PATENT ABSTRACTS OF JAPAN

(11) Publication number:

08-204528

(43) Date of publication of application: 09.08.1996

(51) Int.Cl.

H03K 17/687

(21) Application number: 07-

(71) Applicant : SONY CORP

027308

(22) Date of filing:

23.01.1995 (72)Inventor: KOHAMA KAZUMASA

(54) SWITCH CIRCUIT AND COMPOSITE SWITCH CIRCUIT

(57) Abstract:

PURPOSE: To reduce the insertion loss at a desired frequency by connecting respectively a capacitor between a drain terminal of a field effect transistor and ground and/or between a source terminal and ground.

CONSTITUTION: A switching circuit 1 is provided with a bias voltage generating section 2 generating a bias voltage based on two kinds of potential sets impressed to control terminals CTL1, CTL2 and a matching circuit section 3 comprising capacitors C1, C2 arranged in parallel with a signal line. The matching circuit section 3 matches the impedance of a transmission system with the capacitors C1, C2 and parasitic inductive components L1, L2 on the signal path to reduce the loss.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's

decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

20.11.2000

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出廣公開番号

特開平8-204528

(43)公開日 平成8年(1996)8月9日

(51) Int.Cl.

設別記号

庁内整理番号

FΙ

技術表示箇所

HO3K 17/687

9184-5K

HO3K 17/687

G

審査請求 未請求 請求項の数8 FD (全 7 頁)

(21)出魔番号

特惠平7-27308

(71)出頭人 000002185

ソニー株式会社

(22)出廣日

平成7年(1995) 1月23日

東京都品川区北品川6丁目7番35号

(72)発明者 小浜 一正

東京都品川区北品川6丁目7番35号ソニー

株式会社内

(74)代理人 弁理士 田辺 恵基

(54) 【発明の名称】 スイツチ回路及び複合スイツチ回路

(57)【要約】

【目的】本発明はスイツチ回路において、 挿入損失を一 段と低下させる。

【構成】電界効果トランジスタのドレイン端子とグランドとの間、及び又は、電界効果トランジスタのソース端子とグランドとの間に第1の容量及び又は第2の容量を接続し、当該容量値を信号特性に応じて設定する。これにより所望の周波数における挿入損失の低いスイツチ回路を容易に得ることができる。

図1 スイツチ回路の構成

1

【特許請求の範囲】

【請求項1】ドレインーソース間を信号通路とする電界 効果トランジスタと、

上記電界効果トランジスタのゲート端子に接続された高 インピーダンス素子と、

上記電界効果トランジスタのドレイン端子とグランドと の間に接続された第1の容量及び又は上記電界効果トラ ンジスタのソース端子とグランドとの間に接続された第 2の容量とを具えることを特徴とするスイツチ回路。

【請求項2】請求項1に記載のスイツテ回路を複数個組 10 み合わせてなることを特徴とする複合スイツチ回路。

【請求項3】大きさの異なる第1及び第2の電圧がそれ ぞれ互い違いに印加される第1及び第2の制御端子を有 し、当該第1及び第2の制御端子に印加された上記第1 及び第2の電圧に基づいてバイアス電圧を生成するバイ アス電圧発生手段と、

ドレインーソース間を信号通路とする電界効果トランジ スタと、

上記電界効果トランジスタのゲート端子と上記第1の制 御端子との間に接続された高インピーダンス素子とを具 20 えることを特徴とするスイツチ回路。

【請求項4】上記バイアス電圧発生手段は、

上記第1の制御端子と出力端子と間に、上記第1の制御端子から上記出力端子への方向が順方向になるように接続された第1のダイオードと、

上記第1の制御端子と上記出力端子との間に上記第1の ダイオードに対して並列に接続された第1の抵抗とを有 し、

上記第2の制御端子と上記出力端子と間に、上記第2の 制御端子から上記出力端子への方向が順方向になるよう に接続された第2のダイオードと、

上記第2の制御端子と上記出力端子との間に上記第2の ダイオードに対して並列に接続された第2の抵抗とを有 することを特徴とする請求項3に記載のスイツチ回路。

【請求項5】上記電界効果トランジスタのドレイン端子と上記バイアス電圧発生手段の出力端子との間に接続された第2の高インピーダンス素子、及び又は、上記電界効果トランジスタのソース端子と上記バイアス電圧発生手段の出力端子との間に接続された第3の高インピーダンス素子とを具えることを特徴とする請求項1又は請求 40項4に記載のスイツチ回路。

【請求項6】請求項5に記載のスイツチ回路を複数個組 み合わせてなることを特徴とする複合スイツチ回路。

【請求項7】上記電界効果トランジスタはマルチゲート 電界効果トランジスタでなることを特徴とする請求項 1、請求項3、請求項4又は請求項5に記載のスイツチ 回路。

【請求項8】上記電界効果トランジスタは接合型電界効果トランジスタでなることを特徴とする請求項1、請求項3、請求項4又は請求項5に記載のスイツチ回路。

【発明の詳細な説明】

[0001]

【目次】以下の順序で本発明を説明する。

産業上の利用分野

従来の技術

発明が解決しようとする課題(図6) 課題を解決するための手段(図1)

作用

実施例(図1~図5)

- (1) 基本構成(図1)
 - (2) バイアス回路部 (図2):
 - (3) マツチング回路部(図3及び図4)
 - (4) 他の実施例(図5)

発明の効果

[0002]

【産業上の利用分野】本発明はスイツチ回路及び複合スイツチ回路に関し、特に高周波信号の入出力を切り替えるものに適用して好適なものである。

[0003]

【従来の技術】現在、自動車電話や携帯電話等の移動体 通信システムがビジネスとして大きく発展してきてい る。ところで都市部では通信回線の不足が深刻になつて きており、各国で様々な移動体通信システムの実用化が 進められている。これらの通信システムではアナログ通 信方式でなくデイジタル通信方式が多くの場合採用され ており、また通信帯域も現在の移動体通信システムより 高周波側の準マイクロ波帯が使用されている。

【0004】そして準マイクロ波帯の信号を送受するこれら通信システムでは携帯端末の信号処理部に半導体電界効果トランジスタ(FET)が多くの場合用いられている。特に携帯性が重視される携帯端末の場合、小型化、低電圧駆動化、および低消費電力化を実現できるGaAsFETを使用したモノリシツク・マイクロウエーブIC(以下、MMIC(Monolithic Microwave IC)という)の開発が重要視されている。中でも携帯端末内で高周波信号を切り替える高周波スイツテがキーデバイスの1つとなつてきている。

【0005】ここでFETをスイツチングデバイスとして用いる場合のと動作を説明する。まずオン状態で用いるときにはゲートにFETのピンチオフ電圧より充分高いバイアスを印加し、またオフ状態で使用する場合にはゲートにFETのピンチオフ電圧より充分低いバイアスを印加する。この状態でゲートにFETのピンチオフ電圧より充分高いバイアスを印加することによつてドレインーソース間を低インピーダンスの状態に制御できFETのピンチオフ電圧より充分低いバイアスを印加することによつてドレインーソース間を高インピーダンスの状態に制御できFETをオフすることができる。

50 【0006】さて現在市販されているGaAsFETの

場合、オン状態のときドレイン-ソース間に接続された 抵抗成分と近似でき、またオフ状態のときドレインーソ ース間に接続された容量成分と近似できる。このときF ETの抵抗値及び容量値はそれぞれ、FETの単位ゲー ト幅 (Wg) 当たり数 [Ω/nm] 及び数百 [ff/nm] とで きる。例えば抵抗Ronは2 [Ω/m]、容量Coff は 3 00 (fF/mm) となる。

【0007】上記のようなFETを用いてFETスイツ チを構成する場合、ゲート幅Wgとして1 [mm] 程度のF ン状態での損失を 0.2 (dB) 程度と小さく抑えられるは ずである。

[0008]

【発明が解決しようとする課題】ところが上述したよう にFETスイツチを携帯電話端末等に用いる場合、コス トを下げるためにFET又はFETを用いたスイツチI Cをプラスチツクモールドパツケージ等の安価なパツケ ージに実装することが多い。このようなプラステツクモ ールドバツケージは準マイクロ波帯以上の周波数になる と、挿入損失に与える影響が無視できなくなる。

【0009】特に半導体チツブとパツケージの信号ピン を金等のボンデイングワイヤ等で接続する場合、このボ ンディングワイヤのインダクタンスがスイツテの挿入損 失に大きく影響をおよぼす問題があった。この損失は実 際にはインピーダンス不整合による反射損である。例え ばゲート幅Ngが1 [mm] のFET (Ron=2 [Ω])の 入出力端子に、それぞれボンディングワイヤ等による2 [nH] のインダクタンスを付加した場合、図6において 破線で示すように、損失は例えば2 [GH2] において 0.2 [Ω] から 1.1 [Ω] に増大している。従つてスイ ツチICの低挿入損失化を考えた場合、ボンデイングワ イヤ等のインダクタンスの低減が必要となる。

【0010】しかしモールドパツケージでは、実装条件 の自由度が小さくインダクタンスの低減はそれほど簡単 ではない。また信号端子の半導体チツブとパツケージの 接続にボンデイングワイヤを多数本並列に使用する等す ればインダクタンスをある程度低減することができる が、チツブ面積が増大する等のデメリツトも大きいので 得策とは言い難い。そこで上記のような問題を回避する 策としてボンディングワイヤのインダクタンスと、信号 経路及びグランド間に存在する寄生容量との共振を用い てワイヤボンデイングによる損失を小さくしようとする 試しみがある。

【0011】しかしながらこの場合、寄生容量及びボン デイングワイヤの寄生インダクタンスは共に副次的なも ので容易にコントロールできるパラメータではない。例 えば寄生容量をICチツプ上に形成されるFETのゲー ト幅でコントロールすることが考えられるが、このよう なコントロールを行うことによりスイツチ回路としての 最適な構成を取ることができるとは限らず、結局、挿入 50

損失やアイソレーション特性の劣化につながりかねな い。このように挿入損失低減のため最適となるようにポ ンディングワイヤのインダクタンス値と寄生容量値を取 ることは非常に難しいという問題があった。

【0012】また前にも述べたように、FETをスイツ チ用として用いる場合には、ピンチオフ電圧より充分大 きく、オン抵抗を充分小さくできるオンバイアスと、F ETが完全にオフさせることができるオフバイアスとを ゲート端子に印加しなければならないが、一般にオフバ ETを用いれば、数 [GH2] 以下の信号を扱う場合、オー10 イアスには負電位が必要となる。これはピンチオフ電圧 VpがO (V) 以下に設定される場合が多いためであ る。ところが負電源はDC-DCコンバータ等を必要と するためコスト、サイズ、消費電力の点で好ましくな Ý١

> 【0013】これを回避するには正電源のみによつてス イツチ回路が動作すれば良い。実際、FETのドレイン 端子及びソース端子に正のバイアス(Vbias)を印加 し、かつゲートにO (V) 以上(一般にO (V)) の電 位を印加する場合でもドレイン及びソースに対するゲー トの相対的な電位を負にすることができ、この場合には FETをオフ状態(ピンチオフ状態)に制御できる。

> 【0014】しかしながらこの場合にはバイアス(V _{bias})端子が余分に必要となる問題がでてくる。またバ イアス($V_{
> m bias}$)端子から伸びるバイアス綜の引き回し は回路の占有面積の増大、さらにはICの半導体チツブ サイズ及びICバツケージサイズの増大につながりかね ない。またバイアス端子の存在はアイソレーション特性 の劣化等の原因となる。

 $\{0015\}$ またこれに加えて、バイアス(V_{bias})を 印加する場合、充分低いオン抵抗を得るためにはバイア ス(Vbias)をゲートのオンバイアスに対してビルトイ ン電圧V_{bi}程度低い電位に設定する必要がある。このた めバイアス($V_{
m bias}$)電位はFETの制御電位(オンバ イアス) に応じて変動させなければならない。しかしな がらこれは正電源制御スイツチIC等を使用するユーザ にとつて面倒である。

【0016】本発明は以上の点を考慮してなされたもの で、従来に比して高周波信号に対する挿入損失の小さい スイツチ回路を提案しようとするものである。また高い アイソレーション特性を実現できる正電源駆動のスイツ チ回路及びこれらを用いた複合スイツチ回路を提案しよ うとするものである。

[0017]

【課題を解決するための手段】かかる課題を解決するた め本発明のスイツチ回路においては、ドレイン-ソース 間を信号通路とする電界効果トランジスタ(FET1) と、電界効果トランジスタ (FET1) のゲート端子 (G) に接続された高インピーダンス素子(R1)と、 電界効果トランジスタ (FET1) のドレイン端子 (D) とグランドとの間に接続された第1の容量(C

1) 及び又は電界効果トランジスタ(FET1)のソー ス端子(G)とグランドとの間に接続された第2の容量 (C2)とを設ける。

【0018】また本発明のスイツチ回路においては、大 きさの異なる第1及び第2の電圧(V_{CTL1}及びV_{CTL2}) がそれぞれ互い違いに印加される第1及び第2の制御端 子と、当該第1及び第2の制御端子に印加された第1及 び第2の電圧に基づいてバイアス電圧(Vhias)を生成 するバイアス電圧発生手段(2)と、ドレインーソース 間を信号通路とする電界効果トランジスタ(FET1) と、電界効果トランジスタ (FET1) のゲート端子

(G) と第1の制御端子(CTL1)との間に接続され た高インピーダンス素子(R1)とを設ける。さらに本 発明の複合スイツテ回路においては、前述のスイツチ回 路を複数個組み合わしてなる。

[0019]

【作用】電界効果トランジスタ(FET1)のドレイン 端子(D)とグランドとの間、及び又は電界効果トラン ジスタ (FET1) のソース端子 (S) とグランドとの 間に接続された第1の容量(C1)及び又は第2の容量 20 (C2) の容量値を可変することにより信号線路上に存 在する寄生インダクタンス(L1及びL2)とのこれら 容量によつて得られる整合特性を調整する。これにより 所望の周波数での挿入損失を一段と低減することができ

【0020】第1及び第2の制御端子(CTL1及びC TL2) に印加される2種類の電圧に基づいてバイアス 電圧($V_{
m bias}$)を生成することにより、正電源を用いる 場合にもバイアス専用の端子をなくすことができる。こ の分、パツケージやチツプを一段と小型化できる。また 30 これに伴いバイアスラインを介した信号のもれもなくし 得、アイソレーシヨン特性を向上できる。

[0021]

| Zd (Low) | {| R4 | . | R5 | {| Zd (High) | (1)

が成り立つとすると、バイアス回路部2の等価回路は図 2のようになる。従つてダイオードD1と抵抗R5の接 続中点に当たるバイアス端子V_{bias}には、ダイオードの 接合ビルトイン電圧Vbi分だけV(High)より電圧降下 した電位V (High) $-V_{bI}$ が印加される。これは制御端 子CTL2の電位V_{CTL2}が他方の制御端子CTL1の電 40 位 V_{CTL1} より大きい場合(すなわち V_{CTL2} > V_{CTL1} の場 合) にも同様である。

【0026】さて制御端子CTL1及びバイアス端子V bias は高インピーダンスの抵抗R1及びR2、R3を介 してFET1のゲート端子及びドレイン端子、ソース端 子に接続されている。これら制御端子CTL1及びバイ アス端子Vbiasに印加される直流電圧VcTL1及びV(Hi gh)~Vbiによつてゲート端子及びドレイン端子、ソー ス端子が直流バイアスされ、信号経路からの高周波信号 の潺れが防がれている。結果として、ゲート端子のドレ 50 ン状態にあるゲート端子のドレイン端子(ソース端子)

*【実施例】以下図面について、本発明の一実施例を詳述

【0022】(1)基本模成

図1にスイツチ回路1の基本構成を示す。このスイツチ 回路1は2つの制御端子CTL1及びCTL2に印加さ れる2種類の電位に基づいてバイアス電圧を発生するバ イアス電圧発生部2と、信号線路に対してシヤントの位 置に配置された容量C1及びC2によつてなるマツチン グ回路部3とを有することを特徴とする。ここではまず 10 バイアス回路部2について説明し、続いてマツチング回 路3について説明する。

【0023】(2)バイアス回路部

バイアス回路部2は2つの制御端子CTL1及びCTL 2間に接続されたダイオードD1、D2及び抵抗R4、 R5によって構成されている。ここで制御端子CTL1 及びCTL2には互い違いに2種類の電位V(High)及 びV (Low) (V (High) >V (Low)) が印加される ようになされている。例えば制御端子CTL1に3 [V] / O [V] が印加されるとき、他方の制御端子C TL2には0 [V] /3 [V] が印加されるといつた具

【0024】ここでは制御端子CTL1の電位VcIL1が 他方の制御端子CTL2の電位V_{CTL2}より大きいとして (すなわち V_{CTL1} > V_{CTL2} として)、バイアス回路部2 がバイアス電圧を発生する様子を説明する。このときダ イオードD1は順方向にバイアスされ、ダイオードD2 は逆方向にバイアスされる。その結果、ダイオードD1 は抵インピーダンスZd(Low)の状態となり、ダイオ ードD2は高インビーダンスZd(High)の状態とな

【0025】ここで次式 【数1】

合である。

イン端子(ソース端子)に対する相対電位は ${\sf V}_{\sf bi}$ (${\sf V}$ CTL1=V (High) の時)、又はV (Low) -V (High) +V_{bi} (V_{CTL1}=V (Low) の時) となる。

【OO27】一般にFETのドレインーソース間抵抗 は、FETのゲート端子に印加されるバイアス電圧がビ ルトイン電圧程度で飽和傾向となるため、スイツチ用F ETとしてのゲート端子に印加するオンバイアス電圧は ビルトイン電圧程度に設定するのが適当である。これは たとえゲート端子にビルトイン電圧以上の電圧を印加し ようとしてもゲート端子にリーク電流が流れ、ゲート端 子に接続した抵抗で電圧降下を起こすためビルトイン電 圧以上の電圧はゲートにはかかり難いことによる。

【0028】従つて上記のようにいかなる大きさの制御 電圧でコントロールしたとしても(ただしV(Low)と V (High) の差はビルトイン電圧以上必要である)、オ

に対する相対電位はスイツチ用FETとして最適電圧の ビルトイン電圧Vbiとなる。以上のように、バイアス回 路部2を設けたことにより、外部接続用のバイアス端子 を不要とでき、パツケージやチツブの小型化を実現でき る。またバイアス線も不要にできるのでバイアス線を介 した信号の漏れもなくし得、性能の向上を実現できる。 また正電源のみでスイツチ回路1を制御できる。さらに 制御電圧を変えた場合においてもIC中で用いられるF ETのオンバイアスは最適値を維持できる。

【0029】(3)マツチング回路部

マツチング回路部3は信号線路に対してシャントの位置 に配置された容量C1、C2と信号経路上の寄生インダ クタンスL1、L2とによって伝送系とのインピーダン*

$$Z_{in} = j \omega L + \frac{(j \omega L + R) / j \omega C}{(1 / j \omega C + j \omega L + R)}$$

$$= \frac{j \omega \left(L - \omega^{2} L^{2} C + L - C R^{2}\right)}{\left(1 - \omega^{2} L C + j \omega C R\right)} + R \qquad \dots \dots (2)$$

となる。従つて整合周波数fは、次式

※20※【数3】 $f = 1 / (2 \pi L) ((2 L - CR^2) / C)^{\alpha \cdot 5}$

.... (3)

となる。この式より例えばLが2 [nH]、Cが1 [pF] とすると、整合周波数fは 3.1 [GHz] となる。

【0031】次にスイツチ回路1における寄生インダク タンスLを1 [nH] としてCの値を変化させた場合の挿 入損失の周波数特性のシミユレーション結果を図4に示 す。ただしこのシミコレーション結果は、FETとして ゲート幅1 [m]、ゲート長0.5 [μm] のG a A s 電 界接合型FET (JFET) を用いた場合の例である。この 図からC= 250 (fF)、 500 (fF),のとき、C=0の場 合より損失が小さくなつている領域があり、この整合用 容量の効果があることが分かる。

【0032】また図4と先の整合周波数の式より、数 [GBz] 程度の周波数の場合、整合用容量の大きさは、 高々1 [pF] 程度で低損失化の効果があることが分か る。ただしボンデイングワイヤ等による寄生インダクタ ンスは数 [nH] だとする。また1 [pF] 程度の容量値 は、道常のGaAsFETプロセスの窒化シリコン絶縁 膜を用いたMIM (Metal-Lnsulator-Metal) 容量の場 合、 100 [μm] 角程度の大きさで実現できるため、半 40 導体チップ上の占有面積は非常に小さくて済むことにな る。また、非常に小さな容量をチツブ上に作り込むこと により、所望の周波数で挿入損失を低減できる。

【0033】(4)他の実施例

なお上述の実施例においては、スイツチ回路1としてバ イアス回路部2及びマツチング回路部3の両方を備える ものについて述べたが、本発明はこれに限らず、バイア ス回路部2だけを備えるスイツチ回路にもマツチング回 路部3だけを備えるスイツチ回路にも適用し得る。

ス素子を接続する場合について述べたが、本発明はこれ に限らず、いずれか一方にだけ高インピーダンス素子を 接続する場合にも適用し得る。

のドレイン端子とグランドとの間及びソース端子とグラ ンドとの間に容量C1及びC2をそれぞれ接続する場合 について述べたが、本発明はこれに限らず、いずれか一 方にだけ容量を接続する場合にも適用し得る。

【0036】さらに上述の実施例においては、FET1 としてシングルゲートFETを用いる場合について述べ たが、本発明はこれに限らず、デユアルゲートFETの 場合にもマルチゲートFETの場合にも広く適用し得

【0037】さらに上述の実施例においては、FET1 として接合型FETを用いる場合について述べたが、本 発明はこれに限らず、MESFETの場合にも適用し得

【0038】さらに上述の実施例においては、基本的な スイツチ回路1について述べたが、本発明はこれに限ら ず、これらスイツテ回路1を複数個組み合わせてなる複 合型のスイツチ回路にも適用し得る。例えば図5に示す ように、信号線路に対してシリーズの位置とシヤントの 位置にそれぞれスイツチ回路 1 が配置される複合型のス イツチ回路にも適用し得る。

[0039]

【発明の効果】上述のように本発明によれば、電界効果 トランジスタのドレイン端子とグランドとの間、及び又 【0034】また上述の実施例においては、FET1の 50 は、電界効果トランジスタのソース端子とグランドとの

ドレイン端子及びソース端子にそれぞれ高インピーダン

*スを整合し、損失の低減を図つている。図3にスイツテ

がオン状態のときの等価回路を示す。ただし図では高周

波信号の入出力端子RF1、RF2の部分に存在するボ

ンデイングワイヤ等の寄生インダクタンスをL1及びL

2とし、また簡単のためにFETのオン抵抗はOとす

る。また容量Ctotallは容量C1と寄生容量C'との合

成容量を示しており、また容量C_{total2}は容量C2と寄

【0030】この図より、寄生インダクタンスLI及び

とし、角周波数をω、伝送系の特性インピーダンス、終

10 L2をLとし、合成容量Ctotal1及びCtotal2をC/2

端をRとすると、入力インピーダンスZinは、次式

生容量C"との合成容量を示している。

【0035】さらに上述の実施例においては、FET1

間に第1の容量及び又は第2の容量を接続し、当該容量値を信号特性に応じて設定することにより所望の周波数における挿入損失の低いスイツチ回路を実現することができる。

【0040】また本発明によれば、電界効果トランジスタを用いたスイツチ回路に2つの制御端子に印加される制御電圧からバイアス電圧を発生するバイアス回路を設けたことにより、正電源を用いる場合にも専用のバイアス端子をなくし得るアイソレーション特性に優れたスイツチ回路を実現することができる。

【図面の簡単な説明】

【図1】本発明によるスイツチ回路の一実施例を示す接 続図である。

【図2】2つの制御端子に異なる電位が印加された状態

におけるバイアス回路部の等価回路を示す接続図である。

10

【図3】スイツチ回路がオン状態に制御されている状態における信号線路の等価回路を示す接続図である。

【図4】マツチング回路部による挿入損失の改善の説明に供する特性曲線図である。

【図5】複合スイツチ回路の説明に供する接続図である

【図6】寄生インダクタンスによる挿入損失の説明に供10 する特性曲線図である。

【符号の説明】

【図2】

1 ……スイツチ回路、2 ……バイアス回路部、3 ……マツチング回路部。

図3 スイッチオン時の信号線等価回路

図2 バイアス電圧発生回路部の等価回路 (YCTL1>VCTL2のとき)

図4 挿入損失特性 (実施例)

図5 複合スイツチ回路の構成

図6 寄生インダクタンスによる婦人担失特性