Глава 2. ТЕОРИЯ СЛУЧАЙНЫХ ВЕЛИЧИН

§11. Случайные величины

На практике элементарные случайные события являются либо числами, либо наборами чисел (случайными векторами). В §§ 11–13 мы изучим одномерные случайные величины, у которых $\Omega \subset \mathbb{R}^1$ — числовое множество. Начиная с §13 изучим случайные векторы, у которых $\Omega \subset \mathbb{R}^n$, при $n \geq 2$.

Чтобы дать общее определение случайной величины пусть сначала $(\Omega, \mathfrak{A}, \mathsf{P})$ — произвольное вероятностное пространство.

Определение 11.1. Функция $\xi: \Omega \to \mathbb{R}$ называется случайной величиной на σ -алгебре событий \mathfrak{A} , если для любого числа $x \in \mathbb{R}$ прообраз луча $\xi^{-1}((-\infty,x]) = \{\omega \in \Omega \, \big| \, \xi(\omega) \leq x \}$ является событием из σ -алгебры \mathfrak{A} .

Замечание 11.2. 1) Самая простая функция $\xi: \Omega \to \mathbb{R}$ — это постоянная функция, заданная для любого $\omega \in \Omega$ по формуле $\xi(\omega) = c$. Она принимает одно значение и является не случайной, а детерминированной. Она рассматривается в теории вероятностей как частный тривиальный случай.

- 2) Первая нетривиальная случайная величина (с $\Omega \subset \mathbb{R}^1$) задаётся с помощью тождественной функции $\xi(\omega) = \omega$. В этом случае событие $\xi^{-1}((-\infty,x]) = \{\omega \in \Omega \mid \xi(\omega) \leq x\}$ обозначают короче: $\{\xi \leq x\}$.
- 3) Оказывается, что другие случайные величины $(\xi(\omega) \neq \omega)$ могут быть описаны через случайную величину $\xi(\omega) = \omega$. Это будет показано в § 13.

Определение 11.3. Функцией распределения случайной величины ξ называется функция $F_{\xi}: \mathbb{R} \to [0,1],$ определённая по формуле

$$F_{\xi}(x) = \mathsf{P}(\xi \le x).$$

Очевидно, что $0 \le F_{\xi}(x) \le 1$.

Рис. 9: Функция распределения детерминированной величины.