MH1820 Week 5

Normal distribution

Chi-square distribution

MH1820 1 / 50

Chi-square distribution

- · Gamma distribution.
- . how table for percentiles. If χ^2

<ロト < 個 ト < 直 ト < 直 ト ● 重 ・ 夕 Q @

MH1820 35 / 50

Var(Z) =
$$\mathbb{E}[Z] - (\mathbb{E}[Z])^2$$

= $\mathbb{E}[Z^2]$.

Distribution of
$$Z^2$$

 $Z^2 = \chi^2(r=1)$.

MH1820 36 / 50

Chi-square distribution

The preceding example is a chi-square distribution with 1 degree of freedom, denoted by $\chi^2(1)$. In general, we have the following:

Theorem 8 (Chi-square distribution)

Suppose $X_i = \mathbb{Z}^2$ where $\mathbb{Z} \sim N(0,1)$, for i = 1, ..., r, are independently and identically distributed (i.i.d).

Then $X = \sum_{i=1}^{r} X_i$ has a chi-square distribution with r degree of freedom, denoted by $X \sim \chi^2(r)$.

In fact.

$$\chi^2(r) = Gamma\left(\alpha = \frac{r}{2}, \theta = 2\right).$$

MH1820 37 / 50

Gamma (
$$d=9$$
, $\theta=2$) = waiting time until of the (9th) arrival of Poisson ($n=\frac{1}{6}=\frac{1}{2}$)
$$= \chi^{2}(r=16).$$

MH1820 38 / 50

Chi-square distribution $\chi^2(r)$ for different degrees of freedom r=2,3,5,8.

MH1820 39 / 50

Let $X \sim \chi^2(r)$. Similar to standard normal, we define

• the $100(1-\alpha)$ th percentile (or upper 100α th percentage point)

 $\chi^2_{\alpha}(r)$ to be the number such that $\mathbb{P}(X \ge \chi^2_{\alpha}(r)) =$

$$\mathbb{P}(X \ge \chi_{\alpha}^{2}(r)) = \alpha.$$

• the 100α th percentile to be the number $\chi^2_{1-\alpha}(r)$.

MH1820 40 / 50

 Chi-square tails, r = 5, $\alpha = 0.10$:

For a table of $\chi^2_{\alpha}(r)$, see NTULearn -> Content -> TABLES.pdf

MH1820

Example 9

Let X have a chi-square distribution with r=5 degree of freedom. Find the probabilty that X is between 1.145 and 12.83.

Solution. Use the table for $\chi^2_{\alpha}(5)$.

MH1820 43 / 50

$$P(1.145 \le X \le 12.83)$$
= $P(X \ge 1.145)$ - $P(X \ge 12.83)$
= $P(X \ge 1.145)$ - $P(X \ge 12.83)$
= $P(X \ge 1.145)$ - $P(X \ge 12.83)$
= 0.95 - 0.025 = 0.925

MH1820 44 / 50

Example 10

If customers arrive at a shop on the average of 30 per hour in accordance with a Poisson process, what is the probability that the shopkeeper will have to wait longer than 9.390 minutes for the first nine customers to arrive?

(minutes)

X = waiting time until 9th arrival.

X ~ Gamma (
$$\chi = 9$$
, $\beta = \frac{1}{2} = \frac{1}{12} = 2$)

average of 30 customers per 60 minutes.

11 11 $\frac{30}{60} = \frac{1}{2}$ 11 11 minute.

Prisson ($\chi = \frac{1}{2}$)

MH1820 45 / 50

46 / 50