EXAMEN GEOMETRIE COMPUTAȚIONALĂ Restanță (examen online) IDD, 03.06.2020.

- 1. (10p) Fie v = (3, 2, -1), w = (a, b, c). Alegeţi valori numerice pentru a, b, c şi calculaţi produsul vectorial $v \times w$.
- **2.** (10p) Fie punctele O = (0,0), A = (2,0), B = (-1,1), $C = (\lambda,1)$, unde $\lambda \in \mathbb{R}$ este un parametru. Alegeți un punct D în afara triunghiului ΔOAB . Discutați, apoi, în funcție de λ , numărul de puncte de pe frontiera acoperirii convexe a mulțimii $\{O, A, B, C, D\}$.
- 3. (10p) Dați exemplu de poligon cu 7 laturi care să admită o unică triangulare. Aplicați metoda din Teorema Galeriei de Artă și stabiliți câte camere sunt suficiente pentru supravegherea poligonului. Enunțați / justificați un rezultat general.
- **4.** a) (10p) Dați exemplu de mulțime $\mathcal{M} = \{A_1, A_2, A_3, A_4, A_5, A_6\}$ din \mathbb{R}^2 astfel ca diagrama Voronoi asociată lui \mathcal{M} să conțină exact patru semidrepte, iar diagrama Voronoi asociată lui $\mathcal{M} \setminus \{A_1\}$ să conțină exact cinci semidrepte. Justificați alegerea făcută.
- b) (10p) Dați exemplu de mulțime de puncte \mathcal{N} din \mathbb{R}^2 care admite o triangulare având exact șase fețe. Precizați numărul de muchii din triangularea respectivă. Justificați.
- 5. (10p) Fie S o mulțime de segmente. Notăm cu N_n , respectiv N_o , numărul de modificări de statut al dreptei de baleiere, în cazul în care statutul este o mulțime neordonată, respectiv ordonată de segmente (dreapta de baleiere este orizontală). Dați exemplu de mulțime S pentru care $N_n = N_o 3$. Justificați!
- **6.** (10p) Alegeţi trei dreptunghiuri D_1, D_2, D_3 astfel ca D_1 să fie situat în interiorul lui D_2 , iar D_2 şi D_3 să aibă interioarele şi laturile fără puncte comune, indicând coordonatele punctelor. Descrieţi subdiviziunea planară asociată.
- 7. (10p) Fie $\mathcal{P} = (A_1, A_2, \dots, A_n)$ un poligon cu n laturi. Explicați cum poate fi găsită acoperirea convexă a mulțimii $\{A_1, A_2, \dots, A_n\}$ în timp liniar, adaptând Graham's scan.