

ISTANBUL TECHNICAL UNIVERSITY

BLG354E - Recitation 1

25.04.2022

Impulse response of a DT system is given as h[n]=[0.2, 0.1, 0.5]

$$x(t) = t(u(t) - u(t-30)) + (60-t)(u(t-30) - u(t-60))$$
 is given.

- A. Plot the x(t)
- B. Convert x(t) to digital x[n] with fs = 0.1 Hz and plot
- C. Find and sketch the output of the system for the obtained input signal x[n]

$$x(t) = t (u(t) - u(t-30)) + (60 - t)(u(t - 30) - u(t - 60))$$

$$x[n] = x(t = nTs)$$
 is used
fs = 0.1Hz => Ts = 10 sn

$$x[0] = x(0) = 0$$

 $x[1] = x(10) = 10$
 $x[2] = x(20) = 20$
 $x[3] = x(30) = 30$
 $x[4] = x(40) = 20$
 $x[5] = x(50) = 10$
 $x[6] = x(60) = 0$

$$x[n] = [0, 10, 20, 30, 20, 10]$$

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{k=\infty} x[k] \cdot h[n-k]$$
$$x[n] = [0, 10, 20, 30, 20, 10]$$
$$h[n] = [0.2, 0.1, 0.5]$$

n	-2	-1	0	1	2	3	4	5	6	7
h[n]			0.2	0.1	0.5					
x[n]			0	10	20	30	20	10		
h[-n]	0.5	0.1	0.2							
h[1-n]		0.5	0.1	0.2						
h[2-n]			0.5	0.1	0.2					
h[3-n]				0.5	0.1	0.2				
h[4-n]					0.5	0.1	0.2			
h[5-n]						0.5	0.1	0.2		
h[6-n]							0.5	0.1	0.2	
h[7-n]								0.5	0.1	0.2

$$y[n] = {0, 2, 5, 13, 17, 19, 11, 5}$$

y[n]

Consider the discrete system shown in the figure below where x[n] is the input, y[n] is the output and z^{-1} represents the unit delay.

- a) Write the difference equation that relates the output y[n] and the input x[n]
- b) Find and draw the system output values for n=0 to 5 if input signal x[n] is defined as:

$$x[n]=n\cdot(u[n-1]-u[n-3])-2n\cdot\delta[n-2]$$

a)
$$y[n] = 0.5 x[n-1] + 0.5 x[n] - 0.5 y[n-1]$$

b)
$$x[n] = n \cdot (u[n-1] - u[n-3]) - 2n \cdot \delta[n-2]$$

n	x[n]	x[n-1]	y[n]	y[n-1]
0	0	0	0	0
1	1	0	1/2	0
2	-2	1	-3/4	1/2
3	0	-2	-5/8	-3/4
4	0	0	5/16	-5/8
5	0	0	-5/32	5/16

Example: Magnitude response of H(s) is given in the below Bode plot. Find the transfer function H(s)

$$H(s) = \frac{K(1 + \frac{s}{z_1})(1 + \frac{s}{z_2})(1 + \frac{s}{z_3})\cdots}{(1 + \frac{s}{p_1})(1 + \frac{s}{p_2})(1 + \frac{s}{p_3})\cdots}$$

$$H(s) = \frac{K}{s(1 + \frac{s}{1})(1 + \frac{s}{20})}$$

$$H(j\omega) = \frac{K}{s(1+j\omega)(1+\frac{j\omega}{20})}\bigg|_{\omega=0.1} = 60dB$$

-60 dB/decade
$$|H(j\omega)| = \frac{K}{\omega\sqrt{1+\omega^2}\left(\sqrt{1+\frac{\omega^2}{20}}\right)}\Big|_{\omega=0.1} = 10^{\frac{60}{20}} = 1000$$

For
$$\omega=0.1 \Rightarrow \sqrt{1+\omega^2} \cong 1 \qquad \sqrt{1+\frac{\omega^2}{20}} \cong 1 \qquad \frac{\kappa}{\omega} = \frac{\kappa}{0.1} \cong 1000 \Rightarrow K=100$$

$$H(s) = \frac{100}{s(1+s)(1+0.05s)}$$

Example: Frequency response (magnitude) of H(s) is given in the below Bode plot. Find the transfer function H(s)

$$H(s) = \frac{K(1 + \frac{s}{z_1})}{(1 + \frac{s}{p_1})(1 + \frac{s}{p_2})}$$

$$H(s) = \frac{K(1+\frac{s}{1})}{(1+\frac{s}{10})(1+\frac{s}{100})} = \frac{K(1+s)}{\frac{1}{10}(10+s)\frac{1}{100}(100+s)}$$

$$H(s) = \frac{1000K(1+s)}{(10+s)(100+s)}$$

$$H(j\omega) = \frac{1000K(1+j\omega)}{(10+j\omega)(100+j\omega)}$$

For
$$\omega=0 \rightarrow 20\log|H(\omega)|)=-20 \rightarrow |H(j\omega)|_{\omega=0} = \frac{1000K}{10\cdot 100} = 10^{\frac{-20}{20}} = 0.1 \rightarrow K=0.1$$

$$H(s) = \frac{100(1+s)}{(10+s)(100+s)}$$

Consider the periodic square wave x(t) shown in the figure. Determine the first two non-zero harmonic components of its trigonometric Fourier Series.

