# Application of Diodes: Logic Gates

- The logic OR function
  - -Y=A+B+C
- The logic AND function





HI

**If** v<sub>A</sub> Logic High, D<sub>A</sub> is RB v<sub>B</sub> Logic High, D<sub>B</sub> is RB  $v_{\rm C}$  Logic LOW,  $D_{\rm B}$  is FB



47



re to search

s ^

## Application of Diodes: Logic Gates

- The logic OR function
  - -Y=A+B+C
- The logic AND function
  - Y=A·B·C









47





ere to search

ails ^

## Potential drop in Diode



#### Find V and I

#### Assume ideal diodes









#### Find V and I

#### Assume ideal diodes



Diode is FB, Therefore short circuit, V = 0 V

$$I = \frac{5-0}{2.5k} = 2 \,\text{mA}$$

The street of th

### Find V and I

#### Assume ideal diodes



$$V = 3V$$

$$I = \frac{3}{1k} = 3 \, mA$$



## Diode circuits

Find current 'i'



#### Diode circuits

Case 1: Assume diode 'D' is OFF



$$v_{AB} = \frac{3}{3+6} \times 36 = 12 \text{ V}$$

Assumption and solution are inconsistent, therefore diode is not OFF

### Diode circuits

Case 2: Assume diode 'D' is ON



Using Nodal analysis

$$\frac{V_A - 36}{6K} + \frac{V_A}{3K} + \frac{V_A - 0.7}{1K} = 0 \Rightarrow V_A = 4.47 \text{ V}$$

$$i = 3.77 \text{ mA}$$

Assumption and solution are consistent, therefore diode is ON

• Find current flowing in  $6k\Omega$  resistor. Assume ideal diode model



# Find V and I. Assume diodes to be ideal.

