Homework8

Qi'ao Chen 21210160025

April 27, 2022

Exercise 0.0.1. Show that T is \aleph_0 -categorical and complete

Proof. For any models (M,E) and (N,E') of T s.t. $|M|=|N|=\aleph_0$, let M_1,M_2 and N_1,N_2 be the two equivalence classes of M and N respectively, then $|M_1|=|M_2|=|N_1|=|N_2|$. Then there are bijections $f:M_1\to N_1$ and $g:M_2\to N_2$. Let $h=f\cup g$. Then for any $a,b\in M$, $aEb\Leftrightarrow h(a)E'h(b)$, therefore h is a homomorphism and hence an isomorphism.

For any models (M,E) and (N,E') of T and suppose $(M,E) \vDash \varphi$, then by Löwenheim–Skolem Theorem, there is $(M_0,E_0) \preceq (M,E)$ and $(N_0,E'_0) \preceq (N,E)$ s.t. $|M_0| = |N_0| = \aleph_0$. Then $(M,E) \vDash \varphi \Rightarrow (M_0,E_0) \vDash \varphi \Rightarrow (N_0,E'_0) \vDash \varphi \Rightarrow (N,E') \vDash \varphi$. Therefore for any φ , either $T \vDash \varphi$ or $T \vDash \neg \varphi$ and T is complete

Exercise 0.0.2. Show that T is \aleph_0 -stable

Proof. For any countable $M \preceq \mathbb{M}$ and non-constant type $p(x) \in S_1(M)$, then $x \neq a \in p(x)$ for any $a \in M$. But for any $a \in M$, either $xEa \in p(x)$ or $\neg xEa \in p(x)$. Therefore there is only two non-constant types in $S_1(M)$ and thus $|S_1(M)| = |M| + 2 = \aleph_0$ and T is \aleph_0 -stable

Lemma 0.1. *T has quantifier elimination*

Proof. For any models M, N of T and A a common substructure of M and N and for all formula φ of the form $\exists y \psi(y)$ where ψ is a quantifier free L(A)-formula with parameter set D, then ψ is equivalent to

$$\bigwedge_{b \in B} yEb \wedge \bigwedge_{c \in C} \neg yEb \wedge \theta$$

where $B, C \subseteq D$ and θ is a quantifier free sentence in L(D). If $M \models \varphi$, then $M \models \theta$ and so $A \models \theta$ and $N \models \theta$. Also there is $e \in M$ such that

$M \vDash \bigwedge_{b \in B} eEb \land \bigwedge_{c \in C} \neg eEb$, then B and C are in different equivalence class. Since each class is infinite, we can find such e' in N in the same equivalence class as B , therefore $N \vDash \psi(e')$ and so $N \vDash \varphi$. Therefore T has quantifier elimination
Exercise 0.0.3. Show that $S_1(\emptyset)$ has a single point: if $a,b\in \mathbb{M}$, then $\operatorname{tp}(a)=\operatorname{tp}(b)$
<i>Proof.</i> Since T has quantifier elimination and there is no constant symbol, every formula is equivalent or \top or \bot . Therefore there is only one type in $S_1(\emptyset)$.
Exercise 0.0.4. $acl(\emptyset) = \emptyset$
<i>Proof.</i> Since T has quantifier elimination, for any $\varphi(x)$, $\varphi(\mathbb{M})$ is either \mathbb{M} or \emptyset , therefore $\operatorname{acl}(\emptyset) = \emptyset$
<i>Exercise</i> 0.0.5. Let X be one of the equivalence classes. Show that X is ${\rm acl}^{\rm eq}(\emptyset)$ -definable but not ${\rm acl}(\emptyset)$ -definable
Proof. Suppose $\mathbb{M}/E=\{e_1,e_2\}$. Then $\{e_1,e_2\}\subseteq\operatorname{acl}^{\operatorname{eq}}(\emptyset)$. If $e_1=[a]_E$ for some $a\in X$, then X is e_1 -definable and therefore $\operatorname{acl}^{\operatorname{eq}}(\emptyset)$ -definable. Since $\operatorname{acl}(\emptyset)=\emptyset$ and the only 0-definable sets are \emptyset and \mathbb{M} by quantifier elimination, X is not $\operatorname{acl}(\emptyset)$ -definable
<i>Exercise</i> 0.0.6. Let p be the unique 1-type over \emptyset . Let q be a global non-forking extension. Show that q is $\operatorname{acl}^{\operatorname{eq}}(\emptyset)$ -definable but not $\operatorname{acl}(\emptyset)$ -definable
<i>Proof.</i> By Proposition 5.6, $q \supseteq p$ iff $\operatorname{acl}^{\operatorname{eq}}(\emptyset)$ -definable. If q is 0-definable, then for any φ there is $d\varphi(x) \in L$ such that $\varphi(x,b) \in q \Leftrightarrow \mathbb{M} \models d\varphi(b)$. But $d\varphi(\mathbb{M})$ is either \mathbb{M} or \emptyset . Hence $\varphi(x,b) \in q \Leftrightarrow \mathbb{M} \models \forall y \varphi(x,y)$. However, $(\forall y \varphi(x,y)) \lor (\forall y \neg \varphi(x,y))$ is not always true and q is only a partial type