

本节提纲

- 情感分析简介 *
- 主要任务: 情感分类
- 基于监督学习的情感分类
- 基于半监督学习的情感分类
 - ✓ 基于个人与非个人视图的情感分类
 - ✓ 基于不平衡数据的半监督情感分类
 - **基于集成学习的半监督情感分类**

情感分析简介

- ▶ 情感分析和意见挖掘
 - ✓ 对于产品评论和新闻等文本中表达的意见,情感, 情绪,主客观性,评价对象等方面的研究
 - ✓ 情感分析在工业界和学术界都已经有着广泛的应用 和研究

产品评论示例

≰iPhone 6

Phone 6 之大,不只是简简单单地放大,而是万方面面都大有提升。它尺寸更大,却愈加纤薄;性能 更强,却效能非凡。堪称 Phone 新一代至为出众的大作。

商品评价						
96% _{好评度}	好评(96%) 中评(2%) 差评(2%)		买家印象: 系統流畅(5837)			
		1	功能齐全(4381)	照相不错(4219)	分辨率高(4098)	
74 71 204			通话质量好(3494)	音质好(3215)	屏幕大(2854)	

苹果手机还是很棒的,发货也很及时 2015-08-05 09:36

反应快 分辨率高

回复(0) 赞(0)

还不错,苹果的嘛,价格高,就是系统还不错,习惯了ios系统,封闭的好处是相对还是安全一点,赞一个~~~ 2015-08-05 09:33

功能齐全

回复(0) 替(0)

好好好好好好好好好好好好好 2015-08-05 09:32

通话质量好 待机时间长 支持国产机 分辨率高

回复(0) 赞(0)

意见的定义

- ➤ 意见(Opinion)
 - ✓ 意见是对于一个实体或者实体的属性的正面或者负面的评价和观点
- ▶ 意见的情感倾向
 - ✓ 正面,负面,或中性(没有情感)

意见是由哪些成分构成的?

- ✓ 很多天前,我购买了一个iPhone手机,这是一个非常好用的手机。屏幕非常的酷。但是就是有些贵了。"
- ✓ 从中我们能发现
 - 评价对象:实体或者实体的属性
 - 情感: 正面或者负面
 - 意见持有者:发表意见的人
 - 时间: 意见发表的时间

谷歌的意见挖掘系统

Google product search

天猫的意见挖掘系统

天猫的意见挖掘系统

北航的舆情监控系统

情感分析的任务

- ▶情感分类 (Sentiment Classification)
- ▶评价对象抽取(Opinion Target Extraction)
- ➤主客观分析(Subjective Analysis)
- ▶情绪分析(Emotion Analysis)
- ➤垃圾文本过滤(Opinion spam detection)
- > ...

本节提纲

- 情感分析简介
- 主要任务: 情感分类 *
- 基于监督学习的情感分类
- 基于半监督学习的情感分类
 - ✓ 基于个人与非个人视图的情感分类
 - ✓ 基于不平衡数据的半监督情感分类
 - **基于集成学习的半监督情感分类**

情感分类

- ▶ 基于整体的情感倾向,将整个文档(比如产品评论),区分为正面或负面情感的。
 - ✓ 获得最多研究的情感分析问题

一个文本分类任务

- > 这是一个基本的文本分类任务
- > 但是和基于主题的文本分类有很大的不同
 - ✓ 在基于主题(科技,人文,运动)的文本分类中,主题词是很重要的。
 - ✓ 但是在情感分类中,情感词是很重要的。比如' 高兴',出色',恐怖',差劲等。

些产品评论示例

IT168网友 2013年04月03日 14:45 投稿数: 5596 外观 ★★★★☆ 4 **** 5 成像 ***** 5 ***** 5 手壓 色彩 ***** 4 ***** 5 性能 資資資盈盈 5 满意度 纯粹小白 您的水平

很好。

好是好,高感抑噪连拍速度都可以,对焦精度和速度也仅次于70,画质优秀。可就是买的时候一 定要注意,我春节过后在沈阳三好街寨博数码广场裕宁也买了一台,当时没太看仔细,回家后发 现连屈光度都被调整了。电池也根本就不是原厂的,而且拍不到100张就剩40%,再次充电只能充 90%,换了四次才换回来一个南韩的电池。而且充电器的连线都是废弃的。幸好我有个70机子, 否则充电都充不了。我还是老客户,买了多架相机的我,这次是最不满意的一次,有被耍的感 觉,大家一定要注意,千万别上当。

对您有帮助吗? 有用 8 没用 2

kissphoto 2012年08月06日 22:05 投稿数: 13

· 风景

· 夜県

外观	**** 5		
操控	★★★★☆ 4		
成像	**** 5		
手感	***** 5		
色彩	***** 5		
性能	***** 5		
满意度	全全全全全 5		
	3 17m de		
您的水平	・入门用户		

主要用途

主要用途

- 风景 ・人僚
- 新闻摄影

运动

各个方面性能比上一代的无敌兔有所提升

【外观】采用镁合金机身,具有防水落防尘性能,采用显示效果出色的3.2英寸104万像麦的液晶 屏,依然没有内景闪光灯

【操控】传能的主菜单非常好用,相比尽序单反主菜单的密集,传能的主菜单更为简洁,使用起 来更方便些。新增多重曝光和HDR功能,多重曝光最多可曝光9次

【成像】是目前最高像素的佳能单反相机——2230万有效像素,对于摄影师和发烧友来说,5D Mark III能在满足需要的前提下提供更加出色的控噪水平。

【手感】与上代无敌免一样,握感不错

【色彩】颜色能够真是的还原,色彩锐利

【性能】61点AF系统,5D Mark III有着目前理论上最顶级的对焦速度和精度,可用感光度范围 达到ISO 50-3200

【综合点评】维无敌兔后佳能全幅系列中又一力作,各方面性能突出,价格较之无敌兔偏高

情感分类的研究领域

- > 按机器学习方法分类
 - ✓ 基于监督学习的情感分类
 - ✓ 基于半监督学习的情感分类
 - ✓ 基于无监督学习的情感分类
- > 按研究问题分类
 - ✓ 基于不平衡数据的情感分类
 - ✓ 跨领域情感分类
 - **/** 跨语言情感分类

本节提纲

- 情感分析简介
- 主要任务: 情感分类
- 基于监督学习的情感分类 *
- 基于半监督学习的情感分类
 - ✓ 基于个人与非个人视图的情感分类
 - ✓ 基于不平衡数据的半监督情感分类
 - **基于集成学习的半监督情感分类**

- 上 监督学习
 - ✓ 训练和测试数据
 - 基于打星的电影评论
 - ✓ ☆☆☆☆-☆☆☆☆☆
 - ✓ 支持向量机分类模型(SVM)能获得了最好的分类 性能
 - ▶ 准确率:83%
 - **小特征**:每个单词作为特征

(Pang et al, 2002)

- ▶ 向量空间模型(Vector Space Model,VSM)
 - ✓ 自然语言处理中常用的模型,可以用来衡量两个向量之间的相关程度
 - ✓ 涉及到的一些基本概念:
 - 文档 (Document)
 - 项/特征项 (Term/Feature)
 - 项的权重 (Term Weight)

- ▶ 向量的相似度度量(similarity)
 - 文档 $D_1 = D_1(w_{11}, w_{12},w_{1n})$ $D_2 = D_2(w_{21}, w_{22},w_{2n})$
 - \checkmark 两个文档 D_1 和 D_2 内容的相似程度 $Sim(D_1,D_2)$ 如下:

$$Sim(D_{1}, D_{2}) = \cos\theta = \frac{\sum_{k=1}^{n} w_{1k} \times w_{2k}}{\sqrt{(\sum_{k=1}^{n} w_{1k}^{2})(\sum_{k=1}^{n} w_{2k}^{2})}}$$

> 文档的向量空间模型示意图

基于的向量空间模型(VSM)的分类系统框架

- 监督学习的特征选择
 - ✓ 基于特征工程的方法,很多种类的特征被证明是有效的,例如:
 - > 单词
 - > 词性标记
 - 情感词和短语
 - > 否定词
 - > 句法和依存关系

- 监督学习的分类算法
 - ✓ k-最近邻法 (k-Nearest Neighbor, kNN)
 - ✓ 朴素贝叶斯法 (Naïve Bayesian, NB)
 - ✓ 支持向量机法 (Support Vector Machines, SVM)
 - **√** ...

- ▶ k-最近邻法 (k-Nearest Neighbor, kNN)
 - ✓ 基本思想是:给定一个测试文档,系统在训练集中查找离他最近的k个邻居,并根据这些邻居的分类来给该文档的候选分类评分。决策规则如下:

$$y(\vec{x}, c_i) = \sum_{\vec{d}_j \in kNN} sim(\vec{x}, \vec{d}_j) y(\vec{d}_j, c_i) - b_i$$

- ▶ 朴素贝叶斯法 (Naïve Bayesian, NB)
- ✓ 基本思想:利用特征项和分类的联合概率来估计给定文档的分类概率
- ✓ 基本假设:文本是基于词的unigram模型,即文本中词的出现依赖于文本类别,但不依赖于其他词及文本的长度,也就是说,词与词之间是独立的

- ▶ 支持向量机法(Support Vector Machines, SVM)
 - ✓ 基本思想:是在向量空间中找到一个决策平面(Decision surface),这个平面能 最好"地分割两个分类中的数据点 [Vapnik 1995]。

本节提纲

- 情感分析简介
- 主要任务: 情感分类
- 基于监督学习的情感分类
- 基于半监督学习的情感分类 *
 - ✓ 基于个人与非个人视图的情感分类
 - ✓ 基于不平衡数据的半监督情感分类
 - **基于集成学习的半监督情感分类**

▶ 输入:少量标注样本,大量未标注样本

▶ 输出:新的未标注样本的情感极性

- 基于个人与非个人视图的情感分类
- 基于不平衡数据的半监督情感分类
- ▶ 基于集成学习的半监督情感分类

本节提纲

- 情感分析简介
- 主要任务: 情感分类
- 基于监督学习的情感分类
- 基于半监督学习的情感分类
 - ✓ 基于个人与非个人视图的情感分类 *
 - ✓ 基于不平衡数据的半监督情感分类
 - **基于集成学习的半监督情感分类**

- ➤ 我们提出两个视图, 个人(personal)的和非个人 (impersonal)的视图, 并将它们系统地集成到半监督情感 分类中
- ➤ 基于协同训练算法(co-training algorithms)学习这两个视图的信息

- > 发掘个人和非个人视图
 - ✓ 个人句(Personal sentence): 整句话的主语是人
 - ✓ 我喜欢这个面包机
 - ✓ 我感到非常失望
 - ✓ 非个人句(Impersonal sentence): 整句话的主语是实体 或其他成分
 - ✓ 它的屏幕非常的漂亮
 - ✓ 这个面包一点也不好吃

> 区分个人和非个人视图的算法

Input:

The training data D

Output:

All personal and impersonal sentences, i.e. sentence sets $S_{\it personal}$ and $S_{\it impersonal}$.

Procedure:

- (1). Segment all documents in D to sentences S using punctuations (such as periods and interrogation marks)
- (2). Apply the heuristic rules to classify the sentences S with proper pronouns into, S_{p1} and S_{i1}
- (3). Train a binary classifier f_{p-i} with S_{p1} and S_{i1}
- (4). Use f_{p-i} to classify the remaining sentences into S_{p2} and S_{i2}
- (5). $S_{personal} = S_{p1} \bigcup S_{p2}$, $S_{impersonal} = S_{i1} \bigcup S_{i2}$

基于个人和非个人视图的半监督学习算法

Input:

The labeled data L containing personal sentence set $S_{L-personal}$ and impersonal sentence set

 $S_{L-impersonal}$

The unlabeled data U containing personal sentence set $S_{U-\alpha exposed}$ and impersonal sentence set

 $S_{U-impersonal}$

Output:

New labeled data L

Procedure:

Loop for N iterations until $U = \phi$

- (1). Learn the first classifier f_1 with $S_{L-personal}$
- (2). Use f_1 to label samples from U with $S_{U-personal}$
- Choose n_i positive and n_i negative most confidently predicted samples A_i
- (4). Learn the second classifier f_2 with $S_{L-impersonal}$
- (5). Use f_2 to label samples from U with $S_{U-Impersonal}$
- (6). Choose n₂ positive and n₂ negative most confidently predicted samples A₂
- (7). Learn the third classifier f, with L
- (8). Use f, to label samples from U
- Choose n₃ positive and n₃ negative most confidently predicted samples A₃
- (10). Add samples A₁ ∪ A₂ ∪ A₃ with the corresponding labels into L
- (11). Update $S_{L-personal}$ and $S_{L-impersonal}$

- ▶ 实验结果(一)
 - ✓ 在不同领域,个人和非个人视图句子的分布情况

- ▶ 实验结果(二)
 - ✓ 在不同领域上的实验结果

本节提纲

- 情感分析简介
- 主要任务: 情感分类
- 基于监督学习的情感分类
- 基于半监督学习的情感分类
 - ✓ 基于个人与非个人视图的情感分类
 - ✓ 基于不平衡数据的半监督情感分类 *
 - **基于集成学习的半监督情感分类**

- > 已有的半监督学习方法认为正负类样本是平衡的
 - ✓ 实际上,情感分类中,正类样本是远多于负类的

Domain	N ₊	N ₋	N ₊ /N ₋
Book	425159	58315	7.29
DVD	69175	11383	6.08
Electronic	15397	4316	3.57
Kitchen	14290	3784	3.78

- > 不平衡的挑战
 - ✓ 处理不平衡的标注数据
 - 如何完全使用所有的标注样本
 - ✓ 处理不平衡的未标注数据
 - 如何从不平衡的未标注数据中获取信息

- > 我们的解决方法
 - ✓ 对于第一个难点
 - ▶ 多次欠采样 (Multiple Under-sampling)
 - ✓ 在多类样本中进行多次欠采样
 - ✓ 对于第二个难点
 - ➤ 基于随机子空间生成 (random subspace generation) 的协同 训练
 - 动态子空间生成能够提高性能

- > 随机子空间生成
 - ✓ 一个文档被表示为一个特征向量(词袋模型)
 - ✓ 随机选择一半的特征生成一个子空间,剩下的一半 作为另外一个子空间

- ▶ 基于多重采样的协同训练
 - ✓ 迭代N次 // 对于协同训练
 - For i =1 to K: // 构建k个欠采样数据集
 - 生成两个随机子空间
 - · 基于第i次欠采样数据集,训练两个子空间分类器
 - · 使用每个子分类器选择最可信的样本
 - ・・・更新标注样本集

不同监督分类方法的比较

> 不同监督分类方法的比较

本节提纲

- 情感分析简介
- 主要任务: 情感分类
- 基于监督学习的情感分类
- 基于半监督学习的情感分类
 - ✓ 基于个人与非个人视图的情感分类
 - ✓ 基于不平衡数据的半监督情感分类
 - ✓ 基于集成学习的半监督情感分类 ★

- > 研究动机
 - 哪种半监督学习算法表现最好?
 - ✓ 每个半监督学习算法都有其独特的特性,在特定的领域中都 能获得较其他算法更好的性能。
 - 例如:
 - ✓ 协同训练算法(Co-training): Book与Kitchen域中能获得更好的性能
 - ✓ 标签传播算法(Label Propagation):DVD与Electronic中表现的更好

🥓 结论:很难分辨出哪种算法最优!

- > 解决方案
 - 提出一种新的基于元分类器的集成学习方法
 - ✓ 通过集成多个半监督学习方法进行半监督学习
 - 核心模块:
 - ✓ 元学习 (Meta-learning)
 - ✓ 重新预测未标注样本的类别标签
 - ✓ 利用多个半监督学习方法的输出结果作为样本训练 元分类器

系统框架图 两种不同的半监督学习算法

Figure 1: The framework of semi-stacking

两种半监督算法输出的结果

- ➤ 元学习 (Meta-Learning)
 - 元学习算法的训练样本不是利用传统的特征进行表示,例如: 词袋特征
 - 利用两个半监督算法的输出概率进行组合作为样本特征表示

实验结果

Figure 4: Performance comparison of baseline and three semi-supervised learning approaches

- ✓ Bing Liu's homepage: http://www.cs.uic.edu/~liub/
- ✓ John Blitzer's homepage: http://john.blitzer.com/
- ✓ Movie Review Data: http://www.cs.cornell.edu/people/pabo/movie-review-data/
- ✓ MPQA: http://mpqa.cs.pitt.edu/

谢谢! Q&A

