

디지털논리회로 [Digital Logic Circuits]

11강.

순서논리회로(3)

컴퓨터과학과 강지훈교수

순서논리회로의 설계

- 설계 과정
- 순서논리회로의 설계 예

지6장. 순서논리회로

6.5

순서논리회로의 설계

6.5 순서논리회로의 설계

• 순서논리회로 설계과정

• 상태표 작성

• 주어진 설명이나 상태도로부터 상태표를 작성

현재상태		입력	다음	상태
A	В	X	A	В
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

6.5.1 설계 과정

• 플립플롭의 결정

- 순서논리회로에 사용될 F/F의 개수와 종류를 결정하고 F/F에 기호 할당 플립플롭의 개수 결정
 - 플립플롭의 개수는 순서논리회로 내의 상태 개수로 결정
 - 2^n 개의 상태를 표현하기 위해서는 n 개의 플립플롭 필요

플립플롭에 기호 할당

- 정해진 플립플롭의 식별을 위해 *A*, *B* 등으로 기호 할당
- 사용될 플립플롭의 종류 결정은 설계자가 결정
- D 플립플롭: 데이터 저장 및 전송에 적합한 구조
- T 플립플롭: 출력을 반전시키는 기능을 갖고 있어 보수, 분주기, 카운터 등의 응용
- JK 플립플롭: 다양한 동작을 지원하여 범용적으로 사용

6.5.1 설계 과정

• 플립플롭의 결정

플립플롭의 개수

• 4개의 상태가 존재하기 때문에 두 개의 플립플롭이 필요

플립플롭의 종류

- 정해진 두 개의 플립플롭 기호
 A, B 등의 기호를 할당하기 위해 플립플롭의 종류 결정이 필요
- D(T) 플립플롭: 기호 하나만 할당
- JK 플립플롭: 기호 두 개 할당

• 입력방정식 유도

- 입력 방정식은 조합논리회로의 출력
 - 외부 입력과 플립플롭의 현재 상태에 의해 결정
- 또한 플립플롭의 다음 상태를 결정함

- ・따라서, 플립플롭의 현재 상태와 다음 상태를 안다면, 입력 조건을 구할 수 있음
 - 플립플롭의 입력 조건에 대한 부울 함수가 입력 방정식임
- 현재 상태에서 다음 상태로의 변화를 일으키는, 플립플롭의 입력조건 리스트를 플립플롭의 여기표(Excitation Table)라고 함
 - ※ 여기표: 與(줄 여)起(일어날 기) 표 : 입력을 주었을 때 어떤 결과가 일어나는가를 나타낸 표 특성표는 이러한 입력일 때 Q가 어떻게 변하는가, 여기표는 현재 상태가 Q이고, 입력이 이러하다면 다음 상태는 무엇인가

6.5.1 설계 과정

• 입력 방정식 유도

1) 분석

 입력 방정식을 구해 현재 상태와 다음 상태로 이루어진 상태표 작성

2) 설계

- 상태표를 통해 현재, 다음 상태를 알 수 있음
- 현재 상태에서 다음 상태로의 변화를 일으키는 입력 조건이 필요
- 이 입력 조건이 입력 방정식이 됨
- 입력 조건을 알기 위해서는 플립플롭의 여기표가 필요함

• 플립플롭의 여기표

• 플립플롭의 특성표를 통해 여기표를 도출함

RS 플립플롭의 특성표

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	?

Q(t)	Q(t+1)	S	R
0	0	0	Х
0	1	1	0
1	0	0	1
1	1	Х	0

여기표

현재 상태 0에서 다음 상태 0이 되는 입력 조건

- S = R = 0 이거나
- S = 0, R = 1 이면 됨

따라서 입력 조건은 S = 0, $R = \times$

현재 상태 0에서 다음 상태 1이 되는 입력 조건

• S = 1, R = 0 이면 됨 따라서 입력 조건은 S = 1, R = 0

현재 상태 1에서 다음 상태 0이 되는 입력 조건

• S = 0, R = 1 이면 됨 따라서 입력 조건은 S = 0, R = 1

현재 상태 1에서 다음 상태 1이 되는 입력 조건

- *S* = *R* = 0 이거나
- S = 1, R = 0 이면 됨

따라서 입력 조건은 $S = \times$, R = 0

• 플립플롭의 여기표

Q(t)	Q(t+1)	S	R
0	0	0	Х
0	1	1	0
1	0	0	1
1	1	Х	0

RS 플립플롭

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

D 플립플롭

Q(t)	Q(t+1)	J	K
0	0	0	Х
0	1	1	Х
1	0	Х	1
1	1	Х	0

JK 플립플롭

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

T 플립플롭

• D 플립플롭을 이용한 설계(1)

상태표 작성

현재	상태	입력	다음	상태	출력
A	В	X	A	В	Y
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	0
1	1	1	0	0	0

플립플롭의 개수와 기호 결정

6.5.2 순서논리회로의 <u>설계 예</u>

• D 플립플롭을 이용한 설계(2)

입력 방정식 유도

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

D 플립플롭의 다음 상태는 플립플롭의 입력과 같음

D 플립플롭의 여기표

 D_A 와 D_B 의 입력 방정식은 다음 상태 A, B에 대한 최소항으로 표현

현재	상태	입력	다음	상태	출력
Α	В	X	A	В	Y
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	0
1	1	1	0	0	0

• 입력 방정식

$$D_A(A, B, X) = A(t+1) = \Sigma m(3, 4, 5, 6)$$

$$D_B(A, B, X) = B(t+1) = \Sigma m(1, 5, 6)$$

• 출력 방정식 $Y(A,B,X) = \Sigma m(1,2,5)$

• D 플립플롭을 이용한 설계(3)

입/출력 방정식 간소화

D 플립플롭을 이용한 논리 회로도 작성

• JK 플립플롭을 이용한 설계(1)

사F	HЩ	작성
\neg -		. – 0

현재상태		입력	다음	상태
A	В	X	A	В
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

플립플롭의 개수와 기호 결정

• JK 플립플롭을 이용한 설계(2)

입력 방정식 유도

Q(t)	Q(t+1)	J	K	
0	0	0	Х	
0	1	1	Х	
1	0	Х	1	
1	1 1		0	

JK 플립플롭의 여기표

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\bar{Q}(t)$

JK 플립플롭의 특성표

	조합회로 입력		다음상태		조합회로 출력				
	현재	상태	입력	니급하네		플립플롭 입력			
	Α	В	X	Α	В	J_A	K_A	J_B	K_B
•	0	0	0	0	0	0	Х	0	Х
•	0	0	1	0	1	0	Х	1	Х
	0	1	0	1	0	1	Х	Х	1
	0	1	1	1	1	1	Х	Х	0
	1	0	0	0	1	Х	1	1	Х
	1	0	1	1	1	Х	0	1	Х
	1	1	0	1	0	Х	0	Х	1
	1	1	1	0	0	Х	1	Х	1

플립플롭 A가 현재 상태 O에서 다음 상태 O이 되는 입력 조건

• $J_A = 0$, $K_A = \times$

플립플롭 B가 현재 상태 0에서 다음 상태 1이 되는 입력 조건

• $J_B = 1, K_B = \times$

• JK 플립플롭을 이용한 설계(3)

입력 방정식 유도

조합	합회로 입	입력	나이사데		조합회로 출력			
현재상태 입력		다음상태		플립플롭 입력				
A	В	X	Α	В	J_A	K_A	J_B	K_B
0	0	0	0	0	0	Х	0	Х
0	0	1	0	1	0	Х	1	Х
0	1	0	1	0	1	Х	Х	1
0	1	1	1	1	1	Х	Х	0
1	0	0	0	1	Х	1	1	Х
1	0	1	1	1	Х	0	1	Х
1	1	0	1	0	Х	0	Х	1
1	1	1	0	0	Х	1	Х	1

상태표에서

- J_A 의 입력 방정식은 현재 상태 A, B와 입력 X의 부울 함수로 표현
- 따라서 J_A 의 입력 방정식은 상태표 J_A 의 최소항으로 표현

J_A, K_A, J_B, K_B 의 입력 방정식

$$J_{A}(A, B, X) = \Sigma m(2, 3)$$

$$d_{J_{A}}(A, B, X) = \Sigma m(4, 5, 6, 7)$$

$$K_{A}(A, B, X) = \Sigma m(4, 7)$$

$$d_{K_{A}}(A, B, X) = \Sigma m(0, 1, 2, 3)$$

$$J_{B}(A, B, X) = \Sigma m(1, 4, 5)$$

$$d_{J_{B}}(A, B, X) = \Sigma m(2, 3, 6, 7)$$

$$K_{B}(A, B, X) = \Sigma m(2, 6, 7)$$

 $d_{K_B}(A, B, X) = \Sigma m(0, 1, 4, 5)$

• JK 플립플롭을 이용한 설계(4)

입/출력 방정식을 간소화

Summary

11강 | 순서논리회로(3)

01 순서논리회로의 설계

- 순서논리회로의 설계 과정

02 순서논리회로의 설계

- D 플립플롭을 이용한 설계
- JK 플립플롭을 이용한 설계

디지털논리회로 [Digital Logic Circuits]

12강 레지스터와 카운터(1)

