Asymptotic behavior:

Complexity analysis is also a tool that allows us to explain how an algorithm behaves as the input grows larger. If we feed it a different input, how will the algorithm behave? If our algorithm, takes I second to run for behave? If our algorithm, takes I second to run for an input of size 1000; how will it behave if I double an input of size 1000; how will it behave if I double to have I will it run yest on fort, half on the input size? Will it run yest on fort, half on both of four trues slower?

C.g. of we have 6nty instruction to be executed in the program [where n it input] then

Asymptotic Q(n) = h [we ignow all constant terms]

ig f(n) = 109 justanctions. (Constant) Then O(n) = 1

It means by increasing ar decreasing imputs won't imput Algorishm behaviour.

if f(n) = n+n

or. n. >>>

 $(n) = n^h$

f(n) = n6 + 3n then co(n) = n6

D If any program does not have any tropo then \$(n)=1

2) A single cloop over n items. Yields a(n)=n

3 A loop willing loop yields a(w=i2

9 A look within a look within a look yield f(n)=13 (3) Given a series of for dops that are sequential, the slowest of them determines the asymptotic behavior of program. Two nested loops followed by a single loop is asympotically the as the nested look alone, because the nested looks do winate the Simple loop. M. Delly 7 ages trufas and 1. no+3n Ea(no) all south and no though 2. 2"+12 E O (2") rend and so be to 3. $3^{n} + 2^{n} \in O(3^{n})$ 4. n +n E O (n) a(1): Constant time also. O(n): linear a (n2): quadquetic a (log(n)): logarithmic (6) Programs with a biggord run blower than program with a Smaller a From the best to worst the rankings are. 0(1), 0(legn), 0(n), 0(nlegn), 0(n2), 0(n3) Let &(n) and g(n) be asymptotically non-negative functions. Which of the following is correct. (0 (f(n)+g(n))= max (f(n),g(n))

Big-O notation is It means that one program is asympotrally no worse than n2. It may be better than that or it may be the same of that. If our program is indeed (O(n2), we an day that it is O(n2). This gives us a good estimate of how fast our program runs. O(n) basically gives worst case behavior of current algorishm. O(n) gives worst case behavior of current algo, and even we can wrake made change In she also to make it workse. So O(n) can be worst than a(n) but cannot be better than that of O(n) is upper bound. 1. 0 (n) algo is 0 (n) Sol: True, Don't alter the program. 2. O(n) algo is O(n²) soli- True. 12 is worse than h 3. Q(n2) algo is O(n3) Sol! - True is is worse show it 0(n) alge is 0(1) False. I'm hot worste than h. 5. O(1) also is O(1) (may or may not be true depending on also. 6. O(n) algo is a(1) Un general, false

Data Structure Operations

Data Structure		1		Time Complexity		/			Space Complexity
		Average				Worst		Worst	
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Array	0(1)	0-(n)	O(n)	0(n)	0(1)	0 (n)	O(n)	0 (n)	0 (n)
Stack	O(n)	0 (n)	0(1)	0(1)	O(n)	O(n)	0(1)	0(1)	(n)
Singly-Linked List	(n) 0	0 (n)	0(1)	0(1)	D(n)	O (m)	0(1)	0(1)	(n)
Doubly-Linked List	0 (n)	O(n)	0(1)	0(1)	0.(n)	0 (n)	0(1)	0(1)	O(n)
Skip List	0(log(n))	O(log(n))	0(log(n))	0(log(n))	O(n)	0 (n)	D(n)	0 (n)	
Hash Table	+	0(1)	0(1)	0(1)		0 (n)	(a) c	(n) (n)	O(n log(n))
Binary Search Tree	0(log(n))	O(log(n))	0 (log (n))	O(log(n))	0(n)	0(n)			O(n)
Cartesian Tree	-	0(log(n))	O(log(n))	O(log(n))	-	0 (n)	D(n)	0 (n)	(n)
B-Tree	O(log(n))	O(log(n))	0 (log(n))	0 (log(n))	D(log(n))		(n)	0 (n) 0	O(n)
Red-Black Tree	0 (log(n))	O(log(n))	0(log(n))			O(log(n))	O[log(n1)	O(log(n))	0 (n)
Splay Tree	Piloginii			0(log(n))	0(log(n))	O(log(n))	0(leg(n))	O(log(n))	0 (n)
		O(log(n))	O(log(n))	0 (log(n))		O(log(n))	0(log(n))	O(log(n))	O(n)
AVL Tree	O(log(n))	0(log(n))	O(log(n))	O(10g(n))	0(log(n))	O(log(n))	O(log(ni)	O(log(n))	Q(n)

Array Sorting Algorithms

Algorithm		Time Complex	ity	Space Complexity
	Best	√ Average	Worst	Worst
Quicksort	O(n log(n))	O(n log(n))	0 (n^2)	O(log(n))
Mergesort	O(n log(n))	O(n log(n))	O(n log(n))	(2(n)
Timsort	0 (n)	O(n log(n))	O(n log(n))	
Heapsort	O(n log(n))	O(n log(n))	O(n log(n))	0(n)
Bubble Sort	O(n)	0 (n^2)		0(1)
Insertion Sort	O(n)	O(n^2)	D(n^2)	0(1)
Selection Sort	O(n^2)		0 (n^2)	0(1)
Shell Sort .	Control of the Contro	O(n^2)	O(n^2)	0(1)
Bucket Sort	(a) (D	O((nlog(n))^2)	O((nlog(n)) 12)	0(1)
222222	0 (n+k)	O(n+k)	Q(n^2)	0 (n)
Radix Sort	O(nk)	O(nk)	O(nk)	O(n+k)

Graph Operations

Node / Edge Management	Storage	Add Vertex	Add Edge	Remove Vertex	Remove Edge	Query
Adjacency list	2([V(+[E])	0(1)	0(1)	G(IVI + IEI)	DOISH!	privi
Incidence list	O((VI+1E1)	0(1)	0(1)	D(IEI)	D(IEI)	-
Adjacency matrix	0(171^2)	0(17102)	0(2)	0(17102)	0(1)	0(151)
Incidence matrix	O(V + E)	O(IVI · IEI)	O((V + E)	G(IVI · IEI)	OTIVI - (EI)	OLIELI

Heap Operations

Туре				Time Complex	ity /	V	V
***	Heapify	Find Max	Extract Max	Increase Key	Insert	Delete	Merge
Linked List (sorted)	-	0(1)	0(1)	O(n)	0(n)	0(1)	O(m+n)
Linked List (unsorted)	<u>2</u>	0(n)	0 (n)	0(1)	0(1)	0(1)	0(1)
Binary Heap	O(n)	0(1)	0(log(n))	O(log(n))	O(log(n))	0(log(n))	D(m+n)
Binomial Heap	-	0(1)	0(log(n))	C(log(n))	0(1)	0(log(n))	0(log(n))
Fibonacci Heap		0(1)	0(log(n))	0(1)	3(1)	0(log(n))	0(1)

Bucket Sort: >> n: no. of keys...

K: range of each key (0-K-1)

June 15 (111) (33) Which of the following is asymptotically Smaller ? Olg(lg*n) Blg*(logn) Blog(In) Dlog*(In) Sol :) leg x n (Inverse Albermann fruction) is the hunder of times we can take by repeatedly until we get []. This function can almost be considered Constant for all practical purposes. Option 1: lg (Constant) lg x (legn),] Options: Le Constant option 3 : Q(log(Lb)) = the log(n") = n logn Option 4: a (log * (M)) is constant option 3 is asymptotically biggest. Option 2 & 4 is constant and option 1 is log (constant) So, option 1 is osymptotically Smaller

(1-11 -0) first first forces:

Moster Theorem: T(n) = q T(n/b) + f(n)Case 1: T(n)= O (nlog O (hoga) if $f(n) = O(\log_b a - e)$ asymptotic upper bound

asymptotic upper bound Cost 2: T(n) = O(n b) (n) if f(n) = O (n dbern) with k >0 Cost 3: T(n) = O(f(n)) if $f(n) = \Lambda(n \cdot b) \cdot a + e$ where e is a +ve constant

lind h > 1a>/ and b> 1 are constants and f(n) is a +ve function. Examples :-T(n)=2T(n/2)+1 a = 2 b = 2 f(n) = 1 = n $log_b = log_2 = h$ 1-e - n WE TODAY Put e=1

Cose 1 datisfies.

T(n) = O(n) Any

N-1 = NO

(3) @ T(n) = 2T(n/2)+n a = 2 b = 2 $f(n) = n^{-1}(n) T P = (n)T$ lega leg2 = 0n = (137) As $f(n) = \frac{\log_b a}{n}$: Case 2 applies. O (log b). = a(nlogn) T(n) = 4T(n/2) + 5h 20 3 1 = 100 4 9 $a = 4 b = 2 + (n) = n^{2}$

 $h^{6}g_{b}^{a} = h^{6}g_{2}^{4} = h^{6}g_{2}^{2} = h^{2}g_{2}^{2} = h^{2}g_{2}^{2}$ e=1.5. and nedba > f(n) $-1 - T(n) = O(n^2)$

 $T(n) = 2T(n/2) + h^2$ $a = 2 b = 2 f(n) = n^2$ nlog = n e=1 and f(n) > hedga -. a (n2) - 10 Metals (1943)

T(n)=2T(n/2)+nlogn (10) (8) a=2 b=2 f(n)=nlogh T=(s)T logo a. = n f(n) = log p log n for K=1 i. Coyl 2 applies T(n) = O(n leg2(n)) Ay (6) T(n)= 16T(n/4)+ 25 loga = logy 16 = hogy 7 = 2 logy 4 = 12 f(n) = [n' = 0(n) e = h-2 $= h^{-1}$ T(n) = O(#(n)) = C(n)(318-9) 0 = Q(Lb)0)0 = (N/3-1-2)0 7) T(n)= 0.5T(n/2)+/n a<1. Does not apply.

(8) T(n)=2T(n/2)+n/ligh.

Non polynomial diff. Between f(n) and n logo a

Soes not apply.

9
$$T(n) = T(5n) + 1$$
 $T(1) = 0$ $T(2) = T(5x) + 1$ $T(2) = T(5x) + 1$ $T(2) = T(1.44) + 1$ $T(256) + 1 = T(256)$ $T(256) + 1 = T(256)$ $T(2) + 1 = T(3)$ $T(3) + 1 = T(3)$ T

(10)
$$T(n) = 2T(5n) + legh$$

Put $n = 1$
 $T(1) = 2T(1) + leg$
 $T(i) = 0$
 $T(2) = 2 + (1) + leg$
 $T(3n) = 0$

$$2 + (356) + \log n \leq + ((256)) (n + 26)$$

$$2 + (16) + \log n \leq + (256) (n + 26)$$

$$2 + (16) + \log n \leq + (16) (n + 27)$$

$$2 + (16) + \log n \leq + (16) (n + 27)$$

$$2 + (27) + \log n \leq + (16) (n + 27)$$

$$2 + (27) + \log n \leq + (16) (n + 27)$$

$$4 + (27) + \log n \leq + (16) (n + 27)$$

$$4 + (27) + \log n \leq + (16) (n + 27)$$

$$4 + (27) + \log n \leq + (256) (n + 27)$$

$$4 + (27)$$

a (logn (log logn)) = 64 2 80 (1) 0 ((Cogn)?) = (16) = 256 X Au O (legn (loglogn)) JM (Gre) T - MED + OCE TR 72(R)+632 C 60 1(ME) (ME). (K=N) (SI) T > MEKNITE CEENSON + TONSONS (0) (00 m) = ((10 m) = (10 m) = (10 m) 0 (Se ged, 4) D = MX 36 = (169-169-25) 0

Sol of Tanel 3(111)

T(n) = 2T (L5n) + log n

$$h = 2^m$$
 $T(2^m) = 2T(2^m/2) + log 2^m$
 $T(2^m) = 2T(2^m/2) + log 2^m$
 $T(1) = 2T(1) + log 2^m$
 $T(2) = 2T(2) + log 2^m$
 $T(2) = 2T(1) + log 2^m$
 $T(2) = 2T(2) + 2$
 $T(2) =$

Bosically, we can reject all the options where we have by

n in multiplication as $n = 2^p$ and any slabe only go So, check O(log logn) = loglog 28 = log8 = 3 too duall O(logn log logn) = logn log log 28 = logn log8, = 11)T = log 2 x 3) + = = = 8×3=24 = 32 e'c Amin D Dec13(111) 34) _ Comparisons one necessary in the worst of n humbers. a) 2n-2 b) n+ Llgn -2 (c) 1 3n 1-2 (d) 2 lg n - 2 Dec 13 (11) 35 Big O estimate for 1 f(u)=('x+1) log (x+1)+3x = 21 log(22+1) + log(22+1)+3222 Biggest term is set -. O(22) Au - CE much langer than it where is

June (13) 111 12) The solution of recurrence relation T(n)= 2T (flowi (5n))+leyn a) O(nlog-log n) (b) O(nlog log n) c) O (leglogn) (d) O (logn-leg legn) 13) [1](4] * [4] *[4] *[4] * [4] = [6][4] = [6][6] = of Had (botted) or not on co, leaves of Complexity O (P). But there are shown 9) An ima graphics. Steers of) O . ofto morrows June 12 (111) (3) The upper bound of computing time of in coloring decisión problem y a) 0 (hm) b) 0 (m) c) 0 (hm) d) 0 (hm m) d+((f) 100)] TE =(a) 7 (4) 0 (4) 0 (6) (4) 0 (4) (4) (4) (4) A (A)? P-2 2

Dec 13 (111) 38) Assuming there are In beggs and each begging in the range [0, m-1]. The runn time of bulket dortis (a) O(n) (b) O(n-lgn) (c) O(n-lgm) (d) O(n+m) Matrix Multiplication (Dec 13 (111) [n xn matrices] C[i][i] = C[i][i] + a[i]*[k] * b[k][i] (a In general, as we have 3 (vested) looks. So. Complexity O(13). But there are some Strassen algo : 0 (2.807355) (35) Coppermith - Winograd algo: O(x.375477) (2014) Francois Le hall algo: O(n^{2.3728639})
(Most efficient) June 14 (111).
63) The Solution of the recurrence relation of T(n)=3T(floor(4))+h (a) $O(n^2)$ (b) O(n + gn) (c) O(n) (d) O(gn) A = 3 b = 4 f(n) = n (Master Theorem)

a=3 b=9 (less shan 1) as $leg_{4}^{4}=1$ $leg_{9}^{3}=1$ n

: 0(h)