A lemma to improve weak continuity (提升弱连 续性的一个引理)

力学爱好者

XJTU

2025/9/1

定义

Let Y be a real Banach space, we say that a function $u:[a,b] \to Y$ is weakly continuous if u is continuous from [a,b] to (Y,τ_{weak}) which is equivalent with for all $\psi \in Y'$, the function defined by $t \in [0,T] \mapsto \langle \psi, u(t) \rangle_{Y',Y} \in \mathbb{R}$ is continuous. We denote all functions that are weakly continuous as $\mathcal{C}\left([0,T],Y_{\text{weak}}\right)$.

Note that like the strong continuity functions, an element $u \in \mathcal{C}\left([0,T],Y_{\mathsf{weak}}\right)$ is uniquely determined (i.e. If we have two elements $u,v \in \mathcal{C}\left([0,T],Y_{\mathsf{weak}}\right)$ such that u=v almost everywhere, then u=v on [0,T])

引理

Let X, Y be Banach spaces, where X is reflexive. If there is an embedding (continuous linear injection) $J: X \to Y$, then we have

$$L^{\infty}(]0,T[,X)\cap\mathcal{C}\left([0,T],Y_{\textit{weak}}\right)\subset\mathcal{C}\left([0,T],X_{\textit{weak}}\right)$$

Note that when we say that X is continuously embedded in Y, we do not assume that X is a linear subspace of Y (consider the natural embedding $i:L^2\to H^{-1}$) When we say an elment $u\in L^\infty(]0,T[,X)\cap\mathcal{C}\left([0,T],Y_{\text{weak}}\right)$ the correct understanding is that we have an element $v(t)\in C([0,T],Y_{weak})$ and an element $u(t)\in L^\infty(]0,T[,X)$ such that Ju=v almost everywhere.

We claim that there exists an element $\tilde{u}:\mathbb{R}\to X$ such that $J\tilde{u}=v$ on [0,T] and there exists M>0 such that $\|\tilde{u}(t)\|\leq M$ on \mathbb{R}

First, let us extend u and v to all of \mathbb{R} (e.g., by successive reflections performed by setting u(t)=u(-t) for $t\in [-T,0]$, etc.). It is then obvious that $u\in L^\infty(\mathbb{R},X)$ and $v\in \mathcal{C}\left(\mathbb{R},Y_{\text{weak}}\right)$, Ju=v almost everywhere on \mathbb{R} . Let $\eta:\mathbb{R}\to\mathbb{R}$ be a mollifying kernel. We set $u_n=u\star\eta_{1/n}$ which is defined for all t and takes its values in X.

Let $t_0 \in \mathbb{R}$ be fixed. For all $n \geq 1$, we have

$$\|u_n(t_0)\|_X = \|(u \star \eta_{1/n})(t_0)\|_X \le \|u\|_{L^{\infty}(\mathbb{R},X)}$$

Then by the reflexivity of X, we can extract a subsequence of $u_n(t_0)$ which converges weakly to some $\tilde{u}(t_0) \in X$.

Then note that we also have $Ju_n(t)$ weakly converges to v(t), $\forall t \in \mathbb{R}$. Indeed, let $\psi \in Y'$, we have

$$<\psi, \left(Ju \star \eta_{1/n}\right)(t_0) - V(t_0)>_{Y',Y} = \left(<\psi, v>_{Y',Y} \star \eta_{1/n}\right)(t_0) - \langle\psi, v\rangle_{Y',Y}(t_0)$$

$$\xrightarrow[n \to \infty]{} 0,$$

where we used the weak continuity of v.

Since J is an embedding, then we have $J\tilde{u}(t)=v(t)$ on \mathbb{R} , also using the weak lower semicontinuity of the norm, we have that there exists M>0 such that $\|\tilde{u}(t)\|\leq M$ on [0,T].

To prove the weak continuity of \tilde{u} , let $\phi \in X'$, by Hahn-Banach Theorem, we have an extension $\psi \in Y'$ of $\phi \in X'$, then as $t_n \xrightarrow[n \to \infty]{} t$ we have

$$|\langle \phi, \tilde{u}(t_n) \rangle - \langle \phi, \tilde{u}(t) \rangle| = |\langle \psi, v(t_n) \rangle - \langle \psi, v(t) \rangle| \xrightarrow[n \to \infty]{} 0$$

Thus the conclusion follows.

商空间的定义

定义

设X是一个Banach空间, Y是X的闭子空间, 定义 $X/Y := \{[x] : x \in X\}$

$$P = \left\{ \begin{array}{ll} h: D(h) \subset E \to \mathbb{R} & D(h) \text{ is a linear subspace of } E, \\ h \text{ is linear, } G \subset D(h), \\ h \text{ extends } g, \text{ and } h(x) \leq p(x) \quad \forall x \in D(h) \\ \end{array} \right\}.$$

牛顿第二定律可以表示为:

$$F = ma (2)$$

相对论中的能量和动量关系:

$$E = mc^2 (3)$$

$$p = mv (4)$$

如公式?? 所示,力等于质量乘以加速度。结合公式(??)和(??)可以推导出更多结论。