算法分析与设计: 第六次作业

PB20061372 May 16, 2023 朱云沁

15.1-3 我们对钢条切割问题进行一点修改, 除了切割下的钢条段具有不同价格 p_i 外, 每次切割 还要付出固定的成本 c. 这样, 切割方案的收益就等于钢条段的价格之和减去切割的成本. 请设计一个动态规划算法解决修改后的钢条切割问题, 不仅返回最优收益值, 还返回切割 方案. (提醒: 钢条切割问题可以参见课本 P204 页 15.1 小节.)

(1) 证明原问题满足最优性原理;

- (2) 写出最优解的递归表达式;
- (3) 给出伪代码或在 OJ 系统上实现.
- **解:** 假设一个解将长度为 n 的钢条切割为长度分别为 i_1, i_2, \cdots, i_k 的 k 段,则原问题可写为

 $\max \quad r_n = \sum_{i=1}^k p_{i_j} - (k-1)c$

s.t.
$$\sum_{j=1}^k i_j = n, \ 1 \le k \le n,$$
 $k, i_1, i_2, \dots, i_k \in \mathbb{N}^+,$ 若 $k=1,$ 则 $r_n=p_n;$ 若 $k\ge 2,$ 设 i_1, i_2, \dots, i_k 是原问题的最优解,且 $i_1+i_2+\dots+i_l=m,$ $1\le l\le k-1.$ 下证 i_1, i_2, \dots, i_l 是子问题 max r_m 的最优解.

假设 i_1, i_2, \ldots, i_l 不是子问题 $\max r_m$ 的最优解, 则存在 i'_1, i'_2, \ldots, i'_l 使得

 $\sum_{i=1}^{l} p_{i'_j} - (l-1)c > \sum_{i=1}^{l} p_{i_j} - (l-1)c,$

$$\sum_{i=1}^{l} p_{i_j'} + \sum_{i=l+1}^{k} p_{i_j} - (k-1)c > \sum_{i=1}^{k} p_{i_j} - (k-1)c,$$

进而

与
$$i_1, i_2, \ldots, i_k$$
 是原问题的最优解矛盾, 故 i_1, i_2, \ldots, i_l 是子问题 $\max r_m$ 的最优解. 同理可证 $i_{l+1}, i_{l+2}, \ldots, i_k$ 是子问题 $\max r_{n-m}$ 的最优解. 说归表达式为

 $r_n=\max\left\{p_n,\max_{1\leq m\leq \lfloor rac{n}{2}
floor}\{r_m+r_{n-m}\}-c
ight\}, n\geq 2.$

递归表达式为

边界条件为
$$r_1 = p_1$$
. 伪代码如下:

Algorithm 1: 15.1-3

Input: rod longth n , price table $n[1,n]$ cut cost c

Input: rod length n, price table p[1..n], cut cost c. **Output:** optimal revenue r_n , optimal cut i_1, i_2, \ldots, i_k .

1. for $i \leftarrow 1$ to n $r_i \leftarrow p_i$

for $j \leftarrow 1$ to $\left| \frac{i}{2} \right|$ $\mathbf{if} \ r_i < r_j + r_{i-j} - c$

 $r_i \leftarrow r_i + r_{i-j} - c$ $s_i \leftarrow j$ 7. $k \leftarrow 0$

解: 根据题意, 各矩阵大小如表 1 所示.

9. $i_k \leftarrow s_n$ $n \leftarrow n - s_n$ 10.

8. while n > 0

- **15.2-1** 对矩阵规模序列 〈5, 10, 3, 12, 5, 50, 6〉, 求矩阵链最优括号化方案. 请参考 P214 页图 15-5 画出算法执行过程的表格.
- A_1 A_2 A_3 A_4 A_5 A_6 5×10 10×3 3×12 12×5 5×50 50×6

Table 2. Optimal m[i, j] for matrix-chain multiplication.

j = 3

330

360

0

j = 4

405

330

180

j = 5

1655

2430

930

j = 6

2010

1950

1770

1860

Table 1. Matrix sizes for matrix-chain multiplication.

m[i,j]j = 1

i = 1

i = 2

i = 3

i=5

0

算法执行过程如表 2,3 所示.

0 3000 i = 4

j = 2

150

0

i	=5					0	1500
i	=6						0
Table 3. Optimal $s[i,j]$ for matrix-chain multiplication.							
	s[i,j]	j=2	j = 3	j=4	j = 5	j = 6	
	i = 1	1	2	2	4	2	
	i=2		2	2	2	2	
	i=3			3	4	4	
	i=4				4	4	

15.3-3 考虑矩阵乘法问题的一个变形: 目标改为最大化矩阵序列括号化方案的标量乘法运算次

假设子链 $A_1A_2\cdots A_k$ 的最优括号化方案不是 A[1:k], 而是 A'[1:k], 即 A'[1:k] 的标量乘法次数 大于 A[1:k] 的标量乘法次数. 那么 (A'[1:k]A[k+1:n]) 的标量乘法次数也大于 A[1:n] 的标量乘

数, 而非最小化. 此问题具有最优子结构性质吗? 请说明. **解:** 记矩阵链 $A_1A_2\cdots A_n$ 的最优括号化方案为 A[1:n], 分割点在 A_k 和 A_{k+1} 之间, 即 A[1:n] =

最优括号化方案为 $((A_1A_2)((A_3A_4)(A_5A_6)))$, 其标量乘法次数为 2010.

(A[1:k]A[k+1:n]). 下证子链的括号化方案 A[1:k] 和 A[k+1:n] 也是最优的.

15.4-1 求 $\langle 1,0,0,1,0,1,0,1 \rangle$ 和 $\langle 0,1,0,1,1,0,1,1,0 \rangle$ 的一个 LCS. (1) 参考 P225 图 15-8 给出计算表格; (2) 给出 LCS-LENGTH 带备忘录版本的伪代码.

Table 4. Optimal c[i, j] and b[i, j] for longest common subsequence.

1

 $2\uparrow$

 $3 \, \nwarrow$

 $1 \, \nwarrow$

 $2 \leftarrow$

 $2\uparrow$

 $3 \, \nwarrow$

 $3\uparrow$

 $1 \nwarrow$

 $3 \leftarrow$

 $4 \, ^{\nwarrow}$

 $4\uparrow$

 $1 \leftarrow$

 $3 \, \nwarrow$

 $3 \uparrow$

 $4 \, ^{\nwarrow}$

 $1 \nwarrow$

 $4 \, ^{\nwarrow}$

 $4\uparrow$

 $5 \, \nwarrow$

 $5\uparrow$

 $6 \, ^{\nwarrow}$

 $1 \leftarrow$

 $4 \leftarrow$

 $5 \, ^{\nwarrow}$

 $5\uparrow$

 $6 \, \nwarrow$

 $6 \uparrow$

法次数,与 A[1:n] 是最优括号化方案矛盾.因此, A[1:k] 是 $A_1A_2\cdots A_k$ 的最优括号化方案. 同理可证 A[k+1:n] 是 $A_{k+1}A_{k+2}\cdots A_n$ 的最优括号化方案. 该问题具有最优子结构性质.

 $3 \, \nwarrow$ 0 1 < $2\uparrow$ $3\uparrow$ $1 \uparrow$ $2 \, \nwarrow$ $3\uparrow$ 1

解: 最长公共子序列为 $\langle 1,0,0,1,1,0 \rangle$. 计算表格如下.

1 $1 \leq$

 $1\uparrow$

 $1 \uparrow$

 $2 \, \nwarrow$

 \uparrow

1

 $1 \uparrow$

0

1

伪代码如下:

2.

10.

12.

13.

11. **else**

Algorithm 2: 15.4-1

function LCS-Length(X, Y)

 $4 \, ^{\nwarrow}$ $5 \, \nwarrow$ $4\uparrow$ 0 1 < $2\uparrow$ 3 $4\uparrow$ $4\uparrow$ $5 \, ^{\nwarrow}$ $5\uparrow$ $2 \, ^{\nwarrow}$ $3\uparrow$ $4 \, ^{\nwarrow}$ $5 \, ^{\nwarrow}$ $5\uparrow$ $6 \, ^{\nwarrow}$

Input: two sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$. Output: the length of a longest common subsequence of X and Y.

 $c[i,j] \leftarrow \text{LCS-Length-Aux}(X,Y,m,n-1,c,b)$

元素小. 因此, 可以在输入序列中将候选子序列链接起来.)

 $1 \leftarrow$

 $2 \nwarrow$

 $2\uparrow$

1. let c[0..m, 0..n] and b[1..m, 1..n] be new tables 2. return LCS-Length-Aux(X, Y, m, n, c, b)function LCS-Length-Aux(X, Y, i, j, c, b)1. **if** i = 0 **or** j = 0return 0 3. **if** c[i,j] > 0return c[i,j]5. **if** $x_i = y_i$ $c[i,j] \leftarrow ext{LCS-Length-Aux}(X,Y,m-1,n-1,c,b) + 1$ $b[i,j] \leftarrow$ "up-left" 8. else if LCS-Length-Aux $(X,Y,m-1,n,c,b) \geq \text{LCS-Length-Aux}(X,Y,m,n-1,c,b)$ $c[i,j] \leftarrow \text{LCS-Length-Aux}(X,Y,m-1,n,c,b)$ $b[i,j] \leftarrow \text{"up"}$

15.4-6 设计一个 $O(n \log n)$ 时间复杂度的算法, 求一个 n 个数的序列的最长单调递增子序列.

解: 记序列 $X_n = \langle x_1, x_2, \cdots, x_n \rangle$ 的最长单调递增子序列长度为 k, 一个具有最小尾元素的最长 单调递增子序列为 $\langle x_{i_1}, x_{i_2}, \cdots, x_{i_k} \rangle$. 下证 $\langle x_{i_1}, x_{i_2}, \cdots, x_{i_{k-1}} \rangle$ 是 $X_{i_{k-1}} = \langle x_1, x_2, \cdots, x_{i_{k-1}} \rangle$ 的一

显然, $\langle x_{i_1}, x_{i_2}, \cdots, x_{i_{k-1}} \rangle$ 是 $X_{i_{k-1}}$ 的一个长度为 k-1 的单调递增子序列. 假设其不具有最小尾元素, 那么存在一个 $X_{i_{k-1}}$ 的单调递增子序列 $\langle x_{j_1}, x_{j_2}, \cdots, x_{j_{k-1}} \rangle$, 使得 $x_{j_{k-1}} < x_{i_{k-1}}$ 且 $j_{k-1} < x_{i_{k-1}}$

 i_{k-1} . 进而, $\langle x_{j_1}, x_{j_2}, \cdots, x_{j_{k-1}}, x_{i_{k-1}}, x_{i_k} \rangle$ 是 X_n 的一个长度为 k+1 的单调递增子序列, 与 X_n 的 最长单调递增子序列长度为 k 矛盾. 因此, $\langle x_{i_1}, x_{i_2}, \cdots, x_{i_{k-1}} \rangle$ 是 $X_{i_{k-1}}$ 的一个具有最小尾元素的

设前 i 个元素中, 长度为 j 的单调递增子序列的最小尾元素为 t[i,j]. 则递归表达式为

录由 t[i-1,j] 到 t[i,j] 的更新过程, 可以在 O(n) 时间内构造出最优解, 详见伪代码.

 $(提示: - \uparrow)$ 一个长度为 i 的候选子序列的尾元素至少不比一个长度为 i-1 候选子序列的尾

(2) 写出最优解的递归表达式; (3) 给出伪代码或在 OJ 系统上实现.

(1) 证明该问题满足最优性原理;

个具有最小尾元素的长度为 k-1 的单调递增子序列.

长度为 k-1 的单调递增子序列. 该问题满足最优性原理.

 $b[i,j] \leftarrow \text{``left"}$

14. return c[i,j]

 $orall 1 \leq i \leq n, \ 1 \leq j \leq i, \quad t[i,j] = egin{cases} x_i, & ext{if } t[i-1,j-1] < x_i < t[i-1,j]; \ t[i-1,j], & ext{otherwise}. \end{cases}$

Algorithm 3: 15.4-6 **Input:** a sequence $X = \langle x_1, x_2, \cdots, x_n \rangle$. **Output:** the longest increasing subsequence $\langle x_{i_1}, x_{i_2}, \cdots, x_{i_k} \rangle$ 1. let t[1..n] and s[1..n] be new arrays

边界条件为 $\forall 0 \leq i \leq n, \ t[i,0] = -\infty, \ t[i,i+1] = \infty.$ 最优解的长度为 $\max\{j \mid t[n,j] \neq \infty\}$. 记

// binary-search the smallest j such that $x_i \leq t[j]$ 5. $j \leftarrow \text{Lower-Bound}(t, i, x_i)$

- $t[j] \leftarrow x_i$ 7. $s[i] \leftarrow j$ 8. $k \leftarrow \max\{k, j\}$
- 10. $l \leftarrow k, i \leftarrow n$

 $2. k \leftarrow 0$

3. for $i \leftarrow 1$ to n $t[i] \leftarrow \infty$

- 11. **while** l > 0if s[i] = l12.
 - $i_l \leftarrow i$

度为 $O(n \log n)$.

- $i \leftarrow i-1$ 15. 每个循环均迭代 O(n) 次, 第一个循环中二分查找的时间复杂度为 $O(\log n)$, 因此总时间复杂
- 13. $l \leftarrow l-1$ 14.