## Notes on Algebraic Geometry

Kei Thoma

June 30, 2024

## Contents

[1]

4 CONTENTS

**Definition 0.0.1.** Let K be an algebraically closed field and let  $n \in \mathbb{N}_0$  be a natural number.

- 1. The affine n-space over K is the set of all n-tuples of elements of K.
- 2. An element p in  $\mathbb{A}^n$  is called a point.
- 3. If  $p = (a_1, \ldots, a_n) \in \mathbb{A}^n$  is a point, then  $a_i$  is called the coordinate for each  $1 \leq i \leq n$ .

**Intuition 0.0.2.** It's just space with points. But not vectors, because we don't add points.

**Definition 0.0.3.** 1. The set of zeros for  $f \in A = K[X_1, X_2, \dots, X_n]$  is

$$\{ p \in \mathbb{A}^n \mid f(p) = 0 \}.$$

2. For a subset T of the polynomial ring  $A = k[X_1, \ldots, X_n]$ , we define the zero set of T to be the common zeros of all the elements of T, i.e.

$$Z(T) = \{ P \in \mathbb{A}^n \mid f(P) = 0 \text{ for all } f \in T \}.$$

Intuition 0.0.4. These are just curves.

**Remark 0.0.5.** 1. If  $\mathfrak{a}$  is generated by T, then  $Z(T) = Z(\mathfrak{a})$ .

2. Z(T) can be written in finitely many generators.

**Definition 0.0.6.** A subset Y of  $\mathbb{A}^n$  is an algebraic set if there exists a subset  $T \subset A = k[X_1, \dots, X_n]$  such that Y = Z(T).

Intuition 0.0.7. So if the points on the space is a curve, then it's an algebraic set.

**BOOKMARK** 

CONTENTS 5

**Definition 0.0.8** (Affine Algebraic Variety). For an algebraically closed field K and a natural number  $n \in \mathbb{N}_+$ , let  $\mathbb{A}^n$ , be an affine n-space over K. The polynomials in  $K[X_1, \ldots, X_n]$  can be viewed as K-valued functions on  $\mathbb{A}^n$ .

1. For each subset S of polynomials in  $K[X_1, ..., X_n]$ , define the zero-locus Z(S) to be the set of points in  $\mathbb{A}^n$  on which the functions in S simultaneously vanish, i.e.

$$Z(S) = \{ x \in \mathbb{A}^n \mid f(x) = 0 \text{ for all } f \in S \}.$$

- 2. A subset V of  $\mathbb{A}^n$  is called affine agebraic set if V=Z(S) for some  $S\subset K[X_1,\ldots,X_n]$ .
- 3. A nonempty affine algebraic set is called irreducible if it is not the union of two proper algebraic subsets. An irreducible affine algebraic set is also called an affine variety.

**Definition 0.0.9.** An affine algebraic variety is an irreducible closed subset of  $\mathbb{A}^n$ . An open subset of an affine variety is a quasi-affine variety.

Corollary 0.0.10. An algebraic set is irreducible if and only if its ideal is a prime ideal.

**Definition 0.0.11.** If  $Y \subset \mathbb{A}^n$  is an affine algebraic set, we define the affine coordinate ring A(Y) of Y, to be A/I(Y).

**Definition 0.0.12.** If X is a topological space, we define the dimension of X (denoted  $\dim X$ ) to be the supremum of all integers n such that there exists a chain  $Z_0 \subset Z_1 \subset \cdots \subset Z_n$  of distinct irreducible closed subsets of X. We define the dimension of an affine or quasi-affine variety to be its dimension as a topological space.

**Exercise 0.0.1.** Show that k-algebra B is isomorphic to the affine coordinate ring of some algebraic set in  $\mathbb{A}^n$ , for some n, if and only if B is a finitely generated k-algebra with no nilpotent elements.

6 CONTENTS

## Bibliography

 $[{\it Har77}] \quad {\it Robin Hartshorne}. \ {\it Algebraic Geometry}. \ {\it New York: Springer}, \ 1977.$