Combined Author Index

Aaronson, H.I.	2377-2379A
Abedian, B.	171-178B
Ablitzer, D.	381-390B
	391-402B
	845-854B
Achary, J.	2575-2585A
Acosta, F.A.G.	491-502B
	503-513B
Adiguzel, O.	349-354A
Agarwal, A.	401-408A
Å 1	461-473A
Agren, J.	195-211A
Ahn, J.P.	801 A 2361-2368 A
Ahn, S.	
Akahori, T.	3041-3052A 1937-1948A
Akarion, 1.	1949-1958A
Ali, M.	1857-1865A
Allison, J.A.	139-151A
Allison, J.E.	531-540A
	951-957A
Amadou, T.	2015-2024A
An, G.Y.	1959-1964A
Andes, C.	951-957A
Andrade-Gamboa, J.	1439-1446B
Andres, C.	531-540A
Andrieu, E.	679-690A
Angell, C.A.	587-596B
Annigeri, R.	959-974A
Ansel, D.	3198-3199A
Apte, S.K. Arai, Y.	35-41B
Arai, Y.	981-991B
Archer, R.	1133-1135B
Ardakani, M.G.	2877-2886A
Aros A E	2887-2893A
Ares, A.E. Argyropoulos, S.	1611-1625A 75-86B
Argyropodios, S.	87-96B
Armster, S.Q.	1333-1344B
Arnberg, L.	3149-3153A
Asakuma, Y.	327-329B
Atkinson, H.V.	2981-3000A
Auburtin, P.	801-811B
Babu, S.S.	161-169B
Babu, S.S. Bae, C.M.	2665-2669A
Bakker, A.	1475-1482B
Balancin, O.	1353-1364A
Ban-Ya, S.	945-955B
Bandyopadhyay, S.K.	2405-2410A
Banovic, S.W.	1805-1817A
Barat, P.	2405-2410A
Barrallier, L.	213-224A
Barreto, J.D.J.	1505-1515B
Barreto-Sandoval, J.D.J.	63-74B
Barron-Meza, M.A.	63-74B
Barsoum, M.W.	333-337A
	373-378A
Booner T	1857-1865A 57-62A
Basner, T. Basu, B.	1687-1692A
Baxter, W.J.	63-69A
Bay, B.	1653-1662A
Beckermann, C.	2545-2557A
Behera, C.K.	1247-1259B
Donord, Onto	1323-1332B
Belardinelli, R.	911-920A
Bellot, J.P.	845-854B
Belton, G.R.	1023-1030B
Bennett, K.	889-898A
Berg, K.L.	477-490B
Berry, S.	171-178B
Besson, J.	679-690A
Bewlay, B.P.	2119-2125A
Beynon, J.H.	1483-1490B
Bhattacharya, B.	3001-3010A
D: V	3011-3021A
Bian, X.	2163-2168A
Biermann, H.	585-597A
Bingert, J.F.	1985-1996A
Blander M	2439-2448A
Blander, M.	579-586B 597-602B
Blannain P	
Blanpain, B.	197-206B
	2017-2020A
Bobrow, J.E. Boettinger, W. I	2917-2929A
Boettinger, W.J.	2917-2929A 1419-1427B 2545-2557A

	0005 00454
Boghosian, S.	2835-2847A
Bojarevics, V.	597-602B 179-189B
Boom R	913-919B
Boom, R. Bor, H.Y.	1365-1373A
Bounds, S.	515-527B
Bourke, M.A.M.	889-898A
Bowen, P.	2083-2092A
Boyce, B.L.	1571-1583A
Boyce, D.	1543-1555A
Braham, C.	2015-2024A
Brewer, L.	603-607B
Britten, S.C. Brooks, C.R.	733-753B
Brooks, C.H.	911-920A
Bustnes, J.A.	1307-1310A 540-542B
	2229-2237A
Cadek, J. Cady, C.	1007-1016A
Cady, C.M.	2439-2448A
Caffery, G.A.	1005-1012B
Cahoon, J.R.	1343-1352A
Cai, K.	253-266B
Campbell, C.E.	2835-2847A
Capocchi, J.D.T.	3137-3148A
Castillejos, A.H.E.	491-502B
	503-513B
Catalina, A.	1700-1704A
Catalina, A.V.	2559-2568A
Cerjak, H.	975-984A
Cerovic, K.P.	723-731B
Cha, PR. Chae, D.	317-326B 995-1005A
Chai, Y.H.	1591-1597A
Chakoumakos, B.	2739-2745A
Chakrabarti, A.K.	1599-1610A
Chan, K.S.	71-80A
	1075-1084A
	3029-3040A
Chang, I.T.H.	2615-2625A
Chang, K.	151-159B
Chang, KM.	2569-2574A
Chang, SY.	291-298A
Chang, SY. Chang, Y.A. Chao, CG. Chao, C.G.	1519-1524A
Chao, CG.	2351-2359A
Chatterjee, S.K.	1365-1373A
Chattopadhyay, K.	2405-2410A 1833-1842A
Chattopadhyay, S.K.	2405-2410A
Chaturvedi, M.C.	1531-1541A
	2823-2834A
Chawla, N.	531-540A
	951-957A
Chen, CM.	1679-1682A
Chen, CY. Chen, D.L.	2351-2359A
Chen, D.L.	1531-1541A
Chen, G.S.	1025-1034A
Chen, L.	2369-2376A
Chen, L.H.	275-281A 2193-2203A
Chen, Q.	2005-2013A
Chen S-W	1679-1682A
Chen, SW. Chen, S.R.	1985-1996A
	2439-2448A
Chen, W.	2569-2574A
Chen, Y.Y.	1959-1964A
Chen, Y.Y. Chen, ZP.	469-475B
Chen, Z.Y.	1959-1964A
	2449-2456A
Cheng, L.M.	1907-1916A
Chevrier, V.	1135-1139B
Chevrier, V.F.	537-540B
Chi, R.	191-196B
Chiron, R.	1163-1168B 213-224A
Chiu, Y.L.	3179-3186A
Chiu, Y.L. Cho, W.D. Choi, B.W.	1685-1687A
Choi, B.W.	261-273A
Choi, CS.	355-360A
	2735-2738A
Choi, C.W.	2669-2674A
Choi, S.K.	1465-1473B
Choo, SH.	2849-2855A
	3041-3052A
Chow, C.K.	899-909A
Chow, C.K. Chowdhury, S.G.	409-420A 2127-2134A
Chowanary, G.G.	2121-2104A

Christ, HJ.	47-56A
	431-444A
	1507-1517A
Christodoulou, N.	409-420A
Chu, HS. Chu, M. Chu, Y.A.	2587-2596A 93-98A
Chu V A	1321-1331A
Chuang, T.H.	1310-1313A
oridary, r.r.	1591-1597A
	2239-2245A
Chumiyakov, Y.I.	153-161A
Chumlyakov, Y.I. Chung, F.K.	1387-1403B
Chung, H.S.	1925-1935A
Chung, J.C.Y.	763-771A
Chung, Y. Church, P.	957-971B
Church, P.	853-860A
Claessens, S.	1225-1232A
Clark, W.A.T.	641-652A
	653-667A
Clavel, M.	3063-3074A
	3075-3085A
Cockcroft, S.	1201-1211A
Cockcroft, S.L.	801-811B
0 1 1/	2059-2068A
Combres, Y.	1095-1106A
Cong, H.T.	1017-1024A
Conlon, K.T.	249-260A
Constantineau, J.P. Coriell, S.R.	1429-1437B
Cornish, L.A.	1419-1427B 1917-1923A
Cornish, R.	853-860A
Cortie, M.B.	1917-1923A
Courtney, T.H.	2907-2916A
	2219-2228A
Cragnolino, G.A.	1163-1173A
Cramb, A.W.	403-406B
	406-410B
	537-540B
	957-971B
	1135-1139B
Crimp, M.A.	1075-1084A
Croft, T.N.	515-527B
Cross, M.	179-189B
	515-527B
Csontos, A.A.	1965-1976A
	2205-2217A
Cullis, I.	853-860A
Curreri, P.A.	1700-1704A
D'Souza, N.	2877-2886A
Dahle, A.K.	2887-2893A 2895-2906A
Dahotre, N.B.	401-408A
Danotte, N.D.	461-473A
Dallak, S.	541-553A
Dankert, O.	913-919B
Das, A.	2049-2057A
Das, D.K.	2037-2047A
Das, R.P.	1169-1174B
Davami, P.	1293-1304B
David, S.A.	161-169B
	975-984A
Davidson, P.A.	1541-1550B
Davies, R.W.	2755-2763A
Davies, S.	2981-3000A
Davis, L.C.	951-957A
Dawson, P.	1543-1555A
Daymond, M.R.	889-898A
De Bouvier, O.	2025-2036A
De Cooman, B.C.	1225-1232A
De Oliveira Pinto, E.C.	1267-1272B 2119-2125A
Deaton, J.B. DeBarbadillo, J.	2569-2574A
DebRoy, T.	161-169B
Debitoy, 1.	529-536B
	1371-1385B
Debuigne, J.	3198-3199A
Decker, M.	1507-1517A
Degterov, S.	621-630B
Degterov, S.A.	651-659B
Dehghani, K.	1375-1384A
Del Castillo, L.	2287-2298A
Delplanque, JP.	1333-1344B
Dessureault, Y.	651-659B
Chindaw, B.K.	319-325A
	1700-1704A
Dighe, M.D.	1725-1731A

Ding C1	0075 00054
Dirig, G.L.	2275-2285A
Ding, G.L. Ding, H.	837-844B
Ding, R.	197-206B
Dippenaar, R.J.	993-1003B
Divakar, M.	267-276B
Doi, Y.	715-721A
Dong, C.	15-19A
Dong, J.X.	2135-2144A
Dongare, M.K.	35-41B
Donler T	225-234B
Dopler, T. Downs, S.A. Doyen, H.	
Downs, S.A.	863-872A
Doyen, H.	1453-1459A
Dracopoulos, V.	631-639B
Drezet, JM.	1627-1634A
Du, H.	195-211A
00, 11.	
D. V	801A
Du, Y.	1795-1803A
	2907-2916A
Du, Y.J.	763-771A
Dumitrescu, L.F.S.	615-619B
Dunand, D.C.	781-792A
Dunand, D.C.	
	2647-2657A
	2949-2962A
Dunn, D.S.	1163-1173A
DuPont, J.N.	1805-1817A
Durandet, Y.	1069-1079B
Dutta, B.	2713-2720A
Eadie, R.L.	1137-1145A
Earthman, J.C.	2807-2821A
Ebrill, N.	1069-1079B
Ehrstrom, JC.	2503-2515A
Ekroth, M.	615-619B
El-Bealy, M.	331-343B
	345-355B
El-Raghy, T.	333-337A
E. riagriy, t.	
	373-378A
	1857-1865A
El-Rassi, K.P.	1187-1194B
Eliaz, N.	1085-1093A
*	2517-2526A
Eliezer, D.	1085-1093A
Cilezei, D.	1005-1093A
	2517-2526A
Eliezer, S.	1085-1093A
Elzey, D.M.	1271-1282A
Emanowski, D.	1453-1459A
Emi, T.	001 0010
Emi, I.	981-991B
Engler, O.	2299-2315A
Enoki, M.	2785-2791A
Enomoto, M.	599-605A
Era, H.	2765-2771A
Eriksson, G.	651-659B
Etay, J.	207-214B
Euh, K.	2849-2855A
	3041-3052A
Evans, A.G.	1129-1136A
Evano, Mon	1977-1983A
F 0 M	
Evans, G.M.	1049-1057B
	1117-1123B
Evans, J.R.G.	1345-1352B
Evans .I W	755-766B
Evans, J.W. Evans, T.	1081-1089B
Estiati I M	
Fabietti, L.M.	2678-2681A
Fagerlund, K.O.	439-451B
Fairchild, D.P.	641-652A
	653-667A
Farson, D.F.	1465-1473B
	1461-1472A
Farup, I.	0000 00744
Feaugas, X.	3063-3074A
	3075-3085A
Felberbaum, L.	397-400A
Felicelli, S.D.	1283-1292B
r Gildolli, G.D.	2120-21254
= 11	3129-3135A
Feng, H.	585-597A
Fine, M.E.	1155-1162A
Fjeldly, A.	669-678A
Flemings, M.C.	291-298A
Flowitt DE I	
Flewitt, P.E.J.	615-628A
POCI, P.	2025-2036A
Fonda, R.W.	2145-2153A
Font, J.M.	1231-1239B
Fowler, J.P.	831-844A
	2963-2971A
Fraser, H.L.	
Fray, D.J.	1153-1162B
Frazier, W.G.	2317-2325A
Frisk, K.	615-619B
Frueh, C.	
	3129-3135A
	3129-3135A
	3129-3135A A-1

Fruehan, R.J.	43-54B	Hata, N.	1585-1589A	Ishikawa, T.	1261-1266B	Kim, H.S.	2457-2462A
	891-898B	Hawbolt, E.B.	1247-1259A	Itagaki, K.	705-712B	Kim, I.	1685-1687A
	1059-1068B		1907-1916A		1231-1239B	Kim, J.H.	1107-1119A
Fujii, H.	327-329B	Hayashi, K.	299-308A	Ito, K.	1261-1266B	Kim, J.K.	1283-1293A
	1585-1589A	Hayes, P.	15-24B	Iwasawa, K.	795-799B	16. 10	1295-1304A
Fujinami, T.	691-701A	Hayes, P.C.	621-630B	Iza-Mendia, A.	1671-1677A	Kim, J.S.	1031-1047B
Fukui, Y.	2627-2636A	14- 1	1195-1201B	Jacob, K.T.	713-721B	Kim, J.Y.	151-159B
Fukumasu, H.	3053-3061A	He, J.	541-553A		1247-1259B	Kim, K.Y.	2391-2394A
Fukunaga, H.	2075-2081A	111-0-1	555-564A		1323-1332B	Kim, S.	1107-1119A
Fukunaga, KI.	1937-1948A	Heard, P.J.	615-628A	Innet A	2674-2678A		1519-1524A
Edward 11	1949-1958A	Hei, Z.	1193-1199A	Jacot, A.	1201-1211A	Ki- C I	1753-1760A
Fukuyama, H.	25-33B	Heino, S.	1893-1905A	t-bb-b: 0	2059-2068A	Kim, SJ.	1713-1723A
C	1273-1281B	Hellman, J.	309-318A	Jahanshahi, S.	97-104B	Kim, Y.	93-98A
Gantayat, B.P.	55-61B	Hemmer, H.	1035-1048A 249-260A		937-943B	Kim V T	2361-2368A
Gao, F.	21-27A	Henein, H.		lok E	1105-1115B	Kim, YT.	1635-1643A
Gao, M. Garcia, A.	1025-1034A	Henry, M.F.	985-994A	Jak, E.	15-24B	Kim, YW.	1007-1016A
	3167-3178A	Hanni C	1489-1491A		621-630B	Kimura, S.	1013-1021B
Garrett, R.K., Jr.	1985-1996A	Henry, S.	487-495A	Jokahasan A	1195-1201B	Kipouros, G.J.	631-639B
Gaskell, D.R.	921-925B	Herbertson, J.	1023-1030B	Jakobsson, A.	267-276B	Kishi, T.	2785-2791A
Gaudett, M.A.	81-92A	Hertveldt, I.	1225-1232A	1-11 11	973-980B	Kishida, T.	25-33B
Gaudette, F.G.	1977-1983A	Hess, E.	845-854B	Jalkanen, H.	439-451B	Kishitake, K.	2765-2771A
Gautier, E.	1095-1106A	Higo, Y.	1435-1441A	Jansson, B.	615-619B	Klarstrom, D.L.	1307-1310A
Gaye, H.	905-912B	Hill, M.A.	2457-2462A	Jata, K.V.	2181-2192A	Klassen, M.	1343-1352A
Geiger, G.H.	561-575B	Hino, M.	927-935B	Jayakumar, T.	1053-1065A	Klokkehaug, S.	1035-1048A
Gell, M.	2388-2391A		945-955B	Jayaraman, N.	889-898A	Knobloch, C.	1733-1740A
Gerberich, W.W.	863-872A		1231-1239B	Jee, C.S.Y.	1345-1352B	Knorr, P.	503-510A
German, R.M.	2607-2614A	Hirai, T.	2369-2376A	Jena, A.K.	2127-2134A	Knowles, D.M.	1401-1411A
	3187-3193A	Hirao, M.	1121-1128A	Jensen, D.J.	1653-1662A	Ko, HS.	99-107A
Ghosal, P.	2093-2097A	Hirosumi, T.	899-904B	Jeong, W.C.	1305-1307A	Ko, S.H.	1465-1473B
Ghosh, A.K.	1425-1434A	Hirsch, T.	1453-1459A	Jha, S.K.	703-714A	Kobayashi, T.	3053-3061A
Ghosh, P.K.	2247-2259A	Hixson, R.S.	845-851A	Ji, FZ.	105-109B	Koh, H.J.	2669-2674A
Ghosh, S.	2973-2974A	Ho, CS.	1679-1682A	Jia, J.	837-844B	Kohler-Redlich, P.	1067-1073A
Ghosn, L.J.	873-887A	Ho, E.T.C.	409-420A	Jiang, D.T.	1692-1695A	Kohno, M.	1585-1589A
Gialanella, S.	1497-1506A	Hofer, P.	975-984A	Jiang, G.	1241-1245B	Kokubo, K.	2793-2805A
Gigliotti, M.F.X.	2119-2125A	Hoffman, W.A.M.	1353-1364A	Jiang, L.	1307-1310A	Kolluru, D.V.	1777-1784A
Gill, T.P.S.	3109-3122A	Holm, M.	1203-1211B	Jiang, MF.	469-475B	Komanduri, R.	1353-1370B
Gilman, J.J.	811-814A	Holme, B.	339-348A	Jiang, Q.	581-584A	Koo, J.B.	1489-1491A
Gilmore, R.S.	2119-2125A	Honeyands, T.	1133-1135B	Jiang, X.J.	339-348A	Korzekwa, D.A.	2439-2448A
Gjunter, V.E.	1867-1871A	Hong, C.P.	297-305B	Jin, Z.	1007-1016A	Koss, D.A.	995-1005A
Glatzel, U.	1733-1740A	Hong, J.H.	1107-1119A	Jiricny, V.	755-766B		1883-1886A
Glaws, P.C.	891-898B	3,	1761-1775A	Johansson, J.	1557-1570A	Kozeschnik, E.	1682-1684A
Glock, K.	1733-1740A	Hong, S.H.	2475-2489A	Johnson, D.R.	2463-2473A	Kriese, M.D.	863-872A
Gokhale, A.M.	1725-1731A	Hong, S.I.	2457-2462A	Jonas, J.J.	511-530A	Krom, A.H.M.	1475-1482B
Goldstein, D.	891-898B	Hong, T.	161-169B	0 3.100, 0.0.	1353-1364A	Krupp, U.	47-56A
Goto, D.M.	1985-1996A	Hong, Y.S.	3123-3127A		1375-1384A	Krzyzanowski, M.	1483-1490B
Grace, J.R.	1005-1012B	Hono, K.	607-614A	Jones, H.	327-328A	Kucharova, K.	2229-2237A
Grange, M.	679-690A	Horita, Z.	691-701A	00,100, 11.	2155-2162A	Kudo, M.	15-24B
Gray, G.T., III	1007-1016A	Horstemeyer, M.F.	1725-1731A	Jones, J.W.	531-540A	Kudoh, M.	747-753A
Ciray, C. I., III	1985-1996A	Hou, Z.B.	1353-1370B	001163, 0.44.	951-957A	Kumar, K.S.	71-80A
	1997-2003A	Houzelot, JL.	381-390B		1741-1752A	Kumazawa, N.	2627-2636A
	2439-2448A	110026101, 32.	391-402B	Jones, P.T.	197-206B		
Gregson, P.J.	2503-2515A	Howden, D.G.	641-652A	Jonsson, L.	867-875B	Kumta, P.N.	151-159B
Gremaud, M.	1627-1634A	riowdell, D.G.	653-667A	Jordan, A.	2739-2745A	Kunze, J.M. Kuo, B.C.	1271-1282A
Grensing, F.C.	2963-2971A	Howe, J.M.	2377-2379A	Jordan, A.	2747-2754A	Kwon, SJ.	275-281A
Griffiths, W.D.	285-295B	Howell, P.R.	995-1005A	Jordan, E.	2388-2391A	KWOII, SJ.	793-798A 1107-1119A
Grong, Ø.	1035-1048A	Hozawa, M.	327-329B	Jordinson, C.	445-459A	Kwon, Y.	93-98A
Grosdidier, T.	1095-1106A	Hryniewicz, T.	2661-2665A	Joshi, S.V.	2037-2047A	Laboudigue, B.	207-214B
Grun, GU.	1627-1634A	Hsiao, I.C.	2169-2180A	Joy, D.C.	911-920A	Lacaze, J.	827-836B
Grundmann, R.	1405-1417B	Hsieh, S.H.	475-485A	Juarez-Hernandez, A.	327-328A	Lai, J.K.L.	15-19A
Gu, J.P.	2545-2557A	Hu, H.	723-733A	Jung, JY.	3041-3052A	Lai, WH.L.	1333-1344B
Guduru, P.R.	1147-1154A	Hu, S.C.	1473-1478A	Jung, YC.	1713-1723A	Lam, Y.C.	2597-2606A
Guillemer-Neel, C.	3063-3074A	Huang, J.C.	2169-2180A	Juretzko, F.R.	1700-1704A	Langberg, D.E.	411-414B
Comemor 1400i, C.	3075-3085A	Huang, S.	1241-1245B	Kakehi, K.	421-430A	Languerg, D.E.	
Guillemot, F.	3198-3199A	Huang, X.	3155-3166A	Kale, B.B.	35-41B		414-418B 419-424B
Guo, D.	1447-1455B	Huh, MY.	2299-2315A	Kamiya, R.	899-909A	Langdon T.C	691-701A
Carrier, Co.	1457-1464B	Huin, D.	905-912B	Kamperman, A.A.	913-919B	Langdon, T.G. Laughlin, D.E.	361-371A
Guo, H.	599-605A	Hunt, J.D.	29-34A		99-107A	Laugniin, D.E. Lavernia, E.J.	
Guo, J.	837-844B	Hutchinson, C.R.	2721-2733A	Kang, SB. Kang, S.Y.	1107-1119A	Lavenna, E.J.	387-396A 541-553A
Guo, J.T.	1692-1695A	Hutchinson, J.W.	1129-1136A	Kangas, P.	35-45A		555-564A
Guo, Z.X.	1345-1352B	Hwang, K.C.	793-798A	Kangas, P. Kapoor, R.	815-823A		
Gupta, M.	1873-1881A	Hwang, K.S.	1473-1478A	Kaptay, G.	1695-1700A		723-733A 1333-1344B
Gupta, S.R.	2247-2259A	riwarig, R.S.	1645-1652A	Kar, T.	3087-3090A		
Guthrie, R.I.L.	357-364B	Hwang, N.M.	985-994A	Karlsson, T.	35-45A		1843-1855A 2287-2298A
Cratino, Tene.	767-777B	Hwang, S.K.	1925-1935A	Karma, A.	1233-1246A		2681-2686A
	855-866B	Hyers, R.W.	171-178B	Kasai, N.	453-460B		2917-2929A
			541-553A			Lobos E	
	1031-1047B 1143B	Ice, M.		Kaschner, G.C.	1997-2003A	Lebas, E.	381-390B
Gutierrez, I.	1671-1677A	Ichino, R.	555-564A 235-241B	Kashiwaya, Y. Kashyap, B.P.	216-218B 1053-1065A	Lodion !	391-402B
Ha. H.P.						Ledion, J.	2015-2024A
Hable, U.	29-34A 531-540A	Igarashi, T.	715-721A	Katipelli, L.R.	461-473A	Lee, C.S.	2665-2669A
Hahn, S.H.	531-540A	Iguchi, M.	453-460B	Kato, S.	235-241B	Lee, HI.	1479-1488A
	327-329B	Ikeda, K.	1635-1643A	Kattner, U.R.	1419-1427B	Lee, H.B.	475-485A
Hajra, J.P. Hamaguchi, T.	267-276B	llegbushi, O.J.	2069-2074A	Katz, R.N.	565-573A	Lee, H.C.	1479-1488A
	1121-1128A	Imaishi, N.	327-329B	Kawagoishi, N.	2005-2013A	Lee, H.I.	2361-2368A
Han, B.Q.	2647-2657A	Inagaki, I.	1949-1958A	Kayali, N.	349-354A	Lee, JC.	1479-1488A
Han, S.H.	1819-1832A	Inoue, A.	607-614A	Kazior, J.	1497-1506A	Lee, JE.	225-237A
Han, X.D.	763-771A	Inui, H.	2463-2473A	Kermanpur, A.	1293-1304B	Lee, J.C.	2361-2368A
Hanrot, F.	381-390B	lost, A.	153-161A	Kestursatya, M.	1283-1293A	Lee, J.S.	503-510A
Hannaial: 14111	391-402B	Irons, G.A.	1447-1455B	Khaleel, M.A.	2755-2763A	Lee, S.	793-798A
Hanusiak, W.H.	2931-2941A		1457-1464B	Khanna, R.	1517-1525B		1107-1119A
Harada, H.	173-178A	Isac, M.	1031-1047B	Kim, B.K.	1925-1935A		1753-1760A
Harding, T.S.	1741-1752A	Ishibashi, H.	299-308A	Kim, C.K.	3041-3052A		2475-2489A
Hasegawa, T.	747-753A	Ishii, K.	216-218B	Kim, DK.	2475-2489A		2669-2674A

	2849-2855A	Ma, C.Y.	1365-1373A	Morris, J.W., Jr.	798-800A	Pagounis, E.	309-318A
Lee, S.B.	3041-3052A 985-994A	Mabuchi, M. MacEwen, S.	715-721A 1543-1555A	Morsi, K.	2697-2711A	Pal, U.B.	733-753B
Lee, S.M.	297-305B	MacLachlan, D.W.	1401-1411A	Mortensen, A.	1663-1670A 397-400A	Palafox-Ramos, J. Palmer, T.A.	1505-1515B 1371-1385B
Lee, S.P.	2075-2081A	Maeda, M.	795-799B	Moshe, E.	1085-1093A	Pan. C.	2537-2543A
Lee, TH.	1713-1723A	Magnin, T.	2025-2036A	Mosher, D.A.	1725-1731A	Pan, YM.	1163-1173A
Lee, YK.	355-360A	Mahajan, Y.R.	629-639A	Moskovic, R.	445-459A	Pandey, A.B.	921-936A
Lee, Y.C.	2735-2738A 2895-2906A	Mahata, T. Maier, H.J.	551-553B	Motta, A.T.	1883-1886A	Describeration O.N.	937-950A
Lee, Z.H.	723-733A	Malel, H.J.	139-151A 431-444A	Moynihan, C.T. Mueller, B.A.	587-596B 1419-1427B	Papatheodorou, G.N. Paramguru, R.K.	631-639B 55-61B
Leonard, K.J.	1305-1321B	Maijer, D.	1201-1211A	Mughrabi, H.	585-597A	Paraventi, D.J.	2383-2388A
Lesuer, D.R.	63-69A		2059-2068A	Mukerji, S.	3087-3090A	Pasewicz, H.U.	891-898B
Leverant, G.R.	3029-3040A	Maire, E.	249-260A	Mukherjee, P.	2405-2410A	Pasquevich, D.M.	1439-1446B
Levey, F.C.	1917-1923A	Majima, H.	5-13B	Mukherjee, S.	2559-2568A	Patankar, S.N.	2394-2396A
Levi, M.R. Li, B.	409-420A 387-396A	Majumdar, B. Majumdar, B.S.	1833-1842A 921-936A	Mukhopadhyay, A.K. Murakami, T.	2093-2097A 25-33B	Patisson, F.	381-390B
Li, D.	1491-1503B	Majaridai, D.G.	937-950A	Murty, B.S.	319-325A	Pauty, E.	391-402B 207-214B
	1843-1855A	Makhlouf, M.M.	565-573A	Mustoe, G.G.W.	433-438B	Pech-Canul, M.I.	565-573A
	2681-2686A	Male, A.T.	2537-2543A	Nabeshima, Y.	1013-1021B	Pehlke, R.	57-62A
Li, BY.	1867-1871A	Mannan, S.	2569-2574A	Nagai, K.	2793-2805A	Pelleg, J.	1525-1530A
Li, D.	1959-1964A	Mannan, S.L.	1175-1185A	Nagamori, M.	543-546B	Pelton, A.D.	621-630B
Li, D.Y.	2205-2217A 2773-2783A	Manthiram, A.	3109-3122A 2396-2398A	Nagasaka, T.	927-935B 945-955B	Perepezko, J.H.	651-659B 497-501A
Li, G.	2491-2502A	Marchi, C.S.	397-400A	Nagata, K.	25-33B	Perez, R.	1551-1553B
Li, J.D.	581-584A	Marder, A.R.	1805-1817A		1273-1281B	Pericleous, K.	179-189B
Li, L.	546-551B	Martorano, M.A.	3137-3148A	Nahme, H.	831-844A		515-527B
Li, LF.	469-475B	Masuda, C.	2637-2645A	Nair, S.R.	551-553B	Perocchi, L.	3029-3040A
Li, M.	357-364B 767-777B	Masuda, Y. Matan, N.	2463-2473A	Naito, K.	2765-2771A	Peters, J.O.	1571-1583A
	855-866B	Mathew, M.D.	2219-2228A 1175-1185A	Najjar, D. Nakajima, K.	153-161A 1013-1021B	Philippe, MJ. Pieczonka, T.	1095-1106A 1497-1506A
	1143B	Matsumoto, T.	299-308A	Nakamura, N.	715-721A	Pilkey, A.K.	831-844A
	1385-1399A		327-329B	Nakano, T.	1585-1589A	Ping, D.H.	607-614A
Li, S.	99-107A		1585-1589A	Nam, J.	93-98A	Pinol-Juez, A.	1671-1677A
Li. TX.	2449-2456A	Matsushita, K.	5-13B	Nam, J.G.	503-510A	Pistorius, P.C.	1091-1097B
LI, 1A.	1527-1533B 1535-1540B	Matsuura, K. Matsuzaki, K.	747-753A 1261-1266B	Nam, S.W. Nam, W.J.	1761-1775A	Pitman, S.G.	2755-2763A
Li, Y.	1049-1057B	Mayr, P.	1453-1459A	Namjoshi, S.A.	2665-2669A 307-316B	Poirier, D.R.	1283-1292B 3129-3135A
,	1059-1068B	Maziasz, P.	2739-2745A	Nemat-Nasser, S.	815-823A	Poole, W.J.	2327-2338A
	1067-1073A		2747-2754A	Nemoto, M.	691-701A	Prakash, D.	551-553B
	2155-2162A	Mazumder, P.	1233-1246A	Newman, D.S.	597-602B	Prasad, K.S.	2093-2097A
Li, YY. Li, Z.	1867-1871A	McElhaney, K.W.	1333-1342A	Nexhip, C.	1105-1115B	Prasad, V.	735-746A
Liang, J.	2943-2948A 1163-1168B	McHargue, C.J. McKay, J.	911-920A 1133-1135B	Ngan, A.H.W. Nicolaou, P.D.	3179-3186A 1425-1434A	Prasad, Y.V.R.K.	629-639A 2317-2325A
Liaw, P.K.	911-920A	McKelvey, A.L.	1413-1423A	Nie, J.F.	2377-2379A	Pritzker, M.	683-691B
	1307-1310A	McLean, A.	239-248A	Nielsen, O.	3149-3153A	t manor, m	693-703B
Lillamand, I.	213-224A	McLean, M.	1663-1670A	Nightingale, R.J.	993-1003B	Priya, S.	2674-2678A
Lim, C.T.	2394-2396A		2877-2886A	Niinom, M.	1937-1948A	Procopio, A.T.	333-337A
Lim, L.C. Lin, CH.	2659-2661A 1679-1682A	McShane, H.B.	2887-2893A 1663-1670A	Niinomi, M.	1949-1958A	Davida N. L.	373-378A
Lin, C.S.	475-485A	Meadowcroft, T.R.	1005-1012B	Nilsson, JO. Nishiwaki, M.	35-45A 5-13B	Pryds, N.H. Purdy, G.R.	3155-3166A 1187-1192A
Lin, D.L.	1692-1695A		1247-1259A	Nisitani, H.	2005-2013A	Puscas, T.M.	3091-3099A
Lin, SJ.	291-298A		1907-1916A	Niu, H.J.	2615-2625A	Qian, M.	2659-2661A
Lin, S.C.	2193-2203A	Medeiros, S.C.	2317-2325A	Noble, B.	339-348A		3195-3197A
Lin, Y.J. Lindroos, V.K.	2917-2929A 309-318A	Mediaas, H. Meikap, A.K.	631-639B	Nogi, K.	327-329B	Qiang, J.	1193-1199A
Ling, P.S.	1873-1881A	Meisenkothen, F.	2405-2410A 2963-2971A	Noh, JW.	1585-1589A 2475-2489A	Qin, J. Qing, X.	2163-2168A 139-151A
Link, T.M.	1883-1886A	Meyer, B.C.	1453-1459A	Norlund, C.A.	1261-1269A	Qiu, H.	2785-2791A
Liu, C.M.	2449-2456A	Meyrick, G.	2963-2971A	Nykiel, T.	2661-2665A	Quaresma, J.M.V.	3167-3178A
Liu, G.	837-844B	Miao, W.F.	361-371A	O'Keefe, T.J.	1203-1211B	Queheillalt, D.T.	261-273A
Liu, J.	1163-1168B	Michaud, V.	225-234B	O, J.M.	2527-2536A	Ra, H.Y.	1479-1488A
	2607-2614A 3187-3193A	Miettinen, J. Militzer, M.	365-379B 1247-1259A	Oden, M. Ogi, H.	1557-1570A 1121-1128A	Rabiei, A. Racz, L.M.	1129-1136A 171-178B
Liu, KS.	2587-2596A	Miller, M.K.	975-984A	Oh, H.	793-798A	Radhakrishna Bhat, B.	
Liu, P.L.	2857-2866A	Mills, K.C.	111-119B	Oh, K.H.	225-237A	Radjai, A.	755-762A
	2867-2875A	Minor, A.M.	798-800A		779-794B	Radmilovic, V.	2697-2711A
Liu, R.	2773-2783A	Miracle, D.B.	921-936A	01-0-1	1479-1488A	Rae, C.M.F.	2219-2228A
Liu, X.	309-318A	Mishin, O.V.	1653-1662A	Oh, S.J.	793-798A	Rainforth, W.M.	2155-2162A
Liu, Y.	837-844B 3187-3193A	Mishurda, J.C. Misra, P.	1305-1321B 1135-1139B	Oh, Y.J.	1107-1119A 1761-1775A	Raj, B. Raj, S.V.	1053-1065A 873-887A
Liu, YF.	2637-2645A	Mitchell, A.	801-811B	Ohmi, T.	747-753A	Rama Rao, V.V.	2093-2097A
Liu, Y.Y.	1959-1964A	Mitlin, D.	2697-2711A	Ojha, S.N.	2275-2285A	Randhawa, H.S.	2247-2259A
Liu, Z.	2739-2745A	Mitra, M.K.	2405-2410A	Okabe, T.H.	713-721B	Rangaswamy, P.	889-898A
Liu, Z.G.	1785-1794A	Mittemeijer, E.J.	2049-2057A	Okada, H.	2627-2636A	Rankin, W.J.	411-414B
Loloee, R. Loomans, M.E.	1075-1084A	Miwa, K.	755-762A	Okafor, I.C.I.	3023-3028A		414-418B 419-424B
Lopez-Ramirez, S.	1155-1162A 1505-1515B	Miyazaki, S. Mizoguchi, S.	2423-2430A 1013-1021B	Okane, T. Okido, M.	1491-1503B 235-241B	Rao, K.B.S.	1175-1185A
Lossius, L.P.	1213-1224B	Mo, A.	1461-1472A	Okuda, K.	599-605A	Rao, K.P.	763-771A
Lowe, T.C.	675-682B	Modaressi, A.	225-234B	Oliver, H.E.	2755-2763A	Rao, S.B.	55-61B
Lu, B.	2205-2217A	Mohamed, F.A.	163-172A	Olsen, S.E.	477-490B	Rapp, R.A.	2105-2118A
Lu, S.	5-13A	Malinari A	2807-2821A	Olson, G.B.	1321-1331A	Rappaz, M.	487-495A
Lu, S.Z. Lu, WK.	2907-2916A 993-1003B	Molinari, A.	1497-1506A 3091-3099A	Ong, M.S. Onstott, J.	2155-2162A 71-80A		1293-1304B 1627-1634A
Lu, Y.C.	1645-1652A	Moore, J.J.	433-438B	Oo, M.K.K.	1873-1881A	Ratchev, I.P.	1049-1057B
Lucas, J.A.	1049-1057B	Moorthy, V.	1053-1065A	Orrling, C.	403-406B	Rath, P.C.	55-61B
	1059-1068B	Morales, R.D.	63-74B	Ostrovski, O.	129-139B	Ravichandran, G.	1147-1154A
	1117-1123B	Mana D	1505-1515B	Ontrold T	1139-1142B	Ravichandran, K.S.	703-714A
Luck, R.	1125-1131B 1067-1073A	Moran, B. Moran, G.	1321-1331A	Ostvold, T. Overfelt, R.A.	631-639B 546-551B	Ray, R.K.	2127-2134A 2339-2350A
Lui, T.S.	275-281A	Morere, B.	515-527B 2503-2515A	Oya-Seimiya, Y.	1435-1441A		3001-3010A
	2193-2203A	Mori, H.	2785-2791A	Øye, H.A.	641-650B		3011-3021A
Luo, Z.	5-13A	Morita, K.	899-904B		1213-1224B	Reddy, R.G.	3023-3028A
Lynch, N.	853-860A	Morral, J.E.	1187-1192A	Ozguven, N.	1345-1352B	Reed, R.A.S.	109-123A

							volume 3 i
Reed, R.C.	2219-2228A		2867-2875A	Sun, BD.	1527-1533B	Venkatesh, T.A.	781-792A
	2261-2273A	Shankar, V.	3109-3122A	0 11	1535-1540B	Venkateswara Rao, K.T	
Reid, A.C.E.	1321-1331A	Sharma, B.P.	551-553B 773-780A	Sun, M. Sun, S.	1017-1024A 97-104B	Venkert, A. Venugopalan, D.	1147-1154A 2575-2585A
Reimanis, I.E. Rettenmayr, M.	433-438B 2713-2720A	Sharma, S.C. Shek, C.H.	15-19A	ouri, o.	937-943B	Verheoven, J.D.	2431-2438A
Reye, J.	2275-2285A	Shen, H.F.	297-305B		1105-1115B	Vermaak, M.K.G.	1091-1097B
Rhodes, C.G.	2931-2941A	Shen, YL.	531-540A		1137-1145A	Viswanathan, N.N.	540-542B
Rhouma, A.B.	2015-2024A	Sheng, D.Y.	867-875B	Sun, X.K.	1017-1024A	M 11	973-980B
Riboud, P.V.	905-912B	Shengjie, Y.	2597-2606A 2931-2941A	Sun, Y.Q. Sundaresan, S.	2379-2383A 3109-3122A	Vogt, H. Vogt, J.B.	1225-1230B 153-161A
Rielly, C.D. Rigby, G.D.	1117-1123B 1117-1123B	Shepard, M.J. Shi, C.X.	1692-1695A	Sung, P.K.	1283-1292B	Vohringer, O.	825-830A
Ringer, S.P.	2721-2733A	Shi, Z.	2361-2368A	Suresh, S.	1977-1983A	Volinsky, A.A.	863-872A
Rist, M.A.	2219-2228A	Shibata, H.	981-991B	Susa, M.	25-33B	Von Dreele, R.	889-898A
Ritchie, R.O.	1413-1423A	Shibue, K.	3053-3061A	0	1273-1281B	Vooijs, S.I.	379-385A
Rivas, J.M.	1571-1583A 845-851A	Shimojo, M.	1435-1441A 141-149B	Suwas, S. Suzuki, K.	2339-2350A 1139-1142B	Voorhees, P.W. Vracar, R.Z.	1333-1342A 723-731B
Ro, Y.	173-178A	Shiohara, Y. Shiozawa, K.	1137-1145A	Suzuki, M.	981-991B	Wadley, H.N.G.	261-273A
Robelin, C.	651-659B	Shiue, R.K.	2527-2536A	Suzuki, T.	2793-2805A	viddioy, ri.iv.d.	1271-1282A
Roberts, S.M.	2261-2273A	Shollock, B.A.	2877-2886A	Syliusarenko, S.I.	2163-2168A	Wan, KC.	1025-1034A
Robinson, S.	1843-1855A		2887-2893A	Syn, C.K.	63-69A	Wang, GX.	735-746A
D-4 0	2681-2686A	Shook, A.A.	1005-1012B	Tafto, J.	339-348A	Wang, H.	1307-1310A
Roder, O. Rogge, R.	1571-1583A 1543-1555A	Shu, D.	1527-1533B 1535-1540B	Takano, C. Takasu, T.	1267-1272B 121-128B	Wang, J.	1527-1533B 1535-1540B
Roghani, G.	705-712B	Shu, Q.	1959-1964A	Takeda, Y.	15-24B	Wang, J.Y.	2527-2536A
Rohatgi, P.K.	1283-1293A	Sichen, D.	105-109B		705-712B	Wang, L.	1193-1199A
	1295-1304A		111-119B	Takehama, R.	927-935B	Wang, R.	5-13A
Rong, LJ.	1867-1871A		540-542B	Takida, T.	715-721A	Wang, S.C.	1310-1313A
Rosas, G.	1551-1553B	Ciriliana E I	973-980B	Tam, K.C.	2597-2606A	Wang, T.	801-811B
Roven, H.J.	669-678A 755-766B	Siciliano, F., Jr. Sidhom, H.	511-530A 2015-2024A	Tan, M.J. Tanaka, Y.	2394-2396A 2637-2645A	Wang, WZ.	2163-2168A 469-475B
Roy, A. Rudiger, F.	1405-1417B	Sietsma, J.	379-385A	Tang, W.	2423-2430A	Wanner, A.	2943-2948A
Ruhle, M.	1067-1073A	Sinclair, C.W.	1187-1192A	Taniguchi, S.	253-266B		2949-2962A
Ruschau, J.J.	2181-2192A	Sinclair, I.	109-123A	Tavares, R.P.	1031-1047B	Was, G.S.	2383-2388A
Rutter, J.W.	239-248A		2503-2515A	Tavera, F.J.	1551-1553B	Waseda, Y.	713-721B
Ryoo, H.S.	1925-1935A 2475-2489A	Sinder, M. Singh Raman, R.K.	1525-1530A 3101-3108A	Tempus, G. Terrance, A.L.E.	1453-1459A 3109-3122A	Watanabe, T.	2674-2678A 1273-1281B
Ryu, H.J. Sachdev, A.	57-62A	Singh, A.K.	1687-1692A	Tetenbaum, M.	661-666B	Watanabe, Y.	2627-2636A
Saeter, J.A.	2327-2338A	Singh, V.	2037-2047A	Teter, D.F.	667-673B	Waterloo, G.	339-348A
Sahajwalla, V.	215-216B	Sista, S.	529-536B	Teteruk, R.G.	431-444A		2327-2338A
	243-251B	Sivaramakrishnan, C.S.		Tewari, S.N.	2275-2285A	Wei, B.	1067-1073A
	1099-1104B	Skjervold, S.	2327-2338A	Thadhani, N.N.	307-316B	Wei, D.	235-241B
	1133-1135B 1517-1525B	Skupien, D. Smith, A.F.M.	921-925B 445-459A	Thakur, S.K. Thess, A.	319-325A 1541-1550B	Wei, P.S. Wei, R.P.	1387-1403B 1025-1034A
Sahoo, K.L.	1599-1610A	Smith, M.T.	2755-2763A	Thissell, W.R.	845-851A	Wei, Z.G.	2423-2430A
Sahu, K.K.	1169-1174B	Smith, P.R.	2931-2941A	Thoma, D.J.	667-673B	Welham, N.J.	283-289A
Saiz, E.	299-308A	Smith, S.W.	179-193A	Thomas, B.G.	2491-2502A	Wen, X.	3023-3028A
Sakai, Y.	327-329B	Smith, T.	139-151A	Thompson, A.W.	1571-1583A	Weng, W.P.	1310-1313A
Sakata, K. Salishchev, G.A.	1213-1223A 2119-2125A	Soboyejo, W.O. Soda, H.	1385-1399A 239-248A	Thompson, R.G. Thonstad, J.	2135-2144A 609-613B	White, D.R.	723-733A 2917-2929A
Samarasekera, I.V.	1005-1012B	Sohn, H.Y.	543-546B	Tkatcheva, O.	631-639B	Whitesell, H.S.	546-551B
Sampath, S.	735-746A	Sohn, Y.H.	2388-2391A	Tobimatsu, H.	299-308A	Whittington, B.I.	1175-1186B
Sandstrom, R.	2423-2430A	Soltanieh, M.	121-128B	Toda, H.	3053-3061A	Wiblen, R.	1099-1104B
Sankaran, K.K.	2181-2192A	Somers, M.A.J.	195-211A	Toguri, J.M.	121-128B	Wiezorek, J.M.K.	2963-2971A
Sano, N. Santos, C.A.	899-904B 3167-3178A	Sommer, F.	801A 277-284B	Tokuchi, K. Tome, C.N.	216-218B 2299-2315A	Wild, R.K. Wilkinson, D.S.	615-628A 249-260A
Sanuki, S.	5-13B	Sonawane, R.S.	35-41B	Tomsia, A.P.	299-308A	Williams, M.E.	1419-1427B
Sarma, B.	891-898B	Song, B.	21-27A	Tonks, D.L.	845-851A	Wilson, A.	35-45A
Sasaki, Y.	216-218B	Song, J.M.	275-281A	Torres, R.D.	433-438B	Wilson, A.L.	995-1005A
Sasikala, G.	1175-1185A 1777-1784A	Spanos, G.	2145-2153A	Trivedi, R.	1233-1246A	Witusiewicz, V.T. Wollants, P.	277-284B
Satyanarayana, D.V.V. Schlichting, K.	2388-2391A	Spooner, S. Sprauel, J.M.	2739-2745A 213-224A		1261-1269A 1819-1832A	Won, Y.M.	197-206B 779-794B
Schlogl, S.M.	125-137A	Sridhar, N.	1163-1173A	Trovant, M.	75-86B	Wong, K.W.	15-19A
Schmauder, S.	2943-2948A	Sridhar, R.	121-128B	,	87-96B	Worswick, M.J.	831-844A
Schuh, C.	2411-2421A	Sridhar, S.	111-119B	Tsai, T.C.	2239-2245A	Wright, S.	97-104B
Schulze, V.	2647-2657A		406-410B	Tsao, L.C.	2239-2245A	Wu, C.	215-216B
Schuster, J.C.	1795-1803A	Srivatsan, T.S.	1135-1139B 959-974A	Tsuchiya, K. Tsukada, T.	327-329B		1099-1104B
Schvezov, C.E.	1611-1625A	St.John, D.H.	2895-2906A	- warnessay Tr	1261-1266B	Wu, C.S.	2239-2245A
Schwartz, D.S.	261-273A	Starke, E.A., Jr.	1965-1976A	Tumidajski, P.J.	597-602B	Wu, R.I.	497-501A
Schwerdtfeger, K.	461-468B	Stefanescu, D.M.	1700-1704A	Turner, P.A.	409-420A	Wu, S.K.	2527-2536A
Sciffer, S.D.	813-826B	Stephens, D.A.	2559-2568A 445-459A	Tymiak, N.I. Tzimas, E.	863-872A	Wu, X.	2083-2092A
Scully, J.R.	1117-1123B 81-92A	Stolk, J.	2396-2398A	Uda, T.	877-879B 713-721B	Wu, X.D. Wu, X.L.	109-123A 3123-3127A
County, out to	179-193A	Stone, H.J.	2261-2273A	Umeda, T.	141-149B	Xia, K.	21-27A
Seetharaman, S.	105-109B	Story, S.R.	43-54B		1491-1503B	Xie, X.S.	2135-2144A
	111-119B	0	891-898B	Umemoto, M.	1785-1794A	Xiong, H.	2369-2376A
	267-276B 540-542B	Straffelini, G.	1443-1451A 1497-1506A	Umezawa, O. Utigard, T.A.	2793-2805A 1187-1194B	Xu, H. Xu, K.	2391-2394A 1241-1245B
	973-980B		3091-3099A	Uwakweh, O.	2747-2754A	Xu, X.	1193-1199A
Sehitoglu, H.	139-151A	Strezov, L.	1023-1030B	Uwakweh, O.N.C.	2739-2745A	Xu, Y.	21-27A
Selig, C.	827-836B		1069-1079B	Vaidyanathan, K.	2388-2391A	Xu, Z.	191-196B
Sellars, C.M.	1483-1490B		1081-1089B	Vaidyanathan, S.	1053-1065A		1163-1168B
Semiatin, S.L. Semoroz, A.	1425-1434A 487-495A		1117-1123B 1125-1131B	Van Der Giessen, E. Van Der Zwaag, S.	125-137A 379-385A	Xu, ZM.	2857-2866A 1527-1533B
Sen, P.	2405-2410A	Strezov, V.	1125-1131B	Van Leeuwen, Y.	125-137A	Au, 2. W.	1535-1540B
Sen, S.	1700-1704A	Stubbins, J.F.	2491-2502A		379-385A	Yamabe-Mitarai, Y.	173-178A
Sengupta, S.	239-248A	Su, S.W.	2169-2180A	Van Veen, A.	913-919B	Yamaguchi, K.	15-24B
Seok, HK.	1479-1488A	Su, Y.	837-844B	Vancheeswaran, R.	1271-1282A	Yamaguchi, M.	2463-2473A
Seol, D.J. Sha, H.	779-794B 813-826B	Sucre, Y.R. Sugimoto, S.	153-161A 1785-1794A	Varahram, N. Vasudevan, V.K.	1293-1304B 1305-1321B	Yamanaka, T. Yan, X.Y.	2463-2473A 411-414B
Shang, B.	5-13A	Suito, H.	1213-1223A	vasuucvali, v.n.	2377-2379A	ran, A. I.	414-418B
Shang, J.K.	2857-2866A	Sumida, M.	141-149B	Velde, O.	1405-1417B		419-424B

2000

Yang, J.	2069-2074A	Yoon, D.Y.	985-994A	Zacharias, D.	1505-1515B		1195-1201B
Yang, M.C.	1017-1024A		1489-1491A	Zavaliangos, A.	877-879B	Zhao, M.	581-584A
Yang, N.	1843-1855A	Yoon, JK.	225-237A	Zeitler, S.	1507-1517A	Zhao, W.	911-920A
	2681-2686A		317-326B	Zeng, F.	5-13A	Zhou, C.	2391-2394A
Yang, R.	2205-2217A	Yoon, US.	225-237A	Zeng, Z.	1163-1168B		
Yang, W.	2569-2574A	Yoshida, M.	2075-2081A	Zengin, R.	349-354A	Zhou, YH.	1527-1533B
Yang, Z.	529-536B	You, J.	1241-1245B	Zhang, G.	129-139B		1535-1540B
Yeh, JW.	2587-2596A	Younes, C.	615-628A	Zhang, J.	1139-1142B	Zhou, Z.	191-196B
Yeh, M.S.	1310-1313A	Young, D.	1133-1135B	Zhang, L.	97-104B	Zhou, Z.P.	2449-2456A
	1591-1597A	Yousefiani, A.	163-172A		253-266B	Zhu, G.	191-196B
	2239-2245A		2807-2821A		2369-2376A	Zhu, S.J.	2229-2237A
Yeo, TJ.	225-237A	Yu, L.	2275-2285A	Zhang, X.D.	2963-2971A	Zhu, Y.T.	
	779-794B	Yu, S.C.M.	2597-2606A	Zhang, X.M.	2449-2456A		675-682B
Yokoyama, H.	2793-2805A	Yu, X.H.	173-178A	Zhang, Y.G.	2823-2834A	Ziegler, D.P.	1541-1550B
Yonezawa, K.	461-468B	Yu, Z.	1193-1199A	Zhang, Y.M.	2537-2543A	Zikanov, O.	1541-1550B
Yoo, C.D.	1465-1473B	Yuan, R.	2369-2376A	Zhao, B.	621-630B	Zurek, A.K.	845-851A

Combined Subject Index

Absorption (material), Microstructural effects The identification of hydrogen trapping states in an Al-Li-Cu-Zr alloy using thermal desorption spectroscopy.	179-193A	base single-crystal superalloy. Alloy plating Microstructure and formability of ZnNi alloy electrodeposited	585-597A
Accuracy Stress-strain response of a cast 319-T6 aluminum under ther-	139-151A	sheet steel. Aluminates, Reduction (chemical)	475-485A
momechanical loading. Dissolution rates of coals and graphite in Fe-C-S melts in direct ironmaking: dependence of carbon dissolution rate on carbon		Investigation on reduction of CoAl ₂ O ₄ by hydrogen gas using TGA.	540-542B
structure. Modeling of interdendritic strain and macrosegregation for den-	215-216B	Aluminides, Coating The influence of additions of Nb and Cr on the aluminizing	
dritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for den-	331-343B	behavior of TiAl alloy. Aluminides, Coatings	2391-2394A
dritic solidification processes. II. Computation of interdendritic strain and segregation fields in steel ingots. Damage leading to ductile fracture under high strain-rate condi-	345-355B	Effect of prealuminizing diffusion treatment on microstructural evolution of high-activity Pt-aluminide coatings.	2037-2047A
tions. Evaporation behavior of aluminum during the cold crucible	831-844A	Aluminides, Composite materials Chemically induced reduction: a viable process for synthesizing Y-TiAl based intermetallic matrix composite powders contain-	
induction skull melting of titanium aluminum alloys. Deformation and fracture of a particle-reinforced aluminum alloy	837-844B	ing nanocrystalline TiC. Reaction steps in the combustion synthesis of NiAl/TiB ₂ com-	151-159B
composite. II. Modeling. Equilibria involving the reciprocal spinel solid solution (Mg _x Fe ₁ .	937-950A	posites.	433-438B
x)(Al ₂ Cr _{1-x}) ₂ O ₄ : modeling and experiment. Unsteady Marangoni flow in a molten pool when welding dis-	1247-1259B	Phase transitions in reactive formation of Ti ₅ Si ₃ /TiAl in situ composites.	763-771A
similar metals. Residual strains in HY100 polycrystals: comparisons of experi-	1387-1403B	Reactive infiltration processing and secondary compressive creep of NiAl and NiAl-W composites.	781-792A
ments and simulations. Strain-localization in sheet metal containing a geometric defect.	1543-1555A 1883-1886A	An investigation of the effects of ductile-layer thickness on the fracture behavior of nickel aluminide microlaminates.	1385-1399A
Modeling of dissolution, growth, and coarsening of aluminum nitride in low-carbon steels.	1907-1916A	High-temperature fracture and fatigue-crack growth behavior of an XD gamma-based titanium aluminide intermetallic alloy.	1413-1423A
Effects of processing variables on the microsegregation of	3137-3148A	Effect of particle size and volume fraction in hot extrusion reac- tion synthesis of SiC particle reinforced NiAl.	1663-1670A
directionally cast samples. Acid leaching	3137-3140A	Reaction synthesis, microstructure, and mechanical properties of in situ composite NiAl-Al ₂ O ₃ -TiC.	1692-1695A
Characterization of scales obtained during continuous nickel laterite pilot-plant leaching.	1175-1186B	Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material.	2369-2376A
Activated sintering		Near-net-shape forming of Al-Al ₃ Ni functionally graded material	
Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering.	747-753A	over eutectic melting temperature. Aluminides, Crystal growth	2627-2636A
Adhesion, Coating effects Effects of sulfur on the fatigue and fracture resistance of inter-		Effects of boron doping on the grain-growth kinetics and mechanical properties of γ/γ' nickel-aluminum alloys.	3179-3186A
faces between γ -Ni(Cr) and α -Al ₂ O ₃ . Adhesion, Composition effects	1977-1983A	Aluminides, Diffusion An interdiffusion study of a NiAl alloy using single-phase diffu-	
Microstructure and formability of ZnNi alloy electrodeposited	.== .0= .	sion couples.	1519-1524A
sheet steel. Aerospace engines, Mechanical properties Role of foreign-object damage on thresholds for high-cycle	475-485A	Aluminides, Electrochemistry Prediction of properties of intermetallics using a chemical bond- ing model.	603-607B
fatigue in Ti-6AI-4V.	1571-1583A	Aluminides, Mechanical properties	
Agglomeration, Processing effects Sintering behavior of nanocrystalline γ-Ni-Fe powders.	503-510A	The fracture resistance of a binary TiAl alloy. Mechanical behavior of a fine-grained duplex \(\gamma^TiAl alloy. Creep properties of Ni ₃ (AlTiTa) \(\gamma^*\) phase single crystals.	71-80A 1007-1016A 1733-1740A
Aging (artificial) Part II. Metallurgical factors governing the H-assisted integranu-	04.004	The effect of impact damage on the room-temperature fatigue behvior of γ-TiAl.	1741-1752A
lar cracking of peak-aged Ti-3AI-8V-6Cr-4Mo-4Zr (Beta-C). Differential scanning calorimetry and electron diffraction investi- gation on low-temperature aging in AI-Zn-Mg alloys.	81-92A 339-348A	A comparison study of microstructure and mechanical proper- ties of Ti-24Al-14Nb-3V-0.5Mo with and without Si.	2205-2217A
Influence of aging on transformation characteristics in shape		Creep deformation of TiAl-Si alloys with aligned γ/α ₂ lamellar microstructures.	2463-2473A
memory CuZnAl alloys. Effect of mean stress (stress ratio) and aging on fatigue-crack	349-354A	Dynamic fracture toughness of a Ti-45Al-1.6Mn alloy at high temperature.	3053-3061A
growth in a metastable beta titanium alloy, Ti-10V-2Fe-3Al. Displacive transformations in Au-18 wt.% Cu-6 wt.% Al.	703-714A 1917-1923A	Aluminides, Microstructure	2127-2134A
Influence of thermal aging on the reactivity of duplex stainless steel surfaces.	2015-2024A	Recovery and ordering in cold-rolled boron-doped Ni ₇₆ Al ₂₄ . Evolution of texture in the B(B2) phase of a two phase titanium	2339-2350A
Microstructure and mechanical behavior of spray-deposited Al- Cu-Mg(-Ag-Mn) alloys.	2287-2298A	aluminide intermetallic alloy Ti-24Al-11Nb. Discussion of "Surface relief and the displactive transformation"	2335-2330A
Discussion of "Surface relief and the displacive transformation to the lamellar microstructure in TiAl" and "Nanometer-scale, fully lamellar microstructure in a page TiAl hased allow"	2377-2379A	to the lamellar microstructure in TiAI" and "Nanometer-scale, fully lamellar microstructure in an aged TiAI-based alloy". Author's reply to: Discussion of "Surface relief and the displa-	2377-2379A
fully lamellar microstructure in an aged TiAl-based alloy". Author's reply to: Discussion of "Surface relief and the displa- cive transformation to the lamellar microstructure in TiAl" and	2011-2010A	cive transformation to the lamellar microstructure in TiAl" and "Nanometer-scale, fully lamellar microstructure in an aged	
"Nanometer-scale, fully lamellar microstructure in an aged TiAl-based alloy".	2379-2383A	TiAl-based alloy". Interaction of deformation twin and 120°-rotational order fault	2379-2383A
Catalyzed precipitation in Al-Cu-Si. Spontaneous deformation during aging under stress in a cop-	2697-2711A	domain boundary in the lamellar structure of two-phase TiAl- based alloys.	2823-2834A
per-beryllium alloy.	2765-2771A	Aluminides, Oxidation	
Aging (artificial), Alloying effects Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-		Formation of pegs during high-temperature oxidation of Fe ₃ Al containing yttnum.	1685-1687A
 (N) superaustenitic stainless steels aged at 900°C. Precipitation processes in Al-Cu-Mg alloys microalloyed with Si. 	1713-1723A 2721-2733A	Diffusion of oxygen in the Al ₂ O ₃ oxidation product of TiAl ₃ . Aluminides. Powder technology	3023-3028A
Aging (artificial), Composition effects Effects of Cu content and preaging on precipitation characteris-		Microstructural evolution in wire-drawn Ti-22Al-26Nb powder. Aluminides, Rolling	2931-2941A
tics in aluminum alloy 6022. Aging (artificial), Deformation effects	361-371A	Deformation behavior of a Ni ₃ Al(B,Zr) alloy during cold rolling. I. Changes in order and structure.	3001-3010A
A model for predicting the effect of deformation after solution treatment on the subsequent artificial aging behavior of	0007 00004	Deformation behavior of a Ni ₃ Al(B,Zr) alloy during cold rolling. II. Microstructural and textural changes.	3011-3021A
AA7030 and AA7108 alloys. Aircraft components, Mechanical properties	2327-2338A	Aluminizing Effect of prealuminizing diffusion treatment on microstructural	
The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8	1005 10701	evolution of high-activity Pt-aluminide coatings. Aluminizing, Alloving effects	2037-2047A
wt.% Li AF/C-458 Al-Li-C-X alloys. Alkali metals, Reactions (chemical)	1965-1976A	The influence of additions of Nb and Cr on the aluminizing behavior of TiAl alloy.	2391-2394A
Phase diagram study for the alkali metal-oxychloride system.	795-799B	Aluminothermic reactions	
Allotropic transformation, Deformation effects Computer simulation of the initial rafting process of a nickel-		Contactless electrochemical reduction of titanium (II) chloride by aluminum.	713-721B

Aluminum, Alloying additive Effects of aluminum, silicon, and boron on the dissolution rate		alloys. Aluminum base alloys, Coatings	3167-3178A
of nitrogen into molten iron. Aluminum, Alloying elements	899-904B	Dynamic reactive wetting and its role in hot dip coating of steel sheet with an Al-Zn-Si alloy.	1069-1079B
Design of quaternary Ir-Nb-Ni-AI refractory superalloys. The effect of aluminum content on the corrosion behavior of Fe-AI alloys in reducing environments at 700°C.	173-178A 1805-1817A	Aluminum base alloys, Composite materials Thermal activation of fatigue damage.	63-69A
The role of solute in grain refinement of magnesium. Aluminum, Binary systems	2895-2906A	On the infiltration behavior of Al, Al-Li, and Mg melts through SiC, bed. The effect of matrix microstructure on the tensile and fatigue	319-325A
Evaporation behavior of aluminum during the cold crucible induction skull melting of titanium aluminum alloys.	837-844B	behavior of SiC particle-reinforced 2080 Al matrix compos- ites.	531-540A
Aluminum, Casting Finding boundary conditions: a coupling strategy for the model-		Optimum parameters for wetting silicon carbide by aluminum alloys.	565-573A
ing of metal casting processes. I. Experimental study and correlation development. Finding boundary conditions: a coupling strategy for the model-	75-86B	Effect of volume fraction of SiC _p reinforcement on the process- ing maps for 2124 AI matrix composites. Effect of albite particles on the coefficient of thermal expansion	629-639A
ing of metal casting processes. II. Numerical study and analysis.	87-96B	behavior of the Al6061 alloy composites. Deformation and fracture of a particle-reinforced aluminum	773-780A 921-936A
Númerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: "Numerical studies of the motion of spheroidal parti-	855-866B	alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Modeling. The interactive role of inclusions and SiC reinforcement on the	937-950A
cles flowing with liquid metals through an electric sensing zone".	1143B	high-cycle fatigue resistance of particle reinforced metal matrix composites.	951-957A
Aluminum, Composite materials Simulation of metal-matrix composite isothermal infiltration pro-		The quasi-static and cyclic fatigue fracture behavior of 2014 aluminum alloy metal-matrix composites.	959-974A
cessing. Particulate penetration into solid droplets.	225-234B 387-396A	Nucleation on ceramic particles in cast metal-matrix compos- ites.	1295-1304A
Further discussion of "Particle engulfment and pushing by solidifying interfaces. II. Microgravity experiments and theo-	4005 47004	Plastic flow behavior during the forging of a 6061 Al/10 vol% Al ₂ O3(p) composite.	1310-1313A
retical analysis". Authors' reply to: Further discussion of "Particle engulfment and pushing by solidifying interfaces: II. Microgravity experi-	1695-1700A	Microstructure and properties of in situ Al/TiB ₂ composite fabri- cated by in-melt reaction method. Porosity nucleation in metal-matrix composites.	1959-1964A 2069-2074A
ments and theoretical analysis". A dynamic model for the interaction between a solid particle	1700-1704A	Effect of particle-size distribution on the properties of high-vol- ume-fraction SiC _p -Al-based composites.	2351-2359A
and an advancing solid/liquid interface. Near-net-shape forming of Al-Al ₃ Ni functionally graded mate- rial over eutectic melting temperature.	2559-2568A 2627-2636A	Modification of the interface in SiC/Al composites. Study of 6061-Al ₂ O _{3p} composites produced by reciprocating extrusion.	2361-2368A 2587-2596A
Aluminum, Crystal growth	2027-2000A	Aluminum base alloys, Crystal growth	1599-1610A
Measurements, simulations, and analyses of instantaneous heat fluxes from solidifying steels to the surfaces of twin roll casters and of aluminum to plasma-coated metal substrates.	1031-1047B	Solidification characteristics of the Al-8.3Fe-0.8V-0.9Si alloy. Aluminum base alloys, Directional solidification A model of the interfacial heat-transfer coefficient during unidi-	
Aluminum, Extraction Formation of aluminum titanate-mullite composite from bauxite		rectional solidification of an aluminum alloy. Effect of increased growth velocity on the growth temperature	285-295B
red mud. Solutions of iron oxides in molten cryolite.	551-553B 609-613B	of the Al-Al ₂ Cu eutectic. Aluminum base alloys, Electrochemistry	327-328A
Melt penetration and chemical reactions in 16 industrial alumi- num carbon cathodes. On the mechanism of the anode effect in aluminum electroly-	1213-1224B	Contactless electrochemical reduction of titanium (II) chloride by aluminum.	713-721B
sis. A new approach to numerical simulation of melt flows and	1225-1230B	Aluminum base alloys, Heat treatment A model for predicting the effect of deformation after solution	
interface instability in Hall-Héroult cells. Some generalities in the analyses of equilibria in ionic solutions.	1541-1550B 2105-2118A	treatment on the subsequent artificial aging behavior of AA7030 and AA7108 alloys. Aluminum base alloys, Mechanical properties	2327-2338A
Aluminum, Extrusion Flow behavior of the billet surface layer in porthole die extru-	2103-2116A	Effect of intermediate annealng on texture evolution and plastic anisotropy in an Al-Mg autobody alloy.	99-107A
sion of aluminum. Aluminum, Microstructure	1635-1643A	Stress-strain response of a cast 319-T6 aluminum under thermomechanical loading.	139-151A
Through-thickness texture gradients in cold-rolled aluminum. Aluminum, Physical properties	1653-1662A	Effects of strain rate and anisotropy on the tensile deformation properties of extruded AlZnMg alloys. Simulation of shear plugging through thin plates using the	669-678A
Numerical simulation of the flow and the solid transport when tilting a holding furnace.	207-214B	GRIM Eulerian hydrocode. Interactions between mechanical and environmental variables for short fatigue cracks in a 2024-T3 aluminum alloy in 0.5M	853-860A
Aluminum, Powder technology Preparation and mechanical properties of highly densified nanocrystalline Al.	1017-1024A	NaCl solutions. Ultrasonic attenuation peak in steel and aluminum alloy during	1025-1034A
Aluminum, Refining	1017 102474	rotating bending fatigue. Heat generation during the fatigue of a cellular Al alloy.	1121-1128A 1129-1136A
A mathematical model of aluminum depth filtration with ceramic foam filters. I. Validation for short-term filtration. A mathematical model of aluminum depth filtration with	491-502B	Effect of testing frequency on the corrosion fatigue of a squeeze-cast aluminum alloy. Near-threshold fatigue crack growth behavior of 2195 alumi-	1137-1145A
ceramic foam filters. II. Application to long-term filtration. Aluminum, Ternary systems	503-513B	num-lithium alloy—prediction of crack propagation direction and influence of stress ratio.	1531-1541A
Examination of solidification pathways and the liquidus surface n the Nb-Ti-Al system.	1305-1321B	Effect of strain rate on damage evolution in a cast Al-Si-Mg base alloy.	1725-1731A
Aluminum, Weiding Unsteady Marangoni flow in a molten pool when welding dis-	1007 11005	The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8 wt.% Li AF/C-458 AI-Li-C-X alloys.	1965-1976A
similar metals. Aluminum base alloys, Atomic properties	1387-1403B	Effect of long-term room-temperature storage on the structure and properties of glassy melt-spun Mg-Al-Ca alloys.	2155-2162A
The atomic-structure changes in Al-16% Si alloy above the liq- uidus.	2163-2168A	High-temperature creep of an Al-8.5Fe-1.3V-1.7Si alloy pro- cessed by rapid solidification.	2229-2237A
Aluminum base alloys, Brazing Development of a low-melting-point filler metal for brazing aluminum alloys.	2239-2245A	Microstructure and mechanical behavior of spray-deposited Al- Cu-Mg(-Ag-Mn) alloys. Microstructural effects on fracture toughness in AA7010 plate.	2287-2298A 2503-2515A
Aluminum base alloys, Casting Finding boundary conditions: a coupling strategy for the model		Enhanced densification of cavitated dispersion-strengthened aluminum by thermal cycling. Creep rupture mechanisms in annealed and overheated 7075	2647-2657A
ing of metal casting processes. I. Experimental study and correlation development. Finding boundary conditions: a coupling strategy for the model ing of metal casting processes. II. Numerical study and analysis.		Al under multiaxial stress states. Aluminum base alloys, Metal working Equal-channel angular pressing of commercial aluminum	2807-2821A
ysis. Prevention of macrodefects in squeeze casting of an Al-7 wt.%	87-96B	alloys: grain refinement, thermal stability and tensile properties.	691-701A
Si alloy. Two-phase modeling of mushy zone parameters associated	297-305B	Aluminum base alloys, Microstructure Microstructural characterization of a rapidly solidified ultrahigh	007 04 11
with hot tearing. Determination of thermophysical properties and boundary con- ditions of direct chill-cast aluminum alloys using inverse		strength Al _{94,5} Cr ₅ Co _{1,5} Ce ₁ alloy. Effects of the intensity and frequency of electromagnetic vibra- tions on the microstructural refinement of hypoeutectic Al-Si	
methods. Correlation between unsteady-state solidification conditions,	1627-1634A	alloys. Evolution of texture and grain misorientation in an Al-Mg alloy	755-762A
dendrite spacings, and mechanical properties of Al-Cu		exhibiting low-temperature superplasticity.	2169-2180A

Aluminum base alloys, Oxidation	****	roidization of 52100 steel.	2431-2438A
Diffusion of oxygen in the Al ₂ O ₃ oxidation product of TiAl ₃ . Aluminum base alloys, Phase transformations Differential scanning calorimetry and electron diffraction inves-	3023-3028A	Creep rupture mechanisms in annealed and overheated 7075 Al under multiaxial stress states. Arc spraying	2807-2821A
tigation on low-temperature aging in Al-Zn-Mg alloys. Effects of Cu content and preaging on precipitation characteris-	339-348A	Effect of fiber volume fraction on the fracture behavior of Nb-1 wt.% Zr/218W composites at elevated temperatures.	873-887A
tics in aluminum alloy 6022. Nature of precipitates and constituent particles present in a ter-	361-371A	Arc welding Thermal analysis of the arc welding process. I. General solu-	
nary Al-Ge-Si alloy. Catalyzed precipitation in Al-Cu-Si.	2093-2097A 2697-2711A	tions. Improved microstructure and properties of 6061 aluminum	1353-1370B
An experimental investigation on the kinetics of solute driven remelting.	2713-2720A	alloy weldments using a double-sided arc welding process.	2537-2543A
Precipitation processes in Al-Cu-Mg alloys microalloyed with Si.	2721-2733A	Argon, Solubility Argon solubility in molten iron.	216-218B
Aluminum base alloys, Physical properties Experimental difficulties associated with permeability measure-	3149-3153A	Argon solubility in liquid steel. Armor, Mechanical properties Simulation of shear plugging through thin plates using the	913-919B
ments in aluminum alloys. Aluminum base alloys, Powder technology	0140-0100A	GRIM Eulerian hydrocode. Ashes, Reactions (chemical)	853-860A
Processing and microstructural characterization of Al-Cu alloys produced from rapidly solidified powders.	249-260A	Phase diagram study for the alkali metal-oxychloride system. Influence of ash on mass transfer and interfacial reaction	795-799B
An integrated model for dendritic and planar interface growth and morphological transition in rapid solidification.	735-746A	between natural graphite and liquid iron.	1099-1104B
Aluminum base alloys, Quality control Numerical calculation of the electromagnetic expulsive force		Atomic structure, Temperature effects The atomic-structure changes in Al-16% Si alloy above the liquidus.	2163-2168A
upon nonmetallic inclusions in an aluminum melt. I. Spherical particles.	1527-1533B	Atomizing	
Numerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt. II. Cylindri-		Processing and microstructural characterization of Al-Cu alloys produced from rapidly solidified powders.	249-260A
cal particles. Aluminum base alloys, Sorption	1535-1540B	Monosize droplet deposition as a means to investigate droplet behavior during spray deposition.	1333-1344B
The identification of hydrogen trapping states in an Al-Li-Cu-Zr alloy using thermal desorption spectroscopy.	179-193A	Solute segregation behavior in spray-atomized Pd-Rh-V(Co) powders.	1843-1855A
Aluminum base alloys, Welding		Factors influencing solute segregation of spray-atomized palla- dium alloy powders.	2681-2686A
Dispersoid-free zones in the heat-affected zone of aluminum alloy welds.	1453-1459A	Modeling of spray-formed materials: geometrical consider- ations.	2917-2929A
Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451.	2181-2192A	Austempering Microstructural development and austempering kinetics of duc-	
Improved microstructure and properties of 6061 aluminum alloy weldments using a double-sided arc welding process.	2537-2543A	tile iron during thermomechanical processing. Austenite	2575-2585A
Weld metal ductility in aluminum tailor welded blanks. Aluminum compounds, Crystal growth	2755-2763A	Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures.	1353-1364A
Effect of increased growth velocity on the growth temperature of the Al-Al ₂ Cu eutectic.	327-328A	Austenite, Mechanical properties Load sharing between austenite and ferrite in a duplex stain-	1330-1304A
Aluminum compounds, Phase transformations Influence of aging on transformation characteristics in shape	349-354A	less steel during cyclic loading. Austenitic stainless steels, Casting	1557-1570A
memory CuZnAl alloys. Aluminum killed steels, Heat treatment	349-354A	Mechanisms of initial melt/substrate heat transfer pertinent to strip casting.	1023-1030B
Modeling of dissolution, growth, and coarsening of aluminum nitride in low-carbon steels.	1907-1916A	Austenitic stainless steels, Coating	1020 10000
Aluminum killed steels, Steel making Behavior of nonmetallic inclusions in front of the solid-liquid		Surface amorphous and crystalline microstructure by alloying zirconium using Nd:YAG pulsed laser.	3123-3127A
interface in low-carbon steels. Aluminum oxide, Coatings	1013-1021B	Austenitic stainless steels, Composite materials The influence of reinforcement particle size distribution on the	200 2104
Effects of sulfur on the fatigue and fracture resistance of inter- faces between γ -Ni(Cr) and α -Al ₂ O ₃ .	1977-1983A	mechanical behavior of a stainless steel/TiN composite. Austenitic stainless steels, Corrosion	309-318A
Aluminum oxide, Composite materials Thermal activation of fatigue damage.	63-69A	Role of Mo and W during sensitization of superaustenitic stain- less steel—crystallography and composition of precipitates.	1893-1905A
Simulation of metal-matrix composite isothermal infiltration pro- cessing.		Austenitic stainless steels, Crystal growth Thermodynamic-kinetic simulation of constrained dendrite	
Particulate penetration into solid droplets. The quasi-static and cyclic fatigue fracture behavior of 2014	387-396A	growth in steels. Austenitic stainless steels, Heat treatment	365-379B
aluminum alloy metal-matrix composites. Plastic flow behavior during the forging of a 6061 Al/10 vol%	959-974A	Study of microstructure of low-temperature plasma-nitrided AISI 304 stainless steel.	1193-1199A
Al ₂ O3(p) composite. Reaction synthesis, microstructure, and mechanical properties	1310-1313A	Austenitic stainless steels, Mechanical properties	1100 110011
of in situ composite NiAl-Al ₂ O ₃ -TiC. Microstructure and properties of in situ Al/TiB ₂ composite fabri-	1692-1695A	Mechanical properties of austenitic stainless steel single crys- tals: influence of nitrogen and hydrogen content.	153-161A
cated by in-melt reaction method. Porosity nucleation in metal-matrix composites.	1959-1964A 2069-2074A	A model for creep-fatigue interaction in terms of crack-tip stress relaxation.	1761-1775A
Study of 6061-Al ₂ O _{3p} composites produced by reciprocating extrusion.	2587-2596A	Experimental studies on tribological properties of pseudoelas- tic TiNi alloy with comparison to stainless steel 304.	2773-2783A
Aluminum oxide, Powder technology Improved densification of carbonyl iron compacts by the addi-		Austenitic stainless steels, Microstructure The effect of cooling rate on the microstructures formed during	0.455
tion of fine alumina powders.	1645-1652A	solidification of ferritic steel. Austenitic stainless steels, Welding	3155-3166A
Aluminum oxide, Reactions (chemical) Phase diagram for the system CaO-Al ₂ O ₃ -ZrO ₂ . Kinetics of Al ₂ O ₃ dissolution in CaO-MgO-SiO ₂ -Al ₂ O ₃ slags: in	25-33B	Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals.	1175-1185A
situ observations and analysis.	406-410B	Relation between microstructure, composition, and hot cracking in Ti-stabilized austenitic stainless steel weldments.	3109-3122A
On the mechanism of the anode effect in aluminum electrolysis.	1225-1230B	Austenitizing, Diffusion effects	
Aluminum oxide, Solubility Solutions of iron oxides in molten cryolite.	609-613B	On the mobility of the austenite-ferrite interface in Fe-Co and Fe-Cu.	379-385A
Amorphization Ideal and cooperative bond-lattice representations of excita-		Automotive bodies, Mechanical properties Effect of intermediate annealng on texture evolution and plastic	10.7104
tions in glass-forming liquids: excitation profiles, fragilities,	587-596B	anisotropy in an Al-Mg autobody alloy. Dynamic materials testing, texture, and yield-surface calcula-	99-107A
and phase transitions. Amorphous structure, Processing effects	307-3300	tion of an automotive sheet steel. Automotive components, Heat treatment	2439-2448A
Microstructural characterization of a rapidly solidified ultrahigh strength Al _{94.5} Cr ₃ Co _{1.5} Ce ₁ alloy.	607-614A	Dynamic bake hardening of interstitial-free steels.	1375-1384A
Annealing Effect of intermediate annealing on texture evolution and plastic		Backward extrusion Thin-wall back extrusion of partially remelted semi-solid Sn-Pb. Near-net-shape forming of Al-Al ₃ Ni functionally graded mate-	57-62A
anisotropy in an Al-Mg autobody alloy. Grain boundary faceting and abnormal grain growth in nickel.	99-107A 985-994A	rial over eutectic melting temperature.	2627-2636A
Influence of annealing conditions on the galvanizability and galvannealing properties of TiNb interstitial-free steels,		Bake hardenable steels, Heat treatment Dynamic bake hardening of interstitial-free steels.	1375-1384A
strengthened with phosphorous and manganese. The role of the divorced eutectoid transformation in the sphe-	1225-1232A	Baking Dynamic bake hardening of interstitial-free steels.	1375-1384A

Ball milling Synthesis of nanostructured WC-12%Co coating using mechanical milling and high velocity oxygen fuel thermal		Bismuth compounds, Electrochemistry Thermodynamic and nonstoichiometric behavior of promising Hi-Tc cuprate systems via electromotive force measure-	
spraying. Synthesis of nanostructured Cr ₃ C ₂ -25(Ni20Cr) coatings. Neutron diffraction and phase evolution of the mechanically	541-553A 555-564A	ments: a short review. Blast furnace practice Developments in blast furnace process control at Port Kembla	661-666B
alloyed intermetallic compound ξ-FeZn ₁₃ . Thermal transformations in mechanically alloyed Fe-Zn-Si	2739-2745A	based on process fundamentals. Bonding	993-1003B
materials. Ballistics	2747-2754A	Transient liquid-phase bonding in two-phase ternary systems.	1187-1192A
Simulation of shear plugging through thin plates using the GRIM Eulerian hydrocode.	853-860A	Bonding strength The role of plasticity in bimaterial fracture with ductile interlayers.	863-872A
Barium compounds, Electrochemistry Thermodynamic and nonstoichiometric behavior of promising Hi-Tc cuprate systems via electromotive force measure-		Boron, Alloying additive Effects of aluminum, silicon, and boron on the dissolution rate of nitrogen into molten iron.	899-904B
ments: a short review. Barkhausen effect, Microstructural effects Insight into the microstructural characterization of ferritic steel	661-666B	Atom probe field ion microscopy investigation of boron contain- ing martensitic 9% chromium steel.	975-984A
using micromagnetic parameters. Basic converters	1053-1065A	Boron, Binary systems Measurement of the activity of boron in liquid copper using a four-phase equilibrium technique.	2674-2678A
Equilibria involving the reciprocal spinel solid solution (Mg _x Fe ₁ , _x)(Al _y Cr ₁ , _y) ₂ O ₄ : modeling and experiment. Spinel-corundum equilibria and activities in the system MgO-	1247-1259B	Boron, Dopants Dilatometry study of the sintering behavior of boron-alloyed Fe-	
Al ₂ O ₃ -Cr ₂ O ₃ at 1473K. Bauschinger effect	1323-1332B	1.5% Mo powder. Recovery and ordering in cold-rolled boron-doped Ni ₇₆ Al ₂₄ . Effects of boron doping on the grain-growth kinetics and	1497-1506A 2127-2134A
Analysis and prevention of yield strength drop during spiral pip- ing of two high-strength API-X70 steels.	2669-2674A	mechanical properties of γ/γ nickel-aluminum alloys. Boron, Impurities	3179-3186A
Bauschinger effect, Composition effects Influence of elastic inclusion morphology and matrix hardening behavior on Bauschinger effect in metal matrix composites.	2943-2948A	Microstructural characterization and analysis of inclusions in C- Mn steel and weld metals.	615-628A
Bauxite, Reduction (chemical) Formation of aluminum titanate-mullite composite from bauxite	554 5500	Boundary element method Equilibrium shape of a molten silicon drop in an electromag- netic levitator in microgravity environment.	327-329B
red mud. Bayer process Formation of aluminum titanate-mullite composite from bauxite	551-553B	Brazing alloys, Materials selection Development of a low-melting-point filler metal for brazing aluminum alloys.	2239-2245A
red mud. BCC metals, Microstructure	551-553B	Brittle fracture, Coating effects Growth of a Au-Ni-Sn intermetallic compound on the solder-	2200 22-10/1
Yield vertices for {123}<111> multiple slip. Bearing steels, Phase transformations	2449-2456A	substrate interface after aging. Brittle fracture, Microstructural effects	798-800A
The role of the divorced eutectoid transformation in the sphe- roidization of 52100 steel.	2431-2438A	The mechanism of brittle fracture in a microalloyed steel. I. Inclusion-induced cleavage.	641-652A
Bearing strength, Deformation effects Synchrotron x-ray study of bulk lattice strains in externally	2040 20624	The mechanism of brittle fracture in a microalloyed steel. II. Mechanistic modeling.	653-667A
loaded Cu-Mo composites. Bend strength, Composition effects Effect of particle-size distribution on the properties of high-vol-	2949-2962A	Brittle fracture, Processing effects A new criterion for internal crack formation in continuously cast steels.	779-794B
ume-fraction SiC _p -Al-based composites. Bending fatigue	2351-2359A	Bronzes, Casting Effects of processing variables on the microsegregation of	
Ultrasonic attenuation peak in steel and aluminum alloy during rotating bending fatigue.	1121-1128A	directionally cast samples. Bronzes, Composite materials Tribological properties of centrifugally cast copper alloy-graph-	3137-3148A
Beryllium base alloys, Microstructure Microstructural characterization of novel in-situ Al-Be compos- ites.	2963-2971A	ite particle composite. Bronzes, Heat treatment	1283-1293A
Billet casting Melt flow control in a multistrand tundish using a turbulence		Spontaneous deformation during aging under stress in a cop- per-beryllium alloy.	2765-2771A
inhibitor. Billets, Extrusion	1505-1515B	Bubbles Argon solubility in molten iron.	216-218B
Flow behavior of the billet surface layer in porthole die extru- sion of aluminum.	1635-1643A	X-ray fluoroscópy observations of bubble formation and separation at a metal-slag interface. Cadmium, Binary systems	537-540B
Binary systems, Phase transformations A numerical and experimental study of the rate of transformation in three directionally grown peritectic systems.	29-34A	A numerical and experimental study of the rate of transforma- tion in three directionally grown peritectic systems.	29-34A
tion in three directionally grown peritectic systems. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys. Driving force for y→e martensitic transformation and stacking	277-284B	A model of convection-induced oscillatory structure formation in peritectic alloys.	1233-1246A
fault energy of γ in Fe-Mn binary system. On the mobility of the austenite-ferrite interface in Fe-Co and	355-360A	Calcium, Alloying additive The role of solute in grain refinement of magnesium.	2895-2906A
Fe-Cu. Evaporation behavior of aluminum during the cold crucible	379-385A	Calcium, Reactions (chemical) Activity measurement of the constituents in liquid Cu-Mg and	
induction skull melting of titanium aluminum alloys. A model of convection-induced oscillatory structure formation in peritectic alloys.	837-844B 1233-1246A	Cu-Ca alloys with mass spectrometry. Activity of calcium in dilute liquid Si-Ca alloy.	927-935B 1267-1272B
A model for nonclassical nucleation of solid-solid structural phase transformations.	1321-1331A	Calcium compounds, Transport properties The ionic properties of CaSiO ₃ melt.	1241-1245B
Coarsening of intermetallic or compound precipitates in binary systems. Binary systems, Phases (state of matter)	3195-3197A	Calendering Modeling of microstructure and residual stress in cast iron cal- ender rolls.	1201-1211A
Eutectic interface configurations during melting. On the Gibbs-Thomson effect in concentrated binary systems. Measurement of the activity of boron in liquid copper using a	1261-1269A 2659-2661A	Carbides, Alloying effects Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo- (N) superaustenitic stainless steels aged at 900°C.	1713-1723A
four-phase equilibrium technique. Binder removal	2674-2678A	Carbides, Crystal growth Modeling of dissolution, growth, and coarsening of aluminum	
Length change and deformation of powder injection-molded compacts during solvent debinding.	1473-1478A	nitride in low-carbon steels. Quantitative approach to coagulation, coalescence, and	1907-1916A
Simulation of polymer removal from a powder injection molding compact by thermal debinding.	2597-2606A	polygonization of carbides in the NCWV/D3 tool steel. Carbon, Alloying elements	2661-2665A
Bismuth, Binary systems A model of convection-induced oscillatory structure formation in peritectic alloys.	1233-1246A	Strength and formability of ultra-low-carbon Ti-IF steels. Carbon, Diffusion A Scheil-Gulliver model with back-diffusion applied to the	1305-1307A
Bismuth, Reactions (chemical) Dissolution of lead and bismuth in white metal (CuS _{0.5}) at		microsegregation of chromium in Fe-Cr-C alloys. Carbon, Oxidation	1682-1684A
matte-smelting temperatures. Bismuth base alloys, Casting Control of the microstructure changed in static	543-546B	Kinetics of oxidation of carbonaceous materials by CO ₂ and H ₂ O between 1300° and 1500°C.	43-54B
A comparative study of the microstructures observed in stati- cally cast and continuously cast Bi-In-Sn ternary eutectic alloy.	239-248A	Carbon, Reactions (chemical) Thermodynamics of surfaces and adsorption in the Fe-C-S-O system.	267-276B

		Omonium morybaenam steet	,
Melt penetration and chemical reactions in 16 industrial aluminum carbon cathodes. A model for the role of carbon on carbochlorination of TiO ₂ .	1213-1224B 1439-1446B	based on the interaction of free surface flow, heat transfer, and solidification phenomena. Catalysis	515-527B
A Monte Carlo simulation study of dissolution of graphite in iron-carbon melts. Carbon, Solubility	1517-1525B	Effect of a catalyst on the kinetics of reduction of celestite (SrSO ₄) by active charcoal. Catalyzed precipitation in Al-Cu-Si.	35-41B 2697-2711A
Dissolution rates of coals and graphite in Fe-C-S melts in direct ironmaking: dependence of carbon dissolution rate on car- bon structure.	215-216B	Catalysts, Materials selection Effect of a catalyst on the kinetics of reduction of celestite (SrSO ₄) by active charcoal.	35-41B
Carbon manganese steels, Mechanical properties Influence of alloying elements on the strain rate and tempera- ture dependence of the flow stress of steels.	825-830A	Cathodes, Reactions (chemical) Melt penetration and chemical reactions in 16 industrial aluminum carbon cathodes.	1213-1224B
Carbon manganese steels, Rolling Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply alloyed Cr-Mo, and plain C-Mn steels.	511-530A	Cavitation On methane generation and decarburization in low-alloy Cr-Mo steels during hydrogen attack.	125-137A
Carbon manganese steels, Welding Microstructural characterization and analysis of inclusions in C- Mn steel and weld metals.	615-628A	steels during hydrogen attack. An analysis of the effect of cavity nucleation rate and cavity coalescence on the tensile behavior of superplastic materials.	1425-1434A
Carbon monoxide, Reactions (chemical) Kinetics of manganese ore reduction by carbon monoxide.	477-490B	Cellular structure Heat generation during the fatigue of a cellular Al alloy.	1129-1136A
Carbon steels, Cladding Microstructural evolution during laser cladding of M2 high- speed steel.	2615-2625A	Cellular structure, Coating effects Microstructural evolution during laser cladding of M2 high- speed steel.	2615-2625A
Carbon steels, Heat treatment Microstructural analysis of vanadium carbide/steel surface- alloyed materials fabricated by high-energy electron-beam irradiation.	2849-2855A	Cemented carbides, Coatings Synthesis of nanostructured WC-12%Co coating using mechanical milling and high velocity oxygen fuel thermal	541-553A
Carbon steels, Mechanical properties Dynamic materials testing, texture, and yield-surface calcula-		spraying. Synthesis of nanostructured Cr ₃ C ₂ -25(Ni20Cr) coatings. Cemented carbides, Crystal growth	555-564A
tion of an automotive sheet steel. Carbon steels, Phase transformations Kinetics of peritectic reaction and transformation in Fe-C	2439-2448A	Anisotropic grain growth based on the atomic adsorption model in WC-25% Co alloy. Cemented carbides, Phases (state of matter)	1925-1935A
alloys. Carbon steels, Steel making Nitrogen alloying of carbon and stainless steels by gas injec-	981-991B	Development of a thermodynamic database for cemented car- bides for design and processing simulations. Cementite, Crystal growth	615-619B
tion. Carbonitrides, Composite materials Development of a thermodynamic database for cemented car-	905-912B	Quantitative approach to coagulation, coalescence, and polygonization of carbides in the NCWV/D3 tool steel. Cementite, Reactions (chemical)	2661-2665A
bides for design and processing simulations. Carbonitriding	615-619B	Effect of temperature on cementite formation by reaction of iron ore with H ₂ -CH ₄ -Ar gas. Centrifugal casting	1139-1142B
Microstructural and compositional evolution of compound lay- ers during gaseous nitrocarburizing. Erratum: Microstructural and compositional evolution of com-	195-211A	Tribological properties of centrifugally cast copper alloy-graphite particle composite.	1283-1293A
pound layers during gaseous nitrocarburizing. Carbonyls, Powder technology	801A	The atomic-structure changes in Al-16% Si alloy above the liq- uidus.	2163-2168A
Preparation of high porosity metal foams. Cast iron, Casting Modeling of microstructure and residual stress in cast iron cal-	1345-1352B	Centrifugal castings, Mechanical properties Tribological properties of centrifugally cast copper alloy-graphite particle composite.	1283-1293A
ender rolls. Cast iron, Mechanical properties Effect of nodularity on resonant vibration fracture behavior in	1201-1211A	Chalcopyrite, Solubility Galvanic interaction between chalcopyrite and manganese dioxide in sulfuric acid medium.	55-61B
upper bainitic and ferritic cast irons. Cast iron, Phases (state of matter) Phase analysis of two steel work rolls using Mössbauer spec-	2193-2203A	Chill castings, Crystal growth Two-phase modeling of mushy zone parameters associated with hot tearing.	1461-1472A
troscopy. Cast iron, Reactions (chemical) A Monte Carlo simulation study of dissolution of graphite in	793-798A	Chills, Physical properties A model of the interfacial heat-transfer coefficient during unidi- rectional solidification of an aluminum alloy.	285-295B
iron-carbon melts. Casting Microstructural characterization of novel in-situ Al-Be compos-	1517-1525B	Chills, Thermal properties Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. I. Theory and experiments.	331-343B
ites. Casting alloys, Crystal growth	2963-2971A	Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. II. Computation of interden- dritic strain and segregation fields in steel ingots.	345-355B
Solidification characteristics of the Al-8.3Fe-0.8V-0.9Si alloy. Casting alloys, Mechanical properties Stress-strain response of a cast 319-T6 aluminum under ther-	1599-1610A	Chlorination The study of chlorination kinetics of copper (I) sulfide by cal-	
momechanical loading. Casting defects	139-151A	cium chloride in the presence of oxygen. A model for the role of carbon on carbochlorination of TiO ₂ . Chromium, Alloying additive	723-731B 1439-1446B
Prevention of macrodefects in squeeze casting of an Al-7 wt.% Si alloy. A computational model for defect prediction in shape castings	297-305B	Theoretical and experimental investigations of electron beam surface remelting and alloying. The influence of additions of Nb and Cr on the aluminizing	1405-1417B
based on the interaction of free surface flow, heat transfer, and solidification phenomena. Freckle formation and freckle criterion in superalloy castings.	515-527B 801-811B	behavior of TiAl alloy. Chromium, Alloying elements	2391-2394A
Depth of oscillation marks forming in continuous casting of steel. Development of a freckle predictor via Rayleigh number	813-826B	Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy. Chromium, Diffusion	581-584A
method for single-crystal nickel-base superalloy castings. Casting defects, Processing effects Aluminum volatilization and inclusion removal in the electron	2545-2557A 845-854B	A Scheil-Gulliver model with back-diffusion applied to the microsegregation of chromium in Fe-Cr-C alloys. Chromium, Peactions (chemical post) The effects of alkaling earth model loss and halosen ions on	1682-1684A
beam cold hearth melting of Ti alloys. Casting machines, Thermal properties Mechanisms of initial melt/substrate heat transfer pertinent to	1023-1030B	The effects of alkaline earth metal ions and halogen ions on the chromium oxide activities in alkaline earth metal oxide- halide-Cr ₂ O ₃ system fluxes.	469-475B
strip casting. Castings, Crystal growth Measurements, simulations, and analyses of instantaneous	1023-10300	Chromium, Ternary systems Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system. Chromium malukdroum steels Magnetic properties.	1795-1803A
heat fluxes from solidifying steels to the surfaces of twin roll casters and of aluminum to plasma-coated metal substrates. Castings, Microstructure	1031-1047B	Chromium molybdenum steels, Magnetic properties Insight into the microstructural characterization of ferritic steel using micromagnetic parameters.	1053-1065A
Monte Carlo sampling for microsegregation measurements in cast structures. Effects of processing variables on the microsegregation of	2569-2574A	Chromium molybdenum steels, Mechanical properties On methane generation and decarburization in low-alloy Cr-Mo steels during hydrogen attack. Influence of alloying elements on the strain rate and tempera-	125-137A
directionally cast samples.	3137-3148A	intuiance of alloying elements on the strain rate and tempera-	

Chromium molybdenum steels, Surface finishing	g		Volume 31
Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply alloyed Cr-Mo, and plain C-Mn steels.	511-530A	transition in lead-tin alloys. On convection in mushy phase and its effect on macrosegre-	1611-1625A
Chromium molybdenum steels, Surface finishing Macroscopic and microscopic evolutions of a shot-peened	213-224A	gation. A two-dimensional model for the description of the columnar- to-equiaxed transition in competing gray and white iron	1687-1692A
layer during isothermal recovery. Chromium molybdenum steels, Welding Three-dimensional Monte Carlo simulation of grain growth in	210-2247	eutectics and its application to calender rolls. Columnar structure, Composition effects	2059-2068A
the heat-affected zone of a 2.25Cr-1Mo steel weld. Relevance of high-temperature oxidation in life assessment	529-536B	Microstructure and formability of ZnNi alloy electrodeposited sheet steel.	475-485A
and microstructural degradation of Cr-Mo steel weldments. Chromium molybdenum vanadium steels, Mechanical properties	3101-3108A	Columnar structure, Processing effects Effects of processing variables on the microsegregation of directionally cast samples.	3137-3148A
A model for creep-fatigue interaction in terms of crack-tip stress relaxation.	1761-1775A	Columnar structure, Vibration effects Effects of the intensity and frequency of electromagnetic vibra-	
Chromium steels, Diffusion A Scheil-Gulliver model with back-diffusion applied to the microsegregation of chromium in Fe-Cr-C alloys.	1682-1684A	tions on the microstructural refinement of hypoeutectic Al-Si alloys. Combustion	755-762A
Chromium steels, Phase transformations The role of the divorced eutectoid transformation in the sphe-		Comparison between sulfide flash smelting and coal combus- tion—with implications for the flash smelting of high-grade concentrate.	1005-1012B
roidization of 52100 steel. Cleavage, Microstructural effects	2431-2438A	Compacting	
The mechanism of brittle fracture in a microalloyed steel. I. Inclusion-induced cleavage.	641-652A	Preparation and mechanical properties of highly densified nanocrystalline Al.	1017-1024A
The mechanism of brittle fracture in a microalloyed steel. II. Mechanistic modeling.	653-667A	Compressive strength, Composition effects Design of quaternary Ir-Nb-Ni-Al refractory superalloys. Compressive strength, Processing effects	173-178A
Coagulation Quantitative approach to coagulation, coalescence, and polygonization of carbides in the NCWV/D3 tool steel.	2661-2665A	Reactive infiltration processing and secondary compressive creep of NiAl and NiAl-W composites.	781-792A
Coal, Reactions (chemical) Dissolution rates of coals and graphite in Fe-C-S melts in direct		An investigation of the synthesis of Ti-50 at.% Ni alloys through combustion synthesis and conventional powder sintering.	1867-1871A
ironmaking: influence of melt carbon and sulfur on carbon dissolution. Coal pyrolysis in a rotary kiln. I. Model of the pyrolysis of a sin-	243-251B	Computer programs A Scheil-Gulliver model with back-diffusion applied to the microsegregation of chromium in Fe-Cr-C alloys.	1682-1684A
gle grain. Coal pyrolysis in a rotary kiln. II. Overall model of the furnace.	381-390B 391-402B	Computer simulation The use of the finite-element method to design an optimized	
Quantifying the heats of coal devolatilization. Cobalt, Binary systems	1125-1131B	tool for the plain-strain punch stretching test. Simulation of metal-matrix composite isothermal infiltration pro-	93-98A
On the mobility of the austenite-ferrite interface in Fe-Co and Fe-Cu.	379-385A	cessing. Thermodynamic-kinetic simulation of constrained dendrite growth in steels.	225-234B 365-379B
A model for nonclassical nucleation of solid-solid structural phase transformations.	1321-1331A	Three-dimensional Monte Carlo simulation of grain growth in the heat-affected zone of a 2.25Cr-1Mo steel weld.	529-536B
Cobalt, Composite materials Development of a thermodynamic database for cemented carbides for design and processing simulations.	615-619B	Fundamental theories and concepts for predicting thermody- namic properties of high temperature ionic and metallic liquid	F70 F00D
Anisotropic grain growth based on the atomic adsorption model in WC-25% Co alloy.	1925-1935A	solutions and vapor molecules. Computer simulation of the initial rafting process of a nickel- base single-crystal superalloy.	579-586B 585-597A
Cobalt, Reactions (chemical) Investigation on reduction of CoAl ₂ O ₄ by hydrogen gas using	540.5400	Development of a thermodynamic database for cemented carbides for design and processing simulations.	615-619B
TGA. Cobalt, Recovering	540-542B 121-128B	Simulation of shear plugging through thin plates using the GRIM Eulerian hydrocode. A process model for the heat-affected zone microstructure evo-	853-860A
The thermodynamics of the Ni-Co-S temary system. Cobalt, Ternary systems The prediction of the hydriding thermodynamics of Pd-Rh-Co	121-1200	lution in duplex stainless steel weldments. II. Application to electron beam welding.	1035-1048A
ternary alloys. Cobalt base alloys, Mechanical properties	667-673B	The ionic properties of ČaSiO ₃ melt. Alpha case thickness modeling in investment castings. Modeling of gas-liquid reactions in ladle metallurgy. II. Numeri-	1241-1245B 1419-1427B
Infrared temperature mapping of ULTIMET alloy during high- cycle fatigue tests.	1307-1310A	cal simulation. Mathematical modeling of the dynamic behavior of gas tung-	1457-1464B
Cobalt base alloys, Microstructure Investigation on the cold deformation strengthening mecha-		sten arc weld pools. A Monte Carlo simulation study of dissolution of graphite in	1465-1473B 1517-1525B
nism in MP 159 alloy. Cobalt base alloys, Phases (state of matter)	5-13A	iron-carbon melts. Residual strains in HY100 polycrystals: comparisons of experiments and simulations.	1543-1555A
Liquidus temperature determination in multicomponent alloys by thermal analysis.	497-501A	Anisotropic grain growth based on the atomic adsorption model in WC-25% Co alloy. Modelng creep and fatigue of copper alloys.	1925-1935A 2491-2502A
Cobalt compounds, Reduction (chemical) Investigation on reduction of CoAl ₂ O ₄ by hydrogen gas using TGA.	540-542B	Monte Carlo sampling for microsegregation measurements in cast structures.	2569-2574A
Coercive force, Microstructural effects Insight into the microstructural characterization of ferritic steel		Transient liquid-phase bonding in the Ni-Al-B system. Effect of computational domain size on the mathematical mod- eling of transport processes and segregation during direc-	2835-2847A
using micromagnetic parameters. Coiling	1053-1065A	tional solidification. Simulation of percolation structure of grain bonding in liquid-	3129-3135A
Microstructural model for hot strip rolling of high-strength low- alloy steels. Coke, Oxidation	1247-1259A	phase sintering by three-dimensional grain structure reconstruction.	3187-3193A
Kinetics of oxidation of carbonaceous materials by ${\rm CO_2}$ and ${\rm H_2O}$ between 1300° and 1500°C.	43-54B	Concentration (composition) Measurement of the activity of boron in liquid copper using a four-phase equilibrium technique.	2674-2678A
Coke, Reactions (chemical) Coal pyrolysis in a rotary kiln. I. Model of the pyrolysis of a single grain.	381-390B	Consolidation Processing and microstructural characterization of Al-Cu alloys produced from rapidly solidified powders.	249-260A
Coal pyrolysis in a rotary kiln. II. Overall model of the furnace. Cold rolling	391-402B	Modeling the reaction synthesis of shock-densified titanium-silicon powder mixture compacts.	
Preparation and mechanical properties of highly densified	1017 10044	Mechanisms, models and simulations of metal-coated fiber consolidation.	1271-1282A
nanocrystalline AI. Through-thickness texture gradients in cold-rolled aluminum. Deformation behavior of a Ni ₃ Ai(B,Zr) alloy during cold rolling.	1017-1024A 1653-1662A	Study of 6061-Al ₂ O _{3p} composites produced by reciprocating extrusion.	2587-2596A
 Changes in order and structure. Deformation behavior of a Ni₃Al(B,Zr) alloy during cold rolling. 	3001-3010A	Containers, Materials selection Grain-boundary chemistry and integranular corrosion in alloy	1100 11701
II. Microstructural and textural changes. Cold rolling, Alloying effects Recovery and ordering in cold-rolled boron-doped Ni ₇₆ Al ₂₄ .	3011-3021A 2127-2134A	825. Continuous cast shapes, Mechanical properties	1163-1173A
Cold working In cold-foliat boron-doped Ni ₇₆ Al ₂₄ . Cold working Investigation on the cold deformation strengthening mecha-	2121 2104A	A new criterion for internal crack formation in continuously cast steels. Continuous cast shapes, Quality control	779-794B
nism in MP 159 alloy. Columnar structure	5-13A	Fluid flow and inclusion removal in continuous casting tundish. Continuous casting	253-266B
Solidification parameters during the columnar-to-equiaxed		Phase diagram for the system CaO-Al ₂ O ₃ -ZrO ₂ .	25-33B

Argon solubility in molten iron.	216-218B	Thermal stability of electroless-nickel/solder interface: B. Inter-	
Prediction of cracks in continuously cast steel beam blank through fully coupled analysis of fluid flow, heat transfer, and defended to be been stated as a few sides of a self-like in a heat transfer.	225-237A	facial fatigue resistance. Copper, Ternary systems	2867-2875A
deformation behavior of a solidifying shell. A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-Sn ternary eutectic	225-237A	Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys. Tin-silver-copper eutectic temperature and composition.	277-284B 1155-1162A
alloy.	239-248A	Copper, Thermal properties Modeling of interdendritic strain and macrosegregation for den-	
Water model study of horizontal molten steel—Ar two-phase jet in a continuous casting mold. Dynamics of the spout of gas plumes discharging from a melt:	453-460B	dritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for den-	331-343B
experimental investigation with a large-scale water model. A new criterion for internal crack formation in continuously cast	461-468B	dritic solidification processes. II. Computation of interden- dritic strain and segregation fields in steel ingots.	345-355B
steels.	779-794B	Mechanisms of initial melt/substrate heat transfer pertinent to	
Two-fluid simulation on the mixed convection flow pattern in a nonisothermal water model of continuous casting tundish.	867-875B	strip casting. Copper, Welding	1023-1030B
Phase diagram cuspidine (3CaO•2SiO₂•CaF₂)-CaF₂. Modeling of molten metal flow in a continuous casting process considering the effects of argon gas injection and static mag-	1273-1281B	Unsteady Marangoni flow in a molten pool when welding dis- similar metals.	1387-1403B
netic-field application.	1491-1503B	Copper base alloys, Electrical properties Chemical synthesis and characteriztion of low thermal expan-	
Continuous casting, Field effects The effect of a unifor direct current magnetic field on the sta-	317-326B	sion-high conductivity Cu-Mo and Ag-Mo composites. Copper base alloys, Mechanical properties	2396-2398A
bility of a stratified liquid flux/molten steel system. Continuous casting, Quality control	317-3200	Strength and ductility of heavily drawn bundled Cu-Nb filamen- tary microcomposite wires with various Nb contents.	2457-2462A
Fluid flow and inclusion removal in continuous casting tundish.	253-266B	Modélng creep and fatigue of copper alloys. Synchrotron x-ray study of bulk lattice strains in externally	2491-2502A
Depth of oscillation marks forming in continuous casting of steel.	813-826B	loaded Cu-Mo composites.	2949-2962A
Convection		Copper base alloys, Phases (state of matter) Measurement of the activity of boron in liquid copper using a	
Mushy zone morphology during directional solidification of Pb- 5.8 wt.% Sb alloy.	2275-2285A	four-phase equilibrium technique.	2674-2678A
Convection, Field effects		Copper base alloys, Reactions (chemical)	
Numerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt. I. Spherical		The effects of alkaline earth metal ions and halogen ions on the chromium oxide activities in alkaline earth metal oxide-	
particles.	1527-1533B	halide-Cr ₂ O ₃ system fluxes. Activity measurement of the constituents in liquid Cu-Mq and	469-475B
Númerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt. II. Cylindri-		Cu-Ca alloys with mass spectrometry.	927-935B
cal particles.	1535-1540B	Copper compounds, Crystal growth	
Convection, Welding effects Unsteady Marangoni flow in a molten pool when welding dis-		Effect of increased growth velocity on the growth temperature of the Al-Al ₂ Cu eutectic.	327-328A
similar metals.	1387-1403B	Copper compounds, Electrochemistry	
Cooling rate		Thermodynamic and nonstoichiometric behavior of promising Hi-Tc cuprate systems via electromotive force measure-	
Microstructural evolution in ultra-low-carbon steel weldments. I. Controlled thermal cycling and continuous cooling transfor-		ments: a short review.	661-666B
mation diagram of the weld metal.	2145-2153A	Copper compounds, Phase transformations	
The effect of cooling rate on the microstructures formed during solidification of ferritic steel.	3155-3166A	Influence of aging on transformation characteristics in shape memory CuZnAl alloys.	349-354A
Copper, Alloying additive		Copper mattes, Reactions (chemical)	
Experimental investigation and thermodynamic calculation of the Ti-Ni-Cu shape memory alloys.	2423-2430A	Microscale simulation of settler processes in copper matte smelting.	439-451B
Copper, Alloying elements		Dissolution of lead and bismuth in white metal (CuS _{0.5}) at matte-smelting temperatures.	543-546B
Effects of Cu content and preaging on precipitation characteris- tics in aluminum alloy 6022.	361-371A	Phase equilibrium and minor element distribution between	343-3402
Copper, Binary systems		FeO _x -SiO ₂ -MgO-based slag and Cu ₂ S-FeS matte at 1573K under high partial pressures of SO ₂ .	705-712B
A numerical and experimental study of the rate of transforma- tion in three directionally grown peritectic systems.	29-34A	Copper and minor elements distribution between metal, matte,	1551-1553B
On the mobility of the austenite-ferrite interface in Fe-Co and		and fluorine slags. Corrosion fatigue	1331-13330
Fe-Cu. Measurement of the activity of boron in liquid copper using a	379-385A	Effect of testing frequency on the corrosion fatigue of a	1107 1145 6
four-phase equilibrium technique.	2674-2678A	squeeze-cast aluminum alloy. Corrosion mechanisms	1137-1145A
Copper, Bonding The role of plasticity in bimaterial fracture with ductile interlay-		Reoxidation of hot briquetted iron in salt water.	1133-1135B
ers.	863-872A	Stress corrosion cracking mechanisms of Alloy 600 polycrys- tals and single crystals in primary water—influence of hydro-	
Copper, Coating On the evolution of porosity in spray-deposited tool steels.	723-733A	gen. Environmentally enhanced deformation of ultra-high-purity Ni-	2025-2036A
Growth of a Au-Ni-Sn intermetallic compound on the solder- substrate interface after aging.	798-800A	16Cr-9Fe alloys.	2383-2388A
Copper, Extraction	100 0001	Corrosion products Reoxidation of hot briquetted iron in salt water.	1133-1135B
Galvanic interaction between chalcopyrite and manganese dioxide in sulfuric acid medium.	55-61B	Corrosion resistance, Alloying effects	
The electrochemical property of acetylene black suspension solution with ozone bubbling and its effects on copper disso-		Role of Mo and W during sensitization of superaustenitic stain- less steel—crystallography and composition of precipitates.	1893-1905A
lution. Microscale simulation of settler processes in copper matte	235-241B	Corrosion resistance, Coating effects Surface amorphous and crystalline microstructure by alloying	
smelting.	439-451B	zirconium using Nd:YAG pulsed laser.	3123-3127A
Dissolution of lead and bismuth in white metal (CuS _{0.5}) at matte-smelting temperatures.	543-546B	Corrosion resistance, Composition effects The effect of aluminum content on the corrosion behavior of	
Phase equilibrium and minor element distribution between FeO _x -SiO ₂ -MgO-based slag and Cu ₂ S-FeS matte at 1573K		Fe-Al alloys in reducing environments at 700°C.	1805-1817A
under high partial pressures of SO ₂ . The study of chlorination kinetics of copper (I) sulfide by cal-	705-712B	Corrosion resistance, Heating effects Influence of thermal aging on the reactivity of duplex stainless	
the study of chlorination kinetics of copper (I) sulfide by cal- cium chloride in the presence of oxygen.	723-731B	steel surfaces.	2015-2024A
Comparison between sulfide flash smelting and coal combus-		Corundum, Reactions (chemical) Spinel-corundum equilibria and activities in the system MgO-	
tion—with implications for the flash smelting of high-grade concentrate.	1005-1012B	Al ₂ O ₃ -Cr ₂ O ₃ at 1473K.	1323-1332B
Copper and minor elements distribution between metal, matte, and fluorine slags.	1551-1553B	Crack closure Effect of mean stress (stress ratio) and aging on fatigue-crack	
Copper, Microstructure	1001-10000	growth in a metastable beta titanium alloy, Ti-10V-2Fe-3Al.	703-714A
Island grains of low misorientation angles formed during abnor-	1/90-1/01/	Crack closure, Corrosion effects	
mal grain growth in Cu. Copper, Physical properties	1489-1491A	Effect of testing frequency on the corrosion fatigue of a squeeze-cast aluminum alloy.	1137-1145A
A model of the interfacial heat-transfer coefficient during unidi-	205 0055	Crack closure, Temperature effects	
rectional solidification of an aluminum alloy.	285-295B	Fatigue and fracture toughness of a Nb-Ti-Cr-Al-X single- phase alloy at ambient temperature.	1075-1084A
Copper, Reactions (chemical) Distribution equilibria of Pb and Cu between CaO-SiO ₂ -Al2NO ₃		Crack initiation	
melts and liquid copper.	1261-1266B	An investigation of dynamic failure in 2.3Ni-1.3Cr-0.17C steel. Infrared temperature mapping of ULTIMET alloy during high-	1147-1154A
Copper, Soldering Thermal stability of electroless-nickel/solder interface: A. Inter-		cycle fatigue tests.	1307-1310A
facial chemistry and microstructure.	2857-2866A	Crack initiation, Alloying effects	

The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa. Crack initiation, Composition effects	1365-1373A	Near-threshold fatigue crack growth behavior of 2195 alumi- num-lithium alloy—prediction of crack propagation direction and influence of stress ratio.	1531-1541A
The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal		Effects of microstructure on the short fatigue crack initiation and propagation characteristics of biomedical α/β titanium	
matrix composites.	951-957A	alloys. Cyclic deformation, dislocation structure, and internal fatigue	1949-1958A
An investigation of the effects of ductile-layer thickness on the fracture behavior of nickel aluminide microlaminates.	1385-1399A	crack generation in a Ti-Fe-O alloy at liquid nitrogen temper- ature.	2793-2805A
High-temperature fracture and fatigue-crack growth behavior of an XD gamma-based titanium aluminide intermetallic alloy.	1413-1423A	Crack propagation, Processing effects	
Effect of interfacial debonding and sliding on matrix crack initia- tion during isothermal fatigue of SCS-6/Ti-15-3 composites.	2637-2645A	A new criterion for internal crack formation in continuously cast steels.	779-794B
Crack initiation, Heating effects Part II. Metallurgical factors governing the H-assisted integran- ular cracking of peak-aged Ti-3Al-8V-6Cr-4Mo-4Zr (Beta-C).	81-92A	Crack propagation, Temperature effects Fatigue and fracture toughness of a Nb-Ti-Cr-Ai-X single- phase alloy at ambient temperature.	1075-1084A
Crack initiation, Microstructural effects		Crack propagation, Vibration effects	1075-10047
The fracture resistance of a binary TiAl alloy. The mechanism of brittle fracture in a microalloyed steel. I.	71-80A	Effect of nodularity on resonant vibration fracture behavior in upper bainitic and ferritic cast irons.	2193-2203A
Inclusion-induced cleavage. The mechanism of brittle fracture in a microalloyed steel. II.	641-652A	Crack propagation, Welding effects	
Mechanistic modeling. The effect of microstructural banding on failure initiation of HY-	653-667A	Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451.	2181-2192A
100 steel. An investigation of the effect of fatigue deformation on the	995-1005A	Fracture mechanism and toughness of the welding heat- affected zone in structural steel under static and dynamic	
residual mechanical properties of Ti-6Al-4V ELI.	1937-1948A	loading.	2785-2791A
Effects of microstructure on the short fatigue crack initiation and propagation characteristics of biomedical α/β titanium		Cracking (fracturing) Prediction of cracks in continuously cast steel beam blank	
alloys. Cyclic deformation, dislocation structure, and internal fatigue	1949-1958A	through fully coupled analysis of fluid flow, heat transfer, and deformation behavior of a solidifying shell.	225-237A
crack generation in a Ti-Fe-O alloy at liquid nitrogen temperature.	2793-2805A	Creep (materials) Mechanisms, models and simulations of metal-coated fiber	
Crack initiation, Welding effects	2700 20007	consolidation.	1271-1282A
Fracture mechanism and toughness of the welding heat- affected zone in structural steel under static and dynamic		Creep (materials), Alloying effects Atom probe field ion microscopy investigation of boron contain-	
loading.	2785-2791A	ing martensitic 9% chromium steel. A comparison study of microstructure and mechanical proper-	975-984A
Crack propagation Fatigue crack path prediction in Udimet 720 nickel-based alloy		ties of Ti-24Al-14Nb-3V-0.5Mo with and without Si.	2205-2217A
single crystals. Modeling thermomechanical fatigue life of high-temperature	109-123A	Creep (materials), Anisotropy Creep proporties of Ni ₃ (AlTiTa) γ' phase single crystals.	1733-1740A
titanium alloy IMI 834. Effect of mean stress (stress ratio) and aging on fatigue-crack	431-444A	Creep (materials), High temperature effects	
growth in a metastable beta titanium alloy, Ti-10V-2Fe-3Al. Simulation of shear plugging through thin plates using the	703-714A	The effect of high-temperature oxidation on the creep behavior of a superalloy (Nimonic-105). Creep (materials), Microstructural effects	1777-1784A
GRIM Eulerian hydrocode. Interactions between mechanical and environmental variables for short fatigue cracks in a 2024-T3 aluminum alloy in 0.5M	853-860A	Creep expansion of porous Ti-6Al-4V sandwich structures. On the primary creep of CMSX-4 superalloy single crystals.	261-273A 2219-2228A
NaCl solutions. Ultrasonic attenuation peak in steel and aluminum alloy during rotating bending fatigue.	1025-1034A 1121-1128A	Creep (materials), Processing effects High-temperature creep of an Al-8.5Fe-1.3V-1.7Si alloy processed by rapid solidification.	2229-2237A
Infrared temperature mapping of ULTIMET alloy during high- cycle fatigue tests.	1307-1310A	Creep life, Impurity effects The influence of sulfur on stress-rupture fracture in Inconel 718	
Effect of strain rate on damage evolution in a cast Al-Si-Mg base alloy.	1725-1731A	superalloys.	2135-2144A
Significance of the small crack growth law and its practical application.	2005-2013A	Creep life, Processing effects Enhanced densification of cavitated dispersion-strengthened	
Mechanical behavior and damage kinetics in nodular cast iron. I. Damage mechanisms.	3063-3074A	aluminum by thermal cycling. Creep rate, Processing effects	2647-2657A
Crack propagation, Alloying effects The influence of Mg on creep properties and fracture behaviors		Reactive infiltration processing and secondary compressive creep of NiAl and NiAl-W composites.	781-792A
of Mar-M247 superalloy under 1255 K/200 MPa. A comparison study of microstructure and mechanical proper-	1365-1373A	Creep rupture strength Creep-behavior modeling of the single-crystal superalloy	
ties of Ti-24Al-14Nb-3V-0.5Mo with and without Si. Relation between microstructure, composition, and hot crack-	2205-2217A	CMSX-4. Creep rupture strength, Heating effects	1401-1411A
ing in Ti-stabilized austenitic stainless steel weldments. Crack propagation, Coating effects	3109-3122A	Creep rupture mechanisms in annealed and overheated 7075 Al under multiaxial stress states.	2807-2821A
Effects of sulfur on the fatigue and fracture resistance of interfaces between γ -Ni(Cr) and α -Al ₂ O ₃ .	1977-1983A	Creep rupture strength, Impurity effects The influence of sulfur on stress-rupture fracture in Inconel 718	
Thermal stability of electroless-nickel/solder interface: B. Inter- facial fatigue resistance.	2867-2875A	superalloys. Creep rupture strength, Microstructural effects	2135-2144A
Crack propagation, Composition effects The interactive role of inclusions and SiC reinforcement on the		Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Creep rupture strength, Welding effects	679-690A
high-cycle fatigue resistance of particle reinforced metal matrix composites.	951-957A	Creep deformation and fracture behavior of types 316 and	4475 44054
The quasi-static and cyclic fatigue fracture behavior of 2014 aluminum alloy metal-matrix composites.	959-974A	316L(N) stainless steels and their weld metals. Creep strength	1175-1185A
An investigation of the effects of ductile-layer thickness on the fracture behavior of nickel aluminide microlaminates.	1385-1399A	Effect of plastic anisotropy on the creep strength of single crystals of a nickel-based superalloy.	421-430A
Fatigue crack growth resistance of unidirectional fiber-rein-	1003-1099A	Modelng creep and fatigue of copper alloys.	2491-2502A
forced titanium metal-matrix composites under transverse loading. Crack propagation, Corrosion effects	2083-2092A	Creep strength, Alloying effects The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa.	1365-1373A
Effect of testing frequency on the corrosion fatigue of a squeeze-cast aluminum alloy.	1137-1145A	Creep strength, Microstructural effects Creep deformation of TiAl-Si alloys with aligned γ/α_2 lamellar	0400 04704
Crack propagation, Environmental effects Effects of inert gases on fatigue crack growth and their trans- portation into subsurface regions in titanium.	1435-1441A	microstructures. Creep strength, Processing effects Enhanced densification of cavitated dispersion-strengthened	2463-2473A
Crack propagation, Heating effects Part II. Metallurgical factors governing the H-assisted integran-		aluminum by thermal cycling. Crevice corrosion, Alloying effects	2647-2657A
ular cracking of peak-aged Ti-3Al-8V-6Cr-4Mo-4Zr (Beta-C). Crack propagation, High temperature effects	81-92A	Role of Mo and W during sensitization of superaustenitic stain- less steel—crystallography and composition of precipitates.	1893-1905A
Dynamic fracture toughness of a Ti-45Al-1.6Mn alloy at high temperature.	3053-3061A	Criteria A new criterion for internal crack formation in continuously cast	
Crack propagation, Microstructural effects The fracture resistance of a binary TiAl alloy.	71-80A	steels. Critical temperature	779-794B
The mechanism of brittle fracture in a microalloyed steel. I.		Liquidus temperature determination in multicomponent alloys	407 E04 A
Inclusion-induced cleavage. The mechanism of brittle fracture in a microalloyed steel. II.	641-652A	by thermal analysis. Tin-silver-copper eutectic temperature and composition.	497-501A 1155-1162A
Mechanistic modeling.	653-667A	Displacive transformations in Au-18 wt.% Cu-6 wt.% Al.	1917-1923A

		Dinasirity, Compositio	iii ciiicoto
Critical temperature, Composition effects Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy.	581-584A	Deformation mechanisms, Microstructural effects Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Degassing	679-690A
Cryolite, Physical properties A new approach to numerical simulation of melt flows and		Modeling of gas-liquid reactions in ladle metallurgy. I. Physical modeling.	1447-1455B
interface instability in Hall-Héroult cells. Cryolite, Reactions (chemical)	1541-1550B	Modeling of gas-liquid reactions in ladle metallurgy. II. Numeri- cal simulation.	1457-1464B
Some generalities in the analyses of equilibria in ionic solutions.	2105-2118A	Dehydration Quantifying the heats of coal devolatilization.	1125-1131B
Cryolite, Solubility Solutions of iron oxides in molten cryolite.	609-613B	Dendritic structure A comparative study of the microstructures observed in stati- cally cast and continuously cast Bi-In-Sn temary eutectic	
Crystal defects Microstructural studies on lattice imperfections in deformed zir- conium-base alloys by x-ray diffraction.	2405-2410A	alloy. Modeling of interdendritic strain and macrosegregation for den-	239-248A
Crystal structure The identification of hydrogen trapping states in an Al-Li-Cu-Zr alloy using thermal desorption spectroscopy.	179-193A	dritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. II. Computation of interden-	331-343B
Crystal structure, Processing effects Microstructural characterization of a rapidly solidified ultrahigh	175-155A	dritic strain and segregation fields in steel ingots. Thermodynamic-kinetic simulation of constrained dendrite	345-355B
strength Al _{94.5} Cr ₃ Co _{1.5} Ce ₁ alloy.	607-614A	growth in steels. Influence of solidification variables on the dendrite arm spacings of Ni-based superalloys.	365-379B 546-551B
Crystallization Crystallization of amorphous Fe ₈₂ P ₁₈ . Effect of long-term room-temperature storage on the structure	1067-1073A	Mushy zone morphology during directional solidification of Pb- 5.8 wt.% Sb alloy.	2275-2285A
and properties of glassy melt-spun Mg-Al-Ca alloys. Crystallization, Environmental effects	2155-2162A	Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al-Cu	
The effect of water vapor on mold slag crystallization. Current density	403-406B	alloys. Dendritic structure, Coating effects	3167-3178A
On the mechanism of the anode effect in aluminum electrolysis.	1225-1230B	Application of the phase-field method to the solidification of hot-dipped galvanized coatings. Microstructural evolution during laser cladding of M2 high-	487-495A
Cyclic loads Load sharing between austenite and ferrite in a duplex stain-		speed steel. Dendritic structure, Cooling effects	2615-2625A
less steel during cyclic loading. Damage Damage leading to ductile fracture under high strain-rate con-	1557-1570A	An integrated model for dendritic and planar interface growth and morphological transition in rapid solidification.	735-746A
ditions. Quantitative description of damage evolution in ductile fracture	831-844A	Dendritic structure, Processing effects Effects of processing variables on the microsegregation of directionally cast samples.	3137-3148A
of tantalum. Role of foreign-object damage on thresholds for high-cycle	845-851A 1571-1583A	Dendritic structure, Vibration effects Effects of the intensity and frequency of electromagnetic vibra-	0107-0140A
fatigue in Ti-6Al-4V. Effect of strain rate on damage evolution in a cast Al-Si-Mg base alloy.	1725-1731A	tions on the microstructural refinement of hypoeutectic Al-Si alloys.	755-762A
Mechanical behavior and damage kinetics in nodular cast iron. I. Damage mechanisms.	3063-3074A	Densification Preparation and mechanical properties of highly densified	, 00 , 02, 1
Mechanical behavior and damage kinetics in nodular cast iron. II. Hardening and damage.	3075-3085A	nanocrystalline Al. Mechanisms, models and simulations of metal-coated fiber	1017-1024A
Identification of rolling-sliding damage mechanisms in porous alloys.	3091-3099A	consolidation. Improved densification of carbonyl iron compacts by the addi-	1271-1282A
Damage, Deformation effects Synchrotron x-ray study of bulk lattice strains in externally		tion of fine alumina powders. Study of 6061-Al ₂ O ₃₀ composites produced by reciprocating	1645-1652A
loaded Cu-Mo composites. Damage, High temperature effects	2949-2962A	extrusion. Enhanced densification of cavitated dispersion-strengthened	2587-2596A
The effect of high-temperature oxidation on the creep behavior of a superalloy (Nimonic-105). Damage tolerance	1777-1784A	aluminum by thermal cycling. Densification, Alloying effects Dilatometry study of the sintering behavior of boron-alloyed Fe-	2647-2657A
The effect of impact damage on the room-temperature fatigue behvior of γ-TiAl. Debonding, Composition effects	1741-1752A	1.5% Mo powder. Density, Composition effects Synthesis of MoSi ₂ -TiSi ₃ pseudobinary alloys by reactive sin-	1497-1506A
Effect of interfacial debonding and sliding on matrix crack initiation during isothermal fatigue of SCS-6/Ti-15-3 composites.	2637-2645A	tering. Density, Microstructural effects Creep expansion of porous Ti-6Al-4V sandwich structures.	747-753A 261-273A
Decarburizing On methane generation and decarburization in low-alloy Cr-Mo steels during hydrogen attack.	125-137A	Deoxidizing Measurement of the activity of boron in liquid copper using a	
Defects Microstructure-ultrasonic inspectability relationships in Ti6242: signal-to-noise in fine-grain-processed Ti62642.	2119-2125A	four-phase equilibrium technique. Diamond pyramid hardness Microhardness study of the nonlinear optical crystal L-arginine	2674-2678A
Deformation The use of the finite-element method to design an optimized		hydrochloride monohydrate. Diamond pyramid hardness, Heating effects	3087-3090A
tool for the plain-strain punch stretching test. Companison between high and low strain-rate deformation of tantalum.	93-98A 815-823A	Discussion of "Surface relief and the displacive transformation to the lamellar microstructure in TiAl" and "Nanometer-scale, fully lamellar microstructure in an aged TiAl-based alloy".	2377-2379A
Deformation, Heating effects Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments.	921-936A	Author's reply to: Discussion of "Surface relief and the displa- cive transformation to the lamellar microstructure in TiAl" and "Nanometer-scale, fully lamellar microstructure in an aged	
Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Modeling.	937-950A	TiAl-based alloy". Diamond pyramid hardness, Microstructural effects	2379-2383A
Deformation, High temperature effects Stress-strain response of a cast 319-T6 aluminum under thermomechanical loading.	139-151A	An investigation of the effect of fatigue deformation on the residual mechanical properties of Ti-6Al-4V ELI. Diamond pyramid hardness. Processing effects	1937-1948A
Deformation, Microstructural effects Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase		On the infiltration behavior of Al, Al-Li, and Mg melts through SiC _p bed. Diffusivity	319-325A
steels. Deformation mechanisms	1753-1760A	The chemical diffusivity of oxygen in liquid iron oxide and a calcium ferrite.	1059-1068B
Effect of microstructure variations on the formation of deforma- tion-induced martensite and associated tensile properties in		Interdiffusion of Sn and Pb in liquid Pb-Sn alloys. On homogenization of a binary alloy after dissolution of planar and spherical precipitates.	1343-1352A 1525-1530A
a β metastable Ti alloy. δ/γ interface boundary sliding as a mechanism of strain accom-	1095-1106A	and spherical precipitates. A Scheil-Gulliver model with back-diffusion applied to the microsegregation of chromium in Fe-Cr-C alloys.	1682-1684A
modation during hot deformation in a duplex stainless steel. The influence of crystallographic texture and interstitial impurities on the mechanical behavior of zircogum.	1671-1677A 1997-2003A	Modeling gas diffusion into metals with a moving-boundary phase transformation.	2411-2421A
ties on the mechanical behavior of zirconium. Evolution of texture and grain misorientation in an Al-Mg alloy	2169-2180A	Pseudobinary diffusion coefficients in the Ti-Mo-Ta system. Diffusivity, Composition effects	3198-3199A
exhibiting low-temperature superplasticity. Hot deformation mechanisms in a powder metallurgy nickel-	E100 E100M	Hydrogen diffusion coefficients in the titanium alloys IMI 834, Ti	

sion couples. Diffusivity, Corrosion effects Selective oxidation and internal nitridation during high-temper ature exposure of single-crystalline nickel-base superalloys.	1519-1524A	Damage leading to ductile fracture under high strain-rate con- ditions. Quantitative description of damage evolution in ductile fracture	831-844A
Selective oxidation and internal nitridation during high-temper			001-0447
- John John John John John John John John	47-56A	of tantalum.	845-851A
Diffusivity, Temperature effects Diffusion of oxygen in the Al ₂ O ₃ oxidation product of TiAl ₃ .	3023-3028A	Ductile fracture, Impurity effects The influence of sulfur on stress-rupture fracture in Inconel 718 superalloys.	2135-2144A
Direct chill casting Two-phase modeling of mushy zone parameters associated with hot tearing.	1461-1472A	Ductility An analysis of the effect of cavity nucleation rate and cavity	
Determination of thermophysical properties and boundary cor ditions of direct chill-cast aluminum alloys using inverse methods.	1627-1634A	coalescence on the tensile behavior of superplastic materi- als. Ductility, Composition effects	1425-1434A
Direct reduced iron, Corrosion Reoxidation of hot briquetted iron in salt water.	1133-1135B	The influence of reinforcement particle size distribution on the mechanical behavior of a stainless steel/TiN composite.	309-318A
Direct reduction Influence of ash on mass transfer and interfacial reaction	1099-1104B	Strength and ductility of heavily drawn bundled Cu-Nb filamen- tary microcomposite wires with various Nb contents. Ductility, High temperature effects	2457-2462A
between natural graphite and liquid iron. Reoxidation of hot briquetted iron in salt water. Directional solidification	1133-1135B	The effect of high-temperature oxidation on the creep behavior of a superalloy (Nimonic-105).	1777-1784A
An oscillatory behavior of planar interface motion in the naph- thalene-camphor system. Pirectional collidification. Field effects.	2678-2681A	Ductility, Impurity effects The influence of sulfur on stress-rupture fracture in Inconel 718 superalloys.	2135-2144A
Directional solidification, Field effects Further discussion of "Particle engulfment and pushing by solidifying interfaces. II. Microgravity experiments and theo-	4005 47004	Ductility, Microstructural effects The effect of processing and microstructure development on	
retical analysis". Authors' reply to: Further discussion of "Particle engulfment and pushing by solidifying interfaces: II. Microgravity experi-	1695-1700A	the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8 wt.% Li AF/C-458 Al-Li-C-X alloys. Ductility, Processing effects	1965-1976A
ments and theoretical analysis". Directionally solidified eutectics, Crystal growth Effect of increased growth velocity on the growth temperature	1700-1704A	Effects of strain rate and anisotropy on the tensile deformation properties of extruded AlZnMg alloys.	669-678A
Effect of increased growth velocity on the growth temperature of the Al-Al ₂ Cu eutectic. Directionally solidified eutectics, Mechanical properties	327-328A	Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Ductlity, Welding effects	1873-1881A
Creep déformation of TiAl-Si alloys with aligned γ/α_2 lamellar microstructures. Directionally solidified eutectics, Microstructure	2463-2473A	Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451. Weld metal ductility in aluminum tailor welded blanks.	2181-2192A 2755-2763A
Effect of computational domain size on the mathematical modeling of transport processes and segregation during direc-		Duplex stainless steels, Corrosion Influence of thermal aging on the reactivity of duplex stainless	
tional solidification. Dislocation density Microstructural studies on lattice imperfections in deformed zi	3129-3135A r-	steel surfaces. Duplex stainless steels, Mechanical properties Influence of microstructure on the flow behavior of duplex	2015-2024A
conium-base alloys by x-ray diffraction. Dislocation density, Deformation effects	2405-2410A	stainless steels at high temperatures. Load sharing between austenite and ferrite in a duplex stain- less steel during cyclic loading.	1353-1364A 1557-1570A
Investigation on the cold deformation strengthening mechanism in MP 159 alloy. Dislocation mobility	5-13A	δ/γ interface boundary sliding as a mechanism of strain accommodation during hot deformation in a duplex stainless steel.	1671-1677A
The limiting speeds of dislocations. Creep-behavior modeling of the single-crystal superalloy CMSY-4.	811-814A 1401-1411A	Duplex stainless steels, Metal working Superplastic forming of duplex stainless steel.	2394-2396A
Dislocations Cyclic deformation, dislocation structure, and internal fatigue	1401 1411	Duplex stainless steels, Microstructure Early-stage Widmanstätten growth of the γ phase in a duplex steel.	15-19A
crack generation in a Ti-Fe-O alloy at liquid nitrogen temper ature. Dispersion hardening alloys, Mechanical properties	2793-2805A	Duplex stainless steels, Phase transformations Mechanical properties, microstructural stability and kinetics of σ-phase formation in 29Cr-6Ni-2Mo-0.38N superduplex	35-45A
The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying.	715-721A	stainless steel. Duplex stainless steels, Welding A process model for the heat-affected zone microstructure evo-	
Enhanced densification of cavitated dispersion-strengthened aluminum by thermal cycling. Dispersions, Welding effects	2647-2657A	lution in duplex stainless steel weldments. II. Application to electron beam welding.	1035-1048A
Dispersoid-free zones in the heat-affected zone of aluminum alloy welds.	1453-1459A	Dynamic mechanical properties, Processing effects Correlation of microstructure with dynamic deformation behav- ior and penetration performance of tungsten heavy alloys	0475 04004
Dissimilar metals, Welding Unsteady Marangoni flow in a molten pool when welding dissimilar metals.	1387-1403B	fabricated by mechanical alloying. Economics Steel at the millennium.	2475-2489A 561-575B
Dissolution Dissolution rates of coals and graphite in Fe-C-S melts in directions ironmaking: dependence of carbon dissolution rate on carbon dissolution rates of coals and graphite in Fe-C-S melts in direction dissolution rates of coals and graphite in Fe-C-S melts in direction dissolution rates of coals and graphite in Fe-C-S melts in direction dissolution rates of coals and graphite in Fe-C-S melts in direction dissolution rates of coals and graphite in Fe-C-S melts in direction dissolution rates of coals and graphite in Fe-C-S melts in direction dissolution rates of coals and graphite in Fe-C-S melts in direction dissolution rates of carbon dissolution rates on carbon dissolution dissolution dissolution rates on carbon dissolution d	ot	Efficiency A mathematical model of aluminum depth filtration with	
bon structure. Dissolution rates of coals and graphite in Fe-C-S melts in direct	215-216B	ceramic foam filters. I. Validation for short-term filtration. A mathematical model of aluminum depth filtration with ceramic foam filters. II. Application to long-term filtration.	491-502B 503-513B
ironmaking: influence of melt carbon and sulfur on carbon dissolution. Kinetics of Al ₂ O ₃ dissolution in CaO-MgO-SiO ₂ -Al ₂ O ₃ slags: i	243-251B n	Elastic anisotropy Anisotropy of yielding in a Zr-2.5Nb pressure tube material. Effect of plastic anisotropy on the creep strength of single crys-	409-420A
situ observations and analysis. Dissolution of lead and bismuth in white metal (CuS _{0.5}) at matte-smelting temperatures.	406-410B 543-546B	tals of a nickel-based superalloy. Elastic anisotropy, Heating effects	421-430A
A Monte Carlo simulation study of dissolution of graphite in iron-carbon melts. On homogenization of a binary alloy after dissolution of plana	1517-1525B	Effect of intermediate annealing on texture evolution and plastic anisotropy in an Al-Mg autobody alloy.	99-107A
and spherical precipitates. Modeling of dissolution, growth, and coarsening of aluminum	1525-1530A	Elastic anisotropy, Microstructural effects Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Elastic anisotropy, Processing effects	679-690A
nitride in low-carbon steels. Dissolution, Alloying effects Effects of aluminum, silicon, and boron on the dissolution rate	1907-1916A	Effects of strain rate and anisotropy on the tensile deformation properties of extruded AlZnMg alloys.	669-678A
of nitrogen into molten iron. Dissolution, Welding effects Numerical modeling of enhanced nitrogen dissolution during	899-904B	Electric arc furnaces Kinetics of manganese ore reduction by carbon monoxide. Equilibrium slag losses in ferrovanadium production.	477-490B 1091-1097B
gas tungsten arc welding. Distortion, Welding effects	1371-1385B	Electroless nickel plating Thermal stability of electroless-nicket/solder interface: A. Interfacial chemistry and microstructure.	2857-2866A
A process model for the distortion induced by the electron- beam welding of a nickel-based superalloy. Dual phase steels, Mechanical properties	2261-2273A	Thermal stability of electroless-nickel/solder interface: B. Interfacial fatigue resistance.	2867-2875A
		Electrolysis	
Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phas steels.	se 1753-1760A	Melt penetration and chemical reactions in 16 industrial alumi- num carbon cathodes. On the mechanism of the anode effect in aluminum electroly-	1213-1224B

2000		ratigue failure, Corrosio	on enects
Electrolytic cells, Electrochemistry		Enthalpy	
Solutions of iron oxides in molten cryolite. Melt penetration and chemical reactions in 16 industrial aluminum carbon cathodes.	609-613B 1213-1224B	Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys. Equal channel angular pressing	277-284B
On the mechanism of the anode effect in aluminum electroly- sis.	1225-1230B	Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile proper-	604 704 6
Electromagnetic fields Equilibrium shape of a molten silicon drop in an electromag-		ties. Equiaxed structure	691-701A
netic levitator in microgravity environment. Numerical calculation of the electromagnetic expulsive force	327-329B	Solidification parameters during the columnar-to-equiaxed transition in lead-tin alloys.	1611-1625A
upon nonmetallic inclusions in an aluminum melt. I. Spherical particles. Numerical calculation of the electromagnetic expulsive force	1527-1533B	An investigation of the effect of fatigue deformation on the residual mechanical properties of Ti-6Al-4V ELI. Effects of microstructure on the short fatigue crack initiation	1937-1948A
upon nonmetallic inclusions in an aluminum melt. II. Cylindrical particles.	1535-1540B	and propagation characteristics of biomedical α/β titanium alloys. A two-dimensional model for the description of the columnar-	1949-1958A
Electromagnetic induction Effects of the intensity and frequency of electromagnetic vibra- tions on the microstructural refinement of hypoeutectic Al-Si		to-equiaxed transition in competing gray and white iron eutectics and its application to calender rolls. Equiaxed structure, Deformation effects	2059-2068A
alloys. Electromagnetic stirring	755-762A	Substructural changes during hot deformation of a Fe-26Cr fer- ritic stainless steel.	21-27A
The effect of a uniform direct current magnetic field on the sta- bility of a stratified liquid flux/molten steel system. Electrometallurgy	317-326B	Equiaxed structure, Processing effects Effects of processing variables on the microsegregation of directionally cast samples.	3137-3148A
Galvanic interaction between chalcopyrite and manganese dioxide in sulfuric acid medium. Electrodeposition of zinc from sodium zincate/hydroxide elec-	55-61B	Equiaxed structure, Vibration effects Effects of the intensity and frequency of electromagnetic vibra-	
trolytes in a spouted bed electrode. Electrometallurgy, Materials selection	755-766B	tions on the microstructural refinement of hypoeutectic Al-Si alloys.	755-762A
Coal pyrolysis in a rotary kiln. I. Model of the pyrolysis of a sin- gle grain. Coal pyrolysis in a rotary kiln. II. Overall model of the furnace.	381-390B 391-402B	Eutectic composition Tin-silver-copper eutectic temperature and composition. Eutectic interface configurations during melting.	1155-1162A 1261-1269A
Electron beam melting Aluminum volatilization and inclusion removal in the electron	001.1025	Eutectic reactions Tin-silver-copper eutectic temperature and composition. Eutectic interface configurations during melting.	1155-1162A 1261-1269A
beam cold hearth melting of Ti alloys. Theoretical and experimental investigations of electron beam	845-854B	Eutectoid reactions, Heating effects The role of the divorced eutectoid transformation in the sphe-	1201-12007
surface remelting and alloying. Electron beam processing Microstructure and processing	1405-1417B	roidization of 52100 steel. Evaporation	2431-2438A
Microstructural analysis of vanadium carbide/steel surface- alloyed materials fabricated by high-energy electron-beam irradiation.	2849-2855A	Evaporation behavior of aluminum during the cold crucible induction skull melting of titanium aluminum alloys.	837-844B
A process model for the distortion induced by the electron-	2261-2273A	Extractive metallurgy Aspects of technology transfer. Extrusion	1153-1162B
beam welding of a nickel-based superalloy. Electron beam welding, Quality control	2201-2213A	Effect of particle size and volume fraction in hot extrusion reac- tion synthesis of SiC particle reinforced NiAl.	1663-1670A
A process model for the heat-affected zone microstructure evo- lution in duplex stainless steel weldments. II. Application to electron beam welding.	1035-1048A	Microstructural characterization of novel in-situ Al-Be composites.	2963-2971A
Electronic devices, Coating Growth of a Au-Ni-Sn intermetallic compound on the solder- substrate interface after aging.	798-800A	Extrusions, Mechanical properties Effects of strain rate and anisotropy on the tensile deformation properties of extruded AlZnMg alloys.	669-678A
Electroplating Microstructure and formability of ZnNi alloy electrodeposited	475 405A	Failure Strain-localization in sheet metal containing a geometric defect.	1883-1886A
sheet steel. Electrodeposition of zinc from sodium zincate/hydroxide elec- trolytes in a spouted bed electrode.	475-485A 755-766B	Failure, Microstructural effects The effect of microstructural banding on failure initiation of HY- 100 steel.	995-1005A
Electrowinning Solubilities and Raman spectra of NdOCI in some chloride melts of interest for the electrowinning of magnesium from its	004 000B	Failure analysis Analysis of secondary oxide-scale failure at entry into the roll	1483-1490B
 oxide. The anomalous behavior of Al³⁺ in nickel electrowinning from sulfate electrolytes. 	631-639B 1203-1211B	gap. Fatigue failure Satigue arrek path prodiction in Lidimat 720 pickel baced allow	1400-14300
Elongated structure Correlation between former alpha boundary growth kinetics	1200-12110	Fatigue crack path prediction in Udimet 720 nickel-based alloy single crystals. Modeling thermomechanical fatigue life of high-temperature	109-123A
and superplastic flow in Zn-22% Al. Elongation	163-172A	titanium alloy IMI 834. Effect of mean stress (stress ratio) and aging on fatigue-crack	431-444A
Effect of microstructure variations on the formation of deforma- tion-induced martensite and associated tensile properties in a β metastable Ti alloy.	1095-1106A	growth in a metastable beta titanium alloy, Ti-10V-2Fe-3Al. Interactions between mechanical and environmental variables for short fatigue cracks in a 2024-T3 aluminum alloy in 0.5M	703-714A 1025-1034A
Elongation, Alloying effects A comparison study of microstructure and mechanical proper-		NaCl solutions. Ultrasonic attenuation peak in steel and aluminum alloy during rotating bending fatigue.	1121-1128A
ties of Ti-24Al-14Nb-3V-0.5Mo with and without Si. Effects of boron doping on the grain-growth kinetics and	2205-2217A	Heat generation during the fatigue of a cellular Al alloy. Infrared temperature mapping of ULTIMET alloy during high-	1129-1136A
mechanical properties of γ/γ' nickel-aluminum alloys. Elongation, Composition effects	3179-3186A	cycle fatigue tests. The effect of impact damage on the room-temperature fatigue	1307-1310A
Microstructure and properties of in situ Al/TiB ₂ composite fabri- cated by in-melt reaction method.	1959-1964A	behvior of γ -TiAl. Significance of the small crack growth law and its practical	1741-1752A 2005-2013A
Elongation, Microstructural effects The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489		application. Fatigue failure, Alloying effects A comparison study of microstructure and mechanical properties of Ti-24AI-14Nb-3V-0.5Mo with and without Si.	2205-2217A
and 1.8 wt.% Li AF/C-458 Al-Li-C-X alloys. Elongation, Processing effects The role of dispersed particles in strengthening and fracture	1965-1976A	Fatigue failure, Composition effects The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal	LLOO LL III
mechanisms in a Mo-ZrC alloy processed by mechanical alloying. Preparation and mechanical properties of highly densified	715-721A	matrix composites. The quasi-static and cyclic fatigue fracture behavior of 2014	951-957A
nanocrystalline Al. Elongation, Welding effects	1017-1024A	aluminum alloy metal-matrix composites. High-temperature fracture and fatigue-crack growth behavior	959-974A
Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451.	2181-2192A	of an XD gamma-based titanium aluminide intermetallic alloy. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse	1413-1423A
Embrittlement, Radiation effects A Bayesian analysis of the influence of neutron irradiation on	445	loading. Effect of interfacial debonding and sliding on matrix crack initia-	2083-2092A
embrittlement in ferritic submerged arc weld metal. Engine components, Mechanical properties Role of foreign-object damage on thresholds for high-cycle	445-459A	tion during isothermal fatigue of SCS-6/Ti-15-3 composites. Fatigue failure, Corrosion effects Effect of testing frequency on the corrosion fatigue of a	2637-2645A
fatigue in Ti-6Al-4V.	1571-1583A	squeeze-cast aluminum alloy.	1137-1145A

Fatigue failure, Environmental effects Effects of inert gases on fatigue crack growth and their transportation into subsurface regions in titanium.	1435-1441A	ZrO ₂ and MgO in Fe-10 mass% Ni alloy. Ferrous alloys, Mechanical properties Hydrogen effects on the spall strength and fracture characteris-	1213-1223A
Fatigue failure, Microstructural effects Near-threshold fatigue crack growth behavior of 2195 alumi- num-lithium alloy—prediction of crack propagation direction		tics of amorphous Fe-Si-B alloy at very high strain rates. Hydrogen effects on an amorphous Fe-Si-B alloy.	1085-1093A 2517-2526A
and influence of stress ratio.	1531-1541A	Ferrous alloys, Microstructure Substructural changes during hot deformation of a Fe-26Cr fer-	
An investigation of the effect of fatigue deformation on the residual mechanical properties of Ti-6Al-4V ELI. Cyclic deformation, dislocation structure, and internal fatigue	1937-1948A	ritic stainless steel. Ferrous alloys, Oxidation Formation of pegs during high-temperature oxidation of Fe ₃ Al	21-27A
crack generation in a Ti-Fe-O alloy at liquid nitrogen temper-	2793-2805A	containing yttrium.	1685-1687A
ature. Fatigue failure, Temperature effects	2193-2003A	Ferrous alloys, Phase transformations	
Thermal activation of fatigue damage.	63-69A	Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system.	355-360A
Fatigue failure, Vibration effects Effect of nodularity on resonant vibration fracture behavior in upper bainitic and ferritic cast irons.	2193-2203A	Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy. Crystallization of amorphous Fe ₈₂ P ₁₈ .	581-584A 1067-1073A
Fatigue failure, Welding effects		A model for nonclassical nucleation of solid-solid structural	
Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451.	2181-2192A	phase transformations. Effects of thermal cycling on the kinetics of the $\gamma\rightarrow\epsilon$ martensitic	1321-1331A
Fatigue life	2101210211	transformation in an Fe-17 wt.% Mn alloy.	2735-2738A
Modeling thermomechanical fatigue life of high-temperature	431-444A	Ferrous alloys, Powder technology Sintering behavior of nanocrystalline γ-Ni-Fe powders.	503-510A
titanium alloy IMI 834. Ultrasonic attenuation peak in steel and aluminum alloy during	431-444A	Dilatometry study of the sintering behavior of boron-alloyed Fe-	1497-1506A
rotating bending fatigue. A model for creep-fatigue interaction in terms of crack-tip	1121-1128A	1.5% Mo powder. Thermal transformations in mechanically alloyed Fe-Zn-Si	
stress relaxation.	1761-1775A	materials.	2747-2754A
Fatigue life, Composition effects		Ferrovanadium, Reactions (chemical) Equilibrium slag losses in ferrovanadium production.	1091-1097B
The quasi-static and cyclic fatigue fracture behavior of 2014 aluminum alloy metal-matrix composites.	959-974A	Fiber composites, Casting	
Fatigue limit, Microstructural effects		Simulation of metal-matrix composite isothermal infiltration pro-	225-234B
Effects of microstructure on the short fatigue crack initiation		cessing. Fiber composites, Mechanical properties	223-2346
and propagation characteristics of biomedical α/β titanium alloys.	1949-1958A	Thermal activation of fatigue damage.	63-69A
Fatigue strength		Reactive infiltration processing and secondary compressive creep of NiAl and NiAl-W composites.	781-792A
The effect of impact damage on the room-temperature fatigue behvior of γ-TiAl.	1741-1752A	Effect of fiber volume fraction on the fracture behavior of Nb-1	873-887A
Modelng creep and fatigue of copper alloys.	2491-2502A	wt.% Zr/218W composites at elevated temperatures. Fatigue crack growth resistance of unidirectional fiber-rein-	6/3-00/A
Fatigue strength, Coating effects Effects of sulfur on the fatigue and fracture resistance of inter-		forced titanium metal-matrix composites under transverse	2083-2092A
faces between γ-Ni(Cr) and α-Al ₂ O ₃ .	1977-1983A	loading. Effect of interfacial debonding and sliding on matrix crack initia-	
Thermal stability of electroless-nickel/solder interface: B. Inter- facial fatigue resistance.	2867-2875A	tion during isothermal fatigue of SCS-6/Ti-15-3 composites.	2637-2645A
Fatigue strength, Deformation effects	2007 20707	Fiber composites, Microstructure Texture and residual strain in two SiC/Ti-6-2-4-2 titanium com-	
The effect of matrix microstructure on the tensile and fatigue		posites.	889-898A
behavior of SiC particle-reinforced 2080 Al matrix compos- ites.	531-540A	Fiber composites, Powder technology Mechanisms, models and simulations of metal-coated fiber	
Fatigue strength, Microstructural effects		consolidation.	1271-1282A
Effects of microstructure on the short fatigue crack initiation and propagation characteristics of biomedical α/β titanium		Fiber composites, Thermal properties Thermal expansion behavior of silver matrix composites.	291-298A
alloys.	1949-1958A	Field ion microscopy	
Fatigue strength, Temperature effects Fatigue and fracture toughness of a Nb-Ti-Cr-Al-X single-		Atom probe field ion microscopy investigation of boron contain- ing martensitic 9% chromium steel.	975-984A
phase alloy at ambient temperature.	1075-1084A	Filler metal, Materials selection	
Fatigue strength, Welding effects Characteristics of a pulsed-current, vertical-up gas metal arc		Development of a low-melting-point filler metal for brazing alu-	2239-2245A
weld in steel.	2247-2259A	minum alloys. Filtration	2200-2240A
Fatigue tests Infrared temperature mapping of ULTIMET alloy during high-		A mathematical model of aluminum depth filtration with	401 E00B
cycle fatigue tests.	1307-1310A	ceramic foam filters. I. Validation for short-term filtration. A mathematical model of aluminum depth filtration with	491-502B
Ferrite		ceramic foam filters. II. Application to long-term filtration.	503-513B
Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures.	1353-1364A	Finite element method The use of the finite-element method to design an optimized	
Ferrite, Alloying effects		tool for the plain-strain punch stretching test.	93-98A
Atom probe field ion microscopy investigation of boron contain ing martensitic 9% chromium steel.	975-984A	Prediction of cracks in continuously cast steel beam blank through fully coupled analysis of fluid flow, heat transfer, and	
Ferrite, Diffusion		deformation behavior of a solidifying shell.	225-237A
The chemical diffusivity of oxygen in liquid iron oxide and a cal cium ferrite.	- 1059-1068B	Equilibrium shape of a molten silicon drop in an electromag- netic levitator in microgravity environment.	327-329B
Ferrite, Mechanical properties	1000 10000	The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix compos-	
Load sharing between austenite and ferrite in a duplex stain-	4557 45704	ites.	531-540A
less steel during cyclic loading. Ferritic stainless steels, Microstructure	1557-1570A	A process model for the heat-affected zone microstructure evo- lution in duplex stainless steel weldments. II. Application to	
Substructural changes during hot deformation of a Fe-26Cr fer		electron beam welding.	1035-1048A
ritic stainless steel. The effect of cooling rate on the microstructures formed during	21-27A	Modeling of microstructure and residual stress in cast iron cal- ender rolls.	1201-1211A
solidification of ferritic steel.	3155-3166A	A model for prediction of pressure and redistribution of gas-	1283-1292B
Ferritic stainless steels, Welding A Bayesian analysis of the influence of neutron irradiation on		forming elements in multicomponent casting alloys. Thermal and grain-structure simulation in a land-based turbine	1200 1202D
A Bayesian analysis of the influence of neutron irradiation on embrittlement in ferritic submerged arc weld metal.	445-459A	blade directionally solidified with the liquid metal cooling pro- cess.	1293-1304B
Microstructural characterization and analysis of inclusions in C Mn steel and weld metals.	615-628A	Thermal analysis of the arc welding process. I. General solu-	
Ferritic transformations, Cooling effects		tions. Analysis of secondary oxide-scale failure at entry into the roll	1353-1370B
Microstructural evolution in ultra-low-carbon steel weldments. I		gap.	1483-1490B
Controlled thermal cycling and continuous cooling transfor- mation diagram of the weld metal.	2145-2153A	Numerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt. I. Spherical	
Ferritic transformations, Diffusion effects		particles.	1527-1533B
On the mobility of the austenite-ferrite interface in Fe-Co and		Numerical calculation of the electromagnetic expulsive force	
	379-385A	upon nonmetallic inclusions in an aluminum melt. II. Cylindri-	
Fe-Cu. Ferrous alloys, Corrosion	379-385A	cal particles.	1535-1540B
Fe-Cu. Ferrous alloys, Corrosion The effect of aluminum content on the corrosion behavior of		cal particles. Transient liquid-phase bonding in the Ni-Al-B system. Influence of elastic inclusion morphology and matrix hardening	1535-1540B 2835-2847A
Fe-Cu. Ferrous alloys, Corrosion	379-385A 1805-1817A	cal particles. Transient liquid-phase bonding in the Ni-Al-B system.	1535-1540B

2000		Germanium base andys, Phase transic	rmations
tional solidification.	3129-3135A	ties of Ti-24Al-14Nb-3V-0.5Mo with and without Si.	2205-2217A
Flaw detection Microstructure-ultrasonic inspectability relationships in Ti6242: signal-to-noise in fine-grain-processed Ti62642.	2119-2125A	Fracture toughness, Coating effects Growth of a Au-Ni-Sn intermetallic compound on the solder- substrate interface after aging.	798-800A
Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings.	2545-2557A	Correlation of microstructure with the wear resistance and frac- ture toughness of hardfacing alloys reinforced with complex	
Fluid dynamics Modeling the dynamics of magnetic semilevitation melting.	179-189B	carbides. Fracture toughness, Composition effects	3041-3052A
Fluid flow Numerical simulation of the flow and the solid transport when	170 1000	An investigation of the effects of ductile-layer thickness on the fracture behavior of nickel aluminide microlaminates.	1385-1399A
tilting a holding furnace. Prediction of cracks in continuously cast steel beam blank	207-214B	High-temperature fracture and fatigue-crack growth behavior of an XD gamma-based titanium aluminism intermetallic alloy.	1413-1423A
through fully coupled analysis of fluid flow, heat transfer, and deformation behavior of a solidifying shell.	225-237A	Effect of particle-size distribution on the properties of high-vol- ume-fraction SiC _p -Al-based composites.	2351-2359A
Two-fluid simulation on the mixed convection flow pattern in a		Fracture toughness, Heating effects	
nonisothermal water model of continuous casting tundish. Fluxes, Reactions (chemical) The effects of alkaline earth metal ions and halogen ions on	867-875B	Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum	921-936A
the chromium oxide activities in alkaline earth metal oxide- halide-Cr ₂ O ₃ system fluxes. Phase diagram cuspidine (3CaO•2SiO ₂ •CaF ₂)-CaF ₂ .	469-475B 1273-1281B	alloy composite. II. Modeling. Fracture toughness, High temperature effects Dynamic fracture toughness of a Ti-45Al-1.6Mn alloy at high	937-950A
Foamed metals, Powder technology Preparation of high porosity metal foams.	1345-1352B	temperature. Fracture toughness, Microstructural effects	3053-3061A
Foaming The surface tensions and foaming behavior of melts in the sys-	1040 10020	The fracture resistance of a binary TiAl alloy. Correlation of the microstructure and fracture toughness of the	71-80A
tem CaO-FeO-SiO ₂ .	921-925B	heat-affected zones of an SA 508 steel. Impact fracture toughness of porous iron and high-strength	1107-1119A
Some observations on the draining of CaO-SiO ₂ -Al ₂ O ₃ slag bubble films.	1105-1115B	steels. Microstructural effects on fracture toughness in AA7010 plate.	1443-1451A 2503-2515A
Forgeability Plastic flow behavior during the forging of a 6061 Al/10 vol% Al ₂ O3(p) composite.	1310-1313A	Fracture toughness, Temperature effects Fatigue and fracture toughness of a Nb-Ti-Cr-Al-X single-	1075 10044
Formability, Composition effects		phase alloy at ambient temperature. Fracture toughness, Welding effects	1075-1084A
Microstructure and formability of ZnNi alloy electrodeposited sheet steel.	475-485A	Fracture mechanism and toughness of the welding heat-	
Strength and formability of ultra-low-carbon Ti-IF steels. Formability. Processing effects	1305-1307A	affected zone in structural steel under static and dynamic loading.	2785-2791A
Effects of strain rate and anisotropy on the tensile deformation	000 0704	Fracturing The role of plasticity in bimaterial fracture with ductile interlay-	
properties of extruded AlZnMg alloys. Forming	669-678A	ers. Fracturing, Composition effects	863-872A
Dynamic materials testing, texture, and yield-surface calcula- tion of an automotive sheet steel. Forming, Composition effects	2439-2448A	Effect of fiber volume fraction on the fracture behavior of Nb-1 wt.% Zr/218W composites at elevated temperatures. Constitutive properties of hard-alpha titanium.	873-887A 3029-3040A
Strength and formability of ultra-low-carbon Ti-IF steels. Foundry practice	1305-1307A	Fracturing, Heating effects Deformation and fracture of a particle-reinforced aluminum	
Fluid flow and inclusion removal in continuous casting tundish. Prevention of macrodefects in squeeze casting of an Al-7 wt.%	253-266B	alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum	921-936A
Si alloy. The effect of a uniform direct current magnetic field on the sta-	297-305B	alloy composite. II. Modeling.	937-950A
bility of a stratified liquid flux/molten steel system. A computational model for defect prediction in shape castings based on the interaction of free surface flow, heat transfer,	317-326B	Fracturing, Microstructural effects Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Fracturing, Welding effects	679-690A
and solidification phenomena. A new criterion for internal crack formation in continuously cast	515-527B	Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals.	1175-1185A
steels. Freckle formation and freckle criterion in superalloy castings.	779-794B 801-811B	Friction welding Friction-stir welding effects on microstructure and fatigue of	
Depth of oscillation marks forming in continuous casting of	813-826B	aluminum alloy 7050-T7451.	2181-2192A
steel. Aluminum volatilization and inclusion removal in the electron		Frictional wear Identification of rolling-sliding damage mechanisms in porous	
beam cold hearth melting of Ti alloys. Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone.	845-854B 855-866B	alloys. Frictional wear, Processing effects	3091-3099A
Erratum: "Numerical studies of the motion of spheroidal parti- cles flowing with liquid metals through an electric sensing	44400	Tribological properties of centrifugally cast copper alloy-graphite particle composite.	1283-1293A
zone". Alpha case thickness modeling in investment castings.	1143B 1419-1427B	Functionally gradient materials, Electrical properties Characterization of Mo-SiO ₂ functionally graded materials.	299-308A
Two-phase modeling of mushy zone parameters associated with hot tearing. Correlation between unsteady-state solidification conditions,	1461-1472A	Functionally gradient materials, Extrusion Near-net-shape forming of Al-Al ₃ Ni functionally graded mate-	2627-2636A
dendrite spacings, and mechanical properties of Al-Cu alloys.	3167-3178A	rial over eutectic melting temperature. Functionally gradient materials, Powder technology Design and fabrication of W-Mo-Ti-TiAl-Al system functionally	
Fractography Damage leading to ductile fracture under high strain-rate con-		graded material.	2369-2376A
ditions. Fracture mechanics	831-844A	Fused salts, Electrochemistry Fundamental theories and concepts for predicting thermody- namic properties of high temperature ionic and metallic liquid	
Fatigue crack path prediction in Udimet 720 nickel-based alloy single crystals.	109-123A	solutions and vapor molecules. CoCl*: unique in all of molten saltdom?	579-586B 597-602B
Fracture strength Hydrogen effects on the spall strength and fracture characteristics of amorphous Fe-Si-B alloy at very high strain rates.	1085-1093A	The power of thermodynamic modeling: examples from molten halide mixtures. The modified quasichemical model I—binary solutions.	641-650B 651-659B
Fracture strength, Composition effects Constitutive properties of hard-alpha titanium.	3029-3040A	Gadolinium compounds, Electrochemistry Thermodynamic and nonstoichiometric behavior of promising	
Fracture strength, Microstructural effects		Hi-Tc cuprate systems via electromotive force measure- ments: a short review.	661-666B
The fracture resistance of a binary TiAl alloy. The mechanism of brittle fracture in a microalloyed steel. I. Inclusion-induced cleavage.	71-80A 641-652A	Galvanized steels, Coating Application of the phase-field method to the solidification of	
The mechanism of brittle fracture in a microalloyed steel. II. Mechanistic modeling. The effect of processing and microstructure development on	653-667A	hot-dipped galvanized coatings. Gas metal arc welding Characteristics of a pulsed-current, vertical-up gas metal arc	487-495A
the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8 wt.% Li AF/C-458 Al-Li-C-X alloys.	1965-1976A	weld in steel.	2247-2259A
Fracture toughness An investigation of dynamic failure in 2.3Ni-1.3Cr-0.17C steel.	1147-1154A	Gas tungsten arc welding Numerical modeling of enhanced nitrogen dissolution during gas tungsten arc welding.	1371-1385B
		Mathematical modeling of the dynamic behavior of gas tung-	
Fracture toughness, Alloying effects The influence of Mg on creep properties and fracture behaviors		sten arc weld pools.	1465-1473B

Ideal and cooperative bond-lattice representations of excita-		Grain structure, Composition effects	
tions in glass-forming liquids: excitation profiles, fragilities, and phase transitions.	587-596B	Microstructure and formability of ZnNi alloy electrodeposited sheet steel.	475-485A
Gold, Coatings Growth of a Au-Ni-Sn intermetallic compound on the solder- substrate interface after aging.	798-800A	Grain structure, Heating effects Grain boundary faceting and abnormal grain growth in nickel. Grain structure, Processing effects	985-994A
Gold, Extraction Selective arsenic-fixing roast of refractory gold concentrate.	1163-1168B	Simulation of percolation structure of grain bonding in liquid- phase sintering by three-dimensional grain structure recon-	
Gold, Phases (state of matter) Liquidus temperature determination in multicomponent alloys by thermal analysis.	497-501A	struction. Grain structure, Vibration effects Effects of the intensity and frequency of electromagnetic vibra-	3187-3193A
Gold base alloys, Phase transformations Displacive transformations in Au-18 wt.% Cu-6 wt.% Al.	1917-1923A	tions on the microstructural refinement of hypoeutectic Al-Si alloys.	755-762A
Grain boundaries Correlation between former alpha boundary growth kinetics		Graphite, Composite materials Particulate penetration into solid droplets.	387-396A
and superplastic flow in Zn-22% Al.	163-172A	Tribological properties of centrifugally cast copper alloy-graphite particle composite.	1283-1293A
Grain boundaries, Heating effects Grain boundary faceting and abnormal grain growth in nickel.	985-994A	Nucleation on ceramic particles in cast metal-matrix compos- ites.	1295-1304A
Grain boundaries, Processing effects Directional and single-crystal solidification of Ni-base superal- loys. II. Coincidence site lattice character of grain bound- aries.	2887-2893A	Graphite, Oxidation Kinetics of oxidation of carbonaceous materials by CO ₂ and H ₂ O between 1300° and 1500°C.	43-54B
Grain boundary migration	2007 2030A	Graphite, Reactions (chemical) Dissolution rates of coals and graphite in Fe-C-S melts in direct	
Island grains of low misorientation angles formed during abnormal grain growth in Cu.	1489-1491A	ironmaking: influence of melt carbon and sulfur on carbon dissolution.	243-251B
Grain boundary sliding δ/γ interface boundary sliding as a mechanism of strain accommodation during hot deformation in a duplex stainless steel.	1671-1677A	Graphitization, Deformation effects The effect of rolling on graphitization characteristics of strip cast Fe-C-Si white cast iron.	275-281A
Evolution of texture and grain misorientation in an Al-Mg alloy exhibiting low-temperature superplasticity. Grain growth	2169-2180A	Gray iron, Crystal growth A two-dimensional model for the description of the columnar- to-equiaxed transition in competing gray and white iron	
Island grains of low misorientation angles formed during abnor- mal grain growth in Cu. Correlation between unsteady-state solidification conditions,	1489-1491A	eutectics and its application to calender rolls. Guinier Preston zone, Alloying effects Precipitation processes in Al-Cu-Mg alloys microalloyed with	2059-2068A
dendrite spacings, and mechanical properties of Al-Cu alloys.	3167-3178A	Si.	2721-2733A
Grain growth, Alloying effects Effects of boron doping on the grain-growth kinetics and mechanical properties of √√ nickel-aluminum alloys.	3179-3186A	Guinier Preston zone, Composition effects Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022.	361-371A
Grain growth, Anisotropy Anisotropic grain growth based on the atomic adsorption	1005 10051	Guinier Preston zone, Heating effects Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys.	339-348A
model in WC-25% Co alloy. Grain growth, Heating effects	1925-1935A	Spontaneous deformation during aging under stress in a cop- per-beryllium alloy.	2765-2771A
Grain boundary faceting and abnormal grain growth in nickel. Grain growth, Impurity effects	985-994A	Hall Heroult process Solutions of iron oxides in molten cryolite.	609-613B
Grain-growth-inhibiting effects of primary inclusion particles of ZrO ₂ and MgO in Fe-10 mass% Ni alloy.	1213-1223A	A new approach to numerical simulation of melt flows and interface instability in Hall-Héroult cells.	1541-1550B
Grain growth, Welding effects Three-dimensional Monte Carlo simulation of grain growth in the heat-affected zone of a 2.25Cr-1Mo steel weld.	529-536B	Some generalities in the analyses of equilibria in ionic solu- tions.	2105-2118A
Grain orientation	599-605A	Hardening Mechanical behavior and damage kinetics in nodular cast iron.	3075-3085A
Surface relief of a" martensite in a Ti-Mo alloy. Evolution of texture and grain misorientation in an Al-Mg alloy exhibiting low-temperature superplasticity.	2169-2180A	II. Hardening and damage. Hardening, High temperature effects Stress-strain response of a cast 319-T6 aluminum under ther-	
Grain refinement, Alloying effects The role of solute in grain refinement of magnesium.	2895-2906A	momechanical loading. Hardness, Alloying effects	139-151A
Grain refinement, Deformation effects Equal-charinel angular pressing of commercial aluminum		Precipitation processes in Al-Cu-Mg alloys microalloyed with Si.	2721-2733A
alloys: grain refinement, thermal stability and tensile proper- ties.	691-701A	Effects of boron doping on the grain-growth kinetics and mechanical properties of γ/γ nickel-aluminum alloys.	3179-3186A
Microstructural development and austempering kinetics of duc- tile iron during thermomechanical processing. Grain refinement, Vibration effects	2575-2585A	Hardness, Coating effects Surface amorphous and crystalline microstructure by alloying zirconium using Nd: YAG pulsed laser.	3123-3127A
Effects of the intensity and frequency of electromagnetic vibra- tions on the microstructural refinement of hypoeutectic Al-Si	755-762A	Hardness, Composition effects Characterization of Mo-SiO₂ functionally graded materials. Microstructure and formability of ZnNi alloy electrodeposited	299-308A
alloys. Grain size	755-762A	sheet steel.	475-485A
Solidification parameters during the columnar-to-equiaxed transition in lead-tin alloys.	1611-1625A	Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering.	747-753A
The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8 wt.% Li AF/C-458 ALi-C-X alloys.	1965-1976A	Hardness, Deformation effects Load sharing between austenite and ferrite in a duplex stainless steel during cyclic loading.	1557-1570A
Grain size, Deformation effects Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply alloyed Cr-Mo, and plain C-Mn steels. Equal-channel angular pressing of commercial aluminum	511-530A	Hardness, Microstructural effects Correlation of the microstructure and fracture toughness of the heat-affected zones of an SA 508 steel.	1107-1119A
alloys: grain refinement, thermal stability and tensile proper- ties.	691-701A	Hardness, Welding effects Dispersoid-free zones in the heat-affected zone of aluminum	1450 14504
Grain size, Heating effects Insight into the microstructural characterization of ferritic steel		alloy welds. Heat, Deformation effects	1453-1459A
using micromagnetic parameters. Grain size, Processing effects The role of dispersed particles in strengthening and fracture	1053-1065A	Heat generation during the fatigue of a cellular Al alloy. Heat affected zone, Mechanical properties The mechanism of brittle fracture in a microalloyed steel. I.	1129-1136A
mechanisms in a Mo-ZrC alloy processed by mechanical alloying.	715-721A	Inclusion-induced cleavage. Correlation of the microstructure and fracture toughness of the	641-652A
Grain size, Welding effects Three-dimensional Monte Carlo simulation of grain growth in		heat-affected zones of an SA 508 steel. Fracture mechanism and toughness of the welding heat- affected zone in structural steel under static and dynamic	1107-1119A
the heat-affected zone of a 2.25Cr-1Mo steel weld. Grain structure	529-536B	loading. Relation between microstructure, composition, and hot crack-	2785-2791A
Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling pro-	4000 400 15	ing in Ti-stabilized austenitic stainless steel weldments. Heat affected zone, Microstructure	3109-3122A
cess. Island grains of low misorientation angles formed during abnormal grain growth in Cu.	1293-1304B 1489-1491A	Three-dimensional Monte Carlo simulation of grain growth in the heat-affected zone of a 2.25Cr-1 Mo steel weld. Dispersoid-free zones in the heat-affected zone of aluminum	529-536B

		riyarogen embrittiement, remperatu	ie eliects
alloy welds.	1453-1459A	ature exposure of single-crystalline nickel-base superalloys. Effect of fiber volume fraction on the fracture behavior of Nb-1	47-56A
Heat affected zone, Oxidation Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments.	3101-3108A	wt.% Zr/218W composites at elevated temperatures. Influence of microstructure on the flow behavior of duplex	873-887A
Heat of mixing Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys.	277-284B	stainless steels at high temperatures. Holding furnaces	1353-1364A
Heat transfer Physical and mathematical models of steel flow and heat trans-		Numerical simulation of the flow and the solid transport when tilting a holding furnace.	207-214B
fer in a tundish heated by plasma. Finding boundary conditions: a coupling strategy for the model- ing of metal casting processes. I. Experimental study and	63-74B	Hot dip aluminizing Dynamic reactive wetting and its role in hot dip coating of steel sheet with an Al-Zn-Si alloy.	1069-1079B
correlation development. Finding boundary conditions: a coupling strategy for the model- ing of metal casting processes. II. Numerical study and anal-	75-86B	Hot dip galvanizing Application of the phase-field method to the solidification of hot-dipped galvanized coatings.	487-495A
ysis. Prediction of cracks in continuously cast steel beam blank through fully coupled analysis of fluid flow, heat transfer, and	87-96B	Hot dip galvanizing, Heating effects Influence of annealing conditions on the galvanizability and	407-433A
deformation behavior of a solidifying shell. A model of the interfacial heat-transfer coefficient during unidi- rectional solidification of an aluminum alloy.	225-237A 285-295B	galvannealing properties of TiNb interstitial-free steels, strengthened with phosphorous and manganese. Hot extrusion	1225-1232A
A computational model for defect prediction in shape castings based on the interaction of free surface flow, heat transfer,		Hot deformation mechanisms in a powder metallurgy nickel- base superalloy IN 625.	2317-2325A
and solidification phenomena. Two-fluid simulation on the mixed convection flow pattern in a	515-527B	Hot isostatic pressing Effect of fiber volume fraction on the fracture behavior of Nb-1	
nonisothermal water model of continuous casting tundish. Mechanisms of initial melt/substrate heat transfer pertinent to strip casting.	867-875B 1023-1030B	wt.% Zr/218W composites at elevated temperatures. Mechanisms, models and simulations of metal-coated fiber	873-887A
Measurements, simulations, and analyses of instantaneous heat fluxes from solidifying steels to the surfaces of twin roll		consolidation. Microstructural evolution in wire-drawn Ti-22Al-26Nb powder. Fundamental aspects of hot isostatic pressing: an overview.	1271-1282A 2931-2941A 2981-3000A
casters and of aluminum to plasma-coated metal substrates. Interfacial heat transfer and nucleation of steel on metallic sub- strates.	1031-1047B 1081-1089B	Hot pressing Processing and microstructural characterization of Al-Cu alloys produced from rapidly solidified powders.	249-260A
Heat transmission		Hot rolling	243-20UA
Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for den-	331-343B	The effect of rolling on graphitization characteristics of strip cast Fe-C-Si white cast iron.	275-281A
dritic solidification processes. II. Computation of interden- dritic strain and segregation fields in steel ingots.	345-355B	Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply alloyed Cr-Mo, and plain C-Mn steels.	511-530A
High carbon steels, Casting		Microstructural model for hot strip rolling of high-strength low- alloy steels.	1247-1259A
Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. I. Theory and experiments.	331-343B	Analysis of secondary oxide-scale failure at entry into the roll gap.	1483-1490B
Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. II. Computation of interden- dritic strain and segregation fields in steel ingots.	345-355B	Evolution of texture in the β(B2) phase of a two phase titanium aluminide intermetallic alloy Ti-24Al-11Nb.	2339-2350A
High carbon steels, Heat treatment		Hot spraying Synthesis of nanostructured WC-12%Co coating using	
Microstructural and compositional evolution of compound lay- ers during gaseous nitrocarburizing. Erratum: Microstructural and compositional evolution of com-	195-211A	mechanical milling and high velocity oxygen fuel thermal spraying. Synthesis of nanostructured Cr ₂ C ₂ -25(Ni20Cr) coatings.	541-553A 555-564A
pound layers during gaseous nitrocarburizing. High carbon steels, Mechanical properties Identification of rolling-sliding damage mechanisms in porous	801A	Monosize droplet deposition as a means to investigate droplet behavior during spray deposition.	1333-1344B
alloys. High cycle fatigue	3091-3099A	Hot strip mills Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply alloyed Cr-Mo, and plain C-Mn steels.	511-530A
Infrared temperature mapping of ULTIMET alloy during high- cycle fatigue tests. Role of foreign-object damage on thresholds for high-cycle	1307-1310A	Hot workability Interpretation of microstructural evolution using dynamic materials modeling.	2973-2974A
fatigue in Ti-6Al-4V.	1571-1583A	Hot working	2010 20141
High cycle fatigue, Temperature effects Thermal activation of fatigue damage.	63-69A	Substructural changes during hot deformation of a Fe-26Cr fer- ritic stainless steel.	21-27A
High speed tool steels, Claddings Microstructural evolution during laser cladding of M2 high- speed steel.	2615-2625A	δ/γ interface boundary sliding as a mechanism of strain accommodation during hot deformation in a duplex stainless steel. Interpretation of microstructural evolution using dynamic materials.	1671-1677A
High speed tool steels, Phases (state of matter) Phase analysis of two steel work rolls using Mössbauer spectroscopy.	793-798A	rials modeling. Hot working, Composition effects	2973-2974A
High strength low alloy steels, Coatings On the evolution of porosity in spray-deposited tool steels.	723-733A	Effect of volume fraction of SiC _p reinforcement on the process- ing maps for 2124 Al matrix composites.	629-639A
High strength low alloy steels, Mechanical properties Influence of alloying elements on the strain rate and tempera-		Hydrides Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Hydrides, Crystal growth	679-690A
ture dependence of the flow stress of steels. The effect of microstructural banding on failure initiation of HY- 100 steel.	825-830A 995-1005A	The prediction of the hydriding thermodynamics of Pd-Rh-Co ternary alloys.	667-673B
Residual strains in HY100 polycrystals: comparisons of experi- ments and simulations.		Hydrogen, Diffusion Hydrogen trapping models in steel.	1475-1482B
The mechanical threshold stress constitutive-strength model description of HY-100 steel.	1543-1555A 1985-1996A	Hydrogen diffusion coefficients in the titanium alloys IMI 834, Ti 10-2-3, Ti 21 S, and Alloy C.	1507-1517A
Analysis and prevention of yield strength drop during spiral pip- ing of two high-strength API-X70 steels. High strength low alloy steels. Rolling	2669-2674A	Hydrogen, Reactions (chemical) Interfacial kinetics of hydrogen with liquid slag containing iron oxide.	945-955B
Microstructural model for hot strip rolling of high-strength low- alloy steels. High strength steels, Coating	1247-1259A	Hydrogen, Sorption The identification of hydrogen trapping states in an Al-Li-Cu-Zr alloy using thermal desorption spectroscopy.	179-193A
Influence of annealing conditions on the galvanizability and galvannealing properties of TiNb interstitial-free steels,	1005 10004	Hydrogen embrittlement On methane generation and decarburization in low-alloy Cr-Mo steels during hydrogen attack.	125-137A
strengthened with phosphorous and manganese. High strength steels, Heat treatment	1225-1232A	Hydrogen effects on the spall strength and fracture characteris-	
Dynamic bake hardening of interstitial-free steels. High strength steels, Mechanical properties	1375-1384A	tics of amorphous Fe-Si-B alloy at very high strain rates. Environmentally enhanced deformation of ultra-high-purity Ni- 16Cr-9Fe alloys.	1085-1093A 2383-2388A
Influence of alloying elements on the strain rate and tempera- ture dependence of the flow stress of steels. Simulation of shear plugging through thin plates using the	825-830A	Hydrogen effects on an amorphous Fe-Si-B alloy. Hydrogen embrittlement, Composition effects Hydrogen diffusion coefficients in the titanium alloys IMI 834, Ti	2517-2526A
GRIM Eulerian hydrocode. An investigation of dynamic failure in 2.3Ni-1.3Cr-0.17C steel. Impact fracture toughness of porous iron and high-strength	853-860A 1147-1154A	10-2-3, Ti 21 S, and Alloy C. Hydrogen embrittlement, Heating effects	1507-1517A
steels. High temperature	1443-1451A	Part II. Metallurgical factors governing the H-assisted integran- ular cracking of peak-aged Ti-3Al-8V-6Cr-4Mo-4Zr (Beta-C).	81-92A
Selective oxidation and internal nitridation during high-temper-		Hydrogen embrittlement, Temperature effects	

, ,			
Stress corrosion cracking mechanisms of Alloy 600 polycrystals and single crystals in primary water—influence of hydrogen.	2025-2036A	Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for den-	331-343B
Hydrogen storage The prediction of the hydriding thermodynamics of Pd-Rh-Co	667-673B	dritic solidification processes. II. Computation of interden- dritic strain and segregation fields in steel ingots. Interface reactions	345-355B
ternary alloys. Hydrometallurgy	007-07-00	Kinetics of manganese ore reduction by carbon monoxide. Interfacial kinetics of hydrogen with liquid slag containing iron	477-490B
Preparation of Nd(III) carbonate by precipitation stripping of Nd(III)-loaded VA10.	5-13B	oxide. Dynamic and equilibrium interfacial phenomena in liquid steel-	945-955B
The electrochemical property of acetylene black suspension solution with ozone bubbling and its effects on copper disso-	205 0445	slag systems. Interfacial phenomena in some slag-metal reactions.	957-971B 973-980B
lution. Pore transport-controlled shrinking-core systems involving dif-	235-241B	Rate of interfacial reaction between liquid iron oxide and CO-CO ₂ .	1049-1057B
fusion, migration, and homogeneous reactions. I. Formula- tion of model and rate equation for PbSO ₄ -carbonate		Influence of ash on mass transfer and interfacial reaction between natural graphite and liquid iron.	1099-1104B
system. Pore transport-controlled shrinking-core systems involving dif-	683-691B	In situ observations of inclusions at the (Mn,Si)-killed steel/ CaO-Al ₂ O ₃ interface.	1135-1139B
fusion, migration, and homogeneous reactions. II. Applica- tion of model for PbSO ₄ -carbon system to experimental data.	693-703B	An experimental investigation on the kinetics of solute driven remelting.	2713-2720A
Selective arsenic-fixing roast of refractory gold concentrate. Mixed solvent systems for the extraction and stripping of	1163-1168B	Interface reactions, Coating effects	2710272071
iron(III) from concentrated acid chloride solutions. Characterization of scales obtained during continuous nickel	1169-1174B	Thermal stability of electroless-nickel/solder interface: A. Inter- facial chemistry and microstructure.	2857-2866A
laterite pilot-plant leaching. Hysteresis	1175-1186B	Interface reactions, Composition effects Interfacial modification and impact properties of Nb/MoSi ₂ lam-	
Heat generation during the fatigue of a cellular Al alloy. Displacive transformations in Au-18 wt.% Cu-6 wt.% Al. Impact	1129-1136A 1917-1923A	inate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC par- ticles. Modification of the interface in SiC/Al composites.	2075-2081A 2361-2368A
Simulation of shear plugging through thin plates using the GRIM Eulerian hydrocode.	853-860A	Intergranular corrosion, High temperature effects Grain-boundary chemistry and integranular corrosion in alloy	
Role of foreign-object damage on thresholds for high-cycle fatique in Ti-6AI-4V.	1571-1583A	825.	1163-1173A
Impact strength	1371-1300A	Intergranular fracture, Alloying effects Effects of boron doping on the grain-growth kinetics and	2170 21064
The effect of impact damage on the room-temperature fatigue behvior of \(\gamma \) TiAl. Impact strength, Composition effects	1741-1752A	mechanical properties of ½½ nickel-aluminum alloys. Intergranular fracture, Heating effects Part II. Metallurgical factors governing the H-assisted integran-	3179-3186A
Interfacial modification and impact properties of Nb/MoSi ₂ lam- inate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC par-	2075-2081A	ular cracking of peak-aged Ti-3Al-8V-6Cr-4Mo-4Zr (Beta-C). Interlayers, Bonding	81-92A
ticles. Impact strength, Microstructural effects	2075-2001A	The role of plasticity in bimaterial fracture with ductile interlayers.	863-872A
Impact fracture toughness of porous iron and high-strength steels.	1443-1451A	Intermetallic phases The interactive role of inclusions and SiC reinforcement on the	
An investigation of the effect of fatigue deformation on the residual mechanical properties of Ti-6Al-4V ELI.	1937-1948A	high-cycle fatigue resistance of particle reinforced metal matrix composites.	951-957A
Impact strength, Radiation effects A Bayesian analysis of the influence of neutron irradiation on embrittlement in ferritic submerged arc weld metal.	445-459A	Examination of solidification pathways and the liquidus surface n the Nb-Ti-Al system.	1305-1321B
Impact strength, Welding effects		Intermetallic phases, Crystal growth Effect of increased growth velocity on the growth temperature	327-328A
Characteristics of a pulsed-current, vertical-up gas metal arc weld in steel.	2247-2259A	of the AI-AI ₂ Cu eutectic. Neutron diffraction and phase evolution of the mechanically alloyed intermetallic compound ξ-FeZn ₁₃ .	2739-2745A
Inclusions On the detection and selective separation of inclusions in liquid		Thermal transformations in mechanically alloyed Fe-Zn-Si materials.	2747-2754A
metal cleanliness analyzer (LiMCA) systems. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal	767-777B	Transient liquid-phase bonding in the Ni-Al-B system. Coarsening of intermetallic or compound precipitates in binary	2835-2847A 3195-3197A
matrix composites. Induction melting	951-957A	systems. Intermetallics, Mechanical properties	0133-013774
Evaporation behavior of aluminum during the cold crucible induction skull melting of titanium aluminum alloys.	837-844B	Experimental studies on tribological properties of pseudoelas- tic TiNi alloy with comparison to stainless steel 304.	2773-2783A
Infiltration Simulation of metal-matrix composite isothermal infiltration pro-		Intermetallics, Phase transformations Influence of aging on transformation characteristics in shape	
cessing. On the infiltration behavior of Al, Al-Li, and Mg melts through	225-234B	memory CuZnĀl alloys. Crystallization of amorphous Fe ₈₂ P ₁₈ .	349-354A 1067-1073A
SiC _p bed. Reactive infiltration processing and secondary compressive	319-325A	Experimental investigation and thermodynamic calculation of the Ti-Ni-Cu shape memory alloys.	2423-2430A
creep of NiAl and NiAl-W composites. Porosity nucleation in metal-matrix composites.	781-792A 2069-2074A	Internal oxidation, Welding effects Relevance of high-temperature oxidation in life assessment	
Infrared analysis Infrared temperature mapping of ULTIMET alloy during high-		and microstructural degradation of Cr-Mo steel weldments. Interstitial free steels, Coating	3101-3108A
cycle fatigue tests.	1307-1310A	Influence of annealing conditions on the galvanizability and galvannealing properties of TiNb interstitial-free steels,	1005 10004
Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. I. Theory and experiments.	331-343B	strengthened with phosphorous and manganese. Interstitial free steels, Heat treatment	1225-1232A
Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. II. Computation of interden-		Dynamic bake hardening of interstitial-free steels. Interstitial free steels, Metal working	1375-1384A
dritic strain and segregation fields in steel ingots. Determination of thermophysical properties and boundary con-	345-355B	Strength and formability of ultra-low-carbon Ti-IF steels. Interstitial free steels, Solubility	1305-1307A
ditions of direct chill-cast aluminum alloys using inverse methods.	1627-1634A	Argon solubility in liquid steel. Interstitial impurities	913-919B
Ingots, Crystal growth Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. I. Theory and experiments.	331-343B	The influence of crystallographic texture and interstitial impurities on the mechanical behavior of zirconium.	1997-2003A
Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. II. Computation of interden-		Investment casting Alpha case thickness modeling in investment castings.	1419-1427B
dritic strain and segregation fields in steel ingots. Ingots, Melting	345-355B	Investment castings, Diffusion Alpha case thickness modeling in investment castings.	1419-1427B
Modeling the dynamics of magnetic semilevitation melting. Injection Nitrogen alloying of carbon and stainless steels by gas injec-	179-189B	lon nitriding Study of microstructure of low-temperature plasma-nitrided AISI 304 stainless steel.	1193-1199A
tion.	905-912B	Ionic conductivity	1241-1245B
Injection molding Length change and deformation of powder injection-molded compacts during solvent debinding.	1473-1478A	The ionic properties of CaSiO ₃ melt. Iridium base alloys, Mechanical properties Design of quaternary Ir-Nb-Ni-Al refractory superalloys.	173-178A
Simulation of polymer removal from a powder injection molding compact by thermal debinding. Interdendritic structure	2597-2606A	Iron, Binary systems Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system.	355-360A
		and and grant of the samely system.	222 30071

		Lead (metal),	Dillusion
On the mobility of the austenite-ferrite interface in Fe-Co and	070 0054	J integral	
Fe-Cu. A model for nonclassical nucleation of solid-solid structural	379-385A	Modeling thermomechanical fatigue life of high-temperature titanium alloy IMI 834.	431-444A
phase transformations. Iron, Diffusion	1321-1331A	An investigation of dynamic failure in 2.3Ni-1.3Cr-0.17C steel. Killed steels, Mechanical properties	1147-1154A
A Scheil-Gulliver model with back-diffusion applied to the microsegregation of chromium in Fe-Cr-C alloys. Iron, Extraction	1682-1684A	Dynamic materials testing, texture, and yield-surface calcula- tion of an automotive sheet steel.	2439-2448A
Recent advances in the fundamentals of the kinetics of steel- making reactions.	891-898B	Killed steels, Reactions (chemical) In situ observations of inclusions at the (Mn,Si)-killed steel/ CaO-Al ₂ O ₃ interface.	1135-1139B
Mixed solvent systems for the extraction and stripping of iron(III) from concentrated acid chloride solutions.	1169-1174B	Kinetics Thermodynamic-kinetic simulation of constrained dendrite	1100 11000
Experimental study of phase equilibria in the systems Fe-Zn-O and Fe-Zn-Si-O at metallic iron saturation.	1195-1201B	growth in steels. Mechanical behavior and damage kinetics in nodular cast iron.	365-379B
Iron, Mechanical properties Impact fracture toughness of porous iron and high-strength steels.	1443-1451A	Damage mechanisms. Mechanical behavior and damage kinetics in nodular cast iron.	3063-3074A
Identification of rolling-sliding damage mechanisms in porous alloys.	3091-3099A	Hardening and damage. Knoop hardness Effect of long-term room-temperature storage on the structure.	3075-3085A
Iron, Powder technology Sintering behavior of nanocrystalline γ-Ni-Fe powders.	503-510A	and properties of glassy melt-spun Mg-Al-Ca alloys. Ladle metallurgy	2155-2162A
Preparation of high porosity metal foams. Length change and deformation of powder injection-molded compacts during solvent debinding.	1345-1352B 1473-1478A	Fluid flow and inclusion removal in continuous casting tundish. Nitrogen alloying of carbon and stainless steels by gas injec-	253-266B
Improved densification of carbonyl iron compacts by the addition of fine alumina powders.	1645-1652A	tion. Modeling of gas-liquid reactions in ladle metallurgy. I. Physical	905-912B
Iron, Reactions (chemical) Dissolution rates of coals and graphite in Fe-C-S melts in direct ironmaking: influence of melt carbon and sulfur on carbon		modeling. Modeling of gas-liquid reactions in ladle metallurgy. II. Numerical simulation.	1447-1455B 1457-1464B
dissolution. Thermodynamics of surfaces and adsorption in the Fe-C-S-O	243-251B	Lamellar structure The fracture resistance of a binary TiAl alloy.	71-80A
system. Iron, Refining	267-276B	Crystallization of amorphous Fe ₈₂ P ₁₈ . Eutectic interface configurations during melting. Creep deformation of TiAl-Si alloys with aligned \(\gamma\alpha\) lamellar	1067-1073A 1261-1269A
X-ray fluoroscopy observations of bubble formation and sepa- ration at a metal-slag interface.	537-540B	microstructures. Interaction of deformation twin and 120°-rotational order fault	2463-2473A
Effects of aluminum, silicon, and boron on the dissolution rate of nitrogen into molten iron.	899-904B	domain boundary in the lamellar structure of two-phase TiAl-based alloys.	2823-2834A
Iron, Solubility Argon solubility in molten iron. Iron, Welding	216-218B	Lamellar structure, Heating effects Discussion of "Surface relief and the displacive transformation	
Numerical modeling of enhanced nitrogen dissolution during gas tungsten arc welding. Unsteady Marangoni flow in a molten pool when welding dis-	1371-1385B 1387-1403B	to the lamellar microstructure in TiAI" and "Nanometer-scale, fully lamellar microstructure in an aged TiAI-based alloy". Author's reply to: Discussion of "Surface relief and the displa- cive transformation to the lamellar microstructure in TiAI" and	2377-2379A
similar metals. Iron and steel making	1367-14U3D	"Nanometer-scale, fully lamellar microstructure in an aged TiAl-based alloy".	2379-2383A
Kinetics of oxidation of carbonaceous materials by CO ₂ and H ₂ O between 1300° and 1500°C. Physical and mathematical models of steel flow and heat transfer in a tundish heated by plasma.	43-54B 63-74B	Laminates, Mechanical properties An investigation of the effects of ductile-layer thickness on the fracture behavior of nickel aluminide microlaminates. Interfacial modification and impact properties of Nb/MoSi ₂ lam-	1385-1399A
Thermodynamics of surfaces and adsorption in the Fe-C-S-O system.	267-276B 403-406B	inate composites by the addition of ZrO ₂ , NbSi ₂ , and SiĈ particles.	2075-2081A
The effect of water vapor on mold slag crystallization. Kinetics of ${\rm Al}_2{\rm O}_3$ dissolution in CaO-MgO-SiO ₂ -Al $_2{\rm O}_3$ slags: in situ observations and analysis. Steel at the millennium.	406-410B 561-575B	Laser beam cladding Microstructural evolution during laser cladding of M2 high- speed steel.	2615-2625A
Solid-state amperometric sensor for the in-situ monitoring of slag composition and transport properties.	733-753B	Laser beam heating Mechanical properties of laser-deposited composite boride	
Recent advances in the fundamentals of the kinetics of steel- making reactions.	891-898B	coating using nanoindentation. Elevated temperature oxidation of laser surface engineered	401-408A 461-473A
The surface tensions and foaming behavior of melts in the system CaO-FeO-SiO ₂ . Redox equilibria and kinetics of gas-slag reactions.	921-925B 937-943B	composite boride coating on steel. Surface amorphous and crystalline microstructure by alloying zirconium using Nd:YAG pulsed laser.	3123-3127A
Interfacial kinetics of hydrogen with liquid slag containing iron oxide. Dynamic and equilibrium interfacial phenomena in liquid steel-	945-955B	Laser beam welding Dispersoid-free zones in the heat-affected zone of aluminum	4450 44504
slag systems. Interfacial phenomena in some slag-metal reactions.	957-971B 973-980B	alloy welds. Laterites, Beneficiation	1453-1459A
Rate of interfacial reaction between liquid iron oxide and CO-CO ₂ . Hydrodynamics of fluid flow approaching a moving boundary.	1049-1057B 1117-1123B	Characterization of scales obtained during continuous nickel laterite pilot-plant leaching. Lattice parameters, Coating effects	1175-1186B
Iron and steel making, Quality control Developments in blast furnace process control at Port Kembla based on process fundamentals.	993-1003B	Microstructural evolution during laser cladding of M2 high- speed steel.	2615-2625A
Iron compounds, Crystal growth Neutron diffraction and phase evolution of the mechanically	2739-2745A	Lattice parameters, Deformation effects Computer simulation of the initial rafting process of a nickel- base single-crystal superalloy.	585-597A
alloyed intermetallic compound ξ-FeZn ₁₃ . Iron compounds, Oxidation Fornation of pegs during high-temperature oxidation of Fe ₃ Al	2/39-2/45A	Laves phase, Alloying effects Atom probe field ion microscopy investigation of boron contain- ing martensitic 9% chromium steel.	975-984A
containing yttrium. Iron compounds, Phase transformations	1685-1687A	Role of Mo and W during sensitization of superaustenitic stain- less steel—crystallography and composition of precipitates.	
Crystallization of amorphous Fe ₈₂ P ₁₈ . Iron ores, Reactions (chemical)	1067-1073A	Leaching A novel process for recovering rare earth from weathered black	101 1000
Effect of temperature on cementite formation by reaction of iron ore with H ₂ -CH ₄ -Ar gas.	1139-1142B	earth. The electrochemical property of acetylene black suspension solution with ozone bubbling and its effects on copper disso-	191-196B
Iron oxides, Solubility Solutions of iron oxides in molten cryolite. Ironmaking	609-613B	lution. Pore transport-controlled shrinking-core systems involving diffusion, migration, and homogeneous reactions. I. Formula-	235-241B
Dissolution rates of coals and graphite in Fe-C-S melts in direct ironmaking: dependence of carbon dissolution rate on car- bon structure.	215-216B	tion of model and rate equation for PbSO ₄ -carbonate system. Pore transport-controlled shrinking-core systems involving dif-	683-691B
Dissolution rates of coals and graphite in Fe-C-S melts in direct ironmaking: influence of melt carbon and sulfur on carbon dissolution.		fusion, migration, and homogeneous reactions. II. Application of model for PbSO ₄ -carbon system to experimental data.	693-703B
Influence of ash on mass transfer and interfacial reaction between natural graphite and liquid iron.	1099-1104B	Lead (metal), Binary systems A model of convection-induced oscillatory structure formation in peritectic alloys.	1233-1246A
Some observations on the draining of CaO-SiO ₂ -Al ₂ O ₃ slag bubble films. Reoxidation of hot briquetted iron in salt water.	1105-1115B 1133-1135B	Lead (metal), Diffusion Interdiffusion of Sn and Pb in liquid Pb-Sn alloys.	1343-1352A
The state of the s		, , , , , , , , , , , , , , , , , , , ,	

Lead (metal), Extraction Lead solubility in FeO _x -CaO-SiO ₂ slags at iron saturation.	15-24B	cles flowing with liquid metals through an electric sensing zone".	1143B
Coupled experimental and thermodynamic modeling studies for metallurgical smelting and coal combustion slag systems.	621-630B	Numerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt. I. Spherical	1527-1533B
Pore transport-controlled shrinking-core systems involving dif- fusion, migration, and homogeneous reactions. I. Formula- tion of model and rate equation for PbSO ₄ -carbonate		particles. Numerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt. II. Cylindri-	1527-1533B
system.	683-691B	cal particles.	1535-1540B
Pore transport-controlled shrinking-core systems involving dif- fusion, migration, and homogeneous reactions. II. Applica- tion of model for PbSO ₄ -carbon system to experimental data.	693-703B	Liquid metals, Reactions (chemical) Dissolution rates of coals and graphite in Fe-C-S melts in direct ironmaking: influence of melt carbon and sulfur on carbon	
Lead (metal), Reactions (chemical) Dissolution of lead and bismuth in white metal (CuS _{0.5}) at	543-546B	dissolution. Thermodynamic study of zinc-rich zinc-sodium alloys. X-ray fluoroscopy observations of bubble formation and sepa-	243-251B 419-424B
matte-smelting temperatures. Lead base alloys, Diffusion Interdiffusion of Sn and Pb in liquid Pb-Sn alloys.	1343-1352A	ration at a metal-slag interface. Distribution equilibria of Pb and Cu between CaO-SiO ₂ -Al2NO ₃	537-540B
Lead base alloys, Directional solidification Mushy zone morphology during directional solidification of Pb-		melts and liquid copper. A Monte Carlo simulation study of dissolution of graphite in iron-carbon melts.	1261-1266B 1517-1525B
5.8 wt.% Sb alloy. Leaded brasses, Mechanical properties	2275-2285A	Copper and minor elements distribution between metal, matte, and fluorine slags.	1551-1553B
Damage leading to ductile fracture under high strain-rate con- ditions.	831-844A	Liquid metals, Solubility Dissolution rates of coals and graphite in Fe-C-S melts in direct	
Levitation melting Modeling of turbuelent flow in electromagnetically levitated		ironmaking: dependence of carbon dissolution rate on car- bon structure.	215-216B
metal droplets. Modeling the dynamics of magnetic semilevitation melting.	171-178B 179-189B	Argon solubility in molten iron. The effect of lead on the activity of sodium in liquid zinc.	216-218B 414-418B
Equilibrium shape of a molten silicon drop in an electromag- netic levitator in microgravity environment. Lime, Reactions (chemical)	327-329B	Argon solubility in liquid steel. Liquid metals, Surface properties	913-919B
Phase diagram for the system CaO-Al ₂ O ₃ -ZrO ₂ . Liquid flow	25-33B	Surface tension of molten silicon measured by the electromag- netic levitation method under microgravity.	1585-1589A
Physical and mathematical models of steel flow and heat trans-		Liquid phase sintering The effect of gravity on solution-reprecipitation during liquid	
fer in a tundish heated by plasma. Fluid flow and inclusion removal in continuous casting tundish. Numerical studies of the motion of particles in current-carrying	63-74B 253-266B	phase sintering. Microstructural parameters related to liquid-phase sintering.	397-400A 2607-2614A
liquid metals flowing in a circular pipe. Water model study of horizontal molten steel—Ar two-phase jet	357-364B	Macrosegregation in quiescent melting and liquid-phase sinter- ing. Simulation of percolation structure of grain bonding in liquid-	2907-2916A
in a continuous casting mold. Dynamics of the spout of gas plumes discharging from a melt:	453-4608	phase sintering by three-dimensional grain structure recon-	2107 21024
 experimental investigation with a large-scale water model. A computational model for defect prediction in shape castings 	461-468B	struction. Liquidus Estimation of liquidus temperatures for multicomponent sili-	3187-3193A
 based on the interaction of free surface flow, heat transfer, and solidification phenomena. Hydrodynamics of fluid flow approaching a moving boundary. 	515-527B 1117-1123B	cates from activation energies for viscous flow. Liquidus temperature determination in multicomponent alloys	111-119B
Melt flow control in a multistrand tundish using a turbulence inhibitor.	1505-1515B	by thermal analysis. Examination of solidification pathways and the liquidus surface	497-501A
A new approach to numerical simulation of melt flows and interface instability in Hall-Héroult cells.	1541-1550B	n the Nb-Ti-Al system. Low alloy steels, Rolling Mathematical modeling of the hot strip rolling of microalloyed	1305-1321B
Liquid flow, Field effects The effect of a uniform direct current magnetic field on the stability of a stratified liquid flux/molten steel system.	317-326B	Nb, multiply alloyed Cr-Mo, and plain C-Mn steels. Low alloy steels, Welding	511-530A
Liquid flow, Processing effects Modeling of molten metal flow in a continuous casting process		Modeling of inclusion growth and dissolution in the weld pool. The mechanism of brittle fracture in a microalloyed steel. I.	161-169B
considering the effects of argon gas injection and static mag- netic-field application.	1491-1503B	Inclusion-induced cleavage. The mechanism of brittle fracture in a microalloyed steel. II. Mechanistic modeling.	641-652A 653-667A
Liquid metals, Diffusion The chemical diffusivity of oxygen in liquid iron oxide and a cal-	1059-1068B	Low carbon steels, Casting Argon solubility in molten iron.	216-218B
cium ferrite. Liquid metals, Electrochemistry	1033-1000B	Low carbon steels, Coating	
Fundamental theories and concepts for predicting thermody- namic properties of high temperature ionic and metallic liquid	570 F00D	Mechanical properties of laser-deposited composite boride coating using nanoindentation. Elevated temperature oxidation of laser surface engineered	401-408A
solutions and vapor molecules. Liquid metals, Phase transformations	579-586B 277-284B	composite boride coating on steel. Dynamic reactive wetting and its role in hot dip coating of steel	461-473A
Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys. Electrode potential studies of liquid-solid equilibrium in Na ₃ Bi- saturated Na-Bi melts.	411-414B	sheet with an Al-Zn-Si alloy. Correlation of microstructure with the wear resistance and frac-	1069-1079B
Liquid metals, Phases (state of matter) Measurement of the activity of boron in liquid copper using a		ture toughness of hardfacing alloys reinforced with complex carbides.	3041-3052A
four-phase equilibrium technique. Liquid metals, Physical properties	2674-2678A	Low carbon steels, Crystal growth Interfacial heat transfer and nucleation of steel on metallic sub- strates.	1081-1089B
Physical and mathematical models of steel flow and heat trans- fer in a tundish heated by plasma. Modeling of turbuelent flow in electromagnetically levitated	63-74B	Low carbon steels, Heat treatment Modeling of dissolution, growth, and coarsening of aluminum	
metal droplets. Numerical simulation of the flow and the solid transport when	171-178B	nitride in low-carbon steels. Low carbon steels, Magnetic properties	1907-1916A
tilting a holding furnace. Equilibrium shape of a molten silicon drop in an electromag-	207-214B	Insight into the microstructural characterization of ferritic steel using micromagnetic parameters.	1053-1065A
netic levitator in microgravity environment. Numerical studies of the motion of particles in current-carrying liquid metals flowing in a circular pipe.	327-329B 357-364B	Low carbon steels, Metal working Strength and formability of ultra-low-carbon Ti-IF steels.	1305-1307A
Optimum parameters for wetting silicon carbide by aluminum allovs.	565-573A	Low carbon steels, Rolling Microstructural model for hot strip rolling of high-strength low- alloy steels.	1247-1259A
Two-fluid simulation on the mixed convection flow pattern in a nonisothermal water model of continuous casting tundish.	867-875B	Low carbon steels, Steel making	- I LOOM
Hydrodynamics of fluid flow approaching a moving boundary. Modeling of molten metal flow in a continuous casting process considering the effects of argon gas injection and static mag-	1117-1123B	Behavior of nonmetallic inclusions in front of the solid-liquid interface in low-carbon steels.	1013-1021B
netic-field application.	1491-1503B	Modeling of gas-liquid reactions in ladle metallurgy. I. Physical modeling.	1447-1455B
Melt flow control in a multistrand tundish using a turbulence inhibitor.	1505-1515B	Modeling of gas-liquid reactions in ladle metallurgy. II. Numerical simulation.	1457-1464B
A new approach to numerical simulation of melt flows and interface instability in Hall-Héroult cells.	1541-1550B	Low carbon steels, Welding The mechanism of brittle fracture in a microalloyed steel. I.	
Liquid metals, Quality control On the detection and selective separation of inclusions in liquid	767 7770	Inclusion-induced cleavage. The mechanism of brittle fracture in a microalloyed steel. II.	641-652A
metal cleanliness analyzer (LiMCA) systems. Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone.	767-777B 855-866B	Mechanistic modeling. Microstructural evolution in ultra-low-carbon steel weldments. I. Controlled thermal cycling and continuous cooling transfor-	653-667A
Erratum: "Numerical studies of the motion of spheroidal parti-	555 0000	mation diagram of the weld metal.	2145-2153A

		The trioniation	ai iiioacio
Low cycle fatigue, Temperature effects Thermal activation of fatigue damage.	63-69A	Mathematical analysis Application of, and precautions for the use of, the Rule of Addi-	
Lubrication Identification of rolling-sliding damage mechanisms in porous alloys.	3091-3099A	tivity in phase transformation. The limiting speeds of dislocations. Comparison between high and low strain-rate deformation of	675-682B 811-814A
Magnesium, Alloying additive	0001 000011	tantalum. Evaporation behavior of aluminum during the cold crucible	815-823A
The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa. Solidification characteristics of the Al-8.3Fe-0.8V-0.9Si alloy.	1365-1373A 1599-1610A	induction skull melting of titanium aluminum alloys. Quantitative description of damage evolution in ductile fracture	837-844B
Magnesium, Composite materials On the infiltration behavior of Al, Al-Li, and Mg melts through		of tantalum. Transient liquid-phase bonding in two-phase ternary systems. Determining the three-dimensional morphology of \(\gamma \)-particles	845-851A 1187-1192A
SiC _p bed. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique.	319-325A 1873-1881A	in	1333-1342A 1343-1352A
Magnesium, Extraction Solubilities and Raman spectra of NdOCl in some chloride	1070 10017	tion of an automotive sheet steel. Yield vertices for {123}<111> multiple slip.	2439-2448A 2449-2456A
melts of interest for the electrowinning of magnesium from its oxide.	631-639B	An oscillatory behavior of planar interface motion in the naph- thalene-camphor system. Coarsening of intermetallic or compound precipitates in binary	2678-2681A
Magnesium, Reactions (chemical) Activity measurement of the constituents in liquid Cu-Mg and Cu-Ca alloys with mass spectrometry.	927-935B	systems. Pseudobinary diffusion coefficients in the Ti-Mo-Ta system.	3195-3197A 3198-3199A
Magnesium base alloys, Casting	927-9350	Mathematical models A numerical and experimental study of the rate of transforma-	
On the detection and selective separation of inclusions in liquid metal cleanliness analyzer (LiMCA) systems.	767-777B	tion in three directionally grown peritectic systems. Mechanical properties, microstructural stability and kinetics of	29-34A
Magnesium base alloys, Microstructure The role of solute in grain refinement of magnesium.	2895-2906A	 σ-phase formation in 29Cr-6Ni-2Mo-0.38N superduplex stainless steel. 	35-45A
Magnesium oxide, impurities Grain-growth-inhibiting effects of primary inclusion particles of		Finding boundary conditions: a coupling strategy for the model- ing of metal casting processes. I. Experimental study and	75-86B
ZrO ₂ and MgO in Fe-10 mass% Ni alloy. Magnetic fields	1213-1223A	correlation development. Finding boundary conditions: a coupling strategy for the model- ing of metal casting processes. II. Numerical study and anal-	75-805
The effect of a uniform direct current magnetic field on the sta- bility of a stratified liquid flux/molten steel system.	317-326B	ysis. Stress-strain response of a cast 319-T6 aluminum under ther-	87-96B
Magnetic induction, Microstructural effects Insight into the microstructural characterization of ferritic steel using micromagnetic parameters.	1053-1065A	momechanical loading. Modeling of inclusion growth and dissolution in the weld pool. Modeling of turbuelent flow in electromagnetically levitated	139-151A 161-169B
Manganese, Alloying elements Alloy design of FeMnSiCrNi shape-memory alloys related to		metal droplets. Modeling the dynamics of magnetic semilevitation melting.	171-178B 179-189B
stacking-fault energy. Manganese, Binary systems	581-584A	Modeling of the vacuum oxygen decarburization refining process.	197-206B
Driving force for $\gamma \rightarrow \epsilon$ martensitic transformation and stacking fault energy of γ in Fe-Mn binary system.	355-360A	Numerical simulation of the flow and the solid transport when tilting a holding furnace. Dissolution rates of coals and graphite in Fe-C-S melts in direct	207-214B
Manganese base alloys, Reactions (chemical) Kinetics of manganese ore reduction by carbon monoxide.	477-490B	ironmaking: dependence of carbon dissolution rate on car- bon structure.	215-216B
Marine environments Influence of thermal aging on the reactivity of duplex stainless		Prediction of cracks in continuously cast steel beam blank through fully coupled analysis of fluid flow, heat transfer, and deformation behavior of a colidificing shall.	225-237A
steel surfaces. Martensite	2015-2024A	deformation behavior of a solidifying shell. Fluid flow and inclusion removal in continuous casting tundish. A model of the interfacial heat-transfer coefficient during unidi-	253-266B
Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase	1753-1760A	rectional solidification of an aluminum alloy. Equilibrium shape of a molten silicon drop in an electromag-	285-295B
steels. Martensite, Deformation effects	1755-1700A	netic levitator in microgravity environment. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. I. Theory and experiments.	327-329B 331-343B
Investigation on the cold deformation strengthening mechanism in MP 159 alloy. Martensite, Welding effects	5-13A	Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. II. Computation of interden-	
Correlation of the microstructure and fracture toughness of the heat-affected zones of an SA 508 steel.	1107-1119A	dritic strain and segregation fields in steel ingots. Numerical studies of the motion of particles in current-carrying	345-355B
Martensitic stainless steels, Mechanical properties Influence of alloying elements on the strain rate and tempera-		liquid metals flowing in a circular pipe. Thermodynamic-kinetic simulation of constrained dendrite growth in steels.	357-364B 365-379B
ture dependence of the flow stress of steels. Atom probe field ion microscopy investigation of boron contain-	825-830A	Coal pyrolysis in a rotary kiln. I. Model of the pyrolysis of a sin- gle grain.	381-390B
ing martensitic 9% chromium steel. Martensitic transformations	975-984A	Coal pyrolysis in a rotary kiln. II. Overall model of the furnace. Modeling thermomechanical fatigue life of high-temperature	391-402B
Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system.	355-360A 599-605A	titanium alloy IMI 834. A mathematical model of aluminum depth filtration with ceramic foam filters. I. Validation for short-term filtration.	431-444A 491-502B
Surface relief of a" martensite in a Ti-Mo alloy. A model for nonclassical nucleation of solid-solid structural phase transformations.	1321-1331A	A mathematical model of aluminum depth filtration with ceramic foam filters. II. Application to long-term filtration.	503-513B
Displacive transformations in Au-18 wt.% Cu-6 wt.% Al. Experimental studies on tribological properties of pseudoelas-	1917-1923A	Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply alloyed Cr-Mo, and plain C-Mn steels.	511-530A
tic TiNi alloy with comparison to stainless steel 304. Martensitic transformations, Alloying effects	2773-2783A	A computational model for defect prediction in shape castings based on the interaction of free surface flow, heat transfer, and collidification phonomens.	515-527B
Experimental investigation and thermodynamic calculation of the Ti-Ni-Cu shape memory alloys.	2423-2430A	and solidification phenomena. Three-dimensional Monte Carlo simulation of grain growth in the heat-affected zone of a 2.25Cr-1Mo steel weld.	529-536B
Martensitic transformations, Composition effects Alloy design of FeMnSiCrNi shape-memory alloys related to	581-584A	The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix compos-	
stacking-fault energy. Martensitic transformations, Cooling effects	361-364A	ites. Prediction of properties of intermetallics using a chemical	531-540A
Microstructural evolution in ultra-low-carbon steel weldments. I. Controlled thermal cycling and continuous cooling transfor-		bonding model. The power of thermodynamic modeling: examples from molten	603-607B
mation diagram of the weld metal. Martensitic transformations, Deformation effects	2145-2153A	halide mixtures. The modified quasichemical model I—binary solutions. The mechanism of brittle fracture in a microalloyed steel. II.	641-650B 651-659B
Effect of microstructure variations on the formation of deforma- tion-induced martensite and associated tensile properties in a β metastable Ti alloy.	1095-1106A	Mechanistic modeling. Pore transport-controlled shrinking-core systems involving dif-	653-667A
Martensitic transformations, Heating effects Influence of aging on transformation characteristics in shape		fusion, migration, and homogeneous reactions. I. Formula- tion of model and rate equation for PbSO ₄ -carbonate system.	683-691B
memory CuZnAl alloys. Effects of thermal cycling on the kinetics of the $\gamma\rightarrow\epsilon$ martensitic	349-354A	Pore transport-controlled shrinking-core systems involving dif- fusion, migration, and homogeneous reactions. II. Applica-	
transformation in an Fe-17 wt.% Mn alloy. Mass transfer	2735-2738A	tion of model for PbSO ₄ -carbon system to experimental data. An integrated model for dendritic and planar interface growth	693-703B
Evaporation behavior of aluminum during the cold crucible induction skull melting of titanium aluminum alloys. Influence of ash on mass transfer and interfacial reaction	837-844B	and morphological transition in rapid solidification. On the detection and selective separation of inclusions in liquid metal cleanliness analyzer (LiMCA) systems.	735-746A 767-777B
between natural graphite and liquid iron.	1099-1104B	Effect of albite particles on the coefficient of thermal expansion	

measurement			· oranic or
behavior of the Al6061 alloy composites.	773-780A	eutectics and its application to calender rolls.	2059-2068A
Depth of oscillation marks forming in continuous casting of steel.	813-826B	A process model for the distortion induced by the electron- beam welding of a nickel-based superalloy.	2261-2273A
Influence of alloying elements on the strain rate and tempera- ture dependence of the flow stress of steels.	825-830A	Modeling gas diffusion into metals with a moving-boundary phase transformation.	2411-2421A
Study of microsegregation buildup during solidification of sphe- roidal graphite cast iron.	827-836B	Modelng creep and fatigue of copper alloys. Development of a freckle predictor via Rayleigh number	2491-2502A
Damage leading to ductile fracture under high strain-rate con- ditions.	831-844A	method for single-crystal nickel-base superalloy castings. A dynamic model for the interaction between a solid particle	2545-2557A
Aluminum volatilization and inclusion removal in the electron beam cold hearth melting of Ti alloys.	845-854B	and an advancing solid/liquid interface. Simulation of polymer removal from a powder injection molding	2559-2568A
Numerical studies of the motion of spheroidal particles flowing	855-866B	compact by thermal debinding. Microstructural parameters related to liquid-phase sintering.	2597-2606A 2607-2614A
with liquid metals through an electric sensing zone. Two-fluid simulation on the mixed convection flow pattern in a nonisothermal water model of continuous casting tundish.	867-875B	On the Gibbs-Thomson effect in concentrated binary systems. Cyclic deformation, dislocation structure, and internal fatigue crack generation in a Ti-Fe-O alloy at liquid nitrogen temper-	2659-2661A
On the approximation of the partial areas method in the calculation of the fraction of solid.	877-879B	ature.	2793-2805A
Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Modeling. Comparison between sulfide flash smelting and coal combus-	937-950A	Modeling of spray-formed materials: geometrical consider- ations. Influence of elastic inclusion morphology and matrix hardening	2917-2929A
tion—with implications for the flash smelting of high-grade concentrate. A process model for the heat-affected zone microstructure evo-	1005-1012B	behavior on Bauschinger effect in metal matrix composites. Interpretation of microstructural evolution using dynamic mate- rials modeling.	2943-2948A 2973-2974A
lution in duplex stainless steel weldments. II. Application to electron beam welding.	1035-1048A	Fundamental aspects of hot isostatic pressing: an overview. Effects of processing variables on the microsegregation of	2981-3000A
electron beam welding. Hydrodynamics of fluid flow approaching a moving boundary. Heat generation during the fatigue of a cellular Al alloy.	1117-1123B 1129-1136A	directionally cast samples. Correlation between unsteady-state solidification conditions,	3137-3148A
Heat generation during the fatigue of a cellular Al alloy. Erratum: "Numerical studies of the motion of spheroidal parti- cles flowing with liquid metals through an electric sensing		dendrite spacings, and mechanical properties of Al-Cu alloys.	3167-3178A
zone". Modeling of microstructure and residual stress in cast iron cal-	1143B	Measurement	
ender rolls.	1201-1211A	Experimental difficulties associated with permeability measure- ments in aluminum alloys.	3149-3153A
Microstructural model for hot strip rolling of high-strength low- alloy steels.	1247-1259A	Mechanical alloying The role of dispersed particles in strengthening and fracture	
Equilibria involving the reciprocal spinel solid solution $(Mg_xFe_1, y_1)(Al_yCr_1, y_2)O_4$: modeling and experiment. A model for prediction of pressure and redistribution of gas-	1247-1259B	mechanisms in a Mo-ZrC alloy processed by mechanical alloying.	715-721A
forming elements in multicomponent casting alloys.	1283-1292B	Phase transitions in reactive formation of Ti ₅ Si ₃ /TiAl in situ	763-771A
Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling pro-		composites. Correlation of microstructure with dynamic deformation behav-	703-771A
cess. A model for nonclassical nucleation of solid-solid structural	1293-1304B	ior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying.	2475-2489A
phase transformations. Thermal analysis of the arc welding process. I. General solu-	1321-1331A	Neutron diffraction and phase evolution of the mechanically alloyed intermetallic compound \(\xi\$-FeZn ₁₃ .	2739-2745A
tions. Numerical modeling of enhanced nitrogen dissolution during	1353-1370B	Thermal transformations in mechanically alloyed Fe-Zn-Si materials.	2747-2754A
gas tungsten arc welding.	1371-1385B	Mechanical tests The use of the finite-element method to design an optimized	
Unsteady Marangoni flow in a molten pool when welding dis- similar metals.	1387-1403B	tool for the plain-strain punch stretching test.	93-98A
Creep-behavior modeling of the single-crystal superalloy CMSX-4.	1401-1411A	Mechanisms Mechanical behavior and damage kinetics in nodular cast iron.	
Alpha case thickness modeling in investment castings. An analysis of the effect of cavity nucleation rate and cavity coalescence on the tensile behavior of superplastic materi-	1419-1427B	Damage mechanisms. Mechanical behavior and damage kinetics in nodular cast iron. II. Hardening and damage.	3063-3074A 3075-3085A
als. Modeling of gas-liquid reactions in ladle metallurgy. II. Numeri-	1425-1434A	Medium carbon steels, Heat treatment Theoretical and experimental investigations of electron beam	
cal simulation. Two-phase modeling of mushy zone parameters associated	1457-1464B	surface remelting and alloying.	1405-1417B
with hot tearing. Mathematical modeling of the dynamic behavior of gas tung-	1461-1472A	Medium carbon steels, Mechanical properties Influence of alloying elements on the strain rate and tempera-	005 0004
sten arc weld pools. Hydrogen trapping models in steel.	1465-1473B 1475-1482B	ture dependence of the flow stress of steels. Ultrasonic attenuation peak in steel and aluminum alloy during	825-830A
Formulation of rod-forming models and their application in spray forming.	1479-1488A	rotating bending fatigue. Significance of the small crack growth law and its practical	1121-1128A
Analysis of secondary oxide-scale failure at entry into the roll gap.	1483-1490B	application. Melt spinning	2005-2013A
Modeling of molten metal flow in a continuous casting process considering the effects of argon gas injection and static mag-		Effect of long-term room-temperature storage on the structure and properties of glassy melt-spun Mg-Al-Ca alloys.	2155-2162A
netic-field application. On homogenization of a binary alloy after dissolution of planar	1491-1503B	Melting Electrode potential studies of liquid-solid equilibrium in Na ₃ Bi-	
and spherical precipitates. Numerical calculation of the electromagnetic expulsive force	1525-1530A	saturated Na-Bi melts.	411-414B
upon nonmetallic inclusions in an aluminum melt. I. Spherical particles.	1527-1533B	Eutectic interface configurations during melting. An experimental investigation on the kinetics of solute driven	1261-1269A
Numerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt. II. Cylindri-		remelting. Melting points	2713-2720A
cal particles. A new approach to numerical simulation of melt flows and	1535-1540B	Liquidus temperature determination in multicomponent alloys by thermal analysis.	497-501A
interface instability in Hall-Héroult cells. A Scheil-Gulliver model with back-diffusion applied to the	1541-1550B	Melting points, Composition effects Development of a low-melting-point filler metal for brazing alu-	
microsegregation of chromium in Fe-Cr-C alloys. On convection in mushy phase and its effect on macrosegre-	1682-1684A	minum alloys.	2239-2245A
gation. A model for creep-fatigue interaction in terms of crack-tip	1687-1692A	Melts, Electrochemistry Solubilities and Raman spectra of NdOCI in some chloride melts of interest for the electrowinning of magnesium from its	
stress relaxation. Tensile stress-strain analysis of single-structure steels.	1761-1775A 1785-1794A	oxide.	631-639B
Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system. Strain-localization in sheet metal containing a geometric	1795-1803A	Melts, Transport properties The ionic properties of CaSiO ₃ melt.	1241-1245B
defect.	1883-1886A	Metal carbonyls, Powder technology Length change and deformation of powder injection-molded	1470 14704
Modeling of dissolution, growth, and coarsening of aluminum nitride in low-carbon steels. The mechanical threshold stress constitutive-strength model	1907-1916A	compacts during solvent debinding. Improved densification of carbonyl iron compacts by the addi- tion of fine alumina powders.	1473-1478A 1645-1652A
description of HY-100 steel.	1985-1996A	Metal matrix composites, Mechanical properties	10-10-1052A
The influence of crystallographic texture and interstitial impuri- ties on the mechanical behavior of zirconium. Significance of the small crack growth law and its practical	1997-2003A	Influence of elastic inclusion morphology and matrix hardening behavior on Bauschinger effect in metal matrix composites.	2943-2948A
application. Simulation of eutectic solidification structures of binary alloys:	2005-2013A	Metal matrix composites, Synthesis Investigation on reduction of CoAl ₂ O ₄ by hydrogen gas using	
a multiparticle diffusion limited aggregation model. A two-dimensional model for the description of the columnar-	2049-2057A	TGA. Metal scrap, Recycling	540-542B
to-equiaxed transition in competing gray and white iron		Contactless electrochemical reduction of titanium (II) chloride	

Metallici glasses, Mechanical properties Pittle of long-piter month-enignation in the student 255-2162A 257-226A	2000		NICKEI, WICTO	structure
Effect of long-term contributional strongs on the structure and properties of planey missions, part of planey part of pla	by aluminum.	713-721B		1333-1342A
Metalizer jasses, Phase transformations Crystalization of amorphical Feg. 1 Metalizery of Au-N-Sh intermetalic compound on the solders substrate interiors. Composition effects and experimental compound on the solders substrate interiors. Composition effects Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on precipitation characterise Effects of Cu contect and peasing on the effect of Cu content and peasing on the structure Effects of Cu contect and peasing on the structure and purpose peasing current and the effects Effects of Cu content and peasing on the structure and purpose peasing current and peasing peasing current and peasing peasing peasing peasing peasing current and peasing peasin	Effect of long-term room-temperature storage on the structure and properties of glassy melt-spun Mg-Al-Ca alloys.		stainless steels at high temperatures. Effects of martensite morphology and volume fraction on	1353-1364A
Mealulary Modified production and springs Modified production of special springs Modified production effects Inc. in administration of springs and springs Inc. in administration and springs Modified production of special springs Inc. in administration of spr	Metallic glasses, Phase transformations		steels. Banded microstructure formation in off-eutectic alloys.	1753-1760A 1819-1832A
Substate inerface after aging. Westerable phases, Composition effects Effects of Cucrotert and presenge or precipitation characteris- Effects of Cucrotert and presenge or precipitation characteris- Effects of Cucrotert and presenge or precipitation characteris- Spontaneous delermation during aging under stress in a cop- spontaneous delermation during aging under stress in a cop- spontaneous delermation during aging under stress in a cop- spontaneous delermation during aging under stress in a cop- spontaneous delermation during aging under stress in a cop- spontaneous delermation during aging under stress in a cop- spontaneous delermation during aging under stress in a cop- spontaneous delermation delermation delerman- reside installation in micrography environments and theoretical analysis. Spontaneous delermation during aging under stress in a cop- spontaneous delermation delerman- reside installation method under intergraphy for the electromap- reside leviation in micrography environments and theoretical analysis. Spontaneous delermation delerman- reside installation method under intergraphy aging the spontaneous deleteration of the stress of the Association of the stress of the second of the stress of the sec	Metallizing		alloys.	1833-1842A
Effects of Locoteria and presign op propopitation characterists. Effects of Locoteria and presign op propopitation characterists. Established phases, Composition effects Spontaneous delegation of Locoteria and Presign op preparation of Locoteria and Presign operations and electromap- pre-beryllum allay. Established phase of a mother silcon drop in an electromap- netic levitation in micrography environment. 275-271A Enablished in micrography environment. 275-271A Enablished in micrography environment. 275-271A Environment of Locoteria and Presign of Locoter			5.8 wt.% Sb alloy. Microstructural studies on lattice imperfections in deformed zir-	2275-2285A
Self-371A Micropravity Microgravity environment and pushing by- public discussion of Particle engalment and related and pushing by- soliding interferose. It Microgravity experiments and the- Authors' reply to: Further discussion of Particle engalment and pushing by- soliding interferose. It Microgravity experiments and the- Authors' reply to: Further discussion of Particle engalment and pushing by- soliding interferose. It Microgravity experiments and the- Authors' reply to: Further discussion of Particle engalment and pushing by- soliding interferose. It Microgravity experiments and the- Authors' reply to: Further discussion of Particle engalment and pushing by- soliding interferose. It Microgravity experiments and the- Authors' reply to: Further discussion of Particle engalment and pushing by- soliding and engage in the gravity and pushing by- soliding and en	Metastable phases, Composition effects	1429-14378	Morphology, Alloying effects	2405-2410A 1599-1610A
per-beryliman felic Microgravity shape of a notion eliction drop in an electromagnetic levitator in microgravity environment. Surface tensor of motion size on measured by the electromagnetic levitator in microgravity environment. Surface tensor of motion size on measured by the electromagnetic surface tensor of motion size on measured by the electromagnetic surface tensor of the properties of the strain and pushing by solidivity in electromagnetic and pushing by solidivity in electromagnetic surface in the su	tics in aluminum alloy 6022. Metastable phases, Heating effects	361-371A	The effect of cooling rate on the microstructures formed during	3155-3166A
Equilibrium shape of a molen silicon drop an electromag- surface lexistion method under microgravily sufficient services of Portions applied to a public by sufficient services of Portion and Portion and Portion related analysis.* In Human and theoretical analysis.* In Human and theoretical analysis. In Human and the H	per-beryllium alloy.	2765-2771A	Computer simulation of the initial rafting process of a nickel-	505 5074
Further discussion of Particle equiliment and pushing by solidilying interfaces. II. Microgravity experiments and theology of the properties of the properti	Equilibrium shape of a molten silicon drop in an electromag- netic levitator in microgravity environment.	327-329B	Microstructural model for hot strip rolling of high-strength low-	1247-1259A
retical analysis in caution from the comparison of Paride enguliment Authors reply to Further discussion of Paride enguliment Authors of Paride analysis. It Microhardness Author of Paride enguliment Authors of Paride Study of the nonlinear optical crystal L-agnino hydrochoride monohydrate. Microhardness Authorida Charles and Pydrogen content. Microhardness and endistinguity of Paride enguliment and Pydrogen content. Microhardness and endistinguity of Paride enguliment and Pydrogen content. Microhardness and endistinguity of Paride enguliment and Pydrogen content. Microhardness and endistinguity of Paride enguliment and Pydrogen content. Microhardness and endistinguity of Paride enguliment and Pydrogen content. Microhardness and endistinguity of Paride enguliment and Pydrogen content. Microhardness and endistinguity of Paride enguliment and Pydrogen content. Microhardness and endisticity. Processing effects of Preparation and mechanical properties of high-volument factors SC, Arbased composite boride coating using nanoinderstation. In other parides and endistinguity of Parides and Effect of Parides	netic levitation method under microgravity. Further discussion of "Particle engulfment and pushing by	1585-1589A	Recovery and ordering in cold-rolled boron-doped Ni ₇₆ Al ₂₄ . Morphology, Heating effects	2127-2134A
and pushing by solidistying interfaces: I. Microgravity experiments and theoretical analysis of the mortifications. In Microfarchess study of the nonlinear optical cystal L-arginine hydrochrother emority office more hydrochrother emority of the nonlinear optical cystal L-arginine hydrochrother emority office more hydrochrother of austernitic stainless steel single crystals: influence of intropen and hydrogen content. Microprosity A model for prediction of pressure and redistribution of gastorming elements in multicomponent casting alloys. Microprosity A model for prediction of pressure and redistribution of gastorming elements in multicomponent casting alloys. Microprosity A model for prediction of pressure and redistribution of gastorming elements in multicomponent casting alloys. Modulus of elasticity, Costing effects An investigation of the synthesis of 15-50 at % Ni alloys through combustion synthesis and composition of the synthesis and characterization of the syn	retical analysis".	1695-1700A	using micromagnetic parameters.	1053-1065A
Effect of long-term room-temperature storage on the structure and properties of glassy meit-spun Mg-Al-Ca alloys. An organization of properties of glassy meit-spun Mg-Al-Ca alloys. An organization of properties of glassy meit-spun Mg-Al-Ca alloys. An organization of properties of glassy meit-spun Mg-Al-Ca alloys. Bicrohardness, Alloying effects Microhardness, Processing effects An organization of president on the properties of highly densified nanconystalline Al. Micropardials properties of united properties of highly densified nanconystalline Al. Micropardials properties of highly densified nanconystalline Al. Micropardials processing effects Properties of president of glassy meits and composite boride coating using nanoindentiation on the properties of high-volume fraction SiC_A-based composites. An investigation of the synthesis of In-50 at % Na alloys through combustion synthesis and conventional powder sintering. An investigation of the synthesis of In-50 at % Na alloys through combustion synthesis and conventional powder sintering. Molybdenum Alloying admitted the president of properties of highly densities. Chemical synthesis and characterization of low shorten expansion-high conductivity C-Mondial of admittance of the properties of highly densities. Characterization of Mo-SiC_functionally graded materials.	and pushing by solidifying interfaces: II. Microgravity experi-	1700-1704A	AISI 304 stainless steel.	1193-1199A
And properties of glassy meit-spun Mg-Al-Ca alloys. Microhardness, study of the nonlinear optical crystal Langtines Microhardness, Alloying effects Mchanical properties of sustenitic stainless steel single crystals: influence of nitrogen and hydrogen content. 153-161A Microhardness, Processing effects Preparation and mechanical properties of bighly densified Preparation and mechanical properties of bighly densified Preparation and mechanical properties of bighly densified Preparation of pressure and redistribution of gastoriming elements in multicomponent casting alloys. Microporosity A model for prediction of pressure and redistribution of gastoriming elements in multicomponent casting alloys. Microporosity A model for prediction of pressure and redistribution of gastoriming elements in multicomponent casting alloys. Microporosity A model for prediction of pressure and redistribution of gastoriming elements in multicomponent casting alloys. Microporosity A model for prediction of pressure and redistribution of gastoriming elements in multicomponent casting alloys. Microporosity A model for prediction of pressure and redistribution of gastoriming elements in multicomponent casting alloys. 401-408A Microporosity A model for prediction of pressure and redistribution of gastoriming elements in multicomponent casting alloys. 401-408A Modulus of elasticity, Constitution of the graph elements of the season of the gastorimine o	Microhardness		Modeling of microstructure and residual stress in cast iron cal- ender rolls.	1201-1211A
sile influence of infrogen and hydrogen content. 153-161A Microprosity A model for prediction of pressure and redistribution of gas- Anomalic properties of highly densified panchystaline All. Microprosity A model for prediction of pressure and redistribution of gas- Anomalic properties of multicomponent casting alloys. Modulus of elasticity, Conting effects Modulus of elasticity, Composition effects Effect of particle-aize distribution on the properties of high-volume- ume-fraction Sic ₂ -Al-based composites. Modulus of elasticity, Composition effects Effect of particle-aize distribution on the properties of high-volume- ume-fraction Sic ₂ -Al-based composites. Modulus of elasticity, Composition of fects Effect of particle-aize distribution on the properties of high-volume- ume-fraction Sic ₂ -Al-based composites. Molybdenum, Alloying additive Role of Mo and W during sensitization of superaustentitic stain- less steel-crystallography and composition of precipitates. Nolybdenum, Alloying elements Molybdenum, Alloying defined and conventionally posted materials. Nolybdenum, Alloying additive processed by mechanical properties The role of dispersed particles in strengthening and fracture mechanisms in a Mo-Zic Line dispersed particles in strengthening and fracture mechanisms in a Mo-Zic Line dispersed particles in strengthening and fracture mechanisms in a Mo-Zic Line dispersed particles in strengthening and fracture mechanisms in a Mo-Zic Line dispersed particles in strengthening and fracture mechanisms in a Mo-Zic Line dispersed particles in strengthening and fracture mechanisms in a Mo-Zic Line dispersed particles in strengthening and fracture mechanisms in a Mo-Zic Line dispersed particles in strengthening and fracture mechanisms in a Mo-Zic Line dispersed particles in strengthening and fracture mechanisms in a Mo-Zic Line dispersed particles in strengthening and fracture mechanisms in a Mo-Zic Line dispersed particles in strengthening and fracture mechanisms in a Mo-Zic Line dispersed particles in	and properties of glassy melt-spun Mg-Al-Ca alloys. Microhardness study of the nonlinear optical crystal L-arginine		novel mechanical disintegration and deposition technique. Microstructural evolution in wire-drawn Ti-22Al-26Nb powder.	1873-1881A 2931-2941A
Microporosity A model for prediction of pressure and redistribution of gas- forming elements in multicomponent casting alloys. Modulus of elasticity, Coating effects Modulus of elasticity, Coating effects Craep expansion of properties of last-deposited composite boride Modulus of elasticity, Coating effects Craep expansion of prorus Tri-6A-I-4V sandwich structures. Modulus of elasticity, Composition effects Effect of paticle-size distribution on the properties of high-vol- ume-fraction SiC, A-based composites. Modulus of elasticity, Composition effects Craep expansion of prorus Tri-6A-I-4V sandwich structures. An investigation of the synthesis of 1-50 at 5% his alloys through An investigation of the synthesis of 1-50 at 5% his alloys through Molybdenum, Alloying addition of superaustentitic stain- less steel—crystallography and composition of precipitates. Molybdenum, Alloying elements Chemical synthesis and characteriztion of low thermal expan- sion-high conductivity Cr-4M and Ag-Mo composites. Molybdenum, Alloying elements Chemical synthesis and characteriztion of low thermal expan- sion-high conductivity Cr-4M and Ag-Mo composites. Molybdenum, Composite materials Chemical synthesis and characteriztion of low thermal expan- sion-high conductivity Cr-4M and Ag-Mo composites. Molybdenum, Composite materials Chemical synthesis and characterization of Molybdenum sterilals. Design and staincation of WMo-T-11A-IA system functionally graded materials. Molybdenum base alloys. Powder technology Synthesis of characterization of Willin-carbonate by precipitation stripping of Nodification and impact properties of NbMolys lam- inate composites by the addition of 2rd, Possible and stripping of Molybdenum and sea alloys. Recharacterization and magnet properties of NbMolys lam- inate composites by the addition of 2rd, Possible and Synthesis and characterization and impact properties. 77-75A Molybdenum compounds, Powder technology Synthesis of the infinion of spheroidal particles flowing and particles flowing the	Mechanical properties of austenitic stainless steel single crys-		ites.	2963-2971A
Microporosity Pediction of pressure and redistribution of astroming elements in multicomponent casting alloys. Modulus of elasticity, Composition effects Effect of paticle-size distribution on the properties of high-volume-fraction SiC,-A-based composites of high-volume-fraction SiC,-A-based composites. Modulus of elasticity, Composition effects Effect of paticle-size distribution on the properties of high-volume-fraction SiC,-A-based composites. Modulus of elasticity, Composition effects Criege expansion of porous Ti-6A-4V sandwich structures. Modulus of elasticity, Microsating effects Criege expansion of porous Ti-6A-4V sandwich structures. Modulus of elasticity, Processing effects Criege expansion of porous Ti-6A-4V sandwich structures. Mobyledenum, Alloying additive Alloying elements Chemical synthesis and characterization of superaustentitic stain-less steel—crystallography and composition of precipitates. Molybdenum, Alloying elements Chemical synthesis and characterization of low thermal expansion-high conductivity Cu-Mo and Ag-Mo composites. Molybdenum, Alloying elements Chemical synthesis and characterization of low thermal expansion-high conductivity Cu-Mo and Ag-Mo composites. Molybdenum, Alloying elements Chemical synthesis and characterization of low thermal expansion-high conductivity Cu-Mo and Ag-Mo composites. Molybdenum, Composite materials Observation of the properties of the Molybdenum compounds. Composites of the motion of special properties The role of dispersed particies in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying. 715-721A Molybdenum compounds, Composite materials Observation of the properties of Nothous properties. Molybdenum compounds, Composite satisfication of the properties of Nothous properties. Molybdenum compounds, Composite satisfication of the properties of Nothous properties. Molybdenum compounds, Composite materials Observation of Molity and properties of Nothous properties. Molybdenum compounds, Composite materia	Microhardness, Processing effects		dendrite spacings, and mechanical properties of Al-Cu alloys.	3167-3178A
forming elements in multicomponent casting alloys. Modulus of elasticity, Costing effects Mechanical properties of laser-deposited composite boride coating using nanoindentation. Modulus of elasticity, Composition effects Effect of paticle-size distribution on the properties of high-vol- une-fraction SC ₂ A-based composites. Modulus of elasticity, Microstructural effects Effect of paticle-size distribution on the properties of high-vol- une-fraction SC ₂ A-based composites. Modulus of elasticity, Processing effects An investigation of the synthesis of 17-50 at 5s. Ni alloys through combustion synthesis and conventional powder sintering. Molybdenum, Altoying additive Role of Mo and W during sensitization of superaustentic stain- less steel—crystaliography and composition of precipitates Role of Mo and W during sensitization of precipitates Role of Mo and W during sensitization of precipitates Role of Mo and W during sensitization of precipitation of processed by mechanical sport of the processed by mechanical postal profiles of laser-deposited composite boride coating using nanoindentation. Modulus of elasticity, Microstructural effects An investigation of the synthesis of 17-60 at 5s. Ni alloys through combustion synthesis and conventional powder sintering. Molybdenum, Altoying additive Role of Mo and W during sensitization of processed by mechanical sport of the profile of laser-deposited of the motion of general synthesis and characterization of the Solf-of Interioral methods and properties Altoylobenum compounds, Composite materials The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying. Molybdenum compounds, Composite materials The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying. Molybdenum compounds, Composite materials The role of dispersed	Microporosity	1017-1024A	Dispersoid-free zones in the heat-affected zone of aluminum alloy welds.	1453-1459A
coating using nanoindentation. Modulus of elasticity, Composition effects Effect of particle-size distribution on the properties of high-volume-fraction SiC ₂ -Al-based composites. Modulus of elasticity, Microstructural effects Creep expansion of processing effects An investigation of the synthesis of Ti-50 at.* Ni alloys through combusion synthesis of Ti-50 at.* Ni alloys through combusing synthesis of Ti-50 at.* Ni alloys through combusing synthesis of Ti-50 at.* Ni alloys through combusing synthesis of Molybdenum, Alloying addition of the synthesis of Ti-50 at.* Ni alloys through combusing synthesis of Molybdenum and combusing synthesis of Molybdenum and combusing synthesis of Molybdenum base alloys, Mechanical properties of Nicolation of W-Mo-Ti-TiAl-Al system functionally graded materials. Alloydenum compounds, Composite materials of Molybdenum base alloys, Mechanical properties of Nicolation of W-Mo-Ti-TiAl-Al system functionally graded materials of Molybdenum base alloys, Mechanical properties of Nicolation and tracture mechanisms in a Mo-ZrC alloy processed by mechanical properties of Nicolation and tracture mechanisms in a Mo-ZrC alloy processed by mechanical properties of Nicolation and tracture mechanisms in a Mo-ZrC alloy processed by mechanical properties of Nicolation and tracture	forming elements in multicomponent casting alloys. Modulus of elasticity, Coating effects	1283-1292B	Phase analysis of two steel work rolls using Mössbauer spec- troscopy.	793-798A
Modulus of elasticity, Microstructural effects Creep expansion of porous TreAl-4V sandwist structures. An investigation of the synthesis of Ti-50 at.% Ni alloys through combustion synthesis and conventional powder sintering. Molybdenum, Alloying additive Role of Mo and W during sensitization of superaustenitic stainless steel—crystallography and composition of precipitates. Molybdenum, Alloying sensitization of superaustenitic stainless steel—crystallography and composition of precipitates. Molybdenum, Alloying elements Chemical synthesis and characteriztion of low thermal expansion-high conductivity (2-Mo and Ag-Mo composites. Synchrotron x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrotron x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrotron x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Spinchrotron x-ray study of bulk lattice strains in externally loaded cu-Mo composites. Cheracterization of Mo-Sio functionally graded materials. Design and labrication of Wi-Mo-Ti-TiAl-All system functionally graded materials. Design and labrication of Wi-Mo-Ti-TiAl-All system functionally graded materials. Molybdenum base alloys, Mechanical properties The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying; Synthesis of MoSig-TiSig pseudobinary alloys by reactive sintering. Molybdenum compounds, Composite materials Interfacial modification and impact properties of NbMoSig-Instrain potentials and the properties of NbMoSig-Instrain potentials and the properties of NbMoSig-Instrain potentials and propert	coating using nanoindentation. Modulus of elasticity, Composition effects	401-408A	Mechanical properties of laser-deposited composite boride coating using nanoindentation.	401-408A
Modulus of elasticity, Processing effects An investigation of the synthesis of Ti-50 at % Ni alloys through combustion synthesis and conventional powder sintering.	ume-fraction SiC _p -Al-based composites.	2351-2359A	mechanical milling and high velocity oxygen fuel thermal	541-553A
An investigation of the synthesis of Ti-S0 at % Ni alloys through combustion synthesis and conventional powder sintering. Molybdenum, Alloying additive Role of Mo and W during sensitization of superaustenitic stainless steel—crystallography and composition of precipitates. Molybdenum, Illoying elements Chemical synthesis and characterization of low thermal expansion-high conductivity Cu-Mo and Ag-Mo composites. Synchrotron x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrotron x-ray study of bulk lattice strains in externally coaded Cu-Mo composites. Synchrotron x-ray study of bulk lattice strains in externally coaded Cu-Mo composites. Synchrotron x-ray study of bulk lattice strains in externally coaded Cu-Mo composites. Synchrotron x-ray study of bulk lattice strains in externally coaded Cu-Mo composites. Synchrotron x-ray study of bulk lattice strains in externally coaded Cu-Mo composites. Synchrotron x-ray study of bulk lattice strains in externally coaded Cu-Mo composites. Synchrotron x-ray study of bulk lattice strains in external synchrotron x-ray study of bulk lattice strains in external synchrotron x-ray study of bulk lattice strains in external synchrotron x-ray study of bulk lattice strains in external synchrotron x-ray study of bulk lattice strains in external synchrotron x-ray study of bulk lattice strains in external synchrotron x-ray study of bulk lattice strains in external synchrotron x-ray study of bulk lattice strains in external synchrotron in the strains in a Mo-Zro and patients. Synchrotron in the strains in a Mo-Zro and synchrotron in	Creep expansion of porous Ti-6Al-4V sandwich structures.	261-273A	Synthesis of nanostructured Cr ₃ C ₂ -25(Ni20Cr) coatings.	555-564A
Role of Mo and W during sensitization of superaustentite stain- less steel—crystallography and composition of precipitates. Molybdenum, Alloying elements Chemical synthesis and characterization of low thermal expansion-high conductivity Cu-Mo and Ag-Mo composites. Synchrofrom x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrofrom x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrofrom x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrofrom x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrofrom x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrofrom x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrofrom x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrofrom x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrofrom x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrofrom x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrofrom x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Synchrofrom x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Molybdenum, Composite materials The role of dispersed particles in the Ti-Mo-Ta system. Molybdenum base alloys, Mechanical properties The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying. Molybdenum base alloys, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Composite materials Interfacial modification and impact properties of Nb/MoSi ₂ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiO ₂ particles in strengthing of Al-AjNit unctionally graded materials. Molybdenum compounds, Composite materials Interfacial modification and impact properties of Nb/MoSi ₂ laminate compositi	An investigation of the synthesis of Ti-50 at.% Ni alloys through combustion synthesis and conventional powder sintering.	1867-1871A	Sintering behavior of nanocrystalline γ-Ni-Fe powders. Preparation and mechanical properties of highly densified	503-510A 1017-1024A
Chemical synthesis and characterization of low thermal expansion-high conductivity Cu-Mo and Ag-Mo composites. Synchrotron x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Molybdenum, Composite materials Characterization of Mo-SiO ₂ functionally graded materials. Design and fabrication of W-Mo-Ti-TiA-Al system functionally graded materials. Design and fabrication of W-Mo-Ti-TiA-Al system functionally graded materials. Design and fabrication of W-Mo-Ti-TiA-Al system functionally graded materials. Molybdenum, Diffusion Pseudobinary diffusion coefficients in the Ti-Mo-Ta system. Molybdenum base alloys, Mechanical properties. The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying. Molybdenum base alloys, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Composite materials Interfacial modification and impact properties of NbMoSi ₃ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Formatical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: 'Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: 'Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratu	Role of Mo and W during sensitization of superaustenitic stain- less steel—crystallography and composition of precipitates.	1893-1905A	Simulation of polymer removal from a powder injection molding compact by thermal debinding.	2597-2606A
Synchrofron x-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Molybdenum, Composite materials Characterization of Mo-SiO ₂ functionally graded materials. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material. 299-308A Molybdenum, Diffusion Pseudobinary diffusion coefficients in the Ti-Mo-Ta system. Molybdenum base alloys, Mechanical properties The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying. Molybdenum base alloys, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Composite materials Interfacial modification and impact properties of ticles. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: "Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: "Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: "Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: "Numerical studies of the motion of spheroidal particles flowing with liquid metal	Chemical synthesis and characteriztion of low thermal expan-	2396-2398A	Near-net-shape forming of Al-Al ₃ Ni functionally graded material over eutectic melting temperature.	2627-2636A
Characterization of Mo-SiO ₂ functionally graded materials. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material. Molybdenum, Diffusion Pseudobinary diffusion coefficients in the Ti-Mo-Ta system. Molybdenum base alloys, Mechanical properties The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying. Molybdenum base alloys, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Composite materials interfacial modification and impact properties of Nb/MoSi ₂ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering.	Synchrofron x-ray study of bulk lattice strains in externally loaded Cu-Mo composites.		Strain-localization in sheet metal containing a geometric	1883-1886A
Molybdenum, Diffusion Pseudobinary diffusion coefficients in the Ti-Mo-Ta system. Molybdenum base alloys, Mechanical properties The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying. Molybdenum base alloys, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sinterfacial modification and impact properties of Nb/MoSi ₂ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sinterfacial modification and impact properties of Nb/MoSi ₂ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sinterfacial modification and impact properties. 2075-2081A 747-753A Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sinterfacial modification and impact properties. 2075-2081A 747-753A Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sinterfacial modification and impact properties. 2075-2081A 747-753A 747-753A Nickel, Extraction The thermodynamic and nonstoichiometric behavior of Provises delectromotive force measurements: a short review. Neutron flux A Bayesian analysis of the influence of neutron irradiation on embrittl	Characterization of Mo-SiO ₂ functionally graded materials. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally		Neodymium, Extraction Preparation of Nd(III) carbonate by precipitation stripping of	5-13B
 Molybdenum base alloys, Mechanical properties The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying. Molybdenum base alloys, Powder technology Synthesis of MoSi₂-TiSi₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Composite materials Interfacial modification and impact properties of Nb/MoSi₂ and sic particles. Molybdenum compounds, Powder technology Synthesis of MoSi₂-TiSi₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi₂-TiSi₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi₂-TiSi₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi₂-TiSi₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi₂-TiSi₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi₂-TiSi₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi₂-TiSi₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi₂-TiSi₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi₂-TiSi₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi₂-TiSi₂ pseudobinary alloys by reactive sintering. Total Time the problem to the in-situ monitoring of slag composition and transport properties.	graded material. Molybdenum, Diffusion		Neodymium compounds, Electrochemistry	5-135
Molybdenum base alloys, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Composite materials Interfacial modification and impact properties of Nb/MoSi ₂ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering and interval the stacking-fault energy. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering and formability of ZnNi alloy electrodeposited sheet steel. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering and formability of ZnNi alloy electrodeposited sheet steel. Nickel, Alloying elements Design of reaction and formability of ZnNi alloy electrodeposited sheet steel. Nickel, Coatings Growth of a Na-Ni-Sn intermetallic compound on the solder-substrate interface after aging. Nickel, Extraction The thermodynamics of the Ni-Co-S ternary system. Characterization of scales obtained during continuous nickel laterite pilot-plant leaching. Rate of slag reduction in a laboratory electric furnace—alternating vs. direct current. The anomalous behavior of Al ³⁺ in nickel electrowinning from sulfate electrolytes. Phase reduction mand minor-element distribution between Ni ₃ S ₂ -FeS matte and calcium ferrite slag under high partial pressures of SO ₂ .	Molybdenum base alloys, Mechanical properties The role of dispersed particles in strengthening and fracture	3198-3199A	Hi-Tc cuprate systems via electromotive force measure- ments: a short review.	661-666B
Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Molybdenum compounds, Composite materials Interfacial modification and impact properties of Nb/MoSi ₂ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Monitoring Solid-state amperometric sensor for the in-situ monitoring of slag composition and transport properties. Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: "Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: "Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Morphology Early-stage Widmanstätten growth of the γ phase in a duplex steel. Total care and formability of ZnNi alloy electrodeposited sheet steel. Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy. Nickel, Coatings Design of quaternary Ir-Nb-Ni-Al refractory superalloys. Microstructure and formability of ZnNi alloy electrodeposited sheet steel. Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy. Nickel, Coatings Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging. Nickel, Extraction The thermodynamics of the Ni-Co-S ternary system. Characterization of scales obtained during continuous nickel laterite pilot-plant leaching. Rate of slag reduction in a laboratory electric furnace—alternating vs. direct current. The anomalous behavior of Al³+ in nickel electrowinning from sulfate electrolytes. Phase electrolytes. Phase electrolytes and formation of scales obtained during continuous nickel laterite pilot-plant leaching. 173-18 173-19 Nickel, Extraction The thermodynamics of the Ni-Co-S ternary system. Characterization of scales obtained during continuous nicke	alloying.	715-721A	A Bayesian analysis of the influence of neutron irradiation on embrittlement in ferritic submerged arc weld metal.	445-459A
 Molybdenum compounds, Composite materials Interfacial modification and impact properties of Nb/MoSi₂ laminate composites by the addition of ZrO₂, NbSi₂, and SiC particles. Molybdenum compounds, Powder technology Synthesis of MoSi₂-TiSi₂ pseudobinary alloys by reactive sintering. Monitoring Solid-state amperometric sensor for the in-situ monitoring of slag composition and transport properties. Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erraturi: Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Morphology Early-stage Widmanstätten growth of the γ phase in a duplex steel.	Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering.	747-753A	Design of quaternary Ir-Nb-Ni-Al refractory superalloys.	173-178A
ticles. Molybdenum compounds, Powder technology Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering. Monitoring Solid-state amperometric sensor for the in-situ monitoring of slag composition and transport properties. Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: "Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: "Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Morphology Early-stage Widmanstätten growth of the γ phase in a duplex steel. Nickel, Coatings Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging. 747-753A Nickel, Extraction The thermodynamics of the Ni-Co-S ternary system. Characterization of scales obtained during continuous nickel laterite pilot-plant leaching. Rate of slag reduction in a laboratory electric furnace—alternating vs. direct current. The anomalous behavior of Al³+ in nickel electrowinning from sulfate electrolytes. Phase equilibrium and minor-element distribution between Ni ₂ S ₂ -Fe Smatte and calcium ferrite slag under high partial pressures of SO ₂ . Nickel, Coatings Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging. 747-753A Nickel, Extraction The thermodynamics of the Ni-Co-S ternary system. Characterization of scales obtained during continuous nickel laterite pilot-plant leaching. Rate of slag reduction in a laboratory electric furnace—alternating vs. direct current. The anomalous behavior of Al³+ in nickel electrowinning from sulfate electrolytes. Phase equilibrium and minor-element distribution between Ni ₂ S ₂ -Fe Smatte and calcium ferrite slag under high partial pressures of SO ₂ .	Interfacial modification and impact properties of Nb/MoSi ₂ lam-		sheet steel. Alloy design of FeMnSiCrNi shape-memory alloys related to	475-485A 581-584A
Tering. Monitoring Solid-state amperometric sensor for the in-situ monitoring of slag composition and transport properties. Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: "Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Morphology Early-stage Widmanstätten growth of the γ phase in a duplex steel. 733-753B 733-753B 733-753B 855-866B 855-866B 1143B 1143B Nickel, Extraction The thermodynamics of the Ni-Co-S ternary system. Characterization of scales obtained during continuous nickel laterite pilot-plant leaching. Rate of slag reduction in a laboratory electric furnace—alternating vs. direct current. The anomalous behavior of Al³+ in nickel electrowinning from sulfate electrolytes. Phase equilibrium and minor-element distribution between Ni₃S₂-FeS matte and calcium ferrite slag under high partial pressures of SO₂. Nickel, Microstructure	ticles. Molybdenum compounds, Powder technology	2075-2081A	Nickel, Coatings Growth of a Au-Ni-Sn intermetallic compound on the solder-	798-800A
Solid-state amperometric sensor for the in-situ monitoring of slag composition and transport properties. Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erraturn: "Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone." Morphology Early-stage Widmanstätten growth of the γ phase in a duplex steel. Significant monitoring of 733-753B 855-86B 855-86B 855-86B 1143B	tering.	747-753A	Nickel, Extraction	121-128B
Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. Erratum: Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone. 855-86B 1187-11 The anomalous behavior of Al ³⁺ in nickel electrowinning from sulfate electrolytes. Phase equilibrium and minor-element distribution between Ni ₃ S ₂ -FeS matte and calcium ferrite slag under high partial pressures of SO ₂ . Nickel, Microstructure	Solid-state amperometric sensor for the in-situ monitoring of	733-753B	Characterization of scales obtained during continuous nickel	1175-1186B
Erratum: "Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone". Morphology Early-stage Widmanstätten growth of the γ phase in a duplex steel. The anomalous behavior of Al ³⁺ in nickel electrowinning from sulfate electrolytes. Phase equilibrium and minor-element distribution between Ni ₃ S ₂ -FeS matte and calcium ferrite slag under high partial pressures of SO ₂ . Nickel, Microstructure	Numerical studies of the motion of spheroidal particles flowing		Rate of slag reduction in a laboratory electric furnace—after- nating vs. direct current.	1187-1194B
Early-stage Widmanstätten growth of the γ phase in a duplex steel. 15-19A Nickel, Microstructure	Erratum: "Numerical studies of the motion of spheroidal parti- cles flowing with liquid metals through an electric sensing		The anomalous behavior of Al ³⁺ in nickel electrowinning from sulfate electrolytes. Phase equilibrium and minor-element distribution between	1203-1211B
Determining the three-dimensional morphology of γ'-particles Nickel, microstructure Grain boundary faceting and abnormal grain growth in nickel.	Early-stage Widmanstätten growth of the γ phase in a duplex	15.104	pressures of SO ₂ .	1231-1239B
		15-19A	Grain boundary faceting and abnormal grain growth in nickel.	985-994A

	1-178B	An investigation of the synthesis of Ti-50 at.% Ni alloys through combustion synthesis and conventional powder sintering.	1867-1871A
metal droplets. 17 Nickel, Powder technology Sintering behavior of nanocrystalline γ-Ni-Fe powders. 50	3-510A	Nickel base alloys, Rolling Deformation behavior of a Ni ₃ Al(B,Zr) alloy during cold rolling.	
Nickel, Ternary systems Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys. 27	7-284B	 I. Changes in order and structure. Deformation behavior of a Ni₃Al(B,Zr) alloy during cold rolling. II. Microstructural and textural changes. 	3001-3010A 3011-3021A
Experimental investigation and thermodynamic modeling of the	i-1682A i-1803A	Nickel base alloys, Welding A process model for the distortion induced by the electron-	
Nickel, Welding Unsteady Marangoni flow in a molten pool when welding dissimilar metals. 1387	'-1403B	beam welding of a nickel-based superalloy. Nickel chromium molybdenum steels, Mechanical properties The effort of miscochastural banding on failure initiation of NY.	2261-2273A
Nickel base alloys, Bonding	i-2847A	The effect of microstructural banding on failure initiation of HY- 100 steel. Residual strains in HY100 polycrystals: comparisons of experi-	995-1005A
Nickel base alloys, Casting)1-811B	ments and simulations. The mechanical threshold stress constitutive-strength model	1543-1555A
A model for prediction of pressure and redistribution of gas-	3-1292B	description of HY-100 steel. Nickel chromium molybdenum steels, Phases (state of matter) Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-	1985-1996A
	5-2557A	(N) superaustenitic stainless steels aged at 900°C. Nickel chromium molybdenum steels, Welding	1713-1723A
Effects of sulfur on the fatigue and fracture resistance of interfaces between γ-Ni(Cr) and α-Al ₂ O ₃ .	'-1983A	Correlation of the microstructure and fracture toughness of the heat-affected zones of an SA 508 steel.	1107-1119A
	-2047A	Nickel chromium steels, Mechanical properties An investigation of dynamic failure in 2.3Ni-1.3Cr-0.17C steel.	1147-1154A
Nondestructive evaluation of residual stress for thermal barrier coated turbine blades by Cr ³⁺ photoluminescence piezospectroscopy. 2388	3-2391A	Nickel compounds, Composite materials Reaction steps in the combustion synthesis of NiAl/TiB ₂ com-	
Nickel base alloys, Composite materials Reaction steps in the combustion synthesis of NiAl/TiB ₂ com-	-233 TA	posites. Reactive infiltration processing and secondary compressive	433-438B
posites. Reactive infiltration processing and secondary compressive	33-438B	creep of NiAI and NiAI-W composites. An investigation of the effects of ductile-layer thickness on the fracture behavior of nickel aluminide microlaminates.	781-792A 1385-1399A
creep of NiAl and NiAl-W composites. An investigation of the effects of ductile-layer thickness on the	31-792A	Effect of particle size and volume fraction in hot extrusion reac- tion synthesis of SiC particle reinforced NiAl.	1663-1670A
Effect of particle size and volume fraction in hot extrusion reac-	5-1399A	Reaction synthesis, microstructure, and mechanical properties of in situ composite NiAl-Al ₂ O ₃ -TiC.	1692-1695A
Reaction synthesis, microstructure, and mechanical properties	3-1670A 2-1695A	Near-net-shape forming of AFAI ₃ Ni functionally graded mate- rial over eutectic melting temperature.	2627-2636A
Nickel base alloys, Corrosion Grain-boundary chemistry and integranular corrosion in alloy		Nickel compounds, Crystal growth Effects of boron doping on the grain-growth kinetics and mechanical properties of γ/γ nickel-aluminum alloys.	3179-3186A
Nickel base alloys, Crystal growth	3-1173A	Nickel compounds, Diffusion An interdiffusion study of a NiAl alloy using single-phase diffu-	4540 45044
	9-3186A	sion couples. Nickel compounds, Mechanical properties	1519-1524A
Nickel base alloys, Diffusion An interdiffusion study of a NiAl alloy using single-phase diffusion couples. 1519	9-1524A	Creep properties of N ₁₀ (AITTA) γ phase single crystals. Experimental studies on tribological properties of pseudoelas- tic TiNi alloy with comparison to stainless steel 304.	1733-1740A 2773-2783A
Nickel base alloys, Directional solidification Directional and single-crystal solidification of Ni-base superal-		Nickel compounds, Microstructure Recovery and ordering in cold-rolled boron-doped Ni ₇₆ Al ₂₄ .	2127-2134A
loys. I. The role of curved isotherms on grain selection. 2877 Directional and single-crystal solidification of Ni-base superal- loys. II. Coincidence site lattice character of grain bound-	7-2886A	Nickel compounds, Phase transformations Experimental investigation and thermodynamic calculation of	2423-2430A
	7-2893A	the Ti-Ni-Cu shape memory alloys. Nickel compounds, Rolling Nickel compounds, Rolling	2423-2430A
Hot deformation mechanisms in a powder metallurgy nickel- base superalloy IN 625. 2317	7-2325A	Deformation behavior of a Ni ₃ Al(B,Zr) alloy during cold rolling. I. Changes in order and structure. Deformation behavior of a Ni ₃ Al(B,Zr) alloy during cold rolling.	3001-3010A
Nickel base alloys, Mechanical properties Fatigue crack path prediction in Udimet 720 nickel-based alloy	09-123A	II. Microstructural and textural changes. Nickel mattes, Reactions (chemical)	3011-3021A
Effect of plastic anisotropy on the creep strength of single crys-	21-430A	Phase equilibrium and minor-element distribution between Ni ₃ S ₂ -FeS matte and calcium ferrite slag under high partial pressures of SO ₂ .	1231-1239B
The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa. 1365	5-1373A	Niobium, Alloying additive The influence of additions of Nb and Cr on the aluminizing	1201 12000
Creep-behavior modeling of the single-crystal superalloy CMSX-4. Creep properties of Ni ₃ (ΑΙΤΙΤα) γ' phase single crystals. 1401	1-1411A 3-1740A	behavior of TiAl alloy. Niobium, Alloying elements	2391-2394A
The effect of high-temperature oxidation on the creep behavior	7-1784A	Design of quaternary Ir-Nb-Ni-Al refractory superalloys. Strength and ductility of heavily drawn bundled Cu-Nb filamen-	173-178A
Stress corrosion cracking mechanisms of Alloy 600 polycrys- tals and single crystals in primary water—influence of hydro-	5-2036A	tary microcomposite wires with various Nb contents. Niobium, Composite materials	2457-2462A
The influence of sulfur on stress-rupture fracture in Inconel 718 superalloys. 2135	5-2144A	Interfacial modification and impact properties of Nb/MoSi ₂ lam- inate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC par- ticles.	2075-2081A
Environmentally enhanced deformation of ultra-high-purity Ni-	9-2228A 3-2388A	Niobium, Ternary systems Examination of solidification pathways and the liquidus surface	
Experimental studies on tribological properties of pseudoelas-	3-2783A	n the Nb-Ti-Al system. Niobium base alloys, Composite materials	1305-1321B
Nickel base alloys, Microstructure Influence of Solidification variables on the dendrite arm spac-	46.5E4D	Effect of fiber volume fraction on the fracture behavior of Nb-1 wt.% Zr/218W composites at elevated temperatures. An investigation of the effects of ductile-layer thickness on the	873-887A
Determining the three-dimensional morphology of γ'-particles in γ-γ' superalloys.	46-551B 3-1342A	fracture behavior of nickel aluminide microlaminates. Niobium base alloys, Crystal growth	1385-1399A
Recovery and ordering in cold-rolled boron-doped Ni ₇₆ Al ₂₄ . 2127 Nickel base alloys, Oxidation	7-2134A	Examination of solidification pathways and the liquidus surface n the Nb-Ti-Al system.	1305-1321B
Selective oxidation and internal nitridation during high-temper- ature exposure of single-crystalline nickel-base superalloys. Nickel base alloys, Phase transformations	47-56A	Niobium base alloys, Mechanical properties Fatigue and fracture toughness of a Nb-Ti-Cr-Al-X single- phase alloy at ambient temperature.	1075-1084A
Computer simulation of the initial rafting process of a nickel-	85-597A	Niobium compounds, Composite materials Development of a thermodynamic database for cemented car-	
	3-2430A	bides for design and processing simulations. Interfacial modification and impact properties of Nb/MoSi ₂ lam-	615-619B
Nickel base alloys, Phases (state of matter)		inate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles.	2075-2081A

Microstructural evolution in wire-drawn Ti-22Al-26Nb powder. Nitrides, Crystal growth	2931-2941A	Interfacial heat transfer and nucleation of steel on metallic sub- strates.	1081-1089B
Modeling of dissolution, growth, and coarsening of aluminum nitride in low-carbon steels. Nitrogen, Alloying additive	1907-1916A	An analysis of the effect of cavity nucleation rate and cavity coalescence on the tensile behavior of superplastic materi- als.	1425-1434A
Mechanical properties of austenitic stainless steel single crys- tals: influence of nitrogen and hydrogen content.	153-161A	Nucleation, Composition effects Nucleation on ceramic particles in cast metal-matrix compos-	1295-1304A
Crystallographic details of precipifates in Fe-22Cr-21Ni-6Mo- (N) superaustenitic stainless steels aged at 900°C.	1713-1723A	Nucleation, Processing effects Porosity nucleation in metal-matrix composites.	2069-2074A
Nitrogen, Alloying elements Constitutive properties of hard-alpha titanium.	3029-3040A	Order disorder, Deformation effects	
Nitrogen, Diffusion Selective exidation and internal nitridation during high-temper-	47-56A	Recovery and ordering in cold-rolled boron-doped Ni ₇₈ Al ₂₄ . Deformation behavior of a Ni ₃ Al(B,Zr) alloy during cold rolling. I. Changes in order and structure.	2127-2134A 3001-3010A
ature exposure of single-crystalline nickel-base superalloys. Nitrogen, Reactions (chemical)	47-30A	Deformation behavior of a Ni ₃ Al(B,Zr) alloy during cold rolling. II. Microstructural and textural changes.	3011-3021A
Effects of aluminum, silicon, and boron on the dissolution rate of nitrogen into molten iron. Numerical modeling of enhanced nitrogen dissolution during	899-904B	Organic compounds, Mechanical properties Microhardness study of the nonlinear optical crystal L-arginine	222 2224
gas tungsten arc welding. Nitrogenized steels, Steel making	1371-1385B	hydrochloride monohydrate. Orientation relationships	3087-3090A
Nitrogen alloying of carbon and stainless steels by gas injec- tion.	905-912B	Early-stage Widmanstätten growth of the γ phase in a duplex steel.	15-19A
Nodular iron, Crystal growth Study of microsegregation buildup during solidification of sphe-		The fracture resistance of a binary TiAl alloy. Surface relief of a" martensite in a Ti-Mo alloy.	71-80A 599-605A
roidal graphite cast iron. Nodular iron, Mechanical properties	827-836B	Island grains of low misorientation angles formed during abnor- mal grain growth in Cu. Near-threshold fatigue crack growth behavior of 2195 alumi-	1489-1491A
Mechanical behavior and damage kinetics in nodular cast iron. I. Damage mechanisms.	3063-3074A	num-lithium alloy—prediction of crack propagation direction and influence of stress ratio.	1531-1541A
Mechanical behavior and damage kinetics in nodular cast iron. II. Hardening and damage.	3075-3085A	Aligned monotectic growth in unidirectionally solidified Zn-Bi alloys.	1833-1842A
Nodular iron, Microstructure Microstructural development and austempering kinetics of duc-		Evolution of texture and grain misorientation in an Al-Mg alloy exhibiting low-temperature superplasticity.	2169-2180A
tile iron during thermomechanical processing. Nonferrous castings, Crystal growth	2575-2585A	On the primary creep of CMSX-4 superalloy single crystals. Orientation relationships, Alloying effects	2219-2228A
A model for prediction of pressure and redistribution of gas- forming elements in multicomponent casting alloys.	1283-1292B	Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo- (N) superaustenitic stainless steels aged at 900°C.	1713-1723A
Two-phase modeling of mushy zone parameters associated with hot tearing.	1461-1472A	Orientation relationships, Deformation effects Investigation on the cold deformation strengthening mecha-	
Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al-Cu		nism in MP 159 alloy. Computer simulation of the initial rafting process of a nickel-	5-13A
alloys. Nonferrous castings, Microstructure	3167-3178A	base single-crystal superalloy. Orientation relationships, Processing effects	585-597A
Porosity nucleation in metal-matrix composites. Nonferrous castings, Quality control	2069-2074A	Directional and single-crystal solidification of Ni-base superal- loys. I. The role of curved isotherms on grain selection. Directional and single-crystal solidification of Ni-base superal-	2877-2886A
Freckle formation and freckle criterion in superalloy castings. Nonmetallic inclusions	801-811B	loys. II. Coincidence site lattice character of grain bound- aries.	2887-2893A
Numerical simulation of the flow and the solid transport when tilting a holding furnace. Fluid flow and inclusion removal in continuous casting tundish. Microstructural characterization and analysis of inclusions in C-	207-214B 253-266B	Oscillations A model of convection-induced oscillatory structure formation in peritectic alloys.	1233-1246A
Mn steel and weld metals. The mechanism of brittle fracture in a microalloyed steel. I.	615-628A	Outokumpu flash smelting process Comparison between sulfide flash smelting and coal combus-	
Inclusion-induced cleavage. The mechanism of brittle fracture in a microalloyed steel. II.	641-652A	tion—with implications for the flash smelting of high-grade concentrate.	1005-1012B
Mechanistic modeling. Behavior of nonmetallic inclusions in front of the solid-liquid	653-667A	Oxidation rate, High temperature effects The effect of high-temperature oxidation on the creep behavior	
interface in low-carbon steels. Numerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt. I. Spherical	1013-1021B	of a superalloy (Nimonic-105). Oxidation resistance, Coating effects	1777-1784A
particles. Numerical calculation of the electromagnetic expulsive force	1527-1533B	Elevated temperature oxidation of laser surface engineered composite boride coating on steel.	461-473A
upon nonmetallic inclusions in an aluminum melt. II. Cylindri- cal particles. Nonmetallic inclusions, Impurities	1535-1540B	Oxidation resistance, Composition effects Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sintering.	747-753A
Grain-growth-inhibiting effects of primary inclusion particles of ZrO ₂ and MgO in Fe-10 mass% Ni alloy.	1213-1223A	Oxide coatings, Reactions (chemical) Modification of the interface in SiC/Al composites.	2361-2368A
Nonmetallic inclusions, Reactions (chemical) In situ observations of inclusions at the (Mn,Si)-killed steel/ CaO-Al ₂ O ₃ interface.	1135-1139B	Oxides, Electrochemistry Thermodynamic and nonstoichiometric behavior of promising Hi-Tc cuprate systems via electromotive force measure- ments: a short review.	661-666B
Nonmetallic inclusions, Solubility Modeling of inclusion growth and dissolution in the weld pool.	161-169B	Oxygen, Diffusion The chemical diffusivity of oxygen in liquid iron oxide and a cal-	
Notch sensitivity Effect of plastic anisotropy on the creep strength of single crystals of a nickel-based superalloy.	421-430A	clum ferritles. Alpha case thickness modeling in investment castings. Diffusion of oxygen in the Al_2O_2 oxidation product of TiAl ₃ .	1059-1068B 1419-1427B 3023-3028A
Notch sensitivity, Microstructural effects Impact fracture toughness of porous iron and high-strength steels.	1443-1451A	Oxygen, Reactions (chemical) Thermodynamics of surfaces and adsorption in the Fe-C-S-O system.	267-276B
Nuclear reactor components, Mechanical properties Anisotropy of yielding in a Zr-2,5Nb pressure tube material. Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets.	409-420A 679-690A	Oxygen steel making Equilibria involving the reciprocal spinel solid solution (Mg _x Fe _{1-x})(Al _x Cr _{1-x})D ₄ : modeling and experiment.	1247-1259B
Environmentally enhanced deformation of ultra-high-purity Ni- 16Cr-9Fe alloys.	2383-2388A	Spinel-corundum equilibria and activities in the system MgO- Al ₂ O ₃ -Cr ₂ O ₃ at 1473K.	1323-1332B
Nuclear reactor components, Microstructure Microstructural studies on lattice imperfections in deformed zir- conium-base alloys by x-ray diffraction.	2405-2410A	Palladium, Ternary systems The prediction of the hydriding thermodynamics of Pd-Rh-Co- temary alloys.	667-673B
Nuclear reactor components, Welding Microstructural characterization and analysis of inclusions in C- Mn steel and weld metals;	615-628A	Palladium base alloys, Phases (state of matter) The prediction of the hydriding thermodynamics of Pd-Rh-Cotemary alloys.	667-673B
Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals.	1175-1185A	Palladium base alloys, Powder technology Solute segregation behavior in spray-atomized Pd-Rh-V(Co)	
Relation between microstructure, composition, and hot crack- ing in Ti-stabilized austenitic stainless steel weldments. Nucleation	3109-3122A	powders. Factors influencing solute segregation of spray-atomized palla-	1843-1855A 2681-2686A
Application of, and precautions for the use of, the Rule of Additivity in phase transformation.	675-682B	dium alloy powders. Partial pressure	2001-2000A

Thermodynamic and nonstoichiometric behavior of promising		Pearlite, Structural hardening	
Hi-Tc cuprate systems via electromotive force measure- ments: a short review.	661-666B	Effects of microstructural parameters on work hardening of pearlite at small strains.	2665-2669A
Phase equilibrium and minor element distribution between FeO _x -SiO ₂ -MgO-based slag and Cu ₂ S-FeS matte at 1573K under high partial pressures of SO ₂ .	705-712B	Penetration, Size effects Particulate penetration into solid droplets.	387-396A
Particle size Particulate penetration into solid droplets.	387-396A	Percolation, Processing effects Simulation of percolation structure of grain bonding in liquid- phase sintering by three-dimensional grain structure recon-	
Particle size distribution The influence of reinforcement particle size distribution on the	309-318A	struction. Peritectic reactions	3187-3193A
mechanical behavior of a stainless steel/TiN composite. Modeling of dissolution, growth, and coarsening of aluminum nitride in fow-carbon steels.	1907-1916A	A numerical and experimental study of the rate of transforma- tion in three directionally grown peritectic systems. Kinetics of peritectic reaction and transformation in Fe-C	29-34A
Effect of particle-size distribution on the properties of high-vol- ume-fraction SiC _p -Al-based composites.	2351-2359A	alloys. A model of convection-induced oscillatory structure formation	981-991B
Particles, Coating Modification of the interface in SiC/Al composites.	2361-2368A	in peritectic alloys. Permeability	1233-1246A
Particles, Crystal growth Nucleation on ceramic particles in cast metal-matrix compos- ites.	1295-1304A	Experimental difficulties associated with permeability measure- ments in aluminum alloys.	3149-3153A
Particles, Physical properties Optimum parameters for wetting silicon carbide by aluminum		Permeameters, Design Experimental difficulties associated with permeability measure- ments in aluminum alloys.	3149-3153A
alloys. Particulate composites, Casting Tribological properties of centrifugally cast copper alloy-graph-	565-573A	Phase boundary Liquidus temperature determination in multicomponent alloys by thermal analysis.	497-501A
ite particle composite. Porosity nucleation in metal-matrix composites.	1283-1293A 2069-2074A	Phase decomposition, Heating effects Differential scanning calorimetry and electron diffraction inves-	
Particulate composites, Crystal growth Further discussion of "Particle engulfment and pushing by solidifying interfaces. II. Microgravity experiments and theo-		tigation on low-temperature aging in Al-Zn-Mg alloys. Phase diagram reactions Application of, and precautions for the use of, the Rule of Addi-	339-348A
retical analysis". Authors' reply to: Further discussion of "Particle engulfment and pushing by solidifying interfaces: II. Microgravity experi-	1695-1700A	tivity in phase transformation. Some generalities in the analyses of equilibria in ionic solu-	675-682B 2105-2118A
ments and theoretical analysis".	1700-1704A	tions. Modeling gas diffusion into metals with a moving-boundary	
A dynamic model for the interaction between a solid particle and an advancing solid/liquid interface.	2559-2568A	phase transformation. Measurement of the activity of boron in liquid copper using a	2411-2421A
Particulate composites, Extrusion Study of 6061-Al ₂ O ₃₀ composites produced by reciprocating	0507 05004	four-phase equilibrium technique. Phase diagrams	2674-2678A
extrusion. Particulate composites, Forging	2587-2596A	Phase diagram for the system CaO-Al ₂ O ₃ -ZrO ₂ . A numerical and experimental study of the rate of transforma-	25-33B
Plastic flow behavior during the forging of a 6061 Al/10 vol% Al ₂ O3(p) composite.	1310-1313A	tion in three directionally grown peritectic systems. The 900°C isothermal section of Ti-Ni-V alloys.	29-34A 1679-1682A
Particulate composites, Mechanical properties The influence of reinforcement particle size distribution on the		Phase stability Phase diagram study for the alkali metal-oxychloride system.	795-799B
mechanical behavior of a stainless steel/TiN composite. On the infiltration behavior of Al, Al-Li, and Mg melts through	309-318A	Phase stability, Heating effects Displacive transformations in Au-18 wt.% Cu-6 wt.% Al.	1917-1923A
SiC ₀ bed. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites.	319-325A 531-540A	Phosphorus, Reactions (chemical) The effects of alkaline earth metal ions and halogen ions on the chromium oxide activities in alkaline earth metal oxide-	400 4750
Optimum parameters for wetting silicon carbide by aluminum		halide-Cr ₂ O ₃ system fluxes. Phosphorus compounds, Phase transformations	469-475B
alloys. Deformation and fracture of a particle-reinforced aluminum	565-573A	Crystallization of amorphous Fe ₈₂ P ₁₈ .	1067-1073A
alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Modeling.	921-936A 937-950A	Photoluminescence Nondestructive evaluation of residual stress for thermal barrier coated turbine blades by Cr ³⁺ photoluminescence	
The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal		piezospectroscopy. Physical chemistry	2388-2391A
matrix composites. The quasi-static and cyclic fatigue fracture behavior of 2014	951-957A	Kinetics of manganese ore reduction by carbon monoxide. Distribution equilibria of Pb and Cu between CaO-SiO ₂ -Al2NO ₃	477-490B
aluminum alloy metal-matrix composites. High-temperature fracture and fatigue-crack growth behavior of an XD gamma-based titanium aluminide intermetallic alloy.	959-974A 1413-1423A	melts and liquid copper. Activity of calcium in dilute liquid Si-Ca alloy.	1261-1266B 1267-1272B
Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique.	1873-1881A	Physical simulation Numerical simulation of the flow and the solid transport when tilting a holding furnace.	207-214B
Microstructure and properties of in situ Al/TiB ₂ composite fabri- cated by in-melt reaction method.	1959-1964A	Water model study of horizontal molten steel—Ar two-phase jet in a continuous casting mold.	453-460B
Interfacial modification and impact properties of Nb/MoSi ₂ lam- inate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC par-		Dynamics of the spout of gas plumes discharging from a melt: experimental investigation with a large-scale water model.	461-468B
ticles. Effect of particle-size distribution on the properties of high-vol-	2075-2081A	Eutectic interface configurations during melting. Modeling of gas-liquid reactions in ladle metallurgy. I. Physical	1261-1269A
ume-fraction SiC _p -Al-based composites. Particulate composites, Metal working	2351-2359A	modeling. Melt flow control in a multistrand tundish using a turbulence	1447-1455B
Effect of volume fraction of SiC _p reinforcement on the processing maps for 2124 Al matrix composites.	629-639A	inhibitor. Banded microstructure formation in off-eutectic alloys. An oscillatory behavior of planar interface motion in the naph-	1505-1515B 1819-1832A
Particulate composites, Microstructure Nucleation on ceramic particles in cast metal-matrix composites.	1295-1304A	thalene-camphor system.	2678-2681A
Particulate composites, Powder technology	387-396A	Electrodeposition of zinc from sodium zincate/hydroxide elec- trolytes in a spouted bed electrode.	755-766B
Particulate penetration into solid droplets. Reaction steps in the combustion synthesis of NiAl/TiB ₂ com-		Pipelines, Mechanical properties	
posites. Phase transitions in reactive formation of Ti ₅ Si ₃ /TiAl in situ composites.	433-438B 763-771A	Analysis and prevention of yield strength drop during spiral pip- ing of two high-strength API-X70 steels. Piping, Mechanical properties	2669-2674A
Effect of particle size and volume fraction in hot extrusion reac- tion synthesis of SiC particle reinforced NiAl.	1663-1670A	Analysis and prevention of yield strength drop during spiral pip- ing of two high-strength API-X70 steels.	2669-2674A
Reaction synthesis, microstructure, and mechanical properties of in situ composite NiAl-Al ₂ O ₃ -TiC. Particulate composites, Reactions (chemical)	1692-1695A	Pitting (corrosion), Alloying effects Role of Mo and W during sensitization of superaustenitic stain-	1893-1905A
Modification of the interface in SiC/Al composites. Particulate composites, Synthesis	2361-2368A	less steel—crystallography and composition of precipitates. Plasma processing Preparation and mechanical properties of highly densified	1033-1303A
Chemically induced reduction: a viable process for synthesiz- ing y-TIAI based intermetallic matrix composite powders con- taining nanocrystalline TiC.	151-159B	nanocrystalline Al. Plastic deformation	1017-1024A
Particulate composites, Thermal properties Effect of albite particles on the coefficient of thermal expansion		Anisotropy of yielding in a Zr-2.5Nb pressure tube material. δ/γ interface boundary sliding as a mechanism of strain accom- modation during hot deformation in a duplex stainless steel.	409-420A 1671-1677A
behavior of the Al6061 alloy composites.	773-780A	Synchrotron x-ray study of bulk lattice strains in externally	

•	2000		Protective coatings, wicro	structure
1	loaded Cu-Mo composites. Plastic deformation, Deformation effects Load sharing between austenite and ferrite in a duplex stain-	2949-2962A	Powder spraying Solute segregation behavior in spray-atomized Pd-Rh-V(Co) powders.	1843-1855A
	less steel during cyclic loading. Plastic deformation, Microstructural effects The influence of crystallographic texture and interstitial impuri-	1557-1570A	Precipitates, Reactions (chemical) On homogenization of a binary alloy after dissolution of planar and spherical precipitates.	1525-1530A
	ties on the mechanical behavior of zirconium. Plastic flow	1997-2003A	Precipitates, Solubility On the Gibbs-Thomson effect in concentrated binary systems.	2659-2661A
	Flow behavior of the billet surface layer in porthole die extru- sion of aluminum.	1635-1643A	Precipitation Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets.	679-690A
	Interpretation of microstructural evolution using dynamic materials modeling.	2973-2974A	Crystallization of amorphous Fe ₈₂ P ₁₈ . Nature of precipitates and constituent particles present in a ter-	1067-1073A
	Plastic flow, Composition effects Constitutive properties of hard-alpha titanium. Plastic flow, Microstructural effects	3029-3040A	nary Al-Ge-Si alloy. Catalyzed precipitation in Al-Cu-Si. Transient liquid-phase bonding in the Ni-Al-B system. Coarsening of intermetallic or compound precipitates in binary	2093-2097A 2697-2711A 2835-2847A
	Correlation between former alpha boundary growth kinetics and superplastic flow in Zn-22% Al.	163-172A	systems. Precipitation, Alloying effects	3195-3197A
	Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures.	1353-1364A	Solidification characteristics of the Al-8.3Fe-0.8V-0.9Si alloy. Role of Mo and W during sensitization of superaustenitic stain-	1599-1610A
	Plasticity The role of plasticity in bimaterial fracture with ductile interlay-	000 0704	less steel—crystallography and composition of precipitates. Precipitation processes in Al-Cu-Mg alloys microalloyed with	1893-1905A
	ers. The mechanical threshold stress constitutive-strength model description of HY-100 steel.	863-872A 1985-1996A	Si. Precipitation, Composition effects	2721-2733A
	Plate metal, Mechanical properties Simulation of shear plugging through thin plates using the		Effects of Cu content and preaging on precipitation characteris- tics in aluminum alloy 6022. Precipitation, Deformation effects	361-371A
	GRIM Eulerian hydrocode. Plating baths, Electrochemistry Electrodeposition of zinc from sodium zincate/hydroxide elec-	853-860A	Microstructural model for hot strip rolling of high-strength low- alloy steels. Precipitation, Heating effects	1247-1259A
	trolytes in a spouted bed electrode. Platinum compounds, Coatings Effect of prealluminizing diffusion treatment on microstructural	755-766B	Insight into the microstructural characterization of ferritic steel using micromagnetic parameters.	1053-1065A
	evolution of high-activity Pt-aluminide coatings. Pole figures	2037-2047A	Modeling of dissolution, growth, and coarsening of aluminum nitride in low-carbon steels. Spontaneous deformation during aging under stress in a cop-	1907-1916A
	Anisotropy of yielding in a Zr-2.5Nb pressure tube material. Application of the phase-field method to the solidification of	409-420A	per-beryllium alloy.	2765-2771A
	hot-dipped galvanized coatings. Near-threshold fatigue crack growth behavior of 2195 alumi- num-lithium alloy—prediction of crack propagation direction	487-495A	Precipitation, Processing effects The effect of gravity on solution-reprecipitation during liquid phase sintering. Microstructure and mechanical behavior of spray-deposited Al-	397-400A
	and influence of stress ratio. Role of foreign-object damage on thresholds for high-cycle fatigue in Ti-6AI-4V.	1531-1541A 1571-1583A	Cu-Mg(-Ag-Mn) alloys. Precipitation hardening alloys, Microstructure	2287-2298A
	Through-thickness texture gradients in cold-rolled aluminum. Microstructure-ultrasonic inspectability relationships in Ti6242:	1653-1662A	Determining the three-dimensional morphology of γ -particles in γ - γ superalloys.	1333-1342A
	signal-to-noise in fine-grain-processed Ti62642. Evolution of texture and grain misorientation in an Al-Mg alloy exhibiting low-temperature superplasticity. A study of through-thickness texture gradients in rolled sheets.	2119-2125A 2169-2180A 2299-2315A	Pressure castings, Mechanical properties Effect of testing frequency on the corrosion fatigue of a squeez-cast aluminum alloy.	1137-1145A
	Porosity Creep expansion of porous Ti-6Al-4V sandwich structures.	261-273A	Pressure castings, Quality control Prevention of macrodefects in squeeze casting of an Al-7 wt.% Si alloy.	297-305B
	Impact fracture toughness of porous iron and high-strength steels.	1443-1451A	Pressure leaching Characterization of scales obtained during continuous nickel	
	Porosity, Coating effects On the evolution of porosity in spray-deposited tool steels.	723-733A	laterite pilot-plant leaching. Pressure vessels, Welding	1175-1186B
	Porosity, Processing effects Sintering behavior of nanocrystalline -Ni-Fe powders. Preparation of high porosity metal foams.	503-510A 1345-1352B	Microstructural characterization and analysis of inclusions in C- Mn steel and weld metals.	615-628A
	An investigation of the synthesis of Ti-50 at.% Ni alloys through combustion synthesis and conventional powder sintering. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique.	1867-1871A 1873-1881A	Prestraining A model for predicting the effect of deformation after solution treatment on the subsequent artificial aging behavior of AA7030 and AA7108 alloys.	2327-2338A
	Porosity nucleation in metal-matrix composites. Porosity, Welding effects Improved microstructure and properties of 6061 aluminum	2069-2074A	Process control Length change and deformation of powder injection-molded compacts during solvent debinding.	1473-1478A
	alloy weldments using a double-sided arc welding process. Powder coating	2537-2543A	Process parameters Flow behavior of the billet surface layer in porthole die extru- sion of aluminum.	1635-1643A
	Correlation of microstructure with the wear resistance and frac- ture toughness of hardfacing alloys reinforced with complex carbides.	3041-3052A	Superplastic forming of duplex stainless steel. Proof stress, Deformation effects Equal-channel angular pressing of commercial aluminum	2394-2396A
	Powder coatings, Mechanical properties Correlation of microstructure with the wear resistance and frac- ture toughness of hardfacing alloys reinforced with complex carbides.	3041-3052A	alloys: grain refinement, thermal stability and tensile proper- ties. Proof stress, Microstructural effects	691-701A
	Powder coatings, Synthesis Synthesis of nanostructured WC-12%Co coating using mechanical milling and high velocity oxygen fuel thermal	3041-3032A	An investigation of the effect of fatigue deformation on the residual mechanical properties of Ti-6Al-4V ELI. Protective coatings, Crystal growth	1937-1948A
	spraying. Synthesis of nanostructured Cr ₃ C ₂ -25(Ni20Cr) coatings. Powder compacts, Extrusion	541-553A 555-564A	Application of the phase-field method to the solidification of hot-dipped galvanized coatings. Protective coatings, Mechanical properties	487-495A
	Hot deformation mechanisms in a powder metallurgy nickel- base superalloy IN 625.	2317-2325A	Mechanical properties of laser-deposited composite boride coating using nanoindentation.	401-408A
	Powder compacts, Reactions (chemical) Modeling the reaction synthesis of shock-densified titanium-sil-		Microstructure and formability of ZnNi alloy electrodeposited sheet steel.	475-485A
	icon powder mixture compacts. Powder metallurgy	307-316B	Effects of sulfur on the fatigue and fracture resistance of inter- faces between γ-Ni(Cr) and α-Al ₂ O ₃ . Nondestructive evaluation of residual stress for thermal barrier	1977-1983A
	Simulation of polymer removal from a powder injection molding compact by thermal debinding. Powder metallurgy parts, Extrusion	2597-2606A	coated turbine blades by Cr ³⁺ photoluminescence piezospectroscopy. Correlation of microstructure with the wear resistance and frac-	2388-2391A
	Hot deformation mechanisms in a powder metallurgy nickel- base superalloy IN 625.	2317-2325A	ture toughness of hardfacing alloys reinforced with complex carbides.	3041-3052A
	Study of 6061-Al ₂ O _{3p} composites produced by reciprocating extrusion.	2587-2596A	Surface amorphous and crystalline microstructure by alloying zirconium using Nd:YAG pulsed laser.	3123-3127A
	Powder metallurgy parts, Mechanical properties Preparation and mechanical properties of highly densified nanocrystalline Al.	1017-1024A	Protective coatings, Microstructure Microstructural evolution during laser cladding of M2 high- speed steel.	2615-2625A

Protective coatings, Oxidation			Volume 51
Protective coatings, Oxidation		under high partial pressures of SO ₂ .	705-712B
Elevated temperature oxidation of laser surface engineered composite boride coating on steel.	461-473A	The study of chlorination kinetics of copper (I) sulfide by cal- cium chloride in the presence of oxygen.	723-731B
Pseudoelasticity Experimental studies on tribological properties of pseudoelas-		Recent advances in the fundamentals of the kinetics of steel- making reactions.	891-898B
tic TiNi alloy with comparison to stainless steel 304. Punching	2773-2783A	Activity measurement of the constituents in liquid Cu-Mg and Cu-Ca alloys with mass spectrometry. Redox equilibria and kinetics of gas-slag reactions.	927-935B 937-943B
The use of the finite-element method to design an optimized tool for the plain-strain punch stretching test.	93-98A	Interfacial kinetics of hydrogen with liquid stag containing iron oxide.	945-955B
Pyrolysis Coal pyrolysis in a rotary kiln. I. Model of the pyrolysis of a sin-	201 200B	Dynamic and equilibrium interfacial phenomena in liquid steel- slag systems. Interfacial phenomena in some slag-metal reactions.	957-971B 973-980B
gle grain. Coal pyrolysis in a rotary kiln. II. Overall model of the furnace.	381-390B 391-402B	Kinetics of peritectic reaction and transformation in Fe-C alloys.	981-991B
Pyrometallurgy Lead solubility in FeO _x -CaO-SiO ₂ slags at iron saturation.	15-24B	Rate of interfacial reaction between liquid iron oxide and CO-CO ₂ .	1049-1057B
Effect of a catalyst on the kinetics of reduction of celestite (SrSO ₄) by active charcoal. Kinetics of oxidation of carbonaceous materials by CO ₂ and	35-41B	Crystallization of amorphous Fe ₈₂ P ₁₈ . Quantifying the heats of coal devolatilization.	1067-1073A 1125-1131B
H ₂ O between 1300° and 1500°C.	43-54B	Rate of slag reduction in a laboratory electric furnace—alter- nating vs. direct current.	1187-1194B
The thermodynamics of the Ni-Co-S temary system. Dissolution rates of coals and graphite in Fe-C-S melts in direct ironmaking; influence of melt carbon and sulfur on carbon	121-128B	Modified predominance diagrams for gas-solid reactions. Some generalities in the analyses of equilibria in ionic solu-	1429-1437B
dissolution. Phase equilibrium and minor element distribution between	243-251B	tions. An experimental investigation on the kinetics of solute driven	2105-2118A
FeO _x -SiO ₂ -MgO-based slag and Cu ₂ S-FeS matte at 1573K under high partial pressures of SO ₂ .	705-712B	remelting. Reaction kinetics, Alloying effects	2713-2720A
Contactless electrochemical reduction of titanium (II) chloride by aluminum.	713-721B	Effects of aluminum, silicon, and boron on the dissolution rate of nitrogen into molten iron.	899-904B
The study of chlorination kinetics of copper (I) sulfide by cal- cium chloride in the presence of oxygen.	723-731B	Reaction kinetics, Diffusion effects On the mobility of the austenite-ferrite interface in Fe-Co and	
Rate of slag reduction in a laboratory electric furnace—alter- nating vs. direct current.	1187-1194B	Fe-Cu. Reaction kinetics, Heating effects	379-385A
Experimental study of phase equilibria in the systems Fe-Zn-O and Fe-Zn-Si-O at metallic iron saturation.	1195-1201B	Effects of thermal cycling on the kinetics of the γ→ε martensitic transformation in an Fe-17 wt.% Mn alloy.	2735-2738A
Quantitative metallography Phase analysis of two steel work rolls using Mössbauer spec-	793-798A	Reaction kinetics, Temperature effects Reduction of titania by methane-hydrogen-argon gas mixture.	129-139B
troscopy. Quenching (cooling) Effects of strain rate and anisotropy on the tensile deformation	193-190A	Effect of temperature on cementite formation by reaction of iron ore with H ₂ -CH ₄ -Ar gas.	1139-1142B
properties of extruded AlZnMg alloys. Microstructural effects on fracture toughness in AA7010 plate.	669-678A 2503-2515A	Reaction mechanisms Preparation of Nd(III) carbonate by precipitation stripping of Nd(III)-loaded VA10.	5-13B
Spontaneous deformation during aging under stress in a cop- per-beryllium alloy.	2765-2771A	On methane generation and decarburization in low-alloy Cr-Mo steels during hydrogen attack.	125-137A
Radioactive waste Grain-boundary chemistry and integranular corrosion in alloy	1160 11704	Reduction of titania by methane-hydrogen-argon gas mixture. Chemically induced reduction: a viable process for synthesiz-	129-139B
825. Rapid solidification	1163-1173A	ing γ-TiAl based intermetallic matrix composite powders containing nanocrystalline TiC.	151-159B
Processing and microstructural characterization of Al-Cu alloys produced from rapidly solidified powders.	249-260A	A novel process for recovering rare earth from weathered black earth.	191-196B
Microstructural characterization of a rapidly solidified ultrahigh strength Al _{94.5} Cr ₃ Co _{1.5} Ce _{1.} alloy.	607-614A	The electrochemical property of acetylene black suspension solution with ozone bubbling and its effects on copper disso-	
An integrated model for dendritic and planar interface growth and morphological transition in rapid solidification.	735-746A	lution. Modellng the reaction synthesis of shock-densified titanium-sil-	235-241B
Monosize droplet deposition as a means to investigate droplet behavior during spray deposition.	1333-1344B	icon powder mixture compacts. Reaction steps in the combustion synthesis of NiAl/TiB ₂ com-	307-316B
The atomic-structure changes in Al-16% Si alloy above the liq- uidus.	2163-2168A	posites. CoCl+: unique in all of molten saltdom?	433-438B 597-602B
High-temperature creep of an Al-8.5Fe-1.3V-1.7Si alloy pro- cessed by rapid solidification.	2229-2237A	Selective arsenic-fixing roast of refractory gold concentrate. Mixed solvent systems for the extraction and stripping of	1163-1168B
Rare earth metals, Recovering A novel process for recovering rare earth from weathered black		iron(III) from concentrated acid chloride solutions. Characterization of scales obtained during continuous nickel	1169-1174B
earth. Rare gases, Environment	191-196B	laterite pilot-plant leaching. The anomalous behavior of Al ³⁺ in nickel electrowinning from	1175-1186B 1203-1211B
Effects of inert gases on fatigue crack growth and their trans- portation into subsurface regions in titanium.	1435-1441A	sulfate electrolytes. Some generalities in the analyses of equilibria in ionic solutions.	2105-2118A
Reaction kinetics A numerical and experimental study of the rate of transforma-		Reactivity, Heating effects	2100 ZITON
tion in three directionally grown peritectic systems. Effect of a catalyst on the kinetics of reduction of celestite	29-34A	Influence of thermal aging on the reactivity of duplex stainless steel surfaces.	2015-2024A
(SrSO ₄) by active charcoal. Kinetics of oxidation of carbonaceous materials by CO ₂ and	35-41B	Recovery Macroscopic and microscopic evolutions of a shot-peened	
H ₂ O between 1300° and 1500°C. Galvanic interaction between chalcopyrite and manganese	43-54B	layer during isothermal recovery. Recovery, Deformation effects	213-224A
dioxide in sulfuric acid medium. The electrochemical property of acetylene black suspension	55-61B	Recovery and ordering in cold-rolled boron-doped Ni ₇₆ Al ₂₄ . Recovery, High temperature effects	2127-2134A
solution with ozone bubbling and its effects on copper disso- lution.	235-241B	Stress-strain response of a cast 319-T6 aluminum under ther- momechanical loading.	139-151A
Modeling the reaction synthesis of shock-densified titanium-silicon powder mixture compacts.	307-316B	Recrystallization Effects of strain rate and anisotropy on the tensile deformation	
Coal pyrolysis in a rotary kiln. I. Model of the pyrolysis of a single grain. Coal pyrolysis in a rotary kiln. II. Overall model of the furnace.	381-390B 391-402B	properties of extruded AlZnMg alloys. Microstructural effects on fracture toughness in AA7010 plate.	669-678A 2503-2515A
Kinetics of Al ₂ O ₃ dissolution in CaO-MgO-SiO ₂ -Al ₂ O ₃ slags: in situ observations and analysis. The effect of lead on the activity of sodium in liquid zinc.	406-410B 414-418B	Recrystallization, Alloying effects Effects of boron doping on the grain-growth kinetics and mechanical properties of √γ nickel-aluminum alloys.	3179-3186A
Thermodynamic study of zinc-rich zinc-sodium alloys. Kinetics of manganese ore reduction by carbon monoxide.	419-424B 477-490B	Recrystallization, Deformation effects Substructural changes during hot deformation of a Fe-26Cr fer-	
Investigation on reduction of CoAl ₂ O ₄ by hydrogen gas using TGA.	540-542B	ritic stainless steel. Mathematical modeling of the hot strip rolling of microalloyed	21-27A
CoCl*: unique in all of molten saltdom? Pore transport-controlled shrinking-core systems involving dif-	597-602B	Nb, multiply alloyed Cr-Mo, and plain C-Mn steels.	511-530A
		Interpretation of microstructural evolution using dynamic mate- rials modeling.	2973-2974A
fusion, migration, and homogeneous reactions. I. Formula- tion of model and rate equation for PbSO ₄ -carbonate	692 6045	Recrystallization Heating effects	
fusion, migration, and homogeneous reactions. I. Formula-	683-691B 693-703B	Recrystallization, Heating effects Effect of intermediate annealng on texture evolution and plastic anisotropy in an AI-Mg autobody alloy. Red mud. End uses	99-107A

A comparison study of microstructure and mechanical properties. Pacifical stress, polying effects. Machanical properties of automic starless sides single crystallocations. Proceedings of the process of the properties of automic starless sides single crystallocations. Proceedings of the process of the process. Process of the process of	Reduction of area, Alloying effects		Monte Carlo campling for micropagnaction managements in	
Readous atrees. Activing effects Nondestractive evaluation of resolution of precision states of the matter and an adoption of the company of the matter and an adoption of the company of the matter and adoption of the company of the company of the matter and adoption of the company of the co	A comparison study of microstructure and mechanical proper-	0005 00474		2569-2574A
Residual strees. Colling effects of the comparison of experiments of the control		2205-2217A	dium alloy powders.	2681-2686A
reaction stress. Coaling control in the properties of coaling control in the coaling control i		153-161A	eling of transport processes and segregation during direc-	0400 04054
receited utraine biades by Or* photolumineacenes Passpace processor provision effects Residual strains in HY100 polycrystatic comparisons of experiments and smallest provisions of experiments and smallest provisions and strains of the partial strains in HY100 polycrystatic comparisons of experiments and smallest provisions. Processing effects Residual stress. Processing effects Residual stress. Processing effects Improved morrostructure and residual stress in cast iron call Residual stress. Wickling effects Improved morrostructure and residual stress in cast iron call Residual stress. Wickling effects Improved morrostructure and reporting of processing effects Improved morrostructure and residual stress in cast iron call Residual stress. Wickling effects Improved morrostructure and residual stress in cast iron call Residual stress. Wickling effects Improved morrostructure and residual stress in cast iron call Residual stress. Wickling effects Improved morrostructure and residual stress in cast iron call Residual stress. Wickling effects Improved morrostructure and residual stress in cast iron call Residual stress. Wickling effects Improved morrostructure and residual stress in cast iron call Residual stress. Wickling effects Improved morrostructure and residual stress in cast iron call Residual stress. Wickling effects Improved morrostructure and residual stress in cast iron call Residual stress. Wickling effects Improved morrostructure and residual stress in cast iron call Residual stress. Wickling effects Improved morrostructure and residual stress in cast on call Residual stress. Wickling effects Improved morrostructure and residual stress in cast on call Indications of indications of the partial residual stress in cast on call Indications of	Residual stress, Coating effects			3129-3135A
Residual stress. Potromation effects Residual stress. In PYIOD polycyptatis: comparisons of expert Load sharing between austende and ferrite in a diplex stain- less steel during cycle loading. 259-2464 A residual stress. Processing effects Modeling of microstructure and residual stress in cast inn call Information through and properties of 0.051 stuminum The Policy properties of CaSiO, met. Residual stress. Welding effects Informed increasing and properties of 10.051 stuminum The Policy processing effects Modeling of microstructure and residual stress in cast inn call Residual stress. Welding effects Informed increasing and properties of 10.051 stuminum The Policy processing effects A row properties of CaSiO, met. The Residual stress. Welding effects The New alback strusion of partially remelled semi-soid Sn-Pb. The New alback strusio	coated turbine blades by Cr3+ photoluminescence	2200 2201 A		1682-1684A
ments and simulations. Lock althorup deviewen austernite in a dispite state. Deal sharing between the state of the state o	Residual stress, Deformation effects	2300-2331A	Segregations, Processing effects	
ses site dump cyclic loading. Dyname maintenis lesting, facture, and yeld-surface calcular decidence of the process of more actual stress in cast iron call feed of the process of more actual stress. Welding effects improved microarcture and properties of 0681 aluminum, and process of the process of more of the ScS ₂ , factorially graded in are self-controlly graded materials. 299-3084 Resistivity, Composition effects Characterization of 40 ScS ₂ , factorically graded materials. 299-3084 Resistivity, Composition effects Characterization of 40 ScS ₂ , factorically graded materials. 299-3084 Resistivity, Composition effects Characterization of 40 ScS ₂ , factorically graded materials. 299-3084 Resistivity, Composition effects Characterization of 40 ScS ₂ , factorically graded materials. 299-3084 Resistivity, Composition effects Resistivity, Composition effect		1543-1555A	powders.	1843-1855A
Dynamic materials fasting, floative, and yeld-surface calculations of the processor of the		1557-1570A	ing.	2907-2916A
Residual stress, Processing effects morpored microarturburs and mesibual stress in cast in on call-flow microarturburs and properties of 600f aluminum allow weldments using a double-seded are welding process. Resistivity, Composition effects considered on the construction of partially remelted semi-acid Sn-Pb. Repolicipal properties. Deformation effects Thin-wall back extrusion of partially remelted semi-acid Sn-Pb. Repolicipal properties. Deformation effects Thin-wall back extrusion of partially remelted semi-acid Sn-Pb. Resistivity, Composition effects and properties of construction of partially remelted semi-acid Sn-Pb. Recognizing operations of the construction of partially remelted semi-acid Sn-Pb. Recognizing operations of the construction of partially remelted semi-acid Sn-Pb. Thin-wall back extrusion o	Dynamic materials testing, texture, and yield-surface calcula-	2439-2448A		3137-3148A
Redictual stress. Welding effects improved indirectancture and properties of 6081 aluminum interest interpreted interpreted interpreted interpreted interpreted interpreted in allucomposits NAIA-(2)-TIC. 941-1856 of in situ composits NAIA-(2)-TIC. 941-1856 of institute o	Residual stress, Processing effects			
alloy weldments using a double-sided are welding process. 2837-2843A Resitivity The nonit properties of CasiC _Q melt. 241-1245B Characterization of Mo-SiC _Q melt. 242-1245B Characterization of Mo-SiC _Q melt. 242-1245B Characterization of Mo-SiC _Q melt		1201-1211A	posites.	433-438B
allow weldments using a double-sided are welding process. 2637-2549. Resistivity, Composition of Encis Characterization of low hermal expandence of SCD, purifical reinforced NAI. Resistivity, Composition effects Characterization of No-SiCD, functionally graded materials. Chemical synthesis and characterization of low hermal expandence of the process of the proc			_composites.	763-771A
The infoir properties of GaSiCy met. Passitivity, Composition effects Chemical synthesis and characterization of two thermal expansion-high conductivity Cu-Ma and Ay Mo composition. Chemical synthesis and characterization of two thermal expansion-high conductivity Cu-Ma and Ay Mo composition. Fine-logical properties. Deformation effects The prediction of the hydriding thermodynamics of Pd-Rh-Co terrany alloys. Reacting The prediction of the hydriding thermodynamics of Pd-Rh-Co terrany alloys. Rodiling friction. Selective arsenic-fixing roast of retractory gold concentration. Railing incident of the production of the hydriding damage mechanisms in prorus alloys. Rolling incident of milling-sidiling damage mechanisms in prorus alloys. Rolling incident of milling-sidiling damage mechanisms in prorus alloys. Rolling incident of milling-sidiling damage mechanisms in prorus alloys. Rolling mill rolls, Casting Modeling of microstructure and residual stress in cast iron callogates. Rolling mill rolls, Phases (state of matter) Phase analysis of two selet work rolls using Mosebauer spectroscopy. Rolling mill rolls, Phases (state of matter) Phase analysis of vice of the work rolls using Mosebauer spectroscopy. Rolling mill rolls, Phases (state of matter) Phase analysis of vice of the work rolls using mose analysis of vice of the properties. Rolling mill rolls, Phases (state of matter) Phase analysis of vice of the work rolls using mose analysis of vice of the properties of properties of properties of the properties of pr	alloy weldments using a double-sided arc welding process.	2537-2543A	tion synthesis of SiC particle reinforced NiAl.	1663-1670A
Characterization of Mos SiQ, functionally graded materials. Chemical synthesis and characterization of low frame departs of the control of the productive of	The ionic properties of CaSiO ₃ melt.	1241-1245B	of in situ composite NiAl-Al ₂ O ₃ -TiC.	1692-1695A
sion-high conductivity Cu-Mo and Ag-Mo composites. The-wall back extrusion of partially remelted semi-soil Sn-Pb. The-wall back extrusion of partially remelted semi-soil Sn-Pb. The-wall back extrusion of partially remelted semi-soil Sn-Pb. The wall back extrusion of partially remelted semi-soil Sn-Pb. The Modifum, Terminal Position of Posi		299-308A		1867-1871A
Rheological properties, Deformation effects Thirwall back extraision of partially remelted semi-solid Sn-Pb. Rhodium, Ternary systems The prediction of the hydriding thermodynamics of Pd-Rh-Co and A novel process for recovering rare earth from weathered black auth. An ovel process for recovering rare earth from weathered black auth. Roding and the process for recovering rare earth from weathered black auth. Roding and the process for recovering rare earth from weathered black auth. Roding and the process for recovering rare earth from weathered black auth. Roding the process for recovering rare earth from weathered black auth. Roding and the process for recovering rare earth from weathered black auth. Roding the process for recovering rare earth from weathered black auth. Roding the process for recovering rare earth from weathered black auth. Roding the process for recovering rare earth from weathered black auth. Roding the process for recovering rare earth from weathered black auth. Roding the process for recovering rare earth from weathered black auth. Roding the process for recovering rare earth from weathered black auth. Roding mill rolls, Casting Roding mill rolls, Casting Roding mill rolls, Casting Roding and mill rolls, Casting Prises analysis of hwo steel work rolls using Mosebauer spec- troopy. Rolling texture R		2396-2398A		57-62A
Sensitizing, Alloving effects Rositing A rovel process for recovering rare earth from weathered black Selective areani-ching roast of refractory gold concentrate. 191-1988 Selective areani-ching roast of refractory gold gold gold gold gold gold gold gold	Rheological properties, Deformation effects	57-624	On the approximation of the partial areas method in the calcu-	877-879B
Roasting A novel process for recovering rare earth from weathered black saurh. A novel process for recovering rare earth from weathered black saurh. Sandrain arsen-citxing roast of refractory gold concentrate. Rolling ritrotion identification of rolling-sliding damage mechanisms in porous alloys. Rolling mill rolls, Casting Modeling of microstructure and residual stress in cast iron calender rolls. Rolling mill rolls, Casting Modeling of microstructure and residual stress in cast iron calender rolls. Rolling mill rolls, Phasas (state of matter) Rolling texture Near-threshold fatigue crack growth behavior of 2195 aluminum-inhimm alloy—prediction of crack propagation direction transport. Rolling texture Near-threshold fatigue crack growth behavior of 2195 aluminum-inhimm alloy—prediction of crack propagation direction through-hickness texture gradients in colet-rolled aluminum. A study of through-hickness texture gradients in colet of heads. Detormation behavior of a Ni ₂ Al(E, Zr) alloy during cold rolling. Ill. Microstructural and textural changes. Room temperature Fatigue and through-hickness texture gradients in colled sheets. Room temperature Fatigue and traductional heads of a Ni-Al(E, Zr) alloy during cold rolling. Ill. Microstructural and textural changes. Room temperature Fatigue and traductional heads of a Ni-Al(E, Zr) alloy during cold rolling. Ill. Microstructural and textural changes. Room temperature Fatigue and traductional heads of a Ni-Al(E, Zr) alloy during cold rolling. Ill. Microstructural and textural changes. Room temperature Fatigue and traductional heads of a Ni-Al(E, Zr) alloy during cold rolling. Room temperature Fatigue and traductional properties. Scale (corrosion), Alloying effects The effect of aluminum content on the corrosion behavior of Fe/Al alloys, which are the corrosion process and provided properties. Scale (corrosion), Coating effects The effect of aluminum content on the corrosion behavior of Fe/Al alloys, which are the companies of process a	Rhodium, Ternary systems	37-02A	Sensitizing, Alloying effects	
A singly priceips of recovering rare earth from weathered black earth. Selective arsenic-lixing roast of refractory gold concentrate. Selective arsenication of climing-selective selection and selective separation of inclusions in liquid metal cleaning and properties. Selective arsenication of crack propagation direction and selective separation of inclusions in liquid metal cleaning and structure. Selective arsenication of crack propagation direction and selective separation of inclusions in liquid metal cleaning and structure. Selective arsenication of crack propagation direction and selective separation of inclusions in liquid metal cleaning and thermodynamic calculation of the Thi-N-Cu shape memory alloys. Shape memory, Alloying effects Series and a structure. Seale (corrosion), Alloying effects The effect of aluminum content on the corrosion behavior of FeA alloys, mechanical properties. Seale (corrosion), Condition effects The effect of aluminum content on the corrosion behavior of FeA alloys, in reducing environments at 70°C. Seale (corrosion), Conditing effects Elevance to high-emperature oxidation of teredanical properties. Seale (corrosion), Conditing effects The effect of aluminum content on the corrosion behavior of FeA alloys, in reducing environments at 70°C. Seale (corrosion), Conditing effects The effect of lauminum content on the corrosion behavior of		667-673B	less steel—crystallography and composition of precipitates.	1893-1905A
searth: Selective arsenic-fixing roast of refractory gold concentrate. 163-11684 Separation of rolling-sliding damage mechanisms in porous alloys. 160-11211A Separation of microstructure and residual stress in cast iron calculation of microstructure and residual in stress in cast iron calculation of microstructure and residual stress in and microstructure and stress in an individual stress i			Grain-boundary chemistry and integranular corrosion in alloy	
Rolling mill rolls, Casting Modeling of microstructure and residual stress in cast inon calender rolls. Rolling mill rolls, Casting Modeling of microstructure and residual stress in cast inon calender rolls. Rolling mill rolls, Casting Modeling of microstructure and residual stress in cast inon calender rolls. Rolling mill rolls, Phases (state of matter) Please analysis of two sieule work rolls using Mössbauer spec- Please analysis of two sieule work rolls using Mössbauer spec- Near-Irhreshold fatigue crack growth behavior of 2195 aluminum-lithium alloy—prediction of crack propagation direction and influence of stress rails. Through-thickness texture gradients by applicated in rolled sheets. Deformation behavior of a Nyall, RLZ 2 all opt during cold rolling. I. Changes in order and structure. Deformation behavior of a Nyall, RLZ 2 all opt during cold rolling. I. Kincrestructural and a textural changes. Rolling texture Necrostructural and a textural changes. Rolling texture Necrostructural and a textural changes. Rolling texture Near-Irhreshold fatigue crack growth behavior of 2195 aluminum-rithium alloy—prediction of crack propagation direction and selective separation of inclusions in liquid metal clearliness analyzer (LimiCA) systems. Shape, memory, Alloying effects Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy. Shape memory, Composition effects Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy. Shape memory alloys, Mechanical properties. Cree expansion of porous Ti-6Ai-4V sandwich structures. Scale (corrosion), Alloying effects Formation of pags during high-temperature oxidation of FeyAl containing yithum. Scale (corrosion), Deposition effects Alloy design of FeMnSiCrNi shape-memory alloys related to place the properties of the prope	earth.			1163-1173A
Rolling mill rolls, Casting Modeling of microstructure and residual stress in cast iron cal- ender rolls. Rolling mill rolls, Casting Modeling of microstructure and residual stress in cast iron cal- ender rolls. Rolling mill rolls, Phases (state of matter) Phase analysis of lwo stell work rolls using Mössbauer spec- troscopy. Rolling texture of a track propagation direction and influence of stress ratio. Through-thickness texture gradients in rolled sheets. Through-thickness texture gradients in rolled-inding. I. Changes in order and structure. Analysis of trough-thickness texture gradients in roll- Falgue and fracture broughness of a Nh-T-Cr-Ar-X single- Falgue and fracture broughness of a Nh-T	Rolling friction	7100 71000	Solid-state amperometric sensor for the in-situ monitoring of	733-753B
Mideling of microsature and residual stress in cast iron cal- ender rolls. Rolling mill rolls, Phases (state of matter) Phase analysis of two steel work rolls using Mössbauer spec- troscopy. Rolling texture Near-threshold fatigue crack growth behavior of 2195 alumin num-lihium alloy—prediction of crack propagation direction and influence of siress ratio. A study of through-hickness texture gradients in rolled sheets. Deformation behavior of a Ni _A 4(6, 27) alloy during cold rolling. 1. Changes in order and structure. Deformation behavior of a Ni _A 4(6, 27) alloy during cold rolling. 1. Changes in order and structure. Deformation behavior of a Ni _A 4(6, 27) alloy during cold rolling. 1. Changes in order and structure. Deformation behavior of a Ni _A 4(6, 27) alloy during cold rolling. 2. Commendation behavior of a Ni _A 4(6, 27) alloy during cold rolling. 2. Commendation behavior of a Ni _A 4(6, 27) alloy during cold rolling. 2. Commendation behavior of a Ni _A 4(6, 27) alloy during cold rolling. 2. Commendation of pages during high-temperature. 2. Commendation of pages during high-temperature oxidation of the state of the properties. 2. Commendation of pages during high-temperature oxidation of laser surface engineered composite boride coating on steel. 2. Casle (corrosion), Coating effects Elevated temperature oxidation of laser surface engineered composite boride coating on steel. 2. Casle (corrosion), Coating effects Elevated temperature oxidation of laser surface engineered composite boride coating on steel. 2. Casle (corrosion), Coating effects Elevated temperature oxidation of laser surface engineered composite boride coating on steel. 2. Casle (corrosion), Coating effects Elevated temperature oxidation of laser surface engineered composite boride coating on steel. 3. Casle (corrosion), Coating effects Elevated temperature oxidation of laser surface engineered composite boride coating on steel. 3. Casle (corrosion), Processing effects Carle (corrosion), Processing effects Elevated temperature oxidation in l		3091-3099A	Separation	700 7000
Rolling mill rolls, Phases (state of matter) Phase analysis of two steel work rolls using Mössbauer spectroscopy. Rolling texture Near-threshold fatigue crack growth behavior of 2195 aluminum-lithium alloy—prediction of crack propagation direction and nitlenece of sites standing dients in cold of sheets. A study of through-thickness texture gradients in rolled sheets. Deformation behavior of a hyliding affects Room temperature Lordon behavior of a hyliding affects Fargue and frace and structure. Room temperature Egipe and frace and structure. Room temperature Engine and frace and structure. Room temperature Experimental studies on the structure structures observed in staticular changes. Room temperature oxidation of logs. Room temperature Experimental studies on thological properties Craep expansion of person strikes. Room temperature oxidation of logs. Room temperature oxidation			Nd(III)-loaded VA10.	5-13B
Phase analysis of two sleel work rolls using Mossbauer spectroscopy. Rolling texture Near-Irheshold fatigue crack growth behavior of 2195 aluminum-lithium alloy—prediction of crack propagation direction and influence of sites states allowed the properties of the	ender rolls.	1201-1211A	ration at a metal-slag interface.	537-540B
Roal-interpolation of crack propagation direction and influence of stress ratio. Through-thickness texture gradients in cold-rolled aluminum. A study of through-thickness texture gradients in cold-rolled aluminum. A study of through-thickness texture gradients in cold sheets. Deformation behavior of a NisA(B, Zr) alloy during cold rolling. II. Changes in order and structure. Between an an analysis of a note and structure. State of the phase alloy at ambient temperature. Fatigue and fracture toughness of a Nib-Ti-Cr-Al-X single-phase alloy at ambient temperature oxidation of Fe-Al-alloys in reducing emperature oxidation of Fe-Al-alloys in reducing environments at 700°C. Scale (corrosion), Composition effects. The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Composition effects. The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Composition effects. The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects. The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects. The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects. The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects. The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects. The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects. The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects. Th	Phase analysis of two steel work rolls using Mössbauer spec-	700 7004		767-777B
Near-Interstool datague cracks (propagation director propagation and properties of the propagation and influence of seasons and seasons. The propagation of the seasons are also at a study of through-linickness texture gradients in rolled sales. Deformation behavior of a Nija-Riga. 2) alloy during cold rolling. It. Alloy going in order and structure, Deformation behavior of a Nija-Riga. 2) alloy during cold rolling. It. Microstructural and textural changes. Room temperature Fatigue and fracture loughness of a Nb-Ti-Cr-Al-X single-phase alloy at ambient temperature. Sandwich construction, Mechanical properties Creep expansion of porous Ti-Al-AV sandwich structures. Scale (corrosion), Composition effects The effect of aluminum constructures where the properties of properties of the properties of the properties of the Ti-Ni-Cu shape memory, alloys. Black per memory, alloys. Black per memory alloys. Phase alloys tensing feates Elevated temperature exidation of faser surface engineered composite boride coating on steel. Scale (corrosion), Composition effects The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects Analysis of secondary oxide-scale failure at entry into the roll aga. Scale (corrosion), Welding effects Relevance of high-temperature exidation in life assessment and microstructural degradation of Cr-Mo steel weldments. Segregations A comparative study of the microstructures observed in statically again and continuously cast Bi-In-Sn ternary eutectic ally casts and continuously cast Bi-In-Sn ternary		793-798A		
and influence of stress ratio. Through-fhickness texture gradients in cold-rolled aluminum. A study of through-fhickness texture gradients in rolled sheets. Beformation behavior of a Ma,Alte,Zr.3 alloy during cold rolling. L. Changes in order and structure. A study of through-fhickness texture gradients in rolled sheets. Beformation behavior of a Ma,Alte,Zr.3 alloy during cold rolling. L. Changes in order and structure. A study of through-fhickness texture gradients in rolled sheets. Bom temperature of the study of the state of	Near-threshold fatigue crack growth behavior of 2195 alumi- num-lithium alloy—prediction of crack propagation direction		netic levitator in microgravity environment.	327-329B
A study of through-thickness texture gradients in rolled sheets. Deformation behavior of a Ni ₂ Al(B ₂ C) alloy during cold rolling. I. Changes in order and structure. Deformation behavior of a Ni ₂ Al(B ₂ C) alloy during cold rolling. II. Microstructural and textural changes. 3001-3010A 3001-301	and influence of stress ratio.		Experimental investigation and thermodynamic calculation of	
L Changes in order and structure. Deformation behavior of a Ni ₃ A(IB,Zr) alloy during cold rolling. II. Microstructural and textural changes. Room temperature Falgue and fracture loughness of a Nib-Ti-Cr-Al-X single-phase alloy at ambient temperature. Falgue and fracture toughness of a Nib-Ti-Cr-Al-X single-phase alloy at ambient temperature. Sandwich construction, Mechanical properties Creep expansion of porous Ti-GAl-4V sandwich structures. Scale (corrosion), Alloying effects Formation of pegs during high-temperature oxidation of Fe ₃ Al containing vitrium. Scale (corrosion), Composition effects Elevated temperature oxidation of laser surface engineered composite boride coating on steel. The effect of aliumnium content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects Analysis of secondary oxide-scale failure at entry into the roll age. Scale (corrosion), Welding effects Relevance of high-temperature oxidation in life assessment and microstructural adgradation of Cr-Mo steel weldments. Sea water, Environment Influence of thermal aging on the reactivity of duplex stainless steel surfaces. Segregations A comparative study of the microstructures observed in statically of interdendritic strain and an acrossegregation for dendritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrossegregation for dendritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and acrossegregation for dendritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and acrossegregation for dendritic strain and acrossegr	A study of through-thickness texture gradients in rolled sheets.			2423-2430A
Room temperature Fatigue and fracture toughness of a Nb-Ti-Cr-Al-X single- phase alloy at ambient lemperature. Sandwich construction, Mechanical properties Creep expansion of porous Ti-Ad-AV sandwich structures. Scale (corrosion), Alloying effects Formation of pegs during high-temperature oxidation of Fe ₃ Al containing yttrium. Scale (corrosion), Coating effects Elevated temperature oxidation of laser surface engineered composite boride coating on steel. Scale (corrosion), Coating effects The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects Analysis of secondary oxide-scale failure at entry into the roll agap. Scale (corrosion), Welding effects Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments. Scawater, Environment Influence of thermal aging on the reactivity of duplex stainless steel surfaces. Seggations A comparative study of the microstructures observed in statically cally cast and continuously cast Bi-In-Sn ternary eutectic ally cast and continuously cast Bi-In-Sn ternary enteric cally coating of interdendritic strain and macrossgregation fields in steel ingots. Sudy of microsegregation fields in steel ingots. Sudy of microsegregation buildup during solidification or of pressure and redistribution of gas- forming elements in multicomponent casting alloys. 1075-1084A Shape memory alloys, Phase transformations influence of aging on transformation studies and thermodynamic calculation of the Thi-Alloys in reducing environments at 1070°C. 1805-1817A 1	Changes in order and structure.	3001-3010A	Alloy design of FeMnSiCrNi shape-memory alloys related to	581-584A
Fatigue and fracture toughness of a Nb-Ti-Cr-Al-X single- phase alloy at ambient lemperature. Sandwich construction, Mechanical properties Creep expansion of porous Ti-6Al-4V sandwich structures. Scale (corrosion), Alloying effects Formation of peg during high-temperature oxidation of Fe ₃ Al containing yltrium. Scale (corrosion), Coating effects Elevated temperature oxidation of laser surface engineered composite boride coating on steel. Scale (corrosion), Composition effects The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 70°C. Scale (corrosion), Processing effects Analysis of secondary oxide-scale failure at entry into the roil agap. Scale (corrosion), Welding effects Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments. Sea water, Environment Influence of thermal aging on the reactivity of duplex stainless steel surfaces. Segregations A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-Sn ternary eutectic alloy, Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. It Computation of interdendritic strain and macrosegregation for dendritic solidification processes. It Computation of interdendritic strain and macrosegregation for dendritic schiding alloys. A model for prediction of pressure and redistribution of gas- roring elements in multicomponent casting alloys. On convection in mushy phase and its effect on macrosegregation for dendric solidification processes. It Computation of interden- driting elements in multicomponent casting alloys. On convection in mushy phase and its effect on macrosegregation for dendric solidification processes. It Computation of interden- driting elements in multicomponent casting alloys. On convection in mushy phase and its effect on macrosegregation for dendrical properties. 1883-1894 1885-1874 1885-1874 1885-1874 1885-1874 1885-18874 1885-18874 1885-1887	Microstructural and textural changes.	3011-3021A	Shape memory alloys, Mechanical properties	
Sandwich construction, Mechanical properties Creep expansion of porous IT-6AI-4V sandwich structures. Cale (corrosion), Alloying effects Formation of pegs during high-temperature oxidation of Fe ₃ AI containing yttrium. Elevated temperature oxidation of laser surface engineered composite boride coating on steel. Elevated temperature oxidation of laser surface engineered composite boride coating on steel. Scale (corrosion), Composition effects The effect of aluminum content on the corrosion behavior of Fe-AI alloys in reducing environments at 700°C. Scale (corrosion), Processing effects Analysis of secondary oxide-scale failure at entry into the roll gap. Scale (corrosion), Welding effects Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments. Sea water, Environment Influence of aging on transformation characteristics in shape memory alloys. Powder technology. A correlation of the synthesis of Ti-50 at.% Ni alloys through composite of the synthesis of Ti-50 at.% Ni alloys through composition of microstructure with dynamic deformation behavior and performance of tungsten heavy alloys fabricated by mechanical alloying. Sea water, Environment Influence of aging on transformation characteristics in shape memory alloys. Powder technology. Alloydesign of FeMaSiCrNi shape-memory alloys related to stacking Faulatineragy. Influence of aging on transformation and macrostacturing with eventual to stacking Faulatineragy. Influence of aging on transformation characteristics in shape memory alloys. Powder technology. Alloydesign of FeMaSiCrNi shape-memory alloys. Powder technology. Influence of aging on transformation and macrostacture and stacking Faulatineragy. Influence of aging on transformation and macrostacture on a defensity investigation of the synthesis of Ti-50 at.% Ni alloys. Scale (corrosion), Pomogration of the synthesis of Ti-50 at.% Ni alloys. Correlation of microstructure with dynamic deformation behavior and performance of turnsfor	Fatigue and fracture toughness of a Nb-Ti-Cr-Al-X single-	1075 10044	tic TiNi alloy with comparison to stainless steel 304.	2773-2783A
Creep expansion of porous Ti-6Al-4V sandwich structures. Scale (corrosion), Alloying effects Formation of pegs during high-temperature oxidation of Fe ₃ Al containing yithrum. Scale (corrosion), Coating effects Elevated temperature oxidation of laser surface engineered composite boride coating on steel. Scale (corrosion), Composition effects The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects Analysis of secondary oxide-scale failure at entry into the roll gap. Scale (corrosion), Welding effects Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments. Sea water, Environment Influence of thermal aging on the reactivity of duplex stainless steel surfaces. Segregations A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-5n ternary eutectic alloy. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic strain and segregation for offer officts in steel ingots. Study of microsegregation for dendritic strain and segregation for official from processes. I. Computation of gastoric defect. Study of microsegregation fields in steel ingots. Study of microsegregation for office of microsegregation for office of microsegregation for official graphite cast iron. A model for prediction of pressure and redistribution of gastorming elements in multicomponent casting alloys. The effect of aluminum content on the corrosion behavior of passers and redistribution of gastory and passers and continuously cast Bi-In-5n ternary eutectic alloys of microsegregation for dendritic strain and macrosegregation for dendritic strain and segregation for dendritic strain and segregation fields in steel ingots. Steet metal, Mechanical properties Effect of intermediate annealing on texture evolution and		1075-1084A		
Formation of pegs during high-temperature oxidation of Fe ₃ Al containing ythrium. Scale (corrosion), Coating effects Elevated temperature oxidation of laser surface engineered composite boride coating on steel. Scale (corrosion), Composition effects The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects Analysis of secondary oxide-scale failure at entry into the roll gap. Scale (corrosion), Welding effects Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cir-Mo steel weldments. Sea water, Environment Influence of thermal aging on the reactivity of duplex stainless steel surfaces. Segregations A comparative study of the microstructures observed in staticalloy. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic strain and segregation fields in steel ingots. Study of microsegregation buildup during solidification of gasforming elements in multicomponent casting alloys. On convection in mushy phase and its effect on macrosegregation for one macrosegregation for dendritic strain and water steel ingulation of spheroidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in mushy phase and its effects on macrosegregation for one macrosegregation for one macrosegregation for dendritic strain and water steel ingulation of spheroidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in mushy phase and its effect on macrosegregation for dendritic strain and water steel ingulation of spheroidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicompon		261-273A	memory CuZnAl alloys. Alloy design of FeMnSiCrNi shape-memory alloys related to	
Scale (corrosion), Coating effects	Formation of pegs during high-temperature oxidation of Fe ₃ Al	1685,16874		581-584A 1917-1923A
Elevated temperature oxidation of laser surface engineered composite boride coating on steel. Scale (corrosion), Composition effects The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects Analysis of secondary oxide-scale failure at entry into the roll gap. Scale (corrosion), Welding effects Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments. Sea water, Environment Influence of thermal aging on the reactivity of duplex stainless steel surfaces. Segregations A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-Sn ternary eutectic alloy. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and segregation fields in steel ingots. Study of microsegregation buildup during solidification of spheroidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in mushy phase and its effect on macrosegregation. 461-473A	Scale (corrosion), Coating effects	1000-10074		2423-2430A
Scale (corrosion), Composition effects The effect of aluminum content on the corrosion behavior of Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects Analysis of secondary oxide-scale failure at entry into the roll gap. Scale (corrosion), Welding effects Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments. Sea water, Environment Influence of thermal aging on the reactivity of duplex stainless steel surfaces. Segregations A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-Sn ternary eutectic alloy. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. II. Theory and experiments. Modeling of interdendritic strain and macrosegregation for idendritic strain and segregation fields in steel ingots. Study of microsegregation buildup during solidification of spheroidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in microstructure with dynamic deformation behavior and performance of tungsten heavy alloys fabricated by mechanical alloying. 1483-1490B		461-473A		
Fe-Al alloys in reducing environments at 700°C. Scale (corrosion), Processing effects Analysis of secondary oxide-scale failure at entry into the roll gap. Scale (corrosion), Welding effects Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments. Sea water, Environment Influence of thermal aging on the reactivity of duplex stainless steel surfaces. Segregations A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-Sn ternary eutectic alloy. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. II. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic strain and segregation fields in steel ingots. Study of microstructure with dynamic deformation behavior and performance of tungsten heavy alloys [475-2489A] 3101-3108A 3101-3108A 3101-3108A 2015-2024A 239-248A 239-248A 331-343B 348-3458B Study of microsegregation for idendendritic strain and segregation for idendritic strain and segregation for idendritic strain and segregation fields in steel ingots. Study of microsegregation buildup during solidification of spheromaco of tungsten heavy alloys [475-2489A] 3101-3108A 3101-3108A 3101-3108A 2015-2024A 239-248A 239-248A 331-343B 331-343B 345-355B Study of microsegregation buildup during solidification of spheromaco of tungsten heavy alloys [475-485A] 475-485A 475-485A 475-485A 475-485A 475-485A 475-485A 579-690A 58et metal, Metal working Strength and formability of ultra-low-carbon Ti-IF steels. Sheet metal, Texture A study of through-thickness texture gradients in rolled sheets. Shot peening Microstructure and formability of ZnNi alloy electrodeposited sheet steel. Dynamic reactive wetting and its role in hot dip coating of texture evolution and plastic anisotropy in an Al-Mg autobody alloy. Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Sheet metal, Texture A study of thro	Scale (corrosion), Composition effects The effect of aluminum content on the corrosion behavior of		combustion synthesis and conventional powder sintering.	1867-1871A
Analysis of secondary oxide-scale failure at entry into the roll gap. Scale (corrosion), Welding effects Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments. Sea water, Environment Influence of themal aging on the reactivity of duplex stainless steel surfaces. A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-Sn ternary eutectic alloy. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic strain and segregation for interdendritic strain and macrosegregation for dendritic strain and segregation for dendritic strain and segregation for dendritic strain and segregation for interdendritic strain and macrosegregation for dendritic strain and segregation for dendritic strain and	Fe-Al alloys in reducing environments at 700°C.	1805-1817A	Correlation of microstructure with dynamic deformation behav-	
Scale (corrosion), Welding effects Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments. Sea water, Environment Influence of thermal aging on the reactivity of duplex stainless steel surfaces. Segregations A comparative study of the microstructures observed in statically cast and continuously cast Bi-in-Sn ternary eutectic alloy. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. II. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic strain and macrosegregation for dendritic strain and macrosegregation for dendritic strain and segregation fields in steel ingots. Study of microsegregation buildup during solidification of spheroidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in macrosegre- 1483-1490B Microstructure and formability of ZnNi alloy electrodeposited sheet steel. Dynamic reactive wetting and its role in hot dip coating of steel sheet with an Al-Zn-Si alloy. Sheet metal, Coating Microstructure and formability of ZnNi alloy electrodeposited sheet steel. Dynamic reactive wetting and its role in hot dip coating of steel sheet with an Al-Zn-Si alloy. Sheet metal, Mechanical properties Effect of intermediate annealing on texture evolution and plastic anisotropy in an Al-Mg autobody alloy. Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Strain-localization in sheet metal containing a geometric defect. Dynamic materials testing, texture, and yield-surface calculation of an automotive sheet steel. Sheet metal, Coating Microstructure and formability of ZnNi alloy electrodeposited sheet with an Al-Zn-Si alloy. Sheet metal, Mechanical properties Effect of intermediate annealing on texture evolution and plastic anisotropy in an Al-Mg autobody alloy. Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Strain-localization	Analysis of secondary oxide-scale failure at entry into the roll			2475-2489A
Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments. Sea water, Environment Influence of thermal aging on the reactivity of duplex stainless steel surfaces. Segregations A comparative study of the microstructures observed in statically, which is alloy. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. II. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic strain and segregation fields in steel ingots. Study of microsegregation buildup during solidification of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in mushy phase and its effect on macrosegre- 3101-3108A 3101-3		1483-1490B	Sheet metal, Coating	
Sea water, Environment Influence of thermal aging on the reactivity of duplex stainless steel surfaces. Segregations A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-Sn ternary eutecticalloy. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. I. Computation of interdendritic strain and segregation fields in steel ingots. Study of microsegregation buildup during solidification of spheroidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in mushy phase and its effect on macrosegre- Sheet metal, Mechanical properties Stefect of intermediate annealing on texture evolution and plastic anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Strain-localization in sheet metal containing a geometric defect. Dynamic materials testing, texture, and yield-surface calculation of an automotive sheet steel. Sheet metal, Mechanical properties Strength and Iran-Si alloy. Sheet metal, Mechanical properties Stret of intermediate annealing on texture evolution and plastic anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Strain-localization in sheet metal containing a geometric defect. Dynamic materials testing, texture, and yield-surface calculation of an automotive sheet steel. Sheet metal, Mechanical properties Strain-localization in sheet metal containing a geometric defect. Dynamic materials testing, texture, and yield-surface calculation of an automotive sheet steel. Sheet metal, Mechanical properties Strain-localization in sheet metal containing a geometric defect. Dynamic materials testing, texture, and yield-surface calculation of an automotive she	Relevance of high-temperature oxidation in life assessment	3101-3108A	sheet steel.	475-485A
Segregations A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-Sn ternary eutectic alloy. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and segregation for ideal of its test in gath segregation for ideal of its test in gath segregation for ideal of its electing its strain and segregation for ideal of its electing its strain and segregation for ideal of its electing its strain and processes. II. Computation of interdendritic strain and segregation for ideal of its electing its strain and segregation for ideal of its electing its strain and segregation for ideal of its electing its strain and segregation for ideal of its electing its strain and segregation for ideal of its electing its strain and processes. II. Computation of interdendritic strain and segregation for ideal of its electing its strain and segregation for ideal of its electing its strain and segregation for ideal of its electing its strain and segregation for ideal of its electing its strain and segregation for ideal of its electing its strain and macrosegregation for dendritic strain and segregation for ideal of its electing its strain and anatorosegregation for dendritic strain and segregation for ideal of its electing its strain-localization in sheet metal containing a geometric defect. Dynamic materials testing, texture, and yield-surface calculation of an automotive sheet steel. Sheet metal, Texture A study of through-thickness texture gradients in rolled sheets. Shot peening Macroscopic and microscopic evolutions of a shot-peened layer during isothermal recovery.	Sea water, Environment		sheet with an Al-Zn-Si alloy.	1069-1079B
A comparative study of the microstructures observed in statically cast and continuously cast Bi-in-Sn ternary eutecticalloy. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and macrosegregation for dendritic strain and segregation for dendritic strain and segregation fields in steel ingots. Study of microsegregation buildup during solidification of spheroidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in macrosegreal and redistribution of spheroidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in macrosegreal and rupture of hydrided Zircaloy-4 sheets. Strain-localization in sheet metal containing a geometric defect. Dynamic materials testing, texture, and yield-surface calculation of an automotive sheet steel. Sheet metal, Metal working Strength and formability of ultra-low-carbon Ti-IF steels. Sheet metal, Texture A study of through-thickness texture gradients in rolled sheets. Shot peening Macroscopic and microscopic evolutions of a shot-peened layer during isothermal recovery.		2015-2024A	Effect of intermediate annealng on texture evolution and plastic	
cally cast and continuously cast Bi-In-Sn ternary eutectic alloy. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and segregation for dendritic strain and segregation for dendritic strain and segregation for dendritic strain and segregation fields in steel ingots. Study of microsegregation buildup during solidification of spheroidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in maker metal containing a geometric defect. Dynamic materials testing, texture, and yield-surface calculation of an automotive sheet steel. Sheet metal, Metal working Strength and formability of ultra-low-carbon Ti-IF steels. Sheet metal, Texture A study of through-thickness texture gradients in rolled sheets. Shot peening Macroscopic and microscopic evolutions of a shot-peened layer during isothermal recovery. 239-248A 2439-2448A Strain-localization in sheet metal containing a geometric defect. Dynamic materials testing, texture, and yield-surface calculation of an automotive sheet steel. Sheet metal, Texture A study of through-thickness texture gradients in rolled sheets. Shot peening Macroscopic and microscopic evolutions of a shot-peened layer during isothermal recovery.			Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets.	99-107A 679-690A
Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and segregation for ideal macrosegregation for dendritic strain and segregation for ideal macrosegregation for dendritic strain and segregation for ideal macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and macrosegregation for dendritic solidification of an automotive sheet steel. Sheet metal, Metal working Strength and formability of ultra-low-carbon Ti-IF steels. Sheet metal, Texture A study of through-thickness texture gradients in rolled sheets. Shot peening Macrosegregation buildup during solidification of a shot-peened layer during isothermal recovery.	cally cast and continuously cast Bi-In-Sn ternary eutectic	239-248A	Strain-localization in sheet metal containing a geometric defect.	1883-1886A
Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic strain and segregation for ideals in steel ingots. Study of microsegregation buildup during solidification of spheroidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in mushy phase and its effect on macrosegre-	Modeling of interdendritic strain and macrosegregation for den-			2439-2448A
dritic strain and segregation fields in steel ingots. Study of microsegregation buildup during solidification of spheroidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in mushy phase and its effect on macrosegre-	Modeling of interdendritic strain and macrosegregation for den-		Sheet metal, Metal working Strength and formability of ultra-low-carbon Ti-IF steels	1305-1307△
roidal graphite cast iron. A model for prediction of pressure and redistribution of gasforming elements in multicomponent casting alloys. On convection in mushy phase and its effect on macrosegre-	dritic strain and segregation fields in steel ingots.		Sheet metal, Texture	
forming elements in multicomponent casting alloys. 1283-1292B Macroscopic and microscopic evolutions of a shot-peened layer during isothermal recovery. 213-224A	roidal graphite cast iron.	827-836B	Shot peening	2299-2315A
	forming elements in multicomponent casting alloys.	1283-1292B	Macroscopic and microscopic evolutions of a shot-peened	213-224A
		1687-1692A		

Crystallorgambic defials of precipitates in Fe-220-22 Nie-80h- Machanical properties, microatructural stability and kinetics of ophase thermation in 200-04-04-06. 30R superpluptax 35-45A Silicates, Composite materials Effect of ablora particles on the coefficient of thermal expansion 1820-04-04-06. 30R superpluptax 35-45A Silicates, Composite materials Effect of abloration of the residual of the rate of transformation and composite systems. 35-45A Silicates, Physical properties Calcador of thermal expansion 1820-04-05 of the rate of transformation and composite systems. 35-45A Silicates, Physical properties of transformation of tr	Enhanced densification of cavitated dispersion-strengthened aluminum by thermal cycling. Sigma phase, Alloying effects	2647-2657A	Silicon dioxide, Composite materials Thermal activation of fatigue damage. Characterization of Mo-SiO ₂ functionally graded materials.	63-69A 299-308A
Mechanical properties. Incoratuctural stability and kinetics of ophase formation in 20C-6-1946. 2618 larget years. Silicates, Composite materials Effect of albity particles on the coefficient of thermal expansion barbors. Composite substances of the ABORS 1 along composites. Schlankor of the ABORS 1 along composites. Schlanko	Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo- (N) superaustenitic stainless steels aged at 900°C.	1713-1723A	Microscale simulation of settler processes in copper matte	439-451B
splace formation is 28C-646-24Mo-0.38M superduptive. splittedate, Compositie materials Effect of abits particles on the coefficient of thermal expansion behavior of the Albot alloy composites. Silicates, Proposition materials Effect of abits particles on the coefficient of thermal expansion behavior of a law material and experimental and experimental abits of the the composition of the Albot alloy composites. Silicates, Proposition and stream of the Albot alloy for multicomponent silicates from existation energies for viscous flow. Silicates, Temporary properties The initial modification and impact properties of the North-Signal interfacial modification and material properties of the Albot and split and the composition materials composition. Interfacial modification and material properties of the Albot and split and the composition of the split and	Sigma phase, Crystal growth Mechanical properties, microstructural stability and kinetics of			405-4515
Effect of albits particles on the coefficient of thermal expansion behavior of in ABObb allay composites. Silicates, Physical properties excess Clibbs energy of mismal. 105-1098 111-1198 Silicates, Transport properties The inner properties of CaSO ₂ mismal composition of the composition of th	 σ-phase formation in 29Cr-6Ni-2Mo-0.38N superduplex stainless steel. 	35-45A	A numerical and experimental study of the rate of transforma- tion in three directionally grown peritectic systems.	29-34A
Silicates, Physical properties Estimation of viscosities of themary silicate melts using the Estimation of liquidus importantures for multicomponent silicate from activation energies for viscosities of the many silicates and the state of	Silicates, Composite materials Effect of albite particles on the coefficient of thermal expansion			291-298A
Estimation of viscosities of ternary silicate mells using the excess Gibbs energy of music prover multicomponent silicates from activation energies for viscosite flow. In the component of the composition of the compositio		773-780A		
Estimation of laugusts temperatures for municomponent all- Silicides, Composite materials The ionic properties of CaSiO ₂ melt. 111-1198 Plassis harations in reactive formation of T ₂ Si ₂ /TAI in situ- risefficial modification and impact properties of NbMoSi ₂ iam- instend composites by the addition of Zo ₂ , NbOs ₂ , and Si ₂ par- instend composites by the addition of Zo ₂ , NbOs ₂ , and Si ₂ par- instend composites by the addition of Zo ₂ , NbOs ₂ , and Si ₂ par- instend composites by the addition of Zo ₂ , NbOs ₂ , and Si ₂ par- instend composites by the addition of Zo ₂ , NbOs ₂ , and Si ₂ par- instend composites by the addition of Zo ₂ , NbOs ₂ , and Si ₂ par- instend composites by the addition of Zo ₂ , NbOs ₂ , and Si ₂ par- instend composites by the addition of Zo ₂ , NbOs ₂ , and Si ₂ par- instend composites by the addition of Zo ₂ both of the composite composites by the addition of Zo ₂ both of Zo ₂ by the Zo ₂ continued and Zo ₂ con	Estimation of viscosities of temary silicate melts using the excess Gibbs energy of mixing.	105-109B	Silver base alloys, Electrical properties	1155-1162A
Silicides, Composite materials Phase transferois or reactive formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation of Tig.Siy-Thal in situ Prises transferois or the cache formation or the mised convection formation of the prises of Tig.Siy-Thal in situ Prises transferois or the cache formation or the dissolution rate A comparison study of microstructure and mechanical properties of Tig.Siy-Thal in situ Prises transferois study of microstructure with the prises of Tig.Siy-Thal in situ Prises transferois study of microstructure with dissolution or the microscopy of the prises of Tig.Siy-Thal in situ Prises transferois or the prises of Tig.Siy-Thal in situ Prises transferois or the prises of Tig.Siy-Thal in situ Prises transferois or the prises of Tig.Siy-Thal in situ Prises transferois or the prises of Tig.Siy-Thal in situ Prises transferois or the prises of Tig.Siy-Thal in situ Prises transferois or the prises of Tig.Siy-Thal in situ Prises transferois or the prises of Tig.Siy-Thal in situ Prises transferois or the prises of Tig.Siy-Thal in situ Prises transferois or the prises of Tig		111-119B	sion-high conductivity Cu-Mo and Ag-Mo composites.	2396-2398A
Silicides, Composite materials Phase transitions in reactive formation of Ti ₂ Si ₃ TiAl in silu composites. A composite materials Silicides, Powder technology Modeling the reaction synthesis of a hock-densitied titanium-sil- solution of Mosi ₃ —TiS ₃ peaudobinary alloys by reactive sin- tening. Silicides, Powder technology Modeling the reaction synthesis of a hock-densitied titanium-sil- Silicides, Powder technology Modeling the reaction synthesis of a hock-densitied titanium-sil- Synthesis of Mosi ₃ —TiS ₃ peaudobinary alloys by reactive sin- tening. Silicides, Powder technology Modeling the reaction synthesis of a hock-densitied titanium-sil- Synthesis of Mosi ₃ —TiS ₃ peaudobinary alloys the reactive sin- tening. Silicides, Powder technology Modeling the reaction synthesis of a hock-densitied titanium-sil- Synthesis of Mosi ₃ —TiS ₃ peaudobinary alloys the reactive sin- tening. Silicides, Powder technology Modeling the reaction synthesis of a hock-densitied titanium-sil- Synthesis of Mosi ₃ —TiS ₃ peaudobinary alloys the reactive sin- tening. Silicides, Powder technology Modeling the reaction synthesis of a hock-densitied titanium-sil- Synthesis of Mosi ₃ —TiS ₃ peaudobinary alloys the section of the reaction of the silicides of the silicide of the silicides of	Silicates, Transport properties		Two-fluid simulation on the mixed convection flow pattern in a	067 07EB
Phase transitions in reactive formation of 1,55/1/kil in situ historical and modification and impact properties of NiMoSic jaminate composites by the addition of 2/G ₂ , NSS ₂ , and SiC particles. 207-2081A Silicon, Project restancing in the reaction synthesis of shock-densitied titianium-all-loon powder mixture composites. Synthesis of MoSig-TiSp, pleudobinary alloys by reactive sillocon, playing additive. Effects of aluminum, silicon, and borron on the dissolution rate of nitrogen into molen iron. Effects of aluminum, silicon, and borron on the dissolution rate of nitrogen into molen iron. The role of solution in processes in AF-Cu-Mg alloys microalloyde with The role of solution in processes in AF-Cu-Mg alloys microalloyde with The role of solution in grain retinement of magnesium. Silicon, Project gelements Alloy design of FeMrSiCNN shape-memory alloys related to stacking-late nergy. Silicon, Project properties. Silicon, Project pr				867-875B
Inidification and impact properties of NbMoSis, laminate composites by the addition of 27cg, NbSis, and Sic parinate composites by the addition of 27cg, NbSis, and Sic parinate composites. Similar composites by the addition of 27cg, NbSis, and Sic parinate composites by the addition of 27cg, NbSis, and Sic parinate composites. Similar composites by the addition of 27cg, NbSis, and Sic parinate composites. Similar composites by the addition of 27cg, NbSis, and Sic parinate composites. Similar composites of the 27cg, NbSis, and Sic parinate composites. Similar composites by the addition of 27cg, NbSis, and Sic parinates of 17cg, NbSis, and Sic pa		763-771A	Morphological stability of Sm123 superconductor during peri-	444 4400
Silicides, Powder technology Modeling the reaction synthesis of shock-densitied itanium-sil- clon powder machine compade. 307-308 Modeling the reaction synthesis of shock-densitied itanium-sil- clon powder machine compade. 307-3168 T47-753A Silicon, Alloying additive Effects of aluminum, elicon, and borno on the dissolution rate of infragen into motion incompate and mechanical proper- ties of 17-2AA1-14bp-3V-0-5Mo with and without Si. Prespitation processes in AC-uMg alloys microalloyed with The role of solute in grain refinement of magnesium. Silicon, Alloying elements Alloy design of FeMnSiCnVi shape-memory alloys related to stacking-lade mergy. Cresp deformation of Tita-Si alloys with aligned y/o ₂ lamellar 2483-2473A Silicon, Reactions (chemical) AC-Wisk jaystim. Silicon, Reactions (chemical) Sil	Interfacial modification and impact properties of Nb/MoSi ₂ lam-	700 77 77		141-149B
Silicon, Alloying additive Ellects of aluminum, alicon, and boron on the dissolution rate of images into modeling or the single-crystal superalloy (AllSX-A) (All Syr-Bay) peautobinary alloys by reactive sintering. Which significant is a significant to the significant is a significant in modeling of the single-crystal superalloy (AllSX-A) (All-SX-B-A) (A		2075-2081A	Fatigue crack path prediction in Udimet 720 nickel-based alloy	100 1001
Mobeling the feaction synthesis of snock-derisited transfursh. Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive singular transfers. Which is a singular transfer of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive singular transfers. Silicon, Alloying additive Effects of aluminum, silicon and boron on the dissolution rate A comparison study of microstructure and mechanical properties of Ti-2AA1-14kb-3V-0.5Mo with and without Si. Precipitation processes in At-Cu-Myga large microstructures. Silicon, Microgal elements Alloy design of FaMhSiCrihi shape-memory alloys related to alacking-quild energy. 221-273A 2885-290A 288	Silicides, Powder technology			109-123A
Sylicon, Alloying elements Alloy design of PoMSi2-risk and solution rate Elected solution into additive Acomparison study of microstructure and mechanical properties of Ta-Adi-14h3-9-34 Osh dwy than divibus is. Precipitation processes in Al-Cu-Mg alloys microalloyed with The role of objects and particle sin international properties of highly densified encongration of Ta-Sol at % Na laloys through Silicon, Alloying elements Alloy design of FeMSi2-risk is alloys with aligned γα₂ lamelar microstructures. Silicon, Physical properties Equilibrium whaps of a molten silicon drop in an electromag- netic levitator in microgravity environment. Electification (Femical) Activity of calcium in ditule liquid Si-Ca alloy. Silicon, Physical properties Equilibrium whaps of a molten silicon drop in an electromag- netic levitator in microgravity environment. Electification (Femical) Activity of calcium in ditule liquid Si-Ca alloy. Silicon, Physical properties Silicon, Physical properties Silicon, Physical properties Silicon, Silicon (Femical) Electrication (Femical) Activity of calcium in ditule liquid Si-Ca alloy. Silicon, Physical properties Silicon, Silicon (Femical) Activity of calcium in ditule liquid Si-Ca alloy. Silicon, Physical properties Silicon, Silicon (Femical) Activity of calcium in facility of both series and solution shall melling of ittanium aluminum alloys. Silicon, Carbide, Composite materials Oblimation of material shalloy in molten incomposities. Physical properties Silicon (Femical) Silicon (Femical) Activity of calcium in diversity of the single-indical and shallow in a continuous casting process Silicon (Femical) Silicon (Femical) Silicon (Femical) Activity of calcium in facility of both series of both on- silicon (Femical) Activity of calcium in the silicon of the silicon on the series of the silicon of		307-316B	CMSX-4.	1401-1411A
Silicon. Alloying additive Effects of aluminum, silicon, and boron on the dissolution rate of introgen into molten iron. A comparison study of microstructure and mechanical properties of 17-22A-1-14Ab-3-V-2-OsMo with and without Si. The role of solute in grain refinement of magnesium. 205-2217A. The role of solute in grain refinement of magnesium. Silicon, Alloying elements Alloy design of FeMRSC/Hi shape-memory alloys related to stacking-fault energy. Silicon, Proparation of the state of	Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sin-			2219-2220A
Effects of aluminum, silicon, and borno on the dissolution rate of introgen into motion motusture and mechanical properties of Th24Ah-14Mb-3V-0.5Mo with and without St. Precipitation processes in AC-ZC-2 alloy processes aby mechanical slowing properties of Th24Ah-14Mb-3V-0.5Mo with and without St. Precipitation processes in AC-ZC-2 alloy processes aby mechanical slowing. St. Precipitation processes in AC-ZC-2 alloy processes aby mechanical slowing. St. Precipitation processes in AC-ZC-2 alloy processes aby mechanical slowing. St. Precipitation processes in AC-ZC-2 alloy processes aby mechanical slowing. Properties of thighly densified transcriptation of the alumina powders. An investigation of the synthesis of T-50 at % Ni alloys through combustion synthesis and convertinosis provided in the state of the processing properties of the advanced of the alumination of th		747-753A	Sintering behavior of nanocrystalline γ-Ni-Fe powders.	503-510A
alloying alloying common to the monostructure and mechanical properties of Th 24Ah 14 Mb 340 co. Mod with and without Si. Precipitation processes in AF-Cu-Mg alloys microalloyed with Si. Silicon, Alloying elements Silicon, Price elemental or in the function of the element of the alloying composite by moderal elements of the fungition of the alloying composite by moderal elements of the fungition of the elements of the	Effects of aluminum, silicon, and boron on the dissolution rate		The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical	
ties of Ti-24Ai-14kb-34V-350 with and without St. Precipitation processes in ArcL-Widg alloys microalloyed with The role of solute in grain retinement of magnesium. 2295-2906A Silicon, Alloying elements Silicon of FeMhSiCNI) shape-memory alloys related to stacking-fault energy. Creep deformation of TiAl-St alloys with aligned y(o ₂ lamellar microstructures. Silicon, Physical properties Equaliforum shape of a molten silicon drop in an electromagnetic levitation in microgravity environment. Silicon, Surface properties Equaliforum shape of a molten silicon drop in an electromagnetic levitation in microgravity environment. Silicon, Surface properties Surface tension of molten silicon measured by the electromagnetic levitation method under microgravity. Silicon, Furray systems Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system. Silicon carbide, Composite materials On the militation behavior of Al, Al-Li, and Mg melts through Particulate penetration into solid droplets. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Opinimum parameters for wetting silicon carbide by aluminum alloy composite. In Modeling of the Cr-Ni-Si system. Effect of volume fraction of SiC ₀ reinforcement on the processing maps for 2124 Al matrix composites. Deformation and fracture of a particle-reinforced aluminum alloy composite. It is proposite is a silicon of the system of the silicon of method in the silicon of silicon of method in the silicon of silicon of method in the silicon of silicon of method in the s	of nitrogen into molten iron. A comparison study of microstructure and mechanical proper-	899-904B	alloying.	715-721A
The role of solute in grain referement of magnesium. Silicon, Alloying elements Alloy design of FeMnSiCnVI shape-memory alloys related to stacking-fault energy. Creep deformation of Th4-Si alloys with aligned γ/α₂ lamellar microstructures. Silicon, Project peoptries Silicon, Project peoptries Silicon, Project peoptries Silicon, Project projecting Silicon, Silicon in dilute liquid St-Ca alloy. Silicon, Project projecting Silicon from microgravity environment. Silicon from microgravity environment. Silicon, Project projecting Silicon from microgravity environment. 1795-1803A 1795-1	ties of Ti-24Al-14Nb-3V-0.5Mo with and without Si.	2205-2217A		1017-1024A
The role of solutie in grain refinement of magnesium. 2895-2906A Silicon, Alloying elements Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy. Creep deformation of TiAl-Si alloys with aligned y/α ₂ lamellar 2463-2473A 2463-2473A 2463-2473A 2463-2473A 2463-2473A 2581-2584 2685-2473A 2581-2584 2581-25		2721-2733A	Improved densification of carbonyl iron compacts by the addi-	1645-1652A
Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy. Creep deformation of TIAl-SI alloys with aligned $\sqrt{a_c}$ lamellar microstructures. 581icon, Physical properties Equilibrium shape of a molten silicon drop in an electromagnetic levitator in microgravity environment. 581icon, Physical properties Silicon, Physical properties Silicon in microgravity environment. 581icon, Physical properties Silicon in diule liquid Si-Ca alloy. 581icon, Survaçor properties Silicon in diule liquid Si-Ca alloy. 581icon, Survaçor properties Silicon in diule liquid Si-Ca alloy. 581icon, Survaçor properties Silicon method under microgravity. 585-1589A Silicon survay systems Si			An investigation of the synthesis of Ti-50 at.% Ni alloys through	
Salacking-fault energy. Creep deformation of TIAI-Si alloys with aligned y/az lamellar microstructures. 2483-2473A 2483-			combustion synthesis and conventional powder sintering. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally	1867-1871A
Silicon, Paysical properties Equilibrium shape of a molten silicon drop in an electromagnetic levitator in microgravity environment. Silicon, Reactions (chemical) Activity of calcium in individe liquid Si-Ca alloy. Silicon, Surface properties Surface tension of molten silicon measured by the electromagnetic levitation method under microgravity. Silicon, Terrary systems Experimental investigation and thermodynamic modeling of the CrNi-Si system. Silicon carbide, Composite materials On the infiltration behavior of Al, Al-L, and Mg melts through SiC _D bed. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Opimum parameters for wetting silicon carbide by aluminum alloys. Effect of olume fraction of SiC _p reinforcement on the high-cycle fatigue resistance of particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced MiAl. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced mixed microstructure on the high-cycle fatigue resistance of particle reinforced mixed microstructure and properties of in situ Al/TiB ₂ composite fabricated by in-melt reaction embod. Interfacial modification and impact properties of in situ Al/TiB ₂ composite fabricated by in-melt reaction method. Interfacial modification and impact properties of thickney. Effect of particle size distribution between head and the modification and impact properties of the inclusions of the mixed and the modification and impact properties of the inclusions of the mixed and the modification and impact of particle synthesized using a fine partial pressures of SO ₂ . Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC partic	stacking-fault energy.	581-584A	graded material.	2369-2376A
Silicon, Physical properties Equilibrium shape of a molten silicon drop in an electromagnetic levitator in microgravity environment. Silicon, Reactions (chemical) Activity of calcium in dilute liquid Si-Ca alloy. Silicon, Ternary systems Surface properties Surface tension of molten silicon measured by the electromagnetic levitation method under microgravity. Silicon, Ternary systems Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system. Silicon arbide, Composite materials On the infiltration behavior of Al, Al-Li, and Mg melts through SiC _p bendertation into solid droplets. The effect of matrix microstructure on the tensile and fatigue behavior of SiC _p reinforcement on the processing maps for 2124 Al matrix composites. Sifect of volume fraction of SiC _q reinforcement on the processing maps for 2124 Al matrix composites. Sign pages for 2124 Al matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Mechanisms, models and sim		2463-2473A		
Silicon, Reactions (chemical) Activity of calcium in dilute liquid Si-Ca alloy. Silicon, Startage properties Silicon, Ternary systems Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system. Silicon and the silicon measured by the electromagnetic levitation method under microgravity. Silicon, Ternary systems Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system. Silicon activity of calcium in dilute liquid Si-Ca alloy. Silicon activity of calcium in dilute liquid silicon carbon to method under microgravity. Silicon activity of calcium in dilute liquid dilute method under microgravity. Silicon activity of calcium in dilute liquid dilute minimum alloys. Silicon activity of calcium in dilute liquid dilute minimum alloys composite. Particulate penetration into solid droplets. Silicon activity of method under microgravity. Silicon a			fabricated by mechanical alloying.	2475-2489A
Activity of calcium in dilute figuid Si-Ca alloy. Silicon, Surface properties Surface tension of molten silicon measured by the electromagnetic levitation method under microgravity. Silicon, Ternary systems Experimental investigation and thermodynamic modeling of the Cr-N-Si system. Silicon carbide, Composite materials On the infilitration behavior of Al, Al-Li, and Mg melts through Sich Debason and Station and Internotive tree in the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Optimum parameters for wetting silicon carbide by aluminum alloys. Effect of volume fraction of SiC, reinforcement on the processing maps for 2124 Al matrix composites. Deformation and fracture of a particle-reinforced aluminum alloy composite. L'experiments. Deformation and fracture of a particle-reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites by the electromagnetic state of particle reinforced aluminum and properties of in situ Al/TiB ₂ composite fabricated by in-melt reaction method. Interfacial modification and impact properties of hish-vol- Effect of particle-size distribution on the properties of hish-vol- Effect of particle-size distribution on the properties of hish-vol- East transport of a particle reinforced size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Enter the properties of the particle reinforced size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Enter the properties of the properties of the particle reinforced NiAl. Enter the properties of the properties of the properties of the particle reinforced NiAl. Enter the properties of th	netic levitator in microgravity environment.	327-329B	Sintering (powder metallurgy), Alloying effects	2981-3000A
Sulface tension of molten silicon measured by the electromagnetic levitation method under microgravity. Silicon, Ternary systems Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system. Silicon carbide, Composite materials On the infiliration behavior of Al, Al-Li, and Mg metts through Silicon carbide, Composite materials On the infiliration behavior of Al, Al-Li, and Mg metts through Silicon carbide, Composite and the state of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Optimum parameters for wetting silicon carbide by aluminum alloys. Effect of volume fraction of SiC _p reinforcement on the stating and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiP ₂ composite fabricated by in-met reaction method. Interfacial modification and impact properties of high-vol-leftanium metal-matrix composites under transverse loading. Effect of particle size and volume fraction and impact properties of high-vol-leftanium metal-matrix composites under transverse loading. 1795-1803A 1795-1803A 1795-1803A 1795-1803A 1795-1803A 1795-1803A 1795-1803A 1816-2asting Argon solubility in molten iron. Modeling of molten metal flow in effects of airog age singlection and static magnetic-field application. Slab casting; Field effects The effect of a uniform direct current magnetic field on the stability of a uniform direct curr		1267-1272B		1497-1506A
Silicon, Ternary systems Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system. Silicon carbide, Composite materials On the infiliration behavior of Ai, Ai-Li, and Mg melts through SiC, bed. Particulate penetration into solid droplets. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Optimum parameters for wetting silicon carbide by aluminum alloys. Effect of volume fraction of SiC, peinforcement on the processing maps for 2124 Al matrix composites. Exture and residual strain in two SiC/Ti-6-2-4-2 titanium composites. Exture and residual strain in two SiC/Ti-6-2-4-2 titanium composites. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Modeling. The inferactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on carbide, Composite synthesis of SiC, particle reinforced NiAl. Characteristics of Mg-Dased composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of isitu Al/TiB ₂ composite synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of isitu Al/TiB ₂ composite synthesis of SiC, particle reinforced NiAl. Characteristics of Mg-Dased composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of nixil Al/TiB ₂ composite synthesic of Cap-Rio-SiO ₂ -Al ₂ O ₃ -SiO ₂ -Al ₂ O ₃ -S	Surface tension of molten silicon measured by the electromag-	1585-1589A	Evaporation behavior of aluminum during the cold crucible	837-844B
Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system. 1795-1803A Silicon carbide, Composite materials On the infiltration behavior of Al, Al-Li, and Mg melts through SiC, bed. Particulate penetration into solid droplets. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Optimum parameters for wetting silicon carbide by aluminum alloys. Effect of volume fraction of SiC _p reinforcement on the processing maps for 2124 Al matrix composites. Effect of volume fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Experiments. Deformation and fracture of a particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites es synthesized using a novel mechanical disintegration and deposition technique. Microsalculure and properties of In SiLu AlTiBs, composite fabrinate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particle reinforced MiAl. Characteristics of Mg-based composites es synthesized using a novel mechanical disintegration and deposition technique. Microsalculure and properties of In SiLu AlTiBs, composite fabrinate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particle reinforced MiAl. Characteristics of Mg-based composites es synthesized using a novel mechanical distingeration and deposition technique. Microsalculure and properties of No NiMoSi ₂ and SiC particle reinforced Mialium metal-matrix composites under transverse loading. Effect of particle-size distribution on the properties of high-voletical application. 2191-936A 2291-936A 2319-325A 3379-326A 2319-325A 349-325A 349-325A 349-325A 349-325A 349-325A 349-3		1000 1000/1		
On the infiltration behavior of Al, Ai-Li, and Mg melts through SiC ₂ bed. Particulate penetration into solid droplets. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Optimum parameters for wetting silicon carbide by aluminum alloys. Effect of volume fraction of SiC ₂ reinforcement on the processing maps for 2124 Al matrix composites. Effect of volume fraction of SiC ₂ reinforcement on the processing maps for 2124 Al matrix composites. Effect of volume fraction of SiC ₂ reinforcement on the processing maps for 2124 Al matrix composites. Effect of volume fraction of SiC ₂ reinforcement on the processing maps for 2124 Al matrix composites. Effect of volume fracture of a particle-reinforced aluminum alloy composite. Il. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. Il. Modeling. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced AliAl. Characteristics of Mey based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiEg composite fabricated by in-melt reaction method. Interfacial modification and impact properties of in situ Al/TiEg composite fabricated by in-melt reaction method. Interfacial modification and impact properties of in situ Al/TiEg composite fabricated by in-melt reaction method. Interfacial modification and impact properties of not properties of the in-situ monitoring of side control and impact properties of in situ Al/TiEg composite fabricated by in-melt reaction method. Interfacial modification and impact properties of hiph-yol- Faltique crack gr	Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system.	1795-1803A	Modeling of molten metal flow in a continuous casting process	216-218B
Particulate penetration into solid droplets. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composities. Optimum parameters for wetting silicon carbide by aluminum alloys composite of 2124 Al matrix composites. Effect of volume fraction of SiC _p reinforcement on the processing maps for 2124 Al matrix composites. Petrure and residual strain in two SiC/Ti-62-42-t titanium composites. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Modeling. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TIEp composite fabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi ₂ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles. Fatigue crack growth resistance of uniquidus temperatures for mutation and regression of the system candidation of the system of ticles at 1646K. Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing. Estimation of viscosities of ternary silicate melts using the viscos of NegO-SiO ₂ melt containing spinel particles at 1646K. Estimation of viscosities of ternary silicate melts using the viscos of NegO-SiO ₂ melt containing spinel particles at 1646K. Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing. Estimation of requision of the system CaO-Al ₂ O ₃ -ZrO ₂ . Slags, Reactions			netic-field application.	1491-1503B
The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Optimum parameters for wetting silicon carbide by aluminum alloys. Effect of volume fraction of SiC _p reinforcement on the processing maps for 2124 Al matrix composites. Texture and residual strain in two SiC/Tri-6-2-4-2 titanium composites. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. I. Modeling. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fibe consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composities synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of Nb/MoSi ₂ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles. Fatigue crack growth and tracture of a particle-reinforced aluminum alloy composites. Stags, Crystal growth The effect of water vapor on mold slag crystallization. Stags, Physical properties 921-936A 922-936A 923-936A 923-936A 924-936A 925-936A 926-936A 926-9	SiC _p bed.			
ites. Optimum parameters for wetting silicon carbide by aluminum alloys. Effect of volume fraction of SiC _p reinforcement on the processing maps for 2124 Al matrix composites. Texture and residual strain in two SiC71-6-2-4-2 titanium composites. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Modeling. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of volume fraction of SiC _p reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Modeling. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of volume fraction of SiC _p reinforced aluminum alloy composite. I. Experiments. Depth of oscillation marks forming in continuous casting of sitel. Slags, Crystal growth The effect of water vapor on mold slag crystallization. Slags, Physical properties Viscosity of a CaO-MgO-Al ₂ O ₃ -SiO ₂ melt containing spinel particles at 1646K. Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing. Estimation of liquidus temperatures for multicomponent silicates from activation energies for viscous flow. 1271-1282A 1295-1304A 1295-13	The effect of matrix microstructure on the tensile and fatigue	007 0007		317-326B
Optimum parameters for wetting silicon carbide by aluminum alloys. Effect of volume fraction of SiC _p reinforcement on the processing maps for 2124 Al matrix composites. Exture and residual strain in two SiCTi-6-2-4-2 titanium composites. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Modeling. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ AlTiB ₂ composite fabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi ₂ amore interaction of ZrO ₂ , NbSi ₂ , and SiC particles. Fatigue crack growth resistance of unidirectional fiber-reinforced aluminum alloy composites. Steel. Slags, Crystal growth The effect of water vapor on mold slag crystallization. 403 Slags, Physical properties Viscosity of a CaO-MgO-Al ₂ O ₃ -SiO ₂ melt containing spinel particles at 1646K. Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing. Estimation of liquidus temperatures for multicomponent silicates from activation energies for viscosities of ternary silicate melts using the excess Gibbs energy of mixing. Estimation of liquidus temperatures for multicomponent silicates from activation energies for wiscosities of ternary silicate melts using the excess Gibbs energy of mixing. Estimation of liquidus temperatures for multicomponations and self-growing. Estimation of liquidus temperatures for multicomponations in the sy		531-540A		
Effect of volume fraction of SiC _p reinforcement on the processing maps for 2124 Al matrix composites. Extrure and residual strain in two SiC/Ti-6-2-4-2 titanium composites. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Modeling. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesized using novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiB ₂ composite tabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi ₂ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles. Faligue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle-size distribution on the properties of high-vol- Effect of water vapor on mold slag crystallization. Stags, Crystal growth The effect of water vapor on mold slag crystallization. 403 Stags, Physical properties Niscosity of a CaO-MgO-Al ₂ O ₃ -SiO ₂ melt containing spinel particles at 1646K. Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing. Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing. Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing. Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing. Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing. Estimation of visco		565-573A		813-826B
Texture and residual strain in two SiC/Ti-6-2-4-2 titanium composites. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Modeling. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiB ₂ composite fabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi ₂ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles. Fatigue crack growth resistance of unidirectional fiber-reinforced ditanium metal-matrix composites under transverse loading. Effect of particle reinforced NiAl. 2075-2081A Stags, Physical properties Viscosity of a CaO-MgO-Al ₂ O ₃ -SiO ₂ melt containing spinel particles at 1646K. Estimation of viscosities of terracy silicate melts using the excess Gibbs energy of mixing. Estimation of viscosities of terracy silicate melts using the excess Gibbs energy of mixing. Estimation of viscosities of terracy silicate melts using the excess Gibbs energy of mixing. Estimation of viscosities of terracy silicate melts using the excess Gibbs energy of mixing. Estimation of viscosities of terracy silicate melts using the excess Gibbs energy of mixing. Estimation of viscosities of terracy silicate melts using the excess Gibbs energy of mixing. Estimation of viscosities of terracy silicate melts using the excess Gibbs energy of mixing. Estimation of viscosities of terracy silicate melts using the excess Gibbs energy of mixing.	Effect of volume fraction of SiC _p reinforcement on the process-			403-406B
posites. Deformation and fracture of a particle-reinforced aluminum alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Modeling. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi2 laminate composites by the addition of ZrO2, NbSi2, and SiC particles. Fatigue crack growth resistance of unidirectional fiber-reinforced ditanium metal-matrix composites under transverse loading. Effect of particles-size distribution on the properties of high-yol-	Ing maps for 2124 Al matrix composites. Texture and residual strain in two SiC/Ti-6-2-4-2 titanium com-	629-639A		4000
alloy composite. I. Experiments. Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Modeling. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi₂ laminate composites by the addition of ZrO₂, NbSi₂, and SiC particles. Fatigue crack growth resistance of unidirectional fiber-reinforced ditanium metal-matrix composites under transverse loading. Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing. 105 1271-1282A 1295-1304A 129	posites.	889-898A	Viscosity of a CaO-MgO-Al ₂ O ₃ -SiO ₂ melt containing spinel par-	97-104B
Deformation and fracture of a particle-reinforced aluminum alloy composite. II. Modeling. The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiB2 composite labricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi₂ laminate composites by the addition of ZrO₂, NbSi₂, and SiC particles. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particles size distribution on the properties of high-yol- 2075-2081A 105 Stimation of liquidus temperatures for multicomponent silicates from activation energies for viscous flow. The surface tensions and foaming behavior of melts in the system CaO-FaO-SiO₂-ZrO₂. Stags, Reactions (chemical) Phase diagram for the system CaO-Al₂O₃-ZrO₂. Kinetics of Al₂O₃-dissolution in CaO-MigO-SiO₂-Al₂O₃ slags: in situ observations and analysis. Microscale simulation of settler processes in copper matte smelting. X-ray fluoroscopy observations of bubble formation and separation at a metal-slag interface. Coupled experimental and thermodynamic modeling studies for meltallurgical smelling and coal combustion slag systems. Phase equilibrium and minor element distribution between FeO₃-SiO₂-MgO-based slag and Cu₂S-FeS matte at 1573K under high partial pressures for for the in-situ monitoring of slag composition and transport properties.	alloy composite. I. Experiments.	921-936A	Estimation of viscosities of ternary silicate melts using the	
The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi2 laminate composites by the addition of ZrO2, NbSi2, and SiC particles. Fatigue crack growth resistance of unidirectional fiber-reinforced ditanium metal-matrix composites under transverse loading. Effect of particles size distribution on the properties of high-yol-	Deformation and fracture of a particle-reinforced aluminum	937-950A		105-109B
matrix composites. Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi2 laminate composites by the addition of ZrO2, NbSi2, and SiC particles. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. 1295-1304A 1295-1304A 1663-1670A 1873-1881A 1873-1881A 1959-1964A 1873-1881A 1959-1964A 1959-1964A 1975-2081A 1975-2081A 2075-2081A 1271-1282A 1295-1304A 1873-1881A 1873-1881A 1873-1881A 1873-1881A 1959-1964A 1959-196	The interactive role of inclusions and SiC reinforcement on the	55. 555/1	cates from activation energies for viscous flow.	111-119B
Mechanisms, models and simulations of metal-coated fiber consolidation. Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi₂ laminate composites by the addition of ZrO₂. NbSi₂, and SiC particles. Faltgue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle size and volume fraction in hot extrusion reactions and analysis. 1295-1304A 1295-1304A 1873-1881A 1873-1881A 1959-1964A 1959-1964A 1959-1964A 1959-1964A 2075-2081A 2075-2081A 2075-2081A 2083-2092A Effect of particle size and volume fraction in hot extrusion reaction said analysis. Microscale simulation of settler processes in copper matte smelting. Kirctics of Al₂O₂ dissolution in CaO-MgO-SiO₂-Al₂O₃ slags: in situ observations and analysis. Microscale simulation of settler processes in copper matte smelting. Kirctics of Al₂O₃ dissolution in CaO-MgO-SiO₂-Al₂O₃ slags: in situ observations and analysis. Microscale simulation of settler processes in copper matte smelting. Kirctics of Al₂O₃ dissolution in CaO-MgO-SiO₂-Al₂O₃ slags: in situ observations and analysis. Microscale simulation of settler processes in copper matte smelting. Kirctics of Al₂O₃ dissolution in CaO-MgO-SiO₂-Al₂O₃ slags: in situ observations and analysis. Microscale simulation of settler processes in copper matte smelting. Kirctics of Al₂O₃ dissolution in CaO-MgO-SiO₂-Al₂O₃ slags: in situ observations and analysis. Microscale simulation of settler processes in copper matte smelting. Kirctics of Al₂O₃ dissolution in CaO-MgO-SiO₂-Al₂O₃ slags: in situ observations and analysis. Microscale s		951-957A		921-925B
Nucleation on ceramic particles in cast metal-matrix composites. Effect of particle size and volume fraction in hot extrusion reaction synthesis of SiC particle reinforced NiAL. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi2 laminate composites by the addition of ZrO2, NbSi2, and SiC particles. Fatigue crack growth resistance of unidirectional fiber-reinforced tilanium metal-matrix composites under transverse loading. Effect of particle size and volume fraction in hot extrusion reaction system of MgO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinetics of Al2O3 dissolution in CaO-MigO-SiO2*Al2O3 slags: in situ observations and analysis. Kinet	Mechanisms, models and simulations of metal-coated fiber		Slags, Reactions (chemical)	
situ observations and analysis. 1895-1304A 1895-1304A situ observations and analysis. 1895-1304A 1895-1304A situ observations and analysis. 1895-1304A situ observations and analysis. 1895-1304A situ observations and analysis. 1895-1304A 1895-1304A situ observations and analysis. 1895-1304A 1895-1304 1895-13	Nucleation on ceramic particles in cast metal-matrix compos-		rnase diagram for the system CaO-Al ₂ O ₃ -ZrO ₂ . Kinetics of Al ₂ O ₃ dissolution in CaO-MaO-SiO ₂ -Al ₂ O ₃ slads: in	25-33B
tion synthesis of SiC particle reinforced NiAl. Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi₂ laminate composites by the addition of ZrO₂, NbSi₂, and SiC particles. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle-size distribution on the properties of high-vol-		1295-1304A	situ observations and analysis.	406-410B
novel mechanical disintegration and deposition technique. Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi2 laminate composites by the addition of ZrO2, NbSi2, and SiC particles. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle-size distribution on the properties of high-vol- 1873-1881A 1959-1964A 1959-1964A 2075-2081A 2075-2081A 2075-2081A 2083-2092A 2083-2092A	tion synthesis of SiC particle reinforced NiAl.	1663-1670A	smelting.	439-451B
Microstructure and properties of in situ Al/1tb2 composite tabricated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi ₂ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle-size distribution on the properties of high-vol-	novel mechanical disintegration and deposition technique.	1873-1881A		537-540B
inate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle-size distribution on the properties of high-vol-	cated by in-melt reaction method. Interfacial modification and impact properties of Nb/MoSi ₂ lam-		Coupled experimental and thermodynamic modeling studies for metallurgical smelting and coal combustion slag systems.	621-630B
Fatigue crack growth resistance of unidirectional fiber-rein- forced titanium metal-matrix composites under transverse loading. 2083-2092A Solid-state amperometric sensor for the in-situ monitoring of slag composition and transport properties. Recent advances in the fundamentals of the kinetics of steel-			FeO _x -SiO ₂ -MgO-based slag and Cu ₂ S-FeS matte at 1573K	705 7400
loading. Slag composition and transport properties. Slag composition and transport properties. Recent advances in the fundamentals of the kinetics of steel-	Fatigue crack growth resistance of unidirectional fiber-rein-	20,0 200 171		705-712B
Effect of particle-size distribution on the properties of high-vol-	loading.	2083-2092A	slag composition and transport properties.	733-753B
	Effect of particle-size distribution on the properties of high-vol-	2351-2359A	making reactions.	891-898B
Modification of the Interface in SiC/Al composites. 2361-2368A Interfacial kinetics of hydrogen with liquid slag containing iron	Modification of the interface in SiC/Al composites.	2361-2368A		937-943B
Effect of interfacial debonding and sliding on matrix crack initiation during isothermal fatigue of SCS-6/Ti-15-3 composites. 2637-2645A 2637-2645A 2637-2645A	tion during isothermal fatigue of SCS-6/Ti-15-3 composites.	2637-2645A	oxide.	945-955B
Silicon dioxide, Bonding slag systems. 957	Silicon dioxide, Bonding		slag systems.	957-971B
The role of plasticity in bimaterial fracture with ductile interlayers. Interfacíal phenomena in some slag-metal reactions. 863-872A Interfacíal phenomena in some slag-metal reactions. Rate of interfacial reaction between liquid iron oxide and CO-		863-872A	Rate of interfacial reaction between liquid iron oxide and CO-	973-980B

00	1010 10570		
CO ₂ . Equilibrium slag losses in ferrovanadium production.	1049-1057B 1091-1097B	Prediction of cracks in continuously cast steel beam blank through fully coupled analysis of fluid flow, heat transfer, and	
Some observations on the draining of CaO-SiO ₂ -Al ₂ O ₃ slag bubble films.	1105-1115B	deformation behavior of a solidifying shell.	225-237A
In situ observations of inclusions at the (Mn,Si)-killed steel/		A comparative study of the microstructures observed in stati- cally cast and continuously cast Bi-In-Sn ternary eutectic	
CaO-Al ₂ O ₃ interface. Rate of slag reduction in a laboratory electric furnace—alter-	1135-1139B	alloy.	239-248A
nating vs. direct current.	1187-1194B	Modeling of interdendritic strain and macrosegregation for den- dritic solidification processes. I. Theory and experiments.	331-343B
Experimental study of phase equilibria in the systems Fe-Zn-O and Fe-Zn-Si-O at metallic iron saturation.	1195-1201B	Modeling of interdendritic strain and macrosegregation for den-	
Phase equilibrium and minor-element distribution between	1100 10010	dritic solidification processes. II. Computation of interden- dritic strain and segregation fields in steel ingots.	345-355B
Ni ₃ S ₂ -FeS matte and calcium ferrite slag under high partial pressures of SO ₂ .	1231-1239B	Thermodynamic-kinetic simulation of constrained dendrite growth in steels.	365-379B
Distribution equilibria of Pb and Cu between CaO-SiO ₂ -Al2NO ₃		Electrode potential studies of liquid-solid equilibrium in Na ₃ Bi-	
melts and liquid copper. Spinel-corundum equilibria and activities in the system MgO-	1261-1266B	saturated Na-Bi melts. A computational model for defect prediction in shape castings	411-414B
Al ₂ O ₃ -Cr ₂ O ₃ at 1473K. Copper and minor elements distribution between metal, matte,	1323-1332B	based on the interaction of free surface flow, heat transfer,	51E 507D
and fluorine slags.	1551-1553B	and solidification phenomena. Influence of solidification variables on the dendrite arm spac-	515-527B
Slags, Solubility	15-24B	ings of Ni-based superalloys. Study of microsegregation buildup during solidification of sphe-	546-551B
Lead solubility in FeO _x -CaO-SiO ₂ slags at iron saturation. Sliding friction	13-240	roidal graphite cast iron.	827-836B
Identification of rolling-sliding damage mechanisms in porous	2004 20004	On the approximation of the partial areas method in the calcu- lation of the fraction of solid.	877-879B
alloys. Sliding friction, Processing effects	3091-3099A	Behavior of nonmetallic inclusions in front of the solid-liquid	
Tribological properties of centrifugally cast copper alloy-graph-		interface in low-carbon steels. Mechanisms of initial melt/substrate heat transfer pertinent to	1013-1021B
ite particle composite. Slip	1283-1293A	strip casting. Measurements, simulations, and analyses of instantaneous	1023-1030B
The influence of crystallographic texture and interstitial impuri-		heat fluxes from solidifying steels to the surfaces of twin roll	
ties on the mechanical behavior of zirconium. Yield vertices for {123}<111> multiple slip.	1997-2003A 2449-2456A	casters and of aluminum to plasma-coated metal substrates. Interfacial heat transfer and nucleation of steel on metallic sub-	1031-1047B
Slip bands	2110 2100/1	strates.	1081-1089B
The effect of microstructural banding on failure initiation of HY- 100 steel.	995-1005A	Quantifying the heats of coal devolatilization. Transient liquid-phase bonding in two-phase ternary systems.	1125-1131B 1187-1192A
Slip planes	995-1005A	A model for prediction of pressure and redistribution of gas-	1283-1292B
Effect of plastic anisotropy on the creep strength of single crys-	401 4004	forming elements in multicomponent casting alloys. Examination of solidification pathways and the liquidus surface	
tals of a nickel-based superalloy. Smelting	421-430A	n the Nb-Ti-Al system. Two-phase modeling of mushy zone parameters associated	1305-1321B
Microscale simulation of settler processes in copper matte	100 1515	with hot tearing.	1461-1472A
smelting. Dissolution of lead and bismuth in white metal (CuS _{0.5}) at	439-451B	Solidification parameters during the columnar-to-equiaxed transition in lead-tin alloys.	1611-1625A
matte-smelting temperatures.	543-546B	On convection in mushy phase and its effect on macrosegre-	1687-1692A
Coupled experimental and thermodynamic modeling studies for metallurgical smelting and coal combustion slag systems.	621-630B	gation. Banded microstructure formation in off-eutectic alloys.	1819-1832A
Phase equilibrium and minor element distribution between FeO _x -SiO ₂ -MgO-based slag and Cu ₂ S-FeS matte at 1573K		Simulation of eutectic solidification structures of binary alloys: a multiparticle diffusion limited aggregation model.	2049-2057A
under high partial pressures of SO ₂ .	705-712B	A two-dimensional model for the description of the columnar-	
Recent advances in the fundamentals of the kinetics of steel- making reactions.	891-898B	to-equiaxed transition in competing gray and white iron eutectics and its application to calender rolls.	2059-2068A
Influence of ash on mass transfer and interfacial reaction	1099-1104B	A dynamic model for the interaction between a solid particle and an advancing solid/liquid interface.	2559-2568A
between natural graphite and liquid iron. Some observations on the draining of CaO-SiO ₂ -Al ₂ O ₃ slag		An experimental investigation on the kinetics of solute driven	
bubble films. Rate of slag reduction in a laboratory electric furnace—alter-	1105-1115B	remelting. The effect of cooling rate on the microstructures formed during	2713-2720A
nating vs. direct current.	1187-1194B	solidification of ferritic steel.	3155-3166A
Phase equilibrium and minor-element distribution between Ni ₃ S ₂ -FeS matte and calcium ferrite slag under high partial		Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al-Cu	
pressures of SO ₂ . Equilibria involving the reciprocal spinel solid solution (Mg _x Fe ₁ .	1231-1239B	alloys.	3167-3178A
x)(Al _v Cr _{1-v}) ₂ O ₄ : modeling and experiment.	1247-1259B	Solidification, Alloying effects Solidification characteristics of the Al-8.3Fe-0.8V-0.9Si alloy.	1599-1610A
Spinel-corundum equilibria and activities in the system MgO- Al ₂ O ₃ -Cr ₂ O ₃ at 1473K.	1323-1332B	Solidification, Coating effects	
Copper and minor elements distribution between metal, matte,	1551-1553B	Application of the phase-field method to the solidification of hot-dipped galvanized coatings.	487-495A
and fluorine slags. Sodium, Reactions (chemical)	1331-13336	Solution heat treatment	
Thermodynamic study of zinc-rich zinc-sodium alloys.	419-424B	Part II. Metallurgical factors governing the H-assisted integran- ular cracking of peak-aged Ti-3Al-8V-6Cr-4Mo-4Zr (Beta-C).	81-92A
Sodium, Solubility The effect of lead on the activity of sodium in liquid zinc.	414-418B	Effects of strain rate and anisotropy on the tensile deformation	669-678A
Sodium base alloys, Phase transformations		properties of extruded AlZnMg alloys. A model for predicting the effect of deformation after solution	003-070A
Electrode potential studies of liquid-solid equilibrium in Na ₃ Bi- saturated Na-Bi melts.	411-414B	treatment on the subsequent artificial aging behavior of AA7030 and AA7108 alloys.	2327-2338A
Solderability, Coating effects	! - !	Microstructural effects on fracture toughness in AA7010 plate.	2503-2515A
Thermal stability of electroless-nickel/solder interface: A. Inter- facial chemistry and microstructure.	2857-2866A	Spontaneous deformation during aging under stress in a cop- per-beryllium alloy.	2765-2771A
Thermal stability of electroless-nickel/solder interface: B. Inter-		Solvent extraction	
facial fatigue resistance. Soldered joints, Thermal properties	2867-2875A	Mixed solvent systems for the extraction and stripping of iron(III) from concentrated acid chloride solutions.	1169-1174B
Thermal stability of electroless-nickel/solder interface: A. Inter-		Spacecraft components, Mechanical properties	
facial chemistry and microstructure. Thermal stability of electroless-nickel/solder interface: B. Inter-	2857-2866A	The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489	
facial fatigue resistance.	2867-2875A	and 1.8 wt.% Li AF/C-458 Al-Li-C-X alloys.	1965-1976A
Soldering Growth of a Au-Ni-Sn intermetallic compound on the solder-		Spalling Hydrogen effects on the spall strength and fracture characteris-	
substrate interface after aging.	798-800A	tics of amorphous Fe-Si-B alloy at very high strain rates.	1085-1093A
Solders, Phases (state of matter) Tin-silver-copper eutectic temperature and composition.	1155-1162A	Spectroscopy Nondestructive evaluation of residual stress for thermal barrier	
Solid phases	1100 1102A	coated turbine blades by Cr3+ photoluminescence	0000 0004
The identification of hydrogen trapping states in an Al-Li-Cu-Zr	170 1024	piezospectroscopy.	2388-2391A
alloy using thermal desorption spectroscopy. Phase analysis of two steel work rolls using Mössbauer spec-	179-193A	Spinel, Reactions (chemical) Equilibria involving the reciprocal spinel solid solution (Mg _x Fe ₁ .	
troscopy.	793-798A	x)(Al _v Cr _{1-v)2} O ₄ : modeling and experiment. Spinel-corundum equilibria and activities in the system MgO-	1247-1259B
Solid phases, Crystal growth Application of, and precautions for the use of, the Rule of Addi-		Al ₂ O ₃ -Cr ₂ O ₃ at 1473K.	1323-1332B
tivity in phase transformation.	675-682B	Splat cooling An integrated model for dendritic and planar interface growth	
Solidification Morphological stability of Sm123 superconductor during peri-		and morphological transition in rapid solidification.	735-746A
tectic solidification from Sm211 + L mixture.	141-149B	Spray forming	

Spray forming, Size effects			ordine or
Monosize droplet deposition as a means to investigate droplet behavior during spray deposition.	1333-1344B	Texture and residual strain in two SiC/Ti-6-2-4-2 titanium composites.	889-898A
Formulation of rod-forming models and their application in spray forming.	1479-1488A	Residual strains in HY100 polycrystals: comparisons of experi- ments and simulations.	1543-1555A
Modeling of spray-formed materials: geometrical consider-	2917-2929A	Strain-localization in sheet metal containing a geometric defect.	1883-1886A
Spray forming, Size effects Particulate penetration into solid droplets.	387-396A	Strain, Deformation effects Synchrotron x-ray study of bulk lattice strains in externally	2949-2962A
Sprayed coatings, Microstructure On the evolution of porosity in spray-deposited tool steels.	723-733A	loaded Cu-Mo composites. Strain, Microstructural effects Modeling of interdendritic strain and macrosegregation for den-	2949-2902A
Spraying Microstructure and mechanical behavior of spray-deposited Al- Cu-Mg(-Ag-Mn) alloys.	2287-2298A	dritic solidification processes. I. Theory and experiments. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes. II. Computation of interdendritic solidification processes. III. Computation of interdendritic solidification processes. III.	331-343B
Effect of testing frequency on the corrosion fatigue of a	1137-1145A	dritic strain and segregation fields in steel ingots. Strain aging	345-355B
squeeze-cast aluminum alloy. Effect of particle-size distribution on the properties of high-vol- ume-fraction SiC _p -Al-based composites.	2351-2359A	Dynamic bake hardening of interstitial-free steels. Strain hardening	1375-1384A
Squeeze casting, Quality control Prevention of macrodefects in squeeze casting of an Al-7 wt.%		Macroscopic and microscopic evolutions of a shot-peened layer during isothermal recovery.	213-224A
Si alloy. Stacking fault energy	297-305B	Effects of microstructural parameters on work hardening of pearlite at small strains.	2665-2669A
Driving force for $\gamma \rightarrow \epsilon$ martensitic transformation and stacking fault energy of γ in Fe-Mn binary system.	355-360A	Strain hardening, Temperature effects Mechanical behavior of a fine-grained duplex γ-TiAl alloy. Strain rate	1007-1016A
Stacking fault energy, Composition effects Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy.	581-584A	Influence of alloying elements on the strain rate and tempera- ture dependence of the flow stress of steels.	825-830A
Stainless steels, Refining Modeling of the vacuum oxygen decarburization refining pro-		Damage leading to ductile fracture under high strain-rate conditions. Creep properties of Ni ₃ (AlTiTa) γ' phase single crystals.	831-844A 1733-1740A
cess. Stainless steels, Steel making	197-206B	Stress corrosion cracking Environmentally enhanced deformation of ultra-high-purity Ni-	
Nitrogen alloying of carbon and stainless steels by gas injec- tion.	905-912B	16Cr-9Fe alloys. Stress corrosion cracking, Temperature effects	2383-2388A
Equilibria involving the reciprocal spinel solid solution (Mg _x Fe ₁ , x)(Al,Cr ₁ , x) ₂ O ₄ ; modeling and experiment.	1247-1259B	Stress corrosion cracking mechanisms of Alloy 600 polycrys- tals and single crystals in primary water—influence of hydro-	
Spinel-corundum equilibria and activities in the system MgO- Al ₂ O ₃ -Cr ₂ O ₃ at 1473K.	1323-1332B	gen. Stress strain curves	2025-2036A
Steels, Casting Phase diagram for the system CaO-Al ₂ O ₃ -ZrO ₂ . Prediction of cracks in continuously cast steel beam blank through fully coupled analysis of fluid flow, heat transfer, and	25-33B	Effect of volume fraction of SiC _p reinforcement on the process- ing maps for 2124 Al matrix composites. The role of dispersed particles in strengthening and fracture	629-639A
deformation behavior of a solidifying shell. Fluid flow and inclusion removal in continuous casting tundish.	225-237A 253-266B	mechanisms in a Mo-ZrC alloy processed by mechanical alloying. Mechanical behavior of a fine-grained duplex γ-TiAl alloy.	715-721A 1007-1016A
The effect of a uniform direct current magnetic field on the sta- bility of a stratified liquid flux/molten steel system. Water model study of horizontal molten steel—Ar two-phase jet	317-326B	Preparation and mechanical properties of highly densified nanocrystalline Al.	1017-1024A
in a continuous casting mold. Dynamics of the spout of gas plumes discharging from a melt:	453-460B	Effect of microstructure variations on the formation of deforma- tion-induced martensite and associated tensile properties in	100E 1106A
experimental investigation with a large-scale water model. On the detection and selective separation of inclusions in liquid	461-468B	a β metastable Ti alloy. Effect of strain rate on damage evolution in a cast Al-Si-Mg	1095-1106A
metal cleanliness analyzer (LiMCA) systems. A new criterion for internal crack formation in continuously cast	767-777B	base alloy. Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase	1725-1731A
steels. Depth of oscillation marks forming in continuous casting of steel.	779-794B 813-826B	steels. Evolution of texture and grain misorientation in an Al-Mg alloy	1753-1760A
Two-fluid simulation on the mixed convection flow pattern in a nonisothermal water model of continuous casting tundish. Measurements, simulations, and analyses of instantaneous	867-875B	exhibiting low-temperature superplasticity. Analysis and prevention of yield strength drop during spiral piping of two high-strength API-X70 steels.	2169-2180A 2669-2674A
heat fluxes from solidifying steels to the surfaces of twin roll casters and of aluminum to plasma-coated metal substrates. Phase diagram cuspidine (3CaO+2SiO ₂ +CaF ₂)-CaF ₂ . Modeling of molten metal flow in a continuous casting process	1031-1047B 1273-1281B	Stretching The use of the finite-element method to design an optimized tool for the plain-strain punch stretching test.	93-98A
considering the effects of argon gas injection and static mag- netic-field application.	1491-1503B	Strip, Rolling Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply alloyed Cr-Mo, and plain C-Mn steels.	511-530A
Steels, Coating Microstructure and formability of ZnNi alloy electrodeposited sheet steel.	475-485A	Strip casting Mechanisms of initial melt/substrate heat transfer pertinent to	1023-1030B
Steels, Diffusion Hydrogen trapping models in steel.	1475-1482B	strip casting. Strontium, Alloying additive The role of solute in grain refinement of magnesium.	2895-2906A
Steels, Mechanical properties Tensile stress-strain analysis of single-structure steels.	1785-1794A	Strontium, Extraction Effect of a catalyst on the kinetics of reduction of celestite	
Steels, Phase transformations On the mobility of the austenite-ferrite interface in Fe-Co and Fe-Cu.	379-385A	(SrSO ₄) by active charcoal. Structural steels, Welding	35-41B
Steels, Reactions (chemical) The effects of alkaline earth metal ions and halogen ions on the chromium oxide activities in alkaline earth metal oxide-		Characteristics of a pulsed-current, vertical-up gas metal arc weld in steel. Fracture mechanism and toughness of the welding heat- affected zone in structural steel under static and dynamic	2247-2259A
halide-Cr ₂ O ₃ system fluxes. A Monte Carlo simulation study of dissolution of graphite in iron-carbon melts.	469-475B 1517-1525B	loading. Submerged arc welding	2785-2791A
Steels, Refining Dynamic and equilibrium interfacial phenomena in liquid steel-	957-971B	A Bayesian analysis of the influence of neutron irradiation on embrittlement in ferritic submerged arc weld metal. Submerged arc welding, Quality control	445-459A
slag systems. Steels, Rolling Analysis of secondary oxide-scale failure at entry into the roll		Modeling of inclusion growth and dissolution in the weld pool. Sulfur, Impurities The influence of sulfur on stress-rupture fracture in Inconel 718	161-169B
gap. Steels, Structural hardening Effects of microstructural parameters on work hardening of	1483-1490B	superalloys. Sulfur, Reactions (chemical)	2135-2144A
Effects of microstructural parameters on work hardening of pearlite at small strains. Steels, Welding	2665-2669A	The thermodynamics of the Ni-Co-S ternary system. Thermodynamics of surfaces and adsorption in the Fe-C-S-O system.	121-128B 267-276B
Thermal analysis of the arc welding process. I. General solutions. Stoichiometry	1353-1370B	Sulfuric acid, Environment Galvanic interaction between chalcopyrite and manganese dioxide in sulfuric acid medium.	55-61B
An interdiffusion study of a NiAl alloy using single-phase diffu-	1519-1524A	Superalloys, Casting	

2000		rensile strength, Processir	ig errects
forming elements in multicomponent casting alloys.	1283-1292B	Depth of oscillation marks forming in continuous casting of	
Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings. Superalloys, Coating	2545-2557A	steel. Surface pretreatments	813-826B
Effect of prealuminizing diffusion treatment on microstructural evolution of high-activity Pt-aluminide coatings.	2037-2047A	Effect of prealuminizing diffusion treatment on microstructural evolution of high-activity Pt-aluminide coatings. Surface structure, Deformation effects	2037-2047A
Nondestructive evaluation of residual stress for thermal barrier coated turbine blades by Cr ³⁺ photoluminescence piezospectroscopy.	2388-2391A	Macroscopic and microscopic evolutions of a shot-peened layer during isothermal recovery.	213-224A
Superalloys, Corrosion Grain-boundary chemistry and integranular corrosion in alloy		Surface structure, Heating effects Microstructural and compositional evolution of compound lay-	105 044 6
825. Superalloys, Directional solidification	1163-1173A	ers during gaseous nitrocarburizing. Erratum: Microstructural and compositional evolution of com-	195-211A 801A
Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling pro-		pound layers during gaseous nitrocarburizing. Study of microstructure of low-temperature plasma-nitrided AISI 304 stainless steel.	1193-1199A
cess. Directional and single-crystal solidification of Ni-base superal-	1293-1304B	Surface tension Thermodynamics of surfaces and adsorption in the Fe-C-S-O	1100 1100A
loys. I. The role of curved isotherms on grain selection. Directional and single-crystal solidification of Ni-base superal-	2877-2886A	system. The surface tensions and foaming behavior of melts in the sys-	267-276B
loys. II. Coincidence site lattice character of grain bound- aries.	2887-2893A	tem CaO-FeO-SiO ₂ .	921-925B
Superalloys, Extrusion Hot deformation mechanisms in a powder metallurgy nickel-		Surface tension, Field effects Surface tension of molten silicon measured by the electromagnetic levitation method under microgravity.	1585-1589A
base superalloy IN 625. Superalloys, Mechanical properties	2317-2325A	Tailored blanks, Welding	
Fatigue crack path prediction in Udimet 720 nickel-based alloy single crystals.	109-123A	Weld metal ductility in aluminum tailor welded blanks. Tantalum, Alloying additive	2755-2763A
Effect of plastic anisotropy on the creep strength of single crystals of a nickel-based superalloy.	421-430A	Creep properties of Ni ₃ (AlTiTa) γ phase single crystals. Tantalum, Diffusion	1733-1740A
Infrared temperature mapping of ULTIMET alloy during high- cycle fatigue tests.	1307-1310A	Pseudobinary diffusion coefficients in the Ti-Mo-Ta system. Tantalum, Mechanical properties	3198-3199A
The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa. Creep-behavior modeling of the single-crystal superalloy	1365-1373A	Comparison between high and low strain-rate deformation of tantalum.	815-823A
CMSX-4. The effect of high-temperature oxidation on the creep behavior	1401-1411A	Quantitative description of damage evolution in ductile fracture of tantalum.	845-851A
of a superalloy (Nimonic-105). Stress corrosion cracking mechanisms of Alloy 600 polycrys-	1777-1784A	Tantalum compounds, Composite materials Development of a thermodynamic database for cemented car-	
tals and single crystals in primary water—influence of hydro- gen.	2025-2036A	bides for design and processing simulations. Tapes (metallic), Mechanical properties	615-619B
The influence of sulfur on stress-rupture fracture in Inconel 718 superalloys. On the primary creep of CMSX-4 superalloy single crystals.	2135-2144A 2219-2228A	Effect of fiber volume fraction on the fracture behavior of Nb-1 wt.% Zr/218W composites at elevated temperatures.	873-887A
Environmentally enhanced deformation of ultra-high-purity Ni- 16Cr-9Fe alloys.	2383-2388A	Tearing Two-phase modeling of mushy zone parameters associated	1404 14701
Superalloys, Microstructure Investigation on the cold deformation strengthening mecha-		with hot tearing. Technology transfer	1461-1472A
nism in MP 159 alloy. Influence of solidification variables on the dendrite arm spac-	5-13A	Aspects of technology transfer. Temperature control	1153-1162B
ings of Ni-based superalloys. Determining the three-dimensional morphology of γ -particles	546-551B	Physical and mathematical models of steel flow and heat trans- fer in a tundish heated by plasma.	63-74B
in γ-γ' superalloys. Superalloys, Oxidation	1333-1342A	Temperature distribution, Cooling effects Determination of thermophysical properties and boundary con-	
Selective oxidation and internal nitridation during high-temper- ature exposure of single-crystalline nickel-base superalloys.	47-56A	ditions of direct chill-cast aluminum alloys using inverse methods.	1627-1634A
Superalloys, Phase transformations Computer simulation of the initial rafting process of a nickel-	505 5074	Temperature distribution, Welding effects Thermal analysis of the arc welding process. I. General solu-	1252 12700
base single-crystal superalloy. Superalloys, Phases (state of matter)	585-597A	tions. Tempering	1353-1370B
Liquidus temperature determination in multicomponent alloys by thermal analysis.	497-501A	Insight into the microstructural characterization of ferritic steel using micromagnetic parameters.	1053-1065A
Superalloys, Welding A process model for the distortion induced by the electron- beam welding of a nickel-based superalloy.	2261-2273A	Tensile properties, Deformation effects Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile proper-	
Superconductors, Crystal growth	2201-221 JA	ties.	691-701A
Morphological stability of Sm123 superconductor during peri- tectic solidification from Sm211 + L mixture.	141-149B	Tensile strength Effect of microstructure variations on the formation of deforma- tion-induced martensite and associated tensile properties in	
Superplastic forming An analysis of the effect of cavity nucleation rate and cavity		a β metastable Ti alloy. Creep-behavior modeling of the single-crystal superalloy	1095-1106A
coalescence on the tensile behavior of superplastic materi- als. Superplastic forming of duplex stainless steel.	1425-1434A 2394-2396A	CMSX-4. Tensile strength, Alloying effects	1401-1411A
Superplasticity An analysis of the effect of cavity nucleation rate and cavity	2004-2000A	A comparison study of microstructure and mechanical properties of Ti-24Al-14Nb-3V-0.5Mo with and without Si.	2205-2217A
coalescence on the tensile behavior of superplastic materials. Superplastic forming of duplex stainless steel.	1425-1434A 2394-2396A	Tensile strength, Composition effects Microstructure and properties of in situ Al/TiB ₂ composite fabricated by in-melt reaction method.	1959-1964A
Superplasticity, Composition effects Effect of volume fraction of SiC _p reinforcement on the process-		Tensile strength, Deformation effects The effect of matrix microstructure on the tensile and fatigue	
ing maps for 2124 Al matrix composites. Superplasticity, Deformation effects	629-639A	behavior of SiC particle-reinforced 2080 Al matrix composites.	531-540A
Evolution of texture and grain misorientation in an Al-Mg alloy exhibiting low-temperature superplasticity. Interpretation of microstructural evolution using dynamic mate-	2169-2180A	Tensile strength, Impurity effects The influence of sulfur on stress-rupture fracture in Inconel 718 superalloys.	2135-2144A
rials modeling. Superplasticity, Microstructural effects	2973-2974A	Tensile strength, Microstructural effects Correlation of the microstructure and fracture toughness of the	
Correlation between former alpha boundary growth kinetics and superplastic flow in Zn-22% Al.	163-172A	heat-affected zones of an SA 508 steel. An investigation of the effect of fatigue deformation on the	1107-1119A
Surface alloying Theoretical and experimental investigations of electron beam	1405 44470	residual mechanical properties of Ti-6AI-4V ELI. The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489	1937-1948A
surface remelting and alloying. Microstructural analysis of vanadium carbide/steel surface- alloyed materials fabricated by high-energy electron-beam	1405-1417B	and 1.8 wt.% Li AF/C-458 Al-Li-C-X alloys. Tensile strength, Processing effects	1965-1976A
irradiation. Surface amorphous and crystalline microstructure by alloying	2849-2855A	Effects of strain rate and anisotropy on the tensile deformation properties of extruded AlZnMg alloys.	669-678A
zirconium using Nd:YAG pulsed laser. Surface defects	3123-3127A	The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical	

alloying. Preparation and mechanical properties of highly densified nanocrystalline Ai.	715-721A 1017-1024A	Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing. The thermodynamics of the Ni-Co-S ternary system.	105-109B 121-128B
Reaction synthesis, microstructure, and mechanical properties of in situ composite NiAl-Al ₂ O ₃ -TiC.	1692-1695A	Thermodynamics of surfaces and adsorption in the Fe-C-S-O system.	267-276B
Tensile stress-strain analysis of single-structure steels. Characteristics of Mg-based composites synthesized using a	1785-1794A	Thermodynamic-kinetic simulation of constrained dendrite growth in steels.	365-379B
novel mechanical disintegration and deposition technique.	1873-1881A	Electrode potential studies of liquid-solid equilibrium in Na ₃ Bi-	
Microstructure and mechanical behavior of spray-deposited Al- Cu-Mg(-Ag-Mn) alloys.	2287-2298A	saturated Na-Bi melts. The effect of lead on the activity of sodium in liquid zinc.	411-414B 414-418B
Tensile strength, Welding effects		Thermodynamic study of zinc-rich zinc-sodium alloys. Fundamental theories and concepts for predicting thermody-	419-424B
Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451.	2181-2192A	namic properties of high temperature ionic and metallic liquid	E70 E00B
Characteristics of a pulsed-current, vertical-up gas metal arc weld in steel.	2247-2259A	solutions and vapor molecules. Ideal and cooperative bond-lattice representations of excita-	579-586B
Ternary systems, Phase transformations		tions in glass-forming liquids: excitation profiles, fragilities, and phase transitions.	587-596B
Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys. Transient liquid-phase bonding in two-phase ternary systems.	277-284B 1187-1192A	Prediction of properties of intermetallics using a chemical bonding model.	603-607B
Examination of solidification pathways and the liquidus surface n the Nb-Ti-Al system.	1305-1321B	Solutions of iron oxides in molten cryolite.	609-613B
Ternary systems, Phases (state of matter)		Development of a thermodynamic database for cemented car- bides for design and processing simulations.	615-619B
The prediction of the hydriding thermodynamics of Pd-Rh-Co ternary alloys.	667-673B	Coupled experimental and thermodynamic modeling studies for metallurgical smelting and coal combustion slag systems.	621-630B
Tin-silver-copper eutectic temperature and composition. The 900°C isothermal section of Ti-Ni-V alloys.	1155-1162A 1679-1682A	Solubilities and Raman spectra of NdOCI in some chloride melts of interest for the electrowinning of magnesium from its	
Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system.	1795-1803A	oxide.	631-639B
Texture	.,	The power of thermodynamic modeling: examples from molten halide mixtures.	641-650B
The influence of crystallographic texture and interstitial impuri- ties on the mechanical behavior of zirconium.	1997-2003A	The modified quasichemical model I—binary solutions. Thermodynamic and nonstoichiometric behavior of promising	651-659B
Microstructure-ultrasonic inspectability relationships in Ti6242: signal-to-noise in fine-grain-processed Ti62642.	2119-2125A	Hi-Tc cuprate systems via electromotive force measure- ments: a short review.	661-666B
Evolution of texture and grain misorientation in an Al-Mg alloy	2169-2180A	The prediction of the hydriding the modynamics of Pd-Rh-Co ternary alloys.	667-673B
exhibiting low-temperature superplasticity. Dynamic materials testing, texture, and yield-surface calcula-		Phase equilibrium and minor element distribution between	007-0705
tion of an automotive sheet steel. Yield vertices for {123}<111> multiple slip.	2439-2448A 2449-2456A	FeO _x -SiO ₂ -MgO-based slag and Cu ₂ S-FeS matte at 1573K under high partial pressures of SO ₂ .	705-712B
Texture, Deformation effects		Activity measurement of the constituents in liquid Cu-Mg and Cu-Ca alloys with mass spectrometry.	927-935B
Texture and residual strain in two SiC/Ti-6-2-4-2 titanium composites.	889-898A	Quantifying the heats of coal devolatilization. Experimental study of phase equilibria in the systems Fe-Zn-O	1125-1131B
Load sharing between austenite and ferrite in a duplex stain- less steel during cyclic loading.	1557-1570A	and Fe-Zn-Si-O at metallic iron saturation.	1195-1201B
Evolution of texture in the β(B2) phase of a two phase titanium aluminide intermetallic alloy Ti-24Al-11Nb.	2339-2350A	Modified predominance diagrams for gas-solid reactions. A Scheil-Gulliver model with back-diffusion applied to the	1429-1437B
Texture, Heating effects		microsegregation of chromium in Fe-Cr-C alloys. Experimental investigation and thermodynamic modeling of the	1682-1684A
Effect of intermediate annealng on texture evolution and plastic anisotropy in an Al-Mg autobody alloy.	99-107A	Cr-Ni-Si system. Modeling of dissolution, growth, and coarsening of aluminum	1795-1803A
Texture, Processing effects Directional and single-crystal solidification of Ni-base superal-		nitride in low-carbon steels. Transient liquid-phase bonding in the Ni-Al-B system.	1907-1916A 2835-2847A
loys. I. The role of curved isotherms on grain selection. Directional and single-crystal solidification of Ni-base superal-	2877-2886A	Thermomechanical treatment	
loys. II. Coincidence site lattice character of grain bound-	2887-2893A	Evolution of texture and grain misorientation in an Al-Mg alloy exhibiting low-temperature superplasticity.	2169-2180A
aries. Thermal analysis	2007-2093A	Evolution of texture in the β(B2) phase of a two phase titanium aluminide intermetallic alloy Ti-24Al-11Nb.	2339-2350A
Liquidus temperature determination in multicomponent alloys by thermal analysis.	497-501A	Microstructural development and austempering kinetics of duc- tile iron during thermomechanical processing.	2575-2585A
Thermal barriers, Coatings		Thermomechanical treatment, Composition effects	
Nondestructive evaluation of residual stress for thermal barrier coated turbine blades by Cr ³⁺ photoluminescence		The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix compos-	
piezospectroscopy.	2388-2391A	ites. Thin films, Bonding	531-540A
Thermal conductivity A model of the interfacial heat-transfer coefficient during unidi-		The role of plasticity in bimaterial fracture with ductile interlay-	000 0704
rectional solidification of an aluminum alloy. Determination of thermophysical properties and boundary con-	285-295B	ers. Thin films, Crystal growth	863-872A
ditions of direct chill-cast aluminum alloys using inverse methods.	1627-1634A	Application of the phase-field method to the solidification of	487-495A
Thermal cycling		hot-dipped galvanized coatings. Tin, Binary systems	401-4331
Enhanced densification of cavitated dispersion-strengthened aluminum by thermal cycling.	2647-2657A	A numerical and experimental study of the rate of transforma- tion in three directionally grown peritectic systems.	29-34A
Effects of thermal cycling on the kinetics of the γ→ε martensitic transformation in an Fe-17 wt.% Mn alloy.	2735-2738A	A model of convection-induced oscillatory structure formation in peritectic alloys.	1233-1246A
Thermal expansion, Composition effects	291-298A	Tin, Casting	
Thermal expansion behavior of silver matrix composites. Characterization of Mo-SiO ₂ functionally graded materials.	299-308A	Finding boundary conditions: a coupling strategy for the model- ing of metal casting processes. I. Experimental study and	
Effect of albite particles on the coefficient of thermal expansion behavior of the Al6061 alloy composites.	773-780A	correlation development. Finding boundary conditions: a coupling strategy for the model-	75-86B
Effect of particle-size distribution on the properties of high-vol- ume-fraction SiC _p -Al-based composites.	2351-2359A	ing of metal casting processes. II. Numerical study and anal-	87-96B
Chemical synthesis and characteriztion of low thermal expan- sion-high conductivity Cu-Mo and Ag-Mo composites.	2396-2398A	ysis. Tin, Diffusion	
Thermal fatigue		Interdiffusion of Sn and Pb in liquid Pb-Sn alloys. Tin, Ternary systems	1343-1352A
Modeling thermomechanical fatigue life of high-temperature titanium alloy IMI 834.	431-444A	Tin-silver-copper eutectic temperature and composition.	1155-1162A
Modelng creep and fatigue of copper alloys. Thermal stability	2491-2502A	Tin base alloys, Crystal growth Solidification parameters during the columnar-to-equiaxed	
Grain-boundary chemistry and integranular corrosion in alloy	1162.44704	transition in lead-tin alloys.	1611-1625A
825. Thermal stability, Coating effects	1163-1173A	Tin base alloys, Directional solidification Effect of computational domain size on the mathematical mod-	
Thermal stability of electroless-nickel/solder interface: A. Inter- facial chemistry and microstructure.	2857-2866A	eling of transport processes and segregation during direc- tional solidification.	3129-3135A
Thermal stability of electroless-nickel/solder interface: B. Inter-		Tin base alloys, Phases (state of matter)	
facial fatigue resistance. Thermal stability, Deformation effects	2867-2875A	Tin-silver-copper eutectic temperature and composition. Tin base alloys, Physical properties	1155-1162A
Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile proper-		Thin-wall back extrusion of partially remelted semi-solid Sn-Pb.	57-62A
ties.	691-701A	Tin base alloys, Powder technology Monosize droplet deposition as a means to investigate droplet	4000 40445
Thermodynamics		behavior during spray deposition.	1333-1344B

Titanium, Alloying additive		Titanium base alloys, Phase transformations	
Creep properties of Ni ₃ (ΑΙΤΙΤα) γ' phase single crystals. Relation between microstructure, composition, and hot cracking in Ti-stabilized austeritiis stainless steel weldments.	1733-1740A 3109-3122A	Surface relief of a "martensite in a Ti-Mo alloy. Evaporation behavior of aluminum during the cold crucible induction skull melting of titanium aluminum alloys.	599-605A 837-844B
Titanium, Binary systems Evaporation behavior of aluminum during the cold crucible induction skull melting of titanium aluminum alloys.	837-844B	Titanium base alloys, Powder technology Modeling the reaction synthesis of shock-densified titanium-silicon powder mixture compacts.	307-316B
Titanium, Diffusion	3198-3199A	Preparation of high porosity metal foams. Microstructural evolution in wire-drawn Ti-22AI-26Nb powder.	1345-1352B 2931-2941A
Pseudobinary diffusion coefficients in the Ti-Mo-Ta system. Titanium, Extraction Reduction of titania by methane-hydrogen-argon gas mixture.	129-139B	Titanium carbide, Coatings Correlation of microstructure with the wear resistance and frac-	2001 204174
Contactless electrochemical reduction of titanium (II) chloride by aluminum.	713-721B	ture toughness of hardfacing alloys reinforced with complex carbides.	3041-3052A
A model for the role of carbon on carbochlorination of TiO ₂ . Titanium, Mechanical properties	1439-1446B	Titanium carbide, Composite materials Chemically induced reduction: a viable process for synthesiz-	
Effects of inert gases on fatigue crack growth and their trans- portation into subsurface regions in titanium.	1435-1441A	ing γ-TiAl based intermetallic matrix composite powders containing nanocrystalline TiC.	151-159B
Titanium, Ternary systems Examination of solidification pathways and the liquidus surface		Reaction synthesis, microstructure, and mechanical properties of in situ composite NiAl-Al ₂ O ₃ -TiC.	1692-1695A
n the Nb-Ti-Al system. The 900°C isothermal section of Ti-Ni-V alloys.	1305-1321B 1679-1682A	Titanium compounds, Coating The influence of additions of Nb and Cr on the aluminizing behavior of TiAl alloy.	2391-2394A
Titanium base alloys, Casting Aluminum volatilization and inclusion removal in the electron		Titanium compounds, Composite materials	2001-2004A
beam cold hearth melting of Ti alloys. Alpha case thickness modeling in investment castings.	845-854B 1419-1427B	Chemically induced reduction: a viable process for synthesiz- ing y-TiAl based intermetallic matrix composite powders con-	454 4500
Titanium base alloys, Coating The influence of additions of Nb and Cr on the aluminizing		taining nanocrystalline TiC. Development of a thermodynamic database for cemented car-	151-159B
behavior of TiAl alloy.	2391-2394A	bides for design and processing simulations. Phase transitions in reactive formation of Ti ₅ Si ₃ /TiAl in situ	615-619B
Titanium base alloys, Composite materials Chemically induced reduction: a viable process for synthesiz-		composites. High-temperature fracture and fatigue-crack growth behavior	763-771A
ing y-TiAl based intermetallic matrix composite powders con- taining nanocrystalline TiC. Creep expansion of porous Ti-6Al-4V sandwich structures.	151-159B 261-273A	of an XD gamma-based titanium aluminide intermetallic alloy. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally	1413-1423A
Phase transitions in reactive formation of Ti ₅ Si ₃ /TiAl in situ composites.	763-771A	graded material. Titanium compounds, Mechanical properties	2369-2376A
Texture and residual strain in two SiC/Ti-6-2-4-2 titanium composites.	889-898A	The fracture resistance of a binary TiAl alloy. Mechanical behavior of a fine-grained duplex γ -TiAl alloy.	71-80A 1007-1016A
Mechanisms, models and simulations of metal-coated fiber consolidation.	1271-1282A	The effect of impact damage on the room-temperature fatigue behvior of γ-TiAl.	1741-1752A
High-temperature fracture and fatigue-crack growth behavior of an XD gamma-based titanium aluminide intermetallic alloy.	1413-1423A	A comparison study of microstructure and mechanical properties of Ti-24Al-14Nb-3V-0.5Mo with and without Si.	2205-2217A
Fatigue crack growth resistance of unidirectional fiber-rein- forced titanium metal-matrix composites under transverse	1410 14201	Creep deformation of TiAl-Si alloys with aligned γ/α₂ lamellar microstructures.	2463-2473A
loading. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally	2083-2092A	Experimental studies on tribological properties of pseudoelastic TiNi alloy with comparison to stainless steel 304.	2773-2783A
graded material. Effect of interfacial debonding and sliding on matrix crack initia-	2369-2376A	Dynamic fracture toughness of a Ti-45Al-1.6Mn alloy at high temperature.	3053-3061A
tion during isothermal fatigue of SCS-6/Ti-15-3 composites. Titanium base alloys, Diffusion	2637-2645A	Titanium compounds, Microstructure Evolution of texture in the $\beta(B2)$ phase of a two phase titanium	
Hydrogen diffusion coefficients in the titanium alloys IMI 834, Ti 10-2-3, Ti 21 S, and Alloy C.	1507-1517A	aluminide intermetallic alloy Ti-24Al-11Nb. Discussion of "Surface relief and the displacive transformation	2339-2350A
Titanium base alloys, Mechanical properties The fracture resistance of a binary TiAl alloy.	71-80A	to the lamellar microstructure in TiAl" and "Nanometer-scale, fully lamellar microstructure in an aged TiAl-based alloy". Author's reply to: Discussion of "Surface relief and the displa-	2377-2379A
Part II. Metallurgical factors governing the H-assisted integran- ular cracking of peak-aged Ti-3Al-8V-6Cr-4Mo-4Zr (Beta-C).	81-92A	cive transformation to the lamellar microstructure in TiAl" and "Nanometer-scale, fully lamellar microstructure in an aged	
Modeling thermomechanical fatigue life of high-temperature titanium alloy IMI 834.	431-444A	TiAl-based alloy". Interaction of deformation twin and 120°-rotational order fault	2379-2383A
Effect of mean stress (stress ratio) and aging on fatigue-crack growth in a metastable beta titanium alloy, Ti-10V-2Fe-3Al. Simulation of shear plugging through thin plates using the	703-714A	domain boundary in the lamellar structure of two-phase TiAl- based alloys.	2823-2834A
GRIM Eulerian hydrocode. Mechanical behavior of a fine-grained duplex γ-TiAl alloy.	853-860A 1007-1016A	Titanium compounds, Oxidation Diffusion of oxygen in the Al ₂ O ₃ oxidation product of TiAl ₃ .	3023-3028A
Effect of microstructure variations on the formation of deforma- tion-induced martensite and associated tensile properties in		Titanium compounds, Phase transformations Experimental investigation and thermodynamic calculation of	
a β metastable Ti alloy. Role of foreign-object damage on thresholds for high-cycle	1095-1106A	the Ti-Ni-Cu shape memory alloys. Titanium compounds, Powder technology	2423-2430A
fatigue in Ti-6Al-4V. The effect of impact damage on the room-temperature fatigue	1571-1583A	Modeling the reaction synthesis of shock-densified titanium-sil- icon powder mixture compacts.	307-316B
behvior of γ-TiAl. An investigation of the effect of fatigue deformation on the	1741-1752A	Synthesis of MoSi ₂ -TiSi ₂ pseudobinary alloys by reactive sin- tering.	747-753A
residual mechanical properties of Ti-6Al-4V ELI. Effects of microstructure on the short fatigue crack initiation	1937-1948A	Microstructural evolution in wire-drawn Ti-22Al-26Nb powder. Titanium diboride, Coatings	2931-2941A
and propagation characteristics of biomedical α/β titanium alloys.	1949-1958A	Mechanical properties of laser-deposited composite boride coating using nanoindentation.	401-408A
A comparison study of microstructure and mechanical properties of Ti-24AI-14Nb-3V-0.5Mo with and without Si.	2205-2217A	Elevated temperature oxidation of laser surface engineered composite boride coating on steel.	461-473A
Creep deformation of TiAl-Si alloys with aligned γ/α_2 lamellar microstructures. Cyclic deformation, dislocation structure, and internal fatigue	2463-2473A	Titanium diboride, Composite materials Particulate penetration into solid droplets.	387-396A
crack generation in a Ti-Fe-O alloy at liquid nitrogen temper- ature.	2793-2805A	Reaction steps in the combustion synthesis of NiAl/TiB ₂ com- posites.	433-438B
Constitutive properties of hard-alpha titanium. Dynamic fracture toughness of a Ti-45Al-1.6Mn alloy at high	3029-3040A	High-temperature fracture and fatigue-crack growth behavior of an XD gamma-based titanium aluminide intermetallic alloy.	1413-1423A
temperature. Titanium base alloys, Microstructure	3053-3061A	Microstructure and properties of in situ Al/TiB ₂ composite fabri- cated by in-melt reaction method.	1959-1964A
Microstructure-ultrasonic inspectability relationships in Ti6242: signal-to-noise in fine-grain-processed Ti62642.	2119-2125A	Titanium dioxide, Reactions (chemical) A model for the role of carbon on carbochlorination of TiO ₂ .	1439-1446B
Evolution of texture in the β(B2) phase of a two phase titanium aluminide intermetallic alloy Ti-24Al-11Nb.	2339-2350A	Titanium dioxide, Reduction (chemical) Reduction of titania by methane-hydrogen-argon gas mixture.	129-139B
Discussion of "Surface relief and the displacive transformation to the lamellar microstructure in TiAl" and "Nanometer-scale,		Titanium nitride, Composite materials The influence of reinforcement particle size distribution on the	
fully lamellar microstructure in an aged TiAl-based alloy". Author's reply to: Discussion of "Surface relief and the displa- cive transformation to the lamellar microstructure in TiAl" and	2377-2379A	mechanical behavior of a stainless steel/TiN composite. Titanium nitride, Impurities	309-318A
"Nanometer-scale, fully lamellar microstructure in an aged TiAl-based alloy".	2379-2383A	The mechanism of brittle fracture in a microalloyed steel. I. Inclusion-induced cleavage.	641-652A
Interaction of deformation twin and 120°-rotational order fault domain boundary in the lamellar structure of two-phase TiAl-		The mechanism of brittle fracture in a microalloyed steel. II. Mechanistic modeling.	653-667A
based alloys.	2823-2834A	Tolerances	

Length change and deformation of powder injection-molded compacts during solvent debinding.	1473-1478A	model in WC-25% Co alloy. Tungsten compounds, Composite materials	1925-1935A
Tool steels, Coatings On the evolution of porosity in spray-deposited tool steels.	723-733A	Development of a thermodynamic database for cemented car- bides for design and processing simulations.	615-619B
Tool steels, Heat treatment Theoretical and experimental investigations of electron beam surface remelting and alloying.	1405-1417B	Turbine blades, Coating Nondestructive evaluation of residual stress for thermal barrier coated turbine blades by Cr ²⁺ photoluminescence	
Tool steels, Mechanical properties Influence of alloying elements on the strain rate and tempera- ture dependence of the flow stress of steels.	825-830A	piezospectroscopy. Turbine blades, Directional solidification Thermal and grain-structure simulation in a land-based turbine	2388-2391A
Tool steels, Phase transformations Quantitative approach to coagulation, coalescence, and		blade directionally solidified with the liquid metal cooling process.	1293-1304B
polygonization of carbides in the NCWV/D3 tool steel. Torsion, Processing effects	2661-2665A	Turbine blades, Mechanical properties The effect of impact damage on the room-temperature fatigue	1741 17504
Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys	2475-2489A	behvior of γ-TiAl. On the primary creep of CMSX-4 superalloy single crystals.	1741-1752A 2219-2228A
fabricated by mechanical alloying. Toughness The role of plasticity in bimaterial fracture with ductile interlay-	2475-2409A	Turbulence Melt flow control in a multistrand tundish using a turbulence inhibitor.	1505-1515B
ers. Toughness, Alloying effects	863-872A	Turbulent flow Modeling of turbuelent flow in electromagnetically levitated	
Effects of boron doping on the grain-growth kinetics and mechanical properties of γ/γ' nickel-aluminum alloys.	3179-3186A	metal droplets. Twin roll casting	171-178B
Toughness, Composition effects Characterization of Mo-SiO ₂ functionally graded materials.	299-308A	Measurements, simulations, and analyses of instantaneous heat fluxes from solidifying steels to the surfaces of twin roll	1031-1047B
The influence of reinforcement particle size distribution on the mechanical behavior of a stainless steel/TiN composite.	309-318A	casters and of aluminum to plasma-coated metal substrates. Twinning The desired of law microstation angles formed during above.	1031-104/B
Transgranular fracture A model for creep-fatigue interaction in terms of crack-tip stress relaxation.	1761-1775A	Island grains of low misorientation angles formed during abnor- mal grain growth in Cu. The influence of crystallographic texture and interstitial impuri-	1489-1491A
Transgranular fracture, Alloying effects Effects of boron doping on the grain-growth kinetics and		ties on the mechanical behavior of zirconium. Interaction of deformation twin and 120"-rotational order fault domain boundary in the lamellar structure of two-phase TiAl-	1997-2003A
mechanical properties of γ/γ nickel-aluminum alloys. Transgranular fracture, Processing effects	3179-3186A	based alloys. Twinning, Deformation effects	2823-2834A
Preparation and mechanical properties of highly densified nanocrystalline Al. Transition joints, Physical properties	1017-1024A	Investigation on the cold deformation strengthening mechanism in MP 159 alloy.	5-13A
Unsteady Marangoni flow in a molten pool when welding dis- similar metals. Transition metal compounds, Electrochemistry	1387-1403B	Ultrasonic testing Microstructure-ultrasonic inspectability relationships in Ti6242: signal-to-noise in fine-grain-processed Ti62642.	2119-2125A
Prediction of properties of intermetallics using a chemical bonding model.	603-607B	Vacuum oxygen decarburizing Modeling of the vacuum oxygen decarburization refining pro- cess.	197-206B
Tribology Experimental studies on tribological properties of pseudoelastic TiNi alloy with comparison to stainless steel 304.	2773-2783A	Vanadium, Composite materials An investigation of the effects of ductile-layer thickness on the	1385-1399A
Tribology, Processing effects Tribological properties of centrifugally cast copper alloy-graph-		fracture behavior of nickel aluminide microlaminates. Vanadium, Ternary systems The 900°C isothermal section of Ti-Ni-V alloys.	1679-1682A
ite particle composite. TTT curves	1283-1293A	Vanadium carbide, Alloying additive Microstructural analysis of vanadium carbide/steel surface-	1079-1002A
Mechanical properties, microstructural stability and kinetics of σ-phase formation in 29Cr-6Ni-2Mo-0.38N superduplex stainless steel.	35-45A	alloyed materials fabricated by high-energy electron-beam irradiation.	2849-2855A
Modeling of inclusion growth and dissolution in the weld pool. Application of, and precautions for the use of, the Rule of Addi-	161-169B	Viscosity Viscosity of a CaO-MgO-Al ₂ O ₃ -SiO ₂ melt containing spinel par-	07.4040
tivity in phase transformation. Tubes, Mechanical properties	675-682B	ticles at 1646K. Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing.	97-104B 105-109B
Anisotropy of yielding in a Zr-2.5Nb pressure tube material. Strain-localization in sheet metal containing a geometric defect.	409-420A 1883-1886A	Estimation of liquidus temperatures for multicomponent sili- cates from activation energies for viscous flow.	111-119B
Tubes, Quality control A process model for the heat-affected zone microstructure evo-		Viscous flow Estimation of liquidus temperatures for multicomponent sili- cates from activation energies for viscous flow.	111-119B
lution in duplex stainless steel weldments. II. Application to electron beam welding.	1035-1048A	Volatility Quantifying the heats of coal devolatilization.	1125-1131B
Tungsten, Alloying additive Role of Mo and W during sensitization of superaustenitic stain- less steel—crystallography and composition of precipitates.	1893-1905A	Volume fraction Effect of fiber volume fraction on the fracture behavior of Nb-1	
Tungsten Bonding		wt.% Zr/218W composites at elevated temperatures. Influence of microstructure on the flow behavior of duplex	873-887A
The role of plasticity in bimaterial fracture with ductile interlay-			
The role of plasticity in bimaterial fracture with ductile interlayers. Tungsten, Composite materials	863-872A	stainless steels at high temperatures. Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase.	1353-1364A
ers. Tungsten, Composite materials Reactive infiltration processing and secondary compressive creep of NiAI and NiAI-W composites.	863-872A 781-792A	Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. The effect of processing and microstructure development on	1753-1760A
ers. Tungsten, Composite materials Reactive infiltration processing and secondary compressive creep of NiAl and NiAl-W composites. Effect of fiber volume fraction on the fracture behavior of Nb-1 wt.% Zr/218W composites at elevated temperatures.		Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8 wt.% Li AF/C-458 AI-Li-C-X alloys.	
ers. Tungsten, Composite materials Heactive infiltration processing and secondary compressive creep of NiAI and NiAI-W composites. Effect of fiber volume fraction on the fracture behavior of Nb-1 wt.% Zr/218W composites at elevated temperatures. Design and fabrication of W-Mo-Ti-TiAI-AI system functionally graded material. Tungsten base alloys, Mechanical properties	781-792A	Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8 wt.% Li AF/C-458 AI-Li-C-X alloys. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading.	1753-1760A
ers. Tungsten, Composite materials Reactive infiltration processing and secondary compressive creep of NiAI and NiAI-W composites. Effect of fiber volume fraction on the fracture behavior of Nb-1 wt.% Zr/218W composites at elevated temperatures. Design and fabrication of W-Mo-Ti-TiAI-AI system functionally graded material. Tungsten base alloys, Mechanical properties Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys	781-792A 873-887A 2369-2376A	Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8 wt.% Li AF/C-458 AI-Li-C-X alloys. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle-size distribution on the properties of high-vol-	1753-1760A 1965-1976A 2083-2092A
ers. Tungsten, Composite materials Reactive infiltration processing and secondary compressive creep of NiAl and NiAl-W composites. Effect of fiber volume fraction on the fracture behavior of Nb-1 wt.% Zr/218W composites at elevated temperatures. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material. Tungsten base alloys, Mechanical properties Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying. Tungsten base alloys, Phase transformations The effect of gravity on solution-reprecipitation during liquid	781-792A 873-887A 2369-2376A 2475-2489A	Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8 wt.% Li AF/C-458 Al-Li-C-X alloys. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle-size distribution on the properties of high-volume-fraction SiC _p -Al-based composites. Strength and ductifity of heavily drawn bundled Cu-Nb filamentary microcomposite wires with various Nb contents. Influence of elastic inclusion morphology and matrix hardening	1753-1760A 1965-1976A 2083-2092A 2351-2359A 2457-2462A
ers. Tungsten, Composite materials Reactive infiltration processing and secondary compressive creep of NiAl and NiAl-W composites. Effect of fiber volume fraction on the fracture behavior of Nb-1 wt. % Zr/218W composites at elevated temperatures. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material. Tungsten base alloys, Mechanical properties Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying. Tungsten base alloys, Phase transformations The effect of gravity on solution-reprecipitation during liquid phase sintering. Tungsten base alloys, Powder technology	781-792A 873-887A 2369-2376A 2475-2489A 397-400A	Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8 wt.% Li AF/C-458 AI-Li-C-X alloys. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle-size distribution on the properties of high-volume-fraction SiC _p -Al-based composites. Strength and ductifity of heavily drawn bundled Cu-Nb filamentary microcomposite wires with various Nb contents. Influence of elastic inclusion morphology and matrix hardening behavior on Bauschinger effect in metal matrix composites. Volume fraction, Welding effects Correlation of the microstructure and fracture toughness of the	1753-1760A 1965-1976A 2083-2092A 2351-2359A 2457-2462A 2943-2948A
ers. Tungsten, Composite materials Reactive infiltration processing and secondary compressive creep of NiAl and NiAl-W composites. Effect of fiber volume fraction on the fracture behavior of Nb-1 wt. % Zr/218W composites at elevated temperatures. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material. Tungsten base alloys, Mechanical properties Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying. Tungsten base alloys, Phase transformations The effect of gravity on solution-reprecipitation during liquid phase sintering. Tungsten base alloys, Powder technology Microstructural parameters related to liquid-phase sintering. Simulation of percolation structure of grain bonding in liquid phase sintering by three-dimensional grain structure recon-	781-792A 873-887A 2369-2376A 2475-2489A 397-400A 2607-2614A	Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8 wt.% Li AF/C-458 AI-Li-C-X alloys. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle-size distribution on the properties of high-volume-fraction SiC _p -AI-based composites. Strength and ductlifity of heavily drawn bundled Cu-Nb filamentary microcomposite wires with various Nb contents. Influence of elastic inclusion morphology and matrix hardening behavior on Bauschinger effect in metal matrix composites. Volume fraction, Welding effects Correlation of the microstructure and fracture toughness of the heat-affected zones of an SA 508 steel.	1753-1760A 1965-1976A 2083-2092A 2351-2359A 2457-2462A 2943-2948A 1107-1119A
ers. Tungsten, Composite materials Reactive infiltration processing and secondary compressive creep of NiAl and NiAl-W composites. Effect of fiber volume fraction on the fracture behavior of Nb-1 wt. % Zr/218W composites at elevated temperatures. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material. Tungsten base alloys, Mechanical properties Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying. Tungsten base alloys, Phase transformations The effect of gravity on solution-reprecipitation during liquid phase sintering. Tungsten base alloys, Powder technology Microstructural parameters related to liquid-phase sintering. Simulation of percolation structure of grain bonding in liquid-phase sintering by three-dimensional grain structure reconstruction. Tungsten carbide, Coatings	781-792A 873-887A 2369-2376A 2475-2489A 397-400A 2607-2614A 3187-3193A	Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt. % Li AF/C-489 and 1.8 wt. % Li AF/C-458 Al-Li-C-X alloys. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle-size distribution on the properties of high-volume-fraction SiC ₂ -Al-based composites. Strength and ductility of heavily drawn bundled Cu-Nb filamentary microcomposite wires with various Nb contents. Influence of elastic inclusion morphology and matrix hardening behavior on Bauschinger effect in metal matrix composites. Volume fraction, Welding effects Correlation of the microstructure and fracture toughness of the heat-affected zones of an SA 508 steel. Waste disposal Phase diagram study for the alkali metal-oxychloride system. Grain-boundary chemistry and integranular corrosion in alloy	1753-1760A 1965-1976A 2083-2092A 2351-2359A 2457-2462A 2943-2948A 1107-1119A 795-799B
ers. Tungsten, Composite materials Reactive infiltration processing and secondary compressive creep of NiAI and NiAI-W composites. Effect of fiber volume fraction on the fracture behavior of Nb-1 wt.% Zr/218W composites at elevated temperatures. Design and fabrication of W-Mo-Ti-TiAI-AI system functionally graded material. Tungsten base alloys, Mechanical properties Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying. Tungsten base alloys, Phase transformations The effect of gravity on solution-reprecipitation during liquid phase sintering. Tungsten base alloys, Powder technology Microstructural parameters related to liquid-phase sintering. Simulation of percolation structure of grain bonding in liquid-phase sintering by three-dimensional grain structure reconstruction.	781-792A 873-887A 2369-2376A 2475-2489A 397-400A 2607-2614A 3187-3193A	Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8 wt.% Li AF/C-458 AI-Li-C-X alloys. Fatigue crack growth resistance of unidirectional fiber-reinforced titanium metal-matrix composites under transverse loading. Effect of particle-size distribution on the properties of high-volume-fraction SiC _p -Al-based composites. Strength and ductifity of heavily drawn bundled Cu-Nb filamentary microcomposite wires with various Nb contents. Influence of elastic inclusion morphology and matrix hardening behavior on Bauschinger effect in metal matrix composites. Volume fraction, Welding effects Correlation of the microstructure and fracture toughness of the heat-affected zones of an SA 508 steel. Waste disposal Phase diagram study for the alkali metal-oxychloride system.	1753-1760A 1965-1976A 2083-2092A 2351-2359A 2457-2462A 2943-2948A 1107-1119A

2000		ZINC,	Solubility
alloys.	3091-3099A	Wetting, Temperature effects	
Wear resistance Experimental studies on tribological properties of pseudoelas- tic TiNi alloy with comparison to stainless steel 304.	2773-2783A	Dynamic reactive wetting and its role in hot dip coating of steel sheet with an Al-Zn-Si alloy. Whisker composites, Thermal properties	1069-1079B
Wear resistance, Coating effects Correlation of microstructure with the wear resistance and frac-		Thermal expansion behavior of silver matrix composites. White iron, Crystal growth	291-298A
ture toughness of hardfacing alloys reinforced with complex carbides. Surface amorphous and crystalline microstructure by alloying	3041-3052A	A two-dimensional model for the description of the columnar- to-equiaxed transition in competing gray and white iron eutectics and its application to calender rolls.	2059-2068A
zirconium using Nd:YAG pulsed laser. Wear resistance, Processing effects Tribological properties of centrifugally cast copper alloy-graph-	3123-3127A	White iron, Heat treatment The effect of rolling on graphitization characteristics of strip	075 004 6
ite particle composite. Weld metal, Mechanical properties	1283-1293A	cast Fe-C-Si white cast iron. Widmanstatten structure Early-stage Widmanstätten growth of the γ phase in a duplex	275-281A
A Bayesian analysis of the influence of neutron irradiation on embrittlement in ferritic submerged arc weld metal.	445-459A	steel. An investigation of the effect of fatigue deformation on the	15-19A
Weld metal, Microstructure Microstructural characterization and analysis of inclusions in C- Min steel and weld metals.	615-628A	residual mechanical properties of Ti-6Al-4V ELI. Effects of microstructure on the short fatigue crack initiation and propagation characteristics of biomedical α/β titanium	1937-1948A
Weld metal, Phase transformations Microstructural evolution in ultra-low-carbon steel weldments. I. Controlled thermal cycling and continuous cooling transfor-		alloys. Wire, Casting A comparative study of the microstructures observed in stati-	1949-1958A
mation diagram of the weld metal. Weld metal pool	2145-2153A	cally cast and continuously cast Bi-In-Sn ternary eutectic alloy.	239-248A
Mathematical modeling of the dynamic behavior of gas tung- sten arc weld pools. Weld metal pool, Solubility	1465-1473B	Wire, Mechanical properties Strength and ductility of heavily drawn bundled Cu-Nb filamentary microcomposite wires with various Nb contents.	2457-2462A
Modeling of inclusion growth and dissolution in the weld pool. Welded joints, Mechanical properties	161-169B	Wire drawing Microstructural evolution in wire-drawn Ti-22Al-26Nb powder.	2931-2941A
A Bayesian analysis of the influence of neutron irradiation on embrittlement in ferritic submerged arc weld metal. The mechanism of brittle fracture in a microalloyed steel. I.	445-459A	Workability, Composition effects Effect of volume fraction of SiC _p reinforcement on the processing maps for 2124 Al matrix composites.	629-639A
Inclusion-induced cleavage. The mechanism of brittle fracture in a microalloyed steel. II. Mechanistic modeling.	641-652A	Yield strength Anisotropy of yielding in a Zr-2.5Nb pressure tube material.	409-420A
Correlation of the microstructure and fracture toughness of the heat-affected zones of an SA 508 steel.	653-667A 1107-1119A	Comparison between high and low strain-rate deformation of tantalum. Effect of microstructure variations on the formation of deforma-	815-823A
Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals. Friction-stir welding effects on microstructure and fatigue of	1175-1185A	tion-induced martensite and associated tensile properties in a β metastable Ti alloy. The mechanical threshold stress constitutive-strength model	1095-1106A
aluminum alloy 7050-T7451. Characteristics of a pulsed-current, vertical-up gas metal arc weld in steel.	2181-2192A 2247-2259A	description of HY-100 steel. Dynamic materials testing, texture, and yield-surface calcula-	1985-1996A
Improved microstructure and properties of 6061 aluminum alloy weldments using a double-sided arc welding process.	2537-2543A	tion of an automotive sheet steel. Analysis and prevention of yield strength drop during spiral pip- ing of two high-strength API-X70 steels.	2439-2448A 2669-2674A
Weld metal ductility in aluminum tailor welded blanks. Fracture mechanism and toughness of the welding heat- affected zone in structural steel under static and dynamic loading.	2755-2763A 2785-2791A	Yield strength, Alloying effects A comparison study of microstructure and mechanical properties of Ti-24Al-14Nb-3V-0.5Mo with and without Si.	2205-2217A
Relation between microstructure, composition, and hot crack- ing in Ti-stabilized austenitic stainless steel weldments.	3109-3122A	Yield strength, Composition effects Microstructure and properties of in situ Al/TiB ₂ composite fabri-	
Welded joints, Microstructure Three-dimensional Monte Carlo simulation of grain growth in the heat-affected zone of a 2.25Cr-1Mo steel weld.	529-536B	cated by in-melt reaction method. Strength and ductility of heavily drawn bundled Cu-Nb filamentary microcomposite wires with various Nb contents.	2457-2462A
Microstructural characterization and analysis of inclusions in C- Mn steel and weld metals. Dispersoid-free zones in the heat-affected zone of aluminum	615-628A	Influence of elastic inclusion morphology and matrix hardening behavior on Bauschinger effect in metal matrix composites. Constitutive properties of hard-alpha titanium.	2943-2948A 3029-3040A
alloy welds. Welded joints, Oxidation	1453-1459A	Yield strength, Deformation effects The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix compos-	
Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments. Welded joints, Phase transformations	3101-3108A	ites. Load sharing between austenite and ferrite in a duplex stain-	531-540A
Micróstructural evolution in ultra-low-carbon steel weldments. I. Controlled thermal cycling and continuous cooling transfor- mation diagram of the weld metal.	2145-2153A	less steel during cyclic loading. Yield strength, Heating effects A model for predicting the effect of deformation after solution	1557-1570A
Welded joints, Physical properties Unsteady Marangoni flow in a molten pool when welding dis-		treatment on the subsequent artificial aging behavior of AA7030 and AA7108 alloys. Yield strength, Microstructural effects	2327-2338A
similar metals. Welded joints, Quality control Modeling of inclusion growth and dissolution in the weld pool.	1387-1403B 161-169B	Impact fracture toughness of porous iron and high-strength steels.	1443-1451A
A process model for the heat-affected zone microstructure evo- lution in duplex stainless steel weldments. II. Application to electron beam welding.	1035-1048A	The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt.% Li AF/C-489 and 1.8 wt.% Li AF/C-458 Al-Li-C-X alloys.	1965-1976A
A process model for the distortion induced by the electron- beam welding of a nickel-based superalloy. Welded joints, Thermal properties	2261-2273A	Yield strength, Processing effects Preparation and mechanical properties of highly densified nanocrystalline Al.	1017-1024A
Thermal analysis of the arc welding process. I. General solutions.	1353-1370B	Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique.	1873-1881A
Welding parameters Improved microstructure and properties of 6061 aluminum alloy weldments using a double-sided arc welding process.	2537-2543A	Yield strength, Temperature effects Influence of alloying elements on the strain rate and temperature dependence of the flow stress of steels. Mechanical behavior of a fine-grained duplex γ-TiAl alloy.	825-830A 1007-1016A
Weldments, Oxidation Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments.	3101-3108A	Yttrium, Dopants Formation of pegs during high-temperature oxidation of Fe ₃ Al containing yttrium.	1685-1687A
Weldments, Phase transformations Microstructural evolution in ultra-low-carbon steel weldments. I. Controlled thermal cycling and continuous cooling transformation diagram of the weld metal.	2145-2153A	Yttrium compounds, Electrochemistry Thermodynamic and nonstoichiometric behavior of promising Hi-Tc cuprate systems via electromotive force measure-	661-666B
Weldments, Quality control Modeling of inclusion growth and dissolution in the weld pool. A process model for the heat-affected zone microstructure evo-	161-169B	ments: a short review. Zinc, Extraction Coupled experimental and thermodynamic modeling studies	
lution in duplex stainless steel weldments. II. Application to electron beam welding.	1035-1048A	for metallurgical smelting and coal combustion slag systems. Zinc, Reactions (chemical)	621-630B 419-424B
Wetting Optimum parameters for wetting silicon carbide by aluminum alloys.	565-573A	Thermodynamic study of zinc-rich zinc-sodium alloys. Zinc, Solubility The effect of lead on the activity of sodium in liquid zinc.	414-418B
		,	

Zinc base alloys, Coatings

Volume 31

475-485A	Zirconium base alloys, Mechanical properties Anisotropy of yielding in a Zr-2.5Nb pressure tube material.	409-420A
1833-1842A	Anisotropic behavior and rupture of hydrided zircaloy-4 sneets. Strain-localization in sheet metal containing a geometric defect.	679-690A 1883-1886A
163-172A	Zirconium base alloys, Microstructure Microstructural studies on lattice imperfections in deformed zir-	
349-354A	Zirconium dioxide, Composite materials	2405-2410A
2739-2745A	Further discussion of "Particle engulfment and pushing by solidifying interfaces. II. Microgravity experiments and theo- retical analysis".	1695-1700A
2739-2745A	Authors' reply to: Further discussion of "Particle engulfment and pushing by solidifying interfaces: II. Microgravity experi- ments and theoretical analysis".	1700-1704A
349-354A	Interfacial modification and impact properties of Nb/MoSi ₂ laminate composites by the addition of ZrO ₂ , NbSi ₂ , and SiC particles.	2075-2081A
755-766B	A dynamic model for the interaction between a solid particle and an advancing solid/liquid interface.	2559-2568A
2895-2906A	Zirconium dioxide, End uses	
	slag composition and transport properties.	733-753B
3123-3127A	Zirconium dioxide, Impurities	
1997-2003A	ZrO ₂ and MgO in Fe-10 mass% Ni alloy.	1213-1223A
277-284B	Zirconium dioxide, Reactions (chemical) Phase diagram for the system CaO-Al ₂ O ₃ -ZrO ₂ .	25-33B
	1833-1842A 163-172A 349-354A 2739-2745A 2739-2745A 349-354A 755-766B 2895-2906A 3123-3127A 1997-2003A	Anisotropy of yielding in a Zr-2.5Nb pressure tube material. Anisotropic behavior and rupture of hydrided Zircaloy-4 sheets. Strain-localization in sheet metal containing a geometric defect. Zirconium base alloys, Microstructure Microstructural studies on lattice imperfections in deformed zirconium-base alloys by x-ray diffraction. Zirconium dioxide, Composite materials Further discussion of "Particle engulfment and pushing by solidifying interfaces. II. Microgravity experiments and theoretical analysis". Authors' reply to: Further discussion of "Particle engulfment and pushing by solidifying interfaces: II. Microgravity experiments and theoretical analysis". Interfacial modification and impact properties of Nb/MoSi₂ laminate composites by the addition of ZrO₂, NbSi₂, and SiC particles. A dynamic model for the interaction between a solid particle and an advancing solid/liquid interface. Zirconium dioxide, End uses Solid-state amperometric sensor for the in-situ monitoring of slag composition and transport properties. Zirconium dioxide, Impurities Grain-growth-inhibiting effects of primary inclusion particles of ZrO₂ and MgO in Fe-10 mass% Ni alloy. Zirconium dioxide, Reactions (chemical)

