LECTURE 1: INTRODUCTION

Shu-Cherng Fang
North Carolina State University – Fall 2011

Outline

- What is Linear Programming?
- Why to study Linear programming?
- How to study Linear Programming?
- History of Linear Programming
- How to solve an LP problem?
- Where to go?

What is Linear Programming (LP)?

- Optimize a linear objective function of decision variables subject to a set of linear constraints.
- Example

Minimize
$$x_1 - 2x_2$$

subject to $x_1 + x_2 \le 40$
 $2x_1 + x_2 \le 60$
 $x_1, x_2 \ge 0$.

Graphic representation

$$\mathbf{P} = \{(x_1, x_2) \mid x_1 + x_2 \le 40, \ 2x_1 + x_2 \le 60, \ x_1, x_2 \ge 0\}$$

Feasible Domain

General form

linear objective function

Minimize $c_1x_1 + c_2x_2 + \cdots + c_nx_n$ (Maximize)

s. t.

m linear constraints

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \overset{(<)}{\underset{(<)}{>}} b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \overset{(<)}{\underset{(<)}{>}} b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_1 + \dots + a_{mn}x_n \overset{(<)}{\underset{(>)}{=}} b_m \end{cases}$$

$$\underbrace{x_1, x_2, \dots, x_n} \geq 0.$$

n decision variables

Why study LP?

- Wide applications:
 - One of the most widely applied methodologies.
 - 85 % of Fortune 500 companies had used LP models.
- Passage to advanced subjects:
 - Nonlinear Programming
 - Network Flows
 - Integer Programming
 - Conic Programming
 - Semidefinite Programming
 - Robust Optimization

Reference: Operations Research, Vol. 50, No. 1, 2002

Example – manpower allocation

x_{ij} = man-hours of skill i working on project j

Minimize
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s. t.
$$\sum_{i=1}^{m} x_{ij} \ge b_j, \ j = 1, \dots, n$$

$$\sum_{j=1}^{n} x_{ij} \le a_i, \ i = 1, \dots, m$$

$$l_{ij} \le x_{ij} \le u_{ij}, \ \forall i, j.$$

How to study LP?

- Geometric intuition
- Algebraic manipulation
- Computer programming

History of Linear Programming

- Conceived by G. B. Dantzig (1947).
 - mechanized planning tool for a deployment, training, and logistical supply program in USAF.
- Named by T. C. Koopmans & G. B. Dantzig (1948).
- Simplex Method proposed by G. B. Dantzig (1948).
 - L. V. Kantorovich worked on a restricted class in 1939.
- Kantorovich & Koopmans received the Nobel Prize in Economic Science (1975).
 - Theory of optimum allocation of resources.

History of Linear Programming

- Ellipsoid Method proposed by L. G. Khachian (1979).
 - First polynomial-time algorithm for LP.
- Interior-Point Method proposed by N.
 Karmarkar (1984).
 - First "good" polynomial-time algorithm for LP.

How to solve an LP problem?

- What's special about LP?
 - linear constraints shape the feasible domain as a convex polyhedral set with a finite number of vertices.
 - linear objective function provides a linear contour of each fixed value.

Fundamental theorem of LP

• For a linear programming problem, if its feasible domain is not empty, then its optimum is either unbounded or is attained at least at one vertex of the feasible domain.

How to find an optimal solution?

• Fact:

• Question: How to find x^* ?

Different solution methods

- Enumeration Method
 - Find all vertices and choose the optimal one by comparison.
 - Impractical when $C(n, m) = \frac{n!}{m!(n-m)!}$ is large.

$$n = 1000, m = 500 \Longrightarrow C(n, m) > 10^{15}.$$

Simplex Method

Basic ideas: (walking on the boundary)

Step 1: Start at a vertex.

Step 2: If current vertex is optimal, STOP! Otherwise,

Step 3: Move to a better neighboring vertex. Go To

Step 2.

Is Simplex Method Good?

(1) In general, the simplex method works well, it visits about

$$0.7159 \ m^{0.9522} \ n^{0.3109}$$

vertices.

- (2) In the worst case, Klee & Minty (1971) showed that it requires to traverse 2ⁿ − 1 vertices.
- (3) Problem of exponential-time algorithm.

Polynomial Time Algorithm

An algorithm runs in polynomial time if the number of steps taken by an algorithm on any instance *I* is bounded by a polynomial in the size of *I*.

An algorithm runs in exponential time if it does not run in polynomial time.

Is there a polynomial-time algorithm for LP?

Yes! - Ellipsoid Method by L. G. Khachian 1979.

Basic ideas:

Consider solving Mx < d

 $\mathbf{M}: m \times n, \ \mathbf{x} \in \mathbb{R}^n, \ \mathbf{d} \in \mathbb{R}^m.$

Ellipsoid method

LP solution is characterized by the optimality conditions

(*)
$$\begin{cases} \mathbf{c}^T \mathbf{x} - \mathbf{b}^T \mathbf{w} = \mathbf{0} \\ \mathbf{A} \mathbf{x} \le \mathbf{b}, \ \mathbf{x} \ge \mathbf{0} \\ \mathbf{A}^T \mathbf{w} \ge \mathbf{c}, \ \mathbf{w} \ge \mathbf{0} \end{cases}$$

Ellipsoid method

- Step 1: In the (\mathbf{x}, \mathbf{w}) space, open a large ellipsoid $E_0 = S(0, 2^{2L})$.
- Step 2: If the center of the current ellipsoid E^k solves (*), then STOP. Otherwise, replace E^k by a smaller ellipsoid E^{k+1} .
- Step 3: If $Vol(E^{k+1})$ is small enough, STOP! (*) has no solution.

Is ellipsoid method good?

(1) In theory, since

$$\frac{Vol(E^{k+1})}{Vol(E^k)} < e^{-\frac{1}{2}(n+1)}$$

the Ellipsoid Method terminates in polynomial-time.

(2) In practice, it is NOT as good as the Simplex Method.

Complexity= $O(n^4L^2)$.

Is there a good polynomial-time algorithm for LP?

- Yes! Interior Point Method by Karmarkar in 1984.
- Basic ideas: (walk through interior)

Step 1: Start with an interior solution.

Step 2: If current solution is good enough, STOP. Otherwise, Step 3: Check all directions for improvement and move to a better interior solution. Go to Step 2.

Is interior point method good?

- (1) It is a polynomial-time algorithm with complexity= $O(n^3L)$.
- (2) It outperformed the simplex method for large size LP.
- (3) 53 Netlib experiments.

Where to go?

- Integration of Interior-point methods to develop hybrid algorithms for solving very large size LP for real-world applications by exploring:
 - special structure.
 - sparsity.
 - decomposition.
 - parallel computation.
- Nonlinear optimization with linear constraints.
- Conic Programming.
- Semidefinite Programming.
- Robust optimization