Sorting

A universal problem!

Many applications often incorporate sorting

There is a wide variety of sorting algorithms, and they use rich set of techniques.

Sorting algorithm

- Insertion, Bubble, Selection sorts:
 - Non-recursive
 - In place: only a constant number of additional storage locations (for local variables) are used outside the array.
- Merge sort :
 - Recursive; Not in place.
- Heap sort : (Chapter 6)
 - Non-recursive
 - Sorts n numbers in place in O(nlgn)

Sorting algorithm

- Quick sort : (chapter 7)
 - Recursive
 - In place
 - Worst time complexity $O(n^2)$; Average time complexity $O(n \log n)$
 - Fastest general purpose sorting algorithm
- Linear sorting algorithms: (chapter 8)
 - Counting sort
 - Radix sort
 - Bucket Sort

Heapsort

Ch. 6 Reading Assignments

All of the chapter (make sure you understand the Loop Invariant correctness proof of BUILD-MAX-HEAP on p. 157 but omit its mathematical proof of complexity on p.159)

6.1 Heaps (Binary heap)

 The binary heap data structure is an array object that can be viewed as a complete tree.


```
Parent(i)

return \lfloor i/2 \rfloor

LEFT(i)

return 2i

Right(i)

return 2i+1
```

Heap property

- Max-heap : A [parent(i)] ≥ A[i]
- Min-heap : A [parent(i)] \leq A[i]
- The height of a node in a tree: the number of edges on the longest downward path from the node to a leaf.
- The *height of a tree*: the height of the root
- The height of a heap: floor(lg n)=O(lg n).

Basic algorithms on max heap

- Max-Heapify algorithm
- Build-Max-Heap algorithm
- Heapsort algorithm
- Heap-Extract-Max algorithm
- Heap-Maximum algorithm
- Max-Heap-Increase-Key algorithm
- Max-Heap-Insert algorithm

6.2 Maintaining the heap property

 Max-Heapify is an important subroutine for manipulating heaps. Its inputs are an array A and an index i in the array. When Heapify is called, it is assumed that the binary trees rooted at LEFT(i) and RIGHT(i) are heaps, but that A[i] may be smaller than its children, thus violating the max heap property.

```
Max-Heapify (A, i)
1 / = 2i
2 r = 2i + 1
3 if I \le \text{heap-size}(A) and A[I] > A[I]
4
       then largest = I
       else largest = i
5
6 if r ≤ heap-size[A] and A[r] > A[largest]
       then largest = r
8 if largest ≠ i
9
       then swap A[i] and A[largest]
               Max-Heapify (A, largest)
10
```

Thinking Assignment: How about Min-Heapify?

Max-Heapify(A,2) heap-size[A] = 10

Max-Heapify Complexity

- It has to be O(height) why?
- Height of a heap is O(lgn)
- So Max-Heapify is O(Ign)

Alternately

- What is the base case?
- What are the recurrence relations?

$$T(base \, case) = \Theta(1) = c$$

$$T(n) \le T(\frac{2n}{3}) + \Theta(1) \, or \, T(\frac{2n}{3}) + c$$

- These can be solved to show T(n)=O(Ign)
- Thinking Assignment: Try it!

6.3 Building a heap

```
Build-Max-Heap(A)

1 heap-size(A) = length(A)

2 for i = \[ heap-size(A)/2 \] downto 1

3 Max-Heapify(A, i)
```

Why does this loop start from <code>length(A)/2</code>? Why does the loop not go from 1 to <code>heap-size(A)/2</code>?

Build-Max-Heap

What is Build-Max-Heap's complexity?

O(nlgn) is a good estimate – why?

But a tighter upper bound can be found: Build-Max-Heap is actually O(n) – linear!

If you want to know why, look at the next slide and read the text p. 159 (optional)

• $O(n \log n)$? We can find a tighter upper bound!

$$n-element\ heap\ has\ height\lfloor\lg n\rfloor$$
 and $\left\lceil\frac{n}{2^{h+1}}\right\rceil$ nodes at height h

T(n) for the a \lg or ithm =

$$\sum_{h=1}^{\lfloor \lg n \rfloor} ((\#of \ nodes \ at \ height \ h) * O(h)) + c$$

$$T(n) = \sum_{h=1}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) < \sum_{h=0}^{\infty} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h)$$

But
$$\sum_{h=0}^{\infty} \left[\frac{n}{2^{h+1}} \right] O(h) = O(n \sum_{h=0}^{\infty} \frac{h}{2^h})$$

and
$$\sum_{h=0}^{\infty} \frac{h}{2^h} = 2$$
 (because $\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$)

So
$$O(n\sum_{h=0}^{\infty} \frac{h}{2^h}) = O(n*2) = O(n)$$

$$T(n) < \sum_{h=0}^{\infty} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O(n), so T(n) = o(n)$$

6.4 The Heapsort algorithm

```
Heapsort(A)
```

- 1 Build-Max-Heap(A)
- 2 for i = length(A) down to 2
- 3 swap A[1] and A[i]
- 4 heap-size[A] = heap-size[A] -1
- 5 Max-Heapify(A,1)

Thinking Assignment:

Does this algorithm sort in ascending order?

Why is its worst-case complexity O(nlgn)?

What is its best case complexity? For what kind of input?

18

The operation of Heapsort

Priority queues

The heap data structure is not only used in sorting but also in priority queues. A **priority queue** is a data structure that maintains a set S of elements, each with an associated value call a **key**. Priority queues has many applications. A **max** (or **min**) **priority queue** should at least support the following operations:

- Insert (S, x) O(log n)
- Maximum/Minimum (S) O(1)
- Extract-Max/Min (S) $O(\log n)$
- Increase-Key (S, x, k) O(log n)
- **Decrease-Key** (S, x, k) $O(\log n)$

Two Heap Operations

Heap-Extract-Max(A)

- 1 if heap-size[A] < 1
- 2 then error "heap underflow"
- $3 \max = A[1]$
- 4 A[1] = A[heap-size(A)]
- 5 heap-size(A) = heap-size(A) 1
- 6 Max-Heapify (A, 1)
- 7 return max

Heap-Maximum(A)

1 return A[1]

Max-Heap-Increase-Key (A, i, key)

- 1 **if** key < A[i]
- 2 **then error** "new key is smaller than current key"
- 3 A[i] = key
- 4 while i > 1 and A[Parent(i)] < A[i]
- 5 swap A[i] and A[Parent(i)]
- 6 i = Parent(i)

Thinking Assignment:

What is this algorithm's complexity?

Write Max-Heap-Decrease-Key (A, i, key)

Write Min-Heap-Increase-Key (A, i, key)

Min-Heap-Decrease-Key (A, i, key)

Heap-Increase-Key

Max-Heap-Insert(A, key)

- 1 heap-size(A) = heap-size(A) + 1
- 2 A[heap-size(A)] = $-\infty$
- 3 Max-Heap-Increase-Key (A, heap-size(A), key)

Thinking Assignment: Write Min-Heap-Insert(A, key)

Thinking Assignments

- Min-Heapify
- Build-Min-Heap
- Heapsort procedure using a Min heap
- Heap-Extract-Min
- Heap-Minimum
- Min-Heap-Decrease-Key
- Min-Heap-Insert
- Max-Heap-Decrease-Key
- Min-Heap-Increase-Key