Lecture Notes in Measure Theory

Ashish Kujur

Last Updated: August 22, 2022

Introduction

This is a set of lecture notes which I took for reviewing stuff that I typed after taking class from *Dr. Sachindranath Jayaraman*. All the typos and errors are of mine.

Contents

§1	Lecture 1 — 10th August 2022 — Review of things done in the previous	
	semester	1
	§1.1 Definitions and Some Results	1
	$\S1.2$ Dynkin's pi-lambda theorem; Measures and their properties	E
§2	Lecture 2 — 12th August 2022 — Properties of Measures and Definition	
	of semialgebra	3
	§2.1 Properties of Measures	4
§ 3	Lecture 3 — From semialgebra to algebra, measurable sets	5
	§3.1 Extension of measures from semialgebras to algebras	6
	§3.2 Outer Measures	8
§1	Lecture 1 — 10 th August 2022 — Review of thin	gs

§1.1 Definitions and Some Results

done in the previous semester...

Definition §1.1.1 (algebra). Let Ω be nonempty set. An algebra \mathscr{F} is a collection of subsets of Ω satisfying the following properties:

- 1. $\Omega \in \mathscr{F}$,
- 2. $A \in \mathscr{F} \Rightarrow A^c \in \mathscr{F}$ and
- 3. \mathcal{F} is closed under finite unions.

It immediately follows from the definition an algebra of sets is closed under taking finite intersections.

Definition §1.1.2 (σ -algebra). Let Ω be nonempty set. A σ -algebra \mathscr{F} is a collection of subsets of Ω satisfying the following properties:

- 1. $\Omega \in \mathscr{F}$,
- 2. $A \in \mathscr{F} \Rightarrow A^c \in \mathscr{F}$ and
- 3. \mathcal{F} is closed under countable unions.

Fact §1.1.3. Let Ω be a set, $\mathscr{F} \subseteq \mathcal{P}(\Omega)$. \mathscr{F} is an σ -algebra iff \mathscr{F} is an algebra that is continuous from below, that is, if $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathscr{F}$ and $A_n\subset A_{n+1}$ for all $n\in\mathbb{N}$ then $\bigcup_n A_n\in\mathscr{F}$.

Definition §1.1.4 (σ -algebra generated by a subset of power set). Let Ω be a nonempty set. Given an nonempty collection \mathcal{C} of subsets of Ω , the σ -algebra generated by \mathcal{C} , $\sigma(\mathcal{C})$ is defined to be the intersection of all σ -algebra containing \mathcal{C} . Notationally,

$$\sigma(\mathcal{C}) = \bigcap \{ \sigma - \text{algebra that contains } \mathcal{C} \}$$

Definition §1.1.5 (Borel σ -algebra). If Ω is a topological space then the Borel σ -algebra is the smallest σ -algebra containing the open sets of Ω .

Fact §1.1.6. If $\Omega = \mathbb{R}^n$ the Borel σ -algebra is generated by

- $\{(a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n) \mid -\infty \le a_i < b_i \le b_i \le +\infty\}$
- $\{(-\infty, a_1) \times (-\infty, a_2) \times \cdots (-\infty, a_n) \mid a_1, a_2, \dots, a_n \in \mathbb{R}\}$
- $\{(a_1,b_1)\times(a_2,b_2)\times\cdots\times(a_n,b_n)\mid a_i,b_i\in\mathbb{Q}\}$

Definition §1.1.7 (π -system, λ -system). A collection \mathcal{C} of subsets of Ω is called a π -system if \mathcal{C} is closed under finite- \cap .

A collection \mathcal{L} of subsets of Ω is called a λ -system if the following hold:

- $\Omega \in \mathcal{L}$,
- $A, B \in \mathcal{L}$ and $A \subset B$ implies $B \setminus A \in \mathcal{L}$
- if $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{L}$ and $A_n\subset A_{n+1}$ for all $n\in\mathbb{N}$ then $\bigcup_n A_n\in\mathcal{L}$

Definition §1.1.8. Let \mathcal{C} be a collection of nonempty subsets of a nonempty set Ω . The λ -system generated by \mathcal{C} , denoted as $\lambda(\mathcal{C})$ is the intersection of all λ -systems containing \mathcal{C} .

§1.2 Dynkin's pi-lambda theorem; Measures and their properties

Theorem §1.2.1 (Dynkin $\pi - \lambda$ theorem). If C is a π -system of a nonempty set Ω then $\lambda(C) = \sigma(C)$. Equivalently, if \mathcal{L} is a λ -system that contains C then $\mathcal{L} \supset \lambda(C)$.

Definition §1.2.2. Let \mathcal{F} be a σ -algebra of subsets of Ω . A extended real valued function μ on \mathcal{F} is called a *measure* if the following hold:

- 1. $\mu(A) \geq 0$ for all $A \in \mathcal{F}$,
- 2. $\mu(\emptyset) = 0$
- 3. If $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{F}$ such that $\bigcup A_n\in\mathcal{F}$ and $A_n\cap A_m=\emptyset$ for all $m\neq n$ then $\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\sum_i\mu(A_i)$
- **Example §1.2.3** (Some examples of measures). 1. Let $\Omega \neq \emptyset$, $\mathcal{F} = \mathcal{P}(\Omega)$. We define μ on \mathcal{F} by $\mu(A)$ is the number of elements of A if A is finite and $\mu = +\infty$ if A contains infinitely many elements. Then μ is a measure on \mathcal{F} .
 - 2. Let $\Omega = [0, 1]$ and $\mathcal{F} = \mathcal{B}([0, 1])$. Let $\{p_n\}$ be a sequence of numbers in [0, 1] such that $\sum p_i = 1$. Define $\mu(A) = \sum_{i \in \mathbb{N}} p_i \delta_{p_i}(A)$. Then μ is a measure on \mathcal{F} .
 - 3. Let F be a non-decreasing right-continuous function on \mathbb{R} . Define μ_F to be Lebesgue-Stieljes measure induced by F. Recall that $\mu_F((a,b]) = b a$. Then μ_F is an example of σ -finite Radon measure on the Borel σ -algebra on \mathbb{R} .

Theorem §1.2.4. Let \mathcal{F} be a σ -algebra on a nonempty set Ω . Let $\mu : \mathcal{F} \to [0, \infty]$ be a function. μ is a measure on \mathcal{F} iff

- 1. μ is finitely additive (that is, if $A, B \in \mathcal{F}$ such that $A \cap B = \emptyset$ then $\mu(A \cup B) = \mu(A) + \mu(B)$) and
- 2. μ is continuous from below (that is, if $\{A_n\}$ is nondecreasing sequence of elements from \mathcal{F} then $\mu(\bigcup (A_i)) = \lim_{n \to \infty} \mu(A_n)$).

§2 Lecture 2 — 12th August 2022 — Properties of Measures and Definition of semialgebra

Proof of Theorem §1.2.4. Let $\mu: \mathcal{F} \to [0, \infty]$ be a function.

(\Rightarrow) Suppose that μ is a measure. We first show that μ is finitely additive. Let $A, B \in \mathcal{F}$ and suppose that $A \cap B = \emptyset$. Let $A_1 = A$ and $A_2 = B$ and $A_n = \emptyset$ for all $n \geq 3$. Then $\mu(A \cup B) = \mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i) = \mu(A) + \mu(B)$ as $\mu(\emptyset) = 0$.

We now prove that μ is continuous from below. Let $\{A_n\}$ be anondecreasing sequence of elements from \mathcal{F} . Define $B_1 = A_1$ and $B_n = A_n \setminus A_{n-1}$ for each $n \geq 2$. Clearly, $\bigcup_n B_n = \bigcup_n A_n$

and $B_n \cap B_m = \emptyset$ for all $m \neq n$.

$$\mu\left(\cup_{n} A_{n}\right) = \mu\left(\cup_{n} B_{n}\right)$$

$$= \sum_{n \in \mathbb{N}} \mu\left(B_{n}\right)$$

$$= \lim_{m} \left[\mu(A_{1}) + \sum_{n=2}^{m} \left(\mu\left(A_{n}\right) - \mu\left(A_{n-1}\right)\right)\right]$$

$$= \lim_{m} \mu(A_{m})$$

 (\Leftarrow) Now suppose that μ is finitely additive and continuous from below. We intend to prove that μ is a measure. It is clear that from finite additivity that $\mu(\emptyset) = 0$. Let $\{A_n\}$ be a sequence of elments from \mathcal{F} . Define $B_n = \bigcup_{i=1}^n A_i$ for all $n \in \mathbb{N}$. Clearly, $B_n \nearrow \bigcup_{k=1}^\infty A_k$. Clearly, $\{B_n\}$ is an nondecreasing sequence of elements from \mathcal{F} . Then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu\left(\bigcup_{i=1}^{\infty} B_n\right)$$

$$= \lim_{n \to \infty} \mu\left(B_n\right) \qquad \text{(using continuity from below)}$$

$$= \lim_{n \to \infty} \mu\left(\bigcup_{j=1}^{n} A_j\right)$$

$$= \lim_{n \to \infty} \sum_{j=1}^{n} \mu\left(A_j\right) \qquad \text{(finite additivity)}$$

$$= \sum_{j=1}^{\infty} \mu(A_j)$$

§2.1 Properties of Measures

Theorem §2.1.1. Let μ be a measure on a σ -algebra \mathcal{F} . Then

- (1) μ is monotone,
- (2) μ is finitely additive, that is, $\mu(A_1 \cup A_2 \cup \ldots \cup A_n) \leq \sum_{i=1}^k \mu(A_k)$ for $A_1, A_2, \ldots, A_k \in \mathcal{F}$.
- (3) the inclusion-exclusion formula holds,
- (4) μ is continuous from above, that is, if $(A_n) \subset \mathcal{F}$ such that $A_n \supset A_{n+1}$ for all $n \in \mathbb{N}$ and $\mu(A_{n_0}) < +\infty$ for some n_0 then $\lim \mu(A_n) = \mu(\cap_n A_n)$ and
- (5) μ is countably subadditive, that is, if $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{F}$ then $\mu(\cup_n A_n)\leq\sum_{i=1}^{\infty}\mu(A_n)$

Proof. We show that μ is monotone. Let $A \subset B$ be elements of \mathcal{F} . Then $B = A \cup B \setminus A$. Hence $\mu(B) = \mu(A) + \mu(B \setminus A)$. Since $\mu(B \setminus A) \geq 0$, we have that $\mu(B) \geq \mu(A)$.

Now, we prove that the inclusion exclusion formula holds for μ . Let $A, B \in \mathcal{F}$. If both $\mu(A) = +\infty$ and $\mu(B) = +\infty$ then there is nothing to prove. So, assume wlog that $\mu(A) < \infty$. Then $\mu(A \cap B) < \infty$. Then

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B \setminus A) + \mu(B \cap A)$$
$$= \mu(A) + (\mu(B \setminus A) + \mu(B \cap A))$$
$$= \mu(A) + \mu(B)$$

Now, finite subadditivity follows immediately from inclusion-exclusion formula and induction.

We now prove that μ is continuous from below. Let $\{A_n\}$ be a sequence of decreasing sequence sets with $\mu(A_{n_0}) < +\infty$ for some n_0 . Then we have that $\mu(A_1) \leq \mu(A_{n_0}) < +\infty$. Define $B_n = A_1 \setminus A_n$ and $B = A_1 \setminus \cap_n A_n$. It is easy to see that $B_n \uparrow B$ (draw pictures!). From Theorem §1.2.4 (continuity from below), we have that $\lim \mu(B_n) = \mu(B)$.

Now, observe that $\mu(B_n) = \mu(A_1) - \mu(A_n)$ for each n. So, $\mu(B) = \lim \mu(B_n) = \mu(A_1) - \lim \mu(A_n)$.

Also, we have that $\mu(B) = \mu(A_1) - \mu(\cap_n A_n)$. Hence, we have that $\lim \mu(A_n) = \mu(\cap_n A_n)$. We now prove that μ is countably subadditive. Let $\{A_n\}$ be a sequence of elements from \mathcal{F} . Then $B_k := \bigcup_{n=1}^k A_n \uparrow \bigcup_n A_n$. By continuity from below, we have that $\mu(\bigcup_n A_n) = \lim_k \mu(B_k) \leq \lim_k (\mu(A_1) + \mu(A_2) + \ldots + \mu(A_k)) = \sum_{k=1}^{\infty} \mu(A_k)$. Note that the inequality is due to finite subadditivity.

Definition §2.1.2. A collection \mathcal{C} of subsets of Ω is called a *semialgebra* if \mathcal{C} is closed under finite- \cap and if $A \in \mathcal{C}$ then there exists some $B_1, B_2, \ldots, B_n \in \mathcal{C}$, pairwise disjoint, such that $A^c = \bigcup_{i=1}^n B_i$.

Exercise §2.1.3. Find a general formulation of the inclusion-exclusion principle for measures.

§3 Lecture 3 — From semialgebra to algebra, measurable sets...

Remark §3.0.1. If \mathcal{C} is a nonempty semialgebra on Ω then $\emptyset \in \mathcal{C}$.

This remark can be verified as follows: Since \mathcal{C} is nonempty, let $A \in \mathcal{C}$. Since \mathcal{C} is a semialgebra, there are elements $B_i \in \mathcal{C}(1 \le i \le n)$ such that $A^c = \bigcup_{i=1}^n B_i$ and $B_i \cap B_j = \emptyset$ for $i \ne j$. If n = 1, then $A^c \in \mathcal{C}$ and hence $A \cap A^c = \emptyset \in \mathcal{C}$. Now if $n \ge 2$, we have that $B_1 \cap B_2 = \emptyset \in \mathcal{C}$.

Remark §3.0.2. Let $\{A_i\}_{i\in I}$ be a collection of algebras on Ω . Then it can be easily checked that $\bigcap_{i\in I}A_i$ is an algebra on Ω . So if \mathcal{C} is a collection of subsets of Ω then we denote $\mathcal{A}\left(\mathcal{C}\right)$ to be the smallest algebra generated by \mathcal{C} , which is in fact, the intersection of all algebras that contain \mathcal{C} .

Definition §3.0.3 (Measure on a semi-algebra). A nonnegative set function μ on a semialgebra \mathcal{C} of subsets of Ω is called a *measure on* \mathcal{C} if

- (i) $\mu(\emptyset) = 0$
- (ii) μ is countably additive, that is, if $(A_n) \subset \mathcal{C}$, $A_i \cap A_j = \emptyset$ and $\bigcap_{n \in \mathbb{N}} A_n \in \mathcal{C}$ then

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu\left(A_n\right)$$

§3.1 Extension of measures from semialgebras to algebras

Let \mathcal{C} be a semialgebra on Ω . Define \mathscr{A} be the collection of all finite unions of elements of \mathcal{C} . Then in Question 6 from Assignment 1, we showed that $\mathscr{A} = \mathcal{A}(\mathcal{C})$, that is, \mathscr{A} is the smallest algebra containing \mathcal{C} . The following lemma has much more to say though:

Lemma §3.1.1. Let C be a semialgebra of Ω . Let

$$\mathcal{F}(\mathcal{C}) := \left\{ A \subset X : A = \bigcup_{i=1}^{n} B_i \text{ for some } B_i \in \mathcal{C}, B_i \cap B_j = \emptyset \text{ for } i \neq j \right\}$$

Then $\mathcal{F}(\mathcal{C}) = \mathcal{A}(\mathcal{C})$.

Proof. Clearly, $\mathcal{F}(\mathcal{C}) \subset \mathcal{A}(\mathcal{C})$ (see the previous paragraph). Since $\mathcal{A}(\mathcal{C})$ is the smallest algebra generated by \mathcal{C} , we will be done if we show that $\mathcal{F}(\mathcal{C})$ is an algebra containing \mathcal{C} .

Clearly, $\emptyset \in \mathcal{F}(\mathcal{C})$ as $\emptyset \in \mathcal{C}$. The fact that $\mathcal{F}(\mathcal{C})$ is closed under finite unions is pretty evident. To show that $\mathcal{F}(\mathcal{C})$ is closed under complement, let $A \in \mathcal{F}(\mathcal{C})$. Then there are elements $\{B_i\}_{1 \leq i \leq n} \subset \mathcal{C}$, pairwise disjoint, such that $A = \bigcup_{i=1}^n B_i$. Then since $B_i \in \mathcal{C}$, there exists $k_i \in \mathbb{N}$ and $C_{i1}, C_{i2}, \ldots, C_{i,k_i} \in \mathcal{C}$ such that $B_i^c = \bigcup_{j=1}^{k_i} C_{i,j}$. Then $A^c = \bigcap_{i=1}^n \bigcup_{j=1}^{k_i} C_{i,j}$. Interchanging the union and intersection, the result quickly follows.

Theorem §3.1.2. Suppose μ is a measure on a semialgebra \mathcal{C} of subsets of Ω . Let \mathcal{A} be the algebra generated by \mathcal{C} . If $A \in \mathcal{A}$ has a representation $A = \bigcup_{i=1}^n B_i$, where $B_i \in \mathcal{C}$ and $B_i \cap B_j = \emptyset$ for $i \neq j$, then we define a function $\overline{\mu}$ on a subset of \mathcal{A} where the elements $A \in \mathcal{A}$ have aforementioned representation given by $\overline{\mu}(A) = \sum_{i=1}^n \mu(B_i)$. Then

- 1. $\overline{\mu}$ is well defined,
- 2. $\overline{\mu}$ is finitely additive and
- 3. $\overline{\mu}$ is countably additive.

Proof. We first show that $\overline{\mu}$ is indeed well-defined. Let $A \in \mathcal{A}$ and suppose that $A = \bigcup_{i=1}^{m} B_i$ and $A = \bigcup_{i=1}^{n} C_j$ where $\{B_i\} \subset \mathcal{C}$ and $\{C_j\} \subset \mathcal{C}$ are pairwise disjoint. Then note that for

 $i \in \{1 \le l \le n\}$, we have that $B_i = B_i \cap A = B_i \cap \left(\bigcup_{j=1}^n C_j\right) = \bigcup_{j=1}^n (B_i \cap C_j)$. Note that previous union is a pairwise disjoint union. Hence,

$$\sum_{i=1}^{m} \mu(B_i) = \sum_{i=1}^{m} \sum_{j=1}^{n} \mu(B_i \cap C_j)$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{m} \mu(B_i \cap C_j)$$
$$= \sum_{j=1}^{n} \mu(C_j)$$

This shows that $\overline{\mu}$ is well defined.

We show that $\overline{\mu}$ is countably additive. Let $\{A_n\}$ be the collection of elements of \mathcal{A} which can be written as a union of pairwise disjoint elements of \mathcal{C} , $A_n \cap A_m = \emptyset$ for $n \neq m$ and $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$.

Then for each n, there is $k_n \in \mathbb{N}$ and pairwise disjoint elements $B_{n1}, B_{n2}, \ldots, B_{n,k_n} \in \mathcal{C}$ such that $A_n = \bigcup_{i=1}^{k_n} B_{n,i}$.

We also have by Lemma §3.1.1 that there are some $B_1, \ldots, B_k \in \mathcal{C}$, pairwise disjoint, such that $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{i=1}^k B_i$.

Now, for any i, we have that

$$B_{i} = B_{i} \cap \left(\bigcup_{n \in \mathbb{N}} A_{n}\right)$$

$$= \bigcup_{n \in \mathbb{N}} \left(B_{i} \cap A_{n}\right)$$

$$= \bigcup_{n \in \mathbb{N}} \left(B_{i} \cap \bigcup_{j=1}^{k_{n}} B_{n,j}\right)$$

$$= \bigcup_{n \in \mathbb{N}} \bigcup_{j=1}^{k_{n}} \left(B_{i} \cap B_{n,j}\right)$$

$$= \bigcup_{\substack{n \in \mathbb{N} \\ j \in \{1, \dots, k_{n}\}}} \left(B_{i} \cap B_{n,j}\right)$$

Note that the previous union is a pairwise disjoint union. Thus by definition of measure on a semialgebra, we have that for any i

$$\mu(B_i) = \sum_{\substack{n \in \mathbb{N} \\ j \in \{1, \dots k_n\}}} \mu(B_i \cap B_{n,j})$$

Hence,

$$\overline{\mu}(A) = \sum_{i=1}^{k} \mu(B_i)$$

$$= \sum_{i=1}^{k} \sum_{\substack{n \in \mathbb{N} \\ j \in \{1, \dots k_n\}}} \mu(B_i \cap B_{n,j})$$

$$= \sum_{\substack{n \in \mathbb{N} \\ j \in \{1, \dots k_n\}}} \sum_{i=1}^{k} \mu(B_i \cap B_{n,j})$$

$$= \sum_{\substack{n \in \mathbb{N} \\ j \in \{1, \dots k_n\}}} \mu\left(\bigcup_{i=1}^{k} (B_i \cap B_{n,j})\right)$$

$$= \sum_{\substack{n \in \mathbb{N} \\ j \in \{1, \dots k_n\}}} \mu(B_{n,j})$$

$$= \sum_{\substack{n \in \mathbb{N} \\ j \in \{1, \dots k_n\}}} \mu(B_{n,j})$$

$$= \sum_{\substack{n \in \mathbb{N} \\ j \in \mathbb{N}}} \overline{\mu}(A_n)$$

This completes the proof of countable additivity. The proof of finite additivity follows from countable subadditivity. \Box

§3.2 Outer Measures

Definition §3.2.1. Given a measure μ on a semialgebra \mathcal{C} , the *outer measure induced by* μ is the set function μ^* defined on $\mathcal{P}(\Omega)$ as

$$\mu^*(A) := \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) : \{A_n\}_{n \ge 1} \subset \mathcal{C}, A \subset \bigcup_{n \ge 1} A_n \right\}$$

We'd like to remark that μ^* is not an overestimate, that is, $\mu^* = \mu$ on \mathcal{C} and $\mu^* = \overline{\mu}$ on \mathcal{A} .

To verify this remark, let $C \in \mathcal{C}$. We need to show that $\mu^*(C) = \mu(C)$. Clearly by definition of μ^* , we have that $\mu^*(C) \leq \mu(C)$. (Fill the details!)

Definition §3.2.2. A set A is said to be μ^* -measurable if

$$\mu^*(E) = \mu^*(A \cap E) + \mu^*(A^c \cap E)$$
 for all $E \subset \Omega$

The set of all μ^* -measurable sets is denoted by \mathcal{M}_{μ^*} .