Mètodes Numèrics — Grau de Matemàtiques Derivació i Integració numèrica

Lluís Alsedà

adaptat dels Apunts de Mètodes Numèrics de Josep Maria Mondelo, 2009

Departament de Matemàtiques Universitat Autònoma de Barcelona http://www.mat.uab.cat/~alseda

abril 2015 (versió 1.3.1)

DEPARTAMENT DE MATEMÀTIQUES

Continguts

Introducció	P 1
Derivació numèrica	> 2
Extrapolació de Richardson	> 26
Integració numèrica	> 37
Integració numèrica: Fórmules interpolatòries	→ 39
Fórmules de Newton-Côtes	→ 45
Regla dels trapezis	4 9
Regla de Simpson	▶ 59
Regles compostes de Newton–Côtes	66
Mètode de Romberg	> 75
Integració Gaussiana: Màgia triant el nodes	▶ 82

Introducció

En aquest tema veurem com s'aplica la interpolació polinomial a la integració i derivació numèrica de funcions.

Derivació numèrica

Donada una funció f i $a \in \mathbb{R}$, volem aproximar $f^{(d)}(a)$, per $d \ge 1$, suposant que coneixem els valors d'f a alguns punts, però no tenim cap informació de les seves derivades.

Per a això el que farem serà triar un conjunt de nodes $\{x_i\}_{i=0}^n \subset \mathbb{R}$ amb $a \in \langle x_0, \dots, x_n \rangle$, construir el polinomi interpolador de Lagrange amb punts de suport $\{(x_i, f(x_i))\}_{i=0}^n$, sigui P, i aproximar

$$f^{(d)}(a) \approx P^{(d)}(a).$$

Necessitem controlar l'error comès en l'aproximació anterior.

Derivació numèrica (cont.)

Suposem primer d=1. Una manera natural de fer-ho és derivar l'expressió de l'error de la interpolació de Lagrange. Tenim

$$f(x) - P(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}\omega(x), \tag{1}$$

on $\omega(x) = (x - x_0)(x - x_1) \dots (x - x_n)$ i $\xi(x) \in \langle x_0, \dots, x_n, x \rangle$ és una funció desconeguda de x.

Recordem que $\xi(x)$ s'obtenia d'aplicar el teorema de Rolle n vegades, motiu pel qual no tenim cap hipòtesi de regularitat de $\xi(x)$ respecte de x. És per això que, en principi, no podem derivar (1) respecte de x. No obstant, recordem (veure el Corol·lari de la transparència 40/93 d'Interpolació) que (1) també es pot escriure:

$$f(x) - P(x) = f[x_0, \dots, x_n, x]\omega(x). \tag{2}$$

Derivació numèrica (cont.)

Per altra banda es pot veure que, per $\{x_i\}_{i=0}^n$ arbitraris, $f[x_0,\ldots,x_n]$ té la mateixa regularitat en x_0,x_1,\ldots,x_n que $f^{(n)}$ i (veure l'Observació i el càlcul de les transparències 40/93 i 56/93 d'Interpolació) existeix $\xi \in \langle x_0,\ldots,x_n \rangle$ tal que

$$f[x_0,\ldots,x_n]=\frac{f^{(n)}(\xi)}{n!}.$$

Per tant, si f és de classe C^{n+2} ,

$$f'(x)-P'(x)=\left(\frac{d}{dx}f[x_0,\ldots,x_n,x]\right)\omega(x)+\frac{f^{(n+1)}(\xi_x)}{(n+1)!}\omega'(x).$$

Si prenem els nodes de manera que $a \in \{x_i\}_{i=0}^n$, tindrem

$$f'(a) - P'(a) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega'(a),$$
(3)

donat que $\omega(a)=0$. Aquesta és l'expressió de l'error que buscàvem.

Derivació numèrica 3/4

Derivació numèrica (cont.)

En el cas d > 1, en principi també podem derivar d vegades l'expressió de l'error (2), mitjançant la regla de Leibniz,

$$f^{(d)}(x) - P^{(d)}(x) = \frac{d^d}{dx^d} \left(f[x_0, \dots, x_n, x] \omega(x) \right)$$

$$= \binom{d}{0} \left(\frac{d^d}{dx^d} f[x_0, \dots, x_n, x] \right) \omega(x)$$

$$+ \binom{d}{1} \left(\frac{d^{d-1}}{dx^{d-1}} f[x_0, \dots, x_n, x] \right) \omega'(x)$$

$$+ \dots + \binom{d}{d-1} \left(\frac{d}{dx} f[x_0, \dots, x_n, x] \right) \omega^{(d-1)}(x)$$

$$+ \binom{d}{d} f[x_0, \dots, x_n, x] \omega^{(d)}(x).$$

Prenent $a \in \{x_i\}_{i=0}^n$ tindrem $\omega(a) = 0$, però pot ser que $\omega'(a), \ldots, \omega^{(d)}(a) \neq 0$, i l'expressió de l'error encara queda molt complicada. És per això que, per trobar l'error en el cas $d \geq 1$, no derivarem (2) sinó que emprarem expansions de Taylor. En veurem exemples tot seguit. Derivació numèrica 4/4

En aquesta secció suposem que totes les funcions que apareixen són tan derivables com calgui perquè els arguments siguin correctes.

Diferència finita endavant de primer ordre: Suposem que volem aproximar f'(a) a partir del valor d'f als punts a i a + h. Definim $\{x_0, x_1\} = \{a, a + h\}$ i sigui P el polinomi interpolador de Lagrange amb punts de suport $\{(x_0, f(x_0)), (x_1, f(x_1))\}$. El trobem mitjançant les diferències dividides:

$$\begin{array}{c|c} \hline a & f(a) \\ \hline a+h & f(a+h) \\ \hline \end{array}$$

d'on

$$P(x) = f(a) + \frac{f(a+h) - f(a)}{h}(x-a),$$

Exemples de fórmules de derivació numèrica 1/20

Per tant

$$f'(a) \approx P'(a) = \frac{f(a+h) - f(a)}{h}.$$

Podem trobar l'error a partir de (3):

$$f'(a) - P'(a) = \frac{f''(\xi)}{2!}\omega'(a) = -\frac{f''(\xi)}{2}h,$$

donat que

$$\omega(x) = (x - a - h)(x - a) \Rightarrow \omega'(a) = -h.$$

Resumint,

$$f'(a) = \frac{f(a+h) - f(a)}{h} - \frac{f''(\xi)}{2}h,$$

per $\xi \in \langle a, a+h \rangle$. Observem que l'error de truncament de la diferència finita endavant de primer ordre és lineal en h.

Exemples de fórmules de derivació numèrica 2/20

Diferència finita endarrere de primer ordre: Permet aproximar f'(a) a partir dels valors d'f als punts a - h i a.

Exercici

Deduïu com a exercici la fórmula de la diferència finita endarrere de primer ordre.

Diferència finita centrada de primer ordre: Ara volem aproximar f'(a) usant els valors d'f als punts a-h, a i a+h. Per a això prenem $\{x_0, x_1, x_2\} = \{a-h, a, a+h\}$ i trobem P el polinomi interpolador de Lagrange amb punts de suport $\{(a-h, f(a-h)), (a, f(a)), (a+h, f(a+h))\}$:

Exemples de fórmules de derivació numèrica 4/20

Tenim,

$$P(x) = f(a-h) + \frac{f(a) - f(a-h)}{h}(x-a+h) + \frac{f(a+h) - 2f(a) + f(a-h)}{2h^2}(x-a+h)(x-a).$$

Derivant,

$$P'(x) = \frac{f(a) - f(a-h)}{h} + \frac{f(a+h) - 2f(a) + f(a-h)}{2h^2} (2(x-a) + h),$$

i substituint x per a:

$$P'(a) = \frac{f(a+h) - f(a-h)}{2h}.$$

Exemples de fórmules de derivació numèrica 5/20

Com abans, trobem l'error a partir de (3):

$$f'(a) - P'(a) = \frac{f^{(3)}(\xi)}{6}\omega'(a) = -\frac{f^{(3)}(\xi)}{6}h^2,$$

donat que

$$\omega(x) = (x - a + h)(x - a)(x - a - h) \Rightarrow \omega'(a) = -h^2.$$

Resumint,

$$f'(a) = \frac{f(a+h) - f(a-h)}{2h} - \frac{f^{(3)}(\xi)}{6}h^2$$

per a cert $\xi \in \langle a - h, a, a + h \rangle$.

Observem que, contràriament als casos anteriors, l'error és quadràtic en el pas.

Exemples de fórmules de derivació numèrica 6/20

Diferència finita centrada de segon ordre: Ara volem aproximar f''(a) usant tres punts a - h, a, a + h. Per a això derivem 2 vegades el polinomi interpolador de Lagrange amb punts de suport $\{(a-h, f(a-h)), (a, f(a)), (a+h, f(a+h))\}$, que hem calculat abans a (4):

$$f''(a) \approx P''(a) = \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}$$

Per a trobar l'error de truncament, expandim per Taylor respecte del pas h:

$$f(a-h) = f(a) - hf'(a) + h^2 \frac{f''(a)}{2} - h^3 \frac{f'''(a)}{6} + h^4 \frac{f^{(4)}(\xi_1)}{24},$$

$$f(a) = f(a), \qquad (5)$$

$$f(a+h) = f(a) + hf'(a) + h^2 \frac{f''(a)}{2} + h^3 \frac{f'''(a)}{6} + h^4 \frac{f^{(4)}(\xi_2)}{24}.$$

Sumant i dividint per h^2 queda

$$\frac{f(a+h)-2f(a)+f(a-h)}{h^2}=f''(a)+h^2\frac{f^{(4)}(\xi_1)+f^{(4)}(\xi_2)}{24}.$$

Per a simplificar l'anterior expressió de l'error, usarem el següent

Exemples de fórmules de derivació numèrica 8/20

Teorema (dels valors intermedis)

Sigui $f: [a, b] \to \mathbb{R}$ contínua, $\xi_0, \ldots, \xi_n \in [a, b]$ i $\alpha_0, \ldots, \alpha_n \ge 0$. Aleshores existeix $\eta \in [a, b]$ tal que

$$\sum_{i=0}^{n} \alpha_{i} f(\xi_{i}) = \left(\sum_{i=0}^{n} \alpha_{i}\right) f(\eta).$$

Demostració

Siguin $m = \min_{x \in [a,b]} f(x)$, $M = \max_{x \in [a,b]} f(x)$ i suposem $f(x_m) = m$, $f(x_M) = M$ per x_m i x_M adequats (que existeixen pel teorema de Bolzano-Weierstrass). Aleshores

$$\left(\sum_{i=0}^{n}\alpha_{i}\right)f(x_{m})=\left(\sum_{i=0}^{n}\alpha_{i}\right)m\leq\sum_{i=0}^{n}\alpha_{i}f(\xi_{i})\leq\left(\sum_{i=0}^{n}\alpha_{i}\right)M=\left(\sum_{i=0}^{n}\alpha_{i}\right)f(x_{M}),$$

i, com que la funció $x \mapsto (\sum_{i=0}^n \alpha_i) f(x)$ és una funció contínua, i el valor $\sum_{i=0}^{n} \alpha_i f(\xi_i)$ es troba entre dos valors atansats per aquesta funció als punts x_m i x_M , pel teorema de Bolzano existeix $\eta \in \langle x_m, x_M \rangle$ tal que $\left(\sum_{i=0}^{n} \alpha_i\right) f(\eta) = \sum_{i=0}^{n} \alpha_i f(\xi_i).$

Exemples de fórmules de derivació numèrica 9/20

D'acord amb el teorema anterior, $f^{(4)}(\xi_1) + f^{(4)}(\xi_2) = 2f^{(4)}(\xi)$, per a cert $\xi \in \langle \xi_1, \xi_2 \rangle$. Resumint,

$$f''(a) = \frac{f(a+h) - 2f(a) + f(a-h)}{h^2} - h^2 \frac{f^{(4)}(\xi)}{12},$$

per a $\xi \in \langle a-h, a, a+h \rangle$.

Observació

De fet, totes les fórmules que hem deduït en aquesta secció es poden obtenir, juntament amb els corresponents errors de truncament, usant expansions de Taylor. Això es coneix com el mètode dels coeficients indeterminats.

Exemple (Mètode dels coeficients indeterminats)

Considerem una combinació lineal arbitrària

$$\alpha_1 f(a-h) + \alpha_2 f(a) + \alpha_3 f(a+h)$$

d'f(a) i

$$f(a-h)=f(a)-hf'(a)+h^2\frac{f''(a)}{2}-h^3\frac{f'''(a)}{6}+h^4\frac{f^{(4)}(\xi_1)}{24},$$

$$f(a+h)=f(a)+hf'(a)+h^2\frac{f''(a)}{2}+h^3\frac{f'''(a)}{6}+h^4\frac{f^{(4)}(\xi_2)}{24}.$$

Agrupant termes en funció de l'ordre de la derivada obtenim

$$\alpha_{1}f(a-h) + \alpha_{2}f(a) + \alpha_{3}f(a+h) =$$

$$= (\alpha_{1} + \alpha_{2} + \alpha_{3})f(a) + (-\alpha_{1} + \alpha_{3})hf'(a) + (\alpha_{1} + \alpha_{3})h^{2}\frac{f''(a)}{2} + (-\alpha_{1} + \alpha_{3})h^{3}\frac{f^{(3)}(a)}{6} + h^{4}\frac{\alpha_{1}f^{(4)}(\xi_{1}) + \alpha_{3}f^{(4)}(\xi_{2})}{24}$$

Exemples de fórmules de derivació numèrica 11/20

Exemple (Mètode dels coeficients indeterminats – cont.)

Per trobar les diferències finites centrades de primer i segon ordre, juntament amb els seus errors, hem de resoldre, respectivament, els sistemes lineals

$$\begin{vmatrix}
\alpha_1 + \alpha_2 + \alpha_3 & = & 0 \\
-\alpha_1 + \alpha_3 & = & 1 \\
\alpha_1 + \alpha_3 & = & 0
\end{vmatrix}$$

En aquest cas, a més, hem de dividir la combinació lineal anterior per h per a obtenir una aproximació de f'(a). La darrera equació del sistema no és necessària però permet millorar de l'error de truncament de la fórmula.

$$\begin{vmatrix}
\alpha_1 + \alpha_2 + \alpha_3 &= 0 \\
-\alpha_1 + \alpha_3 &= 0 \\
\alpha_1 + \alpha_3 &= 1
\end{vmatrix}$$

En aquest cas, a més, hem de dividir la combinació lineal anterior per $\frac{h^2}{2}$ per a obtenir una aproximació de f''(a).

Exemples de fórmules de derivació numèrica 12/20

Exemple (Mètode dels coeficients indeterminats – cont.)

La solució del sistema per a calcular f'(a) és: $\alpha_1 = -\frac{1}{2}$, $\alpha_3 = \frac{1}{2}$ i $\alpha_2=0.$

Resumint:
$$\frac{f(a+h)-f(a-h)}{2h}\approx f'(a)+\frac{f^{(3)}(a)}{6}h^2.$$
 La solució del sistema per a calcular $f''(a)$ és: $\alpha_1=\alpha_3=\frac{1}{2}$ i

 $\alpha_2 = -1$.

Tenim:

$$\frac{f(a+h)-2f(a)+f(a-h)}{h^2} = \frac{\frac{1}{2}f(a+h)-f(a)+\frac{1}{2}f(a-h)}{\frac{h^2}{2}} \approx f''(a)+\frac{h^2}{24}\left(f^{(4)}(\xi_1)+f^{(4)}(\xi_2)\right) = f''(a)+\frac{h^2}{12}f^{(4)}(\xi).$$

Notem que són les mateixes fórmules que ja hem deduït abans.

Exemples de fórmules de derivació numèrica 13/20

Exemple (d'aplicació de fórmules de derivació numèrica)

Suposem que volem aproximar f'(a) per a a=0.6 on $f(x)=\sin x$. Usem la diferència finita centrada de primer ordre:

$$f'(a) = \frac{f(a+h) - f(a-h)}{2h} - \frac{f'''(\xi)}{6}h^2.$$

Denotem, per abreujar,

$$\Delta_h f(a) := \frac{f(a+h) - f(a-h)}{2h}.$$

Exemple (d'aplicació de fórmules de derivació numèrica – cont.)

Taula: Aproximació de f'(a) per $f(x) = \sin(x)$ i a = 0.6Diferències finites centrades de primer ordre

i	hi	$\Delta_h f(0.6) - f'(0.6)$	i	h _i	$\Delta_h f(0.6) - f'(0.6)$
1	0.1	1.375×10^{-3}	9	10^{-9}	-3.356×10^{-4}
2	0.01	$1.376 imes 10^{-5}$	10	10^{-10}	-3.356×10^{-4}
3	10^{-3}	1.374×10^{-7}	11	10^{-11}	-2.534×10^{-2}
4	10^{-4}	9.000×10^{-11}	12	10^{-12}	1.747×10^{-1}
5	10^{-5}	$-1.491 imes 10^{-8}$	13	10^{-13}	-8.253×10^{-1}
6	10^{-6}	-1.149×10^{-7}	14	10^{-14}	-8.253×10^{-1}
7	10^{-7}	4.385×10^{-6}	15	10^{-15}	-8.253×10^{-1}
8	10^8	-3.561×10^{-5}			1

Observem que inicialment l'error es divideix per 100. Això és degut al fet que, inicialment, l'error de truncament domina, i l'error de truncament es divideix per 100 quan el pas es divideix per 10.

Exemples de fórmules de derivació numèrica 15/20

Exemple (d'aplicació de fórmules de derivació numèrica – cont.)

Concretament,

$$|e(h)| := |f'(a) - \Delta_h f(a)| = \frac{|f'''(\xi)|}{6} h^2 \approx \frac{|f'''(a)|}{6} h^2,$$

i per tant

$$\frac{|e(h)|}{|e(h/10)|} \approx \frac{(|f'''(a)|/6)h^2}{(|f'''(a)|/6)(h/10)^2} = 100.$$

Per a $h=10^{-4}$, observem una baixada abrupta de l'error, i per passos més petits l'error creix. Això és degut als efectes dels errors d'arrodoniment. Els podem modelar com segueix: suposem que només cometem error en l'avaluació d'f, amb $\left|e_a(\widetilde{f}(x))\right| \leq \varepsilon \ \forall x$, i que les operacions es fan exactament. Denotem $e_1 = e_a(\widetilde{f}(a+h))$, $e_2 = e_a(\widetilde{f}(a-h))$.

Exemples de fórmules de derivació numèrica 16/20

Exemple (d'aplicació de fórmules de derivació numèrica – cont.)

Aleshores, l'error total és

$$f'(a) - \frac{\widetilde{f}(a+h) - \widetilde{f}(a-h)}{2h} = f'(a) - \frac{f(a+h) + e_1 - f(a-h) - e_2}{2h}$$

$$= \underbrace{f'(a) - \frac{f(a+h) - f(a-h)}{2h}}_{\text{error}} \underbrace{-\frac{e_1 - e_2}{2h}}_{\text{error}},$$

$$\underbrace{-\frac{e_1 - e_2}{2h}}_{\text{error}},$$

$$\underbrace{-\frac{e_1 - e_2}{2h}}_{\text{error}},$$

d'on

$$\left| f'(a) - \frac{\widetilde{f}(a+h) - \widetilde{f}(a-h)}{2h} \right| \leq \frac{|f'''(\xi)|}{6} h^2 + \frac{2\varepsilon}{2h}$$

$$\leq \underbrace{\frac{M}{6} h^2}_{\text{fita}} + \underbrace{\frac{\varepsilon}{h}}_{\text{fita}}$$

$$\frac{\text{de l'error}}{\text{de truncament}} \text{de l'error}_{\text{d'arrodoniment}}$$
(6)

on hem pres $M := \sup_{x \in [a-h, a+h]} |f'''(x)|$.

Exemples de fórmules de derivació numèrica 17/20

Exemple (d'aplicació de fórmules de derivació numèrica – cont.)

Observem que l'error de truncament disminueix en disminuir el pas, mentre que l'error d'arrodoniment augmenta. Podem cercar un pas h_{opt} que minimitzi la fita ("pas òptim"):

$$e'(h_{opt}) = 0 \Longleftrightarrow h_{opt} = \left(\frac{3\varepsilon}{M}\right)^{1/3}$$

En el nostre cas podem prendre

$$M \approx \left| \frac{d^3}{dx^3} (\sin x) \right|_{x=0.6} = |-\cos 0.6| \approx 0.825.$$

El valor de ε depèn de la calculadora o ordinador amb què fem els càlculs.

Exemples de fórmules de derivació numèrica 18/20

Exemple (d'aplicació de fórmules de derivació numèrica – cont.)

La taula s'ha avaluat amb una HP-48, que té una aritmètica de punt flotant de 12 dígits decimals. Si suposem que tots els dígits que ens dóna són correctes, com que f(0.6)=0.564, l'error absolut comès en avaluar f prop de 0.6 estarà fitat per $\varepsilon=\frac{1}{2}\times 10^{-12}$. Així, el pas òptim (volem dir: el que minimitza la fita) és

$$h_{opt} = \left(\frac{3 \times \frac{1}{2} \times 10^{-12}}{0.825}\right)^{1/3} = 1.22 \times 10^{-4} \approx 10^{-4},$$

que quadra molt bé amb el que s'observa a la taula.

Exemple (d'aplicació de fórmules de derivació numèrica – cont.)

La baixada abrupta de l'error a $h = 10^{-4}$ que s'observa a la taula és deguda a un efecte beneficiós dels errors d'arrodoniment, en comptes de perjudicial.

Prop del pas òptim, els errors d'arrodoniment són del mateix ordre que els errors de truncament. Amb el signe adequat, els errors d'arrodoniment poden cancel·lar els errors de truncament, i això és el que passa a la taula per a $h = 10^{-4}$. Pertorbant una mica h, trobem passos per als quals aquesta cancel·lació ja no es dóna:

h	$\Delta_h f(0.6) - f'(0.6)$
1.01×10^{-4}	-1.049×10^{-9}
$1.00 imes 10^{-4}$	$9.000 imes 10^{-11}$
$0.99 imes 10^{-4}$	$1.252 imes 10^{-9}$

Exemples de fórmules de derivació numèrica 20/20

Extrapolació de Richardson

Suposem que volem aproximar $\lim_{h\to 0} F(h)$, però només podem avaluar F(h) per a h no massa petita. Per exemple, $f'(a) = \lim_{h\to 0} F(h)$ per a

$$F(h) = \frac{f(a+h) - f(a-h)}{2h}$$

i, a l'exemple hem vist que, per culpa dels errors d'arrodoniment, no podem avaluar F(h) per a h petita. Suposem també que

$$F(h) = \alpha + a_1 h^p + \mathcal{O}(h^{p'}), \text{ per a certa } p' > p,$$

on coneixem p però desconeixem α, a_1 .

La idea de l'extrapolació de Richardson és determinar aproximacions de α i a_1 usant el valor d'F(h) per diversos passos d'h, menyspreant la resta $\mathcal{O}(h^{p'})$. Més precisament, triem q > 0 i avaluem per a cert h > 0:

$$\begin{cases} F(h) \approx \alpha + a_1 h^p, \\ F(qh) \approx \alpha + a_1 (qh)^p = \alpha + a_1 q^p h^p. \end{cases}$$

Si restem les equacions, podem aïllar $a_1 h^p$ i obtenir α :

$$F(qh) - F(h) \approx a_1 h^p (q^p - 1)$$

$$\alpha \approx F(h) - a_1 h^p \approx F(h) + \frac{F(h) - F(qh)}{q^p - 1} =: R(h).$$

Llavors prenem R(h) com a una aproximació de $\lim_{h\to 0} F(h)$ que millora F(h) i F(qh).

Per què parlem d'extrapolació?

Perquè, com es pot veure fàcilment, R(h) = Q(0), on Q és el polinomi interpolador de Lagrange amb punts de suport $\{(h^p, F(h)), ((qh)^p, F(qh))\}$, i $0 \notin \langle h^p, (qh)^p \rangle$ (i, per tant, en avaluar Q(0) extrapolem en comptes d'interpolar).

Recordeu que, en principi, extrapolar és perillós, donat que el terme $\omega(x)$ de l'error d'interpolació polinomial es dispara.

El fet que Q(0) és millor aproximació de $\lim_{h\to 0} F(h)$ que F(h) i F(qh) l'estableix la següent

Proposició

Suposem que F(h) té un desenvolupament

$$F(h) = \alpha + a_1 h^{p_1} + a_2 h^{p_2} + \dots, \qquad p_1 < p_2 < \dots$$
 (7)

i definim, per a q > 0,

$$F_1(h) := F(h),$$

$$F_{n+1}(h) := F_n(h) + rac{F_n(h) - F_n(qh)}{q^{p_n} - 1} \quad \textit{per } n \geq 1.$$

Aleshores, per $n \ge 1$,

$$F_n(h) = \alpha + a_n^{(n)} h^{p_n} + a_{n+1}^{(n)} h^{p_{n+1}} + \dots$$

amb $\{a_i^{(n)}\}_{i=n}^{\infty}$ adequats.

Extrapolació de Richardson 4/11

Demostració

Fem inducció sobre n. Per n = 1, és la definició de $F_1 = F$. Suposem que la proposició és certa per a F_n . Aleshores,

$$\begin{split} F_{n+1}(h) &= F_n(h) + \frac{F_n(h) - F_n(qh)}{q^{p_n} - 1} \\ &= \alpha + \sum_{j=n}^{\infty} a_j^{(n)} h^{p_j} + \frac{\alpha + \sum_{j=n}^{\infty} a_j^{(n)} h^{p_j} - \alpha - \sum_{j=n}^{\infty} a_j^{(n)} q^{p_j} h^{p_j}}{q^{p_n} - 1} \\ &= \alpha + \sum_{j=n}^{\infty} \left(a_j^{(n)} + \frac{a_j^{(n)} (1 - q^{p_j})}{q^{p_n} - 1} \right) h^{p_j} \\ &= \alpha + \underbrace{\left(a_n^{(n)} + \frac{a_n^{(n)} (1 - q^{p_n})}{q^{p_n} - 1} \right)}_{=0} h^{p_n} + \sum_{j=n+1}^{\infty} \underbrace{\left(a_j^{(n)} + \frac{a_j^{(n)} (1 - q^{p_j})}{q^{p_n} - 1} \right)}_{=:a_j^{(n+1)}} h^{p_j}. \end{split}$$

Extrapolació de Richardson 5/11

Per a aplicar l'extrapolació de Richardson, s'escull $h = h_0$ i llavors es va calculant $F_i(q^j h)$ seguint l'esquema

$$F_1(h)$$
 $F_1(h)$
 $F_1(qh)$
 $F_1(qh)$
 $F_2(h)$
 $F_1(q^2h)$
 $F_2(qh)$
 $F_3(h)$
 $F_3(q^3h)$
 $F_4(q^3h)$
 $F_4(q^2h)$
 $F_4(q^2h)$
 $F_5(q^2h)$
 $F_7(q^2h)$
 $F_8(q^3h)$
 $F_8(q^3h)$

Criteri d'aturada

La proposició anterior i el càlcul de la plana 27 ens diuen:

$$F_n(h) = \alpha + a_n^{(n)} h^{p_n} + \mathcal{O}(h^{p_{n+1}}),$$

 $F_n(qh) = \alpha + a_n^{(n)} q^{p_n} h^{p_n} + \mathcal{O}(h^{p_{n+1}}) i,$

$$F_n(qh) - F_n(h) pprox a_n^{(n)} h^{p_n}(q^{p_n} - 1) \Longleftrightarrow a_n^{(n)} h^{p_n} pprox rac{F_n(qh) - F_n(h)}{q^{p_n} - 1}.$$

Llavors,

$$\left|\left|F_n(qh)-lpha
ight|pprox \mathsf{a}_n^{(n)}q^{p_n}h^{p_n}pprox rac{q^{p_n}}{1-q^{p_n}}\left|F_n(qh)-F_n(h)
ight|,
ight.$$

que dona la condició d'aturada: quan $\frac{q^{p_n}}{q^{p_n}-1}|F_n(qh)-F_n(h)|<$ tol, ens quedem $F_n(qh)$.

Extrapolació de Richardson 7/11

Un cas especial important és quan

$$F(h) = \alpha + a_0h^2 + a_1h^4 + \dots,$$

és a dir, quan $p_j = 2j$ per $j \ge 1$.

En aquest cas cal prendre $q = \frac{1}{2}$ i, per tant,

$$q^{p_j}-1=\frac{1}{4^j}-1=\frac{1-4^j}{4^j}.$$

Llavors, per $i \ge 0$ i $j \ge 1$ obtenim:

$$\left(\begin{array}{l}
T_{i,1} = F(h/2^{i}), \\
T_{i,j+1} = T_{i,j} + \frac{4^{j} (T_{i+1,j} - T_{i,j})}{4^{j} - 1} = \frac{4^{j} T_{i+1,j} - T_{i,j}}{4^{j} - 1}
\end{array}\right)$$

Extrapolació de Richardson 8/11

que segueix el següent esquema triangular:

$$T_{0,1}$$

$$T_{0,1}$$

$$T_{1,1} \rightarrow T_{0,2}$$

$$T_{2,1} \rightarrow T_{1,2} \rightarrow T_{0,3}$$

$$T_{3,1} \rightarrow T_{2,2} \rightarrow T_{1,3} \rightarrow \dots$$

amb terme d'error

$$T_{i,j} = \alpha + \mathcal{O}\left(\left(\frac{h}{2^i}\right)^{2j}\right)$$

$$|T_{i+1,j} - \alpha| \approx \frac{1}{4^{j} - 1} |T_{i+1,j} - T_{i,j}|$$

Extrapolació de Richardson 9/11

Extrapolació de Richardson (cont.)

Exemple (Richardson)

Suposem que volem aproximar f'(a) per a $f(x)=xe^x$ i a=2 amb un error absolut fitat per 10^{-6} . Ho farem extrapolant per Richardson la diferència finita centrada de primer ordre. Desenvolupant per Taylor al volant d'a, podem trobar un desenvolupament asimptòtic per la diferència finita centrada de primer ordre:

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2}f''(a) + \frac{h^3}{3!}f'''(a) + \frac{h^4}{4!}f^{(4)}(a) + \dots$$

$$f(a-h) = f(a) - hf'(a) + \frac{h^2}{2}f''(a) - \frac{h^3}{3!}f'''(a) + \frac{h^4}{4!}f^{(4)}(a) - \dots$$

d'on

$$\frac{f(a+h)-f(a-h)}{2h}=f'(a)+\frac{h^2}{3!}f'''(a)+\frac{h^4}{5!}f^{(5)}(a)+\ldots$$

i per tant aquesta és una expansió del tipus (7) amb $p_j = 2j$ per $j \ge 1$.

Extrapolació de Richardson (cont.)

Exemple (Richardson – cont.)

Definim $F(h) := \frac{f(a+h)-f(a-h)}{2h}$ i usem les formules desenvolupades pel cas $p_j = 2j$ per $j \ge 1$ i $q = \frac{1}{2}$.

Per començar a extrapolar, prenem h=0.1. Recordem que volíem error 10^{-6} , i per tant prenem tol = 10^{-6} .

Fem l'esquema triangular:

$$F(0.1) = 22.2287\,8688\,(1)$$

$$F(0.05) = 22.1825\,6486\,(2)$$

$$22.1671\,5752\,(3)$$

$$F(0.025) = 22.1710\,1693\,(4)$$

$$22.1671\,6762\,(5)$$

$$22.1671\,6830\,(6)$$

$$F(0.0125) = 22.1681\,3042\,(7)$$

$$22.1671\,6825\,(8)$$

$$22.1671\,6830\,(9)$$

Els números entre parèntesi indiquen l'ordre en què es fan els càlculs. Ens quedem l'aproximació requadrada, que és $T_{3,2}$.

Integració numèrica: Introducció

L'objectiu d'aquesta secció és donar mètodes per a aproximar numèricament integrals de funcions d'una variable. Això és necessari, per exemple

- Quan volem integrar una funció que tenim expressada analíticament, de la qual no en sabem trobar la primitiva (per exemple, $f(x) = e^{-x^2}$).
- Quan hem d'integrar una funció de la qual només coneixem alguns valors, perquè, per exemple, procedeixen d'un experiment.

Integració numèrica: Introducció (cont.)

Aproximarem integrals per fórmules *lineals* del tipus

$$\left[\int_a^b f(x) \approx \sum_{i=0}^n A_i f(x_i),\right]$$

on els $\{x_i\}_{i=0}^n$ s'anomenen *nodes* o *abscisses*, i els $\{A_i\}_{i=0}^n$ s'anomenen *pesos* o *coeficients*.

D'ara endavant ens restringirem a fórmules d'integració interpolatòria.

Definició

Donats un interval [a, b] i uns nodes $\{x_i\}_{i=0}^n \subset [a, b]$, la *fórmula d'integració interpolatòria* corresponent es defineix per

$$I(f) = \int_{a}^{b} P(x) dx$$

on f és una funció de la qual volem aproximar la integral de a a b, i $P \in \Pi_n$ és el polinomi interpolador de Lagrange amb punts de suport $\{(x_i, f(x_i))\}_{i=0}^n$.

A continuació anem a estudiar en detall les fórmules interpolatòries, el seu error i com deduir-les.

Lema

Tota fórmula d'integració interpolatòria per l'interval [a,b] amb nodes $\{x_i\}_{i=0}^n$ s'escriu com

$$I(f) = \sum_{i=0}^{n} A_i f(x_i),$$

on els pesos vénen donats per

$$A_i = \int_a^b \prod_{\substack{j=0\\i\neq i}}^n \frac{x - x_j}{x_i - x_j} dx.$$

Integració numèrica: Fórmules interpolatòries 2/6

<u>De</u>mostració

Siguin $L_i(x)$ els polinomis bàsics de Lagrange amb abscisses de suport $\{x_i\}_{i=0}^n$, és a dir,

$$L_i(x) = L_{i,\{x_j\}}(x) = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j} dx.$$

Aleshores,

$$P(x) = \sum_{i=0}^{n} f(x_i) L_{i,\{x_j\}}(x),$$

i per tant,

$$I(f) = \int_a^b P(x) dx = \sum_{i=0}^n f(x_i) \int_a^b L_{i,\{x_j\}}(x) dx = \sum_{i=0}^n f(x_i) A_i,$$

tal com volíem veure.

Integració numèrica: Fórmules interpolatòries 3/6

Lema

Tota fórmula d'integració interpolatòria de n+1 nodes és exacta per polinomis de grau $\leq n$, és a dir,

$$\forall p \in \Pi_n$$
 $I(p) = \int_a^b p(x) dx$.

Demostració

Sigui $p \in \Pi_n$ qualsevol. D'acord amb el lema anterior,

$$I(p) = \sum_{i=0}^{n} p(x_i) \int_{a}^{b} L_{i,\{x_j\}}(x) dx = \int_{a}^{b} \sum_{i=0}^{n} p(x_i) L_{i,\{x_j\}}(x) dx = \int_{a}^{b} P(x) dx,$$

on $P \in \Pi_n$ és el polinomi interpolador de Lagrange amb punts de suport $\{(x_i, p(x_i))\}_{i=0}^n$. Però $p \in \Pi_n$ també interpola als punts $\{(x_i, p(x_i))\}_{i=0}^n$. Per unicitat de la interpolació de Lagrange, p = P i per tant tenim $I(p) = \int_a^b p(x) dx$.

Integració numèrica: Fórmules interpolatòries 4/6

La demostració del següent lema és un exercici senzill:

Lema

Sigui

$$I(f) = \sum_{i=0}^{n} A_i f(x_i)$$

una fórmula d'integració numèrica qualsevol. Aleshores I(p) és exacta a [a,b] per a tot p polinomi de grau $\leq n$ si i només si I(p) és exacta per a $p \equiv 1$, p(x) = x, $p(x) = x^2$, ..., $p(x) = x^n$.

Podem trobar els pesos d'una fórmula d'integració interpolatòria corresponent a [a, b] amb nodes $\{x_i\}_{i=0}^n$ de dues maneres:

1 Calculant $A_i = \int_a^b L_{i,\{x_i\}}(x) dx$.

Integració numèrica: Fórmules interpolatòries 5/6

2 Imposant exactitud per a $1, x, x^2, \dots, x^n$:

que ens dóna un sistema d'equacions lineal en $\{x_i\}_{i=0}^n$ que té solució única, donat que el determinant de la seva matriu de coeficients és un determinant de Vandermonde.

Per a trobar expressions per l'error de truncament de les fórmules d'integració numèrica, integrarem l'expressió de l'error de la interpolació de Lagrange.

Integració numèrica: Fórmules interpolatòries 6/6

Fórmules de Newton-Côtes

Són fórmules d'integració interpolatòria en què es prenen abscisses equi-espaiades a [a, b]:

$$x_i = a + ih, \qquad i = 0 \div n,$$

on
$$h = (b - a)/n$$
.

Per trobar una expressió general per als seus pesos, usem el primer dels lemes anteriors:

$$A_{i} = \int_{a}^{b} L_{i,\{x_{j}\}}(x) dx = \int_{a}^{b} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx$$

$$= \int_{a}^{b} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - a - jh}{a + ih - a - jh} dx = h \int_{0}^{n} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{a + th - a - jh}{(i - j)h} dt$$

$$= h \int_{0}^{n} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{t - j}{i - j} dt.$$

Fórmules de Newton-Côtes 1/4

Fórmules de Newton-Côtes (cont.)

Definició (Coeficients de Côtes)

Els pesos

$$\alpha_i^{(n)} := \int_0^n \prod_{\substack{j=0\\j\neq i}}^n \frac{t-j}{i-j} dt \tag{8}$$

s'anomenen *coeficients de Côtes*. Notem que no depenen de l'interval [a, b].

Per tant, del càlcul anterior, deduïm:

$$\int_{a}^{b} f(x)dx = h \sum_{i=0}^{n} \alpha_{i}^{(n)} f(a+ih) + e^{(n)}(h).$$
 (9)

on $e^{(n)}(h)$ és l'error de truncament de la fórmula de Newton–Côtes amb pas h=(b-a)/n.

Fórmules de Newton-Côtes 2/4

Fórmules de Newton–Côtes (cont.)

Es pot demostrar (no ho veurem) el següent:

• Per a *n* senar.

$$e^{(n)}(h) = h^{n+2} \frac{f^{(n+1)}(\eta)}{(n+1)!} \int_0^n \prod_{i=0}^n (t-i) dt,$$

per a cert $\eta \in [a, b]$.

• Per a *n* parell,

$$e^{(n)}(h) = h^{n+3} \frac{f^{(n+2)}(\eta)}{(n+2)!} \int_0^n t \prod_{i=0}^n (t-i) dt,$$

per a cert $\eta \in [a, b]$.

En particular, les fórmules de Newton-Côtes amb n senar són exactes per a polinomis de grau < n, mentre que les fórmules amb n parell són exactes per a polinomis de grau $\leq n+1$.

Fórmules de Newton-Côtes 3/4

Fórmules de Newton-Côtes (cont.)

Taula: coeficients de les fórmules de Newton–Côtes						
n	grau de precisió	$\alpha_i^{(n)}$	error	nom		
1	1	$\frac{1}{2}$ $\frac{1}{2}$	$-\frac{f''(\xi)}{12}h^3$	regla dels trapezis		
2	3	$\begin{bmatrix} \frac{1}{3} & \frac{4}{3} & \frac{1}{3} \end{bmatrix}$	$-\frac{f^{(4)}(\xi)}{90}h^5$	regla de Simpson		
3	3	$\frac{3}{8} \frac{9}{8} \frac{9}{8} \frac{3}{8}$	$-\frac{3f^{(4)}(\xi)}{80}h^5$	regla dels 3/8		
4	5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$-\frac{8f^{(6)}(\xi)}{945}h^7$	regla de Milne		

Els coeficients de Côtes són positius per a n < 8, però a partir de n = 8 apareixen coeficients negatius. Amb la finalitat d'evitar cancel·lacions, és recomanable no emprar fórmules de Newton–Côtes amb $n \ge 8$ (i.e., 9 nodes o més).

A continuació estudiarem amb detall els casos particulars n=1 i n = 2.

Fórmules de Newton-Côtes 4/4

Regla dels trapezis

És la fórmula de Newton-Côtes per a n=1.

Donat [a,b], prenem $h=\frac{b-a}{n}=b-a$ i denotem per P_1 el polinomi interpolador de Lagrange amb punts de suport $\{(a,f(a)),(b,f(b))\}.$

Denotarem la regla dels trapezis per

$$T(f,a,b) = \int_a^b P_1(x) dx.$$

Trobarem els pesos de tres maneres.

Regla dels trapezis 1/10

Integrant el polinomi interpolador: Emprem diferències dividides per a trobar P_1 :

$$\begin{array}{c|c}
\hline
a & f(a) \\
b & f(b) \\
\hline
 & b & f(b)
\end{array}$$

d'on

$$P_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a),$$

i per tant:

$$T(f, a, b) = \int_{a}^{b} P_{1}(x)dx = \left[f(a)x + \frac{f(b) - f(a)}{b - a} \cdot \frac{(x - a)^{2}}{2}\right]_{x = a}^{x = b}$$

$$= f(a)(b - a) + \frac{f(b) - f(a)}{2(b - a)}(b - a)^{2}$$

$$= (b - a)\frac{f(a) + f(b)}{2},$$

d'on, finalment,

$$T(f, a, b) = (b - a) \frac{f(a) + f(b)}{2}.$$

El nom de "regla dels trapezis" prové del fet que T(f, a, b) és l'àrea del trapezi delimitat pels punts $\{(a,0),(a,f(a)),(b,f(b)),(b,0)\}.$

Regla dels trapezis 3/10

Usant les fórmules (9) i (8): Tenim

$$T(f, a, b) = h(\alpha_0^{(1)}f(a) + \alpha_1^{(1)}f(b))$$

essent

$$\alpha_0^{(1)} = \int_0^1 \frac{t-1}{0-1} = -\left[\frac{(t-1)^2}{2}\right]_{t=0}^{t=1} = \frac{1}{2},$$

$$\alpha_1^{(1)} = \int_0^1 \frac{t-0}{1-0} = \left[\frac{t^2}{2}\right]_{t=0}^{t=1} = \frac{1}{2}.$$

Resumint,

$$T(f,a,b) = h\frac{f(a) + f(b)}{2}.$$

Regla dels trapezis 4/10

Imposant exactitud: La fórmula de Newton–Côtes amb n=1 és una fórmula d'integració interpolatòria de 2 nodes, i per tant, d'acord amb el penúltim dels lemes anteriors, és exacta per a polinomis de grau ≤ 1 , d'on ho és per als monomis 1 i x.

Per a simplificar, triem a = 0 i b = n = 1, d'on

$$T(f, a, b) = T(f, 0, 1) = \alpha_0^{(1)} f(0) + \alpha_1^{(1)} f(1),$$

i per tant

$$\begin{array}{rcl}
1 & = & \int_0^1 1 dx & = & \alpha_0^{(1)} \cdot 1 + \alpha_1^{(1)} \cdot 1 \\
\frac{1}{2} & = & \int_0^1 x dx & = & \alpha_0^{(1)} \cdot 0 + \alpha_1^{(1)} \cdot 1
\end{array} \right\},$$

d'on, $\alpha_0^{(1)} = \alpha_1^{(1)} = \frac{1}{2}$ que, òbviament, ens torna a donar la fórmula anterior (recordem que els coeficients de la fórmula són independents de la funció f i de l'interval [a, b]).

Aquest mètode acostuma a ser el més pràctic per a trobar els coeficients de Côtes a mà.

Regla dels trapezis 5/10

Anem a trobar l'expressió de l'error per a la regla dels trapezis.

Proposició

Per a $f:[a,b] \to \mathbb{R}$ de classe C^2 , se satisfà

$$\int_{a}^{b} f(x)dx = T(f, a, b) - \frac{f''(\xi)}{12}h^{3}$$

per a cert $\xi \in [a, b]$. L'error de truncament de la regla dels trapezis és, per tant, $\mathcal{O}(h^3)$.

Per a demostrar la proposició usarem el

Teorema (del valor mitjà per integrals)

Siguin h, g: $[a,b] \longrightarrow \mathbb{R}$ contínues. A més g no s'anul·la a (a,b). Llavors, existeix $\xi \in [a,b]$ tal que

$$\int_a^b g(x)h(x)dx = h(\xi)\int_a^b g(x)dx.$$

Observació

La hipòtesi que g no s'anul·la a (a,b) és crucial. Si no, agafant g(x) = h(x) = x i [a,b] = [-1,1], tindríem:

$$\int_{-1}^{1} g(x)h(x)dx = \int_{-1}^{1} x^{2}dx > 0 i$$
$$h(\xi) \int_{-1}^{1} g(x)dx = \xi \int_{-1}^{1} xdx = 0.$$

Regla dels trapezis 7/10

Demostració (del Teorema valor mitjà per integrals)

Com que g no s'anul·la a (a,b), multiplicant per -1 si cal, podem suposar que g(x) > 0 per a tot $x \in (a,b)$.

Com que h és continua, pel Teorema de Bolzano-Weierstrass tenim que existeixen m, M tals que $m \le h(x) \le M$ per a tot $x \in (a,b)$. Llavors (com que g(x) > 0)

$$mg(x) \le g(x)h(x) \le Mg(x).$$

Integrant,

$$m\int_a^b g(x)dx \le \int_a^b g(x)h(x)dx \le M\int_a^b g(x)dx.$$

Com que g(x) > 0, $\int_a^b g(x) dx > 0$. Dividint,

$$m \le \frac{\int_a^b g(x)h(x)dx}{\int_a^b g(x)dx} \le M.$$

Regla dels trapezis 8/10

Demostració (del Teorema valor mitjà per integrals – cont.)

Ara, el Teorema de Bolzano ens diu que existeix $\xi \in [a,b]$ tal que

$$h(\xi) = \frac{\int_a^b g(x)h(x)dx}{\int_a^b g(x)dx}.$$

Això demostra la tesi del teorema.

Demostració (de l'error de truncament de la regla dels trapezis)

Donada f, sigui P el polinomi interpolador de Lagrange amb punts de suport $\{(a, f(a)), (b, f(b))\}$. Aleshores,

$$\int_{a}^{b} f(x)dx - T(f, a, b) = \int_{a}^{b} (f(x) - P(x))dx = \int_{a}^{b} f[a, b, x](x - a)(x - b)$$
(veure el Corol·lari de la transparència 40/93 d'Interpolació).

Regla dels trapezis 9/10

Demostració (de l'error de truncament de la regla dels trapezis)

Com que f[a, b, x] és contínua en x i (x - a)(x - b) no canvia de signe a [a, b], pel teorema del valor mitjà per integrals, f[a, b, x] es pot treure fora de la integral canviant x per un punt desconegut dins [a, b]:

$$\int_a^b f(x)dx - T(f,a,b) = f[a,b,\xi_1] \int_a^b (x-a)(x-b)dx = -\frac{f^{(2)}(\xi_2)}{2} \cdot \frac{(b-a)^3}{6},$$

on, a la última igualtat, hem aplicat l'Observació i el càlcul de les transparències 40/93 i 56/93 d'Interpolació i hem avaluat la integral $\int_{a}^{b} (x-a)(x-b)dx$.

Regla de Simpson

És la fórmula de Newton–Côtes per n=2.

Donat [a, b], i una funció f,

prenem P_2 el polinomi interpolador de Lagrange amb punts de suport $\{(a, f(a)), (\frac{a+b}{2}, f(\frac{a+b}{2})), (b, f(b))\}.$

Definim la regla de Simpson per

$$S(f,a,b)=\int_a^b P_2(x)dx.$$

Trobem els pesos imposant exactitud a l'interval [0, 2].

Regla de Simpson 1/7

D'acord amb (9),

$$S(f,0,2) = \alpha_0^{(2)}f(0) + \alpha_1^{(2)}f(1) + \alpha_2^{(2)}f(2).$$

Sabem que S(f,0,2) és exacta per a $f \in \Pi_2$, d'on

Resolent el sistema s'obté $\alpha_0^{(2)}=1/3$, $\alpha_1^{(2)}=4/3$ i $\alpha_2^{(2)}=1/3$, d'on (recordem que els coeficients de la fórmula són independents de la funció f i de l'interval [a,b]) de (9),

$$S(f,a,b) = \frac{b-a}{6} \Big(f(a) + 4f((a+b)/2) + f(b) \Big).$$

Regla de Simpson 2/7

A més,

$$S(x^3, 0, 2) = 1/3 \cdot 0^3 + 4/3 \cdot 1^3 + 1/3 \cdot 2^3 = 4/3 + 8/3 = 4 = \int_0^2 x^3 dx.$$

Es a dir, la fórmula de Simpson és exacta per polinomis de grau 3.

Per trobar l'error (de truncament), provem d'integrar la fórmula de l'error d'interpolació. Tenim,

$$\int_{a}^{b} f(x)dx - S(f, a, b) = \int_{a}^{b} (f(x) - P_{2}(x))dx$$
$$= \int_{a}^{b} f[a, \frac{a+b}{2}, b, x](x-a)(x-\frac{a+b}{2})(x-b)dx,$$

però ara no podem aplicar el teorema del valor mitjà per integrals, com fèiem amb la regla dels trapezis, donat que $(x-a)(x-\frac{a+b}{2})(x-b)$ canvia de signe a [a, b].

Regla de Simpson 3/7

Aquest problema el podríem esquivar si, en comptes de $(x-a)(x-\frac{a+b}{2})(x-b)$, tinguéssim $(x-a)(x-\frac{a+b}{2})^2(x-b)$. Aquest terme correspon al polinomi d'Hermite que, a més d'interpolar f a $\{a,(a+b)/2,b\}$, interpola f' a (a+b)/2.

Aquesta idea ens permet obtenir:

Proposició

Per a $f:[a,b] \to \mathbb{R}$ de classe C^4 , se satisfà

$$\int_{a}^{b} f(x)dx = S(f, a, b) - \frac{f^{(4)}(\eta)}{90}h^{5}$$

per a cert $\eta \in [a, b]$. L'error de truncament de la regla de Simpson és, per tant, $\mathcal{O}(h^5)$.

Demostració

Sigui H₃ el polinomi interpolador d'Hermite que satisfà

$$H_3(a)=f(a), \quad H_3(\frac{a+b}{2})=f(\frac{a+b}{2}), \quad H_3(b)=f(b), H_3'(\frac{a+b}{2})=f'(\frac{a+b}{2}).$$

Com que H_3 interpola a $\{a, (a+b)/2, b\}$, se satisfà

$$\int_{a}^{b} f(x)dx - S(f, a, b) = \int_{a}^{b} f(x)dx - S(H_{3}, a, b).$$

Per altra banda, com que la fórmula de Simpson és exacta per polinomis de grau 3 i H_3 té precisament aquest grau: $S(H_3, a, b) = \int_a^b H_3(x) dx$. Per tant

$$\int_{a}^{b} f(x)dx - S(H_{3}, a, b) = \int_{a}^{b} f(x)dx - \int_{a}^{b} H_{3}(x)dx.$$

Regla de Simpson 5/7

Demostració (cont.)

Llavors,

$$\int_{a}^{b} f(x)dx - S(f, a, b) = \int_{a}^{b} (f(x) - H_{3}(x))dx$$

$$= \int_{a}^{b} f[a, \frac{a+b}{2}, \frac{a+b}{2}, b, x](x-a)(x-\frac{a+b}{2})^{2}(x-b)dx$$

$$= f[a, \frac{a+b}{2}, \frac{a+b}{2}, b, \xi] \int_{a}^{b} (x-a)(x-\frac{a+b}{2})^{2}(x-b)dx,$$

on a la última igualtat hem aplicat el teorema del valor mitjà per integrals. Un càlcul directe permet veure que

$$\int_{a}^{b} (x-a)(x-\frac{a+b}{2})^{2}(x-b)dx = -\frac{4}{15}\left(\frac{b-a}{2}\right)^{5}.$$

Regla de Simpson 6/7

Demostració (cont.)

Per altra banda, l'Observació i el càlcul de les transparències 40/93 i 56/93 d'Interpolació mostren que existeix $\eta \in [a,b]$ tal que $f[a,\frac{a+b}{2},\frac{a+b}{2},b,\xi]=f^{(4)}(\eta)/24$.

Ajuntant-ho tot, obtenim

$$\int_{a}^{b} f(x)dx - S(f, a, b) = -\frac{f^{(4)}(\eta)}{90}h^{5}$$

per a h = (b - a)/2.

Regles compostes de Newton-Côtes

Les regles de Newton–Côtes tal com les hem vist són adequades només per b-a petit. Si $b-a\geq 2$ no hi ha res a fer, donat que hem vist que l'error de la regla de Simpson és $O\left(\left(\frac{b-a}{2}\right)^2\right)$, que no podem assegurar que sigui petit. Per b-a<1 però no petit (per exemple 0.75), l'única manera de pujar la precisió és pujar l'ordre de la fórmula de Newton–Côtes que emprarem. Però això, a part de la feina que suposa trobar els pesos de fórmules d'odre alt, presenta l'inconvenient de la inestabilitat numèrica (recordem que les fórmules de Newton–Côtes de més de 9 nodes tenen pesos negatius).

És per això que, per a [a,b] arbitrari, se segueix una altra estratègia. El que es fa és trencar [a,b] en diversos subintervals més petits, en cadascun dels quals s'aplica una regla d'integració numèrica. Les fórmules d'integració numèrica que s'obtenen d'aquesta manera s'anomenen regles compostes d'integració numèrica.

A continuació estudiarem les regles compostes dels trapezis i de Simpson.

Regla composta dels trapezis

Suposem que volem aproximar $\int_a^b f(x)dx$ amb [a, b] gran. Triem $N \in \mathbb{N}$, definim h = (b - a)/N i $x_i = a + ih$ per $i = 0 \div N$. Aleshores.

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(x)dx \approx \sum_{i=0}^{N-1} T(f, x_{i}, x_{i+1})$$

$$= \sum_{i=0}^{N-1} (x_{i+1} - x_{i}) \frac{f(x_{i}) + f(x_{i+1})}{2}$$

$$= \frac{h}{2} \Big(f(x_{0}) + f(x_{N}) + 2 \sum_{i=1}^{N-1} f(x_{i}) \Big).$$

D'acord amb això, es defineix la regla composta dels trapezis per

$$T_N(f, a, b) = \frac{h}{2} \Big(f(x_0) + 2 \sum_{i=1}^{N-1} f(x_i) + f(x_N) \Big).$$

Regla composta dels trapezis 1/3

Regla composta dels trapezis (cont.)

Per trobar el corresponent error de truncament, fem

$$\int_{a}^{b} f(x)dx - T_{N}(f, a, b) = \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(x)dx - \sum_{i=0}^{N-1} T(f, x_{i}, x_{i+1})$$

$$= \sum_{i=0}^{N-1} \frac{-f''(\xi_{i})}{12} h^{3} = -\frac{h^{3}}{12} \sum_{i=0}^{N-1} 1 \cdot f''(\xi_{i}),$$

apliquem el teorema dels valors intermedis,

$$-\frac{h^3}{12}\sum_{i=0}^{N-1}1\cdot f''(\xi_i)=-\frac{h^3}{12}\left(\sum_{i=0}^{N-1}1\right)\cdot f''(\eta)=-\frac{h^3}{12}Nf''(\eta),$$

i substituïm N = (b - a)/h per obtenir

$$\int_{a}^{b} f(x)dx - T_{N}(f, a, b) = -\frac{(b-a)f''(\eta)}{12}h^{2}.$$

Per tant, la regla composta dels trapezis és quadràtica en el pas (entenent com a pas la distància entre dos nodes consecutius).

Regla composta dels trapezis 2/3

Regla composta dels trapezis (cont.)

Exemple (d'aplicació de la regla dels trapezis)

Suposem que volem aproximar

$$\int_0^1 \frac{1}{1+x} dx = \ln 2 = 0.69314178.$$

Emprant diversos passos, obtenim la següent taula:

Ν	h	$T_N(\frac{1}{1+x},0,1)$	error = $T_N(\frac{1}{1+x}, 0, 1) - \ln 2$
1	1	0.75	0.0568 5282
2	0.5	0.7083 3333	0.0151 8615
4	0.25	0.6970 2381	0.0038 7663
8	0.125	0.6941 2185	0.0009 7467

Regla composta de Simpson

Suposem que volem aproximar $\int_a^b f(x)dx$ amb [a, b] gran. Triem $N \in \mathbb{N}$ parell i definim h = (b-a)/N i $x_i = a + i(b-a)/N$ per a $i=0 \div N$. Aleshores.

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{N/2-1} \int_{x_{2i}}^{x_{2i+2}} f(x)dx \approx \sum_{i=0}^{N/2-1} S(f, x_{2i}, x_{2i+2})$$

$$= \sum_{i=0}^{N/2-1} \frac{h}{3} \Big(f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2}) \Big)$$

$$= \frac{h}{3} \Big(f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \dots + 2f(x_{N-2}) + 4f(x_{N-1}) + f(x_{N}) \Big)$$

$$= \frac{h}{3} \Big(f(x_{0}) + f(x_{N}) + 4 \sum_{\substack{i=1 \ i \text{ senar}}}^{N-1} f(x_{i}) + 2 \sum_{\substack{i=2 \ i \text{ parelli}}}^{N-2} f(x_{i}) \Big).$$

Regla composta de Simpson 1/3

Regla composta de Simpson (cont.)

Com abans, per trobar el corresponent error de truncament, fem

$$\int_{a}^{b} f(x)dx - S_{N}(f, a, b) = \sum_{i=0}^{N/2-1} \int_{x_{2i}}^{x_{2i+2}} f(x)dx - \sum_{i=0}^{N/2-1} S(f, x_{2i}, x_{2i+2})$$

$$= \sum_{i=0}^{N/2-1} -\frac{f^{(4)}(\xi_{i})}{90} h^{5} = -\frac{h^{5}}{90} \frac{N}{2} f^{(4)}(\eta)$$

$$= -\frac{(b-a)f^{(4)}(\eta)}{180} h^{4}.$$

Resumint.

$$\int_{a}^{b} f(x)dx - S_{N}(f, a, b) = -\frac{(b-a)f^{(4)}(\eta)}{180}h^{4},$$

que és, per tant, $\mathcal{O}(h^4)$.

Regla composta de Simpson 2/3

Regla composta de Simpson (cont.)

Exemple (d'aplicació de la regla de Simpson)

El mateix d'abans: volem aproximar

$$\int_0^1 \frac{1}{1+x} dx = \ln 2 = 0.6931 \, 4178.$$

Emprant diversos passos, obtenim la següent taula:

Ν	h	$S_N(\frac{1}{1+x},0,1)$	error $=S_{\mathcal{N}}(rac{1}{1+x},0,1)-\ln 2$
2	0.5	0.6944 4444	0.0012 9726
4	0.25	0.6932 5397	0.0001 0679
8	0.125	0.6931 5453	0.0000 0735
16	0.0625	0.6931 4765	0.0000 0047

Que, com era d'esperar, per una h fixada dona uns errors molt més petits que la regla composta dels trapezis.

Regla composta de Simpson 3/3

Exemple d'ús de les regles compostes

Volem calcular

$$\int_0^1 e^{-x^2} dx$$

amb error menor que 10^{-4} .

Usant la regla composta dels trapezis: L'error és

$$10^{-4} > \left| \frac{f''(\eta)}{12} (b-a) h^2 \right| = \left| \frac{f''(\eta)}{12} (b-a) \frac{(b-a)^2}{n^2} \right|.$$

Per altra banda, $f''(x) = (-2 + 4x^2)e^{-x^2}$ i

$$|f''(\eta)| \le \max_{x \in [0,1]} |f''(x)| = |f''(0)| = 2.$$

Per tant, tenim

$$10^{-4} > \frac{2}{12} \frac{1}{n^2}$$

que dóna $n = 41 > 40.82 \cdots$. És a dir, necessitem 42 nodes.

Exemple d'ús de les regles compostes 1/2

Exemple d'ús de les regles compostes (cont.)

Usant la regla composta de Simpson: Ara tenim

$$10^{-4} > \left| \frac{f^{(4)}(\eta)}{180} (b-a) h^4 \right| = \left| \frac{f^{(4)}(\eta)}{180} (b-a) \frac{(b-a)^4}{n^4} \right|.$$

Per altra banda, $f^{(4)}(\eta) = (3 - 12x^2 + 4x^4)4e^{-x^2}$ i

$$\left| f^{(4)}(\eta) \right| \le \max_{x \in [0,1]} \left| f^{(4)}(x) \right| = \left| f^{(4)}(0) \right| = 12.$$

Per tant, tenim

$$10^{-4} > \frac{12}{180} \frac{1}{n^4}$$

que dóna $n = 6 > 5.08 \cdots$. És a dir, donat que 6 ja és parell, necessitem 7 nodes (3 intervals de Simpson).

Exemple d'ús de les regles compostes 2/2

Mètode de Romberg

El mètode de Romberg consisteix a aplicar l'extrapolació de Richardson a la regla dels trapezis composta. Per a això ens cal una expansió adient de l'error. Una d'elles ve donada per la

Fórmula d'Euler-Maclaurin

Per a $f \in C^{2m+2}([a,b])$ es té

$$T_{N}(f,a,b) = \int_{a}^{b} f(t)dt + \sum_{\ell=1}^{m} \frac{B_{2\ell}h^{2\ell}}{(2\ell)!} \Big(f^{(2\ell-1)}(b) - f^{(2\ell-1)}(a) \Big) + \frac{(b-a)B_{2m+2}h^{2m+1}}{(2m+2)!} f^{(2m+2)}(\xi)$$

on h=(b-a)/N i $\{B_i\}_{i=0}^{\infty}$ són els *nombres de Bernoulli*, que són els coeficients del desenvolupament de Taylor de $\frac{x}{e^x-1}$. Una manera d'obtenir-lo és avaluant els *polinomis de Bernoulli B*_i(x) a zero: $B_i=B_i(0)$.

Mètode de Romberg 1/7

Polinomis de Bernoulli

Una de les maneres de definir els polinomis de Bernoulli és $B_0(x)\equiv 1$, $B_1(x)=x-\frac{1}{2}$ i, per $k\geq 1$,

$$B'_{k+1}(x) = (k+1)B_k(x),$$

demanant que $B_{2l+1}(0) = B_{2l+1}(1) = 0$. Alguns d'ells són

$$B_0(x) \equiv 1$$
, $B_1(x) \equiv x - \frac{1}{2}$, $B_2(x) = x^2 - x + \frac{1}{6}$,

$$B_3(x) = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x$$
, $B_4(x) = x^4 - 2x^3 + x^2 - \frac{1}{30}$.

Resumint: la fórmula d'Euler–Maclaurin ens dóna una expansió de la forma

$$T_N(f, a, b, h) = \int_a^b f(x)dx + a_1h^2 + a_2h^4 + a_3h^6 + \dots$$

per a h = (b - a)/N.

Mètode de Romberg 2/7

D'acord amb això, el mètode de Romberg es duu a terme com segueix: prenem $h = h_0 = b - a$, q > 0 i construïm el següent esquema triangular:

$$T_{0,1}$$

$$T_{0,1}$$

$$T_{1,1} \rightarrow T_{0,2}$$

$$T_{2,1} \rightarrow T_{1,2} \rightarrow T_{0,3}$$

$$T_{3,1} \rightarrow T_{2,2} \rightarrow T_{1,3} \rightarrow \dots$$
Cas general
$$T_{i,1} = T_N(f, a, b, q^i h),$$

$$T_{i,1} = T_N(f, a, b, h/2)$$

on

$$\left\{egin{aligned} T_{i,1} &= T_{N}(f,a,b,q^{i}h), \ T_{i,j+1} &= T_{i,j} + rac{T_{i,j} - T_{i+1,j}}{q^{2j} - 1} \end{aligned}
ight.$$

$$\mathbf{q}=\mathbf{1}/\mathbf{2}$$

$$T_{i,1} = T_N(f, a, b, h/2^i),$$
 $T_{i,j+1} = \frac{4^j T_{i+1,j} - T_{i,j}}{4^j - 1}$

Mètode de Romberg 3/7

Com en el cas de Richardson, l'error ve donat per:

$$\boxed{T_{i,j} = \int_{a}^{b} f(x) dx + \mathcal{O}\left(\left(q^{i}h\right)^{2j}\right)} \boxed{T_{i,j} = \int_{a}^{b} f(x) dx + \mathcal{O}\left(\left(\frac{h}{2^{i}}\right)^{2j}\right)}$$

i el criteri d'aturada és:

$$igg| T_{1,j} - \int_a^b f(x) dx igg| pprox rac{q^{p_j}}{1 - q^{p_j}} |T_{1,j} - T_{0,j}| < ext{tol}$$
 $igg| T_{1,j} - \int_a^b f(x) dx igg| pprox rac{1}{4^j - 1} |T_{1,j} - T_{0,j}| < ext{tol}$

Observació divertida ***

Si $T_{0,1} = T(f, a, b)$, llavors $T_{0,2} = S(f, a, b)$. En efecte,

$$T_{0,2} = T_{0,1} + \frac{T_{0,1} - T_{1,1}}{(1-4)/4} = T_{0,1} - \frac{4}{3}(T_{0,1} - T_{1,1}) = -\frac{1}{3}T_{0,1} + \frac{4}{3}T_{1,1}$$

$$= -\frac{1}{3} \cdot \frac{b-a}{2} \left(f(a) + f(b) \right) + \frac{4}{3} \cdot \frac{b-a}{4} \left(f(a) + 2f(\frac{a+b}{2}) + f(b) \right)$$

$$= \frac{b-a}{6} \left(f(a) + 4f(\frac{a+b}{2}) + f(b) \right) = S(f, a, b).$$

Parlant informalment, a l'esquema triangular que defineix les $T_{i,j}$,

- cap a la dreta, pugem l'ordre de la regla d'integració, i
- cap a avall, la convertim en composta.

Exercici

Si $T_{0,1} = T(f, a, b)$, llavors $T_{0,3}$ és la regla de Milne.

Mètode de Romberg 5/7

Exemple (d'aplicació del mètode de Romberg)

Mantenim la mateixa integral:

 $T(1) = 0.7500\,0000$

$$\int_0^1 \frac{1}{1+x} = \ln 2 = 0.69314718.$$

Per a h=1/N, definim $T(h)=T_n(\frac{1}{1+x},0,1)$. Aleshores, l'esquema triangular queda

$$T(\frac{1}{2}) = 0.7083\,333$$
 0.6944 4444
 $T(\frac{1}{4}) = 0.6970\,2381$ 0.6932 5397 0.6931 7460
 $T(\frac{1}{8}) = 0.6941\,2185$ 0.6931 5453 0.6931 4790 0.6931 4748
 $T(\frac{1}{16}) = 0.6933\,9120$ 0.6931 4765 0.6931 4719 0.6931 4718

(respecte de l'ordre en què s'obtenen els $T_{i,j}$ — veure l'exemple de Richardson). Notem que la primera i segona columna corresponen als exemples de les regles composta dels trapezis i composta de Simpson, respectivament.

Mètode de Romberg 6/7

Observació sobre el calcul reiterat dels $T_{i,1} = T_N(f, a, b, h/2^i)$

Observem que si $N = \frac{b-a}{h}$, $\frac{b-a}{h/2} = 2N$. Llavors, per $x_i = a + i\frac{h}{2}$ $i = 0, 1, \dots, 2N$, tenim

$$\begin{split} T_N(f,a,b,h/2) &= \frac{h}{4} \Big(f(x_0) + f(x_{2N}) + 2 \sum_{i=1}^{2N-1} f(x_i) \Big) \\ &= \frac{1}{2} \frac{h}{2} \Big(f(x_0) + f(x_{2N}) + 2 \sum_{\substack{i=2\\i \text{ parell}}}^{2N-2} f(a+i\frac{h}{2}) \Big) + \frac{h}{4} 2 \sum_{\substack{i=1\\i \text{ senar}}}^{2N-1} f(x_i) \Big) \\ &= \frac{1}{2} \frac{h}{2} \Big(f(a) + f(b) + 2 \sum_{i=1}^{N-1} f(a+ih) \Big) + \frac{h}{2} \sum_{\substack{i=1\\i \text{ senar}}}^{2N-1} f(x_i) \Big) \\ &= \frac{1}{2} T_N(f,a,b,h) + \frac{h}{2} \sum_{i=1}^{2N-1} f(x_i) \,. \end{split}$$

Integració Gaussiana: Màgia triant el nodes

A les fórmules de quadratura anterior hem usat punts equi-espaiats per simplicitat però, com varem veure al Fenomen de Runge, usar aquestes aproximacions a una funció f pot donar problemes que s'hereten en aproximar $\int_{a}^{b} f(x)dx$ per la integral del polinomi interpolador.

La idea de les fórmules de Quadratura Gaussiana és intentar superar aguest problema triant acuradament el nodes d'interpolació.

Per altra banda buscarem fórmules per a calcular integrals de la forma

$$\int_{a}^{b} \omega(x) f(x) dx,$$

amb $\omega(x)$ pes no negatiu a l'interval [a, b].

Integració Gaussiana: Màgia triant el nodes (cont.)

La utilitat d'aquest enfoc és que permet d'obtenir millors fórmules de quadratura per a calcular la integral de productes de funcions (quan una d'elles no canvia de signe — el cas usual és $\omega(x) \equiv 1$) i agilitzar el calcul massiu d'integrals amb el mateix pes (desenvolupant fórmules ad-hoc en funció del pes).

Ara hem d'aprendre a a decidir els nodes d'integració i a calcular els coeficients de la fórmula de quadratura en funció d'aquests nodes.

Per a fer això, primer, hem d'estudiar els polinomis ortogonals.

Polinomis ortogonals

Sigui $[a, b] \subset \mathbb{R}$ i sigui $\omega(x)$ un *pes* no negatiu a l'interval [a, b] (permetem que $\omega(a)$ o $\omega(b)$ — o tots dos — siguin $+\infty$).

Definició (n-èssim moment)

L'*n*-èssim moment respecte del pes ω per $n=0,1,2,\ldots$, es defineix com:

$$\mu_n := \int_a^b x^n \omega(x) dx.$$

La hipòtesi bàsica sobre el pes, implica que l'n-èssim moment μ_n respecte del pes ω està ben definit per tot $n \geq 0$ i, a més, $\mu_0 > 0$.

Definició (producte interior i ortogonalitat)

L'expressió
$$\langle f,g \rangle := \int_a^b \omega(x) f(x) g(x) \ dx$$

defineix un *producte interior semidefinit positiu* a l'espai vectorial de les funcions fitades a l'interval [a,b]. Aquest producte interior indueix una noció d'ortogonalitat de la manera habitual: *dues funcions són ortogonals si i només si el seu producte interior és zero*.

Definició (família de polinomis ortogonals respecte d'un pes)

Sigui $\{\varphi_n(x)\}_{n=0}^\infty$ una família de polinomis tals que, per tot $n \geq 0$, φ_n té grau n. Direm que $\{\varphi_n(x)\}_{n=0}^\infty$ és ortogonal respecte del pes $\omega(x)$ a l'interval [a,b] si i només si

$$\langle \varphi_i, \varphi_j \rangle = \int_a^b \omega(x) \varphi_i(x) \varphi_j(x) \ dx = 0 \quad \text{per a cada } i \neq j.$$

Observem que $\langle \varphi_n, \varphi_n \rangle > 0$ per a cada n.

Observació

La família $\{\varphi_n(x)\}_{n=0}^{\infty}$ és ortogonal respecte del pes $\omega(x)$ a l'interval [a,b] si i només si

$$\langle \varphi_n, \varphi_k \rangle = 0$$
 per a cada $n = 1, 2, ...$ i $k = 0, 1, ..., n - 1$.

Polinomis ortogonals 3/11

A continuació estudiarem les propietats dels polinomis ortogonals.

Lema (Els polinomis ortogonals són base)

La família $\{\varphi_k\}_{k=0}^n$ és base de l'espai Π_n dels polinomis de grau més petit o igual que n.

Demostració

Es fàcil veure que $\{\varphi_k\}_{k=0}^n$ és un sistema generador de Π_n . Anem a veure que són linealment independents. Suposem que la combinació lineal $\sum_{i=0}^n \alpha_i \varphi_i$ s'anul·la a l'interval [a,b] $(\sum_{i=0}^n \alpha_i \varphi_i \equiv 0)$. Per la linealitat del producte interior i la ortogonalitat tenim

$$0 = \langle \varphi_k, \sum_{i=0}^n \alpha_i \varphi_i \rangle = \sum_{i=0}^n \alpha_i \langle \varphi_k, \varphi_i \rangle = \alpha_k \langle \varphi_k, \varphi_k \rangle$$

per a tot $k \in \{0, 1, 2, \dots, n\}$. Per tant, $\alpha_k = 0$ ja que $\langle \varphi_k, \varphi_k \rangle > 0$.

Lema (Els polinomis ortogonals ho son a tots els de grau més petit)

Sigui $Q \in \Pi_n$ un polinomi arbitrari de grau més petit o igual que n. Llavors,

$$\langle Q, \varphi_k \rangle = \int_a^b \omega(x) Q(x) \varphi_k(x) dx = 0$$
 per a cada $k > n$.

Demostració

Pel lema anterior podem escriure $Q = \sum_{i=0}^{n} \alpha_i \varphi_i$ amb α_i 's adequats. Llavors,

$$\langle Q, \varphi_k \rangle = \langle \varphi_k, \sum_{i=0}^n \alpha_i \varphi_i \rangle = \sum_{i=0}^n \alpha_i \langle \varphi_k, \varphi_i \rangle = 0.$$

Lema (Sobre les arrels dels polinomis ortogonals)

Per a cada n, totes les arrels de φ_n són reals, simples i pertanyen a l'interval (a, b).

Demostració

Siguin $x_1 < x_2 < \cdots < x_m$ totes les arrels de φ_n de multiplicitat senar contingudes a l'interval (a,b) i sigui

 $Q(x) = (x - x_1)(x - x_2) \cdots (x - x_m)$. Notem que Q té grau $m \le n$. El fet que les arrels x_i són de multiplicitat senar implica que φ_n canvia de signe a cada x_i i solament a aquests punts. Per tant, el polinomi $Q(x)\varphi_n(x)$ no canvia de signe a [a,b]. Llavors,

$$\langle Q, \varphi_n \rangle = \int_a^b \omega(x) Q(x) \varphi_n(x) \ dx \neq 0.$$

Pel lema anterior, Q ha de tenir grau n. Així m=n i el lema es cert.

Polinomis ortogonals 6/11

Teorema (Existència i càlcul dels polinomis ortogonals)

Per a cada n existeix un únic polinomi ortogonal mònic φ_n de grau n definit per les fórmules:

$$arphi_0(x) \equiv 1,$$
 $arphi_1(x) = x - \frac{\mu_1}{\mu_0}, i$ $arphi_{n+1} = (x - \alpha_n)\varphi_n(x) - \beta_n\varphi_{n-1}(x)$ per $n = 1, 2, \dots, n$

amb

$$\alpha_{n} = \frac{\langle \varphi_{n}, x \varphi_{n} \rangle}{\langle \varphi_{n}, \varphi_{n} \rangle} \quad i \quad \beta_{n} = \frac{\langle \varphi_{n}, \varphi_{n} \rangle}{\langle \varphi_{n-1}, \varphi_{n-1} \rangle} > 0.$$

Exercici

Comproveu que

$$\alpha_0 := \frac{\langle \varphi_0, x \varphi_0 \rangle}{\langle \varphi_0, \varphi_0 \rangle} = \frac{\mu_1}{\mu_0} \quad \text{i que} \quad \beta_1 = \frac{\mu_2}{\mu_0} - \alpha_0^2.$$

Polinomis ortogonals 7/11

Demostració

Primer demostrarem la recurrència per inducció i, al mateix temps, demostrarem l'existència de la família de polinomis ortogonals.

En virtut d'una observació anterior hem de demostrar que

$$\langle \varphi_n, \varphi_k \rangle = 0$$
 per a cada $n = 1, 2, \dots$ i $k = 0, 1, \dots k - 1$.

Per tant, φ_0 és arbitrari i, per altra banda, $\varphi_0(x) \equiv 1$ és l'únic polinomi mònic de grau 0.

Ara calculem φ_1 . Com que és mònic i de grau 1 tenim $\varphi_1=x-\alpha_0$. Per altra banda, la ortogonalitat imposa que

$$0 = \langle \varphi_1, \varphi_0 \rangle = \langle x - \alpha_0, 1 \rangle = \langle x, 1 \rangle - \alpha_0 \langle 1, 1 \rangle = \mu_1 - \alpha_0 \mu_0.$$

Per tant, $\alpha_0 = \frac{\mu_1}{\mu_0}$.

Polinomis ortogonals 8/11

Demostració (cont.)

Suposem que hem demostrat la recurrència fins grau $n \ge 1$ i demostrem-la per grau n+1.

Definim $\psi(x) := (x - \alpha_n)\varphi_n(x) - \beta_n\varphi_{n-1}(x)$, que és clarament un polinomi mònic de grau n+1. Per veure que $\psi(x) = \varphi_{n+1}(x)$ n'hi ha prou de veure que $\langle \psi, \varphi_k \rangle = 0$ per $k = 0, 1, \ldots, n$.

Comencem amb $k \in \{0, 1, \dots, n-2\}$. Tenim,

$$\langle \psi, \varphi_{k} \rangle = \langle (x - \alpha_{n})\varphi_{n} - \beta_{n}\varphi_{n-1}, \varphi_{k} \rangle$$

$$= \langle (x - \alpha_{n})\varphi_{n}, \varphi_{k} \rangle - \beta_{n}\langle \varphi_{n-1}, \varphi_{k} \rangle$$

$$= \langle \varphi_{n}, (x - \alpha_{n})\varphi_{k} \rangle - \beta_{n}\langle \varphi_{n-1}, \varphi_{k} \rangle.$$

El segon terme és zero ja que $k \neq n-1$. Per altra banda, notem que $(x-\alpha_n)\varphi_k$ té grau més petit o igual que n-1. Per tant, el primer terme també és zero pel lema que afirma que els polinomis ortogonals ho son a tots els de grau més petit.

Demostració (cont.)

Ara comprovem k=n-1. Notem que $x\varphi_{n-1}$ és un polinomi mònic de grau n. Per tant, $x\varphi_{n-1}=\varphi_n+Q$ amb $Q\in\Pi_{n-1}$. A més $\langle \varphi_n,Q\rangle=0$ pel lema que afirma que els polinomis ortogonals ho son a tots els de grau més petit. Per altra banda,

$$\langle \varphi_{\it n}, \varphi_{\it n-1} \rangle = 0$$
 i, per tant,

$$\langle \psi, \varphi_{n-1} \rangle = \langle (x - \alpha_n) \varphi_n - \beta_n \varphi_{n-1}, \varphi_{n-1} \rangle$$

$$= \langle (x - \alpha_n) \varphi_n, \varphi_{n-1} \rangle - \beta_n \langle \varphi_{n-1}, \varphi_{n-1} \rangle$$

$$= \langle \varphi_n, (x - \alpha_n) \varphi_{n-1} \rangle - \beta_n \langle \varphi_{n-1}, \varphi_{n-1} \rangle$$

$$= \langle \varphi_n, x \varphi_{n-1} \rangle - \alpha_n \langle \varphi_n, \varphi_{n-1} \rangle - \beta_n \langle \varphi_{n-1}, \varphi_{n-1} \rangle$$

$$= \langle \varphi_n, \varphi_n + Q \rangle - \beta_n \langle \varphi_{n-1}, \varphi_{n-1} \rangle$$

$$= \langle \varphi_n, \varphi_n \rangle + \langle \varphi_n, Q \rangle - \beta_n \langle \varphi_{n-1}, \varphi_{n-1} \rangle$$

$$= \langle \varphi_n, \varphi_n \rangle - \frac{\langle \varphi_n, \varphi_n \rangle}{\langle \varphi_{n-1}, \varphi_{n-1} \rangle} \langle \varphi_{n-1}, \varphi_{n-1} \rangle = 0.$$

Polinomis ortogonals 10/11

Demostració (cont.)

Usant com abans que $\langle \varphi_{n-1}, \varphi_n \rangle = 0$, tenim:

$$\begin{split} \langle \psi, \varphi_{n} \rangle &= \langle (x - \alpha_{n})\varphi_{n} - \beta_{n}\varphi_{n-1}, \varphi_{n} \rangle \\ &= \langle (x - \alpha_{n})\varphi_{n}, \varphi_{n} \rangle - \beta_{n}\langle \varphi_{n-1}, \varphi_{n} \rangle \\ &= \langle x\varphi_{n} - \alpha_{n}\varphi_{n}, \varphi_{n} \rangle = \langle x\varphi_{n}, \varphi_{n} \rangle - \alpha_{n}\langle \varphi_{n}, \varphi_{n} \rangle \\ &= \langle x\varphi_{n}, \varphi_{n} \rangle - \frac{\langle \varphi_{n}, x\varphi_{n} \rangle}{\langle \varphi_{n}, \varphi_{n} \rangle} \langle \varphi_{n}, \varphi_{n} \rangle = 0. \end{split}$$

Ara demostrem la unicitat. Fixat n suposem que existeixen dos polinomis ortogonals mònics de grau n, φ_n i $\widetilde{\varphi}_n$. Clarament, $P=\varphi_n-\widetilde{\varphi}_n\in\Pi_{n-1}$ i, llavors, $\langle\varphi_n,P\rangle=\langle\widetilde{\varphi}_n,P\rangle=0$. Per tant,

$$0 = \langle \varphi_n, P \rangle - \langle \widetilde{\varphi}_n, P \rangle = \langle \varphi_n - \widetilde{\varphi}_n, P \rangle = \langle P, P \rangle > 0;$$

contradicció.

Exemple: Polinomis de Txebishev a [-1,1] amb pes $\omega(x) = \frac{1}{\sqrt{1-x^2}}$

Fórmula recurrent

$$T_0(x) = 1$$
 $T_1(x) = x$
 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$.

Definició trigonomètrica

$$T_n(x) = \cos(n \arccos x)$$

o, equivalentment, són els únics polinomis que satisfan

$$T_n(\cos(\vartheta)) = \cos(n\vartheta)$$

Propietat de semigrup

$$T_n(T_m(x)) = T_{nm}(x)$$

Les arrels: Els nodes de Txebishev

$$x_k = \cos\left(\frac{2k-1}{2n}\pi\right), \quad k = 1, \dots, n.$$

Els primers polinomis de Txebishev

$$T_0(x) = 1 T_1(x) = x$$

$$T_2(x) = 2x^2 - 1 T_3(x) = 4x^3 - 3x$$

$$T_4(x) = 8x^4 - 8x^2 + 1$$

$$T_5(x) = 16x^5 - 20x^3 + 5x$$

$$T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1$$

$$T_7(x) = 64x^7 - 112x^5 + 56x^3 - 7x$$

$$T_8(x) = 128x^8 - 256x^6 + 160x^4 - 32x^2 + 1$$

 $T_9(x) = 256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x.$

Exemple: Polinomis de Laguerre a $[0, +\infty)$ amb pes $\omega(x) = e^{-x}$

Fórmula recurrent

$$L_0(x) = 1 L_1(x) = 1 - x$$

$$L_{n+1}(x) = \frac{(2n+1-x)L_n(x) - nL_{n-1}(x)}{n+1}$$

Formula de Rodrigue's

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (e^{-x} x^n)$$
$$= \frac{1}{n!} (\frac{d}{dx} - 1)^n x^n$$

Fórmula tancada

$$L_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{k!} x^k$$

Els primers polinomis de Laguerre

$$L_0(x) = 1$$
 $L_1(x) = -x + 1$

$$L_2(x) = \frac{1}{2}(x^2 - 4x + 2)$$

$$L_3(x) = \frac{1}{6}(-x^3 + 9x^2 - 18x + 6)$$

$$L_4(x) = \frac{1}{24}(x^4 - 16x^3 + 72x^2 - 96x + 24)$$

$$L_5(x) = \frac{1}{120}(-x^5 + 25x^4 - 200x^3 + 600x^2 - 600x + 120)$$

Exemple: Polinomis de Legendre a [-1,1] amb pes $\omega(x)=1$

Fórmula recurrent de Bonnet

$$P_0(x) = 1 P_1(x) = x$$

$$P_{n+1}(x) = \frac{2n+1}{n+1} x P_n(x) - \frac{n}{n+1} P_{n-1}(x)$$

Formula de Rodrigue's

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2 - 1)^n \right].$$

Fórmula tancada

$$P_n(x) = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (x-1)^{n-k} (x+1)^k.$$

Els primers polinomis de Legendre

$$P_0(x) = 1 P_1(x) = x$$

$$P_2(x) = \frac{1}{2}(3x^2 - 1) P_3(x) = \frac{1}{2}(5x^3 - 3x)$$

$$P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$$

$$P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x)$$

$$P_6(x) = \frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)$$

$$P_7(x) = \frac{1}{16}(429x^7 - 693x^5 + 315x^3 - 35x)$$

Figura extreta de la wikipedia

Definició

Siguin f definida a l'interval [a,b] i el pes $\omega(x)>0$ a [a,b]. Donats els nodes $\{x_i\}_{i=1}^n\subset [a,b]$, de manera similar a com ho hem fet en el cas sense pesos, la *fórmula de quadratura amb pesos* es defineix per

$$\int_a^b \omega(x)f(x)dx \approx I[f] = \sum_{i=1}^n \omega_i f(x_i).$$

on

$$\omega_i = \int_a^b \omega(x) L_{i,\{x_j\}}(x) dx \quad \text{amb} \quad L_{i,\{x_j\}}(x) = \prod_{\substack{j=1\\j\neq i}}^n \frac{x-x_j}{x_i-x_j}.$$

Definició

Una fórmula de quadratura amb pes té ordre d'exactitud igual a d si és exacta per a tots els polinomis de Π_d .

Anàlogament al cas sense pes tenim:

Lema

Tota fórmula de quadratura amb pes de n nodes és exacta per polinomis de Π_{n-1} , és a dir,

$$\forall p \in \Pi_{n-1}$$
 $I[p] = \int_a^b \omega(x)p(x)dx.$

Aquest lema, com en el cas sense pes, ens dona la millor manera de calcular els coeficients de la fórmula de quadratura una vegada hem triat els n nodes: imposant exactitud fins a grau n-1.

Fórmules de quadratura de Gauss-Christoffel 2/9

Observació

L'exactitud de la fórmula de quadratura per grau 0 implica:

$$\mu_0 = \int_a^b 1\omega(x)dx = \sum_{i=1}^n \omega_i.$$

A més, en el cas especial en que $\omega(x) \equiv 1$ es té $\mu_0 = b - a$.

El següent teorema és el resultat clau que motiva l'ús de la Quadratura Gaussiana. Es basa en un argument simple (i màgic) que usa fortament l'ortogonalitat. En particular explica com cal triar correctament els nodes d'integració.

Teorema

Siguin x_1, x_2, \ldots, x_n els zeros (simples) del polinomi ortogonal φ_n (de grau n) respecte del pes $\omega(x)$ a l'interval [a,b]. Llavors la fórmula de quadratura $I[f] = \sum_{i=1}^n \omega_i f(x_i)$ amb $\omega_i = \int_a^b \omega(x) L_{i,\{x_j\}}(x) dx$ és exacta per polinomis de grau més petit o igual que 2n-1.

Observació (la màgia)

El sol fet de triar el nodes d'integració com els zeros d'un polinomi ortogonal fa que passem d'ordre d'exactitud n-1 a 2n-1 dupliquem l'ordre d'exactitud!!

Fórmules de quadratura de Gauss-Christoffel 4/9

Demostració (del teorema sobre la tria dels nodes d'integració)

Sigui $\psi \in \Pi_{2n-1}$. Per l'algorisme de la divisió de polinomis,

$$\psi(x) = \varphi_n(x)q(x) + r(x)$$
 amb $q, r \in \Pi_{n-1}$.

Llavors:

$$\int_{a}^{b} \omega(x)\psi(x)dx = \int_{a}^{b} \omega(x)\varphi_{n}(x)q(x)dx + \int_{a}^{b} \omega(x)r(x)dx$$

 $= \int_{a}^{b} \omega(x) r(x) dx = \sum_{i=1}^{n} \omega_{i} r(x_{i})$ Pel lema anterior, la fórmula de quadratura és exacta per r, que té grau més petit o

$$\varphi_n(x_i) = 0$$
 per tot i per l'elecció dels nodes d'integració x_i .

$$r = \sum_{i=1}^n \omega_i \left(\varphi_n(x_i) q(x_i) + r(x_i) \right) = \sum_{i=1}^n \omega_i \psi(x_i).$$

 $\varphi_n(x)$ i q(x) són ortogonals pel lema que diu que els polinomis ortogonals ho son a tots els de grau més petit. Per tant, aquesta integral és zero.

Fórmules de quadratura de Gauss-Christoffel 5/9

Pel lema anterior, la fórmula

igual que n-1.

A més tenim:

Proposició

En les hipòtesis del teorema els pesos ω_i són reals i positius.

Demostració

Donat que tenim n nodes d'integració, $L_{i,\{x_i\}}(x)$ té grau n-1 per a cada i. Llavors, $(L_{i,\{x_i\}}(x))^2$ té grau 2n-2 i, per tant, la fórmula de quadratura és exacta per aquests polinomis. En conseqüència, com que $\omega(x) > 0$,

$$0 < \int_{a}^{b} \omega(x) \left(L_{i,\{x_{j}\}}(x) \right)^{2} dx = \sum_{k=1}^{n} \omega_{k} \left(L_{i,\{x_{j}\}}(x_{k}) \right)^{2} = \omega_{i} \left(L_{i,\{x_{j}\}}(x_{i}) \right)^{2} = \omega_{i}$$

(recordem que $L_{i,\{x_i\}}(x_k) = 0$ quan $i \neq k$ i $L_{i,\{x_i\}}(x_i) = 1$).

Fórmules de quadratura de Gauss-Christoffel 6/9

Proposició (Fórmula de l'error per la quadratura Gaussiana)

Siguin x_1, x_2, \ldots, x_n els zeros (simples) del polinomi ortogonal φ_n (de grau n) respecte del pes $\omega(x)$ a l'interval [a,b] i sigui $f:[a,b] \to \mathbb{R}$ de classe C^{2n} . Llavors,

$$\int_{a}^{b} \omega(x) f(x) dx - \sum_{i=1}^{n} \omega_{i} f(x_{i}) = \frac{f^{(2n)}(\xi)}{(2n)!} \langle \varphi_{n}, \varphi_{n} \rangle$$

amb a $< \xi < b$.

Observació

Donat que x_1, x_2, \ldots, x_n són els zeros de φ_n , que és un polinomi mònic de grau n, el polinomi $\prod_{i=1}^{n} (x - x_i)$ que apareix a la fórmula de l'error d'interpolació és precisament φ_n . Així

$$\langle \varphi_n, \varphi_n \rangle = \left\langle \prod_{i=1}^n (x - x_i), \prod_{i=1}^n (x - x_i) \right\rangle = \int_a^b \omega(x) \left(\prod_{i=1}^n (x - x_i) \right)^2 dx.$$

Observació

La constant de l'error $\langle \varphi_n, \varphi_n \rangle$ es pot calcular directament o (més fàcilment) aplicant la fórmula a algun polinomi de grau 2*n* (per exemple x^{2n}):

$$\int_{a}^{b} \omega(x) x^{2n} dx - \sum_{i=1}^{n} \omega_{i} x_{i}^{2n} = \frac{(2n)!}{(2n)!} \langle \varphi_{n}, \varphi_{n} \rangle = \langle \varphi_{n}, \varphi_{n} \rangle$$

ja que $\frac{d^{2n}}{dx^{2n}}x^{2n} = (2n)!$.

Exercici (per lliurament suplementari)

Demostrar la proposició anterior (fórmula de l'error per la quadratura Gaussiana).

Indicació: Podeu usar la mateixa tècnica que per a calcular la fórmula de l'error d'integració de la Regla de Simpson però amb un polinomi interpolador d'Hermite de grau 2n.

Exemple: Fórmules de Quadratura de Gauss-Txebishev

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) dx \approx \sum_{i=1}^{n} \omega_i f(x_i) \int_{a}^{b} \frac{1}{\sqrt{1-\frac{(2x-(b+a))^2}{(b-a)^2}}} f(x) dx \approx \frac{b-a}{2} \sum_{i=1}^{n} \omega_i f\left(\frac{(b-a)x_i+(b+a)}{2}\right)$$

	n	i	$x_i = \cos\left(\frac{2i-1}{2n}\pi\right)$	$\omega_i = \frac{\pi}{n}$	
	1	1	0.0	3.1415926535898	
	2	1	-0.70710678118655	1.5707963267949	
		2	0.70710678118655	1.0.0.3002013.13	
	3	1	-0.86602540378444		
		2	0.00000000000000	1.0471975511966	
		3	0.86602540378444		
	4	1	-0.92387953251129		
		2	-0.38268343236509	0.78539816339745	
		3	0.38268343236509	0.70559010559745	
		4	0.92387953251129		
	5	1	-0.95105651629515		
		2	-0.58778525229247		
		3	0.00000000000000	0.62831853071796	
		4	0.58778525229247		
		5	0.95105651629515		
_	6	1	-0.96592582628907		
		2	-0.70710678118655		
		3	-0.25881904510252	0.52359877559830	
		4	0.25881904510252	0.32339011339030	
		5	0.70710678118655		
		6	0.96592582628907		

Fórmula dels pesos

$$\omega_i = \frac{\pi}{n}$$

Veure:

- Süli i Mavers. Exercici 10.4
- Abramowitz, M. & Stegun, I. A., Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, ISBN 978-0-486-61272-0 (Equació 25.4.38).

Exemple: Fórmules de Quadratura de Gauss-Laguerre

$$\int_0^{+\infty} e^{-x} f(x) dx \approx \sum_{i=1}^n \omega_i f(x_i) \qquad \int_a^{+\infty} e^{a-x} f(x) dx \approx \sum_{i=1}^n \omega_i f(a+x_i)$$

n	i	x_i	ω_i
1	1	1.0	1.0
2	1	0.58578643762690	0.85355339059327
	2	3.4142135623731	0.14644660940673
3	1	0.41577455678348	0.71109300992917
	2	2.2942803602790	0.27851773356924
	3	6.2899450829375	0.10389256501586e-01
4	1	0.32254768961939	0.60315410434163
	2	1.7457611011583	0.35741869243780
	3	4.5366202969211	0.38887908515005e-01
	4	9.3950709123011	0.53929470556133e-03
5	1	0.26356031971814	0.52175561058281
	2	1.4134030591065	0.39866681108318
	3	3.5964257710407	0.75942449681708e-01
	4	7.0858100058588	0.36117586799221e-02
	5	12.640800844276	0.23369972385776e-04
6	1	0.22284660417926	0.45896467394996
	2	1.1889321016726	0.41700083077212
	3	2.9927363260593	0.11337338207405
	4	5.7751435691045	0.10399197453149e-01
	5	9.8374674183826	0.26101720281493e-03
	6	15.982873980602	0.89854790642962e-06

Exemple: Fórmules de Quadratura de Gauss-Laguerre 1/3

Exemple: Fórmules de Quadratura de Gauss-Laguerre (cont.)

Com a exemple calculem els pesos del cas n=4.

Els nodes x_i que apareixen a la taula es calculen numèricament a partir dels polinomis ortogonals amb les estratègies habituals (Sturm + Regula Falsi + Newton).

Moments k-èssims

Un càlcul directe ens dona la següent taula:

i	$\mu_i := \int_0^{+\infty} x^i e^{-x} dx$
0	1
1	1
2	2
3	6

Llavors, imposant exactitud fins ordre n-1=3, tenim

$$1 = \mu_0 = I[1] = \omega_1 + \omega_2 + \omega_3 + \omega_4$$

$$1 = \mu_1 = I[x] = \omega_1 x_1 + \omega_2 x_2 + \omega_3 x_3 + \omega_4 x_4$$

$$2 = \mu_2 = I[x^2] = \omega_1 x_1^2 + \omega_2 x_2^2 + \omega_3 x_3^2 + \omega_4 x_4^2$$

$$6 = \mu_3 = I[x^3] = \omega_1 x_1^3 + \omega_2 x_2^3 + \omega_3 x_3^3 + \omega_4 x_4^3$$

Exemple: Fórmules de Quadratura de Gauss-Laguerre 2/3

Exemple: Fórmules de Quadratura de Gauss-Laguerre (cont.)

El sistema anterior es pot escriure en forma matricial com:

$$\begin{pmatrix} 1.0 & 1.0 & 1.0 & 1.0 \\ 0.3225476896 & 1.745761101 & 4.536620297 & 9.395070912 \\ 0.1040370121 & 3.047681822 & 20.58092372 & 88.26735744 \\ 0.03355689787 & 5.320524373 & 93.36783628 & 829.2780824 \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 6 \end{pmatrix}.$$

Notem que la matriu del sistema és la transposada d'una matriu de Vandermonde. Per tant el sistema té solució única.

Aquesta solució són, precisament, els valors ω_i que apareixen a la taula per n=4.

Exemple: Fórmules de Quadratura de Gauss-Legendre

$$\int_{-1}^1 f(x) dx \approx \sum_{i=1}^n \omega_i f(x_i) \qquad \int_a^b f(x) dx \approx \frac{b-a}{2} \sum_{i=1}^n \omega_i f\left(\frac{(b-a)x_i + (b+a)}{2}\right)$$

n	i	X_i	ω_i
1	1	0.0	2.0
2	1	-0.57735026918963	1.0
	2	0.57735026918963	1.0
3	1	-0.77459666924148	0.555555555556
	2	0.00000000000000	0.8888888888889
	3	0.77459666924148	0.555555555556
4	1	-0.86113631159405	0.34785484513745
	2	-0.33998104358486	0.65214515486255
	3	0.33998104358486	0.65214515486255
	4	0.86113631159405	0.34785484513745
5	1	-0.90617984593866	0.23692688505619
	2	-0.53846931010568	0.47862867049937
	3	0.00000000000000	0.5688888888889
	4	0.53846931010568	0.47862867049937
	5	0.90617984593866	0.23692688505619
6	1	-0.93246951420315	0.17132449237917
	2	-0.66120938646626	0.36076157304814
	3	-0.23861918608320	0.46791393457269
	4	0.23861918608320	0.46791393457269
	5	0.66120938646626	0.36076157304814
	6	0.93246951420315	0.17132449237917

Volem calcular

$$\int_{0.5}^{1.5} e^{x} \cos(x) dx = \left(\frac{1}{2} e^{x} \cos(x) + \frac{1}{2} e^{x} \sin(x)\right) \Big|_{0.5}^{1.5}$$
$$\approx 1.275078201481532...$$

Hi ha dues maneres de procedir:

- Considerar $f(x) = \cos(x)$ i $\omega(x) = e^x$ un pes a l'interval [0.5, 1.5], calcular la família de polinomis ortogonals respecte d'aquest pes fins el grau que es necessiti, calcular els nodes xi i els pesos ω_i i, amb això, aproximar la integral.
- 2 Considerar $f(x) = e^x \cos(x)$ i $\omega(x) = 1$ i usar Gauss-Legendre.

Exemple: Calcul efectiu d'una integral 1/5

En aquest exercici seguirem la segona opció. Usarem una fórmula de quadratura de 3 punts, que ens permetrà comparar la qualitat del resultat amb la Regla de Simpson, que és la formula de 3 nodes equi-espaiats.

Per tant, la nostra fórmula de quadratura (per un interval [a, b]arbitrari) és:

$$\int_{0.5}^{1.5} e^x \cos(x) dx \approx \frac{1}{2} \sum_{i=1}^n \omega_i f\left(\frac{x_i + 2}{2}\right)$$

amb $f(x) = e^x \cos(x)$ i

ω_i	0.5555555555556	0.88888888888	0.555555555556
Xi	-0.77459666924148	0.00000000000000	0.77459666924148
$\frac{x_i+2}{2}$	0.61270166537926	1.0	1.38729833462074
$f\left(\frac{x_i+2}{2}\right)$	1.5097252852732	1.4686939399159	0.73061294253459

Exemple: Calcul efectiu d'una integral 2/5

Tenim:

$$\frac{1}{2} \sum_{i=1}^{n} \omega_i f\left(\frac{x_i + 2}{2}\right) = \frac{1}{2} 2.550138073151718...$$
$$= 1.27506903657585...$$

El terme d'error (després de fer el canvi de l'interval [-1,1] a l'interval [a, b]) és

$$R_n(f,a,b) = \left(\frac{b-a}{2}\right)^{2n+1} \frac{2^{2n+1}(n!)^4}{(2n+1)((2n)!)^3} f^{(2n)}(\eta); \quad \eta \in [a,b]$$

A l'exemple:

$$|R_3(f, 0.5, 1.5)| = \frac{1}{2^7} \frac{2^7 6^4}{7(6!)^3} \left| f^{(6)}(\eta) \right| = \frac{\left| f^{(6)}(\eta) \right|}{2016000}$$
$$\approx 4.96 \cdot 10^{-7} \cdot \left| f^{(6)}(\eta) \right| < 1.774 \cdot 10^{-5}.$$

Exemple: Calcul efectiu d'una integral 3/5

Per altra banda la Regla de Simpson és

$$\frac{b-a}{6} \left(f(a) + 4f((a+b)/2) + f(b) \right) = \frac{1}{6} \left(f(0.5) + 4f(1) + f(1.5) \right)$$
$$= \frac{1}{6} 7.63868693982815 \dots = 1.27311448997135 \dots,$$

amb error

$$\frac{\left|f^{(4)}(\eta)\right|}{90}h^{5} = \frac{\left|f^{(4)}(\eta)\right|}{90}\left(\frac{1}{2}\right)^{5} = \frac{\left|f^{(4)}(\eta)\right|}{2880}$$
$$\approx 3.47 \cdot 10^{-4} \cdot \left|f^{(4)}(\eta)\right| < 2.16 \cdot 10^{-3}.$$

Conclusions sobre l'exemple

Les dues aproximacions de $\int_{0.5}^{1.5} e^x \cos(x) dx$ estan correctament dins del seu marge d'error però l'aproximació donada per Gauss-Legendre és dos ordres de magnitud millor.

De tota manera l'interval d'integració és massa gran per tractar-lo amb fórmules simples de quadratura, si volem alta precisió.

Fi: estructures lineals i moltes dades

