PHY 576: Quantum Theory

Problem Set 2

Due in TA's mailbox by 4 pm on Friday, February 27.

- 1. (a) Fermat's principle of least time: Consider a light source at the origin of the x-y plane. Suppose that for y < a the medium has a refractive index n_1 , while for y > a the refractive index is n_2 . For a given path in space (not spacetime) between the origin and some point (x,y) for y > a, define a functional for the time taken by light to traverse that path. Functionally differentiate (using the physicists' functional derivative) your time-functional to find the path that light actually takes and thereby derive Snell's law.
 - (b) Using the definition of the Gateaux derivative (see notes), calculate the functional derivative of the volume functional

$$V[f] = \pi \int_0^1 f(z)^2 dz$$

in the "direction" of u(z)=z at the "point" (in function space) $f_0(z)=e^z$, i.e. evaluate $\frac{\delta V[f_0]}{\delta u}$.

- 2. (a) Suppose a free particle is in a momentum eigenstate $|p_i\rangle$ at time t=0. Using the free-particle propagator, calculate the probability amplitude for the particle to be in the position eigenstate $|x_f\rangle$ at time $t=t_f$?
 - (b) Calculate the same amplitude directly in the canonical formalism.
 - (c) A free particle is prepared with a Gaussian wave function centered around the origin with standard deviation σ at time t = 0. Using the free-particle propagator, calculate the wave function at time t > 0.
- 3. Find the first-excited-state energy and wavefunction from the propagator of the simple harmonic oscillator, $G_{SHO}(x_f, T; x_i, 0)$. (This is messy. Reduce clutter by defining $y = e^{-i\omega T}$ and expanding the propagator as a power series in y.)

- 4. Consider the free-particle propagator, $G_{\text{free}}(x_f, T; x_i, 0)$. This is expressed as a sum over all paths, with no restrictions on the paths.
 - (a) Find the propagator, $G(x_f, T; x_i, 0)$, for a particle confined to the half-line x > 0. Not only do we have $x_f, x_i > 0$ but only those paths that stay in the region x > 0 are to be considered. (Hint: Consider an image point in the region x < 0. Show that for every path from x_i to x_f that crosses the line x = 0, there exists a path with the same action from the image point to x_f . Where is the image point? Find the propagator $G(x_f, T; x_i, 0)$ by subtracting another propagator from G_{free} . No integrals are necessary here!)
 - (b) (Hard) Consider a particle in a box of length L i.e. V(x) = 0 for 0 < x < L and $V(x) = \infty$ elsewhere. This is like the previous problem, but with two boundaries. Show that the propagator for a particle in a box can be written as

$$G_{\text{box}}(x_f, T; x_i, 0) = \sum_{n = -\infty}^{+\infty} \left[G_{\text{free}}(2nL + x_f, T; x_i, 0) - G_{\text{free}}(2nL - x_f, T; x_i, 0) \right]$$

- 5. Use the spectral representation to calculate the energy spectrum and normalized wavefunctions for a particle in a box of length L from the propagator, given by the infinite sum above.
- 6. The action for a free, massive, spinless relativistic particle is $S = -mc\tau$ where τ is the proper time. This can be written $S = -mc\int\sqrt{-\eta_{\mu\nu}\frac{dx^{\mu}}{dt}\frac{dx^{\nu}}{dt}}dt$, where the 4×4 matrix $\eta_{\mu\nu}=\mathrm{diag}(-1,1,1,1)$ is the Minkowski metric, and $x^0=ct, x^1=x, x^2=y, x^3=z$ with the repeated indices μ,ν summed from 0 to 3.
 - (a) Verify that S reduces to the non-relativistic action for $v/c \ll 1$.
 - (b) Write down the classical equation of motion.
 - (c) From S, find the amplitude for the particle to go from $\vec{x}_i = t_i = 0$ to $\vec{x}_f = \vec{r}$, $t_f = t$ when $|\vec{r}| > ct$. Assume that only the action for the straight-line path contributes to G; also, ignore the pre-factor in G. Quantum mechanics allows for faster-than-light travel!