MAGPIE TUTORIAL

Introduction

Abdoulaye Gamatié, Pierre-Yves Péneau

LIRMM / CNRS-UM, Montpellier

ComPAS Conference, June 2017, Sophia-Antipolis

Other contributors: S. Senni, T. Delobelle, Florent Bruguier, L. Torres, G. Sassatelli

System design: motivations

Which task and data allocation?

Which multicore architectures?

Which memory & com. Technology?

System design: requirements

Effective and accurate-enough design assessment

- ✓ Performance
- ✓ Area
- ✓ Power consumption
- ✓ Energy consumption

MAGPIE

Manycore Architecture enerGy and Performance evaluation Environment

MAGPIE: building blocks

http://www.lirmm.fr/continuum-project/pages/magpie.html

- gem5*: quasi-cycle accurate simulator
 - IPs: cores (x86, ARM...), memory, interconnect...
 - can boot a complete linux OS
 - detailed microarchitecture details / statistics
- McPAT**: area, power and timing modeling for CMOS, SOI technologies
- NVSim***: area, power and energy estimator for nonvolatile memory technologies

MAGPIE: script-based flow

- o Sw: workloads, OS
- Hw: cores / Interconnect / memory parameters...

Automation scripts: make user life easy!

- No tedious and error-prone manual statistics manipulation
- Significant time and effort saving

Platform components calibration Manycore system execution Power, area estimation Postprocessing for graphical renderings

```
CACHE DESIGN -- SUMMARY
[...]
Area:
- Total Area = 0.091mm^2
[\ldots]
Timing:
- Cache Hit Latency = 0.660ns
- Cache Write Latency = 0.478ns
- Tag Hit Latency = 418.135ps
- Data Row Activation Latency = 478.125ps
- Data Column Decoder Latency = 181.817ps
[\ldots]
Power:
- Cache Hit Dynamic Energy = 0.023nJ per access
- Cache Write Dynamic Energy = 0.006nJ per access
- Cache Total Leakage Power = 44.765mW
```

 $[\ldots]$

----- Begin Simulation Statistics ----sim_seconds 0.185494 sim ticks 185493718000 host seconds 226.05 sim insts 317057589 350391966 sim_ops system.cpu.ucuche.neuuneq_niis..tutut Z/ 10/4 system.cpu.dcache.ReadRea misses::total 9907 system.cpu.dcache.WriteRea hits::total 30242918 system.cpu.dcache.WriteReq misses::total 11338 system.iobus.trans dist::ReadRea 30 system.iobus.trans_dist::WriteReq 186 system.mem_ctrls.num_reads::total 83418 system.mem ctrls.num writes::total 13287

Platform components calibration 98% of MAGPIE eval, time Manycore system execution (gem5 Power, area estimation Postprocessing for graphical renderings

```
Core:
   Area = 7.27488 \text{ mm}^2
   Peak Dynamic = 1.11806 W
   Gate Leakage = 0.0965526 W
   Runtime Dynamic = 0.0710242 W
[\ldots]
Bus:
    Area = 0.014895 \text{ mm}^2
    Peak Dynamic = 0.461444 W
    Gate Leakage = 0.000981421 W
    Runtime Dynamic = 9.23907e-05 W
[...]
Memory Controller:
   Area = 2.76641 \text{ mm}^2
   Peak Dynamic = 0.419928 W
   Gate Leakage = 0.00964467 W
   Runtime Dynamic = 0.0426932 W
[\ldots]
```


CSV output stat files

EXAMPLE

Evaluation of NVM in big.LITTLE architecture

Emerging memory technologies

- Magnetic Memories: STT-RAM...
 - Non volatility, high density, good endurance...
 - Low static power

	SRAM	DRAM	Flash (NOR)	Flash (NAND)	FeRAM	MRAM	PRAM	RRAM	STT- RAM
Non-volatile	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cell size (F ²)	50–120	6–10	10	5	15–34	16–40	6–12	6–10	6–20
Read time (ns)	1–100	30	10	50	20–80	3–20	20–50	10–50	2–20
Write / Erase time (ns)	1–100	15	1 μs / 10 ms	1 ms / 0.1 ms	50 / 50	3–20	60 / 120	10–50	2–20
Endurance	10 ¹⁶	10 ¹⁶	10 ⁵	10 ⁵	10 ¹²	>10 ¹⁵	108	10 ⁸	>10 ¹⁵
Write power	Low	Low	Very high	Very high	Low	High	High	Low	Low
Other power consumption	Current leakage	Refresh current	None	None	None	None	None	None	None
High voltage required	No	3 V	6–8 V	16–20 V	2–3 V	3 V	1.5–3 V	1.5–3 V	<1.5 V

How to allocate tasks and data?

Which multicore architecture?

Which underlying

technologies?

Magnetic memory: MRAM vs. SRAM

Magnetic memory: MRAM vs. SRAM

Magnetic memory: MRAM vs. SRAM

THIS TUTORIAL

Agenda

Agenda

First steps with gem5

Configuration and usage

Application to real workload

Closing notes