$f\colon X \to Y$ - функция: $\forall x \in X, \exists !\ y = f(x) \in Y$, где X - область определения $f, \{y \mid \exists x \colon f(x) = y\}$ - область значений $f; \Gamma_f = \{(x,y) \mid y = f(x)\} \subset X \times Y$ - график;

Опр: 1. функция $f: X \to Y$ называется <u>инъекцией</u>, если $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, то есть не склеивает точки.

Рис. 1: Не инъекция

Пример: $x\mapsto x^2$ - не инъекция для всех чисел из \mathbb{R} , тогда как $x\mapsto x^3$ - инъекция

Опр: 2. функция $f: X \to Y$ называется сюръекцией, если область значений функции f совпадает с Y, то есть $\forall y \in Y, \exists \ x \in X \colon y = f(x)$.

 $x\mapsto x^2,\,X=\mathbb{R},\,Y=\mathbb{R}$ - не сюръекция так как нет отрицательной части; $x\mapsto x^2,\,X=\mathbb{R},\,Y=\mathbb{R}_+$ - сюръекция;

Рис. 2: Примеры сюръективности

Опр: 3. Функция $f: X \to Y$ называется биекцией, если f - инъекция и сюръекция одновременно, еще говорят - взаимно-однозначное соответствие.

Опр: 4. Если \exists биекция $X \to Y$, то говорят, что X и Y - равномощны.

Утв. 1. композиция биекций является биекцией: $f: X \xrightarrow{1\text{--}1} Y, g: Y \xrightarrow{1\text{--}1} Z \Rightarrow g \circ f: X \xrightarrow{1\text{--}1} Z$

 \square $\forall x_1 \neq x_2, x_1, x_2 \in X \Rightarrow f(x_1) \neq f(x_2) \Longleftrightarrow y_1 = f(x_1) \neq f(x_2) = y_2 \Rightarrow g(y_1) \neq g(y_2) \Rightarrow g \circ f$ - инъективна.

Так как f - биъективна, то весь Y - покрывается. Всеми элементами Y покрывается множество Z, так как g - биекция $\Rightarrow g \circ f$ - сюръекция.

Утв. 2. (существование) Если $f: X \to Y$ - биекция, то определяется функция из Y в X, сопостовляющая $\forall y \in Y$ такой элемент $x \in X$: y = f(x), эта функция называется обратной к f, обозначается f^{-1} и является биекцией.

 \square Поскольку f - сюръекция, то $\forall y \in Y, \exists x \in X,$ так как f - инъекция, то $\forall y \in Y, \exists ! x \in X \Rightarrow$ указанное сопостовление является функцией.

 f^{-1} - сюръекция, так как $\forall x \in X$ функция f сопостовляет $y \in Y$, то есть: $\forall x \in X, \exists y \in Y \colon x = f^{-1}(y)$ f^{-1} - инъекция, так как $\forall x \in X$ функция f сопостовляет ровно один $y \in Y$, то есть:

$$\forall y_1, y_2 \in Y : y_1 \neq y_2, \exists x_1, x_2 \in X : x_1 = f^{-1}(y_1) \neq f^{-1}(y_2) = x_2.$$

Рис. 3: Обратная функция

 $x \to y$: $y^2 = x$ - это не функция.

Взаимосвязь между функцией и обратной функцией:

- 1. f^{-1} существует так как f биекция;
- 2. f^{-1} инъективна так как f функция;
- 3. f^{-1} сюръективна по определению f как функции;

Построение обратной функции

Рассмотрим функцию $y=x^2$ - у неё нет обратной функции, так как это не биекция. Одному y сопостовляется несколько x.

Рис. 4: Функция без обратной функции

Как сделать так, чтобы была обратная функция? Можно договорится какой x берем для каждого y, например так:

Рис. 5: Способ выбора обратной функции

С точки зрения сопоставления $y \to x\colon x^2 = y$ - все хорошо. Рассмотрим немного другую функцию $y = x^2\colon \{x \ge 0\} \to \{y \ge 0\}.$

Рис. 6: Функция с обратной функцией

У этой функции есть биекция \Rightarrow по утверждению существует обратная функция $x = \sqrt{y}$ - обратная функция. Непонятно, сюръекция ли эта функция или нет? Очевидно, что это инъекция. Аналогично предыдущему примеру появился $\arcsin(.)$;

Построение обратной функции: либо функция сразу биекция, либо берется участок, где функция - биекция, а также должна проходится вся область значений, после этого строится обратная функция.

Группы

Пусть $X \neq \emptyset$, $G(X) = \{$ все биекции $f \colon X \to X \}$ на G(X) определена операция композиции $f \circ g$ - биекция, такая что:

- (1) $f \circ (g \circ h) = (f \circ g) \circ h$;
- (2) $e(x) = x, e \circ f = f \circ e = f;$
- (3) $\forall f, \exists f^{-1} : f^{-1} \circ f = f \circ f^{-1} = e;$

тогда говорят, что задана группа биекций.

Опр: 5. Если на множестве задана бинарная операция, удовлетворяющая условиям (1)-(3), то говорят, что задана группа.

Пример

Возьмем ($\mathbb{Q} \setminus \{0\}, \cdot$), знаем что:

- 1. $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c \in \mathbb{Q};$
- 2. $\exists 1: 1 \cdot a = a \cdot 1 = a, \forall a \in \mathbb{Q};$
- 3. $\forall a \in \mathbb{Q}, \exists ! a^{-1} : a^{-1} \cdot a = a \cdot a^{-1} = 1;$

следовательно это группа по умножению.

<u>Группа биекций</u> - это универсальная группа, то есть любую группу можно представить как группу биекций (Теорема Кэли). Также существует дополнительно свойство коммутативности:

4. $a \cdot b = b \cdot a$;

Оно не выполняется для группы биекций.

Упр. 1. Доказать, что G(X) - коммутативна \Leftrightarrow в X - не более 2-х элементов. (В общем случае G(X) не является абелевой группой).

Мощность множества

См. выше определение.

Утв. 3. Пусть $\{a,b\}\subset A$ тогда $A\setminus\{a\}$ равномощно $A\setminus\{b\}$.

 $\square \quad \text{Пусть } D = A \setminus \{a,b\} \Rightarrow A \setminus \{a\} = D \cup \{b\}, \ A \setminus \{b\} = D \cup \{a\}, \ f \colon A \setminus \{a\} = D \cup \{b\} \to A \setminus \{b\} = D \cup \{a\}$

Рассмотрим следующую функцию

$$f(x) = \begin{cases} x, & x \in D \\ a, & x = b \end{cases}$$

Легко заметить, что это наша искомая биекция. Проверим это: $y \in D \lor y = a \Rightarrow$ вся область значения покрывается \Rightarrow функция - сюръекция. $x_1 \neq x_2 \Rightarrow f(x_1) = x_1 \neq x_2 = f(x_2), \forall x_i \in D. \ x \neq a \Rightarrow f(x) = x \neq a = f(b), \forall x \in D \Rightarrow$ получаем инъекцию \Rightarrow заданная функция является биекцией.

Свойства равномощных множеств

Обозначение A равномощно $B \Leftrightarrow A \sim B$. Свойства равномощных множеств:

- (1) $A \sim A$ (тождественная биекция);
- (2) $A \sim B \Rightarrow B \sim A$ (так как обратная функция биекция);
- (3) $A \sim B \wedge B \sim C \Rightarrow A \sim C$ (так как композиция биекций биекция);

Обычно "мощность" не употребляют в контексте просто множества, так как это ведет к понятию множества всех множеств. Употребляют обычно "равномощно", поскольку мощность можно интерпретировать как класс эквивалентности "среди всех множест" - что не есть хорошо (получается множество все множеств).

Утв. 4.
$$\{k \in \mathbb{N} \mid k \le n\} \sim \{k \in \mathbb{N} \mid k \le m\}$$
, то $n = m$.

Интуитивно хочется поставить стрелочки и потом сказать "и так далее" - плохое объяснение.

Рис. 7: Сопоставление множеств

\square Индукцией по n:

<u>База</u>: $n=1 \Rightarrow$ пусть $m \neq 1$, f - биекция f: $\{k \leq n\} \rightarrow \{k \leq m\}$. Так как n=1, то $\{k \leq n\} = \{1\}$. Тогда $f(1) \neq m \lor f(1) \neq 1$, иначе они между собой равнялись бы $(m=1) \Rightarrow f$ - не сюръекция, так как область значений состоит из f(1) которая не равна m или $1 \Rightarrow$ не все элементы в образе - заметаются, то есть в $\{k \in \mathbb{N} | k \leq m\}$ будут элементы меньше $m \Rightarrow$ противоречие с тем, что f - биекция $\Rightarrow m=1$.

<u>Шаг</u>: Пусть доказано для n, докажем для n+1. Есть биекция $\{1,2,...,n,n+1\} \xrightarrow{f} \{1,2,...,m\}$.

Если m=1, то все доказано (см. базу): в этом случае возьмем обратную функцию, обратная функция - биекция и по утверждению из базы будет следовать, что n+1=1, но такое невозможно, так как 1 не является ни для кого следующей, поэтому $m \neq 1$ по утверждению в базе.

$$\{1,2,\ldots,n\}\xrightarrow{f}\{1,2,\ldots,m\}\setminus\{f(n+1)\}$$
 - убираем образ $n+1.$

Рис. 8: Убираем образ n+1

Не важно, что выбрасывать с точки зрения равномощности:

 $\{1,2,\ldots,n\} \xrightarrow{f} \{1,2,\ldots,m\} \setminus \{f(n+1)\} \sim \{1,2,\ldots,m-1\}$ по утверждению выше. Таким образом получим: $\{1,2,\ldots,n\} \sim \{1,2,\ldots,m-1\}$ \Rightarrow по предположению индукции получим, что n=m-1, добавляем единичку, получаем n+1=m

Onp: 6. Пустое множество \varnothing - является конечным и состоит из $\underline{0}$ элементов. Множество A является конечным и состоит из n элементов, если $A \sim \{1, 2, ..., n\}$.

Опр: 7. Бесконечное множество - множество, которое не является конечным множеством.

Rm: 1. Конечные множества - те, которые можно посчитать.

Примеры бесконечных множеств

Утв. 5. Множество натруальных чисел \mathbb{N} - бесконечно (не является конечным).

 \square (От противного): Пусть $\mathbb N$ - конечно $\Rightarrow \exists f$ - биекция $f \colon \{1,2,\ldots,m\} \to \mathbb N$. Возьмем натуральное число $f(1) + \ldots + f(m) + 1 > f(k), \forall k = 1,\ldots,m \Rightarrow f$ - не сюръекция. Значит множество натуральных чисел - бесконечно.

Утв. 6. Множество простых чисел - бесконечно.

Пусть есть биекция $f: \{1, ..., m\} \to \text{prime}$. Пусть $p_1, p_2, ..., p_m$ - все простые числа. Составляем новое $p_1 p_2 ... p_m + 1$ - больше любого из выписанных \Rightarrow это составное число \Rightarrow делится на какое-то простое, но это невозможно, так как оно не может делится ни на одно простое число \Rightarrow противоречие.

Опр: 8. Множество A - счетно, если $A \sim \mathbb{N}$. То есть элементы множества можно пересчитать.

Примеры счетных множеств

- 1. \mathbb{N} , биекция: $n \to n$;
- 2. $\mathbb{N} \setminus \{1\}$, биекция: $n \to n+1$;
- 3. \mathbb{Z} , данное множество состоит из $\{-n \mid n \in \mathbb{N}\}, \{0\}, \mathbb{N}$. Сопоставление: $0, 1, -1, 2, -2, 3, -3, \ldots \Leftrightarrow 1 \to 0, 2 \to 1, 3 \to -2, \ldots$;

Свойства счетных множеств

- (1) Если A счетно и $B \subset A$, то B конечно или счетно \Leftrightarrow не более, чем счетно (н.б.ч.с.).
- \square Все элементы A пересчитаны: $\{a_1, a_2, a_3, \dots\}$.

Если $B = \emptyset$ - все ок, так как пустое множество является конечным и состоит из 0 элементов.

Пусть $B \neq \emptyset$, положим, что $k_1 = \min\{k : a_k \in B\}$. Такое существует, так как в любом непустом подмножестве натуральных чисел есть наименьший элемент (аксиома индукции). Пусть $b_1 = a_{k_1} \Rightarrow$ если $B \setminus \{b_1\} = \emptyset$, то B - конечно \Rightarrow ok.

Если $B \setminus \{b_1\} \neq \emptyset$, то берем $k_2 = \min\{k : a_k \in B \setminus \{b_1\}\}$ и полагаем $b_2 = a_{k_2}$ и далее по аналогии.

Если уже построили $\{b_1,\ldots,b_n\}$, то либо $B\setminus\{b_1,\ldots,b_n\}=\varnothing$ и тогда построение закончено, или $B\setminus\{b_1,\ldots,b_n\}\neq\varnothing$ и определяем $k_{n+1}=\min\{k\colon a_k\in B\setminus\{b_1,\ldots,b_n\}\}$, полагая $b_{n+1}=a_{k_{n+1}}$ продолжаем по аналогии. Получаем набор $\{b_n\}$. Верно ли что $B=\{b_n\}$? (все ли элементы так прошли?)

Покажем, что $k_n \geq n$:

 $k_1 \ge 1$ - очевидно, так как берем натуральные числа. $k_{n+1} > k_n$ - так как берем каждый раз минимальный номер. По индукции, $k_n \ge n \Rightarrow k_{n+1} \ge n+1$ поскольку $k_{n+1} > k_n \ge n$ - строго больше n, то есть больше или равно n+1.

Если процедура закончилась, то по построению B - полностью перенумерован.

Предположим, что построение не прерывалось на конечном шаге (продолжалось бесконечно долго) и какой-то $a_m \in B$ не получил номера. Но так как мы выбирали каждый раз наименьшие номера $\Rightarrow k_n < m$, $\forall n$, но $k_{m+1} \geq m+1$ (Если какое-то число просмотрели \Rightarrow все выбираемые номера - меньше него, но меньше него есть только конечный набор чисел, а построение никогда не обрывалось \Leftrightarrow бесконечный набор чисел.) \Rightarrow противоречие.