

IA70C20 8-Bit Microcontroller Data Sheet

Copyright © 2008 by Innovasic Semiconductor, Inc.

Published by Innovasic Semiconductor, Inc. 3737 Princeton Drive NE, Suite 130, Albuquerque, NM 87107

fido[®], fido1100[®], and SPIDER™ are trademarks of Innovasic Semiconductor, Inc. I2C™ Bus is a trademark of Philips Electronics N.V. Motorola® is a registered trademark of Motorola, Inc.

TABLE OF CONTENTS

1.	Featur	res	4
2.	Descr	iption	5
	2.1	CPU	
	2.2	Port A	6
	2.3	Port B	6
	2.4	Port C	7
	2.5	Port D	7
	2.6	Interrupt Controller	7
	2.7	Clock Controller	7
	2.8	Perf File	7
	2.9	Timer	7
	2.10	ROM	7
3.	Addre	essing Modes	10
	3.1	Single-Register Addressing Mode	11
	3.2	Dual-Register Addressing Mode	12
	3.3	Peripheral-File Addressing Mode	
	3.4	Immediate Addressing Mode	
	3.5	Program Counter Relative Addressing Mode	
	3.6	Direct Memory Addressing Mode	
	3.7	Register-File Indirect Addressing Mode	15
	3.8	Indexed Addressing Mode	16
4.	Instru	ction Overview	16
5.	DC C	haracteristics	24
6.		haracteristics	
7.		O Errata	
8.	Revis	ion History	27

1. Features

- Pin-for-pin compatible with Texas Instruments TMS70C20 CMOS 8-Bit Microcontroller.
- Register-to-register architecture.
- Up to 4K bytes On-Chip ROM.
- 128 bytes Internal RAM.
- 13-Bit Timer.
- Memory-mapped ports for easy adressing.
- Eight Addressing formats.
- Single-instruction BCD add and subtract.
- Two external maskable interrupts.
- Two power-down modes.

```
Wake-up (160 \square A at 1 MHz typical)
Halt, Xtal/clkin = gnd (1 \square A typical)
```

- CMOS technology.
- Operating Voltage: 5V ⁺/- 10 %.
- Operating Temperature: Industrial Range (-40°C to +85°C).
- Maximum Osc Frequency: 5 MHz.
- Available packages:

44-pin Plastic Leaded Chip Carrier package (PLCC). 40-pin, 600 mil, dual in-line package (DIP).

The IA70CX0 is a form, fit, and function replacement for the original Texas Instruments TMS70CX0 CMOS 8-Bit Microcontroller. The IA70CX0 incorporates a CPU, memory, bit I/O, timer, interrupts and external bus interface logic on a single chip. Typical applications for the IA70CX0 microcontroller include industrial, consumer, computer, telecom and automotive applications. InnovASIC's version of the microcontroller includes all the features listed above and is "plug and play" with the original Texas Instruments device.

InnovASIC produces replacement ICs using its MILESTM, or Managed IC Lifetime Extension System, cloning technology. This technology produces replacement ICs far more complex than "emulation" while ensuring they are compatible with the original IC. MILESTM captures the design of a clone so it can be produced even as silicon technology advances. MILESTM also verifies the clone against the original IC so that even the "undocumented features" are duplicated.

2. Description

The IA70C20 microcontroller replaces obsolete TI® TMS70C20 devices, allowing customers to retain existing board designs, software compilers/assemblers, and emulation tools, thereby avoiding expensive redesign efforts.

A block diagram of the 70C20 microcontroller is depicted in Figure 1.

Figure 1. IA70C20 Block Diagram

The 70C20 microcontroller consists of the following functional blocks:

- CPU
- Port A
- Port B
- Port C
- Port D
- Interrupt Controller
- Clock Controller
- Perf File
- Timer
- ROM

A brief description of each block follows:

2.1 CPU

The CPU block contains the microcode sequencer, the ALU, and the CPU registers. The microcode sequencer controls the process of reading and executing the microcode that enables the IA70C20 to execute assembly code. The ALU performs all of the logical and arithmetical operations for the device as required by the microcode. The CPU registers block contains basic information about the function of the IA70C20. The two registers are the 16 bit program counter (PC) and the 8 bit stack pointer (SP).

2.2 Port A

Port A is an 8 bit input only port. Pin A7 has a second function as the clock for the on-chip Timer/Event counter.

2.3 Port B

Port B is an 8-bit output port. Pins B3-B0 are general purpose bits while pins B7-B4 are dual function pins. When in single-chip mode these pins are general purpose bits, otherwise they are bus control bits.

2.4 Port C

In single-chip mode, Port C is an 8-bit bi-directional port in which each pin may be individually set to be either an input or an output under the control of software. In all other modes, Port C becomes a multiplexed address/data port for the off-chip memory bus providing the least significant byte of a 16-bit address.

2.5 Port D

In either single-chip or peripheral expansion mode, Port D is an 8-bit bi-directional port in which each pin may be individually set to be either an input or an output under the control of software. In either full expansion or microprocessor mode, Port D contains the most significant byte of the 16-bit address.

2.6 Interrupt Controller

There are four interrupt levels INT0-INT3, with INT0 having the highest priority. This block receives the external interrupt and alerts the CPU, enabling servicing of the interrupt. The interrupts are synced to the positive edge of x2_div_2, the divided clock.

2.7 Clock Controller

Generates two enable pulse signals, one at $\frac{1}{2}$ x2, and one at $\frac{1}{16}$ x2, to clock internal registers at varying speeds.

2.8 Perf File

Contains register file registers, data holding registers, and peripheral registers for port operations.

2.9 Timer

A programmable timer/event counter. It is an 8 bit modulo-n counter with a programmable pre-scaled clock source. INT2 is an internal interrupt used by the timers.

2.10 ROM

Customer specific 2K X 8 instruction ROM.

Hexadecimal Instruction Table/Opcode Map

Hig	gh	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
LOW	0	NOP								MOVP			TSTA/	MOV	MOV	JMP	TRAP
0000										Pn,A			CLRC	A,B	A,Rn		15
0001	1	IDLE								,	MOVP			TSTB	MOV	JN/	TRAP
											Pn,B				B,Rn	JLT	14
0010	2		MOV	MOV	MOV	MOV	MOV	MOV	MOV	MOVP	MOVP	MOVP	DEC	DEC	DEC	JZ/	TRAP
			Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,Pn	A,Pn	Pn,B	%n,Pn	A	В	Rn	JEQ	13
0011	3		AND	AND	AND	AND	AND	AND	AND	ANDP	ANDP	ANDP	INC	INC	INC	JC/	TRAP
			Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,Pn	A,Pn	B,Pn	%n,Pn	A	В	Rn	JHS	12
0100	4		OR	OR	OR	OR	OR	OR	OR	ORP	ORP	ORP	INV	INV	INV	JP/	TRAP
			Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,R	A,Pn	B,Pn	%n,Pn	A	В	Rn	JGT	11
0101	5	EINT	XOR	XOR	XOR	XOR	XOR	XOR	XOR	XORP	XORP	XORP	CLR	CLR	CLR	JPZ/	TRAP
			Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,R	A,Pn	B,Pn	%n,Pn	A	В	Rn	JGE	10
0110	6	Dint	BTJO	BTJO	BTJO	BTJO	BTJO	BTJO	BTJO	BTJOP	BTJOP	BTJOP	XCHB	XCHB	XCHB	JNZ/	TRAP
			Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,R	A,Pn	B,Pn	%n,Pn	A	В	Rn	JNE	9
0111	7	SETC	BTJZ	BTJZ	BTJZ	BTJZ	BTJZ	BTJZ	BTJZ	BTJZP	BTJZP	BTJZP	SWAP	SWAP	SWAP	JNC/	TRAP
			Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,R	A,Pn	B,Pn	%n,Pn	A	В	Rn	JL	8
1000	8	POP	ADD	ADD	ADD	ADD	ADD	ADD	ADD	MOVD	MOVD	MOVD	PUSH	PUSH	PUSH	TRAP	TRAP
		ST	Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,R	%n,Rn	Rn,Rn	%n,(B),	A	В	Rn	23	7
1001		aman	15.0	150	150	15.0	150					Rn	202	202	202		mn . n
1001	9	STSP	ADC	ADC	ADC	ADC	ADC	ADC	ADC				POP	POP	POP	TRAP	TRAP
1010		DETEC	Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,R	TDA	T.D.A	I D A	A	B	Rn	22	6 TD 4 D
1010	A	RETS	SUB	SUB	SUB	SUB	SUB	SUB	SUB	LDA	LDA	LDA	DJNZ	DINZ	DINZ	TRAP	TRAP
1011	D	DETI	Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,R	@n	*Rn	@n(B)	A	B	Rn	21 TD 4 D	5 TD 4 D
1011	В	RETI	SBB Rn,A	SBB %n,A	SBB Rn,B	SBB Rn,Rn	SBB %,n,B	SBB B,A	SBB %n,R	STA @n	STA *Rn	STA @n(B)	DECD A	DECD B	DECD Rn	TRAP 20	TRAP 4
1100	С		MPY	MPY	MPY	MPY	MPY	MPY	MPY	BR	BR	BR	RR	RR	RR	TRAP	TRAP
1100			Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,R	@n	*Rn	@n(B)	A A	B	Rn	1KAF 19	3
1101	D	LDSP	CMP	CMP	CMP	CMP	CMP	CMP	CMP	CMPA	CMPA	CMPA	RRC	RRC	RRC	TRAP	TRAP
1101	ע	LDGI	Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,R	@n	*Rn	@n(B)	A	В	Rn	18	2
1110	Е	PUSH	DAC	DAC	DAC	DAC	DAC	DAC	DAVC	CALL	CALL	CALL	RL	RL	RL	TRAP	TRAP
1110		ST	Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,R	@n	*Rn	@n(B)	A	B	Rn	17	1
1111	F	~ -	DSB	DSB	DSB	DSB	DSB	DSB	DSB				RLC	RLC	RLC	TRAP	TRAP
	-		Rn,A	%n,A	Rn,B	Rn,Rn	%,n,B	B,A	%n,R				A	В	Rn	16	0
						· · · · · ·						1	1				

A - Register A

Rn - Register File Register %n - Immediate Addressing

*Rn - Indirect Addressing

B - Register A

Pn - Peripheral File Register

@n - Direct Addressing

Signal	Piı	n	I/O	Description			
	PLCC	DIP					
A0	7	6	I	Port A. All pins may be used as high-impedance			
A1	8	7	I	input-only lines. Pin A7/EC1 may also be used as			
A2	9	8	I	the timer/event counter input.			
A3	10	9	I	·			
A4	11	10	I				
A5	18	16	I				
A6	16	15	I				
A7/EC1	12	11	I				
B0	3	3	О	Port B. B0-B7 are general-purpose output-only			
B1	4	4	O	pins. B4-B7 become memory-expansion control			
B2	5	5	O	signals in peripheral-expansion, full-expansion, and			
В3	41	37	O	microprocessor modes.			
B4/ALATCH	42	38	O	Data output/memory interface address latch strobe.			
B5/R/W	1	1	O	Data output/memory read/write signal.			
B6/ENABLE	43	39	O	Data output/memory interface enable strobe.			
B7/CLKOUT	2	2	О	Data output/internal clockout.			
C0	31	28	I/O	Port C. C0-C7 can be individually selected in			
C1	32	29	I/O	software as general-purpose input or output pins in			
C2	33	30	I/O	single-chip mode. C0-C7 become the LSB			
C3	34	31	I/O	address/data bus in peripheral-expansion, full-			
C4	35	32	I/O	expansion, and microprocessor modes.			
C5	36	33	I/O				
C6	37	34	I/O				
C7	38	35	I/O				
D0	30	27	I/O	Port D. D0-D7 can be individually selected in			
D1	29	26	I/O	software as general-purpose input or output pins in			
D2	27	24	I/O	single-chip or peripheral-expansion modes. D0-D7			
D3	26	23	I/O	become the MSB address/data bus in full-			
D4	25	22	I/O	expansion and microprocessor modes.			
D5	24	21	I/O				
D6	22	20	I/O				
D7	21	19	I/O				
INT1	14	13	I	Highest priority maskable interrupt			
INT3	13	12	I	Lowest priority maskable interrupt			
RESET	15	14	I	Device reset			
MC	40	36	I	Mode control pin, VCC for microprocessor mode			
XTAL2/CLKIN	19	17	I	Crystal input for control of internal oscillator			
XTAL1	20	18	О	Crystal ouput for control of internal oscillator			
VCC	28	25		Supply voltage (positive)			
VSS	44	40		Ground reference			
	39						
	23						

^{*} Also apply to SE70CP160A prototyping device.

3. Addressing Modes

IA70C20 assembly language supports eight addressing modes. These eight modes are listed in Table 1. A description of each mode follows the table.

Table 1. IA70C20 Addressing Modes

Addressing Mode		Example	
Single register	LABEL	DEC	В
		INC	R45
		CLR	R23
Dual register	LABEL	MOV	B , A
		ADD	A, R17
		CMP	R32, R73
Peripheral file	LABEL	XORP	A, R17
		MOVP	P42, B
Immediate	LABEL	AND	%>C5, R55
		ANDP	%VALUE, P32
		BTJO	%>D6, R80, LABEL

D	I ADEL 1	IMD	LADEI
Program counter relative	LABEL I	JMP	LABEL
		DJNZ	A, LABEL
		BTJO	%>16, R12, LABEL
		BTJOP	B, P7, LABEL
Direct memory	LABEL	LDA	@>F3D4
		CMPA	@LABEL
Register file indirect	LABEL	STA	*R43
Indexed	LABEL 2	BR	@LABEL (B)

3.1 Single-Register Addressing Mode

In single-register addressing mode, a single register denoted by Rn (n is the register file number in the range 0-127) containing an eight-bit operand is used. A and B can denote R0 and R1, respectively.

Figure 1 illustrates the object code generated by a single operand instruction for the following cases:

Figure 1. Single-Register Addressing Mode Object Code

3.2 Dual-Register Addressing Mode

In dual register addressing mode, instructions use a source and a destination register that each contain 8-bit operands. The source register is always listed prior to the destination register in the assembly language. Figure 2 illustrates the byte requirements for all dual addressing mode instructions.

Figure 2. Dual-Register Addressing Mode Byte Requirements

,			
	A	В	Rd
Source A		1	2
В	1		2
iop Rs	2	2	3
Rs	2	2	3
	_		

Bytes Needed for Move Instructions

Destination

Destii	nation
--------	--------

	A	В	Rd
Source A		2	3
В	1		3
iop Rs	2	2	3
Rs	2	2	3

Bytes Needed for All Other Instructions

3.3 Peripheral-File Addressing Mode

In peripheral-file addressing mode, instructions perform I/O tasks. Each PF register is an 8-bit port that can be referred to as Pn.

Four instructions use peripheral-file addressing mode:

- □ MOVP,
- □ ANDP,
- ORP, and
- □ XORP.

These instructions may use register A or B as the source register and Pn as the destination register. MOVP may also be executed using Pn as the source register and A or B as the destination register. (BTJOP and BTJZP are also peripheral-file instructions but they have a different format.) Figure 3 illustrates the byte requirements of the instructions using the peripheral-file addressing mode.

Figure 3. Peripheral-File Addressing Mode Byte Requirements

	D	estinati	ion	Destination
	A	В	Pd	Pd
Source A			2	Source A 3
В			2	B 3
iop			3	iop 4
Ps	2	2		
	Bytes	Neede	ed for	Bytes Needed for
AN	DP, O	RP, an	d MOV	P all BTJOP and BTJZP

3.4 Immediate Addressing Mode

In immediate addressing mode instructions use an immediate eight-bit operand. Either a constant value or a label preceded by a percent sign (%) can be used as the immediate value. The MOVD instruction uses 16-bit immediate operands in two special formats. Figure 4 illustrates the simplest case of an instruction using this mode.

Figure 4. Immediate Addressing Mode Object Code

3.5 Program Counter Relative Addressing Mode

All jump instructions use program counter relative addressing mode. A target address (ta) must be included in any assembly language jump instruction. The offset is calculated as follows: offset = ta - pcn, where **pcn** is the location of the next instruction and $-128 \le ta \le 127$. Figure 5 illustrates object code generated by a jump instruction.

Figure 5. Program Counter Relative Addressing Mode Object Code

3.6 Direct Memory Addressing Mode

The operand for a direct addressing mode instruction is located in memory. The location is indicated by a 16-bit address. The 16-bit address is preceded by an @ sign and can be written as a constant value or as a label. Figure 6 shows how the object code produced by an instruction using the direct memory addressing mode generates a 16-bit effective address.

Figure 6. Direct Memory Addressing Mode Object Code

3.7 Register-File Indirect Addressing Mode

A register pair containing a 16-bit effective address is used in register file indirect addressing mode. The indirect register file address is written as a register number (Rn) preceded by an asterisk (*), that is, *Rn. The LSB of the address is contained in Rn, and the MSB of the address is contained in the previous register (Rn-1). Figure 7 shows how the object code produced by an instruction using register file indirect addressing mode generates a 16-bit effective address.

Figure 7. Register-File Indirect Addressing Mode Object Code

3.8 Indexed Addressing Mode

In indexed addressing mode, a 16-bit address formed by adding the contents of the B register to a 16-bit direct memory address is used to access the operand. The assembly language statement for the indexed addressing mode contains the direct memory address written as a 16-bit constant value or a label, preceded by an @ sign and followed by a B in parentheses: @LABEL(B). The addition automatically transfers any carries into the MSB. Figure 8 illustrates how the object code produced by an instruction using the indexed addressing mode generates a 16-bit effective address.

Figure 8. Indexed Addressing Mode Object Code

4. Instruction Overview

Following is a listing of assembly language instructions for the IA70C20. Labels, mnemonics, operands, and comments must be separated by at least one space in the assembly code:

TMS7000 Family Instruction Overview

Mnemonic	Opcode	Bytes	Cycles	Status	Operation Description
			Tc(C)	CNZI	
ADC B,A	69	1	5	RRRx	$(s) + (Rd) + (C) \rightarrow (Rd)$
Rs,A	19	2	8		Add the source, destination, and
Rs,B	39	2	8		carry bit together. Store at the
Rs,Rd	49	3	10		destination.
%iop,A	29	2	7		
%iop,B	59	2	7		

	%iop,Rd	79	3	9		
ADD	B,A	68	1	5	RRRx	$(s) + (Rd) \rightarrow (Rd)$
	Rs,A	18	2	8		Add the source and destination
	Rs,B	38	2	8		operands at the destination address.
	Rs,Rd	48	3	10		
	%iop,A	28	2	7		
	%iop,B	58	2	7		
	%iop,Rd	78	3	9		
AND	B,A	63	1	5	0 R R x	(s) AND (Rd) \rightarrow (Rd)
	Rs,A	13	2	8		AND the source and destination
	Rs,B	33	2	8		operands together and store at the
	Rs,Rd	43	3	10		destination address.
	%iop,A	23	2	7		
	%iop,B	53	2	7		
	%iop,Rd	73	3	9		
ANDF	P A,Pd	83	2	10	0 R R x	(s) AND (Pd) \rightarrow (Pd)
	B,Pd	93	2	9		AND the source and destination
	%iop,Pd	A3	3	11		operands together and store at the
	_					destination address.

Legend: 0 Status bit set always to 0. 1 Status bit set always to 1

R Status bit set to a 1 or a 0 depending on results of operation.

X Status bit not affected.

b Bit () affected.

TMS7000 Family Instruction Overview (Continued)

Mnemonic	Opcode	Bytes	Cycles	Status	Operation Description
DD OV 1.1	٥٩	2	Tc(C)	CNZI	(1/1777) \ (100)
BR @Label	8C	3	10	XXXX	$(XADDR) \rightarrow (PC)$
@Label(B)	AC	3	12		The PC will be replaced with the
*Rn	9C	2	9		contents of the destination operand.
(1)				0 R R x	
BTJO B,A,Ofst	66	2	7 (9)		If $(s [Bit x]) AND (Rn [Bit x]) \neq 0$,
Rn,A,Ofst	16	3	10 (12)		then (PC) + offset \rightarrow (PC)
Rn,B,Ofst	36	3	10 (12)		If the AND of the source and
Rn,Rd,Ofst	46	4	12 (14)		destination operands $\neq 0$, the PC
%iop,A,Ofst	26	3	9 (11)		will be modified to include the
%iop,B,Ofst	56	3	9 (11)		offset.
%iop,Rn,Ofst	76	4	11 (13)		
(1)		_		0 R R x	
BJOP A,Pn,Ofst	86	3	11 (13)		If (s [Bit x]) AND (Pn [Bit x]) $\neq 0$,
B,Pn,Ofst	96	3	10 (12)		then (PC) + offset \rightarrow (PC)
%>iop,Pn,Ofst	A6	4	12 (14)		If the AND of the source and
					destination operands $\neq 0$, the PC
					will be modified to include the
					offset.
(1)				0 R R x	
BTJZ B,A,Ofst	67	2	7 (9)		If (s [Bit x]) AND NOT(Rn [Bitx])
Rn,A,Ofst	17	3	10 (12)		\neq 0, then (PC) + offset \rightarrow (PC)
Rn,B,Ofst	37	3	10 (12)		If the AND of the source and
Rn,Rf,Ofst	47	4	12 (14)		NOT(destination) operands $\neq 0$, the
%>iop,A,Ofst	27	3	9 (11)		PC will be modified to include the
%>iop,B,Ofst	57	3	9 (11)		offset.
%>iop,Rn,Ofst	77	4	11 (13)		
(1)				0 R R x	
BTJZP A,Pn,Ofst	87	3	11 (13)		If (s [Bit x]) AND NOT(Pn [Bitx]) \neq
B,Pb,Ofst	97	3	10 (12)		0 , then $(PC) + offset \rightarrow (PC)$
%>iop,Pb,Ofst	A7	4	12 (14)		If the AND of the source and
					NOT(destination) operands $\neq 0$, the
					PC will be modified to include the
					offset.
CALL @Label	8E	3	14	XXXX	$(SP) + 1 \rightarrow (SP)$
@Label(B)	AE	3	16		$(PC MSB) \rightarrow ((SP))$
*Rn	9E	2	13		$(SP) + 1 \rightarrow (SP)$
					$(PC LSB) \rightarrow ((SP))$
					$(XADDR) \rightarrow (PC)$
CLR A	B5	1	5	0 0 1 x	$0 \rightarrow (Rd)$
В	C5	1	5		Clear the destination operand.
Rd	D5	2	7		
CLRC	В0	1	6	0 R R x	$0 \rightarrow (C)$
					Clears the carry bit.

Legend:

Status bit set always to 0.Status bit set always to 1

R Status bit set to a 1 or a 0 depending on results of operation.

x Status bit not affected.

b Bit () affected.

TMS7000 Family Instruction Overview (Continued)

	Mnemonic	Opcode	Bytes	Cycles	Status	Operation Description
				Tc(C)	CNZI	
CMP	B,A	6D	1	5	RRRx	(Rn) – (s) computed but not stored
	Rn,A	1D	2	8		Set flags on the result of the source
	Rn,B	3D	2	8		operand subtracted from the destination
	Rn,Rn	4D	3	10		operand.
	%iop,A	2D	2	7		
	%iop,B	5D	2	7		
	%iop,Rn	7D	3	9		
CMPA		8D	3	12	RRRx	(A) – (XADDR) computed but not stored
	@Label(B)	AD	3	14		Set flags on result of the source operand
	*Rn	9D	2	11		subtracted from A.
DAC	B,A	6E	1	7	RRRx	$(s) + (Rd) + (C) \rightarrow (Rd) (BCD)$
	Rs,A	1E	2	10		The source, destination, and the carry bit
	Rs,B	3E	2	10		are added, and the BCD sum is stored at
	Rs,Rd	4E	3	12		the destination address. Contents on the s
	%>iop,A	2E	2	9		+ Rd operands initially need to be the
	%>iop,B	5E	2	9		BCD.
	%>iop,Rd	7E	3	11		
DEC	A	B2	1	5	RRRx	$(Rd) - 1 \rightarrow (Rd)$
	В	C2	1	5		Decrement destination operand by 1.
	Rd	D2	2	7		
DECD	A	BB	1	9	RRRx	$(Rd) - 1 \rightarrow (Rp)$
	В	CB	1	9		Decrement register pair by 1.C=0 on 0 –
	Rp	DB	2	11		FFFF transition
DINT		06	1	5	0000	$0 \rightarrow$ (global interrupt enable bit). Clear
						the I bit.
(1)					XXXX	
DJNZ	A,Ofst	BA	1	7 (9)		$(Rd) - 1 \rightarrow (Rd);$
	B,Ofst	CA	2	7 (9)		If $(Rd) \neq 0$,
	Rd,Ofst	DA	2	9 (11)		$(PC) + offset \rightarrow (PC)$
DSB	B,A	6F	1	7	RRRx	$(Rd) - (s) - 1 + (C) \rightarrow (Rd) (BCD)$
מטע	Rs,A	1F	2	10	KKKX	The source of the operand is subtracted
	Rs,A Rs,B	3F	2	10		from the destination; this sum is then
		F 4F	3	10		reduced by 1 and the carry bit is then
	Rs,Rd	2F	2	9		added to it. The result is stored as a BCD
	%>iop,A	2F 5F	2	9		number. Contents on the $s + Rd$ operands
	%>iop,B %>iop,Rd	7F	3	9 11		initially need to be BCD.
EINT	/0/10p,Ku	05	1	5	1111	2 → (global interrupt enable bit).
EHNI		03	1	3	1111	3 Set the I bit.
IDLE		01	1	6	XXXX	$(PC) \rightarrow (PC)$ until interrupt
ששעוו		01	1	J	АЛЛА	$(PC) + 1 \rightarrow (PC)$ after return from
						interrupt
						Stops µC execution until an interrupt.
		J]	στορό με ελεσατίοπ unui an interrupt.

Note: Add two to cycle count if branch is taken

Legend: Status bit set always to 0. 1 Status bit set always to 1

R Status bit set to a 1 or a 0 depending on results of operation.

Status bit not affected. X

b Bit () affected.

TMS7000 Family Instruction Overview (Continued)

Mnomonia Oncod					Operation Description	
Mnemonic	Opcode	Bytes	Tc(C)	C N Z I		
INC A	В3	1	5	RRRx	$(Rd) + 1 \rightarrow (Rd)$	
В	C3	1	5		Increase the destination operand by 1	
Rd	D3	2	7			
INV A	B4	1	5	0 R R x	$NOT(Rd) \rightarrow (Rd)$	
В	C4	1	5		1's complement the destination operand.	
Rd	D4	2	7			
JMP Ofst	D0	2	7	xxxx	$(PC) + offset \rightarrow (PC)$	
					The PC is modified by an offset to create	
					a new PC value.	
(1)				XXXX		
JC Ofst	E3	2	5 (7)		If conditions are met, then (PC) + offset	
JEQ Ofst	E2	2	5 (7)		\rightarrow (PC)	
JHS Ofst	E3	2	5 (7)		If the needed conditions are met, the PC	
JL Ofst	E7	2	5 (7)		is modified by the offset to form a new	
JN Ofst	E1	2	5 (7)		PC value.	
JNC Ofst	E7	2	5 (7)			
JNE Ofst	E6	2	5 (7)			
JNZ Ofst	E6	2	5 (7)			
JP Ofst	E4	2	5 (7)			
JPZ Ofst	E5	2	5 (7)			
JZ Ofst	E2	2	5 (7)			
LDA @Label	8A	3	11	0 R R x	$(XADDR) \rightarrow (A)$	
@Label(B)	AA	3	13		Move the source operand to A.	
*Rn	9A	2	10		_	
LDSP	0D	1	5	xxxx	$(B) \rightarrow (SP)$	
					Load SP with register B's contents.	
MOV A,B	C0	1	6	0 R R x	$(s) \rightarrow (Rd)$	
A,Rd	D0	2	8		Replace the destination operand with the	
B,A	62	1	5		source operand.	
B,Rd	D1	2	7			
Rs,A	12	2	8			
Rs,B	32	2	8			
Rs,Rd	42	3	10			
%>iop,A	22	2	7			
%>iop,B	52	2	7			
%>iop,Rd	72	3	9			
MOVD %>iop,Rp	88	4	15	0 R R x	$(s) \rightarrow (Rd)$	
%>iop(B),Rp	A8	4	17		Copy the source register pair to the	
Rp,Rp	98	3	14		destination register pair.	
MOVP A,Pd	82	2	10	0 R R x	$(s) \rightarrow (Pd) \text{ or } (Ps) \rightarrow (d)$	
B,Pd	92	2	9		Copy the source operand into the	
%>iop,Pd	A2	3	11		destination operand.	
Ps,A	80	2	9			
Ps,B	91	2	8			

Legend:

O Status bit set always to 0.
1 Status bit set always to 1

R Status bit set to a 1 or a 0 depending on results of operation.

x Status bit not affected.

b Bit () affected.

TMS7000 Family Instruction Overview (Continued)

	Inemonic	Opcode	Bytes	Cycles Tc(C)	Status C N Z I	Operation Description
MPY	B,A	6C	1	44	ORRx	$(s) \times (Rn) \rightarrow (A,B)$
IVII I	Rs,A	1C	2	47	UKKA	Multiply the source and destination
		3C	2	47		operands, store the result in registers A
	Rs,B	4C	3			
	Rn,Rn			49		(MSB) and B (LSB).
	%>iop,A	2C	2	46		
	%>iop,B	5C	2	46		
1100	%>iop,Rn	7C	3	48		
NOP		00	1	4	XXXX	$(PC) + 1 \rightarrow (Rd)$ Add 1 to the PC
OR	B,A	64	1	5	0 R R x	$(s) OR (Rd) \rightarrow (Rd)$
	Rs,A	14	2	8		Logically OR the source and destination
	Rs,B	34	2	8		operands, and store the results at the
	Rd,Rd	44	3	10		destination address.
	%>iop,A	24	2	7		
	%>iop,B	54	2	7		
	%>iop,Rd	74	3	9		
ORP	A,Pd	84	2	10	0 R R x	$(s) OR (Pd) \rightarrow (Pd)$
Olu	B,Pd	94	2	9	OTCICA	Logically OR the source and destination
	%>iop,Pd	A4	3	11		operands, and store the results at the
	70 × 10p,1 u	711	3	11		destination address.
POP	A	В9	1	6	0 R R x	$((SP)) \rightarrow (Rd)$
101	B	C9	1	6	UKKA	$(SP) - 1 \rightarrow (SP)$
	Rd	D9	2	8		Copy the last byte on the stack into the
	Ku	D9	2	0		
DOD	CUT	00	1		T 1 . 1	destination address.
POP	ST	08	1	6	Loaded	$((SP)) \rightarrow (ST)$
					from stack	$(SP) - 1 \rightarrow (SP)$
						Replace the status register with the last
						byte of the stack.
PUSH	A	B8	1	6	XXXX	$(SP) + 1 \rightarrow (SP)$
	В	C8	1	6		$(Rs) \rightarrow (SP)$
	Rs	D8	2	8		Copy the operand onto the stack.
PUSH	ST	0E	1	6	XXXX	$(SP) + 1 \rightarrow (SP)$
						(Status register) \rightarrow ((SP))
						Copy the status register onto the stack.
RETI		0B	1	9	Loaded	$((SP)) \rightarrow (PC) LSByte$
					from stack	$(SP)-1 \rightarrow (SP)$
						$((SP)) \rightarrow (PC) MSByte$
						$(SP)-1 \rightarrow (SP)$
						((SP)) → status register
						$(SP)-1 \rightarrow (SP)$
RETS		0A	1	7	xxxx	$((SP)) \rightarrow (PC LSB)$
						$(SP)-1 \rightarrow (SP)$
						$((SP)) \rightarrow (PC MSB)$
						$(SP)-1 \rightarrow (SP)$
		:£1	nah ia tal		1	(31)-1 7 (31)

Legend:

O Status bit set always to 0.
1 Status bit set always to 1

R Status bit set to a 1 or a 0 depending on results of operation.

x Status bit not affected.

b Bit () affected.

TMS7000 Family Instruction Overview (Continued)

	Mnemonic	Opcode	Bytes	Cycles	Status	Operation Description	
				Tc(C)	CNZI		
RL	A	BE	1	5	b7 R R x	$Bit(n) \rightarrow Bit(n+1)$	
	В	CE	1	5		$Bit(7) \rightarrow Bit(0)$ and Carry	
	Rd	DE	2	7			
RLC	A	BF	1	5	b7 R R x	$Bit(n) \rightarrow Bit(n+1)$	
	В	CF	1	5		Carry \rightarrow Bit(0)	
	Rd	DF	2	7		But(7) → Carry	
RR	A	BC	1	5	b0 R R x	$Bit(n+1) \rightarrow Bit(n)$	
	В	CC	1	5		\Rightarrow Bit(7) and Carry	
	Rd	DC	2	7			
RRC	A	BD	1	5	b0 R R x	$Bit(n+1) \rightarrow Bit(n)$	
	В	CD	1	5		Carry \rightarrow Bit(7)	
	Rd	DD	2	7		$Bit(0) \rightarrow Carry$	
SBB	B,A	6B	1	5	RRRx	$(Rd) - (s) - 1 + (C) \rightarrow (Rd)$	
	Rs,A	1B	2	8		Destination minus source minus 1 plus	
	Rs,B	3B	2	8		carry; stored at the destination address.	
	Rs,Rd	4B	3	10			
	%>iop,A	2B	2	7			
	%>iop,B	5B	2	7			
	%>iop,Rd	7B	3	9			
SETC		07	1	5	1 0 1 x	1→ (C)	
						Set the carry bit.	
STA	@Label	8B	3	11	0 R R R x	$(A) \rightarrow (XADDR)$	
	@Label(B)	AB	3	13		Store A at the destination.	
	*Rd	9B	2	10			
STSP		09	1	6	$x \times x \times x$	$(SP) \rightarrow (B)$	
						Copy the SP into register B.	
SUB	B,A	6A	1	5	RRRx	$(Rd) - (s) \rightarrow (Rd)$	
	Rs,A	1A	2	8		Store the destination operand minus the	
	Rs,B	3A	2	8		source operand into the destination.	
	Rs,Rd	4A	3	10			
	%>iop,A	2A	2	7			
	%>iop,B	5A	2	7			
	%>iop,Rd	7A	3	9			
SWA		В7	1	8	RRRx	$Rd(Hn,Ln) \rightarrow Rd(Ln,Hn)$	
	В	C7	1	8		Swap the operand's hi and lo nibbles.	
	Rn	D7	2	10			
TRAI	2 0-23	E8-FF	1	14	XXXX	$(SP) + 1 \rightarrow (SP)$	
						$(PC MSB) \rightarrow ((SP))$	
						$(SP) + 1 \rightarrow (SP)$	
						$(PC LSB) \rightarrow ((SP))$	
	Add two to evalo					(Entry vector) \rightarrow (PC)	

Legend:

Status bit set always to 0.

Status bit set always to 1

R Status bit set to a 1 or a 0 depending on results of operation.

x Status bit not affected.

b Bit () affected.

TMS7000 Family Instruction Overview (Continued)

N	Inemonic	Opcode	Bytes	Cycles	Status	Operation Description
				Tc(C)	CNZI	
TSTA		B0	1	6	0 R R x	$0 \rightarrow (C)$
						Set carry bit; set sign and zero flags on
						the value of register A.
TSTB		C1	1	6	0 R R x	$0 \rightarrow (C)$
						Set carry bit; set sign and zero flags on
						the value register B.
XCHB	A	В6	1	6	0 R R x	$(B) \leftarrow \rightarrow (Rn)$
	Rn	D6	2	8		Swap the contents of register B with (d).
XOR	B,A	65	1	5	0 R R x	(s) XOR (Rd) \rightarrow (Rd)
	Rs,A	15	2	8		Logically exclusive OR the source and
	Rs,B	35	2	8		destination operands, store at the
	Rs,Rd	45	3	10		destination address.
	%>iop,A	25	2	7		
	%>iop,B	55	2	7		
	%>iop,Rd	75	3	9		
XORP	A,Pd	85	2	10	0 R R x	(s) XOR (Pd) \rightarrow (Pd)
	B,Pd	95	2	9		Logically exclusive OR the source and
	%>iop,Pd	A5	3	11		destination operands, store at the
						destination.

Legend:

O Status bit set always to 0.
1 Status bit set always to 1

R Status bit set to a 1 or a 0 depending on results of operation.

x Status bit not affected.

b Bit () affected.

5. DC Characteristics

Ta = -40°C to Ta = 85°C, Supply voltage = 4.5V to 5.5Vdc unless otherwise specified.

	Sample of		Li	T.T., 14	
Parameter	Symbol	Conditions	Min	Max	Unit
Input Voltage High	Vih	All Except INT1, INT3, RESET_N	0.7*Vcc	Vcc+0.3	V
Input Voltage Low	Vil	All Except INT1, INT3, RESET_N	Vcc-0.3	0.3*Vcc	V
Input Voltage High	Vih	INT1, INT3, RESET_N	3.22	Vcc+0.3	V
Input Voltage Low	Vil	INT1, INT3, RESET_N	Vcc-0.3	1.84	V
Input Capacitance	Ci	Not Tested - Guaranteed by process	-	4	pf
Output Voltage High	Voh	Ioh = 6mA	V 0.5		V
Output voltage riigii	VOII	Ioh = 24mA	Vcc-0.5	-	
Output Voltage Low	Vol	Iol = 10mA	Vcc-2.0	-	V
Supply Current	Icc	Vcc = 5V, $fosc(min) 1.35Mhz$ $fosc(max) = 5Mhz$	9.4	35.0	ma
Wake Up Current	Iccwu	Not Measured	-	-	-
Halt Current Device CLK Active	Icch	Not Measured	-	-	-
Halt Current Device CLK Stopped	Icchs	Not Measured	-	-	-
Input Leakage Current	Icchs	Vcc = 5V	=	< 10	ua
Tri-State Leakage Current	Ii	4.5 < Vcc < 5.5	-	10	ua
Low Voltage Operation	Itsl	Normal Operating Conditions	4.5	5.5	V

6. AC Characteristics

Ta = -40 °C to Ta = 85 °C, Supply voltage = 4.5V to 5.5 Vdc unless otherwise specified. Reference figures 3.4.2.2,3.4.2.3,3.4.2.4,3.4.2.5, for interface timing relationships.

relationships.	G 1 1	G TV	Lir	nits	TT
Parameter	Symbol	Conditions	Min	Max	Unit
RC Network Frequency	fosc	R = 15k, C = 47pF,	1.4	2.1	MHz
RC Network Osc Input	Vihrc		0.7*Vcc	-	V
RC Network Osc Input	Vilrc		-	0.3*Vcc	V
RC Clock to CLKOUTA Delay	td	Rtest = 1k, Ctest = 1pf		28	
Clockout External Cycle Time	tc(c)	tc(c) = 2/fosc	952	1481	
Clock Internal State Cycle Time	tc(s)	tc(s) = 2/fosc	952	1481	
Crystal Cycle Time	tc(p)	tc(p) = 1/fosc	741	476	ns
					115
Clockin Pulse Width High	tf	45% to 55% of 1/fosc	333	214	
Clockin Pulse Width Low	tw	55% to 45% of 1/fosc	333	214	
Clockout Pulse Width High	tw(ch)				
Clockout Pulse Width Low	tw(cl)				
Clockout Rise to ALATCH Fall	td(ch-jl)	Caution! This device is to be used in			
ALATCH Pulse Width High	tw(jh)	the single chip mode only. Other			
Address Valid High before ALATCH Fall	td(ah-jl)	operating modes are used for functional testing purposes. These characteristics would be used for			
Address Valid Low before ALATCH Fall	td(al-jl)	expansion (Memory) Modes and are not applicable to the single chip mode.			
Address HOLD Low before ALATCH Fall	th(jl-al)	11			
R/W Valid before ALATCH Fall	td(rw-jl)				

Signal Name	req. setup	measured setup time	req. hold time	measured hold time	req. clock to out	measured clock to out
pa_0	80	1.38	70	1.38	na	na
pa_1	80	1.35	70	1.35	na	na
pa_2	80	1.33	70	1.33	na	na
pa_3	80	1.29	70	1.29	na	na
pa_4	80	1.22	70	1.22	na	na
pa_5	80	1.15	70	1.15	na	na
pa_6	80	1.14	70	1.14	na	na
pa7	80	1.19	70	1.19	na	na
pb_0	na	na	na	na	100	24.27
pb_1	na	na	na	na	100	24.33
pb_2	na	na	na	na	100	24.31
pb_3	na	na	na	na	100	24.28
pb_4	na	na	na	na	100	25.83
pb_5	na	na	na	na	100	25.95
pb_6	na	na	na	na	100	25.71
pb_7	na	na	na	na	100	26.68
pc_0	80	39.06	70	39.06	100	56.05
pc_1	80	36.01	70	38.15	100	56.91
pc_2	80	38.3	70	38.74	100	56.54
pc_3	80	36.42	70	38.53	100	56.35
pc_4	80	39.91	70	39.91	100	57.27
pc_5	80	39.81	70	39.94	100	57.77
pc_6	80	39.14	70	39.99	100	58.28
pc_7	80	39.26	70	39.26	100	56.53
pd_0	80	1.18	70	1.18	100	26.27
pd_1	80	1.15	70	1.15	100	26.13
pd_2	80	1.13	70	1.13	100	26.03
pd_3	80	1.13	70	1.13	100	26.1
pd_4	80	1.14	70	1.14	100	26.09
pd_5	80	1.16	70	1.16	100	26.09
pd_6	80	1.15	70	1.15	100	26.44
pd_7	80	1.13	70	1.13	100	26.49
int1_n	na	3.05	na	2.93	na	na
int3_n	na	3.09	na	3.09	na	na
mc	na	24.98	na	45.68	na	na

7. 70cX0 Errata

- When in MC mode, bus contents do not match cycle for cycle outside of qualified data times. IE. When ALE or ENABLE_N are not active, we do not necessarily match.
- When in MC mode, our part does NOT assert RW_N when performing writes to internal registers. OEM part does assert RW_N during internal writes, but not consistently.
- Stack addressing 'underflow' or 'under roll' behavior. Behavior is different between our part vs. oem when an uneven number of 'pop' operations are done for a given number of 'push' operations. If you 'pop' below register file address 0x00 the OEM will stay at 0x00 for the first illegal pop, then go *somewhere* below 0x00. Given 'n' illegal pop operations it will take 'n-1' push operations to bring stack pointer back to a valid number (0x00). The InnovASIC design will pop down to 0x00 then stop. Any push operations after reaching 0x00 will result in incrementing of stack address.
- Register File addressing when performing an instruction which manipulates two
 register file locations such as decrement double on address 0x00 of register file.
 OEM operates on first byte at 0x00, then decrements to 0xFF which is NOT a
 valid register file location. Our part decrements to the top of real physical
 memory 0x7F.

8. Revision History

The table below presents the sequence of revisions to document IA211030117.

Date	Revision	Description	Page(s)
August 19, 2008	05	Corrected control number and reformatted some elements to meet publication standards.	NA