Math 334: Problem Set 2

Rohan Mukherjee

October 12, 2022

1. Let $\mathbf{x} \neq 0 \neq \mathbf{y}$. If we have equality, then

$$\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \iff \langle \mathbf{x}, \mathbf{y} \rangle^2 = \|\mathbf{x}\|^2 \|\mathbf{y}\|^2$$

$$\iff 2 \frac{\langle \mathbf{x}, \mathbf{y} \rangle^2}{\|\mathbf{y}\|^2} - \frac{\langle \mathbf{x}, \mathbf{y} \rangle^2}{\|\mathbf{y}\|^4} \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2$$

Now let $\lambda = \langle \mathbf{x}, \mathbf{y} \rangle / \|\mathbf{y}\|^2$. By plugging λ in, we get

$$\|\mathbf{x}\|^{2} - 2\lambda \langle \mathbf{x}, \mathbf{y} \rangle + \lambda^{2} \|\mathbf{y}\|^{2} = 0 \iff \langle \mathbf{x} - \lambda \mathbf{y}, \mathbf{x} - \lambda \mathbf{y} \rangle = 0$$
$$\iff \|\mathbf{x} - \lambda \mathbf{y}\|^{2} = 0 \iff \mathbf{x} - \lambda \mathbf{y} = 0 \implies \mathbf{x} = \lambda \mathbf{y} \quad \Box$$

2. Note,

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle$$

$$= \|\mathbf{x}\|^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2 + \|\mathbf{x}\|^2 - 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2$$

$$= 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)$$

$$\frac{\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2}{4} = \frac{1}{4} \cdot (\|\mathbf{x}\|^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2 - (\|\mathbf{x}\|^2 - 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2))$$

$$= \frac{1}{4} \cdot 4\langle \mathbf{x}, \mathbf{y} \rangle$$

$$= \langle \mathbf{x}, \mathbf{y} \rangle \quad \Box$$

3. Let $\mathbf{x} \in \mathbb{R}^n$ with $n \ge 2$. If $\mathbf{x} = \mathbf{0}$, simply choose $\mathbf{y} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \ne \mathbf{0}$, and note that $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. So now let $\mathbf{x} \ne \mathbf{0}$, say

$$\mathbf{x} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Then, because $\mathbf{x} \neq \mathbf{0}$, there are a_i and a_j not both 0. Then, choose

$$\mathbf{y} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ -a_j \\ 0 \\ \vdots \\ 0 \\ a_i \\ 0 \\ \vdots \\ 0 \end{pmatrix} \text{ where } -a_j \text{ is in the } i\text{-th row and } a_i \text{ is in the } j\text{-th row.}$$
at $\mathbf{y} \neq \mathbf{0}$. Also note that

and note that $y \neq 0$. Also note that

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0a_1 + 0a_2 + \dots + 0a_{i-1} + a_i \cdot (-a_j) + 0a_{i+1} + \dots + 0a_{j-1} + a_j \cdot a_i + 0a_{j+1} + \dots + 0a_n$$

$$= -a_i a_j + a_i a_j$$

$$= 0 \quad \square$$

Let $\mathbf{x_i} = \text{the number of Chris Pratt movies in 2021-}i$, and $\mathbf{y_i} = \text{the amount of wheat produced in }i$ China in 2021-i. If you take all the data and find the correlation, you get that the correlation is about 0.5273, which is much higher than I would've guessed.

The base case is n=2, so let $\mathbf{x_1}, \mathbf{x_2} \in \mathbb{R}^n$ with $\langle \mathbf{x_i}, \mathbf{x_j} \rangle = 0$ if $i \neq j$. Then

$$\begin{aligned} \|\mathbf{x_1} + \mathbf{x_2}\|^2 &= \langle \mathbf{x_1} + \mathbf{x_2}, \mathbf{x_1} + \mathbf{x_2} \rangle \\ &= \|\mathbf{x_1}\|^2 + 2\langle \mathbf{x_1}, \mathbf{x_2} \rangle + \|\mathbf{x_2}\|^2 \\ &= \|\mathbf{x_1}\|^2 + \|\mathbf{x_2}\|^2 \text{ because of the property above.} \end{aligned}$$

Let $x_1, x_2, \dots x_m \in \mathbb{R}^n$ be such that if $i \neq j$, then $\langle \mathbf{x_i}, \mathbf{x_j} \rangle = 0$. Suppose now that there is some mso that

$$\|\mathbf{x_1} + \mathbf{x_2} + \dots + \mathbf{x_m}\|^2 = \|\mathbf{x_1}\|^2 + \|\mathbf{x_2}\|^2 + \dots + \|\mathbf{x_m}\|^2$$

We see that if $x_{m+1} \in \mathbb{R}^n$ with the same property, then

$$\begin{aligned} \|\mathbf{x_1} + \mathbf{x_2} + \dots + \mathbf{x_{m+1}}\|^2 &= \langle \mathbf{x_1} + \mathbf{x_2} + \dots + \mathbf{x_{m+1}}, \mathbf{x_1} + \mathbf{x_2} + \dots + \mathbf{x_{m+1}} \rangle \\ &= \|\mathbf{x_1} + \mathbf{x_2} + \dots + \mathbf{x_m}\|^2 + 2\langle \mathbf{x_1} + \mathbf{x_2} + \dots + \mathbf{x_m}, \mathbf{x_{m+1}} \rangle + \|\mathbf{x_{m+1}}\|^2 \\ &= \|\mathbf{x_1} + \mathbf{x_2} + \dots + \mathbf{x_m}\|^2 + 2\langle \mathbf{x_1}, \mathbf{x_{m+1}} \rangle + \dots + 2\langle \mathbf{x_m}, \mathbf{x_{m+1}} \rangle + \|\mathbf{x_m}\|^2 \end{aligned}$$

Then, by the induction hypothesis and because $\langle \mathbf{x_i}, \mathbf{x_i} \rangle = 0$ for all $i \neq j$, we see that the above equals

$$\|\mathbf{x_1}\|^2 + \|\mathbf{x_2}\|^2 + \dots + \|\mathbf{x_{m+1}}\|^2 \quad \Box$$

4. Let $\varepsilon > 0$.

Lemma 0.1. If $v_1, v_2, \ldots v_n \in \mathbb{R}^m$ and n > 1, $\min_{1 \le i < j \le n} \{angle \ between \ v_i \ and \ v_j\} \le 2\pi/n$.

Proof. Suppose instead that $\min_{1 \le i < j \le n}$ {angle between v_i and v_j } $> 2\pi/n$. If we start at the origin, and move counterclockwise, the sum of the angles between two vectors that are next to each other will be equal to 2π . But this is a contradiction, because the sum of all these angles must be $> n \cdot 2\pi/n = 2\pi$.

Lemma 0.2. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, we have that $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos(\text{angle between } \mathbf{x} \text{ and } \mathbf{y})$

Proof. If we treat \mathbf{x}, \mathbf{y} as points in \mathbb{R}^2 , we can say that the chord connecting them is equal to $\mathbf{y} - \mathbf{x}$. Now note that

$$\|\mathbf{x}\|^2 - 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2 = \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle = \|\mathbf{x} - \mathbf{y}\|^2$$

Now if we treat all 3 vectors as line segments, you can use the law of cosines to get that

$$\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\|\mathbf{x}\|\|\mathbf{y}\|\cos(\text{angle between }\mathbf{x} \text{ and }\mathbf{y})$$

Now if we match these equations and rearrange, we get that

$$\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos(\text{angle between } \mathbf{x} \text{ and } \mathbf{y})$$

The final thing to note is that this equation still works when these vectors don't make a triangle, i.e. when $\mathbf{y} = \mathbf{x}$ or $\mathbf{y} = -\mathbf{x}$. If $\mathbf{y} = \mathbf{x}$, then the angle between x, y is 0, so $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle = \|\mathbf{x}\|^2 \cdot 1 = \|\mathbf{x}\|^2 \cdot \cos(0)$. If $\mathbf{y} = -\mathbf{x}$, then the angle between \mathbf{x}, \mathbf{y} is π , and $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, -\mathbf{x} \rangle = -\langle \mathbf{x}, \mathbf{x} \rangle = \|\mathbf{x}\|^2 \cdot (-1) = \|\mathbf{x}\|^2 \cdot \cos(\pi)$.

Because $\|\mathbf{v_i}\| = 1$ for all i, and $\langle \mathbf{v_i}, \mathbf{v_j} \rangle = \|\mathbf{v_i}\| \|\mathbf{v_j}\| \cos(\text{angle between } v_i \text{ and } v_j)$, we have that

$$\max_{1 \leq i < j \leq n} \langle \mathbf{v_i}, \mathbf{v_j} \rangle = \cos(\min_{1 \leq i < j \leq n} \{ \text{angle between } v_i \text{ and } v_j \}) \geq \cos(2\pi/n)$$

This is because the inner product will be greatest when the two vectors are closest to each other. The inequality also gets flipped because cos(x) is decreasing.

First, if $\varepsilon \geq 1$, choose n = 8. We see that

$$\cos(2\pi/n) = \cos(\pi/4) = \sqrt{2}/2 > 0 \ge 1 - \varepsilon$$

Now, if $0 < \varepsilon < 1$, choose

$$n > \frac{2\pi}{\arccos(1-\varepsilon)}$$

We also see that

$$\frac{2\pi}{n} < \arccos(1 - \varepsilon)$$

$$\implies \cos\left(\frac{2\pi}{n}\right) > \cos(\arccos(1 - \varepsilon)) = 1 - \varepsilon$$

because $\cos(x)$ is decreasing. Then by our discussion above, we have proven that this n works for every list $v_1, v_2, \ldots, v_n \in \mathbb{R}^n$.

5. If we let $\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x)dx$, then we shall note that $\langle f, g \rangle = \langle g, f \rangle$, as multiplication is commutative, and that $\langle af(x) + bg(x), h(x) \rangle = a\langle f(x), h(x) \rangle + b\langle g(x), h(x) \rangle$ because the integral is known to be a linear operator. The final thing to note is that $\langle f, f \rangle \geq 0$, because the integral of a non-negative function is going to be non-negative. So now we can say the following. Let $f, g: [0, 1] \to \mathbb{R}, t \in \mathbb{R}$, and $||f(x)|| \neq 0 \neq ||g(x)||$. Then,

$$0 \le \langle f(x) - tg(x), f(x) - tg(x) \rangle = ||f(x)||^2 - 2t\langle f(x), g(x) \rangle + t^2 ||g(x)||^2$$

Now choose $t = \frac{\langle f(x), g(x) \rangle}{\|g(x)\|^2}$. Note that

$$0 \le ||f||^2 - 2 \frac{\langle f(x), g(x) \rangle^2}{||g(x)||^2} + \frac{\langle f(x), g(x) \rangle^2}{||g(x)||^4} ||g(x)||^2$$

$$\implies \langle f(x), g(x) \rangle^2 \le ||f(x)||^2 ||g(x)||^2$$

Now if we take the square root on both sides, and write out what all of these symbols mean, we get

$$\left| \int_0^1 f(x)g(x)dx \right| \le \left(\int_0^1 f(x)^2 dx \right)^{1/2} \left(\int_0^1 g(x)^2 dx \right)^{1/2} \quad \Box$$