

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Research Report CCS 455

A NONLINEAR CONGESTION NETWORK MODEL FOR PLANNING INTERNAL MOVEMENT IN THE HAJJ

by

- A. Charnes
- S. Duffuaa
- A. Yafi

CENTER FOR CYBERNETIC STUDIES

The University of Texas Austin, Texas 78712

84 05 21 147

Research Report CCS 455

A NONLINEAR CONGESTION NETWORK MODEL FOR PLANNING INTERNAL MOVEMENT IN THE HAJJ

bу

- A. Charnes
- S. Duffuaa
- A. Yafi

February 1983

Revised December 1983

*Texas A&M University

This research was partly supported by ONR Contract N00014-82-K-0295 with the Center for Cybernetic Studies, The University of Texas at Austin. Reproduction in whole or in part is permitted for any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Graduate School of Business 4.138
The University of Texas at Austin
Austin, Texas 78712
(512) 471-1821

This document has been approved for public release and sale; its distribution is unlimited.

ABSTRACT

This paper develops a non-linear dynamic capacitated network model for planning the movements of pilgrims in the Hajj, one of the world's largest mass movements, according to religious ritual, which would assist in minimizing traffic congestion and the overcrowding of the holy sites. A new non-linear representation of congestion with convenient mathematical properties is made. The model is effective in producing quantitative and qualitative background for general policy decisions on the Hajj transportation.

KEY WORDS

Policy analysis

Non-linear dynamic capacitated network model
Goal programming
Hajj Pilgrimage
Nonlinear congestion

A NONLINEAR CONGESTION NETWORK MODEL FOR PLANNING INTERNAL MOVEMENTS IN THE HAJJ

bу

A. Charnes, S. Duffuaa, and A. Yafi

1.0 Introduction

The purpose of this paper is to identify issues in the Hajj internal transportation network and model the situation in order to draw general policy decisions in management of this unique situation. The most important constraints in this case are the religious ones, since they define the transportation and the movement of the people from one place to another. Any model must reflect these constraints in order to be implementable. These religious constraints are represented as time and space constraints. A temporal capacitated network is developed to represent the situation, with the objective to minimize congestion of traffic on roads and overcrowding of the holy places. This objective is chosen to enable the visitors to perform their duties as easily as possible.

In section 2 we describe the Hajj situation briefly, and in section 3 we identify issues to be considered in the modeling process. In section 4 we develop a linear network model, and in section 5 we present a numerical example for the Hajj situation. In section 6 we extend the model to a non-linear model to properly account for congestion via a non-linear function and we draw conclusions.

2.0 Description of the Hajj

The Hajj is an annual meeting for about two million Muslims to achieve one of the five pillars of Islam. The Hajj involves several visitations to several holy sites and it occurs every 354 days, since it is dated by the Islamic Lunar year. The Hajj process in this paper will be divided into three

phases. Phase one mainly consists of air and sea transportation of foreign population to Jeddah, and also inland transportation of foreign and native population. The duration of this phase is up to the eighth of the last month of the Lunar year, by that time all the pilgrims have gathered in one of the following towns: Jeddah, Makkah, Muna or Medina.

Phase two starts from the morning of the eighth of the last month in the Lunar year up to the end of the Hajj and the arrival of the pilgrims at the ports to leave for home. This phase includes part of the in-land transportation from Jeddah and Medina to Makkah and all the movement between the holy sites up to the completion of the Hajj. Its duration is roughly up to the nineteenth or the twentieth of the month. Phase three consists partly of the transportation between Makkah and the ports. It also includes the departure of all prilgrims for home. In this paper we deal with phase two, the "internal transportation network of the intramovement of the pilgrims", which constitutes the logistics of the religious process.

2.1 Phase Two of the Hajj

In general, the Hajj season begins at the start of the tenth month of the Muslim lunar calendar year and ends about the twentieth of the Dihu'L-Hijjah (the twelfth and final month of the lunar year). Most of the pilgrims arrive in the last fifteen days of the season. According the our model, phase two starts the morning of the eighth day of the last month of the lunar calendar year. By this time all pilgrims have already arrived in Saudi Arabia and they are either at Makkah, Muna, Jeddah or Medina (see dagram in Figure I).

It is a ritual that before arriving at Makkah every pilgrim has to wear the garment of iharm (restriction), is forbidden to hunt, argue, cut his hair, clip his nails or engage in any sexual activities. Also on arrival at

Makkah (45 miles east of Jeddah) each pilgrim has to make the greeting tawaf, the prescribed seven counterclockwise circumambulations of the Kaaba (a black room in the center of the holy mosque built by the prophet Ibraham). With the tawaf they perform the Sa'y--making seven trips between the hills of Safa nad Marwah. The path of Sa'y is enclosed in a long gallery which is part of the holy mosque.

Also on the eighth day, those pilgrims who are not already in Muna, four miles east of Makkah, move through Makkah to Muan for the essential final days of the Hajj. The next day (on the ninth) everybody has to be in Arafat, eight miles east of Muna, to perform the <u>Standing</u>, the central ritual of the Hajj. The duration of the Standing is from noon of the ninth until sunset.

On the eve of the tenth, the pilgrims leave Arafat and stop at Muzdalifa, a place between Muna and Arafat. At Muzdalifa they collect pebbles to throw at the three "Satan's stoning points" in Muna during the following days. These points symbolize the force of evil. Those who leave for Makkah start doing one of the pillars of the Hajj Tawaf El ifada, the post-Arafat tawaf done in the same manner as the greeting tawaf. After finishing this tawaf pilgrims can put off iharm (restriction) and return to Muna to finish the Stoning of the devil. After finishing the Stoning, the Hajj is complete.

All pilgrims after the Hajj perform a farewell tawaf and some of them leave for Medina to visit the prophet's grave. Visiting Medina can be done before the Hajj starts and those who did it before the Hajj leave via Jeddah or by inland routes for home. Figure 1 shows all the holy sites and the routes of the pilgrims' movements.

Figure 1

A Diagram for the Islamic Holy Sites and the Flow of Pilgrims

- The solid lines represent the internal movement
- ----> The broken lines represent the external movement for coming to Hajj and leaving

3.0 Issues to be Considered in the Model

The most important elements here are the timing and place of each of the holy practices. This determines the flow of people from one place to another. We notice from section two that there is some flexibility in the timing of most of the pillars of the Hajj. The model must be able to take full advantage of that in order to make the Hajj as smooth as possible.

When the pilgrims travel to Makkah they are in large numbers and there is overcrowding of the roads which lead to Jakkah. On arrival at Makkah they perform the greeting tawaf. There they need some scheduling to ease overcrowding at the Kaaba.

The central ritual of the Hajj is the Standing at Arafat. This is a large place and can take all the pilgrims, but on the way to and from Arafat the big crunch occurs. Then the people shuttle between Makkah and Muna until they finish their Hajj.

In scheduling events in the Hajj, the following must be noted. First, the greeting tawaf can be done any time before the morning of the ninth of the Hajj month. The post-Arafat tawaf can be performed at any time from the eve of the tenth to the evening of the twelfth of the Hajj month, but most people like to do it earlier to finish their Hajj. Secondly, the Stoning of the Satan is flexible within two or three days, i.e., from the tenth up to the twelfth of the Hajj month. Third, the Sacrifice of the sheep can be done any time from the morning of the tenth until the evening of the twelfth, but most people do it on the tenth. Fourth, most people catch the 'Id prayer at the Sacred Mosque on the morning of the tenth. Fifth, the farewell tawaf can be done any time before leaving Makkah. Sixth, the visitation to Medina can be done before or after the Hajj and there are no time constraints on it.

The model should take advantage of the flexibility in the timing of the Hajj rituals, but also should allow room for pilgrims' preferences in choosing the time to do rituals if the models' specifications are to have any chance of being implemented.

4.0 Statement of the Model

4.1. The Constraints Set

The following constraints set of the Hajj internal movement is shown in Figure 2. Figure 2 represents movements of pilgrims by half-days from the eighth of the Hajj month till the nineteenth. Each half a day is considered as a period, so the model consists of twenty-four periods. We think half a day is a reasonable period for general policy decisions, but for close monitoring of the pilgrims' movements the model can be represented in terms of shorter periods, i.e., in terms of one hour period. This will expand the model, but since the model is of network type, it can be solved easily.

Figure 2 gives a complete representation of the Hajj internal movements. There are two sets of arcs in Figure 2, one set represents movement of pilgrims within periods, the other set represents pilgrims who are staying in the same town for the next period.

The upper bounds on the arcs in the model should be considered very closely and the following considerations would be very useful:

- (1) the time of the period evening or morning,
- (2) the lodging capacity of each town,
- (3) the food and public facilities of each location,
- (4) the health facilities,
- (5) the availability of buses, cars, between any two towns on each route, and
 - (6) the timing of each ritual.

NETWORK REPRESENTATION For THE HAJJ Internal MOVEMENT Each Half A day is A period

Let

x_{ij}(t) = number of pilgrims going from location i to location j in
 period t;

 $y_{ij}(t,t+1)$ = number of pilgrims going from location i to location j during period t;

 $y_{ij}(t,t+1)$ = number of pilgrims staying at location i during period t; [In this case we do not consider in detail cross travel between riods from one site to another, since one-half day is more than sufficent travel time between any two sites; therefore, flexibility in the timing or rituals enables the model to accommodate cross travel.]

the maximum number of pilgrims who can travel easily at
day times from location i to location j, i.e., this is
the capacity of route (i,j)

the maximum number of pilgrims who can travel easily at
night time on route (i,j)

L; = lodging capacity of town i,

 K_{i} = food capacity of town i,

 b_i = the minimum of the public facilities' capacities at town i. Let 1 be Jeddah, 2 be Makkah, 3 be Muna, 3.5 be Muzdalifa , 4 be Arafat, and 5 be Medina.

P_i = number of pilgrims at town i at the beginning of the first period.

The following are the equations defined by the network in Figure 2. The numbers to the left of the equations represent the period and the node, i.e., 1.5 represent the equation for period one at node 5, or the equation for

period one at Medina and so on. Note that the equations $y_{ii}(t,t+1)$ is written as $y_i(t,t+1)$.

The arrow means the equations are completed on the next page.

	$x_{12}(1)$	x ₂₃ (1)	x ₅₂ (1)	$y_1(1,2)$	$y_2^{(1,2)}$	$y_3(1,2)$	y ₅ (1,2)	× ₁₂ (2) ,	^x 23 ^{(2) x} 52	(2)	$x_{12}(1) x_{23}(1) x_{52}(1) y_1(1,2) y_2(1,2) y_3(1,2) y_5(1,2) x_{12}(2) x_{23}(2) x_{52}(2) y_1(2,3) y_2(2,3) y_3(2,3) y_5(2,3)$,3) y ₃ (2,3)	y ₅ (2,	3)
1.1	1			1										- -
1.2	7	~	7		1									י ה' וו
1.3		7												, = P,
1.4														
1.5			1				-							וו בית
														•
2.1				7				-			1			0
2.2					7			-	·	7	7			0 =
2.3						-1			-1			-		0
2.4														0 =
2.5							7		•	7			-	0
	Part (of perio	d 3 is o	Part of period 3 is on the next page.	t page.									
3.1											-1			+
3.2											-1			+
3.3												-1		+
3.4														+
3.5													7	+

Equations for period 3, 4 and part of period 5. Notice period 3 has some variables on the previous period

	x ₂₃ (3)) × ₂₄ (3)	x ₃₄ (3)	y ₂ (3,4)	y ₃ (3,4)	y ₄ (3,4)	x ₃₂ (4) x	$x_{23}(3) x_{24}(3) x_{34}(3) y_2(3,4) y_3(3,4) y_4(3,4) x_{32}(4) x_4 3.5(4) x_3.5 3(4) y_2(4,5) y_3(4,5) y_3.5(4,5) y_4(4,5)$	5 3(4)	y ₂ (4,5)	y ₃ (4,5) y	3.5(4.5)	y ₄ (4,5)	_
3.1	}													0
3.2	-	-		-										0 =
3.3	7		7											0 =
3.3.5														0 =
3.4		7	7											0
•														0
3.3														
•														0 =
7				7			-1			-				0 =
3. 4.				ı	7		-		7		-			0 =
4.3.5	ıς							-1	-					0 =
4.4						-		1					-	0

Part of the equations of period 5 and completion of these equations is on the next page.

	+ I-	+	+ -1	+	•
5.1	5.2	5.3	5.3.5	5.4	u.

:
period
of
part
and
9
5
period
for
Constraints

	8 13 (10)	100 101 101	יין אין היין אין אין אין אין אין אין אין אין אין	5							
	×32(5)	×4 3.5(5)	$x_{32}(5)$ x_4 3.5(5) $x_{3.5}$ 3(5) $x_{32}(5)$ $y_2(5,6)$ $y_3(5,6)$ $y_{23}(6,7)$ $y_{32}(6,7)$ $y_2(6,7)$ $y_3(6,7)$	x ₃₂ (5)	y ₂ (5,6)	y ₃ (5,6)	y ₂₃ (6,7)	y ₃₂ (6,7)	y ₂ (6,7)	$y_3(6,7)$	
-											u
2	7			-1	-						H
۳	-		7								11
3.5		-1	1								n
4		1									11
ZC											н
-			•								И
2					-		-		1		n
ო						7		1			11
4										-	II
ις										·	H
	Part	of the consti	Part of the constraints for period 7 and its completion is on the next page.	eriod 7 an	d its comp	letion is	on the ne	xt page.			
1										•	+
2								7	-1	•	+
8							7			-1	+
4										•	+
2										•	+

Constraints set for period 7, 8 and part of period 9:

		2000	201	constitution of the load of a sure bar to the load of	. per 19d 1.				
	323(7,8)	$y_{23}(7,8)$ $y_{32}(7,8)$ $y_{2}(7,8)$	y ₂ (7,8)	y ₃ (7,8)	y ₂₃ (8,9)	y ₃₂ (8,9)	y ₂ (8,9)	y ₃ (8,9)	<u> </u>
7.1									0
7.2			1						0
7.3		1		~					0
7.4									0
7.5									0
8.1									0
8.2		-1	-1		1				0
8.3	-1			-1		7		-	0
8.4									0
8.5									0 =
	Part of	f the constr	aints set f	or period 7	and its comp	letion is on	Part of the constraints set for period 7 and its completion is on the next page.		
9.1									+
9.5						7	-1		+
9.3					-1			-1	+
9.4									+
9.5									+

11:
period
of
part
and
20
6
period
for
set
Constraints

	×32(9)	y ₂ (9,10)	$y_3(9,10)$	$x_{21}^{(10)}$	× ₃₂ (10)	× ₂₅ (10)	$y_1(10,11)$		y ₃ (10,11)	y ₅ (10,11)	
9.1											0 =
9.5	-1	-									C
9.3			1								0
9.4											0 "
9.5											0 =
					1						
10.1				-1							0 =
10.2		-1		1	-1	1					0 =
10.3			-1		1				1		0 =
10.4											0 =
10.5						7				-	0
	Part of	the constra	int set for	period 11	and its co	ompletion	Part of the constraint set for period 11 and its completion is on the next page.	xt page.			
11.1							7			·	
11.2								-		·	
11.3									-	·	
11.4										·	
11.5										7	

Equations for period 11, 12 and part of those for period 13:

	25, ,	x32(11)	91(11,12)	y2(11,161)	*21(11) *25(11) *32(11) *91(11:12) *21(11:12) *3(11:12) *5(11:12) *21(12) *32(12) *31(12:13) *3(12:13) *5(12:13)			. 70		. 7.	,		
7			~									ľ	0 =
	-	-1		1								"	0 #
		1			1							ď	0 =
												"	0 #
	7				1							"	0 "
			7			-1			1			a	0 #
				7		-	1	7				"	0 =
					-1			-			-	"	0 =
												"	0 *
					1		1						0 =
Completion	of the	equations	Completion of the equations for period		13 is on the next page.								
									-1			7	†
										-1		7	
											7	7	+

Equations for periods 13, 14 and part of those for period 15:

	x ₂₁ (13)	x ₂₅ (13)	y ₁ (13,14)	y ₂ (13,14)	$x_{21}(13)$ $x_{25}(13)$ $y_{1}(13.14)$ $y_{2}(13.14)$ $y_{5}(13.14)$ $x_{21}(14)$ $x_{25}(14)$ $y_{1}(14.15)$ $y_{2}(14.15)$ $y_{5}(14.15)$	x ₂₁ (14)	x ₂₅ (14)	y ₁ (14,15)	y ₂ (14,15)	y ₅ (14,15)	
13.1	7		-								"
13.2	-	1									"
13.3											11
13.4											н
13.5		7									"
14.1			-1			7		1			"
14.2				7			1		1		"
14.3											"
14.4											u
14.5					-		7			1	"
	Completi	on of the	equations f	or period 1	Completion of the equations for period 15 is on the next page.	next page.					
15.1								۲.			†
15.2									-		+
15.3											Ť
15.4											Ť
15.5										-1	+

Equations for period 15, 16 and part of those for period 17:

	x ₂₁ (15)		y ₁ (15,16)	y ₂ (15,16)	y ₅ (15,16)	x ₂₁ (16)	× ₂₅ (16))	$x_{25}(15)$ $y_1(15,16)$ $y_2(15,16)$ $y_5(15,16)$ $x_{21}(16)$ $x_{25}(16)$ $x_{52}(16)$ $x_{51}(16)$ $y_1(16,17)$ $y_2(16,17)$ $y_5(16,17)$	16)	y ₁ (16,17) y ₂	, (16,17)	(16,17)	
15.1	7		1										0 =
15.2	7			1									0 =
15.3													0 =
15.4													0 =
15.5		7			1								0 =
16.1			-1			7		•	-1				0 =
16.2				7		-	-	7					0 =
16.3													0 =
16.4													0 =
16.5					-		-1					-	0 =
	Completi	on of the	equations	for period	Completion of the equations for period 17 is on the next page.	the next	page.						
17.1										7			+
17.2											-1		+
17.3													+
17.4													+
17.5												7	+

••
8
$\overline{}$
P
ē
and
~
_
~
B
.≃
_
=
peri
≍
for
-
2
ons
-
_
-2
Equa
्ट
w

	0 =	0 =	0	0 =	0 =	0 =	0 =	0 =	0 =	0 =
y ₅ (18,19)										
y ₂ (18,19)							-			
$x_{21}(17)$ $x_{25}(17)$ $x_{52}(17)$ $x_{51}(17)$ $y_{1}(17,18)$ $y_{2}(17,18)$ $y_{5}(17,18)$ $x_{21}(18)$ $x_{25}(18)$ $x_{55}(18)$ $x_{51}(18)$ $x_{52}(18)$ $y_{5}(18,19)$ $y_{5}(18,19)$ $y_{5}(18,19)$						1		-4		
x ₅₂ (18)							7			-
x ₅₁ (18)										-
x ₂₅ (18)										7
× ₂₁ (18)							-1			
y ₅ (17,18)					1					7
y ₂ (17,18)		-					-1			
y ₁ (17,18)	-					-1				
× ₅₁ (17)	7				-					
× ₅₂ (17)		7			-					
x ₂₅ (17)		1			7					
x ₂₁ (17)	-1	1								
	17.1	17.2	17.3	17.4	17.5	18.1	18.2	18.3	18.4	18.5

The following periods 19, 20 up to 24 have the same pattern or structure as 18 so we will have just copies of the equations in 18. The following are the capacity constraints on the routes and the holy places.

$$0 \le x_{ij}(t) \le K_{ij}$$
 if t is odd
 $0 \le x_{ij}(t) \le L_{ij}$ if t is even

$$0 \le y_{i,j} (t,t+1) \le L_{i,j}$$

4.2. Objective Function

One of the objectives to be considered is space and routes utilization. The objective is of goal type to ease crowding as much as possible, i.e.

(4.2.1)
$$\text{Max} \sum_{i} |\min (K_{i}, L_{i}, b_{i}) - y_{ii}(t, t+1)| + \sum_{t} \sum_{ij} |K_{ij} - x_{ij}(t)|$$

$$+ \sum_{t} \sum_{ij} |L_{ij} - x_{ij}(t)| + \sum_{t} \sum_{ij} |L_{ij} - y_{ij}(t, t+1)|$$

$$\text{even}$$

Maximizing this function alone will allow for overcrowding of holy sites and we will be maximizing a convex function, but with the capacity constraints

$$\begin{aligned} &x_{ij}(t)\leqslant L_{ij} &, &x_{ij}(t)\leqslant K_{ij} & \text{and} \\ &y_{i\uparrow}(t,t+1)\leqslant \min(K_i,L_i,b_i) &, &y_{ij}(t,t+1)\leqslant L_{ij} \end{aligned}$$

that will not happen and the objective function will be transformed into the following equivalent linear function.

(4.2.2)
$$\min \sum_{t=1}^{\infty} y_{ij}(t,t+1) + \sum_{t=1}^{\infty} \sum_{ij} x_{ij}(t) + \sum_{t=1}^{\infty} \sum_{ij=1}^{\infty} y_{ij}(t,t+1)$$

Hence the model for the Hajj internal movement will minimize the linear function in (4.2.2) subject to all the constraints in section 4.1.

The above model could be updated if conditions on the routes and the holy sites are changed. It could be formulated in terms of shorter periods, for example on an hourly basis, if detailed monitoring of the Hajj internal movement is needed.

Another objective function to be considered is

$$\begin{aligned} \min \sum_{t} \sum_{i=1}^{n} |\min(K_{i}, L_{i}, b_{i}) - y_{i}(t, t+1)| &+ \sum_{t} \sum_{ij} |K_{ij} - x_{ij}(t)| \\ &+ \sum_{t} \sum_{ij} |L_{ij} - x_{ij}(t)| + \sum_{t} \sum_{ij} |L_{ij} - y_{ij}(t, t+1)| \end{aligned}$$

This is another type of a goal type objective and this with the constraints in section 4.1 can be transformed into a larger pure network.

Other objectives and constraints may also need consideration, e.g., the role of individual contractors ("Mutwafeen") may need more explicit consideration.

5.0 Examples and Extensions

The following example is a reasonable representation for the Hajj situation in the year 1980. The example was constructed using [4], a study done by the Hajj Research Center at Jeddah. Using this study and some personal judgement, the following data on routes and town capacities were specified.

Routes	<u>Day</u>	Night
Jeddah to Makkah	0 to 200,000	0 to 150,000
Makkah to Muna	0 to 500,000	0 to 400,000
Makkah to Medina	0 to 200,000	0 to 150,000
Makkah to Arafat	0 to 900,000	0 to 700,000
Muna to Arafat	0 to 800,000	0 to 700,000
Muna to Makkah	0 to 250,000	0 to 200,000
Medina to Makkah	0 to 100,000*	0 to 150,000

^{*}when 2-way traffic

Capacity Of	No. of Pilgrims
Jeddah	300,000
Makkah	1,000,000
Muna	600,000
Arafat	2,000,000
Medina	1,000,000

$$P_1 = 200,000$$
; $P_2 = 800,000$; $P_3 = 400,000$; $P_5 = 200,000$; $P_4 = 0$

The above example, with some variations to allow for pilgrim increase, was solved in order to evaluate the model and its representation of the real situation. To achieve this evaluation, the dual variables of the model were utilized. The dual variables give an evaluation of the model response to traffic volumes and routes capacities.

In all three examples the dual evaluations point to the route Mina to Mecca at period four as pre-eminent in relief of congestion since it was the most negative dual variable. An increase in the capacity of this route by one unit will result in 127 units reduction in the objective function (which increases congestion) since the value of its dual variable is -127. The examples further show that major concern should be given to the Hajj internal movement in period four and five. The complete solution of this example is in Table 1 in the Appendix.

The other negative dual variables occur for the routes Jeddah to the Sink and Medina to the Sink. The most negative dual variable is associated with the capacity of the route Jeddah to the Sink of value -14. That means an improvement in Jeddah port capacity of one unit will result in a reduction of 14 units in the objective function. Using the magnitude of the dual

variables, the ports can be ranked in terms of their importance in reducing traffic congestion. The Jeddah port is the most important to the Hajj internal movement and Medina is next.

The second and the third examples give directions where improvement should be made in case the number of pilgrims increase. Both examples show that the Jeddah-Mecca route must be improved to increase its capacity to handle the anticipated increase in pilgrims in the future.

These examples give some insight into decision making for Hajj scheduling but the simple objective function does not reflect very well all the possible effects of levels of congestion on different routes. Hence, they give scheduling plans which are insensitive to routes and to changes in capacity. A more appropriate measure of congestion, which will result in better distributions of traffic between the routes, is needed.

Such a measure of congestion will be presented in the next section. It results in a non-linear objective function network. We solve it by piecewise linearization and shall compare its results with those of this model.

6.0 Non-Linear Network for the Hajj Internal Movement

In the previous section we examined a linear model for the Hajj Internal Movement. The linear objective is not an appropriate measure of congestion, since it does not correctly reflect the fact that rate of congestion increases with increases in closeness to capacity on a route segment. In this section we introduce a non-linear measure of congestion for each route which depends on the capacity of the route segment and the density of traffic on it. In the next section we will elaborate on the properties of this measure.

Let $R_{ij}(x_{ij}(t))$ and $\overline{R}_{ij}(y_{ij}(t,t+1))$ be convex non-linear functions which measure the congestion on arcs $x_{ij}(t)$ and $y_{ij}(t,t+1)$. The model in section 4.2 is now altered (only in the objective function) to be

(6.0.1) Min
$$\sum_{t=1}^{24} \sum_{ij} R_{ij}(x_{ij}(t)) + \sum_{t=1}^{24} \sum_{ij} \overline{R}_{ij}(y_{ij}(t,t+1))$$

subject to
$$\sum_{j=1}^{5} \epsilon_{ij} x_{ij}(t) + \sum_{j} \epsilon_{ij}(t) y_{ij}(t,t+1) = 0$$

$$i = 1,2,...,5$$
; $t = 1,2,...,24$; $x_{i,i}(t), y_i(t,t+1) \ge 0$

where the incidence numbers ε_{ij} are 1, -1, or zero. The model in (6.0.1) can be replaced by the following capacitated linear model wherein we have approximated the $R_{ij}(x_{ij}(t))$ and $R_{ij}(y_{ij}(t,t+1))$ functions by two linear segments. In the next section we shall develop a method for choosing the two line segments. Employing such an approximation (6.0.1) becomes

(6.0.2) Min
$$\sum_{t=1}^{24} \sum_{i=1}^{5} \sum_{k=1}^{5} \sum_{k=1}^{2} R_{ijk} x_{ijk}(t) + \sum_{t=1}^{5} \sum_{i=1}^{5} \sum_{k=1}^{2} \overline{R}_{ijk} y_{ijk}(t)$$

subject to
$$\sum_{j}^{24} \sum_{k=i,j}^{2} \varepsilon_{i,j} x_{i,j,k}(t) + \sum_{j}^{5} \sum_{k=i,j}^{2} (t) y_{i,j,k}(t,t+1) = 0$$

$$i = 1,2,...,5$$
; $0 \le x_{ijk}(t) \le \Delta_{ijk}$; $0 \le y_{ijk}(t) \le \Delta_{ijk}$

The dual of (6.0.2) is

$$\text{Max} \sum_{t=1}^{24} \sum_{i}^{5} \phi_{i}(t) \cdot 0 - \sum_{t=1}^{24} \sum_{i}^{5} \sum_{j}^{5} \sum_{k}^{2} \psi_{ijk}(t) \Delta_{ijk} - \sum_{t=1}^{24} \sum_{i}^{5} \sum_{j}^{5} \sum_{k}^{2} w_{ijk}(t) \overline{\Delta}_{ijk}$$

subject to

$$\begin{split} &\sum_{i} \epsilon_{ij} ^{\varphi_{i}(t)} - \Psi_{ijk}(t) \leqslant R_{ijk} \\ &\sum_{i} \epsilon_{ij} ^{\varphi_{i}(t)} - W_{ijk} \leqslant R_{ijk} \ \forall \ j, \ t, \ \text{where} \ \Phi_{i} \ \text{unrestricted}, \ W_{ijk}, \ \Psi_{ijk} \geqslant 0. \end{split}$$

In an optimal solution to (6.0.2) the dual variables Φ^*_i , w^*_{ijk} and Ψ^*_{ijk} provide evaluators for the initial points at which changes in "resistance" to traffic volumes occurs. Hence a means is provided for evaluating possible changes associated with those features of the network in terms of their effects on the resulting traffic volumes at the times associated with the movements.

To develop (6.0.2) we nedd the R $_{ijk}$, $\bar{\Delta}_{ijk}$ for the model. The next section will elaborate on the congestion measure we have chosen and on how the R $_{ijk}$, $\bar{\Delta}_{ijk}$ and Δ_{ijk} are determined.

6.1 A Convex Non-linear Measure of Traffic Congestion

The measure of Congestion of traffic should:

- 1) increase with increase in traffic flow,
- have an increasing rate of increase with traffic flow increase (i.e. be a convex function),
 - 3) be zero or very close to zero at zero flow,
- 4) approach infinity when flow approaches the capacity of the route.One such measure of traffic congestion is

(6.1.1)
$$f(x_{ij}) = \frac{1}{U_{ij} - x_{ij}}$$

where U_{ij} is the capacity of the route movement (i,j,). To apply (6.0.2) we need to find R_{ijk} and Δ_{ijk} and what the relationships are between these Δ_{ijk} and R_{ijk} . Thus we break the non-linear function into two line segments. In order to exhibit further relationships, in figure 6-1 we exhibit simultaneously two examples.

For any given two routes (i,j) and (r,s), they have the measures of congestion $R_{ij}(x_{ij})$ and $R_{rs}(x_{rs})$. We break the function $R_{ij}(x_{ij})$ into two line segments. The first line segment is the line that joins the two points $\left(0,\frac{1}{U_{ij}}\right)$ and $\left(\frac{1}{U_{ij1}},\frac{1}{U_{ij}-U_{ij1}}\right)$. We now show how from determination of the breakpoint for one route (i,j), we can simultaneously determine the breakpoints for all other routes (r,s). Using the concept that congestion will be the same if traffic density relative to route capacity is the same, we consider

$$\frac{x}{U_{ij}} = \frac{y}{U_{rs}}$$

where x is the flow in route (i,j) and y is the traffic flow in route (r,s). Using (6.1.2) we have

$$\frac{U_{rs1}}{U_{rs}} = \frac{U_{ij1}}{U_{ij}}$$

then

$$U_{rs\bar{1}} = \left(\frac{U_{rs}}{U_{ij}}\right)U_{ij1}$$

Thus the breakpoints are determined immediately by the route capacity and so are the slopes for all the routes.

(6.1.5) The
$$R_{rs1} = \left(\frac{1}{U_{rs}-U_{rs1}} - \frac{1}{U_{rs}}\right) \div U_{rs1}$$

6.1.1 THEOREM

If R_{ijl} is the slope of the first line segment for $R_{ij}(x_{ij})$, then

$$R_{rs1} = \frac{U^2_{ij}}{U^2_{rs}} \cdot R_{ij1}$$

for all (r,s).

Proof:
$$R_{rs}(x_{rs}) = \frac{1}{U_{rs}^{-x}_{rs}}$$

 R_{rs1} is the slope of the line joining $\left(0,\frac{1}{U_{rs}}\right)$ and $\left(U_{rs1},\frac{1}{U_{rs}-U_{rs1}}\right)$

$$R_{rs1} = \left(\frac{1}{U_{rs}^{-U}_{rs1}} - \frac{1}{U_{rs}}\right) \div U_{rs1}$$

$$= \frac{U_{rs}^{-U}_{rs1} + U_{rs1}}{U_{rs1} \left(U_{rs}^{-U}_{rs1}\right) U_{rs}} = \frac{1}{U_{rs} \left(U_{rs}^{-U}_{rs1}\right)}$$

$$v_{rs1} = \frac{v_{rs}}{v_{ij}} v_{ij1}.$$

Hence

$$R_{rs1} = \frac{1}{U_{rs} \left(U_{rs} - \frac{U_{rs}}{U_{ij}} U_{ij1}\right)} = \frac{1}{\frac{U^{2}_{rs}}{U_{ij}}} \left(U_{ij} - U_{ij1}\right)$$

$$= \left(\frac{U^{2}_{ij}}{U^{2}_{rs}}\right) \frac{1}{U_{ij} \left(U_{ij} - U_{ij1}\right)} = \frac{U^{2}_{ij}}{U^{2}_{rs}} R_{ij1}$$

$$Q \cdot E \cdot D$$

To determine the second line segment slope, let

$$M = \frac{1}{U_{ij} - x^*_{ij}}$$
 where
$$U_{ij} - x^*_{ij} = n$$
 for all (i,j). Then
$$R_{ij2} = \frac{M - \frac{1}{U_{ij} - U_{ij1}}}{x^*_{ij} - U_{ij1}}$$

Computing R_{ijk} , Δ_{ijk} for all functions on the routes, putting them and their associated variables into (6.0.2), we abtain a linear network. This model has been applied to the Hajj Internal Movement using the same data as in the linear case, and solved.

6.2 Results and Conclusions

The non-linear measure of traffic congestion is applied to the same example previously solved for the linear case. All the necessary piece-wise linearization is performed as described in section 6.1. The

optimal solution for the non-linear case depicts the Hajj situation in more realistic terms by picking up the required movements between Muna and Makkah in periods 5, 6, and 7 without imposing lower bounds on traffic movements on routes.

Moreover we see that the evaluation given by the dual variables for the non-linear case give a clear indication of routes which might ease traffic congestion.

The model shows that the time interval of concern for the Hajj Internal Movement is from period four to period seven. To comprehend the ways of easing the traffic congestion there we need to concentrate on the Hajj Internal Movement from period three to period eight and use the results of this model as a guide for traffic improvements.

The model evaluators clearly signal the following routes as the key routes in easing the traffic congestion. The route with the most negative dual variable is Muna to Makkah in period four. The second route is Muna to Makkah at period 5, followed by Muna to Muna between periods five and six.

The model shows that the pilgrims' time of departure depends strictly on the capacity of the ports. Upgrading the capacities of the ports will help in smoothing the Hajj process. Another important way to ease the traffic congestion is to divide the pilgrims into two groups: one to visit Medina prior to the Hajj, the other after the Hajj. Then the group which visits Medina after the Hajj departs from Medina. This will ease the traffic after the Hajj.

Complete optimal solutions for the linear and the non-linear cases are shown in Tables 1 and 2 in the appendix. The optimal solution

includes the optimal traffic flow, the upper bound on each arc, the "cost" of each arc in terms of resistance to traffic and the dual evaluators.

 $\begin{tabular}{ll} TABLE 1 \\ \hline \begin{tabular}{ll} Optimal Solution for the Linear Example \\ \end{tabular}$

OURCE 5#	11	SINKS=	2	TOTAL NOVES=	77 A	AKCS# 169				
BJ FC≥=		35514008		NU. ITEK# 85						
ARC	₽.	10		TINO	UPPER	LUMER		ARC	DUAL	BASIS
NUMBER	00N	E NOUE	w	C05T	BUUND	BOUND	FLOM	COST	4 ×	STATUS
-	200	1101	_	5	SHUBBER	288888	290999	6	-	
~	nos O			65	896969	800000	800000	69	3 9	
~ 1	SOUR		_	60	448888	66666	400000	6	7	
7	200	REU1	_	G.	298989	999995	600005	59	-	
ۍ	חור		_		200000	69	200000	200000	20	GNB
٥	J. I.C.	11 3102	~		30000	6	•	5	3 0	BSC
1	ME.	I MINI	_	-	Sarana	65	300000	300000	•	BSC
20	ME	.1 NEC2	~	-	BOODED	9	000000	899996	9	BSC
•	Z		~	-	700000	6	766666	700000	50	HSC
-	MEC		-	-	200000	9	600000	286088	39	BSC
1.1	T. A.		~	_	BOBBBB	S	55	65	59	388
12	יור	MEC 2	~	-	150000	59	6	55	6	
13	F.	.2 MIN2	~	==	48580	5	60	3	•	
7.	J. J.	.2 MEC3	~	-	BABBBB	60	600000	099996	9	Se
15	Ξ	~	w	~	746669	60	190000	10000	S	RSC
4	1 F. L	PFC2	~	-	29090	6	9	39	6	
1.1	2 F.C.	m	~	-	SOUBLE	60	25	60	5	
18	MEC	3	~	→	SOURCE	S	999996	090906	-	RNG
<u>~</u>	ī		~	~	746668	60	700000	700000	9	esc.
95	AKE	۲	7	-	2000000	S	1600000	1600000	9	980
21	Ā		2	~	1 BABBBB	5	400000	888888	S	HSC
77	ŽΈ	7	7	~	45556	60	400000	40000	-127	Q NB
52	Ž	7	S	-	196669	60	200000	288888	S	28.0
7₹	T. C.	8	7	=	999986	6	999996	999996	5 5 :	ONA
5 2	AK	4 ARFS	s	-	746669	3	999991	99999	\$9 1	389
9 €	MZ U	74IW 7	7	-	201100000	<i>e</i>	999999	888886	S	HSC.
12	FEC	S MEC6	•	-	200000	60	000000	099986	S	RSC
92	3	IS MECS	5	-	280000	69	266666	200000	-127	BND
\$~	Z Σ	S MIN6	•		700000	60	700000	700000	-127	32.0
36	ARF	S	5	~	BREBES	69	700000	76666	S	980
31	MZU	2	2	=	796900	5	700000	700000	5 0 (H SC
32	MEC	ş	•		SUBBRE	S	6	9	~ :	•
33	r F	.6 MEC7	7	-	1896369	9	099996	090906	5	HSC
34		16 MEC6	•	-	SNOONS	69	5	39	6	38.8
35	Z	•	7	-	796966	60	700000	700000	5	BSC

HAJJ INTERNAL MOVEMENT

ARC MURER	102	10 100 100	CA17	UPPER	LUMER	FLON	ARC	004 VAR	BASIS
2	5	1 2	-	42000	•	•	•	N:	
25) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	i i	 -		9 6	99 99 99 90		s e	200
2	7	4211	-	303937	• •	700000	18888	S	BSC
; ;	ME LA	EZ I	-	20002	3	•	9	~	:
-	4 C	# C 4		69666	6 9 6	99 99 90 90 90	9999 9999 9	5 3) 9
7 1	E 1	8 - 4 1 - 4 1 - 4		5955 957 77	5) 6	702520	25.00	9 %	HSC.
7 7	20	F 1 1 4	-	50000	9 69	99999	99999	9	986
4	0.11	MELG		22888	•	•	5	\$	
0	2.5	# 1 2 1 E	-	72222	•	10000	184848		3 K
C 7		X2.70	.	69599	6 2 6	9999	8 16 16	-	2 Z
c 0	2		 .	20202	D 3	2002	2000	.	9 Q
2 7	200	7. to 10.	-	150000	9 59	156666	150000	5	OND
215	# L 1 %	MEC 1 1	. ~	1000001	\$	100000	100000	9	Q NG
25		MECIU	-	****	S	000000	99999	9) (1)
5.5	D .	11211		78656	6	300000	30000	5) 5) ()
3 1	3.5.	ME 0 1 1	- 3	2020	\$ 6	99996	999951		100 100 100 100 100 100 100 100 100 100
0 0		1101.	-		.	216866	216666	9	SC R SC
21	1.F. 1.1	11011	-	29999	29	20000	20000	9	GNB
Şa	MEC 1.1	ME U 1.1	-	299999	6	296969	599999	5 9 (ON S
٠ د د	MEC 1.1	FEC12		6969591	es e	9999	999996	5) 0 10 10
3 -	1 1 2 1 2 1	1		20222	9 65	9999	99996	9 59	
, y 9	NEU11	ME U12	• ••	1 880888	\$	356966	350000	59	986
6 5	21016	SINK	33	COBOO	3	99999	3	-15	BND
7	21010	21015	 ,	396968	5 0 (300000		3 9 (20 2
<u>د</u> ج	7 C C C C C C C C C C C C C C C C C C C	21012		888861	9 5	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22222	2 4	3 0
2.0	MECIZ	MEC15	•	2000000	5	999999	999999	5	BSC
20	31212	MEL 12		99999	60	5	9	\$	HSC
64	MEU12	ME U 1 5	-	IBBBBBB	9	200000	20000	9	PSC
2	21013	V I N	S	86669	6	86666	9		3 C
-	01013	41015	- - ,	200000	5 0 :	300000	38888	3 9 (3	202
v :	2EC15	21015		39393V	B 6	99999		9 6) (
1	20.745	MCO15		2000	e 6	20000	200000	2 2	H CO
: :	MF C 1 A	MF C 4		2022	5	99999	000000	· •	9
	-	SINK	2 •	99999	6	99999	60	-16	GNO
2	51010	21015	-	300000	5.	300000	300000	9	QNP
20	MEC14	101		150000	6	99999	99999	5 5	BSC
2	٦,	MEU14	_	1 56669	5 9 (5	S	so:	6
9	-	MEC15		100000	ss :	368888	30000	S	מ פ פ
→ ?	3F.714	MEU15	 (9989891	S	99999	99999	S) (0 1
v :	21015	X2.0	s -	\$ 55 50 50 50 50 50 50 50 50 50 50 50 50 5	9 6	40000	32.02.5	5	10 E
1 7	1010	• •	• •	00000	. 6	5555		. 5	2
•									

HAJJ INTERNAL MUVEMENT

PRUBLEM IIILE

BSC 56666 1686666 1600000 HAJJ INIERNAL MUVLMENT VINX A LUC22 A

 $$\operatorname{TABLE}\ 2$$ Optimal Solution for the Non-linear Example

Mumber M	OURCESE	78 81	SINKS= 6	TOTAL NODES=	78 AHCSE	306				
FRUM 10 UNIT UPPER LUMER FLUM ANC COST ONLY SOUR FLUM BOUND FLUM COST ONLY SOUR MELLI LAWAR 1448 AWAR AWAR AWAR AWAR AWAR AWAR AWAR AWA	J FCN3		26301875	ITERE						
SOUR JIDI 0 266 266 266 666 <th>ARC</th> <th>2</th> <th>10</th> <th>11ND</th> <th>UPPER</th> <th>LUNER</th> <th></th> <th>ARC</th> <th>BUAL</th> <th>BASIS</th>	ARC	2	10	11ND	UPPER	LUNER		ARC	BUAL	BASIS
SOUR MECT 0 0 260 260 200 0 1040 0 10	NUMBER	NOUE	NODE	COST	GNODE	BOUND	FLOW	COST	×Ακ Α	STATUS
SOUR MECT 4400 640<	-	SOUR	1016	6	268	260	802	5	168796	
SOUR MINI MINI MARI 448 448 448 6 104888 6 104888 6 104888 6 104888 6 104888 6 104888 6 104888 6 104888 6 10488 6 104888 6 104888 6 10488 6 104888 6 10488 6 10488 6 10488 6 10488 6 10488 6 104888 6 10488 <td>~</td> <td>SOUR</td> <td>MEC1</td> <td>5</td> <td>598</td> <td>800</td> <td>866</td> <td>3</td> <td>159616</td> <td></td>	~	SOUR	MEC1	5	598	800	866	3	159616	
50UR MED1 400 104 200 200 600 </td <td>~</td> <td>SOUR</td> <td>3 1 Z 1</td> <td>6</td> <td>99</td> <td>997</td> <td>997</td> <td>3</td> <td>164866</td> <td></td>	~	SOUR	3 1 Z 1	6	99	997	997	3	164866	
JULI MECI 16000 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	SOUR	ME D1	s	500	200	200	S	160016	
JIDI MECI IBUNG 160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	1101	ME.C.1	997	104	6	160	00000	-8786	G NO
JIDI JIDZ 6000 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٥	1010	MEC.1	3	100	60	5	60	850	,
JIU1 JID2 OUUU 150 0 0 0 0 0 0 0 0 0	7	1010	J102	160	150	60	166	16666	50	9 8 8
HECT MINI	20	1010	2102	9990	150	60	69	50	5820	
FECT MINI	7	ME C 1	MIN.	79	250	69	60	9	877	
MEC	10	P.E.C.1	ZIE	5997	250	6	6	9	4384	
MFC1 MEC2 2000 500 0 1000000 0 11550 -2967 11550 -2967 11550 -2967 11550 -2967 11550 -2967 11550 -2967 116000 100	-	MECI	MEGS	91	500	50	266	9998	-1984	BND
MIN	12	MF.C.1	MEC	2000	569	3	240	9	5 0	986
MINI MIN2 3600 350 6 100 100 4000 10	13	F I Z	#IN2	33	350	9	358	11550	-2967	Q P
HEU1 HECT 1400 160 160 46000 60 60 60 60 60 60	7 [ZIZ	MIN2	3668	350	39	20	150000	9	RSC
MEC NUMBER NUM	15	きたし	MEC 1	997	169	69	166	89397	S) (1)
MED1 MED2 16 500 0 100 100 0 MED1 MED2 2000 500 0 75 533.25 -10209 MED1 MEC2 711 75 0 75 525 275.00 0 JIU2 MEC2 11000 200 0 26 26 4364 6436 66 4364 6436 6436 6436 6436 6436 6436 6436 6436 6436 6436 6436 64364 6436 6446 6466 6466	10	r L L	MEC1	16668	89	6	6	9	8896	
MEU1 MEU2 2000 500 0 75 53325 -1984 JIU2 MEC2 711 75 0 75 53325 -10280 JIU2 MEC2 1000 75 0 25 275000 0 4384 MEC2 MINA 100 200 0 200 0 4384 MEC2 MINA 100 200 0 0 4384 MEC3 100 200 0 0 4384 MEC3 200 0 0 4384 MEC3 200 0 0 4384 MEC3 200 0 0 4384 -2667 MEC3 MEC3 200 0 0 250 0 -2567 0 MEU2 MEC3 400 100 0 0 0 0 0 0 0 MEC3 MIN3 400 100 0 0 </td <td>11</td> <td>MEUI</td> <td>ME D 2</td> <td>. 91</td> <td>568</td> <td>50</td> <td>166</td> <td>1660</td> <td>60</td> <td>BSC</td>	11	MEUI	ME D 2	. 91	568	50	166	1660	60	BSC
JUC MEC2 11000 75 0 75 5325 -10289 JUC MEC2 11000 75 0 25 275000 MEC2 MIN2 100 200 0 200 0 4384 MEC2 MIN3 3 33 350 0 500 0 4384 MEC2 MEC3 16 500 0 6 400 0 -3536 MEC2 MEC3 3 3 350 0 200 1550 -2967 MEC2 MEC3 3 350 0 100 0 100 0 11550 -2967 MEC2 MIN3 3000 100 0 100	16	ME U 1	MEU2	2909	200	6	G	50	~	
JIU2 MEC2 11000 75 0 25 275000 -516	<u>></u>	J102	MEC 2	711	75	60	75	53355	1028	9 B B
MEC? MIN2 100 200 200 2000 —516 MEC.2 MIN2 5000 200 0 4384 MEC.2 MEC.3 16 500 0 4384 MEC.2 MEC.3 200 0 60 4384 MIN.2 MIN.3 33 350 0 500 -295 MEC.2 MEC.3 400 100 0 100 4400 -1984 MEC.3 MIN.3 300 100 0 100 4400 -1984 MEC.3 MIN.3 400 100 0 100 7516 MEC.3 MIN.3 400 100 0 100 7516 MEC.3 MIN.3 400 100 0 100 7516 MEC.3 MIN.3 400 250 0 0 0 3336 MEC.3 MIN.3 400 250 0 0 0 0 0<	2	J102	MEC 2	11000	75	9	52	275000	69	BSC
PEC2 MIN2 SOUR 200 0 4384 MEC3 16 500 0 500 0 4384 MEC3 2000 500 0 500 0 -1552 MIN3 33 350 0 250 75000 -1552 MIN3 3000 100 0 100 0 100 0 MEC3 MIN3 4000 100 0 0 0 7616 MEC3 MIN3 4000 100 0 0 0 7616 MEC3 MIN3 4000 100 0 0 0 3936 MEC3 MIN3 4000 100 0 0 0 0 0 MEC3 MIN3 4000 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21	MECA	KIN2	100	260	60	200	59999	-516	ON S
MEL? MEC3 16 500 0 500 -3536 MEL? MEC3 2000 500 0 500 -1552 MIN2 MIN3 33 350 0 1550 -2967 MEL2 MIN3 300 100 0 1550 -2967 MEL2 MEC2 100 0 100 0 7616 MEL3 MEC2 100 0 0 7616 MEC3 MIN3 400 0 0 7616 MEC3 MIN3 400 250 0 100 0 3936 MEC3 MIN3 400 250 0 0 0 3936 -3844 MEC3 MRF3 220 450 0 450 0 3936 -3844 MIN3 ARF3 220 450 0 450 9000 -3844 MIN3 ARF4 350 0 450	22	FEL?	MIN2	2888	200	œ	60	•	4384	
MEC2 MEC3 2000 500 1552 MIN2 MIN3 33 350 6 350 -2967 MIN2 MIN3 3000 350 6 254 750000 -2967 MEU2 MEC2 10000 100 0 7616 MEU2 MEC2 10000 0 0 7616 MEU3 MEC3 0 0 0 7616 MEC3 MIN3 4000 250 0 0 3936 MEC3 MIN3 4000 250 0 0 3936 MEC3 ARF3 2200 450 0 0 3936 MIN3 ARF3 2200 450 0 450 0 3936 MIN3 ARF3 2200 450 0 450 0 350 11550 -864 MIN3 ARF4 4000 450 0 450 0 0 0 <td< td=""><td>23</td><td>MELZ</td><td>MEC3</td><td>16</td><td>568</td><td>89</td><td>200</td><td>8999</td><td>-3536</td><td>9</td></td<>	23	MELZ	MEC3	16	568	89	200	8999	-3536	9
MIN2 MIN3 33 350 6 350 -2967 MIN2 MIN3 3000 350 0 254 75000 0	77	ME C.2	MEC3	9445	568	•	568	2	-1555	940
MIN? MIN3 3888 358 6 258 758888 8 1984 MEUZ 448 1888 8 188 8 1888 8 1884 1984 1884 MEUZ MECZ 18888 1888 8 1888 8 7616 MEUZ MECZ 18888 1888 8 1888 8 7616 MEUZ MIN3 6488 258 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25	S.I.E	NIN3	33	350	39	350	11550	-2967	O S S
MEU2 MEC2 440 100 0 100 4000 -1984 MEU2 MEC2 16000 100 0 7616 MEU3 MIN3 64 250 0 0 7616 MEC3 MIN3 4600 250 0 0 3936 MEC3 ARF3 20 450 0 360 -3644 MFC3 ARF3 22 450 0 450 9000 -864 MIN3 ARF3 22 450 0 350 11550 -864 MIN3 ARF3 35 0 350 11550 -864 ARF3 35 0 350 11550 -864 ARF4 4 1000 0 1000 4000 -896	92	~ZI¥	FIRM	3000	350	9	25.B	756666	60	8 8 8
MEU2 MEC2 10000 100 0 7616 MFC3 MIN3 4000 250 0 100 6400 0 3436 MEC3 MIN3 4000 250 0 0 0 3436 0 3536 0 3544 0 3644 0 3644 0 3644 0 3644 0 3644 0 3644 0 3644 0 3644 0 0 0 3644 0 <td>12</td> <td>ME U.2</td> <td>FEC2</td> <td>993</td> <td>166</td> <td>9</td> <td>166</td> <td>9999</td> <td>-1984</td> <td>ON O</td>	12	ME U.2	FEC2	993	166	9	166	9999	-1984	ON O
MFC3 MIN3 64 250 0 100 640 0 3936 MEC3 MIN3 ARF3 20 450 0 450 9000 -3044 MEC3 ARF3 2240 450 0 450 9000 -3044 MIN3 ARF3 2240 450 0 450 9000 -864 MIN3 ARF3 33 350 0 350 11550 -2967 ARF3 ARF4 4000 0 1000 4000 -9960	88	ME U.2	ME C.2	10000	991	69	29	9	7	
MEC3 MIN3 4000 250 0 0 3936 MEC3 ARF3 20 450 0 450 9000 -3044 MFC3 ARF3 2200 450 0 450 9000 -364 MIN3 ARF3 33 350 0 350 11550 -2967 MR13 ARF4 4 1000 0 1000 4000 -996	62	MF.C.3	MINS	70	250	5	169	9979	9	BSC
MEC3 ARF3 20 450 6 450 9000 -3044 MEC3 ARF3 2200 450 6 450 9000 -864 MIN3 ARF3 53 350 11550 -2067 MIN3 ARF4 3000 350 10500 90 ARF4 4000 4000 4000 -996	36	ME C 3	¥153	4600	250	6	60	9	3936	
MFL3 AMF3 2280 450 0 450 -864 MIN3 AMF3 53 350 0 350 11550 -2967 MIN3 AMF3 3600 350 0 350 0 2960 ARF3 4000 4000 4000 -996	31	MEC3	ARF 3	24	450	G	420	0006	-3644	e NO
MIN3 ARF3 53 350 8 358 11558 +2967 MIN3 ARF3 5800 359 8 358 1858888 8 ARF3 ARF4 4 1888 8 1888 4888 -996	32	MF L3	AHF 3	2200	459	60	450	000006	-864	QN9
MIN3 ARF3 5000 350 0 350 1050000 6 ARF4 4000 -996	33	MINS	ARF 3	53	350	62	350	11550	-2967	BNC
ARF 1 ARF 4 1909 U 1909 LUUG996	34	MINE	ARF 3	3000	350	50	350	1656666	S)SA
	7	ARF 3	ARFA	7	500	· 5	1000	9997	6	BNC

HAJJ INTERNAL MUVEMENT NON-EX

UPTIMAL SOLUTION

PROBLEM IIILL

BASIS	3		200	289		0N9	980	S	980	2 C	200		BNC	BSC	BSC		ONG:	ر 19	5	2 2	2	20	3	2 4	300	•	HSC		H & C		Q S	esc esc		ON S	2	2	ON S	2 2	2 2	2		936	240	2 0 0	3	9	>
DUAL	8997	7047-	-2316		5820	-10269	S	-18289	•	1961-	S) = 1	1976	-2967	33	9	1984	-2136	9	5828	9878-	979	0100	700	5 5	. cs	3936	9	2907	9	9	-1956	30 :	200	6799	2000	1070	2462		9041	1647	, d	ċ	7 6	0 S	200	2006) }
ARC	6	11558	99990	14466	60	53325	715000	53325	385000	9999	99999	9 6	11550	150000	1768	9	•	18666	50 !	4666	S	5 9 9 9	9 6	9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2000	9	6660	50	3360	5	6	20708		53325		2355	2 2 2	•			ď	4706	S	9 24 26	2	2 2 2 2 2	100
FLOW	59 6	200	9 5 0	9	9	75	9	75	35	0 9 :	2 C C C C C C C C C C C C C C C C C C C	9 d	350	95	110	69	9	166		89	S	99	S	9 5	9 6	3 5	280	6	510	50	99	115	s į	75		C e	9 5		990	9 5	3	582	S. ;	9 2		9 5	991
LOWER	9	S	5 6	, c	6	S	5 0	50	9	S	S	s	S	9	9	9	9	9	9	S	S	s (s :	\$ 6	9 6	2 9	50	50	\$	60	3 9	S	S	S	9 6	s :	S) 6	9 6	s :	S	9 6	s > (5 0 (9 5	S 6	S 6	Þ
UPPER	528	\$ 6	E 6	20.5	150	75	75	75	75	59 59 1	29.5 5.5	5 5 2 7 V 0	50.50	358	See	569	S	150	156	59	9	99:	9 :	S 0	6 0	850	350	350	260	568	69	150	128	75	C F	C t	ر م		2 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 2	ر ا ا	29. 29.	S 5		2 2	9
COST	9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	55	202	6	9999	711	11000	711	11000	9	8992	9 2 2		3000	16	2000	S	191	9989	20.0	1000	99.5	Maga!	0 0	9942	2 2 2 2	33	3900	16	5400	6	180	9999	711	9991		11666	01	9997	20.0	9940	91	9992	9 6	401	9 5 5	400
10 NULE	YE C.S.	9 : Z	9 X Z Z	11017	11017	J1015	JIDIO	REDIO	MEUlu	PE 1.1	MEC 1 1	345	3 C T T T T T T T T T T T T T T T T T T	F 121 E	ME U 1 1	MEU11	SIRK	J1012	J1016	11011	11017	F 011	3 T L L	3 F C 1 C		1	31218	MISIL	MEU12	ME 012	SIRK	J1015	JI015	J1012	21016	F 1 1 2	MEC12	75.15	PEC 13	3 :	: כ		*t.013	¥	<u>.</u>	41712	2
FRUM	6271) 2 E	7 2 2 2		31010	MECIU	MECIN	P.E. 1.0	MEC 10	P.E. 1 &	FEC 1 6	3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		MINIE	ME U 16	*Fuls	11010	11010	11015	MFC11	ME C 1 2	3E C 1 1	1	Z	1		E E	MINI	ME U 1 1	ME U 1 1	J1012	21012	21016	MEC 12	MEC.12	Zt C 1 C	MEC 12	71.12	MEC 12	71212	211W	ME 012	ME DIZ	21015	5	21015	5
ARC NUMBER	0 :	2 2	0 7 0 4	<u>.</u>	91	76	95	76	45	9	6	0 3	. 6.	2	1 94	103	164	501	140			79	911	= :	717	7 7 7	115	110	117	116	119	120	121	122	52	721	55.	021	27	921	7.	136	131	156	\$ 5 T	1 34	133

HAJJ INTERNAL MUVEMENT NON-EX

PRUBLEM TITLE

BSC

BNO

HAJJ INTERNAL MUVEPLNI NON-EX

CHIER TITLE

BSC BND BND

HAJJ INTERNAL MUVEMENT NON-EX

BASIS

BSC

BND

HSC

BNC BND BSC

ASC

C COO O

HSC

PRUBLEM 111LE

BASIS	Z a	3		9	200					BSC		GNB	BNC	OS A		O R			•	BSC					2	200	2	2 2			980	2			986) S A		2 : 2 :	2 6	708	q	ב ב ב
DUAL	6146	10289	464	39397	5 3 :	1984	2000	0000	30892	5	1984	-172	-212	9	5820	-147	9453	266	39397	8	7861	2283	40603	0.00		9 5	100	0510	30.2	2274	S	18289	166	39397	59	1984	2203	46603	1492	39892	5	1984	97	891-	50 0	5826	-14/
ARC	3 6	9 60 1 1 0	9		3848	s o (S	n, e	s	3840	•	6	59	3660	\$	46060	\$	5		2240	5 9 (5	5 0 :	S	9 0	90	b :	s c	9 9	9 6	14228	,	: 53	5	1928	3	50	5	5	-	1928	9	6 0	69 (3668	9 5	9999
FLOW	5 0 5	2 2 2	6	59	248	s :	\$ 6	S 6	9 6	22.0	5	20	99	95	S.	\$ 9	3 0	9	•	871	5	6 .	5 9. (5 0 (S	9/1	S	9 S	9 5	e d	5	3 6	50	9	120	60	69	9	59	60	150	9	85	99	9 .	9 6	99
LOWER	62 (s	5	59	•	6	s ;	s e	9 5	s s	. 6	5	50	c	0	3	6	S	\$	5	3	6	S	S	so :	s c	S	5 5 (S	b 5	S S	3 5	9 65	5	60	\$	9	6	9	GS.	50	60	9	6 0 :	SS !	59 (50
UPPER BOUND	150	2,5	2.5	20	569	500	S ;	S :	S 9	5 6 V	20.00	5	S	158	150	168	160	50	50	200	569	20	28	29	9.5	595	895	79	\$ 1	50	107			, c	288	569	20	S	50	5.0	560	200	20	5	159	158	e 9
UNIT	0999	11881	1668	46894	16	B005	1666	69897	9991	4000	8990	S	\$	160	9969	700	10000	1660	46904	91	9962	1600	46868	1660	4666	16	5000	69 1	\$;	166	999	11/	2221	22222	91	2000	1660	46469	1600	00000	16	2000	0	59	100	9999	097
TO NOVE	J1021	8501L	MEDZ	MEDZW	MEC 2 1	MEC-21	MEC 20	×EC26	31026	21028	MFU21	SINK	NI S	31022	J1022	J1021	J1621	MEU21	MED-21	ME C.2.2	MEC2	MEC-21	MEC21	11021	J1021	MEU22	ME U 2 2	SINK	SINK	JI023	31023	27016	MEDDO	MF1323	MEC23	MEL23	MECZ	MEC22	31022	J1024	ME 023	ME U 2 3	SINK	SILLA	J1024	J1124	J1023
FRUM	JIDZe	ME CAS	MEC.26	ME.C.20	MELZU	MFCZU	MEUZU	MEU20	AFO ZE	ME 10 60	MFC28	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11021	31021	J1021	MEC.21	MEC 21	ME C 21	ME C 2 1	MELZI	MEC 21	P-E-021	ME U 2 1	ME U21	MEU21	ME U 2 1	MEU21	ME U 2 1	J1022	31022	31022	MELZZ	ME C 22	MECOL	MFC22	XEL22	MEUZZ	MED22	MEUSZ	MEUZZ	MEU22	MEU22	ME D22	11023	J1023	JI025	MEC.25
ARC NUMBER	636	237	239	246	C41	545	543	7	245	C 50	***	7 7 1	\$ 5.0 \$ 5.0	251	252	253	254	552	250	157	258	652	760	761	262	663	764	597	566	197	897	607	9	77.		274	275	276	277	278	279	780	2A1	787	283	584	582

REFERENCES

- [1] Abdul-Rauf, M., "Pilgrimage to Makkah," <u>National Geographic</u>, Vol. 154, No. 5, November 1978, pp. 581-560.
- [2] Charnes, A. and Cooper, W.W., <u>Management Models and Industrial Application of Linear Programming</u>, Vol. 1-11, New York: John Wiley and Sons Inc., 1961.
- [3] Elfghi, M., <u>Hajj in Islam "El Hajj Fee El Islam"</u>, series of Islamic Research, November, 1972.
- [4] Hajj Research Center, Holy Areas Vehicle Cordon 1395 A.H., King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
- [5] Hussien, M., El Hajj, the Library of Anglo Egyption.
- [6] Sabig, S., Fagh El Suna, the House of Arabic Books, Beurit, Lebenan, Vol. 1, Sections 1, 2, 3, 4, 5.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	\frac{1}{2} = \frac{1}{2}											
1 REPORT NUMBER	2. GOVT ACCESSION NO.	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER										
CCS 455	AD H14/391											
4. TITLE (and Subtitle)	<u>. L. '</u>	5. TYPE OF REPORT & PERIOD COVERED										
A Non-linear Congestion Network												
Planning Internal Movement in the	Најј	5. PERFORMING ORG. REPORT NUMBER										
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(s)										
A. Charnes, S. Duffuaa, A. Yaf	i	N00014-82-K-0295										
n. onarnes, s. barrada, n. rar	•											
		_										
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS										
Center for Cybernetic Studies												
The University of Texas at Aust	tin											
Austin, Texas 78712												
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE										
Office of Naval Research (Code	434)	December 1983										
•		43										
14. MONITORING AGENCY NAME & ADDRESS(If differen	it from Controlling Office)	15. SECURITY CLASS. (of this report)										
,												
		Unclassified										
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE										
		<u> </u>										
16. DISTRIBUTION STATEMENT (of this Report)												
This document has been approved	d for public rele	ease and sale; its										
distribution is unlimited.												
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	m Report)										
18. SUPPLEMENTARY NOTES												
16. SUPPLEMENTARY RUTES												
19. KEY WORDS (Continue on reverse side if necessary a	nd identify by block number;											
Non-linear dynamic capacitated	network model,	Goal programming, Hajj Pil-										
grimage , Non-linear congestio	n, Policy analys	is										
20. ABSTRACT (Continue on reverse side if necessary an	d identify by block number)											
This paper develops a non-1	inear dynamic cap	pacitated network model for										
planning the movements of pilg	rims in the Hajj	, one of the world's largest										
mass movements, according to r	eligious ritual,	which would assist in min-										
imizing traffic congestion and	the overcrowding	g of the holy sites. A new										
non-linear representation of c	ongestion with c	onvenient mathematical pro-										
perties is made. The model is												
qualitative background for gen	eral policy deci	sions on the Hajj transpor-										
tation.												

DD . FORM 1473

EDITION OF 1 NOV 65 IS OBSOLET! 5/N 0102-014-6601 : Unclassified

ME