Exam 1 Notes

Chapter 1

- Categorical: groups/categories (e.g., hair color)
- Quantitative: numerical values
 - o <u>Discrete</u>: countable set (# of siblings)
 - o Continuous: value within some interval (call time on hold)
- Population = parameter | Sample = statistic
- Explanatory = x | Response = y

Chapter 2

- . Describing a Distribution
 - o 1. Shape
 - o 2. Center
 - > mean(setName)
 - > median(setName)
 - > sort(setName) for mode
 - o 3. Spread
 - > fivenum(setName)
 - IQR = Q3 Q1
 - > quantile(setName)
 - Rank/order: > (n * Percentile) + 0.5
 - > sd(setName)
 - > var(setName) OR > sd(setName) ^ 2
 - 4. Outliers: anything outside (Q1 1.5IQR) / (Q3 + 1.5IQR)
- Graphs
 - Categorical
 - FIRST create a table: > tableName = table(setName)
 - Bar graph: > barplot(tableName)
 - Pie chart: > pie (tableName)
 - Quantitative
 - \blacksquare > plot(x,y)
 - > boxplot(setName horizontal = T)
 - > hist(setName)
 - > stem(setName)

Chapter 3

- Repeated values allowed: nr
- Permutations: ORDER is important
 - \circ $P_{r}^{n} = (n!) / (n-r)!$
 - o > factorial(n)
- Combination: unordered
 - o > choose(n, r)
- Relative Frequency
 - o P(E) = #(E elements) / (n observations)
- Probability Rules
 - $0 \le P(E) \le 1$ for each event E
 - o $P(\Omega) = 1$ (sample space)
 - P(∅) = 0
 - $\circ \quad \mathbf{P}(\mathbf{A}) = \mathbf{P}(\mathbf{A} \cap \mathbf{B}) + \mathbf{P}(\mathbf{A} \cap \sim \mathbf{B})$
 - \circ **P(A)** = P(A|B1) * P(B1) + P(A|B2) * P(B2) + ...
 - **Complement**: $P(A \cap \sim B) = P(A) P(A \cap B)$
 - $P(\sim A) = 1 P(A)$
 - $P(\sim(A \cup B)) = 1 (A \cup B)$
 - Addition: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - Multiplication: $P(A \cap B) = P(A) * P(B|A) = P(B) * P(A|B)$
 - \circ Conditional: $P(A|B) = P(A \cap B) / P(B) = P(A) * P(B|A) / P(B)$
- Disjoint (Mutually Exclusive) vs Independent
 - **Disjoint**: $P(A \cap B) = 0$
 - Independent: P(A) = P(A|B)

OR P(B) = P(B|A)

 $OR P(A \cap B) = P(A) * P(B)$

Chapter 4 - Distribution

- **E[X]** = > sum(x*y)
- E[X²] = > sum((x²)*y)
- Variance = var[X] = sd² = E[X²] E[X]²
- sd_x = sqrt(var[X])
- Probability values of P(X)/f(x) should add up to 1
- Binomial: (n trials, p prob of success)
 - X ~ binomial(n,p)
 - $\circ \quad P(X=x) = > \text{dbinom}(x,n,p)$

 - o P(X>x) = > 1 pbinom(x,n,p)
 - o Note (will be on given formula sheet)
 - µ/Mean = E[X] = n*p
 - σ^2 /Variance = Var[X] = np(1-p)
- Possion: (μ mean/avg)
 - X ~ poisson(µ)
 - O P(X=x) = > dpois (x, μ)
 - $\circ \quad \mathsf{P}(\mathsf{X}{<=}\mathsf{x}) = > \text{ppois}\,(\mathsf{x}\,,\mathsf{\mu})$
 - ο P(X>x) = > 1 ppois(x,μ)
- Hypergeometric: (m # success, n # fails, k sample size)
 - X ~ hyper(m,n,k)
 - 0 P(X=x) = > dhyper(x,m,n,k)
 - o P(X<=x) = > phyper(x,m,n,k)
 - Ex: X ~ hyper(m=20,n=15,k=5)
 - P(X>=2) = 1 P(X<=1) = 1 phyper(1,20,15,5)

Chapter 9 - LSLR

- Set X & Y:
 - \circ > x = c(2,8,8,13,16,19)
 - \circ > y = c(22,29,28,40,33,41)
- Scatterplot: > plot(x,y)
- Correlation Coefficient r: > cor(x,y)
- Coefficient of Determination r²: > cor(x,y) ^ 2
- LSLR: > xy.lm = lm(y~x)
 - > summary(xy.lm)
 - o **ŷ** = intercept + slope*x
 - slope = cor(x,y) * (sd(y)/sd(x))
 - o intercept = mean(y) slope*mean(x)
- Residual: > summary(xy.lm)
 - look at residual section of summary(lm)
 - o residual = observed y predicted y
- Is it a good model?
 - o r² > 0.8, GOOD
 - \circ r² < 0.5, NOT GOOD

Exam 2 Notes

Chapter 5 (Lec 9)

Types of Random Variables (Quantitative)

- o <u>Discrete</u>: countable set (finite or infinite sequence)
- o Continuous: value within some interval

Probability Distribution

- Discrete: probability mass function (pmf)
 - Provide probability for EACH VALUE
 - **pmf**, f(x) = P(X = x)

o Continuous: probability density function (pdf)

- Graph of an equation within an INTERVAL
- **pdf**, $f(x) \neq P(X = a) = \int_a^a f(x) dx = 0$ for all x $f(x) = P(a \le X \le b) = \int_a^b f(x) dx$
- Note: $-\infty \int_{-\infty}^{\infty} f(x) dx = 1$
- **cdf**, $F(x) = P(X \le x) \rightarrow \text{just plug in } x \text{ into } F(x)$

Uniform Distribution

o **pdf** of X is:
$$f(x) = 1 / (B-A)$$
, $A \le x \le B$
0, otherwise

o **cdf** of X is:
$$F(x) = 0$$
, $x < A$
 $(x - A) / (B-A)$ $A \le x \le B$

Using cdf F(x) for Probabilities

- \circ P(X > a) = 1 F(a)
- $\circ \quad \mathsf{P}(\mathsf{a} \leq \mathsf{X} \leq \mathsf{b}) = \mathsf{F}(\mathsf{b}) \mathsf{F}(\mathsf{a})$
- **cdf to pdf**: F'(x) = f(x) (pdf = derivative of cdf)

Chapter 5 (Lec 10)

Expected Values (Continuous Random Variables)

- $E(X) = \int_{-\infty}^{\infty} xf(x)dx$
- \circ E(h(X)) = $\int_{-\infty}^{\infty} h(x)f(x)dx$

Exponential Distribution

o **pdf**,
$$f(x) = \lambda e^{-\lambda x}$$
, $x \ge 0$

$$0, \qquad x < 0$$

$$\circ \quad \text{cdf, } F(x) = 1 - e^{-\lambda x}, \quad x \ge 0$$

- 0.
- \circ Mean / $\mu_v = E(X) = 1/\lambda$ \circ St dev = $1/\lambda$
- \circ Var(X) = $(1/\lambda)^2 = 1/\lambda^2$
- \circ X~exp(λ (= 1/ μ) = ?)
 - $P(X \le x) : > pexp(x, \lambda)$
 - Percentile: > qexp(x, λ)

Gamma Function

- $\circ \quad \Gamma(\alpha) = {}_{0}\int^{\infty} x^{\alpha-1} e^{-x} dx$
- Properties
 - For any $\alpha > 1$, $\Gamma(\alpha) = (\alpha-1)\Gamma(\alpha-1)$
 - For any positive int n, $\Gamma(n) = (n-1)!$
 - $\Gamma(1/2) = \sqrt{\pi}$

Gamma Distribution

$$\circ \quad \text{pdf}, \qquad \text{f}(x;\,\alpha,\beta) = \frac{\left(x^{\alpha^{-1}} \mathrm{e}^{-x\beta}\right)}{\beta} / \frac{\beta^{\alpha} \Gamma(\alpha)}{\beta} \qquad x \geq 0$$

$$\quad \text{otherwise / } x < 0$$

$X\sim gamma(\alpha,\beta)$

- $P(X \le x) : > pgamma(x, \alpha, 1/\beta)$
- \circ Note: **if** α = 1 $f(x; \alpha, \beta) = (e^{-x/\beta}) / \beta$, $X \sim \exp(\lambda = 1/\beta)$
- \circ E(X) = $u = \alpha\beta$
- \circ Var(X) = $\sigma^2 = \alpha \beta^2$

Normal Distribution

- o **pdf**, $f(x) = e^{-(x-\mu)^2/2\sigma^2} / sqrt(2\pi)\sigma$
- \circ X~N(μ , σ), E[X] = μ , sd(x) = σ
 - $P(X \le x) : > pnorm(x, \mu, \sigma)$

o Empirical Rule (68-95-99.7)

- $P(\mu-1\sigma < X < \mu+1\sigma) = 0.68$
- $P(\mu-2\sigma < X < \mu+2\sigma) = 0.95$
- $P(\mu-3\sigma < X < \mu+3\sigma) = 0.997$

Chapter 5 (Lec 11)

- Standard N.D. Z-score: # of standard deviations from mean
 - o The larger the |z| value, the more "unusual"
 - \circ Z = (X μ) / σ
 - \circ E[Z] = 0
 - \circ $\sigma(Z) = 1$
 - Z~N(μ=0,σ=1)
 - $P(Z \le x) : > pnorm(x, 0, 1)$
 - or refer to z-score table
 - **Inverse Normal**: finding obs value when given proportion Z~N(μ=0,σ=1)
 - - $P(Z \le x) : > qnorm(proportion, 0, 1)$
 - X~N(μ,σ)
 - $P(X \le x) : > qnorm(proportion, mean, sd)$

Binomial With Normal Distribution

- ο μ = np
- \circ $\sigma = \operatorname{sqrt}(\operatorname{np}(1-p))$
- o X~Binom(n,p): n trials, p probability of success
 - $P(X \le x) : > pbinom(x,n,p)$
- \circ X~N(μ =np, σ =sqrt(np(1-p)))
 - $P(Z \le x): > pnorm(x+0.5, \mu, \sigma)$

Recall

- $\circ \quad \mu_{X+Y} = E[X+Y] = E[X] + E[Y] = \mu_X + \mu_Y$
- $\circ \quad \mu_{X-Y} = E[X-Y] = E[X] E[Y] = \mu_X \mu_Y$
- INDEPENDENT X & Y
 - $\sigma^2_{X+/-Y} = Var[X+/-Y] = Var[X] +/- Var[Y] = \sigma^2_X +/- \sigma^2_Y$
- o DEPENDENT X & Y
 - $\sigma^{2}_{X+Y} = Var[X+Y] = \sigma^{2}_{X} + \sigma^{2}_{Y} + 2cov(X,Y)$

Chapter 6 (Lecture 12)

• Sampling Distribution (for sample mean x)

- o Characteristics:
 - Shape, center, spread
- \circ $\mu_{x} = \mu = E[\bar{x}]$
- \circ $\sigma_{\bar{x}} = \sigma / \operatorname{sgrt}(n)$
- \circ Var[\bar{x}] = σ^2 / n
- \circ z = $(\bar{x}-\mu)/(\sigma/sqrt(n))$

• Shape: if population ~ $N(\mu, \sigma)$, THEN \bar{x} ~ $N(\mu, \sigma/\sqrt{n})$

- Central limit theorem: if we don't know about population, as long as (n > 30) then we can assume $\bar{x} \sim N(\mu, \sigma/\sqrt{n})$ [use CLM to assume shape is normal]
- $\bar{\mathbf{x}} \sim \mathbf{N}(\mu, \sigma/\sqrt{\mathbf{n}})$
 - $\blacksquare P(\bar{X} \leq x) : > pnorm(x, \mu, \sigma \sqrt{n})$

• Sample Proportions (p)

- \circ $\hat{p} = X / n$ where x # of success, n # of obs (sample size)
- \circ $\mu_{\hat{p}} = E(\hat{p}) = p$
- o $\sigma_{\hat{p}} = \operatorname{sqrt}(p(1-p) / n)$
- $\sigma^{2}_{\hat{p}} = Var(\hat{p}) = p(1-p) / n$
- o **10% Condition**: rand and ind when samp size ≤ 10% pop
- o Success/Failure Condition: normal distribution IF successes (np) \geq 10 & fails (n(1-p)) \geq 10
- o $\hat{p} \sim N(\mu, \sigma = sqrt(p(1-p) / n))$
 - $P(\bar{X} \leq x) : > pnorm(x, \mu, \sigma)$

Chapter 7 (Lec 13-14) Confidence Interval

Statistical Inference

- Estimation & hypothesis testing (NOT mutually exclusive)
 - \blacksquare $E(\bar{x}) = \mu$ → unbiased estimator
 - $E(\hat{p}) = p$ → unbiased estimator
 - → biased estimator \blacksquare E(s²) \neq σ ²

Standard Error: $SE(SE(\theta^*) = sqrt(Var(\theta^*))$

- $SE(\bar{x}) = \sigma/sqrt(n)$
- \circ SE(\hat{p}) = sqrt(p(1-p)/n)

Confidence Interval

- 1. Get level of confidence
- Compute margin of error
- Interpret: We are "_"% confident that the "population parameter" is between "lower limit" and "upper limit"
- NOTE: higher CI → wider interval/larger M.E.

Z-Distribution: σ is KNOWN – CI for μ

$$\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

- o X: sample mean
- o z_{a/2}: critical value
- \circ 1- α : confidence level
- σ: population standard deviation
- o n: sample size
- ∘ $z_{\alpha/2}(\sigma/\sqrt{n})$: margin of error

• CI: > xbar + c(-1,1) * qnorm(...) *
$$\sigma/\sqrt{n}$$

- Critical value: $Z_{\alpha/2}/Z^* = > qnorm((1+C)/2)$
- Margin of Error: m/me = critical value * SE
 - $m = z_{\alpha/2}^*(\sigma/\sqrt{n})$ OR m = width/2
- <u>T-Distribution</u>: σ is UNKNOWN (only sd from sample)

$$\bar{x} \pm t_{\alpha/2,n-1} \left(\frac{s}{\sqrt{n}} \right)$$

- Depends on degrees of freedom (df = n-1)
- CI: > xbar + c(-1,1) * qt(...) * s/\sqrt{n}
 - Critical value: t = > qt((1+C)/2, df)
 - $= t = (\bar{x} \mu) / (s/sqrt(n))$

Sample Size (based on CI and Mean)

$$n > \left(\frac{Z_{\alpha/2}\sigma}{m}\right)$$

- **Proportions:** CI for proportions/percentages
 - Conditions:
 - Population must be ≥ 10 times size of sample
 - #successes $(n\hat{p}) \ge 10 \& \#fails (n(1-\hat{p})) \ge 10$

$$\hat{\rho} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- CI: > p+c(-1,1)*qnorm(...)*sqrt(p*(1-p)/n)
- Sample Size (based on CI and Proportion)

$$n > p^*(1-p^*)\left(\frac{Z_{\alpha/2}}{m}\right)^2$$

- Distribution for Variance/SD: chi-square distribution
- $X^2 = (n-1)s^2 / \sigma^2$

 - $0 \quad P(X^2 > c) = x: > qchisq(1-x, df)$
- Confidence Interval Chi-Square (Var & SD)
 - \circ CI for s^2 = variance
 - lcl: $((n-1)*s^2)/qchisq(1-(\alpha/2), n-1)$
 - ucl: $((n-1)*s^2)/qchisq(\alpha/2, n-1)$
 - **CI for Standard Deviation**
 - lcl: $sqrt[((n-1)*s^2)/qchisq(1-(\alpha/2), n-1)]$
 - ucl: $sqrt[((n-1)*s^2)/qchisq(\alpha/2, n-1)]$

Chapter 8 (Lec 15) Hypothesis Test

Hypothesis/Significance Test

- 1. Check Assumptions
 - An SRS of size n from the population
 - Z-test (know σ) OR T-test (unknown σ)
 - Either a Normal pop. or a large sample ($n \ge 30$)

2. State Null Hypothesis (H₀) & Alternative Hypothesis (H_a)

- H_0 : μ = "value" assumed to be true
- H_a: µ ≠ "value" assumed to be true
 - left-tailed test H_a: μ < μ₀
 - right-tailed test H_a : $\mu > \mu_0$
 - **two-tailed** test \mathbf{H}_a : $\mu \neq \mu_0$ ("different")
- 3. Rejection region (graph & label critical value)
 - SKIP IF ALPHA IS NOT GIVEN
 - LTT: $\mu < \mu_0$, reject region is in the left tail
 - CV: > qnorm(α) OR qt(α, n-1)
 - Reject H₀ if z ≤ CV
 - **RTT**: $\mu > \mu_0$, reject region is in the right tail
 - CV: > qnorm(1-α) OR qt(1-α, n-1)
 - Reject H₀ if z ≥ CV
 - $\overline{111}$: $\mu \neq \mu_0$, reject region is in both tails
 - CV: > qnorm(α/2)/qt(α/2, n-1) $qnorm(1-(\alpha/2))/qt(1-(\alpha/2), n-1)$
 - Reject H_0 if $z \ge CV \mid\mid z \le -CV$

4. Calculate Test Statistic (z-stat or t-stat)

Used to measure the difference between the data and what is expected on the null hypothesis

(σ is NOT known)

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

$$z = rac{ar{x} - \mu_0}{\sigma / \sqrt{n}}$$
 $t = rac{ar{x} - \mu_0}{s / \sqrt{n}}$

5. Find P-value (probability)

- Based on significance level (a)
 - H_a : $\mu < \mu_0$, then P-value = P(Z < test statistic)
 - H_a : $\mu > \mu_0$, then P-value = P(Z > test statistic)
 - H_a : $\mu \neq \mu_0$, then P-value = 2P(Z < test statistic)
- Reject H_0 if P-value $\leq \alpha$ (can say that the data is statistically significant at level α)
- Fail to reject H_0 if P-value > α

6. Conclusion: 2 Possible Decisions of Test

- Reject H₀ in favor of H_a (RH0)
 - There is some/strong/very/extremely ...
- Fail to reject null hypothesis (FTRH0)
 - There is no evidence that ...
- (NEVER accept null hypothesis) ■ Conclude in context of problem w confidence of _%

Decision Errors:

Our Decision	Correct Condition		
	H_0 is true	H_0 is false	
Reject H ₀	Type I Error	Correct	
Fail to reject H ₀	Correct	Type II Error	

- \circ P(Type I Error) = α
- P(Type II Error) = β
- \circ Power = 1 β

Not Given α

- \circ If the P-value for testing H₀ is less than ... (reject H₀)
 - P < 0.1: some evidence that H₀ is false
 - P < 0.05: strong evidence that H₀ is false
 - P < 0.01: very strong evidence that H₀ is false
 - P < 0.001: extremely strong evidence that H_0 is false
- o If the P-value is greater than 0.1, we do not have any evidence that H0 is false (fail to reject H₀)

Chapter 8 (Lec 15) Hypothesis for Proportions

- Hypothesis
 - o H_0 : $p = p_0$
 - \circ $\mathbf{H_a}$: $\mathbf{p} \neq \mathbf{p_0}$
 - left-tailed test H_a: p < p₀
 - right-tailed test H_a: p > p₀
 - two-tailed test H_a: p ≠ p₀ ("different")

Conditions

- o Sample must be an SRS from the population of interest
- o Population must be at least 10 times the size of the sample
- Number of successes and the number of failures must each be at least 10 (both np̂ ≥ 10 and n(1 − p̂) ≥ 10).
- Note: p̂ = # of successes/# of observations = x/n
- Use **z-test statistic**: $z = (\hat{p} p_0) / \operatorname{sqrt}(p(1-p) / n)$
- > prop.test(x=575, n=1000, p=0.5,
 alternative="greater", correct=F)
 - x: # of successes, n: sample size, p: null hypothesis, alternative = c("two.sided", "less", "greater"),

Significance Test Summary

Parameter	μ given σ	μ not given σ	p proportions	
Null hypothesis	H_0 : $\mu = \mu_0$		$H_0: p = p_0$	
2. Alternative	Choose either $<$, $>$, or \neq in pla		ace of $=$ in H_0 .	
3. Rejection Region	$Z_{\alpha/2}$	$t_{\alpha/2}$ with df = n - 1	$Z_{\alpha/2}$	
Depending on H_a .	,	,	,	
4. Test statistic	$Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$	$t=rac{ar{x}-\mu_0}{rac{ar{s}}{\sqrt{n}}}$	$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	
5. P-value	pnorm(z)		pnorm(z)	
This is the area under the density curve shaded according to H_a .				
6. Decision	Reject H_0 if P-value $\leq \alpha$			
	Fail to reject H_0 if P-value $> \alpha$			

Chapter 10 (Lec 16) Inferences on 2 Groups

Matched Pairs t-Test

- o Data samples are DEPENDENT of each other
- o <u>Hypothesis</u>:
 - H_0 : $\mu_d = 0$ & H_a : $\mu_d \neq 0$, $\mu_d > 0$, $\mu_d < 0$
 - μ_d is the mean of differences
- Confidence Interval: x̄_d ± t * (s_d / sqrt(n))
 - $\bar{\mathbf{x}}_d$ = add differences / n
 - \blacksquare $s_d = sd(differences)$
 - t = qt((1+C)/2, n-1)
- o Rcode:
 - > setA=c(1, 2, ...)
 - > setB=c(1, 2, ...)
 - > t.test(setA,setB,alternative="?",
 conf.level = ?, paired = TRUE)

• 2 Two-Population Inference

- o Data samples are INDEPENDENT of each other
- o Interval of Estimation:
 - Point Estimate: $\bar{x}_1 \bar{x}_2$
 - Confidence level: $1 \alpha = C$
 - Critical value: t* = qt((1+C)/2,df).
 - Margin of Error: $E = t*sqrt(s_1^2/n_1 + s_2^2/n_2)$
 - Confidence Interval: point estimate ± margin of error
 - $\blacksquare CI = \bar{x}_1 \bar{x}_2 + c(-1,1) + qt((1+C)/2, df) + sqrt(s_1^2/n_1 + s_2^2/n_2)$
- <u>Conclusion</u>: we are ?% confident that the difference in mean (subject)? of (setA) vs (setB) is between (LB) and (UB).

Two Sample t-Test (Comparing <u>Two Means</u>)

- o Data samples are INDEPENDENT of each other
- o Hypothesis:
 - H_0 : $\mu_1 = \mu_2$ & H_a : $\mu_1 \neq \mu_2$, $\mu_1 > \mu_2$, $\mu_1 < \mu_2$
- $o t = (\bar{x}_1 \bar{x}_2) / sqrt(s_1^2/n_1 + s_2^2/n_2)$
- o Rcode:
 - > setA=c(1, 2, ...)
 - > setB=c(1, 2, ...)
 - > t.test(setA,setB,mu=0,alternative="?")
- <u>Conclusion</u>: There is some/strong/very/extremely evidence that mean (subject) are significantly different (setA) vs (setB)

Comparing Two Proportions

- \circ X~Bin(n,p): $\hat{p} = (x/n) \mid E(\hat{p}) = p \mid SD(\hat{p}) = sqrt(p(1-p)/n)$
- o <u>Hypothesis</u>:
 - H_0 : $p_1 = p_2$ & H_a : $p_1 \neq p_2$, $\mu_1 > p_2$, $p_1 < p_2$
- o Interval of Estimation
 - Point Estimate: $\hat{p}_1 \hat{p}_2 = \bar{x}_1/n_1 \bar{x}_2/n_2$
 - Confidence level: $1 \alpha = C$
 - Critical value: z* = qnorm((1+C)/2)

$$z = \frac{(\hat{\rho}_1 - \hat{\rho}_2) - (\rho_1 - \rho_2)}{\sqrt{\frac{\hat{\rho}_1(1 - \hat{\rho}_1)}{n_1} + \frac{\hat{\rho}_2(1 - \hat{\rho}_2)}{n_2}}}$$

- Confidence Interval: point estimate ± margin of error
- CI = $\hat{p}_1 \hat{p}_2 + c(-1,1)*qnorm((1+C)/2, df)*$ $sqrt(\hat{p}_1(1-\hat{p}_1)/n_1 + \hat{p}_2(1-\hat{p}_2)/n_2)$
- o Rcode:
 - > prop.test(x=c(x₁,x₂), n=c(n₁,n₂), conf.level = C, correct = FALSE)

Chapter 9 (Lec 17) LSRL

- $Y = \beta_0 + \beta_1 x + \epsilon$
 - o Y: dependent variable (response)
 - x: independent variable (explanatory)
 - β₀: population intercept
 - β₁: population slope
 - ε: error term
- residual = observed y predicted y
- LSLR: > xy.lm = lm(y~x)
 > summary(xy.lm)
- T Test Significance of β₁
 - <u>Hypotheses</u>: $\mathbf{H_0}$: $\beta_1 = 0$ // $\mathbf{H_a}$: $\beta_1 \neq 0$
 - \circ <u>Test statistic</u>: t = (β₁ β_{hypothesis}) / sd
 - o P-value: t distribution with n-2 degrees of freedom
 - Two-tailed: p-val = > 2 * pt(-t, df)
 - Decision: Reject H_0 if p-value $\leq \alpha$
 - <u>Conclusion</u>: If H₀ is rejected we conclude that explanatory variable x can be used to predict the response variable y
- Confidence Interval for β₁

$$b_1 \pm t_{\alpha/2,n-2} \times SE_{b_1}$$

- o t* (critical value): > qt((1+C)/2, df)
- o Cl: > confint(xy.lm, level=0.95)

Chapter 11 (Lec 18) More Than 2 Means

- More Than Two Means Test
 - Question: is there a "<u>statistically significant difference</u>" in the mean (subject) among the n (groups)?
 - Null hypotheses: mean (subject) is same among n means

$$\blacksquare \quad \mathsf{H}_0: \mu_{\mathsf{group1}} = \mu_{\mathsf{group2}} = \mu_{\mathsf{group}n} = \dots$$

- Alternative hypothesis: at least one of the mean (subject) among the n (groups) is different
- Conclusion: rejecting H₀ is evidence that the mean of at least one group is different from the other means

Formulas

- o Note:
 - \bar{X}_i = group mean
 - X = grand mean
 - M = total # of groups
 - N = total # of observations
- o SSTr: treatment sum of squares (between groups)

$$SS(betw) = \sum_{i=1}^{M} n_i (\bar{X}_{i.} - \bar{X}_{..})^2$$

o SSE: error sum of squares (residual)

$$SSE = SS(resid) = \sum_{i=1}^{M} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2 = \sum_{i=1}^{M} (n-1)S_i^2.$$

o SST: total sum of squares

$$SS(tot) = \sum_{i=i}^{M} \sum_{i=1}^{n_i} (X_{ij} - \bar{X}_{..})^2 = SS(betw) + SS(resid)$$

- F Test
 - Mean square for treatments is MSTr = SSTr / M-1
 - Mean square for error is MSE = SSE / N-M
 - Test statistic is F = MSTr / MSE
 - F distribution with parameters "numerator df" = M 1 and "denominator df" = N - M
- ANOVA Table (ANalysis Of VAriance)

Source of	degrees of	Sum of	Mean	F
Variation	freedom	Squares	Square	
Treatments	M - 1	SSTr	MSTr	MSTr MSE
Error	N - M	SSE	MSE	WIOL
Total	N - 1	SST		

- p-value = > 1 pf(f, M-1, N-M)
- Generate ANOVA: > anova (xy.lm)

Chapter 12 (Lec 19) Chi-Square

• Goodness of Fit Tests

- Tests how well sample proportions of categories "match-up" with the known population proportions
- o <u>Hypotheses</u>:
 - H₀: proportions are the same as what is claimed
 - H_a: at least one proportion is different than claimed
- <u>Test Statistic</u>: chi-square

Observed	Expected	(O-E) ²
Counts (O)	Counts (E)	_

$$\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

- Expected count = POP TOTAL count * proportion
- df = n-1
- P-val (X² ≥ test stat): > 1 pchisq(x,df)
- Chisq: > chisq.test(c(list of obs vals),
 p=c(list of props))
- <u>Conclusion</u>: fail to reject H₀, there is no evidence that the (subject) is difference from what (name) claims
- X² Test of Independence (Significance Test)
 - o Hypotheses:
 - Null hypothesis: There is no association (independence) between row & column variables
 - Alternative hypothesis: There is an association (dependence) bt row variable and column variable
 - H₀: Airline & on-time performance are independent.
 H_A: On-time performance depends on airline.
 - o Test Statistic: chi-square

$$\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

- Expected count = (row total * col total) / TOTAL n
- df = (r-1)(c-1)
- P-val (X² ≥ test stat): > 1 pchisq(x,df)
- Chisq: > matrixName = matrix(c(...),
 nrow=?, ncol=?)

 Decision: if p-val less than α level of significance, we reject H₀ (dependence), otherwise fail to reject H₀(no association)