Basis Pursuit Denoising and the Dantzig Selector

West Coast Optimization Meeting

University of Washington Seattle, WA, April 28–29, 2007

Michael Friedlander and Michael Saunders

Dept of Computer Science University of British Columbia Vancouver, BC V6K 2C6 mpf@cs.ubc.ca Dept of Management Sci & Eng Stanford University Stanford, CA 94305-4026 saunders@stanford.edu

Abstract

Many imaging and compressed sensing applications seek sparse solutions to under-determined least-squares problems. The Lasso and Basis Pursuit Denoising (BPDN) approaches of bounding the 1-norm of the solution have led to several computational algorithms.

Abstract

Many imaging and compressed sensing applications seek sparse solutions to under-determined least-squares problems. The Lasso and Basis Pursuit Denoising (BPDN) approaches of bounding the 1-norm of the solution have led to several computational algorithms.

PDCO uses an interior method to handle general linear constraints and bounds. Homotopy, LARS, OMP, and STOMP are specialized active-set methods for handling the implicit bounds. I1_ls and GPSR are further recent entries in the ℓ 1-regularized least-squares competition, both based on bound-constrained optimization.

Abstract

Many imaging and compressed sensing applications seek sparse solutions to under-determined least-squares problems. The Lasso and Basis Pursuit Denoising (BPDN) approaches of bounding the 1-norm of the solution have led to several computational algorithms.

PDCO uses an interior method to handle general linear constraints and bounds. Homotopy, LARS, OMP, and STOMP are specialized active-set methods for handling the implicit bounds. I1_ls and GPSR are further recent entries in the ℓ 1-regularized least-squares competition, both based on bound-constrained optimization.

The Dantzig Selector of Candes and Tao is promising in its production of sparse solutions using only linear programming. Again, interior or active-set (simplex) methods may be used. We compare the BPDN and DS approaches via their dual problems and some numerical examples.

Sparse x

Lasso(t) Tibshirani 1996

$$\min_{x} \frac{1}{2} ||b - Ax||_{2}^{2} \quad \text{s.t.} \quad ||x||_{1} \le t$$

$$A =$$
explicit

Sparse x

Lasso(t) Tibshirani 1996

$$\min_{x} \ \frac{1}{2} ||b - Ax||_{2}^{2} \quad \text{s.t.} \quad ||x||_{1} \le t$$

$$A =$$
explicit

Basis Pursuit Chen, Donoho & S 2001

$$\min_{x} \|x\|_1 \quad \text{s.t.} \quad Ax = b$$

$$A = \boxed{}$$

fast operator

Sparse x

Lasso(t) Tibshirani 1996

$$\min_{x} \frac{1}{2} ||b - Ax||_{2}^{2} \quad \text{s.t.} \quad ||x||_{1} \le t$$

$$A =$$
explicit

 $\mathsf{BPDN}(\lambda)$ Chen, Donoho & S 2001

$$\min_{x} \ \frac{1}{2} \|b - Ax\|_{2}^{2} \ + \ \lambda \|x\|_{1}$$

$$A =$$

fast operator

BP and BPDN Algorithms

OMP Greedy Davis, Mallat et al 1997

Interior, CG **BPDN**-interior Chen, Donoho & S, 1998

PDSCO, PDCO S 1997, 2002

BCR Sardy, Bruce & Tseng 2000

Homotopy Osborne et al 2000

LARS Efron, Hastie et al 2004

STOMP Donoho, Tsaig et al 2006

I1_ls Kim, Koh et al 2007

GPSR Figueiredo, Nowak & Wright 2007

Interior, LSQR

Orthogonal blocks

Active-set, all λ

Active-set, all λ

Double greedy

Primal barrier, PCG

Gradient-projection

Chen, Donoho and S 1998

Pure LS

$$\min_{x,r} \ \frac{1}{2} ||r||_2^2 \qquad \text{s.t.} \qquad r = b - Ax$$

Chen, Donoho and S 1998

Pure LS

$$\min_{x,r} \ \frac{1}{2} ||r||_2^2 \qquad \text{s.t.} \qquad r = b - Ax$$

If x not unique, need regularization

Chen, Donoho and S 1998

Pure LS

$$\min_{x,r} \ \frac{1}{2} ||r||_2^2 \qquad \text{s.t.} \qquad r = b - Ax$$

If x not unique, need regularization

$BPDN(\lambda)$

$$\min_{x,r} \lambda ||x||_1 + \frac{1}{2} ||r||_2^2 \quad \text{s.t.} \quad r = b - Ax$$

Chen, Donoho and S 1998

Pure LS

$$\min_{x,r} \ \frac{1}{2} ||r||_2^2 \qquad \text{s.t.} \qquad r = b - Ax$$

If x not unique, need regularization

$BPDN(\lambda)$

$$\min_{x,r} \lambda ||x||_1 + \frac{1}{2} ||r||_2^2 \quad \text{s.t.} \quad r = b - Ax$$

smaller
$$||x||_1$$
 bigger $||r||_2$

Candès and Tao 2007

Pure LS

$$A^{T}r = 0, \quad r = b - Ax$$

Candès and Tao 2007

Pure LS

$$A^{T}r = 0, \quad r = b - Ax$$

Plausible regularization

$$\min_{x,r} ||x||_1$$
 s.t. $A^T r = 0$, $r = b - Ax$

Candès and Tao 2007

Pure LS

$$A^T r = 0, \quad r = b - Ax$$

Plausible regularization

$$\min_{x,r} \|x\|_1$$
 s.t. $A^T r = 0$, $r = b - Ax$

$$\mathsf{DS}(\lambda)$$

$$\min_{x,r} \|x\|_1 \quad \text{s.t.} \quad \|A^T r\|_{\infty} \le \lambda, \quad r = b - Ax$$

Candès and Tao 2007

Pure LS

$$A^T r = 0, \quad r = b - Ax$$

Plausible regularization

$$\min_{x,r} ||x||_1$$
 s.t. $A^T r = 0$, $r = b - Ax$

$\mathsf{DS}(\lambda)$

$$\min_{x,r} \|x\|_1 \quad \text{s.t.} \quad \|A^T r\|_{\infty} \leq \lambda, \quad r = b - Ax$$
 smaller $\|x\|_1 \quad \text{bigger } \|A^T r\|_{\infty}$

Dual problems

 $BPDN(\lambda)$

$$\min_{x,r} \lambda ||x||_1 + \frac{1}{2} ||r||_2^2 \quad \text{s.t.} \quad r = b - Ax$$

$$r = b - Ax$$

Dual problems

$BPDN(\lambda)$

$$\min_{x,r} \lambda ||x||_1 + \frac{1}{2} ||r||_2^2 \quad \text{s.t.} \quad r = b - Ax$$

$$r = b - Ax$$

QP

$DS(\lambda)$

$$\min_{x,r} \|x\|_1$$

$$\min_{x,r} \|x\|_1 \quad \text{s.t.} \quad \|A^T r\|_{\infty} \le \lambda, \quad r = b - Ax$$

$$r = b - Ax$$

LP

Dual problems

$BPDN(\lambda)$

$$\min_{x,r} \lambda ||x||_1 + \frac{1}{2} ||r||_2^2 \quad \text{s.t.} \quad r = b - Ax$$

$$r = b - Ax$$

QP

$DS(\lambda)$

$$\min_{x,r} \|x\|_1$$

$$\min_{x,r} \|x\|_1 \quad \text{s.t.} \quad \|A^T r\|_{\infty} \le \lambda, \quad r = b - Ax$$

$$r = b - Ax$$

LP

$BPdual(\lambda)$

$$\min_{r} - b^{T}r + \frac{1}{2} ||r||_{2}^{2} \quad \text{s.t.} \quad ||A^{T}r||_{\infty} \le \lambda$$

Dual problems

$BPDN(\lambda)$

$$\min_{x,r} \lambda ||x||_1 + \frac{1}{2} ||r||_2^2 \quad \text{s.t.} \quad r = b - Ax$$

$$r = b - Ax$$

QP

$DS(\lambda)$

$$\min_{x,r} \|x\|_1$$

$$\min_{x,r} \|x\|_1 \quad \text{s.t.} \quad \|A^T r\|_{\infty} \le \lambda, \quad r = b - Ax$$

$$r = b - Aa$$

LP

$BPdual(\lambda)$

$$\min_{r} - b^{T}r + \frac{1}{2}||r||_{2}^{2} \quad \text{s.t.} \quad ||A^{T}r||_{\infty} \le \lambda$$

$$||A^T r||_{\infty} \le \lambda$$

$\mathsf{DSdual}(\lambda)$

$$\min_{r,z} - b^T r + \lambda ||z||_1 \quad \text{s.t.} \quad ||A^T r||_{\infty} \le \lambda, \quad r = Az$$

$$||A^T r||_{\infty} \le \lambda,$$

$$r = Az$$

$\mathsf{BPDN}(\lambda)$ implementation

Chen, Donoho & S 1998

$$\min_{v,w,r} \ \lambda \mathbf{1}^T (v+w) + \frac{1}{2} r^T r$$
 s.t.
$$\left[A \ -A \right] \begin{bmatrix} v \\ w \end{bmatrix} + r = b, \quad v,w \geq 0$$

2007: Apply PDCO (MATLAB primal-dual interior method)

$BPDN(\lambda)$ implementation

Chen, Donoho & S 1998

$$\min_{v,w,r} \ \, \lambda \mathbf{1}^T (v+w) + \frac{1}{2} r^T r$$
 s.t.
$$\left[A \quad -A \right] \begin{bmatrix} v \\ w \end{bmatrix} + r = b, \quad v,w \geq 0$$

2007: Apply PDCO (MATLAB primal-dual interior method)

Dense A in test problems \Rightarrow Dense Cholesky

Double-handling of A

$$\begin{bmatrix} A & -A \end{bmatrix} \begin{bmatrix} D_1 & \\ & D_2 \end{bmatrix} \begin{bmatrix} A^T \\ -A^T \end{bmatrix} \text{ could be coded as } A(D_1 + D_2)A^T$$

$DS(\lambda)$ implementation

Candès and Tao 2007

$$\min_{x,u} \quad \mathbf{1}^T u$$
 s.t.
$$-u \leq x \leq u,$$

$$-\lambda \mathbf{1} \leq \quad A^T (b-Ax) \quad \leq \lambda \mathbf{1},$$

Apply Ildantzig_pd (MATLAB primal-dual interior method) Romberg 2005 Part of ℓ_1 -magic Candes 2006

$DS(\lambda)$ implementation

Candès and Tao 2007

$$\min_{x,u} \quad \mathbf{1}^T u$$
 s.t.
$$-u \leq x \leq u,$$

$$-\lambda \mathbf{1} \leq \quad A^T (b-Ax) \quad \leq \lambda \mathbf{1},$$

Apply I1dantzig_pd (MATLAB primal-dual interior method) Romberg 2005 Part of ℓ_1 -magic Candes 2006

Dense A in test problems

Dense Cholesky on
$$A^{T}(AD_{1}A^{T})A + D_{2}$$
 (much bigger)

Two other DS LP implementations

Introduce $s = -A^T r$

DS1 Interior

$$\min_{v,w,s} \quad \mathbf{1}^T(v+w)$$
 s.t.
$$\begin{bmatrix} A^TA & -A^TA & I \end{bmatrix} \begin{bmatrix} v \\ w \\ s \end{bmatrix} = A^Tb, \quad v,w \ge 0, \quad \|s\|_{\infty} \le \lambda$$

Two other DS LP implementations

Introduce $s = -A^T r$

DS1 Interior

$$\min_{v,w,s} \quad \mathbf{1}^T(v+w)$$
 s.t.
$$\begin{bmatrix} A^TA & -A^TA & I \end{bmatrix} \begin{bmatrix} v \\ w \\ s \end{bmatrix} = A^Tb, \quad v,w \ge 0, \quad \|s\|_{\infty} \le \lambda$$

DS2 Interior, Simplex

$$\min_{v,w,r,s} \ \mathbf{1}^T(v+w)$$
 s.t.
$$\begin{bmatrix} A & -A & I \\ & A^T & I \end{bmatrix} \begin{bmatrix} v \\ w \\ r \\ s \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}, \quad v,w \geq 0, \quad \|s\|_{\infty} \leq \lambda$$

Test data

A, b depend on dimensions m, n, T

```
rand ('state',0);
                                 % initialize generators
randn('state',0);
x = zeros(n,1);
                                 % random +/-1 signal
     = randperm(m);
x(q(1:T)) = sign(randn(T,1));
[A,R] = qr(randn(n,m),0);
                                 % m x n measurement mtx
     = A';
sigma = 0.005;
     = A*x + sigma*randn(m,1); % noisy observations
b
```

$$A$$
 dense

$$AA^T = I$$

T components $x_i \approx \pm 1$

$$m = 500$$

$$m = 500$$
 $n = 2000$ $T = 80$

$$T = 80$$

$$\lambda = 3e-3$$

DS vs BPDN

CPLEX dual simplex on DS2

with loose and tight tols

sizes			tol = 0.1			tol = 0.001		
m	n	T	itns	time	S	itns	time	S
120	512	20	20	0.1	20	86	0.2	63
240	1024	40	58	0.4	56	405	2.3	150
360	1536	60	187	2.3	134	1231	15.1	215
480	2048	80	163	3.4	122	1277	26.7	275
720	3072	120	356	15.3	223	3006	146.6	420
960	4096	160	965	80.2	414	9229	891.6	567

Too many simplex iterations, too many $x_j \neq 0$

CPLEX dual simplex on DS2

Large and small $|x_j|$

More small values \Rightarrow more simplex iterations and more time per iteration $_{\mathrm{BPDN\ and\ DS\ -\ p.\ 14/1}}$

References

- E. CANDÈS, ℓ_1 -magic, http://www.l1-magic.org/, 2006.
- E. CANDÈS AND T. TAO, The Dantzig selector: Statistical estimation when $p \gg n$, Annals of Statistics, to appear (2007).
- S. S. Chen, D. L. Donoho, and M. A. Saunders, *Atomic decomposition by basis pursuit*, SIAM Review, 43 (2001).
- B. EFRON, T. HASTIE, I. JOHNSTONE, AND R. TIBSHIRANI, *Least angle regression*, Ann. Statist., 32 (2004).
- M. R. OSBORNE, B. PRESNELL, AND B. A. TURLACH, *The Lasso and its dual*, J. of Computational and Graphical Statistics, 9 (2000).
- M. R. OSBORNE, B. PRESNELL, AND B. A. TURLACH, *A new approach to variable selection in least squares problems*, IMA J. of Numerical Analysis, 20 (2000).
- M. A. SAUNDERS, *PDCO*. MATLAB software for convex optimization, http://www.stanford.edu/group/SOL/software/pdco.html, 2005.
- R. Tibshirani, *Regression shrinkage and selection via the lasso*, J. Roy. Statist. Soc. Ser. B, 58 (1996).
- Y. TSAIG, Sparse Solution of Underdetermined Linear Systems: Algorithms and Applications, PhD thesis, Stanford University, 2007.

Many thanks Michael

Many thanks Michael

Jim, Terry, Paul