden 0,5 mg Wirkstoff gemäß der Erfindung und 19,5 mg Lactose mit einem Teilchendurchmesser zwischen 0,5 und 7 µm eingefüllt.

- Die erfindungsgemäßen Wirkstoffe können auch mit bekannten Wirkstoffen kombiniert werden; für die broncholytische Anwendung z B. mit Theophyllinen, Parasympatholytika (z.B. Ipratropiumbromid), Sekretolytika (z.B. Bromhexin), muskulotropen
- 10 Spasmolytika (z.B. Papaverin), Corticosteroiden, Antiallergika. Bei den Uterusrelaxantien sind u.a. Kombinationen mit Corticoiden möglich.
 - Die erfindungsgemäßen Verfahren sind in den nachstehenden Beispielen näher erläutert.
- Die Ausbeuteangaben in den Tabellen stellen % der Theorie dar.

Zu Verfahren 1

Beispiel 1

30,5 g 2-Brom-p-benzyloxyacetophenon und 35 g 1-Aminopropylbenzimidazol werden in 150 ml Acetonitril 1 Stunde
bei 30 - 40° C gerührt. Nach dem Abtrennen des Hydrobromids wird die Mutterlauge mit 12 g Maleinsäure angesäuert
und das ausgefallene α-[3-(1-Benzimidazolyl)-propyl-amino]4-benzyloxyacetophenon -maleinat (Fp. 145 - 148° C) abgesaugt. Mit wäßrigem Ammoniak wird daraus die Base hergestellt, die man im 200 ml Alkohol mit Natriumborhydrid zu
1-(4-Benzyloxyphenyl)-2-[3-(1-benzimidazolyl)-propylamino]äthanol (Fp. 83 - 85° C) reduziert.

Durch katalytische Hydrierung von 7 g dieser Verbindung in 15 100 ml Methanol mit 1 g Palladiumkohle als Katalysator erhält man 4,5 g 1-(4-Hydroxyphenyl)-2-[3-(1-benzimidazolyl)-propylaminol-äthanol (Fp. 146 - 148°C, Ausbeute 83 % d.Th.), dessen Dihydrochlorid bei 184 - 185°C schmilzt.

Beispiel 2

17,5 g 2-Benzyloxy-5-bromacetyl-salicylamid, 17,6 g
1-(3-Aminopropyl)-1H-benztriazol, 6g Natriumcarbonat und
5 150 ml Essigester werden 1,5 Stunden refluxiert. Nach
dem Abtrennen der anorganischen Bestandteile wird die
Mutterlauge eingeengt, der Rückstand in 100 ml Acetonitril gelöst und mit 5 g Oxalsäure angesäuert. Das ausgefallene 1-[3-(3-Carbamoyl-4-benzyloxy-β-oxo-phenäthylamino)-propyl]-1-H-benztriazol-oxalat wird abgesaugt, mit
wäßrigem Ammoniak in die Base (Fp. 186 - 188° C) überführt und in 100 ml Xthanol mit Natriumborhydrid zu 1(3-Carbamoyl-4-benzyloxy-β-hydroxyphenäthylamino)-propyl]
-1-H-benztriazol reduziert.

Durch Hydrierung von 6 g dieser Verbindung in 100 ml Methanol bei 6 bar Druck und 40°C unter Zusatz von Palladiumkohle erhält man 3 g 1-[3-(3-carbamoyl-4,β-dihydroxyphenäthylamino)-propyl]-1-H-benztriazol (Fp. 154 - 155°C, Ausbeute 77,5 % d.Th.), dessen Cyclamat 20 bei 165°C schmilzt.

Beispiel 3

12,9 g 5-Bromacetylsalicylamid, 15,45 g 1-(3-Benzylamino-propyl)-3-methyl-chinazolin-2,4-dion, 6 g Natriumcarbonat und 300 ml Acetonitril werden 1,5 Stunden am Rückfluß gekocht. Nach dem Absaugen der anorganischen Bestandteile wird die Mutterlauge eingeengt, der Rückstand in 500 ml Methanol gelöst und nach Zugabe von 12 ml Benzylchlorid bei 6 bar und 60° C mit Palladiumkohle als Katalysator
10 hydriert. Nach Aufnahme von 2 Mol Wasserstoff wird die Hydrierung aufgearbeitet und das entstandene 1-[3-(3-Carbamoyl-β-oxo-4-hydroxyphenäthylamino)-propyl]-3-methyl-chinazolin-2,4-dion-hydrochlorid (Fp. = 253° C Zers.) isoliert.

Durch katalytische Hydrierung von 13 g dieser Verbindung in 250 ml Methanol/Wassergemisch 1:1 bei 6 bar Druck, 50°C mit Palladium als Katalysator erhält man 8 g l-[3-Carbamoyl-4-β-dihydroxyphenäthylamino)-propyl] -3-methyl-chinazolin-2,4-dion-hydrochlorid, dessen
 Schmelzpunkt 220 - 221°C beträgt. Ausbeute: 61,5 % d.Th.

Entsprechend den angegebenen Beispielen werden synthetisiert:

Formel	Ausbeute (%)	Salz mit	Schmelzpunkt in 0 C
но Си-си-си-си-си-си-си-м	88	2 x Malein- säure	178-180
но — сн-сн ₂ -ин-сн ₂ -сн ₂ -сн ₂ -и	61	Schwefel- säure X 2 H ₂ 0	199-202
но Сн ₂ -ин-сн ₂ -сн ₂ -сн ₂ -сн ₂ -сн ₂ -м	65	Schwefel- säure X 0,5 H ₂ 0	174-176 163 (Base)
сн ₃ но Сн-сн-сн-с-сн ₂ -сн ₂ -и	80	Ameisen- säure	158-160

Formel	Ausbeute (%)	Salz mit	Schmelzpunkt ino C
инсосн ₃ сн ₃ сн ₂ -ин-с-сн ₂ -сн ₂ -и	09	1,5 x Bern- steinsäure	154-156
но — cH - cH - c - cH - c - cH - c - cH - он c - сH - с - сH - с - сН - с - сН - с - сН - с - сН - с - с	83	2 × Malein- säure	137-140
NHS02CH3 HO CH-CH-CH2-CH2-CH2-N 0	09	Methansulfo- säure	178-180
сн ₃ он сн-сн ₂ -ин-с-сн ₂ -сн ₂ -и	80	Ameisen- säure	163-166
инso ₂ сн ₃ сн ₃ сн ₂ -ин-с-сн ₂ -сн ₂ -ги—с сн ₃ сн ₃	65	Cyclohexan sulfamin- säure	174-176

Zu Verfahren 2

Beispiel 4

9,3 g 2,5 Dichlor-4-hydroxyphenylglyoxalhydrat, 7,25 g
1-(3-Amino-3-methyl-butyl)benzimidazol und 100 ml
Alkohol werden 3 Stdn.bei 40-50° C gerührt. Anschließend
wird die Lösung abgekühlt, portionsweise mit 8 g Natriumborhydrid versetzt und 3 Stunden bei Raumtemperatur gerührt. Nach Zugabe von 100 ml Methanol zur Zersetzung des
Natriumborhydrids bleibt der Ansatz 10 Stunden stehen, das
Lösungsmittel wird unter vermindertem Druck abdestilliert,
der Rückstand in 200 ml Nasser gelöst und mit konz. Salzsäure angesäuert. Es werden 9,5 g 1-(2,5-Dichlor-4-hydrophenyl)-2-[4-(1-benzimidazolyl)-2-methyl-2-butylamino]15 äthanol-dihydrochlorid x 1 Wasser isoliert, das bei
180 - 183° C schmilzt. Die Ausbeute beträgt 50,4 % d.Th.

Beispiel 5

14,4 g 2'-Benzyloxy-5'-(1-oxo-2-hydroxy-2-äthoxy-äthyl)-methansulfonanilid, 7 g 1-(3-Amino-3-methyl-butyl)-benzimidazol und 5 150 ml Alkohol werden 3 Stdn. auf 50°C erwärmt und portionsweise mit 9,2 g Natriumborhydrid versetzt. Die Lösung wird 12 Stdn, bei Raumtemperatur gehalten, dann wird der Alkohol unter vermindertem Druck am Rotavapor entfernt und der Rückstand mit 200 ml Wasser und 500 ml Essigester gelöst. 10 Nach dem Zersetzen des Natriumborhydrids unter Rühren mit konz. Salzsäure unter Eiskühlung wird mit wäßrigem Ammoniak alkalisch gestellt, die Essigester-Phase abgetrennt, mit Natriumsulfat getrocknet und am Rotavapor eingeengt. Der Rückstand wird in 200 ml Alkohol gelöst, mit 6,3 g 15 Oxalsäure angesäuert und das ausgefallene 2'-Benzyloxy-5'-[1-hydroxy-2-[4-(1-benzimidazoly1)-2-methy1-2-butylamino] -äthyl]-methansulfonanilid-dioxalat (Fp. 185 - 187° C) abgesaugt. Mit wäßrigem Ammoniak wird aus dieser Verbindung die Base (Fp. 65 - 70° C) hergestellt. Durch katalytische 20 Hydrierung dieser Verbindung (Fp. 65 - 70°C) in 250 ml Methanol unter Normalbedingungen mit Palladiumkohle als Katalysator erhält man 8 g 2'-Hydroxy-5'-[1-hydroxy-2-[4-(1-benzimidazolyl)-2-methyl-2-butylamino]-athyl]-methansulfonanilid (Fp. 170 - 173° C, Ausbeute: 81 % d.Th.), 25 dessen Formiat bei 161 - 164° C schmilzt.

eispiel 6

schmilzt.

x HCOOH

.5,2 g 1-(2-Fluor-4-benzyloxyphenyl)-1-oxo-2-hydroxy-2ithoxy-äthan, gelöst in 200 ml Alkohol, werden mit 8,2 g l-(3-Amino-3-methyl-butyl)-benzimidazol versetzt und 3 Stdn. pei 50°C gerührt. Anschließend wird die Lösung abgekühlt, nit 4 g Natriumborhydrid versetzt und 6 Stdn. bei Raumtemperatur gerührt. Der Ansatz wird wie in Beispiel 3 beschrieben aufgearbeitet. Der Rückstand wird in 200 ml Alkohol gelöst mit 7,2 g Oxalsäure angesäuert und das ausgefallene 1-(2-Fluor-4-benzyloxyphenyl)-2-[4-(1-benzimidazolyl) -2-methyl-2-butylamino]-äthanol-dioxalat (Fp. 184 - 188°) abgesaugt. Mit wäßrigem Ammoniak wird aus dem Dioxalat die Base (Fp. 85-88°C) hergestellt. Durch katalytische Hydrierung dieser Verbindung in 250 ml Methanol bei 6 bar Druck mit Palladiumkohle als Katalysator bei $\sim 30^{\circ}$ C erhält man 1-(2-Fluor-4-hydroxyphenyl)2-[4-(1-benzimidazolyl)-2-methyl-2-butylamino]-äthanol (Fp. bei 157 - 159⁰ C 151 - 153° C), dessen Formiat

Durch Zugabe der berechneten Menge Methansulfonsäure zu der Lösung der Base in Äthanol erhält man das Methansulfonat, Fp. 178-179°C. Entsprechend stellt man das Hydrochlorid her, Fp. 205°C.

Aus der Base in wäßrigem Acetonitril und der berechneten Menge konz. Salzsäure erhält man das Dihydrochlorid-Tetrahydrat, Fp. 177°C.

Analog gelangt man in wäßrigem Äthanol zum Sulfat-Hydrat, Fp. 207-208°C.

Entsprechend den angegebenen Beispielen wurden synthetisiert:

Formel	Ausbeute (%)	Salz mit	Schmelzpunkt O C
0H CH ₃ H0-CH-CH ₂ -NH-CH ₂ -CH ₂ -CH ₂ -N OH CH ₃	79,5	Ameisen- säure	128
NHSO ₂ CH ₃ HO CH - CH - CH ₂ - CH ₂ - CH ₂ - CH ₂ - N CH ₃	. 82	Methansulfon- säure	178-180 123 Base
HO CH3 HO CH-CH2-NH-CH2-CH2-N OH	54,5	Cyclohexan- sulfaminsäure	177-179 171 Base
$HO - CH_3 CH_3 CH_2 - CH_2 - CH_2 - N CH_3 O CH_3$	79	2 x Ameisen- säure x 1 H ₂ 0	174-176 188-190 Base

	Ausbeute (%)	Salz mit S	Schmelzpunkt ^o C
сн ₃ сн-сн-сн ₂ -ин-с-сн ₂ -и н сн ₃ он сн ₃ сн ₃ н	83	Ameisen- säure	163-166 193-196 Base
сн ₃ но Сн-сн ₂ -ин-с-сн ₂ -сн ₂ -ин	င်	0,5 Bern- steinsäure	187-189 168-172 Base
но сн-сн-с-сн ₂ -ин-с-сн ₂ -ин он сн ₃	85	Schwefel- säure × 1 H ₂ 0	173-175 174-176 Base
CH ₂ SO ₂ CH ₃ CH ₂ -CH-CH ₂ -CH ₂ -CH ₂ -N OH CH ₃	93	Maleinsäure	190-193 181-183 Base
CH2SO2CH3 HO CH2-CH2-CH2-CH2-N-CH2-CH2-N-C	50	Cyclohexan- sulfaminsäure	162-164
			

	Ausbeute (%)	Salz mit	Schmelzpunkt ^o C
HO CH ₃ CH ₃ HO CH-CH ₂ -NH-C-CH ₂ -CH ₂ -CH ₂ -N-1	. 88	Schwefel- säure	. 224-226 Zers.
ис сн ₂ -ин-с-сн ₂ -сн ₂ -и он сн ₃	48,5	2 x Salz- säure	208-210 Zers.
NC H0 — сн-сн ₂ -NH-СН ₂ -СН ₂ -СН ₂ -N	69	Salzsäure	208-210
CH2-NH	86	Ameisensäure	158-160 129-132 Base
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95	Salgsäure	203-204 Zers. 165-167 Base

Formel	Ausbeute %	Salz mit	Schmelzpunkt ^o C
0.00 CH_{3} 0.00 CH_{2} 0.00 CH_{2} 0.00 CH_{3} 0.00 CH_{3}	77,5	Cyclohexan- sulfaminsäure	177-180
0 NHC-CH ₃ CH ₃ H0-СH-CH ₂ -NH-C-CH ₂ -CH ₂ -N OH CH ₃	50	1,5 x Bern- steinsäure	154-156
C1 H0-CH-CH ₂ -NH-C-CH ₂ -CH ₂ -N OH CH ₃	09	Ameisensäure x 1 H ₂ 0	115-119
сн ₃ сн-сн-сн-с-сн ₂ -сн ₂ -и— он сн ₃ сн ₃	87,5	2 x Malein- säure	137-140 165-168 Base
H0- $\langle -CH-CH_2-NH-C-CH_2-CH_2-N \rangle$. 62	2 x Malein- säure	176-179 245 Zers. Base

Formel	Ausbeute (%)	Salz mit	Schmelzpunkt ^o C
$ \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{0} \\ \text{CH}_{3} \end{array} $ $ \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \end{array} $	82	Schwefel- säure	287 Zers. 218-220 Base
сл сн ₂ -мн-с-сн ₂ -сн ₂ -м он с-сн ₃ сн ₃	80	Maleinsäure	185-186 175-178 Base
0СH ₃ СH ₃ СH ₂ - CH ₂ - CH ₂ - CH ₂ - N OH CH ₃ СH ₃ СH ₃	63	Maleinsäure	173-174
с1 но-<	75	Maleinsäure x 1/2 Aceton- nitril	161-165 160-162 Base
инso ₂ cн ₃ сн ₃ но-сн-сн ₂ -ин-с-сн ₂ -сн ₂ -сн ₂ -и	72	Cyclohexan- sulfæminsäure	174-176 182 - 184 Base

Formel	Ausbeute %	Salz mit	Schmelzpunkt ^o C
но- но- он сн ₃	81	Maleinsäure	186-189 155-159
инс-сн ₃ сн ₃ сн ₂ -сн ₂ -сн ₂ -и он он сн ₂ -сн ₂ -и он он сн ₃	77,5	Fumarsäure	158-160
о сн 3 но он с-сн - с - с н - с - с н 2 - п - г - п - г - п - г - г - г - г - г	78	Ameisensäure x 1 Wasser	175-178

Formel	Ausbeute (%)	Salz mit	Schmelzpunkt ^o C
CH3 CH3 CH-CH-CH2-CH2-CH2-N-C-CH2-N-C-CH3	73,5	Malein- säure x 1/2 Äthanol	167-169
$HO \leftarrow \longrightarrow \begin{array}{c} F & CH_3 \\ -CH - CH_2 - NH - CC - CH_2 - CH_2 - N \longrightarrow \\ OH & CH_3 & CH_3 \end{array}$	77,5	2 x Salz- säure	168-170 186-188 Base
ин SO ₂ CH ₃ HO-СH-CH-CH-CH ₂ -CH ₂ -N-N-СH ₃ CH ₃ CH ₃	82	Schwefelsäure	215-218 Zers. 185-186 Base
HO-CH-CH-CH2-NH-C-CH2-N-CH3	77	2 x Salz- säure	185-186

Formel	Ausbeute (%)	Salz mit	Schmelzpunkt ^o C ·
мнsо ₂ сн ₃ сн ₃ сн ₂ -сн ₂ -сн ₂ -сн ₃ сн ₃ сн ₃	£ 6	2 × Salz- säure	189-191 182-184 Base
си но- но- осн ₃ он сн ₃ сн ₃	92,5	Ameisen- säure	180-182 125 ⁰ Zers. Base
но-Ст-сн-сн-с-сн ₂ -ин-с-сн ₂ -иг	. 32		148-151 Base

			!	- 27 -		0008	653
	Schmelzpunkt ^o C	170 - 172	165-168 163-165 Base	156-159 133-136 Base	212 – 212	160-163 123-125 Base	1
	Salz mit	Ameisen- säure	2 x Salzsäure	Ameisen- säure	2 x Salzsäure	Ameisen- säure	
	Ausbeute %	47	. 68	78,5	87	. 85	
;	Formel	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{F} & \text{CH}_3 \\ \text{HO} & \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{N} \\ \text{OH} & \text{CH}_3 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} cH_3 \\ HO - \langle$	HO \leftarrow CH-CH ₂ -NH-C-CH ₂ -CH ₂ -N \rightarrow OH \leftarrow CH ₂ -NH-C-CH ₂ - \leftarrow OH	

Zu Verfahren 3

Beispiel 7

x HCOOC

15,5 g 1-{-[2-Hydroxy-2-(4-benzyloxyphenyl)-benzyläthylamino]-propyl}-1,2,3,4-tetrahydro-4-chinazolon (Fp.119-121°C)
werden in 250 ml Methanol gelöst und bei 60°C, 6 bar Druck
unter Zusatz von Palladium als Katalysator entbenzyliert.
Nach Aufnahme von 2 Mol Wasserstoff wird die Hydrierung
aufgearbeitet wobei man 8 g 1-{3-[2-Hydroxy-2-(4-hydroxyphenyl)-äthylamino]-propyl}-1,2,3,4-tetrahydro-4-chinazolon
erhält, dessen Formiat bei 174-176°C schmilzt. Die Ausbeute beträgt 61,5 % d. Th.

Beispiel 8

15 q 2'-Benzyloxy-5'-[1-hydroxy-2-[4-(1-imidazolyl)-2methyl-2-butylamino]-äthyl]-acetanilid (Fp. des Di-5 oxalats $160-163^{\circ}$), 18,5 g KOH, 80 ml Alkohol und 15 ml Wasser werden 24 Stunden unter Rückfluß gekocht und anschließend das entstandene 1-(3-Amino-4-benzyloxyphenyl)-2-[4-(1-imidazolyl)-2-methyl-2-butylamino]-äthanol als Trioxalat (Fp = 95-100°C) isoliert. Mit wäßrigem Ammoniak 10 wird daraus die Base hergestellt, die man mit Kaliumcyanat zu 1-{2'-Benzyloxy-5'-[1-hydroxy-2-[4-(1-imidazolyl)-2methyl-2-butylamino]-äthyl]-phenyl}-harnstoff (Fp.142-143°C) umsetzt. Durch katalytische Hydrierung von 5,1 g dieser Verbindung in 100 ml Methanol mit Palladiumkohle als Katalysator 15 erhält man 3,5 g 1-{2'-Hydroxy-5'-[1-hydroxy-2-]4-(1-imidazolyl) -2-methyl-2-butylamino]-äthyl]-phenyl}harnstoff, dessen Sulfat bei 243-244° C schmilzt. Die Ausbeute beträgt 70 % d. Th.

8,5 g 2'-Benzyloxy-5'-[1-hydroxy-2-[4-(1-imidazolyl)-2-methyl-4-butylamino]-äthyl]-benzoesäuremethylester (Fp des Di-oxalats 156-158°C) werden unter Zusatz von Palladium als Katalysator in 100 ml Methanol unter Normal-bedingungen hydriert, nach Aufnahme von 1 Mol Wasserstoff wird der Katalysator abfiltriert und zu der Lösung 15 ml Monomethylamin zugefügt. Nach 2 Tagen wird das Lösungs10 mittel abdestilliert, der Rückstand mit 15 ml Alkohol und 15 ml Wasser gelöst und mit 2 g konz. Schwefelsäure angesäuert. Es werden 4,5 g 5-[1-Hydroxy-2-[4-(1-imidazolyl) -2-methyl-2-butylamino]-äthyl]-N-methyl-salicylamid-Sulfat mit dem Schmelzpunkt von 263-265°C (Zers.) isoliert.
15 Die Ausbeute beträgt 52 % d. Th.

Beispiel 10

13,5 g 2'-Benzyloxy-5'-[1-hydroxy-2-[4-(1-imidazoly1)-2-methyl-4-butylamino]-äthyl]-benzoesäuremethylester (Fp
5 des Dioxalats = 156-158° C) werden in 200 ml Tetrahydrofuran mit 6 g Lithiumaluminiumhydrid zu 1-(3-Hydroxymethyl-4-benzyloxyphenyl)-2-[4-(1-imidazolyl)-2methyl-2-butylamino] äthanol reduziert, dessen Dioxalat bei 144-146° C schmilzt. Mit wäßrigem Ammoniak wird aus 10 g Dioxalat die Base hergestellt und diese mit Palladium als Katalysator in 100 ml Methanol hydriert. Man erhält 4,5 g 1-(3-Hydroxymethyl-4-hydroxyphenyl)-2-[4-(1-imidazolyl)-2-methyl-2-butylamino]-äthanol (Fp = 135-137° C), dessen Benzoat bei 150-152° C schmilzt. Die Ausbeute beträgt 83 % d. Th.

In analoger Weise hergestellt:			·
Formel	Ausbeute %	Salz mit	Schmelzpunkt ^o C
с-'NH ₂ сн - сн - с - сн - с - сн - с - сн - с - с	62,5	Schwefelsäure x 1 Wasser	183 ⁰ C Zers.
с-ин ₂ сн ₃ сн ₂ сн ₂ -сн ₂ -сн ₂ -сн ₂ -и— он сн ₃ сн ₃	40	2 x Fumarsäure	158-162
с-инсн ₃ сн ₃ сн ₂ сн ₂ -сн ₂ -сн ₂ -сн ₂ - сн ₂ - сн ₂ - сн ₃ он сн ₃ сн ₃	. 60,8	Schwefelsäure	221-223
сн ₂ он сн ₃ сн-си ₂ -ин-с-сн ₂ -сн ₂ -и	52	Cyclohexan- sulfaminsäure	126-130

Formel	Ausbeute %	Salz mit	Schmelzpunkt ^o C
0H CH ₃ CH ₃ H0-CH-CH-CH-C-CH ₂ -CH ₂ -N OH CH ₃	48	Schwefelsäure	192-194 Zers.
0H CH ₂ -NH-C-CH ₂ -CH ₂ -N NH O OH CH ₃	80	2 x Salzsäure	157-159 175 Base
но-<	87,5	Ameisensäure	167-169 144-146 Base
он сн ₃ но-Сн-сн ₂ -ин-сн ₂ -сн ₂ -г <mark>г</mark>	71	2 x Ameisen- säure	137-138

		•		1
Schmelzpunkt ^o C	165-166	182-184	223-225 183-186 Base	193-194
Salz mit	Benzoesäure	Ameisensäure	Salzsäure	Methansulfon- säure
Ausbeute %	87,5	. 84	. 62	76
Formel	он сн ₃ но-сн-сн ₂ -ин-сн ₂ -сн ₂ -сн ₂ -и	сн ₃ но- он сн-сн-с-сн ₂ -и-с-сн ₂ -и-	NHS0 ₂ CH ₃ CH ₃ 0 H0-CH-CH-CH-C-CH ₂ -CH ₂ -N 0 OH CH ₃ 0 H	осн ₃ сн ₂ -сн-сн ₂ -ин-с-сн ₂ -и о о о о о о о о о о о о о о о о о о о

Formel	Ausbeute %	Salz mit	Schmelzpunkt ^O C
но- он сн ₃ сн ₂ - сн - сн ₂ - сн ₂ - сн ₂ - м он сн ₃ сн ₃	9 5	Methansulfon- säure	186-188 127 Base
$0H CH_3$ $+0 -CH-CH_2-NH-CH_2-CH_2-N$ $+0$ $+0$ $+0$	83	Salzsäure	216-271
о о о о о о о о о о о о о о о о о о о	45	Maleinsäure	186-188
CH ₂ OH CH ₃ HO-CH ₂ -CH-CH ₂ -CH ₂ -CH ₂ -N OH CH ₂		Cyclohexan- sulfaminsäure x 1 Wasser	126-130

Formel	Ausbeute %	Salz mit	Schmelzpunkt ^o C
CH ₂ OH CH ₃ HO-CH-CH ₂ -NH-C-CH ₂ -CH ₂ -N	83	Benzoesäure	150-152 137-137 Base
инссн _з сн _з сн _з но- но- он сн-сн-сн-с-сн ₂ -и-	70	Schwefelsäure	235-236 142-145 Base
0 NHC-NH ₂ CH ₃ HO-⟨¬-с́н-с́н-с́-с́н-с́-с́н ₂ -с́н ₂ - N—] Óн С́н ₃	70	Schwefelsäure	243-244
инс-сн ₃ сн ₃ сн ₂ -сн ₂ -сн ₂ -сн ₂ -к он сн ₂ -сн ₃ сн ₃	41	Benzoesäure x 1 Wasser	130-133

Formel	Ausbeute %	Salz mit	Schmelzpunkt ^o C
NHS02CH3 0CH3 HO-CH-CH2-CH2-NH-C-CH2-NM CH3	. 72	Ameisensäure	172-174
HO-CH-CH ₂ -NH-C-CH ₂ -CH ₂ -N		2 x Salz- säure	200 ⁰ C Zers.

Patentansprüche

1. Verbindungen der allgemeinen Formel

$$R_{1}^{0}$$
 R_{4}
 R_{5}
 $CH-CH-NH-C-(CH_{2})_{n}-Het$
 R_{5}
 R_{6}
 R_{5}

darin bedeuten

5 Het:

$$R_{10} = \frac{0}{1}$$

$$Z = \frac{1}{1}$$

$$Z = \frac{1}{1}$$

n: eine ganze Zahl von 1 bis 4

10 R₁: II oder Acyl,

 R_2 : H, R_1 O, $NHSO_2R_7$, $NHCOR_8$, $NHCONHR_8$, $NH-CH_2-C_6H_4-R_9$, CH_2OH , $CH_2SO_2R_7$, $CONHR_8$, Halogen oder CN,

R3: H, Halogen, R7 oder OR7

5 R_2 und R_3 gemeinsam auch:

R₄: H, CH₃ oder C₂H₅

 R_5 und R_6 (die gleich oder verschieden sein können): H oder CH_3

10 R₇: C₁-C₄-Alkyl

R₈: H oder C₁-C₄-Alkyl

 R_9 : H, C_1 - C_4 -Alkyl oder gegebenenfalls durch Sauerstoff unterbrochenes C_1 - C_4 -Alkoxy

R₁₀: H, C₁-C₄-Alkyl, Phenyl oder Pyridyl,

15 R_{ll} und R_{l2} (gleich oder verschieden): II, CH₃, Cl, OCH₃ oder gemeinsam Nethylendiox;

X: CR₁₀ oder N

Z: CH₂ oder CO

in Form von Racematen, Enantiomeren, diastereomeren Antipodenpaaren, sowie die jeweiligen Säure-additionssalze.

2. Verbindungen nach Anspruch 1 mit der allgemeinen Formel I,

in der

5

10

R, H,

H,OH, NHSO₂CH₃, NHCOR₈, NHCONHR₈,

NH-CH₂-C₆H₄-R₉, CH₂OH, CH₂CO₂CH₃ oder CONHR₈,

Cl, F,

R₃ H, Cl, CH₃ oder OCH₃,

 R_2 und R_3 gemeinsam auch

R₄ H,

R₅, R₆, R₈ und R₁₀, die gleich oder verschieden sein können, H oder CH₃,

R₉ H oder 4-OCH₃,

X CH oder N

und n eine ganze Zahl von 1 bis 4 bedeutet.

- 5 3. Verbindungen nach Anspruch 1, worin n für 2 oder 3 steht.
 - 4. Verbindungen nach Anspruch 2, worin n für 2 oder 3 steht.
- 5. Arzneimittel, gekennzeichnet durch einen Gehalt an einer Verbindung nach Anspruch 1, 2, 3 oder 4.
 - 6. Verfahren zur Herstellung von Verbindungen nach Anspruch 1, in an sich bekannter Weise, dadurch gekennzeichnet, daß man
 - a) ein Aminoketon der allgemeinen Formel

$$R_{1}^{0}$$
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{1}^{0}
 R_{1}^{0}
 R_{2}^{0}
 R_{3}^{0}
 R_{4}
 R_{5}
 R_{6}
 R_{6}
 R_{1}^{0}
 R_{1}^{0}
 R_{2}^{0}
 R_{3}^{0}
 R_{4}
 R_{5}^{0}
 R_{6}^{0}
 R_{6}^{0}
 R_{6}^{0}

in der R₁ bis R₆, Het und n die oben angegebene Bedeutung haben und in der das zentrale Stickstoff- atom und/oder etwa vorhandene phenolische OH-Gruppen durch hydrogenolytisch abspaltbare Schutzgruppen geschützt sein können, in einem geeigneten Lösungsmittel mit Wasserstoff und Hydrierungskatalysatoren oder mit reduzierend wirkenden Hydriden reduziert und gegebenenfalls nach der Reduktion noch vorhandene Schutzgruppen hydrogenolytisch entfernt

10 oder daß man

5

b) zur Herstellung solcher Verbindungen der Formel I, in denen R_4 für H steht, ein Amin der allgemeinen Formel

$$^{R}_{15}$$
 $^{H}_{2}^{N} - ^{C}_{1} - (CH_{2})_{n} - \text{Het}$ (V),

in der R_5 , R_6 , Het und n die obige Bedeutung haben, unter den Bedingungen der reduktiven Aminierung mit einem Phenylglyoxal der allgemeinen Formel

$$R_1$$
 CO-CHO (VI),

in der R₁, R₂ und R₃ die obige Bedeutung haben und in der etwa vorhandene phenolische OH-Gruppen auch durch hydrogenolytisch abspaltbare Schutzgruppen geschützt sein können, gegebenenfalls in Form eines Halbacetals umsetzt und gegebenenfalls vorhandene Schutzgruppen hydrogenolytisch abspaltet oder daß man

c) aus einer Verbindung der allgemeinen Formel

5

$$R_{1}^{'0}$$
 $R_{2}^{'10}$
 $R_{3}^{'10}$
 $R_{4}^{'10}$
 $R_{4}^{'10}$
 $R_{5}^{'10}$
 $R_{5}^{'10}$
 $R_{6}^{'10}$
 $R_{5}^{'10}$
 $R_{6}^{'10}$
 $R_{10}^{'10}$
 $R_{10}^{'10}$

in der R₅ bis R₆, n und Het die obige Bedeutung haben und R' für H oder eine hydrogenolytisch abspaltbare Schutzgruppe, R₁ für R₁ oder eine hydrogenolytisch abspaltbare Schutzgruppe, R₂ für R₂ steht, in dessen Definition jedoch R₁ durch R'₁ zu ersetzen ist, und in der mindestens einer der Reste R₁ und R₂ für eine zu entfernende Gruppe steht, die Schutzgruppe(n) entfernt

und daß man die nach a) bis c) erhaltenen Verbindungen.
gewünschtenfalls in die Enantiomeren, gegebenenfalls
20 auch in die diastereomeren Antipodenpaare auftrennt,
und daß man gewünschtenfalls erhaltene Basen in Säureadditionssalze, erhaltene Säureadditionssalze in die
freien Basen oder in Salze mit anderen Säuren überführt.

7. Verfahren zur Herstellung von Arzneimitteln, dadurch gekennzeichnet, daß man eine Verbindung nach Anspruch l bis 4 mit üblichen Hilfs- und/oder Trägerstoffen zu den in der galenischen Pharmazie üblichen Präparaten verarbeitet.

5

8. Verwendung von Verbindungen nach Anspruch 1 bis 4 als Arzneistoffe in Broncholytika, Uterusrelaxantien, Antiallergika oder Blutdrucksenker.

EUROPÄISCHER RECHERCHENBERICHT

EP 79 102 580.2

	EINSCHLÄGIGE	DOKUMENTE		KLASSIFIKATION DER ANMELDUNG (Int.Cl.3)
tegorie	Kennzeichnung des Dokuments mit A maßgeblichen Teile	ngabe, soweit erforderlich, der	betrift Anspruch	
	DE - A - 1 643 224	(ALLEN & HANBURYS)	1,5-8	C 07 D 235/08 C 07 D 233/36 C 07 D 233/56
	* Ansprüche 1, 24,			C 07 D 235/18 C 07 D 239/88
	DE - A - 2 135 678	(PFIZER)	6	C 07 D 239/96 C 07 D 249/18 C 07 D 413/12
	* Seite 9 * -	_		A 61 K 31/41 A 61 K 31/415 A 61 K 31/505
A	DE - A - 2 238 504	(PFIZER) 		A 61 K 31/303
A	DE - A1 - 2 644 833	(BOEHRINGER SOHN)		
				RECHERCHIERTE SACHGEBIETE (Int. CL.)
				A 61 K 31/00 C 07 D 233/00 C 07 D 235/00 C 07 D 239/00 C 07 D 249/18
	Enantiomeren, disetereomeren jeweiligen Säureadditionssalze. sn sind als Arzneistoffe verwend- sn sind als Arzneistoffe an ben sind als sind sind sind sind sind sind sind sin	Antipodenpaare, sowie die Die neuen Verbindunge		C 07 D 413/12
	schieden): H, CH ₃ , Cl, OCH ₃ oder	R ₁₀ : H, C ₁ -C ₄ -Alkyl, Phenyl B ₁₁ und R ₁₂ (gleich oder vel gemeinsam Ma X: CR ₁₀ oder N Z: CH ₂ oder CO		
				KATEGORIE DER GENANNTEN DOKUMENT
:				X: von besonderer Bedeutun
				A: technologischer Hintergrui O: nichtschriftliche Offenbaru
				P: Zwischenliteratur
				T: der Erfindung zugrunde liegende Theorien oder
				Grundsatze
				E: kollidierende Anmeldung
				D: in der Anmeidung angefüh Dokument
•				L: aus andern Gründen
				angeführtes Dokument 8: Mitglied der gleichen Pater
X	Der vorliegende Recherchenbericht	wurde für alle Patentansprüche erste	łn.	familie. Übereinstimmen Dokument
Recherch	nenort Absch	ilußdatum der Recherche	Priller	*
Be	rlin	03-12-1979	F	ROELICH

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.