Day 12 | Mode - imputation

Import Libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Import Dataset

```
In [3]: df = pd.read_csv('train.csv',usecols=['GarageQual','FireplaceQu','SalePrice'])
In [4]: df.head()
Out[4]: FireplaceQu GarageQual SalePrice
```

+].		FireplaceQu	GarageQual	SalePrice
	0	NaN	TA	208500
	1	TA	TA	181500
	2	TA	TA	223500
	3	Gd	TA	140000
	4	TA	TA	250000

```
In [6]: df.sample(10)
```

Out[6]:		FireplaceQu	GarageQual	SalePrice
	822	Gd	TA	225000
	958	NaN	TA	185000
	486	NaN	TA	156000

486	NaN	TA	156000
658	Gd	TA	97500
1254	Gd	TA	165400
238	NaN	TA	318000
69	TA	TA	225000
921	NaN	NaN	145900
1405	Gd	TA	275000
32	NaN	TA	179900

Check missing (null) value

```
In [7]: df.isnull().mean()*100
```

Out[7]: FireplaceQu 47.260274 GarageQual 5.547945 SalePrice 0.000000

dtype: float64

Plot Bar Garage Value

```
In [8]: df['GarageQual'].value_counts().plot(kind='bar')
Out[8]: <Axes: xlabel='GarageQual'>
          1200
          1000
           800
           600
           400
           200
             0
                    Δ
                                                           ŭ
                                                                        &
                                          GarageQual
```

```
In [9]: df['GarageQual'].mode()
Out[9]: 0
```

TΑ Name: GarageQual, dtype: object

kde Plot | Compare Houses with TA | Null

```
In [10]: fig = plt.figure()
    ax = fig.add_subplot(111)
    df[df['GarageQual']=='TA']['SalePrice'].plot(kind='kde', ax=ax)
    df[df['GarageQual'].isnull()]['SalePrice'].plot(kind='kde', ax=ax, color='red')
    lines, labels = ax.get_legend_handles_labels()
    labels = ['Houses with TA', 'Houses with NA']
    ax.legend(lines, labels, loc='best')
    plt.title('GarageQual')
```

Out[10]: Text(0.5, 1.0, 'GarageQual')

Store variable TA in temp

```
In [11]: temp = df[df['GarageQual']=='TA']['SalePrice']
```

Replace missing value with TA

```
In [12]: df['GarageQual'].fillna('TA', inplace=True)
```

Review Bar Plot Changes

Draw plot again | After Imputation

```
In [14]: fig = plt.figure()
    ax = fig.add_subplot(111)
    temp.plot(kind='kde', ax=ax)
    # distribution of the variable after imputation
    df[df['GarageQual'] == 'TA']['SalePrice'].plot(kind='kde', ax=ax, color='red')
    lines, labels = ax.get_legend_handles_labels()
    labels = ['Original variable', 'Imputed variable']
    ax.legend(lines, labels, loc='best')
# add title
    plt.title('GarageQual')
```

Out[14]: Text(0.5, 1.0, 'GarageQual')

Plot Bar Fire Place

In [16]: df['FireplaceQu'].mode()

Out[16]: 0 Gd

Name: FireplaceQu, dtype: object

In [15]: df['FireplaceQu'].value_counts().plot(kind='bar')

kde Plot | Replace House with GD and NA

```
In [17]: fig = plt.figure()
    ax = fig.add_subplot(111)
    df[df['FireplaceQu']=='Gd']['SalePrice'].plot(kind='kde', ax=ax)
    df[df['FireplaceQu'].isnull()]['SalePrice'].plot(kind='kde', ax=ax, color='red')
    lines, labels = ax.get_legend_handles_labels()
    labels = ['Houses with Gd', 'Houses with NA']
    ax.legend(lines, labels, loc='best')
    plt.title('FireplaceQu')
```

Out[17]: Text(0.5, 1.0, 'FireplaceQu')

Store Temp Variable

```
In [18]: temp = df[df['FireplaceQu']=='Gd']['SalePrice']
```

Replace missing value with GD

```
In [19]: df['FireplaceQu'].fillna('Gd', inplace=True)
```

Draw Bar Plot

Draw plot again | After Imputation

```
In [21]: fig = plt.figure()
    ax = fig.add_subplot(111)
    temp.plot(kind='kde', ax=ax)
    # distribution of the variable after imputation
    df[df['FireplaceQu'] == 'Gd']['SalePrice'].plot(kind='kde', ax=ax, color='red')
    lines, labels = ax.get_legend_handles_labels()
    labels = ['Original variable', 'Imputed variable']
    ax.legend(lines, labels, loc='best')
# add title
    plt.title('FireplaceQu')
```

Out[21]: Text(0.5, 1.0, 'FireplaceQu')


```
In [ ]:
```