ETH zürich

Constraint-based causal structure learning

Causality
Christina Heinze-Deml
Spring 2019

Announcements

- Series 5 will be uploaded later today
- No class on May 29

Last week

- Estimation
- Markov properties
- Causal minimality

Today

- Faithfulness
- Markov equivalence
- CPDAGs
- SGS algorithm
- PC algorithm

Graph terminology

- A triple (i, j, k) in a DAG G is called a v-structure (or immorality or unshielded collider) if
 - $i \rightarrow j \leftarrow k \text{ in } G$, and
 - i and k are not adjacent in G.
- A triple (i, j, k) in a DAG G is called a an unshielded triple if
 - i and j are adjacent in G, and
 - j and k are adjacent in G, and
 - i and k are not adjacent in G.

Global Markov property

- Given a DAG G = (V, E), a distribution P with density p on X_V is said to satisfy:
 - The global Markov property wrt *G* if for all pairwise disjoint subsets *A*, *B* and *S* of *V*:

A and **B** are d-separated by **S** in $G \Rightarrow X_A \perp \!\!\!\perp X_B \mid X_S \mid P$

Faithfulness and perfect maps

• Given a DAG G = (V, E), a distribution P on X_V is said to be faithful with respect to G if for all pairwise disjoint subsets A, B and S of V:

$$X_A \perp \!\!\!\perp X_B | X_S \text{ in } P \Rightarrow A \text{ and } B \text{ are d-separated by } S \text{ in } G$$

• If a distribution P is Markov and faithful with respect to a DAG G, then G is said to be a perfect map of P. In this case, we have that for all pairwise disjoint subsets A, B and S of V:

 $X_A \perp \!\!\!\perp X_B \mid X_S \text{ in } P \iff A \text{ and } B \text{ are d-separated by } S \text{ in } G$

Faithfulness and perfect maps

If a distribution P is Markov and faithful with respect to a DAG G, then G is said to be a perfect map of P. In this case, we have that for all pairwise disjoint subsets A, B and S of V:

 $X_A \perp \!\!\!\perp X_B \mid X_S \text{ in } P \iff A \text{ and } B \text{ are d-separated by } S \text{ in } G$

- Combination of the Markov and faithfulness assumptions creates one-to-one link between d-separation in the DAG and conditional independence in P
- This will turn out to be very convenient for structure learning
- Not every distribution has a perfect map

Examples

Clicker question – Faithfulness

Let (X₁, X₂, X₃) with joint distribution P be generated from the following SEM with DAG G

$$X_1 \leftarrow \epsilon_1$$

$$X_2 \leftarrow 2X_1 + \epsilon_2$$

$$X_3 \leftarrow 4X_1 - 2X_2 + \epsilon_3$$

with ϵ_1 , ϵ_2 , ϵ_3 jointly independent.

Perfect maps and Markov equivalence

- **Example:** $X \to Y$, $X \leftarrow Y$ imply the same d-separation: $X \pm Y$
- Definition: Two DAGs G_1 and G_2 are Markov equivalent if they describe the same set of d-separation relationships, i.e., for all pairwise disjoint subsets A, B and S of V, we have:

A and **B** are d-separated by **S** in $G_1 \Leftrightarrow A$ and **B** are d-separated by **S** in G_2

A perfect map (if it exists) is unique up to Markov equivalence

Constraint-based structure learning

- Problem:
 - Suppose a distribution P is generated from a SEM with DAG G
 - We only get to see the distribution $P \operatorname{can} we \operatorname{learn}$ the DAG G?
- P is Markov wrt G
- If we also assume that P is faithful wrt G, then G is a perfect map of P
 - d-separation relationships in G correspond exactly to conditional independencies in P
- Note that we also assume "no hidden variables" (causal sufficiency)
- Main idea: given all conditional independence relationships in the observational distribution, we should be able to infer things about G

Example

Markov equivalence

- In general, we cannot identify G from observational data
- But we can identify the Markov equivalence class of G
- Example:

		$X_1 \perp \!\!\! \perp X_3$	$X_1 \perp \!\!\! \perp X_3 X_2$
no	$1 \rightarrow 2 \rightarrow 3$	false	true
as of stars	$1 \leftarrow 2 \leftarrow 3$	false	true
v-structure	$1 \leftarrow 2 \rightarrow 3$	false	true
v-structure	$1 \rightarrow 2 \leftarrow 3$	true	false

J Markov J aquisakut Markov

Markov equivalence and CPDAGs

- Theorem (Verma & Pearl, 1990): All DAGs in a Markov equivalence class have the same skeleton and the same v-structures.
- A Markov equivalence class of DAGs can be uniquely represented by a Completed Partially Directed Acyclic Graph (CPDAG):
 - $i \rightarrow j$ iff $i \rightarrow j$ in all DAGs in the Markov equivalence class (direct causal effect)
 - i-j iff there is a DAG in the Markov equivalence class with $i \rightarrow j$ and one with $i \leftarrow j$ (unidentifiable orientations)

CPDAGs

CPDAGs

Example 2 Determine CPDAG of

1 7 3 7 4 - 5

auca a new v-Storicture

(1) MEC (2) CPDAG $1 \stackrel{?}{>} 2 \stackrel{?}{>} 4 - 75$ $1 \stackrel{?}{>} 3 \stackrel{?}{>} 4 - 75$

1 2 3 4 - 7 5

1 = 2 2 4 -7 5

Constraint-based structure learning

- Let G = (V, E) be DAG. Let $i, j \in V$ such that $i \neq j$. Then the following hold:
 - If i and j are adjacent in G, they cannot be d-separated by any subset of the remaining nodes
 - If i and j are not adjacent in G, then they are d-separated by pa(i) or by pa(j)
- Hence, i and j are adjacent if and only if they cannot be d-separated by any subset of the remaining nodes
- Moreover, if they can be d-separated by some subset of the remaining nodes, they can be d-separated by pa(i) or pa(j)

SGS algorithm

- Assuming Markov and faithfulness, a CPDAG can be estimated by the SGSalgorithm of Spirtes, Glymour and Scheines:
 - Determine the skeleton
 - Determine the v-structures
 - Direct as many of the remaining edges as possible

SGS algorithm

- Assuming Markov and faithfulness, a CPDAG can be estimated by the SGSalgorithm of Spirtes, Glymour and Scheines:
 - Determine the skeleton
 - No edge between i and j \Leftrightarrow i and j are d-separated by some subset S of the remaining nodes \Leftrightarrow $X_i \perp \!\!\! \perp X_j \mid X_S$ for some subset S of the remaining nodes
 - Start with the complete graph
 - For all pairs $i \neq j$ assess conditional independence of X_i and X_j given X_s for all subsets s of the remaining nodes and remove an edge if a conditional independence is found.

....

SGS algorithm

- Assuming Markov and faithfulness, a CPDAG can be estimated by the SGSalgorithm of Spirtes, Glymour and Scheines:
 - Determine the skeleton
 - Determine the v-structures
 - By checking for conditional dependence
 - Direct as many of the remaining edges as possible
 - By consistency with already directed edges

Example

PC algorithm

- Assuming Markov and faithfulness, a CPDAG can be estimated by the PCalgorithm of Peter Spirtes and Clark Glymour:
 - Determine the skeleton
 - No edge between i and j \Leftrightarrow i and j are d-separated by $\operatorname{pa}(i,G)$ or $\operatorname{pa}(j,G)$ \Leftrightarrow i and j are d-separated by a subset S' of $\operatorname{adj}(i,G)$ or of $\operatorname{adj}(j,G)$ \Leftrightarrow $X_i \perp\!\!\!\perp X_j \mid X_{S'}$ for a subset S' of $\operatorname{adj}(i,G)$ or of $\operatorname{adj}(j,G)$
 - Start with the complete graph
 - For k = 0, 1, ..., p 2
 - Consider all pairs of adjacent vertices (i, j), and remove edge if X_i and X_j are conditionally independent given some subset of size k of adj(i, G) or of adj(j, G)

PC algorithm

- Assuming Markov and faithfulness, a CPDAG can be estimated by the PCalgorithm of Peter Spirtes and Clark Glymour:
 - Determine the skeleton
 - Determine the v-structures
 - By checking for conditional dependence
 - Direct as many of the remaining edges as possible
 - By consistency with already directed edges

PC algorithm – sample version

- Instead of a conditional independence "oracle", we perform conditional independence tests
- In the multivariate Gaussian setting, this is equivalent to testing for zero partial correlation: $H_0: \rho_{ij|S} = 0$ versus $H_A: \rho_{ij|S} \neq 0$
- The significance level α serves as a tuning parameter for the PC algorithm
 - Do not necessarily want to treat type I error as in traditional testing

Partial correlation

We call X and Y uncorrelated if

$$\rho_{X,Y} = \frac{E(XY) - E(X)E(Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} = 0$$

We say that X and Y are partially uncorrelated given Z if

$$\rho_{X,Y|Z} = \frac{\rho_{X,Y} - \rho_{X,Z} \rho_{Z,Y}}{\sqrt{(1 - \rho_{X,Z}^2)(1 - \rho_{Z,Y}^2)}} = 0$$

• $\rho_{X,Y|Z}$ equals correlation between residuals after linearly regressing X on Z and Y on Z

Partial correlation

In general,

$$\rho_{X,Y|Z} \not\Rightarrow X \perp\!\!\!\perp Y|Z$$
 and $\rho_{X,Y|Z} \not\leftarrow X \perp\!\!\!\perp Y|Z$

See Elements of Causal Inference, Example 7.9

PC algorithm

- Assume that P has a perfect map G. Verify the following statements about the oracle version of the PC algorithm:
 - If an edge i j is removed at some point in the PC algorithm, then i and j are not adjacent in G.
 - At any point in the algorithm, the current skeleton is a supergraph of the skeleton of G.
 - If an edge i j is not removed in the PC algorithm, then i and j are adjacent in G.
 - The output of the skeleton phase of the PC algorithm is the skeleton of G.
 - [See Series 5.]

Recap

- Concepts to know:
 - Faithfulness
 - Markov equivalence
 - CPDAGs
 - SGS algorithm
 - PC algorithm

References and acknowledgments

- Slides adapted from M. Maathuis
- Markov properties, faithfulness and causal minimality
 - Peters, Janzing and Schölkopf (2017). Elements of Causal Inference. Chapter 6.5
- Constraint-based structure learning
 - Shalizi (2019). Chapter 24.
 - Peters, Janzing and Schölkopf (2017). Elements of Causal Inference. Chapter 7.2.1