TO2 Descriptive Statistics and Visualization

MATH 2411 Applied Statistics

WANG Zhiwei

MATH, HKUST

2024-09-16

Let's first simulate a dataset!

Student grading system

```
set.seed(20240916)
n_students <- 100; n_groups <- 5
each_group <- n_students / n_groups
id <- as.integer(c(1:n_students))
gender <- as.factor(sample(c("M", "F"), n_students, replace = TRUE)))
group <- as.factor(rep(1:n_groups, each_group))
math <- round(runif(min = 55, max = 95, n = n_students))
english <- round(runif(min = 55, max = 95, n = n_students))
physics <- round(runif(min = 55, max = 95, n = n_students))
grading_system <- data.frame(id, group, gender, math, english, physics)
grading_system$\frac{1}{2}$ average <- rowMeans(grading_system[, c("math", "english")
knitr::kable(head(grading_system, n = 3), format = 'html')</pre>
```

id	group	gender	math	english	physics	average
1	1	F	80	65	93	79.33333
2	2	M	86	65	73	74.66667
3	3	M	59	61	90	70.00000

```
dim(grading_system)
[1] 100 7
nrow(grading_system)
[1] 100
n_students
[1] 100
ncol(grading_system)
[1] 7
```

table(grading_system\$gender)

FM 49 51

table(grading_system\$group)

1 2 3 4 5 20 20 20 20 20

summary(grading_system\$gender)

FM 49 51

summary(grading_system\$math)

Min. 1st Qu. Median Mean 3rd Qu. Max. 57.00 64.75 77.00 75.89 86.00 94.00

knitr::kable(summary(grading_system[, c("math", "english", "physics", ";

math	english	physics	average
Min. :57.00	Min. :56.00	Min. :55.00	Min. :62.33
1st Qu.:64.75	1st Qu.:65.00	1st Qu.:63.75	1st Qu.:70.67
Median :77.00	Median :76.00	Median :76.00	Median :74.83
Mean :75.89	Mean :75.79	Mean :75.05	Mean :75.58
3rd Qu.:86.00	3rd Qu.:86.00	3rd Qu.:85.00	3rd Qu.:79.75
Max. :94.00	Max. :95.00	Max. :95.00	Max. :88.33

Set na.rm = TRUE.

```
head(rowMeans(grading_system[, c("math", "english", "physics")]))
[1] 79.33333 74.66667 70.00000 83.66667 78.66667 64.66667
colMeans(grading_system[, c("math", "english", "physics")])
math english physics 75.89 75.79 75.05
colSums(grading_system[, c("math", "english", "physics")]) / nrow(grading_system)
math english physics 75.89 75.79 75.05
Missing value?
```

```
var(grading_system[, "math"])
[1] 132.5029
mean((grading_system[, "math"] - mean(grading_system[, "math"]))^2)
[1] 131.1779
sum((grading_system[, "math"] - mean(grading_system[, "math"]))^2) / (ni
[1] 132.5029
sd(grading_system[, "math"])
[1] 11.51099
sqrt(var(grading_system[, "math"]))
```

[1] 11.51099

```
knitr::kable(var(grading_system[, c("math", "english", "physics")]), for
```

	math	english	physics
math	132.502929	5.128182	-7.620707
english	5.128182	146.329192	-24.928788
physics	-7.620707	-24.928788	147.805556

```
sum((grading_system[, "math"] - mean(grading_system[, "math"])) *
  (grading_system[, "physics"] - mean(grading_system[, "physics"]))) /
  (nrow(grading_system) - 1)
```

[1] -7.620707

knitr::kable(cor(grading_system[, c("math", "english", "physics")]), for

	math	english	physics
math	1.0000000	0.0368286	-0.0544549
english	0.0368286	1.0000000	-0.1695080
physics	-0.0544549	-0.1695080	1.0000000

In-class exercise: How to calculate the correlation between math and physics by yourself?

How about the visualization?

Histogram

hist(grading_system[, "average"])

Boxplot

```
boxplot(grading_system[, "average"])
```


Boxplot

```
boxplot(grading_system[, c("math", "english", "physics", "average")])
```



```
plot(x = grading_system[, "math"], y = grading_system[, "average"])
```



```
plot(grading_system[, c("gender", "math", "english", "physics", "average
```



```
fit_lm <- lm(average ~ math, data = grading_system)
plot(average ~ math, data = grading_system)
abline(fit_lm, col = "red")</pre>
```


fit_lm\$coefficients

(Intercept) math 50.755858 0.327063

Want more beautiful figures? Use ggplot2!

Someone said that if you don't know ggplot2, it's like you haven't learned R!

Actually, "someone" is me:)

Histogram

Code

```
# install.packages("ggplot2")
library(ggplot2)
ggplot(grading_system, aes(x = average)) +
    geom_histogram(binwidth = 5, fill = "skyblue", color = "black") +
    geom_vline(aes(xintercept = mean(average)), color = "red", linetype =
    labs(title = "Histogram of average score", x = "Average score", y = "Filter theme_bw() +
    theme(plot.title = element_text(face = "bold", size = 24, hjust = 0.5)
        axis.title = element_text(face = "bold", size = 20),
        axis.text = element_text(size = 12),
        axis.text.x = element_text(size = 16),
        axis.text.y = element_text(size = 16))
```

Histogram

Code

Histogram in group

group argument

Code

Figure

We can also generate the histogram in group.

Histogram in group

group argument

Code

```
ggplot(grading_system, aes(x = average, group = group)) +
  geom_histogram(aes(fill = group, color = group)) +
  labs(title = "Histogram of average score", x = "Average score", y = "I
  theme_bw() +
  theme(plot.title = element_text(face = "bold", size = 24, hjust = 0.5)
        axis.title = element_text(face = "bold", size = 20),
        axis.text = element_text(size = 12),
        axis.text.x = element_text(size = 16),
        axis.text.y = element_text(size = 16),
        legend.title = element_text(size = 16),
        legend.text = element_text(size = 16))
```

Histogram in group

group argument Code **Figure**

#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Histogram with facet_grid()

facet_grid() Code Figure

facet_grid() forms a matrix of panels defined by row and column faceting variables. It is most useful when you have two discrete variables, and all combinations of the variables exist in the data.

Let's see the following example to generate the histograms of all three subjects in each group.

Histogram with facet_grid()

facet_grid()

Code

```
grading_system_long <- reshape2::melt(grading_system[, -7],</pre>
                                      id = c("id", "group", "gender"),
                                      variable.name = "subject",
                                      value.name = "score")
ggplot(grading_system_long, aes(x = score)) +
 geom_histogram(aes(fill = subject, color = subject)) +
  labs(title = "Histogram of all subjects", x = "Score", y = "Frequency")
 facet_grid(group ~ subject) +
 theme bw() +
 theme(plot.title = element_text(face = "bold", size = 24, hjust = 0.5)
        axis.title = element_text(face = "bold", size = 20),
        axis.text = element_text(size = 16),
        axis.text.x = element_text(size = 12, angle = 45, hjust = 1),
        axis.text.y = element_text(size = 12),
        legend.title = element_text(size = 16),
        legend.text = element_text(size = 16),
        strip.text = element_text(size = 16, color = "#490573"))
```

Histogram with facet_grid()

facet_grid() Code Figure

#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Boxplot

Code

```
ggplot(grading_system, aes(y = average)) +
  geom_boxplot(color = "black", fill = "pink") +
  geom_hline(aes(yintercept = mean(average)), color = "red", linetype =
  labs(title = "Boxplot of average score", y = "Frequence") +
  theme_bw() +
  theme(plot.title = element_text(face = "bold", size = 24, hjust = 0.5)
    axis.title = element_text(face = "bold", size = 20),
    axis.text = element_text(size = 12),
    axis.text.x = element_blank(),
    axis.text.y = element_text(size = 16))
```

Boxplot

Code

Boxplot in group

Code Figure

```
ggplot(grading_system, aes(x = group, y = average)) +
  geom_boxplot(aes(fill = group, color = group)) +
  labs(title = "Boxplot of average score", x = "Group", y = "Average scoteme_bw() +
  theme(plot.title = element_text(face = "bold", size = 24, hjust = 0.5)
        axis.title = element_text(face = "bold", size = 20),
        axis.text = element_text(size = 12),
        axis.text.x = element_text(size = 16),
        axis.text.y = element_text(size = 16),
        legend.title = element_text(size = 16),
        legend.text = element_text(size = 16))
```

Boxplot in group

Code

Boxplots with facet_grid()

Code Figure

```
ggplot(grading_system_long, aes(x = group, y = score)) +
  geom_boxplot(aes(fill = group, color = group)) +
  labs(title = "Boxplots of scores", x = "Group", y = "Frequence") +
  facet_grid(subject ~ .) +
  theme_bw() +
  theme(plot.title = element_text(face = "bold", size = 24, hjust = 0.5)
        axis.title = element_text(face = "bold", size = 20),
        axis.text = element_text(size = 16),
        axis.text.x = element_text(size = 16),
        axis.text.y = element_text(size = 16),
        legend.title = element_text(size = 16),
        legend.text = element_text(size = 16),
        strip.text = element_text(size = 16))
```

Boxplots with facet_grid()

Code

Violin plot

Code Figure

```
ggplot(grading_system_long, aes(x = group, y = score)) +
  geom_violin(aes(fill = group, color = group)) +
  labs(title = "Violin plots of scores", x = "Group", y = "Frequence") +
  facet_grid(subject ~ .) +
  theme_bw() +
  theme(plot.title = element_text(face = "bold", size = 24, hjust = 0.5)
        axis.title = element_text(face = "bold", size = 20),
        axis.text = element_text(size = 16),
        axis.text.x = element_text(size = 16),
        axis.text.y = element_text(size = 16),
        legend.title = element_text(size = 16),
        legend.text = element_text(size = 16),
        strip.text = element_text(size = 16))
```

Violin plot

Code

Violin plot with boxplot inner

Code Figure

```
ggplot(grading_system_long, aes(x = group, y = score)) +
 geom_violin(aes(fill = group), trim = FALSE) +
 geom boxplot(width = 0.1, fill = "white", color = "black") +
 ylim(50, 100) +
 labs(title = "Violin plots of scores", x = "Group", y = "Frequence") -
 facet_grid(subject ~ .) +
 theme_bw() +
 theme(plot.title = element_text(face = "bold", size = 24, hjust = 0.5)
        axis.title = element_text(face = "bold", size = 20),
        axis.text = element_text(size = 16),
        axis.text.x = element_text(size = 16),
        axis.text.y = element_text(size = 16),
        legend.title = element_text(size = 16),
        legend.text = element_text(size = 16),
        strip.text = element_text(size = 16))
```

Violin plot with boxplot inner

Code

Code Figure

```
# Use only first two groups
ggplot(grading_system[grading_system$group \%in% c(1, 2), ], aes(x = math
 facet_grid(. ~ group) +
 geom_point(aes(color = group), size = 3) +
  geom_smooth(method = "lm") +
  labs(title = "Scatter plot of math and physics", x = "Math", y = "Phys
 coord_fixed(ratio = 1) +
 theme bw() +
 theme(plot.title = element_text(face = "bold", size = 24, hjust = 0.5)
        axis.title = element_text(face = "bold", size = 20),
        axis.text = element_text(size = 16),
        axis.text.x = element_text(size = 16),
        axis.text.y = element_text(size = 16),
        legend.title = element_text(size = 16),
        legend.text = element_text(size = 16),
        strip.text = element_text(size = 16))
```

Code Figure

#> `geom_smooth()` using formula = 'y ~ x'

Simulate a more reasonable dataset

Multivariate normal distribution Code Figure

```
mean vec <- c(70, 70)
cov_mat < -matrix(c(25, 15, 15, 25), nrow = 2)
math_physics <- MASS::mvrnorm(n = n_students,</pre>
                                 mu = mean_vec, Sigma = cov_mat)
math_physics <- round(math_physics)</pre>
math_physics[math_physics < 55] <- 55</pre>
math_physics[math_physics > 95] <- 95</pre>
grading_system[, c("math", "physics")] <- math_physics</pre>
```

Simulate a more reasonable dataset

Multivariate normal distribution

Code

```
ggplot(grading_system[grading_system$group \%in% c(1, 2), ], aes(x = math
 facet_grid(. ~ group) +
  geom_point(aes(color = group), size = 3) +
 geom_smooth(method = "lm") +
  labs(title = "Scatter plot of math and physics", x = "Math", y = "Phys
 coord fixed(ratio = 1) +
 theme_bw() +
 theme(plot.title = element_text(face = "bold", size = 24, hjust = 0.5)
        axis.title = element_text(face = "bold", size = 20),
        axis.text = element_text(size = 16),
        axis.text.x = element_text(size = 16),
        axis.text.y = element_text(size = 16),
        legend.title = element_text(size = 16),
        legend.text = element_text(size = 16),
        strip.text = element_text(size = 16))
```

Simulate a more reasonable dataset

Multivariate normal distribution Code

Figure

#> `geom_smooth()` using formula = 'y ~ x'

Thank you!

Slides created via Yihui Xie's R package <u>xaringan</u>.

Theme customized via Garrick Aden-Buie's R package <u>xaringanthemer</u>.

Tabbed panels created via Garrick Aden-Buie's R package <u>xaringanExtra</u>.

The chakra comes from remark.js, knitr, and R Markdown.