2 علوم رياضية

الأستاذ: بنموسى محمد

درس رقم

درس دراسة الدوال و تمثيلها

الصفحة

ملحوظة:

. ($O, \overline{i}, \overline{j}$) منحناها في (م.م.م) معلم متعامد ممنظم والمتغير الحقيقي X و C_f منحناها في (م.م.م) معلم متعامد ممنظم والمتغير الحقيقي X

- I. الاشتقاق وتطبيقاته:
 - 01. المشتقة الأولى
 - A) رتابة دالة عددية:
 - 1. خاصية:

f قابلة للاشتقاق على مجال I.

- إذا كانت 0 < f على I فإن f تزايدية قطعا على I (يمكن للدالة ' f أن تنعدم في بعض النقط المنعزلة من I وهذا لا يؤثر على رتابة f)
 - إذا كانت 6 \ f ' على 1 فإن fتناقصية قطعا على 1. (نفس الشيء يمكن للدالة ' f أن تنعدم في بعض النقط المنعزلة من 1)
 - إذا كانت 0 = 'f منعدمة على I (بكامله) فإن f ثابتة على I

$$f(x)=(2x+4)^2$$
مثال : أدرس تغيرات f على \mathbb{R} مع 2

=.....

⇔.....

إذن: 'f موجبة على و سالبة على ومنه جدول تغيرات f:

- 02. الدالة المشتقة الثانية وتطبيقاتها:
- \mathbf{X}_0 الوضع النسبي للمنحنى (\mathbf{C}_f) والمماس ل (\mathbf{A}_f)
 - 1. خاصية:
 - . I من \mathbf{X}_0 و ابلة للاشتقاق مرتين على مجال مفتوح \mathbf{I} و \mathbf{X}_0
- . X_0 يوجد فوق المماس ل C_f في النقطة التي أفصولها C_f يوجد فوق المماس ل C_f في النقطة التي أفصولها . C_f
- . X_0 النقطة التي أفصولها $f''(x_0) \leq 0$ الذا كان $f''(x_0) \leq 0$ النقطة التي أفصولها . $f''(x_0) \leq 0$
 - $f(x) = x^3$: لنعتبر الدالة: 2
 - 1) أحسب: (x)" أم أعط إشارتها.
 - $-\infty,0$] ثم على المماسات على المجال $-\infty,+\infty$ ثم على (2)
 - (C_f) تقعر منحنی (C_f) نقط انعطاف (B
 - 1. تعریف:

ادالة قابلة للاشتقاق على مجال $\left(\mathbf{C}_{\mathrm{f}}\right)$ منحنى \mathbf{f} في معلم.

منحنی f محدب (convexe) علی Iإذا كان C_f) يوجد فوق جميع مماساته علی I. ونرمز له ب

منحنی f مقعر (concave) علی I إذا كان C_f) يوجد تحت جميع مماساته علی I. ونرمز له ب

 $\left(C_{f}
ight)$ نقطة من $\left(C_{f}
ight)$. $\left(T_{f}
ight)$ المماس ل $\left(C_{f}
ight)$ في M_{0} النقطة M_{0} (أو النقطة M_{0} (X_{0},y_{0}) المماس ل M_{0} في M_{0} (أو النقطة M_{0}) المماس ل M_{0} المماس ل M_{0} (M_{0}) المما

 \mathbf{M}_0 يعني أن المماس \mathbf{T}) يخترق (أو يقطع) في \mathbf{C}_{f}

درس رقم درس دراسة الدوال و تمثيلها

2. خاصية:

- f دالة قابلة للاشتقاق مرتين على مجال I.
- إذا كان C_f أنه تقعر موجه نحو الأراتيب الموجبة). C_f محدب (convexe) على C_f أو أيضا C_f له تقعر موجه نحو الأراتيب الموجبة).
 - اذا كان $0 \leq x \leq I/f''(x) \leq V$ فإن (C_f) مقعر (C_f) على (C_f) له تقعر موجه نحو الأراتيب السالبة).
- الدالة المشتقة الثانية " f تنعدم في xo من I و تتغير إشارتها بجوار xo النقطة التي أفصولها X هي نقطة انعطاف للمنحنى (Cf

х		-5	-	-1	2	+∞
f"(x)	_	0	+	-	0	+
$\left(\mathbf{C}_{_{\mathrm{f}}} ight)$ تقعر						

- 3. مثال: (أنظر ورقة الأنشطة المثال 2) لنعتبر الدالة f حيث إشارة دالتها المشتقة الثانية "f" هي بواسطة الجدول التالي: f أعط تقعر (C_f) منحنى الدالة
 - C نقط انعطاف: POINTS D'INFLEXIONS)
 - 1. تعریف:

.
$$M_0$$
 في معلم و $M_0(x_0,y_0)$ نقطة من $M_0(C_f)$ المماس ل $M_0(C_f)$ في $M_0(C_f)$ في $M_0(C_f)$

 \mathbf{M}_0 النقطة \mathbf{M}_0 (أو النقطة \mathbf{X}_0) هي نقطة انعطاف ل \mathbf{C}_{f} يعني أن المماس (\mathbf{T}) يخترق (أو يقطع)

- $f(x) = x^4 6x^2$ مثال: لنعتبر الدالة 2.
- $\begin{pmatrix} \mathbf{C}_{\mathrm{f}} \end{pmatrix}$ و $\mathbf{B} \begin{pmatrix} -1 \\ -5 \end{pmatrix}$ و فطتي انعطاف ل $\mathbf{A} \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

3. خاصية:

f دالة قابلة للاشتقاق مرتين على مجال X0 .I من I

 (C_f) الدالة المشتقة الثانية " f تنعدم في x_0 من I و تتغير إشارتها بجوار x_0 النقطة التي أفصولها x_0 هي نقطة انعطاف للمنحنى (أو للدالة f).

مثال 1:

- 1. هل الدالة f تقبل نقط انعطاف حددها ؟
- $(\mathbf{C}_{\mathbf{f}})$. إذا كان ممكن.

II. الفروع اللانهائية لمنحنى دالة f:

- A) فرع اللانهائي:
 - 1. تعریف:
- . يقبل فرع اللانهائي. (C_f) منحنى دالة عددية f في معلم. إذا آلت إحدى إحداثيتي نقطة M من (C_f) إلى ما لا نهاية فإن (C_f) يقبل فرع اللانهائي.

درس رقم

درس دراسة الدوال و تمثيلها

2. نشاط:

الصفحة

- \mathbb{C}_{f}) حدد الفروع اللانهائية ل
- 2) أعط تعاريف لكل نوع من هذه الفروع اللانهائية.

ASYMPTOTE HORIZONTALE - مقارب أفقي (B

1. تعریف:

واله عددية معرفة على $a,+\infty$ (أو $a,-\infty$). f

إذا كان $\lim_{x \to +\infty} f(x) = c$ (أو $\lim_{x \to \infty} f(x) = c$) فإن المستقيم ذي المعادلة $\lim_{x \to \infty} y = 0$) مقارب أفقي ل $\lim_{x \to \infty} f(x) = 0$) بجوار $\lim_{x \to \infty} f(x) = 0$) .

- $f(x) = \frac{x-1}{x+1}$: مثال: .2
- y = 1 لدينا المستقيم أي المعادلة الدينا الدينا
 - . $+\infty$ بجوار $\left(\mathbf{C}_{\mathrm{f}}\right)$ بجوار

- :ASYMPTOTE VERTICALE مقارب عمودي (C
 - 1. تعریف:

 $(X_0$ اأي f غير معرفة في $D\setminus\{X_0\}$ دالة عددية معرفة أي f

إذا كان $\infty = \lim_{x o x_0^+} f(x) = \infty$ فإن المستقيم ذي المعادلة $X = X_0$ مقارب عمودي ل (C_f) عند $(X = x_0)$ عند واليمين $(X = x_0)$ المساد).

. (C_f) لدينا: x = -1 لدينا: x = -1 إذن المستقيم ذي المعادلة x = -1 مقارب عمودي ل $f(x) = \frac{x-1}{x+1}$. $\frac{1}{x+1}$

: ASYMPTOTE OBLIQUE مقارب مائل (D

تعریف:

. دالة عددية معرفة على
$$[a,+\infty]$$
 (أو $[a,+\infty]$). دالة عددية معرفة على $[a,+\infty]$ دالة عددية $[a,+\infty]$

المستقيم ذي المعادلة
$$y=a'x+b'$$
 أو $y=a'x+b'$ هو مقارب مائل ل $y=a'x+b'$ بجوار رسى) يعني:

$$\left\{ \begin{aligned}
&\lim_{x \to -\infty} f(x) = \infty \\
&\lim_{x \to +\infty} f(x) - (ax + b) = 0
\end{aligned} \right\} \quad
\left\{ \begin{aligned}
&\lim_{x \to +\infty} f(x) = \infty \\
&\lim_{x \to +\infty} f(x) - (ax + b) = 0
\end{aligned} \right\}$$

درس رقم

درس دراسة الدوال و تمثيلها

- $f(x) = x 2 + \frac{1}{x 1}$: المعرفة ب f المعرفة ب
- $\lim_{|x|\to +\infty} f(x) (x-2) = \lim_{|x|\to +\infty} \frac{1}{x+1} = 0$ بين أن: (C_f) يقبل مقارب مائل بجوار $+\infty$.نحسب
 - ملاحظات:
- y = ax + b فإن $f(x) (ax + b) \ge 0$ يكون فوق المقارب المائل الذي معدلته $f(x) (ax + b) \ge 0$
- y = ax + b فإن $\mathbf{C}_{\mathbf{f}}$ يكون تحت المقارب المائل الذي معدلته $\mathbf{f}(\mathbf{x}) (a\mathbf{x} + \mathbf{b}) \leq 0$ بذا كان $\mathbf{v} = \mathbf{c}_{\mathbf{f}}$
 - y = ax + b فإن (C_f) يقطع المقارب المائل الذي معدلته f(x) (ax + b) = 0 بذا كان \Leftrightarrow
 - تحديد a و b مع الحالات الخاصة:
 - $\lim_{x \to \infty} \frac{f(x)}{x} = a$: لتحدید $\lim_{x \to \infty} \frac{f(x)}{x}$
- إذا كان a=0 نقول أن C_{f} يقبل فرع شلجمي في اتجاه محور الأفاصيل. (أنظر الرسم 1).
- إذا كان: $a=\infty$ نقول أن: (C_f) يقبل فرع شلجمي في اتجاه محور الأراتيب. (أنظر 7 الرسم 2)
 - . b عن عن $a \neq 0$ في هذه الحالة نبحث عن $a \neq 0$ و $a \neq 0$ في هذه الحالة نبحث عن
 - $a \neq \infty$ و $a \neq 0$ و $a \neq 0$. $a \in \mathbb{R}^*$ اأي $a \neq 0$ و $a \neq 0$. $a \neq 0$ اتحديد $a \neq 0$ انحسب
- يقبل فرع شلجمي في اتجاه المستقيم ذي المعادلة y=ax بجوار (C_f) . أو أيضا (C_f) يقبل $b=\infty$ اتجاه مقاربي في اتجاه المستقيم ذي المعادلة y = ax بجوار ∞ . (أنظر الرسم 3)
 - (4 يقبل مقارب مائل معادلته y=ax+b). y=ax+b في هذه الحالة نقول أن (C_f) يقبل مقارب مائل معادلته y=ax+b

منحناها $f(x) = x^3$ يقبل فرع شلجمي في اتجاه محور الأراتيب

منحناها $f(x) = \sqrt{x}$ يقبل فرع شلجمي في اتجاه محور الأفاصيل

ملحوظة:

y=ax+b+c بجوار y=ax+b+c بجوار مائل الذي معادلته y=ax+b+c بجوار اذا كان

الأستاذ: بنموسى محمد

درس رقم

درس دراسة الدوال و تمثيلها

. $f(x) = x + 3 - \frac{(x+2)}{(x-1)}$ مثال: 3

. $\pm \infty$ بجوار (C_f) مقار مائل ل y = x + 2 مقادلته y = x + 2 مقار مائل ل $\lim_{|x| \to +\infty} f(x) - (x + 3) = \lim_{|x| \to +\infty} - \frac{(x + 2)}{(x - 1)} = -1$ لدينا : $\lim_{|x| \to +\infty} f(x) - (x + 3) = \lim_{|x| \to +\infty} - \frac{(x + 2)}{(x - 1)} = -1$

III. محور تماثل – مركز تماثل منحنى .

A) مركز تماثل منحنى:

• خاصية:

I(a,b) دالة عددية معرفة I(a,b) منحنها على D_f في معلم. I(a,b) نقطة من المستوى I(a,b)

$$.\begin{cases} \forall x \in D_f \; ; \; 2a-x \in D_f \\ \forall x \in D_f \; ; \; f(2a-x)+f(x)=2b \end{cases}$$
 : يكافئ : (C_f) يكافئ : $I(a,b)$

(B) محور تماثل ل (B):

• خاصية:

(P) دالة عددية معرفة (C_f) منحنها على (C_f) في معلم م.م (D_f) دالة عددية معرفة و (C_f) دالة عددية معرفة و (D_f)

$$\begin{cases} \forall x \in D_f \; ; \; 2a-x \in D_f \\ \forall x \in D_f \; ; \; f(2a-x)=f(x) \end{cases}$$
 : يكافئ : C_f يكافئ : $D: x=a$ هو محور تماثل ل

 (C_f) مثال: $f(x) = (x-1)^2 + 1$ حدد محور تماثل

IV. مجموعة دراسة دالة

1. تعاریف:

و المع الأعداد الموجبة و $D_f = I \cup I'$ حيث I و المتماثلين بالنسبة ل 0 مع I يحتوي على الأعداد الموجبة و I' يحتوي على الأعداد السالبة.

- $\mathbf{D}_{\mathrm{E}} = \mathbf{D}_{\mathrm{f}} \cap \mathbb{R}^+$ و $\mathbf{D}_{\mathrm{E}} = \mathbf{I}$ أو فردية يكفي دراسة على المجموعة $\mathbf{D}_{\mathrm{E}} = \mathbf{I}$ أو $\mathbf{D}_{\mathrm{E}} = \mathbf{I}$
 - I فردیة I علی I هی نفس تغیرات I علی I إذا كانت I فردیة.
 - ب_ تغیرات f علی I هي عكس تغیرات f على I إذا كانت f زوجية.
- $a\in\mathbb{R}$ مع $D_E=D_f\cap \left[a,a+T
 ight]$. $D_E=D_f\cap \left[a,a+T
 ight]$ مع $D_E=D_f\cap \left[a,a+T
 ight]$ عد ورية و دورها $D_E=D_f\cap \left[a,a+T
 ight]$ مع $D_E=D_f\cap \left[a,a+T
 ight]$

2 مثال:

P=T في معرفة على \mathbb{R} ودورية ودورها أي دراستها على مجال طوله $f(x)=\sin(x)$

 $.... \ \mathbf{D}_{\mathrm{E}} = \mathbb{R} \cap \big[-\pi, \pi \big[= \big[-\pi, \pi \big[\ \mathbf{D}_{\mathrm{E}} = \mathbb{R} \cap \big[\ \mathbf{0}, 2\pi \big] = \big[\ \mathbf{0}, 2\pi \big] \big] = \big[\ \mathbf{0}, 2\pi \big]$. $\mathbf{D}_{\mathrm{E}} = \mathbb{R} \cap \big[\ \mathbf{0}, 2\pi \big[= \big[\ \mathbf{0}, 2\pi \big] = \big[\ \mathbf{0}, 2\pi \big] = \big[\ \mathbf{0}, 2\pi \big[= \big[\ \mathbf{0}, 2\pi \big] = \big[\ \mathbf{0}, 2\pi \big[= \big[$

3 ملحوظة:

 $D_E = D_f \cap \left[0, \frac{T}{2}\right]$ و زوجية (أو فردية) على D_f يكفي دراستها على مجال طوله $\frac{T}{2}$ أي P = T أو P = T أو إذا كانت P = T

$$.D_{E} = \mathbb{R} \cap \left[-\frac{T}{4}, \frac{T}{4} \right]$$

درس دراسة الدوال و تمثيلها

4 مثال:

- π مثال $f(x)=\sin(x):1$ هي معرفة و دورية و فردية على π ودورها $T=2\pi$. ندرس الدالة $f(x)=\sin(x):1$ خلاصة: مجموعة دراسة الدالة هي $D_{\rm E}=[0,\pi]=[0,\pi]=[0,\pi]$ أي $D_{\rm E}=[0,\pi]$.
 - π مثال π مثال π في معرفة على π . ودورية ودورها π و زوجية. ندرسها على مجال طوله π مثال π في π في π معرفة على π في π ودورية ودورها π و زوجية. ندرسها على مجال طوله π في π في π في π في π في π ودورية ودورها π و زوجية. ندرسها على مجال طوله π في π في π في π في π في π ودورية ودورها π و زوجية. ندرسها على مجال طوله π في π في أن في أن

V. تصميم دراسة دالة عددية:

$\mathbf{D}_{_{\mathrm{E}}}$ دراسىة إشارة ' \mathbf{f} على $\mathbf{D}_{_{\mathrm{f}}}$ أو	8	$\mathbf{D}_{\mathrm{f}}:$ f مجموعة تعريف الدالة	1
\mathbf{D}_{E} او \mathbf{D}_{f} او غیرات \mathbf{D}_{f} او	9	دراسة زوجية f أو دورية f (إذا كان ذلك ممكن)	2
إذا كان ذلك ممكن دراسة تقعر أو نقط انعطاف f	10	$\mathbf{D}_{\mathrm{E}}:\ f$ استنتاج مجموعة دراسة	3
إنشاء 1 المعلم - 2 المقاربات - 3) بعض الشاء \mathbf{f} المماسات (حيث \mathbf{f} \mathbf{x}) \mathbf{f} أو نقط انعطاف \mathbf{f} إذا كان ممكن) 4 إنشاء $\mathbf{C}_{\mathbf{f}}$	11	$\mathbf{D}_{_{\mathrm{E}}}$ او $\mathbf{D}_{_{\mathrm{f}}}$	4
هناك بعض الأسئلة الإضافية مثل حل مبياتيا المعادلة $x \in D_f / f(x) = g(x)$ و $x \in D_f / f(x) = m$ أو المتراجحة $x \in D_f / f(x) \le 0$	12	استنتاج الفروع اللانهائية ل f	5
$g(x) = f(x)$ أو $g(x) = \sqrt{f(x)}$ ثم دراسة الدالة	13	دراسة الوضع النسبي للمنحى f و المقارب المائل (إذا كان ذلك ممكن)	6
أو أسئلة أخرى ربط هذه الدالة بالفيزياء أو	14	\mathbf{D}_{E} او \mathbf{D}_{f} کساب الدالة المشتقة \mathbf{f} ل \mathbf{f} على \mathbf{D}_{f} او	7

VI. مثال: نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة ب:

$$\left(\mathbf{O},\vec{\mathbf{i}},\vec{\mathbf{j}}\right)$$
 وليكن $\left(\mathbf{C}_{\mathbf{f}}\right)$ منحنى \mathbf{f} في م.م.م $\mathbf{f}(\mathbf{x})=\frac{\mathbf{x}^2-\mathbf{x}+1}{\mathbf{x}-1}$

- \mathbf{D}_{f} مجموعة تعريف الدالة \mathbf{D}_{f}
- .D أحسب النهايات عند محد ات (2
- $\forall x \in D_f; f(x) = ax + b + \frac{c}{x-1} : \mathbb{R}$ من c ; b ; a
 - (C_f) أدرس الفروع اللا نهائية للمنحنى (4).
- . أدرس الوضعية النسبي للمنحنى $\left(\mathbf{C}_{\mathrm{f}}\right)$ بالنسبة لمقاربه المائل .
 - D_f كن x كن f'(x) اكسب (6)
 - . f على أعط جدول تغيرات D_f على D_f على أعط جدول تغيرات T
 - . D_f على المنحنى C_f على المنحنى (8
 - (C_f) بين أن النقطة I(1,1) مركز تماثل المنحنى (9