1 Przedziały ufności dla wartości oczekiwanej

Model 1

 X_1, X_2, \ldots, X_n i.i.d. $N(\mu, \sigma), \sigma$ -znane:

$$\mu \in \left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right),$$
 (1)

gdzie $z_{1-\frac{\alpha}{2}}$ oznacza kwantyl rozkładu normalnego standardowego rzędu $1-\frac{\alpha}{2}$.

Model 2

 X_1, X_2, \ldots, X_n i.i.d. $N(\mu, \sigma), \sigma$ -nieznane:

$$\mu \in \left(\overline{X} - t_{1-\frac{\alpha}{2}}^{[n-1]} \frac{S}{\sqrt{n}}, \, \overline{X} + t_{1-\frac{\alpha}{2}}^{[n-1]} \frac{S}{\sqrt{n}}\right),$$
 (2)

gdzie $t_{1-\frac{\alpha}{2}}^{[n-1]}$ jest kwantylem rzędu $1-\frac{\alpha}{2}$ rozkładu t-Studenta o n-1 stopniach swobody.

Model 3

 X_1, X_2, \dots, X_n i.i.d. rozkład nieznany, ale n- duże:

$$\mu \in \left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right).$$
 (3)

2 Przedziały ufności dla wariancji i odchylenia standardowego

Model 1

 X_1, X_2, \ldots, X_n i.i.d. $N(\mu, \sigma), \mu$ -znane:

$$\sigma^2 \in \left(\frac{n\widetilde{S}^2}{\chi^2_{1-\frac{\alpha}{2},n}}, \frac{n\widetilde{S}^2}{\chi^2_{\frac{\alpha}{2},n}}\right),\tag{4}$$

gdzie $\chi^2_{1-\frac{\alpha}{2},n}$ i $\chi^2_{\frac{\alpha}{2},n}$ są kwantylami rzędu, odpowiednio, $1-\frac{\alpha}{2}$ i $\frac{\alpha}{2}$ rozkładu chi-kwadrat o n stopniach swobody;

$$\sigma \in \left(\sqrt{\frac{n\tilde{S}^2}{\chi_{1-\frac{\alpha}{2},n}^2}}, \sqrt{\frac{n\tilde{S}^2}{\chi_{\frac{\alpha}{2},n}^2}}\right). \tag{5}$$

Model 2

 X_1, X_2, \dots, X_n i.i.d. $N(\mu, \sigma), \mu$ -nieznane:

$$\sigma^2 \in \left(\frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}, \frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}}\right),\tag{6}$$

gdzie $\chi^2_{1-\frac{\alpha}{2},n-1}$ i $\chi^2_{\frac{\alpha}{2},n-1}$ są kwantylami rzędu, odpowiednio, $1-\frac{\alpha}{2}$ i $\frac{\alpha}{2}$ rozkładu chi-kwadrat o n-1 stopniach swobody;

$$\sigma \in \left(\sqrt{\frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2},n-1}^2}}, \sqrt{\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2},n-1}^2}}\right). \tag{7}$$

Model 3

 X_1, X_2, \dots, X_n i.i.d. rozkład nieznany, ale n-duże:

$$\sigma^2 \in \left(\frac{2nS^2}{(\sqrt{2n-3} + z_{1-\frac{\alpha}{2}})^2}, \frac{2nS^2}{(\sqrt{2n-3} - z_{1-\frac{\alpha}{2}})^2}\right), \tag{8}$$

$$\sigma \in \left(\frac{S\sqrt{2n}}{\sqrt{2n-3} + z_{1-\frac{\alpha}{2}}}, \frac{S\sqrt{2n}}{\sqrt{2n-3} - z_{1-\frac{\alpha}{2}}}\right). \tag{9}$$

3 Przedział ufności dla wskaźnika struktury

 X_1, X_2, \dots, X_n i.i.d. $Bern(p), \, n-$ duże:

$$p \in \left(\widehat{p} - z_{1-\frac{\alpha}{2}} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} , \widehat{p} + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\right). \tag{10}$$