<u>I</u>				
1 1 () r				

Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination Dec-2023

CS3EA10 Artificial Intelligence

Programme: B.Tech. Branch/Specialisation: CSE All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

necess	ary. No	otations and symbols have their	r usual meaning.		
Q.1	i.	Which is true regarding BFS (a) BFS will get trapped expl	oring a single path	1	
		(c) BFS is not guaranteed to	n generated must be stored in BFS		
		(d) BFS is nothing but Binary			
	ii.	What is Artificial intelligence		1	
	11.	(a) Putting your intelligence		_	
		(b) Programming with your of	-		
		(c) Making a Machine intelli	_		
		(d) Playing a Game			
	iii.	Best-First search can be im	plemented using the following data	1	
		structure.			
		(a) Queue	(b) Stack		
		(c) Priority Queue	(d) Circular Queue		
	iv.	Heuristic function h(n) is-		1	
		(a) Lowest path cost			
		(b) Cheapest path from root to goal node			
		-	st path from root to goal node		
		(d) Average path cost		1	
	V.	Knowledge may be- I. Declarative II. Procedu	ural III Nan pracadural	1	
		(a) Only I above	ural III. Non-procedural (b) Only II above		
		(c) Only III above	(d) Both I and II above		
		(c) omy in above	(a) Dom I and II above		

	vi.	First-order logic.	1				
		"For every a, if a is a poet, then a	is a writer"				
		(a) ∃ a poet (a). writer (a). (b) '	∀ a poet (a). writer (a).				
		(c) All of these (d) I	None of these				
	vii.	Primitive in probabilistic reason a	re:	1			
		(a) Nominal variable (b) I	Random variable				
		(c) Continuous variable (d) I	Discrete variable				
	viii.	Bayes' theorem can be derived-		1			
		(a) Calculate the value of P(B A) with the knowledge of P(B)					
		(b) The Marginal probability					
		(c) The conditional probability					
		(d) Using product rule and cond with known event B	ditional probability of event A				
	ix.	Which of the following is the	general algorithm that can be	1			
	applied on a game tree for deciding win or lose?						
		(a) DFS/BFS Search Algorithms					
		(c) Greedy Search Algorithms					
		(d) Heuristic Search Algorithms					
	х.	The initial value of alpha is?		1			
		(a) Negative Infinity (b)	0				
		(c) Positive Infinity (d)	1				
Q.2	i.	Discuss production systems.		2			
	ii.	Write down the steps of problem s	solving by searching.	3			
	iii.	Discuss the characteristics of AI problem. Can Towers of Hanoi					
		problem be considered as AI prosuitable example.	blem? Justify your answer with				
OR	iv.	Illustrate the working of Breadth l	First Search.	5			
Q.3	i.	Define heuristic function. Give an	n example.	2			
	ii.	What is Greedy Best First Search	h? Explain with an example the	8			
		different stages of Greedy Best Fi	rst search.				
OR	iii.	What is A* search? Explain varie example.	ous stages of A* search with an	8			

Q.4	1.	Difference between predicate and propositional logic.	4
	ii.	Illustrate the use of first order logic to represent knowledge.	6
OR	iii.	Explain in detail about forward & backward chaining algorithm with example.	6
Q.5	i.	State the Baye's rule equation.	2
	ii.	Differentiate between following:	2
		(a) Forward vs Backward Reasoning	
		(b) Monotonic and Non-Monotonic Reasoning	
	iii.	What is entropy? What is its significance in the decision tree	6
		learning? Explain decision tree learning algorithm.	
OR	iv.	Define uncertain knowledge, prior probability and conditional probability. How it is useful for decision making under uncertainty about knowledge? Explain the method of performing exact inference in Bayesian networks briefly.	6
Q.6		Attempt any two:	
	i.	Explain with algorithm and example:	5
		(a) Minimax algorithm	
		(b) Alpha-Beta Pruning	
	ii.	Explain how the problem of 8-puzzle can be solved with the help of heuristics.	5
	iii.	Define the term robotics. Write down the hardware component of robot and its path planning algorithms in certain and uncertain domain.	5

Marking Scheme					
Artificial Intelligence(T)-CS3EA10(T)					

(C) BFS is not guaranteed to find a solution, if exists

Q.1 i)

	ii)	(C) Making a Machine intelligent	1
	iii)	(C) Priority Queue	1
	iv)	(A) Lowest path cost	1
	v)	(D) Both (I) and (II) above	1
	vi)	(B) \forall a poet ((A). writer ((A).	1
	vii)	(A) True	1
	viii)	(D) using product rule and conditional probability of event A with known event B.	1
	ix)	(B) MIN/MAX Algorithms	1
	x)	(A) Negative Infinity	1
0.2			2
Q.2	i.	Production systems definition 1 Mark Diagram and examples- 1 Mark	2
	ii.	Steps of Problem Solving - 2 Marks	3
	111	Name of any searching- 1 Marks	
	iii.	Characteristics 2 Marks	5
		Justification 2 Marks	
		Example- 1 Marks	
OR	iv.	BFS Definition 2 Marks	5
		Steps- 2 Marks	
		Example- 1 Mark	
Q.3	i.	Definition- 1 Mark	2
		Example- 1 Mark	
	ii.	Definition 3 Marks	8
		Stages 3 Marks	
		Example 2 Marks	

OR	iii.	Definition	3 Marks	8
		Stages	3 Marks	
		Example	2 Marks	
Q.4	i.	Predicate	2 Marks	4
Ψ		Propositional	2 Marks	-
	ii.	Knowledge Represention-	2 Marks	6
		First Order Logic-	2 Marks	Ü
		Illustration-	2 Marks	
OR	iii.	Forward Chaining	2 Marks	6
		Example-	1 Mark	
		Backward Chaining-	2 Marks	
		Example	1 Mark	
Q.5	i.	State the Baye's rule equation	1 Mark	2
Q.J	1.	Equation-2	1 Mark	2
	ii.	(i) Forward vs Backward Reasoning	1 Mark	2
	11.	(ii) Monotonic and Non-Monotonic Reasoning	1 Mark	4
	iii.	Entropy-	1 Mark	6
		Significance-	2 Marks	
		Algorithm-	3 Marks	
OR	iv.	Uncertain		6
		Prior Probability-	1 Mark	
		Conditional Probability-	1 Mark	
		How to use-	1 Mark	
		Method-	2 Marks	
Q.6	i.	(i). Minimax algorithm -	3 Marks	6
Q.0	1.	(ii). Alpha-Beta Pruning -	3 Marks	v
	ii.	8-Puzzle Problem-	2 Marks	4
	111.	Steps-	2 Marks	•
OR	iii.	Definition-	1 Marks	4
	111,	H/w Component-	1 Marks	-1
		Path Planning-2	1 1/14/11/0	
