The Dot Product of Geometric Vectors

Focus: Become familiar with the mechanics of a geometric dot product. We will investigate why we to use it later ©

-measures the result as a scalar

$$\overrightarrow{AC} \cdot \overrightarrow{AB} = |\overrightarrow{AC}| |\overrightarrow{AB}| \cos \theta$$
, $0 \le \theta \le 180^{\circ}$

The Dot Product

- A.K.A the "scalar product" because the result is a scalar (magnitude only no associated direction)
- Produces a positive scalar result when $0 \le \theta < 90^{\circ}$ because $\cos \theta > 0$
- Produces zero when $\theta = 90^{\circ}$ because $\cos \theta = 0$
- Produces a negative scalar result when $90 < \theta \le 180^{\circ}$ because $\cos \theta < 0$

Ex 1.

 $|\vec{a}| = 3$ and $|\vec{b}| = 6$ with an angle between the vectors of 60°. Calculate:

Ex 2. The vectors $\vec{a} - 5\vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular. If \vec{a} and \vec{b} are unit vectors, determine $\vec{a} \cdot \vec{b}$.

 $(\hat{a} - 5\hat{b}) \cdot (\hat{a} - \hat{b}) = 0$

dot product = 0

n - use distributive prop.

â.â.a.î -56.à +56.6 =0

 $|\hat{\alpha}|^2 - |\hat{\alpha}|^2 + 5|\hat{b}|^2 = 0$ $\hat{\alpha} \cdot \hat{\alpha} = |\hat{\alpha}||\hat{\alpha}||\cos \theta$

= 191191

Ex 3.

Given $\vec{x} = \hat{i} - 2\hat{j} - \hat{k}$ and $\vec{y} = \hat{i} - \hat{j} - \hat{k}$, determine the value of $2\vec{x} \cdot \vec{y} - 5\vec{y} \cdot \vec{x}$.

$$=-3(\hat{\mathbf{t}}-2\hat{\mathbf{J}}-\hat{\mathbf{k}})\cdot(\hat{\mathbf{t}}-\hat{\mathbf{J}}-\hat{\mathbf{k}})$$

$$= -3 \left(\hat{\mathbf{1}} \cdot \hat{\mathbf{1}} - \hat{\mathbf{1}} \cdot \hat{\mathbf{1}} - \hat{\mathbf{1}} \cdot \hat{\mathbf{k}} - 2 \hat{\mathbf{1}} \cdot \hat{\mathbf{k}} + 2 \hat{\mathbf{1}} \cdot \hat{\mathbf{1}} + 2 \hat{\mathbf{1}} \cdot \hat{\mathbf{k}} - \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} + \hat{\mathbf{k}} \cdot \hat{\mathbf{1}} + \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} \right)$$

(1.j = 0 (1.k = 0 (1.k = 0 (1.k = 0

2(x̄.ŋ̄) x̄.2ÿ̄

Applications of the Dot Product

Dot Product (Scalar Product): $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

Work:

- Work is defined as the product of the displacement, \vec{s} , under and applied force, \vec{f} , along the line of displacement. The resulting unit is joules (J).
- The component of \vec{f} in the direct of \vec{s} can be calculated using $|\vec{f}| \cos \theta$. This calculation is also referred to as the scalar "projection of \vec{f} onto \vec{s} ".

 $W = displacement \cdot force$ $W = |\vec{s}| |\vec{f}| \cos \theta$

Ex 1.

A crate on a ramp is hauled 8 m up the ramp under a constant force of 20 N applied at an angle of 30° to the ramp. Find the work done.

