CS220A Lab#3 Design of Sequential Logic

Mainak Chaudhuri
Indian Institute of Technology Kanpur

Sketch

- Assignment#1: blinking LED
- Assignment#2: rippling LEDs

Lab#3

- Make new folders Lab3_1, Lab3_2 under CS220Labs to do the assignments
- Refer to lab#1 slides for Xilinx ISE instructions
- Finish pending assignments from lab#1 and lab#2 first

- Blinking LED
 - Goal is to make LED0 blink once every one second
 - The on-board clock of FPGA runs at 50 MHz
 - Read Chapter 3 of https://www.xilinx.com/support/documentation/board s and kits/ug230.pdf
 - The on-board clock at pin C9 will be the input clock to your design
 - The idea is to send an output of 1 to LED0 once every 50000000 cycles of the clock, keep it on for the next 25000000 cycles, then send an output of 0 to LED0

Blinking LED

- Write a Verilog module that does the following
 - Input is clk and output is led0
 - On every posedge of clk, increment a counter by 1
 - If the counter has reached OFF_TIME, set led0 to 0
 - If the counter has reached ON_TIME, set led0 to 1, reset the counter back to 0
 - Initialize the counter to 0
 - led0 and counter should be declared as reg
 - Use sequential assignment for led0 and counter
 - define OFF_TIME 25000000
 - define ON_TIME (OFF_TIME*2)

- Blinking LED
 - Write a Verilog test fixture for ISim simulation
 - Use PlanAhead to assign pins to clk and led0
 - Manually add the following line in the .ucf file
 NET "clk" PERIOD = 20.0ns HIGH 50%;
 - Synthesize the hardware
 - Try changing OFF_TIME and see the effect on blinking rate
- This is an example of an FSM where state sequencing is done using a counter as opposed to a PLA or a ROM

- Rippling LEDs
 - The goal is to blink LED0, LED1, ..., LED7 in that sequence every one second
 - The blinking LED will keep shifting to the left, wrap back, and keep rotating
 - It will look like a ripple of LED light rotating continuously

- Rippling LEDs
 - Write a Verilog module that has clk as input and led0, led1, ..., led7 as outputs
 - All outputs should be reg
 - Initialize led0 to 1 and counter to 0
 - On posedge clk, increment counter by 1
 - When the counter reaches SHIFT_TIME do the following and reset counter to zero

```
led1 <= led0;
led2 <= led1;
...
led7 <= led6;
led0 <= led7;</pre>
```

define SHIFT_TIME 50000000

- Rippling LEDs
 - Write a Verilog test fixture for ISim simulation
 - Use PlanAhead to assign pins to clk and led0, led1, ..., led7
 - Manually add the following line in the .ucf file
 NET "clk" PERIOD = 20.0ns HIGH 50%;
 - Synthesize the hardware
 - Try changing SHIFT_TIME and observe its effect on the ripple rate
 - Try initializing multiple LEDs to 1 and see if the whole pattern is rotating
 - Try changing the direction of the ripple to right

- Rippling LEDs
 - This is an example of an FSM where state sequencing is done using a counter as opposed to a PLA or a ROM