I checked DL's notes, and our scalings for \dot{I}_e/Ω_e as well as Ω_e at $\bar{A} \simeq 1$ agree. I will use DL notation when writing it up.

In this particular parameter regime, $A \simeq 1$ is not in the completely frozen regime, but it is also not in the oscillating regime as defined by DL's notes, as $e_{\text{max}} - e_{\text{min}} \ll 1$. I don't think the distinction ends up mattering for scaling purposes though.

1 Requested Plots

I have made many of these, but I attach just the ones for $I_0 = 90.5^{\circ}$ below, see Fig. 1. Of note:

- $\dot{\bar{I}}_{\rm e}$ is very smooth.
- I_e still nutates rather significantly at $A \simeq 1$.
- $T_{\rm LK}$ is defined even in the *e*-frozen regime as π/T_{ω} , where T_{ω} is the period of the ω orbital element.
- In panel 6, it is clear $\max \bar{I}_e/\Omega_e$ greatly overpredicts the final $\Delta\theta_e$ as expected, and that there is significant damping of fluctuations psat the maximum deviation ("narrowing" as described before, and "cancellations" in the DL explicit solution).
 - Interestingly, for $I_0 \gtrsim 90.35^\circ$, the shape of $\Delta\theta_e$ does not change any more (red dots) even as \dot{I}_e/Ω_e continues to decrease with increasing I_0 . This suggests some other mechanism is sustaining these oscillations. Note though that this does not affect the *final* $\Delta\theta_e$, which decreases with increasing I_0 .
- Following the results of the next section, the averaging in Panel 6 should be done over multiple LK periods. We average θ_e over $4T_{LK}$, following the approximate ratio in Panel 4.

2 Comment on Averaging Procedure

Consider the full form of the Hamiltonian

$$H = \mathbf{\Omega}_{e} \cdot \hat{\mathbf{S}}. \tag{1}$$

Here, $\Omega_{\rm e}$ is periodic with period $T_{\rm LK}$. Assume $\hat{\bf S}$ is also periodic with some period $T_{\rm S}$ (e.g. $\sim 2\pi/\bar{\Omega}_{\rm e}$). In general, these two periods are irrational, but for sufficiently large integers p,q, there will be a period T satisfying

$$T \approx pT_{\rm LK} \approx qT_{\rm S}.$$
 (2)

Consider averaging the Hamiltonian over interval T. Writing (note that $\hat{\mathbf{S}}_M$ must be complex, as $\hat{\mathbf{S}}$

Figure 1: Plot of interesting quantities, top 6 panels are for entire simulation while bottom 8 are zoomed in near $\bar{A} \approx 1$. For full description, see text.

Figure 2: Averaging over $T_{
m LK}$ and $2T_{
m LK}$ respectively.

is precessing; while $\Omega_{e,N}$ can be made real by choice of t)

$$\mathbf{\Omega}_{e} = \bar{\mathbf{\Omega}}_{e} + \sum_{N=1}^{\infty} \mathbf{\Omega}_{e,N} \cos\left(\frac{2\pi Nt}{T_{LK}}\right),\tag{3}$$

$$\hat{\mathbf{S}} = \left[\langle \hat{\mathbf{S}} \rangle + \sum_{M=1}^{\infty} \mathbf{S}_{M} \exp \left(i \frac{2\pi M t}{T_{S}} \right) \right], \tag{4}$$

$$\frac{1}{T} \int_{0}^{T} H \, \mathrm{d}t = \frac{1}{T} \int_{0}^{T} \left[\bar{\mathbf{\Omega}}_{\mathrm{e}} + \sum_{N=1}^{\infty} \mathbf{\Omega}_{\mathrm{e,N}} \cos \left(\frac{2\pi N q t}{T} \right) \right] \cdot \left[\langle \hat{\mathbf{S}} \rangle + \sum_{M=1}^{\infty} \mathbf{S}_{\mathrm{M}} \exp \left(i \frac{2\pi M p t}{T} \right) \right] \, \mathrm{d}t, \tag{5}$$

$$\langle H \rangle = \bar{\mathbf{\Omega}}_{e} \cdot \langle \hat{\mathbf{S}} \rangle + \frac{1}{2} \sum_{j=1}^{\infty} \mathbf{\Omega}_{e,jp} \cdot (\operatorname{Re} \mathbf{S}_{jq}).$$
 (6)

When the terms in the summation can be neglected, this reduces to the claim we have made: that $\langle \bar{\Omega}_e \cdot \hat{\mathbf{S}} \rangle$ is an adiabatic invariant, since

$$A \equiv \oint \cos \theta_{\rm e} \, \mathrm{d}\phi_{\rm e} \approx \Omega_{\rm e} \langle \cos \theta_{\rm e} \rangle. \tag{7}$$

This argument suggests that the correct timescale to average over is T, a near-integer multiple of both $T_{\rm LK}$ and $T_{\rm S} \simeq 2\pi/\bar{\Omega}_{\rm e}$.

Indeed, when using a grid of high-precision $I_0 = 90.5^{\circ}$ simulations, the maximum $\Delta\theta_e$ goes down by a factor of three when using $T = 2T_{\rm LK}$ (see Fig. 2). Initially, $T_{\rm LK} \approx 0.4706 \left(2\pi/\bar{\Omega}_e\right)$.

I suspect there is a good reason the summed terms in Eq. (6) can be neglected: $\langle \hat{\mathbf{S}} \rangle \parallel \bar{\mathbf{\Omega}}_{\mathrm{e}}, \mathbf{S}_{M} \perp \langle \hat{\mathbf{S}} \rangle$ while $\mathbf{\Omega}_{\mathrm{e},\mathrm{N}} \parallel \bar{\mathbf{\Omega}}_{\mathrm{e}}$ (only when the nutation of $\mathbf{\Omega}_{\mathrm{e}}$ is negligible), naively. I haven't been able to check whether this works yet. If the above claim is true, then conservation of θ_{e} depends on how much \bar{I}_{e} is nutating when $A \simeq 1$.