ds2 final

Ayako, Sekiya, Maisie Sun, and Daisy Yan

2023-04-29

Merge data

```
data_2101 <-
 read_csv("./data/2101_data.csv") %>%
 janitor::clean_names() %>%
 na.omit()
## Rows: 2000 Columns: 15
## -- Column specification ------
## Delimiter: ","
## chr (1): study
## dbl (14): age, gender, race, smoking, height, weight, bmi, hypertension, dia...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
data 6360 <-
 read_csv("./data/6360_data.csv") %>%
 janitor::clean_names() %>%
 na.omit()
## Rows: 2000 Columns: 15
## -- Column specification -----
## Delimiter: ","
## chr (1): study
## dbl (14): age, gender, race, smoking, height, weight, bmi, hypertension, dia...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
data <- rbind(data_2101, data_6360) %>%
 unique() %>%
 mutate(gender = as.factor(gender),
        smoking = as.factor(smoking),
        race = as.factor(race),
        hypertension = as.factor(hypertension),
        diabetes = as.factor(diabetes),
        vaccine = as.factor(vaccine),
        severity = as.factor(severity),
        study = as.factor(study))
```

Data partition: training and testing datasets

```
set.seed(6360)
trRows <- createDataPartition(data$recovery_time,</pre>
                              p = .80,
                              list = F)
# training data
trainData <- data[trRows, ]</pre>
trainData_matrix <- model.matrix(recovery_time~.,data)[trRows, ]</pre>
train_x <- model.matrix(recovery_time~.,data)[trRows,-1]</pre>
train_y <- data$recovery_time[trRows]</pre>
# test data
testData <- data[-trRows, ]</pre>
testData_matrix <- model.matrix(recovery_time~.,data)[-trRows,]</pre>
test_x <- model.matrix(recovery_time~.,data)[-trRows,-1]</pre>
test_y <- data$recovery_time[-trRows]</pre>
ctrl <- trainControl(method = "cv", number = 10, repeats = 5, selectionFunction = "best", savePrediction
str(data)
## tibble [3,594 x 15] (S3: tbl_df/tbl/data.frame)
## $ age : num [1:3594] 67 63 65 62 61 68 61 59 53 58 ...
## $ gender
                  : Factor w/ 2 levels "0","1": 2 2 2 1 1 2 1 2 2 1
## $ race
                 : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 2 1 1 4 1 3 ...
## $ smoking
                 : Factor w/ 3 levels "0", "1", "2": 2 1 1 1 1 2 1 2 1 1 ...
## $ height
                 : num [1:3594] 171 156 168 166 171 ...
## $ weight
                  : num [1:3594] 89 85.9 74.8 77 72.5 82.9 91.6 82.8 74.4 83.6 ...
## $ bmi
                 : num [1:3594] 30.5 35.5 26.7 27.8 24.8 26.7 32.1 26.5 23.6 26.1 ...
## $ hypertension : Factor w/ 2 levels "0", "1": 2 2 2 1 2 2 2 1 1 1 ...
## $ diabetes : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
## $ sbp
                 : num [1:3594] 143 132 139 127 133 133 138 121 116 121 ...
## $ 1d1
                 : num [1:3594] 86 107 123 109 65 109 97 138 134 125 ...
## $ vaccine : Factor w/ 2 levels "0", "1": 1 2 2 2 1 2 2 2 2 1 ...
## $ severity
                  : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
                   : Factor w/ 3 levels "A", "B", "C": 3 2 1 2 2 1 3 3 3 2 ...
## $ study
## $ recovery_time: num [1:3594] 48 133 24 18 105 36 35 32 38 6 ...
```

Exploratory analysis and data visualization

Summary and NA's

Summary is used for outlier visualization and to see if there are any NAs in the data.

```
## age gender race smoking height weight
## Min. :42.00 0:1492 1:1838 0:1722 Min. :149.7 Min. : 55.90
```

```
## 1st Qu.:57.00
                   1:1385
                            2: 149
                                    1: 863
                                             1st Qu.:166.0
                                                             1st Qu.: 75.10
## Median :60.00
                            3: 599
                                    2: 292
                                             Median: 170.0 Median: 79.90
                                             Mean :170.0
## Mean
         :60.11
                            4: 291
                                                             Mean
                                                                    : 79.96
  3rd Qu.:63.00
                                             3rd Qu.:173.9
                                                             3rd Qu.: 84.70
##
##
   Max.
          :75.00
                                             Max.
                                                   :189.1
                                                             Max.
                                                                    :105.70
##
                                                             ldl
        bmi
                   hypertension diabetes
                                              sbp
                                                                        vaccine
                   0:1470
                                0:2459
                                                                        0:1127
  Min.
          :19.70
                                        Min.
                                               :102.0
                                                        Min.
                                                               : 33.0
  1st Qu.:25.80
                   1:1407
                                1: 418
                                                        1st Qu.: 97.0
##
                                         1st Qu.:125.0
                                                                        1:1750
## Median :27.60
                                         Median :130.0
                                                        Median :110.0
## Mean
         :27.74
                                         Mean :130.4
                                                        Mean
                                                              :110.1
## 3rd Qu.:29.40
                                         3rd Qu.:136.0
                                                        3rd Qu.:123.0
## Max.
          :39.80
                                         Max.
                                               :158.0
                                                        Max.
                                                               :182.0
## severity study
                     recovery_time
## 0:2597
            A: 552
                     Min. : 2.00
##
   1: 280
           B:1766
                     1st Qu.: 28.00
##
            C: 559
                     Median : 38.00
##
                     Mean : 42.41
##
                     3rd Qu.: 49.00
##
                     Max.
                           :365.00
trainData %>%
 summarise_all(~ sum(is.na(.)))
## # A tibble: 1 x 15
##
      age gender race smoking height weight
                                              bmi hypertens~1 diabe~2
                                                                        sbp
    <int> <int> <int>
                         <int> <int> <int> <int>
                                                        <int>
                                                                <int> <int> <int>
## 1
               0
                     0
## # ... with 4 more variables: vaccine <int>, severity <int>, study <int>,
     recovery_time <int>, and abbreviated variable names 1: hypertension,
      2: diabetes
```

Relationship between predictor and outcome

We want to see basic visualizations between predictor and outcome through a couple of different methods.

```
viz_point = function(name, title) {
  z = trainData %>%
    ggplot(aes(x = name, y = recovery_time, color = study)) +
    geom_point() +
    ggtitle(paste(title, "and recovery time by study")) +
    xlab(title) +
    ylab("Recovery Time (days)")
  z
}

age_recovery = viz_point(name = trainData$age, title = "Age")
height_recovery = viz_point(name = trainData$height, title = "Height")
weight_recovery = viz_point(name = trainData$weight, title = "Weight")
bmi_recovery = viz_point(name = trainData$bmi, title = "BMI")
sbp_recovery = viz_point(name = trainData$sbp, title = "SBP")
ldl_recovery = viz_point(name = trainData$ldl, title = "LDL")
```

```
viz_box = function(name, title) {
  z = trainData %>%
    ggplot(aes(x = name, y = recovery_time, color = study)) +
    geom_boxplot() +
    ggtitle(paste(title, "and recovery time by study")) +
   xlab(title) +
    ylab("Recovery Time (days)")
 z
}
gender_recovery = viz_box(name = trainData$gender, title = "Gender")
race_recovery = viz_box(name = trainData$race, title = "Race")
smoking_recovery = viz_box(name = trainData$smoking, title = "Smoking")
hypertension_recovery = viz_box(name = trainData$hypertension, title = "Hypertension")
diabetes_recovery = viz_box(name = trainData$diabetes, title = "Diabetes")
vaccine_recovery = viz_box(name = trainData$vaccine, title = "Vaccine")
severity_recovery = viz_box(name = trainData$severity, title = "Severity")
continuous_predictor_recovery = ggarrange(height_recovery, weight_recovery, bmi_recovery, age_recovery,
          labels = c("A", "B", "C", "D", "E", "F"),
          ncol = 3, nrow = 2)
continuous_predictor_recovery
```



```
ncol = 3, nrow = 3)
categorical_predictor_recovery
```


ggsave("plot/continuous_predictor_recovery.png", continuous_predictor_recovery, width = 10, height = 5,
ggsave("plot/categorical_predictor_recovery.png", categorical_predictor_recovery, width = 15, height =

Test multicolinearity

#Part I

Linear model training

We will now model train for linear methods. Each model has been tuned.

Linear regression

```
set.seed(6360)
# Using min rule
```

```
fit.linear <- train(train_x, train_y,</pre>
               method = "lm",
               trControl = ctrl)
summary(fit.linear)
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -67.939 -13.823 -1.638 10.275 261.794
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.735e+03 1.281e+02 -21.343 < 2e-16 ***
## age
                 5.568e-02 1.117e-01
                                      0.499 0.618089
## gender1
                -5.590e+00 8.825e-01 -6.335 2.75e-10 ***
## race2
                1.708e-02 2.014e+00
                                      0.008 0.993232
## race3
                -3.230e-01 1.112e+00 -0.290 0.771468
## race4
                -1.673e+00 1.490e+00 -1.122 0.261781
## smoking1
                2.765e+00 9.884e-01 2.798 0.005182 **
## smoking2
                 6.590e+00 1.496e+00 4.405 1.09e-05 ***
                 1.597e+01 7.511e-01 21.262 < 2e-16 ***
## height
## weight
                -1.716e+01 7.952e-01 -21.578 < 2e-16 ***
                 5.170e+01 2.276e+00 22.709 < 2e-16 ***
## bmi
## hypertension1 5.398e+00 1.456e+00 3.707 0.000214 ***
## diabetes1
                -2.207e+00 1.251e+00 -1.764 0.077856 .
## sbp
                 2.572e-02 9.625e-02 0.267 0.789325
## ldl
                -4.364e-02 2.327e-02 -1.875 0.060883 .
## vaccine1
                -7.168e+00 9.043e-01 -7.927 3.19e-15 ***
                                      4.926 8.86e-07 ***
## severity1
                 7.332e+00 1.488e+00
## studyB
                 3.111e+00 1.154e+00 2.695 0.007090 **
## studyC
                 3.417e-01 1.422e+00 0.240 0.810129
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 23.59 on 2858 degrees of freedom
## Multiple R-squared: 0.2598, Adjusted R-squared: 0.2551
## F-statistic: 55.73 on 18 and 2858 DF, p-value: < 2.2e-16
# Predict with test data
pred.linear <- predict(fit.linear, newdata = testData_matrix)</pre>
# Test error (MSE)
mean((pred.linear - test_y)^2)
## [1] 531.1784
# Final model
fit.linear$finalModel
```

```
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
## Coefficients:
##
     (Intercept)
                                       gender1
                                                        race2
                                                                       race3
                            age
##
      -2.735e+03
                      5.568e-02
                                    -5.590e+00
                                                    1.708e-02
                                                                  -3.230e-01
##
                                                       height
           race4
                      smoking1
                                      smoking2
                                                                      weight
##
      -1.673e+00
                      2.765e+00
                                     6.590e+00
                                                    1.597e+01
                                                                  -1.716e+01
##
                                                                         ldl
             bmi hypertension1
                                     diabetes1
                                                          sbp
##
       5.170e+01
                      5.398e+00
                                    -2.207e+00
                                                    2.572e-02
                                                                  -4.364e-02
##
                                                       studyC
       vaccine1
                      severity1
                                        studyB
##
      -7.168e+00
                      7.332e+00
                                     3.111e+00
                                                    3.417e-01
```

Elastic net


```
# Find selected tuning parameter
fit.enet$bestTune

## alpha lambda
## 51 0.02040816 0.2231302

# Predict with test data
pred.enet <- predict(fit.enet, newdata = testData_matrix)

# Test error (MSE)
mean((pred.enet - test_y)^2)</pre>
```

```
# Coefficients in the final model
coef(fit.enet$finalModel, fit.enet$bestTune$lambda)
```

[1] 606.0981

```
-1.606718e+00
1.811935e+00
## race4
## smoking1
## smoking2
               5.900617e+00
## height
               2.860611e+00
## weight
               -3.256120e+00
## bmi
                1.186422e+01
## hypertension1 5.626020e+00
## diabetes1
             -2.192995e+00
                1.724391e-02
## sbp
## ldl
                -4.586607e-02
## vaccine1
              -7.559391e+00
## severity1
                7.166227e+00
                 3.677699e+00
## studyB
## studyC
                 4.140095e-02
```

Lasso


```
# Find selected tuning parameter
fit.lasso$bestTune
                 lambda
##
      alpha
          1 0.008607666
## 12
# Predict with test data
pred.lasso <- predict(fit.lasso, newdata = testData_matrix)</pre>
# Test error (MSE)
mean((pred.lasso - test_y)^2)
## [1] 532.1557
# Coefficients in the final model
coef(fit.lasso$finalModel, fit.lasso$bestTune$lambda)
## 19 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept)
                 -2.606921e+03
                  5.365789e-02
## age
## gender1
                 -5.557572e+00
## race2
## race3
                 -2.937586e-01
```

```
## race4 -1.635036e+00
## smoking1 2.688727e+00
## smoking2 6.518678e+00
## height 1.521479e+01
## weight -1.635853e+01
## bmi 4.940613e+01
## hypertension1 5.408701e+00
## diabetes1 -2.185695e+00
## sbp 2.414711e-02
## ldl -4.317507e-02
## vaccine1 -7.176565e+00
## severity1 7.293779e+00
## studyB 3.100969e+00
## studyC 2.708000e-01
```

PLS

Find selected tuning parameter fit.pls\$bestTune

```
## 9 11

# Predict with test data
pred.pls <- predict(fit.pls, newdata = testData_matrix)

# Test error (MSE)
mean((pred.pls - test_y)^2)</pre>
```

[1] 531.2747

ncomp

##

Coefficients in the final model coef(fit.pls\$finalModel, fit.pls\$bestTune\$ncomp)

Non-linear models

We will now model train for non-linear methods. Each model has been tuned.

Generalized Additive Model(GAM)

```
set.seed(6360)
# Using min rule
fit.gam <- train(train_x, train_y,</pre>
                 method = "gam",
                 tuneGrid = data.frame(method = "GCV.Cp", select = c(TRUE, FALSE)),
                 trControl = ctrl)
# Find selected tuning parameter
fit.gam$bestTune
     select method
##
## 1 FALSE GCV.Cp
# Predict with test data
pred.gam <- predict(fit.gam, newdata = testData_matrix)</pre>
# Test error (MSE)
mean((pred.gam - test_y)^2)
## [1] 489.3413
# Coefficients in the final model
fit.gam$finalModel
## Family: gaussian
```

```
## Link function: identity
##
## Formula:
## .outcome ~ gender1 + race2 + race3 + race4 + smoking1 + smoking2 +
## hypertension1 + diabetes1 + vaccine1 + severity1 + studyB +
## studyC + s(age) + s(sbp) + s(ldl) + s(bmi) + s(height) +
## s(weight)
##
## Estimated degrees of freedom:
## 2.17 2.04 1.14 7.84 6.35 3.43 total = 35.96
##
## GCV score: 479.4991
```

Multivariate Adaptive Regression Splines (MARS)

Product Degree - 1 - 2 - 3

```
# Find selected tuning parameter
fit.mars$bestTune
      nprune degree
## 16
          5
# Predict with test data
pred.mars <- predict(fit.mars, newdata = testData_matrix)</pre>
# Test error (MSE)
mean((pred.mars - test_y)^2)
## [1] 490.8068
# Coefficients for final model
\verb|summary(fit.mars)| \%>\% . \$| coefficients|
##
## (Intercept)
                       10.011086
## h(30.5-bmi)
                       5.183861
## h(bmi-30.5)*studyB 20.014232
## h(bmi-25)
                       5.541442
## vaccine1*studyB
                       -6.781929
```

fit.mars\$finalModel

```
## Selected 5 of 26 terms, and 3 of 18 predictors (nprune=5)
## Termination condition: Reached nk 37
## Importance: bmi, studyB, vaccine1, age-unused, gender1-unused, ...
## Number of terms at each degree of interaction: 1 2 2
## GCV 465.9737 RSS 1330375 GRSq 0.3767223 RSq 0.3810491

# Partial dependence plot of BMI on recovery time from final model
continuous_pdp <- pdp::partial(fit.mars, pred.var = c("bmi"), grid.resolution = 10) %>% autoplot()
continuous_pdp
```


Figures for cross-validation for enet, lasso, pls, and mars.

Comparing models for continuous recovery_time

We will now use resample to see which model produces the best predictive model for COVID-19 recovery time.

```
##
## Call:
## summary.resamples(object = resample)
##
## Models: linear, enet, pls, gam, mars
## Number of resamples: 10
##
## MAE
##
                    1st Qu.
                              Median
                                          Mean 3rd Qu.
## linear 14.54800 15.27895 15.99057 16.08786 16.96477 17.75319
                                                                     0
         14.19700 15.04929 15.94603 15.93757 16.91950 17.28806
                                                                     0
          14.54485 15.27935 15.98791 16.08754 16.96830 17.75511
                                                                     0
## pls
```

```
13.69287 14.17302 15.04664 15.12169 16.03107 16.81801
## gam
          13.35219 13.96394 14.39934 14.68957 15.47525 16.45813
## mars
                                                                    0
##
## RMSE
##
              Min. 1st Qu.
                              Median
                                         Mean 3rd Qu.
## linear 20.22762 20.72375 22.43437 23.51446 24.69423 29.49377
          19.51165 21.96415 23.56001 24.61546 25.66720 32.08463
          20.22865 20.72183 22.43309 23.51395 24.69150 29.49455
                                                                    0
## pls
## gam
          18.87428 19.89204 20.89648 22.01722 23.50900 28.13665
                                                                    0
          18.11274 19.70780 20.53094 21.54015 23.46258 26.20489
                                                                    0
## mars
##
## Rsquared
                      1st Qu.
                                 Median
                                                     3rd Qu.
##
               Min.
                                             Mean
                                                                  Max. NA's
## linear 0.1292126 0.2172170 0.2412512 0.2469056 0.2748234 0.3616900
          0.0967574 0.1500365 0.1807555 0.1758062 0.2028757 0.2782463
                                                                          0
## pls
          0.1291943 0.2170408 0.2411909 0.2469396 0.2751816 0.3615804
                                                                          0
          0.1799479 0.3122485 0.3287883 0.3407728 0.4064722 0.4755038
                                                                          0
## gam
          0.1329910 0.2725725 0.3911641 0.3633788 0.4652147 0.5089855
## mars
                                                                          0
```

bwplot(resample, metric = "RMSE")

Regression tree

Using rpart

rpart.plot(rpart.fit\$finalModel)

Using ctree

plot(ctree.fit\$finalModel)

Random Forest

```
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 8. Consider
## specifying shapes manually if you must have them.
```

Warning: Removed 28 rows containing missing values ('geom_point()').

Boosting

Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, ## : There were missing values in resampled performance measures.

```
gbm_plot <- ggplot(gbm.fit, highlight = TRUE)
gbm_plot</pre>
```


Figures for cross-validation for regression trees, random forest, and boosting.

Comparing all models

We will now compare all the models created to each other to find the best predictive model for COVID-19 recovery time.

```
##
## Call:
## summary.resamples(object = resample)
##
## Models: linear, enet, lasso, pls, gam, mars, rpart, ctree, rf, boosting
## Number of resamples: 10
##
```

```
## MAE
##
                Min. 1st Qu.
                                Median
                                           Mean 3rd Qu.
                                                             Max. NA's
## linear
            14.54800 15.27895 15.99057 16.08786 16.96477 17.75319
           14.19700 15.04929 15.94603 15.93757 16.91950 17.28806
## enet
## lasso
           14.49939 15.24152 15.94365 16.02539 16.92511 17.67081
           14.54485 15.27935 15.98791 16.08754 16.96830 17.75511
## pls
           13.69287 14.17302 15.04664 15.12169 16.03107 16.81801
## gam
            13.35219 13.96394 14.39934 14.68957 15.47525 16.45813
## mars
## rpart
           13.62218 14.12238 14.58765 14.98879 15.81284 17.12404
           13.42657 14.08968 14.58170 15.06997 15.65463 17.97128
## ctree
           13.27396 13.68775 14.40748 14.65368 15.61409 16.59782
## boosting 12.96487 13.75398 14.19358 14.49087 15.27066 16.53840
## RMSE
##
                Min. 1st Qu.
                                Median
                                           Mean 3rd Qu.
## linear
            20.22762 20.72375 22.43437 23.51446 24.69423 29.49377
            19.51165 21.96415 23.56001 24.61546 25.66720 32.08463
## enet
## lasso
            20.09852 20.69110 22.42737 23.51069 24.67624 29.56878
           20.22865 20.72183 22.43309 23.51395 24.69150 29.49455
## pls
## gam
            18.87428 19.89204 20.89648 22.01722 23.50900 28.13665
           18.11274 19.70780 20.53094 21.54015 23.46258 26.20489
## mars
           19.20685 19.87449 20.98629 22.35476 23.93906 28.66489
## rpart
           19.25532 20.00246 21.02435 22.77098 22.97023 30.62911
## ctree
            18.55995 19.65328 20.47009 21.88895 23.63233 27.42705
## boosting 18.48297 19.18882 20.99771 21.74404 23.46361 26.60257
## Rsquared
                        1st Qu.
                                   Median
                                               Mean
                                                       3rd Qu.
                                                                    Max. NA's
                 Min.
## linear
            0.1292126 0.2172170 0.2412512 0.2469056 0.2748234 0.3616900
           0.0967574 0.1500365 0.1807555 0.1758062 0.2028757 0.2782463
## enet
            0.1291980\ 0.2157163\ 0.2425265\ 0.2468054\ 0.2754042\ 0.3625204
## lasso
## pls
           0.1291943 0.2170408 0.2411909 0.2469396 0.2751816 0.3615804
            0.1799479\ 0.3122485\ 0.3287883\ 0.3407728\ 0.4064722\ 0.4755038
## gam
            0.1329910\ 0.2725725\ 0.3911641\ 0.3633788\ 0.4652147\ 0.5089855
## mars
                                                                            0
## rpart
            0.1045308 0.2268274 0.3183282 0.3070220 0.3833201 0.4831504
           0.1290495 0.2247600 0.3110447 0.2918609 0.3726941 0.4046159
## ctree
            0.1758763 0.2936861 0.3668386 0.3427526 0.4072172 0.4631973
## boosting 0.1608023 0.3245875 0.3717188 0.3653391 0.4402029 0.5343460
bwplot(resample, metric = "RMSE")
```


Part II

Create Data with Binary Outcome

Instead of having recovery time as continuous, we will now binarize the outcome to short and long recover time using 30 as the cut-off point. Coefficients will only be outputted for the best model to allow for greater running speed.

Visualization

Linear Models

We will now model train for linear methods. Each model has been tuned.

Logistic Regression

Penalized Logistic Regression

```
glmnGrid <- expand.grid(.alpha = seq(0, 5, length = 50),</pre>
                         .lambda = exp(seq(-10, -5, length = 50)))
set.seed(6360)
model.glmn.penalized <- train(x = train_x_binary,</pre>
                     y = train_y_binary,
                     method = "glmnet",
                     tuneGrid = glmnGrid,
                     metric = "ROC",
                     trControl = ctrl_binary)
model.glmn.penalized$bestTune
##
          alpha
                      lambda
## 503 1.020408 5.56784e-05
myCol<- rainbow(25)</pre>
myPar <- list(superpose.symbol = list(col = myCol),</pre>
               superpose.line = list(col = myCol))
penalized_plot <- plot(model.glmn.penalized, par.settings = myPar, xTrans = function(x) log(x))</pre>
penalized_plot
```


GAM for Binary Outcome

```
set.seed(6360)
model.gam.binary <- train(train_x_binary,</pre>
                    train_y_binary,
                    method = "gam",
                    metric = "ROC",
                    trControl = ctrl_binary)
model.gam.binary$bestTune
##
     select method
       TRUE GCV.Cp
## 2
model.gam.binary$finalModel
##
## Family: binomial
## Link function: logit
##
## Formula:
   .outcome ~ gender1 + race2 + race3 + race4 + smoking1 + smoking2 +
       hypertension1 + diabetes1 + vaccine1 + severity1 + studyB +
##
```

```
## studyC + s(age) + s(sbp) + s(ldl) + s(bmi) + s(height) +
## s(weight)
##
## Estimated degrees of freedom:
## 0.4772 3.4094 0.0006 4.0037 0.0005 1.4770 total = 22.37
##
## UBRE score: 0.09831472
```

MARS for Binary Outcome


```
model.mars.binary$bestTune
```

nprune degree

```
## 9
         10
test.mars <- predict(model.mars.binary, newdata = testData_matrix_binary, type = "prob")[,2]
test.mars_binary <- rep("long", length(test.mars))</pre>
test.mars_binary[test.mars > 0.5] <- "short"</pre>
mean(test.mars_binary != test_y_binary)
## [1] 0.2994429
# Coefficients for final model
summary(model.mars.binary) %>% .$coefficients
##
                       short
## (Intercept)
                  0.24907240
## studyB
                  0.21274991
## h(bmi-27.9)
                 -0.06183408
## h(27.9-bmi)
               -0.03077706
## vaccine1
                  0.10416560
## severity1
                 -0.13608455
## gender1
                  0.07264080
## hypertension1 -0.06937501
## smoking2
                -0.08566066
## smoking1
                 -0.05533681
model.mars.binary$finalModel
## GLM (family binomial, link logit):
## nulldev
             df
                       dev
                             df
                                  devratio
                                               AIC iters converged
## 3547.25 2875
                   3140.43 2866
                                     0.115
                                              3160
##
## Earth selected 10 of 19 terms, and 8 of 18 predictors (nprune=10)
## Termination condition: RSq changed by less than 0.001 at 19 terms
## Importance: studyB, bmi, vaccine1, severity1, gender1, hypertension1, ...
## Number of terms at each degree of interaction: 1 9 (additive model)
## Earth GCV 0.1887688
                         RSS 535.7496
                                          GRSq 0.1133792
# Partial dependence plot of BMI on recovery time from final model
binary_pdp <- pdp::partial(model.mars.binary, pred.var = c("bmi"), grid.resolution = 10) %>% autoplot()
```

binary_pdp

LDA

\mathbf{QDA}

Naive Bayes

Figures for cross-validation for enet, lasso, pls, and mars.

Classification Trees

Using rpart

rpart.plot::rpart.plot(rpart.fit.binary\$finalModel)

Using ctree

plot(ctree.fit.binary\$finalModel)

Random forests

```
# Using caret
rf.grid.binary <- expand.grid(mtry = 1:14,</pre>
                               splitrule = "gini",
                               min.node.size = seq(from = -2, to = 8, by = 2))
set.seed(6360)
rf.fit.binary <- train(recovery_time ~ . ,</pre>
                       data_binary,
                       subset = trRows_binary,
                       method = "ranger",
                       tuneGrid = rf.grid.binary,
                       metric = "ROC",
                       trControl = ctrl_binary)
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,
## : There were missing values in resampled performance measures.
## Warning in train.default(x, y, weights = w, ...): missing values found in
## aggregated results
```

rf.fit.binary\$bestTune

```
## mtry splitrule min.node.size
## 6 1 gini 8
binary_rf <- ggplot(rf.fit.binary, highlight = TRUE)
binary_rf</pre>
```

Warning: Removed 14 rows containing missing values ('geom_point()').

Warning: Removed 14 rows containing missing values ('geom_line()').

Boosting

Figures for cross-validation for rpart, ctree, rf, and boosting

Max Tree Depth → 1 → 2 → 3

```
## Warning: Removed 14 rows containing missing values ('geom_point()').
## Warning: Removed 14 rows containing missing values ('geom_line()').
```


Comparing all binary models

We will now compare all the models created to each other to find the best predictive model for COVID-19 recovery time which will be represented as a binarized outcome.

```
##
## Call:
## summary.resamples(object = resample)
##
## Models: logistic, penalized_log, lda, qda, naive_bayes, gam, mars, rpart, ctree, rf, boosting
## Number of resamples: 10
```

```
##
## ROC
##
                             1st Qu.
                                        Median
                                                    Mean
                                                           3rd Qu.
                 0.6334270\ 0.6881678\ 0.7144460\ 0.7061498\ 0.7215150\ 0.7602216
## logistic
## penalized log 0.6580059 0.6874492 0.7025468 0.7065405 0.7292129 0.7514847
                                                                                 0
                 0.6557789 0.6853678 0.7027752 0.7055242 0.7292683 0.7538831
## lda
                 0.6377912 0.6726178 0.6916958 0.6904075 0.7145856 0.7270455
## qda
                 0.6717679 \ 0.6886297 \ 0.6983646 \ 0.7046511 \ 0.7201062 \ 0.7549680
## naive bayes
                                                                                 0
## gam
                 0.6790201 0.6999509 0.7145024 0.7164725 0.7252027 0.7582229
                 0.6710827\ 0.7026620\ 0.7267055\ 0.7201370\ 0.7319041\ 0.7582955
## mars
## rpart
                 0.5994746 0.6597818 0.6683892 0.6688046 0.6854076 0.7159947
                 0.6348218 0.6516219 0.6777691 0.6758037 0.7008908 0.7145101
                                                                                 0
## ctree
                 0.6620603 0.6841571 0.6899077 0.6986612 0.7070866 0.7616492
## rf
                                                                                 0
                 0.6611466 0.6880351 0.7135098 0.7096156 0.7247554 0.7599931
## boosting
##
## Sens
##
                                                    Mean
                      Min.
                             1st Qu.
                                        Median
                                                           3rd Qu.
                                                                        Max. NA's
## logistic
                 0.8844221 0.9057789 0.9097739 0.9142010 0.9309045 0.9396985
## penalized_log 0.8894472 0.9007538 0.9072613 0.9156784 0.9311495 0.9550000
                                                                                 0
                 0.9045226 0.9145729 0.9223116 0.9272236 0.9411621 0.9600000
                                                                                 0
## qda
                 0.6532663 \ 0.6858606 \ 0.6967462 \ 0.6979271 \ 0.7035176 \ 0.7450000
                                                                                 Λ
                 0.9800000 0.9949749 0.9949749 0.9944849 0.9987500 1.0000000
## naive bayes
                 0.8643216 0.8907035 0.9022739 0.9026432 0.9184485 0.9300000
## gam
                 0.8643216 0.8923744 0.9045226 0.9021533 0.9137500 0.9246231
## mars
                 0.8341709 0.8644912 0.8793970 0.8765653 0.8875000 0.9195980
## rpart
## ctree
                 0.8542714 0.8657412 0.8793970 0.8890754 0.9195980 0.9400000
                                                                                 0
                 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
                                                                                 0
## rf
                 0.9547739 0.9610992 0.9723618 0.9729095 0.9849246 0.9900000
                                                                                 0
## boosting
##
## Spec
##
                       Min.
                               1st Qu.
                                           Median
                                                        Mean
                                                                3rd Qu.
## logistic
                 0.17045455 0.23946629 0.27119510 0.26272983 0.29012385 0.31818182
## penalized_log 0.17045455 0.20454545 0.26136364 0.24795710 0.29012385 0.30337079
                 0.14772727 \ \ 0.19602273 \ \ 0.25989530 \ \ 0.23891726 \ \ 0.27272727 \ \ 0.30337079
## lda
                 0.44318182 0.59375000 0.61018897 0.59442033 0.62215909 0.66292135
## qda
## naive_bayes
                 0.01123596 \ 0.01136364 \ 0.01136364 \ 0.01699438 \ 0.02266343 \ 0.03409091
## gam
                 0.15909091 0.22443182 0.29934883 0.28538049 0.34646323 0.38636364
## mars
                 0.18181818 0.25284091 0.29366701 0.29664198 0.34659091 0.40449438
                 0.18181818 0.23103933 0.26136364 0.26160623 0.28651685 0.35227273
## rpart
                 0.08988764 0.14488636 0.24840398 0.22197395 0.29462462 0.30681818
## ctree
                 ## rf
                 0.05681818 0.07887513 0.09595250 0.09624617 0.11331716 0.13636364
## boosting
                 NA's
                    0
## logistic
                    0
## penalized_log
                    0
## lda
## qda
                    0
                    0
## naive_bayes
## gam
                    0
## mars
                    0
                    0
## rpart
                    0
## ctree
## rf
                    0
## boosting
                    0
```

bwplot(resample, metric = "ROC")

partial dependence plots

