## Privacy in Cryptocurrency

Mixing and more advanced technologies

# **Anonymity**Definition

Anonymity requires two properties:

- Pseudonymity
   You can interact without revealing your identify.
- Unlinkability
   An attacker is unable to connect transactions from the same user.

Creating user profiles will eventually allow to de-anonymize users.

# **Anonymity**Why

- Cryptocurrency is used for many illegitimate activities.
- Anonymity focused cryptocurrencies are associated with crime.

#### **But:**

- Tainted coins pose a problem (1\$ is not 1\$?)
- Deanonymization creates targets for criminal activity

#### **Bitcoin**

- Bitcoin uses Pseudonyms (addresses)
- UTXO favors unlikability:
  - Can use new address for every received coin (without extra cost)

More anonymous solutions usually build on UTXO.

#### Bitcoin - Regulations

- Due to regulations all exchanges for cryptocurrencies require identification and keep logs.
- Same counts for law-compliant services.
- Some privacy focused chains have special tools to disclose information to trusted parties.

Even if we get anonymity on chain, exchange into and out of cryptocurrency are subject to regulations.

#### Linking Bitcoin transactions

- Link multiple addresses used for inputs into one transaction.
- Link address used for input and address used for change in transaction.
  - Problem: Identify which output is change.
- Identify regular money flows between users.
- Identify time of day
- Use network analysis to identify users IP or Location

# **Anonymity**Anonymity set

The anonymity set is the a set of users or transactions, such that an attacker is unable to identify which item in the set if yours.

- Anonymity set is limitted to users/transactions using a certain feature/system.
- Large anonymity set is preferrable.

## Mixing services

#### Mixing

- Mixing is an external service.
- Can send bitcoin to the service.
- Service shuffles coins.
- User recieves back a coin.



Attacker cannot link outputs to specific inputs.

#### Mixing

#### Centralized mixer:

- Need to trust mixing service
- Service might get hacked
- Fees
- Few people are using it, and most do not have good intentions



#### Dezentralized mixer (Coinshuffle)

Participants create mixing transaction through offchain interaction.

- No central service.
- But still limitted to few users.
- How to find users?



## Anonymity - Regulation

#### Tornado cash

- Banned by regulators (US agencies)
- Legal complient actors will not accept money that has been into tornado cash



## Anonymity - Regulation

#### Tornado cash

- Banned by regulators (US agencies)
- Legal complient actors will not accept money that has been into tornado cash



## Altcoins

## Altcoins ZeroCoin

(withdraw).

- Can change coin from Base currency to mixed currency (deposit) and back
- Cannot be tracked, i.e. impossible to identify which deposit is withdrawn.
- Anonymity set is: All deposits every made (with the same value).



### Altcoins ZeroCoin

#### Deposit:

- Create sequence number Sn and secret x.
- Publish Commit(Sn,x) while burning 1 coin.

#### Withdraw:

- Publish Sn and Zero-knowledger proof of:
  - I know x, such that Commit(Sn,x) is one of the commitments published on the chain.



### Altcoins ZeroCoin

#### Deposit:

- Create sequence number Sn and secret x.
- Publish Commit(Sn,x) while burning 1 coin.

#### Withdraw:

- Publish *Sn* and *Zero-knowledge* proof of:
  - I know x, such that Commit(Sn,x) is one of the commitments published on the chain.

- Sn is published to prevent double spending.
- x is kept secret, to prevent linking.
- Problem: zero-knowledge proofs take space and are expensive to compute.







### Altcoins

#### Zero knowledge proof of knowledge

Given a function f(x), it is possible to create a proof machinery such that:

- Given a value x', and y' = f(x') we can create a proof:  $(\pi, y')$  that shows, that:
  - I know x' such that y' = f(x').
- This reveals nothing about x', than what can be deduced from y'.
- f must be representable as a NP-circuit.

#### **ZeroCoin:**

Zero knowledge proof of set membership

## Altcoins ZeroCash

Similar to ZeroCoin but can transfer deposited coins.

## Transfer: Similar to

- withdraw for used output,
- Deposit for new outputs
- Plus zk proof showing that  $\sum input \ values = \sum output \ values$



#### ZeroCash:

Uses more advance ZK; zkSNARK

**Problem:** 

Requires complex trusted setup.

Use transparent setup: zkSTARK

### Altcoins Monero

Similar to bitcoin (PoW, UTXO). Privacy focused.

Outputs have encoded value.

Then issuing a transaction:

- Pick one of your outputs and 10 other ones.
- Create ring signature using your private key and public keys from all the inputs.
- Proof that outputs and input values are equal using novel zk-proofs.

## Data - privacy

Problem: Data on a blockchain is public

#### Possible solutions:

- Commit reveal scheme: First upload a hash, later full value
  - On reveal data becomes public
  - Some actors may not reveal
- Zero-knowledge proof: Proof property on data, without revealing

Problem:

Is the data available?

# Data - privacy Zero Knowledge example

Problem: z is public

Problem: computational overhead to create proof

Problem: Sell ML inference via blockchain

1. Publish zk-proof:

I know the weights of a network that hashes to x.

2. Reply to accuracy challenge with test data Y:

I know the weights of a network that hashes to x and gives accuracy 0.9 on test data Y.

2. Reply to inference request classifying z:

I know the weights of a network that hashes to x and gives classification true on z.