

1

Combining the best of formal and natural 3 languagesCombining the best of formal and natural languages Objects Relations Finctions "One plus two equals three." · Objects: one, two, three, one plus two; Relation: equals; • Function: plus. obtained by applying the function "plus" to the objects "one" and "two." "Three" is another name for this object.) "Squares neighboring the wumpus are smelly." Objects: wumpus, squares; Property: smelly; · Relation: neighboring "Evil King John ruled England in 1200." Objects: John, England, 1200; Properties: evil, king Relation: ruled;

• Predicates Quantifiers

 $\rightarrow {\sf AtomicSentence} \ | \ {\sf ComplexSentence}$ AtomicSentence → Predicate | Predicate(Term,...) | Term = Term ComplexSentence → (Sentence) | Sentence] | ¬Sentence | Sentence ∧ Sentence | Sentence ∨ Sentence | Sentence → Sentence ⇒ Sentence ⇒ Sentence ⇒ Sentence ⇒ Sentence ⇒ Sentence ∪ Quantifier Variable,... Sentence $\rightarrow {\sf Function}({\sf Term,...}) \mid {\sf Constant} \mid {\sf Variable}$ Term Quantifier $\exists \ | \, \forall \, \in$ Constant \rightarrow A | X1 | John | \cdots \rightarrow a|x|s|... Variable Predicate \rightarrow True | False | After | Loves | Raining | \cdots Function \rightarrow Mother | LeftLeg | \cdots OPERATOR PRECEDENCE : ¬,=,Λ,V,⇒,⇔ The syntax of first-order logic with equality, specified in Backus–Naur form (see page 1060 if you are not familia with this notation). Operator precedences are specified,

- P is the name of predicate
- x is the variable and the argument of P
- With n variables the predicate p has arity n
- · It has no truth values by itself
- P1(x): 3+x = 8
- You can not associate any truth value with the above predicate without defining the domain of x

UNIVERSAL QUANTIFIER • Universal Quantifier is good for writing general rules with universal quantifiers. • $\forall x \ (x+3=8)$: This is not true by the rules of number theory if x is a member of the set of whole numbers • $\forall x (x+1>x)$: This is true for all x where x is an integer

6

5

 Definition: A term is a logical expression referring to an object. It can be a constant symbol or a function symbol like LeftLeg(John).

•Examples:

•John (constant symbol)

•LeftLeg(John) (function symbol referring to King John's left

Atomic Sentences

•Definition: An atomic sentence is formed by a predicate symbol followed by a list of terms, stating facts about objects.

•Examples:
•Brother(Richard, John) states that Richard the Lionheart is King John's brother.
•Married(Father(Richard), Mother(John)) states Richard's father is married to John's mother.

7

Universal and Existantial Quantifiers

•Definition: Universal quantifiers express that a property holds for all objects in a domain.

•Examples:

- •∀x King(x) \Rightarrow Person(x)
 - •states that if x is a king, then x is a person.
 - •Applied to: Richard the Lionheart, King John, and others.

•Definition: Existential quantifiers assert that there is at least one object in the domain for which a property holds.

•Examples:

- •∃x Crown(x) ∧ OnHead(x, John)
 - •states that there exists a crown on John's head.
 - •The crown could be any object satisfying the conditions

9

SEMANTICS

 $\forall x \ p(x) \ \text{is equivalent to} \ p(a1) \ ^p(a2) \dots p(an)$ true for all objects in the domain of discourse D

 $\forall x \ p(x) \ is \ true \ iff \ p(x) \ is \ true \ for \ ALL \ x \ in \ D$

 $\exists x \ p(x) \ is \ equivalent \ to \ p(a1) \ v \ p(a2) \ ... \ p(an)$

Only a particular p(x) has to be true if the entire propositional statement is true

 $\exists x p(x)$ is true iff p(x) is true for SOME x in D

Complex Sentences

•Definition: Complex sentences are constructed using logical connectives, similar to propositional calculus.

•Examples:

- ¬Brother(LeftLeg(Richard), John)
- •states that Richard's left leg is not John's brother.
- •Brother(Richard, John) ∧ Brother(John,
 - •implies the brotherhood is mutual.

EXISTENTIAL QUNATIFIER

Someone from Pakistan had won the Nobel prize

∃x pakistani(x) ∧ wonNobelPrize(x)

Some of the students in the AI class got an A.

 $\circ \exists x \ studentOfAl(x) \land gotAnA(x)$

Existential quantifier is true if at least one element x from the specified domain satisfies the statement.

 $\exists x (x+3=5)$ is true

 $\exists x (x+1 < x) \text{ is false}$

10

Relation BETWEEN ∃ & ∀

Everyone dislikes Ahmad:

- ∀x ¬Likes (x, Ahmad)
- ¬∃x Likes (x, Ahmad)

Everyone likes Ahmad:

- ∀x Likes (x, Ahmad)
- ¬∃x ¬ Likes (x, Ahmad)

Rules

12

 $\forall x \neg P(x) \equiv \neg \exists x P(x)$ $\neg \forall x P(x) \equiv \exists x \neg P(x)$ $\forall x P(x) \equiv \neg \exists x \neg P(x)$ $\exists x P(x) \equiv \neg \forall x \neg P(x)$ $\neg P \land \neg Q \equiv \neg (P \lor Q)$ $\neg (P \land Q) \equiv \neg P \lor \neg Q$ $(P \land Q) \equiv \neg(\neg P \lor \neg Q)$ $(P \lor Q) \equiv \neg(\neg P \land \neg Q)$

KR IN FIRST ORDER LOGIC

You have to perform the following tasks for representing the knowledge by first order logic:

- Identify the objects
- · Establish relationships among those identified objects
- Encode the knowledge about these objects using relations in the form of rules
- Grandfather(X,Y) <- father (X,Z) ^ father (Z,Y)

Inference engine then can use that knowledge to infer new facts and

13

SKOLEMIZATION

- >The process of removing existential quantifiers
- Example: someone likes Ahmad
- >∃x Likes (x, Ahmad)
- >Get rid of existential quantifier by replacing x with a constant(called skolem constant) that doesn't exist in the KB
 - >∃x Likes (Const1, Ahmad) {x/Const1}
- >For complex examples you may have to use Skolem function. Consider this

 $\forall x[\exists y[mother(y,x)]]$

> If just replace the existential quantification with a constant we get

 $\forall x[mother(M302, x)]]$

> Which says M302 is everyone's mother. In this case we have to use a Skolem function rather than Skolem constant

 $\forall x [mother(f1(x), x)]]$

15

UNIFICATION

It is the process or algorithm for determining substitutions so that we can make two predicates match

Example: unify(father(X,Akram),father(Ali,Akram))={X/Ali}

FORMAL DEFINITION

- Unify(C,D)= θ so that Cθ = Dθ
- If no such θ exists then fail

RULES: θ must satisfy the following:

- No variable is bound to two different values $\theta \text{=}\{\text{X/Ann,X/Bill}\}$ is invalid
- No variable in θ is bound to a term that contains the variable itself θ = {X/f(X)} is invalid

In unification you can do the following:

- replace variable by constant
- replace variable by variable
- replace a variable by a function expression

KR IN FIRST ORDER LOGIC EXAMPLES

>Mother is a female parent:

 $\triangleright \forall x \exists y \text{ female(y)} \land \text{parent(y,x)} \Leftrightarrow \text{mother(y,x)}$

> Husband is male spouse

 $\triangleright \forall w,h \text{ husband(h,w)} \Leftrightarrow Male(h) \land spouse(h,w)$

> Disjoint categories e.g. male, female

∀x male(x) ⇔ ¬ Female(x)

>Grandparent relation

 \forall g,c grandparent(g,c) \Leftrightarrow \exists p Parent(g,p) \land Parent(p,c)

➤ Sibling relation

 $ightharpoonup \forall x,y \; Sibling(x,y) \Leftrightarrow x \neq y \land \exists p \; Parent(p,x) \land Parent(p,y)$

14

Substitution

Substitutions are also known as bindings

A substitution is a list of variable-constant bindings of the form

- $\theta = \{var_1/val_1, v_2/g_2, ...\}$ where \textbf{var}_i are variables and \textbf{val}_i is the value substituted for \textbf{var}_i
- If there is a clause C then $\text{C}\theta$ is the atom we get when all occurrences of variables in θ are replaced by their ground terms
 - Example: C = parent(X,Y), θ = {X/Ali,Y/Akram},C θ =father(Ali,Akram)

16

UNIFICATION EXAMPLES

Unify(f(a,X), f(a,b))

 $= \{X/b\}$

 $Unify(f(a,\!X),\!f(Y,\!b))$ $= \{Y/a, X/b\}$

Unify(f(a,b),f(a,b))

 $\begin{aligned} &Unify(X,Y) \\ &= \{X/Y\} \end{aligned}$

 $Unify(f(a,\!X),\!f(a,\!g(Y)))$

 $= \{X/g(Y)\}$

Unify(f(a,X),f(X,b))

= fail (X is bound to a & b)

Unify(f(a,b),f(a,c)) a,b,c are constants

= fail (no match was found)

Unify(f(a,b),g(a,X))

= fail (different predicates) Unify(f(a,X),f(a,g(X)))

= fail(X is bound to a term that contains itself)

18

Example

- $\begin{array}{l} \bullet \ \, \text{hasWings(X)} \Rightarrow \text{flies(X)} \\ \bullet \ \, \text{hasWings(Tweety)} \end{array}$
- θ = Unify (has_wings(X),has_wings(Tweety)) = {X/Tweety}
- So we can conclude that:flies(Tweety)