DEVOIR SURVEILLÉ N°08

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Exercice 1.

Soit $f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & (2y-2z,x+y-2z,x-y) \end{array} \right.$. On notera $\mathrm{Id}=\mathrm{Id}_{\mathbb{R}^3}$.

- **1. a.** Montrer que $f \in \mathcal{L}(\mathbb{R}^3)$.
 - **b.** Déterminer des bases et les dimensions de $\operatorname{Im} f$ et $\operatorname{Ker} f$. f est-il injectif, surjectif, bijectif?
 - **c.** Montrer que $\mathbb{R}^3 = \text{Im } f \oplus \text{Ker } f$.
 - **d.** Soit p le projecteur sur Im f parallélement à Ker f. Calculer p((x, y, z)) pour $(x, y, z) \in \mathbb{R}^3$.
- **2.** Déterminer $f^2((x, y, z))$ et $f^3((x, y, z))$ pour $(x, y, z) \in \mathbb{R}^3$. En déduire que $f^3 f^2 2f = 0$.
- 3. Soit $q = -\frac{1}{2}(f^2 f 2\operatorname{Id})$.
 - **a.** Montrer que q est un projecteur.
 - **b.** Calculer $q \circ f$ et $f \circ q$.
 - **c.** Montrer que $\operatorname{Ker} q = \operatorname{Im} f$ et que $\operatorname{Im} q = \operatorname{Ker} f$.
 - **d.** En déduire que p + q = Id.
- **4.** Soient $r = \frac{1}{6}(f^2 + f)$ et $s = \frac{1}{3}(f^2 2f)$.
 - **a.** Montrer que r et s sont des projecteurs.
 - **b.** Vérifier que $r \circ s = s \circ r = 0$.
 - **c.** Montrer que $f \circ r = r \circ f = 2r$ et que $f \circ s = s \circ f = -s$.
 - **d.** Montrer que pour tout $n \in \mathbb{N}^*$, $f^n = 2^n r + (-1)^n s$.
 - **e.** En déduire l'expression de $f^n(x, y, z)$ pour $(x, y, z) \in \mathbb{R}^3$ et $n \in \mathbb{N}^*$.
- **5.** Soient (x_n) , (y_n) et (z_n) trois suites vérifiant

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = 2y_n - 2z_n \\ y_{n+1} = x_n + y_n - 2z_n \\ z_{n+1} = x_n - y_n \end{cases}$$

- **a.** Montrer que pour tout $n \in \mathbb{N}$, $(x_n, y_n, z_n) = f^n((x_0, y_0, z_0))$.
- **b.** En déduire les expressions de x_n , y_n et z_n en fonction de x_0 , y_0 , z_0 et $n \in \mathbb{N}^*$.

EXERCICE 2.

On note $\mathscr E$ l'ensemble des applications continues sur $\mathbb R$ à valeurs dans $\mathbb R$. Pour tout élément f de $\mathscr E$, on note $\mathrm{U}(f)$ l'application de $\mathbb R$ dans $\mathbb R$ défini par :

$$\forall x \in \mathbb{R}, \ U(f)(x) = \int_{x}^{x+1} f(t) dt$$

1. Soit $f \in \mathcal{E}$, T-périodique (T > 0). Montrer que

$$\forall a \in \mathbb{R}, \int_{a}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt$$

- **2.** Soit f une fonction dérivable sur \mathbb{R} . Montrer que si f est T-périodique, alors il en est de même de f'. Montrer que la réciproque est fausse.
- **3.** Soit $f \in \mathcal{E}$. Montrer que U(f) est de classe \mathcal{C}^1 sur \mathbb{R} .
- **4.** Montrer que U est un endomorphisme de \mathscr{E} .
- **5.** Justifier que si $f \in \text{Ker U}$, alors

(i)
$$\int_0^1 f(t) dt = 0$$
;

- (ii) f est périodique de période 1.
- **6.** Le noyau de U est-il l'ensemble des fonctions $f \in \mathcal{E}$ périodiques de période 1 telles que $\int_0^1 f(t) dt = 0$?
- 7. L'endomorphisme U est-il injectif? surjectif?
- **8.** Soit $a \in \mathbb{R}$ et f_a : $t \in \mathbb{R} \mapsto e^{at}$.
 - **a.** Déterminer $F_a = U(f_a)$.
 - **b.** Soit la fonction $g: x \in \mathbb{R}^* \mapsto \frac{e^x 1}{x}$. Montrer que g est prolongeable par continuité en 0. On note encore g son prolongement. Dresser le tableau de variations de g.
 - **c.** Montrer que pour tout réel λ strictement positif, l'endomorphisme $U \lambda \operatorname{Id}_{\mathscr{E}}$ n'est pas injectif.

EXERCICE 3.

Soit E un \mathbb{R} -espace vectoriel de dimension d. On se donne un endomorphisme f de E et un vecteur non nul $x \in \mathbb{E}$. On définit alors une suite de vecteurs $(x_n)_{n \in \mathbb{N}}$ en posant $x_0 = x$ et $x_{n+1} = f(x_n)$ pour tout $n \in \mathbb{N}$. On pose alors $E_x = \text{vect}(x_n, n \in \mathbb{N})$.

- **1.** Montrer que E_x est stable par f.
- **2.** Soit F un sous-espace vectoriel de E contenant x et stable par f. Montrer que $E_x \subset F$.
- **3.** Soit *p* le plus grand entier naturel non nul tel que $(x_0, ..., x_{p-1})$ est une famille libre.
 - **a.** Justifier l'existence d'un tel entier p.
 - **b.** Montrer qu'il existe des réels $a_0, ..., a_{p-1}$ tels que $x_p = \sum_{k=0}^{p-1} a_k x_k$.
 - **c.** On note $F_x = \text{vect}(x_0, ..., x_{p-1})$. Montrer que F_x est stable par f.
 - **d.** En déduire que $E_x = F_x$ et que (x_0, \dots, x_{p-1}) est une base de E_x .
- **4.** On note g l'endomorphisme de E_x induit par f. Montrer que $(\mathrm{Id}_{E_x}, g, g^2, \ldots, g^{p-1})$ est une famille libre de $\mathscr{L}(E_x)$.
- 5. En déduire que $g^p = \sum_{k=0}^{p-1} a_k g^k$.