Siddhardhan

Loss Function & Cost Function for Logistic Regression

Logistic Regression

$$\hat{\mathbf{y}} = \frac{1}{1 + e^{-Z}} \qquad Z = w.X + b$$

Sigmoid Function

$$\hat{Y}$$
 - Probability that $(y = 1)$

$$\hat{Y} = P(Y=1 \mid X)$$

X - input features

Loss Function

Loss function measures how far an estimated value is from its true value.

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Gradient Descent
With Local minima

Gradient Descent
With Global minima

Loss Function for Logistic Regression

Binary Cross Entropy Loss Function (or) Log Loss:

$$L(y, \hat{y}) = -(y \log \hat{y} + (1 - y) \log (1 - \hat{y}))$$

When
$$y = 1$$
, \Rightarrow L(1, \hat{y}) = -(1 log \hat{y} + (1 - 1) log (1 - \hat{y})) \Rightarrow L(1, \hat{y}) = - log \hat{y}

We always want a smaller Loss Function value, hence, \hat{y} should be very large, so that $(-\log \hat{y})$ will be a large negative number.

When y = 0,
$$\Rightarrow$$
 L (0, \hat{y}) = - (0 log \hat{y} + (1 – 0) log (1 – \hat{y})) \Rightarrow L (0, \hat{y}) = - log (1 – \hat{y})

We always want a smaller Loss Function value, hence, \hat{y} should be very small, so that $-\log(1-\hat{y})$ will be a large negative number.

Cost Function for Logistic Regression

Loss function (L) mainly applies for a single training set as compared to the cost function (J) which deals with a penalty for a number of training sets or the complete batch.

$$L(y, \hat{y}) = -(y \log \hat{y} + (1 - y) \log (1 - \hat{y}))$$

$$J(w, b) = \frac{1}{m} \sum_{i=1}^{m} (L(y^{(i)}, \hat{y}^{(i)})) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}))$$

('m' denotes the number of data points in the training set)