GIẢI TÍCH (CƠ BẢN)

Tài liệu ôn thi cao học năm 2005

Phiên bản đã chỉnh sửa

PGS TS. Lê Hoàn Hóa

Ngày 21 tháng 12 năm 2004

KHÔNG GIAN MÊTRIC (tt)

5 Không gian mêtric đầy đủ

5.1 Dinh nghĩa

Cho (X,d) là không gian mêtric và $(x_n)_n$ là dãy trong X.

Dãy $(x_n)_n$ là $d\tilde{a}y$ $c\sigma$ $b\tilde{a}n \Leftrightarrow \forall \varepsilon > 0, \exists n_0 \in \mathbb{N} : \forall n \geqslant n_0, \forall p \in \mathbb{N}$ thì $d(x_{n+p}, x_n) < \varepsilon$.

Không gian mêtric (X,d) được gọi là không gian mêtric đầy đủ nếu mọi dãy cơ bản đều hôi tu.

Cho X là tập hợp các hàm số thực liên tục trên [0,1] với mêtric $d(x,y) = \max\{|x(t)-y(t)|: t \in [0,1]\}$. Cho $(x_n)_n$ định bởi $x_n(t) = t^n$, ta có:

$$\lim_{n \to \infty} x_n(t) = \begin{cases} 0 \text{ n\'eu } 0 \leqslant t < 1\\ 1 \text{ n\'eu } t = 1 \end{cases}$$

Tuy nhiên $(x_n)_n$ không phải là dãy cơ bản trong X vì $d(x_n, x_{2n}) = \max\{t^n - t^{2n} : t \in [0, 1]\} = \frac{1}{4}$ với mọi $n \in \mathbb{N}$.

Thí dụ:

- 1) \mathbb{R}^n với mêtric $d(x,y) = \left[\sum_{i=1}^n (x_i y_i)^2\right]^{1/2}$ là không gian mêtric đầy đủ.
- 2) X là tập hợp các hàm số thực liên tục trên [a,b] với mêtric $d(x,y) = \max\{|x(t)-y(t)|: t \in [a,b]\}$ là không gian mêtric đầy đủ.
- 3) $l_p = \{x = (x_n)_n : \sum_{1}^{\infty} |x_n|^p < \infty\}, p \geqslant 1$, với mêtric định bởi: với $x = (x_n)_n, y = (y_n)_n$ trong l_p ta định nghĩa

$$d(x,y) = \left(\sum_{1}^{\infty} |x_n - y_n|^p\right)^{1/p}$$

 (l_p,d) là không gian mêtric đầy đủ.

5.2 Đinh nghĩa

Cho (X,d) là không gian mêtric, D là tập hợp con khác rỗng của X. Với $x,y \in D$ đặt $d_D(x,y) = d(x,y)$. Khi đó d_D là mêtric trên D và (D,d_D) là không gian mêtric con của (X,d).

Giả sử (X,d) là không gian mêtric đầy đủ và $D \subset X$. Khi đó:

D là không gian mêtric đầy đủ $\Leftrightarrow D$ là tập đóng

Thật vậy, giả sử (D, d_D) là không gian mêtric đầy đủ, $(x_n)_n$ là dãy trong D, $\lim_{n\to\infty} x_n = x$. Ta chứng minh $x \in D$.

Do $(x_n)_n$ là dãy trong (X,d) hội tụ về x nên $(x_n)_n$ là dãy cơ bản trong (X,d). Với $\varepsilon > 0$ cho trước, có $n_0 \in \mathbb{N}$ sao cho với mọi $n \ge n_0$ và $p \in \mathbb{N}$ thì $d(x_{n+p},x_n) < \varepsilon$.

Do $x_n \in D, \forall n \in \mathbb{N}$ nên $d_D(x_{n+p}, x_n) = d(x_{n+p}, x_n) < \varepsilon$.

Vậy, $(x_n)_n$ là dãy cơ bản trong (D, d_D) . Do (D, d_D) là không gian mêtric đầy đủ nên $(x_n)_n$ hội tụ trong (D, d_D) và do giới hạn duy nhất nên $\lim_{n\to\infty} x_n = x \in D$. Vậy D là tập đóng.

Ngược lại, giả sử D là tập đóng. Cho $(x_n)_n$ là dãy cơ bản trong (D, d_D) . Do $d_D(x_{n+p}, x_n) = d(x_{n+p}, x_n), \forall n, p \in \mathbb{N}$ nên $(x_n)_n$ cũng là dãy cơ bản trong không gian mêtric đầy đủ (X, d), vậy hội tụ. Đặt $x = \lim_{n \to \infty} x_n$. Do D là tập đóng nên $x \in D$. Suy ra $\lim_{n \to \infty} d_D(x, x_n) = \lim_{n \to \infty} d(x, x_n) = 0$ hay $\lim_{n \to \infty} x_n = x$ trong (D, d_D) . Vậy (D, d_D) là không gian mêtric đầy đủ.

Từ kết quả trên ta có thể thí dụ về không gian mêtric không đầy đủ. Do \mathbb{R}^n với mêtric $d(x,y) = [\sum_{i=1}^n (x_i - y_i)^2]^{1/2}$ là không gian mêtric đầy đủ, lấy D là một tập hợp con khác rỗng, D không là tập đóng trong \mathbb{R}^n . Khi đó không gian mêtric con (D,d_D) không là không gian mêtric đầy đủ.

5.3 Ánh xạ co

Cho (X,d) là không gian mêtric đầy đủ, $f\colon X\to X$ thỏa mãn điều kiện: có hằng số $0\leqslant k<1$ sao cho:

$$d(f(x), f(y)) \le k d(x, y), \forall x, y \in X$$

(f được gọi là ánh xạ co hệ số k) Khi đó có duy nhất $x_0 \in X$ sao cho $f(x_0) = x_0$ và $\lim_{n\to\infty} f^n(x) = x_0$ với mọi $x \in X$.

Chứng minh: Với $x \in X$ đặt $x_1 = f(x), x_{n+1} = f(x_n), n \in \mathbb{N}$. Với $n, p \in \mathbb{N}$, ta có:

$$d(x_n, x_{n+p}) = d(f^n(x), f^{n+p}(x)) \leqslant k \, d(f^{n-1}(x), f^{n+p-1}(x)) \leqslant \dots$$

$$\leqslant k^n d(x, f^p(x)) \leqslant k^n \left[d(x, f(x)) + d(f(x), f^2(x)) + \dots + d(f^{p-1}(x), f^p(x)) \right]$$

$$\leqslant k^n (1 + k + \dots + k^{p-1}) d(x, f(x)) = k^n \frac{1 - k^p}{1 - k} d(x, f(x))$$

Vậy $d(x_n, x_{n+p}) \leqslant \frac{k^n}{1-k} d(x, f(x))$. Do $0 \leqslant k < 1$, bất đẳng thức trên chứng tỏ $(f^n(x))_n$ là dãy cơ bản vậy hội tụ. Đặt $x_0 = \lim_{n \to \infty} f^n(x)$. Do

$$d(f(x_0), f^{n+1}(x)) = d(f(x_0), x_{n+1}) \leqslant k \, d(x_0, x_n), \forall n \in \mathbb{N}.$$

Vậy,
$$\lim_{n\to\infty} x_n = x_0 = f(x_0)$$
.
Giả sử $f(x_0) = x_0$, $f(y_0) = y_0$. Do $d(x_0, y_0) = d(f(x_0), f(y_0)) \le k d(x_0, y_0)$ nên $x_0 = y_0$.

Bài tập

1) Cho (X,d) là không gian mêtric, $(x_n)_n$ là dãy cơ bản. Giả sử có dãy con $(x_{n_k})_k$ sao cho $\lim_{k\to\infty} x_{n_k} = x$. Chứng minh $\lim_{n\to\infty} x_n = x$.

Hướng dẫn: Với $\varepsilon > 0$ có $n_0 \in \mathbb{N}$ sao cho với $n \ge n_0, p \in \mathbb{N}$ thì $d(x_{n+p}, x_n) < \varepsilon/2$ và có $k_0 \in \mathbb{N}$ sao cho với $k \ge k_0$ thì $d(x_{n_k}, x) < \varepsilon/2$. Đặt $m = \max\{n_0, n_{k_0}\}$. Với $n \ge m$, chọn $k \ge k_0$ sao cho $n_k > n_0$, khi đó:

$$d(x_n, x) \leq d(x_n, x_{n_k}) + d(x_{n_k}, x) < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

 $V_{ay} \lim_{n\to\infty} x_n = x.$

2) Cho $(X, d_X), (Y, d_Y)$ là hai không gian mêtric. Đặt $Z = X \times Y$. Với $z_1 = (x_1, y_1), z_2 = (x_2, y_2) \in Z$, đặt $d(z_1, z_2) = d_X(x_1, x_2) + d_Y(y_1, y_2)$. Chứng minh (Z, d) là không gian mêtric đầy đủ $\Leftrightarrow (X, d_X), (Y, d_Y)$ là các không gian mêtric đầy đủ.

Hướng dẫn: Cho $z_n = (x_n, y_n), n \in \mathbb{N}$ là dãy cơ bản trong Z. Do $d(z_{n+p}, z_n) = d_X(x_{n+p}, x_n) + d_Y(y_{n+p}, y_n), \forall n, p \in \mathbb{N}$ nên $(x_n)_n, (y_n)_n$ là dãy cơ bản trong X, Y và ngược lại.

Giả sử (Z,d) là không gian mêtric đầy đủ. Lấy $(x_n)_n, (y_n)_n$ là dãy cơ bản trong X,Y. Đặt $z_n=(x_n,y_n), n\in\mathbb{N}$ thì $(z_n)_n$ là dãy cơ bản trong Z. Do Z là không gian mêtric đầy đủ nên có $z=(x,y)\in Z$ sao cho $\lim_{n\to\infty}d(z_n,z)=0$. Khi đó: $\lim_{n\to\infty}d_X(x_n,x)=0$ và $\lim_{n\to\infty}d_Y(y_n,y)=0$. Vậy

$$\lim_{n \to \infty} x_n = x \text{ trong } X \text{ và } \lim_{n \to \infty} y_n = y \text{ trong } Y.$$

Như vậy, $(X, d_X), (Y, d_Y)$ là các không gian mêtric đầy đủ.

Ngược lại, giả sử X,Y là hai không gian mêtric đầy đủ. Cho $z_n=(x_n,y_n), n\in\mathbb{N}$ là dãy cơ bản trong Z. Khi đó, $(x_n)_n, (y_n)_n$ là dãy cơ bản trong không gian mêtric đầy đủ nên có $x\in X$, $y\in Y$ sao cho $\lim_{n\to\infty}x_n=x$, $\lim_{n\to\infty}y_n=y$. Đặt z=(x,y), ta có:

$$\lim_{n \to \infty} d(z, z_n) = \left[\lim_{n \to \infty} d_X(x, x_n) + \lim_{n \to \infty} d_Y(y, y_n) \right] = 0$$

hay $\lim_{n\to\infty} z_n = z$ trong Z. Vậy (Z,d) là không gian mêtric đầy đủ.

6 Không gian mêtric compact

6.1 Định nghĩa

Cho (X,d) là không gian mêtric. Tập $A \subset X$ được gọi là tập compact nếu với mọi dãy $(x_n)_n$ trong A đều có một dãy con $(x_{n_k})_k$ hội tụ, $\lim_{k\to\infty} x_{n_k} = x$ và $x\in A$.

Nếu A = X là tập compact ta nói (X, d) là không gian mêtric compact.

6.2 Tính chất

- 1. Nếu (X,d) là không gian mêtric compact thì (X,d) là không gian mêtric đầy đủ.
- 2. Cho (X,d) là không gian mêtric, $A \subset X$. Nếu A là tập compact thì A là tập đóng.
- 3. Cho (X, d) là không gian mêtric compact, $A \subset X$. Khi đó:

A là tập compact \Leftrightarrow A là tập đóng.

4. Cho \mathbb{R}^n với mêtric $d(x,y)=[\sum_{i=1}^n(x_i-y_i)^2]^{1/2}$ và $A\subset\mathbb{R}^n$. Khi đó:

A là tập compact \Leftrightarrow A là tập đóng, bị chặn.

Bài tập

1) Cho $(X, d_X), (Y, d_Y)$ là không gian mêtric, $Z = X \times Y$ với mêtric $d(z_1, z_2) = d_X(x_1, x_2) + d_Y(y_1, y_2), z_1 = (x_1, y_1), z_2 = (x_2, y_2)$. Cho $A \subset X, B \subset Y$. Chứng minh:

 $A \times B$ compact trong $Z \Leftrightarrow A$ và B là tập compact.

Hướng dẫn: Giả sử $A \times B$ là tập compact. Cho $(x_n)_n$ là dãy trong A, $(y_n)_n$ là dãy trong B. Đặt $z_n = (x_n, y_n), n \in \mathbb{N}$, là dãy trong $A \times B$ là tập compact nên có dãy con $z_{n_k} = (x_{n_k}, y_{n_k}), k \in \mathbb{N}$ sao cho $\lim_{k \to \infty} z_{n_k} = z = (x, y) \in A \times B$. Khi đó

$$\lim_{k \to \infty} d(z, z_{n_k}) = \lim_{k \to \infty} [d_X(x_{n_k}, x) + d_Y(y_{n_k}, y)] = 0$$

hay

$$\lim_{k \to \infty} x_{n_k} = x \quad \text{và} \quad \lim_{k \to \infty} y_{n_k} = y$$

Vậy A, B là tập compact.

Ngược lại, giả sử A,B là tập compact. Cho $z_n=(x_n,y_n), n\in\mathbb{N}$ là dãy trong $A\times B$. Do A là tập compact, $(x_n)_n$ là dãy trong A nên có dãy con $(x_{n_k})_k$ thỏa $\lim_{k\to\infty}x_{n_k}=x\in A$. Do B là tập compact, $(y_{n_k})_k$ là dãy trong B nên có dãy con $(y_{n_{k_i}})_i$ thỏa $\lim_{i\to\infty}y_{n_{k_i}}=y\in B$.

Đặt $z = (x, y) \in A \times B$. Khi đó dãy con $z_{n_{k_i}} = (x_{n_{k_i}}, y_{n_{k_i}}), i \in \mathbb{N}$, hội tụ, $\lim_{i \to \infty} z_{n_{k_i}} = z$. Vậy, $A \times B$ là tập compact trong Z.

Trường hợp đặc biệt: Nếu A = X, B = Y ta có (Z, d) là không gian mêtric compact nếu và chỉ nếu $(X, d_X), (Y, d_Y)$ là các không gian mêtric compact.

2) Cho (X,d) là không gian mêtric compact, $A_n, n \in \mathbb{N}$ là tập đóng, $A_{n+1} \subset A_n$. Giả sử $\bigcap_{1}^{\infty} A_n = \emptyset$. Chứng minh rằng có $n_0 \in \mathbb{N}$ sao cho $A_{n_0} = \emptyset$.

Hướng dẫn: Giả sử $A_n \neq \emptyset, \forall n \in \mathbb{N}$. Với mỗi $n \in \mathbb{N}$ lấy $x_n \in A_n$. Do $A_{n+p} \subset A_n$ với mọi $n, p \in \mathbb{N}$ nên $x_{n+p} \in A_n$. Do X là không gian mêtric compact, $(x_n)_n$ là dãy trong X nên có dãy con $(x_{n_k})_k$ hội tụ, đặt $x = \lim_{k \to \infty} x_{n_k}$.

Do $n_k \geqslant k$ với mọi $k \in \mathbb{N}$ và A_k là tập đóng nên với mọi $i \in \mathbb{N}$, dãy $(x_{n_k})_{k \geqslant i} \subset A_i$ nên $x \in A_i$. Vậy $x \in \bigcap_{1}^{\infty} A_i$, mâu thuẫn giả thiết $\bigcap_{1}^{\infty} A_i = \emptyset$. Vậy, có $n_0 \in \mathbb{N}$ sao cho $A_{n_0} = \emptyset$. Ghi chú: Bài tập 2) có thể phát biểu tương đương như sau:

- 2') Cho (X,d) là không gian mêtric, $A_n, n \in \mathbb{N}$, là tập compact, $A_{n+1} \subset A_n$. Giả sử $\bigcap_1^\infty A_i = \emptyset$. Chứng minh có $n_0 \in \mathbb{N}$ sao cho $A_{n_0} = \emptyset$.
- 2") Cho (X, d) là không gian mêtric compact, $A_n, n \in \mathbb{N}$, là tập đóng khác rỗng, $A_{n+1} \subset A_n$. Chứng minh $\bigcap_{1}^{\infty} A_i \neq \emptyset$

7 Ánh xạ liên tục

7.1 Định nghĩa

Cho $(X,d),(Y,\rho)$ là hai không gian mêtric và $f\colon X\to Y$. Ta nói

• f liên tục tại $x \in X \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0 : \forall x' \in X, d(x, x') < \delta \Rightarrow \rho\left(f(x), f(x')\right) < \varepsilon$.

• f liên tục trên X nếu f liên tục tại mọi $x \in X$. Do đó

f liên tục trên $X \Leftrightarrow \forall x \in X, \forall \varepsilon > 0, \exists \delta > 0 : \forall x' \in X,$

$$d(x, x') < \delta \Rightarrow \rho(f(x), f(x')) < \varepsilon$$

- f liên tục đều trên $X \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0 : \forall x, x' \in X, d(x, x') < \delta \Rightarrow \rho(f(x), f(x')) < \varepsilon$.
- f là đồng phôi nếu f là song ánh, f liên tục và ánh xạ ngược f^{-1} là liên tục.

7.2 Tính chất

- 1) f liên tục tại $x \Leftrightarrow \text{Với mọi dãy } (x_n)_n \text{ trong } X, \lim_{n\to\infty} x_n = x \text{ thì } \lim_{n\to\infty} f(x_n) = f(x).$
- 2) Cho (X, d) là không gian mêtric compact, $f: X \to Y$ liên tục. Khi đó: f liên tục đều và ảnh f(X) là tập compact trong Y.

Ta chứng minh f(X) là tập compact. Cho $(y_n)_n$ là dãy trong f(X), khi đó có dãy $(x_n)_n$ trong X sao cho $y_n = f(x_n)$ với mọi $n \in \mathbb{N}$. Do X là không gian mêtric compact nên có dãy con $(x_{n_k})_k$ hội tụ, đặt $x = \lim_{k \to \infty} x_{n_k}$. Do f liên tục tại x nên $\lim_{k \to \infty} f(x_{n_k}) = \lim_{k \to \infty} y_{n_k} = f(x) \in f(X)$ Vậy f(X) compact trong Y.

3) Cho (X,d) là không gian mêtric compact, $f\colon X\to R$ liên tục. Khi đó, f đạt cực đại, cực tiểu trên X nghĩa là có $x_1,x_2\in X$ sao cho:

$$f(x_1) = \max\{f(x) : x \in X\}$$
 , $f(x_2) = \min\{f(x) : x \in X\}$

Bài tập

- 1) Cho $(X,d),(Y,\rho)$ là hai không gian mêtric và $f\colon X\to Y$. Chứng minh các mệnh đề sau tương đương:
 - a) f liên tục trên X.
 - b) $f^{-1}(B)$ là tập mở nếu B là tập mở.
 - c) $f^{-1}(B)$ là tập đóng nếu B là tập đóng.
 - d) $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B}), \forall B \subset Y.$
 - e) $f(\overline{A}) \subset \overline{f(A)}, \forall A \subset X$.

Hướng dẫn:

a) \Rightarrow b) Với $x \in f^{-1}(B)$ thì $f(x) \in B$ là tập mở nên có $\varepsilon > 0$ sao cho $B_Y(f(x), \varepsilon) \subset B$. Do f liên tục nên tồn tại $\delta > 0$ sao cho

$$f(B_X(x,\delta)) \subset B_Y(f(x),\varepsilon) \subset B$$

Suy ra $B_X(x,\delta)\subset f^{-1}(B)$. Vậy $f^{-1}(B)$ là mở.

b) \Rightarrow a) Với $x \in X$ và $\varepsilon > 0$, do $f^{-1}(B_Y(f(x), \varepsilon))$ là tập mở chứa x nên có $\delta > 0$ sao cho:

$$B_X(x,\delta) \subset f^{-1}(B_Y(f(x),\varepsilon))$$

Suy ra

$$f(B_X(x,\delta)) \subset B_Y(f(x),\varepsilon)$$

Vậy, f liên tục tại x.

b) \Leftrightarrow c) Suy ra từ đẳng thức $f^{-1}(Y \setminus B) = X \setminus f^{-1}(\overline{B})$.

c) \Rightarrow d) Do $f^{-1}(\overline{B})$ là tập đóng và $f^{-1}(B) \subset f^{-1}(\overline{B})$ nên $\overline{f^{-1}(B)} \subset f^{-1}(B)$. d) \Rightarrow c) Với B là tập đóng trong Y, do $\overline{f^{-1}(B)} \subset f^{-1}(B)$ suy ra $\overline{f^{-1}(B)} = f^{-1}(B)$. Vậy $f^{-1}(B)$ là tập đóng.

d)
$$\Rightarrow$$
e) Đặt $B = f(A)$. Do $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$ hay là $\overline{f^{-1}(f(A))} \subset f^{-1}(\overline{f(A)})$. Suy ra

$$\overline{A} \subset \overline{f^{-1}(f(A))} \subset f^{-1}(\overline{f(A)})$$

Vây $f(\overline{A}) \subset \overline{f(A)}$.

e)
$$\Rightarrow$$
d) Đặt $A = f^{-1}(B)$. Do $f\left(\overline{f^{-1}(B)}\right) \subset \overline{f(f^{-1}(B))}$ suy ra $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$.

2) Cho $f:(X,d)\to (Y,\rho)$. f được gọi là ánh xạ đóng nếu ảnh của một tập đóng là tập đóng, f là $\acute{a}nh$ xa $m\mathring{\sigma}$ nếu ảnh của một tập mở là tập mở.

Giả sử f là song ánh liên tục. Chứng minh:

$$f$$
 là đồng phôi $\Leftrightarrow f$ là ánh xạ đóng $\Leftrightarrow f$ là ánh xạ mở.

Hướng dẫn: Do f là song ánh nên $f(A) = (f^{-1})^{-1}(A)$ với mọi $A \subset X$. Ta chỉ cần chứng minh

Nếu f là ánh xạ mở, lấy A là tập mở thì f(A) là tập mở, suy ra $(f^{-1})^{-1}(A)$ là tập mở. Vậy f^{-1} liên tục.

Nếu f là ánh xạ đóng, lấy A là tập đóng thì f(A) là tập đóng, suy ra $(f^{-1})^{-1}(A)$ là tập đóng. Vây f^{-1} liên tục.

- 3) Cho (X,d) là không gian mêtric, $A \subset X$. Cho $f: X \to \mathbb{R}$ định bởi f(x) = d(x,A) =inf $\{d(x,y):y\in A\}$ (khoảng cách từ x đến A). Chứng minh:
 - a) f liên tục đều trên X.
 - b) f(x) = 0 nếu và chỉ nếu $x \in \overline{A}$.
 - c) Cho A, B là hai tập đóng, $A \cap B = \emptyset$. Chứng minh có hàm số $g: X \to \mathbb{R}$ liên tục thỏa mãn:

$$g(x) = \begin{cases} 1 & \text{n\'eu } x \in A \\ 0 & \text{n\'eu } x \in B \end{cases}$$

d) Cho A là tập đóng, B là tập compact, $A \cap B = \emptyset$. Đặt $d(A, B) = \inf \{d(x, y) : x \in A, y \in B\}$ là khoảng cách giữa A và B. Chứng minh d(A, B) > 0.

Hướng dẫn: Với $\varepsilon > 0$ cho trước, chọn $\delta = \varepsilon/3$. Với $x, x' \in X, d(x, x') < \delta$ tồn tại $y, y' \in A$ sao cho:

$$d\left(x,y\right) - \frac{\varepsilon}{3} < f(x) \leqslant d\left(x,y\right) \ \, \text{và} \ \, d\left(x',y'\right) - \frac{\varepsilon}{3} < f(x') \leqslant d\left(x',y'\right)$$

Khi đó:

$$f(x) - f(x') \leqslant d(x, y') - d(x', y') + \frac{\varepsilon}{3} \leqslant d(x, x') + \frac{\varepsilon}{3} < \varepsilon$$
$$f(x') - f(x) \leqslant d(x', y) - d(x, y) + \frac{\varepsilon}{3} \leqslant d(x, x') + \frac{\varepsilon}{3} < \varepsilon$$

Suy ra $|f(x) - f(x')| < \varepsilon$. Vậy f liên tục đều trên X.

- b) $f(x) = 0 = \inf \{ d(x, y) : y \in A \} \Leftrightarrow \text{C\'o d\~ay } (y_n)_n \text{ trong } A \text{ sao cho } \lim_{n \to \infty} d(x, y_n) = 0 \Leftrightarrow x \in \overline{A}.$
 - c) Do A, B là tập đóng nên

$$d(x, A) = 0 \Leftrightarrow x \in A \text{ và } d(x, B) = 0 \Leftrightarrow x \in B$$

Đặt $g(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}$ thì g liên tục. Do $A \cap B = \emptyset$ nên

$$g(x) = \begin{cases} 1 & \text{n\'eu } x \in A \\ 0 & \text{n\'eu } x \in B \end{cases}$$

d) Do f(x) = d(x, A) là hàm liên tục, B là tập compact nên có $x_0 \in B$ sao cho:

$$f(x_0) = \min \{ f(x) : x \in B \} = d(A, B)$$

Do $A \cap B = \emptyset$, A là tập đóng nên $x_0 \notin A$ và $f(x_0) > 0$. Vậy d(A, B) > 0.

Ghi chú: Nếu A, B là tập đóng, $A \cap B = \emptyset$, có thể d(A, B) = 0. Thí dụ: Trong \mathbb{R}^2 với mêtric $d(x,y) = \left[(x_1 - y_1)^2 + (x_2 - y_2)^2 \right]^{1/2}$, đặt

$$A = \left\{ \left(x, \frac{1}{x}\right) : x > 0 \right\} \ , \ B = [0, +\infty) \times \{0\}$$

(B là nửa trục Ox). Khi đó A,B là tập đóng, $A\cap B=\emptyset$ nhưng d(A,B)=0.

4) Cho (X,d) là không gian mêtric compact, $f: X \to X$ thỏa mãn:

$$d(f(x), f(y)) < d(x, y)$$
 nếu $x \neq y$

- a) Chứng minh tồn tại duy nhất $x_0 \in X$ sao cho $f(x_0) = x_0$.
- b) Đặt $A_1 = f(X), A_{n+1} = f(A_n), n \in \mathbb{N}$. Chứng minh $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$

Hướng dẫn: a) Đặt $\varphi \colon X \to \mathbb{R}$ định bởi $\varphi(x) = d(x, f(x)), x \in X$. Do:

$$|\varphi(x) - \varphi(x')| = |d(x, f(x)) - d(x', f(x'))| \le d(x, x') + d(f(x), f(x')) \le 2d(x, x')$$

nên φ liên tục trên X.

Do X là tập compact nên có $x_0 \in X$ sao cho

$$\varphi(x_0) = \min \{ \varphi(x) : x \in X \}$$

Giả sử $\varphi(x_0) = d(x_0, f(x_0)) > 0$ (tức là $x_0 \neq f(x_0)$). Khi đó:

$$d(f(x_0), f(f(x_0))) = \varphi(f(x_0)) < d(x_0, f(x_0)) = \varphi(x_0)$$

Mâu thuẫn với sự kiện $\varphi(x_0)$ nhỏ nhất. Vậy $\varphi(x_0) = 0 = d(x_0, f(x_0))$ hay $x_0 = f(x_0)$. Giả sử có $y_0 \in X$ sao cho $y_0 = f(x_0)$. Khi đó:

$$d(x_0, y_0) = d(f(x_0), f(y_0)) < d(x_0, y_0)$$
 nếu $x_0 \neq y_0$

Điều này vô lý. Vậy x_0 tồn tại và duy nhất.

b) Do f liên tục, X là tập compact nên $A_1 = f(X)$ là tập compact. Giả sử A_n là tập compact. Khi đó $A_{n+1} = f(A_n)$ là tập compact. Vậy A_n là tập compact, khác rỗng với mọi $n \in \mathbb{N}$.

Hơn nữa, do $A_1 = f(X) \subset X$ nên $A_2 = f(A_1) \subset f(X) = A_1$. Giả sử $A_{n+1} \subset A_n$. Ta có

$$A_{n+2} = f(A_{n+1}) \subset f(A_n) = A_{n+1}$$

Vậy $A_{n+1} \subset A_n$ với mọi $n \in \mathbb{N}$.

Áp dụng tính chất phần giao hữu hạn (Bài tập 2) trong phần không gian mêtric compact) ta có $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$

5) Cho (X,d) là không gian mêtric compact, với mọi $n\in\mathbb{N}$, cho $f,f_n\colon X\to\mathbb{R}$ liên tục. Giả sử

$$f_1(x) \geqslant f_2(x) \geqslant \cdots \geqslant f_n(x) \geqslant f_{n+1}(x) \geqslant \cdots$$
 và $\lim_{n \to \infty} f_n(x) = f(x), \forall x \in X$

Chứng minh $(f_n)_n$ hội tụ đều về f trên X.

(Nhắc lại: $(f_n)_n$ hội tụ đều về f trên X nghĩa là với mọi $\varepsilon > 0$ có $n_0 \in \mathbb{N}$ sao cho với mọi $n \ge n_0$ thì $|f_n(x) - f(x)| < \varepsilon$ với mọi $x \in X$)

Hướng dẫn: Đặt $h_n = f_n - f, n \in \mathbb{N}$ thì h_n liên tục, thỏa mãn:

$$h_1(x) \geqslant h_2(x) \geqslant \cdots \geqslant h_n(x) \geqslant h_{n+1}(x) \geqslant \cdots$$
 và $\lim_{n \to \infty} h_n(x) = 0, \forall x \in X$

Với $\varepsilon > 0$ cho trước, đặt $A_n = \{x \in X : h_n(x) \ge \varepsilon\}$ thì A_n là tập đóng. Do $(h_n)_n$ là dãy giảm nên $A_{n+1} \subset A_n$. Do $\lim_{n\to\infty} h_n(x) = 0$ với mọi $x \in X$ nên $\bigcap_{n=1}^{\infty} A_n = \emptyset$. Áp dụng tính chất phần giao hữu hạn, có $n_0 \in \mathbb{N}$ sao cho $A_{n_0} = \emptyset$, nghĩa là $h_{n_0}(x) < \varepsilon$ với mọi $x \in X$. Do $(h_n)_n$ là dãy giảm nên với $n \ge n_0$ thì

$$h_n(x) \leqslant h_{n_0}(x) < \varepsilon$$
 với mọi $x \in X$

Vậy, dãy $(h_n)_n$ hội tụ đều về 0. Suy ra dãy $(f_n)_n$ hội tụ đều về f trên X.

6) Cho $(X, d_X), (Y, d_Y)$ là không gian mêtric và $(X \times Y, d)$ với

$$d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$$

Cho $f: X \to Y$. Đặt

$$G = \{(x, f(x)) : x \in X\}$$
 là đồ thị của f

- a) Giả sử f liên tục. Chứng minh G là tập đóng trong $X \times Y$.
- b) Giả sử Y là không gian mêtric compact và G là tập đóng trong $X \times Y$, chứng minh f liên tục.

Hướng dẫn: a) Cho $(x_n, f(x_n))_n$ là dãy trong G và $\lim_{n\to\infty} (x_n, f(x_n)) = (x, y)$ trong $(X \times Y, d)$. Ta chứng minh $(x, y) \in G$.

Do

$$\lim_{n\to\infty} d\left(\left(x,y\right),\left(x_n,f(x_n)\right)\right) = \lim_{n\to\infty} \left[d_X\left(x,x_n\right) + d_Y\left(y,f(x_n)\right)\right] = 0$$

nên $\lim_{n\to\infty} x_n = x$ trong (X,d_X) và $\lim_{n\to\infty} f(x_n) = y$ trong (Y,d_Y) . Do f liên tục nên $\lim_{n\to\infty} f(x_n) = f(x)$. Vậy y = f(x) hay $(x,y) = (x,f(x)) \in G$. Vậy G là tập đóng trong $X \times Y$.

b) Giả sử G là tập đóng trong $X \times Y$ và $\lim_{n\to\infty} x_n = x$ trong X. Ta chứng minh $\lim_{n\to\infty} f(x_n) = f(x) \text{ trong } Y.$

Do Y là tập compact nên có dãy con $(f(x_{n_k}))_k$ của dãy $(f(x_n))_n$ sao cho $\lim_{k\to\infty} f(x_{n_k}) = y$. Do G đóng và $\lim_{k\to\infty}(x_{n_k}, f(x_{n_k})) = (x, y)$ nên $(x, y) \in G$ hay $y = f(x) = \lim_{k\to\infty} f(x_{n_k})$. Như vậy, mọi dãy con $(f(x_{n_k}))_k$ của dãy $(f(x_n))_n$ nếu hội tụ thì $\lim_{k\to\infty} f(x_{n_k}) = f(x)$.

Giả sử $(f(x_n))_n$ không hôi tụ về f(x). Vậy có $\alpha > 0$ sao cho với mọi $k \in \mathbb{N}$ có $n_k \geqslant k$ sao cho: $d(f(x_{n_k}), f(x)) \ge \alpha$ với mọi $k \in \mathbb{N}$.

Do Y là tập compact nên dãy $(f(x_{n_k}))_k$ có một dãy con hội tụ ghi là $(f(x_{n_{k_i}}))_k$. Vậy $\lim_{i\to\infty} f\left(x_{n_{k_i}}\right) = f(x)$. Điều này mâu thuẫn với sự kiện $d(f(x_{n_k}), f(x)) \geqslant \alpha > 0$ với mọi $i \in \mathbb{N}$. Vậy $\lim_{n \to \infty} f(x_n) = f(x)$ hay f liên tục tại x. Do $x \in X$ bất kỳ nên f liên tục trên X.