Solution Manual

N. Kapsos, M. Schrank, S. Sivakumar

35.6 Exercises

35.6.4

We do not need to change anything for the z bounds since they are given directly save for just applying $r=x^2+y^2$. Then $0 \le z \le r^2$. Then since the region is bounded by a cylinder of unit radius it is apparent that $0 \le r \le 1$ and that $0 \le \theta \le 2\pi$.

35.6.7

Since E is the sphere of radius a in the first octant, it is easy to see that θ may only vary from 0 to $\frac{\pi}{2}$. Furthermore since the radius of the sphere is a, the quantity r may only vary from 0 to a. The surfaces for z that bound the surface is the plane z=0 and $z=\sqrt{a^2-x^2-y^2}=\sqrt{a^2-r^2}$. So $0 \le z \le \sqrt{a^2-r^2}$

35.6.10

The region of integraion is a cylinder with a cylindrical cut out, where its base sits on the xy plane and is cut off above by the plane z=x+y+5. This plane does not cut off the cylinder short on the xy plane, so the base is given by an annulus of inner radius 1 and outer radius 2. This is enough to deduce that $1 \le r \le 2$ and $0 \le \theta \le 2\pi$.

To find bounds in z apply the transformation $(x,y) \to (r\cos(\theta),r\sin(\theta))$ to the plane z=x+y+5. The bottom bound is still 0. The upper bound becomes $r\cos(\theta)+r\sin(\theta)+5$. Applying the same transformation to the integrand, the triple integral becomes:

$$\int_{0}^{2\pi} \int_{1}^{2} \int_{0}^{r\cos(\theta)+r\sin(\theta)+5} r\sin(\theta)dz(r)drd\theta$$

$$\to \int_{0}^{2\pi} \int_{1}^{2} \left(r^{3}\sin(\theta)\cos(\theta)+r^{3}\sin^{2}(\theta)+5r^{2}\sin(\theta)\right)drd\theta$$

$$\to \int_{0}^{2\pi} \int_{1}^{2} \left(\frac{r^{3}}{2}+\frac{r^{3}}{2}\left(\sin(2\theta)-\cos(2\theta)\right)+5r^{2}\sin(\theta)\right)drd\theta$$

The last two terms will vanish due to the periodicity of the sine and cosine. Then the remaining integral is

$$\int_{0}^{2\pi} \int_{1}^{2} \frac{r^{3}}{2} dr d\theta \to \pi \frac{r^{4}}{4} \Big|_{1}^{2} = \frac{15}{4} \pi$$

35.6.13

The region is bounded above by the plane and below by the paraboloid. Rewrite the paraboloid equation as $z=\frac{1}{2}r^2$. The region of integration in the xy plane is the disk of radius 2 (find the boundary by solving $2=\frac{1}{2}r^2$). Then it follows that $0 \le r \le 2$ and $0 \le \theta \le 2\pi$. The triple integral becomes

$$\int_0^{2\pi} \int_0^2 \int_{\frac{1}{2}r^2}^2 (r^2) dz(r) dr d\theta \to \int_0^{2\pi} \int_0^2 \left(2r^3 - \frac{1}{2}r^5 \right) dr d\theta \to \int_0^{2\pi} \frac{8}{3} d\theta = \frac{16}{3}\pi$$

35.6.20

The sphere indicates that ρ varies from 0 to a. Then the half planes (since $x \geq 0$) may be rewritten as

$$\frac{1}{2}y = \frac{\sqrt{3}}{2}x \implies \cos(\theta) = \frac{1}{2} \implies \theta = \frac{\pi}{3}$$
$$\frac{\sqrt{3}}{2}y = \frac{1}{2}x \implies \sin(\theta) = \frac{1}{2} \implies \theta = \frac{\pi}{6}$$

This means that $\frac{\pi}{6} \leq \theta \leq \frac{\pi}{3}$. These half planes make it so that it intersects a half arc of the greatest circle of the sphere of radius a. This means that ϕ varies from 0 to π , since only half of the full circumference is traced out by the intersection of the half planes and the sphere.

35.6.23

Give $x = \rho \cos(\phi)$, $y = \rho \sin(\phi) \cos(\theta)$, and $z = \rho \sin(\phi) \sin(\theta)$, where ϕ is the angle from the x axis outwards and θ is the angle swept from the positive y axis around towards the positive z axis. Also give $r = \sqrt{y^2 + z^2}$ Then $x = \sqrt{1 - r^2}$ and $x = \sqrt{4 - r^2}$ are the hemispheres, of radius 1 and 2 respectively. So $1 \le \rho \le 2$. Then since these are positive hemispheres, they stop forming the rest of the sphere where x is negative. So ϕ varies from 0 to $\frac{\pi}{2}$. And conveniently since the hemispheres are fully formed about the x axis, θ takes on its natural range.

The triple integral becomes

$$\int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_1^2 (\rho \sin(\phi) \cos(\theta))^2 (\rho^2 \sin(\phi)) d\rho d\phi d\theta$$

$$\to \left(\int_0^{2\pi} \cos^2(\theta) d\theta \right) \left(\int_0^{\frac{\pi}{2}} \sin^3(\phi) d\phi \right) \left(\int_1^2 \rho^4 d\rho \right)$$

$$\to (\pi) \left(\frac{2}{3} \right) \left(\frac{31}{5} \right) = \frac{62}{15} \pi$$

35.6.30

Form these three inequalities directly from the bounds of integration:

$$0 \le \rho \le \frac{2}{\cos(\phi)} \to 0 \le z \le 2$$

$$0 \le \phi \le \frac{\pi}{4} \to z = r \text{ is a conical boundary}$$

$$0 \le \theta \le \frac{\pi}{2}$$

From these we can deduce that the solid region is the part of the cone in the first octant that is bounded below by z=r and above by z=2 for $r=\sqrt{x^2+y^2}$. The region of integration in the xy plane is quickly found to be the disk of radius 2 (since z=r=2). The triple integral for the volume in cylindrical coordinates is given below:

$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \int_{r}^{2} dz(r) dr d\theta \to \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} (2r - r^{2}) dr d\theta \to \int_{0}^{\frac{\pi}{2}} \frac{4}{3} d\theta = \frac{2}{3} \pi$$