

Multiple Linear Regression

> Predicting birth weight of babies from a variety of variables:

	bwt	gestation	parity	age	height	weight	smoke
1	120	284	0	27	62	100	0
2	113	282	0	33	64	135	0
:	:	:	:	:	:	:	:
1236	117	297	0	38	65	129	0

$$y \sim x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$

Multiple Linear Regression in R

```
# load data
> library(DAAG)
> data(allbacks)
# fit model
> book_mlr = lm(weight ~ volume + cover, data = allbacks)
> summary(book_mlr)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96284 59.19274 3.344 0.005841 **
           volume
cover:pb -184.04727 40.49420 -4.545 0.000672 ***
Residual standard error: 78.2 on 12 degrees of freedom
Multiple R-squared: 0.9275, Adjusted R-squared: 0.9154
F-statistic: 76.73 on 2 and 12 DF, p-value: 1.455e-07
```


Behnam Bahrak

< 5 of 20 >

Example

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$$

For hardcover books: plug in 0 for cover:

$$weight = 197.96 + 0.72 \ volume - 184.05 \times 0$$

= 197.96 + 0.72 $volume$

For paperback books: plug in 1 for cover:

$$\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \times 1$$

= 13.91 + 0.72 \ volume

Statistical Inference

< 6 of 20 >

Interpreting the regression parameters: slope

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$$

- ightharpoonup Slope of **volume**: All else held constant, for each 1 cm^3 increase in volume the model predicts the books to be heavier on average by 0.72 grams.
- ➤ Slope of **cover**: All else held constant, the model predicts that paperback books weigh 184.05 grams lower than hardcover books, on average.

Interpreting the regression parameters: intercept

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

 $\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$

Intercept: Hardcover books with no volume are expected on average to weigh 198 grams.

Meaningless in context, serves to adjust the height of the line.

Statistical Inference

Behnam Bahrak

< 9 of 20

Prediction

ightharpoonup Predict the weight of a paperback book that is 600 cm^3 in volume.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

 $\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$

 $197.96 + 0.72 \times 600 - 184.05 \times 1 = 445.91 \, grams$

Statistical Inference

Behnam Bahrak bahrak@ut.ac.ir

< 10 of 20 >


```
Adjusted R<sup>2</sup>
> pov_slr = lm(poverty ~ female_house, data = states)
> summary(pov_slr)
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
               3.3094
                                   1.745 0.0873 .
 (Intercept)
                        1.8970
 female house
               0.6911
                           0.1599
                                     4.322 7.53e-05 ***
Residual standard error: 2.664 on 49 degrees of freedom
Multiple R-squared: 0.276, Adjusted R-squared: 0.2613
F-statistic: 18.68 on 1 and 49 DF, p-value: 7.534e-05
          Statistical Inference
                           Behnam Bahrak
                                                    < 13 of 20 >
```


adjusted R^2 : $R_{adj}^2 = 1 - \left(\frac{SSE}{SST} \times \frac{n-1}{n-k-1}\right)$

k: number of predictors

Statistical Inference

Behnam Bahrak

< 17 of 20 >

>

Example

 \succ Calculate adjusted R^2 for the multiple linear regression model predicting % living in poverty from % female householders and % white. Remember n=51 (50 states + DC).

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.74	0.00
white	1	8.21	8.21	1.16	0.29
Residuals	48	339.47	7.07		
Total	50	480.25			

$$R_{adj}^2 = 1 - \left(\frac{SSE}{SST} \times \frac{n-1}{n-k-1}\right) = 1 - \left(\frac{339.47}{480.25} \times \frac{51-1}{51-2-1}\right) = 0.26$$

Statistical Inference

Behnam Bahrak bahrak@ut.ac.ir

< 18 of 20 >

	R^2	adjusted R ²
Model 1 (poverty vs. female_house)	0.28	0.26
Model 2 (poverty vs. female_house + white)	0.29	0.26

- \triangleright When **any** variable is added to the model R^2 increases.
- \triangleright But if the added variable doesn't really provide any new information, or is completely unrelated, adjusted R^2 does not increase.

Statistical Inference

Behnam Bahrak bahrak@ut.ac.ir

< 19 of 20 >

Properties of adjusted R^2

$$R_{adj}^2 = 1 - \left(\frac{SSE}{SST} \times \frac{n-1}{n-k-1}\right)$$

- \triangleright k is never negative \rightarrow (adjusted R^2) $< R^2$
- ightharpoonup Adjusted \mathbb{R}^2 applies a penalty for the number of predictors included in the model
- \triangleright We choose models with higher adjusted R^2 over others

Statistical Inference

Behnam Bahrak bahrak@ut.ac.ir

< 20 of 20 >