מבנה הבחינה: בבחינה שש שאלות.

עליך לענות על **חמש** מתוך שש השאלות.

כל שאלה מזכה ב- 20 נקודות.

הנחיות: כל תשובה תתחיל בעמוד **חדש**.

אין לכתוב בצבע אדום.

אין לכתוב בעיפרון.

: משתנים הבאה הזה. נתונה הזה משתנים בלתי-תלויים nו ו- m כאשר א, A[m+n] מערך עלוויים אוון מערך (אווו משתנים אוון אוווים (אוווים אוווים אוווים (אוווים אוווים אוווים (אוווים אוווים אוווים אוווים אוווים (אוווים אוווים או

if n = 1then return A[m + 1] $a_1 \leftarrow \text{What } (m, \lfloor n/2 \rfloor)$ $a_2 \leftarrow \text{What } (m + \lfloor n/2 \rfloor, \lceil n/2 \rceil)$ if $a_1 < a_2$ then return a_1

else return a_2

(10 נקי) א. מה מבצעת השגרה! הסבר.

(10 נקי) ב. כתוב נוסחת נסיגה עבור זמן הריצה של השגרה. פתור את נוסחת הנסיגה.

שאלה 2

z מטפרים ממשי נוסף אל מספרים ממשי נוסף $A \lceil n \rceil$ נתונים מערך

- Aig[k] א. כתוב שגרה (בפסידוקוד) למציאת אינדקס א (1 $\leq k \leq n$) כך שהאיבר (5 נקי) אינדקס יהיה מינימלי בין כל האיברים אינדרים (1 המקיימים הנדרש: $z \leq Aig[i]$ המקיימים הנדרש: . O(n)
- ממוין בעיה, בהנחה הנוספת שהמערך לפתרון אותה מוין לפתרון בעיה, בהנחה הנוספת המערך לכקי) ב. כתוב שגרה (בפסֵידוקוד) ממוין זמן הריצה הנדרש: $O(\lg n)$.
 - (8 נקי) ג. פתור את נוסחת הנסיגה:

$$\begin{cases} T(n) = T(n-5) + 2n & , n \ge 5 \\ T(n) = 0 & , n < 5 \end{cases}$$

נתונה השגרה [2n/3] המוצאת את ערכי המיקום ה-[n/3] וה-[2n/3] במערך בגודל n בזמן לינארי (MED3 פועלת כקופסה שחורה ולא ידוע שום דבר נוסף עליה).

- k) k כתוב אלגוריתם שמבצע קריאות ל- MED3 והמוצא את ערך המיקום ה- k (13) נתון, n בזמן לינארי. הוכח את זמן הריצה.
- המיקום ערכי האם ניתן לכתוב אלגוריתם שרץ בזמן לינארי והמוצא את כל ערכי המיקום (7 נקי) ב. האם ניתן לכתוב אלגוריתם שרץ באמצעות קריאות ל-MED3 הוכח או הפרך.

שאלה 4

 $Higl[Parent(i)igr] \le Higl[iigr]$, i>1 לכל Higl[nigr] לתונה ערימת מינימום (פרט לשורש) מכל איבר בערימה (פרט לשורש) מחסירים את ערך אביו. מתקבל מערך

- א. באיזה סדר עלינו להחסיר את האבות כך שיתאפשר שחזור הערימה המקורית (8 נקי) א. באיזה סדר עלינו להחסיר את בנית המערך ללא שימוש בזיכרון נוסף? כתוב שגרה לבנית המערך ל
- אם (H החדש א לערימה המפתח והכנסת (INSERT(H,k) אם פעולת של איך מתבצעת איך משרים ומן הריצה של הערימה? האם בצורה D של הערימה? האם זמן הריצה נשמר?

key0[R] נתונה קבוצה של N רשומות, כאשר כל רשומה R מכילה שני מפתחות מספריים: N ו-n מספר n מספר המפתחות n השונים זה מזה המופיעים ב-n הרשומות n הם n משתנים בלתי-תלויים זה בזה, $n \leq N$.

(12 נקי) א. הצע מבנה נתונים, המבוסס על עץ אדום-שחור, המאפשר את ביצוע הפעולות הבאות בזמנים הנדרשים (במקרה הגרוע):

; $O(N \cdot \lg n)$: זמן: BUILD(S)

: זמן , אפע0[R]=k במבנה , המקיימת הייפוש רשומה כלשהי : SEARCH(S,k) און פוש הייפוש הייפוש ($O(\lg n)$

; $O(\lg n)$: זמן: S מחיקת מאביע אליה מצביע (ש הרשומה מיקת הרשומה : DELETE(S,p)

i, אפעס השונים המפתחות המיקום ה-i בסדרת השונים OS(S,i) ; $O(\lg n)$: זמן

תאר כל פעולה באופן מלא.

לכל אונים אם מזה מזה אונים אפער אפער (פֿנקי) ב. נניח כעת שלכל ערך מפתח אפער , געפער מפתח (פֿנקי) פֿר מפרח מפרח איך ניתן לבצע באופן אייל את הפעולות הבאות הסבר איך ניתן לבצע באופן אייל את הפעולות הבאות אותר m.

, $key0\left[R
ight]=k_{0}$ חיפוש את המקיימת המקיימת וחיפוש הרשומה אווא הרשומה הרשומה : $SEARCH\left(S,k_{0},k_{1}
ight)$; $key1\left[R
ight]=k_{1}$

תרך המיקום j-מציאת ערך המיקום j-מציאת ערך המיקום $EXTENDED{-}OS(S,j)$ במבנה; לצורך זה נגדיר $R \leq R'$ אם ורק אם key0[R] = key0[R'] או אם key0[R] < key0[R'] $key1[R] \leq key1[R']$

m ושל m ושל הגרוע) כפונקציה של את זמן הריצה האסימפטוטי (במקרה הגרוע)

m בעל N מפתחות; כל מפתח הוא מחרוזת המכילה N בעל T בעל היותר. פעולת החשוואה בין מחרוזות מבוססת על הסדר הלקסיקוגרפי ומבצעת מספר השוואות בין תווים כמספר התווים במחרוזת הקצרה יותר ועוד אחת. נתבונן בפעולות הבאות:

T בעץ: חיפוש המחרוזת: SEARCH (T,s)

 $_{;}$ T לעץ $_{S}$ הכנסת המחרוזת : $INSERT\left(T,s\right)$

T מהעץ מהעץ מאליו מצביע מחיקת מחיקת :DELETE(T,p)

ידוע שאחרי כל השוואה בין המחרוזת t שבעץ לבין המחרוזת s, מתבצעת השגרה ידוע שאחרי כל השוואה בין המחרוזת אורך התת-מחרוזת המשותפת הארוכה ביותר ביותר בעל התייחס אל "מחרוזת" כאל "סדרה" ואל "תת-מחרוזת" כאל "תת-סדרה").

כל שגרה תחזיר את הערך המקסימלי המתקבל מכל הקריאות לשגרה LCS-LENGTH.

N ושל m ושל m מהם זמני הריצה האסימפטוטיים של שלוש הפעולות כפונקציות של ושל הוכח כל טענה.

(8 נקי) ב. פתור את נוסחת הנסיגה הבאה:

$$\begin{cases} T(n) = 2T(\sqrt{n}) + \lg n \\ T(1) = 0 \end{cases}$$

T(n) של הפתרון יינתן כחסם אסימפטוטי הדוק של

!910