First name	LAST NAMI	LAST NAME			
LAB Session (Circle one):	Circle one):				
Mon 2-5	Tues 2 – 5	Wed 2-5	Thurs 11 - 2		

MIDTERM 2 (Version 1):

- 1. Write your name above. Circle your lab session!
 Circle the wrong session or Not circle it, 1 point will be deducted from total score.
- 2. One-side A4-sized note sheet is allowed.
- 3. No Calculator and electronic device (computer, smart/cell phone, ...) is allowed
- 4. To receive credit, show all your work clearly and readably. Write only answer gets 0
- 5. There are 6 pages in this exam.
- 6. Do not write multiple answers, otherwise, the wrong one will be graded.
- 7. Ask if you have any questions or confusion.

Problem	Score	Your score
1	30	
2	25	
3	45	
Total	100	

ECE 274a/ Spring2017

1. (30 points)

1a) (**12 pts**) Convert the given decimal numbers to **7-bit two's complement binary numbers** and add them. Then indicate whether the sum overflows or not.

Overflow? (circle one) and explain your reason below: Yes No

$$(-37) + (-31)$$

- **1b**) (8 pts) Consider the register file timing diagram shown below, answer the questions.
- 1b.1) What is the value of **R_data** in **cycle 6**?

1b.2) If this is a **16x16** register file, how many bits for W_addr and R_addr? _____ bits

1c) (10 pts) Given the following circuit and incomplete functional table

clr	ld	inv	s1	s0	Operation
1	X	X			Clear $(q1q0 = 00)$
0	1	X			Parallel Load
0	0	1			Invert bits
0	0	0			Maintain

x – don't care

1c.1 (4 pts) Complete (write values of s1, s0) in the functional table above

1c.2) (6 pts) Find combinational logic circuit

ECE 274a/ Spring2017

- 2) (25 pts) Counter and its application
- 2a) (13 pts) Given the following circuit, if the frequency of Clkout is 20 kHz,

2a.1) What **value** should be used for **Reload**?

2a.2) What is the *minimum* value of **n** (minimum of bit-width needed for the counter to work as specified)?

2b) (**12 pts**) Given the following Verilog code for ClkDiv, the **Clk input is connected to a 100M Hz (100*10⁶ Hz)** – pin E3 on the Nexys 4 board used in the lab, answer the following questions.

Note: The period (or cycle) of 100 MHz is $0.01us = 0.01*10^{-6} sec$

```
`timescale 1ns / 1ps
module ClkDiv(Clk, Rst, ClkOut);
 input Clk, Rst;
 output reg ClkOut;
 parameter DivVal = 250000;
 reg [18:0] DivCnt;
 reg ClkInt;
 always @(posedge Clk) begin
  if (Rst == 1) begin
    DivCnt \le 0;
    ClkOut \le 0:
    ClkInt <= 0;
   end
   else begin
    if( DivCnt == DivVal ) begin
      ClkOut <= ~ClkInt;
      ClkInt <= ~ClkInt;
      DivCnt \le 0:
    end
    else begin
      ClkOut <= ClkInt;
      ClkInt <= ClkInt;
      DivCnt <= DivCnt + 1;
    end
   end
 end
```

endmodule

2b.1) What ClkOut sig	t is the frequency (in Hz nal?	z) of the
ClkOut	has	Hz
frequency of DivVal?	want to create a ClkOut of 20k Hz , what is the <u>cannot be a cannot be a ca</u>	correct value

READ ME: For problem 3, choose 1 problem to complete

(Pick one: Problem 3a or 3b)

10 bonus points if you can complete both 3a and 3b with 100% correct answers

3a (45 points) Design a circuit that has four 8-bit unsigned inputs and 1-bit output S that is

S = 1 if

max(W,X,Y,Z) - min(W,X,Y,Z) is between 39 and 81 (inclusive), otherwise S=0.

Clearly connect all components, indicate bit-width of each wire, write sufficient details in every component in your circuit.

You have the following datapath components available (unsigned only) – decoders, encoders, muxes (any size), 8-bit adder, 8-bit subtractor, 8-bit magnitude comparator, 8-bit MinMax shown below, and any logic gates (and, or, not) with any input numbers.

MinMax circuit has two 8-bit inputs A and B and two 8-bit outputs

Min (= minimum between A and B) and

Max (= maximum between A and B)

READ ME: For problem 3, choose 1 problem to complete

(Pick one: Problem 3a or 3b)

10 bonus points if you can complete both 3a and 3b with 100% correct answers

3b) (45 points) Design a 4-bit up/down-counter that has the following control inputs:

- clear resets the count to 0,
- set val sets the counter to 7,
- left_shift shifts a counter value to the left by up to 3 bits,
- cnt_up enables counting up, and
- cnt_down enables counting down

The counter has 4-bit "C" as the counter output and 1 bit terminal count (tc) output. Control inputs and counter outputs are shown in the block diagram. The *order of operation from highest to lowest priority* is clear, set_val, left_shift, cnt_up, and cnt_down. When all control inputs are 0, the circuit maintain its content.

When the operation mode is left_shift, the amount of shift is determined by the state of the cnt_up and cnt_down as shown in the table. For example, if left_shift = 1, cnt_up cnt_down = 10 (2 in decimal), the counter value is shifted to the left by 2 bits

left_shift	cnt_up	cnt_down	shift
			amount
1	0	0	0
1	0	1	1
1	1	0	2
1	1	1	3

Clearly connect all components, indicate bit-width of each wire, write sufficient details in every component in your circuit.

You have ONLY the following datapath components available (unsigned only): decoders, encoders, muxes (any size), 4-bit parallel load register, 4-bit adder, 4-bit subtractor, 4-bit magnitude comparator, the 2-bit left shifter with enable (use symbol <<2, if enable =1, it left-shifts the 4-bit input by two bits, else passes its input to its output without shifting), the 1-bit left shifter with enable (<<1), and logic gates. Note that there is no 1-bit register available.