INTRO TO AI EXAM 1 REVIEW

Joshua Kavner Spring 2023

Exam 1

In-class this Thursday, February 16

Room: DARRIN 324

Time: 10am - 11:50am

- No collaboration, OPEN offline book / notes, no electronics (except a calculator)
- Topics:
 - Lectures (1-4): AI Search (BFS, DFS, UCS, A*)
 - Lectures (5-6): Adversarial Search (Mini-max, $\alpha \beta$, Expecti-max, limited-depth)
 - NO Constraint Satisfaction Problems (CSP)
 - Lectures (7-9): Probability and Bayesian Networks

Topic 1: Al Search What is it? Examples?

- Automated methods for searching a state space in a principled way
- Example (Uninformed Search): Fair division of resources

 Find an allocation that satisfies a given Fairness criterion.

	а	b	С	d	е
Agent 1	3	5	1	3	2
Agent 2	1	1	2	2	5
Agent 3	5	4	1	2	3

Search space: n^m for m goods and n agents

Topic 1: Al Search What is it? Examples?

- Automated methods for searching a state space in a principled way
- Example (Uninformed Search): Fair division of resources
- Example (Informed Search): Website design

Topic 1: Al Search Key Terms

Definitions

- States
- Successor Function
- Start state, Goal state
- State Space Graph
- Search Tree
- Fringe
- True Cost
- Admissible Heuristic
- Consistent Heuristic

Algorithms

- BFS
- DFS
- UCS
- Greedy
- •/ A*

Topic 1: Al Search Key Terms Topic 1: Al Search RES GLEVE

State Space Graph - (Unknown) world map

Search Tree – Internal representation (1) where visited, (2) how to get there

Each node has unique label {state, history, successors}

$$n_1$$
 (initial) n_2 : $(S \xrightarrow{E} A)$ n_3 : $(S \xrightarrow{N} B)$
 n_4 $(S \xrightarrow{E} A \xrightarrow{W} S)$ ---

Fringe – set of nodes to search next

Topic 1: Al Search

Algorithm: A*

Topic 1: Al Search Algorithm: A*

Admissible Heuristic

- $h(s) \le h^*(s)$ where $h^*(s)$ is minimal cost from s to nearest goal
- Easiest: h(s) = 0. Best $h(s) = h^*(s)$

Consistent Heuristic

- f = c + h never decreases along a path
- $oldsymbol{cost}(a o c) + h(c) \ge h(a)$

Theorem: Consistency => Admissible and A* is correct

Topic 1: Al Search Is this heuristic consistent?

Topic 1: Al Search Is this heuristic consistent?

Topic 2: Adversarial Search What is it? Examples? What is Minimax?

Topic 2: Adversarial Search Algorithm: Minimax

(Zero-sum) game play with adversarial agents

■ Backward Induction – you know the opponent wants to minimize your score

Topic 2: Adversarial Search Algorithm: Minimax

Topic 2: Adversarial Search

Topic 2: Adversarial Search Algorithm: $\alpha - \beta$ Search. What is it?

- Main idea: prune branches that cannot influence final decision
- What is α : highest value that a MAX node would choose up to this point
- What is β : lowest value that a MIN node would choose up to this point

Topic 2: Adversarial Search Algorithm: $\alpha - \beta$ Search. What is it?

- Main idea: prune branches that cannot influence final decision
- What is α : highest value that a MAX node would choose up to this point
- What is β : lowest value that a MIN node would choose up to this point

Process:

- 1. Copy (α, β) from parent
- 2. Update α at MAX (or β at MIN) when child returns
- 3. If $\alpha \geqslant \beta$.
 - a) Prune and leturn α if MAX (or β if MIN)
 - b) Otherwise return maximin value

Topic 3: Probability Why do we care?

- 1. Mathematical convenience internally consistent
- 2. Allows us to reason about the world from available information
- 3. Parameter estimation MLE
- 4. It's on your exam

Topic 3: Probability Key Terms

Definitions

- Random variable
- Probability Distribution
- Marginal Probability
- Conditional Probability
- Chain Rule
- Bayesian Network
- Conditional Probability Table

Algorithms

- Compute storage space in BN
- Conditional dependence in BN
- Variable Elimination

Topic 3: Probability Key Terms

Bayesian Network and Conditional Probability Table

Topic 3: Probability

How many variables?

$$10^5 - 1$$

$$|D_X| = 10$$

$$9^3(9 \times 10^2)^2$$

*Revised since Recitation

Topic 3: Probability Is $G \perp S \mid B$?

1 Angostra 7 Mora/170 3 D150 V10A 4 Remove Given 5 If Foath

Topic 3: Probability Is $G \perp S \mid B$?

Topic 3: Probability Is $G \perp T \mid B$?

Topic 3: Probability

Variable Elimination: P(+g, +s)?

Topic 3: Probability

Variable Elimination: P(+g, +s)?

Good Luck Get some sleep!