



# Lecture 10

**CS 537- Big Data Analytics** 

Dr. Faisal Kamiran





# Map Reduce

Scheduling and Data Flow

## The Problem and The Solution

### Problem:

Big Data -> Large amount of data stored in large amount of devices

### Solution:

- Bring computations to data
- Possibilities:





## **MapReduce Framework**

- User defines
  - <key, value>
  - mapper & reducer functions
- Logistics:
  - Hadoop handles the distribution and execution



## **MapReduce Flow**

- User defines a map function
  - map() reads data and outputs <key,value>



- User defines a reduce function
  - reduce() reads <key, value > and outputs your result



## Hadoop Rule of Thumb:

- 1 mapper per data split (typically)
- 1 reducer per computer node (best parallelism)

## **MapReduce Flow**

- Hadoop distributes map() to data
- Hadoop groups <key,value> data
- Hadoop distributes groups to reducers()



# **MapReduce Working Diagram**

### MAP:

produces a set of key-value pairs

Input



#### Intermediate

### Group by key:

Collect all pairs with same key (Hash merge, Shuffle, Sort, Partition)

### Reduce:

Collect all values belonging to the key and output



# **MapReduce: Parallel Processing**



All phases are distributed with many tasks doing the work

## **Word Count Example**

- Count word frequencies
- How would you count all the words in Star Wars?
- In a nutshell:
  - Get word
  - Look up word in table
  - Add 1 to count
- How would you count all the words in all the Star Wars scripts and books, blogs, and fan-fiction?



| Word | Count |
|------|-------|
| а    | 1000  |
| far  | 2000  |
| Jedi | 5000  |
| Luke | 9000  |
|      |       |

- Keep it simple (remember big data and simple aggregations)
  - Let <word, 1> be the <key, value>

Loop

The mapper:

Mappers are separate and independent

Mappers work on data parts



- Lets Hadoop do the hard work
  - The reducer:

```
Cop
Over
key-
values

Get next <word><value>
If <word> is same as previous word
add <value> to count
else
emit <word> < count>
set count to 1
```

Hadoop shuffles, groups, and distributes:



reduce() aggregates



## Ideal properties

- Good key-value properties
  - Simple
  - Enables reducers to get correct output
- Good Task Decomposition:
  - Mappers: simple and separable
  - Reducers: easy consolidation



## **Trending Word Counts**

- Let's make first example little complicated:
  - We need to calculate word count in twitter tweets by day
    - To find trending topics
  - Twitter Data:
    - Date
    - Message
    - Location
    - Other metadata
  - Tasks
    - Task 1: Get word count by day
    - Task 2: Get total word count

- 1 #PakvsNz
- 2 #SalarioRosa
- 3 #PakvsNewzealand
- 4 #Edho
  Tweet Counts N/A
- 5 Asif Ali 18K Tweets
- 6 Malik 110K Tweets
- 7 #ShamiKiFarziTrolling
- 8 Pakistan
- 9 Haris Rauf

# **Trending Word Counts: Task Decomposition**

- For task 1 we need to use composite key:
  - Map/Reduce: <date word,count>
- For task 2 we can:
  - Reuse previous word count example
  - Use the output of task one



## **Joining Data**

- Task: combine datasets by key
  - A standard data management function
  - In pseudo SQL

Select \* from table A, table B, where A.key=B.key

- Joins can be inner, left or right outer
- Task: given two wordcount datasets as following:



```
File AjoinB: <word date, day-count total-count >

able Jan-16, 2 5
actor Feb-22, 15 18
actor May-03, 1 18
burger Jul-04, 20 25

.
.
```

# Joining Data (Cont)

- For joining keys should be same but here:
  - File A: <word, total-count>
  - File B: <date word, day-count>
    - Word is same in both keys but date is not present in File A so we need to filter out date for key of File B
    - Now: Put Date into value field
      - File B: <word, date day-count total-count >

```
Jan-16 able , 2
Feb-22 actor , 15
May-03 actor , 3
Jul-4 burger, 20

.
.
.
```

## **Task Decomposition**

- How will Hadoop shuffle & group these?
- Let's focus on 1 key:
- Hadoop gathers the data for a join



## **Task Decomposition**

Reducer now has all the data for same word grouped together



Reducer can now join the data and put date back into key

```
actor, 18
actor, Feb-22 15
actor, May-03 3
```

## **Vector Multiplication**

- Task: multiply 2 arrays of N numbers
  - A basic mathematical operation
  - Let's assume N is very large
  - Data is distributed in HDFS
  - We need elements with same index together

Let <key, value> = <index, number>

## **Vector Multiplication**

- Lets assume we already have indexes of elements stored
- Mapper task is as following:



## **Vector Multiplication**

- Lets assume we already have indexes of elements stored
- Reducer task is as following:



## **Computational Costs**

- For Vector Multiplication
  - How many <index, number> are output from map()?
  - How many <index> groups have to be shuffled?



How many <index, number> are output from map()

How many <index> groups have to be shuffled?

## **Computational Costs**

- We can reduce shuffling by:
  - Try: 'combine' map indices in mapper (works better for Wordcount)

<index bin, original-index number>

Or Try: use index ranges of length R

• For example, let R=10, and bin the array indices 1 2 3 4 ... 10 11 12 .....19 20 21 .... (N-9) .... N place in bins N keys are now N/R=N/10 keys <key,value> is now

## **Computational Costs**

Now shuffling costs depend on N/R groups

If: R=1

Then: N/R=N groups (same as before)

If: R>1

Then: N/R<N (less shuffling to do)

```
Trade-offs:

If:
    size of (N/R) ↑
    Then:
    shuffle costs ↑

But:
    reducer complexity ↓
```

Note: Matrix multiplication needs row-index and col-index in the keys

## **MapReduce: Environment**

## Map-Reduce environment takes care of:

- Partitioning the input data
  - Scheduling the program's execution across a set of machines
- Performing the group by key step
- Handling node failures
- Managing required inter-machine
- communication

## **MapReduce: Environment**

- Input and final output are stored on the distributed file system (DFS):
  - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

## **MapReduce: Coordination Master**

- Master node takes care of coordination:
  - Task status: (idle, in-progress, completed)
    - o Idle tasks get scheduled as workers become available
    - When a map task completes, it sends the master the location and sizes of its R intermediate files, one for each reducer
  - Master pushes this info to reducers
  - Master pings workers periodically to detect failures

## **MapReduce: Dealing with Failures**

- Map worker failure
  - Map tasks completed or in-progress at worker are reset to idle.
  - Idle tasks eventually rescheduled on other worker(s)
- Reduce worker failure
  - o Only in-progress tasks are reset to idle
  - Idle Reduce tasks restarted on other worker(s)
- Master failure
  - MapReduce task is aborted and client is notified

## **How many Map and Reduce Jobs**

- Suppose we have M map tasks, R reduce tasks
- Rule of thumb:
  - Make M much larger than the number of nodes in the cluster
  - One DFS chunk per map is common
  - Improves dynamic load balancing and speeds up recovery from worker failures
  - Usually R is smaller than M
  - O Because output is spread across R files

## **Combiners**

- Often a Map task will produce many pairs of the form (k,v1), (k,v2), ... for the same key k
  - O E.g., popular words in the word count example
  - Can save network time by pre-aggregating values in the mapper:
- combine(k, list(v1))
   v2
- Combiner is usually same as the reduce function



## **Combiners (Cont.)**

- Back to our word counting example:
  - Combiner combines the values of all keys of a single mapper (single node):



Much less data needs to be copied and shuffled!

## **Combiners (Cont.)**

- Combiner trick works only if reduce function is commutative and associative.
- Sum:

$$2 + (5 + 7) = (2 + 5) + 7$$

- Average
- Median

## **Partition Function**

- Want to control how keys get partitioned
  - The set of keys that go to a single reduce worker
- System uses a default partition function:
  - O Hash (key) mod R
- Sometimes useful to override the hash function:
  - E.g., hash (hostname(URL)) mod R ensures URLs from a host end up in the same output file

## **Limitations of MapReduce**

- Must fit <key, value> paradigm
- Map/Reduce data not persistent
- Requires programming/debugging
- Not interactive

# That's all for today.