PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-171427

(43)Date of publication of application: 23.06.2000

(51)Int.CI.

GO1N 27/28 G01N 33/483 // GO1N 33/02

GO1N 33/66

(21)Application number: 11-208133

(71)Applicant: OMRON CORP

(22)Date of filing:

22.07.1999

(72)Inventor:

TOKITA MUNEO

SANO YOSHIHIKO

KUKI SEIJI

TANAKA SHINYA

(30)Priority

Priority number: 10291509

Priority date: 29.09.1998

Priority country: JP

(54) SAMPLE COMPONENT ANALYZING SYSTEM AND SENSOR CHIP AND SENSOR PACK USED THEREFOR

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a sample component analyzing system having an analyser easy in the mounting of a sensor chip to the analyser and simple in structure.

SOLUTION: A sensor chip 3 is inserted in the opening 11 of an analyser 1 together with a sensor pack 2 [drawing (a)]. When a slider 16 is pushed by the sensor pack 2, a support member 12 is rotated and a holding member 13 breaks through a film 5 to pierce the hole 7 of the sensor chip 3 [drawing (b)]. When the packing material 4 of the sensor chip 3 is pulled out, only the sensor chip 3 is held by the holding member 13. When a button 123 is pushed, the support member 12 is rotated and the holding is released and the sensor chip can be discarded [drawing (d)].

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-171427 (P2000-171427A)

(43)公開日 平成12年6月23日(2000.6.23)

(51) Int.Cl.'		FΙ	テーマコード(参考)	
G01N 27/28	•	G01N 27/28	R	
	3 4 1	3 4 1 Z		
33/48	3	33/483	F	
// G01N 33/02	2	33/02		
33/66	:	33/66	33/66 A	
		審查請求未請求	R 請求項の数37 OL (全 28 頁)	
(21)出願番号	特顏平11-208133	(71)出願人 00000	人· 000002945	
		オムロ	コン株式会社	
(22)出願日	平成11年7月22日(1999.7.22)	京都府京都市右京区花園土堂町10番地		
		(72)発明者 時田	宗雄	
(31)優先権主張番号	持願平10-291509	京都府京都市右京区山ノ内山ノ下町24番地		
(32)優先日	平成10年9月29日(1998.9.29)	株式会社オムロンライフサイエンス研究		
(33)優先権主張国	日本 (JP)	所内	• .	
		(72)発明者 佐野	佳彦	
		京都府	京都府京都市右京区山ノ内山ノ下町24番地	
		株式	株式会社オムロンライフサイエンス研究	
		所内	所内	
		(74)代理人 100085	理人 100085006	
		弁理士	: 世良 和信 (外1名)	
			最終頁に続く	

(54) 【発明の名称】 試料成分分析システム並びにこのシステムに使用されるセンサチップ及びセンサパック

(57)【要約】

【課題】 センサチップの分析装置への装着が容易であり、かつ簡単な構造の分析装置を有する試料成分分析システムを提供する。

【解決手段】 分析装置1の開口部11にセンサチップ3をセンサパック2ごと挿入する(図3(a))。センサパック2がスライダ16を押し込むと支持部材12が回転し、保持部材13がフィルム5を突き破りセンサチップ3の孔7を貫通する(図3(b))。センサパック2の包装材4を引き抜くと、センサチップ3のみが保持部材13によって保持される。ボタン123を押すと支持部材12が回転し、保持が解除され、センサチップ3を廃棄できる(図3(d))。

【特許請求の範囲】

【請求項1】 試料と反応する反応部を有するセンサチップを包装材で包装したセンサバックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムにおいて、前記分析装置は1つのセンサチップを含むセンサバックを受け入れる開口部と、前記開口部から受け入れたセンサバックのうちセンサチップを前記分析装置に保持する保持手段とを有することを特徴とする試料成分分析システム。

【請求項2】 前記センサチップは保持手段と係合する 10 ための係合手段を備えたことを特徴とする請求項1記載の試料成分分析システム。

【請求項3】 前記保持手段は前記包装材を貫通して少なくとも前記センサチップまで至ることを特徴とする請求項1記載の試料成分分析システム。

【請求項4】 前記センサパックは使用者が保持するための保持部を有することを特徴とする請求項1記載の試料成分分析システム。

【請求項5】 前記包装材はセンサチップの位置決め手段を有することを特徴とする請求項1記載の試料成分分 20 析システム。

【請求項6】 前記分析装置は前記開口部からセンサチップのみが挿入された場合の該センサチップの位置決め手段を有することを特徴とする請求項1記載の試料成分分析システム。

【請求項7】 前記分析装置は前記保持手段による保持を解除するための保持解除手段を有することを特徴とする請求項1記載の試料成分分析システム。

【請求項8】 前記分析装置は、前記保持手段が前記センサパックから退避した退避状態と、前記センサチップ 30 を保持する保持状態との2つの状態を切り替える保持手段の状態切替手段を有し、

前記センサバック挿入時には保持手段は退避状態にあり、センサバック挿入完了後に保持状態となるように前記状態切替手段を切り替えることを特徴とする請求項1 記載の試料成分分析システム。

【請求項9】 前記状態切替手段はセンサパックの挿入によって移動する可動部材によって作動することを特徴とする請求項8記載の試料成分分析システム。

【請求項10】 前記分析装置は、前記可動部材の移動 40 によって作動する電源スイッチを備えたことを特徴とする請求項9記載の試料成分分析システム。

【請求項11】 前記分析装置は、前記保持手段の2つの状態の切替に連動して前記分析装置の電源を投入及び切断する電源スイッチを備えたことを特徴とする請求項8記載の試料成分分析システム。

【請求項12】 前記分析装置は、前記センサチップから前記反応部における反応情報を取り出すための反応情報取得手段を有し、前記センサチップを前記保持手段で保持することによって前記反応情報取得手段の前記セン 50

2

サチップに対する位置決めを行うことを特徴とする請求 項1記載の試料成分分析システム。

【請求項13】 前記保持手段によって前記センサチップを保持し、前記包装材を前記開口部から外すときに、前記センサチップが前記包装材に当接してこれを破断することによって前記包装材内から前記センサチップを取り出す試料成分分析システムであって、

前記センサチップが当接する前記包装材の部位に、前記 センサチップが加える力を集中して受ける力受け部を設 けたことを特徴とする請求項1記載の試料成分分析シス テム。

【請求項14】 前記センサチップは前記反応部から離れた部分から先に前記包装材から取り出されることを特徴とする請求項13記載の試料成分分析システム。

【請求項15】 前記分析装置は、前記センサチップから前記反応部における反応情報を取り出すための反応情報取得手段を有し、

前記保持手段に前記反応情報取得手段を設けたことを特 徴とする請求項1記載の試料成分分析システム。

【請求項16】 前記包装材は前記保持手段が貫通可能な貫通可能部と前記保持手段の貫通を阻止する貫通阻止部とを備え、

前記分析装置は、前記センサチップに接触して前記反応 部における反応情報を取り出すための反応情報取得手段 レ

前記反応情報取得手段が前記センサパックから離間又は 軽く接触する第1状態と前記センサチップに接触する第 2状態の2つの状態を切り替える反応情報取得手段の状態切替手段と、を備え、

前記状態切替手段は、前記保持手段が前記貫通可能部を 貫通して前記センサチップを保持している場合に前記第 1状態とし、前記包装材が前記開口部から取り除かれ前 記保持手段がセンサチップのみを保持している場合に前 記第2状態とすることを特徴とする請求項3記載の試料 成分分析システム。

【請求項17】 前記センサパックは、乾燥剤を含むことを特徴とする請求項1記載の試料成分分析システム。

【請求項18】 前記センサパックは、使用者が保持するための保持部を有し、

前記乾燥剤を収納する乾燥剤収納部を前記保持部に設けたことを特徴とする請求項17記載の試料成分分析システム。

【請求項19】 前記分析装置の開口部に対して前記センサパックの挿入されるべき向きが規定されており、前記所定の向きと異なる向きからみた前記センサパックの断面形状が、該センサパックを受け入れる方向からみた前記開口部の断面形状と異なることを特徴とする請求項1記載の試料成分分析システム。

【請求項20】 前記センサチップは略板形状をなし、 前記センサパック及び前記開口部は略板形状のセンサチ ップの面に対し、一方の面側と他方の面側とで非対称な 形状を有することを特徴とする請求項19記載の試料成 分分析システム。

【請求項21】 前記センサチップは略板形状をなし、 前記センサバック及び前記開口部は略板形状のセンサチップの面方向に沿う一方の側と他方の側とで非対称な形 状を有することを特徴とする請求項19記載の試料成分 分析システム。

【請求項22】 前記分析装置の開口部に対して前記センサチップの挿入されるべき方向が規定されており、前記センサバックは、前記挿入されるべき方向側とその反対方向側とで異なる形状を有することを特徴とする請求項1記載の試料成分分析システム。

【請求項23】 前記分析装置に設けられた検出部と、前記センサバックの所定位置に設けられた被検出部とを有し、前記センサバックの挿入状態を検出する挿入状態検出手段を備えたことを特徴とする請求項1記載の試料成分分析システム。

【請求項24】 前記分析装置は、前記開口部に対して 所定の挿入方向に挿入された前記センサチップから前記 20 反応部における反応情報を取り出すための第1の反応情報取得手段と、前記所定の挿入方向と異なる方向から前記開口部に挿入された前記センサチップから前記反応部における反応情報を取り出すための第2の反応情報取得手段と、を備えたことを特徴とする請求項1記載の試料成分分析システム。

【請求項25】 前記センサパック及び前記センサチップの少なくともいずれか一方にセンサチップに関する情報を保持する情報保持手段を設け、前記分析装置に前記情報保持手段に保持された情報を認識する情報認識手段 30を備えたことを特徴とする請求項1記載の試料成分分析システム。

【請求項26】 前記情報認識手段によって前記情報保持手段の情報を認識できるか否かにより前記センサチップの挿入方向の適否を判定する挿入方向判定手段を備えたことを特徴とする請求項25記載の試料成分分析システム。

【請求項27】 前記分析装置が前記センサパックの包装材に開口を形成する開口形成手段を備えたことを特徴とする請求項1記載の試料成分分析システム。

【請求項28】 前記分析装置に音声発生手段を備えたことを特徴とする請求項1記載の試料成分分析システム。

【請求項29】 試料と反応する反応部を有するセンサチップを包装材で包装したセンサバックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムに使用されるセンサチップにおいて、

前記分析装置は1つのセンサチップを含むセンサパック クを受け入れる方向からみた前記開口部の断面形状と異を受け入れる開口部と、前記開口部から受け入れたセン 50 なる断面形状を有することを特徴とするセンサパック。

サパックのうちセンサチップを前記分析装置に保持する 保持手段とを有しており、

前記保持手段と係合するための係合手段を備えたすることを特徴とするセンサチップ。

【請求項30】 試料と反応する反応部を有するセンサチップを包装材で包装したセンサバックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムに使用されるセンサバックにおいて、

10 使用者が保持するための保持部を有することを特徴とするセンサバック。

【請求項31】 試料と反応する反応部を有するセンサチップを包装材で包装したセンサバックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムに使用されるセンサバックにおいて、

前記包装材に前記センサチップの位置決め手段を有する ことを特徴とするセンサパック。

【請求項32】 試料と反応する反応部を有するセンサチップを包装材で包装したセンサパックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムに使用されるセンサパックにおいて、

前記保持手段によって前記センサチップを保持し、前記 包装材を前記開口部から外すときに、前記センサチップ が前記包装材に当接してこれを破断することによって前 記包装材内から前記センサチップを取り出すようになっ ており

前記センサチップが当接する前記包装材の部位に、前記センサチップが加える力を集中して受ける力受け部を有することを特徴とするセンサパック。

【請求項33】 試料と反応する反応部を有するセンサチップを包装材で包装したセンサパックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムに使用されるセンサパックにおいて、

乾燥剤を含むことを特徴とするセンサバック。

【請求項34】 使用者が保持するための保持部を有し、

40 前記乾燥剤を収納する乾燥剤収納部を前記保持部に設けたことを特徴とする請求項33記載のセンサパック。

【請求項35】 試料と反応する反応部を有するセンサチップを包装材で包装したセンサバックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムに使用されるセンサバックにおいて、前記分析装置の開口部に対して前記センサバックの挿入されるべき向きが規定されており、前記所定の向きと異なる向きからみたときに、前記センサバックを受け入れる方向からみた前記開口部の断面形状と異なる断面形状を有することを特徴とするセンサバック。

40

【請求項36】 試料と反応する反応部を有するセンサチップを包装材で包装したセンサバックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムに使用されるセンサバックにおいて、前記分析装置の開口部への挿入方向側と、その反対方向側とで異なる形状を有することを特徴とするセンサバック。

【請求項37】 試料と反応する反応部を有するセンサチップを包装材で包装したセンサバックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置と 10を備えた試料成分分析システムに使用されるセンサバックにおいて、

前記分析装置に設けられた情報認識手段によって認識可能な情報を保持した情報保持手段を備えたことを特徴とするセンサバック。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、センサチップと分析装置からなる試料成分分析システム並びにこのシステムに使用されるセンサチップ及びセンサパックに関する。より詳細には、血液中のグルコースその他の成分あるいは工業製品や食品等の特定の成分を分析するのに用いられるセンサチップを取り扱うための改良されたシステムに関する。

[0002]

【従来の技術】センサチップを取り扱う試料成分分析システムとしては図33に示すようなものがある。すなわち、センサチップ700をアルミバック等の包装材701から取り出した後、センサチップ700を持って分析装置702に装着し、センサチップ700上の反応部73000aに試料を滴下等して分析を行う。

【0003】このようなシステムでは、測定毎にセンサチップ700を包装材701から取り出さなくてはならず、包装材701を開封するのに力が必要だったり、開封する際に誤ってセンサチップ700を落としてしまったり、反応部700aに触れてしまったりする等の問題があった。さらに、血液試料を用いるセンサチップ700場合には、測定後に、血液試料のついたセンサチップ700を手で分析装置702から取り外す際に、慎重な取り扱いを要し、煩わしかった。

【0004】このような問題点を解決するため簡易にセンサチップを取り扱うシステムとして、特開平8-262026号に開示されているように複数個のセンサチップを封入したセンサバックを分析装置内にセットし、分析装置のレバーを操作することでセンサチップを送り出し、使用可能状態にするものがある。

[0005]

【発明が解決しようとする課題】しかしながら、この場合には分析装置の機構が複雑となるため故障の原因となり易く、また、外形が大きくなる、コストが高くなる等 50

の問題があった。

【0006】本発明はかかる従来技術の課題を解決する ためになされたものであって、その目的とするところ は、センサチップの分析装置への装着が容易であり、か つ簡単な構造の分析装置を有するシステムを提供するこ とにある。

6

[0007]

【課題を解決するための手段】上記目的を達成するために第1の発明は、試料と反応する反応部を有するセンサチップを包装材で包装したセンサバックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムにおいて、前記分析装置は1つのセンサチップを含むセンサバックを受け入れる開口部と、前記開口部から受け入れたセンサバックのうちセンサチップを前記分析装置に保持する保持手段とを有することを特徴とする。

【0008】このようにすれば、センサチップをあらか じめセンサバックから取り出すことなく、センサバック のまま分析装置の開口部に挿入することによって、分析 装置に簡単に装着することができる。また、センサチッ プの装着の際に、誤って反応部に触れることもない。

【0009】分析装置は、試料が供給されたセンサチップの反応部における変化を検出して試料の成分を定量的又は定性的に測定するものであればよく、例えば、血液と酵素との反応によって血液中のグルコースの量を測定するもの等があるが、これに限られない。

【0010】第2の発明は、第1の発明において、前記 センサチップが保持手段と係合するための係合手段を備 えたことを特徴とする。

【0011】このようにセンサチップに保持手段と係合する係合手段を備えれば、保持手段による保持力が増し確実な保持が可能となる。このような係合手段としては、例えば、保持手段と嵌まり合う凹部又は凸部のような嵌合手段でもよいが、これに限られない。

【0012】第3の発明は、第1の発明において、前記 保持手段が前記包装材を貫通して少なくとも前記センサ チップまで至ることを特徴とする。

【0013】このように保持手段がセンサチップを保護する包装材を貫通するようにすれば、保持手段とセンサチップが直接接触、保持されるので、確実な保持が可能となる。

【0014】保持手段はセンサチップ自身を貫通して保持するようにしてもよい。また、保持手段がセンサチップを貫通するとともに包装材ごと貫通するようにしてもよいし、センサチップを貫通した保持手段が包装材のいずれかの部分に当接して貫通を阻止されるようにしてもよい。

【0015】第4の発明は、第1の発明において、前記 センサパックは使用者が保持するための保持部を有する ことを特徴とする。

30

【0016】このようにセンサバックに保持部を設けておけば、取り扱い時にセンサチップの含まれる部分を持って不必要な力を加え反応部等を損傷して分析精度に悪影響を及ぼすことを防止することができる。

【0017】第5の発明は、第1の発明において、前記 包装材がセンサチップの位置決め手段を有することを特 徴とする。

【0018】このようにすれば、センサパックを開口部から挿入した際のセンサチップと保持手段との位置決めを容易に行うことができる。

【0019】第6の発明は、第1の発明において、前記分析装置が前記開口部からセンサチップのみが挿入された場合の該センサチップの位置決め手段を有することを特徴とする。

【0020】センサバックごと分析装置に挿入して使用することを推奨していても使用者が誤ってセンサチップを先に取り出してしまう場合がある。このような場合に、センサチップの位置決め手段が設けられていれば、センサチップを確実に保持し、分析を行うことができるので、センサチップを無駄にすることがない。

【0021】第7の発明は、第1の発明において、前記 分析装置が前記保持手段による保持を解除するための保 持解除手段を有することを特徴とする。

【0022】使用後のセンサチップには試料が付着している。この試料には血液等不用意に触れない方がよいものもある。分析装置に設けられたレバー、ボタン等の保持解除手段を操作することによってセンサチップの保持手段による保持が解除されて分析装置から外れるようにすれば、使用者は試料やセンサチップに触れることなくセンサチップを廃棄することができる。

【0023】第8の発明は、第1の発明において、前記分析装置は、前記保持手段が前記センサパックから退避した退避状態と、前記センサチップを保持する保持状態との2つの状態を切り替える保持手段の状態切替手段を有し、前記センサパック挿入時には保持手段は退避状態にあり、センサパック挿入完了後に保持状態となるように前記状態切替手段を切り替えることを特徴とする。

【0024】このようにすれば、センサバックを分析装置の開口部に挿入する際に、保持手段が挿入の妨げとなることがなく、センサバック挿入完了後にはセンサチッ 40プを確実に保持することができる。

【0025】第9の発明は、第8の発明において、前記 状態切替手段はセンサパックの挿入によって移動する可 動部材によって作動することを特徴とする。

【0026】このようにすれば、使用者はセンサパックを挿入することによって保持のための特別の操作を行うことなくセンサチップを保持することができる。

【0027】第10の発明は、第9の発明において、前記分析装置は、前記可動部材の移動によって作動する電源スイッチを備えたことを特徴とする。

【0028】このようにすれば、センサパックの挿脱によって電源スイッチを作動させることができ、使用者は電源のON/OFFを意識する必要がなく、電源スイッチの入れ忘れ、切り忘れを防止することもできる。

【0029】第11の発明は、第8の発明において、前記分析装置は、前記保持手段の2つの状態の切替に連動して前記分析装置の電源を投入及び切断する電源スイッチを備えたことを特徴とする。

【0030】このようにすれば、センサパックの挿脱によって電源スイッチを作動させることができ、使用者は電源のON/OFFを意識する必要がなく、電源スイッチの入れ忘れ、切り忘れを防止することもできる。

【0031】第12の発明は、第1の発明において、前記分析装置が、前記センサチップから前記反応部における反応情報を取り出すための反応情報取得手段を有し、前記センサチップを前記保持手段で保持することによって前記反応情報取得手段の前記センサチップに対する位置決めを行うことを特徴とする。

【0032】このようにすれば、保持手段によるセンサチップの保持と同時に反応情報取得手段を位置決めして反応部の変化等の反応情報を取得することが可能となり、操作の簡便化を図ることができる。

【0033】反応情報取得手段としては、センサチップと電気的に接続して電気信号として反応部の変化等の情報を取り出すものや、センサチップとは非接触で反応部の変化を色等の変化として光学的に読み取るもの等があるが、反応部の変化情報を取り出すことができればよく、これらのものに限られない。

【0034】第13の発明は、第1の発明において、前記保持手段によって前記センサチップを保持し、前記包装材を前記開口部から外すときに、前記センサチップが前記包装材に当接してこれを破断することによって前記包装材内から前記センサチップを取り出す試料成分分析システムであって、前記センサチップが当接する前記包装材の部位に、前記センサチップが加える力を集中して受ける力受け部を設けたことを特徴とする。

【0035】このようにセンサチップ自身が包装材を破断して包装材から出るようにすれば、センサチップを取り出すための特別な部材が不要となる。また、センサチップによって加えられる力が力受け部に集中するので、この力受け部において包装材が破断しやすくなるので、センサチップを小さい力で簡単に取り出すことができる。

【0036】第14の発明は、第13の発明において、 前記センサチップが前記反応部から離れた部分から先に 前記包装材から取り出されることを特徴とする。

【0037】このようにすれば、センサチップを包装材から取り出す際の衝撃や接触から反応部を保護することができる。

0 【0038】第15の発明は、第1の発明において、前

40

記分析装置が、前記センサチップから前記反応部におけ る反応情報を取り出すための反応情報取得手段を有し、 前記保持手段に前記反応情報取得手段を設けたことを特

【0039】このようにすれば、装置構成の簡略化及び 部品点数の削減が可能となる。

【0040】第16の発明は、第3の発明において、前 記包装材は前記保持手段が貫通可能な貫通可能部と前記 保持手段の貫通を阻止する貫通阻止部とを備え、前記分 析装置は、前記センサチップに接触して前記反応部にお 10 ける反応情報を取り出すための反応情報取得手段と、前 記反応情報取得手段が前記センサパックから離間又は軽 く接触する第1状態と前記センサチップに接触する第2 状態の2つの状態を切り替える反応情報取得手段の状態 切替手段と、を備え、前記状態切替手段は、前記保持手 段が前記貫通可能部を貫通して前記センサチップを保持 している場合に前記第1状態とし、前記包装材が前記開 口部から取り除かれ前記保持手段がセンサチップのみを 保持している場合に前記第2状態とすることを特徴とす

【0041】このようにすれば、包装材が開口部から取 り除かれるまでは、反応情報取得手段はセンサバックか ら離間しているか又は軽く接触している程度なので、セ ンサバックに付着した油脂や汚れ等が反応情報取得手段 に付着するのを防止、又、反応情報取得手段の摩耗を防 ぐことができるので、反応情報取得手段の劣化を防止す ることができるとともに包装材を引き抜く際の抵抗を小 さくすることができる。

【0042】第17の発明は、第1の発明において、前 記センサパックは、乾燥剤を含むことを特徴とする。

【0043】このようにすれば、センサチップを包装材 に包装した際にパック内に残存している空気の水分を乾 燥剤によって吸収することができ、センサチップの品質 を保持することができる。また、パック完成後に包装材 を通過する水分があっても、これを吸収することができ る。乾燥剤は、独立の乾燥剤を収納部を設けて収納して もよいし、包装材を樹脂材料等で成形する場合にはこの 樹脂材料に混入する等の方法で、包装材自体が乾燥剤を 含有するようにしてもよい。

【0044】第18の発明は、第17の発明において、 前記センサバックは、使用者が保持するための保持部を 有し、前記乾燥剤を収納する乾燥剤収納部を前記保持部 に設けたことを特徴とする。

【0045】このようにすれば、乾燥剤収納部によって 保持部に凹凸等の異形部が形成されるので、保持部を保 持しやすくなる。また、保持部と乾燥剤収納部とをかね ることによりスペースの有効利用が図れ、センサバック の大きさを必要以上に大きくする必要がない。

【0046】第19の発明は、第1の発明において、前 記分析装置の開口部に対して前記センサパックの挿入さ 50 れるべき向きが規定されており、前記所定の向きと異な る向きからみた前記センサパックの断面形状が、該セン サパックを受け入れる方向からみた前記開口部の断面形 状と異なることを特徴とする。

【0047】このようにすれば、所定の向きと異なる向 きからのセンサパックの挿入を防止することができる。

【0048】第20の発明は、第19の発明において、 前記センサチップは略板形状をなし、前記センサパック 及び前記開口部は略板形状のセンサチップの面に対し、 一方の面側と他方の面側とで非対称な形状を有すること を特徴とする。

【0049】このようにすれば、センサチップがプレー ナ型センサのように略板形状をなす場合に、面に対して 上下を誤って挿入することを防止することができる。

【0050】第21の発明は、第19の発明において、 前記センサチップは略板形状をなし、前記センサパック 及び前記開口部は略板形状のセンサチップの面方向に沿 う一方の側と他方の側とで非対称な形状を有することを 特徴とする。

【0051】このようにすれば、センサチップがプレー ナ型センサのように略板形状をなす場合に、面に対する 上下あるいはセンサチップの前後を誤って挿入すること を防止することができる。

【0052】第22の発明は、第1の発明において、前 記分析装置の開口部に対して前記センサチップの挿入さ れるべき方向が規定されており、前記センサパックは、 前記挿入されるべき方向側とその反対方向側とで異なる 形状を有することを特徴とする。

【0053】このようにすれば、センサパックの挿入さ 30 れるべき方向側とその反対側とを誤って挿入するのを防 止することができる。

【0054】第23の発明は、第1の発明において、前 記分析装置に設けられた検出部と、前記センサパックの 所定位置に設けられた被検出部とを有し、前記センサパ ックの挿入状態を検出する挿入状態検出手段を備えたこ とを特徴とする。

【0055】このようにすれば、センサパックの所定位 置に設けられた被検出部が検出部によって検出されるか 否かにより、センサパックが正しく挿入されているか否 かの挿入状態の検出が可能となるので、挿入方向を誤っ て挿入するのを防止することができるとともに、誤って 挿入した場合でもそれを検出することができるので、セ ンサパックを無駄にすることもない。挿入状態検出手段 の検出結果を文字、音声あるいは光等の信号によって報 知する報知手段を設ければ、使用者の利便性が増す。

【0056】第24の発明は、第1の発明において、前 記分析装置は、前記開口部に対して所定の挿入方向に挿 入された前記センサチップから前記反応部における反応 情報を取り出すための第1の反応情報取得手段と、前記 所定の挿入方向と異なる方向から前記開口部に挿入され

た前記センサチップから前記反応部における反応情報を 取り出すための第2の反応情報取得手段と、を備えたこ とを特徴とする。

11

【0057】このようにすれば、センサバック又はセンサチップを所定の挿入方向と異なる方向から挿入しても、第2の反応情報取得手段によって反応を取り出して分析することができ、操作性が向上する。センサバック又はセンサチップの形状に応じて、想定される方向から挿入された場合に反応情報を取得できるように第2の反応情報取得手段を設ければよく、第2の反応情報取得手10段は1つには限られない。

【0058】第25の発明は、第1の発明において、前記センサバック及び前記センサチップの少なくともいずれか一方にセンサチップに関する情報を保持する情報保持手段を設け、前記分析装置に前記情報保持手段に保持された情報を認識する情報認識手段を備えたことを特徴とする。

【0059】センサチップの特性には、一般的にばらつ きがある。このばらつきが大きいときには、その特性を 補正する必要がある。このような特性の補正は、通常、 補正チップを分析装置に挿入する、あるいは補正値を入 力する等の方法によって行っている。しかし、このよう な方法では、補正手順が煩雑となり、入力ミスや補正忘 れが生じる場合もある。そこで、上述のようにセンサパ ック及びセンサチップの少なくともいずれか一方に情報 保持手段を設け、ロットや補正値等の必要な情報を保持 させておき、これを分析装置の情報認識手段によって認 識するようにすれば、補正チップを挿入したり、補正値 を入力したりして予め補正値等を設定する手間を省くこ とができ、間違いもなくなる。センサパックごと分析装 30 置に挿入するので、センサパック上にロット、補正値、 製造日等の情報を保持させてもよい。このようにセンサ パックに情報保持手段を設けた場合には、センサパック 製造後にセンサチップの特性を測定して補正値を決定す ることができるので、製造が容易となる。

【0060】第26の発明は、第25の発明において、 前記情報認識手段によって前記情報保持手段の情報を認 識できるか否かにより前記センサチップの挿入方向の適 否を判定する挿入方向判定手段を備えたことを特徴とす

【0061】このようにすれば、情報保持手段と情報認識手段とをセンサチップの挿入方向の適否の判定に利用することもできる。挿入方向判定手段によって挿入方向が誤っていると判定された場合に、これを報知し、あるいはさらに再挿入を指示する報知手段あるいは再挿入指示手段を設ければ利便性が増す。

【0062】第27の発明は、第1の発明において、前記分析装置が前記センサパックの包装材に開口を形成する開口形成手段を備えたことを特徴とする。

【0063】このようにすれば、センサパックからセン 50

サチップを取り出すための開口を開口形成手段によって 形成することができるので、取り出すときの力が小さく て済み操作性が向上する。開口形成手段としては、カッ ター等の破断手段を用いることができる。

【0064】第28の発明は、第1の発明において、前記分析装置に音声発生手段を備えたことを特徴とする。

【0065】このようにすれば、音声によって使用方法、分析結果、エラーや再測定等の情報を提供することができるので、視力の弱い人でも容易に操作することができる。

【0066】第29の発明は、試料と反応する反応部を有するセンサチップを包装材で包装したセンサバックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムに使用されるセンサチップにおいて、前記分析装置は1つのセンサチップを含むセンサバックを受け入れる開口部と、前記開口部から受け入れたセンサバックのうちセンサチップを前記分析装置に保持する保持手段とを有しており、前記保持手段と係合するための係合手段を備えたすることを特徴とする。

【0067】このように保持手段と係合する係合手段を備えれば、保持手段による保持力が増し確実に分析装置に保持できるセンサチップを提供することができる。

【0068】第30の発明は、試料と反応する反応部を 有するセンサチップを包装材で包装したセンサパック と、前記反応部の変化を検出して前記試料の成分を分析 する分析装置とを備えた試料成分分析システムに使用さ れるセンサパックにおいて、使用者が保持するための保 持部を有することを特徴とする。

【0069】このようにセンサパックに保持部を設けておけば、取り扱い時にセンサチップの含まれる部分を持って不必要な力を加え反応部等を損傷して分析精度に悪影響を及ぼすことを防止することができる。

【0070】第31の発明は、試料と反応する反応部を有するセンサチップを包装材で包装したセンサパックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムに使用されるセンサパックにおいて、前記包装材に前記センサチップの位置決め手段を有することを特徴とする。

【0071】このようにすれば、開口部から挿入した際のセンサチップと保持手段との位置決めを容易に行えるセンサバックを提供することができる。

【0072】第32の発明は、試料と反応する反応部を有するセンサチップを包装材で包装したセンサパックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムに使用されるセンサパックにおいて、前記保持手段によって前記センサチップを保持し、前記包装材を前記開口部から外すときに、前記センサチップが前記包装材に当接してこれを破断することによって前記包装材内から前記センサ

チップを取り出すようになっており、前記センサチップ が当接する前記包装材の部位に、前記センサチップが加 える力を集中して受ける力受け部を有することを特徴と する。

【0073】このようにセンサチップ自身が包装材を破断して包装材から出るようにすれば、センサチップを取り出すための特別な部材が不要となる。また、センサチップによって加えられる力が力受け部に集中し、この力受け部において包装材が破断しやすくなるので、センサチップを小さい力で簡単に取り出せるセンサバックを提 10供することができる。

【0074】第33の発明は、試料と反応する反応部を 有するセンサチップを包装材で包装したセンサバック と、前記反応部の変化を検出して前記試料の成分を分析 する分析装置とを備えた試料成分分析システムに使用さ れるセンサバックにおいて、乾燥剤を含むことを特徴と する。

【0075】このようにすれば、センサチップを包装材に包装した際にパック内に残存している空気の水分を乾燥剤によって吸収することができ、センサチップの品質 20を保持できるセンサパックを提供することができる。また、パック完成後に包装材を通過する水分があっても、これを吸収することができる。乾燥剤は、独立の乾燥剤を収納部を設けて収納してもよいし、包装材を樹脂材料等で成形する場合にはこの樹脂材料に混入する等の方法で、包装材自体が乾燥剤を含有するようにしてもよい。【0076】第34の発明は、第33の発明において、使用者が保持するための保持部を有し、前記乾燥剤を収納する乾燥剤収納部を前記保持部に設けたことを特徴とする。 30

【0077】このようにすれば、乾燥剤収納部によって保持部に凹凸等の異形部が形成されるので、保持部を保持しやいセンサパックを提供することができる。また、保持部と乾燥剤収納部とをかねることによりスペースの有効利用が図れ、センサパックの大きさを必要以上に大きくする必要がない。

【0078】第35の発明は、試料と反応する反応部を有するセンサチップを包装材で包装したセンサバックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムに使用さ 40れるセンサバックにおいて、前記分析装置の開口部に対して前記センサバックの挿入されるべき向きが規定されており、前記所定の向きと異なる向きからみたときに、前記センサバックを受け入れる方向からみた前記開口部の断面形状と異なる断面形状を有することを特徴とする。

【0079】このようにすれば、所定の向きと異なる向きからの挿入を防止しやすいセンサパックを提供することができる。

【0080】第36の発明は、試料と反応する反応部を 50

有するセンサチップを包装材で包装したセンサバック と、前記反応部の変化を検出して前記試料の成分を分析 する分析装置とを備えた試料成分分析システムに使用さ れるセンサバックにおいて、前記分析装置の開口部への 挿入方向側と、その反対方向側とで異なる形状を有する ことを特徴とする。

【0081】このようにすれば、挿入されるべき方向側とその反対側とを誤って挿入するのを防止しやすいセンサパックを提供することができる。

【0082】第37の発明において、試料と反応する反応部を有するセンサチップを包装材で包装したセンサバックと、前記反応部の変化を検出して前記試料の成分を分析する分析装置とを備えた試料成分分析システムに使用されるセンサバックにおいて、前記分析装置に設けられた情報認識手段によって認識可能な情報を保持した情報保持手段を備えたことを特徴とする。

【0083】このようにセンサパック及びセンサチップの少なくともいずれか一方に情報保持手段を設け、ロットや補正値等の必要な情報を保持させておき、これを分析装置の情報認識手段によって認識するようにすれば、チップの特性補正に必要な設定作業を簡略化することができ、間違いもなくなる。また、センサパックに情報保持手段を設けた場合には、センサパック製造後にセンサチップの特性を測定して補正値を決定することができるので、製造が容易となる。

[0084]

【発明の実施の形態】以下、本発明を図示の実施形態に 基づいて説明する。

(第1の実施形態)図1 (a)は本実施形態に係る試料成分分析システムを構成する分析装置1とセンサバック2の全体を示す斜視図である。図1 (b)は分析装置1の主要部とセンサバック2の概略構成を示す開口部11の中央を通る長手方向(センサパック挿入方向)の断面図である。図1 (c)は分析装置1の開口部11側から見た図である。

【0085】センサパック2はセンサチップ3を包装材4に収納したものである。

【0086】図2(a)はセンサチップの全体構成を示す斜視図である。図2(b)は包装材の構成を示す分解斜視図である。

【0087】センサチップ3は、例えば、ポリエチレンテレフタレートからなる絶縁性のフィルムの基板31上にスクリーン印刷によりカーボンベーストを印刷して熱乾燥又はUV照射により硬化させて反応電極部32a,32a、リード部32b、32b上に絶縁膜(不図示)及びポリエチレンテレフタレートからなるカバー膜33を形成し、反応電極部32a、32a上に酵素を含む試薬液を展開乾燥させて反応部である試薬層34を形成したものである。但し、センサチップ3の形

状、構成及び製造方法はこのようなものに限られない。 【0088】包装材4は、アルミ等の金属製またはプラ スチック製のフィルム5とプラスチックシート製または アルミ等の金属シート製のベース6とからなる。ベース 6にはセンサチップ3を収容して位置決めするための窪 み(位置決め手段)61が設けられている。また、ベー ス6には分析装置への挿入方向と反対側に持ち易いよう に保持部である掴み代15が設けられている。フィルム 5とベース6は熱溶着により密封接着されている。特 に、斜線で示す接着部62のうち、センサチップ3の出 10 口となる分析装置挿入側の接着面形状は山形に切り欠か れた形状となっており、センサチップ3の力が集中的に 加わる力受け部62aを構成している。これにより、フ ィルム5を破るときの接触面を小さくでき、弱い力で簡 単にセンサチップ3を取り出すことができる。また、セ ンサチップ3の試薬層34及び反応電極部32a, 32 a 側を挿入方向と反対側に設けているので、フィルムを 破って取り出される際の衝撃や接触から保護することが できる。また、センサパック2に掴み代を設けることに より、センサチップ3を含む部分を持って不必要な力を 20 加えて試薬層等を損傷して分析精度を低下させることも ないので、高精度の分析が可能である。本実施形態では センサパックは略矩形であるが、掴み代の面積を大きく してさらに掴みやすくしてもよく、このような形状に限 られるものではない。

【0089】分析装置1にはセンサパック2が入る大き さの開口部11が設けられている。スライダ (可動部 材) 16は開口部11の奥に配置され、底面111上を センサパック2の挿入方向に移動することができる。ま た、スライダ16の開口部11と反対側にはバネ1.7が 30 設けられており、スライダ16を図1(b)の初期位置 から開口部11と反対側へ移動させるとバネ17がスラ イダ16を開口部11側へ押圧するように付勢してい る。支持部材12は軸18を中心として揺動可能に設け られている。支持部材12の開口部11側腕部121の 短手方向(紙面に直交する方向)中央部の下面121a には下方に突出する板状又は棒状の保持部材(保持手 段) 13が設けられ、保持部材13の軸18側には短手 方向に2つの接続電極(反応情報取得手段)14,14 が設けられ、さらに軸18側には断面略矩形の突出部1 40 9が設けられている。支持部材12の開口部11と反対 側の腕部122の下面122aと底面111との間にバ ネ20が設けられ、腕部122の下面122aを上方へ 押圧するように付勢しており、これによって支持部材1 2の開口部11側腕部121は下方に付勢されている。 スライダ16の上面16aの開口部側端部には支持部材 12の突出部19がはまり込む段部161が形成されて いるが、図1 (b) に示すようにスライダ16が初期位 置にある場合には、突出部19の下面19aとスライダ 16の上面16aとが当接して腕部121の時計回りの 50 回転が規制されているため、センサバック2を開口部1 1から挿入しても保持部材13はセンサバック2に接触 しない。また、スライダ16の奥側の底面111からア クチュエータ21が突出しており、スライダ16の移動 によってアクチュエータ21が押し込まれるのを検出し て分析装置1の電源を入れるスイッチ22が設けられて いる。スライダ16が初期位置にある場合にはアクチュ エータ22は作動していない。

【0090】開口部11の底面111のセンサパック2 挿入方向両側方には段部をなすガイド部23が形成され ており、センサパック2挿入の案内をするとともにベー ス6の窪み61を側方から規制することによりセンサパ ック2及び内部に封入されたセンサチップ3の側方の位 置決めを行っている。

【0091】試料と反応する試薬層34を有するセンサチップ3は包装材4により密封保護されている。センサチップ3は包装材4から取り出さず、センサパック3のまま分析装置1の開口部11からガイド部23に沿って矢印A方向に挿入する。挿入されたセンサチップ3は分析装置1内の保持部材13により保持される。この状態で包装材4をつかんで矢印B方向に引っ張ると、包装材4のみが分析装置1から取り除かれ、センサチップ3は分析装置1内に保持されたまま残る。このように、使用者はセンサチップ3を取り出すことなく、センサパック2の挿入、引き抜きという操作だけでセンサチップ2の分析装置1への装着が完了する。

【0092】分析装置1の上面1aには分析結果等の情報を表示する表示部10が設けられているが、開口部11の一部は上面1a側に形成されており、表示部10が上面になるような状態に分析装置1を載置した場合でも、上面1a側からもセンサパック2の挿入位置が容易に確認できるようになっている。

【0093】図3 (a) ~ (d) は分析装置1にセンサバック2を挿入した場合の各部の動作を示す図である。 【0094】まず、図3 (a) に示すように、センサバック2を分析装置1の開口部11から先端部がスライダ16に当接するまで挿入する。

【0095】このときスライダ16は初期位置にあり、 突出部19の下面19aとスライダ16の上面16aと が当接しており、保持部材13はセンサパック2に接触 していない。また、スイッチ22のアクチュエータ21 は作動していない。

【0096】次に、図3(b)に示すように、センサパック2をスライダ16に当接させたままパネ17に抗してさらに挿入すると、スライダ16は奥側へと移動する。このため、支持部材12の突出部19はスライダ16の上面16aから段部161にはまり込んで、支持部材12が時計回りに回転するので、保持部材13が下りてきてフィルム(貫通可能部)5を破る。このとき、アクチュエータ21が作動して電源が入る。保持部材13

と勘合するようにセンサチップ3には孔が形成されてお り、下りてきた保持部材13はセンサチップ3の孔(係 合手段) 7に入って貫通する。保持部材13をセンサチ ップ3の孔7に貫通させて保持することにより保持力が 増し確実に保持することができる。ベース(貫通阻止 部) 6は硬質材であるので、保持部材13はベース6に 当接して止る (第1状態)。接続電極14の支持部材1 2の下面121aからの高さは保持部材13よりも小さ いので、接続電極14はセンサパック2に触れないかま たは軽く触れる程度であり、センサチップ3には直接接 10 触しない。このため、フィルム5に付着した油脂や汚れ 等が接触電極に付着することを防止できるとともに包装 材4を引き抜く際の抵抗を小さくすることができる。本 実施形態では、支持部材12、バネ20、スライダ16 及びバネ17から保持手段の状態切替手段が構成され る。

【0097】次に、保持部材13でセンサチップ3が保 持された後に、センサパック2を分析装置1の開口部1 1から引き抜くと、保持部材13はフィルム5を破りな がらセンサチップ3を保持し続ける。センサチップ3 は、包装材4の引き出しにつれて、ベース6の分析装置 挿入側の窪み61の斜面61aを上りフィルム5との接 着面まで来ると端部でフィルム5を破って包装材4から 出てくる。このとき、接続電極14がセンサパック2と 強く接触していると引き抜き時の抵抗が大きくなるの で、上述のように接続電極14はセンサパック2に触れ ないかまたは軽く触れる程度であることが望ましい。

【0098】分析装置1の開口部11の底面19の保持 部材13に対応する位置に凹部191が設けられてい る。包装材4が分析装置1から除かれると、ベース6に 30 よって回転を規制されていた支持部材12はさらに時計 回りに回転し、図3 (c) に示すように保持部材13は 分析装置1の凹部191に入り込み、接続電極14はセ ンサチップ3に接触する(第2状態)。このとき支持部 材12における保持部材13と接続電極14との位置関 係がセンサチップ3における孔7と端子電極部32cと の位置関係に対応するように設定しているので、保持部 材13が凹部191にはまり込むことにより、接続電極 14と端子電極部32cとは自動的に接触して電気的に 接続されることとなる。本実施形態では、保持部材1 3, ベース6及び凹部191が接続電極(反応情報取得 手段) の状態切替手段を構成する。従って、この状態で センサチップ3は試薬層34及び反応電極部32a,3 2 a を露出し、電源が入って、反応電極部32 a は電気 的に接続された状態となるので、すぐに測定を行うこと ができる。

【0099】測定が終了した後にセンサチップ3を廃棄 する場合には、支持部材12の開口部11と反対側の腕 部122の上面に設けられたボタン (保持解除手段) 1 23を押せば、図3 (d) に示すように支持部材12は 50

バネ20に抗して反時計回りに回転し、保持部材13及 び接続電極14がセンサチップ3から外れるので、その まま廃棄箱に落とせば、センサチップ3に触れることな く廃棄を行うことができる。また、ボタン123を押し て支持部材12が反時計回りに回転すると突出部19も 段部161から上方へ退避するので、スライダ16はバ ネ17の付勢力によって開口部11側へ押圧されて初期 位置へと戻り、アクチュエータ21が初期位置に戻り電 源も切れる。

【0100】 (第2の実施形態) 図4に本発明の第2の 実施形態に係る分析装置とセンサパックを示す。

【0101】第1の実施形態と同様の構成は同様の符号 を用いて説明を省略する。センサパック2及びセンサチ ップ5の構成は第1の実施形態と同様である。

【0102】分析装置42の保持部材13及び接続電極 14の構成は第1の実施形態と同様であるが、これらの 支持部材42が分析装置41本体に対して開閉可能とな っている。

【0103】支持部材42はセンサパック2挿入方向に 直交する方向に開閉できるように丁番等を用いて分析装 置41本体と連結されている。開口部11の底面の両側 方には第1の実施形態と同様にガイド部23, 23が形 成されており、このガイド部23、23に連続して奥側 にも段部が設けられセンサパック3の窪み61の挿入方 向先端部を規制する先端規制部43を形成している。

【0104】本実施形態におけるセンサチップ3の装着 方法を説明する。

【0105】まず、図4に示すように、支持部材42を 開いた状態でセンサパック2を開口部底面111に配置 する。このときガイド部23,23及び先端規制部43 によって窪み61の挿入方向先端部及び両側方が規制さ れ位置決めがなされる。

【0106】次に、支持部材42を閉じると保持部材1 3がフィルム5を破りセンサチップ3の孔7を貫通して センサチップ3を保持する。ここで、センサパック2の 掴み代15を掴んで引き抜くと、フィルム5が破れてセ ンサチップ3が取り出される。 取り出されたセンサチッ プ3の端子電極部32c, 32cと接続電極14, 14 が接触し電気的に接続されるので、試薬層34に試料を 滴下等して供給することにより測定可能状態となる。

【0107】測定が完了した後には、支持部材42を開 くことで、センサチップ3を保持部材13から取り外し て廃棄することができる。あるいは、支持部材42を開 けばセンサチップ3全体が露出するので、適当な部位を 掴むことにより血液試料を用いる場合でも試料に触れる ことなく廃棄することができる。

【0108】本実施形態ではセンサパック2の挿入方向 と直交する方向に開閉するようになっているが、センサ パック2の挿入方向に開閉するようにしてもよい。

【0109】 (第3の実施形態) 図5に本発明の第3の

20

実施形態に係る分析装置とセンサパックを示す。

【0110】第1の実施形態と同様の構成を有する部分は同様の符号を用いて説明を省略する。

【0111】本実施形態では分析装置52の側面に溝53を設け、センサバック52を矢印方向に溝53に挿入し、溝53に沿って通過させることにより、センサチップ3を装着する。

【0112】図5 (a) は分析装置51とセンサパック52の全体構成を示す。図5 (b) は分析装置51の上面図,図5 (c) は図5 (b) の下側からみた側面図,図5 (d) は図5 (b) の右側からみた側面図であり、主要部の概略構成と分析装置52の外形のみを示し、他の構成は省略している。

【0113】構53の挿入方向與側の端部の上方に軸5 4を中心として揺動する支持部材55が設けられてい る。支持部材55の溝側腕部551の下面には保持部材 13、接続電極14、14が設けられ、装置内部側腕部 552の下面はバネ20によって押圧されている。保持 部材13及び接続電極14、14は溝53に沿って配置 されている。 溝53の側面53aから突出するスライダ 20 56は底面53b上を溝に直交する方向に移動可能であ り、図5 (b), (d) に示す初期位置から装置内部側 へ押し込まれると、装置内部側に設けられたバネ17に より溝側へと押圧されるようになっている。スライダ5 6の溝53内に露出する側面はセンサパックの挿入方向 にかけて次第に溝内へ突出する斜面56bを形成してお り、溝53に沿って挿入されたセンサパック52がスラ イダ56をスムーズに装置内部側へ押し込むようになっ ている。スライダ56の上方にも支持部材55の溝側腕 部が延設され、この延設部553の下面に断面略矩形の 30 突出部554が形成されている。スライダ56の上面の 構53側には、突出部554がはまり込む段部561が 設けられている。

【0114】センサパック52の構成は第1の実施形態とほぼ同様であるが、センサチップ3の長手方向が溝53に平行となるようにセンサパック52を挿入して溝53内を移動させるために、掴み代521はセンサチップ3の短手方向(挿入方向に直交する方向)に設けられている。また、本実施形態ではセンサパック52を溝53に挿入して通過させるので、包装部材4のベース6の窪40み(不図示)の挿入方向とは反対側の端部が斜面となっている。

【0115】本実施形態におけるセンサチップ3の装着方法を説明する。

【0116】まず、センサパック52の掴み代521を掴んで、センサチップ3の収容部分を分析装51置の溝53に挿入し、センサチップ3の長手方向が溝53に平行となるように、溝53の側面に沿って矢印方向へと移動させる。

【0117】センサパック3の挿入方向端部がスライダ 50

56に当接した後もさらに移動させることにより、スライダ56が装置内側に押し込まれる。このときスライダ上面56aに当接していた突出部554が段部561にはまり込み、支持部材55が回転して溝側腕部551が構53内に下りて来る。保持部材13はセンサチップ3の孔7を貫通してこれを保持する。

【0118】さらにセンサパック52を移動させると保持されたセンサチップ3によってフィルム5が破れ、保持されたセンサチップ3を残して包装部材4のみが除かれる。接続電極14,14と端子電極部32c,32cが接触して電気的に接続され、試薬層34及び反応電極部32a,32aは側面から露出するので、試料を滴下等して供給することにより測定を行うことができる。

【0119】測定が完了した後は、ボタン555を押し下げるとバネ20に抗して支持部材55が回転し、保持部材13及び接続電極14,14が溝53内から退避する。突出部554が段部561から退避するのでスライダ56は溝53内方向に移動して初期位置に戻り、ボタン555を離した後に突出部554は再びスライダ56の上面56aに当接して回転を規制される。保持部材13から取り外されるので、試料に触れることなく廃棄することができる。

【0120】本実施形態では、溝53を分析装置51の側面に設けているが、表示部10を有する上面に設けても良いし、その他の面に設けても良い。上面に設ける場合にも、センサチップ3の保持機構等を含む内部の機構については同様の機構を用いることができる。センサパック52は溝に対して一方向に通過させる場合に限られず、一方から挿入して逆方向に引き抜くようにしてもよい。

【0121】 (第4の実施形態) 図6に本発明の第4の 実施形態に係る分析装置とセンサパックを示す。

【0122】第1の実施形態と同様の構成は同様の符号を用いて説明を省略する。図6 (a) に示すように、本実施形態では複数のセンサパック2が1つのケース60に収納されている。ケース60には分析装置1を挿入するための溝61が各センサパックごとに設けられている。センサパック2は挿入側を溝61内に露出させて他端部をケースに保持されている。

【0123】本実施形態における分析装置1は開口部1 1が一側面側に限定されている点を除いて第1の実施形態と同様である。

【0124】本実施形態におけるセンサチップ3の装着方法を説明する。

【0125】図6 (b) に示すように、分析装置1を開口部11側からケース60の溝61に挿入するが、このとき溝61に露出するセンサパック2の挿入側端部が開口部11に挿入されるようにする。分析装置1の端部が構61の側面に当接するまで挿入すると、センサパック

40

22

も開口部11内の所定位置まで挿入される。このときセンサバック2の挿入側端部はスライダ(図示せず)を押し込むので支持部材(不図示)が回転し、保持部材13がセンサチップ3の孔7を貫通して、これを保持する。【0126】次に、分析装置1をケース60の溝61から引き抜くと、フィルム5が破れてセンサチップ3が取り出され、分析装置1に保持されて引き抜かれる。フィルム5及びベース6はケース60に保持されているので、ケース60とともに残る。この状態で接続電極14と端子電極部32cが接触して電気的に接続されるので、開口部11から露出する試薬層34に試料を滴下等して供給することにより測定が可能となる。

【0127】測定が完了した後には、第1の実施形態と同様にボタン123を押すことにより保持手段13がセンサチップ3の孔7から外れるので、センサチップ3に触れることなく廃棄箱等に廃棄することが可能となる。【0128】このように一つのケース60に複数のセンサチップ3を収容できるようにすれば、まとめて収納、管理でき、センサパックを紛失してしまうことがない。【0129】 (第5の実施形態) 図7に本発明の第5の 20 実施形態に係る分析装置とセンサパックを示す。

【0130】第1の実施形態と同様の部分は同様の符号を用いて説明を省略する。

【0131】本実施形態におけるセンサパック70は第1の実施形態と同様のセンサチップの収容構造を有するが、挿入側の反対側が連結部71によって連結されており、連結部71から櫛歯状に延びる収容部72にセンサチップ3が収容されている。また、分析装置1も第1の実施形態とほぼ同様の構成を有するが、開口部11の設けられた側面の水平方向の端部が隣の収容部72と干渉30しないように切り欠かれている点及び開口部11が一側面にのみ設けられている点が異なる。

【0132】センサチップ3の装着方法は第1実施形態 と同様であるので説明を省略する。

【0133】このように複数のセンサチップ3を一つのセンサバック70に収容するようにすれば、まとめて収納、管理でき、センサバックを紛失してしまうことがない。

【0134】連結部71に各収容部ごとに容易に分離できるできるようにミシン目等を設けてもよい。

【0135】 (第6の実施形態) 図8は本発明の第6の 実施形態に係る分析装置の主要部とセンサパックの概略 構成を示す断面図である。

【0136】センサバック2の構成は第1の実施形態と同様である。分析装置81は保持部材及び支持部材の構成を除いて第1の実施形態と同様である。第1の実施形態と同様の構成については同様の符号を用いて説明を省略する。

【0137】支持部材82は軸83を中心として揺動可能に設けられている。支持部材82の開口部11側腕部 50

821の先端には保持部材(保持手段)84が軸85を 中心として挿入方向に揺動可能に設けられている。図8 に示す初期位置からの保持部材84の反時計回りの回転 は上端部が支持部材82の端面に当接することにより規 制されているので、時計回りにのみ回転する。保持部材 84の下端部と支持部材82の開口部側腕部821はス プリング86によって連結されており、初期位置から時 計回りに回転した保持部材84に対して反時計回り方向 に引き戻すように付勢している。支持部材82の腕部8 21の下面に821aには、保持部材84の装置内側に 接続電極14が設けられている。腕部下面821aの接 続電極14の装置内側は開口部底面111から突出する 断面略矩形の突出部87に当接しており、支持部材82 の図8に示す初期位置からの時計回り方向の回転を規制 している。支持部材82の装置内側腕部822の上面は 外部に露出するボタンを形成し、下面は底面との間に介 在するバネ20によって押圧され、支持部材が時計回り 方向に回転するように付勢されている。

【0138】本実施形態におけるセンサチップ3の装着 方法を説明する。

【0139】まず、センサパック2を開口部11からガイド部23に沿って挿入する。このとき保持部材84はセンサパック2に押圧されて時計回り方向に揺動するので、保持部材84がセンサパック2挿入の妨げとなることはない。

【0140】センサパック2が突出部87に当接するまで挿入した後に、ボタン12を押すと支持部材82の開口部側腕部821が反時計回りに回転する。このとき保持部材84はバネによって反時計回りに回転し初期位置に戻る。ボタン12を離すとバネ20によって支持部材82は時計回り方向に回転し、保持部材84がフィルム5を破ってセンサチップ3の孔(不図示)を貫通し、これを保持する。

【0141】次に、掴み代15を持ってセンサバック2を引き抜くと、センサチップ3はフィルム5を破って取り出され分析装置81内に保持された状態で残り、包装部材4のみが除かれる。保持部材84の初期位置からの反時計回り方向の揺動は規制されているので、包装部材4を引き抜く際に保持部材84がセンサチップ3の孔からはずれることはない。接続電極14と端子電極部(不図示)が接触して電気的に接続されるので、開口部11から露出する試薬層(不図示)に試料を滴下等して供給することにより、測定が可能となる。

【0142】測定が完了した後には、ボタン12を押すことにより保持部材84がセンサチップ3の孔からはずれるので、センサチップ3に直接触れることなく廃棄箱等に廃棄することができる。

【0143】 (第7の実施形態) 図9は本発明の第7の 実施形態に係る分析装置の主要部とセンサパックの概略 構成を示す断面図である。

【0144】センサパック2の構成は第1の実施形態と同様である。分析装置91は保持部材、接続電極及び支持部材の構成を除いて第1の実施形態と同様である。第1の実施形態と同様の構成については同様の符号を用いて説明を省略する。

【0145】保持部材(保持手段)92は棒状の可撓性部材からなり屈曲部921を介して固定部922を有する略くの字形状をなす。固定部922は開口部11の底面111に突出する断面略矩形の突出部93に固定されている。屈曲部921の内側には支持部材94の持ち上10げレバー95が係合している。この持ち上げレバー95は支持部材94の開口部側腕部941から挿入方向に直交する方向(紙面に直交方向)に延設されている。図9に示す状態では保持部材92の固定部922側は反時計回り方向に撓んでいる。

【0146】接続電極(反応情報取得手段)96は上方に屈曲された略くの字形の板状の可撓性部材からなり、開口部11側には下方に屈曲された屈曲部961、装置内部側には固定部962が設けられている。この開口部11側の屈曲部961の内側には支持部材94の開口部20側腕部941から挿入方向に直交する方向に延設された持ち上げレバー97が係合している。接続電極96の固定部962は突出部93に固定されている(接続電極の装置内部との電気的接続構造は省略している。)。

【0147】支持部材94は軸98を中心として揺動可能に設けられており、開口部側腕部941には上述の持ち上げレバー95、97を有し、軸近傍の開口部側下面には突出部93上面と当接して時計方向の回転を規制する当接部941aが設けられている。装置内部側腕部942の上面には外部に露出するボタン12が形成されて30いる。図9に示す状態では、保持部材92及び接続電極96の撓みによって時計回り方向に付勢されている。

【0148】本実施形態におけるセンサチップ3の装着方法について説明する。

【0149】まず、図9に示すように支持部材94の当接部941aが突出部93に当接して回転を規制されている状態で、開口部11からセンサバック2を挿入する。保持部材92は可撓性を有するのでセンサバック2に押圧され屈曲部921から時計回り方向に撓む。接続電極96もセンサバック2に押圧されて固定部922か40ら反時計回り方向に撓む。従って、センサバック2の挿入が妨げられることはない。

【0150】次に、ボタン12を押すと支持部材94が 反時計回り方向に回転し、保持部材92と接続電極96 も持ち上げレバー95と97によって持ち上げられる。 このとき撓んでいた保持部材92は直線状の初期状態に 戻る。この後ボタン12を離すと、支持部材94は保持 部材92と接続電極96の付勢力により時計回り方向に 回転し、フィルム5を破ってセンサチップ3の孔(不図 示)を貫通してこれを保持する。 【0151】センサバック2の掴み代15を掴んで引き抜くと、センサチップ3はフィルム5を破って取り出され、保持されたセンサチップ3を分析装置91に残して包装部材4のみが除かれる。このとき接続電極96はセンサチップ3の端子電極部(不図示)に接触して電気的に接続され、試薬層(不図示)が開口部11から露出するので、試料を滴下等して供給することにより測定可能となる。

【0152】測定が完了した後には、ボタン12を押すことにより保持部材92がセンサチップ3の孔からはずれるので、センサチップ3に直接触れることなく廃棄箱等に廃棄することができる。

【0153】上記の各実施形態では保持部材とセンサチップの勘合としてセンサチップの孔を保持部材が貫通するようにしていたが、窪みや突起をセンサチップに設け、保持部材がその部分に係合するようにしてもよい。

【0154】また、保持部材の断面形状は適宜選択できるが、センサパックの引き抜き時にフィルムを破るためには、円、楕円、引き抜き方向に長い矩形、くさび形等のように破け易い形状とすることが望ましい。

【0155】 (第8の実施形態) 図10に本発明の第8の実施形態に係るセンサチップ及び保持部材を示す。

【0156】分析装置の主要部の構成は保持部材及び接続電極の構成を除いて第1の実施形態とほぼ同様である。第1の実施形態と同様の構成は同様の符号を用いて説明を省略する。

【0157】本実施形態に係るセンサチップ101は、図10(a)に示すように2つの端子電極部32c,32cにそれぞれ保持部材と勘合する孔(係合手段)102,102が設けられている。孔102の構成を除いてセンサチップ101の他の構成は第1の実施形態と同様である。

【0158】図10(b)は保持部材(保持手段)103が孔102に勘合した状態を示す。孔102に対応して保持部材103はセンサチップ101の短手方向(挿入方向に直交する方向)に2つ設けられる。保持部材103を導電性部材で形成し、棒状の保持部材103に大径部1031を設け、この大径部1031の端面(反応情報取得手段)1031aが端子電極部32cと接触して接続電極として機能する。このように保持部材と接続電極を一体に設ければ装置構成が簡単となり、部品点数を削減できる。

【0159】図11は本実施形態の変形例に係るセンサチップ104を示す。

【0160】センサチップ104には保持部材と勘合する孔(係合手段)105,106がそれぞれの端子電極部32c,32cに設けられているが、2つの孔105,106はセンサチップ104の長手方向(挿入方向)に異なる位置に設けられている。孔105,106を除いてセンサチップ104の構成はセンサチップ10

1と同様である。これに対応して上述の保持部材103と同様の構成を有する保持部材もセンサチップ104の 挿入方向に異なる位置に設けられる。このように保持部 材と勘合する孔をセンサチップの裏表で非対称となるよ うに配置しておけば、センサチップの裏表を間違えて挿 入した場合には保持されないので逆差し防止になる。

【0161】 (第9の実施形態) 図12に本発明の第9の実施形態に係るセンサチップ及び保持部材を示す。

【0162】第1の実施形態と同様の構成は同様の符号を用いて説明を省略する。分析装置の主要部の構成は保 10 持部材及び接続電極の構成を除いて第1の実施形態とほぼ同様である。

【0163】図12(a)に本実施形態に係るセンサチップ106を示す。センサチップ106は保持部材と勘合する孔107(係合手段)の形状を除いて第1の実施形態と同様の構成を有する。孔107は挿入側(端子電極部32c側)の挿入方向に長い略矩形の矩形部1071と反挿入方向側(反応部8側)の略円形の円形部1072とからなる。

【0164】図12(b), (c)は孔107と保持部20材(保持手段)108との勘合状態を示す。本実施形態では、保持部材108は支持部材の開口部側腕部121に直交し挿入方向に長い板状をなす。センサパック(不図示)が挿入され、支持部材の腕部121が回転して保持部材108が孔107に勘合するときは、図12

(b) に示すように保持部材18は円形部1072と勘合する。次に、センサバックを引き抜くときには、センサチップ106も矢示の反挿入方向に引っ張られるので、保持部材108は円形部1072から矩形部1071へと移動する。センサバックの挿入時には円形部103072と勘合するので保持部材18の若干の位置ずれがあっても確実に勘合することができ、センサチップ106装着時には保持部材108は矩形部1071と勘合するので挿入方向に直交する方向にがたつきのない保持が可能となる。

【0165】(第10の実施形態)図13に本発明の第10の実施形態に係るセンサバックの構造を示す。第1の実施形態と同様の構成については説明を省略する。センサチップ及び分析装置の構成については第1の実施形態と同様である。

【0166】センサバック109では、窪み61のセンサチップ3の孔(不図示)の下方部分及びその挿入方向側の隣接部分に一段低い凹部611を形成している。このような凹部611を設ければ、センサチップ3の孔を貫通した保持部材(不図示)がより深く差し込まれ、より確実に勘合するので、包装材から取り出されるまでのセンサの保持がより確実になる。

【0167】 (第11の実施形態) 図14に本発明の第 11の実施形態に係る分析装置の主要部の構成を示す。

【0168】第1の実施形態と同様の構成については同 50

様の符号を用いて説明を省略する。センサパック及びセンサチップの構成は第1の実施形態と同様である。

【0169】分析装置201はスライダ202の構成を除いて第1の実施形態と同様である。スライダ202の開口部11側には、上面側に支持部材12の突出部19がはまり込む段部161が設けられ、段部161に隣接して下方にセンサバック(不図示)が当接するセンサバック当接面2021だ隣けられ、センサバック当接面2021に隣接して下方に開口部底面111に沿って開口部11側に突出するセンサチップ当接部(位置決め手段)2022が設けられている。

【0170】センサパックの挿入側はベース6の縁部に 続いてセンサチップ3を収容するための窪み61が設け られているので、挿入されたセンサパックの挿入側端部 は開口部11の底面111から窪み61分だけ高い位置 にある (図2参照)。このため、センサパックを分析装 置109の開口部11から挿入した場合には、センサバ ックの挿入側端部はスライダ202のセンサパック当接 面2021に当接する。誤ってセンサパックを開封しセ ンサチップ3を取り出し、センサチップ3のみを分析装 置201の開口部11から挿入してしまった場合でも、 センサチップ3を底面111に沿って挿入すれば、突出 形成されたセンサチップ当接部2022に当接して、ス ライダ202を押し込むことができる。センサパック内 ではセンサチップ3は窪み内に位置決めされて収容され ているので、センサパックの挿入側端部からセンサチッ プ3の挿入側端部までの距離に対応させてセンサチップ 当接部2022の突出量を設定すれば、図14(b)に 示すように保持部材13はセンサチップ3の孔7を貫通 するとともに凹部191にはまり込み、接続電極14は 端子電極部 (不図示) と接触し、互いの位置関係がずれ ることがない。

【0171】このように、センサチップ3を誤ってセンサパックから取り出した場合でも、センサチップ3を持って開口部11に挿入しスライダ202のセンサチップを当接部2022を押すようにすれば、センサチップ3を確実に保持して測定を行うことができ、センサチップを無駄にすることがない。

【0172】 (第12の実施形態) 図15に本発明の第 12の実施形態に係る分析装置の主要部, センサチップ 及び包装材を示す。

【0173】第1の実施形態と同様の構成を有する部分は同様の符号を用いて説明を省略する。センサチップ及び包装材の構成は第1の実施形態と同様である。

【0174】本実施形態に係る分析装置の主要部の構成は、開口部の底面の保持部材に対応する位置の凹部が省略されている点を除いて第1の実施形態と同様である。

【0175】図15 (a) に示すように、センサチップ 3を装着して測定を完了した後に、センサチップ3を保 持部材13で保持した状態で、先にセンサチップ3を取

り出した包装部材4の取り出し口4aからセンサチップ3を挿入する。このとき分析装置301の開口部11の底面111には凹部が設けられていないので、センサチップ3の孔7を貫通した保持部材13は底面111に当接している。

27

【0176】包装材4をさらに挿入すると、図15 (b) に示すように、センサチップ3は包装材4内へ進入するとともに保持部材13は包装材4のベース6にす、くわれるようにして持ち上げられる。

【0177】センサチップ3が包装材4の窪み61に収 10 容された後に、ボタン123を押すと、センサチップ3 と保持部材13との勘合が解除されるので、センサチップ3を包装材4に収容された状態で取り出すことができる。

【0178】 (第13の実施形態) 図16に本発明の第13の実施形態に係るセンサチップ, センサバック及び分析装置を示す。第1の実施形態と同様の構成については同様の符号を用いて説明を省略する。

【0179】上述の実施形態では、センサチップは反応部の試薬と試料の特定の成分との反応によって生じる電20気化学現象を反応部の電極によって検出していたが、本実施形態は本発明を光学読み取り方式のセンサチップと分析装置に適用したものである。

【0180】図16 (a) は本実施形態に係るセンサチップ400の全体構成を示す。センサチップ400の反挿入側 (図では右側) の端部には試料を滴下するための試料滴下部401が設けられている。試料滴下部401に滴下された試料は試料導入部402によって反応読み取り部403には色の変化等によって反応を読み取る試薬を備える。例えば、試料滴下部401をセンサチップ3面上の凹部とし、試料導入部402を構とし、反応読み取り部403を孔に張設したろ紙等の紙あるいは下面に透明な窓のある空間とすればよい。本実施形態では、反応部は試料滴下部401、試料導入部402及び反応読み取り部403から構成される。センサチップの挿入側(図では左側)には保持部材13と勘合するための孔7が設けられている。

【0181】図16(b)は分析装置404の主要部とセンサパック2の構成を示す。分析装置404の開口部 4011の底面111の凹部191より開口部側には光学読み取りのための光源405及び受光部406が設けられている。分析装置404は、接続電極の代わりに光源405及び受光部406が設けられている点を除いて、第1の実施形態と同様の構成であり、センサパック2も第1の実施形態と同様の構成を有し、センサチップ400の装着方法も同様である。本実施形態では、光源405及び受光部406が反応情報取得手段を構成する。

【0182】図16 (c) はセンサチップ400の孔7 に保持部材13が勘合して凹部191にはまり込み、セ 50 ンサチップ400が保持された状態を示し、センサチップ404の試料滴下部401が開口部11から露出するとともに反応読み取り部403が光源405及び受光部406の上方に位置する。この状態で試料滴下部401に試料を滴下することにより測定が可能となる。

【0183】(第14の実施形態)図17(a)に本発明の第14の実施形態に係るセンサチップ、センサバック及び分析装置を示す。第1及び第2の実施形態と同様の構成については同様の符号を用いて説明を省略する。

【0184】分析装置41は第2の実施形態と同様の構成を有しており、保持部材13を接続電極14は分析装置本体41に対して開閉可能な支持部材42に設けられている。

【0185】本実施形態におけるセンサバック2の包装材4は、第1の実施形態と同様の構成であるが、挿入方向側にミシン目やハーフカット等の加工がなされた破断処理部4aが設けられている。破断処理部4aは、センサチップ3の孔7よりも反挿入方向側に位置しており、包装材4の短手方向に周回するように設けられている。また、ベース6の孔7に対応する部位は保持部材13が貫通可能となっている。

【0186】第2実施形態と同様に、センサパック2をガイド部23、23と先端規制部43によって位置決めして開口部11の底面111に配置し、支持部材42を閉じる。支持部材42が閉じられると、保持部材13がフィルム5を破り、センサチップ3の孔7を貫通し、さらにベース6をも貫通して凹部191まで達する。このとき、保持部材13は、センサチップ3のみではなく、包装材4をも保持するので、包装材4の掴み代15を掴んで引っ張ると、図17(b)に示すように、包装材4は破断処理部4aで破断し、包装材4は装置内部側の4bと掴み代側の4cとに二分割される。

【0187】しかし、センサチップ3の端子電極部32cは破断処理部4aよりも開口部側に形成されており、包装材4bに覆われていないので、接続電極14と接触する。また、試薬層34も破断処理部4aよりも開口部側であり、分析装置41の開口部11からも露出しているので、試料を供給することができる。

【0188】測定後に支持部材42を開くことにより、セシサチップ3と包装材4bとを廃棄することができる。あるいは、支持部材42を開けば、センサチップ3及び包装材4bが露出するので、適当な部位を掴むことにより血液試料を用いる場合でも試料に触れることなく廃棄することができる。

【0189】先の実施形態のようにセンサチップのみを保持して包装材を取り去るのではなく、このようにセンサチップとともに包装材の一部が分析装置内に残る場合であっても、センサチップを分析装置に簡単に装着することができ、センサチップの装着の際に誤って試薬層に触れることもない。

【0196】(第16の実施形態)図20(a)、 (b)は本発明の第16の実施形態に係る試料成分分析 システムを構成するセンサバックの構成を示す上面図及 び断面図である。

【0190】 (第15の実施形態) 図18は本発明の第 15の実施形態に係る試料成分分析システムを構成する 分析装置1の主要部とセンサパック2の概略構成を示す 開口部11の中央を通る長手方向の断面図である。第1 の実施形態と同様の構成については同様の符号を用いて 説明を省略する。

【0197】センサバック2は第1実施形態とほぼ同様であるので、異なる点について説明する。このセンサバック2は第1実施形態と同様の分析装置に使用することができる。 【0198】センサバック2では、ベース6の掴み代15側に円錐台形状の凹状の乾燥剤収納部151が形成さ

【0191】本実施形態では、腕部に対向する分析装置 筐体の内面にスイッチが設けられている。図18(a) に示すように、センサバック2が押し込まれてスライダ 16が移動するまでは、支持部材12の突出部19がス 10 ライダ16の上面に当接し、保持部材は13は退避状態 にある。このとき、スイッチ502は支持部材12の腕 部121によって押し込まれているので分析装置1の電 源は入っていない。

【0198】センサパック2では、ベース6の掴み代1 5側に円錐台形状の凹状の乾燥剤収納部151が形成さ れている。乾燥剤収納部151と窪み61とは離間して いるが、その間は溝153で連結されており、互いに空 気が流通するようになっている。乾燥剤収納部151に は球状の乾燥剤152が収納されており、センサチップ 3を封入する際に窪み51内に残留した空気を乾燥させ る。乾燥剤としては、シリカゲル、活性アルミナ、合成 ゼオライトあるいはマグネシウム等を用いることができ る。乾燥剤の形状は、球状に限らず、棒状又はシート状 でもよい。独立した乾燥剤152を乾燥剤収納部151 に収納するのみならず、乾燥剤152を混入した樹脂材 料で成形する等して、ベースやフィルムに含有されるよ うにしてもよい。 掴み代15に乾燥剤収納部の凹凸が形 成されるので、センサパック2をより確実に保持するこ とができる。また、掴み代15に乾燥剤収納部151を 設けることにより、スペースの有効利用が図れ、センサ パックが大きくなるのを抑制することができる。さら に、溝が補強用リブの機能を果たし、センサパック2の 強度を向上させることができる。

30

【0192】次に、図18(b)に示すように、センサパック2をスライダ16に当接させたままバネ17に抗してさらに挿入すると、支持部材12の突出部19はスライダ16の段部161にはまり込み、支持部材12がバネ20の付勢力により時計回りに回転するので、保持部材13が下りてきてフィルム5を破る。このとき、腕20部121がスイッチ502から離間して電源が入る。保持部材13と勘合するようにセンサチップ3には孔7が形成されており、下りてきた保持部材13はセンサチップ3の孔7に入って貫通し、ベース6に当接して止る。このとき、保持部材13は保持状態にある。但し、接続電極14はフィルム5によって隔てられておりセンサチップ3とは電気的に接続されていない。本実施形態では、支持部材12、バネ20、スライダ16及びバネ17から保持手段の状態切替手段が構成される。

【0199】(第17の実施形態)図21に本発明の第 17の実施形態に係る試料成分分析システムを構成する センサパック2と分析装置1を示す。

【0193】このようにすれば、センサバック2が挿入30 されるまでは電源が入っておらず、センサバック2が所定の位置まで挿入され挿入が完了した後に電源が入るようになっているので、使用者は電源のON/OFFを意識する必要がない。また、センサチップ3を抜き出すためにボタン123を押すと、支持部材12が反時計回りに回転し、腕部121が再びスイッチを押して電源が切れる。すなわち、センサチップ3の挿脱によって電源の投入及び切断が行われる。

【0200】図21(a)は分析装置1の開口部11をセンサバック2の挿入方向からみた端面図であり、図21(b)はセンサバック2の挿入方向からみた端面図である。分析装置1の開口部形状を除き、第1の実施形態と同様であるので、内部構成等の詳細構造については説明を省略する。

【0194】図19に本実施形態の変形例を示す。

【0201】図21 (a) に示すように、開口部11 は、扁平な矩形の中央下方に接して、より高さがあり幅の狭い矩形を有するT字形をしている。図21 (b) に示すように、センサパック2は板状のベース6に窪み61を有し、T字形をしている。

【0195】スイッチの構成を除き、分析装置1は上述 40 の本実施形態と同様の構成を有する。ここでは、保持部 材13が電極503を形成しており、対向する底面11 1の凹部191の底部191aにも電極504が形成されている。センサチップ3を保持した状態でセンサバック2を引き抜き、保持部材13が凹部191に入り込み、電極503と電極504間の導通により電源が入る。図18(a)のように、ボタン123を操作して、支持部材12を退避状態に復帰させることにより、電極503・電極504間が切断され、電源が切れる。 50

【0202】すなわち、開口部11及びセンサパック2はセンサチップ3の面に対して上下で非対称な形状となっている。従って、センサパック2を上下逆にして開口部11に挿入することができない。センサチップ3の試薬層34及び端子電極部32cは上面側に設けられ、装着すべき方向が規定されている(図1参照)。このため、面に対して上下を逆にしたのでは、測定が不能となる。しかし、開口部11及びセンサパック2を上下非対

称とすれば、センサバックの挿入方向を誤ることがない。

31

【0203】センサバック2の形状を図21(b)と同様にし、分析装置1の開口部11の形状を図21(c)に示すように十字形としてもよい。このとき十字形開口部11の上部の矩形の高さをセンサバック2の窪み61の深さよりも小さくし、開口部11の下部の矩形の高さをセンサバック2の窪み61の深さよりも大きくする。このようにすれば開口部11はセンサチップ3の面に対して上下で非対称な形状となるので、センサバック2を10上下逆にして開口部11に挿入することができない。

【0204】 (第18の実施形態) 図22に本発明の第 18の実施形態に係る試料成分分析システムを構成する センサパック2と分析装置1を示す。

【0205】図22(a)は分析装置1の開口部11をセンサバック2の挿入方向からみた端面図であり、図22(b)はセンサバック2の挿入方向からみた端面図である。分析装置1の開口部形状及びセンサバックのベース6の形状を除き、第1の実施形態と同様であるので、内部構成等の詳細構造については説明を省略する。

【0206】図22(a)に示すように、開口部11は 横長の矩形で右端部に上方に屈曲する屈曲部115が形 成されている。矩形部分の高さはセンサパック2の窪み 61の深さよりも大きくなっている。

【0207】図22(b)に示すように、センサパック2の挿入方向に向かって右端部には上方に屈曲する屈曲部205が形成されており、開口部11の屈曲部115に勘合するようになっている。

【0208】すなわち、開口部11及びセンサパック2はセンサチップ3に対して左右が非対称な形状となって30いる。従って、センサパック2を上下あるいは前後を逆にして開口部11に挿入することができない。このように、開口部11及びセンサパック2を左右非対称とすれば、センサパック2の挿入方向を誤ることがない。

【0209】 (第19の実施形態) 図23に本発明の第19の実施形態に係る試料成分分析システムを構成するセンサパックを示す。分析装置については、第1の実施形態と同様のものを使用できるので説明は省略する。

【0210】図23は本実施形態に係るセンサパック2の長手方向断面を示す。掴み代15部分を除いて第1の40実施形態と同様である。本実施形態では、掴み代15では上面側に突出する突出部154を形成している。突出部154の高さが窪み61の深さよりも大きくなるように形成している。このようにすれば、センサパック2の挿入側と反対側とで異なる形状を有するようになるので、センサパック3の前後を逆にして開口部11に挿入することができない。図20(a)に示すように掴み代15部分に乾燥剤収納部151を設ける場合に、この乾燥剤収納部151の深さを窪み61の深さより大きくなるようにしておけば、同様にセンサパック2の挿入側と50

反対側とで異なる形状を有するようになるので、センサ パック3の前後を逆にして開口部11に挿入することが できない。

【0211】図24は本実施形態の第1の変形例の概略 斜視図である。掴み代15の幅を挿入側の幅よりも大き くしており、センサパック2の挿入側と反対側とで異な る形状を有するようになるので、センサパック3の前後 を逆にして開口部11に挿入することができない。

【0212】図25は本実施形態の第2の変形例の概略 斜視図である。掴み代15の側方を長手方向に切り欠い で切欠部155を形成し(図25 (a))、あるいは後 端部を切り欠いて切欠部156を形成している(図25 (b))。センサパック3の挿入時にセンサパック3の 一部が装置内のスイッチを作動させるような構成の場合 には、掴み代15側から挿入したときのスイッチに対応 する位置を切り欠いておけば、前後逆に開口部11に挿 入してもスイッチが入らないようにすることができる。 このようにすれば、挿入方向を誤っても測定が開始され ないので、再度正しい方向から挿入して使用することが できる。

【0213】(第20の実施形態)図26(a)は本発明の第20の実施形態に係る分析装置1及びセンサバック3を示す斜視図である。分析装置1及びセンサバック3の主要部の構成は第1の実施形態と同様であるので、異なる部分について説明する。

【0214】図26(a)に示すように、センサバック3の挿入方向先端部の上面に導電部205(被検出部)を設け、分析装置1の上側筐体の下面に2つの電極206(検出部)を設けている。センサバック3が正規の挿入方向から挿入されるとセンサバック3の上面と分析装置1の上側筐体の下面とが対向することとなるので、センサバック3の先端部を開口部11に挿入したときに、図26(b)に示すように、電極206,206と導電部205とが接触し、電極206間が導通する。これに対して、正規の挿入方向と異なる方向からセンサバック3を挿入すると電極206間は開放されているので、センサバック3が正規の方向から挿入されたか否かを検出することができる。

【0°215】導電部206は、フィルム6上に導電材料を塗布してもよいし、フィルム6がアルミ等の金属材の場合には導電部を残して樹脂等の非導電材のラミネート加工等により被覆するようにしてもよい。

【0216】このようなセンサパックの挿入状態の検出 結果を利用して、電源の自動オンや測定準備のオートス タートを行うようにしてもよい。

【0217】上述の実施形態では、センサバック3を正規の挿入方向から挿入された場合に、電極と導電部間が導通するように構成しているが、正規の挿入方向以外の方向から挿入された場合に電極と導電部間が導通するようにすることもできる。

30

34

【0218】図27にこのような変形例を示す。分析装置1及びセンサチップ3の主要部の構成は、第1の実施形態と同様である。図27(a)に示すように、ガイド部23上に電極207を設け、図27(b)に示すように、センサパック3の上面の挿入方向先端部側及び後端部側に導電部208、209を設けている。このようにすれば、図27(a)に示すような正規の挿入方向から挿入された場合には、電極207間は開放されているが、上下あるいは前後を逆にして挿入すると電極207と導電部208あるいは導電部209との間が導通する。従って、センサチップ3が正規の方向から挿入されているか否かを検出することができる。

【0219】本実施形態では、電極と導電部とで挿入状態検出手段を構成しているが、フォトインタラプタ等の光学検出手段を用いても良いし、被検出部を色マーキングによって形成し、検出部によってその色を検出するようにしても良い。

【0220】(第21の実施形態)図28では説明の便宜上センサバックのベース及びフィルムの構成は省略している。分析装置1及びセンサチップ3の主要部の構成20は第1の実施形態と同様であるので同様の符号を用いて説明を省略する。

【0221】本実施形態では、反応情報取得手段である 接続電極14,140が、センサチップ3の上面に対向 する分析装置の上部側筐体の下面と、センサチップ3の 下面に対向する分析装置の下部側筐体の上面とに1組ず つ計2組設けられている。センサチップ3側の端子電極 部32 c は一方の面側にのみ設けられており、接続電極 も正規の挿入方向から挿入した場合にのみ電気的に接続 可能なものが1組だけ設けられているのが一般的であ る。しかし、試料の供給口340がセンサチップ3の長 手方向端面に形成されているような場合には、センサチ ップ3を上下逆に装着しても測定に支障が無い。また、 試薬層34が一方の面上に形成されている場合でも、接 続電極が2組あれば、分析装置を裏返せば測定すること ができる。従って、このように接続電極をセンサチップ 3の面に対して両側に接続電極を設ければ、使用者は上 下を気にすることなく、センサパック2を挿入すること ができる。

【0222】(第22の実施形態)図29(a)に本発 40 明の第22の実施形態に係る試料成分分析システムを構成する分析装置1及びセンサチップ3の関連部分の概略構成を示す。分析装置1及びセンサチップ3の主要部の構成は第1の実施形態と同様であるので説明を省略する。図29(a)では、説明の便宜上センサバックの構成を省略している。

【0223】本実施形態では、センサチップ3の挿入側端部に所定の大きさの切欠部(情報保持手段)302を設けており、分析装置1側の開口部11内に臨むフォトセンサによって切欠部303の大きさを検出する。セン50

サチップ3のロット、補正値又は製造日等の情報に応じて切欠部302の大きさを設定しておけば、この情報をフォトセンサ(情報認識手段)303で認識して取り込むことができる。このようにすれば、補正チップを分析装置に挿入したり、補正値を入力したりして予め設定しておく手間を省略することができるとともに、入力ミスや補正忘れ等を防止することもできる。

【0224】図29 (b) はその変形例であり、センサチップ3の挿入側端部に孔304をあけておき、その孔304の個数やピッチ等を分析装置側のフォトセンサ305で検出するものである。この場合も孔304の個数やピッチ等を補正に関する情報に応じて設定すれば同様の効果が得られる。

【0225】 (第23の実施形態) 図30に本発明の第23の実施形態に係る試料成分分析システムを構成する分析装置1及びセンサパック2の関連部分の概略構成を示す。分析装置1及びセンサチップ3の主要部の構成は第1の実施形態と同様であるので説明を省略する。

【0226】本実施形態は、第22の実施形態と同様の 構成を分析装置1とセンサパック2とで実現したもので ある。

【0227】図30(a)は、センサバック2の側縁部に所定の大きさの切欠部(情報保持手段)307を形成し、これを分析装置1の開口部11内に臨むフォトセンサ(情報認識手段)308で検出するものである。同様に、センサチップ3のロット、補正値又は製造日等の情報に応じて切欠部307の大きさを設定しておけば、この情報をフォトセンサ308で認識して取り込むことができる。このようにすれば、補正チップを分析装置に挿入したり、補正値を入力したりして予め設定しておく手間を省略することができるとともに、入力ミスや補正忘れ等を防止することもできる。

【0228】図30(b)は、センサバック2の側縁部に所定の大きさ、個数及びピッチの切欠部309(情報保持手段)を形成し、これを分析装置1の開口部11内に臨むフォトセンサ(情報認識手段)310で検出するものである。センサチップ3のロット、補正値又は製造日等の情報に応じて切欠部309の大きさを設定しておけば、この情報をフォトセンサで認識して取り込むことができる。

【0229】図30(c)は、センサバック2の側縁部に所定の個数、ピッチで凸部(情報保持手段)311を形成しておき、センサバック2の挿入時にこの突部で分析装置1の開口部11内に臨むスイッチ(情報認識手段)312を作動させるものである。センサチップ3のロット、補正値又は製造日等の情報に応じて凸部311の個数、ピッチを設定しておけば、この情報をスイッチで認識して取り込むことができる。

【0230】図30 (d) は、センサパック2の側縁部 に所定の個数, ピッチで凹部 (情報保持手段) 313を

る。

又はセンサチップの挿入方向の適否を判定する挿入方向

形成しておき、センサバック2の挿入時にこの突部で分析装置1の開口部11内に臨むスイッチ314 (情報認識手段)を作動させるものである。センサチップ3のロット、補正値又は製造日等の情報に応じて凹部313の個数、ピッチを設定しておけば、この情報をスイッチ314で認識して取り込むことができる。

【0231】図30(e)は、センサバック2上にバーコード状のパターン(情報保持手段)315を印刷しておき、センサバック2の挿入時にこのパターン315を分析装置1の開口部11内に臨むフォトセンサ(情報認10 識手段)316で読み取るものである。センサチップ3のロット、補正値又は製造日等の情報をバーコード状のパターンに変換して印刷しておけば、この情報をスイッチで認識して取り込むことができる。

【0232】図30(f)は、センサバック2の先端部の片側を切り欠いて斜面(情報保持手段)317を形成し、分析装置1の開口部11内に突出するカム318を回転させるものである。カム318は所定の軸を中心として回転可能に取り付けられており、回転中心からカム318の周面までの距離が周方向で異なっている。センサチップ3を開口部11から挿入することによって、斜面317がカム318の周面と当接し、斜面317の角度に応じてカム318は軸の回りに回転するので、この回転角により斜面317の角度を検出することができる。センサチップ3のロット、補正値又は製造日等の情報に応じて斜面317の角度を設定しておけば、この情報をカム318の回転角検出手段によって情報認識手段が構成される。

【0233】図30 (g) は、センサパック2の先端部 30 の側縁部を切り欠いて段部(情報保持手段)318を形 成し、分析装置1の開口部内に設けられた可動部319 を押し込むものである。センサパック2の挿入方向に移 動可能に設けられた可動部319は、開口部11側にバ ネによって付勢されており、センサパック2の段部31 8の位置に応じて移動し、その移動量を検出できるよう になっている。従って、センサチップ3のロット、補正 値又は製造日等の情報に応じて段部318の位置を設定 しておけば、この情報を可動部319の移動量検出手段 によって認識して取り込むことができる。図30(h) のように、センサパック2の先端部の片側を切り欠いて 斜面(情報保持手段)320を形成してもよい。斜面の 角度によって可動部の移動量が定まるので、斜面の角度 をセンサチップ3のロット、補正値又は製造日等の情報 に応じて設定しておけば、同様にこの情報を可動部の移 動量検出手段によって認識して取り込むことができる。 可動部319及び移動量検出手段によって情報認識手段 が構成される。

【0234】本実施形態における情報認識手段は、情報 保持手段の情報が認識できるか否かによりセンサパック 50 判定手段として用いることもできる。 【0235】(第24の実施形態)図31は本発明の第24の実施形態に係る試料成分分析システムを構成する分析装置1及びセンサパック2の長手方向の断面図であ

【0236】分析装置1の主要部の構成は第1の実施形態、センサパック2の構成は第16の実施形態と同様であるので、同様の符号を用いて説明を省略する。

【0237】本実施形態では、図31(a)に示すよう に、支持部材12の下面にカッター (開口形成手段) 1 25を設けている。カッター125はくの字形をなし、 基部125aはバネ125bを介して支持部材12の下 面に連結され、下向きに屈曲する屈曲部125cの内側 は支持部材12の軸18と平行に設けられた軸181に 摺動可能に接している。基部125aと反対側の端部に は軸方向に延びる刃125dが形成されている。センサ パック2挿入時に支持部材12が上面側へ退避している 場合には、カッター125の刃125dも同様に退避し ており、挿入時のセンサパック2に干渉することはない (図31 (b))。センサパック2がスライダ16に当 接した後もさらに押し込むと、支持部材12の突出部1 9がスライダ16の段部161にはまり込み、支持部材 12が軸18を中心として時計回りに回転する(図31 (c))。このとき、保持部材13がセンサチップ3の 孔7を貫通しベース6に当接して停止した状態で、刃1 25dは窪み61の斜面61a上の位置でフィルム5に 挿入方向と反対方向から若干食い込んでいる。次に、セ ンサパック2を引くと、刃125dはさらに食い込んで フィルム5を破断して開口を形成するとともに、センサ パック2の移動に連れて斜面61a上を移動するので、 カッター125は反時計回りに回転する(図31

(d))。このとき、バネ125bが伸び、基部125aはバネ125bの付勢力によって時計回りに付勢され、斜面61a側にさらに食い込み開口を広げる。さらに、ベース6とフィルム5を抜き去ることにより、センサチップ3が保持部材13によって確実に保持されるとともに、接続電極14が端子電極部32cに電気的に接続される(図31(e))。次に、ボタン123を押すことにより、支持部材12が反時計回りに回転して、スライダ16が開口部11方向に移動するとともに保持部材13による保持が解除されるので、センサチップ3が開口部11から廃棄可能となる(図31(f))。

【0238】このようにすれば、センサチップ3の先端でフィルム5を破く必要がなく、また、センサチップ3の取り出し時の抵抗感がなく、力を使わずにセンサチップの取り出し、装着が完了する。

【0239】 (第25の実施形態) 図32に本発明の第 25の実施形態に係る試料成分分析システムを構成する 分析装置1のプロック図を示す。

【0240】本実施形態では、分析装置1がスピーカ等 の音声発生部 (音声発生手段) 601を備えている。接 続電極14及び増幅器, A/Dコンバータ等の信号処理 手段からなりセンサチップ3における反応情報を検出す る反応情報検出部602から送られるデータに基づき情 報処理部603において試料の特定成分の濃度算出等の 成分分析処理を行う。また、検出部及びその信号処理手 段からなるチップ装着情報検出部604、フォトセンサ 等及びその信号処理手段からなるチップ情報検出部60 5からのデータも情報処理部603に入力される。情報 10 処理部603には、音声発生部601及び表示部10が 接続されており、情報処理部603から出力されるデー タ及びコマンドに基づいて、測定結果、センサチップを セットするまでの工程あるいは測定工程の案内、エラー や再測定指示等の情報を音声で知らせ又は文字、記号、 図形によって視覚的に表示する。このように音声発生部 601を設けたので、視力の弱い人でも操作が容易であ り、結果が分かりやすい。

37

[0241]

【発明の効果】以上説明したように、第1の発明によれ 20 ば、センサチップをあらかじめセンサバックから取り出 すことなく、センサバックのまま分析装置の開口部に挿入することによって、分析装置に簡単に装着することが できる。また、センサチップの装着の際に、誤って反応 部に触れることもない。

【0242】第2の発明のようにセンサチップに保持手段と係合する係合手段を備えれば、保持手段による保持力が増し確実な保持が可能となる。このような係合手段としては、例えば、保持手段と嵌まり合う凹部又は凸部のような嵌合手段でもよいが、これに限られない。

【0243】第3の発明のように保持手段がセンサチップを保護する包装材を貫通するようにすれば、保持手段とセンサチップが直接接触、保持されるので、確実な保持が可能となる。

【0244】第4の発明のようにセンサパックに保持部を設けておけば、取り扱い時にセンサチップの含まれる部分を持って不必要な力を加え反応部等を損傷して分析精度に悪影響を及ぼすことを防止することができる。

【0245】第5の発明によれば、センサパックを開口部から挿入した際のセンサチップと保持手段との位置決 40めを容易に行うことができる。

【0246】第6の発明によれば、使用者が誤ってセンサチップを先に取り出してしまう場合でも、センサチップを確実に保持し、分析を行うことができるので、センサチップを無駄にすることがない。

【0247】第7の発明のように、分析装置に設けられたレバー、ボタン等の保持解除手段を操作することによってセンサチップの保持手段による保持が解除されて分析装置から外れるようにすれば、センサチップに血液等の試料が付着している場合でも、使用者は試料やセンサ 50

チップに触れることなくセンサチップを廃棄することが できる。

【0248】第8の発明によれば、センサバックを分析 装置の開口部に挿入する際に、保持手段が挿入の妨げと なることがなく、センサバック挿入完了後にはセンサチ ップを確実に保持することができる。

【0249】第9の発明によれば、使用者はセンサパックを挿入することによって保持のための特別の操作を行うことなくセンサチップを保持することができる。

【0250】第10の発明によれば、センサバックの挿脱によって電源スイッチを作動させることができ、使用者は電源のON/OFFを意識する必要がなく、電源スイッチの入れ忘れ、切り忘れを防止することもできる。

【0251】第11の発明によれば、、センサバックの 挿脱によって電源スイッチを作動させることができ、使 用者は電源のON/OFFを意識する必要がなく、電源 スイッチの入れ忘れ、切り忘れを防止することもでき ろ

【0252】第12の発明によれば、保持手段によるセンサチップの保持と同時に反応情報取得手段を位置決めして反応部の変化等の反応情報を取得することが可能となり、操作の簡便化を図ることができる。

【0253】第13の発明のようにセンサチップ自身が包装材を破断して包装材から出るようにすれば、センサチップを取り出すための特別な部材が不要となる。また、センサチップによって加えられる力が力受け部に集中するので、この力受け部において包装材が破断しやすくなるので、センサチップを小さい力で簡単に取り出すことができる。

【0254】第14の発明によれば、センサチップを包装材から取り出す際の衝撃や接触から反応部を保護することができる。

【0255】第15の発明によれば、装置構成の簡略化及び部品点数の削減が可能となる。

【0256】第16の発明によれば、包装材が開口部から取り除かれるまでは、反応情報取得手段はセンサパックから離間しているか又は軽く接触している程度なので、センサパックに付着した油脂や汚れ等が反応情報取得手段に付着するのを防止、又、反応情報取得手段の摩耗を防ぐことができるので、反応情報取得手段の劣化を防止することができるとともに包装材を取り除く際の抵抗を小さくすることができる。

【0257】第17の発明によれば、センサチップを包装材に包装した際にパック内に残存している空気の水分を乾燥剤によって吸収することができ、センサチップの品質を保持することができる。また、パック完成後に包装材を通過する水分があっても、これを吸収することができる。

【0258】第18の発明によれば、乾燥剤収納部によって保持部に凹凸等の異形部が形成されるので、保持部

を保持しやすくなる。また、保持部と乾燥剤収納部とを かねることによりスペースの有効利用が図れ、センサパ ックの大きさを必要以上に大きくする必要がない。

【0259】第19の発明によれば、所定の向きと異なる向きからのセンサパックの挿入を防止することができる。

【0260】第20の発明によれば、センサチップがプレーナ型センサのように略板形状をなす場合に、面に対して上下を誤って挿入することを防止することができる。

【0261】第21の発明によれば、センサチップがプレーナ型センサのように略板形状をなす場合に、面に対する上下あるいはセンサチップの前後を誤って挿入することを防止することができる。

【0262】第22の発明によれば、センサパックの挿入されるべき方向側とその反対側とを誤って挿入するのを防止することができる。

【0263】第23の発明によれば、センサパックの所定位置に設けられた被検出部が検出部によって検出されるか否かにより、センサパックが正しく挿入されている20か否かの挿入状態の検出が可能となるので、挿入方向を誤って挿入するのを防止することができるとともに、誤って挿入した場合でもそれを検出することができるので、センサパックを無駄にすることもない。

【0264】第24の発明によれば、センサパック又はセンサチップを所定の挿入方向と異なる方向から挿入しても、第2の反応情報取得手段によって反応を取り出して分析することができ、操作性が向上する。

【0265】第25の発明によれば、補正チップを挿入したり、補正値を入力したりして予め補正値等を設定す 30る手間を省くことができ、間違いもなくなる。また、センサバック製造後にセンサチップの特性を測定して補正値を決定することができるので、製造が容易となる。

【0266】第26の発明によれば、情報保持手段と情報認識手段とをセンサチップの挿入方向の適否の判定に利用することもできる。

【0267】第27の発明によれば、センサバックから センサチップを取り出すための開口を開口形成手段によって形成することができるので、取り出すときの力が小 さくて済み操作性が向上する。

【0268】第28の発明によれば、音声によって使用方法、分析結果、エラーや再測定等の情報を提供することができるので、視力の弱い人でも容易に操作することができる。

【0269】第29の発明によれば、保持手段による保持力が増し確実に分析装置に保持できるセンサチップを 提供することができる。

【0270】第30の発明によれば、取り扱い時にセンサチップの含まれる部分を持って不必要な力を加え反応部等を損傷して分析精度に悪影響を及ぼすことを防止す 50

ることができる。

【0271】第31の発明によれば、開口部から挿入した際のセンサチップと保持手段との位置決めを容易に行えるセンサバックを提供することができる。

【0272】第32の発明によれば、センサチップを取り出すための特別な部材が不要となる。また、センサチップによって加えられる力が力受け部に集中し、この力受け部において包装材が破断しやすくなるので、センサチップを小さい力で簡単に取り出せるセンサバックを提10 供することができる。

【0273】第33の発明によれば、センサチップを包装材に包装した際にバック内に残存している空気の水分を乾燥剤によって吸収することができ、センサチップの品質を保持できるセンサバックを提供することができる。また、バック完成後に包装材を通過する水分があっても、これを吸収することができる。

【0274】第34の発明によれば、乾燥剤収納部によって保持部に凹凸等の異形部が形成されるので、保持部を保持しやいセンサバックを提供することができる。また、保持部と乾燥剤収納部とをかねることによりスペースの有効利用が図れ、センサバックの大きさを必要以上に大きくする必要がない。

【0275】第35の発明によれば、所定の向きと異なる向きからの挿入を防止しやすいセンサパックを提供することができる。

【0276】第36の発明によれば、挿入されるべき方 向側とその反対側とを誤って挿入するのを防止しやすい センサパックを提供することができる。

【0277】第37の発明によれば、チップの特性補正 に必要な設定作業を簡略化することができ、間違いもな くなる。また、センサバックに情報保持手段を設けた場 合には、センサバック製造後にセンサチップの特性を測 定して補正値を決定することができるので、製造が容易 となる。

【図面の簡単な説明】

40

【図1】図1は本発明の第1の実施形態に係る分析装置 及びセンサバックを示す図である。

【図2】図2は本発明の第1の実施形態に係るセンサチップと包装材とを示す図である。

【図3】図3 (a) ~ (d) は本発明の第1の実施形態に係る分析装置によるセンサチップの保持動作を説明する図である。

【図4】図4は本発明の第2の実施形態に係る分析装置 及びセンサバックを示す図である。

【図5】図5は本発明の第3の実施形態に係る分析装置 及びセンサパックを示す図である。

【図6】図6は本発明の第4の実施形態に係る分析装置 及びセンサバックを示す図である。

【図7】図7は本発明の第5の実施形態に係る分析装置 及びセンサバックを示す図である。 【図8】図8は本発明の第6の実施形態に係る分析装置の主要部及びセンサバックを示す図である。

【図9】図9は本発明の第7の実施形態に係る分析装置 の主要部及びセンサパックを示す図である。

【図10】図10は本発明の第8の実施形態に係るセンサチップ及び保持部材を示す図である。

【図11】図11は本発明の第8の実施形態の変形例に 係るセンサチップを示す図である。

【図12】図12は本発明の第9の実施形態に係るセンサチップ及び保持部材を示す図である。

【図13】図13は本発明の第10の実施形態に係るセンサバックを示す図である。

【図14】図14は本発明の第11の実施形態に係る分析装置の主要部を示す図である。

【図15】図15は本発明の第12の実施形態に係る分析装置におけるセンサチップの取り出し動作を説明する図である。

【図16】図16は本発明の第13の実施形態に係る分析装置の主要部及びセンサチップを示す図である。

【図17】図17 (a) は本発明の第14の実施形態に 20 係る分析装置及びセンサパックを示す図である。図17

(b) は本発明の第14の実施形態に係る分析装置及び センサパックの使用状態を示す図である。

【図18】図18は本発明の第15の実施形態に係る分析装置の主要部とセンサパックの概略構成を示す断面図である

【図19】図19は本発明の第15の実施形態の変形例を示す断面図である。

【図20】図20 (a), (b) は本発明の第16の実施形態に係る試料成分分析システムを構成するセンサパ 30ックの構成を示す上面図及び断面図である。

【図21】図21は本発明の第17の実施形態に係る試料成分分析システムを構成するセンサバックと分析装置を示す図である。

【図22】図22は本発明の第18の実施形態に係る試料成分分析システムを構成するセンサパックと分析装置を示す図である。

【図23】図23は本発明の第19の実施形態に係る試料成分分析システムを構成するセンサパックを示す図である。

【図24】図24は本発明の第19の実施形態の第1の 変形例の概略斜視図である。

【図25】図25は本発明の第19の実施形態の第2の 変形例の概略斜視図である。

【図26】図26 (a) は本発明の第20の実施形態に 係る分析装置及びセンサバックを示す斜視図である。図 26 (b) は同分析装置及びセンサバックの断面図であ る。

【図27】図27に本発明の第20の実施形態の変形例 を示す図である。 42

【図28】図28は本発明の第21の実施形態に係る分析装置及びセンサチップの断面図である。

【図29】図29 (a), (b) は本発明の第22の実施形態及びその変形例に係る分析装置及びセンサチップの関連部分の概略構成を示す図である。

【図30】図30は本発明の第23の実施形態に係る分析装置及びセンサパックの関連部分の概略構成を示す図である。

【図31】図31は本発明の第24の実施形態に係る分 10 析装置及びセンサバックの断面図である。

【図32】図32は本発明の第25の実施形態に係る分析装置のブロック図である。

【図33】図33は従来例に係るセンサパック及び分析 装置を示す図である。

【符号の説明】

1, 41, 51, 81, 91, 301, 404 分析装置

2,52,109 センサパック

3, 101, 104, 106 センサチップ

) 4 包装材

4 a 破断処理部

5 フィルム

6 ベース

7,107 孔

11 開口部

12, 42, 55 支持部材

13,84,92,103,108 保持部材

14,96,140 接続電極

15 掴み代

16,202 スライダ

17 バネ

20 バネ

3 4 試薬層

61 窪み

123 ボタン

151 乾燥剤収納部

152 乾燥剤

205, 208, 209 導電部

206,207 電極

40 302, 307, 309 切欠部

304 孔

303, 305, 308, 310, 316 フォトセン

312, 314 スイッチ

318 カム

319 可動部

405 光源

406 受光部

502 スイッチ

50 503 電極

504 電極

【図1】

【図3】

【図2}··

【図4】

【図5】

【図10】

【図14】

【図25】

【図12】

【図15】

【図17】 【図16】 7 (孔) 400 (センサチップ) (センサバック) ______2 402(試料導入部) 401(試料油下部) (試業層) (a) 404 (分析裝置) (a) (保持部材) 13、 406 (**受光**审) (b) 405 (光薫) 123 404 る (センサチャブ) 4b(包获材) (b) (c) 191 466 【図19】 【図18】 ,502 (スイッチ) 121 non g (a) 502 【図20】 161 (b) 【図28】 (端子電極部) 32c 151 (b)

140 (接続電極)

340 (供給口)

【図29】

【図27】

【図30】

【図33】

【図31】

フロントページの続き

(72) 発明者 九鬼 清次

京都府京都市右京区花園土堂町10番地 オ ムロン株式会社内

(72) 発明者 田中 伸哉

京都府京都市右京区山ノ内山ノ下町24番地株式会社オムロンライフサイエンス研究 所内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.