On the Constructive Constructible Universe

Richard Matthews

University of Leeds

Logic Colloquium 2022

Preliminaries

Joint work with Michael Rathjen Constructing the Constructible Universe Constructively

Arxiv: 2206.08283. June 2022

Some of the results appear in my thesis: Large Cardinals in Weakened Axiomatic Theories

University of Leeds, 2021.

Aims

Gödel's Constructible Universe in Constructive Set Theories:

- How can we construct it?
- What theory does it satisfy?

More generally, what is an *inner model* intuitionistically?

Preliminaries

- (Law of Excluded Middle) $\varphi \vee \neg \varphi$
- (Double Negation Elimination) $\neg \neg \varphi \rightarrow \varphi$
- (Some Classical Logical Equivalences) $(\varphi \to \psi) \to (\neg \varphi \lor \psi)$
- Foundation: $\forall a(\exists x(x \in a) \to \exists x \in a \ \forall y \in a(y \notin x))$
- "Minimal elements" of sets
- Axiom of Choice / Well-Ordering Principle
- Definition by cases which differentiate between successor and limit ordinals

Remarks (BHK interpretation)

- $\varphi \to \psi$ should be read as "from a proof of φ we can construct a proof of ψ ".
- $\neg \varphi$ is interpreted as $\varphi \to (0=1)$.

The Joys of Intuitionism

Many intuitionistic theories satisfy "pleasing mathematical properties" for example they:

- Give insight on when Excluded Middle is needed in a given proof,
- Give "more direct" proofs of mathematical statements,
- Satisfy the Disjunction Property (if $T \vdash \varphi \lor \psi$ then either $T \vdash \varphi$ or $T \vdash \psi$),
- Satisfy the Numerical Existence Property (if $T \vdash \exists x \in \omega \varphi(x)$ then $T \vdash \varphi(n)$ for some $n \in \omega$),
- Are the internal logic of toposes with a natural number object,
- Have a type theoretic interpretation.

The Joys of Intuitionism

The following principles can consistently hold intuitionistically:

- Every function $f \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is continuous,
- Church's Thesis (All total functions are computable),
- The Uniformity Principle holds $(\forall x \exists n \in \omega \varphi \rightarrow \exists n \in \omega \forall x \varphi)$,
- Every set is subcoutable (the surjective image of a subset of ω).

Idea

IKP (IZF) is the theory KP (ZF) with intuitionistic logic instead of classical logic.

```
IKP^{-Inf}
  + Strong Infinity
IKP
     + Strong Collection
CZF^-
     + Subset Collection
CZF
    + Power Set
CZF_{\mathcal{P}}
     + Full Separation
 IZF
```

IKP^{-lnf}

- Extensionality
- Empty Set
- Pairing
- Unions

- Set Induction
- Bounded Separation
- Bounded Collection

Strong Infinity

$$\exists a \ (Ind(a) \ \land \ \forall b \ (Ind(b) \rightarrow \forall x \in a(x \in b))),$$

$$Ind(a) \equiv \emptyset \in a \land \forall x \in a \ (x \cup \{x\} \in a).$$

Idea

IKP (IZF) is the theory KP (ZF) with intuitionistic logic instead of classical logic.

```
IKP-Inf
 + Strong Infinity
IKP
    + Strong Collection
CZF^-
    + Subset Collection
CZF
    + Power Set
CZF_{\mathcal{P}}
 + Full Separation
IZF
```

IKP^{-lnf}

- Extensionality
- Empty Set
- Pairing
- Unions

- Set Induction
- Bounded Separation
- Bounded Collection

Strong Collection

For any formula $\varphi(u,v)$ and set a, $\forall x \in a \ \exists y \ \varphi(x,y) \to \exists b$ $(\forall x \in a \ \exists y \in b \ \varphi(x,y) \ \land \ \forall y \in b \ \exists x \in a \ \varphi(x,y)).$

Idea

IKP (IZF) is the theory KP (ZF) with intuitionistic logic instead of classical logic.

```
IKP-Inf
  + Strong Infinity
IKP
     + Strong Collection
CZF^-
     + Subset Collection
CZF
    + Power Set
CZF_{\mathcal{P}}
    + Full Separation
 IZF
```

IKP^{-Inf}

- Extensionality
- Empty Set
- Pairing
- Unions

- Set Induction
- Bounded Separation
- Bounded Collection

Subset Collection

Equivalent to the axiom of Fullness.

Implies Exponentiation ($\forall a, b \ ^a b$ is a set).

Idea

IKP (IZF) is the theory KP (ZF) with intuitionistic logic instead of classical logic.

```
IKP^{-Inf}
  + Strong Infinity
IKP
     + Strong Collection
CZF^-
     + Subset Collection
CZF
     + Power Set
CZF_{\mathcal{P}}
     + Full Separation
 IZF
```

IKP^{-Inf}

- Extensionality
- Empty Set
- Pairing
- Unions

- Set Induction
- Bounded Separation
- 5
- Bounded Collection

Power Set

 $\forall a \ \mathcal{P}(a) \text{ is a set.}$

Idea

IKP (IZF) is the theory KP (ZF) with intuitionistic logic instead of classical logic.

```
IKP^{-Inf}
  + Strong Infinity
IKP
     + Strong Collection
CZF^-
     + Subset Collection
CZF
    + Power Set
CZF_{\mathcal{P}}
    + Full Separation
 IZF
```

IKP^{-Inf}

- Extensionality
- Empty Set
- Pairing
- Unions

- Set Induction
- Bounded Separation
- Bounded Collection

Full Separation

For any formula $\varphi(u)$ and set a, $\{x \in a \mid \varphi(x)\}\$ is a set.

What is an Ordinal?

Definition

 $\langle A, \prec \rangle$ is a well-ordering if it is a strict total order such that any non-empty subset X of A has an \prec -least element.

Definition (Classical)

An ordinal α is a transitive set which is well-ordered by \in .

Proposition (Folklore)

 α is an ordinal iff it is a transitive set of transitive sets.

Definition (More Constructive)

An ordinal is a transitive set of transitive sets.

Let ORD denote the class of ordinals.

Intuitionistic Ordinals

Nice Properties

- If α is an ordinal then so is $\alpha + 1 \coloneqq \alpha \cup \{\alpha\}$,
- If X is a set of ordinals then $\bigcup X$ is an ordinal,
- We can perform definitions by transfinite recursion and make stratified hierarchies (e.g. rank function, V_{α} , L_{α} ...).

Ordinary Ordinal Oddities

- $\beta \in \alpha \Rightarrow \beta + 1 \in \alpha + 1$,
- $\forall \alpha \ (0 \in \alpha + 1)$ implies excluded middle!

Truth Values

Given a formula φ , an important ordinal is

$$\alpha_{\varphi} \coloneqq \{0 \in 1 \mid \varphi\}.$$

Naively, if we don't assume $\varphi \vee \neg \varphi$ then α_{φ} is neither 0 nor 1.

In general, we let

$$\Omega := \mathcal{P}(1) = \{x \mid x \subseteq 1\}$$

be the class of truth values.

If $\Omega = 2$ then the Law of Excluded Middle holds.

Note that

$$(0 \in \alpha_{\varphi} + 1) \quad \Longrightarrow \quad (0 \in \alpha_{\varphi} \vee 0 = \alpha_{\varphi}) \quad \Longrightarrow \quad (\varphi \vee \neg \varphi).$$

Inner Models

Definition

Let T be a theory (in the language of set theory) and suppose that $V \models T$. A transitive class M is said to be an *inner model* if

- \bullet M \subseteq V,
- \bullet M \models T,
- Ord \cap M = Ord \cap V.

Example

If T is KP or ZF then L is an inner model.

Theorem (M., Rathjen)

The Constructible Universe

Preliminaries

- The constructible universe was developed by Gödel in papers published in 1939 and 1940 to show the consistency of the Axiom of Choice and the Generalised Continuum Hypothesis with ZF.
- As with the standard V_{α} cumulative hierarchy, one builds the L_{α} hierarchy in stages where one replaces the power set operation with a "definable" version.
- ullet There are 2/3 equivalent approaches to building L, all of which are formalisable in KP.1
 - ullet Syntactically as the set of definable subsets of M (See Devlin -Constructibility),
 - Using Gödel functions (See Barwise Admissible Sets) or
 - Using Rudimentary Functions (See Gandy, Jensen, Mathias).

¹In fact significantly weaker systems - see Mathias: Weak Systems of Gandy, Jensen and Devlin, 2006

- The syntactic approach was then modified for IZF by Lubarsky (*Intuitionistic L* 1993).
- And then for IKP by Crosilla (Realizability models for constructive set theories with restricted induction - 2000).
- Rudimentary functions were extended to constructive theories by Aczel (Rudimentary and arithmetical constructive set theory - 2012).
- (M.) Using an extended set of Gödel functions, one can construct L in IKP^{-Inf}.

Theorem

Preliminaries

If T is one of IKP^{-Inf} , IKP or IZF then

$$T \vdash (T)^{L}$$
.

Constructibility

Preliminaries

Definition (IKP $^{-Inf}$)

- Let $\mathcal{F}_1, \ldots, \mathcal{F}_N$ denote the (extended) Gödel functions.
- Let $\mathfrak{E}(b) := b \cup \{\mathcal{F}_i(x,y) \mid x,y \in b \land i \leq N\}$ be the 1-step closure of b under these functions.
- Let $\mathbb{L}_{\alpha} := \bigcup_{\beta \in \alpha} \mathfrak{E}(\mathbb{L}_{\beta} \cup {\mathbb{L}_{\beta}}).$
- Let $\mathbb{L} := \bigcup_{\alpha} \mathbb{L}_{\alpha}$.

Lemma (Lubarsky / M.)

For every ordinal α in V there is an ordinal α^* in $\mathbb L$ such that $\mathbb{L}_{\alpha} = \mathbb{L}_{\alpha^*}$.

Theorem (Axiom of Constructibility)

If T is one of IKP^{-Inf} . IKP or IZF then

$$T \vdash (V = \mathbb{L})^{\mathbb{L}}.$$

Theorem (M.)

It is consistent to have a model of IZF such that

$$Ord \cap V \neq Ord \cap L$$
.

Full Kripke Model (Hendtlass, Lubarsky)

Details

Given a Kripke structure $\mathscr K$ and a model of ZF assigned to each node, one can build a model structure $V(\mathscr K)$ and interpretation $\Vdash_{\mathscr K}$ such that

$$V(\mathscr{K}) \models \varphi \Longleftrightarrow \forall p \in \mathscr{K} \ p \Vdash_{\mathscr{K}} \varphi.$$

Moreover, this model will satisfy IZF.

Sketch.

Theorem (M.)

It is consistent to have a model of IZF such that

$$ORD \cap V \neq ORD \cap L$$
.

Sketch.

The desired model will be $V(\mathcal{K})$ where

- \mathcal{K} is the two node Kripke structure $\{1, \alpha\}$,
- $\mathcal{D}(1) = \mathcal{D}(\alpha) = L[c]$,
- ullet c is a Cohen real over L.

$$\mathcal{K} = \begin{bmatrix} \alpha & \text{L}[c] \\ \\ 1 & \text{L}[c] \end{bmatrix}$$

Theorem (M.)

It is consistent to have a model of IZF such that

$$Ord \cap V \neq Ord \cap L$$
.

Sketch.

• Let c^p be the interpretation of c at node p.

Details)

- Then $p \Vdash c^p \notin L$.
- So, $V(\mathcal{K}) \models c \notin L$.
- Let 1_{α} be the ordinal in $V(\mathscr{K})$ which looks like 0 at 1 and 1 at α .

$$1_{\alpha} \colon \mathcal{K} \to 2$$
 $1_{\alpha}(p) = \begin{cases} 0, & \text{if } p = 1\\ 1, & \text{if } p = \alpha. \end{cases}$

• Then, in $V(\mathcal{K})$, $1_{\alpha} \subseteq 1$ and $L_{1_{\alpha}} = 1_{\alpha}$.

It is consistent to have a model of IZF such that

$$Ord \cap V \neq Ord \cap L$$
.

Non-constructive Ordinals

Sketch.

Preliminaries

• Define δ_c to be an ordinal encoding c, for example,

$$\begin{split} \delta_c &= \bigcup_{n \in \omega} (1_{\alpha} \cup n) + c(n) \\ &= \{1_{\alpha} \cup n \mid c(n) = 0\} \cup \{1_{\alpha} \cup n \cup \{1_{\alpha} \cup n\} \mid c(n) = 1\} \\ &= \{1_{\alpha} \cup n \mid n \in \omega\} \cup \{\{1_{\alpha} \cup n\} \mid c(n) = 1\}. \end{split}$$

- Then c(n) = 1 if and only if $(1_{\alpha} \cup n) \in \delta_c$,
- Note that $c \in L \iff \delta_c \in L$.
- Therefore, $\delta_c \not\in L$.

E_{\wp} -recursion

- E-recursion or set recursion is a generalisation of recursion theory to be able to apply arbitrary sets to one another (see Sack's Higher Recursion Theory or Normann's Set Recursion).
- [s](t) can be viewed as "s is some kind of Turing machine that takes as input the set t and outputs [s](t)".
- It will contain designated integers which provide indices for special functions computing basic operations (e.g. pairing, succesors, unions, intersections, ω , ...).
- E_{\wp} recursion was developed by Rathjen (From the weak to the strong existence property, 2012) to also have the power set operation be "computable".
- An E_\wp -recursive partial function is essentially a $\Sigma^\mathcal{P}$ function which computes a term built using E_\wp -recursion.

Realizability with truth

Preliminaries

Next combine E_{ω} computability with a notion of realizability that preserves truth, \Vdash_{mt}^{\wp} . Realizers for existential statements will provide a set of witnesses for the existential quantifier.

Proposition (Rathjen 2012)

Let $\varphi(x_1,\ldots,x_n)$ be a formula with free variables among x_1,\ldots,x_n . Then

$$\operatorname{CZF}_{\mathcal{P}} \vdash (\exists e \ e \Vdash^{\wp}_{\mathsf{mf}} \varphi(x_1, \dots, x_n)) \to \varphi(x_1, \dots, x_n).$$

Theorem (Rathjen 2012)

Let $\varphi(x_1,\ldots,x_n)$ be a formula with free variables among x_1, \ldots, x_n . If $CZF_{\mathcal{P}} \vdash \varphi(x_1, \ldots, x_n)$ then one can effectively construct an index of an E_{ω} -recursive function f such that

$$CZF_{\mathcal{P}} \vdash \forall a_1 \dots \forall a_n \ f(a_1, \dots a_n) \Vdash_{\mathsf{mt}}^{\wp} \varphi(a_1, \dots, a_n).$$

Preliminaries

Using a very similar notion of realizability, one can show

Theorem (Rathjen, 2012)

- **1** CZF⁻ is conservative over IKP for Π_2 sentences,

Next, via a proof-theoretic interpretation of $KP(\mathcal{P})$ to an extension of Zermelo set theory, we have

Theorem (Rathjen, 2014)

Let φ be a $\Pi_2^{\mathcal{P}}$ sentence. If $IKP(\mathcal{P}) \vdash \varphi$ then $V_{BH} \models \varphi$ where BH is the Bachmann-Howard ordinal.

Corollary (Rathjen)

- **1** IKP and IKP(\mathcal{P}) have the existence property for Σ and $\Sigma^{\mathcal{P}}$ formulas respectively.
- Q CZF⁻ and CZF_P have the existence property.

 $^{^2\}mathrm{IKP} + \textit{Power Set}$ and both Separation and Collection for $\Sigma_0^{\mathcal{P}}$ formulas.

Preliminaries

Exponentiation and CZF_P

Theorem (M., Rathjen)

 $CZF_{\mathcal{P}} \not\vdash Exp^{L}$. Thus $CZF_{\mathcal{P}} \not\vdash (CZF)^{L}$.

- Suppose that $CZF_{\mathcal{P}}$ proved that $\omega \omega \cap L \in L$.
- Then

$$CZF_{\mathcal{P}} \vdash \exists a (a \in ORD \land \omega \in a \land \forall f \in {}^{\omega}\omega (f \in L \to f \in L_a))$$

• Construct an index for an E_{\wp} -recursive function g such that ${\rm CZF}_{\mathcal P} \vdash \forall x \; g(x)$ is defined and

$$CZF_{\mathcal{P}} \vdash \forall x \ g(x) \Vdash_{\mathfrak{wt}}^{\wp} \exists a (a \in ORD \land \omega \in a \land \forall f \in {}^{\omega}\omega(f \in L \to f \in L_a)).$$

Exponentiation and CZF(P)

$\mathsf{Theorem}$

Preliminaries

 $CZF_{\mathcal{P}} \not\vdash Exp^{L}$. Thus $CZF_{\mathcal{P}} \not\vdash (V = L)^{L}$.

$$CZF_{\mathcal{P}} \vdash \forall x \ g(x) \Vdash_{\mathfrak{wt}}^{\wp} \exists a (a \in ORD \land \omega \in a \land \forall f \in {}^{\omega}\omega (f \in L \to f \in L_a)).$$

Note: $a \Vdash_{\mathbf{m}^t}^{\wp} \exists x \varphi(x)$ iff $\exists u(u \in a) \land \forall d \in a(\mathbf{p}_1 d \Vdash_{\mathbf{m}^t}^{\wp} \varphi[x/\mathbf{p}_0 d])$,

• Unpacking ... $CZF_{\mathcal{D}} \vdash \exists w(w \in q(0))$ and

$$CZF_{\mathcal{P}} \vdash \forall y \in g(0) \; \mathbf{p}_1 y \Vdash_{\mathfrak{wt}}^{\wp} (\mathbf{p}_0 y \in ORD \; \land \; \omega \in \mathbf{p}_0 \; \land \\ \forall f \in {}^{\omega} \omega (f \in L \to f \in L_{\mathbf{p}_0 y})).$$

• Since realizability preserves truth,

$$CZF_{\mathcal{P}} \vdash \forall y \in g(0) \ (\mathbf{p}_0 y \in ORD \land \omega \in \mathbf{p}_0 \land \forall f \in {}^{\omega}\omega (f \in L \to f \in L_{\mathbf{p}_0 y})).$$

Exponentiation and CZF(P)

Theorem

Preliminaries

 $CZF_{\mathcal{P}} \not\vdash Exp^L$. Thus $CZF_{\mathcal{P}} \not\vdash (V = L)^L$.

- Since g was E_{\wp} recursive, " $\forall x\,g(x)$ is defined" is $\Pi_2^{\mathcal{P}}$ definable.
- Now $CZF_{\mathcal{P}}$ is conservative over $IKP(\mathcal{P})$ for $\Pi_2^{\mathcal{P}}$ sentences, and these reflect to V_{BH} where BH is the *Bachmann-Howard* ordinal.
- Therefore, $g(0) \in V_{BH}$. So

$$CZF_{\mathcal{P}} \vdash \forall y \in g(0) \; \exists a \in V_{BH}$$
$$\left(a \in ORD \; \land \; \omega \in a \; \land \; \forall f \in {}^{\omega}\omega(f \in L \to f \in L_a) \right).$$

• Which means that ${}^{\omega}\omega\cap L\in L_{BH}$ which is a contradiction.

Inner Models

Intuitionistically:

- L is a definable class,
- If V is a model of IKP^{-lnf} , IKP or IZF then so is L,
- But if V only satisfies CZF / $CZF_{\mathcal{P}}$, L may not satisfy Exponentiation,
- Moreover, we may not have $V \cap ORD = L \cap ORD$.
- So what can inner models do . . . ?

External Cumulative Hierarchies

Definition

Preliminaries

Let $M \subseteq N$. We say that M is almost universal in N if for any $x \in \mathbb{N}$, if $x \subseteq \mathbb{M}$ then there exists some $y \in \mathbb{M}$ such that $x \subseteq y$.

Theorem (M.)

Suppose that N is a model of IZF and $M \subseteq N$ is a transitive (proper) class with an external cumulative hierarchy in N.3 Then M is a model of IZF if and only if M is closed under the extended Gödel functions and is almost universal in N.

Remark

So, under some "nice" condition, we can express being a model of IZF by a single sentence.

 $[\]overline{^3}$ Essentially, $M = \bigcup_{\alpha \in ORD \cap N} M_{\alpha}$.

Definition

- $\mathcal{F}_p(x,y) \coloneqq \{x,y\},$
- $\bullet \ \mathcal{F}_{\cap}(x,y) \coloneqq x \cap \bigcap y, \qquad \qquad (\cap y = \{u \mid \forall v \in y \ (u \in v)\})$
- $\mathcal{F}_{\cup}(x,y) \coloneqq \bigcup x$,
- $\mathcal{F}_{\setminus}(x,y) \coloneqq x \setminus y$,
- $\mathcal{F}_{\times}(x,y) \coloneqq x \times y$,
- $\mathcal{F}_{\rightarrow}(x,y) \coloneqq x \cap \{z \mid y \text{ is an ordered pair } \land (z \in 1^{st}(y) \to z \in 2^{nd}(y))\},$
- $\bullet \ \mathcal{F}_\forall(x,y) \coloneqq \big\{x``\{z\} \mid z \in y\big\}, \qquad \qquad (x``u = \{v \mid v \in 2^{nd}(x) \land \langle u,v \rangle \in x\})$

Definition

- $\bullet \ \mathcal{F}_{\mathrm{dom}}(x,y) \coloneqq \mathrm{dom}(x) = \{1^{st}(z) \mid z \in x \land \\ z \ \textit{is an ordered pair}\},$
- $\mathcal{F}_{ran}(x,y) \coloneqq ran(x) = \{2^{nd}(z) \mid z \in x \land z \text{ is an ordered pair}\},$
- $\mathcal{F}_{123}(x,y) \coloneqq \{\langle u, v, w \rangle \mid \langle u, v \rangle \in x \land w \in y\},$
- $\mathcal{F}_{132}(x,y) \coloneqq \{\langle u, w, v \rangle \mid \langle u, v \rangle \in x \land w \in y\},\$
- $\mathcal{F}_{=}(x,y) := \{\langle v, u \rangle \in y \times x \mid u = v\},\$
- $\mathcal{F}_{\in}(x,y) \coloneqq \{\langle v,u \rangle \in y \times x \mid u \in v\}.$

Notation

Let \mathcal{I} be the finite set indexing the above operations.

Kripke Models

Definition

A Kripke model is an ordered quadruple $\mathscr{K} = \langle \mathcal{K}, \mathcal{R}, \mathcal{D}, \iota \rangle$ where

- ullet $\mathcal K$ is a non-empty set of "nodes",
- \mathcal{D} is a function on \mathcal{K} ,
- ullet R is a binary, reflexive relation between elements of ${\cal K}$,
- ι is a set of functions $\iota_{p,q}$ for each pair $p,q\in\mathcal{K}$ with $p\mathcal{R}q$ such that the following hold.
 - ullet For each $p\in\mathcal{K}$, $\mathcal{D}(p)$ is an inhabited class structure,
 - If $p\mathcal{R}q$ then $\iota_{p,q}\colon \mathcal{D}(p)\to \mathcal{D}(q)$ is a homomorphism,
 - If $p\mathcal{R}q$ and $q\mathcal{R}r$ then $\iota_{p,r}=\iota_{q,r}\circ\iota_{p,q}$.

Forcing(ish)

Now, for atomic formulae φ , let $p \Vdash \varphi$ denote that $\mathcal{D}(p) \models \varphi$. Then \Vdash can be extended to arbitrary formulae by the following prescription:

- For no p do we have $p \Vdash \perp$,
- $\bullet \ p \Vdash \varphi \wedge \psi \ \text{iff} \ p \Vdash \varphi \ \text{and} \ p \Vdash \psi \text{,}$
- $p \Vdash \varphi \lor \psi$ iff $p \Vdash \varphi$ or $p \Vdash \psi$,
- $p \Vdash \varphi \to \psi$ iff for any $r \in \mathcal{K}$ with $p\mathcal{R}r$, if $r \Vdash \varphi$ then $r \Vdash \psi$,
- $p \Vdash \forall x \ \varphi(x)$ iff whenever $p\mathcal{R}q$ and $d \in \mathcal{D}(q)$, $q \Vdash \varphi(d)$,
- $p \Vdash \exists x \ \varphi(x)$ iff there is some $d \in \mathcal{D}(p)$ such that $p \Vdash \varphi(d)$.

Validity

Definition

Let $\mathscr{K} = \langle \mathcal{K}, \mathcal{R}, \mathcal{D}, \iota \rangle$ be a Kripke model and $p \in \mathcal{K}$.

- A formula φ is said to be valid at p iff $p \Vdash \varphi$.
- A formula φ is valid in the full Kripke model, written $\mathscr{K} \Vdash \varphi$, if for every $p \in \mathcal{K}, \ p \Vdash \varphi$.

Fact (Hendtlass, Lubarsky)

It is possible to add a model structure to $\mathscr{K}\text{, }V(\mathscr{K})$ such that

$$V(\mathcal{K}) \models \varphi \iff \forall p \in \mathcal{K} \ p \Vdash \varphi.$$

Theorem (Hendtlass, Lubarsky)

If for each $p, q \in \mathcal{K}$, $\mathcal{D}(p) \models \mathrm{ZF}$ and $\mathrm{ORD} \cap \mathcal{D}(p) = \mathrm{ORD} \cap \mathcal{D}(q)$, then $\mathrm{V}(\mathscr{K}) \models \mathrm{IZF}$.

The Model

Suppose that \mathcal{K} is a Kripke model and that for each node p, $\mathcal{D}(p)$ is a model of ZF . We shall simultaneously define the set of objects at p, $\operatorname{M}^p := \bigcup_{\alpha} \operatorname{M}^p_{\alpha}$, inductively through the ordinals.

So suppose that $\{M^p_\beta \mid p \in \mathcal{K}\}$ has been defined for each $\beta \in \alpha$ along with transition functions $k_{p,q} \colon M^p_\beta \to M^q_\beta$ for each pair $p\mathcal{R}q$.

The objects of ${\rm M}^p_{\alpha}$ are then the collection of functions g such that

- $dom(g) = \mathcal{K}^p$,
- $g \upharpoonright \mathcal{K}^q \in \mathcal{D}(q)$,
- $g(q) \subseteq \bigcup_{\beta \in \alpha} M_{\beta}^q$,
- If $h \in g(q)$ and $q \mathcal{R} r$ then $k_{q,r}(h) \in g(r)$.

Finally, extend $k_{p,q}$ to \mathcal{M}^p_{α} by setting $k_{p,q}(g) \coloneqq g \upharpoonright \mathcal{K}^q$. Then the objects at node p are $\bigcup_{\alpha} \mathcal{M}^p_{\alpha}$.

We now define truth at node p for formulae by the following:

- $p \Vdash g \in h \iff g \upharpoonright \mathcal{K}^p \in h(p)$,
- $p \Vdash g = h \iff g \upharpoonright \mathcal{K}^p = h \upharpoonright \mathcal{K}^p$,
- For logical connectives and quantifiers we use the rules for ⊢.

Interpreting the initial node

Let $\mathscr{K} = \langle \mathcal{K}, \mathcal{R}, \mathcal{D}, \iota \rangle$ be a Kripke model.

Definition

Define \mathcal{K}^p to be the *truncation* of the Kripke model to $\mathcal{K}^p \coloneqq \{q \in \mathcal{K} \mid p\mathcal{R}q\}$. So \mathcal{K}^p is the cone of nodes which are related to p.

Fact

Given $p\in\mathcal{K}$ and $x\in\mathcal{D}(p)$ we can define an interpretation x^p such that if $p\mathcal{R}q$ then $q\Vdash x^p=x^q$.

This gives us a way to talk about the past worlds in the current one.

E_{\wp} -recursive functions

We inductively define a class \mathbb{E}_\wp of triples $\langle e,x,y\rangle$ Instead of saying $\langle e,x,y\rangle\in\mathbb{E}_\wp$ we shall say $[e](x)\simeq y$. The relation is then defined by the following clauses:

Indices for applicative structures (APP):

$$\begin{split} [\mathbf{k}](x,y) &\simeq x & [\mathbf{s}](x,y,z) &\simeq [[x](z)]([y](z)) \\ [\mathbf{p}](x,y) &\simeq \langle x,y \rangle & [\mathbf{s}_{\mathbf{N}}](n) &\simeq n+1 \text{ if } n \in \mathbb{N} \\ [\mathbf{p}_{\mathbf{N}}](0) &\simeq 0 & [\mathbf{p}_{\mathbf{N}}](n+1) &\simeq n \text{ if } n \in \mathbb{N} \\ [\mathbf{p}_{\mathbf{0}}](x) &\simeq 1^{st}(x) & [\mathbf{p}_{\mathbf{1}}](x) &\simeq 2^{nd}(x) \\ [\mathbf{d}_{\mathbf{N}}](n,m,x,y) &\simeq x \text{ if } n,m \in \mathbb{N} \text{ and } n=m \\ [\mathbf{d}_{\mathbf{N}}](n,m,x,y) &\simeq y \text{ if } n,m \in \mathbb{N} \text{ and } n \neq m & [\bar{\mathbf{\omega}}](x) &\simeq \omega \end{split}$$

E_{\wp} -recursive functions

We inductively define a class \mathbb{E}_\wp of triples $\langle e,x,y\rangle$ Instead of saying $\langle e,x,y\rangle\in\mathbb{E}_\wp$ we shall say $[e](x)\simeq y$. The relation is then defined by the following clauses:

Indices for set-theoretic axioms:

$$\begin{split} [\pi](x,y) \; &\simeq \; \{x,y\} \\ [\gamma](x,y) \; &\simeq \; x \cap \bigcap y \end{split} \qquad \begin{aligned} [\nu](x) \; &\simeq \; \bigcup x \\ [\rho](x,y) \; &\simeq \; \{[x](u) \mid u \in y\} \\ \text{if } [x](u) \text{ is defined} \\ \text{for all } u \in y \end{split}$$

Indices for equality axioms:

$$\begin{aligned} & [\mathbf{i_1}](x,y,z) \; \simeq \; \{u \in x \mid y \in z\} \\ & [\mathbf{i_2}](x,y,z) \; \simeq \; \{u \in x \mid u \in y \to u \in z\} \\ & [\mathbf{i_3}](x,y,z) \; \simeq \; \{u \in x \mid u \in y \to z \in u\} \end{aligned}$$

E_{ω} -recursive functions

Definition (E_{\wp} -Application terms)

- The above constants are application terms,
- Variables are application terms,
- $oldsymbol{3}$ If s and t are application terms then so is [s](t).

An application term is *closed* if it does not contain any variables.

Definition

A partial n-place class function Υ is called an E_\wp -recursive partial function if there exists a closed E_\wp -application term t_Υ such that

$$dom(\Upsilon) = \{(a_1, \dots, a_n) \mid [t_{\Upsilon}](a_1, \dots, a_n) \downarrow \}$$

and for all sets $(a_1, \ldots, a_n) \in dom(\Upsilon)$,

$$[t_{\Upsilon}](a_1,\ldots,a_n) \simeq \Upsilon(a_1,\ldots,a_n).$$

Realizers

 $[a](b)\simeq x$ will denote $\langle a,b,x
angle\in\mathbb{E}_{\wp}.$ Then $\Vdash^{\wp}_{\mathfrak{wt}}$ is defined recursively by: