

Deep learning

Deep learning with Keras

Today's program

14:00-14:30 What is ML / DL? What is a neuron?

14:30-15:30 Hands on: building a neuron from scratch

15:30-15:45 How do neural networks work?

15:45-16:15 Break

16:15-16:30 How do neural networks work? (continued)

16:30-17:15 Hands on: building a network from scratch

17:15-18:00 Loss function & updating weights

18:00-19:00 Diner

19:00-19:45 Hands on: the XOR problem

19:45-20:00 Dataset splitting & Performance evaluation

20:00-21:00 Hands on: Keras on fashion Mnist

If we finish early: Machine learning tasks (classification vs regression)

A step back

- What do we want to achieve with our neural networks?
- We want to input data and get out some meaningful result.
- In machine learning this problem is formulated so that we have a task which we want to perform.
 - Regression
 - Classification
 - Clustering

A step back

- Alongside the task we have some input, usually in the form of a dataset.
- When the have some metric / measure which can evaluate how well we are performing the task.
 - Accuracy
 - F1 score
 - Area-under-curve (AUC)

A step back

- Our network should then learn to map our input to some output.
- We thus treat the network as some function f which maps some x to \hat{y} some prediction: $f(x) = \hat{y}$

Supervised learning

- We then provide some feedback to our network using loss.
- The loss is a function which takes as input the output of the network \hat{y} , and for **supervised** learning, the correct output y

 $l(\hat{y}, y)$

 The loss outputs a single number which tells us how well we are doing for that example.

Supervised learning

- The loss should be large when we are performing poorly and low (or 0) when we are performing well.
- The loss function is dependent on the task at hand.
- We do not use the metric to provide feedback to the network for technical reasons.

Example: Linear Regression

 For example, if we map our inputs directly to an output using:

$$f(x) = w^T x + b$$

• And use this loss:

$$l(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$$

we get linear regression.

Understanding loss

3 data points

$$\{(x^{1}, y^{1}), (x^{2}, y^{2}), (x^{3}, y^{3})\}$$

$$x^{1} = (1,1) \quad y^{1} = 2$$

$$x^{2} = (1,0) \quad y^{2} = 1$$

$$x^{3} = (0,0) \quad y^{3} = 0$$

$$Loss = l(\hat{y}, y) = |\hat{y} - y|$$

$$Total\ loss = \sum_{i=1}^{3} l(\hat{y}^i, y^i) = 0.5$$

Network predictions

$$\hat{y} = f(x) = w_1 x_1 + w_2 x_2 + b$$

$$x^1 = (1,1)$$
 $f(x^1) = \hat{y}^1 = 1.5$ $l(\hat{y}^1, y^1) = 0.5$

$$x^2 = (1,0)$$
 $f(x^2) = \hat{y}^2 = 1$ $l(\hat{y}^2, y^2) = 0$

$$x^3 = (0,0)$$
 $f(x^3) = \hat{y}^3 = 0$ $l(\hat{y}^3, y^3) = 0$

Minimising loss

- We then seek to minimise the loss over the whole dataset.
- To minimise the loss we adjust the weights of the network so that the loss decreases.
- We then seek to find the weights of the network which minimises the loss.

- How do we systematically update the weights to reduce loss?
- If our loss and network are made by using differentiable functions, we simply differentiate the total loss w.r.t. the weights and update the weights with that information.
- There are lots of finer details to this but the important part to know is that each weight contributes to the total loss.
- This means that our loss function over the whole dataset is high-dimensional function, as it is a function of every weight in the network.

$$Total\ loss = J(\mathbf{w})$$

All the weights in a single vector

Source: Introduction to loss functions

(batch) Gradient descent

 We apply this procedure a few times, in each iteration we update the weights s.t.

$$w_i := w_i - \mu \frac{\partial J(w)}{\partial w_i}$$

Where μ is typically a value in (0;1] called the **learning rate**

 The loss (and therefore the gradient) is computed over all elements in the dataset.

Source: Gradient optimization

(Batch) Gradient descent

- We are not guaranteed to find a global minimum of the loss function using GD.
- In practice, it tends to find pretty good local minima.

Source: Introduction to loss functions

Batch gradient descent is time-consuming! It calculates J(w) based on <u>all</u> samples before doing a single weight-update...

Alternatives

- Use mini-batch gradient descent instead (batch size typically 10—100 samples)
- Batch size = 1 is stochastic gradient descent

Mini-batch gradient descent

Source: Andrew Ng, deep learning course, Coursera

The problem of small batches

 SGD considers 1 sample per iteration => bad approximation of the real optimization surface

- Thus, gradient direction & size vary substantially between iterations
- Various optimizers mitigate this problem by some form of averaging of direction and / or step size (e.g. Adam)

Applying GD in DL

Backpropagation

$$\frac{\partial J(w)}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial a_i} \cdot \frac{\partial a_i}{\partial w_{i,j}}$$

- In the context of DL we need to compute the gradient for each layer.
- We do this by applying the chain rule of derivatives.
- This algorithm is known as backpropagation.

Keras -> TensorFlow

- We do not need to worry at all about updating these weights and differentiating since this is done by the framework (TensorFlow).
- It is still important to know what is happening when you need to debug your network.

Creating neural networks

- Many frameworks exist;
 TensorFlow, CNTK, Torch,
 Keras, Theano, Caffe, ...
- We will use Keras
 (https://keras.io/)
- Keras used to call TensorFlow as a 'backend', but is now fully integrated in TensorFlow.

Hands-on

Go to https://https://jupyter.lisa.surfsara.nl:8000/

Notebook: 02a-keras-on-xor.ipynb

19:00-19:45

Today's program

14:00-14:30 What is ML / DL? What is a neuron?

14:30-15:30 Hands on: building a neuron from scratch

15:30-15:45 How do neural networks work?

15:45-16:15 Break

16:15-16:30 How do neural networks work? (continued)

16:30-17:15 Hands on: building a network from scratch

17:15-18:00 Loss function & updating weights

18:00-19:00 Diner

19:00-19:45 Hands on: the XOR problem

19:45-20:00 Dataset splitting & Performance evaluation

20:00-21:00 Hands on: Keras on fashion Mnist

If we finish early: Machine learning tasks (classification vs regression)

Evaluating performance

- Exercise 5's decision boundary does not generalise
- Use a test set to estimate performance on unseen examples

Evaluating performance

- Hyperparameters affect performance
 - learning rate
 - batch size
 - # layers
 - # neurons
- We need to test combinations manually
- We test different hyperparameters on a validation set

Early stopping

Underfitting

Training, validation, testing

Model training

Best model parameters
Weights

Validation set

Model selection

Best hyperparameters
Learning rate
#neurons
#layers

Test set

Model testing

Final model
Accuracy
Sensitivity/specificity

Source: Cross Validation & Ensembling

Evaluating performance

- We generate the validation and test sets ourselves by splitting the original data set.
- Typically, people split their train/val/test set as 70/10/20.

Source: Cross Validation & Ensembling

Overfitting / underfitting

- In the previous notebook we did not expect our model to generalise well. In this case our model was **overfitting** the data.
- When we overfit, we see a low training error but high validation / test error.
- Similarly, if we see a high training error, we might be underfitting the data. We need to increase model capacity.
- We can test if we are underfitting by adding additional layers / more neurons and see if the training error goes down.

Training process

- 1. Load the data
- 2. Split the data into a training, validation and test set
- 3. Normalise the data
- 4. Build a simple, initial model
- 5. Improve the model such that it has sufficient capacity
- 6. Perform early stopping and evaluate the model on the test set

Normalisation

Features need to have the same range

Usually betw

Normalise ball

The problem

Because MNIST is too easy

Hands-on

Go to https://https://jupyter.lisa.surfsara.nl:8000/

Notebook: 02b-keras-on-fashion-mnist.ipynb

20:00-21:00