Adaptive Analysis

April 7, 2020

```
\tau ::= b \mid \tau \multimap \tau' \mid !_n \tau \mid \tau \times \tau \mid \forall i :: \mathbb{N}. \tau \mid Q
          Types
           Term
                             t ::= c \mid \text{fix } f(x).t \mid tt \mid !t \mid (t_1, t_2) \mid \text{ let } !x = t_1 \text{ in } t_2 \mid \Lambda.t \mid t[] \mid \lambda x.t \mid M(t) \mid x \mid q \mid
                                 case t of \{c_i \Rightarrow t_i\}_{c_i \in b} \mid \text{let } (x_1, x_2) = t_1 \text{ in } t_2
Normal Form
                             \text{nil} \mid \text{cons}(v_1, v_2)
 Mechanisms
                             M := gauss \mid thdt
                             T_b ::= c \mid M(T_{query}) \mid \mathsf{case}\ T_b \ \mathsf{of}\ \{c_i \Rightarrow T_{b_i}\}_{c_i \in b}
            Tree
                             T_{query} := q \mid \mathsf{case} \ T_b \ \mathsf{of} \ \{c_i \Rightarrow T_{query_i}\}_{c_i \in b}
                             depth(c) = 0
          Depth
                             depth(!t) = depth(t)
                             depth(t_1 t_2) = max(depth(t_1), depth(t_2))
                             depth(M(t)) = 1 + depth(t)
                             depth(\lambda x.t) = depth(t)
                             depth(x) = 0
                             depth(q) = 0
                             depth((t_1, t_2)) = max(depth(t_1), depth(t_2))
                             depth(let (x_1, x_2) = t in t') = max(depth(t), depth(t'))
                             depth(let !x = t in t') = max(depth(t), depth(t'))
                             depth(case \ t \ of \ \{c_i \Rightarrow t_i\}_{c_i \in b}) = max(depth(t), depth(t_i))
                             depth(\Lambda.t) = depth(t)
                             depth(t[]) = depth(t)
```

Figure 1: syntax

```
Abstract example \operatorname{gauss}(\operatorname{count}(\phi)) Concrete example \operatorname{gauss}(\operatorname{count}(\lambda r.\pi_1 r \leq 5)) \operatorname{gauss}(\operatorname{count}(\lambda r.\pi_1 r \leq 0.134)) + \operatorname{gauss}(\operatorname{count}(\lambda r.\pi_2 r = \text{"hiv"})) Depth 2 \operatorname{Abstract} \operatorname{case} \operatorname{gauss}(\operatorname{count}(\phi)) \text{ of } \{c_i \Rightarrow \operatorname{gauss}(\operatorname{count}(\phi_i))\}_{c_i \in b} Concrete \phi = \lambda r.\pi_1 r \leq 5; c_1 = 0, \phi_1 = \lambda r.\pi_1 r \leq 5; c_2 = 0.1, \phi_2 = \lambda r.\pi_1 r \leq 3; \cdots Depth 3: \operatorname{case} \operatorname{gauss}(\operatorname{count}(\phi)) \text{ of } \{c_i \Rightarrow \operatorname{case} \operatorname{gauss}(\operatorname{count}(\phi')) \text{ of } \{c_i \Rightarrow \operatorname{gauss}(\operatorname{count}(\phi'_i))\}_{c_i' \in b}\}_{c_i \in b}
```

Figure 2: simple examples

```
Algorithm 1 A two-round analyst strategy for random data (Algorithm 4 in ...)

Require: Mechanism \mathcal{M} with a hidden state X \in \{-1, +1\}^{n \times (k+1)}.

for j \in [k] do.

define q_j(x) = x(j) \cdot x(k) where x \in \{-1, +1\}^{k+1}.

let a_j = \mathcal{M}(q_j)

{In the line above, \mathcal{M} computes approx. the exp. value of q_j over X. So, a_j \in [-1, +1].}

define q_{k+1}(x) = \text{sign}\left(\sum_{i \in [k]} x(i) \times \ln \frac{1+a_i}{1-a_i}\right) where x \in \{-1, +1\}^{k+1}.

{In the line above, \text{sign}(y) = \begin{cases} +1 & \text{if } y \ge 0 \\ -1 & \text{otherwise} \end{cases}.}

let a_{k+1} = \mathcal{M}(q_{k+1})
{In the line above, \mathcal{M} computes approx. the exp. value of q_{k+1} over X. So, a_{k+1} \in [-1, +1].}

return a_{k+1}.

Ensure: a_{k+1} \in [-1, +1]
```

Two-rounds:

$$|\det! g = !(\operatorname{fix} f(j) \lambda k. \\ \operatorname{if} (j < k) \operatorname{then} \\ |\det a = M(\lambda x.(x j) \cdot (x k)) \operatorname{in} \\ (a, j) :: (f (j + 1) k) \\ |\operatorname{else}[l]| \\ \operatorname{in} \\ |\det! l = ! g \, 0 \, K \operatorname{in} \\ |\det! q = ! \lambda x. \operatorname{sign} (\operatorname{foldl}(\lambda acc.\lambda(a, i).(acc + (x i) * l g(\frac{1+a}{1-a})) \, 0 \, l)) \operatorname{in} \\ M(q) \\ x : \operatorname{int} \to \operatorname{int} \\ :: \operatorname{int} \to \operatorname{int} \\ g : \operatorname{int} \to \operatorname{int} \to b * \operatorname{intlist} \\ q : \operatorname{query} \\ M : \operatorname{query} \to b \\ \\ \text{Type derivation:} \\ \text{Let } A = (\operatorname{int} \to \operatorname{int} \to b * \operatorname{intlist}), \; \Gamma = f : A, M : \operatorname{query} \to b, j : \operatorname{int}, k : \operatorname{int} , \; \Gamma_0 = M : \operatorname{query} \to b, \\ [\Delta]_i = g : [A]_i, l : [b * \operatorname{intlist}]_i, q : [\operatorname{query}]_i. \\ \\ \overline{M} : \operatorname{query} \to b \vdash_2 ! \operatorname{fix} f \cdots : !_1 A \qquad \Pi_R \rhd M : \operatorname{query} \to b, g : [A]_1 \vdash_2 \operatorname{let} ! l = ! g \, 0 \, K \operatorname{in} \operatorname{let} ! q = \cdots \operatorname{in} \cdots : b \\ \\ \underline{M} : \operatorname{query} \to b \vdash_2 ! \operatorname{fix} f \cdots \operatorname{in} \operatorname{let} ! l = \cdots \operatorname{in} \cdots : b \\ \\ LET-B \\ \\ LET-B \\$$

Derivation Π_L and Π_R are shown as follows:

 Π_L :

 Π_R :

$$\frac{ \bigcap_{\Gamma \vdash_{0} j < k : \text{bool}} \text{BOOL} \qquad \frac{\dots}{\Gamma \vdash_{1} \text{let } a = M(\dots) \text{ in } (a, j) :: \dots : b * \text{int list}} \text{LET} \qquad \frac{\Gamma \vdash_{0} [] : b * \text{int list}}{\Gamma \vdash_{0} [] : b * \text{int list}} \text{NIL} \qquad \text{IF} \qquad IF} \qquad \frac{f : A, M : \text{query} \rightarrow b, j : \text{int}, k : \text{int} \vdash_{1} \text{if} \dots : b * \text{int list}}{f : A, M : \text{query} \rightarrow b \vdash_{1} \lambda j . \lambda k . \text{if} \dots : \text{int} \rightarrow b * \text{int list}} \qquad \text{ABS} \qquad \text{FIX}} \qquad \frac{M : \text{query} \rightarrow b \vdash_{1} \text{fix} f \dots : A}{M : \text{query} \rightarrow b \vdash_{2} ! \text{fix} f \dots : !_{1} A} \qquad \text{PR} \qquad \frac{M : \text{query} \rightarrow b \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{fix} f \dots : !_{1} A}{\text{PR}} \qquad \frac{\Pi : \text{query} \rightarrow B \vdash_{2} ! \text{query} \rightarrow B}{\text{query} \rightarrow B} \qquad \frac{\Pi : \text{query} \rightarrow B}{\text{query$$

$$\frac{\frac{}{\Gamma \vdash_0 \lambda x.(x\,j) \cdot (x\,k) : \text{query}} \text{QUERY}}{\Gamma \vdash_1 M(\lambda x.(x\,j) \cdot (x\,k)) : b} \text{MT} \qquad \frac{\frac{}{\Gamma,a : b \vdash_0 (a,j) : b * \text{int}} \text{VAR}}{\frac{}{\Gamma,a : b \vdash_0 (a,j) :: (f\,j+1\,k) : b * \text{int list}}} \frac{\text{APP}}{\Gamma,a : b \vdash_0 (a,j) :: (f\,j+1\,k) : b * \text{int list}} \text{CONS}}$$

$$\frac{\Gamma \vdash_1 \text{let } a = M(\lambda x.(x\,j) \cdot (x\,k)) \text{ in } (a,j) :: (f\,j+1\,k) : b * \text{int list}}}{\Gamma,a : b \vdash_0 (a,j) :: (f\,j+1\,k) : b * \text{int list}}} \text{LET}$$

$$\frac{\dots}{g:A\vdash_0 g\,0\,K:b*\text{int list}} \overset{\text{APP}}{\text{DER}} \xrightarrow{DER} \overset{\text{VAR}}{ \begin{array}{c} x:row\vdash_0 sign...:b\\ \vdash_0 \lambda x....:row \to b \end{array}} \overset{\text{ABS}}{\text{ABS}} \xrightarrow{\Gamma_0,\Delta_0 \vdash_0 q:\text{query}} \overset{\text{QUERY}}{\text{QUERY}} \xrightarrow{\text{MT}} \overset{\text{MT}}{ \begin{array}{c} \Gamma_0,g:[A]_1\vdash_1 !g\,0\,K:!_1b*\text{int list} \end{array}} \overset{\text{VAR}}{\text{PR}} \xrightarrow{\Gamma_0,B_1\vdash_1 M(q):b} \overset{\text{MT}}{ \begin{array}{c} \Gamma_0,G_1\vdash_1 M(q):b \end{array}} \overset{\text{MT}}{ \begin{array}{c} \Gamma_0,E_1\vdash_1 M(q):b \end{array}} \overset{\text{LET-B}}{ \begin{array}{c} \Gamma_0,g:[A]_1\vdash_1 !g\,0\,K:!_1b*\text{int list} \end{array}} \overset{\text{LET-B}}{ \begin{array}{c} \Gamma_0,g:[A]_1,l:[b*\text{int list}]_1\vdash_1 \text{let } !q=\cdots \text{in }\cdots:b \end{array}} \overset{\text{LET-B}}{ \begin{array}{c} \Gamma_0,B_1\vdash_1 M(q):b \end{array}} \overset{\text{LET-B}}{ \begin{array}{c} \Gamma_0,B_1$$

 $\Gamma_0, g : [A]_1 \vdash_1 \text{let } !l = !g \circ K \text{ in let } !q = \dots \text{ in } \dots : b$

Figure 3: examples: two rounds

Evaluation:

$$\frac{\text{!fix}\,f\cdots \Downarrow^0 \text{!fix}\,f\cdots}{\text{let}\,!g = !\text{fix}\,f\cdots \text{in let}\,!l = !(\text{fix}\dots 0K) \text{ in }\dots \Downarrow^2 c} \xrightarrow{\text{E-LET-BANG}} \text{E-LET-BANG}}{\text{let}\,!g = !\text{fix}\,f\cdots \text{in let}\,!l = \cdots \text{in }\dots \Downarrow^2 c} \xrightarrow{\text{E-LET-BANG}} \text{E-LET-BANG}$$

$$\frac{\prod_1}{\text{fix}\dots 0K) \Downarrow^0 !(\text{fix}\dots 0K)} \xrightarrow{\text{E-BANG}} \frac{\prod_1}{\text{fix}\dots 0K \Downarrow^1 c_1} \xrightarrow{\text{E-APP}} \frac{\prod_2}{\text{let}\,!g = !(!\lambda x.(\dots 0c_1)) \text{ in }M(q) \Downarrow^1 c} \xrightarrow{\text{E-LET-BANG}} \text{E-LET-BANG}$$

$$\text{let}\,!l = !(\text{fix}\dots 0K) \text{ in }\dots \Downarrow^2 c$$

$$\Pi_1: \frac{\overline{\operatorname{fix} \dots \Downarrow^0 \lambda j. \lambda k....}}{\operatorname{fix} \dots \lozenge^0 \lambda j. \lambda k....} \xrightarrow{\operatorname{E-FIX}} \frac{\overline{\operatorname{O} K \Downarrow^{0K} \operatorname{O}}}{\operatorname{If} \times \operatorname{Int}} \xrightarrow{\operatorname{E-IF}} \operatorname{E-IF}}{\operatorname{fix} \dots \operatorname{O} K \Downarrow^1 c_1} \xrightarrow{\operatorname{E-IF}} \operatorname{E-APP}$$

$$\frac{\overline{M(\dots) \Downarrow^1 c_1'} \text{ E-MT}}{|\text{let } a = M(\dots) \text{ in } \dots \Downarrow^1 c_1} \text{ E-CONS}}{|\text{let } a = M(\dots) \text{ in } \dots \Downarrow^1 c_1} \text{ E-LET}} = \frac{1}{[] \Downarrow^0 []} \text{ E-NIL}}{|\text{II} + \text{III}}$$

$$\Pi_{1-1}: \qquad \qquad \text{if } \dots \text{ let } a = M(\dots) \text{ in } \dots \Downarrow^1 c_1}$$

E-LET-BANG

$$\frac{1}{\{(\lambda x.(\dots 0\,c_1))\downarrow^0!(\lambda x.(\dots 0\,c_1))\}} \xrightarrow{\text{E-BANG}} \frac{1}{\lambda x.(\dots 0\,c_1)\downarrow^0 q} \xrightarrow{\text{E-QUERY}} \frac{1}{M(q)\downarrow^1 c} \xrightarrow{\text{E-MT}} \Pi_2:$$

$$\text{let } !q = !(\lambda x.(\dots 0\,c_1)) \text{ in } M(q)\downarrow^1 c$$

Figure 4: examples: two rounds - evaluation

Multi-rounds:

```
\begin{split} & | \text{let multi\_round} = \text{fix}\, f(j).\lambda k.\lambda D.\lambda I.\lambda S.\lambda SC. \\ & \text{if}\, (j < k) \text{ then} \\ & | \text{let}\, P_j = \text{uniform}(0,1) \text{ in} \\ & | \text{let}\, q_j = \lambda x. \text{if}\, (\text{uniform}(0,1) < p_j) \text{ then 1 else 0 in} \\ & | \text{let}\, q_{j,c} = \lambda x. \text{if}\, (\text{uniform}(0,1) < p_j) \text{ then 1 else 0 in} \\ & | \text{let}\, q_{j,c} = \text{in} \\ & | \text{let}\, a_j = \text{in} \\ & | \text{let}\, S_{j,c} = \text{updt1}\, S_{j,c}\, a_j\, p_j\, q_j \text{in} \\ & | \text{let}\, S_{j,c} = \text{updt2}\, S_{j,c}\, a_j\, p_j\, q_{j,c} \text{in} \\ & | \text{let}\, I_j = \text{updt3}\, S\, SC \text{in} \\ & f(j+1)\, k, (D\setminus I_j)\, I_j\, S_{j,i}\, S_{j,c} \end{split}
```

Figure 5: Caption

$$\begin{array}{c} \text{Types} \qquad \tau ::= \tau_1 + \tau_2 \mid \tau \text{ list} \\ \text{Term} \qquad t ::= \text{inl} \ t \mid \text{inr} \ t \mid \text{nil} \mid \text{cons}(t_1,t_2) \mid \text{ let } x = t_1 \text{ in } t_2 \mid \text{ case } (t,x.t_1,y.t_2) \\ \hline \Gamma \vdash_{n,m} t : \tau \\ \hline \frac{\Gamma,f : \tau_1 \multimap \tau_2, x : \tau_1 \vdash_n t : \tau_2}{\Gamma \vdash_n \text{ fix} f(x).t : \tau_1 \multimap \tau_2} \text{ FIX} \qquad \frac{\Gamma_1 \vdash_{n_1} t : \tau \qquad \Gamma_2, x : \tau \vdash_{n_2} t' : \tau'}{\max(\Gamma_1,\Gamma_2) \vdash_{\max(n_1,n_2)} \text{ let } x = t \text{ in } t' : \tau'} \text{ LET} \\ \hline \frac{\Gamma \vdash_{n_1} t : \tau_1}{\Gamma \vdash_{n_1} \text{ inl } t : \tau_1 + \tau_2} \text{ INL} \qquad \frac{\Gamma \vdash_{n_2} t : \tau_2}{\Gamma \vdash_{n_2} \text{ inr } t : \tau_1 + \tau_2} \text{ INR} \\ \hline \frac{\Gamma_1 \vdash_{n_1} t : \tau_1 + \tau_2}{\max(\Gamma_1,\Gamma_2,\Gamma_3) \vdash_{\max(n_1,n_2,n_3)} \text{ case } (t,x.t_1,y.t_2) : \tau} \text{ CASE} \qquad \frac{\vdash \tau \text{ wf}}{\Gamma \vdash_0 \text{ nil} : \tau \text{ list}} \text{ NIL} \\ \hline \frac{\Gamma_1 \vdash_{n_1} t : \tau}{\max(\Gamma_1,\Gamma_2) \vdash_{\max(n_1,n_2)} \text{ cons } (t_1,t_2) : \tau \text{ list}} \text{ CONS} \\ \hline \tau \subseteq \tau \\ \hline \hline \frac{(!_i\tau_1,!_j\tau_2) \subseteq !_{\max(i,j)}(\tau_1,\tau_2)}{(!_i\tau_1,!_j\tau_2) \subseteq !_{\max(i,j)}(\tau_1,\tau_2)} \text{ S-PAIR} \qquad \frac{!_i\tau_1 \text{ list} \subseteq !_i\tau_1 \text{ list}}{!_i\tau_1 \text{ list}} \text{ S-LIST} \\ \hline \end{array}$$

Figure 6: New added components

$$\begin{split} & \Gamma \vdash_{n,m} t : \tau \\ & \Gamma \vdash_{n,m} c : b \end{split} \qquad \qquad \frac{\Gamma, x : \tau_1 \vdash_n t : \tau_2}{\Gamma \vdash_{n,m} \lambda x . t : \tau_1 \multimap \tau_2} \text{ ABS} \qquad \qquad \frac{[\Gamma] \vdash_n t : \tau}{\Delta, p + [\Gamma] \vdash_{n+p} ! t : !_p \tau} \Pr_{\Gamma} \\ & \frac{\Gamma_1 \vdash_{n_1} t_1 : \tau_1 \multimap \tau_2}{\Delta, 1 + [\Gamma] \vdash_{n+1} M(t) : b} \text{ MT} \qquad \qquad \frac{\Gamma_1 \vdash_{n_1} t_1 : \tau_1 \multimap \tau_2}{\Gamma_1 \vdash_{n_1} t_1 : \tau_1 \multimap \tau_2} \Pr_{\Gamma} \\ & \frac{\Gamma_1 \vdash_{n_1} t_1 : \tau_1 \multimap \tau_2}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} t_1 t_2 : \tau_2} \Pr_{\Gamma} \\ & \frac{\Gamma_1 \vdash_{n_1} t : !_p \tau}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} (t_1 t_2 : \tau_2)} \Pr_{\Gamma} \\ & \frac{\Gamma_1 \vdash_{n_1} t : \tau_1 \times \tau_2}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} (t_1 t_2 : \tau_2)} \Pr_{\Gamma} \\ & \frac{\Gamma_1 \vdash_{n_1} t : \tau_1 \times \tau_2}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} (t_1, t_2) : \tau_1 \times \tau_2} \Pr_{\Gamma} \\ & \frac{\Gamma_1 \vdash_{n_1} t : \tau_1}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} (t_1, t_2) : \tau_1 \times \tau_2} \Pr_{\Gamma} \\ & \frac{\Gamma_1 \vdash_{n_1} t : t : \tau_1 \qquad \Gamma_2 \vdash_{n_2} t_2 : \tau_2}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} (t_1, t_2) : \tau_1 \times \tau_2} \Pr_{\Gamma} \\ & \frac{\Gamma_1 \vdash_{n_1} t : b}{\max(\Gamma_1, \Gamma_2) \vdash_{(n_1 + n_2)} \cos t \text{ of } \{c_i \Rightarrow t_i\}_{c_i \in b} : b} \Pr_{\Gamma} \\ & \frac{\Gamma_1 \vdash_{n_1} t : b}{\max(\Gamma_1, \Gamma_2) \vdash_{(n_1 + n_2)} \cos t \text{ of } \{c_i \Rightarrow t_i\}_{c_i \in b} : query} \Pr_{\Gamma} \\ & \frac{i :: \mathbb{N}; \Gamma \vdash_n t : \tau}{\Gamma \vdash_n \lambda t : \forall i :: \mathbb{N}, \tau} \Pr_{\Gamma} \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma \vdash_{n_1} t : \tau} \frac{\Gamma' \subseteq \Gamma}{\Gamma \vdash_{n_1} t : \tau'} \implies \Gamma \vdash_{n_1} t : \Gamma : \mathbb{N} \\ & \frac{\Gamma \vdash_{n_1} t : \tau}{\Gamma' \vdash_{n_1} t : \tau'} \Pr_{\Gamma} \vdash_{\Gamma} \tau : \tau'} \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma' \vdash_{n_1} t : \tau'} \Pr_{\Gamma} \Pr_{\Gamma} \leq \Gamma \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma' \vdash_{n_1} t : \tau'} \Pr_{\Gamma} \Pr_{\Gamma} \leq \Gamma} \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma' \vdash_{n_1} t : \tau'} \Pr_{\Gamma} \Pr_{\Gamma} \leq \Gamma} \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma' \vdash_{n_1} t : \tau'} \Pr_{\Gamma} \Pr_{\Gamma} \Pr_{\Gamma} \Gamma = \Gamma} \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma' \vdash_{n_1} t : \tau'} \Pr_{\Gamma} \Pr_{\Gamma} \Gamma = \Gamma} \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma' \vdash_{n_1} t : \tau'} \Pr_{\Gamma} \Pr_{\Gamma} \Gamma} \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma' \vdash_{n_1} t : \tau'} \Pr_{\Gamma} \Pr_{\Gamma} \Gamma} \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma' \vdash_{n_1} t : \tau'} \Pr_{\Gamma} \Pr_{\Gamma} \Gamma} \\ \end{pmatrix}_{\Gamma} \Pr_{\Gamma} \Pr_{\Gamma} \Pr_{\Gamma} \Gamma} \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma' \vdash_{n_1} t : \tau'} \Pr_{\Gamma} \Pr_{\Gamma} \Gamma} \\ \end{pmatrix}_{\Gamma} \Pr_{\Gamma} \Pr_{\Gamma} \Pr_{\Gamma} \Pr_{\Gamma} \Gamma} \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma' \vdash_{n_1} t : \tau'} \Pr_{\Gamma} \Pr_{\Gamma} \Gamma} \\ \end{pmatrix}_{\Gamma} \Pr_{\Gamma} \Pr_{\Gamma} \Pr_{\Gamma} \Pr_{\Gamma} \Gamma} \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma' \vdash_{n_1} t : \tau'} \Pr_{\Gamma} \Pr_{\Gamma} \Gamma} \\ \end{pmatrix}_{\Gamma} \Pr_{\Gamma} \Pr_{\Gamma} \Pr_{\Gamma} \Pr_{\Gamma} \Gamma} \\ & \frac{\Gamma \vdash_n t : \tau}{\Gamma \vdash_{n_1} t : \tau} \Pr_{\Gamma} \Pr_{$$

Figure 7: Typing judgment

$$\frac{A <: B \qquad q \le p}{!_p A <: !_q B} \text{ S-B} \qquad \frac{A' <: A \qquad B <: B'}{A \multimap B <: A' \multimap B'} \text{ S-ARROW}$$

$$\frac{A \subseteq B \qquad q \le p}{[A]_p \subseteq [B]_q} \text{ S-D} \qquad \frac{\Gamma \subseteq \Gamma}{\Gamma \subseteq \Gamma} \text{ S-IDC} \qquad \frac{A \subseteq B \qquad \Gamma \subseteq \Delta}{\Gamma, x : A \subseteq \Delta, x : B} \text{ S-CTX}$$

$$\frac{\Delta \subseteq \Gamma}{x : \tau, \Delta \subseteq \Gamma} \text{ S-xctx1} \qquad \frac{\Delta \subseteq \Gamma}{x : [\tau]_p, \Delta \subseteq \Gamma} \text{ S-xctx2}$$

Figure 8: sub typing

$$\frac{t \downarrow^m v}{c \downarrow^0 c} \text{ E-const} \qquad \frac{q \downarrow^0 q}{q} \text{ E-query} \qquad \frac{\lambda x.t \downarrow^0 \lambda x.t}{\lambda x.t \downarrow^0 \lambda x.t} \text{ E-ABS}$$

$$\frac{t_1 \downarrow^{m_1} v_1 \qquad t_2 \downarrow^{m_2} v_2}{(t_1, t_2) \downarrow^{\max(m_1, m_2)} (v_1, v_2)} \text{ E-pair}$$

$$\frac{t_1 \downarrow^{m_1} \lambda x.t \qquad t_2 \downarrow^{m_2} v \qquad t[v/x] \downarrow^{m_3} v'}{t_1 t_2 \downarrow^{\max(m_1, m_2) + m_3} v'} \text{ E-APP}$$

$$\frac{t_1 \downarrow^{m_1} ! t_3 \qquad t_3 \downarrow^{m_2} v' \qquad t_2[v'/x] \downarrow^{m_3} v}{|\text{let } ! x = t_1 \text{ in } t_2 \downarrow^{\max(m_1 + m_2, m_3)} v} \text{ E-LET-BANG}$$

$$\frac{t \downarrow^{m_1} (v_1, v_2) \qquad t'[v_1/x_1][v_2/x_2] \downarrow^{m_2} v}{|\text{let } (x_1, x_2) = t \text{ in } t' \downarrow^{\max(m_1, m_2)} v} \text{ E-LET-P}$$

$$\frac{t \downarrow^m v \qquad t_i \downarrow^{m_i} v_i}{\text{case } t \text{ of } \{c_i \Rightarrow t_i\}_{c_i \in b} \downarrow^{m+\max(m_i)} \text{ case } v \text{ of } \{c_i \Rightarrow v_i\}_{c_i \in b}} \text{ E-CASE}$$

$$\frac{t \downarrow^m v \qquad M(v) \downarrow^1 v'}{M(t) \downarrow^{m+1} v'} \text{ E-MECH}$$

Figure 9: Evaluation Rules

$$\frac{b \Downarrow^{0} true \qquad t_{1} \Downarrow^{m} v_{1}}{\text{if } b \text{ then } t_{1} \text{ else } t_{2} \Downarrow^{m} v_{1}} \text{ E-IF-TRUE} \qquad \frac{b \Downarrow^{0} false \qquad t_{2} \Downarrow^{m} v_{2}}{\text{if } b \text{ then } t_{1} \text{ else } t_{2} \Downarrow^{m} v_{2}} \text{ E-IF-FALSE} \qquad \frac{1}{\text{nil} \Downarrow^{0} \text{ nil}} \text{ E-NIL}$$

$$\frac{t_{1} \Downarrow^{m_{1}} v_{1} \qquad t_{2} \Downarrow^{m_{2}} v_{2}}{\text{cons}(t_{1}, t_{2}) \Downarrow^{\max(m_{1}, m_{2})} \text{cons}(v_{1}, v_{2})} \text{ E-CONS} \qquad \frac{t_{2} \Downarrow^{m_{2}} v_{2} \qquad t[v_{2}/x] \Downarrow^{m} v}{\text{let } x = t_{2} \text{ in } t \Downarrow^{\max(m_{2}, m)} v} \text{ E-LET}$$

Figure 10: New Added Evaluation Rules

```
= \{e \,|\, \exists v.e \Downarrow v \land v \in [\![\tau]\!]_v\}
                    \llbracket \tau 
rbracket_{\epsilon}
                    \llbracket b \rrbracket_v
                                                    = \{ v \mid v = T_b \}
    [[query]]_v
                                                   = \{ v \mid v = T_{query} \}
   [\![\tau_1 \to \tau_2]\!]_v
                                                   = \{ \lambda x.t \mid \forall v \in [\![\tau]\!]_v.t[v/x] \in [\![\tau_2]\!]_\epsilon \}
            [\![\,!_n\tau]\!]_v
                                                    =\{!t\,|\,t\in[\![\tau]\!]_\epsilon\}
                                                   = \{ \Lambda.t \,|\, \forall I. \vdash i :: \mathbb{N}.t[I/i] \in [\![\tau]\!]_{\epsilon} \}
   \llbracket \forall i :: \mathbb{N}. \tau \rrbracket_{v}
                                                   = \{(v_1, v_2) \,|\, v_1 \in [\![\tau_1]\!]_v \wedge v_2 \in [\![\tau_2]\!]_v\}
     [\![\tau_1*\tau_2]\!]_v
                         \llbracket \cdot \rrbracket
                                                    = \{\emptyset\}
                                                   = \{ \gamma[x \to \nu] | \nu \in [\![\tau]\!]_{\nu} \land \gamma \in [\![\Gamma]\!] \}
 [\![\Gamma,x\!:\![\tau]_p]\!]
\llbracket \Gamma, x : [\tau]_p \rrbracket
                                                    = \{ \gamma[x \to v] | v \in [\![!_p\tau]\!]_v \land \gamma \in [\![\Gamma]\!] \}
         \llbracket \Gamma, x : \tau \rrbracket
                                                    = \{ \gamma[x \to v] | v \in [\![\tau]\!]_v \land \gamma \in [\![\Gamma]\!] \}
                                                    \stackrel{\triangle}{=} dom(\gamma) = dom(\Gamma) \land \forall x \in dom(\Gamma). \gamma(x) \in \llbracket \Gamma(x) \rrbracket_v
                  \gamma \models \Gamma
```

Figure 11: denotations

Lemma 1.

- 1. If $\vdash_{n,m} v : b \text{ then } \exists T_b : v = T_b$.
- 2. If $\vdash_{n,m} v$: query then $\exists T_{query} : v = T_{query}$

Lemma 2 (Depth Definition). *If* $\Gamma \vdash_{n,m} t : \tau \text{ then } depth(t) \leq n$

Proof. It is proved by the induction on the structure of the typing derivation.

Case

$$\frac{\Gamma \vdash_n t : \tau \ (\star)}{p + \Gamma \vdash_n ! t : !_p \tau} \text{ PR}$$

TS: depth(!t) $\leq n$.

By IH on (\star) , we get depth $(t) \leq n$

This case is proved because depth(!t) = depth(t).

Case

$$\overline{\Gamma \vdash_0 c : b}$$
 CONST

TS: $depth(c) \le 0$

It is already proved by the definition of depth(c).

Case

$$\frac{\Gamma, x : [\tau_1]_0 \vdash_n t : \tau_2 \ (\star)}{\Gamma \vdash_n \lambda x. t : \tau_1 \multimap \tau_2} \text{ ABS}$$

TS: $depth(\lambda x.t) \leq n$.

By IH on (\star) instantiating the context with $\Gamma, x : [\tau]_0$, we get : depth $(t) \le n$.

This case is proved by the definition of depth($\lambda x.t$).

Case

$$\frac{\Gamma \vdash_{n} t : query \ (\star)}{1 + \Gamma \vdash_{n+1} M(t) : b} \, \mathsf{MT}$$

TS: $depth(M(t)) \le n + 1$.

By IH on (\star) , we get depth $(t) \leq n$.

It is proved by the definition of depth(M(t)) = depth(t) + 1.

Case

$$\frac{}{\Gamma, x : [\tau]_p \vdash_0 x : \tau} \text{ VAR}$$

TS: $depth(x) \leq 0$.

It is proved by the definition of depth(x).

Case

$$\frac{\Gamma_1 \vdash_{n_1} t_1 : \tau_1 \rightarrow \tau_2 \ (\star) \qquad \Gamma_2 \vdash_{n_2} t_2 : \tau_1 \ (\diamond)}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} t_1 t_2 : \tau_2} \text{ APP}$$

TS: depth $(t_1 t_2) \le \max(n_1, n_2)$.

By IH on (\star) and (\diamond) , we get: depth $(t_1) \le n_1 \ (\star \star)$ and depth $(t_2) \le n_2 (\diamond \diamond)$.

Unfold the definition of depth(t_1 t_2) = max(depth(t_1), depth(t_2)).

This case is proved by the $(\star\star)$ and $(\diamond\diamond)$.

Case

$$\frac{}{\Gamma \vdash_0 q : query}$$
 QUERY

TS: $depth(q) \le 0$.

This is proved by the definition of depth(q).

$$\frac{\Gamma_1 \vdash_{n_1} t : !_p \tau \ (\star) \qquad \Gamma_2, x : [\tau]_p \vdash_{n_2} t' : \tau' \ (\diamond)}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} |\text{tet } ! x = t \text{ in } t' : \tau'} \text{ LET}$$

To show: depth(let !x = t in t') $\leq \max(n_1, n_2)$.

By induction Hypothesis on (\star) and (\diamond) , we get: depth $(t) \le n_1$ $(\star \star)$ and depth $(t') \le n_2$ $(\diamond \diamond)$. Unfolding the definition of depth(let !x = t in t') = max(depth(t), depth(t')).

This case is proved by the $(\star\star)$ and $(\diamond\diamond)$.

Case

$$\frac{\Gamma_1 \vdash_{n_1} t : \tau_1 \times \tau_2 \ (\star) \qquad \Gamma_2, x_1 : \tau_1, x_2 : \tau_2 \vdash_{n_2} t' : \tau' \ (\diamond)}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} \text{let } (x_1, x_2) = t \text{ in } t' : \tau'} \text{ LET-P}$$

To show: depth(let $(x_1, x_2) = t$ in t') $\leq \max(n_1, n_2)$.

By induction Hypothesis on (\star) and (\diamond) , we get: depth $(t) \le n_1$ $(\star \star)$ and depth $(t') \le n_2$ $(\diamond \diamond)$.

Unfolding the definition of depth(let $(x_1, x_2) = t$ in t') = max(depth(t), depth(t')).

This case is proved by the $(\star\star)$ and $(\diamond\diamond)$.

Case

$$\frac{\Gamma_1 \vdash_{n_1} t_1 : \tau_1 \quad (\star) \qquad \Gamma_2 \vdash_{n_2} t_2 : \tau_2 \quad (\diamond)}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} (t_1, t_2) : \tau_1 \times \tau_2} \text{ PAIR}$$

To show: $depth((t_1, t_2)) \le max(n_1, n_2)$.

By induction Hypothesis on (\star) and (\diamond) , we get: $\operatorname{depth}(t_1) \leq n_1 \ (\star \star)$ and $\operatorname{depth}(t_2) \leq n_2 \ (\diamond \diamond)$. Unfolding the definition of $\operatorname{depth}((t_1, t_2)) = \max(\operatorname{depth}(t_1), \operatorname{depth}(t_2))$.

This case is proved by the $(\star\star)$ and $(\diamond\diamond)$.

Case

$$\frac{\Gamma_1 \vdash_{n_1} t : b \ (\star) \qquad \Gamma_2 \vdash_{n_2} t_i : b \ (\diamond)}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} \mathsf{case} \ t \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} : b} \ ^{\mathsf{CASE-CONST}}$$

To show: depth(case t of $\{c_i \Rightarrow t_i\}_{c_i \in b}$) $\leq \max(n_1, n_2)$.

By induction Hypothesis on (\star) and (\diamond) , we get: depth $(t) \le n_1 \ (\star \star)$ and depth $(t_i) \le n_2 \ (\diamond \diamond)$.

Unfolding the definition of depth(case t of $\{c_i \Rightarrow t_i\}_{c_i \in b}$) = max(depth(t), depth(t_i)).

This case is proved by the $(\star\star)$ and $(\diamond\diamond)$.

Case

$$\frac{\Gamma_1 \vdash_{n_1} t : b \ (\star) \qquad \Gamma_2 \vdash_{n_2} t_i : query \ (\diamond)}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} \mathsf{case} \ t \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} : query} \ ^{\mathsf{CASE-QUERY}}$$

To show: depth(case t of $\{c_i \Rightarrow t_i\}_{c_i \in b}$) $\leq \max(n_1, n_2)$.

By induction Hypothesis on (\star) and (\diamond) , we get: depth $(t) \le n_1 \ (\star \star)$ and depth $(t_i) \le n_2 \ (\diamond \diamond)$.

Unfolding the definition of depth(case t of $\{c_i \Rightarrow t_i\}_{c_i \in b}$) = max(depth(t), depth(t_i)).

This case is proved by the $(\star\star)$ and $(\diamond\diamond)$.

Case

$$\frac{i :: \mathbb{N}; \Gamma \vdash_{n} t : \tau \ (\diamond) \qquad i \notin FV(\Gamma)}{\Gamma \vdash_{n} \Lambda. t : \forall i :: \mathbb{N}. \tau} \text{ IABS}$$

To show: $depth(\Lambda.t) \leq n$.

By induction Hypothesis on (\diamond) , we get: depth $(t) \le n (\diamond \diamond)$.

Unfolding the definition of $depth(\Lambda.t) = depth(t)$.

This case is proved by the (\diamondsuit) .

Case

$$\frac{\Gamma \vdash_n t \, : \, \forall i :: \mathbb{N}. \, \tau \ \, (\diamond) \qquad \vdash I :: \, \mathbb{N}}{\Gamma \vdash_n t \, [] \, : \, \tau \{I/i\}} \, \text{IAPP}$$

To show: $depth(t[]) \le n$.

By induction Hypothesis on (\diamond) , we get: depth $(t) \le n (\diamond \diamond)$.

Unfolding the definition of depth(t[]) = depth(t).

This case is proved by the (\Leftrightarrow) .

Lemma 3 (Depth Weakening 1). $\Gamma \vdash_{n_1,m} t : \tau \land n_1 \le n_2 \implies \Gamma \vdash_{n_2,m} t : \tau$

Proof. By induction on $\Gamma \vdash_{n_1} t : \tau$.

Lemma 4 (Depth Weakening2). $\Gamma, x : [\tau]_{p_1} \vdash_n t : \tau \land p_1 \le p_2 \implies \exists m.n \le m \text{ s.t. } \Gamma, x : [\tau]_{p_2} \vdash_n t : \tau$

Proof. By induction on Γ , $x : [\tau]_{p_1} \vdash_n t : \tau$.

Case

$$\frac{\Gamma_1 \vdash_{n_1} t_1 : !_p \tau_1 \qquad \Gamma_2, y : [\tau_1]_p \vdash_{n_2} t_2 : \tau_2}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} \mathsf{let} \: ! y = t_1 \; \mathsf{in} \; t_2 : \tau_2} \mathsf{LET-B}$$

where $\tau = \tau_2$, $t = \text{let } ! y = t_1 \text{ in } t_2$.

Subcase 1: $\mathbf{x} \not\in \mathbf{dom}(\Delta_2)$

$$\frac{\Gamma_1', x \colon [\tau]_{p1} \vdash_{n_1} t_1 \colon !_p \tau_1 \ \, (\star) \qquad \quad \Gamma_2, y \colon [\tau_1]_p \vdash_{n_2} t_2 \colon \tau_2 \ \, (\diamond)}{\max(\Gamma_1', x \colon [\tau]_{p1}, \Gamma_2) \vdash_{\max(n_1, n_2)} \mathsf{let} \: !y = t_1 \; \mathsf{in} \; t_2 \colon \tau_2} \; \mathsf{LET-B}$$

To show:max($\Gamma_1', x : [\tau]_{p2}, \Gamma_2$) $\vdash_{\max(n_1, n_2)}$ let $!y = t_1$ in $t_2 : \tau_2$

By ih on (\star) , we get: $\Gamma'_1, x : [\tau]_{p2} \vdash_{n_1} t_1 : !_p \tau_1 \ (\star \star)$.

Applying the rule LET-B on $(\star\star)$ and (\diamond) , this case is proved.

Subcase 2: $\mathbf{x} \not\in \mathbf{dom}(\Delta_1)$

$$\frac{\Gamma_{1} \vdash_{n_{1}} t_{1} : !_{p}\tau_{1} \ (\star) \qquad \Gamma'_{2}, x : [\tau]_{p_{1}}, y : [\tau_{1}]_{p} \vdash_{n_{2}} t_{2} : \tau_{2} \ (\diamond)}{\max(\Gamma_{1}, \Gamma'_{2}, x : [\tau]_{p_{1}}) \vdash_{\max(n_{1}, n_{2})} \mathsf{let} \: !_{y} = t_{1} \; \mathsf{in} \; t_{2} : \tau_{2}} \mathsf{LET-B}$$

To show:max($\Gamma_1', x : [\tau]_{p2}, \Gamma_2$) $\vdash_{\max(n_1, n_2)}$ let ! $y = t_1$ in $t_2 : \tau_2$

By ih on (\diamond) , we get: $\Gamma'_2, x : [\tau]_{p2}, y : [\tau_1]_p \vdash_{n_2} t_2 : \tau_2 (\diamond \diamond)$.

Applying the rule LET-B on (\star) and $(\diamond\diamond)$, this case is proved.

Subcase 3

$$\frac{\Gamma_{1}',x:[\tau]_{p1}\vdash_{n_{1}}t_{1}:!_{p}\tau_{1}}{\max(\Gamma_{1}',\Gamma_{2},x:[\tau]_{p1})\vdash_{\max(n_{1},n_{2})}\text{let }!y=t_{1}\text{ in }t_{2}:\tau_{2}}\text{ LET-B}$$

To show:max($\Gamma'_1, x : [\tau]_{p2}, \Gamma_2$) $\vdash_{\max(n_1, n_2)}$ let ! $y = t_1$ in $t_2 : \tau_2$

By ih on (\diamond) , we get: $\Gamma'_2, x : [\tau]_{p2}, y : [\tau_1]_p \vdash_{n_2} t_2 : \tau_2 (\diamond \diamond)$.

Applying the rule LET-B on (\star) and $(\diamond\diamond)$, this case is proved.

Case

$$\frac{[\Gamma] \vdash_n t : \tau}{\Delta, p + [\Gamma] \vdash_{n+p} ! t : !_p \tau} \operatorname{PR}$$

Lemma 5 (Context weakening - 1). $\Gamma \vdash_{n,m} t : \tau \Longrightarrow \Gamma, x : \tau \vdash_{n,m} t : \tau$

Proof. By induction on $\Gamma \vdash_n t : \tau$ and using ih.

Lemma 6 (Context weakening - 2). $\Gamma \vdash_{n,m} t : \tau \Longrightarrow \Gamma, x : [\tau]_p \vdash_{n,m} t : \tau$

Proof. By induction on $\Gamma \vdash_n t : \tau$, using ih.

Lemma 7 (Context exchange). $\Gamma, x:\tau_1, \Delta, y:\tau_2 \vdash_{n,m} t:\tau \Longrightarrow \Gamma, y:\tau_2, \Delta, x:\tau_1 \vdash_{n,m} t:\tau$

Lemma 8. If $\Gamma \vdash_n t : \tau$ and $\gamma \models \Gamma$, then $\cdot \vdash_n \gamma(t) : \tau$

Lemma 9. If $\Gamma \subseteq \Gamma'$, and $\Gamma' \vdash_n t : \tau$, then $\exists m.n \leq m \text{ s.t. } \Gamma \vdash_m t : \tau$.

Proof. Induction on $\Gamma \subseteq \Gamma'$.

Case

$$\overline{\Gamma \subseteq \Gamma} \text{ S-IDC}$$

 $\Gamma' = \Gamma$.

This case is proved.

Case

$$\frac{\Delta \subseteq \Gamma}{x : \tau', \Delta \subseteq \Gamma} \text{ S-XCTX1}$$

We have $\Gamma \vdash_n t : \tau$.

TS: $x : \tau', \Delta \vdash_n t : \tau$.

By ih, we get: $\exists m.m \ge n$. s.t. $\Delta \vdash_m t : \tau$, this case is proved by Lemma 5.

Case

$$\frac{\Delta \subseteq \Gamma}{x : [\tau']_p, \Delta \subseteq \Gamma} \text{ S-xctx2}$$

We have $\Gamma \vdash_n t : \tau$.

TS: $x : \tau', \Delta \vdash_n t : \tau$.

By ih, we get: $\exists m.m \ge n$. s.t. $\Delta \vdash_m t : \tau$, this case is proved by Lemma 6.

Case

$$\frac{}{\Gamma \subseteq \emptyset} \text{ S-empty}$$

It is proved by Lemma 5 and Lemma 6 several times for every variables in Γ .

Case

$$\frac{A \subseteq B \qquad \Gamma \subseteq \Delta}{\Gamma, x : A \subseteq \Delta, x : B} \text{ S-CTX}$$

We have: Δ , $x : B \vdash_n t : \tau$.

TS: $\exists m.m \ge n \text{ s.t. } \Gamma, x : A \vdash_m t : \tau$

Induction on $A \subseteq B$.

SubCase

$$\frac{}{\tau \subseteq \tau}$$
 S-ID

SubCase

$$\frac{A \subseteq B \qquad q \le p}{!_p A \subseteq !_q B} \text{ S-B}$$

SubCase

$$\frac{A' \subseteq A \qquad B \subseteq B'}{A \multimap B \subseteq A' \multimap B'} \text{ S-ARROW}$$

SubCase

$$\frac{A \subseteq B \qquad q \le p}{[A]_p \subseteq [B]_q} \text{ S-D}$$

Theorem 0.1 (Type Safety). *If* $\cdot \vdash_{n,m} t : \tau$ *then* $\exists F.t \Downarrow F \land \vdash_{n,m} F : \tau$

Proof. We prove this theorem by prove Normalization and Preservation.

Corollary 0.1.1. If $\cdot \vdash_{n,m} t : b \ then \ \exists T_b.t \Downarrow T_b \land \mathsf{depth}(T_b) \le n$

Theorem 0.2 (Normalization). *If* $\cdot \vdash_{n,m} t : \tau \text{ then } \exists F : t \Downarrow F$

We prove two theorems instead.

Theorem 0.3. *If* $\gamma(t) \in [\![\tau]\!]_{\epsilon}$, then $\exists F. \gamma(t) \Downarrow F$.

Proof. It is proved by unfolding the definition of $[\![\tau]\!]_{\epsilon}$.

Theorem 0.4. If $\Gamma \vdash_n t : \tau$ and $\gamma \vDash \Gamma$, then $\gamma(t) \in [\![\tau]\!]_{\epsilon}$.

Proof. Proof by induction on $\Gamma \vdash_n t : \tau$

We have $\gamma \vDash \Gamma$ (\spadesuit).

Case

$$\frac{\Gamma, x : \tau_1 \vdash_n t_1 : \tau_2 \ (\star)}{\Gamma \vdash_{n,m} \lambda x . t_1 : \tau_1 \multimap \tau_2} \text{ ABS}$$

TS: $\gamma(\lambda x.t) \in [\tau_1 \multimap \tau_2]_{\epsilon}$

Because $\gamma(\lambda x.t_1) = \lambda x.\gamma(t_1)$ is value, unfold the definition of $[\tau_1 \multimap \tau_2]_{\epsilon}$, STS: $\gamma(\lambda x.t_1) \in [\tau_1 \multimap \tau_2]_{\nu}$

Unfold the definition of $\llbracket \tau_1 \multimap \tau_2 \rrbracket_{\nu}$, STS: $\forall \nu.\nu \in \llbracket \tau_1 \rrbracket_{\nu}.\gamma(t_1)[\nu/x] \in \llbracket \tau_2 \rrbracket_{\epsilon}$.

Pick v s.t $v \in [\tau_1]_v$. STS: $\gamma(t_1)[v/x] \in [\tau_2]_\varepsilon$.

We have $\gamma[x \to v] \models \Gamma, x : \tau_1$ (\$\darkappa\$) because $\gamma \models \Gamma$ and $v \in [\![\tau_1]\!]_v$ (the assumption).

By IH on (\star) and (\diamond) , we have :

$$\gamma[v/x](t_1) \in [\![\tau_2]\!]_{\epsilon}$$

Because $\gamma[v/x](t_1) = \gamma(t_1[v/x])$, this case is proved.

Case

$$\frac{[\Gamma] \vdash_n t_1 : \tau_1}{\Delta, p + [\Gamma] \vdash_{n+p} ! t_1 : !_p \tau_1} \operatorname{PR}$$

We assume $\gamma \models \Delta$, $p + [\Gamma]$ (\spadesuit).

TS: $\gamma(!t_1) \in [\![!_p\tau_1]\!]_{\epsilon}$

Because $\gamma(!t_1) = |\gamma(t_1)|$ is value, unfold the definition of $[\![!, \tau_1]\!]_{\epsilon}$, STS: $|\gamma(t_1)| \in [\![!, \tau_1]\!]_{\nu}$

Unfold the definition of $[\![!_p\tau_1]\!]_v$, STS: $\gamma(t_1) \in [\![\tau_1]\!]_{\epsilon}$.

We extend the context of the premise to Δ , $p + [\Gamma]$ by Lemma 5 and Lemma 6. By ih, we get : $\gamma(t_1) \in [\tau_1]_{\epsilon}$ (\star).

Case

$$\frac{\Gamma_1 \vdash_{n_1} t_1 : !_p \tau_1 \ (\star) \qquad \Gamma_2, x : [\tau_1]_p \vdash_{n_2} t_2 : \tau' \ (\diamond)}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} \mathsf{let} ! x = t_1 \mathsf{in} \ t_2 : \tau'} \mathsf{LET}$$

We assume $\gamma \models \max(\Gamma_1, \Gamma_2)$ (\spadesuit). TS: $\gamma(\text{let } ! x = t_1 \text{ in } t_2) \in [\![\tau']\!]_{\epsilon}$.

Unfold $\llbracket \tau' \rrbracket_{\epsilon}$, STS: $\exists F. \gamma (\text{let } ! x = t_1 \text{ in } t_2) \Downarrow F \land F \in \llbracket \tau' \rrbracket_{\nu}$.

Extend the context of (\star) to max (Γ_1, Γ_2) using Lemma 5 and Lemma 6 or the rule (SUB). By ih on (\star) we get: $\gamma(t_1) \in [\![t_p \tau_1]\!]_{\epsilon}$ (1)

Unfold (1), we get: $\exists F. \gamma(t_1) \Downarrow F \land F \in [\![!_p \tau_1]\!]_v$ (2).

Unfold (2), we know: $\exists !t_3. \gamma(t_1) \Downarrow !t_3 \land t_3 \in \llbracket \tau_1 \rrbracket_{\epsilon}$ (3).

Unfold (3), we know: $\exists !t_3. \gamma(t_1) \Downarrow !t_3 \land \exists F'. t_3 \Downarrow F' \land F' \in \llbracket \tau_1 \rrbracket_{\nu}$ (4).

Pick F' in (4). Extend the context of (\diamond) to $\max(\Gamma_1, \Gamma_2), x : [\tau_1]_p$ s.t. $\gamma[F'/x] \models \max(\Gamma_1, \Gamma_2), x : [\tau_1]_p$. By ih on (\diamond) we get : $\gamma[F'/x](t_2) \in [\tau']_{\epsilon}$ (5).

Unfold (5), we know $\exists F. \gamma [F'/x](t'_1) \Downarrow F \land F \in \llbracket \tau' \rrbracket_{\nu}$ (6).

This case is proved using the following evaluation rule E-LET-BANG and (6).

$$\frac{\gamma(t_1) \Downarrow^{m_1} ! t_3 \qquad t_3 \Downarrow^{m_2} F' \qquad \gamma(t_2[F'/x]) \Downarrow^{m_3} F}{\text{let } ! x = \gamma(t_1) \text{ in } \gamma(t_2) \Downarrow^{m_1 + m_2 + m_3} F} \text{ E-LET-BANG}$$

$$\frac{\Gamma_1 \vdash_{n_1} t_1 : !_p \tau_1 \ (\star) \qquad \Gamma_2, x : [\tau_1]_p \vdash_{n_2} t_1' : \tau' \ (\diamond)}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} \mathsf{let} \, ! x = t_1 \mathsf{in} \ t_1' : \tau'} \mathsf{LET}$$

We assume $\gamma \vDash \max(\Gamma_1, \Gamma_2)$ (\spadesuit). TS: $\gamma(\text{let } ! x = t_1 \text{ in } t_1') \in [\![\tau']\!]_{\epsilon}$.

Unfold $\llbracket \tau' \rrbracket_{\epsilon}$, STS: $\exists F. \gamma (\text{let } ! x = t \text{ in } t') \Downarrow F \land F \in \llbracket \tau' \rrbracket_{v}$.

Pick γ_1 s.t. $\gamma_1 \models \Gamma_1$. By ih on (\star) we get : $\gamma_1(t_1) \in [\![!_p \tau_1]\!]_{\epsilon}$.

By Lemma 9 and $\Gamma_1 \subseteq \max(\Gamma_1, \Gamma_2)$, we know: $\gamma(t_1) \in [\![t_p \tau_1]\!]_{\epsilon}$ (1)

Unfold (1), we get: $\exists F. \gamma(t_1) \downarrow F \land F \in \llbracket !_p \tau_1 \rrbracket_{\nu}$ (2).

Pick γ_2 s.t. $\gamma_2 \models \Gamma_2 \implies \gamma_2[F/x] \models \Gamma_2, x : [\tau_1]_p$. By ih on (\diamond) we get : $\gamma_2[F/x](t_1') \in \llbracket \tau' \rrbracket_c$ (3).

By Lemma 9 and $\Gamma_2, x : [\tau_1]_p \subseteq \max(\Gamma_1, \Gamma_2), x : [\tau_1]_p$, we know: $\gamma[F/x](t_1') \in [\tau']_{\epsilon}$ (4)

It is proved by unfolding (2),(4) and the following evaluation rule E-LET-BANG.

$$\frac{\gamma(t_1) \Downarrow^{m_1} ! t_2 \qquad \gamma[!t_2/x](t_1') \Downarrow^{m_3} F'}{\text{let } ! x = \gamma(t_1) \text{ in } \gamma(t_1') \Downarrow^{m_1+m_2+m_3} F'} \text{ E-LET-BANG}$$

Case

$$\frac{[\Gamma] \vdash_n t : query}{\Delta, 1 + [\Gamma] \vdash_{n+1} M(t) : b} MT$$

Assume $\gamma \models \Delta$, $1 + [\Gamma]$ (\spadesuit).

TS: $\gamma(M(t)) \in [\![b]\!]_{\epsilon}$.

STS: $\exists F. M(\gamma(t)) \Downarrow F \land F \in [\![b]\!]_v \Longrightarrow \exists T_b. M(\gamma(t)) \Downarrow T_b.$

We assume $\gamma' \models [\Gamma]$, by ih we get : $\gamma'(t) \in [quer y]_{\epsilon}$ (1).

By Lemma 9 and $[\Gamma] \subseteq \Delta$, $1 + [\Gamma]$, we get $\gamma(t) \in [query]_{\epsilon}$ (2)

Unfold (2), we know: $\exists F. \gamma(t) \downarrow F \land F \in [[query]]_v \Longrightarrow F = T_{query}$ (3).

It is proved by E-MECH and (3), $T_b = M(T_{query})$.

$$\frac{\gamma(t) \Downarrow^m T_{query}}{M(t) \Downarrow^m M(T_{query})} \text{E-MECH}$$

Case

$$\frac{}{\Gamma, x : \tau \vdash_{n} x : \tau} VAR$$

Assume $\gamma \vDash \Gamma, x : \tau$.

TS: $\gamma(x) \in [\![\tau]\!]_{\epsilon}$.

Unfold the definition of $\gamma \models \Gamma, x : \tau$, we know : $\gamma(x) \in [\![\tau]\!]_v$.

STS: $F \in [\![\tau]\!]_{\epsilon}$.

It is proved by the assumption and the evaluation rule E-Value.

Case

$$\frac{\Gamma_1 \vdash_{n_1} t : b \ (\star) \qquad \Gamma_2 \vdash_{n_2} t_i : b \ (\diamond)}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} \mathsf{case} \ t \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} : b} \ ^{\mathsf{CASE-CONST}}$$

We assume $\gamma \models \max(\Gamma_1, \Gamma_2)$.

TS: $\gamma(\text{case } t \text{ of } \{c_i \Rightarrow t_i\}_{c_i \in b}) \in [\![b]\!]_{\epsilon} \Longrightarrow \text{case } \gamma(t) \text{ of } \{c_i \Rightarrow \gamma(t_i)\}_{c_i \in b} \in [\![b]\!]_{\epsilon}.$

We assume $\gamma_1 \vDash \Gamma_1$ and $\gamma_2 \vDash \Gamma_2$.

By ih on (\star) , we get : $\gamma_1(t) \in [\![b]\!]_{\epsilon}$.

By ih on (\diamond) , we get : $\gamma_2(t_i) \in [\![b]\!]_{\epsilon}$.

By Lemma 9 and $\Gamma_1 \subseteq \max(\Gamma_1, \Gamma_2)$ and $\Gamma_2 \subseteq \max(\Gamma_1, \Gamma_2)$, we get: $\gamma(t) \in [\![b]\!]_{\varepsilon}$ (1) and $\gamma(t_i) \in [\![b]\!]_{\varepsilon}$ (2). It is proved by unfolding (1) and (2) and using the evaluation rule E-CASE and the definition of T_b .

$$\frac{\Gamma_{1} \vdash_{n_{1}} t : b \left(\star\right) \qquad \Gamma_{2} \vdash_{n_{2}} t_{i} : query \ \left(\diamond\right)}{\max(\Gamma_{1}, \Gamma_{2}) \vdash_{\max(n_{1}, n_{2})} \mathsf{case} \ t \ \mathsf{of} \ \left\{c_{i} \Rightarrow t_{i}\right\}_{c_{i} \in b} : query} \ ^{\mathsf{CASE-QUERY}}$$

We assume $\gamma \models \max(\Gamma_1, \Gamma_2)$.

TS: $\gamma(\text{case } t \text{ of } \{c_i \Rightarrow t_i\}_{c_i \in b}) \in [\![query]\!]_{\epsilon} \implies \text{case } \gamma(t) \text{ of } \{c_i \Rightarrow \gamma(t_i)\}_{c_i \in b} \in [\![query]\!]_{\epsilon}.$

We assume $\gamma_1 \vDash \Gamma_1$ and $\gamma_2 \vDash \Gamma_2$.

By ih on (\star) , we get : $\gamma_1(t) \in [\![b]\!]_{\epsilon}$.

By ih on (\diamond) , we get : $\gamma_2(t_i) \in [query]_{\epsilon}$.

By Lemma 9 and $\Gamma_1 \subseteq \max(\Gamma_1, \Gamma_2)$ and $\Gamma_2 \subseteq \max(\Gamma_1, \Gamma_2)$, we get: $\gamma(t) \in [\![b]\!]_{\epsilon}$ (1) and $\gamma(t_i) \in [\![query]\!]_{\epsilon}$ (2). It is proved by unfolding (1) and (2) and using the evaluation rule E-CASE and the definition of T_{query} .

Case

$$\frac{\Gamma \vdash_{n} t : \tau \ (\star) \qquad \Gamma' \subseteq \Gamma \qquad \vdash n \leq n' \qquad \tau \subseteq \tau'}{\Gamma' \vdash_{n'} t : \tau'} \text{SUB}$$

We assume $\gamma \models \Gamma'$.

To show $\gamma(t) \in [\![\tau']\!]_{\epsilon}$.

We assume $\gamma' \models \Gamma$. By ih on (\star) , we get: $\gamma'(t) \in [\![\tau]\!]_{\epsilon}$.

By $\Gamma' \subseteq \Gamma$ and $\tau \subseteq \tau'$, we get: $\gamma(t) \in [\![\tau']\!]_{\epsilon}$, this case is proved.

Theorem 0.5 (Preservation). *If* $\cdot \vdash_n t : \tau \land t \Downarrow F$ then $\vdash_n F : \tau$

Proof. By induction on typing derivation of $\cdot \vdash_n t : \tau$.

Case

$$\frac{}{\cdot \vdash_n c : b}$$
 CONST

t is c, From E-CONST, we know F is c, It is proved.

For the cases ABS,QUERY,ILAM,VAR,PR, the proof are similar as the one for CONST because t in these cases are values.

Case

$$\frac{\cdot \vdash_{n_1} t_1 : query \ (\star)}{\cdot \vdash_{n_1+1} M(t_1) : b} MT$$

t is $M(t_1)$, from the rule E-MECH, we get:

$$\frac{t_1 \Downarrow^m F \ (\diamond)}{M(t_1) \Downarrow^m M(F)} \text{ E-MECH}$$

By ih on (\star) and (\diamond) , we get : $\cdot \vdash_{n_1} F$: query. Using the rule MT, we conclude $\cdot \vdash_{n_1+1} M(F)$: b. This case is proved.

Case

$$\frac{\cdot \vdash_{n_1} t_1 : \tau_1 \ (\star) \qquad \cdot \vdash_{n_2} t_2 : \tau_2 \ (\diamond)}{\cdot \vdash_{\max(n_1,n_2)} (t_1,t_2) : \tau_1 \times \tau_2} \text{ PAIR}$$

t is (t_1, t_2) , from the evaluation rule E-PAIR, we know:

$$\frac{t_1 \Downarrow^{m_1} F_1 \ (\star \star) \qquad t_2 \Downarrow^{m_2} F_2 \ (\diamond \diamond)}{(t_1, t_2) \Downarrow^{m_1 + m_2} (F_1, F_2)} \text{ E-pair}$$

By ih on (\star) and $(\star\star)$, we get: $\cdot\vdash_{n_1} F_1:\tau_1$.

By ih on (\diamond) and $(\diamond\diamond)$, we get: $\cdot \vdash_{n_2} F_2 : \tau_2$.

This case is proved by using the rule PAIR.

Case

$$\frac{\cdot \vdash_{n_1} t_1 : \tau_1 \multimap \tau_2 \ (\star) \qquad \cdot \vdash_{n_2} t_2 : \tau_1 \ (\diamond)}{\cdot \vdash_{\max(n_1,n_2)} t_1 t_2 : \tau_2} \text{ APP}$$

t is t_1 t_2 , from the evaluation rule E-APP, we know:

$$\frac{t_1 \Downarrow^{m_1} \lambda x.t' (\star \star) \qquad t_2 \Downarrow^{m_2} F (\diamondsuit) \qquad t'[F/x] \Downarrow^{m_3} F' (\heartsuit)}{t_1 t_2 \Downarrow^{m_1+m_2+m_3} F'} \text{E-APP}$$

By ih on (\star) and $(\star\star)$, we get: $\cdot\vdash_{n_1} \lambda x.t': \tau_1 \multimap \tau_2$ (\spadesuit).

By inversion on (\spadesuit), we get: $x : \tau_1 \vdash_{n_1} t' : \tau_2 (\spadesuit \spadesuit)$.

By ih on (\diamond) and $(\diamond\diamond)$, we get: $\vdash_{n_2} F : \tau_1 (\clubsuit)$.

From Theorem Substitution with $(\spadesuit \spadesuit)$ and (\clubsuit) , we get: $\cdot \vdash_{\max(n_1,n_2)} t'[F/x] : \tau_2 \ (\heartsuit \heartsuit)$.

By ih on (\heartsuit) and $(\heartsuit\heartsuit)$, we conclude: $\cdot \vdash_{\max(n_1,n_2)} F' : \tau_2$.

It proves this case.

$$\frac{\cdot \vdash_{n_1} t_1 : !_p \tau (\star) \quad \cdot, x : [\tau]_p \vdash_{n_2} t_2 : \tau' (\diamond)}{\cdot \vdash_{\max(n_1, n_2)} \text{let } !x = t_1 \text{ in } t_2 : \tau'} \text{LET}$$

In this case, t is let $!x = t_1$ in t_2 . From the evaluation rule, we know:

$$\frac{t_1 \Downarrow^{m_1} ! t_3 \ (\star \star) \qquad t_3 \Downarrow^{m_2} F' \ (\diamond \diamond) \qquad t_2 [F'/x] \Downarrow^{m_3} F}{\mathsf{let} \, ! x = t_1 \ \mathsf{in} \ t_2 \Downarrow^{m_1 + m_2 + m_3} F} \, \mathsf{E}\text{-LET-BANG}$$

By ih on (\star) and $(\star\star)$, we get: $\cdot\vdash_{n_1}!t_3:!_p\tau$ (\spadesuit) .

By inversion on (\spadesuit) , we get: $\vdash_{n_1} t_3 : \tau (\spadesuit \spadesuit)$.

By ih on $(\spadesuit \spadesuit)$ and (\diamondsuit) , we get: $\cdot \vdash_{n_2} F' : \tau (\clubsuit)$.

Case

$$\frac{\cdot \vdash_{n_1} t' : b \ (\star) \qquad \cdot \vdash_{n_2} t_i : b \ (\diamond)}{\cdot \vdash_{\max(n_1, n_2)} \mathsf{case} \ t' \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} : b} \ \mathsf{CASE\text{-}CONST}$$

In this case, t is case t' of $\{c_i \Rightarrow t_i\}_{c_i \in h}$.

From the evaluation rule, we get:

$$\frac{t' \downarrow^m F' \ (\star \star) \qquad t_i \downarrow^{m_i} F_i \ (\diamond \diamond)}{\mathsf{case} \ t' \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} \downarrow^{m+m_i} \mathsf{case} \ F' \ \mathsf{of} \ \{c_i \Rightarrow F_i\}_{c_i \in b}} \ \mathsf{E}\text{-CASE}$$

By ih on (\star) and $(\star\star)$, we get: $\cdot\vdash_{n_1} F':b$ (\spadesuit) .

By ih on (\diamond) and $(\diamond\diamond)$, we get: $\cdot \vdash_{n_2} F_i : b$ (\$\\delta\$).

By the rule CASE-CONST, we conclude : $\vdash_{\max(n_1,n_2)}$ case F' of $\{c_i \Rightarrow F_i\}_{c_i \in b}$: b. This case is proved.

Case

$$\frac{\cdot \vdash_{n_1} t' : b \ (\star) \qquad \cdot \vdash_{n_2} t_i : query \ (\diamond)}{\cdot \vdash_{\max(n_1,n_2)} \mathsf{case} \ t' \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} : query} \ \mathsf{CASE-QUERY}$$

In this case, t is case t' of $\{c_i \Rightarrow t_i\}_{c_i \in b}$.

From the evaluation rule, we get:

$$\frac{t' \downarrow^m F' \ (\star \star) \qquad t_i \downarrow^{m_i} F_i \ (\diamond \diamond)}{\mathsf{case} \ t' \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} \downarrow^{m+m_i} \mathsf{case} \ F' \ \mathsf{of} \ \{c_i \Rightarrow F_i\}_{c_i \in b}} \ \mathsf{E}\text{-CASE}$$

By ih on (\star) and $(\star\star)$, we get: $\cdot\vdash_{n_1} F':b$ (\spadesuit) .

By in on (\diamond) and $(\diamond\diamond)$, we get: $\cdot \vdash_{n_2} F_i : query (\clubsuit)$.

By the rule CASE-QUERY, we conclude :- $\vdash_{\max(n_1,n_2)}$ case F' of $\{c_i \Rightarrow F_i\}_{c_i \in b}$: query. This case is proved.

Case

$$\frac{\cdot \vdash_{n_1} t_1 : \tau_1 \times \tau_2 \quad (\star) \qquad \qquad x_1 : \tau_1, x_2 : \tau_2 \vdash_{n_2} t_1' : \tau' \quad (\diamond)}{\cdot \vdash_{\max(n_1, n_2)} \mathsf{let} \quad (x_1, x_2) = t_1 \; \mathsf{in} \; t_1' : \tau'} \mathsf{LET-P}$$

In this case, t is let $(x_1, x_2) = t_1$ in t'_1 . From the evaluation rule, we get:

$$\frac{t_1 \Downarrow^{m_1} (F_1, F_2) (\star \star) \qquad t'_1 [F_1/x_1] [F_2/x_2] \Downarrow^{m_3} F (\heartsuit)}{\text{let } (x_1, x_2) = t_1 \text{ in } t'_1 \Downarrow^{m_1 + m_2 + m_3} F} \text{ E-LET-P}$$

By ih on (\star) and $(\star\star)$, we know: $\cdot\vdash_{n_1} (F_1,F_2): \tau_1 \times \tau_2 \ (\spadesuit)$.

By inversion on (\spadesuit), we get : $\vdash_{n_1'} F_1 : \tau_1$ (\clubsuit) and $\vdash_{n_2'} F_2 : \tau_2$ ($\clubsuit \clubsuit$) where max $(n_1', n_2') = n_1$.

By Theorem Substitution twice with (\clubsuit) and ($\clubsuit\clubsuit$) on (\diamondsuit), we get $\cdot \vdash_{\max(n',\max(n',\max(n',n_2)))} t'_1[F_1/x_1][F_2/x_2] : \tau'$ ($\heartsuit\heartsuit$).

It is proved by ih on $(\heartsuit \heartsuit)$ and (\heartsuit) .

Case

$$\frac{\cdot \vdash_{n_1} t_1 : \tau_1 \qquad \cdot \vdash_{n_2} t_2 : \tau_2}{\cdot \vdash_{\max(n_1, n_2)} (t_1, t_2) : \tau_1 \times \tau_2} \text{ PAIR}$$

In this case, t is (t_1, t_2) . From the evaluation rule we get:

$$\frac{t_1 \Downarrow^{m_1} F_1}{(t_1, t_2) \Downarrow^{m_1 + m_2} (F_1, F_2)} \text{ E-pair}$$

By ih, we know : $\cdot \vdash_{n_1} F_1 : \tau_1$ and $\cdot \vdash_{n_2} F_2 : \tau_2$. This case is proved by using the rule PAIR.

Case

$$\frac{\Gamma \vdash_{n} t : \tau \ (\star) \qquad \Gamma' \subseteq \Gamma \qquad \vDash n \le n' \qquad \tau \subseteq \tau'}{\Gamma' \vdash_{n'} t : \tau'} \text{SUB}$$

by ih on (\star) , we get: $\Gamma \vdash_n F : \tau$.

This case is proved by using the rule SUB.

Theorem 0.6 (Substitution). If $\Gamma \vdash_{n_1} t_1 : \tau_1 \text{ and } \Delta, x : [\tau_1]_p \vdash_{n_2} t_2 : \tau_2 \text{ then } \max(\Gamma, \Delta) \vdash_{\max(p+n_1,n_2)} t_2[t_1/x] : \tau_2$ *Proof.* The theorem is proved by induction on the typing derivation of the second premise Γ , x: $[\tau_1]_p \vdash_{n_2} t_2 : \tau_2$.

Case

$$\frac{}{\Gamma, x : [\tau_1]_p \vdash_0 x : \tau_1} \text{VAR}$$

where $t_2 = x$ and $\tau_2 = \tau_1$.

Assume we know: $\Gamma \vdash_{n_1} t_1 : \tau_1 \quad (\star)$

TS: $\Gamma \vdash_{\max(p+n_1,0)} t_2[t_1/x] : \tau_1$

STS: $\Gamma \vdash_{\max(p+n_1,0)} x[t_1/x] : \tau_1 \Rightarrow \Gamma \vdash_{\max(p+n_1,0)} t_1 : \tau_1$

It is proved by using Lemma ?? on (\star) because $n_1 \leq \max(p + n_1, 0)$.

Case

$$\frac{}{\Gamma, y \colon [\tau_2]_{p'}, x \colon [\tau_1]_p \vdash_0 y \colon \tau_2} \text{VAR}$$

Assume we know: Γ , y: $[\tau_2]_{p'} \vdash_{n_1} t_1 : \tau_1 \quad (\star)$

TS: Γ , y: $[\tau_2]_{p'} \vdash_{\max(p+n_1,0)} y[t_1/x] : \tau_2$

STS: Γ , y: $[\tau_2]_{p'} \vdash_{\max(p+n_1,0)} y$: τ_2

From VAR, we get: $\Gamma, y: [\tau_2]_{p'} \vdash_0 y: \tau_2$ (\$\infty). It is proved by using Lemma ?? on (\$\infty).

Case

$$\frac{\Gamma, x \colon [\tau_1]_p \vdash_n t \colon query \ (\star \star)}{1 + \Gamma, x \colon [\tau_1]_{p+1} \vdash_{n+1} M(t) \colon b} \operatorname{MT}$$

Assume we know: $1 + \Gamma \vdash_{n_1} t_1 : \tau_1 \quad (\star)$

We know that $\Gamma \vdash_{n_1} t_1 : \tau_1$ by Lemma ?? on the assumption (\star) .

We also know that $n + 1 = n_2$.

TS: $1 + \Gamma \vdash_{\max(p+n_1+1,n_2)} (M(t))[t_1/x] : b$ By IH on $(\star \star)$, we know: $\Gamma \vdash_{\max(n_1+p,n)} t[t_1/x] : query (\diamond)$

By rule MT, we know that:

$$\frac{\Gamma \vdash_{\max(n_1+p,n)} t[t_1/x] : query}{1 + \Gamma \vdash_{1+\max(n_1+p,n)} M(t[t_1/x]) : b} \operatorname{MT}$$

We obtain: $1 + \Gamma \vdash_{\max(n_1 + p + 1, n + 1)} M(t[t_1/x]) : b \Rightarrow 1 + \Gamma \vdash_{\max(n_1 + p + 1, n_2)} (M(t))[t_1/x] : b$ This case is proved.

Case

$$\frac{\Gamma, x : [\tau_1]_p \vdash_{n_2} t : \tau \quad (\star \star)}{p' + \Gamma, x : [\tau_1]_{p+p'} \vdash_{n_2} ! t : !_{p'} \tau} \operatorname{PR}$$

We assume $p' + \Gamma \vdash_{n_1} t_1 : \tau_1$. by Lemma ??, we know $\Gamma \vdash_{n_1} t_1 : \tau_1 (\star)$. TS: $p' + \Gamma \vdash_{\max(n_1 + p + p', n_2)} !t[t_1/x] : !_{p'}\tau$

By IH on $(\star\star)$ along with (\star) , we know: $\Gamma \vdash_{\max(n_1+p,n_2)} t[t_1/x] : \tau$ (\diamond) By rule PR, we know:

$$\frac{\Gamma \vdash_{\max(n_1+p,n_2)} t[t_1/x] : \tau}{p' + \Gamma \vdash_{\max(n_1+p,n_2)} !t[t_1/x] : !_{p'}\tau \quad (\diamond \diamond)} \text{ PR}$$

This case is proved by Lemma ?? on (��).

$$\frac{}{\Gamma,x\!:\![\tau_1]_p\vdash_0 q\!:\!query}$$
 QUERY

TS: $\Gamma \vdash_{\max(p+n_1,n_2)} q[t_1/x] : query \Rightarrow \Gamma \vdash_{\max(p+n_1,n_2)} q : query$. Using rule QUERY, we get $\Gamma \vdash_0 q : QUERY$, This case is proved by Lemma **??** on it.

Case

$$\frac{\Gamma_{1},y:[\tau_{1}]_{p}\vdash_{n}t:!_{p_{1}}\tau\ (\diamond)\qquad\Gamma_{2},y:[\tau_{1}]_{p},x:[\tau]_{p_{1}}\vdash_{n'}t':\tau'\ (\diamond\diamond)}{\max(\Gamma_{1},\Gamma_{2}),y:[\tau_{1}]_{p}\vdash_{\max(p,n')}\mathsf{let}\,!x=t\;\mathsf{in}\;t':\tau'}\mathsf{LET}$$

We assume $\max(\Gamma_1, \Gamma_2) \vdash_{n_1} t_1 : \tau \ (\star)$.

TS: $\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1 + p, \max(n, n'))} (\text{let } !x = t \text{ in } t')[t_1/y] : \tau'$

By Lemma ??, Lemma ??, we can extend the context of (\diamond) , to max (Γ_1, Γ_2) :

 $\max(\Gamma_1, \Gamma_2), y : [\tau_1]_p \vdash_n t : !_{p_1} \tau(\diamond').$

Similarly, from $(\diamond \diamond)$ we get: $\max(\Gamma_1, \Gamma_2), y : [\tau_1]_p, x : [\tau]_{p_1} \vdash_{n'} t' : \tau' \ (\diamond \diamond').$

By IH on (\diamond') , we get: $\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1+p,n)} t[t_1/y] : !_{p_1} \tau$ (\spadesuit)

By IH on (\Leftrightarrow'), we get: $\max(\Gamma_1, \Gamma_2), x : [\tau]_{p_1} \vdash_{\max(p_1 + p, p')} t'[t_1/y] : \tau'$ (\clubsuit)

By rule let, we get:

$$\frac{\max(\Gamma_1,\Gamma_2) \vdash_{\max(n_1+p,n)} t[t_1/y] : !_{p_1}\tau \quad (\spadesuit) \qquad \max(\Gamma_1,\Gamma_2), x : [\tau]_{p_1} \vdash_{\max(n_1+p,n')} t'[t_1/y] : \tau' \quad (\clubsuit)}{\Gamma \vdash_{\max(\max(n_1+p,n),\max(n_1+p,n'))} \text{let } !x = t[t_1/y] \text{ in } t'[t_1/y] : \tau'} \text{ LET}$$

Because $\max(\max(n_1 + p, n), \max(n_1 + p, n')) = \max(n_1 + p, \max(n, n'))$, this case is proved.

Case

$$\frac{\Gamma, y : [\tau]_p, x : [\tau_1]_0 \vdash_n t : \tau_2 (\diamond)}{\Gamma, y : [\tau]_p \vdash_n \lambda x. t : \tau_1 \multimap \tau_2} \text{ ABS}$$

We assume $\Gamma \vdash_{n_1} t_1 : \tau \ (\star)$.

By Lemma ??, we get: $\Gamma, x : [\tau_1]_0 \vdash_{n_1} t_1 : \tau_1$.

TS: $\Gamma \vdash_{\max(n_1+p,n)} \lambda x. t[t_1/y] : \tau_1 \multimap \tau_2$. By IH on (\$\delta\$), we get: $\Gamma, x : [\tau_1]_0 \vdash_{\max(n_1+p,n)} t[t_1/y] : \tau_2$ (\$\delta\$).

It is proved by the rule ABS and (\(\blacktrian)\).

Case

$$\frac{\Gamma_{1},x\colon [\tau]_{p}\vdash_{n_{1}}t_{1}\colon \tau_{1}\to\tau_{2}\ (\diamond)\qquad \Gamma_{2},x\colon [\tau]_{p}\vdash_{n_{2}}t_{2}\colon \tau_{1}\ (\diamond\diamond)}{\max(\Gamma_{1},\Gamma_{2}),x\colon [\tau]_{p}\vdash_{\max(n_{1},n_{2})}t_{1}\:t_{2}\colon \tau_{2}}\:\mathsf{APP}$$

We assume $\max(\Gamma_1, \Gamma_2) \vdash_n t : \tau$.

By Lemma ??, Lemma ??, we extend the

Case

$$\frac{\Gamma_1 \vdash_{n_1} t : \tau_1 \times \tau_2 \qquad \Gamma_2, x_1 : \tau_1, x_2 : \tau_2 \vdash_{n_2} t' : \tau'}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} \text{let } (x_1, x_2) = t \text{ in } t' : \tau'} \text{ LET-P}$$

Theorem 0.7 (Substitution).

- 1. If $\Gamma \vdash_{n_1} t_1 : \tau_1 \text{ and } \Delta, x : \tau_1 \vdash_{n_2} t_2 : \tau_2 \text{ then } \max(\Gamma, \Delta) \vdash_{\max(n_1, n_2)} t_2[t_1/x] : \tau_2$
- 2. If $\Gamma \vdash_{n_1} t_1 : !_p \tau_1 \text{ and } \Delta, x : [\tau_1]_p \vdash_{n_2} t_2 : \tau_2 \text{ then } \max(\Gamma, \Delta) \vdash_{\max(n_1 + p, n_2)} t_2 [t_1/x] : \tau_2$

$$\begin{array}{cccc} c[t_1/x] & ::= & c \\ M(t)[t_1/x] & M(t[t_1/x]) \\ x[t_1/x] & t_1 \\ y[t_1/x] & y \\ (t \ t')[t_1/x] & t[t_1/x] \ t'[t_1/x] \\ (\lambda y.t)[t_1/x] & \lambda y.t[t_1/y] \\ (\text{let } y = t \text{ in } t')[t_1/x] & \text{let } y = t[t_1/x] \text{ in } t'[t_1/x] \end{array}$$

Proof. of 0.7.1

The theorem is proved by induction on the typing derivation of the second premise Δ , $x : \tau_1 \vdash_{n_2} t_2 : \tau_2$. Assume we know $\Gamma \vdash_{n_1} t_1 : \tau_1 (\diamond)$.

Case

$$\frac{}{\Delta, x : \tau_1 \vdash_n c : b \ (\star)}$$
 CONST

where $t_2 = c$, $\tau_2 = b$ and $n_2 = n$.

To show: $\max(\Gamma, \Delta) \vdash_{\max(n_1, n)} c[t_1/x] : b$. Because $c[t_1/x] = c$, it suffices to show $\max(\Gamma, \Delta) \vdash_{\max(n_1, n)} c : b$.

This case is proved by applying the CONST rule.

Case

$$\frac{}{\Delta, x : \tau_1 \vdash_n q : query (\star)}$$
 QUERY

where $t_2 = q$, $\tau_2 = query$ and $n_2 = n$.

To show: $\max \Gamma, \Delta \vdash_{\max(n_1,n)} q[t_1/x] : quer y.$

Because $q[t_1/x] = q$, it suffices to show: $max(\Gamma, \Delta) \vdash_{max(n_1,n)} q : query$.

This case is proved by applying the QUERY rule.

Case

SubCase 1

$$\frac{}{\Delta, x : \tau_1 \vdash_n x : \tau_1} VAR$$

where $t_2 = x$, $\tau_2 = \tau_1$ and $n_2 = n$.

To show $\max(\Gamma, \Delta) \vdash_{\max(n_1, n)} x[t_1/x] : \tau_1$.

it suffices to show $\max(\Gamma, \Delta) \vdash_{\max(n_1, n_2)} t_1 : \tau_1$.

This case is proved by applying Lemma 5 and 6 on (\$).

SubCase 2

$$\frac{}{\Delta,x:\tau_1,y:\tau_2\vdash_n y:\tau_2} \text{ VAR}$$

where $t_2 = y$ and $n_2 = n$.

To show $\max(\Gamma, \Delta, y : \tau_2) \vdash_{\max(n_1, n)} y[t_1/x] : \tau_2$.

it suffices to show max $(\Gamma, \Delta, y : \tau_2) \vdash_n y : \tau_2$.

This case is proved by applying the rule VAR.

Case

$$\frac{\Delta, x : \tau_1, y : \tau_1' \vdash_n t : \tau_2' \ (\star)}{\Delta, x : \tau_1 \vdash_n \lambda y . t : \tau_1' \multimap \tau_2'} \text{ ABS}$$

where $t_2 = \lambda y.t$, $\tau_2 = \tau_1' \multimap \tau_2'$ and $n_2 = n$. To show $\max(\Gamma, \Delta) \vdash_{\max(n_1, n)} \lambda y.t \ [t_1/x] : \tau_1' \multimap \tau_2'$. By applying Lemma 7 and item hypothesis on (\star) , we get: $\max(\Gamma, \Delta, y : \tau_1') \vdash_{\max(n_1, n_2)} t \ [t_1/x] : \tau_2' \ (\star \star)$. By applying the ABS rule on $(\star \star)$, we get: $\max(\Gamma, \Delta) \vdash_{\max(n_1, n_2)} \lambda y.(t \ [t_1/x]) : \tau_1' \multimap \tau_2'$, this case is proved.

Case

$$\frac{[\Delta_2] \vdash_n t : query \ (\star)}{\Delta_1, 1 + [\Delta_2], x \colon \tau_1 \vdash_{n+1} M(t) \colon b} \operatorname{MT}$$

Where $\Delta=\Delta_1, 1+[\Delta_2],\ t_2=M(t),\ \tau_2=b$ and $n_2=n+1$. To show $\max(\Gamma,\Delta_1,1+[\Delta_2])\vdash_{\max(n_1,n+1)}M(t)[t_1/x]:b$. We know $x\not\in \mathrm{dom}([\Delta_2])\land [\Delta_2]\vdash_n t:query\Longrightarrow x\not\in \mathrm{FV}(t)$. So we know $t=t[t_1/x]\Longrightarrow [\Delta_2]\vdash_n t[t_1/x]:query\ (\star\star)$ By applying the MT rule on $(\star\star)$ we get: $\max(\Delta_1,1+[\Delta_2])\vdash_{1+n}M(t)[t_1/x]:b$ (\$\mathbf{A}\$) This case is proved using Lemma 7, Lemma 3 on (\$\mathbf{A}\$).

Case

$$\frac{\Gamma_1 \vdash_{n_1} t_1 : \tau_1 \rightarrow \tau_2 \qquad \Gamma_2 \vdash_{n_2} t_2 : \tau_1}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n'_1, n'_2)} t'_1 t'_2 : \tau_2} \text{ APP}$$

There are three sub cases depending on whether $x \in \text{dom}(\Gamma_1)$ and $\text{dom}(\Gamma_2)$.

SubCase 1

$$\frac{\Delta_{1}, x : \tau_{1} \vdash_{n'_{1}} t'_{1} : \tau_{1} \to \tau_{2} \quad (\star) \qquad \Delta_{2} \vdash_{n'_{2}} t'_{2} : \tau_{1} \quad (\clubsuit)}{\max(\Delta_{1}, x : \tau_{1}, \Delta_{2}) \vdash_{\max(n'_{1}, n'_{2})} t'_{1} t'_{2} : \tau_{2}} \text{ APP}$$

where $x \notin \text{dom}(\Delta_2)$.

 $\Delta = \max(\Delta_1, \Delta_2), \ t_2 = t_1' \ t_2' \ \text{and} \ n_2 = \max(n_1', n_2').$

To show $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1, \max(n'_1, n'_2))} t'_1 t'_2 [t_1/x] : \tau_2$.

it suffices to show $\max(\Gamma, \Delta_1, \Delta_2) \vdash_{\max(n_1, n'_1, n'_2)} t'_1 t'_2 [t_1/x] : \tau_2$.

By induction hypothesis on (\star) , we get: $\max(\Gamma, \Delta_1) \vdash_{\max(n_1, n_1')} t_1'[t_1/x] : \tau_1 \to \tau_2 \ (\star \star).$

Because $x \notin \text{dom}(\Delta_2) \implies t_2'[t_1/x] = t_2'$.

By applying APP on $(\star\star)$ and (\clubsuit) , we get: $\max(\max(\Gamma,\Delta_1),\Delta_2) \vdash_{\max(\max(n_1,n_1'),n_2')} (t_1'\ t_2')[t_1/x] : \tau_2$. This case is proved.

SubCase 2

$$\frac{\Delta_{1} \vdash_{n'_{1}} t'_{1} : \tau_{1} \to \tau_{2} \ (\star) \qquad \Delta_{2}, x : \tau_{1} \vdash_{n'_{2}} t'_{2} : \tau_{1} \ (\clubsuit)}{\max(\Delta_{1}\Delta_{2}, x : \tau_{1}) \vdash_{\max(n'_{1}, n'_{2})} t'_{1} t'_{2} : \tau_{2}} \text{ APP}$$

where $x \not\in dom(\Delta_1)$.

This case is proved by induction hypothesis on (4) and applying APP rule.

SubCase 3

$$\frac{\Delta_{1}, x : \tau_{1} \vdash_{n'_{1}} t'_{1} : \tau_{1} \rightarrow \tau_{2} (\star) \qquad \Delta_{2}, x : \tau_{1} \vdash_{n'_{2}} t'_{2} : \tau_{1} (\clubsuit)}{\max(\Delta_{1}, \Delta_{2}, x : \tau_{1}) \vdash_{\max(n'_{1}, n'_{2})} t'_{1} t'_{2} : \tau_{2}} \text{ APP}$$

TS: $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1, \max(n'_1, n'_2))} t'_1 t'_2 : \tau_2$.

This case is proved by induction hypothesis on both (\clubsuit) and (\star) and then applying APP rule.

$$\frac{\Delta', x : \tau_1, y : \tau \vdash_n t_2 : \tau_2 \ (\star)}{\Delta', x : \tau_1, y : [\tau]_p \vdash_n t_2 : \tau_2} \text{ DER}$$

where $\Delta = \Delta'$, $y : [\tau]_p$, $n_2 = n$.

To show $\max(\Gamma, \Delta', y : [\tau]_p) \vdash_{\max(n_1, n)} t_2[t_1/x] : \tau_2$.

By induction hypothesis on (\star) , we get: $\max(\Gamma, \Delta', y : \tau) \vdash_{\max(n_1, n)} t_2[t_1/x] : \tau_2(\star \star)$.

By applying the DER rule on $(\star\star)$, we get: $\max(\Gamma, \Delta', y : [\tau]_p) \vdash_{\max(n_1, n)} t_2[t_1/x] : \tau_2$. This case is proved.

Case

$$\frac{\Gamma_1 \vdash_{n_1} t : !_p \tau \qquad \Gamma_2, y : [\tau]_p \vdash_{n_2} t' : \tau'}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(p_1, p_2)} \text{let } ! y = t \text{ in } t' : \tau'} \text{ LET}$$

There are three sub cases.

Subcase 1: $\mathbf{x} \not\in \mathbf{dom}(\Delta_2)$

$$\frac{\Delta_{1},x:\tau_{1}\vdash_{n'_{1}}t:!_{p}\tau\ (\star)\qquad \Delta_{2},y:[\tau]_{p}\vdash_{n'_{2}}t':\tau'\ (\clubsuit)}{\max(\Delta_{1},x:\tau_{1},\Delta_{2})\vdash_{\max(n'_{1},n'_{2})}\operatorname{let}!y=t\ \operatorname{in}\ t':\tau'}\operatorname{LET}$$

TS: $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1, \max(n'_1, n'_2))} (\text{let } ! y = t \text{ in } t')[t_1/x] : \tau'.$

By IH on (\star) , we get $\max(\Gamma, \Delta_1) \vdash_{\max(p_1, p'_1)} t[t_1/x] :!_p \tau \ (\star \star)$.

 $x \notin \text{dom}(\Delta_2) \implies t'[t_1/x] = t'.$

It is proved by the rule LET using $(\star\star)$ and (\clubsuit) .

Subcase 2: $\mathbf{x} \not\in \mathbf{dom}(\Delta_1)$

$$\frac{\Delta_1 \vdash_{n_1'} t : !_p \tau \ (\star) \qquad \Delta_2, x : \tau_1, y : [\tau]_p \vdash_{n_2'} t' : \tau' \ (\clubsuit)}{\max(\Delta_1, x : \tau_1, \Delta_2) \vdash_{\max(n_1', n_2')} \mathsf{let} ! y = t \ \mathsf{in} \ t' : \tau'} \ \mathsf{LET}$$

TS: $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1, \max(n'_1, n'_2))} (\text{let } !y = t \text{ in } t')[t_1/x] : \tau'.$

By IH on (\clubsuit) , we get $\max(\Gamma, \Delta_2)$, $y : [\tau]_p \vdash_{\max(n_1, n'_1)} t'[t_1/x] : \tau'$ $(\clubsuit\clubsuit)$.

 $x \notin \text{dom}(\Delta_1) \implies t[t_1/x] = t.$

It is proved by the rule LET using (\star) and $(\clubsuit\clubsuit)$.

Subcase 3

$$\frac{\Delta_{1},x:\tau_{1}\vdash_{n'_{1}}t:!_{p}\tau_{}(\star)\qquad\Delta_{2},x:\tau_{1},y:[\tau]_{p}\vdash_{n'_{2}}t':\tau'_{}(\clubsuit)}{\max(\Delta_{1},x:\tau_{1},\Delta_{2})\vdash_{\max(n'_{1},n'_{2})}\operatorname{let}!y=t\ \operatorname{in}\ t':\tau'_{}}\operatorname{LET}$$

TS: $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1, \max(n'_1, n'_2))} (\text{let } !y = t \text{ in } t')[t_1/x] : \tau'.$

By IH on (\star) , we get $\max(\Gamma, \Delta_1) \vdash_{\max(n_1, n'_1)} t[t_1/x] :!_p \tau \ (\star \star).$

By IH on (\$), we get $\max(\Gamma, \Delta_2)$, $y : [\tau]_p \vdash_{\max(n_1, n'_1)} t'[t_1/x] : \tau'$ (\$\$).

It is proved by the rule LET using $(\star\star)$ and $(\clubsuit\clubsuit)$.

Case

$$\frac{\Gamma_1 \vdash_{n'_1} t : \tau'_1 \times \tau'_2 \qquad \Gamma_2, x_1 : \tau'_1, x_2 : \tau'_2 \vdash_{n'_2} t' : \tau'}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n'_1, n'_2)} \mathsf{let} \ (x_1, x_2) = t \ \mathsf{in} \ t' : \tau'} \mathsf{LET-P}$$

There are three sub cases.

Subcase 1: $x \not\in dom(\Delta_2)$

$$\frac{\Delta_{1},x:\tau_{1}\vdash_{n'_{1}}t:\tau'_{1}\times\tau'_{2}\ (\star)\qquad \Delta_{2},x_{1}:\tau'_{1},x_{2}:\tau'_{2}\vdash_{n'_{2}}t':\tau'\ (\clubsuit)}{\max(\Delta_{1},x:\tau_{1},\Delta_{2})\vdash_{\max(n'_{1},n'_{2})}\operatorname{let}\ (x_{1},x_{2})=t\ \operatorname{in}\ t':\tau'} \text{ LET-P}$$

TS: $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1, \max(n'_1, n'_2))} (\text{let } (x_1, x_2) = t \text{ in } t')[t_1/x] : \tau'.$ By IH on (\star) , we get $\max(\Gamma, \Delta_1) \vdash_{\max(n_1, n'_1)} t[t_1/x] : \tau'_1 \times \tau'_2 \ (\star \star).$ $x \not\in \text{dom}(\Delta_2) \implies t'[t_1/x] = t'.$ It is proved by the rule LET-P using $(\star \star)$ and (\clubsuit) .

Subcase 2: $\mathbf{x} \not\in \mathbf{dom}(\Delta_1)$

$$\frac{\Delta_1 \vdash_{n'_1} t : \tau'_1 \times \tau'_2 \ (\star) \qquad \Delta_2, x_1 : \tau'_1, x_2 : \tau'_2, x : \tau_1 \vdash_{n'_2} t' : \tau' \ (\clubsuit)}{\max(\Delta_1, x : \tau_1, \Delta_2) \vdash_{\max(n'_1, n'_2)} \mathsf{let} \ (x_1, x_2) = t \ \mathsf{in} \ t' : \tau'} \mathsf{LET-P}$$

TS: $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1, \max(n'_1, n'_2))} (\text{let } (x_1, x_2) = t \text{ in } t')[t_1/x] : \tau'.$ By IH on (\$\infty\$), we get $\max(\Gamma, \Delta_2), x_1 : \tau'_1, x_2 : \tau'_2 \vdash_{\max(n_1, n'_2)} t'[t_1/x] : \tau'$ (\$\infty\$). $x \not\in \text{dom}(\Delta_1) \implies t[t_1/x] = t.$ It is proved by the rule LET-P using (*\infty) and (\$\infty\$).

Subcase 3

$$\frac{\Delta_{1},x:\tau_{1}\vdash_{n'_{1}}t:\tau'_{1}\times\tau'_{2}\ (\star)\qquad \Delta_{2},x_{1}:\tau'_{1},x_{2}:\tau'_{2},x:\tau_{1}\vdash_{n'_{2}}t':\tau'\ (\clubsuit)}{\max(\Delta_{1},x:\tau_{1},\Delta_{2})\vdash_{\max(n'_{1},n'_{2})}\operatorname{let}\ (x_{1},x_{2})=t\ \operatorname{in}\ t':\tau'} \\ \operatorname{LET-P}$$

TS: $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1, \max(n'_1, n'_2))} (\text{let } (x_1, x_2) = t \text{ in } t')[t_1/x] : \tau'.$ By IH on (\star) , we get $\max(\Gamma, \Delta_1) \vdash_{\max(n_1, n'_1)} t[t_1/x] : \tau'_1 \times \tau'_2 \ (\star \star).$ By IH on (\clubsuit) , we get $\max(\Gamma, \Delta_2), x_1 : \tau'_1, x_2 : \tau'_2 \vdash_{\max(n_1, n'_2)} t'[t_1/x] : \tau' \ (\clubsuit \clubsuit).$ It is proved by the rule LET-P using $(\star \star)$ and $(\clubsuit \clubsuit)$.

Case

$$\frac{\Gamma_1 \vdash_{n'_1} t_1 : \tau_1 \qquad \Gamma_2 \vdash_{n'_2} t_2 : \tau_2}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n'_1, n'_2)} (t_1, t_2) : \tau_1 \times \tau_2} \text{ PAIR}$$

There are three sub cases, x only in Γ_1 , x only in Γ_2 and x appears in both Γ_1 and Γ_2 . When x only in Γ_1 , it is proved by ih on the first premise and then using the rule PAIR. When x only in Γ_2 , it is proved by ih on the second premise and then using the rule PAIR. When x appears in both Γ_1 and Γ_2 , it is proved by ih on both premises and then using rule PAIR.

Case

$$\frac{\Gamma_1 \vdash_{n'_1} t : b \qquad \Gamma_2 \vdash_{n'_2} t_i : b}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n'_1, n'_2)} \mathsf{case} \ t \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} : b} \ ^{\mathsf{CASE-CONST}}$$

There are three sub cases.

Subcase 1: $\mathbf{x} \not\in \mathbf{dom}(\Delta_2)$

$$\frac{\Delta_{1},x:\tau_{1}\vdash_{n'_{1}}t:b\ (\star)\qquad \Delta_{2}\vdash_{n'_{2}}t_{i}:b\ (\clubsuit)}{\max(\Delta_{1},\Delta_{2})\vdash_{\max(n'_{1},n'_{2})}\mathsf{case}\ t\ \mathsf{of}\ \{c_{i}\Rightarrow t_{i}\}_{c_{i}\in b}:b}^{\mathsf{CASE-CONST}}$$

TS: $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1, \max(n'_1, n'_2))} (\text{case } t \text{ of } \{c_i \Rightarrow t_i\}_{c_i \in b})[t_1/x] : b$. By IH on (\star) , we get $\max(\Gamma, \Delta_1) \vdash_{\max(n_1, n'_1)} t[t_1/x] : b \ (\star \star)$. $x \not\in \text{dom}(\Delta_2) \implies t_i[t_1/x] = t_i$. It is proved by the rule CASE-CONST using $(\star \star)$ and (\clubsuit) .

Subcase 2: $\mathbf{x} \not\in \mathbf{dom}(\Delta_1)$

$$\frac{\Delta_1 \vdash_{n_1'} t \colon b \ (\star) \qquad \Delta_2, x \colon \tau_1 \vdash_{n_2'} t_i \colon b \ (\clubsuit)}{\max(\Delta_1, \Delta_2) \vdash_{\max(n_1', n_2')} \mathsf{case} \ t \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} \colon b} \ ^{\mathsf{CASE-CONST}}$$

TS: $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1, \max(n'_1, n'_2))} (\mathsf{case}\ t\ \mathsf{of}\ \{c_i \Rightarrow t_i\}_{c_i \in b})[t_1/x] : b.$

By IH on (\$), we get $\max(\Gamma, \Delta_2) \vdash_{\max(n_1, n_2')} t_i[t_1/x] : b$ (\$\$).

 $x \notin \text{dom}(\Delta_1) \implies t[t_1/x] = t.$

It is proved by the rule CASE-CONST using (\star) and $(\clubsuit\clubsuit)$.

Subcase 3

$$\frac{\Delta_{1}, x : \tau_{1} \vdash_{n'_{1}} t : b \ (\star) \qquad \Delta_{2}, x : \tau_{1} \vdash_{n'_{2}} t_{i} : b \ (\clubsuit)}{\max(\Delta_{1}, \Delta_{2}) \vdash_{\max(n'_{1}, n'_{2})} \mathsf{case} \ t \ \mathsf{of} \ \{c_{i} \Rightarrow t_{i}\}_{c_{i} \in b} : b} \ ^{\mathsf{CASE-CONST}}$$

TS: $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1, \max(n'_1, n'_2))} (\mathsf{case}\ t\ \mathsf{of}\ \{c_i \Rightarrow t_i\}_{c_i \in b})[t_1/x] : b.$

By IH on (\star) , we get $\max(\Gamma, \Delta_1) \vdash_{\max(n_1, n'_1)}^{\Gamma} t[t_1/x] : b \ (\star \star)$.

By IH on (\$), we get $\max(\Gamma, \Delta_2) \vdash_{\max(n_1, n_2')} t_i[t_1/x] : b$ (\$\$)...

It is proved by the rule CASE-CONST using $(\star\star)$ and $(\clubsuit\clubsuit)$.

Case

$$\frac{\Gamma_1 \vdash_{n'_1} t : b \qquad \Gamma_2 \vdash_{n'_2} t_i : query}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n'_1, n'_2)} \mathsf{case} \ t \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} : query} \ ^{\mathsf{CASE-QUERY}}$$

There are three sub cases. Thre proof are quite similar as the one of CASE-CONST.

Case

$$\frac{i::\mathbb{N};\Delta,x:\tau_1\vdash_nt:\tau\ (\star)\qquad i\notin \mathrm{FIV}(\Delta,x:\tau_1)}{\Delta,x:\tau_1\vdash_n\Lambda.t:\forall i::\mathbb{N}.\tau}\,_{\mathrm{IABS}}$$

TS: $\max(\Gamma, \Delta) \vdash_{\max(n_1, n)} \Lambda.t[t_1/x] : \forall i :: \mathbb{N}.\tau$.

By ih on (\star) , we get : $i :: \mathbb{N}; \max(\Gamma, \Delta) \vdash_{\max(n_1, n)} t[t_1/x] : \tau \ (\star \star)$.

There are two cases.

Sub case 1: $i \notin FIV(\Gamma)$ It is proved by using rule IABS with $(\star \star)$.

Sub case 2: $i \in FIV(\Gamma)$ We choose $j \notin FIV(\max(\Gamma, \Delta))$. We rename all the i to j in $(\star \star)$ and use rule IABS to get: $\max(\Gamma, \Delta) \vdash_{\max(n_1, n)} \Lambda. t[t_1/x] : \forall j :: \mathbb{N}. \tau$. It is just a renaming version of the goal.

Case

$$\frac{\Delta, x : \tau_1 \vdash_n t : \forall i :: \mathbb{N}. \tau (\star) \qquad \vdash I :: \mathbb{N}}{\Delta, x : \tau_1 \vdash_n t [] : \tau \{I/i\}} \text{ IAPP}$$

TS: $\max(\Gamma, \Delta) \vdash_{\max(n_1, n)} t[t_1/x][] : \tau\{I/i\}.$ By ih on (\star) , we get: $\max(\Gamma, \Delta) \vdash_{\max(n_1, n)} t : \forall i :: \mathbb{N}. \tau \ (\star \star).$

It is proved by the rule IAPP with $(\star\star)$.

Case

$$\frac{\Delta, x : \tau_1 \vdash_n t : \tau \ (\star) \qquad \Delta', x : \tau_1 \subseteq \Delta, x : \tau_1 \ (\clubsuit) \qquad \models n \leq n' \ (\clubsuit) \qquad \tau \subseteq \tau'}{\Delta', x : \tau_1 \vdash_{n'} t : \tau'} \text{SUB}$$

TS: $\max(\Gamma, \Delta') \vdash_{\max(n', n_1)} t : \tau'$. By ih on (\star) , we get : $\max(\Gamma, \Delta) \vdash_{\max(n, n_1)} t : \tau$.

 $(\clubsuit) \implies \max(\Gamma, \Delta') \subseteq \max(\Gamma, \Delta) \ (\clubsuit\clubsuit).$

 $(\spadesuit) \Longrightarrow \models \max(n_1, n) \le \max(n_1, n').$

It is proved by the rule SUB.

$$\frac{[\Delta_2] \vdash_n t : \tau}{\Delta_1, p + [\Delta_2], x : \tau_1 \vdash_{n+p} ! t : !_p \tau} \Pr$$

TS: $\max(\Gamma, (\Delta_1, p + [\Delta_2])) \vdash_{\max(n_1, n+p)} !t[t_1/x] : !_p \tau.$ $x \not\in [\Delta_2] \implies [\Delta_2] \vdash_n t[t_1/x] : \tau (\star).$ By rule PR with (\star) , we get: $\Delta_1, p + [\Delta_2] \vdash_{n+p} !t[t_1/x] : !_p \tau.$ It is proved by the Lemma 7 and Lemma 3 from the conclusion.

Proof. of 0.7.2

The theorem is proved by induction on the typing derivation of the second premise $\Delta, x : [\tau_1]_p \vdash_{n_2} t_2 : \tau_2$. Assume we know $\Gamma \vdash_{n_1} t_1 : !_p \tau_1 \ (\diamond)$.

$$\frac{}{\Delta,x:[\tau_1]_p\vdash_nc:b\ (\star)} \text{CONST}$$

where $t_2 = c$, $\tau_2 = b$ and $n_2 = n$.

To show: $\max(\Gamma, \Delta) \vdash_{\max(n_1+p,n)} c[t_1/x] : b$.

Because $c[t_1/x] = c$, it suffices to show $\max(\Gamma, \Delta) \vdash_{\max(n_1+p,n)} c : b$.

This case is proved by applying the CONST rule.

Case

$$\frac{}{\Delta, x : [\tau_1]_p \vdash_n q : query \ (\star)}$$
 QUERY

where $t_2 = q$, $\tau_2 = query$ and $n_2 = n$.

To show: $\max \Gamma, \Delta \vdash_{\max(n_1+p,n)} q[t_1/x] : query.$

Because $q[t_1/x] = q$, it suffices to show: $max(\Gamma, \Delta) \vdash_{\max(n_1, n)} q : query$.

This case is proved by applying the QUERY rule.

Case

$$\frac{}{\Delta,x:[\tau_1]_p,y:\tau_2\vdash_n y:\tau_2} \text{ VAR}$$

where $t_2 = y$ and $n_2 = n$.

To show $\max(\Gamma, \Delta, y : \tau_2) \vdash_{\max(n_1+p,n)} y[t_1/x] : \tau_2$.

it suffices to show max $(\Gamma, \Delta, y : \tau_2) \vdash_n y : \tau_2$.

This case is proved by applying the rule VAR.

Case

$$\frac{\Delta, x : [\tau_1]_p, y : \tau_1' \vdash_n t : \tau_2' \ (\star)}{\Delta, x : [\tau_1]_p \vdash_n \lambda y . t : \tau_1' \multimap \tau_2'} \text{ ABS}$$

where $t_2 = \lambda y.t$, $\tau_2 = \tau_1' \multimap \tau_2'$ and $n_2 = n$.

To show $\max(\Gamma, \Delta) \vdash_{\max(n_1+p,n)}^{\Gamma} \lambda y.t \ [t_1/x] : \tau_1' \multimap \tau_2'$. By applying Lemma 7 and induction hypothesis on (\star) , we get:

 $\max(\Gamma, \Delta, y : \tau_1') \vdash_{\max(n_1 + p, n_2)} t[t_1/x] : \tau_2' \ (\star \star).$

By applying the ABS rule on $(\star\star)$, we get: $\max(\Gamma,\Delta) \vdash_{\max(n_1+p,n_2)} \lambda y.(t[t_1/x]): \tau_1' \multimap \tau_2'$, this case is proved.

Case

$$\frac{[\Delta_2],x\colon [\tau_1]_{p-1}\vdash_n t\colon query\ (\star)}{\Delta_1,1+[\Delta_2],x\colon [\tau_1]_p\vdash_{n+1} M(t)\colon b}\ \mathrm{MT}$$

Where $\Delta = \Delta_1, 1 + [\Delta_2], t_2 = M(t), \tau_2 = b$ and $n_2 = n + 1$.

To show $max(\Gamma, \Delta_1, 1 + [\Delta_2]) \vdash_{\max(n_1 + p, n + 1)} M(t)[t_1/x] : b$.

By induction hypothesis on (\star) , we get: $\max(\Gamma, [\Delta_2]) \vdash_{\max(n_1+p-1,n)} t[t_1/x] : query (\star \star)$.

By applying the MT rule on $(\star\star)$, we get: Δ_1 , $max(\Gamma, 1 + [\Delta_2]) \vdash_{1+\max(n_1+p-1,n)} M(t[t_1/x]) : b$.

Because Δ_1 and Δ_2 are disjoint and $1 + \max(n_1 + p - 1, n) = \max(n_1 + p, n + 1)$, we get:

 $\max(\Gamma, (\Delta_1, 1 + [\Delta_2])) \vdash_{\max(n_1 + p, n + 1)} M(t)[t_1/x] : b.$

This case is proved.

Case

$$\frac{\Gamma_1 \vdash_{n_1} t_1 : \tau_1 \rightarrow \tau_2 \qquad \Gamma_2 \vdash_{n_2} t_2 : \tau_1}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} t_1 t_2 : \tau_2} \text{ APP}$$

There are three sub cases depending on whether $x \in \text{dom}(\Gamma_1)$ and $\text{dom}(\Gamma_2)$.

Subcase 1 x $\not\in$ dom(Δ_2)

$$\frac{\Delta_{1}, x : [\tau_{1}]_{p} \vdash_{n'_{1}} t'_{1} : \tau_{1} \to \tau_{2} \quad (\star) \qquad \Delta_{2} \vdash_{n'_{2}} t'_{2} : \tau_{1} \quad (\clubsuit)}{\max(\Delta_{1}, x : [\tau_{1}]_{p}, \Delta_{2}) \vdash_{\max(n'_{1}, n'_{1})} t'_{1} t'_{2} : \tau_{2}} \text{ APP}$$

where $\Delta = \max(\Delta_1, \Delta_2)$, $t_2 = t_1' t_2'$ and $n_2 = \max(n_1', n_2')$.

To show $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1 + p, \max(n'_1, n'_2))} t'_1 t'_2 [t_1/x] : \tau_2$.

it suffices to show $\max(\Gamma, \Delta_1, \Delta_2) \vdash_{\max(n_1 + p, n_1', n_2')} t_1' t_2' [t_1/x] : \tau_2.$

By induction hypothesis on (\star) , we get: $\max(\Gamma, \Delta_1) \vdash_{\max(n_1 + p, n_1')} t_1'[t_1/x] : \tau_1 \to \tau_2 \ (\star \star).$

Because $x \notin \text{dom}(\Delta_2) \implies t_2'[t_1/x] = t_2'$.

By applying APP on $(\star\star)$ and (\clubsuit) , we get: $\max(\max(\Gamma,\Delta_1),\Delta_2) \vdash_{\max(\max(n_1+p,n_1'),n_2')} (t_1't_2')[t_1/x] : \tau_2$. This case is proved.

Subcase 2 x $\not\in$ dom(Δ_1)

$$\frac{\Delta_{1} \vdash_{n'_{1}} t'_{1} : \tau_{1} \to \tau_{2} \ (\star) \qquad \Delta_{2}, x : [\tau_{1}]_{p} \vdash_{n'_{2}} t'_{2} : \tau_{1} \ (\clubsuit)}{\max(\Delta_{1}\Delta_{2}, x : [\tau_{1}]_{p}) \vdash_{\max(n'_{1}, n'_{2})} t'_{1} t'_{2} : \tau_{2}} \text{ APP}$$

This case is proved by induction hypothesis on (4) and applying APP rule.

Subcase 3

$$\frac{\Delta_{1}, x : [\tau_{1}]_{p} \vdash_{n'_{1}} t'_{1} : \tau_{1} \to \tau_{2} \quad (\star) \qquad \Delta_{2}, x : [\tau_{1}]_{p} \vdash_{n'_{2}} t'_{2} : \tau_{1} \quad (\clubsuit)}{\max(\Delta_{1}, \Delta_{2}, x : [\tau_{1}]_{p}) \vdash_{\max(n'_{1}, n'_{2})} t'_{1} t'_{2} : \tau_{2}} \text{ APP}$$

To show: $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1 + p, \max(n'_1, n'_2))} t'_1 t'_2 : \tau_2.$

This case is proved by induction hypothesis on both (\clubsuit) and (\star) and then applying APP rule.

Case

$$\frac{\Delta, x : \tau \vdash_n t_2 : \tau_2}{\Delta, x : [\tau]_p \vdash_n t_2 : \tau_2} DER$$

Subcase 1

$$\frac{\Delta, x : \tau \vdash_n t_2 : \tau_2}{\Delta, x : [\tau]_p \vdash_n t_2 : \tau_2} DER$$

where $n_2 = n$.

To show $\max(\Gamma, \Delta) \vdash_{\max(n_1+p,n)} t_2[t_1/x] : \tau_2$ By induction hypothesis on (\star) , this case is proved.

Subcase 2

$$\frac{\Delta', y \colon \tau, x \colon [\tau]_p \vdash_n t_2 \colon \tau_2 \ (\star)}{\Delta', y \colon [\tau]_{n'}, x \colon [\tau]_n \vdash_n t_2 \colon \tau_2} \text{ DER}$$

where $\Delta = \Delta'$, $y : [\tau]_{p'}$ and $n_2 = n$.

To show $\max(\Gamma, \Delta', y : [\tau]_{p'}) \vdash_{\max(n_1 + p, n_2)} t_2[t_1/x] : \tau_2$.

By induction hypothesis on (\star) , we get: $\max(\Gamma, \Delta', y : \tau) \vdash_{\max(n_1 + p, n)} t_2[t_1/x] : \tau_2(\star \star)$.

By applying DER rule on $(\star\star)$, we get: $\max(\Gamma, \Delta', y : [\tau]_p') \vdash_{\max(n_1+p,n)} t_2[t_1/x] : \tau_2$. This case is proved.

Case

$$\frac{\Gamma_1 \vdash_{n_1} t : !_p \tau \qquad \Gamma_2, x : [\tau]_p \vdash_{n_2} t' : \tau'}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} |\text{tet } ! x = t \text{ in } t' : \tau'} \text{ LET}$$

There are three sub cases.

Subcase 1: $x \not\in dom(\Delta_2)$

$$\frac{\Delta_{1},x\colon [\tau_{1}]_{p}\vdash_{n'_{1}}t\colon !_{p}\tau\ (\star)\qquad \Delta_{2},y\colon [\tau]_{p}\vdash_{n'_{2}}t'\colon \tau'\ (\clubsuit)}{\max(\Delta_{1},x\colon [\tau_{1}]_{p},\Delta_{2})\vdash_{\max(n'_{1},n'_{2})}\operatorname{let} !y=t\ \operatorname{in}\ t'\colon \tau'}\operatorname{LET}$$

where $\Delta = \max(\Delta_1, \Delta_2)$, $t_2 = \text{let } ! y = t \text{ in } t', \tau_2 = \tau' \text{ and } n_2 = \max(n_1', n_2')$. To show $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1 + p, \max(n_1', n_2'))} (\text{let } ! y = t \text{ in } t') [t_1/x] : \tau'$. By induction hypothesis on (\star) , we get $\max(\Gamma, \Delta_1) \vdash_{\max(n_1 + p, n_1')} t[t_1/x] : !_p \tau \ (\star \star)$. $x \not\in \text{dom}(\Delta_2) \implies t'[t_1/x] = t'$. It is proved by the rule LET using $(\star \star)$ and (\clubsuit) .

Subcase 2: $\mathbf{x} \not\in \mathbf{dom}(\Delta_1)$

$$\frac{\Delta_1 \vdash_{n_1'} t : !_p \tau \ (\star) \qquad \Delta_2, x : [\tau_1]_p, y : [\tau]_p \vdash_{n_2'} t' : \tau' \ (\clubsuit)}{\max(\Delta_1, x : [\tau_1]_p, \Delta_2) \vdash_{\max(n_1', n_2')} \mathsf{let} \, !y = t \; \mathsf{in} \; t' : \tau'} \mathsf{LET}$$

where $\Delta = \max(\Delta_1, \Delta_2)$, $t_2 = \text{let } ! y = t \text{ in } t', \tau_2 = \tau' \text{ and } n_2 = \max(n_1', n_2').$ To show $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1 + p, \max(n_1', n_2'))} (\text{let } ! y = t \text{ in } t') [t_1/x] : \tau'.$ By induction hypothesis on (\clubsuit) , we get $\max(\Gamma, \Delta_2)$, $y : [\tau]_p \vdash_{\max(n_1 + p, n_2')} t'[t_1/x] : \tau'$ $(\clubsuit\clubsuit)$. It is proved by the rule LET using (\star) and $(\clubsuit\clubsuit)$.

Subcase 3

$$\frac{\Delta_{1}, x : [\tau_{1}]_{p} \vdash_{n'_{1}} t : !_{p}\tau \quad (\star) \qquad \Delta_{2}, x : [\tau_{1}], y : [\tau]_{p} \vdash_{n'_{2}} t' : \tau' \quad (\clubsuit)}{\max(\Delta_{1}, x : [\tau_{1}]_{p}, \Delta_{2}) \vdash_{\max(n'_{1}, n'_{2})} \mathsf{let} \, !y = t \; \mathsf{in} \; t' : \tau'} \mathsf{LET}$$

where $\Delta = \max(\Delta_1, \Delta_2)$, $t_2 = \text{let } ! y = t$ in t', $\tau_2 = \tau'$ and $n_2 = \max(n'_1, n'_2)$. To show $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1 + p, \max(n'_1, n'_2))} (\text{let } ! y = t \text{ in } t') [t_1/x] : \tau'$. By induction hypothesis on (\star) , we get $\max(\Gamma, \Delta_1) \vdash_{\max(n_1 + p, n'_1)} t[t_1/x] : !_p \tau \ (\star \star)$. By induction hypothesis on (\clubsuit) , we get $\max(\Gamma, \Delta_2)$, $y : [\tau]_p \vdash_{\max(n_1 + p, n'_2)} t'[t_1/x] : \tau'$ $(\clubsuit \clubsuit)$. It is proved by the rule LET using $(\star \star)$ and $(\clubsuit \clubsuit)$.

Case

$$\frac{\Gamma_1 \vdash_{n_1} t : \tau_1 \times \tau_2 \qquad \Gamma_2, x_1 : \tau_1, x_2 : \tau_2 \vdash_{n_2} t' : \tau'}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} \text{let } (x_1, x_2) = t \text{ in } t' : \tau'} \text{ LET-P}$$

Subcase 1: $\mathbf{x} \not\in \mathbf{dom}(\Delta_2)$

$$\frac{\Delta_{1},x:[\tau_{1}]_{p}\vdash_{n'_{1}}t:\tau'_{1}\times\tau'_{2}\ (\star)\qquad \ \ \Delta_{2},x_{1}:\tau'_{1},x_{2}:\tau'_{2}\vdash_{n'_{2}}t':\tau'\ (\clubsuit)}{\max(\Delta_{1},x:[\tau_{1}]_{p},\Delta_{2})\vdash_{\max(n'_{1},n'_{2})}\mathrm{let}\ (x_{1},x_{2})=t\ \mathrm{in}\ t':\tau'}\ \mathrm{LET-P}$$

where $\Delta = \max(\Delta_1, \Delta_2)$, $t_2 = \text{let } (x_1, x_2) = t$ in t', $\tau_2 = \tau'$ and $n_2 = \max(n'_1, n'_2)$. To show $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1 + p, \max(n'_1, n'_2))} (\text{let } (x_1, x_2) = t \text{ in } t')[t_1/x] : \tau'$. By induction hypothesis on (\star) , we get $\max(\Gamma, \Delta_1) \vdash_{\max(n_1 + p, n'_1)} t[t_1/x] : \tau'_1 \times \tau'_2 \ (\star \star)$. $x \not\in \text{dom}(\Delta_2) \implies t'[t_1/x] = t'$. It is proved by the rule LET-P using $(\star \star)$ and (\clubsuit) .

Subcase 2: $\mathbf{x} \not\in \mathbf{dom}(\Delta_1)$

$$\frac{\Delta_{1} \vdash_{n'_{1}} t : \tau'_{1} \times \tau'_{2} \ (\star) \qquad \Delta_{2}, x_{1} : \tau'_{1}, x_{2} : \tau'_{2}, x : [\tau_{1}]_{p} \vdash_{n'_{2}} t' : \tau' \ (\clubsuit)}{\max(\Delta_{1}, x : [\tau_{1}]_{p}, \Delta_{2}) \vdash_{\max(n'_{1}, n'_{2})} \mathsf{let} \ (x_{1}, x_{2}) = t \ \mathsf{in} \ t' : \tau'} \mathsf{LET-P}}$$

where $\Delta = \max(\Delta_1, \Delta_2)$, $t_2 = \text{let } (x_1, x_2) = t \text{ in } t'$, $\tau_2 = \tau'$ and $n_2 = \max(n'_1, n'_2)$. To show $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1 + p, \max(n'_1, n'_2))} (\text{let } (x_1, x_2) = t \text{ in } t')[t_1/x] : \tau'$. By induction hypothesis on (\clubsuit) , we get $\max(\Gamma, \Delta_2), x_1 : \tau'_1, x_2 : \tau'_2 \vdash_{\max(n_1 + p, n'_2)} t'[t_1/x] : \tau'$ $(\clubsuit\clubsuit)$. It is proved by the rule LET-P using (\star) and $(\clubsuit\clubsuit)$.

Subcase 3

$$\frac{\Delta_{1},x:[\tau_{1}]_{p}\vdash_{n'_{1}}t:\tau'_{1}\times\tau'_{2}\ (\star)\qquad \Delta_{2},x_{1}:\tau'_{1},x_{2}:\tau'_{2},x:[\tau_{1}]_{p}\vdash_{n'_{2}}t':\tau'\ (\clubsuit)}{\max(\Delta_{1},x:[\tau_{1}]_{p},\Delta_{2})\vdash_{\max(n'_{1},n'_{2})}\operatorname{let}\ (x_{1},x_{2})=t\ \operatorname{in}\ t':\tau'}\operatorname{LET-P}$$

where $\Delta = \max(\Delta_1, \Delta_2)$, $t_2 = \text{let } (x_1, x_2) = t$ in t', $\tau_2 = \tau'$ and $n_2 = \max(n'_1, n'_2)$. To show $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1 + p, \max(n'_1, n'_2))} (\text{let } (x_1, x_2) = t \text{ in } t') [t_1/x] : \tau'$. By induction hypothesis on (\star) , we get $\max(\Gamma, \Delta_1) \vdash_{\max(n_1 + p, n'_1)} t[t_1/x] : \tau'_1 \times \tau'_2 \ (\star \star)$. By induction hypothesis on (\clubsuit) , we get $\max(\Gamma, \Delta_2), x_1 : \tau'_1, x_2 : \tau'_2 \vdash_{\max(n_1 + p, n'_2)} t'[t_1/x] : \tau'$ $(\clubsuit\clubsuit)$. It is proved by the rule LET-P using $(\star \star)$ and $(\clubsuit\clubsuit)$.

Case

$$\frac{\Gamma_1 \vdash_{n_1} t_1 : \tau_1 \qquad \Gamma_2 \vdash_{n_2} t_2 : \tau_2}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} (t_1, t_2) : \tau_1 \times \tau_2} \text{ PAIR}$$

There are three sub cases, x only in Γ_1 , x only in Γ_2 and x appears in both Γ_1 and Γ_2 . When x only in Γ_1 , it is proved by induction hypothesis on the first premise and then using the rule PAIR. When x only in Γ_2 , it is proved by induction hypothesis on the second premise and then using the rule PAIR. When x appears in both Γ_1 and Γ_2 , it is proved by induction hypothesis on both premises and then using rule PAIR.

Case

$$\frac{\Gamma_1 \vdash_{n_1} t : b \qquad \Gamma_2 \vdash_{n_2} t_i : b}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n_1, n_2)} \mathsf{case} \ t \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} : b} \ ^{\mathsf{CASE-CONST}}$$

There are three sub cases.

Subcase 1: $\mathbf{x} \not\in \mathbf{dom}(\Delta_2)$

$$\frac{\Delta_{1},x:[\tau_{1}]_{p}\vdash_{n'_{1}}t:b\ (\star)\qquad \Delta_{2}\vdash_{n'_{2}}t_{i}:b\ (\clubsuit)}{\max(\Delta_{1},x:[\tau_{1}]_{p},\Delta_{2})\vdash_{\max(n'_{i},n'_{i})}\mathsf{case}\ t\ \mathsf{of}\ \{c_{i}\Rightarrow t_{i}\}_{c_{i}\in b}:b} \ ^{\mathsf{CASE-CONST}}$$

where $\Delta = \max(\Delta_1, \Delta_2)$, $t_2 = \text{case } t$ of $\{c_i \Rightarrow t_i\}_{c_i \in b}$, $\tau_2 = b$ and $n_2 = \max(n'_1, n'_2)$. To show $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1 + p, \max(n'_1, n'_2))} (\text{case } t \text{ of } \{c_i \Rightarrow t_i\}_{c_i \in b})[t_1/x] : b$. By induction hypothesis on (\star) , we get $\max(\Gamma, \Delta_1) \vdash_{\max(n_1 + p, n'_1)} t[t_1/x] : b \ (\star \star)$. $x \not\in \text{dom}(\Delta_2) \implies t_i[t_1/x] = t_i$. It is proved by the rule CASE-CONST using $(\star \star)$ and (\clubsuit) .

Subcase 2: $\mathbf{x} \not\in \mathbf{dom}(\Delta_1)$

$$\frac{\Delta_1 \vdash_{n'_1} t \colon b \ (\star) \qquad \Delta_2, x \colon [\tau_1]_p \vdash_{n'_2} t_i \colon b \ (\clubsuit)}{\max(\Delta_1, x \colon [\tau_1]_p, \Delta_2) \vdash_{\max(n'_1, n'_2)} \mathsf{case} \ t \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} \colon b} \ ^{\mathsf{CASE-CONST}}$$

where $\Delta = \max(\Delta_1, \Delta_2)$, $t_2 = \text{case } t$ of $\{c_i \Rightarrow t_i\}_{c_i \in b}$, $\tau_2 = b$ and $n_2 = \max(n'_1, n'_2)$. To show $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1 + p, \max(n'_1, n'_2))} (\text{case } t \text{ of } \{c_i \Rightarrow t_i\}_{c_i \in b})[t_1/x] : b$. By induction hypothesis on (\clubsuit) , we get $\max(\Gamma, \Delta_2) \vdash_{\max(n_1 + p, n'_2)} t_i[t_1/x] : b$ $(\clubsuit\clubsuit)$. $x \not\in \text{dom}(\Delta_1) \implies t[t_1/x] = t$.

It is proved by the rule CASE-CONST using (\star) and $(\clubsuit\clubsuit)$.

Subcase 3

$$\frac{\Delta_{1},x\colon [\tau_{1}]_{p}\vdash_{n'_{1}}t\colon b\ (\star)\qquad \Delta_{2},x\colon [\tau_{1}]_{p}\vdash_{n'_{2}}t_{i}\colon b\ (\clubsuit)}{\max(\Delta_{1},x\colon [\tau_{1}]_{p},\Delta_{2})\vdash_{\max(n'_{1},n'_{2})}\mathsf{case}\ t\ \mathsf{of}\ \{c_{i}\Rightarrow t_{i}\}_{c_{i}\in b}\colon b}\ ^{\mathsf{CASE-CONST}}$$

where $\Delta = \max(\Delta_1, \Delta_2)$, $t_2 = \text{case } t \text{ of } \{c_i \Rightarrow t_i\}_{c_i \in b}$, $\tau_2 = b \text{ and } n_2 = \max(n'_1, n'_2)$. To show $\max(\Gamma, \max(\Delta_1, \Delta_2)) \vdash_{\max(n_1 + p, \max(n'_1, n'_2))} (\text{case } t \text{ of } \{c_i \Rightarrow t_i\}_{c_i \in b})[t_1/x] : b.$ By induction hypothesis on (\star) , we get $\max(\Gamma, \Delta_1) \vdash_{\max(n_1 + p, n'_1)} t[t_1/x] : b \ (\star \star)$. By induction hypothesis on (\$\\$), we get $\max(\Gamma, \Delta_2) \vdash_{\max(n_1+p, n'_1)} t_i[t_1/x] : b$ (\$\$\\$)... It is proved by the rule CASE-CONST using $(\star\star)$ and $(\clubsuit\clubsuit)$.

Case

$$\frac{\Gamma_1 \vdash_{n'_1} t : b \qquad \Gamma_2 \vdash_{n'_2} t_i : query}{\max(\Gamma_1, \Gamma_2) \vdash_{\max(n'_1, n'_2)} \mathsf{case} \ t \ \mathsf{of} \ \{c_i \Rightarrow t_i\}_{c_i \in b} : query} \ ^{\mathsf{CASE-QUERY}}$$

There are three sub cases. Thre proof are quite similar as the one of CASE-CONST.

Case

$$\frac{i::\mathbb{N};\Delta,x:[\tau_1]_p \vdash_n t:\tau \ \ (\star) \qquad i \notin \mathrm{FIV}(\Delta,x:\tau_1)}{\Delta,x:[\tau_1]_p \vdash_n \Lambda.t:\forall i::\mathbb{N}.\tau} \text{ IABS}$$

To show $\max(\Gamma, \Delta) \vdash_{\max(n_1+p,n)} \Lambda.t[t_1/x] : \forall i :: \mathbb{N}.\tau$. By induction hypothesis on (\star) , we get : $i :: \mathbb{N}; \max(\Gamma, \Delta) \vdash_{\max(n_1,n)} t[t_1/x] : \tau \ (\star \star)$.

There are two cases.

Sub case 1: $i \notin FIV(\Gamma)$ It is proved by using rule IABS with $(\star \star)$.

Sub case 2: $i \in FIV(\Gamma)$ We choose $j \notin FIV(\max(\Gamma, \Delta))$. We rename all the i to j in $(\star \star)$ and use rule IABS to get: $\max(\Gamma, \Delta) \vdash_{\max(n_1, n)} \Lambda. t[t_1/x] : \forall j :: \mathbb{N}. \tau$. It is just a renaming version of the goal.

Case

$$\frac{\Delta, x : [\tau_1]_p \vdash_n t : \forall i :: \mathbb{N}. \tau \left(\star\right) \qquad \vdash I :: \mathbb{N}}{\Delta, x : [\tau_1]_p \vdash_n t \left[\right] : \tau \{I/i\}} \text{ IAPP}$$

To show $\max(\Gamma, \Delta) \vdash_{\max(n_1+p,n)} t[t_1/x][] : \tau\{I/i\}.$ By ih on (\star) , we get: $\max(\Gamma, \Delta) \vdash_{\max(n_1+p,n)} t : \forall i :: \mathbb{N}. \tau \ (\star \star).$

It is proved by the rule IAPP with $(\star\star)$

Case

$$\frac{\Delta, x : [\tau_1]_p \vdash_n t : \tau \ (\star) \qquad \Delta', x : [\tau_1]_p \subseteq \Delta, x : \tau_1 \ (\clubsuit) \qquad \models n \leq n' \ (\clubsuit) \qquad \tau \subseteq \tau'}{\Delta', x : [\tau_1]_p \vdash_{n'} t : \tau'} \text{SUB}$$

To show $\max(\Gamma, \Delta') \vdash_{\max(n_1+p,n')} t : \tau'$.

By induction hypothesis on (\star) , we get: $\max(\Gamma, \Delta) \vdash_{\max(n_1+p,n)} t : \tau$.

- $(\clubsuit) \implies \max(\Gamma, \Delta') \subseteq \max(\Gamma, \Delta) (\clubsuit\clubsuit).$
- $(\spadesuit) \Longrightarrow \models \max(n_1 + p, n) \le \max(n_1 + p, n').$

It is proved by the rule SUB.

Case

$$\frac{[\Delta_2],x\,:\,[\tau_1]_{p-p'}\vdash_nt\,:\,\tau}{\Delta_1,p'+[\Delta_2],x\,:\,[\tau_1]_p\vdash_{n+n'}!t\,:\,!_p'\tau}\operatorname{PR}$$

TS: $\max(\Gamma, (\Delta_1, p + [\Delta_2])) \vdash_{\max(n_1 + p, n + p')} !t[t_1/x] : !_{p'}\tau.$

By induction hypothesis on premise, we get: .

By rule PR with (\star) , we get: $\Delta_1, p' + [\Delta_2] \vdash_{n+p'} !t[t_1/x] : !_{p'}\tau$. It is proved by the Lemma 7 and Lemma 3 from the conclusion.