Synthesis of Quality Configurable Systems

Seogoo Lee, Behzad Boroujerdian Andreas Gerstlauer, Lizy K. John

Electrical and Computer Engineering
University of Texas at Austin
(This research is supported by NSF & Intel)

Approximate Computing (AC)

- Welcoming quality degradation
 - Gain in performance, power, ...
- Quality as a new design objective

- Optimize in the quality-energy-performance design space
 - Need systematic treatment across the compute stack

Quality Adaptiveness

- Quality States (Q-states)
 - Pareto optimal in Q-x space

- Dynamic nature of quality
 - Varies based on: application
 - Varies based on: input, temperature, ...
 - > Quality adaptive systems are desirable
- Ideal system
 - Identifies Q-states
 - Navigates through Q-states

Quality Configurable Architecture

Heterogeneous systems

- Mapping and scheduling
- ➤ Quality-configurable PEs

Software processors

- Quality exposed to ISA
- One binary per Q-state

> Hardware processors

Control capable of transitioning among quality states

Quality Management

Approximating HW/SW Synthesis

- Analytical quality/energy models [ISQED16]
 - Estimate operation-level quality metrics (statistical variance, statistical bounds, min/max) & propagate through (C)DFG
 - Energy model considering area (leakage), switching activity & delay (voltage scaling)
- (Meta-)heuristics for optimization
 - Quality-energy design space

Quality Model

Our quality estimation is

- GENERIC: work with various quality metrics and HW approximations
- FAST: semi- semi-analytical only with onetime error-free simulation
- ACCURATE: consider data/error dependency

Energy Model

- Approximate computing reduces
 - Area/switching activity: directly convertible to energy
 - Critical path timing delay: useful with voltage reduction
 - Need voltage-delay model of standard cells

Optimization Heuristic

- Branch & bound like heuristic
 - Considers that a node's approximation changes its output
 - Start approximation from the first node
 - Forward traversal of a graph
 - Early elimination of dominated solution candidates

Experiments

Setup

Examples

Design	$\#$ of s_i	Dataset	Description
2MM	6	Gaussian	2×2 matrix multiplication
branch	7	Gaussian	Simple branch example
idet	3	Lena image	1D-IDCT at JPEG decoder
sad	2	SD-VDS [17]	Sum of absolute difference
had8x8	5	H.265	8×8 Hadamard matrix computation
gblur	6	SD-VDS	5-tap Gaussian blur

- Delay characterization: Synopsys 32 nm (V_{ref} = 1.05V)
- Quality: SNR with analytical method

Efficiency of Exploration Heuristic

- Optimality comparison
 - For example, Gaussian blur function
 - With target SNR = 100.0 (linear)
 - Obtain a set of solutions that are close to Pareto frontiers

IDCT Optimization Results

- 2D-IDCT, 4 SNR target levels
 - Bit-truncated (BT) & approximate (AC) adders/multipliers

46% energy savings w/Vdd scaling

30dB

Summary & Conclusions

- Quality as a new design objective
 - Quality-energy-performance design spaces
- Quality-adaptive systems
 - Identifying Q-states
 - Navigating through them
- Quality management
 - Compilers for quality-programmable processors
 - Synthesis of quality-configurable accelerators
 - System-level task mapping/scheduling
 - Run-time quality governors (OS)

Thank You!