Доклад

Асимметричные криптосистемы: обзор, виды, применение

Беличева Дарья Михайловна

Содержание

1	1 Введение 1.1 Актуальность		5 5	
2		· · · · · · · · · · · · · · · · · · ·	7 7 8	
3	3.1 Сравнение симметрических	тем к и асимметричных криптосистем тосистем	9 9 11	
4	4 Применение асимметричных крип	тосистем	15	
5	5 Заключение			
Сп	Список литературы		18	

Список иллюстраций

2.1	Ассиметричное шифрование	8
3.1	Алгоритм Диффи – Хеллмана, где К – итоговый общий секретный	
	ключ	14

Список таблиц

3.1 Сравнение симметрических и асимметричных криптосистем . . 10

1 Введение

Цель работы

Целью данного доклада является представление основного принципа работы асимметричных криптосистем, их видов и применения в современных информационных системах.

Задачи

- Дать определение асимметрическим криптосистемам;
- Рассмотреть историю развития асимметричных криптосистем и их вклад в криптографию;
- Описать основные принципы работы асимметричных криптосистем;
- Представить основные виды асимметричных криптосистем;
- Проанализировать преимущества и недостатки асимметричной криптографии в сравнении с симметричными методами;
- Рассмотреть примеры применения асимметричных криптосистем в различных областях.

1.1 Актуальность

В условиях стремительного роста объемов передаваемой и обрабатываемой информации, вопросы безопасности данных становятся крайне важными для защиты личных и корпоративных данных. Асимметричные криптосистемы играют ключевую роль в современных технологиях, обеспечивая безопасную передачу информации, проверку подлинности и целостности данных. Их широкое

применение в таких областях, как интернет-коммуникации, электронная коммерция, блокчейн и цифровые подписи, делает эту тему особенно актуальной. С учетом развития квантовых технологий и потенциальных угроз для традиционных криптосистем, изучение асимметричной криптографии и ее устойчивости перед новыми вызовами становится важной задачей для обеспечения информационной безопасности в будущем.

2 Теоретическое введение

2.1 Определение

Криптография – это наука о способах преобразования информации с целью ее защиты от незаконных пользователей[1]. Современные методы защиты информации зависят от криптографических алгоритмов, обеспечивающих безопасность при передаче и хранении данных. Одним из таких алгоритмов является асимметрическое шифрование.

Асимметричное шифрование – это метод шифрования данных, предполагающий использование двух ключей – открытого и закрытого (рис. 2.1). Открытый (публичный) ключ применяется для шифрования информации и может передаваться по незащищенным каналам. Закрытый (приватный) ключ применяется для расшифровки данных, зашифрованных открытым ключом[2]. Такой принцип работы делает эти криптосистемы удобными для решения ряда задач в области безопасности, таких как безопасная передача данных и проверка подлинности.

Рис. 2.1: Ассиметричное шифрование

2.2 История и развитие

Исторически первые криптосистемы были симметричными, где обе стороны должны были обладать общим секретным ключом. Однако обмен ключами был проблематичным. В 1976 году Уитфилд Диффи и Мартин Хеллман предложили первую в мире асимметричную криптосистему – протокол для безопасного обмена ключами. Это решение позволило передавать секретные ключи по открытому каналу.

Позднее, в 1977 году, был разработан алгоритм RSA, названный в честь его создателей Рональда Ривеста, Ади Шамира и Леонарда Адлемана. RSA стал первым практическим алгоритмом шифрования с открытым ключом и сегодня широко используется для шифрования данных, цифровых подписей и электронной коммерции.

3 Основы асимметричных

криптосистем

Асимметричная криптография работает на основе математических задач, решение которых требует значительных вычислительных ресурсов, таких как факторизация больших чисел или вычисление дискретных логарифмов.

Основные принципы:

- Открытый ключ используется для шифрования данных. Он может быть свободно передан по открытому каналу.
- Закрытый ключ используется для расшифровки зашифрованной информации. Он остается известным только владельцу.

Отправитель использует публичный ключ чтобы зашифровывать (закрыть) сообщение. Зашифрованное сообщение очень сложно расшифровать без приватного ключа, поэтому можно, в целом, без опаски передавать его получателю по открытым каналам связи. Получатель расшифровывает (открывает) сообщение своим секретным, приватным ключом.

3.1 Сравнение симметрических и асимметричных криптосистем

Сравнительная характеристика этих систем шифрования приведена в таблице 3.1.

Таблица 3.1: Сравнение симметрических и асимметричных криптосистем

	Симметричное	Асимметричное
Характеристика	шифрование	шифрование
Принцип	Один и тот же ключ	Используются два разных
работы	используется для	ключа: открытый для
	шифрования и	шифрования, закрытый для
	расшифровки	расшифровки
Скорость	Быстрое шифрование и	Медленное шифрование и
	расшифровка	расшифровка
Вычислительные	Низкие вычислительные	Высокие вычислительные
затраты	затраты	затраты
Передача ключа	Требует безопасного	Не требует передачи
	обмена секретным ключом	секретного ключа, только
		открытого
Безопасность	Зависит от секретности	Более безопасно, закрытый
	ключа, уязвимо при утечке	ключ остается в секрете
Примеры	AES, DES, 3DES, Blowfish	RSA, Диффи-Хеллман, DSA,
алгоритмов		Эллиптическая
		криптография (ЕСС)
Область	Шифрование больших	Шифрование ключей,
применения	объемов данных	цифровые подписи,
		аутентификация
Преимущества	Высокая скорость, низкая	Высокая безопасность,
	сложность	отсутствие необходимости
		передачи секретного ключа
Недостатки	Необходимость безопасного	Медленная работа с
	обмена ключом	большими объемами
		данных

	Симметричное	Асимметричное
Характеристика	шифрование	шифрование
Типичные	Шифрование файлов, баз	HTTPS, цифровые подписи,
применения	данных	обмен ключами, блокчейн

3.2 Виды асимметричных криптосистем

1. RSA (Ривест-Шамир-Адлеман):

RSA основан на сложности разложения больших чисел на простые множители. Шифрование происходит с использованием открытого ключа, а расшифровка – с помощью закрытого. RSA широко применяется в интернет-протоколах, например, для защиты соединений HTTPS, а также для создания цифровых подписей. Алгоритм RSA[3]:

- Возьмем два больших простых числа р и q.
- Определим n как результат умножения р на q:

$$n = p \times q$$

• Выберем случайное число, которое назовем d. Это число должно быть **вза-имно простым** (не иметь ни одного общего делителя, кроме 1) с результатом умножения:

$$(p-1) \times (q-1)$$

• Определим такое число е, для которого истинно следующее соотношение:

$$(e\times d)\mod((p-1)\times(q-1))=1$$

 Назовем открытым ключом числа е и n, а секретным ключом — числа d и n. Шифрование данных с использованием открытого ключа {e, n}:

• Разбиваем шифруемый текст на блоки, каждый из которых может быть представлен в виде числа (M(i)) так, чтобы:

$$M(i) = 0, 1, 2, \dots, n-1$$

(т.е. каждый блок меньше n).

• Зашифруем текст, рассматриваемый как последовательность чисел (M(i)), по следующей формуле:

$$C(i) = (M(i)^e) \mod n$$

Расшифровка данных с использованием секретного ключа {d, n}:

Чтобы расшифровать данные, зашифрованные с помощью открытого ключа, необходимо выполнить следующие вычисления:

$$M(i) = (C(i)^d) \mod n$$

В результате получаем множество чисел M(i), которые представляют собой исходный текст.

2. Алгоритм Диффи-Хеллмана:

Этот алгоритм позволяет двум сторонам безопасно обменяться секретным ключом по открытому каналу. После этого обмена ключ может использоваться для симметричного шифрования сообщений. Алгоритм Диффи-Хеллмана лежит в основе многих современных криптографических протоколов, таких как SSL/TLS. Алгоритм основан на принципе "сложности вычисления дискретного логарифма" (рис. 3.1).

При работе алгоритма каждая сторона:

- Генерирует случайное натуральное число а закрытый ключ.
- Совместно с удалённой стороной устанавливает открытые параметры р и g (обычно значения р и g генерируются на одной стороне и передаются другой), где:
 - р является случайным простым числом
 - (p-1)/2 также должно быть случайным простым числом (для повышения безопасности).
 - g является первообразным корнем по модулю р (также является простым числом).
- Вычисляет открытый ключ А, используя преобразование над закрытым ключом:

$$A = g^a \mod p$$

- Обменивается открытыми ключами с удалённой стороной.
- Вычисляет **общий секретный ключ** К, используя открытый ключ удалённой стороны В и свой закрытый ключ а:

$$K = B^a \mod p$$

К получается равным с обеих сторон, потому что:

$$B^a \mod p = (g^b \mod p)^a \mod p = g^{ab} \mod p = A^b \mod p$$

В практических реализациях для а и b используются числа порядка 10^{100} и р порядка 10^{300} . Число g не обязано быть большим и обычно имеет значение в пределах первого десятка.

Рис. 3.1: Алгоритм Диффи – Хеллмана, где К – итоговый общий секретный ключ

3. Эллиптическая криптография (ЕСС):

Эллиптические кривые используются для создания более эффективных криптосистем. ЕСС обеспечивает высокий уровень безопасности при значительно меньших размерах ключей по сравнению с RSA. Это делает ЕСС популярной в таких областях, как мобильные устройства и встроенные системы, где ресурсы ограничены.

4. DSA (Алгоритм цифровой подписи):

DSA (Digital Signature Algorithm) был предложен в 1991 году и является стандартом для цифровых подписей. Алгоритм создает цифровую подпись, которая может быть проверена любой стороной с использованием открытого ключа.

4 Применение асимметричных криптосистем

1. HTTPS и SSL/TLS

Веб-сайты используют протокол HTTPS для обеспечения безопасного обмена данными между клиентом и сервером. Асимметричная криптография используется для обмена ключами и установления защищенного канала связи с помощью протоколов SSL или TLS.

2. Электронная почта (PGP, S/MIME)

Программы, такие как PGP (Pretty Good Privacy) и S/MIME, используют асимметричное шифрование для защиты электронной почты. С помощью этих технологий можно шифровать сообщения и подписывать их цифровой подписью, что гарантирует конфиденциальность и подлинность.

3. Цифровые подписи

Цифровые подписи используются для удостоверения подлинности документов, программного обеспечения и транзакций. Примеры применения: системы электронного документооборота, финансовые системы и юридические сделки.

4. Блокчейн и криптовалюты

Асимметричная криптография лежит в основе технологии блокчейн и криптовалют, таких как Bitcoin. Каждая транзакция подписывается закрытым ключом отправителя, что гарантирует безопасность и подлинность транзакций.

5. Мобильные платежные системы

Системы, такие как Apple Pay и Google Pay, используют асимметричное шифрование для безопасной передачи данных о транзакциях между пользователями и банками.

5 Заключение

Асимметричные криптосистемы играют важную роль в защите информации в современном мире. Они обеспечивают высокую безопасность при передаче данных, позволяют проверять подлинность документов и сообщений, а также используются в критически важных приложениях, таких как защита веб-сайтов, электронная почта и блокчейн.

Список литературы

- 1. Адигеев М.Г. Введение в криптографию. Часть 1 // Ростов-на-Дону: Издательство РГУ. 2002.
- 2. Асимметричное шифрование [Электронный ресурс]. 2024. URL: https://encyclopedia.kaspersky.ru/glossary/asymmetric-encryption/.
- 3. RSA: Алгоритм асимметричного шифрования [Электронный ресурс]. 2024. URL: https://e-nigma.ru/stat/rsa/.