Modely sebeskládajících DNA nanostruktur

Vypracoval: Jakub Klemsa

Školitel: Ing. Štěpán Starosta, Ph.D.

Fakulta jaderná a fyzikálně inženýrská Matematická informatika

19. června 2014

1. Úvod

- 2. Modely založené na Wangovo dláždění
 - Wangovo dláždění
 - aTAM
 - Studované složitosti
 - Turingovská univerzalita aTAMu
 - Meze studovaných složitostí
 - Důsledky
- 3. Návrh řešení NP problémů
 - Přizpůsobení modelu NP
 - Problém *k*-kliky
 - Počítačová simulace

Úvod

Výhody

- paralelizmus ve zkumavce až 10¹⁸ "větších" molekul
- energetická efektivita (Adleman [1])

Výhody

- paralelizmus ve zkumavce až 10¹⁸ "větších" molekul
- energetická efektivita (Adleman [1])

Nevýhody

- pravděpodobnostní povaha
- chybovost
- na 10¹⁸ operací stačí hrubá síla (řádově dny na clusteru s tisíci jader)

Úvod

Výhody

- paralelizmus ve zkumavce až 10¹⁸ "větších" molekul
- energetická efektivita (Adleman [1])

Nevýhody

- pravděpodobnostní povaha
- chybovost
- na 10¹⁸ operací stačí hrubá síla (řádově dny na clusteru s tisíci jader)

Pole studia

- kinetika reakcí
- abstraktní modely pohledem matematické informatiky

Wangovo dláždění

Čtvercové dláždění roviny (její části), kde

- dlaždice mají na hranách barvu z konečné množiny barev (lepidel)
- jsou orientované (zakázáno rotovat nebo překlápět)
- sousedit smí pouze dlaždice se stejnou barvou na společné hraně

Obrázek: Wangovo dláždění.

aTAM (Abstract Tile Assembly Model)

Rothemund, Winfree rozšířili definici

- každé lepidlo má přidružené přirozené číslo síla lepidla
- existuje prázdné lepidlo se silou 0, které smí sousedit se všemi
- dláždění se utváří
 - z iniciální dlaždice
 - po jedné dlaždici
 - součet právě připojených lepidel musí být větší nebo roven zadané hodnotě (tzv. teplota, ozn. au)

Studované složitosti I

Biostep complexity Bs(n)

- počet laboratorních procedur (popsané v Adleman [2], Winfree [5])
- jedna trvá až desítky minut
- lacksquare za proveditelné budeme uvažovat pouze $Bs(n) \in O(1)$

Binding complexity Bnd(n)

- počet vazeb v koncovém dláždění
- kvůli rostoucí psti chyby proveditelné Bnd(n) polynomiální

Studované složitosti II

Tile complexity Ti(n)

- počet různých dlaždic
- potřeba je syntetizovat proveditelné Ti(n) polynomiální

Glue complexity GI(n)

- počet různých lepidel sekvencí
- dlouhé se mohou vázat chybně proveditelné Gl(n) polynomiální

Turingovská univerzalita aTAMu

Tvrzení (Winfree [5])

aTAM je při teplotě $\tau = 2$ Turingovsky univerzální (TU).

- důkaz převodem na celulární automat
- nezjistím nic o spotřebě zdrojů

Vlastní důkaz

- přímočarý
- v práci str. 15-16

Meze studovaných složitostí

Lemma

Studované složitosti v tomto systému jsou omezené:

Biostep. $Bs(n) \in O(1)$.

Binding. $Bnd(n) \in O(s(n) \cdot t(n))$, $kde\ t(n)$ je čas a s(n) prostor spotřebovaný simulovaným TS.

Tile. $Ti(n) \in O(n)$.

Glue. $Gl(n) \in O(n)$.

Proveditelnost BPP při $\tau=2$

BPP je třída jazyků rozhodnutelných pravděpodobnostním Turingovým strojem (PTS) v polynomiálním čase, považuje se za proveditelnou

Z předchozího lemmatu plyne:

Důsledek

BPP je proveditelná v modelu aTAM při $\tau=2$.

Poznámka

 $P \subseteq BPP$.

Přizpůsobení aTAMu řešení NP problémů

Odvozen z Winfreeho ukázky řešení problému Hamiltonovské cesty

Poznámka

Tento model lze snadno simulovat klasickým aTAMem.

Přizpůsobení aTAMu řešení NP problémů

(b) Schéma sebeskladu

(c) Model

Obrázek: Evoluce modelu od molekul k dlaždicím.

Problém k-kliky

NP-úplný problém

Obrázek: Nalezení k-kliky. Řazení barev je dáno jejich vlnovou délkou.

Simulace v xgrow

xgrow je open-source simulátor jak kinetických tak abstraktních modelů.

- skriptem (na CD) k zadanému grafu generuji potřebné dlaždice
- se zapnutím kinetiky není jednoduché dosáhnout bezchybného dláždění

Reference I

Molecular computation of solutions to combinatorial problems. *Science - New York then Washington*, pages 1021–1024, 1994.

Leonard M Adleman.

On constructing a molecular computer. 1995.

Matthew Cook, Yunhui Fu, and Robert Schweller.

Temperature 1 self-assembly: Deterministic assembly in 3d and probabilistic assembly in 2d.

In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pages 570–589. SIAM, 2011.

Tsu Ju Fu and Nadrian C Seeman.

Dna double-crossover molecules.

Biochemistry, 32(13):3211-3220, 1993.

Reference II

Erik Winfree.

Algorithmic self-assembly of DNA.

PhD thesis, California Institute of Technology, 1998.