

May 22, 2020

nCoV-2019 sequencing protocol (RAPID barcoding, 1200bp amplicon) V.3

Forked from nCoV-2019 sequencing protocol v2

Nikki Freed¹, Olin Silander¹

¹Massey University

In Development

dx.doi.org/10.17504/protocols.io.bgggjttw

Coronavirus Method Development Community

Nikki Freed

ABSTRACT

To enable faster, easier sequencing of SARS-COV2 genomes with fewer steps than current methods, we use multiplexed 1200 base pair PCR amplicons with the Oxford Nanopore RAPID barcoding kit (RBK004).

This is a modification of the ARTIC amplicon V3 sequencing protocol for MinION for nCoV-2019 developed by Josh Quick, which produces 400 base pair amplicons and uses the Oxford Nanopore Ligation barcoding kit (LSK-109).

We have increased the size of the amplicons to 1200bp and use the RAPID barcode kit (RBK004), which enables requires less time and fewer reagents than the LSK-109 protocol. The amplicons produced in this protocol could also be used for Illumina sequencing.

Primers were all designed using Primal Scheme: http://primal.zibraproject.org/, described here https://www.nature.com/articles/nprot.2017.066.

Primer sequences are here:

 $\frac{https://docs.google.com/spreadsheets/d/1M5I_C56ZC8_2Ycgm9EFieVIVNqxsP7dXAnGoBZy3nDo/edit?}{usp=sharing}$

GUIDELINES

This has so far been testing using only five SARS-CoV2 patient positive samples, with Cq values ranging from 20 to 31. Further testing might be needed to test the method on low viral load samples/high Cq samples.

STEPS MATERIALS

NAME	CATALOG #	VENDOR
SQK-RBK004 Rapid Barcoding Kit	SQK-RBK004	Oxford Nanopore Technologies

MATERIALS TEXT

Primers 25nm, desalted, ideally LabReady formulation from IDT:
 https://docs.google.com/spreadsheets/d/1M5l_C56ZC8_2Ycgm9EFieVIVNqxsP7dXAnGoBZy3nDo/edit#gid=755704891

	Extraction kits; Zymo Quick-RNA Virai Kit	Zymo	R1034
OR •	i.e. QIAamp Viral RNA Mini	Qiagen	52904
	SuperScript IV (50 rxn) dNTP mix (10 mM each)	Thermo Thermo	18090050 R0192
	Random Hexamers (50 µM)	Thermo	N8080127
OR •	Random Primer Mix (60 µM)	NEB	S1330S
•	RNase OUT (125 rxn) Q5 Hot Start HF Polymerase	Thermo NEB	10777019 M0493S

protocols.io

05/22/2020

Agencourt AMPure XP
 Rapid Barcoding Kit 1-12
 R9.4.1 flow cell
 Beckman Coulter A63880
 Nanopore SQK-RBK004
 Nanopore FLO-MIN106

SAFETY WARNINGS

Please follow standard health and safety guidelines when working with COVID-19 patient samples.

decrease variation in overall coverage.

A quick cooling step using a PCR cooling block or ice helps to inhibit secondary structure formation and can

4 Add the following to the annealed template RNA:

Component Volume

100mM DTT \blacksquare 1 μ I
RNaseOUT RNase Inhibitor \blacksquare 1 μ I
SSIV Reverse Transcriptase \blacksquare 1 μ I
Total \blacksquare 20 μ I

A mastermix should be made up in the **mastermix cabinet** and added to the denatured RNA in the **extraction and sample addition cabinet**. Tubes should be wiped down when entering and leaving the mastermix cabinet.

5 Gently mix by pipetting and pulse spin the tube to collect liquid at the bottom of the tube.

6 Incubate the reaction in a preheated PCR machine:

1h 5m

8 42 °C © 00:50:00 8 70 °C © 00:10:00

Hold at 85°C

Primer pool preparation

7 If required, resuspend lyophilised primers at a concentration of 100µM each

Primers for this protocol were designed using <u>Primal Scheme</u> and generate overlapping 1200bp amplicons. Primer names and dilutions are listed here:

 $\frac{https://docs.google.com/spreadsheets/d/1M5I_C56ZC8_2Ycgm9EFieVIVNqxsP7dXAnGoBZy3nDo/edit?}{usp=sharing}.$

We have tested multiplexing 1500 nt and 2000 nt amplicons as well, all work. These are included in the link. Here we will discuss just the protocol for 1200 nt amplicons as they worked best in our hands.

 $You \ can \ order \ these \ as \ an \ oligo \ pool \ from \ IDT: \underline{https://sg.idtdna.com/site/order/poolentry/sg.idtdna.com/site/order/poolentry/sg.idtdna.com/site/order/poolentry/sg.idtdna.com/site/order/poolentry/sg.idtdna.com/site/order/poolentry/sg.idtdna.com/site/order/poolentry/sg.idtdna.com/site/order/poolentry/sg.idtdna.com/site/order/poolentry/sg.idtdna.com/site/order/poolentry/sg.idtdna.com/site/order/poolentry/sg.idtdna.com/site/order/poolentry/sg.idtdna.com/site/order/sg.idtdna.com/sg.idt$

7.1 Primers used to generate 1200 bp amplicons are here:

Primer	Sequence	Pool	Length	Tm	Start
Name					
SARSCoV_1200_1_LEFT	ACCAACCAACTTTCGATCTCTTGT	1	24	60.69	30
SARSCoV_1200_1_RIGHT	GGTTGCATTCATTTGGTGACGC	1	22	61.49	1205
SARSCoV_1200_3_LEFT	GGCTTGAAGAGAAGTTTAAGGAAGGT	1	26	61.19	2153
SARSCoV_1200_3_RIGHT	GATTGTCCTCACTGCCGTCTTG	1	22	61.5	3257
SARSCoV_1200_5_LEFT	ACCTACTAAAAAGGCTGGTGGC	1	22	60.55	4167
SARSCoV_1200_5_RIGHT	AGCATCTTGTAGAGCAGGTGGA	1	22	61.16	5359
SARSCoV_1200_7_LEFT	ACCTGGTGTATACGTTGTCTTTGG	1	24	60.8	6283
SARSCoV_1200_7_RIGHT	GCTGAAATCGGGGCCATTTGTA	1	22	61.53	7401

SARSCoV_1200_9_LEFT	AGAAGTTACTGGCGATAGTTGTAATAACT	1	29	60.59	8253
SARSCoV_1200_9_RIGHT	TGCTGATATGTCCAAAGCACCA	1	22	60.29	9400
SARSCoV_1200_11_LEFT	AGACACCTAAGTATAAGTTTGTTCGCA	1	27	60.74	10343
SARSCoV_1200_11_RIGHT	GCCCACATGGAAATGGCTTGAT	1	22	61.8	11469
SARSCoV_1200_13_LEFT	ACCTCTTACAACAGCAGCCAAAC	1	23	61.55	12450
SARSCoV_1200_13_RIGHT	CGTCCTTTCTTGGAAGCGACA	1	22	61.38	13621
SARSCoV_1200_15_LEFT	TTTTAAGGAATTACTTGTGTATGCTGCT	1	28	60.06	14540
SARSCoV_1200_15_RIGHT	ACACACACAGCATCGTCAGAG	1	22	61.12	15735
SARSCoV_1200_17_LEFT	TCAAGCTTTTTGCAGCAGAAACG	1	23	61.28	16624
SARSCoV_1200_17_RIGHT	CCAAGCAGGGTTACGTGTAAGG	1	22	61.19	17754
SARSCoV_1200_19_LEFT	GGCACATGGCTTTGAGTTGACA	1	22	61.91	18596
SARSCoV_1200_19_RIGHT	CCTGTTGTCCATCAAAGTGTCCC	1	23	61.62	19678
SARSCoV_1200_21_LEFT	TCTGTAGTTTCTAAGGTTGTCAAAGTGA	1	28	60.58	20553
SARSCoV_1200_21_RIGHT	GCAGGGGTAATTGAGTTCTGG	1	22	60.95	21642
SARSCoV_1200_23_LEFT	ACTTTAGAGTCCAACCAACAGAATCT	1	26	60.18	22511
SARSCoV_1200_23_RIGHT	TGACTAGCTACACTACGTGCCC	1	22	61.52	23631
SARSCoV_1200_25_LEFT	TGCTGCTACTAAAATGTCAGAGTGT	1	25	60.51	24633
SARSCoV_1200_25_RIGHT	CATTTCCAGCAAAGCCAAAGCC	1	22	61.45	25790
SARSCoV_1200_27_LEFT	TGGATCACCGGTGGAATTGCTA	1	22	61.75	26744
SARSCoV_1200_27_RIGHT	TGTTCGTTTAGGCGTGACAAGT	1	22	60.74	27894
SARSCoV_1200_29_LEFT	TGAGGGAGCCTTGAATACACCA	1	22	61.1	28677
SARSCoV_1200_29_RIGHT	TAGGCAGCTCTCCCTAGCATTG	1	22	61.61	29790

Primers for Pool 1

Primer	Sequence	Pool	Length	Tm	Start
Name					
SARSCoV_1200_2_LEFT	CCATAATCAAGACTATTCAACCAAGGGT	2	28	61.27	1100
SARSCoV_1200_2_RIGHT	ACAGGTGACAATTTGTCCACCG	2	22	61.33	2266
SARSCoV_1200_4_LEFT	GGAATTTGGTGCCACTTCTGCT	2	22	61.66	3144
SARSCoV_1200_4_RIGHT	CCTGACCCGGGTAAGTGGTTAT	2	22	61.49	4262
SARSCoV_1200_6_LEFT	ACTTCTATTAAATGGGCAGATAACAACTG	2	29	60.18	5257
SARSCoV_1200_6_RIGHT	GATTATCCATTCCCTGCGCGTC	2	22	61.75	6380
SARSCoV_1200_8_LEFT	CAATCATGCAATTGTTTTTCAGCTATTTTG	2	30	60.39	7298
SARSCoV_1200_8_RIGHT	TGACTTTTTGCTACCTGCGCAT	2	22	61.39	8385
SARSCoV_1200_10_LEFT	TTTACCAGGAGTTTTCTGTGGTGT	2	24	60.32	9303
SARSCoV_1200_10_RIGHT	TGGGCCTCATAGCACATTGGTA	2	22	61.5	10451
SARSCoV_1200_12_LEFT	ATGGTGCTAGGAGAGTGTGGAC	2	22	61.48	11372
SARSCoV_1200_12_RIGHT	GGATTTCCCACAATGCTGATGC	2	22	60.48	12560
SARSCoV_1200_14_LEFT	ACAGGCACTAGTACTGATGTCGT	2	23	61.12	13509
SARSCoV_1200_14_RIGHT	GTGCAGCTACTGAAAAGCACGT	2	22	61.94	14641
SARSCoV_1200_16_LEFT	ACAACACAGACTTTATGAGTGTCTCT	2	26	60.18	15608
SARSCoV_1200_16_RIGHT	CTCTGTCAGACAGCACTTCACG	2	22	61.17	16720
SARSCoV_1200_18_LEFT	GCACATAAAGACAAATCAGCTCAATGC	2	27	62.03	17622
SARSCoV_1200_18_RIGHT	TGTCTGAAGCAGTGGAAAAGCA	2	22	60.68	18706
SARSCoV_1200_20_LEFT	ACAATTTGATACTTATAACCTCTGGAACAC	2	30	60.15	19574
SARSCoV_1200_20_RIGHT	GATTAGGCATAGCAACACCCGG	2	22	61.39	20698
SARSCoV_1200_22_LEFT	GTGATGTTCTTGTTAACAACTAAACGAACA	2	30	61.44	21532
SARSCoV_1200_22_RIGHT	AACAGATGCAAATCTGGTGGCG	2	22	62.03	22612
SARSCoV_1200_24_LEFT	GCTGAACATGTCAACAACTCATATGA	2	26	60.13	23518
SARSCoV_1200_24_RIGHT	ATGAGGTGCTGACTGAGGGAAG	2	22	61.74	24736

SARSCoV_1200_26_LEFT	GCCTTGAAGCCCCTTTTCTCTA	2	22	60.29	25690
SARSCoV_1200_26_RIGHT	AATGACCACATGGAACGCGTAC	2	22	61.5	26857
SARSCoV_1200_28_LEFT	TTTGTGCTTTTTAGCCTTTCTGCT	2	24	60.14	27784
SARSCoV_1200_28_RIGHT	GTTTGGCCTTGTTGTTGGC	2	22	61.82	29007

Primers for Pool 2

8 If you have ordered each primer independently and need to generate primer pool stocks: add **5 μl** of each primer from Pool 1 to a **1.5 ml** Eppendorf labeled "Pool 1 (100μM)" and each primer from Pool 2 to a **1.5 ml** Eppendorf labelled "Pool 2 (100μM)". These are your 100μM stocks of each primer pool.

Primers should be diluted and pooled in the **mastermix cabinet** which should be cleaned with decontamination wipes and UV sterilised before and after use.

9 Dilute this primer pool 1:10 in molecular grade water, to generate 10µM primer stocks. It is recommend that multiple aliquots of each primer pool are made to in case of degradation or contamination.

Primers need to be used at a final concentration of $0.015\mu M$ per primer. In this case (1200 nt amplicons), pool 1 has 30 primers and pool 2 has 28 primers, so the requirement is $1.13\mu L$ for primer pool 1 and $1.05\mu L$ for primer pool 2 (10uM) per $25\mu L$ reaction. However, as these values are relatively close, we round up and down to 1.1ul for both pools, so the pools can be made in a similar fashion. For other schemes, adjust the volume added appropriately.

Multiplex PCR

10 In the mastermix hood set up the multiplex PCR reactions as follows in 0.2mL 8-strip PCR tubes:

Component	Pool	Pool 2
5X Q5 Reaction Buffer	⊒ 5 μl	⊒ 5 μl
10 mM dNTPs	□ 0.5 µl	□ 0.5 μl
Q5 Hot Start DNA Polymerase	□ 0.25 μl	□ 0.25 μl
Primer Pool 1 or 2 (10µM)	□ 1.1 μl	□ 1.1 μl
Nuclease-free water	⊒ 15.9 µl	⊒ 15.9 μl
Total	⊒22.5 μl	⊒22.5 μl

A PCR mastermix for each pool should be made up in the **mastermix cabinet** and aliquoted into PCR strip tubes. Tubes should be wiped down when entering and leaving the mastermix cabinet.

11 In the **extraction and sample addition cabinet** add \blacksquare **2.5 \muI** cDNA to each tube and mix well by pipetting.

The **extraction and sample addition cabinet** should should be cleaned with decontamination wipes and UV sterilised before and after use.

12 Pulse centrifuge the tubes to collect the contents at the bottom of the tube.

13 Set-up the following program on the thermal cycler:

2h 40m

Step	Tempe	rature Time	Cycles
Heat Activation	8 98 °C	© 00:00:30	1
Denaturation	8 98 °C	© 00:00:15	25-35
Annealing and Extension	8 65 °C	© 00:05:00	25-35
Hold	1.4 °C	Indefinite	1

Cycle number should be 25 for Ct 18-21 up to a maximum of 35 cycles for Ct 35. We typically use 30 cycles.

Final concentrations of PCR products can range from ~20-150ng/ul.

Pooling and PCR quantification

14 Label a 1.5 ml Eppendorf tube for each sample and combine the two pools the PCR reaction as follows:

Component	Volume
Pool 1 PCR reaction	⊒25 μl
Pool 2 PCR reaction	⊒25 μl
Total	⊒ 50 μl

At this stage, care should be taken with amplified PCR products. Only open tubes in a designated post-PCR workspace with equipment that is separate from areas where primers and mastermixes are handled.

After combining the two pools of amplified DNA, the PCR products can be used for Oxford Nanopore Sequencing, using the RAPID barcode kit RBK004, as described in this protocol (below, Steps 15 onward).

Alternatively, these amplicons can be used for Oxford Nanopore Sequencing, following Josh Quick's ligation based protocol (CoV-2019 sequencing protocol v2, $\frac{dx.doi.org/10.17504/protocols.io.bdp7i5rn}{dx.doi.org/10.17504/protocols.io.bdp7i5rn}$, at step 15) using the SQK-LSK109 kit.

Alternatively, these amplicons can also be used for Illumina sequencing, such as found here: \underline{x} .doi.org/10.17504/protocols.io.betejeje

mprotocols.io

05/22/2020

We have found that performing an Ampure XP bead clean up at this stage does not improve performance. Therefore, it is not necessary to clean up the PCR reaction at this step.

14.1 Quantify DNA using a Qubit or other method. Quantification using Nanodrop is not recommended.

4.1.1 Prepare a mastermix of Qubit™ working solution for the required number of samples and standards. The Qubit dsDNA kit requires 2 standards for calibration (see note below).

Per sample:

Qubit® dsDNA HS Reagent ■1 µl

Qubit® dsDNA HS Buffer □199 μl

To avoid any cross-contamination, we recommend that you remove the total amount of working solution required for your samples and standards from the working solution bottle and then add the required volume to the appropriate tubes instead of pipetting directly from the bottle to each tube.

4.1.2 Label the tube lids. Do not label the side of the tube as this could interfere with the sample reading.

- 4.1.3 Aliquot Qubit™ working solution to each tube:
 - standard tubes requires 190µL of Qubit™ working solution
 - sample tubes require anywhere from 180-199µL (depending how much sample you wish to add).

The final volume in each tube must be $200\mu L$ once sample/standard has been added.

4.1.4 Add 10μL of standard to the appropriate tube.

4.1.5	Add 1–20µL of each user sample to the appropriate tube.
	If you are adding 1–2µL of sample, use a P-2 pipette for best results.
4.1.6	Mix each tube vigorously by vortexing for 3–5 seconds.
4.1.7	Allow all tubes to incubate at room temperature for 2 minutes, then proceed to "Read standards and samples".
4.1.8	On the Home screen of the Qubit™ 3 Fluorometer, press DNA, then select 1X dsDNA HS as the assay type. The Read standards screen is displayed. Press Read Standards to proceed.
	If you have already performed a calibration for the selected assay, the instrument prompts you to choose between reading new standards and running samples using the previous calibration. If you want to use the previous calibration, skip to step 12. Otherwise, continue with step 9.
4.1.9	Insert the tube containing Standard #1 into the sample chamber, close the lid, then press Read standard. When the reading is complete (~3 seconds), remove Standard #1.
1.10	Insert the tube containing Standard #2 into the sample chamber, close the lid, then press Read standard. When the reading is complete, remove Standard #2.
1.11	The instrument displays the results on the Read standard screen. For information on interpreting the calibration results, refer to the Qubit™ Fluorometer User Guide, available for download at thermofisher.com/qubit.
1.12	Press Run samples.
1.13	On the assay screen, select the sample volume and units: Press the + or – buttons on the wheel, or anywhere on the wheel itself, to select the sample volume added to the assay tube (from 1–20µL). From the unit dropdown menu, select the units for the output sample concentration (in this case choose ng/µL).
1.14	Insert a sample tube into the sample chamber, close the lid, then press Read tube. When the reading is complete (~3 seconds), remove the sample tube.

- 1.15 The top value (in large font) is the concentration of the original sample and the bottom value is the dilution concentration. For information on interpreting the sample results, refer to the Qubit™ Fluorometer User Guide.
- 1.16 Repeat step 14 until all samples have been read.
- 1.17 Carefully **record all results** and store run file from the Qubit on a memory stick.
- 1.18 All negative controls should ideally be 'too low' to read on the Qubit machine, but MUST be < 1ng per ul. If your negative controls >1ng per ul, considerable contamination has occurred and you must redo previous steps.

Normalisation

- 15 Label a **Q0.2 ml** PCR tube for each sample.
 - 15.1 Adjust the amount of DNA in the tube to be 100 ng total per sample in 7.5 μl molecular grade water. For example if your PCR reaction is at 100ng/ul, add 1ul of the PCR reaction to 6.5ul of molecular grade water. Input to the Rapid Barcoding kit will vary depending on the amplicon length but we have determined 50-200 ng works for efficient barcoding of this amplicon length. Use 7.5ul of the negative control, even if there is no detectable DNA in the PCR reaction.

Rapid barocoding using the SQK RBK004

Mulitple samples can be run on the same flow cell by barcoding. Up to 12 samples at a time can be run. Amplicons from each sample will be individually barcoded in the following steps. These follow the RBK004 protocol from Oxford Nanopore. It is highly recommended to use their protocol for the following steps. Tip: aliquot the Rapid barcodes into a PCR strip to enable multichannelling.

16.1 Add _7.5 µl of each diluted PCR reaction from step 15 to the labeled PCR tube. Set up the following reaction for each sample:

Component

DNA amplicons from step 15 (100ng total)

Fragmentation Mix RB01-12 (one for each sample, included in kit)

Total

Volume

□7.5 μl

□2.5 μl

5_m

⋈ protocols.io 9 05/22/2020

16.2 Mix gently by flicking the tube, and spin down. 5m 16.3 Incubate the reaction in a PCR machine: § 30 °C for **© 00:01:00** § 80 °C for **© 00:01:00** A 4 °C **© 00:00:30** for Pool all barcoded samples, noting the total volume. 16.4 15m Ampure XP Bead Cleanup. Use a 1:1 ratio of sample to beads. Amplicon clean-up using SPRI beads for RAPID nanopore kit RBK004 PREVIEW RUN by Nikki Freed Vortex SPRI beads thoroughly to ensure they are well resuspended, the solution should be a homogenous brown 17.1 colour. Agencourt AMPure XP by Beckman Coulter Catalog #: A63880 17.2 Add an equal volume (1:1) of SPRI beads to the sample tube and mix gently by either flicking or pipetting. For example add □50 µl room temperature SPRI beads to a □50 µl reaction. Pulse centrifuge to collect all liquid at the bottom of the tube. 17.3 17.4 Incubate for **© 00:05:00** at room temperature. 17.5 Place on magnetic rack and incubate for © 00:02:00 or until the beads have pelleted and the supernatant is mprotocols.io 10 05/22/2020 Citation: Nikki Freed, Olin Silander (05/22/2020). nCoV-2019 sequencing protocol (RAPID barcoding, 1200bp amplicon).

https://dx.doi.org/10.17504/protocols.io.bgggjttw

	completely clear.	
17.6	Carefully remove and discard the supernatant, being careful not to touch the bead pellet.	
17.7	Add 200 μl of freshly prepared room-temperature [M] 80 % volume ethanol to the pellet.	
17.8	Keeping the magnetic rack on the benchtop, rotate the bead-containing tube by 180°. Wait for the beads to migrate towards the magnet and re-form a pellet. Remove the ethanol using a pipette and discard.	
17.9	and repeat ethanol wash.	
7.10	Pulse centrifuge to collect all liquid at the bottom of the tube and carefully remove as much residual ethanol as possible using a P10 pipette.	
7.11	With the tube lid open incubate for $© 00:01:00$ or until the pellet loses it's shine (if the pellet dries completely it will crack and become difficult to resuspend).	
7.12	Remove the tube from the magnetic rack. Resuspend pellet in $\[\]$ 10 mM Tris-HCl pH 8.0 with 50 mM NaCl, mix gently by flicking and incubate at room temperature for $\[\]$ 00:02:00 .	
7.13	Place on magnet and transfer sample to a clean 1.5mL Eppendorf tube ensuring no beads are transferred into this tube.	
18	Add $\blacksquare 1~\mu I$ of RAP (from the RBK004 kit) to $\blacksquare 10~\mu I$ cleaned, barcoded DNA from step 17 . Mix gently by flicking the tube, and spin down.	
19	Incubate the reaction for © 00:05:00 at room temperature.	
20	The prepared library is used for loading into the MinION flow cell according to Oxford Nanopore Rapid Barcoding (RBK004) protocol. Please refer to the Oxford Nanopore Rapid Barcoding RBK004 protocol at this stage. Store the	

i protocols.io 11 05/22/2020

library on ice until ready to load.

MinION sequencing

- 21 Start the sequencing run using MinKNOW.
- Depending on the variation in coverage of each amplicon, generally, you will need approx 10,000 to 20,000 reads or 10-20Mb **per sample** to confidently assemble and call variants. This can typically be achieved on a minION flow cell in under two hours when runnning 12 samples. Shorter, if running fewer samples.
- The primer scheme .bed and .tsv files necessary for the ARTIC variant calling pipeline are here

⋈ protocols.io 12 05/22/2020