# Revision Notes

### **Chapter 1: Relations and Functions**

### REFLEXIVE, SYMMETRIC, TRANSITIVE AND EQUIVALENCE RELATIONS

A relation in set A is a subset of  $A \times A$ . We also write it as  $R = \{(a, b) \in A \times A \mid aRb\}$ . For relation R in set A,  $R^{-1}$  is inverse relation if  $aR^{-1}b \Rightarrow bRa$ .



A relation R on set A is said to be an empty relation or a void relation if no element of set A is related to any element of set A, i.e.  $R = \phi$ .

A relation R on set A is called a universal relation if each element of A is related to every element of A, i.e.  $R = A \times A$ .

A relation R on set A is called an identity relation if each element of A is related to itself only. i.e. aRa,  $\forall a \in A$ , we write  $R = I_A$ 

### **Reflexive Relation:**

A relation R in a set A is said to be reflexive, if  $(a, a) \in R$ , for every  $a \in A$  or we say aRa, for every  $a \in A$ .

**Note:** An identity relation is reflexive relation but reflexive relation may or may not be identity relation.

### Symmetric Relation:

A relation R in a set A is said to be symmetric, if  $(a,b) \in R \Rightarrow (b,a) \in R$ , for all  $a,b \in A$ . We can also say  $aRb \Rightarrow bRa$ , for every  $a,b \in A$ .

### **Transitive Relation:**

A relation R in a set A is said to be transitive, if  $(a,b) \in R$  and  $(b,c) \in R$   $\Rightarrow (a,c) \in R$ , for every  $a,b,c \in A$ . We can also say  $aRb,bRc \Rightarrow aRc$ , for all  $a,b,c \in A$ .

#### **Equivalence Relation:**

A relation R in a set A is said to be an equivalence relation if relation R is reflexive, symmetric and transitive.

# ONE-ONE (INJECTIVE) FUNCTION, ONTO (SURJECTIVE) FUNCTION, ONE-ONE AND ONTO (BIJECTIVE) FUNCTION

### One-one (injective) function:

A function  $f:A\to B$  is said to be one-one (or injective), if the images of distinct elements of A under the rule f are distinct in B, i.e. for every  $a,b\in A,a\neq b$   $\Rightarrow f(a)\neq f(b)$ 

or we can also say that  $f(a) = f(b) \Rightarrow a = b$ .

### Onto (surjective) function:

A function  $f:A\to B$  is said to be onto (or surjective), if every element of B is the image of some element of A under the rule f, i.e. for every  $b\in B$ , there exists an element  $a\in A$  such that f(a)=b.

**Note:** A function is onto if and only if range of f = B.



**One-one and onto (bijective) function:** A function  $f: A \rightarrow B$  is said to be one-one and onto (or bijective) if f is both one-one and onto.

## **Chapter 2: Inverse Trigonometric Functions**

1. Table for domain and range of Inverse Trigonometric Functions:

| FUNCTIONS              | DOMAIN             | RANGE (PRINCIPAL VALUE BRANCH)           |
|------------------------|--------------------|------------------------------------------|
| $(i) y = \sin^{-1} x$  | - 1 ≤ <i>x</i> ≤ 1 | $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ |
| $(ii) y = \cos^{-1} x$ | -1 ≤ <i>x</i> ≤ 1  | $0 \le y \le \pi$                        |

| $(iii) y = \tan^{-1} x$                | $-\infty < \chi < \infty$      | $-\frac{\pi}{2} < y < \frac{\pi}{2}$              |
|----------------------------------------|--------------------------------|---------------------------------------------------|
| $(iv) y = \operatorname{cosec}^{-1} x$ | $x \ge 1 \text{ or } x \le -1$ | $-\frac{\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0$ |
| $(v) y = \sec^{-1} x$                  | $x \ge 1 \text{ or } x \le -1$ | $0 \le y \le \pi,  y \neq \frac{\pi}{2}$          |
| $(vi) y = \cot^{-1} x$                 | $-\infty < \chi < \infty$      | 0 < y < π                                         |

### 2. Graphs of Inverse Trigonometric functions:





### PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS



# **Chapter 3: Matrices**



and diagonal elements are 1 each.