Kathryn I. Wheeler

Somerville, MA 02143 • wheelerk@mit.edu • 828-773-9737 • https://k-wheeler.github.io

EDUCATION

Boston University Boston, MA

Doctor of Philosophy in Earth and Environment

Jan. 2023

May 2017

Certificate in Biogeosciences

GPA: 3.95

Dissertation: "Cold-deciduous broadleaf phenology: monitoring using a geostationary satellite and predicting using trigger-less dynamic models"

Academic Awards: National Science Foundation Graduate Research Fellowship and Dean's Fellowship Relevant Courses: Remote sensing, multivariate analysis, Bayesian statistics, and ecological forecasting

University of Delaware Newark, DE

Bachelor of Science in Environmental Science Honors with Distinction, summa cum laude

GPA: 3.95

Concentration: Water Science

Academic Awards: Full four-year merit scholarship, NOAA Hollings Scholarship, UD American Association of University Professors Outstanding Senior, and Outstanding Senior in Environmental Science

Relevant Courses: GIS, microeconomics, meteorology, geology, ocean sciences, chemistry, biology, environmental modeling, hydrogeology, climatology, forensic environmental chemistry, soil science, plant physiology, ecosystem ecology, computer science, and data structures

RELEVANT EXPERIENCE

Massachusetts Institute of Technology

Cambridge, MA

NOAA Climate and Global Change Postdoctoral Fellow

Sep. 2022 – Current

- Funded through a highly competitive 2-year fellowship (\$200k) selected through a written research proposal.
- Led a multidisciplinary team of 43 scientists and technicians to conduct ecological forecasts of tree leaf growth.
- Coded Bayesian and random forest models to analyze impacts of soil properties and biota on leaf seasonality.
- Utilized Google Earth Engine and MODIS data to assess drought impacts on tropical forests.
- Mentored four undergraduate students and earned a mentorship certificate through a course.

Boston University Boston, MA

Research Assistant

Sep. 2017 – Aug. 2022

- Created novel Bayesian statistical models in R to predict tree leaf seasonality.
- Processed (Downloaded, cleaned, organized, and condensed) 30 TB of satellite data from MODIS and GOES using high-performance computing.
- Maintained lab safety compliance of Professor Michael Dietze's research lab.

Teaching Fellow and Lab Instructor

Jan. 2022 - May 2022

• Led weekly lab based in R for 30 students in an environmental modeling course.

University of Delaware

Newark, DE

Delaware Environmental Institute Environmental Scholar

Aug. 2014 – May 2017

- Analyzed water quality data using MATLAB to fit advanced statistical and machine learning models to available data.
- Collected 1,700 measurements of hyperspectral observations on leaves using a portable spectrophotometer
- Conducted lab work using a Vario EL cube to analyze nitrogen concentrations in collected leaves.
- Presented research at the American Geophysical Union conference and won two student presentation awards in hydrology and biogeoscience (top 5%)

• Provided teaching assistance for a weekly lab based in Python and MATLAB.

NOAA Air Resources Lab, Atmospheric Turbulence and Diffusion Division

Ernest F. Hollings Scholar Research Intern

Summer 2016

Ran a Fortran canopy chemistry model to improve estimations of ozone production in forests

The Pennsylvania State University

State College, PA

Research Experience for Undergraduates in Climate Science Research Assistant

Summer 2014

Oak Ridge, TN

- Collected atmospheric methane concentration measurements throughout NE PA
- Using MATLAB, modeled methane plumes to estimate livestock and natural gas emissions

Duke University:Durham, NCResearch TechnicianAug 2011 – Feb 2012

• Ran a Picarro to investigate groundwater methane contamination near hydraulic fracturing sites

PUBLICATIONS

- 1. **Wheeler** et al. (2024). "Predicting spring phenology in deciduous broadleaf forests: NEON Phenology Forecasting Community Challenge." *Agr Forest Meteorol* 345: 109810.
- 2. Thomas et al. (2023). "The NEON Ecological Forecasting Challenge." Front Ecol Evol 21(3): 112–113.
- 3. Halpern et al. (2023) "Priorities for synthesis in ecology and environmental science." Ecosphere 14(1):e4342.
- 4. **Wheeler** & Dietze (2021). "Improving the monitoring of deciduous broadleaf phenology using the Geostationary Operational Environmental Satellite (GOES) 16 and 17." *Biogeosciences* 18: 1971-1985.
- 5. Iida* & Wheeler* et al. (2021). "Canopy structure metrics governing stemflow funneling differs between leafed and leafless states: Insights from a large-scale rainfall simulator". *Hydrol Processes* 35:e14294.

*These authors contributed equally to this paper

- 6. Woelmer et al. (2021). "10 Simple Rules for training yourself in an emerging field" *PLoS Comput Biol* 17(10): e1009440. https://doi.org/10.1371/journal.pcbi.1009440
- 7. Rollinson et al. (2021) "Working across space and time: nonstationarity in ecological research and application." Front Ecol Evol 19(1): 66-72.
- 8. **Wheeler** et al. (2020). "Visible and near-infrared hyperspectral indices explain more variation in lower-crown leaf nitrogen concentrations in autumn than in summer." *Oecologia*. 192:13-27.

Award: Highlighted Student Paper

- 9. **Wheeler** & Dietze (2019). "A statistical model for estimating midday NDVI from the Geostationary Operational Environmental Satellite (GOES) 16 and 17." *Remote Sensing* 11(21):2507.
- 10. Dietze et al. (2018). "Ecological Forecasting." Oxford Bibliographies.
- 11. Hudson et al. (2018). "American beech leaf-litter leachate chemistry: effects of geography and phenophase." *J Plant Nutr Soil Sci* 181(2):287-295.
- 12. **Wheeler** et al. (2017). "Tracking senescence-induced patterns in leaf litter leachate using parallel factor analysis modeling (PARAFAC) and self-organizing maps." *J. Geophys Res Biogeosci* 122(9):2233-2250.

*Includes K.I. Wheeler

SKILLS AND INTERESTS

Computer: R (Expert), ArcGIS (Intermediate), Python (Intermediate), Excel (Intermediate), High-Performance Computing (Expert), Bash (Expert), Unix (Expert), Git (Intermediate), MATLAB (Intermediate), Java (Familiar), and C++ (Familiar).

Science: Bayesian and multivariate statistics, machine learning, ecological forecasting, and environmental modeling Communication: Proposal writing, technical presentations, project management, leadership, and mentorship Interests: Running, hiking, cycling, backpacking, and reading.