Лекции по предмету Линейная алгебра и геометрия

2017 год

Содержание

Лекция 21	2
Метод Якоби	2
Нормальный вид квадратичной формы над $\mathbb R$	4
Закон инерции	4
Лекция 23	6

Лекция 21

V – векторное пространство над \mathbb{F} (в котором $1+1 \neq 0$) $e = (e_1, \ldots, e_n)$ – базис $Q:V \to \mathbb{F}$ – квадратичная форма

Определение. Q имеет в базисе с канонический вид, если в этом базисе

$$Q(x) = b_1 x_1^2 + \ldots + b_n x_n^2, \ b_i \in \mathbb{F}$$

 $(то \ есть \ матрица \ квадратичной формы <math>Q \ в \ этом \ базисе \ диагональна)$

Метод Якоби

 $e = (e_1, \dots, e_n)$ Рассмотрим набор векторов $e' = (e'_1, \dots, e'_n)$ такой что

$$e'_{1} = e_{1}$$

$$e'_{2} \in e_{2} + \langle e_{1} \rangle$$

$$e'_{3} \in e_{3} + \langle e_{1}, e_{2} \rangle$$

$$\vdots$$

$$e'_{n} \in e_{n} + \langle e_{1}, \dots, e_{n-1} \rangle$$

$$(\star)$$

Для любого $k \in (1, \ldots, n)$ имеем $(e'_1, \ldots, e'_k) = (e_1, \ldots, e_k) \cdot C_k$, где

$$C_k = \begin{pmatrix} 1 & \star & \star & \star & \cdots & \star \\ 0 & 1 & \star & \star & \cdots & \star \\ 0 & 0 & 1 & \star & \cdots & \star \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_k(\mathbb{F})$$

 $\det C_k = 1 \neq 0 \Rightarrow (e'_1, \dots, e'_k)$ линейно независимы $\Rightarrow \langle e_1, \dots, e_k \rangle = \langle e'_1, \dots, e'_k \rangle$. В частности \mathfrak{C}' – базис пространства V.

Пусть Q – квадратичная форма

$$B = B(Q, e)$$

 $B_k = B(Q, e)$ – левый верхний $k \times k$ блок в B

 $\sigma_k = \sigma_k(Q, \mathbf{e}) = \det B_k - k$ -ый угловой минор матрицы B.

Пусть \mathfrak{e}' – базис V удовлетворяющий условию (\star)

$$B' = B(Q, e')$$

$$B'_k = B_k(Q, e')$$

$$\sigma'_k = \sigma_k(Q, e')$$

$$\sigma'_{l} = \sigma_{l}(Q, e')$$

Лемма. Для любого $k \in (1, ..., n), \ \sigma_k = \sigma'_k$

 \mathcal{A} оказательство. При любом k имеем $B_k' = C_k^T \cdot B_k \cdot C_k \Rightarrow$ определитель $\sigma_k' = \det C_k^T \cdot B \cdot C_k =$ $\det B_k = \sigma_k$ и

Теорема. (Метод Якоби приведения квадратичной формы к каноническому виду) Предположим, что $\sigma_k \neq 0 \forall k$, тогда существует единственный базис $\mathfrak{E}' = (e'_1, \ldots, e'_n)$ в V, такой что

- 1. е' имеет вид (**⋆**)
- 2. в этом базисе Q имеет канонический вид

$$Q(x) = \sigma_k x_1^2 + \frac{\sigma_2}{\sigma_1} x_2^2 + \ldots + \frac{\sigma_n}{\sigma_{n-1}} x_n^2$$

mo ecmo
$$B(Q, e') = \operatorname{diag}(\sigma_1, \frac{\sigma_2}{\sigma_1}, \dots, \frac{\sigma_n}{\sigma_{n-1}})$$

Доказательство. Индукция по n:

n = 1 – верно

Пусть доказано для n-1 докажем для n

Пусть векторы e_1',\ldots,e_{n-1}' уже построены

$$B(Q, (e'_1 \dots, e'_{n-1}, e_n)) = \begin{pmatrix} \sigma_1 & 0 & \cdots & \cdots & 0 & \star \\ 0 & \frac{\sigma_2}{\sigma_1} & \cdots & \cdots & 0 & \vdots \\ 0 & 0 & \ddots & \cdots & 0 & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \frac{\sigma_{n-1}}{\sigma_{n-2}} & \star \\ \star & \star & \star & \cdots & \star & \star \end{pmatrix}$$

Ищем e'_n в виде $e_n + \langle e_1, \dots, e_{n-1} \rangle = e_n + \langle e'_1, \dots, e'_{n-1} \rangle$ то есть в виде $e'_n = e_n + \lambda_1 e'_1 + \dots + \lambda_{n-1} e'_{n-1}$. Пусть $\beta : V \times V \to \mathbb{F}$ – симметрическая билинейная форма, соответствующая Q.

$$\beta(e'_k, e'_n) = \beta(e'_k, e_n) + \lambda_1 \beta(e'_k, e'_1) + \dots + \lambda_{k-1} \beta(e'_k, e'_{k-1})$$

так как $\beta(e_i',e_j')=0$ при $1\leqslant i,j\leqslant n-1,i\neq j$

$$\beta(e'_k, e'_n) = \beta(e'_k, e_n) + \lambda_k(e'_k, e'_k)$$

Тогда $\beta(e_k',e_n')=0\ \forall k=1,\ldots,n-1$ тогда и только тогда, когда $\lambda_k=-\frac{\beta(e_k',e_n)}{\beta(e_k',e_k')}=-\beta(e_k',e_n)\cdot\frac{\sigma_{k-1}}{\sigma_k}.$

В итоге построен базис $\mathfrak{e}'=(e'_1,\ldots,e'_n)$ такой что

$$B(Q, e') = \begin{pmatrix} \sigma_1 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & \frac{\sigma_2}{\sigma_1} & \cdots & \cdots & 0 & \vdots \\ 0 & 0 & \ddots & \cdots & 0 & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \frac{\sigma_{n-1}}{\sigma_{n-2}} & 0 \\ 0 & 0 & 0 & \cdots & 0 & ? \end{pmatrix}$$

В силу леммы
$$\sigma_n = \sigma'_n = \sigma_1 \cdot \frac{\sigma_2}{\sigma_1} \cdot \ldots \cdot \frac{\sigma_{n-1}}{\sigma_{n-2}} \cdot ? = \sigma_{n-1} \cdot ? \Rightarrow ? = \frac{\sigma_n}{\sigma_{n-1}}.$$

Замечание. Единственность следует из явных формул на каждом шаге.

Нормальный вид квадратичной формы над полем $\mathbb R$

Определение. Квадратичная форма Q имеет в базисе e нормальный вид, если в этом базисе $Q(x) = b_1 x_1^2 + \ldots + b_n x_n^2$, где $b_i \in \{-1, 0, 1\}$.

Предложение. Для любой квадратичной формы Q над полем \mathbb{R} существует базис, в котором Q принимает нормальный вид.

$$Q(x) = b_1 x_1^2 + \ldots + b_n x_n^2$$

Делаем невырожденную замену

$$x_i = \begin{cases} \frac{x_i'}{\sqrt{|b_i|}}, & b_i \neq 0\\ x_i', & b_i = 0 \end{cases}$$

Тогда в новых координатах Q имеет вид $Q(x) = \varepsilon_1 x_1^2 + \ldots + \varepsilon_n x_n^2$, где $\varepsilon_i = \operatorname{sgn}(b_i)$.

Замечание. Если $F = \mathbb{C}$, то такое же рассуждение позволяет привести любую квадратичную форму над полем \mathbb{C} к виду $x_1^2 + \ldots + x_k^2$, где $k = \operatorname{rk} Q$

Закон инерции

Пусть Q – квадратичная форма над \mathbb{R} . Нормальный вид: $Q(x) = x_1^2 + \ldots + x_s^2 - x_{s+1}^2 - \ldots - x_{s+t}^2$. s – число «+» в нормальном виде, t – число «-» в нормальном виде.

Определение. Число $i_{+} = s$ – положительный индекс инерции квадратичной формы Q.

Определение. Число $i_{-} = t$ – отрицательный индекс инерции квадратичной формы Q.

Теорема. Числа i_+ и i_- не зависят от базиса в котором Q принимает нормальный вид.

Доказательство. Имеем $i_+ + i_- = \operatorname{rk} Q$ – инвариантная величина \Rightarrow достаточно доказать инвариантность числа i_+ .

Пусть базис є таков, что в нем $Q(x)=x_1+\ldots+x_s^2-x_{s+1}^2-\ldots-x_{s+t}^2$ и пусть є' – другой базис такой что в нем $Q(x)=x_1^2+\ldots+x_{s'}^2-x_{s'+1}^2-\ldots-x_{s'+t'}^2$.

Предположим, что $s \neq s'$, тогда без ограничения общности s > s'. Рассмотрим в V подпространства $L = \langle e_1, \ldots, e_s \rangle$ и $L' = \langle e'_{s'+1}, \ldots, e'_n \rangle$. dim L = s и dim L' = n - s'. L + L' – подпространство в $V \Rightarrow \dim(L + L') \leqslant \dim V = n$. Тогда $\dim(L \cap L') = \dim L + \dim L' - \dim(L + L') \geqslant s + n - s' - n = s - s' > 0$. Тогда существует $v \in L \cap L', v \neq 0$. Так как $v \in L$, то Q(v) > 0, но так как $v \in L'$, то $Q(v) \leqslant 0$ – противоречие.

Определение. Kвадратичная функция Q над полем $\mathbb R$ называется

Термин	Обозначение	Условие
положительно определенной	Q > 0	$Q(x) > 0 \ \forall x \neq 0$
отрицательно определенной	Q < 0	$Q(x) < 0 \ \forall x \neq 0$
неотрицательно определенной	$Q \geqslant 0$	$Q(x) \geqslant 0 \ \forall x$
неположительно определенной	$Q \leqslant 0$	$Q(x) \leqslant 0 \ \forall x$
неопределенной	_	$\exists x, y \colon Q(x) > 0, \ Q(y) < 0$

Термин	Нормальный вид	Индексы инерции
положительно определенной	$x_1^2 + \ldots + x_n^2$	$i_{+} = n, i_{-} = 0$
отрицательно определенной	$-x_1^2-\ldots-x_n^2$	$i_{+} = 0, i_{-} = n$
неотрицательно определенной	$x_1^2 + \ldots + x_k^2, \ k \leqslant n$	$i_+ = k, i = 0$
неположительно определенной	$-x_1^2 - \ldots - x_k^2, \ k \leqslant n$	$i_+ = 0, i = k$
неопределенной	$x_1^2 + \ldots + x_s^2 - x_{s+1}^2 - \ldots - x_{s+t}^2, \ s, t \ge 1$	$i_+ = s, \ i = t$

Пример. $V = \mathbb{R}^2$.

- 1. $Q(x,y) = x^2 + y^2$, Q > 0;
- 2. $Q(x,y) = -x^2 y^2$, Q < 0;
- 3. $Q(x,y) = x^2 y^2;$
- 4. $Q(x,y) = x^2, Q \ge 0;$
- 5. $Q(x,y) = -x^2, Q \leq 0.$

Лекция 23

 \mathbb{E} – Евклидово пространство, $S\subseteq\mathbb{E}$ – подпространство, $S=\{x\in\mathbb{E}\mid (x,y)=0\ \forall y\in S\}.$