Operating Systems

Evaluation of CPU Scheduling Algorithms

- Which one is best?
- It depends:
 - ✓ on the system workload (extremely variable)
 - √ hardware support for the dispatcher
 - ✓ relative weighting of performance criteria (response time, CPU utilization, throughput...)
 - ✓ The evaluation method used
 - ✓ Management priorities
 - ☐ Machine efficiency vs. user service...

	Selection Function	Decision Mode	Throughput	Response Time	Overhead	Effect on Processes	Starvation
FCFS	max[w]	Non- preemptive	Not emphasized	May be high, especially if there is a large variance in process execution times	Minimum	Penalizes short processes; penalizes I/O bound processes	NO
Round Robin (RR)	constant	Preemptive (at time quantum)	May be low if quantum is too small	Provides good response time for short processes	Minimum	Fair treatment; although it penalized I/O bound processes	NO
Shortest Job First (SJF)	min[s]	Non- preemptive	High	Provides good response time for short processes	Can be high	Penalizes long processes	Possible
Shortest Remaining Time First (SRTF)	min[s – e]	Preemptive (at arrival)	High	Provides good response time	Can be high	Penalizes long processes	Possible
Highest Response Ratio Next (HRRN)	max((w + s) / s)	Non- preemptive	High	Provides good response time	Can be high	Good balance	NO
Feedback	Adjustable	Preemptive (at time quantum)	Not emphasized	Not emphasized	Can be high	May favor I/O bound processes	Possible

- How do we pick an algorithm?
 - √ Many algorithms
 - √ Many parameters
- Maximize or Minimize some criteria.
 - ✓ Utilization, throughput, etc.
- What do we base our choice on?
 - ✓ A single example?

- Given a predetermined workload, simulate
 - ✓ run the workload through different schedulers
 - √ calculate statistics

Process	Burst Time
P1	10
P2	29
P3	3
P4	7
P5	12

Deterministic modeling

- takes a particular predetermined workload and defines the performance of each algorithm for that workload
- FCFS

Average wait = 28

-Average wait = 13

-Average wait = 23

Advantages

- ✓ Simple
- ✓ Fast
- ✓ Exact Results

Disadvantages

- ✓ too specific
- ✓ too much exact knowledge is required
- ✓ tied to example data

- Using statistics, we can determine the distribution of CPU and I/O bursts.
 - ✓ Probability distribution function
- The result is a mathematical formula which describes the probability of a particular burst
- Mathematics can then tell us performance
- A computer system can be described as a network of servers
 ✓ each server has a queue of waiting processes
- Simply add an imaginary server to each queue.
- Now, we can compute statistics

Queuing models

- ✓ Distribution of CPU and I/O bursts
- ✓ Distribution of arrival times
- Little's formula: n = λ x W
 - ✓ In steady-state, number of departures must be equal to the number of arrivals

- Little's Law -- Suppose:
 - n is the average queue length
 - W is the average waiting time in the queue
 - lambda is the average arrival rate

$$n = \lambda *W$$

- So:
 - during the time W that a process waits
 - lambda * W processes will arrive
 - if system is in steady state, same number leave

Average queue length

CPU is 8.88

Disk 1 is 3.19

Disk 2 is 1.4

Suppose arrival rate is:

CPU 5 Ps/sec

What is waiting time?

$$W = n/L$$

$$W = 8.88/5$$

$$W = 1.7 \text{ sec}$$

Simulation

Bibliography

- ❖ Silberschatz, A, Galvin, P.B, and Gagne, G., Operating System Principles, 9e, John Wiley & Sons, 2013.
- Stallings W., Operating Systems-Internals and Design Principles, 7e, Pearson Education, 2014.
- Harvey M. Deital, "Operating System", Third Edition, Pearson Education, 2013.
- Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Pearson Education, 2004.
- Gary Nutt, "Operating Systems", Third Edition, Pearson Education, 2004.

Acknowledgements

- ❖I have drawn materials from various sources such as mentioned in bibliography or freely available on Internet to prepare this presentation.
- I sincerely acknowledge all sources, their contributions and extend my courtesy to use their contribution and knowledge for educational purpose.

Thank You!! ?