Stromořadí

Úloha 1. Rozhodněte, zda následující skóre musí, mohou, nebo nemohou přináležet k nějakému stromu; pokud mohou, zkonstruujte ho, a pokud nemusí, tak zkonstruujte i protipříklad.

(a)
$$(2,2,2,2)$$
 (b) $(1,1,1,1,4)$ (c) $(1,1,2,3,3)$ (d) $(1,1,2,2,3)$ (e) $(1,1,2,2,2)$ (f) $(1,1,1,2,2,3)$ (g) $(1,1,1,1,1,1,1,1,2,2,3,3,3,4)$ (h) $(1,1,1,3,3,3,3)$ (i) $(1,1,1,1,1,1,4,4,4)$

Úloha 2. Nalezněte příklad souvislého grafu,

- (a) který bude mít jedinou kostru,
- (b) který bude mít vícero koster, ale jehož každé dvě kostry budou isomorfní,
- (c) který bude mít alespoň dvě neisomorfní kostry.

Úloha 3. Nechť G je souvislý graf, který ale není strom.

- (a) Musí mít všechny jeho kostry stejný počet hran?
- (b) Musí mít všechny jeho kostry stejný počet listů?

Vysvětlete proč, nebo nalezněte protipříklad.

Úloha 4. Najděte (souvislý) graf, který bude mít přesně 7 různých koster. (Nápověda: Existuje příklad s přesně 7 hranami.)

* Úloha 5. Ukažte, že souvislý graf, který není strom, už nutně musí mít aspoň tři různé kostry. (Nápověda: Uvažte, co se stane, když do kostry přidáme nějakou nepoužitou hranu z původního grafu.) vůbec neexistuje (e) může a nemusí (cesta vs. trojúhelník a samostatná hrana) (f) může a nemusí (cesta s odbočkou vs. trojúhelník s ocasem a samostatná hrana) (g) nemůže – je tam moc hran (h) nemůže – je tam moc hran (i) musí – dva spojené vrcholy stupně 4 s napojenými listy

1. (a) nemůže – nemá listy (b) musí – "hvězdička" se 4 rameny (c) nemůže (d) takový graf

- ${\bf 2.}$ (a) můžeme vzít přímo strom (dokonce musíme) (b) např. kružnice (c) např. čtverec s úhlopříčkou
- **3.** (a) ano počet hran bude o jedna menší, než počet vrcholů (b) ne opět např. čtverec s úhlopříčkou
- 4. např. kružnice na 7 vrcholech
- 5. Jelikož nejde o strom, nějaká hrana v kostře chybí; po přidání tého hrany ke kostře dostaneme (jediný) cyklus. Odebráním kterékoliv hrany z onoho cyklu (musí tam být ještě aspoň dvě další) dostaneme pokaždé nějakou jinou kostru.