CSCI 2200 — Foundations of Computer Science (FoCS) Homework 1 (document version 1.0)

Hayden Fuller & Alex Litchfield

Overview

- This homework is due by 11:59PM on Thursday, September 15
- You may work on this homework in a group of no more than four students; unlike recitation problem sets, your teammates may be in any section
- You may use at most two late days on this assignment
- Please start this homework early and ask questions during office hours and at your September 14 recitation section; also ask (and answer) questions on the Discussion Forum
- Please be concise in your answers; even if your solution is correct, if it is not well-presented, you may still lose points
- You can type or hand-write (or both) your solutions to the required graded problems below; all work must be organized in one PDF that lists all teammate names
- You are strongly encouraged to use LaTeX, in particular for mathematical symbols; see references in Course Materials
- EARNING LATE DAYS: for each homework that you complete using LaTeX (including any tables, graphs, etc., i.e., no hand-written anything), you earn one additional late day; you can draw graphs and other diagrams in another application and include them as image files

Warm-up exercises

The problems below are good practice problems to work on. Do not submit these as part of your homework submission. **These are ungraded problems.**

• Problem 1.26

• Problem 3.22

• Problem 2.19

• Problem 3.24

• Problem 3.4

• Problem 3.43

• Problem 3.13

• Problem 3.14

• Problem 3.47

Graded problems

The problems below are required and will be graded.

• Problem 2.16 (Cartesian Product).

• Problem 2.29

• Problem 3.20 (DNF). Parts (a) and (b) only.

• Problem 3.23

• Problem 3.31

• Problem 3.44

• Problem 3.56

• Problem 4.7. Part (a) only.

All of the above problems (both graded an ungraded) are transcribed in the pages that follow.

Graded problems are noted with an asterisk (*).

If any typos exist below, please use the textbook description.

- Problem 1.26. Two players alternately pick numbers without replacement from the set $\{1, 2, 3, \ldots, 9\}$. The first player to obtain three numbers that sum to 15 wins. What is your strategy?
- *Problem 2.16 (Cartesian Product). Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. The Cartesian product $A \times B$ is the set of pairs formed from elements of A and elements of B.

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

- (a) List the elements in $A \times B$. What is $|A \times B|$? $A \times B = \{(1, a), (1, b), (1, c), (1, d), (2, a), (2, b), (2, c), (2, d), (3, a), (3, b), (3, c), (3, d)\}$ $|A \times B| = 12$
- (b) List the elements in $B \times A$. What is $|B \times A|$? $B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3), (d, 1), (d, 2), (d, 3)\}$ $|B \times A| = 12$
- (c) List the elements in $A \times A = A^2$. What is $|A \times A|$? $A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$ $|A \times A| = 9$
- (d) List the elements in $B \times B = B^2$. What is $|B \times B|$? $B \times B = \{(a, a), (a, b), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, a), (c, b), (c, c), (c, d), (d, a), (d, b), (d, c), (d, d)\}$ $|B \times B| = 16$

Generalize the definition of $A \times B$ to a Cartesian product of three sets $A \times B \times C$. $A \times B \times C = \{(a, b, c) \mid a \in A, b \in B, c \in C\}$

- Problem 2.19. How many binary sequences are of length 1, 2, 3, 4, 5? Guess the pattern. 2, 4, 8, 16, 32 2^n
- *Problem 2.29. Mimic the method we used to prove $\sqrt{2}$ is irrational and prove $\sqrt{3}$ is

Assume that $\sqrt{3}$ is rational, which means we can write it as a fraction $\sqrt{3} = \{\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}, \ldots\}$ Each numerator is unique; and each denominator is unique

From the Well-Ordering Principle, there must be a minimum denominator b_*

and a corresponding minimum numerator a_* $\sqrt{3} = \frac{a_*}{b_*}$

For b_* to be the minimum possible, it must be that a_* and b_* have no common factors $a_*^2 = 3b_*^2$

If n^2 is threeven, n must be threeven. A threeven number squared is threeven because $(3k)^2 =$ $3(3k^2)$. A non-threeven number squared is not threeven because $(3k+1)^2 = 3(3k^2) + 3(2k) + 1$ and $(3k+2)^2 = 3(3k^2) + 3(4k) + 3 + 1$.

 a_*^2 is threeven since it's a multiple of 3, so a_* is threeven and we can say $a_* = 3k$ $k \in \mathbb{N}$ $(3k)^2 = 3b_*^2$ so $b_*^2 = 3k^2$ so b_*^2 is threeven so b_* is threeven

since a_* and b_* are both threeven, they have a common facotor of three

for the minimum a_* and b_* to be possible, they must have no common factors, but they have a common factor of 3.

Now use the same method to try and prove $\sqrt{9}$ is irrational. What goes wrong?

Assume that $\sqrt{9}$ is rational, which means we can write it as a fraction

$$\sqrt{9} = \{\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_2}, \ldots\}$$

 $\sqrt{9} = \{\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}, \ldots\}$ Each numerator is unique; and each denominator is unique

From the Well-Ordering Principle, there must be a minimum denominator b_*

and a corresponding minimum numerator a_* $\sqrt{9} = \frac{a_*}{b_*}$

For b_* to be the minimum possible, it must be that a_* and b_* have no common factors $a_*^2 = 9b_*^2$

 a_*^2 is divisible by 9 since it's a multiple of 9,

but we can not say a_* is divisible by 9.

If n^2 is divisible by 9, n must be divisible by 9. A number divisible by 9 squared is divisible by 9 because $(9k)^2 = 9(9k^2)$. A number not divisible by 9 squared can also be divisible by 9 because $(9k+3)^2 = 9(9k^2) + 9(6k) + 9$ and $(9k+6)^2 = 9(9k^2) + 9(12k) + 9(4)$.

- Problem 3.4. Define the propositions p = "Kilam is a CS major" and q = "Kilam is a hockey player". Use the connectors \vee , \wedge , \rightarrow to formulate these claims.
 - (a) Kilam is a hockey player and CS major. $q \wedge p$
 - (b) Kilam either plays hockey or is a CS major. (qORp)ANDNOT(qANDp)
 - (c) Kilam plays hockey, but he is not a CS major.
 - (d) Kilam is neither a hockey player nor a CS major.
 - (e) Kilam is a CS major or a hockey player, not both.
 - (f) Kilam is not a hockey player but is a CS major.
- Problem 3.13. If it rains on a day, it rains the next day. Today it didn't rain. On which days must there be no rain?
 - (a) Tomorrow. (b) All future days. (c)X Yesterday.X (d) All previous days.
- Problem 3.14. For p = "You're sick", q = "You miss the final", r = "You pass FOCS", translate into English:
 - (a) $q \to \neg r$. If you miss the final, you will not pass FOCS.
 - (b) $(p \to \neg r) \lor (q \to \neg r)$. If you're sick, you will not pass FOCS or if you miss the final you will not pass FOCS.
 - (c) $(p \wedge q) \vee (\neg q \wedge r)$. You're sick and you miss the final, or your not sick and you pass FOCS.

• *Problem 3.20 (DNF). Parts (a) and (b) only. Use ¬, ∧, ∨ to give compound propositions with these truth-tables. [Hint: You need only consider the rows which are T and use OR of AND's.]

$$\begin{array}{c|cccc}
q & r & q \land \neg r \\
\hline
T & T & F \\
\hline
(a) & T & F & T \\
F & T & F \\
F & F & F
\end{array}$$

(AND-OR-NOT formulas use only \neg , \wedge , \vee . Any truth-table can be realized by an AND-OR-NOT formula. Even more, one can construct an OR or AND's, the *disjunctive normal form* (DNF).)

- **Problem 3.22.** How many rows are in the truth table of $\neg(p \lor q) \land \neg r$? Give the truth table.
- *Problem 3.23.
 - (a) Give the truth-table for these compound propositions.

$$p \wedge \neg p; \quad p \vee \neg p; \quad p \to (p \vee q); \quad ((p \to q) \wedge (\neg q)) \to \neg p$$

p	q	$p \land \neg p$	_	p	q	$p \vee \neg p$	p	q	$p \to (p \lor q)$	p	q	$((p \to q) \land (\neg q)) \to \neg p$
Т	Т	F		Т	Т	Т	Т	Т	Т	Т	Т	T
		F		Т	F	Т	\mathbf{T}	F	Т	\mathbf{T}	F	T
F	\mathbf{T}	F		F	\mathbf{T}	Т	F	\mathbf{T}	T	\mathbf{F}	Т	T
F	F	F		F	F	Т	F	F	Т	F	F	T

- (b) How many rows are in the truth-table of the proposition $(p \lor q) \to (r \to s)$? $2^4 = 16$
- (c) Show that $(p \to q) \lor p$ is ALWAYS true. This is called a tautology. By implication rules, $(p \to q) \equiv \neg p \lor q$ so $(p \to q) \lor p \equiv \neg p \lor q \lor p$ $\neg p \lor p \equiv \text{True}$
- **Problem 3.24.** Let $q \to p$ be F and $q \to r$ be T. Answer T/F: (a) $p \lor q$ (b) $p \to q$ (c) $p \land q \land r$.
- *Problem 3.31. Use truth tables to determine the logical equivalence of the compound statements.

5

(b)
$$(p \land \neg q) \lor q$$
 and $p \lor q$

$$\begin{array}{c|cccc}
p & q & a & b \\
\hline
T & T & T & T \\
T & F & T & T & equivalent \\
F & T & T & T \\
F & F & F & F
\end{array}$$

- **Problem 3.43.** For $x \in \{1, 2, 3, 4, 5\}$ and $y \in \{1, 2, 3\}$, determine T/F with short justifications.
 - (a) $\exists x : x + 3 = 10$
 - (b) $\forall y : y + 3 \le 7$
 - (c) $\exists x : (\forall y : x^2 < y + 1)$
 - (d) $\forall x : (\exists y : x^2 + y^2 < 12)$
- *Problem 3.44. For $x, y \in \mathbb{Z}$, determine T/F with short justifications.
 - (a) $\forall x : (\exists y : x = 5/y)$ F, there is no integer solution for 0 = 5/y.
 - (b) $\forall x: (\exists y: y^4-x < 16) \text{ F}, y^4 \text{ can not be less than 0 since a negative real number to an even power is positive, but if <math>x$ is less than -16, the left side will become greater than 16 and y^4 will not be able to subtract from that. Contradiction: $x = -16, y^4 (-16) < 16, y^4 < 0$, which is imposible if $y \in \mathbb{R}$.
 - (c) $\forall x : (\exists y : \log_2 x \neq y^3)$ T, $\log_2 x$ and y^3 are not equal constants, therefore no matter the value of one, you will always be able to pick a value of the other that does not match.
- **Problem 3.47.** Use quantifiers to precisely formulate the associative laws for multiplication and addition and the distributive law for multiplication over addition.
- *Problem 3.56. In which (if any) of the domains $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are these claims T? (x and y can have different domains.)
 - (a) $\exists x : x^2 = 4 \ \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
 - (b) $\exists x : x^2 = 2 \ \mathbb{R}$
 - (c) $\forall x: (\exists y: x^2=y) \ x\mathbb{N}, \mathbb{Z}, y\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R} \ , \ x\mathbb{Q}, y\mathbb{Q}, \mathbb{R} \ , \ x\mathbb{R}, y\mathbb{R}$
 - (d) $\forall y : (\exists x : x^2 = y) \ y \mathbb{N}, x \mathbb{R}, \ y \mathbb{Z}, \mathbb{Q}, \mathbb{R}, x$
- *Problem 4.7. Part (a) only. Give direct proofs:
 - (a) $x, y \in \mathbb{Q} \to xy \in \mathbb{Q}$.

Proof. We prove the claim using a direct proof.

Assume that $x, y \in \mathbb{Q}$.

By the definition of \mathbb{Q} , x, y can be writen as $\frac{a}{b}, \frac{c}{d}$, where $a, b, c, d \in \mathbb{Z}$

Since $\frac{a}{b}\frac{c}{d} = \frac{ac}{cd}$, and an integer multiplied by another integer always results in an integer, we have $\frac{a}{b}\frac{c}{d} = \frac{e}{f}$ where $e, f \in \mathbb{Z}$.

By the definition of \mathbb{Q} , if we have $\frac{e}{f}$ where $e, f \in \mathbb{Z}$, then $\frac{e}{f} \in \mathbb{Q}$.

Therefore, $x, y \in \mathbb{Q} \to xy \in \mathbb{Q}$ is true.