Noncooperative Game Theory

J. Leite (adapted from Kevin Leyton-Brown)

March 16, 2019

Section 1

More about mixed-strategy Nash Equilibria

Fun Game!

	L	R
T	80, 40 320, 4044, 40	40, 80
B	40,80	80, 40

► Play once as each player, recording the strategy you follow.

Football Penalty Kicks

- Mixed strategies in sports and competitive games
- ▶ Be unpredictable
- How do equilibrium strategies adjust to skills?

$Kicker \setminus Goalie$	Left	Right
Left	0, 1	1,0
Right	1, 0 .75, .25	0, 1

Football Penalty Kicks

$Kicker \backslash Goalie$	Left	Right
Left	0, 1	1,0
Right	.75, .25	0, 1

- Let the Goalie play *Left* with p, *Right* with 1 p.
- ▶ If the Kicker best-responds with a mixed strategy, the Goalie must make him indifferent between *Left* and *Right*.
- $u_{Kicker}(Left) = u_{Kicker}(Right) \iff (1-p) = .75p \iff p = \frac{4}{7}$
- Likewise, the Kicker must randomize to make the Goalie indifferent.
- ▶ Let the Kicker play *Left* with q, *Right* with 1 q.
- ► $u_{Goalie}(Left) = u_{Goalie}(Right) \iff q + .25(1 q) = 0q + (1 q) \iff q = \frac{3}{7}$
- ► Thus the mixed strategies $(\frac{3}{7}, \frac{4}{7})$, $(\frac{4}{7}, \frac{3}{7})$ are a Nash equilibrium.

Fun Game!

	L	R
T	80, 40; 320, 40; 44, 40	40,80
В	40,80	80,40

- What does row player do in equilibrium of this game?
 - row player randomizes 50-50 all the time
 - that's what it takes to make column player indifferent
- What happens when people play this game?
 - with payoff of 320, row player goes up essentially all the time
 - with payoff of 44, row player goes down essentially all the time

Professional Football Penalty Kicks

- Some counter-intuitive features...
- Do people really play equilibria?
- Ignacio Palacios-Heurta (2003)
 - ▶ 1417 Penalty kicks from FIFA games: Spain, England, Italy...

Kicker\Goalie	Left	Right
Left	.58, .42	.95, .05
Right	.93, .07	.70, .30

- ► The mixed strategies (.38, .62), (.42, .58) are a Nash equilibrium.
- Real data...

	Goalie Left	Goalie Right	Kicker Left	Kicker Right
Nash Freq.	.42	.58	.38	.62
Actual Freq.	.42	.58	.40	.60

Section 2

Beyond Nash Equlibrium

Dominated Strategies

Should Grace celebrate her 90th birthday by jumping out of a plane strapped to this guy?

Zero-Sum Games

Is he really solving for the Nash equilibrium?

Coordination

Battle of the Sexes: either unfairness or miscoordination?

Section 3

Domination

Domination

Let s_i and s'_i be two strategies for player i, and let S_{-i} be is the set of all possible strategy profiles for the other players

Definition

 s_i strictly dominates s_i' if $\forall s_{-i} \in S_{-i}, u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$

Definition

 s_i weakly dominates s_i' if $\forall s_{-i} \in S_{-i}, u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$ and $\exists s_{-i} \in S_{-i}, u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$

Definition

 s_i very weakly dominates s_i' if $\forall s_{-i} \in S_{-i}, u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$

Equilibria and dominance

- If one strategy dominates all others, we say it is dominant.
- A strategy profile consisting of dominant strategies for every player must be a Nash equilibrium.
 - An equilibrium in strictly dominant strategies must be unique.
- Consider Prisoner's Dilemma again
 - not only is the only equilibrium the only non-Pareto-optimal outcome, but it's also an equilibrium in strictly dominant strategies!

Section 4

Fun Game

Traveler's Dilemma

Two travelers purchase identical African masks while on a tropical vacation. Their luggage is lost on the return trip, and the airline asks them to make independent claims for compensation. In anticipation of excessive claims, the airline representative announces: "We know that the bags have identical contents, and we will entertain any claim between \$180 and \$300, but you will each be reimbursed at an amount that equals the minimum of the two claims submitted. If the two claims differ, we will also pay a reward R to the person making the smaller claim and we will deduct a penalty R from the reimbursement to the person making the larger claim."

Traveler's Dilemma

- Action: choose an integer between 180 and 300
- ▶ If both players pick the same number, they both get that amount as payoff
- If players pick a different number:
 - ▶ the low player gets his number (L) plus some constant R
 - ▶ the high player gets L R.
- Set R = 5 and play this game <u>once</u> with a partner; play with as many different partners as you like.
- Now set R = 180, and again play with as many partners as you like.

Traveler's Dilemma

- What is the equilibrium?
 - (180, 180) is the only equilibrium, for all $R \ge 2$.
- What (usually) happens?
 - with R = 5 most people choose 295–300
 - with R = 180 most people choose 180

Section 5

Iterated Removal of Dominated Strategies

"Rationality"

- A basic premise: players maximize their payoffs
- What if all players know this?
- And they know that other players know it?
- And they know that other players know that they know it?
- ٠..

Dominated strategies

- No equilibrium can involve a strictly dominated strategy
 - Thus we can remove it, and end up with a strategically equivalent game
 - This might allow us to remove another strategy that wasn't dominated before
 - Running this process to termination is called iterated removal of dominated strategies.

	L	С	R
U	3,0	2, 1	0,0
М	1,1	1, 1	5,0
D	0, 1	4,2	0, 1

R is dominated by C.

	L	С
U	3,0	2, 1
М	1,1	1,1
D	0, 1	4,2

ightharpoonup M is dominated by U.

L is dominated by C.

U is dominated by D.

	L	С	R
U	3,0	2, 1	0,0
М	1,1	1, 1	5,0
D	0, 1	4, 2	0, 1

► A unique Nash equilibrium *D*, *C*.

	L	С	R
U	3, 1	0, 1	0,0
М	1,1	1, 1	5,0
D	0,1	4, 1	0,0

ightharpoonup R is dominated by L or C.

	L	С
U	3,1	0, 1
М	1,1	1,1
D	0, 1	4, 1

► *M* is dominated by the mixed strategy that selects *U* and *D* with equal probability.

No other strategies are dominated.

Iterated Removal of Dominated Strategies

- This process preserves Nash equilibria.
 - strict dominance: all equilibria preserved.
 - weak or very weak dominance: at least one equilibrium preserved.
- Thus, it can be used as a preprocessing step before computing an equilibrium
 - Some games are solvable using this technique: dominance solvable
 - Example: Traveler's Dilemma!
- What about the order of removal when there are multiple dominated strategies?
 - strict dominance: doesn't matter.
 - weak or very weak dominance: can affect which equilibria are preserved.

Section 6

Are pigs rational?

Feeding Behaviour among Pigs and Iterative Strict Dominance

- Experiment by B. A. Baldwin and G. B. Meese (1979) "Social Behaviour in Pigs Studied by Means of Operant Conditioning", Animal Behaviour, Vol 27, pp 947-957.
- Two pigs in a cage, one is larger.
- need to press a button to get food to arrive
- food and button are at opposite sides of cage
- run to press and the other pig gets the food...

Feeding Behaviour among Pigs and Iterative Strict Dominance

- 10 units of food the typical split
 - → if large gets to the food first then 1,9 split (1 for small, 9 for large),
 - if small gets to food first then 4,6 split,
 - if get to food at the same time then 3,7 split,
 - Pressing the button costs 2 units of food in energy.

S\L	Press	Wait
Press	1,5	-1,9
Wait	4,4	0,0

What happens if we analyse the game through the iterative elimination of strictly dominated strategies?

Pigs Behaviour: Frequency of pushing the button per 15 min, after 10 tests (learning...)

	Alone	Together
Large	75	105
Small	70	5

Feeding Behaviour among Pigs and Iterative Strict Dominance

- Are pigs rational? Do they know Game Theory?
- They do seem to learn and respond to incentives
- Learn not to play strictly dominated strategy...
- Learn to not play strictly dominated strategies out of what remains
- Learning, evolution, and survival of the fittest: powerful game theory tools.

Section 7

Maxmin and Minmax

Maxmin Strategies

- ▶ Player i's maxmin strategy is a strategy that maximizes i's worst-case payoff, in the situation where all the other players (whom we denote −i) happen to play the strategies which cause the greatest harm to i.
- ► The maxmin value (or safety level) of the game for player *i* is that minimum amount of payoff guaranteed by a maxmin strategy.

Definition (Maxmin)

The maxmin strategy for player i is $\arg\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$, and the maxmin value for player i is $\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$.

- Why would i want to play a maxmin strategy?
 - a conservative agent maximizing worst-case payoff
 - a paranoid agent who believes everyone is out to get him

Minmax Strategies

- ▶ Player *i*'s minmax strategy against player -i in a 2-player game is a strategy that minimizes -i's best-case payoff, and the minmax value for i against -i is payoff.
- Why would i want to play a minmax strategy?
 - ▶ to punish the other agent as much as possible

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against player -i is $\arg\min_{s_i}\max_{s_{-i}}u_{-i}(s_i,s_{-i})$, and player -i's minmax value is $\min_{s_i}\max_{s_{-i}}u_{-i}(s_i,s_{-i})$.

We can generalize to n players.

Definition (Minmax, *n*-player)

In an n-player game, the minmax strategy for player i against player $j \neq i$ is i's component of the mixed strategy profile s_{-j} in the expression $\arg\min_{s_{-j}}\max_{s_j}u_j(s_j,s_{-j})$, where -j denotes the set of players other than j. As before, the minmax value for player j is $\min_{s_{-j}}\max_{s_j}u_j(s_j,s_{-j})$.

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

- Each player's maxmin value is equal to his minmax value. By convention, the maxmin value for player 1 is called the value of the game.
- 2 For both players, the set of maxmin strategies coincides with the set of minmax strategies.
- Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash equilibrium. Furthermore, these are all the Nash equilibria. Consequently, all Nash equilibria have the same payoff vector (namely, those in which player 1 gets the value of the game).

Section 8

Correlated Equilibrium

Examples

Consider again Battle of the Sexes.

$$\begin{array}{c|cc}
 B & F \\
 B & 2,1 & 0,0 \\
 F & 0,0 & 1,2
\end{array}$$

- Intuitively, the best outcome seems a 50-50 split between (F, F) and (B, B).
- But there's no way to achieve this, so either someone loses out (unfair) or both players often miscoordinate
- Another classic example: traffic game

Intuition

- What is the natural solution here?
 - A traffic light: a fair randomizing device that tells one of the agents to go and the other to wait.
- Benefits:
 - the negative payoff outcomes are completely avoided
 - fairness is achieved
 - the sum of social welfare exceeds that of any Nash equilibrium
- We could use the same idea to achieve the fair outcome in Battle of the Sexes.
- Correlated Equilibrium (informal): a randomised assignment of (potentially correlated) action recommendations to agents, such that nobody wants to deviate.

Formal definition

Definition (Correlated equilibrium)

Given an n-agent game G = (N, A, u), a correlated equilibrium is a tuple (v, π, σ) , where v is a tuple of random variables $v = (v_1, \ldots, v_n)$ with respective domains $D = (D_1, \ldots, D_n)$, π is a joint distribution over v, $\sigma = (\sigma_1, \ldots, \sigma_n)$ is a vector of mappings $\sigma_i : D_i \mapsto A_i$, and for each agent i and every mapping $\sigma_i' : D_i \mapsto A_i$ it is the case that

$$\sum_{d \in D} \pi(d)u_i(\sigma_1(d_1), \dots, \sigma_i(d_i), \dots, \sigma_n(d_n))$$

$$\geq \sum_{d \in D} \pi(d)u_i(\sigma_1(d_1), \dots, \sigma_i'(d_i), \dots, \sigma_n(d_n)).$$

Existence

Theorem

For every Nash equilibrium σ^* there exists a corresponding correlated equilibrium σ .

- ► This is easy to show:
 - ▶ let $D_i = A_i$
 - let $\pi(d) = \prod_{i \in N} \sigma_i^*(d_i)$
 - σ_i maps each d_i to the corresponding a_i .
- ► Thus, correlated equilibria always exist

Additional Solution Concepts

There are more solution concepts defined in the literature. Examples:

- Trembling-hand perfect equilibrium: strategy profile that is the limit of an infinite sequence of fully-mixed-strategy profiles in which each player best-responds to the previous profile.
 - ► So: even if they make small mistakes, I'm responding rationally.
- ▶ ϵ -Nash equilibrium: no player can gain more than ϵ in utility by unilaterally deviating from her assigned strategy.
 - How does the standard definition of NE relate to this?