Apprentissage supervisé

Introduction à l'apprentissage automatique – GIF-4101 / GIF-7005

Professeur : Christian Gagné

Semaine 1

Apprendre à partir d'exemples

- Supposons une classe correspondant au concept de voiture familiale
- Problème à deux classes
 - Positif (cercles rouges) : est une voiture familiale
 - Négatif (carrés bleus) : n'est pas une voiture familiale
- Représentation des exemples sur deux dimensions
 - x_1 : prix de la voiture
 - x₂ : puissance du moteur

Apprendre à partir d'exemples

• Exemples :

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

• Étiquettes de classe :

$$r = \begin{cases} 1 & \text{si } \mathbf{x} \text{ est positif} \\ 0 & \text{si } \mathbf{x} \text{ est négatif} \end{cases}$$

• Jeu de *N* exemples :

$$\mathcal{X} = \{\mathbf{x}^t, r^t\}_{t=1}^N$$

Hypothèse de classement

• Hypothèse possible :

$$(x_1^{\mathsf{min}} \leq x_1 \leq x_1^{\mathsf{max}})$$
 et $(x_2^{\mathsf{min}} \leq x_2 \leq x_2^{\mathsf{max}})$

Classe d'hypothèses

 $\bullet \;\; \mathsf{Hypoth\`ese} \; \mathsf{particuli\`ere} : h \in \mathcal{H}$

$$h(\mathbf{x}) = \begin{cases} 1 & \text{si h classe } \mathbf{x} \\ & \text{positif} \\ 0 & \text{si h classe } \mathbf{x} \\ & \text{négatif} \end{cases}$$

• Erreur empirique :

$$E(\mathbf{h}|\mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \mathcal{L}(\mathbf{h}(\mathbf{x}^t), r^t)$$

• Fonction de perte 0-1 :

$$\mathcal{L}(a,b) = \left\{ egin{array}{ll} 1 & ext{si } a
eq b \\ 0 & ext{si } a = b \end{array}
ight.$$

Hypothèses générales et spécifiques

- G : hypothèse la plus générale
- S : hypothèse la plus spécifique
- Hypothèses dans ${\mathcal H}$ entre S et G font parties de l'espace des versions

Complexité des modèles et bruit

- Bruit dans les données
 - Manque de précision
 - Erreurs d'étiquetage
 - Mesures latentes
- À performances égales, préférer le modèle le plus simple
 - Complexité : plus facile à utiliser et à entraîner
 - Interprétabilité : plus facile à expliquer
 - Plausibilité : rasoir d'Ockham

Problèmes à plusieurs classes

• Jeu à *K* classes :

$$\mathcal{X} = \{\mathbf{x}^t, \mathbf{r}^t\}_{t=1}^N$$

• Étiquettes à *K* dimensions :

$$\mathbf{r}^{t} = \begin{bmatrix} r_1^t & r_2^t & \dots & r_K^t \end{bmatrix}$$

$$r_i^t = \begin{cases} 1 & \text{si } \mathbf{x}^t \in C_i \\ 0 & \text{si } \mathbf{x}^t \in C_j, j \neq i \end{cases}$$

• K hypothèses à entraîner :

$$h_i, i = 1, \ldots, K$$

$$h_i(\mathbf{x}^t) = \begin{cases} 1 & \text{si } \mathbf{x}^t \in C_i \\ 0 & \text{si } \mathbf{x}^t \in C_j, j \neq i \end{cases}$$

Régression

• Jeu de données :

$$\mathcal{X} = \{\mathbf{x}^t, r^t\}_{t=1}^N, r^t \in \mathbb{R}$$

• On cherche une fonction $h(\cdot)$:

$$r^t = h(\mathbf{x}^t) + \epsilon$$

• Et on veut minimiser l'erreur quadratique :

$$E(\mathbf{h}|\mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} (r^{t} - \mathbf{h}(\mathbf{x}^{t}))^{2}$$

Régression

• 1er ordre avec une variable :

$$h(x) = w_1 x + w_0$$

- Solution avec dérivées partielles sur erreur empirique
- Sur figure, solutions avec polynômes du 1er, 2e et 4e ordre
 - 4e ordre est « presque parfait », mais généralise mal
 - 2e ordre capture mieux les données que le 1er

Sélection de modèles

- L'apprentissage supervisé est un problème mal posé
 - Les exemples ne sont pas suffisants pour donner une solution unique
- ullet II faut donc avoir un *biais inductif*, en faisant des suppositions sur ${\cal H}$
- Objectif premier : **généralisation**
 - Avoir le modèle qui performe le mieux sur de nouvelles données
- ullet Sur-apprentissage : ${\cal H}$ est plus complexe que le concept à modéliser
- ullet Sous-apprentissage : ${\cal H}$ est moins complexe que le concept

Facteurs influençant l'apprentissage

- Rappel : notre objectif est de minimiser l'erreur de généralisation sur de nouveaux exemples
- 1er facteur : complexité de la classe des hypothèses
 - Si la complexité des hypothèses augmente, alors l'erreur de généralisation diminue pendant un temps, mais ensuite augmente
- 2e facteur : taille du jeu d'exemples d'entraînement
 - Plus on a de données, plus l'erreur de généralisation diminue

Régularisation

- Régularisation : introduire une pénalité dans la fonction optimisée afin de minimiser la complexité
 - Rasoir d'Ockham : toutes autres choses étant égales, les solutions les plus simples sont les plus vraisemblables
- Forme courante : $J(h) = E(h|\mathcal{X}) + \lambda C(h)$
 - λ : pondération relative entre l'erreur empirique $E(\mathbf{h}|\mathcal{X})$ et la complexité $C(\mathbf{h})$ de la fonction
- Exemples de mesures de complexité utilisées pour régulariser
 - Nombre de paramètres utilisés (ou de valeurs non nulles de paramètres)
 - Norme L_2 des valeurs de paramètres
 - Dimension Vapnik-Chervonenkis
 - Degré du polynôme pour régression polynomiale

Validation empirique

- Pour estimer l'erreur de généralisation, on doit utiliser des données non vues durant l'entraînement
- Approche classique, partitionner le jeu d'exemples
 - Entraı̂nement (50%) / validation (25%) / test (25%)
- Procédure suivie
 - 1. Génère des fonctions à partir du jeu d'entraînement
 - 2. Évalue l'erreur en généralisation de ces fonctions sur le jeu de validation, en retournant celle qui la minimise
 - 3. Rapporte la performance finale de la fonction choisie sur le jeu de test comme base de comparaison
- Si on a peu de données, d'autres solutions existent
 - Partitionner le jeu initial en M plis distincts
 - ullet Utiliser M-1 plis pour entraı̂nement et le pli restant pour la validation
 - Répéter M fois, avec toutes les combinaisons possibles
 - Cas extrême : M est égal à N

Trois dimensions de l'apprentissage supervisé

- Représentation
 - Hypothèses paramétrées : $h(\mathbf{x}|\theta)$
 - Instances, hyperplans, arbres de décision, ensembles de règles, réseaux de neurones, modèles graphiques, etc.
- Évaluation
 - Erreur empirique : $E(\theta|\mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \mathcal{L}(r^t, h(\mathbf{x}^t|\theta))$
 - Taux de reconnaissance, précision, rappel, erreur quadratique, vraisemblance, probabilité a posteriori, gain en information, marge, coût, etc.
- Optimisation
 - Procédure : $\theta^* = \operatorname{argmin}_{\forall \theta} E(\theta | \mathcal{X})$
 - Descente du gradient, programmation quadratique, heuristique, etc.