Evolutionary Algorithms (EAs)

Dr. Suyanto, S.T., M.Sc. HP/WA: 0812 845 12345

Intelligence Computing Multimedia (ICM)
Informatics faculty – Telkom University

Optimization Algorithms

Swarm, Flock, School, Herd

Self Adaptation

Terdapat kriteria tertentu → solusi atau bukan?

SPECIFIC

Optimization

GENERAL

Fungsi-fungsi objektif → konfigurasinya bagus atau tidak?

- Searching: terdapat kriteria tertentu yang menyatakan apakah suatu elemen x_i adalah solusi atau bukan.
- Optimization: mungkin tidak terdapat kriteria tersebut, melainkan hanya fungsi-fungsi objektif yang menggambarkan bagus atau tidaknya suatu konfigurasi yang diberikan.
- Fungsi-fungsi objektif bisa memberikan definisi masalah yang lebih umum → Optimization adalah GENERALISASI dari Searching.

Masalah Searching atau Optimasi?

- 1. Navigation System Searching
- Travelling Salesman Problem (TSP) Optimasi
- Vehicle Routing Problem (VRP) Optimasi
- 4. University Course Timetabling Problem Optimasi
- 5. Knapsack Problem Searching

Masalah searching bisa diselesaikan dengan algoritma Searching atau Optimasi. Begitu juga sebaliknya.

Apa itu EC?

Evolutionary Computation is an abstraction from the theory of biological evolution that is used to create **optimization** procedures or methodologies, usually implemented on computers, that are used to solve problems" [JUL07].

Apa itu EAs?

Evolutionary Algorithms are generic, population-based meta-heuristic optimization algorithms that use biologyinspired mechanisms like mutation, crossover, natural selection and survival of the fittest.

EAs = algoritma2 yang mengimplementasikan abstraksi EC

Skema umum EAs

EAs dengan Steady State Replacement

```
Bangkitkan populasi awal, N kromosom
                                          random
Loop untuk N kromosom
    individu = Dekode(kromosom)
    fitness = Evaluasi(individu)
End
Loop sampai Kondisi Berhenti terpenuhi
    Pilih dua kromosom sebagai orangtua P1 dan P2
                                                     random
    [anak1, anak2] = Rekombinasi(P1, P2)
                                             random
    [anak1, anak2] = Mutasi(anak1, anak2)
                                             random
    Penggantian(populasi, anak1, anak2)
End
```

EAs dengan Generational Replacement

```
random
Bangkitkan populasi awal, N kromosom
Loop sampai Kondisi Berhenti terpenuhi
   Loop untuk N kromosom
      individu = Dekode(kromosom)
      fitness = Evaluasi(individu)
   End
   Buat satu atau dua kopi kromosom terbaik
   Loop sampai didapatkan N kromosom baru
      Pilih dua kromosom sebagai orangtua P1 dan P2
                                                        random
      [anak1, anak2] = Rekombinasi(P1, P2)
                                                random
      [anak1, anak2] = Mutasi(anak1, anak2)
                                                random
   End
   Ganti N kromosom lama dengan N kromosom baru
End
```

Yang termasuk EAs:

- Genetic Algorithms (GA): binary strings
- 2. Evolution Strategies (ES): real-valued vectors
- 3. Evolutionary Programming (EP): finite state machines
- 4. Genetic Programming (GP): LISP trees
- 5. Differential Evolution (DE) \rightarrow perkembangan ES
- 6. Grammatical Evolution (GE) → perkembangan GP

Skema umum EAs

Terminologi

Pengkodean individu -> kromosom

- Suatu Individu dikodekan ke dalam Kromosom dengan cara yang sesuai.
- Empat pengkodean yang umum adalah:
 - Biner
 - Integer
 - Real
 - Permutasi

1. Pengkodean Biner

Rentang Nilai: [-1,2]

2. Pengkodean Integer

Rentang Nilai: [-1,2]

individu: $x_1 = -0.96096$ dan $x_2 = 2$

	$-x_{1}^{-}$		X_2				
0	1	3	9	9	9		

3. Pengkodean Real

Rentang Nilai: [-1,2]

individu: $x_1 = -0.2830 \text{ dan } x_2 = 2$

X ₁	X ₂			
0,2390	1,0000			

4. Pengkodean permutasi

Individu: urutan kunjungan semua lokasi

Posisi gen menyatakan urutan kunjungan

Pendekodean kromosom -> individu

$$x = r_b + \frac{(r_a - r_b)}{\sum_{i=1}^{N} 2^{-i}} (g_1 \cdot 2^{-1} + g_2 \cdot 2^{-2} + \dots + g_N \cdot 2^{-N})$$

$$x = r_b + \frac{(r_a - r_b)}{\sum_{i=1}^{N} 9.10^{-i}} (g_1.10^{-1} + g_2.10^{-2} + ... + g_N.10^{-N})$$

$$x = r_b + (r_a - r_b)(g_1 + g_2 + ... + g_N)$$

1. Pengkodean Biner

Rentang Nilai: [-1,2]

Nilai Fitness

Maksimasi

$$f = h$$

Minimasi

$$f = \frac{1}{(h+a)}$$

Seleksi Orangtua

Kromosom	Fitness		
K1	2		
K2	1		
K3	1		
K4	4		
Jumlah	8		

Metode: roulette wheel

Putaran ke-2

Putaran ke-3

Putaran ke-4

Rekombinasi/Crossover

Rekombinasi

Rekombinasi

Mutasi

$$h = 5x_1 + 2x_2$$
 \rightarrow Maksimasi h dimana $x_1 \& x_2$: integer [0,15]

Kromosom yang menghasilkan nilai maksimum

M kromosom baru

Seleksi Survivor: Steady State

N kromosom baru

Seleksi Survivor: Generational

Studi kasus 1: Maksimasi Fungsi

$$h(x_1, x_2) = 7x_1 - 3x_2$$

 x_1 , x_2 dalam interval [0, 15]

h = 105, dimana $x_1 = 15$ dan $x_2 = 0$

Phenotype >> Genotype

individu: $x_1 = 5 \text{ dan } x_2 = 3$

kromosom dengan binary encoding

X ₁				X ₂			
0	1	0	1	0	0	1	1

Fungsi Fitness: Maksimasi

$$f = h$$

Generasi 1

Seleksi Ortu: generasi 1

No	Kromosom	Individu (x ₁ , x ₂)	Fitness (7x ₁ – 3x ₂)	Probabilitas terpilih	Jumlah yang diharapkan di <i>mating pool</i>	Jumlah aktual di <i>mating</i> pool
1	11000001	(12, 1)	81	0,41	1,64	2
2	10010011	(9, 3)	54	0,41	1,08	1
3	00110000	(3, 0)	21	0,27	0,44	1
4	10001001	(8, 5)	41	0,11	0,44	0
		(0, 3)	197	1,00	· · · · · · · · · · · · · · · · · · ·	4
Jumlah			197	1,00	4,00	4
Rata-rata			49,25	0,24	1,00	1
Maksimum			81	0,41	1,64	2

Generasi 1

Populasi dengan 4 kromosom: K1 sampai K4

Mating pool: [K1, K3] dan [K1, K2]

Rekombinasi Ortu: generasi 1

No	Kromosom	Posisi titik	Kromosom anak	Individu anak	Fitness
	orangtua	rekombinasi	hasil rekombinasi	(x_1, x_2)	$(7x_1 - 3x_2)$
1	11 000001	2	11110000	(15, 0)	105
2	00 110000	2	0000001	(0, 1)	-3
3	110000 01	6	11000011	(12, 3)	75
4	100100 11	6	10010001	(9, 1)	60
Jumlah					244
Rata-rata					61
Maksimum					105

Studi kasus 2: Minimasi

Nilai minimum h = ?

$$h(x_1, x_2) = x_1^2 + x_2^2$$

$$x_1, x_2 \in [-5,12;5,12]$$

Pengkodean Individu -> kromosom

Fitness

$$f = \frac{1}{(x_1^2 + x_2^2) + 0.01}$$

Jika nilai minimum = 0, nilai maks f = ?

$$x = r_b + \frac{(r_a - r_b)}{\sum_{i=1}^{N} 2^{-i}} (g_1 \cdot 2^{-1} + g_2 \cdot 2^{-2} + \dots + g_N \cdot 2^{-N})$$

 $x_1, x_2 \in [-5,12;5,12]$

No	Genotype	Phenotype		Nilai
	kromosom biner	X1	X2	fitness
1	00010011011001101110	-4.35	1.1	0.049646
2	11001101110001000011	3.11	-4.45	0.033916
3	10110010111111001110	2.03	4.62	0.039254
4	11001110001101111101	3.12	3.81	0.041219
5	11001110101011011001	3.14	2.17	0.068594
6	00101110000110110110	-3.28	-0.74	0.08837
7	01111011111010110010	-0.17	1.78	0.31179
50	11010110011000111011	3.45	0.59	0.081562

Generasi 10
$$x = r_b + \frac{(r_a - r_b)}{\sum_{i=1}^{N} 2^{-i}} (g_1 \cdot 2^{-1} + g_2 \cdot 2^{-2} + ... + g_N \cdot 2^{-N})$$

 $x_1, x_2 \in [-5,12;5,12]$

No	Genotype	Phenotype		Nilai
	kromosom biner	X1	X2	fitness
1	01111111111000000000	-0.01	0	99.01
2	0111111111000000000	-0.01	0	99.01
3	01111101010001000001	-3.77	1.03	0.065429
4	01111101011001110001	-2.4	1.2	0.1387
5	01111001111000100001	3.58	0.52	0.076355
6	01011101111000101010	4.83	1.01	0.041053
7	01111101111000100001	-1.38	1.2	0.29812
50	0111110111100000001	-1.93	0.02	0.26772

Mengapa EAs?

EAs sangat baik untuk permasalahan yang memiliki satu atau lebih ciri-ciri berikut ini:

- Ruang masalah sangat besar, kompleks, dan sulit dipahami;
- Tidak bisa diselesaikan menggunakan metode-metode konvensional;
- Terdapat batasan waktu, misalnya dalam sistem waktu nyata (real time system).
- Solusi yang diharapkan tidak harus paling optimal, tetapi 'bagus' atau bisa diterima;
- Kurang atau bahkan tidak ada pengetahuan yang memadai untuk merepresentasikan masalah ke dalam ruang pencarian yang lebih sempit;
- Tidak tersedia analisa matematika yang memadai;

Performansi EAs (Goldberg, 1989)

Performansi EAs (Michalewicz, 1996)

EAs 2 EAs 3, dan EAs 4 adalah EAs yang ditambahkan pengetahuan khusus yang memiliki akurasi lebih baik dibandingkan EAs 1 (tanpa pengetahuan).

Kapan EAs digunakan?

- Jika kita menghadapi masalah TSP untuk *graph* asimetris **10** *node*, apakah kita harus menggunakan EAs? Jawabannya mungkin saja tidak perlu karena ada algoritma lain (misal Dijkstra atau dynamic programming) yang performansinya lebih baik.
- Tetapi, jika kita menghadapi masalah TSP untuk *graph* asimetris **1000** *node*, apakah kita harus menggunakan EAs? Jawabannya mungkin "ya" karena algoritma lain membutuhkan waktu yang sangat lama.

Kesimpulan

- EAs adalah algoritma-algoritma yang mengimplementasikan abstraksi EC
- Terdapat dua variasi survivor selection atau replacement scheme, yaitu Steady State dan Generational Replacement.

Kesimpulan

- Jika pengetahuan yang ditambahkan semakin banyak, maka EAs akan memiliki performansi yang baik untuk berbagai masalah.
- Teori terbaru menyatakan bahwa "menemukan suatu algoritma yang bisa digunakan untuk semua masalah adalah mustahil".

Daftar Pustaka

- [THO96] Thomas Bäck. 1996, "Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms", Oxford University Press, ISBN: 0195099710, January 1996.
- [THO97] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors, 1997, "Handbook of Evolutionary Computation", Computational Intelligence Library. Oxford University Press in cooperation with the Institute of Physics Publishing, Bristol, New York, ringbound edition, ISBN: 0750303921, April 1997.
- [SUY08] Suyanto, 2008, Evolutionary Computation: Komputasi Berbasis "Evolusi" dan "Genetika", penerbit Informatika Bandung.
- [JUL07] Julie Leung, Keith Kern, Jeremy Dawson, 2007, "Genetic Algorithms and Evolution Strategies", presentation slides.