# **Propriedades**

Os experimentos estatístico que segue uma lei binomial negativa possuem as seguintes propriedades:

- cada tentativa pode resultar em dois resultados possíveis, o sucesso ou fracasso;
- ▶ a probabilidade de sucesso, denotada por p, é igual para cada tentativa;
- as tentativas são independentes;
- ▶ o experimento continua até que *k* sucessos sejam observados, onde *k* é especificado antecipadamente.

## Definição

Considere a situação de observar um evento dicotômico  $X_i$  independentes e identicamente distribuídos segundo uma lei de Bernoulli de probabilidade p. Suponha que se registre X, o número de ensaios até obter exatamente k sucessos.

# Definição

Considere a situação de observar um evento dicotômico  $X_i$  independentes e identicamente distribuídos segundo uma lei de Bernoulli de probabilidade p. Suponha que se registre X, o número de ensaios até obter exatamente k sucessos.

### Definição

Seja uma variável aleatória que fornece o número de ensaios até o k-ésimo sucesso. Assim, X tem uma distribuição binomial negativa com parâmetro  $p \in (0,1)$ , se sua função de probabilidade é dada por:

$$P_r(X=x) = \begin{cases} \binom{x-1}{k-1} \cdot p^k \cdot (1-p)^{x-k} & se \ x=k,k+1, \ldots \\ 0 & , \ caso \ contrario \end{cases}$$

Usualmente utilizá-se a notação  $X \sim BN(p, k)$ .



# Esperânça e Variância

A esperânça matemática da distribuição binomial negativa:

$$E(X) = \frac{k}{p} \tag{1}$$

# Esperânça e Variância

A esperânça matemática da distribuição binomial negativa:

$$E(X) = \frac{k}{\rho} \tag{1}$$

A variância da distribuição binomail negativa:

$$Var(X) = \frac{k(1-p)}{p^2} \tag{2}$$

# Esperânça e Variância

A esperânça matemática da distribuição binomial negativa:

$$E(X) = \frac{k}{p} \tag{1}$$

A variância da distribuição binomail negativa:

$$Var(X) = \frac{k(1-p)}{p^2} \tag{2}$$

Mais informações sobre a distribuição binomial negativa podem ser encontradas no livro de Magalhães [?].

#### Usando a Ferramenta R

No R, ver [?], para uma distribuição binomial negativa, pode-se determinar a função de probabilidade acumulada, função de distribuição, função quartil e função de geração aleatória com parâmetros size = k e prob = p.

#### Usando a Ferramenta R

No R, ver [?], para uma distribuição binomial negativa, pode-se determinar a função de probabilidade acumulada, função de distribuição, função quartil e função de geração aleatória com parâmetros size = k e prob = p.

A chamada da função de geração aleatória

rnbinom(n, size, prob)

- n tamanho da amostra;
- size número de sucessos;
- prob probabilidade de sucesso.

### Usando a Ferramenta R

▶ No *R*, ver [?], para uma distribuição binomial negativa, pode-se determinar a função de probabilidade acumulada, função de distribuição, função quartil e função de geração aleatória com parâmetros *size* = *k* e *prob* = *p*.

A chamada da função de geração aleatória

rnbinom(n, size, prob)

- n tamanho da amostra;
- size número de sucessos;
- prob probabilidade de sucesso.

Este comando retorna uma amostra de tamanho n, com as variáveis aleatórias x-k de uma distribuição binomial negativa com probabilidade p.

# Máxima Verossimilhança

$$\hat{p} = \frac{nk}{\sum_{i=1}^{n} X_i} \tag{3}$$

# Estimador por Momentos

Outro estimador possível, é calculado pelo momento central de ordem 2. Calcula-se igualando a variância ao momento central de ordem dois, segue que

$$\hat{p}_2 = \frac{-k + \sqrt{k^2 + 4k Var(X_i)}}{2 Var(X_i)} \tag{4}$$

# Estimador por Momentos

Um terceiro estimador pode ser encontrado utilizando a seguinte expressão:  $Var(X_i) = E(X_i^2) - [E(X_i)]^2$  e substituindo a  $Var(X_i)$  e a  $E(X_i)$  por  $\frac{k(1-p)}{p^2}$  e  $\frac{k}{p}$ , respectivamente, resulta:

$$\widehat{p}_3 = \frac{-k + \sqrt{k^2 + 4E(X_i^2)(k^2 + k)}}{2E(X_i^2)}$$
 (5)

Tabela: Viés dos estimadores  $\hat{p_1}$  e  $\tilde{p_1}$ .

| Comparação dos viés dos Estimadores $\hat{p_1}$ e $\hat{p_1}$ |     |                |                   |                                     |
|---------------------------------------------------------------|-----|----------------|-------------------|-------------------------------------|
| n                                                             | р   | $B(\hat{p_1})$ | $B(	ilde{ ho_1})$ | $ B(\hat{p_1})  >  B(\tilde{p_1}) $ |
| 50                                                            | 0.1 | 0.01158347     | 0.01108683        | TRUE                                |
| 100                                                           | 0.1 | 0.01147125     | 0.01124116        | TRUE                                |
| 150                                                           | 0.1 | 0.01129354     | 0.01113929        | TRUE                                |
| 100000                                                        | 0.1 | 0.01110255     | 0.01110307        | FALSE                               |
| 50                                                            | 0.2 | 0.05069611     | 0.04952346        | TRUE                                |
| 100                                                           | 0.2 | 0.05113692     | 0.05050091        | TRUE                                |
| 150                                                           | 0.2 | 0.05021439     | 0.04981072        | TRUE                                |
| 100000                                                        | 0.2 | 0.05000023     | 0.05000045        | FALSE                               |
| 50                                                            | 0.3 | 0.13303390     | 0.13062580        | TRUE                                |
| 100                                                           | 0.3 | 0.12839159     | 0.12709425        | TRUE                                |
| 150                                                           | 0.3 | 0.12910398     | 0.12821978        | TRUE                                |
| 100000                                                        | 0.3 | 0.12858837     | 0.12858547        | TRUE                                |

Tabela: EQM dos estimadores  $\hat{p_1}$  e  $\tilde{p_1}$ .

| Comparação dos EQM do Estimador $\hat{p_1}$ e $	ilde{p_1}$ |     |                           |                              |                                     |  |
|------------------------------------------------------------|-----|---------------------------|------------------------------|-------------------------------------|--|
| n                                                          | p   | $\textit{EQM}(\hat{p_1})$ | $\textit{EQM}(	ilde{ ho_1})$ | $EQM(\hat{p_1}) > EQM(\tilde{p_1})$ |  |
| 50                                                         | 0.1 | 0.0001897657              | 0.0001792158                 | TRUE                                |  |
| 100                                                        | 0.1 | 0.0001601663              | 0.0001552416                 | TRUE                                |  |
| 150                                                        | 0.1 | 0.0001461537              | 0.0001429903                 | TRUE                                |  |
| 100000                                                     | 0.1 | 0.0001232947              | 0.0001233068                 | FALSE                               |  |
| 50                                                         | 0.2 | 0.0028992563              | 0.0027791147                 | TRUE                                |  |
| 100                                                        | 0.2 | 0.0027753925              | 0.0027122546                 | TRUE                                |  |
| 150                                                        | 0.2 | 0.0026332882              | 0.0025933471                 | TRUE                                |  |
| 100000                                                     | 0.2 | 0.0025001601              | 0.0025001831                 | FALSE                               |  |
| 50                                                         | 0.3 | 0.0188113709              | 0.0181701887                 | TRUE                                |  |
| 100                                                        | 0.3 | 0.0170132255              | 0.0166791609                 | TRUE                                |  |
| 150                                                        | 0.3 | 0.0170230361              | 0.0167979328                 | TRUE                                |  |
| 100000                                                     | 0.3 | 0.0165355188              | 0.0165347806                 | TRUE                                |  |

Tabela: Comparação dos estimadores  $\hat{p_2}$  e  $\tilde{p_2}$ .

|   | Comparação dos Estimadores $\hat{p_2}$ e $	ilde{p_2}$ |     |                                     |                                     |  |
|---|-------------------------------------------------------|-----|-------------------------------------|-------------------------------------|--|
|   | n                                                     | p   | $ B(\hat{p_2})  >  B(\tilde{p_2}) $ | $EQM(\hat{p_2}) > EQM(\tilde{p_2})$ |  |
|   | 50                                                    | 0.1 | TRUE                                | FALSE                               |  |
|   | 100                                                   | 0.1 | TRUE                                | FALSE                               |  |
|   | 150                                                   | 0.1 | TRUE                                | FALSE                               |  |
|   | 100000                                                | 0.1 | TRUE                                | FALSE                               |  |
| , | 50                                                    | 0.2 | TRUE                                | TRUE                                |  |
|   | 100                                                   | 0.2 | TRUE                                | FALSE                               |  |
|   | 150                                                   | 0.2 | FALSE                               | FALSE                               |  |
|   | 100000                                                | 0.2 | TRUE                                | FALSE                               |  |
| , | 50                                                    | 0.3 | TRUE                                | FALSE                               |  |
|   | 100                                                   | 0.3 | TRUE                                | FALSE                               |  |
|   | 150                                                   | 0.3 | FALSE                               | FALSE                               |  |
|   | 100000                                                | 0.3 | FALSE                               | FALSE                               |  |
|   |                                                       |     |                                     |                                     |  |

Tabela: Comparação dos estimadores  $\hat{p_3}$  e  $\tilde{p_3}$ .

|        | Comparação dos Estimadores $\hat{p_3}$ e $	ilde{p_3}$ |      |                                     |  |  |
|--------|-------------------------------------------------------|------|-------------------------------------|--|--|
| n      | $n$ $p$ $ B(\hat{p_3})  >  B(\tilde{p_3}) $           |      | $EQM(\hat{p_3}) > EQM(\tilde{p_3})$ |  |  |
| 50     | 0.1                                                   | TRUE | TRUE                                |  |  |
| 100    | 0.1                                                   | TRUE | TRUE                                |  |  |
| 150    | 0.1                                                   | TRUE | TRUE                                |  |  |
| 100000 | 0.1                                                   | TRUE | TRUE                                |  |  |
| 50     | 0.2                                                   | TRUE | TRUE                                |  |  |
| 100    | 0.2                                                   | TRUE | TRUE                                |  |  |
| 150    | 0.2                                                   | TRUE | TRUE                                |  |  |
| 100000 | 0.2                                                   | TRUE | TRUE                                |  |  |
| 50     | 0.3                                                   | TRUE | TRUE                                |  |  |
| 100    | 0.3                                                   | TRUE | TRUE                                |  |  |
| 150    | 0.3                                                   | TRUE | TRUE                                |  |  |
| 100000 | 0.3                                                   | TRUE | TRUE                                |  |  |
|        |                                                       |      |                                     |  |  |

### Estimador por máxima verossimilhança

 10 dentre os 12 viés do estimador por máxima verossimilhança foram reduzidos, em valor absoluto, com o uso da metodologia bootstrap,

#### Estimador por máxima verossimilhança

 10 dentre os 12 viés do estimador por máxima verossimilhança foram reduzidos, em valor absoluto, com o uso da metodologia bootstrap, o mesmo ocorreu com os EQM;

### Estimador por máxima verossimilhança

- 10 dentre os 12 viés do estimador por máxima verossimilhança foram reduzidos, em valor absoluto, com o uso da metodologia bootstrap, o mesmo ocorreu com os EQM;
- 2. os 2 viés e EQM que não melhoraram com *bootstrap* foram para uma amostra de cem mil (100000) variáveis aleatórias e  $p \le 0.2$ ;

#### Estimador por máxima verossimilhança

- 10 dentre os 12 viés do estimador por máxima verossimilhança foram reduzidos, em valor absoluto, com o uso da metodologia bootstrap, o mesmo ocorreu com os EQM;
- 2. os 2 viés e EQM que não melhoraram com bootstrap foram para uma amostra de cem mil (100000) variáveis aleatórias e  $p \le 0.2$ ;
- 3. para uma amostra muito grande de variáveis aleatórias, obdecendo uma lei binomial negativa com o valor de *p* pequeno, a metodologia *bootstrap* não "melhora" o estimador, quando calculado por máxima verossimilhança.

▶ a aplicação de bootstrap para melhorar o estimador calculado utilizando o momento central amostral de ordem 2, p̂<sub>2</sub>, comportou-se de forma inconclusiva;

- a aplicação de bootstrap para melhorar o estimador calculado utilizando o momento central amostral de ordem 2, p̂<sub>2</sub>, comportou-se de forma inconclusiva;
  - melhorou 9 entre os 12 viés;
  - melhorou somente 1 EQM.

- a aplicação de bootstrap para melhorar o estimador calculado utilizando o momento central amostral de ordem 2, p̂<sub>2</sub>, comportou-se de forma inconclusiva;
  - melhorou 9 entre os 12 viés;
  - melhorou somente 1 EQM.
- o estimador por momento amostral de ordem 2, p̂<sub>3</sub>, conseguiu ganhos em seus viés e EQM em todos os casos estudados com o uso da metodologia bootstrap;

- ▶ a aplicação de bootstrap para melhorar o estimador calculado utilizando o momento central amostral de ordem 2, p̂<sub>2</sub>, comportou-se de forma inconclusiva;
  - melhorou 9 entre os 12 viés;
  - melhorou somente 1 EQM.
- o estimador por momento amostral de ordem 2, p̂3, conseguiu ganhos em seus viés e EQM em todos os casos estudados com o uso da metodologia bootstrap;
- a metodologia bootstrap aplicada para obter ganho de qualidade em estimadores de uma amostra de variáveis aleatória independente e identicamente distribuídas segundo uma lei binomial negativa, é eficaz nos seguintes casos:
  - para estimadores calculados por máxima verossimilhança, para amostra pequenas;
  - para estimadores calculados pelo momento amostral de ordem
     2.

# Referências Bibliográficas