Teoria dos números e corpos finitos

Lucas João Martins

- 1. (4.6) For each of the following equations, find an integer x that satisfies the equation.
- **a.** $5x \equiv 4 \pmod{3}$

$$x = 2$$

 $5 \times 2 = 10$
 $10 - 4 = 6 = 3 \times 2$

b. $7x \equiv 6 \pmod{5}$

$$x = 3$$

 $7 \times 3 = 21$
 $21 - 6 = 15 = 5 \times 3$

c. $9x \equiv 8 \pmod{7}$

$$x = 4$$

 $9 \times 4 = 36$
 $36 - 8 = 28 = 7 \times 4$

2. (4.7) In this text, we assume that the modulus is a positive integer. But the definition of the expression $a \mod n$ also makes perfect sense if n is negative. Determine the following:

Usando $a \mod n = a - \lfloor a/n \rfloor \times n$.

a. 5 mod 3

b. 5 mod - 3

$$5 - \lfloor 5/-3 \rfloor \times -3$$
$$5 - (-2 \times -3)$$
$$5 - 6$$
$$-1$$

c. $-5 \mod 3$

$$-5 - \lfloor -5/3 \rfloor \times 3$$
$$-5 - (-2 \times 3)$$
$$-5 + 6$$
1

d. $-5 \mod -3$

$$-5 - \lfloor -5/ - 3 \rfloor \times -3$$

 $-5 - (1 \times -3)$
 $-5 + 3$
 -2

3. (4.8) A modulus of 0 does not fit the definition but is defined by convention as follows: $a \mod 0 = a$. With this definition in mind, what does the following expression mean: $a \equiv b \pmod{0}$?

Significa que a e b são iguais.

- 4. (4.1) For the group S_n of all permutations of n distinct symbols:
- a. what is the number of elements in S_n ?

n!

b. show that S_n is not abelian for n > 2.

Um contra exemplo com o S_3 seria:

$${3,2,1} \cdot {1,3,2} = {2,3,1}$$

 ${1,3,2} \cdot {3,2,1} = {3,1,2}$

5. (4.4) Reformulate Equation (4.1), removing the restriction that a is a nonnegative integer. That is, let a be any integer.

A equação continua a mesma.

6. (4.5) Draw a figure similar to Figure 4.1 for a < 0.

7. (4.13) Find the multiplicative inverse of each nonzero element in \mathbb{Z}_5 .

Para todo $a \in \mathbb{Z}_5$, precisamos encontrar um $b \in \mathbb{Z}_5$ onde $ab \equiv 1 \pmod{5}$

- $1 \rightarrow 1$
- $2 \rightarrow 3$
- $3 \rightarrow 2$
- $4 \rightarrow 4$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

W	-w	W^{-1}
0	0	-
1	4	1
2	3	3
3	2	2
4	1	4

- 8. (4.20) Develop a set of tables similar to Table 4.3 for GF(5).
- 9. (4.10) What is the smallest positive integer that has exactly k divisors, for $1 \le k \le 6$?

$$\begin{split} k &= 1 \to 1 \to \{1\} \\ k &= 2 \to 2 \to \{1,2\} \\ k &= 3 \to 4 \to \{1,2,4\} \\ k &= 4 \to 6 \to \{1,2,3,6\} \\ k &= 5 \to 16 \to \{1,2,4,8,16\} \\ k &= 6 \to 12 \to \{1,2,3,4,6,12\} \end{split}$$

- 10.
- 11.
- **12.**
- **13.**
- **14.**
- **15.**
- 16.
- **17.**
- 18.
- 19.
- 20.