15/11/2017 HackerRank



# Roads in HackerLand





John lives in HackerLand, a country with N cities and M bidirectional roads. Each of the roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a *power of two* (i.e., N roads has a distinct length, and each length is a power of two (i.e., N roads has a distinct length, and N

Given a map of HackerLand, can you help John determine the sum of the minimum distances between each pair of cities? Print your answer in binary representation.

#### **Input Format**

The first line contains two space-seperated integers denoting N (the number of cities) and M (the number of roads), respectively. Each line i of the M subsequent lines contains the respective values of  $A_i$ ,  $B_i$ , and  $C_i$  as three space-separated integers. These values define a bidirectional road between cities  $A_i$  and  $B_i$  having length  $2^{C_i}$ .

#### **Constraints**

- $1 \le N \le 10^5$
- $1 \le M \le 2 \times 10^5$
- $1 \leq A_i, B_i \leq N, A_i \neq B_i$
- $0 \le C_i < M$
- If  $i \neq j$ , then  $C_i \neq C_j$ .

# **Output Format**

Find the sum of minimum distances of each pair of cities and print the answer in binary representation.

## Sample Input

- 5 6
- 1 3 5
- 4 5 0 2 1 3
- 3 2 1
- 4 3 4
- 4 2 2

# **Sample Output**

1000100

## **Explanation**

In the sample, the country looks like this:

15/11/2017 HackerRank



Let d(x,y) be the minimum distance between city x and city y.

```
d(1,2) = 8

d(1,3) = 10

d(1,4) = 12

d(1,5) = 13

d(2,3) = 2

d(2,4) = 4

d(2,5) = 5

d(3,4) = 6

d(3,5) = 7

d(4,5) = 1

Sum = 8 + 10 + 12 + 13 + 2 + 4 + 5 + 6 + 7 + 1 = (68)_{10} = (1000100)_2
```

f in
Submissions:<u>843</u>
Max Score:60
Difficulty: Medium
Rate This Challenge:
ななななな

```
Current Buffer (saved locally, editable) & 🗸 🖸
                                                                                           Java 7
 1 ▼ import java.io.*;
 2 import java.util.*;
 3 import java.text.*;
 4 import java.math.*;
   import java.util.regex.*;
 5
 6
 7 ▼ public class Solution {
 8
 9 ▼
        public static void main(String[] args) {
             /* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named Solution. */
10 ▼
11
12 }
                                                                                                                    Line: 1 Col: 1
1 Upload Code as File
                      Test against custom input
                                                                                                        Run Code
                                                                                                                     Submit Code
```

15/11/2017 HackerRank

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature