Задание IV

Текст задания Используя алгоритм Форда, найти минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг.

$$A = \begin{pmatrix} \infty & 2 & 7 & 8 & \infty & \infty & \infty \\ 12 & \infty & 4 & \infty & 6 & \infty & \infty \\ \infty & 4 & \infty & 1 & 3 & 5 & 7 \\ \infty & \infty & 1 & \infty & \infty & 3 & \infty \\ \infty & \infty & 3 & \infty & \infty & \infty & 5 \\ \infty & \infty & 5 & \infty & \infty & \infty & 2 \\ 2 & \infty & \infty & 3 & 4 & 6 & 7 \end{pmatrix}$$

Решение

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	$\lambda_i^{(0)}$	$\lambda_i^{(1)}$	$\lambda_i^{(2)}$	$\lambda_i^{(3)}$	$\lambda_i^{(4)}$	$\lambda_i^{(5)}$	$\mid \lambda_i^{(6)} \mid$
v_1	∞	2	7	8	∞	∞	∞	0	0	0	0	0	0	0
v_2	12	∞	4	∞	6	∞	∞	∞	2	2	2	2	2	2
v_3	∞	4	∞	1	3	5	7	∞	7	6	6	6	6	6
v_4	∞	∞	1	∞	∞	3	∞	∞	8	8	7	7	7	7
v_5	∞	∞	3	∞	∞	∞	5	∞	∞	8	8	8	8	8
v_6	∞	∞	5	∞	∞	∞	2	∞	∞	11	11	10	10	10
v_7	2	∞	∞	3	4	6	7	∞	∞	14	13	13	12	12

- 2. Длины минимальных путей из вершины v_1 во все остальные вершины определены в последнем столбце таблицы.
- 3. Найдем вершины, входящие в минимальные пути из v_1 во все остальные вершины графа:
 - 3.1. Минимальный путь из v_1 в v_2 : $v_1 \to v_2$, его длина 2

$$\lambda_1^{(0)} + c_{12} = 0 + 2 = \lambda_2^{(1)}$$

3.2. Минимальный путь из v_1 в v_3 : $v_1 \to v_2 \to v_3$, его длина – 6

$$\lambda_1^{(0)} + c_{13} = 0 + 7 = 7 = \lambda_3^{(1)}$$

 $\lambda_2^{(1)} + c_{23} = 2 + 4 = 6 = \lambda_3^{(2)}$

3.3. Минимальный путь из v_1 в v_4 : $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4$, его длина – 7

$$\lambda_3^{(2)} + c_{34} = 6 + 1 = 7 = \lambda_4^{(3)}$$

$$\lambda_2^{(1)} + c_{23} = 2 + 4 = 6 = \lambda_3^{(2)}$$

$$\lambda_1^{(0)} + c_{12} = 0 + 2 = 2 = \lambda_2^{(1)}$$

3.4. Минимальный путь из v_1 в v_5 : $v_1 \to v_2 \to v_5$, его длина – 8

$$\lambda_2^{(1)} + c_{25} = 2 + 6 = 6 = \lambda_5^{(2)}$$

 $\lambda_1^{(0)} + c_{12} = 0 + 2 = 2 = \lambda_2^{(1)}$

3.5. Минимальный путь из v_1 в v_6 : $v_1 \to v_2 \to v_3 \to v_4 \to v_6$, его длина – 10

$$\lambda_4^{(3)} + c_{46} = 7 + 3 = 10 = \lambda_6^{(4)}$$

$$\lambda_3^{(2)} + c_{34} = 6 + 1 = 7 = \lambda_4^{(3)}$$

$$\lambda_2^{(1)} + c_{23} = 2 + 4 = 6 = \lambda_3^{(2)}$$

$$\lambda_1^{(0)} + c_{12} = 0 + 2 = 2 = \lambda_2^{(1)}$$

3.6. Минимальный путь из v_1 в v_7 : $v_1 \to v_2 \to v_3 \to v_4 \to v_6 \to v_7$, его длина – 12

$$\lambda_6^{(3)} + c_{67} = 10 + 2 = 12 = \lambda_7^{(5)}$$

$$\lambda_4^{(3)} + c_{46} = 7 + 3 = 10 = \lambda_6^{(4)}$$

$$\lambda_3^{(2)} + c_{34} = 6 + 1 = 7 = \lambda_4^{(3)}$$

$$\lambda_2^{(1)} + c_{23} = 2 + 4 = 6 = \lambda_3^{(2)}$$

$$\lambda_1^{(0)} + c_{12} = 0 + 2 = 2 = \lambda_2^{(1)}$$