Question 1

$$< a_n >$$
 is a real sequence; $\sigma_n := \frac{a_1 + a_2 + ... + a_n}{n}$

Going to show that

I $\lim \inf a_n \leq \lim \inf \sigma_n$ If a_n is unbounded below, then $\lim \inf a_n = -\infty \leq \lim \inf \sigma_n$ So, let a_n be bounded below, thus LHS is a real number,

$$m := \lim \inf a_n$$

Now, if a_n is constant, and equal to a,

$$\forall n \in \mathbb{N} , \inf\{a_i | i \ge n\} = a = \frac{na}{n} = \sigma_n$$

Otherwise, if a_n is not constant, then,

$$\exists i, j \in \mathbb{N} \text{ such that(wlog) } a_i < a_j$$

Suppose if possible, $\lim \inf a_n = m > \lim \inf \sigma_n$ But,

$$\forall n \in \mathbb{N} \text{ such that } n \geq i, j,$$

$$\sigma_n = \frac{a_1 + \dots a_i + a_j + \dots + a_n}{n} \ge \frac{(n-2)m + a_i + a_j}{n}$$

$$\ge \frac{(n-1)m + a_j}{n}$$

$$> m \left[\because m < a_i < a_j \right]$$

Hence, inf
$$\sigma_n \ge \frac{(n-1)m + a_j}{n}$$

$$\implies \lim \inf \sigma_n \ge \lim_{n \to \infty} \frac{(n-1)m + a_j}{n} = m$$

But this contradicts the initial assumption.

II $\limsup a_n \ge \limsup \sigma_n$ If a_n is unbounded above, then $\limsup a_n = \infty \ge \limsup \sigma_n$.

So, let a_n be bounded above, thus LHS is a real number,

$$M := \lim \sup a_n$$

Now, if a_n is constant, and equal to a,

$$\forall n \in \mathbb{N} , \sup\{a_i | i \ge n\} = a = \frac{na}{n} = \sigma_n$$

Otherwise, if a_n is not constant, then,

$$\exists i, j \in \mathbb{N} \text{ such that(wlog) } a_i < a_j$$

Suppose if possible, $\limsup a_n = M < \limsup \sigma_n$ But,

$$\forall n \in \mathbb{N} \text{ such that } n \geq i, j,$$

$$\sigma_{n} = \frac{a_{1} + \dots a_{i} + a_{j} + \dots + a_{n}}{n} \leq \frac{(n-2)M + a_{i} + a_{j}}{n}$$

$$\leq \frac{(n-1)M + a_{j}}{n}$$

$$\leq M \left[:: M > a_{i} > a_{i} \right]$$

Hence,
$$\inf \sigma_n \le \frac{(n-1)M + a_j}{n}$$

$$\implies \lim \inf \sigma_n \le \lim_{n \to \infty} \frac{(n-1)M + a_j}{n} = M$$

But this contradicts the initial assumption.

Question 2

$$\lim \inf \frac{a_{n+1}}{a_n} \le \lim \inf (a_n)^{\frac{1}{n}} \le \lim \sup (a_n)^{\frac{1}{n}} \le \lim \sup \frac{a_{n+1}}{a_n}$$

I
$$\lim \inf \frac{a_{n+1}}{a_n} \le \lim \inf (a_n)^{\frac{1}{n}}$$

II
$$\limsup (a_n)^{\frac{1}{n}} \le \limsup \frac{a_{n+1}}{a_n}$$

Appendix

1. also, make sure to show $\liminf \leq \limsup$