Homework #10

Eric Tao Math 235: Homework #10

December 6, 2022

2.1

Problem 5.4.6. Assume that $f:[a,b]to\mathbb{R}$ is continuous, and $D^+f\geq 0$ on (a,b). Prove that f is monotone increasing on [a,b].

Solution. First, suppose $D^+f \ge \delta > 0$, and we have $x,y \in (a,b)$ such that x < y. Then, since f is a continuous function on a closed and bounded interval [x,y] it attains a maximum on that interval. Suppose x_0 be a point on (x,y) such that $f(x_0)$ is a maximum. Then, we have, for $t > x_0$:

$$\frac{f(t) - f(x_0)}{t - x_0} \le 0$$

due to being a maximum. Then, since this is true for any $t > x_0$, this implies that:

$$D^+ f(x_0) = \limsup_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \le 0$$

But, by hypothesis, $D^+f \geq \delta$ on $(a,b) \supset [x,y]$, and we have a contradiction. Thus, this means that $x_0 \notin (x,y)$, and therefore, we may only have a maximum at x or y itself. But, because of the rightwards limit on D^+ , we may make the same argument for x. Therefore, f(y) is a maximum on [x,y], and thus $f(x) \leq f(y)$. Since the choice of $x,y \in (a,b)$ was arbitrary, this means that we are monotone increasing on all of (a,b), and due to continuity, this remains true on [a,b].

Now, suppose we have $D^+f \ge 0$. Fix some $\delta < 0$, and define the function $g(x) = f(x) + \delta x$. This is a continuous function on [a,b], being the sum of two continuous functions, and further, we have that:

$$D^+g(x) = \limsup_{h \to 0^+} \frac{g(x+h) - g(x)}{h} = \limsup_{h \to 0^+} \frac{f(x+h) + \delta(x+h) - f(x) - \delta x}{h} = \limsup_{h \to 0^+} \frac{f(x+h) - f(x)}{h} + \delta = D^+f + \delta x$$

Since we have that $D^+f \ge 0, \delta > 0$, we have that $D^+g > 0$. Then, we have that g is monotone increasing, by above. Then, take $x, y \in [a, b]$ such that x < y. We have that:

$$g(x) \le g(y) \implies f(x) + \delta x \le f(y) + \delta y \implies f(y) - f(x) \ge \delta(x - y)$$

However, the choice of $\delta > 0$ was arbitrary. So, we take a sequence of $\delta \to 0$ and retrive that $f(y) - f(x) \ge 0$. Thus, f is monotone increasing on [a, b].

Problem 5.4.8. Let ϕ be the Cantor-Lebesgue function on [0,1]. Extend ϕ onto all of \mathbb{R} by setting $\phi(x) = \phi(0) = 0$ for x < 0 and $\phi(x) = \phi(1) = 1$ for x > 1. Let $\{[a_n, b_n]\}_n$ be an enumeration of all subintervals of [0,1] such that a_n, b_n are rational endpoints in [0,1] with $a_n < b_n$. For each $n \in \mathbb{N}$, set:

$$f_n(x) = 2^{-n}\phi\left(\frac{x - a_n}{b_n - a_n}\right)$$

Observe that f_n is monotone increasing on \mathbb{R} and has uniform norm $||f_n||_u = 2^{-n}$. Prove the following:

- (a) The series $f = \Sigma f_n$ converges uniformly on [0, 1].
- (b) f is continuous and monotone increasing on [0,1].
- (c) f is strictly increasing on [0, 1].
- (d) f is singular on [0, 1], that is, f'(x) exists for almost every $x \in [0, 1]$ and f' = 0 almost everywhere.

Solution. (a)

Let $\epsilon > 0$ be given. We notice, by the shape of the f_n , that because ϕ is bounded between 0 and 1, that f_n is bounded between 0 and 2^{-n} . Then, take any point $x \in [0,1]$, and choose k such that $2^{-k} < \epsilon$. If we look at partial sums, then we notice:

$$f(x) - \sum_{i=1}^{M} f_i(x) = \sum_{i=M+1}^{\infty} f_i(x) \le \sum_{i=M+1}^{\infty} 2^{-i} = 2^{-M}$$

Thus, if we choose M = k, then we have that the difference from f to the partial sum $\sum_{i=1}^{k} f_i$ can be no more than $2^{-k} < \epsilon$. Since this is true regardless of the point x, this implies that this is uniform convergence.

(b)

We recall that ϕ is continuous, therefore, since f_n merely multiplies it by a constant, and shifts the window on where f_n is increasing, f_n is continuous as well. Then, since we've proved in part (a) that the convergence to f is uniform, we must have that f is continuous, since the uniform convergence of continuous functions is continuous. Further, because each f_n is monotone increasing, the sum of monotone increasing, non-negative functions must also be monotone.

(c)

Let $0 \le x < y \le 1$. We may find two rational points p,q such that $0 \le x . Since these are rational numbers, it has some enumeration in the subintervals with rational endpoints <math>\{[a_i,b_i]\}$ and corresponds with a $f_i = 2^{-i}\phi\left(\frac{x-a_i}{b_i-a_i}\right)$. In particular, we notice that $f_i(p) = f_i(a_i) = 0$, $f_i(q) = f_i(b_i) = 2^{-i}$. Then, if we consider the series $\sum f_n(y), \sum f_n(x)$, looking term by term, because each of the f_n are monotone, non-negative, and because at least $f_i(y) = f_i(q) > f_i(p) > f_i(x)$, we have that $\sum f_n(y) > \sum f_n(x)$. Since this can be done with any choice of x, y, we have then that f is actually strictly increasing.

(d)

Fixing an $x \in [0,1]$, due to the fact that we are bounded above on each f_n by $||f_n||_u = 2^{-n}$, we are actually bounded above on f by $\sum_{n=1}^{\infty} 2^{-n} = 1$. Further, because of the fact that the f_n are non-negative, we have that the partial sums are monotone increasing. Thus, by the monotone convergence theorem, we have that the series $f = \sum f_n$ converges for every $x \in [0,1]$. Then, by lemma 5.4.4, we have that f is differentiable almost everywhere, and:

$$f'(x) = \Sigma f'_n(x)$$

almost everywhere. However, we know from working with the Cantor-Lebesgue function, that this function has 0 derivative almost everywhere on [0,1], and on the extension to the full real line, it still has 0 derivative almost everywhere. Then, we can see that, for each f_n , there is a Z_n such that $|Z_n| = 0$, and that f_n has non-0 derivative. Then, if we look at $[0,1] \setminus \bigcup_n Z_n$, on this set, by definition, $f'_n = 0$ for all n. Then, on that set, we have that:

$$f'(x) = \Sigma f'_n(x) = \Sigma 0 = 0$$

and because $|\cup_n Z_n| = 0$, this is almost everywhere.

Problem 5.5.17. Given a locally integrable function f on \mathbb{R}^d , define a non-centered maximal function by:

$$M^*f(x) = \sup \left\{ \frac{1}{|B|} \int_B |f| : B \text{ is any open ball that contains } x \right\}$$

Prove that $Mf \leq M^*f \leq 2^d Mf$.

Solution. Clearly, since Mf is defined as

$$Mf(x) = \sup_{h>0} \frac{1}{|B_h(x)|} \int_{B_h(x)} |f(t)| dt$$

that is, the supremum over only balls centered on x and we are defining M^*f over every ball containing x, which includes balls centered on x, this implies, by the properties of the supremum, that $Mf \leq M^*f$. So, we need only prove that $M^*f \leq 2^d Mf$

Suppose we have a ball B with center c, radius r, such that $x \in B$. Let $z \in B$. We claim that |z-x| < 2r. We can see this via the triangle inequality:

$$|z - x| \le |z - c| + |c - x| \le r + r = 2r$$

Therefore, z is contained within a ball of radius 2r around x. Since the choice of z was arbitrary, this implies that all of B is contained within this ball, which we will call B'. We also recall, that from 2.3.15, about linear changes of variable, since this is merely a translation composed with a dilation by 2 of B, that we have that $|B'| = |L(B)| = |2I \cdot T(B)| = |\det(2I \cdot T)||B|$, where we use the trick about looking at the ball in a \mathbb{R}^{d+1} space to view a translation as a linear transformation.

Here, we notice that the determinant of a translation is 1, and the determinant of a dilation by 2 in every coordinate is 2^d . Thus, we have that $|B'| = 2^d |B|$.

Then, looking at the integrand of the maximal functions, we have that:

$$\frac{1}{|B|} \int_{B} |f| \le \frac{2^d}{|B'|} \int_{B'} |f| dt$$

because the fractions are equal, but $B \subseteq B'$ and |f| is non-negative, so $\int_B |f| \le \int_{B'} |f|$.

But, then we have that, by the definition of Mf, that since B' is a ball centered on x:

$$\frac{2^d}{|B'|} \int_{B'} |f| dt = 2^d \frac{1}{|B'|} \int_{B'} |f| dt \le 2^d M f$$

Since we may do this for every ball B that contains x, this extends to the supremum. Thus, we have that $M^*f \leq 2^d Mf$

Problem 5.5.19. Let A be any subset of \mathbb{R}^d with $|A|_e > 0$. Define the density of A at a point $x \in \mathbb{R}^d$ to be:

$$D_A(x) = \lim_{r \to 0} \frac{|A \cap B_r(x)|_e}{|B_r(x)|}$$

whenever this limits exists. Prove the following:

- (a) $D_A(x) = 1$ for almost every $x \in A$.
- (b) A is measurable if and only if $D_A(x) = 0$ for almost every $x \in A$.

Additionally, exhibit a measurable set E and a point x such that $D_E(x)$ does not exist, and given $0 < \alpha < 1$, exhibit a measurable set E and a point x such that $D_E(x) = \alpha$.

Solution. (a)

I'm really not quite sure how to prove this in the general case. This is clear for a measurable set E, since then we may take $f = \chi_E$, locally integrable, so by applying the Lebesgue Differentiation Theorem, we find that:

$$\lim_{h \to 0} \frac{1}{|B_h(x)|} \int_{B_h(x)} f(t)dt = f(x)$$

However, we notice that $\int_{B_h(x)} f(t)dt = \int_{B_h(x)} \chi_E(t)dt = |B_h(x) \cap \chi_E|$, so we get that:

$$\lim_{h \to 0} \frac{|B_h(x) \cap \chi_E|}{|B_h(x)|} = \chi_E(x)$$

for almost every $x \in \mathbb{R}^d$. In particular then, this means that restricting to A, this is 1 for almost every $x \in A$.

(b)

The forward direction is clear, from another application of the LDT, and noticing that $\chi_A(x) = 0$ for $x \notin A$. I'm not sure how to attack the reverse direction.

An easy example for $\alpha \in (0,1)$ in \mathbb{R}^2 . Take a point x=(0,0), and take E to be defined in radial coordinates, as $E=\{(r,\theta): 0 \leq \theta < 2\pi\alpha\}$. Clearly, for any ball centered on the origin, we cut out exactly $2\pi\alpha/2\pi$ of the ball.

I do not see an easy example for when $D_E(x)$ does not exist.

2.3

Problem 6.1.9. Prove that $f \in AC[a, b]$ if and only if, for every $\epsilon > 0$, there exists a $\delta > 0$ such that for every finite collection of nonoverlapping subintervals $\{[a_j, b_j]\}_j$ of [a, b], we have that:

$$\Sigma_{j=1}^{N}(b_j - a_j) < \delta \implies \Sigma_{j=1}^{N}|f(b_j) - f(a_j)| < \epsilon$$

Solution. It is clear that if $f \in AC[a, b]$, then the statement holds, because we recall that we define absolutely continuous as, for every $\epsilon > 0$, there exists $\delta > 0$ such that for either finite or countably infinite non overlapping collections of subintervals,

$$\Sigma_{j=1}^{N}(b_j - a_j) < \delta \implies \Sigma_{j=1}^{N}|f(b_j) - f(a_j)| < \epsilon$$

So, it is already true by definition.

Now, instead, suppose we only know that the $\epsilon - \delta$ criteria holds for finitely many collections of subintervals. Then, we wish that this holds for countably infinite collections of subintervals.

Let $\epsilon > 0$ be given. Choose $\delta > 0$ such that, for every finite collection of intervals, we have that

$$\Sigma_{j=1}^{N}(b_j - a_j) < \delta \implies \Sigma_{j=1}^{N}|f(b_j) - f(a_j)| < \epsilon/2$$

Let $\{[x_j, y_j]\}_j$ be a countably infinite collection of nonoverlapping subintervals such that $[a_j, b_j] \subseteq [a, b]$ for all j, and such that

$$\sum_{j=1}^{\infty} (y_j - x_j) < \delta$$

Then, we look at a sequence of finite collection of subintervals, that is, $\{x_j, y_j\}_j^M$. In particular, we have that:

$$\sum_{k=1}^{M} (y_i - x_j) \le \sum_{j=1}^{\infty} (y_j - x_j) < \delta$$

because of the fact $y_j - x_j \ge 0$. Then, we have that, by hypothesis:

$$\sum_{j=1}^{M} |f(y_j) - f(x_j)| < \epsilon/2$$

But, this is true for every N, since they are all finite. Then, taking the limit as $N \to \infty$, we have that:

$$\sum_{j=1}^{\infty} = \lim_{M \to \infty} \sum_{j=1}^{M} |f(y_j) - f(x_j)| < \epsilon/2 < \epsilon$$

Thus, $f \in AC[a, b]$.

Problem 6.1.10. (a) Prove that AC[a, b] is a closed subspace of BV[a, b] with respect to the norm $||f||_{BV}$ defined by 5.2.26. That is, show that if $f_n \in AC[a, b]$, $f \in BV[a, b]$, and $||f - f_n||_{BV} \to 0$, then $f \in AC[a, b]$.

(b) Exhibit functions f_n, f such that $f_n \in AC[a, b]$ and f_n converges uniformly to $f \in BV[a, b]$, but $f \notin AC[a, b]$. Thus the uniform limit of absolutely continuous functions need not be absolutely continuous.

Solution. (a)

Let $\epsilon > 0$ be given. First, since $||f_n - f||_{\text{BV}} \to 0$, we may pick N such that $||f_m - f||_{\text{BV}} < \epsilon/2$ for every m > N. Choose n such that n is the smallest such m that works. Since $f_n \in \text{AC}[a, b]$, we may choose δ such that for $\{[a_j, b_j]\}_{j=1}^M$:

$$\Sigma_j^M b_j - a_j < \delta \implies \Sigma_j^M |f_n(b_j) - f_n(a_j)| < \epsilon/2$$

Then, consider the sum:

$$\Sigma_{j}^{M}|f(b_{j}) - f(a_{j})| = \Sigma_{j}^{M}|f(b_{j}) - f_{n}(b_{j}) + f_{n}(b_{j}) - f_{n}(a_{j}) + f_{n}(a_{j}) - f(a_{j})| \leq \Sigma_{j}^{M}|[f(b_{j}) - f_{n}(b_{j})] - [f(a_{j}) - f_{n}(a_{j})]| + \Sigma_{j}^{M}|f_{n}(b_{j}) - f_{n}(a_{j})| = \Sigma_{j}^{M}|(f - f_{n})(b_{j}) - (f - f_{n})(a_{j})| + \Sigma_{j}^{M}|f_{n}(b_{j}) - f_{n}(a_{j})|$$

Now, since $||f - f_n||_{\text{BV}} < \epsilon/2$, we have that, in particular, $V[f - f_n; a, b] < \epsilon/2$. Then, since $\{[a_j, b_j]\}_{j=1}^M$ are non-overlapping, we may extend this to a partition on [a, b] by including every a_j, b_j with a, b, that is, if we have that $a_1 < b_1 < a_2 < b_2 < ... < a_M < b_M$, then we can take the partition:

$$\Gamma = \{ a = x_0 < a_1 = x_1 < b_1 = x_2 < \dots < b_M = x_{2M} < b = x_{2M+1} \}$$

This is a proper partition on [a, b], and we have that:

$$\Sigma_j^M |(f - f_n)(b_j) - (f - f_n)(a_j)| \le \Sigma_{i=0}^{2M} |(f - f_n)(x_{i+1}) - (f - f_n)(x_i)| \le ||f - f_n||_{BV} < \epsilon/2$$

because every subinterval $\{[a_j,b_j]\}_{j=1}^M$ is contained within the parition, and because $||f-f_n||_{\text{BV}} = V[f-f_n;a,b] + ||f-f_n||_u$, then since they are all non-negative, we have that $\Sigma_{i=0}^{2M}|(f-f_n)(x_{i+1}) - (f-f_n)(x_i)| \leq V[f-f_n;a,b] \leq ||f-f_n||_{\text{BV}} < \epsilon/2$.

Further, by the choice of δ , we have that $\Sigma_i^M |f_n(b_j) - f_n(a_j)| < \epsilon/2$

Thus, we have that with this choice of δ , that:

$$\sum_{j=0}^{M} |f(b_j) - f(a_j)| \le \sum_{j=0}^{M} |(f - f_n)(b_j) - (f - f_n)(a_j)| + \sum_{j=0}^{M} |f_n(b_j) - f_n(a_j)| < \epsilon/2 + \epsilon/2 = \epsilon$$

By the last problem, 6.1.9, we have that showing this works for finite subintervals is enough to show that $f \in AC[a, b]$.

(b)

Consier the functions that iterate to the Cantor-Lebesgue function, ϕ . That is, suppose $C_1 = [0,1] \setminus (1/3,2/3)$, and C_n defined iteratively by removing middle thirds, and ϕ_1 being linear on C_1 and constantly 2^{-1} on (1/3,2/3), and defining ϕ_n iteratively.

From the book, we know that $\phi_n \to \phi$ uniformly, since it can only differ at most by 2^{-n} regardless of the choice of x. Further, we see that $f_n \in \mathrm{AC}[a,b]$ for all n. This is because fix an n. Then, the measure of the construction of the Cantor set on which ϕ_n is linear is exactly $(2/3)^n$. Then, we know that the slope on those segments is exactly $(3/2)^n$, since it must range from 0 to 1. Then, let $\epsilon > 0$ be given. Choose δ such that $\delta < (2/3)^n \epsilon$. Then, consider any set of countable non-overlapping intervals $\{[a_j, b_j]\}_{j=1}$ such that $[a_j, b_j] \subseteq [a, b]$ and $\sum_j b_j - a_j < \delta$. Then, since ϕ_n is linear only on the complement of the iterations of the Cantor set, we have that:

$$\Sigma f(b_j) - f(a_j) \le \Sigma (3/2)^n (b_j - a_j) \le (3/2)^n \delta < \epsilon$$

Thus, for each $n, \phi_n \in AC[a, b]$. Further, since ϕ is monotone, we know that $V[\phi; a, b] = 1$ and thus $\phi \in BV[a, b]$. However, from example 6.1.2 in the book, ϕ is not in AC[a, b]. Thus, the uniform limit of absolutely continuous functions need not be absolutely continuous.