A

m

Teoría de Algoritmos

Capitulo 4: Programación Dinámica

Tema 11: Algoritmos basados en P.D.

- El Problema del Camino Minimo
- El Problema de la Mochila
- El Problema del Viajante

S

Aplicacion de la P.D. al Diseño de Algoritmos

- PD se aplica en cuatro fases
 - 1. Naturaleza n-etápica del problema
 - 2. Verificación del POB
 - 3. Planteamiento de una recurrencia
 - 4. Calculo de la solución (enfoque adelantado o atrasado)
- · Las desarrollaremos sobre
 - Problema del Camino Minimo
 - Problema de la Mochila
 - El Problema del Viajante

1. Naturaleza n-etápica: El Problema de la Mochila

- El Problema de la Mochila es un ejemplo clásico de problema n-etapico, y por tanto de PD
- En el PM su solución puede verse como el resultado de una sucesión de decisiones:
 - Tenemos que decidir los valores de x_i , $1 \le i \le n$.
- Así, primero tomaríamos una decisión sobre x_1 , luego sobre x_2 , después sobre x_3 , etc.
- Una sucesión optimal de decisiones, verificando las restricciones del problema, será aquella que maximice la función objetivo.

1. Naturaleza n-etápica: El Problema del Camino Mínimo

- El Problema del Camino Mínimo es otro ejemplo clásico de problema de PD
- En este caso, para encontrar ese camino desde un vértice i a otro j en un grafo G, veríamos que vértice debe ser el segundo, cual el tercero, etc. hasta alcanzar el j.
- Una sucesión optimal de decisiones proporcionará entonces el camino de longitud mínima.

Por tanto, ambos problemas tienen una clara naturaleza n-etápica

2. Comprobación del P.O.B.: Problema de la Mochila 0-1

Notamos M(I,j,Y) al siguiente problema,

Max:
$$\sum_{1 \le i \le j} p_i x_i$$

Sujeto a: $\sum_{1 \le i \le j} w_i x_i \le y$
 $x_i = 0, 1; 1 \le i \le j$

el problema de la mochila 0-1 se representa por M(1,n,M).

- Sea y_1 , y_2 , ..., y_n una sucesión optimal de valores 0-1 para x_1 , x_2 , ..., x_n .
- Si $y_1 = 0$, entonces $y_2, ..., y_n$ debe ser una sucesión optimal para el problema M(2,n,M).
- Si no lo es: $y_1, y_2, ..., y_n$ no es una sucesión optimal de M(1, n, M).

0

S

2. Comprobación del P.O.B.: Problema de la Mochila 0-1

- Si $y_1 = 1$, entonces y_2 , ..., y_n debe ser una sucesión optimal para $M(2,n, M-w_1)$.
- Si no lo fuera, habría otra sucesión 0-1, z_2 , z_3 , ..., z_n tal que

$$\sum_{2 \leq i \leq n} w_i z_i \leq M - w_1 \ y \sum_{2 \leq i \leq n} p_i z_i > \sum_{2 \leq i \leq n} p_i y_i$$

- y por tanto la sucesión y_1 , z_2 , z_3 , ..., z_n es una sucesión para el problema de partida con mayor valor.
- · Por tanto puede aplicarse el POB

2. Comprobación del P.O.B.: Problema del Camino minimo

- Sea i, i₁, ... i_k, j el camino mínimo desde i hasta j.
- Comenzando con el vértice inicial i, se ha tomado la decisión de ir al vértice i₁.
- Como resultado, ahora el estado del problema esta definido por el vértice i₁, y lo que se necesita es encontrar un camino desde i₁ hasta j.
- Esta claro que la sucesión i₁, i₂, ...i_k, j debe constituir un camino mínimo entre i₁ y j. Si no:
- Sea $i_1, r_1, ..., r_q$, j un camino mas corto entre i_1 y j
- Entonces i, i_1 , r_1 , r_2 , ... r_q , j es un camino entre i y j que es mas corto que el camino i, i_1 , i_2 , ... i_k , j.
- · Por tanto el POB tambien puede aplicarse a este problema.

3. Construccion de una ecuación recurrente: Caminos Minimos

- Sea A_i el conjunto de los vértices adyacentes al vértice i.
- Para cada vértice $k \in A_i$ sea Γ_k el camino mínimo desde k hasta j.
- Entonces el camino mas corto desde i hasta j es el mas corto de los caminos del conjunto $\{i, \Gamma_k / k \in A_i \}$
- · La recurrencia es trivial en este caso:

$$D_k(i,j) = Min \{D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j)\}$$

3. Construccion de una ecuación recurrente: Problema de la Mochila

- Consideremos ahora el Problema de la Mochila 0-1.
- Sea g_j(y) el valor de una solución optimal del problema Mochila (j+1, n, y).
- Claramente $g_0(M)$ es el valor de una solución optimal de Mochila (1,n,M).
- Las posibles decisiones para x_1 son 0 o 1 $(D_1 = \{0,1\})$.
- A partir del POB se sigue que $g_0(M) = Max \{g_1(M), g_1(M-w1) + p_1 \}$

Existen muchisimos algoritmos para resolver este problema, pero es NP completo

Los algoritmos conocidos que lo resuelven son exponenciales. No se conocen algoritmos polinomiales que lo resuelvan

4. Caminos minimos: Algoritmo de Floyd

- Sea G = (N,A) un grafo dirigido en el que N es su conjunto de nodos y A el de sus arcos. Cada arco tiene asociada una longitud, no negativa.
- El problema consiste en determinar el camino de longitud mínima que una cualquier par de nodos del grafo.
- Supondremos que los nodos estan numerados de 1 a n, N = $\{1,2,...,n\}$ y que la matriz L da la longitud de cada arco, de modo que L(i,i) = 0, $L(i,j) \ge 0$ si i es distinto de j, y $L(i,j) = \infty$ si no existe el arco (i,j).
- · El POB se aplica del siguiente modo:
 - Si k es un nodo en el camino mínimo que une i con j, entonces la parte de ese camino que va de i hasta k, y la del que va de k hasta j, es también optimal.

4. Caminos minimos: Algoritmo de Floyd

- El Algoritmo consiste en lo siguiente.
- Construimos una matriz D que da la longitud del camino mínimo entre cada par de nodos.
- El algoritmo comienza asignando a D, L y, entonces, realiza n iteraciones.
- Tras la iteración k, D da la longitud de los caminos mínimos que solo usan como nodos intermedios los del conjunto {1,2,...,k}.
- · Después de n iteraciones tendremos, por tanto la solución buscada.

4. Caminos minimos: Algoritmo de Floyd

- En la iteración k, el algoritmo tiene que chequear, para cada par de nodos (i,j), si existe o no un camino que pase a través de k que sea mejor que el actual camino minimal que solo pasa a través de los nodos {1,2,...,k-1}.
- Sea D la matriz después de la k-esima iteración. El chequeo puede expresarse como,

$$D_k(i,j) = Min \{D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j)\}$$

 donde hemos hecho uso del POB para calcular la longitud del camino mas corto que pasa a través de k.

0

4. Caminos minimos: Algoritmo de Floyd

```
Procedimiento Floyd
Begin
       For i := 1 to n do
           For j := 1 to n do
              D[i,j] := L[i,j];
       For i := 1 to n do
              D[i,i] := 0;
       For k := 1 to n do
           For i := 1 to n do
              For j := 1 to n do
                     If D[i,k] + D[k,j] < D[i,j]
                     Then D[i,j] := D[i,k] + D[k,j]
```

End;

4. Caminos minimos: Algoritmo de Floyd

- El algoritmo consume un tiempo $O(n^3)$.
- También podemos usar el algoritmo de Dijkstra, entonces aplicaríamos ese algoritmo n veces, eligiendo un nodo diferente como origen cada vez.
- Si queremos usar la versión de Dijkstra que trabaja con una matriz de distancias, el tiempo de calculo total esta en $n \times O(n^2)$, es decir en $O(n^3)$.
- · El orden es el mismo que para el algoritmo de Floyd, pero la simplicidad de este supone que, en la practica, probablemente sea mas rápido.

0

m

0

S

4. Caminos minimos: Algoritmo de Floyd

· Si queremos saber por donde va el camino mas corto

```
Procedimiento Floyd-Warshall
Begin
                                                     Procedimiento Camino
   For i := 1 to n do
                                                     Begin
         For j := 1 to n do begin
                                                       k := P[i,j];
                                                       If k = 0 then Return;
             D[i,j] := L[i,j];
                                                       Camino (i,k);
             P[i,j] := 0
                                                       Writeln (k);
         End;
                                                       Camino (k,j)
                                                     End:
   For i := 1 to n do
         D[i,i] := 0;
   For k := 1 to n do
        For i := 1 to n do
          For j := 1 to n do
               If D[i,k] + D[k,j] < D[i,j] then begin
                   D[i,j] := D[i,k] + D[k,j];
                 P[i,j] := k
              End
End;
```

El Problema del Viajante de Comercio

- Dado un grafo con longitudes no negativas asociadas a sus arcos, queremos encontrar el circuito mas corto posible que comience y termine en un mismo nodo, es decir, un camino cerrado que recorra todos los nodos una y solo una vez y que tenga longitud minimal (el circuito hamiltoniano minimal)
- Sea G = (N,A) un grafo dirigido, $N = \{1,2,...,n\}$, y L_{ij} la matriz de distancia,
 - L(i,i) = 0,
 - $L(i,j) \ge 0$ si i es distinto de j, y
 - $L(i,j) = \infty$ si no existe el arco (i,j).

El Problema del Viajante de Comercio

- Suponemos, sin perdida de generalidad, que el circuito comienza y termina en el nodo 1. El problema es claramente n-etápico
- El circuito, está constituido por un arco (1, j), seguido de un camino de j a 1 que pasa exactamente una vez a través de cada nodo de N {1, ,j}.
- Si el circuito es optimal, es decir, de longitud mínima, entonces ese es el camino de j a 1 y vale el principio de Optimalidad.

El Problema del Viajante de Comercio

- Sea $S \subseteq N \{1\}$ un conjunto de nodos y consideremos un nodo mas $i \in N S$
- Está permitido que i = 1 solo si S = N {1}.
- Definimos el valor g(i,S) para cada índice i, como la longitud del camino mas corto desde el nodo i al nodo 1 que pasa exactamente una vez a través de cada nodo de S.
- Usando esta definición,
 q(1, N {1})
- · es la longitud de un circuito optimal.

El Problema del Viajante de Comercio

· Por el POB vemos que

$$g(1, N-\{1\}) = Min_{2 \le j \le n} [L_{1j} + g(j, N - \{1,j\})]$$

 Mas generalmente, si i no es igual a 1, el conjunto S no es vacío y además es distinto de N - {1} e i∉ S,

$$g(i,S) = Min_{j \in S} [L_{ij} + g(j, S - \{j\})]$$

- · Además,
- $g(i,\emptyset) = L_{i1}$, i = 2,3,...n
- Por tanto, los valores de g(i,S) se conocen cuando S es vacío

El Problema del Viajante de Comercio: Solución operativa

· Podemos aplicar

$$g(i,S) = Min_{j \in S} [L_{ij} + g(j, S - \{j\})]$$

para calcular g en todos los conjuntos S que
contienen exactamente un nodo (que no es el 1).

- Luego aplicamos la misma formula para calcular g en todos los conjuntos S que contienen dos nodos (distintos del 1), y así sucesivamente.
- Cuando se conoce el valor de $g[j,N-\{1,j\}]$ para todos los nodos j, excepto para 1, utilizamos $g(1,N-\{1\})=Min_{2\leq j\leq n}[L_{1j}+g(j,N-\{1,,j\})]$
- para calcular $g(1,N \{1\})$, y definitivamente resolver el problema

El Problema del Viajante de Comercio: Tiempo de ejecución

- · El tiempo que consumirá este algoritmo se hallará a partir de las expresiones anteriores.
- Para calcular $g(j,\emptyset)$ hay que hacer n-1 consultas de una tabla.
- Para calcular q(i,S)
- $g(i,S) = Min_{j \in S} [L_{ij} + g(j, S \{j\})]$ Hay qye calcular todas las g(i,S) tales que $1 \le \#S = k \le n-2$, lo que supone realizar, $(n-1) \times C_{n-2.k} \times k$

adiciones. De ellas,

El Problema del Viajante de Comercio: Tiempo de ejecución

- De esas $(n-1) \times C_{n-2,k} \times k$ adiciones,
 - n-1 corresponden a los posibles valores que puede tomar la variable i,
 - k provienen de los valores que puede tomar la variable j,
 - y las combinaciones restantes son todos los conjuntos que podemos formar de n-2 elementos tomados de k en k.
- Calcular g(1, N-{1}) implica n-1 adiciones.
- Estas operaciones pueden usarse como referencia para calcular la eficiencia del algoritmo., y así el tiempo que se lleva el algoritmo en cálculos es,

$$O[2(n-1) + \sum_{k=1..(n-2)} (n-1) \times k \times C_{n-2,k}] = O(n^2 2^n)$$

ya que

$$\sum_{k=1..r} k \times C_{r,k} = r2^{r-1}$$

El Problema del Viajante de Comercio: Tiempo de ejecución

Ese tiempo es bastante considerable, pero mejor que O(n!) que es el que proporciona la fuerza bruta.

	Tiempo	Tiempo
N	Método directo	PD
	n!	n²2n
5	120	800
10	3.628.800	102.400
15	1.31x10 ¹²	7.372.800
20	2.43x10 ¹⁸	419.430.400

Por ejemplo, 20²2²⁰ microsegundos es menos de siete minutos, mientras que 20! microsegundos supera las 77 mil años.