Amplificador operacional controlado por variação de resistência de entrada

Luís Guilherme Miranda Spengler¹ e Diogo Paes Masacottes²

^{1,2}Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso do Sul

1 Introdução

Um amplificador operacional é um amplificador com ganho muito elevado, tendo dois terminais de entrada e um de saída. No circuito performado, na prática, utiliza-se um potenciômetro que varia a tensão do sinal de entrada, para verificar a tensão na saída e observar os efeitos de amplificação. O amplificador operacional, também chamado por alguns de amp-op, nada mais é do que um circuito integrado (CI), capaz de amplificar um sinal de entrada e como próprio nome sugere, o amplificador operacional também consegue realizar operações matemáticas, como, por exemplo, soma, subtração, derivação.

2 Problemática

A importância do estudo de amplificadores operacionais se justifica pelo fato de estarmos em constante contato com tal dispositivo eletrônico e também para posterior aplicações como profissionais da área de eletrotécnica.

3 Objetivo Geral

Verificar as relações existentes entre a tensão de saída e tensão de entrada conforme a variação do potenciômetro V.S.

4 Metodologia

A figura 1 representa o circuito performado, na prática, onde V1 e V2 representam multímetros e suas tensões lidas, AN0 e AN1, respectivamente. Ainda na figura 1, V.S. representará aqui e por todo o artigo, o potenciômetro a ser variado.

A regulagem de V.S. foi feita empiricamente, sendo 4 padrões de regulagem definidos:

- $\bullet\,$ Potenciômetro a 0%
- Potenciômetro a 10%
- Potenciômetro a 50%
- Potenciômetro a 100%

Após a regulagem de V.S. em cada um dos padrões, foi mensurada a tensão em V1 (entrada) e a tensão em V2 (saída).

Figura 1: Esquema do circuito

5 Resultados

Por conseguinte, obtivemos dados relacionando a tensão mensurada por V1 e V2 (em Volts) por 4 amostragens, onde a única variável a sofrer alteração foi a resistência na entrada do amplificador (por V.S.). Confira os seguintes dados apurados da tensão elétrica no resistor de entrada (V.S.) e da tensão elétrica na saída do amplificador operacional, na tabela e no gráfico obtidos abaixo com o potenciômetro a 0%, 10%, 50% e 100%.

Para 0%:

V.S.	SAÍDA
(V)	(V)
0.04	0.04
1.03	1.04
2	1.78
3	2.92
4.02	3.99
5.07	5.07
6.03	6.06
7.00	7.07
7.96	8.06
9.06	9.18
10	10

Para 10%:

V.S.	SAÍDA
(V)	(V)
0	0
1.11	1.12
1.97	1.78
3.03	2.98
4.01	4.01
4.98	5.05
6	6.12
6.95	7.16
8.05	8.27
8.99	9.22
10	10

Para 50%:

V.S.	SAÍDA
(V)	(V)
0.15	0.20
1.06	1.20
2.02	2.17
2.99	3.50
4.10	4.96
5.06	5.17
6.03	7.37
8.07	9.92
10	10

Para 100%:

V.S.	SAÍDA
(V)	(V)
1	10
2	10
3	10
4	10
5	10
6	10
7	10
8	10
9	10
10	10

6 Conclusão

Na relação dos dados obtidos pelas 4 amostragens entendemos que a resistência é única variável que muda na entrada do amplificador e conforme regulamos o potenciômetro, não percebemos alterações relevantes até a tensão de entrada ser de cinco volts. No entanto, esse comportamento é alterado quando o potenciômetro está em 50%, e todas as tensões de entrada são menores que as de saídas até chegar a 5V. Contudo, ocorre algo quando o potenciômetro está a 100% e todas as tensões de saídas são iguais a 10V, independente da tensão de entrada.