머신러닝프로젝트

: 영화 리뷰 데이터를 활용한 감성분석

BDA X 이지스 스터디 -----

CONTENTS INDEX

01 프로젝트 개요

주제 선정 배경 프로젝트 목표 프로젝트 과정

04 데이터 분석

각 모델에 대한 이해 LSTM **Logistic Regression** SVM

02 데이터 수집

데이터셋

03 데이터 전처리

데이터 정제 불용어 제거 토큰화

벡터화 / 패딩

05 결론

각 토큰화 별 분석 결과 비교 각 모델 별 분석 결과 비교

프로젝트 개요

주제 선정 배경 프로젝트 목표 프로젝트 과정

주제 선정 배경

"영화 리뷰 감성 분석"

이라는 감성 분석 분야 중 가장 특징적이며 대표적인 주제 선정

프로젝트 목표

토큰화

2 글자 이상의 명사, 형용사, 동사만 추출

1 글자 포함이며 모든 형태소를 추출

분석 모델

LSTM

Logistic Regression

SVM

프로젝트 과정

01

데이터 수집

영화에 대한 리뷰어들의 긍정/ 부정 판단이 담긴 텍스트 리뷰 데이터셋 수집

데이터 정제

중복값, NA값, 불용어 제거 등 데이터 정제 과정

토큰화

03

2글자 이상의 명사, 형용사, 동사만 추출하는 방식과 모든 형태소를 추출하는 두 가지의 토큰화 방식 설계

벡터화 / 패딩

각 분석 모델에 사용되기 알맞게 벡터화 또는 패딩을 적절히 적용하는 과정

05

데이터 분석

LSTM, Logistic Regression, SVM의 세 가지 모델을 통한 분석

결론 도출

적용한 토큰화별, 모델별 결과 비교

데이터 수집

데이터셋

활용한 데이터셋

Naver sentiment movie corpus v1.0 (https://github.com/e9t/nsmc)

네이버 영화 리뷰 데이터에 대한 감성 분류가 라벨링 된 텍스트 데이터셋

데이터셋 구조

데이터 구조	id	document	label
내용	리뷰 작성자 정보	영화 리뷰 댓글	영화에 대한 평가 (긍정 1, 부정 0)

데이터전처리

데이터 정제 불용어 제거 토큰화 벡터화 / 패딩

결측치/ 중복값 처리

결측치, 중복값 확인

```
# 각 data의 결측치 확인

df_train.info()

print()

df_test.info()
```

```
# 각 data의 중복값 확인
tr_dup = sum(df_train.duplicated())
te_dup = sum(df_test.duplicated())
```

결측치, 중복값 제거

```
# train과 test에 있는 결측치와 중복을 모두 제거

df_train.drop_duplicates(inplace=True)

df_train.dropna(inplace=True)

df_test.drop_duplicates(inplace=True)

df_test.dropna(inplace=True)
```

index 리셋

```
# 제거 결과 index가 연속적이지 않으므로 index를 리셋

df_train.reset_index(drop=True, inplace=True)

df_test.reset_index(drop=True, inplace=True)
```

불필요한 문자 처리

한글, 공백 제외한 나머지 제거

```
# 한글, 공백을 제외한 나머지는 모두 제거
# 오타로 인해 맞춤법이 틀리는 경우 형태소 분석이 불가능하므로 공백 유지

df_train_1['document'] = df_train_1['document'].apply(lambda x: re.sub("[^ㄱ-ㅎㅏ-ㅣ가-힣\s]", "", x))

df_test_1['document'] = df_test_1['document'].apply(lambda x: re.sub("[^ㄱ-ㅎㅏ-ㅣ가-힣\s]", "", x))
```

문자열 0인 경우 제거

```
# 문자열 길이가 0이 되는 경우를 제거

for idx in range(len(df_train_1)):
    if df_train_1.loc[idx, 'document'] == '' or df_train_1.loc[idx, 'document'].isspace():
        df_train_1.drop(idx, axis=0, inplace=True)

for idx in range(len(df_test_1)):
    if df_test_1.loc[idx, 'document'] == '' or df_test_1.loc[idx, 'document'].isspace():
        df_test_1.drop(idx, axis=0, inplace=True)
```

index 리셋

```
# 마찬가지로 index를 0부터 연속적으로 만들기 위해 리셋

df_train_1.reset_index(drop=True, inplace=True)

df_test_1.reset_index(drop=True, inplace=True)
```

데이터 정제

정제 전 후 데이터 비교

	document	label
0	아 더빙 진짜 짜증나네요 목소리	0
1	흠포스터보고 초딩영화줄오버연기조차 가볍지 않구나	1
2	너무재밓었다그래서보는것을추천한다	0
3	교도소 이야기구먼솔직히 재미는 없다평점 조정	0
4	사이몬페그의 익살스런 연기가 돋보였던 영화!스파이더맨에서 늙어보이기만 했던 커스틴	1

test 데이터 정제 결과

 0
 이 다양 진짜 짜증나네요 목소리
 0

 1
 음포스터보고 초당영화줄오버연기조차 가볍지 않구나
 1

 2
 너무재망었다그래서보는것을추천한다
 0

 3
 교도소 이야기구먼 솔직히 재미는 없다평점 조정
 0

 4
 사이몬페그의 익살스런 연기가 돋보였던 영화스파이더맨에서 늙어보이기만 했던 커스틴 던...
 1

	document	label
0	굳ㅋ	1
1	GDNTOPCLASSINTHECLUB	0
2	뭐야 이 평점들은 나쁘진 않지만 10점 짜리는 더더욱 아니잖아	0
3	지루하지는 않은데 완전 막장임 돈주고 보기에는	0
4	3D만 아니었어도 별 다섯 개 줬을텐데 왜 3D로 나와서 제 심기를 불편하게 하죠??	0

train 데이터 정제 결과

	document	label
0	굳ㅋ	1
1	뭐야 이 평점들은 나쁘진 않지만 점 짜리는 더더욱 아니잖아	0
2	지루하지는 않은데 완전 막장임 돈주고 보기에는	0
3	만 아니었어도 별 다섯 개 줬을텐데 왜 로 나와서 제 심기를 불편하게 하죠	0
4	음악이 주가 된 최고의 음악영화	1

불용어 제거

긍정/부정 리뷰 별로 출현 빈도가 높은 단어를 분류했을 때, 긍정/부정 모두에 자주 나타나는 단어는 판별력이 없으므로 동시에 자주 나타나는 단어를 "불용어"로 판단

긍정/부정 리뷰 별로 사용된 명사 분류

긍정/부정 리뷰 리스트 속 명사의 출현 빈도 계산

```
# CountVectorizer를 이용해 단어의 출현 빈도를 계산한다.

vectorizer_pos = CountVectorizer()

vectorizer_neg = CountVectorizer()

vec_positive = vectorizer_pos.fit_transform(nouns_positive)

vec_negative = vectorizer_neg.fit_transform(nouns_negative)

word_pos_list = vectorizer_pos.get_feature_names_out()

count_pos_list = vec_positive.toarray().sum(axis=0)

word_neg_list = vectorizer_neg.get_feature_names_out()

count_neg_list = vec_negative.toarray().sum(axis=0)
```

불용어 제거

```
[('영화', 27250),
                                  .('최고', 5452),
                                                                                          ('재미있', 3224)
                                                                                                                                                 ('너무', 5623),
                                                                                         ('만들', 2697),
('나오', 2571),
('느끼', 1625),
                                   ('연기', 3783),
                                                                                                                                                 ('어요', 5594),
                                  ('감동', 3593),
('생각', 3285),
('드라마', 2902),
                                                                                                                                                 ('는데', 5556),
                                                                                                                                                 ('네요', 4941),
                                                                                                                                                 ('지만', 4535),
                                                                                          ('이렇', 1385),
                                                                                          ('모르', 1358),
                                   ('평점', 2610),
                                                                                                                                                 ('으로', 4414),
                                   ('사람', 2439),
                                                                                          ('보이', 1283),
                                                                                                                                                 ('에서', 4249),
                                  ('사랑', 2251),
                                                                                          ('아름답', 1265)
                                                                                                                                                 ('ㅂ니다', 4154)
                                   ('배우', 2078)]
                                                                                         ('좋아하', 1169)]
                                                                                                                                                ('습니다', 3887)
                  명사 - 긍정 리뷰
                                                                      동사 & 형용사 - 긍정 리뷰
                                                                                                                                나머지 - 긍정 리뷰
('영화', 26188),
                                                                                         [('만들', 4777),
                                                                                                                                                 [('는데', 5667),
                                   ('평점', 3490),
                                                                                          ('나오', 3856),
                                                                                                                                                  ('너무', 4972),
('으로', 4675),
                                   ('스토리', 3424)
                                                                                          ('아깝', 3846),
('재미없', 3024)
                                  ('연기', 3246),
                                                                                                                                                  ('아니', 4462)
                                                       ('쓰레기', 3143)
                                                                                         ('이렇', 2070),
                                                                                                                                                  ('ㄴ다', 4234)
                                   ('내용', 2888),
                                                                                         ('모르', 1581),
                                                                                                                                                  ('아서', 4006),
('에서', 3737),
                                   ('감독', 2775),
('시간', 2657),
                                                                                          ('보이', 1449),
('그렇', 1446),
                                                                                                                                                  ('진짜', 3422),
                                                                                          ('재밌', 1314),
                                   ('사람', 2447),
                                                                                                                                                  ('이런', 3047),
                                  ('배우', 2273)]
                                                                                         ('좋아하', 790)]
                                                                                                                                                  ('지만', 2977)]
                                                                      동사 & 형용사 - 부정 리뷰
                                                                                                                               나머지 - 부정 리뷰
                  명사 - 부정 리뷰
```

```
stop_words_noun = ['영화', '연기', '평점', '사람', '배우']
stop_words_verb_adj = ['만들', '나오', '이렇', '모르', '보이']
stop_words_etc = ['너무', '는데', '지만', '으로', '에서']
stop_words = stop_words_noun + stop_words_verb_adj + stop_words_etc
```

토큰화

토큰화 1

2 글자 이상의 명사, 형용사, 동사만 추출

토큰화 2

1 글자 포함이며 <u>모든 형태소</u>를 추출

```
for idx in range(len(df_train_1)):
    tmp = []
    tokens = komoran.pos(df_train_1.loc[idx, 'document'])
    for token in tokens:
        if token[1] in tags_include and len(token[0]) > 1 and token[0] not in stop_words:
        # 명사, 동사, 형용사만 고려, 2글자 이상만 고려, 불용어 제거
            tmp.append(token[0])
    if len(tmp) > 0:
        train_tokens_1.append(tmp)
        train_target_1.append(df_train_1.loc[idx, 'label'])
    if idx % 10000 == 0: # 진행 상황 확인
        print(idx)
```

```
for idx in range(len(df_train_1)):
    tmp = []
    tokens = komoran.pos(df_train_1.loc[idx, 'document'])
    for token in tokens:
        if token[0] not in stop_words:
        # 모든 형태소 고려, 불용어 제거
            tmp.append(token[0])
    if len(tmp) > 0:
        train_tokens_2.append(tmp)
        train_target_2.append(df_train_1.loc[idx, 'label'])
    if idx % 10000 == 0: # 진행 상황 확인
        print(idx)
```

벡터화 / 패딩

벡터화

Logistic Regression, SVM에 활용 => TF-IDF로 중요도 가중치 부여

```
vectorizer_tfidf_1st = TfidfVectorizer(min_df=5, analyzer=lambda x: x)
vectorizer_tfidf_2nd = TfidfVectorizer(min_df=5, analyzer=lambda x: x)

train_vectors_tfidf_1st = vectorizer_tfidf_1st.fit_transform(train_tokens_1st)
test_vectors_tfidf_1st = vectorizer_tfidf_1st.transform(test_tokens_1st)

train_vectors_tfidf_2nd = vectorizer_tfidf_2nd.fit_transform(train_tokens_2nd)
test_vectors_tfidf_2nd = vectorizer_tfidf_2nd.transform(test_tokens_2nd)
```

패딩

LSTM 모델에 활용 => 길이 조절

```
test_1st_sequences = tokenizer_1st.texts_to_sequences(test_tokens_1st)
test_1st_padded = pad_sequences(test_1st_sequences, maxlen=max_len_1st)
test_2nd_sequences = tokenizer_2nd.texts_to_sequences(test_tokens_2nd)
test_2nd_padded = pad_sequences(test_2nd_sequences, maxlen=max_len_2nd)
```

데이터 분석

각 모델에 대한 이해 LSTM Logistic Regression SVM

각 모델에 대한 이해

LSTM

- RNN의 한 종류
- RNN unit에 이전 데이터의 정보를 저장하고 있는 메모리 셀 함수와, 메모리 셀을 유지할 것인지 업데이트 할 것인지 결정하는 게이트 함수를 추가한 것
- 감성분석에 사용되는 many to one 모델 사용해 많은 입력을 넣었을 때 하나의 출력을 내는 구조 반영

Logistic Reg

- 이진분류 문제에 사용되는 머신러닝 모델
- 로지스틱 함수를 사용하여 확률을 예측하고, 이를 기반으로 분류함
- 모델 결과를 확률로 제공해 해석에 용이하며, 피쳐의 스케일에 덜 민감
- 다만 비선형 문제에는 다소 비적합 하고 이상치에 민감하며, 고차원 데 이터에서는 성능이 제한됨

SVM

- 분류와 회귀에 모두 적용할 수 있는 지도 학습 알고리즘
- 훈련 데이터셋에서 두 클래스 간의 최대 margin을 찾는 것을 목표로 하며, 이 최대 margin을 가지는 결 정 경계를 찾는 방식으로 동작
- 선형과 비선형으로 구분되나, 본 프로젝트에서는 학습 시간을 고려하여 선형 SVM을 이용

LSTM - 분석

모델 세팅

Embedding output_dim = 100 LSTM units = 128 dropout = 0.2 recurrent_dropout = 0.2

모델에 checkpoint와 earlystopping 도입으로 성능 향상

```
model_1st = tf.keras.Sequential()
model_1st.add(tf.keras.layers.Embedding(28373, 100, input_shape=(None,)))
model_1st.add(tf.keras.layers.LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model_1st.add(tf.keras.layers.Dense(1, activation='sigmoid'))
```


LSTM - 분석

batch = 32인 case의 분석

```
history = model_1st.fit(train_1st_padded,
              train_target_1st,
              epochs=10,
              callbacks=[earlystopping_1st, checkpoint_1st_32],
              batch_size=32,
              validation_split=0.2,
              verbose=1)
Epoch 1: val_loss improved from inf to 0.44476, saving model to /content/drive/MyDrive/Data Analysis/BDA 7기/Easy Study Project/프로젝트,
3368/3368 [================] - 252s 73ms/step - loss: 0.4704 - accuracy: 0.7702 - val_loss: 0.4448 - val_accuracy: 0.7894
Epoch 2: val loss did not improve from 0.44476
3368/3368 [================] - 246s 73ms/step - loss: 0.3996 - accuracy: 0.8163 - val_loss: 0.4457 - val_accuracy: 0.7896
Epoch 3: val_loss did not improve from 0.44476
3368/3368 [================] - 247s 73ms/step - loss: 0.3527 - accuracy: 0.8404 - val_loss: 0.4698 - val_accuracy: 0.7856
Epoch 4/10
Epoch 4: val_loss did not improve from 0.44476
Epoch 4: early stopping
```

LSTM - 분석 결과

batch=32	loss	accuracy	예측시간
토큰화 1	0.4436	0.7912	19s 14ms/step
토큰화 2	0.3543	0.8457	31s 20ms/step

batch=64	loss	accuracy	예측시간
토큰화 1	0.4443	0.7895	20s 14ms/step
토큰화 2	0.3589	0.8426	30s 19ms/step

batch=128	loss	accuracy	예측시간
토큰화 1	0.4450	0.7904	19s 13ms/step
토큰화 2	0.3645	0.8406	31s 20ms/step

batch=256	loss	accuracy	예측시간
토큰화 1	0.4460	0.7889	19s 13ms/step
토큰화 2	0.3672	0.8386	30s 19ms/step

토큰화 1	loss	accuracy	예측시간
batch=32	0.4436	0.7912	19s 14ms/step
batch=64	0.4443	0.7895	20s 14ms/step
batch=128	0.4450	0.7904	19s 13ms/step
batch=256	0.4460	0.7889	19s 13ms/step

토큰화 2	loss	accuracy	예측시간
batch=32	0.3543	0.8457	31s 20ms/step
batch=64	0.3589	0.8426	30s 19ms/step
batch=128	0.3645	0.8406	31s 20ms/step
batch=256	0.3672	0.8386	30s 19ms/step

Logistic Regression - 분석

최적의 값을 찾기 위해 파라미터 튜닝(GridSearchCV) 적용

- 1. solver (최적화 알고리즘)
- 'liblinear' : 데이터셋이 작고 이진 분류 문제에 주로 사용
- 'lbfgs','sag' : 데이터셋이 크고 다중 분류 문제에 주로 사용
- 2. max_iter (최대 반복 횟수)
- 모델이 수렴하지 않을 경우 max_iter 값을 늘려 해결 가능성 높임
- 너무 크게 설정하면 모델 훈련 시간이 길어질 수 있다는 단점
- 가장 보편적으로 많이 사용하는 수치인 기본 값 100부터 점차 늘리는 방향으로 설정
- 2. params (정규화 매개변수 C)
- 모델의 규제 강도를 조절
- 작은 C 값은 강한 규제를, 큰 C 값은 약한 규제를 의미
- 대부분의 경우, 0.1에서 10 사이의 범위에서 튜닝됨

모델 세팅 및 분석

```
# 최적의 parameter값과 최고의 score 점수
grid_cv.best_params_, grid_cv.best_score_

({'C': 1, 'max_iter': 100, 'solver': 'lbfgs'}, 0.7861368573347306)

best_lr = LogisticRegression(random_state=0, solver='liblinear', max_iter=1000, C=grid_cv.best_params_['C'])

best_lr.fit(X_train, y_train)

y_pred = best_lr.predict(X_test)

accuracy_1 = accuracy_score(y_test, y_pred)

f1_1 = f1_score(y_test, y_pred)

print("Accuracy:", round(accuracy_1, 3))

print("F1 Score:", round(f1_1, 3))

Accuracy: 0.791

F1 Score: 0.788
```


Logistic Regression - 분석 결과

	accuracy	F1 scrore
토큰화 1	0.791	0.788
토큰화 2	0.833	0.831

SVM - 분석

선형 커널 SVM 분류 모델인 LinearSVC 적용

- 1. loss (default='squared_hinge')
- loss function 적용 방식을 설정
- 'hinge'는 standard한 SVM loss이며, 'squared_hinge'는 hinge loss를 제곱한 것
- 'squared_hinge'를 적용하면 큰 loss에 대해 더 강한 penalty 부여

2. C (default=1.0)

- 규제 강도의 역수
- C가 작으면 모형이 단순해져 결정 경계가 부드러워짐 (오차를 어느 정도 허용하는 소프트 마진)
- C가 크면 더 많은 학습 데이터를 정확히 분류하도록 동작(오차를 최대한 허용하지 않으려 하는 하드 마진)
- C가 너무 적으면 너무 많은 오차를 허용하게 되므로 과소적합을, C가 너무 크면 과대적합을 유발

모델 세팅 및 분석

```
param_grid = {
    'C': [0.01, 0.05, 0.1, 0.5, 1, 5, 10],
    'loss': ['hinge', 'squared_hinge'],
}
grid_search_1st = GridSearchCV(svc_1st, param_grid, cv=5, scoring='f1', verbose=3)
grid_search_2nd = GridSearchCV(svc_2nd, param_grid, cv=5, scoring='f1', verbose=3)

grid_search_1st.fit(train_tfidf_1st, train_target_1st)

grid_search_1st.best_params_, grid_search_1st.best_score_

({'C': 0.1, 'loss': 'squared_hinge'}, 0.7823090671929631)
```

SVM - 분석 결과

	accuracy	F1 score	Precision	Recall	ROC-AUC
토큰화 1	0.790	0.788	0.800	0.775	0.790
토큰화 2	0.834	0.831	0.847	0.817	0.834

결론

각 토큰화 별 분석 결과 비교 각 모델 별 분석 결과 비교

각 토큰화 별 분석 결과 비교

토큰화 1	accuracy	F1 score
LSTM	0.7912	
Logistic Regression	0.791	0.788
SVM	0.790	0.788

토큰화 2	accuracy	F1 score
LSTM	0.8457	
Logistic Regression	0.833	0.831
SVM	0.834	0.831

일부 형태소만 반영한 토큰화1보다, 모든 형태소를 반영한 토큰화2가 높은 정확도를 보이는 유의미한 결과

각 모델 별 분석 결과 비교

LSTM	accuracy	
토큰화 1	0.7912	
토큰화 2	0.8457	

Logistric Regression	accuracy	F1 score
토큰화 1	0.791	0.788
토큰화 2	0.833	0.831

SVM	accuracy	F1 score
토큰화 1	0.790	0.788
토큰화 2	0.834	0.831

모델 별 분석 결과는 큰 차이가 없으나, LSTM이 다른 모델에 비해 비교적 다소 높은 정확도를 보임

THANKYOU