Regles de Kirchhoff

Grup: 7 13

Cognoms: TEAVERIA MARTI

Lloc de treball (A1,B2...): C1 Nom: ALEJANDRA

Data 0 5 OCT. 2021

Qualificació:

Mesura de resistències i forces electromotrius

$R_1(200\Omega) = 202, 4.0$	$R_4(50\Omega) = 54,62$
$R_2(25\Omega) = 30 \Omega$	$R_{s}(200\Omega) = 203,602$
$R_3(100\Omega) = 104,9 \Omega$	$R_6(50\Omega) = 56.6\Omega$

$$\varepsilon_1 (15 \text{ V}) = 15,02 \text{ V}$$

 $\varepsilon_2 (5 \text{ V}) = 5,01 \text{ V}$

1. Intensitats teòriques i experimentals. Comprovació de la llei d'Ohm

11 = 56,2mA	$I_1^{ex} = 55,5 \text{ mA}$
12 = 37,8 mA	$I_2^{\text{ex}} = 39.0 \text{ mA}$
$I_3^k = 27.2 \text{m A}$	$I_3^{\rm ex} = 26.2 \mathrm{mA}$
1" = 45,6 mA	14 = 43, 5 mA
1 = 18,3 mA	1s = 18,0 mA

Vier = 11.16 V	$R_1I_1^{\rm ex} = 11,23 \text{ V}$
$V_2^{\rm ex} = O_1 916 \text{V}$	$R_2 I_2^{ex} = I_1 I I \lor$
	$R_3I_3^{ex} = 2.75 \text{ V}$
V4 = 2,32 V	$R_4 I_4^{ex} = 2.37 \vee$
V: = 3,64V	$R_sI_s^{ex} = 3.66 \vee$
Ver = 2,88 V	$R_6 I_6^{ex} = 3, 14V$

2. Verificació de les regles de Kirchhoff

Regla dels nusos

Nus A	$I_1^{ex} + I_3^{ex} = 81,7 \text{ mA}$	$I_2^{ex} + I_4^{ex} = 80,5 \text{ mA}$
Nus C	$I_5^{ex} + I_3^{ex} = 44,2mA$	14 = 43,5 mA

Regla de les malles

	$Ialla 1 \qquad R_1 I_1^{ex} + R_2 I_2^{ex} + R_6 I_1^{ex} = 15, \text{ us V} \qquad \qquad \varepsilon_1 = 15$	
Malla 2	$R_2 I_2^{ex} + R_3 I_3^{ex} = 3,85$ V	$R_5I_5^{ex} = 3,66V$
Malla 3	$R_4 I_4^{\text{ex}} + R_3 I_3^{\text{ex}} = 6 12 \text{ V}$	$\varepsilon_2 = 5.01 \text{ V}$

3. Comprovació del principi de conservació de l'energia

PR = 0,62 W	$P_{R_2} = O_1 O34 W$	PR. = 0,072 W	PR. = 0,103 W
PR. = 0,066 W			
$P_{R_1} + P_{R_2} + P_{R_4} + P_{R_4} + P_{R_5} + P_{R_6} = 1.069 \text{ W}$		$P_{\varepsilon_1} + P_{\varepsilon_2} = 1,05 \text{ W}$	

Date 04 . 10 . 2021

RACTICA 3. REGLES DE KIRCHHOFF

SALES OF SAL

$$R_1 = 200 \Omega$$
 $R_2 = 50 \Omega$
 $R_3 = 100 \Omega$ $R_6 = 50 \Omega$

MALLA 1: $200I_1 + 25I_2 + 50I_1 - 15 = 0$ $250I_1 + 25I_2 = 15$

MALLA 2: 2512 - 200 15 + 100 13 = 0

MALLA 3: 100 I3 + 50 14 - 5 = 0

 $100 I_3 + 50 I_4 = 5$

$$I_{1}-I_{2}+I_{3}-I_{4}=0$$

$$I_{3}-I_{4}+I_{5}=0$$

$$250I_{1}+25I_{2}=15$$

$$25I_{2}-200I_{5}+100I_{3}=0$$

$$100I_{3}+50I_{4}=5$$

 $I_1 = 56,21 \text{ mA}$ $I_2 = 37,87 \text{ mA}$ $I_3 = 27,22 \text{ mA}$ $I_4 = 46,56 \text{ mA}$ $I_5 = 18,34 \text{ mA}$

POTÉNCIES DISSIPADES (Pa = R. I2)

 $P_{R1} = P_1 \cdot I_1^2 = 200 \cdot (56, 21 \cdot 10^{-3})^2 = 0.63 W = 631.9 mW$ $P_{R2} = P_2 \cdot I_2^2 = 26 \cdot (31.81 \cdot 10^{-3})^2 = 0.035 W = 36.85 mW$ $P_{R3} = P_3 \cdot I_3^2 = 100 \cdot (21.22 \cdot 10^{-3})^2 = 0.014 W = 14.09 mW$ $P_{R4} = P_4 \cdot I_4^2 = 50 \cdot (45, 56 \cdot 10^{-3})^2 = 0.103 W = 103.8 mW$ $P_{R5} = P_5 \cdot I_5^2 = 200 \cdot (18.34 \cdot 10^{-3})^2 = 0.067 W = 61.23 mW$ $P_{R6} = P_6 \cdot I_1^2 = 50 \cdot (56.21 \cdot 10^{-3})^2 = 0.151 W = 157.98 mW$