Name: _____ / ____

Quiz 2

Part 1

Let $f(n) = 3n^2 + 8n - 4$ and $g(n) = 8n^2 + 3n + 4$. Then which of the following is wrong?

```
A.
f(n) is O(g(n))

B.
g(n) is O(f(n))

C.
f(n) - g(n) is O(1)

D.
f(n) + g(n) is O(n^2)
```

Answer Point Value: 1.0 points

Answer Key: C

Let
$$f(n) = 10n^2 + 19$$
 and $g(n) = 25n^2 + 100n$.
A. $f(n) > g(n)$ for all $n > 0$ and $f(n)$ is $O(g(n))$
B. $f(n)$ is not $O(g(n))$. But $g(n)$ is $O(f(n))$.
C. $f(n)$ is not $O(g(n))$ and $g(n)$ is not $O(f(n))$.
D. $f(n)$ is $O(g(n))$ and $g(n)$ is $O(f(n))$.

Answer Point Value: 1.0 points Answer Key: D Let $f1(n) = 2n^3 + 81$. $f2(n) = 4n^5 + 1$. $f3(n) = 3^n + 10$. f4(n) = n! + 19. Please order them in the increasing order of complexity.

- A. f1, f2, f3, f4
- B. f1, f2, f4, f3
- C. f2, f1, f3, f4
- D. f2, f1, f4, f3

Answer Point Value: 1.0 points

Answer Key: A

Let $S = \{a, b, c, d, e, f\}$. Then the number of non-empty subsets S has is

- Α.
- 6 * 6 = 36
- В.
- 6! = 720
- C.
- $2^6 = 64$
- D.

None of the above

Answer Point Value: 1.0 points

Answer Key: D

Not every problem in class P has at least one solution (algorithm) with time complexity $O(n^k)$.

- True
- False

Answer Point Value: 1.0 points

Answer Key: False

A problem belongs to class P, if all known solutions (algorithms) has polynomial time complexity. True
C False
Answer Point Value: 1.0 points Answer Key: False
Assume a program you wrote took 1000 minutes for $n=10$. When the input size became 40, then also it 1000 minutes. From that you can conclude that the algorithm has $O(0)$ time complexity.
C True
C False
Answer Point Value: 1.0 points Answer Key: False
For any algorithm A, if W(n) denotes its worst case time complexity and A(n) denotes its average case time complexity then A(n) is O(W(n)). True
C False
Answer Point Value: 1.0 points Answer Key: True