which implies

$$\sum_{k=0}^{N} \alpha_k \left(|\Theta(x^k)| + \frac{\|t^k\|^2}{2} \right) \le \frac{1}{\beta} (\Phi_j(x^0) - \hat{y}_j), \quad \because \quad \theta(x^k) < 0.$$

Since the right-hand side of the above inequality is finite and inequality holds for any positive integer N, then we get

$$\sum_{k=0}^{\infty} \alpha_k \left(|\Theta(x^k)| + \frac{\|t^k\|^2}{2} \right) < \infty.$$

The above inequality implies the result of this lemma.

Theorem 4.1. Suppose that Φ is convex in component-wise sense (i.e., Φ is \mathbb{R}^m – convex) and the Assumption 1 holds. Then any sequence produced by Algorithm 3.1 converges to a WPOS $x^* \in \mathbb{R}^n$.

Proof. Since by Algorithm 3.1, $\{\Phi(x^k)\}$ is a component-wise decreasing sequence, then by assumption, there exists $\tilde{x} \in \mathbb{R}^n$ such that

$$\Phi(\tilde{x}) \le \Phi(x^k) \text{ for all } k = 0, 1, 2 \dots$$

$$(4.18)$$

It is observed that $0 < \alpha_k \le 1$ for all k, so

$$||x^{k+1} - x^k||^2 \le \frac{1}{\alpha_k} ||x^{k+1} - x^k||^2 \quad \text{for all } k = 0, 1, 2, \dots$$

$$\le \frac{1}{\alpha_k} ||\alpha_k t^k||^2 = \alpha_k ||t^k||^2 \quad \text{for all } k = 0, 1, 2, \dots \text{ } (\because x^{k+1} = x^k + \alpha_k t^k).$$

Therefore, by above inequality, (4.18), and Lemma (4.5) we obtained

$$\sum_{k=0}^{\infty} ||x^{k+1} - x^k||^2 \le \sum_{k=0}^{\infty} \alpha_k ||t^k||^2 < \infty.$$

Thus,

$$\sum_{k=0}^{\infty} \|x^{k+1} - x^k\|^2 < \infty. \tag{4.19}$$

Let us define $\tilde{L} = \{x \in \mathbb{R}^n : \Phi(x) \leq \Phi(x^k), \ k = 0, 1, 2, \ldots\}$. By the component-wise convexity of Φ and Lemma 4.3, for any $x \in \tilde{L}$ we have

$$||x - x^{k+1}||^2 \le ||x - x^k||^2 + ||x^k - x^{k+1}||^2$$
 for all $k = 0, 1, 2 \dots$

As \tilde{L} is non empty because $\tilde{x} \in \tilde{L}$, by (4.19) and the above inequality, it follows that $\{x^k\}$ is quasi-Fejer convergent to the set \tilde{L} . Then by Theorem 2.4, $\{x^k\}$ is bounded and hence $\{x^k\}$ has an accumulation point. Let x^* be one of them. Then by Lemma 4.4, $x^* \in \tilde{L}$. Then by Theorem 2.4, we observe that $\{x^k\}$ converges to x^* . Therefore, by Theorem 3.3, x^* is a critical point, and hence \mathbb{R}^m — convexity implies that x^* is a weak Pareto optimal solution for Φ .