Linear Algebra Final Study Guide

Andrew Reed

May 6, 2019

1 The Definitions

Definition:

A vector **v** is a **linear combination** of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ if there are scalars, c_1, c_2, \dots, c_k such that $\mathbf{v} = c_1 \times \mathbf{v}_1 + c_2 \times \mathbf{v}_2 + \dots + c_k + \mathbf{v}_k$.

Definition:

If $S = \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$, is a set of vectors in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is called a **span** of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ and denoted by $span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$ or span(S).

Definition:

A set of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is **linear dependent** if the scalars c_1, c_2, \dots, c_k , at least one of which is not zero, such that

$$c_1 \times \mathbf{v}_1 + c_2 \times \mathbf{v}_2 + \dots + c_k \times \mathbf{v}_k = 0$$

Definition:

A basis for a subspace S of \mathbb{R}^n is a set of vectors in S that

- 1. spans S
- 2. Is linear independent.

2 Basic Vector Mathematics

Finding vectors from points

Given two points P(a, b) and Q(c, d) then a vector \mathbf{v} where $\mathbf{v} = PQ$, then;

$$\mathbf{v} = \begin{bmatrix} c - a \\ d - b \end{bmatrix}$$

Unit Vectors

Given a vector \mathbf{v} the unit vector for said vector is

$$\left(\frac{1}{||\mathbf{v}||}\right)\mathbf{v}$$

Distance

The distance between two vectors is denoted $d(\mathbf{u}, \mathbf{v})$ and defined as

$$d(\mathbf{u}, \mathbf{v})) = ||\mathbf{u} - \mathbf{v}||$$

- 3 Eigenvalues, Eigenvectors and Eigenspaces
- 4 Standard Matrix

5 Spans

Spans of Matrices Find $span(A_1, A_2)$ given

$$a_1 = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 1 \\ 3 & 4 \end{bmatrix}$$

Step 1: Establish an augmented matrix.

$$\begin{bmatrix} 1 & 0 & | & a \\ 2 & 1 & | & b \\ -1 & 3 & | & c \\ 4 & 4 & | & d \end{bmatrix}$$

Step 2: Row reduce to row echelon form

$$\begin{bmatrix} 1 & 0 & | & a \\ 2 & 1 & | & b \\ -1 & 3 & | & c \\ 4 & 4 & | & d \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & a \\ 0 & 1 & | & b - 2a \\ 0 & 0 & | & 7a - 3b + c \\ 0 & 0 & | & 4a - 4b + d \end{bmatrix}$$

Step 3: Solve for 0 in rows which contain all 0's

$$7a - 3b + c = 0$$
$$c = -7a + 3b$$

$$4a - 4b + d = 0$$
$$d = -4a - 4b$$

Step 4: use the values obtained to create a matrix

$$\begin{bmatrix} a & b - 2a \\ -7a + 3b & -4a + 4b \end{bmatrix}$$