Assignment 1: Image Processing Report

Name: Penumarthi Navya Sree Ram Kumar Chowdary

Roll Number: CS22B1039 Course: Computer Vision Institute: IIIT Raichur

Task 2: Image Processing

1. Objective

To apply classic image processing techniques to enhance and analyze an image using OpenCV.

2. Steps Performed

a. Grayscale Conversion

Converted the original color image to grayscale to reduce complexity.

b. Histogram Equalization

Enhanced contrast of the grayscale image using cv2.equalizeHist().

c. Gaussian Blur

Reduced noise and smoothed the image using a 5x5 Gaussian kernel.

d. Canny Edge Detection

Detected strong edges using the Canny method with thresholds of 50 and 150.

e. Morphological Dilation

Emphasized detected edges by dilating them using a 3x3 rectangular kernel.

f. Watermarking

Overlayed my full name on the final image as a watermark.

3. Output Samples

```
| Step | Image | |------|---------------| | Grayscale | gray.jpg | |
Histogram Equalized| hist_eq.jpg | | Edges | edges.jpg | | Final Dilated
Edge | dilated_with_name.jpg | | Demo Video | demo_video.mp4 |
```

4. Code Link

Refer to task2_image_processing.py and generate_demo_video.py in the code/ directory.

5. Observations

- Histogram Equalization improves detail in dark/light areas.
- Canny edge detection is sensitive to noise hence Gaussian Blur is important.
- Morphological operations help refine the detected features.

6. Learnings

- Practical usage of OpenCV's core functionalities.
- Structured approach to image preprocessing.
- Importance of step-wise debugging and visual verification.

End of Report