Universidad de Valparaíso Facultad de Ingeniería Escuela de Ingeniería Civil Informática

Nombre:	Rut:	

Lenguajes y Autómatas Certamen 3

Prof: Fabián Riquelme Csori 2018-II

- El certamen es individual. La comprensión de los enunciados es parte de la evaluación.
- Está permitido el uso de apuntes de clase, pero no el uso de dispositivos electrónicos.
- Seleccione la alternativa correcta y justifique brevemente sobre la línea indicada.
- No se revisarán respuestas sin justificación.
- Tiempo: 80 min. Puntaje total: 100 pts. 10 pts por rpta correcta. Nota 4,0: 60 pts.

PROBLEMAS

1.	¿En qué se diferencia una TM determinista (DTM) de una no-determinista (NTM)?
	A Una NTM tiene mayor poder de cómputo que una DTM.
	B Una NTM puede ser más eficiente que una DTM.
	C Una NTM en general necesita menos estados que una DTM.
	D Todas las anteriores.
_	

- 2. ¿Cuál es el beneficio de las máquinas de Turing con notación modular?
 - (A) Al permitir concatenar varias máquinas, permite resolver problemas adicionales.
 - (B) Ninguna: es una mera forma de escribir TMs de manera más compacta.
 - (C) Permiten resolver funciones computantes con una menor complejidad computacional.
 - (D) Permite reutilizar TMs para resolver problemas de manera modular.

3. ¿En qué consiste la tesis de Church-Turing?

- (A) Un algoritmo formal es toda secuencia de instrucciones finita que se pueden ejecutar por un computador.
- (B) Las máquinas de Turing no tienen el mismo poder computacional que las computadoras cuánticas.
- (C) Las máquinas de Turing tienen el mismo poder computacional que cualquier computador, incluyendo los de última generación.
- (D) Los lenguajes recursivamente enumerables son los más generales y expresivos en la Jerarquía de Chomsky.
- 4. Considere dos TM $M_1 = (Q_1, \Sigma, \delta_1, s_1)$ y $M_2 = (Q_2, \Sigma, \delta_2, s_2)$ que resuelven un mismo problema de decisión. Las entradas y salidas de ambas máquinas están codificadas de la misma forma. Para el input $x_1 \in \Sigma^*$, la TM M_1 responde "SI", mientras que para el input $x_2 \in \Sigma^*$, la TM M_2 responde "NO". ¿Cuál es el output de una TM universal que recibe como input (M_1, x_2) ?

"SI"

B) "NO"

 $(C) x_1$

 $D) x_2$

5. Considere la TM $M = (Q, \Sigma, \delta, s)$, con: $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{a, b, \#\}, s = q_0 \text{ y}$ $\delta = \{((q_0, \#), (q_1, \leftarrow)), ((q_1, a), (q_2, b)), ((q_1, b), (q_2, a)), ((q_1, \#), (q_3, \rightarrow)), ((q_2, a), (q_1, \leftarrow)), ((q_1, a), (q_2, b)), ((q_1, b), (q_2, a)), ((q_1, \#), (q_3, \rightarrow)), ((q_2, a), (q_1, \leftarrow)), ((q_1, a), (q_2, b)), ((q_1, b), (q_2, a)), ((q_1, \#), (q_3, \rightarrow)), ((q_2, a), (q_1, \leftarrow)), ((q_1, a), (q_2, b)), ((q_1, b), (q_2, a)), ((q_1, \#), (q_3, \rightarrow)), ((q_1, a), (q_2, b)), ((q_1, b), (q_2, a)), ((q_1, \#), (q_2, \#), (q_2, \#)), ((q_1, \#), (q_2, \#), (q_2, \#), ((q_2, \#), (q_2, \#), (q_2, \#)), ((q_2, \#), (q_2, \#), (q_2, \#), ((q_2, \#), (q_2, \#), (q_2, \#)), ((q_2, \#), (q_2, \#), (q_2, \#), ((q_2, \#), (q_2, \#), (q_2, \#), ((q_2, \#), (q_2, \#), (q_2, \#), ((q_2, \#),$ $((q_2, b), (q_1, \leftarrow)), ((q_3, a), (q_3, \rightarrow)), ((q_3, b), (q_3, \rightarrow)), ((q_3, \#), (h, \#))$.

¿Cuál es la undécima configuración, si la primera configuración es $(q_0, \#abab\#)$?

 $(A) (q_1, \#baba\#) \qquad (B) (q_3, \#\underline{b}aba\#) \qquad (C) (q_3, \#b\underline{a}ba\#) \qquad (D) (h, \#baba\#)$

6. ¿Cuál de las siguientes transiciones está bien definida para una TM con tres cabezales?

(A) $(q_0, \#, \#, \#) = (q_1, \leftarrow, \rightarrow, \#)$

(C) $(q_0, \#, \#, \#) = (q_1, \leftarrow, \downarrow, \#)$

(B) $(q_0, \#, \#, \#) = (q_1, \to)$

(D) $(q_0, \#) = (q_1, 0, 1, \#)$

- 7. Considere una TM S que computa $f_1(x,y) = x+y$, y otra TM E que computa $f_2(w) = 2^w$. Ambas funcionan con el sistema unario. ¿Cual de las siguientes TM en notación modular permite computar la función $f(x,y) = 2^{2^{x+y}}$?
 - A) SEE
-) ESE
- (D) ESS
- 8. ¿Qué cómputo realiza la siguiente TM en notación modular?

 $\begin{array}{c} \textcircled{C} \ \#w \underline{\#} \vdash^* \#w \#w \underline{\#} \\ \textcircled{D} \ \#w \underline{\#} \vdash^* \#ww \underline{\#} \end{array}$

 $\widehat{\mathbf{B}}$ # $w\# \vdash^* \#ww^R\#$

- 9. Determine cuál de las siguientes sentencias es falsa.
 - A) Cualquier problema matemático puede ser resuelto por alguna TM.
 - (B) Una TM puede reconocer tanto lenguajes regulares como libres de contexto.
 - (C) Una TM con cinta bidimensional permite plantear algunos problemas de forma más simple que con las TM tradicionales.
 - (D) Las TM universales pueden tener incluso menos estados que las TM que se incluyen como parte de sus entradas.
- 10. ¿Qué problemas pertenecen a la clase de complejidad NP?
 - (A) Los que no pueden resolverse por una TM en tiempo polinomial.
 - (B) Los que pueden resolverse por una NTM en tiempo polinomial.
 - (C) Los que pueden resolverse por una DTM en tiempo polinomial.
 - (D) Los que pueden resolverse por una DTM en tiempo exponencial.

Lenguajes y Autómatas Certamen 3 – Pauta

Prof: Fabián Riquelme Csori 2018-II

PROBLEMAS

- 1. ¿En qué se diferencia una TM determinista (DTM) de una no-determinista (NTM)?
 - $\stackrel{\textstyle \frown}{\rm A}$ Una NTM tiene mayor poder de cómputo que una DTM.
 - B Una NTM puede ser más eficiente que una DTM.
 - (B) Una NTM en general necesita menos estados que una DTM.
 - (B) Todas las anteriores.

Rpta: Las NTM polinomiales derivan en NP y las DTM polinomiales en la clase P.

- 2. ¿Cuál es el beneficio de las máquinas de Turing con notación modular?
 - (A) Al permitir concatenar varias máquinas, permite resolver problemas adicionales.
 - (B) Ninguna: es una mera forma de escribir TMs de manera más compacta.
 - (C) Permiten resolver funciones computantes con una menor complejidad computacional.
 - D Permite reutilizar TMs para resolver problemas de manera modular.

Rpta: Por ejemplo, dadas dos TMs M_1 y M_2 , se pueden concatenar como M_1M_2 .

- 3. ¿En qué consiste la tesis de Church-Turing?
 - (A) Un algoritmo formal es toda secuencia de instrucciones finita que se pueden ejecutar por un computador.
 - B Las máquinas de Turing no tienen el mismo poder computacional que las computadoras cuánticas.
 - C Las máquinas de Turing tienen el mismo poder computacional que cualquier computador, incluyendo los de última generación.
 - (D) Los lenguajes recursivamente enumerables son los más generales y expresivos en la Jerarquía de Chomsky.

Rpta: Las demás sentencias son ciertas, pero no son la tesis de Church-Turing.

4. Considere dos TM $M_1 = (Q_1, \Sigma, \delta_1, s_1)$ y $M_2 = (Q_2, \Sigma, \delta_2, s_2)$ que resuelven un mismo problema de decisión. Las entradas y salidas de ambas máquinas están codificadas de la misma forma. Para el input $x_1 \in \Sigma^*$, la TM M_1 responde "SI", mientras que para el input $x_2 \in \Sigma^*$, la TM M_2 responde "NO". ¿Cuál es el output de una TM universal que recibe como input (M_1, x_2) ?

 $oxed{A}$ "SI" $oxed{B}$ "NO" $oxed{C}$ x_1 $oxed{D}$ x_2

Rpta: Si (M_2, x_2) retorna "NO", entonces (M_1, x_2) también retorna "NO".

5. Considere la TM $M = (Q, \Sigma, \delta, s)$, con: $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{a, b, \#\}, s = q_0 \text{ y}$ $\delta = \{((q_0, \#), (q_1, \leftarrow)), ((q_1, a), (q_2, b)), ((q_1, b), (q_2, a)), ((q_1, \#), (q_3, \rightarrow)), ((q_2, a), (q_1, \leftarrow)), ((q_2, b), (q_1, \leftarrow)), ((q_3, a), (q_3, \rightarrow)), ((q_3, \#), (h, \#))\}.$

¿Cuál es la undécima configuración, si la primera configuración es $(q_0, \#abab\#)$?

Rpta: $(q_0, \#abab\underline{\#}) \rightarrow (q_1, \#aba\underline{b}\#) \rightarrow (q_2, \#aba\underline{a}\#) \rightarrow (q_1, \#ab\underline{a}a\#) \rightarrow (q_2, \#ab\underline{b}a\#) \rightarrow (q_1, \#a\underline{b}ba\#) \rightarrow (q_2, \#a\underline{b}ba\#) \rightarrow (q_1, \#\underline{a}aba\#) \rightarrow (q_1, \#\underline{b}aba\#) \rightarrow (q_1, \#\underline{b}aba\#) \rightarrow (q_2, \#\underline{b}aba\#) \rightarrow (q_3, \#\underline{b}aba\#) \rightarrow (q_$

6. ¿Cuál de las siguientes transiciones está bien definida para una TM con tres cabezales?

 $(q_0, \#, \#, \#) = (q_1, \leftarrow, \rightarrow, \#)$ $(Q_0, \#, \#, \#) = (q_1, \leftarrow, \downarrow, \#)$

(B) $(q_0, \#, \#, \#) = (q_1, \to)$ (D) $(q_0, \#) = (q_1, 0, 1, \#)$

Rpta: Cada cabezal se mueve independientemente, pero solo a \leftarrow o \rightarrow .

7. Considere una TM S que computa $f_1(x,y) = x+y$, y otra TM E que computa $f_2(w) = 2^w$. Ambas funcionan con el sistema unario. ¿Cual de las siguientes TM en notación modular permite computar la función $f(x,y) = 2^{2^{x+y}}$?

 $\widehat{\text{(B)}}$ ESE

 \bigcirc EES

 \bigcirc ESS

Rpta: SEE computa $f_2(f_2(f_1(x,y))) = 2^{2^{x+y}}$.

8. ¿Qué cómputo realiza la siguiente TM en notación modular?

$$\widehat{\text{A}} \ \#w \underline{\#} \vdash^* \#w \#w^R \underline{\#}$$

$$\bigcirc \#w \# \vdash^* \#w \#w \#$$

(D)
$$\#w\# \vdash^* \#ww\#$$

Rpta: Es la copiadora solicitada en clases. El segundo ⊳ garantiza el separador #.

- 9. Determine cuál de las siguientes sentencias es falsa.
 - A Cualquier problema matemático puede ser resuelto por alguna TM.
 - (B) Una TM puede reconocer tanto lenguajes regulares como libres de contexto.
 - (C) Una TM con cinta bidimensional permite plantear algunos problemas de forma más simple que con las TM tradicionales.
 - (D) Las TM universales pueden tener incluso menos estados que las TM que se incluyen como parte de sus entradas.

Rpta: Las TM no pueden resolver problemas indecidibles.

- 10. ¿Qué problemas pertenecen a la clase de complejidad NP?
 - (A) Los que no pueden resolverse por una TM en tiempo polinomial.
 - B Los que pueden resolverse por una NTM en tiempo polinomial.
 - (C) Los que pueden resolverse por una DTM en tiempo polinomial.
 - (D) Los que pueden resolverse por una DTM en tiempo exponencial.

Rpta: NP significa literalmente "non-deterministic polynomial time".