SINGAPORE POLYTECHNIC

2022/2023 Semester 2 Mid-Semester Test

No.	SOLUTION
1(a)	For symmetric matrix, $\mathbf{A}_{ij} = \mathbf{A}_{ji}$.
	$\mathbf{A}_{23} = \mathbf{A}_{32} : 2c + 3 = 7 \Rightarrow c = 2$
	$\mathbf{A}_{12} = \mathbf{A}_{21} : a - c = 1 \Rightarrow a - 2 = 1 \Rightarrow a = 3$
	$\mathbf{A}_{13} = \mathbf{A}_{31}: 3b + c = -1 \Longrightarrow 3b + 2 = -1 \Longrightarrow b = -1$
1(b)	Given $\mathbf{E}^T = 2\mathbf{F} - \mathbf{X}$:
	$\mathbf{X} = 2\mathbf{F} - \mathbf{E}^T = \begin{bmatrix} 4 & 6 \\ 10 & -2 \end{bmatrix} - \begin{bmatrix} -3 & 5 \\ 8 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 1 \\ 2 & -6 \end{bmatrix}$
1(c) (i)	$\mathbf{ED} = \begin{bmatrix} -3 & 8 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & -4 \\ 3 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 21 & -8 & 28 \\ 17 & -4 & -12 \end{bmatrix}$
1(c) (ii)	$\mathbf{D} + \mathbf{E} + \mathbf{F}$ cannot be evaluated because the order of \mathbf{D} is not the same as the order of \mathbf{E} and \mathbf{F} .
1(c) (iii)	$\mathbf{F}^2 - 10\mathbf{I} = \begin{bmatrix} 19 & 3 \\ 5 & 16 \end{bmatrix} - \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} = \begin{bmatrix} 9 & 3 \\ 5 & 6 \end{bmatrix}$
1(d) (i)	$\mathbf{B}^{T}\mathbf{B} = \begin{bmatrix} 1 & 4 & 8 \\ 8 & -4 & 1 \\ -4 & -7 & 4 \end{bmatrix} \begin{bmatrix} 1 & 8 & -4 \\ 4 & -4 & -7 \\ 8 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 81 & 0 & 0 \\ 0 & 81 & 0 \\ 0 & 0 & 81 \end{bmatrix}$
1(d)	Given $\mathbf{C}\mathbf{Y} = \mathbf{B} + \mathbf{Y}$:
(ii)	$\mathbf{CYY}^{-1} = \mathbf{BY}^{-1} + \mathbf{YY}^{-1}$
	$\mathbf{C} = \mathbf{B}\mathbf{Y}^{-1} + \mathbf{I}$
	$\mathbf{B}\mathbf{Y}^{-1} = \mathbf{C} - \mathbf{I}$ $\mathbf{P}^{-1}\mathbf{P}\mathbf{Y}^{-1} \mathbf{P}^{-1}(\mathbf{C} \mathbf{I})$
	$\mathbf{B}^{-1}\mathbf{B}\mathbf{Y}^{-1} = \mathbf{B}^{-1}(\mathbf{C} - \mathbf{I})$ $\mathbf{Y}^{-1} = \mathbf{B}^{-1}(\mathbf{C} - \mathbf{I})$
	1
	From part (i), $\mathbf{B}^T \mathbf{B} = 81 \mathbf{I} \Rightarrow \mathbf{B}^{-1} = \frac{1}{81} \mathbf{B}^T$
	Hence, $\mathbf{Y}^{-1} = \frac{1}{81} \mathbf{B}^{T} (\mathbf{C} - \mathbf{I}) = \frac{1}{81} \begin{bmatrix} 1 & 4 & 8 \\ 8 & -4 & 1 \\ -4 & -7 & 4 \end{bmatrix} \begin{bmatrix} 7 & 2 & -3 \\ 5 & -2 & 12 \\ 3 & 9 & 3 \end{bmatrix} = \frac{1}{27} \begin{bmatrix} 17 & 22 & 23 \\ 13 & 11 & -23 \\ -17 & 14 & -20 \end{bmatrix}$

SINGAPORE POLYTECHNIC 2022/2023 Semester 2 Mid-Semester Test

2(a)
$$U = \{-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

 $A = \{1, 2, 3, 4, 5, 6\}$

 $B = \{-1, 1, 3, 5, 7, 9\}$

 $C = \{0, 3, 5, 6, 9, 10\}$

2(b)
$$A - B = \{2, 4, 6\}$$

 $A \cap (B \cup C) = \{1, 3, 5, 6\}$

2(c)

2(d)
$$P = \{3, 4, 5, 6, 7, \cdots\}$$

(i)
$$Q = \{7,14,23,34,47,\cdots\}$$

- 2(d) By observing the pattern of the ordered elements in set Q, the formula for the n^{th} element
- (ii) in set Q is given by $(n+2)^2-2$.

 100^{th} element in set $Q = (100 + 2)^2 - 2 = 10,402$

SINGAPORE POLYTECHNIC 2022/2023 Semester 2 Mid-Semester Test

3(a)

Integral part:			
2	978		
2	489	0	
2	244	1	
2	122	0	
2	61	0	
2	30	1	
2	15	0	
2	7	1	
2	3	1	
2	1	1	
	0	1	

Fractional part:				
2	0.425			
2	0.85	0		
2	0.7	1		
2	0.4	1		
2	0.8	0		
2	0.6	1		
2	0.2	1		
2	0.4	0		
2	0.8 (rep)	0		

 $\therefore 978.425_{10} = 1111010010.011\overline{0110}_2 = 3D2.6\overline{C}_{16}$

3(b) Convert x, y and z to decimal:

$$x = 222.2_4 = 2 \times (4^2 + 4^1 + 4^0 + 4^{-1}) = 42.5_{10}$$

$$y = 222.2_8 = 2 \times (8^2 + 8^1 + 8^0 + 8^{-1}) = 146.25_{10}$$

$$z = 222.2_{16} = 2 \times (16^2 + 16^1 + 16^0 + 16^{-1}) = 546.125_{10}$$

Calculate the sum of x, y and z in decimal:

$$w = x + y + z = 42.5_{10} + 146.25_{10} + 546.125_{10} = 734.875_{10}$$

Convert w from decimal to base-32:

Integ	ral part:	
32	734	
32	22	30
	0	22

Fractional part:				
32	0.875			
	0	28		

 $\therefore w = MU.S_{32}$

SINGAPORE POLYTECHNIC

2022/2023 Semester 2 Mid-Semester Test

$$\begin{array}{c|c} \mathbf{4(a)} \\ (i) \\ \mathbf{T}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ; \quad \mathbf{T}_2 = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} ; \quad \mathbf{T}_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C} = \mathbf{T}_{3} \mathbf{T}_{2} \mathbf{T}_{1} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 4 \\ 0 & -3 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{vmatrix} 4(a) \\ (iii) \end{vmatrix} \mathbf{P'} = \mathbf{CP} = \begin{bmatrix} 2 & 0 & 4 \\ 0 & -3 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 2 & 6 \\ 0 & 3 & -6 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{array}{c|c} \mathbf{4(a)} \\ (iv) \\ \hline \mathbf{T}_{1}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ; \ \mathbf{T}_{2}^{-1} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} ; \ \mathbf{T}_{3}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4(b) \mathbf{T}_a : Reflection about the y-axis

(i) \mathbf{T}_b : Shearing in the x-direction by a factor of 1

 \mathbf{T}_c : Translation 3 units to the right

$$\mathbf{T}_a = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \; ; \quad \mathbf{T}_b = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \; ; \quad \mathbf{T}_c = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{U}' = \mathbf{T}\mathbf{U} = \begin{bmatrix} -1 & 1 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 4 & 2 \\ 1 & 1 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 & 4 \\ 1 & 1 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
 (verified)