Measuring Dynamics

Comparing and Contrasting
Algorithms for the Computation of
Dynamic Range

Jon Boley, LSB Audio LLC Michael Lester, Shure Incorporated Christopher Danner, University of Miami

Motivation

It has been argued that:

- An increased use of dynamic range compression is directly related to (or even a cause of) the "loudness war"
- Reduced dynamic range is related to poor audio quality

However, these statements are difficult to defend without a solid method for measuring dynamic range

Definition for this study

- · Dynamic Range is
 - Not the range from lowest to highest energy possible...
 - But rather, the range that is actually used by the audible program material
- This definition should be relevant for any metric that claims to be related to some aspect of perceptual quality

Ways to measure dynamic range

- · Loudness Range
 - EBU Technical Document 3342
- TT Dynamic Range Meter
 - Pleasurize Music Foundation
- · Dynamic Spread
 - Vickers (AES 111th Convention)
- pfpf Software
 - Tollerton (http://audiamorous.blogspot.com)

Loudness Range (LRA)

EBU Technical Document 3342, published August 2010

- Based on ITU-R Bs.1770 loudness
- · Integrated using a 3sec sliding window
- Values are gated at -20LU re the loudness level
 - (to focus on foreground sounds)
- · A histogram is created
- · LRA is the range from 10% to 95%
 - "The lower percentile of 10%, can, for example, prevent the fade-out of a music track from dominating Loudness Pance."
 - "The upper percentile of 95%, ensures that a single unusually loud sound, such as a gunshot in a movie, cannot by itself be responsible for a large Loudness Range."

TT Dynamic Range Meter

- · For each 3sec window, calculate peak and RMS
- Sum the RMS over the top 20%
- DR = mean(Peak₂ / ΣRMS)
- The authors argue that using just the top 20%:
 - allows them to compare a variety of program types (e.g., genres of music, speech, etc.), and...
 - is more likely to measure the effects of dynamic range compression since gain reduction is usually greatest for high-level signals.

Dynamic Spread

• Just use the P-norm of the signal

$$d = \left(\frac{1}{M} \sum_{i=0}^{M-1} \left| V_{dB}(i) - \overline{V} \right|^p \right)^{\frac{1}{p}}$$

- Vickers recommended p=1
 - Mean absolute deviation
- We also calculated p=2,3,4
 - Standard deviation, skewness, kurtosis

pfpf

- · Based on BS.1770 loudness
- Three time scales
 - 10ms
 - 200ms
 - -3sec
- Histogram from 50% to 97.7%

Source Material

- 10 music clips from released albums
 - Chosen to represent a variety of dynamic ranges
 - Various genres (jazz, electronic, metal, pop, etc.)
- Each was 10-20sec long
- All normalized to the same BS.1770 loudness

Window size 100ms 200ms 400ms 800ms 1500ms 3000ms Percentile range Every combination, in steps of 5% (e.g., 0-5%, 0-10%, ..., 55-60%, ..., 5-100%, 0-100%)

Perception vs. LRA

Top Ten Covariances:				
	1	0.16575	400ms	0-100%
	2	0.155111	1500ms	0-100%
	3	0.154583	1500ms	0-95%
	4	0.154028	400ms	0-95%
	5	0.15275	1500ms	0-90%
	6	0.148806	400ms	0-90%
	7	0.148083	1500ms	0-85%
	8	0.146167	1500ms	0-80%
	9	0.145556	800ms	0-100%
	10	0.145444	800ms	0-95%

Concerns to be addressed

- · Listening tests have too much variability
 - More extensive listening tests needed
- Musical clips may have been too short (10-20s) to get a meaningful metric from some of these algorithms
 - However, there certainly was a meaningful dynamic range for our listeners
- Use material with more DR