Induction mathématique : Exemple

Pour $n \in \mathbb{N}$, on note $P(n) : n! \ge 2^n$. Montrez que P(n) est vraie a partir d'un certain rang.

3! = 6 et $2^3 = 8$. le rang 3 ne convient pas.

4! = 24 et $2^4 = 16$ soit $4! \ge 2^4$. La propriété est vraie à l'ordre 4.

Supposons que la propriété est vraie jusqu'à l'ordre n (avec $n \ge 4$) et montrons qu'elle est vraie à l'ordre (n + 1).

 $n \ge 4$ alors $(n + 1) \ge 5$.

Ainsi $(n + 1) \ge 2$ et par suite $(n + 1).n! \ge 2 \times n!$

De plus, $n! \ge 2^n \operatorname{car} P(n)$ est vrai, donc $2 \times n! \ge 2 \times 2^n$

On en déduit la double inégalité $(n + 1).n! \ge 2 \times n! \ge 2 \times 2^n$

On a : $(n + 1).n! \ge 2 \times 2^n$

soit $(n + 1)! \ge 2^{n+1}$.

La propriété est vraie à l'ordre n + 1, c'est à dire P(n+1) est Vrai.

D'ou \forall n \geq 4, n! \geq 2ⁿ

