

机器学习-引言

黄海广 副教授

2022年02月

目录

- 01 机器学习概述
- 02 机器学习的类型
- 03 机器学习的背景知识
- 04 机器学习的开发流程

1. 机器学习概述

01 机器学习概述

- 02 机器学习的类型
- 03 机器学习的背景知识
- 04 机器学习的开发流程

机器学习与人工智能、深度学习的关系

人工智能: 机器展现的人类智能

机器学习: 计算机利用已有的数据(经验),得出了某种模型,并利用此模型预测未来的一种方法。

深度学习:实现机器学习的一种技术

机器学习界的执牛耳者

杨立昆 (Yann LeCun) 杰弗里·欣顿 (Geoffrey Hinton) 本吉奥 (Bengio) 共同获得了2018年计算机科学的最高奖项 ——ACM图灵奖。

Andrew Ng 中文名**吴恩达**,斯坦福大学副教 授,前"百度大脑"的负责人与百 度首席科学家。

机器学习界的国内泰斗

李航,现任字节跳动科技有限公司人工智能实验室总监,北京大学、南京大学客座教授,IEEE 会士,ACM 杰出科学家,CCF 高级会员。代表作:《统计学习方法》

周志华,南京大学计算机科学与技术系主任、人工智能学院院长。 代表作:《机器学习》(西瓜书)

机器学习界的青年才俊

陈天奇,陈天奇是机器学习领域著名的青年华人学者之一,本科毕业于上海交通大学ACM班,博士毕业于华盛顿大学计算机系。

主要贡献:设计了XGBoost算法。

何恺明,本科就读于清华大学,博士毕业于香港中文大学多媒体实验室。2016年,加入Facebook Al Research (FAIR)担任研究科学家。

主要贡献:设计了ResNets

国内外知名人工智能企业榜单

编码	企业名称	人工智能技术	应用领域	所属国家	成立时间	资本市场状态	市值/估值/融资额
1	Microsoft (微软)	计算机视觉技术、自然语言处理技术 等	办公	美国	1975年	上市	市值1.21万亿美元
2	Google (谷歌)	计算机视觉技术、自然语言处理技术 等	综合	美国	1998年	上市	市值9324亿美元
3	Facebook (脸书)	人脸识别、深度学习等	社交	美国	2004年	上市	市值5934亿美元
4	百度	计算机视觉技术、自然语言处理技 术 、知识图谱等	综合	中国	2001年	上市	市值438亿美元
5	大疆创新	图像识别技术、智能引擎技术等	无人机	中国	2006年	战略融资	估值210亿美元
6	商汤科技	计算机视觉技术、深度学习	安防	中国	2014年	D轮融资	估值70亿美元
7	旷视科技	计算机视觉技术等	安防	中国	2011年	D轮融资	估值40亿美元
8	科大讯飞	智能语音技术	综合	中国	1999年	上市	市值108亿美元
9	Automation Anywhere	自然语言处理技术、非结构化数据认知	企业管理	美国	2003年	B轮融资	估值68亿美元
10	IBM Watson (IBM沃森)	深度学习、智适应学习技术	计算机	美国	1911年	上市	市值1198亿美元
11	松鼠AI 1对1	智适应学习技术、机器学习	教育	中国	2015年	A轮融资	估值11亿美元
12	字节跳动	跨媒体分析推理技术、深度学习、自 然 语言处理、图像识别	资讯	中国	2012年	Pre-IPO轮融资	估值750亿美元
13	Netflix (网飞)	视频图像优化、剧集封面图片个性 化 、视频个性化推荐	媒体及内容	美国	1997年	上市	市值1418亿美元
14	Graphcore	智能芯片技术、机器学习	芯片	英国	2016年	D轮融资	估值17亿美元
15	NVIDIA (英伟达)	智能芯片技术	芯片	美国	1993年	上市	市值1450亿美元
16	Brainco	脑机接口	教育、医疗、智能硬件	美国	2015年	天使轮融资	融资额600万美元
17	Waymo	自动驾驶	交通	美国	2016年	C轮融资	估值1050亿美元
18	ABB Robotics	机器人及自动化技术	机器人	瑞士	1988年	上市	市值514亿美元
19	Fanuc (发那科)	机器人技术	制造	日本	1956年	上市	市值362亿美元
20	Preferred Networks	深度学习、机器学习技术	物联网	日本	2016年	C轮融资	估值20亿美元

机器学习的范围

机器学习可以解决什么问题

- 给定数据的预测问题
 - ✓ 数据清洗/特征选择
 - ✓ 确定算法模型/参数优化
 - ✓ 结果预测

- 不能解决什么
 - ✓ 大数据存储/并行计算
 - ✓ 做一个机器人

机器学习发展史

总的来说,人工智能经历了**逻辑推理、知识工程、机器 学习**三个阶段。

机器学习伴随着人工智能的发展而诞生,它是人工智能发展到一定阶段的必然产物。

机器学习发展史

2. 机器学习的类型

- 01 机器学习概述
- 02 机器学习的类型
 - 03 机器学习的背景知识
 - 04 机器学习的开发流程

2. 机器学习的类型

2. 机器学习的类型-监督学习

- ✓ 分类 (Classification)
 - ✓ 身高1.65m, 体重100kg的男人肥胖吗?
 - ✓ 根据肿瘤的体积、患者的年龄来判断良性或恶性?
- ✓回归 (Regression、Prediction)
 - ✓ 如何预测上海浦东的房价?
 - ✓ 未来的股票市场走向?

2. 机器学习的类型-无监督学习

- ✓ 聚类 (Clustering)
 - ✓ 如何将教室里的学生按爱好、身高划分为5类?
- ✓ 降维 (Dimensionality Reduction)
 - ✓ 如何将将原高维空间中的数据点映射到低维度的空间中?

2. 机器学习的类型-强化学习

- ✓ 强化学习 (Reinforcement Learning)
 - ✓ 用于描述和解决智能体(agent)在与环境的交 互过程中通过学习策略以达成回报最大化或实现 特定目标的问题。

机器学习的概念

- ✓机器学习方法
 - ✓ 模型
 - ✓损失函数
 - ✓ 优化算法
 - ✓ 模型评估指标

机器学习的概念-模型

机器学习首先要考虑使用什么样的模型。

模型的类别,大致有两种:一是概率模型(Probabilistic Model)和非概率模型 (Non-Probabilistic Model)。

在监督学习中,概率模型可被表示为P(y|x),非概率模型则为y = f(x)。

其中, x是输入, y是输出。

在无监督学习中,概率模型可被表示为P(z|x),非概率模型则为z = f(x)。

其中, x是输入, z是输出。

机器学习的概念-模型

决策树、朴素贝叶斯、隐马尔科夫模型、高斯混合模型属于<mark>概率模型。</mark> 感知机、支持向量机、KNN、AdaBoost、K-means以及神经网络均属于非概率模型。

对于非概率模型而言,可按照判别函数线性与否分成线性模型与非线性模型。 感知机、线性支持向量机、KNN、K-means是线性模型。 核支持向量机、AdaBoost、神经网络属于非线性模型。

机器学习的概念-损失函数

1. 0-1损失函数(0-1 Loss Function)

$$L(Y, f(X)) = \begin{cases} 1, & Y \neq f(X) \\ 0, & Y = f(X) \end{cases}$$

2. 平方损失函数(Quadratic Loss Function)

$$L(Y, f(X)) = (Y - f(X))^{2}$$

3. 绝对损失函数(Absolute Loss Function)

$$L(Y, f(X)) = |Y - f(X)|$$

4. 对数损失函数(Logarithmic Loss Function)

$$L(Y, P(Y|X)) = -\log P(Y|X)$$

机器学习的概念-损失函数

根据上述损失函数模型,我们可知,损失函数值越小,模型性能越好。给定一个数据集,我们将训练数据集的平均损失称为经验风险。基于经验风险最小化原则,可构建全局损失函数求解最优化问题:

$$\min_{f} \frac{1}{N} \sum_{n=1}^{N} L(y_n, f(x_n))$$

机器学习的概念-损失函数

当样本数量足够大时,根据大数定理,经验风险会近似于模型的期望风险。此时,经验风险最小化能确保有好的学习性能。然而,当样本数量不足时,单单利用经验风险最小化可能会导致"过拟合"的问题。

为此,我们再原有基础上加上用于控制模型复杂度的正则项(Regularizer),得到结构最小化准则。具体定义是: N

$$\min_{f} \frac{1}{N} \sum_{n=1}^{N} L(y_n, f(x_n))$$

其中,J(f)代表对模型复杂度的惩罚。模型越复杂,J(f)越大,模型越简单,J(f)就越小。 λ 是一个正的常数,也叫正则化系数,用于平衡经验风险和模型复杂度。

一般来说,结构风险小的模型需要经验风险和模型复杂度同时小,因此对训练数据和测试数据都能有较好的拟合。

机器学习的概念-优化算法

算法指的是模型学习中的具体计算方法。一般来说,基于参数模型构建的统计学习问题都为最优化问题,它们都具有显式的解析解。

现有的优化方法主要有:梯度下降法、牛顿法、拟牛顿法、ADAM等等。具体的算法,我们会在各自章节中介绍。其中本课程中,用梯度下降法作为主要的优化算法。

机器学习的概念-模型评估

当损失函数给定时,我们将基于模型训练数据的误差(Training Error)和测试数据的误差(Testing Error)作为模型评估的标准。

测试误差的具体定义为:
$$E_{test} = \frac{1}{N'} \sum_{n=1}^{N'} L\left(y_n, \hat{f}(x_n)\right)$$

其中,N'为测试数据数量, $L(y_n, \hat{f}(x_n))$ 是损失函数, y_n 代表真实标签, $\hat{f}(x_n)$ 代表 预测标签。

一般来说,若我们模型学习的效果好,则训练误差和测试误差接近一致。

3. 机器学习的背景知识

- 01 机器学习概述
- 02 机器学习的类型
- 03 机器学习的背景知识
 - 04 机器学习的开发流程

3. 机器学习的背景知识-希腊字母

大写	小写	英文注音	国际音标注音	中文注音
\mathbf{A}	α	alpha	alfa	阿耳法
В	β	beta	beta	贝塔
Γ	γ	gamma	gamma	伽马
Δ	δ	deta	delta	德耳塔
E	3	epsilon	epsilon	艾普西隆
Z	ζ	zeta	zeta	截塔
Н	η	eta	eta	艾塔
$oldsymbol{\Theta}$	θ	theta	θita	西塔
I	t	iota	iota	约塔
K	κ	kappa	kappa	卡帕
\wedge	λ	lambda	lambda	兰姆达
M	μ	mu	miu	缪
N	ν	nu	niu	纽
Ξ	ξ	xi	ksi	可塞
0	o	omicron	omikron	奥密可戎
П	π	pi	pai	派
P	ρ	rho	rou	柔
\sum	σ	sigma	sigma	西格马
T	τ	tau	tau	套
Y	υ	upsilon	jupsilon	衣普西隆
Φ	φ	phi	fai	斐
X	χ	chi	khai	喜
Ψ	Ψ	psi	psai	普西
Ω	ω	omega	omiga	欧米

3. 机器学习的背景知识-数学基础

高等数学

导数、微分、泰勒公式......

线性代数

向量、矩阵、行列式、秩、线性方程组、特征值和特征向量......

概率论与数理统计

随机事件和概率、概率的基本性质和公式、常见分布、期望、协方差……

高等数学-导数

导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y = f(x)的自变量x在一点 x_0 上产生一个增量 Δx 时,函数输出值的增量 Δy 与自变量增量 Δx 的比值在 Δx 趋于0时的极限 α 如果存在, α 即为在 x_0 处的导数,记作 $f'(x_0)$ 。

高等数学-函数的连续性

设函数 y = f(x)在点 x_0 的某邻域内有定义,如果当自变量的改变量 Δx 趋近于零时,相应函数的改变量 Δy 也趋近于零,则称y = f(x)在点 x_0 处连续。

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0$$

当 Δx → 0⁺ 时, Δy 不能趋近于 0

高等数学-函数的连续性

- Ø 函数f(x) 在点 x_0 处连续,需要满足的条件:
 - 1. 函数在该点处有定义
 - 2. 函数在该点处极限 $\lim_{x\to x_0} f(x)$ 存在
 - 3. 极限值等于函数值 $f(x_0)$

高等数学-导数

Ø 如果平均变化率的极限存在, $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$

则称此极限为函数 y = f(x) 在点 x_0 处的导数, $f'(x_0)$

$$y'\Big|_{x=x_0}$$
, $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=x_0}$ $\Rightarrow \frac{\mathrm{d}f(x)}{\mathrm{d}x}\Big|_{x=x_0}$

高等数学-基本导数与微分表

(1)
$$y = c$$
 (常数) 则: $y' = 0$

(2)
$$y = x^{\alpha}(\alpha$$
为实数) 则: $y' = \alpha x^{\alpha-1}$

(3)
$$y = a^x$$
 则: $y' = a^x \ln a$ 特例: $(e^x)' = e^x$

(4)
$$y = \log_a x$$
 贝: $y' = \frac{1}{x \ln a}$, 特例 $(\ln x)' = \frac{1}{x}$

(5)
$$y = \sin x$$
 则: $y' = \cos x$

(6)
$$y = \cos x$$
 则: $y' = -\sin x$

(7)
$$y = \tan x$$
 \mathbb{U} : $y' = \frac{1}{\cos^2 x} = \sec^2 x$

(8)
$$y = \cot x$$
 [1]: $y' = -\frac{1}{\sin^2 x} = -\csc^2 x$

(9)
$$y = \sec x$$
 则: $y' = \sec x \tan x$

(10)
$$y = \csc x$$
 则: $y' = -\csc x \cot X$

(14)
$$y = \operatorname{arccot} x \ \text{II}: \ y' = -\frac{1}{1+x^2}$$

(15)
$$y = shx \ \mathbb{M}$$
: $y' = chx$, (16) $y = chx \ \mathbb{M}$: $y' = shx$

高等数学-四则运算法则

四则运算法则

设函数u = u(x), v = v(x)在点x可导,则:

(1)
$$(u \pm v)' = u' \pm v'$$

(2)
$$(uv)' = uv' + vu'$$
 $d(uv) = udv + vdu$

(3)
$$\left(\frac{u}{v}\right)' = \frac{vu'-uv'}{v^2} (v \neq 0)$$
 $d\left(\frac{u}{v}\right) = \frac{vdu-udv}{v^2}$

高等数学-泰勒公式

设函数u = u(x), v = v(x)在点x可导,则:

设函数f(x)在点 x_0 处的某邻域内具有n+1阶导数,则对该邻域内异于 x_0 的任意点x,在 x_0 与x之间至少存在一个 ξ ,使得:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \cdots$$
$$+ \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中 $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$ 称为f(x) 在点 x_0 处的n阶泰勒余项。

 $\Rightarrow x_0 = 0$, 则n阶泰勒公式:

$$f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x)\dots$$

高等数学-泰勒公式

常用函数在 $x_0 = 0$ 处的泰勒公式:

1)
$$e^x = 1 + x + \frac{1}{2!}x^2 + \dots + \frac{1}{n!}x^n + o(x^n)$$

2)
$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots + (-1)^{n-1}\frac{x^n}{n} + o(x^n)$$

线性代数-行列式

设
$$A = (a_{ij})_{n \times n}$$
, 则: $a_{i1}A_{j1} + a_{i2}A_{j2} + \dots +$

$$a_{in}A_{jn} = \begin{cases} |A|, i = j \\ 0, i \neq j \end{cases}$$

或
$$a_{1i}A_{1j} + a_{2i}A_{2j} + \dots + a_{ni}A_{nj} = \begin{cases} |A|, i = j \\ 0, i \neq j \end{cases}$$

即 $AA^* = A^*A = |A|E$,其中:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} = (A_{ji}) = (A_{ij})^{\mathrm{T}}$$

行列式的性质

单位阵的行列式为1, det(I) = 1.

- 行列式的某一行(列)的所有的元素都乘以同一数*k*,等于用数*k*乘此行列式。
- $A \in \mathbb{R}^{n \times n}$, $\det(A) = \det(A^{T})$.
- $A, B \in \mathbb{R}^{n \times n}$, $\det(AB) = \det(A)\det(B)$
- 当且仅当A为奇异方阵时,det(A) = 0
- 当A为非奇异方阵时, $det(A^{-1}) = 1/det(A)$

线性代数-矩阵

矩阵: $m \times n$ 个数 a_{ij} 排成m行n列的表格

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & \cdots & & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
称为矩阵,简记为 A ,

或者 $(a_{ij})_{m \times n}$ 。若m = n,则称A是n阶矩阵或n阶方阵。

矩阵的乘法: 设 $A = (a_{ij})$ 是 $m \times n$ 矩阵, $B = (b_{ij})$ 是 $n \times s$

矩阵,那么 $m \times s$ 矩阵 $C = (c_{ij})$,其中 $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$ 称为AB的乘积,记为C = AB。

矩阵乘法的性质: $AB \neq BA$, (AB)C = A(BC), A(B + C) = AB + AC

内积 : 给定 $x,y \in \mathbb{R}^{n \times 1}$, $x^{T}y$ 为一个标量,称为向量的内积或点积, 记为<x,y >

线性代数-求导

$$\frac{\mathrm{d}x^{\mathrm{T}}}{\mathrm{d}x} = I \qquad \frac{\mathrm{d}x}{\mathrm{d}x^{\mathrm{T}}} = I \qquad \frac{\mathrm{d}x^{\mathrm{T}}A}{\mathrm{d}x} = A \qquad \qquad A 为 n \times n$$
的矩阵, $x 为 n \times 1$ 的列向量
$$\frac{\mathrm{d}Ax}{\mathrm{d}x^{\mathrm{T}}} = A \qquad \frac{\mathrm{d}Ax}{\mathrm{d}x} = A^{\mathrm{T}} \qquad \frac{\mathrm{d}xA}{\mathrm{d}x} = A^{\mathrm{T}}$$

$$\frac{\partial u}{\partial x^{\mathrm{T}}} = \left(\frac{\partial u^{\mathrm{T}}}{\partial x}\right)^{\mathrm{T}} \qquad \frac{\partial u^{\mathrm{T}}v}{\partial x} = \frac{\partial u^{\mathrm{T}}}{\partial x}v + \frac{\partial v^{\mathrm{T}}}{\partial x}u^{\mathrm{T}} \qquad \frac{\partial uv^{\mathrm{T}}}{\partial x} = \frac{\partial u}{\partial x}v^{\mathrm{T}} + u\frac{\partial v^{\mathrm{T}}}{\partial x}$$

$$\frac{\mathrm{d}x^{\mathrm{T}}x}{\mathrm{d}x} = 2x \qquad \frac{\mathrm{d}x^{\mathrm{T}}Ax}{\mathrm{d}x} = (A + A^{\mathrm{T}})x \qquad \frac{\mathrm{d}x^{\mathrm{T}}Ax}{\mathrm{d}x} = 2Ax \quad (如果A为对称阵)$$

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x}B + A\frac{\partial B}{\partial x} \qquad \frac{\partial u^{\mathrm{T}}Xv}{\partial x} = uv^{\mathrm{T}}$$

$$\frac{\partial u^{\mathrm{T}} X^{\mathrm{T}} X u}{\partial X} = 2X u u^{\mathrm{T}} \qquad \frac{\partial \left[(X u - v)^{\mathrm{T}} (X u - v) \right]}{\partial X} = 2(X u - v) u^{\mathrm{T}}$$

线性代数

正交

给定 $a,b \in \mathbb{R}^{n \times 1}$,如果 $a^{T}b = 0$,那么向量a,b正交。 对于方阵 $A \in \mathbb{R}^{n \times n}$ 来说,如果A的列向量两两正交,且 δ 范数为1,那么A为正交阵,数学描述为 $A^{T}A = I = AA^{T}$ 。

正定性

对于 $A \in \mathbb{R}^{n \times n}$, $\forall w \in \mathbb{R}^{n \times 1}$, 满足 $w^{T}Aw > 0$, A为正定矩阵; $w^{T}Aw \geq 0$, A为半正定矩阵。

线性代数

行列式按行 (列) 展开定理

或
$$a_{1i}A_{1j} + a_{2i}A_{2j} + \dots + a_{ni}A_{nj} = \begin{cases} |A|, i = j \\ 0, i \neq j \end{cases}$$

即
$$AA^* = A^*A = |A|E$$
,其中: $A^* = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} = (A_{ji}) = (A_{ij})^{\mathrm{T}}$

概率论与数理统计-随机事件和概率

事件的关系

- (1) 子事件: $A \subset B$, 若A发生,则B发生。
- (2) 相等事件: A = B, 即 $A \subset B$, 且 $B \subset A$ 。
- (3) 和事件: AUB (或A + B) , A = B中至少有一个发生。
- (4) 差事件: A B, A发生但B不发生。
- (5) 积事件: *A*∩*B* (或*AB*) , *A*与*B*同时发生。
- (6) 互斥事件(互不相容): *A*∩*B*=∅。
- (7) 互逆事件 (对立事件): $A \cap B = \emptyset, A \cup B = \Omega, A = \overline{B}, B = \overline{A}$.

运算律

- (1) 交换律: $A \cup B = B \cup A, A \cap B = B \cap A$
- (2) 结合律: $(A \cup B) \cup C = A \cup (B \cup C)$; $(A \cap B) \cap C = A \cap (B \cap C)$
- (3) 分配律: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- (4) 德.摩根律:

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \quad \overline{A \cap B} = \overline{A} \cup \overline{B}$$

概率论与数理统计-古典型概率

定义:试验E中样本点是有限的,出现每一样本点的概率是相同

0

$$P(A) = \frac{A$$
所包含的样本点数 S 中的样本点数

一袋中有8个球,编号为1 - 8,其中1 - 3号为红球,4 - 8号为黄球,设摸到每一球的可能性相等,从中随机摸一球,记 $A = \{$ 摸到红球 $\}$,求P(A)。

$$S = \{1,2,...,8\}$$

 $A = \{1,2,3\} \Rightarrow P(A) = \frac{3}{8}$

概率论与数理统计

(1) 条件概率: $P(B|A) = \frac{P(AB)}{P(A)}$,表示A发生的条件下, B发生的概率

一袋中有8个球,编号为1-8,其中1-3号为红球,4-8号为黄球,设摸到每一球的可能性相等,从中随机摸一球,记 $A=\{$ 摸到红球 $\}$,求P(A)。

$$S = \{1,2,...,8\}$$
 $A = \{1,2,3\} \Rightarrow P(A) = \frac{3}{8}$

(2) 全概率公式: $P(A) = \sum_{i=1}^{n} P(A|B_i) P(B_i), B_i B_j = \emptyset, i \neq j, \bigcup_{i=1}^{n} B_i = \Omega.$

概率论与数理统计

(3) **Bayes**公式:
$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^n P(A|B_i)P(B_i)}$$
, $j = 1, 2, \dots, n$

(4) 乘法公式:
$$P(A_1A_2) = P(A_1)P(A_2|A_1) = P(A_2)P(A_1|A_2)$$

 $P(A_1A_2 \cdots A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2) \cdots P(A_n|A_1A_2 \cdots A_{n-1})$

概率论与数理统计-常见分布

(1)
$$0-1$$
分布: $P(X = k) = p^k (1-p)^{1-k}, k = 0,1$

(2) 二项分布:
$$B(n,p)$$
: $P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,\dots,n$

(3) Poisson分布:
$$p(\lambda)$$
: $P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}, \lambda > 0, k = 0,1,2 \cdots$

Poisson分布的期望和方差都等于参数A

概率论与数理统计-常见分布

(4) 均匀分布
$$U(a,b)$$
: $f(x) = \begin{cases} \frac{1}{b-a}, a < x < b \\ 0, \end{cases}$

(5) 正态分布:
$$N(\mu, \sigma^2)$$
: $\varphi(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \sigma > 0, -\infty < x < +\infty$

(6)指数分布:
$$E(\lambda)$$
: $f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0, \lambda > 0 \\ 0, \end{cases}$

概率论与数理统计

数学期望

离散型: $P\{X = x_i\} = p_i, E(X) = \sum_i x_i p_i$

连续型: $X \sim f(x), E(X) = \int_{-\infty}^{+\infty} x f(x) dx$

性质:

(1)
$$E(C) = C, E[E(X)] = E(X)$$

(2)
$$E(C_1X + C_2Y) = C_1E(X) + C_2E(Y)$$

- (3) 若X和Y独立,则E(XY) = E(X)E(Y)
- (4) $[E(XY)]^2 \le E(X^2)E(Y^2)$

协方差

$$Cov(X,Y) = E[(X - E(X)(Y - E(Y))]$$

性质:

$$(1) Cov(X, Y) = Cov(Y, X)$$

(2)
$$Cov(aX, bY) = abCov(Y, X)$$

(3)
$$Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$$

3. 机器学习的背景知识-Python基础

Python 的环境的安装

Anaconda

Jupyter notebook

Pycharm

详细教程: https://zhuanlan.zhihu.com/p/59027692

Python 的环境的安装

Anaconda

https://www.anaconda.com/distribution/ 通常选3.7版本,64位 可以用默认安装,右图两个选择框都勾上

Python 的环境的安装

Jupyter notebook

在cmd环境下,切换到代码的目录,输入命令:

jupyter notebook之后就可以 启动jupyter botebook编辑器

- , 启动之后会自动打开浏览器
- ,并访问http://localhost:8088
- , 默认跳转到

http://localhost:8088/tree

Python 的环境的安装

Pycharm

https://www.jetbrains.com/pycharm/

Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能,如项目模板、远程开发、数据库支持等。个人学习 Python 使用免费的社区版已足够。

如果有edu邮箱,那么推荐使用专业版,edu邮箱是可以免费使用专业版的。 安装过程照着提示一步步操作就可以了。

注意:安装路径尽量不使用带有中文或空格的目录,这样在之后的使用过程中减少一些莫名的错误。

Python 的主要数据类型

- ●字符串
- ●整数与浮点数
- ●布尔值
- ●日期时间
- ●其它

Python 的数据结构

●列表(list)

用来存储一连串元素的容器,列表用[]来表示,其中元素的类型可不相同。

●元组(tuple)

元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组里面的元素的值不能修改,只能读取。元组的符号是()

●集合(set)

集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式是: set(),其中()内可以是列表、字典或字符串,因为字符串是以列表的形式存储的

●字典(dict)

字典dict也叫做关联数组,用大括号{}括起来,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度,其中key不能重复。

Python控制流

- ●顺序结构
- ●分支结构
- ●循环结构
- break、continue和pass
- ●列表生成式

Python函数

●调用函数

调用内置函数

●定义函数

def 函数名(): 函数内容 <return 返回值>

●高阶函数

匿名函数: 高阶函数传入函数时, 不需要显式地定义函数, 直接传入匿名函数更方便

(lambda函数)

Python模块

- •NumPy
- Pandas
- •SciPy
- •Matplotlib
- •Scikit-learn

Python模块-NumPy

NumPy

NumPy是一个用Python实现的科学计算的扩展程序库,包括:

- 1、一个强大的N维数组对象Array;
- 2、比较成熟的(广播)函数库;
- 3、用于整合C/C++和Fortran代码的工具包;
- 4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。

NumPy (Numeric Python) 提供了许多高级的数值编程工具,如:矩阵数据类型、 矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融 公司使用,以及核心的科学计算组织如: Lawrence Livermore, NASA用其处理一些 本来使用C++,Fortran或Matlab等所做的任务。

Python模块-NumPy

切片

```
>>> a[0,3:5]
array([3,4])
>>> a[4:,4:]
                          10
                             11 12 13 14
array([[44,45],[54,55]])
                             21 22 23 24 25
>>> a[:,2]
                          30
                             31 32 33 34 35
array([2,12,22,32,42,52])
>>> a[2::2,::2]
                             41 42 43 44 45
array([[20,22,24],
                          50
                             51 52 53 54 55
       [40,42,44]])
```


Python模块-NumPy

广播

Pandas

Pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。

● 基本数据结构

Series

一维数据结构,包含行索引和数据两个部分

DataFrame

二维数据结构,包含带索引的多列数据, 各列的数据类型可能 不同

● 数据索引

df[5:10] 通过切片方式选取多行

df[col_label] or df.col_label 选取列

df.loc[row_label, col_label] 通过标签选取行/列

df.iloc[row_loc, col_loc] 通过位置(自然数)选取行/列

● 数据合并

pd.merge(left, right) 类数 据库的数据融合操作.

参数: how, 融合方式,包括左连接、右连接、内连接(默认)和外连接; on,连接键;left_on,左键;right_on,右键;left_index,是否将left行索引作为左键;right_index,是否将right行索引作为右键.

	姓名	年龄
0	张某	22
1	left 李某	26
2	段某	24

	姓名	籍贯
7	张某	北京
8	right 李某	四川成都
9	线某	江苏南京

inner

	姓名	年龄	格賞
0	张某	22	北京
1	李某	26	四川成都

pd.merge(left, right, how='inner', on=u'姓名')

outer

	姓名	年龄	籍贯
0	张某	22.0	北京
1	李某	26.0	四川成都
2	投某	24.0	NaN
3	线某	NaN	江苏南京

pd.merge(left, right, how='outer', on=u'姓名')

left

	姓名	年龄	籍賞
0	张某	22	北京
1	李某	26	四川成都
2	段某	24	NaN

pd.merge(left, right, how='left', on=u'姓名')

right

	姓名	年龄	籍贯
0	张某	22.0	北京
1	李某	26.0	四川成都
2	线某	NaN	江苏南京

pd.merge(left, right, how='right', on=u'姓名')

●数据融合

pd.concat([df1, df2])

轴向连接多个 DataFrame.

文件读写

从文件中读取数据(DataFrame)
pd.read_csv() | 从CSV文件读取
pd.read_table() | 从制表符分隔文件读取,如TSV
pd.read_excel() | 从 Excel 文 件 读 取
pd.read_sql() | 从 SQL 表 或 数 据 库 读 取
pd.read_json() | 从JSON格式的URL或文件读取
pd.read_clipboard() | 从剪切板读取

将DataFrame写入文件

df.to_csv() | 写入CSV文件

df.to_excel() | 写入Excel文件

df.to_sql() | 写入SQL表或数据库

df.to_json() | 写入JSON格式的文件

df.to_clipboard() | 写入剪切板

Python模块-SciPy

SciPy

SciPy是构建在NumPy的基础之上的,它 提供了许多的操作NumPy的数组的函数。

SciPy是一款方便、易于使用、专为科学和工程设计的Python工具包,它包括了统计、优化、整合以及线性代数模块、傅里叶变换、信号和图像图例,常微分方差的求解等

向量量化
数学常量
快速傅里叶变换
积分
插值
数据输入输出
线性代数
N维图像
正交距离回归
优化算法
信 号 处理
稀疏矩阵
空间数据结构和算法
特殊数学函数
统计函数

Python模块-Matplotlib

• Matplotlib

Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格 式和跨平台的交互式环境生成 出版质量级别的图形。

通过 Matplotlib, 开发者可以 仅需要几行代码,便可以生成 绘图,直方图,功率谱,条形 图,错误图,散点图等。

Lines, bars and markers

https://matplotlib.org/gallery/index.html

Python模块-Matplotlib

图形的各元素名称如下:

绘图框 是图形的最高容器,所有图形必须放置在绘图框中.

子图 是绘图框中所包含的图形 ,即便绘图框只包含一幅图,也 称之为子图.

元素 是组成子图的部件,从子 图最内部的数据线条到外围的坐 标轴标签等都属于元素

Python模块-Matplotlib

4. 机器学习的开发流程

- 01 机器学习概述
- 02 机器学习的类型
- 03 机器学习的背景知识
- 04 机器学习的开发流程

机器学习的一般步骤

机器学习的一般步骤

数据搜集

数据清洗

特征工程

数据建模

不同视角的机器学习

不同行业的人以为我做的事情

代入 $L(w,b,\alpha)$

$$\begin{split} \min \ L(w,b,\alpha) &= \tfrac{1}{2} ||w||^2 + \sum_{i=1}^m \alpha_i (-y_i (w^T x_i + b) + 1) \\ &= \tfrac{1}{2} w^T w - \sum_{i=1}^m \alpha_i y_i w^T x_i - b \sum_{i=1}^m \alpha_i y_i + \sum_{i=1}^m \alpha_i \\ &= \tfrac{1}{2} w^T \sum \alpha_i y_i x_i - \sum_{i=1}^m \alpha_i y_i w^T x_i + \sum_{i=1}^m \alpha_i \\ &= \sum_{i=1}^m \alpha_i - \tfrac{1}{2} \sum_{i=1}^m \alpha_i y_i w^T x_i \\ &= \sum_{i=1}^m \alpha_i - \tfrac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j (x_i x_j) \end{split}$$

再把 max 问题转成 min 问题:

$$\begin{split} \max & \ \sum_{i=1}^m \alpha_i - \tfrac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j(x_i x_j) = \min \tfrac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j(x_i x_j) - \sum_{i=1}^m \alpha_i \\ s.t. & \ \sum_{i=1}^m \alpha_i y_i = 0, \end{split}$$

程序员以为我做的事情

父母以为我做的事情

我自己以为我做的事情

朋友以为我做的事情

import xgboost as xgb
import numpy as np

实际上我做的事情

数据决定一切

通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后,都有相近的高准确度 ,都有相近的高准确度 。于是诞生了机器学习 界的名言:

成功的机器学习应用不是拥有最好的算法,而是拥有最多的数据!

参考文献

- [1] Andrew Ng. Machine Learning[EB/OL].
- StanfordUniversity,2014.https://www.coursera.org/course/ml
- [2] 李航. 统计学习方法[M]. 北京: 清华大学出版社,2019.
- [3] 周志华. 机器学习[M]. 北京: 清华大学出版社,2016.
- [4] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning[M]. New York: Springer, 2001.
- [5] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006.
- [6] Stephen Boyd, Lieven Vandenberghe, Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
- [7] TOM M MICHELLE. Machine Learning[M]. New York: McGraw-Hill Companies,Inc,1997.

