

Studer A779

Professional Compact Mixer

Deutsch:

- 1. Allgemeines
- 2. Bedienungselemente
- 3. Funktionsbeschreibung
- 4. Demontage-Anleitung
- 5. Abgleich

English:

- 1. General
- 2. Start-up Procedure
- 3. Functional Description
- 4. Disassembly Instructions
- 5. Alignment

Schemas / Circuit Diagrams

Betriebs- und Serviceanleitung Operating and Service Instructions

Prepared and edited by Studer Professional Audio GmbH Technical Documentation Althardstrasse 30 CH-8105 Regensdorf – Switzerland http://www.studer.ch

Copyright by Studer Professional Audio GmbH Printed in Switzerland Order no. 10.27.1354 (Ed. 0796)

Subject to change

A Safety Information

To reduce the risk of electric shock, do not remove covers. No user-serviceable parts inside. Refer servicing to qualified service personnel (i.e., persons having appropriate technical training and experience necessary to be aware of hazards to which they are exposed in performing a repair action, and of measures to minimize the danger of themselves).

This symbol alerts the user to the presence of un-insulated *dangerous voltage* within the equipment that may be of sufficient magnitude to constitute a risk of electric shock to a person.

This symbol alerts the user to *important instructions* for operating and maintenance in this documentation.

CLASS I LASER PRODUCT Assemblies or sub-assemblies of this product can contain opto-electronic devices. As long as these devices comply with Class I of laser or LED products according to EN 60825-1:1994, they will not be expressly marked on the product. If a special design should be covered by a higher class of this standard, the device concerned will be marked directly on the assembly or sub-assembly in accordance with the above standard.

A1 First Aid

In Case of Electric Shock:

Separate the person as quickly as possible from the electric power source:

- By switching off the equipment,
- By unplugging or disconnecting the mains cable, or
- By pushing the person away from the power source, using dry, insulating material (such as wood or plastic).
- After having suffered an electric shock, *always* consult a doctor.

Warning!

Do not touch the person or his clothing before the power is turned off, otherwise you stand the risk of suffering an electric shock as well!

If the Person is Unconscious:

- Lay the person down
- Turn him to one side
- Check the pulse
- Reanimate the person if respiration is poor
- Call for a doctor immediately.

1

B General Installation Instructions

Please consider besides these general instructions also any product-specific instructions in the «Installation» chapter of this manual.

B1 Unpacking

Check the equipment for any transport damage. If the unit is mechanically damaged, if liquids have been spilled or if objects have fallen into the unit, it must not be connected to the AC power outlet, or it must be immediately disconnected by unplugging the power cable. Repair must only be performed by trained personnel in accordance with the applicable regulations.

B2 Installation Site

Install the unit in a place where the following conditions are met:

- The temperature and the relative humidity of the environment must be within the specified limits during operation of the unit. Relevant values are the ones at the air inlets of the unit.
- Condensation must be avoided. If the unit is installed in a location with large variation of ambient temperature (e.g. in an OB-van), appropriate precautions must be taken before and after operation (for details on this subject, refer to Appendix 1).
- Unobstructed air flow is essential for proper operation. Air vents of the
 unit are a functional part of the design and must not be blocked in any
 way during operation (e.g. by objects placed upon them, placement of the
 unit on a soft surface, or installation of the unit within a rack or piece of
 furniture).
- The unit must not be heated up by external sources of heat radiation (sunlight, spot lights).

B3 Earthing and Power Supply

Earthing of units with mains supply (class I equipment) is performed via the protective earth (PE) conductor integrated in the mains cable. Units with battery operation (< 60 V, class III equipment) must be earthed separately. Earthing the unit is one of the measures for protection against electrical shock hazard (dangerous body currents). Hazardous voltage may not only be caused by a defective power supply insulation, but may also be introduced by the connected audio or control cables.

If the unit is installed with one or several external connections, its earthing must be provided during operation as well as while the unit is not operated. If the earthing connection can be interrupted, for example, by unplugging the mains plug of an external power supply unit, an additional, permanent earthing connection must be installed using the provided earth terminal.

Avoid ground loops (hum loops) by keeping the loop surface as small as

Avoid ground loops (hum loops) by keeping the loop surface as small as possible (by consequently guiding the earth conductors in a narrow, parallel way), and reduce the noise current flowing through the loop by inserting an additional impedance (common-mode choke).

Class I Equipment (Mains Operation)

Should the equipment be delivered without a matching mains cable, the latter has to be prepared by a trained person using the attached female plug (IEC320/C13 or IEC320/C19) with respect to the applicable regulations in your country.

Before connecting the equipment to the AC power outlet, check that the local line voltage matches the equipment rating (voltage, frequency) within the admissible tolerance. The equipment fuses must be rated in accordance with the specifications on the equipment.

Equipment supplied with a 3-pole appliance inlet (protection conforming to class I equipment) *must* be connected to a 3-pole AC power outlet so that the equipment cabinet is connected to the protective earth.

For information on mains cable strain relief please refer to Appendix 2.

Class III Equipment (Battery Operation up to 60 V_{DC})

Equipment of this protection class must be earthed using the provided earth terminal, if one or more external signals are connected to the unit (see explanation at the beginning of this paragraph).

B4 Electromagnetic Compatibility (EMC)

The unit conforms to the protection requirements relevant to electromagnetic phenomena that are listed in guidelines 89/336/EC and FCC, part 15.

- The electromagnetic interference generated by the unit is limited in such a way that other equipment and systems can be operated normally.
- The unit is adequately protected against electromagnetic interference so that it can operate properly.

The unit has been tested and conforms to the EMC standards of the specified electromagnetic environment, as listed in the following declaration. The limits of these standards ensure protection of the environment and corresponding noise immunity of the equipment with appropriate probability. However, a professional installation and integration within the system are imperative prerequisites for operation without EMC problems.

For this purpose, the following measures must be followed:

- Install the equipment in accordance with the operating instructions. Use the supplied accessories.
- In the system and in the vicinity where the equipment is installed, use only components (systems, equipment) that also fulfill the EMC standards for the given environment.
- Use a system grounding concept that satisfies the safety requirements (class I equipment must be connected with a protective ground conduc-

tor) and that also takes into consideration the EMC requirements. When deciding between radial, surface, or combined grounding, the advantages and disadvantages should be carefully evaluated in each case.

- Use shielded cables where shielding is specified. The connection of the shield to the corresponding connector terminal or housing should have a large surface and be corrosion-proof. Please note that a cable shield connected only single-ended can act as a transmitting or receiving antenna within the corresponding frequency range.
- Avoid ground loops or reduce their adverse effects by keeping the loop surface as small as possible, and reduce the noise current flowing through the loop by inserting an additional impedance (e.g. common-mode choke).
- Reduce electrostatic discharge (ESD) of persons by installing an appropriate floor covering (e.g. a carpet with permanent electrostatic filaments) and by keeping the relative humidity above 30%. Further measures (e.g. conducting floor) are usually unnecessary and only effective if used together with corresponding personal equipment.
- When using equipment with touch-sensitive operator controls, please take care that the surrounding building structure allows for sufficient capacitive coupling of the operator. This coupling can be improved by an additional, conducting surface in the operator's area, connected to the equipment housing (e.g. metal foil underneath the floor covering, carpet with conductive backing).

C Maintenance

All air vents and openings for operating elements (faders, rotary knobs) must be checked on a regular basis, and cleaned in case of dust accumulation. For cleaning, a soft paint-brush or a vacuum cleaner is recommended.

Cleaning the surfaces of the unit is performed with a soft, dry cloth or a soft brush.

Persistent contamination can be treated with a cloth that is slightly humidified with a mild cleaning solution (soap-suds).

For cleaning display windows, commercially available computer/TV screen cleaners are suited. Use only a slightly damp (never wet) cloth.

Never use any solvents for cleaning the exterior of the unit! Liquids must never be sprayed or poured on directly!

For equipment-specific maintenance information please refer to the corresponding chapter in the Operating and Service Instructions manuals.

D Electrostatic Discharge during Maintenance and Repair

Caution:

Observe the precautions for handling devices sensitive to electrostatic discharge!

Many semiconductor components are sensitive to electrostatic discharge (ESD). The life-span of assemblies containing such components can be drastically reduced by improper handling during maintenance and repair work. Please observe the following rules when handling ESD sensitive components:

- ESD sensitive components should only be stored and transported in the packing material specifically provided for this purpose.
- When performing a repair by replacing complete assemblies, the removed assembly must be sent back to the supplier in the same packing material

- in which the replacement assembly was shipped. If this should not be the case, any claim for a possible refund will be null and void.
- Unpacked ESD sensitive components should only be handled in ESD protected areas (EPA, e.g. area for field service, repair or service bench) and only be touched by persons who wear a wristlet that is connected to the ground potential of the repair or service bench by a series resistor. The equipment to be repaired or serviced as well as all tools and electrically semi-conducting work, storage, and floor mats should also be connected to this ground potential.
- The terminals of ESD sensitive components must not come in uncontrolled contact with electrostatically chargeable (voltage puncture) or metallic surfaces (discharge shock hazard).
- To prevent undefined transient stress of the components and possible damage due to inadmissible voltages or compensation currents, electrical connections should only be established or separated when the equipment is switched off and after any capacitor charges have decayed.

E Repair

Removal of housing parts, shields, etc. exposes energized parts. For this reason the following precautions must be observed:

- Maintenance may only be performed by trained personnel in accordance with the applicable regulations.
- The equipment must be switched off and disconnected from the AC power outlet before any housing parts are removed.
- Even if the equipment is disconnected from the power outlet, parts with hazardous charges (e.g. capacitors, picture tubes) must not be touched until they have been properly discharged. Do not touch hot components (power semiconductors, heat sinks, etc.) before they have cooled off.
- If maintenance is performed on a unit that is opened and switched on, no uninsulated circuit components and metallic semiconductor housings must be touched, neither with your bare hands nor with un-insulated tools.

Certain components pose additional hazards:

- Explosion hazard from lithium batteries, electrolytic capacitors and power semiconductors (watch the component's polarity. Do not short battery terminals. Replace batteries only by the same type).
- Implosion hazard from evacuated display units.
- Radiation hazard from laser units (non-ionizing), picture tubes (ionizing).
- Caustic effect of display units (LCD) and components containing liquid electrolyte.

Such components should only be handled by trained personnel who are properly protected (e.g. safety goggles, gloves).

E1 SMD Components

Studer has no commercially available SMD components in stock for service purposes. For repair, the corresponding devices have to be purchased locally. The specifications of special components can be found in the service manual.

SMD components should only be replaced by skilled specialists using appropriate tools. No warranty claims will be accepted for circuit boards that have been damaged. Proper and improper SMD soldering joints are illustrated below.

F Disposal

Disposal of Packing Materials

The packing materials have been selected with environmental and disposal issues in mind. All packing material can be recycled. Recycling packing saves raw materials and reduces the volume of waste.

If you need to dispose of the transport packing materials, please try to use recyclable means.

Disposal of Used Equipment

Used equipment contains valuable raw materials as well as materials that must be disposed of professionally. Please return your used equipment via an authorized specialist dealer or via the public waste disposal system, ensuring any material that can be recycled is.

Please take care that your used equipment cannot be abused. To avoid abuse, delete sensitive data from any data storage media. After having disconnected your used equipment from the mains supply, make sure that the mains connector and the mains cable are made useless.

G Declarations of Conformity

G1 Class A Equipment - FCC Notice

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide a reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Caution:

Any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment. Also refer to relevant information in this manual.

G2 CE Declaration of Conformity

We.

Studer Professional Audio GmbH,

CH-8105 Regensdorf,

declare under our sole responsibility that the product

Studer A779, Mixing Console

(starting with serial no. 1823)

to which this declaration relates, according to following regulations of EU directives and amendments

 Low Voltage (LVD): 73/23/EEC + 93/68/EEC

• Electromagnetic Compatibility (EMC): 89/336/EEC + 92/31/EEC + 93/68/EEC

is in conformity with the following standards or normative documents:

Safety:

EN 60065:1993 (Class II equipment)

• EMC:

EN 50081-1:1992; EN 50082-1:1992

Regensdorf, November 20, 1995

B. Hochstrasser, President

P. Fiala, Manager QA

Appendix 1: Air Temperature and Humidity

General

Normal operation of the unit or system is warranted under the following ambient conditions defined by *EN 60721-3-3, set IE32, value 3K3*.

This standard consists of an extensive catalogue of parameters, the most important of which are: ambient temperature +5...+40 °C, relative humidity 5...85% (i.e., no formation of condensation or ice); absolute humidity 1...25 g/m³; rate of temperature change < 0.5 °C/min. These parameters are dealt with in the following paragraphs.

Under these conditions the unit or system starts and works without any problem. Beyond these specifications, possible problems are described in the following paragraphs.

Ambient Temperature

Units and systems by Studer are generally designed for an ambient temperature range (i.e. temperature of the incoming air) of +5...+40 °C. When rack mounting the units, the intended air flow and herewith adequate cooling must be provided. The following facts must be considered:

- The admissible ambient temperature range for operation of the semiconductor components is 0 °C to +70 °C (commercial temperature range for operation).
- The air flow through the installation must provide that the outgoing air is always cooler than 70 °C.
- Average heat increase of the cooling air shall be about 20 K, allowing for an additional maximum 10 K increase at the hot components.
- In order to dissipate 1 kW with this admissible average heat increase, an air flow of 2.65 m³/min is required.

Example:

A rack dissipating P = 800 W requires an air flow of $0.8 * 2.65 m^3/min$ which corresponds to $2.12 m^3/min$.

• If the cooling function of the installation must be monitored (e.g. for fan failure or illumination with spot lamps), the outgoing air temperature must be measured directly above the modules at several places within the rack. The trigger temperature of the sensors should be 65 to 70 °C.

Frost and Dew

The unsealed system parts (connector areas and semiconductor pins) allow for a minute formation of ice or frost. However, formation of dew visible with the naked eye will already lead to malfunctions. In practice, reliable operation can be expected in a temperature range above $-15\,^{\circ}$ C, if the following general rule is considered for putting the cold system into operation:

If the air within the system is cooled down, the relative humidity rises. If it reaches 100%, condensation will arise, usually in the boundary layer between the air and a cooler surface, together with formation of ice or dew at sensitive areas of the system (contacts, IC pins, etc.). Once internal condensation occurs, trouble-free operation cannot be guaranteed, independent of temperature.

Before putting into operation, the system must be checked for internal formation of condensation or ice. Only with a minute formation of ice, direct

evaporation (sublimation) may be expected; otherwise the system must be heated and dried while switched off.

A system without visible internal formation of ice or condensation should be heated up with its own heat dissipation, as homogeneously (and subsequently as slow) as possible; the ambient temperature should then always be lower than the one of the outgoing air.

If it is absolutely necessary to operate the cold system immediately within warm ambient air, this air must be dehydrated. In such a case, the absolute humidity must be so low that the relative humidity, related to the coldest system surface, always remains below 100%.

Ensure that the enclosed air is as dry as possible when powering off (i.e. before switching off in winter, aerate the room with cold, dry air, and remove humid objects as clothes from the room).

These relationships are visible from the following climatogram. For a controlled procedure, thermometer and hygrometer as well as a thermometer within the system will be required.

- Example 1: An OB-van having an internal temperature of 20 °C and relative humidity of 40% is switched off in the evening. If temperature falls below +5 °C, dew or ice will be forming.
- **Example 2:** An OB-van is heated up in the morning with air of 20 °C and a relative humidity of 40%. On all parts being cooler than +5 °C, dew or ice will be forming.

Figure B.3 – Climatogramme pour catégorie 3K3
Climatogram for class 3K3

Appendix 2: Mains Connector Strain Relief

For anchoring connectors without a mechanical lock (e.g. IEC mains connectors), we recommend the following arrangement:

Procedure:

The cable clamp shipped with your unit is auto-adhesive. For mounting please follow the rules below:

- The surface to be adhered to must be clean, dry, and free from grease, oil, or other contaminants. Recommended application temperature range is +20...+40 °C.
- Remove the plastic protective backing from the rear side of the clamp and apply it firmly to the surface at the desired position. Allow as much time as possible for curing. The bond continues to develop for as long as 24 hours.
- For improved stability, the clamp should be fixed with a screw. For this purpose, a self-tapping screw and an M4 bolt and nut are included.
- Place the cable into the clamp as shown in the illustration above and firmly press down the internal top cover until the cable is fixed.

STUDER Appendix

Appendix 3: Software License

Use of the software is subject to the Studer Professional Audio Software License Agreement set forth below. Using the software indicates your acceptance of this license agreement. If you do not accept these license terms, you are not authorized to use this software.

Under the condition and within the scope of the following Terms and Conditions, Studer Professional Audio AG (hereinafter "Studer") grants the right to use programs developed by Studer as well as those of third parties which have been installed by Studer on or within its products. References to the license programs shall be references to the newest release of a license program installed at the Customer's site.

Programs Covered by the Agreement

License Programs of Studer

The following Terms and Conditions grant the right to use all programs of Studer that are part of the System and/or its options at the time of its delivery to the Customer, as well as the installation software on the original data disk and the accompanying documentation ("License Material"). In this Agreement the word "Programs" shall have the meaning of programs and data written in machine code.

Using the software indicates your acceptance of this license agreement. If you do not accept these license terms, you are not authorized to use this software.

Programs of Third Parties

Programs of third parties are all programs which constitute part of the System and/or its options at the time of delivery to the Customer but have not been developed by Studer. The following conditions are applicable to programs of third parties:

- The right to use third parties' programs is governed by the License Agreement attached hereto (if applicable), which is an integral part of this Agreement. The Customer shall sign any and all License Agreements for all further programs of third parties installed on the system. The Customer shall be deemed to have received all License Agreements upon delivery of the system and/or its options.
- Studer shall accept no responsibility or liability for, and gives no warranties (express or implied) as to the programs of third parties. The Customer waives any and all claims versus Studer for any consequential damages, which might occur due to defects of these programs.

Right of Use

Principle

Studer grants the Customer the non-exclusive right to use the License Material in one copy on the system and/or its options as laid down by the Sales Agreement concluded between the parties and all Terms and Conditions which shall be deemed to form and be read and construed as part of the Sales Agreement. This right is assignable according to the "Assignability" paragraph hereinafter

Customized Configurations

The Customer is not entitled to alter or develop further the License Material except within the expressly permitted configuration possibilities given by the software installed on the system or elsewhere. All altered programs, including but not limited to the products altered within the permitted configuration possibilities, are covered by this License Agreement.

Appendix STUDER

Reverse Engineering

Reverse engineering is only permitted with the express consent of Studer. The consent of Studer can be obtained but is not limited to the case in which the interface-software can not be provided by Studer. In any case Studer has to be informed immediately upon complete or partial reverse engineering.

Copying the License Material

The Customer is entitled to make one copy of all or parts of the License Material as is necessary for the use according to this Agreement, namely for backup purposes. The Customer shall apply the copyright of Studer found on the License Material onto all copies made by him. Records shall be kept by the Customer regarding the amount of copies made and their place of keeping. The responsibility for the original program and all copies made lies with the Customer. Studer is entitled to check these records on first request. Copies not needed anymore have to be destroyed immediately.

Disclosure of License Material

The License Material is a business secret of Studer. The Customer shall not hand out or in any way give access to parts or the complete License Material to third parties nor to publish any part of the License Material without prior written consent of Studer. The Customer shall protect the License Material and any copies made according to the paragraph above by appropriate defense measures against unauthorized access. This obligation of non-disclosure is a perpetual obligation.

Third parties are entitled to have access to the License Material if they use the License Material at the Customer's site in compliance with this Agreement. Under no circumstance are third parties entitled to have access to the installation software on the original data media. The Customer shall safeguard the original data media accordingly.

Assignability

The rights granted to the Customer according to this License Agreement shall only be assignable to a third party together with the transfer of the system and/or its options and after the prior written consent of Studer.

Rights to License Material

With the exception of the right of use granted by this License Agreement all proprietary rights to the License Material, especially the ownership and the intellectual property rights (such as but not limited to patents and copyright) remain with Studer even if alterations, customized changes or amendments have been made to the License Material.

Studer's proprietary rights are acknowledged by the Customer. The Customer shall undertake no infringements and make no claims of any patent, registered design, copyright, trade mark or trade name, or other intellectual property right.

Warranty, Disclaimer, and Liability

For all issues not covered herewithin, refer to the "General Terms and Conditions of Sales and Delivery" being part of the sales contract.

1	Allgemeines	
	Einführung	1/1
	Bedienungselemente	1/2
	Anschlussfeld	1/4
	Technische Daten	1/7
	Zubehör	1/10
2	Inbetriebnahme	
	Gerät ans Netz anschliessen	2/1
	Gerät einschalten	2/1
	Mikrofon Phantomspeisung	2/1
	Eingänge anschliessen	2/2
	Ausgänge anschliessen	2/2
3	Funktionsbeschreibung	
3	Netzteil	0/4
	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3/1
	Anzeige-Einheit Eingangs-Einheit	3/1
	Summen-Einheit	3/2 3/3
	Abhör-Einheit	3/3 3/3
	Ein-/Ausgangs-Einheit	3/4
	Kontroll-Abhör-Einheit	3/5
		*
4	Demontage-Anleitung	
	Allgemeine Hinweise	4/1
	Gehäuse	4/2
	Elektronische Baugruppen	4/4
5	Abgleichanleitung	
	Allgemeine Hinweise	5/1
	Netzteil	5/3
	Eingangs-Einheit	5/4
	Summen-Einheit	5/5
	Anzeige-Einheit	5/6
	Messen der Audio Daten	5/6
6	Schemata	
	Ochemata	

STUDER A779

1 Allgemeines

1.1	Einfüh	rung	1
1.2	Bedien	ungselemente	2
1.3	Anschl	ussfeld	4
1.4	Techni	sche Daten	7
	1.4.1	Elektronische Daten	7
	1.4.2	Mechanische Daten	g
1.5	Zubeh	ör	10
	1.5.1	Zubehörset	10
	1.5.2	Montagesatz für 19"-Rack	10
	1.5.3	Bus-Verbindungskabel	10
	1.5.4	Transportkoffer	10
		Drobknönfo und Drucktacton	

EDITION: 7. Januar 1991

1 Allgemeines

1.1 Einführung

- Das professionelle Kleinmischpult STUDER A779 ist ein universelles Pult vor allem für den mobilen Einsatz. Seine Besonderheit ist, dass in der Grundeinheit jeder der sechs Eingangszüge prinzipiell zweikanalig ausgelegt ist. So kann jeder von ihnen entweder für hochpegelige Signale in Stereo dann sind die Eingänge asymmetrisch oder in Mono mit symmetrischem Eingang betrieben werden. Diese Schaltungsart akzeptiert dann auch Mikrofon-Eingangssignale.
- Die Erweiterungseinheit, die unter der Grundeinheit montiert ist und mit dieser eine Einheit bildet, hat nun zusätzliche Symmetrierstufen eingebaut; damit lassen sich drei hochpegelige Stereorückführungen (sechs Kanäle) z. B. von Tonbandmaschinen oder Effektgeräten symmetrisch abschliessen und jeweils auf einen Eingangszug führen.
- Je nach Beschaltung kann so das Pult zwischen sechs und vierzehn Eingangskanäle (unter Berücksichtigung der AUX RETURN- Eingänge) aufweisen.
- Für den Fall des Stereobetriebs eines Eingangszuges wirken die Bedienungselemente auf beide Kanäle.
- Wenn in der folgenden Beschreibung von "Einheiten" die Rede ist, so handelt es sich nicht um mechanisch trennbare Baugruppen, sondern um Funktionseinheiten (Beispiel: die "Eingangseinheit" besteht aus einer Platine und aus in die Bedienoberfläche integrierten Bedienelementen; elektrisch ist sie jedoch eine separate Funktionseinheit).

D 1/2

1.2 Bedienungselemente

Bedienungselement

Funktion

[1] INPUT 1

Stereo-Eingangs-Einheit mit folgenden Elementen:

[a] INPUT SELECTOR

Eingangswahlschalter. Zur Anwahl der verschiedenen Eingänge:
 LINE: MONO BAL. (symmetrisch)

STEREO UNBAL. (asymmetrisch)
MIC: NORMAL (symmetrisch, erdfrei)

NORMAL (symmetrisch, erdfrei) BASS CUT (Trittschallfilter aktiv)

Vorsicht:

Es dürfen niemals gleichzeitig Hochpegel-Signalquellen und Stereo-HiFi-Signalquellen an der selben Eingangs-Einheit angeschlossen sein!

Bedienungselement

Funktion

[b] GAIN

 Eingangspegelregler. Zur Anpassung des Pegels der verschiedenen Signalquellen. Die Skala des Reglers ist bei 0 dB mit einer Eichmarke versehen. Diese kennzeichnet 0 dB Verstärkung über den ganzen Kanal bei Eingangswahlschalter Stellung LINE und 0 dB Stellung von Eingang- und Summenregler.

[c] TREBLE

 Höhenregler. Potentiometer zur Anhebung oder Absenkung des Höhenbereichs (±15 dB bei 20 kHz). In der Mittelstellung keine Beeinflussung des Frequenzganges.

[d] BASS

 Tiefenregler. Potentiometer zur Anhebung oder Absenkung des Tiefenbereichs (±15 dB bei 20 Hz). In der Mittelstellung keine Beeinflussung des Frequenzganges.

[e] AUX

 Hilfsausgang. Zur Aussteuerung der monofonen Hilfs-Sammelschiene mit integriertem Zugschalter für die Umschaltung PF/AF (Pre-Fader/After-Fader).

[f] PAN/BALANCE

 In den Betriebsarten LINE, MIC NORM und MIC BASS CUT als Panoramapotentiometer geschaltet (Verteilung des Signals auf den rechten und linken Kanal). In der Betriebsart STEREO als Balanceregler geschaltet.

[g] PFL

 Drucktaste für "Pre-Fader-Listening" (Abhören vor dem Flachbahnregler), schaltet das Signal monofon auf die PFL-Sammelschiene.

[h] FADER

■ Flachbahnregler mit Bereich + 10 dB ... -70 dB.

[2] INPUT 2 ... [6] INPUT 6

■ Stereo-Eingangs-Einheiten mit der gleichen Bestückung wie Eingang 1.

[7] MASTER

Summe. Stereo-Ausgangs-Einheit mit folgenden Elementen:

[i] PEAK PROGRAM METER

Programm-Spitzenwertanzeige. 2 LED-Reihen zeigen den momentanen Spitzenwert der angewählten Abhörquelle an.
 Wird im Stereobetrieb die Momenttaste DISPLAY MODE [v] gedrückt, so kann die Monokompatibilität abgeschätzt werden (siehe 3.2, Seite D 3/1).

Bedienungselement	Funktion
[k] AUX SEND	 Pegelregler des Summensignals AUX SEND [36] (Ausgang der monofonen Hilfs-Sammelschiene AUX).
[I] AUX RETURN	Pegelregler des stereofonen RETURN-Hilfseinganges [35].
[m] MASTER FADER	 Stereo-Flachbahnregler für den Summen-Ausgangspegel; Bereich +1070 dB.
[8] CR MONITOR	Kontroll-Abhör-Einheit mit folgenden Elementen:
[n] PFL	 Drucktaste zur Durchschaltung der PFL-Sammelschiene auf die Abhör- Sammelschiene. (Das monofone PFL-Signal wird zu gleichen Teilen auf den linken und rechten Kanal der Abhör-Sammelschiene geführt.)
[o] AUX SEND	 Drucktaste zur Durchschaltung der Hilfs-Sammelschiene auf die Abhör- Sammelschiene. (Das monofone AUX-Summensignal wird zu gleichen Teilen auf den linken und rechten Kanal der Abhör-Sammelschiene geführt.)
[p] AUX RETURN	 Drucktaste zur Durchschaltung des linken und rechten Kanals des Hilfseinganges AUX RETURN [35] auf die Abhör-Sammelschiene.
[q] TAPE 2	 Drucktaste zur Durchschaltung des linken und rechten Kanals des Einganges TAPE 2 [39] auf die Abhör-Sammelschiene.
[r] TAPE 1	 Drucktaste zur Durchschaltung des linken und rechten Kanals des Einganges TAPE 1 [38] auf die Abhör-Sammelschiene.
[s] MASTER	 Drucktaste zur Durchschaltung des linken und rechten Kanals des Summen- ausganges auf die Abhör-Sammelschiene.
[t] VOLUME	 Potentiometer zur Pegel-Einstellung des linken und rechten Abhöraus- ganges [24].
[9] MONITOR	Abhör-Einheit mit folgenden Elementen:
[u] POWER	 Netzschalter
[v] DISPLAY MODE	 Druckschalter zur Umschaltung der Programm-Spitzenwertanzeige. Stellung NORM = Pegelanzeige Stellung CORR = Korrelationsanzeige (siehe Programm-Spitzenwertanzeige [i])
[w] VOLUME MIC	■ Empfindlichkeitsregler des eingebauten Mikrofons [11].
[x] SLATE	 Aufsprechen auf Summen-Sammelschiene (beide Tasten gleichzeitig drücken).
[y] MIC TALK BACK AUX	Aufsprechen auf die Hilfs-Sammelschiene.
[z] VOLUME	 Potentiometer zur Lautstärke-Einstellung des Abhör-Lautsprechers [10] oder des Kopfhörers [aa].
[aa] PHONES	• Stereo-Klinkenbuchse zum Anschluss eines Kopfhörers (200 Ω 600 Ω). Bei eingestecktem Kopfhörer wird der eingebaute Mithör-Lautsprecher [10] automatisch ausgeschaltet.

EDITION: 30. November 1989 D 1/3

Bedienungselement

Funktion

- [10] SPEAKER
- Monitor Abhör–Lautsprecher
- [11] MICROPHONE
- Mikrofon zum Aufsprechen auf die Hilfs- oder Summen-Sammelschiene.

1.3 Anschlussfeld

Bedienungselement

Funktion

- [12] AC POWER
- Netzanschluss
- [13] VOLTAGE SELECTOR
- Netzspannungswähler und Netzsicherung
- [14] OUTPUT LEVEL
- Ausgangspegel. Schiebeschalter zur Anpassung des 0 dB Summenpegels an den verwendeten Studiopegel.

UNBALANCED: 0 dBu = $0,775 V_{eff.}$

+4 dBu = 1,23 $V_{eff.}$ +8 dBu = 1,95 $V_{eff.}$

BALANCED: $+6 \text{ dBu} = 1,55 \text{ V}_{eff.}$

(erdfrei) $+10 \text{ dBu} = 2,45 \text{ V}_{\text{eff.}}$ $+14 \text{ dBu} = 3,88 \text{ V}_{\text{eff.}}$

Alle XLR-Stecker sind einheitlich wie folgt belegt:

1 = Schirm

2 = a - Ader

3 = b - Ader

- [15] PHANTOM POWER 48 V
- Schiebeschalter zur Aktivierung der Mikrofon-Phantomspeisung aller Eingangs-Einheiten (für Kondensator-Mikrofone).
- [16] MASTER OUTPUT BAL. L/R
- Symmetrische Ausgänge des linken und rechten Summenkanals (XLR).
- [17] MASTER UNBAL. R/L
- Jeweils zwei parallelgeschaltete, asymmetrische Ausgänge des linken und rechten Summenkanals (CINCH-Stecker).

[18] INPUT 6

Stereo-Eingangs-Einheit mit folgender Stecker-Belegung:

- [ab] MIC BAL.
- Symmetrisch erdfreier Mikrofoneingang (XLR-Stecker, mono).
- [ac] LINE BAL.
- Symmetrischer Hochpegeleingang (XLR-Stecker, mono).
- [ad] STEREO L/R
- Asymmetrische Eingänge für linken und rechten Kanal des Stereo-Hochpegeleinganges (CINCH-Stecker).
- [ae] OUTPUT AFTER FADER
- Asymmetrischer Kanal-Ausgang. Das Signal wird nach dem Flachbahnregler abgegriffen und zu einem Mono-Signal summiert (CINCH-Stecker).

Bedienungselement

Funktion

[af] OUTPUT PRE FADER

 Asymmetrischer Kanal-Ausgang. Das Signal wird vor dem Flachbahnregler abgegriffen und zu einem Mono-Signal summiert (CINCH-Stecker).

[19] ...[23] INPUT 5 ... 1

• Stereo-Eingangseinheiten mit identischer Steckerbelegung wie Eingang 6.

[24] MONITOR OUTPUT

Abhörausgang. Symmetrische Ausgänge der linken und rechten Abhör-Sammelschiene (XLR-Stecker). Ausgangspegel mit Lautstärkeregler [t] einstellbar. Programmierung zur Stummschaltung (Monitor Cut) bei offenem Mikrofon mit DIP-Codierschalter [41].

[25] FADER START M (MASTER) Klinkenbuchse (3,5 mm, stereo) für den Anschluss eines Faderstartkabels.
 Der Summenregler betätigt beim Öffnen einen galvanisch getrennten Relais-Arbeitskontakt. (Siehe auch Kap. 3.6)

[26] ...[31] FADERSTART KANAL 6 ...1 ■ Klinkenbuchse (3,5 mm, stereo) für den Faderstart-Anschluss. Jeder Eingangsfader schaltet einen Faderstart-Anschluss (vgl. [25] und Kap. 3.6).

[32] VCA CONTROL

■ Die Verstärkungsregler in den einzelnen Eingangskanälen können auch extern gesteuert werden (Option 850). Durch Anlegen entsprechender Steuerspannungen (TTL-Bereich) wird die Verstärkung beeinflusst.

```
Dabei gilt: 0V - Regler ganz geöffnet (v = 0dB) +5V - Regler ganz geschlossen(v = -100dB)
```

Die im A779 vorgesehene Schnittstelle kann direkt von bestimmten Videoschnittplätzen angesteuert werden, z.B. SONY BVE 600, BVE 900 und BVE 9000. Für andere Anwendungen müssen entsprechende Spannungsgeber generiert werden.

```
Belegung: Pin 1 = Steuerspannung Eingang 1
Pin 2 = Steuerspannung Eingang 2
Pin 3 = Steuerspannung Eingang 3
Pin 4 = Steuerspannung Eingang 4
Pin 5 = Steuerspannung Eingang 5
Pin 6 = Steuerspannung Eingang 6
Pin 9 = 0 Volt
```

EDITION: 3. Februar 1992 D 1/5

Anschluss

Funktion

[33] BUS EXPANSION

Erweiterungsanschluss für ein zweites A779 Mischpult. Die Master- und Slave-Funktion wird vom Verbindungskabel bestimmt. Die Stecker des Kabels sind entsprechend beschriftet.

Belegung:	Pin 1 =	MBR-IN	Pin 9 =	BC
		MBL-IN	Pin 10 =	0 Volt
	Pin 3 =	SB-IN	Pin 11 =	0 Volt
	Pin 4 =	PFL-IN	Pin 12 =	0 Volt
	Pin 5 =	MBR-OUT	Pin 13 =	0 Volt
	Pin 6 =	MBL-OUT	Pin 14 =	0 Volt
	Pin 7 =	SB-OUT	Pin 15 =	0 Volt (SCREEN)
	Pin 8 =	PFL-OUT		

Signalnamen: MB = Master Bus; SB = Send Bus; PFL = Pre Fader Listening; BC = Bus Controller; L = links; R = rechts;

- [34] MASTER OUTPUT R/L
- Symmetrisch erdfreier Stereo-Ausgang des Summenkanals (XLR).
- [35] AUX RETURN R/L INPUT
- Symmetrisch erdfreie Hilfseingänge auf die linke und rechte Summen-Sammelschiene (XLR).
- [36] AUX SEND OUTPUT
- Symmetrischer Ausgang der Hilfs-Sammelschiene (XLR, mono).
- [37] TAPE 2 OUTPUT L/R
- Asymmetrische Ausgänge (CINCH-Stecker). Das Signal des symmetrischen Hochpegeleingangs TAPE 2 [39] wird asymmetrisch auf diesen Ausgang geführt. Vorschalten an einen beliebigen, asymmetrischen Stereo-Eingang [ad] mit CINCH-Kabel.
- [38] TAPE 1 OUTPUT L/R
- Asymmetrische Ausgänge (CINCH-Stecker). Das Signal des symmetrischen Hochpegeleingangs TAPE 1 [40] wird asymmetrisch auf diesen Ausgang geführt. Vorschalten an einen beliebigen, asymmetrischen Stereo-Eingang [ad] mit CINCH-Kabel.
- [39] TAPE 2 INPUT L/R
- Symmetrischer Stereo-Hochpegeleingang.
- [40] TAPE 1 INPUT L/R
- Symmetrischer Stereo-Hochpegeleingang.
- [41] MONITOR CUT
- Über den 6-teiligen DIP-CODIER-SCHALTER kann für jeden Eingangskanal das Stummschalten des Monitorausgangs bestimmt werden. Zeigt ein Schalter nach unten, so wird beim Öffnen des entsprechenden Eingangsfaders der stereofone Abhörausgang [24] stummgeschaltet.

1.4 Technische Daten

1.4.1 Elektronische Daten

Allgemeines:

Messbedingungen:

Alle Spannungen in dBu beziehen sich auf 775 m $V_{\rm eff}$. Alle Eingangs- und Summen-Flachbahnregler sind auf 0 dBu eingestellt, die Höhen- und Tiefenregler in Mittelstellung.

Pegel:

■ Regelbereich für 0 dB Anzeige auf der Spitzenwertanzeige:

GAIN MIC: -60 dBu ... 0 dBu GAIN LINE, STEREO: -20 dBu ... +16 dBu AUX RETURN: -4 dBu ... +22 dBu

Ausgangspegel für 0 dB Anzeige auf der Spitzenwertanzeige:

PRE, AFTER FADER:

AUX SEND:

MASTER unbal.:

MASTER bal.:

(mit Schalter auf Rückwand einstellbar)

MONITOR max.:

0 dBu
dBu
dBu
dBu
dBu
dBu
dBu
dBu

■ TAPE 1, 2 für 0 dB Anzeige auf der Spitzenwertanzeige:

Eingänge bal.: +6 dBu Ausgänge unbal.: +6 dBu

Übersteuerungsreserven:

Maximaler Eingangspegel:

MIC: 0 dBu LINE bal, STEREO: +20 dBu AUX RETURN, TAPE: +26 dBu

Maximaler Ausgangspegel:

Unbalanced: +20 dBu Balanced: +24 dBu Balanced Trafo: +26 dBu

Impedanzen:

Eingangsimpedanz:

MIC: >1.2 kOhm LINE, STEREO: 47 kOhm AUX RETURN, TAPE: >10 kOhm

Ausgangsimpedanz:

MASTER bal.,

AUX SEND, MONITOR: < 50 Ohm MASTER unbal.: <1.0 kOhm OUTPUT PF, AF: < 50 Ohm

EDITION: 12. Oktober 1989 D 1/7

Frequenzgänge:	Trittschallfilter 12 dB/Oktave, -3 dB:		70	Hz
	Tiefenregler 20 Hz: +15		-15	dB
Fremdspannungsabstände:	■ Effektivwerte 20 Hz 20 kHz			
	1x MIC bezogen auf –60 dBu Eingangsspannung, 200 Ω Abschluss: 1x LINE bezogen auf 0 dBu Eingangsspannung,	>	63	dB
	1 kΩ Abschluss:	>	90	dB
	6x LINE bezogen auf 0 dBu Eingangsspannung:	>	86	dB
	Summenregler geschlossen:	>	100	dB
Klirrfaktor:	■ LINE 0 dBu Eingang +6 dBu Summenausgang			
	1 kHz:	< 0	0.03	%
	20 Hz 20 kHz:	< 0	0.15	%
	MIC –20 dBu Eingang 1 kHz:	< 0	0.03	%
	30 Hz 15 kHz:	< 0).15	%
Übersprechdämpfung:	 Links – Rechts Übersprechen eines Stereo-Eingangs 10 kHz: 	>	50	dB
	Ausschaltdämpfung Kanalregler 10 kHz:	>	86	

Anzeige:

■ LED-Bargraph-Instrument mit PPM-Charakteristik (Peak Program Meter) für Quasi-Spitzenwert-Anzeige. Die LED arbeiten mit folgender Abstufung:

> 100 dB

```
Bereiche: +6 ... +1 dB in 1 dB Schritten (rot)
           0 ... -6 dB in 1 dB Schritten (grün)
          -7 ... -18 dB in 2 dB Schritten (grün)
         -19 ... -33 dB in 3 dB Schritten (grün)
```

Ausschaltdämpfung Summenregler 10 kHz:

- Charakteristik umschaltbar von PPM auf Anzeige des Korrelationsgrades eines Stereosignales (L-R, L+R).
- Pegelanzeige wählbar für:

PFL (Mono) AUX SEND (Mono) **AUX RETURN** (Left, Right) TAPE 2 (Left, Right) TAPE 1 (Left, Right) MASTER-Ausgang (Left, Right)

Stromversorgung:

- Netzspannungen umschaltbar: 100, 120, 140, 200, 220, 240 V 50 ... 60 Hz, max. 50 Watt
- Netzsicherung:

100 ... 140 V: 630 mAT 200 ... 240 V: 315 mAT

D 1/8 EDITION: 7. Januar 1991

1.4.2 Mechanische Daten

Gewicht: MIXING CONSOLE A779: ca. 13 kg

Abmessungen: Breite \times Tiefe \times Höhe: $46 \text{cm} \times 35 \text{cm} \times 17 \text{cm}$

EDITION: 7. Januar 1991 D 1/9

1.5 Zubehör

Im Lieferumfang des Gerätes sind ein Netzkabel und eine Bedienungs- und Serviceanleitung enthalten. Folgende Positionen sind als Zubehör lieferbar:

1.5.1 Zubehörset

Best.Nr. 1.775.031.00

Pos.	Stk.	Teil-Nr.	Bezeichnung
1.	12	54.02.0280	XLR Stecker (male) XLR Stecker (female) Mini-Jack, Stereo 3,5 mm (Faderstart) Cinch - Cinch Kabel, 0,5 m Knopf schmal GELB Knopf schmal GRUEN Knopf schmal BLAU Sicherung: T 315mA/250V Sicherung: T 1A/250V
2.	7	54.02.0281	
3.	7	54.24.0121	
4.	2	54.21.2080	
5.	2	1.911.000.34	
6.	2	1.911.000.35	
7.	2	1.911.000.36	
8.	2	51.01.0112	
9.	1	51.01.0117	

1.5.2 Montagesatz für 19"-Rack

Best.Nr. 1.775.361.00

Pos.	Stk.	Teil-Nr.	Bezeichnung
1.	3	21.26.0353	Z-Schraube, M3×5
2.	8	21.26.2454	S-Schraube, M4×6
3.	2	1.775.360.25	Rackwinkel
4.	1	1.775.360.24	Zierprofil unten

1.5.3 Bus-Verbindungskabel

Best.Nr. 1.023.767.00

Graues Verbindungskabel 85cm, 10-adrig, verdrahtet mit zwei 15-poligen D-Typ Steckern. Der eine Stecker schliesst ein A779 als Master an, der andere als Slave. Jedes A779 Mischpult kann für beide Zwecke verwendet werden.

Kopplung zweier A779:

Die Kopplung zweier A779 Mischpulte ergibt ein System mit 12 Eingangskanälen und einem Summenausgang. Vom Slave-Pult werden die Summen-, Auxund PFL-Sammelschienen direkt (Masterregler werden umgangen) auf die Sammelschienen des Master-Pultes gespeist. Das BC-Signal (Bus Controller) schaltet die Sammelschienen-Signale auf den D-Typ-Stecker BUS EXPANSION.

1.5.4 Transportkoffer

Best.Nr. 10.690.001.01

Doppelschalen–Kunststoffkoffer mit Traggriff; schwarz; abschliessbar; Äussere Abmessungen: 57cm × 45cm × 24cm

D 1/10

1.5.5 Drehknöpfe und Drucktasten

Ind.	ORDER NUMBER	PART NAME	COLOR
01	42.01.0203	knob fixed ϕ 10/4mm with screw	dark grey
	1.775.370.32	knobφ10/4mm	dark grey
02	1.775.370.31	knobφ15/4mm	dark grey
07	42.01.0250 42.01.0251	Cap with lineø10mm	light grey dark grey
4	42.01.0252 42.01.0253	•••••	black red
	42.01.0254	• • • • • • • • • • • • • • • • • • • •	blue
	42.01.0255 42.01.0256	•••••••	yellow green
	.2.02.0200		3, 5511
80	42.01.0257 42.01.0258	Cap with line∲15mm	light grey
	42.01.0259	•••••	dark grey black
	42.01.0260	•••••	red
	42.01.0261 42.01.0262		blue yellow
	42.01.0263	•••••	green
09	1.810.320.02	Push button	dark grey
	1.810.320.03		blue
	1.810.320.04 1.810.320.05		yellow White
	1.810.320.06		green
	1.810.320.07	• • • • • • • • • • • • • • • • • • • •	red
10	1.011.094.02	Push button with	red
	1.011.094.03 1.011.094.04	coloured top	orange yellow
	1.011.094.05	• • • • • • • • • • • • • • • • • • • •	green
	1.011.094.06 1.011.094.08	•••••	blue
	1.011.094.08	•••••	light grey dark grey
12	1.911.000.32	Fader knob	red
	1.911.000.33	***************************************	orange
	1.911.000.34 1.911.000.35		yellow green
	1.911.000.36		blue
	1.911.000.38 1.911.000.39		light grey white
	1.911.000.09	••••••	WILLE

EDITION: 25. Januar 1991 D 1/11

2 Inbetriebnahme

2.1	Gerät ans Netz anschliessen	. 1
2.2	Gerät einschalten	. 1
2.3	Mikrofon Phantomspeisung	. 1
2.4	Eingänge anschliessen	2
2.5	Ausgänge anschliessen	. 2

EDITION: 12. Oktober 1989

Inbetriebnahme 2

Gerät ans Netz anschliessen 2.1

Achten Sie auf Übereinstimmung der örtlichen Netzspannung mit dem aufgedruckten Wert beim Geräte-Netzanschluss. Im abweichenden Fall ist das Spannungskarussell entsprechend einzustellen. Der Wert der Primärsicherung muss anschliessend kontrolliert werden: (vgl. Abschnitt 4.3.11)

- □ 100...140 V_{AC}: **T 630 mA L 250 V (slow blow)** USA und CDN (100...140 $V_{\rm AC}$): 630 mA slow blow UL/CSA
- □ 200 ...240V_{AC}: **T 315 mA L 250 V** (slow blow)

2.2 Gerät einschalten

Durch Drücken des Netzschalters [u] wird das Gerät eingeschaltet, die Programm-Spitzenwertanzeige leuchtet. Erneutes Drücken der Taste schaltet das Gerät wieder aus und trennt es vom Netz.

2.3 Mikrofon-Phantomspeisung

Kondensator-Mikrofone: Kondensator-Mikrofone benötigen eine Versorgungsspannung von 48 V_{DC}, welche vom Mischpult zur Verfügung gestellt wird. Schiebeschalter PHANTOM PO-WER 48 V [15] in Stellung ON, für alle Eingangs-Einheiten ist die Mikrofon-Phantomspeisung eingeschaltet.

Dynamische Mikrofone: Dynamische Mikrofone benötigen keine zusätzliche Speisung und werden einfach an den Mikrofoneingängen angeschlossen. Schiebeschalter PHANTOM POWER 48 V [15] in Stellung OFF.

Hinweis: Werden bei einer Aufnahme dynamische Mikrofone und Kondensator-Mikrofone gleichzeitig verwendet, so müssen alle Mikrofone symmetrisch angeschlossen werden. Der Schiebeschalter PHANTOM POWER 48 V [15] ist in die Stellung ON zu bringen.

> Bei asymmetrischem Anschluss und eingeschalteter Phantomspeisung werden die Eingangsübertrager magnetisiert, was zu erhöhtem Klirrfaktor führt. Für eine Entmagnetisierung beachten Sie bitte die entsprechenden Hinweise im Kapitel 5.1.1.

D 2/1 EDITION: 04/07/96

2.4 Eingänge anschliessen

Mikrofone:	sind an den symmetrischen Eingängen MIC BAL. [ab] der Stereo-Eingangs- Einheiten 1 [23] bis 6 [18] anschliessbar. Die Eingangswahlschalter [a] sind entsprechend in die Stellung MIC NORMAL oder MIC BASS CUT zu bringen.
Hochpegel-Signalquellen:	Mono-Signalquellen mit symm. Hochpegelausgang (50 mV $_{RMS}$ 3 V $_{RMS}$) sind am Eingang LINE BAL. [ac] der Stereo-Eingangs-Einheit anschliessbar. Die Eingangswahlschalter [a] sind entsprechend in die Stellung LINE MONO BAL. zu bringen. Stereo-Signalquellen mit symmetrischem Hochpegelausgang (50 mV $_{RMS}$ bis 3 V $_{RMS}$) sind an den Eingängen TAPE 1 [40] und TAPE 2 [39] der Ein-/ Ausgangs-Einheit anschliessbar. Mit CINCH-CINCH-Verbindungskabeln werden sie am asymmetrischen Ausgang TAPE 1 [38] oder TAPE 2 [37] abgegriffen und einem beliebigen Stereo-Eingang [18] [23] [ad] zugeschaltet.
Stereo-HiFi-Signalquellen:	Asymmetrische Stereo-Signalquellen (z.B. HiFi-Geräte) sind an den Stereo-Eingängen [ad] der Stereo-Eingangs-Einheiten anschliessbar. Die Eingangswahlschalter [a] sind entsprechend in die Stellung STEREO UNBAL. zu bringen.

Ausgänge anschliessen

Symmetrische Ausgänge:

2.5

Master Ausgang Geräte mit symmetrischen Eingängen sind an den Steckern MASTER OUTPUT

BAL. L/R [16] [34] anschliessbar.

Monitor Ausgang Ein Abhörverstärker oder - noch einfacher - ein Paar aktiver Studio-Monitore (z.B.

die aktiven Studio-Schallwandler STUDER A523, A623, A723 oder A823) kann

direkt an den Ausgang MONITOR OUTPUT [24] angeschlossen werden.

Vorsicht: An derselben Eingangs-Einheit dürfen nie beide LINE-Eingänge (MONO BAL. und STEREO UNBAL.) gleichzeitig mit Signalquellen verbunden sein!

Asymmetrische Ausgänge: Geräte mit asymmetrischen Eingängen sind an den Steckern MASTER UNBAL.

L/R [17] anschliessbar. Auch die Direktausgänge PRE/AFTER FADER [ae]/[af]

sind auf asymmetrische Anschlüsse geführt.

D 2/2 EDITION: 04/07/96

3 Funktionsbeschreibung

3.1	Netzteil	1
3.2	Anzeige-Einheit	1
3.3	Eingangs-Einheit	2
3.4	Summen-Einheit	3
3.5	Abhör-Einheit	3
3.6	Ein-/Ausgangs-Einheit	4
3.7	Kontroll-Abhör-Einheit	5

EDITION: 9. Januar 1991

3 Funktionsbeschreibung

3.1 Netzteil 1.775.490

Primäre Schaltkreise:

Ein Pol der Netzspannung gelangt direkt zum Netztransformator. Der andere Pol wird zum Netzschalter (auf der Abhör-Platine) und über die Primär-Sicherung zum Netzspannungswähler und Transformator geführt.

- Wählbare Netzspannungen sind:
 100 V, 120 V, 140 V, 200 V, 220 V und 240 V, ±10 %, 50 ... 60 Hz.
- Sekundäre Schaltkreise:

Folgende Spannungen stehen zur Verfügung:

- ±15 V Verstärkerspeisung
- +11 V LED-Speisung der Anzeige-Platine
- +48 V Mikrofon-Phantomspeisung

Die Verstärkerspeisung (±15 V) wird mit zwei Seriereglern stabilisiert. Die Ausgangsspannung dieser Regler wird mit Trimmpotentiometern eingestellt. Der Längstransistor der Phantomspeisung (+48 V) sorgt nebst der Spannungsstabilisierung auch für das Ein- und Ausschalten der Spannung. Die Ausgangsspannung kann mit einem Trimmpotentiometer verändert werden. Die Speisung der LED-Anzeigen (+11 V) wird nur durch einen Elektrolyt-Kondensator gesiebt und bleibt ungeregelt.

3.2 Anzeige-Einheit

1.775.310

PPM:

 Stereo Peak Program Meter mit je 24 LED's und automatischer Helligkeitsregelung.

Bereiche: +1 ... +6 dB in 1 dB Schritten (rot)

-6 ... 0 dB in 1 dB Schritten (grün) -18 ... -7 dB in 2 dB Schritten (grün)

-33 ... -19 dB in 3 dB Schritten (grün)

- Das Stereo-Peakmeter zeigt den Pegel der angewählten Abhörquelle an.
 MASTER, TAPE 1, TAPE 2, AUX RETURN werden in Stereo, PFL und AUX SEND in Mono angezeigt. Die Betriebsart wird automatisch umgeschaltet.
- Anzeige der Betriebsart: MONO PFL (rote LED)

STEREO L,R (rote LED's)
Korrelation L-R, L+R (rote LED's)

EDITION: 9. Januar 1991 D 3/1

Korrelator:

Wird die Taste DISPLAY MODE [v] gedrückt, so zeigt das linke Instrument das Stereoseitensignal (L-R) an, das rechte das Stereomittensignal (L+R). Durch Vergleich beider Anzeigen kann eine Abschätzung des Korrelationsgrades und damit der Monokompatibilität erfolgen. Der Korrelationsgrad zeigt die Gleichartigkeit der beiden Stereokanäle an.

Korrelation	Anzeige	Interpretation
+1	L << R	Die beiden Kanäle (L, R) sind gleich: Räumliche Abbildung in der Mitte (Mono).
0,30,7	L < R	Durchschnittliche Stereoprogramme; Anzeige links 68 dB kleiner als rechts.
0	L = R	Stereosignal mit 90° Phasenverschiebung oder inkohärente Signale.
< 0	L > R	Signale mit Phasenumkehrungen, nicht mono- kompatibel.
-1	L >> R	Die beiden Kanäle sind gleich aber mit 180° Phasendrehung.

Ein durchschnittliches Stereoprogramm ergibt einen Korrelationsgrad von ca. 0,3 ...0,7. Aufnahmen mit starken Mittensignalen (Solisten) erreichen noch höhere Werte. Eine ausgeprägte Verteilung der Instrumente auf die ganze Basisbreite dagegen senkt die Korrelation gegen Null. Negative Werte (Anzeige links höher als rechts) weisen auf Phasenumkehrungen im System hin.

3.3 Eingangs-Einheit

1.775.420

- Der asymmetrische Stereo-Eingang wird mit den symmetrischen Eingängen MIC und LINE BAL. auf den Eingangswahlschalter geführt. (Jegliche Schalter in diesem Gerät sind elektronisch realisiert).
- Das Trittschallfilter (BASS CUT) kann dem Mikrofoneingang zugeschaltet werden. Die Eingangspegelregler haben einen Bereich von −20 ...+16 dB. Für den Mikrofoneingang sind die Pegelregler hintereinander geschaltet. Daraus ergibt sich ein Regelbereich von −36 ... +36 dB. Über die Klangreglung gelangt das Signal zu den VCA's, die mittels Flachbahnregler über den Buffer ausgesteuert werden. Der Regelbereich eines VCA beträgt −70 ... +10 dB.
- Um einen guten Gleichlauf der Stereo-Flachbahnregler zu erreichen, sind die entsprechenden Stellglieder mit dbx-VCA realisiert. Der Flachbahnregler besteht aus einem linearen Schiebepotentiometer, welches eine DC-Spannung an den VCA liefert. Die Konversion linear ÷ dB-linear besorgt der VCA. Den Abschluss der Eingangsschaltung bildet das Panorama- bzw. Balance-potentiometer (STEREO UNBAL.). Bei Mono-Betrieb werden die Eingangsschaltungen beider Kanäle zur Bildung eines symmetrischen Eingangsherangezogen, die weitere Verarbeitung erfolgt dann im linken Kanal. Die Signale PF (Abgriff vor dem Regler) oder AF (Abgriff nach dem Regler) werden über die Summierverstärker auf die 0 dB-Trennverstärker am Ausgang geführt. Das über den AUX-Schalter geschaltete Signal wird durch den AUX-Regler im Pegel verändert und der AUX-Sammelschiene zugeführt. Das Vorabhörsignal wird vor dem Flachbahnregler über den PFL-Schalter auf die PFL-Sammelschiene geschaltet.

D 3/2

3.4 Summen-Einheit

1.775.430

AUX SEND

Um ein externes Gerät einschlaufen zu können, ist auf der Summen-Einheit ein zusätzlicher Ein-/Ausgang (AUX SEND, AUX RETURN) realisiert. Von der Hilfs-Sammelschiene über den Summierverstärker gelangt das SEND-Signal zum Potentiometer [k], mit welchem der Ausgangspegel eingestellt wird. Zugleich besteht die Möglichkeit das SEND-Signal vom Pegelregler auf den Abhörausgang zu schalten (AUX-SEND, Taste [o]).

AUX RETURN

Das stereofone RETURN-Signal wird über das Potentiometer [I] auf die Summen-Sammelschiene geführt. Auch hier ist es möglich mit der AUX-RETURN-Taste [p] das Signal auf den Abhörausgang zu schalten.

MASTER Fader

Die Summierverstärker bilden den Abschluss der Summen-Sammelschiene. Die Regelung des Summensignals erfolgt ebenfalls durch VCA-Stufen, die gleich realisiert sind wie bei der Eingangseinheit.

Ausgänge

Das Mischpult ist mit zwei asymmetrischen (2×Master, Stereo) und vier symmetrischen Ausgängen ausgestattet (2×Master, Stereo; 1×Monitor, Stereo; 1×AUX Send, Mono). Der stereofone Summenausgang [16] ist elektronisch symmetriert, während Ausgang [34] mit Trafos erdfrei realisiert wurde. Der Ausgangspegel dieser Ausgänge wird mit dem Schiebeschalter [14] eingestellt:

■ BALANCED: +6 dBu/+10 dBu/+14 dBu ■ UNBALANCED: 0 dBu/+4 dBu/+8 dBu

3.5 Abhör-Einheit

1.775.450

Talk Back

Mit dem eingebauten Mikrofon [11] können Informationen direkt auf die Summen- oder Hilfs-Sammelschiene gesprochen werden. Nach den Verstärkern kann der Ausgangspegel mit dem Lautstärke-Potentiometer [w] beeinflusst werden. Für eine Durchsage auf die Summen-Sammelschiene sind beide TALK BACK-Tasten SLATE zu drücken. Wird nur eine Taste betätigt, so erfolgt keine Durchschaltung. Für eine Durchsage auf die Hilfs-Sammelschiene ist die TALK BACK-Taste AUX zu drücken.

Abhörquelle

Mit den Tasten [n] ...[s] erfolgt die Wahl der Abhörquelle. Sie gilt sowohl für den eingebauten Monitorlautsprecher wie auch für den Monitorausgang [24]. Auf das Summensignal haben diese Tasten keinerlei Einfluss.

Interner Monitor

Die rechte und linke Abhör-Sammelschiene sind über Summierverstärker und Umkehrstufen Stereo auf die Kopfhörerbuchse [aa] und Mono auf den Lautsprecher [10] geschaltet. Mit dem Potentiometer [z] kann die Abhörlautstärke verändert werden. Beim Anschluss eines Kopfhörers wird der eingebaute Lautsprecher ausgeschaltet.

Monitor-Ausgang

Die Abhör-Sammelschiene führt nach den Summierverstärkern über den Lautstärkeregler [t] auf den Abhörausgang [24]. Zu beachten ist, dass die Funktion MONITOR CUT beim Öffnen eines Eingangsfaders den Monitorausgang stummschaltet. Diese Funktion ist am DIP-Schalter [41] für jeden Kanal einzeln einstellbar (vgl. Seite D 1/6).

EDITION: 3. Februar 1992 D 3/3

3.6 Ein-/Ausgangs-Einheit

1.775.460

Faderstart

- Die Flachbahnregler-Startlogik ist bei Eingangs- und Summen-Einheiten identisch.
- Der Flachbahnregler in den einzelnen Eingangskanälen oder in der Summeneinheit erzeugt die VCA-Steuerspannung zwischen 0 und +5 V. Diese Spannung wird auch zur Steuerung der Flachbahnregler-Startlogik benutzt. Sie wird in IC 9 sehr hoch verstärkt (Faktor 1000); daher genügt schon eine geringe Spannung vom Flachbahnregler (kleiner Oeffnungsweg) um am Ausgang von IC 9 die für die Startlogik erforderliche Spannung zu erzeugen. Ein weiteres Anwachsen wir dann durch die Diode D 5 begrenzt.
- Bei geöffnetem Flachbahnregler zieht das Startrelais daher an, bei geschlossenem fällt es ab.
- Die Kontakte der FADER START Klinkenbuchsen (3,5 mm, stereo) werden durch Relais gemäss untenstehender Figur geschaltet. Der gemeinsame Kontakt '3' ist von der Mischpultmasse galvanisch getrennt.

Entsprechender Flachbahnregler geöffnet:

- Kontakt 1 an Kontakt 3
- Kontakt 2 frei
- Kontakt 3 Wechselkontakt (Wurzel)

Entsprechender Regler geschlossen:

- Kontakt 1 frei
- Kontakt 2 an Kontakt 3
- Kontakt 3 Wechselkontakt (Wurzel)

INPUT Tape 1 + 2

- An den Stereo-Eingängen TAPE 1 oder TAPE 2 (XLR Buchsen, symmetrisch) kann ein symmetrisches Hochpegelsignal direkt angeschlossen werden.
- Die beiden Tape-Eingänge haben reine Monitorfunktion. Sie können nicht auf das Summensignal einspeisen. Durch Drücken der Tasten [q] oder [r] der Kontroll-Abhör-Einheit kann das Tape-Signal direkt der Abhör-Sammelschiene aufgeschaltet und abgehört werden.

OUTPUT Tape 1 + 2

Die Signale der symmetrischen Tape-Eingänge stehen an den Ausgängen TAPE 1 und TAPE 2 asymmetriert zur Verfügung. Von hier können sie über CINCH-CINCH Verbindungskabel einem beliebigen asymmetrischen Eingang (STEREO) zugeführt werden.

Die Ein- und Ausgänge TAPE 1 + 2 können universell als Übertrager für den Anschluss symmetrischer Hochpegelquellen an asymmetrische HiFi-Geräte eingesetzt werden.

D 3/4

Kopplung zweier A779

Um zwei Pulte A779 miteinander zu koppeln, werden die Buchsen BUS EXPANSION [33] miteinander verbunden. Die Lage der beschrifteten Stecker am Verbindungskabel legt dabei fest, welches Pult Master oder Slave ist. Vom Slave-Pult werden die Sammelschienen Master, AUX und PFL unter Umgehung der Masterregler direkt auf die entsprechenden Busse des Masterpultes geführt. Die Funktion Monitor-Cut des Slave-Pultes ist nicht nutzbar.

VCA-Option

■ Dieses Mischpult ist als Option für eine externe VCA-Steuerung vorbereitet, beispielsweise zum Anschluss an den Video-Schnittplatz BVE 900. Dazu sind die D-Typ Buchse VCA-CONTROL [32] und ein Interface-Print (1.775.480.00) eingebaut.

3.7 Kontroll-Abhör-Einheit

1.775.470

Über die Tasten [n] ...[s] kann jeweils eine Signalquelle auf die Abhör-Sammelschiene geschaltet werden. Wird PFL gewählt, muss zusätzlich mindestens eine PFL-Taste eines Eingangs gedrückt sein. Es bestehen folgende Abhörmöglichkeiten: PFL, AUX Send, AUX Return, TAPE 1, TAPE 2, MASTER.

Das Potentiometer VOLUME [t] regelt den Pegel des Monitor-Ausganges. Abhörlautsprecher und Kopfhörer werden mit dem Regler PHONES [z] eingestellt.

EDITION: 3. Februar 1992

4 Demontageanleitung

4.1	Allgemeine Hinweise		
	4.1.1	Benötigtes Werkzeug	1
	4.1.2	Zusammenbau	1
4.2			2
	4.2.1	Ein-/Ausgangs-Einheit vom Mischpult trennen	2
	4.2.2	Unteres Deckblech	
	4.2.3	Seitenblenden	
	4.2.4	Gehäuse-Rückwand (Anschlussfeld)	
4.3	Elektro	onische Baugruppen	1
4.5	4.3.1	Ein-/Ausgangs-Platine	4
	4.3.2	Netzteil	
	4.3.3	Eingangs-Platine	
	4.3.4	Summen-Platine	
	4.3.5	Mikrofon-Platine	6
	4.3.6	Kontroll-Abhör-Platine	6
	4.3.7	Abhör-Platine und Lautsprecher	6
	4.3.8	Anzeige-Einheit	
	4.3.9	Netztransformator	
	4.3.10	Anschluss-Platine	8
	4.3.11	Primär-Sicherung	8
	4.3.12	Sekundär-Sicherungen	8

EDITION: 3. Februar 1992

Demontageanleitung

Allgemeine Hinweise 4.1

4.1.2

Achtung: Vor dem Entfernen von Gehäuseteilen und elektronischen Baugruppen muss das Gerät vom Netzanschluss getrennt werden!

Hinweis: Bei Aus- und Einbauarbeiten elektronischer Komponenten sind die eingangs die-

ser Serviceanleitung aufgeführten Richtlinien zur Behandlung von MOS-Bauteilen zu beachten.

Benötigtes Werkzeug 4.1.1

1 Kreuzschlitz-Schraubendreher, Grösse 1
1 Kreuzschlitz-Schraubendreher, Grösse 2
1 Kreuzschlitz-Schraubendreher "Pozidriv", Grösse 1
1 Kreuzschlitz-Schraubendreher "Pozidriv", Grösse 2
1 Schraubendreher, Grösse 00
1 Pinzette,

☐ 1 Flachzange,

☐ 1 ESE-Arbeitsplatzausrüstung,

Empfehlung: Den Arbeitsplatz so vorbereiten, dass Beschädigungen und Kratzspuren am Gerät vermieden werden.

Zusammenbau

Der Zusammenbau erfolgt sinngemäss in umgekehrter Reihenfolge der nachstehend beschriebenen Ausbau-Anleitungen, unter Beachtung der angeführten Montagehinweise.

Best.Nr.: 20.020.001.44

D 4/1 EDITION: 04/07/96

4.2 Gehäuse

4.2.1 Ein-/Ausgangs-Einheit vom Mischpult trennen

- Die vier Befestigungsschrauben Fig. 1 [1] lösen.
- Die Ein-/Ausgangs-Einheit an der Anschlusseite leicht anheben und die drei (bei optionaler VCA Control: vier) Verbindungskabel ausstecken.
- Die Einheit nach hinten wegziehen.

4.2.2 Unteres Deckblech

An der Gehäuse-Unterseite die 3 Schrauben Fig. 2 [2] lösen und das Deckblech entfernen.

4.2.3 Seitenblenden

■ Je 2 Schrauben Fig. 3 [3] lösen.

4.2.4 Gehäuse-Rückwand (Anschlussfeld)

- Obere Zierleiste Fig. 3 [4] entfernen (3 Schrauben [5]).
- Ein-/Ausgangs-Einheit vom Mischpult trennen (Abschnitt 4.2.1).
- Unteres Deckblech entfernen (Abschnitt 4.2.2).
- Seitenblenden entfernen (Abschnitt 4.2.3).
- Netzteil entfernen (Abschnitt 4.3.2).
- Steckverbindungen lösen:
 - 6 Verbindungen Eingangs-Platine → Anschluss-Platine
 - 1 Verbindung Summen-Platine → Anschluss-Platine
 - 1 Verbindung Abhör-Platine → Anschluss-Platine
 - 1 Verbindung Anzeige-Platine → Anschluss-Platine
- An der Gehäuse-Rückwand 6 Schrauben Fig. 3 [6] entfernen.
- Die Gehäuse-Rückwand kann zusammen mit der Anschluss-Platine vorsichtig entfernt werden.

D 4/2 EDITION: 7. Januar 1991

Fig. 1

Fig. 2

EDITION: 12. Oktober 1989 D 4/3

4.3 Elektronische Baugruppen

4.3.1 Ein-/Ausgangs-Platine 1.775.460

- Ein-/Ausgangs-Einheit vom Mischpult trennen (Abschnitt 4.2.1).
- 6 Schrauben Fig. 1 [7] entfernen.
- Mit einem Schraubendreher Grösse 00 die Gehäuse der XLR-Stecker und -Buchsen lösen. (Schraubendreher beim vierten Loch einstecken und die Verriegelung durch eine leichte Linksdrehung lösen).
- Die zwei Schrauben Fig. 4 [8] pro XLR-Buchse leicht lösen.
- Die Schraube Fig. 4 [9] entfernen.
- Die Ein-/Ausgangs-Platine vorsichtig nach hinten aus dem Gehäuse ziehen.

4.3.2 Netzteil 1.775.490

- Ein-/Ausgangs-Einheit vom Mischpult trennen (Abschnitt 4.2.1).
- Unteres Deckblech entfernen (Abschnitt 4.2.2).
- Steckverbindungen lösen:
 - 1 Verbindung Netzteil --> Anzeige-Platine
 - 1 Verbindung Abhör-Platine --> Anschluss-Platine
 - 1 Verbindung Netzteil --> Netztransformator
- 3 Schrauben Fig. 5 [10] lösen.
- Netzteil vorsichtig aus der Anschluss-Platine ausziehen.

4.3.3 Eingangs-Platine 1.775.420

- Bedienungsknöpfe der auszubauenden Einheit entfernen. Der Knopf AUX kann nicht wie die anderen Knöpfe einfach abgezogen werden, er muss vorher, nach Entfernen des gelben Deckels, mit einem Schraubendreher gelöst werden.
- Ein-/Ausgangs-Einheit vom Mischpult trennen (Abschnitt 4.2.1).
- Unteres Deckblech entfernen (Abschnitt 4.2.2).
- Steckverbindungen lösen:
 - 1 Verbindung Eingangs-Platine --> Anschluss-Platine
 - 1 oder 2 Verbindungen Eingangs-Platine --> Eingangs- oder Summen-Platine
- 3 Schrauben Fig. 5 [11] lösen.

D 4/4
EDITION: 30, November 1989

Fig. 3

Fig. 4

EDITION: 12. Oktober 1989 D 4/5

4.3.4 Summen-Platine 1.775.430

- Bedienungsknöpfe der Summen-Einheit entfernen. Sie können einfach abgezogen werden.
- Ein-/Ausgangs-Einheit vom Mischpult trennen (Abschnitt 4.2.1).
- Unteres Deckblech entfernen (Abschnitt 4.2.2).
- Steckverbindungen lösen
 - 1 Verbindung Summen-Platine --> Anschluss-Platine
 - 1 Verbindung Summen-Platine --> Eingangs-Platine
 - 1 Verbindung Summen-Platine --> Abhör-Platine
 - 1 Verbindung Summen-Platine --> Kontroll-Abhör-Platine
- 2 Schrauben Fig. 5 [12] lösen.

4.3.5 Mikrofon-Platine 1.775.440

- Ein-/Ausgangs-Einheit vom Mischpult trennen (Abschnitt 4.2.1).
- Unteres Deckblech entfernen (Abschnitt 4.2.2).
- 1 Schraube Fig. 5 [13] lösen.
- Mikrofon-Platine vorsichtig aus der Abhör-Einheit ziehen.

4.3.6 Kontroll-Abhör-Platine 1.775.470

- Lautstärkeknopf [t] abziehen.
- Ein-/Ausgangs-Einheit vom Mischpult trennen (Abschnitt 4.2.1).
- Unteres Deckblech entfernen (Abschnitt 4.2.2).
- Steckverbindungen lösen:
 - 1 Verbindung Kontroll-Abhör-Platine --> Summen-Platine (Zusätzlicher Stecker, wenn optionale VCA Control eingebaut ist).
- 2 Schrauben Fig. 5 [14] lösen.

4.3.7 Abhör-Platine 1.775.450 und Lautsprecher

- Bedienungsknöpfe der Abhör-Einheit entfernen. Sie können einfach abgezogen werden.
- Ein-/Ausgangs-Einheit vom Mischpult trennen (Abschnitt 4.2.1).
- Unteres Deckblech entfernen (Abschnitt 4.2.2).
- Netzteil entfernen (Abschnitt 4.3.2).
- Mikrofon-Platine entfernen (Abschnitt 4.3.5).
- Steckverbindungen lösen:
 - 1 Verbindung Abhör-Platine --> Summen-Platine
 - 1 Verbindung Abhör-Platine --> Anschluss-Platine
 - 1 Verbindung Abhör-Platine --> Netztransformator
- 2 Schrauben Fig. 5 [15], Fig. 6 [15] lösen.
- Am Lautsprecher die 3 Schrauben Fig. 6 [16] lösen und die Klemmhülsen von den Mutterbolzen entfernen.
- Abhör-Platine zusammen mit Lautsprecher entfernen.

Fig. 5

Fig. 6

EDITION: 12. Oktober 1989 D 4/7

4.3.8	Anzeige-Einheit 1.775.310			
	_ _ _	Ein-/Ausgangs-Einheit vom Mischpult trennen (Abschnitt 4.2.1). Unteres Deckblech entfernen (Abschnitt 4.2.2). NETZTEIL entfernen (Abschnitt 4.3.2). Summen-Platine entfernen (Abschnitt 4.3.4). Netztransformator entfernen (Abschnitt 4.3.9). 2 Schrauben Fig. 6 [17] lösen. Abschirmblech und Anzeige-Einheit können entfernt werden.		
4.3.9	Netztransformator			
	_ _ _ _	Ein-/Ausgangs-Einheit vom Mischpult trennen (Abschnitt 4.2.1). Unteres Deckblech entfernen (Abschnitt 4.2.2). NETZTEIL entfernen (Abschnitt 4.3.2). Rechte Seitenblende entfernen (Abschnitt 4.2.3). Deckel zum Netzspannungswähler öffnen. Steckverbindungen lösen: 2 Verbindungen: Netztransformator → Gerätestecker 2 Verbindungen: Netztransformator → ABHÖR-PLATINE 4 Schrauben Fig. 3 [18] lösen (Zwei der Schrauben unter der Seitenblende).		
4.3.10	Anschluss-Platine 1.	775.410		
		Ein-/Ausgans-Einheit vom Mischpult trennen (Abschnitt 4.2.1). Unteres Deckblech entfernen (Abschnitt 4.2.2). Gehäuse-Rückwand (Anschlussfeld) entfernen (Abschnitt 4.2.4). Mit einem Schraubendreher (Grösse 00) die Gehäuse der XLR-Stecker und -Buchsen lösen. (Schraubendreher beim vierten Loch einstecken und die Verriegelung durch eine leichte Linksdrehung lösen.) Das obere Blech vorsichtig entfernen. 7 Schrauben Fig. 3 [19] lösen und das untere Blech entfernen. Darauf achten, dass sich das obere Blech bei der Montage nicht verkantet.		
4.3.11	Primär-Sicherung			
	0	Deckel zum Netzspannungswähler öffnen. Die Primär-Sicherung ist zugänglich.		
4.3.12	Sekundär-Sicherung	en		
<u></u>		Ein-/Ausgangs-Einheit vom Mischpult trennen (Abschnitt 4.2.1). Unteres Deckblech entfernen (Abschnitt 4.2.2). NETZTEIL entfernen (Abschnitt 4.3.2). Die Sekundär-Sicherungen sind zugänglich. (siehe Bestückungsplan 1.775.210 / 220)		

D 4/8 EDITION: 04/07/96

5 Abgleichanleitung

5.1 Allgemeine Hinweise				
	5.1.1	Entmagnetisieren der Mikrofon-Eingangsübertrager	2	
	5.1.2	Benötigte Messgeräte		
	5.1.3	Vorbereitungen	3	
5.2	Netztei	II	3	
	5.2.1	Phantomspeisung		
	5.2.2	+15 V–Speisung		
	5.2.3	- 15 V-Speisung		
	5.2.0	- 10 v-opeisung	J	
5.3	Eingan	gs-Einheit	4	
	5.3.1	Eingangspegel	4	
	5.3.2	Eingangsklirrfaktor	4	
	5.3.3	Eingangs-Flachbahnregler	5	
5.4	Summe	en-Platine	5	
	5.4.1	Summen-Flachbahnregler		
	5.4.2	Summenklirrfaktor	5	
5.5	5.5 Anzeige-Einheit			
	5.5.1	Aussteuerungsanzeige	6	
5.6	Mana	n day Audia Datan	_	
0. 0	5.6.1	n der Audio Daten		
		Klirrfaktor		
	5.6.2	Ausgangspegel und Kanalgleichheit		
	5.6.3	Frequenzgang		
	5.6.4	Übersprechdämpfung		
	5.6.5	Fremdspannungsabstand	8	

EDITION: 22. Januar 1991 D 5

5 Abgleichanleitung

5.1 Allgemeine Hinweise

Pegeldefinitionen

Pegelangaben erfolgen in dBu.

$$0 \text{ dBu} \triangleq 0,775 \text{ V}_{\text{eff.}}$$

- Nennpegelangaben in dBu basieren ausschliesslich auf einem festgelegten Spannungswert als Bezugsgrösse:
- Die Bezugsgrösse 0,775 V des relativen Spannungspegels in dBu wurde von der Wertdefinition des absoluten Spannungspegels in dBu übernommen; jedoch ohne Bindung an die Definition (600Ω/1 mW).

```
Nennpegel = Studiopegel bei Vollaussteuerung
```

 Der Nennpegel (auch Leitungspegel) entspricht dem Studiopegel bei Vollaussteuerung.

```
Typische Nennpegel sind: + 6 dBu \triangleq 1,55 V<sub>eff.</sub> +10 dBu \triangleq 2,45 V<sub>eff.</sub> +14 dBu \triangleq 3,88 V<sub>eff.</sub>
```

Vorsicht:

Elektrisierungsgefahr bei geöffnetem Gerät! Teile im Gerät führen Netzspannung.

Von STUDER REVOX angelieferte Module können ohne Abgleicharbeiten in das Gerät eingesetzt werden. Ein erneutes Einmessen des Mischpultes ist nur nach Änderungen an den einzelnen Modulen erforderlich. Eine turnusgemässe Wartungseinmessung wird bei dieser Generation von Mischpulten nicht mehr beansprucht. Einzige Wartungsmassnahme bleibt das nachfolgend beschriebene gelegentliche Entmagnetisieren der Eingangsübertrager.

EDITION: 22. Januar 1991

5.1.1 Entmagnetisieren der Mikrofon-Eingangsübertrager

- Unerlaubtes Anschliessen asymmetrischer Eingangsquellen, oder unbeabsichtigter Masseschluss der a/b-Tonadern der Mikrofoneingänge mit zugeschalteter Phantomspeisung, treiben die Eingangsübertrager in die Sättigung und bewirken deren permanente Magnetisierung (Remanenz). Dies äussert sich nachteilig mit stark erhöhtem Klirrfaktor und dem sogenannten Mikrofonie-Effekt: Leichte mechanische Einwirkungen auf das Mischpult, z.B. das Antippen, bewirken eine hörbare Modulation über die Ausgänge, auch bei unbenutzten Mikrofoneingängen.
- Remanenz kann sich auch im Laufe einer längeren Betriebsdauer in den Übertragern kumulieren.
- Es empfiehlt sich deshalb, alle Mikrofon-Eingänge periodisch, und vor Einmessvorgängen, zu entmagnetisieren:

Vorgehen:

- Das Mischpult ausschalten.
 (Zum Schutze angeschlossener Lautsprecher).
- Am Mikrofoneingang über einen Trennkondensator mit einem NF-Generator eine Frequenz von <32 Hz einspeisen.

- Einspeisepegel sukzessive von 0 V auf 3 V erhöhen.
- Einspeisepegel langsam auf 0 V zurückregeln.

5.1.2 Benötigte Messgeräte

- Digitalvoltmeter
- NF-Voltmeter, $R_{zin} \ge 10k\Omega$
- NF-Generator, R_s ≤ 200Ω
- Klirrfaktor-Messgerät

D 5/2 EDITION: 22. Januar 1991

1.775.490

5.1.3 Vorbereitungen

- Das Gerät vom Netz trennen
- Ein-/Ausgangs-Gehäuse vom Mischpult trennen (Abschnitt 4.2.1)
- Unteres Deckblech entfernen (Abschnitt 4.2.2).
- Alle Flachbahnregler in die Stellung -∞, die Klangregler (Höhen- und Tiefenregler) in Mittelstellung und die Eingangswahlschalter in die Stellung STEREO bringen.
- Das Gerät auf eine Seitenwand stellen.
- Das Gerät wieder ans Netz anschliessen.

5.2 Netzteil

5.2.1 Phantomspeisung

- Das Netzteil 1.775.490 ausbauen (Abschnitt 4.3.2).
- Die Steckverbindung Netzteil --> Netztransformator bestehen lassen.
- Das Digitalvoltmeter an Steckerpunkt P2 Pin 1 (0 V) und P2 Pin 5 (+48 V) anschliessen.
- Das Gerät einschalten.
- Die Spannung mittels dem Trimmpotentiometer RA3 auf +48 V einstellen.
- Das Gerät ausschalten und das Netzteil wieder einbauen.

5.2.2 +15 V-Speisung

- Das Digitalvoltmeter auf der Summen-Einheit 1.775.430 an J1 Pin 2 (0 V) und J1 Pin 1 anschliessen.
- Das Gerät einschalten.
- Die Spannung auf dem Netzteil 1.775.490 mittels dem Trimmpotentiometer RA2 auf +340 mV ±1 mV abgleichen.

5.2.3 -15 V-Speisung

- Das Digitalvoltmeter auf der Summen-Einheit 1.775.430 an J1 Pin 2 (0 V) und J1 Pin 9 anschliessen.
- Das Gerät einschalten.
- Die Spannung auf dem Netzteil 1.775.490 mittels dem Trimmpotentiometer RA1 auf –65 mV ±0,5 mV abgleichen.

EDITION: 22. Januar 1991 D 5/3

5.3 Eingangs-Einheit

1.775.420

5.3.1 Eingangspegel

- Den Eingangswahlschalter [a] in die Position STEREO bringen.
- Den Eingangspegelregler [b] auf 0 dB Position stellen.

Stereo-Eingang links

- Am asymmetrischen Eingang STEREO L [ad] links mit dem NF-Generator 1kHz/0 dBu (775 mV_{eff}) einspeisen.
- Voltmeter am Ausgang PRE FADER [af] anschliessen (Bereich 0dB/1 V).
- Mit dem Trimmpotentiometer RA11 den PRE FADER-Ausgang auf -6 dBu (388 mV_{eff}) abgleichen.

Stereo-Eingang rechts

- Am asymmetrischen Eingang STEREO R [ad] rechts mit dem NF-Generator 1 kHz/0 dBu (775 mV_{eff}) einspeisen.
- Mit dem Trimmpotentiometer RA12 den Ausgang PRE FADER [af] auf –6dBu (388 mV_{eff}) abgleichen.

Mono-Eingang

- Den Eingangswahlschalter [a] in die Position MONO bringen.
- Am symmetrischen Line Eingang MONO [ac] mit dem NF-Generator 1kHz/+6 dBu (1,55 V_{eff.}) einspeisen.
- Mit dem Trimmpotentiometer RA13 den Ausgang PRE FADER [af] auf 0 dBu (775 mV_{eff}) abgleichen.

5.3.2 Eingangsklirrfaktor

- Den Eingangswahlschalter [a] in die Position STEREO bringen.
- Den Eingangspegelregler [b] auf 0 dB Position stellen.

Linker Kanal

- Am asymmetrischen Eingang STEREO L [ad] links mit dem NF-Generator 1kHz/0 dBu (775 mV_{eff}) einspeisen.
- Voltmeter am Ausgang AFTER FADER [ae] anschliessen (Bereich 0 dB/1 V).
- Mit dem Eingangs-Flachbahnregler [h] auf -6 dBu (388 mV_{eff.}) abgleichen.
- Das Klirrfaktor-Messgerät am Ausgang AFTER FADER [ae] anschliessen.
- Mit dem Trimmpotentiometer RA4 auf minimalen Klirr abgleichen.

Rechter Kanal

- Am asymmetrischen STEREO Eingang R [ad] rechts mit dem NF-Generator 1kHz/0 dBu (775 mV_{eff}) einspeisen.
- Voltmeter am Ausgang AFTER FADER [ae] anschliessen (Bereich 0dB/1V).
- Mit dem Eingangs-Flachbahnregler [h] auf -6 dBu (388 mV_{eff}) abgleichen.
- Das Klirrfaktor-Messsgerät am Ausgang AFTER FADER [ae] anschliessen.
- Mit dem Trimmpotentiometer RA3 auf minimalen Klirr abgleichen.

D 5/4

5.3.3 Eingangs-Flachbahnregler

- Am asymmetrischen Eingang STEREO L [ad] links mit dem Generator 1kHz/0 dBu (775 mV_{eff}) einspeisen.
- Voltmeter am Ausgang AFTER FADER [ae] anschliessen (Bereich 0dB/1 V).
- Den Eingangswahlschalter [a] in die Position STEREO bringen.
- Flachbahnregler [h] auf 0 dB einstellen.
- Mit dem Eingangspegelregler [b] auf 0 dBu (775 mV_{eff.}) abgleichen.
- Flachbahnregler auf -60 dB Position stellen und mit Trimmer RA14 den Ausgang AFTER FADER [ae] auf -60 dBu einstellen.

5.4 Summen-Einheit

1.775.430

5.4.1 Summen-Flachbahnregler

- Am asymmetrischen Eingang STEREO L wie unter Punkt 5.3.3 beschrieben 1kHz/0dBu (775 mV_{eff.}) einspeisen.
- Flachbahnregler [h] auf 0 dB Position stellen.
- Voltmeter an Summenausgang UNBAL [17] anschliessen (Bereich 0dB/1V).
- Summenflachbahnregler [m] auf 0 dB Position stellen.
- Mit dem Eingangspegelregler [b] auf 0 dBu (775 mV_{eff}) abgleichen.
- Summenflachbahnregler auf -60 dB Position stellen und mit Trimmer RA6 auf -60 dBu einstellen.

5.4.1 Summenklirrfaktor

■ Zuerst müssen die sechs Eingangs-Einheiten abgeglichen werden. Die Flachbahnregler der Eingänge [2] ... [6] sind in die Stellung -∞ zu bringen.

Linker Kanal

- Am asymmetrischen Eingang STEREO L [ad] links mit dem Generator 1kHz/0dBu (775 mV_{eff}) einspeisen.
- Voltmeter an Summe UNBAL L [17] links anschliessen (Bereich 0dB/1V).
- Den Eingangswahlschalter [a] in die Position STEREO bringen.
- Eingangs- und Summenflachbahnregler [h und m] auf 0 dB Position stellen.
- Mit dem Eingangspegelregler [b] auf 0 dBu (775 mV_{eff.}) abgleichen.
- Das Klirrfaktor-Messgerät am Summenausgang UNBAL L [17] links anschliessen
- Mit dem Trimmpotentiometer RA1 auf minimalen Klirr abgleichen.

EDITION: 22. Januar 1991 D 5/5

Rechter Kanal

- Am asymmetrischen Eingang STEREO R [ad] rechts mit dem Generator 1kHz/0dBu (775 mV_{eff.}) einspeisen.
- Voltmeter an Summe UNBAL R [17] rechts anschliessen (Bereich 0dB/1V).
- Den Eingangswahlschalter [a] in die Position STEREO bringen.
- Eingangs- und Summenflachbahnregler [h und m] auf 0 dB Position stellen.
- Mit dem Eingangspegelregler [b] auf 0 dBu (775 mV_{ell}) abgleichen.
 Das Klirrfaktor-Messgerät an Summe UNBAL R [17] rechts anschliessen.
- Mit dem Trimmpotentiometer RA2 auf minimalen Klirr abgleichen.

5.5 Anzeige-Einheit

1.775.310

5.5.1 Aussteuerungsanzeige

- Bei der 1. Eingangseinheit am asymmetrischen Eingang STEREO L [ad] links mit dem Generator 1 kHz/0 dBu (775 mV_{ef}) einspeisen.
- Das NF-Voltmeter am Summenausgang MASTER OUTPUT BALANCED [16] links anschliessen (Bereich 10 dB/3 V).
- Den Eingangswahlschalter [a] in die Position STEREO bringen.
- Eingangs- und Summenflachbahnregler [h und m] auf 0 dB Position stellen.
- Den Schiebeschalter OUTPUT LEVEL [14] in Stellung 6 dBu bringen.
- Mit dem Eingangspegelregler [b] auf +6 dBu (1,55 V_{eff}) abgleichen.
- Am Monitorselektor die Taste MASTER [s] drücken.
- Mit dem Trimmpotentiometer RA3 (von der Frontseite zugänglich) den linken Anzeigebalken so einstellen, dass die 0 dB-LED aufleuchtet.
- Den rechten Balken auf die gleiche Art mit RA2 abgleichen.
- Die Helligkeit der Anzeige kann mit RA1 eingestellt werden. Der Kontrast zur Umgebungshelligkeit wird über einen lichtempfindlichen Widerstand geregelt.

5.6 Messen der Audio Daten

- Klirrfaktor
- Ausgangspegel
- Frequenzgang
- Übersprechdämpfung
- Fremdspannungsabstand

D 5/6

5.6.1 Klirrfaktor

- Bei der ersten Eingangseinheit am asymmetrischen Eingang STEREO L [ad] links mit dem Generator 1 kHz/0 dBu (775 mV_{eff}) einspeisen.
- Das NF-Voltmeter am Summenausgang UNBAL L [17] links anschliessen (Bereich 0 dB/1 V).
- Den Eingangswahlschalter [a] in die Position STEREO bringen.
- Den Eingangs- und den Summenflachbahnregler [h und m] auf 0 dB Position stellen.
- Mit dem Eingangspegelregler [b] auf 0 dBu (775 mV_{eff}) abgleichen.
- Das Klirrfaktor Messgerät an Summenausgang UNBAL L [17] links anschliessen.
- Der gemessene Wert darf 0,03 % nicht übersteigen.
- Messung analog f
 ür den rechten Kanal durchf
 ühren.

5.6.2 Ausgangspegel und Kanalgleichheit

- Bei der ersten Eingangseinheit am asymmetrischen Eingang STEREO L [ad] links mit dem Generator 1 kHz/0 dBu (775 mV_{ef}) einspeisen.
- Das NF-Voltmeter am Summenausgang MASTER OUTPUT BALANCED [16] links anschliessen (Bereich 10 dB/3 V).
- Den Eingangswahlschalter [a] in die Position STEREO bringen.
- Eingangs- und Summenflachbahnregler [h und m] auf 0 dB Position stellen.
- Den Schiebeschalter OUTPUT LEVEL [14] in Stellung 6 dBu bringen.
- Mit dem Eingangspegelregler [b] auf +6 dBu (1,55 V_{eff}) abgleichen.
- In den Stellungen +10 dBu und +14 dBu des Schiebeschalters [14] müssen die entsprechenden Werte gemessen werden.
- Die Messungen sind auch mit dem rechten Kanal durchzuführen.
 Die Kanalgleichheit muss besser als 1,5 dB sein.

5.6.3 Frequenzgang

- Bei der ersten Eingangseinheit am asymmetrischen Eingang STEREO L [ad] links mit dem Generator 1 kHz/0 dBu (775 mV_{eff}) einspeisen.
- Das NF-Voltmeter am Summenausgang MASTER OUTPUT BALANCED [16] links anschliessen (Bereich 10 dB/3 V).
- Den Eingangswahlschalter [a] in die Position STEREO bringen.
- Eingangs- und Summenflachbahnregler [h und m] auf 0 dB Position stellen.
- Den Schiebeschalter OUTPUT LEVEL [14] in Stellung 6 dBu bringen.
- Mit dem Eingangspegelregler [b] auf +6 dBu (1,55 V_{eff.}) abgleichen.
- Die Frequenz des NF-Generators von 20 Hz ... 20 kHz verändern. Der Ausgangspegel darf sich dabei um maximal ±1 dB verändern.
- Die gleiche Messung ist mit dem rechten Kanal durchzuführen.

EDITION: 22. Januar 1991 D 5/7

5.6.4 Übersprechdämpfung

- Bei der ersten Eingangseinheit am asymmetrischen Eingang STEREO L [ad] links mit dem Generator 1 kHz/0 dBu (775 mV_{eff.}) einspeisen.
- Den asymmetrischen Eingang STEREO R [ad] rechts mit einem 1 kΩ Widerstand abschliessen.
- Das NF-Voltmeter am Summenausgang MASTER OUTPUT BALANCED [16] links anschliessen (Bereich 10 dB/3 V).
- Den Eingangswahlschalter [a] in die Position STEREO bringen.
- Den Eingangs- und den Summenflachbahnregler auf 0 dB Position stellen.
- Den Schiebeschalter OUTPUT LEVEL [14] in Stellung 6 dBu bringen.
- Mit dem Eingangspegelregler [b] auf +6 dBu (1,55 V_{eff}) abgleichen.
- Das NF-Voltmeter am Summenausgang MASTER OUTPUT BALANCED [16]
 rechts anschliessen.
- Die gemessene Übersprechdämpfung muss >50 dB betragen.
- Wird der Eingangsflachbahnregler [h] in die Stellung -∞ gebracht, so beträgt die Ausschaltdämpfung >85 dB. Wird anstelle des Eingangs-Flachbahnreglers der Summen-Flachbahnregeler [m] in die Stellung -∞ gebracht, so beträgt die Ausschaltdämpfung >90 dB.
- Die Messung mit vertauschten Kanälen wiederholen.

5.6.5 Fremdspannungsabstand

- Bei der ersten Eingangseinheit am asymmetrischen Eingang STEREO L [ad] links mit dem Generator 1 kHz/0 dBu (775 mV_{eff.}) einspeisen.
- Das NF-Voltmeter am Summenausgang MASTER OUTPUT BALANCED [16] links anschliessen (Bereich 10 dB/3 V).
- Den Eingangswahlschalter [a] in die Position STEREO bringen.
- Eingangs- und Summenflachbahnregler auf 0 dB Position stellen.
- Den Schiebeschalter OUTPUT LEVEL [14] in Stellung 6 dBu bringen.
- Mit dem Eingangspegelregler [b] auf +6 dBu (1,55 V_{eff.}) abgleichen.
- Das NF-Voltmeter am Summenausgang MASTER OUTPUT BALANCED [16] rechts anschliessen.
- Den NF-Generator vom Eingang entfernen und den Eingang mit einem 1 kΩ
 Widerstand abschliessen.
- Der gemessene Fremdspanungsabstand muss >100 dB betragen.
- Die Messung ist mit dem rechten Kanal zu wiederholen.

D 5/8

1	General	
'	Introduction	1/1
	Operator controls	1/1
	Connector panel	1/4
	Techncal Data	1/7
	Accessories	1/10
		•
2	Start-up procedure	***************************************
	Connection to the AC power source	2/1
	Power on procedure	2/1
	Microphone phantom supply	2/1
	Connecting the inputs	2/2
	Connecting the outputs	2/2
	Functional description	
	Power supply	3/1
	Display module	3/1
	Input module	3/2
	Master module	3/3
	Monitor module	3/3
	Input/output module	3/4
	Control room monitor module	3/5
	Disassembly instructions	-
	General information	4/1
	Housing	4/2
	Electronic assemblies	4/4
	Alignment instructions	
	General information	5/1
	Power supply	5/3
	Input module	5/4
	Master module	5/5
	Display module	5/6
	Measuring the audio data	5/6
7	Circuit diagrams	Mark the transfer areas are an expension of the second of
	On our diagrams	

STUDER A779

1 General

1.1	Introdu	ıction	1		
1.2	Operat	or controls	2		
1.3	Conne	Connector panel4			
		cal data			
	reciiii	vai vaia			
	1.4.1	Electronic data	7		
	1.4.2	Mechanical data	9		
1.5	5 Accessories				
	1.5.1	Accessory kit	10		
	1.5.2		10		
	1.5.3	Bus connection cable	10		
	1.5.4	Transport case	10		
	155	Knobe and Duch Ritone	11		

EDITION: 8. Januar 1991

General

1.1 Introduction

- The professional small mixer STUDER A779 is an universal mixing console that is principally intended for OB applications. Each of the six input paths in the basic unit is designed for 2-channel operation which means that each path can be used either for high-level stereo signals (in which case the inputs are unbalanced) or in mono mode with balanced input. This circuit arrangement also accepts microphone input signals.
- The expansion unit which becomes an integral part of the basic unit when installed below the latter, features additional balancing stages so that three high-level stereo feedbacks (six channels) e.g. from tape recorders or effect machines have a balanced termination and can be connected to one input path each.
- Depending on the wiring, the mixing console can have between six and fourteen input channels (including the AUX RETURN inputs).
- When an input path is operated in stereo mode, the controls influence both channels.
- The modules referred to in the subsequent description are not necessarily physically separable assemblies but functional modules (example: the "input module" consists of a circuit board and the operator controls integrated in the operator surface; electrically it is a separate unit, however).

E 1/2 EDITION: 28 September 1989

1.2 Operator controls

Element

Function

[1] INPUT 1

Stereo input module comprising the following elements:

[a] INPUT SELECTOR

Rotary switch for selecting the various inputs:

LINE: MONO BAL. (balanced)

STEREO UNBAL. (unbalanced)

NORMAL (balanced, floating) BASS CUT (filter active)

Caution:

MIC:

Never connect high-level signal sources and stereo hi-fi signal sources to the same input!

[b] GAIN

Input level control. For matching the level of the various signal sources. The scale of this control features a calibration mark at 0 dB which identifies 0 dB gain across the entire channel when the input selector is in the LINE position and the input and master fader are in the 0 dB position.

[c] TREBLE

 Treble control. Potentiometer for accentuating or de-emphasizing the treble range (±15 dB at 20 kHz). No influence on the frequency response when this control is in the center position.

[d] BASS

 Bass control. Potentiometer for accentuating or de-emphasizing the bass range (±15 dB at 20 Hz). No influence on the frequency response when this control is in the center position.

[e] AUX

 Potentiometer for driving the monophonic AUX bus, with integrated push-pull switch for PF/AF (prefader/after-fader) changeover.

[f] PAN/BALANCE

In the modes LINE, MIC, NORM, and MIC BASS CUT it functions as a panorama potentiometer (distributing the signal to the left-hand and the righthand channel). In STEREO mode it functions as a balance potentiometer.

[g] PFL

 Push button for prefader listening; connects the signal monophonically to the PFL bus.

[h] FADER

Linear fader for attenuating the signal.

[2] INPUT 2...[6] INPUT 6

Stereo input modules with the same configuration as INPUT 1.

[7] MASTER

Stereo output module comprising the following elements:

[i] PEAK PROGRAM METER Two LED strips indicate the momentary peak values of the selected monitoring

If the momentary push button DISPLAY MODE is pressed in stereo mode, it is possible to assess the mono compatibility (see 3,2, Page E 3/1).

Element	Function
[k] AUX SEND	 Level control of the master signal AUX SEND [36] (output of the mono AUX bus).
[I] AUX RETURN	 Level control of the stereo RETURN AUX input [35].
[m] MASTER FADER	■ Stereo fader for attenuating the master output signal; range +1070 dB.
[8] CR MONITOR	Monitor module comprising the following elements:
[n] PFL	 Push button for connecting the PFL bus to the monitor bus. (The mono PFL signal is mixed down equally to the left-hand and the right-hand channel of the monitor bus.)
[o] AUX SEND	Push button for connecting the AUX bus to the monitor bus. (The mono AUX signal is mixed down equally to the left-hand and the right-hand channel of the monitor bus).
[p] AUX RETURN	Push button for connecting the left-hand and the right-hand channel of the AUX RETURN [35] to the monitor bus.
[q] TAPE 2	Push button for connecting the left-hand and the right-hand channel of the TAPE 2 [39] input to the monitor bus.
[r] TAPE 1	 Push button for connecting the left-hand and the right-hand channel of the TAPE 1 [38] input to the monitor bus.
[s] MASTER	Push button for connecting the left-hand and the right-hand master channel to the monitor bus.
[t] VOLUME	■ Potentiometer for adjusting the volume of the left-hand and the right-hand monitor output [24].
[9] MONITOR	Monitor module comprising the following elements:
[u] POWER	 AC Power switch
[v] DISPLAY MODE	Push button switch for changing over the peak program meter. NORM position = level indication CORR position = correlation indication (see peak program meter [i])
[w] VOLUME MIC	 Sensitivity potentiometer of the built-in microphone [11].
[x] SLATE	■ For announcing via the master bus (both buttons pressed simultaneously)
[y] MIC TALK BACK AUX	■ For announcing via the aux bus
[z] VOLUME	 Potentiometer for adjusting the monitor speaker [10] volume or the headset [aa] volume.
[aa] PHONES	• Stereo jack socket for connecting the headphones (200 Ω 600 Ω). The built-in monitor speaker is automatically muted when the headphones are plugged in.

EDITION: 28 September 1989

Element

Function

- [10] SPEAKER
- Control room speaker
- [11] MICROPHONE
- Microphone for announcing via the AUX or master bus.

1.3 Connector panel

Element

Function

- [12] AC POWER
- Power inlet
- [13] VOLTAGE SELECTOR
- Line voltage selector and power fuse
- [14] OUTPUT LEVEL
- Slide switch for matching the 0 dB master level to the prevailing studio level.

All XLR connectors have the following pin assignment:

- 1 = screen
- 2 = a-wire
- 3 = b-wire

- [15] PHANTOM POWER 48 V
- Slide switch for activating the microphone phantom supply of all input modules (for condenser microphones).
- [16] MASTER OUTPUT BAL. L/R
- Balanced outputs of the left-hand and right-hand master channel (XLR connectors).
- [17] MASTER UNBAL. R/L
- Two parallel-connected, unbalanced outputs each of the left-hand and the right-hand master channel (CINCH connectors).
- [18] INPUT 6

Stereo input module with the following connector configuration:

- [ab] MIC BAL.
- Balanced and floating microphone input of input 6 (XLR connector, mono).
- [ac] LINE BAL.
- Balanced high-level input of input 6 (XLR connector, mono).
- [ad] STEREO L/R
- Unbalanced inputs of the left-hand and right-hand input 6 for high-level sources (CINCH connectors).
- [ae] OUTPUT AFTER FADER
- Unbalanced mono output. The signal is tapped after the linear fader and added to a mono signal (CINCH connector).

Element

Function

[af] OUTPUT PRE FADER

- Unbalanced mono output. The signal is tapped before the linear fader and added to a mono signal (CINCH connector).
- [19] INPUT 5 ... [23] INPUT 1
- Stereo input modules with identical pin assignment as for input 6.
- [24] MONITOR OUTPUT
- Balanced outputs of the left-hand and right-hand monitor bus (XLR connectors). Output level adjustable with volume control [t]. Muting (monitor cut) with open microphone can be programmed with the DIP switch [41].
- [25] FADER START M (MASTER)
- Jack socket (3.5 mm, stereo) for connecting a fader start cable. When the master fader is opened, an electrically isolated relay make contact is actuated (also refer to Section 3.6).
- [26] FADER START 6 ... [31] FADER START 1
- Jack socket (3.5 mm, stereo) for connecting a fader start cable. When the corresponding input fader is opened, an electrically isolated relay make contact is actuated (also refer to section 3.6.).
- [32] VCA CONTROL
- The gain of the individual input channels can also be remote controlled (option 850). The gain is influenced by applying a corresponding control voltage (TTL range);

where: 0V fader fully open (v = 0 dB)+5V fader fully closed (v = -100 dB)

The interface in the A779 can be controlled directly from certain video editing stations, e.g. SONY BVE 600, BVE 900 and BVE 9000. For other applications it is necessary to create corresponding voltage generators.

Pin assignment:

Pin 1 = Control voltage input 1

Pin 2 = Control voltage input 2

Pin 3 = Control voltage input 3

Pin 4 = Control voltage input 4

Pin 5 = Control voltage input 5

Pin 6 = Control voltage input 6

Pin 9 = 0 Volt

EDITION: 3. Februar 1992

Element

Function

[33] BUS EXPANSION

Expansion socket for connecting a second A779 mixing console. The master and slave function is determined by the installation of the connection cable. The connectors of the cable are correspondingly labelled.

			·		
Pin assignment:	Pin 1 =	MBR-IN	Pin 9 =	BC	
	Pin 2 =	MBL-IN	Pin 10 =	0 Volt	
	Pin 3 =	SB-IN	Pin 11 =	0 Volt	
	Pin 4 =	PFL-IN	Pin 12 =	0 Volt	
	Pin 5 =	MBR-OUT	Pin 13 =	0 Volt	
	Pin 6 =	MBL-OUT	Pin 14 =	0 Volt	
	Pin 7 =	SB-OUT	Pin 15 =	0 Volt	(SCREEN)
	Pin 8 =	PFL-OUT			,

Signal names: MB = Master Bus; SB = Send Bus; PFL = Pre Fader Listening; BC = Bus Controller; L = left; R = right;

- [34] MASTER OUTPUT R/L
- Balanced and floating outputs of the right-hand and left-hand master channel (XLR connectors).
- [35] AUX RETURN R/L INPUT
- Balanced and floating AUX inputs of the left-hand and right-hand master bus (XLR connectors).
- [36] AUX SEND OUTPUT
- Balanced output of the AUX bus (CLR connector, mono).
- [37] TAPE 2 OUTPUT L/R
- Unbalanced outputs (CINCH connectors). The signal of the balanced high-level input TAPE 2 [39] is connected unbalanced to this output. Series connection to any unbalanced stereo input [ad] with CINCH cable.
- [38] TAPE 1 OUTPUT L/R
- Unbalanced outputs (CINCH connectors). The signal of the balance high-level input TAPE 1 [40] is connected unbalanced to this output. Series connection to any unbalanced stereo input [ad] with CINCH cable.
- [39] TAPE 2 INPUT L/R
- Balanced stereo high-level input
- [40] TAPE 1 INPUT L/R
- Balanced stereo high-level input.
- [41] MONITOR CUT
- The muting of the monitor output can be individually selected via the 6-position DIP CODING SWITCH. If a switch is in the down position, the stereophonic monitor output [24] is muted when the corresponding input fader is opened.

1.4 Technical data

1.4.1 Electronic data

General:

Measuring conditions:

All voltages in dBu are relative to 775 mV $_{\rm eff}$. All INPUT FADERS and the MASTER FADER are to be set to 0 dB, the treble and bass controllers to their center position.

Levels: • Control range for 0 dB indication on peak meter:

GAIN MIC: -60 dBu ... 0 dBu GAIN LINE, STEREO: -20 dBu ... + 16 dBu AUX RETURN: -4 dBu ... + 22 dBu

Output level for 0 dB indication on peak meter:

PRE, AFTER FADER: 0 dBu
AUX SEND: +6 dBu
MASTER unbal.: 0; +4; +8 dBu
MASTER bal.: +6; +10; +14 dBu

(adjustable rear panel switch)

MONITOR max.: +16 dBu

TAPE 1, 2 for 0 dB indication on peak meter:

Inputs bal.: + 6 dBu
Outputs unbal.: 0 dBu

Overload margin:

Maximum input level:

 MIC:
 0 dBu

 LINE bal, STEREO:
 +20 dBu

 AUX RETURN, TAPE:
 +26 dBu

Maximum output level:

Unbalanced: +20 dBu
Balanced: +24 dBu
Balanced transformer: +26 dBu

Impedances: • Input impedance:

MIC: >1.2 kohm LINE; STEREO: 47 kohm AUX RETURN, TAPE: > 10 kohm

Output impedance: MASTER bal.;

AUX SEND, MONITOR: <50 ohm MASTER unbal.: <1.0 kohm OUTPUT PF, AF: <50 ohm

EDITION: 28 September 1989

Frequency response:

Linear (treble and bass control in center position)

Signal-to-noise ratio:

■ RMS value for 20 Hz ... 20 kHz

1 x MIC relative to -60 dBu input voltage,

200 Ω termination: > 63 dB

1 x LINE relative to 0 dBu input voltage,

1 k Ω termination: > 90 dB 6 x LINE relative to 0 dBu input voltage: > 86 dB Master fader closed > 100 dB

Harmonic distortion:

■ LINE 0 dBu input +6 dBu master output

1 kHz: <0.03% 20 Hz ... 20 kHz: <0.15% MIC -20 dBu input 1 kHz: <0.03% 30 Hz ... 15 kHz: <0.15%

Cross talk:

■ Left-right crosstalk of a

stereo input at 10 kHz: > 50 dB

Disconnection attenuation of channel

controller at 10 kHz: > 86 dB INPUT > 90 dB
Disconnection attenuation of master fader > 100 dB

Display:

LED bargraph instrument with PPM characteristic (peak program meter) for quasi peak indication. The LEDs arranged out to the following scale:

Ranges: +6 ... +1dB in 1 dB steps (red)
0 ... -6dB in 1 dB steps (green)
-7 ... -18dB in 2 dB steps (green)
-19 ...-33dB in 3 dB steps (green)

- Characteristic switchable from PPM to correlation degree indication of a stereo signal (L-R, L+R).
- LED indicators for:

PFL (mono)
AUX SEND (mono)
AUX RETURN (left, right)
TAPE 2 (left, right)
TAPE 1 (left, right)
MASTER output (left, right)
Correlation (L-R, L+R)

Power requirements:

Line voltage selector:

100, 120, 140, 200, 220, 240 V 50 ... 60 Hz, max. 50 W

Power fuse:

100 ... 140 V 630 mA slow 200 ... 240 V 315 mA slow

1.4.2 Mechanical data

Weight: MIXING CONSOLE A779: approx. 13 kg

Dimensions: ■ (WxDxH) 460 x 355 x 170 mm

EDITION: 28 September 1989

1.5 Accessories

The A779 is supplied with a power cord and an operating and service manual. The following items can be ordered as optional accessories:

1.5.1 Accessory kit

Order No. 1.775.031.00

ltem	Quantity	Part No.	Designation
1.	12	54.02.0280	XLR connector (male) XLR connector (female) Mini jack, stereo, 3.5mm (fader start) Cinch - Cinch cable, 0.5 m Button, small, YELLOW Button, small, GREEN Button, small, BLUE Fuse: 315 mA/250 V, slow Fuse: 1A/250 V, slow
2.	7	54.02.0281	
3.	7	54.24.0121	
4.	2	54.21.2080	
5.	2	1.911.000.34	
6.	2	1.911.000.35	
7.	2	1.911.000.36	
8.	2	51.01.0112	
9.	1	51.01.0117	

1.5.2 19" rack mounting kit

Order No. 1.775.361.00

ltem	Quantity	Part No.	Designation
1.	3	21.26.0353	Fillister-head screw, M3x5
2.	8	21.26.2454	Flat-head screw, M4x6
3.	2	1.775.360.25	Rack bracket
4.	1	1.775.360.24	Trim strip, bottom

1.5.3 Bus connection cable

Order No. 1.023.767.00

Grey connecting cable, 85 cm, 10-conductor, fitted with two 15-pin D-type connectors. One connector connects the A779 as the master, the other as the slave. Each A779 mixing console can be used for either purpose.

Coupling of two A779:

The coupling of two A779 mixing consoles results in a system with 12 input channels and a master output. The master, aux and PFL buses are connected by the slave console directly to the buses of the master console (the master faders are bypassed). The BC (bus controller) signal connects the bus signals to the D-type BUS EXPANSION connector.

1.5.4 Transport case

Order No. 10.690.001.01

Outside dimensions:

Dual shell plastic case with handle, black, lockable.

57cm × 45cm × 24 cm

1.5.5 Knobs and Push Buttons

Ind.	ORDER NUMBER	PART NAME	COLOR
01	42.01.0203 1.775.370.32	knob fixed ϕ 10/4mm with screw knob ϕ 10/4mm	dark grey dark grey
02	1.775.370.31	knobφ15/4mm	dark grey
07	42.01.0250 42.01.0251 42.01.0252 42.01.0253 42.01.0254 42.01.0255 42.01.0256	Cap with lineφ10mm	light grey dark grey black red blue yellow green
08	42.01.0257 42.01.0258 42.01.0259 42.01.0260 42.01.0261 42.01.0262 42.01.0263	Cap with lineφ15mm	light grey dark grey black red blue yellow green
09	1.810.320.02 1.810.320.03 1.810.320.04 1.810.320.05 1.810.320.06 1.810.320.07	Push button	dark grey blue yellow white green red
10	1.011.094.02 1.011.094.03 1.011.094.04 1.011.094.05 1.011.094.06 1.011.094.08 1.011.094.09	Push button with coloured top	red orange yellow green blue light grey dark grey
12	1.911.000.32 1.911.000.33 1.911.000.34 1.911.000.35 1.911.000.36 1.911.000.38 1.911.000.39	Fader knob	red orange yellow green blue light grey white

EDITION: 25. Januar 1991 E 1/11

2 Start-up procedure

2.1	Connecting the mixer to the AC supply	1
2.2	Power-on procedure	1
2.3	Microphone phantom supply	. 1
2.4	Connecting the inputs	2
2.5	Connecting the outputs	2

EDITION: 28 September 1989

2 Start-up procedure

2.1 Connecting the mixer to the AC supply

Verify that the local line voltage matches the rating printed on the power inlet of the mixing console. If this is not the case, the voltage selector must be adjusted correspondingly. The value of the fuses has to be checked and changed, if necessary (see 4.3.11).

- □ 100...140 V_{AC}: **T 630 mA L 250 V (slow blow)** *USA and CDN (100...140 V_{AC}): 630 mA slow blow UL/CSA*
- □ 200...240 V_{AC}: **T 315 mA L 250 V** (slow blow)

2.2 Power-on procedure

The mixing console is powered on by pressing the POWER switch [u]; the peak meter lights up. The mixing console can be switched off and disconnected from the AC supply by pressing the same switch.

2.3 Microphone phantom power

Condenser microphones: Condenser microphones require a supply voltage of 48 V_{DC} which is provided by

the mixing console. When the PHANTOM POWER 48 V [15] slide switch is in the

ON position, the phantom supply is activated for all input modules.

Dynamic microphones: Dynamic microphones require no additional supply and are simply connected to

the microphone inputs. Put the PHANTOM POWER 48 V [15] slide switch to the

OFF position.

Note: If dynamic as well as condenser microphones are used simultaneously, *balanced* connection of all microphones is required. In this case set the PHANTOM POWER

48 V [15] slide switch to the ON position.

In the event of unbalanced connection and active phantom supply, the input transformers become magnetized which increases the harmonic distortion. For

demagnetizing instructions refer to 5.1.1.

EDITION: 04/07/96 E 2/1

2.4 Connecting the inputs

☐ Microphones can be connected to the balanced inputs MIC BAL [ab] of the Microphones: stereo input modules. ☐ The input selectors [a] are to be turned to the position MIC NORMAL or MIC BASS CUT. High-level input sources: ☐ Mono signal sources with balanced high-level output (50 mV_{BMS}...3 V_{BMS}) can be connected to the LINE BAL. [ac] input of the input module. ☐ The input selector [a] should be turned to the position LINE MONO BAL. ☐ Stereo signal sources with balanced high-level output (50 mV_{BMS}...3 V_{BMS}) can be connected to the inputs TAPE 1 [40] or TAPE 2 [39] of the input/output module. With Cinch-Cinch connecting cables they are tapped on the unbalanced output TAPE 1 [38] or TAPE 2 [37] module and serially connected to any stereo input [18]...[23]. Stereo hi-fi signal sources: ☐ Unbalanced stereo signal sources (such as HiFi equipment) can be connected to the stereo inputs [ad] of the stereo input modules. The input selector [a] should be turned to the STEREO UNBAL. position.

Caution: Never use both LINE inputs (MONO BAL. and STEREO UNBAL.) of a single input module simultaneously!

2.5 Connecting the outputs

Balanced outputs:

Master Output Equipment with balanced inputs can be connected to the MASTER OUTPUT BAL. L/R connectors [16]/[34].

Monitor Output A monitoring amplifier or, even more convenient, a pair of active monitor speakers (e.g. the professional studio sound transducers Studer A523, A623, or A723) can

be connected directly to the balanced MONITOR OUTPUT [24].

Unbalanced outputs: Equipment with unbalanced inputs can be connected to the MASTER UNBAL. L/R

[17] connectors. The Direct Outputs PRE/AFTER FADER [ae]/[af] are terminated

on unbalanced connectors as well.

E 2/2 EDITION: 04/07/96

3 Functional description

3.1	Power supply	. 1
3.2	Display module	. 1
3.3	Input module	. 2
3.4	Master module	. 3
3.5	Monitor module	. 3
3.6	Input/output module	. 4
3.7	Control room monitor module	-

EDITION: 28 September 1989

3 Functional description

3.1 Power supply

1.775.490

Primary circuits:

One pole of the AC line voltage is connected directly to the power transformer. The other pole is connected via the power switch (on monitor module) and via the primary fuse to the line voltage selector and the transformer.

- The following line voltages can be selected:
 100 V, 120 V, 140 V, 200 V, 220 V, and 240 V ±10%, 50 to 60 Hz.
- Secondary circuits:

The following voltages are available:

- ±15 V Amplifier supply
- +11 V LED supply of the display module
- +48 V Microphone phantom supply

The amplifier supply $(\pm 15\ \text{V})$ is stabilized with two series-connected regulators. The output voltage of these regulators is adjusted with trimmer potentiometers.

The series pass transistor of the phantom supply (+ 48 V) stabilizes not only the voltage but also switches it on and off. The output voltage can be adjusted with a trimmer potentiometer.

The power of the indicator LEDs (+11V) is filtered only by an electrolytic capacitor and is not regulated.

3.2 Display module

1.775.310

PPM:

 Stereo and peak program meter with 24 LEDs each, adjustable sensitivity and brightness

```
Ranges: +1 ... +6 dB in 1 dB steps (red)

-6 ... 0 dB in 1 dB steps (green)

-18 ... -7 dB in 2 dB steps (green)

-33 ... -19 dB in 3 dB steps (green)
```

- The stereo peak meter indicates the level of the selected monitoring source. Σ 1 + 2, TAPE 1, TAPE 2, AUX RETURN are indicated in stereo mode while PFL and AUX SEND are indicated in mono mode. The mode is changed over automatically.
- Mode indication: MONO PFL (red LED)
 STEREO L, R (red LED)
 Correlation L R, L + R (red LED)

EDITION: 10. Januar 1991 E 3/1

Correlator:

When you press the DISPLAY MODE [v] key, the left-hand instrument indicates the stereo side signal (L-R), the right-hand instrument the stereo center signal (L+R). By comparing these two readings it is possible to interpret the degree of correlation and consequently the mono compatibility. The degree of correlation indicates the similarity of the stereo channels.

Correlation	Indication	Interpretation
+1	L < < R	The two channels (L, R) are identical, mono representation in the center.
0.30.7	L < R	Average stereo programs; indication on the left is 68 dB smaller than on the right.
0	L = R	Stereo signal with 90° phase offset or incoherent signals.
< 0	L > R	Signals with phase inversion, not mono compatible.
-1	L >> R	Both channels are identical but with 180° phase rotation.

The average stereo program produces a correlation degree of approx. 0.3 ... 0.7. Recordings with strong center signals (soloists) achieve even higher values. By contrast, a strong distribution of the instruments over the full base width reduces the correlation toward zero.

Negative values (indication on the left higher than on the right) are indicative of phase inversion in the system.

3.3 Input module

1.775.420

- The unbalanced STEREO input is taken via the balanced MIC and LINE BAL inputs to the input selector switch. (All switches in this module are implemented with electronic components)
- The BASS CUT filter can be connected to the microphone input. The input level potentiometers have a control range of -20 ...+16 dB. For the microphone input the level potentiometers are connected in series, resulting in a control range of -36...+36 dB. The signal is taken via the tone control to the VCAs which are driven by means of fader via the buffer. The control range of the VCA is -70...+10 dB.
- To achieve good phase synchronism of the stereo faders, the corresponding control elements are implemented with dbx-VCAs. The fader consists of a linear sliding potentiometer that supplies a DC voltage to the VCA. The latter is responsible for the conversion linear ÷ dB-linear. The input circuit is terminated with the panorama or balance potentiometer (STEREO UNBAL.) respectively. In mono mode the input circuits of both channels are used to form a balanced input, the remaining processing is subsequently performed in the left-hand channel.

The PF signals (tapped before the fader) or AF signals (tapped after the fader) are taken via the summing amplifiers to the 0 dB isolation amplifiers at the output. The level of the signal connected via the AUX switch is influenced by the AUX potentiometer and taken to the AUX bus. The prefader listening signal is taken via the PFL switch to the PFL bus.

E 3/2

3.4 Master module 1.775.430

AUX Send

A supplementary input/output (AUX SEND, AUX RETURN) has been implemented on the master module so that an external device can be looped in. The SEND signal is taken from the AUX bus via summing amplifier to the potentiometer [k] which adjusts the output level. In addition the SEND signal can be connected from the level potentiometer to the monitor bus (AUX SEND, key [o]).

AUX Return

The stereo RETURN signal is taken via potentiometer [I] to the master bus. Also here it is possible to connect the signal to the monitor bus through the AUX RETURN key [p].

MASTER Fader

The summing amplifiers terminate the master bus. The master signal is also controlled by VCA stages that are implemented in the same manner as in the input module.

Outputs

The mixing console is equipped with two unbalanced (2×master, stereo) and four balanced outputs (2×master, stereo; 1×monitor, stereo; 1×AUX send, mono). The stereo master output [16] is electronically balanced, while the output [34] has been implemented floating and with transformers. The level of the outputs can be adjusted with the slide switch [14].

BALANCED: +6 dBu/ +10 dBu/ +14 dBu
 UNBALANCED: 0 dBu/ +4 dBu/ +8 dBu

3.5 Monitor module

1.775.450

Talk back

With the built-in microphone [11], spoken information can be placed directly on the MASTER or AUX bus. After the amplifiers the output level can be influenced with the VOLUME potentiometer [w]. Both SLATE TALK BACK keys must be pressed for making an announcement on the MASTER BUS. If only one of these keys is pressed, the signal will not be through-connected. To make an announcement on the AUX bus it is necessary to press the AUX TALK BACK key.

Source selection

The source to be monitored can be selected by the push-buttons [n] ...[s]. This selection is valid as well for the speaker / headphones as for the monitor output. Monitoring has no influence on the master signal.

Internal monitor

The left and right monitor buses are connected via the summing amplifiers and the inverter stage to the headphones socket [aa] and the sum of these signals to the speaker [10]. The listening volume can be controlled with the potentiometer [z]. The built-in speaker is automatically muted when the headphones are plugged into the socket.

Monitor output

The monitor bus is connected to the summing amplifiers and from there via the volume control [t] to the monitor output [24]. When opening an inpit fader the MONITOR CUT function can mute the monitor output. This function can be set for each channel with the DIP coding switch [41] . (cf. page E 1/6)

EDITION: 10. Januar 1991 E 3/3

3.6 Input/output module

1.775.460

Fader start

- The fader start logic is identical for all input and master modules.
- The linear fader in the individual input channels or the master module generates a VCA control voltage between 0 and +5 V. This voltage is also used for controlling the fader start logic. It is amplified in IC 9 by a very high gain factor (×1000); for this reason even an extremely small voltage from the linear fader (short opening travel) suffices to create on IC 9 the voltage required for the start logic. Any further rise in the voltage will be limited by diode D5.
- When the linear fader is opened, the start relay becomes energized and drops out again when the fader is closed.
- The contacts of the FADER START socket (3.5mm jack) are controlled by the relay as depicted below. The common contact '3' and the ground connection of the mixer are isolated.

Corresponding fader opened:

- Contact 1 to contact 3
- Contact 2: not connected
- Contact 3: common

Corresponding fader closed:

- Contact 1: not connected
- Contact 2 to contact 3
- Contact 3: common

INPUT Tape 1 + 2

- A balanced high-level signal can be connected directly to the stereo input TAPE 1 or TAPE 2 (XLR sockets, balanced).
- The two tape inputs have only a monitor function. They cannot be fed to the master signal. When you press the keys [q] or [r] of the control monitor unit, the tape signal can be connected directly to the monitor bus and be monitored.

OUTPUT Tape 1 + 2

The signals of the balanced type inputs are available unbalanced on the TAPE 1 and TAPE 2 outputs. From here they can be taken via a CINCH-CINCH connecting cable to any unbalanced input (STEREO).

The inputs and outputs TAPE 1 + 2 can be used universally as transformers for connecting balanced high-level sources to unbalanced hi-fi equipment.

E 3/4

Coupling of two A779

■ For coupling two A779 mixing consoles, the BUS EXPANSION [33] sockets are to be interconnected. The position of the labelled plug on the connecting cable determines which console functions as the master or slave. From the slave console the master, AUX and PFL buses are connected directly to the corresponding buses of the master, i.e. the master faders are bypassed. The monitor cut function of the slave console cannot be used.

VCA option

■ This mixing console is equipped for an external VCA control, e.g. for connection to the video editor BVE 900. For this purpose the D-type socket VCA-CONTROL [32] and an interface board (1.775.480.00) are to be installed (option 850: STI No. 20.779.850.00).

3.7 Control room monitor module

1.775.470

A signal source can be connected to the monitor bus via the keys [n] ... [s]. If PFL is selected, at least one PFL key of an input must be pressed. The following monitoring facilities exist: PFL, AUX send, AUX return, TAPE 1, TAPE 2, MASTER.

The VOLUME potentiometer [t] controls the level of the monitor output. The monitor speaker and the headphone volumes are adjusted with the PHONES potentiometer [z].

EDITION: 10. Januar 1991 E 3/5

4 Disassembly Instructions

4.1	General information1						
	4.1.1	Required tools	. 1				
	4.1.2	Reassembly					
4.2	Housir	ng	. 2				
	4.2.1	Separating the input/output modules from the mixing console					
	4.2.2	Bottom cover					
	4.2.3	Side panels					
	4.2.4	Rear housing panel (connector panel)	2				
4.3	Electro	nic assemblies					
	4.3.1	Input/output board	4				
	4.3.2	Power supply	4				
	4.3.3	Input board	4				
	4.3.4	Master board	6				
	4.3.5	Microphone board	6				
	4.3.6	Control room monitor board	6				
	4.3.7	Monitor board and speaker	6				
	4.3.8	Display module	8				
	4.3.9	Power transformer	8				
	4.3.10	Interconnection board	8				
	4.3.11	Primary fuse	8				
	4.3.12	Secondary fuses	8				

EDITION: 3. Februar 1992

STUDER A779 / MR8 DISASSEMBLY

4 Disassembly instructions

4.1 General Information

Caution: Disconnect the mixing console from the AC power source before you remove any housing parts and electrical assemblies!

Note: Please refer to MOS handling instructions located at the beginning of this manual before you remove or install any electronic components!

4.1.1 Required Tools

1	Phillips screwdriver, size 1					
1	Phillips screwdriver, size 2					
1	Phillips screwdriver "Pozidriv", size 1					
1	Phillips screwdriver "Pozidriv", size 2					
1	Screwdriver, size 00					
1	Pair of tweezers,					
1	Pair of flatnose pliers,					
1	ESE workplace kit. Order No. 20,020,001,44					

Recommendation: The bench surface should be padded in order to prevent damaging the mixing

console or marring of the housing surfaces.

4.1.2 Reassembly

The unit is reassembled analogously by performing the disassembly instructions in the reverse order and the specific reassembly information.

EDITION: 04/07/96 E4/1

4.2 Housing

4.2.1 Separating the input/output modules from the mixing console

- Unfasten the four fixing screws [1], Fig. 1.
- Lightly lift the input/output module on the connector side and separate the three connecting cables (four with optional VCA control).
- Pull out the module toward the back.

4.2.2 Bottom cover

 Unfasten the 3 screws [2], Fig. 2, on the bottom of the housing and remove the cover.

4.2.3 Side panels

■ Unfasten 2 screws [3] each, Fig. 3.

4.2.4 Rear housing panel (connector panel)

- Remove the upper trim strip [4], Fig. 3 by unfastening 3 screws [5].
- Separate the input/output module from the mixing console (Section 4.2.1).
- Remove the bottom panel (Section 4.2.2).
- Remove the side panels (Section 4.2.3).
- Remove the power supply (Section 4.3.2).
- Separate the following connectors:
 - 6 connections: input board --> interconnection board
 - 1 connection: master board --> interconnection board
 - 1 connection: monitor board --> interconnection board
 - 1 connection: display board --> interconnection board
- Unfasten 6 screws [6], Fig. 3, on the rear panel.
- The rear housing panel can be carefully removed together with the interconnection board.

E 4/2

EDITION: 28 September 1989

Fig. 1

Fig. 2

EDITION: 28 September 1989 **E 4/3**

4.3 Electronic assemblies

4.3.1 Input/output board 1.775.460

- Separate the input/output module from the mixing console (Section 4.2.1).
- Unfasten 6 screws [7], Fig. 1.
- with a screwdriver size 00 unfasten the housings of the XLR connectors and sockets. (Insert the screwdriver into the 4th hole and release the catch by turning the screwdriver lightly counterclockwise).
- Lightly loosen the two screws [8], Fig. 4 on each XLR flange.
- Remove the screw [9], Fig. 4.
- Carefully pull the input/output board toward the back and out of the housing.

4.3.2 Power supply 1.775.490

- Separate the input/output module from the mixing console (Section 4.2.1).
- Remove the bottom cover (Section 4.2.2).
- Separate the following connections:
 - 1 connection: power supply --> display module
 - 1 connection: monitor board --> interconnection board
 - 1 connection: power supply --> power transformer
- Unfasten 3 screws [10], Fig. 5
- Carefully pull the power supply out of the interconnection board.

4.3.3 Input board 1.775.420

- Remove the control knobs of the module to be removed. The AUX knob cannot be simply lifted off like the other knobs, it must first be unfastened with a screwdriver after the yellow cover has been removed.
- Separate the input/output module from the mixing console (Section 4.2.1).
- Remove the bottom cover (Section 4.2.2).
- Separate the following connections:
 - 1 connection: input board --> interconnection board
 - 1 or 2 connections: input board --> input or master board
- Unfasten 3 screws [11], Fig. 5.

E 4/4 EDITION: 28 September 1989

Fig. 3

Fig. 4

EDITION: 28 September 1989 **E 4/5**

4.3.4 Master board 1.775.430

- Remove the control knobs of the master module (they can be simply pulled off).
- Separate the input/output module from the mixing console (Section 4.2.1).
- Remove the bottom cover (Section 4.2.2).
- Separate the following connections:
 - 1 Connection: master board --> interconnection board
 - 1 Connection: master board --> Input board
 - 1 Connection: master board --> monitor board
 - 1 Connection: master board --> control room monitor board
- Unfasten 2 screws [12], Fig. 5.

4.3.5 Microphone board 1.775.440

- Separate the input/output module from the mixing console (Section 4.2.1).
- Remove the bottom cover (Section 4.2.2).
- Unfasten 1 screw [13], Fig. 5.
- Carefully pull the microphone board out of the monitor module.

4.3.6 Control room monitor board 1.775.470

- Pull off the speaker knob [t].
- Separate the input/output module from the mixing console (Section 4.2.1).
- Remove the bottom cover (Section 4.2.2).
- Separate the following connection:
 - 1 Connection: control room monitor board --> master board (Additional connector if optional VCA control is installed).
- Unfasten 2 screws [14], Fig. 5.

4.3.7 Monitor board 1.775.450 and speaker

- Remove the control knobs of the monitor module. They can be simply pulled off
- Separate the input/output module from the mixing console (Section 4.2.1).
- Remove the bottom cover (Section 4.2.2).
- Remove the power supply (Section 4.3.2).
- Remove the microphone board (Section 4.3.5).
- Separate the following connections:
 - 1 Connection: monitor board --> master board
 - 1 Connection: monitor board -> interconnection board
 - 1 Connection: monitor board -> power transformer
- Unfasten 2 screws [15], Fig. 5, and [15], Fig. 6.
- Unfasten the 3 screws [16], Fig. 16, and remove the clamping sleeves of the bolts.
- Remove the monitor board together with the speaker.

E 4/6

Fig. 5

Fig. 6

EDITION: 28 September 1989

4.3.8	Display Module 1.77	5.310				
	_ _ _	Separate the input/output module from the mixing console (4.2.1). Remove the bottom panel (4.2.2). Remove the POWER SUPPLY (4.3.2). Remove the master module (4.3.4). Remove the mains transformer (Section 4.3.9). Unfasten 2 screws [17], (fig. 6). The screening plate and the display module can now be removed.				
4.3.9	Mains Transformer					
	_ _ _ _	Separate the input/output module from the mixing console (4.2.1). Remove the bottom panel (4.2.2). Remove the POWER SUPPLY (4.3.2). Remove the right-hand side panel (4.3.2). Open the cover to the line voltage selector. Separate the following connections: 2 Connections: mains transformer → power inlet 2 Connections: mains transformer → MONITOR BOARD Unfasten 4 screws [18], (fig. 3); two of the screws are located below the side panel.				
4.3.10	INTERCONNECTION	BOARD 1.775.320				
Reins		Separate the input/output module from the mixing console (4.2.1). Remove the bottom panel (4.2.2). Remove the rear housing panel (connector panel) (4.2.4). With a screwdriver size 00 unfasten the housings of the XLR connectors and sockets (insert the screwdriver into the center hole and release the catch by turning the screwdriver lightly counterclockwise. Unfasten 7 screws [19], (fig. 3), and remove the bottom cover. Make sure that the top cover is not twisted when you reinstall it.				
4.3.11	Primary Fuse					
		Open the cover of the line voltage selector. The primary fuse is now accessible.				
4.3.12	Secondary Fuses					
<u></u>		Separate the input/output unit from the mixing console (Section 4.2.1). Remove the bottom cover (Section 4.2.2). Remove the POWER SUPPLY (Section 4.3.2). The secondary fuses are now accessible. (refer to component placement diagrams 1.775.210 / 220)				

E4/8 EDITION: 04/07/96

5. Alignment instructions

5.1	Genera	al information	. 1
	5.1.1	Demagnetizing the microphone input transformers	2
	5.1.2	Required measuring instruments	
	5.1.3	Preparatory steps	
		, , ,	
5.2	Power	supply	3
	5.2.1		
	5.2.2		
	5.2.3	-15 V supply	
5.3	Input n	nodule	4
	5.3.1	Input level	4
	5.3.2	Input distortion	
	5.3.3	Input and master fader	
5.4	Master	board	5
	5.4.1	Master distortion	
5.5	Display	y module	6
0.0		Peak program meter	
	0.0.1	Tour program motor	
5.6	Measu	ring the audio data	
	5.6.1	Harmonic distortion	6
	5.6.2	Output level and channel balance	
	5.6.3	Frequency response	7
	5.6.4	Channel separation	
	5.6.5	Signal-to-noise ratio	

EDITION: 22. Januar 1991 **E 5**

5 Alignment instructions

5.1 General information

Level definitions

The levels are specified in dBu:

$$0 \text{ dBu} \triangleq 0.775 \text{ V}_{\text{eff.}}$$

- The level specifications in dBu are based on a fixed voltage value as the reference quantity:
- The reference quantity 0.775 V of the relative voltage level in dBu has been adopted from the value definition of the absolute voltage level in dBu, however, without being tied to the definition (600 Ω/1 mW).

Nominal level in dBu:

Nominal level = studio level at maximum recording volume

Typical nominal levels are: $\begin{array}{rcl} +6 & \text{dBu} & = & 1.55 & V_{\text{eff.}} \\ +10 & \text{dBu} & = & 2.45 & V_{\text{eff.}} \\ +14 & \text{dBu} & = & 3.88 & V_{\text{eff.}} \end{array}$

Caution

Electric shock hazard when the mixer is open! Certain components are energized with line voltage.

Modules supplied by STUDER REVOX can be installed without prior alignment. Recalibration of the mixing console is necessary only after alterations to the individual modules have been made. This mixing console generation requires no scheduled maintenance. The only maintenance required is the occasional demagnetization of the input transformers as described below.

EDITION: 22. Januar 1991 E 5/1

5.1.1 Demagnetizing the microphone input transformers

- Prohibited connection of unbalanced input sources or unintentional short-circuit to chassis of the a/b audio conductors of the microphone inputs with connected phantom supply drive the input transformers into saturation and cause permanent magnetization (remanence). This manifests itself in the form of significantly higher harmonic distortion and so-called microphonic noise: light mechanical action on the mixing console, e.g. tapping it, causes an audible modulation via the outputs even when the microphone inputs are not active.
- Remanence can also accumulate over extended operating periods.
- All microphone inputs should, therefore, be demagnetized periodically and prior to calibration:

Procedure:

- Switch off the mixing console. (To protect the connected speakers).
- Feed a frequency of <32 Hz from an AF generator equipped via an isolating capacitor to the microphone input.

- Increase the supply level gradually from 0 V to 3 V.
- Slowly decrease the supply level to 0 V.

5.1.2 Required measuring instruments

- Digital voltmeter
- Audio voltmeter, Rz ≥ 10 kΩ
- Audio generator, Rs ≤ 200 Ω
- Distortion meter

E 5/2

5.1.3 Preparatory steps

- Unplug the power cord.
- Separate the input/output module from the mixing console (Section 4.2.1).
- Remove the bottom cover (Section 4.2.2).
- Set all faders to the -∞ position, the tone controls (bass and treble) to the center position, and the input selectors to the STEREO position.
- Position the mixing console upright on one of its side panels.
- Reconnect the mixing console to the AC outlet.

5.2 Power supply

1.775.490

5.2.1 Phantom supply

- Remove the power supply 1.775.490 (Section 4.3.2).
- Do not separate the connection power supply → power transformer.
- Connect the digital voltmeter to the pin 1 (0 V) of connector P2 and pin 5 (+48 V) of P2.
- Switch on the mixing console.
- With the trimmer potentiometer RA3 adjust the voltage to +48 V.
- Switch off the mixing console and reinstall the power supply.

5.2.2 +15 V supply

- Connect the digital voltmeter on the master module 1.775.430 to J1 pin 2 (0V) and J1 pin 1.
- Switch on the mixing console.
- Align the voltage on the power supply 1.775.490 with the aid of the trimmer potentiometer RA2 to +340 mV ±1 mV.

5.2.3 -15 V supply

- Connect the digital voltmeter on the master module 1.775.430 to J1 pin 2 (0V) and J1 pin 9.
- Switch on the mixing console.
- Align the voltage on the power supply 1.775.490 with the aid of the trimmer potentiometer RA1 to -65 mV ± 0.5 mV.

EDITION: 22. Januar 1991

5.3 Input module 1.775.420

5.3.1 Input level

- Turn the input selector [a] to the STEREO position.
- Turn the input level control [b] to the 0 dB position.

Stereo input left

- Feed 1 kHz/0 dBu (775 mV_{eff.}) from the audio generator to the unbalanced STEREO L [ad] input left.
- Connect the audio voltmeter to the PRE FADER [af] output (range 0 dB/1 V).
- With the trimmer potentiometer RA11 align the PRE FADER [af] output to -6dBu (388 mV_{eff}).

Stereo input right

- Feed 1 kHz/0 dBu (775 mV_{eff.}) from the audio generator to the unbalanced STEREO R [ad] input right.
- With the trimmer potentiometer **RA12** align the PRE FADER [af] output to -6 dBu (388 mV_{eff}).

Mono input

- Turn the input selector [a] to the MONO position.
- Feed 1 kHz/+6 dBu (1.55 V_{eff.}) from the audio generator to the unbalanced line input MONO [ac].
- With the trimmer potentiometer RA13 align the PRE FADER [af] output to 0 dBu (775 mV_{eff}).

5.3.2 Input distortion

- Turn the input selector [a] to the STEREO position.
- Turn the input level control [b] to 0 dB.

Left channel

- Feed 1 kHz/0 dBu (775 mV_{eff}) from the audio generator to the STEREO L [ad] input left.
- Connect the voltmeter to the AFTER FADER [ae] output (range 0 dB/1 V).
- With the linear fader [h] align to -6 dBu (388 mV_{eff}).
- Connect the distortion meter to the AFTER FADER [ae] output.
- With the trimmer potentiometer RA4 align for minimum distortion.

Right channel

- Feed 1 kHz/0 dBu (775 mV $_{\rm eff.}$) from the audio generator to the STEREO R [ad] input right.
- Connect the voltmeter to the AFTER FADER [ae] output (range 0 dB/1 V).
- With the linear fader [h] align to -6 dBu (388 mV_{eff}).
- Connect the distortion meter to the AFTER FADER [ae] output.
- With the trimmer potentiometer RA3 align for minimum distortion.

E 5/4

5.3.3 Input fader

- Feed 1 kHz/0 dBu (775 mV_{eff}) from the audio generator to the STEREO L [ad] input left.
- Connect the voltmeter to the AFTER FADER [ae] output (range 0 dB/1 V).
- Turn the input selector [a] to the STEREO position.
- Set the linear fader [h] to the 0 dB position.
- With the input level control [b] align to 0 dBu (775 mV_{eff}).
- Set the linear fader to the -60 dB position and with the trimmer potentiometer
 RA14 align the AFTER FADER [ae] output to -60 dBu.

5.4 Master module

1.775.430

5.4.1 Master fader

- Feed 1kHz/0dBu (775 mV_{eff.}) to the unbalanced input STEREO L [ad].
- Set the linear fader [h] to the 0 dB position.
- Connect the voltmeter to the UNBAL [17] master output (range 0 dB/1 V).
- Set the master fader [m] to the 0 dB position.
- With the input level control [b] align to 0 dBu (775 mV_{eff}).
- Set the linear fader to the -60 dB position and with trimmer potentiometer RA6 align to -60 dB.

5.4.2 Master distortion

The six input modules must be aligned first. The linear faders of the inputs [2] ... [6] must be set to the -∞ position.

Left channel

- Feed 1 kHz/0 dBu (775 mV_{eff.}) from the audio generator to the STEREO L [ad] input left.
- Connect the voltmeter to the UNBAL L [17] master output left (range 0dB/1V).
- Turn the input selector [a] to the STEREO position.
- Set the input fader and the master fader [h and m] to the 0 dB position.
- With the input level control [b] align to 0 dBu (775 mV_{eff}).
- Connect the distortion meter to the UNBAL L [17] master output left.
- With the trimmer potentiometer RA1 align for minimum distortion.

EDITION: 22. Januar 1991

Right channel

- Feed 1 kHz/0 dBu (775 mV_{eff}) from the audio generator to the STEREO R [ad] input right.
- Connect the voltmeter to the UNBAL R [17] master output right (0dB/1V).
- Turn the input selector [a] to the STEREO position.
- Set the input fader and the master fader [h and m] to the 0 dB position.
- With the input level control [b] align to 0 dBu (775 mV_{eff}).
- Connect the distortion meter to the UNBAL R [17] master output right.
- With the trimmer potentiometer **RA2** align for minimum distortion.

5.5 Display module

1.775.310

5.5.1 Peak program meter

- With the audio generator feed 1 kHz/0 dBu (775 mV_{eff}) to the STEREO L [ad] input left.
- Connect the voltmeter to the MASTER OUTPUT BALANCED [16] left (range 10 dB/3 V).
- Turn the input selector [a] to the STEREO position.
- Set the input fader and the master fader [h and m] to the 0 dB position.
- Set the slide switch for the master output level [14] to the +6 dBu position.
- With the input fader [b] align to +6 dBu (1.55 V_{eff}).
- Select the MASTER key [s] on the monitor selector.
- With the trimmer potentiometer **RA3** (accessible from the front), adjust the left-hand bargraph in such a way that the 0 dB LED lights up.
- Align the right-hand bargraph in the same way with RA2.
- The brightness of the indication can be adjusted with **RA1**. The contrast to the ambient light is additionally controlled by a light-sensitive resistor.

5.6 Measuring the audio Data

- Harmonic distortion
- Output level
- Frequency response
- Channel separation
- Signal-to-noise ratio

E 5/6

EDITION: 22. Januar 1991

5.6.1 Harmonic distortion

- With the audio generator feed 1 kHz/0 dBu (775 mV_{eff}) to the unbalanced STEREO L [ad] input left of the first input module.
- Connect the voltmeter to the UNBAL L [17] master output left (range 0 dB/1 V).
- Set the input selector [a] to the STEREO position.
- Set the input fader and the master fader [h and m] to the 0 dB position.
- With the input level control [b] align to 0 dBu (775 mV).
- Connect the distortion meter to the UNBAL L [17] master output left.
- The measured distortion should not exceed 0.03%.
- Measure the harmonic distortion of the right channel accordingly.

5.6.2 Output level and channel balance

- With the audio generator feed 1 kHz/0 dBu (775 mV_{eff.}) to the unbalanced STEREO L [ad] input left of the first input module.
- Connect the voltmeter to the MASTER OUTPUT BALANCED [16] left (range 10 dB/3 V).
- Set the input selector [a] to the STEREO position.
- Set the input fader and the master fader [h and m] to the 0 dB position.
- Set the slide switch [14] for the master output level to the 6 dBu position.
- With the input level control [b] align to +6 dBu (1.55 V_{eff}).
- The corresponding values must be measured with the slide switch [14] in the +10 dBu and +14 dBu positions.
- Repeat the measurements with the right-hand channel. The **channel balance** should be **better than 1.5 dB**.

5.6.3 Frequency response

- With the audio generator feed 1 kHz/0 dBu (775 mV_{eff}) to the unbalanced STEREO L [ad] input left of the first input module.
- Connect the voltmeter to the MASTER OUTPUT BALANCED [17] left (range 0 dB/1 V).
- Set the input selector [a] to the STEREO position.
- Set the input fader and the master fader [h and m] to the 0 dB position.
- Set the slide switch [14] for the master output level to the 6 dBu position.
- With the input level control [b] align to 6 dBu (1.55 V_{eff}).
- Vary the audio generator frequency from 20 Hz to 20 kHz. The output level should not fluctuate by more than ±1 dB.
- Repeat the measurement with the right-hand channel.

EDITION: 22. Januar 1991 **E** 5/7

5.6.4 Channel separation

- With the audio generator feed 1 kHz/0 dBu (775 mV_{eff}) to the unbalanced STEREO L [ad] input left of the first input module.
- Terminate the unbalanced STEREO R [ad] input right with a 1 kΩ resistor.
- Connect the voltmeter to the MASTER OUTPUT BALANCED [16] left (range 10 dB/3 V).
- Set the input selector [a] to the STEREO position.
- Set the input fader and the master fader [h and m] to the 0 dB position.
- Set the slide switch [14] for the master output level to the 6 dBu position.
- With the input level control [b] align to +6 dBu (1.55 V_{eff}).
- Connect the voltmeter to the MASTER OUTPUT BALANCED [16] right.
- The measured cross talk should be > 50 dB.
- Repeat the measurement with swapped channels.
- If the input fader [h] is set to the -∞ position, the switch-off attenuation is > 85 dB. If in place of the input fader the master fader [m] is set to the -∞ position, the switch-off attenuation is >90 dB.

5.6.5 Signal-to-noise ratio

- With the audio generator feed 1 kHz/0 dBu (775 mV_{eff}) to the unbalanced STEREO L [ad] input left of the first input module.
- Connect the voltmeter to the MASTER OUTPUT BALANCED [16] left (range 10 dB/3 V).
- Set the input selector [a] to the STEREO position.
- Set the input fader and the master fader to the 0 dB position.
- Set the slide switch [14] for the master output level to the 6 dBu position.
- With the input level control [b] align to +6 dBu (1.55 V_{eff}).
- Connect the voltmeter to the MASTER OUTPUT BALANCED [16] right.
- Disconnect the audio generator from the input and terminate the input with a
 1 kΩ resistor.
- The measured signal-to-noise ratio should be > 100 dB.
- Repeat the measurement with the right-hand channel.

E 5/8

Schemata / Circuit Diagrams

A779 / MR8 (common diagrams)

	Abbreviations 2
	Block Diagram Mixer
	Mains Transformer 1.775.200.81 4
	Distributor Primary 1.775.210.00 4
	Distributor Secondary 1.775.221.00 5
	Power Supply Unit 1.775.490.00 (A779) 6
	Power Supply Unit 1.775.491.00 (MR8) 6
	Input Unit
	Interface Unit
	Master Unit
	Monitor Unit
A779 (specific diagrams)	
	Input Output Unit
	C.R. Monitor Unit 1.775.470.00
	Display Unit
	Connection Unit 1.775.410.00 39
MR8 (specific diagrams)	
	Input Output Unit 1.775.070.00
	C.R. Monitor Unit 1.775.470.00 51
	Display Unit 1.775.311.00 52
	Connection Unit 1.775.060.00 57
	D-Type Connector 1.775.035.15 60

EDITION: 21.02.95

ABBREVIATIONS

COMPONENTS						
В	bulb	LC	LC Display			
ВА	battery, accumulator	LS	loudspeaker			
BR	optocoupler B->LDR	М	motor			
С	capacitor	ME	meter			
D	diode, DIAC	MIC	microphone			
DL	LED light-emit. diode	MP	mechanical part			
DLQ	optocoupler LED->QP	Ρ	plug (male)			
DLR	optocoupler LED->DLR	PU	pick up			
DLZ	LED array, 7s.display	Q	transistor			
DP	photodiode	QP	phototransistor			
DZ	rectifier	R	resistor			
EF	headphones	RP	photosensitive resist.			
F	fuse	RT	temp. sensit. resist.			
FL	filter	RZ	resistor array			
Н	head (sound-/erase-)	S	switch			
HC	hybrid circuit	T	transformer			
HE	hall element	TL	delay line			
IC	integrated circuit	TP	test point			
J	jack (female)	W	wire, stranded wire			
JS	jumper	X	socket, holder			
K	relay, contactor	XB	lamp socket			
L	coil, inductance	XF	fuse holder			
LC	LC Display	XIC	IC socket			
LS	loudspeaker	Υ	quartz, piezo element			
L	coil, inductance	Z	network, array			

SPECIFICATIONS OF ELEMENTS

CC	Carbon film	PCF	Carbon film
Cer	Ceramic	Petp	Polyester
Cerm	Cermet	Pme	Metallised polyester
EI	Electrolytic	PP	Polypropylen
Mf	Metal film	Si	Silicon
MP	Metal paper	Tri	Trimmer

MANUFACTURER OF COMPONENTS

ADI	Analog Devices Inc.	RCA	Radio Corporation
AMP	Ampex		RIVA
Com	Componex	SDS	
Dam	Dam Electronic	Sie	Siemens
Del	Delevan	SIG	Signetics
Ex	Exar		Stetner
GI	General Instruments		Stocko
На	Harris	St	Studer
Hi	Hirschmann	Sx	Siliconix
ITT	Intermetall, Valvo	Ti	Texas Instruments
Mot	Motorola	TDK	TDK
NEC	Nippon Electr. Corp.		Toko
NS	Nat. Semiconductors	To	Toshiba
Ph	Philips	Vi	Videlec
Ra	Raytheon		

POWERS OF TEN

- Milli-	Micro-	Nano-	Pico-	Femto-	Tera-	Giga-	Mega-	Kilo-
m 10 ⁻³	и 10 ⁻⁶	10 ⁻⁹	10 ⁻ 12	Femto- f 10 ⁻¹⁵	10 ¹²	G 10 ⁹	10 ⁶	k 10 ³

CODE LETTERS AND COLORS

The tolerance category is some-	D	=	0,5%	J	=	5%
times specified by a letter after	F	=	1%	Κ	=	10%
the rated capacitance.	G	=	2%	М	=	20%

MOLDED RF COILS

A wide silver-colored ring and 4 thin, differently colored rings identify molded RF coils. The wide silver ring indicates the start of the counting direction. The second, third, and fourth ring indicate the inductance in micro Henry (μ H), where two of the three rings represent the numeric value, the third one either a multiplier or the decimal point. In the latter case it has a golden color. The fifth ring identifies the tolerance in percent (\pm).

NOTE:

Some of the order numbers contained in the following lists are used for production purposes only. The reference numbers may deviate for service purposes.

Electrical components such as resistors, capacitors, transistors, IC's etc. having no special unit-specific number and not being identified respectively should be purchased locally.

BLOCK DIAGRAM MIXER A779 / MR 8 ★ A779 (6CH) / MR 8 (8CH)

3

EDITION: 20.2.1995

MAINS TRANSFORMER 1.775.200.81

- DISTRIBUTOR PRIMARY 1,775,210.00
- DISTRIBUTOR SECONDARY 1.775.221.00

EDITION: 20.2.1995

DISTRIBUTOR PRIMARY 1.775.210.00

DISTRIBUTOR SECONDARY 1.775.221.00

EDITION: 20.2.1995

		1	Bun					3
		1.5	Ande		-		-	② ①
		T	o.L	2.12.91	A.Ho			0
				Datum	Gez.	Gepr	Ges	Index
	A	K	(or	ole für:				<u>'</u>
STUDER REGENSDORF ZÜRICH	DISTRIBUTOR	a de la composition della comp	Nummer:	1.775	.22	:1 -	00	

Ad	POS	REF.No	DESCRIPTION.	MANUFACTURER
	F1 F2 F3 F4	51.01.0118 51.01.0118 51.01.0117 51.01.0112	T1.25A Fu T1A Fu	ise ise ise
	J1	54.01.0289	8Pole CI	s
	MP1	1.775.221.11	DI	STRIBUTOR PCB SEC.
	W1	1.775.220.93	Wi	re List
	X1 X2 X3 X4 X5 X6 X7	53.03.0142 53.03.0142 53.03.0142 53.03.0142 53.03.0142 53.03.0142 53.03.0142	Fu Fu Fu Fu Fu Fu	ise Holder ise Holder ise Holder ise Holder ise Holder ise Holder ise Holder ise Holder
		1.775.221.00	DISTRIBUTOR SEC	. KG 92/01/2200

5

POWER SUPPLY UNIT 1.775.490.00 (A779) / 1.775.491.00 (MR 8)

- MAINS TRANSFORMER 1.775.200.81
- DISTRIBUTOR PRIMARY 1.775.210.00
- DISTRIBUTOR SECONDARY 1.775.221.00

6

POWER SUPPLY UNIT 1.775.490.00 (A779) / 1.775.491.00 (MR 8)

- MAINS TRANSFORMER 1.775.200.81
- DISTRIBUTOR PRIMARY 1.775.210.00
- DISTRIBUTOR SECONDARY 1.775.221.00

A

POWER SUPPLY 1.775.490.00 (A779)

Ad	P0S	REF.No	DESCRIP	TION			ANUFACTURER
		NCI . NO		1144			HIV. DETURER
	C1 C2 C3 C4 C5 C6 C7 C8 C9	59.22.8100 59.22.8100 59.06.0102 59.22.6100 59.22.5101 59.22.5101 59.06.0104 59.06.0104 59.25.7471	10 uF 10 uF 1 nF 10 uF 10 uF 100 uF 100 nF 100 nF 470uF	-20%, 63V, 10%, 25V, 10%, 25V, 25V, -20%, 25V, -20%, 25V, 10%, 100V, 100V, 100V, 100V, 100%, 100W, 100%, 100W, 100%, 100W, 100%, 100W, 100%, 100	EL EL PETP EL EL EL PETP PETP PETP EL		
	C11 C12 C13 C14 C15 C16 C17	59.25.5222 59.25.5222 59.06.0104 59.06.0104 59.06.0104 59.25.3222	2200uF 2200uF 100 nF 100 nF 100 nF 100 nF 2200uF	-20%, 40V, 10%, 25V, 25V, 25V, 25V, 25V, 25V, 25V, 25V	EL EL PETP PETP PETP PETP EL		
	01 D2 04 05 D6	50.04.0105 50.04.0125 50.04.0125 50.04.0125 50.04.0105 50.04.0105	1N 4004 1N 4448 1N 4448 1N 4448 1N 4004 1N 4004				
	0Z2 0Z3 0Z4	70.01.0216 70.01.0226 70.01.0216 50.04.1108	5.6V Z	140V 0.8A 280V 2.0A 140V 0.8A			
	IC1 IC2	50.10.0105 50.10.0104	LM337 LM317				NS NS
	J1	54.01.0263		CIS			
	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10	1.775.490.11 54.01.0265 1.775.300.01 21.38.0353 21.38.0355 21.38.0355 21.38.0355 21.38.0355 37.01.0101 37.01.0101	8-Pole	POWER SUPPLY CIS Heat Sink Screw Screw Screw Screw Washer Washer	Y PCB		
	MP11 MP12 MP13 MP14 MP15 MP16 MP17 MP18 MP19 MP20	37.01.0101 37.01.0101 50.20.0404 50.20.0305 50.20.0305 1.010.098.27 1.010.098.27 1.775.490.01 43.01.0108		Washer Washer Insulating b Insulator Insulator Washer Washer Nr. Label ESE Label	bushing bushing		
	P1 P2	54.01.0425 54.01.0425	5-Pole 5-Pole	CIS			
	Q2 Q3 Q4	50.03.0491 50.03.0491 50.03.0512 50.03.0492	BC 546 BC 546 BO 899A BC 556	NPN NPN NPN PNP			
	R1 R2 R3 R4 R5 R6 R7 R8 R9 R10	57.11.3223 57.11.3101 57.11.3223 57.11.3911 57.11.3752 57.11.3272 57.11.3269 57.11.3241 57.11.3241	22 KOhm 100 Ohm 22 KOhm 910 Ohm 7.5 KOhm 2.7 KOhm 2.2 KOhm 5.6 Ohm 240 Ohm 2.4 KOhm	1%, 0.25W, 1%, 0.25W, 1%, 0.25W, 1%, 0.25W, 1%, 0.25W, 1%, 0.25W, 1%, 0.25W, 1%, 0.25W, 1%, 0.25W, 1%, 0.25W,	MF MF MF MF MF MF MF MF MF		
	R11 R12	57.11.3241 57.11.3242	240 Ohm 2.4 KOhm	1%, 0.25W, 1%, 0.25W,	MF MF		
	RA1 RA2 RA3	58.01.9501 58.01.9501 58.01.9201	500 Ohm 500 Ohm 200 Ohm	-10%, 0.50W, -10%, 0.50W,			
	W1	1.775.300.93		Wire List			
		EL=Electroly	tic, C=Cera	mic, PETP≃Polye	ster		
		MF=Metal Fil	m				
ANU	JFACTURER	: NS=National	Semi conducto	or			
		1.775.490.00	POWER SUPP	LY	ÜL	89/04/2800	

я

EDITION: 20.2.1995

POWER SUPPLY 1.775.491.00 (MR 8)

9

10 EDITION: 20.2.1995

INPUT UNIT 1.775.420.81

INPUT UNIT 1.775.420.81

10%, 25%, -20%, 10%, -20%, 10%, -20%, 10%, 10%, 25%, 10%, 25%, -20%, 10%, -20%, 10%, -20%, 10%,

-20%, 10V, EL 10%, 25V, C 10%, 25V, C 10%, 25V, PETP -20%, 10V, EL 10%, 25V, C 10%, 25V, PETP -20%, 10V, EL

59.22.3101 59.34.4151 59.34.4151 59.06.0105 59.22.3101 59.34.4151 59.06.0105 59.22.3101 59.22.3101 100 uF 150 pF 150 pF 1 uF 100 uF 150 pF 1 uF 100 uF

12

INPUT UNIT 1.775.420.81

.POS	REF.No	DESCRIP.	TION	MANUFACTURER	AdPOS	REF.No	DESCRIPT	IONMANU
42 44 45 46 47 48 49	59.22.3101 59.22.3101 59.06.0222 59.34.4151 59.34.4161 59.06.0222 59.34.4101 59.22.3101	100 uF 2.2 nF 150 pF 150 pF 100 pF 2.2 nF 100 pF 100 uF	-20%, 10V, EL -20%, 10V, EL 10%, 25V, PETP 10%, 25V, C 10%, 25V, C 10%, 25V, PETP 10%, 25V, C -20%, 10V, EL		R41 R42 R43 R44 R45 R46 R47 R48 R49	57.11.3162 57.11.3332 57.11.5106 57.11.3684 57.11.3103 57.11.3103 57.11.3474 57.11.3150 57.11.3222	3.3K Ohm	1%, 0.25W, MF 1%, 0.25W, MF 5%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF
51 52 53 54	59.22.3101 59.06.5224 59.22.3101 59.22.3101	100 uF 220 nF 100 uF 100 uF	-20%, 10V, EL 10%, 25V, PETP -20%, 10V, EL -20%, 10V, EL		R51 R52 R53 R54	57.11.3150 57.11.3472 57.11.3472 57.11.3104	15 Ohm 4.7 KOhm 4.7 KOhm 100 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF
1 2 5	50.04.0125 50.04.0125 50.04.0125 50.04.0523	1N 4448 1N 4448 1N 4448 BAT 81	any any any Schottky-Diode		R55 R56 R57 R58	57.11.3104 57.11.3104 57.11.3103 57.11.3103	100 KOhm 100 KOhm 10 KOhm 10 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF
5	50.09.0117 50.09.0117 50.09.0107 50.09.0107 50.09.0107 50.09.0107 50.09.0107 50.09.0121 50.11.0140	MC33078P MC33078P RC4559 RC4559 RC4559 RC4559 RC4559 RC4559 TL072B dbx2150A	VCA	Mot Mot Ra Ra Ra Ra Ra TI dbx	R59 R60 R61 R62 R63 R64 R66 R67 R68	57.11.3123 57.11.3272 57.11.3512 57.11.3123 57.11.3103 57.11.3103 57.11.3510 57.11.3510 57.11.3392 57.11.3474 57.11.3104	12 KOhm 2.7 KOhm 2.7 KOhm 12 KOhm 10 KOhm 10 KOhm 10 KOhm 10 KOhm 51 Ohm 3.9 KOhm 470 KOhm	1%, 0.25W, MF
11	50.11.0140	dbx2150A	VCA	dbx	R70	57.11.3103	10 KOhm	1%, 0.25W, MF
22 23 25 26 26 27	54.01.0235 1.775.420.11 54.01.0232 54.01.0282 21.38.1352 21.38.1352 21.38.1352 21.38.352 21.38.350 54.33.6010 54.33.6010	9-Pole 9-Pole 14-Pole 2.8mm 2.8mm	INPUT PCB CIS CIS Screw Screw U-Profile AMP AMP		R71 R72 R74 R75 R76 R77 R78 R79 R80	57.11.3510 57.11.3104 57.11.3192 57.11.5106 57.11.5106 57.11.5106 57.11.3103 57.11.3223 57.11.3223	51 Ohm 100 KOhm 3.9 KOhm 10 MOhm 10 MOhm 10 MOhm 10 KOhm 22 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 5%, 0.25W, MF 5%, 0.25W, MF 5%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF
10	43.01.0108		Nr. Label ESE Label		R81 R82 R83	57.11.3103 57.11.3102 57.11.3272	10 KOhm 1 KOhm 2.7 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF
1 2 3 4 5 6 7 8	50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350	J 112 J 112 J 112 BC 237 J 112 J 112 J 112 J 112 J 112 J 112 J 112 J 112	FET FET FET NPN FET FET FET FET FET FET FET	Mot Mot Mot Hot Mot Mot Mot Mot Mot	R84 R85 R86 R87 R89 R90 R91 R92	57.11.3103 57.11.3102 57.11.3272 57.11.3272 57.11.3622 57.11.3104 57.11.3102 57.11.3102 57.11.3153 57.11.3513 57.11.3513 57.11.3513 57.11.3513 57.11.3273	2.7 KOhm 6.8 KOhm 100 KOhm 100 KOhm 1 KOhm 1.6 KOhm 22 KOhm 51 KOhm 10 MOhm	1%, 0.25W, MF
11	50.03.0350 57.11.3104 57.11.3684	J 112 100 KOhm 680 KOhm	FET 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	Mot	R94 R96 R97 R98 R99	57.11.3104 57.11.3104 57.11.5106	270 Ohm 22 KOhm 100 KOhm 100 KOhm 10 MOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 5%, 0.25W, MF
3 4 5 6 7 8 9	57.11.3104 57.11.3104 57.11.3104 57.11.5106 57.11.3222 57.11.3561 57.11.3362 57.11.3472	100 KOhm 100 KOhm 100 KOhm 10 MOhm 2.2 KOhm 3.6 KOhm 4.7 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 5%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		RA9	57.11.5106 58.01.9503 58.01.9503 1.775.330.02 1.775.800.03 1.775.800.04 1.369.150.03 1.775.330.06 1.775.330.07	10 MOhm 50 KOhm 50 KOhm 3*47 KOhm 2*4.7KOhm 2* 22KOhm 1* 10KOhm 1* 10KOhm 1* 10KOhm	5%, 0.25W, MF 10%, 0.50W, C 10%, 0.50W, C pos.log lin. pos.log + Switch 1*2u lin. Fader
12 13 14 15 16	57.11.3684 57.11.5106 57.11.5106 57.11.3473 57.11.3473 57.11.3102	680 KOhm 10 MOhm 10 MOhm 47 KOhm 47 KOhm 1 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 5%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		RA11 RA12 RA13 RA14	58.01.9202 58.01.9202 58.01.9502 58.01.9501 1.775.330.01	2 KOhm 2 KOhm 5 KOhm 500 Ohm	10%, 0.50W, C 10%, 0.50M, C 10%, 0.50M, C 10%, 0.50W, C 1Step/4Pos.
18 19 20	57.11.3102 57.11.3561 57.11.3302	1 KOhm 560 Ohm 3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		S2	55.15.0109		1*2u
21 22 23 24 25	57.11.3332 57.11.3684 57.11.3302 57.11.3684 57.11.3561	3.3 KOhm 680 KOhm 3 KOhm 680 KOhm 560 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		X1 X2 X3	1.775.330.93 53.03.0218 53.03.0218 53.03.0218	4-pole 4-pole 1-pole	Wire List Socket Socket OFFERENCE OF THE SOCKET
26 27 28	57.11.3332 57.11.3561 57.11.3684	3.3 KOhm 560 Ohm 680 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF			MF=Metal File		, PETP=Polyester
29	57.11.3684 57.11.3684	680 KOhm 680 KOhm	1%, 0.25W, MF 1%, 0.25W, MF		MANUFACTURER:			ational Semiconductor,Mot=Motorola ,TI=Texas Instruments
31 32 33 34 35 36 37 38 39	57.11.3102 57.11.3102 57.11.3472 57.11.3472 57.11.3472 57.11.3222 57.11.3222 57.11.3222 57.11.3104	1 KOhm 1 KOhm 4.7 KOhm 4.7 KOhm 4.7 KOhm 2.2 KOhm 2.2 KOhm 2.2 KOhm 100 KOhm	1%, 0.25W, MF			1.775.420.81	•	KG 92/01/2200

EDITION: 20.2.1995 13

INTERFACE UNIT 1.775.485.00

A

INTERFACE UNIT 1.775.485.00

AdPOS	REF.No	DESCRIPTI	ONMANUFACTURER
C2 C3 C4 C5	59.06.0104 59.06.0104 59.22.5220 59.06.0224	100 nF 100 nF 22 uF 220 nF	-20%, 25Y, EL 10%, 10V, PETP 10%, 10V, PETP -20%, 25V, EL 10%, 25V, PETP
C6 D1	50.04.0125	100 nF 1N4448	10%, 10V, PETP
IC2 IC3		TL072B TL072B TL072B	
MP1 MP3 MP4	1.010.050.22 43.01.0108		Interface Unit PCB Nut M3*18 ESE-Label Board-Label
P2 P2		9Pin	AMP
R1 R2 R3 R4 R5 R6		12 KOhm 100 KOhm 12 KOhm 12 KOhm 12 KOhm 100 KOhm 10 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF
	1.775.485.00	INTERFACE-UN	IT KG92/01/22 00

15

MASTER UNIT 1.775.430.81

16

The section of the section of

MASTER UNIT 1.775.430.81

ldx. Pos.	Part No.	Qty.	Type/Val.	Description	_ld:	x. Pos.	Part No.	Qty.	Type/Val.	Description
0 IC 8	50.09.0121		TL072B	IC TL 072 BCP ,A	0	R 51	57.11.3133		13k	MF, 1%, 0207
0 IC 9	50.09.0107		RC4559	IC RC 4559 N, UPC 4559 ,A	0	R 52	57.11.3133		13k	MF, 1%, 0207
) IC 10	50.11.0140		THAT2181C	IC VCA THAT 2181C	0	R 53	57.11.5106		10M	MF, 5%, 0207
IC 11	50,11.0140		THAT2181C	IC VCA THAT 2181C	0	R 54	57.11.5106		10M	MF, 5%, 0207
					U	K 55	57.11.5106		10M	MF, 5%, 0207
J 1	54.01.0235		9-P	J LEISTE 9 POL CIS DURCHS			57.11.3104		100k	
J 2	54.14.2074		26p	1/20" Au, winkel, ohne Verrieg	0	R 56				MF, 1%, 0207
MP 1	1.775.430.11	mn		MASTER PCB	0	R 57	57.11.3104		100k	MF, 1%, 0207
		mp			0	R 59	57.11.3123		12k	MF, 1%, 0207
MP 2	54.01.0264	mp		P GEHAUSE 5 POL CIS	0	R 60	57.11.3474		470k	MF, 1%, 0207
MP 3	54.01.0233	mp		P GEHAUSE 7 POL CIS	0	R 61	57.11.3123		12k	MF, 1%, 0207
MP 4	54.01.0286	mp		P GEHAUSE 20 POL CIS	0	R 62	57.11.3474		470k	MF, 1%, 0207
MP 5	1.775,370.41	mp		U-PROFIL MASTER	0	R 64	57.11.5106		10M	MF, 5%, 0207
MP 6	21.38.1352	3 mp		LZ SCHR. KS, A2, M3 * 4						
MP 7	43.01.0108	mp	Label	ESE-WARNSCHILD	0	R 65	57.11.5106		10M	MF, 5%, 0207
			unbekannt		0	R 66	57.11.3392		3k9	MF, 1%, 0207
MP 8	unknown	mp	umbekanin	unbekanntes Bauteil	0	R 67	57.11.3104		100k	MF, 1%, 0207
Q 1	50.03.0350		J-112	J-112	0	R 68	57.11.3272		2k7	MF, 1%, 0207
Q 2	50.03.0350		J-112	J-112	0	R 69	57.11.3133		13k	MF, 1%, 0207
					0	R 70	57.11.3103		10k	MF, 1%, 0207
Q 3	50.03.0350		J-112	J-112	0					
Q 4	50.03.0350		J-112	J-112		R 71	57.11.3510		51R	MF, 1%, 0207
Q 5	50.03.0350		J-112	J-112	0	R 72	57.11.3104		100k	MF, 1%, 0207
Q 6	50.03.0350		J-112	J-112	0	R 73	57.11.3392		3k9	MF, 1%, 0207
Q 7	50.03.0350		J-112	J-112	0	R 74	57.11.3103		10k	MF, 1%, 0207
Q 8	50.03.0350		J-112	J-112	0	R 75	57.11.3510		51R	MF, 1%, 0207
Q 9	50.03.0350		J-112	J-112	0	R 76	57.11.3104		100k	MF, 1%, 0207
					0	R 77				
Q 10	50.03.0350		J-112	J-112			57.11.3133		13k	MF, 1%, 0207
Q 11	50.03.0436		BC237B	BC 237 B, 547 B, 550 B,	0	R 78	57.11.5106		10M	MF, 5%, 0207
Q 12	50.03.0350		J-112	J-112	0	R 79	57.11.5106		10M	MF, 5%, 0207
Q 13	50.03.0350		J-112	J-112	0	R 80	57.11.3272		2k 7	MF, 1%, 0207
Q 14	50.03.0350		J-112	J-112	0	R 81	57.11.3104		100k	MF, 1%, 0207
Q 14	50.03.0350		J-112	J-112	0	R 82	57.11.5106		10M	MF, 5%, 0207
R 1	57.11.3302		3k0	MF, 1%, 0207	0	R 83	57.11.5106		10M	MF, 5%, 0207
R 2	57.11.3150		15R	MF, 1%, 0207	0	R 84	57.11.3104		100k	MF, 1%, 0207
R 3	57.11.3302		3k0	MF, 1%, 0207	0	R 85	57.11.3224		220k	MF, 1%, 0207
R 4	57.11.3302		3k0	MF, 1%, 0207	0	R 86	57.11.3473		47k	MF, 1%, 0207
R5	57.11.3302		3k0	MF, 1%, 0207	0	R 87	57.11.3104		100k	MF, 1%, 0207
R6	57.11.3150		15R	MF, 1%, 0207	0	R 88	57.11.3273		27k	MF, 1%, 0207
					0					
R 7	57.11.3302		3k0	MF, 1%, 0207		R 89	57.11.5106		10M	MF, 5%, 0207
R 8	57.11.3302		3k0	MF, 1%, 0207	0	R 90	57.11.5106		10M	MF, 5%, 0207
R 9	57.11.3302		3k0	MF, 1%, 0207	0	R 91	57.11.3104		100k	MF, 1%, 0207
R 10	57.11.3302		3k0	MF, 1%, 0207	0	R 92	57.11.5106		10M	MF, 5%, 0207
R 11	57.11.3302		3k0	MF, 1%, 0207	0	R 93	57.11.5106		10 M	MF, 5%, 0207
R 12	57.11.3302		3k0	MF, 1%, 0207	0	R 94	57.11.3103		10k	MF, 1%, 0207
R 13	57.11.3474		470k	MF, 1%, 0207	0	R 95	57.11.3273		27k	MF. 1%, 0207
					0	R 96	57.11.3103		10k	MF, 1%, 0207
R 14	57.11.3302		3k0	MF, 1%, 0207	0					
R 15	57.11.3474		470k	MF, 1%, 0207		R 97	57.11.3474		470k	MF, 1%, 0207
R 16	57,11.3302		3k0	MF, 1%, 0207	0	R 98	57.11.3103		10k	MF, 1%, 0207
R 17	57.11,3150		15R	MF, 1%, 0207	0	R 100	57.11.3821		820R	MF, 1%, 0207
R 18	57.11.3302		3k0	MF, 1%, 0207	0	R 101	57.11.3821		820R	MF, 1%, 0207
R 19	57.11.3302		3k0	MF, 1%, 0207	0	R 102	57.11.3272		2k7	MF, 1%, 0207
					0	R 103	57.11.3272		2k7	MF, 1%, 0207
R 20	57.11.3302		3k0	MF, 1%, 0207	0	R 104			1k6	
R 21	57.11.3150		15R	MF, 1%, 0207			57.11.3162			MF, 1%, 0207
R 22	57.11.3302		3k0	MF, 1%, 0207	0	R 105	57.11.3513		51k	MF, 1%, 0207
R 23	57.11.3302		3k0	MF, 1%, 0207	0	R 106	57.11.5106		10M	MF, 5%, 0207
R 24	57.11.3474		470k	MF, 1%, 0207	0	R 107	57.11.3104		100k	MF, 1%, 0207
R 25	57.11.3302		3k0	MF, 1%, 0207	0	R 108	57.11.3101		100R	MF, 1%, 0207
R 26	57.11.3302		3k0	MF, 1%, 0207	0	R 109	57.11.3223		22k	MF, 1%, 0207
R 27	57.11.3302		3k0	MF, 1%, 0207	0	R 110	57.11.3820		82R	MF, 1%, 0207
					1	R 111	57.11.3332		3k3	MF, 1%, 0207
R 28	57.11.3302		3k0	MF, 1%, 0207	1	R 112	57.11.3151		150R	MF, 1%, 0207
R 29	57.11.3302		3k0	MF, 1%, 0207						
R 30	57.11.3302		3k0	MF, 1%, 0207	0	R 113	57.11.3223		22k	MF, 1%, 0207
R 31	57.11.3474		470k	MF, 1%, 0207	0	R 114	57.11.3151		150R	MF, 1%, 0207
R 32	57.11.3474		470k	MF, 1%, 0207	0	R 115	57.11.3302		3k0	MF, 1%, 0207
R 33	57.11.3302		3k0	MF, 1%, 0207	0	R 116	57.11.3133		13k	MF, 1%, 0207
R 34	57.11.3302		470k	MF, 1%, 0207	0	R 117	57.11.3223		22k	MF, 1%, 0207
					0	R 118	57.11.3104		100k	MF, 1%, 0207
R 35	57.11.3302		3k0	MF, 1%, 0207	0	R 119	57.11.3104		100k	MF, 1%, 0207
R 36	57.11.3133		13k	MF, 1%, 0207	0	R 120	57.11.3271		270R	
R 37	57.11.3133		13k	MF, 1%, 0207	U	1. 120	J1.11.32/1		ZIUN	MF, 1%, 0207
R 38	57.11.3474		470k	MF, 1%, 0207						
R 39	57.11.3302		3k0	MF, 1%, 0207	0	RA 1	58.01.9503		50k	Cermet, 10%, 0.5W, vertical
R 40	57.11.3302		3k0	MF, 1%, 0207	0	RA 2	58.01.9503		50k	Cermet, 10%, 0.5W, vertical
R 41	57.11.3302		3k0	MF, 1%, 0207	0	RA 3	1.775.430.02			POTENTIOMETER 10K LIN.
					0	RA 4	1.775.430.03			POTENTIOMETER 2*10K LIN
R 42	57.11.3302		3k0	MF, 1%, 0207	0	RA 5	1.775.330.07			VARIABLE RESISTOR
R 43	57.11.3302		3k0	MF, 1%, 0207					E00D	
R 44	57.11.3302		3k0	MF, 1%, 0207	0	RA 6	58.01.9501		500R	Cermet, 10%, 0.5W, vertical
R 45	57.11.3474		470k	MF, 1%, 0207	1	RA 7	58.01.9102		1k	Cermet, 10%, 0.5W, vertical
R 46	57.11.3133		13k	MF, 1%, 0207						
R 47	57.11.3133		100R	MF, 1%, 0207	0	W 1	1.775.430.93			LI-L MASTER UNIT
R 47 R 48				MF, 1%, 0207		mments				
	57.11.3101		100R				Ohm changed to	3 3 604	m P112 470 /	Ohm to 150 Ohm
R 49	57.11.5106		10M	MF, 5%, 0207			-	o.o koni	II, NI IZ 4/0 (Jimit to 100 Ottill,
R 50	57.11.3223		22k	MF, 1%, 0207		CA CA	1 replaced by D3			

EDITION: 20.2.1995

MONITOR UNIT 1.775.451.00

MONITOR UNIT 1.775.451.00 - MICROPHONE UNIT 1.775.441.00

COMMERCIA AND DESCRIPTION OF THE PROPERTY OF T

MONITOR UNIT 1.775.451.00

A

MONITOR UNIT 1.775.451.00

ONITOR UNIT	Г 1.775.451	.00		
AdPOSREF.N	DESCRIPTION	DNMANUF	ACTURER	
R19 57.11. R20 57.11.	3104 100 K0hm 3104 100 K0hm	1%, 0.25W, MF 1%, 0.25W, MF		
R21 57.11. R22 57.11. R23 57.11. R24 57.11. R25 57.11. R26 57.11. R27 57.11. R28 57.11. R29 57.11. R29 57.11.	5106 10 MOhm 5106 10 MOhm 5106 10 MOhm 5106 10 MOhm 5106 10 KOhm 5103 10 KOhm 5106 10 MOhm	Se, O. 25M, MF 54, O. 25M, MF 54, O. 25M, MF 54, O. 25M, MF 54, O. 25M, MF 14, O. 25M, MF 14, O. 25M, MF 15, O. 25M, MF 16, O. 25M, MF		
R31 57.11. R32 57.11. R33 57.11. R34 57.11. R35 57.11. R36 57.11. R37 57.11. R38 57.11. R39 57.11. R39 57.11. R39 57.11.	3331 330 Ohm 3331 330 Ohm 5106 10 MOhm 8124 120 KOhm 3391 390 Ohm 3391 390 Ohm	18, 0.25M, MF 18, 0.25M, MF 18, 0.25M, MF 19, 0.25M, MF		
R42 57.11. R43 57.11. R44 57.11. R45 57.11. R46 57.11. R47 57.11. R48 57.11. R48 57.11. R49 57.11.	3103 10 KOhm 3103 10 KOhm 3103 10 KOhm 3123 12 KOhm 31562 5.6 KOhm 31562 5.6 KOhm 3130 33 Ohm 31270 27 Ohm	14, 0.25M, MF 14, 0.25M, MF 15, 0.25M, MF 15, 0.25M, MF 15, 0.25M, MF 14, 0.25M, MF 14, 0.25M, MF		
R102 57.11. R103 57.11. R105 57.11. R106 57.11. R107 57.11. R108 57.11. R109 57.11. R110 57.11.	3222 2.2 KOhm 3332 3.3 KOhm 3330 33 Ohm 104 100 KOhm 8.2 KOhm 3222 2.2 KOhm 3223 22 KOhm 1 KOhm	14, 0.25M, MF 14, 0.25M, MF		
RA1 1.775.34 RA2 1.775.35	0.01 1*10 KOhm 0.01 2*10 KOhm	pos.log pos.log		
S1 55.15.1 S2 55.15.1 S3 55.15.1 S4 55.15.1 S5 55.03.1	0110 0110 0110	1*2u 1*2u 1*2u 1*2u 1*2u Power Switch		
W1 1.775.45		Wire List		
EL=Elec MF=Heta	trolytic, C=Cerami Film	c, PETP=Polyester		
MANUFACTURER: Ra=Rayt		Sig=Signetics		
1.775.45	1.00 MONITOR UNIT	KG 92/01/2200		

INPUT OUTPUT UNIT 1.775.460.00 - C.R. MONITOR UNIT 1.775.470.00

Overview:

1.775.410.00

INPUT OUTPUT UNIT 1.775.460.00

INPUT OUTPUT UNIT 1.775.460.00

AdPOS	REF.No	DESCRI	PTION	MANUFACTURER	AdPOS	REF.No	DESCRIF	TION		MANUFACT	TURER
C1 C2 C3 C4 C5 C6 C7 C8 C9	59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102	1 nF 1 nF 1 nF 1 nF 1 nF 1 nF 1 nF 1 nF	10%, 25V, PETP 10%, 25V, PETP		C101 C102 C103 C104 C105 C106 C107 C108 C109	59.22.3470 59.22.3221 59.22.3221 59.22.3470 59.06.0223 59.22.3470 59.06.0233 59.06.0333 59.06.0333	47 uF 220 uF 220 uF 47 uF 22 nF 47 uF 22 nF 33 nF 33 nF	-20%, 10V, -20%, 10V, -20%, 10V, -20%, 10V, 10%, 25V, -20%, 10V, 10%, 25V, 10%, 25V,			
C11 C12 C13 C14 C15 C16 C17	59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102	1 nF 1 nF 1 nF 1 nF 1 nF 1 nF	10%, 25V, PETP 10%, 25V, PETP		C112 C113 C114 C115 C119 C120	59.06.0104 59.05.1102 59.05.1102 59.05.1102 59.05.1102 59.22.5101 59.06.0104	100 nF 1 nF 1 nF 1 nF 1 nF 100 uF	10%, 25V, 1%, 25V, 1%, 25V, 1%, 25V, 1%, 25V, -20%, 25V, 10%, 25V,	PETP PP PP PP PP EL PETP		
C19 C20 C21 C22 C23 C24 C25 C26 C27	59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.22.3101 59.22.3101 59.22.3101	1 nF 1 nF 1 nF 1 nF 1 nF 1 nF 100 uF 100 uF	10%, 25V, PETP 10%, 25V, PETP 10%, 25V, PETP 10%, 25V, PETP 10%, 25V, PETP 10%, 25V, PETP -20%, 10V, EL -20%, 10V, EL -20%, 10V, EL		C121 C122 C123 C124 C125 C126 C127 C128 C129 C130	59.06.0104 59.22.5101 59.02.5101 59.06.0104 59.06.0104 59.22.5101 59.22.3101 59.22.3101 59.22.3101	100 nF 100 uF 100 nF 100 nF 100 uF 100 uF 100 uF 100 uF 100 uF	10%, 25V, -20%, 25V, -20%, 25V, 10%, 25V, -20%, 25V, -20%, 10V, -20%, 10V, -20%, 10V, -20%, 10V, -20%, 10V,	PETP EL PETP PETP EL EL EL EL		
C28 C29 C30 C31 C32 C33 C34 C35 C36 C37	59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3101	100 uF 100 uF 100 uF 100 uF 100 uF 100 uF 100 uF 100 uF 100 uF	-20%, 10V, EL -20%, 10V, EL		C131 C132 C133 C134 C135 C136 C137 C138 C139	59.22.3101 59.22.3101 59.34.4151 59.34.4151 59.34.4151 59.34.4151 59.34.4560 59.34.4560 59.22.5220 59.22.5220	100 uF 100 uF 150 pF 150 pF 150 pF 150 pF 56 pF 56 pF 52 uF 22 uF	-20%, 10V, -20%, 10V, 5%, 25V, 5%, 25V, 5%, 25V, 5%, 25V, 5%, 25V, -20%, 10V, -20%, 10V,	EL C C C C C C C C C C C C C C C C C C C		
C38 C39 C40 C41 C42 C43 C44 C45 C45	59.34.4560 59.34.4560 59.34.4560 59.05.1681 59.05.1681 59.05.1681 59.05.1681 59.05.1681 59.05.1681	56 pF 56 pF 56 pF 680 pF 680 pF 680 pF 680 pF 680 pF 680 pF	5%, 25V, C 5%, 25V, C 5%, 25V, C 1%, 25V, PP 1%, 25V, PP 1%, 25V, PP 1%, 25V, PP 1%, 25V, PP 1%, 25V, PP		C141 C142 C143 C144 C145 C146 C147 C148 C149	59.22.5220 59.22.5220 59.34.4151 59.34.4271 59.34.4271 59.22.3221 59.22.3221 59.22.3221 59.22.3221	22 uF 22 uF 150 pF 270 pF 150 pF 270 pF 220 uF 220 uF 220 uF 220 uF	-20%, 10V, -20%, 10V, 5%, 25V, 5%, 25V, 5%, 25V, -20%, 10V, -20%, 10V, -20%, 10V,	EL C C C EL EL EL EL		
C48 C49 C50 C51 C52 C53 C54 C55	59.05.1681 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.06.0104 59.06.0104 59.32.2681 59.32.2681	680 pF 100 uF 100 uF 100 uF 100 nF 100 nF 680 pF 680 pF	1%, 25V, PP -20%, 10V, EL -20%, 10V, EL -20%, 10V, EL -20%, 10V, EL 10%, 25V, PETP 10%, 25V, C 10%, 25V, C		C151 C152 C153 C154 C155 C160	59.32.2681 59.32.2681 59.32.2681 59.32.2681 59.06.0104 59.34.4560	680 pF 680 pF 680 pF 680 pF 100 nF 56 pF	10%, 25V, 10%, 25V, 10%, 25V, 10%, 25V, 10%, 25V, 5%, 25V,	C C C C PETP C		
C56 C57 C58 C59 C60	59.32.2681 59.32.2681 59.34.4560 59.34.4560	680 pF 680 pF 56 pF 56 pF	10%, 25V, C 10%, 25V, C 10%, 25V, C 5%, 25V, C 5%, 25V, C		C162 C163 D300 D301	59.34.4560 59.34.4560 50.04.0125 50.04.0125	56 pF 56 pF 1N 4448 1N 4448	5%, 25V, 5%, 25V,	C C		
C61 C62 C63 C64 C69	59.22.3101 59.22.3101 59.34.4560 59.34.4560 59.22.3101	100 uF 100 uF 56 pF 56 pF 100 uF	-20%, 10V, EL -20%, 10V, EL 5%, 25V, C 5%, 25V, C -20%, 10V, EL		D310 D311 D320	50.04.0125 50.04.0125	1N 4448 1N 4448 1N 4448				
C70 C71 C72	59.22.5220 59.22.5220 59.34.4151	22 uF 22 uF 150 pF 270 pF	-20%, 10V, EL -20%, 10V, EL 5%, 25V, C 5%, 25V, C		D321 D330 D331	50.04.0125 50.04.0125 50.04.0125	1N 4448 1N 4448 1N 4448				
C73 C74 C75 C76 C77 C78	59.34.4271 59.22.3221 59.22.3221 59.32.2681 59.32.2681 59.06.0104	220 uF 220 uF 680 pF 680 pF 100 nF	-20%, 10V, EL -20%, 10V, EL 10%, 25V, C 10%, 25V, C		D340 D341 D350 D351	50.04.0125 50.04.0125 50.04.0125 50.04.0125	1N 4448 1N 4448 1N 4448				
C79 C80 C81 C82 C83 C84 C85 C86 C87 C88 C88 C89	59.22.3101 59.34.5391 59.34.5391 59.22.3101 59.06.5682 59.06.5682 59.05.1681 59.05.1681 59.05.1681 59.05.1681 59.05.1681 59.05.25.05.1681	390 pF 390 pF 100 uF 6.8 nF 6.8 nF 680 pF 680 pF 680 pF 680 pF 100 nF	10%, 25V, PETP -20%, 10V, EL 5%, 25V, C 5%, 25V, C -20%, 10V, EL 5%, 25V, PETP 5%, 25V, PETP 1%, 25V, PP 1%, 25V, PP 1%, 25V, PP 1%, 25V, PP 10%, 25V, PETP -20%, 25V, EL		D360 IC1 1C2 02 IC2 1C3 1C4 1C4 1C5 1C5	50.04.0125 50.09.0118 50.09.0107 50.09.0118 50.09.0107 50.09.0118 50.09.0107 50.09.0118 50.09.0107 50.09.0118 50.09.0118	1N 4448 RC4562 RC4559 RC4562 RC4559 RC4562 RC4562 RC4562 RC4562 RC4562 RC4562 RC4562 RC4562			Ra Ra Ra Ra Ra Ra Ra Ra Ra	
C91 C92 C93 C94 C95 C96 C97 C97 C98 C99 C100	59.06.0104 59.06.0104 59.22.5101 59.22.5101 59.22.5101 59.06.0104 59.06.0104 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3470	100 nF 100 nF 100 uF 100 uF 100 nF 100 nF 100 uF 100 uF 100 uF 100 uF	10%, 25V, PETP 10%, 25V, PETP -20%, 25V, EL -20%, 25V, EL 10%, 25V, PETP 10%, 25V, PETP -20%, 10V, EL -20%, 10V, EL -20%, 10V, EL -20%, 10V, EL		02 IC6 IC7 02 IC7 IC8 02 IC9 02 IC9 IC10 IC10 02 IC10	50.09.0107 50.09.0118 50.09.0106 50.09.0118 50.09.0106 50.09.0118 50.09.0107 50.09.0107 50.09.0107	RC4559 RC4562 RC5532AN RC4562 RC5532AN RC4562 RC4559 RC4562 RC4559			Ra Ra Ra Ra Ra Ra Ra Ra Ra	

INPUT OUTPUT UNIT 1.775.460.00

IN	PUT O	UTPUT	UNIT 1.	775.460.00		•	v. v			
Ad	POS	REF.No	DESCRIP	TION	MANUFACTURER	AdPOS	REF.No	DESCRIP	TION	MANUFACTURER
02	IC12 IC12	50.09.0118 50.09.0107	RC4562 RC4559		Ra Ra	Q300	50.03.0436	BC 237	NPN	
02	IC13 IC13	50. 09. 0118 50. 09. 0107	RC4562 RC4559		Ra Ra	Q301 Q310	50.03.0515 50.03.0436	BC 307 BC 237	PNP NPN	
	J1 J2 J3	54.21.2201 54.21.2201 54.21.2201		XLR XLR XLR		Q311 Q320	50.03.0515 50.03.0436	BC 307 BC 237	PNP NPN	
	J4 J5 J6	54.21.2201 54.21.2007 54.01.0294	4-Pole 16-Pole	XLR Cinch CIS		Q321 Q330	50.03.0515 50.03.0436	BC 307 BC 237	PNP NPN	
	J7 J8 J9	54.21.2201 54.21.2201 54.14.2003	26-Pole	XLR XLR Connector for Flat-Cabel		Q331 Q340	50.03.0515 50.03.0436	BC 307 BC 237	PNP NPN	
	J10	54.14.2002 54.24.0109	16-Pole	Connector for Flat-Cabel mini Jack		Q341 Q350	50.03.0515 50.03.0436	BC 307 BC 237	PNP NPN	
	J300 J310 J320	54.24.0109 54.24.0109		mini Jack mini Jack mini Jack mini Jack		Q351 Q360	50.03.0515 50.03.0436	BC 307 BC 237	PNP NPN	
	J330 J340 J350	54.24.0109 54.24.0109 54.24.0109		mini Jack mini Jack		Q361	50.03.0515	BC 307	PNP	
	J360 K300 K310	54.24.0109 56.04.0190	5V	mini Jack Relais		R2 R3	57.11.5106 57.11.3104 57.11.5106	10 MOhm 100 KOhm 10 MOhm	10%, 0.25W, MF 1%, 0.25W, MF 10%, 0.25W, MF	
	K320 K330	56.04.0190 56.04.0190 56.04.0190	5V 5V 5V	Relais Relais Relais		R5 R6	57.11.5106 57.11.5106 57.11.3224	10 MOhm 10 MOhm 220 KOhm	10%, 0.25W, MF 10%, 0.25W, MF 1%, 0.25W, MF	
	K340 K350 K360	56.04.0190 56.04.0190 56.04.0190	5V 5V 5V	Relais Relais Relais		R7 R8 R9	57.11.3473 57.11.5106 57.11.3104 57.11.5106	47 KOhm 10 MOhm 100 KOhm	1%, 0.25W, MF 10%, 0.25W, MF 1%, 0.25W, MF	
	MP1 MP2	1.775.460.11 54.01.0281	13-Pole	INPUT-OUTPUT PCB		R9 R10 R11	57.11.5106 57.11.5106	100 KOhm 10 MOhm 10 MOhm	10%, 0.25W, MF	
			8 pcs 2 pcs	Thermo Clip Holder Screw		R11 R12 R13 R14	57.11.5106 57.11.3224	10 MOhm 220 KOhm 47 KOhm	10%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
	MP6 MP7 MP8	50.20.2001 1.775.400.03 21.38.1352 20.99.0103 1.010.017.22 43.01.0108 1.775.460.01 35.03.0109	11 pcs 6 pcs	Screw Tubular-Rivet ESE Label		R15 R16 R17	57.11.3473 57.11.5106 57.11.3104 57.11.5106	10 MOhm 100 KOhm 10 MOhm	10%, 0.25W, MF 1%, 0.25W, MF 10%, 0.25W, MF	
	MP9 MP10	1.775.460.01 35.03.0109	2 pcs	Nr. Label Mounting-Belt		R18 R19 R20	57.11.3104 57.11.5106 57.11.5106 57.11.5106 57.11.3224	10 MOhm 10 MOhm 220 KOhm	10%, 0.25W, MF 10%, 0.25W, MF	
	P2 P3	54.21.2200 54.21.2200 54.21.2200		XLR XLR XLR		R21	57.11.3473	47 KOhm	1%, 0.25W, MF	
	P4 P5	54.21.2200 54.21.2200 54.21.2200		XLR XLR XLR		R22 R23 R24	57.11.5106 57.11.3104 57.11.5106	10 MOhm 100 KOhm 10 MOhm	10%, 0.25W, MF 1%, 0.25W, MF 10%, 0.25W, MF	
	Q1 Q2	50.03.0436 50.03.0436	BC237 BC237	NPN NPN		R25 R26 R27	57.11.5106 57.11.5106 57.11.3224	10 MOhm 10 MOhm 220 KOhm	10%, 0.25W, MF 10%, 0.25W, MF 1%, 0.25W, MF	
	03 04 05	50.03.0436 50.03.0436 50.03.0436	BC237 BC237 BC237	NPN NPN NPN		R28 R29 R30	57.11.3473 57.11.5106 57.11.3104	47 KOhm 10 MOhm 100 KOhm	1%, 0.25W, MF 10%, 0.25W, MF 1%, 0.25W, MF	
	06 07 08	50.03.0436 50.03.0350 50.03.0350	BC237 J 112 J 112	NPN Fet Fet	Mot Mot	R31 R32	57.11.5106 57.11.5106	10 MOhm 10 MOhm	10%, 0.25W, MF 10%, 0.25W, MF	
	Q9 Q10	50.03.0350 50.03.0350	J 112 J 112	FET FET	Mot Mot	R33 R34 R35	57.11.5106 57.11.3224 57.11.3473	10 MOhm 220 KOhm 47 KOhm	10%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
	011 012 013	50.03.0350 50.03.0350 50.03.0350	J 112 J 112 J 112	FET FET FET	Mot Mot Mot	R36 R37 R38	57.11.5106 57.11.3104 57.11.5106	10 MOhm 100 KOhm 10 MOhm	10%, 0.25W, MF 1%, 0.25W, MF	
	Q14 Q15 Q16	50.03.0350 50.03.0350 50.03.0350 50.03.0350	J 112 J 112 J 112	FET FET FET	Mot Mot Mot	R39 R40	57.11.5106 57.11.5106	10 MOhm 10 MOhm	10%, 0.25W, MF 10%, 0.25W, MF 10%, 0.25W, MF	
	Q17 Q18 Q19	50.03.0350 50.03.0350	J 112 J 112 J 112	FET FET FET	Mot Mot Mot	R41 R42 R43	57.11.3224 57.11.3473 57.11.3103	220 KOhm 47 KOhm 10 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
	Q20	50.03.0350	J 112 J 112	FET FET	Mot Mot	R44 R45 R46	57.11.3104 57.11.3103 57.11.3104	100 KOhm 10 KOhm 100 KOhm	1%, 0.25W, MF	
	Q21 Q22 Q23 Q24 Q25 Q26	50.03.0350 50.03.0350 50.03.0350 50.03.0350	J 112 J 112 J 112	FET FET FET	Mot Mot Mot	R47 R48 R49	57.11.3103 57.11.3104 57.11.3103 57.11.3104	10 KOhm 100 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
	Q25 Q26 Q27	50.03.0350	J 112 J 112 J 112	FET FET FET	Mot Mot Mot	R50 R51		10 KOhm 100 KOhm 10 KOhm	1%, 0.25W, MF 1%, 0.25W, MF	
	Q28 Q29 Q30	50.03.0350 50.03.0350 50.03.0350 50.03.0350	J 112 J 112 J 112	FET FET FET	Mot Mot Mot	R52 R53 R54	57.11.3103 57.11.3104 57.11.3103 57.11.3104	100 KOhm		
	Q31 Q32	50.03.0516 50.03.0516	BC337 BC337	NPN match NPN match		R55 R56 R57	57.11.3104 57.11.3103 57.11.3104 57.11.3103	100 KOhm 10 KOhm 100 KOhm 10 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
	Q33	50.03.0516 50.03.0516	BC337 BC337	NPN match NPN match PNP match		R58 R59 R60	57.11.3104 57.11.3103 57.11.3104	100 KOhm 10 KOhm 100 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
	Q35 Q36 Q37 Q38 Q39	50.03.0625 50.03.0625 50.03.0625 50.03.0625	BC327 BC327 BC327 BC327	PNP match PNP match PNP match		R61	57.11.3103 57.11.3104	10 KOhm 100 KOhm	1%, 0.25W, MF 1%, 0.25W, MF	
	Q39 Q40	50.03.0516 50.03.0516	BC337 BC337	NPN match NPN match		R62 R63 R64 R65	57.11.3103	10 KOhm 100 KOhm 10 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1% 0.25W MF	
	Q41 Q42 Q43	50.03.0516 50.03.0516 50.03.0625	BC337 BC337 BC327	NPN match NPN match PNP match		R66 R67 R68	57.11.3103 57.11.3104 57.11.3272 57.11.3392 57.11.3392 57.11.3272	100 KOhm 2.7 KOhm 3.9 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
	Q44 Q45	50.03.0625 50.03.0625 50.03.0625 50.03.0625	BC327 BC327 BC327 BC327	PNP match PNP match PNP match PNP match		R69 R70	57.11.3392 57.11.3272	3.9 KOhm 2.7 KOhm	1%, 0.25W, MF 1%, 0.25W, MF	
	Q44 Q45 Q46 Q47 Q48 Q49 Q50	50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350	J 112 J 112	FET FET	Mot Mot Mot	R71 R72	57.11.3272 57.11.3392	2.7 KOhm 3.9 KOhm	1%, 0.25W, MF 1%, 0.25W, MF	
			J 112 J 112 BC 237	FET FET NPN	Mot	R73 R74 R75	57.11.3392 57.11.3272 57.11.3272	3.9 KOhm 2.7 KOhm 2.7 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
	Q51	50.03.0436	DC 23/	197 14		R76 R77	57.11.3392 57.11.3392	3.9 KOhm 3.9 KOhm	1%, 0.25W, MF 1%, 0.25W, MF	

INPUT OUTPUT UNIT 1.775.460.00

INPUT OUTPUT UNIT	1.775.460.00			STE Vo Albra
AdPOSREF.No DESC	RIPTIONMANUFACTURER	AdPOSREF.N	lo DESCRIPTION	MANUFACTURER
R78 57.11.3272 2.7 KO R79 57.11.3272 2.7 KO R80 57.11.3392 3.9 KO R81 57.11.3392 3.9 KO R82 57.11.3272 2.7 KO	hm 1%, 0.25W, MF hm 1%, 0.25W, MF	R174 57.11. R175 57.11. R176 57.11. R177 57.11. R178 57.11. R179 57.11. R180 57.11.	3223 22 KOhm 1%, 0.25W 3223 22 KOhm 1%, 0.25W 3332 3.3 KOhm 1%, 0.25W 3332 3.3 KOhm 1%, 0.25W	. MF . MF . MF
R83 57.11.3152 1.5 K0 R84 57.11.3152 1.5 K0 R85 57.11.3152 1.5 K0 R86 57.11.3152 1.5 K0 R87 57.11.3152 1.5 K0 R88 57.11.3152 1.5 K0 R88 57.11.3152 1.5 K0	nm 1%, 0.25W, MF hm 1%, 0.25W, MF		3332 3.3 KOhm 1%, 0.25W 3332 3.3 KOhm 1%, 0.25W 3821 820 Ohm 1%, 0.25W 3102 1 KOhm 1%, 0.25W	. MF . MF . MF . MF . MF
R91 57.11.3333 33 KOI R92 57.11.3333 33 KOI R93 57.11.3333 33 KOI	nm 1%, 0.25W, MF	R181 57.11. R182 57.11. R183 57.11. R184 57.11. R186 57.11. R186 57.11. R187 57.11. R188 57.11. R189 57.11. R189 57.11. R190 57.11.	3474 470 KOhm 1%, 0.25W	, MF , MF , MF , MF
R95 57.11.3102 1 K01 R96 57.11.3102 1 K01 R97 57.11.3102 1 K01 R98 57.11.3102 1 K01 R99 57.11.3102 1 K01 R99 57.11.3103 10 K01 R100 57.11.3103 10 K01 R101 57.11.3272 2.7 K01	nm 1%, 0.25W, MF nm 1%, 0.25W, MF nm 1%, 0.25W, MF nm 1%, 0.25W, MF	R191 57.11. R192 57.11. R193 57.11. R194 57.11. R195 57.11. R196 57.11. R197 57.11. R198 57.11. R198 57.11. R199 57.11. R200 57.11.	3472 4.7 KOhm 1%, 0.25M 5106 10 MOhm 10%, 0.25W 5106 10 MOhm 10%, 0.25W 5106 10 MOhm 10%, 0.25W 5106 10 MOhm 10%, 0.25W 3104 100 KOhm 1%, 0.25W 3473 47 KOhm 1%, 0.25W	, MF , MF , MF , MF , MF
R101 57.11.3272 2.7 KOI R102 57.11.3272 2.7 KOI R103 57.11.3272 2.7 KOI R104 57.11.3272 2.7 KOI R105 57.11.3101 100 00 R106 57.11.3101 100 00 R106 57.11.3101 100 00 R108 57.11.3101 100 00 R108 57.11.3101 100 00	nm 1%, 0.25W, MF nm 1%, 0.25W, MF nm 1%, 0.25W, MF nm 1%, 0.25W, MF nm 1%, 0.25W, MF	R199 57.11. R200 57.11. R201 57.11. R202 57.11. R203 57.11. R204 57.11.	3474 470 KOhm 1%, 0.25W 3302 3 KOhm 1%, 0.25W	, MF , MF , MF , MF , MF
R109 57.11.3302 3 KO R110 57.11.3474 470 KO R111 57.11.3302 3 KO R112 57.11.3302 3 KO R113 57.11.3302 3 KO R114 57.11.3302 3 KO R114 57.11.3302 3 KO	nm 1%, 0.25W, MF	R201 57.11. R202 57.11. R203 57.11. R204 57.11. R205 57.11. R206 57.11. R207 57.11. R208 57.11. R209 57.11. R209 57.11.	3302 3 KUNM 1%, 0.25W,	, MF , MF , MF , MF , MF
R115 57.11.3474 470 K0f R116 57.11.3472 3 K0f R117 57.11.3474 470 K0f R118 57.11.3302 3 K0f R119 57.11.3302 3 K0f R120 57.11.3474 470 K0f	im 1%, 0.25W, MF im 1%, 0.25W, MF im 1%, 0.25W, MF im 1%, 0.25W, MF	R211 57.11. R212 57.11. R213 57.11. R214 57.11. R215 57.11. R216 57.11. R217 57.11.	3302 3 KOhm 1%, 0.25W 3474 470 KOhm 1%, 0.25W 3302 3 KOhm 1%, 0.25W 3474 470 KOhm 1%, 0.25W 3302 3 KOhm 1%, 0.25W	, MF , MF , MF , MF
R121 57.11.3302 3 K0h R122 57.11.3302 3 K0h R123 57.11.3302 3 K0h R124 57.11.3302 3 K0h R125 57.11.3302 3 K0h R126 57.11.3302 3 K0h R126 57.11.3302 3 K0h R127 57.11.3150 15 0h	mm 14, 0.25W, MF mm 14, 0.25W, MF mm 14, 0.25W, MF mm 14, 0.25W, MF mm 14, 0.25W, MF	R218 57.11. R219 57.11. R220 57.11. R221 57.11.	3302 3 KOhm 1%, 0.25M, 3474 470 KOhm 1%, 0.25M, 3474 470 KOhm 1%, 0.25M, 3302 3 KOhm 1%, 0.25M, 3302 3 KOhm 1%, 0.25M, 3302 3 KOhm 1%, 0.25M, 3302	MF MF MF MF
R129 57.11.3302 3 KOh R130 57.11.3302 3 KOh	m 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF	R223 57.11. R224 57.11. R225 57.11. R226 57.11. R227 57.11. R228 57.11. R229 57.11. R230 57.11.		, MF , MF , MF , MF , MF
R132 57.11.3689 6.8 0h R133 57.11.3153 15 K0h R134 57.11.3471 470 0h R135 57.11.3332 3.3 K0h R136 57.11.3332 3.5 K0h R137 57.11.3153 15 K0h R138 57.11.3471 470 0h R139 57.11.3392 3.9 K0h R140 57.11.3312 1.3 K0h	m 1%, 0.25W, MF 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF	R 231 57 . 11. R 232 57 . 11. R 233 57 . 11. R 234 57 . 11. R 235 57 . 11. R 236 57 . 11.		, MF , MF , MF , MF
R141 57.11.3132 1.3 KOh R142 57.11.3392 3.9 KOh R143 57.11.3392 3.9 KOh R144 57.11.3392 3.9 KOh R145 57.11.3392 3.9 KOh R145 57.11.3132 1.3 KOh R147 57.11.3132 3.9 KOh R147 57.11.3392 3.9 KOh R148 57.11.3392 3.9 KOh R149 57.19.0330 33 Oh R150 57.19.0330 33 Oh	m 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF	R237 57.11. R238 57.11. R239 57.11. R240 57.11. R241 57.11. R242 57.11.	3150 15 Ohm 1%, 0.25W, 3150 15 Ohm 1%, 0.25W, 3150 15 Ohm 1%, 0.25W, 3302 3 KOhm 1%, 0.25W,	MF MF MF MF
R147 57.11.3392 3.9 K0h R148 57.11.3392 3.9 K0h R149 57.19.0330 33 0h R150 57.19.0330 33 0h R151 57.19.0330 33 0h R152 57.19.0330 33 0h R152 57.19.0330 33 0h	m 15,0.20W, PIF 55,0.33W Fusible Resistor /!\ m 58,0.33W Fusible Resistor /!\ m 58,0.33W Fusible Resistor /!\	R 243 57.11. R 244 57.11. R 245 57.11. R 246 57.11. R 247 57.11. R 248 57.11. R 249 57.11. R 250 57.11.		MF MF MF MF MF
R154 57.11.3272 2.7 K0h R155 57.11.3102 1 K0h R156 57.11.3272 2.7 K0h R157 57.11.3223 22 K0h R158 57.11.3223 22 K0h R159 57.11.3103 10 K0h	m 1%, 0.25W, MF m 1%, 0.25W, MF	R250 57.11 R251 57.11 R252 57.11 R253 57.11 R254 57.11	3472 4.7 KOhm 1%, 0.25W, 3472 4.7 KOhm	MF MF MF MF
R161 57.11.3103 10 KOhi R162 57.11.3103 10 KOhi R163 57.11.3103 10 KOhi	m 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF	R300 57.11.	3472 4.7 KOhm 1%, 0.25W, 3472 4.7 KOhm 1%, 0.25W, 3153 15 KOhm 1%, 0.25W,	MF MF
	m 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF m 1%, 0.25W, MF	R301 57.11. R302 57.11. R303 57.11. R310 57.11. R310 57.11. R311 57.11. R312 57.11. R313 57.11. R314 57.11. R314 57.11. R314 57.11.		MF MF
R171 57.11.3339 3.3 Ohi R172 57.11.3339 3.3 Ohi R173 57.11.3339 3.3 Ohi	n 1%, 0.25W, MF	R314 57.11.3 R320 57.11.3	3103 10 KOhm 1%, 0.25W, 3103 15 KOhm 1%, 0.25W,	MF

EDITION: 20.2.1995

INPUT OUTPUT UNIT 1.775.460.00

INPUT C	UTPUT	JNIT 1.7	75.460.00		18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 	
AdPOS	REF.No	DESCRIPTI	ION	MANUFACTURER		
R321 R322 R323 D. 324 R330	57.11.3154 57.11.3331 57.11.3103 57.11.3103 57.11.3153	150 KOhm 330 Ohm 10 KOhm 10 KOhm 15 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF			
R331 R332 R333 R344 R340	57.11.3154 57.11.3331 57.11.3103 57.11.3103 57.11.3153	150 KOhm 330 Ohm 10 KOhm 10 KOhm 15 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF			
R341 R342 R343 R344 R350	57.11.3154 57.11.3331 57.11.3103 57.11.3103 57.11.3153	150 KOhm 330 Ohm 10 KOhm 10 KOhm 15 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF			
R351 R352 R353 R354 R360	57.11.3154 57.11.3331 57.11.3103 57.11.3103 57.11.3153	150 KOhm 330 Ohm 10 KOhm 10 KOhm 15 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF			
R361 R362 R363 R364	57.11.3154 57.11.3331 57.11.3103 57.11.3103	150 KOhm 330 Ohm 10 KOhm 10 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF			
R400	57.92.1121	22 Ohm	PTC 56V			
R401 R402 R403	57.92.1121 57.92.1121 57.92.1121	22 Ohm 22 Ohm 22 Ohm	PTC 56V PTC 56V PTC 56V			
\$300	55.12.1106	6x on/off	Switch			
T2 T3	1.022.451.00 1.022.451.00 1.022.362.00 1.022.362.00		Input-Transformer 1:0,62 Input-Transformer 1:0,62 Output-Transformer 1:1,45 Output-Transformer 1:1,45	ST ST ST ST		
W1	1.775.460.93		Wire List			
MF=Metal-fil	m, El=Electrol	ytic, Cer≖Cer	amic, PETP=Polyester, PP=Polyp	propylen		
MANUFACTURER	: Mot=Motorola	, Ra=Raytheon	, ST=Studer			
	1.775.460.00	INPUT-OUTPUT	UNIT UL89/02/0900)		
	1.775.460.00	INPUT-OUTPUT	UNIT UL89/09/2101	l		
	1.775.460.00	INPUT-OUTPUT	UNIT UL90/05/3002	!		

C.R. MONITOR UNIT 1.775.470.00

AdPOS	REF.No	DESCRIPT	IONMANUFACTURER
C1	59.06.0474	470 nF	10%, 50V, EL
J1 J2 J3 J4	54.14.2072 54.01.0246 54.01.0306 54.01.0263	16-Pole 5-Pole 8-Pole 7-Pole	PCB Connector for Flat-Cable CIS CIS CIS
MP2 MP3	1.775.470.11 1.775.470.01 21.38.1352 1.775.470.02	2 pcs	CR MONITOR U-Profile Screw Nr.Label
R1	57.11.3223	22 KOhm	1%, 0.25W, MF
RA1	1.775.350.01	2×10K0hm	pos.log
\$1	55.15.0031	6x2u	Push Button
MF=Metal-fil	m, El=Electrol	ytic	
	1.775.470.00	CR-MONITOR	UNIT UL89/02/0900

EDITION: 20.2.1995

A

DISPLAY UNIT 1.775.310.00

DISPLAY UNIT 1.775.310.00

namen de la companya de la companya

DISPLAY UNIT 1.775.310.00

36 EDITION: 20.2.1995

DISPLAY UNIT 1.775.310.00

IPOS	REF.No	DESCRIPT	TIONMANUFACTURER	AdPC	s	REF.No	DESCRIPT	ION	MANUFACT
R4 R5 R6 R7 R8 R9 R10	57.11.4151 57.11.4473 57.11.4151 57.11.4473 57.11.4151 57.11.4473 57.11.4473	150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm	2%, 0.25M, MF 2%, 0.25M, MF 2%, 0.25M, MF 2%, 0.25M, MF 2%, 0.25M, MF 2%, 0.25M, MF 2%, 0.25M, MF	R R R R R	102 103 104 105 106 107	57.11.4330 57.11.4391 57.11.4560 57.11.4561 57.11.4471 57.11.4222 57.11.4121	33 Ohm 390 Ohm 56 Ohm 560 Ohm 470 Ohm 2.2 KOhm	2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF	
R11 R12 R13 R14 R15 R16 R17 R18 R19 R20	57.11.4473 57.11.4151 57.11.4473 57.11.4473 57.11.4473 57.11.4473 57.11.4473 57.11.4473 57.11.4473	47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm	2%, 0.25W, MF	R R R R R R R	110 111 112 113 114 115 116 117	57.11.4103 57.11.4103 57.11.4103 57.11.4103 57.11.4102 57.11.4104 57.11.4104 57.11.5106 57.11.5106	10 KOhm 10 KOhm 10 KOhm 10 KOhm 10 KOhm 1 KOhm 100 KOhm 100 KOhm 100 KOhm	2*, 0.25W, MF 2*, 0.25W, MF	
R21 R22 R23 R24 R25 R26 R27 R28 R29 R30	57.11.4473 57.11.4151 57.11.4473 57.11.4151 57.11.4151 57.11.4151 57.11.4151 57.11.4151 57.11.4151	47 KOhm 150 Ohm 47 KOhm 150 Ohm 10 KOhm 150 Ohm 150 Ohm 10 KOhm 150 Ohm 15 Ohm	2%, 0.25W, MF	R R R R R R R	119 120 121 122 123 124 125 126	57.11.4104 57.11.4104 57.11.4473 57.11.4332 57.11.4332 57.11.4104 57.11.4104 57.11.4104	100 KOhm 100 KOhm 47 KOhm 47 KOhm 3.3 KOhm 3.3 KOhm 100 KOhm 2.7 KOhm 10 KOhm	2%, 0.25W, MF 2%, 0.25W, MF	
R31 R32 R34 R35 R36 R37 R38 R39 R40	57.11.4822 57.11.4153 57.11.4151 57.11.4473 57.11.4473 57.11.4151 57.11.4473 57.11.4473 57.11.4473	8.2 KOhm 15 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm	2%, 0.25W, MF	R R R R R R	128 129 130 131 132 133 134 135 136	57.11.4103 57.11.4272 57.11.5155 57.11.4103 57.11.4103 57.11.4103 57.11.4103 57.11.4103	10 KOhm 2.7 KOhm 1.5 MOhm 10 KOhm 10 KOhm 12 KOhm 10 KOhm 10 KOhm 10 KOhm	2%, 0.25W, MF 2%, 0.25W, MF 5%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF	
R41 R42 R43 R44 R45 R46 R47 R48 R49 R50	57.11.4473 57.11.4151 57.11.4473 57.11.4151 57.11.4151 57.11.4151 57.11.4473 57.11.4473 57.11.4151	47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm	2*, 0.25W, MF 2*, 0.25W, MF	R R R RA RA RA RA	138 139 140 141 1 2	57.11.4103 57.11.4224 57.11.4104 57.11.4473 57.11.5155 58.01.8202 58.01.8503 58.01.8503 57.99.0135	10 KOhm 220 KOhm 100 KOhm 47 KOhm 1.5 MOhm 2 KOhm 50 KOhm 1 KOhm	2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 5%, 0.25W, C -10%, 0.50W, C -10%, 0.50W, C 100Lux LDR	
R51 R52 R53 R55 R55 R56 R57 R57 R58 R59 R60	57.11.4473 57.11.4151 57.11.4473 57.11.4451 57.11.4473 57.11.4151 57.11.4473 57.11.4681 57.11.4222	47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 10 KOhm 680 Ohm 2.2 KOhm	2%, 0.25W, MF	W	1 URER:	1.775.310.93 EL=Electrolyt MF=Metal Film	cic, C=Ceram NS=National ruments	Wire List ic, PETP=Polyeste Semiconductor	UL 86/02/0500
R61 R62 R63 R64 R65 R66 R66 R67 R68 R69 R70	57.11.4470 57.11.4101 57.11.4101 57.11.4271 57.11.4271 57.11.4391 57.11.4331 57.11.4561 57.11.4471	47 Ohm 100 Ohm 100 Ohm 180 Ohm 270 Ohm 390 Ohm 330 Ohm 100 Ohm 560 Ohm	2%, 0.25W, MF			1.775.310.00 1.775.310.00 1.775.310.00 1.775.310.00	DISPLAY UNI DISPLAY UNI DISPLAY UNI	T "ESE" T "ESE" T "ESE"	UL 86/10/1001 UL 86/11/1802 UL 86/11/2703 SP 90/06/0504
R71 R72 R73 R74 R75 R76 R77 R78 R79 R79	57.11.4821 57.11.402 57.11.4681 57.11.4681 57.11.4821 57.11.4821 57.11.4122 57.11.4122 57.11.4122 57.11.4122	820 Ohm 1 kOhm 680 Ohm 680 Ohm 820 Ohm 820 Ohm 1 KOhm 1 KOhm 1.5 KOhm 1.2 KOhm	2%, 0.25W, MF						
R81 R82 R83 R84 R85 R86 R87 R88 R89 R90	57.11.4152 57.11.4822 57.11.4270 57.11.4479 57.11.4270 57.11.4270 57.11.4270 57.11.4270 57.11.4270 57.11.4270	1.5 KOhm 8.2 KOhm 180 Ohm 27 Ohm 4.7 Ohm 47 Ohm 27 Ohm 27 Ohm 27 Ohm 39 Ohm	2%, 0.25W, MF						
R91 R92 R93 R94 R95 R96 R97 R98 R99 R99	57.11.4471 57.11.4270 57.11.4271 57.11.4101 57.11.4181 57.11.4150 57.11.450 57.11.455 57.11.4551 57.11.4551	470 Ohm 27 Ohm 270 Ohm 100 Ohm 180 Ohm 15 Ohm 100 Ohm 56 Ohm 150 Ohm	2%, 0.25W, MF 2%, 0.25W, MF						

CONNECTION UNIT 1.775.410.00

A

CONNECTION UNIT 1.775.410.00

40 EDITION: 20.2.1995

CONNECTION UNIT 1.775.410.00

P0S	REF.No	DESCRI	PTION	MANUFACTURER	AdPOS	REF.No	OESCRIP	T10N		ANUFAC
C601 C602 C603 C604	59.05.1102 59.06.0104 59.34.2220 59.34.1100	1 nF 100 nF 22 pF 10 pF	1%, 25V, PP 10%, 25V, PETP 10%, 25V, C 10%, 25V, C 10%, 25V, C		R208 R209 R210	57.11.3561 57.11.3150 57.11.3150	560 Ohm 15 Ohm 15 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
C605 C606 C607 C608	59.32.2681 59.34.4221 59.32.2681 59.32.2681	10 pF 680 pF 220 pF 680 pF 680 pF	10%, 25V, C 10%, 25V, C 10%, 25V, C 10%, 25V, C 10%, 25V, C 10%, 25V, C		R300 R301 R302	57.99.0250 57.99.0250 57.11.3103	6.8 KOhm 6.8 KOhm 10 KOhm	0.1%, 0.25W, MF 0.1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
IC100 IC200 IC300 IC400	59.32.2681 50.05.0244 50.05.0244 50.05.0244 50.05.0244	680 pF NE5534A NE5534A NE5534A NE5534A	10%, 25%, C	Sig Sig Sig Sig Sig	R303 R304 R305 R306 R307 R308	57.11.3103 57.11.3123 57.11.3102 57.11.3102 57.11.3271 57.11.3561	10 KOhm 12 KOhm 1 KOhm 1 KOhm 270 Ohm 560 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
IC500 IC600	50.05.0244 50.05.0244	NE5534A NE5534A		Sig Sig	R309 R310	57.11.3150 57.11.3150	15 Ohm 15 Ohm	1%, 0.25W, MF 1%, 0.25W, MF		
J1 J2 J3 J4 J5 J6	54.21.1020 54.01.0237 54.01.0236 54.01.0238 54.01.0236 54.01.0309	4-Pole 20-Pole 12-Pole 6-Pole 12-Pole 13-Pole	Pin Jacks CIS CIS CIS CIS CIS		R400 R401 R402 R403 R404	57.99.0250 57.99.0250 57.11.3103 57.11.3103 57.11.3123 57.11.3102	6.8 KOhm 10 KOhm 10 KOhm 12 KOhm	0.1%, 0.25W, MF 0.1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
J100	54.21.2002		XLR		R405 R406 R407	57.11.3102	1 KOhm 1 KOhm 270 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
J101 J102 J103	54.21.2002 54.21.1020 54.01.0300	4-Pole 14-Pole	XLR Pin Jacks CIS		R407 R408 R409 R410	57.11.3271 57.11.3561 57.11.3150 57.11.3150	560 Ohm 15 Ohm 15 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
J200 J201	54.21.2002 54.21.2002		XLR XLR		R500 R501	57.99.0250 57.99.0250	6.8 KOhm 6.8 KOhm	0.1%, 0.25W, MF 0.1%, 0.25W, MF		
J202 J203 J300	54.21.1020 54.01.0300 54.21.2002	4-Pole 14-Pole	Pin Jacks CIS XLR		R502 R503 R504	57.11.3103 57.11.3103 57.11.3123	10 KOhm 10 KOhm 12 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
J301 J302 J303	54.21.2002 54.21.1020 54.01.0300	4-Pole 14-Pole	XLR Pin Jacks CIS		R505 R506 R507 R508 R509	57.11.3102 57.11.3102 57.11.3271 57.11.3561 57.11.3150	1 KOhm 1 KOhm 270 Ohm 560 Ohm 15 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
J400	54.21.2002	14-1010	XLR		R510	57.11.3150	15 Ohm	1%, 0.25W, MF		
J401 J402 J403	54.21.2002 54.21.1020 54.01.0300	4-Pole 14-Pole	XLR Pin Jacks CIS		R600 R601 R602 R603	57.99.0250 57.99.0250 57.11.3103 57.11.3103	6.8 KOhm 6.8 KOhm 10 KOhm 10 KOhm	0.1%, 0.25W, MF 0.1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
J500	54.21.2002		XLR		R604 R605 R606	57.11.3103 57.11.3102 57.11.3102	12 KOhm 1 KOhm 1 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
J501 J502 J503	54.21.2002 54.21.1020 54.01.0300	4-Pole 14-Pole	XLR Pin Jacks CIS		R607 R608 R609	57.11.3271 57.11.3561 57.11.3150	270 Ohm 560 Ohm 15 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
J600 J601	54.21.2002		XLR XLR		R610 S1	57.11.3150 55.12.0004	15 Ohm	1%, 0.25W, MF		
J602 J603	54.21.2002 54.21.1020 54.01.0300	4-Pole 14-Pole	Pin Jacks CIS		S2	55.12.0006	1.2 16	2*2u 3*2u		¢т
L100 L200 L300 L400 L500 L600	1.022.207.00 1.022.207.00 1.022.207.00 1.022.207.00 1.022.207.00 1.022.207.00			ST ST ST ST ST ST	T300 T400 T500 T600	1.022.417.00 1.022.417.00 1.022.417.00 1.022.417.00 1.022.417.00 1.022.417.00	1:3.16 1:3.16 1:3.16 1:3.16 1:3.16 1:3.16			TS TS TS TS TS
MP1 MP2 MP3 MP4	1.775.320.11 1.775.320.01 1.775.410.01 43.01.0108		Connection PC8 Screening Nr. Label ESE Label		XIC.100 XIC.200 XIC.300 XIC.400 XIC.500 XIC.600	53.03.0166 53.03.0166 53.03.0166 53.03.0166 53.03.0166 53.03.0166	8-pole 8-pole 8-pole 8-pole 8-pole	IC-Socket IC-Socket IC-Socket IC-Socket IC-Socket IC-Socket		
P1 P2	54.21.2001 54.21.2001		XLR XLR			el 1-6 : NO. :	8-pole 100 600			
R1	57.11.3689 57.11.3689	6.8 Ohm 6.8 Ohm	1%, 0.25W, MF 1%, 0.25W, MF		Master Channe	el : NO. : Hf=Metalfi				
R2 R3 R4	57.11.3689 57.11.3689 57.11.3102	6.8 Ohm 6.8 Ohm 1 KOhm	1%, 0.25W, MF 1%, 0.25W, MF					er,EL=Electrolyti	,PP=Polypropylen	
R5 R6 R7 R8	57.11.3102 57.11.3102 57.11.3102 57.11.3102	1 KOhm 1 KOhm 1 KOhm 1 KOhm	1%, 0.25W, MF		MANUFACTUR	ER: Sig=Signet			UL 89/04/2700	
R100	57.99.0250	6.8 KOhm	0.1%, 0.25W, MF			1	- JAMES I ZON		03/04/2/00	
R101 R102 R103 R104 R105 R106 R107 R108 R109 R110	57.99.0250 57.11.3103 57.11.3103 57.11.3102 57.11.3102 57.11.3271 57.11.3561 57.11.3150 57.11.3150	6.8 KOhm 10 KOhm 10 KOhm 12 KOhm 1 KOhm 1 KOhm 270 Ohm 560 Ohm 15 Ohm	0.1%, 0.25M, MF 1%, 0.25M, MF							
R200	57.99.0250	6.8 KOhm	0.1%, 0.25W, MF							
R201 R202 R203 R204 R205 R206 R207	57.99.0250 57.11.3103 57.11.3103 57.11.3123 57.11.3102 57.11.3102 57.11.3271	6.8 KOhm 10 KOhm 10 KOhm 12 KOhm 1 KOhm 1 KOhm 270 Ohm	0.1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF							

INPUT OUTPUT UNIT 1.775.070.00 - C.R. MONITOR UNIT 1.775.470.00

Overview:

INPUT OUTPUT UNIT 1.775.070.00 - C.R. MONITOR UNIT 1.775.470.00

A

47

INPUT OUTPUT UNIT 1.775.070.00

POS	REF.No	DESCRI	PTION	MANUFACTURER	AdPOS	REF.No	DESCRIP	TION	MANUFAC
C1 C2 C3 C4 C5 C6 C7	59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102	1 nF 1 nF 1 nF 1 nF 1 nF 1 nF 1 nF	10%, 25V, PETP 10%, 25V, PETP		C101 C102 C103 C104 C105 C106 C107 C108 C109	59.22.3470 59.22.3221 59.22.3221 59.22.3470 59.06.0223 59.22.3470 59.06.0223	47 uF 220 uF 220 uF 47 uF 22 nF 47 uF 22 nF 33 nF 33 nF	-20%, 10V, EL -20%, 10V, EL -20%, 10V, EL -20%, 10V, EL 10%, 25V, PETP 10%, 25V, PETP 10%, 25V, PETP 10%, 25V, PETP	
C9 C10 C12 C13 C14 C15 C16 C17	59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102	1 nF 1 nF 1 nF 1 nF 1 nF 1 nF 1 nF	10%, 25V, PETP 10%, 25V, PETP		C112 C113 C114 C115 C118 C119	59.06.0333 59.06.0104 59.05.1102 59.05.1102 59.05.1102 59.05.1102 59.22.5101 59.06.0104	100 nF 1 nF 1 nF 1 nF 1 nF 100 uF	10%, 25V, PETP 10%, 25V, PETP 1%, 25V, PP 1%, 25V, PP 1%, 25V, PP -20%, 25V, PETP	
C18 C19 C20 C21 C22 C23 C24 C25 C26	59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.06.0102 59.22.3101	1 nF 1 nF 1 nF 1 nF 1 nF 1 nF 1 nF 100 uF	10%, 25V, PETP 10%, 25V, PETP 10%, 25V, PETP 10%, 25V, PETP 10%, 25V, PETP 10%, 25V, PETP 10%, 25V, PETP 20%, 10V, EL 20%, 10V, EL		C121 C122 C123 C124 C125 C126 C127 C127 C129 C130	59.06.0104 59.22.5101 59.22.5101 59.06.0104 59.06.0104 59.22.5101 59.22.3101 59.22.3101 59.22.3101	100 nF 100 uF 100 uF 100 nF 100 nF 100 uF 100 uF 100 uF 100 uF	10%, 25V, PETP -20%, 25V, EL -20%, 25V, EL 10%, 25V, PETP -20%, 25V, EL -20%, 10V, EL -20%, 10V, EL -20%, 10V, EL -20%, 10V, EL	
C27 C28 C29 C30 C31 C32 C33 C34 C35 C36	59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.22.3101	100 uF 100 uF 100 uF 100 uF 100 uF 100 uF 100 uF 100 uF 100 uF	-20%, 10V, EL -20%, 10V, EL		C131 C132 C133 C134 C135 C136 C137 C138 C139	59.22.3101 59.22.3101 59.34.4151 59.34.4151 59.34.4151 59.34.450 59.34.450 59.34.450 59.22.5220 59.22.5220	100 uF 100 uF 150 pF 150 pF 150 pF 150 pF 56 pF 56 pF 22 uF	-20%, 10V, EL -20%, 10V, EL 5%, 25V, C 5%, 25V, C 5%, 25V, C 5%, 25V, C 5%, 25V, C 5%, 25V, C -20%, 10V, EL -20%, 10V, EL	
C37 C38 C39 C40 C41 C42 C43 C44 C45	59.34.4560 59.34.4560 59.34.4560 59.34.4560 59.05.1681 59.05.1681 59.05.1681 59.05.1681	56 pF 56 pF 56 pF 56 pF 680 pF 680 pF 680 pF 680 pF 680 pF	5%, 25V, C 5%, 25V, C 5%, 25V, C 5%, 25V, C 1%, 25V, PP 1%, 25V, PP 1%, 25V, PP 1%, 25V, PP		C141 C142 C143 C144 C145 C146 C146 C148 C149	59.22.5220 59.22.5220 59.34.4151 59.34.4271 59.34.4271 59.34.4271 59.22.3221 59.22.3221 59.22.3221	22 uf 22 uf 150 pf 270 pf 150 pf 270 pf 270 uf 220 uf 220 uf	-20%, 10V, EL -20%, 10V, EL 5%, 25V, C 5%, 25V, C 5%, 25V, C -20%, 10V, EL -20%, 10V, EL	
C46 C47 C48 C49 C50 C51 C52 C53 C54	59.05.1681 59.05.1681 59.05.1681 59.22.3101 59.22.3101 59.22.3101 59.22.3101 59.06.0104 59.06.0104	680 pF 680 pF 680 pF 100 uF 100 uF 100 uF 100 nF 100 nF	1%, 25V, PP 1%, 25V, PP 1%, 25V, PP -20%, 10V, EL -20%, 10V, EL -20%, 10V, EL -20%, 10V, EL 10%, 25V, PETP 10%, 25V, PETP		C150 C151 C152 C153 C154 C155 C160 C161	59.22.3221 59.32.2681 59.32.2681 59.32.2681 59.32.2681 59.06.0104 59.34.4560 59.34.4560	220 uF 680 pF 680 pF 680 pF 680 pF 100 nF 56 pF	-20%, 10V, EL 10%, 25V, C 5%, 25V, C	
C55 C56 C57 C58 C59 C60	59.32.2681 59.32.2681 59.32.2681 59.32.2681 59.34.4560 59.34.4560 59.22.3101 59.22.3101 59.34.4560	680 pF 680 pF 680 pF 680 pF 56 pF 56 pF 100 uF	10%, 25V, C 10%, 25V, C 10%, 25V, C 10%, 25V, C 5%, 25V, C 5%, 25V, C		C162 C163 D300 D301 D310	59.34.4560 59.34.4560 50.04.0125 50.04.0125 50.04.0125 50.04.0125	56 pF 56 pF 1N 4448 1N 4448 1N 4448	5%, 25V, C 5%, 25V, C 5%, 25V, C	
C63 C64 C69 C70 C71 C72 C73 C74 C75	59.34.4560 59.22.3101 59.22.5220 59.22.5220 59.34.4151 59.34.4271 59.22.3221 59.22.3221 59.32.2681 59.32.2681	56 pF 56 pF 100 uF 22 uF 22 uF 150 pF 270 pF 220 uF 220 uF	5%, 25V, C 5%, 25V, C -20%, 10V, EL -20%, 10V, EL -20%, 10V, EL 5%, 25V, C 5%, 25V, C -20%, 10V, EL -20%, 10V, EL 10%, 25V, C		D320 D321 D330 D331 D340 D341 D350	50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125	1N 4448 1N 4448 1N 4448 1N 4448 1N 4448 1N 4448 1N 4448		
C76 C77 C78 C79 C80 C81 C82 C83 C84	59.06.0104 59.22.3101 59.34.5391 59.34.5391 59.22.3101 59.06.5682	680 pF 680 pF 100 nF 100 uF 390 pF 100 uF 6.8 nF 6.8 nF	10%, 25V, C 10%, 25V, PETP -20%, 10V, EL 5%, 25V, C -20%, 10V, EL 5%, 25V, PETP		D351 D360 D361 D370 D371 IC1	50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.09.0107	1N 4448 1N 4448 1N 4448 1N 4448 1N 4448 RC4559		<u>R</u> a
C85 C86 C87 C88 C90 C90 C91 C92 C93	59.05.1681 59.05.1681 59.05.1681 59.05.1681 59.06.0104 59.22.5101 59.06.0104 59.22.5101	680 pF 680 pF 680 pF 680 pF 100 nF 100 uF 100 nF 100 uF	35, 35V, PP 1%, 25V, PP 1%, 25V, PP 1%, 25V, PP 1%, 25V, PF 10%, 25V, EL 10%, 25V, PETP -20%, 25V, PETP -20%, 25V, EL		IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10	50.09.0107 50.09.0107 50.09.0107 50.09.0107 50.09.0107 50.09.0106 50.09.0107 50.09.0107	RC4559 RC4559 RC4559 RC4559 RC4559 RC5532AN RC5532AN RC4559		Ra Ra Ra Ra Ra Ra Ra
C94 C95 C96 C97 C98 C99 C100	59.22.5101 59.06.0104 59.06.0104 59.22.5101 59.22.3101 59.22.3101 59.22.3470	100 uF 100 nF 100 nF 100 uF 100 uF 100 uF 47 uF	-20%, 25V, EL 10%, 25V, PETP 10%, 25V, PETP -20%, 25V, EL -20%, 10V, EL -20%, 10V, EL -20%, 10V, EL		IC11 IC12 IC13 J1 J2 J3 J4	50.09.0107 50.09.0107 50.09.0107 54.21.2201 54.21.2201 54.21.2201 54.21.2201	RC4559 RC4559 RC4559	XLR XLR XLR XLR	Ra Ra Ra

EDITION: 20.2.1995

INPUT OUTPUT UNIT 1.775.070.00

POS	REF.No	DESCRIP	TIONMANUFACTURER	AdPOS	REF.No	DESCRIP	TIONMANUFACTUR
J5 J6	54.21.2007 54.01.0294	4-Pole 16-Pole	Cinch CIS	Q341 Q350	50.03.0515 50.03.0436	BC 307 BC 237	PNP NPN
J8 J9	54.21.2201 54.21.2201 54.14.2003	26-Pole	XLR XLR Connector for Flat-Cabel	Q351 Q360	50.03.0515 50.03.0436	BC 307 BC 237	PNP NPN
J10 J11	54.14.2002 54.99.0250	16-Pole 25-Pole	Connector for Flat-Cabel Connector D-Typ	Q361 Q370	50.03.0515 50.03.0436	BC 307 BC 237	PNP NPN
K300	56.04.0195	67	Relay	Q371	50.03.0515	BC 307	PNP
K310 K320 K330 K340 K350 K360 K370	56.04.0195 56.04.0195 56.04.0195 56.04.0195 56.04.0195 56.04.0195 56.04.0195	6V 6V 6V 6V 6V 6V	Relay Relay Relay Relay Relay Relay Relay	R1 R2 R3 R4 R5 R6 R6	57.11.5106 57.11.3104 57.11.5106 57.11.5106 57.11.5106 57.11.5106 57.11.3224 57.11.3473 57.11.5106	10 MOhm 100 KOhm 10 MOhm 10 MOhm 10 MOhm 220 KOhm 47 KOhm 10 MOhm	10%, 0.25W, MF 1%, 0.25W, MF 10%, 0.25W, MF 10%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF
MP5 MP6 MP7 MP8	1.775.070.11 54.01.0281 50.20.2001 28.21.2409 20.99.0103 1.010.017.22 43.01.0108 1.775.070.01 35.03.0109	13-Pole 8 pcs 2 pcs 11 pcs 6 pcs 2 pcs	INPUT-OUTPUT PCB CIS Thermo Clip Tubular-Rivet 3.0*7.0 Screw Tubular-Rivet ESE Label Nr. Label Mounting-Belt	R9 R10 R12 R13 R14 R15 R16	57.11.3104 57.11.5106 57.11.5106 57.11.5106 57.11.3224 57.11.3473 57.11.5106 57.11.3104 57.11.5106	100 KOhm 10 MOhm 10 MOhm 10 MOhm 220 KOhm 47 KOhm 10 MOhm 100 KOhm	1%, 0.25W, MF 10%, 0.25W, MF 10%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 10%, 0.25W, MF 1%, 0.25W, MF
P1 P2 P3 P4 P5	54.21.2200 54.21.2200 54.21.2200 54.21.2200 54.21.2200		XLR XLR XLR XLR XLR	R17 R18 R19 R20	57.11.5106 57.11.5106 57.11.3224	10 MOhm 10 MOhm 10 MOhm 220 KOhm 47 KOhm	10%, 0.25W, MF 10%, 0.25W, MF 10%, 0.25W, MF 1%, 0.25W, MF
Q1 Q2 Q3 Q4 Q5 Q6 Q6 Q7 Q8 Q9	50.03.0436 50.03.0436 50.03.0436 50.03.0436 50.03.0436 50.03.0436 50.03.0350 50.03.0350 50.03.0350 50.03.0350	BC237 BC237 BC237 BC237 BC237 BC237 J 112 J 112 J 112 J 112	NPN NPN NPN NPN NPN NPN NPN FET Mot FET Mot FET Mot	R22 R23 R24 R25 R26 R27 R28 R29 R30	57.11.3473 57.11.5106 57.11.3104 57.11.5106 57.11.5106 57.11.524 57.11.3473 57.11.5106 57.11.3473	10 MOhm 100 KOhm 10 MOhm 10 MOhm 10 MOhm 220 KOhm 47 KOhm 10 MOhm	10%, 0.25W, MF 1%, 0.25W, MF 10%, 0.25W, MF 10%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF
Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19	50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350	J 112	FET Mot	R31 R32 R33 R34 R35 R36 R36 R38 R39	57.11.5106 57.11.5106 57.11.5106 57.11.3224 57.11.3473 57.11.5106 57.11.5106 57.11.5106 57.11.5106	10 MOhm 10 MOhm 10 MOhm 220 KOhm 47 KOhm 10 MOhm 10 MOhm 10 MOhm 10 MOhm	10%, 0.25W, MF 10%, 0.25W, MF 10%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 10%, 0.25W, MF 10%, 0.25W, MF 10%, 0.25W, MF 10%, 0.25W, MF
Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q26 Q27 Q28 Q29	50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350	J 112	FET Mot	R41 R42 R43 R44 R45 R46 R47 R48 R49	57.11.3224 57.11.3473 57.11.3103 57.11.3104 57.11.3104 57.11.3104 57.11.3104 57.11.3104	220 KOhm 47 KOhm 10 KOhm 100 KOhm 100 KOhm 100 KOhm 100 KOhm 100 KOhm 100 KOhm 100 KOhm	1%, 0.25W, MF
Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39	50.03.0350 50.03.0516 50.03.0516 50.03.0516 50.03.0516 50.03.0625 50.03.0625 50.03.0625 50.03.0625 50.03.0516 50.03.0516	BC337 BC337 BC337 BC337 BC337 BC327 BC327 BC327 BC327 BC327 BC337	FET Mot NPN match NPN match NPN match NPN match NPN match PNP match	R51 R52 R54 R55 R57 R57 R58 R59 R60	57.11.3103 57.11.3104 57.11.3103 57.11.3104 57.11.3103 57.11.3103 57.11.3104 57.11.3103 57.11.3104	10 KOhm 100 KOhm 10 KOhm 10 KOhm 10 KOhm 100 KOhm 100 KOhm 100 KOhm 100 KOhm	1%, 0.25W, MF
Q40 Q41 Q42 Q43 Q44 Q45 Q45 Q46 Q47 Q48	50.03.0516 50.03.0516 50.03.0625 50.03.0625 50.03.0625 50.03.0625 50.03.0625 50.03.0350 50.03.0350 50.03.0350	BC337 BC337 BC337 BC327 BC327 BC327 BC327 J 112 J 112 J 112	NPN match NPN match NPN match PNP match PNP match PNP match PNP match PNP match FET Hot FET Mot FET Mot	R61 R62 R64 R65 R66 R67 R68 R69 R70	57.11.3103 57.11.3104 57.11.3103 57.11.3103 57.11.3104 57.11.3104 57.11.3272 57.11.3392 57.11.3392 57.11.3272	10 KOhm 100 KOhm 10 KOhm 100 KOhm 10 KOhm 100 KOhm 2.7 KOhm 3.9 KOhm 3.9 KOhm 2.7 KOhm	1%, 0.25W, MF
Q50	50.03.0350	J 112	FET Mot	R71 R72	57.11.3272 57.11.3392	2.7 KOhm 3.9 KOhm	1%, 0.25W, MF 1%, 0.25W, MF
Q51 Q300	50.03.0436 50.03.0436	BC 237 BC 237	NPN	R73 R74 R75	57.11.3272 57.11.3392 57.11.3392 57.11.3272 57.11.3272 57.11.3272	3.9 KOhm 2.7 KOhm 2.7 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF
Q301 Q310	50.03.0515 50.03.0436	BC 307 BC 237	PNP NPN	R76 R77 R78	57.11.3392	3.9 KOhm 3.9 KOhm 2.7 KOhm	1%, 0.25W, MF 1%, 0.25W, MF
2311 2320	50.03.0515 50.03.0436	BC 307 BC 237	PNP NPN	R79 R80	57.11.3272 57.11.3392	2.7 KOhm 3.9 KOhm	1%, 0.25W, MF 1%, 0.25W, MF
Q321 Q330	50.03.0515 50.03.0436	BC 307 BC 237	PNP NPN	R81 R82 R83	57.11.3392 57.11.3272 57.11.3152 57.11.3152 57.11.3152 57.11.3152 57.11.3152	3.9 KOhm 2.7 KOhm 1.5 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF
2331 2340	50.03.0515	BC 307 BC 237	PNP NPN	R84 R85 R86	57.11.3152 57.11.3152	1.5 KOhm 1.5 KOhm 1.5 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF

INPUT OUTPUT UNIT 1.775.070.00

MPUTOU	UIPUI	ו וואול.	775.070.00					· AFREN SCHOOL
AdPOS	REF.No	DESCRIPT	TIONMANUFACTURER	AdPOS	REF.No	DESCRIP	FION	MANUFACTURER
R89 R90	57.11.3152 57.11.3152 57.11.3152	1.5 KOhm 1.5 KOhm 1.5 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R184 R185 R186 R187 R188 R189	57.11.3821 57.11.3104 57.11.3472 57.11.3474 57.11.3153	820 Ohm 100 KOhm 4.7 KOhm 470 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R91 R92 R93 R94 R95 R96	57.11.3333 57.11.3333 57.11.3333 57.11.3333 57.11.3102	33 KOhm 33 KOhm 33 KOhm 33 KOhm 1 KOhm	1%, 0.25%, MF 1%, 0.25%, MF 1%, 0.25M, MF 1%, 0.25%, MF 1%, 0.25%, MF	K190	57.11.3153 57.11.3474	15 KOhm 15 KOhm 470 KOhm 100 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R96 R97 R98 R99 R100	57.11.333 57.11.333 57.11.333 57.11.3102 57.11.3102 57.11.3102 57.11.3103 57.11.3103	1 KOhm 1 KOhm 1 KOhm 10 KOhm 10 KOhm	1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF	R191 R192 R193 R194 R195 R196 R197 R198	57.11.3104 57.11.3472 57.11.5106 57.11.5106 57.11.5106 57.11.3104 57.11.3473	100 KOhm 4.7 KOhm 10 MOhm 10 MOhm 10 MOhm 10 MOhm 10 KOhm	1%, 0.25W, MF 10%, 0.25W, MF 10%, 0.25W, MF 10%, 0.25W, MF	
R101 R102		2.7 KOhm 2.7 KOhm 2.7 KOhm 2.7 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R197 R198 R199 R200	57.11.3224	100 KOhm 47 KOhm 220 KOhm 3 KOhm	10%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R104 R105 R106 R107 R108 R109 R110	57.11.3272 57.11.3272 57.11.3272 57.11.3272 57.11.3101 57.11.3101 57.11.3101 57.11.3101 57.11.3302 57.11.3474	100 Ohm 100 Ohm 100 Ohm 100 Ohm 3 KOhm	1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF	R201 R202 R203 R204	57.11.3474 57.11.3302 57.11.3474 57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3302	470 KOhm 3 KOhm 470 KOhm 3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R111	57.11.3302 57.11.3302 57.11.3302	470 KOhm 3 KOhm 3 KOhm 3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R203 R205 R205 R206 R207 R208 R209	57.11.3302 57.11.3302 57.11.3302 57.11.3302	3 KOhm 3 KOhm 3 KOhm 3 KOhm 3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R112 R114 R115 R116 R117 R118 R119 R120	57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3474 57.11.3302 57.11.3474 57.11.3302	3 KOhm 470 KOhm 3 KOhm 470 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R211	57.11.3302 57.11.3474 57.11.3302 57.11.3474	3 KOhm 3 KOhm 470 KOhm 3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R119 R120 R121 R122	57.11.3302 57.11.3302 57.11.3474 57.11.3302 57.11.3302	3 KOhm 3 KOhm 470 KOhm 3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R212 R214 R215 R216 R217 R218 R219	57.11.3302 57.11.3474 57.11.3302	470 KOhm 3 KOhm 470 KOhm 3 KOhm 3 KOhm 470 KOhm 470 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R123	57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3150 57.11.3150 57.11.3302 57.11.3302	3 KOhm 3 KOhm 3 KOhm 3 KOhm 3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R219 R220 R221 R222	57.11.3302 57.11.3474 57.11.3474 57.11.3302 57.11.3302	3 KOhm 3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R125 R126 R127 R128 R129 R130		15 Ohm 15 Ohm 3 KOhm 3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R221 R222 R223 R224 R225 R226 R227 R228 R229	57.11.3474 57.11.3302 57.11.3302 57.11.3302 57.11.3302	470 KOhm 3 KOhm 3 KOhm 3 KOhm 3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R131 R132 R133 R134 R135	57.11.3689 57.11.3689 57.11.3153 57.11.3471 57.11.3332	6.8 Ohm 6.8 Ohm 15 KOhm 470 Ohm 3.3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3302	3 KOhm 3 KOhm 3 KOhm 3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R 131 R 132 R 133 R 134 R 135 R 136 R 137 R 138 R 139 R 140	57.11.3471 57.11.3332 57.11.3332 57.11.3153 57.11.3471 57.11.3392 57.11.3132	3.3 KOhm 15 KOhm 470 Ohm 3.9 KOhm 1.3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R231 R232 R233 R234 R235 R236	57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3150	3 KOhm 3 KOhm 3 KOhm 3 KOhm 15 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
D 141	57.11.3132 57.11.3392 57.11.3392 57.11.3392	1.3 KOhm 3.9 KOhm 3.9 KOhm 3.9 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R237 R238 R239 R240	57.11.3150 57.11.3150 57.11.3150 57.11.3302	15 Ohm 15 Ohm 15 Ohm 3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R 141 R 142 R 143 R 144 R 145 R 146 R 147 R 148 R 149 R 150	57.11.3132 57.11.3392 57.11.3392 57.11.3392 57.11.3132 57.11.3132 57.11.3392 57.11.3392 57.11.3392 57.19.0330	1.3 KOhm 1.3 KOhm 3.9 KOhm 3.9 KOhm 33 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 5%, 0.33W Fusible Resistor /!\ 5%, 0.33W Fusible Resistor /!\	R241 R242 R243 R244 R245 R246	57.11.3302 57.11.3302 57.11.3302 57.11.3689 57.11.3689 57.11.3689	3 KOhm 3 KOhm 3 KOhm 6.8 Ohm 6.8 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R150 R151 R152 R153	57.19.0330 57.19.0330 57.19.0330 57.11.3102	33 Ohm 33 Ohm 33 Ohm 1 KOhm	5%, 0.33W Fusible Resistor /!\ 5%, 0.33W Fusible Resistor /!\ 1%, 0.25W, MF	R246 R247 R248 R249 R250	57.11.3689 57.11.3689 57.11.3474 57.11.3474 57.11.3472	6.8 Ohm 6.8 Ohm 470 KOhm 470 KOhm 4.7 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R151 R152 R153 R154 R155 R156 R157 R158 R159 R160	57.19.0330 57.19.0330 57.11.3102 57.11.3272 57.11.3272 57.11.3223 57.11.3223 57.11.323 57.11.3103	2.7 KOhm 1 KOhm 2.7 KOhm 22 KOhm 22 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R251 R252 R253 R254	57.11.3472 57.11.3472 57.11.3472 57.11.3472	4.7 KOhm 4.7 KOhm 4.7 KOhm 4.7 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R159 R160 R161 R162	57.11.5105	10 KOhm 10 KOhm 10 KOhm 10 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R255 R256 R257 R300	57.11.3472 57.11.3472 57.11.3472 57.11.3153	4.7 KOhm 4.7 KOhm 4.7 KOhm 15 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R161 R162 R163 R164 R165 R166 R167 R168 R169 R170	57.11.3103 57.11.3103 57.11.3103 57.11.3103 57.11.3103 57.11.3103 57.11.3339	10 KOhm 10 KOhm 10 KOhm 10 KOhm 3.3 Ohm	1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF	R301 R302 R303 R304 R310	57.11.3154 57.11.3181 57.11.3103 57.11.3103 57.11.3153	150 KOhm 180 Ohm 10 KOhm 10 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R168 R169 R170 R171 R172	57.11.3339 57.11.3339 57.11.3339 57.11.3339 57.11.3339	3.3 Ohm 3.3 Ohm 3.3 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R310 R311 R312 R313 R314 R320	57.11.3153 57.11.3154 57.11.3181 57.11.3103 57.11.3103 57.11.3153	15 KOhm 150 KOhm 180 Ohm 10 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R172 R173 R174 R175 R176 R177 R178 R179 R180	57.11.3339 57.11.3339 57.11.3339 57.11.3339 57.11.3223 57.11.3223 57.11.3322 57.11.3332 57.11.3332 57.11.3332	3.3 Ohm 3.3 Ohm 3.3 Ohm 22 KOhm 22 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	D 321	57.11.3154 57.11.3181	10 KOhm 15 KOhm 150 KOhm 180 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
		3.3 KOhm 3.3 KOhm 3.3 KOhm 3.3 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R322 R323 R324 R330	57.11.3103 57.11.3103 57.11.3153	10 KOhm 10 KOhm 15 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	
R181 R182 R183	57.11.3821 57.11.3102 57.11.3102	820 Ohm 1 KOhm 1 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R331 R332 R333 R334	57.11.3154 57.11.3181 57.11.3103 57.11.3103	180 Ohm 10 KOhm 10 KOhm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	

INPUT OUTPUT UNIT 1.775.070.00

			•••	
<u>AdPOS</u>	REF.No	DESCRIPTI	ON	MANUFACTURER
R340	57.11.3153	15 KOhm	1%, 0.25W, MF	
K111010	0,11110100	20 1,01111	20, 00200,	
R341	57.11.3154	150 KOhm	1%, 0.25W, MF	
R342	57.11.3181	180 Ohm	1%, 0.25W, MF	
R343	57.11.3103	10 KOhm	1%, 0.25W, MF	
R344 R350	57.11.3103 57.11.3153	10 KOhm 15 KOhm	1%, 0.25W, MF 1%, 0.25W, MF	
K330	57.11.5195	15 KOIIM	16, U.23K, HI	
R351	57.11.3154	150 KOhm	1%, 0.25W, MF	
R352	57.11.3181	180 Ohm	1%, 0.25W, MF	
R353	57.11.3103	10 KOhm	1%, 0.25W, MF	
R354	57.11.3103	10 KOhm	1%, 0.25W, MF	
R360	57.11.3153	15 KOhm	1%, 0.25W, MF	
D 261	E7 11 21E4	150 KOhm	10. 0 25H HE	
R361 R362	57.11.3154	180 KUTM 180 Ohm	1%, 0.25W, MF 1%, 0.25W, MF	
R362	57.11.3181 57.11.3103	10 KOhm	1%, 0.25W, MF	
R363		10 KOhm		
	57.11.3103	15 KOhm	1%, 0.25W, MF	
R370	57.11.3153	15 KUIIII	1%, 0.25W, MF	
R371	57.11.3154	150 KOhm	1%, 0.25W, MF	
R372	57.11.3181	180 Ohm	1%. 0.25W. MF	
R373	57.11.3103	10 KOhm	1%, 0.25W, MF	
R374	57.11.3103	10 KOhm	1%, 0.25W, MF	
R400	57.92.1121	22 Ohm	PTC 56V	
R401	57.92.1121	22 Ohm	PTC 56V	
R402	57.92.1121	22 Ohm	PTC 56V	
R403	57.92.1121	22 Ohm	PTC 56V	
\$300	55.12.1108	8x on/off	Switch	
T1	1.022.451.00		Input-Transformer 1:0,62	ST
Ť2	1.022.451.00		Input-Transformer 1:0,62	ST
T3	1.022.362.00		Output-Transformer 1:1,45	ST
Ť4	1.022.362.00		Output-Transformer 1:1,45	sŤ
1	110221002100		output Itunsionmen 2:2; io	٥.
TP1	54.02.0320		Flatpin 2.8*0.8, male	
W1	1.775.070.93		Wire List	
MF=Metal-fi	lm, El=Electroly	tic, Cer=Cer	amic, PETP=Polyester, PP=Polypro	pylen
MANUFACTURE	R: Mot=Motorola	, Ra=Raytheon	, ST=Studer	
	1 775 070 00	TN/OUTDUT UN	IT KG 92/01/2200	
	1.775.070.00	IN/OUTPUT ON	11 KG 92/01/2200	

50 EDITION: 20.2.1995

C.R. MONITOR UNIT 1.775.470.00

A

DISPLAY UNIT 1.775.311.00

DISPLAY UNIT 1.775.311.00

DISPLAY UNIT 1.775.311.00

54 EDITION: 20.2.1995

DISPLAY UNIT 1.775.311.00

R11 R12 R13 R14 R15 R16 R17 R18 R19		47 KOhm 150 Ohm 47 KOhm 150 Ohm 150 Ohm 150 Ohm 150 Ohm 47 KOhm	2%, 0.25M, MF 2%, 0.25M, MF	R109 R110 R111 R112 R113 R114 R115 R116 R117	57.11.4103 57.11.4103 57.11.4103 57.11.4102 57.11.4104 57.11.4104 57.11.5106 57.11.5106	10 KOhm 10 KOhm 10 KOhm 10 KOhm 1 KOhm 100 KOhm 100 KOhm 10 MOhm	2%, 0.25W, MF 2%, 0.25W, MF	
R20 R21 R22 R23 R24 R25 R27 R27 R28 R29 R30		150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm 10 KOhm 150 Ohm 150 Ohm 15 KOhm 15 KOhm	2%, 0.25W, MF	R118 R120 R122 R123 R124 R125 R126 R127 R127	57.11.4104 57.11.4104 57.11.4473 57.11.4332 57.11.4332 57.11.4104 57.11.4104 57.11.4103 57.11.4103	10 MOhm 10 MOhm 100 KOhm 100 KOhm 47 KOhm 3.3 KOhm 3.3 KOhm 100 KOhm 100 KOhm 10 KOhm 10 KOhm	2%, 0.25W, MF 2%, 0.25W, MF	
R31 R32 R34 R35 R36 R37 R38 R39 R40	57.11.4822 57.11.4153 57.11.4151 57.11.4473 57.11.4151 57.11.4151 57.11.4153 57.11.4151	8.2 KOhm 15 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm	2%, 0.25W, MF 2%, 0.25W, MF	R129 R130 R131 R132 R133 R134 R135 R136 R137	57.11.4272 57.11.5155 57.11.4103 57.11.4103 57.11.4123 57.11.4103 57.11.4103 57.11.4103 57.11.4103	2.7 KOhm 1.5 MOhm 10 KOhm 10 KOhm 12 KOhm 10 KOhm 10 KOhm 10 KOhm	2%, 0.25W, MF 5%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF	
R 41 R 42 R 43 R 44 R 45 R 46 R 47 R 48 R 49 R 50	57. 11. 4473 57. 11. 4151 57. 11. 4151 57. 11. 4151 57. 11. 4473 57. 11. 4151 57. 11. 4473 57. 11. 4151 57. 11. 4473 57. 11. 4151	47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm	2%, 0.25M, MF	R138 R139 R140 R141 RA1 RA2 RA3	57.11.4224 57.11.4104 57.11.4473 57.11.5155 58.01.8502 58.01.8503 58.01.8503	220 KOhm 100 KOhm 47 KOhm 1.5 MOhm 5 KOhm 50 KOhm 50 KOhm	2%, 0.25W, MF 2%, 0.25W, MF 2%, 0.25W, MF 5%, 0.25W, MF -10%, 0.50W, C -10%, 0.50W, C	
R51 R52 R53 R54 R55 R56 R57 R58 R59 R60	57.11.4473 57.11.4151 57.11.4473 57.11.4473 57.11.4151 57.11.4151 57.11.4473 57.11.4103 57.11.4222 57.11.4222	47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 150 Ohm 47 KOhm 10 KOhm 2.2 KOhm 2.2 KOhm	2%, 0.25W, MF	W2	MF=Metal Film	n ,NS≃National truments	Wire List 0.60MM,WIRE BRJ ic, PETP=Polyester Semiconductor T "ESE"	
R 61 R 62 R 63 R 64 R 65 R 67 R 68 R 69 R 70	57.11.4470 57.11.4101 57.11.4101 57.11.4211 57.11.4271 57.11.4331 57.11.4331 57.11.4561 57.11.4561	47 Ohm 100 Ohm 100 Ohm 180 Ohm 270 Ohm 390 Ohm 310 Ohm 100 Ohm 470 Ohm	2%, 0.25W, MF					
R71 R72 R73 R74 R75 R76 R77 R78 R79 R80	57.11.4821 57.11.4681 57.11.4681 57.11.4821 57.11.4821 57.11.4822 57.11.4122 57.11.4122 57.11.4122	820 Ohm 1 kOhm 680 Ohm 680 Ohm 820 Ohm 820 Ohm 1.2 KOhm 1.5 KOhm 1.2 KOhm	2%, 0.25W, MF					
R81 R82 R83 R84 R85 R86 R87 R88 R89 R90	57.11.4152 57.11.4822 57.11.4270 57.11.4270 57.11.4479 57.11.4270 57.11.4270 57.11.4270 57.11.4270 57.11.4270	1.5 KOhm 8.2 KOhm 180 Ohm 27 Ohm 4.7 Ohm 47 Ohm 27 Ohm 27 Ohm 27 Ohm 39 Ohm	2%, 0.25W, MF 2%, 0.25W, MF					
R91 R92 R93 R94 R95 R96 R97 R98 R99 R100	57.11.4471 57.11.4270 57.11.4271 57.11.4101 57.11.4181 57.11.4150 57.11.4151 57.11.4151 57.11.4151	470 Ohm 27 Ohm 270 Ohm 100 Ohm 180 Ohm 15 Ohm 100 Ohm 150 Ohm 156 Ohm 150 Ohm	2%, 0.25W, MF 2%, 0.25W, MF					
R101 R102 R103 R104 R105 R106 R107 R108	57.11.4330 57.11.4391 57.11.4560 57.11.4561 57.11.4471 57.11.4222 57.11.4103	33 Ohm 390 Ohm 56 Ohm 560 Ohm 470 Ohm 2.2 KOhm 120 Ohm	2%, 0.25M, MF 2%, 0.25M, MF					

CONNECTION UNIT 1.775.060.00

A

CONNECTION UNIT 1.775.060.00

CONNECTION UNIT 1.775.060.00

d pns									
9 00	REF.No	DESCRIPT	TIONMANUFACTURER	AdPOS	REF.No	DESCRIP	TION	MA	NUFACTURER
MP2 MP3 MP4			Connection Unit PCB Screening Nr. Label ESE Label	R800 R801 R802 R803	57.99.0250 57.99.0250 57.11.3103 57.11.3103	6.8 KOhm 6.8 KOhm 10 KOhm 10 KOhm	0.1%, 0.25W, MF 0.1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
P1 P2 R2 R3	54.21.2001 57.11.3689 57.11.3689 57.11.3689	6.8 Ohm 6.8 Ohm 6.8 Ohm	XLR XLR 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	R804 R805 R806 R807 R808 R809	57.11.3123 57.11.3102 57.11.3102 57.11.3271 57.11.3561 57.11.3150	12 KOhm 1 KOhm 1 KOhm 270 Ohm 560 Ohm 15 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF		
R4 R5 R6 R7 R8	57.11.3102 57.11.3102 57.11.3102	6.8 Ohm 1 KOhm 1 KOhm 1 KOhm 1 KOhm	1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF	R810 S1 S2	57.11.3150 55.12.0011 55.12.0006 1.022.417.00	15 Ohm	1%, 0.25W, MF 2*2u 3*2u		ST
R100 R101 R102 R103 R104	57.99.0250 57.11.3103 57.11.3103	6.8 KOhm 6.8 KOhm 10 KOhm 10 KOhm 12 KOhm	0.1%, 0.25M, MF 0.1%, 0.25M, MF 1%, 0.25M, MF 1%, 0.25M, MF	T200 T300 T400 T500 T600	1.022.417.00 1.022.417.00 1.022.417.00 1.022.417.00 1.022.417.00 1.022.417.00	1:3.16 1:3.16 1:3.16 1:3.16 1:3.16 1:3.16			ST ST ST ST ST ST ST
R105 R106 R107 R108 R109 R110	57.11.3123 57.11.3102 57.11.3102 57.11.3271 57.11.3561 57.11.3150 57.11.3150	1 KOhm 1 KOhm 270 Ohm 560 Ohm 15 Ohm 15 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	T800 XIC.100 XIC.200 XIC.300 XIC.400 XIC.500 XIC.500 XIC.700	1.022.417.00	1:3.16 8-pole 8-pole 8-pole 8-pole	IC-Socket IC-Socket IC-Socket IC-Socket		ST
R200 R201	57.99.0250 57.99.0250	6.8 KOhm	0.1%, 0.25W, MF 0.1%, 0.25W, MF	XIC.500 XIC.600 XIC.700	53.03.0166 53.03.0166 53.03.0166	8-pole 8-pole 8-pole	IC-Socket IC-Socket IC-Socket IC-Socket		
R202 R203 R204 R205 R206	57.11.3103 57.11.3103 57.11.3123 57.11.3102 57.11.3102 57.11.3271 57.11.3561 57.11.3150	10 KOhm 10 KOhm 12 KOhm 1 KOhm 1 KOhm 270 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	XIC.800 Input Channe Master Chann	1 1-8 : NO.				
R207 R208 R209 R210	57.11.3561 57.11.3150 57.11.3150	560 Ohm 15 Ohm 15 Ohm	1%, 0.25W, MF 1%, 0.25W, MF 1%, 0.25W, MF	MANUFACTUR	C=Ceramic, ER: Sig=Signet	•	er,EL=Electrolytio	c,PP=Polypropylen	
R300	57.99.0250	6.8 KOhm	0.1%, 0.25W, MF		1.775.060.00	CONNECTION	UNIT	KG 92/01/2200	
R301 R302 R303 R304 R305 R306 R307 R308 R309 R310	57.99.0250 57.11.3103 57.11.3123 57.11.3102 57.11.3102 57.11.3501 57.11.3561 57.11.3550 57.11.3150	6.8 KOhm 10 KOhm 10 KOhm 12 KOhm 1 KOhm 1 KOhm 270 Ohm 560 Ohm 15 Ohm	0.1%, 0.25M, MF 1%, 0.25M, MF	END →					
R400	57.99.0250	6.8 KOhm	0.1%, 0.25W, MF						
R401 R402 R403 R404 R405 R406 R407 R408 R409 R410	57.99.0250 57.11.3103 57.11.3103 57.11.3102 57.11.3102 57.11.3271 57.11.3561 57.11.3150 57.11.3150	6.8 KOhm 10 KOhm 10 KOhm 12 KOhm 1 KOhm 1 KOhm 270 Ohm 560 Ohm 15 Ohm	0.1%, 0.25M, MF 1%, 0.25M, MF						
R500	57.99.0250		0.1%, 0.25W, MF						
R501 R502 R503 R504 R505 R506 R507 R508 R509	57.99.0250 57.11.3103 57.11.3103 57.11.3102 57.11.3102 57.11.3271 57.11.3561 57.11.3150 57.11.3150	6.8 KOhm 10 KOhm 10 KOhm 12 KOhm 1 KOhm 1 KOhm 270 Ohm 560 Ohm 15 Ohm	0.1%, 0.25M, MF 1%, 0.25M, MF						
R600	57.99.0250	6.8 KOhm	0.1%, 0.25W, MF						
R601 R602 R603 R604 R605 R606 R607 R608 R609 R610	57.99.0250 57.11.3103 57.11.3123 57.11.3102 57.11.3102 57.11.327 57.11.3561 57.11.3150 57.11.3150	6.8 KOhm 10 KOhm 10 KOhm 12 KOhm 1 KOhm 1 KOhm 1 KOhm 270 Ohm 560 Ohm 15 Ohm	0.1%, 0.25M, MF 1%, 0.25M, MF						
R700	57.99.0250	6.8 KOhm	0.1%, 0.25W, MF						
R701 R702 R703 R704 R705 R706 R707 R708 R709 R710	57.99.0250 57.11.3103 57.11.3123 57.11.3102 57.11.3102 57.11.3271 57.11.3561 57.11.3150 57.11.3150	6.8 KOhm 10 KOhm 10 KOhm 12 KOhm 1 KOhm 1 KOhm 270 Ohm 560 Ohm 15 Ohm 15 Ohm	0.1%, 0.25W, MF 1%, 0.25W, MF						

D-TYPE CONNECTOR 1.775.035.15

60 EDITION: 20.2.1995