	Model	Relative Cost Y:N	Overall Accuracy (% correct Y & N)	Sensitivity (Y accuracy)	Specificity (N accuracy)
—	1	1:1	85%	45%	97%
-	2	9:1	49%	97%	35%
	3	4:1	81%	68%	85%

This table analyzes three different **Decision Tree Classification Models** for predicting **Congestive Heart Failure (CHF) readmission**. Each model uses a different **relative cost ratio** for misclassifying "Yes" (will be readmitted) and "No" (won't be readmitted).

Understanding the Columns

1. Relative Cost Y:N

- o This adjusts how much more important it is to correctly classify "Yes" cases compared to "No" cases.
- o **Higher Y:N ratios** prioritize detecting readmissions (Yes).
- o Lower Y:N ratios keep a balance between detecting both Yes and No cases.

2. Overall Accuracy (% correct Y & N)

- o The percentage of all correctly classified cases (both Yes & No).
- o Higher isn't always better—we must also check Sensitivity and Specificity!

3. Sensitivity (Y Accuracy - Readmitted Cases) Recall

- o How well the model detects actual readmissions (Yes cases).
- o **Higher sensitivity** means the model correctly identifies more high-risk patients.

4. Specificity (N Accuracy - Non-Readmitted Cases)

- o How well the model detects non-readmitted patients (No cases).
- Higher specificity means fewer false positives (wrongly predicting a patient will be readmitted).

Breaking Down Each Model

Model	Relative Cost (Y:N)	Overall Accuracy	Sensitivity (Y Accuracy)	Specificity (N Accuracy)
1	1:1 (Equal weight)	85%	45%	97%
2	9:1 (Strong bias for "Yes")	49%	97%	35%
3	4:1 (Moderate bias for "Yes")	81%	68%	85%

Interpreting the Models

Model 1 (Baseline Model) \rightarrow 1:1 Cost Ratio

- **⊘** Good Overall Accuracy (85%)
- **X** Poor Sensitivity (Only 45% of readmissions detected)
- \checkmark High Specificity (97%) \rightarrow Few false positives
 - **Problem?** It **misses** many actual readmissions (false negatives).

Model 2 (Overcompensating for "Yes") → 9:1 Cost Ratio

- X Low Overall Accuracy (49%)
- \checkmark High Sensitivity (97%) \rightarrow Detects almost all readmissions
- \times Very Low Specificity (35%) \rightarrow Too many false positives
 - Problem? Too many false positives, meaning many patients are wrongly flagged as high-risk.
 - This leads to unnecessary interventions.

Model 3 (Balanced Approach) → 4:1 Cost Ratio

- **⊘** Good Overall Accuracy (81%)
- **∀** Higher Sensitivity (68%) → Detects more readmissions
- \checkmark High Specificity (85%) \rightarrow Fewer false positives than Model 2
 - Best balance between detecting readmissions and avoiding unnecessary interventions.

Conclusion: Best Model?

☞ Model 3 (4:1 Cost Ratio) is the best balance!

- It improves **Sensitivity** (detecting real readmissions) without sacrificing too much **Specificity** (wrongly predicting healthy patients as readmissions).
- Model 1 was too weak at predicting readmissions.
- Model 2 overcompensated, causing too many false alarms.