

AixLib

Goals, targets and current developments

Overview AixLib

Goals

- Consolidation
- Quality Management
- **Extension**
- Reusage of existing work
- Advertising using Modelica or in collaboration with the institute
- Of models in the institute's Modelica library AixLib

Target user

- Scientists
 - = At the institue
 - = At other institutes
 - At institute's partners

Overview AixLib

- Target applications
 - HVAC simulations coupled with building physics
 - Development and testing of control strategies (EMS)
 - Hardware-in-the-Loop experiments
 - City district simulations for design and operation of energy supply systems
- Expectations to Project 1
 - Continuation of collaboration and exchange of knowledge and Modelica models
 - Closer collaboration on MPC
- Contributions to Project 1
 - **Extension**, e.g.
 - = Heat pumps
 - = Controller
 - = AHU
 - Maintenance
 - Of MIL

Heat pump: Object oriented architectural approach

Goal modularity: Variable number of interconnecting components

■ Goal scalability: Easily adaptable component sizes

Heat Pump: Component based modeling

Heat Pump: Component based modeling of Refrigerants

Fluid model development

- R134a
- R410A
- **R290**
- **..**.

Standard Modules HVAC: Overview

- Develop standard modules for HVAc system and circuits
- Identified modules:
 - Mixed heating/cooling
 - Unmixed heating/cooling
 - Heating/cooling component with admix
 - Heating/cooling with injection
 - Circulating heat exchangers
 - Domestic hot water
 - Circulation of DHW
 - Heat/Cool generation
 - Heat source/sink
 - Exhaust heat
 - Distribution

Standard Modules HVAC: Modelica

- Hydraulic modules: Pumps, pipes, valves, ...
- Control separated from physics
 - Bus-Connector f
 ür data exchange

AHU: Modelling Approach

Heating

Energy balance:

$$\Delta h = (\vartheta_2 - \vartheta_1) \cdot (c_{p,L} + x \cdot$$

Cooling

Only cooling:

$$\begin{split} \Delta h &= (\vartheta_1 - \vartheta_2) \cdot \left(c_{p,L} + x \cdot c_{p,D} \right) \\ \text{mit } \vartheta_1 &> \vartheta_2 \end{split}$$

Cooling and dehumidification:
 Δh

$$= (\vartheta_1 - \vartheta_2) \cdot \left(c_{p,L} + x_1 \cdot c_{p,D}\right) \\ + (x_1 - x_2) \cdot \Delta h v \\ \text{mit } \vartheta_1 > \vartheta_2$$

Humidification

- Adiabatic
- Humidification

$$\Delta h = (x_2 - x_1) \cdot h_d$$

Heat recovery

Recuperation

$$\Phi_{AU} = \frac{\vartheta_{AU,A} - \vartheta_{AU,E}}{\vartheta_{AB,E} - \vartheta_{AU,E}}$$

Regeneration

$$\Psi_{AU} = \frac{x_{AU,A} - x_{AU,E}}{x_{AB,E} - x_{AU,E}}$$

Ventilation

Power:

$$P_{el} = \frac{\dot{V} \cdot \Delta p}{n}$$

Thermal:

$$\Delta T = \frac{P_{el}}{\dot{m} \cdot c_p}$$

AHU: Existing models in AixLib

- Simple AHU-model [Mehrfeld, P.]
- Detailed model [Menerga, Behm, C.]

AHU: Current model

Contact

E.ON Energy Research Center Mathieustraße 10 52074 Aachen Germany

Moritz Lauster T +49 241 80 49772 mlauster@eonerc.rwth-aachen.de http://www.eonerc.rwth-aachen.de

