TD ACCQ 201

Julien Béguinot, Duong Hieu Phan

Télécom Paris

1 Reminder

Definition 1. A ring $(A, +, \times)$ is a set A equiped with two operations + and \times such that

- (A, +) is an Abelian group
- there exists a neutral element 1_A in A for \times
- \bullet × is associative
- × is distributive on +

If \times is commutative the ring is said to be a **commutative ring**.

Definition 2. A left (resp right) **ideal** \mathcal{I} of the ring A is an additive subgroup of A stable by multiplication by an element of A on the left (resp right). If \mathcal{I} is both a right and a left ideal it is an ideal.

An ideal \mathcal{I} is said to be **principal** if there exists an element $x \in A$ such that $\mathcal{I} = AxA$. We use the notation (x) to designate the corresponding ideal.

More generally (x_1, \ldots, x_n) is the smallest ideal containing (x_i) for $i = 1, \ldots, n$. An ideal that can be expressed this way is said to be of **finite type**.

Definition 3. A **field** is a commutative ring with no non-trivial ideal. In other words every non-zero elements of the ring is invertible.

Definition 4. An integral ring is a commutative ring verifying the zero product rule i.e.

$$ab = 0 \implies a = 0 \text{ or } b = 0.$$

Definition 5. An integral ring is said to be **principal** if all its ideals are principal.

Theorem 1. $(\mathbb{Z}, +, \times)$ is a principal ring.

Definition 6. Let A be an integral ring and $a, b \in A$.

- a is said to be **irreducible** if it is non zero, non invertible and for all decomposition a = uv then either v or u is invertible.
- a and b are said to be **associated** if there exists an invertible element u such that a = ub.
- $p \in A$ is said to be **prime** if it is non zero, non invertible and for all product ab if p|ab then p|a or p|b.

The integral ring A is said to be a **factorial** ring if every elements of A which is non-zero and non invertible is a product of prime elements of A.

Definition 7. The ideal I of the commutative ring A is said to be prime if

$$\forall (a,b) \in A^2, ab \in I \implies (a \in I \text{ or } b \in I).$$

This is equivalent to say that the quotient ring A/I is integral.

2 TD ACCQ 201

Definition 8. An Euclidean ring A is an integral ring that can be endowed with a function $f: A \setminus \{0\} \to \mathbb{N}$ such that

- f(a) = 0 if and only if a = 0
- $\forall a \in A, \forall b \in A \setminus \{0\}, \exists q, r \in A^2, f(r) < f(b), a = bq + r$

Definition 9. The commutative ring A is said to be **Noetherian** if every ideal of A is of finite type. This is equivalent to say that every sequence of ideal of A increasing for the inclusion is stationary.

Definition 10. An ideal I of the ring A is maximal if and only if A/I is a field. Equivalently it is contained in exactly two ideals: itself and the whole ring.

Definition 11. Let A be a ring. Let $f: n \in \mathbb{Z} \mapsto n \cdot 1_A \in A$. The f is a ring morphism from the principal ring \mathbb{Z} to A. The **charachteristic** of A is defined as:

- if $Ker(f) = \{0\}$ then it is zero;
- else there exists a unique natural integer c such that $Ker(f) = c\mathbb{Z}$ and it is c.

Proposition 1. If A is a ring and I an ideal of A then A/I is integral if and only if I is prime i.e. $\forall a, b \in A, ab \in I \implies (a \in I \text{ or } b \in I).$

Theorem 2. A finite field is commutative.

Theorem 3. Let $G \subset K^*$ be a finite subgroup of the group of invertible of the field K. Then G is a cyclic group. As a consequence \mathbb{Z}_{p}^{*} is cyclic.

Theorem 4 (Euler). Let φ be Euler indicator function and n > 1. If k is coprime with n then $k^{\varphi(n)} = 1 \pmod{n}$.

Definition 12 (Legendre Symbol). Let p be a prime odd number. The Legendre symbol (n/p) is defined as

$$\left(\frac{n}{p}\right):\begin{cases} 0 \text{ if } p \text{ divides } n\\ +1 \text{ if } p \text{ does not divide } n \text{ and } n \text{ is a square mod } p\\ -1 \text{ if } p \text{ is not a square mod } p \end{cases}.$$

Theorem 5 (Quadratic Residuosity). Let $a \in \mathbb{Z}$, $p \nmid a$, p odd prime.

$$a^{\frac{p-1}{2}} = \left(\frac{a}{p}\right) \pmod{p}.$$

Definition 13 (Jacobi Symbol). Let $a \in \mathbb{Z}$ and $n \in 2\mathbb{N} + 1$. We assume that $n = \prod_{i=1}^k p_i$. Then the Jacobi symbol generalizes the Legendre symbol as

$$\left(\frac{a}{n}\right) = \prod \left(\frac{a}{p_i}\right).$$

It verifies the following properties:

- it is zero if and only if a and n are not co-prime
- it is multiplicative in a and in n
- if $a = b \pmod{n}$ then (a/n) = (b/n).

$$\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) = (-1)^{\frac{(m-1)(n-1)}{4}} \qquad \left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}} \qquad \left(\frac{2}{n}\right) = (-1)^{\frac{n^2-1}{8}}$$

Theorem 6 (Krull). Let \mathcal{I} be a non trivial ideal of the commutative ring A. There exists at least one maximal ideal of A that contains \mathcal{I} . This property is a consequence of the axiom of choice.

¹Termed stathme in French

2 Exercices

Exercice 1. Let A be a commutative ring.

- If A contains only the two trivial ideal then it is a field.
- If A is integral and contains a finite number of ideals then it is a field.
- **Solution 1.** Let $x \in A, x \neq 0$, we have to prove that x is invertible. Since $x \neq 0$, (x) cannot be the empty ideal hence it must be the full ring. In particular there must exists $a \in A$ such that xa = 1 i.e. x is invertible.
 - Let $x \in A$, $x \neq 0$, we have to prove that x is invertible. Let $I_n = (x^n)$ since the is a finite number of ideal there must exists n < p such that $I_p = I_n$. In particular we have $a \in A$ such that $x^n = x^p a$. But then $x^n (1 x^{p-n} a) = 0$ and since A is integral $x^{p-n}a = 1$ i.e. x is invertible of inverse $x^{p-n-1}a$.

Exercice 2. Let A be a principal ring.

- Show that if every sequence of ideal of A deacreasing for the inclusion is stationary then A is a field.
- Show that every increasing sequence of ideal of A is stationnary.
- **Solution 2.** Let $x \in A, x \neq 0$, we have to prove that x is invertible. Let $I_n = (x^n)$ then clearly the sequence of ideal is deacreasing for the inclusion. Hence we have a rank p such that $I_p = I_{p+1}$ in particular we have $a \in A$ such that $ax^{p+1} = x^p$ i.e. $x^p(1-ax) = 0$. This implies ax = 1 i.e. x is invertible.
 - Let (I_i) be a sequence of increasing ideals. Then $I = \cup I_i$ is an ideal. Since A is principal so is I and there exists $a \in A$ such that I = (a). Necessarly there must exist a rank N such that $a \in I_N$. But then $(a) \subset I_N \subset I_{N+1} \subset \ldots \subset I = (a)$ which concludes the proof.

Exercice 3. Is the ring of function from \mathbb{R} to \mathbb{R} an integral ring? Is the ring of continuous function from \mathbb{R} to \mathbb{R} a Noetherian ring?

Solution 3. No, let A be a non empty intervall and consider $f = 1_A$ and $g = 1_{A^c}$ then $fg = 0_{\mathbb{R} \to \mathbb{R}}$ while f, g are non zero. No, again consider the increasing sequence of ideal $I_n = \{f | x \ge n \implies f(x) = 0\}$ which is non stationary.

Exercice 4. Let $n \ge 2$, show that every ideal of \mathbb{Z}_n is principal. Is \mathbb{Z}_n principal?

Solution 4. Let \mathcal{I} be an ideal of \mathbb{Z}_n . Let $\mathcal{J} = \{n \in \mathbb{Z} | \bar{m} \in \mathcal{I}\}$. Clearly \mathcal{J} is an ideal of \mathbb{Z} which is principal so $\mathcal{J} = a\mathbb{Z}$ for some $a \in \mathbb{Z}$ and we can check that $\mathcal{I} = \bar{a}\mathbb{Z}_n$. \mathbb{Z}_n is not necessarly principal. This happens if \mathbb{Z}_n is integral which happens if n is prime.

Exercice 5. Let A be a ring and P a polynomial in A[X]. $a \in A$ is said to be a zero/root of P if P(a) = 0. Show that a is a zero of P if and only if X - a|P. Show that if A is integral then any non zero polynomial P of degree n admits at most n zero in A.

Solution 5. If X - a|P then P = (X - a)Q so P(a) = (a - a)Q(a) = 0Q(a) = 0 and a is a zero of P. Conversly assume that a is a zero of P. We write the division of P by X - a so that P = Q(X - a) + c where $c \in A$. But 0 = P(a) = (a - a)Q(a) + c = c so c = 0 i.e. P = (X - a)Q i.e. X - a|P. For the second point we can proceed by induction. Let P a polynomial with n disctincts roots a_1, \ldots, a_n . a_n is a zero of P so $X - a_n|P$ i.e. $P = (X - a_n)Q$. But a_1, \ldots, a_{n-1} are zero of P and $a_n - a_i \neq 0$ so a_1, \ldots, a_{n-1} are zero of Q. By induction, we obtain that $(X - a_1) \ldots (X - a_n)|P$. In particular the degree of P is at least P. This in turns imply that a polynomial of degree P admits at most P roots.

TD ACCQ 201

Exercice 6. Let A be an integral ring. If $p \in A$ is prime then it is irreducible.

Solution 6. Let p be a prime element of A. Let u, v be two elements in A such that p = uv. In particular p|p = uv so p|uv. By primality of p we obtain that p|u or p|v. Since A is commutative we can assume without loss of generality that p|u i.e. u = kp. Then p = uv = kpv = kvp. In particular p(1 - kv) = 0 so 1 = kv since A is integral. This show that v is invertible. Hence p is irreducible.

Exercice 7 (Characteristic of a Ring). Let A be a ring of finite characteristic N. Show that:

- $\forall a \in A, N \cdot a = 0.$
- If A is integral then N is prime.
- If A is integral then $X \mapsto x^N$ is ring morphism.

Solution 7. Since $N1_A = 0$ we have Na = 0a = 0. Let us assume that A is integral and N = pq we show that either p or q is equal to 1. We have $0 = N1_A = pq1_A = (p1_A)(q1_A)$. But A is integral so this implies that either $p1_A$ or $q1_A$ is zero. By the minimality of the characteristic this implies that p = N and q = 1 or p = 1 and q = N. To show that $x \mapsto x^N$ is a ring morphism we have to show that the mapping is additive (the other properties of the morphism are easily verified). Let $a, b \in A$. Since A is integral it is by definition commutative and Newtown formula holds

$$(a+b)^N = b^N + \sum_{k=1}^{N-1} \binom{N}{k} a^k b^{N-k} + a^N.$$

The results follows since $p|\binom{N}{k}$ for $k \neq 0, k \neq N$. Indeed,

$$p! = \binom{N}{k} k! (N-k)!.$$

and p divides $p! = \binom{N}{k} k! (N-k)!$. Since p cannot divide k! (N-k)! and it is prime it necessarly divides $\binom{N}{k}$.

Exercice 8. Let A be a principal ring. p irreducible \implies (p) maximal \implies A/(p) field \implies (p) prime.

- **Solution 8.** We assume that p is irreducible and show that (p) is maximal. Let \mathcal{I} be an ideal of A containing (p). Since A is principal I=(x) for some $x\in A$. As consequence there exists $y\in A$ such that p=xy. Since p is irreducible it follows that either x or y in invertible. If x is invertible then I=A else y is invertible and $x\sim p$ i.e. I=(p). This proves that (p) is maximal.
 - By definition an ideal I is maximal if A/I is a field.
 - A/I is integral if and only if I is prime. So if (p) was not prime then A/(p) would not be integral which is absurd.

Exercice 9. Let A be a ring and $\mathcal{Z}(A)$ be the set of elements of A that commutes with all elements of A. Show that $\mathcal{Z}(A)$ called the center of A is a subring of A.

Solution 9. $1_A \in \mathcal{Z}(A)$. If a, b commutes with every elements of A then so does a - b. Further if a, b commutes with every elements of A then ab also does.

Exercice 10. We investigate some properties of the famoius Gauss integer ring.

- Show that $\mathbb{Z}[i]$ is a ring
- Let $N: z \in \mathbb{C} \mapsto z\bar{z} \in \mathbb{R}^+$.

- Show that N is multiplicative.
- Show that if $z \in \mathbb{Z}[i]$ then $N(z) \in \mathbb{N}$.
- Let $z \in \mathbb{Z}[i]$ be invertible. Show that N(z) = 1.
- List the invertible elements of $\mathbb{Z}[i]$.
- Show that if $z \in \mathbb{C}$ then there exists $w \in Z[i]$ such that |z w| < 1.
- Let $u, v \in \mathbb{Z}[i]$ show that there exists $q, r \in Z[i]$ such that u = qv + r with |r| < |v|. Is $\mathbb{Z}[i]$ euclidean?
- Show that $\mathbb{Z}[i]$ is principal.

Solution 10. It is a ring seen a subring of \mathbb{C} . Since $N(z)=|z|^2$ it is multiplicative. If $z=a+bi\in Z[i]$ then $N=(z=a+bi)=a^2+b^2$ is an integer. If $z\in Z[i]$ is invertible then $N(z)N(z^{-1})N(zz^{-1})=N(1)=1$. Hence N(z)|1 and is positive i.e. N(z)=1. From that we can deduxe that the invertible elements of Z[i] are 1,-1,i,-i. The approximation can be achieved by replacing the real and imaginary part by the closet integer. We can find q as shown before such that $|\frac{u}{v}-q|<1$ and let $r=v(\frac{u}{v}-q)$. The decomposition is not unique hence this division is not euclidean. We show that $\mathbb{Z}[i]$ is principal. Let I be a non trivial ideal of $\mathbb{Z}[i]$. Let a be the a smallest non-zero element of I in the sense of $|\cdots|$ which is well defined since $\mathbb{Z}[i]$ is discrete. Necessarily I=(a). The inclusion $(a)\subset I$ is clear. It remains to show the other direction. Let $z\in I$. By the division by a introduced before we have z=qa+r with |r|<|a|. But $r=z-qa\in I$ so necessarily r=0 (else it contradicts the minimality of a). This implies that $z\in (a)$. In conclusion $\mathbb{Z}[i]$ is principal.

Exercice 11. Compute $(\frac{2585}{5031}), (\frac{122}{237}).$

Solution 11. Use the relation on Jacobi coefficient to reduce the numerator and denomiator by successive euclidean division.

Exercice 12. Determine when q = 3, 11 is a square modulo p.

Solution 12. We use the quadratic residue criterium from Euler. For example for q=3. We know that q is a square modulo p if and only if (3/p)=1. But $(3/p)=(p/3)(-1)^{\frac{p-1}{2}}$. If p-1=4k then we need (p/3)=1 i.e. p=3k'+1. It follows by Euclide lemma that in this case we need p=12k''+1. If p-3=4k then we need (p/3)=-1 i.e. p=3k'+2. By the chinese reminder theorem we copnclude that necessarily $p=3(3^{-1}(4))3+4(4^{-1}(3))2+12k''=9+4+12k''=1+12k'''$. In any case we obtain that 3 is a square modulo p if and only if p is equal to 1 modulo 12. Apply the same method to q=11.