

# Red Hat Advanced Cluster Management for Kubernetes 2.12

Install

Installation

Last Updated: 2024-11-05

Installation

# **Legal Notice**

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java <sup>®</sup> is a registered trademark of Oracle and/or its affiliates.

XFS <sup>®</sup> is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack <sup>®</sup> Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

# **Abstract**

Read more about installing on connected and disconnected networks, requirements and recommendations for installation, multicluster advanced configurations, and instructions for upgrading and uninstalling.

# **Table of Contents**

| CHAPTER 1. INSTALLING AND UPGRADING                                                            | . 4 |
|------------------------------------------------------------------------------------------------|-----|
| 1.1. PERFORMANCE AND SCALABILITY                                                               | 5   |
| 1.1.1. Maximum number of managed clusters                                                      | 5   |
| 1.1.2. Search scalability                                                                      | 5   |
| 1.1.2.1. Query run time considerations                                                         | 6   |
| 1.1.3. Observability scalability                                                               | 6   |
| 1.1.3.1. Sample observability environment                                                      | 6   |
| 1.1.3.2. Write throughput                                                                      | 7   |
| 1.1.3.3. CPU usage (millicores)                                                                | 7   |
| 1.1.3.4. RSS and working set memory                                                            | 7   |
| 1.1.3.5. Persistent volume for thanos-receive component                                        | 7   |
| 1.1.3.6. Network transfer                                                                      | 8   |
| 1.1.3.7. Amazon Simple Storage Service (S3)                                                    | 8   |
| 1.1.4. Backup and restore scalability                                                          | 8   |
| 1.1.5. Sizing your cluster                                                                     | 9   |
| 1.1.5.1. Product environment                                                                   | 9   |
| 1.1.5.1.1. OpenShift Container Platform on additional services                                 | 10  |
| 1.1.5.1.2. Creating and managing single node OpenShift Container Platform clusters             | 17  |
| 1.2. INSTALLING WHILE CONNECTED ONLINE                                                         | 17  |
| 1.2.1. Prerequisites                                                                           | 18  |
| 1.2.2. Confirm your OpenShift Container Platform installation                                  | 18  |
| 1.2.3. Installing from the OperatorHub web console interface                                   | 19  |
| 1.2.4. Installing from the OpenShift Container Platform CLI                                    | 20  |
| 1.2.5. Installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes  | 22  |
| 1.2.5.1. Add infrastructure nodes to the OpenShift Container Platform cluster                  | 22  |
| 1.3. INSTALL IN DISCONNECTED NETWORK ENVIRONMENTS                                              | 23  |
| 1.3.1. Prerequisites                                                                           | 24  |
| 1.3.2. Confirming your OpenShift Container Platform installation                               | 24  |
| 1.3.3. Confirming the availability of a local image registry                                   | 24  |
| 1.3.4. Configuring Operator Lifecycle Manager                                                  | 25  |
| 1.3.4.1. Additional requirements                                                               | 25  |
| 1.3.4.1.1. Configuring to use your mirror registry                                             | 26  |
| 1.3.5. Verify required packages are available                                                  | 26  |
| 1.3.6. Configuring image content source policies                                               | 27  |
| 1.3.7. Install the Red Hat Advanced Cluster Management for Kubernetes operator and hub cluster | 28  |
| 1.3.7.1. Catalog source priority                                                               | 28  |
| 1.4. MULTICLUSTERHUB ADVANCED CONFIGURATION                                                    | 29  |
| 1.4.1. Console and component configuration                                                     | 30  |
| 1.4.2. Custom Image Pull Secret                                                                | 31  |
| 1.4.3. availabilityConfig                                                                      | 31  |
| 1.4.4. nodeSelector                                                                            | 32  |
| 1.4.5. tolerations                                                                             | 32  |
| 1.4.6. disable Hub Self Management                                                             | 33  |
| 1.4.7. disableUpdateClusterImageSets                                                           | 33  |
| 1.4.8. customCAConfigmap (Deprecated)                                                          | 34  |
| 1.4.9. sslCiphers (Deprecated)                                                                 | 34  |
| 1.4.10. ClusterBackup                                                                          | 34  |
| 1.5. UPGRADING                                                                                 | 35  |
| 1.5.1. Managing cluster pools with an upgrade                                                  | 36  |
| 1.6. UPGRADING IN A DISCONNECTED NETWORK ENVIRONMENT                                           | 36  |
| 1.6.1. Upgrade with catalog mirroring                                                          | 37  |

| 1.6.2. Additional resources                                        | 38 |
|--------------------------------------------------------------------|----|
| 1.7. UPGRADING DISCONNECTED CLUSTERS USING POLICIES                | 38 |
| 1.7.1. Prerequisites                                               | 39 |
| 1.7.2. Prepare your disconnected mirror registry                   | 39 |
| 1.7.3. Deploy the operator for OpenShift Update Service            | 40 |
| 1.7.4. Build the graph data init container                         | 40 |
| 1.7.5. Configure certificate for the mirrored registry             | 41 |
| 1.7.6. Deploy the OpenShift Update Service instance                | 42 |
| 1.7.7. Deploy a policy to override the default registry (optional) | 43 |
| 1.7.8. Deploy a policy to deploy a disconnected catalog source     | 44 |
| 1.7.9. Deploy a policy to change the managed cluster parameter     | 46 |
| 1.7.10. Viewing available upgrades                                 | 48 |
| 1.7.11. Selecting a channel                                        | 48 |
| 1.7.12. Upgrading the cluster                                      | 48 |
| 1.8. UNINSTALLING                                                  | 49 |
| 1.8.1. Prerequisites                                               | 49 |
| 1.8.2. Removing MultiClusterHub resources by using commands        | 50 |
| 1.8.3. Deleting the components by using the console                | 51 |
| 1.9. CLEANING UP ARTIFACTS BEFORE REINSTALLING                     | 51 |
| 1.9.1. Cleaning up artifacts                                       | 51 |

# **CHAPTER 1. INSTALLING AND UPGRADING**

Install Red Hat Advanced Cluster Management for Kubernetes through Operator Lifecycle Manager, which manages the installation, upgrade, and removal of the components that encompass the Red Hat Advanced Cluster Management hub cluster. Because Red Hat Advanced Cluster Management depends on and uses the multicluster engine operator, after you create the **MultiClusterHub** resource during installation, the Red Hat Advanced Cluster Management operator automatically installs the multicluster engine operator operator and creates the **MultiClusterEngine** resource.

You must have a supported version of OpenShift Container Platform to install Red Hat Advanced Cluster Management.

Before you install, review the required hardware and system configuration for each product. You can install online on Linux with a supported version of Red Hat OpenShift Container Platform.

For full support information, see the Red Hat Advanced Cluster Management Support Matrix and the Lifecycle and update policies for Red Hat Advanced Cluster Management for Kubernetes .

**Deprecated:** Red Hat Advanced Cluster Management 2.7 and earlier versions are no longer supported. The documentation might remain available, but without any Errata or other updates.

Best practice: Upgrade to the most recent version.

FIPS notice: If you do not specify your own ciphers in **spec.ingress.sslCiphers**, then the **multiclusterhub-operator** provides a default list of ciphers. If you upgrade and want FIPS compliance, remove the following two ciphers from the **MultiClusterHub** resource: **ECDHE-ECDSA-CHACHA20-POLY1305** and **ECDHE-RSA-CHACHA20-POLY1305**.

The documentation references the earliest supported OpenShift Container Platform version, unless a specific component or function is introduced and tested only on a more recent version of OpenShift Container Platform.

Installing Red Hat Advanced Cluster Management for Kubernetes sets up a multi-node cluster production environment. You can install Red Hat Advanced Cluster Management for Kubernetes in either standard or high-availability configurations. View the following documentation for more information about the installation and upgrade procedures, as well as information about advanced configuration, scalability, and sizing:

- Installing while connected online
- Install on disconnected networks
- Sizing your cluster
- Performance and scalability
- MultiClusterHub advanced configuration
- Upgrading
- Upgrading in a disconnected network environment
- Upgrading disconnected clusters using policies
- Uninstalling
- Cleaning up artifacts before reinstalling

#### 1.1. PERFORMANCE AND SCALABILITY

Red Hat Advanced Cluster Management for Kubernetes is tested to determine certain scalability and performance data. The major areas that are tested are cluster scalability and search performance. You can use this information as you plan your environment.

Note: Data is based on the results from a lab environment at the time of testing.

Red Hat Advanced Cluster Management is tested by using a three node hub cluster on bare metal machines. At testing, there is a sufficient amount of resource capacity (CPU, memory, and disk) to find software component limits. Your results might vary, depending on your environment, network speed, and changes to the product.

- Maximum number of managed clusters
- Search scalability
- Observability scalability
- Backup and restore scalability

# 1.1.1. Maximum number of managed clusters

The maximum number of clusters that Red Hat Advanced Cluster Management can manage varies based on several factors, including:

- Number of resources in the cluster, which depends on factors like the number of policies and applications that are deployed.
- Configuration of the hub cluster, such as how many pods are used for scaling.

The managed clusters are single-node OpenShift virtual machines hosted on Red Hat Enterprise Linux hypervisors. Virtual machines are used to achieve high-density counts of clusters per single bare metal machine in the testbed. Sushy-emulator is used with libvirt for virtual machines to have an accessible bare metal cluster by using Redfish APIs. The following operators are a part of the test installation, Topology Aware Lifecycle Manager, Local Storage Operator, and Red Hat OpenShift GitOps. The following table shows the lab environment scaling information:

Table 1.1. Table for environment scaling

| Node                            | Count | Operating<br>system                | Hardware           | CPU cores | Memory  | Disks                                            |
|---------------------------------|-------|------------------------------------|--------------------|-----------|---------|--------------------------------------------------|
| Hub cluster<br>control<br>plane | 3     | OpenShift<br>Container<br>Platform | Bare metal         | 112       | 512 GiB | 446 GB<br>SSD, 2.9 TB<br>NVMe, 2 x<br>1.8 TB SSD |
| Managed<br>cluster              | 3500  | single-node<br>OpenShift           | Virtual<br>machine | 8         | 18 GiB  | 120 GB                                           |

# 1.1.2. Search scalability

The scalability of the Search component depends on the performance of the data store. The query run time is an important variable when analyzing the search performance.

# 1.1.2.1. Query run time considerations

There are some things that can affect the time that it takes to run and return results from a query. Consider the following items when planning and configuring your environment:

- Searching for a keyword is not efficient.
   If you search for **RedHat** and you manage a large number of clusters, it might take a longer time to receive search results.
- The first search takes longer than later searches because it takes additional time to gather user role-based access control rules.
- The length of time to complete a request is proportional to the number of namespaces and resources the user is authorized to access.
  - **Note:** If you save and share a Search query with another user, returned results depend on access level for that user. For more information on role access, see Using RBAC to define and apply permissions in the OpenShift Container Platform documentation.
- The worst performance is observed for a request by a non-administrator user with access to all of the namespaces, or all of the managed clusters.

# 1.1.3. Observability scalability

You need to plan your environment if you want to enable and use the observability service. The resource consumption later is for the OpenShift Container Platform project, where observability components are installed. Values that you plan to use are sums for all observability components.

**Note:** Data is based on the results from a lab environment at the time of testing. Your results might vary, depending on your environment, network speed, and changes to the product.

#### 1.1.3.1. Sample observability environment

In the sample environment, hub clusters and managed clusters are located in Amazon Web Services cloud platform and have the following topology and configuration:

| Node           | Flavor         | vCPU | RAM<br>(GiB) | Disk type | Disk size<br>(GiB) | Count | Region    |
|----------------|----------------|------|--------------|-----------|--------------------|-------|-----------|
| Master<br>node | m5.4xlarg<br>e | 16   | 64           | gp2       | 100                | 3     | sa-east-1 |
| Worker<br>node | m5.4xlarg<br>e | 16   | 64           | gp2       | 100                | 3     | sa-east-1 |

The observability deployment is configured for high availability environments. With a high availability environment, each Kubernetes deployment has two instances, and each StatefulSet has three instances.

During the sample test, a different number of managed clusters are simulated to push metrics, and each test lasts for 24 hours. See the following throughput:

### 1.1.3.2. Write throughput

| Pods | Interval (minute) | Time series per min |
|------|-------------------|---------------------|
| 400  | 1                 | 83000               |

#### 1.1.3.3. CPU usage (millicores)

CPU usage is stable during testing:

| Size        | CPU Usage |
|-------------|-----------|
| 10 clusters | 400       |
| 20 clusters | 800       |

#### 1.1.3.4. RSS and working set memory

View the following descriptions of the RSS and working set memory:

- Memory usage RSS: From the metrics **container\_memory\_rss** and remains stable during the test.
- Memory usage working set: From the metrics container\_memory\_working\_set\_bytes, increases along with the test.

The following results are from a 24-hour test:

| Size        | Memory usage RSS | Memory usage working set |
|-------------|------------------|--------------------------|
| 10 clusters | 9.84             | 4.93                     |
| 20 clusters | 13.10            | 8.76                     |

# 1.1.3.5. Persistent volume for thanos-receive component

**Important:** Metrics are stored in **thanos-receive** until retention time (four days) is reached. Other components do not require as much volume as **thanos-receive** components.

Disk usage increases along with the test. Data represents disk usage after one day, so the final disk usage is multiplied by four.

See the following disk usage:

| Size        | Disk usage (GiB) |
|-------------|------------------|
| 10 clusters | 2                |

| Size        | Disk usage (GiB) |
|-------------|------------------|
| 20 clusters | 3                |

#### 1.1.3.6. Network transfer

During tests, network transfer provides stability. See the sizes and network transfer values:

| Size        | Inbound network transfer | Outbound network transfer |
|-------------|--------------------------|---------------------------|
| 10 clusters | 6.55 MBs per second      | 5.80 MBs per second       |
| 20 clusters | 13.08 MBs per second     | 10.9 MBs per second       |

# 1.1.3.7. Amazon Simple Storage Service (S3)

Total usage in Amazon Simple Storage Service (S3) increases. The metrics data is stored in S3 until default retention time (five days) is reached. See the following disk usages:

| Size        | Disk usage (GiB) |
|-------------|------------------|
| 10 clusters | 16.2             |
| 20 clusters | 23.8             |

# 1.1.4. Backup and restore scalability

The tests performed on large scaled environment show the following data for backup and restore:

Table 1.2. Table of run times for managed cluster backups

| Backups          | Duration | Number of resources | Backup memory        |
|------------------|----------|---------------------|----------------------|
| credentials      | 2m5s     | 18272 resources     | 55MiB backups size   |
| managed clusters | 3m22s    | 58655 resources     | 38MiB backups size   |
| resources        | 1m34s    | 1190 resources      | 1.7MiB backups size  |
| generic/user     | 2m56s    | 0 resources         | 16.5KiB backups size |

The total backup time is **10m**.

Table 1.3. Table of run time for restoring passive hub cluster

| Backups             | Duration | Number of resources |
|---------------------|----------|---------------------|
| redentials          | 47m8s    | 18272 resources     |
| resources           | 3m10s    | 1190 resources      |
| generic/user backup | Om       | O resources         |

Total restore time is 50m18s.

The number of backup file are pruned using the **veleroTtl** parameter option set when the **BackupSchedule** is created. Any backups with a creation time older than the specified TTL (time to live) are expired and automatically deleted from the storage location by Velero.

apiVersion: cluster.open-cluster-management.io/v1beta1 kind: BackupSchedule metadata: name:schedule-acm namespace:open-cluster-management-backup spec: veleroSchedule:0 \*/1 \* \* \* veleroTtl:120h

# 1.1.5. Sizing your cluster

Each Red Hat Advanced Cluster Management for Kubernetes cluster is unique and the following guidelines give sample deployment sizes for you. Recommendations are classified by size and purpose. Red Hat Advanced Cluster Management applies the following dimensions for sizing and placement of supporting services:

#### **Availability zones**

Availability zones isolate potential fault domains across the cluster. Typical clusters have near-equal worker node capacity in three or more availability zones.

#### vCPU reservations and limits

vCPU reservations and limits establish vCPU capacity on a worker node to assign to a container. A vCPU is equal to a Kubernetes compute unit. See the Kubernetes Meaning of CPU topic to learn about Kubernetes compute units.

#### Memory reservations and limits

Memory reservations and limits establish memory capacity on a worker node to assign to a container.

#### Persistent data

Persistent data is managed by the product and stored in the etcd cluster that is used by Kubernetes.

**Important:** For OpenShift Container Platform, distribute the master nodes of the cluster across three availability zones.

### 1.1.5.1. Product environment

The following requirements are *not* minimum requirements for the environment:

#### Table 1.4. Product environment

| Node type                | Availability zones | etcd | Total reserved<br>memory                                    | Total reserved<br>CPU                                       |
|--------------------------|--------------------|------|-------------------------------------------------------------|-------------------------------------------------------------|
| Master                   | 3                  | 3    | Per OpenShift<br>Container<br>Platform sizing<br>guidelines | Per OpenShift<br>Container<br>Platform sizing<br>guidelines |
| Worker or infrastructure | 3                  | 1    | 12 GB                                                       | 6                                                           |

Additionally, the OpenShift Container Platform cluster runs more services to support cluster features. See Installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes for more details.

# 1.1.5.1.1. OpenShift Container Platform on additional services

Availability zones isolate potential fault domains across the cluster.

Table 1.5. Additional services

| Service                                                               | Node<br>count | Availabilit<br>y zones | Instance<br>size | vCPU | Memory | Storage<br>size | Resource<br>s                                                                                                                                                                |
|-----------------------------------------------------------------------|---------------|------------------------|------------------|------|--------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OpenShift<br>Container<br>Platform<br>on<br>Amazon<br>Web<br>Services | 3             | 3                      | m5.xlarge        | 4    | 16 GB  | 120 GB          | See Installing a cluster on AWS with customiza tions in the OpenShift Container Platform product document ation for more informatio n.  Also learn more about machine types. |

| Service                                                              | Node<br>count | Availabilit<br>y zones | Instance<br>size                        | vCPU                         | Memory | Storage<br>size | Resource<br>s                                                                                                                                |
|----------------------------------------------------------------------|---------------|------------------------|-----------------------------------------|------------------------------|--------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| OpenShift<br>Container<br>Platform<br>on Google<br>Cloud<br>Platform | 3             | 3                      | N1-<br>standard-<br>4 (0.95-<br>6.5 GB) | 4                            | 15 GB  | 120 GB          | See the View and manage quotas for more informatio n about quotas.  Also learn more about Google Machine families resource and compariso ns. |
| OpenShift<br>Container<br>Platform<br>on<br>Microsoft<br>Azure       | 3             | 3                      | Standard_<br>D4_v3                      | 4                            | 16 GB  | 120 GB          | See Configuri ng an Azure account in the OpenShift Container Platform document ation for more details.                                       |
| OpenShift<br>Container<br>Platform<br>on<br>VMware<br>vSphere        | 3             | 3                      |                                         | 4 (2 cores<br>per<br>socket) | 16 GB  | 120 GB          | See Installing on vSphere in the OpenShift Container Platform document ation for more details.                                               |
| OpenShift<br>Container<br>Platform                                   | 3             | 3                      |                                         | 10                           | 16 GB  | 100 GB          | See<br>Installing<br>a cluster                                                                                                               |

| on IBM Z<br><b>Service</b><br>Systems | Node<br>count | Availabilit<br>y zones | Instance<br>size | vCPU | Memory | Storage<br>size | on IBM Z<br>Resource<br>Sthe                                                                                                                                                                                                                                                         |
|---------------------------------------|---------------|------------------------|------------------|------|--------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |               |                        |                  |      |        |                 | OpenShift<br>Container<br>Platform<br>document<br>ation for<br>more<br>informatio<br>n.                                                                                                                                                                                              |
|                                       |               |                        |                  |      |        |                 | IBM Z systems provide the ability to configure simultane ous multithrea ding (SMT), which extends the number of vCPUs that can run on each core. If you configure d SMT, One physical core (IFL) provides two logical cores (threads). The hypervisor can provide two or more vCPUs. |
|                                       |               |                        |                  |      |        |                 | One vCPU is equal to one physical core when simultane                                                                                                                                                                                                                                |

| Service                                                          | Node<br>count | Availabilit<br>y zones | Instance<br>size | vCPU | Memory | Storage<br>size | ous<br>Resource<br>Sling                                                                                                                                                                                                                  |
|------------------------------------------------------------------|---------------|------------------------|------------------|------|--------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  |               |                        |                  |      |        |                 | (SMT), or hyper-threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.  For more information about SMT, see Simultane ous multithreading. |
| OpenShift<br>Container<br>Platform<br>on IBM<br>Power<br>systems | 3             | 3                      |                  | 16   | 16 GB  | 120 GB          | See Installing a cluster on Power systems in the OpenShift Container Platform document ation for more informatio n.  IBM Power systems provide the ability to configure simultane ous                                                     |

| Service | Node<br>count | Availabilit<br>y zones | Instance<br>size | vCPU | Memory | Storage<br>size | multithrea Resource SSMT),                                                                                                                                                                     |
|---------|---------------|------------------------|------------------|------|--------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |               |                        |                  |      |        |                 | which extends the number of vCPUs that can run on each core. If you configure d SMT, your SMT level determine s how you satisfy the 16 vCPU requireme nt. The most common configurat ions are: |
|         |               |                        |                  |      |        |                 | on SMT-8 (the default configurat ion for systems that are running IBM Power VM) provides the required 16 vCPUs.                                                                                |
|         |               |                        |                  |      |        |                 | Four cores running on SMT-4 provides the required 16 vCPUs.  For more informatio n about                                                                                                       |

| Service | Node<br>count | Availabilit<br>y zones | Instance<br>size | vCPU | Memory | Storage<br>size | SMT, see<br>Resource<br>Sus |
|---------|---------------|------------------------|------------------|------|--------|-----------------|-----------------------------|
|         |               |                        |                  |      |        |                 | multithrea<br>ding.         |

| Service                                               | Node<br>count | Availabilit<br>y zones | Instance<br>size | vCPU | Memory | Storage<br>size | Resource<br>s                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------|---------------|------------------------|------------------|------|--------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OpenShift<br>Container<br>Platform<br>on-<br>premises | 3             |                        |                  | 4    | 16 GB  | 120 GB          | See Configuri ng a three- node cluster in the OpenShift Container Platform document ation for more details.  A Red Hat Advanced Cluster Managem ent for Kubernet es hub cluster can be installed and supported on OpenShift Container Platform bare metal. The hub cluster can run on a compact bare metal topology, in which there are 3 schedulab le control plane nodes, and O additional workers. |

#### 1.1.5.1.2. Creating and managing single node OpenShift Container Platform clusters

View Installing on a single node to learn about the requirements. Since each cluster is unique, the following guidelines provide only sample deployment requirements that are classified by size and purpose.

Availability zones isolate potential fault domains across the cluster. Typical clusters have an equal worker node capacity in three or more availability zones. High availability is not supported.

**Important:** For OpenShift Container Platform, distribute the master nodes of the cluster across three availability zones.

See example requirements for creating and managing 3500 single node OpenShift Container Platform clusters. See the minimum requirements for using Red Hat Advanced Cluster Management to create single-node OpenShift clusters (230 and more provisioned at the same time), and manage those single-node OpenShift clusters with a hub cluster:

Table 1.6. Master (schedulable)

| Node count | Memory (peak<br>cluster usage) | Memory (single<br>node min-max) | CPU cluster | CPU single node |
|------------|--------------------------------|---------------------------------|-------------|-----------------|
| 3          | 289 GB                         | 64 GB - 110 GB                  | 90          | 44              |

#### 1.2. INSTALLING WHILE CONNECTED ONLINE

Install Red Hat Advanced Cluster Management for Kubernetes through Operator Lifecycle Manager, which manages the installation, upgrade, and removal of the components that encompass the Red Hat Advanced Cluster Management hub cluster. Because Red Hat Advanced Cluster Management depends on and uses the multicluster engine operator, after you create the **MultiClusterHub** resource during installation, the Red Hat Advanced Cluster Management operator automatically installs the multicluster engine operator operator and creates the **MultiClusterEngine** resource.

You must have a supported version of OpenShift Container Platform to install Red Hat Advanced Cluster Management.

Required access: Cluster administrator

**OpenShift Container Platform Dedicated environment required access:** You need **cluster-admin** permissions. By default the **dedicated-admin** role does not have the required permissions to create namespaces in the OpenShift Container Platform Dedicated environment.

#### Notes:

- By default, the hub cluster components are installed on worker nodes of your OpenShift
  Container Platform cluster without any additional configuration. You can install the hub cluster
  on worker nodes by using the OpenShift Container Platform OperatorHub web console
  interface, or by using the OpenShift Container Platform CLI.
- If you have configured your OpenShift Container Platform cluster with infrastructure nodes, you can install the hub cluster on those infrastructure nodes by using the OpenShift Container Platform CLI with additional resource parameters. See the *Installing the Red Hat Advanced Cluster Management hub cluster on infrastructure node* section for more details.

- If you plan to import Kubernetes clusters that are not OpenShift Container Platform or Red Hat Advanced Cluster Management clusters, you need to configure an image pull secret.
- If you previously installed Red Hat Advanced Cluster Management on a cluster, then uninstalled, you need to follow the clean up procedure to remove artifacts. See Cleaning up artifacts before reinstalling and follow the procedure.

For information on how to configure advanced configurations, see options in the MultiClusterHub advanced configuration section of the documentation.

- Prerequisites
- Confirm your OpenShift Container Platform installation
- Installing from the OperatorHub web console interface
- Installing from the OpenShift Container Platform CLI
- Installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes

# 1.2.1. Prerequisites

Before you install Red Hat Advanced Cluster Management, see the following requirements:

- Your Red Hat OpenShift Container Platform cluster must have access to the Red Hat Advanced Cluster Management operator in the OperatorHub catalog from the OpenShift Container Platform console.
- You need access to the catalog.redhat.com.
- You need a supported OpenShift Container Platform and the OpenShift Container Platform CLI. See OpenShift Container Platform installing.
- Your OpenShift Container Platform command line interface (CLI) must be configured to run oc commands. See Getting started with the CLI for information about installing and configuring the OpenShift Container Platform CLI.
- Your OpenShift Container Platform permissions must allow you to create a namespace. Without a namespace, installation fails.
- You must have an Internet connection to access the dependencies for the operator.
- To install in a OpenShift Container Platform Dedicated environment, see the following requirements:
  - You must have the OpenShift Container Platform Dedicated environment configured and running.
  - You must have **cluster-admin** authority to the OpenShift Container Platform Dedicated environment where you are installing the hub cluster.
  - To import, you must use the **stable-2.0** channel of the klusterlet operator for 2.12.

# 1.2.2. Confirm your OpenShift Container Platform installation

Verify that a Red Hat Advanced Cluster Management hub cluster is not already installed on your OpenShift Container Platform cluster. You cannot have more than one hub cluster.

You can only have one single Red Hat Advanced Cluster Management hub cluster installation on each OpenShift Container Platform cluster. Continue with the following steps if there is no Red Hat Advanced Cluster Management hub cluster installed:

1. To ensure that the OpenShift Container Platform cluster is set up correctly, access the OpenShift Container Platform web console with the following command:

oc -n openshift-console get route

See the following example output:

openshift-console console console-openshift-console.apps.new-coral.purple-chesterfield.com console https reencrypt/Redirect None

 Open the URL in your browser and check the result. If the console URL displays consoleopenshift-console.router.default.svc.cluster.local, set the value for openshift\_master\_default\_subdomain when you install OpenShift Container Platform. See the following example of a URL: https://console-openshift-console.apps.new-coral.purplechesterfield.com.

You can proceed to install Red Hat Advanced Cluster Management from the console or the CLI.

- Installing from the OperatorHub web console interface
- Installing from the OpenShift Container Platform CLI

**Note:** For installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes, see the *Installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes* section of this procedure.

# 1.2.3. Installing from the OperatorHub web console interface

**Best practice:** From the *Administrator* view in your console, install the OperatorHub web console interface that is provided with OpenShift Container Platform.

- 1. Select **Operators** > **OperatorHub** to access the list of available operators, and select *Advanced Cluster Management for Kubernetes* operator.
- 2. On the Operator subscription page, select the options for your installation:

#### Channel

The channel that you select corresponds to the release that you are installing. When you select the channel, it installs the identified release, and establishes that the future Errata updates within that release are obtained.

#### Namespace information

The Red Hat Advanced Cluster Management hub cluster must be installed in its own namespace, or project.

- By default, the OperatorHub console installation process creates a namespace that is titled **open-cluster-management**. **Best practice**: Continue to use the **open-cluster-management** namespace if it is available.
- If there is already a namespace named open-cluster-management, choose a different namespace.

#### Approval strategy for updates

The approval strategy identifies the human interaction that is required for applying updates to the channel or release to which you subscribed.

- Select **Automatic** to ensure any updates within that release are automatically applied.
- Select Manual to receive a notification when an update is available. If you have concerns about when the updates are applied, this might be best practice for you.
   Important: To upgrade to the next minor release, you must return to the OperatorHub page and select a new channel for a more recent release.
- 3. Select **Install** to apply your changes and create the operator.
- 4. Create the MultiClusterHub custom resource.
  - a. In the OpenShift Container Platform console navigation, select **Installed Operators** > **Advanced Cluster Management for Kubernetes**.
  - b. Select the MultiClusterHub tab.
  - c. Select Create MultiClusterHub.
  - d. Update the default values in the YAML file. See options in the *MultiClusterHub advanced* configuration section of the documentation.
- 5. Click the MultiClusterHub tab to see the list of resources where your operator is listed.
  - The following example shows the default template from the YAML view. Confirm that **namespace** is your project namespace. See the sample:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

6. Select **Create** to initialize the custom resource. It can take up to 10 minutes for the Red Hat Advanced Cluster Management hub cluster to build and deploy components.

After the Red Hat Advanced Cluster Management hub cluster is created, the **MultiClusterHub** resource status displays *Running* from the *MultiClusterHub* tab of the Red Hat Advanced Cluster Management operator details.

To gain access to the console, see the Accessing your console topic in Additional resources.

#### 1.2.4. Installing from the OpenShift Container Platform CLI

Install the operator and the objects. Complete the following steps:

 Create a Red Hat Advanced Cluster Management hub cluster namespace where the operator requirements are contained. Run the following command, where **namespace** is the name for your Red Hat Advanced Cluster Management hub cluster namespace. The value for **namespace** might be referred to as *Project* in the OpenShift Container Platform environment:

oc create namespace <namespace>

2. Switch your project namespace to the one that you created. Replace **namespace** with the name of the Red Hat Advanced Cluster Management hub cluster namespace that you created in step 1.

oc project <namespace>

3. Create a YAML file to configure an **OperatorGroup** resource. Each namespace can have only one operator group:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: <default> 1
namespace: <namespace> 2
spec:
targetNamespaces:
- <namespace>

- Replace **<default>** with the name of your operator group.
- Replace < namespace > with the name of your project namespace.
- 4. Run the following command to create the **OperatorGroup** resource. Replace **operator-group** with the name of the operator group YAML file that you created:

oc apply -f <path-to-file>/<operator-group>.yaml

5. Create a YAML file to configure an OpenShift Container Platform subscription to choose the version that you want to install. Your file is similar to the following sample, replacing **release**-<a href="mailto:2.x">2.x</a> with the selected release:

apiVersion: operators.coreos.com/v1alpha1

kind: Subscription

metadata:

name: acm-operator-subscription

spec:

sourceNamespace: openshift-marketplace

source: redhat-operators channel: release-<2.x>

installPlanApproval: Automatic

name: advanced-cluster-management

6. Run the following command to apply the file and create the OpenShift Container Platform subscription. Replace **subscription** with the name of the subscription file that you created:

oc apply -f <path-to-file>/<subscription>.yaml

7. Create a YAML file to configure the **MultiClusterHub** custom resource. Your default template should look similar to the following example. Replace **namespace** with your project namespace:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec: {}

8. Run the following command to apply the file and create the **MultiClusterHub** custom resource. Replace **custom-resource** with the name of your custom resource file:

oc apply -f <path-to-file>/<custom-resource>.yaml

If you receive the following error, the resource process is still running. Run the **oc apply** command again in a few minutes when the resources are created:

error: unable to recognize "./mch.yaml": no matches for kind "MultiClusterHub" in version "operator.open-cluster-management.io/v1"

9. Run the following command to get the custom resource. It can take up to 10 minutes for the **MultiClusterHub** custom resource status to display as **Running**:

oc get mch -o yaml

#### Notes:

- A ServiceAccount with a ClusterRoleBinding automatically gives cluster administrator
  privileges to Red Hat Advanced Cluster Management and to any user credentials with access to
  the namespace where you install Red Hat Advanced Cluster Management.
- A namespace called **local-cluster** is reserved for the Red Hat Advanced Cluster Management hub cluster when it is self-managed. This is the only **local-cluster** namespace that can exist in the product.
- **Important:** For security reasons, do not give access to the **local-cluster** namespace to any user that is not a **cluster-administrator**.

# 1.2.5. Installing the Red Hat Advanced Cluster Management hub cluster on infrastructure nodes

An OpenShift Container Platform cluster can be configured to contain infrastructure nodes for running approved management components. Running components on infrastructure nodes avoids allocating OpenShift Container Platform subscription quota for the nodes that are running those management components.

After adding infrastructure nodes to your OpenShift Container Platform cluster, follow the Installing from the OpenShift Container Platform CLI instructions and add configurations to the Operator Lifecycle Manager subscription and **MultiClusterHub** custom resource.

#### 1.2.5.1. Add infrastructure nodes to the OpenShift Container Platform cluster

Follow the procedures that are described in Creating infrastructure machine sets in the OpenShift Container Platform documentation. Infrastructure nodes are configured with a Kubernetes **taint** and **label** to keep non-management workloads from running on them.

 To be compatible with the infrastructure node enablement provided by Red Hat Advanced Cluster Management, ensure your infrastructure nodes have the following **taint** and **label** applied: metadata:
labels:
node-role.kubernetes.io/infra: ""
spec:
taints:
- effect: NoSchedule
key: node-role.kubernetes.io/infra

2. Add the following additional configuration before applying the Operator Lifecycle Manager Subscription:

spec:
config:
nodeSelector:
node-role.kubernetes.io/infra: ""
tolerations:
- key: node-role.kubernetes.io/infra
effect: NoSchedule
operator: Exists

3. Add the following additional configuration before you apply the **MultiClusterHub** custom resource:

spec: nodeSelector: node-role.kubernetes.io/infra: ""

Learn about sizing, scaling, and advanced configuration.

- Sizing your cluster
- Performance and scalability
- MultiClusterHub advanced configuration
- Accessing your console

# 1.3. INSTALL IN DISCONNECTED NETWORK ENVIRONMENTS

You might need to install Red Hat Advanced Cluster Management for Kubernetes on disconnected Red Hat OpenShift Container Platform clusters. To install on a disconnected hub cluster, perform the following steps in addition to the usual install or upgrade steps that are for the connected network environment.

Required access: Cluster administrator

- Prerequisites
- Confirming your OpenShift Container Platform installation
- Configuring Operator Lifecycle Manager
- Configuring image content source policies
- Install the Red Hat Advanced Cluster Management for Kubernetes operator and hub

#### 1.3.1. Prerequisites

You must meet the following requirements before you install Red Hat Advanced Cluster Management for Kubernetes:

- Since you are installing in a disconnected network environment, you need access to a local
  image registry to store mirrored Operator Lifecycle Manager catalogs and operator images.
  You probably already set up a local image registry when installing the OpenShift Container
  Platform cluster in this environment, so you should be able to use the same local image registry.
- You must have a workstation that has access to both the Internet and your local mirror registry.
- A supported Red Hat OpenShift Container Platform version must be deployed in your environment, and you must be logged in with the command line interface (CLI). See the OpenShift Container Platform version 4.11 install documentation for information on installing Red Hat OpenShift Container Platform. See Getting started with the CLI for information about installing and configuring oc commands with the Red Hat OpenShift CLI.
- Review Sizing your cluster to learn about setting up capacity for your hub cluster.
  - If you previously installed Red Hat Advanced Cluster Management on a cluster, then uninstalled, you need to follow the clean up procedure to remove artifacts. See Cleaning up artifacts before reinstalling and follow the procedure.

# 1.3.2. Confirming your OpenShift Container Platform installation

While you are connected, verify that a Red Hat Advanced Cluster Management hub cluster is not already installed on your OpenShift Container Platform cluster.

You can only have one single Red Hat Advanced Cluster Management hub cluster installation on each OpenShift Container Platform cluster.

- 1. To ensure that the OpenShift Container Platform cluster is set up correctly, access the OpenShift Container Platform web console with the following command:
  - oc -n openshift-console get route

See the following example output:

- openshift-console console console-openshift-console.apps.new-coral.purple-chesterfield.com console https reencrypt/Redirect None
- Open the URL in your browser and check the result. If the console URL displays consoleopenshift-console.router.default.svc.cluster.local, set the value for openshift\_master\_default\_subdomain when you install OpenShift Container Platform.

# 1.3.3. Confirming the availability of a local image registry

**Best practice:** Use your existing mirror registry for the Operator Lifecycle Manager operator related content.

Installing Red Hat Advanced Cluster Management for Kubernetes in a disconnected environment requires a local mirror image registry. Because you have already completed the installation of the OpenShift Container Platform cluster in your disconnected environment, you already set up a mirror registry for use during the Red Hat OpenShift Container Platform cluster installation.

If you do not already have a local image registry, create one by completing the procedure that is described in Mirroring images for a disconnected installation of the Red Hat OpenShift Container Platform documentation.

# 1.3.4. Configuring Operator Lifecycle Manager

Because Red Hat Advanced Cluster Management for Kubernetes is packaged as an operator, you need Operator Lifecycle Manager to install.

In disconnected environments, Operator Lifecycle Manager cannot access the standard operator sources that Red Hat provided operators can because they are hosted on image registries that are not accessible from a disconnected cluster. Instead, a cluster administrator can enable the installation and upgrade of operators in a disconnected environment by using mirrored image registries and operator catalogs.

To prepare your disconnected cluster for installing Red Hat Advanced Cluster Management for Kubernetes, follow the procedure that is described in Using Operator Lifecycle Manager on restricted networks in the OpenShift Container Platform documentation.

#### 1.3.4.1. Additional requirements

When you complete the previous procedure, note the following requirements that are also specific to Red Hat Advanced Cluster Management for Kubernetes:

- + Include the required operator packages in your mirror catalog. Red Hat provides the Red Hat Advanced Cluster Management for Kubernetes operator in the Red Hat operators catalog, which is delivered by the **registry.redhat.io/redhat/redhat-operator-index** index image. When you prepare your mirror of this catalog index image, you can choose to either mirror the entire catalog as provided by Red Hat, or you can mirror a subset that contains only the operator packages that you intend to use.
- + If you are creating a full mirror catalog, no special considerations are needed as all of the packages required to install Red Hat Advanced Cluster Management for Kubernetes are included. However, if you are creating a partial or filtered mirrored catalog, for which you identify particular packages to be included, you need to include the following package names in your list:
  - advanced-cluster-management

#### multicluster-engine

- 1. Use one of the two mirroring procedures:
  - a. If you are creating the mirrored catalog or registry by using the OPM utility, opm index prune, include the following package names in the value of the -p option as displayed in the following example, with the current version replacing 4.x:

opm index prune \

- -f registry.redhat.io/redhat/redhat-operator-index:v4.x \
- -p advanced-cluster-management, multicluster-engine \
- -t myregistry.example.com:5000/mirror/my-operator-index:v4.x
- a. If you are populating the mirrored catalog or registry by using the **oc-mirror** plug-in instead, include the following package names in the packages list section of your **ImageSetConfiguration**, as displayed in the following example, with the current version replacing **4.x**:

kind: ImageSetConfiguration

```
apiVersion: mirror.openshift.io/v1alpha2
storageConfig:
registry:
imageURL: myregistry.example.com:5000/mirror/oc-mirror-metadata
mirror:
platform:
channels:
- name: stable-4.x
type: ocp
operators:
- catalog: registry.redhat.io/redhat/redhat-operator-index:v4.11
packages:
- name: advanced-cluster-management
- name: multicluster-engine
additionalImages: []
helm: {}
```

#### 1.3.4.1.1. Configuring to use your mirror registry

When you have populated a local mirror registry with the earlier packages that are required for installing Red Hat Advanced Cluster Management for Kubernetes, complete the steps that are described in the topic Using Operator Lifecycle Manager on restricted networks to make your mirror registry and catalog available on your disconnected cluster, which includes the following steps:

- 1. Disabling the default OperatorHub sources
- 2. Mirroring the Operator catalog
- 3. Adding a catalog source for your mirrored catalog
- 4. Find the catalog source name.
- 5. As described in the procedures in the Red Hat OpenShift Container Platform documentation, you need to add a **CatalogSource** resource to your disconnected cluster. **Important:** Take note of the value of the **metadata.name** field, which you need to use later.

Add the **CatalogSource** resource into the **openshift-marketplace** namespace by using a YAML file similar to the following example, replacing **4.x** with the current version:

```
apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
name: my-mirror-catalog-source
namespace: openshift-marketplace
spec:
image: myregistry.example.com:5000/mirror/my-operator-index:v4.x
sourceType: grpc
```

You need the **metadata.name** field value for the annotation in the **MultiClusterHub** resource that you will create later.

# 1.3.5. Verify required packages are available

Operator Lifecycle Manager polls catalog sources for available packages on a regular timed interval. After Operator Lifecycle Manager polls the catalog source for your mirrored catalog, you can verify that the required packages are available from on your disconnected cluster by querying the available

#### PackageManifest resources.

Run the following command, directed at your disconnected cluster:

oc -n openshift-marketplace get packagemanifests

The list that is displayed should include entries showing that the following packages are supplied by the catalog source for your mirror catalog:

- advanced-cluster-management
- multicluster-engine

# 1.3.6. Configuring image content source policies

In order to have your cluster obtain container images for the Red Hat Advanced Cluster Management for Kubernetes operator from your mirror registry, rather than from the internet-hosted registries, you must configure an **ImageContentSourcePolicy** on your disconnected cluster to redirect image references to your mirror registry.

If you mirrored your catalog using the **oc adm catalog mirror** command, the needed image content source policy configuration is in the **imageContentSourcePolicy.yaml** file inside of the **manifests-\*** directory that is created by that command.

If you used the oc-mirror plug-in to mirror your catalog instead, the **imageContentSourcePolicy.yaml** file is within the **oc-mirror-workspace/results-\*** directory create by the oc-mirror plug-in.

In either case, you can apply the policies to your disconnected command using an **oc apply** or **oc replace** command such as:

oc replace -f ./<path>/imageContentSourcePolicy.yaml

The required image content source policy statements can vary based on how you created your mirror registry, but are similar to this example:

apiVersion: operator.openshift.io/v1alpha1

kind: ImageContentSourcePolicy

metadata: labels:

operators.openshift.org/catalog: "true"

name: operator-0

spec:

repositoryDigestMirrors:

- mirrors:
- myregistry.example.com:5000/rhacm2 source: registry.redhat.io/rhacm2
- mirrors:
  - myregistry.example.com:5000/multicluster-engine source: registry.redhat.io/multicluster-engine
- mirrors:
- myregistry.example.com:5000/openshift4 source: registry.redhat.io/openshift4
- mirrors:
- myregistry.example.com:5000/redhat source: registry.redhat.io/redhat

# 1.3.7. Install the Red Hat Advanced Cluster Management for Kubernetes operator and hub cluster

After you have configured Operator Lifecycle Manager and Red Hat OpenShift Container Platform as previously described, you can install Red Hat Advanced Cluster Management for Kubernetes by using either the OperatorHub console or a CLI. Follow the same guidance described in the Installing while connected online topic.

**Important:** Creating the **MultiClusterHub** resource is the beginning of the installation process of your hub cluster.

Because operator installation on a cluster requires the use of a non-default catalog source for the mirror catalog, a special annotation is needed in the **MultiClusterHub** resource to provide the name of the mirror catalog source to the operator. The following example displays the required **mce-subscription-spec** annotation:

```
apiVersion: operator.open-cluster-management.io/v1
kind: MultiClusterHub
metadata:
    namespace: open-cluster-management
    name: hub
    annotations:
    installer.open-cluster-management.io/mce-subscription-spec: '{"source": "my-mirror-catalog-source"}'
spec: {}
```

The **mce-subscription-spec** annotation is required because multicluster engine operator is automatically installed during the Red Hat Advanced Cluster Management installation. If you are creating the resource with a CLI, include the **mce-subscription-spec** annotation in the YAML that you apply with the **oc apply** command to create the **MultiClusterHub** resource.

If you create the resource by using the OperatorHub console, switch to the *YAML view* and insert the annotation as previously displayed. **Important:** There is no field in the OperatorHub console for the annotation in the *Field view* panel to create the **MultiClusterHub** resource.

#### 1.3.7.1. Catalog source priority

When the **MultiClusterHub** resource prepares to install the multicluster engine operator, it implements **CatalogSource** priority as criteria.

The Red Hat Advanced Cluster Management **MultiClusterHub** resource seeks the **CatalogSource** that contains the desired multicluster engine operator version that is compatible with the current Red Hat Advanced Cluster Management version.

If there are multiple **CatalogSource** resources available, the **MultiClusterHub** resource selects the catalog source with the highest **spec.priority** value that is set within the resource instances.

If a custom **CatalogSource** is created without a priority level, it is set to **0** and used as the target **CatalogSource**.

By default, the **redhat-operators** priority is set to **-100**, as displayed in the following example **CatalogSource**:

+

apiVersion: operators.coreos.com/v1alpha1

kind: CatalogSource

metadata:

name: redhat-operators

namespace: openshift-marketplace

spec:

displayName: Red Hat Operators

priority: -100

# 1.4. MULTICLUSTERHUB ADVANCED CONFIGURATION

Red Hat Advanced Cluster Management for Kubernetes is installed by using an operator that deploys all of the required components. Some of the listed components are enabled by default. If a component is *disabled*, that resource is not deployed to the cluster until it is enabled. The operator works to deploy the following components:

Table 1.7. Table list of the deployed components

| Name               | Description                                                                                                                     | Enabled |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|---------|
| app-lifecycle      | Unifies and simplifies options for constructing and deploying applications and application updates.                             | True    |
| cluster-backup     | Provides backup and restore support for all hub cluster resources such as managed clusters, applications, and policies.         | False   |
| cluster-lifecycle  | Provides cluster management capabilities for OpenShift Container Platform and Red Hat Advanced Cluster Management hub clusters. | True    |
| cluster-permission | Automatically distributes RBAC resources to managed clusters and manage the lifecycle of those resources.                       | True    |
| siteconfig         | Enables provisioning clusters at scale, using templates and a unified front-end API.                                            | False   |
| console            | Enables Red Hat Advanced<br>Cluster Management web console<br>plug-in.                                                          | True    |
| grc                | Enables the security enhancement for you to define policies for your clusters.                                                  | True    |

| insights                   | Identifies existing or potential problems in your clusters.                                                                                                        | True |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| multicluster-observability | Enables monitoring to gain further insights into the health of your managed clusters.                                                                              | True |
| search                     | Provides visibility into your<br>Kubernetes resources across all of<br>your clusters.                                                                              | True |
| submariner-addon           | Enables direct networking and service discovery between two or more managed clusters in your environment, either on-premises or in the cloud.                      | True |
| volsync                    | Supports asynchronous replication of persistent volumes within a cluster, or across clusters with storage types that are not otherwise compatible for replication. | True |

When you install Red Hat Advanced Cluster Management on to the cluster, not all of the listed components are enabled by default.

You can further configure Red Hat Advanced Cluster Management during or after installation by adding one or more attributes to the **MultiClusterHub** custom resource. Continue reading for information about the attributes that you can add.

# 1.4.1. Console and component configuration

The following example displays the **spec.overrides** default template that you can use to enable or disable the component:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub

namespace: <namespace> 11

spec:

overrides:

components:

- name: <name> 2 enabled: true

- 1. Replace **namespace** with the name of your project.
- 2. Replace **name** with the name of the component.

Alternatively, you can run the following command. Replace **namespace** with the name of your project and **name** with the name of the component:

oc patch MultiClusterHub multiclusterhub -n <namespace> --type=json -p='[{"op": "add", "path": "/spec/overrides/components/-","value":{"name":"<name>","enabled":true}}]'

**Note:** When the **console** component is disabled, the Red Hat OpenShift Container Platform console is disabled.

# 1.4.2. Custom Image Pull Secret

If you plan to import Kubernetes clusters that were not created by OpenShift Container Platform or Red Hat Advanced Cluster Management, generate a secret that has your OpenShift Container Platform pull secret information to access the entitled content from the distribution registry.

The secret requirements for OpenShift Container Platform clusters are automatically resolved by OpenShift Container Platform and Red Hat Advanced Cluster Management, so you do not have to create the secret if you are not importing other types of Kubernetes clusters to be managed. Your OpenShift Container Platform pull secret is associated with your Red Hat Customer Portal ID, and is the same across all Kubernetes providers.

**Important:** These secrets are namespace-specific, so make sure that you are in the namespace that you use for your hub cluster.

- 1. Go to cloud.redhat.com/openshift/install/pull-secret to download the OpenShift Container Platform pull secret file.
- 2. Click Download pull secret
- 3. Run the following command to create your secret:

oc create secret generic <secret> -n <namespace> --from-file=.dockerconfigjson=<path-to-pull-secret> --type=kubernetes.io/dockerconfigjson

- Replace **secret** with the name of the secret that you want to create.
- Replace **namespace** with your project namespace, as the secrets are namespace-specific.
- Replace path-to-pull-secret with the path to your OpenShift Container Platform pull secret that you downloaded.

The following example displays the **spec.imagePullSecret** template to use if you want to use a custom pull secret. Replace secret with the name of your pull secret:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

imagePullSecret: <secret>

# 1.4.3. availabilityConfig

The Red Hat Advanced Cluster Management hub cluster has two availabilities: **High** and **Basic**. By

default, the hub cluster has an availability of **High**, which gives hub cluster components a **replicaCount** of **2**. This provides better support in cases of failover but consumes more resources than the **Basic** availability, which gives components a **replicaCount** of **1**.

**Important:** Set **spec.availabilityConfig** to **Basic** if you are using multicluster engine operator on a single-node OpenShift cluster.

The following example shows the **spec.availabilityConfig** template with **Basic** availability:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

availabilityConfig: "Basic"

#### 1.4.4. nodeSelector

You can define a set of node selectors in the Red Hat Advanced Cluster Management hub cluster to install to specific nodes on your cluster. The following example shows **spec.nodeSelector** to assign Red Hat Advanced Cluster Management pods to nodes with the label **node-role.kubernetes.io/infra**:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

nodeSelector:

node-role.kubernetes.io/infra: ""

To define a set of node selectors for the multicluster engine operator hub cluster, see nodeSelector in the multicluster engine operator documentation.

# 1.4.5. tolerations

You can define a list of tolerations to allow the Red Hat Advanced Cluster Management hub cluster to tolerate specific taints defined on the cluster.

The following example shows a **spec.tolerations** that matches a **node-role.kubernetes.io/infra** taint:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

tolerations:

- key: node-role.kubernetes.io/infra

effect: NoSchedule operator: Exists

The previous infra-node toleration is set on pods by default without specifying any tolerations in the configuration. Customizing tolerations in the configuration replaces this default.

To define a list of tolerations for the multicluster engine operator hub cluster, see tolreations in the multicluster engine operator documentation.

## 1.4.6. disableHubSelfManagement

By default, the Red Hat Advanced Cluster Management hub cluster is automatically imported and managed by itself. This *managed* hub cluster is named, **local-cluster**. The setting that specifies whether a hub cluster manages itself is in the **multiclusterengine** custom resource. Changing this setting in Red Hat Advanced Cluster Management automatically changes the setting in the **multiclusterengine** custom resource.

**Note:** On a Red Hat Advanced Cluster Management hub cluster that is managing a multicluster engine operator cluster, any earlier manual configurations are replaced by this action.

If you do not want the Red Hat Advanced Cluster Management hub cluster to manage itself, you need to change the setting for **spec.disableHubSelfManagement** from **false** to **true**. If the setting is not included in the YAML file that defines the custom resource, you need to add it. The hub cluster can only be managed with this option.

Setting this option to **true** and attempting to manage the hub manually leads to unexpected behavior.

The following example shows the default template to use if you want to disable the hub cluster self-management feature. Replace **namespace** with the name of your project:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

disableHubSelfManagement: true

To enable the default **local-cluster**, return the setting to **false**, or remove this setting.

## 1.4.7. disableUpdateClusterImageSets

If you want to ensure that you use the same release image for all of your clusters, you can create your own custom list of release images that are available when you create a cluster.

See the following instructions in Maintaining a custom list of release images when connected to manage your available release images and to set the **spec.disableUpdateClusterImageSets** attribute, which stops the custom image list from being overwritten.

The following example shows the default template that disables updates to the cluster image set. Replace **namespace** with the name of your project:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub

namespace: <namespace>

spec:

disableUpdateClusterImageSets: true

# 1.4.8. customCAConfigmap (Deprecated)

By default, Red Hat OpenShift Container Platform uses the Ingress Operator to create an internal CA.

The following example shows the default template used to provide a customized OpenShift Container Platform default ingress CA certificate to Red Hat Advanced Cluster Management. Replace **namespace** with the name of your project. Replace the **spec.customCAConfigmap** value with the name of your **ConfigMap**:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

customCAConfigmap: <configmap>

## 1.4.9. sslCiphers (Deprecated)

By default, the Red Hat Advanced Cluster Management hub cluster includes the full list of supported SSL ciphers.

The following example shows the default **spec.ingress.sslCiphers** template that is used to list **sslCiphers** for the management ingress. Replace **namespace** with the name of your project:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec: ingress: sslCiphers:

- "ECDHE-ECDSA-AES128-GCM-SHA256"

- "ECDHE-RSA-AES128-GCM-SHA256"

#### 1.4.10. ClusterBackup

The **enableClusterBackup** field is no longer supported and is replaced by this component.

The following example shows the **spec.overrides** default template used to enable **ClusterBackup**. Replace **namespace** with the name of your project:

apiVersion: operator.open-cluster-management.io/v1

kind: MultiClusterHub

metadata:

name: multiclusterhub namespace: <namespace>

spec:

overrides: components:

- name: cluster-backup

enabled: true

Alternatively, you can run the following command. Replace **namespace** with the name of your project.

oc patch MultiClusterHub multiclusterhub -n <namespace> --type=json -p='[{"op": "add", "path": "/spec/overrides/components/-","value":{"name":"cluster-backup","enabled":true}}]'

### 1.5. UPGRADING

You control your Red Hat Advanced Cluster Management for Kubernetes upgrades by using the operator subscription settings in the Red Hat OpenShift Container Platform console.

**Important:** Upgrades are only supported from the immediate previous version. You can upgrade to the next available feature release, but you cannot skip a release during upgrade.

The Operator Lifecycle Manager **operatorcondition** helps control how versions are upgraded. When you initially deploy Red Hat Advanced Cluster Management by using the operator, you make the following selections:

- Channel: Channel corresponds to the version of the product that you are installing. The initial channel setting is often the most current channel that was available at the time of installation.
- Approval: Approval specifies whether approval is required for updates within the channel, or if they are done automatically.
  - If set to **Automatic**, then minor release (Errata) updates in the selected channel are deployed without administrator intervention.
  - If set to **Manual**, then each update to the minor release (Errata) within the channel requires an administrator to approve the update.

Required access: OpenShift Container Platform administrator

You also use these settings when you upgrade to the latest version of Red Hat Advanced Cluster Management by using the operator. Complete the following steps to upgrade your operator:

**Important:** You cannot revert back to an earlier version after upgrading to a later version in the channel selection. You must uninstall the operator and reinstall it with the earlier version to use a previous version. Log in to your OpenShift Container Platform operator hub.

- 1. In the OpenShift Container Platform navigation, select **Operators** > **Installed operators**.
- 2. Select the Red Hat Advanced Cluster Management for Kubernetes operator.
- 3. Select the Subscription tab to edit the subscription settings.
- 4. Ensure that the *Upgrade Status* is labeled *Up to date*. This status indicates that the operator is at the latest level that is available in the selected channel. If the *Upgrade Status* indicates that there is an upgrade pending, complete the following steps to update it to the latest minor release that is available in the channel:
  - a. Click the **Manual** setting in the *Approval* field to edit the value.

- b. Select **Automatic** to enable automatic updates.
- c. Select Save to commit your change.
- d. Wait for the automatic updates to be applied to the operator. The updates automatically add the required updates to the latest version in the selected channel. When all of the updated updates are complete, the *Upgrade Status* field indicates **Up to date**.
  Note: It can take up to 10 minutes for the **MultiClusterHub** custom resource to finish upgrading. You can check whether the upgrade is still in process by entering the following command:

oc get mch

While it is upgrading, the **Status** field shows **Updating**. After upgrading is complete, the **Status** field shows **Running**.

- 5. Now that the Upgrade Status is Up to date, click the value in the Channel field to edit it.
- 6. Select the channel for the next available feature release, but do not attempt to skip a channel. **Important:** The Operator Lifecycle Manager **operatorcondition** resource checks for previous upgrades during the current upgrade process and prevents skipping versions. You can check that same resource status to see if the upgradable status is **true** or **false**.
- 7. Select **Save** to save your changes.
- 8. Wait for the automatic upgrade to complete. After the upgrade to the next feature release completes, the updates to the latest patch releases within the channel are deployed.
- 9. If you have to upgrade to a later feature release, repeat steps 7-9 until your operator is at the latest level of the desired channel. Make sure that all of the patch releases are deployed for your final channel.
- 10. Optional: You can set your *Approval* setting to **Manual**, if you want your future updates within the channel to require manual approvals.

For more information about upgrading your operator, see Operators in the OpenShift Container Platform documentation.

# 1.5.1. Managing cluster pools with an upgrade

If you are Managing cluster pools (Technology Preview), you need further configuration to stop automatic management of these cluster pools after upgrade.

Set cluster.open-cluster-management.io/createmanagedcluster: "false" in the ClusterClaim metadata.annotations.

All existing cluster claims are automatically imported when the product is upgraded unless you change this setting.

## 1.6. UPGRADING IN A DISCONNECTED NETWORK ENVIRONMENT

See the steps and information to upgrade Red Hat Advanced Cluster Management for Kubernetes in a disconnected network environment.

**Note:** This information follows the upgrading procedure in Upgrading. Review that procedure, then see the following information:

During your installation, or upgrade, you might encounter important information that is related to the interdependency between the Red Hat Advanced Cluster Management and multicluster engine operator. See Install in disconnected network environments for consideration during install or upgrade.

As is the case for upgrading in a connected network environment, the upgrade process is started by changing the upgrade channel in your Operator Lifecycle Manager subscription for Red Hat Advanced Cluster Management for Kubernetes to the upgrade channel for the new release.

However, because of the special characteristics of the disconnected environment, you need to address the following mirroring requirements before changing the update channel to start the upgrade process:

Ensure that required packages are updated in your mirror catalog.
 During installation, or during a previous update, you created a mirror catalog and a registry that contains operator packages and images that are needed to install Red Hat Advanced Cluster Management for Kubernetes in a disconnected network environment. To upgrade, you need to update your mirror catalog and registry to pick up the updated versions of the operator packages.

Similar to your installation actions, you need to ensure that your mirror catalog and registry include the following operator packages in the list of operators to be included or updated:

- advanced-cluster-manager
- multicluster-engine
- 2. Verify your **MutliclusterHub** resource instance.

During installation or a previous update, you created an instance of the **MulticlusterHub** resource, and due to the disconnected environment, you added a **mce-subscription-spec** annotation to that resource.

If your procedures for updating your mirror catalog and registry resulted in the updated catalog being available on the OpenShift Container Platform cluster through a **CatalogSource** with the same name as the one that you previously used, you do not need to update your **MulticlusterHub** resource to update the **mce-subscriptino-spec** annotation.

However, if your procedures for updating your mirrored catalog and registry resulted in a newly named **CatalogSource** being created, update the **mce-subscription-spec** annotation in your **MulticlusterHub** resource to reflect the new catalog source name.

#### 1.6.1. Upgrade with catalog mirroring

Red Hat Advanced Cluster Management uses the related multicluster engine operator functionality to provide foundational services that were delivered as part of the product. Red Hat Advanced Cluster Management automatically installs and manages the required multicluster engine operator and **MulticlusterEngine** resource instance as part of the hub cluster installation and upgrade.

In connected network environments, the cluster administrator can install or upgrade Red Hat Advanced Cluster Management without special mirror catalogs and catalog sources. However, because installation of any Operator Lifecycle Manager operator in a disconnected environment involves the use of special mirror catalogs and catalog sources, as described in the earlier sections, some additional steps are necessary after installation.

1. Update your procedures for populating the mirror catalog.

If when installing Red Hat Advanced Cluster Management mirroring procedures created a full copy of the Red Hat Operators catalog, no special mirroring updates are required. Refresh your catalog to pick up the updated content for the new operator releases.

However, if your procedures populated mirror catalog that is a *filtered* catalog, you need to update your mirroring procedures to ensure that the **multcluster-engine** operator package is included in the mirror catalog, in addition to the **advanced-cluster-management** package.

See the *Install in disconnected network environments* topic for examples of the options to use when populating the mirror catalog. Update the operator-package lists that are used in your procedures to match these new requirements.

2. Update your **MutliclusterHub** resource instance. You need a new annotation on the **MulticlusterHub** resource when the hub cluster is installed or upgraded in a disconnected environment.

**Best practice:** Update your **MulticlusterHub** resource instance to include the required annotation before you change the Operator Lifecycle Manager update channel in your Operator Lifecycle Manager subscription to the **advanced-cluster-management** operator package to start the upgrade. This update allows the upgrade to proceed without delay.

3. Run the **oc edit** command to update your **Multiclusterub** resource to add the **mce-subscription-spec** annotation as displayed in the following example:

metadata:

annotations:

installer.open-cluster-management.io/mce-subscription-spec: '{"source": "<my-mirror-catalog-source>"}'

Replace <my-mirror-catalog-source> from the example with the name of the CatalogSource resource located in the openshift-marketplace namespace for your mirror catalog.

**Important:** If you begin an upgrade before you add the annotation, the upgrade begins but stalls when the operator attempts to install a subscription to **multicluster-engine** in the background. The status of the **MulticlusterHub** resource continues to display **upgrading** during this time.

To resolve this issue, run **oc edit** to add the **mce-subscription-spec** annotation as shown previously.

#### 1.6.2. Additional resources

Install in disconnected network environments

### 1.7. UPGRADING DISCONNECTED CLUSTERS USING POLICIES

You can use OpenShift Update Service with Red Hat Advanced Cluster Management for Kubernetes policies to upgrade multiple clusters in a disconnected environment.

In some cases, security concerns prevent clusters from being connected directly to the internet. This makes it difficult to know when upgrades are available, and how to process those upgrades. Configuring OpenShift Update Service can help.

OpenShift Update Service is a separate operator and operand that monitors the available versions of your managed clusters in a disconnected environment, and makes them available for upgrading your clusters in a disconnected environment. After OpenShift Update Service is configured, it can perform the following actions:

1. Monitor when upgrades are available for your disconnected clusters.

- 2. Identify which updates are mirrored to your local site for upgrading by using the graph data file.
- 3. Notify you that an upgrade is available for your cluster by using the console.
  - Prerequisites
  - Prepare your disconnected mirror registry
  - Deploy the operator for OpenShift Update Service
  - Build the graph data init container
  - Configure certificate for the mirrored registry
  - Deploy the OpenShift Update Service instance
  - Deploy a policy to override the default registry (optional)
  - Deploy a policy to deploy a disconnected catalog source
  - Deploy a policy to change the managed cluster parameter
  - Viewing available upgrades
  - Selecting a channel
  - Upgrading the cluster

# 1.7.1. Prerequisites

You must have the following prerequisites before you can use OpenShift Update Service to upgrade your disconnected clusters:

- A deployed hub cluster that is running on a supported OpenShift Container Platform version with restricted OLM configured. See Using Operator Lifecycle Manager on restricted networks for details about how to configure restricted OLM.
  - Tip: Make a note of the catalog source image when you configure restricted OLM.
- An OpenShift Container Platform cluster that is managed by the hub cluster
- Access credentials to a local repository where you can mirror the cluster images. See
   Disconnected installation mirroring for more information about how to create this repository.

   Note: The image for the current version of the cluster that you upgrade must always be
   available as one of the mirrored images. If an upgrade fails, the cluster reverts back to the
   version of the cluster at the time that the upgrade was attempted.

# 1.7.2. Prepare your disconnected mirror registry

You must mirror both the image that you want to upgrade to and the current image that you are upgrading from to your local mirror registry. Complete the following steps to mirror the images:

1. Create a script file that contains content that resembles the following example:

UPSTREAM\_REGISTRY=quay.io PRODUCT\_REPO=openshift-release-dev RELEASE\_NAME=ocp-release OCP\_RELEASE=4.15.2-x86\_64
LOCAL\_REGISTRY=\$(hostname):5000
LOCAL\_SECRET\_JSON=/path/to/pull/secret

oc adm -a \${LOCAL\_SECRET\_JSON} release mirror \
--from=\${UPSTREAM\_REGISTRY}/\${PRODUCT\_REPO}/\${RELEASE\_NAME}:\${OCP\_RELE}

--to=\${LOCAL REGISTRY}/ocp4 \

ASE} \

--to-release-image=\${LOCAL REGISTRY}/ocp4/release:\${OCP RELEASE}

Replace /path/to/pull/secret with the path to your OpenShift Container Platform pull secret.

2. Run the script to mirror the images, configure settings, and separate the release images from the release content.

**Tip:** You can use the output of the last line of this script when you create your **ImageContentSourcePolicy**.

## 1.7.3. Deploy the operator for OpenShift Update Service

To deploy the operator for OpenShift Update Service in your OpenShift Container Platform environment, complete the following steps:

- 1. On the hub cluster, access the OpenShift Container Platform operator hub.
- Deploy the operator by selecting OpenShift Update Service Operator. Update the default values, if necessary. The deployment of the operator creates a new project named openshiftcincinnati.
- 3. Wait for the installation of the operator to finish. **Tip:** You can check the status of the installation by entering the **oc get pods** command on your OpenShift Container Platform command line. Verify that the operator is in the **running** state.

### 1.7.4. Build the graph data init container

OpenShift Update Service uses graph data information to determine the available upgrades. In a connected environment, OpenShift Update Service pulls the graph data information for available upgrades directly from the Cincinnati graph data GitHub repository. Because you are configuring a disconnected environment, you must make the graph data available in a local repository by using an **init container**. Complete the following steps to create a graph data **init container**:

1. Clone the graph data Git repository by entering the following command:

git clone https://github.com/openshift/cincinnati-graph-data

2. Create a file that contains the information for your graph data **init**. You can find this sample Dockerfile in the **cincinnati-operator** GitHub repository. The contents of the file is shown in the following sample:

FROM registry.access.redhat.com/ubi8/ubi:8.1

RUN curl -L -o cincinnati-graph-data.tar.gz https://github.com/openshift/cincinnati-graph-data/archive/master.tar.gz

RUN mkdir -p /var/lib/cincinnati/graph-data/

CMD exec /bin/bash -c "tar xvzf cincinnati-graph-data.tar.gz -C /var/lib/cincinnati/graph-data/ --strip-components=1"

In this example:

- The **FROM** value is the external registry where OpenShift Update Service finds the images.
- The **RUN** commands create the directory and package the upgrade files.
- The CMD command copies the package file to the local repository and extracts the files for an upgrade.
- 3. Run the following commands to build the **graph data init container**:

podman build -f <path\_to\_Dockerfile> -t \${DISCONNECTED\_REGISTRY}/cincinnati/cincinnati-graph-data-container:latest podman push \${DISCONNECTED\_REGISTRY}/cincinnati/cincinnati-graph-data-container:latest --authfile=/path/to/pull\_secret.json

Replace **path\_to\_Dockerfile** with the path to the file that you created in the previous step.

Replace **\${DISCONNECTED\_REGISTRY}**/cincinnati/cincinnati-graph-data-container with the path to your local graph data init container.

Replace /path/to/pull\_secret with the path to your pull secret file.

**Note:** You can also replace **podman** in the commands with **docker**, if you don't have **podman** installed.

## 1.7.5. Configure certificate for the mirrored registry

If you are using a secure external container registry to store your mirrored OpenShift Container Platform release images, OpenShift Update Service requires access to this registry to build an upgrade graph. Complete the following steps to configure your CA certificate to work with the OpenShift Update Service pod:

- Find the OpenShift Container Platform external registry API, which is located in image.config.openshift.io. This is where the external registry CA certificate is stored.
   See Configuring additional trust stores for image registry access in the OpenShift Container Platform documentation for more information.
- 2. Create a ConfigMap in the **openshift-config** namespace.
- 3. Add your CA certificate under the key **updateservice-registry**. OpenShift Update Service uses this setting to locate your certificate:

apiVersion: v1 kind: ConfigMap metadata: name: trusted-ca

data:

updateservice-registry: |

```
----BEGIN CERTIFICATE-----
...
----END CERTIFICATE-----
```

4. Edit the **cluster** resource in the **image.config.openshift.io** API to set the **additionalTrustedCA** field to the name of the ConfigMap that you created.

oc patch image.config.openshift.io cluster -p '{"spec":{"additionalTrustedCA": {"name":"trusted-ca"}}}' --type merge

Replace *trusted-ca* with the path to your new ConfigMap.

The OpenShift Update Service Operator watches the **image.config.openshift.io** API and the ConfigMap you created in the **openshift-config** namespace for changes, then restart the deployment if the CA cert has changed.

# 1.7.6. Deploy the OpenShift Update Service instance

When you finish deploying the OpenShift Update Service instance on your hub cluster, this instance is located where the images for the cluster upgrades are mirrored and made available to the disconnected managed cluster. Complete the following steps to deploy the instance:

- 1. If you do not want to use the default namespace of the operator, which is **openshift-cincinnati**, create a namespace for your OpenShift Update Service instance:
  - a. In the OpenShift Container Platform hub cluster console navigation menu, select Administration > Namespaces.
  - b. Select Create Namespace.
  - c. Add the name of your namespace, and any other information for your namespace.
  - d. Select **Create** to create the namespace.
- 2. In the *Installed Operators* section of the OpenShift Container Platform console, select **OpenShift Update Service Operator**.
- 3. Select **Create Instance** in the menu.
- 4. Paste the contents from your OpenShift Update Service instance. Your YAML instance might resemble the following manifest:

```
apiVersion: cincinnati.openshift.io/v1beta2
kind: Cincinnati
metadata:
name: openshift-update-service-instance
namespace: openshift-cincinnati
spec:
registry: <registry_host_name>:<port> 1
replicas: 1
repository: ${LOCAL_REGISTRY}/ocp4/release
graphDataImage: '<host_name>:<port>/cincinnati-graph-data-container' 2
```

Replace the **spec.registry** value with the path to your local disconnected registry for your images.

- 2 Replace the **spec.graphDataImage** value with the path to your graph data init container. This is the same value that you used when you ran the **podman push** command to push
- 5. Select **Create** to create the instance.
- 6. From the hub cluster CLI, enter the **oc get pods** command to view the status of the instance creation. It might take a while, but the process is complete when the result of the command shows that the instance and the operator are running.

# 1.7.7. Deploy a policy to override the default registry (optional)

**Note:** The steps in this section only apply if you have mirrored your releases into your mirrored registry. **Deprecated: PlacementRule** 

OpenShift Container Platform has a default image registry value that specifies where it finds the upgrade packages. In a disconnected environment, you can create a policy to replace that value with the path to your local image registry where you mirrored your release images.

For these steps, the policy is named *policy-mirror*. Complete the following steps to create the policy:

- 1. Log in to the OpenShift Container Platform environment of your hub cluster.
- 2. From the console, select Governance > Create policy.
- 3. Set the **YAML** switch to *On* to view the YAML version of the policy.
- 4. Delete all of the content in the YAML code.
- 5. Paste the following YAML content into the window to create a custom policy:

```
apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-mirror
 namespace: default
spec:
 disabled: false
 remediationAction: enforce
 policy-templates:
  - objectDefinition:
     apiVersion: policy.open-cluster-management.io/v1
     kind: ConfigurationPolicy
     metadata:
      name: policy-image-content-source-policy
     spec:
      object-templates:
       - complianceType: musthave
        objectDefinition:
         apiVersion: operator.openshift.io/v1alpha1
         kind: ImageContentSourcePolicy
         metadata:
           name: <your-local-mirror-name>
           repositoryDigestMirrors:
            - mirrors:
```

- <your-registry> 1 source: registry.redhat.io

---

apiVersion: policy.open-cluster-management.io/v1

kind: PlacementBinding

metadata:

name: binding-policy-mirror

namespace: default

placementRef:

name: placement-policy-mirror

kind: PlacementRule

apiGroup: apps.open-cluster-management.io

subjects:

- name: policy-mirror

kind: Policy

apiGroup: policy.open-cluster-management.io

---

apiVersion: apps.open-cluster-management.io/v1

kind: PlacementRule

metadata:

name: placement-policy-mirror

namespace: default

spec:

clusterConditions:

- status: "True"

type: ManagedClusterConditionAvailable

clusterSelector: matchExpressions:

[] # selects all clusters if not specified

- 1 Replace **your-registry** with the path to your local mirror repository. You can find your path to your local mirror by entering the **oc adm release mirror** command.
- 6. Select Enforce if supported.
- 7. Select **Create** to create the policy.

# 1.7.8. Deploy a policy to deploy a disconnected catalog source

Push the *Catalogsource* policy to the managed cluster to change the default location from a connected location to your disconnected local registry.

- 1. In the console menu, select Governance > Create policy.
- 2. Set the **YAML** switch to *On* to view the YAML version of the policy.
- 3. Delete all of the content in the **YAML** code.
- 4. Paste the following **YAML** content into the window to create a custom policy:

apiVersion: policy.open-cluster-management.io/v1

kind: Policy metadata:

name: policy-catalog namespace: default

```
spec:
 disabled: false
 remediationAction: enforce
 policy-templates:
  - objectDefinition:
    apiVersion: policy.open-cluster-management.io/v1
    kind: ConfigurationPolicy
    metadata:
      name: policy-catalog
    spec:
      object-templates:
       - complianceType: musthave
        objectDefinition:
         apiVersion: config.openshift.io/v1
         kind: OperatorHub
         metadata:
           name: cluster
         spec:
           disableAllDefaultSources: true
       - complianceType: musthave
        objectDefinition:
         apiVersion: operators.coreos.com/v1alpha1
         kind: CatalogSource
         metadata:
           name: my-operator-catalog
           namespace: openshift-marketplace
           sourceType: grpc
           image: '<registry_host_name>:<port>/olm/redhat-operators:v1' 1
           displayName: My Operator Catalog
           publisher: grpc
apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-catalog
 namespace: default
placementRef:
 name: placement-policy-catalog
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
subjects:
- name: policy-catalog
 kind: Policy
 apiGroup: policy.open-cluster-management.io
apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-policy-catalog
 namespace: default
spec:
 clusterConditions:
 - status: "True"
  type: ManagedClusterConditionAvailable
```

clusterSelector:

matchExpressions:

[] # selects all clusters if not specified



Replace the value of **spec.image** with the path to your local restricted catalog source image.

- 5. Select Enforce if supported.
- 6. Select Create to create the policy.

## 1.7.9. Deploy a policy to change the managed cluster parameter

Push the *ClusterVersion* policy to the managed cluster to change the default location where it retrieves its upgrades.

1. From the managed cluster, confirm that the *ClusterVersion* upstream parameter is currently the default public OpenShift Update Service operand by entering the following command:

oc get clusterversion -o yaml

The returned content might resemble the following content:

apiVersion: v1
items:
- apiVersion: config.openshift.io/v1
kind: ClusterVersion
[..]
spec:

channel: stable-4.4

upstream: https://api.openshift.com/api/upgrades\_info/v1/graph

- 2. From the hub cluster, identify the route URL to the OpenShift Update Service operand by entering the following command: **oc get routes**. Note this value for later steps.
- 3. In the hub cluster console menu, select Governance > Create a policy.
- 4. Set the **YAML** switch to *On* to view the YAML version of the policy.
- 5. Delete all of the content in the **YAML** code.
- 6. Paste the following **YAML** content into the window to create a custom policy:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
name: policy-cluster-version
namespace: default
annotations:
policy.open-cluster-management.io/standards: null
policy.open-cluster-management.io/categories: null
policy.open-cluster-management.io/controls: null
spec:
disabled: false

```
remediationAction: enforce
 policy-templates:
  - objectDefinition:
     apiVersion: policy.open-cluster-management.io/v1
     kind: ConfigurationPolicy
     metadata:
      name: policy-cluster-version
     spec:
      object-templates:
       - complianceType: musthave
        objectDefinition:
         apiVersion: config.openshift.io/v1
         kind: ClusterVersion
         metadata:
           name: version
         spec:
           channel: stable-4.4
           upstream: >-
            https://example-cincinnati-policy-engine-uri/api/upgrades_info/v1/graph 1
apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-cluster-version
 namespace: default
placementRef:
 name: placement-policy-cluster-version
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
subjects:
- name: policy-cluster-version
 kind: Policy
 apiGroup: policy.open-cluster-management.io
apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-policy-cluster-version
 namespace: default
spec:
 clusterConditions:
 - status: "True"
  type: ManagedClusterConditionAvailable
 clusterSelector:
  matchExpressions:
   [] # selects all clusters if not specified
```

Replace the value of **objectDefinition.spec.upstream** with the path to your hub cluster OpenShift Update Service operand.

You can complete the following steps to determine the path to the operand:

a. Run the oc get get routes -A command on the hub cluster.

- b. Find the route to **cincinnati**. + The path to the operand is the value in the **HOST/PORT** field
- 7. Select Enforce if supported.
- 8. Select Create to create the policy.
- 9. In the managed cluster CLI, confirm that the upstream parameter in the **ClusterVersion** is updated with the local hub cluster OpenShift Update Service URL by entering:

oc get clusterversion -o yaml

Verify that the results resemble the following content:

apiVersion: v1 items:

- apiVersion: config.openshift.io/v1

kind: ClusterVersion

[..] spec:

channel: stable-4.4

upstream: https://<hub-cincinnati-uri>/api/upgrades\_info/v1/graph

## 1.7.10. Viewing available upgrades

You can view a list of available upgrades for your managed cluster by completing the following steps:

- 1. Log in to your multicluster engine for Kubernetes operator console.
- 2. In the navigation menu, select Infrastructure > Clusters.
- 3. Select a cluster that is in the Ready state.
- 4. From the **Actions** menu, select **Upgrade cluster**.
- Verify that the optional upgrade paths are available.
   Note: No available upgrade versions are shown if the current version is not mirrored into the local image repository.

#### 1.7.11. Selecting a channel

You can use the Red Hat Advanced Cluster Management console to select a channel for your cluster upgrades on OpenShift Container Platform version 4.6 or later. Those versions must be available on the mirror registry. Complete the steps in Selecting a channel to specify a channel for your upgrades.

#### 1.7.12. Upgrading the cluster

After configuring the disconnected registry, Red Hat Advanced Cluster Management and OpenShift Update Service use the disconnected registry to determine if upgrades are available. If no available upgrades are displayed, make sure that you have the release image of the current level of the cluster and at least one later level mirrored in the local repository. If the release image for the current version of the cluster is not available, no upgrades are available.

Complete the following steps to upgrade:

- 1. In the console, select Infrastructure > Clusters.
- 2. Find the cluster that you want to determine if there is an available upgrade.
- 3. If there is an upgrade available, the **Distribution version** column for the cluster indicates that there is an upgrade available.
- 4. Select the Options menu for the cluster, and select **Upgrade cluster**.
- 5. Select the target version for the upgrade, and select **Upgrade**.

The managed cluster is updated to the selected version.

If your cluster upgrade fails, the Operator generally retries the upgrade a few times, stops, and reports the status of the failing component. In some cases, the upgrade process continues to cycle through attempts to complete the process. Rolling your cluster back to a previous version following a failed upgrade is not supported. Contact Red Hat support for assistance if your cluster upgrade fails.

#### 1.8. UNINSTALLING

When you uninstall Red Hat Advanced Cluster Management for Kubernetes, you see two different levels of the uninstall process: A *custom resource removal* and a *complete operator uninstall*. The uninstall process can take up to 20 minutes and the process includes removing resources.

- The custom resource removal is the first and most basic type of uninstall that removes the
  custom resource of the MultiClusterHub instance, but leaves other required operator
  resources. This level of uninstall is helpful if you plan to reinstall with the same settings and
  components.
- The complete operator uninstall is the second level process that removes most operator components, excluding components such as custom resource definitions. When you continue with this step, it removes all of the components and subscriptions that were not removed with the custom resource removal. After this uninstall, you must reinstall the operator before reinstalling the custom resource.

# 1.8.1. Prerequisites

- If you have managed clusters attached, you need to detach them. **Note:** This does not include the **local-cluster**, which is your self-managed hub cluster. For more information about detaching clusters, see the *Removing a cluster from management* section in Creating clusters.
- If you use Discovery, you need to disable the function. From the console, go to the *Discovered Clusters* table and click **Disable cluster discovery**. Confirm that you want to remove the service. You can also use the terminal to disable Discovery with the following command:
  - oc delete discoveryconfigs --all --all-namespaces
- If you use Agent Service Configuration, disable and remove the **AgentServiceConfig** resource. Complete the following steps:
  - a. Log in to your hub cluster.
  - b. Delete the **AgentServiceConfig** custom resource by entering the following command:

oc delete agentserviceconfig --all

- If you use Observability, disable and remove the MultiClusterObservability custom resource.
   Note: Your object storage is not affected after you remove the Observability service. See the following procedure:
  - a. Log in to your hub cluster.
  - b. Delete the **MultiClusterObservability** custom resource by entering the following command:
    - oc delete mco observability
    - To remove **MultiClusterObservability** custom resource with the console, see the following procedure:
  - c. If the **MultiClusterObservability** custom resource is installed, select the tab for *MultiClusterObservability*.
  - d. Select the Options menu for the MultiClusterObservability custom resource.
  - e. Select Delete MultiClusterObservability.

When you delete the resource, the pods in the **open-cluster-management-observability** namespace on Red Hat Advanced Cluster Management hub cluster, and the pods in **open-cluster-management-addon-observability** namespace on all managed clusters are removed.

# 1.8.2. Removing MultiClusterHub resources by using commands

Delete the **MultiClusterHub** custom resource and remove artifacts. Complete the following steps:

- If you have not already, ensure that your OpenShift Container Platform CLI is configured to run
  oc commands. See Getting started with the OpenShift CLI in the OpenShift Container
  Platform documentation for more information about how to configure the oc commands.
- 2. Change to your project namespace by entering the following command. Replace *namespace* with the your project namespace:
  - oc project <namespace>
- 3. Enter the following command to delete the **MultiClusterHub** custom resource:
  - oc delete multiclusterhub --all
- 4. To view the progress, enter the following command:
  - oc get mch -o yaml
- 5. Uninstall the **MultiClusterHub** operator. **Note:** If you plan to reinstall the same Red Hat Advanced Cluster Management version, you do not need to uninstall the operator.
- 6. Enter the following commands to delete the **ClusterServiceVersion** and **Subscription** in the namespace where it is installed. Replace the **2.x.0** value with the selected release:

oc get csv

NAME DISPLAY VERSION REPLACES

PHASE

advanced-cluster-management.v2.x.0 Advanced Cluster Management for Kubernetes 2.x.0 Succeeded

oc delete clusterserviceversion advanced-cluster-management.v2.x.0

oc get sub

NAME PACKAGE SOURCE CHANNEL acm-operator-subscription advanced-cluster-management acm-custom-registry release-2.x

oc delete sub acm-operator-subscription

**Note:** The name of the subscription and version of the CSV might differ.

# 1.8.3. Deleting the components by using the console

When you use the Red Hat OpenShift Container Platform console to uninstall, you remove the **MultiClusterHub** resource to delete the object. Wait for the status, then you uninstall the operator. Complete the following steps to uninstall by using the console:

- In the OpenShift Container Platform console navigation, select Operators > Installed
   Operators > Advanced Cluster Manager for Kubernetes.
- 2. Remove the **MultiClusterHub** custom resource.
  - a. Select the tab for Multiclusterhub.
  - b. Select the Options menu for the MultiClusterHub custom resource.
  - c. Select Delete MultiClusterHub.
- 3. Navigate to Installed Operators.
- 4. Remove the *Red Hat Advanced Cluster Management* operator by selecting the *Options* menu and selecting **Uninstall operator**.

#### 1.9. CLEANING UP ARTIFACTS BEFORE REINSTALLING

Before you reinstall Red Hat Advanced Cluster Management for Kubernetes on a cluster where a previous version was installed and then deleted, you need to remove artifacts.

Required access: Cluster administrator

**OpenShift Container Platform Dedicated environment required access:** You must have **cluster-admin** permissions.

# 1.9.1. Cleaning up artifacts

Remove all artifacts that remain by running the clean-up script. You need to clean up artifacts if you plan to reinstall Red Hat Advanced Cluster Management with an older version of Red Hat Advanced Cluster Management on the same cluster.

Copy the following script into a file, replacing the <namespace> value in the script with the
name of the namespace where you previously installed Red Hat Advanced Cluster Management.
 Important: Ensure that you specify the correct namespace because the namespace is also
cleaned out and deleted when you run the script.

# ACM NAMESPACE=<namespace> oc delete mch --all -n \$ACM NAMESPACE oc delete apiservice v1.admission.cluster.open-cluster-management.io v1.admission.work.open-cluster-management.io oc delete clusterimageset --all oc delete clusterrole multiclusterengines.multicluster.openshift.io-v1-admin multiclusterengines.multicluster.openshift.io-v1-crdview multiclusterengines.multicluster.openshift.io-v1-edit multiclusterengines.multicluster.openshift.io-v1-view open-clustermanagement:addons:application-manager open-cluster-management:admin-aggregate opencluster-management:cert-policy-controller-hub open-cluster-management:cluster-manageradmin-aggregate open-cluster-management:config-policy-controller-hub open-clustermanagement:edit-aggregate open-cluster-management:iam-policy-controller-hub opencluster-management:policy-framework-hub open-cluster-management:view-aggregate oc delete crd klusterletaddonconfigs.agent.open-cluster-management.io placementbindings.policy.open-cluster-management.io policies.policy.open-clustermanagement.io userpreferences.console.open-cluster-management.io discoveredclusters.discovery.open-cluster-management.io discoveryconfigs.discovery.opencluster-management.io oc delete mutatingwebhookconfiguration ocm-mutating-webhook managedclustermutators.admission.cluster.open-cluster-management.io multiclusterobservability-operator oc delete validatingwebhookconfiguration channels.apps.open.cluster.management.webhook.validator application-webhook-validator

2. Run the script. When you receive a message that no resources were found, then you can proceed with the installation.

observability-operator multiclusterengines.multicluster.openshift.io

multiclusterhub-operator-validating-webhook ocm-validating-webhook multicluster-