Atividade MMQ

A correção será feita com tolerância relativa de 1% para floats (e tolerância absoluta de 0.01 para valores menores do que 1e-14), portanto é bom calcular com precisão maior (por exemplo, quem fizer à mão, use pelo menos 4 algarismos) e arredondar o menos possível.

Q0. (Valendo 5.0, distribuídos igualmente. Em cada parte, a divisão interna é uniforme para cada objeto inserido como resposta)

Para esta questão, são dados 6 pontos (x_i,y_i) , aleatorizados para cada aluno. Quem quiser colocá-los em um gráfico, verá que eles mostram uma tendência de crescimento, com alguma concavidade para cima. Em cada parte desta questão, o objetivo é fazer um ajuste por MMQ usando uma família diferente de funções. Para a Parte 2, é fornecida também a constante β . Finalmente, na última parte, é pedido o valor do coeficiente de determinação (R^2) em cada caso.

Sugere-se fortemente usar algum tipo de recurso computacional para resolver as questões. Pode ser Excel, Python ou o que quiserem. Para as respostas (exceto nas partes 5 e 6), forneça o sistema normal (seus coeficientes e termos independentes, separados por vírgulas, linha por linha) e, logo embaixo, os parâmetros obtidos, em ordem, na mesma linha (conforme o arquivo-modelo indica).

Parte 0. Ajuste y = a + bx com pesos uniformes.

Parte 1. Ajuste y = a + bx com pesos p = (1,2,3,4,5,6).

Parte 2. Ajuste $y=ax^{\beta}$, onde β não é um parâmetro, mas a constante fornecida no arquivo de dados.

Parte 3. Ajuste $y = ax + bx^2$ com pesos uniformes.

Parte 4. Ajuste $y = a + bx + cx^2$ com pesos uniformes.

Parte 5. Ajuste $y=ax^b$, fazendo linearização da equação (e usando pesos uniformes na expressão linearizada).

Parte 6. Calcule \mathbb{R}^2 em cada caso. No caso da Parte 5, obter \mathbb{R}^2 para a função original (na forma não linear). Resposta: 6 floats.

Q1. Parte única. Valendo 1.0.

No arquivo de dados, você recebeu uma equação/relação envolvendo 3 variáveis (x, y, z) e 3 parâmetros (a, b, c). Essa relação pode ser linearizada para ficar na forma:

$$n_0 x^{n_1} y^{n_2} z^{n_3} a + n_4 x^{n_5} y^{n_6} z^{n_7} b + n_8 x^{n_9} y^{n_{10}} z^{n_{11}} c = n_{12} x^{n_{13}} y^{n_{14}} z^{n_{15}}$$
,

em que os números n_0,n_1,\dots,n_{15} são inteiros. Determine os números que determinam a forma linearizada correta da equação. *Resposta: 16 inteiros.*

Q2. Valendo 2.0, com pesos diversos, ver depois no Relatório.

Sejam $(x_1, x_2, ..., x_6)$ os 5 pontos fornecidos no arquivo de dados.

Parte 0. Calcule os 4 primeiros polinômios ortogonais mônicos p_0, p_1, p_2, p_3 para o (pseudo)produto interno canônico

$$\langle p, q \rangle = \sum_{i=1}^{6} p(x_i) q(x_i)$$

(use o método recursivo visto em aula, claro). Resposta: Usar a notação para polinômios indicada nas instruções, com os coeficientes em frações.

Parte 1. Calcule as normas ao quadrado desses 4 polinômios. Resposta: 4 frações.

Parte 2. No arquivo de dados também são dados os valores $(y_1, y_2, ..., y_6)$. Para esses valores, correspondendo respectivamente aos pontos $(x_1, ..., x_6)$, ajuste um polinômio cúbico por MMQ, como combinação linear dos p_i 's. Resposta: Os coeficientes dessa combinação linear (em forma de frações).

Q3. Parte única. Valendo 2.0.

No arquivo de dados está indicada uma função em um intervalo. Obtenha os coeficientes da análise harmônica até ordem 2 para essa função. Resposta: 5 floats, na ordem a_0 , a_1 , b_1 , a_2 , b_2 de acordo com a notação usada em aula.