Федеральное агентство связи

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Сибирский государственный университет телекоммуникаций и информатики»

Лабораторная работа №3

«Среда моделирования GNS3»

Выполнил: студент 3 курса

ИВТ, гр. ИП-713

Михеев Никита

Цель работы

Получить навыки использования среды моделирования GNS3. Подготовить среду для выполнения курсовой работы.

Задание на лабораторную работу

- 1. Установить среду моделирования GNS3 и произвести начальную конфигурацию добавив маршрутизатор CISCO и два пустых контейнера с виртуальными машинами от VirtualBox.
- 2. Соберите макет локальной сети, как показано на рисунке 1.
- 3. Исходя из того, что для функционирования создаваемой сети Вам выделен диапазон адресов 10.255.0.0/16 определите сколько подсетей Вам необходимо задать.
- 4. Настройте все интерфейсы всех маршрутизаторов и статическую маршрутизацию. Убедитесь, что имеется связь между всеми сетевыми интерфейсами всех маршрутизаторов.
- 5. Запустите все модельные устройства (показав, что пустые контейнеры тоже работают, но выдают ошибку загрузки из-за отсутствия операционной системы).
- 6. Используя анализатор Wireshark продемонстрируйте принцип работы ping между двумя маршрутизаторами, расположенными в разных подсетях (необходимо показать все генерируемые пакеты в прямом и обратном пути при одном запросе ping).
- 7. Убедитесь, что Ваша среда имеет связь со средой другого студента используя реальную

Рисунок 1. Модель конфигурационной сети

Результаты лабораторной работы

Для конфигурации данной сети будет создано 8 подсетй: 5 для связи между маршрутизаторами и 3 внутренних сети.

Рисунок 2. Созданная конфигурационная сеть

```
*Mar 1 00:00:06.343: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2/3,
changed state to down
R2#conf te
R2#conf terminal
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#int fa1/0
R2(config-if)#ip address
R2(config-if)#ip address 10,255,1.1 255,255,255,0
R2(config-if)#no shu
R2(config-if)#no shutdown
R2(config-if)#exit
R2(config)#
*Mar 1 00:01:28.967: %LINK-3-UPDOWN: Interface FastEthernet1/0, changed state to up
*Mar 1 00:01:29.967: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet1/0, changed state
to up
R2(config)#ip route 10.255.2.0 255.255.255.0 10.255.1.2
R2(config)#exit
R2#wr m
*Mar 1 00:01:54.415: %SYS-5-CONFIG_I: Configured from console by console
R2#wr mem
Building configuration...
[OK]
R2#
```

Рисунок 3. Пример настройки одного из маршрутизаторов

```
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10,255,1,1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 20/20/20 ms
```

R3(config)#do ping 10,255,1,1

Рисунок 4. Пример команды ping в соседнюю сеть

Применить дисплейны	й фильтр <ctrl-></ctrl->				
No. Time	Source	Destination	Protocol Le	ength Info	
30 26.169552	10.255.1.1	10.255.2.2	ICMP	114 Echo (ping) reply	id=0x0004, seq=1/256, ttl=254 (request in 29)
31 26.173898	10.255.2.2	10.255.1.1	ICMP	114 Echo (ping) request	id=0x0004, seq=2/512, ttl=255 (reply in 32)
32 26.189727	10.255.1.1	10.255.2.2	ICMP	114 Echo (ping) reply	id=0x0004, seq=2/512, ttl=254 (request in 31)
33 26.194038	10.255.2.2	10.255.1.1	ICMP	114 Echo (ping) request	id=0x0004, seq=3/768, ttl=255 (reply in 34)
34 26.209903	10.255.1.1	10.255.2.2	ICMP	114 Echo (ping) reply	id=0x0004, seq=3/768, ttl=254 (request in 33)
35 26.214167	10.255.2.2	10.255.1.1	ICMP	114 Echo (ping) request	id=0x0004, seq=4/1024, ttl=255 (reply in 36)
36 26.230093	10.255.1.1		ICMP	114 Echo (ping) reply	id=0x0004, seq=4/1024, ttl=254 (request in 35)
37 26.747282	10.255.2.2	10.255.1.1	ICMP	114 Echo (ping) request	id=0x0005, seq=0/0, ttl=255 (reply in 38)
38 26.763250	10.255.1.1	10.255.2.2	ICMP	114 Echo (ping) reply	id=0x0005, seq=0/0, ttl=254 (request in 37)
39 26.767411	10.255.2.2		ICMP	(1 0) 1	id=0x0005, seq=1/256, ttl=255 (reply in 40)
49 26.783385	10.255.1.1		ICMP	114 Echo (ping) reply	id=0x0005, seq=1/256, ttl=254 (request in 39)
41 26.787540	10.255.2.2		ICMP	(1 07 1	id=0x0005, seq=2/512, ttl=255 (reply in 42)
42 26.803558	10.255.1.1	10.255.2.2	ICMP	114 Echo (ping) reply	id=9x0005, seq=2/512, ttl=254 (request in 41)
43 26.807677	10.255.2.2		ICMP		id=0x0005, seq=3/768, ttl=255 (reply in 44)
44 26.823727	10.255.1.1		ICMP	114 Echo (ping) reply	id=0x0005, seq=3/768, ttl=254 (request in 43)
45 26.827816	10.255.2.2	10.255.1.1	ICMP	(1 07 1	id=0x0005, seq=4/1024, ttl=255 (reply in 46)
46 26.843897	10.255.1.1		ICMP	114 Echo (ping) reply	id=0x0005, seq=4/1024, ttl=254 (request in 45)
47 27.340714	10.255.2.2		ICMP		id=0x0006, seq=0/0, ttl=255 (reply in 48)
48 27.356957 49 27.360840	10.255.1.1		ICMP	114 Echo (ping) reply	id=0x0006, seq=0/0, ttl=254 (request in 47)
	10.255.2.2	10.255.1.1	ICMP	(1 0) 1	id=0x0006, seq=1/256, ttl=255 (reply in 50)
50 27.377132 51 27.380968	10.255.1.1		ICMP	114 Echo (ping) reply	id=0x0006, seq=1/256, ttl=254 (request in 49)
52 27.397314	10.255.2.2	10.255.1.1	ICMP	(1 07 1	id=0x0006, seq=2/512, ttl=255 (reply in 52)
53 27.401103	10.255.1.1		ICMP	114 Echo (ping) reply	id=0x0006, seq=2/512, ttl=254 (request in 51) id=0x0006, seq=3/768, ttl=255 (reply in 54)
54 27.417514	10.255.1.1		ICMP	114 Echo (ping) request	id=0x0006, seq-3/768, ttl=253 (repty in 54)
55 27.421236	10.255.2.2		ICMP		id=0x0006, seq-3/706, ttt=254 (request in 53)
56 27.437658	10.255.1.1	10.255.2.2	ICMP	114 Echo (ping) request	1d=0x0006, seq-4/1024, ttl=254 (request in 55)
57 28,805933	c4:05:25:f5:00:01	CDP/VTP/DTP/PAgP/UD		359 Device ID: R5 Port	
58 29.826080	c4:03:25:d2:00:00	CDP/VTP/DTP/PAgP/UD		350 Device ID: R3 Port	
59 30.007159	c4:03:25:d2:00:00		LOOP	60 Reply	AD 1 1 WOODS 100 100 0
69 31.131112	c4:05:25:f5:00:01		LOOP	60 Reply	
61 33.314763	c4:03:25:d2:00:00	DEC-MOP-Remote-Cons		77 DEC DNA Remote Consc	ole
1))					
		bytes captured (480 b)))
	0 00 c4 03 25 d2 00 G		%		
	9 00 00 00 00 00 00 0 9 00 00 00 00 00 00 0				
	9 00 00 00 00 00 00 0				

Рисунок 5. Анализ команды ping с помощью wireshark

Ответы на контрольные вопросы

- 1) GNS3 разрабатывалась для моделирования компьютерных сетей, использующих сетевое оборудование, функционирующее на базе процессоров с архитектурой MIPS.
- 2) В GNS3 моделируются большинство сетевых коммутаторов и маршрутизатров, производимых компанией CISCO и другое сетевое оборудование функционирующее на базе процоссоров архитектуры MIPS
- 3) Idle-PC параметр определяющий степень максимальной загрузки процесса, которую может достичь выполнение dynampis, реализующей этот маршрутизатор.

4)

- а. На первом шаге происходит передача от протокола IP протоколу ARP примерно такого сообщения: «Какой MAC-адрес имеет интерфейс с адресом IP?»
- b. Работа протокола ARP начинается с просмотра собственной ARP-таблицы. Предположим, что среди содержащихся в ней записей отсутствует запрашиваемый 1P-адрес.
- с. В этом случае протокол ARP формирует ARP-запрос, вкладывает его в кадр протокола Ethernet и широковещательно рассылает.

- d. Все интерфейсы сети получают ARP-запрос и направляют его «своему» протоколу ARP. ARP сравнивает указанный в запросе адрес IP с IP-адресом собственного интерфейса.
- е. Протокол ARP, который констатировал совпадение формирует ARP-ответ. В ARP-ответе маршрутизатор указывает локальный адрес MAC соответствующий адресу IP своего интерфейса, и отправляет его запрашивающему узлу

- 6) WireShark используется для анализирования трафика с реальной компьютерной сети, а также внутри среде GNS.
- 7) Можно. маршрутизаторы, реализованные на базе персональных компьютеров, функционирующих под управлением сетевых операционных систем будут настраиваться через виртуальную машину.
- 8) WinPCAP используется для анализа трафика, передаваемого по сети.
- 9) Dynamips это среда моделирования сетевых устройств, реализованных на базе процессоров с MIPS архитектурой.
- 10) GNS3 использует такие среды виртуализации, какVirtualBox, QEMU и VirtualPC.