WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/56, 9/28, 9/30 C12N 9/32, 15/75, D06L 1/06 C08B 30/12 // (C12N 9/28 C12R 1/07, 1/10)

(11) International Publication Number:

WO 91/00353

A2 |

EP

(43) International Publication Date:

10 January 1991 (10.01.91)

(21) International Application Number:

PCT/EP90/01042

(22) International Filing Date:

27 June 1990 (27.06.90)

(30) Priority data: 89201735.1

89201735.1 29 June 1989 (29.06.89) (34) Countries for which the regional

or international application was filed:

NL et al.

(71) Applicants (for all designated States except US): GIST-BRO-CADES N.V. [NL/NL]; Wateringseweg I, P.O. Box I, NL-2600 MA Delft (NL). PLANT GENETIC SYSTEMS N.V. [BE/BE]; Kolonel Bourgstraat 106, Bus 6, B-1040 Brussels (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): QUAX, Wilhelmus, Johannes [NL/NL]; Jan van Galenlaan 8, NL-2253 VB Voorschoten (NL). LAROCHE, Yves [BE/BE]; Rue Bemel 115, B-1150 Brussels (BE). VOLLEBREGT, Adrianus, Wilhelmus, Hermanus [NL/NL]; Bereklauw 13, NL-2671 WZ Naaldwijk (NL). STANSSENS, Patrick [BE/BE]; De Gieylaan 13, B-9820 St. Denijs Westrem (BE). LAUWEREYS, Marc [BE/BE]; Wilgenstraat 22, B-2950 Haaltert (BE).

(74) Agents: HUYGENS, Arthur, Victor et al.; Gist-Brocades N.V., Patents and Trademarks Department, Wateringseweg 1, P.O. Box 1, NL-2600 MA Delft (NL).

(81) Designated States: AU, BG, BR, CA, FI, JP, KR, SU, US.

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: MUTANT MICROBIAL α -AMYLASES WITH INCREASED THERMAL, ACID AND/OR ALKALINE STABILITY

(57) Abstract

Thermostable and acid stable α -amylases are provided as expression products of genetically engineered α -amylase genes isolated from microorganisms, preferably belonging to the class of Bacilli. Both chemical and enzymatic mutagenesis methods are e.g. the bisulphite method and enzymatic misincorporation on gapped heteroduplex DNA. The mutant α -amylases have superior properties, e.g. improved thermostability over a broad pH range, for industrial application in starch processing and textile desizing.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Souin	***	M
AU	Australia			MC	Monaco
		FI	Finland	MG	Madagascur
52	Barbados	PR	France	ML	Mali
BB	Belgium	GA	Gabon	MR	Mauritania
1.F	Burkina Fasso	GB.	United Kingdom	MW	Malawi
BC	Bulgaria	CR	Grocce	NL	Notherlands
R.J	Benin	HU	Hungary	NO	Norway
BR	Brazii	IT	Italy	RO	Romania
CA	Canada	JP	Japan	SD	Sudan
CF	Central African Republic	KP	Democratic People's Republic	SE	Sweden
CG	Congo		of Korea	SN	Scnegal
CH	Switzerland	KR	Republic of Korea	SU	Soviet Union
CM	Camproon	ัน	Liochtonstein	TD	Chad
DE	Germany, Federal Republic of	LK	Sri Lanka	TG	Togo
DK	Denmark	LU	Luxembourg	us	United States of A

~ ' WO 91/00353

- 1 -

MUTANT MICROBIAL α-AMYLASES WITH INCREASED THERMAL, ACID AND/OR ALKALINE STABILITY

5

INTRODUCTION

Technical Field

10

The present invention relates to the field of genetic engineering and provides new DNA molecules comprising DNA sequences coding for enzymes with α-amylase activity. Specifically, mutant microbial α-amylases are disclosed having improved characteristics for use in the degradation of starch, in the desizing of textile and in other industrial processes. The disclosed α-amylases show increased thermal, acid and alkaline stability which makes them ideally suited for performing their activity under process conditions which could hitherto not be used.

Background of the invention

Starch consists of a mixture of amylose (15-30% w/w) and amylopectin (70-85% w/w). Amylose consists of linear chains of α -1,4-linked glucose units having a molecular weight (MW) from about 60,000 to about 800,000. Amylopectin is a branched polymer containing α -1,6 branch points every 24-30 glucose units, its MW may be as high as 100 million.

Sugars from starch, in the form of concentrated dextrose syrups, are currently produced by an enzyme catalyzed process involving: (1) liquefaction (or thinning) of solid starch with an α-amylase into dextrins having an average degree of polymerization of about 7-10, and (2) saccharification of the resulting liquefied starch (i.e. starch hydrolysate) with amyl gluc sidase (also called gluc amylase or AG). The

resulting syrup has a high glucose content. Much of th glucose syrup which is commercially produced is subsequently enzymatically isomerized to a dextrose/fructose mixture known as isosyrup.

 α -Amylase (EC 3.2.1.1) hydrolyzes starch, glycogen and related polysaccharides by cleaving internal α -1,4-glucosidic bonds at random. This enzyme has a number of important commercial applications in, for example the sugar, brewing, alcohol and textile industry. α -Amylases are isolated from a wide variety of bacterial, fungal, plant and animal sources. The industrially most important α -amylases are those isolated from Bacilli.

In the first step of the starch degradation process. starch slurry is gelatinized by heating at relatively high 15 temperature (up to 110°C). The gelatinized starch is liquefied and dextrinized by a thermostable \alpha-amylase in a continuous two stage process. The major process variables are starch concentration, a-amylase dose, temperature and pH. During the liquefaction-dextrinization reaction the process 20 variables must be maintained within narrow limits to achieve good conversion ratios, since serious filtration problems may arise otherwise. See, for example, L.E. Coker and K. Venkatasubramanian, in: Biotechnology, p. 165-171, Ed. P.N. Cheremisinoff, P.B. Quellette, Technicom Publ. Corp. 25 Lancaster Renn. 1985. One of the problems which frequently arises is the proper regulation of the temperature in the initial stage of the degradation process: overheating often causes denaturation of the α -amylase so that the final thinning is not sufficient. One way to avoid this is the use 30 of more thermostable α -amylases.

To that end it has been proposed to add calcium ions or an amphiphile (see e.g. EP-A-0189838), but this solution appeared to be unsatisfactory.

There is, therefore, still substantial interest to provide α -amylases with increased thermostability.

Relevant Literature

EP-A-057976 describes the isolation of a thermostable α -amylase coding gene from B. stearothermophilus the gene is cloned into a plasmid containing either a Bacillus or an E. coli origin of replication. The so obtained chimeric plasmid is used for producing α -amylase. The α -amylase gene was isolated and used without any further modification.

EP-A-0134048 describes a method for increased commercial production inter alia of α -amylase, by cloning and expression of one or more α -amylase genes in industrial <u>Bacillus</u> strains.

EP-A-252666 describes a chimeric α-amylase with the general formula Q-R-L in which Q is a N-terminal polypeptide of 55 to 60 amino acid residues which is at least 75 percent homologous to the 37 N-terminal residues of the B. amyloliquefaciens α-amylase, R is a given polypeptide and L is a C-terminal polypeptide of 390 to 400 amino acid residues which is at least 75 percent homologous to the 395 C-terminal residues of B. licheniformis α-amylase.

Gray et al. (J. Bacteriol., 1986, 166, 635) describe chimeric α-amylases formed of the NH₂-terminal portion of B. stearothermophilus α-amylase and the COOH-terminal portion of B.licheniformis α-amylase. Most of the hybrid enzyme

25 molecules were shown to be less stable than the parent wild-type enzymes. Furthermore none of the hybrid molecules was

shown to possess improved stability properties. None of the references cited above describes the use of single amino acid replacements to obtain novel α -amylases.

30 EP-A-0285123 discloses a method for complete mutagenesis of nucleic acid sequences. As an example mutagenesis of the B. stearothermophilus α-amylase is described. Although there is a suggestion that this method can be used to obtain B. stearothermophilus α-amylase mutants with improved stability no examples are given.

SUMMARY OF THE INVENTION

The present invention provides mutant α-amylases and ways of obtaining such mutants. Said mutant α-amylases are characterized in that they differ in at least one amino acid from the wild-type enzyme. Furthermore, DNAs encoding these mutants, vectors containing these DNAs in expressionable form and host cells containing these vectors are provided.

In one aspect of the invention random mutagenesis on cloned α -amylase genes is disclosed. The mutated genes are expressed in a suitable host organism using a suitable vector system.

In another aspect of the invention screening methods for mutant α-amylases are described and applied. Said methods
15 yield more thermostable and more acid stable α-amylases.
Furthermore, this method is used with a slight modification to obtain more alkaline stable α-amylases. The expression products of the clones so detected are isolated and purified.

In yet another aspect of the invention α -amylases are provided with increased thermostability, these mutant α -amylases reduce filtration problems under application conditions of starch degradation.

In a further aspect of the invention α -amylases are provided with increased acid stability, these reduce the 25 formation of unfavourable by-products, such as maltulose, at the same time they decrease the amount of acid to be added before the reaction with amyloglucosidase. The new α -amylases possess preferably both improved properties with respect to thermostability and acid stability or with respect to both thermostability and alkaline stability.

In another aspect of the invention the mutant proteins are shown to have a better performance under application conditions of starch liquefaction. The alkaline stability is especially useful for application in textile desizing.

35 These aspects will be further described in the detailed description and in the examples hereinafter.

35

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1: Nucleotide sequence of pMa5-8

Stanssens <u>et al</u>., 1987, EMBO Laboratory Course
5 Martinsried, July 1987. For description of the different
elements see text.

Figure 2: Nucleotide sequence of plasmid pPROM SPO2 insert

Construction of this vector has been described in EP-A10 0224294. The α -amylase amino acid sequence is depicted below
the triplets. Numbering starts from the first amino acid of
the mature protein (Kuhn et al., 1982, J. Bacteriol, 149,
372). The SPO2 promoter insert runs from position 61 to 344.

15 Figure 3: Nucleotide sequence of pMaTLia6

This vector was constructed from pMa5-8, the insert of pPROM SPO2 and a synthetic DNA fragment encoding the TAC promoter. The TAC promoter DNA fragment runs from position 3757 to position 3859. The α -amylase amino acid sequence is depicted below the triplets.

Figure 4 : Restriction map of pMaTLia6

The following unique restriction enzyme sites are available for gap construction in the α-amylase gene: BamHI,

25 SpeI, SacII, KpnI, ClaI, NarI, SalI, Tht111I, XmaIII and BstEII. Sequencing primers for all possible gaps have been synthesized in order to enable easy determination of mutations. Plasmid pMcTLia6 is identical with pMaTLia6 except for the presence of an amber codon in the ampicillin gene

30 (removes ScaI site) and the absence of an amber codon in the chloramphenicol gene (associated with the presence of a PvuII site).

Figure 5: Outline of Bacillus/E. coli shuttle vector pBMa/c

The (left) pMa/c section enables convenient mutagenesis in \underline{E} . coli. The (right) <u>Bacillus subtilis</u> cassette contains the α -amylase gene (or any other Bacillus gene) plus a

minimal replicon for propagation in B. subtilis. After successful mutagenesis in E. coli the B. subtilis cassette can be circularized allowing the SPO2 promoter to move in front of the α -amylase gene upon transformation into Bacillus.

5

25

Figure 6: Restriction map of pBMa/cl

This vector is a specific example of the mutagenesis expression vector outlined in Figure 5.

(1) and (2): multiple cloning sites. The target gene is inserted in (2). By varying the sites at (1) and (2) convenient restriction sites for gapped duplex creation can be constructed;

FDT : transcription terminator

F1.ORI : origin of replication originating from

15 phage F1

E. coli ORI: origin of replication from pBR322

BLA : ampicillin resistance gene

CAT : chloramphenicol resistance gene
BAC ORI : origin of replication of pUB110

20 KANAMYCIN: kanamycin (neomycin) resistance gene of

pUB110

SPO2 : promoter of phage SPO2

Figure 7: Restriction map of pBMa/c6Lia6

The <u>Bacillus licheniformis</u> α -amylase gene was engineered into pBMa/cl at multiple cloning site (2) of Figure 6. In this figure the SPO2 promoter is indicated by (2) and the <u>E. coli</u> ORI is represented by (4).

30 Figure 8: Sequence of phoA signal sequence fragment in pMa/c TPLia6

Depicted is the sequence from the <u>Eco</u>RI site upstream from the TAC-promoter up to the first amino acids of mature α -amylase. The phoA amino acid sequence is shown below the 35 DNA sequence.

Figure 9: Michaelis-Menten plot for WT and 2D5 α -amylase This plot shows the initial rate of enzyme activities vs. substrate concentration for WT and 2D5 α -amylase. Assay conditions are described in Example 8.

5

Figure 10: Thermoinactivation of WT and D7 α -amylase

This plot shows the half life time of both WT and D7 α -amylase as a function of the Ca²⁺ concentration at pH 5.5 and 90.5°C.

10

Figure 11: Thermoinactivation of WT and D7 α -amylase As in Figure 10 except for the pH which is 7.0.

Figure 12: Thermoinactivation of WT and 2D5 α -amylase

This plot shows half life times of both WT and 2D5 α amylase as a function of Ca²⁺ concentration at pH 7.0 and
95°C.

Figure 13: Thermoinactivation of WT and D7 α -amylase as a 20 function of pH

Figure 14: Thermoinactivation of WT and 2D5 α -amylase as a function of pH

25 Figure 15: DE vs final pH measured after liquefaction at 110°C

DETAILED DESCRIPTION OF THE INVENTION

30 By the term "exhibits improved properties" as used in connection with "mutant α-amylase" in the present description we mean α-amylases which have a higher enzymatic activity or a longer half-life time under the application conditions of starch liquefaction, textile desizing and other industrial processes.

With "improved thermostability" we mean that the mutant enzyme retains its activity at a higher process

WO 91/00353 PCT/EP90/01042

- 8 -

temperature, or that it performs 1 nger at the same temperature than the wild-type enzyme from which it originates.

With "improved acid (or alkaline) stability" we mean that the mutant enzyme performs better at lower (or higher) pH values then the wild-type enzyme from which it was derived.

It is to be understood that the improved properties are caused by the replacement of one or more amino acids.

10

Chromosomal DNA may be isolated from an q-amylase containing microorganism. Preferably a microorganism is used belonging to the genus Bacillus, more preferably B. licheniformis, still more preferably B. licheniformis T5 15 is used (see EP-A-134048). The chromosomal DNA is digested with a suitable restriction enzyme and cloned into a vector. A number of possible ways of selection can be used e.g. hybridization, immunological detection and detection of enzymatic activity. The choice of the vector used for cloning 20 the digested chromosomal DNA will depend on the selection method available. If hybridization is used no special precautions are needed. However, if detection is immunological or based on enzymatic activity the vector will have to contain the proper expression signals. The actual 25 detection of clones containing α-amylase was performed on starch containing agar plates. After growth and incubation with I, vapor halos are detected around positive clones. As a next step the sequence of the gene is determined. The derived amino acid sequence is used for comparison with other known α-amylase sequences to give a first impression of important amino acids (e.g. active-site, Ca2+ binding, possible S-S bridges). A better indication is obtained when the 3Dstructure is determined. Since this is very laborious oftentimes another approach is used. In the absence of a 3D-35 structure prediction programs for determining the secondary structural elements (e.g. α -helix, β -sheet) are successfully used eventually the tertiary structural elements e.g. B-

barrel are determined. For a review see Janin, J. and Wodack, S.J., Prog. Biophys. molec. Biol. 1983, 42, 21-78.

Valuable amino acid replacements can be envisioned. The stability of a protein structure is determined by the net difference in free energy between the folded and unfolded conformations of the protein. Since the proline residue is restricted to fewer conformations than the other amino acids the configurational entropy of unfolding a protein is decreased (and stability thereby increased) when an amino acid is replaced with proline. Another useful substitution is the glycine to alanine replacement. Residues such as threonine, valine and isoleucine with branched \$-carbons restrict the backbone conformation more than non-branched residues.

Since a part of the thermostability of certain proteins is due to salt bridges it may be advantageous to introduce lysine and arginine residues (Tomozic S.J. and Klibanov A.M., J. Biol. Chem., 1988, 263 3092-3096). Moreover replacement of lysine by arginine residues may improve the stability of salt bridges since arginine is able to form an additional H-bond. For a review see Wigby, D.B. et al. Biochem. Biophys. Res. Comm. 1987, 149, 927-929. Deamidation of asparagine and glutamine is mentioned to cause a serious disruption of the enzyme structure, replacement with non-amide residues may avoid this disruption. Amino acid replacements are best made by mutagenesis at the DNA level.

In principle mutagenesis experiments can be performed immediately on isolated clones. However, the insert is preferably cloned in a mutagenesis/expression vector. Random mutagenesis is possible and so is site-directed mutagenesis. In view of the huge amount of mutated clones of the former method, and since no 3D-structure of α-amylase is known to make possible an educated guess for site-directed mutagenesis we decided to perform "random" mutagenesis in specific regions.

The following is a possible approach for practising the present invention.

First the gene is m diffied by the introduction of "silent" restriction sites. Introduction of non-silent restriction sites is also possible. This makes possible the deletion of specific regions of the gene. Secondly the gene is cloned in a phasmid. This combination of a phage and a plasmid makes easy the production of single stranded DNA. Other ways of obtaining single stranded DNA are also possible. By hybridizing melted double-stranded vector (plus insert) DNA with a vector/insert combination containing a gap in the insert, gapped heteroduplex DNA was obtained (for a detailed description see Morinaga, Y et al. 1984, Biotechnology, 2, 636).

The gap is used for chemical or enzymatic mutagenesis. Preferably we used the bisulphite method (Folk and 15 Hofstetter, Cell, 1983, 33, 585) and an enzymatical misincorporation method are used (modified version of Lehtovaara et al., Prot. Eng., 1988, 2, 63). These methods can be applied in such a way that every single nucleotide in the gap is replaced by all three other nucleotides 20 (saturation mutagenesis). The latter method can be applied in several ways. In one of them a synthetic primer is hybridized to the gap. Subsequently an extension reaction is performed in which the deoxynucleotide complementary to the first deoxynucleotide 3' from the primer is missing. In principle 25 all three of the other deoxynucleotides can thus be incorporated. This can be achieved either by using a mix of three deoxynucleotides or by using three separate reactions each containing only one deoxynucleotide. Another way of applying the method yields random clones. Here, four separate 30 reactions are set up each of them containing one limiting deoxynuclectide. This gives second strands that stop before every single nucleotide. The subsequent steps can be performed as described above. Both the bisulphite and the enzymatic mutagenesis method were employed to obtain mutants.

For testing the enzymatic properties it may be c nvenient t express the cloned genes in the same host as that used during mutagenesis experiments. In principle this

35

can be any host cell provided that suitable
mutagenesis/expression vector systems for these cells are
available. For the most part <u>E. coli</u> is very convenient to
work with, for example <u>E. coli</u> WK6. After growth of the

5 colonies in microtiterplates samples from the wells of these
plates are spotted on agar plates supplemented with starch
and buffered at different pH values. Positive clones can be
detected by halo formation. Screening with appropriate
buffers can be used to select for thermostability, acid

10 stability, alkaline stability, saline stability or any other
stability that can be screened for.

Suitable host strains for production of mutant α -amylases include transformable microorganisms in which the expression of α -amylase can be achieved. Specifically host strains of the same species or genus from which the α -amylase is derived, are suited, such as a <u>Bacillus</u> strain. Preferably an α -amylase negative <u>Bacillus</u> strain is used more preferably an α -amylase and protease negative <u>Bacillus</u> strain.

For example <u>B. licheniformis</u> T9 has been used to 20 produce high amounts of mutant α -amylases.

Preferably, the α -amylases being produced are secreted into the culture medium (during fermentation), which facilitates their recovery. Any suitable signal sequence can be used to achieve secretion.

The expressed α-amylase is secreted from the cells and can be subsequently purified by any suitable method.

Gelfiltration and Mono Q chromatography are examples of such methods. The isolated α-amylase was tested for thermoinactivation at different Ca concentrations (0.5 - 15 mM)

and over a wide pH range (5.5 - 8.0). Tests were also performed under application conditions. Specifically mutant α-amylase was tested under conditions of starch liquefaction at pH 5.5 and 5.25. Furthermore, applications for textile desizing have been tested.

35 The properties of some of the mutants that are screened will be better suited under the desired performance conditions.

The present invention discloses α-amylases with increased thermostability, improved acid stability and improved alkaline stability. Generally the number of amino acid replacements is not important as long as the activity of the mutated protein is the same or better than that of ther wild-type enzyme. Mutant α-amylases differ in at least one amino acid from the wild-type enzyme, preferably the mutants differ in from 1 to 10 amino acids. Specific mutants with improved properties include mutant α-amylases containing one or more amino acid replacements at the following positions 111, 133 and 149 (numbering is in accordance with the B. licheniformis α-amylase). Among the preferable amino and replacements are Ala-111-Thr, His-133-Tyr amd Thr-149-Ile.

Such mutant enzymes show an improved performance at pH values below 6.5 and/or above 7.5. The performance is also increased at high temperatures leading to an increased half-life-time at for example temperatures of up to 110°C.

Many of the available α-amylase products are obtained from bacterial sources, in particular Bacilli, e.g. B.

20 subtilis, B. licheniformis, B. stearothermophilus,
B. coagulans and B. amyloliquefaciens. These enzymes show a high degree of homology and similarity (Yuuki et al., J. Biochem., 1985, 98, 1147; Nakajima et al., Appl. Microbiol. Biotechnol., 1986, 23, 355). Therefore knowledge of

25 favourable mutations obtained from one of these α-amylases can be used to improve other amylases. The present invention provides an approach for obtaining such knowledge.

Following is a description of the experimental methods used and examples to illustrate the invention. The examples are only for illustrative purpose and are therefore in no way intended to limit the scope of the invention.

EXPERIMENTAL

35

Materials and Methods

1. General cloning techniques

Cloning techniques were used as described in the handbooks of T. Maniatis et al., 1982, Molecular Cloning, Cold Spring Harbor Laboratory; F.M. Ausubel et al., 1987,

5 Current Protocols in Molecular Biology, John Wiley & Sons Inc., New York; B. Perbal, 1988, A practical Guide to Molecular Cloning, 2nd edition, John Wiley & Sons Inc., New York. These handbooks describe in detail the protocols for construction and propagation of recombinant DNA molecules, the procedures for making gene libraries, the procedures for sequencing and mutating DNA and the protocols for the enzymatic handling of DNA molecules.

15 2. <u>Chemical mutagenesis</u>

Cloned DNA may be treated in vitro with chemicals in order to introduce mutations in the DNA. If these mutations are directed to amino acid encoding triplet codons a mutated protein can be produced by the mutated cloned DNA. A method for chemical mutagenesis with the aid of sodium bisulfite is described by Shortle and Botstein (Methods Enzymol., 1983, 100, 457). A preferable method is described by Folk and Hofstetter (Cell, 1983, 33, 585). Other methods for mutagenesis are described by Smith, Ann. Rev. Genet., 1985, 19, 423. A particularly useful protocol is described by Ausubel et al., ibid.

30 3. <u>Mutagenesis on gapped-duplex DNA</u>

A method based on the gapped-duplex approach (Kramer et al., 1984, Nucl. Acids Res. 12, 9441) and a phasmid (plasmid/phage hybrid) was used. Essentially the method rests on a gapped duplex DNA intermediate consisting of a gapped strand (-strand) containing a wild-type antibiotic resistance marker and a template strand (+ strand) carrying an amber

WO 91/00353 PCT/EP90/01042

- 14 -

mutation in the gene conferring resistance to the antibiotic.

After annealing, the mutagenic oligonucleotide becomes incorporated in the gapped strand during in vitro gap-filling and sealing reaction. The resultant molecules are used to transform a mismatch repair deficient (Mut S) host in which the linkage between the intended mutation and the antibiotic resistance marker is preserved. The mixed phasmid population, isolated from this strain, is then allowed to segregate in a suppressor negative host strain. Transformants are plated on antibiotic containing medium, thus imposing a selection for progeny derived from the gapped strand.

The twin vector system pMa/c5-8, which was described by P. Stanssens et al. (Nucl. Acids Res., 1989, 17, 4441) is composed of the following elements:

pos 11-105 : bacteriophage fd, terminator

pos 121-215 : bacteriophage fd, terminator

pos 221-307 : plasmid pBR322 (pos 2069-2153)

pos 313-768 : bacteriophage fl, origin of replication

(pos 5482-5943)

20 pos 772-2571 : plasmid pBR322, origin of replication

and B-lactamase gene

pos 2572-2685: transposon Tn903

pos 2519-2772: tryptophan terminator (double)

pos 2773-3729: transposon Tn9, chloramphenicol acetyl

25 transferase gene

pos 3730-3803: multiple cloning site

The sequence is depicted in Figure 1.

In the pMa type vector nucleotide 3409 is changed from G to A, while in the pMc type vector nucleotide 2238 is changed from G to C, creating amber stopcodons in the acetyl transferase gene and B-lactamase gene, respectively, rendering said genes inactive.

35

All sequences referred to were obtained from Genbank (TM) (release 54), Nati nal Nucleic Acid Sequence Data Bank,

NIH USA. Plasmid pMc5-8 has been deposited under DSM 4566. To perform mutagen sis the target DNA fragment is cloned into the multiple cloning site of pMa5-8. Subsequently a gapped duplex between pMa5-8 containing the target DNA and pMc5-8 is 5 constructed.

The single strand gap, consisting of the target DNA, can be subjected to mutagenesis with a mutagenic oligonucleotide, with long synthetic oligonucleotides, with a low level of misincorporated nucleotides, with chemicals or with 10 enzymatic misincorporation of nucleotides also random mutagenesis PCR can be applied. For a detailed description see Ausubel et al., ibid. or Perbal, ibid. As an alternative to in vitro mutagenesis one can use in vivo mutagenesis either with the aid of UV-light or chemicals or by the 15 application of an E. coli mutator strain (Fowler et al., J. Bacteriol., 1986, 167, 130).

Mutagenic nucleotides can be synthesised using apparatus obtainable from Applied Bio Systems.

20

30

Random mutanenesis by enzymatic misincorporation of nucleotides

A pMa/pMc gapped duplex can be subjected to primer 25 extension and misincorporation mutagenesis as originally described by Shortle et al. (Proc. Natl. Acad. Sci. USA, 1982, 79, 1588) by B.C. Cunningham and J.A. Wells (Prot. Eng., 1987, 1, 319) a modification of this procedure is described by Lehtovaara et al., (Prot. Eng., 1988, 2, 63).

This method is based on controlled use of polymerases. Four populations of DNA molecules are first generated by primer elongation of a gapped duplex of pMa/pMc so that they terminate randomly, in the gap, but always just before a known type of base (before A, C, G or T, respectively). Each 35 of four populations is then mutagenized in a separate misincorporation reaction where the correct base can now be omitted. In this way all types of base substitution mutations can be generated at every position of the gap. The use of sequenase (TM) (U.S. Biochemical Corporation) was preferred to the use of Klenow polymerase. Moreover MoMuLV reverse transcriptase was used instead of A.M.V. reverse transcriptase, which was used by Lehtovaara et al. (ibid).

To ensure single site substitutions we have introduced the following modification to the protocol described by Lehtovaara et al., ibid. In the reverse transcriptase buffer not three but only one misincorporating nucleotide is 10 present. For instance the A-specific limited base elongation mixture is incubated in three separate reactions with 250 μ M dCTP, 250 µM dGTP and 250 µM dTTP, respectively. For a complete set of 4 base specific limited elongation mixtures a total set of 12 separate misincorporation reactions is 15 carried out. After 1.5 hour incubation at 42°C a chase of all four deoxynucleotides in a concentration of 0.5 mM is added and the reactions are further incubated for at least 20 minutes at 37°C. Samples are then further processed according to Lehtovaara et al. (ibid.), with the modification that no 20 counterselection to an uracil-containing DNA strand but a counterselection based on the pMa/c vector was applied.

Production of mutant α-amylases

25

Transformants of <u>E</u>. <u>coli</u> strain WK6 (Zell, R. and Fritz, H.J., EMBO J., 1987, <u>6</u>, 1809), containing an expression vector, harboring any one of the α-amylase constructs, were inoculated in TB medium (10 ml) at 30°C. TB medium consisted of 0.017M KH₂PO₄, 0.072M K₂HPO₄, 12 g/l Bactotryptone, 24 g/l Bacto yeast extract, 0.4% glycerol and an antibiotic (ampicillin with pMa or chloramphenicol with pMc constructs). Samples of the culture were used to inoculate 250 ml TB in 2 liter flasks. At an OD₆₀₀ of 10 - 12, 0.1 mM IPTG (isopropyl-β-d-thiogalactopyranoside) was added and incubation continued for an ther 12 - 16 h urs.

6. Purification of mutant α -amylases

- The cells were harvested by centrifugation and resuspended in buffer containing 20% sucrose at 0°C. After a second centrifugation the cells were resuspended in cold water. Cell debris was removed by a third centrifugation and the supernatant was brought to pH 8.0 with 20mm TRIS buffer.
- 10 CaCl₂ was added to a final concentration of 50mM. The material was heat-treated for 15 min. at 70°C and the insoluble material removed by centrifugation. The supernatant was filtered through 0.22 μ Millipore filter and concentrated to 1/10th of the starting volume.
- 15 Further purification was achieved using gelfiltration (on TSK HW-55- Merck) and Mono Q chromatography. Before chromatography on Mono S the pH, of the enzymatic activity containing fractions, was adjusted to 4.8 using sodium acetate. α-amylase was eluted with 250mM NaCl. To avoid
- 20 inactivation the pH was immediately adjusted to 8.0.

WO 91/00353 PCT/EP90/01042

- 18 -

Examples

Example 1

Molecular cloning of Bacillus licheniformis a-amylase gene

5

Chromosomal DNA isolated from Bacillus licheniformis T5 (EP-A-134048; CBS 470.83) was digested with restriction enzyme EcoRI and ligated into the EcoRI site of pUB110 (Gryczan, T.J., et al., J. Bacteriol, 1978, 134, p 318). The 10 ligation mixture was transformed into Bacillus subtilis 1A40 (Bacillus Genetic Stock Center). Neomycine resistant colonies were tested for α-amylase production on HI agar plates (DIFCO) supplemented with 0.4 g/l starch (Zulkowsky starch, Merck). After growth and incubation with I, vapor, a positive 15 colony producing a large clearing halo was selected for further characterization. The plasmid isolated from this positive colony was shown to contain a 3.4 kb EcoRI-EcoRI fragment originating from Bacillus licheniformis T5. This plasmid was named pGB33 (EP-A-134048; CBS 466.83). The gamylase encoding insert was ligated to a synthetic Shine-Dalgarno sequence and the bacteriophage SPO2 promoter resulting in plasmid pProm SPO, (see EP-A-0224294; CBS 696.85). The nucleotide sequence of the insert of pProm SPO, as determined by the method of Sanger (Proc. Natl. Acad. Sci. 25 U.S.A., 1977, 74, 6463) is shown in Figure 2. The sequence shows a single large open reading frame encoding an aamylase, which is virtually identical to the α -amylase sequence of Bacillus licheniformis as determined by Yuuki et al. (ibid). The first 29 amino acids are a signal sequence 30 which is cleaved off during secretion of the α -amylase. Numbering of amino acids throughout this application refers

The Yuuki sequence differs at the following positions: at position 134 an Arg is present instead of Leu; at position 35 310 a Ser is present instead of Gly; at position 320 an Ala is present instead of Ser.

to the numbering according to the mature protein.

WO 91/00353 PCT/EP90/01042

- 19 -

Example 2

Construction of mutagenesis/expression vectors pMaTLia6

Plasmid pPROM SPO, was digested with EcoRI and BclI and the 1.8 kb EcoRI-BclI insert was purified and cloned into EcoRI-BamHI digested pMa5-8. This pMa5-8 vector was beforehand provided with a modified multiple cloning site. The BamHI-HindIII fragment running from position 3767 to position 10 3786 in Figure 1 was exchanged for a synthetic DNA sequence as it reads from position 5647 to 5660 in Figure 3. This was carried out to render some restriction sites within the aamylase gene unique. The resulting α-amylase containing pMa5-8 derivative was digested with EcoRI and BamHI and ligated to 15 a synthetic DNA fragment carrying a copy of the TAC promoter (De Boer et al., Proc. Natl. Acad. Sci. U.S.A., 1983, 80, 21). The sequence of this synthetic DNA fragment is depicted together with the final α-amylase mutagenesis/expression vector pMaTLia6 in Figure 3 from position 3757 to position 20 3859. This final α-amylase mutagenesis/expression vector was completed by the introduction of several silent restriction sites which are intended to produce gaps in the α -amylase gene during mutagenesis experiments (Figure 4). For this purpose the following mutations have been made using site-25 directed oligonucleotide mutagenesis:

- a SpeI site has been introduced by a silent mutation:

T49T

and

S50S

ACG --> ACT

AGC --> AGT

30

- a NarI site has been introduced by the silent mutation:

A269A

GCG --> GCC

35

- A BstE II site has been introduced just downstream from the TAG stop codon

10

30

35

TAGAAGAGC --> TAGGTGACC

This α-amylase mutagenesis vector pMaTLia6 is suited for mutagenesis with the gapped duplex method. Double stranded pMaTLia6 DNA prepared by digestion of suitable restriction enzymes has been annealed to single stranded pMcTLia6 DNA.

The resulting single stranded gaps have been subjected to site-directed mutagenesis, to chemical mutagenesis and to random enzymatic mutagenesis as described in the experimental section.

The availability of the TAC promoter in front of the α -amylase gene enables the inducible expression of α -amylase in E. coli by addition of IPTG.

Plasmid pMaTLia6 in \underline{E} . \underline{coli} WK6 was deposited as CBS 15 255.89 on June 2nd, 1989.

Example 3

20 <u>Construction of a Bacillus/E. coli shuttle vector</u> <u>for mutagenesis and expression</u>

This vector enables mutagenesis of an inserted gene in E. coli and immediate expression in <u>Bacillus</u>. The strategy chosen for the construction of the vector was to combine a pUB110 derivative (Gryczan, ibid.) with the pMa/c twin vector system in such a way that:

- 1. The <u>B</u>. <u>subtilis</u> cassette can be removed by a single restriction/religation experiment.
- 2. Different α -amylase genes and different promoters can be easily cloned in this vector.
- 3. After recircularisation the cloned gene will be under control of a suitable Bacillus promoter.
- 4. During mutagenesis in <u>E</u>. <u>coli</u> the Bacillus promoter and the structural α-amylase gene are physically separated preventing a possible lethal accumulation of α-amylase in <u>E</u>. <u>coli</u>.

WO 91/00353 PCT/EP90/01042

A schematic drawing of the shuttle vector is shown in Figure 5. The structure of the final versi n of the vector pBMa/c1 is depicted in Figure 6. Vector pBMal has been deposited under number CBS 252.89, on June 2nd, 1989. The vector has been constructed as follows:

- The EcoRI-SnaBI fragment of pUB110 carrying the REPgene and the Neo^R gene was purified and cloned into EcoRI-SmaI digested pUC8.
- The <u>EcoRI-HindIII</u> fragment of this pUC8 derivative was cloned into <u>EcoRI-HindIII</u> digested pMa5-8 resulting in plasmid pMa5-80.
- The <u>Bam</u>HI-<u>Xba</u>I polylinker fragment was substituted by a synthetic fragment of DNA encoding the SPO₂ promoter of bacteriophage SPO₂ (Williams <u>et al.</u>, J. Bacteriol., 1981, <u>146</u>, 1162) plus restriction recognition sites for <u>Sac</u>II, <u>Apal</u>, <u>Xho</u>I, <u>Sac</u>I, <u>Bgl</u>I, <u>Mlu</u>I and <u>Xba</u>I.
- The unique <u>EcoRI</u> site of pMa5-80 was used to insert a polylinker fragment constituting the following recognition sites: <u>EcoRI</u>, SmaI, <u>EcoRI</u>, <u>EcoR</u>

For specific purposes derivatives pBMa/c2 and pBMa/c6 have been developed out of pBMa/c1.

25

10

15

20

- In pBMa/c2 the <u>Eco</u>RI-<u>Hin</u>dIII polylinker of pBMa/c1 has been replaced by the corresponding polylinker of pUC19.
- In pBMa/c6 in addition the <u>Sac</u>II site in the right polylinker of pBMa/c1 has been removed by a Klenow reaction.

Site directed mutagenesis on the <u>B. licheniformis</u> αamylase gene was performed after construction of pBMa/c6

35 Lia6. This vector was constructed by ligating the <u>Bam</u>HI<u>HindIII</u> fragment isolated from pMaTLia6 into the above
mentioned pBMa/c6 which was cleaved by <u>Bam</u>HI and <u>HindIII</u>. The

resulting plasmid (Figure 7) can be used to construct gapped duplexes for mutagenesis in <u>E. coli</u>.

The resulting mutants have been expressed in <u>Bacillus</u>
<u>subtilis</u> 1A40 (BGSC 1A40) after restriction with <u>Sac</u>I,

5 religation and transformation according to Chang and Cohen
(Mol. Gen. Genet., 1979, <u>168</u>, 111).

Example 4

Expression in E. coli of correctly matured Bacillus licheniformis α-amylase

Characterization of the α -amylase produced by pMaTLia 6 (Example 2) showed that a portion of the α -amylase was incorrectly processed during secretion. NH₂-terminal sequencing revealed an extra Alanine residue for α -amylase produced in <u>E. coli</u> WK 6.

Although we have no indication that this will give different properties to the amylase we have replaced the α-20 amylase signal sequence by the alkaline phosphatase PhoA signal sequence. To this end a mutagenesis experiment was carried out so as to introduce a FspI restriction site in pMaTLia 6 at the junction of the signal peptide and the mature α-amylase. After FspI and BamHI digestion a synthetic DNA fragment encoding the phoA signal sequence (Michaelis et al. J. Bacteriol., 1983, 154, 366) was inserted. The sequence of this construction is shown in Figure 8. α-Amylase produced by pMa/cTPLia6 was shown to posses the correct NH₂-terminal sequence.

30

Example 5

Screening for stable α-amylase
Screening for acid-stable α-amylase mutants

35

A.

 α -Amylase mutants, that perform better or worse at low pH than the wild-type α -amylase, can be selected by

comparison of halo's on starch plates buffered at different pH values after staining the starch with an iodine-solution.

Method:

5

1. Growth

Possible mutants are grown in microtiterplates. The growth medium is 250 μl Brain Heart Infusion broth (DIFCO). The following additions are made:

10 chloramphenicol 50 μg/ml

I.P.T.G. (SIGMA) 0.2 mM

CaCl₂ 2 mM

Colonies are picked from agar plates with sterile toothpicks and inoculated in separate wells (96) of a microtiterplate.

15 In each plate 4 wild-type colonies are included as a control.

These microtiterplates are placed at 37°C for 40 hours without shaking.

2. Plate test

- 20 After this time period, in which the α -amylase is produced, 5 μ l samples are taken from each well and spotted on 2 different types of agar plates (144 x 140 mm). The first type is a rich Heart-Infusion agar plate (DIFCO) + 0.4% starch (Zulkowsky starch-Merck) + chloramphenicol 50 μ g/ml.
- 25 After incubation at 37°C for 16 hours this plate serves as a storage for mutants.

The second type of plate is the actual screening plate, it contains:

Bacto agar (DIFCO) 1.5%

Zulkowsky starch 0.2%

30 Agar and starch are dissolved in synthetic tap water (STW).
This is: demineralised water +

CaCl, 2 mM

MgCl, 1 mM

NaHCO₃ 2.5 mM

35 BSA 10 μ g/ml

The screening plates are buffered by a 100-fold dilution of a 5 M stock potassium acetate buffer solution in this medium. pH values of the stock solutions are 4.80; 5.0 and 5.2 at room temperature. Final pH values in the agar plate when measured are somewhat lower than those of the stock solutions. From each well 5 μ l of culture is spotted on 3 screening plates with different pH values.

The pH-range is chosen in such a way that there is little or no activity left for the wild-type α -amylase on the plate with the lowest pH-value.

3. Colouring

The screening plates are incubated for 2 hours at 55°C. After this period an I_2 solution is poured over the plates. 10 x I_2 solution contains 30 g I_2 and 70 g KI per liter.

The amount of clearance of the spots is correlated with the residual α-amylase activity at that pH value. Those mutants that perform better than the wild-type controls are selected for a second round of screening. Wild-type halo's are very reproducible in this experiment.

4. Second screening

Positive mutants are picked from the rich plate and
purified on fresh HI plates + chloramphenicol. 4 single
colonies are picked from each mutant and they are tested
again in a similar way as in the first screening. In addition
serial dilutions of these cultures are made with STW and
these dilutions are spotted on neutral pH screening plates
(pH = 7.0). Comparison with wild-type cultures enables one to
decide if the better performance at low pH is due to an
overall better α-amylase production or to intrinsically more
stable α-amylase.

The mutants that "survive" the second screening are

35 characterized by determining the nucleotide sequence of that
part of the gene that was subjected to mutagenesis.

B. Screening for alkali stable q-amylase

Screening for alkali stable α-amylases is performed in a manner similar to the one used for acid stable α-amylase.

5 After growth in microtiter plates 5 μl samples are taken from each well and spotted onto a storage plate and onto the actual screening plate. The latter is composed of:

Bacto Agar (DIFCO) 1.5%
10 Zulkowsky starch 0.2%

and completed with demineralized water plus

CaCl2 2 mM

15 MgCl2 1 mM

NaHCO3 2.5 mM

BSA 10 µg/ml

The screening plates are buffered with 50 mM

20 carbonate/bicarbonate buffer, pH values are 9.0, 9.5 and
10.0. The pH range is chosen in such a way that there is
little or no activity of the wild-type \alpha-amylase at the
highest pH value. After 2 hours incubation at 55°C an I2
solution is poored over the plates. Those mutants that give a

25 better halo than the wild-type enzyme are selected for a
second round of screening. This second round of screening is
performed in a similar fashion as the screening for the acid
stability.

30

C. <u>Screening for thermostable α-amylase mutants</u>

α-Amylase mutants that perform better or worse at high temperature than the wild-type α-amylase, can also be selected by comparison of halo's on starch plates caused by the residual amylase activity in the culture broths after heating.

PCT/EP90/01042

- 26 -

Method:

1. Mutants are grown in the same way as for the pHscreening.

5 .

WO 91/00353

- The mutants are replicated on HI agar plates as for the pH-screening.
- 3. The separate wells of the microtiterplates were closed with disposable caps (Flow laboratories) to prevent evaporation of the culture broths during the heating step.
- 4. Microtiterplates were heated in a waterbath for 1 hour at 95°C. After heating the microtiterplates were placed in a centrifuge for collecting the total sample on the bottom of the microtiterplate.
- 5. Screening for thermostable mutants was done as follows:

From each well 5 μ l of culture was spotted on neutral screeningplates (See pH-screening). These plates were incubated for 1 hour at 55°C.

After staining the starch with the iodine solution mutants and controls can be screened for residual α -amylase activity by comparing clearance of the spots (halo's).

In case the residual activity of the controls is too high, serial dilutions must be made and spotted on the screening plate to be able to discriminate for mutants that are more thermostable than the wild-type enzyme.

6. Possible interesting mutants are tested further as was done in the pH-screening method.

35

30

A combination f screening type A or B with type C can be applied if a combination of properties is desired. For

instance after the first round of screening for alkali stable α -amylase, a second round of screening for thermostability can be performed. Those mutants that score positive in both tests may be selected as candidates exhibiting a combination of desired properties.

Example 6

Bisulphite mutagenesis of pMaTLia6

10

Single stranded DNA of pMaTLia6 was annealed with SacII-ClaI digested pMcTLia6 in order to obtain a heteroduplex with a gap running from position 4315 to 4569 (Figure 3). This heteroduplex was subjected to bisulphite mutagenesis (see experimental).

After transformation into <u>E</u>. <u>coli</u> WK6 mut S (Zell, R. and Fritz H.J., ibid) and selection on chloramphenicol containing agar plates (50 μg/ml) plasmid pools were isolated and transformed into <u>E</u>. <u>coli</u> WK6. <u>E</u>. <u>coli</u> WK6 Mut S was deposited as CBS 472.88, <u>E</u>. <u>coli</u> WK6 was deposited as CBS 473.88. Resulting transformants were grown in BHI medium (DIFCO) containing 2.0 mM CaCl₂, 50 μg/ml chloramphenicol and 0.20 mM IPTG (SIGMA) during 40 hours at 37°C in microtiter wells without shaking. Screening for pH stable mutants was carried out as described in Example 5.

About 300 Cm^R transformants were screened. The mutation frequency as determined by DNA sequencing was on average 0.4 mutation/molecule over the gap. One acid stable mutant, D7, was identified after the pH screening. Sequencing of this mutant revealed mutation H133Y originating from a mutation of the encoding triplet from CAC to TAC.

Mutant D7 was also found positive in the thermostability screening assay (Example 5).

DNA sequencing was performed on single stranded DNA

35 with a specific oligonucleotide designed to prime just before
the <u>SacII-ClaI</u> fragment. In a separate mutagenesis xperiment
1000 Cm^R transformants were screened. Another acid stable

mutant, 2D5, was identified after the pH screening. This mutant has the following mutations:

H133Y CAC --> TAC

T149I ACA --> ATA

in a more alkaline stable phenotype.

Bisulphite mutagenesis has been applied in a similar manner as just described on the <u>ClaI-SalI</u> gap which runs from position 4569 to position 4976 of Figure 3. About 300 Cm^R transformants were screened (mutation frequency 0.6 mutations/molecule). No acid stable transformants were found.

10 A number of acid labile mutants were found. Among these acid labile mutants some may have a shifted pH spectrum resulting

Example 7

15

Enzymatic mutagenesis of pMaTLia6

Single stranded pMaTLia6 (Figure 4) was annealed with ClaI-SalI digested pMcTLia6 in order to obtain a heteroduplex running from position 4569 to 4976 (Figure 3). The gapped duplex was subjected to enzymatic misincorporation mutagenesis as described in the experimental section.

A sample obtained after dATP-limited primer elongation was split in three parts and incubated in the presence of reverse transcriptase with dCTP, dGTP and dTTP, respectively. After incubation at 37°C for 10 minutes a chase with all four dNTP's and Klenow polymerase was given T4-DNA ligase was added to finish the elongation to completely double stranded molecules.

These molecules were transformed into E. coli WK 6 Mut S and plasmid pools were recovered. These plasmid pools were subsequently transformed into E. coli WK 6 and the colonies were selected on chloramphenicol (50 μ g/ml) containing agar plates. Resulting mutants were screened for stability of α -35 amylase as described in Example 5.

In another experiment the <u>Spe</u>I-<u>Sac</u>II gap was subjected to limited primer elongation with dATP, dCTP, dGTP and dTTP,

respectively. These primer p ols were mutagenized by misincorporation (see experimental). 100 Cm^R transformants were tested on pH plates (Example 5) and mutant M29 was identified as more stable at low pH. The sequence of the mutation was determined: AllIT GCG --> TCG

Example 8

Properties of stable mutants

10

Two of the mutants obtained from the bisulphite mutagenesis experiments were further characterized. As described before DNA sequencing suggested the following amino acid replacements:

- 15 D7 contained a tyrosine at position 133 instead of a histidine (D7 = H133Y),
 - 2D5 contained the D7 mutation and in addition threonine 149 was replaced by isoleucine (2D5 = H133Y, T149I).

20 a) Measurement of enzymatic activity

The enzymatic activity of B. licheniformis α-amylase WT and mutants was measured using 4-nitrophenyl-maltopentaoside (4NP-DP5) as a substrate, 4 nitrophenol and maltopentaose are formed, this reaction can be followed by measuring the change in OD 405. The assay was performed at 35°C in 50mM MOPS, 50mM NaCl, 2mM CaCl₂ (PH 7.15) and 0-1mM 4NP-DP5. Initial rates were measured and E-nitrophenol was taken as 10,000 l/M/cm. Figure 9 shows the results for WT and 2D5 α-amylases. Vmax and Km were calculated and are given in Table 1.

	Vmax	(μmol/min/mg)	Km (mM)	
	WT	66.7 ± 0.9	0.112 ± 0.005	
35	2D5	66.3 ± 0.7	0.119 + 0.004	

Table 1

Table 1 clearly shows that the mutations of α -amylase 2D5 do not influence the enzymatic activity in a substantial way.

5 b) Influence of Ca2+ on the thermoinactivation

Heat inactivation experiments were performed for WT, D7 and 2D5 at varying calcium concentrations. The procedure was as follows:

10

1) <u>Demetallization</u>

Enzyme (2 - 3 mg/ml) dialyzed for 24 hrs against

3 x 1 L 20 mM MOPS

5 mM EDTA

15

5 mM EGTA pH 7.0

3 x 1 L 20mM MOPS pH 7.0

2) Remetallization

20 - 500 μ l buffer 100 mM (e.g. MES, MOPS, EPPS)*

- 145 µl demetallized enzyme (e.g. 2.15 mg/ml)

- 100 \(\mu\) CaCl, (100, 50, 30, 20, 10, 5 or 2.5 mM)

 $- \times \mu I K_2 SO_4 (100 mM)$

- $(255-x) \cdot \mu 1 \text{ H}_2\text{O}$

25

· · · · · · · · · · · · · · · · · · ·	[CaCl ₂] final (mM)	[K ₂ SO ₄] final (mM)
30	0,25	14,75
	0,5	14,5
	1	14
	2	13
	3	12
35	5	10
	10	o

- * pH MES e.g. 6.77 at r om temperature will give 6.0 at 90°C (pKa 6.15 pKa/°C = -0.011)
 - pKa were from Table of Merck
 (Zwitterionische Puffersubstanzen)

5

3) Heat-inactivation

1 ml enzyme solution preincubated at room temperature
10 was heated at 90.5°C or 95°C in closed Pierce-vials
 (teflon coated-seals) at a concentration of about 0.2
 mg/ml 50 μl samples were withdrawn at regular intervals
 between 0 and 6 hrs with a syringe and cooled on ice.
 Residual activities have been determined with 4NP-DP5
15 (0.5mM).

Half lives were determined using a single exponential decay fitting program (GRAPHPAD).

Figures 10 and 11 show the half life times of WT and
D7 α-amylases at pH 5.5 and 7.0 respectively as a
function of the Ca²⁺ concentration at 90.5°C. The Ca²⁺
dependence of 2D5 has only been determined at pH 7.0 at
95°C (Figure 12). It can also be seen that the Ca
dependence of the mutants is not different from that of
the WT.

Thermostability of mutant α-amylases at different pH values

The pH dependence of thermoinactivation for both D7 and 2D5 has been determined at 90.5 and 95°C respectively using the buffer as described above at a 1 mM Ca²⁺ concentration. It can be concluded that the thermal stability of both D7 and 2D5 is greatly increased (up to twofold for 2D5) over the entire pH range. (Figures 13 and 14).

- 32 -

Production of mutant enzymes in Bacillus

Example 9

- Mutations in the B. licheniformis α-amylase, which 5 were identified by expression in E. coli WK6 were transferred to a Bacillus expression vector in two different ways.
- With the aid of the unique restriction sites within a) the a-amylase gene (Figure 4), fragments carrying 10 mutations were isolated from pMaTLia6 mutants and subcloned into the homologous position of pBMa6.Lia6. The latter plasmid, which can be replicated either in E. coli or in Bacillus, was subsequently digested with SacI and recircularized with T4 DNA ligase. After 15 transformation into Bacillus subtilis 1A40 high level α-amylase production under control of the SPO, promoter was obtained. Recircularized pBMa6.Lia6 is named pB6.Lia6 to indicate the removal of the E. coli portion of the vector. 20
- pBMa6.Lia6 single stranded DNA was recollected from E. b) coli and annealed with restriction enzyme digested pBMc6.Lia6 double stranded DNA in order to obtain a gapped duplex with the intended gap on the α -amylase 25 gene. This gap was then subjected to site-directed mutagenesis with an oligonucleotide (as described in the experimental section) which encodes the desired mutation. pBMc6.Lia6 vector is then transformed into pB6.Lia6 type vector as described above. Combination 30 of different single site mutation can be performed by method a) if mutations are in different gaps, preferably, however, method b) is used.
- 35 The mutations of mutants D7 and 2D5 were transferred to pBMa6.Lia6 by method a) by exchanging the SacII-SalI fragments and α -amylase was recovered from the medium of

transformed <u>Bacillus subtilis</u> 1A40. Supernatants of both mutants were subjected to the screening procedures of Examples and it was confirmed that both mutants produce α-amylase which is more acid stable and more thermostable than α-amylase produced by wild-type pB6.Lia6.

The phenotype of the α -amylase mutations in <u>Bacillus</u> is thus not different from the phenotype in <u>E</u>. <u>coli</u>.

Ultimately pB6.Lia6 mutants have been transformed into Bacillus licheniformis T9, which is a protease negative, α10 amylase negative derivative of Bacillus licheniformis T5,
(EP-0253455, CBS 470.83). Host T9 has been used to produce high level amounts of α-amylase mutants in a homologous system. The removal of the chromosomal α-amylase gene renders this strain very suited for the production of mutant α15 amylase as no contaminating wild-type α-amylase is being produced anymore. Enzyme recovered from this strain has been used for industrial application testing. The industrial use of mutants pB6.Lia6.2D5 and pB6.Lia6.D7 was demonstrated.

20

Example 10

Application test of mutant α-amylase under conditions of starch liquefaction

25

To test mutant α -amylase 2D5 in more realistic circumstances, we have purified the fermentation broth (of Example 9) with ultrafiltration and formulated the enzyme with 50% propyleenglycol.

30 Three samples have been tested:

893701 : WT <u>B.licheniformis</u> T5 α-amylase 1530 TAU/g 893703 : 2D5 Mutant prepared as WT 2820 TAU/g Maxamyl 0819 Commercial sample 7090 TAU/g

35 One TAU (thermostable α-amylase unit) is defined as the quantity of enzyme that will convert under standardized conditions 1 mg of starch per minute in a product having an

WO 91/00353 PCT/EP90/01042

- 34 -

equal absorption to a reference colour at 620 nm after reaction with iodine. Standard conditions are pH 6.6; 30°C; reaction time: 20 min. Reference colour is 25g CoCl₂. 6H₂O, 3.84 g K₂Cr₂O₇ and 1 ml HCl (1M) in 100 ml destilled H₂O.

5

Liquefaction test at low pH (5.5 and 5.25)

The temperature of starch slurry is increased to 110 ± 10 0.5°C as quick as possible and kept at this temperature for 6 minutes.

The liquefaction is realized in continuous flow (5.4 l/h). 3 Samples of 135 ml (1.5 minute of liquefaction) are taken after 45, 60 and 75 minutes of liquefaction and kept at 95°C for two hours. After this time, 50 ml of the sample are acidified with 0.4 ml H₂SO₄ N to obtain pH 3.5 and put in boiling bath for 10 minutes in order to stop enzymatic activity before D.E. determination.

The remaining part of the sample is cooled in order to determine residual enzymatic activity.

Slurry composition:

3.3 kg corn starch D.S. 88% (2.904 kg dry starch). 5.45 l well water (40 T.H.).

Dry substance of the slurry is 33%.

25 pH is corrected at 5.5 with 1N sulfuric acid or 1N NaOH.

Enzyme concentration: 4.4 TAU/gr dry starch.

The flow rate is verified two or three times during the trial.

30

2. <u>Determination of D.E.</u>

Dry substance of liquefied starch is verified with a 35 refractometer (about 34%). D.E. is determined with the wellknown Lane Eynon method. The results are shown in Figure 15.

3. Residual Enzymatic Activity

Residual amylase activity in liquefied starch is determined with a Brabender amylograph.

5

40 g potato starch

390 ml distilled water at 50°C

50 ml Tris buffer 0.05 M pH 6.50

5 ml CaCl, 2H,0 at 30 g/l

10

The temperature is increased to 80°C (1.5°/min) when viscosity is stabilized (10 min) 5 ml of diluted liquefied starch (7 g up to 50 ml with distilled water) is added, the decrease of viscosity after 20 minutes is measured, this decrease is a function of the enzymatic activity. A standard curve with known enzymatic concentration allows to estimate residual activity in T.A.U.

Mutant 2D5 performs significantly better at pH < 5.5 20 and 110°C than WT enzyme. An improvement of 2-3 DE units at pH 5.25 is obtained with mutant 2D5.

Example 11

25 <u>Application test of mutant α -amylase under conditions</u> of textile desizing

To test the industrial application of alkaline α amylase mutants a test is performed on the stability at 20°C
in the following solution:

	1.4%	H ₂ O ₂ (35%)
	1.0-1.5%	Caustic Soda (100%)
	15-20 ml/l	Sodium Silicate (38 Bé)
35	0.3-0.5%	Alkylbenzene sulphonate (Lanaryl N.A
		ICI)
	0.5-1.0%	Organic stabilizer (Tinoclarite G)

After incubation during 2.5 hours the α -amylase mutants selected for their desired properties should have any remaining enzyme activity.

5

CLAIMS

- A mutant α-amylase, that is the expression product of a mutated DNA sequence encoding an α-amylase,
 characterized in that the mutant α-amylase has an amino acid sequence which differs at least in one amino acid from the wild-type enzyme and that said mutant α-amylase exhibits improved properties for application in the degradation of starch and/or textile desizing wherein the improved
 properties are due to the amino acid replacements.
 - 2. An α -amylase according to Claim 1, characterized in that it exhibits improved thermostability.
- 3. An α -amylase according to Claim 1, characterized in that it exhibits improved stability at a pH below 6.5 and/or above 7.5.
- 4. An α -amylase according to Claim 1, characterized in that it exhibits improved thermostability and acid stability.
- 5. An α-amylase according to any one of the Claims 1 4, in which the original gene from which the mutant enzyme is derived is obtained from a microorganism, preferably a
 25 Bacillus strain.
- An α-amylase according to Claim 5, in which said gene is derived from a wild-type gene of a strain selected from the group consisting of B. stearothermophilus, B.
 licheniformis and B. amyloliquefaciens.
- 7. An α-amylase according to Claim 6, characterized in that this enzyme differs from the wild-type α-amylase obtainable from <u>Bacillus licheniformis</u> by an amino acid
 35 replacement at one or more of the positions 111, 133 and 149 or at corresponding positions in any homologous α-amylase.

10

- 8. An α-amylase according to Claim 7, characterized in that it c ntains one or more of the f llowing amino acid replacements: Ala-111-Thr, His-133-Tyr, Thr-149-Ile.
- 9. A mutant gene encoding an α -amylase as defined in any one of Claims 1-8.
 - 10. An expression vector which comprises a mutant gene according to Claim 9.
 - 11. A host cell harboring an expression vector according to Claim 10.
- 12. A host cell which is substantially incapable of producing extracellular amylolytic enzymes prior to transformation, characterized in that it is transformed with an expression vector according to Claim 10.
- 13. A host cell according to Claim 12 being B. 20 licheniformis T9.
- 14. A <u>Bacillus/E. coli</u> shuttle vector, wherein the expression of the cloned gene in <u>E. coli</u> is made impossible by physical separation of the regulatory sequences from the structural gene and wherein the expression of the cloned gene in <u>Bacillus</u> can be restored by digestion with a single restriction enzyme and subsequent recircularization.
- 15. A method for preparing an amylolytic enzyme having improved properties for application in starch degradation or in textile desizing which comprises the following steps:

mutagenizing a cloned gene encoding an amylolytic enzyme of interest or a fragment thereof;

isolating the obtained mutant amylase gene or genes;
introducing said mutant amylase gene or genes into a sultable host strain for expression and production;

recovering the produced mutant amylase and identifying those mutant amylases having improved properties for application in starch degradation or textile desizing.

- 5 16. A process for producing a mutant α-amylase comprising;
 - cultivating a host cell according to any of Claims 11-13 in
 - a suitable medium,- recovering the produced α-amylase.

10

- 17. Use of the α -amylase according to any one of the Claims 1-8 in starch degradation and in textile desizing.
- 18. Process for the degradation of starch which comprises the use of a mutated α -amylase according to any one of the Claims 1-8.
- 19. Process for textile desizing which comprises the use of a mutated α -amylase according to any one of the Claims 20 1-8.
 - 20. Starch degradation composition comprising a mutated α -amylase according to any one of the Claims 1-8.
- 25 21. Textile desizing composition comprising a mutated α -amylase according to any one of the Claims 1-8.

10 AATTCACCTCGAA	20 AGCAAGCTGAT				
70 TTTTTTGGAGATI					
	140	150	160	170	180
	200	210	2 20	230	240
	260	270	280	290	300
	320	330	340	350	360
370 GCAGCGTGACCGC					
	440	450	460	470	480
490 GGTTCCGATTTAC	500	510	520	530	540
	560	570	580	590	600
	620	630	640	650	660
670 CTTTTGATTTATA					
	740	750	760	770	780
790 GTCGTTCGGCTG	800 CGGCGAGCGGT	810 ATCAGCTCAC	820 TCAAAGGCGG	830 TAATACGGTT	840 ATCCACA
850 Gaatcagggat <i>i</i>	860 AACGCAGGAAA				
910 CGTAAAAAGGCC			940 AGGCTCCGCC		
970 AAAAATCGACGC			1000 CCGACAGGAC		
1030 TTTCCCCCTGGA					
1090 CTGTCCGCCTTT		1110 AAGCGTGGCG			

	1150	1160 GTCGTTCGCT	1170	1180	1190	1200
CTCAG	TTCGGTGTAC	GTCGTTCGCT	CCAAGCTGGC	CTGTGTGCAC	GAACCCCCC	GITCAG
	1210	1220	1230	1240	1250	1260
CCCGA	CCGCTGCGCC	CITATCCGGTA	ACTATCGTCT	TGAGTCCAAC	CCGGTAAGA	CACGAC
						J
	1270	1280	1290	1300	1310	1320
TTATC	GCCACTGGCA	GCAGCCACTC	GTAACAGGAT	TAGCAGAGCO	GAGGTATGTA	GCCGCT
	1330	1340 AAGTGGTGG	1350	1360	1370	1380
GCTAC	AGAGITCTIC	AAGTGGTGG	CTAACTACGO	CTACACTAGA	AGGACAGTA	TTGGT
	1390	1400	1410	1420	1430	1440
ATCTG	CGCTCTGCTC	BAAGCCAGTTA	CCTTCGGAAA	AAGAGTTGGT	'AGCTCTTGA'	rccgc
	1450	1460	1470	1480	1490	1500
AAACA	AACCACCGC1	regtage get	GTTTTTTGI	TTGCAAGCAC	CAGATTACG	CGCAGA
	1510	1520 Agaagateeti	1530	1540	1550	1560
AAAAA	AGGATCTCAA	GAAGATCCTI	TGATCTTTTC	TACGGGGTCT	GACGCTCAG	TGGAAC
	1570	1580	1590	1600	1610	1620
GAAAA	CTCACGITAA	AGGGATITICO	TCATGAGATI	TATCAAAAAGG	ATCTTCACC	TAGATO
	1630	1640 Atgaagittta	1650	1660	1670	1680
CITIT	AAATTAAAA	TGAAGITTTA	AATCAATCTA	AAGTATATAT	GAGTAAACT	TOTOT
	1690	1700	1710	1720	1730	1740
GACAG	TTACCAATGO	TTAATCAGT	AGGCACCTAT	CTCAGCGATC	TUTTET ATTET	COTTO
						DOLLON
	1750	1760	1770	1780	. 1790	1800
TCCAT	AGTTGCCTGA	CTCCCCGTC	TGTAGATAAC	TACGATACGO	GAGGGCTTA	CATCT
	1810	1820	1830	1840	1850	1860
GGCCC	CAGTGCTGCA	ATGATACCGC	GAGACCCACG	CTCACCGGCT	CCAGATTTA	TCAGCA
	1870	1880	1890	1900	1910	1920
ATAAA	CCAGCCAGCC	GGAAGGCCC	AGCGCAGAAG	TGGTCCTGCA	ACTTTATCC	COTO
	1930	1940	1950	1960	1970	1980
ATCCA	GTCTATTAAT	TOTTGCCGG	AAGCTAGAGI	AAGTAGITCO	CCAGTTAAT	OTTED
	1990	2000	2010	2020	2030	20110
CGCAA		ATTGCTGCAG	GCATCGTGGT	GTCACGCTCG	TCGTTTGGT	10000
						114401
	2050	2060	2070	2080	2090	2100
TCATTO	CAGCTCCGGT	TCCCAACGAT	CAAGGCGAGT	TACATGATCO	CCCATGTTG	
			0.11.0000	2110112011600	,000/114114/	OUNIN
	2110	2120	2130	2140	2150	2160
AAAGC	GGTTAGCTCC	TTCGGTCCTC	CGATCGTTGT	CAGAAGTAAG	TTGGCCCCAC	איוייניאול
					I GGOOGOM	TOTIM
	2170	2180	2190	2200	2210 -	2220
TCACTO	~~, ∨ CATGGTTIATIC	GCAGCACTGC	~ 170 1770 ∆TTTT	TACTCTCATO	CCATCCCTA/	444U
10/1010	GGI IAIU	CONGONOTOC	WINUITOIOI	Indidionic	POUTOCOTAL	MILL
	2230	22/10	2250	2260	2270	2200
	2230	447U	2270	4400	2270	2280

Fig. 1 (continueu)

TTTT	CTGTGACTG	GTGAGTACTC/	ACCAAGTCAT	TCTGAGAAT/	GTGTATGCG	GCGACCG
	2200	2300	2210	2320	2330	2340
AGTT	2290 GCTCTTGCC	CGGCGTCAAC	2510 ACGGGATAATA	\CCGCGCCACA	TAGCAGAAC	PTTAAAA
	2350	2360	2370	2380	2390 ************************************	2400 2400
GTGC	TCATCATTG	GAAAACGTTC	LICCOCCOA	MMCICICAM	MATCITACO	actatta
	2410	2420	2430	2440	2450	2460
AGAT	CCAGTTCGA	TGTAACCCAC	rcgtgcaccc/	ACTGATCIT	CAGCATCTTT	TACTITC
	sken	2480	alion	2500	2510	2520
ACCA	2470 CCCTTTCTC	2460 GGTGAGCAAA	AACAGGAAGG	CAAAATGCCG	CAAAAAAGGG	AATAAGG
noon						
	2530	2540	2550	2560	2570	2580
GCGA	CACGGAAAT	GTTGAATACT	CATACTUTTO	CTTTTTCAAT	ATTATTGAAG	CAUACAG
	2590	2600	2610	2620	2630	2640
TITI	ATTGTTCAT	TATATATAT	TTTTATCTTG	TGCAATGTAA	CATCAGAGAT	TTTGAGA
		2662	2/50	2690	2600	2700
CACA	2650 Acgrecer	2660 FTGTTGAATAA	ZO/U ATCGAACTTT	2000 TGCTGAGTTG	ACTCCCCGCG	CGCGATG
UNUA						
	2710	2720	2730	2740	2750	2760
GGT	GAATITGC:	PTTCGAAAAAA	AAGCCCGCTC	ATTAGGCGGG	CTAAAAAAAA	GCCCGCT
	2770	2780	2790	2800	2810	2820
CAT	AGGCGGGC	rcgaatitetg	CCATTCATCC	GCTTATTATC	ACTTATTCAC	GCGTAGC
		2840	0050	2060	2070	2880
A A C	2830	2840 Aagggcaccaa	2050 TAACTGCCTT	UCIOS ATTAAAAAA	2070 .CGCCCCGCCC	TGCCACT
AAU						
	2890	2900	2910	2920	2930	2940
CAT	CGCAGTACT	GTTGTAATTCA	TTAAGCATTC	TGCCGACATG	GAAGCCATC!	ACAGACGG
	2950	2960	2970	2980	2990	3000
CAT	GATGAACCT	GAATCGCCAGC	GGCATCAGCA	CCTTGTCGCC	TTGCGTATA	TATITGC
			0000	anko	2050	2060
004	3010	3020 CGGGGGCGAAC	3030 34.46TTGTCC4	SUHU TATTCCCCAC	SUSU STTTAAATC!	AAACTGG
	3070	3080 AGGGATTGGC1	3090	3100	3110	3120
TGA.	AACTCACCC	AGGGATTGGCT	rgagacgaaaa	ACATATTCTC	AATAAACCC:	MTTAGGGA
	3130	3140	3150	3160	3170	3180
AAT	AGGCCAGGT	TTTCACCGTAA	ACACGCCACAT	CTTGCGAATA	TATGTGTAG	AAACTGCC
			•			
	3190	3200 GGTATTCACTO	3210	3220	3230	3240
GUA						
	3250	3260	3270	3280	3290	3300
CGG	TGTAACAAG	GGTGAACACT	ATCCCATATC!	ACCAGCTCAC	CGTCTTTCAT	TGCCATAC
	2210	2220	3330	3340	3350	3360
GAA	3310 ATTCCGGAT	SSZU GAGCATTCAT	CAGGCGGCA	AGAATGTGAA	PAAAGGCCGG	

Fig. 1 (continued)

3370	3380 FTCTTTACGGTCT	3390	3400	3410	3420 GTCTGGT
TGTGCTTATTT	PTCTTTACGGTCT	TTWWW	OCCUIANIATO	MOCINERIO	0101001
3430	3440 rgagcaactgact	3450 GAAATGC	3460 CTCAAAATGTTCT	3470 TTTACGATGO	3480 CATTGGG
ININGUINONI	T. 1001 H.O. T1.10 -				
3490	3500	3510	3520	3530	3540
ATATATCAACG	STGGTATATCCAG	IGATITI	LITCICCHITII	100110011A	GCICCIG
3550	3560	3570	3580	3590	3600
AAAATCTCGAT	AACTCAAAAAATA	CGCCCGG	TAGIGATOTIAL.	LICALIALGO	ITONANGI
3610	3620 ACGTGCCGATCAA	3630	3640	3650	3660
TGGAACCICIT	ACGIGCCOATCAA	COLUTON	TITICGCOMMIN	31 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20001100
3670	3680 GGGACACCAGGAT	3690	3700	3710	3720 CACAGGTA
CUGIAICAACA	GGGWCWCCWGGWI	1101110			
3730	3740	3750	3760	3770	3780
TTTATTCGAAG	ACGAAAGGGCATC	GCGCGCG	IGGGAATTCCCGG	GGATCCGTCC	THOUTHON
	3800 TCTAGAGGTCGA				

Fig. 1 (continued)

			1		
10 GTCTACAAACCC	20 ZTTAAAAAC	30 GTTTTTAAAC	40 GCTTTTAAGCC	50 GTCTGTACGI	60 TCCTTAAG
70	80	90	100	110	
GAATTCACACTGO	ECCTTGGTT	AAGGTTAAGA	ATGTGGACGGAA	TGGGTAAAGI	IGTAGTAAA
130 GTACAATTAATCO	140 GGAGCTTA	150 GATGTCCCTT	160 CAACATCTTAT	170 'ATAGAAGGG	180 VAGGTTGGC
190 AAATGGAAATTG	200 Aaagaatta	210 ACGAGCATAC	220 CAGTAAAATTT	230 ATATGTCTTA	240 ACGGAGATA
250	260	270	280	290	300
TTGAAGATCGCGC	TTTTGACA	GAGAAGAAAT	TTGGTATAACC	GTGAGCGCAC	TGAAGAAC
310 TTTTCTGGGAAGT	320 CATGGATG	330 AAGITCATGA	340 Aagaagaaat	350 TCGAGCTCGO	360 CCGGGGAT
			400		
CCAAGGAGGTGAT	CTAGAGIC.	ATGAAACAA	CAAAAACGGCTT	TACGCCCGAT	TGCTGACG
		M K Q	QKRL	Y A R	LLT
430	440	450	460	470	480
CTGTTATTTGCGC	CTCATCITC L I F	TTGCTGCCT(L L P	CATTCTGCAGCA H S A A	A A A	ATCTTAAT N L N
				+1	
490 GGGACGCTGATG			520 ATGCCCAATGAC		
G T L M	Q Y F	E W Y	M P N D	G Q H	WKR
5 550	560	570	580	590	600
TTGCAAAACGAC	CCGCCATAT	TTGGCTGAA	CACGGTATTACT	CCCGTCTGG/	ATTCCCCCG
LQND 25	S A Y	L.A E	HGIT	A V W	I P P
610	620	630	640	650	660
GCATATAAGGGAA A Y K G	ACGAGCCAA T S O	GCGGATGTG(GCTACGGTGCT	TACGACCTT	TATGATTTA
45					
670 GGGGAGTTTÇAT(680 	690 Accentroca	700	710	720
GEFH			T K Y G		
65 730	7/10	7 50	760	770	780
TCTGCGATCAAA					
85			I N V Y		
790 CACAAAGGCGGC			820		
H K G G			V T A V		
105	860	870	880	890	000
CGCAACCGCGTA					
R N R V 125	I S G	E H L	I K A W	T H F	H F P
910			940		
GGGCGCGGCAGC	ACATACAGO	GATTTTAAA	rggcattggta(CATTITGAC	GGAACCGAT
G R G S 145	түб	DFK	W H W Y	H F D	GTD

Ficure 2

		o	70			120			000			100	30						
TGC	GA	CGA	/U STCC	CGA	AAC	OU CTO	TAAC	CGG	990 CATO	! TAግ	ΓΔΔ1	10t	JU PCA 4	CCA	10)10 ::::::	PTCC	מארים	LO20 MGG
W	D	E	s	R	K	L	N	R	I	Y	K	F	. 0	ים יים	una K	. باداد ۵	n Troc	ת ת	L TGG
165	i																		••
_		10	30		10)40		1	1050)		106	60		10	70		1	LO80
GAA	GT	TTC	CAAC	CGAA	AAC	GGC	CAAC	TAT	IGAT	TAI	11(GATO	TAT	CCC	GAC	CATO	CGA1	TA	GAC
E	V	S	N	E	N	G	N	Y	D	Y	L	M	Y	A	D	I	D	Y	D
185	•																		
		109	90		11	.00		1	1110	1		112	20		11	130		1	140
CAI	CC	TGA:	CCTC	CCA	GCA		\ATI	'AAC	BAGA	TGC	GGG	CACI	TGC	TAT	GC(AA.	[GA/	CTC	CAA
		D	V	A	A	E	I	K	R	W	G	T	W	Y	A	N	E	L	Q
205	•		-0			·		_											
TTC	:CA	CCCI TT:	LILLY O	عتاباء	11 11	.0U '241		ارخار [170	*	i A FITT	112 114	50	~	11	.90		1	.200 TGG
110	ע יצטו	G	E .	D D	CTI	ת. ת	1 GC 1	.GIC	/ለለለ ህ	UAL	AT.	L'AAA	TII	TUI		777	CGG		
225		٠		n		ע	A	٧	v	д	1	v	r	3	F.	L	K	D	W
		121	0		12	20		1	.230			124	n		12	EΩ		4	260
GII	'AA'	TCAT	GTO	AGG	GAA	AAA	ACG	iGGO	IAAG	GAA	ATC	****	'ACC	CTD.	GCT TZ	77.A	TaT	التاليد T	200
V	N	H	V	R	E	K	T	G	K	E	М	F	T	V	. OD.	E.	A	T GG	ח
245																_	•	п	¥
		127	O		12	80		1	290			130	Ю		13	10		1	320
AAT	GA	-116	الالالا	تانانا	CIG	GAA	LAAC	TAI	11G	AAC	AAA	LACA	AAT	TTT	AAI	CAI	TCA	GTG	TT
N	D	L	G	Α	L	E	N	Y	L	N	K	T	N	F	N	H	S	V	F
265			_																
		133 GCCC	0		13	40		_ 1	350			136	0		13	70		1	380
GAC	GIC	JCCG	CIT	CAT	TAT	CAG	TIC	CAT	GCT(GCA	TCG	ACA	CAG	GGA	GGC	GGC	TAT	GAT	ATG
285	V	P	L	H	Y	Q	F	H	A	A	S	T	Q	G	G	G	Y	D	M
205																			
		120	Λ		4/1	2		4	1110			440	^		a 3.	~~		_	ti di a
AGG	AA!	139 TTG	0 СТС	AAC	14 GGT	00 ACG	التا:	1	410 TCC:	5 6 6	ሶ ልጥ	142	0	A A A	14	30	A (7) A (1	440
AGG.	AA/ K	ATTG	CTG	aac	GGT.	ACG	GIC	GII	TCC	aag	CAI	'CCG	TTG	AAA'	TCC	GTT	ACA'	بلململ	CTC
R	AA/ K	ATTG	CTG L	aac N	GGT.	ACG T	GTC V	GII V	TCC. S	AAG K	CAT H	CCG P	TTG L	AAA' K	TCG S	GTT V	ACA T	TTT F	GTC V
я 305	K	ATTG L 145	CTG L O	aac N	GGT. G 14	acg T 60	GTC V	GII V 1	TCC S 470	AAG K	CAT H	CCG P 148	TTG L O	AAA' K	TCG S 14	GIT V 90	ACA' T	TTT F	GTC V
я 305	K AAC	ATTG L 145 CAT	CTG L O GAT.	AAC N ACA	GGT G 14 CAG	ACG T 60 CCG	GTC V GGG	GII V 1 CAA	TCC/ S 470 TCG(AAG K	CAT H GAG	CCG P 148 TCG	TTG L O ACT	AAA' K	TCG S 14	GTT V 90 ACA	ACA' T	TTT F 1	GTC V 500
R 305 GAT. D	K AAC	ATTG L 145 CAT	CTG L O GAT.	AAC N ACA	GGT G 14 CAG	ACG T 60 CCG	GTC V GGG	GII V 1 CAA	TCC/ S 470 TCG(AAG K	CAT H GAG	CCG P 148 TCG	TTG L O ACT	AAA' K	TCG S 14	GII V 90 ACA	ACA' T	TTT F 1	GTC V 500
R 305 GAT.	K AAC	L 145 CAT H	CTG L O GAT. D	AACI N ACAI T	GGT G 14 CAG	ACG T 60 CCG P	GIC V GGG G	V 1 CAA Q	TCC S 470 TCG S	AAG K CTT L	CAT H GAG	P 148 TCG S	TTG L O ACT	AAA' K GTC	TCG S 14 CAA Q	GTT V 90 ACA T	ACA T TGG	TTT F 1 TTT F	GTC V 500 AAG K
R 305 GAT. D 325	K AAC N	L 145 CAT H	CTG L O GAT D	AACI N ACAI T	GGT. G 14- CAG Q 15:	ACG T 60 CCG P	GTC V GGG G	V 1 CAA Q	TCC/ S 470 TCG(S	AAG K CTT L	CAT H GAG E	P 148 TCG S	TTG L O ACT T	AAA' K GTC V	TCG S 14 CAA Q	GTT V 90 ACA T	ACA T TGG W	TTT F 1 TTT F	GTC V 500 AAG K
R 305 GAT. D 325	AAC N	145 CAT H 151	CTG L O GAT D O	AACI N ACAI T	GGT G 14 CAG Q 15:	ACG T 60 CCG P 20 ATT	GTC V GGG G	CAA Q 1 CAA Q 1 ACA	TCCA S 470 TCGG S 530 AGGG	AAG K CTT L	CAT H GAG E	TCCG P 148 TCG S 154	TTG L O ACT T O	AAA' K GTC V	TCG S 14 CAA Q 15 CAG	GTT V 90 ACA T 50	ACA T TGG W	F 1 TTT F 1 TAC	GTC V 500 AAG K 560
R 305 GAT D 325 CCG	AAC N	L 145 CAT H	CTG L O GAT D O	AACI N ACAI T	GGT G 14 CAG Q 15:	ACG T 60 CCG P 20 ATT	GTC V GGG G	CAA Q 1 CAA Q 1 ACA	TCCA S 470 TCGG S 530 AGGG	AAG K CTT L	CAT H GAG E	TCCG P 148 TCG S 154	TTG L O ACT T O	AAA' K GTC V	TCG S 14 CAA Q 15 CAG	GTT V 90 ACA T 50	ACA T TGG W	F 1 TTT F 1 TAC	GTC V 500 AAG K 560
R 305 GAT. D 325	AAC N	145 CAT H 151 TGCT A	CTG L O GAT D O TAC	AACI N ACAI T GCT:	GGT. G 14- CAG Q 15: FTT.	ACG T 60 CCG P 20 ATT	GIC V GGG G CTC.	CAA Q 1 ACA T	TCC/ S 470 TCG/ S 530 AGG/ R	AAG K CTT L GAA'	GAG E TCT	TCCG P 148 TCG S 154 GGA	L O ACT T O TAC	AAA' K GTCG V CCTG P	TCG S 14 CAA Q 15 CAG	GTT V 90 ACA T 50 GTT V	TGG W	F 1 TTT F 1 TAC	GTC V 500 AAG K 560 GGG G
R 305 GAT. D 325 CCGG P 345	AAC N	145 CAT H 151 GCT A	CTG L O GAT. D TAC Y	ACA T GCT.	14- CAG Q 15: FTT:	ACG T 60 CCG P 20 ATT I	GIC V GGG G CTC.	CAA Q ACA T	TCC/ S 470 TCG/ S 530 AGG/ R	AAG K CTT L GAA'	GAG E TCT S	148 TCG S 154 GGA	TTG L O ACT T TAC	AAA' K GTCG V CCTG P	TCG S 14 CAA Q 15 CAG Q	90 ACA T 50 GIT	TGG W	F 1 TTT F TAC Y	GTC V 500 AAG K 560 GGG G
R 305 GAT. D 325 CCG P 345 GAT.	AAAC N CTI L	145 CAT H 151 GCT A 157	CTG L O GAT D TAC Y	ACA T GCT. A	GGT. G 14 CAG Q 15: FTT. F 15:	ACG T 60 CCG P 20 ATT I 80 GGA	GGC V GGG G CTC. L	CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	TCC/ S 470 TCG/ S 530 AGG/ R	AAAG K CTT L GAA'	CAT H GAG E TCT S	148 TCG S 154 GGA G	TTG L O ACT T O TAC Y	AAA' K GTCC V CCTC P	TCG S 14 CAA Q 15 CAG Q 16 ITG	90 ACA T 50 GIT V	TGG W	F TTT F TAC Y AAA	STC V 500 AAG K 560 GGG G
R 305 GAT D 325 CCG P 345 GAT	AAAC N CTI L	145 CAT H 151 GCT A	CTG L O GAT D TAC Y	ACA T GCT. A	GGT. G 14 CAG Q 15: FTT. F 15:	ACG T 60 CCG P 20 ATT I 80 GGA	GGC V GGG G CTC. L	CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	TCC/ S 470 TCG/ S 530 AGG/ R	AAAG K CTT L GAA'	CAT H GAG E TCT S	148 TCG S 154 GGA G	TTG L O ACT T O TAC Y	AAA' K GTCC V CCTC P	TCG S 14 CAA Q 15 CAG Q 16 ITG	90 ACA T 50 GIT V	TGG W	F TTT F TAC Y AAA	STC V 500 AAG K 560 GGG G
R 305 GAT. D 325 CCG P 345 GAT.	AAAC N CTI L	145 CAT H 151 GCT A 157	CTG L O GAT D O TAC Y O GGGG	AACA' T GCT. A	GGT G 14- CAG Q 15: FTT. F 15: AAAA	ACG T 60 CCG P 20 ATT I 80 GGA G	GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CAAA Q 11 ACAA T 11 TCCC S	TCC/ S 470 TCG/ S 530 AGG/ R 590 CAG/	AAG K CTT L GAA' E	CAT H GAG E TCT S GAA	148 TCG S 154 GGA G	TTG L O ACT T O TACC Y	AAAA' K GTCC V CCCTC P	TCG S 14 CAA Q 15 CAG Q 16 PTG L	OTT V 90 ACA T 50 GTT V 10 AAAA	TGG W	F 1 TTT F 1 TAC Y 1 AAA	GTC V 500 AAG K 560 GGG G
R 305 GAT D 325 CCG P 345 GAT D 365	AAAC N CTI L ATC	L 145 ECAT H 151 TGCT A 157 FTAC Y	CTG L O GAT. D O TACC Y O. GGGG. G	AACA T GCT: A	GGT G 14 CAG Q 15: F 15: AAA: K 16:	ACG T 60 CCG P 20 ATT 80 GGA G	GTC V GGG G CTC. L	CAAA Q 11 ACA T 11 TCC S 1	TCC/S 470 TCGC S 530 AGGGC R 590 CCAGC	AAG K CTT L GAA' E	GAG E TCT S GAA	P 148 TCG S 154 GGA G 160 ATT	TTG L O ACT T TAC Y O CCT P	AAAA' K GTCC V CCTC P	TCG S 14 CAA Q 15 CAG Q 16 PTG L	OTT V 90 ACA T 50 GTT V 10 AAAA K	TGG W	TTT F 1 TTT F 1 TAC Y 1 AAAA K	GTC V 500 AAG K 560 GGG G GATT I
GATA D 325 CCG P 345 GATA D 365 GAAG	AAAC N CTI L ATC	L 145 ECAT H 151 TGCT A 157 FTAC Y	CTG L O GAT. D O TAC. Y O. GGG. G	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	GGT. GGT. GGT. GGT. GGT. GGT. GGT. GGT.	ACG T 60 CCG P 20 ATT I 80 GGA GGA 40 AGA	GTC V GGG G CTC L GAC	CAACA T TCC S 1 CCAG	TCC/S 470 TCGC S 530 AGGGC R 590 CCAGC	AAG K CTT L GAA' E	CAT H GAG E ICT S GAA E	P 1488 TCG S 1544 GGA T I 1666 GGA	TTG L O ACT T O OTAC Y O CCT P	AAA' K GTCC V CCCTC P GCCC	TCG S 14 CAA Q 15 CAG Q 16 FTG L 16 CAT	OTT V 90 ACA T 50 GTT V 10 AAAA K	ACA' T TGG W TTC F CAC. H	TTT F 1 TTT F 1 TAC Y 1 AAA K 1 ITTC	GTC V 5000 AAAG K 5660 GGG G 6200 ATT I
R 305 GAT D 325 CCG P 345 GAT D 365	AAAC N CTI L ATC	145 L 145 ECAT H 151 FGCT A 157 FTAC Y 163 EATC I	CTG L O GAT. D O TAC. Y O GGGG. G	ACA T GCT A ACG/ T	GGT. G 14 CAG Q 15: FTT. F 15: AAAA K 16: GCG. A	ACG T 60 CCCG P 20 ATT 80 AGG AGA R	GTC V GGG G CTC L GAC D	CAG	TCC/S 470 TCGC S 530 AGGGC R 590 CAGC Q 650 TATC	AAG K CTT L GAAA E	CAT H GAG E TCT S GAA E	148 TCG S 154 GGA G ATT I 166 GGA G	TTG L O ACT T O TAC Y O CCT P O GCA A	AAAA' K GTCC V CCTC P GCCC A	TCG S 14 CAAA Q 15 CAG Q 16 TTG L 16 CAT' H	OTT V 90 ACA T 50 GTT V 10 AAAA K	ACA' T TGG W TTC F CAC. H	TTT F 1 TTT F 1 TAC Y 1 AAA K 1 ITTC	GTC V 5000 AAAG K 5660 GGG G 6200 ATT I
R 305 GAT. D 325 CCGG P 345 GAT. D 365 GAAG. E 385	AAAC N CTI	145 L 145 ECAT H 151 FGCT A 157 FTAC Y 163 EATC I 169	CTG L O GAT. D O TAC. Y O GGGG. G	AAAAAAAAAAAAAAAA	GGT G 14 CAG Q 15: FT 15: AAA: K 16: GCG A 17:	ACG T 60 CCG P 20 ATT BO AGA AGA R 00	GIC V GGG G CTC L GAC D	V 1 CAAA Q 11 ACA T 1 TCC S 1 CAG Q 1 1 CAG Q 1 1 CAG Q 1 1 CAG Q 1 CA	TCC/S 470 TCGC S 530 AGGGC R 590 CAGC Q 650 TATC Y	AAG K CTT L GAA' E CGC R	CAT H GAG E TCT S GAA E	P 148 TCG S 154 GGA TT I 1666 GGA G 1726	TTG L O ACT T O CCT P O GCA A	AAA' K GTCC V CCCTC P GCCC A	TCG S 14 CAA Q 15 CAG Q 16 TTG L 16 CAT H	GTT V 90 ACA' T 50 GTT V 10 AAAA' K 70 GAT D	ACA' T TGG W TTC F CAC. H TAT.	TTT F 11 TTT F 12 TAC Y 14 AAAA K 11 TTC F	OTC V 500 AAG K 560 GGG G ATT I 680 GAC D
R 305 GAT D 325 CCGG P 345 GAT D 365 GAAG E 385	AACO N CTIL	145 CCAT H 151 TGCT A 157 FTAC Y 163 CATC I	CTG L O GAT. D O TAC Y O GGG G TTAL L O ATTC	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	GGT. GGT. GGGT. GG	ACG T 60 CCG P 20 ATT BO AGA AGA R 00 GGG	GTC V GGG G CTC L GAC D	V 1 CAAA Q 1 ACA T 1 TCC S 1 CAG Q AGG	TCC/S 470 TCGC S 530 AGGGC R 590 CCAGC Q 650 TATC Y 710 GAAC	AAG K CTT L GAA E GGC R	GAGE TOT S GAA E TAC	P 148 TCG S 1544 GGA TT I 1666 GGA G 1726 AGC	TTG L O ACT T O TTAC Y O GCA A O TTCG	AAAA' K GTCC CCTC P GCCC A CAGC	TCG S 14 CAA Q 15 CAG Q 16 CAG L 16 CAT H 17 GCA	GTT V 90 ACA' T 50 GTT V 10 AAA' K 70 GAT D	ACA' T TGG W TTC F CAC. H TTCAT	TTT F 1 TTT F 1 TAC Y 1 AAAA K 1 TTC F 1 GGT	OTC V 500 AAG K 560 GGG G ATT I 680 GAC D
R 305 GAT D 325 CCGG P 345 GAT D 365 GAAG E 385	AACO N CTIL	145 L 145 ECAT H 151 FGCT A 157 FTAC Y 163 EATC I 169	CTG L O GAT. D O TAC Y O GGG G TTAL L O ATTC	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	GGT. GGT. GGGT. GG	ACG T 60 CCG P 20 ATT BO AGA AGA R 00 GGG	GTC V GGG G CTC L GAC D	V 1 CAAA Q 1 ACA T 1 TCC S 1 CAG Q AGG	TCC/S 470 TCGC S 530 AGGGC R 590 CCAGC Q 650 TATC Y 710 GAAC	AAG K CTT L GAA E GGC R	GAGE TOT S GAA E TAC	P 148 TCG S 1544 GGA TT I 1666 GGA G 1726 AGC	TTG L O ACT T O TTAC Y O GCA A O TTCG	AAAA' K GTCC CCTC P GCCC A CAGC	TCG S 14 CAA Q 15 CAG Q 16 CAG L 16 CAT H 17 GCA	GTT V 90 ACA' T 50 GTT V 10 AAA' K 70 GAT D	ACA' T TGG W TTC F CAC. H TTCAT	TTT F 1 TTT F 1 TAC Y 1 AAAA K 1 TTC F 1 GGT	OTC V 500 AAG K 560 GGG G ATT I 680 GAC D
R 305 GAT D 325 CCGG P 345 GAT D 365 GAAG E 385	AACO N CTIL	145 CCAT H 151 FGCT A 157 FTAC Y 163 EATC I	CTG L O GAT. D O TAC. Y O. GGG. G	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	144 CAG Q 15: FTT: 15: AAA: K 16: GCG A 17: GCGC	ACG T 60 CCG P 20 ATT 80 GGA 40 AGA R 00 IGG W	GTC V GGG G CTC L GAC L AAAA K	V 1 CAAA Q 1 ACA T 1 CAG Q 1 AGG R	TCC/S 470 TCGC S 530 AGGGC R 590 CCAGC Q 650 TATC Y 710 GAAC	AAG K CTT L GAA' E CGCG R	GAGE TCT S GAA E TAC Y GAC D	P 148 TCG S 154 GGA TT I 1666 G G 1726 S S	TTG L O ACT T O TTAC Y O CCT P O GCA A O TTCG S	AAAA' K GTCCTC V CCCTC P GCCCT A CAGCC V	TCG S 14 CAA Q 15 CAG Q 16 CAT H 17 GCA	OTT V 90 ACA T 50 GTT V 10 AAAA K 70 GAT D	ACA' T TGG W TTC F CAC. H TAT. Y	TTT F 1 TTT F 1 TAC Y AAA K 1 TTC F 1 GGT G	STC V 500 AAG K 560 GGG G 620 ATT I 680 GAC D 740 ITG L
R 305 GAT D 325 CCGG P 345 GAT D 365 GAAG E 385 CACG H 405	AAAC N CTIL ATC M M CCCO P CAT H	145 CCAT H 151 TGCT A 157 FTAC Y 163 SATC I 169 CGAC D	CTG L O GAT. D O TAC. Y O GGG. G O TTA. L	AACA(TAAAACATAAAACATAAAACATAAAACCATAAAAACCATAAAAACCATAAAACCATAAAACCATAAAACCATAAAACCATAAAACCATAAAACCATAAAAACCATAAAACCATAAAAACCATAAAAACCATAAAAACCATAAAAACCATAAAAACCATAAAAACCATAAAAACCATAAAAACCATAAAAACCATAAAAACCATAAAAACCATAAAAACCATAAAAAA	14-CAG Q 15:TITE F 15:AAAA K 16:CGA A 17:CGGC G 17:CGGC	ACG F CCG P 20 ATT BO AGA F O O IGG W	GTC V GGG G CTC L GAC L AAAA K	V 1 CAA Q 1 ACA T 1 TCC S 1 CAG Q 1 AGG R	TCC/S 470 TCGC S 530 AGGGC R 590 CCAGC Q 710 GAACC E 770	AAG K CTT L GAA' E GCGC A	GAGE TACT GAGE TACCY GACCD	P 148 TCG S 154 GGAATT I 1666 G G 1726 AGC S 1786	TTG L O ACT T O O CCT Y O CCT P O GCA A O CT CG O	AAAA' K GTCGCTC P GCCTC A CAGGC Q GTTC	TCG S 14 CAA Q 15 CAG Q 16 CAT H 17 GCA	GTT V 90 ACA T 50 GTT V 10 AAAA K 70 GAT D AAAT N	ACA' T TGGG W TTC F CACA H TAT: Y	TTT F 1 TTT F 1 TAC Y 1 AAA K 1 TTC F 1 GGT G	STC V 500 AAG K 560 GGG G 620 ATT I 680 GAC D TTG L
GAT: D 325 CCGG P 345 GAT: D 365 GAA(E 385 CAC(H 405	AAAC N CTIL ATC A M CCCC P CAT H	145 CCAT H 151 TGCT A 157 FTAC Y 163 SATC I 169 CGAC D	CTG L O GAT. D O TAC. Y O GGG. G O TTA. L	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	GGT	ACG F 60 CCG P 20 ATT 80 AGA F 60 AGA W	GTC V GGG G CTC L GAC L AAAA K	CAACA T CAACA T CAGG CAGG R 1'	TCC/S 470 TCGC S 530 AGGGC R 590 CCAGC Q 650 TATC Y 710 GAAC E 770	AAG K CTT L GAA E GCG A	GAGE TCT S GAA E TAC Y GAC D	P 1488 TCGG S 1544 GGAATTI I 1666 G G 1720 AGC S 1786 CGAACC S 1786 CGAA	TTG L O ACT T O TTAC Y O CCT P O GCA A O TTCG S	AAAA' K GTCAC V CCCTC P GCCC A CAGC Q GTTC	TCG S 14 CAA Q 15 CAG Q 16 FTG L 16 CAT H 17 GCA A 17 GCA	GTT V 90 ACA T 50 GTT V 10 AAAA K 70 GAT D AAAT N	ACA' T TGGG W TTC' F CACA H TAT' Y	TITT F 1 TITT F 1 TAC Y 1 AAA K 1 TTC F 1 GGT CAA	STC V 500 AAG K 560 GGG G 620 AATT I 680 GAC D 740 FTG L
GAT: D 325 CCGG P 345 GAT: D 365 GAA(E 385 CAC(H 405	AAAC N CTIL ATC A M CCCC P CAT H	145 CCAT H 151 TGCT A 157 FTAC Y 163 SATC I 169 CGAC D	CTG L O GAT. D O TAC. Y O GGG. G O TTA. L	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	GGT	ACG F 60 CCG P 20 ATT 80 AGA F 60 AGA W	GTC V GGG G CTC L GAC L AAAA K	CAACA T CAACA T CAGG CAGG R 1'	TCC/S 470 TCGC S 530 AGGGC R 590 CCAGC Q 650 TATC Y 710 GAAC E 770	AAG K CTT L GAA E GCG A	GAGE TCT S GAA E TAC Y GAC D	P 1488 TCGG S 1544 GGAATTI I 1666 G G 1720 AGC S 1786 CGAACC S 1786 CGAA	TTG L O ACT T O TTAC Y O CCT P O GCA A O TTCG S	AAAA' K GTCAC V CCCTC P GCCC A CAGC Q GTTC	TCG S 14 CAA Q 15 CAG Q 16 FTG L 16 CAT H 17 GCA A 17 GCA	GTT V 90 ACA T 50 GTT V 10 AAAA K 70 GAT D AAAT N	ACA' T TGGG W TTC' F CACA H TAT' Y	TITT F 1 TITT F 1 TAC Y 1 AAA K 1 TTC F 1 GGT CAA	STC V 500 AAG K 560 GGG G 620 AATT I 680 GAC D 740 FTG L

Fig. 2 (continued)

GCC	G G	1810 GAG E	ACA	TGG(W	182 CATO H	BAC. D	ATT.	ACC(GA/	AAC N	CGI R	S	GAG E	CCG	185 GTT V	50 GTC V	ATC. I	AAT	860 TCG S	
445		187	^		18	30		18	390			190	0		19	10		1	920	
C4 4		TOI	CCA	CAG	1444. 1701	740	ATE.	AAC	SGC	GGG	TCC	GIT	TCA	ATT			CAA	AGA	TAG	
			_		F	JAC U	17	N		G	S	v	S	I	Y	V	۵	R		
E	G	W	G	E	F	п	٧	14	•	~	_	•	_			_	•	483		
465			_			l						196	^		10	70		-	980	
		193	0		19	40		1	950			190	U		7.7	70				
AAG	AG	CAGA	GAG	GAC	gga'	$\Gamma \Gamma \Gamma$	CCI	GAA	GGA	AAT	CCC	HTT	TTT	TAT	TIT	GCU	CGI	CII	ATA	
																		_		
		199	0		20	00		2	010			202	0		20			_	040	
ΔΔΤ	-1-1-	CTTT	YGAT	TAC	ATT	TTA	TAA	TTA	ATT	TTA	AC	AAAG	TGI	CAT	CAG	CCC	TÇA	LGGA	AGG	
w	**	0112																		
		205	·^		20	60		2	กรถ			208	0		20	90	•	2	2100	
		205	0	*****	~~ ^ ^ ~	TOO	יי איי.	'A <i>CC</i>	TAA	ccc	:cc	GGAT	GAA	ATC			TT	TCI	GAT	1
ACI	ŢĞ	CIG	CAC	1111	מאט	100	IONI	טטת	TUD	COL	, uu							• •		
		211	10		21	20		2	130)		214								
GTA	\GC	AAAC	AA.	\GCA	LAAT	GIC	TCC	AAA	ATG	ACC	GT.	ATCC	CGC	GTC	ATC	A				

Fig. 2 (continued)

10 AATTCACCTCGA	20 Aagcaagctga	30 Taaaccgata	40 CAATTAAAGG	50 CTCCTTTTGG	60 AGCCTTT
70 TTTTTTGGAGAT	80 ITTCAACGTGA	90 AAAAATTATT	100 ATTCGCAATT	110 CCAAGCTAAT	120 TCACCTC
130 Gaaagcaagctg	140 Ataaaccgata	150 Caattaaagg	160 CTCCTTTTGG	170 AGCCTITTT	180 TTTGGAG
ATTITCAACGTG		ATTCGCAATT	CCAAGCTCTG	CCTCGCGCGT	TTCGGTG
250 ATGACGGTGAAA					
CGGATGCAGATCA		AGCGGCGCAT	TAAGCGCGGC	eggrgrggrg	GTTACGC
370 GCAGCGTGACCGC					
CCTTTCTCGCCAC		ritccccgic.	AAGCTCTAAA'	ICGGGGGCTC	CCTTTAG
GGTTCCGATTTAC		CACCTCGACC	CCAAAAAACT	rgattagggt(GATGGTT
CACGTAGTGGGC		ragacggttt.	ITCGCCCTTT	GACGTTGGAG	ICCACGT
TCTTTAATAGTG		CAAACTGGAA	CAACACTCAA	CCTATCTCG	STCTATT
670 CTTTTGATTTATA	-				
AACAAAATITAA		AACAAAATAT	TAACGTTTAC	AATTTGATCT	ecgctcg
GTCGTTCGGCTGC		ATCAGCTCAC	TCAAAGGCGG:	raatacggtt/	ATCCACA
GAATCAGGGGATA		GAACATGTGA	GCAAAAGGCC	AGCAAAAGGC	CAGGAAC
CGTAAAAAGGCCC		TITTTCCAT	940 AGGCTCCGCC	950 CCCTGACGA	960 GCATCAC
970 AAAAATCGACGC1		TGGCGAAAC		PATAAAGATA(
1030 TTTCCCCCTGGAA		1050 SCGCTCTCCT(1060 GTTCCGACCC	1070 IGCCGCTTACO	1080 CGGATAC
1090 CTGTCCGCCTTTC	1100 CTCCCTTCGGG/	1110 AGCGTGGCG	1120 CTITCTCAAT(1130 CCTCACGCTG	1140 FAGGTAT

Figure 3

CTCAG	1150 FTCGGTGTAG	1160 GTCGTTCGCT	1170 CCAAGCTGGG	1180 CTGTGTGCAC	1190 GAACCCCCC	1200 TTCAG
	1210	1220	1230	1240	1250	1260
CCCGA	CCGCTGCGCC	TTATCCGGTA	ACTATCGTCI	TGAGTCCAAC	CCGGTAAGAC	CACGAC
TTATC	1270 GCCACTGGCA	1280 GCAGCCACTG	1290 GTAACAGGAT	1300 TAGCAGAGCG	1310 AGGTATGTAC	1320 GCGGT
	1330	1340	1350	1360	1370	1380
		AAGTGGTGGC				
ልጥረ-ጥረ ር	1390	1400 Magccagtta	1410	1420	1430	1440
VICIO						
AAACA	1450 Marcaccoct	1460 GGTAGCGGTG	1470 	1480 TTGCAAGCAG	1490 CACATTACCC	1500
nnnon						
	1510	1520	1530	1540	1550	1560
MAMA		GAAGATCCTT				
~4.4.4	1570	1580	1590	1600	1610	1620
GAAAA		.GGGATTTTGG				
	1630	1640	1650	1660	1670	1680
CTTTT	AAATTAAAAA	ATTTTDAADT	AATCAATCTA	TATATATOAA	GAGTAAACTI	GGTCT
	1690	1700	1710	1720	1730	1740
GACAG	PTACCAATGO	TTAATCAGTG	AGGCACCTAT	CTCAGCGATC	TGTCTATTTC	CITCA
	1750	1760	1770	1780	1790	1800
TCCATA	AGITGCCTGA	CTCCCCGTCG	TGTAGATAAC	TACGATACGG	GAGGGCTTAC	CATCT
	1810	1820	1830	1840	1850	1860
GGCCC	CAGTGCTGCA	ATGATACCGC	GAGACCCACG	CTCACCGGCT	CCAGATTTAT	CAGCA
	1870	1880	1890	1900	1910	1920
ATAAA	CAGCCAGCC	GGAAGGGCCG	AGCGCAGAAG	TGGTCCTGCA	ACTITATCC	CCTCC
	1930	1940	1950	1960	1970	1980
ATCCA	STCTATTAAT	TGTTGCCGGG	AAGCTAGAGI	AAGTAGTTCG	CCAGTTAATA	GITTG
	1990	2000	2010	2020	2030	2040
CGCAA	COTTGTTGCC	ATTGCTGCAG		GTCACGCTCG	TCGTTTGGTA	TGGCT
	2050	2060	2070	2080	2000	2100
TCATTO		TCCCAACGAT	CAAGGCGAGI	TACATGATCC	CCCATGTTGT	GCAAA
	2110	2120	2120	2140	2150	2160
AAAGC		TTCGGTCCTC				
	2120	21.00	3100	2200	224.0	2200
TCACTO	2170 CATGGTTATO	2180 GCAGCACTGC	2190 ATAATTCTCT		2210 CCATCCGTAA	
	2230	2240	2250	2260	2270	2280
	_		-		•	

Fig. 3 (continued)

TTTTCTGTGAC	TGGTGAGTACT	CAACCAAGTC	ATTCTGAGAA?	ragtgtatgc	GGCGACCG
2290 AGITGCTCTTG	2300 CCCGGCGTCAA	2310 CACGGGATAA	2320 TACCGCCCCAC	2330 CATAGCAGAA	2340
	2360				
GIGCICATCAT	IGGAAAACGIT	CTICGGGGCG	AAAACTCTCAA	AGGATCTTAC	CGCTGTTG
2410 AGATCCAGTTC	2420 EATGTAACCCA	2430 CTCGTGCACC	2440 Caactgatctt	2450 CAGCATCTT	2460
	2480				
ACCAGCGITIC:	rgggtgagcaa	AAACAGGAAG	GCAAAATGCCC	CAAAAAAGG	GAATAAGG
2530 GCGACACGGAA	2540 ATGITGAATAC	2550 CCATACTCTT	2560 CCTTTTTCAAT	2570 ATTATTGAA	2580 SCAGACAG
2590 TITTATTGTTC					
2650 CACAACGTGGCT	2660 TTTGTTGAATA	2670 AATCGAACTI	2680 FIGCTGAGITO	2690 ACTCCCCGC	2700 GCGCGATG
	2720				
GGTCGAATTTG	FITTCGAAAAA	AAAGCCCGCT(CATTAGGCGGG	CTAAAAAAA	AGCCCGCT
2770 CATTAGGCGGG	2780 TCGAATITCI	2790 CCATTCATC	2800 CGCTTATTATC	2810 ACTTATTCAC	2820 GCGTAGC
2830	2840	2850	2860	2870	2880
AACCAGGCGTT	'AAGGGCACCA!	ATAACTGCCT	CAAAAAATTA	.00000000000000000000000000000000000000	TIGCCACT
2890 CATCGCAGTACT	2900 GITGIAATICA	2910 ATTAAGCATT(2920 TGCCGACATG	2930 Gaagecatea	2940 CAGACGG
2950	2960	2970	2980	2990	3000
CATGATGAACCI	'GAATCGCCAG(CGGCATCAGCA	ACCTTGTCGCC	TTGCGTATAA	TATTTGC
3010 CCATAGTGAAAA	3020 CGGGGGGCGAA	3030 Baagitgtc <i>ci</i>	3040 ATATTCGCCAC	3050 GTTTAAATCA	3060 AAACTGG
3070	3080	3090	3100	3110	3120
TGAAACTCACCC	AGGGATTGGC1	GAGACGAAAA	ACATATTCTC	AATAAACCCI	TTAGGGA
AATAGGCCAGGT	3140 TTTCACCGTA/	3150 CACGCCACAT	3160 CTTGCGAATA	3170 TATGTGTAGA	3180 Aactgcc
3190	3200	3210	3220	3230	3240
GGAAATCGTCGT					
CGGTGTAACAAG	3260 GGTGAACACTA	327U NTCCCATATCA	3280 CCAGCTCACC	3290 GICTITCATI	3300 GCCATAC
3310 GAAATTCCGGAT	3320 GAGCATTCATO	3330 AGGCGGGCAA	3340 GAATGTGAAT	3350 AAAGGCCGGA	3360 TAAAACT

Fig. 3 (continued)

		337	0		33	80		3	3390)		340	0	_	34	10			3420
TGT	GCT	TAT	III	TCI	TTA	CGG	TCT	TT	LAAA	AGC	CCC	TAA	TAT.	CCA	GCI	AAA	CGC	iIC	TGGT
		343	0		34	40			3450)		346	0	,	34	170			3480 TGGG
TAT	AGG	TAC	ATI	GAG	CAA	CTG	ACT	GA.	AATC	CC	CAA	IAAI	GF.	CI	TAC	CAT	GCC	AT	TGGG
			_									25.0			25	-20			aelio.
		349	0		35	00			3510) 		354	.U	TO A C	77) <u>5</u> U	ora/	-CHT	3540
ATA	TAT	CAA	CGC	ilgg	IAI	ATC	CAG	1G	4111	. 1 1 1	1101	برايا.	YT 1.	TAC	1011		TM	JU 1	CCTG
ΔΔΔ	ልጥሮ	355 TCC	0 :AT/	ACT	35 CAA	60 AAA	АТА	CG	3570 CCCC) GGT/	AGTO	358 ATC	30 717/	\TT	35 CA7	590 TTAT	(GG)	rga	3600 AAGT
rurur	W11 4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																	
		361	.0		36	20		•	3630)		364	Ю		36	550			3660
TGO	AAC	CTC	TI	CGI	GCC	GAT	CAA	CG	TCTC	AT	rttc	GCC	:AA	AG	TG	GCC	AG	3GC	TTCC
		367	70		3€	680			3690)		370	00		37	710			3720
CGC	CATE	rca/	CAC	GGGA	CAC	CAC	GAT	H	ATT	CAT.	CTC	3CG/	AG.	rga:	CT	rcco	IIC/	ACA	GGTA
		373	30		37	740			3750)		376	0		3	770			3780 CCAT
III	[TA]	rcg/	\AG	LCGA	LAAC	GGC	ATC	:GC	GÇG	JGG	GGA	TTC	CAC	CTC	CGA	GCT.	CAC:	rcc	CCAT
									-0			-0-			-	000			adha
		379	30		3&	300			3810)		384	20		30	530			3840
CCC	CC	'GI'	rga(CAAT	TA/	ATCA	TCC	iGC	TCG.	CAL	AAIT	iIG.	نفاقانا	AAT.	LGT	JAG	شانان	ALA	ACAA
		-0-			-				~ O == /			200	20		-	200			2000
		38	50		38	56U		-	30/) 700 A1	-	300	~ ~	ATC:) (() () ()	24 A	744		3900
TI	CAC	CAC	\GG	AAAC	AGC	iATC	CAF	الالالا	AUU.	I'GA	TOTA	LICAL	310	n VTC	ranı	CAM Q	<i>-</i> ₩₩	nna V	CGGC
														M	v	ч	ų	v	А
		201			20	220			2026	^		20/	in		20	oen			3960
nere	n a <i>r</i> na	39.	10 10 41	TTT-/1/		12U 1000	-	-T-A	יכעכ ידידיי	CCC J	-TC	יככ ייציני	TTO	יבידיו	ان است. زر	700	тат	T	CGCAG
TT.	TACC	اباباد	カロハ	TIG	, 1 G	100C	101	t T	F	JUG A	7	T.	- E	1	1	D.	H	٠,	Δ
L	Y	A	ĸ	L	L	1	14	4	r	n	14	-	F	_		•	**		
		20.	70		21	180			300	n		וחון	าก		Ш	ດາດ			4020
CA	200	ככ מספר	70 10	ል ልጥና): T	700 8 8 Tr	200		יכככ מדים	J Attg	CAG	יטר ידעקיו	LLL OO	GAA	בונות יי	TAC.	ATG	ccc	CAATG
	A	A	AOA.	N N	7 L 14	N.	 	T	L	м	۵	Y	F	E	W	Y	М	P	N
Ω	Λ		л +1												••	•	••	•	
		40	_		ы	nlin			hot	_									
AC	GGC	TO.	CAT	m	71	U-7-U			#1 m	n		40	60		4	070			4080
ח	ago.			1.1 91 91	$\Delta \Delta \Omega I$	ملئان	TT'G(CAA	AAC	O GAC	TCG	40 GCA	60 TAT	TTG	4 GCT	070 GAA	CAC	GG	4080 FATTA
	_		H	TGG/ W	AAG(CGT	TTG	CAA	AAC	GAC	TCG	GCA'	TAT	TTG	GCT	GAA	CAC	GG	LATTA
18			H	W	K	CGT R	rtg(L	CAA Q	AAC N	GAC D	TCG S	GCA' A	TAT Y	TTG L	GCT A	GAA E	CAC H	GGT G	ATTA I
18			H	W	K	CGT R	rtg(L	CAA Q	AAC N	GAC D	TCG S	GCA' A	TAT Y	TTG L	GCT A	GAA E	CAC H	GGT G	ATTA I
		40	H 90	W	K 4:	CGT R 100	rtg(L	CAA Q	AAC N 411	GAC D O	TCG S	GCA' A 41	TAT Y 20	TTG L	GCT A 4	GAA E 130	CAC H	GGT G	IATTA I 4140
CT	GCC	40 GTC	H 90 TGG	W	K 4: CCC	CGT R 100 CCG	rtg(L gca:	CAA Q TAT	AAC N 411 AAG	GAC D O GGA	TCG S ACT	GCA' A 41 AGT	TAT Y 20 CAA	TTG L .GCG	GCT A 4 GAT	GAA E 130 GIG	CAC H GGC	GG	IATTA I 4140 CGGTG
CT T	GCC A	40 GTC	H 90 TGG	W	K 4: CCC	CGT R 100 CCG	rtg(L gca:	CAA Q TAT	AAC N 411	GAC D O GGA	TCG S ACT	GCA' A 41 AGT	TAT Y 20 CAA	TTG L .GCG	GCT A 4 GAT	GAA E 130 GIG	CAC H GGC	GG	IATTA I 4140 CGGTG
CT T 38	GCC A	40 GTC V 41	H 90 TGG W	W ATT I	K 4: CCC P	CGT R 100 CCG P	rtg L GCA A	CAA Q TAT Y	AAC N 411 AAG K 417	GAC D O GGA G	TCG S ACT T	GCA' A 41 AGT S 41	TAT Y 20 CAA Q 80	TTG L GCG A	GCT A 4 GAT D	GAA E 130 GIG V	CAC H GGC G	GGT G TAC Y	IATTA I 4140 CGGTG G 4200
CT T 38	GCC A	40 GTC V 41 GAC	H 90 TGG W 50	W ATT I	K 4: CCC P 4	R 100 CCG P 160 TTA	TTG(L GCA' A	CAA Q TAT Y	AAC N 411 AAG K 417	GAC D O GGA G	TCG S ACT T	GCA' A 41 AGT S 41 AAA	TAT Y 20 CAA Q 80 .GGG	TTG L GCG A	GCT A 4 GAT D	GAA E 130 GIG V	CAC H GGC G	GGT G TAC Y	IATTA I 4140 CGGTG G 4200 GTACG
CT 38	GCC A TAC	40 GTC V 41 GAC	H 90 TGG W 50	W ATT I	K 4: CCC P 4	R 100 CCG P 160 TTA	TTG(L GCA' A	CAA Q TAT Y	AAC N 411 AAG K 417	GAC D O GGA G	TCG S ACT T	GCA' A 41 AGT S 41 AAA	TAT Y 20 CAA Q 80 .GGG	TTG L GCG A	GCT A 4 GAT D	GAA E 130 GIG V	CAC H GGC G	GGT G TAC Y	IATTA I 4140 CGGTG G 4200 GTACG
CT 38 CT A	GCC A TAC Y	40 GTC V 41 GAC	H 90 TGG W 50	W ATT I	K CCC P 4 GAT D	R 100 CCG P 160 TTA	CTGC L GCA A GGG	CAA Q FAT Y GAC E	AAC N 411 AAG K 417	GAC D O GGA G CAT	TCG S ACT T CAA	GCA' A 41 AGT S 41 AAA K	TAT Y 20 CAA Q 80 GGG	CCG A	GCT A 4 GAT D 4 GTT	GAA E 130 GIG V 190 CGG	GGC G G ACA	GGT G TA(Y V AA(IATTA I 4140 CGGTG G 4200 GTACG
CT A 58	GCC A TAC Y	40 GTC V 41 GAC D	H 90 TGG W 50 CTI L	ATTO I TATO Y	K 4: CCC P 4 GAT D	R 100 CCG P 160 TTA L	TTG(L GCA: A GGG	CAA Q TAT Y GAC E	411 AAG K 417 F 423	GAC D O GGA G CAT H	TCG S ACT T TCAA Q	GCA' A 41 AGT S 41 AAA K	Y 20 CAA Q 80 GGG	CCG A A	GCT A 4 GAT D 4 GTT	GAA E 130 GIG V 190 CGG R	GGC G G ACA	GGT G TTAI Y	IATTA I 4140 CGGTG G 4200 GTACG Y
CT A 58	GCC A TAC Y	40 GIC V 41 GAC D 42	H FGG W 50 CTI L	ATTO	K CCCCP P GAT D	R 100 CCG P 160 TTA L	CA CA A GGG G	CAA Q TAT Y GAC E	411 AAG K 417 F 423	GAC D GGA GCAT H	TCG S ACT T CAA Q	GCA A 41 AGT S 41 AAA K	TAT Y 20 CAA Q 80 GGG G	GCG A	GCT A GAT D 4 GTT V	GAA E 130 GTG V 190 CGG R	CAC H GGGC G ACA T	GGT G TTAI Y MAA	IATTA I 4140 CCGTG G 4200 GTACG Y 4260 CGTTT
CT 38 CT A 58	GCC A TAC Y	40 GIC V 41 GAC D 42	H FGG W 50 CTI L	ATTO	K CCCCP P GAT D	R 100 CCG P 160 TTA L	CA CA A GGG G	CAA Q TAT Y GAC E	411 AAG K 417 F 423	GAC D GGA GCAT H	TCG S ACT T CAA Q	GCA A 41 AGT S 41 AAA K	TAT Y 20 CAA Q 80 GGG G	GCG A	GCT A GAT D 4 GTT V	GAA E 130 GTG V 190 CGG R	CAC H GGGC G ACA T	GGT G TTAI Y MAA	IATTA I 4140 CCGTG G 4200 GTACG Y 4260 CGTTT
CT T 38 CT A 58 GC	GCC A TAC Y	40 GIC V 41 GAC D 42	H FGG W 50 CTI L	ATTO	K CCCC P 4 GAT D 4 CTG L	R 100 CCGG P 160 TTA L 220 CCAA	TTGC L GGGA A GGG G	CAA Q IAT Y GAC E	411 AAG K 417 F 423 AATC I	GAC D GGA GCAT H	TCG S ACT T CAA Q	GCA A 41 AGT S 41 AAA K	TAT Y 20 CAA Q 80 GGG G	GCG A	GCT A GAT D 4 GTT V	GAA E 130 GTG V 190 CGG R	CAC H GGGC G ACA T	GGT G TAA Y AAA	IATTA I 4140 CCGTG G 4200 GTACG Y 4260 CGTTT
CT 38 CT A 58 GC G 78	GCC A TAC Y	40 GTC V 41 GAC D 42 AAA K	H 90 TGG W 50 CTT L 10 GGA	ATTO I TATO Y GAG	K 4: CCCC P 4GAT D 4CTC L	CGT R 100 CCGG P 160 TTA L 220 CAAA Q	CGCA A GGGG G	CAA Q TAT Y GAC E	AACC N 4111 TAAG K 417 F 423 HATC I 429	GAC D O GGGA G CAT H SO SAAA	TCG S ACT T TCAA Q AAGT S	GCA A 41 AGT S 41 AAAA K 42 CTX L	Y 20 CAAA Q 80 GGG G 440 CATH	GCG A A ACCO	GCT A 44 GAT D 44 GTT V 44 CCGC R	GAA E 1300 GTG V 1900 CGG R 12500 D	GGC G GACATI	CTAC Y AAA K	14140 CCGTG G 4200 GTACG Y 4260 CGTTT V
CT A 58 GC G 78	GCC A TAC Y	40° GTC V 41 GAC D 42 AAA K 42	H 90 TGG W 50 CTT L 10 GGA	W ATTO	K 4: CCCC P 4GAT D 4CTG L 4ATC	R 1000 CCGG P 1600 TTA L 2200 CCAA Q 2800	CAC	CAA Q IAT Y GAC E	AACC N 4111 AAGG K 4177 F 423 BATC I 429 AGGC	GAC D O GGGA G CAT H CAAA K	TCG S ACT T TCAAA Q	GCA 411 AGT S 411 AAA K 42 CTT L 43 CGAT	TATY 20 CAAA Q 80 GGG G 140 TCAT H 1600 TGGG	TTG L GCG A HACG T	GCT A 4 GAT D 4 GTT V 4 CCGC R	GAARE 1300 CGGG R 12500 D 1310	CAC H GGGC G AACA T	CTAC Y AAAC N	4140 CGGTG G 4200 GTACG Y 4260 CGTTT V 4320 CGCGG
CT A 58 GC G 78	GCC A TAC Y	40° GTC V 41 GAC D 42 AAA K 42	H 90 TGG W 50 CTT L 10 GGA	W ATTO	K 4: CCCC P 4GAT D 4CTG L 4ATC	R 1000 CCGG P 1600 TTA L 2200 CCAA Q 2800	CAC	CAA Q IAT Y GAC E	AACC N 4111 AAGG K 4177 F 423 BATC I 429 AGGC	GAC D O GGGA G CAT H CAAA K	TCG S ACT T TCAAA Q	GCA 411 AGT S 411 AAA K 42 CTT L 43 CGAT	TATY 20 CAAA Q 80 GGG G 140 TCAT H 1600 TGGG	TTG L GCG A HACG T	GCT A 4 GAT D 4 GTT V 4 CCGC R	GAARE 1300 CGGG R 12500 D 1310	CAC H GGGC G AACA T	CTAC Y AAAC N	4140 CGGTG G 4200 GTACG Y 4260 CGTTT V 4320 CGCGG
CT A 58 GC G 78	GCC A TAC Y	40° GTC V 41 GAC D 42 AAA K 42	H 90 TGG W 50 CTT L 10 GGA	W ATTO	K 4: CCCC P 4GAT D 4CTG L 4ATC	R 1000 CCGG P 1600 TTA L 2200 CCAA Q 2800	CAC	CAA Q IAT Y GAC E	AACC N 4111 AAGG K 4177 F 423 BATC I 429 AGGC	GAC D O GGGA G CAT H CAAA K	TCG S ACT T TCAAA Q	GCA 411 AGT S 411 AAA K 42 CTT L 43 CGAT	TATY 20 CAAA Q 80 GGG G 140 TCAT H 1600 TGGG	TTG L GCG A HACG T	GCT A 4 GAT D 4 GTT V 4 CCGC R	GAARE 1300 CGGG R 12500 D 1310	CAC H GGGC G AACA T	CTAC Y AAAC N	14140 CCGTG G 4200 GTACG Y 4260 CGTTT V

Fig. 3 (continued)

TTGAAGTCGATCCCGCTGACCGCAACCGCGTAATTTCAGGAGAACACCTAATTAAAGCCT V E V D P A D R N R V I S G E H L I K A GGACACATTITCATTTTCCGGGGCGCGCGCACCATACAGCGATTTTAAATGGCATTGGT W T H F H F P G R G S T Y S D F K W H W ACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAAGCTGAACCGCATCTATAAGTTTC YHFDGTDWDESRKLNRIYKF AAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGCAACTATGATTATTTGATGT QGKAWDWEVSNENGNYDYLM ATGCCGACATCGATTATGACCATCCTGATGTCGCAGCAGAAATTAAGAGATGGGGCACTT YADIDYDHPDVAAEIKRWGT GGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTTGATGCTGTCAAACACATTAAAT WYANELQLDGFRLDAVKHIK F S F L R D W V N H V R E K T G K E M F CGGTAGCTGAATATTGGCAGAATGACTTGGGCGCCCTGGAAAACTATTTGAACAAAACAA TVAEYWQNDLGALENYLNKT ATTTTAATCATTCAGTGTTTGACGTGCCGCTTCATTATCAGTTCCATGCTGCATCGACAC N F N H S V F D V P L H Y Q F H A A S T AGGGAGGCGCTATGATATGAGGAAATTGCTGAACGGTACGGTCGTTTCCAAGCATCCGT Q G G G Y D M R K L L N G T V V S K H P TGAAATCGGTTACATTTGTCGATAACCATGATACACAGCCGGGGCAATCGCTTGAGTCGA LKSVTFVDNHDTQPGQSLES CTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATTCTCACAAGGGAATCTGGAT TVQTWFKPLAYAFILTRESQ ACCCTCAGGTTTTCTACGGGGATATGTACGGGACGAAAGGAGACTCCCAGCGCGAAATTC Y P Q V F Y G D M Y G T K G D S Q R E I CTGCCTTGAAACACAAAATTGAACCGATCTTAAAAGCGAGAAAACAGTATGCGTACGGAG P-ALKHKIEPILKARKQYAYG

	5170			5180			5190			5200				5210			5220		
5170 5180 5190 5200 5210 5220 CACAGCATGATTATTTCGACCACCATGACATTGTCGGCTGGACAAGGGAAGGCGACAGCT																			
A Q 398	H	D	Y	F	D	H	H	D	I	V	G	W	T	R	E	G	D	S	
•••	52	30		5240			525		0		52	60		5	270	1		E380	
CGGTT	GCA	ĀĀT	TCA	GGT	TTG	GCG	ATA	ACA	GAC	GGA	ccc	<u>ر</u> ر	200	CC A	A 8 r	200			
S V 418	A	N	S	G	L	A	A	L	I	T	D	G	P	G	G	A	K	R	
•	52	90		5	5300			5310			5320			5330				5340	
5290 5300 5310 5320 5330 5340 TGTATGTCGGCCGGCAAACCCGTTCGG																			
M Y 438	V	G	R	Q	N	A	G	E	T	W	H	D	I	T	G	N	R	S	
	53	50		5	360			537	0		53	80		5	390			5400	
AGCCG	GIT	GIC	ATC	AAT	TCG	GAA	GGC	TGG	GGA	GAG	TTT	CAC	GTA	AAC	GGC	GGG	TCO	GITT	
E P 458	V	V	I	N	S	E	G	W	G	E	F	H	V	N	G	G	S	V	
•	54	10	542			5430			0	5440				5450				5460	
5410 5420 5430 5440 5450 5460 CAATTTATGTTCAAAGATAGGTGACCAGAGGAGGGACGGATTTCCTGAAGGAAATCCGTTTT														7.00 TTTTT					
S I 4 78	Y	V	Q	R															
	54	70	ro 5480				549	5500			5510				5520				
5470 5480 5490 5500 5510 5520 TITATTTTGCCCGTCTTATAAATTTCTTTGATTACATTTTATAATTTAACAAAGT																			
CTTC ATT	55	30	T C 4	5	540		.	555	0		550	60		5!	570			5580	
GTCATCAGCCCTCAGGAAGGACTTGCTGACAGTTTGAATCGCATAGGTAAGGCGGGGATG																			
5590 5600 AAATGGCAACGTTATCTGATGTAGC						GCA	5610 Aaagaaagca			5620 AATGTGTCG/			5630 AAAATGACGC			מידא	5640 TCCC		
5650 5660 GGGTGATCCTCTAGAAGAAGCTTGG								5670	0	امحلت	74								
			·nu		-	· + +,	361	OTM	טמט	arcı	7()								

Fig. 3 (continued)

Figure 5

Figure 6

Figure 7

EcoR1

GAATTCGAGCTCGAGCTTACTCCCCATCCCCTGTTGACAATTAATCATCGGCTCGTATA
BamHI

ATGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGGATCCGCGGATCCGTG

GAGAAAATAAA GTGAAACAAAGCACTATTGCACTGGCACTCTTACCGTTACTGTTTACC
M K Q S T I A L A L L P L L F T

CCTGTGACAAAAGCG GCAAAT
P V T K A A N
----->amylase

Figure 8

Figure 9

Thermoinactivation at pH 5.5

Figure 10

Thermoinactivation at pH 7.0

Figure 11

Figure 1

23/25

Figure 13

Figure 14

Liquefaction at 110 C

Figure 15