C 25. Given: Parallel planes P, Q, and R cutting transversals \overrightarrow{AC} and \overrightarrow{DF} ; AB = BC

Prove: DE = EF

(*Hint*: You can't assume that \overrightarrow{AC} and \overrightarrow{DF} are coplanar. Draw \overrightarrow{AF} , cutting plane Q at X. Using the plane of \overrightarrow{AC} and \overrightarrow{AF} , apply Theorems 3-1 and 5-10. Then use the plane of \overrightarrow{AF} and \overrightarrow{FD} .)

Self-Test 1

The diagonals of $\square ABCD$ intersect at Z. Tell whether each statement must be, may be, or cannot be true.

1.
$$\overline{AC} \cong \overline{BD}$$

2.
$$\overline{DZ} \cong \overline{BZ}$$

3.
$$\overline{AD} \parallel \overline{BC}$$

4.
$$m \angle DAB = 85$$
 and $m \angle BCD = 95$

- 5. List five ways to prove that quad. ABCD is a parallelogram.
- **6. a.** State a theorem that allows you to conclude that 3x 7 = 11.
 - **b.** Find the values of x and y.

7. Given: $\square ABCD$;

M is the midpoint of \overline{AB} .

Prove: $MO = \frac{1}{2}AD$

8. Given: $\square PQRS$;

 \overline{PX} bisects $\angle QPR$;

 \overline{RY} bisects $\angle SRP$.

Prove: RYPX is a \square .

