1.

a.
$$S = \{ 7k \mid k \in N \}$$

So S is subset of N and S is infinite.

Since N is countably infinite and S is infinite subset of N, and we know that infinite subset of a countably infinite set is countably infinite. So S is also countably infinite.

b.
$$A = \{2, 3\}$$

 $B = A * Z^{+}$
 $= B_{1} \cup B_{2}$ where $B_{1} = \{2\} * Z^{+}$ and $B_{2} = \{3\} * Z^{+}$

We know that Z^+ is countably infinite and the function $B_1 \rightarrow Z$ is a bijection.

So B_1 is also countably infinite. Same thing goes for B_2 .

We know that countable U countable is also countable.

 $B_1 \cup B_2$ is countable and Z^+ is countable infinite,

Therefore, B is countable infinite.

- 2. Assuming that B is not uncountable, then B is finite set. And since A is a subset of B, therefore A is also a finite set. Because element in A must be in B. So, if B is countable, A is also countable. By contrapositive, it's true that if A is uncountable, then B is uncountable.
- 3. $F_{N\to N}$ is uncountable.

Suppose for contradiction, $F_{N\to N}$ is countable.

Where ,
$$F_{N \to N} = \{ F_1, F_2, F_3, \dots \}$$

Let $B = \{ i \mid i \notin F_{N \to N} \}$
Some $B \in F_{N \to N}$, so $\exists j$ where $B = F_{N \to N}$
There are 2 cases:
Case 1: $j \in B$
 $j \in B => j \notin F_{N \to N}$
 $=> j \notin B$ by definition of B

Case 2:
$$j \notin B$$

 $j \notin B => j \in F_{N \to N}$
 $=> j \in B$

So $F_{N\to N}$ is uncountable.

4.

a.

	0	1	2	3	And so on
0		0.9	0.99	0.999	
1	9	9.9	9.99	9.999	
2	99	99.9	99.99	99.999	
3	999	999.9	999.99	999.999	
And so on					

Therefore, this set is countable as it can be counting off diagonally.

b. Suppose S is uncountable set of real numbers [0, 1] where decimal representation consisting of 8's and 9's

 $0.888\ where there's infinite number of 8 after the decimals, same goes to <math display="inline">0.999$

By contradiction, suppose S is countable where S it has element s1, s2, s3 and so on.

//not complete

5.

- a. Let A = set of R numbers of (0, 1] and B = set of R numbers of (0, 1) $A B = \{1\}$ Therefore A-B is a finite set.
- b. Let A = set of R number (0, 1) union Z^+ and B = set of R number of (0, 1) $A B = Z^+$

Therefore, A – B is countably infinite.

c. Let A = set of R number (0, 1) and B = set of R numbers (1, 2)

A - B = A as there are no common elements.

Therefore, A – B is uncountably infinite.