90% Confidence Level Upper Bound

Brief discussion of Feldman & Cousins

Outline

Parameter Estimataion	2
Confidence Interval (CI)	4
Problem with Standard CI	. 11
Acceptance Region	. 18
Bayesian	. 25

Parameter Estimataion

• Expect an average of (real) $\mu \ge 0$ neutrinos per time

Poisson Distribution

Parameter Estimataion

- Expect an average of (real) $\mu \ge 0$ neutrinos per time
- Probability of seeing (integer) $n \ge 0$ neutrinos per time?

Poisson Distribution

Parameter Estimataion

- Expect an average of (real) $\mu \ge 0$ neutrinos per time
- Probability of seeing (integer) $n \ge 0$ neutrinos per time?
- Poisson Distribution:

$$\Pr(n|\mu) = \frac{e^{-\mu}\mu^n}{n!}$$

• Prob. of data n, given parameter μ ; aka the *likelihood*.

Poisson Distribution

Parameter Estimataion

- Expect an average of (real) $\mu \ge 0$ neutrinos per time
- Probability of seeing (integer) $n \ge 0$ neutrinos per time?
- Poisson Distribution:

$$\Pr(n|\mu) = \frac{e^{-\mu}\mu^n}{n!}$$

• Prob. of data n, given parameter μ ; aka the *likelihood*.

• Example:

Confidence Interval (CI)

• Goal: estimate parameter μ whose true value is μ_t

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; first measurement yields x_0 .

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$
 - $\mu_l = \mu_l(x_0)$: lower bound associated w/ this 1st measurement

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$
 - $\mu_l = \mu_l(x_0)$: lower bound associated w/ this 1st measurement
 - $\mu_u = \mu_u(x_0)$: upper bound associated w/ this 1st measurement

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$
 - $\mu_l = \mu_l(x_0)$: lower bound associated w/ this 1st measurement
 - $\mu_u = \mu_u(x_0)$: upper bound associated w/ this 1st measurement
- Repeat experiment; get outcome $x_1 \to \text{construct} \ [\mu_l(x_1), \mu_u(x_1)]$

- Goal: estimate parameter μ whose true value is μ_t
- Make a measurement x; first measurement yields x_0 .
- Construct an interval (discussed later) $[\mu_l, \mu_u]$
 - $\mu_l = \mu_l(x_0)$: lower bound associated w/ this 1st measurement
 - $\mu_u = \mu_u(x_0)$: upper bound associated w/ this 1st measurement
- Repeat experiment; get outcome $x_1 \to \text{construct} [\mu_l(x_1), \mu_u(x_1)]$
- More experiments; get a bunch of intervals. *i.e.* we get a set

$$C \equiv \{ [\mu_l(x_0), \mu_u(x_0)], [\mu_l(x_1), \mu_u(x_1)], [\mu_l(x_2), \mu_u(x_2)] \dots \}$$

- $C \equiv \{ [\mu_l, \mu_u], [\mu_l, \mu_u], [\mu_l, \mu_u] \dots \}$
- The set C has the property that

$$P([\mu_l, \mu_u] \ni \mu_t) = \alpha\%$$

- $C \equiv \{ [\mu_l, \mu_u], [\mu_l, \mu_u], [\mu_l, \mu_u] \dots \}$
- The set *C* has the property that

$$P([\mu_l, \mu_u] \ni \mu_t) = \alpha\%$$

- In words:
 - the true value μ_t is *fixed* (although unknown)

- $C \equiv \{ [\mu_l, \mu_u], [\mu_l, \mu_u], [\mu_l, \mu_u] \dots \}$
- The set C has the property that

$$P([\mu_l, \mu_u] \ni \mu_t) = \alpha\%$$

- In words:
 - the true value μ_t is *fixed* (although unknown)
 - ▶ Some members of *C* would *cover* this true value

- $C \equiv \{ [\mu_l, \mu_u], [\mu_l, \mu_u], [\mu_l, \mu_u] \dots \}$
- The set C has the property that

$$P([\mu_l, \mu_u] \ni \mu_t) = \alpha\%$$

- In words:
 - the true value μ_t is *fixed* (although unknown)
 - ▶ Some members of *C* would *cover* this true value
 - e.g. say $\mu_t = 2$, and maybe in C there is [1, 3].

- $C \equiv \{ [\mu_l, \mu_u], [\mu_l, \mu_u], [\mu_l, \mu_u] \dots \}$
- The set C has the property that

$$P([\mu_l, \mu_u] \ni \mu_t) = \alpha\%$$

- In words:
 - the true value μ_t is *fixed* (although unknown)
 - ▶ Some members of *C* would *cover* this true value
 - e.g. say $\mu_t = 2$, and maybe in C there is [1, 3].
- ullet The members of C are called $confidence\ intervals.$

Confidence Interval (CI)

• Recall *likelihood* $\Pr(x|\mu)$ (ie. probability of data, assume known paramater)

- Recall *likelihood* $\Pr(x|\mu)$ (ie. probability of data, assume known paramater)
- Take for example $\mu = 4$. Expect 4 neutrinos per time.

- Recall likelihood $\Pr(x|\mu)$ (ie. probability of data, assume known paramater)
- Take for example $\mu = 4$. Expect 4 neutrinos per time.

- Recall likelihood $\Pr(x|\mu)$ (ie. probability of data, assume known paramater)
- Take for example $\mu = 4$. Expect 4 neutrinos per time.
- Select a region $[x_l, x_u]$ such that the probability of measuring $x \in [x_l, x_u]$ is, say, 80%.

- Recall likelihood $\Pr(x|\mu)$ (ie. probability of data, assume known paramater)
- Take for example $\mu = 4$. Expect 4 neutrinos per time.
- Select a region $[x_l, x_u]$ such that the probability of measuring $x \in [x_l, x_u]$ is, say, 80%.

- Recall likelihood $\Pr(x|\mu)$ (ie. probability of data, assume known paramater)
- Take for example $\mu = 4$. Expect 4 neutrinos per time.
- Select a region $[x_l, x_u]$ such that the probability of measuring $x \in [x_l, x_u]$ is, say, 80%.

• But of course μ_t is unknown.

- But of course μ_t is unknown.
- The true flux μ_t could be, say, $\mu=5$

- But of course μ_t is unknown.
- The true flux μ_t could be, say, $\mu=5$
- So, construct another acceptance region $[x_l, x_u]$ for $\mu = 5$

- But of course μ_t is unknown.
- The true flux μ_t could be, say, $\mu=5$
- So, construct another acceptance region $[x_l, x_u] \text{ for } \mu = 5$
- Rinse and repeat

- But of course μ_t is unknown.
- The true flux μ_t could be, say, $\mu=5$
- So, construct another acceptance region $[x_l, x_u]$ for $\mu = 5$
- Rinse and repeat

Confidence Interval (CI)

• Make a measurement, get result $x_0 = 6$

- Make a measurement, get result $x_0 = 6$
- The probability of x_0 falling in the acceptance region (red) is 80%, by construction

- Make a measurement, get result $x_0 = 6$
- The probability of x_0 falling in the acceptance region (red) is 80%, by construction
- The confidence interval $[\mu_l, \mu_u]$ from this experiment is the vertical intercept.

Confidence Interval (CI)

• Make some more measurements

- Make some more measurements
- Get some more confidence intervals.

- Make some more measurements
- Get some more confidence intervals.
- Have a set

$$C = \{\operatorname{CI}_1, \operatorname{CI}_2, \operatorname{CI}_3, \operatorname{CI}_4, \operatorname{CI}_5\}$$

• 80% of this set would cover the true value, μ_t .

Standard Poisson (90% Central) CI

Problem with Standard CI

• Poisson distribution w/ background b

$$\Pr(n|\mu) = \frac{e^{-(\mu+b)}(\mu+b)^n}{n!}$$

Standard Poisson (90% Central) CI

Problem with Standard CI

• Poisson distribution w/ background b

$$\Pr(n|\mu) = \frac{e^{-(\mu+b)}(\mu+b)^n}{n!}$$

- Somehow construct a standard (i.e. "classical") 90% **central** interval
 - ref. Feldman & CousinsSection II.B and Fig. 6

Standard Poisson (90% Central) CI

Problem with Standard CI

• Poisson distribution w/ background b

$$\Pr(n|\mu) = \frac{e^{-(\mu+b)}(\mu+b)^n}{n!}$$

- Somehow construct a standard (i.e. "classical") 90% **central** interval
 - ref. Feldman & CousinsSection II.B and Fig. 6

- Similarly, a standard 90% **upper** limit can be constructed.
- ref. Feldman & Cousins Fig. 5

Problem: "flip-flop"

Problem: "flip-flop"

Problem with Standard CI

One **cannot** pick which interval to report after-the-fact.

Problem: "flip-flop"

- It turns out that flip-flopping leads to invalid intervals
- Feldman & Cousins's approach removes the possibility of (or motivation to commit) flip-flopping.

Comparison: look at small n

standard 90% upper CI

Feldman & Cousins

Comparison: look at large n

standard 90% central CI

Feldman & Cousins

• Recall acceptance region:

$$\Pr(n \in [n_1, n_2] \mid \mu_{\text{fixed}}) = 90\%$$

- <u>Complete freedom</u> in choosing how to construct the acceptance regions.
- Consider likelihood: Poisson with background *b*:

$$\mathcal{L} \equiv \Pr(n \mid \mu) = \frac{(\mu + b)^n e^{-(\mu + b)}}{n!}$$

- F&C propose to compute a likelihood ratio R
 - This needs a "best fit" $\mu_{\text{best}} \equiv \max(0, n b)$

Derivation (skip me!)

• Likelihood is a Poisson in this case.

$$\mathcal{L} \equiv \Pr(n \mid \mu) = \frac{(\mu + b)^n e^{-(\mu + b)}}{n!}$$

• Find maximum (fixing n, vary μ):

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\mu}\bigg|_{\mu=\mu_{\mathrm{best}}} = 0$$

- Result: "best fit" $\mu = \mu_{\text{best}} = n b$
- Require physical $\mu \ge 0 \Rightarrow \mu_{\text{best}} = \max(0, n-b)$

- Do this for representative values of μ ; say we start with $\mu = 0.5$
 - As an example background, b = 3
 - $ightharpoonup \Rightarrow \mu_{\mathrm{best}} \equiv \max(0, n-b) = \max(0, n-3)$
- Procedure:

 \blacktriangleright

 \blacktriangleright

>

\boldsymbol{n}	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0					

- Do this for representative values of μ ; say we start with $\mu = 0.5$
 - As an example background, b = 3
 - $ightharpoonup \Rightarrow \mu_{\mathrm{best}} \equiv \max(0, n-b) = \max(0, n-3)$
- Procedure:
 - For n = 0, compute $Pr(n \mid \mu = 0.5)$

•

 \blacktriangleright

n	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.03				

- Do this for representative values of μ ; say we start with $\mu = 0.5$
 - As an example background, b = 3
 - $ightharpoonup \Rightarrow \mu_{\mathrm{best}} \equiv \max(0, n-b) = \max(0, n-3)$
- Procedure:
 - For n = 0, compute $Pr(n \mid \mu = 0.5)$
 - For n=0, compute $\mu_{\text{best}}=0$

n	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.03	0			

Acceptance Region

- Do this for representative values of μ ; say we start with $\mu = 0.5$
 - As an example background, b = 3
 - $ightharpoonup \Rightarrow \mu_{\mathrm{best}} \equiv \max(0, n-b) = \max(0, n-3)$
- Procedure:
 - For n = 0, compute $Pr(n \mid \mu = 0.5)$
 - For n=0, compute $\mu_{\text{best}}=0$
 - For n = 0, compute $Pr(n \mid \mu = \mu_{best})$

•

7	\boldsymbol{n}	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
	0	0.03	0	0.05		

- Do this for representative values of μ ; say we start with $\mu = 0.5$
 - As an example background, b = 3
 - $ightharpoonup \Rightarrow \mu_{\mathrm{best}} \equiv \max(0, n-b) = \max(0, n-3)$
- Procedure:
 - For n = 0, compute $Pr(n \mid \mu = 0.5)$
 - For n=0, compute $\mu_{\text{best}}=0$
 - For n = 0, compute $Pr(n \mid \mu = \mu_{best})$
 - ightharpoonup Divide likelihoods to get R.

\boldsymbol{n}	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.03	0	0.05	0.607	

Acceptance Region

• As a reminder, this is still just for $\mu = 0.5$ (and example b = 3)

$oldsymbol{n}$	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.03	0	0.05	0.607	

• We will see that the acceptance region for $\mu = 0.5$ is this:

Acceptance Region

• As a reminder, this is still just for $\mu = 0.5$ (and example b = 3)

$oldsymbol{n}$	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.03	0	0.05	0.607	

• We will see that the acceptance region for $\mu = 0.5$ is this:

Acceptance Region

• As a reminder, this is still just for $\mu = 0.5$ (and example b = 3)

n	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.03	0	0.05	0.607	

• To construct the region, make a new row for n=1

n	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.030	0	0.050	0.607	
1	0.106	0	0.149	0.708	

Acceptance Region

And then for a bunch of other n.

\boldsymbol{n}	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.030	0	0.050	0.607	
1	0.106	0	0.149	0.708	
2	0.185	0	0.224	0.826	
3	0.216	0	0.224	0.963	
4	0.189	1	0.195	0.966	
5	0.132	2	0.175	0.753	
6	0.077	3	0.161	0.480	
7	0.039	4	0.149	0.259	

\boldsymbol{n}	$\Pr(n \mu)$	$\mu_{ m best}$	$\Pr(n \mu_{ ext{best}})$	R	rank
0	0.030	0	0.050	0.607	6
1	0.106	0	0.149	0.708	5
2	0.185	0	0.224	0.826	3
3	0.216	0	0.224	0.963	2
4	0.189	1	0.195	0.966	1
5	0.132	2	0.175	0.753	4
6	0.077	3	0.161	0.480	7
7	0.039	4	0.149	0.259	

- Start adding $\Pr(n|\mu)$ in the second column based on the rank.
- Stop when total probability exceeds 90%.
- The n's that contribute to the sum are the ones included in the acceptance region.

- Start adding $\Pr(n|\mu)$ in the second column based on the rank.
- Stop when total probability exceeds 90%.
- The n's that contribute to the sum are the ones included in the acceptance region.
- Acceptance region for $\mu=0.5$ is therefore $n\in[0,6]$

- Start adding $\Pr(n|\mu)$ in the second column based on the rank.
- Stop when total probability exceeds 90%.
- The n's that contribute to the sum are the ones included in the acceptance region.
- Acceptance region for $\mu=0.5$ is therefore $n\in[0,6]$
- Next, construct the acceptance region for other μ as well.

Bayesian

• The problem is that the parameter λ is what we want to figure out.

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.

Bayesian

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.
- What we can do is measure n and estimate λ

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.
- What we can do is measure n and estimate λ
- Bayes Theorem

$$\frac{\Pr(\lambda \mid n)}{\Pr(n)} = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)}$$

$$Posterior$$

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.
- What we can do is measure n and estimate λ
- Bayes Theorem

- The problem is that the parameter λ is what we want to figure out.
 - e.g. the flux of neutrinos at some energy $E = 10^{21}$ eV.
- What we can do is measure n and estimate λ
- Bayes Theorem

• Evidence is typically just a normalization and ignored. Let's call it 1:)

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)}$$

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)} \leftarrow prior$$

• If we specify a prior, we get the posterior.

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)} \leftarrow prior$$

- If we specify a prior, we get the posterior.
- "uniform prior" $Pr(\lambda) = 1$

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)} \longleftarrow prior$$

- If we specify a prior, we get the posterior.
- "uniform prior" $\Pr(\lambda) = 1 \Longrightarrow \Pr(\lambda \mid n) = \Pr(n \mid \lambda)$

$$\Pr(\lambda \mid n) = \frac{\Pr(n \mid \lambda) \cdot \Pr(\lambda)}{\Pr(n)} \longleftarrow prior$$

- If we specify a prior, we get the posterior.
- "uniform prior" $\Pr(\lambda) = 1 \Longrightarrow \Pr(\lambda \mid n) = \Pr(n \mid \lambda)$
- Suppose we measure n=0 event, then the posterior is

$$\Pr(\lambda \mid n = 0) = \Pr(n = 0 | \lambda) = \frac{e^{-\lambda} \cdot \lambda^n}{n!} = e^{-\lambda}$$

Bayesian

- Want an upper bound on λ

- Want an upper bound on λ
- A choice: find a λ_{max} such that

$$\int_0^{\lambda_{\text{max}}} \text{Posterior} = 90\%$$

- Want an upper bound on λ
- A choice: find a λ_{max} such that

$$\int_{0}^{\lambda_{\text{max}}} \text{Posterior} = 90\%$$

$$\Rightarrow \int_{0}^{\lambda_{\text{max}}} e^{-\lambda} = 0.9$$

$$\Rightarrow \lambda_{\text{max}} = \ln(10) \approx 2.3$$

- Want an upper bound on λ
- A choice: find a λ_{max} such that

$$\int_{0}^{\lambda_{\text{max}}} \text{Posterior} = 90\%$$

$$\Rightarrow \int_{0}^{\lambda_{\text{max}}} e^{-\lambda} = 0.9$$

$$\Rightarrow \lambda_{\text{max}} = \ln(10) \approx 2.3$$

- Want an upper bound on λ
- A choice: find a λ_{\max} such that

$$\int_{0}^{\lambda_{\text{max}}} \text{Posterior} = 90\%$$

$$\Rightarrow \int_{0}^{\lambda_{\text{max}}} e^{-\lambda} = 0.9$$

$$\Rightarrow \lambda_{\text{max}} = \ln(10) \approx 2.3$$

• so we "estemate with 90% confidence that $\lambda \leq 2.3$ " base on a non-detection.

- Let μ denote the unknown parameter we wish to estimate.
- Let x_0 denote the outcome of a single measurement.
- Assume that we know how the measurement outcome depends on the parameter, $x=x(\mu)$.
 - *e.g.* if the neutrino flux is very small, then oftentimes a measurement reports a non-detection.
 - In other words, we know the *likelihood*, $P(x_0|\mu)$.
- From the Bayesian perspective, we can flip things around and say that the parameter is a function of the measurement, $P(\mu|x_0)$, provided that we state our prior beliefs about the parameter, $P(\mu)$.