1 Basic Set Theory

Paul R. Halmos, Naive Set Theory.

Definition 1.0.1 (Set). A set is an unordered collection of distinct objects, called *elements* or *members* of the set. A set is said to contain its elements. We write

• $a \in A$ if a is an element of the set A.

1.1 Set Operation

$$U = \{x \mid x \in X, x \in \mathbb{C}\}\$$
$$= U_{x \in C}C$$

1.1.1 Set difference

The set difference of A and B ,denoted by A - B, or $A \setminus B$

1.1.2 Symmetric Difference

$$A\Delta B = (A - B) \cup (B - A) \tag{1}$$

1.1.3 Power Set

The power set of A is the set of all subsets of A, denoted by $\mathcal{P}(A)$ or 2^A

1.1.4 Set Algebras

De Morgan's Laws

- $C (A \cup B) = (C A) \cap (C B)$
- $C (A \cap B) = (C A) \cup (C B)$

1.1.5 Cartesian Product

Definition 1.1.1 (Cartesian). The Cartesian product of sets A and B is the set of ordered pairs, such that

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$
 (2)

Definition 1.1.2 (Cartesian). By Kuratowski

An ordered pair (a, b) is given by

$$(a,b) := \{\{a\}, \{a,b\}\}$$
(3)

Theorem 1 (Cartesian). If $a \in C$ and $b \in C$, then $(a, b) = \mathcal{P}(\mathcal{P}(C))$. If $a \in A, b \in B$, then take $C = A \cup B$

Theorem 2 (Cartesian). (x,y) = (a,b) iff x = a and y = b

Proof

- ⇐: Trival
- \Rightarrow : By definition, we need to show that:

$$\underbrace{\{\{x\},\{x,y\}\}}_{U} = \underbrace{\{\{a\},\{a,b\}\}}_{V} \Rightarrow x = a \ and \ y = b \tag{4}$$

- If $x \neq y$, then |U| = |V| = 2, by matching size, we have $\{x\} = \{a\} \ \{y\} = \{b\}$
- If x = y, similarly x = y = a = b

Note: a definitio of ordered pairs is rational as long as it can indicate order.

1.1.6 Associative Set Operations

Let A_1, A_1, \dots, A_n be sets, then

- $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$
- for \cup , \times , Δ are the same.

1.2 Simple Graphs

k-element subsets

Let X be a finit set. For a positive integer k, let $\binom{X}{k}$ denote the set of all k-element subsets. Note that $|\binom{X}{k}| = \binom{|X|}{k}$

Definition 1.2.1 (Graph). A finit simple graph G is a pair (V, E) where V is a non-empty finit set and E is a set of 2-element subsets of V, i.e., $E \in \binom{V}{2}$ Elements of V called vertics, also denoted as V(G). Elements of E called edges, also denoted as E(G).

2 Logic

2.1 CNF and DNF

- Conjunctive Normal Form (CNF): a junction of one or more clauses, where a clause is a disjunction of literals like **roduct of sums** or **AND of ORs**
- Disjunction Normal Forn (DNF): like **sum of products** or **OR of ANDs**

Table 1: Conditional truth table

p	\boldsymbol{q}	p o q
0	0	1
0	1	1
1	0	0
1	1	1

2.2 Conditional Statements

- p: hyposhesis
- q: thesis/conclusion

Equivalent forms

- if p, then q
- q is a sufficient condition for q
- q is necessary for p

remark

- ullet either $oldsymbol{p}$ is false
- ullet or $oldsymbol{q}$ is true
- i.e. $\neg p \lor q$
- same as $\neg q \rightarrow \neg p$

2.3 Tautology and Contradiction

- Tautology: All cases evaluates to 1.
- Contradiction: All cases evaluates to 0.

2.3.1 Tautological Equivalence

• Absorption

$$p \land (p \lor q) \Leftrightarrow p$$

$$p \lor (p \land q) \Leftrightarrow p$$