Theoretische Mechanik Hausaufgaben Blatt Nr. 2

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 29, 2023)

Problem 1. Betrachten Sie die folgenden Familien von Kraftfeldern auf geeigneten Definitionsbereichen $D_{\eta}^{(n)} \subseteq \mathbb{R}^3$

$$F_{\eta}^{(1)}: D_{\eta}^{(1)} \ni \vec{\mathbf{x}} \to r^{\eta} \cdot \vec{\mathbf{x}} \in \mathbb{R}^{3}$$

$$F_{\eta}^{(2)}: D_{\eta}^{(2)} \ni \vec{\mathbf{x}} \to r_{12}^{\eta} \cdot (x_{1}\vec{\mathbf{e}}_{1} - x_{2}\vec{\mathbf{e}}_{2}) \in \mathbb{R}^{3}$$

$$F_{\eta}^{(3)}: D_{\eta}^{(3)} \ni \vec{\mathbf{x}} \to r_{12}^{\eta} \cdot (x_{2}\vec{\mathbf{e}}_{1} - x_{1}\vec{\mathbf{e}}_{2}) \in \mathbb{R}^{3}$$

$$F_{\eta}^{(4)}: D_{\eta}^{(3)} \ni \vec{\mathbf{x}} \to r_{12}^{\eta} \cdot (x_{2}\vec{\mathbf{e}}_{1} + x_{1}\vec{\mathbf{e}}_{2}) \in \mathbb{R}^{3}$$

wobei $r_{12} = \sqrt{x_1^2 + x_2^2}$ und $r = \sqrt{x_1^2 + x_2^2 + x_3^3}$ Skizzieren Sie die Felder $\vec{\mathbf{F}}_{\eta}^{(n)}$ als Vektorpfeile in der von den Einheitsvektoren $\vec{\mathbf{e}}_1$ und $\vec{\mathbf{e}}_2$ aufgespannten Ebene (hier genügt es, zwischen den Fällen $\eta > -1$, $\eta = -1$ und $\eta < -1$ zu unterscheiden).

Bestimmen Sie, abhängig von der Potenz $\eta \in \mathbb{R}$,

- 1. den maximalen Definitionsbereich $D_{\eta}^{(n)}$,
- 2. die maximale Bereiche $C_{\eta}^{(n)} \subseteq D_{\eta}^{(n)}$, auf denen $F_{\eta}^{(n)}$ konservativ ist,
- 3. eine Potentialfunktion $V_{\eta}^{(n)}: C_{\eta}^{(n)} \to \mathbb{R}$ mit $F_{\eta}^{(n)} = -\nabla V_{\eta}^{(n)}$, sofern sie existiert,
- 4. das Kurvenintegral

$$I_{\eta}^{(n)}(R) = \int_{\gamma_R} d\vec{\xi} \cdot \vec{\mathbf{F}}_{\eta}^{(n)}(\vec{\xi})$$

über den gegen den Uhrzeigersinn umlaufenen Kreis γ_R mit Radius R und Mittelpunkt $\vec{\bf 0}$ in der von $\vec{\bf e}_1$ und $\vec{\bf e}_2$ aufgespannten Ebene

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

FIG. 1: Vektorpfeile für $\vec{\mathbf{F}}_{\eta}^{(1)}$

FIG. 2: Vektorpfeile für $\vec{\mathbf{F}}_{\eta}^{(2)}$

FIG. 3: Vektorpfeile für $\vec{\mathbf{F}}_{\eta}^{(3)}$

Proof. 1. Maximalen Definitionsbereich (für alle $\vec{\mathbf{F}}_{\eta}^{(n)}$): Wenn $\eta \leq -1, \mathbb{R}^3 \setminus \{(0,0,0)\},$ sonst \mathbb{R}^3 .

2. maximale Bereiche, auf denen $\vec{\mathbf{F}}_{\eta}^{(n)}$ konservativ ist. $n=\dots$

FIG. 4: Vektorpfeile für $\vec{\mathbf{F}}_{\eta}^{(4)}$

- (1) Falls $\eta = 0, D_{\eta}^{(1)}$, sonst z = 0
- (2) Falls $\eta = 0, D_{\eta}^{(2)}$, sonst \emptyset
- (3) Falls $\eta = -2, D_{\eta}^{(3)}$, sonst \varnothing .
- (4) Falls $\eta = 0, D_{\eta}^{(4)}$, sonst \varnothing .
- 3. Potentialfunktion, für $n = \dots$
 - (1) Auf z = 0 Ebene:

$$\eta = -2$$
: $V = -\frac{1}{2} \ln{(x^2 + y^2)}$, sonst $V = -\frac{1}{n+2} r^{n+2}$

Wenn n=0 kann eine Potentialfunktion für alle $\vec{\mathbf{r}}\in\mathbb{R}^3$ definiert werden:

$$V(x, y, z) = -\frac{1}{2}(x^2 + y^2)$$

- (2) Nur für $\eta = 0$, $V = \frac{1}{2}(x^2 y^2)$.
- (3) Für $\eta = -2$, $V = -\tan^{-1}\left(\frac{x}{y}\right)$.
- (4) Für $\eta = 0, V = -xy$.
- 4. Kurvenintegral, für $n = \dots$
 - (1) Weil $\nabla \times F_{\eta}^{(1)} = 0$ auf die $\vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2$ Ebene, ist das Kurvenintegral stets 0.
 - (2) Gleich für $\eta = 0$. Sonst sei $x_1 = \cos \theta$, $x_2 = \sin \theta$, $dx_1 = -\sin \theta d\theta$, $dx_2 = \cos \theta d\theta$

$$R^{\eta} \int_{\gamma_R} x_1 \, dx_1 - x_2 \, dx_2 = R^{\eta} \int_0^{2\pi} \left(-\cos\theta \sin\theta \, d\theta - \cos\theta \sin\theta \, d\theta \right)$$
$$= R^{\eta} \int_0^{2\pi} \left(-2\sin\theta \cos\theta \right) d\theta$$
$$= 0$$

(3) Sei $x_1 = \cos \theta$, $x_2 = \sin \theta$, $dx_1 = -\sin \theta d\theta$, $dx_2 = \cos \theta d\theta$

$$R^{\eta} \int_{\gamma_R} x_2 dx_1 - x_1 dx_2 = R^{\eta} \int_0^{2\pi} \left(-\sin^2 \theta d\theta - \cos^2 \theta d\theta \right)$$
$$= -R^{\eta} \int_0^{2\pi} d\theta$$
$$= -2\pi R^{\eta}$$

Beachten Sie, dass es für $\eta = -2$ ungleich 0 ist, weil $\nabla \times \vec{\mathbf{F}}_{\eta}^{(3)}$ auf (0,0) nicht definiert ist.

(4) Für $\eta=0$ ist die Kurvenintegral stets 0. Sonst sei $x_1=\cos\theta,\ x_2=\sin\theta,\ dx_1=-\sin\theta\,d\theta\,, dx_2=\cos\theta\,d\theta$ und

$$R^{\eta} \int_{\gamma_R} x_2 \, \mathrm{d}x_1 + x_1 \, \mathrm{d}x_2 = R^{\eta} \int_0^{2\pi} \left(-\sin^2 \theta + \cos^2 \theta \right) \, \mathrm{d}\theta$$
$$= R^{\eta} \int_0^{2\pi} \cos(2\theta) \, \mathrm{d}\theta$$
$$= 0$$

Problem 2. Zwischen zwei Kreisringen mit Radius R, die bei $x = -x_0$ und $x = x_0$ zentriert in der yz-Ebene liegen, sei eine Seifenhaut gespannt (s. Skizze). Aufgrund der Oberflächenspannung wird sich die Seifenhaut so ausbilden, dass die entsprechende Oberfläche minimal ist.

1. Das gesamte Problem ist rotationssymmetrisch um die x-Achse. Zeigen Sie, dass die Fläche der Rotationsfigur um die x-Achse für die Funktion $y:[-x_0,x_0]\to\mathbb{R}$ zwischen den Kreisringen durch

$$F(y) = \int_{-x_0}^{x_0} 2\pi y(x) \sqrt{1 + y'(x)^2} \, \mathrm{d}x$$

mit $y' = \frac{dy}{dx}$ gegeben ist.

2. Benutzen Sie nun die in der Vorlesung kennengelernte Methode der Variationsrechnung, um die Minimalfläche zu finden, die von der Seifenhaut gebildet wird. Gesucht ist also die Funktion y, die F(y) minimiert. (Hinweis: Zeigen Sie, dass die Euler-Lagrange-Gleichung für dieses Problem als

$$\frac{1}{y'}\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{y}{\sqrt{1+y'^2}}\right) = 0$$

geschrieben werden kann.)

Proof. 1.

$$dV = 2\pi y(x)\sqrt{1 + y'(x)^2} dx$$

2.

Theorem 1. Im Allgemein, für $\frac{\partial L}{\partial t} = 0$, gilt

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) = 0.$$

Proof. Erinnern Sie sich daran, dass

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q} \tag{1}$$

Es gilt

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) &= \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} \right) \dot{q} + \frac{\partial L}{\partial \dot{q}} \ddot{q} - \frac{\partial L}{\partial \dot{q}} \ddot{q} - \frac{\partial L}{\partial q} \dot{q} + \frac{\partial L}{\partial t} \\ &= \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} \right) \dot{q} - \frac{\partial L}{\partial q} \dot{q} \\ &= \left(\frac{\partial L}{\partial q} \right) \dot{q} - \frac{\partial L}{\partial q} \dot{q} = 0 \end{split}$$

Sei jetzt $L(y(x), y'(x), x) = y(x)\sqrt{1 + y'(x)^2}$. Es folgt $\frac{\partial L}{\partial x} = 0$. Daraus folgt

$$\frac{\partial L}{\partial y'}y' - L = \left(\frac{y(x)y'(x)}{\sqrt{1 + y'(x)^2}}\right)y' - y(x)\sqrt{1 + y'(x)^2}$$

$$= \left(\frac{yy'^2}{\sqrt{1 + y'^2}}\right) - \frac{y(1 + y'^2)}{\sqrt{1 + y'^2}}$$

$$= \frac{-y}{\sqrt{1 + y'^2}}$$

Es gilt dann, dass

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y}{\sqrt{1 + y'^2}} \right) = 0.$$

Daraus folgt:

$$\alpha y = \sqrt{1 + y'^2}$$

$$\alpha^2 y^2 = 1 + y'^2$$

$$y' = \pm \sqrt{\alpha^2 y^2 - 1} + \text{wenn } x > 0$$

$$\int dx = \int \frac{dy}{\sqrt{\alpha^2 y^2 - 1}}$$

$$x = \frac{1}{\alpha} \cosh^{-1}(\alpha y) - \beta$$

$$y = \frac{1}{\alpha} \cosh(\alpha (x + \beta))$$

Die Randbedingungen ergeben:

$$\alpha R = \cosh(\alpha(x_0 + \beta)) = \cosh(\alpha(-x_0 + \beta))$$

Daraus folgt $\beta=0.\,$ Leider ist die Gleichung für α unlösbar. Die Lösung zu die Gleichung ist

$$y(x) = \frac{1}{\alpha} \cosh(\alpha x)$$

$$\alpha R = \cosh(\alpha x)$$