SPRAWOZDANIE

Zajęcia: Analiza Procesów Uczenia

Prowadzący: prof. dr hab. Vasyl Martsenyuk

Laboratorium: 5.1

Data: 29.05.2020

Temat: "Modelowanie procesów uczenia maszynowego w pakiecie MLR Trenowanie, ocena i porównanie modeli w pakiecie MLR"

Wariant: 1, zadanie 1

Jacek Adamczyk Informatyka II stopień, Stacjonarne,

1 semestr,

Gr. A

https://github.com/jacekaGIT/ATH-1g

1. Polecenia dla wariantu 1 (Zadanie 1):

Celem ćwiczenia jest zbudowanie drzewa decyzyjnego na podstawie danych ze zbioru IRIS który zawiera rozmiary płatków kwiatów dla 150 egzemplarzy 3 gatunków irysów. Uzyskane drzewo decyzyjne umożliwia rozpoznawanie poszczególnych gatunków na podstawie rozmiarów płatków.

Polecenie:

Zadanie 1. Zadanie dotyczy konstruowania drzew decyzyjnych oraz reguł klasyfikacyjnych na podstawie zbioru danych (library(MASS lub datasets)). Warianty zadania

1. iris

2. Skrypt:

Po uruchomieniu skryptu zostaną wykonane kolejno wszystkie polecenia zadania. Instalacja pakietów "C5.0" i "MASS" została wyłączona (ustawiona jako komentarz) żeby niepotrzebnie nie instalować pakietów przy każdym uruchomieniu skryptu.

```
#.... Jacek Adamczyk, sem 1, II st .....
#.... Lab 5, gr A, wariant 1 ......
# Modelowanie procesów uczenia maszynowego ...
# w pakiecie MLR. Trenowanie, ocena ......
# i porównywanie modeli w pakiecie MLR .....
# Zadanie 1

#install.packages("C50")
#install.packages("MASS")
library("C50")
library("MASS")

View(iris)

data(iris)
head(iris)
```

3. Wyniki działania:

Poniżej przedstawiono wyniki działania skryptu. Pełne wydruki z konsoli można znaleźć w repozytorium GitHub (adres na stronie tytułowej).

• Podsumowanie z konstrukcji drzewa:

```
> summary(drzewo)
Call:
C5.0.default(x = iris[, -5], y = iris$Species)
                                 Fri May 29 09:36:54 2020
C5.0 [Release 2.07 GPL Edition]
Class specified by attribute `outcome'
Read 150 cases (5 attributes) from undefined.data
Decision tree:
Petal.Length <= 1.9: setosa (50)
Petal.Length > 1.9:
:...Petal.Width > 1.7: virginica (46/1)
   Petal.Width <= 1.7:</pre>
    :...Petal.Length <= 4.9: versicolor (48/1)
        Petal.Length > 4.9: virginica (6/2)
Evaluation on training data (150 cases):
          Decision Tree
         Size
                Errors
                4( 2.7%) <<
          (a)
               (b) (c)
                          <-classified as
           50
                             (a): class setosa
                 47
                      3
                             (b): class versicolor
                      49 (c): class virginica
       Attribute usage:
       100.00%Petal.Length
        66.67%Petal.Width
```

Time: 0.0 secs

47	5.1	3.8	1.6	0.2	setosa
48	4.6	3.2	1.4	0.2	setosa
49	5.3	3.7	1.5	0.2	setosa
50	5.0	3.3	1.4	0.2	setosa
51	7.0	3.2	4.7	1.4	versicolor
52	6.4	3.2	4.5	1.5	versicolor
53	6.9	3.1	4.9	1.5	versicolor

Rysunek 2. Fragment zbioru IRIS

• Uzyskane drzewo decyzyjne:

Rysunek 1. Drzewo decyzyjne

4. Wnioski:

Mając nieznany egzemplarz irysa możemy na podstawie rozmiarów płatków i drzewa decyzyjnego określić z dużym prawdopodobieństwem jego gatunek. Kłopotliwe będzie jedynie określanie gatunku w węźle 6. Przy długości płatka > 4,9 istnieje duże prawdopodobieństwo pomyłki pomiędzy gatunkami Versicolor i Virginica.