CS&IT ENGING

Theory of Computation

Regular Expression

Lecture No.- 01

Recap of Previous Lecture

Topic

Finite Automaton & Regular Languages.

Topic

Pushdown Automata & Context free Languages.

Topic

Turing Machine & Recursive Enumerable Languages.

Topic

Undecidability.

$$\{Q, \Sigma, q_0, F, \delta\}$$

Finite number of states (set of state)

 Σ - Input alphabet

q₀ - initial state

F - Set of final states

δ - transition function

$$Q \times \Sigma \rightarrow 2Q$$

D-> Every NFA y DFA?->false (2) Frery DFA ig NFA->True

Topic: Non-Deterministic Finite Automaton

- Construction of NFA is easy than DFA.
- Minimization not possible for NFA
- Complementation not possible for NFA
- NFA from the given state on the given input string multiple state possibility may be exist.
- Language recognization is easy in DFA compare to NFA.
- In NFA, for valid string also automata may halt in non-final state.
- In NFA for the valid even though multiple non-final transition exist for one final state transition should exit.
- All DFA are NFA but all NFA need not be DFA.

Expressive power of DFA = NFA

#Q. Construct an equivalent DFA for the following E-NFA

Topic: NFA to DFA Conversion

FA	. 0	1
790	90/	91
(91)	19 Dead	[9.9]
9 Dewd	9 Dead	9 Dead
997	90	[99]

DInitial State in Same 2) for no transition in NFA, Dead Stater ig taken in DFA

NFA DFA

NFA DFA

Tead State

Tead state

Multiple -> new State

NFA

		0	6
(h	{90,91}	92
	9,	90	9,
	92		Lao, 9)

Topic: NFA to DFA Conversion

How many states in DFA?

$$\frac{b}{3} = \frac{b}{3} = \frac{a}{3} = \frac{b}{3} = \frac{a}{3} = \frac{b}{3} = \frac{a}{3} = \frac{b}{3} = \frac{a}{3} = \frac{a}$$

Topic: NFA to DFA Conversion

Note:- NFA to DFA conversion Algorithm does not affect language of automata i.e. if language accept by a NFA is L then while converting that NFA into DFA the resultant DFA also accepts.

NOTE: Construction of ∈ - NFA is easy than NFA

 $\{Q, \Sigma, q_0, F, \delta\}$

Q - Finite number of states (set of state)

 Σ - Input alphabet

q₀ - initial state

F - Set of final states

δ - transition function

THANK - YOU