CS 306	Algorithms and Complexity
Goodness	
Iterative Improvement	Exploration

Goal

The purpose of this exploration is for you to investigate and implement an important iterative improvement algorithm.

Requirements

Using the supplied article by Shawn Carlson as a springboard, do some good, collaborative research on *simulated annealing*, and then implement this iterative improvement algorithm. Apply your implementation to one specific search task: Validate the choices described by the following excerpts from the documentation and source code of java.util.HashMap.

```
\star This implementation provides constant-time performance for the basic
 * operations (get and put), assuming the hash function
 * disperses the elements properly among the buckets.
/**
  * Returns a hash value for the specified object. In addition to
 * the object's own hashCode, this method applies a "supplemental
  * hash function, " which defends against poor quality hash functions.
  * This is critical because HashMap uses power-of-two length
  * hash tables.
  * The shift distances in this function were chosen as the result
  \star of an automated search over the entire four-dimensional search space.
 static int hash (Object x)
    int h = x.hashCode();
    h += (h << 9);
    h = (h >>> 14);
    h += (h << 4);
    h = (h >>> 10);
    return h;
 }
 /**
  * Returns index for hash code h.
static int indexFor(int h, int length)
   return h & (length-1);
```

Use C++ as your implementation language. Note that C++ does not have a '>>>' operator. Note too that Java does not support unsigned types!

Grading Criteria

The breakdown below is meant to guide you in your quest for goodness and success.

• Collaboration (15 points)

Collaborated with at least three other classmates, who are identified.

• Engagement (25 points)

Provided ample evidence of a curious mind at work.

• **Documentation** (30 points)

Chronicled in some detail the history of decisions made and actions taken, via an activity log in the code — which is also well documented.

• Correctness of implementation (30 points)

Implemented a simulated annealing algorithm, not some other one.

Comments

There are no comments from former students about this exploration. As this semester marks its inception, there are no former students — you are this exploration's intrepid pioneers!