

SFB 680

Molecular Basis of Evolutionary Innovations

Molekulare Grundlagen evolutionärer Innovationen

Tobias Sikosek

University of Münster

The resolution of adaptive conflicts by functional promiscuity and gene duplication

Ongoing theoretical and experimental developments in the area of protein evolution emphasise the importance of functionally promiscuous, or multi-functional, ancestors and the possibility of proteins that can assume more than one stable structural state. A recently popularised model of protein evolution is the `Escape from an Adaptive Conflict' (EAC), a type of subfunctionalisation. This conflict of a single gene to adapt to more than one selection pressure can lead to a certain degree of multi-functionality prior to a gene duplication event. After duplication, the resulting paralogs are thought to specialise on different sub-functions of their ancestor. Here, using a simple biophysical protein model and taking structural stability as an indicator for biological activity, we demonstrate under which conditions adaptive conflicts on a dual fitness landscape can be resolved by multi-functionality, gene duplication and subfunctionalisation.

January 12, 2011 4:00 p. m.

Institute for Genetics, Lecture Hall, 4th floor

Hosts: Joachim Krug and Markus Porto

www.sfb680.uni-koeln.de

