Лабораторная работа 7

Дискретное логарифмирование в конечном поле

Греков Максим Сергеевич

Содержание

1	Цель работы													
2	Опи	Эписание задачи												
	2.1	Введение	5											
	2.2	Условия кольца	6											
	2.3	Свойства кольца	6											
	2.4	Свойства отношения сравнимости	7											
	2.5	Классы эквивалентности	7											
	2.6	Постановка задачи	8											
3	p-M	р-Метод Полларда												
	3.1	Отображение f()	9											
	3.2	= "	10											
	3.3		10											
	3.4		11											
4	Реализация алгоритма													
			12											
	4.2	, 1	12											
5	Вын	золы	16											

List of Figures

4.1	Код на языке Pytl	hon																									1	2
-----	-------------------	-----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

1 Цель работы

- Ознакомиться с задачей дискретного логарифмирования в конечном поле
- Рассмотреть теоретические основы представленного алгоритма
- Реализовать р-Метод Полларда для задач дискретного логарифмирования

2 Описание задачи

2.1 Введение

Задача дискретного логарифмирования, как и задача разложения на множители, применяется во многих алгоритмах криптографии с открытым ключом.

Предложена в 1976 году У. Диффи и М. Хеллманом для установления сеансового ключа.

Эта задача послужила основой для создания протоколов шифрования и цифровой подписи, доказательств с нулевым разглашением и других криптографических протоколов.

2.2 Условия кольца

Пусть над некоторым множеством Ω произвольной природы определены операции сложения «+» и умножения «·». Множество Ω называется *кольцом*, если выполняются следующие условия:

- 1. Сложение коммутативно: a + b = b + a для любых $a, b \in \Omega$;
- 2. Сложение ассоциативно: (a + b) + c = a + (b + c) для любых $a, b, c \in \Omega$;
- 3. Существует нулевой элемент $0 \in \Omega$ такой, что a + 0 = a для любого $a \in \Omega$;
- 4. Для каждого элемента $a \in \Omega$ существует противоположный элемент $-a \in \Omega$, такой, что (-a) + a = 0;
- 5. Умножение дистрибутивно относительно сложения:

$$a \cdot (b+c) = a \cdot b + a \cdot c, (a+b) \cdot c = a \cdot c + b \cdot c,$$

для любых $a, b, c \in \Omega$.

2.3 Свойства кольца

Если в кольце Ω умножение коммутативно: $a \cdot b = b \cdot a$ для любых $a, b \in \Omega$, то кольцо называется *коммутативным*.

Если в кольце Ω умножение ассоциативно: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ для любых $a,b,c \in \Omega$, то кольцо называется *ассоциативным*.

Если в кольце Ω существует единичный элемент e такой, что $a \cdot e = e \cdot a = a$ для любого $a \in \Omega$, то кольцо называется кольцом с единицей.

Если в ассоциативном, коммутативном кольце Ω с единицей для каждого ненулевого элемента a существует обратный элемент $a^{-1} \in \Omega$ такой, что $a^{-1} \cdot a = a \cdot a^{-1} = e$, то кольцо называется *полем*.

2.4 Свойства отношения сравнимости

Пусть $m \in N, m > 1$. Целые числа a и b называются cpaвнимыми по модулю m (обозначается $a \equiv b \pmod{m}$), если разность a - b делится на m. Некоторые свойства отношения сравнимости:

- 1. Рефлексивность: $a \equiv a \pmod{m}$.
- 2. Симметричность: если $a \equiv b \pmod{m}$, то $b \equiv a \pmod{m}$.
- 3. Транзитивность: если $a \equiv b \pmod{m}$ и $b \equiv c \pmod{m}$, то $a \equiv c \pmod{m}$.

Отношение, обладающее свойством рефлексивности, симметричности и транзитивности, называется *отношением* эквивалентности. Отношение сравнимости является отношением эквивалентности на множестве Z целых чисел.

2.5 Классы эквивалентности

Отношение эквивалентности разбивает множество, на котором оно определено, на *классы эквивалентности*. Любые два класса эквивалентности либо не пересекаются, либо совпадают.

Классы эквивалентности, определяемые отношением сравнимости, называются классами вычетов по модулю m. Класс вычетов, содержащий число a, обозначается $a \pmod{m}$ или \bar{a} и представляет собой множество чисел вида a+km, где $k\in Z$; число a называется представителем этого класса вычетов.

Множество классов вычетов по модулю m обозначается Z/mZ, состоит ровно из m элементов и относительно операций сложения и умножения является кольцом классов вычетов по модулю m.

2.6 Постановка задачи

Пример. Если m=2, то $\mathbb{Z}/2\mathbb{Z}=\{0\ (mod\ 2),1\ (mod\ 2)\}$, где $0\ (mod\ 2)=2\mathbb{Z}-$ множество всех четных чисел, $1\ (mod\ 2)=2\mathbb{Z}+1$ — множество всех нечетных чисел.

Обозначим $F_p = Z/pZ$, p — простое целое число и назовем конечным полем из p элементов. Задача дискретного логарифмирования в конечном поле F_p формулируется так: для данных целых чисел a и b, a > 1, b > p, найти логарифм — такое целое число x, что $a^x \equiv b \pmod{p}$ (если такое число существует). По аналогии с вещественными числами используется обозначение $x = \log_a b$.

3 р-Метод Полларда

3.1 Отображение f()

Безопасность соответствующих криптосистем основана на том, что, зная числа a, x, p вычислить $a^x \pmod{p}$ легко, а решит задачу дискретного логарифмирования трудно. Рассмотрим р-Метод Полларда, который можно применить и для задач дискретного логарифмирования. При этом случайное отображение f должно обладать не только сжимающими свойствами, но и вычислимостью логарифма (логарифм числа f(c) можно выразить через неизвестный логарифм x и $\log_a f(c)$). Для дискретного логарифмирования в качестве случайного отображения f чаще всего используются ветвящиеся отображения, например:

3.2 Описание алгоритма

$$f(c) = \begin{cases} ac, \text{при } c < \frac{p}{2} \\ bc, \text{при } c > \frac{p}{2} \end{cases}$$

При $c<\frac{p}{2}$ имеем $\log_a f(c)=\log_a c+1$, при $c>\frac{p}{2}-\log_a f(c)=\log_a c+x$.

Алгоритм, реализующий р-Метод Полларда для задач дискретного логарифмирования.

Bxod. Простое число p, число a порядка r по модулю p, целое число b, 1 < b < p; отображение f, обладающее сжимающими свойствами и сохраняющее вычислимость логарифма.

Bыход. Показатель x, для которого $a^x \equiv b \pmod{p}$, если такой показатель существует.

3.3 Последовательность вычислений

- 1. Выбрать произвольные целые числа u, v и положить $c \leftarrow a^u b^v \pmod{p}, d \leftarrow c$.
- 2. Выполнять $c \leftarrow f(c) \pmod{p}, d \leftarrow f(f(d)) \pmod{p}$, вычисляя при этом логарифмы для c и d как линейные функции от x по модулю r, до получения равенства $c \equiv d \pmod{p}$.
- 3. Приравняв логарифмы для c и d, вычислить логарифм x решением сравнения по модулю r. Результат: x или "Решений нет".

3.4 Пример

Пример. Решим задачу дискретного логарифмирования $10^x \equiv 64 \pmod{107}$, используя р–Метод Полларда. Порядок числа 10 по модулю 107 равен 53.

Выберем отображение $f(c) \equiv 10c \ (mod \ 107)$ при c < 53, $f(c) \equiv 64c \ (mod \ 107)$ при $c \ge 53$. Пусть u = 2, v = 2. Результаты вычислений запишем в таблицу.

Приравниваем логарифмы, полученные на 11-м шаге: $7+8 \ x \equiv 13+13 \ x \ (mod\ 53)$. Решая сравнение первой степени, получаем: $x=20 \ (mod\ 53)$.

Проверка: $10^{20} \equiv 64 \pmod{107}$.

4 Реализация алгоритма

Figure 4.1: Код на языке Python

4.1 Результат работы

Результат работы данного алгоритма:

$$10^{20} = 64 (mod 107)$$

4.2 Программный код

```
def euclid(a, b):
  if b == 0:
    return a, 1, 0
```

else:

def func(x, a, b, G, H, P, Q):

$$sub = x \% 3$$

if sub == 0:

$$x = x * G % P$$

$$a = (a + 1) \% Q$$

if sub == 1:

$$x = x * H \% P$$

$$b = (b + 1) \% P$$

if sub == 2:

$$x *= x \% P$$

return x, a, b

def pollard(G, H, P):

$$Q = int((P - 1) // 2)$$

$$x = G^*H$$

```
b = 1
  X = x
  A = a
  B = b
  for i in range(1, P):
    x, a, b = func(x, a, b, G, H, P, Q)
    X, A, B = func(X, A, B, G, H, P, Q)
    X, A, B = func(X, A, B, G, H, P, Q)
    if x == X: break
  nom = a-A
  denom = B-b
  return (euclid(denom, Q)[1] * nom) % Q
def main():
  a = 10
  b = 64
  p = 107
  x = pollard(a, b, p)
  print(f"{a}^{x} = {b} \pmod{{p}}")
if __name__ == '__main__':
```

main()

5 Выводы

- Ознакомились с задачей дискретного логарифмирования в конечном поле
- Рассмотрели теоретические основы представленного алгоритма
- Реализовали р-Метод Полларда для задач дискретного логарифмирования