Tracking juggling balls using the Kinect

Rolf Boomgaarden · Thiemo Gries · Florian Letsch

Universität Hamburg

30. Mai 2013

- A Juggling Robot
- 2 Hough Transform
- 3 Kalman Filter
- 4 Our plan
- 5 Our plan

A juggling robot

Playing Catch and Juggling with a Humanoid Robot Jens Kober¹, Matthew Glisson, and Michael Mistry² Disney Research, Pittsburgh, USA

- ¹ Bielefeld University, Germany
- ² University of Birmingham, UK

System description

- Robot hardware
- Vision system
- Ball Filtering and Prediction
- 4 Robot State Machine
- Catching Algorithm
- 6 Throwing Approach
- Juggling

Image processing pipeline

Hough Transform

- nutzt verschiedene Daten, um den aktuellen Zustand zu schätzen:
 - Daten aus Wissen über die Zustandsänderung
 - Sensordaten
- kann mit diesen auch zukünftige Zustände schätzen

Formeln

predict

mit Wissen über die Art der Bewegung wird eine voraussichtliche Position berechnet:

$$\overline{X}_t = A_t X_{t-1} + B_t u_t + \varepsilon_t$$

zusätzlich werden die Sensordaten (hier GPS) geschätzt:

$$\overline{z}_t = H_t \overline{x}_t + \varepsilon_t$$

update

geschätzte Positionen werden mit Sensordaten korrigiert:

$$X_{estimate} = \overline{X}_t + K(z_t - \overline{Z}_t)$$

Formeln

- predict
 - mit Wissen über die Art der Bewegung wird eine voraussichtliche Position berechnet:

$$\overline{x}_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

zusätzlich werden die Sensordaten (hier GPS) geschätzt:

$$\overline{z}_t = H_t \overline{x}_t + \varepsilon_t$$

- update
 - geschätzte Positionen werden mit Sensordaten korrigiert:

$$X_{estimate} = \overline{X}_t + K(z_t - \overline{Z}_t)$$

Formeln

- predict
 - mit Wissen über die Art der Bewegung wird eine voraussichtliche Position berechnet:

$$\overline{x}_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

zusätzlich werden die Sensordaten (hier GPS) geschätzt:

$$\overline{z}_t = H_t \overline{x}_t + \varepsilon_t$$

- update
 - geschätzte Positionen werden mit Sensordaten korrigiert:

$$X_{estimate} = \overline{X}_t + K(z_t - \overline{z}_t)$$

Unsere Anwendung

- $\blacksquare \ \, \text{Wissen \"{u}ber Art der Bewegung} \to \text{Wurfparabel}$
- \blacksquare Sensordaten \rightarrow Kinect

Conclusion

Video + paper conclusion

The flow

IN: rgb + z

- eliminate background in z
- \blacksquare search local maxima in $z \rightarrow ROIs$
- use ROI mask on rgb
- Hough transform on rgb
- Match corresponding balls in multiple frames
- Kalman filter for each ball

The flow

Challenges

- Local maxima
- Multiple balls (colour?)

The end

EOF