MA427 – Exercise set 3 Academic year 2018-19

Exercise 3.1 Let H_1, \ldots, H_k be closed half-spaces in \mathbb{R}^d . Show that, if $H_1 \cap H_2 \cap \ldots \cap H_k = \emptyset$, then there exists a collection of at most d+1 half-spaces among H_1, \ldots, H_k whose intersection is already empty.

This is a special case of Helly's theorem:

Helly's theorem. Let C_1, \ldots, C_k be closed convex sets in \mathbb{R}^d . If $C_1 \cap C_2 \cap \ldots \cap C_k = \emptyset$, then there exists a collection of at most d+1 sets among C_1, \ldots, C_k whose intersection is already empty.

Exercise 3.2 Consider the LP problem $\max\{c^{\top}x \mid Ax = b, x \geq 0\}$, where

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & -6 \\ 0 & -1 & -1 & -3 & 2 & 1 \\ 1 & 2 & 1 & 3 & -1 & 5 \end{pmatrix}, \quad b = \begin{pmatrix} 11 \\ -6 \\ 13 \end{pmatrix}, \quad c = \begin{pmatrix} -2 \\ -2 \\ 3 \\ 4 \\ -10 \\ 5 \end{pmatrix}$$

- 1. Show that $B = \{2, 4, 5\}$ is a feasible basis, and write the problem in tableau form with respect to the basis B.
- 2. Apply the Simplex Method with Bland's rule to solve the LP problem starting from the feasible basis $B = \{2, 4, 5\}$.

Exercise 3.3 Consider the following LP problem.

Transform the above problem in standard equality form by adding the slack variables x_4, x_5, x_6 , relative to the first, second and third constraint, respectively. Note that $\{4, 5, 6\}$ is a feasible basis, and apply the Simplex Method starting from such basis.

From the final tableau, determine a family of feasible solutions that can take arbitrarily large objective value.

Exercise 3.4 Let A be an $m \times n$ matrix. Given vectors $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$, consider the LP problem in standard equality form

$$\max c^{\top} x$$

$$Ax = b \qquad (P).$$

$$x \ge 0.$$

Let x^* be an optimal basic feasible solution for (P), and B be the basis that determines it.

- 1. Show that, if $\bar{c}_j < 0$ for every $j \in N$, then x^* is the unique optimal solution.
- 2. Suppose that $x_j^* > 0$ for every $j \in B$. Show that the dual solution is unique. What is the optimal dual solution for the problem?

Exercise 3.5 Consider an LP problem in standard equality form

$$\max c^{\top} x$$

$$Ax = b \qquad (P)$$

$$x \ge 0$$

and let B be a feasible basis for the problem. Let \bar{x} be the feasible solution determined by B, and let \bar{c}_j , j = 1, ..., n, be the reduced costs of the variables x_j with respect to the basis B.

- 1. We have seen that, if $\bar{c}_j \leq 0$ for all $j \in \{1, ..., n\}$, then the solution \bar{x} is optimal. Is the converse statement true? (That is, is it true that if \bar{x} is optimal, then the reduced costs associated with B must all be non-positive?)
- 2. Suppose that B is the current basis at an iteration of the simplex method. Let x_k be the variable selected to enter the basis (hence $\bar{c}_k > 0$). Let x_ℓ the variable that leaves the basis. Hence at the new iteration the basis becomes $\tilde{B} := B \setminus \{\ell\} \cup \{k\}$. What is the reduced cost of x_ℓ with respect to the new basis \tilde{B} ?
- 3. Use the previous point to conclude that the variable x_{ℓ} that leaves the basis cannot re-enter at the next iteration.