A: Query Containment

- q = q'. Because there is a homemorphism h from q' to q, h from 9' to 9: (y->x, Z->z, t->z, w->y) But there is not homomorphism from q to q'.
 - $9 \leq 9'$. Because there is a homomorphism h from 9' to 9, h from q' to q: (x→x, y→y, z→z, u→x, v→y) But there is no homomorphism from 9 to 9'.
 - (c) None. Because there is no homomorphism from q' to q, And there is no homomorphism from 9 to 9'. According to Homomorphism Theorem.
- $q(x): -R(x, z_i)$

Firstly: 9 = Sk, because there is a homomorphism h from Sk to 9, h from S_k to $9: (x \rightarrow x, Z_1, Z_2, \dots, Z_k \rightarrow Z_1)$ Thus $9 \subseteq S_k$ according to Homomorphism Theorem.

Secondly: $S_k \subseteq 9$, because there is a homomorphism h from 9 to S_k , h from 9 to Sx: (X->X, Z,->Z,) Thus Sk = 9 according to Homomorphism Theorem.

Thus $S_k \equiv 9$, and obviously, 9 is the minimal CQ which is equivalent to Sk, since q only has one atom.

3. There is no such 9.

Because if 9, 9992, then there is a homomorphism h from 9209, and 9 is not equivalent to 92, so 9 must

be like q(x): -R(x,y)R(x) - ..., there are 3 cases:

1° If 9(x): -k(x,y) R(Z)..., then there is no homomorphism from 9 to 9,

2° If q(x): -R(x,y) R(z,z)..., then there is no homomorphism from 9 to 9,,

3° If 9(x): -R(x,y)R(z,t)..., then there is a homomorphism from 9, to 9 which means $9 \subseteq 9$, which is not allowed.

Thus there is no such 9, that will lead to 9, £9 £92.

4. Let
$$9_1 = 9 = R(x, 10), x < 10$$
 Then $9 = 9_1 \cup 9_2$ $9_2 = 9 = R(x, 10), x < 10$

Let
$$q_i' = R(y, 10), R(q, y), y < 10$$

 $q_i' = R(y, 10), R(q, y), y = 10$ Then $q' = q_i' Uq_i'$

 $q_i' \subseteq q_i$, since there is a homomorphism from q_i to q_i' h from q_i to q_i' : $(x \longrightarrow y)$

 $92' \subseteq 92$, since there is a homomorphism from 92 to 92'h from 92 to 92': $(x \longrightarrow 9)$

Because $9' \subseteq 9$, $9' \subseteq 9_2$, $9 = 9, 09_2$, 9' = 9' 09'.

So $9' \subseteq 9$.

5. To obetermine whether 9' contain 9, we just if and only if there exists a homomorphism from 9' to 9. To find the homomorphism, we can check the variables in 9' one by one and define a h to map the corresponding variable in 9' to the one in 9. If 9 has no self join, the time is linear to the number of variables in 9 and 9'. After this process, if we end with a homomorphism, then $9 \subseteq 9'$, otherwise $9 \subseteq 9'$. Thus the algorithm is in polynomial time.

B. Query Complexity

1. (a). O(191.11) 191 is the size of query, [1] is size of dataset.

Because in this case, we can join the variables one by one, and for each variable, we join all the corresponding atoms one by one.

(b) NP-complete Because there is a reduction to 3-coloring problem. For an undirected graph Gi=(V,E), for each vertex $v_i \in V$, thas an actom $R_i (v_i)$, and the table of R_i contains 3 possible values 1, 2, 3. For each edge (v_i, v_j) , $v_i \neq v_j$. Then this problem become solving the 3-coloring problem. Thus the combined complexity is NP-complete.

2. (a) According to 670 algorithm, Yes, q_1 is acyclic. $q_1(): -R(x,t_1,y)$, $S(y,t_2,z)$, $T(z,t_3,x)$, U(x,y,z)Since $R(x,t_1,y)$ is ear, remove t_1 and remove R, Then $S(y,t_2,z)$ is ear, remove t_2 and remove S,

Then $T(z,t_3,x)$ is ear, remove t_3 and remove T,

Lastly, U(x,y,z) is ear, remove x,y,z and remove U,

H is the empty hypergraph. Thus q_1 is acyclic and the join tree of q_1 is q_2 .

- (b). No. Since R, S, T, U are all not ear, we can not remove any one of them. Thus 92 is not acyclic.
- (c). 93(): -k(x,y,z), S(x,y), T(y,z), U(z,x)

 Since S(x,y) is ear, remove S

 Then T(y,z) is ear, remove T

 Then U(z,x) is ear, remove U

 At last, R(x,y,z) is ear, remove x, y,z and R.

 H is the empty hypergraph, Thus 92 is acyclic and the join tree

 of 93 is

 R—T

6HD with the smallest possible ghw:

$$\gamma(v_i) = \{x, z_i, z_{i+1}\}$$
 (i=1,2...,k)
 $ghw = 3$

4. the maximum possible ghw of COs with n atoms in the body

The class of queries achieves this ghw is a complete connected graph, for that graph, it has It 118h vertices, and each couple of vertices is connected with each other.