

BULANIK MANTIKLA KABLOSUZ SENSÖR AĞLARINDA DÜĞÜM LOKALİZASYONU

Hazırlayanlar

Ahmet Enes Yensiz - 20360859036

Kemal Kerem Acar - 21360859004

Bursa Teknik Üniversitesi – Bilgisayar Mühendisliği Esnek Hesaplamaya Giriş – 2024-2025 Bahar Dr. Öğr. Üyesi Mustafa Özgür Cingiz

AMAÇ VE PROBLEM TANIMI

- Kablosuz Sensör Ağları (WSN), sensörlerin çevresel verileri topladığı sistemlerdir.
- Her sensörün konumunun bilinmesi kritik öneme sahiptir.
- Ancak tüm düğümlerin konumları doğrudan bilinemeyebilir.
- Hedef: Bilinen konumlu çapa düğümler yardımıyla bilinmeyen düğümlerin konumlarını tahmin etmek.
- Bu probleme "düğüm lokalizasyonu" denir.
- Çözüm için geleneksel yöntemler belirsizlikle baş etmede yetersiz kalabilir.
- Bu nedenle bulanık mantık tabanlı Mamdani çıkarım sistemi tercih edilmiştir.

VERİ KÜMESİ

- UCI Machine Learning Repository üzerinden alınmıştır [1].
- Toplam 107 örnek içerir.
- 4 giriş, 1 hedef, 1 standart sapma sütunu bulunur.
- Giriş değişkenleri:
 - Anchor Ratio
 - -Transmission Range
 - -Node Density
 - -Iteration Count
- Hedef değişken:
 - -Average Localization Error (ALE)
- Standart sapma değeri projede kullanılmamıştır.

Sütun Adı	Açıklama	
Anchor Ratio	Çapa düğüm oranı (bilinen konumlu düğüm oranı)	
Transmission Range	Sensörün iletim (haberleşme) mesafesi	
Node Density	Düğüm yoğunluğu (ağdaki sensör düğüm sayısı)	
Iteration Count	Yineleme sayısı (lokalizasyon sürecindeki adım sayısı)	
ALE	Ortalama Lokalizasyon Hatası (tahmin edilmesi gereken değer)	
Std. Deviation	ALE tahmininin standart sapması (çalışmada kullanılmadı)	

MODEL YAKLAŞIMI: MAMDANİ BULANIK ÇIKARIM SİSTEMİ

- Mamdani sistemi, belirsizlik içeren problemlerde kullanılan yaygın bir bulanık çıkarım yöntemidir.
- Bu projede, 4 giriş değişkenine göre ALE tahmini yapılmıştır.
- Giriş değişkenleri:
 - Anchor Ratio
 - Transmission Range
 - Node Density
 - Iteration Count
- Çıkış değişkeni:
 - Average Localization Error (ALE)
- Modelin yapısı:
 - Girişler → Üyelik fonksiyonlarıyla bulanıklaştırılır
 - Kural tabanı → Çıkarım
 - Berraklaştırma → Sayısal ALE tahmini

MODEL YAKLAŞIMI: MAMDANİ BULANIK ÇIKARIM SİSTEMİ

ÜYELİK FONKSİYONLARI

- Projede iki farklı üyelik fonksiyonu kullanılmıştır:
 - Triangular (Üçgen)
 - Gaussian (Gauss)
- Çıkış değişkeni:
 - Average Localization Error (ALE)
- Amaç: Farklı bulanıklaştırma yaklaşımlarının sistem performansına etkisini görmek.
- Gaussian fonksiyonları daha yumuşak geçişler sağlar, genelleme kabiliyeti yüksektir.
- Triangular fonksiyonlar daha basit ve sezgiseldir.

ÜYELİK FONKSİYONLARI

"Triangular ve Gaussian üyelik fonksiyonları karşılaştırması."

Kural Tabani

- Mamdani sisteminde karar verme mekanizması "eğer-ise" şeklindeki kurallara dayanır.
- Toplamda yaklaşık 81 adet kural tanımlanmıştır.
- Kurallar, giriş değişkenlerinin değerlerine göre ALE tahminini belirler.
- Kurallar uzman bilgisi ve sezgisel değerlendirmeyle oluşturulmuştur.

Örnek Kural:

Eğer anchor ratio küçük
ve transmission range büyük
ve node density düşük
ve iteration count yüksek ise ALE orta

Berraklaştırma Yöntemleri ve Model Kombinasyonları

- Defuzzification (Berraklaştırma) Yöntemleri:
 - Center of Sums (COS): Toplamların merkezini alır.
 - Weighted Average (WA): Sonuçları ağırlıklı ortalama ile netleştirir.
- 4 Model Kombinasyonu:
 - 2 üyelik × 2 defuzz → Toplam 4 model:
 - 1. Triangular + COS
 - 2. Triangular + WA
 - 3. Gaussian + COS
 - 4. Gaussian + WA

Kombinasyon No	Üyelik Tipi	Berraklaştırma Yöntemi
1	Triangular	COS
2	Triangular	WA
3	Gaussian	COS
4	Gaussian	WA

Model Performans Sonuçları

- MAE: Ortalama Mutlak Hata
- RMSE: Kök Ortalama Kare Hata
- Hedef: Hataların minimum olduğu modeli belirlemek
- Veriler 107 örnek üzerinden hesaplanmıştır.

Üyelik Fonksiyonu	Berraklaştırma Yöntemi	MAE	RMSE
Triangular	COS	2.968	3.798
Triangular	WA	2.965	3.800
Gaussian	COS	2.696	3.656
Gaussian	WA	2.665	3.636

MAE VE RMSE KARŞILAŞTIRMA GRAFİKLERİ

Model kombinasyonlarına göre MAE karşılaştırması

- Grafikler, dört kombinasyonun hata metriklerini karşılaştırmalı olarak göstermektedir.
- En düşük MAE ve RMSE değeri Gaussian + WA kombinasyonuna aittir.
- Bu model, en başarılı tahmin performansını sunmuştur.

Model kombinasyonlarına göre RMSE karşılaştırması

Model Kombinasyonlarına Ait Çıktılar

- Her kombinasyonun ALE tahmini grafiği çıkarılmıştır.
- Görseller, tahmin ile gerçek değerlerin yakınlığını göstermektedir.
- En iyi uyum Gaussian + WA kombinasyonunda gözlemlenmiştir.

Triangular + COS

Triangular + WA

Gaussian + COS

Gaussian + WA

Sonuçlar ve En Başarılı Kombinasyon

- Mamdani bulanık çıkarım sistemi başarıyla uygulanmıştır.
- Tüm model kombinasyonları karşılaştırılmıştır.
- En düşük MAE ve RMSE değerleri:
 - → Gaussian + WA kombinasyonunda elde edilmiştir.
- Bu kombinasyon, daha yumuşak üyelik geçişleri ve dengeli çıkış sağlamıştır.
- Sistem, küçük örneklem setinde yüksek doğrulukla çalışmıştır.

Gelecek Çalışmalar & Kapanış

Gelecek Geliştirme Önerileri:

- Kural tabanı genetik algoritmalar ile optimize edilebilir.
- Sugeno tipi sistemlerle karşılaştırmalı analiz yapılabilir.
- Daha büyük ve gerçek veri setleriyle test yapılabilir.
- Enerji verimliliği, gecikme gibi çoklu hedefler modele dahil edilebilir.

Proje linki: github

Dinlediğiniz için teşekkürler!

Sorularınız?