Unità di controllo: esempi di domande

M. Sonza Reorda

Politecnico di Torino Dip. di Automatica e Informatica

Quale delle seguenti affermazioni è vera?

A	Il progetto di un'unità di controllo cablata è più semplice di quello di un'unità di controllo microprogrammata
В	Il progetto di un'unità di controllo cablata è più complesso di quello di un'unità di controllo microprogrammata
С	Il progetto di un'unità di controllo cablata ha all'incirca la stessa complessità di quello di un'unità di controllo microprogrammata, ma produce un circuito meno veloce
D	Il progetto di un'unità di controllo cablata ha all'incirca la stessa complessità di quello di un'unità di controllo microprogrammata, ma produce un circuito più grande

Si consideri un'unità di controllo microprogrammata che utilizza 100 microistruzioni e pilota 300 segnali di controllo. Qual è il parallelismo del suo µPC?

A	100
В	8
C	7
D	5

A quale tipo di memoria corrisponde la memoria contenente il microcodice di un'unità di controllo microprogrammata?

A	ROM
В	Registri
С	RAM
D	Flash

Chi definisce il contenuto della memoria di microcodice esistente all'interno di un processore microprogrammato?

A	Il programmatore assembler
В	Il sistema operativo
С	Il progettista del processore
D	Il compilatore

Qual è il principale vantaggio derivante dall'adozione della tecnica della microprogrammazione verticale rispetto alla microprogrammazione orizzontale?

A	La riduzione del parallelismo della memoria di controllo
В	L'aumento della velocità dell'unità di controllo
C	La riduzione del numero di parole presenti nella memoria di controllo
D	La maggiore facilità di progetto

Si consideri un'unità di controllo microprogrammata. Quale delle seguenti condizioni deve essere soddisfatta da una coppia di segnali di controllo perché questi possano essere codificati insieme (ossia perché siano *compatibili*)?

A	I due segnali non devono pilotare lo stesso dispositivo
В	I due segnali devono sempre essere attivati insieme
C	I due segnali devono essere attivati in microistruzioni immediatamente successive
D	I due segnali non devono mai essere attivati all'interno di una stessa microistruzione.

Si scrivano le microistruzioni eseguite da un processore avente l'architettura in figura durante l'esecuzione dell'istruzione

ADD R1, [R2], R3

Tale istruzione somma il contenuto di R3 al contenuto della cella di memoria il cui indirizzo è scritto in R2, e scrive il risultato in R1.

Si scrivano le microistruzioni eseguite da un processore avente l'architettura in figura durante l'esecuzione dell'istruzione

ADD [R1], R2, R3

Tale istruzione somma il contenuto di R3 al contenuto di R2, e scrive il risultato in nella locazione di memoria indirizzata da R1.

Quale delle sequenze di microistruzioni corrisponde alla fase di fetch di un'istruzione?

A	MAR ← PC, Y = 0, Carry = 1, Z ← PC + Y + Carry Attiva il segnale di lettura, PC ← Z Aspetta sino al segnale MFC, MDR ← Bus esterno IR ← MDR Decodifica dell'Istruzione End
В	MAR ← PC, Y = 0, Carry = 1, Z ← PC + Y + Carry Attiva il segnale di lettura, PC ← Z MDR ← Bus esterno IR ← MDR Decodifica dell'Istruzione
С	MAR ← PC, Y = 0, Carry = 1, Z ← PC + Y + Carry PC ← Z Aspetta sino al segnale MFC, MDR ← Bus esterno IR ← MDR Decodifica dell'Istruzione
D	MAR ← PC, Y = 0, Carry = 1, Z ← PC + Y + Carry Attiva il segnale di lettura, PC ← Z Aspetta sino al segnale MFC, MDR ← Bus esterno IR ← MDR Decodifica dell'Istruzione

Date le seguenti 2 sequenze di macroistruzioni delle seguenti istruzioni :

Per istruzione di tipo ADD_REG

- T6: R1_{out}, Y_{in}
- T7: R2_{out}, Add, Z_{in}
- T8: Z_{out} , R3_{in}, End

 \mathbf{e}

Per l'istruzione di tipo ADD_LOAD

- T6: $R3_{out}$, MAR_{in}
- T7: RD, MAR_{out}, R1_{out}, Y_{in}
- T8: Aspetta MFC, SEL (Bus Esterno), MDR_{in}
- T9: $MDR2_{out}$, Add, Z_{in}
- T10: Z_{out}, R1_{in}, End

Quale è la funzione implementata nell'unità di controllo cablata per attivare il segnale Z_{out} ?

A	Zout = Zin + R1in + End
В	$Zout = T8 \bullet (ADD_REG) + T10 \bullet (ADD_LOAD)$
С	Zout = (T8 +T7) ● (ADD_REG) + (T9+T10) ● (ADD_LOAD)
D	Zout = End • (ADD_REG + ADD_LOAD)

Soluzione Domanda 7

Fetch:

- MAR \leftarrow PC, Y = 0, Carry = 1, Z \leftarrow PC + Y + Carry
- Attiva il segnale di lettura, $PC \leftarrow Z$
- Aspetta sino al segnale MFC, MDR ← Bus esterno
- IR \leftarrow MDR
- Decodifica dell'Istruzione

- MAR \leftarrow R2
- Attiva il segnale di lettura, $Y \leftarrow R3$
- Aspetta sino al segnale MFC, MDR ← Bus esterno
- $Z \leftarrow MDR + Y$
- $R1 \leftarrow Z$

Cont.

Fetch:

- PC_{out}, MAR_{in}, Clear Y, Set Carry In to ALU, Add, Z_{in}
- MAR_{out}, RD, Z_{out}, PC_{in}
- Aspetta MFC, SEL (Bus Esterno), MDR_{in}
- MDR²_{out}, IR_{in}
- IR-CU_{out}

- R2_{out}, MAR_{in}
- MAR_{out}, RD, R3_{out}, Y_{in}
- Aspetta MFC, SEL (Bus Esterno), MDR_{in}
- MDR^2_{out} , Add, Z_{in}
- Z_{out} , $R1_{in}$, End

Soluzione Domanda 8

Fetch:

- MAR \leftarrow PC, Y = 0, Carry = 1, Z \leftarrow PC + Y + Carry
- Attiva il segnale di lettura, $PC \leftarrow Z$
- Aspetta sino al segnale MFC, MDR \leftarrow Bus esterno
- IR \leftarrow MDR
- Decodifica dell'Istruzione

- $Y \leftarrow R2$
- $Z \leftarrow R3 + Y$
- MAR \leftarrow R1
- $MDR \leftarrow Z$
- attiva il segnale di scrittura
- aspetta sino al segnale MFC, End

Cont.

Fetch:

- PCout, MARin, Clear Y, Set Carry In to ALU, Add, Zin
- MAR_{out}, RD, Z_{out}, PC_{in}
- Aspetta MFC, SEL (Bus Esterno), MDR_{in}
- MDR²_{out}, IR_{in}
- IR-CU_{out}

- $R2_{out}$, Y_{in}
- $R3_{out}$, Add, Z_{in}
- R1_{out}, MAR_{in}
- SEL (Bus interno), MDR_{in}, Z_{out}
- MDR²_{out}, attiva il segnale di scrittura
- Aspetta MFC, End