Package 'genomicper'

October 13, 2022

Type Package
Title Circular Genomic Permutation using Genome Wide Association p-Values
Version 1.7
Date 2021-05-06
Author Claudia P Cabrera [aut, cre], Pau Navarro [aut], Chris S Haley [aut]
Maintainer Claudia P Cabrera <c.cabrera@qmul.ac.uk></c.cabrera@qmul.ac.uk>
Imports stats,grDevices,utils,graphics,DBI,reactome.db,AnnotationDbi
Description Circular genomic permutation approach uses genome wide association studies (GWAS) results to establish the significance of pathway/gene-set associations whilst accounting for genomic structure(Cabrera et al (2012) <doi:10.1534 g3.112.002618="">). All single nucleotide polymorphisms (SNPs) in the GWAS are placed in a 'circular genome' according to their location. Then the complete set of SNP association p-values are permuted by rotation with respect to the SNPs' genomic locations. Two testing frameworks are available: permutations at the gene level, and permutations at the SNP level. The permutation at the gene level uses Fisher's combination test to calculate a single gene p-value, followed by the hypergeometric test. The SNP count methodology maps each SNP to pathways/gene sets and calculates the proportion of SNPs for the real and the permutated datasets above a predefined threshold. Genomicper requires a matrix of GWAS association p-values and SNPs annotation to genes. Pathways can be obtained from within the package or can be provided by the use</doi:10.1534>
License GPL-2
NeedsCompilation no
Depends R (>= $3.5.0$)
Repository CRAN
Date/Publication 2021-05-08 08:00:05 UTC
R topics documented:
genomicper-package

2 genomicper-package

gene	es_permutation																	 		 	5
geno	ome_order																	 		 	7
	pathways																				
	results																				
	rbg																				
plot	_results																	 		 	12
read	12_paths																	 		 	13
read	l_pvals																	 		 	15
RHS	SAXXXXX																	 		 	17
SNF	PsAnnotation .																	 		 	17
snps	s_permutation .																	 . .		 	18
Index																					20
genomicpe	er-package	Circ	cula	r G	ene	om	ic l	Pei	rmi	uta	ıtic	ons	5								

Description

Description: Circular genomic permutation approach uses genome wide association studies (GWAS) results to establish the significance of pathway/gene-set associations whilst accounting for genomic structure. All single nucleotide polymorphisms (SNPs) in the GWAS are placed in a 'circular genome' according to their location. Then the complete set of SNP association p-values are permuted by rotation with respect to the SNPs' genomic locations. Two testing frameworks are available: permutations at the gene level, and permutations at the SNP level. The permutation at the gene level uses Fisher's combination test to calculate a single gene p-value, followed by the hypergeometric test. The SNP count methodology maps each SNP to pathways/gene-sets and calculates the proportion of SNPs for the real and the permutated datasets above a pre-defined threshold. Genomicper requires a matrix of GWAS association p-values and SNPs annotation to genes. Pathways can be obtained from within the package or can be provided by the user.

Details

Package: genomicper Type: Package Version: 1.7

Date: 2020-05-06 License: GPL-2

Author(s)

Claudia P. Cabrera, Pau Navarro, Chris S. Haley Maintainer: Claudia Cabrera <c.cabrera@qmul.ac.uk> genomicper-package 3

References

SNP-level Permutations:

Genomicper: genome-wide association SNP-set analysis

Claudia P. Cabrera*, Pau Navarro*, Jennifer E. Huffman, Alan F. Wright, Caroline Hayward, Harry Campbell, James F. Wilson, Igor Rudan, Nicholas D. Hastie, Veronique Vitart, Chris S. Haley*

Gene-level Permutations:

Uncovering Networks from Genome-Wide Association Studies via

Circular Genomic Permutation. G3: Genes|Genomes|Genetics 2, 1067-1075.

Claudia P. Cabrera*, Pau Navarro*, Jennifer E. Huffman, Alan F. Wright, Caroline Hayward, Harry Campbell, James F. Wilson, Igor Rudan, Nicholas D. Hastie, Veronique Vitart, Chris S. Haley*

See Also

Genomicper functions: 1) read_pvals, 2) genome_order, 3) get_pathways, 4) read2_paths, 5A) snps_permutation, 5B) genes_permutation, 6) get_results, 7) plot_results

```
# Genomicper functions
# 1) read_pvals(data_name="",snps_ann="")
# 2) genome_order(all_data="")
# 3) get_pathways(source="reactome",all_paths="",envir="")
# 4) read2_paths(ordered_alldata="",gs_locs="",sets_from="",sets_prefix="RHSA",level="")
# 5A) snps_permutation(ordered_alldata="",pers_ids="",ntraits="",nper="",saveto="",
# threshold="",gs_locs=gs_locs,envir = "")
# 5B) genes_permutation(ordered_alldata="",pers_ids="",pathways="",
# ntraits="",nper="",threshold="",saveto="",gs_locs=gs_locs,envir = "")
# 6) get_results(res_pattern="Permus",level="snp",from="workspace",
# threshold=0.05, envir = "")
# 7) plot_results(results = "", by = "", plot_all = TRUE, var = "", save_plot = TRUE,
# plot_name = "", bf = FALSE, save_qq = TRUE)
# SNPs annotation and Pathways provided by user
# all data stored at the WORKSPACE
### Load files for analysis
data(demo, SNPsAnnotation)
# Read & format GWAS pvalues
all_data <- read_pvals(data_name=demo,snps_ann=SNPsAnnotation)</pre>
# Order data according to the genome
genome_results <-genome_order(all_data=all_data)</pre>
# Results from genome_order
ordered_alldata <- genome_results$ordered_alldata</pre>
gs_locs <- genome_results$gs_locs</pre>
```

4 demo

```
# Create new environment to save variables (e.g. pathways, permutations):
gper.env <- new.env()</pre>
# Pathways can be downloaded using the function get_pathways()
# Load example pathways into the new environment.
data(RHSA164843,RHSA446343,RHSA8876384,RHSA8964572,RHSA109582,RHSA1474244,envir=gper.env)
# Map SNPs to pathways
paths_res <- read2_paths(ordered_alldata=ordered_alldata,</pre>
gs_locs=gs_locs,sets_from="workspace",sets_prefix="RHSA",
level="snp",envir=gper.env)
# Results from read2_paths:
pers_ids <- paths_res$per_ors
pathways<- paths_res$pathways
# Perform permutations:
snps_permutation(ordered_alldata=ordered_alldata,
pers_ids=pers_ids,ntraits=c(7:13),nper=10,saveto="workspace",
threshold=0.05,gs_locs=gs_locs,envir = gper.env)
# Get results
results <- get_results(res_pattern="Permus",level="snp",</pre>
from="workspace",threshold=0.05,envir = gper.env)
# Plot results
## Not run:
#saves plots to working directory
qq <- plot_results(results=results,by="set",plot_all=TRUE)</pre>
qq <- plot_results(results=results,by="trait",</pre>
plot_all=FALSE,var="trait1")
# Displays interactive plot. Select a trait/set to plot and
# set arguments save_plot=FALSE, plot_all = FALSE
# IMPORTANT: to EXIT interactive plot, RIGHT CLICK on the
# plot and STOP.
qq <- plot_results(results=results,by="set",plot_all=FALSE,</pre>
var="RHSA109582",save_plot=FALSE)
## End(Not run)
# -- END OF DEMO
```

demo

GWAS p_values demo data

Description

GWAS p-values (tab delimited file). First Column must contain the SNP ids and the column name = "name"

genes_permutation 5

Usage

```
data(demo)
```

Format

A data frame with SNPs identifiers and gwas p-values of association

```
name a character vector
Trait1 a numeric vector
Trait2 a numeric vector
Trait3 a numeric vector
Trait4 a numeric vector
Trait5 a numeric vector
Trait6 a numeric vector
Trait7 a numeric vector
Trait8 a numeric vector
Trait9 a numeric vector
           Trait1
                        Trait2
                                   Trait3
                                             Trait4 Trait5
                                                                 Trait6
name
rs10000010 0.9122360 0.30088096 0.2332038 0.5193068 0.1255104 0.07253145
rs10000023 0.8642906 0.52064064 0.9243443 0.7177759 0.9512171 0.81716250
```

rs10000030 0.2832705 0.99021664 0.8359339 0.9662707 0.8491221 0.50208681

Examples

```
#Read input demo file for "read_pvals" function
data(demo)
```

genes_permutation

Gene-level Permutations

Description

Performs gene-level circular genomic permutations. In each permutation, the complete set of SNP association p-values are permuted by rotation with respect to the SNPs' genomic locations. Once these 'simulated' p-values are assigned, the joint gene p-values are calculated using Fisher's combination test, and pathways' association tested using the hypergeometric test

Usage

```
genes_permutation(ordered_alldata = "", pers_ids = "", pathways = "",
ntraits = "", nper = 100, threshold = 0.05, seed=10,saveto = "workspace",
gs_locs="", envir = "")
```

6 genes_permutation

Arguments

ordered_alldata

Return variable from "genome_order". Ordered genome and trait p-values

gs_locs Return variable from "genome_order". SNP indexes

pers_ids Return variable "per_ors" from "read2_paths". Gene indexes

pathways Return variable "pathways" from "read2_paths"

ntraits Traits INDEX to be analysed. Index according to "ordered_alldata".

Trait Columns index must start at 7. Example: ntraits=c(7:9), ntraits=7

nper Number of permutations.Example: nper=1000

threshold Threshold to be set by the hypergeometric test. threshold=0.05

seed Set a number for random sampling

save to Save permutation results to "workspace" OR "directory"

envir R environment to save the data to when saveto is set to "workspace"

Value

Returns "Permus_trait" variables or files (permutation datasets).

References

Imports phyper (from stats)

See Also

```
snps_permutation
```

```
#load data
data(demo, SNPsAnnotation)
all_data <- read_pvals(data_name=demo,snps_ann=SNPsAnnotation)</pre>
# Prepare Genome
genome_results <-genome_order(all_data=all_data)</pre>
# Results from genome_order
ordered_alldata <- genome_results$ordered_alldata</pre>
gs_locs <- genome_results$gs_locs</pre>
# Create new environment to save data:
gper.env <- new.env()</pre>
# Get pathways
data(RHSA164843,RHSA446343,RHSA8876384,RHSA8964572,RHSA109582,RHSA1474244,envir=gper.env)
# Map Genes to pathways
paths_res <- read2_paths(ordered_alldata=ordered_alldata,gs_locs=gs_locs,</pre>
sets_from="workspace", sets_prefix="RHSA", level="gene", envir=gper.env)
pers_ids <- paths_res$per_ors</pre>
```

genome_order 7

```
pathways<- paths_res$pathways

# Perform Permutations:
genes_permutation(ordered_alldata=ordered_alldata,
pers_ids=pers_ids,pathways=pathways,ntraits=c(7:9),
nper=10,threshold=0.05, saveto="workspace",
gs_locs=gs_locs,envir = gper.env)

# Results
results <- get_results(res_pattern="Permus",level="gene",
from="workspace",threshold=0.05,envir= gper.env)</pre>
```

genome_order

Genome Order

Description

Orders the SNPs according to their genomic location

Usage

```
genome_order(all_data = "")
```

Arguments

all_data

SNPs to Genes Annotation and Trait Pvalues of Association all_data = (read_pvals output) OR matrix/dataframe.

Details

```
Input Columns with "*" must be included for analysis
NOTE: Trait p-values must start at Column #7
# *Column 1: "name" (SNP_IDs - any SNP ID as character)
# *Column 2: Chromosome Location
# *Column 3: SNP Location
# *Column 4: Gene ID
# Column 5: Symbol (OR Annotation Field 1)
# Column 6: Annotaiton Field 2
# *Column 7: First trait pvalues of association
# Column N: Next trait pvalues of association
# Example Input Data:
name
          Chromosome Location GENE_ID Symbol Orientation abpi
rs10000010
                   4 21618674
                                 80333 KCNIP4
                                                        - 0.91
rs10000023
                   4 95733906
                                   658 BMPR1B
                                                        + 0.86
                   4 21895517 80333 KCNIP4
                                                        - 0.20
rs10000092
rs1000022
                  13 100461219 171425 CLYBL
                                                        + 0.26
                   4 40466547 54502 RBM47
rs10000300
                                                        - 0.58
```

8 get_pathways

Value

```
ordered_alldata
```

SNPs annotated to Genes and Trait p-values

gs_locs Gene annotations, location indexes and number of observations

Format

```
SNPs annotated to Genes and Trait p-values
#ordered_alldata[1:5,1:8]
       Chromosome Location GENE_ID Symbol Orientation Trait1 Trait2
rs3934834 1
              1005806 NA
                              < NA >
                                          <NA>
                                                  0.97 0.92
rs3737728 1 1021415 54991 Clorf159
                                              0.91
                                                    0.69
rs6687776 1 1030565 54991 Clorf159
                                              0.71
                                                    0.45
rs9651273 1 1031540 54991 Clorf159
                                              0.22 0.60
rs4970405 1 1048955 54991 C1orf159
                                              0.77 0.56
Gene annotations, location indexes and number of observations
#gs_locs[1:5,]
       Symbol
                  Chromosome Location
                                         Gene_ID Start_Indx Observations
# [1,] "A1BG"
                  "19"
                             "58864479"
                                         "1"
                                                  "293976"
                                                             "1"
                                                             "5"
# [2,] "A2M"
                  "12"
                             "9232268"
                                         "2"
                                                  "215264"
                  "8"
                                         "9"
                                                             "1"
# [3,] "NAT1"
                             "18077310"
                                                 "151804"
# [4,] "NAT2"
                  "8"
                             "18257280"
                                         "10"
                                                  "151831"
                                                             "2"
# [5,] "SERPINA3" "14"
                             "95080803"
                                         "12"
                                                  "249519"
                                                             "2"
```

See Also

```
read2_paths
```

Examples

```
## DEMO WORKSPACE

data(demo, SNPsAnnotation)
all_data<-read_pvals(data_name=demo, snps_ann=SNPsAnnotation)
# GENOME ORDER
genome_results <- genome_order(all_data=all_data)
ordered_alldata <- genome_results$ordered_alldata
gs_locs <- genome_results$gs_locs</pre>
```

get_pathways

Pathways

Description

Helper function to download pathways and their gene identifiers. reactome.db used for pathway annotations.

get_results 9

Usage

```
get_pathways(source="reactome",all_paths=TRUE,envir = "")
```

Arguments

source "reactome"

all_paths TRUE or FALSE. If FALSE a subset will be asked by the function

envir R environment to save Pathways to

Value

Returns "Pathways description" All downloaded pathways are saved in the workspace User will be prompt to set a prefix.

See Also

```
read2_paths
```

Examples

```
## Not run:
# get pathways source = "reactome"
if (!require("reactome.db")) install.packages("reactome.db")
library(reactome.db)

# Create new environment to save data:
gper.env <- new.env()

paths <- get_pathways(source="reactome",all_paths=FALSE,envir=gper.env)
# when prompted introduce species as listed
Homo sapiens
# when prompted introduce prefix. Avoid characters "-" and "_" (e.g mypath, or leave blank)
# if all_paths set to TRUE. All pathways are downloaded automatically
# IF all_paths set to FALSE, select a subset of pathway identifiers from
# list. Separated by ","
R-HSA-8964572,R-HSA-9613354,R-HSA-8876384,R-HSA-446343,R-HSA-9620244

## End(Not run)</pre>
```

get_results

Circular Permutation Results

Description

Creates a summary dataframe of the genomic permutations datasets

10 get_results

Usage

```
get_results(res_pattern="Permus",level="snp",from="workspace",
threshold=0.05,envir = "")
```

Arguments

res_pattern Pattern of the Permutation files/variable. eg. res=pattern="Permus"

level Permutation level performed.level values "snp" or "gene"

from Location of the permutation datasets.from values "workspace" or "directory"

threshold Threshold of significance set

envir R environment where save the data to

Value

results Data frame with Pathway ID, Trait, Threshold set by permutations,

Gene results include the theoretical hypergeometric p-value and the,

observed (Empirical Hypergeometric p-values)

SNP results include the count of significan SNPs and the overall score Score is the proportion of tests observed with more significant results

Format

```
## SNP level results
    PathID Trait Threshold RealCount Score
1 hsa00010
                          0
                                   0 0.037
             abpi
2 hsa00010 abpildfa
                          0
                                   0 0.040
3 hsa04720 abpi
                        2
                                   0 0.311
## Gene level results
    PathID Trait Threshold
                              P-Value Observed
1 hsa00010 abpi 0.040441176 0.058823529 1.0000000
2 hsa00020 abpi 0.000000000 0.000000000 0.1666667
  hsa00030 abpi 0.040441176 0.058823529 1.0000000
```

```
data(demo,SNPsAnnotation)
all_data <- read_pvals(data_name=demo,snps_ann=SNPsAnnotation)
genome_results <-genome_order(all_data=all_data)
# Results from genome_order
ordered_alldata <- genome_results$ordered_alldata
gs_locs <- genome_results$gs_locs
# Create new environment to save data
gper.env <- new.env()
# Get pathways
data(RHSA164843,RHSA446343,RHSA8876384,RHSA8964572,RHSA109582,RHSA1474244,envir=gper.env)</pre>
```

hyprbg 11

```
paths_res <- read2_paths(ordered_alldata=ordered_alldata,gs_locs=gs_locs,
sets_from="workspace",sets_prefix="RHSA",level="snp",envir=gper.env)
pers_ids <- paths_res$per_ors
pathways<- paths_res$pathways

snps_permutation(ordered_alldata=ordered_alldata,pers_ids=pers_ids,
ntraits=c(7,9),nper=10,saveto="workspace",threshold=0.05,
gs_locs=gs_locs,envir= gper.env)

results <- get_results(res_pattern="Permus",level="snp",
from="workspace",threshold=0.05,envir= gper.env)</pre>
```

hyprbg

Hypergeometric Test (phyper)

Description

Performs Hypergeometric test (phyper() from R)

Usage

```
hyprbg(Sig_in_Paths, uniSig, gns_in_Paths, universe)
```

Arguments

Sig_in_Paths Number of significant genes in the pathway
uniSig Number of significant genes in the dataset
gns_in_Paths Number of genes in the pathway
universe Number of genes in the dataset

Value

Returns hypergeometric test

References

hyprbg Imports phyper() (from stats)

12 plot_results

plot_results	Plot Results Circular Permutation	
--------------	-----------------------------------	--

Description

QQ plots

Usage

```
plot_results(results="",by="",plot_all=TRUE, var = "", save_plot=TRUE, plot_name="",
bf= FALSE , save_qq = TRUE)
```

Arguments

results Results datarame from "get_results()"
by Visualize results by "trait" OR by "set"

plot_all = TRUE plots all the variables in the results dataframe and saves a pdf

file in the working directory. Setting plot all to FALSE plots a single vari-

able(trait or set). The argument "var" must be declared.

var Variable name to plot

save_plot save_plot = TRUE saves the plots in the working directory. save_plot = FALSE

the plot is visualized at the console. save_plot = FALSE can be used only when plot_all is set to FALSE. The plot displayed at the console is interactive, clicking

on a point displays the points name.

plot_name Argument used to save the file name for the plots. Default value = Results_genomicper_[set/trait]

bf Displays the bonferroni correction save_qq TRUE returns the qq plot values

Value

qq Data frame with qq plot values

See Also

```
get_results
```

```
data(demo,SNPsAnnotation)
all_data <- read_pvals(data_name=demo,snps_ann=SNPsAnnotation)
genome_results <-genome_order(all_data=all_data)
# Results from genome_order
ordered_alldata <- genome_results$ordered_alldata
gs_locs <- genome_results$gs_locs</pre>
```

read2_paths 13

```
# Create new environment to save the data:
gper.env <- new.env()</pre>
# Load Pathways
data(RHSA164843,RHSA446343,RHSA8876384,RHSA8964572,RHSA109582,RHSA1474244,envir=gper.env)
paths_res <- read2_paths(ordered_alldata=ordered_alldata,gs_locs=gs_locs,</pre>
sets_from="workspace",sets_prefix="RHSA",level="snp",envir=gper.env)
pers_ids <- paths_res$per_ors</pre>
pathways<- paths_res$pathways
snps_permutation(ordered_alldata=ordered_alldata,pers_ids=pers_ids,
ntraits=c(7,9),nper=10,saveto="workspace",threshold=0.05,
gs_locs=gs_locs,envir = gper.env)
results <- get_results(res_pattern="Permus",level="snp",
from="workspace",threshold=0.05,envir = gper.env)
#saves plots to working directory
## Not run:
qq <- plot_results(results=results,by="set",plot_all=TRUE)</pre>
qq <- plot_results(results=results,by="trait",plot_all=FALSE,var="trait1")</pre>
qq <- plot_results(results=results,by="set",</pre>
plot_all=FALSE, var="R-HSA-8964572",
save_plot=FALSE) ## IMPORTANT: to EXIT interactive plot
## right click on the plot to stop
## End(Not run)
```

read2_paths

Read to SNPs to sets; Map SNPs to gene-sets/pathways

Description

Reads the sets/pathways, map the SNPs and genes to the gene-sets/pathways read2_paths uses the "genome_order" output(ordered_alldata, gs_locs) to assign genomic location indexes to each element in the gene-set. The permutation method must be defined (i.e. level = "snp" OR level = "gene").

Usage

```
read2_paths(ordered_alldata="",gs_locs="",sets_from="workspace",
sets_prefix="RHSA",level="snp",envir="")
```

Arguments

```
ordered_alldata
```

Ordered data according to the SNPs genomic location. Traits start at column 7 Return variable from:

read2_paths

genome_results <-genome_order(all_data=all_data) ordered_alldata <- genome_results\$ordered_alldata

gs_locs Gene annotation, indexes and number of observations

Return variable from genome_order():

genome_results <-genome_order(all_data=all_data)</pre>

gs_locs <- genome_results\$gs_locs

sets_from Location of the gene-sets. Default set to "workspace"

sets_from="workspace" OR sets_from="directory"

"directory", only will search for information in the working directory.

sets_prefix Prefix of the gene-set variables or files.

Default set to sets_prefix= "RHSA" e.g. Variables "RHSA164843", "RHSA446343", "RHSA8876384"

each variable/file contains the list of gene identifiers part of that pathway

level The level at which the permutations will be performed. Assigns the indexes

according to snps or genes

Default value "snp" level values = "snp" OR "gene"

envir R environment where pathway data is stored. e.g(envir=.GlobalEnv, envir=gper.env)

Value

pathways Pathway Id, Description, Number of Genes in the pathway, Number of genes

found in the dataset, Number of SNPs found in the dataset

per_ors A list of identifiers mapped to each pathway

Format

Input: Ordered_alldata

name	Chromosome	Location	GENE_ID	Symbol	Orientation	Trait	t1 Trait2
rs100156	7 1	9194614	<na></na>	<na></na>	<na></na>	0.96	0.89
rs100031	3 1	15405489	23254	KIAA1026	+	0.93	0.57
rs100236	5 1	19797248	<na></na>	<na></na>	<na></na>	0.68	0.58
rs100270	5 1	25051153	<na></na>	<na></na>	<na></na>	0.71	0.02
rs100248	7 1	26865971	6195	RPS6KA1	+	0.98	0.78

Input:gs_locs

	Symbol	Chromosome	Location	Gene_ID	Start_Indx	Observations
[1,]	"ACYP2"	"2"	"54399633"	"98"	"35"	"1"
[2,]	"AMPD3"	"11"	"10514707"	"272"	"898"	"1"
[3,]	"ANK2"	"4"	"113830885"	"287"	"479"	"4"

Input:pathway example

RHSA8964572

[1] 1149 128486 161247 29923 345275 63924

Output:pathways

ID GenesInPath GenesFound SNPsInPath

read_pvals 15

```
"11"
"RHSA109582" "681"
"RHSA1474244" "418"
                          "7"
                                     "10"
                          "0"
                                     "0"
"RHSA164843" "11"
"RHSA446343" "4"
                          "1"
                                     "1"
                          "1"
                                     "1"
"RHSA8876384" "32"
                                      "1"
"RHSA8964572" "6"
```

See Also

genes_permutation snps_permutation genome_order

Examples

```
# library(genomicper)
data(demo, SNPsAnnotation)
all_data <- read_pvals(data_name=demo,snps_ann=SNPsAnnotation)</pre>
genome_results <-genome_order(all_data=all_data)</pre>
ordered_alldata <- genome_results$ordered_alldata</pre>
gs_locs <- genome_results$gs_locs</pre>
# Create new environment to save variables (e.g. pathways, permutations):
gper.env <- new.env()</pre>
data(RHSA164843,RHSA446343,RHSA8876384,RHSA8964572,RHSA109582,RHSA1474244,envir=gper.env)
paths_res <- read2_paths(ordered_alldata=ordered_alldata,</pre>
gs_locs=gs_locs, sets_from="workspace", sets_prefix="RHSA",
level="snp",envir=gper.env)
pers_ids <- paths_res$per_ors</pre>
pathways<- paths_res$pathways</pre>
```

read_pvals

Read GWAS p-values of association and Merge with SNP annotations

Description

Read GWAS p-values of association and Merge with SNP annotations for analysis

Usage

```
read_pvals(data_name="",snps_ann="",from="workspace")
```

read_pvals

Arguments

data_name

GWAS p_values (tab delimited file)(SNP_IDs Trait1 Trait2 ...TraitN)

SNPs Annotation (SNPsAnnotation). Genomicper uses entrez gene ids to annotate associate SNPs-to genes-pathways
The annotation MUST match your data input (coordinates and chromosome format)
Any SNP ID is valid, as long the ID is set as character
The examples below show an option on how to annotate the SNPs prior the use of genomicper

from Datasets location. Values "workspace" OR "directory"

Value

Dataframe: name; chromosome; Location; GeneID; Symbol; Orientation; Trait1; TraitN

Formats

```
GWAS p_values (tab delimited file)(SNP_IDs Trait1 Trait2 ...TraitN)
          Trait1
                      Trait2
                                TraitN
rs10000010 0.9122360 0.30088096 0.2332038
rs10000023 0.8642906 0.52064064 0.9243443
rs10000030 0.2832705 0.99021664 0.8359339
SNPs Annotation (SNPsAnnotation)
           Chromosome Location GENE_ID
                                           Symbol
                                                     Orientation
rs1000313
                       15405489 23254
                                           KIAA1026
rs1000533
                       168282491 9095
                                           TBX19
rs1000731
          1
                       231963491 27185
                                           DISC1
Output:
name
          Chromosome Location GENE_ID Symbol Orientation
                                                            Trait1
                                 80333 KCNIP4
rs10000010
                   4 21618674
                                                        - 0.9122360
rs10000023
                   4 95733906
                                   658 BMPR1B
                                                        + 0.8642906
rs10000030
                   4 103374154
                                    NA <NA>
                                                     <NA> 0.2832705
```

See Also

```
genome_order
```

```
## DEMO // WORKSPACE
data(demo, SNPsAnnotation)
all_data <- read_pvals(data_name=demo, snps_ann=SNPsAnnotation)</pre>
```

RHSAXXXXX 17

RHSAXXXXX

Reactome Pathway examples

Description

Each file "RHSAXXXX" contains the gene identifiers.

Usage

data(RHSA164843)

Format

The format is: num [1:6] 11168 155030 155348 155459 155908 2547...

Source

reactome.db

Examples

data(RHSA164843)

SNPsAnnotation

SNPs-Genes annotation to Distance 0 (SNPs within a gene)

Description

SNPs annotated to genes. Annotation only when the SNPs fall within start and end of transcription of the genes.

Usage

```
data(SNPsAnnotation)
```

Format

Sample data frame with 339096 SNP observations on the following 6 variables.

name a character vector

Chromosome a character vector

Location a numeric vector of the SNP location

GENE_ID a numeric vector with entrez geneID

Symbol a character vector; other annotation slot 1

Orientation a character vector; other annotation slot 2

18 snps_permutation

name	Chromosome	Location	GENE_ID	Symbol	Orientation
rs1000313	1	15405489	23254	KIAA1026	+
rs1000533	1	168282491	9095	TBX19	+
rs1000731	1	231963491	27185	DISC1	+

Source

NCBI Gene database,(http://www.ncbi.nlm.nih.gov/gene; Build.37.1).

Examples

```
data(SNPsAnnotation)
```

Description

Performs SNP-level circular genomic permutations. In each permutation, the complete set of SNP association p-values are permuted by rotation with respect to the SNPs' genomic locations.

Once these 'simulated' p-values are assigned,the proportion of SNPs per set above a pre-defined threshold is calculated

Usage

```
snps_permutation(ordered_alldata = "", pers_ids = "", ntraits = "",
nper = 100, threshold = 0.05, seed=10,saveto = "workspace",
gs_locs = "",envir ="")
```

Arguments

ordered_alldata

0. 00. 00_01100	
	Return variable from "genome_order". Ordered genome and trait p-values
gs_locs	Return variable from "genome_order". SNP indexes
pers_ids	Return variable "per_ors" from "read2_paths". SNP indexes
ntraits	Traits INDEX to be analysed. Index according to "ordered_alldata". Trait Columns index must start at 7. Example: ntraits=c(7:9), ntraits=7
nper	Number of permutations.Example: nper=1000
threshold	Threshold to be set by the hypergeometric test. threshold=0.05
seed	Set number for random sampling
saveto	Save permutation results to "workspace" OR "directory"
envir	R environment to save the Permutations to when saveto is set to "workspace"

snps_permutation 19

Value

Returns "Permus_genesetsname" variables or files (permutation datasets).

See Also

```
genes_permutation
```

```
data(demo, SNPsAnnotation)
all_data <- read_pvals(data_name=demo,snps_ann=SNPsAnnotation)</pre>
genome_results <-genome_order(all_data=all_data)</pre>
# Results from genome_order
ordered_alldata <- genome_results$ordered_alldata</pre>
gs_locs <- genome_results$gs_locs</pre>
# Create new environment to save the permutations to:
gper.env <- new.env()</pre>
data(RHSA164843,RHSA446343,RHSA8876384,RHSA8964572,RHSA109582,RHSA1474244,envir=gper.env)
paths_res <- read2_paths(ordered_alldata=ordered_alldata,gs_locs=gs_locs,</pre>
sets_from="workspace", sets_prefix="RHSA",level="snp",envir=gper.env)
pers_ids <- paths_res$per_ors</pre>
pathways<- paths_res$pathways</pre>
# SNP permutations
snps_permutation(ordered_alldata=ordered_alldata,pers_ids=pers_ids,
ntraits=c(7,9),nper=10,saveto="workspace",threshold=0.05,
gs_locs=gs_locs,envir = gper.env)
# Get results
results <- get_results(res_pattern="Permus",level="snp",</pre>
from="workspace",threshold=0.05,envir = gper.env)
```

Index

* annotation
${\sf get_pathways}, 8$
read2_paths, 13
* datasets
demo, 4
RHSAXXXXX, 17
SNPsAnnotation, 17
* gene-level
$genes_permutation, 5$
* gene-set
read2_paths, 13
* genome_order
genome_order,7
* gwas
read_pvals, 15
* package
genomicper-package, 2
* pathways
${\sf get_pathways}, 8$
read2_paths, 13
* permutations
genes_permutation, 5
<pre>snps_permutation, 18</pre>
* pvalues
read_pvals, 15
* results
get_results,9
plot_results, 12
* snp-level
snps_permutation, 18
demo, 4
genes_permutation, <i>3</i> , <i>5</i> , <i>15</i> , <i>19</i>
genome_order, 3, 7, 15, 16
genomicper (genomicper-package), 2
genomicper-package, 2
get_pathways, 3, 8
get_results, 3, 9, 12

```
hyprbg, 11

plot_results, 3, 12

read2_paths, 3, 8, 9, 13

read_pvals, 3, 15

RHSA109582 (RHSAXXXXXX), 17

RHSA1474244 (RHSAXXXXX), 17

RHSA46343 (RHSAXXXXX), 17

RHSA8876384 (RHSAXXXXX), 17

RHSA8964572 (RHSAXXXXXX), 17

RHSAXXXXX, 17

snps_permutation, 3, 6, 15, 18

SNPsAnnotation, 17
```