An Interactive Monitoring Tool for OpenFlow Networks

Wassapon Watanakeesuntorn Nara Institute of Science and Technology

- 1. Introduction
- 2. Design & Implementation
 - 1. Monitoring Module
 - 2. Visualization Module
 - 3. Security Analysis Module
- 3. Experimental Result
- 4. Conclusion

1. Introduction

- 2. Design & Implementation
 - 1. Monitoring Module
 - 2. Visualization Module
 - 3. Security Analysis Module
- 3. Experimental Result
- 4. Conclusion

Software-Defined Networking & OpenFlow

- SDN (Software-defined Networking) is a network technology that tries to provide centralized programmability of networks and simplify the management of a large scale network
- Decoupling data plane and control plane

Research Objectives

- Develop a monitoring tool for OpenFlow network
 - Monitor communication on control plane
 - Gather information into one place

Visualize information on web interface

- Network topology
- Flow tables
- Analyze security issues in network
 - DDoS detection

Approach

- Proxy monitoring between switch and controller
 - Without modify the implementation of the controller and switches

1. Introduction

2. Design & Implementation

- 1. Monitoring Module
- 2. Visualization Module
- 3. Security Analysis Module
- 3. Experimental Result
- 4. Conclusion

OpenFlow Interactive Monitoring Tool (Opimon)

OpenFlow Interactive Monitoring Tool (Opimon)

- 1. Introduction
- 2. Design & Implementation
 - 1. Monitoring Module
 - 2. Visualization Module
 - 3. Security Analysis Module
- 3. Experimental Result
- 4. Conclusion

- Lie between OpenFlow controller and OpenFlow switches
- Monitor the communication on control plane
- Collect the messages into database

- Two approaches to ensure the transparency of the monitoring process
 - Collecting all messages that are forwarded through the monitoring module
 - Injecting messages or packets explicitly from the monitoring module to query the information of the switches

- Two approaches to ensure the transparency of the monitoring process
 - Collecting all messages that are forwarded through the monitoring module
 - Injecting messages or packets explicitly from the monitoring module to query the information of the switches

- Two approaches to ensure the transparency of the monitoring process
 - Collecting all messages that are forwarded through the monitoring module
 - Injecting messages or packets explicitly from the monitoring module to query the information of the switches

- 1. Introduction
- 2. Design & Implementation
 - 1. Monitoring Module
 - 2. Visualization Module
 - 3. Security Analysis Module
- 3. Experimental Result
- 4. Conclusion

Visualization Module

- Visualization Server is used for processing raw collected data into JSON format
- Show information on web interface
 - Network topology
 - Switch information
 - Flow tables

Network Topology

Thu Aug 01 2019 02:36:51 GMT+0900 (Japan Standard Time)

Switch ID: 0x1

Switch Detail

Port	MAC Address	
1	36:95:e6:b8:dd:73	
 Received packets: 18 	35	Receive errors : 0
 Transmitted packets: 	79	 Transmit errors: 0
 Received bytes: 1415 	54	 Frame alignment errors: 0
 Transmitted bytes: 60 	078	 Packet with RX overrun: 0
 Packets dropped by F 	RX:0	CRC errors: 0
 Packets dropped by 1 	TX:0	Collisions : 0
2	ce:df:9f:6c:4e:51	
Received packets : 38	3	Receive errors : 0
 Transmitted packets: 	223	 Transmit errors: 0
 Received bytes: 2972 	2	 Frame alignment errors: 0
 Transmitted bytes: 17 	7034	 Packet with RX overrun: 0
 Packets dropped by F 	RX:0	 CRC errors: 0
 Packets dropped by 1 	TX:0	Collisions: 0
3	ea:81:ff:7b:52:1c	
65534	2e:9e:ec:57:97:4c	

Flow Table (Switch ID: 0x1)

Match	Actions
Wildcard : 3678454	Type: 0 (OFPActionOutput)
Switch Input Port: 1	 Switch Output Port: 2
Destination MAC Address : ca:bc:ea:68:53:f1	 Max Length: 65509
Idle Timeout: 0	
Hard Timeout: 0	
Wildcard: 3678454	Type: 0 (OFPActionOutput)
Switch Input Port: 2	 Switch Output Port: 1
Destination MAC Address: 46:1c:2a:5d:92:79	 Max Length: 65509
Idle Timeout: 0	
Hard Timeout: 0	

Kasetsart University, Nara Institute of Science and Technology

Visualization Tool

Web Interface

- 1. Introduction
- 2. Design & Implementation
 - 1. Monitoring Module
 - 2. Visualization Module
 - 3. Security Analysis Module
- 3. Experimental Result
- 4. Conclusion

Security Analysis Module

- Use machine learning techniques to detect DDoS attack
 - Support Vector Machine (SVM) and Deep Feed Forward (DFF) are used to compare the performance
 - Use DARPA dataset for training a machine learning model

Security Analysis Module Dataset

Dataset

- 2009 DARPA Intrusion Detection: Background traffic
- DARPA-2009 DDoS Attack-20091105: SYN flood DDoS attack

Number of samples

Dataset	DDoS attack	Normal	Total
Time window aggregated	335	365	700
Packet specific (S)	331	369	700
Packet specific (L)	481,903	518,097	1,000,000

Security Analysis Module Selected Features

Time Windows Aggregated Features

- 16 features: # of src/dst IPs, # of src/dst ports, etc.
- Aggregate packet information for a certain time window

Packet Specific Features

- 26 features: MAC, IP, port, Protocol, etc.
- Extract value of each packet

- 1. Introduction
- 2. Design & Implementation
 - 1. Monitoring Module
 - 2. Visualization Module
 - 3. Security Analysis Module

3. Experimental Result

4. Conclusion

Evaluation Methodology

- Evaluation of the monitoring module
 - Evaluation on international network testbed
 - Benchmarking of the monitoring tool
- Evaluation of the security analysis module
 - Accuracy of DDoS detection

Evaluation Methodology

- Evaluation of the monitoring module
 - Evaluation on international network testbed
 - Benchmarking of the monitoring tool
- Evaluation of the security analysis module
 - Accuracy of DDoS detection

Evaluation on International Network Testbed

- Evaluated the practical usage of the Opimon
 - Deployed into the real OpenFlow network
- PRAGMA-ENT was used to evaluate the tool

Evaluation on International Network Testbed

Evaluation Methodology

- Evaluation of the monitoring module
 - Evaluation on international network testbed
 - Benchmarking of the monitoring tool
- Evaluation of the security analysis module
 - Accuracy of DDoS detection

Benchmarking of the Monitoring Tool

- Evaluated the practical applicability of Opimon
- Cbench, a benchmarking tool for OpenFlow controllers
 - Act as switches and send packets to the controller

Benchmarking Result

- Latency: Increased for 70.09% with Opimon
- Throughput: Decreased for 82.52% with Opimon

Overhead comes from database connection and parsing messages

Evaluation Methodology

- Evaluation of the monitoring module
 - Evaluation on international network testbed
 - Benchmarking of the monitoring tool
- Evaluation of the security analysis module
 - Accuracy of DDoS detection

Accuracy of DDoS detection

- Performance comparison between Support Vector Machine (SVM) and Deep Feed Forward (DFF)
 - In terms of time and accuracy
- SVM: compare several kernels to find the best suitable
 - Polynomial kernel is used for the comparison
 - Provide the best accuracy among the compared kernels
- DFF: run with trial and error to find the best accuracy from the model

Accuracy of DDoS detection Evaluation Result

- DFF can provide better accurate of DDoS detection
- SVM can provide faster traffic classification

Model Performance			Time Used (s)		
Accuracy	Recall	Precision	F1-score	Train	Test
93.01%	0.922	0.933	0.927	371.118	0.003
92.58%	0.894	0.933	0.906	379.417	0.003
81.23%	0.927	0.756	0.826	138.260	0.500
Model Performance			Time Used (s)		
Accuracy	Recall	Precision	F1-score	Train	Test
61.30%	0.240	0.452	0.295	3.314	0.117
68.30%	0.366	0.922	0.504	3.438	0.115
	Accuracy 93.01% 92.58% 81.23% Accuracy 61.30%	Accuracy Recall 93.01% 0.922 92.58% 0.894 81.23% 0.927 Model Personal Recall 61.30% 0.240	93.01% 0.922 0.933 92.58% 0.894 0.933 81.23% 0.927 0.756 Model Performance Accuracy Recall Precision 61.30% 0.240 0.452	Accuracy Recall Precision F1-score 93.01% 0.922 0.933 0.927 92.58% 0.894 0.933 0.906 81.23% 0.927 0.756 0.826 Model Performance Accuracy Recall Precision F1-score 61.30% 0.240 0.452 0.295	Accuracy Recall Precision F1-score Train 93.01% 0.922 0.933 0.927 371.118 92.58% 0.894 0.933 0.906 379.417 81.23% 0.927 0.756 0.826 138.260 Model Performance Time Us Accuracy Recall Precision F1-score Train 61.30% 0.240 0.452 0.295 3.314

- 1. Introduction
- 2. Design & Implementation
 - 1. Monitoring Module
 - 2. Visualization Module
 - 3. Security Analysis Module
- 3. Experimental Result

4. Conclusion

Summary

- Develop a monitoring tool for OpenFlow network
 - Can be used without modify the controller
 - Overview OpenFlow network information in real-time
 - Detect DDoS in the OpenFlow network
 - Using machine learning techniques

Future Work

- Optimize monitoring performance
- Apply machine learning into the data plane and control plane dataset
 - Simulate the DDoS traffic for getting the control plane dataset

A&Q