Introduction to Proteomics Analysis and Databases

Nicky Mulder: nicola.mulder@uct.ac.za

What is Proteomics?

- Large-scale study of proteins to determine their function
- Proteome is protein complement of the genome
- Includes the study of:
 - Protein structure and function
 - Protein-protein interactions
 - Protein expression
 - Protein localization
 - Protein modifications
 - Etc.

Proteomics studies

- Primary structure (sequence)
...YSFVATAER...

Mass spectrometry

Secondary structure (structural elements)

Tertiairy structure (3D shape)

Xray, NMR

- Modifications (dynamic, function)
 phosphorylation
- Processing (targetting, activation)

 trypsin

 platelet activity

Mass spectrometry

Localization studies

Protein structure

- Determined by x-ray crystallography or NMR
- Provides clues about protein function

Very time-consuming and not always possible to

crystallize a protein!

Physical interactions

- Experiments to identify physical interactions between DNA and proteins (for example TFs) or between two proteins:
 - Yeast two hybrid
 - Protein arrays

Yeast two hybrid

Interaction of X and Y = expression of reporter gene

Two proteins X and Y fused to DNA-binding and activation domains

Protein arrays

Most common are antibody arrays

Good for well studied organisms

Limited for new ones

Antibody microarray principle

http://www.functionalgenomics.org.uk/sections/resources/protein_arrays.htm

Protein-protein interaction databases

- Protein-protein interaction databases store pairwise interactions or complexes
- IntAct
- DIP (Database of Interacting Proteins)
- BIND (Biomolecular Interaction Network Database)

Other experimental data

• Protein localization:

- Co-localized proteins may share functional relationships
- Not always case, e.g. in cytoplasm
- Localization can change with environment

• Protein expression:

- Measuring quantity of protein in more than 1 sample
- Identification of relevant proteins

Workflow of a proteomics experiment

Protein separation

- 2D PAGE
- Gel-free systems:
 - ICAT
 - HPLC

Mass spec –digest proteins further

Protein separation -2D PAGE

pH gradient

Comparing 2 samples

Bioinformatics component

- Sample tracking
- Image capture
- Image analysis and comparison:
 - Convert to matrix for example
 - Measuring intensities
 - Removing background noise
 - Finding difference between gels

Problems with 2D PAGE

- Some proteins can't be detected
 - Low abundance
 - Highly charged (run off gel)
- Reproducibility -can't easily compare across different gels
- Imperfect separation –multiple proteins in a spot
- Experiment takes time and special skills

After 2D PAGE

Mass spec

- Digest proteins with e.g. trypsin (lysine or arginine)
- Proteins are ionized and brought into gas phase
- Move through mass analyzer which separates them based on mass
- Detector records presence of ions

Generalized mass spectrometer

F=ma

F related to charge, electric field, velocity

Protein identification with Mass Spectrometry

Computational Biology @ UCT

Protein identification

VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFA TLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHK

digest with trypsin

Mass spec

mass spectrum

SAVTALWGK VNVDEVGGEALGR LLVVYPWTQR

VHLTPEEK

FFESFGDLSTPDAVMGNPK

VK

AHGK

K

VLGAFSDGLAHLDNLK GTFATLSELHCDK

LHVDPENFR

LLGNVLVCVLAHHFGK

EFTPPVQAAYQK

VVAGVANALAHK

Recognises lysine (K) & arginine (R)

compare with theoretical peptide spectra; ID = best similarity

Problems with mass spec ID

- Protein samples often contain a mixture of proteins
- Digestion/fragmentation isn't always complete
- Not all proteins get ionized
- Background noise in spectra
- Proteins can contain modifications, which will change mass
- Differences with sequence databases

Issue with protein sequence databases

- Protein sequence database —UniProt -redundant
- NCBI non-redundant database (contains fragments) redundant at peptide level
- Problem:

Changes theoretical spectrum

Extending database content

But: don't want to end up with too many redundant (identical) peptides

Solving problems –Tandem MS

- Two rounds of mass spec
- Fragment peptides and obtain spectrum
- Select peak you want then fragment this again
- Able to better separate peptides/proteins

MS/MS or Tandem MS

Protein identification

VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFA TLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHK

digest with trypsin

↓ Mass spec VHLTPEEK

VNVDEVGGEALGR

LLVVYPWTQR

SAVTALWGK

FFESFGDLSTPDAVMGNPK

VK

AHGK

K

VLGAFSDGLAHLDNLK

GTFATLSELHCDK

LHVDPENFR

LLGNVLVCVLAHHFGK

EFTPPVQAAYQK

VVAGVANALAHK

Recognises lysine (K) & arginine (R)

V	HLTPEEK
VH	LTPEEK
VHL	TPEEK
VHLT	PEEK
VHLTP	EEK
VHLTPE	EK
VHLTPEE	K

mass spectrum

compare with theoretical peptide spectra; ID = best similarity

MS for comparative proteomics

- Isotope Coded Affinity Tag (ICAT)
- To identify and quantify proteins in 2 populations extract proteins from 2 samples
- Modify cysteine residues using the ICAT molecule (biotin + linker (heavy -deuterium or light –hydrogen) + thiol-reactive group)
- Extract proteins with avidin affinity column
- Analyze with mass spec
- Measures every protein containing a cysteine

ICAT

Provides way of introducing mass difference between 2 samples

Outline of data analysis

- Proteomics data analysis (MS)
 - Pre-processing
 - Protein/peptide identification
 - Proteomics-related databases
- Data mining:
 - Pathway analysis
 - Enrichment analysis

Pre-processing 1: noise reduction

Pre-processing 2: charge deconvolution

peptides

www.purdue.edu/dp/bioscience/image/spectrum.jpg

CBIO QUET

Gill et al. EMBO journal, 2000

Pre-processing 3: peak picking

Spectrum filtering and clustering

- Filter out low quality spectra
- Cluster spectra same peptide could be fragmented several times
- To resolve redundancy –group and merge spectra
- Now ready for identification!

Assumptions made in ID

- All peaks in spectrum are from the same protein
- The protein is in the same form as it is in the database
- Protein is completely digested
- All pieces produce a signal

Types of PFF

• Spectral comparison

Database — Sequence —

Compare

Theoretical Experimental spectrum

• Sequence comparison

Compare

Database —— Sequence —— De novo —— Experimental spectrum

Peptide Fragment Fingerprinting (PFF)

Software to do this

- MASCOT (http://www.matrixscience.com)
 - Predicts threshold score that needs to be passed
 - Provides rank, score and threshold
- SEQUEST (http://fields.scripps.edu/sequest)
 - User decides on threshold
 - Provides rank and score
- XTandem (http://www.thegpm.org/TANDEM)

	l# 50	C	Source	Name
VDFSLAGALNAGFKETR	Location: 50 - 66	Spectrum: 9893	PRIDE	Identified by peptide mass fingerprint
	lti 00		Source	Name
ALAAELNQLR	Location: 96 - 105	Spectrum: 9893	PRIDE	Identified by peptide mass fingerprint
	L		Source	Name
.ADVYQAELR	Location: 112 - 121	Spectrum: 9893	PRIDE	Identified by peptide mass fingerprint
	Lti 442		Source	Name
DNLAQDLATVR	Location: 142 - 152	Spectrum: 9893	PRIDE	Identified by peptide mass fingerprint
	Lti 400	C	Source	Name
LEAENNLAAYR	Location: 163 - 173	Spectrum: 9893	PRIDE	Identified by peptide mass fingerprint
	Lti 400		Source	Name
KIESLEEEIR	Location: 189 - 198	Spectrum: 9893	PRIDE	Identified by peptide mass fingerprint
	Lti 200	C	Source	Name
QLQSLTCDLESLR	Location: 288 - 300	Spectrum: 9893	PRIDE	Identified by peptide mass fingerprint
	Modification N	10D:00397 fro	m database	PSI-MOD [1.0] at positio
			Source	Name
EQEERHVR	Location: 312 - 319	Spectrum: 9893	PRIDE	Identified by peptide mass fingerprint
	Location: 200	Spectrum	Source	Name
EAASYQEALAR	Location: 320 - 330	Spectrum: 9893	PRIDE	Identified by peptide mass fingerprint
	Location: 200	Spectrum	Source	Name
EAASYQEALARLEEEGQSLK	Location: 320 - 339	Spectrum: 9893	PRIDE	Identified by peptide mass fingerprint
	L	C	Source	Name
HLQEYQDLLNVK	Location: 345 - 356	Spectrum: 9893	PRIDE	Identified by peptide mass fingerprint

Example results

List of proteins and the peptides they matched

IPI00025363 Protein Detail

(top 1)

Results continued

- Usually get multiple proteins resulting
- Peptides can match different proteins Protein inference:

Minimal set

Maximal set

Peptide	a	b	c	d
Proteins				
proteinX	x		X	
proteinY	X			
proteinZ		Х	Х	X

Peptide	a	b	c	d
Proteins				
proteinX	Х		Х	
proteinY	х			
proteinZ		Х	Х	Х

Truth is in between –or go for best annotated proteins

Problems with peptide ID

- Don't end up with actual sequence
- Working on unsequenced genome
- Ambiguity with protein families
- False positive and false negative matches

Combining search algorithms

- Diff programs have different strengths
- All give some Fs and Ns
- Run a combination of search engines then:
 - Union of results -extends identifications -fewer Ns
 - Intersection of results –stricter set of results –fewer Fs
 - What is your research question?

Validation: Peptide- and ProteinProphet

• PeptideProphet:

 Post-processes peptide identification data to assess the probability that an ID is correct

• ProteinProphet:

- Tries to produce minimum protein set given list of proteins and probabilities
- Probability based on peptide score
- Degenerate peptides (mapping to >1 protein) get lower score

Decoy databases

- Use to calculate probability of identifications and FP rate
- Three main types:
 - Reversed databases –reverse all sequences, e.g.
 RKLYWSML -> LMSWYLKR
 - Shuffled databases –shuffle all sequences, e.g.
 RKLYWSML -> YKRWLMSL
 - Randomized databases –all sequences are randomly generated, e.g
 RKLYWSML -> GKYSQTTDV

Decoy databases continued

- Run ID on decoy database to see how many matches you get
- Some overlaps/identifications do occur —measure false positive rate
- Repeat decoy searches several times to estimate standard deviation

Types of identification

• Spectral comparison

• Sequence comparison

Peptide fragmentation (MS/MS)

• Protein gets fragmented into different components

Sequencing with mass spec

Compare

Use known weights of amino acids

Sequencing continued

From: Tabb et al., Anal. Chem., 2003

Proteomics data repositories

- Why are they needed?
 - Data usually provided in PDF tables
 - No raw data provided in publications
 - Can't compare data
 - Links to other data sources
- Some examples:
 - PeptideAtlas
 - PRIDE

PRIDE example 1

PRIDE Experiment Collection Version 2.1 Experiment 1: HUPO Brain Proteome Project: BPP PilotProject Lab 10: human, post mortem (11h), brain number RZ104: Peptide Mass Fingerprint Identifications 1149-96-7-RZ104 pH 4-7 Overlay Description: HUPO Brain Proteome Project: BPP_PilotProject_Lab_10: human, post mortem (11h), brain number RZ104: Peptide Mass Fingerprint Identifications 1149-96-7-RZ104 pH 4-7 Overlay Experiment: Short Title: HUPO BPP: BPP_PilotProject_Lab_10: human, post mortem (11h), brain number RZ104: PMF Identifications 1149-96-7-RZ104 pH 4-7 Overlay Accession: 1689 mzData Section (Tissue / sample details and Contact details) M/S Instrument details Links: Data processing details Spectrum List Source Name Value 16967475 PubMed 16967475 Meyer HE, Hamacher M. Quintessence from proteomics networks - the HUPO Brain Proteome Project Pilot Studies, Proteomics, 2006 Sep;6(18):4887-9 10.1002/pmic.200690105 Reference reporting this PRIDE experiment Value Source Name 16927433 PubMed 16927433 10.1002/pmic.200600295 Hamacher M, Apweiler R, Arnold G, Becker A, Bluggel M, Carrette O, Colvis C, Dunn MJ, Frohlich T, Fountoulakis M, van Hall A, Herberg F, Ji J, Kretzschmar Reference reporting this H, Lewczuk P, Lubec G, Marcus K, Martens L, Palacios Bustamante N, Park YM, Pennington SR, Robben J, Stuhler K, Reidegeld KA, Riederer P, Rossier J, PRIDE experiment Sanchez JC, Schrader M, Stephan C, Tagle D, Thiele H, Wang J, Wiltfang J, Yoo JS, Zhang C, Klose J, Meyer HE. HUPO Brain Proteome Project: summary of the pilot phase and introduction of a comprehensive data reprocessing strategy. Proteomics, 2006 Sep;6(18):4890-8 Reference describing PRIDE data analysis Reference describing PRIDE sample preparation Source Name Value 16927432 PubMed 16927432 Stephan C, Reidegeld KA, Hamacher M, van Hall A, Marcus K, Taylor C, Jones P, Muller M, Apweiler R, Martens L, Korting G, Chamrad DC, Thiele H, Bluggel 10.1002/pmic.200600294 DOL M. Parkinson D. Binz PA, Lyall A, Meyer HE, Automated reprocessing pipeline for searching heterogeneous mass spectrometric data of the HUPO Brain Reference reporting this Proteome Project pilot phase, Proteomics, 2006 Sep;6(18):5015-29 PRIDE <u>experiment</u> Reference describing PRIDE data analysis Source Name Value PubMed 16927431 16927431 Dowsey AW, English J, Pennington K, Cotter D, Stuehler K, Marcus K, Meyer HE, Dunn MJ, Yang GZ. Examination of 2-DE in the Human Proteome 10.1002/pmic.200600152 Organisation Brain Proteome Project pilot studies with the new RAIN gel matching technique, Proteomics, 2006 Sep;6(18):5030-47 Reference reporting this PRIDE experiment

PRIDE example 2

	me: 2DGE-IPG										
					Source Name			Value			
Protocol:	Step #1				PRIDE	Separation Name			2DGE-IPG		
					Source					Value	
	Step #2	Step #2				PRIDE Peptide cleavage			Trypsin		
	,	-									
Additional:	Source PRIDE					l ue PO Brain Prote	omo Drojast				
	1	JETS	i <u>lect</u>		jnoi	-O Braill Flot	some Project				
dentificatio	ns										
Accession	Splice	Database	tabase Score T	Threshold	Search	Sequence	Molecular	ni	Addition	nal Information	
nccession	Isoform	Databast	50010	Till Colloid	Engine	Coverage	Weight	Ρ.	Source	Name	Value
									PRIDE	Identified by peptide mass fingerprint	
I <u>PI00022434</u> Peptide List (top 1)		IPI			HUPO BPP Protein Merger		0.0 kDA	0.0	PRIDE	Search database protein sequence	MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGE ENFKALVLIAFAGYLGGCPFEDHVKLVNEVTEFAKTCVAD ESAENGDKSLHTLFGDKLCTVATLRETYGEMADCCAKGEP ERNECFLGHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLK KYLYEIARRHPYFYAPELLFFAKRYKAAFTECCGAADKAA CLLPKLDELRDEGKASSAKGRLKCASLGKFGERAFKAWAV ARLSGRFPKAFFAEVSKLVTDLTKVHTECCHGDLLECADD RADLAKYICENGDSISSKLKECCEKPLLEKSHCIAEVEND EMPADLPSLAADFVESKOVCKNYAEAKDVFLGMFLYEYAR RHPDVSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDE FKPLVEEPGNLIKGNCELFEGLGEYKFGNALLVRYTKKVP GVSTPTLVEVSRNLGKYGSKCCKHPEAKRMPCAEDYLSVV LNGLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDET YYPKEFNAETFTFHADICTLSEKGRIKKGTALVELVKHK PKATKEGLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLV AASGAALGL
									PRIDE	Identified by peptide mass fingerprint	
IPI00025363 Peptide List (top 1)		IPI			HUPO BPP Protein Merger		0.0 kDA	0.0	PRIDE	Search database protein sequence	MERRRITSAARRSYVSSGEMMVGGLAPGRRLGPGTRLSLA RMPPLETRYDFSLAGALNAGFKETRASERAEMMELNDRF ASYIEKVÆFLEGGINKALAAELNGLRAKEFIKLADVYGAÆL RELRLRUGLTANSARLEVERDNLAGDLATVRGKLGDETN LRLEAENNLAAYRGEADEATLARLDLERKIESLEEEIRFL RKIHEEEVRELGEGLARGGVHVELDVAKPDLTAALKEIRT GYEAMASSNIMHEAEEVYYRSKFADLTDAAARNAELLRGAKH EANDYRRGLGSLTCDLESLRGTNESLERGMREGEERHVRE AASYGEALARLEEEGGSLKDEMARHLGEYGDLLNVKLALD IEIATYRKLLEGEENTITPVGTFSNLGIRETSLDTKSVS EGHLKRNIVVKTVEMRDGEVIKESKGEHKDVM
									PRIDE	Identified by peptide mass fingerprint	
Pi00025363 Peptide List (top 1)		IPI			HUPO BPP Protein Merger		0.0 kDA	0.0	PRIDE	Search database protein sequence	MERRRITSAARRSYVSSGEMMVGGLAPGRRLGPGTRLSLA RMPPPLPTRVDFSLAGALNAGFKETRASERAEMMELNDRF ASYIEKVRFLEGGNKALAAELNGLRAKEPTKLADVYGAEL RELRLDGLTANSARLEVERDNLAGDLATVRGKLGDETN LRLEAENNLAAYRGEADEATLARLDLERKIESLEEERFL RKIHEEEVRELGEGLARGGVHVELDVAKPDLTAALKEIRT GYEAMASSNMHEAEBVYRSKFADLTDAARRNAELLRGAKH EANDYRRGLGSLTCDLESLRGTNESLERGMREGEERHVRE AASYGEALARLEEEGGSLKDEMARHLGEYGDLLNYKLALD IETTYRKLLEGEENRITIPVGTFSNLGIRETSLDTKSVS EGHLKRNIVYKTYEMRDGEVIKESKGEHKDVM

Links to spectra and peptides

VERSITY OF CAPE TOWN

PRIDE experiment comparison tool

Intersectionset ABC:		
Identifications common to a	II.	
three Experiments:		39
Similarity Score {ANBNC}/{	0.05794948	
Protein accession:	Protein version:	Database:
IPI00298497	3	IPI human
IPI00025252	1	IPI human
IPI00291175	2	IPI human

MS data analysis summary

- Spectra need processing: -background noise, peak finding, clustering etc.
- Peptide or protein ID: via spectra or sequence
 Get list of proteins with scores

 - Validate
 - Need to take into account known issues with ID and DBs
- Issues related to complexity in samples
 - Solution: tandem MS
- Next interpretation of results
 What is the protein of interest

 - Does it have a structure, known domains
 - What about the collection of proteins?

Applications of proteomics

- Analysing protein expression
- Determining which proteins are present under different conditions or in different samples –
 - comparative proteomics
- Biomarker discovery:
 - MS profiling

