Assignment 6 Qual Problems

D. Zack Garza

November 7, 2019

Contents

1	Problem 1															1													
	1.1	Part (a)															 									 			1
	1.2	Part (b)															 												1
	1.3	Part (c)															 												1
2	Prol	blem 2																											2

1 Problem 1

1.1 Part (a)

Definition: A field extension L/F is said to be a *splitting field* of a polynomial f(x) if L contains all roots of f and thus decomposes as

$$f(x) = \prod_{i=1}^{n} (x - \alpha_i)^{k_i} \in L[x]$$

where α_i are the distinct roots of f and k_i are the respective multiplicities.

1.2 Part (b)

Let F be a finite field with q elements, where $q=p^k$ is necessarily a prime power, so $F\cong \mathbb{F}_{p^k}$. Then any finite extension of E/F is an F-vector space, and contains $q^n=(p^k)^n=p^{kn}$ elements. Thus $E\cong \mathbb{F}_{p^{kn}}$ Then if $\alpha\in E$, we have $\alpha^{p^{kn}}=\alpha$, so we can define

$$f(x) := x^{p^{kn}} - x \in F[x].$$

The roots of f are exactly the elements of E, so f splits in E.

1.3 Part (c)

The polynomial f is separable, since $f'(x) = p^{kn}x^{p^{kn}-1} - 1 = -1$ since char(E) = p. Since E is a finite extension, E is thus a separable extension. Then, since E is a separable splitting field, it is a Galois extension by definition.

2 Problem 2

We can write $I = \operatorname{Ann}_{\mu}$ for some $\mu \in R$, so suppose $xy \in I$ so $xy\mu = 0$.

If $y\mu = 0$, then $y \in I$.

Otherwise, $y\mu \neq 0$ and $x \in \text{Ann}_{y\mu}$. But by maximality, $\text{Ann}_{y\mu} \subseteq I$, so $x \in I$.