```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import preprocessing,svm
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

Out[2]:		date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	vie
	0	2014- 05-02 00:00:00	3.130000e+05	3.0	1.50	1340	7912	1.5	0	
	1	2014- 05-02 00:00:00	2.384000e+06	5.0	2.50	3650	9050	2.0	0	
	2	2014- 05-02 00:00:00	3.420000e+05	3.0	2.00	1930	11947	1.0	0	
	3	2014- 05-02 00:00:00	4.200000e+05	3.0	2.25	2000	8030	1.0	0	
	4	2014- 05-02 00:00:00	5.500000e+05	4.0	2.50	1940	10500	1.0	0	
	4595	2014- 07-09 00:00:00	3.081667e+05	3.0	1.75	1510	6360	1.0	0	
	4596	2014- 07-09 00:00:00	5.343333e+05	3.0	2.50	1460	7573	2.0	0	
	4597	2014- 07-09 00:00:00	4.169042e+05	3.0	2.50	3010	7014	2.0	0	
	4598	2014- 07-10 00:00:00	2.034000e+05	4.0	2.00	2090	6630	1.0	0	
	4599	2014- 07-10 00:00:00	2.206000e+05	3.0	2.50	1490	8102	2.0	0	
	4000	40	•							

4600 rows × 18 columns

```
In [4]: df=df[['sqft_living','yr_renovated']]
df.columns=['sqft','yr']
```

In [5]: df.head(10)

Out[5]: sqft yr

0 1340 2005

1 3650 0

2 1930 0

3 2000 0

4 1940 1992

5 880 1994

6 1350 0

7 2710 0

8 2430 0

9 1520 2010

In [6]: sns.lmplot(x="sqft",y="yr",data=df,order=2,ci=None)

Out[6]: <seaborn.axisgrid.FacetGrid at 0x19d3b85ff10>

In [7]: df.describe()

Out[7]:

yr	sqft	
4600.000000	4600.000000	count
808.608261	2139.346957	mean
979.414536	963.206916	std
0.000000	370.000000	min
0.000000	1460.000000	25%
0.000000	1980.000000	50%
1999.000000	2620.000000	75%
2014.000000	13540.000000	max

```
In [8]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 4600 entries, 0 to 4599
         Data columns (total 2 columns):
              Column Non-Null Count Dtype
          0
              saft
                      4600 non-null
                                      int64
          1
              yr
                      4600 non-null
                                      int64
         dtypes: int64(2)
         memory usage: 72.0 KB
 In [9]: | df.fillna(method='ffill',inplace=True)
         C:\Users\manasa\AppData\Local\Temp\ipykernel_16420\4116506308.py:1: SettingWi
         thCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.fillna(method='ffill',inplace=True)
In [10]: x=np.array(df['sqft']).reshape(-1,1)
         y=np.array(df['yr']).reshape(-1,1)
In [11]: df.dropna(inplace=True)
         C:\Users\manasa\AppData\Local\Temp\ipykernel 16420\1379821321.py:1: SettingWi
         thCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.dropna(inplace=True)
In [12]: |x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
         regr=LinearRegression()
         regr.fit(x_train,y_train)
         print(regr.score(x test,y test))
         0.019649366676817714
```

```
In [13]: y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```



```
In [14]: df500=df[:][:500]
sns.lmplot(x="sqft",y="yr",data=df500,order=1,ci=None)
```

Out[14]: <seaborn.axisgrid.FacetGrid at 0x19d3fe6ff10>


```
In [15]: df500.fillna(method="ffill",inplace=True)
    x=np.array(df500['sqft']).reshape(-1,1)
    y=np.array(df500['yr']).reshape(-1,1)
    df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

Regression: -0.014661909456218813


```
In [16]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: -0.014661909456218813

```
In [17]: #step-9 conclusion
#dataset we have taken is poor for linear model but with the smaller data work
```

In []: