Introduction to Oracle VM (Xen) Networking

Dongli Zhang

Oracle Asia Research and Development Centers (Beijing)

dongli.zhang@oracle.com

March 8, 2017

Plan

- Paravirtualized Networking
 - vif, bridge, bond
- Emulated Networking
- Environment:
 - xen: Oracle VM server 3.3.3 with xen-4.3.0-55.el6.47.33.x86_64
 - dom0: Unbreakable Enterprise Kernel v4.1.12-89
 - domU: Unbreakable Enterprise Kernel v4.1.12-89
- Prerequisite Knowledge: http://finallyjustice.github.io/xen-arch.pdf
 - xen framework
 - PVM vs. HVM vs. PVHVM
 - event channel, grant table
 - xen admin hands-on experience (preferred)

Paravirtual xen-netfront/xen-netback framework

3 / 24

xen-netfront/xen-netback source code

Unbreakable Enterprise Kernel v4.1.12-89

- drivers/net/xen-netfront.c
- drivers/net/xen-netback/xenbus.c
- drivers/net/xen-netback/netback.c
- drivers/net/xen-netback/interface.c

kernel upstream v4.9-rc8

- drivers/net/xen-netfront.c
- drivers/net/xen-netback/xenbus.c
- drivers/net/xen-netback/netback.c
- drivers/net/xen-netback/interface.c
- drivers/net/xen-netback/rx.c
- drivers/net/xen-netback/hash.c

Paravirtual networking scenario 1/2

5 / 24

Paravirtual networking scenario 2/2

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	
device discovery	PCI Tree	
device configuration	PCI Config Space (IO/MMIO)	
data flow	DMA Ring Buffer	
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	
device configuration	PCI Config Space (IO/MMIO)	
data flow	DMA Ring Buffer	
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	
data flow	DMA Ring Buffer	
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	Xenstore
data flow	DMA Ring Buffer	
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	Xenstore
data flow	DMA Ring Buffer	Memory Ring Buffer
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	Xenstore
data flow	DMA Ring Buffer	Memory Ring Buffer
shared memory	N/A or IOMMU	Grant Table
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	Xenstore
data flow	DMA Ring Buffer	Memory Ring Buffer
shared memory	N/A or IOMMU	Grant Table
interrupt	IOAPIC, MSI, MSI-X	Event Channel

pv xmit: front —> backend 1/3

pv xmit: front —> backend 2/3

pv xmit: front —> backend 3/3

pv xmit: backend —> bridge

pv xmit: bridge —> bond —> physical NIC

pv recv: physical NIC —> bond —> bridge

pv recv: bridge —> backend

pv recv: backend —> frontend

xen-netfront/xen-netback summary: req/rsp protocol

netfront to netback (produce req)

- 1st page of linear data (skb->data)
- extra info (xen_netif_extra_info)
- the rest of linear data (skb->data)
- all skb fragments (skb_shinfo(skb)->frags)

netback to netfront (produce rsq)

- 1st page of linear data (skb->data)
- extra info (xen_netif_extra_info)
- the rest of linear data (skb->data)
- all skb fragments (skb_shinfo(skb)->frags)

xen-netfront/xen-netback summary: irq and napi

features: multiqueue (default)

- Segmentation Offload
 - GSO (Generic Segmentation Offload): software segmentation
 - TSO (TCP Segmentation Offload): hardware segmentation

- Segmentation Offload
 - GSO (Generic Segmentation Offload): software segmentation
 - TSO (TCP Segmentation Offload): hardware segmentation
- TSO would postpone segmentation to as late (low level) as possible

- Segmentation Offload
 - GSO (Generic Segmentation Offload): software segmentation
 - TSO (TCP Segmentation Offload): hardware segmentation
- TSO would postpone segmentation to as late (low level) as possible
- TSO info is shared via "struct xen_netif_extra_info gso" in ring buffer
 - gso.gso->u.gso.size = skb_shinfo(skb)->gso_size;
 - gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV6;

- Segmentation Offload
 - GSO (Generic Segmentation Offload): software segmentation
 - TSO (TCP Segmentation Offload): hardware segmentation
- TSO would postpone segmentation to as late (low level) as possible
- TSO info is shared via "struct xen_netif_extra_info gso" in ring buffer
 - gso.gso->u.gso.size = skb_shinfo(skb)->gso_size;
 - gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV6;
- TSO and other offload features are stored in xenstore (e.g., feature-gso-tcpv4)
 - .ndo_fix_features = xennet_fix_features
 - .ndo_set_features = xennet_set_features

- Segmentation Offload
 - GSO (Generic Segmentation Offload): software segmentation
 - TSO (TCP Segmentation Offload): hardware segmentation
- TSO would postpone segmentation to as late (low level) as possible
- TSO info is shared via "struct xen_netif_extra_info gso" in ring buffer
 - gso.gso->u.gso.size = skb_shinfo(skb)->gso_size;
 - gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV6;
- TSO and other offload features are stored in xenstore (e.g., feature-gso-tcpv4)
 - .ndo_fix_features = xennet_fix_features
 - .ndo_set_features = xennet_set_features
- checksum offload
 - XEN_NETTXF_csum_blank: Protocol checksum field is blank in the packet (hardware offload)
 - XEN_NETTXF_data_validated: Packet data has been validated against protocol checksum

features: multicast

xen-netfront/xen-netback init

performance tuning

- netfront/netback multiqueue
- Limit dom0 CPUs to first NUMA socket
- Interrupt affinity to reduce CPU 0 workload
- VCPU affinity to improve memory access performance
- Jumbo frame
- NIC offload
- TCP Parameter Settings

interesting works related to paravirtual I/O

- Achieving 10 Gb/s Using Safe and Transparent Network Interface Virtualization. VEE 2009
- Efficient and Scalable Paravirtual I/O System. USENIX ATC 2013
- A Comprehensive Implementation and Evaluation of Direct Interrupt Delivery. VEE 2015
- vRIO: Paravirtual remote I/O. ASPLOS 2016
- Hash, don't cache (the page table). SIGMETRICS 2016

• Xen paravirtual networking workflow

- Xen paravirtual networking workflow
- Xen paravirtual networking framework

- Xen paravirtual networking workflow
- Xen paravirtual networking framework
- Xen paravirtual networking init, protocol, features

- Xen paravirtual networking workflow
- Xen paravirtual networking framework
- Xen paravirtual networking init, protocol, features
- Xen paravirtual networking performance

