Übungen zum Ferienkurs Lineare Algebra WS 14/15

Probeklausur

5.1 Lineare Abbildung

Wir betrachten die lineare Abbildung $f: \mathbb{R}^4 \to \mathbb{R}^3; x \mapsto Ax$, welche (bezüglich der Standardbasen) gegeben ist durch die Matrix

$$A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 2 & 0 & 2 & 4 \\ 1 & -2 & -1 & 0 \end{pmatrix} \in \mathbb{R}^{3 \times 4}.$$

- (a) Bestimmen Sie eine Basis von Kern(f) und eine Basis von Bild(f).
- (b) Ist die Abbildung f injektiv? Ist die Abbildung f surjektiv?
- (c) Wir betrachten die Basen

$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right) \text{ und } \mathcal{C} = \left(\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix} \right)$$

von \mathbb{R}^4 bzw. \mathbb{R}^3 . Bestimmen Sie die darstellende Matrix $_{\mathcal{C}}[f]_{\mathcal{B}}$ von f bezüglich dieser Basen.

5.2 Eigenwerte, Eigenvektoren

Gegeben sei die Matrix

$$A = \left(\begin{array}{cc} i & -1 \\ -1 & i \end{array}\right) \in \mathbb{C}^{2 \times 2}.$$

- (a) Bestimmen Sie die Spur und die Determinante von A.
- (b) Bestimmen Sie das charakteristische Polynom von A.
- (c) Bestimmen Sie den Eigenwert λ_1 zum Eigenvektor $(-1,1)^T$.
- (d) Bestimmen Sie die Menge M aller Eigenwerte von A.

5.3 Eigenwerte/-vektoren mit Parameter

Wir betrachten die folgende Matrix mit einem Parameter $c \in \mathbb{R}$,

$$A := \begin{pmatrix} 3c - 2 & 3 - 3c & a - 1 \\ 0 & 2 & 0 \\ 4 - 4a & 3a & 2 - a \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

- (a) Zeigen Sie, dass $v=\begin{pmatrix} -1 & 0 & 2 \end{pmatrix}^T \in \mathbb{R}^3$ stets ein Eigenvektor von A ist und geben Sie den dazugehörigen Eigenwert an.
- (b) Bestimmen Sie alle Eigenwerte von A.
- (c) Wir betrachten den Fall a=1. Zeigen Sie, dass A in diesem Fall diagonalisierbar ist. Geben Sie die zugehörige Diagonalmatrix an.
- (d) Wir betrachten den Fall a=2 (**Zwischenergebnis:** In diesem Fall lautet das charakteristische Polynom $\chi_A=(2-\lambda)^3$). Zeigen Sie, dass A in diesem Fall nicht diagonalisierbar ist. Geben Sie die Jordannormalform von A an.

5.4 Positive Semidefinitheit

Es sei $A \in \mathbb{R}^{m \times n}$ mit $m \geq n$. Zeigen Sie, dass $A^T A$ symmetrisch und positiv semidefinit und im Fall Rang(A) = n positiv definit ist.

5.5 Bilinearform

Wir betrachten die Bilinearform $\phi: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}; \phi(x,y) = x^T A y$, welche (bezüglich der Standardbasis) gegeben ist durch die Matrix

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

- (a) Zeigen Sie, dass die Bilinearform ϕ ein Skalarprodukt auf \mathbb{R}^3 ist.
- (b) Wir arbeiten nun mit dem Skalarprodukt $\langle x|y\rangle:=\phi(x,y)$ im Euklidischen Vektorraum ($\mathbb{R}^3,\langle\ |\ \rangle$) und betrachten die Vektoren

$$v_1 = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ 0 \\ 0 \end{pmatrix} \text{ und } v_2 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$$

Zeigen Sie, dass diese jeweils Länge 1 haben und orthogonal zueinander sind.

(c) Bestimmen Sie eine Orthonormalbasis \mathcal{B} für den Euklidischen Vektorraum ($\mathbb{R}^3, \langle | \rangle$).

5.6 Wahr oder falsch?

Entscheiden Sie, ob die Aussagen wahr oder falsch sind:

- (a) $\{(x,y) \in \mathbb{N} \times \mathbb{N} | x=y\} \subset \mathbb{N} \times \mathbb{N}$ ist eine Äquvalenzrelation.
- (b) Für $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \in S_3$ gilt $\operatorname{sgn}(\sigma) = 1$.
- (c) $f: \mathbb{R}^2 \to \mathbb{R}: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto x_2$ ist eine lineare Abbildung.
- (d) Für $\lambda \neq 0$ und $A \in GL(n, \mathbb{R})$ gilt: $(\lambda \cdot A^T)^{-1} = (\frac{1}{\lambda} \cdot A^{-1})^T$
- (e) $\{x \in \mathbb{R}^4 | ||x|| = 1\} \subset \mathbb{R}^4$ ist ein Untervektorraum.

(f)
$$\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 | x_2 = 1 \right\}$$
 ist ein Erzeugendensystem des \mathbb{R}^4 .

- (g) Für alle Untervektorräume $U,V\subset \mathbb{R}^n$ gilt: dim(U+V)=dim(U)+dim(V)
- (h) Es ist möglich, dass sich zwei zweidimensionale Untervektorräume im \mathbb{R}^4 in genau einem Punkt schneiden.

2

- (i) Die Matrix $\begin{pmatrix} i & i \\ i & -i \end{pmatrix}$ ist unitär.
- (j) Die Matrix $\begin{pmatrix} 0 & 3 \\ -3 & -1 \end{pmatrix}$ ist normal.

- (k) Es gibt genau eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit $f((-3,1,4)^T) = ((1,2)^T)$ und $f((2,2,0)^T) = ((0,1)^T)$.
- (l) Im Vektorraum der (2 × 2)-Matrizen über einem Körper K ist

$$\left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in K^{2 \times 2} \mid a+b-c=0 \right\}$$

ein Untervektorraum.

(m) Ist U ein Untervektorraum eines K-Vektorraums V, so gilt für alle $v, w \in V$:

$$v \in U \land w \notin U \Rightarrow v + w \notin U.$$

(n) Für Abbildungen $\varphi:X\to Y$ und $\psi:Y\to Z$ zwischen Mengen gilt:

$$\psi \circ \varphi$$
 bijektiv $\Rightarrow \psi$ injektiv $\wedge \varphi$ surjektiv.