Sprawozdanie z listy 2 Laboratorium, Obliczenia naukowe

Autor: Piotr Klepczyk

1. Zadanie 1

1.1. Cel

Celem zadania jest zaimplementowanie czterech różnych sposobów obliczania sumy przy wyliczaniu iloczynu skalarnego. Metody które należy zaimplementować to sumowanie w przód, czyli w kolejności po współrzędnych, sumowanie w tył, czyli sumowanie w odwrotnej kolejności niż w poprzednim przykładzie. Kolejne dwa sposoby opierają się na posortowaniu wartości po przeprowadzeniu mnożenia. A następnie jaki wpływ na wyniki ma podane w treści zadania niewielkie zmiany wartości.

1.2. Realizacja

Wszystkie cztery sposoby obliczania sumy będą wykonywane dal arytmetyk Float32 i Float64. Pierwszym sposobem jest sumowanie w przód, czyli sumowanie współrzędnych po wymnożeniu po indeksach rosnąco. Drugi sposób to sumowanie w tył, czyli sumowanie po indeksach malejąco. Kolejnym sposobem jest sumowanie z wykorzystaniem sum częściowych. Jedna suma częściowa to suma wartości ujemnych liczona w kolejności od największej takiej liczby do najmniejszej, a następnie na sumowaniu sum częściowych. Ostatni sposób polega na tym samym co trzeci tylko sumy częściowe liczne są od najmniejszej do największej.

Sposób	Przed zmianą danych	Po zmianie danych
Float32 'w przód'	-0.4999443	-0.4999443
Float32 'w tył'	-0.4543457	-0.4543457
Float32 'malejąco'	-0.5	-0.5
Float32 'rosnąco'	-0.5	-0.5
Float64 'w przód'	1.0251881368296672e-10	-0.004296342739891585
Float64 'w tył'	-1.5643308870494366e-10	-0.004296342998713953
Float64 'malejąco'	0.0	-0.004296342842280865
Float64 'rosnąco'	0.0	-0.004296342842280865

Tab1.0: Tabela wyników algorytmów

Po porównaniu wyników widać że wyniki po zmianie danych dla arytmetyki Float64 są bliższe siebie niezależnie od przyjętej metody liczenia. Natomiast dla arytmetyki Float32 uzyskane wyniki są identyczne jak te uzyskane przed modyfikacją danych. Można z tego wywnioskować że we Float32 mimo zmniejszenia danych to ciągle dochodzi do tych samych zaokrągleń związanych z arytmetyką co wcześniej. Natomiast dla Float64 można zauważyć że nie dochodzi do zaokrągleń związanych z arytmetyką mających aż tak, jak miało to miejsce wcześniej, wpływ na wynik pracy algorytmu.

2. Zadanie 2

2.1. Cel

Celem zadania jest sporządzenie wykresu funkcji $f(x)=e^x ln(1+e^{-x})$ w przynajmniej dwóch programach do wizualizacji, a następnie policzyć granicę funkcji f(x) dla x dążącego do nieskończoności.

2.2. Realizacja

Do realizacji zadania użyto biblioteki Plots dla języka Julia oraz programu Microsoft Excel, a także strony internetowej do generowania wykresów online: www.desmos.com/calculator.

Wyk2.0: Wykres wygenerowany przez Julia Plots

Wyk2.1: Wykres wygenerowany przez program Microsoft Excel

Wyk2.2: Wykres wygenerowany przez serwis www.desmos.com/calculator

Na powyższych wykresach widać różnice przy ich konstrukcji oraz dokładności w zależności od użytego programu.

Obliczenie granicy: $\lim_{x\to\infty} e^x \ln(1+e^{-x})=1$

Widać niezgodność pomiędzy wykresami funkcji a jej granicą. Według granicy funkcja powinna dążyć do 1, lecz na wykresach widać że od wartości około 37 wartość funkcji wynosi 0. Jest to spowodowane arytmetyką, ponieważ podnosimy e do dużych potęg i w pewnym momencie wartości znaczące tej potęgi są tracone w skutek zaokrąglenia związanego z rozmiarem arytmetyki.

3. Zadanie 3

3.1. Cel

Celem zadania jest rozważenie dwóch sposobów rozwiązywania układów równań liniowych dla dwóch rodzajów macierzy, dla macierzy Hilberta oraz dla losowej macierzy. Następnie policzyć błędy względne i porównać uzyskane wartości. Dane należało wygenerować dla macierzy Hilberta dla n>1, gdzie n to wielkość macierzy. A dla macierzy losowej dla dł. 5,10 i 20 ze wskaźnikiem umiarkowania 1, 10, 10³, 10⁷, 10¹², 10¹⁶.

3.2. Realizacja

Do generowania macierzy zostały wykorzystane funkcje udostępnione wraz z listą zadań. Zostały napisane dodatkowo funkcje liczące błąd względny, funkcja generująca wyniki dla macierzy Hilberta, najpierw zostały wygenerowane macierz oraz wektor x, o wszystkich wartościach równych 1. Następnie została obliczona wartość b będąca iloczynem macierzy oraz wektora x. Następnie wyliczamy wartość x przy użyciu dwóch metod, pierwsza to metoda Gaussa oraz mnożeniem b przez odwrotność. Wyniki dla macierzy losowej zostały obliczone w sposób analogiczny jak to ma miejsce dla macierzy Hilberta. Poniżej przedstawiono dane uzyskane podczas pracy algorytmu.

XX 7' 11 //	XX 1 / 11	D1 1 1 1 1 1	71 1 1 1 1 1 1
Wielkość	Wskaźnik	Błąd względny, metoda	Błąd względny, drugiej
macierzy	uwarunkowania	Gaussa	metody
2	19.28147006790397	5.661048867003676e-16	1.1240151438116956e-15
3	524.0567775860644	8.022593772267726e-15	9.825526038180824e-15
4	15513.73873892924	4.4515459601812086e-13	2.950477637286781e-13
5	476607.25024259434	1.6828426299227195e-12	8.500055777753297e-12
6	1.4951058642254665e7	2.618913302311624e-10	3.3474135070361745e-10
7	4.75367356583129e8	1.2606867224171548e-8	5.163959183577243e-9
8	1.5257575538060041e10	1.026543065687064e-7	2.698715074276819e-7
9	4.931537564468762e11	4.83235712050215e-6	9.175846868614517e-6
10	1.6024416992541715e13	0.0006329153722983848	0.00045521422517408853
11	5.222677939280335e14	0.011543958596122112	0.00804446677343116
12	1.7514731907091464e16	0.2975640310734787	0.34392937091205217
13	3.344143497338461e18	2.375017867706776	5.585796893150773
14	6.200786263161444e17	5.281004646755168	4.800641929017436
15	3.674392953467974e17	1.177294734836712	4.8273577212576475
16	7.865467778431645e17	20.564655823804095	31.736467496266126
17	1.263684342666052e18	17.742214635179074	15.910335962604142
18	2.2446309929189128e18	4.2764564411159425	6.281223433472033
19	6.471953976541591e18	22.119937292648906	22.92561401563632
20	1.3553657908688225e18	14.930069669294001	21.53949860251383

Tab3.0: Tablica wyników dla macierzy Hilberta

Wielkość	Wskaźnik	Błąd względny, metoda	Błąd względny, drugiej
macierzy	uwarunkowania	Gaussa	metody
5	1.0	9.930136612989092e-17	1.1102230246251565e-16
5	10.0	4.839349969133126e-16	4.0943002132167223e-16
5	1000.0	4.42616833736712e-14	4.211071688205494e-14
5	1.0e7	5.498758979832288e-10	5.168565618273073e-10
5	1.0e12	1.766282632375195e-5	2.1200191905874188e-5
5	1.0e16	0.040736262996224896	0.08809471777956406
10	1.0	5.661048867003676e-16	3.14018491736755e-16

10	10.0	3.1006841635969763e-16	2.220446049250313e-16
10	1000.0	2.2549938791612368e-14	1.530280447843421e-14
10	1.0e7	5.893106993272604e-11	7.081867086070856e-11
10	1.0e12	2.164086343724321e-6	5.617067745101069e-6
10	1.0e16	0.03373992624965958	0.08125335507380423
20	1.0	5.478475358467051e-16	4.1317602818954126e-16
20	10.0	4.4200263976433584e-16	3.789423922623494e-16
20	1000.0	4.2786099824341434e-15	2.6603686650593682e-15
20	1.0e7	2.765389386066196e-10	2.295849997731973e-10
20	1.0e12	3.622987363098445e-5	3.6087851099776866e-5
20	1.0e16	0.17075812951143313	0.16317655136097986

Tab3.1: Tabela wyników dla losowej macierzy

Dla macierzy Hilberta wartość błędu względnego rośnie dla na n z przedziału [2,14]. Dla n większych od 14 nie ma już jakiejś zależności pomiędzy kolejnymi wartościami błędu. Warto też zauważyć że metoda Gaussa daje mniejsze błędy względne. W danych dla macierzy losowej, błąd względny wzrasta wraz ze wzrostem rozmiaru macierzy oraz ze wzrostem wskaźnika uwarunkowania macierzy. W tym wypadku wartości uzyskane były dokładniejsze przy wykorzystaniu metody Gaussa.

4. Zadanie 4

4.1. Cel

Celem zadania było wyznaczenie pierwiastków dla naturalnej postaci wielomianu Wilkinsona, a następnie obliczyć następujące wartości: $/P(z_k)/$, $/p(z_k)/$, $/z_k-k/$ gdzie z_k to pierwiastki wielomianu dla k z przedziału [1,20], a P to postać normalna wielomianu Wilkinsona, a p to postać iloczynowa tego samego wielomianu. Następnie należało powtórzyć eksperyment dla zmodyfikowanych danych: należało zastąpić -210 przez -210-2⁻²³.

4.2. Realizacja

W zadaniu wykorzystano bibliotekę Polynomials dla języka Julia oraz dane podane wraz z treścią zadania w postaci tablicy współczynników wielomianu. Do stworzenia wielomianu w postaci normalnej została wykorzystana funkcja Poly(), a do stworzenia postaci iloczynowej wykorzystano funkcję poly(). Do liczenia wartości wielomianu w danym punkcie wykorzystano funkcje polyval(), a do liczenia wartości bezwzględnej funkcję abs(). Funkcję roots() wykorzystano do wyznaczenia wszystkich pierwiastków wielomianu. Poniżej przedstawiono dane uzyskane przy realizacji algorytmu.

k	Zk	$/P(z_k)/$	$p(z_k)$	$/z_k$ - $k/$
1	0.9999999999996989	36352.0	38400.0	3.0109248427834245e-13
2	2.0000000000283182	181760.0	198144.0	2.8318236644508943e-11
3	2.9999999995920965	209408.0	301568.0	4.0790348876384996e-10
4	3.9999999837375317	3.106816e6	2.844672e6	1.626246826091915e-8
5	5.000000665769791	2.4114688e7	2.3346688e7	6.657697912970661e-7
6	5.999989245824773	1.20152064e8	1.1882496e8	1.0754175226779239e-5
7	7.000102002793008	4.80398336e8	4.78290944e8	0.00010200279300764947
8	7.999355829607762	1.682691072e9	1.67849728e9	0.0006441703922384079
9	9.002915294362053	4.465326592e9	4.457859584e9	0.002915294362052734
10	9.990413042481725	1.2707126784e10	1.2696907264e10	0.009586957518274986

11	11.025022932909318	3.5759895552e10	3.5743469056e10	0.025022932909317674
12	11.953283253846857	7.216771584e10	7.2146650624e10	0.04671674615314281
13	13.07431403244734	2.15723629056e11	2.15696330752e11	0.07431403244734014
14	13.914755591802127	3.65383250944e11	3.653447936e11	0.08524440819787316
15	15.075493799699476	6.13987753472e11	6.13938415616e11	0.07549379969947623
16	15.946286716607972	1.555027751936e12	1.554961097216e12	0.05371328339202819
17	17.025427146237412	3.777623778304e12	3.777532946944e12	0.025427146237412046
18	17.99092135271648	7.199554861056e12	7.1994474752e12	0.009078647283519814
19	19.00190981829944	1.0278376162816e13	1.0278235656704e13	0.0019098182994383706
20	19.999809291236637	2.7462952745472e13	2.7462788907008e13	0.00019070876336257925

Tab4.0: Tabela wyników dla programu dla a)

k	\mathcal{Z}_k	$/P(z_k)/$	$ p(z_k) $
1	0.9999999999998357+0.0im	20992.0	22016.0
2	2.000000000550373+0.0im	349184.0	365568.0
3	2.9999999660342+0.0im	2.221568e6	2.295296e6
4	4.000000089724362+0.0im	1.046784e7	1.0729984e7
5	4.99999857388791+0.0im	3.9463936e7	4.3303936e7
6	6.000020476673031+0.0im	1.29148416e8	2.06120448e8
7	6.99960207042242+0.0im	3.88123136e8	1.757670912e9
8	8.007772029099446+0.0im	1.072547328e9	1.8525486592e10
9	8.915816367932559+0.0im	3.065575424e9	1.37174317056e11
10	10.095455630535774-0.6449328236240688im	7.143113638035824e9	1.4912633816754019e12
11	10.095455630535774+0.6449328236240688im	7.143113638035824e9	1.4912633816754019e12
12	11.793890586174369-1.6524771364075785im	3.357756113171857e10	3.2960214141301664e13
13	11.793890586174369+1.6524771364075785im	3.357756113171857e10	3.2960214141301664e13
14	13.992406684487216-2.5188244257108443im	1.0612064533081976e11	9.545941595183662e14
15	13.992406684487216+2.5188244257108443im	1.0612064533081976e11	9.545941595183662e14
16	16.73074487979267-2.812624896721978im	3.315103475981763e11	2.7420894016764064e16
17	16.73074487979267+2.812624896721978im	3.315103475981763e11	2.7420894016764064e16
18	19.5024423688181-1.940331978642903im	9.539424609817828e12	4.2525024879934694e17
19	19.5024423688181+1.940331978642903im	9.539424609817828e12	4.2525024879934694e17
20	20.84691021519479+0.0im	1.114453504512e13	1.3743733197249713e18

Tab4.1: Tabela wyników dla programu dla b), cz1

k	Z_k	$ z_k-k $
1	0.999999999998357+0.0im	1.6431300764452317e-13
2	2.000000000550373+0.0im	5.503730804434781e-11
3	2.9999999660342+0.0im	3.3965799062229962e-9
4	4.000000089724362+0.0im	8.972436216225788e-8
5	4.99999857388791+0.0im	1.4261120897529622e-6
6	6.000020476673031+0.0im	2.0476673030955794e-5
7	6.99960207042242+0.0im	0.00039792957757978087
8	8.007772029099446+0.0im	0.007772029099445632
9	8.915816367932559+0.0im	0.0841836320674414
10	10.095455630535774-0.6449328236240688im	0.6519586830380406
11	10.095455630535774+0.6449328236240688im	1.1109180272716561
12	11.793890586174369-1.6524771364075785im	1.665281290598479
13	11.793890586174369+1.6524771364075785im	2.045820276678428
14	13.992406684487216-2.5188244257108443im	2.5188358711909045
15	13.992406684487216+2.5188244257108443im	2.7128805312847097
16	16.73074487979267-2.812624896721978im	2.9060018735375106
17	16.73074487979267+2.812624896721978im	2.825483521349608
18	19.5024423688181-1.940331978642903im	2.454021446312976
19	19.5024423688181+1.940331978642903im	2.004329444309949
20	20.84691021519479+0.0im	0.8469102151947894

Tab4.2: Tabela wyników dla programu dla b), cz2

W podpunkcie a, uzyskane pierwiastki wielomianu mają niewielki błąd bezwzględny, jego wartość rośnie wraz z wartością pierwiastka. Następnie widzimy że wartości wielomianów dla uzyskanych pierwiastków są duże, a wiemy że powinny wynosić 0. Dzieje się tak ze względu na ograniczenia arytmetyki dla bardzo dużych liczb, ponieważ dla liczenia pierwiastków wartości wielomianu dochodzi do liczenia dużych potęg i następuje obcięcie wartości przez co nie uzyskujemy wyników dokładnych, tylko taki które mają bardzo duże błędy bezwzględne. Ale arytmetyka ma również wpływ na niedokładne wyznaczenie pierwiastków, gdyż wiemy że dla z_k pierwiastek powinien być równy k. Jednak tak nie jest co widać po analizie wartości błędów bezwzględnych pierwiastków. Natomiast w podpunkcie b można zauważyć że wartości $|P(z_k)|$ są nieco mniejsze, a co za tym idzie dokładniejsze, mimo iż błąd bezwzględny w wartości pierwiastków urósł, urosły również wartości dla $p(z_k)$. Może być to spowodowane właśnie błędem bezwzględnym pierwiastków. Gdyż dochodzi do zaokrągleń jak to miało miejsce w przypadku a. Różnica między wartościami pierwiastków wynika również z ograniczeń arytmetyki ponieważ zmodyfikowana dana znajduje się przy x¹⁹ więc jest mnożona przez liczby już poddane zaokragleniu wynikającym z arytmetyki, a po modyfikacji sama ta liczba po modyfikacji ma więcej bitów znaczących w arytmetyce niż przed nią.

5. Zadanie 5

5.1. Cel

Celem zadania jest implementacja równania rekurencyjnego oraz przeprowadzić eksperymenty dla danych p₀=0.001, r=3. Należało wykonać 40 iteracji oraz wykonać 10 iteracji, przerwać działanie, obciąć uzyskane dane do trzeciego miejsca po przecinku, a następnie dokończyć do 40 iteracji i porównać uzyskane wyniki. Obliczenia należy wykonać w arytmetyce Float32. W drugiej części należało wywołać program dla danych z pierwszego uruchomienia ale dla arytmetyk Float32, Float64.

5.2. Realizacja

Do realizacji użyto programu w języku Julia, gdzie stworzono dwie funkcje rekurencyjne liczące równanie podane w treści zadania. Jedna zapewnia obliczeniom arytmetykę Float32, a druga Float64. Poniżej przedstawiono dane uzyskane przez program.

Nr iteracji	Bez przerwy Float32	Z przerwą Float32 + obcięcie	Bez przerwy Float64
1	0.0397	0.0397	0.0397
2	0.15407173	0.15407173	0.15407173000000002
3	0.5450726	0.5450726	0.5450726260444213
4	1.2889781	1.2889781	1.2889780011888006
5	0.1715188	0.1715188	0.17151914210917552
6	0.5978191	0.5978191	0.5978201201070994
7	1.3191134	1.3191134	1.3191137924137974
8	0.056273222	0.056273222	0.056271577646256565
9	0.21559286	0.21559286	0.21558683923263022
10	0.7229306	0.7229306	0.722914301179573
11	1.3238364	1.3241479	1.3238419441684408
12	0.037716985	0.036488414	0.03769529725473175
13	0.14660022	0.14195944	0.14651838271355924
14	0.521926	0.50738037	0.521670621435246
15	1.2704837	1.2572169	1.2702617739350768
16	0.2395482	0.28708452	0.24035217277824272

17	0.7860428	0.9010855	0.7881011902353041
18	1.2905813	1.1684768	1.2890943027903075
19	0.16552472	0.577893	0.17108484670194324
20	0.5799036	1.3096911	0.5965293124946907
21	1.3107498	0.09289217	1.3185755879825978
22	0.088804245	0.34568182	0.058377608259430724
23	0.3315584	1.0242395	0.22328659759944824
24	0.9964407	0.94975823	0.7435756763951792
25	1.0070806	1.0929108	1.315588346001072
26	0.9856885	0.7882812	0.07003529560277899
27	1.0280086	1.2889631	0.26542635452061003
28	0.9416294	0.17157483	0.8503519690601384
29	1.1065198	0.59798557	1.2321124623871897
30	0.7529209	1.3191822	0.37414648963928676
31	1.3110139	0.05600393	1.0766291714289444
32	0.0877831	0.21460639	0.8291255674004515
33	0.3280148	0.7202578	1.2541546500504441
34	0.9892781	1.3247173	0.29790694147232066
35	1.021099	0.034241438	0.9253821285571046
36	0.95646656	0.13344833	1.1325322626697856
37	1.0813814	0.48036796	0.6822410727153098
38	0.81736827	1.2292118	1.3326056469620293
39	1.2652004	0.3839622	0.0029091569028512065
40	0.25860548	1.093568	0.011611238029748606

Tab5.0: Tablica wyników algorytmu

Wyniki z podpunktu pierwszego czyli analiza wpływu zatrzymania rekurencji, przeprowadzenie obcięcia i dalsza praca rekurencji wskazują że obcięcie ma znaczący wpływ na dalsze wyniki, można stwierdzić że różnice się pogłębiają. Co pokrywa się z intuicją gdyż każdy wynik ma wpływ na kolejny. Natomiast analiza danych dla dwóch arytmetyk Float32 i Float64 pokazuje wpływ dokładności arytmetyki na uzyskiwane dane. Dla początkowych iteracji wyniki są bardzo zbliżone, można powiedzieć że są po prostu dokładniejsze w Float64 ale różnice są niewielkie, natomiast później widać różnicę, można powiedzieć że daje o sobie znać dokładność arytmetyki, ponieważ jak dało się zauważyć w pierwszej części zadania zmiana nawet niewielka jednej z danych zmienia późniejsze wyniki i tak jest również w tym wypadku, gdyż różnice wynikają z innych zaokrągleń w arytmetykach.

6. Zadanie 6

6.1. Cel

Celem zadania było rozważenie równania rekurencyjnego $x_{n+1}=x_n^2+c$, gdzie c to pewna stała. Należało przeprowadzić siedem eksperymentów w arytmetyce Float64 w języku Julia i zaobserwować zachowanie generowanych ciągów.

6.2. Realizacja

W implementacji równaniu rekurencyjnemu odpowiada funkcja rekurencyjna, która wykona zadaną w parametrze liczbę iteracji. Poniżej przedstawiono wyniki dla poszczególnych danych początkowych.

Nr	eksperyment 1	eksperyment 2	eksperyment 3	eksperyment 4
	$c=-2, x_0=1$	$c=-2, x_0=2$	$c=-2, x_0=1.999999999999999999999999999999999999$	$c=-1, x_0=1$
1	-1.0	2.0	1.999999999999	0.0
2	-1.0	2.0	1.999999999998401	-1.0
3	-1.0	2.0	1.999999999993605	0.0
4	-1.0	2.0	1.99999999997442	-1.0
5	-1.0	2.0	1.999999999897682	0.0
6	-1.0	2.0	1.999999999590727	-1.0
7	-1.0	2.0	1.99999999836291	0.0
8	-1.0	2.0	1.999999993451638	-1.0
9	-1.0	2.0	1.999999973806553	0.0
10	-1.0	2.0	1.999999989522621	-1.0
11	-1.0	2.0	1.999999580904841	0.0
12	-1.0	2.0	1.9999998323619383	-1.0
13	-1.0	2.0	1.9999993294477814	0.0
14	-1.0	2.0	1.9999973177915749	-1.0
15	-1.0	2.0	1.9999892711734937	0.0
16	-1.0	2.0	1.9999570848090826	-1.0
17	-1.0	2.0	1.999828341078044	0.0
18	-1.0	2.0	1.9993133937789613	-1.0
19	-1.0	2.0	1.9972540465439481	0.0
20	-1.0	2.0	1.9890237264361752	-1.0
21	-1.0	2.0	1.9562153843260486	0.0
22	-1.0	2.0	1.82677862987391	-1.0
23	-1.0	2.0	1.3371201625639997	0.0
24	-1.0	2.0	-0.21210967086482313	-1.0
25	-1.0	2.0	-1.9550094875256163	0.0
26	-1.0	2.0	1.822062096315173	-1.0
27	-1.0	2.0	1.319910282828443	0.0
28	-1.0	2.0	-0.2578368452837396	-1.0
29	-1.0	2.0	-1.9335201612141288	0.0
30	-1.0	2.0	1.7385002138215109	-1.0
31	-1.0	2.0	1.0223829934574389	0.0
32	-1.0	2.0	-0.9547330146890065	-1.0
33	-1.0	2.0	-1.0884848706628412	0.0
34	-1.0	2.0	-0.8152006863380978	-1.0
35	-1.0	2.0	-1.3354478409938944	0.0
36	-1.0	2.0	-0.21657906398474625	-1.0
37	-1.0	2.0	-1.953093509043491	0.0
38	-1.0	2.0	1.8145742550678174	-1.0
39	-1.0	2.0	1.2926797271549244	0.0
40	-1.0	2.0	-0.3289791230026702	-1.0

Tab6.0: Tabela wyników cz1

Nr	eksperyment 5	eksperyment 6	eksperyment 7
	$c=-1, x_0=-1$	$c=-1, x_0=0.75$	$c=-1$, $x_0=0.25$
1	0.0	-0.4375	-0.9375
2	-1.0	-0.80859375	-0.12109375
3	0.0	-0.3461761474609375	-0.9853363037109375
4	-1.0	-0.8801620749291033	-0.029112368589267135
5	0.0	-0.2253147218564956	-0.9991524699951226
6	-1.0	-0.9492332761147301	-0.0016943417026455965
7	0.0	-0.0989561875164966	-0.9999971292061947
8	-1.0	-0.9902076729521999	-5.741579369278327e-6
9	0.0	-0.01948876442658909	-0.999999999670343

10	-1.0	-0.999620188061125	-6.593148249578462e-11
11	0.0	-0.0007594796206411569	-1.0
12	-1.0	-0.9999994231907058	0.0
13	0.0	-1.1536182557003727e-6	-1.0
14	-1.0	-0.999999999986692	0.0
15	0.0	-2.6616486792363503e-12	-1.0
16	-1.0	-1.0	0.0
17	0.0	0.0	-1.0
18	-1.0	-1.0	0.0
19	0.0	0.0	-1.0
20	-1.0	-1.0	0.0
21	0.0	0.0	-1.0
22	-1.0	-1.0	0.0
23	0.0	0.0	-1.0
24	-1.0	-1.0	0.0
25	0.0	0.0	-1.0
26	-1.0	-1.0	0.0
27	0.0	0.0	-1.0
28	-1.0	-1.0	0.0
29	0.0	0.0	-1.0
30	-1.0	-1.0	0.0
31	0.0	0.0	-1.0
32	-1.0	-1.0	0.0
33	0.0	0.0	-1.0
34	-1.0	-1.0	0.0
35	0.0	0.0	-1.0
36	-1.0	-1.0	0.0
37	0.0	0.0	-1.0
38	-1.0	-1.0	0.0
39	0.0	0.0	-1.0
40	-1.0	-1.0	0.0

Tab6.1: Tabela wyników cz2

Jak można zauważyć dla eksperymentów 1,2,4,5 uzyskane dane są dokładne, natomiast w eksperymencie 6 i 7 można zauważyć że arytmetyka okazała się niewystarczająca do obliczenia wartości dokładnych i nastąpiło w obu przypadkach zaokrąglenie pewnej potęgi wyniku poprzedniego do 0. Natomiast w eksperymencie 3 uzyskane wyniki wydają się być prawidłowe, na pewno doszło do zaokrągleń związanych z arytmetyką, co można wywnioskować po dokładności danych początkowych, lecz mimo to nie doszło do oczywistego i od razu zauważalnego zaburzenia wyniku.