5. Laboratorijska vaja

Potencial točkastega naboja

V tej vaji bomo računali električni potencial okrog točkastega naboja in ga prikazali grafično. Zaradi enostavnosti se bomo omejili na dvorazsežnostni prostor.

Besedilo naloge

Napiši program JavaScript, ki izračuna električni potencial v okolici točkastega naboja. Velikost potenciala naj program računa v točkah pravokotne dvorazsežnostne mreže in izračunane vrednosti shrani v dvorazsežnostno tabelo. Program sestavi iz podprograma za izračun razdalje med dvema točkama in podprograma za izračun vrednosti potenciala v odvisnosti od razdalje od točkastega naboja, ki ju napiši posebej.

Vhodna podatka programa naj bosta položaj (indeks vrstice in stolpca elementa tabele, kamor postavimo naboj) in jakost naboja.

Pomoč

Zamislimo si kartezični koordinatni sistem (KS) z izhodiščem v točki (0,0). Določimo, da bo naš koordinatni sistem viden le do meja $\pm 0,5$. Če si predstavljamo, je

```
skrajna zgornja leva točka definiranega sistema (-0.5,0.5), skrajna spodnja leva (-0.5,-0.5), skrajna spodnja desna (0.5,-0.5), ter skrajna zgornja desna točka (0.5,0.5).
```

Podatke o oddaljenosti posameznega elementa od poljubne točke v KS bomo shranili v dvorazsežno tabelo tab. Koliko bo velika, si zamislimo na začetku, najbolje v obliki spremenljivke, ki jo definiramo na začetku (npr.: dimtabele = 100). Na ta način bo predstavljal

```
tab[0][0] skrajno zgornjo levo
tab[99][0] skrajno spodnjo levo
tab[99][99] skrajno spodnjo desno
tab[0][99] skrajno zgornjo desno točko KS.
```

Koordinate položaja el. naboja v KS lahko zapišemo kot tabelo z dvema elementoma.

Podprogram razdalja () naj kot parametre sprejme tabelo z vpisanim položajem naboja ter lokacijo elementa v koordinatnem sistemu, za katerega želimo izračunati razdaljo do naboja. Na primer:

```
polozajNaboja = [4, 4];
r = razdalja(polozajNaboja, 0, 1); // vrne 5.000
r = razdalja(polozajNaboja, 8, 3); // vrne 4.123
```

Potencial v izbrani točki izračunamo po enačbi:

$$V(r,Q) = \frac{Q}{4\pi\varepsilon r}$$

Podprogram potencial () naj kot parametra sprejme velikost naboja in oddaljenost od naboja ter vrne velikost električnega potenciala na podani razdalji. Na primer:

```
Q = 1;
V = potencial(Q, r);
```

Program mora razdaljo in velikost električnega potenciala izračunati za vsako točko v želeni ravnini.

V spletni učilnici najdeš funkcijo pokaziPotenciale (), s katero lahko enostavno prikažeš izračunane potenciale. Ob predpostavki, da so izračunane vrednosti potencialov shranjene v tabeli tab, pokličeš funkcijo takole:

```
pokaziPotenciale(tab, dimtabele);
```

Dodatek (več nabojev) – za pogumne

Če imamo v prostoru več točkastih nabojev, je skupni potencial preprosto seštevek potencialov posameznih nabojev. Svoj program lahko nadgradiš tako, da bo izračunal električni potencial tudi v primeru, če na ravnino postavimo več različnih nabojev na različna mesta.