Chapter 7 Hypothesis Testing

Daxiang Na (那达翔)

2022 - 10 - 15

Contents

1	Hypothesis Testing 假设检验 1.1 Definition and Concepts 定义与概念	1 1 2		
2	Hypothesis Testing and Confidence Interval 假设检验与置信区间 2.1 Mathematically equivalent	3		
3	Type I and Type II errors —类错误与二类错误3.1 Definition			
4	Power 4.1 Definition 4.2 Calculation			
1	Hypothesis Testing 假设检验			
1.	1 Definition and Concepts 定义与概念			

- 1. null hypothesis, H_0 : "no change"
- 2. We believe the null hypothesis to be true unless overwhelming evidence exists to the contrary ("innocent until proven guilty")
- 3. The alternative hypothesis, H_1 , or H_A (in this class, we all use H_1), is a second statement that contradicts H_0 .
- 4. Either H_0 or H_1 must be true (mutually exclusive, exhaustive).
- 5. We need overwhelming evidence to conclude that H_1 is true. That is why the alpha value, or the "threshold", should be very low, so the chance that H_0 is true is very low.

1.2 Calculation 计算

- 1. We calculate the probability of H_0 is true, which is the probability that you get a mean value from samples that is as extreme or more extreme than \bar{X} if you assume that H_0 is true.
- 2. For now, we assume the population show normal distribution.
- 3. z-test:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

4. calculating the p-values for z-tests:

p-values for z-tests

- We calculate our p-value as follows, for each of the three types of tests (z-tests):
- One-sided, lower-tailed hypothesis ($H_1: \mu < \mu_0$):
 - pnorm(z)
- One-sided, upper-tailed hypothesis ($H_1: \mu > \mu_0$):
 - 1-pnorm(z)
- Two-sided hypothesis ($H_1: \mu \neq \mu_0$):
 - If $z \le 0$: 2*pnorm(z)
 - If z > 0: 2*(1-pnorm(z))

Notes for two sided hypothesis:

when z < 0, you get probability (pnorm(z)) like this:

when z > 0, you get probability (1 - pnorm(z)) like this:

2 Hypothesis Testing and Confidence Interval 假设检验与置信区间

2.1 Mathematically equivalent.

3 Type I and Type II errors 一类错误与二类错误

3.1 Definition

	$\mu = \mu_0$	$\mu \neq \mu_0$
Fail to reject	Correct	Incorrect(Type II)
Reject	Incorrect(Type I)	Correct

3.1.1 Type I error 一类错误

- Type I error occurs if we reject a true null hypothesis ("false positive")
 - $-H_0: \mu = \mu_0$ is true, but we reject it.
- The chance of Type I error is $Pr(reject H_0|H_0 \text{ is true})$
- The significance level α is the probability of making a type I error. Thus we decide what α is for our best

3.1.2 Type II error 二类错误

- Type II error occurs if we fail to reject a false null hypothesis ("false negative")
 - $H_0: \mu = \mu_0$ is false, but we fail to reject it.
- The probability of making a type II error is denoted β
- The chance of Type II error is $Pr(do \text{ not reject } H_0|H_0 \text{ is false})$

3.2 Illustrated

Dr.Kahng's illustrations shown as below:

4 Power

4.1 Definition

• The power of a test is equal to $1-\beta$

4.2 Calculation