Lecture Notes

Kyle Chui

2022-01-04

Contents

1	Lecture 1 1.1 Properties of Probability	1
2	Lecture 2 2.1 Inclusion-Exclusion Principle	
3	Lecture 3	5
4	Lecture 4 4.1 Distinguishable Permutations	
5	Lecture 5 5.1 Conditional Probability	9
6	Lecture 6 1 6.1 Bayes' Theorem	l 1 11
7	Lecture 7 1 7.1 Discrete Random Variables	13 13
8	Lecture 8 8.1 Expected Value 1 8.1.1 Bernoulli Distribution 1	
9	Lecture 9 9.1 Special Mathematical Expectations	
10	Lecture 10210.1 Binomial Random Variables510.2 Geometric Random Variables5	

1 Lecture 1

The goal of this class is to quantify randomness. The main topics for the term are:

- 1. The fundamentals of probability theory, including conditional probability and enumeration arguments.
- 2. Discrete and continuous random variables.
- 3. Sequences of i.i.d. random variables, including the Weak Law of Large Numbers and the Central Limit Theorem.

1.1 Properties of Probability

Probability theory takes place inside a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition. Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying:

- 1. A non-empty set Ω , called the *sample space*.
- 2. A set \mathcal{F} of subsets of Ω satisfying certain properties:
 - Elements of \mathcal{F} are called *events*.
 - Events A_1, A_2, \ldots, A_k are called mutually exclusive if they are pairwise disjoint, i.e. if $i \neq j$ then $A_i \cap A_j = \emptyset$.
 - Events A_1, A_2, \ldots, A_k are called *exhaustive* if their union is the sample space, i.e.

$$\bigcup_{j=1}^{k} A_j = \Omega.$$

- For this class you may ignore \mathcal{F} and assume that all subsets of Ω are events.
- 3. A function $\mathbb{P} \colon \mathcal{F} \to [0,1]$, called a *probability measure*, which satisfies:
 - $\mathbb{P}[\Omega] = 1$, or "the probability that something happens is 1".
 - If A_1, A_2, \ldots, A_n are mutually exclusive events, then

$$\mathbb{P}\left[\bigcup_{j=1}^{n} A_j\right] = \sum_{j=1}^{n} \mathbb{P}[A_j].$$

• If A_1, A_2, \ldots are mutually exclusive events, then

$$\mathbb{P}\left[\bigcup_{j=1}^{\infty} A_j\right] = \sum_{j=1}^{\infty} \mathbb{P}[A_j].$$

Example. Suppose I flip two fair coins. Then the sample space can be written as $\Omega = \{HH, HT, TH, TT\}$. The probability measure should be defined as

$$P[HH] = \frac{1}{4}$$

$$P[HT] = \frac{1}{4}$$

$$P[TH] = \frac{1}{4}$$

$$P[TT] = \frac{1}{4}$$

The probability of getting exactly one head is hence $\mathbb{P}[\{HT, TH\}] = \mathbb{P}[HT] + \mathbb{P}[TH] = \frac{1}{2}$.

Theorem. $\mathbb{P}[\varnothing] = 0$.

Proof. We know that Ω and \varnothing are mutually exclusive, since, $\Omega \cap \varnothing = \varnothing$. Thus

$$\begin{split} \mathbb{P}[\Omega] &= \mathbb{P}[\Omega \cup \varnothing] \\ &= \mathbb{P}[\Omega] + \mathbb{P}[\varnothing], \end{split}$$

and so $\mathbb{P}[\varnothing] = 0$.

Theorem. If $A \subseteq \Omega$ is an event and $A' = \Omega \setminus A$ then

$$\mathbb{P}[A] = 1 - \mathbb{P}[A'].$$

Proof. Since we have that $A' = \Omega \setminus A$, we know that $A' \cap A = \emptyset$, so they are mutually exclusive. Thus we have

$$\begin{split} \mathbb{P}[\Omega] &= \mathbb{P}[A \cup A'] \\ 1 &= \mathbb{P}[A] + \mathbb{P}[A'] \\ \mathbb{P}[A] &= 1 - \mathbb{P}[A']. \end{split}$$

Theorem. If $A \subseteq B$ then

$$\mathbb{P}[B \setminus A] = \mathbb{P}[B] - \mathbb{P}[A].$$

Proof. We know that $B = A \cup (B \setminus A)$ and $A \cap (B \setminus A) = \emptyset$. Hence

$$\mathbb{P}[B] = \mathbb{P}[A \cup (B \setminus A)] = \mathbb{P}[A] + \mathbb{P}[B \setminus A],$$

and the result follows.

Theorem. If $A \subseteq B$ then $\mathbb{P}[A] \leq \mathbb{P}[B]$.

Proof. From the previous theorem we have

$$\mathbb{P}[A] \le \mathbb{P}[A] + \mathbb{P}[B \setminus A] = \mathbb{P}[B].$$

2 Lecture 2

2.1 Inclusion-Exclusion Principle

Theorem — Inclusion-Exclusion Principle

If $A, B \subseteq \Omega$ are events, then

$$\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B].$$

Proof. Observe that we may write

$$A \cup B = [A \setminus (A \cap B)] \cup [A \cap B] \cup [B \setminus (A \cap B)],$$

where $A \cap B$, $B \setminus (A \cap B)$, and $A \setminus (A \cap B)$ are mutually exclusive. Hence

$$\begin{split} \mathbb{P}[A \cup B] &= \mathbb{P}[A \setminus (A \cap B)] + \mathbb{P}[B \setminus (A \cap B)] + \mathbb{P}[A \cap B] \\ &= (\mathbb{P}[A] - \mathbb{P}[A \cap B]) + (\mathbb{P}[B] - \mathbb{P}[A \cap B]) + \mathbb{P}[A \cap B] \\ &= \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B]. \end{split}$$

Theorem — Union Bound

If $A_1, A_2, \ldots, A_n \subseteq \Omega$ are events, then

$$\mathbb{P}\left[\bigcup_{j=1}^{n} A_j\right] \le \sum_{j=1}^{n} \mathbb{P}[A_j].$$

Proof. We proceed via proof by induction. Observe that for n = 1, we have $\mathbb{P}[A_1] \leq \mathbb{P}[A_1]$, which is obviously true. Suppose that this statements holds for some $k \geq 1$. Then

$$\mathbb{P}\left[\bigcup_{j=1}^{k+1} A_j\right] = \mathbb{P}\left[\left(\bigcup_{j=1}^{k} A_j\right) \cup A_{k+1}\right]$$

$$= \mathbb{P}\left[\bigcup_{j=1}^{k} A_j\right] + \mathbb{P}[A_{k+1}] - \mathbb{P}\left[\left(\bigcup_{j=1}^{k} A_j\right) \cap A_{k+1}\right]$$

$$\leq \mathbb{P}\left[\bigcup_{j=1}^{k} A_j\right] + \mathbb{P}[A_{k+1}]$$

$$\leq \sum_{j=1}^{k} \mathbb{P}[A_j] + \mathbb{P}[A_{k+1}]$$

$$= \sum_{j=1}^{k+1} \mathbb{P}[A_j].$$

Hence the statement holds for k+1, and so holds for all natural numbers n.

2.2 Mutual Independence

 $\textbf{Definition.}\ \ Independence$

We say that two events $A, B \subseteq \Omega$ are independent if

$$\mathbb{P}[A\cap B]=\mathbb{P}[A]\mathbb{P}[B].$$

If two events are not independent, then we say that they are dependent.

Definition. Mutual Independence

We say that events $A_1, \ldots, A_n \subseteq \Omega$ are mutually independent if, given any $1 \le k \le n$ and $1 \le j_1 < j_2 \cdots < j_k \le n$ we have

$$\mathbb{P}\left[\bigcap_{\ell=1}^k A_{j_\ell}\right] = \prod_{\ell=1}^k \mathbb{P}[A_{j_\ell}].$$

3 Lecture 3

Theorem — Multiplication Principle

Suppose I run r mutually independent experiments so that

- The 1st experiment has n_1 possible outcomes.
- The 2^{nd} experiment has n_2 possible outcomes.
- ..
- The r^{th} experiment has n_r possible outcomes.

The composite experiment then has $n_1 \cdot n_2 \cdot \cdots \cdot n_r$ outcomes.

In some experiments we care about taking samples of size r from a set of n objects.

- We can seek ordered or unordered samples.
- We can do this with or without replacement.

Theorem. There are n^r possible choices of an *ordered* sample of size r from a set of n objects with replacement.

Proof. We run r experiments corresponding to each choice. For each choice, we have n possible outcomes because we are performing the choices with replacement. The Multiplication Principle tells us that there are $n \cdot n \cdot \dots \cdot n = n^r$ outcomes.

Theorem. There are

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

ordered samples of size r from a set of n objects without replacement. The number ${}_{n}Pr$ is known as the number of permutations of n objects, taken r at a time.

Proof. Each choice is an independent experiment:

- 1st choice: n outcomes
- 2^{nd} choice: n-1 outcomes
- 3^{rd} choice: n-2 outcomes
- r^{th} : n (r 1) outcomes

Hence the composite experiment has

$$n \cdot (n-1) \cdot \cdots \cdot (n-r+1) = {}_{n}P_{r}$$

outcomes.

Theorem. There are

$${}_{n}C_{r} = \frac{n!}{(n-r)!r!}$$

unordered samples of size r from a set of n objects without replacement.

Proof. From the previous theorem, there are ${}_{n}P_{r}$ ordered samples of size r from n objects without

replacement. However, we have over counted because our sample will show up r! times (in every possible permutation). Hence we divide by r! to get

$$_{n}C_{r} = \frac{_{n}P_{r}}{r!} = \frac{n!}{(n-r)!r!}.$$

Note. ${}_{n}C_{r} = {}_{n}C_{n-r}$.

4 Lecture 4

- There are n^r ordered samples of size r from n objects with replacement.
- There are ${}_{n}P_{r}$ ordered samples of size r from n objects without replacement.
- There are ${}_{n}C_{r} = \frac{n!}{r!(n-r)!}$ unordered samples of size r from n objects without replacement.
- There are $_{n+r-1}C_r = \frac{(n+r-1)!}{r!(n-1)!}$ unordered samples of size r from n objects with replacement.

4.1 Distinguishable Permutations

- Suppose we are given n objects, but some of them are identical.
- How many distinguishable permutations of the n objects are there?

Theorem. Suppose you have:

- n_1 objects of type 1,
- n_2 objects of type 2,
- ..
- n_r objects of type r.

Let $n = n_1 + n_2 + \cdots + n_r$. Then the number of distinguishable permutations is

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}.$$

Proof. We have n locations.

- First choose n_1 locations for type 1 objects: ${}_{n}C_{n_1}$ choices.
- Then choose n_2 locations for type 2 objects: $n_{-n_1}C_{n_2}$ choices.
- ...
- Finally we choose n_r locations for type r objects: $n_{-n_1-\cdots-n_{r-1}}C_{n_r}$ choices.

Using the multiplication principle to take the product of all of these combinations, we have

$$\binom{n}{n_1, \dots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}.$$

Note. An alternate way to think about this theorem is to first consider how many regular permutations of n objects there are (n!), and then divide by how many possible times we over count $(n_k!)$ for each $1 \le k \le r$.

4.2 The Binomial Theorem

Theorem — Binomial Theorem

If $n \geq 0$ then

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r},$$

where the binomial coefficient is

$$\binom{n}{r} = {}_{n}C_{r}.$$

Proof. If we multiply out $(x+y)^n = \underbrace{(x+y)\cdots(x+y)}_{n \text{ times}}$ without using the fact that multiplication is

commutative, we see that the number of times x^ry^{n-r} appears is equal to how many different ways there are to rearrange r "x" terms in n total terms.

Theorem. We have

$$\sum_{r=0}^{n} \binom{n}{r} = 2^{n}.$$

Theorem. If $n, r \geq 0$ then

$$(x_1 + x_2 + \dots + x_r)^n = \sum_{n_1 + \dots + n_r = n} \binom{n}{n_1, n_2, \dots, n_r} x_1^{n_1} x_2^{n_2} \cdots x_r^{n_r}.$$

Proof. Similar to the binomial theorem, we have that to get each term we just need to find the number of distinguishable permutations of n_1 terms of $x_1, ..., n_r$ terms of x_r , which is our multinomial coefficient from before.

5 Lecture 5

5.1 Conditional Probability

Suppose that $A, B \subseteq \Omega$ are events. If we know that the event B occurs, how does this affect the probability that A occurs?

We write $\mathbb{P}[A]$ for the probability of A, and $\mathbb{P}[A \mid B]$ for the probability of A conditioned on B.

Example.

- Suppose that 5% of UCLA students take a math class and 6% take a physics class.
- Suppose that 80% of UCLA students that take a math class also take a physics class.
- If we know that a randomly chosen student takes a math class, what is the probability they take a physics class?

Let us define

 $\Omega = \{ All \ UCLA \ students \},$

 $A = \{ \text{Students taking a physics class} \},$

 $B = \{ \text{Students taking a math class} \}.$

Then we want to find $\mathbb{P}[A \mid B]$. Thus we have

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$
$$= \frac{0.05 \cdot 0.8}{0.05}$$
$$= 0.8.$$

Definition. Conditional Probability

Suppose A, B are events. Then the probability of A conditioned on B is given by

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}.$$

Theorem. If $B \subseteq \Omega$ is an event so that $\mathbb{P}[B] \neq 0$ then $\mathbb{P}[\cdot \mid B]$ is a probability measure. Precisely:

• $\mathbb{P}[\Omega \mid B] = 1$.

Proof. Observe that

$$\mathbb{P}[\Omega \mid B] = \frac{\mathbb{P}[\Omega \cap B]}{\mathbb{P}[B]} = \frac{\mathbb{P}[B]}{\mathbb{P}[B]} = 1.$$

• If A_1, A_2, \ldots, A_n are mutually exclusive events then

$$\mathbb{P}\left[\left.\bigcup_{j=1}^{n} A_{j} \middle| B\right] = \sum_{j=1}^{n} \mathbb{P}[A_{j} \mid B].$$

Proof. If A_1, \ldots, A_n are mutually exclusive, so are $A_1 \cap B, A_2 \cap B, \ldots, A_n \cap B$. Then

$$\mathbb{P}\left[\bigcup_{j=1}^{n} A_{j} \middle| B\right] = \frac{\mathbb{P}\left[\left(\bigcup_{j=1}^{n} A_{j}\right) \cap B\right]}{\mathbb{P}[B]}$$

$$= \frac{\mathbb{P}\left[\bigcup_{j=1}^{n} (A_{j} \cap B)\right]}{\mathbb{P}[B]}$$

$$= \sum_{j=1}^{n} \frac{\mathbb{P}[A_{j} \cap B]}{\mathbb{P}[B]}$$

$$= \sum_{j=1}^{n} \mathbb{P}[A_{j} \mid B].$$

• If A_1, A_2, \ldots, A_n are mutually exclusive events then

$$\mathbb{P}\left[\left|\bigcup_{j=1}^{\infty} A_j\right| B\right] = \sum_{j=1}^{\infty} \mathbb{P}[A_j \mid B].$$

Proof. The proof for this is very similar to the one above.

Theorem. If A and B are independent events so that $\mathbb{P}[B] \neq 0$ then

$$\mathbb{P}[A \mid B] = \mathbb{P}[A].$$

Proof. Observe that

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} = \frac{\mathbb{P}[A] \cdot \mathbb{P}[B]}{\mathbb{P}[B]} = \mathbb{P}[A].$$

6 Lecture 6

Theorem — The Law of Total Probability

Let $A \subseteq \Omega$ be an event and $B_1, B_2, \dots, B_n \subseteq \Omega$ be mutually exclusive events so that $\mathbb{P}[B_j] \neq 0$ and

$$A \subseteq \bigcup_{j=1}^{n} B_j$$
.

Then

$$\mathbb{P}[A] = \sum_{j=1}^{n} \mathbb{P}[A \mid B_j] \mathbb{P}[B_j].$$

Proof. As $A \subseteq \bigcup_{j=1}^n B_j$ we have

$$A = A \cap \left[\bigcup_{j=1}^{n} B_j\right] = \bigcup_{j=1}^{n} (A \cap B_j).$$

As all of the B_j are mutually exclusive, so are $A \cap B_j$. Hence

$$\mathbb{P}[A] = \mathbb{P}\left[\bigcup_{j=1}^{n} (A \cap B_j)\right]$$
$$= \sum_{j=1}^{n} \mathbb{P}[A \cap B_j]$$
$$= \sum_{j=1}^{n} \mathbb{P}[A \mid B_j] \mathbb{P}[B_j].$$

Note. The same result is true if we have a countable number of events B_1, B_2, \ldots

6.1 Bayes' Theorem

Theorem — Bayes' Theorem

If $A, B \subseteq \Omega$ are events so that $\mathbb{P}[A], \mathbb{P}[B] \neq 0$ then

$$\mathbb{P}[B \mid A] = \frac{\mathbb{P}[A \mid B] \mathbb{P}[B]}{\mathbb{P}[A]}$$

Proof. By definition, we have

$$\begin{split} \mathbb{P}[B \mid A] &= \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[A]} \\ &= \frac{\mathbb{P}[A \mid B]\mathbb{P}[B]}{\mathbb{P}[A]}. \end{split}$$

Theorem — Bayes' Theorem (Improved Version)

If $A \subseteq \Omega$ is an event and $B_1, B_2, \ldots, B_n \subseteq \Omega$ are mutually exclusive events so that $\mathbb{P}[A], \mathbb{P}[B_j] \neq 0$ and

$$A \subseteq \bigcup_{j=1}^{n} B_j,$$

then for any $1 \le k \le n$ we have

$$\mathbb{P}[B_k \mid A] = \frac{\mathbb{P}[A \mid B_k] \mathbb{P}[B_k]}{\sum_{j=1}^n \mathbb{P}[A \mid B_j] \mathbb{P}[B_j]}.$$

Proof. The Law of Total Probability tells us that

$$\mathbb{P}[A] = \sum_{j=1}^{n} \mathbb{P}[A \mid B_j] \mathbb{P}[B_j].$$

Hence by Bayes' Theorem we have

$$\mathbb{P}[B_k \mid A] = \frac{\mathbb{P}[A \mid B_k]\mathbb{P}[B_k]}{\mathbb{P}[A]}$$
$$= \frac{\mathbb{P}[A \mid B_k]\mathbb{P}[B_k]}{\sum_{j=1}^n \mathbb{P}[A \mid B_j]\mathbb{P}[B_j]}.$$

7 Lecture 7

7.1 Discrete Random Variables

Definition. Random Variable

Given a set S, a random variable is a function $X: \Omega \to S$ satisfying certain properties. For the sake of this class, we will assume that all functions $X: \Omega \to S$ are random variables. Some notation follows:

$$\begin{split} \mathbb{P}[X = x] &= \mathbb{P}\{\omega \in \Omega \mid X(\omega) = x\}, \\ \mathbb{P}[X \in A] &= \mathbb{P}\{\omega \in \Omega \mid X(\omega) \in A\}. \end{split}$$

Definition. Discrete Random Variable

Let $X \colon \Omega \to S$ be a random variable. We say that X is a discrete random variable if $S \subseteq \mathbb{R}$ is a countable set. We define the probability mass function (PMF) of X to be the function $p_X \colon S \to [0,1]$ given by

$$p_X(x) = \mathbb{P}[X = x].$$

We define the *cumulative distribution function* (CDF) of X to be the function $F_X : \mathbb{R} \to [0,1]$ given by

$$F_X(x) = \mathbb{P}[X \le x].$$

We say that two random variables X, Y are identically distributed if they have the same CDF, and we write $X \sim Y$.

Definition. Uniform Distribution

Let $m \geq 1$. We say that a discrete random variable X is uniformly distributed on $\{1, 2, ..., m\}$ and write $X \sim \text{Uniform}(\{1, 2, ..., m\})$ if it has PMF

$$p_X(x) = \frac{1}{m}$$
 if $x \in \{1, 2, ..., m\}$.

If $X \sim \text{Uniform}(\{1, 2, \dots, m\})$, then it has CDF

$$F_X(x) = \begin{cases} 0 & \text{if } x < 1, \\ \frac{k}{m} & \text{if } k \le x < k+1 \text{ and } k \in \{1, 2, \dots, m-1\}, \\ 1 & \text{if } x \ge m. \end{cases}$$

If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$ and $A \subseteq \mathbb{R}$ is any set then

$$\mathbb{P}[X \in A] = \sum_{x \in A \cap S} p_X(x).$$

Proof. Since S is countable, we know that $A \cap S = \{a_1, a_2, \dots, a_n\}$ (or $\{a_1, a_2, \dots\}$). Hence

$$\mathbb{P}[X \in A] = \mathbb{P}[X \in \{a_1, \dots, a_n\}]$$

$$= \mathbb{P}\left[\bigcup_{j=1}^n \{X = a_j\}\right]$$

$$= \sum_{j=1}^n \mathbb{P}[X = a_j]$$

$$= \sum_{j=1}^n p_X(a_j)$$

$$= \sum_{x \in A \cap S} p_X(x).$$

If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$ then

$$F_X(x) = \sum_{\substack{y \le x \\ y \in S}} p_X(y).$$

Proof. Observe that

$$\begin{aligned} F_X(x) &= \mathbb{P}[X \leq x] \\ &= \mathbb{P}[X \in (-\infty, x]] \\ &= \sum_{y \in (-\infty, x] \cap S} p_X(y) \\ &= \sum_{\substack{y \leq x \\ y \in S}} p_X(y). \end{aligned}$$

If X is a discrete random variable and a < b then

$$\mathbb{P}[a < X \le b] = F_X(b) - F_X(a).$$

Proof. Observe that

$$\begin{split} \mathbb{P}[a < X \leq b] &= \mathbb{P}[X \in (a,b]] \\ &= \sum_{x \in (a,b] \cap S} p_X(x) \\ &= \sum_{\substack{x \leq b \\ x \in S}} p_X(x) - \sum_{\substack{x \leq a \\ x \in S}} p_X(x) \\ &= F_X(b) - F_X(a). \end{split}$$

If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$ then

$$\sum_{x \in S} p_X(x) = 1.$$

Proof. Observe that

$$\sum_{x \in S} p_X(x) = \sum_{x \in \mathbb{R} \cap S}$$

$$= \mathbb{P}[X \in R]$$

$$= \mathbb{P}[\Omega]$$

$$= 1.$$

8 Lecture 8

8.1 Expected Value

Definition. Expected Value

If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$, we define its *expected value* to be

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot p_X(x)$$

provided the sum converges in a suitable sense.

Note. We often use the notation $\mu_X = \mathbb{E}[X]$ to denote the "mean" or "average" value.

8.1.1 Bernoulli Distribution

Definition. Bernoulli Random Variable

Let $p \in (0,1)$. We say that a discrete random variable X is a Bernoulli random variable and write $X \sim \text{Bernoulli}(p)$ if it has PMF

$$p_X(x) = \begin{cases} p & \text{if } x = 1, \\ 1 - p & \text{if } x = 0. \end{cases}$$

Then by definition we have

$$\mathbb{E}[X] = 0 \cdot p_X(0) + 1 \cdot p_X(1) = p.$$

Let X be a discrete random variable. If $a \in \mathbb{R}$ then $\mathbb{E}[a] = a$.

Proof. Let g(x) = a. Then

$$\mathbb{E}[a] = \mathbb{E}[g(X)]$$

$$= \sum_{x \in S} g(x)p_X(x)$$

$$= \sum_{x \in S} ap_X(x)$$

$$= a \sum_{x \in S} p_X(x)$$

$$= a,$$

since
$$\sum_{x \in S} p_X(x) = 1$$
.

Let X be a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$. If $a, b \in \mathbb{R}$ and $g, h \colon S \to \mathbb{R}$ then

$$\mathbb{E}[ag(X) + bh(X)] = a\mathbb{E}[g(X)] + b\mathbb{E}[h(X)].$$

Proof. By definition, we have

$$\begin{split} \mathbb{E}[ag(X) + bh(X)] &= \sum_{x \in S} (ag(x) + bh(x)) p_X(x) \\ &= a \sum_{x \in S} g(x) p_X(x) + b \sum_{x \in S} h(x) p_X(x) \\ &= a \mathbb{E}[g(X)] + b \mathbb{E}[h(X)]. \end{split}$$

Let X be a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$. If $g, h \colon S \to \mathbb{R}$ satisfy $g(x) \leq h(x)$ for all $x \in S$ then

$$\mathbb{E}[g(X)] \le \mathbb{E}[h(X)].$$

Proof. Observe that

$$\mathbb{E}[g(X)] = \sum_{x \in S} g(x) p_X(x)$$

$$\leq \sum_{x \in S} h(x) p_X(x) \qquad (g(x) \leq h(x), p_X(x) > 0)$$

$$= \mathbb{E}[h(X)].$$

9 Lecture 9

9.1 Special Mathematical Expectations

Definition. Moments

Let X be a discrete random variable taking values in a discrete set $S \subseteq \mathbb{R}$ and $b \in \mathbb{R}$. We define the r^{th} moment of X about b to be

$$\mathbb{E}[(X-b)^r] = \sum_{x \in S} (x-b)^r p_X(x).$$

When b = 0 we refer to this simply as the r^{th} moment of X.

Definition.

Let X be a discrete random variable. We define the variance of X to be

$$\operatorname{var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$$

whenever it converges. We use the notation $\sigma_X^2 = \text{var}(X)$. The standard deviation of X is $\sigma_X = \sqrt{\text{var}(X)}$.

Theorem. If X is a discrete random variable and $a, b \in \mathbb{R}$ then:

- $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- $\operatorname{var}(aX + b) = a^2 \operatorname{var}[X]$

Proof. Observe that

$$\begin{split} \mathbb{E}[aX+b] &= \sum_{x \in S} (ax+b) p_X(x) \\ &= a \sum_{x \in S} x \cdot p_X(x) + \sum_{x \in S} b \cdot p_X(x) \\ &= a \mathbb{E}[X] + b. \end{split}$$

Furthermore, we have

$$\operatorname{var}(aX + b) = \mathbb{E}\left[(aX + b - \mathbb{E}[aX + b])^{2}\right]$$

$$= \mathbb{E}\left[(aX + b - a\mathbb{E}[X] - b)^{2}\right]$$

$$= \mathbb{E}\left[(aX - a\mathbb{E}[X])^{2}\right]$$

$$= a^{2} \cdot \mathbb{E}\left[(X - \mathbb{E}[X])^{2}\right]$$

$$= a^{2} \operatorname{var}(X).$$

Theorem. If X is a discrete random variable then

$$var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

Proof. Let $\mu_X = \mathbb{E}[X]$, so then

$$var(X) = \mathbb{E} [(X - \mu_X)^2]$$

$$= \mathbb{E}[X^2 - 2\mu_X X + \mu_X^2]$$

$$= \mathbb{E}[X^2] - 2\mu_X \mathbb{E}[X] + \mu_X^2$$

$$= \mathbb{E}[X^2] - 2\mathbb{E}[X]^2 + \mathbb{E}[X]^2$$

$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Example. Let $m \ge 1$ and $X \sim \text{Uniform}(\{1, 2, ..., m\})$. What is var(X)? By using a Gaussian sum, we can see that $\mathbb{E}[X] = \frac{m+1}{2}$. To compute $\mathbb{E}[X^2]$, we have

$$\mathbb{E}[X^2] = \sum_{x=1}^m x^2 \cdot \frac{1}{m}$$

$$= \frac{1}{m} \cdot \frac{m \cdot (m+1) \cdot (2m+1)}{6}$$

$$= \frac{(m+1)(2m+1)}{6}.$$

Hence the variance is

$$\frac{1}{6}(m+1)(2m+1) - \left(\frac{m+1}{2}\right)^2 = \frac{m^2-1}{12}.$$

9.2 Moment Generating Functions

Definition. Moment Generating Function (MGF)

If X is a discrete random variable we define the *Moment Generating Function* (MGF) of X to be the function

$$M_X(t) = \mathbb{E}[e^{tX}],$$

whenever it exists.

Theorem. Let X be a discrete random variable with MGF $M_X(t)$ that is well-defined and smooth for $t \in (-\delta, \delta)$. Then

$$\frac{\mathrm{d}^r}{\mathrm{d}t^r} M_X|_{t=0} = \mathbb{E}[X^r].$$

Proof. Let S be the set of outputs of X. Then

$$M_X(t) = \mathbb{E}[e^{tX}]$$
$$= \sum_{x \in S} e^{tx} p_X(x).$$

Hence we have

$$\begin{split} \frac{\partial^r}{\partial t^r} M_X(t) &= \frac{\partial^r}{\partial t^r} \sum_{x \in S} e^{tx} p_X(x) \\ &= \sum_{x \in S} x^r e^{tx} p_X(x). \end{split}$$

Therefore

$$\frac{\partial^r}{\partial t^r} M_X(t)|_{t=0} = \sum_{x \in S} x^r p_X(x) = \mathbb{E}[X^r]$$

Theorem. Let X be a discrete random variable with MGF $M_X(t)$ that is well-defined and smooth for $t \in (-\delta, \delta)$.

- $\frac{\mathrm{d}}{\mathrm{d}t} \ln M_X|_{t=0} = \mathbb{E}[X].$
- $\frac{\mathrm{d}^2}{\mathrm{d}t^2} \ln M_X|_{t=0} = \mathrm{var}(X).$

10 Lecture 10

10.1 Binomial Random Variables

Definition. Binomial Random Variable

A Bernoulli trial is an experiment that has probability $p \in (0,1)$ of success and probability 1-p of failure.

- Suppose we run $n \geq 1$ independent, identical Bernoulli trials, and let X be the number of successes.
- Then we know that X is a discrete random variable taking values in the set $S = \{0, 1, \dots, n\}$.
- We say that X is a Binomial random variable with parameters n, p and write $X \sim \text{Binomial}(n, p)$.

Theorem. If $X \sim \text{Binomial}(n, p)$ then its PMF is

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 if $x \in \{0, 1, \dots, n\}$.

Proof. Recall that $p_X(x) = \mathbb{P}[X = x]$. We know that there are $\binom{n}{x}$ ways to arrange exactly x "successes" in a total of n trials. Since each trial has a "success" rate of p, and a "failure" rate of 1-p, and they are independent, each arrangement has a $p^x(1-p)^{n-x}$ probability of occurring. Hence the total probability of any of the arrangements occurring (as they are mutually independent) is

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

Note. By the Binomial Theorem we have

$$\sum_{x=0}^{n} p_X(x) = (p + (1-p))^n = 1.$$

Theorem. If $X \sim \text{Binomial}(n, p)$, its MGF is

$$M_X(t) = (1 - p + pe^t)^n.$$

Proof. We compute

$$M_X(t) = \mathbb{E}[e^{tx}]$$

$$= \sum_{x=0}^n e^{tx} p_X(x)$$

$$= \sum_{x=0}^n e^{tx} \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \sum_{x=0}^n \binom{n}{x} (pe^t)^x (1-p)^{n-x}$$

$$= (1-p+pe^t)^n.$$

Note. Recall that $(1 - p + pe^t)$ is the MFG of the Bernoulli random variable.

Theorem. If $X \sim \text{Binomial}(n, p)$ its mean is

$$\mathbb{E}[X] = np.$$

Proof. Recall that $M_X(t) = (pe^t + 1 - p)^n$ so $M_X'(t) = n(pe^t + 1 - p)^{n-1} \cdot pe^t$. Hence

$$\mathbb{E}[X] = M_X'(0) = n(p+1-p)^{n-1} \cdot p = np.$$

Note. Recall that p is the expected value of the Bernoulli random variable.

Theorem. If $X \sim \text{Binomial}(n, p)$ its variance is

$$var(X) = np(1-p)$$

Proof. Recall that $var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[X^2] - (np)^2$. Furthermore, we just showed that

$$M'_X(t) = n(pe^t + 1 - p)^{n-1} \cdot pe^t,$$

so

$$M_X''(t) = n(n-1)(pe^t + 1 - p)^{n-2} \cdot (pe^t)^2 + n(pe^t + 1 - p)^{n-1} \cdot pe^t.$$

Hence

$$\mathbb{E}[X^2] = M_X''(0)$$

$$= n(n-1)(p+1-p)^{n-2} \cdot p^2 + n(p+1-p)^{n-1} \cdot p$$

$$= n(n-1) \cdot p^2 + np.$$

Therefore

$$var(X) = n(n-1) \cdot p^{2} + np - (np)^{2}$$
$$= n^{2}p^{2} - np^{2} + np - n^{2}p^{2}$$
$$= np(1-p).$$

Note. Recall that p(1-p) is the variance of a regular Bernoulli random variable.

10.2 Geometric Random Variables

Definition. Geometric Random Variable

Suppose we repeatedly run independent, identical Bernoulli trials with probability $p \in (0,1)$ of success.

- Let X be the trial on which we first achieve success.
- X is a discrete random variable taking values in the set $S = \{1, 2, 3, \dots\}$.
- We say that X is a geometric random variable with parameter p and write $X \sim \text{Geometric}(p)$.

Note. Sometimes geometric random variables are defined differently, but this is the definition that we will use for this class.

Theorem. If $X \sim \text{Geometric}(p)$ then its PMF is

$$p_X(x) = (1-p)^{x-1}p$$
 if $x \in \{1, 2, 3, \dots\}$.

Proof. The probability that X=x is the probability that we have x-1 failures, followed by a success. Since the events are independent, this gives us the desired result.

Note. For the infinite series version of this, we have

$$\sum_{x=1}^{\infty} p_X(x) = \sum_{x=1}^{\infty} (1-p)^{x-1} p$$
$$= p \sum_{x=1}^{\infty} (1-p)^{x-1}$$
$$= p \cdot \frac{1}{1 - (1-p)}$$
$$= 1.$$

Theorem. If $X \sim \text{Geometric}(p)$ then its MGF is

$$M_X(t) = \frac{e^t p}{1 - (1 - p)e^t}$$
 if $t < -\ln(1 - p)$.

Proof. We have

$$M_X(t) = \mathbb{E}[e^{tX}]$$

$$= \sum_{x=1}^{\infty} e^{tx} p_X(x)$$

$$= \sum_{x=1}^{\infty} e^{tx} (1-p)^{x-1} p$$

$$= e^t p \sum_{x=1}^{\infty} (e^t (1-p))^{x-1}$$

$$= e^t p \cdot \frac{1}{1 - (e^t (1-p))}$$

$$= \frac{e^t p}{1 - (1-p)e^t},$$

as desired.

Note. The condition comes from the denominator, where

$$(1-p)e^t < 1.$$

Theorem. If $X \sim \text{Geometric}(p)$ then its mean is

$$\mathbb{E}[X] = \frac{1}{p}.$$

Proof. From the previous theorem, we showed that

$$M_X(t) = \frac{e^t p}{1 - e^t (1 - p)}.$$

Hence

$$\ln M_X(t) = \ln \left(\frac{e^t p}{1 - e^t (1 - p)} \right)$$
$$= \ln(e^t p) - \ln(1 - e^t (1 - p))$$
$$= t + \ln p - \ln(1 - e^t (1 - p)).$$

Thus we have that

$$(\ln M_X)' = 1 - \frac{1}{1 - e^t(1 - p)} \cdot (p - 1)e^t = \frac{1}{1 - e^t(1 - p)}.$$

Therefore

$$\mathbb{E}[X] = (\ln M_X)'(0) = \frac{1}{p}.$$

Theorem. If $X \sim \text{Geometric}(p)$ then its variance is

$$\operatorname{var}(X) = \frac{1 - p}{p^2}.$$

Proof. From the last problem we have that

$$(\ln M_X)' = \frac{1}{1 - e^t(1 - p)},$$

SC

$$(\ln M_X)'' = -\frac{1}{(1 - e^t(1 - p))^2} \cdot (p - 1)e^t = \frac{e^t(1 - p)}{(1 - e^t(1 - p))^2}.$$

Therefore

$$var(X) = (\ln M_X)''(0) = \frac{1-p}{p^2},$$

as desired.