Datalogic Mobile, Inc.

Falcon 4410 or Falcon 4420

Report No. PSCI0322

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: January 25, 2010 Datalogic Mobile, Inc. Model: Falcon 4410 or Falcon 4420

Emissions			
Test Description Specification Test Method Pass/Fail			
Spurious Radiated Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:

Don Facteau, IS Manager

NVLAP

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200629-0 NVLAP LAB CODE 200630-0 NVLAP LAB CODE 200676-0 NVLAP LAB CODE 200761-0 NVLAP LAB CODE 200881-0

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Party Requesting the Test

Company Name:	Datalogic Mobile, Inc.
Address:	1505 Westec Drive
City, State, Zip:	Eugene, OR 97402
Test Requested By:	Jerry Kalina
Model:	Falcon 4410 or Falcon 4420
First Date of Test:	January 22, 2010
Last Date of Test:	January 25, 2010
Receipt Date of Samples:	January 22, 2010
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Handheld Scanner that contains a Wi-Fi radio.

Testing Objective:

To demonstrate compliance to FCC 15.247 radiated emissions requirements when using a new antenna.

EUT Photo

Configurations

CONFIGURATION 1 PSCI0322

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Antenna - Mini-Nanoblade Omni- Directional	Laird	Unknown	None		
802.11 Radio Module	Summit Data Communications	SDC-DF10G	Unknown		
Falcon Handheld Computer	Datalogic Scanning, Inc.	Falcon	F408303066		

Peripherals in test setup boundary					
Description	Description Manufacturer Model/Part Number Serial Number				
Bluetooth Radio	BlueGiga Technologies	WT12-A	Unknown		

Revision 4/28/03

	Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT	
1	1/22/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
2	1/25/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

 IT_{X}

POWER SETTINGS INVESTIGATED

Battery

FREQUENCY RANGE INVESTIGATED				
Start Frequency	30MHz	Stop Frequency	26.5GHz	

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
Spectrum Analyzer	Agilent	E4446A	AAQ	1/6/2010	13
Cable	ESM Cable Corp.	KMKM-72	EVY	11/3/2009	13
EV01 Cables		Standard Gain Horns Cables	EVF	11/13/2008	16
EV01 Cables		Double Ridge Horn Cables	EVB	7/10/2009	13
EV01 Cables		Bilog Cables	EVA	7/10/2009	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	5/19/2009	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	7/10/2009	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	7/10/2009	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/10/2009	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/10/2009	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
Antenna, Horn	ETS	3160-07	AHU	NCR	0
Antenna, Horn	EMCO	3115	AHC	8/12/2008	24
Antenna, Biconilog	EMCO	3141	AXE	1/14/2010	24

MEASUREMENT BANDWIDTHS						
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
	(MHz)	(kHz)	(kHz)	(kHz)		
	0.01 - 0.15	1.0	0.2	0.2		
	0.15 - 30.0	10.0	9.0	9.0		
	30.0 - 1000	100.0	120.0	120.0		
	Above 1000	1000.0	N/A	1000.0		
Measurements were made using the bandwidths and detectors specified. No video filter was used.						

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

