- ▶ The proof of the Cook-Levin Theorem is outside the scope of this course.
 - ▶ It would require at least one lecture, alone!.

- ➤ The proof of the Cook-Levin Theorem is outside the scope of this course.
 - ▶ It would require at least one lecture, alone!.
- ► The **structure** of the proof is as follows:
 - ▶ We consider any language $\mathcal{L} \in \mathbf{NP}$, and we show that $\mathcal{L} \leq_p \mathtt{SAT}$.

- ➤ The proof of the Cook-Levin Theorem is outside the scope of this course.
 - ► It would require at least one lecture, alone!.
- ► The **structure** of the proof is as follows:
 - ▶ We consider any language $\mathcal{L} \in \mathbf{NP}$, and we show that $\mathcal{L} \leq_p \mathtt{SAT}$.
 - To do that, we consider any possible polynomial p and any polytime deterministic TM \mathcal{M} .
 - ▶ Intuitively, these exist because $\mathcal{L} \in \mathbf{NP}$

- ➤ The proof of the Cook-Levin Theorem is outside the scope of this course.
 - ▶ It would require at least one lecture, alone!.
- ► The **structure** of the proof is as follows:
 - We consider any language $\mathcal{L} \in \mathbf{NP}$, and we show that $\mathcal{L} \leq_p \mathbf{SAT}$.
 - To do that, we consider any possible polynomial p and any polytime deterministic TM \mathcal{M} .
 - ▶ Intuitively, these exist because $\mathcal{L} \in \mathbf{NP}$
 - We define a polynomial-time transformation $x \mapsto \varphi_x$ from strings to CNFs such that

$$\varphi_x \in \text{SAT} \Leftrightarrow \exists y \in \{0,1\}^{p(|x|)}.\mathcal{M}(x,y) = 1$$

▶ This is the crucial step, and requires quite some work. It amounts to showing that computation in TM is *inherently local*.

- ➤ The proof of the Cook-Levin Theorem is outside the scope of this course.
 - ▶ It would require at least one lecture, alone!.
- ► The **structure** of the proof is as follows:
 - ▶ We consider any language $\mathcal{L} \in \mathbf{NP}$, and we show that $\mathcal{L} \leq_p \mathtt{SAT}$.
 - To do that, we consider any possible polynomial p and any polytime deterministic TM \mathcal{M} .
 - ▶ Intuitively, these exist because $\mathcal{L} \in \mathbf{NP}$
 - ▶ We define a polynomial-time transformation $x \mapsto \varphi_x$ from strings to CNFs such that

$$\varphi_x \in \mathtt{SAT} \Leftrightarrow \exists y \in \{0,1\}^{p(|x|)}.\mathcal{M}(x,y) = 1$$

- ▶ This is the crucial step, and requires quite some work. It amounts to showing that computation in TM is *inherently local*.
- ▶ Finally, we need to show that SAT \leq_p 3SAT.

- ▶ Suppose you are studying the complexity of a language L, and you are convinced that the underlying problem is hard. How should you back your claim?
- ▶ By proving that $\mathcal{L} \in \mathbf{P}$?
 - ▶ Of course not, this way you rather prove that \mathcal{L} is easy.

- Suppose you are studying the complexity of a language L, and you are convinced that the underlying problem is hard. How should you back your claim?
- ▶ By proving that $\mathcal{L} \in \mathbf{P}$?
 - ▶ Of course not, this way you rather prove that \mathcal{L} is easy.
- ▶ By proving that $\mathcal{L} \in \mathbf{EXP}$?
 - No, the fact that there is an exponential-time algorithm deciding \mathcal{L} does **not** mean that no polynomial-time algorithm for \mathcal{L} exist.

- Suppose you are studying the complexity of a language L, and you are convinced that the underlying problem is hard. How should you back your claim?
- ▶ By proving that $\mathcal{L} \in \mathbf{P}$?
 - ▶ Of course not, this way you rather prove that \mathcal{L} is easy.
- ▶ By proving that $\mathcal{L} \in \mathbf{EXP}$?
 - **No**, the fact that there is an exponential-time algorithm deciding \mathcal{L} does **not** mean that no polynomial-time algorithm for \mathcal{L} exist.
- ▶ By proving that $\mathcal{L} \in \mathbf{NP}$?
 - Again, this **does not** mean much.

- Suppose you are studying the complexity of a language L, and you are convinced that the underlying problem is hard. How should you back your claim?
- ▶ By proving that $\mathcal{L} \in \mathbf{P}$?
 - ▶ Of course not, this way you rather prove that \mathcal{L} is easy.
- ▶ By proving that $\mathcal{L} \in \mathbf{EXP}$?
 - No, the fact that there is an exponential-time algorithm deciding \mathcal{L} does **not** mean that no polynomial-time algorithm for \mathcal{L} exist.
- ▶ By proving that $\mathcal{L} \in \mathbf{NP}$?
 - Again, this **does not** mean much.
- ▶ By proving that \mathcal{L} is **NP**-complete?
 - Yes, this way you prove that the problem is not so hard (being in NP), but not so easy either (unless P = NP).

Proving a Problem NP-complete

▶ If we want to prove \mathcal{L} to be **NP**-complete, we have to prove two statements:

Proving a Problem **NP**-complete

- If we want to prove \mathcal{L} to be **NP**-complete, we have to prove two statements:
 - 1. That \mathcal{L} is in **NP**.
 - This amounts to showing that there are p polynomial and \mathcal{M} polytime TM such that \mathcal{L} can be written as

$$\mathcal{L} = \{x \in \{0, 1\}^* \mid \exists y \in \{0, 1\}^{p(|x|)}. \mathcal{M}(x, y) = 1\}$$

► This is typically rather easy.

Proving a Problem NP-complete

- If we want to prove \mathcal{L} to be **NP**-complete, we have to prove two statements:
 - 1. That \mathcal{L} is in **NP**.
 - This amounts to showing that there are p polynomial and \mathcal{M} polytime TM such that \mathcal{L} can be written as

$$\mathcal{L} = \{x \in \{0, 1\}^* \mid \exists y \in \{0, 1\}^{p(|x|)}. \mathcal{M}(x, y) = 1\}$$

- ► This is typically rather easy.
- 2. That any other language $\mathcal{H} \in \mathbf{NP}$ is such that $\mathcal{H} \leq_p \mathcal{L}$.
 - ▶ We can of course prove the statement directly.
 - More often (e.g. when showing **3SAT NP**-complete), one rather proves that $\mathcal{J} \leq_p \mathcal{L}$ for a language \mathcal{J} which is already known to be **NP**-complete.
 - ▶ This is correct, simply because \leq_p is transitive:

$$\begin{array}{c} \vdots \\ \mathcal{H} \xrightarrow{\leq_p} \mathcal{J} \xrightarrow{\leq_p} \mathcal{L} \end{array}$$

Theorem

The Maximum Independent Set Problem INDSET is **NP**-complete.

Theorem

The Maximum Independent Set Problem INDSET is **NP**-complete.

▶ There is a polytime reduction from SAT to INDSET.

Theorem

The Maximum Independent Set Problem INDSET is \mathbf{NP} -complete.

▶ There is a polytime reduction from SAT to INDSET.

Theorem

The Subset Sum Problem SUBSETSUM is **NP**-complete.

There are polytime reductions from **3SAT** to a variation **OL3SAT** of it, and from the latter to **SUBSETSUM**.

Theorem

The Maximum Independent Set Problem INDSET is \mathbf{NP} -complete.

▶ There is a polytime reduction from SAT to INDSET.

Theorem

The Subset Sum Problem SUBSETSUM is NP-complete.

► There are polytime reductions from 3SAT to a variation 0L3SAT of it, and from the latter to SUBSETSUM.

Theorem

The Decisional 0/1 Linear Programming Problem ILP is $\mathbf{NP}\text{-}complete$

▶ There is an easy polytime reduction from SAT to ILP.

The Graph of **NP**-complete Problems

▶ For any pair \mathcal{L} , \mathcal{H} of **NP**-complete problems, we have that

$$\mathcal{L} \leq_p \mathcal{H} \qquad \mathcal{H} \leq_p \mathcal{L}$$

▶ In other words, \mathcal{L} and \mathcal{H} are equivalent.

The Graph of **NP**-complete Problems

▶ For any pair \mathcal{L} , \mathcal{H} of **NP**-complete problems, we have that

$$\mathcal{L} \leq_p \mathcal{H} \qquad \mathcal{H} \leq_p \mathcal{L}$$

- ▶ In other words, \mathcal{L} and \mathcal{H} are equivalent.
- ▶ This being said, defining a reduction from \mathcal{L} to \mathcal{H} is sometimes easy, and sometimes very difficult, and it is instructive to think at **NP**-complete problems as forming a graph, where edges are *natural* polytime reductions
 - ▶ A fragment, the one we have encountered so far is the following

The Graph of **NP**-complete Problems

ightharpoonup For any pair \mathcal{L}, \mathcal{H} of **NP**-complete problems, we have that

$$\mathcal{L} \leq_p \mathcal{H} \qquad \mathcal{H} \leq_p \mathcal{L}$$

- ▶ In other words, \mathcal{L} and \mathcal{H} are equivalent.
- ▶ This being said, defining a reduction from \mathcal{L} to \mathcal{H} is sometimes easy, and sometimes very difficult, and it is instructive to think at **NP**-complete problems as forming a graph, where edges are *natural* polytime reductions
 - ▶ A fragment, the one we have encountered so far is the following

▶ In fact, this graph is **huge**: thousands of different problems are known to be **NP**-complete

- What if we actually prove a problem \mathcal{L} we are interesting in solving to actually be **NP**-complete?
 - ▶ Is the hope to solve it for inputs of nontrivial length lost?

- What if we actually prove a problem \mathcal{L} we are interesting in solving to actually be **NP**-complete?
 - ▶ Is the hope to solve it for inputs of nontrivial length lost?
- ightharpoonup We know that this implies that, given the state-of-the-art in computational complexity, no polynomial time algorithm for \mathcal{L} is known.

- What if we actually prove a problem \mathcal{L} we are interesting in solving to actually be **NP**-complete?
 - ▶ Is the hope to solve it for inputs of nontrivial length lost?
- ▶ We know that this implies that, given the state-of-the-art in computational complexity, no polynomial time algorithm for \mathcal{L} is known.
- ▶ On the other hand, given that \mathcal{L} is in **NP**, and that **SAT** is **NP**-complete, we know that $\mathcal{L} \leq_p SAT$, i.e. that instances of \mathcal{L} can be efficiently translated into instances of **SAT**.

- ▶ What if we actually prove a problem \mathcal{L} we are interesting in solving to actually be **NP**-complete?
 - ▶ Is the hope to solve it for inputs of nontrivial length lost?
- ▶ We know that this implies that, given the state-of-the-art in computational complexity, no polynomial time algorithm for \mathcal{L} is known.
- ▶ On the other hand, given that \mathcal{L} is in **NP**, and that **SAT** is **NP**-complete, we know that $\mathcal{L} \leq_p SAT$, i.e. that instances of \mathcal{L} can be efficiently translated into instances of **SAT**.
- ➤ This is often **very useful**, because specialised tools for SAT, called SAT-solvers do exist.
 - ► They do not work in polynomial time.
 - Concretely, they work extremely well on a relatively large class of formulas.

Thank You!

Questions?