Set S05 - Random Forests

STAT 401 (Engineering) - Iowa State University

April 26, 2017

Regression trees

Consider a regression model that uses a set of indicator variables to group the data, e.g.

$$Y_i \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$

where

$$\begin{array}{lll} \mu_i = & \beta_0 & \text{group 1} \\ & + \beta_1 \mathrm{I}(x_{i1} \leq 49) \mathrm{I}(x_{i2} > 0.4) & \text{group 2} \\ & + \beta_2 \mathrm{I}(x_{i1} > 49) \mathrm{I}(x_{i3} \leq 0.7) & \text{group 3} \\ & + \beta_3 \mathrm{I}(x_{i1} > 49) \mathrm{I}(x_{i3} > 0.7) & \text{group 4} \end{array}$$

Thus group 1 corresponds to those observations with $x_{i1} \le 49$ and $x_{i2} \le 0.4$.

Visualization of a regression tree

Regression trees in R tree

```
library("tree")
data(cpus, package="MASS")
m_tree <- tree(log10(perf) ~ syct+mmin+mmax+cach+chmin+chmax, cpus)
summary(m_tree)
Regression tree:
tree(formula = log10(perf) ~ syct + mmin + mmax + cach + chmin +
    chmax, data = cpus)
Variables actually used in tree construction:
[1] "cach" "mmax" "syct" "chmin"
Number of terminal nodes: 10
Residual mean deviance: 0.03187 = 6.342 / 199
Distribution of residuals:
     Min. 1st Qu. Median
                                     Mean
                                             3rd Qu.
                                                          Max.
-0.4945000 -0.1191000 0.0003571 0.0000000 0.1141000 0.4680000
```

plot(m_tree); text(m_tree)

Regression trees in R rpart

```
library("rpart")
m_rpart <- rpart(log10(perf) ~ syct+mmin+mmax+cach+chmin+chmax, cpus)
summary(m_rpart)
Call:
rpart(formula = log10(perf) ~ syct + mmin + mmax + cach + chmin +
   chmax, data = cpus)
 n = 209
         CP nsplit rel error xerror
1 0.54926971
                 0 1.0000000 1.0080363 0.09735912
2 0.08933901 1 0.4507303 0.4701784 0.04776144
3 0.08763324
                 2 0.3613913 0.4274450 0.04457527
4 0.03281589
                 3 0.2737580 0.3227759 0.03101707
5 0.02692205
                 4 0.2409421 0.3118627 0.03024666
6 0.01855609
                 5 0.2140201 0.2954596 0.02917108
7 0.01679918
                 6 0 1954640 0 2919951 0 03094696
8 0.01579084 7 0.1786648 0.2873176 0.03034303
9 0.01000000
                 9 0.1470831 0.2588373 0.02846206
Variable importance
cach mmax mmin chmin syct chmax
  25
        20
           17 15 14
Node number 1: 209 observations.
                                  complexity param=0.5492697
 mean=1.753333, MSE=0.2062945
 left son=2 (143 obs) right son=3 (66 obs)
 Primary splits:
     cach < 27
                   to the left, improve=0.5492697, (0 missing)
     mmax < 14000 to the left, improve=0.4942141, (0 missing)
```

plot(m_rpart); text(m_rpart)

How do this approaches decide on the splits?

From the help file for tree:

A tree is grown by binary recursive partitioning using the response in the specified formula and choosing splits from the terms of the right-hand-side. Numeric variables are divided into X < a and X > a; the levels of an unordered factor are divided into two non-empty groups. The split which maximizes the reduction in impurity is chosen, the data set split and the process repeated. Splitting continues until the terminal nodes are too small or too few to be split.

The *impurity* for a regression tree is most likely the estimate of $\hat{\sigma}^2$. Thus, the algorithm searches over all possible splits and finds the one that results in the smallest $\hat{\sigma}^2$. Then the process is repeated for each split.

To determine when to stop, the algorithm has a set of control values. For tree the values are

- mincut: minimum number of observations to include in either child node
- minsize: smallest allowed node size
- mindev: within-node deviance must be at least this times that of the root node for the node to be split

Little tree

Random forests

Repeat this algorithm B times:

- 1. Randomly sample data with replacement from training set.
- 2. Train a tree on these data (randomly evaluating a subset of explanatory variables for each split).
- 3. Evaluate the tree based on its out of sample performance.

After training, predictions for new data are averaged across all the trees.

Visualizing

Ensemble Model: example for regression

forest <- randomForest(log10(perf) ~ syct+mmin+mmax+cach+chmin+chmax,</pre>

Random forests in R

```
data = cpus, importance = TRUE)

forest

Call:
    randomForest(formula = log10(perf) ~ syct + mmin + mmax + cach + chmin + chmax, data = cpus, importance = Type of random forest: regression
    Number of trees: 500

No. of variables tried at each split: 2

Mean of squared residuals: 0.02455569
    % Var explained: 88.1
```

Out of bag error

plot(forest)

Variable importance

```
importance(forest) %>% round(2)
     %IncMSE IncNodePurity
      16.93
                     3.80
syct
      17.83
                    5.43
mmin
      31.70
mmax
                  11.08
      32.68
                    11.87
cach
      19.58
                     6.16
chmin
       20.13
chmax
                      2.96
```

Prediction

```
new_cpus = cpus %>%
 sample_n(10)
new_cpus %>%
 bind_cols(data.frame(pred_perf = 10^predict(forest,
                                              new_cpus))) %>%
 arrange(pred_perf)
                 name syct mmin
                                 mmax cach chmin chmax perf estperf pred_perf
          TBM 370/148
                       203 1000
                                 2000
                                                         24
                                                                 21 21.43632
  HONEYWELL DPS 7/55
                      140 2000
                                 4000
                                                                     30.50168
3
      MAGNUSON M80/32
                       100 1000
                                 8000
                                                         32
                                                                 46 33.76231
   HONEYWELL DPS 6/92
                       300 1000
                                 4000
                                                    64
                                                         38
                                                                 30 37.35721
5
         NCR V8595 II
                        56 4000 16000
                                                     8
                                                         46
                                                                     47.50400
6
          IBM 4341-12
                      185 2000 16000
                                        16
                                                         76
                                                                     71.12837
7
      SPERRY 1100/81
                        50 2000 32000
                                        24
                                                    26
                                                        114
                                                                 182 102.32854
8
       NAS AS/9000 N
                        48 4000 24000
                                        32
                                                    24
                                                        214
                                                                151 183.99017
       AMDAHL 470V/8
                        26 8000 32000
                                                    32
                                                        318
                                                                 290 315.67296
                                        64
10
          NAS AS/8060
                        35 8000 32000
                                                    24
                                                        370
                                                                 270 318.04787
```

Classification trees

