▶ CHAPTER 02 데이터 다루기

혼자 공부하는 머신러닝+딥러닝 (개정판)

한국공학대학교 게임공학과 이재영

학습 로드맵

이 책의 학습 목표

• CHAPTER 01: 나의 첫 머신러닝

- 인공지능, 머신러닝, 딥러닝의 차이점을 이해합니다.
- 구글 코랩 사용법을 배웁니다.
- 첫 번째 머신러닝 프로그램을 만들고 머신러닝의 기본 작동 원리를 이해합니다.

• **CHAPTER 02**: 데이터 다루기

- 머신러닝 알고리즘에 주입할 데이터를 준비하는 방법을 배웁니다.
- 데이터 형태가 알고리즘에 미치는 영향을 이해합니다.

• CHAPTER 03: 회귀 알고리즘과 모델 규제

- 지도 학습 알고리즘의 한 종류인 회귀 알고리즘에 대해 배웁니다.
- 다양한 선형 회귀 알고리즘의 장단점을 이해합니다.

• CHAPTER 04: 다양한 분류 알고리즘

- 로지스틱 회귀, 확률적 경사 하강법과 같은 분류 알고리즘을 배웁니다.
- 이진 분류와 다중 분류의 차이를 이해하고 클래스별 확률을 예측합니다.

• CHAPTER 05: 트리 알고리즘

- 성능이 좋고 이해하기 쉬운 트리 알고리즘에 대해 배웁니다.
- 알고리즘의 성능을 최대화하기 위한 하이퍼파라미터 튜닝을 실습합니다.
- 여러 트리를 합쳐 일반화 성능을 높일 수 있는 앙상블 모델을 배웁니다.

이 책의 학습 목표

• CHAPTER 06: 비지도 학습

- 타깃이 없는 데이터를 사용하는 비지도 학습과 대표적인 알고리즘을 소개합니다.
- 대표적인 군집 알고리즘인 k-평균과 DBSCAN을 배웁니다.
- 대표적인 차원 축소 알고리즘인 주성분 분석(PCA)을 배웁니다.

• CHAPTER 07: 딥러닝을 시작합니다

- 딥러닝의 핵심 알고리즘인 인공 신경망을 배웁니다.
- 대표적인 인공 신경망 라이브러리인 텐서플로와 케라스를 소개합니다.
- 인공 신경망 모델의 훈련을 돕는 도구를 익힙니다.

• CHAPTER 08: 이미지를 위한 인공 신경망

- 이미지 분류 문제에 뛰어난 성능을 발휘하는 합성곱 신경망의 개념과 구성 요소에 대해 배웁니다.
- 케라스 API로 합성곱 신경망을 만들어 패션 MNIST 데이터에서 성능을 평가해 봅니다.
- 합성곱 층의 필터와 활성화 출력을 시각화하여 합성곱 신경망이 학습한 내용을 고찰해 봅니다.

• CHAPTER 09: 텍스트를 위한 인공 신경망

- 텍스트와 시계열 데이터 같은 순차 데이터에 잘 맞는 순환 신경망의 개념과 구성 요소에 대해 배웁니다.
- 케라스 API로 기본적인 순환 신경망에서 고급 순환 신경망을 만들어 영화 감상평을 분류하는 작업에 적용해 봅니다.
- 순환 신경망에서 발생하는 문제점과 이를 극복하기 위한 해결책을 살펴봅니다.

Contents

CHAPTER 02 데이터 다루기

SECTION 2-1 훈련 세트와 테스트 세트

SECTION 2-2 데이터 전처리

CHAPTER 02 데이터 다루기

수상한 생선을 조심하라!

학습목표

- 머신러닝 알고리즘에 주입할 데이터를 준비하는 방법을 배웁니다.
- 데이터 형태가 알고리즘에 미치는 영향을 이해합니다.

SECTION 2-1 훈련 세트와 테스트 세트(1)

- 지도 학습(supervised learning)과 비지도 학습(unsupervised learning)
 - 지도 학습 알고리즘은 훈련하기 위한 데이터와 정답이 필요
 - 1장 2절의 '마켓과 머신러닝'에서 보았던 도미와 빙어의 예를 보면 생선의 길이와 무게를 알고리즘에 사용
 - 이 경우 정답은 도미인지 아닌지 여부
 - 지도 학습의 용어
 - 입력(input): 데이터
 - 타깃(target): 정답
 - 훈련 데이터(training data): 입력과 타깃
 - 특성(feature): 입력으로 사용된 길이와 무게 등

- 지도 학습은 정답(타깃)이 있으니 알고리즘이 정답을 맞히는 것을 학습
 - 예를 들어 도미인지 빙어인지 구분
- 비지도 학습 알고리즘은 타깃 없이 입력 데이터만 사용
 - 이런 종류의 알고리즘은 정답을 사용하지 않으므로 무언가를 맞힐 수가 없음
 - 대신 데이터를 잘 파악하거나 변형하는 데 도움이 됨
 - 비지도 학습은 6장에서 학습

7

SECTION 2-1 훈련 세트와 테스트 세트(2)

- 지도 학습(supervised learning)과 비지도 학습(unsupervised learning)
 - 1장에서 도미와 빙어를 구분하기 위해 사용한 k-최근접 이웃 알고리즘은 입력 데이터와 타깃(정답)을 사용했으므로 당연히 지도 학습 알고리즘
 - 이 알고리즘을 훈련하여 생선이 도미인지 아닌지를 판별하고, 이 모델이 훈련 데이터에서 도미를 100% 완벽하게 판별
 - 모든 것이 잘 된 것 같은데 무엇이 문제일까?

SECTION 2-1 훈련 세트와 테스트 세트(3)

- 훈련 세트와 테스트 세트
 - 중간고사를 보기 전에 출제될 시험 문제와 정답을 미리 알려주고 시험을 본다면?
 - 머신러닝도 이와 마찬가지로 도미와 빙어의 데이터와 타깃을 주고 훈련한 다음, 같은 데이터로 테스트한다면 모두 맞히는 것이 당연
 - 머신러닝 알고리즘의 성능을 제대로 평가하려면 훈련 데이터와 평가에 사용할 데이터가 달라야 함
 - 가장 간단한 방법
 - 평가를 위해 또 다른 데이터를 준비
 - 또는, 이미 준비된 데이터 중에서 일부를 떼어 내어 활용 일반적 평가 방법
 - 테스트 세트(test set): 평가에 사용하는 데이터
 - 훈련 세트(train set): 훈련에 사용되는 데이터

SECTION 2-1 훈련 세트와 테스트 세트(4)

- 훈련 세트와 테스트 세트
 - 훈련할 때 사용하지 않은 데이터로 평가하기 위해, 훈련 데이터에서 일부를 떼어 내어 테스트 세트로 사용
 - 먼저 1장에서처럼 도미와 빙어의 데이터를 합쳐 하나의 파이썬 리스트로 준비
 - 1장 3절과 같이 생선의 길이와 무게를 위한 리스트를 준비
 - 손코딩 소스 http://bit.ly/bream_smelt에서 복사하여 학습에 활용
 - 두 파이썬 리스트를 순회하면서 각 생선의 길이와 무게를 하나의 리스트로 담은 2차원 리스트 생성

fish_data = [[I, w] for I, w in zip(fish_length, fish_weight)] fish_target = [1]*35 + [0]*14

- 껌글(sample). 아낙의 갱신 네익디
- 도미와 빙어는 각각 35마리, 14마리가 있으므로 전체 데이터는 49개의 샘플
- 사용하는 특성은 길이와 무게 2개
- 이 데이터의 처음 35개를 훈련 세트로, 나머지 14개를 테스트 세트로 사용

2개의 특성
[[25.4, 242.0], 한면 세트 35개 [26.3, 290.0], 한면 세트 35개 [15.0, 19.9]]

SECTION 2-1 훈련 세트와 테스트 세트(5)

- 훈련 세트와 테스트 세트
 - 훈련할 때 사용하지 않은 데이터로 평가하기 위해, 훈련 데이터에서 일부를 떼어 내어 테스트 세트로 사용
 - 먼저 사이킷런의 KNeighborsClassifier 클래스를 임포트하고 모델 객체를 생성

from sklearn.neighbors import KNeighborsClassifier kn = KNeighborsClassifier()

- print(fish_data[0:5]) 마지막 인텍스의, 원소인, 노염의, 기약인트 점을 취임, [29.0, 363.0], [29.0, 430.0]]
- 생선 데이터에서 처음 35개와 나머지 14개를 선택

```
# 훈련 세트로 입력값 중 0부터 34번째 인덱스까지 사용
train_input = fish_data[:35]
# 훈련 세트로 타깃값 중 0부터 34번째 인덱스까지 사용
train_target = fish_target[:35]
# 테스트 세트로 입력값 중 35번째부터 마지막 인덱스까지 사용
test_input = fish_data[35:]
# 테스트 세트로 타깃값 중 35번째부터 마지막 인덱스까지 사용
test_target = fish_target[35:]
```

SECTION 2-1 훈련 세트와 테스트 세트(6)

- 훈련 세트와 테스트 세트
 - 훈련할 때 사용하지 않은 데이터로 평가하기 위해, 훈련 데이터에서 일부를 떼어 내어 테스트 세트로 사용
 - 훈련 세트로 fit() 메서드를 호출해 모델을 훈련하고, 테스트 세트로 score() 메서드를 호출해 평가

kn = kn.fit(train_input, train_target)
kn.score(test_input, test_target)

→ 0.0

- 정확도가 0.0?
- 혼공머신이 무엇을 잘못한 것일까?

- 코랩에서 코드 셀을 만들고 바로 실행하는 방법

• 코드 셀에서 입력을 끝낸 다음 바로 Alt + Enter 키를 누르면 바로 실행하고 그 아래 새 코드 셀을 만들어 줌

SECTION 2-1 훈련 세트와 테스트 세트(7)

- 샘플링 편향(sampling bias)
 - 훈련 세트와 테스트 세트에 샘플이 골고루 섞여 있지 않아 샘플링이 한쪽으로 치우침
 - 마지막 14개를 테스트 세트로 떼어 놓으면 훈련 세트에는 빙어가 하나도 들어 있지 않아, 빙어 없이 모델을 훈련하면 빙어를 올바르게 분류할 수가 없음

SECTION 2-1 훈련 세트와 테스트 세트(8)

- 넘파이(numpy)
 - 파이썬의 대표적인 배열(array) 라이브러리
 - 넘파이는 고차원의 배열을 손쉽게 만들고 조작할 수 있는 간편한 도구를 많이 제공
 - 보통의 xy 좌표계와는 달리 시작점이 왼쪽 아래가 아니고 왼쪽 위에서부터 시작

SECTION 2-1 훈련 세트와 테스트 세트(9)

- 넘파이(numpy)
 - 넘파이 라이브러리 임포트

import numpy as np

- 넘파이 array() 함수에 파이썬 리스트를 전달

```
input_arr = np.array(fish_data)
target_arr = np.array(fish_target)
```

- 넘파이는 배열의 차원을 구분하기 쉽도록 행과 열을 가지런히 출력 출력 결과에서 49개의 행과 2개의 열을 쉽게 확인
- 배열의 크기를 알려주는 shape 속성

2개의 열(특성)
[[25.4, 242.0],
49개의 하 [26.3, 290.0],
(샘플) : : : [15.0, 19.9]]

〉〉 혼자 공부하는 머신러닝+딥러닝 15

[15. 19.9]]

SECTION 2-1 훈련 세트와 테스트 세트(10)

- · 넘파이(numpy)
 - 이 배열에서 랜덤하게 샘플을 선택해 훈련 세트와 테스트 세트로 만들기
 - 배열을 섞은 후에 나누는 방식 대신에 무작위로 샘플을 고르는 방법을 사용
 - input_arr와 target_arr에서 같은 위치는 함께 선택되어야 함에 주의
 - 인덱스를 섞은 다음 input_arr와 target_arr에서 샘플을 선택하면 무작위로 훈련 세트를 나누게 됨
 - 넘파이 arange() 함수를 사용하면 0에서부터 48까지 1씩 증가하는 인덱스를 간단히 만들 수 있음
 - 다음으로 이 인덱스를 랜덤하게 섞기

np.random.seed(42) index = np.arange(49) np.random.shuffle(index)

- 넘파이 arange() 함수에 정수 N을 전달하면 0에서부터 N-1까지 1씩 증가하는 배열을 생성
- 넘파이 random 패키지 아래에 있는 shuffle() 함수는 주어진 배열을 무작위로 섞음
- 만들어진 인덱스를 출력 print(index) —— [13 45 47 44 17 27 26 25 31 19 12 4 34 8 3 6 40 41 46 15 9 16 24 33 30 0 43 32 5 29 11 36 1 21 2 37 35 23 39 10 22 18 48 20 7 42 14 28 38]

SECTION 2-1 훈련 세트와 테스트 세트(11)

- ∘ 넘파이(numpy)
 - 랜덤하게 섞인 인덱스를 사용해 전체 데이터를 훈련 세트와 테스트 세트로 나누기
 - 배열 인덱싱(array indexing): 1개의 인덱스가 아닌 여러 개의 인덱스로 한 번에 여러 개의 원소를 선택

```
print(input_arr[[1,3]]) [ 26.3 290. ] [ 29. 363. ]]
```

- 리스트 대신 넘파이 배열을 인덱스로 전달
- 앞의 index 배열 처음 35개를 input_arr와 target_arr에 전달하여 랜덤하게 35개의 샘플을 훈련 세트로 생성

```
train_input = input_arr[index[:35]]
train_target = target_arr[index[:35]]
```

• 나머지 14개를 테스트 세트로 생성

```
test_input = input_arr[index[35:]]
test_target = target_arr[index[35:]]
```

SECTION 2-1 훈련 세트와 테스트 세트(12)

- ∘ 넘파이(numpy)
 - 훈련 세트와 테스트 세트에 도미와 빙어가 잘 섞여 있는지 산점도로 확인

〉〉 혼자 공부하는 머신러닝+딥러닝

length

SECTION 2-1 훈련 세트와 테스트 세트(13)

- 두 번째 머신러닝 프로그램
 - 앞서 만든 훈련 세트와 테스트 세트로 k-최근접 이웃 모델을 훈련
 - fit() 메서드를 실행할 때마다 KNeighborsClassifier 클래스의 객체는 이전 학습한 모든 것을 잃어버림
 - 이전 모델을 그대로 두고 싶다면 KNeighborsClassifier 클래스 객체를 새로 만들어야 함
 - 여기에서는 단순하게 이전에 만든 kn 객체를 그대로 사용
 - 인덱스를 섞어 만든 train_input과 train_target으로 모델을 훈련 kn = kn.fit(train_input, train_target)
 - test_input과 test_target으로 이 모델을 테스트
 kn.score(test_input, test_target)
 1.0
 - predict() 메서드로 테스트 세트의 예측 결과와 실제 타깃을 확인

• predict() 메서드가 반환하는 값은 단순한 파이썬 리스트가 아닌 넘파이 배열

SECTION 2-1 훈련 세트와 테스트 세트(14)

- 훈련 모델 평가(문제해결 과정)
 - 문제
 - 알고리즘이 도미와 빙어를 모두 외우고 있다면 같은 데이터로 모델을 평가하는 것은 이상하지 않은가?
 - 모델을 훈련할 때 사용한 데이터로 모델의 성능을 평가하는 것은 정답을 미리 알려주고 시험을 보는 것과 같음
 - 해결
 - 공정하게 점수를 매기기 위해서는 훈련에 참여하지 않은 샘플을 사용
 - 훈련 데이터를 훈련 세트와 테스트 세트로 나누어, 훈련 세트로는 모델을 훈련하고 테스트 세트로 모델을 평가
 - 훈련 세트나 테스트 세트에 어느 한 생선만 들어가 있다면 올바른 학습이 이루어지지 않음
 - 도미와 빙어를 골고루 섞어 나누기 위해 파이썬의 다차원 배열 라이브러리인 넘파이를 사용
 - 넘파이는 파이썬의 리스트와 비슷하지만 고차원의 큰 배열을 효과적으로 다룰 수 있고 다양한 도구를 많이 제공
 - 이 절에서는 넘파이의 shuffle() 함수를 사용해 배열의 인덱스를 섞었음
 - 결과
 - 테스트 세트에서 100%의 정확도를 달성

SECTION 2-1 마무리(1)

- 키워드로 끝내는 핵심 포인트
 - 지도 학습은 입력과 타깃을 전달하여 모델을 훈련한 다음 새로운 데이터를 예측하는 데 활용
 - 1장에서부터 사용한 k-최근접 이웃이 지도 학습 알고리즘
 - 비지도 학습은 타깃 데이터가 없음
 - 무엇을 예측하는 것이 아니라 입력 데이터에서 어떤 특징을 찾는 데 주로 활용
 - 훈련 세트는 모델을 훈련할 때 사용하는 데이터
 - 보통 훈련 세트가 클수록 좋음
 - 테스트 세트를 제외한 모든 데이터를 사용
 - 테스트 세트는 전체 데이터에서 20~30%를 테스트 세트로 사용하는 경우가 많음
 - 전체 데이터가 아주 크다면 1%만 덜어내도 충분

SECTION 2-1 마무리(2)

- 핵심 패키지와 함수
 - numpy
 - seed()는 넘파이에서 난수를 생성하기 위한 정수 초깃값을 지정
 - 초깃값이 같으면 동일한 난수를 뽑을 수 있으므로 랜덤 함수의 결과를 동일하게 재현하고 싶을 때 사용
 - arange()는 일정한 간격의 정수 또는 실수 배열을 만들고, 본 간격은 1. 매개변수가 하나이면 종료 숫자를 의미 0에서 종료 숫자까지 배열을 만듦. 종료 숫자는 배열에 포함되지 않음

```
print(np.arange(3)) → [0, 1, 2]

매개변수가 2개면 시작 숫자, 종료 숫자를 의미
print(np.arange(1, 3)) → [1, 2]

매개변수가 3개면 마지막 매개변수가 간격을 나타냄
print(np.arange(1, 3, 0.2)) → [1, 1.2, 1.4, 1.6, 1.8, 2., 2.2, 2.4, 2.6, 2.8]
```

• shuffle()은 주어진 배열을 랜덤하게 섞음 - 다차원 배열일 경우 첫 번째 축(행)에 대해서만 섞음

```
arr = np.array([[1, 2], [3, 4], [5, 6]])
np.random.shuffle(arr)
print(arr)

[[3 4]
[5 6]
[1 2]]
```

22

SECTION 2-1 확인 문제

- 머신러닝 알고리즘의 한 종류로서 샘플의 입력과 타깃(정답)을 알고 있을 때 사용할 수 있는 학습 방법은 무엇인가?
 - ① 지도 학습

- ② 비지도 학습
- ③ 차원 축소 ④ 강화 학습

- 2 훈련 세트와 테스트 세트가 잘못 만들어져 전체 데이터를 대표하지 못하는 현상을 무엇이라고 부르 나?

 - ① 샘플링 오류 ② 샘플링 실수
 - ③ 샘플링 편차 ④ 샘플링 편향

23

SECTION 2-1 확인 문제

사이킷런은 입력 데이터(배열)가 어떻게 구성되어 있을 것으로 기대하나?

① 행 : 특성, 열 : 샘플

② 행 : 샘플, 열 : 특성

③ 행 : 특성, 열 : 타깃 ④ 행 : 타깃, 열 : 특성

4. 다음 중 배열 arr에서 두 번째 원소에서부터 다섯 번째 원소까지 선택하기 위해 올바르게 슬라이싱 연산자를 사용한 것은 무엇인가요?

① arr[2:5]

② arr[2:6]

③ arr[1:5]

4 arr[1:6]

SECTION 2-2 데이터 전처리(1)

- 새로운 문제: 길이가 25cm이고 무게가 150g이면 도미? 빙어?
- 넘파이로 데이터 준비하기
 - 생선 데이터 준비: 소스 <u>http://bit.ly/bream_smelt</u>에서 복사
 - 넘파이를 임포트
 - 넘파이의 column stack() 함수는 전달받은 리스트를 일렬로 세운 다음 차례대로 나란히 연결 2개의 리스트를 나란히 붙이기. 연결할 리스트는 파이썬 튜플(tuple)로 전달

```
array([[1, 4],
np.column_stack(([1,2,3], [4,5,6]))
                                                                 [2, 5],
                                                                 [3, 6]]
```

- 동일한 방법으로 fish_length와 fish_weight를 병합 fish_data = np.column_stack((fish_length, fish_weight))
- 두 리스트가 잘 연결되었는지 처음 5개의 데이터를 확인

```
print(fish_data[:5])
                                                   [[ 25.4 242. ]
                                                    [26.3 290.]
                                                    [ 26.5 340. ]
                                                    [ 29. 363. ]
                                                    [ 29. 430. ]]
```

SECTION 2-2 데이터 전처리(2)

- 넘파이로 데이터 준비하기
 - np.ones()와 np.zeros() 함수로 타깃 데이터 만들기
 - 이 두 함수는 각각 원하는 개수의 1과 0을 채운 배열을 만들어 줌 print(np.ones(5)) → [1. 1. 1. 1.]
 - 첫 번째 차원을 따라 배열을 연결하는 np.concatenate() 함수를 사용
 - 1이 35개인 배열과 0이 14개인 배열 만들기

▲ np.column_stack() 함수와 np.concatenate() 함수의 연결 방식

SECTION 2-2 데이터 전처리(3)

- 넘파이로 데이터 준비하기
 - np.concatenate() 함수를 사용해 타깃 데이터를 만들기 np.column_stack()과 마찬가지로 연결한 리스트나 배열을 튜플로 전달해야 함

```
fish_target = np.concatenate((np.ones(35),
np.zeros(14)))
```

- 데이터가 살 만늘었는지 왁인

- 데이터가 클수록 파이썬 리스트는 비효율적이므로 넘파이 배열을 사용하는 게 좋음

SECTION 2-2 데이터 전처리(4)

- 사이킷런으로 훈련 세트와 테스트 세트 나누기
 - 사이킷런은 머신러닝 모델을 위한 알고리즘뿐만 아니라 다양한 유틸리티 도구도 제공
 - train_test_split() 함수는 전달되는 리스트나 배열을 비율에 맞게 훈련 세트와 테스트 세트로 나누어 줌
 - train_test_split() 함수는 사이킷런의 model_selection 모듈 아래 있으며 다음과 같이 임포트 from sklearn.model_selection import train_test_split

 - fish_data와 fish_target 2개의 배열을 전달했으므로 2개씩 나뉘어 총 4개의 배열이 반환

SECTION 2-2 데이터 전처리(5)

- 사이킷런으로 훈련 세트와 테스트 세트 나누기
 - 넘파이 배열의 shape 속성으로 입력 데이터의 크기를 출력

- 도미와 빙어가 잘 섞였는지 테스트 데이터를 출력 print(test_target) → [1. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 도미: 빙어=35: 14=2.5: 1 → 테스트 데이터의 도미: 빙어=10: 3=3.3: 1 (샘플링 편향이 다소 나타남)
- 무작위로 데이터를 나누었을 때 샘플이 골고루 섞이지 않거나, 특히 일부 클래스의 개수가 적을 때 이런 일이 발생. 훈련 세트와 테스트 세트에 샘플의 클래스 비율이 일정하지 않다면 모델이 일부 샘플을 올바르게 학습할 수 없음
- train_test_split() 함수는 이런 문제를 간단히 해결 stratify 매개변수에 타깃 데이터를 전달하면 클래스 비율에 맞게 데이터를 나눔 훈련 데이터가 작거나 특정 클래스의 샘플 개수가 적을 때 특히 유용

SECTION 2-2 데이터 전처리(6)

- 사이킷런으로 훈련 세트와 테스트 세트 나누기
 - train_test_split() 함수로 데이터 나누기

```
train_input, test_input, train_target, test_target =
train_test_split(
    fish_data, fish_target, stratify=fish_target,
random_state=42)
```

• test_target 줄력하면 테스트 세트 비율이 2.25:1

print(test_target) — [0. 0. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1.]

SECTION 2-2 데이터 전처리(7)

- 수상한 도미 한 마리
 - 앞에서 준비한 데이터로 k-최근접 이웃을 훈련(1장에서 했던 것과 동일)
 - 훈련 데이터로 모델을 훈련하고 테스트 데이터로 모델을 평가

```
from sklearn.neighbors import

KNeighborsClassifier

kn = KNeighborsClassifier()

kn.fit(train_input, train_target)

kn.score(test_input, test_target)
```

• 김 팀장이 알려준 노미 데이터를 넣고 결과를 확인(25cm, 150g)

```
print(kn.predict([[25, 150]])) ———— [0.]
```

• 이 샘플을 다른 데이터와 함께 산점도로 표시

```
import matplotlib.pyplot as plt
plt.scatter(train_input[:,0], train_input[:,1])
plt.scatter(25, 150, marker='^') # marker 매개변수는 모양을 지정합니다
plt.xlabel('length')
plt.ylabel('weight')
plt.show()
```

• 이 샘플은 분명히 오른쪽 위로 뻗어 있는 다른 도미 데이터에 더 가까운데, 왜 이 모델은 왼쪽 아래에 낮게 깔린 빙어 데이터에 가깝다고 판단한 걸까?

SECTION 2-2 데이터 전처리(7)

- 수상한 도미 한 마리
 - k-최근접 이웃은 주변의 샘플 중에서 다수인 클래스를 예측으로 사용
 - KNeighborsClassifier 클래스는 주어진 샘플에서 가장 가까운 이웃을 찾아 주는 kneighbors() 메서드를 제공 이 메서드는 이웃까지의 거리와 이웃 샘플의 인덱스를 반환
 - KNeighborsClassifier 클래스의 이웃 개수인 n_neighbors의 기본값은 5이므로 5개의 이웃이 반환됨 distances, indexes = kn.kneighbors([[25, 150]])
 - indexes 배열을 사용해 훈련 데이터 중에서 이웃 샘플을 따로 구분해 산점도 그리기

```
plt.scatter(train_input[:,0], train_input[:,1])
plt.scatter(25, 150, marker='^')
plt.scatter(train_input[indexes,0],
train_input[indexes,1], marker='D')
plt.xlabel('length')
plt.ylabel('weight')
plt.show()
```


▲ 삼각형 샘플에 가장 가까운 5개의 샘플이 초록 다이아몬드로 표시

SECTION 2-2 데이터 전처리(8)

• 수상한 도미 한 마리

• 삼각형 샘플에 이웃한 데이터 확인

• 타깃 데이터로 확인

• kneighbors() 메서드에서 반환한 distances 배열(이웃 샘플까지의 거리)을 출력

SECTION 2-2 데이터 전처리(9)

- 기준을 맞춰라
 - 산점도에서 삼각형 샘플에 가장 가까운 첫 번째 샘플까지의 거리는 92이고, 그외 가장 가까운 샘플들은
 - 모두 130, 138, 그런데 거리가 92와 130이라고 했을 때 그래프에 나타난 거리 비율이 이상하지 않은가?
 - x축은 범위가 좁고(10~40), y축은 범위가 넓음(0~1000)
 - 따라서 y축으로 조금만 멀어져도 거리가 아주 큰 값으로 계산
 - 이 때문에 오른쪽 위의 도미 샘플이 이웃으로 선택되지 못함

SECTION 2-2 데이터 전처리(10)

- 기준을 맞춰라
 - 맷플롯립에서 xlim() 함수를 사용하여 x축의 범위를 동일하게 0~1,000으로 지정 (비슷하게 y축 범위를 지정하려면 ylim() 함수를 사용)

```
plt.scatter(train_input[:,0], train_input[:,1])
plt.scatter(25, 150, marker='^')
plt.scatter(train_input[indexes,0], train_input[indexes,1],
marker='D')
plt.xlim((0, 1000))
plt.xlabel('length')
plt.ylabel('weight')
plt.show()
```

- 생선의 길이(x축)는 가장 가까운 이웃을 찾는 데 크게 영향을 미치지 못하고, 생선의 무게(y축)만 고려 대상이 됨
- 두 특성의 스케일(scale)이 다르기 때문

SECTION 2-2 데이터 전처리(11)

- 기준을 맞춰라
 - 데이터 전처리(data preprocessing)
 - 데이터를 표현하는 기준이 다르면 알고리즘이 올바르게 예측할 수 없음 알고리즘이 거리 기반일 때 특히 그러하고, k-최근접 이웃도 포함됨
 - 이런 알고리즘들은 샘플 간의 거리에 영향을 많이 받으므로 제대로 사용하기 위해 특성값을 일정한 기준으로 맞춰 주는 작업이 데이터 전처리
 - 표준점수(standard score, 혹은 z 점수): 표준점수는 각 특성값이 평균에서 표준편차의 몇 배만큼 떨어져 있는지를 나타냄. 이를 통해 실제 특성값의 크기와 상관없이 동일한 조건으로 비교

$$z = \frac{x - \mu}{\sigma}$$

• 넘파이로 평균과 표준편차 구하기

mean = np.mean(train_input, axis=0) std = np.std(train_input, axis=0)

- np.mean() 함수는 평균을 계산하고, np.std() 함수는 표준편차를 계산. train_input은 (36, 2) 크기의 배열
- 특성마다 값의 스케일이 다르므로 평균과 표준편차는 각 특성별로 계산. 이를 위해 axis=0으로 지정하여 행을 따라 각 열의 통계 값을 계산

SECTION 2-2 데이터 전처리(12)

• 기준을 맞춰라

mean(평균) 빼기

- 데이터 전처리(data preprocessing)
 - 계산된 평균과 표준편차를 출력 print(mean, std) → [27.29722222 454.09722222] [9.98244253 323.29893931]
 - 원본 데이터에서 평균을 빼고 표준편차로 나누어 표준점수로 변환 넘파이의 브로드캐스팅(broadcasting)

train_scaled = (train_input - mean) / std

SECTION 2-2 데이터 전처리(13)

- 전처리 데이터로 모델 훈련하기
 - 변환한 표준점수와 샘플의 산점도

```
plt.scatter(train_scaled[:,0], train_scaled[:,1])
plt.scatter(25, 150, marker='^')
plt.xlabel('length')
plt.ylabel('weight')
plt.show()
```

120 100 -

140

• 샘플 [20, 150]을 동일한 비율로 변환한 산점도

```
new = ([25, 150] - mean) / std
plt.scatter(train_scaled[:,0], train_scaled[:,1])
plt.scatter(new[0], new[1], marker='^')
plt.xlabel('length')
plt.ylabel('weight')
plt.show()
```

x축과 y축의 범위가 -1.5~1.5 사이로 바뀜

SECTION 2-2 데이터 전처리(14)

- 전처리 데이터로 모델 훈련하기
 - 변환한 데이터셋으로 k-최근접 이웃 모델을 다시 훈련 kn.fit(train_scaled, train_target)
 - 테스트 세트도 훈련 세트의 평균과 표준편차로 변환 test_scaled = (test_input - mean) / std
 - 모델 평가 kn.score(test_scaled, test_target) → 1.0
 - 훈련 세트의 평균과 표준편차로 변환한 김 팀장의 샘플을 사용해 모델의 예측을 출력 print(kn.predict([new])) → [1.]
 - kneighbors() 함수로 이 샘플의 k-최근접 이웃을 구한 다음 산점도 그리기

```
distances, indexes = kn.kneighbors([new])
plt.scatter(train_scaled[:,0], train_scaled[:,1])
plt.scatter(new[0], new[1], marker='^')
plt.scatter(train_scaled[indexes,0],
train_scaled[indexes,1], marker='D')
plt.xlabel('length')
plt.ylabel('weight')
plt.show()
```


SECTION 2-2 데이터 전처리(15)

- 스케일이 다른 특성 처리(문제해결 과정)
 - 문제
 - 도미에 가까운 샘플(25cm, 150g)을 빙어라고 엉뚱한 예측이 발생
 - 샘플의 두 특성인 길이와 무게의 스케일이 다르기 때문에 길이보다 무게의 크기에 따라 예측값이 좌우됨
 - 해결
 - 특성을 표준점수로 변환
 - 특성의 스케일을 조정하는 방법은 표준점수 말고도 더 있지만 대부분의 경우 표준점수로 충분하며 가장 널리 사용하는 방법
 - 주의: 데이터를 전처리할 때 훈련 세트를 변환한 방식 그대로 테스트 세트를 변환해야 함
 그렇지 않으면 특성값이 엉뚱하게 변환될 것이고 훈련 세트로 훈련한 모델이 제대로 동작하지 않음

SECTION 2-2 마무리

- 키워드로 끝나는 핵심 포인트
 - 데이터 전처리는 머신러닝 모델에 훈련 데이터를 주입하기 전에 가공하는 단계
 - 때때로 데이터 전처리에 많은 시간이 소모되기도 함
 - 표준점수는 훈련 세트의 스케일을 바꾸는 대표적인 방법 중 하나
 - 표준점수를 얻으려면 특성의 평균을 빼고 표준편차로 나눔
 - 반드시 훈련 세트의 평균과 표준편차로 테스트 세트를 바꿔야 함
 - **브로드캐스팅**은 크기가 다른 넘파이 배열에서 자동으로 사칙 연산을 모든 행이나 열로 확장하여 수행하는 기능
- 핵심 패키지와 함수
 - scikit-learn
 - train_test_split(): 훈련 데이터를 훈련 세트와 테스트 세트로 나누는 함수
 - kneighbors(): k-최근접 이웃 객체의 메서드

SECTION 2-2 확인 문제

1 이 방식은 스케일 조정 방식의 하나로 특성값을 0에서 표준편차의 몇 배수만큼 떨어져 있는 지로 변환한 값임. 이 값을 무엇이라 부르나?

① 기본 점수

② 원점수

③ 표준점수

④ 사분위수

2 테스트 세트의 스케일을 조정하려고 합니다. 다음 중 어떤 데이터의 통계 값을 사용해야 하나?

① 훈련 세트

② 테스트 세트

③ 전체 데이터

④ 상관없음

SECTION 2-2 확인 문제

3. for 반복문을 사용하지 않고 넘파이 배열의 모든 원소에 대해 산술 연산이 적용되는 기능이 무엇인가요?

① 자동캐스팅

② 연산캐스팅

③ 브로드캐스팅

④ 브로드웨이

4. 다음 중 넘파이 배열 함수가 아닌 것은 무엇인가요?

① ones()

② nils()

③ mean()

4 std()