

Lois de comportement des matériaux granulaires : caractéristiques et implémentation dans MFront

V. Alves Fernandes EDF R&D AMA ☑ vinicius.alves-fernandes@edf.fr

Club U MFront, EDF Lab Paris-Saclay 20 mai 2016



### Sommaire

- Caractéristiques du comportement mécanique des matériaux granulaires secs ou saturés
- 2 Modèle d'Iwan pour le comportement cyclique déviatorique de matériaux granulaires
- 3 Cas d'application du modèle d'Iwan

### Elasticité

- Très faible domaine d'élasticité ( $\approx 10^{-6}$ )
- Forte dépendance à la pression moyenne p' -> mise en évidence par un arrangement des sphères élastiques (contact de Hertz)

$$K = \frac{\delta p'}{\delta \varepsilon_{\nu}} = \frac{3}{2} \left( \frac{4}{3} \frac{E_g}{1 - \mu_g} \frac{1}{g(e)} \right)^{2/3} p'^{1/3} \tag{1}$$



V. Alves Fernandes Club U MFront 20 mai 2016 3 / 21

### Elasticité

- Très faible domaine d'élasticité ( $\approx 10^{-6}$ )
- Forte dépendance à la pression moyenne p' -> mise en évidence par un arrangement des sphères élastiques (contact de Hertz)

$$K = \frac{\delta p'}{\delta \varepsilon_{V}} = \frac{3}{2} \left( \frac{4}{3} \frac{E_{g}}{1 - \mu_{g}} \frac{1}{g(e)} \right)^{2/3} p'^{1/3} \tag{1}$$





20 mai 2016 3 / 21 V. Alves Fernandes Club U MFront

### Elasticité

- Très faible domaine d'élasticité ( $\approx 10^{-6}$ )
- Forte dépendance à la pression moyenne p' -> mise en évidence par un arrangement des sphères élastiques (contact de Hertz)

$$K = \frac{\delta p'}{\delta \varepsilon_{V}} = \frac{3}{2} \left( \frac{4}{3} \frac{E_{g}}{1 - \mu_{g}} \frac{1}{g(e)} \right)^{2/3} p'^{1/3} \tag{1}$$

De ce fait, plusieurs auteurs privilégient des lois hypoelastiques de type :

$$K(p') = K_{ref} \left(\frac{p'}{p_{ref}}\right)^n$$
 (2)

obs : du fait de la non admissibilité thermodynamique, cet aspect ne peut pas être implementé dans MFront (n=0)





V. Alves Fernandes Club II MFront 20 mai 2016 3 / 21

# Comportement monotone : essai triaxial drainé



$$p' = tr(\underline{\underline{\sigma'}})$$
$$q = \sqrt{3/2J_2}$$





V. Alves Fernandes

# Comportement cyclique déviatorique





Iwasaki et al.(1978)



V. Alves Fernandes Club U MFront 20 mai 2016 5 / 21

# Comportement cyclique déviatorique





Seed et Idriss (1970)



Dobry et al. (1982)



# Principales caractéristiques des lois de comportement mécanique de matériaux granulaires

 Lois de type élastoplastique ou viscoélastoplastique avec écoulement volumique plastique non associé, par exemple :

$$\dot{\varepsilon}_{v}^{p} = \sin \psi + \frac{q}{p'}$$

- Prise en compte de l'orthotropie des milieux naturels ou compactés (i.e. ouvrages en remblai)
- Besoin des approches de régularisation pour le comportement statique (car comportement potentiellement adoucissant)
- Calibration de paramètres dépend d'un large panel d'essais et d'auscultation. in situ



Club II MFront 20 mai 2016 7 / 21

### Sommaire

- Caractéristiques du comportement mécanique des matériaux granulaires secs ou saturés
- 2 Modèle d'Iwan pour le comportement cyclique déviatorique de matériaux granulaires
- 3 Cas d'application du modèle d'Iwan

### Contexte

- Prise en compte des non linéarités du sol dans le domaine de l'interaction sol-structure pour le nucléaire
  - -> démonstration des marges vis-à-vis de l'augmentation des niveaux de sismicité en France





### Contexte

- Prise en compte des non linéarités du sol dans le domaine de l'interaction sol-structure pour le nucléaire
  - -> démonstration des marges vis-à-vis de l'augmentation des niveaux de sismicité en France
- Proposer un modèle de complexité intermédiaire vis-à-vis de celui disponible dans Code\_Aster pour le comportement cyclique des sols (modèle de Hujeux)





### Contexte

- Prise en compte des non linéarités du sol dans le domaine de l'interaction sol-structure pour le nucléaire
  - -> démonstration des marges vis-à-vis de l'augmentation des niveaux de sismicité en France
- Proposer un modèle de complexité intermédiaire vis-à-vis de celui disponible dans Code\_Aster pour le comportement cyclique des sols (modèle de Hujeux)
- Prise en main et déploiement de MFront dans le domaine de la mécanique des sols





#### Eléments clés :

- Modèle à multiples surfaces d'écrouissage cinématique linéaire
- Calibration des paramètres dépend uniquement du module  $G_{max}$  et de la courbe de dégradation  $(G/G_{max}, \gamma)$
- Ne permet pas d'ajuster de manière indépendante l'amortissement matériau



V Alves Fernandes Club II MFront 20 mai 2016 10 / 21

### Vision schématique du modèle :











Surface de charge :

$$f_n = q_n - Y_n \tag{3}$$

avec  $q_n = \sqrt{\frac{3}{2} \left( \underline{\underline{S}} - \underline{\underline{X}}_n \right)} : \left( \underline{\underline{S}} - \underline{\underline{X}}_n \right)$  et  $Y_n$  le seuil associé au mécanisme n Une loi d'écrouissage cinématique linéaire est considérée :

$$\underline{\underline{X}}_n = C_n \underline{\underline{\hat{\varepsilon}}}_n^p \tag{4}$$

La loi d'écoulement est choisie de type associée :

$$\underline{\underline{\varepsilon}_{n}^{p}} = \dot{\lambda}_{n} \frac{\partial f_{n}}{\partial \underline{\sigma}} = \dot{\lambda}_{n} \frac{3\left(\underline{\underline{S}} - \underline{X}_{n}\right)}{2q_{n}}$$
 (5)



V. Alves Fernandes Club U MFront 20 mai 2016 12 / 21

Astuce : passage d'un système tensoriel à un système scalaire d'équations grâce à la colinéarité entre l'incrément de déformation plastique du mécanisme n et la différence  $\underline{\underline{S}} - \underline{\underline{X}}_n$  en absence de déformation plastique,  $\underline{\underline{S}}_n^e$ . Après manipulation algébrique :

$$\dot{\lambda_n} = \frac{q_n^e - Y_n}{\frac{3}{2}C_n} \tag{6}$$

avec  $q_n^e$  la norme de  $\underline{\underline{S}}_n^e$ 

Calcul de  $C_n$  à partir du module sécant du comportement en cisaillement pur :

$$\frac{1}{C_n} = \frac{\gamma_{k+1} - \gamma_k}{\tau_{k+1} - \tau_k} - \frac{1}{2G} - \sum_{m=1}^{\kappa-1} \frac{1}{C_m}$$
 (7)

Résolution dans MFront par algorithme de Newton avec un étape de prédiction élastique (block @Predictor)



V. Alves Fernandes Club U MFront 20 mai 2016 13/21

#### Difficultés :

- Nombre élevé de surfaces de charge
  - -> Besoin de sous-découpage du pas d'intégration
- Pouvoir prescrire la courbe de comportement par l'interface Code\_Aster/MFront
  - -> On prescrit aujourd'hui les paramètres  $\gamma_{ref}$  et n d'un modèle hyperbolique

$$\tau = \frac{G_{\text{max}}\gamma}{1 + \left(\frac{\gamma}{\gamma_{\text{ref}}}\right)^n} \tag{8}$$





$$\gamma_{ref} = 0.03\%$$
  
 $n = 0.85$ 

### Sommaire

- Caractéristiques du comportement mécanique des matériaux granulaires secs ou saturés
- Modèle d'Iwan pour le comportement cyclique déviatorique de matériaux granulaires
- 3 Cas d'application du modèle d'Iwan

### Calcul de la réponse d'une colonne de sol 1D





V. Alves Fernandes

## Calcul de la réponse d'une colonne de sol 1D





# Résultats comparatifs - FFT accélerations

### Input bedrock



0.0

10-1





10° Fréquence (Hz) V. Alves Fernandes

10<sup>1</sup>

0.3 0.0

10'1

Club U MFront

10<sup>2</sup>

10<sup>1</sup>

Fréquence (Hz)

10°

# Résultats comparatifs - contrainte-déformation (sable)





V. Alves Fernandes

# Résultats comparatifs - contrainte-déformation (argile)





### Conclusions et Perspectives

#### Conclusions

- Mise en place d'un modèle simple et facilement paramétrable, adapté au comportement déviatorique des sols
- Développement et maintenabilité aisés (≈200 lignes de code pour le modèle)



V Alves Fernandes Club II MFront 20 mai 2016 20 / 21

## Conclusions et Perspectives

#### Conclusions

- Mise en place d'un modèle simple et facilement paramétrable, adapté au comportement déviatorique des sols
- Développement et maintenabilité aisés (≈200 lignes de code pour le modèle)

#### Perspectives pour le modèle d'Iwan :

- Amélioration des conditions de convergence -> gestion locale du pas d'intégration (sous-découpage automatique type ITER\_INTE\_PAS non disponible)
- Pouvoir fournir directement la courbe  $(G/G_{max}, \gamma)$



V Alves Fernandes Club II MFront 20 mai 2016 20 / 21

## Conclusions et Perspectives

#### Conclusions

- Mise en place d'un modèle simple et facilement paramétrable, adapté au comportement déviatorique des sols
- Développement et maintenabilité aisés (≈200 lignes de code pour le modèle)

#### Perspectives pour le modèle d'Iwan :

- Amélioration des conditions de convergence
  - -> gestion locale du pas d'intégration (sous-découpage automatique type ITER\_INTE\_PAS non disponible)
- Pouvoir fournir directement la courbe  $(G/G_{max}, \gamma)$

### Perspectives pour l'utilisation des lois de mécanique de sols avec MFront :

- Disponibilité de modèles de régularisation
  - Disponibilité d'un vrai couplage THM
  - Adapté à des modèles multimécanismes?



V Alves Fernandes Club II MFront 20 mai 2016 20 / 21

### Merci de votre attention



V. Alves Fernandes Club U MFront 20 mai 2016 21 / 21