Equity, Debt and Moral Hazard: The Optimal Structure of Banks' Loss Absorbing Capacity

by Misa Tanaka and John Vourdas, Bank of England

刘岩

2022.10.9

模型环境设定

- **时间**: t = 0,1,2
- 行为主体:银行,监管机构
 - □ 银行数量为[0,1]连续统,事前对称一致,事后有异质性类型(风险)
- 偏好及风险:风险中性;宏观好、坏(H,L)状态,银行个体风险
- 银行t = 0时选择需要1单位资金用于投资,负债结构为

$$1 = E_0 + G + D$$

- E_0 : 权益资本; G: 无担保、非受保债券,即总损失吸收能力(total loss absorbing capacity, TLAC)债券; D: 受保存款
- 无风险收益率单位化为1, 存款保险采取线性定价(flat rate), 保费率单位化为0, 故存款利率等于无风险利率等1

改写银行负债结构,及t=2偿付顺序

- 定义 $\theta = E_0 + G$,表示私人损失吸收能力 无须公共资金注入,银行自行吸收资产损失
- \mathbb{Z} 定义 $e_0 = E_0/\theta$,表示权益资本占比,则有 $E_0 = \theta e_0$, $G = \theta (1 e_0)$, $D = 1 \theta$
- 债券、存款偿付发生在t=2
- - □ $i \ge 1$ 为债券G的名义利率
- = 若t=2时银行资不抵债,则股东回报清零,储户依然获得足额赔付(存款保险补充不足头寸),TLAC债券持有人获得剩余资金

t = 1监管介入及偿付顺序

- t=1时,若监管机构发现银行违反资本充足率等要求,则可对银行进行 干预或接管
 - □ 即资本充足率等低于监管要求;后面会详细求解最优监管指标取值
- 若银行资产充足,则正常分配,无人损失
- 若银行资产不足,则与t = 2时的分配原则一致:股东清零,储户足额赔付(不足金额由存款保险支付),TLAC债券持有者获得剩余资金

风险及资产回报

- **Z**观风险分布: Pr(H) = q, Pr(L) = 1 q
- 银行资产在L状态下回报率为随机变量 \tilde{R}_L ,服从 $U([0,R^{max}])$ 分布且 $R^{max} \leq R_H$; \tilde{R}_L 的实现值记为 R_L
 - $\Box t = 0$ 期末、t = 1期初实现具体取值,每个银行取值iid
 - \square 实现值 R_L 事前不确定,监管机构只知道 \tilde{R}_L 的分布;实现值 R_L 也可看做银行的类型
 - □ 事后, 若 R_L < D + G, 则银行破产

监管政策

监管机构选择3个监管指标:

- 1. 最低资本要求 E^* : t = 0, t = 1时银行都需要满足,这样股东在t = 2时才能得到回报
- 2. 资本缓冲 E^b : t=1时可以用来吸收损失,但不触发监管机构的风险处置(resolution)
- 3. TLAC要求τ*: 在资本要求及资本缓冲基础上,进一步可以吸收损失的债券工具最低要求

资本及TLAC监管要求

- B_t 表示t期银行资产规模, $B_0 = 1$, $B_1 = R_H$ 或 R_L
- 银行的监管要求表示为如下3个不等式

资本充足率:
$$E_t \ge E^*B_t$$
, $t = 0,1$
TLAC充足率: $E_t + G \ge \tau^*B_t$, $t = 0,1$
资本缓冲要求: $E_0 - E^* \ge E^b$, $t = 0$

- 监管政策选择是最大化社会福利,有以下三方面政策权衡:
 - 1. 资本充足率要求E*需要能够防止银行利用资产替换(asset substitution)策略"搏一搏"(gambling to resurrection)的动机
 - 2. 通过资本缓冲Eb让银行在不触发监管风险处置时吸收损失,但同时要考虑银行的权益资本成本;后者高于无风险回报率
 - 3. TLAC监管τ*需要权衡让债券投资者进行自救(bail in)的成本与动用公共资金进行 外部救助(bail out)的成本

时间线

- $extbf{t}$ $extbf{t}$ ex
- $extbf{ iny }$ 在t=0期末,银行知晓其自身潜在的 $ilde{R}_L$ 实现值 R_L ,即其类型(type)
 - □ 公开可观测信息;银行间iid
 - □ 但是否实际出现, 取决于宏观状态的实现值, 若宏观状态是H, 则无关紧要
- 银行知晓自身类型后,选择 E_0 ,G,进而决定 $D=1-E_0-G=1-\theta$
- t=1时宏观风险状态H,L实现
 - \square 若为L,则各个银行资产的风险状态 R_L 也就同步实现
- 监管机构对不满足监管要求的银行,选择是否进行风险处置;若不处置,则银行可以选择资产替代,实现风险转移
- t = 2时仍然经营的银行,按约定进行资金回报分配

t = 1时的风险处置

■ t = 1时银行账面权益资本为

$$E_1 = B_1 - D - iG, \qquad B_1 \in \{R_L, R_H\}$$

- \blacksquare 若资本不足, $E_1 < E^*B_1$,则监管机构可以选择进行风险处置
- 接下来求解的最优政策保证,只有L时才会触发风险处置,此时的触发条件为

$$E_1 = R_L - (1 - \theta) - i\theta(1 - e_0) < E^*R_L$$

t=1时银行的资产替代动机

- 如果监管机构不进行风险处置,则银行可以有两个选项:1."搏一搏"; 2.选择将t=1时的资金投入安全资产,赚取无风险回报
- "搏一搏":银行可选择一个投机性资产,将t=1时剩余资金 R_L 全部投入其中
- 投机性资产:以概率p在t=2实现一个回报 $\gamma>1$,以概率1-p回报为0;但该资产NPV为负,即 $p\gamma<1$
- 社会最优策略是投资安全资产;但银行负债的长期性(t=2才须赔付) 以及银行股东(及管理层)的有限责任,让银行有动机选择投机性资产
 - □ 赚是我的,亏是债权人(及存款保险基金)的
 - □ 这类资产替换动机又称为风险转移(risk shifting)

最优资本充足率 E^* 的选择

- 使用倒向归纳法求解最优监管政策,先考虑t = 1时如何避免银行出现资产替代行为
- 简化假设:保证H状态下银行没有资产替换动机 $p[\gamma R_H (1-\theta) i\theta(1-e_0)] < R_H (1-\theta) i\theta(1-e_0)$ □ 只需要 $\gamma > 1$ 和p < 1不是太高即可
- 只需考虑L时的银行进行资产替代这一事后道德风险问题即可:银行有资产替代动机的条件为

$$p[\gamma R_L - (1 - \theta) - i\theta(1 - e_0)] > \max\{R_L - (1 - \theta) - i\theta(1 - e_0), 0\}$$

■ 可得临界值 R^T ,使得当 $R_L < R^T$ 时银行会选择资产替代

$$R^{T} \equiv \frac{1-p}{1-p\gamma} \left[(1-\theta) + i\theta(1-e_0) \right]$$

最优资本充足率 E^* 的选择

■ 将 R^T 代入监管处置触发条件 $E_1 = R_L - (1 - \theta) - i\theta(1 - e_0) < E^*R_L$,可解出监管机构需要介入的最低资本充足率水平

$$E^* = \frac{p(\gamma - 1)}{1 - p}$$

- □ 即让触发监管处置的RL与导致资产替代的RL取值范围保持一致
- 如果银行的资本充足率低于 E^* ,则L状态下,银行在t=1会选择资产替换。从而导致额外的社会成本

自救及监管处置规则

- 1. 若银行在t=1时资本充足率不满足 E^* , 监管机构介入进行风险处置
- 2. 如果TLAC合格工具G足够高,能够使其1-1转为权益资本后,银行满足资本充足率 E^* ,则将G转为权益资本,并让银行继续经营
- 3. 如果G转换后不足以让银行达到资本充足率要求,则接管银行(如将其资产、负债并入接收银行)
- 基本假设是风险处置不会破坏银行价值,无论采取自救(如情况2)或是接管(如情况3);处置的唯一目的是防止出现"搏一搏"的投机行为,从而阻止银行价值的破坏(投机行为的NPV为负,只是对银行股东及管理层有利)

风险处置下, TLAC债券持有者回报

■ TLAC债权人受损的条件不是处置本身,而是t=1时资产不足以覆盖银行债权总值,即

$$R_L < R^S \equiv (1 - \theta) + i\theta(1 - e_0)$$

- 此时TLAC债权人的回报为 $\max\{R_L (1-\theta), 0\}$, 即储户优先获尝
- 进一步,若

$$R_L < R^D \equiv 1 - \theta$$

■ 则此时TLAC债权人回报为0

t = 1风险处置规则下的回报汇总表

	$R_L \in (0, R^D)$	$R_L \in (R^D, R^S)$	$R_L \in (R^S, R^T)$	$R_L \in (R^T, R^{\max})$		
监管行动	处置	处置	处置	无介入		
	利益相关方回报					
股东	0	0	$R_L - i\theta(1 - e_0) - 1 - \theta$	$\begin{vmatrix} R_L - i\theta(1 - e_0) \\ -1 - \theta \end{vmatrix}$		
TLAC债权人	0	$R_L - (1 - \theta)$	$i\theta(1-e_0)$	$i\theta(1-e_0)$		
储户	$1-\theta$	$1-\theta$	$1-\theta$	$1-\theta$		
存款保险基金	$R_L - (1 - \theta)$	0	0	0		

处置规则下银行分类

- 1. 当 $0 < R_L < R^D$ 时,银行归为第一类,即TLAC债权人在L状态回报为0
- 2. 当 $R^D \leq R_L < R^S$ 时,银行归为第二类,即TLAC债权人在L状态回报大于 0但低于账面值
- 3. 当 $R^S < R_L < R^{max}$ 时,银行归为第三类,即TLAC债权人在L状态获得足额回报

不同类型银行的TLAC债券定价

■ 第一类银行TLAC债券定价i₁需满足

$$qi_1\theta(1-e_0) + (1-q)0 = \theta(1-e_0) \Rightarrow i_1 = \frac{1}{q} > 1$$

■ 第二类银行TLAC债券定价i2需满足

$$qi_{2}\theta(1-e_{0}) + (1-q)(R_{L} - (1-\theta)) = \theta(1-e_{0}) \Rightarrow$$

$$i_{2} = \frac{1}{q} - \frac{1-q}{q} \frac{R_{L} - (1-\theta)}{\theta(1-e_{0})}$$

■ 第三类银行TLAC债券无风险,故 $i_3 = 1$

不同类型银行t=0时利润函数

- 银行权益资本融资成本(股东要求回报率)为 $\delta = 1 + \delta_s > 1$ □ 文献中有争论,到底是否应该认为银行股权融资成本更高
- 第一类银行利润函数为 $\Pi_1 = q[R_H (1-\theta)] \theta(1-e_0) \delta\theta e_0$,可验证 $\frac{\partial \Pi_1}{\partial e_0} < 0$, $\frac{\partial \Pi_1}{\partial \theta} < 0$,由于有限责任,获得了存保基金(公共)补贴
- I 第二类银行利润函数为 $\Pi_2 = qR_H + (1-q)R_L (1-\theta e_0) \delta\theta e_0$,同样有 $\frac{\partial \Pi_2}{\partial e_0} < 0$, $\frac{\partial \Pi_2}{\partial \theta} < 0$

t=0时银行对资本结构的最优选择

■ 由于对T = 1,2,3三类银行, Π_j 关于 e_0 , θ 都是减函数,故银行在t = 0时资本结构的最优选择总是恰好满足监管要求 E^* , E^b , τ^* :

$$E_0 - E^* = \theta e_0 - E^* = E^b$$
, $E^* + G = E^* + \theta (1 - e_0) = \tau^*$

- 其中资本充足率最优水平如前所解: $E^* = \frac{p(\gamma-1)}{1-p}$
- 上述结果还意味着资本充足率与TLAC充足率同时达到或违反
- \blacksquare 给定所有选择,可以计算t=0期初银行的期望利润 $\mathbb{E}[\Pi(R_L)]$

最优监管政策

- \blacksquare 事后资产替换/风险转移动机决定了资本充足率 E^* 的选择,但还有 E^b 和 τ^* 两个政策参数需要确定
- 基本思路是计算社会福利函数,让监管机构通过最大化社会福利,确定 最优监管政策
- 为了更好的确定最优监管政策,补充两个成本函数:
 - \square $L_{G,T}$ 表示TLAC债权人的违约损失,T=1,2表示出现损失的两类银行,设定一个对应的社会死成本(deadweight cost)函数 $\psi(L_{G,T})$
 - \square $L_{D,1}$ 表示存款保险基金的违约损失,只在第一类银行出现,设定一个对应的社会死成本函数 $\chi(L_{D,1})$
 - □ 两个成本函数都是单调递增、严格凸,在0点取值为0

社会福利函数表达式

推导可知社会福利函数为

$$W \equiv \bar{R} - \delta_{S} \theta e_{0}$$

$$-(1 - q) \left(\int_{R^{D}}^{R^{S}(i_{3})} \psi(L_{G,2}) f(R_{L}) dR_{L} + \int_{0}^{R^{D}} \left[\psi(L_{G,1}) + \chi(L_{D,1}) \right] f(R_{L}) dR_{L} \right)$$

- $\bar{R} \equiv qR_H + (1 q)\mathbb{E}[R_L]$
- $L_{G,1} \equiv i_1 \theta (1 e_0)$
- $L_{G,2} \equiv i_2 \theta (1 e_0) [R_L (1 \theta)]$
- $L_{D,1} \equiv (1-\theta) R_L$
- $R^S(i_3) = 1 \theta e_0$

一些数值模拟的结果

■ 设定成本函数为二次函数

$$\psi(L_{G,T}) = \lambda_G L_{G,T} + \lambda'_G L_{G,T}^2, \qquad \chi(L_{D,1}) = \lambda_D L_{G,1} + \lambda'_D L_{D,1}^2$$

- 校准参数取值,使得模型(最优政策解)能够靠近现实中各类观测数据矩(如实际监管政策选择,银行风险水平等)
- 以下首先考虑自救成本的敏感性

Table 2: Optimal regulation and sensitivity to bail-in costs

	Expression	Baseline	Low bail-in cost	High bail-in cost
Minimum Capi-	E^*	6.0%	6.0%	6.0%
tal Ratio TLAC	au*	18.0%	21.0%	16.5%
Capital buffer	E^b	5.0%	4.0%	5.6%
Minimum TLAC	heta	23.0%	25.0%	22.0%
+ Capital Buffer				

一些数值模拟的结果

■ 进一步考虑外部救助成本变动

Table 3: Optimal regulation and sensitivity to bail-out costs

	Expression	Baseline	Low bail-out cost	High bail-out cost
Minimum Capi- tal Ratio	E^*	6.0%	6.0%	6.0%
TLAC Capital buffer	$ au^* E^b$	18.0% $5.0%$	17.2% 3.8%	18.6% 5.9%
Minimum TLAC + Capital Buffer	heta	23.0%	21.0%	24.5%