KATHMANDU UNIVERSITY End Semester Examination

End Semester Examination August/September, 2017

Mark Scored:	
--------------	--

Level Year	: B. Sc. : II	rugust september, 2	017	Course Semester	: COMP 202
	Roll No. :	Time: 30 min		F. M.	: 10
Regist	ration No.:			Date	:
		$\frac{\text{SECTION "A"}}{[20 \text{ Q} \times 0.5 = 10 \text{ mag}]}$	rkel		
Tick (1) the correct answer	c(s) or fill the blanks with most		rd/phrasa	
·	,		11 1	•	
1.	[] AB+ CD*E - F [] AB + CD* E -		[] AB + CD [] AB + CD)* E - F **	
2.	[] The item is son [] The item is not [] The item is the	orithm the worst case occurs we newhere in the middle of the ard in the array at all last element in the array last element in the array or is reasonable.	ray		
3.	What does Merge s [] divide-and-con [] heuristic appro-	quer	[] Backtracl	_	
4.	[] P points to the a	ed pointer if address of an element in DATA address of first element in DATA memory addresses DATA and the address of DATA	^C A		
5.	The in order travers [] Binary trees	sal of tree will yield a sorted lis [] Binary search trees	ting of elements [] Heaps		ession Trees
6.	If every node u in (G is adjacent to every other nod [] complete	e v in G, A grap		o be gly connected
7.	of precedence (from to the infix express	erators +,-, X are left associative highest to lowest) is Λ , X, +, ion a + b X c - d Λ e Λ f is	The postfix ex	xpression o	corresponding
	[] $a b c X + d e f A$ [] $b + c X d - e A$		[] a b c X+ c [] - + a X b		-
8.	finished the first pa statement is correct [] The pivot could [] The pivot could	be either the 7 or the 9 be the 7, but it is not the 9 the 7, but it could be the 9			•
9.	The condition top = [] Stack is empty [] Stack has only		[] Stack is for [] None of the		

10.			med on a stack, th	p(), push(1), push(2) ne sequence of popp [] 2 1 2 2 1	2), pop(), pop(), ped out values are? [] 2 1 2 2 2
11.	points to be ma	nipulated	of a circular doul	oly linked list,	
	[]2	[]4		[]6	[]8
12.	can take place		ch deletion can be end (rear) is know		(front) and insertion
	[] Queue	[] Stack	-	[] Tree	[] Linked list
13.		following function void fun1(struct) { if(head == NUL) fun1(head->next) printf("%d ", head)	node* head) L) return;);	Linked List with fir	st node as head?
	[] Prints all no [] Prints altern	odes of linked list odes of linked list nate nodes of Lir nate nodes in rev	t in reverse order iked List		
14.	linked list? 1->2->3->4->5	5->6 void fun(struct n		pointing to first no	de of following
		printf("% if(start-> fun(start	= NULL) return dd ", start->data) next != NULL) ->next->next); dd ", start->data	;	
	[]146641	[]135	1 3 5	[]1235	[]135531
15.		resents a correct		which of the follow 's algorithm to cons	
		b 6 c	5 d 10 2 12	9 3 7 8	
	[] (c, e), (c, f) [] (d, f), (f, c)), (f, d), (d, a), (a , (d, a), (a, b), (c,	a), (g, h), (c, e), (g, h), (g, h), (h, f), e), (f, h), (g, h), (d), (d, a), (a, b), (d)	(g, i) (g, i)	

16.	What is common in three different types of traversa [] Root is visited before right subtree [] Left subtree is always visited before right subtr [] Root is visited after left subtree [] There is no common procedure in all types of the	ee		
17.	Which of the following statement(s) is TRUE?			
	 I) A hash function takes a message of arbitrary length and generates a fixed length code II) A hash function takes a message of fixed length and generates a code of variable length 			
	II) A hash function may give the same hash value f [] I only [] II and III only	For distinct messages [] I and III only [] II only		
18.	Suppose a circular queue of capacity $(n-1)$ elements is implemented with an array of n elements. Assume that the insertion and deletion operation are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are [] Full: (REAR+1) mod n == FRONT, empty: REAR == FRONT [] Full: (REAR+1) mod n == FRONT, empty: (FRONT+1) mod n == REAR [] Full: REAR == FRONT, empty: (REAR+1) mod n == FRONT [] Full: (FRONT+1) mod n == REAR, empty: REAR == FRONT			
19.	Consider a node X in a Binary Tree. Given that X is successor of X. Which of the following is true about [] Y has no right child [] Y has both children			
20.	Which of the following is non-liner data structure? [] Stacks [] List			

KATHMANDU UNIVERSITY

End Semester Examination August/September, 2017

Level: B. Sc. Course: COMP 202

Year: II Semester: I Time: 2 hrs. 30 mins. F. M. : 40

$\frac{\text{SECTION "B"}}{\text{[6 O.} \times 4 = 24 \text{ marks]}}$

Attempt ANY SIX questions.

- 1. Trace quick sort on the array L= {35, 18, 67, 10, 7, 78, 99, 12, 80, 100}. Show the first partition and second partition results.
- 2. What is Binary Search? How can you perform binary search over the data stored in an array? In what way it is different from Binary Search Tree?
- 3. Compare adjacency matrix representation with adjacency list representation. Define the terms path and acyclic graph.
- 4. Write down the algorithm to evaluate postfix expression. Trace a postfix expression as an example.
- 5. Discuss linear queue as an abstract data type. How can you handle problems of linear queue?
- 6. Trace to find minimum spanning tree using Prim's algorithm for figure 1. In what way it is different from Kruskal's algorithm?

7. What is asymptotic analysis? Explain the use of Big – oh notation in analyzing algorithm.

$$\frac{\text{SECTION "C"}}{[8 \text{ Q.} \times 2 = 16 \text{ marks}]}$$

Attempt ANY TWO questions.

- 8. Discuss the techniques to sort elements using selection sort and insertion sort. [4+4]
- 9. Write down the algorithm to delete elements in a Binary Search Tree. Discuss all the possible cases to delete the elements of nodes. Discuss post-order algorithm with a suitable binary tree. [5+3]
- 10. How can you implement insertion and deletion on doubly linked list? Discuss, how can you reverse the DLL?