Single Variable Calculus II

Ichiro Obara

UCLA

Summer Math Camp, 2020

Linear Approximation

The derivative of f at x_0 can be used to construct a linear approximation of f around x_0 : $L(x:x_0)=f(x_0)+f'(x_0)(x-x_0).$ It is a straight line that is tangent to f at x_0 .

How good is this approximation?.

• Move x by Δx and evaluate the "error"

$$R(\Delta x; x_0) = |f(x_0 + \Delta x) - L(x_0 + \Delta x : x_0)|.$$

- $R(\Delta x; x_0) = |f(x_0 + \Delta x) f(x_0) f'(x_0)\Delta x|$, so $\frac{R(\Delta x; x_0)}{\Delta x}$ converges to 0 as $\Delta x \rightarrow 0$. That is, the error goes to 0 faster than Δx goes to 0.
 - We often write this as $f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + o(\Delta x)$, where $o(\cdot)$ is called "little o" and represents a term that satisfies $\frac{o(h)}{h} \to 0$ for $h \to 0$.

 $L(x:x_0)$ is the best linear approximation of f around x_0 .

Newton's Method

Newton's method is an example of algorithm that uses linear approximations.

- You want to find x^* to solve f(x) = 0.
- Guess any point x_0 . Find a solution for the linear approximation $(L(x:x_0)=0)$ instead of f(x)=0, which gives us $x_1=x_0-\frac{f(x_0)}{f'(x_0)}$.
- Repeat this to obtain $x_1, x_2, ...$ by $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$. If x_n happens to converge to some number x^* , then x^* must satisfy $f(x^*) = 0$.

Mean Value Theorem

We like to refine our intuition about linear approximation and obtain an even better approximation. The mean value theorem is a first step towards that goal.

Suppose that x increases to $x + \Delta x > x$ and f(x) moves to $f(x + \Delta x)$. The rate of changes is $\frac{f(x+\Delta x)-f(x)}{\Delta x}$. For differentiable f, this rate should be somewhere between the maximum derivative (= steepest slope) and the minimum derivative of f on $(x, x + \Delta x)$ intuitively.

Mean Value Theorem

The mean value theorem says that this rate is the derivative of f at some point $t \in (x, x + \Delta x)$ when the derivative of f is continuous.

Mean Value Theorem

Suppose that $f:\Re\to\Re$ is differentiable and f' is continuous. Pick any point $x\in\Re$ and $\Delta x>0$. Then there exists $t\in(x,x+\Delta x)$ such that

$$f(x + \Delta x) - f(x) = f'(t)\Delta x$$

Let's reexamine the relative speed of $R(\Delta x; x_0) \to 0$ vs. $\Delta x \to 0$.

- By MVT, $R(\Delta x; x_0) = |(f'(t) f'(x_0)) \Delta x|$ for some $t \in (x, x + \Delta x)$. So $\frac{R(\Delta x; x_0)}{\Delta x}$ converges to 0 at the speed where f'(t) converges to $f'(x_0)$.
- If f' is differentiable, then $|f'(t) f'(x_0)| \sim |f''(x_0)(t x_0)| \leq |f''(x_0)\Delta x|$. So, intuitively, we can tell that $R(\Delta x; x_0)$ converges to 0 at the speed of $(\Delta x)^2$ in this case.

Higher Order Derivatives

As we noticed, a derivative is itself a function, so it is possible to consider the derivative of a derivative, which we call the second derivative. Then we can take the third derivative and so on...

A function is **continuously differentiable** if its derivative is continuous. A function is k-times **continuously differentiable** if it's k-times differentiable and its kth derivative is continuous. We denote the set of k-times continuously differentiable functions by C^k

Polynomials, exponential functions, and log functions are all C^{∞} functions. C^{0} function means a continuous function.

Approximation by Higher Order Polynomials

For any $f \in \mathcal{C}^n$, $L^k(x:x_0) = f(x_0) + \sum_{i=1}^k \frac{f^{(i)}}{i!} (x-x_0)^i$ is the kth order Taylor polynomial of f around x_0 , where $f^{(i)}$ is the ith derivative of f.

Higher order polynomials are more flexible than linear functions, so they provide a better local approximation.

Taylor's Theorem

We can generalize the MVT to higher order polynomials in the following way. Proof Detail

Taylor's Theorem

Suppose that $f:\Re\to\Re$ is a \mathcal{C}^k function and (k+1)-times differentiable. Pick any point $x\in\Re$ and $\Delta x>0$. Then there exists $t\in(x,x+\Delta x)$ such that

$$f(x + \Delta x) = L^{k}(x + \Delta x : x) + \frac{f^{(k+1)}(t)}{(k+1)!}(\Delta x)^{k+1}$$

Comment

- If f is C^2 function, then $R(\Delta x; x_0) = \left| \frac{f''(t)}{2} (\Delta x)^2 \right|$. So $R(\Delta x; x_0)$ indeed converges to 0 at the speed of $(\Delta x)^2$. More generally, if f is C^{k+1} function, then the difference between $f(x_0 + \Delta x)$ and the kth order Taylor polynomial $R_k(\Delta x; x_0) = \left| f(x_0 + \Delta x) L^k(\Delta x; x_0) \right|$ converges to 0 at the speed of $(\Delta x)^{k+1}$.
- One important implication of this formula: whether f is strictly increasing or strictly decreasing <u>locally</u> around x_0 is determined by the sign of $f'(x_0)$ (as shown in the next exercise). If $f'(x_0) = 0$, then it is determined by the sign of $f''(x_0)$, and so on. This is because the effect of each derivative dominates the effect of all the higher derivatives locally.

Exercises

- Let f be a \mathcal{C}^1 function and suppose that f'(x) > 0 at x. Show that there exists $\epsilon > 0$ such that f is strictly increasing in $(x \epsilon, x + \epsilon)$. Is the converse true?
- **2 L'Hospital's rule:** Suppose that f and g are differentiable at x', f(x') = g(x') = 0, and $g'(x') \neq 0$. Show that $\lim_{x \to x'} \frac{f(x)}{g(x)} = \frac{f'(x')}{g'(x')}$.
- **③** For \mathcal{C}^2 function f, verify that $L^2(x_0 + \Delta x : x_0) = f(x_0) + f'(x_0)\Delta x + \frac{f''(x_0)}{2}(\Delta x)^2 \text{ is the only 2nd order}$ polynomial that satisfies $\frac{|f(x_0 + \Delta x) L^2(x_0 + \Delta x : x_0)|}{(\Delta x)^2} \rightarrow 0 \text{ as } \Delta x \rightarrow 0.$

Appendix: Proof of Taylor's Theorem

- Fix any $\Delta x>0$. For k=1, let M be such that $f(x_0+\Delta x)-L^1(x_0+\Delta x:x_0)=M(\Delta x)^2$. The RHS evaluates the residual of the linear approximation in terms of $(\Delta x)^2$. Define a function $g(h)=f(x_0+h)-L^1(x_0+h:x_0)-Mh^2$. By definition $g(0)=g(\Delta x)=0$. Hence g'(s)=0 for some $s\in(0,\Delta x)$ by MVT. Note that $g'(0)=f'(x_0)-f'(x_0)=0$, hence g''(t)=0 for some $t\in(0,s)$ by applying MVT again. As $g''(t)=f''(x_0+t)-2M$, we have $M=\frac{f''(x_0+t)}{2}$.
- Similarly, for k=2, define $M=\frac{f(x_0+\Delta x)-L^2(x_0+\Delta x:x_0)}{(\Delta x)^3}$ so that $M(\Delta x)^3$ is the residual with respect to the second order Taylor polynomial. Then we can obtain $M=\frac{f^{(3)}(x_0+t)}{3!}$ for some $t\in(0,\Delta x)$ by applying the MVT three times. This argument works for any k>2.

