THIS PAPER IS NOT TO BE REMOVED FROM THE EXAMINATION HALLS

UNIVERSITY OF LONDON

CO3311 ZB

BSc Examination

COMPUTING AND INFORMATION SYSTEMS, CREATIVE COMPUTING and COMBINED DEGREE SCHEME

Neural Networks

Thursday 18 May 2017: 10.00 - 12.15

Duration:

2 hours 15 minutes

There are SIX questions on this paper. Candidates should answer **FOUR** questions. All questions carry equal marks and full marks can be obtained for complete answers to **FOUR** questions. The marks for each part of a question are indicated at the end of the part in [.] brackets.

Only your first **FOUR** answers, in the order that they appear in your answer book, will be marked.

There are 100 marks available on this paper.

A handheld calculator may be used when answering questions on this paper but it must not be pre-programmed or able to display graphics, text or algebraic equations. The make and type of machine must be stated clearly on the front cover of the answer book.

© University of London 2017

Question 1

Question 1				
 a) Define the terms: net, step unit, clamped, energy and bipolar activation in the context of artificial neural networks. 				
[5]				
b) Explain how <i>perceptrons</i> can be used to implement simple logic circuits. Illustrate your answer by designing AND, NAND, NOR and NOT gates, giving explanations of how each of these work.				
[4x4]				
c) What are the uses and the limitations of networks of <i>threshold units</i> ? [4]				
Question 2				
a) The subject of neural networks is sometimes described as 'biologically inspired'. Compare and contrast how this might be applied in the case of perceptrons versus Boltzman machines.				
[5]				
b) Compare and contrast the <i>Widrow-Hoff rule</i> for learning with <i>Hebb's rule</i> . [5]				
c) State three motivations for studying AI and thus artificial neural networks (ANNs). Giving your reasons, which do you judge is the most important motivation?				
 d) Describe the extent to which ANNs contribute to each of the motivations given in your answer to c) above. 				
[9]				

Question 3

a) Define the terms overfitting and network paralysis.

[4]

b) For each of these explain in detail the strategies that may be used to overcome the problem.

[6]

c) A number of practical problems, other than **overfitting** and **network paralysis**, occur in ANN applications. List **FIVE** of these, and for each give the strategies (if any) that may be used to overcome the issue.

[15]

Question 4

a) Explain the roles of the **Kohonen** and of the **Grossberg** layers in a typical **Kohonen-Grossberg** network.

[4]

b) With the aid of a suitable example, explain the purpose of **normalization** in the training of a **Kohonen-Grossberg** network.

[5]

c) Explain the process of training such a network. Include in your answer all formulae and an explanation of each term that they contain.

[6]

d) Explain why a unit or example with coordinates (0, 0, 0) might give trouble for a typical **Kohonen-Grossberg** network and what might be done to remedy this problem.

[2]

e) A simple 3 unit network has units:

(-0.0690, -0.1534, 0.3261, 0.6516)

(0.1205, 0.8031, -0.0510, -0.6783)

(0.8061, 0.3883, 0.2969, -0.4431)

Work through the calculations for training the network with the example:

(-0.8823, -0.1008, 0.0972, 0.3544)

[8]

Question 5

a) Describe the *architecture* of a typical *Hopfield* network.

[5]

b) What is a 'stable state' in the context of *Hopfield* networks?

[2]

c) Explain the term **energy** as it is used in **Hopfield** nets.

[2]

d) The weight matrix of a *Hopfield* network is given in table Q5. Calculate the *state transition table* for this network.

weights	bias	1	2	3
bias	0.00	0.75	0.41	-0.18
1	0.75	0.00	-0.51	-0.15
2	0.41	-0.51	0.00	0.95
3	-0.18	-0.15	0.19	0.00

Table Q5

[12]

e) Draw the **state transition diagram** for the table that you produced in part d) above.

[4]

Question 6

a) Giving reasons, list **FIVE** features which are most essential in a tool for implementing artificial neural networks.

[10]

b) For any **TWO** named tools of your choice, describe how each performs when the five features listed in a) above are evaluated.

[15]

END OF PAPER

UL17/0488