Bootcamp 4: Chloropleth maps

Lucien Baumgartner

10/26/2018

Okay, let's get down to business. In this bootcamp, we will produce a chloropleth map. The starting point is the following question:

Which districts have a lot of households with children?

I will first paraphrase this question to:

What is the median number of children (per household) per district over the last 5 years?

We will see that the answer to this question is simple: zero. Why? Singles kinda rule I guess.

Hence, I rephrase the whole thing to:

What is the median share of households with children per district over the last 5 years?

This should serve a reminder: even if your initial idea is stupid, think about it differently (think about *maximizing variance*), and try again.

The following script includes my whole workflow, including some exploratory stuff, just so that you see how I approached the whole thing.

```
library(dplyr) # data crunching
library(ggplot2) # plots
library(rgdal) # geodata handling
library(viridis) # color scale for lazy people
library(ggrepel) # text label repel
library(extrafont) # different fonts

# clean workspace
rm(list=ls())

# all the registered fonts
fonts()
```

```
## [1] ".Keyboard"
                                          "System Font"
                                          "Amatic SC"
## [3] "Alex Brush"
## [5] "Andale Mono"
                                          "Apple Braille"
                                          "Arial Black"
## [7] "AppleMyungjo"
## [9] "Arial"
                                          "Arial Narrow"
## [11] "Arial Rounded MT Bold"
                                          "Arial Unicode MS"
## [13] "Bad Script"
                                          "Bodoni Ornaments"
## [15] "Bodoni 72 Smallcaps"
                                          "Cabin Sketch"
## [17] "Brush Script MT"
## [19] "Codystar"
                                          "Comic Sans MS"
## [21] "Courier New"
                                          "Crimson Text"
## [23] "Crimson Text SemiBold"
                                          "Cutive Mono"
## [25] "Dawning of a New Day"
                                          "DIN Alternate"
## [27] "DIN Condensed"
                                          "Dosis"
## [29] "Economica"
                                          "Georgia"
## [31] "Goudy Bookletter 1911"
                                          "Impact"
## [33] "Julius Sans One"
                                          "Khmer Sangam MN"
## [35] "Lao Sangam MN"
                                          "Lekton"
## [37] "Libre Barcode 39 Extended Text" "Libre Barcode 39 Text"
## [39] "Luminari"
                                          "Megrim"
## [41] "Microsoft Sans Serif"
                                          "Pompiere "
## [43] "PT Serif"
                                          "Raleway Dots "
## [45] "Sacramento"
                                          "Source Code Pro Black"
## [47] "Source Code Pro"
                                          "Source Code Pro ExtraLight"
## [49] "Source Code Pro Light"
                                          "Source Code Pro Medium"
## [51] "Source Code Pro Semibold"
                                          "Space Mono"
## [53] "Suranna"
                                          "Tahoma"
## [55] "Tenor Sans"
                                          "Text Me One"
## [57] "Times New Roman"
                                          "Trattatello"
## [59] "Trebuchet MS"
                                          "Verdana"
## [61] "Webdings"
                                          "Wingdings"
## [63] "Wingdings 2"
                                          "Wingdings 3"
```

```
# load custom functions available at: https://github.com/lucienbaumgartner/r-helpers
source('~/r-helpers/ggplot/ggplot-helper.R')

# set WD
setwd('~/ddj18/output/')

# load pop data
load('01-bevoelkerung-clean.RData')
str(df)
```

```
## Classes 'tbl df', 'tbl' and 'data.frame':
                                          9437083 obs. of 15 variables:
                 : int 911747 886098 347792 1073886 17361 966399 604793 797443 552
## $ persnum
                 : int 1 1 1 1 1 1 1 1 1 1 ...
## $ anzbestwir
## $ alterv05kurz : chr "40-44" "25-29" "20-24" "20-24" ...
## $ sexcd
                 : int 1 1 1 2 1 1 2 2 1 1 ...
## $ aufart2lang : chr "SchweizerIn" "andere" "andere" "SchweizerIn" ...
                 : chr "Ledig" "Ledig" "Ledig" "Ledig" ...
## $ ziv2lang
## $ anzahlkinder
                  : int 0 0 0 0 0 0 3 0 0 1 ...
  $ hhtyplang
                 : chr NA NA NA NA ...
##
## $ geblandhistlang: chr "Asien" "Asien" "Asien" "Asien" ...
## $ nationhistlang : chr "Schweiz" "Asien" "Asien" "Schweiz" ...
                : chr "Kreis 2" "Kreis 2" "Kreis 10" "Kreis 10" ...
## $ kreislang
                        "Enge" "Enge" "Wipkingen" "Höngg" ...
## $ quarlang
                  : chr
## $ gebnum
                 : int NA NA NA NA NA NA NA NA NA ...
                 : int NA NA NA NA NA NA NA NA NA ...
## $ ewid
```

```
# load shapefile
shp.raw <- readOGR('~/ddj18/input/st-zh/shapefile/Quartier_Shapefile/', layer = 'Statis

## OGR data source with driver: ESRI Shapefile</pre>
```

```
## Source: "/Users/lucienbaumgartner/Dropbox/ddj18-data/input/st-zh/Shapefile/Quartier_
## with 34 features
## It has 4 fields
```

```
# inspect shp meta info
str(shp.raw@data)
```

```
## 'data.frame': 34 obs. of 4 variables:
## $ QNR : num 92 101 111 21 33 72 74 119 91 23 ...
## $ QNAME: Factor w/ 34 levels "Affoltern", "Albisrieden",..: 4 15 1 34 9 16 33 26 2 1
## $ KNR : num 9 10 11 2 3 7 7 11 9 2 ...
## $ KNAME: Factor w/ 12 levels "Kreis 1", "Kreis 10",..: 12 2 3 5 6 10 10 3 12 5 ...
```

```
# we have both kreis and distritict vars!
# this means we will have to join the data by one of the two
## let's compute the median number of children over the last 5 years per district
# number of obs per district
table(df$quarlang)
```

##			
##	Affoltern	Albisrieden	Alt-Wiedikon
##	525258	444571	387803
##	Altstetten	City	Enge
##	735195	21880	212536
##	Escher Wyss	Fluntern	Friesenberg
##	73539	186758	259957
##	Gewerbeschule	Hard	Hirslanden
##	242783	322196	173751
##	Hirzenbach	Hochschulen	Höngg
##	284778	17912	523133
##	Hottingen	Langstrasse	Leimbach
##	260170	265635	127334
##	Lindenhof	Mühlebach	Oberstrass
##	24545	141645	252486
##	Oerlikon	Rathaus	Saatlen
##	488149	78130	173552
##	Schwamendingen-Mitte	Seebach	Seefeld
##	265649	514926	125552
##	Sihlfeld	Unterstrass	Weinegg
##	522292	518702	122484
##	Werd	Wipkingen	Witikon
##	101721	393761	248979
##	Wollishofen		
##	399321		

```
# number of obs per district in the last five years
df %>%
  filter(stichtagdatjahr%in%2012:2017) %>%
  group_by(quarlang) %>%
  summarise(n=n()) %>%
  print(n=100)
```

```
## # A tibble: 34 x 2
##
      quarlang
                                 n
##
      <chr>
                             <int>
## 1 Affoltern
                            153944
##
   2 Albisrieden
                            119956
  3 Alt-Wiedikon
##
                            101734
##
   4 Altstetten
                            190369
## 5 Citv
                              4818
##
   6 Enge
                             54789
   7 Escher Wyss
##
                             29327
## 8 Fluntern
                             47712
## 9 Friesenberg
                             64937
## 10 Gewerbeschule
                             57773
## 11 Hard
                             78487
## 12 Hirslanden
                            43985
## 13 Hirzenbach
                             71256
## 14 Hochschulen
                              3930
## 15 Höngg
                            134484
## 16 Hottingen
                             65403
## 17 Langstrasse
                             65689
## 18 Leimbach
                             35507
## 19 Lindenhof
                             5714
## 20 Mühlebach
                             36181
## 21 Oberstrass
                             63597
## 22 Oerlikon
                            131826
## 23 Rathaus
                             19283
## 24 Saatlen
                             47140
## 25 Schwamendingen-Mitte 66847
## 26 Seebach
                            147755
## 27 Seefeld
                            30094
## 28 Sihlfeld
                            127133
## 29 Unterstrass
                            132914
## 30 Weinegg
                             30205
## 31 Werd
                             26439
## 32 Wipkingen
                             95907
## 33 Witikon
                             62825
## 34 Wollishofen
                             98806
```

```
# actual stuff that we are interested in:
df %>%
  filter(stichtagdatjahr%in%2012:2017) %>%
  summarise(n.kids=median(anzahlkinder)) %>%
  print(n=100)
```

```
## # A tibble: 1 x 1
## n.kids
## <dbl>
## 1 0
```

```
# ... mmh okay.. that's kinda stupid to plot...
# let's compute the share of household with more than 1 kid per district over the last
kids <- df %>% mutate(has.kids=ifelse(anzahlkinder>0,1,0)) %>%
filter(stichtagdatjahr%in%2012:2017) %>%
group_by(quarlang, stichtagdatjahr, has.kids) %>%
summarise(n=n()) %>%
mutate(p=n/sum(n)) %>%
ungroup %>%
group_by(quarlang, has.kids) %>%
summarise(median.p=median(p)) %>%
print(n=100)
```

	A tibble: 68 x 3		
	Groups: quarlang		
##	quarlang		median.p
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>
	Affoltern	0	0.804
## 2		1	0.196
## 3		0	0.832
## 4		1	0.168
## 5		0	0.851
## 6 ## 7		1 0	0.149
## 7 ## 8		1	0.839 0.161
## 9		0	0.101
## 10	City	1	0.872
## 10	Enge	0	0.128
## 12	•	1	0.159
	Escher Wyss	0	0.133
## 14		1	0.128
## 15	-	0	0.836
	Fluntern	1	0.164
## 17		0	0.770
## 18	_	1	0.230
## 19	_	0	0.877
## 20		1	0.123
## 21		0	0.860
## 22	Hard	1	0.140
## 23	Hirslanden	0	0.840
## 24	Hirslanden	1	0.160
## 25	Hirzenbach	0	0.803
## 26	Hirzenbach	1	0.197
## 27	Hochschulen	0	0.931
## 28	Hochschulen	1	0.0691
## 29	Höngg	0	0.830
## 30	Höngg	1	0.170
## 31	Hottingen	0	0.839
## 32	Hottingen	1	0.161
## 33	Langstrasse	0	0.921
## 34	Langstrasse	1	0.0791
## 35	Leimbach	0	0.781
	Leimbach	1	0.219
## 37	Lindenhof	0	0.922
## 38		1	0.0781
## 39		0	0.869
## 40		1	0.131
## 41		0	0.849
## 42		1	0.151
## 43		0	0.856
	Oerlikon	1	0.144
## 45		0	0.922
## 46		1	0.0784
## 47		0	0.778
## 48		1	0.222
## 49	•		0.843
## 50	-		0.157
## 51 ## 52		0	0.828
	Seebach	1	0.172
## 53	Seefeld	0	0.880

```
## 54 Seefeld
                                        0.120
                                    1
## 55 Sihlfeld
                                    0
                                        0.862
## 56 Sihlfeld
                                        0.138
                                    1
## 57 Unterstrass
                                        0.838
## 58 Unterstrass
                                    1
                                        0.162
## 59 Weinegg
                                        0.859
                                    0
## 60 Weinegg
                                    1
                                        0.141
## 61 Werd
                                    0
                                        0.881
## 62 Werd
                                        0.119
                                    1
## 63 Wipkingen
                                    0
                                        0.865
## 64 Wipkingen
                                        0.135
                                    1
## 65 Witikon
                                    0
                                        0.832
## 66 Witikon
                                    1
                                        0.168
## 67 Wollishofen
                                        0.840
                                    0
## 68 Wollishofen
                                    1
                                        0.160
```

```
# already looks more promising
```

now we have to check whether the names of the districts in shp actually match those i table(unique(shp.rawQNAME)%in%unique(kidsquarlang))

```
##
## TRUE
## 34
```

```
# yep! this makes everything a lot easier!

## now let's join the data to the shp
# since we work with ggplot, and we don't do super fancy stuff with geodata, we just co
class(shp.raw)
```

```
## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"
```

 $shp \leftarrow fortify(shp.raw, region='QNAME') # use QNAME as region (otherwise it will be droclass(shp)$

```
## [1] "data.frame"
```

```
# dims before join dim(shp)
```

```
# join; NOTE: use a left join!!!
# shp$region is now shp$id; to join we will have to rename kids$quarlang to kids$id
shp <- left_join(shp, rename(kids, id=quarlang))
# dims after join
dim(shp)</pre>
```

```
## [1] 35450
```

```
# the number of rows doubled and we got three additional variables...
# why? because kids$quarlang contains every district twice (because we grouped by quarl
# the addtional variables are all other var in kids (those are the reason why we actual
\# since we will only plot the share of the pop who has children, we can drop all the ot
kp <- shp %>%
  filter(has.kids==1) %>%
  ggplot(.) + # feed the subset to the ggplot
  geom polygon(aes(x=long, y=lat, group=group, fill=median.p),
               color='white',
               size=0.2) + # plot the polygon and fill it with the percentages
  coord equal() + # make x and y equistant
  scale fill viridis(option = 'D', name='Percentage', label=scales::percent) +
  labs(title='Median share of households with kids over the last 5 years per district',
    subtitle='Some additional blahblah explaining some very interesting stuff'
  # get rid of the background, axis, grids, etc, and add title and subtitle spacing
  theme empty(
    title.spacing = 10,
    subtitle.spacing = 10
  # add another background, change text color
  theme(
    plot.background = element rect(fill='black'),
    legend.background = element rect(fill='black'),
    text = element_text(colour='white', family = 'Source Code Pro'),
    plot.title = element text(size=17),
    plot.subtitle = element text(size=15),
    legend.title = element text(size=15),
    legend.text = element_text(size=12)
  )
kp
```


now we would like to show the reader in which people with kids add up to 20% of the d
for that we need to compute the anker of the annotation: in this case the district po
centroids <- getSpPPolygonsLabptSlots(shp.raw)</pre>

Warning: use coordinates method

Warning: Column `quarlang` joining character vector and factor, coercing
into character vector

```
# add everything to the plot
kp < - kp +
  # centroids
  geom point(data=filter(kids, has.kids==1&median.p>.2),
             aes(x=long.c, y=lat.c),
             color='white') +
  # text label for Leimbach and Friesenberg
  geom text repel(data=filter(kids, has.kids==1&quarlang%in%c('Friesenberg', 'Leimbach'
                  aes(x=long.c, y=lat.c, label=paste0(quarlang,
                                                       format(round(median.p*100,1), dig
                                                        '%')
                      ),
                  # some additional repel and viz parameters
                  nudge y = -1000,
                  nudge_x = -2000,
                  size=5,
                  segment.size = 0.2,
                  color='white',
                  family='Source Code Pro') +
  # text label for Saatlen
  geom text repel(data=filter(kids, has.kids==1&quarlang%in%c('Saatlen')),
                  aes(x=long.c, y=lat.c, label=paste0(quarlang,
                                                        '\n',
                                                       format(round(median.p*100,1), dig
                                                        '용')
                       ),
                  # some additional repel and viz parameters
                  nudge_y = 1000,
                  nudge x = 2000,
                  size=5,
                  segment.size = 0.2,
                  color='white',
                  family='Source Code Pro')
kp
```

