Complex Analysis Homework 3

Colin Williams

September 17, 2020

Question 3

Question. Which of the following functions are differentiable at z = 0?

- (a) f(z) = (Re(z))(Im(z))
- (b) f(z) = Re(z) + Im(z)

First, I will note that we can express any $z \in \mathbb{C}$ as z = x + iy implying that Re(z) = x and Im(z) = y.

Next, note that if we let f(z) = u(x,y) + iv(x,y) for z = x + iy in some open set G, then if u(x,y) and v(x,y) have continuous first order partial derivatives in G and satisfy both $u_x(x_0,y_0) = v_y(x_0,y_0)$ and $v_x(x_0,y_0) = -u_y(x_0,y_0)$ at the point $z_0 = x_0 + iy_0$, then f is differentiable at z_0 .

Answer. (a)

If we use z = x + iy, then f(z) = (Re(z))(Im(z)) can be reduced to f(z) = xy. This means the functions u and v that we are interested in are u(x,y) = xy and v(x,y) = 0. Thus, the partial derivatives that we are interested in are:

$$u_x(x,y) = y$$
 $v_y(x,y) = 0$ $v_x(x,y) = 0$ $u_y(x,y) = x$

Clearly all of these functions are continuous. Additionally, $u_x(0,0) = 0 = v_y(0,0)$ and $v_x(0,0) = 0 = -u_y(0,0)$; thus, f(z) at z = 0 satisfies all of the above conditions for differentiability, so f(z) must be differentiable at z = 0.

Answer. (b)

If we use z = x + iy, then f(z) = Re(z) + Im(z) can be reduced to f(z) = x + y. This means the functions u and v that we are interested in are u(x, y) = x + y and v(x, y) = 0. Thus, the partial derivatives that we are interested in are:

$$u_x(x,y) = 1$$
 $v_y(x,y) = 0$ $v_x(x,y) = 0$ $u_y(x,y) = 1$

Clearly all of these functions are continuous. However, $u_x(0,0) = 1 \neq 0 = v_y(0,0)$ and $v_x(0,0) = 0 \neq -1 = -u_y(0,0)$; thus, f(z) at z = 0 does not satisfy the above conditions for differentiability, so f(z) must not be differentiable at z = 0.