

- Introduction
 - Background
 - Problem
 - Challenge
- - Network Structure
 - Back Propagation
 - Advantages
- - Example
 - Numerical Tests
- Acknowledgment

Introduction

Background Problem

Proposed Method

Network Structure Back Propagation

Advantages Results

Numerical Tests

Reference

Background

Figure: The schema of directional drilling. (www.amerexco.com)

- Geosteering is a key technique in directional drilling.
 - 1 The drilling tool could emit a series of electromagnetic waves.
 - Reflected EM waves are collected by sensors. (Logging)
 - 3 The drilling angle would be adjusted by analyzing collected data. (**Drilling**)
- Logging and drilling need to be synchronous.
- This work is focus on fast logging.

Introduction

Background

Challer

Proposed Method

Network Structure

Results

nesuii

Numerical Tests

Reference

Background

Figure: FWI logging tool with antennas.

- $\hfill\blacksquare$ T represents transmitting antennas, and R represents receiving antennas.
- The collected data for each receiver is a combination of the reflected transmitting signals.

Introduction

Background

Challe

Proposed Method

Network Structure

Results

Evennele

Numerical Tests

Reference

Background

Figure: Directional drilling schema for an example of 3-layer model.

- The **earth model** are formulated by geophysical parameters.
- \blacksquare R represents resistivities, $D_{\rm up}$ and $D_{\rm dn}$ are boundaries, and ${\rm Dip}$ is the dip angle.
- The **observed measurements** are collected by the receiving antennas.

Introduction

Background

Challe

Proposed Method

Network Structure

Results

Example Numerical Tests

Reference

Problem

Geosteering Inverse Problem

$$\begin{split} \hat{\mathbf{x}} &= \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}) \\ &= \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathcal{F}(\mathbf{x})\|_{2}^{2} + \lambda \mathcal{R}(\mathbf{x}). \end{split} \tag{1}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}} = 2 \left(\mathbf{y} - \mathcal{F}(\mathbf{x}) \right) \frac{\partial \mathcal{F}}{\partial \mathbf{x}} + \lambda \frac{\partial \mathcal{R}}{\partial \mathbf{x}}.$$
 (2)

- In (1), the electromagnetic forward model could be regarded as a function F which accepts the earth model and produces synthetic measurements.
 R is a regularization term.
- (2) is usually used in **deterministic optimization** [1, 2]. The gradient $\frac{\partial \mathcal{F}}{\partial \mathbf{x}}$ is a *Jacobian* matrix which could be numerically calculated.

Introduction

Problem

Challene

Proposed Method

Network Structure

Advantag

Results

Numerical Tests

Reference

Challenge

■ Two methods for logging.

Table: Different logging methods.

	On ground	Underground
Data Amount	Inadequate	Adequate
Computation	Fast	Slow
Memory	Large	Small

- On ground method.
 - Data is not enough but hardware is powerful.
 - Use optimization method.

- Underground method.
 - All data is available but hardware is limited.
 - Use lookup table.

Introduction

Background Problem

Challenge

Proposed Method

Network Structure

Advantages

Results

Numerical Tests

Reference

Challenge

Figure: Positive Pulse Pressure Wave Generator and Corresponding Pressure Waveform with Encoded Digital Data. [3]

- The collected data need to be transmitted back to the ground by pressure wave.
- The **communication rate** would be a bottle neck.

Introduction

Background Problem

Challenge

Proposed Method

Network Structure Back Propagation

Results

Result

Numerical Tests

Reference

Challenge

Figure: Lookup table method for fast estimation of the inversion.

- Use the **best-matched sample** in the table to estimate a coarse solution.
- Drawbacks:
 - Large memory consumption.
 - Samples are extremely **coarse**.

Introduction

Background Problem

Challenge

Proposed Method

Network Structure Back Propagation

Advantages

Results

Numerical Tests

Reference

- - Problem
 - Challenge
- 2 Proposed Method
 - Network Structure
 - Back Propagation
 - Advantages
- - Example
 - Numerical Tests
- Acknowledgment

Introduction

Background Problem

Proposed Method

Network Structure Back Propagation

Advantages Results

Numerical Tests

Reference

Network Structure

Figure: The deep physics-driven CNN structure.

- The deep network is a 1D network which is adapted from VGG16 model. The model is trained by Adam optimizer [4].
- Each convolutional layer composes of a convolution, an instance normalization [5] and a PReLu activation [6].
- The loss function of the network includes a model misfit and a data misfit.

Introduction

Background Problem

Challer

Proposed Method

Network Structure

Back Propagation

Results

ample imprical Tasts

Reference

Network Structure

Train a deep neural network

$$\underset{\mathbf{\Theta}}{\operatorname{arg\,min}} \; \beta_1 \mathcal{L}_{\mathrm{ml}}(\mathbf{y},\; \mathbf{\Theta}) + \beta_2 \mathcal{L}_{\mathrm{dl}}(\mathbf{y},\; \mathcal{F},\; \mathbf{\Theta}), \; \; \text{(3-1)}$$

$$\mathcal{L}_{\mathrm{ml}}(\mathbf{y}, \; \mathbf{\Theta}) = \|\mathbf{x} - \mathcal{N}(\mathbf{y}, \; \mathbf{\Theta})\|_{2}^{2},$$
 (3-2)

$$\mathcal{L}_{\mathrm{dl}}(\mathbf{y}, \ \mathcal{F}, \ \mathbf{\Theta}) = \|\mathbf{y} - \mathcal{F}(N(\mathbf{y}, \ \mathbf{\Theta}))\|_{2}^{2}, \tag{3-3}$$

- In training phase, we adjust the network parameters Θ.
- The model misfit \mathcal{L}_{ml} is calculated by fitting the ground truth of earth models in train set.
- The data misfit \(\mathcal{L}_{\text{cl}} \) is calculated by letting the synthetic measurements fit the observed ones.

Introduction

Background Problem

Challer

Proposed Method

Network Structure

Advantage

Results

Numerical Tests

Reference

Network Structure

Train a deep neural network

$$\arg \min_{\boldsymbol{\Theta}} \ \beta_1 \mathcal{L}_{\mathrm{ml}}(\mathbf{y}, \ \boldsymbol{\Theta}) + \beta_2 \mathcal{L}_{\mathrm{dl}}(\mathbf{y}, \ \mathcal{F}, \ \boldsymbol{\Theta}), \quad (3-1)$$

$$\mathcal{L}_{\mathrm{ml}}(\mathbf{y}, \; \mathbf{\Theta}) = \|\mathbf{x} - N(\mathbf{y}, \; \mathbf{\Theta})\|_{2}^{2}, \tag{3-2}$$

$$\mathcal{L}_{\mathrm{dl}}(\mathbf{y}, \, \mathcal{F}, \, \mathbf{\Theta}) = \|\mathbf{y} - \mathcal{F}(N(\mathbf{y}, \, \mathbf{\Theta}))\|_{2}^{2}, \tag{3-3}$$

- In training phase, we adjust the network parameters Θ.
- The **model misfit** \mathcal{L}_{ml} is calculated by fitting the ground truth of **earth models** in train set.
- The data misfit \(\mathcal{L}_{\text{cl}} \) is calculated by letting the synthetic measurements fit the observed ones.

Get test results

$$\mathcal{F}^{-1}(\mathbf{y}) \approx N(\mathbf{y}, \; \mathbf{\Theta}).$$
 (4)

- In testing phase, the network parameters Θ are fixed.
- The feed-forward network could produce the predictions quickly.

Introduction

Problem

Challen

Proposed Method

Network Structure

Advantages

Results

Numerical Tea

Reference

Back Propagation

Figure: The implement of the forward model.

- The forward model function is **highly nonlinear**.
- It accepts the **earth model parameters** (1 \times *M* vector) and produces the **synthetic measurements** (1 \times 92 vector).
- We use *N* to represent *N* samples.

Introduction

Background Problem

Challer

Proposed Method

Network Structure

Back Propagation

Advantage

Results

Numerical Tests

Reference

Back Propagation

Figure: The implement of the forward model.

- The **back-propagation** only uses the current synthetic input of the forward model $(\hat{\mathbf{x}})$ and the gradient from the next layer $(2(\mathbf{y} \mathcal{F}(\mathbf{x})))$.
- The gradient would be back-propagated to the previous layer in the deep network.

Introduction

Background Problem

Challen

Proposed Method

Network Structure

Back Propagation

Advantages

Results

Numerical Tests

Reference

Advantages

- The network could be deployed for underground method.
 - The network is totally feed-forward and only requires light computation (about 0.3s for 80 points). The lookup table is slower (about 60s) while the optimization method is much slower (about 400s).
 - The network has a small data size (lower than 30MB) compared to a lookup table (about 1.6GB), which requires lower memory consumption.
- The network could make use of **all data** by taking advantage of underground method, while the optimization method could not.
- The network could get a far more **accurate prediction** compared to lookup table.
- The **computational cost** of the network **would not increase** with the data amount.

Introduction

Problem Challeng

Challenge

Proposed Method

Network Structure

Advantages

Results

Example

Numerical Test

Reference

- - Background
 - Problem
 - Challenge
- - Network Structure
 - Back Propagation
 - Advantages
- Results
 - Example
 - Numerical Tests
- Acknowledgment

Introduction

Background Problem

Proposed Method

Network Structure Back Propagation Advantages

Results

Numerical Tests

Reference

Results

Example: 3-layer model inversion

Figure: The result of an example.

- The results show the comparison of the predicted earth models.
- The proposed network achieves better resistivity prediction compared to that of the conventional data-driven network.

Introduction

Background Problem

Challenge

Proposed Method

Network Structure

Results

Example

Numerical Tests

Reference

Results

Example: 3-layer model inversion

Figure: The result of an example.

■ We select some curves which show that the **physics-driven network(PhDNN)** could achieve a better curve fitness.

Introduction

Background Problem

Proposed Method

Network Structure

Results

Numerical Tests

Reference

Results Numerical Tests

Figure: The numerical tests over compared methods.

- We generated 100 examples earth models like the shown one.
- The test over the 100 examples show that compared to the **data-driven network**, the proposed one could achieve the **same** model misfit but a **better** data misfit.

Introduction

Problem

Challenge

Proposed Method

Network Structure

Back Propagation

Results

=xampie

Numerical Tests

Reference

- - Background
 - Problem
 - Challenge
- - Network Structure
 - Back Propagation
 - Advantages
- - Example
 - Numerical Tests
- Reference
- Acknowledgment

Introduction

Background Problem

Proposed Method

Network Structure Back Propagation

Advantages Results

Numerical Tests

Reference

Reference I

- K. Levenberg, "A method for the solution of certain non-linear problems in least squares," *Quarterly of applied mathematics*, vol. 2, no. 2, pp. 164–168, 1944.
- D. W. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," *Journal of the society for Industrial and Applied Mathematics*, vol. 11, no. 2, pp. 431–441, 1963.
- N. G. Franconi, A. P. Bunger, E. Sejdi, and M. H. Mickle, "Wireless communication in oil and gas wells," *Energy Technology*, vol. 2, no. 12, pp. 996–1005.
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.

Introduction

Background Problem

Challe

Proposed Method

Network Structure

Results

Jumerical Test

Reference

Reference II

D. Ulyanov, A. Vedaldi, and V. Lempitsky, "Instance normalization: The missing ingredient for fast stylization. corr (2016)," arXiv preprint arXiv:1607.08022, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." in Proceedings of the IEEE international conference on computer vision. 2015, pp. 1026-1034.

Introduction

Background

Proposed Method

Network Structure

Results

Reference

- - Background
 - Problem
 - Challenge
- - Network Structure
 - Back Propagation
 - Advantages
- - Example
 - Numerical Tests
- Acknowledgment

Introduction

Background Problem

Proposed Method

Network Structure Back Propagation

Advantages Results

Numerical Tests

Reference

Acknowledgment

This material is based upon work supported by the U.S. Department of Energy, Office of Science, and Office of Advanced Science Computing Research, under Award Numbers DE-SC0017033.

Introduction

Background Problem Challenge

Proposed Method

Network Structure

Advantag

Results

Example Numerical Tests

Reference

