Thursday, October 17, 2019 10:30

Given a net
$$(x_{\alpha})_{\alpha \in I}$$
 we say $(y_{\beta})_{\beta \in J}$ is a subnet of $(x_{\alpha})_{\alpha \in I}$ if $\exists f: J \longrightarrow I$ sit. $y_j = x_{f(i)}$ and $\forall i_{\beta} \in I$, $\exists j_{\alpha} \in J$ with $f(j) > i_{\alpha}$ $\forall j \ge j_{\alpha}$

"clearly" if $(x_a) \longrightarrow x$ then any subnet $\langle y_{\beta} \rangle \longrightarrow x$

Prop 4 if (xa) CX then TFAE:

- 1) X is a cluster pt of (xa) (xa frequently in any mid of x)
- ② 3 subject <y;> conveying to x.

Compacthess

Ihm TFAE (any top sp X)

- 0 X is compact
- ② If $\{F_{\alpha}\}$ are closed 4 have the finite intersection property $\left(\bigcap_{s}F_{\alpha}\neq\emptyset\right)$ then $\bigcap_{\alpha}F_{\alpha}\neq\emptyset$.
- 3 Every net in X has a clusterpt
- @ Every net has a convergent subnut

II 0 00 HW, 300 above.

{F_} are closed & satisfy FIP, OF 76,

Claim: $X \in \bigcap_{x} \overline{F}$ is a cluster pt if (x_n)

③ ⇒ ②