# ▼ Исходные данные

Коэф. запаса: safety = 1.3

Степень двухконтурности: m2 = 6

РТ: Воздух

compressor = "КВД"

Число Maxa: M = 0

Геометрическая высота работы (м):

 $H_{\cdot} = 0$ 

Массовый расход (кг/с):

Полная температура на входе в К (К):

$$T^*_{K1} = \begin{vmatrix} 418.2 & \text{if compressor} = "КВД" = 418.2 \\ 288.2 & \text{otherwise} \end{vmatrix}$$

Полное давление на входе в К (Па):

$$P*_{K1} = \begin{vmatrix} 316.2 \cdot 10^3 & \text{if compressor} = "КВД" = 316.2 \cdot 10^3 \\ 101325 & \text{otherwise} \end{vmatrix}$$

Степень повышения давления КВД:

$$\pi^*_K = \begin{vmatrix} 1.6 & \text{if compressor} = \text{"Вл"} & = 9.000 \\ \frac{3.2}{1.6} & \text{if compressor} = \text{"КНД"} \\ 9 & \text{if compressor} = \text{"КВД"} \end{vmatrix}$$

Ожидаемый адиабатический КПД ОК:

$$\eta_{K}^{*} = \begin{vmatrix} 0.86 & \text{if compressor} = "Вл" & = 88.00 \cdot \% \\ 0.87 & \text{if compressor} = "КНД" \\ 0.88 & \text{if compressor} = "КВД" \end{vmatrix}$$

Частота вращения ротора (c-1):

$$\omega = \begin{bmatrix} 1570.8 & \text{if compressor} = \text{"КВД"} \end{bmatrix} = 1570.8$$
 555 otherwise

Относ. диаметр корня 1ой ступени [14, с.7]:

$$\overline{d}_1 = \begin{vmatrix} 0.40 & \text{if compressor} = "Вл" & = 0.65 \\ 0.75 & \text{if compressor} = "КНД" \\ 0.65 & \text{if compressor} = "КВД" \end{vmatrix}$$

 $0.3 \le \overline{d}_1 \le 0.6 = 0$ 

Частота вращения ротора (об/мин): 
$$n = \frac{60 \cdot \omega}{2 \cdot \pi} = 15000$$

Закон профилирования проточной части (ЗППЧ):

Относ. параметры по относительным ступеням:

$$\begin{pmatrix} z_{\sim} \\ R_{L \sim cp} \\ K_{\sim H} \\ \eta^*_{\sim} \\ \overline{c}_{\sim a1} \\ \overline{H}_{\sim T} \end{pmatrix} = \begin{pmatrix} (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8)^{T} \\ (0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5)^{T} \\ (0.99 \ 0.98 \ 0.97 \ 0.96 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95)^{T} \\ (0.88 \ 0.89 \ 0.905 \ 0.91 \ 0.91 \ 0.905 \ 0.89 \ 0.88)^{T} \\ (0.435 \ 0.425 \ 0.415 \ 0.405 \ 0.395 \ 0.385 \ 0.375 \ 0.365)^{T} \\ (0.25 \ 0.29 \ 0.32 \ 0.33 \ 0.35 \ 0.32 \ 0.29 \ 0.27)^{T}$$

| Тип компрессора           |           |           | 1         | Номер ступс | ени и $\overline{L}_{CT.I}$ |           |           |           |
|---------------------------|-----------|-----------|-----------|-------------|-----------------------------|-----------|-----------|-----------|
| тип компрессора           | I         | II        | III       | IV          | $Z_{CP}$                    | z - 2     | z - 1     | z         |
| Дозвуковой                | 0,18-0,20 | 0,24-0,25 | 0,24-0,25 | 0,29-0,30   | 0,30-0,32                   | 0,28-0,29 | 0,27-0,28 | 0,26-0,27 |
| Трансзвуковой             | 0,19-0,22 | 0,27-0,29 | 0,30-0,32 | 0,32-0,33   | 0,33-0,35                   | 0,31-0,32 | 0,27-0,28 | 0,26-0,27 |
| С одной св/зв<br>ступенью | 0,23-0,25 | 0,27-0,29 | 0,30-0,32 | 0,32-0,33   | 0,33-0,35                   | 0,31-0,32 | 0,27-0,28 | 0,26-0,27 |
| С 2-мя св/зв<br>ступенями | 0,23-0,25 | 0,27-0,29 | 0,30-0,32 | 0,32-0,33   | 0,33-0,35                   | 0,31-0,32 | 0,27-0,28 | 0,26-0,27 |
| С 3-мя св/зв<br>ступенями | 0,23-0,25 | 0,27-0,29 | 0,30-0,32 | 0,32-0,33   | 0,33-0,35                   | 0,31-0,32 | 0,27-0,28 | 0,25-0,26 |

[16, c. 60]

[18, c. 24]

## Уточнение параметров:

$$\overline{c}_{\sim a1} = \overline{c}_{\sim a1} -$$
 0.100 if compressor = "Вл" 0.141 if compressor = "КНД" 0.203 if compressor = "КВД"

увеличение несущественно увеличивает  $\pi$ 

$$\eta^*_{\sim} = \eta^*_{\sim} + \begin{vmatrix} -0.020 & \text{if compressor} = "Вл" \\ -0.028 & \text{if compressor} = "КНД" \\ -0.017 & \text{if compressor} = "КВД" \end{vmatrix}$$

понижение существенно увеличивает  $\pi$ 

$$\overline{H}_{T} = \overline{H}_{T} +$$
0.0145 if compressor = "Вл"
0.0164 if compressor = "КНД"
0.0173 if compressor = "КВД"

увеличение несущественно увеличивает  $\pi$ 

увеличение существенно увеличивает 
$$\pi$$

$$\operatorname{stack}\left(R_{L\sim cp}^{\phantom{L}T},K_{\sim H}^{\phantom{L}T},\eta^*_{\phantom{A}}^{\phantom{A}T},\overline{c}_{\sim a1}^{\phantom{C}T},\overline{H}_{\sim T}^{\phantom{A}T}\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 \\ 2 & 0.990 & 0.980 & 0.970 & 0.960 & 0.950 & 0.950 & 0.950 \\ 3 & 0.863 & 0.873 & 0.888 & 0.893 & 0.893 & 0.888 & 0.873 & 0.863 \\ 4 & 0.232 & 0.222 & 0.212 & 0.202 & 0.192 & 0.182 & 0.172 & 0.162 \\ 5 & 0.267 & 0.307 & 0.337 & 0.347 & 0.367 & 0.337 & 0.307 & 0.287 \end{bmatrix}$$

$$0.18 \le \overline{H} \sim_{T}^{T} = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1)$$
 $\overline{H} \sim_{T}^{T} \le 0.35 = (1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1)$ 

Коэф. теор. напора "средней" ступени [14, с.11]: 
$$\overline{H}_{\mbox{Tcp}}$$

$$\overline{H}_{\text{Tcp}} = \frac{\sum_{i=1}^{\text{rows}(z_{\sim})} \overline{H}_{T_{i}}}{\text{rows}(z_{\sim})} = 0.3198$$

 $0.25 \le \overline{H}_{Ten} \le 0.32 = 1$ 

### ▼ Распределение основных параметров ОК по ступеням

Кинематическая степень реактивности: 
$$\underset{\leftarrow}{\mathbb{R}_{L\sim cp}}(i) = \operatorname{interp}\left(\operatorname{lspline}\left(\frac{z_{\sim}}{\operatorname{rows}(z_{\sim})}, R_{L\sim cp}\right), \frac{z_{\sim}}{\operatorname{rows}(z_{\sim})}, R_{L\sim cp}, i\right)$$
 Коэф. уменьшения теор. напора: 
$$K_{\sim H}(i) = \operatorname{interp}\left(\operatorname{lspline}\left(\frac{z_{\sim}}{\operatorname{rows}(z_{\sim})}, K_{\sim H}\right), \frac{z_{\sim}}{\operatorname{rows}(z_{\sim})}, K_{\sim H}, i\right)$$
 Изоэнтропический КПД: 
$$\underset{\leftarrow}{\mathbb{M}_{\sim}}(i) = \operatorname{interp}\left(\operatorname{lspline}\left(\frac{z_{\sim}}{\operatorname{rows}(z_{\sim})}, \eta^*_{\sim}\right), \frac{z_{\sim}}{\operatorname{rows}(z_{\sim})}, \eta^*_{\sim}, i\right)$$
 Коэф. расхода: 
$$\overline{c}_{\sim al}(i) = \operatorname{interp}\left(\operatorname{lspline}\left(\frac{z_{\sim}}{\operatorname{rows}(z_{\sim})}, \overline{c}_{\sim al}\right), \frac{z_{\sim}}{\operatorname{rows}(z_{\sim})}, \overline{c}_{\sim al}, i\right)$$
 Коэф. напора: 
$$\overline{H}_{\sim T}(i) = \operatorname{interp}\left(\operatorname{lspline}\left(\frac{z_{\sim}}{\operatorname{rows}(z_{\sim})}, \overline{H}_{\sim T}\right), \frac{z_{\sim}}{\operatorname{rows}(z_{\sim})}, \overline{H}_{\sim T}, i\right)$$

$$\begin{pmatrix} R_{L,cp} \\ K_{,H} \\ \eta^* \\ \hline c_{,a1} \\ \hline H_{,T} \end{pmatrix} = \begin{pmatrix} R_{L,cp}(Z,i) = \begin{pmatrix} R_{L-cp} \left(\frac{1}{\operatorname{rows}(Z_{,...})}\right) & \text{if } i < 1 \\ R_{L-cp}(1) & \text{if } i > Z \\ R_{L-cp} \left(\frac{i}{Z}\right) & \text{otherwise} \end{pmatrix}$$
 
$$\begin{pmatrix} K_{,H}(Z,i) = \begin{pmatrix} K_{,H} \left(\frac{1}{\operatorname{rows}(Z_{,...})}\right) & \text{if } i < 1 \\ K_{,H}(1) & \text{if } i > Z \\ K_{,H} \left(\frac{i}{Z}\right) & \text{otherwise} \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ K_{,H}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.950 \\ 0.863 \\ 0.162 \\ 0.287 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.950 \\ 0.162 \\ 0.287 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.950 \\ 0.162 \\ 0.287 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.162 \\ 0.287 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.950 \\ 0.162 \\ 0.287 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.950 \\ 0.162 \\ 0.287 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.950 \\ 0.162 \\ 0.287 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.162 \\ 0.287 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.162 \\ 0.287 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.162 \\ 0.287 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.162 \\ 0.287 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.162 \\ 0.287 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.950 \\ 0.950 \\ 0.950 \end{pmatrix}$$
 
$$\begin{pmatrix} R_{L,cp}(Z_{temp}, i_{temp}) \\ R_{,L}(Z_{temp}, i_{temp$$

$$\begin{pmatrix} Z_{\text{temp}} \\ i_{\text{temp}} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} R_{L.cp}(Z_{temp}, i_{temp}) \\ K_{.H}(Z_{temp}, i_{temp}) \\ \eta^*.(Z_{temp}, i_{temp}) \\ \overline{c}_{.a1}(Z_{temp}, i_{temp}) \\ \overline{H}_{.T}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.863 \\ 0.162 \\ 0.287 \end{pmatrix}$$





Показатель адиаьаты перед К []:  $k_{K1} = k_{ad} \left( Cp_{BO3dyx} \left( P^*_{K1}, T^*_{K1} \right), R_B \right) = 1.394$ 

Полное давление после К [Па]:  $P^*_{K3} = \pi^*_{K} \cdot P^*_{K1} = 2846 \cdot 10^3$ 

Количество итераций []: iteration<sub>3</sub> = 2

Полная температура после K [K]:  $T*_{K3} = 805.9$ 

Показатель адиаьаты после К []:  $k_{K3} = 1.354$ 

Полная плотность перед и после К [кг/м³]:  $\begin{pmatrix} \rho^* K1 \\ \rho^* K3 \end{pmatrix} = \frac{1}{R_B} \cdot \begin{pmatrix} \frac{P^* K1}{T^* K1} \\ \frac{P^* K3}{T^* K3} \end{pmatrix} = \begin{pmatrix} 2.633 \\ 12.297 \end{pmatrix}$ 

Критические скорости перед и после К [м/с]:  $\begin{pmatrix} a^*_{\text{C.BX}} \\ a^*_{\text{C.BЫX}} \end{pmatrix} = \begin{pmatrix} a_{\text{Kp}} \left( k_{\text{K}1}, R_{\text{B}}, T^*_{\text{K}1} \right) \\ a_{\text{Kp}} \left( k_{\text{K}3}, R_{\text{B}}, T^*_{\text{K}3} \right) \end{pmatrix} = \begin{pmatrix} 373.9 \\ 515.9 \end{pmatrix}$ 

Ср. показатель адиабаты К []:  $k_{cp} = k_{ad} \left( Cp_{Bo3dyx.cp} \left( P^*_{K1}, P^*_{K3}, T^*_{K1}, T^*_{K3} \right), R_B \right) = 1.374$ 

Теоретический напор [Дж/кг]:  $H_{TK} = \frac{Cp_{\text{воздух.cp}}\left(P^*_{K1}, P^*_{K3}, T^*_{K1}, T^*_{K3}\right) \cdot T^*_{K1} \cdot \left(\frac{\frac{k_{cp}-1}{k_{cp}}}{\pi^*_{K}} - 1\right)}{\eta^*_{K}} = 410.3 \cdot 10^3$ 

```
iteration<sub>u</sub>
     <sup>u</sup>1пер
Z_{recomend}
                             = | iteration<sub>u</sub> = 0
       c_{BX}
                                     \rho_{K1} = \rho^*_{K1}
                                       while 0 < 1
       \rho_{K1}
                                           iteration_u = iteration_u + 1
                                             | trace(concat("iteration.u = ", num2str(iteration_u))) |
                                          u_{1 \text{nep}} = \sqrt[3]{\frac{\pi \cdot G \cdot n^2}{900 \cdot \overline{c}_{.a1}(1,0) \cdot \rho_{K1} \cdot \left[1 - \left(\overline{d}_1\right)^2\right]}}
                                          Z_{recomend} = max \left( round \left( \frac{H_{TK}}{\overline{H}_{Tcp} \cdot u_{1 \pi ep}} \right), 1 \right)
                                           c_{\text{BX}} = \overline{c}_{.a1}(Z_{\text{recomend}}, 0) \cdot u_{1 \pi \text{ep}}
                                          \lambda_{\rm BX} = \frac{c_{\rm BX}}{a_{\rm c.BX}^*}

ho'_{K1} = 
ho*_{K1} \cdot \Gamma \mathcal{I} \Phi \left( "
ho", \lambda_{BX}, k_{K1} \right)
                                          \left| \text{ if } \left| \text{eps} \left( \text{"rel"} , \rho'_{K1}, \rho_{K1} \right) \right| \leq \text{epsilon} \right|

\rho_{K1} = \rho'_{K1}

                                           \rho_{K1} = \rho'_{K1}
                                         iterationu
                                            <sup>u</sup>1пер
                                        Z_{recomend} \\
                                                c_{BX}
                                                \lambda_{BX}
                                                \rho_{K1}
```

Количество итераций []: iteration = 2

Окружная скорость на перифкрии перед K [м/c]:  $u_{1\text{пер}} = 430.5$ 

Рекомендуемое количество ступеней []:  $Z_{recomend} = 7$ 

Абс. скорость перед K [м/с]:  $c_{BX} = 99.9$ 

Приведенная скорость перед К []:  $\lambda_{\rm BX} = 0.2671$ 

Плотность перед К [кг/м^3]:  $\rho_{K1} = 2.555$ 

Кольцевая площадь перед К [м²]: 
$$F_{BX} = \frac{G \cdot \sqrt{R_B \cdot T^*_{K1}}}{m_q(k_{K1}) \cdot P^*_{K1} \cdot \Gamma \angle \Phi \left( \text{"G"} , \lambda_{BX}, k_{K1} \right)} = 0.1364$$

$$D'_{\text{nep1}} = \frac{2 \cdot u_{1\text{nep}}}{\omega} = 548.2 \cdot 10^{-3}$$

Диамтеры перед К [м]:  $D'_{cp1} = \overline{r}_{cp} (\overline{d}_1) \cdot D'_{nep1} = 462.3 \cdot 10^{-3}$ 

$$D'_{\text{kop1}} = \overline{d}_{1} \cdot D'_{\text{nep1}} = 356.3 \cdot 10^{-3}$$

$$\varphi = 0, \frac{2 \cdot \pi}{360} .. 2 \cdot \pi$$



Рекомендуемое количество ступеней []:

Количество ступеней []: 
$$Z = \begin{bmatrix} 1 & \text{if compressor} = "Вл" \end{bmatrix} = 9$$

▲ Нулевые приближения

```
BHA = \begin{bmatrix} 1 & \text{if compressor} = "КВД" = 1 \\ 0 & \text{otherwise} \end{bmatrix}
```

▼ Расчет ВНА

```
\alpha_{1BHA}
                   \alpha_{3BHA}
 \sigma_{\mathrm{BHA}}
                    \sigma_{
m BHA}
                 d<sub>3BHA</sub>
d<sub>1BHA</sub>
T*<sub>1BHA</sub> T*<sub>3BHA</sub>
P*<sub>1BHA</sub> P*<sub>3BHA</sub>
\rho^*_{1BHA} \rho^*_{3BHA}
k<sub>1BHA</sub> k<sub>3BHA</sub>
<sup>а</sup>кр1ВНА <sup>а</sup>кр3ВНА
                                              for r \in av(N_r)
c<sub>a1BHA</sub> c<sub>a3BHA</sub>
                                                  \alpha_{1BHA_r} = 90^{\circ}
c<sub>u1BHA</sub> c<sub>u3BHA</sub>
                                                   \overline{d}_{1BHA} = \overline{d}_{1}
ca1BHA ca3BHA
                                                   \overline{d}_{3BHA} = \overline{d}_{1BHA}
<sup>c</sup>u1BHA <sup>c</sup>u3BHA
                                                   T^*_{1BHA_r} = T^*_{K1}
 c<sub>1BHA</sub>
                   c<sub>3BHA</sub>
                                                   T^*_{3BHA_r} = T^*_{1BHA_r}
\lambda_{c1BHA} \lambda_{c3BHA}
F<sub>1BHA</sub>
                   F<sub>3BHA</sub>
                                                   P_{1BHA_r} = P_{K1}
                    \epsilon_{
m BHA}
 \varepsilon_{
m BHA}
                                                   k_{1BHA_r} = k_{ad}(Cp_{BO3dyx}(P^*_{1BHA_r}, T^*_{1BHA_r}), R_B)
                                                   a_{\text{Kp1BHA}_r} = a_{\text{Kp}}(k_{1BHA_r}, R_B, T^*_{1BHA_r})
                                                   \overline{c}_{a1BHA_r} = \overline{c}_{.a1}(Z,0)
                                                  \overline{c}_{u1BHA_r} = \overline{r}_{cp}(\overline{d}_{1BHA}) \cdot (1 - R_{L.cp}(Z, 0)) - \frac{\overline{H}_{.T}(Z, 0)}{2 \cdot \overline{r}_{cp}(\overline{d}_{1BHA})} \text{ if BHA} = 1
                                                     c_{a1BHA_r} = c_{a1BHA_r} \cdot u_{1\pi ep}
```

$$\begin{split} &\sigma_{BHA} = 0.9982 \\ &\operatorname{submatrix} \left( \epsilon_{BHA}, \operatorname{av} \left( \operatorname{N}_r \right), \operatorname{av} \left( \operatorname{N}_r \right), 1, 1 \right) = (22.17) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left( \alpha_{1BHA}, \operatorname{av} \left( \operatorname{N}_r \right), \operatorname{av} \left( \operatorname{N}_r \right), 1, 1 \right) = (90.00) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left( \alpha_{3BHA}, \operatorname{av} \left( \operatorname{N}_r \right), \operatorname{av} \left( \operatorname{N}_r \right), 1, 1 \right) = (67.83) \cdot \operatorname{deg} \\ &\left( \overline{d}_{1BHA} \right) = \begin{pmatrix} 0.6500 \\ 0.6500 \end{pmatrix} \qquad \begin{pmatrix} F_{1BHA} \\ F_{3BHA} \end{pmatrix} = \begin{pmatrix} 0.1364 \\ 0.1373 \end{pmatrix} \end{split}$$

$$c_{u1BHA_r} = \frac{c_{a1BHA_r}}{\tan(\alpha_{1BHA_r})}$$

$$c_{1BHA_r} = \frac{c_{a1BHA_r}}{\sin(\alpha_{1BHA_r})}$$

$$\lambda_{c1BHA_r} = \frac{c_{1BHA_r}}{a_{sp1BHA_r}}$$

$$\sigma_{BHA} = \begin{bmatrix} 1 + \max(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}) \cdot \frac{k_{1BHA_r}}{k_{1BHA_r} + 1} \cdot (\lambda_{c1BHA_r})^2 \end{bmatrix}^{-1} \text{ if } BHA = 1$$

$$\int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}) \cdot \frac{k_{1BHA_r}}{k_{1BHA_r} + 1} \cdot (\lambda_{c1BHA_r})^2 \end{bmatrix}^{-1} \text{ if } BHA = 1$$

$$\int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}) \cdot \frac{k_{1BHA_r}}{k_{1BHA_r} + 1} \cdot (\lambda_{c1BHA_r})^2 \end{bmatrix}^{-1} \text{ if } BHA = 1$$

$$\int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}) \cdot R_{1BHA_r}$$

$$\int_{1}^{\infty} 3BHA_r = \int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}) \cdot R_{1BHA_r}$$

$$\int_{1}^{\infty} 3BHA_r = \int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}) \cdot R_{1BHA_r}$$

$$\int_{1}^{\infty} 3BHA_r = \int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}) \cdot R_{1BHA_r}$$

$$\int_{1}^{\infty} 3BHA_r = \int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}) \cdot R_{1BHA_r}$$

$$\int_{1}^{\infty} 3BHA_r = \int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}, k_{1BHA_r}) \cdot R_{1BHA_r}$$

$$\int_{1}^{\infty} 3BHA_r = \int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}, k_{1BHA_r}) \cdot R_{1BHA_r}$$

$$\int_{1}^{\infty} 3BHA_r = \int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}, k_{1BHA_r}$$

$$\int_{1}^{\infty} 3BHA_r = \int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}, k_{1BHA_r}$$

$$\int_{1}^{\infty} 3BHA_r = \int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}, k_{1BHA_r}, k_{1BHA_r}$$

$$\int_{1}^{\infty} 1 \cdot \cot(0.03, 0.06) \cdot \Gamma \mathcal{I} \Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}, k_{1B$$

$$\begin{split} & \text{submatrix} \Big( T^*_{1BHA}, \text{av} \Big( N_r \big), \text{av} \Big( N_r \big), 1, 1 \Big) = (418.2) \\ & \text{submatrix} \Big( T^*_{3BHA}, \text{av} \Big( N_r \big), \text{av} \Big( N_r \big), 1, 1 \Big) = (418.2) \\ & \text{submatrix} \Big( P^*_{1BHA}, \text{av} \Big( N_r \big), \text{av} \Big( N_r \big), 1, 1 \Big) = (316.2) \cdot 10^3 \\ & \text{submatrix} \Big( P^*_{3BHA}, \text{av} \Big( N_r \big), \text{av} \Big( N_r \big), 1, 1 \Big) = (315.6) \cdot 10^3 \\ & \text{submatrix} \Big( \rho^*_{1BHA}, \text{av} \Big( N_r \big), \text{av} \Big( N_r \big), 1, 1 \Big) = (2.633) \\ & \text{submatrix} \Big( \rho^*_{3BHA}, \text{av} \Big( N_r \big), \text{av} \Big( N_r \big), 1, 1 \Big) = (2.628) \\ & \text{submatrix} \Big( k_{1BHA}, \text{av} \Big( N_r \big), \text{av} \Big( N_r \big), 1, 1 \Big) = (1.394) \\ & \text{submatrix} \Big( k_{3BHA}, \text{av} \Big( N_r \big), \text{av} \Big( N_r \big), 1, 1 \Big) = (1.394) \end{split}$$

$$\begin{split} & \text{submatrix} \Big( a_{Kp1BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (373.9) \\ & \text{submatrix} \Big( a_{Kp3BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (373.9) \\ & \text{submatrix} \Big( \overline{c}_{a1BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (0.232) \\ & \text{submatrix} \Big( \overline{c}_{a3BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (0.233) \\ & \text{submatrix} \Big( \overline{c}_{a3BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (0.095) \\ & \text{submatrix} \Big( \overline{c}_{a3BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (0.097) \\ & \text{submatrix} \Big( c_{a1BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (99.9) \\ & \text{submatrix} \Big( c_{a3BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (99.9) \\ & \text{submatrix} \Big( c_{u3BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (40.7) \\ & \text{submatrix} \Big( c_{1BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (99.9) \\ & \text{submatrix} \Big( c_{3BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (107.9) \\ & \text{submatrix} \Big( \lambda_{c3BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (0.267) \\ & \text{submatrix} \Big( \lambda_{c3BHA}, av \Big( N_r \Big), av \Big( N_r \Big), 1, 1 \Big) = (0.288) \\ \end{aligned}$$

$$\begin{pmatrix} F_{1BHA} \\ F_{3BHA} \end{pmatrix} = G \cdot \sqrt{R_n} \\ \begin{pmatrix} F_{1BHA} \\ F_{3BHA} \end{pmatrix} = G \cdot \sqrt{R_n} \\ \begin{pmatrix} G_{1BHA} \\ F_{3BHA} \end{pmatrix} \cdot F^*_{1BHA_r} \cdot F_{1} \Phi \left( G_{1}^* G_{1}^* \cdot \lambda_{c} B_{1} B_{1} A_r \right) \cdot Sin \left( G_{1} B_{1} A_r \right) \\ \begin{pmatrix} G_{1BHA} \\ G_{3BHA} \\ G_{1BHA} \\ G_{3BHA} \end{pmatrix} \cdot F^*_{3BHA} \\ -G_{1BHA} \\ G_{3BHA} \\ -G_{1} B_{1A} \\ G_{3BHA} \\ -G_{1} B_{1A} \\ -G_{2} B_{1A} \\ -G_{2} B_{1A} \\ -G_{2} B_{1A} \\ -G_{2} B_{2} \\ -$$

▲ Расчет ВНА:

$$\begin{split} D_{s((1,1),N_r} &= \frac{2 \cdot u_{s((1,1),N_r)}}{\omega} \\ D_{s((1,1),1} &= \sqrt{\left(D_{s((1,1),N_r)}\right)^2 - \frac{4 \cdot F_{s((1,1)}}{\pi}}{\pi}} \\ D_{s((1,1),r)} &= \overline{t_{op}} \left(\frac{D_{s((1,1),N_r)}}{D_{s((1,1),N_r)}} \cdot D_{s((1,1),N_r)} \right) \\ D_{s((1,1),r)} &= \overline{t_{op}} \left(\frac{D_{s((1,1),1}}{D_{s((1,1),N_r)}} \cdot D_{s((1,1),N_r)} \right) \\ \overline{d}_{s((1,1)} &= \frac{D_{s((1,1),1}}{D_{s((1,1),N_r)}} \\ &= \frac{H_{T_i}}{H_{s(1,1)}} \cdot \left(\frac{H_{T_i}}{H_{s(1,1)}} \cdot \frac{H_{T_i,r}}{H_{s(2,1)}} \cdot \frac{H_{T_i,r}}{H_{s(2,1)}} \cdot \frac{H_{T_i,r}}{H_{s(2,1)}} \cdot \frac{H_{T_i,r}}{H_{s(1,1),r}} \cdot \frac{H_{T_i,r}}{H_{s(1,1),r}} \cdot \frac{L^*_{i}}{H_{s(1,1),r}} \cdot \frac{H_{s(i,1),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,1),r}}{H_{s(2,1),r}} \cdot \frac{H_{s(i,1),r}}{H_{s(2,1),r}} \cdot \frac{H_{s(i,1),r}}{H_{s(2,1),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(2,1),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2$$

```
if \left| \text{eps}\left(\text{"rel"}, k_{\text{st}(i,2),r}, k'_2\right) \right| < \text{epsilon}
          k_{st(i,2),r} = k'_2
      k_{st(i,2),r} = k'_2
a_{c_{st(i,2),r}}^* = a_{kp}(k_{st(i,2),r}, R_B, T_{st(i,2),r})
T^*_{st(i,3),r} = T^*_{st(i,2),r}
P^*_{st(i,3),r} = P^*_{st(i,2),r}
Cp_{st(i,3),r} = Cp_{BO3JJYX}(P^*_{st(i,3),r}, T^*_{st(i,3),r})
k_{st(i,3),r} = k_{aJ}(Cp_{st(i,3),r},R_{B})
a_{c_{st(i,3),r}}^* = a_{kp}(k_{st(i,3),r}, R_B, T_{st(i,3),r})
\overline{c}_{a_{st(i,3),r}} = \overline{c}_{.a1}(Z,i+1)
iteration_3 = 0
                    =\frac{F_{st(i,1)}\cdot m_{q}\left(k_{st(i,1),r}\right)\cdot \Gamma \mathcal{J}\Phi\left("G",\lambda_{c_{st(i,1),r}},k_{st(i,1),r}\right)\cdot \sin\left(\alpha_{st(i,1),r}\right)\cdot P^{*}_{st(i,1),r}\cdot \sqrt{T^{*}_{st(i,3),r}}}{m_{q}\left(k_{st(i,3),r}\right)\cdot \Gamma \mathcal{J}\Phi\left("G",\lambda_{c_{st(i,3),r}},k_{st(i,3),r}\right)\cdot \sin\left(\alpha_{st(i,3),r}\right)\cdot P^{*}_{st(i,3),r}\sqrt{T^{*}_{st(i,1),r}}}
 while 0 < 1
      iteration_3 = iteration_3 + 1
       trace(concat(" iteration.3 = ", num2str(iteration_3))))
       if (3\Pi\Pi H_i \neq "пер") \land (3\Pi\Pi H_i \neq "кор") \land (3\Pi\Pi H_i \neq "ср")
           D_{st(i,3),N_r} = D_{st(i,1),N_r} \cdot str2num(3\Pi\Pi \Psi_i)
D_{st(i,3),1} = \sqrt{(D_{st(i,3),N_r})^2 - \frac{4F_{st(i,3)}}{\pi}}
```

$$\begin{vmatrix} D_{st(i,3),N_T} - D_{st(i,1),N_T} \\ D_{st(i,3),1} = \sqrt{D_{st(i,1),N_T}}^2 - \frac{4F_{st(i,3)}}{\pi} \\ if \ 3\Pi\Pi Y_i = "\kappa op" \\ D_{st(i,3),N_T} = \int_{st(i,1),1} \\ D_{st(i,3),N_T} = \sqrt{(D_{st(i,1),1})^2 + \frac{4F_{st(i,3)}}{\pi}} \\ if \ 3\Pi\Pi Y_i = "cp" \\ D_{st(i,3),N_T} = \sqrt{(D_{st(i,1),r})^2 + \frac{2F_{st(i,3)}}{\pi}} \\ D_{st(i,3),N_T} = \sqrt{(D_{st(i,1),r})^2 - \frac{2F_{st(i,3)}}{\pi}} \\ D_{st(i,3),1} = \sqrt{(D_{st(i,3),1})^2} \\ D_{st(i,3),r} = \frac{D_{st(i,3),1}}{D_{st(i,3),N_T}} \\ D_{st(i,3),r} = \frac{D_{st(i,3),1}}{D_{st(i,3),r}} \\ if \ atan \left( \frac{c_{st(i,3),r}}{c_{st(i,3),r}} \right) - \frac{H_{c}}{2C_{c}p(\overline{d},st(i,3))} \\ O_{st(i,3),r} = \frac{1}{atan} \left( \frac{c_{st(i,3),r}}{c_{st(i,3),r}} \right) + 2\pi \text{ otherwise} \\ O_{st(i,3),r} = \frac{1}{atan} \left( \frac{c_{st(i,3),r}}{c_{st(i,3),r}} \right) + 2\pi \text{ otherwise} \\ \frac{D_{st(i,3),r}}{c_{st(i,3),r}} - \frac{D_{st(i,3),r}}{c_{st(i,3),r}} \right) \\ v_{st(i,3),r} = \frac{c_{st(i,3),r}}{c_{st(i,3),r}} \\ v_{st(i,3),$$

```
\overline{c}_{a_{st(i,2),r}} = mean(\overline{c}_{a_{st(i,1),r}}, \overline{c}_{a_{st(i,3),r}})
 iteration_2 = 0
 F_{st(i,2)} = mean(F_{st(i,1)}, F_{st(i,3)})
  while 0 < 1
       iteration_2 = iteration_2 + 1
       trace(concat(" iteration.2 = ", num2str(iteration_2))))
       if (3\Pi\Pi\Pi_i \neq "пер") \land (3\Pi\Pi\Pi_i \neq "кор") \land (3\Pi\Pi\Pi_i \neq "ср")
           D_{st(i,2),N_r} = mean(D_{st(i,1),N_r},D_{st(i,3),N_r})
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
           D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
       if 3ППЧ<sub>i</sub> = "пер"
           D_{st(i,2),N_r} = D_{st(i,1),N_r}
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot mean(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
            D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
       if ЗППЧ<sub>i</sub> = "кор"
            D_{st(i,2),1} = D_{st(i,1),1}
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),N_r} = \frac{D_{st(i,2),1}}{\overline{d}_{st(i,2)}}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
       if 3\Pi\Pi\Pi_i = "cp"
            D_{st(i,2),r} = D_{st(i,1),r}
            \overline{d}_{st(i,2)} = \sqrt{2 \cdot mean(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
           D_{st(i,2),N_r} = \frac{D_{st(i,2),r}}{\overline{r_{cp}(\overline{d}_{st(i,2)})}}
            D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
```

$$\begin{vmatrix} \overline{c}_{u_{Sl(1,2),T}} = \frac{1}{r_{cp}(\overline{d}\,sl(i,2))} \begin{vmatrix} \overline{c}_{sl(i,2),N_r} \\ \overline{D}_{sl(i,2),N_r} \end{vmatrix} \cdot \langle \overline{H}_{T_i} + \overline{c}_{u_{Sl(i,1),T}}, \overline{D}_{sl(i,1),T_r} \rangle \\ o_{sl(i,2),r} = \operatorname{triangle} \left( \overline{c}_{a_{Sl(i,2),T}}, \overline{c}_{u_{Sl(i,2),T}} \right) \\ u_{sl(i,2),N_r} = u_{sl(i,1),N_r} \begin{vmatrix} D_{sl(i,2),N_r} \\ D_{sl(i,2),N_r} \end{vmatrix} \\ c_{a_{sl(i,2),T}} = \overline{c}_{a_{sl(i,2),T}} \\ c_{sl(i,2),r} = \overline{c}_{a_{sl(i,2),T}} \\ c_{sl(i,2),r} = \frac{\overline{c}_{a_{sl(i,2),T}}}{\overline{c}_{sl(i,2),r}} \\ \lambda_{c_{sl(i,2),r}} = \frac{\overline{c}_{sl(i,2),r}}{\overline{c}_{sl(i,2),r}} \\ \beta_{r_{sl(i,2),r}} = \frac{\overline{c}_{sl(i,2),r}}{\overline{c}_{sl(i,2),r}} \\ \beta_{r_{sl(i,2),r}} + \overline{c}_{sl(i,2),r} \\ \beta_{r_{sl(i,2),r}} + \overline{c}_{r_{sl(i,2),r}} \\ \beta_{r_{sl(i,2),r}} + \overline{c}_{r_{sl(i,2),r}} \\ \beta_{r_{sl(i,2),r}} + \overline{c}_{r_{sl(i,2),r}} \\ \beta_{r_{sl(i,2),r$$

```
\begin{cases} & |\mathbf{N}^{I}\mathbf{c}_{st(i,a),r} = \frac{1}{a_{3B_{st}(i,a),r}} \\ & | \mathbf{h}_{st(i,a)} = 0.5 \cdot \left(D_{st(i,a),N_r} - D_{st(i,a),1}\right) \\ & | \mathbf{for} \ \ radius \in 1...N_r \\ & | \mathbf{u}_{st(i,a),radius} = \omega \cdot \frac{D_{st(i,a),radius}}{2} \\ & \left(\frac{\varepsilon_{rotor}_{i,av(N_r)}}{\varepsilon_{stator}_{i,av(N_r)}}\right) = \begin{pmatrix} \beta_{st(i,2),av(N_r)} - \beta_{st(i,1),av(N_r)} \\ \alpha_{st(i,3),av(N_r)} - \alpha_{st(i,2),av(N_r)} \end{pmatrix} \\ & | \mathbf{for} \ \ i \in 1...Z \\ & | \mathbf{for} \ \ a \in 1...3 \\ & | \mathbf{for} \ \ r \in 1...N_r \\ & | \mathbf{R}_{st(i,a),r} = 0.5 \cdot D_{st(i,a),r} \\ & | \mathbf{R}_{st(i,a),r} = 0.5 \cdot D_{st(i,a),r} \\ & \left(\frac{R_L \ K_H \ Cp \ \overline{H}_T \ L^* \ T^* \ P^* \ \rho^* \ a^*_c \ \lambda_c \ F \ D \ \overline{d} \ \overline{c}_a \ c_a \ u \ c \ M_c \ \alpha \ \varepsilon_{rotor}}{\pi^* \ \eta^* \ k \ H_T \ L \ T \ P \ \rho \ a_{3B} \ \lambda_c \ F \ R \ h \ \overline{c}_u \ c_u \ w_u \ w \ M_w \ \beta \ \varepsilon_{stator} \end{pmatrix}^T \end{aligned}
```

$$\left[ \begin{array}{c} H_{T} \\ R_{L} \end{array} \right] = \left[ \begin{array}{c} \text{for } i \in 1 ... Z \\ \\ H_{T,}(r) = \text{interp} \\ \text{pspline} \\ \\ \left[ \begin{array}{c} 1 \\ \text{av}(N_{r}) \\ N_{r} \end{array} \right], \left( \begin{array}{c} H_{T_{i,} \text{av}(N_{r})} - \frac{\Delta H_{T}(\overline{d} \text{st}(i,2))}{2} \\ H_{T_{i,} \text{av}(N_{r})} \\ H_{T_{i,} \text{av}(N_{r})} + \frac{\Delta H_{T}(\overline{d} \text{st}(i,2))}{2} \\ \\ H_{T_{i,} \text{av}(N_{r})} + \frac{\Delta H_{T}(\overline{d} \text{st}(i,2))}{2} \\ \\ H_{T_{i,} \text{av}(N_{r})} + \frac{\Delta H_{T}(\overline{d} \text{st}(i,2))}{2} \\ \\ H_{T_{i,} \text{av}(N_{r})} - \frac{\Delta R_{L}(\overline{d} \text{st}(i,2))}{2} \\ \\ R_{L_{i,} \text{av}(N_{r})} + \frac{\Delta R_{L}(\overline{d} \text{st}(i,2))}{2} \\ \\ R_{L_{i,} \text{av}(N_{r})} + \frac{AR_{L}(\overline{d} \text{st}(i,2))}{2} \\ \\$$

$$CA = \begin{bmatrix} 1 & \text{if compressor} = "КВД" = 1 \\ 0 & \text{otherwise} \end{bmatrix}$$

▼ Расчет СА

```
α<sub>1CA</sub>
              \alpha_{3CA}
\sigma_{CA}
               \sigma_{CA}
             \overline{d}_{3CA}
T^*_{1CA} T^*_{3CA}
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
k<sub>1CA</sub> k<sub>3CA</sub>
<sup>а</sup>кр1СА <sup>а</sup>кр3СА
                                   for r \in av(N_r)
\overline{c}_{a1CA} \overline{c}_{a3CA}
                                         \alpha_{1CA_r} = \alpha_{st(Z,3),r}
\frac{1}{c}u1CA \frac{1}{c}u3CA
                                          \alpha_{3\text{CA}_r} = 90^{\circ} \text{ if CA} = 1
ca1CA ca3CA
                                                            \alpha_{1CA_r} otherwise
cu1CA cu3CA
                                          \overline{d}_{1CA} = \overline{d}_{st(Z,3)}
              c<sub>3CA</sub>
c<sub>1CA</sub>
                                           \overline{d}_{3CA} = \overline{d}_{1CA}
               \lambda_{3CA}
\lambda_{1CA}
                                           T^*_{1CA_r} = T^*_{st(Z,3),r}
              F<sub>3CA</sub>
F<sub>1CA</sub>
                                           T^*_{3CA_r} = T^*_{1CA_r}
 \varepsilon_{\mathrm{CA}}
               \epsilon_{	ext{CA}}
                                           P^*_{1CA_r} = P^*_{st(Z,3),r}
                                           iterarion_{CA} = 0
                                           \sigma_{\text{CA}} = 1
                                           while 0 < 1
                                              iterarion_{CA} = iterarion_{CA} + 1
                                               trace(concat("iterarion.CA = ", num2str(iterarion_{CA})))
                                               P^*_{3CA_r} = P^*_{1CA_r} \cdot \sigma_{CA}
```

$$\begin{split} &\sigma_{CA} = 0.9981 \\ &\operatorname{submatrix} \left( \varepsilon_{CA}, \operatorname{av} \left( \operatorname{N}_r \right), \operatorname{av} \left( \operatorname{N}_r \right), 1, 1 \right) = (36.82) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left( \alpha_{1CA}, \operatorname{av} \left( \operatorname{N}_r \right), \operatorname{av} \left( \operatorname{N}_r \right), 1, 1 \right) = (53.18) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left( \alpha_{3CA}, \operatorname{av} \left( \operatorname{N}_r \right), \operatorname{av} \left( \operatorname{N}_r \right), 1, 1 \right) = (90.00) \cdot \operatorname{deg} \\ &\left( \overline{d}_{1CA} \right) = \begin{pmatrix} 0.8390 \\ 0.8390 \end{pmatrix} & \begin{pmatrix} F_{1CA} \\ F_{3CA} \end{pmatrix} = \begin{pmatrix} 0.0498 \\ 0.0598 \end{pmatrix} \end{split}$$

$$\begin{vmatrix} \rho^* 3 C A_r \\ R_B \end{vmatrix} = \frac{R_B}{T^* 3 C A_r}$$

$$\begin{vmatrix} k_{1} C A_r \\ k_{3} C A_r \\ k_{3} C A_r \\ \end{pmatrix} = \begin{pmatrix} k_{3n} (C \rho_{BO31yx} (P^* 1 C A_r, T^* 1 C A_r), R_B) \\ k_{3n} (C \rho_{BO31yx} (P^* 3 C A_r, T^* 3 C A_r), R_B) \end{pmatrix}$$

$$\begin{vmatrix} a_{kp} 1 C A_r \\ a_{kp} 3 C A_r \\ a_{kp} 3 C A_r \\ \end{vmatrix} = \begin{pmatrix} a_{kp} (k_{1} C A_r, R_B, T^* 1 C A_r) \\ a_{kp} (k_{3} C A_r, R_B, T^* 3 C A_r) \\ k_{3} C A_r \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B \\ a_{kp} C A_r - R_B, T^* 3 C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B \\ a_{kp} C A_r - R_B, T^* 3 C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B \\ a_{kp} C A_r - R_B, T^* 3 C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B \\ a_{kp} C A_r - R_B, T^* 3 C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B \\ a_{kp} C A_r - R_B, T^* 3 C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B \\ a_{kp} C A_r - R_B, T^* 3 C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B \\ a_{kp} C A_r - R_B, T^* 3 C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B \\ a_{kp} C A_r - R_B, T^* 3 C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - R_B, T^* 3 C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - A_r - A_r C A_r \\ a_{kp} C A_r \\ a_{kp} C A_r \\ \end{vmatrix}$$

$$\begin{vmatrix} a_{kp} C A_r - A_r - A_r C A_r - A_r C A$$

$$\begin{split} & \text{submatrix} \left( T^*_{1CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (826.7) \\ & \text{submatrix} \left( T^*_{3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (826.7) \\ & \text{submatrix} \left( P^*_{1CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (2841.7) \cdot 10^3 \\ & \text{submatrix} \left( P^*_{1CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (2836.3) \cdot 10^3 \\ & \text{submatrix} \left( P^*_{3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (11.972) \\ & \text{submatrix} \left( P^*_{3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (11.949) \\ & \text{submatrix} \left( k_{1CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (1.352) \\ & \text{submatrix} \left( k_{3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (1.352) \\ & \text{submatrix} \left( a_{Kp1CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (522.4) \\ & \text{submatrix} \left( \overline{c}_{a1CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (0.162) \\ & \text{submatrix} \left( \overline{c}_{a3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (0.162) \\ & \text{submatrix} \left( \overline{c}_{a3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (0.121) \\ & \text{submatrix} \left( \overline{c}_{a3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (58.9) \\ & \text{submatrix} \left( \overline{c}_{a3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left( \overline{c}_{u3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (44.1) \\ & \text{submatrix} \left( \overline{c}_{u3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (73.5) \\ & \text{submatrix} \left( \overline{c}_{3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left( \overline{c}_{3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left( \overline{c}_{3CA}, \text{av} \big( N_r \big), \text{av} \big( N_r \big), 1, 1 \right) = (0.094) \\ \end{aligned}$$

```
1 otherwise
         break if (|eps("rel", \sigma'_{CA}, \sigma_{CA})| < epsilon) \land (iterarion_{CA} = 0)
         | \text{iterarion}_{CA} = -1 \text{ if } (| \text{eps}(\text{"rel"}, \sigma'_{CA}, \sigma_{CA}) | < \text{epsilon}) 
        \sigma_{CA} = \sigma'_{CA}
                                                                         F_{st(Z,3)}
     (F_{1CA})
                                                                    G \cdot \sqrt{R_B \cdot T^*_{3CA_r}}
    (F_{3CA})
                         \left( \overline{m_{q}(k_{3CA_{r}}) \cdot P^{*}_{3CA_{r}} \cdot \Gamma \Pi \Phi("G", \lambda_{3CA_{r}}, k_{3CA_{r}}) \cdot \sin(\alpha_{3CA_{r}})} \right)
    \varepsilon_{\text{CA}_{r}} = \alpha_{3\text{CA}_{r}} - \alpha_{1\text{CA}_{r}}
 \alpha_{1CA} \alpha_{3CA}
 \sigma_{\text{CA}}
                \sigma_{\mathrm{CA}}
 \overline{d}_{1CA} \overline{d}_{3CA}
T*<sub>1CA</sub> T*<sub>3CA</sub>
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
k<sub>1CA</sub> k<sub>3CA</sub>
<sup>а</sup>кр1СА <sup>а</sup>кр3СА
\frac{1}{c_{a1CA}} \frac{1}{c_{a3CA}}
\frac{1}{c_{u1CA}} = \frac{1}{c_{u3CA}}
ca1CA ca3CA
cu1CA cu3CA
 c<sub>1CA</sub> c<sub>3CA</sub>
 \lambda_{1CA} \lambda_{3CA}
 F<sub>1CA</sub> F<sub>3CA</sub>
  \varepsilon_{\mathrm{CA}} \varepsilon_{\mathrm{CA}}
```



#### ▼ Результаты поступенчатого расчета по ср. ЛТ

Относ. погрешность расчета по массовому расходу (кг/с):

| $\overline{\Delta}G =$ | for $i \in 1Z$                                                                                                                                     |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | for $a \in 13$                                                                                                                                     |
|                        | $\overline{\Delta}G_{st(i,a)} = \left  eps\left( "rel", G, \rho_{st(i,a),av(N_r)} \cdot c_{a_{st(i,a),av(N_r)}} \cdot F_{st(i,a)} \right) \right $ |
|                        | $ar{\Delta}{ m G}$                                                                                                                                 |

| $\overline{\Delta}G^{T} = $ |      | 1    | 2   |   | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10    | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | .% |
|-----------------------------|------|------|-----|---|------|------|------|------|------|------|------|-------|------|------|------|------|------|------|------|------|------|----|
|                             | 1    | 0.00 | 0.0 | 0 | 0.04 | 0.00 | 0.03 | 0.00 | 0.15 | 0.00 | 0.13 | 0.00  | 0.08 | 0.00 | 0.06 | 0.00 | 0.04 | 0.00 | 0.02 | 0.00 | 0.03 |    |
| Т                           |      |      | . 1 |   | 1    |      |      |      |      |      |      |       |      |      |      |      |      |      |      |      |      |    |
| $\overline{}$               | 1% = |      | 1   | 2 | 3    | 4    | 5    | 6 7  | 8    | 9    | 10   | 11 12 | 13   | 14 1 | 5 16 | 17   | 18   | 19   |      |      |      |    |

Количество ступеней ОК: Z = 9

Дискритизация сечений: ii = 1..2Z + 1

Дискритизация ступеней: i = 1..Z

| _               |   |       |       |       |       |       |       |       |       |       |    |    |    |    |    |    |
|-----------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|
| $\pi^{*^{T}} =$ |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |
|                 | 1 | 1.392 | 1.381 | 1.365 | 1.319 | 1.286 | 1.253 | 1.203 | 1.170 | 1.148 |    |    |    |    |    |    |

Полученная степень повышения полного давления []:  $\prod_{i=1}^{L} \pi^*_{i} = 9.003$ 

Степень повышения давления в ЛА:  $\pi^*_{\text{ЛА}} = \frac{\text{P*}_{3\text{CA}_{av}(N_r)}}{\text{P*}_{1\text{BHA}_{av}(N_r)}} = 8.970$ 

|                        |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |     |
|------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|-----|
| $H_{\mathbf{T}}^{T} =$ | 1 | 48.71 | 52.80 | 56.08 | 54.57 | 54.37 | 52.65 | 46.34 | 41.94 | 38.93 |    |    |    |    |    |    | .10 |
| 11                     | 2 | 48.71 | 52.80 | 56.08 | 54.57 | 54.37 | 52.65 | 46.34 | 41.94 | 38.93 |    |    |    |    |    |    |     |
|                        | 3 | 48.71 | 52.80 | 56.08 | 54.57 | 54.37 | 52.65 | 46.34 | 41.94 | 38.93 |    |    |    |    |    |    |     |

Действительная работа К (Дж/кг): 
$$L_{K} = \sum_{i=1}^{Z} \ L_{i} = 430.1 \cdot 10^{3}$$

Адиабатная работа К [Дж/кг]: 
$$L^*_{K} = \sum_{i=1}^{Z} L^*_{i} = 378.5 \cdot 10^3$$

Адиабатная КПД К []: 
$$n_{K}^* = \frac{L_K^*}{L_K} = 88.00 \cdot \%$$

Мощность K (Вт): 
$$N_K = G \cdot L_K = 14.97 \cdot 10^6$$







| submatrix $(Cp, 1, 2Z + 1, av(N_r), av(N_r))^T$       | = 1 | 1<br>1016.2 | 2<br>1024.3 | 3<br>3 1024.3   | 4<br>1034.0   | 5<br>1034.0 | 6<br>1045.1 | 7<br>1045.1 | 8<br>1056.3 | 9 1056.3    | 10<br>3 1067 | .5 1067.      | 12<br>.5 1078.3     | 13<br>1078.3  | 14<br>1087.8 | 15<br>1087.8 | 16<br>1096.2 | 17<br>1096.2 | 18<br>1103.8 | 19<br>1103.8     |
|-------------------------------------------------------|-----|-------------|-------------|-----------------|---------------|-------------|-------------|-------------|-------------|-------------|--------------|---------------|---------------------|---------------|--------------|--------------|--------------|--------------|--------------|------------------|
| submatrix $(k, 1, 2Z + 1, av(N_r), av(N_r))^T = $     | 1   | 1 1.394     | 2 1.390     | 3 4<br>1.390 1. | 5<br>384 1.38 | 6 34 1.379  | 7 9 1.379   | 8 1.373     | 9 1.373     | 10<br>1.368 | 11<br>1.368  |               | 13 14<br>1.363 1.35 | 15<br>9 1.359 | 16<br>1.355  | 17<br>1.355  | 18<br>1.352  | 19<br>1.352  | 20 2         | 1                |
| submatrix $(T^*, 1, 2Z + 1, av(N_r), av(N_r))^T =$    |     | 1 418.2     |             | •               |               | 6.3 569     |             |             |             | 10          | 11           | 12            | 13 14               |               | 16           | 17           | 18           | 19           | 20           | 21               |
| $submatrix(T, 1, 2Z + 1, av(N_r), av(N_r))^T =$       | 1   |             |             | 3               | 1 5           | •           |             |             | 9           | 10          | 11           | 12            | 13 14               | 15            | 16           | 17           | 18           | 19           | 20 2         | 1                |
| submatrix $(P^*, 1, 2Z + 1, av(N_r), av(N_r))^T =$    |     | 1           | ,           |                 | 4             |             |             |             | 8           | 650.2       | 10           | 698.1         | 712.8 740           | 9 753.7       | 778.9        | 790.4        | 813.5        | 824.2        | 18           | ·10 <sup>3</sup> |
| m. I                                                  | 1   | 315.6       | 439.3       |                 | 606.5         | 606.5       |             | 828         | 1091.8      | 1091.8      |              | ,             |                     | 1759.5        | 2117.2       | 2117.2       |              |              |              | 2                |
| submatrix $(P, 1, 2Z + 1, av(N_r), av(N_r))^T =$      | 1   | 300.6       | 376.3       | 3 422.8         | 526.1         | 5 588.5     | 724.9       | 808.7       | 972.5       | 9 1071.5    | 10<br>1266.0 | 11 1383.0     | 12 1604.1           | 13<br>1734.9  | 14<br>1958.5 | 15<br>2089.9 | 16<br>2313.5 | 17<br>2446.6 |              | ·10 <sup>3</sup> |
| submatrix $(\rho^*, 1, 2Z + 1, av(N_r), av(N_r))^T =$ | 1   | 1<br>2.628  | 2<br>3.285  | 3 3.285         | 4.091         | 5<br>4.091  | 6<br>5.067  | 7<br>5.067  | 8<br>6.138  | 9<br>6.138  | 10<br>7.31   | 11<br>15 7.31 | 12<br>5 8.565       | 13<br>8.565   | 14<br>9.75   | 15<br>9.75   | 16<br>10.876 | 17<br>10.876 | 18<br>11.972 | 19<br>11.972     |
| submatrix $(\rho, 1, 2Z + 1, av(N_r), av(N_r))^T =$   | 1   | 1<br>2.538  | 2 2.939     | 3 3.196         | 4<br>3.691    | 5 4.003     | 6<br>4.601  | 7 4.981     | 8<br>5.642  | 9<br>6.055  | 10<br>6.781  | 11 7.233      | 12<br>8.003         | 13<br>8.477   | 14<br>9.206  | 15<br>9.657  | 16<br>10.344 | 17<br>10.78  | 18<br>11.439 | 19<br>11.871     |

$$k_{\text{AD}} = k_{\text{AD}} \left( \text{Cp}_{\text{BO3DJYX.cp}} \left( P^*_{\text{st}(1,1),\text{av}(N_r)}, P^*_{\text{st}(Z,3),\text{av}(N_r)}, T^*_{\text{st}(1,1),\text{av}(N_r)}, T^*_{\text{st}(Z,3),\text{av}(N_r)} \right), R_B \right) = 1.373$$



| $F^{T} =$ |   | 1      | 2      | 3      | 4      | 5     | 6      | 7      | 8      | 9      | 10    | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18     | 19     | 20 | 21 |
|-----------|---|--------|--------|--------|--------|-------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|
|           | 1 | 0.1373 | 0.1218 | 0.1155 | 0.1031 | 0.098 | 0.0884 | 0.0846 | 0.0775 | 0.0747 | 0.069 | 0.0668 | 0.0624 | 0.0608 | 0.0578 | 0.0568 | 0.0547 | 0.0541 | 0.0514 | 0.0498 |    |    |

| $\overline{d}^T =$ |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18     | 19     | 20 | 21 | 22 | 23 |
|--------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|
|                    | 1 | 0.6467 | 0.6726 | 0.6978 | 0.7190 | 0.7397 | 0.7517 | 0.7636 | 0.7734 | 0.7831 | 0.7913 | 0.7995 | 0.8061 | 0.8127 | 0.8173 | 0.8220 | 0.8252 | 0.8284 | 0.8337 | 0.8390 |    |    |    |    |

 $\overline{d}_{st(Z,3)} = 0.839$   $\overline{d}_{st(Z,3)} \le 0.9 = 1$ 

|                             |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20 | 21 |                 |
|-----------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|-----------------|
| $\mathbf{D}^{\mathrm{T}} =$ | 1 | 354.5 | 364.3 | 373.6 | 381.1 | 388.2 | 388.2 | 388.2 | 388.2 | 388.2 | 388.2 | 388.2 | 388.2 | 388.2 | 388.2 | 388.2 | 388.2 | 388.2 | 388.2 | 388.2 |    |    | $\cdot 10^{-3}$ |
| D                           | 2 | 461.6 | 461.6 | 461.6 | 461.6 | 461.6 | 456.9 | 452.3 | 448.7 | 445.3 | 442.4 | 439.6 | 437.4 | 435.3 | 433.8 | 432.3 | 431.3 | 430.3 | 428.7 | 427.1 |    |    | 10              |
|                             | 3 | 548.2 | 541.7 | 535.4 | 530.0 | 524.8 | 516.5 | 508.4 | 502.0 | 495.8 | 490.6 | 485.6 | 481.6 | 477.7 | 475.0 | 472.3 | 470.5 | 468.7 | 465.7 | 462.7 |    |    |                 |

|             | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20 | 21 | 22 | 23 | 24 | 25 |                 |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|-----------------|
| $R^{T} = 1$ | 177.3 | 182.2 | 186.8 | 190.5 | 194.1 | 194.1 | 194.1 | 194.1 | 194.1 | 194.1 | 194.1 | 194.1 | 194.1 | 194.1 | 194.1 | 194.1 | 194.1 | 194.1 | 194.1 |    |    |    |    |    |    | $\cdot 10^{-3}$ |
| 2           | 230.8 | 230.8 | 230.8 | 230.8 | 230.8 | 228.4 | 226.2 | 224.4 | 222.6 | 221.2 | 219.8 | 218.7 | 217.6 | 216.9 | 216.2 | 215.7 | 215.2 | 214.4 | 213.6 |    |    |    |    |    |    | 10              |
| 3           | 274.1 | 270.8 | 267.7 | 265.0 | 262.4 | 258.2 | 254.2 | 251.0 | 247.9 | 245.3 | 242.8 | 240.8 | 238.9 | 237.5 | 236.2 | 235.2 | 234.3 | 232.8 | 231.4 |    |    |    |    |    |    |                 |



| $h^T =$ |   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20 | 21 | 22 | 23 | 24 | 25 | $1.10^{-3}$ |
|---------|---|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----|----|----|----|----|----|-------------|
|         | 1 | 96.8 | 88.7 | 80.9 | 74.5 | 68.3 | 64.1 | 60.1 | 56.9 | 53.8 | 51.2 | 48.7 | 46.7 | 44.7 | 43.4 | 42.0 | 41.1 | 40.2 | 38.7 | 37.2 |    |    |    |    |    |    |             |

| $submatrix \left(a *_{c}, 1, 2Z + 1, av \left(N_{r}\right), av \left(N_{r}\right)\right)^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ \hline 1 & 373.9 & 394.4 & 394.4 & 414.9 & 414.9 & 435.3 & 435.3 & 453.7 & 453.7 & 471.0 & 471.0 & 486.8 & 486.8 & 500.2 & 500.2 & 511.9 & 511.9 & 522.4 & 522.4 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $submatrix \left(a_{3B}, 1, 2Z+1, av \left(N_r\right), av \left(N_r\right)\right)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $submatrix \Big( c , 1 , 2Z + 1 , av \Big( N_r \Big) , av \Big( N_r \Big) \Big)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ \hline 1 & 107.9 & 201.3 & 100.9 & 203.3 & 94.2 & 206.6 & 87.7 & 201.3 & 81.6 & 198.3 & 77.0 & 193.7 & 75.9 & 183.0 & 75.0 & 175.2 & 74.0 & 170.2 & 73.5 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $submatrix \Big( w, 1, 2Z, av \Big( N_r \Big), av \Big( N_r \Big) \Big)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\mathbf{u}^{\mathrm{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\ 1 & 278.4 & 286.2 & 293.4 & 299.3 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.9 & 304.$ |
| $c_{a_{st(Z,3),av(N_r)}} = 58.88$ $c_{a_{st(Z,3),av(N_r)}} \le 130 = 1$ Для КС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $submatrix \Big( c_a, 1, 2Z+1, av \Big( N_r \Big), av \Big( N_r \Big) \Big)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ \hline 1 & 99.9 & 97.3 & 94.3 & 91.5 & 88.8 & 85.5 & 82.4 & 79.6 & 76.9 & 74.4 & 72.0 & 69.7 & 67.5 & 65.4 & 63.4 & 61.5 & 59.6 & 59.3 & 58.9 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $submatrix \left( c_u, 1, 2Z+1, av \left( N_r \right), av \left( N_r \right) \right)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $submatrix \Big( w_u, 1, 2Z + 1, av \Big( N_r \Big), av \Big( N_r \Big) \Big)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\Delta c_{a_{i, av(N_{r})}} = \left(c_{a_{st(i, 2), av(N_{r})}} - c_{a_{st(i, 1), av(N_{r})}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $submatrix \Big(\Delta c_{a}^{},1,Z,av \Big(N_{r}^{}\Big),av \Big(N_{r}^{}\Big)\Big)^{T} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $submatrix \Big(\Delta c_{a}, 1, Z, av \Big(N_{r}\Big), av \Big(N_{r}\Big)\Big)^{T} \geq -12 = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



| $submatrix(\alpha, 1, 2\cdot Z + 1, av(N_r), av(N_r))^T =$                                                              |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20 | 21 | ۰. [ |
|-------------------------------------------------------------------------------------------------------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|------|
|                                                                                                                         | 1 | 67.83 | 28.90 | 69.13 | 26.74 | 70.50 | 24.46 | 70.13 | 23.31 | 70.54 | 22.04 | 69.20 | 21.08 | 62.72 | 20.94 | 57.68 | 20.56 | 53.70 | 20.37 | 53.18 |    |    |      |
| submatrix $(\beta, 1, 2 \cdot Z + 1, av(N_r), av(N_r))^T =$                                                             |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20 | 21 | .0   |
| (1) (1))                                                                                                                | 1 | 17.38 | 27.57 | 16.1  | 26.82 | 15.01 | 26.61 | 14.21 | 25.42 | 13.41 | 24.45 | 12.75 | 23.17 | 12.39 | 21.07 | 11.95 | 19.39 | 11.46 | 18.5  | 11.42 |    |    |      |
|                                                                                                                         |   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |    |    |      |
| submatrix $\left(\varepsilon_{\text{rotor}}, 1, Z, \text{av}(N_r), \text{av}(N_r)\right)^T = \left[-\frac{1}{2}\right]$ |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20 | 21 | .0   |
|                                                                                                                         | 1 | 10.19 | 10.72 | 11.6  | 11.21 | 11.04 | 10.42 | 8.68  | 7.44  | 7.04  |       |       |       |       |       |       |       |       |       |       |    |    |      |
|                                                                                                                         |   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |    |    |      |
| submatrix $\left(\varepsilon_{\text{stator}}, 1, Z, \text{av}(N_r), \text{av}(N_r)\right)^T = \left[$                   |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20 | 21 | .0   |
| (stator, 1, 2, 4, (1, r), 4, (1, r))                                                                                    | 1 | 40.23 | 43.76 | 45.67 | 47.23 | 47.16 | 41.64 | 36.74 | 33.14 | 32.81 |       |       |       |       |       |       |       |       |       |       |    |    | j    |



5 19 7 8 9 10 11 12 13 14 15 16 17 18 0.2269 0.4746 0.2014 0.4436 0.1798 0.3979 0.3659 0.1500 0.3259 0.4211 0.1634 0.1559 0.3422 0.1446 0.1408

14 15 7 9 10 11 12 13 16 17 18 19 0.7598 0.4098 0.7096 0.3814 0.6726 0.3557 0.6374 0.3388 0.5953 0.3384 0.5645 0.3365 0.5413 0.3324

19 8 9 10 11 12 13 14 15 18 0.4432 0.1853 0.1383 0.4137 0.1655 0.3924 0.1505 0.3706 0.1437 0.3404 0.3182 0.1334 0.3030 0.1300



#### ▼ Расчет параметров потока по высоте Л

Относ. диамет р корня при увеличении которого меняется з-н профилирования Л с промежуточного на Ц = const:

с R = const на промежуточный:

[16, c.94-99]

$$\begin{array}{ll} \overline{m} = & \text{for } i \in 1 ... Z \\ m_i = & -1 \quad \text{if } \overline{d}_{st(i,1)} \leq \overline{d}_{R2m} \\ 1 \quad \text{if } \overline{d}_{st(i,1)} \geq \overline{d}_{m2II} \\ -1 + \frac{1 - (-1)}{\overline{d}_{m2II} - \overline{d}_{R2m}} \cdot \left( \overline{d}_{st(i,1)} - \overline{d}_{R2m} \right) \quad \text{otherwise} \\ m \end{array}$$

$$\begin{pmatrix} \overline{d}_{m2II} \\ \overline{d}_{R2m} \end{pmatrix} = \begin{pmatrix} 0.7 \\ 0.3 \end{pmatrix}$$

$$m_i = \begin{bmatrix} 0.73 & \text{if compressor} = "B\pi" \\ m_i & \text{otherwise} \end{bmatrix}$$

| $\mathbf{m}^{\mathrm{T}} =$ |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 |
|-----------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|
|                             | 1 | 0.733 | 0.989 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |    |    |    |

```
T*<sub>1BHA</sub> T*<sub>3BHA</sub>
P*<sub>1BHA</sub> P*<sub>3BHA</sub>
ρ*<sub>1BHA</sub> ρ*<sub>3BHA</sub>
Cp<sub>1BHA</sub> Cp<sub>3BHA</sub>
k<sub>1BHA</sub> k<sub>3BHA</sub>
a*c1BHA a*c3BHA
                                                     for i \in 1
cu1BHA cu3BHA
                                                        for r \in 1..N_r
<sup>c</sup>a1BHA <sup>c</sup>a3BHA
                                                                                              \left(T^*_{1BHA_{av(N_r)}}\right)
                                                               \left(T^*_{1BHA_r}\right)
\alpha_{1BHA} \alpha_{3BHA}
                                                                T^*_{3BHA_r}
                                                                                                T^*_{3BHA_{av(N_r)}}
 c<sub>1BHA</sub>
                     c<sub>3BHA</sub>
\lambda_{c1BHA} \lambda_{c3BHA}
                                                               (P^*1BHA_r)
                                                                                               \left(P^*_{1BHA_{av(N_r)}}\right)
                       \varepsilon_{
m BHA}
 \varepsilon_{
m BHA}
                                                                P*3BHA<sub>r</sub>
                                                                                               P^*_{3BHA_{av(N_r)}}
                                                                                               \left( 
ho st_{1 	ext{BHA}_{av\left(N_{r}
ight)}} 
ight)
                                                               (\rho^*_{1BHA_r})
                                                                ρ*<sub>3BHA</sub><sub>r</sub>
                                                                                               \left( \rho^*_{3BHA_{av(N_r)}} \right)
                                                                                                \left( Cp_{\text{воздух}} \left( P^*_{1BHA_r}, T^*_{1BHA_r} \right) \right)
                                                                \left( Cp_{1BHA_{r}} \right)
                                                               Cp<sub>3BHA</sub><sub>r</sub>
                                                                                               \left( \operatorname{Cp}_{\text{воздух}} \left( \operatorname{P*}_{3\text{BHA}_r}, \operatorname{T*}_{3\text{BHA}_r} \right) \right)
                                                               (k<sub>1BHA</sub><sub>r</sub>
                                                                                             \left(k_{ad}\left(Cp_{1BHA_{r}},R_{B}\right)\right)
                                                                                             \left( k_{aд} \left( C_{p_{3BHA_{r}}}, R_{B} \right) \right)
                                                                k<sub>3</sub>BHA<sub>r</sub>
                                                                                                    \frac{2 \cdot k_{1BHA_{r}}}{k_{1BHA_{r}} + 1} \cdot R_{B} \cdot T^{*}_{1BHA_{r}}
                                                               (a*c1BHA<sub>r</sub>)
                                                               a*c3BHA<sub>r</sub>
                                                             A = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,1),av(N_r)}\right)^{m_i + 1}
                                                             B = \frac{H_{T_{i,av(N_r)}}}{2 \cdot \omega}
                                                                                                                             c_{u1BHA_{av(N_r)}}
```



```
P*
                       P
   Cp
                       k
  a*c
                     a_{3B}
     c_{u}
                      c_{a}
                                      = \int for i \in 1...Z
                       β
     \alpha
                                                        for a \in 1...3
     c
                      \mathbf{W}
                                                            for r \in 1..N_r
    \lambda_{\rm c}
                     w_{u}
                                                                T^*_{st(i,a),r} = T^*_{st(i,a),av(N_r)}
 M_{W}
                    M_{c}
                                                                 P^*_{st(i,a),r} = P^*_{st(i,a),av(N_r)}
                     \mathbf{R}_{\mathbf{L}}
  R_{L}
                                                                \rho^*_{st(i,a),r} = \rho^*_{st(i,a),av(N_r)}
<sup>ε</sup>rotor <sup>ε</sup>stator ,
                                                                  Cp_{st(i,a),r} = Cp_{BO3ДYX}(P*_{st(i,a),r}, T*_{st(i,a),r})
                                                                   k_{st(i,a),r} = k_{a \perp} (Cp_{st(i,a),r}, R_B)
                                                                  a_{c_{st(i,a),r}}^{*} = \sqrt{\frac{2 \cdot k_{st(i,a),r}}{k_{st(i,a),r} + 1} \cdot R_{B} \cdot T_{st(i,a),r}^{*}}
                                                                   if \Delta H_{Tmax} = 0
                                                                          A_{st(i,a)} = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,a),av(N_r)}\right)^{m_i+1} 
                                                                                                                      0 if (a = 1) \land (i = 1) \land (BHA = 0)
                                                                                                                       \frac{\left|\frac{A_{st(i,a)}}{\left(R_{st(i,a),r}\right)^{m_i}} - \frac{B_{st(i,a)}}{\left(R_{st(i,a),r}\right)}\right| \text{ otherwise}
                                                                           c_{a_{st(i,a),r}} = c_{a3BHA_r} \text{ if } (a = 1) \land (i = 1) \land (BHA = 1)
                                                                                                            \sqrt{ \left( c_{a_{st(i,a)},av(N_r)} \right)^2 - 2 \cdot \left( A_{st(i,a)} \right)^2 \cdot \left[ \left( R_{st(i,a),r} \right)^2 - \left( R_{st(i,a),av(N_r)} \right)^2 \right] + 4 \cdot A_{st(i,a)} \cdot B_{st(i,a)} \cdot \ln \left( \frac{R_{st(i,a),r}}{R_{st(i,a),av(N_r)}} \right) \cdot \left| -1 \text{ if } a = 2 \right| \text{ if } m_i = -1 
 \sqrt{ \left( c_{a_{st(i,a),av(N_r)}} \right)^2 - 2 \cdot \left( A_{st(i,a)} \right)^2 \cdot \left[ \left( R_{st(i,a),r} \right) - 2 \cdot A_{st(i,a)} \cdot B_{st(i,a)} \cdot \left( \frac{1}{R_{st(i,a),av(N_r)}} \right) \cdot \left| -1 \right| \text{ if } a = 2 \text{ if } m_i = 0
```

$$\begin{cases} A_{3(1,a)} \cdot R_{3(1,a)} \cdot$$

$$\begin{split} c_{st(1,a),r} &= \operatorname{unangre} \left( {^{\text{C}}a}_{st(i,a),r}, {^{\text{C}}u}_{st(i,a),r} \right) \\ c_{st(i,a),r} &= \frac{c_{st(i,a),r}}{\sin(\alpha_{st(i,a),r})} \\ \lambda_{c_{st(i,a),r}} &= \frac{c_{st(i,a),r}}{a^{*}c_{st(i,a),r}} \\ \begin{pmatrix} T_{st(i,a),r} \\ P_{st(i,a),r} \end{pmatrix} &= \begin{pmatrix} T^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \nabla I D \Phi \begin{pmatrix} "P" & \lambda_{c_{st(i,a),r}}, k_{st(i,a),r} \\ P^{*}s_{t(i,a),r}$$

```
T*<sub>1CA</sub> T*<sub>3CA</sub>
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
Cp<sub>1CA</sub> Cp<sub>3CA</sub>
k<sub>1CA</sub> k<sub>3CA</sub>
a*c1CA a*c3CA
                                               for i \in Z
cu1CA cu3CA
                                                    for r \in 1...N_r
calCA ca3CA
                                                           \left(T^*_{1CA_r}\right)
                                                                                             T*_{st(i,3),r}
\alpha_{1CA} \alpha_{3CA}
                                                                                            T*_{3CA_{av(N_r)}}
                                                            T*3CA<sub>r</sub>
 c<sub>1CA</sub> c<sub>3CA</sub>
                                                            (P^*_{1CA_r})
                                                                                             P*_{st(i,3),r}
 \lambda_{c1CA} \lambda_{c3CA}
                                                                                           P^*_{3CA_{av\left(N_r\right)}} \bigg)
                                                             P*3CA<sub>r</sub>
 \epsilon_{\mathrm{CA}} \epsilon_{\mathrm{CA}}
                                                            (\rho^*_{1CA_r})
                                                                                            \rho^*_{st(i,3),r}
                                                                                           \left[ \rho^*_{3CA_{av(N_r)}} \right]
                                                             \rho^*_{3CA_r}
                                                                                           \left(\operatorname{Cp}_{\operatorname{BO3}\operatorname{JYX}}\left(\operatorname{P*}_{\operatorname{1CA}_{\operatorname{r}}},\operatorname{T*}_{\operatorname{1CA}_{\operatorname{r}}}\right)\right)
                                                            \left( C_{p_{1}CA_{r}} \right)
                                                             Cp<sub>3CA<sub>r</sub></sub>
                                                                                          \left( Cp_{BO3ДУX} \left( P^*_{3CA_r}, T^*_{3CA_r} \right) \right)
                                                            \binom{k_{1CA_r}}{}
                                                                                      \left(k_{ad}\left(Cp_{1CA_{r}},R_{B}\right)\right)
                                                                                   = \left[ k_{ad} \left( Cp_{3CA_r}, R_B \right) \right]
                                                            \left[ \begin{array}{c} k_{3}CA_{r} \end{array} \right]
                                                             (a*c1CA<sub>r</sub>)
                                                            \left(a^* c3CA_r\right)
                                                           A = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,3),av(N_r)}\right)^{m_i + 1}
                                                          B = \frac{H_{T_{i,av}(N_r)}}{2 \cdot \omega}
                                                                                                             c_{u_{st(i,3),r}}
                                                             \begin{pmatrix} c_{u1CA_r} \end{pmatrix}
```

$$\begin{pmatrix} c_{a1CA_{r}} \\ c_{a1CA_{r}} \\ c_{a3CA_{av}(N_{r})} \end{pmatrix} = \begin{pmatrix} c_{a_{a}(i,3),r} \\ c_{a3CA_{av}(N_{r})} \end{pmatrix}^{2} = 2 \cdot A^{2} \left[ \left(R_{at(i,3),r} c^{2} - \left(R_{at(i,3),r} (N_{r})\right)^{2}\right] + 4 \cdot A \cdot B \cdot \ln \left(\frac{R_{at(i,3),r}}{R_{at(i,3),r}} - 1\right) \right] \\ = \begin{pmatrix} c_{a1CA_{r}} \\ c_{a3CA_{av}(N_{r})} \end{pmatrix}^{2} = 2 \cdot A^{2} \cdot \ln \left(\frac{R_{at(i,3),r}}{R_{at(i,3),r}} - 2 \cdot A \cdot B \cdot \left(\frac{1}{R_{at(i,3),r}} - \frac{1}{R_{at(i,3),r}} - 1\right) \right) \\ = \begin{pmatrix} c_{a3CA_{av}(N_{r})} \end{pmatrix}^{2} - 2 \cdot A^{2} \cdot \ln \left(\frac{R_{at(i,3),r}}{R_{at(i,3),r}} - 2 \cdot A \cdot B \cdot \left(\frac{1}{R_{at(i,3),r}} - \frac{1}{R_{at(i,3),r}} - 1\right) \right) \\ = \begin{pmatrix} c_{a1CA_{r}} \\ c_{a3CA_{r}} \end{pmatrix} - \begin{pmatrix} c_{a1CA_{r}} \\ c_{a1CA_{r}} \\ c_{a1CA_{r}} \end{pmatrix}^{2} - \frac{1}{R_{at(i,3),r}} - \frac{1}{R_{at(i,3),$$

▼ Результаты расчета параметров потока по высоте Л

$$T^*_{1BHA} = \begin{pmatrix} 418.2 \\ 418.2 \\ 418.2 \end{pmatrix}$$

$$T^*_{3BHA} = \begin{pmatrix} 418.2 \\ 418.2 \\ 418.2 \end{pmatrix}$$

$$P*_{1BHA} = \begin{pmatrix} 316.2 \\ 316.2 \\ 316.2 \end{pmatrix} \cdot 10^{3} \qquad P*_{3BHA} = \begin{pmatrix} 315.6 \\ 315.6 \\ 315.6 \end{pmatrix} \cdot 10^{3}$$

$$\rho^*_{1BHA} = \begin{pmatrix} 2.633 \\ 2.633 \\ 2.633 \end{pmatrix} \qquad \qquad \rho^*_{3BHA} = \begin{pmatrix} 2.628 \\ 2.628 \\ 2.628 \end{pmatrix}$$

$$Cp_{1BHA} = \begin{pmatrix} 1016.2 \\ 1016.2 \\ 1016.2 \end{pmatrix} \qquad Cp_{3BHA} = \begin{pmatrix} 1016.2 \\ 1016.2 \\ 1016.2 \end{pmatrix}$$

$$k_{1BHA} = \begin{pmatrix} 1.394 \\ 1.394 \\ 1.394 \end{pmatrix}$$
 $k_{3BHA} = \begin{pmatrix} 1.394 \\ 1.394 \\ 1.394 \end{pmatrix}$ 

$$a^*_{c1BHA} = \begin{pmatrix} 373.95 \\ 373.95 \\ 373.95 \end{pmatrix}$$

$$a*_{c3BHA} = \begin{pmatrix} 373.95 \\ 373.95 \\ 373.95 \end{pmatrix}$$

$$c_{1BHA} = \begin{pmatrix} 99.9 \\ 99.9 \\ 99.9 \end{pmatrix} \qquad c_{3BHA} = \begin{pmatrix} 112.6 \\ 108.2 \\ 105.6 \end{pmatrix}$$

$$c_{u1BHA} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \qquad c_{u3BHA} = \begin{pmatrix} 44.5 \\ 41.6 \\ 39.3 \end{pmatrix}$$

$$c_{a1BHA} = \begin{pmatrix} 99.9 \\ 99.9 \\ 99.9 \end{pmatrix} \qquad c_{a3BHA} = \begin{pmatrix} 103.5 \\ 99.9 \\ 98.0 \end{pmatrix}$$

$$\alpha_{1BHA} = \begin{pmatrix} 90.00 \\ 90.00 \\ 90.00 \end{pmatrix}$$
 $\circ \qquad \qquad \alpha_{3BHA} = \begin{pmatrix} 66.71 \\ 67.39 \\ 68.13 \end{pmatrix}$ 
 $\circ \qquad \qquad \circ$ 

$$\varepsilon_{\text{BHA}} = \begin{pmatrix} 23.29 \\ 22.61 \\ 21.87 \end{pmatrix} \cdot \circ$$

$$\lambda_{c1BHA} = \begin{pmatrix} 0.267 \\ 0.267 \\ 0.267 \end{pmatrix}$$
 $\lambda_{c3BHA} = \begin{pmatrix} 0.301 \\ 0.289 \\ 0.282 \end{pmatrix}$ 

|                                  |                                               | 1                          | 2                                           | 3                                                     | 4                                   | 5                                  | 6                                  | 7                                        | 8                                           | 9                             | 10                                     | 11                              | 12                                           | 13                                  | 14                                  | 15                                  | 16                                  | 17                                  | 18                                  | 19          | 20     | 21      | 22  | 23  | 24 | 25               |
|----------------------------------|-----------------------------------------------|----------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------|------------------------------------|------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------|----------------------------------------|---------------------------------|----------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------|--------|---------|-----|-----|----|------------------|
| $T^{*^T}$                        | _ 1                                           | 418.2                      | 465.7                                       | 465.7                                                 | 516.3                               | 516.3                              | 569.1                              | 569.1                                    | 619.5                                       | 619.5                         | 668.6                                  | 668.6                           | 715.5                                        | 715.5                               | 756.3                               | 756.3                               | 3 792.9                             | 792.9                               | 826.7                               | 826.7       |        |         |     |     |    |                  |
|                                  | 2                                             | 418.2                      | 465.7                                       | 465.7                                                 | 516.3                               | 516.3                              | 569.1                              | 569.1                                    | +                                           | 619.5                         | 668.6                                  | 668.6                           | 715.5                                        | 715.5                               | 756.3                               | _                                   |                                     |                                     | 826.7                               | 826.7       |        |         |     |     |    |                  |
|                                  | 3                                             | 418.2                      | 465.7                                       | 465.7                                                 | 516.3                               | 516.3                              | 569.1                              | 569.1                                    | 619.5                                       | 619.5                         | 668.6                                  | 668.6                           | 715.5                                        | 715.5                               | 756.3                               | 756.3                               | 3 792.9                             | 792.9                               | 826.7                               | 826.7       |        |         |     |     |    |                  |
|                                  |                                               |                            |                                             |                                                       |                                     |                                    |                                    |                                          |                                             |                               |                                        |                                 |                                              |                                     |                                     |                                     | 1                                   |                                     |                                     |             |        |         |     |     |    |                  |
| T                                |                                               | 1                          | 2                                           |                                                       | 4                                   | 5                                  | 6                                  | 7                                        | 8                                           | 9                             | 10                                     |                                 | 12                                           | 13                                  | 14                                  | 15                                  | 16                                  | 17                                  | 18                                  | 19          | 20     | 21      | 22  | 23  | 24 | 25               |
| $T^{I} =$                        | 1                                             | 412.0                      | 436.9                                       |                                                       |                                     | 511.9                              | 542.2                              | 565.3                                    | 594.9                                       | 616.2                         | 645.5                                  |                                 |                                              | 712.6                               | 737.6                               | 753.5                               | 776.0                               | 790.2                               | 811.0                               | 824.1       |        |         |     |     |    |                  |
|                                  | 2                                             | 412.4                      | 446.0                                       |                                                       |                                     | 512.1                              | 548.8                              | 565.4                                    | 600.4                                       | 616.3                         | 650.3                                  |                                 |                                              | 712.8                               | 740.9                               | 753.7                               | 779.0                               | 790.4                               | 813.6                               | 824.3       |        |         |     |     |    |                  |
|                                  | 3                                             | 412.7                      | 450.3                                       | 460.9                                                 | 500.3                               | 512.2                              | 552.5                              | 565.5                                    | 603.7                                       | 616.4                         | 653.3                                  | 665.9                           | 700.8                                        | 712.9                               | 743.2                               | 753.8                               | 780.9                               | 790.6                               | 815.4                               | 824.4       |        |         |     |     |    |                  |
|                                  |                                               | 1                          | 2                                           | 3                                                     | 4                                   |                                    | 5                                  | 6                                        | 7                                           | 8                             | 9                                      | 10                              | 11                                           | 1.                                  | <b>)</b>                            | 13                                  | 14                                  | 15                                  | 16                                  | 17          | 18     | 19      | 1 2 | 0   | 21 |                  |
| <b>p</b> * <sup>T</sup> .        | 1                                             | 315.6                      |                                             |                                                       |                                     |                                    | 606.5                              | 828.0                                    | 828.0                                       | 1091.8                        | 1091.8                                 | 1404.5                          |                                              |                                     |                                     | 1759.5                              | 2117.2                              | 2117.2                              | 2476.2                              |             | 2841   |         |     | 0   | 21 | 3                |
| P**                              | $=\begin{bmatrix} 1\\2 \end{bmatrix}$         | 315.6                      |                                             | +                                                     | -                                   |                                    | 606.5                              | 828.0                                    | 828.0                                       | 1091.8                        | 1091.8                                 | 1404.5                          |                                              |                                     |                                     | 1759.5                              | 2117.2                              | 2117.2                              | 2476.2                              |             | 2841   |         |     |     |    | ·10 <sup>3</sup> |
|                                  | 3                                             | 315.6                      |                                             |                                                       | _                                   |                                    | 606.5                              | 828.0                                    | 828.0                                       | 1091.8                        | 1091.8                                 | 1404.5                          | -                                            |                                     |                                     | 1759.5                              | 2117.2                              | 2117.2                              | 2476.2                              |             | 2841   |         |     |     |    |                  |
|                                  |                                               | 313.0                      | 7 133                                       | 133.5                                                 | , 000                               | 0.5                                | 000.5                              | 020.0                                    | 020.0                                       | 1051.0                        | 1031.0                                 | 1101.5                          | 1101                                         | 1.5                                 | 33.3                                | 1733.3                              | 2117.2                              | 2117.2                              | 2170.2                              | 2170.2      | 2011   | .7 201  | 1.7 |     |    |                  |
|                                  |                                               | 1                          | 2                                           | 3                                                     | 4                                   | 5                                  |                                    | 6                                        | 7                                           | 8                             | 9                                      | 10                              | 11                                           | 12                                  |                                     | 13                                  | 14                                  | 15                                  | 16                                  | 17          | 18     | 19      | 20  | 2   | 21 |                  |
| $\mathbf{p}^{\mathrm{T}} =$      | 1                                             | 299.3                      | 349.8                                       | 421.7                                                 | 496.                                | .9 58                              | 87.7                               | 694.1                                    | 807.9                                       | 940.5                         | 1070.8                                 | 1232.1                          | 1382.2                                       | 2 1569                              |                                     |                                     | 1925.3                              | 2088.1                              | 2281.0                              | 2444.2      | 2640.3 |         |     |     |    | $\cdot 10^3$     |
| г –                              | 2                                             | 300.5                      | 376.4                                       | 422.8                                                 | 526.                                |                                    |                                    | 725.5                                    | 808.7                                       | 973.0                         | 1071.5                                 | 1266.4                          | 1383.0                                       | -                                   |                                     |                                     |                                     | 2089.9                              | 2313.8                              | 2446.6      | 2672.7 |         |     |     |    | .10              |
|                                  | 3                                             | 301.2                      | 389.7                                       | 423.3                                                 | 541.                                | .3 58                              | 89.0                               | 743.5                                    | 809.2                                       | 992.7                         | 1071.9                                 | 1288.1                          | 1383.                                        | 5 162                               | 7.6 17                              | 735.8                               | 1981.5                              | 2091.2                              | 2336.2                              | 2448.2      | 2695.2 | 2 2811  | 8   |     |    |                  |
|                                  |                                               |                            |                                             | l                                                     |                                     |                                    | I                                  | <u> </u>                                 | <u> </u>                                    | <u> </u>                      |                                        | l                               |                                              |                                     |                                     | <u> </u>                            | I                                   | l                                   | l.                                  |             |        | l       | l   |     |    |                  |
|                                  |                                               | 1                          | 2                                           | 3                                                     | 4                                   |                                    | 5                                  | 6                                        | 7                                           | 8                             | 9                                      | 10                              | 11                                           | 13                                  | 2                                   | 13                                  | 14                                  | 15                                  | 16                                  | 17          | 18     | 19      | 2   | 0   | 21 |                  |
| $0*^T$                           | _ 1                                           | 2.628                      | 3.28                                        | 3.285                                                 | 4.0                                 | 091                                | 4.091                              | 5.067                                    | 5.067                                       | 6.138                         | 6.138                                  | 7.315                           | 7.3                                          | 15 8                                | .565                                | 8.565                               | 9.750                               | 9.750                               | 10.876                              | 10.876      | 11.97  | 72 11.9 | 72  |     |    |                  |
| Г                                | 2                                             | 2.628                      | 3.28                                        | 3.285                                                 | 4.0                                 | 091                                | 4.091                              | 5.067                                    | 5.067                                       | 6.138                         | 6.138                                  | 7.315                           | 7.3                                          | 15 8                                | .565                                | 8.565                               | 9.750                               | 9.750                               | 10.876                              | 10.876      | 11.97  | 72 11.9 | 72  |     |    |                  |
|                                  | 3                                             | 2.628                      | 3.28                                        | 3.285                                                 | 4.0                                 | 091                                | 4.091                              | 5.067                                    | 5.067                                       | 6.138                         | 6.138                                  | 7.315                           | 7.3                                          | 15 8                                | .565                                | 8.565                               | 9.750                               | 9.750                               | 10.876                              | 10.876      | 11.97  | 72 11.9 | 72  |     |    |                  |
|                                  |                                               |                            |                                             |                                                       |                                     |                                    |                                    |                                          |                                             |                               |                                        |                                 |                                              |                                     |                                     |                                     |                                     |                                     |                                     |             |        |         |     |     |    |                  |
|                                  |                                               | 1                          | 2                                           | 3                                                     | 4                                   | 5                                  | i                                  | 6                                        | 7                                           | 8                             | 9                                      | 10                              | 11                                           | 12                                  |                                     | 13                                  | 14                                  | 15                                  | 16                                  | 17          | 18     | 19      | 20  | 2   | 21 |                  |
| $\rho^{T} =$                     | 1                                             | 2.530                      | 2.788                                       | 3.190                                                 | 3.54                                |                                    | <del></del>                        | 4.458                                    | 4.977                                       | 5.506                         | 6.052                                  | 6.648                           | 7.230                                        |                                     |                                     | 8.472                               | 9.091                               | 9.651                               | 10.236                              | 10.772      | 11.338 |         |     |     |    |                  |
|                                  | 2                                             | 2.537                      | 2.940                                       | 3.196                                                 | 3.69                                |                                    |                                    | 4.604                                    | 4.981                                       | 5.644                         | 6.055                                  | 6.782                           | 7.23                                         | _                                   |                                     | 8.477                               | 9.207                               | 9.657                               | 10.345                              | 10.780      | 11.441 |         |     |     |    |                  |
|                                  | 3                                             | 2.542                      | 3.014                                       | 3.199                                                 | 3.76                                | 58 4.                              | .005                               | 4.686                                    | 4.983                                       | 5.727                         | 6.056                                  | 6.867                           | 7.23                                         | 5 8.0                               | 89                                  | 8.480                               | 9.285                               | 9.661                               | 10.419                              | 10.785      | 11.512 | 2 11.87 | 8   |     |    |                  |
|                                  |                                               |                            |                                             |                                                       |                                     |                                    |                                    |                                          |                                             | 1                             | 144                                    | 1 42 1                          | 40                                           | 4.4                                 | 4 =                                 | 1 40                                | 47                                  | 10                                  | 10 5                                | 20 24       | 22     |         | 2.4 | 7.5 |    |                  |
|                                  |                                               |                            | _                                           | _                                                     |                                     | _                                  | _                                  | _                                        |                                             |                               |                                        |                                 |                                              |                                     | 1 L                                 | 1 16                                | 17                                  | 18                                  | 19   2                              |             |        |         |     | 25  |    |                  |
| т                                |                                               | 1                          | 2                                           |                                                       |                                     |                                    |                                    |                                          | 8 9                                         |                               | 11                                     | 12                              | 13                                           | 14                                  | 15                                  | 16                                  |                                     |                                     |                                     | 20 21       | 22     | 23      | 24  |     |    |                  |
| $\operatorname{Cp}^{\mathrm{T}}$ | = 1                                           | 1 1016                     | 1024                                        | 1024 1                                                | 034 1                               | 1034                               | 1045                               | 1045                                     | 1056 10                                     | 56 106                        | 8 1068                                 | 1078                            | 1078                                         | 1088                                | 1088                                | 1096                                | 1096                                | 1104                                | 1104                                | 20 21       | 22     | . 23    | 24  | 23  |    |                  |
| $Cp^{T}$                         | = 1 2                                         | 1016                       | 1024<br>1024                                | 1024 1<br>1024 1                                      | 034 1<br>034 1                      | 1034<br>1034                       | 1045<br>1045                       | 1045 1<br>1045 1                         | 1056 10<br>1056 10                          | )56 106<br>)56 106            | 8 1068<br>8 1068                       | 3 1078<br>3 1078                | 1078<br>1078                                 | 1088<br>1088                        | 1088<br>1088                        | 1096<br>1096                        | 1096<br>1096                        | 1104<br>1104                        | 1104<br>1104                        | 20 21       | 22     | 23      | 24  | 23  |    |                  |
| $Cp^{T}$                         | = 1 2 3                                       |                            | 1024                                        | 1024 1<br>1024 1                                      | 034 1<br>034 1                      | 1034<br>1034                       | 1045<br>1045                       | 1045 1<br>1045 1                         | 1056 10<br>1056 10                          | 56 106                        | 8 1068<br>8 1068                       | 3 1078<br>3 1078                | 1078                                         | 1088                                | 1088                                | 1096<br>1096                        | 1096<br>1096                        | 1104<br>1104                        | 1104                                | 20 21       | 22     | . 23    | 24  |     |    |                  |
| $Cp^{T}$                         | = 1 2 3                                       | 1016                       | 1024<br>1024<br>1024                        | 1024 1<br>1024 1<br>1024 1                            | 034 1<br>034 1<br>034 1             | 1034<br>1034<br>1034               | 1045<br>1045<br>1045               | 1045 1<br>1045 1                         | 1056 10<br>1056 10<br>1056 10               | 956 106<br>956 106<br>956 106 | 8 1068<br>8 1068<br>8 1068             | 1078<br>1078<br>1078            | 1078<br>1078<br>1078                         | 1088<br>1088<br>1088                | 1088<br>1088<br>1088                | 1096<br>1096<br>1096                | 1096<br>1096<br>1096                | 1104<br>1104<br>1104                | 1104<br>1104<br>1104                |             |        |         |     |     | 24 | 25               |
|                                  | $= \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ | 1016<br>1016               | 1024<br>1024<br>1024<br>2                   | 1024 1<br>1024 1<br>1024 1                            | 034 1<br>034 1<br>034 1             | 1034<br>1034<br>1034<br>5          | 1045<br>1045<br>1045               | 1045 1<br>1045 1<br>1045 1               | 1056 10<br>1056 10<br>1056 10               | 9 9 106                       | 8 1068<br>8 1068<br>8 1068             | 11 1078<br>1078<br>1078<br>1078 | 1078<br>1078<br>1078                         | 1088<br>1088<br>1088                | 1088<br>1088<br>1088                | 1096<br>1096<br>1096                | 1096<br>1096<br>1096                | 1104<br>1104<br>1104<br>17          | 1104<br>1104<br>1104<br>18          | 19          | 20     | 21      | 22  | 23  | 24 | 25               |
| $Cp^{T}$ $k^{T} =$               | 1                                             | 1016<br>1016<br>1<br>1.394 | 1024<br>1024<br>1024<br>2<br>1.390          | 1024 1<br>1024 1<br>1024 1<br>3<br>1.390 1            | 034 1<br>034 1<br>034 1<br>4<br>384 | 1034<br>1034<br>1034<br>5<br>1.384 | 1045<br>1045<br>1045<br>6<br>1.379 | 1045 1<br>1045 1<br>1045 1<br>7<br>1.379 | 1056 10<br>1056 10<br>1056 10<br>8<br>1.373 | 9<br>1.373                    | 8 1068<br>8 1068<br>8 1068<br>10 1.368 | 11<br>1.368                     | 1078<br>1078<br>1078<br>1078                 | 1088<br>1088<br>1088<br>13<br>1.363 | 1088<br>1088<br>1088<br>14<br>1.359 | 1096<br>1096<br>1096<br>15<br>1.359 | 1096<br>1096<br>1096<br>16<br>1.355 | 1104<br>1104<br>1104<br>17<br>1.355 | 1104<br>1104<br>1104<br>18<br>1.352 | 19<br>1.352 |        |         |     |     | 24 | 25               |
| _                                | $= \begin{bmatrix} 1\\2\\3 \end{bmatrix}$     | 1016<br>1016               | 1024<br>1024<br>1024<br>2<br>1.390<br>1.390 | 1024 1<br>1024 1<br>1024 1<br>3<br>1.390 1<br>1.390 1 | 034 1<br>034 1<br>034 1<br>4<br>384 | 1034<br>1034<br>1034<br>5          | 1045<br>1045<br>1045               | 1045 1<br>1045 1<br>1045 1               | 1056 10<br>1056 10<br>1056 10               | 9<br>1.373<br>1.373           | 8 1068<br>8 1068<br>8 1068<br>10 1.368 | 11<br>1.368<br>1.368            | 1078<br>1078<br>1078<br>12<br>1.363<br>1.363 | 1088<br>1088<br>1088                | 1088<br>1088<br>1088                | 1096<br>1096<br>1096                | 1096<br>1096<br>1096                | 1104<br>1104<br>1104<br>17          | 1104<br>1104<br>1104<br>18          | 19          |        |         |     |     | 24 | 25               |



|                               |                                          | 1              | 2             | 3              | 4             | 5              | 6       | 7     | 8             | 9              | 10            | 11       | 12    | 13             | 14             | 15    | 16             | 17             | 18             | 19             | 20 | 21       | 22   | 23 | 24   | 25 |
|-------------------------------|------------------------------------------|----------------|---------------|----------------|---------------|----------------|---------|-------|---------------|----------------|---------------|----------|-------|----------------|----------------|-------|----------------|----------------|----------------|----------------|----|----------|------|----|------|----|
| $a^*_c^T$                     | = 1                                      | 373.9          | 394.4         | 394.4          | 414.9         | 414.           | 9 435.3 | 435.3 | 453.7         | 453.7          | 471.0         | 471.0    | 486.8 | 486.8          | 500.2          | 500.2 | 511.9          | 511.9          | 522.4          | 522.4          |    |          |      |    |      |    |
| C                             | 2                                        | 373.9          | 394.4         | 394.4          | 414.9         | 414.           | 9 435.3 | 435.3 | 453.7         | 453.7          | 471.0         | 471.0    | 486.8 | 486.8          | 500.2          | 500.2 | 511.9          | 511.9          | 522.4          | 522.4          |    |          |      |    |      |    |
|                               | 3                                        | 373.9          | 394.4         | 394.4          | 414.9         | 414.           | 9 435.3 | 435.3 | 453.7         | 453.7          | 471.0         | 471.0    | 486.8 | 486.8          | 500.2          | 500.2 | 511.9          | 511.9          | 522.4          | 522.4          |    |          |      |    |      |    |
|                               |                                          |                |               |                |               |                |         |       |               | Г              |               |          |       |                |                | 1     |                |                |                | 1              |    | 1        |      |    |      |    |
| т                             |                                          | 1              | 2             | 3              | 4             | 5              | 6       | 7     | 8             | 9              | 10            | 11       | 12    | 13             | 14             | 15    | 16             | 17             | 18             | 19             | 20 | 21       | 22   | 23 | 24   | 25 |
| $a_{3B}^{1}$                  | $= \frac{1}{2}$                          | 406.0          |               | 428.6          | 440.7         | 451.           | _       | 473.1 | 484.3         | 493.0          | 503.5         |          | 521.1 | 528.1          | 536.4          | 542.2 | 549.5          | 554.5          | 561.0          | 565.5          |    |          |      |    |      |    |
|                               | 2                                        | 406.3          | _             | 428.8          | 444.2         | 451.2          |         | 473.2 | 486.6         | 493.0          | 505.4         | 511.4    | 522.7 | 528.2          | 537.6          | 542.2 | 550.5          | 554.5          | 561.9          | 565.6          |    |          |      |    |      |    |
|                               | 3                                        | 406.4          | 423.9         | 428.8          | 446.0         | 451.2          | 2 467.7 | 473.2 | 487.9         | 493.0          | 506.6         | 5  511.4 | 523.7 | 528.2          | 538.4          | 542.3 | 551.2          | 554.6          | 562.5          | 565.6          |    |          |      |    |      |    |
|                               |                                          | 1              | 2             | 3              | 4             | 5              | 6       | 7     | 8             | 9              | 10            | 11       | 12    | 13             | 14             | 15    | 16             | 17             | 18             | 19             | 20 | 21       | 22   | 23 | 24   | 25 |
| $c^{T} =$                     | 1                                        | 112.6          | 243.0         | 104.2          | 239.8         | 96.3           | 237.2   | 89.4  | 228.0         | 83.0           | 222.3         | 78.3     | 215.2 | 77.9           | 201.9          | 77.5  | 192.3          | 76.9           | 185.9          | 75.3           | 20 | 21       | 22   | 25 | 27   | 23 |
| c =                           | 2                                        | 108.2          | 201.0         | 100.9          | 203.3         | 94.2           | 206.0   | 87.7  | 200.8         | 81.6           | 198.0         | 77.0     | 193.5 | 75.9           | 182.8          | 75.0  | 175.0          | 74.0           | 169.9          | 72.7           |    |          |      |    |      |    |
|                               | 3                                        | 105.6          | 177.6         | 99.2           | 182.2         | 93.0           | 186.3   | 86.6  | 182.8         | 80.7           | 181.2         | 76.1     | 178.0 | 74.5           | 168.9          | 73.3  | 162.2          | 71.9           | 157.9          | 70.8           |    |          |      |    |      |    |
|                               |                                          | <u> </u>       | <u> </u>      | I              |               |                |         | I     | I             | I              |               | I        |       | I              | I              |       | I              |                | I              |                |    | <u> </u> |      | L  | l .  |    |
|                               |                                          | 1              | 2             | 3              | 4             | 5              | 6       | 7     | 8             | 9              | 10            | 11       | 12    | 13             | 14             | 15    | 16             | 17             | 18             | 19             | 20 | 21       | 22   | 23 | 24   | 25 |
| $\mathbf{w}^{T}$              | _ 1                                      | 255.8          | 131.6         | 266.6          | 120.6         | 281.9          | 119.6   | 282.5 | 121.1         | 284.3          | 121.0         | 283.3    | 122.9 | 274.4          | 131.4          | 267.9 | 137.3          | 263.2          | 141.7          | 264.7          |    |          |      |    |      |    |
|                               | 2                                        | 336.1          | 210.4         | 339.9          | 202.8         | 342.8          | 191.6   | 335.8 | 186.0         | 331.6          | 180.1         | 326.0    | 177.4 | 314.4          | 182.2          | 306.1 | 185.4          | 300.2          | 187.1          | 298.7          |    |          |      |    |      |    |
|                               | 3                                        | 403.3          | 286.5         | 400.6          | 274.2         | 394.7          | 255.0   | 381.8 | 243.1         | 373.0          | 232.3         | 363.8    | 225.5 | 350.1          | 227.0          | 340.2 | 227.9          | 333.3          | 227.2          | 329.4          |    |          |      |    |      |    |
|                               |                                          |                |               |                |               |                |         |       |               |                |               |          |       |                |                |       |                |                |                |                |    |          |      |    |      |    |
| т                             |                                          | 1              | 2             | 3              | 4             | 5              | 6       | 7     | 8             | 9              | 10            | 11       | 12    | 13             | 14             | 15    | 16             | 17             | 18             | 19             | 20 | 21       | 22   | 23 | 24   | 25 |
| u¹ =                          | 1                                        | 278.4          | 286.2         | 293.4          | 299.3         | 304.9          | 304.9   | 304.9 | 304.9         | 304.9          | 304.9         | 304.9    | 304.9 | 304.9          | 304.9          | 304.9 | 304.9          | 304.9          | 304.9          | 304.9          |    |          |      |    |      |    |
|                               | 2                                        | 362.5          | 362.5         | 362.5          | 362.5         | 362.5          | 358.8   | 355.3 | 352.4         | 349.7          | 347.5         | 345.3    | 343.6 | 341.9          | 340.7          | 339.6 | 338.8          | 338.0          | 336.7          | 335.5          |    |          |      |    |      |    |
|                               | 3                                        | 430.5          | 425.4         | 420.5          | 416.3         | 412.2          | 405.6   | 399.3 | 394.3         | 389.4          | 385.3         | 381.4    | 378.3 | 375.2          | 373.1          | 371.0 | 369.5          | 368.1          | 365.7          | 363.4          |    |          |      |    |      |    |
|                               |                                          | 1              | 2             | 3              | 4             | 5              | 6       | 7     | 8             | 9              | 10            | 11       | 12    | 13             | 14             | 15    | 16             | 17             | 18             | 19             | 20 | 21       | 22   | 23 | 24   | 25 |
| Т                             | 1                                        | 103.5          | 111.3         | 94.4           | 92.0          | 88.8           | 85.5    | 82.4  | 79.6          | 76.9           | 74.4          | 72.0     | 69.7  | 67.5           | 65.4           | 63.4  | 61.5           | 59.6           | 59.3           | 58.9           |    |          |      |    |      |    |
| $c_{a}$                       | =   1   2                                | 99.9           | 97.3          | 94.3           | 91.5          | 88.8           | 85.5    | 82.4  | 79.6          | 76.9           | 74.4          | 72.0     | 69.7  | 67.5           | 65.4           | 63.4  | 61.5           | 59.6           | 59.3           | 58.9           |    |          |      |    |      |    |
|                               | 3                                        | 98.0           | 89.6          | 94.2           | 91.2          | 88.8           | 85.5    | 82.4  | 79.6          | 76.9           | 74.4          | 72.0     | 69.7  | 67.5           | 65.4           | 63.4  | 61.5           | 59.6           | 59.3           | 58.9           |    |          |      |    |      |    |
|                               |                                          |                | •             | 1              | '             |                | '       | •     | •             | '              |               |          | •     | •              | ,              | •     | •              | •              |                | '              |    |          |      | 1  | '    |    |
|                               |                                          | 1              | 2             | 3              | 4             | 5              | 6       | 7     | 8             | 9              | 10            | 11       | 12    | 13             | 14             | 15    | 16             | 17             | 18             | 19             | 20 | 21       | 22   | 23 | 24   | 25 |
| $c_{\mathbf{u}}^{\mathrm{T}}$ | = 1                                      | 44.5           | 216.0         | 44.1           | 221.4         | 37.4           | 221.3   | 34.7  | 213.7         | 31.2           | 209.5         | 31.0     | 203.6 | 39.0           | 191.0          | 44.7  | 182.2          | 48.6           | 176.2          | 46.9           |    |          |      |    |      |    |
| u                             | 2                                        | 41.6           | 175.9         | 35.9           | 181.6         | 31.4           | 187.4   | 29.8  | 184.4         | 27.2           | 183.5         | 27.3     | 180.5 | 34.8           | 170.7          | 40.1  | 163.8          | 43.8           | 159.3          | 42.6           |    |          |      |    |      |    |
|                               | 3                                        | 39.3           | 153.3         | 31.1           | 157.7         | 27.6           | 165.5   | 26.5  | 164.6         | 24.4           | 165.2         | 24.7     | 163.7 | 31.7           | 155.7          | 36.7  | 150.1          | 40.2           | 146.4          | 39.3           |    |          |      |    |      |    |
|                               |                                          |                | 1 2           | 1 2            | 1 4           | l _            | 1 6     | 1 -   |               |                | 10            |          | 1.2   | 10             |                | 1 45  | 1.6            | 47             | 10             | 10 1           | 20 | 1 24     | 1 22 | 22 | 1 24 | 1  |
| Т                             | 1                                        | 1              | 2 70.2        | 3              | 77.0          | 5              | 6       | 7     | 8             | 9              | 10            | 274.0    | 12    | 13             | 14             | 15    | 16             | 17             | 18             | 19             | 20 | 21       | 22   | 23 | 24   | -  |
| $\mathbf{w}_{\mathbf{u}}$     | $= \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ | 233.9<br>321.0 | 70.2<br>186.6 | 249.3<br>326.6 | 77.9<br>181.0 | 267.6<br>331.1 |         |       | 91.3<br>168.1 | 273.7<br>322.5 | 95.5<br>164.0 |          |       | 265.9<br>307.1 | 113.9<br>170.0 |       | 122.7<br>174.9 | 256.4<br>294.2 | 128.7<br>177.5 | 258.0<br>292.8 |    |          | +    |    | +    | -  |
|                               | 3                                        | 391.2          | 272.1         | 389.3          |               | 384.6          | _       |       | 229.7         | 365.0          | 220.1         | _        | +     | +              |                |       | 219.5          | 327.9          | 219.3          | 324.1          |    |          |      |    | 1    | -  |
|                               | _ ح                                      | 331.2          |               | 303.3          | 230.0         | 1 307.0        | 270.2   | 3/2.0 | 223.7         | 303.0          | 220.1         | 330.0    |       | J-3.3          |                | 337.3 | 217.5          | 327.3          | 217.5          | J27.1          |    |          |      | 1  | 1    | J  |

$$\Delta c_a = \left[ \begin{array}{l} \text{for } i \in 1..Z \\ \\ \text{for } a \in 2..3 \\ \\ \text{for } r \in 1..N_r \\ \\ \Delta c_{a_{st(i,a),r}} = c_{a_{st(i,a),r}} - c_{a_{st(i,a-1),r}} \\ \\ \Delta c_{a} \end{array} \right.$$

|                           |   | 1    | 2     | 3      | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20 | 21 |
|---------------------------|---|------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|
| $\Delta c_{\alpha}^{T} =$ | 1 | 0.00 | 7.83  | -16.91 | -2.36 | -3.28 | -3.22 | -3.10 | -2.80 | -2.72 | -2.51 | -2.46 | -2.27 | -2.23 | -2.04 | -2.02 | -1.89 | -1.87 | -0.38 | -0.38 |    |    |
| —•a                       | 2 | 0.00 | -2.60 | -3.01  | -2.79 | -2.73 | -3.22 | -3.10 | -2.80 | -2.72 | -2.51 | -2.46 | -2.27 | -2.23 | -2.04 | -2.02 | -1.89 | -1.87 | -0.38 | -0.38 |    |    |
|                           | 3 | 0.00 | -8.41 | 4.66   | -3.01 | -2.45 | -3.22 | -3.10 | -2.80 | -2.72 | -2.51 | -2.46 | -2.27 | -2.23 | -2.04 | -2.02 | -1.89 | -1.87 | -0.38 | -0.38 |    |    |

|             |                            |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|-------------|----------------------------|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| [16, c. 81] | $\Delta c_0^T \ge -25 = 1$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |    |    |    |    |    |    |
| [,]         | — a —                      | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |    |    |    |    |    |    |
|             |                            | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |    |    |    |    |    |    |

|                  |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10 | 11 | 12 |
|------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|
| $R_{\tau}^{T} =$ | 1 | 0.5386 | 0.5520 | 0.5759 | 0.5927 | 0.6054 | 0.6153 | 0.6229 | 0.6280 | 0.6314 |    |    |    |
| T'L              | 2 | 0.7000 | 0.7000 | 0.6967 | 0.6974 | 0.6978 | 0.6983 | 0.6990 | 0.6994 | 0.6990 |    |    |    |
|                  | 3 | 0.7749 | 0.7743 | 0.7639 | 0.7592 | 0.7552 | 0.7519 | 0.7495 | 0.7478 | 0.7457 |    |    |    |

|               |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|---------------|---|---|---|---|---|---|---|---|---|---|----|----|----|
| $R_T^T > 0 =$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |    |    |    |
| TL = 0        | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |    |    |    |
|               | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |    |    |    |



|                |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20 | 21 | 22 | 23 | 24 | 25 |      |
|----------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|------|
| $\alpha^{T} =$ | 1 | 66.71 | 27.26 | 64.95 | 22.57 | 67.17 | 21.14 | 67.17 | 20.44 | 67.94 | 19.56 | 66.72 | 18.89 | 59.97 | 18.91 | 54.84 | 18.65 | 50.84 | 18.58 | 51.47 |    |    |    |    |    |    | ٠. د |
| 00             | 2 | 67.39 | 28.94 | 69.13 | 26.74 | 70.50 | 24.54 | 70.13 | 23.36 | 70.54 | 22.08 | 69.20 | 21.11 | 62.72 | 20.97 | 57.68 | 20.58 | 53.70 | 20.41 | 54.10 |    |    |    |    |    |    |      |
|                | 3 | 68.13 | 30.29 | 71.71 | 30.05 | 72.70 | 27.34 | 72.18 | 25.83 | 72.39 | 24.24 | 71.02 | 23.05 | 64.84 | 22.78 | 59.93 | 22.29 | 56.00 | 22.03 | 56.25 |    |    |    |    |    |    |      |
|                |   |       |       |       |       |       | •     |       |       |       | •     |       | •     |       | •     |       | •     |       | •     |       |    |    |    |    | •  |    |      |
|                |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20 | 21 |    |    |    |    |      |
| $\beta^{T} =$  | 1 | 23.86 | 57.77 | 20.74 | 49.75 | 18.35 | 45.64 | 16.97 | 41.11 | 15.70 | 37.94 | 14.72 | 34.53 | 14.23 | 29.86 | 13.69 | 26.62 | 13.09 | 24.72 | 12.85 |    |    | .0 |    |    |    |      |
| ٦              | 2 | 17.29 | 27.53 | 16.10 | 26.82 | 15.01 | 26.52 | 14.21 | 25.36 | 13.41 | 24.41 | 12.75 | 23.14 | 12.39 | 21.04 | 11.95 | 19.37 | 11.46 | 18.46 | 11.37 |    |    |    |    |    |    |      |
|                | 3 | 14.06 | 18.22 | 13.60 | 19.43 | 13.00 | 19.60 | 12.47 | 19.12 | 11.90 | 18.68 | 11.41 | 18.00 | 11.11 | 16.75 | 10.74 | 15.66 | 10.31 | 15.12 | 10.30 |    |    |    |    |    |    |      |

|                             |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
|-----------------------------|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| $\beta^{T} < 91.^{\circ} =$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |    |    |
| D = 31                      | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |    |    |
|                             | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |    |    |

 $\beta.2 > 91 \Longrightarrow$  поменять 3-н профилирования

|          |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | Q     | ٥     | 10 | 11 | 12 | 13 | 14 | 15 | 1 |
|----------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|---|
|          |   |       |       |       |       |       |       |       |       |       |    |    |    |    |    |    |   |
|          | 3 | 4.16  | 5.82  | 6.61  | 6.65  | 6.78  | 6.59  | 5.64  | 4.92  | 4.81  |    |    |    |    |    |    |   |
| erotor – | 2 | 10.25 | 10.72 | 11.51 | 11.14 | 10.99 | 10.38 | 8.66  | 7.42  | 7.01  |    |    |    |    |    |    |   |
| ε =      | 1 | 33.91 | 29.01 | 27.29 | 24.14 | 22.24 | 19.81 | 15.63 | 12.93 | 11.63 |    |    |    |    |    |    |   |

|           |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |     |
|-----------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|-----|
| T =       | 1 | 38.38 | 41.87 | 47.52 | 47.71 | 49.08 | 48.10 | 40.53 | 35.16 | 32.89 |    |    |    |    |    |    | ] . |
| estator – | 2 | 37.26 | 41.21 | 46.92 | 47.37 | 48.87 | 48.14 | 41.09 | 36.00 | 33.70 |    |    |    |    |    |    |     |
|           | 3 | 36.52 | 40.26 | 46.04 | 46.74 | 48.39 | 47.91 | 41.32 | 36.50 | 34.22 |    |    |    |    |    |    |     |



|                        |    | 1                    | 2                    | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11      | 12     | 13     | 14     | 15     | 16     | 17     | 18     | 19     | 20 | 21 | 22 | 23 |
|------------------------|----|----------------------|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|
| $\lambda_{c}^{T} =$    | 1  | 0.3012               | 0.6161               | 0.2642 | 0.5779 | 0.2321 | 0.5451 | 0.2055 | 0.5025 | 0.1829 | 0.4720 | 0.1663  | 0.4421 | 0.1600 | 0.4036 | 0.1550 | 0.3757 | 0.1502 | 0.3559 | 0.1441 |    |    |    |    |
|                        | 2  | 0.2893               | 0.5098               | 0.2559 | 0.4900 | 0.2269 | 0.4733 | 0.2014 | 0.4426 | 0.1798 | 0.4204 | 0.1634  | 0.3974 | 0.1559 | 0.3654 | 0.1500 | 0.3419 | 0.1446 | 0.3253 | 0.1391 |    |    |    |    |
|                        | 3  | 0.2823               | 0.4503               | 0.2516 | 0.4390 | 0.2240 | 0.4279 | 0.1989 | 0.4029 | 0.1779 | 0.3848 | 0.1616  | 0.3656 | 0.1531 | 0.3377 | 0.1465 | 0.3169 | 0.1405 | 0.3024 | 0.1355 |    |    |    |    |
|                        |    |                      |                      |        |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |        |    |    |    |    |
|                        |    |                      |                      | 1   1  | 2 3    | 4 5    | 6 7    | 8      | 9 10   | 11 12  | 13     | 14   15 | 16 17  | 18 1   | .9     |        |        |        |        |        |    |    |    |    |
| [16, c. 87             | 7] | $\lambda_2^T \leq 0$ | $0.85 = \frac{1}{2}$ | . 1    | 1 1    | 1 1    | 1      | 1 1    | 1 1    | 1      | 1 1    | 1 1     | 1      | 1 1    | 1      |        |        |        |        |        |    |    |    |    |
| L /                    | _  |                      | 2                    | . 1    | 1 1    | 1 1    | 1      | 1 1    | 1 1    | 1      | 1 1    | 1 1     | 1      | 1 1    | 1      |        |        |        |        |        |    |    |    |    |
|                        |    |                      | 3                    | 1      | 1 1    | 1 1    | 1      | 1 1    | 1 1    | 1      | 1 1    | 1 1     | 1      | 1 1    | 1      |        |        |        |        |        |    |    |    |    |
|                        |    |                      |                      |        |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |        |    |    |    |    |
|                        |    | 1                    | 2                    | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11      | 12     | 13     | 14     | 15     | 16     | 17     | 18     | 19     | 20 | 21 | 22 | 23 |
| $M_c^T =$              | 1  | 0.2774               | 0.5820               | 0.2431 | 0.5441 | 0.2135 | 0.5120 | 0.1891 | 0.4708 | 0.1684 | 0.4415 | 0.1532  | 0.4130 | 0.1475 | 0.3763 | 0.1430 | 0.3500 | 0.1387 | 0.3314 | 0.1331 |    |    |    |    |
|                        | 2  | 0.2663               | 0.4766               | 0.2353 | 0.4577 | 0.2087 | 0.4419 | 0.1853 | 0.4128 | 0.1655 | 0.3918 | 0.1505  | 0.3701 | 0.1437 | 0.3400 | 0.1383 | 0.3179 | 0.1334 | 0.3024 | 0.1285 |    |    |    |    |
|                        | 3  | 0.2597               | 0.4189               | 0.2314 | 0.4084 | 0.2060 | 0.3982 | 0.1830 | 0.3747 | 0.1637 | 0.3578 | 0.1488  | 0.3398 | 0.1411 | 0.3137 | 0.1351 | 0.2942 | 0.1297 | 0.2808 | 0.1252 |    |    |    |    |
|                        |    |                      |                      |        |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |        |    |    |    |    |
|                        |    | 1                    | 2                    | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11      | 12     | 13     | 14     | 15     | 16     | 17     | 18     | 19     | 20 | 21 | 22 | 23 |
| $M_{\mathbf{W}}^{T} =$ | 1  | 0.6299               | 0.3151               | 0.6220 | 0.2736 | 0.6249 | 0.2582 | 0.5972 | 0.2501 | 0.5768 | 0.2404 | 0.5539  | 0.2359 | 0.5195 | 0.2449 | 0.4941 | 0.2498 | 0.4747 | 0.2525 | 0.4680 |    |    |    |    |
| W                      | 2  | 0.8274               | 0.4989               | 0.7928 | 0.4565 | 0.7598 | 0.4110 | 0.7096 | 0.3822 | 0.6726 | 0.3563 | 0.6374  | 0.3393 | 0.5953 | 0.3388 | 0.5645 | 0.3369 | 0.5413 | 0.3329 | 0.5281 |    |    |    |    |

0.7114

0.4307

0.6628

0.4215

0.6274

0.4135

0.4039

0.6009

0.5824

0.7565

0.4983

0.9341

0.9923

0.6758

0.6149

0.8747

0.5451

0.8069

0.4586



$$T^*_{1CA} = \begin{pmatrix} 826.7 \\ 826.7 \\ 826.7 \end{pmatrix} \qquad T^*_{3CA} = \begin{pmatrix} 826.7 \\ 826.7 \\ 826.7 \end{pmatrix} \qquad a^*_{c1CA} = \begin{pmatrix} 522.4 \\ 522.4 \\ 522.4 \end{pmatrix} \qquad a^*_{c3CA} = \begin{pmatrix} 522.4 \\ 522.4 \\ 522.4 \end{pmatrix} \qquad \alpha_{1CA} = \begin{pmatrix} 51.47 \\ 54.10 \\ 56.25 \end{pmatrix} \cdot \alpha_{3CA} = \begin{pmatrix} 90.00 \\ 90.00 \\ 90.00 \end{pmatrix} \cdot P^*_{1CA} = \begin{pmatrix} 2841.7 \\ 2841.7 \\ 2841.7 \end{pmatrix} \cdot 10^3 \qquad P^*_{3CA} = \begin{pmatrix} 2836.3 \\ 2836.3 \\ 2836.3 \end{pmatrix} \cdot 10^3 \qquad c_{1CA} = \begin{pmatrix} 75.3 \\ 72.7 \\ 70.8 \end{pmatrix} \qquad c_{3CA} = \begin{pmatrix} 48.9 \\ 48.9 \\ 48.9 \end{pmatrix} \qquad \varepsilon_{CA} = \begin{pmatrix} 38.53 \\ 35.90 \\ 33.75 \end{pmatrix} \cdot P^*_{1CA} = \begin{pmatrix} 11.972 \\ 11.972 \\ 11.972 \\ 11.972 \end{pmatrix} \qquad \rho^*_{3CA} = \begin{pmatrix} 1103.8 \\ 1103.8 \\ 1103.8 \\ 1103.8 \end{pmatrix} \qquad c_{1CA} = \begin{pmatrix} 58.9 \\ 38.9 \\ 58.9 \end{pmatrix} \qquad c_{a3CA} = \begin{pmatrix} 48.9 \\ 48.9 \\ 48.9 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 0.044 \\ 0.139 \\ 0.136 \end{pmatrix} \qquad \lambda_{c3CA} = \begin{pmatrix} 0.094 \\ 0.094 \\ 0.094 \end{pmatrix}$$

Рассматриваемая ступень: 
$$j=1$$
  $j=1$   $j=$ 

## ▼ Построение треугольников скоростей в 3х сечениях

$$\begin{split} \Delta_c(v,i,j,r) &= \left| \begin{array}{l} \tan(\alpha_{st(i,j),r}) \cdot v \ \ \mathrm{if} \ \left( \tan(\alpha_{st(i,j),r}) \geq 0 \wedge - \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right| \leq v \leq 0 \right) \\ \tan(\alpha_{st(i,j),r}) \cdot v \ \ \mathrm{if} \ \left( \tan(\alpha_{st(i,j),r}) < 0 \wedge 0 \leq v \leq \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right| \right) \\ \Delta_W(v,i,j,r) &= \left| -\tan(\beta_{st(i,j),r}) \cdot v \ \ \mathrm{if} \ \left( -\tan(\beta_{st(i,j),r}) \geq 0 \right) \wedge \left( -\left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right| \leq v \leq 0 \right) \wedge (j \neq 3) \\ -\tan(\beta_{st(i,j),r}) \cdot v \ \ \mathrm{if} \ \left( -\tan(\beta_{st(i,j),r}) < 0 \right) \wedge \left( 0 \leq v \leq \left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right| \right) \wedge (j \neq 3) \\ \Delta_U(v,i,j,r) &= \left| -c_{a_{st(i,j),r}} \quad \mathrm{if} \ \left( -c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right) \leq v \leq w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right) \wedge (j \neq 3) \\ \mathrm{NaN} \quad \mathrm{otherwise} \end{split}$$

$$v_{lim} = ceil \left(\frac{max(c, w, u)}{10^2}\right) \cdot 10^2 = 500$$

Дискретизация скорости:  $v = -v_{lim}, -v_{lim} + \frac{v_{lim}}{3000} ... v_{lim}$ 



 $r = av(N_r)$ 





▲ Построение треугольников скоростей в 3х сечениях

$$\begin{pmatrix} F_1 & F_{II} \\ D2 & R2 \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \text{for } a \in 1..3 \end{cases} \\ \begin{cases} \rho_{\cdot}(z) &= \text{interp} \Big( \text{Ispline} \Big( \text{submatrix} \Big( R, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big( \rho_{\cdot} \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,a), \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, z \Big) \\ c_{a.}(z) &= \text{interp} \Big( \text{Ispline} \Big( \text{submatrix} \Big( R, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big( c_a, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big( c_a, \text{st}(i,a), \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big( c_a, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big( c_a, \text{st}(i,a), \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big( c_a, \text{st}(i,a), \text{$$

Кольцевые площади (м^2):

|                                                                                     |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18     | 19     |
|-------------------------------------------------------------------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $\operatorname{stack}\left(F_{\mathbf{I}}^{T}, F_{\mathbf{II}}^{T}, F^{T}\right) =$ | 1 | 0.0196 | 0.0180 | 0.0165 | 0.0152 | 0.0140 | 0.0130 | 0.0121 | 0.0114 | 0.0107 | 0.0101 | 0.0095 | 0.0091 | 0.0087 | 0.0084 | 0.0081 | 0.0079 | 0.0077 | 0.0074 | 0.0071 |
|                                                                                     | 2 | 0.1177 | 0.1082 | 0.0990 | 0.0914 | 0.0840 | 0.0781 | 0.0726 | 0.0682 | 0.0640 | 0.0606 | 0.0573 | 0.0547 | 0.0522 | 0.0504 | 0.0487 | 0.0476 | 0.0464 | 0.0445 | 0.0427 |
|                                                                                     | 3 | 0.1373 | 0.1218 | 0.1155 | 0.1031 | 0.0980 | 0.0884 | 0.0846 | 0.0775 | 0.0747 | 0.0690 | 0.0668 | 0.0624 | 0.0608 | 0.0578 | 0.0568 | 0.0547 | 0.0541 | 0.0514 | 0.0498 |

Радиус и диаметр двухконтурности (м):

| . (TT)                                   |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | – 3 |
|------------------------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| $\operatorname{stack}(R2^{1}, D2^{1}) =$ | 1 | 194.1 | 197.3 | 200.4 | 202.9 | 205.3 | 204.5 | 203.8 | 203.2 | 202.7 | 202.2 | 201.8 | 201.5 | 201.1 | 200.9 | 200.7 | 200.5 | 200.4 | 200.1 | 199.9 | .10 |
|                                          | 2 | 388.1 | 394.6 | 400.7 | 405.7 | 410.5 | 409.0 | 407.6 | 406.4 | 405.3 | 404.5 | 403.6 | 402.9 | 402.2 | 401.8 | 401.3 | 401.0 | 400.7 | 400.2 | 399.7 |     |

$$\begin{pmatrix} \pi^* \Pi \\ \pi^* I \end{pmatrix} = \begin{cases} \text{for i = 1..Z} \\ \text{for a = 1} \end{cases} \\ \begin{pmatrix} C_{D}(z) = \text{interp} \Big( \text{Ispline} \Big( \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( C_{D}, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big( R, \text{st}(i, a), 1, N_f$$

| . ( . T . T)                                    |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 |
|-------------------------------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|
| $\operatorname{stack}(\pi^*_{I}, \pi^*_{II}) =$ | 1 | 1.392 | 1.381 | 1.365 | 1.319 | 1.286 | 1.253 | 1.203 | 1.170 | 1.148 |    |    |    |
| , ,                                             | 2 | 1.392 | 1.381 | 1.365 | 1.319 | 1.286 | 1.253 | 1.203 | 1.170 | 1.148 |    |    |    |



$$\prod_{i=1}^{Z} \pi^*_{\prod_{i}} = 9.003$$

## Относ. толщины ЛРК и СА:

$$\overline{c}_{rotor.}(r) = interp \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{cases} 13 + \begin{vmatrix} 3 & \text{if compressor} = "B\pi" \\ -3 & \text{if compressor} = "KHД" \\ -1 & \text{otherwise} \end{cases} \\ 5 + \begin{vmatrix} 1 & \text{if compressor} = "B\pi" \\ -1 & \text{if compressor} = "KHД" \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{cases} 1 \\ av(N_r) \\ N_r \end{cases}, \begin{cases} 13 + \begin{vmatrix} 3 & \text{if compressor} = "B\pi" \\ -3 & \text{if compressor} = "KHД" \\ -1 & \text{otherwise} \end{cases} \\ 5 + \begin{vmatrix} 1 & \text{if compressor} = "B\pi" \\ -1 & \text{if compressor} = "KHД" \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{cases} 0 & \text{otherwise} \\ 3 & \text{otherwise} \end{cases}$$

$$\overline{c}_{stator.}(r) = interp \left[ cspline \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix} \right]$$



$$r = ORIGIN, ORIGIN + \frac{N_r - ORIGIN}{N_{dis}} .. N_r$$

$$\overline{c}_{BHA} = \begin{vmatrix} for & r \in 1 ... N_r \\ \overline{c}_{BHA}_r & \overline{c}_{stator.}(r) \end{vmatrix}$$

$$\overline{c}_{BHA} = \begin{bmatrix} & & 1 & \\ & 1 & 3.00 \\ & 2 & 5.00 \\ & 3 & 7.00 \end{bmatrix} .\%$$

$$\begin{bmatrix}
c_{stator} \\
\hline
c_{rotor}
\end{bmatrix} = \begin{cases}
for i \in 1..Z \\
for r \in 1..N_r
\end{cases}$$

$$\begin{bmatrix}
c_{stator} \\
\hline
c_{rotor} \\
i,r
\end{bmatrix} = \begin{bmatrix}
c_{stator.}(r) \\
\hline
c_{rotor.}(r)
\end{bmatrix}$$

$$\begin{bmatrix}
c_{stator} \\
\hline
c_{rotor}
\end{bmatrix}$$

$$\overline{c}_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 \\ 2 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 \\ 3 & 7.00 & 7.00 & 7.00 & 7.00 & 7.00 & 7.00 & 7.00 & 7.00 & 7.00 \end{bmatrix} \cdot \%$$

$$\overline{c}_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & 1 & 12.00 & 12.00 & 12.00 & 12.00 & 12.00 & 12.00 & 12.00 & 12.00 & 12.00 \\ & 2 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 \\ & 3 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 \end{bmatrix}.$$

$$\overline{c}_{CA} = \begin{vmatrix} for & r \in 1 ... N_r \\ \overline{c}_{CA}_r & = \overline{c}_{stator.}(r) \\ \overline{c}_{CA} \end{vmatrix}$$

$$\overline{c}_{CA} = \begin{bmatrix} & & 1 & \\ 1 & 3.00 & \\ 2 & 5.00 & \\ 3 & 7.00 & \end{bmatrix} .07$$

$$\begin{bmatrix}
r_{\_inlet_{CA}} \\
\hline r_{\_outlet_{CA}}
\end{bmatrix} = \begin{cases}
for \ r \in 1.. N_r & \text{if } CA = 1 \\
\hline r_{\_inlet_{CA}_r} \\
\hline r_{\_outlet_{CA}_r}
\end{bmatrix} = \begin{pmatrix} 0.2 \\ 0.1 \end{pmatrix} \cdot \overline{c}_{stator.}(r)$$

$$\begin{bmatrix}
r_{\_inlet_{CA}} \\
\hline r_{\_outlet_{CA}}
\end{bmatrix}$$

$$\frac{1}{\text{r_inlet}_{BHA}} = \begin{vmatrix}
 & 1 & \\
 & 1 & 0.600 \\
 & 2 & 1.000 \\
 & 3 & 1.400
\end{vmatrix} .\%$$

$$\frac{T}{r\_outlet_{stator}}^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 \\ 2 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 \\ 3 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 \\ \end{bmatrix} .\%$$

$$\frac{1}{\text{r\_outlet}_{BHA}} = \begin{bmatrix} & 1 & \\ 1 & 0.300 \\ 2 & 0.500 \\ \hline 3 & 0.700 \end{bmatrix} .\%$$

$$\underline{r}_{inlet_{CA}} = 
\begin{vmatrix}
 & 1 \\
 & 1 & 0.600 \\
 & 2 & 1.000 \\
 & 3 & 1.400
\end{vmatrix}$$
.%

$$\overline{r}_{outlet} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & 1 & 1.200 & 1.200 & 1.200 & 1.200 & 1.200 & 1.200 & 1.200 & 1.200 & 1.200 \\ & 2 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 \\ & 3 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 \\ \end{bmatrix} .\%$$

$$\frac{1}{r_{outlet_{CA}}} = \begin{vmatrix}
 & 1 & \\
 & 1 & 0.300 \\
 & 2 & 0.500 \\
 & 3 & 0.700
\end{vmatrix}$$

Относ. удлинение ЛРК и НА:

[16, c. 244]

$$\overline{h}_{rotor}(Z,i) = \begin{vmatrix} \overline{h}_{\sim rotor} \left( \frac{1}{rows(z_{\sim})} \right) & \text{if } i < 1 \\ \overline{h}_{\sim rotor}(1) & \text{if } i > Z \end{vmatrix} \begin{vmatrix} \overline{h}_{\sim stator} \left( \frac{1}{rows(z_{\sim})} \right) & \text{if } i < 1 \\ \overline{h}_{\sim stator}(1) & \text{if } i > Z \end{vmatrix}$$
$$\overline{h}_{\sim rotor} \left( \frac{i}{Z} \right) & \text{otherwise} \end{vmatrix}$$



$$\overline{\underline{h}}_{\sim}(i) = interp \left( cspline \left( \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim}rotor \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim}rotor, i \right)$$

$$\overline{\underline{h}}_{\text{constator}}(i) = interp \left( cspline \left( \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim stator} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim stator}, i \right)$$

Для компрессора газогенератора

$$\frac{h_{_{PK}}}{S_{_{PK}}}$$
=2,5...4,5 – для первой дозвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
 =2,0...3,5 – для первой околозвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=1,7...3,0 – для первой сверхзвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=1,0...2,5 – для последней ступени.

[16, c. 83-84]

▼ Расчет длин хорд по высоте Л

$$\begin{array}{l} \mathsf{chord}_{BHA} = & \mathsf{for} \ i \in I \\ \\ \mathsf{chord}_{BHA}_{av\left(N_r\right)} = \frac{h_{st(i,1)}}{\overline{h}_{stator}(Z,0)} \\ \mathsf{sail} = \frac{R_{st(1,1),N_r} - R_{st(1,1),1}}{R_{st(1,1),av\left(N_r\right)} - R_{st(1,1),1}} \\ \mathsf{for} \ r \in 1 ... N_r \\ \\ \mathsf{b}_{BHA\kappaop} = \frac{\mathsf{chord}_{BHA}_{av\left(N_r\right)} \cdot \mathsf{sail}}{\mathsf{sail}_{stator} - 1 + \mathsf{sail}} \\ \mathsf{b}_{BHAnep} = \mathsf{b}_{BHA\kappaop} \cdot \mathsf{sail}_{stator} \\ \mathsf{b}_{BHA,(z)} = \mathsf{interp} \left[ \mathsf{cspline} \left[ \begin{pmatrix} R_{st(i,1),N_r} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} \mathsf{b}_{BHA\kappaop} \\ \mathsf{chord}_{BHA}_{av\left(N_r\right)} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} R_{st(i,1),1} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} \mathsf{b}_{BHA\kappaop} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} \mathsf{b}_{BHA\kappaop} \\ \mathsf{chord}_{BHA}_{av\left(N_r\right)} \\ \mathsf{b}_{BHAnep} \end{pmatrix}, \mathsf{Z} \\ \mathsf{chord}_{BHA} \\ \mathsf{chord}_$$

$$\left( \begin{array}{c} \operatorname{chord}_{rotor_{i}} \cdot \operatorname{chord}_{stator_{i}} \cdot \operatorname{av}(N_{r_{i}}) \\ \operatorname{chord}_{stator_{i}} \cdot \operatorname{av}(N_{r_{i}}) \\ \operatorname{chord}_{stator_{i}} \cdot \operatorname{av}(N_{r_{i}}) \\ \operatorname{chord}_{stator_{i}} \cdot \operatorname{av}(N_{r_{i}}) \\ \operatorname{sail} = \frac{R_{s(i,2),N_{r}} - R_{st(i,2),1}}{R_{st(i,2),sv}(N_{r_{i}}) - R_{st(i,2),1}} \\ \operatorname{for} \ r \in 1 ... N_{r} \\ \left( \begin{array}{c} \operatorname{bpKkop} - \frac{\operatorname{chord}_{rotor_{i}} \cdot \operatorname{av}(N_{r_{i}})}{\operatorname{sail}} \\ \operatorname{bpKkop} - \frac{\operatorname{chord}_{rotor_{i}} \cdot \operatorname{av}(N_{r_{i}})}{\operatorname{sail}} \\ \operatorname{bhAkop} - \frac{\operatorname{chord}_{stator_{i}, sv}(N_{r_{i}})}{\operatorname{sail}} \\ \operatorname{bhAkop} - \frac{\operatorname{chord}_{stator_{i}, sv}(N_{r_{i}})}{\operatorname{sail}} \\ \operatorname{chord}_{stator_{i}, sv}(N_{r_{i}}) \\ \operatorname{chord}_{rotor_{i}, sv}(N_{r_{i}}) \\ \operatorname{chord}_{stator_{i}, r_{i}, r_{i}} \\ \operatorname{chord}_{stator_{i}, r_{i}, r_{i}} \\ \operatorname{chord}_{rotor_{i}, r_{i}} - \operatorname{chord}_{rotor_{i}} \\ \operatorname{chord}_{rotor_{i}} \\ \operatorname{chord}_{rotor_{i}} - \operatorname{chord}_{rot$$

$$\begin{split} \mathsf{chord}_{CA} = & \quad \text{for } i \in Z \\ & \quad \mathsf{chord}_{CA_{av}(N_r)} = \frac{h_{st(i,3)}}{h_{stator}(Z,Z+1)} \\ & \quad \mathsf{sail} = \frac{R_{st(1,1),N_r} - R_{st(1,1),1}}{R_{st(1,1),av}(N_r) - R_{st(1,1),1}} \\ & \quad \mathsf{for } r \in I \dots N_r \\ & \quad b_{CA\kappa op} = \frac{\mathsf{chord}_{CA_{av}(N_r)} \cdot \mathsf{sail}}{\mathsf{sail}_{stator} - 1 + \mathsf{sail}} \\ & \quad b_{CA\pi cp} = b_{CA\kappa op} \cdot \mathsf{sail}_{stator} \\ & \quad b_{CA}(z) = \mathsf{interp} \begin{bmatrix} \mathsf{cspline} \begin{bmatrix} R_{st(i,1),av}(N_r) \\ R_{st(i,1),av}(N_r) \\ R_{st(i,1),N_r} \end{bmatrix} \begin{bmatrix} \mathsf{b}_{CA\kappa op} \\ \mathsf{chord}_{CA_{av}(N_r)} \end{bmatrix} \begin{bmatrix} R_{st(i,1),1} \\ R_{st(i,1),av}(N_r) \\ R_{st(i,1),N_r} \end{bmatrix} \begin{bmatrix} \mathsf{b}_{CA\kappa op} \\ \mathsf{chord}_{CA_{av}(N_r)} \end{bmatrix} \\ & \quad \mathsf{chord}_{CA} \\ & \quad \mathsf{chord}_{CA}$$

## ▼ Определение количества Л РК и Н

$$\begin{aligned} & \overset{r_{\perp} \text{inlet}}{\text{BHA}} \\ & \overset{r_{\perp} \text{inlet}}{\text{BHA}} \\ & \overset{r_{\parallel} \text{BHA}}{\text{BHA}} \\ & \overset{t_{\parallel} \text{BHA}}{\text{B$$



```
Z<sub>rotor</sub>
                                   Z<sub>stator</sub>
r_inlet<sub>rotor</sub> r_inlet<sub>stator</sub>
r_outlet<sub>rotor</sub> r_outlet<sub>stator</sub>
       trotor
                                    tstator
                                   istator
       <sup>1</sup>rotor
                                  m<sub>stator</sub>
     m<sub>rotor</sub>
                                  \boldsymbol{\theta}_{stator}
      \theta_{\text{rotor}}
                                  \boldsymbol{\delta}_{stator}
      \delta_{\text{rotor}}
                                                              = \int for i \in 1...Z
                                                                              for r \in av(N_r)
                                   \chi_{\text{stator}}
      \chi_{rotor}
     v_{
m rotor}
                                   v_{
m stator}
  R_{\text{СЛ.rotor}}
                               R<sub>CЛ.stator</sub>
                                  K_{stator}
     K<sub>rotor</sub>
                                  \mathbf{D}_{\text{stator}}
     D_{rotor}
                                  \zeta_{\text{stator}}
      \zeta_{\rm rotor}
                             quality<sub>stator</sub>
{\it quality}_{rotor}
                                  \eta_{stage}
     \eta_{stage}
                                                                                                                         chord<sub>rotor</sub>i, r
                                                                                                                            b/t<sub>PK</sub>i,r
                                                                                       (trotor<sub>i,r</sub>
                                                                                       (tstator<sub>i,r</sub>)
                                                                                      \left(t_{\text{rotor}_{i,r}}\right)
                                                                                                                            \left(\operatorname{chord}_{\operatorname{rotor}_{i,r}}\cdot\operatorname{cos}\left(\beta_{\operatorname{st}(i,1),r}\right)\right)
                                                                                                               = \frac{2}{3} \left[ \frac{\text{chord}_{\text{rotor}_{i,r}}}{\text{chord}_{\text{stator}_{i,r}}} \cos(\alpha_{\text{st}(i,2),r}) \right]
                                                                                                                                \left(\frac{\pi \cdot \text{mean}\left(D_{st(i,2),r},D_{st(i,3),r}\right)}{t_{stator_{i,r}}}\right) \text{ if } \text{mod}\left(\text{round}\left(\frac{\pi \cdot \text{mean}\left(D_{st(i,2),r},D_{st(i,3),r}\right)}{t_{stator_{i,r}}}\right), 2\right) = 0
```

 $\varepsilon_{\text{HA}(b/t)=1}$ 

 $\varepsilon_{PK(b/t)=1}$ 

$$\begin{vmatrix} \text{while } \gcd\left(Z_{\text{rotor}_{i}}, Z_{\text{stator}_{i}}\right) \neq 1 \\ Z_{\text{rotor}_{i}} = Z_{\text{rotor}_{i}} + 1 \end{vmatrix}$$
 for  $r \in 1...N_{r}$  
$$\begin{vmatrix} r \text{ inlet}_{\text{stator}_{i,r}} & r \text{ outlet}_{\text{stator}_{i,r}} \\ r_{\text{inlet}|\text{rotor}_{i,r}} & r_{\text{outlet}|\text{rotor}_{i,r}} \end{vmatrix} = \begin{pmatrix} r \text{ inlet}_{\text{stator}_{i,r}} & r \text{ outlet}_{\text{stator}_{i,r}} \\ r_{\text{inlet}|\text{rotor}_{i,r}} & r_{\text{outlet}|\text{rotor}_{i,r}} \end{pmatrix} = \begin{pmatrix} r \text{ inlet}_{\text{stator}_{i,r}} & r \text{ outlet}_{\text{stator}_{i,r}} \\ r_{\text{inlet}|\text{rotor}_{i,r}} & r_{\text{outlet}|\text{rotor}_{i,r}} \\ r_{\text{stator}_{i,r}} & r_{\text{outlet}|\text{rotor}_{i,r}} \end{pmatrix} = \pi \begin{pmatrix} \frac{m \text{can}\left(D_{\text{st}(i,1),r}, D_{\text{st}(i,2),r}\right)}{Z_{\text{rotor}_{i,r}}} \\ \frac{i \text{rotor}_{i,r}}{l \text{stator}_{i,r}} \end{pmatrix} = 2.5 \cdot \begin{pmatrix} \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} - 1 \\ \frac{c \text{hord}_{\text{stator}_{i,r}}}{r_{\text{stator}_{i,r}}} - 2 \end{pmatrix} \\ \frac{r_{\text{rotor}_{i,r}}}{m_{\text{stator}_{i,r}}} \end{pmatrix} = 0.23 \cdot \left(2 \cdot \overline{x_{f}}\right)^{2} + 0.18 - \frac{0.002}{deg} \cdot \begin{pmatrix} \beta_{\text{st}(i,2),r} \\ \alpha_{\text{st}(i,3),r} \end{pmatrix} \\ \begin{pmatrix} \theta_{\text{rotor}_{i,r}} \\ \theta_{\text{stator}_{i,r}} \end{pmatrix} = \begin{pmatrix} \frac{c \text{rotor}_{i,r}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{stator}_{i,r}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{stator}_{i,r}}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{stator}_{i,r}}}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{ro$$

$$\begin{bmatrix} 1, r \\ 0 \text{stator}_{i, r} \end{bmatrix} = \begin{bmatrix} x_{\text{stator}_{i, r}} + \alpha_{\text{st}(i, 2), r} + i_{\text{stator}_{i, r}} \\ - \frac{1}{\sin(0.5 \cdot \theta_{\text{rotor}_{i, r}})} \end{bmatrix}$$

$$\begin{bmatrix} R_{\text{C.T.stator}_{i, r}} \\ R_{\text{C.T.stator}_{i, r} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{c \text{hord}_{\text{rotor}_{i, r}}}{\sin(0.5 \cdot \theta_{\text{stator}_{i, r}})} \\ \frac{c \text{hord}_{\text{stator}_{i, r}}}{\sin(0.5 \cdot \theta_{\text{stator}_{i, r}})} \end{bmatrix} + \begin{bmatrix} \frac{c \text{hord}_{\text{rotor}_{i, r}}}{\sin(0.5 \cdot \theta_{\text{stator}_{i, r}})} \\ \frac{c \text{hord}_{\text{stator}_{i, r}}}{c \text{hord}_{\text{st}(i, 2), r}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\beta_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{st}(i, 2), r}}{\tan(\beta_{\text{st}(i, 2), r})} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\beta_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\beta_{\text{st}(i, 1), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\beta_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 3), r})} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}{c \text{hord}_{\text{rotor}_{i, r}}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor$$

| $\eta_{\text{stage}_{i,r}} = 1 - \left[ \frac{\left(\frac{c_{a_{\text{st}(i,1),r}}}{u_{\text{st}(i,1),r}}\right)^{2} + \left(R_{L_{i,r}}\right)^{2}}{\left(\frac{c_{a_{\text{st}(i,1),r}}}{u_{\text{st}(i,1),r}}\right)^{2} + \left(R_{L_{i,r}}\right)^{2}}{\left(\frac{c_{a_{\text{st}(i,2),r}}}{u_{\text{st}(i,1),r}}\right)^{2} + \left(\frac{c_{a_{\text{st}(i,2),r}}}{u_{\text{st}(i,2),r}}\right)^{2} + \left(1 - R_{L_{i,r}}\right)^{2}}{\left(\frac{c_{a_{\text{st}(i,2),r}}}{u_{\text{st}(i,2),r}}\right)^{2} + \left(1 - R_{L_{i,r}}\right)^{2}}{\left(\frac{c_{a_{\text{st}(i,2),r}}}{u_{\text{st}(i,2),r}}\right)^{2} + \left(1 - R_{L_{i,r}}\right)^{2}}{\left(\frac{c_{a_{\text{st}(i,2),r}}}{u_{\text{st}(i,2),r}}\right)^{2} + \left(1 - R_{L_{i,r}}\right)^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\left(\varepsilon_{\text{PK}(b/t)=1}  Z_{\text{rotor}}  r_{\text{-inlet}}_{\text{rotor}}  r_{\text{-outlet}}_{\text{rotor}}  t_{\text{rotor}}  i_{\text{rotor}}  m_{\text{rotor}}  \theta_{\text{rotor}}  \delta_{\text{rotor}}  \chi_{\text{rotor}}  v_{\text{rotor}}  R_{\text{CJI.rotor}}  K_{\text{rotor}}  D_{\text{rotor}}  \zeta_{\text{rotor}}  quality_{\text{rotor}}  \eta_{\text{stage}}\right)^{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\left(\varepsilon_{\text{HA}(\text{b/t})=1} \ \ Z_{\text{stator}} \ \ r_{\text{inlet}}{}_{\text{stator}} \ \ r_{\text{outlet}}{}_{\text{stator}} \ \ t_{\text{stator}} \ \ t_{stator$ |

```
\epsilonCA(b/t)=1
    Z_{CA}
r_inlet<sub>CA</sub>
r_outlet_{
m CA}
     t_{CA}
     iCA
    m_{CA}
                                   if CA = 1
    \theta_{\text{CA}}
                                             for r \in av(N_r)
    \delta_{\text{CA}}
                                                    \left| \varepsilon_{CA(b/t)=1_r} = \varepsilon_{(b/t)=1} \left( \alpha_{3CA_r} \right) \right|
    \chi_{\text{CA}}
    v_{\mathrm{CA}}
RСЛ.СА
    K_{CA}
    D_{CA}
                                                   Z_{CA} = \left[ \text{round} \left( \frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}} \right) \text{ if } \text{mod} \left( \text{round} \left( \frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}} \right), 2 \right) = 0 \right]
                                                           round \left(\frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}}\right) + 1 otherwise
                                                    \left| \left( r_{-} \text{inlet}_{CA_r} \quad r_{-} \text{outlet}_{CA_r} \right) \right| = \text{chord}_{CA_r} \cdot \left( \overline{r_{-}} \text{inlet}_{CA_r} \quad \overline{r_{-}} \text{outlet}_{CA_r} \right)
                                                   m_{\text{CA}_{r}} = 0.23 \cdot (2 \cdot \overline{x}_{f})^{2} + 0.18 - \frac{0.002}{\text{deg}} \cdot (\alpha_{3\text{CA}_{r}})^{2}
```

$$\begin{split} \delta_{\text{CA}_r} &= {^{\text{th}}}_{\text{CA}_r} \cdot \theta_{\text{CA}_r} \cdot \sqrt{\frac{{^{\text{t}}}_{\text{CA}_r}}{\text{chord}}_{\text{CA}_r}}} \\ \chi_{\text{CA}_r} &= \theta_{\text{CA}_r} \cdot \frac{1 + 2 \cdot \left(1 - 2 \cdot \overline{x}_f\right)}{2} \\ v_{\text{CA}_r} &= \chi_{\text{CA}_r} + \alpha_{1\text{CA}_r} + i_{\text{CA}_r} \\ R_{\text{CJI.CA}_r} &= \frac{\text{chord}}{2 \cdot \sin\left(0.5 \cdot \theta_{\text{CA}_r}\right)} \\ K_{\text{CA}_r} &= \frac{c_{\text{a3}\text{CA}_r}}{c_{\text{a1}\text{CA}_r}} \\ D_{\text{CA}_r} &= \left(1 - K_{\text{CA}_r} \cdot \frac{\sin\left(\alpha_{1\text{CA}_r}\right)}{\sin\left(\alpha_{3\text{CA}_r}\right)}\right) + \left(\frac{1}{\tan\left(\alpha_{1\text{CA}_r}\right)} - K_{\text{CA}_r} \cdot \frac{1}{\tan\left(\alpha_{3\text{CA}_r}\right)}\right) \cdot \frac{\sin\left(\alpha_{1\text{CA}_r}\right)}{c_{\text{chord}\text{CA}_r}} \\ \left(\varepsilon_{\text{CA}(b/t)=1} \quad Z_{\text{CA}} \quad r_{\text{-inlet}\text{CA}} \quad r_{\text{-outlet}\text{CA}} \quad t_{\text{CA}} \quad t_{\text{CA}} \quad \theta_{\text{CA}} \quad \delta_{\text{CA}} \quad \chi_{\text{CA}} \quad \chi_{\text{CA}} \quad R_{\text{CJI.CA}} \quad K_{\text{CA}} \quad D_{\text{CA}}\right)^T \end{split}$$

$$chord_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 26.42 \\ \hline 2 & 29.35 \\ \hline 3 & 31.71 \\ \hline \end{array} \cdot 10^{-3}$$

|                       |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |                 |
|-----------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|-----------------|
| $chord_{rotor}^{T} =$ | 1 | 54.30 | 48.94 | 43.38 | 39.63 | 36.89 | 34.80 | 33.42 | 32.84 | 32.50 |    |    |    |    |    |    | $\cdot 10^{-3}$ |
| rotor                 | 2 | 63.23 | 56.88 | 50.34 | 45.95 | 42.75 | 40.30 | 38.68 | 38.00 | 37.59 |    |    |    |    |    |    |                 |
|                       | 3 | 70.59 | 63.63 | 56.39 | 51.52 | 47.96 | 45.24 | 43.45 | 42.69 | 42.25 |    |    |    |    |    |    |                 |

Длина хорды Л (м):

$$chord_{CA} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 25.80 \\ \hline 2 & 28.65 \\ \hline 3 & 30.96 \\ \hline \end{array} \cdot 10^{-3}$$

$$r\_inlet_{BHA} = \begin{bmatrix} \hline & 1 \\ 1 & 0.16 \\ 2 & 0.29 \\ \hline 3 & 0.44 \end{bmatrix} \cdot 10^{-3} \quad r\_outlet_{BHA} = \begin{bmatrix} \hline & 1 \\ 1 & 0.08 \\ \hline 2 & 0.15 \\ \hline 3 & 0.22 \end{bmatrix} \cdot 10^{-3}$$

$$r\_inlet_{CA} = \begin{bmatrix} 1 & 1 \\ 1 & 0.15 \\ 2 & 0.29 \\ \hline 3 & 0.43 \end{bmatrix} \cdot 10^{-3} \qquad r\_outlet_{CA} = \begin{bmatrix} 1 \\ 1 & 0.08 \\ \hline 2 & 0.14 \\ \hline 3 & 0.22 \end{bmatrix} \cdot 10^{-3}$$

Радисы входных и выходных кромок профилей  $\Pi$  (мм):

$$r\_outlet_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.65 & 0.59 & 0.52 & 0.48 & 0.44 & 0.42 & 0.40 & 0.39 & 0.39 \\ 2 & 0.32 & 0.28 & 0.25 & 0.23 & 0.21 & 0.20 & 0.19 & 0.19 & 0.19 \\ 3 & 0.21 & 0.19 & 0.17 & 0.15 & 0.14 & 0.14 & 0.13 & 0.13 & 0.13 \end{bmatrix} \cdot 10^{-1}$$

$$r\_outlet_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.07 & 0.07 & 0.06 & 0.06 & 0.06 & 0.06 & 0.07 & 0.07 & 0.08 \\ 2 & 0.13 & 0.12 & 0.12 & 0.11 & 0.11 & 0.12 & 0.12 & 0.13 & 0.15 \\ 3 & 0.19 & 0.19 & 0.18 & 0.17 & 0.17 & 0.18 & 0.19 & 0.20 & 0.22 \end{bmatrix} \cdot 10^{-1}$$

$$\varepsilon_{\text{BHA}(b/t)=1_{\text{av}(N_r)}} = 23.47.^{\circ}$$

submatrix  $\left(\varepsilon_{PK(b/t)=1}, 1, Z, av(N_r), av(N_r)\right)^T = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ 

|   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10 | 11 | 12 | 13 | 14 | 15 | .0 |
|---|------|------|------|------|------|------|------|------|------|----|----|----|----|----|----|----|
| 1 | 7.41 | 7.26 | 7.19 | 6.95 | 6.76 | 6.52 | 6.16 | 5.91 | 5.78 |    |    |    |    |    |    |    |

Угол поворота потока:

$$\varepsilon_{\text{CA(b/t)}=1_{\text{av(N_r)}}} = 33.67 \cdot ^{\circ}$$

$$\frac{\text{chord}_{BHA}}{t_{BHA}} = \begin{vmatrix} 1 & 1 \\ 1 & 3.429 \\ 2 & 2.924 \\ 3 & 2.661 \end{vmatrix}$$

| (chord                    | Γ [ |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |
|---------------------------|-----|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|
| (chord <sub>rotor</sub> ) | _[  | 1 | 1.779 | 1.693 | 1.672 | 1.592 | 1.543 | 1.512 | 1.617 | 1.481 | 1.465 |    |    |    |    |    |    |
| ( t <sub>rotor</sub> )    |     | 2 | 1.613 | 1.608 | 1.640 | 1.591 | 1.564 | 1.550 | 1.672 | 1.541 | 1.532 |    |    |    |    |    |    |
|                           | Ī   | 3 | 1.526 | 1.559 | 1.620 | 1.591 | 1.579 | 1.578 | 1.713 | 1.585 | 1.583 |    |    |    |    |    |    |

Густота решетки:

$$\frac{\text{chord}_{\text{CA}}}{t_{\text{CA}}} = \begin{vmatrix} 1 & 1 \\ 1 & 3.455 \\ 2 & 3.488 \\ 3 & 3.479 \end{vmatrix}$$

$$Z_{BHA} = 46$$

Количество Л:

Значения округляются до целого в большую сторону так, чтобы при разъемном корпусе количество Л НА было четным, а количества Л РК и НА были взаимно простыми

 $Z_{CA} = 52$ 

$$t_{BHA} = \begin{bmatrix} 1 & 1 \\ 1 & 7.71 \\ 2 & 10.04 \\ 3 & 11.92 \end{bmatrix} \cdot 10^{-3}$$

|           |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |                 |
|-----------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|-----------------|
| t , $T$ = | 1 | 30.52 | 28.91 | 25.95 | 24.89 | 23.92 | 23.01 | 20.67 | 22.18 | 22.18 |    |    |    |    |    |    | $\cdot 10^{-3}$ |
| rotor –   | 2 | 39.19 | 35.37 | 30.70 | 28.89 | 27.34 | 25.99 | 23.14 | 24.67 | 24.53 |    |    |    |    |    |    |                 |
|           | 3 | 46.27 | 40.82 | 34.80 | 32.39 | 30.38 | 28.67 | 25.36 | 26.93 | 26.69 |    |    |    |    |    |    |                 |

Шаг решетки (м):

|                     |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |             |
|---------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|-------------|
| $t \cdot \cdot T =$ | 1 | 11.59 | 12.33 | 12.20 | 12.20 | 12.45 | 12.71 | 13.55 | 14.87 | 16.48 |    |    |    |    |    |    | $1.10^{-3}$ |
| stator –            | 2 | 14.50 | 14.80 | 14.28 | 14.04 | 14.14 | 14.28 | 15.12 | 16.51 | 18.17 |    |    |    |    |    |    |             |
|                     | 3 | 16.92 | 16.91 | 16.10 | 15.67 | 15.65 | 15.70 | 16.53 | 17.99 | 19.71 |    |    |    |    |    |    |             |

$$t_{CA} = \begin{bmatrix} 1 \\ 1 \\ 7.47 \\ 2 \\ 8.21 \\ 3 \\ 8.90 \end{bmatrix} \cdot 10^{-3}$$

$$i_{BHA} = \begin{vmatrix} & & 1 \\ 1 & 3.572 \\ 2 & 2.311 \\ \hline 3 & 1.652 \end{vmatrix} \cdot \circ$$

|         |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |    |
|---------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|----|
| i =     | 1 | 1.948 | 1.732 | 1.679 | 1.480 | 1.357 | 1.280 | 1.542 | 1.202 | 1.164 |    |    |    |    |    |    | .0 |
| rotor – | 2 | 1.533 | 1.520 | 1.600 | 1.477 | 1.409 | 1.376 | 1.680 | 1.351 | 1.331 |    |    |    |    |    |    |    |
|         | 3 | 1.314 | 1.397 | 1.551 | 1.476 | 1.447 | 1.445 | 1.782 | 1.464 | 1.458 |    |    |    |    |    |    |    |

Угол атаки:

$$i_{CA} = \begin{vmatrix} & 1 \\ 1 & 3.639 \\ 2 & 3.721 \\ \hline 3 & 3.698 \end{vmatrix}$$

$$m_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 0.2766 \\ 2 & 0.2752 \\ \hline 3 & 0.2737 \\ \hline \end{array}$$

|                               |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10 | 11 | 12 | 13 | 14 | 15 |
|-------------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|----|
| $\mathbf{m}$ , $\mathbf{T}$ = | 1 | 0.2945 | 0.3105 | 0.3187 | 0.3278 | 0.3341 | 0.3409 | 0.3503 | 0.3568 | 0.3606 |    |    |    |    |    |    |
| m <sub>rotor</sub> =          | 2 | 0.3549 | 0.3564 | 0.3570 | 0.3593 | 0.3612 | 0.3637 | 0.3679 | 0.3713 | 0.3731 |    |    |    |    |    |    |
|                               | 3 | 0.3736 | 0.3711 | 0.3708 | 0.3718 | 0.3726 | 0.3740 | 0.3765 | 0.3787 | 0.3798 |    |    |    |    |    |    |

Коэф. формы ср. линии профиля по Ховеллу:

|                             |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10 | 11 | 12 | 13 | 14 | 15 |
|-----------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|----|
| $\mathbf{m}$ , $\mathbf{T}$ | 1 | 0.2801 | 0.2757 | 0.2757 | 0.2741 | 0.2766 | 0.2901 | 0.3003 | 0.3083 | 0.3071 |    |    |    |    |    |    |
| m <sub>stator</sub> =       | 2 | 0.2717 | 0.2690 | 0.2697 | 0.2689 | 0.2716 | 0.2846 | 0.2946 | 0.3026 | 0.3018 |    |    |    |    |    |    |
|                             | 3 | 0.2666 | 0.2646 | 0.2656 | 0.2652 | 0.2680 | 0.2803 | 0.2901 | 0.2980 | 0.2975 |    |    |    |    |    |    |

$$m_{CA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 0.2300 \\ \hline 2 & 0.2300 \\ \hline 3 & 0.2300 \\ \hline \end{array}$$

$$\theta_{BHA} = \begin{vmatrix} 1 & 1 \\ 1 & 23.18 \\ 2 & 24.19 \\ \hline 3 & 24.29 \end{vmatrix} .$$

|                  |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |    |
|------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|----|
| $\theta$ , $T =$ | 1 | 41.01 | 35.83 | 33.99 | 30.62 | 28.57 | 25.64 | 19.44 | 16.60 | 14.90 |    |    |    |    |    |    | .0 |
| orotor –         | 2 | 12.09 | 12.79 | 13.74 | 13.52 | 13.48 | 12.73 | 9.75  | 8.65  | 8.12  |    |    |    |    |    |    | ]  |
|                  | 3 | 4.08  | 6.30  | 7.13  | 7.34  | 7.58  | 7.33  | 5.42  | 4.94  | 4.80  |    |    |    |    |    |    | 1  |

Угол изгиба ср. линии профиля:

$$\theta_{\text{stator}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & 48.19 & 53.22 & 60.80 & 61.37 & 63.59 & 63.22 & 54.16 & 47.61 & 44.71 & & & & & & \\ 2 & 47.83 & 53.04 & 60.44 & 61.16 & 63.38 & 63.16 & 54.71 & 48.49 & 45.50 & & & & & & \\ 3 & 47.53 & 52.26 & 59.60 & 60.52 & 62.81 & 62.77 & 54.85 & 48.95 & 45.97 & & & & & & & \\ \end{bmatrix}$$

$$\theta_{\rm CA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 39.82 \\ \hline 2 & 36.69 \\ \hline 3 & 34.27 \\ \hline \end{array} \; .$$

$$\delta_{\rm BHA} = \begin{bmatrix} & 1 \\ 1 & 3.462 \\ 2 & 3.893 \\ \hline 3 & 4.076 \end{bmatrix} \, .$$

Угол отставания:

$$\delta_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 9.672 & 10.889 & 12.661 & 12.908 & 13.656 & 14.254 & 12.720 & 11.511 \\ 2 & 9.889 & 11.021 & 12.668 & 12.875 & 13.548 & 14.088 & 12.665 & 11.532 \\ 3 & 10.013 & 10.971 & 12.545 & 12.745 & 13.378 & 13.878 & 12.549 & ... \end{bmatrix}$$

$$\delta_{\text{CA}} = \begin{array}{|c|c|}\hline & 1 \\ \hline 1 & 4.926 \\ \hline 2 & 4.519 \\ \hline 3 & 4.226 \\ \hline \end{array}$$

$$\upsilon_{\text{BHA}} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 105.16 \\ \hline 2 & 104.40 \\ \hline 3 & 103.80 \\ \hline \end{array} . \circ$$

|                   |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |  |
|-------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| $v_{rotor}^{T} =$ | 1 | 46.32 | 40.39 | 37.03 | 33.75 | 31.34 | 28.82 | 25.49 | 23.19 | 21.71 |  |
| rotor             | 2 | 24.87 | 24.02 | 23.48 | 22.45 | 21.56 | 20.49 | 18.94 | 17.63 | 16.85 |  |
|                   | 3 | 17.41 | 18.15 | 18.12 | 17.62 | 17.14 | 16.51 | 15.60 | 14.67 | 14.17 |  |

Угол установки Л:

$$\upsilon_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 51.22 & 48.72 & 50.91 & 50.37 & 50.50 & 49.64 & 45.07 & 41.52 & 39.95 \\ 2 & 52.17 & 52.45 & 53.90 & 53.02 & 52.80 & 51.76 & 47.37 & 43.87 & 42.18 \\ 3 & 53.05 & 55.15 & 56.12 & 55.05 & 54.61 & 53.45 & 49.23 & 45.80 & 44.05 \\ \end{bmatrix} . \circ$$

$$v_{CA} = \begin{bmatrix} & 1\\ 1 & 75.02\\ 2 & 76.17\\ 3 & 77.09 \end{bmatrix} \cdot \circ$$

$$R_{\text{СЛ.BHA}} = \begin{bmatrix} 1 \\ 1 \\ 65.77 \\ 2 \\ 70.03 \\ 3 \\ 75.35 \end{bmatrix} \cdot 10^{-3}$$

|                          |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10 | 11 | 12 | 13 | 14 | 15 |                 |
|--------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|----|-----------------|
| $R_{CR} = T$             | 1 | 77.50  | 79.54  | 74.20  | 75.05  | 74.75  | 78.41  | 98.97  | 113.77 | 125.30 |    |    |    |    |    |    | $\cdot 10^{-3}$ |
| R <sub>C</sub> Л.rotor = | 2 | 300.12 | 255.27 | 210.39 | 195.26 | 182.18 | 181.81 | 227.61 | 251.83 | 265.39 |    |    |    |    |    |    |                 |
|                          | 3 | 991.62 | 579.26 | 453.14 | 402.35 | 362.80 | 354.08 | 459.67 | 495.38 | 504.50 |    |    |    |    |    |    |                 |

Радиус дуги ср. линии (м):

|                           |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |                 |
|---------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|-----------------|
| $R_{CH}$                  | 1 | 27.65 | 24.98 | 21.12 | 20.30 | 19.59 | 20.06 | 24.34 | 29.96 | 34.78 |    |    |    |    |    |    | $\cdot 10^{-3}$ |
| R <sub>C</sub> Л.stator = | 2 | 30.90 | 27.77 | 23.50 | 22.52 | 21.72 | 22.19 | 26.65 | 32.54 | 37.78 |    |    |    |    |    |    |                 |
|                           | 3 | 33.61 | 30.49 | 25.80 | 24.66 | 23.77 | 24.22 | 28.87 | 35.02 | 40.65 |    |    |    |    |    |    |                 |

$$R_{\text{СЛ.CA}} = \begin{bmatrix} & 1 & \\ 1 & 37.88 \\ \hline 2 & 45.51 \\ \hline 3 & 52.53 \end{bmatrix} \cdot 10^{-3}$$

$$K_{BHA} = \begin{array}{|c|c|} \hline & 1 \\ \hline 1 & 1.0359 \\ \hline 2 & 1.0000 \\ \hline 3 & 0.9808 \\ \hline \end{array}$$

|                                                     |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10 | 11 | 12 | 13 | 14 | 15 |
|-----------------------------------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|----|
| $K_{\cdots} = \begin{bmatrix} T \\ T \end{bmatrix}$ | 1 | 1.0757 | 0.9750 | 0.9637 | 0.9661 | 0.9673 | 0.9684 | 0.9698 | 0.9702 | 0.9936 |    |    |    |    |    |    |
| rotor –                                             | 2 | 0.9740 | 0.9704 | 0.9637 | 0.9661 | 0.9673 | 0.9684 | 0.9698 | 0.9702 | 0.9936 |    |    |    |    |    |    |
|                                                     | 3 | 0.9142 | 0.9680 | 0.9637 | 0.9661 | 0.9673 | 0.9684 | 0.9698 | 0.9702 | 0.9936 |    |    |    |    |    |    |

Фактор диффузорности решетки:

$$K_{CA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 0.8302 \\ \hline 2 & 0.8302 \\ \hline 3 & 0.8302 \\ \hline \end{array}$$

$$D_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & -0.1928 \\ \hline 2 & -0.1544 \\ \hline 3 & -0.1308 \\ \hline \end{array}$$

|                  |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10 | 11 | 12 | 13 | 14 | 15 |
|------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|----|
| $D_{\cdots} = T$ | 1 | 0.6655 | 0.7376 | 0.7707 | 0.7702 | 0.7776 | 0.7676 | 0.6925 | 0.6610 | 0.6272 |    |    |    |    |    |    |
| rotor –          | 2 | 0.4978 | 0.5367 | 0.5831 | 0.5935 | 0.6098 | 0.6092 | 0.5510 | 0.5262 | 0.5036 |    |    |    |    |    |    |
|                  | 3 | 0.3865 | 0.4200 | 0.4669 | 0.4811 | 0.5001 | 0.5039 | 0.4569 | 0.4365 | 0.4211 |    |    |    |    |    |    |

Диффузорность решетки:

|                     |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10 | 11 | 12 | 13 | 14 | 15 |
|---------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|----|
| $D \cdot \cdot T =$ | 1 | 0.7528 | 0.8098 | 0.8474 | 0.8716 | 0.8897 | 0.8692 | 0.8375 | 0.8138 | 0.8119 |    |    |    |    |    |    |
| stator –            | 2 | 0.6997 | 0.7572 | 0.8054 | 0.8336 | 0.8555 | 0.8391 | 0.8101 | 0.7890 | 0.7857 |    |    |    |    |    |    |
|                     | 3 | 0.6561 | 0.7143 | 0.7693 | 0.8002 | 0.8250 | 0.8121 | 0.7854 | 0.7664 | 0.7621 |    |    |    |    |    |    |

$$D_{CA} = \begin{vmatrix} & & 1 \\ 1 & 0.4407 \\ 2 & 0.4115 \\ 3 & 0.3896 \end{vmatrix}$$

|                     |   | 1 |  |
|---------------------|---|---|--|
| $D_{BHA} \le 0.6 =$ | 1 | 1 |  |
| BHA = 0.0           | 2 | 1 |  |
|                     | 3 | 1 |  |

|                                             |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $D_{\text{rotor}} \stackrel{T}{\leq} 0.6 =$ | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| rotor = 0.0 =                               | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
|                                             | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

[18, c. 71]

|                                              |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|----------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $D_{\text{stator}} \stackrel{T}{\leq} 0.6 =$ | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Stator = 0.0 =                               | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                              | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

|                    |   | 1 |  |
|--------------------|---|---|--|
| $D_{CA} \le 0.6 =$ | 1 | 1 |  |
| DCA = 0.0          | 2 | 1 |  |
|                    | 3 | 1 |  |

|               |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10 | 11 | 12 | 13 | 14 | 15 |
|---------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|----|
| $C \cdot T =$ | 1 | 0.1472 | 0.1973 | 0.2313 | 0.2391 | 0.2536 | 0.2612 | 0.2490 | 0.2279 | 0.2151 |    |    |    |    |    |    |
| Srotor –      | 2 | 0.1351 | 0.1588 | 0.1932 | 0.2027 | 0.2186 | 0.2275 | 0.2184 | 0.1993 | 0.1913 |    |    |    |    |    |    |
|               | 3 | 0.1267 | 0.1370 | 0.1672 | 0.1769 | 0.1924 | 0.2021 | 0.1984 | 0.1822 | 0.1781 |    |    |    |    |    |    |

Коэф. потерь полного давления:

|                                                 |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10 | 11 | 12 | 13 | 14 | 15 |
|-------------------------------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|----|----|----|----|
| $C_{-4} = \begin{bmatrix} T \\ T \end{bmatrix}$ | 1 | 0.2008 | 0.2201 | 0.2381 | 0.2467 | 0.2562 | 0.2554 | 0.2432 | 0.2373 | 0.2308 |    |    |    |    |    |    |
| Stator –                                        | 2 | 0.1452 | 0.1685 | 0.1942 | 0.2080 | 0.2216 | 0.2237 | 0.2144 | 0.2104 | 0.2059 |    |    |    |    |    |    |
|                                                 | 3 | 0.1143 | 0.1372 | 0.1647 | 0.1805 | 0.1960 | 0.1999 | 0.1925 | 0.1899 | 0.1865 |    |    |    |    |    |    |

|                         |   | 1      | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |
|-------------------------|---|--------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|
| $quality_{rotor}^{T} =$ | 1 | 9.978  | 7.402 | 6.602 | 6.625 | 6.478 | 6.462 | 6.726 | 7.482 | 8.367 |    |    |    |    |    |    |
| rotor                   | 2 | 10.079 | 9.181 | 7.969 | 7.898 | 7.611 | 7.495 | 7.586 | 8.395 | 9.353 |    |    |    |    |    |    |
|                         | 3 | 7.703  | 9.988 | 8.832 | 8.737 | 8.409 | 8.206 | 7.956 | 8.673 | 9.652 |    |    |    |    |    |    |

Качество профилей решеток РК и НА:

|                           |   | 1      | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |
|---------------------------|---|--------|-------|-------|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|
| $quality_{stator}^{T} = $ | 1 | 6.114  | 6.504 | 6.163 | 6.038 | 5.914 | 6.014 | 6.316 | 6.495 | 6.829 |    |    |    |    |    |    |
|                           | 2 | 8.974  | 8.067 | 7.215 | 6.870 | 6.577 | 6.600 | 6.880 | 7.029 | 7.349 |    |    |    |    |    |    |
|                           | 3 | 11.638 | 9.513 | 8.207 | 7.665 | 7.215 | 7.155 | 7.410 | 7.528 | 7.841 |    |    |    |    |    |    |

.%

5 11 12 13 14 15 6 10 КПД элементарной ступени:  $\eta_{stage}^{T} = \boxed{\frac{1}{2}}$ 74.02 77.09 71.32 70.40 69.08 68.33 68.43 69.31 70.49 77.74 70.96 68.12 69.41 68.45 69.06 70.25 70.64 74.15 71.27 70.32 67.78 67.55 68.82 68.85 66.71

▶ Результаты расчета количества Л и параметров решеток РК и НА

### ▼ Подключение симметричного профиля

 $X/B_{subsonic} = submatrix(EXCEL_{AIRFOIL.subsonic}, 2, rows(EXCEL_{AIRFOIL.subsonic}), ORIGIN + 0, ORIGIN + 0)$ 

Y/B<sub>subsonic</sub> = submatrix(EXCEL<sub>AIRFOIL.subsonic</sub>, 2, rows(EXCEL<sub>AIRFOIL.subsonic</sub>), ORIGIN + 1, ORIGIN + 1)

EXCEL<sub>AIRFOIL</sub>.supersonic = ...\Емин сверхзв

 $X/B_{supersonic} = submatrix (EXCEL_{AIRFOIL.supersonic}, 2, rows (EXCEL_{AIRFOIL.supersonic}), ORIGIN + 0, ORIGIN + 0)$ 

Y/B<sub>supersonic</sub> = submatrix(EXCEL<sub>AIRFOIL.supersonic</sub>, 2, rows(EXCEL<sub>AIRFOIL.supersonic</sub>), ORIGIN + 1, ORIGIN + 1)

 $augment \left( X/B_{subsonic}, Y/B_{subsonic} \right)^{T} = \boxed{\frac{1}{2}}$ 5 8 10 11 12 13 14 15 16 17 18 19 20 0.000 0.010 0.015 0.025 0.050 0.075 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.500 0.600 0.700 0.800 0.900 0.950 1.000 0.114 0.143 0.185 0.255 0.309 0.352 0.416 0.455 0.479 0.493 0.494 0.500 0.486 0.444 0.378 0.285 0.172 0.100 0.000

15  $augment(X/B_{supersonic}, Y/B_{supersonic})^{T} =$ 0.050 0.000 0.100 0.200 0.150 0.300 0.400 0.500 0.600 0.700 0.800 0.850 0.900 0.950 1.000 0.045 0.132 0.208 0.282 0.342 0.430 0.482 0.500 0.482 0.430 0.342 0.282 0.208 0.132 0.045



```
\begin{aligned} \text{AIRFOIL}_{\text{subsonic}}(x, \text{line}, \overline{c}, \theta) &= & \text{if } 0 \leq x \leq 1 \\ & \text{interp}\big(\text{cspline}\big(X/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, \theta\big) + Y/B_{\text{subsonic}}, \overline{c}\big), X/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, \theta\big) - Y/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, \theta\big) - Y/B_{\text{sub
```

$$\begin{aligned} \text{AIRFOIL}_{\text{supersonic}}(\textbf{x}, \text{line}, \overline{\textbf{c}}, \theta) &= & \text{if } 0 \leq \textbf{x} \leq 1 \\ & \text{interp}\big(\text{cspline}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) - \textbf{Y}/\textbf{B}_{\text{supersonic}}, \theta\big) - \textbf{Y}/\textbf{B}_{\text{su$$

$$x = 0,0.005..1$$
  $y = 1$ 





|                                     |   |           | 1     | 2                                                |        | 3     | 4     |      | 5    |       | 6    | 7    |       | 8    | 9     | 9    |                 |
|-------------------------------------|---|-----------|-------|--------------------------------------------------|--------|-------|-------|------|------|-------|------|------|-------|------|-------|------|-----------------|
| 1_upper <sub>stator</sub>           |   | 1         | 23.18 | 23.0                                             | 08 2   | 22.20 | 21    | .53  | 21.  | .49 2 | 1.86 | 22   | .82   | 24.7 | 5 2   | 7.01 | $\cdot 10^{-3}$ |
| _spp stator                         |   | 2         | 25.85 | 25.7                                             | 72 7   | 24.73 | 23    | 3.97 | 23.  | .93 2 | 4.34 | 25   | .40   | 27.5 | 4 3   | 0.03 | 10              |
|                                     |   | 3         | 28.12 | 28.0                                             | )2   2 | 26.98 | 26    | 5.18 | 26.  | .15 2 | 6.62 | 27   | .78   | 30.1 | 3 3   | 2.86 |                 |
|                                     |   |           |       |                                                  |        |       |       |      |      |       |      |      |       |      |       |      |                 |
|                                     |   |           | 1     | 2                                                |        | 3     | 4     |      | 5    |       | 6    | 7    |       | 8    | 9     | 9    |                 |
| 1_lower <sub>stator</sub>           |   | 1         | 22.86 | 22.7                                             | 73 7   | 21.83 | 21    | .16  | 21.  | .12 2 | 1.49 | 22   | .48   | 24.4 | 4 2   | 6.69 | $\cdot 10^{-3}$ |
| – stator                            |   |           | 25.28 | 25.                                              |        | 24.05 | +     | 3.31 | 23.  |       | 3.66 |      | .78   | 26.9 | _     | 9.42 |                 |
|                                     |   | 3         | 27.28 | 27.                                              | 10 :   | 25.98 | 25    | 5.20 | 25.  | .14 2 | 5.60 | 26   | .85   | 29.2 | 3 3   | 1.94 |                 |
|                                     |   |           |       |                                                  |        |       |       |      |      |       |      |      |       |      |       | _    |                 |
|                                     |   | 1         | 2     |                                                  | 3      |       | 4     |      | 5    | 6     |      | 7    | 8     |      | 9     |      |                 |
| $area_{stator}^{T} =$               | 1 | 11.1      |       | ).99                                             | 10.0   | -     | 9.42  | -    | 9.35 | 9.70  | +    | 0.77 | 12.8  |      | 15.36 | .1   | $0^{-6}$        |
| Statol                              |   | 22.9      |       | 2.49                                             | 20.4   |       | 19.21 |      | 9.05 | 19.7  |      | 1.93 | 26.   |      | 31.22 |      |                 |
|                                     | 3 | 37.5      | 56 36 | 5.93                                             | 33.6   | 7 :   | 31.63 | 3    | 1.41 | 32.59 | 9 3  | 6.20 | 43.   | 13   | 51.59 |      |                 |
| _                                   |   |           |       |                                                  |        |       |       |      |      |       |      |      |       |      |       |      |                 |
|                                     |   | 1         | 2     | 3                                                |        | 4     | 5     |      | 6    | 7     | 8    |      | 9     |      |       |      |                 |
| $Sx_{stator}^{1} = \bot$            | 1 | 16.3      | 17.4  | +                                                |        | 15.8  | 16.   | _    | 16.7 | 16.4  | +    | 3.4  | 22.5  | .10  | ) 9   |      |                 |
|                                     | 2 | 36.1      | 38.9  | <del>                                     </del> |        | 35.4  | 36.   | _    | 37.6 | 37.3  | +    | 3    | 51.7  |      |       |      |                 |
|                                     | 3 | 62.6      | 67.5  | 67                                               | '.5    | 62.4  | 64.   | 0    | 67.0 | 67.3  | 77   | '.0  | 94.3  |      |       |      |                 |
|                                     |   |           |       |                                                  | _      |       |       | _    |      | _     |      |      | -     |      |       |      |                 |
| т                                   |   | 1         | 2     | _                                                | 3      | 4     |       | 5    |      | 6     | 7    |      | 8     |      | 9     |      | 0               |
| Sy <sub>stator</sub> <sup>T</sup> = | 1 | 114.0     | -     | _                                                | 96.7   |       | 88.1  |      | 7.1  | 92.1  | 107  |      | 140.2 |      | 183.5 | .10  | - 9             |
|                                     | 2 | 259.5     | +     |                                                  | 218.7  |       | 8.8   | 196  |      | 207.3 | 242  |      | 315.1 | _    | 112.0 |      |                 |
| L                                   | 3 | 459.5     | 447   | .9                                               | 389.9  | 35    | 55.1  | 351  | 1.3  | 371.3 | 434  | ł.8  | 565.3 | 5 /  | 739.7 |      |                 |
|                                     |   | 4         | T -   |                                                  | 2      |       |       | _    |      | _     | -    |      | 0     |      | 0     |      |                 |
| . T                                 | _ | 1         | 2     |                                                  | 3      | 4     |       | 5    | 22   | 6     | 7    | -    | 8     |      | 9     |      | 2               |
| $x0_{stator} = \bot$                | 1 | 10.19     |       | _                                                | 9.65   | -     | 0.36  |      | 32   | 9.50  | 10.  |      | 10.92 |      | 1.95  | ·10  | - 3             |
|                                     | 2 | 11.31     |       |                                                  | 10.68  |       | ).35  | 10.  |      | 10.50 | 11.  |      | 12.07 | _    | 3.20  |      |                 |
|                                     | 3 | 12.23     | 12.1  | 13                                               | 11.58  | 11    | .23   | 11.  | 19   | 11.39 | 12.  | 01   | 13.11 |      | 14.34 |      |                 |
|                                     |   | 4         | _     | ١ ،                                              |        | 4     | -     |      | _    | 7     | I ^  |      | 0     |      |       |      |                 |
| $_{0}$ $_{\mathrm{T}}$              | 1 | 1 1 1 1 1 | 2     | 3                                                |        | 4     | 5     | 1    | 6    | 7     | 8    | 42   | 9     |      | _ 3   |      |                 |
| $y0_{ctator} = \bot$                | 1 | 1.46      | 1.59  | 1.7                                              | _      | 1.68  | 1.7   | _    | 1.72 | 1.52  | +    |      | 1.46  | .10  | _ 3   |      |                 |
|                                     | 2 | 1.57      | 1.73  | 1.8                                              |        | 1.85  | 1.9   | _    | 1.90 | 1.70  | -    |      | 1.66  |      |       |      |                 |
| L                                   | 3 | 1.67      | 1.83  | 2.0                                              | טט .   | 1.97  | 2.0   | 4    | 2.06 | 1.86  | 1.   | /9   | 1.83  |      |       |      |                 |

|                                                         |      | 1        | 2      |        | 3                                            | 4    | 4           | 5    |             | 6       |     | 7      | 8  |           | 9    |                 |         |                 |
|---------------------------------------------------------|------|----------|--------|--------|----------------------------------------------|------|-------------|------|-------------|---------|-----|--------|----|-----------|------|-----------------|---------|-----------------|
| $l\_upper_{rotor}^{T} =$                                | 1    | 57.22    | 51.2   | 24 4   | 45.31                                        | 4    | 1.23        | 38   | 30          | 36.02   | 13  | 34.44  | 33 | .75       | 33   | .36             | $^{-3}$ |                 |
| - apportotor                                            | 2    | 63.72    | 57.3   | 33 5   | 50.77                                        | 4    | 6.33        | 43   | 10          | 40.61   | ()  | 88.95  | 38 | 3.23      | 37   | .82             |         |                 |
|                                                         | 3    | 70.74    | 63.8   | 30 5   | 56.56                                        | 5    | 1.67        | 48   | 11          | 45.37   | 4   | 13.56  | 42 | .79       | 42   | .35             |         |                 |
|                                                         |      |          |        |        |                                              |      |             |      |             |         |     |        |    |           |      |                 |         |                 |
|                                                         |      | 1        | 2      |        | 3                                            | 4    | 4           | 5    |             | 6       |     | 7      | 8  |           | 9    |                 |         |                 |
| $l\_lower_{rotor}^{T} =$                                | 1    | 54.66    | 49.2   | 26 4   | 13.66                                        | 3    | 9.90        | 37   | 15          | 35.06   | 3   | 33.71  | 33 | .16       | 32   | .83             | $^{-3}$ |                 |
| - 10101                                                 | 2    | 63.31    | 56.9   | 95 5   | 50.40                                        | 4    | 6.01        | 42   | 80          | 40.35   | - 5 | 38.74  | 38 | 3.06      | 37   | .65             |         |                 |
|                                                         | 3    | 70.63    | 63.6   | 66 5   | 56.42                                        | 5    | 1.54        | 47   | 98          | 45.26   | 2   | 13.47  | 42 | .71       | 42   | .27             |         |                 |
|                                                         |      |          |        |        |                                              |      |             | I    |             |         |     |        |    |           |      |                 | _       |                 |
|                                                         | 1    |          | 2      |        | 3                                            |      | 4           |      | 5           | 6       |     | 7      |    | 8         |      | 9               |         | _               |
| $area_{rotor}^{T} = \frac{1}{2}$                        | 258  | 3.75     | 210.23 | +      | 55.14                                        | 1    | 37.84       | -    | 9.46        | 106.    |     | 98.    |    |           | 1.65 | 92.6            | 9       | $\cdot 10^{-6}$ |
| 2                                                       |      | 5.21     | 118.31 |        | 2.68                                         |      | 77.22       |      | 6.83        |         | 38  | 54.    |    |           | 2.81 | 51.6            | _       |                 |
| 3                                                       | 109  | 9.32     | 88.82  | 6      | 9.77                                         | į    | 58.24       |      | 0.47        | 44.     | 90  | 41.    | 42 | 39        | 9.99 | 39.1            | 6       |                 |
|                                                         |      |          |        |        |                                              |      |             |      |             |         |     |        |    |           |      |                 |         |                 |
| т                                                       | 1    | 2        |        | 3      | 4                                            |      | 5           |      | 6           | 7       |     | 8      |    | 9         |      | 0               |         |                 |
| $Sx_{rotor}^{T} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ | 801. | _        |        | 327.6  | -                                            | 20.6 | 163         |      | 122.        |         | 5.4 | 67     |    | 58        | .3   | $\cdot 10^{-9}$ |         |                 |
|                                                         | 157. | _        | 0.1    | 89.5   | -                                            | 55.9 |             | 2.3  | 41.         |         | 0.5 | 24     |    | 22        | _    |                 |         |                 |
| 3                                                       | 53.  | 4 5      | 4.8    | 43.3   | ] 3                                          | 33.2 | 27          | 7.3  | 22.         | 3 1     | 6.9 | 14     | .0 | 13        | .2   |                 |         |                 |
|                                                         |      |          | _      |        |                                              |      |             |      |             |         |     |        |    |           |      |                 |         |                 |
| т                                                       | 1    |          | 2      | 3      |                                              | 4    |             | 5    |             | 6       |     | 7      |    | 8         | _    | 0               |         |                 |
| $Sy_{rotor}^{T} = 1$                                    | 6345 |          | 646.9  | 323    | -                                            | 246  | <del></del> | 199  | <del></del> | 1670.   | -   | 1479.6 |    | 1403      | .7   | $\cdot 10^{-9}$ |         |                 |
| 2                                                       | 4175 |          | 039.3  | 210    |                                              |      | 2.6         | 129  |             | 1080.   | _   | 956.   | -  | 906       | .2   |                 |         |                 |
| 3                                                       | 3485 | 0.1 2    | 552.3  | 177    | 6.9                                          | 135  | 5.0         | 109  | 3.3         | 917.    | 4   | 812.6  | ١  |           |      |                 |         |                 |
|                                                         | -    | 1 2      |        | 2      |                                              |      |             |      |             | 1 7     |     | 0      |    |           |      |                 |         |                 |
|                                                         | 1    | 2        |        | 3      | 4                                            |      | 5           | -    | 6           | 7       |     | 8      |    | 9         |      | 2               |         |                 |
| v() . —   <del>-</del>                                  | 24.5 | 2 22     |        | 19.59  |                                              | 7.90 | 16.0        |      | 15.7        |         | .09 | 14.8   |    | 14.6      | 80   | $\cdot 10^{-3}$ |         |                 |
|                                                         |      | _        |        | 22.74  |                                              | ).75 | 19.3        |      | 18.2        |         |     |        |    | 16.9      |      |                 |         |                 |
| 3                                                       | 31.8 | 8 28     | .73    | 25.47  | 23                                           | 3.27 | 21.0        | 96   | 20.4        | 3 19    | .62 | 19.2   | 28 | 19.0      | 18   |                 |         |                 |
|                                                         | 1    | ٦.       | 2      |        | <u>,                                    </u> | г    |             | c    | 7           |         |     | 0      | 7  |           |      |                 |         |                 |
|                                                         | 1    | 2        | 3      |        | 4                                            | 5    |             | 6    | 7           | 8       |     | 9      |    | 2         |      |                 |         |                 |
| $y0_{rotor}^{1} = \frac{1}{2}$                          | 3.10 | <b>+</b> |        |        | 1.60                                         | 1.3  | _           | 1.15 | 3.0         |         | 71  | 0.63   | ·  | $10^{-3}$ |      |                 |         |                 |
| 2                                                       | 1.08 |          |        |        | 0.85                                         | 0.7  |             | 0.70 | 0.5         |         | 47  | 0.44   |    |           |      |                 |         |                 |
| 3                                                       | 0.49 | 0.62     | 0.6    | 02   ( | 0.57                                         | 0.5  | 04          | 0.50 | 0.4         | +1   0. | 35  | 0.34   |    |           |      |                 |         |                 |

|                                            |   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |                  |
|--------------------------------------------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------------|
| $J_{\mathbf{x}} = \mathbf{x} = \mathbf{x}$ | 1 | 27  | 31  | 33  | 29  | 31  | 32  | 28  | 29  | 37  | $\cdot 10^{-12}$ |
| stator –                                   | 2 | 65  | 76  | 82  | 73  | 77  | 80  | 72  | 78  | 98  | 10               |
|                                            | 3 | 123 | 143 | 155 | 141 | 149 | 157 | 145 | 162 | 205 |                  |

$$Jxy_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 173 & 183 & 173 & 154 & 156 & 165 & 170 & 209 & 279 \\ 2 & 424 & 453 & 429 & 381 & 387 & 410 & 429 & 531 & 709 \\ 3 & 796 & 850 & 812 & 728 & 744 & 793 & 840 & 1049 & 1405 \end{bmatrix} \cdot 10^{-12}$$

$$Jx0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2.64 & 2.98 & 3.12 & 2.77 & 2.88 & 2.99 & 2.70 & 2.98 & 3.81 \\ 2 & 7.73 & 8.62 & 8.74 & 7.82 & 8.09 & 8.49 & 8.16 & 9.53 & 12.44 \\ 3 & 18.39 & 19.91 & 19.60 & 17.66 & 18.25 & 19.38 & 19.75 & 24.24 & 32.36 \end{bmatrix} \cdot 10^{-12}$$

$$Jy0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 325 & 314 & 261 & 230 & 227 & 244 & 301 & 428 & 612 \\ 2 & 820 & 788 & 653 & 575 & 565 & 608 & 749 & 1062 & 1519 \\ 3 & 1571 & 1518 & 1262 & 1114 & 1098 & 1182 & 1459 & 2070 & 2963 \end{bmatrix} \cdot 10^{-12}$$

$$Jxy0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 6.57 & 6.93 & 6.54 & 5.80 & 5.88 & 6.21 & 6.45 & 7.94 & 10.62 \\ 2 & 16.12 & 17.15 & 16.18 & 14.38 & 14.60 & 15.46 & 16.25 & 20.17 & 26.99 \\ 3 & 30.25 & 32.25 & 30.63 & 27.46 & 28.02 & 29.87 & 31.82 & 39.86 & 53.47 \end{bmatrix} \cdot 10^{-12}$$

$$\alpha\_{major_{stator}}^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1.17 & 1.28 & 1.45 & 1.46 & 1.50 & 1.47 & 1.24 & 1.07 & 1.00 \\ 2 & 1.14 & 1.26 & 1.44 & 1.45 & 1.50 & 1.48 & 1.26 & 1.10 & 1.03 \\ 3 & 1.12 & 1.23 & 1.41 & 1.43 & 1.49 & 1.47 & 1.27 & 1.12 & 1.04 \\ \end{bmatrix} . \circ$$

|          |   | 1    | 2    | 3   | 4   | 5   | 6   | 7   | 8   | 9   |                  |
|----------|---|------|------|-----|-----|-----|-----|-----|-----|-----|------------------|
| Jx 	 T = | 1 | 3392 | 1751 | 986 | 578 | 389 | 268 | 178 | 142 | 126 | $\cdot 10^{-12}$ |
| rotor    | 2 | 276  | 192  | 131 | 87  | 64  | 46  | 31  | 24  | 22  | 10               |
|          | 3 | 59   | 57   | 42  | 29  | 23  | 17  | 12  | 9   | 9   |                  |

|                    |   | 1      | 2      | 3     | 4     | 5     | 6     | 7     | 8     | 9     |                  |
|--------------------|---|--------|--------|-------|-------|-------|-------|-------|-------|-------|------------------|
| $Jy_{rotor}^{T} =$ | 1 | 199075 | 131414 | 81089 | 56493 | 42434 | 33583 | 28572 | 26635 | 25543 | $\cdot 10^{-12}$ |
| rotor              | 2 | 152550 | 99887  | 61296 | 42552 | 31870 | 25164 | 21371 | 19898 | 19057 | 10               |
|                    | 3 | 142139 | 93830  | 57897 | 40336 | 30298 | 23978 | 20400 | 19017 | 18238 |                  |

$$Jxy_{rotor}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 20427 & 11506 & 6672 & 4106 & 2839 & 1999 & 1340 & 1033 & 890 \\ 2 & 4686 & 3209 & 2116 & 1421 & 1050 & 783 & 554 & 442 & 400 \\ 3 & 1771 & 1636 & 1146 & 804 & 615 & 473 & 345 & 280 & 263 \end{vmatrix} \cdot 10^{-12}$$

|                                                |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8     | 9     |                  |
|------------------------------------------------|---|--------|--------|--------|--------|--------|--------|--------|-------|-------|------------------|
| $Jx0$ = $\begin{bmatrix} T \\ T \end{bmatrix}$ | 1 | 910.63 | 558.14 | 336.05 | 224.46 | 164.68 | 126.68 | 103.28 | 94.10 | 89.38 | $\cdot 10^{-12}$ |
| rotor -                                        | 2 | 105.83 | 70.34  | 44.31  | 30.38  | 22.64  | 17.53  | 14.15  | 12.75 | 12.09 | 10               |
|                                                | 3 | 32.42  | 23.05  | 14.82  | 10.35  | 7.83   | 6.13   | 4.97   | 4.48  | 4.27  |                  |

|                   |   | 1      | 2      | 3      | 4      | 5      | 6     | 7     | 8     | 9     |                  |
|-------------------|---|--------|--------|--------|--------|--------|-------|-------|-------|-------|------------------|
| Jxv0 $T =$        | 1 | 776.02 | 438.10 | 254.22 | 156.90 | 108.56 | 76.51 | 51.33 | 39.59 | 34.13 | $\cdot 10^{-12}$ |
| $Jxy0_{rotor} = $ | 2 | 179.68 | 123.06 | 81.11  | 54.50  | 40.27  | 30.03 | 21.26 | 16.96 | 15.34 |                  |
|                   | 3 | 67.94  | 62.77  | 43.96  | 30.84  | 23.60  | 18.16 | 13.23 | 10.75 | 10.08 |                  |

|                        |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |                  |
|------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------|
| $J_{11}$ , $T =$       | 1 | 2.50  | 2.82  | 2.95  | 2.63  | 2.73  | 2.83  | 2.56  | 2.84  | 3.62  | $\cdot 10^{-12}$ |
| Ju <sub>stator</sub> = | 2 | 7.41  | 8.24  | 8.33  | 7.45  | 7.71  | 8.09  | 7.80  | 9.14  |       | 10               |
|                        | 3 | 17.81 | 19.21 | 18.85 | 16.98 | 17.52 | 18.61 | 19.05 | 23.46 | 31.39 |                  |

$$Jv_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 325 & 314 & 261 & 230 & 227 & 244 & 302 & 428 & 613 \\ 2 & 821 & 789 & 653 & 575 & 566 & 608 & 750 & 1063 & 1519 \\ 3 & 1571 & 1519 & 1262 & 1115 & 1099 & 1183 & 1460 & 2071 & 2964 \end{bmatrix} \cdot 10^{-12}$$

$$Jp_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 327 & 317 & 264 & 233 & 230 & 247 & 304 & 431 & 616 \\ 2 & 828 & 797 & 661 & 583 & 574 & 616 & 757 & 1072 & 1531 \\ 3 & 1589 & 1538 & 1281 & 1132 & 1116 & 1202 & 1479 & 2095 & 2996 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 26.3 & 25.6 & 22.3 & 20.3 & 20.1 & 21.2 & 24.8 & 32.3 & 42.3 \\ 2 & 59.9 & 58.1 & 50.5 & 45.9 & 45.3 & 47.8 & 56.0 & 72.7 & 95.1 \\ 3 & 106.3 & 103.6 & 90.2 & 82.2 & 81.3 & 85.9 & 100.6 & 130.8 & 171.1 \end{bmatrix} \cdot 10^{-9}$$

|                                                       |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8     | 9     |                  |
|-------------------------------------------------------|---|--------|--------|--------|--------|--------|--------|--------|-------|-------|------------------|
| Ju $T = \begin{bmatrix} T & T \\ T & T \end{bmatrix}$ | 1 | 896.49 | 551.33 | 332.33 | 222.43 | 163.39 | 125.87 | 102.85 | 93.83 | 89.16 | $\cdot 10^{-12}$ |
| Ju <sub>rotor</sub> = [                               | 2 | 104.86 | 69.65  | 43.82  | 30.06  | 22.41  | 17.37  | 14.05  | 12.69 | 12.04 |                  |
|                                                       | 3 | 32.27  | 22.86  | 14.67  | 10.24  | 7.74   | 6.07   | 4.93   | 4.45  | 4.25  |                  |

|                 |   | 1     | 2     | 3     | 4     | 5    | 6    | 7    | 8    | 9    |                  |
|-----------------|---|-------|-------|-------|-------|------|------|------|------|------|------------------|
| $Jv \cdot T =$  | 1 | 43491 | 28707 | 17713 | 12340 | 9269 | 7335 | 6240 | 5817 | 5579 | $\cdot 10^{-12}$ |
| $Jv_{rotor} = $ | 2 | 33312 | 21812 | 13385 | 9292  | 6959 | 5495 | 4667 | 4345 | 4161 |                  |
|                 | 3 | 31038 | 20489 | 12643 | 8808  | 6616 | 5236 | 4455 | 4153 | 3982 |                  |

|                        |   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8     | 9    |                  |
|------------------------|---|------|------|------|------|------|------|------|-------|------|------------------|
| Juy $T =$              | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | $\cdot 10^{-12}$ |
| Juv <sub>rotor</sub> = | 2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 |                  |
|                        | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 |                  |

$$Jp_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 44387 & 29258 & 18045 & 12562 & 9432 & 7461 & 6343 & 5911 & 5668 \\ 2 & 33417 & 21882 & 13429 & 9322 & 6982 & 5512 & 4681 & 4358 & 4174 \\ 3 & 31070 & 20512 & 12657 & 8818 & 6624 & 5242 & 4460 & 4157 & 3987 \end{bmatrix} \cdot 10^{-12}$$

| $CPx_{stator}^{T} =$ |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |                                    | $CPx_{rotor}^{T} =$ |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | $10^{-3}$       |
|----------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------------------------------|---------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------|
|                      | 1 | 7.900  | 7.833  | 7.479  | 7.250  | 7.224  | 7.359  | 7.756  | 8.465  | 9.259  | $\cdot 10^{-3}$ CPx <sub>rot</sub> |                     | 1 | 19.004 | 17.130 | 15.182 | 13.871 | 12.913 | 12.179 | 11.697 | 11.494 | 11.374 |                 |
|                      | 2 | 8.767  | 8.680  | 8.280  | 8.021  | 7.988  | 8.134  | 8.570  | 9.352  | 10.227 | roi                                |                     | 2 | 22.131 | 19.908 | 17.620 | 16.083 | 14.962 | 14.104 | 13.540 | 13.300 | 13.157 |                 |
|                      | 3 | 9.480  | 9.400  | 8.975  | 8.700  | 8.669  | 8.830  | 9.307  | 10.158 | 11.111 |                                    |                     | 3 | 24.705 | 22.269 | 19.737 | 18.032 | 16.787 | 15.833 | 15.206 | 14.942 | 14.786 |                 |
|                      |   |        |        |        |        |        |        |        |        |        |                                    |                     |   |        |        |        |        |        |        |        |        |        |                 |
| $CPy_{stator}^{T} =$ |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |                                    | $CPy_{rotor}^{T} =$ |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |                 |
|                      | 1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | $\cdot 10^{-3}$ CPV <sub>mat</sub> |                     | 1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | $\cdot 10^{-3}$ |
|                      | 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | rot                                |                     | 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                 |
|                      | 3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                                    |                     | 3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                 |

Результат расчета абсолютных геометрических характеристик сечений Л

## Абс. координаты профиля:

$$\begin{split} \text{Airfoil(type}, \textbf{x}, \text{line}, \textbf{i}, \textbf{r}) &= & \text{if type} = \text{"BHA"} \\ & \text{AIRFOIL}_{\text{subsonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{BHA}_{r}}, \varepsilon_{\text{BHA}_{r}}\right) & \text{if } \textbf{M}_{\textbf{c}_{\text{st}(1,1)}, r} < 1 \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{BHA}_{r}}, \varepsilon_{\text{BHA}_{r}}\right) & \text{otherwise} \\ & \text{if type} = \text{"rotor"} \\ & \text{AIRFOIL}_{\text{subsonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{rotor}_{i,r}}, \varepsilon_{\text{rotor}_{i,r}}\right) & \text{if } \textbf{M}_{\textbf{w}_{\text{st}(i,1)}, r} < 1 \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{rotor}_{i,r}}, \varepsilon_{\text{rotor}_{i,r}}\right) & \text{otherwise} \\ & \text{if type} = \text{"stator"} \\ & \text{AIRFOIL}_{\text{subsonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{stator}_{i,r}}, \varepsilon_{\text{stator}_{i,r}}\right) & \text{otherwise} \\ & \text{if type} = \text{"CA"} \\ & \text{AIRFOIL}_{\text{subsonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{if } \textbf{M}_{\textbf{c}_{\text{st}(Z,3),r}} < 1 \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{otherwise} \\ \end{cases} \end{aligned}$$

Рассматриваемая ступень:

$$j_w = \begin{cases} j = 1 \end{cases}$$
 = 1  $j = 1$   $j = 1$  "Такой ступени не существует!" if  $(j < 1) \lor (j > Z)$   $j$  otherwise

### ▼ Построение профилей Л РК и НА

$$\begin{aligned} \text{AXLEO(type}, \textbf{x}, \textbf{i}, \textbf{r}) &= & \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{i,r}}\right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) & \text{if type} = \text{"rotor"} \\ & \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{stator_{i,r}}\right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type} = \text{"stator"} \\ & \text{NaN otherwise} \end{aligned}$$

$$\begin{aligned} \text{AXLE90(type}, x, i, r) &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan \left( \alpha_{\text{major}_{rotor_{i,r}}} + \frac{\pi}{2} \right) \cdot \left( x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} \right) & \text{if (type = "rotor")} \land \left| \alpha_{\text{major}_{rotor_{i,r}}} \right| \ge 1 \cdot \circ \\ & \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan \left( \alpha_{\text{major}_{stator_{i,r}}} + \frac{\pi}{2} \right) \cdot \left( x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} \right) & \text{if (type = "stator")} \land \left| \alpha_{\text{major}_{stator_{i,r}}} \right| \ge 1 \cdot \circ \\ & \text{NaN otherwise} \end{aligned}$$

$$b_{lim} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$





 $r = av(N_r)$ 





 $r = N_r$ 





r = 1





# $rac{r}{m} = av(N_r)$











■ Построение профилей Л РК и НА

Рассматриваемая ступень: 
$$j = 1$$

$$j = 1$$
 = 1
$$j = 1$$
 "Такой ступени не существует!" if  $(j < 1) \lor (j > Z)$ 

$$j \text{ otherwise}$$

$$b_{\text{line}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{\text{rotor}_{j,N_r}}, \text{chord}_{\text{stator}_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$

r = 1



 $r = av(N_r)$ 







 $r = av(N_r)$ 







■ Построение плоских решеток профилей Л РК и НА (+ ВНА и СА) на треугольниках скоростей

#### ▼ Радиальные и осевые зазоры и длина К

Радиальный зазор (м) [с.64 казаджан]:

$$\overline{\Delta}$$
r = 0.0025

 $0.0015 \le \overline{\Delta}r \le 0.0035 = 1$ 

$$\Delta_{\mathbf{r}_{i}} = \overline{\Delta}\mathbf{r} \cdot \mathbf{D}_{\mathrm{st}(i,2), N_{\mathbf{r}}}$$

Относительный осевой зазор () [16, с. 245]:

 $\overline{\Delta}a = 0.17$ 

 $0.1 \le \overline{\Delta}a \le 0.2 = 1$ 

Осевой зазор (м):  $\Delta a_i = \overline{\Delta} a \cdot \text{chord}_{rotor_{i,av(N_r)}}$ 

Односторонний осевой зазор (м):

Длина ОК (м):

$$\begin{aligned} \text{Length} &= \begin{bmatrix} \Delta a_1 + \left| \text{chord}_{BHA_{av\left(N_r\right)}} \cdot \sin\left(\upsilon_{BHA_{av\left(N_r\right)}}\right) & \text{if } BHA = 1 & \dots \\ 0 & \text{otherwise} \\ + \sum_{i \, = \, 1}^{Z} \left( \text{chord}_{rotor_{i}, \, av\left(N_r\right)} \cdot \sin\left(\upsilon_{rotor_{i}, \, av\left(N_r\right)}\right) \right) + 2 \cdot \sum_{i \, = \, 1}^{Z} \Delta a_i + \sum_{i \, = \, 1}^{Z} \left( \text{chord}_{stator_{i}, \, av\left(N_r\right)} \cdot \sin\left(\upsilon_{stator_{i}, \, av\left(N_r\right)}\right) \right) \\ + \left| \begin{array}{c} \text{chord}_{CA_{av\left(N_r\right)}} \cdot \sin\left(\upsilon_{CA_{av\left(N_r\right)}}\right) & \text{if } CA = 1 & + \Delta a_Z \\ 0 & \text{otherwise} \\ \end{bmatrix} \end{aligned} \end{aligned}$$

▼ Проточная часть

$$\begin{pmatrix} x_{\Pi H} \\ y_{\Pi H nep} \\ y_{\Pi H cp} \\ y_{\Pi H nep} \\ y_{\Pi H nep} \\ y_{\Pi I nep} \end{pmatrix} = \begin{vmatrix} c = 1 \\ x_{\Pi H_c} = \begin{vmatrix} c \operatorname{chord}_{BHA_{av}(N_r)} \cdot \sin(\upsilon_{BHA_{av}(N_r)}) & \text{if } BHA = 1 \\ 0 & \operatorname{otherwise} \\ y_{\Pi I nep} = R_{st(c,1),N_r} \\ y_{\Pi I nep} = R_{st(c,1),av}(N_r) \\ y_{\Pi H cop} = R_{st(c,1),av}(N_r) \\ x_{\Pi H_c} = R_{\Pi H_c-1} + 0.5 \cdot \Delta a_i + \operatorname{chord}_{rotor_{i,av}(N_r)} \cdot \sin(\upsilon_{rotor_{i,av}(N_r)}) + 0.5 \cdot \Delta a_i \\ \begin{pmatrix} y_{\Pi H nep} \\ y_{\Pi H cop} \\ y_{\Pi H cop} \\ y_{\Pi H cop} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,2),av} \\ R_{st(i,2),av}(N_r) \\ R_{st(i,2),av}(N_r) \\ \end{pmatrix} \\ y_{\Pi nep} = R_{st(i,3),av}(N_r) \\ \begin{pmatrix} y_{\Pi H nep} \\ y_{\Pi H cop} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av} \\ R_{st(i,3),av}(N_r) \\ \end{pmatrix} \\ \begin{pmatrix} y_{\Pi H nep} \\ y_{\Pi H cop} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av} \\ R_{st(i,3),av}(N_r) \\ \end{pmatrix} \\ y_{\Pi nep} = R_{st(i,3),av}(N_r) \\ \end{pmatrix} \\ y_{\Pi nep} = R_{st(i,3),av}(N_r) \\ \end{pmatrix} \\ y_{\Pi nep} = R_{st(i,3),av}(N_r) \\ y_{\Pi nep} = R_{st(i,3),av}(N_r) \\ \end{pmatrix}$$

```
\begin{aligned} y_{\Pi \Pi nep}(l) &= interp \Big( cspline \Big( x_{\Pi \Pi}, y_{\Pi \Pi nep} \Big), x_{\Pi \Pi}, y_{\Pi \Pi nep}, l \Big) \\ y_{\Pi \Pi cp}(l) &= interp \Big( cspline \Big( x_{\Pi \Pi}, y_{\Pi \Pi cp} \Big), x_{\Pi \Pi}, y_{\Pi \Pi cp}, l \Big) \\ y_{\Pi \Pi kop}(l) &= interp \Big( cspline \Big( x_{\Pi \Pi}, y_{\Pi \Pi kop} \Big), x_{\Pi \Pi}, y_{\Pi \Pi kop}, l \Big) \\ y_{\Pi nep}(l) &= interp \Big( cspline \Big( x_{\Pi \Pi}, y_{\Pi nep} \Big), x_{\Pi \Pi}, y_{\Pi nep}, l \Big) \end{aligned}
```



▲ Проточная часть

$$j = 1$$
 = 1  $j = 1$  = 1  $j = 1$  Taкой ступени не существует!" if  $(j < 1) \lor (j > Z)$   $j$  otherwise

## ▼ Поперечная часть ступени

$$\mathbf{r} = \min(\mathbf{D}), \min(\mathbf{D}) + \frac{\max(\mathbf{D}) - \min(\mathbf{D})}{N_{\text{dis}}} ... \max(\mathbf{D})$$

$$\mathbf{i}_{\text{rotor}} = 1 ... Z_{\text{rotor}_{j}}$$

$$\mathbf{i}_{\text{stator}} = 1 ... Z_{\text{stator}_{j}}$$

$$\Pi_{PK}(r,j) = \begin{bmatrix} \frac{2 \cdot \pi}{Z_{rotor_{j}}} & \text{if } D_{st(j,1),1} < r < D_{st(j,1),N_{r}} \\ NaN & \text{otherwise} \end{bmatrix}$$

$$\Pi_{HA}(r,j) = \begin{cases}
\frac{2 \cdot \pi}{Z_{stator_{j}}} & \text{if } D_{st(j,2),1} < r < D_{st(j,2),N_{r}} \\
NaN & \text{otherwise}
\end{cases}$$



Запас по температуре (К):

$$\Delta T_{safety} = 50$$

Выбранный материал Л:

$$\begin{array}{ll} \text{material\_blade}_{i} = & \text{"$\mathbb{K}$C-6$K"} & \text{if } 1123 \leq T^*_{st(i,2),\,av\left(N_{r}\right)} + \Delta T_{safety} \\ & \text{"$BT41"} & \text{if } 873 \leq T^*_{st(i,2),\,av\left(N_{r}\right)} + \Delta T_{safety} < 1123 \\ & \text{"$BT25"} & \text{if } 753 \leq T^*_{st(i,2),\,av\left(N_{r}\right)} + \Delta T_{safety} < 873 \\ & \text{"$BT9"} & \text{otherwise} \\ \end{array}$$

Плотность материала Л (кг/м^3):

$$\rho\_blade_i = \begin{bmatrix} 8393 & if material\_blade_i = "KC-6K" \\ 7900 & if material\_blade_i = "BT41" \\ 4500 & if material\_blade_i = "BT25" \\ 4570 & if material\_blade_i = "BT23" \\ 4510 & if material\_blade_i = "BT9" \\ 4430 & if material\_blade_i = "BT6" \\ NaN & otherwise \\ \end{bmatrix}$$

Предел длительной прочности ЛРК (Па):

$$\sigma\_blade\_long_i = 10^6. \begin{tabular}{llll} 125 & if material\_blade_i = "KC-6K" \\ 123 & if material\_blade_i = "BT41" \\ 150 & if material\_blade_i = "BT25" \\ 230 & if material\_blade_i = "BT23" \\ 200 & if material\_blade_i = "BT9" \\ 210 & if material\_blade_i = "BT6" \\ NaN & otherwise \\ \end{tabular}$$

material bla

| ade | = |   | 1     | 2     | 3     | 4     | 5     | 6      | 7      | 8      | 9      |  |
|-----|---|---|-------|-------|-------|-------|-------|--------|--------|--------|--------|--|
|     |   | 1 | "BT9" | "BT9" | "BT9" | "BT9" | "BT9" | "BT25" | "BT25" | "BT25" | "BT41" |  |
|     |   |   |       |       |       |       |       |        |        |        |        |  |

 $\rho_{\text{blade}}^{\text{T}}$ 

|   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|---|------|------|------|------|------|------|------|------|------|
| 1 | 4510 | 4510 | 4510 | 4510 | 4510 | 4500 | 4500 | 4500 | 7900 |

$$\sigma\_blade\_long^T$$

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | $\cdot 10^{6}$ |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|
| 1 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 150.0 | 150.0 | 150.0 | 123.0 |                |

material\_blade
$$_{i}$$
 = "BT23" if compressor = "Вл" "BT6" if compressor = "КНД" material\_blade $_{i}$  otherwise

Коэф. формы:  $\frac{k_n}{k_n} = 6.8$ 

I: 
$$k_n = 6.8$$

Модуль Юнга Ірода материала Л (Па):

E blade = 
$$210 \cdot 10^9$$

Коэф. Пуассона материала Л():

$$\mu$$
 steel = 0.3

```
\nu 0_{\text{изг.stator}}
                                                                                                                                                                                                                                                                                                                                                                                                                                   \nu 0_{\text{изг.rotor}}
                                                                      \nu 0_{y_{\Gamma \Pi}.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                   \nu_{\rm VII.rotor}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        for i \in 1...Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       for r \in av(N_r)
(\nu^0угл.stator_bondage \nu^0угл.rotor_bondage
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     for mode \in 1..6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \nu 0_{\text{M3}\Gamma.\text{stator}_{\hat{1},\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M5}} \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big)\,, \\ E\_\text{blade}\,, \rho\_\text{blade}_{\hat{1}}\,, \text{area}_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}} \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \nu 0_{\text{M3}\Gamma.\text{rotor}_{\hat{i}\,,\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}} \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}\,, \rho\_\text{blade
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \nu 0_{\text{yrn.stator}_{i,\,mode}} = \nu 0_{\text{yrn}} \Big( \text{mode}\,, 0\,, \text{mean} \Big( h_{st(i,\,2)}\,, h_{st(i,\,3)} \Big) \,, \\ \text{Jung}(2\,, \mu\_\text{steel}\,, E\_\text{blade}) \,, \rho\_\text{blade}_i\,, \\ \text{stiffness}_{stator}_{i,\,r}\,, \\ \text{Jp}_{stator}_{i,\,r} \,, \\ \text{Jp}_{st
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \nu 0_{\text{yr.i.rotor}_{i, \, mode}} = \nu 0_{\text{yr.ii}} \left( \text{mode}, 0, \text{mean} \left( h_{\text{st(i,1)}}, h_{\text{st(i,2)}} \right), \text{Jung}(2, \mu_{\text{steel}}, E_{\text{blade}}), \rho_{\text{blade}_{i}}, \text{stiffness}_{\text{rotor}_{i,r}}, \text{Jp}_{\text{rotor}_{i,r}} \right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \nu 0_{y_{\Gamma JI}.stator\_bondage_{\hat{1},\,mode}} = \nu 0_{y_{\Gamma JI}} \Big( mode, 1, mean \Big( h_{st(\hat{1},\,2)}, h_{st(\hat{1},\,3)} \Big), \\ Jung(2, \mu\_steel, E\_blade), \rho\_blade_{\hat{1},\,stiffness}_{stator_{\hat{1},\,r}}, \\ Jp_{stator_{\hat{1},\,r}}, Jp_{stator
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \nu 0_{\text{yrst.rotor\_bondage}_{i, \, mode}} = \nu 0_{\text{yrst}} \left( \text{mode}, 1, \text{mean} \left( h_{\text{st}(i, 1)}, h_{\text{st}(i, 2)} \right), \text{Jung}(2, \mu\_\text{steel}, E\_\text{blade}), \rho\_\text{blade}_i, \text{stiffness}_{\text{rotor}_{i, r}}, \text{Jp}_{\text{rotor}_{i, r}}, \text{Jp}_{\text{rotor}_{i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \nu 0_{\text{изг.stator}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \nu 0_{\text{изг.rotor}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ν0<sub>VГЛ.rotor</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \nu_{\rm V\Gamma J. stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (\nu^0угл.stator_bondage \nu^0угл.rotor_bondage
```

Частота собственных изгибных колебаний (Гц) [9, с.240]:

|                                                 |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    |
|-------------------------------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                                 | 1 | 1283  | 1523  | 1748  | 1962  | 2173  | 2377  | 2548  | 2678  | 2165  | 1176  | 1405  | 1648  | 1866  | 2079  | 2291  | 2480  | 2627  | 2089  |
| , T                                             | 2 | 3849  | 4568  | 5245  | 5887  | 6519  | 7131  | 7643  | 8034  | 6495  | 3529  | 4214  | 4945  | 5597  | 6238  | 6872  | 7439  | 7881  | 6267  |
| stack $(ν0_{yγπ.stator}, ν0_{yγπ.rotor})^{T} =$ | 3 | 6416  | 7614  | 8741  | 9811  | 10866 | 11886 | 12739 | 13390 | 10826 | 5882  | 7024  | 8241  | 9328  | 10396 | 11454 | 12399 | 13135 | 10445 |
|                                                 | 4 | 8982  | 10659 | 12238 | 13736 | 15212 | 16640 | 17834 | 18746 | 15156 | 8235  | 9833  | 11537 | 13059 | 14555 | 16036 | 17358 | 18389 | 14624 |
|                                                 | 5 | 11548 | 13705 | 15734 | 17661 | 19558 | 21394 | 22930 | 24102 | 19486 | 10588 | 12643 | 14834 | 16791 | 18713 | 20617 | 22318 | 23643 | 18802 |
|                                                 | 6 | 14114 | 16751 | 19230 | 21585 | 23904 | 26149 | 28025 | 29458 | 23817 | 12941 | 15452 | 18130 | 20522 | 22872 | 25199 | 27277 | 28897 | 22980 |

Частота собственных угловых колебаний (Гц) [9, с.243] без и с бандажом:

|                                                                                                           |   | 1     | 2     | 3     | 4     | 5     | 6     | 7      | 8      | 9      | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    |
|-----------------------------------------------------------------------------------------------------------|---|-------|-------|-------|-------|-------|-------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                                                                                           | 1 | 302   | 454   | 632   | 777   | 974   | 1171  | 1249   | 1367   | 1237   | 376   | 485   | 599   | 696   | 803   | 909   | 998   | 1083  | 894   |
| , T                                                                                                       | 2 | 1892  | 2843  | 3959  | 4870  | 6103  | 7336  | 7831   | 8569   | 7754   | 2355  | 3043  | 3754  | 4365  | 5032  | 5697  | 6254  | 6789  | 5601  |
| $\operatorname{stack}(\nu 0_{\text{M3}\Gamma.\text{stator}}, \nu 0_{\text{M3}\Gamma.\text{rotor}})^{T} =$ | 3 | 5297  | 7961  | 11087 | 13637 | 17089 | 20544 | 21929  | 23995  | 21713  | 6595  | 8520  | 10513 | 12222 | 14090 | 15953 | 17513 | 19011 | 15684 |
|                                                                                                           | 4 | 10388 | 15611 | 21743 | 26744 | 33513 | 40287 | 43004  | 47056  | 42581  | 12934 | 16709 | 20617 | 23968 | 27631 | 31286 | 34344 | 37281 | 30757 |
|                                                                                                           | 5 | 17164 | 25796 | 35927 | 44191 | 55377 | 66570 | 71059  | 77755  | 70360  | 21372 | 27610 | 34067 | 39605 | 45657 | 51697 | 56749 | 61603 | 50823 |
|                                                                                                           | 6 | 25634 | 38525 | 53656 | 65996 | 82703 | 99419 | 106123 | 116122 | 105079 | 31918 | 41234 | 50877 | 59148 | 68187 | 77206 | 84752 | 92000 | 75901 |

|                                                                                    |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    |
|------------------------------------------------------------------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                                                                    | 1 | 2566  | 3046  | 3496  | 3925  | 4346  | 4754  | 5096  | 5356  | 4330  | 2353  | 2809  | 3296  | 3731  | 4159  | 4582  | 4960  | 5254  | 4178  |
| , T                                                                                | 2 | 5132  | 6091  | 6993  | 7849  | 8692  | 9509  | 10191 | 10712 | 8661  | 4706  | 5619  | 6593  | 7462  | 8317  | 9163  | 9919  | 10508 | 8356  |
| stack( $\nu 0_{\text{угл.stator\_bondage}}, \nu 0_{\text{угл.rotor\_bondage}}$ ) = | 3 | 7699  | 9137  | 10489 | 11774 | 13039 | 14263 | 15287 | 16068 | 12991 | 7059  | 8428  | 9889  | 11194 | 12476 | 13745 | 14879 | 15762 | 12535 |
|                                                                                    | 4 | 10265 | 12182 | 13986 | 15698 | 17385 | 19017 | 20382 | 21424 | 17321 | 9411  | 11238 | 13186 | 14925 | 16634 | 18327 | 19838 | 21016 | 16713 |
|                                                                                    | 5 | 12831 | 15228 | 17482 | 19623 | 21731 | 23771 | 25478 | 26780 | 21652 | 11764 | 14047 | 16482 | 18656 | 20793 | 22908 | 24798 | 26270 | 20891 |
|                                                                                    | 6 | 15397 | 18273 | 20979 | 23547 | 26077 | 28526 | 30573 | 32136 | 25982 | 14117 | 16857 | 19778 | 22387 | 24951 | 27490 | 29757 | 31525 | 25069 |

▶ Расчет собственных частот колебаний Л

Pасчетный узел: type = "compressor"

Объем бандажной полки  $(M^3)$ :  $V_{6\Pi} = 0$ 

Радиус положения ЦМ бандажной полки (м):  $R_{6\Pi} = 0$ 

▼ Расчет Л на прочность

```
\begin{aligned} & \text{area0}_{rotor}(i,z) = \text{area}_{rotor_{i},N_{r}} \cdot \begin{bmatrix} e^{\left( \overrightarrow{\sigma 0}_{rotor.max}(i,z) \cdot \int_{Z} & z \, dz \right)} & \text{if } z \leq R0_{rotor}(i,z) \\ & 1 \quad \text{otherwise} \\ & \text{N0}_{rotor}(i,z) = \rho\_\text{blade}_{i} \cdot \omega^{2} \cdot \begin{bmatrix} \int_{Z}^{mean\left(R_{st(i,1),N_{r}},R_{st(i,2),N_{r}}\right)} & \text{area0}_{rotor}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \end{bmatrix} & \text{if type} = \text{"compressor"} \\ & \left( \int_{Z}^{mean\left(R_{st(i,2),N_{r}},R_{st(i,3),N_{r}}\right)} & \text{area0}_{rotor}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \right) & \text{if type} = \text{"turbine"} \end{aligned} \right) \end{aligned}
                \sigma_{0_{rotor}(i,z)} = \frac{N0_{rotor}(i,z)}{area0_{rotor}(i,z)}
                    area_{rotor.}(i,z) = interp\Big(pspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(area_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(area_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
                    area_{stator.}(i,z) = interp \left( pspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( area_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( area_{stator}, i, i, 1, N_r \right)^T, submatrix \left( area_{stato
          \sigma_{z_{rotor}(i,z)} = \frac{N_{rotor}(i,z)}{area_{rotor}(i,z)}
                      \rho_{1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(
                    \rho_{2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,2),st(i,2),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,2),st(i,2),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2
                    \rho_{3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,3),st(i,3),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3
                    P_{1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),
                    P_2(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i
                    P_{3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(
                    c_{a1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),
                    c_{a2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),
                    c_{a3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),
                    c_{u1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_{u},st(i,1),st(i,1),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_{u},st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(s_{u},st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st
```

```
c_{u2}(i,z) = interp\Big(lspline\Big(submatrix(R,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),1,N_r)^1\Big),submatrix(R,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,
         c_{u3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(c_u,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(c_u,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i
         w_{u1}(i,z) = interp \Big( lspline \Big( submatrix \Big( R \,, st(i,1) \,, st(i,1) \,, 1 \,, N_r \Big)^T \,, submatrix \Big( w_u \,, st(i,1) \,, st(i,1) \,, 1 \,, N_r \Big)^T \Big), submatrix \Big( R \,, st(i,1) \,, st(i
         w_{u2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(
         w_{u3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(w_u,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(w_u,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i
        qx_{rotor}(i,z) = -\frac{2\pi z}{Z_{rotor_i}} \cdot \begin{bmatrix} \left[ \left( P_2(i,z) - P_1(i,z) \right) + \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left( c_{a2}(i,z) - c_{a1}(i,z) \right) \right] & \text{if type = "compressor"} \\ \left[ \left( P_3(i,z) - P_2(i,z) \right) + \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left( c_{a3}(i,z) - c_{a2}(i,z) \right) \right] & \text{if type = "turbine"} \end{aligned}
   \begin{vmatrix} q y_{rotor}(i,z) &= \frac{2\pi z}{Z_{rotor_i}} \cdot \\ \begin{bmatrix} \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left(w_{u2}(i,z) - w_{u1}(i,z)\right) \end{bmatrix} & \text{if type = "compressor"} \\ \left[ \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left(w_{u3}(i,z) - w_{u2}(i,z)\right) \right] & \text{if type = "turbine"} \\ \end{vmatrix} 
    | \text{qy}_{\text{stator}}(i,z) = -\frac{2\pi z}{Z_{\text{stator}_i}} \cdot \left[ \begin{bmatrix} \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left( c_{u3}(i,z) - c_{u2}(i,z) \right) \end{bmatrix} \text{ if type = "compressor"} \\ \left[ \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left( c_{u2}(i,z) - c_{u1}(i,z) \right) \right] \text{ if type = "turbine"} 
qy_{rotor}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                           mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="compressor"
                                                                                                                                         \bigcap \mathsf{lmean} \big( \mathsf{R}_{\mathsf{st}(i,1),1}, \mathsf{R}_{\mathsf{st}(i,2),1} \big) \quad \text{if type="turbine"} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             qy_{stator}(i,z1)\cdot(z1-z)dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       qx_{rotor}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                             mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="compressor"
                                                                                                                                                        \max(R_{st(i,1),1},R_{st(i,2),1}) if type="turbine"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        qx_{stator}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \left( \begin{array}{c} \operatorname{mean} \left( {{R_{st(i,1),N_r}},{R_{st(i,2),N_r}}} \right) & \text{if type="compressor"} \\ \operatorname{mean} \left( {{R_{st(i,2),N_r}},{R_{st(i,3),N_r}}} \right) & \text{if type="turbine"} \end{array} \right)
```

```
q_{rotor}(1, z) uz
shift_x_{rotor}(i, z) =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              N_{rotor}(i,z)
                                                                                                                                          mean(R_{st(i,1),1}, R_{st(i,2),1}) if type="compressor"
                                                                                                                                            mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="turbine"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   mean(R_{st(i,1),N_r}, R_{st(i,2),N_r}) \text{ if type="compressor"}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \operatorname{mean}(R_{\operatorname{st}(i,2),N_r},R_{\operatorname{st}(i,3),N_r}) | \text{ if type="turbine"} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (qy_{rotor}(i,z)\cdot z) dz
shift_y_{rotor}(i, z) = z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            N_{rotor}(i,z) \cdot z^2
                                                                                                                                                     mean(R_{st(i,1),1}, R_{st(i,2),1}) if type="compressor"
                                                                                                                                                        mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="turbine"
x0_{\text{rotor.}}(i,z) = \text{interp} \left( \text{lspline} \left( \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( x0_{\text{rotor}}, i, i, 1, N_r \right)^T \right), \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( x0_{\text{rotor}}, i, i, 1, N_r \right)^T, z \right)
x0_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
y0_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T,submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T,submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T\Big)
y0_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
\alpha_{major_{rotor.}(i,z)} = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right), submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right)
\alpha_{\text{major}_{\text{stator.}}(i,z)} = \text{interp} \Big( \text{lspline} \Big( \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big) \Big)
Ju_{rotor.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{rotor}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{rotor}, i, i, 1, N_r \right)^T, submatrix \left( Ju
Ju_{stator.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{stator}, i, i, 1, N_r \right)^T, submatrix \left( Ju_
Jv_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Jv_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Jv_{rotor},i,i,1,N_r\Big)^T, su
Jv_{stator.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Jv_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Jv_{stator}, i, i, 1, N_r \right)^T, submatrix \left( Jv_
CPx_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T\Big)
CPx_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{stator},i,i,1,N_r\Big)^T, submatrix\Big(CPx_{stator},i,i,1,N_r\Big)^T
CPy_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T\Big)
CPy_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T
CPx_{rotor.axis}(i,z) = axis_{X} \Big( CPx_{rotor.}(i,z), CPy_{rotor.}(i,z), x0_{rotor.}(i,z), y0_{rotor.}(i,z), \alpha_{major_{rotor.}}(i,z), 1 \Big)
CPx_{stator.axis}(i,z) = axis_{x} \left( CPx_{stator.}(i,z), CPy_{stator.}(i,z), x0_{stator.}(i,z), y0_{stator.}(i,z), \alpha_{stator.}(i,z), \alpha_{
CPy_{rotor.axis}(i,z) = axis_{y} \left( CPx_{rotor.}(i,z), CPy_{rotor.}(i,z), x0_{rotor.}(i,z), y0_{rotor.}(i,z), \alpha_{major_{rotor.}}(i,z), 1 \right)
CPy_{stator.axis}(i,z) = axis_{v} \Big( CPx_{stator.}(i,z), CPy_{stator.}(i,z), x0_{stator.}(i,z), y0_{stator.}(i,z), \alpha_{major_{stator.}}(i,z), 1 \Big)
```

```
Wp_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(Wp_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),
  Wp_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
                                                                                                                                                                                                                                                                                                                                     \left(qx_{rotor}(i,z1) \cdot CPy_{rotor.axis}(i,z1) - qy_{rotor}(i,z1) \cdot CPx_{rotor.axis}(i,z1)\right) dz1
                                                                                                                                                                                                                                                                                                                                \left(qx_{stator}(i,z1)\cdot CPy_{stator.axis}(i,z1) - qy_{stator}(i,z1)\cdot CPx_{stator.axis}(i,z1)\right) dz1
  \varphi_{uv_{rotor}(i,z)} = interp \left[ lspline \left[ submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{rotor}, i, i, 1, N_r \right)^T \right], submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{rotor}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{rotor}, i, i, 1, N_r \right)^T \right]
 \left| \phi_{\_} u v_{stator}(i,z) \right| = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, sub
  Mu_{rotor}(i,z) = axis_{x}(Mx_{rotor}(i,z), My_{rotor}(i,z), 0, 0, \phi_{uv_{rotor}(i,z), 1})
  Mu_{stator}(i,z) = axis_{x}(Mx_{stator}(i,z), My_{stator}(i,z), 0, 0, \varphi_{uv_{stator}}(i,z), 1)
  Mv_{rotor}(i,z) = axis_{y}(Mx_{rotor}(i,z), My_{rotor}(i,z), 0, 0, \phi_{uv_{rotor}(i,z), 1})
  Mv_{stator}(i,z) = axis_{v}(Mx_{stator}(i,z), My_{stator}(i,z), 0, 0, \varphi_{uv_{stator}}(i,z), 1)
```

$$\begin{aligned} \text{neutral\_line(type}, x, i, r) &= \frac{\frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \text{tan}\left(\left(\alpha\_\text{major}_{rotor_{i,r}} + \phi\_\text{neutral}_{rotor}\left(i, R_{st(i,2),r}\right)\right)\right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) & \text{if type} = \text{"rotor"} \\ \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \text{tan}\left(\left(\alpha\_\text{major}_{stator_{i,r}} + \phi\_\text{neutral}_{stator}\left(i, R_{st(i,2),r}\right)\right)\right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type} = \text{"stator"} \\ \text{epure(type}, x, i, r) &= \frac{y0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1 - \frac{y0_{rotor_{i,r}}}}{\sqrt{1$$

$$\begin{aligned} & \text{epure(type}, \textbf{x}, \textbf{i}, \textbf{r}) = \boxed{\frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha\_{major_{rotor_{i,r}}} + \phi\_{neutral_{rotor}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(\textbf{x} - \frac{\textbf{x}0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) & \text{if type} = "rotor" \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha\_{major_{stator_{i,r}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(\textbf{x} - \frac{\textbf{x}0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type} = "stator" \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}\right)} \cdot \left(\textbf{x} - \frac{\textbf{x}0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type} = "stator" \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}\right)} \cdot \left(\textbf{x} - \frac{\textbf{x}0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type} = "stator" \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}\right)} \cdot \left(\textbf{x} - \frac{\textbf{x}0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \textbf{if type} = "stator" \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}\right)} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{i,r}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{i,r}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{k}_{st(i,2),r}\right) - \frac{\pi}{4}} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{k}_{st(i,2),r}\right) - \frac{\pi}{4}} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}}} + \phi\_{neutral_{stator}}\left(\textbf{i}, \textbf{k}_{st(i,2),r}\right) - \frac{\pi}{$$

|                                               |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |           |
|-----------------------------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|
| $\mathbf{u}  \mathbf{u}_{\dots} = \mathbf{u}$ | 1 | -2.510 | -2.054 | -2.085 | -2.115 | -2.132 | -1.606 | -2.172 | -2.185 | -2.192 | $10^{-3}$ |
| u_u <sub>rotor</sub> =                        | 2 | -1.351 | -1.351 | -1.350 | -1.351 | -1.351 | -1.353 | -1.355 | -1.357 | -1.358 |           |
|                                               | 3 | -1.523 | -1.522 | -0.815 | -0.815 | -0.815 | -0.815 | -1.522 | -1.523 | -1.523 |           |

|                                            |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |                 |
|--------------------------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------|
| $\mathbf{v} \mathbf{u} \cdot \mathbf{T} =$ | 1 | 4.237 | 4.076 | 4.019 | 3.929 | 3.875 | 3.807 | 3.694 | 3.622 | 3.587 | $\cdot 10^{-3}$ |
| v_u <sub>rotor</sub> =                     | 2 | 1.901 | 1.915 | 1.939 | 1.928 | 1.923 | 1.904 | 1.851 | 1.812 | 1.799 |                 |
|                                            | 3 | 1.203 | 1.260 | 1.288 | 1.289 | 1.293 | 1.287 | 1.254 | 1.229 | 1.225 |                 |

 $\cdot 10^{-3}$ 

$$\mathbf{u}_{-1}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 29.481 & 29.600 & 29.637 & 28.585 & 27.516 & -14.296 & -9.934 & -9.382 & -8.834 \\ 2 & -19.718 & -20.351 & -20.984 & -20.984 & -20.983 & -20.350 & -18.451 & -17.185 & -16.552 \\ 3 & -18.470 & -22.001 & -23.413 & -23.413 & -23.413 & -23.413 & -21.295 & -19.883 & -19.882 \end{bmatrix}$$

|                                                                                          |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |           |
|------------------------------------------------------------------------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|
| $\mathbf{v} = 1 \cdot \mathbf{v} \cdot 1 = \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v}$ | 1 | -5.196 | -4.168 | -3.793 | -3.326 | -3.071 | -2.850 | -2.880 | -2.923 | -2.948 | $10^{-3}$ |
| '-rotor                                                                                  | 2 | -1.511 | -1.528 | -1.556 | -1.547 | -1.544 | -1.528 | -1.489 | -1.471 | -1.468 | 10        |
|                                                                                          | 3 | -0.990 | -1.025 | -1.053 | -1.055 | -1.060 | -1.054 | -1.023 | -1.005 | -1.004 |           |

$$u\_u_{stator}^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.206 & 0.209 & -1.564 & -1.570 & -1.618 & -1.584 & -1.326 & -1.146 & -1.070 \\ 2 & -0.017 & -0.012 & -0.005 & -0.005 & -0.002 & -0.003 & -0.012 & -0.018 & -0.020 \\ 3 & -0.012 & -0.006 & 0.003 & 0.004 & 0.007 & 0.007 & -0.004 & -0.011 & -0.015 \end{bmatrix} \cdot 10^{-3}$$

|                    |   | 1     | 2     | 3      | 4      | 5      | 6      | 7      | 8      | 9      |                 |
|--------------------|---|-------|-------|--------|--------|--------|--------|--------|--------|--------|-----------------|
| $v_u_{stator}^T =$ | 1 | 0.766 | 0.804 | 10.237 | 10.237 | 10.240 | 10.238 | 10.225 | 10.217 | 10.214 | $\cdot 10^{-3}$ |
| - Stator           | 2 | 1.085 | 1.133 | 1.203  | 1.208  | 1.227  | 1.218  | 1.132  | 1.070  | 1.041  |                 |
|                    | 3 | 1.433 | 1.483 | 1.559  | 1.568  | 1.590  | 1.583  | 1.497  | 1.433  | 1.403  |                 |

|                         |   | 1      | 2      | 3       | 4       | 5       | 6       | 7       | 8       | 9       |     |
|-------------------------|---|--------|--------|---------|---------|---------|---------|---------|---------|---------|-----|
| $v 1 \dots T = $        | 1 | -1.735 | -1.904 | -12.327 | -12.327 | -12.324 | -12.326 | -12.341 | -12.351 | -12.354 | .10 |
| v_l <sub>stator</sub> = | 2 | -1.873 | -2.090 | -2.405  | -2.428  | -2.513  | -2.477  | -2.087  | -1.814  | -1.692  | _   |
|                         | 3 | -1.994 | -2.222 | -2.567  | -2.607  | -2.708  | -2.684  | -2.287  | -2.005  | -1.872  |     |

$$\begin{pmatrix} \sigma_{-Protor} & \sigma_{-n}rotor \\ \sigma_{-Dstator} & \sigma_{-n}rotor \\ \sigma_{-Dstator}$$

$$\begin{pmatrix} \sigma_{-} p_{rotor.} & \sigma_{-} p_{stator.} \\ \sigma_{-} p_{rotor.} & \sigma_{-} p_{stator.} \end{pmatrix} = \begin{bmatrix} \text{for } i \in 1...Z \\ \sigma_{-} p_{rotor.}(i,z) & = & \text{interp} \Big( \text{lspline} \Big( \text{submatrix} \Big( R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,1), \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,1), \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{-} p_{stator}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,1), \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( \sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big)$$

|                      |   | 1      | 2      | 3      | 4       | 5       | 6       | 7       | 8       | 9       |
|----------------------|---|--------|--------|--------|---------|---------|---------|---------|---------|---------|
| $\sigma p_{max} = T$ | 1 | -25.36 | -43.41 | -69.75 | -98.16  | -126.08 | -151.02 | -146.74 | -155.42 | -151.05 |
| $\sigma_p_{rotor} =$ | 2 | -43.70 | -59.19 | -87.64 | -113.08 | -138.10 | -159.06 | -148.26 | -154.01 | -151.15 |
|                      | 3 | -0.17  | -0.20  | -0.88  | -0.83   | -0.78   | -0.65   | -0.32   | -0.17   | -0.48   |

|              |                |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9     |     |
|--------------|----------------|---|--------|--------|--------|--------|--------|--------|--------|--------|-------|-----|
| $\cdot 10^6$ | $\sigma p = T$ | 1 | 0.78   | 0.58   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00  | .10 |
| 10           | o_Pstator =    | 2 | 144.83 | 123.74 | 125.95 | 125.71 | 114.39 | 97.71  | 86.77  | 69.31  | 52.54 |     |
|              |                | 3 | 268.54 | 238.84 | 243.72 | 245.47 | 226.17 | 193.17 | 165.54 | 128.15 | 96.03 |     |

|                                      |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|--------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $\sigma p_{material} \leq 70.10^6 =$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| -Protor = 70 To =                    | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|                                      | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

|                                    |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |
|------------------------------------|---|---|---|---|---|---|---|---|---|---|--|
| $\sigma p_{atoton} \leq 70.10^6 =$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| -Pstator = 70 To -                 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |  |
|                                    | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |

$$\sigma_{-n_{rotor}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 39.17 & 54.70 & 79.76 & 99.20 & 117.75 & 101.61 & 107.20 & 118.76 & 118.43 \\ 2 & 33.26 & 45.23 & 67.36 & 87.13 & 106.69 & 123.25 & 115.91 & 121.96 & 120.57 \\ 3 & 0.14 & 0.16 & 0.70 & 0.67 & 0.63 & 0.52 & 0.26 & 0.14 & 0.39 \end{bmatrix} \cdot 10^{6}$$

|                             |   | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       |     |
|-----------------------------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----|
| $\sigma_{n_{stator}}^{T} =$ | 1 | -1.78   | -1.39   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | .10 |
| stator                      | 2 | -253.77 | -232.86 | -258.44 | -259.25 | -241.04 | -204.55 | -163.58 | -119.70 | -86.72  |     |
|                             | 3 | -380.79 | -367.69 | -414.61 | -421.48 | -398.71 | -339.21 | -260.39 | -183.82 | -131.07 |     |

|                                                |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|------------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $\sigma n_{\text{mater}} \leq 70 \cdot 10^6 =$ | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| -rotor = 70 10 -                               | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                                | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

|                                                       |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $\sigma n_{\text{stator}}^{T} \leq 70 \cdot 10^{6} =$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| -nstator = 70 10 -                                    | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|                                                       | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

$$\begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix} = \begin{cases} \text{for } i \in 1 ... Z \\ \text{for } r \in 1 ... N_r \\ \\ \sigma_{rotor_{i,r}} = \sqrt{\left(\sigma_{-}z_{rotor}(i, R_{st(i,2),r}) + \max\left(\sigma_{-}p_{rotor_{i,r}}, \sigma_{-}n_{rotor_{i,r}}\right)\right)^2 + \tau_{rotor}(i, R_{st(i,2),r})^2} \\ \\ \sigma_{stator_{i,r}} = \sqrt{\left(0 + \max\left(\sigma_{-}p_{stator_{i,r}}, \sigma_{-}n_{stator_{i,r}}\right)\right)^2 + \tau_{stator}(i, R_{st(i,2),r})^2} \\ \\ \begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix}$$

$$\begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \\ \sigma_{rotor.}(i,z) = \text{interp} \Big( \text{lspline} \Big( \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{rotor}, i, i, 1, N_r \Big)^T, z \Big) \\ \\ \sigma_{stator.}(i,z) = \text{interp} \Big( \text{lspline} \Big( \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{stator}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{stator}, i, i, 1, N_r \Big)^T, z \Big) \\ \\ \begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix}$$

|                  |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |                                                         |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9     |
|------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------------------------------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| $\sigma$ , $T =$ | 1 | 178.23 | 171.81 | 180.85 | 187.05 | 195.55 | 171.43 | 171.26 | 178.96 | 217.93 | $\cdot 10^6$ $\sigma_{\text{stator}}^{\text{T}} = \Box$ | 1 | 0.81   | 0.62   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00  |
| orotor –         | 2 | 131.00 | 127.56 | 139.70 | 149.69 | 161.90 | 172.59 | 160.88 | 163.99 | 190.73 | $\sigma_{\text{stator}} = \frac{1}{2}$                  | 2 | 144.85 | 123.76 | 125.98 | 125.75 | 114.43 | 97.76  | 86.81  | 69.34  | 52.57 |
|                  | 3 | 5.03   | 4.08   | 6.73   | 5.17   | 4.15   | 3.19   | 2.04   | 1.34   | 3.80   |                                                         | 3 | 268.55 | 238.86 | 243.74 | 245.49 | 226.20 | 193.19 | 165.56 | 128.17 | 96.05 |

$$\left(\begin{array}{c} \text{safety}_{rotor} \\ \text{safety}_{stator} \end{array}\right) = \left|\begin{array}{c} \text{for } i \in 1..Z \\ \text{for } r \in 1..N_r \end{array}\right|$$
 
$$\left|\begin{array}{c} \text{safety}_{rotor}_{i,\,r} = \left| \frac{\sigma\_\text{blade\_long}_i}{\sigma_{rotor}_{i,\,r}} \text{ if } \sigma_{rotor}_{i,\,r} \neq 0 \right. \\ \left| \infty \text{ otherwise} \right. \\ \text{safety}_{stator}_{i,\,r} = \left| \frac{\sigma\_\text{blade\_long}_i}{\sigma_{stator}_{i,\,r}} \text{ if } \sigma_{stator}_{i,\,r} \neq 0 \right. \\ \left| \infty \text{ otherwise} \right. \\ \left( \begin{array}{c} \text{safety}_{rotor} \\ \text{safety}_{stator} \end{array}\right)$$

|                                |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8      | 9    |
|--------------------------------|---|-------|-------|-------|-------|-------|-------|-------|--------|------|
| safety <sub>rotor</sub> $T = $ | 1 | 1.12  | 1.16  | 1.11  | 1.07  | 1.02  | 0.87  | 0.88  | 0.84   | 0.56 |
| rotor –                        | 2 | 1.53  | 1.57  | 1.43  | 1.34  | 1.24  | 0.87  | 0.93  | 0.91   | 0.64 |
|                                | 3 | 39.76 | 48.99 | 29.72 | 38.69 | 48.16 | 46.96 | 73.45 | 112.07 | 32.4 |

|                                   |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-----------------------------------|---|---|---|---|---|---|---|---|---|---|
| $safety_{rotor}^{T} \ge safety =$ | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| rotor = salety =                  | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
|                                   | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

|                            |   | 1      | 2      | 3                                       | 4                                       | 5                                       |
|----------------------------|---|--------|--------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| safety, total =            | 1 | 248.08 | 320.97 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |
| safety <sub>stator</sub> = | 2 | 1.38   | 1.62   | 1.59                                    | 1.59                                    | 1.75                                    |
|                            | 3 | 0.74   | 0.84   | 0.82                                    | 0.81                                    |                                         |

|                                                |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|------------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $safety_{stator} \xrightarrow{T} \ge safety =$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| stator = salety =                              | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|                                                | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Рассматриваемая ступень:

$$j = \begin{vmatrix} j = 1 & \text{if type} = \text{"compressor"} \\ Z & \text{if type} = \text{"turbine"} \end{vmatrix}$$
 = 1  $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$ 

$$b_{\text{time}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{\text{rotor}_{j}, N_{r}}, \text{chord}_{\text{stator}_{j}, N_{r}}\right) \cdot 10^{2}\right)}{10^{2}} = 80 \cdot 10^{-3}$$

Расстояния от оси ЛМ до рассматриваемой ступени (м):

$$Rj = submatrix (R, 2 \cdot j - 1, 2 \cdot j + 1, 1, N_r) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 177.3 & 230.8 & 274.1 \\ 2 & 182.2 & 230.8 & 270.8 \\ \hline 3 & 186.8 & 230.8 & 267.7 \end{vmatrix} \cdot 10^{-3}$$

Дискретизация по высоте Л:

$$z = \min(Rj), \min(Rj) + \frac{\max(Rj) - \min(Rj)}{100} ... \max(Rj)$$

$$z_{rotor} = \begin{bmatrix} mean(Rj_{1,1},Rj_{2,1}), mean(Rj_{1,1},Rj_{2,1}) + \frac{mean(Rj_{1,N_r},Rj_{2,N_r}) - mean(Rj_{1,1},Rj_{2,1})}{100} ... mean(Rj_{1,N_r},Rj_{2,N_r}) & \text{if type = "compressor"} \\ mean(Rj_{2,1},Rj_{3,1}), mean(Rj_{2,1},Rj_{3,1}) + \frac{mean(Rj_{2,N_r},Rj_{3,N_r}) - mean(Rj_{2,1},Rj_{3,1})}{100} ... mean(Rj_{2,N_r},Rj_{3,N_r}) & \text{if type = "turbine"} \\ \end{bmatrix}$$

$$z_{stator} = \begin{bmatrix} mean \left(Rj_{2,1}, Rj_{3,1}\right), mean \left(Rj_{2,1}, Rj_{3,1}\right) + \frac{mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) - mean \left(Rj_{2,1}, Rj_{3,1}\right)}{100} ... mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) & \text{if type} = "compressor" \\ mean \left(Rj_{1,1}, Rj_{2,1}\right), mean \left(Rj_{1,1}, Rj_{2,1}\right) + \frac{mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) - mean \left(Rj_{1,1}, Rj_{2,1}\right)}{100} ... mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) & \text{if type} = "turbine" \\ \end{bmatrix}$$

▼ Результаты расчета на прочность Л

























$$\begin{pmatrix} blade \\ r \end{pmatrix} = \begin{pmatrix} "rotor" \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -2.51 & 4.24 \\ 2 & 29.48 & -5.20 \\ \hline 3 & 0.21 & 0.77 \\ \hline 4 & 12.34 & -1.74 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -25 & 1 \\ 39 & -2 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 1 \\ 178 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса: 
$$\begin{pmatrix} \text{safety}_{\text{stator}_{j,r}} \\ \text{safety}_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 248.077 \\ 2 \\ 1.122 \end{bmatrix}$$

$$\begin{pmatrix} v_-p \\ v_-l \\ v_-l$$



$$\begin{pmatrix} \text{blade} \\ \text{max} \end{pmatrix} = \begin{pmatrix} \text{"rotor"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1.35 & 1.90 \\ 2 & -19.72 & -1.51 \\ 3 & -0.02 & 1.08 \\ 4 & 13.70 & -1.87 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -44 & 145 \\ 33 & -254 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 145 \\ 131 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса: 
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1.381 \\ 2 \\ 1.527 \end{bmatrix}$$

$$\begin{pmatrix} v & p \\ v & r \\ v$$



$$\begin{pmatrix} \text{blade} \\ \text{x} \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1.35 & 1.90 \\ 2 & -19.72 & -1.51 \\ 3 & -0.02 & 1.08 \\ 4 & 13.70 & -1.87 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -44 & 145 \\ 33 & -254 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 145 \\ 131 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса: 
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 1.381 2 1.527



$$\begin{pmatrix} \text{blade} \\ \text{stator} \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1.52 & 1.20 \\ 2 & -18.47 & -0.99 \\ 3 & -0.01 & 1.43 \\ 4 & 14.81 & -1.99 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -0 & 269 \\ 0 & -381 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 269 \\ 5 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса: 
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
 39.76



## ▼ Выбор материала Д

Запас по температуре (K):  $\Delta T_{\text{safety}} = 0$ 

Выбранный материал Д: material\_disk<sub>i</sub> = "BT23" if compressor = "Вл" "BT6" if compressor = "КНД"

"ВТ9" if compressor = "КВД"

Плотность материала Д (кг/м^3):

Предел длительной прочности Д (Па):

 $\rho_{-}$ disk<sub>i</sub> = | 8266 if material\_disk<sub>i</sub> = "BЖ175" 8320 if material\_disk<sub>i</sub> = "ЭП742" 8393 if material\_disk<sub>i</sub> = "ЖС-6К" 7900 if material\_disk<sub>i</sub> = "BT41" 4500 if material\_disk<sub>i</sub> = "BT25" 4570 if material\_disk<sub>i</sub> = "BT23" 4510 if material\_disk<sub>i</sub> = "BT9" 4430 if material\_disk<sub>i</sub> = "BT6"

NaN otherwise

 $\sigma_{disk\_long_i} = 10^6 \cdot \begin{bmatrix} 620 & \text{if material\_disk}_i = "B\%175" \\ 680 & \text{if material\_disk}_i = "\Im\Pi742" \\ 125 & \text{if material\_disk}_i = "\%C-6K" \\ 123 & \text{if material\_disk}_i = "BT41" \\ 150 & \text{if material\_disk}_i = "BT25" \\ 230 & \text{if material\_disk}_i = "BT23" \\ 200 & \text{if material\_disk}_i = "BT9" \\ 210 & \text{if material\_disk}_i = "BT6" \\ NaN & \text{otherwise} \end{bmatrix}$ 

| $\rho \operatorname{disk}^{\mathrm{T}} =$ |   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|-------------------------------------------|---|------|------|------|------|------|------|------|------|------|
| F                                         | 1 | 4510 | 4510 | 4510 | 4510 | 4510 | 4510 | 4510 | 4510 | 4510 |

Рассматриваемая ступень: 
$$j = 1$$

$$j =$$
  $j = 1$   $= 1$   $j =$  "Такой ступени не существует!" if  $(j < 1) \lor (j > Z)$   $j$  otherwise

## ▼ Профилирование равнопрочного Д без центрального отв.

$$h(i,z) = \begin{pmatrix} \frac{\rho_{-} \text{disk}_{i} \cdot \omega^{2}}{2} \cdot \frac{1}{\sigma_{-} z_{rotor}(i,R_{st(i,2),ORIGIN})} \cdot \left[ \left(R_{st(i,2),ORIGIN}\right)^{2} - z^{2} \right] \\ \text{or} \quad \text{if } z \leq R_{st(i,2),ORIGIN} \end{pmatrix}$$

$$\text{NaN otherwise}$$

$$z = 0, \frac{R_{st(j,2), ORIGIN}}{N_{dis}} .. R_{st(j,2), ORIGIN}$$

