COMP9318 Tutorial 1

Wei WANG The University of New South Wales

weiw@cse.unsw.edu.au

① Data Warehouse and OLAP

Q1

- ① Create a star schema diagram that will enable FIT-WORLD GYM INC. to analyze their revenue.
 - → The fact table will include for every instance of revenue taken attribute(s) useful for analyzing revenue.
 - → The star schema will include all dimensions that can be useful for analyzing revenue
 - → The only two data sources are shown below
- ② Appreciate the ETL process involved populating the data warehouse.
- ③ Appreciate the difference of formulating queries: "Find the percentage of revenue generated by members in the last year".
- How many cuboids are there in the complete data cube?

Q1

ER DIAGRAM

DATA INSTANCES

MEMBER

Membid	MembName	MembZip	MshpID	MsDatePayed
111	Joe	60611	M1	1-Jan-04
222	Mary	60640	M3	1-Jan-04
333	Sue	60611	M3	1-Jan-04

MEMBERSHIP

MshpID	MshpName	MshpPrice
M1	Platinum	\$1,000
M2	Gold	\$800
M3	Value	\$300

ONEDAYPASS

PassID	PassDate	PassCatID	Membid
1-001	1-Jan-04	PSA	111
1-002	1-Jan-04	PSA	333
1-003	2-Jan-04	PSK	333

MERCHANDISE

MrchID	MrchName	MrchPrice
AP1	T-shirt	\$11
AP2	Hat	\$9
EQ1	Jump Rope	\$12

PASSCATEGORY

PassCatId	CatName	Price
PSA	Adult	\$20
PSS	Senior	\$10
PSK	Kid	\$3

Note: MEMEBERS can bring in non-member guests. For each nonmember guest, a member buys a one-day-guest-pass of a certain pass category.

SOLDVIA

\overline{STrid}	MrchID	Quatity
11111	AP1	1
11112	AP2	1
11112	AP2	1
11113	EQ1	3

SALESTRANSACT

STrid	Date	Membid
11111	1-Jan-04	333
11112	2-Jan-04	222
11113	3-Jan-04	111

ANOTHER DATA SOURCE

SPECIALEVENT

CorpCustID	CorpCustNameLoc	EventTypeCode	EvetType	EventDate	Amount Charged
CC1	Sears, Chicago 60640	L-A	All Day Rental,	January 4, 2004	\$3500
CC2	Boeing, Chicago 60611	L-H	Half Day Rental,	January 5, 2004	\$2200

Q2

Consider the star schema below

- → Write an MDX query that display total DollasSold for each product category and each store in the State 'CA'.
- → Write an MDX query that display total DollasSold for each product category and each store in the State 'CA' in 2007.
- → create a star schema that has **Month** and **Region** as the finest granularity on the corresponding dimensions. Show all tables in the new data model populated with the data based on the data from the original model.

6

Q2 7

POPULATED TABLES

CALENDAR

Calendar Key	Day	Month	Quarter	Year
1	1	Jan	1	2003
2	2	Jan	1	2003
3	1	Feb	1	2003

STORE

StoreKey	StoreID	State	Region
1	X1	Maine	East
2	X2	New Jersey	East
3	Y1	Ohio	Midwest

SALES

Calendar Key	ProKey	StoreKey	CustKey	\$Sold	UnitsSold
1	1	1	1	\$15	1
1	2	2	2	\$20	1
1	2	1	1	\$40	2
1	2	2	1	\$20	1
2	2	1	1	\$19	1
2	2	2	1	\$19	1
3	3	3	1	\$9	2
3	3	3	2	\$9	1
3	3	3	3	\$9	1

PRODUCT

ProKey	ProName	ProType	Category
1	Luvs 50	Diapers	Infant Care
2	Huggies 24	Diapers	Infant Care
3	High C	Vitamin	Dietary Supp

CUSTOMER

CustKey	CustID	Gender
1	12	Male
2	23	Male
3	34	Female

POPULATED TABLES 8