Localização de Pontos INF2604 – Geometria Computacional

Waldemar Celes

Departamento de Informática, PUC-Rio

Agenda

Localização de pontos

Par próximo

Teorema de Jordan

► Toda curva contínua fechada que não se cruza divide o plano em três regiões: interior, exterior, fronteira

Teorema de Jordan

► Toda curva contínua fechada que não se cruza divide o plano em três regiões: interior, exterior, fronteira

Problema

- ▶ Dado um polígono simples P e um ponto p, localizar p em relação a P:
 - ▶ No interior, no exterior ou na fronteira

Teorema de Jordan

► Toda curva contínua fechada que não se cruza divide o plano em três regiões: interior, exterior, fronteira

Problema

- ▶ Dado um polígono simples P e um ponto p, localizar p em relação a P:
 - ▶ No interior, no exterior ou na fronteira

Teorema de Jordan

► Toda curva contínua fechada que não se cruza divide o plano em três regiões: interior, exterior, fronteira

Problema

- ▶ Dado um polígono simples P e um ponto p, localizar p em relação a P:
 - ▶ No interior, no exterior ou na fronteira

Localização de ponto em relação a uma reta L definida pelos pontos ${\bf a}$ e ${\bf b}$

Localização de ponto em relação a uma reta L definida pelos pontos ${f a}$ e ${f b}$

Reta L divide o plano em 2 semi-planos

- ► À esquerda
- ► À direita

Localização de ponto em relação a uma reta L definida pelos pontos ${f a}$ e ${f b}$

Reta L divide o plano em 2 semi-planos

- ► À esquerda
- ► À direita

Localizar \mathbf{p} em relação a L:

- ▶ No semi-plano à esquerda
- ► No semi-plano à direita
- ightharpoonup Sobre L

Localização de ponto em relação a uma reta L definida pelos pontos ${f a}$ e ${f b}$

Reta L divide o plano em 2 semi-planos

- ► À esquerda
- ► À direita

Localizar \mathbf{p} em relação a L:

- ► No semi-plano à esquerda
- ► No semi-plano à direita
- ightharpoonup Sobre L
 - ► Antes de a
 - ► Em a
 - ► Entre a e b
 - ► Em b
 - ► Depois de b

Ponto ${\bf p}$ estará à esquerda de L sse:

$$\vec{\mathbf{v}} = \mathbf{b} - \mathbf{a}$$
 $\vec{\mathbf{w}} = \mathbf{p} - \mathbf{a}$
 $v_{\perp} = [-v_y, v_x]^T$
 $v_{\perp} \cdot \vec{\mathbf{w}} > 0$

Ponto \mathbf{p} estará à esquerda de L sse:

$$ec{\mathbf{v}} = \mathbf{b} - \mathbf{a}$$

 $ec{\mathbf{w}} = \mathbf{p} - \mathbf{a}$
 $v_{\perp} = [-v_y, v_x]^T$

$$v_{\perp}.\vec{\mathbf{w}} > 0$$

Ou:

$$orient < \mathbf{a}, \mathbf{b}, \mathbf{p} > = \begin{vmatrix} 1 & a_x & a_y \\ 1 & b_x & b_y \\ 1 & p_x & p_y \end{vmatrix} > 0$$

Ponto $\mathbf p$ estará à esquerda de L sse:

$$\vec{\mathbf{v}} = \mathbf{b} - \mathbf{a}$$

 $\vec{\mathbf{w}} = \mathbf{p} - \mathbf{a}$
 $v_{\perp} = [-v_y, v_x]^T$

 $v_{\perp} \cdot \vec{\mathbf{w}} > 0$

Ou:

$$orient < \mathbf{a}, \mathbf{b}, \mathbf{p} > = \begin{vmatrix} 1 & a_x & a_y \\ 1 & b_x & b_y \\ 1 & p_x & p_y \end{vmatrix} > 0$$

Ou:

$$\vec{\mathbf{u}} = \vec{\mathbf{v}} \times \vec{\mathbf{w}}$$
$$u_z > 0$$

Ponto sobre L: caso degenerado

$$v_{\perp}.\vec{\mathbf{w}} = 0$$

Qual das 5 regiões?

Ponto sobre L: caso degenerado

$$v_{\perp}.\vec{\mathbf{w}} = 0$$

Qual das 5 regiões?

- ▶ Se $|v_x| > |v_y|$:
 - $ightharpoonup p_x < a_x$: antes de a
 - $p_x = a_x$: em a
 - $ightharpoonup a_x < p_x < b_x$: entre **a** e **b**
 - $p_x = b_x$: em **b**
 - $ightharpoonup p_x > b_x$: depois de **b**

- ▶ Se $|v_y| > |v_x|$:
 - $ightharpoonup p_y < a_y$: antes de m a
 - $ightharpoonup p_y = a_y$: em a
 - ► $a_y < p_y < b_y$: entre **a** e **b**
 - $ightharpoonup p_y = b_y$: em b
 - ▶ $p_y > b_y$: depois de **b**

Localização de ponto em relação a um triângulo T definido pelos pontos ${\bf a},\ {\bf b}$ e ${\bf c}$

Considere triângulo $T < \mathbf{a}, \mathbf{b}, \mathbf{c} >$

Orientação positiva (anti-horária)

Localização de ponto em relação a um triângulo T definido pelos pontos ${\bf a},\ {\bf b}$ e ${\bf c}$

Considere triângulo $T < \mathbf{a}, \mathbf{b}, \mathbf{c} >$

Orientação positiva (anti-horária)

Uma solução:

Classificar p em relação a cada uma das 3 retas

Localização de ponto em relação à triângulo $T < \mathbf{a}, \mathbf{b}, \mathbf{c} >$

Solução alternativa:

- ► Determinar as coordenadas baricêntricas
 - ► Identifica região onde ponto se encontra

$$\mathbf{p} = \lambda_a \mathbf{a} + \lambda_b \mathbf{b} + \lambda_c \mathbf{c}$$

$$\lambda_a + \lambda_b + \lambda_c = 1$$

$$\lambda_a = \begin{vmatrix} p_x & b_x & c_x \\ p_y & b_y & c_y \\ 1 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ 1 & 1 & 1 \end{vmatrix}$$

Localização de ponto em relação a um polígono convexo ${\cal P}$

▶ Polígono convexo: interseção dos semi-planos definidos por suas arestas

Localização de ponto em relação a um polígono convexo P

 Polígono convexo: interseção dos semi-planos definidos por suas arestas

Uma solução:

- Classificar p em relação a cada uma das arestas
 - ▶ Tempo esperado: O(n)

Localização de ponto em relação a um polígono convexo P

 Polígono convexo: interseção dos semi-planos definidos por suas arestas

Uma solução:

- Classificar p em relação a cada uma das arestas
 - ightharpoonup Tempo esperado: O(n)

Podemos melhorar o tempo esperado do algoritmo?

Localização de ponto em relação a um polígono convexo P

Explorando convexidade

- ► Considere o polígono convexo $P = \mathbf{p}_1 \mathbf{p}_2 ... \mathbf{p}_n$
- ► Considere a reta $L = \mathbf{p}_1 \mathbf{p}_k$, onde $k = \lfloor n/2 \rfloor$, dividindo o polígono em dois polígonos menores:

$$\begin{cases} P^{-} = \mathbf{p}_1 \, \mathbf{p}_2 \dots \mathbf{p}_k \\ P^{+} = \mathbf{p}_1 \, \mathbf{p}_k \, \mathbf{p}_{k+1} \, \mathbf{p}_{k+2} \dots \mathbf{p}_n \end{cases}$$

11

Localização de ponto em relação a um polígono convexo ${\cal P}$

Explorando convexidade

- ► Considere o polígono convexo $P = \mathbf{p}_1 \mathbf{p}_2...\mathbf{p}_n$
- ► Considere a reta $L = \mathbf{p}_1 \mathbf{p}_k$, onde $k = \lfloor n/2 \rfloor$, dividindo o polígono em dois polígonos menores:

$$\begin{cases} P^{-} = \mathbf{p}_1 \, \mathbf{p}_2 \dots \mathbf{p}_k \\ P^{+} = \mathbf{p}_1 \, \mathbf{p}_k \, \mathbf{p}_{k+1} \, \mathbf{p}_{k+2} \dots \mathbf{p}_n \end{cases}$$

- ▶ Se **p** estiver em L e entre \mathbf{p}_1 e \mathbf{p}_k : $\mathbf{p} \in P$
- ▶ Se **p** estiver em L e fora do segmento: $\mathbf{p} \notin P$
- ▶ Se \mathbf{p} estiver à esquerda de L, localiza \mathbf{p} em P^+
- ightharpoonup Se p estiver à direita de L, localiza p em P^-

Localização de ponto em relação a um polígono convexo P

Explorando convexidade

- ► Considere o polígono convexo $P = \mathbf{p}_1 \mathbf{p}_2...\mathbf{p}_n$
- ► Considere a reta $L = \mathbf{p}_1 \mathbf{p}_k$, onde $k = \lfloor n/2 \rfloor$, dividindo o polígono em dois polígonos menores:

$$\begin{cases} P^{-} = \mathbf{p}_1 \, \mathbf{p}_2 \dots \mathbf{p}_k \\ P^{+} = \mathbf{p}_1 \, \mathbf{p}_k \, \mathbf{p}_{k+1} \, \mathbf{p}_{k+2} \dots \mathbf{p}_n \end{cases}$$

- ▶ Se **p** estiver em L e entre $\mathbf{p_1}$ e $\mathbf{p_k}$: $\mathbf{p} \in P$
- ▶ Se **p** estiver em L e fora do segmento: $\mathbf{p} \notin P$
- ightharpoonup Se $m {f p}$ estiver à esquerda de L, localiza $m {f p}$ em P^+
- ightharpoonup Se p estiver à direita de L, localiza p em P^-
- ▶ Tempo esperado: $O(\log n)$

Localização de ponto em relação a uma subdivisão planar ${\cal S}$

► Determinar se ponto pertence a uma face, a uma aresta, sobre um vértice ou fora

Localização de ponto em relação a uma subdivisão planar S

▶ Determinar se ponto pertence a uma face, a uma aresta, sobre um vértice ou fora

Solução: considere que não existem vértices com mesma abscissa \boldsymbol{x}

- ightharpoonup Ordena vértices em x e traça retas verticais
 - Retas originam fatias na subdivisão planar
- ► Determinar fatia que contém p

Localização de ponto em relação a uma subdivisão planar S

▶ Determinar se ponto pertence a uma face, a uma aresta, sobre um vértice ou fora

Solução: considere que não existem vértices com mesma abscissa \boldsymbol{x}

- ▶ Ordena vértices em x e traça retas verticais : $O(n \log n)$
 - Retas originam fatias na subdivisão planar
- ▶ Determinar fatia que contém \mathbf{p} : $O(\log n)$

- Arestas dentro de fatias não se cruzam
 - ightharpoonup Trapézios/triângulos podem ser ordenados em y
- ► Determinar trapézio/triângulo que contém p

- Arestas dentro de fatias não se cruzam
 - ightharpoonup Trapézios/triângulos podem ser ordenados em y
- ▶ Determinar trapézio/triângulo que contém **p**: $O(\log n)$

- Arestas dentro de fatias não se cruzam
 - ightharpoonup Trapézios/triângulos podem ser ordenados em y
- ▶ Determinar trapézio/triângulo que contém **p**: $O(\log n)$

Mapa trapezoidal

- Cria retângulo envolvente para eliminar regiões ilimitadas
- De cada vértice, traca duas semi-retas: para baixo e para cima
 - Semi-retas interrompidas até interceptar uma aresta
- Número de trapézios (ou triângulos) nas fatias limitado

Mapa trapezoidal

Propriedades de mapa trapezoidal

- ▶ Número de vértices: $\#v \le 6n + 4$
- ▶ Número de trapézios: $\#e \le 3n+1$

Mapa trapezoidal

Propriedades de mapa trapezoidal

Número de vértices: $\#v \leq 6n + 4$

Número de trapézios: $\#e \leq 3n+1$

Memória requerida: O(n)

Par próximo

Problema: Dado um conjunto de pontos P, determinar o par mais próximo

Problema: Dado um conjunto de pontos P, determinar o par mais próximo

▶ Algoritmo força bruta: $O(n^2)$

Problema: Dado um conjunto de pontos P. determinar o par mais próximo

▶ Algoritmo força bruta: $O(n^2)$

Como reduzir o esforço computacional?

Problema: Dado um conjunto de pontos P, determinar o par mais próximo

▶ Algoritmo força bruta: $O(n^2)$

Como reduzir o esforço computacional?

- Se calcularmos a menor distância δ considerando $\mathbf{p}_1...\mathbf{p}_{k-1}$, ao considerar \mathbf{p}_k , temos duas situações:
 - $ightharpoonup |\mathbf{p}_k \mathbf{p}_i| < \delta$, ou
 - ► O par mais próximo não se altera

Problema: Dado um conjunto de pontos P, determinar o par mais próximo

▶ Algoritmo força bruta: $O(n^2)$

Como reduzir o esforço computacional?

- Se calcularmos a menor distância δ considerando $\mathbf{p}_1...\mathbf{p}_{k-1}$, ao considerar \mathbf{p}_k , temos duas situações:
 - $ightharpoonspice |\mathbf{p}_k\mathbf{p}_i|<\delta$, ou
 - O par mais próximo não se altera
- lacktriangle Então: só precisamos considerar pontos a uma distância menor que δ de ${f p}_k$.

Algoritmo de varredura

- lacktriangle Manter lista L de candidatos, ordenados em y
- ightharpoonup Ordenar pontos em x
 - lacktriangle Só precisamos verificar pontos $x_k x_i < \delta$
- Inicializar varredura
 - lacksquare $\delta=d(\mathbf{p}_1,\mathbf{p}_2)$, faixa $[x_1,x_2]$ e $L=\{\mathbf{p}_1,\mathbf{p}_2\}$
- ightharpoonup Processar \mathbf{p}_k
 - ightharpoonup Atualizar faixa para x_k
 - Remover candidatos da faixa: $x_k x_i > \delta$
 - ightharpoonup Acrescentar \mathbf{p}_k à faixa, em ordem de y
 - ightharpoonup Verificar distância de pontos em L vizinhos a \mathbf{p}_k

Tempo esperado

- 1. Ordenar pontos em x
- 2. Inicializar varredura
- 3. Processar \mathbf{p}_k (n-2 vezes)
 - ightharpoonup Atualizar faixa para x_k
 - Remover candidatos da faixa: $x_k x_i > \delta$
 - ightharpoonup Acrescentar \mathbf{p}_k à faixa, em ordem de y
 - ightharpoonup Verificar distância de pontos em L a \mathbf{p}_k

Tempo esperado

- 1. Ordenar pontos em x
- 2. Inicializar varredura
- 3. Processar \mathbf{p}_k (n-2 vezes)
 - ightharpoonup Atualizar faixa para x_k
 - Remover candidatos da faixa: $x_k x_i > \delta$
 - Acrescentar \mathbf{p}_k à faixa, em ordem de y
 - lackbox Verificar distância de pontos em L a ${f p}_k$

Tempo esperado?

19

Tempo esperado

- 1. Ordenar pontos em x: $O(n \log n)$
- 2. Inicializar varredura: O(1)
- 3. Processar \mathbf{p}_k (n-2 vezes)
 - ▶ Atualizar faixa para x_k : O(1)
 - ▶ Remover candidatos da faixa: $x_k x_i > \delta$: O(1) (amortizado)
 - Acrescentar \mathbf{p}_k à faixa, em ordem de y: $O(\log n)$
 - ▶ Verificar distância de pontos em L a \mathbf{p}_k : O(1)

Tempo esperado

- 1. Ordenar pontos em x: $O(n \log n)$
- 2. Inicializar varredura: O(1)
- 3. Processar \mathbf{p}_k (n-2 vezes)
 - Atualizar faixa para x_k : O(1)
 - ▶ Remover candidatos da faixa: $x_k x_i > \delta$: O(1) (amortizado)
 - Acrescentar \mathbf{p}_k à faixa, em ordem de y: $O(\log n)$
 - ▶ Verificar distância de pontos em L a \mathbf{p}_k : O(1)

Tempo esperado total

- $ightharpoonup O(n \log n)$: tempo ótimo
 - ightharpoonup No máximo 8 candidatos para verificar distância a cada avanço de L

Exercício

Considere dois conjuntos aleatórios de pontos P e Q no plano, com m e n elementos, respectivamente. É possível usar um algoritmo de varredura, baseado no de par mais próximo de um conjunto, para determinar o par $\{\mathbf{p}_i,\mathbf{q}_j\}$ mais próximo? Se sim, como seria seu pseudo-código e qual a ordem do tempo esperado para execução do seu algoritmo? É possível afirmar que o algoritmo proposto tem ordem de tempo ótimo?

