PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESTUDIOS GENERALES CIENCIAS

Álgebra Matricial y Geometría Analítica Examen Remedial (2017-1)

Indicaciones:

- * No se permite el uso de apuntes de clase ni libros.
- * Explique detalladamente las soluciones.
- * Duración: 3 horas.
- * Resuelva las cinco preguntas de acuerdo a la siguiente distribución:

Pregunta	1	2	3	4	5
Página	1 y 2	3 y 4	5 y 6	7 y 8	9 y 10

1. Sea C = (1,1) el centro de una hipérbola cuyo eje conjugado mide $2\sqrt{5}$. Si uno de los extremos del eje conjugado se encuentra en la parte positiva del eje Y y una de sus asíntotas tiene pendiente igual a 1, halle la distancia entre los focos de la hipérbola.

(4 ptos.)

- 2. Sean \overrightarrow{u} , \overrightarrow{v} dos vectores de \mathbb{R}^3 , perpendiculares entre si y unitarios . Si definimos el vector $\overrightarrow{w} = (\overrightarrow{u} \overrightarrow{v}) \times (\overrightarrow{u} + \overrightarrow{v})$, determine:
 - a) El área del papalelogramo, formado por \overrightarrow{u} y \overrightarrow{v} . (1 ptos.)
 - b) El producto escalar $(2\overrightarrow{u} \times 3\overrightarrow{v}) \cdot \overrightarrow{w}$. (1 ptos.)
 - c) La proyección del vector \overrightarrow{u} sobre $\overrightarrow{u} \times \overrightarrow{v}$. (2 ptos.)
- 3. Sea $S = \{(0, -1, 1, 0), (2, \alpha, 0, 2), (1 1, 3, 0), (0, 1, 1, -1)\}$ un conjunto de vectores de \mathbb{R}^4 . Determine para que valores de α , el vector (-1, 0, 1, 0) pertenece al espacio generado por los vectores de S. (4 ptos.)
- 4. a) Sea A una matriz tal que $\lambda = 0$ es un valor propio de A. Demuestre que A no es inversible.

(2 pts)

b) Sea A una matriz inversible de orden n. Si $\lambda \in R$ es un valor propio de A, demuestre que λ^{-1} es un valor propio de A^{-1} .

(2 pts)

Continúa..

Este material, de distribución gratuita, no contiene necesariamente las modificaciones que se hayan incorporado durante la realización de las evaluaciones.

- 5. a) Sea z un número complejo tal que $|z+i\overline{z}|=\sqrt{8}$ y $(z+i)^2$ es imaginario puro. Considerando que la parte real e imaginaria de z son mayores o iguales a cero, calcule z. (2.5 ptos.)
 - b) Exprese en forma binómica, el siguiente número complejo,

$$\frac{(1-\sqrt{3}i)^{15}(\sqrt{3}+i)^{18}}{(\sqrt{2}+i\sqrt{2})^{11}}$$

(1.5 ptos.)

Examen elaborado por el coordinador del curso.

San Miguel, 10 de julio de 2017.