Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2008-2009. Esame del 22/01/2009

1. Si consideri il seguente problema di programmazione lineare:

Min
$$z = -3x_1 - x_2$$

 $x_1 - x_2 \ge -1$
 $x_1 - 3x_2 \ge -6$
 $\frac{1}{6}x_1 + \frac{1}{9}x_2 \le 1$
 $x_1 - x_2 \le 4$
 $x_1, x_2 \ge 0$

- a) (3 punti) Risolvere il problema graficamente e determinare il valore ottimo della funzione obiettivo ed il punto di ottimo, se esiste, finito.
- b) (2 punti) Aggiungere un vincolo ridondante, con almeno due variabili, al sistema.
- c) (2 punti) Modificare la formulazione per rendere il problema inammissibile
- d) (4 punti) Si scriva la formulazione matematica del problema duale associato al problema dato.
- e) (4 punti) Modificare la funzione obiettivo affinchè i punti (26/5,6/5) e (4,0) siano ottimi.
- 2. Sia G(V;E) un grafo orientato caratterizzato da 6 nodi $V = \{1; 2; 3; 4; 5; 6\}$ e 9 archi. A ciascun arco è associato un costo secondo le seguenti tabelle:

Arco	(1,2)	(1,3)	(1,5)	(3,4)	(3,5)	(4,5)	(5,2)
Costo	19	4	12	5	7	1	7

- a) (4 punti) Determinare il cammino minimo dal nodo 1 al nodo 2, applicando l'algoritmo di Diikstra.
- b) (4 punti) Formulare il problema come problema di programmazione lineare e verificare che la soluzione trovata al punto precedente soddisfi il modello matematico.
- 3. Dato il seguente il seguente insieme di vettori $A_1 = (0,1)$, $A_2 = (3,2)$, $A_3 = (4,-1)$, $A_4 = (-3,5)$
 - a) (3 punti) Rappresentare graficamente il risultato delle seguenti operazioni :

$$A_{1}$$
 A_{2} A_{4} A_{1} A_{4} A_{2} A_{4} A_{2} A_{4} A_{3} A_{4}

- b) (1 punto) Determinare se i vettori A₁ ed A₄ sono linearmente indipendenti
- 4. (6 punti) Si discuta la veridicità delle seguenti affermazioni giustificando in dettaglio le risposte date:
 - In un problema di massimo flusso, la massima quantità di flusso che è possibile inviare dalla sorgente al pozzo equivale alla capacità degli archi entranti nel pozzo.
 - Se P è un problema di programmazione lineare di minimo con z* ottimo finito e D è il suo duale allora z* è maggiore o uguale al valore assunto dalla funzione obiettivo di D in un punto qualsiasi della sua regione ammissibile.