Deep Learning based Recommender System

Jakub Kuciński

Why would we use Deep Neural Networks for recommendations?

- Suitable inductive biases to the input data type
- Can adapt or use advances from other domains
- End-to-end differentiable
- Nonlinear transformations
- Representation learning
- Sequence modelling
- Flexibility

Classic Factorization Machines

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i \, x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle \, x_i \, x_j$$

Classic Factorization Machines

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle x_{i} x_{j}$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle x_{i} x_{j} - \frac{1}{2} \sum_{i=1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle x_{i} x_{i}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{f=1}^{k} v_{i,f} v_{j,f} x_{i} x_{j} - \sum_{i=1}^{n} \sum_{f=1}^{k} v_{i,f} v_{i,f} x_{i} x_{i} \right)$$

$$= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right) \left(\sum_{j=1}^{n} v_{j,f} x_{j} \right) - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right)$$

$$= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right)^{2} - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right)$$

$$\hat{y}_{FM}(\mathbf{x}) = w_0 + \sum_{i=1}^{\infty} w_i x_i + \sum_{i=1}^{\infty} j$$

$$\frac{\mathbf{x}_{i=1}^{\infty} \mathbf{y}_{i}}{\mathbf{x}_{i}} + \sum_{i=1}^{\infty} j$$

$$\frac{\mathbf{x}_{i}}{\mathbf{x}_{i}} + \sum_{i=1}^{\infty} j$$

$$\frac{\mathbf{x}_$$

$$\hat{y}_{FM}(\mathbf{x}) = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathbf{v}_i^T \mathbf{v}_j \cdot x_i x_j \qquad \hat{y}_{NFM}(\mathbf{x}) = w_0 + \sum_{i=1}^{n} w_i x_i + f(\mathbf{x})$$

Prediction Score

Hidden Layers

B-Interaction Layer

Embedding Layer

Input Feature Vector

.....

 $f(\mathbf{x}) = \mathbf{h}^T \mathbf{z}_I$

 $\mathbf{z}_1 = \sigma_1(\mathbf{W}_1 f_{BI}(\mathcal{V}_{\mathcal{X}}) + \mathbf{b}_1),$

 $\mathbf{z}_2 = \sigma_2(\mathbf{W}_2\mathbf{z}_1 + \mathbf{b}_2),$

 $\mathbf{z}_{I} = \sigma_{I}(\mathbf{W}_{I}\mathbf{z}_{I-1} + \mathbf{b}_{I}),$

 $f_{BI}(\mathcal{V}_x) = \sum_{i=1}^n \sum_{j=i+1}^n x_i \mathbf{v}_i \odot x_j \mathbf{v}_j$

 $\mathcal{V}_{\mathbf{x}} = \{x_i \mathbf{v}_i\} \text{ where } x_i \neq 0$

 $f_{BI}(\mathcal{V}_x) = \frac{1}{2} \left| \left(\sum_{i=1}^n x_i \mathbf{v}_i \right)^2 - \sum_{i=1}^n (x_i \mathbf{v}_i)^2 \right|$

$$\hat{y}_{NFM-0} = w_0 + \sum_{i=1}^n w_i x_i + \mathbf{h}^T \sum_{i=1}^n \sum_{j=i+1}^n x_i \mathbf{v}_i \odot x_j \mathbf{v}_j$$

$$= w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \sum_{f=1}^k h_f v_{if} v_{jf} \cdot x_i x_j.$$

$$\hat{y}_{FM}(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \mathbf{v}_i^T \mathbf{v}_j \cdot x_i x_j$$

$$L_{reg} = \sum_{\mathbf{x} \in \mathcal{X}} (\hat{y}(\mathbf{x}) - y(\mathbf{x}))^2,$$

Dataset	Instance#	Feature#	User#	Item#
Frappe	288,609	5, 382	957	4,082
MovieLens	2,006,859	90, 445	17,045	23,743

Table 2: NFM w.r.t. different number of hidden layers.

Methods	Frappe	MovieLens		
NFM-0	0.3562	0.4901		
NFM-1	0.3133	0.4646		
NFM-2	0.3193	0.4681		
NFM-3	0.3219	0.4752		
NFM-4	0.3202	0.4703		

		Frappe				MovieLens			
	Factor	rs=128	Factors=256		Factors=128		Factors=256		
Method	Param#	RMSE	Param#	RMSE	Param#	RMSE	Param#	RMSE	
LibFM [28]	0.69M	0.3437	1.38M	0.3385	11.67M	0.4793	23.24M	0.4735	
HOFM	1.38M	0.3405	2.76M	0.3331	23.24M	0.4752	46.40M	0.4636	
Wide&Deep [9]	2.66M	0.3621	4.66M	0.3661	12.72M	0.5323	24.69M	0.5313	
Wide&Deep (pre-train)	2.66M	0.3311	4.66M	0.3246	12.72M	0.4595	24.69M	0.4512	
DeepCross [31]	4.47M	0.4025	8.93M	0.4071	12.71M	0.5885	25.42M	0.5907	
DeepCross (pre-train)	4.47M	0.3388	8.93M	0.3548	12.71M	0.5084	25.42M	0.5130	
NFM	0.71M	0.3127**	1.45M	0.3095**	11.68M	0.4557*	23.31M	0.4443*	

$$f_{BI}(\mathcal{V}_x) = \sum_{i=1}^n \sum_{j=i+1}^n x_i \mathbf{v}_i \odot x_j \mathbf{v}_j$$

$$f_{Att}(f_{PI}(\mathcal{E})) = \sum_{(i,j)\in\mathcal{R}_x} a_{ij}(\mathbf{v}_i \odot \mathbf{v}_j) x_i x_j$$

$$f_{Att}(f_{PI}(\mathcal{E})) = \sum_{(i,j)\in\mathcal{R}_x} a_{ij}(\mathbf{v}_i \odot \mathbf{v}_j) x_i x_j$$

$$a'_{ij} = \mathbf{h}^T ReLU(\mathbf{W}(\mathbf{v}_i \odot \mathbf{v}_j) x_i x_j + \mathbf{b}),$$

$$a_{ij} = \frac{\exp(a'_{ij})}{\sum_{(i,j) \in \mathcal{R}_x} \exp(a'_{ij})},$$

$$L = \sum_{x \in \mathcal{T}} (\hat{y}_{AFM}(\mathbf{x}) - y(\mathbf{x}))^2 + \lambda ||\mathbf{W}||^2$$

Table 2: Test error and number of parameters of different methods on embedding size 256. M denotes "million".

	Fraj	ppe	MovieLens		
Method	Param#	RMSE	Param#	RMSE	
LibFM	1.38M	0.3385	23.24M	0.4735	
HOFM	2.76M	0.3331	46.40M	0.4636	
Wide&Deep	4.66M	0.3246	24.69M	0.4512	
DeepCross	8.93M	0.3548	25.42M	0.5130	
AFM	1.45M	0.3102	23.26M	0.4325	

	Frappe				MovieLens			
	Factor	rs=128	Factors=256		Factors=128		Factors=256	
Method	Param#	RMSE	Param#	RMSE	Param#	RMSE	Param#	RMSE
NFM	0.71M	0.3127**	1.45M	0.3095**	11.68M	0.4557*	23.31M	0.4443*

Item2Vec

$$\frac{1}{K} \sum_{i=1}^{K} \sum_{-c \le j \le c, j \ne 0} \log p(w_{i+j} | w_i)$$

$$p(w_j \mid w_i) = \frac{\exp(u_i^T v_j)}{\sum_{k \in I_W} \exp(u_i^T v_k)}$$

$$p(w_j \mid w_i) = \sigma(u_i^T v_j) \prod_{k=1}^N \sigma(-u_i^T v_k)$$

$$p(discard \mid w) = 1 - \sqrt{\frac{\rho}{f(w)}}$$

$$\frac{1}{K} \sum_{i=1}^{K} \sum_{j \neq i}^{K} \log p(w_j | w_i)$$

Item2Vec

Fig.2: t-SNE embedding for the item vectors produced by item2vec (a) and SVD (b). The items are colored according to a web retrieved genre metadata.

TABLE 2: A COMPARISON BETWEEN SVD AND ITEM2VEC ON GENRE CLASSIFICATION TASK FOR VARIOUS SIZES OF TOP POPULAR ARTIST SETS

Top (q) popular artists	SVD accuracy	item2vec accuracy
2.5k	85%	86.4%
5k	83.4%	84.2%
10k	80.2%	82%
15k	76.8%	79.5%
20k	73.8%	77.9%
10k unpopular (see text)	58.4%	68%

$$(u_{l_1}, \dots, u_{l_{j-1}}) \rightarrow \underbrace{ \begin{array}{c} \text{Context-Target} \\ v_{l_j} \end{array} }_{\text{Attention} \times N} \rightarrow (a_{j-1}^1, \dots, a_{j-1}^N) \rightarrow \underbrace{ \begin{array}{c} \text{Multi} \\ \text{Attention} \end{array} }_{\text{Function}} \rightarrow \text{Score}$$

$$x = (l_1, ..., l_K)$$

$$x_{1:j-1} = (l_1, ..., l_{j-1})$$

$$\alpha_{jm} = \frac{\exp(h(A_c u_{l_m}, A_t v_{l_j}))}{\sum_{n=1}^{j-1} \exp(h(A_c u_{l_n}, A_t v_{l_j}))}$$

$$a_{j-1} = \sum_{m=1}^{j-1} \alpha_{jm} B_c u_{l_m}$$

$$h(u_i, v_j) = \frac{u_i^T v_j}{|u_i||u_j|}.$$

$$(u_{l_1}, \dots, u_{l_{j-1}}) \rightarrow \text{Context-Target} \\ v_{l_j} \rightarrow \text{Attention} \times N \rightarrow (a_{j-1}^1, \dots, a_{j-1}^N) \rightarrow \text{Multi} \\ a_{j-1} = \sum_{m=1}^{j-1} \alpha_{jm} B_c u_{l_m} \qquad w_{j-1} = \left[(a_{j-1}^1)^T, \dots, (a_{j-1}^N)^T \right]^T$$

$$z_{j-1} = Rw_{j-1}$$

$$o(z_{j-1}, v_{l_j}) = \psi_o(z_{j-1}, B_t v_{l_j}) + b_{l_j}$$

$$\psi(u, v) = W_1 \phi(W_0([u, v, u \circ v, |u - v|])),$$

$$(u_{l_1}, \dots, u_{l_{j-1}}) \rightarrow \underbrace{ \begin{array}{c} \text{Context-Target} \\ v_{l_j} \end{array} } \bullet \underbrace{ \begin{array}{c} \text{Context-Target} \\ \text{Attention} \times N \end{array} } \bullet \underbrace{ \begin{array}{c} \text{Attention} \\ \text{Context-Target} \\ \text{Attention} \end{array} } \bullet \underbrace{ \begin{array}{c} \text{Similarity} \\ \text{Function} \end{array} } \bullet \text{Score}$$

$$L_x = \sum_{j=2}^K -\log p(l_j|l_{1:j-1}),$$

$$p(l_{j}|l_{1:j-1}) = \frac{\exp(o(z_{j-1}, v_{l_{j}}))}{\sum_{k \in \mathcal{N}} \exp(o(z_{j-1}, v_{k}))}.$$

Table 1. Datasets statistics

Dataset	#items	#users	#training examples	#test examples
MovieLens	6,040	3,577	778,679	6,040
MS	2,138	10,000	95,753	10,000
Yahoo!	4,222	9,362	241,896	9,362

Table 2. Performance Evaluation on MS dataset (\cdot 10⁻²)

Model	HR@5	HR@10	HR@20	MRR@5	MRR@10	MRR@20
AI2V	20.81	26.95	34.89	12.88	13.70	14.24
I2V	11.06	15.53	22.37	4.53	5.13	5.59
NCF	11.42	20.08	32.28	5.59	6.70	7.55

Table 3. Performance Evaluation on MovieLens dataset (\cdot 10⁻³)

Model	HR@5	HR@10	HR@20	MRR@5	MRR@10	MRR@20
AI2V	12.92	28.06	58.56	5.56	7.39	9.52
I2V	11.30	27.05	55.73	3.75	5.87	7.75
NCF	8.48	19.99	45.84	3.25	4.78	6.56

Table 4. Performance Evaluation on Yahoo! Music dataset (\cdot 10⁻¹)

Model	HR@5	HR@10	HR@20	MRR@5	MRR@10	MRR@20
AI2V	8.42	14.81	24.98	3.93	4.77	5.46
I2V	5.65	10.94	18.07	2.57	3.26	3.75
NCF	5.64	11.09	19.41	2.57	3.28	3.85

$$Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

$$head_i = Attention\left(E_tW_i^Q, E_tW_i^K, E_tW_i^V\right)$$

$$MultiHead(Q, K, V) = [head_1; ...; head_h] W^O$$

$$FFN(x) = \text{ReLU}(xW_1 + b_1)W_2 + b_2$$

NSEP Aggregator

$$n_j = \frac{1}{2}$$
 $\tanh (a_j)$

$$n_j = \sum_{i \in S_j} w_i / |S_j|$$
 $f = \tanh(wW_h + b_h)W_o + b_o$ $n_j = \sum_i f_i w_i / \sum_i f_i$

 $n_j = w_i$ where $i = [NSEP]_i$

Method		MIN	ND-small		MIND-large			
Method	AUC	MRR	nDCG@5	nDCG@10	AUC	MRR	nDCG@5	nDCG@10
LibFM	0.5974	0.2633	0.2795	0.3429	0.6185	0.2945	0.3145	0.3713
DeepFM	0.5989	0.2621	0.2774	0.3406	0.6187	0.2930	0.3135	0.3705
DKN	0.6175	0.2705	0.2890	0.3538	0.6407	0.3042	0.3292	0.3866
NPA	0.6321	0.2911	0.3170	0.3781	0.6592	0.3207	0.3472	0.4037
NAML	0.6550	0.3039	0.3308	0.3931	0.6646	0.3275	0.3566	0.4140
LSTUR	0.6438	0.2946	0.3189	0.3817	0.6708	0.3236	0.3515	0.4093
NRMS	0.6483	0.3001	0.3252	0.3892	0.6766	0.3325	0.3628	0.4198
FIM	0.6502	0.3026	0.3291	0.3910	0.6787	0.3346	0.3653	0.4221
UNBERT	0.6762	0.3172	0.3475	0.4102	0.7068	0.3568	0.3913	0.4478
%Improv.	2.12	1.33	1.67	1.71	2.81	2.22	2.60	2.57
UNBERT-en [△]	-	(-)	-	-	0.7183	0.3659	0.4020	0.4581

Boldface indicates the best results (the higher, the better), while the second best is underlined. UNBERT-en^{\triangle}} represents the ensemble score based on UNBERT which is at the top of https://msnews.github.io/#leaderboard.

Resourses

- Shuai Zhang et al. (2019), <u>Deep Learning based Recommender System: A Survey and New Perspectives</u>.
- Steffen Rendle (2010), <u>Factorization Machines</u>.
- Xiangnan He and Tat-Seng Chua (2017), <u>Neural Factorization Machines for Sparse Predictive</u> <u>Analytics</u>.
- Jun Xiao et al. (2017), <u>Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks</u>.
- Oren Barkan and Noam Koenigstein (2016), <u>Item2Vec: Neural Item Embedding for Collaborative Filtering</u>.
- Oren Barkan et al. (2020), <u>Attentive Item2Vec: Neural Attentive User Representations</u>.
- Qi Zhang et al. (2020), <u>UNBERT: User-News Matching BERT for News Recommendation</u>.
- Interesting blog post (but unfortunately without benchmarks) <u>OLX Item2Vec</u>. Authors claims that they integrated this NN architecture into OLX recommendation system (Oct 26, 2021).