Статистический анализ данных. Спецкурс. Лекция 1. Базовые понятия теории вероятностей.

Ботанический сад-институт ДВО РАН

Кислов Д.Е. 21 ноября 2017 г.

Структура и задачи курса

- формирование общих представлений о методах теории вероятностей и математической статистики;
- знакомство с математическими методами статистики;
- изучение многофункциональных программных сред для решения практических задач;

Важные исторические даты

- Формирование понятия случайного явления;
 - Боэций С. (Рим, ок. 520 г):

 "случайность не подлинное явление, а результат скрещения независимых друг от друга процессов, каждый из которых имеет вполне определенную причину";
- Предпосылки возникновения теории вероятностей (X-XI век);
- ◆ Попытки систематического изложения теории (Д. Кардано (1501-1576), Н. Тарталья (1499–1557));

Важные исторические даты

- Х. Гюйгенс (1629–1695): Первая книга по теории вероятностей – "О расчетах в азартной игре". Введено понятие среднего значения — математического ожидания;
- ◆ Зарождение статистики: Джон Граунт (1620–1674); Вильям Петти (1623–1687). "Естественные и политические наблюдения над бюллетенями смертности"(Граунт, 1662), "Политическая арифметика"(Петти, 1676);

Рис.: Х. Гюйгенс

Рис.: А. Муавр

Рис.: Я. Бернулли

Важные исторические даты

- И. Ньютон (1642–1727) Я. Бернулли (1654–1705);
 "Искусство предположений" (Бернулли, 1713);
- ◆ Абрахам де Муавр (1667–1754): "Учение о случаях"(Муавр, 1733); П.С. Лаплас (1749 – 1827);
- ▼ Т. Байес (1702–1761) "Формула Байеса"(Байес, 1763);
- ◆ Теория ошибок (конец XVIII) К.Ф. Гаусс (1777-1855);
- ◆ А.Н. Колмогоров (1903–1987) Аксиоматизация теории вероятностей (Колмогоров, 1933);
- lacktriangle К. Пирсон (1857–1936) Критерий χ^2 ; Р.А. Фишер (1890–1962) метод максимального правдоподобия; Е. Нейман (1894–1977) статистическая проверка гипотез;

Предпосылки теории вероятностей: комбинаторные задачи

Задача 1

Кодовый замок состоит из 10 кнопок, а открывается при одновременном нажатии 2 кнопок. Охарактеризовать численно его надежность.

Задача 2

Какова вероятность из цифр 1, 3, 5, 7, 9 сложить заданное пятизначное число?

Задача 3

В селе 2500 жителей. Каждый из них примерно 6 раз в месяц (30 дней) ездит в город, выбирая дни поездок по случайным, независящим от других мотивам. Рассчитать минимальную вместительность поезда, обеспечивающую его переполнение не чаще одного раза за 100 дней.

Основания теории вероятностей

Если ν – число осуществлений некоторого события, то $\frac{\nu}{n}$ – его частота реализации (появления).

ОСНОВНОЕ МОДЕЛЬНОЕ ПОЛОЖЕНИЕ

Частота появления события при многократном повторении эксперимента должна проявлять устойчивость: осуществляя колебания, она должна стремиться к определенному значению.

Что такое вероятность?

Под термином "вероятность" события будем понимать некоторое число, характеризующее частоту его реализации при многократном повторении эксперимента.

Теория вероятностей (TB) и математическая статистика (MC)

Задача ТВ

Построение математических моделей случайных явлений, проявляющих свойство статистической устойчивости.

Задача МС

Формирование выводов на основе данных опыта и представлений теории вероятностей.

Задача

Симметричную монету подбросили 100 раз, из которых 42 раза выпала «решка» и 58 — «орел». Построены 2 модели этого явления: 1) P(«орел»)=1/2, P(«решка»)=1/2; 2) P(«орел»)=2/3, P(«решка»)=1/3. Какую модель следует выбрать?

Основания теории вероятностей

 Таблица:
 Соответствие вероятностных и теоретико-множественных представлений

Множественное понятие	Понятие теории вероятностей
1. Множество A пусто $(A = \emptyset)$.	1. Событие A невозможно.
2. $A \cap B = \emptyset$.	2. Два события несовместны.
$3. A_1 \cap A_2 \cap \ldots \cap A_k = X.$	3. Событие X состоит в одно-
	временном наступлении событий
	A_1, A_2, \ldots, A_k .
$4. A_1 \bigcup A_2 \bigcup \ldots \bigcup A_k = X.$	4. Событие X состоит в наступлении
	одного из событий A_1, A_2, \ldots, A_k .
5. Дополнительное множество к A	5. Событие состоит в ненаступлении
$(\overline{A}).$	события A (в этом случае говорят, что
	наступило противоположное A собы-
	тие).
6. $B \subseteq A$.	6. Ќаступление события B влечет на-
	ступление события A .
7. $A=\Omega$.	7. Событие A достоверно.

Аксиомы теории вероятностей (А.Н. Колмогоров)

Вероятностная модель явления построена, если:

- Задано множество элементарных исходов эксперимента (Ω) и возможных событий (\mathcal{F}) ;
- Каждому событию $A \in \mathcal{F}$ сопоставляется действительное число $P(A) \in [0,1]$, именуемое его вероятностью;
- $P(\Omega) = 1$;
- Для любых двух событий A и B, таких что $A\cap B=\emptyset$, выполнено $P(A\cup B)=P(A)+P(B)$;

Аксиомы теории вероятностей (А.Н. Колмогоров)

Вероятностная модель явления построена, если:

- Задано множество элементарных исходов эксперимента (Ω) и возможных событий (\mathcal{F}) ;
- Каждому событию $A \in \mathcal{F}$ сопоставляется действительное число $P(A) \in [0,1]$, именуемое его вероятностью;
- $P(\Omega) = 1;$
- Для любых двух событий A и B, таких что $A\cap B=\emptyset$, выполнено $P(A\cup B)=P(A)+P(B)$;

Пример

В эксперименте с подбрасыванием монеты: $\Omega = \{ \text{ «Орел», } \text{ «Решка»} \}$; В качестве $\mathcal F$ можно выбрать $\{\Omega, \text{ «Орел», } \text{ «Решка», } \emptyset \}$, или $\mathcal F = \{\Omega, \emptyset \}$, и положить: P(«Орел») = p, P(«Решка») = 1 - p, p < 1.

Схема Бернулли

Задача 4

Эксперимент состоит в n-кратном повторении опыта с двумя исходами. Вероятность «успеха» в опыте равна p, вероятность «неудачи» — $q\ (p+q=1)$. Определить вероятность k успехов при выполнении эксперимента.

Решение

Рассмотрим событие, состоящее в том, что первые k испытаний окончились «успехом», а остальные n-k-k «неудачей». Вероятность такого события — $p^k \cdot q^{n-k}$. Общее число подобных событий в эксперименте, отличающихся порядком «успехов» и «неудач» равно количеству k-элементных подмножеств n-элементного множества, т. е. C_n^k . Следовательно, искомая вероятность определяется выражением: $C_n^k p^k q^{n-k}$. $C_n^k = n!/(k!(n-k)!)$

Задача 5

При посадке тиса приживаемость составляет 10%. Какова вероятность, что из 10 посаженных образцов приживется хотя бы один.

Задача 6

При посадке тиса приживаемость составляет 10%. Какова вероятность, что из 10 посаженных образцов приживется хотя бы один.

Решение

• $(1/10)^{10}$ – не приживется ни один, $1-(1/10)^{10}$ – приживется хотябы один.

Задача 7

При посадке тиса приживаемость составляет 10%. Какова вероятность, что из 10 посаженных образцов приживется хотя бы один.

Решение

- $(1/10)^{10}$ не приживется ни один, $1-(1/10)^{10}$ приживется хотябы один.
- $\sum_{k=1}^{10} C_{10}^k (1/10)^k (9/10)^{n-k}$

Задача 8

При посадке тиса приживаемость составляет 10%. Какова вероятность, что из 10 посаженных образцов приживется хотя бы один.

Решение

- $(1/10)^{10}$ не приживется ни один, $1-(1/10)^{10}$ приживется хотябы один.
- $\sum_{k=1}^{10} C_{10}^k (1/10)^k (9/10)^{n-k}$

Задача 9

При высаживании непикированной рассады помидоров только 80% растений приживаются. Найдите вероятность того, что из десяти посаженных кустов приживется не менее 7.

Схема Бернулли. Планирование эксперимента.

Задача 10

Приживаемость саженцев составляет в среднем 30%. Каков должен быть минимальный объём посадок, чтобы можно было гарантировать выживаемость 50 экземпляров с доверительной вероятностью не меньшей 90%?

Схема Бернулли. Планирование эксперимента.

Задача 11

Приживаемость саженцев составляет в среднем 30%. Каков должен быть минимальный объём посадок, чтобы можно было гарантировать выживаемость 50 экземпляров с доверительной вероятностью не меньшей 90%?

Решение

$$\min_{N} \sum_{k=50}^{N} C_n^k 0.3^k 0.7^{n-k} \ge 0.9$$

Схема Бернулли. Планирование эксперимента.

Задача 12

Приживаемость саженцев составляет в среднем 30%. Каков должен быть минимальный объём посадок, чтобы можно было гарантировать выживаемость 50 экземпляров с доверительной вероятностью не меньшей 90%?

Решение

$$\min_{N} \sum_{k=50}^{N} C_n^k 0.3^k 0.7^{n-k} \ge 0.9$$

Решить такую задачу можно численно, используя язык программирования.

Предельная теорема в схеме Бернулли

Теорема Муавра-Лапласа

Вероятность того, что число успехов в схеме Бернулли (с вероятностью «успеха» p и вероятностью «неудачи» q=1-p находится в интервале $[k_1,\ k_2]$ равна:

$$P(n; k_1, k_2) \approx \Phi\left(\frac{k_2 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{k_1 - np}{\sqrt{npq}}\right)$$
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-t^2/2} dt$$

Случайные величины и их распределения

Эксперимент $\omega_i \in \Omega$:

Определение

Если $P(\omega_i)=p_i$ определены, то преобразование ψ совместно с p_i и Ω определяют дискретную случайную величину $\xi\colon P(\xi=x_i)=p_i.$ Множество $\{(x_i,p_i)\}$ образуют закон распределения случайной величины $\xi.$

Пример

Количество очков, выпавшее при подбрасывании игральной кости, — дискретная случайная величина.

Функция распределения случайной величины

Определение

Функция $F_{\xi}(x) = P(\xi < x)$, где $x \in \mathbb{R}$, называется функцией распределения случайной величины ξ .

Замечание

Случайная величина называется распределенной непрерывно, если соответствующая функция распределения является непрерывной.

Замечание

Для случайных величин, имеющих дискретное распределение, функция распределения терпит разрывы. Аксиомы теории вероятностей определяют основные свойства функции распределения.

Примеры непрерывных и разрывной функций распределения

Стандартная нормальная функция распределения.

Функция распределения случайной величины равномерно распределенной на интервале [0,1].

Разрывная функция распределения

Функция распределения случайной величины — числа очков при подбрасывании кубика.

Свойства функций распределений

Утверждение

Если $F_{\xi}(x)$ — функция распределения случайной величины ξ , то

- $ightharpoonup F_{\xi}(x)$ неубывающая функция;

- $P(a \le \xi < b) = F_{\xi}(b) F_{\xi}(a), a, b \in \mathbb{R}.$

Плотность распределения случайной величины

Определение

Плотностью распределения $(f_{\xi}(x))$ случайной величины ξ называется производная по x(если таковая существует) от функции распределения $F_{\xi}(x)$:

$$f_{\xi}(x) = \frac{dF_{\xi}(x)}{dx}.$$

Замечание

Плотность распределения — скорость изменения вероятности события $\{\xi < x\}$, зависящая от x.

Замечание

Плотность распределения в точке x характеризует вероятность принадлежности случайной величины бесконечно малому интервалу, содержащему x.

Примеры плотностей распределения случайных величин

Плотность стандартного нормального распределения.

f(x)

равномерно на интервале

[-1, 1].

Свойства плотности распределения

Утверждение

Если $f_{\xi}(x)$ плотность распределения случайной величины ξ , то

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(\tau) d\tau;$$

- $\blacktriangleright \lim_{x \to \pm \infty} f_{\xi}(x) = 0;$
- $\int_{-\infty}^{\infty} f_{\xi}(x) = 1;$
- $P(a \le \xi < b) = \int_a^b f_{\xi}(x) dx, a, b \in \mathbb{R}.$

Математическое ожидание и дисперсия

Определение

Дисперсией случайной величины ξ называется число $\mathrm{D}\xi=\mathrm{E}(\xi-\mathrm{E}\xi)^2$, или в случае дискретного распределения — $\mathrm{D}\xi=\sum_i p_i(x_i-\sum_j p_jx_j)^2$; в случае непрерывного распределения с $f_\xi(x)-\mathrm{D}\xi=\int\limits_{-\infty}^{\infty}(x-\mathrm{E}\xi)^2f_\xi(x)dx$, $\mathrm{E}\xi=\int\limits_{-\infty}^{\infty}xf_\xi(x)dx$.

Свойства математического ожидания

- $E(\alpha \xi_1 + \beta \xi_2 + \gamma) = \alpha E \xi_1 + \beta E \xi_2 + \gamma;$
- ightharpoonup $\mathrm{E}\xi_1\xi_2=\mathrm{E}\xi_1\mathrm{E}\xi_2$, если ξ_1 и ξ_2 независимы;
- \triangleright $|\mathrm{E}\xi| \leq \mathrm{E}|\xi|$,

где ξ_1, ξ_2, ξ некоторые случайные величины, для которых определено математическое ожидание; α, β, γ — произвольные действительные числа.

Математическое ожидание и дисперсия

Свойства дисперсии

- $D(\xi_1 + \xi_2) = D\xi_1 + D\xi_2$, если ξ_1, ξ_2 являются независимыми;
- $\triangleright \ \mathrm{D}\alpha = 0, \alpha \in \mathbb{R}; \ \mathrm{D}(\alpha\xi) = \alpha^2\mathrm{D}\xi;$

Характеристики некоторых распределений

- $\xi \in \mathbf{U}_{[0,1]}$ равномерное распределение на интервале $[0,1]\colon \mathrm{E}\xi=1/2,\ \mathrm{D}\xi=1/12;$
- $\xi \in f_{\xi}(x) = \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-x^2/2}$ нормальное распределение: $\mathrm{E}\xi = 0, \ \mathrm{D}\xi = 1; \ (\xi \in \mathcal{N}(0,1), \ \xi$ имеет стандартное нормальное распределение);
- $\eta=\sigma\xi+a$, где $a,\sigma\in\mathbb{R};\xi\in\mathcal{N}(0,1)$, то η имеет нормальное распределение: $\mathrm{E}\xi=a$, $\mathrm{D}\xi=\sigma^2$; $(\xi\in\mathcal{N}(a,\sigma^2))$.

Доверительные интервалы нормального распределения

Несмещенное нормальное распределение с дисперсией σ^2 .

Многомерное нормальное распределение

Определение

Пусть $\Upsilon=(\eta_1,\dots,\eta_n)\in\mathcal{N}(0,1)$ — независимы в совокупности случайные величины; тогда $\Xi=A\Upsilon+b$, где $A=A_{n\times n}$, $\dim b=n$, имеет многомерное нормальное распределение.

Утверждение

Если матрица A невырождена, то Ξ имеет плотность $f_\Xi(x) = \frac{1}{(2\pi)^{n/2}\sqrt{\det(A^TA)}} \mathrm{e}^{-(x-b)^T(A^TA)^{-1}(x-b)/2}.$

Геометрическая интерпретация

Пример многомерного нормального распределения с диагональной матрицей A;

Утверждение

Если для случайной величины ξ определена дисперсия, то

$$P(|\xi - E\xi| \ge \varepsilon) \le \frac{D\xi}{\varepsilon^2},$$

выполнено для любого $\varepsilon > 0$.

Доказательство

Пусть случайная величина ξ непрерывно распределена и, кроме того, $\xi>0$. Дадим оценку вероятности $P(\xi\geq\varepsilon)$. Рассмотрим выражение для математического ожидания случайной величины ξ .

$$\mathrm{E}\xi = \int\limits_{0}^{\infty} x f_{\xi}(x) dx = \underbrace{\int\limits_{0}^{\varepsilon} x f_{\xi}(x) dx}_{>0} + \int\limits_{\varepsilon}^{\infty} x f_{\xi}(x) dx \geq \int\limits_{\varepsilon}^{\infty} x f_{\xi}(x) dx \geq \varepsilon P(\xi \geq \varepsilon),$$

Доказательство

откуда следует, что

$$P(\xi \ge \varepsilon) \le \frac{\mathrm{E}\xi}{\varepsilon}.\tag{*}$$

Положим $\eta=(\xi-\mathrm{E}\xi)^2$, тогда $\mathrm{E}\eta=\mathrm{D}\xi$ и неравенство Чебышева является следствием доказанного неравенства (*).

Задача 13. (применение неравенства Чебышева)

Требуется оценить число необходимых измерений листовой пластинки, чтобы с заданной точностью охарактеризовать ее среднюю длину. Каждое измерение длины представляет собой $l_i=l+\varepsilon_i$, где l – неизвестное среднее, ε_i – случайная величина с нулевым средним и дисперсией σ . Сколько измерений необходимо провести, чтобы выполнялись следующие условия по точности:

$$P(|\hat{l} - l| \ge \varepsilon) \le \gamma,$$

где $\hat{l}=\frac{1}{N}\sum_{i}l_{i}$ — оценка среднего, γ и arepsilon — заданные показатели точности.

Утверждение

Если для случайной величины ξ определена дисперсия, то

$$P(|\xi - \mathrm{E}\xi| \ge \varepsilon) \le \frac{\mathrm{D}\xi}{\varepsilon^2},$$

выполнено для любого $\varepsilon > 0$.

Решение.

Пусть $\varepsilon=0.1$, $\gamma=0.01$, $\sigma^2=0.5$. Из неравенства Чебышева, полагая $\gamma=\frac{n\sigma^2}{n^2\varepsilon^2}$, получим:

$$\begin{split} l_i &= l + \varepsilon_i, \hat{l} = \frac{1}{N} \sum_i l_i \\ P\left(\left|\frac{1}{n} \sum_i \varepsilon_i\right| \geq \varepsilon\right) \leq \frac{\sigma^2}{n\varepsilon^2} \leq \gamma \\ n &\geq \frac{\sigma^2}{\gamma \varepsilon^2} = \frac{0.5}{0.01 \cdot 0.01} = 5000 \end{split}$$

Утверждение

Если для случайной величины ξ определена дисперсия, то

$$P(|\xi - E\xi| \ge \varepsilon) \le \frac{D\xi}{\varepsilon^2},$$

выполнено для любого $\varepsilon > 0$.

Решение.

Пусть $\varepsilon=0.1$, $\gamma=0.01$, $\sigma^2=0.5$. Из неравенства Чебышева, полагая $\gamma=\frac{n\sigma^2}{n^2\varepsilon^2}$, получим:

$$\begin{aligned} l_i &= l + \varepsilon_i, \hat{l} = \frac{1}{N} \sum_i l_i \\ P\left(\left|\frac{1}{n} \sum_i \varepsilon_i\right| \ge \varepsilon\right) \le \frac{\sigma^2}{n\varepsilon^2} \le \gamma \\ n &\ge \frac{\sigma^2}{\gamma \varepsilon^2} = \frac{0.5}{0.01 \cdot 0.01} = 5000 \end{aligned}$$

 $n \geq 5000$ – грубая оценка, ее почти всегда можно улучшить

Центральная предельная теорема (Ц.П.Т.)

Утверждение

Пусть $\{\xi_i\}$ последовательность независимых одинаково распределенных случайных величин, причем $\mathrm{E}\xi_i=a$ и

$$\mathrm{D}\xi_i=\sigma^2\in(0,\infty).$$
 Если $\zeta_n=rac{-an+\sum\limits_{i=1}^n\xi_i}{\sqrt{n}\sigma},$ то

$$P(\zeta_n < x) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt,$$

равномерно по x при $n \to \infty$

Применение Ц.П.Т.

Задача 14.

Дан набор измерений параметра a: $a_i=a+\xi_i,\ i=1,n.$ Погрешности измерений ξ_i являются независимыми одинаково распределенными случайными величинами, имеющими нулевое математическое ожидание и дисперсию $\sigma.$ В качестве оценки параметра a принимается среднее арифметическое $\{a_i\}$: $\sum_i a_i$

 $\hat{a}=rac{\sum\limits_{i}a_{i}}{n}$. Сколько измерений необходимо провести, чтобы достичь заданной точности arepsilon с вероятностью выхода за пределы точности γ .

Решение

Неравенство Чебышева

$$P(\left|\frac{\sum_{i} \xi_{i}}{n}\right| \ge \varepsilon) \le \frac{\sigma^{2}}{n\varepsilon^{2}} \equiv \gamma,$$

$$n \ge \frac{\gamma^{-1}\sigma^2}{\varepsilon^2}.$$

При $\sigma = 1$, $\varepsilon = 0.01$, $\gamma = 0.01$: $n \ge 10^6$.

Ц.П.Т.

$$P\left(\left|\frac{\sum_{i} \xi_{i}}{n}\right| < \varepsilon\right) \approx \frac{2}{\sqrt{2\pi}} \int_{0}^{\frac{\varepsilon\sqrt{n}}{\sigma}} e^{-t^{2}/2} dt \equiv 1 - \gamma.$$

При тех же условиях: $n \ge 2223$.

Вычислительные среды для анализа данных

- R, http://r-project.org + Packages (https://cran.r-project.org/)
- Python, http://python.org
 - Pandas, http://pandas.pydata.org
 - SciPy+NumPy, http://scipy.org
 - Matplotlib, http://matplotlib.org/
 - Scikit-learn, http://scikit-learn.org/
 - .. Packages
- Statistica, http://statsoft.com
- MatLab, http://www.mathworks.org

Интерактивные среды

RStudio Server

www.rstudio.com

Jupiter Notebook

ipython.org/notebook.html

Информационные ресурсы

R:

- С.Э Мастицкий, В.К. Шитиков Статстический анализ и визуализация данных с помощью R, 2014.
- http://www.statmethods.net/

Python:

- У. Маккинни Python и анализ данных, 2015
- М. Лутц Программирование на Python, 2011
- Т. Сегран Программируем коллективный разум, 2008
- http://python.org