In [27]:

```
import pandas as pd
import numpy as np
pd.pandas.set_option('display.max_columns',None)
```

In [28]:

```
autott = pd.read_csv('x_automobile.csv')
#print shape
print(autott.shape)
```

(201, 26)

In [29]:

```
autott.head()
```

Out[29]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wh b
0	3	122.0	alfa- romero	gas	std	2	convertible	rwd	front	
1	3	122.0	alfa- romero	gas	std	2	convertible	rwd	front	1
2	1	122.0	alfa- romero	gas	std	2	hatchback	rwd	front	!
3	2	164.0	audi	gas	std	4	sedan	fwd	front	!
4	2	164.0	audi	gas	std	4	sedan	4wd	front	!
4										•

In [30]:

```
#1.display unique values
autott['symboling'].unique()
```

Out[30]:

```
array([ 3, 1, 2, 0, -1, -2], dtype=int64)
```

In [31]:

```
#One-Hot Encoding
symb_dum = pd.get_dummies(autott['symboling'])
```

```
In [32]:
```

```
symb_dum
```

Out[32]:

```
-2 -1 0 1 2 3
    0
      0
        0
            0 0
      0
        0
    0
                0
           1
              0
      0
         0
    0
            0
              1
                 0
      0
        0 0 1 0
196
    0
      1 0 0 0
197
    0
      1
         0
            0 0
                 0
198
        0 0 0
   0
      1
                0
199
      1
         0
            0
              0
                0
200
   0
     1 0 0 0
```

201 rows × 6 columns

In [33]:

```
# 2.for unique values
autott['num-of-cylinders'].unique()
```

Out[33]:

```
array([ 4, 6, 5, 3, 12, 2, 8], dtype=int64)
```

In [34]:

```
#One-Hot Encoding
noofcyl_dum = pd.get_dummies(autott['num-of-cylinders'])
```

In [35]:

```
noofcyl dum
```

Out[35]:

	2	3	4	5	6	8	12
0	0	0	1	0	0	0	0
1	0	0	1	0	0	0	0
2	0	0	0	0	1	0	0
3	0	0	1	0	0	0	0
4	0	0	0	1	0	0	0
196	0	0	1	0	0	0	0
197	0	0	1	0	0	0	0
198	0	0	0	0	1	0	0
199	0	0	0	0	1	0	0
200	0	0	1	0	0	0	0

201 rows × 7 columns

In [37]:

```
autott.columns
```

Out[37]:

In [80]:

```
#3. for unique values
autott['make'].unique()
```

Out[80]:

In [81]:

```
#autott['make'].astype(str).astype(int)
```

In [82]:

```
#One-Hot Encoding
make_dum = pd.get_dummies(autott['make'])
make_dum
```

Out[82]:

	alfa- romero	audi	bmw	chevrolet	dodge	honda	isuzu	jaguar	mazda	mercedes- benz	mercu
0	1	0	0	0	0	0	0	0	0	0	
1	1	0	0	0	0	0	0	0	0	0	
2	1	0	0	0	0	0	0	0	0	0	
3	0	1	0	0	0	0	0	0	0	0	
4	0	1	0	0	0	0	0	0	0	0	
196	0	0	0	0	0	0	0	0	0	0	
197	0	0	0	0	0	0	0	0	0	0	
198	0	0	0	0	0	0	0	0	0	0	
199	0	0	0	0	0	0	0	0	0	0	
200	0	0	0	0	0	0	0	0	0	0	

201 rows × 22 columns

→

In [60]:

```
#4. for unique values
autott['fuel-type'].unique()
```

Out[60]:

```
array(['gas', 'diesel'], dtype=object)
```

In [61]:

```
#One-Hot Encoding
futy_dum = pd.get_dummies(autott['fuel-type'])
futy_dum
```

Out[61]:

	diesel	gas
0	0	1
1	0	1
2	0	1
3	0	1
4	0	1
196	0	1
197	0	1
198	0	1
199	1	0
200	0	1

201 rows × 2 columns

In [62]:

```
#5. for unique values
autott['aspiration'].unique()
```

Out[62]:

```
array(['std', 'turbo'], dtype=object)
```

In [63]:

```
#One-Hot Encoding
asp_dum = pd.get_dummies(autott['aspiration'])
asp_dum
```

Out[63]:

	std	turbo
0	1	0
1	1	0
2	1	0
3	1	0
4	1	0
196	1	0
197	0	1
198	1	0
199	0	1
200	0	1

201 rows × 2 columns

In [64]:

```
#6. for unique values
autott['body-style'].unique()
```

Out[64]:

In [65]:

```
#One-Hot Encoding
bsty_dum = pd.get_dummies(autott['body-style'])
bsty_dum
```

Out[65]:

	convertible	hardtop	hatchback	sedan	wagon
0	1	0	0	0	0
1	1	0	0	0	0
2	0	0	1	0	0
3	0	0	0	1	0
4	0	0	0	1	0
196	0	0	0	1	0
197	0	0	0	1	0
198	0	0	0	1	0
199	0	0	0	1	0
200	0	0	0	1	0

201 rows × 5 columns

In [66]:

```
#7. for unique values
autott['drive-wheels'].unique()
```

Out[66]:

array(['rwd', 'fwd', '4wd'], dtype=object)

In [67]:

```
#One-Hot Encoding
dwhee_dum = pd.get_dummies(autott['drive-wheels'])
dwhee_dum
```

Out[67]:

	4wd	fwd	rwd
0	0	0	1
1	0	0	1
2	0	0	1
3	0	1	0
4	1	0	0
196	0	0	1
197	0	0	1
198	0	0	1
199	0	0	1
200	0	0	1

201 rows × 3 columns

In [68]:

```
#8. for unique values
autott['engine-location'].unique()
```

Out[68]:

```
array(['front', 'rear'], dtype=object)
```

In [50]:

```
#One-Hot Encoding
eloc_dum = pd.get_dummies(autott['engine-location'])
eloc_dum
```

Out[50]:

	front	rear
0	1	0
1	1	0
2	1	0
3	1	0
4	1	0
196	1	0
197	1	0
198	1	0
199	1	0
200	1	0

201 rows × 2 columns

In [51]:

```
#9. for unique values
autott['engine-type'].unique()
```

Out[51]:

```
array(['dohc', 'ohcv', 'ohc', 'l', 'rotor', 'ohcf'], dtype=object)
```

In [52]:

```
#One-Hot Encoding
etype_dum = pd.get_dummies(autott['engine-type'])
etype_dum
```

Out[52]:

	dohc	I	ohc	ohcf	ohcv	rotor
0	1	0	0	0	0	0
1	1	0	0	0	0	0
2	0	0	0	0	1	0
3	0	0	1	0	0	0
4	0	0	1	0	0	0
196	0	0	1	0	0	0
197	0	0	1	0	0	0
198	0	0	0	0	1	0
199	0	0	1	0	0	0
200	0	0	1	0	0	0

201 rows × 6 columns

In [53]:

```
#10. for unique values
autott['fuel-system'].unique()
```

Out[53]:

In [54]:

```
#One-Hot Encoding
fsys_dum = pd.get_dummies(autott['fuel-system'])
fsys_dum
```

Out[54]:

	1bbl	2bbl	4bbl	idi	mfi	mpfi	spdi	spfi
0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	1	0	0
2	0	0	0	0	0	1	0	0
3	0	0	0	0	0	1	0	0
4	0	0	0	0	0	1	0	0
196	0	0	0	0	0	1	0	0
197	0	0	0	0	0	1	0	0
198	0	0	0	0	0	1	0	0
199	0	0	0	1	0	0	0	0
200	0	0	0	0	0	1	0	0

201 rows × 8 columns

In [69]:

```
autott.corr()['price']
```

Out[69]:

symboling	-0.082391			
normalized-losses	0.133999			
num-of-doors	0.042435			
wheel-base	0.584642			
length	0.690628			
width	0.751265			
height	0.135486			
curb-weight	0.834415			
num-of-cylinders	0.708645			
engine-size	0.872335			
bore	0.543154			
stroke	0.082267			
compression-ratio	0.071107			
horsepower	0.809681			
peak-rpm	-0.101542			
city-mpg	-0.686571			
highway-mpg	-0.704692			
price	1.000000			
Name: price, dtype:	float64			

In [90]:

```
cols = ['symboling', 'normalized-losses','num-of-doors','wheel-base','length','width',
'height','curb-weight','num-of-cylinders', 'engine-size', 'bore', 'stroke', 'compressio
n-ratio', 'horsepower']
X = autott[cols]
```

In [94]:

```
col = ['price']
y = autott[col]
```

In [95]:

X.head()

Out[95]:

	symboling	normalized- losses	num- of- doors	wheel- base	length	width	height	curb- weight	num-of- cylinders	engine- size
0	3	122.0	2	88.6	168.8	64.1	48.8	2548.0	4	130.0
1	3	122.0	2	88.6	168.8	64.1	48.8	2548.0	4	130.0
2	1	122.0	2	94.5	171.2	65.5	52.4	2823.0	6	152.0
3	2	164.0	4	99.8	176.6	66.2	54.3	2337.0	4	109.0
4	2	164.0	4	99.4	176.6	66.4	54.3	2824.0	5	136.0
4										>

In [96]:

y.head()

Out[96]:

price

- **0** 13495.0
- **1** 16500.0
- **2** 16500.0
- **3** 13950.0
- **4** 17450.0

In [97]:

```
from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test = train_test_split(X,y, test_size = 0.2)
```

```
In [98]:
```

```
print(X train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
(160, 14)
(160, 1)
(41, 14)
(41, 1)
In [99]:
from sklearn import linear_model
regr = linear_model.LinearRegression()
In [100]:
#Training
regr.fit(X_train, y_train)
Out[100]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=F
In [101]:
# The coefficients
print('Coefficients', regr.coef_)
print('Intercept',regr.intercept_)
Coefficients [[ 1.47879848e+02 7.42896138e+00 2.12518863e+02 1.54564262
e+02
  -9.46595877e+01 6.85385449e+02 3.00157254e+02 -1.44589385e+00
  -2.38390111e+03 1.69967430e+02 -5.41231627e+03 -4.76940227e+03
   2.72379888e+02 1.00640578e+02]]
Intercept [-35684.20659162]
In [102]:
#Testing
y_pred = regr.predict(X_test)
```

```
In [103]:
```

```
y_pred
Out[103]:
array([[ 5707.55390984],
       [14331.84891083],
       [13789.23468193],
       [ 4889.27424584],
       [26049.02805766],
       [ 6348.07439108],
       [13868.75884374],
       [15743.85509075],
       [ 6990.59765453],
       [ 5279.69103059],
       [ 6280.21539342],
       [14409.069952
       [17582.89647939],
       [43013.79379974],
       [ 8899.02457984],
       [13323.35200029],
       [ 9874.64812059],
       [17253.24200685],
       [ 7802.35968938],
       [21753.94537072],
       [ 5149.38564485],
       [ 5985.39919271],
       [32418.99561073],
       [ 7847.8546629 ],
       [22161.18637384],
       [17336.74294155],
       [19330.11601361],
       [27392.16213216],
       [ 6711.6393538 ],
       [11303.01552984],
       [ 9400.42111952],
       [22652.07862244],
       [ 9124.6744195 ],
       [ 8745.17394038],
       [14666.43905748],
       [18699.18984094],
       [ 5253.4772116 ],
```

In [104]:

```
#Evaluation
from sklearn.metrics import mean_squared_error, r2_score
print(r2_score(y_test, y_pred)) #Coefficient of Determination
print(mean_squared_error(y_test, y_pred)) #MSE
```

0.8452136421073411 9290584.47382907

[6149.29644861], [14519.225046], [7802.35968938], [10016.31323527]])

In [105]:

y_test.hist()

Out[105]:

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x00000000000702A4</pre> 8>]],

dtype=object)

In [106]:

pd.DataFrame(y_pred).hist()

Out[106]:

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000000000C42FE0</pre> 8>]],

dtype=object)

In [107]:

```
y_test.hist()
```

Out[107]:

In [108]:

```
import matplotlib.pyplot as plt
# Plot outputs
plt.scatter(y_test, y_pred, color='black')
```

Out[108]:

<matplotlib.collections.PathCollection at 0xca67b48>

In [112]:

```
autott_c=autott.corr()
autott_c
```

Out[112]:

	symboling	normalized- losses	num-of- doors	wheel- base	length	width	height
symboling	1.000000	0.466264	-0.672344	-0.535987	-0.365404	-0.242423	-0.550160
normalized- losses	0.466264	1.000000	-0.361368	-0.056661	0.019424	0.086802	-0.373737
num-of-doors	-0.672344	-0.361368	1.000000	0.445245	0.395122	0.227655	0.538383
wheel-base	-0.535987	-0.056661	0.445245	1.000000	0.876024	0.814507	0.590742
length	-0.365404	0.019424	0.395122	0.876024	1.000000	0.857170	0.492063
width	-0.242423	0.086802	0.227655	0.814507	0.857170	1.000000	0.306002
height	-0.550160	-0.373737	0.538383	0.590742	0.492063	0.306002	1.000000
curb-weight	-0.233118	0.099404	0.208517	0.782097	0.880665	0.866201	0.307581
num-of- cylinders	-0.118016	0.111362	0.002225	0.348931	0.440348	0.520118	0.007776
engine-size	-0.110581	0.112360	0.024094	0.572027	0.685025	0.729436	0.074694
bore	-0.139896	-0.029800	0.119140	0.493203	0.608941	0.544879	0.180327
stroke	-0.007992	0.055127	-0.007780	0.157964	0.123913	0.188814	-0.060822
compression- ratio	-0.182196	-0.114713	0.169164	0.250313	0.159733	0.189867	0.259737
horsepower	0.075790	0.217300	-0.102856	0.371250	0.579731	0.615006	-0.086941
peak-rpm	0.279719	0.239544	-0.232031	-0.360233	-0.286035	-0.245852	-0.309913
city-mpg	-0.035527	-0.225016	-0.027617	-0.470606	-0.665192	-0.633531	-0.049800
highway-mpg	0.036233	-0.181877	-0.045787	-0.543304	-0.698142	-0.680635	-0.104812
price	-0.082391	0.133999	0.042435	0.584642	0.690628	0.751265	0.135486

In [125]:

```
from sklearn.preprocessing import Normalizer
autott_n = Normalizer().fit_transform(autott_c)
autott_n = pd.DataFrame(autott_n)
print(autott_n)
```

```
2
                                       3
                                                          5
                    1
\
   0.611032 0.284902 -0.410824 -0.327505 -0.223274 -0.148128 -0.336166
0
   0.351754  0.754411  -0.272620  -0.042746
                                         0.014653
1
                                                  0.065484 -0.281951
2
  -0.430893 -0.231594 0.640882 0.285349 0.253227
                                                  0.145900 0.345040
3
  -0.222824 -0.023556  0.185100  0.415726  0.364186
                                                  0.338611 0.245587
4
  -0.141068
            0.007499
                      0.152541
                               0.338199
                                         0.386061
                                                   0.330920
                                                            0.189966
5
  -0.095832 0.034314 0.089995 0.321984 0.338849 0.395312
                                                            0.120966
6
  -0.331379 -0.225114 0.324286 0.355823 0.296385
                                                  0.184315
7
  -0.085489 0.036453 0.076467
                                0.286809 0.322956
                                                  0.317651
                                                            0.112795
8
  -0.058086
            0.054811
                      0.001095
                               0.171740
                                         0.216734
                                                  0.255996
                                                            0.003827
9
  -0.043179 0.043874 0.009408 0.223363 0.267486
                                                  0.284827
                                                            0.029166
10 -0.068746 -0.014644 0.058546 0.242362 0.299236
                                                  0.267756 0.088613
11 -0.007252 0.050023 -0.007059 0.143337
                                         0.112439
                                                   0.171331 -0.055190
12 -0.137712 -0.086706 0.127862 0.189198 0.120734
                                                  0.143510
                                                            0.196321
   0.030969 0.088793 -0.042029 0.151699 0.236888 0.251302 -0.035525
   0.196391 0.168184 -0.162909 -0.252919 -0.200825 -0.172612 -0.217590
15 -0.014684 -0.093001 -0.011414 -0.194507 -0.274931 -0.261845 -0.020583
   0.014638 -0.073479 -0.018498 -0.219498 -0.282053 -0.274980 -0.042345
17 -0.032752 0.053267 0.016869 0.232408 0.274540 0.298644 0.053859
          7
                    8
                                      10
                                               11
                                                         12
                                                                  13
\
   -0.142443 -0.072112 -0.067568 -0.085481 -0.004883 -0.111328
0
   0.074992
            0.084013
                      0.084766 -0.022481 0.041589 -0.086541 0.163933
1
2
   0.133635
            0.001426 0.015441 0.076354 -0.004986 0.108414 -0.065919
3
   4
   0.339990 0.170001 0.264461 0.235088 0.047838
                                                  0.061667
                                                            0.223811
5
   0.342419
             0.205609
                      0.288354 0.215397
                                         0.074640
                                                  0.075057
                                                            0.243119
6
   0.185266 0.004684 0.044991 0.108617 -0.036635 0.156448 -0.052367
7
   0.366718
            0.221664
                     0.311370 0.236181 0.061393 0.057367
8
             0.492188
                      0.417198 0.099669
   0.297505
                                         0.006474 -0.008927
                                                            0.329166
9
   0.331542
             0.330982
                      0.390476 0.223553
                                         0.080362
                                                  0.011280
                                                            0.321225
10
   0.316484 0.099510 0.281337 0.491404 -0.027219 0.000614
                                                            0.278547
   0.151911 0.011935 0.186749 -0.050261 0.907406
                                                  0.170459
                                                            0.088758
12
   0.118239 -0.013710 0.021835 0.000945
                                         0.141988
                                                  0.755846 -0.162076
   0.309729 0.273276 0.336149 0.231620 0.039969 -0.087620
                                                            0.408617
14 -0.196131 -0.106616 -0.180267 -0.187698 -0.044737 -0.305920
                                                            0.075744
15 -0.309794 -0.181622 -0.268878 -0.240597 -0.014085 0.136982 -0.339799
16 -0.321139 -0.191396 -0.274550 -0.238925 -0.014036
                                                  0.108461 -0.325057
   0.331698 0.281702 0.346772 0.215915 0.032703 0.028267 0.321866
         14
                   15
                            16
                                      17
0
   1
   0.180714 -0.169754 -0.137210
                                0.101090
  -0.148704 -0.017699 -0.029344
2
                                0.027196
3
  -0.149758 -0.195643 -0.225866
                                0.243051
4
  -0.110427 -0.256805 -0.269525
                                0.266625
5
  -0.097188 -0.250442 -0.269063
                                0.296984
  -0.186671 -0.029996 -0.063132
6
                                0.081608
7
  -0.102443 -0.274871 -0.291500
                                0.305995
  -0.074741 -0.216283 -0.233172
8
                                0.348787
  -0.100256 -0.254022 -0.265356
                                0.340626
10 -0.131371 -0.286057 -0.290612
                                0.266908
11 -0.057820 -0.030923 -0.031525
                                0.074650
12 -0.329338 0.250506 0.202918
                                0.053746
   0.044082 -0.335940 -0.328768
                                0.330850
   0.702100 -0.080993 -0.041147 -0.071293
15 -0.047679 0.413311 0.401756 -0.283767
16 -0.023677 0.392711 0.404005 -0.284699
17 -0.040365 -0.272927 -0.280130 0.397522
```

```
In [115]:
```

4

```
#Multi-Collinearity
import numpy as np
X = np.array(X)
from statsmodels.stats.outliers_influence import variance_inflation_factor

vif = pd.DataFrame()
vif = [variance_inflation_factor(X, i) for i in range(X.shape[1])]
print(vif)
X = pd.DataFrame(X)
```

[4.416330630971977, 25.393536476990423, 24.90683094808148, 2484.7508049019 903, 1910.6592082674226, 3331.450141300592, 1037.0246631169791, 301.320778 10120484, 199.41233738983783, 243.18102684694048, 546.7112374563237, 176.9 7950909281306, 11.175081446180052, 52.725884422202896]

In [117]:

```
X = X.iloc[:,:]
```

In [118]:

```
X.head()
```

Out[118]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	3.0	122.0	2.0	88.6	168.8	64.1	48.8	2548.0	4.0	130.0	3.47	2.68	9.0	111.0
1	3.0	122.0	2.0	88.6	168.8	64.1	48.8	2548.0	4.0	130.0	3.47	2.68	9.0	111.0
2	1.0	122.0	2.0	94.5	171.2	65.5	52.4	2823.0	6.0	152.0	2.68	3.47	9.0	154.0
3	2.0	164.0	4.0	99.8	176.6	66.2	54.3	2337.0	4.0	109.0	3.19	3.40	10.0	102.0
4	2.0	164.0	4.0	99.4	176.6	66.4	54.3	2824.0	5.0	136.0	3.19	3.40	8.0	115.0

In [119]:

```
#Feature Selection
from sklearn.feature_selection import RFE

logreg = linear_model.LinearRegression()
rfe = RFE(logreg, 6)
rfe = rfe.fit(X, y)

print(rfe.support_)
print(rfe.ranking_)
```

```
[ True False False False True False False True True True False False]
[1 8 5 6 7 1 2 9 1 1 1 1 3 4]
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:76
0: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

```
y = column_or_1d(y, warn=True)
```

In [120]:

```
d = rfe.support_
g = X.columns
a = g[d]
X_f = X[a]
```

In [121]:

```
X_f.head()
```

Out[121]:

	0	5	8	9	10	11
0	3.0	64.1	4.0	130.0	3.47	2.68
1	3.0	64.1	4.0	130.0	3.47	2.68
2	1.0	65.5	6.0	152.0	2.68	3.47
3	2.0	66.2	4.0	109.0	3.19	3.40
4	2.0	66.4	5.0	136.0	3.19	3.40

In [122]:

import statsmodels.api as sm

In [123]:

```
results_1 = sm.OLS(y,X).fit()
results_1.summary()
```

Out[123]:

OLS Regression Results

Dep. Variable:	price	R-squared (uncentered):	0.958
Model:	OLS	Adj. R-squared (uncentered):	0.955
Method:	Least Squares	F-statistic:	303.6
Date:	Tue, 16 Jun 2020	Prob (F-statistic):	2.29e-120
Time:	12:19:36	Log-Likelihood:	-1905.1
No. Observations:	201	AIC:	3838.
Df Residuals:	187	BIC:	3884.
Df Model:	14		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
0	44.9727	322.266	0.140	0.889	-590.771	680.717
1	2.6991	9.240	0.292	0.771	-15.529	20.927
2	226.7451	350.086	0.648	0.518	-463.880	917.371
3	94.2343	116.447	0.809	0.419	-135.484	323.953
4	-75.6912	57.877	-1.308	0.193	-189.867	38.485
5	386.1030	202.455	1.907	0.058	-13.285	785.491
6	117.3922	138.350	0.849	0.397	-155.534	390.319
7	1.2553	1.539	0.815	0.416	-1.782	4.292
8	-2691.3384	727.339	-3.700	0.000	-4126.182	-1256.495
9	176.0065	27.016	6.515	0.000	122.712	229.301
10	-6936.9992	1618.045	-4.287	0.000	-1.01e+04	-3745.031
11	-5317.5798	940.103	-5.656	0.000	-7172.149	-3463.010
12	230.5518	70.778	3.257	0.001	90.926	370.178
13	82.6098	15.276	5.408	0.000	52.474	112.746

 Omnibus:
 20.424
 Durbin-Watson:
 0.851

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 58.328

 Skew:
 0.341
 Prob(JB):
 2.16e-13

 Kurtosis:
 5.549
 Cond. No.
 2.03e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.03e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In []:			