Manual do usuário do chip EG2133

Chip driver de meia ponte independente trifásico

Histórico de alterações de versão

Descrição da data	Descrição da data do número da versão				
V1.0	16 de agosto de 2017 Primeiro	rascunho da folha de dados EG2133			

Índice

1.	característica	1	
2.	descrever	1	
3.	Áreas de aplicação	1	
4.	Pinos		
	4.1 Definição do pino	2	
	4.2 Descrição do pino	2	
5.	Diagrama de estrutura		3
6. Cir	rcuito de aplicação típico	4	
7.	Características elétricas	4	
	7.1 Parâmetros limite	4	
	7.2 Parâmetros típicos	5	
	7.3 Características do tempo de comutação e diagrama de forma de onda de tempo morto		6
8.	Projeto do aplicativo	7	
	8.1 Tensão de alimentação do terminal VCC		
	8.2 Requisitos do sinal lógico de entrada e características do driver de saída	,	
9.	Tamanho do pacote	9	
	9.1 Tamanho do pacote TSSOP20		

Manual de dados do chip EG2133 V1.0

1.Características

ÿ Design de fonte de alimentação bootstrap flutuante de alta qualidade, suporta tensão

de até 300 V ÿ Três drivers de meia ponte

independentes integrados ÿ Adaptável a tensão de

entrada de 5 V, 3,3 V ÿ Freqüência máxima suporta

500 KHZ ÿ Faixa de tensão VCC de baixo custo 4,5 V-20 V ÿ

Saída capacidade de corrente IO + 1,2A/-1,4A ÿ Circuito de

controle de zona morta integrado ÿ Função

de trava integrada para evitar completamente que as saídas do tubo superior e inferior sejam ligadas

ao mesmo tempo y O canal de entrada HIN está ativo em alto nível e controla a saída HO de

ponta ÿ O canal de entrada LINÿÿÿÿÿ está ativo em nível baixo, controla a saída LO de gama

baixa ÿ Tipo de pacote: TSSOP20

2. Descrição

EG2133 é um tubo MOS de alta potência econômico e um chip de acionamento de porta de tubo IGBT, que integra uma entrada de sinal lógico circuito de processamento, circuito de controle de tempo morto, circuito de trava, circuito de mudança de nível, circuito de filtro de pulso e circuito de acionamento de saída.

A tensão operacional de ponta do EG2133 pode chegar a 300 V, e a faixa de tensão da fonte de alimentação VCC de baixo custo é ampla, de 4,5 V a 20 V. O chip tem uma função de trava para evitar que os transistores de potência de saída sejam ligados ao mesmo tempo. Os canais de entrada HIN e LIN possuem resistores pull-down e pull-up integrados, que mantêm os transistores MOS de potência superior e inferior em um. estado fechado quando a entrada é suspensa. A capacidade de corrente de saída é IO +1,2A /-1,4A no pacote TSSOP20.

3. Campos de aplicação

ÿ Driver de motor DC sem escova trifásico

4. Fixar

4.1 Definição do pino

Figura 4-1 Definição do pino EG2133.

4.2 Descrição do pino

Número do PIN	Nome do alfinete	E/S	descrever
1, 2, 3 HIN1, HIN2	HIN3	-	O sinal de controle de entrada lógica está ativo em alto nível e controla o tubo MOS de potência de ponta. Ligado e desligado "0" é para desligar o tubo MOS de alimentação
			"1" é para ligar o tubo MOS de alimentação
			O sinal de controle de entrada lógica está ativo em nível baixo e controla o tubo MOS de potência de baixo custo.
4 E 6 I INI 1000000	LIN2 <u>ÿÿÿÿÿ</u> , L Iyyş ÿÿÿ		Ligado e desligado
4, 5, 6 LINT yyyyyy		-	*1" é para desligar o tubo MOS de alimentação
			"0" é para ligar o tubo MOS de alimentação
7	CCV	Potência analó	gica
8	GND	- Fonte de a	limentação analógica

Yi Jing Microeletrônica Co., Ltd.

Manual de dados do chip EG2133 V1.0

Chip driver de meia ponte independente trifásico

9, 10, 11 LO, 1LO2, LO3	A saída O co	ontrola a ativação e desativação do tubo de alimentação MOS de baixo custo
12, 15, 18 VS1, VS2, VS3	O Terminal de aler	rramento suspenso de última geração
13, 16, 19 HO1, HO2, HO3	A saída O cor	ntrola a ativação e desativação do tubo de alimentação MOS de última geração
14, 17, 20 VB1, VB2, VB3 Power fonte de alim	ntação flutuant	e de alta qualidade

5. Diagrama de estrutura

Figura 5-1 Diagrama do circuito interno do EG2133.

6. Circuito de aplicação típico

Figura 6-1 Diagrama de circuito de aplicação típico do EG2133.

7. Características elétricas

7.1 Limitar parâmetros

Nome do parâme	tro do símbolo Bootstrap	Condições de t	este unidade:	s mínimas e m	áximas
Fonte de alimentação VB de última g	eração VB1, VB2, VB3	-	-0,3	300	V
Terminais de aterramento susper	sos de última geração VS1, VS2, VS3	-	VB-25 VB	+0,3 V	
Saída de alta qua	llidade HO1, HO2, HO3	-	VS-0,3 VB	+0,3 V	
Saída low-end L0	01, LO2, LO3	-	-0,3 VCC	+0,3 V	
Sinais	CCV	-	-0,3	25	V
lógicos de canal alto de potência	HIN1, HIN2, HIN3	-	-0,3 VCC	+0,3 V	

Sinais lógicos de canal baixo Nível de entrada	LIN1 ÿÿÿÿÿÿ, құмд уў, LIN3 ÿÿÿÿÿÿ	-	-0,3	6	V
temperatura ambiente	temperatura ambiente	-	-40	125 ÿ	
Temperatura de armazenamento	Temperatura de ármazenamento	-	-55	150 ÿ	
Temperatura de soldagem	Temperatura de soldagem	T=10S	-	300 ÿ	

Nota: Exceder os parâmetros extremos listados pode causar danos permanentes ao chip internamente, e operar sob condições extremas por um longo período afetará a confiabilidade do chip.

7.2 Parâmetros típicos

Nenhuma outra instrução, sob as condições de TA=25ÿ, Vcc=12V, capacitância de carga CL=1nF

Fonte de alimentação do nome	símbolo	Condições de Teste I	Mínimo Típi	co Máximo	Unidades	
do parâmetro	VDD	-	4,5	12	20	V
Sinal lógico de	ICC	Entrada flutuante, VCC=12V	-	-	300ua	
entrada de corrente quiescente alto		os sinais de controle de entrad	a 2,5	-	-	V
lógico de entrada potencial baixo Sinal	Vin (L) todos o	s sinais de controle de entrada	a-0,3	0	1,0V	
lógico de entrada potencial alto O nível do sinal	lin(H)	Vin=5V	1	-	15	vocêA
lógico de entrada atual é baixo	Euin(L)	Vin=0V	-15	-	-	vocêA
corrente de fuga da fonte de alime	entação flutuante ILK	VB1,2,3=VS1,2,3=300V	-	0,1	1	vocêA
VBScorrente de repo	VBScorrente de repousoIQBS		-	0,1	10	vocêA
Corrente dinâmica VI	BS IPBS	f=16KHz	-	100 200	ua	
Corrente quiescente Vcc	ikB	VIN=0 ou VIN=5V	-	0,1	10	vocêA
Corrente dinâmica Vcc	ipcc	f=16KHz	-	300 500	uA	
Pressão negativa estática VS	VSN	-	-	-6	-	V
LIN ÿÿÿÿÿ entrada de alto nível corrente de polarização	ILINH	VLIN=5V	-	20	30	vocêA
LIN ÿÿÿÿÿ entrada de baixo nível corrente de polarização	ILINL	VLIN=0V	-	30	40	vocêA
Entrada de alto nível HIN	IHINH	VLIN=5V	-	20	40	vocêA
Entrada de baixo nível HIN corrente de polarização	IHINL	VLIN=0V	-	-	1	vocêA

				•		•
Resistor pull-down de	entrada RIN	-		240		Kÿ
Saída do lado inferior LO, caracterís	ticas de tempo de comutação L	0				
Em atraso	Tonelada	Veja a Figura 7-1	-	300 40	0	n
atraso de desligamento	Cara	Veja a Figura 7-1	-	100 20	0	n
Tempo de subida	Tr	Veja a Figura 7-1	-	25	200	n
Tempo de outono	f	Veja a Figura 7-1	-	20	100	n
Capacidade máxima do drive de sa	aída IO					
Tensão de saída de alta	qualidade VOH	IO=100mA	-	0,7	1,0A	
Tensão de saída do lac	p inferior VOL	IO=100mA	-	0,3	0,45 A	
Fonte de saída IO corrente IO)+	Vo=0V,VIN=VIH PWÿ10uS	-	+1,2	-	Α
Corrente de dissipação de sa	ida IO IO-	Vo=12V,VIN=VIL PWÿ10uS	-	-1,4	-	Α
Saída de alta qualidade HO, caracterís	ticas de tempo de comutação HO					
Em atraso	Tonelada	Veja a Figura 7-2	-	220 40	0	n
atraso de desligamento	Cara	Veja a Figura 7-2	-	200 40	0	n
Tempo de subida	Tr	Veja a Figura 7-2	-	25	200	n
Tempo de outono	f	Veja a Figura 7-2	-	20	100	n
Características do tempo morto						
tempo morto	DT	Veja a Figura 7-3, Sem capacitância de carga CL = 0	50	100 30	0	n

7.3 Características do tempo de comutação e diagrama de forma de onda de tempo morto

Figura 7-1 Diagrama de forma de onda do tempo de comutação LO da saída do lado inferior

Figura 7-2 Diagrama de forma de onda do tempo de comutação HO da saída do lado alt

Figura 7-3 Diagrama de forma de onda de tempo morto

8. Design do aplicativo

8.1 Tensão de alimentação do terminal VCC

Para diferentes tubos MOS, escolha diferentes tensões de acionamento. A tensão de trabalho VDD da fonte de alimentação recomendada para ligar tubos MOS de alta tensão é normalmente 10V-15V;

A fonte de alimentação VCC recomendada para tubos MOS de baixa tensão é 4,5V-10V.

8.2 Requisitos do sinal lógico de entrada e características do driver de saída

As principais funções do EG2133 incluem processamento de entrada de sinal lógico, controle de tempo morto, função de conversão de nível, estrutura de fonte de alimentação de bootstrap suspensa e pontes superiores e inferiores.

Saída de totem. O limite de alto nível do terminal de entrada do sinal lógico está acima de 2,5 V e o limite de baixo nível está abaixo de 1,0 V. A saída do sinal lógico é necessária.

A corrente é pequena e o sinal lógico de saída do MCU pode ser conectado diretamente ao canal de entrada do EG2133.

Os drivers de saída do lado alto e do lado baixo podem afundar até 1,2A e corrente de saída de até 1,4A, canal do lado alto do lado alto

Ele pode suportar uma tensão de 300V. O atraso de condução entre o sinal lógico de entrada e o sinal de controle de saída é pequeno. O atraso de condução de saída de baixo custo é de 300nS.

O atraso de condução de desligamento é de 100nS, o atraso de condução de saída de última geração é de 220nS e o atraso de condução de desligamento é de 200nS. A saída do lado inferior é ativada quando o aumento

O tempo de ativação da saída de ponta é de 25nS e o tempo de queda de desligamento é de 20nS.

O diagrama da função lógica do sinal de entrada e do sinal de saída é mostrado na Figura 8-2:

Figura 8-2 Diagrama da função lógica do sinal de entrada e do sinal de saída.

Tabela verdade lógica para sinais de entrada e saída:

digitar		saída				
Lógica de entrada e saída						
HIN	LINÿÿÿÿ	НО	LO			
0	0	0	1			
0	1	0	0			
1	0	0	0			
1	1	1	0			

Pode-se ver na tabela verdade que quando o sinal lógico de entrada HIN é "1" e LINÿÿÿÿ é "1", a saída de controle do driver HO é "1" e o tubo superior está ligado, e LO é "0"

O tubo inferior é desligado; quando o sinal lógico de entrada HIN é "0" e LINÿÿÿÿ é "0", a saída de controle do driver HO é "0" e o tubo superior é desligado, e LO é "1" e o baixo tubo está ligado.

Ligado; quando o sinal lógico de entrada HIN for "1" e LINÿÿÿÿ for "0" ou HIN for "0" e LIN ÿÿÿÿ for "1", a saída de controle do driver HO e LO será "0".

Os tubos de potência superior e inferior são desligados ao mesmo tempo; o processador lógico interno evita que a saída do controlador dos tubos de potência superior e inferior seja ligada ao mesmo tempo e tem uma função de travamento mútuo.

9. Tamanho do pacote

9.1 Tamanho do pacote TSSOP20

C b . 1	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
D	6.400	6. 600	0. 252	0. 259
E	4.300	4. 500	0.169	0.177
ь	0.190	0.300	0.007	0.012
c	0.090	0. 200	0.004	0.008
E1	6.250	6. 550	0.246	0. 258
A		1. 200		0.047
A2	0.800	1.000	0.031	0.039
A1	0.050	0. 150	0.002	0.006
e	0.65	(BSC)	0.026	(BSC)
L	0.500	0.700	0.020	0.028
Н	0.25(0.25(TYP)		TYP)
θ	1 °	7°	1 °	7°