Fiche d'entraînement : parité

Dans chacun des cas suivants, étudier la parié de la fonction proposée :

1)
$$f_1(x) = -5x^2 + 3$$
 définie sur $[-3; 3]$.

2)
$$f_2(x) = -2x^3 + 3x^2 - 5x + 1$$
 définie sur [-2; 2].

3)
$$f_3(x) = -2x^3 + 3x$$
 définie sur $[-5; 5[$.

4)
$$f_4(x) = \frac{5x^4 - 2x^2}{3x^3 + 2x}$$
 définie sur \mathbb{R}^* .

5)
$$f_5(x) = \frac{3x^5 + 4x}{-2x^3 - 7x}$$
 définie sur \mathbb{R}^* .

6)
$$f_6(x) = 3x^7 - 2x^5 + x$$
 définie sur \mathbb{R} .

7)
$$f_7(x) = 4x - 2$$
 définie sur $[-7; -3] \cup [3; 7]$.

8)
$$f_8(x) = \frac{3x^2 - 1}{-2x^4 + 4x^2 - 7}$$
 définie sur \mathbb{R} .

9)
$$f_9(x) = 7x^3 + 5x$$
 définie sur $\mathbb{R} \setminus \{1\}$.

10)
$$f_{10}(x) = 4x^3 - 2x^2 + 1$$
 définie sur] -7; 7[.

11)
$$f_{11}(x) = \frac{2x^3 + x}{3x^5 - 2x^3}$$
 définie sur \mathbb{R}^* .

12)
$$f_{12}(x) = \frac{2x^3 - 5x + 1}{x^2 - 1}$$
 définie sur $\mathbb{R} \setminus \{-1; 1\}$.

Solutions

- 1) f_1 est paire.
- 2) f_2 n'est ni paire ni impaire car $f_2(-1) = 11$ et $f_2(1) = -3$.
- 3) f_3 n'est ni paire ni impaire car son intervalle de définition n'est pas symétrique par rapport à 0.
- 4) f_4 est impaire.
- 5) f_5 est paire.
- **6)** f_6 est impaire.
- 7) f_7 n'est ni paire ni impaire car $f_7(-3) = -14$ et $f_7(3) = 10$.
- 8) f_8 est paire.
- 9) f_9 n'est ni paire ni impaire car son intervalle de définition n'est pas symétrique par rapport à 0.
- **10)** f_{10} n'est ni paire ni impaire car $f_{10}(-1) = -5$ et $f_{10}(1) = 3$.
- **11)** f_{11} est paire.
- 12) f_{12} n'est ni paire ni impaire car $f_{12}(-2) = -\frac{5}{3}$ et $f_{12}(2) = \frac{7}{3}$.