# **Data Science Module 4**

**Day 3 - Time Series Analysis** 



# Today we are going to learn to...

- 1. Identify and work with time series data
- 2. Understand trend and seasonality and how to identify them
- 3. Compute rolling statistics
- 4. Understanding what makes a time series stationary
- 5. Use differences to remove trends in time series data (de-trending)

#### ...and then we are done!

#### **Before we start...**

- 1. Make sure you are comfortable
- 2. Have water and maybe a strong coffee handy
- 3. If you need a break...take it!
- 4. If you need a stretch please go ahead!
- 5. Please mute yourselves if you are not talking
- 6. Have your video on at all times

# ...and let's get started!

# Introduction to Time Series Analysis

# **Group discussion...**

- What makes a dataset a time series?
- Time series at work any examples?

#### What is a time series

- Series of data points indexed (or listed) in time order
- Data must be measured over time at consistent interval
- Time series are often represented as a set of observations that have a time-bound relation, which is represented as an index

# What are the goals of time series analysis?

There are two main goals of time series analysis:

- Identifying trends, cycles, and seasonal variances to aid in the forecasting of a future event
- Forecasting (predicting future values of the time series variable)

#### **Time Series**



Silver Pricing data by the LBMA

# **Working with Time Series**

#### The DateTime Library

## datetime()

- Dealing with data containing date and time can be tedious job to do
- In python we have a datetime library enables us to easily manipulate date and time by creating a datetime object

#### **Key object classes**

- datetime.date: It allows us to manipulate date without interfering time (month, day, year)
- datetime.time: It allows us to manipulate date without interfering date (hour, minute, second, microsecond)
- datetime.datetime: It allows us to manipulate the combination of date and time (month, day, year, hour, second, microsecond).
- datetime.tzinfo: An abstract class for dealing with time zones. These types of objects are immutable. For instance, to account for different time zones and/or daylight saving times.
- datetime.timedelta: It is the difference between two date, time or datetime instances

#### The DateTime Library - Creating a datetime object

from datetime import datetime

 To create a date object, call the datetime class and supply the necessary arguments

```
new_date = datetime([Y], [M], [D], [H], [m], [s], [ms])
```

#### **The DateTime Library - Basic Operations**

 To create a date object, call the datetime class and supply the necessary arguments

```
from datetime import datetime
new_date = datetime([Y], [M], [D], [H], [m], [s], [ms])
```

 To calculate time differences (create a timedelta object), call the timedelta class and supply the necessary arguments

```
from datetime import timedelta

offset = timedelta(days=1, seconds=20)
```

01\_time\_series- Apprentice



# Preprocessing Time Series data with Pandas

#### Key operations:

- Converting date to datetime object using pd.to\_datetime(colum)
- Extracting different date parts from date object using .dt attribute
- Creating Timestamps for filtering on Date pd.to\_datetime()
- Setting a datetime column to index using df.set\_index('Date', inplace = True)

01\_time\_series- Apprentice



# **Time Series Rolling Stats**

# **Key components of a time series**





# **Key components of a time series**

**Trend**: General direction in which something is developing or changing. A trend can be upward(uptrend) or downward(downtrend).



## **Key components of a time series**

Seasonality: Predictable pattern that recurs or repeats over regular intervals. Seasonality is often observed within a year or less.

Can we think of example of data with seasonality?



# The easiest way to visualize patterns is drawing them

02\_rolling\_statistics\_Apprentice



# **Key rolling stats concepts**

- **Resample:** used to summarize data by date or time.
- Rolling: used to calculate stats of the last n values.
- Expanding: used to calculate stats using all of the data points up to the current time as opposed to a moving (rolling) window
- Exponentially Weighted Windows: used to calculate stats decreasing the contribution of time points that are further in the past



# Time Series Differencing and Stationarity

What makes a time series stationary?

Why does it matter?

# What makes a time series stationary?

A time series is stationary when its statistical properties: the mean, variance, and autocorrelation (covered tomorrow) do not change over time.

# Why does it matter?

Most statistical forecasting methods assume the time series you are forecasting on to be stationary.

A stationarized series is relatively easy to predict: you simply predict that its statistical properties will be the same in the future as they have been in the past!

#### **Time Series Differencing and Stationarity**

- <u>Differencing</u> is the most common way to make a series stationary
- This leads to removal of trends, resulting in a mean of zero across time
- Sometimes multiple differencing is carried out to achieve stationarity

$$\Delta y_t = y_t - y_{t-1}$$

Where periods is the shift for calculating difference

#### **Shifting and lagging time series data**

 Shifting or lagging time series data backward and forwards allows us to calculate percentage change from sample to sample or period to period

data.shift(periods= )

02\_rolling\_statistics\_Apprentice

Where periods is the shift for calculating difference

