SSC0903 – Computação de Alto Desempenho Apresentação da Disciplina

Professor Responsável

Paulo Sérgio Lopes de Souza

Objetivos

Transmitir aos alunos conceitos sobre computação de alto desempenho, considerando seus aspectos de hardware e software, com vistas ao desenvolvimento de aplicações paralelas.

Programa

Introdução à computação paralela: contexto e conceitos básicos;

Hardware paralelo para computação de alto desempenho: arquiteturas paralelas, organizações de hardware que impactam o desempenho (processadores, memórias e redes de interconexão); Projeto de software para computação de alto desempenho: modelos de programação para aplicações paralelas, ferramentas para o desenvolvimento de aplicações paralelas (compiladores, bibliotecas e padrões), escalonamento de processos;

Avaliação de desempenho de sistemas computacionais de alto desempenho: métricas e metodologias;

Desenvolvimento de aplicações paralelas: estudos de caso;

Teste de programas paralelos: conceitos, técnicas e ferramentas para o teste de programas paralelos.

Como Serão as Aulas

Elas usarão diferentes metodologias, com exercícios e trabalhos práticos.

Avaliações (todas as avaliações terão notas entre 0 e 10)

Espera-se dos alunos uma postura proativa, respeitosa e ética em relação à disciplina e seus integrantes, incluindo a participação efetiva em atividades solicitadas dentro e fora da sala de aula.

ABs - Avaliações Bimestrais

Duas avaliações (AB1 e AB2) que formarão uma média ponderada das ABs. O conteúdo das ABs é acumulativo e a avaliação se concentrará principalmente, mas não exclusivamente, na aplicação dos conceitos e técnicas estudados no curso. As ABs podem ser individuais ou em grupo.

Cálculo da Média Ponderada => ABs = 0,4 * AB1 + 0,6 * AB2

Datas das ABs: AB1 26/10/2020 e AB2 14/12/2020

ACs – Avaliações Contínuas

Engloba diferentes atividades/avaliações realizadas pelos alunos ao longo do curso antes, durante e/ou após as aulas. Exemplos de ACs (mas não limitadas a estes) são leituras de material fornecido pelo professor, respostas individuais ou em grupo a provas e aplicação prática de conteúdo estudado em exercícios dentro e fora da sala de aula. Todas as aulas, em tese, poderão ter ACs.

As ACs formarão uma média aritmética simples, considerando as 70% melhores notas do aluno nas ACs aplicadas à turma.

```
MF – Média Final

\underline{SE} \text{ ABs} >= 5 \underline{E} \text{ ACs} >= 5 \underline{E} \text{ TBs} >= 5

\underline{ENTÃO}

MF = 0,6 * ABs + 0,4 * ACs

\underline{SENÃO}

MF = mínimo(ABs, ACs)
```

Controle de Frequência

Haverá controle de frequência nas aulas (presenciais ou remotas), conforme regras da USP

Prova de Recuperação (REC)

Conteúdo acumulativo do semestre todo. Avaliação com as mesmas regras das ABs. As regras específicas da REC serão disponibilizadas antes da prova pelo professor.

```
11/03/2021 (quinta) 14:00h-16:00h.
```

OBS: A data da REC pode variar por motivo de força maior, dadas as incertezas do calendário da USP. Se houver qualquer mudança, a nova data será informada aqui.

Para poder fazer a REC serão seguidas as regras da USP:

```
Frequência  = 70\% E 3.0 <= MF < 5.0
```

Bibliografia

PACHECO, P.S. An introduction to parallel programming. Morgan Kaufmann. Elsevier Science, 2011. ISBN: 978-0-12-374260-5

RAUBER, T.; RÜNGER, G. Parallel programming: for multicore and cluster systems. Springer, 2010. ISBN-10: 364204817X ou ISBN-13: 978-3642048173.

GRAMA, A.; KUMAR, U.; GUPTA, A.; KARYPIS, G. Introduction to Parallel Computing, 2nd Edition, 2003, ISBN: 0201648652.

PAS, Ruud van der.; STOTZER, Eric; TERBOVEN, Christian. *Using OpenMP-the next step: affinity, accelerators, tasking and SIMD*. The MIT Press, Cambridge, MA, 2017. ISBN 9780262534789

QUINN, M.J. Parallel Programming in C with MPI and OpenMP, McGraw-Hill, Published 2003, ISBN: 0072822562.

STALLINGS, W. Arquitetura e Organização de Computadores: projeto para o desempenho, 5^a ed., Prentice-Hall, Inc., São Paulo, 2002.

SCOTT, L.R.; BAGHERI, B., Scientific Parallel Computing, 2005, Princeton University Press. LASTOVETSKY, A.L. Parallel Computing on Heterogeneous Networks, 2003.

DONGARRA, J., et al Sourcebook of Parallel Computing, Morgan Kaufmann, John Wiley Sons, 2002, ISBN: 1558608710.

ALMASI,G.S.; GOTTLIEB,A. Highly Parallel Computing, 2a ed, The Benjamin/Cummings Publishing Company, Inc., 1994.

FOSTER, I. Designing and Building Parallel Programs, Addison-Wesley Publishing Company, 1994.

Dicas para Estudo

Slides e material de apoio usados pelo professor indicam o roteiro das aulas. Eles não são a aula. Estude pelos livros.

O conteúdo da disciplina é extenso. Estude semanalmente para o conteúdo não acumular.

Site da disciplina está no e-disciplinas da USP. Este é o lugar para ver especificações e submeter os trabalhos

Contatos e Comunicação com os Alunos

Comunicação oficial ocorrerá em sala de aula e/ou via emails dos alunos registrados na USP.

Emails serão enviados pelo e-disciplinas/Moodle STOA/USP para a turma ou, conforme o caso, ao aluno em particular.

Para contatar o professor: Paulo Sergio Lopes de Souza - pssouza@icmc.usp.br

Para contatar o aluno PAE: Thiago Durães - duraes.tjo@usp.br