Human Activity Recognition Data Analysis Using Samsung Galaxy S II Smartphone

Download: R Script or Jupyter Notebook file, ReadMe

Abstract: using "Human Activity Recognition Using Smartphones Dataset Version 1.0" from the UC Irvine Machine Learning Repository that includes triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration, triaxial Angular velocity from the gyroscope, 561 variables with time and frequency domain data, activity labels, and identifiers of the subject who carried out the experiment.

Data Set Characteristics:	Multivariate	Number of Instances:	180	Area:	Machine Learning
Attribute Characteristics:	N/A	Number of Attributes:	88	Missing Values?	N/A

Source:

http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

Data Set Information:

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter

with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain. See 'features_info.txt' for more details.1

Data variables include:

Label	Data Type	Explanation
subject	Factor	identifies the subject who performed the activity
activities	Factor	Activity performed
X1.tBodyAcc.meanX	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X2.tBodyAcc.meanY	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X3.tBodyAcc.meanZ	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X41.tGravityAcc.meanX	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X42.tGravityAcc.meanY	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X43.tGravityAcc.meanZ	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X81.tBodyAccJerk.meanX	Numeric	Feature vector: body linear acceleration and angular velocity
X82.tBodyAccJerk.meanY	Numeric	Feature vector: body linear acceleration and angular velocity
X83.tBodyAccJerk.meanZ	Numeric	Feature vector: body linear acceleration and angular velocity
X121.tBodyGyro.meanX	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X122.tBodyGyro.meanY	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X123.tBodyGyro.meanZ	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X161.tBodyGyroJerk.meanX	Numeric	Feature vector: body linear acceleration and angular velocity

.

¹ http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

X162.tBodyGyroJerk.meanY	Numeric	Feature vector: body linear acceleration and angular velocity
X163.tBodyGyroJerk.meanZ	Numeric	Feature vector: body linear acceleration and angular velocity
X201.tBodyAccMag.mean	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X214.tGravityAccMag.mean	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X227.tBodyAccJerkMag.mean	Numeric	Feature vector: body linear acceleration and angular velocity
X240.tBodyGyroMag.mean	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X253.tBodyGyroJerkMag.mean	Numeric	Feature vector: body linear acceleration and angular velocity
X266.fBodyAcc.meanX	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X267.fBodyAcc.meanY	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X268.fBodyAcc.meanZ	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X294.fBodyAcc.meanFreqX	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X295.fBodyAcc.meanFreqY	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X296.fBodyAcc.meanFreqZ	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X345.fBodyAccJerk.meanX	Numeric	Feature vector: body linear acceleration and angular velocity
X346.fBodyAccJerk.meanY	Numeric	Feature vector: body linear acceleration and angular velocity
X347.fBodyAccJerk.meanZ	Numeric	Feature vector: body linear acceleration and angular velocity
X373.fBodyAccJerk.meanFreqX	Numeric	Feature vector: body linear acceleration and angular velocity
X374.fBodyAccJerk.meanFreqY	Numeric	Feature vector: body linear acceleration and angular velocity

X375.fBodyAccJerk.meanFreqZ	Numeric	Feature vector: body linear acceleration and angular velocity
X424.fBodyGyro.meanX	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X425.fBodyGyro.meanY	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X426.fBodyGyro.meanZ	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X452.fBodyGyro.meanFreqX	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X453.fBodyGyro.meanFreqY	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X454.fBodyGyro.meanFreqZ	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X503.fBodyAccMag.mean	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X513.fBodyAccMag.meanFreq	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X516.fBodyBodyAccJerkMag.mean	Numeric	Feature vector: body linear acceleration and angular velocity
X526.fBodyBodyAccJerkMag.meanFreq	Numeric	Feature vector: body linear acceleration and angular velocity
X529.fBodyBodyGyroMag.mean	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X539.fBodyBodyGyroMag.meanFreq	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X542.fBodyBodyGyroJerkMag.mean	Numeric	Feature vector: body linear acceleration and angular velocity
X552.fBodyBodyGyroJerkMag.meanFreq	Numeric	Feature vector: body linear acceleration and angular velocity
X555.angle.tBodyAccMean.gravity.	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X556.angle.tBodyAccJerkMeangravityMean.	Numeric	Feature vector: body linear acceleration and angular velocity
X557.angle.tBodyGyroMean.gravityMean.	Numeric	Feature vector: angular velocity vector measured by the gyroscope

X558.angle.tBodyGyroJerkMean.gravityMean.	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X559.angle.X.gravityMean.	Numeric	Feature vector: gravity acceleration
X560.angle.Y.gravityMean.	Numeric	Feature vector: gravity acceleration
X561.angle.Z.gravityMean.	Numeric	Feature vector: gravity acceleration
X4.tBodyAcc.stdX	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X5.tBodyAcc.stdY	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X6.tBodyAcc.stdZ	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X44.tGravityAcc.stdX	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X45.tGravityAcc.stdY	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X46.tGravityAcc.stdZ	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X84.tBodyAccJerk.stdX	Numeric	Feature vector: body linear acceleration and angular velocity
X85.tBodyAccJerk.stdY	Numeric	Feature vector: body linear acceleration and angular velocity
X86.tBodyAccJerk.stdZ	Numeric	Feature vector: body linear acceleration and angular velocity
X124.tBodyGyro.stdX	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X125.tBodyGyro.stdY	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X126.tBodyGyro.stdZ	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X164.tBodyGyroJerk.stdX	Numeric	Feature vector: body linear acceleration and angular velocity
X165.tBodyGyroJerk.stdY	Numeric	Feature vector: body linear acceleration and angular velocity
X166.tBodyGyroJerk.stdZ	Numeric	Feature vector: body linear acceleration and angular velocity

X202.tBodyAccMag.std	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X215.tGravityAccMag.std	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X228.tBodyAccJerkMag.std	Numeric	Feature vector: body linear acceleration and angular velocity
X241.tBodyGyroMag.std	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X254.tBodyGyroJerkMag.std	Numeric	Feature vector: body linear acceleration and angular velocity
X269.fBodyAcc.stdX	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X270.fBodyAcc.stdY	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X271.fBodyAcc.stdZ	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X348.fBodyAccJerk.stdX	Numeric	Feature vector: body linear acceleration and angular velocity
X349.fBodyAccJerk.stdY	Numeric	Feature vector: body linear acceleration and angular velocity
X350.fBodyAccJerk.stdZ	Numeric	Feature vector: body linear acceleration and angular velocity
X427.fBodyGyro.stdX	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X428.fBodyGyro.stdY	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X429.fBodyGyro.stdZ	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X504.fBodyAccMag.std	Numeric	Feature vector: acceleration signal from the smartphone accelerometer
X517.fBodyBodyAccJerkMag.std	Numeric	Feature vector: body linear acceleration and angular velocity
X530.fBodyBodyGyroMag.std	Numeric	Feature vector: angular velocity vector measured by the gyroscope
X543.fBodyBodyGyroJerkMag.std	Numeric	Feature vector: body linear acceleration and angular velocity

Data Summaries Calculated:

Mean

Units for Data Summaries and Variables:

• All units are standard Gravity Units (g)

Data Transformations:

- Data was downloaded from https://d396gusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip
- Files "features", "activity_labels", train files: "subject_train", "X_train", "y_train", test files: "subject_test", "X_test", "y_test" were imported into R studio.
- Factor labels were created and bound to "features", "activity_labels", "subject_test", and "subject_train" files.
- Columns were renamed for human readability.
- "train" and "test" data sets were merged together to create a final data set.
- The final data set was subset for variables representing the mean and standard deviation of the features.
- Barplots were created for each subject's activity showing the mean for features variables.