FONDAMENTI DI AUTOMATICA

Federico Mainetti Gambera

18 aprile 2020

Indice

I	Lezioni
1	Risposta esponenziale (SD LTI a TC, SISO) 1.1 Domanda
2	Risposta sinusoidale (SD LTI a TC, SISO) 2.1 Domanda
3	Rappresentazioni della risposta in frequenza di una funzione di trasferimento
Ш	Esercitazioni

Parte I **Lezioni**

1 Risposta esponenziale (SD LTI a TC, SISO)

1.1 Domanda

Dato il sistema $\begin{cases} \dot{x} = Ax + bu \\ y = cx + du \end{cases}$ sottoposto all'ingresso $u(t) = e^{\lambda t}$ con $t \geq 0$ (o equivalentemente

 $e^{\lambda t}sca(t)$), esiste uno stato iniziale x(0) tale che x(0) e u(t) producono un'uscita $y(t) = Ye^{\lambda t}$, con Y un numero qualunque (non la trasformata) e $t \ge 0$?

In altri termini:

Sottoponiamo un sistema dinamico (di cui non sono note le proprietà sulla sua stabilità) a un ingresso esponenziale ($u(t)=e^{\lambda t}$, che può anche essere amplificato come $u(t)=Ue^{\lambda t}$, ovviamente il ragionamento non cambia). Detto questo sappiamo che un ingresso x(0) produce un movimento libero di y fatto da modi, invece un uscita del tipo $u(t)=e^{\lambda t}$ produce un movimento forzato fatto da modi + un termine $Ye^{\lambda t}$ (con $t\geq 0$ e con Y un numero, non la trasformata). La domanda è se esiste uno x(0) tale che questi modi si elidano e resti solo il termine $Ye^{\lambda t}$.

$$\begin{cases} \dot{x} = Ax + bu \\ y = cx + du \end{cases} \longrightarrow u(t) = e^{\lambda t} \longrightarrow \exists x(0) \text{ tale che } \longrightarrow y(t) = Ye^{\lambda t} \ (t \ge 0) ?$$

1.2 Risposta alla domanda (dimostrazione)

Rispondiamo a questa domanda:

Primo passaggio:

Se voglio che $y(t)=Ye^{\lambda t}$, allora anche x(t) dovrà avere la forma $Xe^{\lambda t}$ (con X un numero, non la trasformata), perchè $y(t)=cx(t)+de^{\lambda t}$ e qualunque forma di x(t) che non sia del tipo $e^{\lambda t}$ si "vedrebbe" su y.

Secondo passaggio:

Quindi $x(t) = x(0)e^{\lambda t}$ (di cui noi stiamo proprio cercando x(0)) e di conseguenza $\dot{x}(t) = \lambda x(0)e^{\lambda t}$.

Terzo passaggio:

Sostituisco x(t) e $\dot{x}(t)$ appena espressi nell'equazione di stato, che devono evidentemente soddisfare:

$$\lambda x(0)e^{\lambda t} = Ax(0)e^{\lambda t} + be^{\lambda t}$$

considerando che $e^{\lambda t} \neq 0$

$$\lambda x(0)e^{\lambda t} = Ax(0)e^{\lambda t} + be^{\lambda t}$$
$$\lambda x(0) = Ax(0) + b$$

per cui otteniamo che

$$(\lambda I - A)x(0) = b$$

1.3 Generalizzazione della risposta

Quindi in generale con $u(t)=Ue^{\lambda t}$ (con U un numero qualunque che semplicemente amplifica l'esponenziale), se λ non è autovalore di A, allora esiste uno e uno solo

$$x(0) = (\lambda I - A)^{-1}bU$$

tale che

$$\begin{cases} x(t) = (\lambda I - A)^{-1}bUe^{\lambda t} \\ y(t) = cx(t) + du(t) = [c(\lambda I - A)^{-1}b + d]Ue^{\lambda t} = G(\lambda)u(t) \end{cases}$$

1.4 Riassunto e proprietà

- Proprietà bloccante degli zeri: se $G(\lambda)=0 \implies$ con lo stesso stato iniziale x(0), l'uscita diventa y(t)=0, con $t\geq 0$.
- Se INOLTRE il sistema è asintoticamente stabile, allora qualunque sia lo stato iniziale x(0), l'uscita tenderà a $y(t) \to G(\lambda)u(t)$ per $t \to \infty$.

2 Risposta sinusoidale (SD LTI a TC, SISO)

2.1 Domanda

Dato il sistema $\begin{cases} \dot{x} = Ax + bu \\ y = cx + du \end{cases}$ e l'ingresso $u(t) = Usin(\omega t)$ per $t \geq 0$ (o equivalentemente $u(t) = Usin(\omega t)sca(t)$), esiste un qualche stato iniziale x(0) tale che $y(t) = Ysin(\omega t + \phi)$ per $t \geq 0$?

In altri termini:

[La domanda è molto simile a quella data per la risposta esponenziale] Applicato un ingresso sinusoidale, esiste uno stato di iniziale che faccia elidere fra loro i modi del moto libero e i modi del moto forzato in modo che io veda in uscita solo una sinusoide?

2.2 Risposta alla domanda (dimostrazione)

Per rispondere ci basta ricordare che

$$sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j}$$

e che, data la linearità del sistema, vale il principi odi sovrapposizione degli effetti. Quindi applichiamo due volte il risultato ottenuto per la risposta esponenziale e combiniamo i risultati.

Poniamo
$$u_1(t)=e^{j\omega t}$$
 e $u_2(t)=e^{-j\omega t}$, per cui $u(t)=U\frac{u_1(t)-u_2(t)}{2j}$

Iniziamo analizzando $u_1(t)$: se $j\omega$ non è autovalore di A, allora esiste uno e un solo $x_1(0)$ tale che l'uscita ottenuta è

$$y_1(t) = G(j\omega)e^{j\omega t}$$

Per $u_2(t)$: se $-j\omega$ non è autovalore di A, allora esiste uno e un solo $x_2(0)$ tale che l'uscita ottenuta è

$$y_2(t) = G(-j\omega)e^{-j\omega t}$$

Combiniamo ora y_1 e y_2 :

$$\begin{array}{l} u(t) = \frac{U}{2j}(u_1(t) - u_2(t)) \\ x(0) = \frac{U}{2j}(x_1(0) - x_2(0)) \end{array} \Longrightarrow \text{Principio di sovrapposizione degli effetti} \\ \Longrightarrow y(t) = \frac{U}{2j}(y_1(t) - y_2(t))$$

Analiziamo y(t):

$$y(t) = \frac{U}{2j} \left(G(j\omega)e^{j\omega t} - G(-j\omega)e^{-j\omega t} \right)$$

Osserviamo che G(s) è razionale fratta, quindi $G(-j\omega)=\bar{G}(j\omega)$ (complesso coniugato). Quindi se pongo $G(j\omega)=Me^{j\phi}$ (con M modulo e ϕ argomento di $G(j\omega)$) otteniamo $G(-j\omega)=Me^{-j\phi}$.

Allora

$$y(t) = \frac{U}{2j} \left(M e^{j\phi} e^{j\omega t} - M e^{-j\phi} e^{-j\omega t} \right) = M U \frac{e^{j(\omega t + \phi)} - e^{-j(\omega t + \phi)}}{2j}$$
$$y(t) = M U \sin(\omega t + \phi)$$

con $M = |G(j\omega)| \in \phi = arg(G(j\omega))$

2.3 Generalizzazione della risposta (Teorema fondamentale della risposta in frequenza)

Dato il sistema dinamico LTI a TC, SISO $\begin{cases} \dot{x} = Ax + bu \\ y = cx + du \end{cases} \text{, detta } G(s) \text{ la sua funzione di trasferimento}$ e considerato l'ingresso $u(t) = Usin(\omega t)$ per $t \geq 0$:

- Se $\mp j\omega$ non sono autovalori di A, allora esiste uno e uno solo stato iniziale x(0) tale che $y(t) = |G(j\omega)|Usin(\omega t + arg(G(j\omega)))$ per $t \ge 0$. (Se $\mp j\omega$ sono autovalori di A, allora si verifica un fenomeno di risonanza, che però non è argomento di questo corso).
- Se INOLTRE il sistema è asintoticamente stabile, allora qualunque sia lo stato iniziale, l'uscita tenderà a $y(t) \to |G(j\omega)Usin(\omega t + arg(G(j\omega)))$ per $t \to \infty$

2.4 Definizione di risposta in frequenza

definizione: Data una funzione di trasferimento G(s), la sua restrizione all'asse immaginario positivo J^+ , cioè $G(j\omega)$ con $\omega \geq 0$, si dice **rispsota in frequenza** (RF) di G(s).

2.5 Esempio

es. Dato $G(s)=\frac{1}{1+0,15}$, che è asintoticamente stabile, e u(t)=5sin(20t), a cosa tende $y(t)\to ?$ per $t\to \infty ?$

Siccome il sistema è asintoticamente stabile, allora per il teorema della rispsota in frequenza $y(t) \rightarrow 5|G(j20)|sin(20t + arg(G(j20)))$.

$$G(j20) = \frac{1}{1+2j} \Rightarrow \frac{|G(j20)| = \frac{1}{\sqrt{1+4}} \sim 0,45}{arg(G(j20)) = -arctan(2) \sim -63,5}$$

[il prof ha terminato i conti e ha tracciato un grafico di u(t) e y(t) usando maxima: ci sta mostrando che il modulo |G(j20)| rappresenta la percentuale dell'ampiezza dell'uscita rispetto all'ampiezza dell'ingresso, in questo esempio l'uscita è ampia il 45% dell'ingresso; invece l'argomento arg(G(j20)) rappresenta lo sfasamento del segnale di uscita rispetto al segnale di ingresso, in questo esempio l'uscita è sfasata di 63 gradi (in ritardo) e per capire quanto effettivamente sia uno sfasamento di 63 gradi basta considerare che un periodo del segnale di ingresso sono 360 gradi]

3 Rappresentazioni della risposta in frequenza di una funzione di trasferimento

TIMESTAMP: 1:34:55

Parte II **Esercitazioni**