

Problem Sheet 4

Solve any three!

1. The scalar Yukawa Lagrangian, as discussed in the lecture, is given by

$$\mathcal{L} = \partial^{\mu}\psi^*\partial_{\mu}\psi + \frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - M^2\psi^*\psi - \frac{1}{2}m^2\phi^2 - g\psi^*\psi\phi, \tag{1}$$

where ψ and ϕ are, respectively, complex and real scalar fields. With the Feynman rules stated in the lecture, find the leading order scattering amplitude for the processes

- (a) $\psi \phi \to \psi \phi$
- (b) $\psi\psi^* \to \phi\phi$
- 2. Use the properties (i) $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}$ and (ii) cyclic property of trace, to do the following:
 - (a) Show that the trace of any odd number of γ^{μ} ($\mu = 0, 1, 2, 3$) is zero.
 - (b) Find an expression for $\text{Tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma})$ in terms of Minkowski metric.
 - (c) Find an expression for $\text{Tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{\alpha}\gamma^{\beta})$.
 - (d) Can you guess how many additive terms it will have in the expression for the trace of eight γ^{μ} matrices?
- 3. The Lagrangian for QED is given by

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}(i\partial \!\!\!/ - m)\psi - e\bar{\psi}\gamma^{\mu}A_{\mu}\psi \tag{2}$$

Using the Feynman rules stated in the lecture, please find the leading order scattering amplitude for the following:

- (a) Compton Scattering: $e^- \gamma \to e^- \gamma$.
- (b) Bhabha Scattering: $e^-e^+ \rightarrow e^-e^+$.
- 4. The Lagrangian for Scalar QED (complex scalar field ϕ interacting with field A^{μ} .) is given by-

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^2 + (D_{\mu}\phi)^* (D_{\mu}\phi) - m_{\phi}^2 \phi^* \phi$$
 (3)

where $D_{\mu} = \partial_{\mu} + ieA_{\mu}$ is the usual gauge-covariant derivative.

(a) Compute the Interaction Lagrangian.

Physics For Bangladesh: School On Quantum Field Theory

(b) Derive the Feynman rules for the vertices and propagators of the above theory.

Deadline: 19/09/2024 Submit via Google Form!