Analog Communication MATLAB Assignment Group - 5 Set - II

NAME	ROLL NO.
Shaunak Samanta	002310701054
Sameerul Hoque	002310701055
Sk Mahammad Anish	002310701056
Sheza Anam	002310701057
Anish Chanda	002310701058
Soham Sengupta	002310701059
Saptarshi Garai	002310701060
Pratyay Sarkar	002310701061
Sudipta Pakhira	002310701062
Srijan Roy	002310701063
Ayan Das	002310701064
Debapriya Dan	002310701067

Question 1:

MATLAB Code:

```
function y = signal_y(t)
   y = zeros(size(t));
   y(t <= -5) = t(t <= -5) + 5;
   y(t > -5 \& t <= -2) = 11 + 4*t(t > -5 \& t <= -2);
   y(t > -2 \& t <= 1) = 24 - 9*t(t > -2 \& t <= 1);
   y(t > 1 \& t \le 3) = t(t > 1 \& t \le 3) - 6;
    y(t > 3 \& t <= 6) = t(t > 3 \& t <= 6) - 6;
end
t = -6:0.01:6;
subplot(2,1,1);
plot(t, signal_y(t));
xlabel('Time (s)');
ylabel('y(t)');
title('Plot of y(t)');
subplot(2,1,2);
plot(t, signal_y(3-2*t));
xlabel('Time (s)');
ylabel('y(3-2t)');
title('Plot of y(3-2t)');
```


Question 2:

MATLAB Code:

```
T = 2*pi;
f = 1;
N = 10;
x = @(t) abs(sin(2*pi*f*t));
Do = (1/T) * integral(x, 0, T);
n = -N:N;
Dn = zeros(size(n));
for k = 1:length(n)
    nk = n(k);
    fun = @(t) x(t) .* exp(-1j*2*pi*nk*t/T);
    Dn(k) = (1/T) * integral(fun, 0, T);
magnitude = abs(Dn);
phase = angle(Dn);
figure;
subplot(2,1,1);
stem(n, magnitude, 'b');
xlabel('Harmonic number (n)');
ylabel('Magnitude');
title('Magnitude Spectrum');
subplot(2,1,2);
stem(n, phase, 'r');
xlabel('Harmonic number (n)');
ylabel('Phase (radians)');
title('Phase Spectrum');
disp(['DC component (Do): ', num2str(Do)]);
disp(['Complex Fourier coefficient (D1): ', num2str(Dn(N+2))]);
```

```
DC component (Do): 0.6385
Complex Fourier coefficient (D1): 0.0018944-0.00083886i
```

Figure/Plot:

Published with MATLAB® R2024a

Question 3: MATLAB Code:

```
clc; clear; close all;
n = 0:12;
X = (n >= 0) - (n >= 5);
h = ((n \ge 0) - (n \ge 7)).*(2.^n);
Lx = length(X);
Lh = length(h);
Ly = Lx + Lh - 1;
y_{manual} = zeros(1, Ly);
for i = 1:Lx
    for j = 1:Lh
        y_{manual}(i + j - 1) = y_{manual}(i + j - 1) + X(i) * h(j);
    end
end
y_builtin = conv(X, h);
n_{conv} = 0:(Ly - 1);
figure;
stem(n, X, 'b', 'LineWidth', 2);
grid on;
xlabel('n'); ylabel('x(n)');
title('Input Sequence X(n)');
figure;
stem(n, h, 'r', 'LineWidth', 2);
grid on;
xlabel('n'); ylabel('h(n)');
title('Impulse Response h(n)');
figure;
stem(n_conv, y_manual, 'g', 'LineWidth', 2);
grid on;
xlabel('n'); ylabel('y(n)');
title('Convolution Result using Normal Method');
figure;
stem(n_conv, y_builtin, 'm', 'LineWidth', 2);
grid on;
xlabel('n'); ylabel('y(n)');
title('Convolution Result using MATLAB "conv" function');
disp('Manual Convolution Result:');
disp(y_manual);
disp('Built-in CONV Function Result:');
disp(y_builtin);
% Validate the result
if isequal(y_manual, y_builtin)
    disp('Validation Successful: Both results match!');
    disp('Validation Failed: Results do not match.');
end
```

Manual Convolution Result: Columns 1 through 13													
	1	3	7	15	31	62	124	120	112	96	64	0	0
Columns 14 through 25													
	0	0	0	0	0	0	0	0	0	0	0	0	
Built-in CONV Function Result: Columns 1 through 13													
	1	3	7	15	31	62	124	120	112	96	64	0	0
Columns 14 through 25													

0 0 0 0 0 0 0 0 0 0

0

Validation Successful: Both results match!

Published with MATLAB® R2024a