

### Nonregular Languages

# •

#### Schedule ahead

- Wed Feb 9 (today): nonregular languages, part I
- Fri Feb 11:
  - Nonregular languages, part II
  - HW3 in, HW4 out
- Mon Feb 14: In-class exercises on PL + discussions on HWs
- Wed Feb 16: introduce CFG
  - (If needed, more discussions on HWs)
- Fri Feb 18: Review for Mid-term 1
  - HW4 in
- Mon Feb 21: HOLIDAY (no class)
- Wed Feb 23: Mid-term 1



### Example 2 ("left over" from last lecture)



# "Rip and Repair" – constructing an equivalent GNFA with one fewer state when k > 2





























 $(\mathtt{a}(\mathtt{a}\mathtt{a}\mathtt{U}\mathtt{b})^{\pmb{*}}\mathtt{a}\mathtt{b}\mathtt{U}\mathtt{b})((\mathtt{b}\mathtt{a}\mathtt{U}\mathtt{a})(\mathtt{a}\mathtt{a}\mathtt{U}\mathtt{b})^{\pmb{*}}\mathtt{a}\mathtt{b}\mathtt{U}\mathtt{b}\mathtt{b})^{\pmb{*}}((\mathtt{b}\mathtt{a}\mathtt{U}\mathtt{a})(\mathtt{a}\mathtt{a}\mathtt{U}\mathtt{b})^{\pmb{*}}\mathtt{U}\varepsilon)\mathtt{U}\mathtt{a}(\mathtt{a}\mathtt{a}\mathtt{U}\mathtt{b})^{\pmb{*}}$ 



#### Nonregular languages

- Consider the language B = {0<sup>n</sup> 1<sup>n</sup> | n ≥ 0}
- If we were to construct a DFA that recognizes B, the machine seems to need to remember how many 0s have been seen so far as it reads the input.
- Because the number of 0s isn't limited, the machine will have to keep track of an unlimited number of possibilities.
- But it cannot do so with any finite number of states.



#### Nonregular languages

- Just because a language appears to require unbounded memory doesn't mean that it is necessarily nonregular.
- It happens to be true for language B; but other languages seem to require an unlimited number of possibilities and yet are regular.
- Example: consider two languages over the alphabet  $\Sigma = \{0,1\}$ 
  - C = {w | w has an equal number of 0s and 1s}, and
  - D = {w | w has an equal number of occurrences of 01 and 10 as substrings}
- C is not regular, but D is regular.

#### The Pumping Lemma

**Pumping lemma** If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each  $i \geq 0$ ,  $xy^i z \in A$ ,
- **2.** |y| > 0, and
- 3.  $|xy| \leq p$ .

# Note

- When s is divided into xyz, either x or z maybe  $\varepsilon$ , but Condition 2 says that  $y \neq \varepsilon$
- Condition 3 states that the pieces x and y together have length at most p

# -

#### Proof IDEA

- Let  $M = (Q, \Sigma, \delta, q_1, F)$  be a DFA that recognizes A
- We assign the pumping length p to be the number of states of M
- We want to show that any string s in A of length at most p maybe broken into three pieces xyz satisfying our three conditions

**Case 1**: no strings in A are of length  $\geq p$ . Then, the Lemma is vacuously true: the three conditions hold for all strings of length  $\geq p$  if there aren't such strings

**Case 2**: if s in A has  $|s| \ge p$ : Consider the sequence of states that M goes through when computing with input s.

#### Proof IDEA

- It starts with the start state q<sub>1,</sub> then it goes to some state, say q<sub>5</sub>, then say q<sub>10</sub>, ...., until it reaches q<sub>accept</sub>
- If we let n = |s|, then the sequence  $q_{1}, q_{5}, \dots q_{accept}$  has length n + 1
- Because n is at least p, we know that n+1 > p ≡ number of states of M
- Therefore, the sequence must contain a repeated state
- This result is an example of the pigeonhole principle if p pigeons are placed into fewer than p holes, some hole has to have more than one pigeon in it.



#### Illustration (q<sub>7</sub> is the one that repeats)



### Dividing s into the three pieces x, y, and z

- x: part of s appearing before q<sub>7</sub>
- y: part between the two appearances of q<sub>7</sub>
- z: remaining part of s, after second occurrence of q<sub>7</sub>



#### In other words

- x: takes M from q<sub>1</sub> to q<sub>7</sub>
- y: takes M from q<sub>7</sub> back to q<sub>7</sub>
- z: takes M from q<sub>7</sub> to q<sub>accept</sub>





# Let us see how this division of s satisfies the three conditions

- Suppose we run M on input xyyz
  - x takes M from q<sub>1</sub> to q<sub>7</sub>, then the first y takes it from q<sub>7</sub> back to q<sub>7</sub>, as does the second, and then z takes it to q<sub>accept</sub>
    - OK
- Similarly, it will accept xy<sup>i</sup>z for every i > 0
- For the case i = 0, xy<sup>i</sup>z = xz, which is accepted for similar reason
- This establishes Condition 1.



#### How about Conditions 2 and 3?

**Condition 2**: we see that |y|>0, as it was part of s that occurred between the two occurrences of  $q_7$ 

Condition 3: we ensure that q<sub>7</sub> is the first repetition in the sequence. Then by the pigeonhole principle, the first p+1 states in the sequence must contain a repetition. Therefore |xy| ≤ p.