Revised Data Analysis Texas Precipitation Gradient (2017)

For PeerJ revision

By Sean Kinard

While it is useful to include many environmental variables for the sake of orientation to the survey region and transparency, the limited number of sample sites (only ten in this study) will require few variables to be evaluated using regression and multivariate methods. So, I will report all variables in a site x environment matrix as an appendix and include a more thorough introduction to subtropical basin and stream characteristics in the methods. Then I will proceed with a limited number of interpretable variables selected to evaluate climate, hydrologic, water quality, and local habitat features as drivers of community assembly.

A-piori variable selection for regression and ordinations

7 variables to evaluate with community diversity metrics and community composition ordinations

Precipitation: Annual precipitation (30-year average)

Flood disturbance regime: flash index

Drought disturbance regime: Low Flow Pulse Percent

Biogenic Pollutants: NH4+

Osmotic stressors: Conductivity Canopy effects: Canopy Coverage Stream morphology: Rosgen index

- 1. Use PCA to discern patterns in environmental variation among sites.
- 2. Use linear regressions to identify significant correlations with fish and invertebrate community diversity.
- 3. Use multivariate regressions to create predictive models for fish and invertebrate community diversity.
- 4. Use PCoA ordinations to visualize patterns in community composition and identify coincidental environmental predictors

1. Use PCA to discern patterns in environmental variation among sites.

variable	PC1
canopy	0.867128
NH4.	0.792109
AP	-0.69812
log.cond	0.662801
LFPP	0.633236
flash.index	-0.55337
Rosgen.Index	-0.11131
variable	PC2
AP	0.615274
log.cond	-0.54994
flash.index	-0.50805
LFPP	0.455821

0.410933

0.265428

0.068905

Rosgen.Index

NH4.

canopy

metric	Standard deviation	Proportion of Variance	Cumulative Proportion
PC1	1.739434199	0.43223	0.43223
PC2	1.179388223	0.19871	0.63094
PC3	1.085778668	0.16842	0.79936
PC4	0.839789846	0.10075	0.90011
PC5	0.699978246	0.07	0.9701
PC6	0.424007876	0.02568	0.99579
PC7	0.171748545	0.00421	1

Scree plot (left) and biplot (right) of Principle Component Analysis for 7 environmental predictors to be evaluated as predictors of fish and invertebrate assembly. Left, table contains cumulative variance explained by principle components. Above, Tables display correlations of environmental predictors with principle component axis 1 (top) and principle component 2 (middle) in descending order.

2. Use linear regressions to identify significant correlations with fish and invertebrate community diversity.

Pairs plots for fish and invertebrate Shannon index versus 7 scaled environmental predictors. Scatterplots and linear regressions are plotted in the top. Correlation coefficients are displayed in the bottom plots.

This is a useful tool to identify strong correlations with our dependent variables (first 2 rows) and to see collinearities between independent variables (bottom 6 rows). AP covaries with conductivity, canopy, and NH4+ concentrations.

Fish diversity plotted against
(A) annual precipitation
(cm/yr), (B) Canopy cover (%),
(C) NH4+ (mg/L), (D) logtransformed conductivity
(µS/cm).

	predictor	estimate	df	r2	f.stat	p.valı
	<mark>AP</mark>	<mark>0.017271</mark>	<mark>2 8</mark>	<mark>0.602017</mark>	<mark>12.10136</mark>	0.008
7	log.cond	<mark>-0.27437</mark>	<mark>2 8</mark>	0.405813	<mark>5.463779</mark>	<mark>0.047</mark>
	Rosgen.In dex	0.021205	2.8	0 027242	0.224035	0 648
	uex					
	<mark>canopy</mark>	<mark>-0.0093</mark>	<mark>2 8</mark>	0.447887	<mark>6.489777</mark>	0.034
	NH4.	<mark>-4.64708</mark>	<mark>2 8</mark>	0.445651	<mark>6.431349</mark>	0.034
	flash.inde					
	Х	0.338843	28	0.023591	0.193286	0.67
	LFPP	-0.03083	28	0.338929	4.101581	0.077

Linear regression statistics for a-priori selected environmental variables

3. Use multivariate regressions to create predictive models for fish and invertebrate community diversity.

model	(Int)	AP	cnp	fls.ind	LFPP	log.cnd	NH4.	Rsg.Ind	df	logLik	AICc	delta	weight
10	1.261	0.3127			-0.2098				4	2.912	10.2	0	0.429
2	1.261	0.3462							3	-0.985	12	1.79	0.175
4	1.261	0.2634	-0.1715						4	0.69	14.6	4.44	0.046
34	1.261	0.2641					-0.1711		4	0.688	14.6	4.45	0.046
49	1.261					-0.2352	-0.2521		4	0.649	14.7	4.52	0.045
3	1.261		-0.2986						3	-2.622	15.2	5.07	0.034
33	1.261						-0.2979		3	-2.642	15.3	5.11	0.033
17	7 1.261					-0.2842			3	-2.989	16	5.8	0.024
74	1.261	0.3014			-0.2338			0.1025	5 5	4.501	. 16	5.82	0.023
1	1.261								2	-5.592	16.9	6.72	0.015

Top ten Multivariate regression models predicting fish Shannon diversity.

•		O				•				
model_name	var1	estimate	var2	estimate2	var3	estimate3	adjusted_r2	f.stat	df	p.value
Fm10	AP	0.312661569	LFPP	-0.209790458	na	na	0.765305514	15.673863322	2 7	0.00259869
Fm4	AP	0.263436925	canopy	-0.171468311	na	na	0.633976268	8.7942847792	2 7	0.012310529
Fm34	AP	0.264055079	NH4.	-0.171113979	na	na	0.633850528	8.790062782	2 7	0.012325337
Fm49	log.cond	-0.235193285	NH4.	-0.252107645	na	na	0.631013908	8.6955816032	2 7	0.012662788
Fm74	AP	0.30138	LFPP	-0.23384	Rosgen.Index	0.10252	0.8007	13.053	3 6	0.004866

Summary statistics for top five multivariate regressions predicant fish Shannon diversity

[#] Precipitation is a predictor in the top multivariate models and has the largest estimated slope compared to all other scaled environmental variables in the exhaustive multivariate regression.

[#] One multivariate regression utilizes 2 water quality parameters (conductivity and NH4).

[#] Positive predictors of fish diversity include AP and Rosgen Index

[#] Negative predictors of fish diversity include LFPP, canopy, NH4., log.cond

Invertebrate Shannon index plotted against Low Flow Pulse Percent.

predictor	estimate	df	r2	f.stat	p.value
AP	-0.00302	2 8	0.01736	0.141333	0.716733
log.cond	-0.13388	2 8	0.091107	0.801919	0.396664
Rosgen.Index	-0.05419	2 8	0.167748	1.612478	0.239833
canopy	-0.00022	2 8	0.000243	0.001946	0.965892
NH4.	-0.06524	2 8	8.28E-05	0.000662	0.980096
flash.index	0.622914	2 8	0.075173	0.650264	0.443328
<mark>LFPP</mark>	<mark>-0.03498</mark>	<mark>2 8</mark>	<mark>0.411386</mark>	<mark>5.591259</mark>	<mark>0.045631</mark>

Linear regression statistics for invertebrate Shannon index versus *a-priori* selected environmental variables

ı	model	(Int)	AP	cnp	fls.ind	LFP	log.cnd	NH4.	Rsg.Ind	df	logLik	AICc	delta	weight
	9	9 3.057				-0.03498				3	-3.236	16.5	0	0.299
		2.727	,							2	-5.886	17.5	1.01	0.18
	4:	2.676	j i			-0.05369		4.133		4	-0.967	17.9	1.46	0.144
	6.	3.596							-0.05419	3	-4.968	19.9	3.46	0.053
	1	7 3.629					-0.1339			3	-5.409	20.8	4.34	0.034
	į	5 2.159			0.6229					3	-5.495	21	4.52	0.031
	1:	2.926	j	4.41E-03		-0.04203				4	-2.524	21	4.58	0.03
	73	3.628	3			-0.03162			-0.03754	4	-2.538	21.1	4.6	0.03
	10	0 3.587	-0.00551			-0.03708				4	-2.733	21.5	4.99	0.025
		3.006	-0.00302							3	-5.799	21.6	5.12	0.023

Top ten Multivariate regression models predicting invertebrate Shannon diversity.

model_name	var1	estimate	var2	estimate2	adjusted_r2	f.stat	df	p.value
im1	LFPP	-0.05369	NH4.	4.133124	0.519315	5.86164	2 7	0.031953
im2	canopy	0.004406	LFPP	-0.04203	0.343686	3.35647	2 7	0.095036
im3	AP	-0.00551	LFPP	-0.03708	0.315609	3.075187	2 7	0.110042

Summary statistics for top five multivariate regressions predicant invertebrate Shannon diversity

7/10 top AICc models contained one or fewer environmental predictors. Previous univariate regressions indicate no statistically significant correlations

1/3 of the top AICc ranked multivariation regression models has a p value less than 0.05 and has an adjusted r^2 of 0.519 (-LFPP + NH4)

- # Positive predictors of invertebrate diversity include NH4 and canopy
- # Negative predictors of invertebrate diversity include LFPP and AP

Hypothesis test: precipitation correlates with diversity?

Shannon diversity of fish (A) and invertebrate (B) communities for each site plotted against annual precipitation.

Fish Shannon index correlates positively with annual precipitation but invertebrate Shannon index does not significantly correlate.

4. Use PCoA ordinations to visualize patterns in community composition and identify coincidental environmental predictors

Replace NMDS with PCoA
Replace envfit with correspondence anlaysis

climate drives marine fish communities in slack paper one plot of sites one plot of vectors ccoa table of results cca1, cca2, r2, df, chix2, fval

Redundancy Analysis: Hellinger-transformed fish community matrix Constrained by Annual Precipitation

Sites are colored by annual precipitation (cm/year)

Arrows: The positions of species are interpreted as arrows generated by maximum correlation in ordination space (see table for correlation outputs). Only vectors with p-values <0.05 are plotted to improve figure clarity.

species	R ²	p-value	axis1	axis2
A.melas	0.23023817	0.423	-0.022387738	0.049458134
A.rostrata	0.04895361	0.875	-0.004901997	0.018920955
H.cyanoguttatus	0.11674133	0.703	0.044499826	0.06724042
C.lutrensis	<mark>0.8797549</mark>	<mark>0.007</mark>	<mark>-0.217359354</mark>	0.626652466
C.venusta	0.19174898	0.496	-0.074923046	-0.018880656
E.gracile	0.01702391	1	0.023746088	-0.009510118
notatus	0.26996839	0.244	-0.096394548	-0.061708444
<mark>3.affinis</mark>	<mark>0.61787634</mark>	<mark>0.041</mark>	<mark>0.187553123</mark>	<mark>-0.339810377</mark>
auritis	0.0954481	0.747	0.036414193	0.080138119
cyanellus	0.27043676	0.32	-0.072507811	-0.166251083
gulosus	0.17486578	0.476	-0.099324212	-0.010412806
humilis	0.16582945	0.594	-0.017865623	-0.034986287
macrochirus	0.75601603	<mark>0.018</mark>	<mark>-0.240268678</mark>	<mark>-0.061350821</mark>
marginatus	0.16582945	0.594	-0.025265807	-0.049478082
megalotis	0.72038963	0.013	-0.407334824	-0.020938185
<mark>2.latipinna</mark>	<mark>0.8374159</mark>	<mark>0.016</mark>	<mark>0.414714616</mark>	<mark>-0.089880974</mark>
P.vigilax	0.02933178	0.914	-0.136897484	0.033999261
Γ.maculatus	0.23023817	0.423	-0.012925567	0.028554667

predictor	R ²	p-value	axis1	axis2
<mark>AP</mark>	<mark>0.725622</mark>	<mark>0.013</mark>	<mark>-0.940598</mark>	<mark>-0.3395</mark>
log.cond	0.538635	0.051	0.9384577	0.34539
Rosgen.Index	0.240689	0.363	0.1488126	-0.9889
canopy	0.292377	0.302	0.9238926	0.38265
NH4.	0.493665	0.104	0.985893	0.16738
flash.index	0.03314	0.877	-0.433603	0.9011
LFPP	0.356723	0.214	0.948997	0.31529

The projections of points onto vectors have maximum correlation with corresponding environmental variables, and the factors show the averages of factor levels.

- Redundancy Analysis: Hellinger-transformed fish community matrix
 - Constrained by Annual Precipitation
- Sites are colored by annual precipitation (cm/year)
- Arrows: Environmental predictors are interpreted as arrows generated by maximum correlation in ordination space (see table for correlation outputs).

Redundancy Analysis: Hellinger-transformed invertebrate community matrix Constrained by Annual Precipitation

Sites are colored by annual precipitation (cm/year)

Arrows: The positions of species are interpreted as arrows generated by maximum correlation

Species Alisotrichia	R ² 0.278124	p-value 0.497	axis1 -0.0787	axis2 -0.01637
Ameletus	0.09205	0.697	-0.05197	-0.01859
Ametropus	0	1	0	3.23E-17
Amnicola	0.557658	0.072	0.067816	0.19706
Amphiagrion	0.496395	0.102	0.033336	-0.12992
Ancyronyx	0.009591	0.968	-0.00869	0.014862
Argia	0.37329	0.205	0.147555	-0.05412
Baetis	0.013734	0.975	0.026729	-0.00221
Baetodes	0.278124	0.497	-0.0787	-0.01637
Belostoma	0.270257	0.602	-0.07326	
Berosus	0	1	0	
Biomphalaria	0.517251 0.174315	0.076	0.119822	-0.08838 -0.1058
Bithynia Brachycerus	0.174315	0.501	-0.01336 -0.07302	-0.1058
sracnycerus Brechmorhoga	0.29809	0.312	0.07302	0.05883
Caecidotea	0.392613	0.187	0.070816	0.064984
Caenis	0.642217	0.034	-0.13507	-0.16165
Calopteryx	0.042217	0.034	0.014141	-0.16163
Camelobaetidius	0.071407	0.9	0.026557	0.025767
Campeloma	0.197974	0.544	0.048071	0.090109
Centroptilum	0.470995	0.109	0.033093	-0.09035
Cercobrachys	0.09205	0.697	-0.05197	-0.01859
Cheumatopsyche	0.740952	0.009	-0.13976	0.158003
Chromagrion	0.071467	1	0.014141	-0.0277
Cloeon	0.071407	1	0.014141	0.0277
Corbicula	0.164334	0.551	-0.09754	0.057242
Cyphon	0.251092	0.34	-0.04735	0.103009
Dubiraphia	0.30962	0.265	-0.02857	0.121229
lodes	0.125092	0.694	-0.02283	0.042559
rpetogomphus	0.392815	0.167	0.100149	0.091902
rythemis	0.470995	0.109	0.033093	-0.09035
allceon	0.624436	0.063	-0.17455	-0.03264
arrodes	0.078979	0.737	0.033091	-0.03746
errissia	0.041635	0.869	0.010086	0.033082
ossaria	0.305494	0.351	0.10087	-0.02573
Sammarus	0.392815	0.167	0.070816	0.064984
Glaenocorisa	0	1	0	C
Syraulus	0	1	0	C
Syretes	0.071467	1	0.014141	-0.0277
Hebrus	0.278631	0.391	0.052037	0.046764
Helicina	0.081087	0.9	0.018779	0.01822
Helisoma	0.102486	0.7	-0.03842	0.048578
Hetaerina	0	1	0	C
Heterelmis	0.071467 0.780031	0.005	0.014141 -0.16756	-0.0277 0.005313
lyalella				
Hydraena Hydrobius	0.552657 0.470995	0.065	0.033265	-0.11833 -0.09035
Hydropius Hydropsyche	0.470995	0.109	0.033093 0.018779	0.01822
nyaropsycne sonychiidae	0.081087	0.9	0.018779	0.01822
sonycniidae .eptoceridae	0.081087	0.793	0.026557	-0.0134
eptohyphes.	0.302371	0.793	-0.05895	-0.0134
.eptonypnes .eptonema	0.278631	0.391	0.052037	0.046764
imnocoris	0.071467	1	0.014141	-0.0277
imnoporus	0.087723	0.8	0.000297	-0.04846
inisa	0.071467	1	0.014141	-0.0277
ipogomphus	0.081087	0.9	0.018779	0.01822
Macrelmis	0.081087	0.9	0.018779	0.01822
/lacronychus	0.125092	0.694	-0.02283	0.042559
/lelanoides	0.691493	0.017	0.265552	-0.00212
∕lenetus	0	1	0	0
Mesovelia	0.470995	0.109	0.033093	-0.09035
// detrichia	0.087723	0.8	0.000171	-0.02798
/licrovelia	0.087723	0.8	0.000171	-0.02798
Vorphocorixa	0	1	0	C
leoelmis	0	1	0	C
leoneura	0.278631	0.391	0.052037	0.046764
leoplea	0.012323	0.925	0.01895	-0.00976
Orconectes	0.278631	0.391	0.052037	0.046764
alaemonetes	0.574876	0.042	-0.13503	0.023684
elocoris	0.071467	1	0.014141	-0.0277
eltodytes	0.510337	0.089	-0.01776	-0.17184
hilopotamidae	0.081087	0.9	0.026557	0.025767
hysa	0.638867 0.158681	0.03 0.555	0.047477 -0.05431	-0.15761 -0.02902
hysella risidium	0.158681 0.279282	0.555	-0.05431 -0.03866	-0.02902 0.088146
risidium Planorbula	0.279282	0.303	-0.03866	0.088146
lanorbula lauditus	0.661025	0.045	-0.13765	-0.09131
otamyia	0.001025	0.045	-0.13763	-0.09151
rocloeon	0.071467	1	0.014141	-0.0277
seudocloeon	0.087723	0.8	0.000171	-0.02798
seudosuccinea	0.016499	0.957	-0.0148	0.028147
anatra	0.470995	0.109	0.033093	-0.09035
hagovelia	0.392815	0.167	0.100149	0.091902
hematobates	0.081087	0.9	0.018779	0.01822
cirtes	0.071467	1	0.014141	-0.0277
iphlonurus	0.278631	0.391	0.052037	0.046764
	0.170031	1	0.052057	0.04070
micridea		1	0	Č
micridea	0		-0.03866	0.088146
micridea phaeridiinae		0.303		
micridea phaeridiinae tactobiella	0.279282			0.125115
micridea phaeridiinae tactobiella tenelmis		0.413 0.694	-0.02798 -0.03229	0.125115 0.060187
micridea phaeridiinae tactobiella ttenelmis ttenonema trobilops	0.279282 0.22286 0.125092 0.087723	0.413 0.694 0.8	-0.02798 -0.03229 0.000171	0.125115 0.060187 -0.02798
micridea phaeridiinae tactobiella tenelmis tenonema trobilops ynaptonecta	0.279282 0.22286 0.125092 0.087723	0.413 0.694 0.8	-0.02798 -0.03229 0.000171 0	0.060187 -0.02798
ispinion us minicridea phaeridiinae stactobiella stenoema strobilops ynaptonecta repobates (Alvata	0.279282 0.22286 0.125092 0.087723	0.413 0.694 0.8	-0.02798 -0.03229 0.000171	0.060187 -0.02798

Redundancy Analysis: Hellinger-transformed invertebrate community matrix Constrained by Annual Precipitation

Sites are colored by annual precipitation (cm/year)

				p-
Predictor	axis1	axis2	R ²	value
<mark>AP</mark>	<mark>-0.9997573</mark>	0.02203034	0.97630889	<mark>0.001</mark>
log.cond	<mark>0.9947189</mark>	<mark>0.10263696</mark>	0.71112442	<mark>0.01</mark>
Rosgen.Index	-0.2220796	-0.97502853	0.07441911	0.766
canopy	0.6974804	0.7166039	0.54993554	0.069
NH4.	0.8878623	0.46010922	0.24973926	0.362
flash.index	-0.3886091	-0.92140273	0.02211306	0.932
LFPP	0.4940106	0.86945586	0.17072192	0.512

Fish community ordinations using Hellinger transformation and redundancy analysis. Dots represent sites with color determined by annual precipitation. Arrows represent fitted vectors for (A) environmental predictors and (C) species which can be visually interpreted based on their direction. Black arrows indicate statistically significant (p-value < 0.05) correlations. Only significant species vectors were plotted to improve figure clarity.

Macroinvertebrate community ordinations using Hellinger transformation and redundancy analysis. Dots represent sites with color determined by annual precipitation. Arrows represent fitted vectors for (A) environmental predictors and (B) species which can be visually interpreted based on their direction. Black arrows indicate statistically significant (p-value < 0.05) correlations. Only significant species vectors were plotted to improve figure clarity.

Ordinations of invertebrate (left: A & C) and fish (right: B & D) communities using Hellinger transformation and redundancy analysis. Dots represent sites with color determined by annual precipitation. Arrows represent fitted vectors for species (Top: A & B) and environmental predictors (bottom: C & D) which can be visually interpreted based on their direction. Black arrows indicate statistically significant (*p*-value < 0.05) correlations. Only significant species vectors were plotted to improve figure clarity.

Final Figures

Table1: Significant Environmental linear relationships (v1, v2, R2, p, +/-, fstat, df)

Figure1: Environmental PCA

Figure 2: Fish Diversity and Ordinations

Table2: Fish multivariate regression outputs (v1, v2, v3, +/-, coef, R2, pm fstat, df)

Figure 3: Invertebrate Diversity and ordination

Table3: Invertebrate multivariate regression tables

Appendix tables:

"T1 E LM" ~ All env regression outputs

"F1_E_PCA" ~ All Environmental PCA outputs

"F2_F_LM" ~ fish regression outputs

"F2_F_RDA" ~ ordination outputs (envfits)

"F3_I_LM" ~ Inv regression outputs

"F3 I LM" ~ ordination outputs

"S1_E_data" ~ supplemental environmental data

Principal Component Analysis of environmental predictors at 10 sites spanning a precipitation gradient along the Texas Coastal Prairie. Circles representing sample sites are colored based on their annual precipitation. Axes labels include the percentage of variance explained by PC1 (horizontal axis) and PC2 (vertical axis).

						_	
Input	Response	Sign	R ²	Slope	df	F-stat	p-value
Precipitation	Canopy	-	0.233	-0.483	2, 8	2.429	0.158
Precipitation	Flash Index	-	0.001	-0.025	2, 8	0.005	0.945
Precipitation	Low Flow Pulse %	-	0.026	-0.160	2, 8	0.210	0.659
Precipitation	Conductivity	-	0.616	-0.785	2, 8	12.817	0.007 *
Precipitation	NH4	-	0.230	-0.480	2, 8	2.395	0.16
Precipitation	Rosgen Index	+	0.005	0.073	2, 8	0.042	0.842
Canopy	Flash Index	-	0.375	-0.612	2, 8	4.796	0.06
Canopy	Low Flow Pulse %	+	0.176	0.420	2, 8	1.712	0.227
Canopy	Conductivity	+	0.168	0.410	2, 8	1.617	0.239
Canopy	NH ₄ ⁺	+	0.414	0.643	2, 8	5.649	0.045 *
Flash Index	Low Flow Pulse %	-	0.096	-0.309	2, 8	0.847	0.384
Flash Index	Conductivity	-	0.030	-0.174	2, 8	0.251	0.63
Flash Index	NH4	-	0.139	-0.373	2, 8	1.291	0.289
Flash Index	Rosgen Index	+	0.000	0.007	2, 8	0.000	0.984
Low Flow Pulse %	Conductivity	+	0.081	0.285	2, 8	0.706	0.425
Low Flow Pulse %	NH ₄ ⁺	+	0.354	0.595	2, 8	4.383	0.07
Low Flow Pulse %	Rosgen Index	+	0.047	0.217	2, 8	0.395	0.547
Conductivity	Rosgen Index	-	0.006	-0.074	2, 8	0.044	0.838
NH ₄ ⁺	Conductivity	+	0.038	0.194	2, 8	0.315	0.59
NH ₄ +	Rosgen Index	+	0.000	0.003	2, 8	0.000	0.994
Rosgen.Index	Canopy	-	0.091	-0.301	2, 8	0.798	0.398

Linear regression statistics to evaluate correlations among environmental predictors. * denotes a statistically significant correlation (p-value < 0.05).

Fish diversity plotted against (A) annual precipitation (cm/yr), (B) NH_4^+ (mg/L), (C) canopy cover (%), (D) log-transformed conductivity (μ S/cm). (E & F) Fish community ordinations using Hellinger transformation and redundancy analysis. Axes labels contain proportion of the variance explained as a percentage. Colored circles represent sites with color determined by annual precipitation. Arrows depict fitted vectors for (E) species and (F) environmental predictors which can be visually interpreted based on their direction. Black arrows indicate statistically significant (p-value < 0.05) correlations. Only significant species vectors were plotted to improve figure clarity.

Input	Response	Sign	R2	Slope	df	F-stat	p-value
AP	Shannon _{Fish}	-	0.602	0.017	2, 8	12.101	0.008 *
log.cond	Shannon _{Fish}	-	0.406	-0.274	2, 8	5.464	0.048 *
Rosgen.Index	Shannon _{Fish}	-	0.027	0.021	2, 8	0.224	0.649
canopy	Shannon _{Fish}	-	0.448	-0.009	2, 8	6.490	0.034 *
NH4.	Shannon _{Fish}	-	0.446	-4.647	2, 8	6.431	0.035 *
flash.index	Shannon _{Fish}	-	0.024	0.339	2, 8	0.193	0.672
LFPP	Shannon _{Fish}	-	0.339	-0.031	2, 8	4.102	0.077

Summary statistics for linear regressions of fish Shannon Index values versus environmental predictors. * denotes a statistically significant correlation (p-value < 0.05).

-0.2352 -0.2521

-0.2842

-0.1711

-0.2979

0.1025

0.69

0.688

0.649

-2.622

-2.989

4.501

3 -2.642

2 -5.592

14.6

14.6

14.7

15.2

15.3

16

16

16.9

4.44

4.45

4.52

5.07

5.11

5.8

5.82

6.72

0.046

0.046

0.045

0.034

0.033

0.024

0.023

0.015

Top ten Multivariate regression models predicting fish Shannon diversity.

-0.2338

model_name	var1	estimate	var2	estimate2	var3	estimate3	adjusted_r2	f.stat d	lf p.value
Fm10	AP	0.312661569	LFPP	-0.209790458	na	na	0.765305514	15.673863322	7 0.00259869
Fm4	AP	0.263436925	canopy	-0.171468311	na	na	0.633976268	8.7942847792	7 0.012310529
Fm34	AP	0.264055079	NH4.	-0.171113979	na	na	0.633850528	8.790062782	7 0.012325337
Fm49	log.cond	-0.235193285	NH4.	-0.252107645	na	na	0.631013908	8.6955816032	7 0.012662788
Fm74	AP	0.30138	LFPP	-0.23384	Rosgen.Index	0.10252	0.8007	13.053	6 0.004866

Summary statistics for top five multivariate regressions predicant fish Shannon diversity

1.261 0.2634 -0.1715

-0.2986

1.261 0.2641

1.261 0.3014

1.261

1.261

1.261

1.261

1.261

49

33

[#] Precipitation is a predictor in the top multivariate models and has the largest estimated slope compared to all other scaled environmental variables in the exhaustive multivariate regression.

[#] One multivariate regression utilizes 2 water quality parameters (conductivity and NH4).

[#] Positive predictors of fish diversity include AP and Rosgen Index

[#] Negative predictors of fish diversity include LFPP, canopy, NH4., log.cond

Macroinvertebrate diversity plotted against (A) annual precipitation (cm/yr) and (B) Low Flow Pulse Percent. (C & D) Fish community ordinations using Hellinger transformation and redundancy analysis. Axes labels contain proportion of the variance explained as a percentage. Dots represent sites with color determined by annual precipitation. Arrows represent fitted vectors for (E) environmental predictors and (F) species which can be visually interpreted based on their direction. Black arrows indicate statistically significant (p-value < 0.05) correlations. Only significant species vectors were plotted to improve figure clarity.

Bear Branch	8068390	124.19	71.4	76.71	9.98	0.82	3.75	0.48	14.33 5.425501	8.173	67.455	17	6.763	0.893	12.011	44.144	2	0.133	0.168 -3.91202	0.777	0.25	13.146	25.875
Big Creek	8115000	120.31	71.6	10.88	2.57	77.35	0.65	2.55	9.06 5.390213	7.881	99.084	15.875	6.963	0.361	23.15	0	2	0.118	1.668 1.064711	0.961	0.24	15.631	43.538
Garcitas	8164600	102.41	74.2	4.28	17.53	50.34	1.75	0.75	19.86 6.249493	5.587	66.909	22.575	7.135	0.339	18.161	73.649	2	0.098	0.408 -3.03655	0.806	0.285	4.867	43.985
Placedo	8164800	104.65	75	11.81	2.57	78.16	0.5	0.9	5.28 7.034828	8.596	70.66	24.625	7.313	0.438	13.38	29.279	25	0.088	0.298 -0.82098	0.921	0.256	5.482	44.717
Perdido	8177300	92.37	72.1	2.45	34.85	27.41	1.17	0.94	32.9 6.602249	7.203	66.199	18.875	7.183	0.288	15.152	0.901	2	0.075	0.298 -3.77226	1.339	0.286	0	5.413
Medio	8189300	79.13	72	5.24	1.44	40.31	1.16	0.95	2.27 6.74788	4.206	68.798	19.025	6.895	0.691	18.405	14.414	2	0.113	0.405 -4.82831	0.993	0.43	0	3.119
Mission	8189500	85.36	73.4	3.72	8.43	35.06	1.1	0.82	11.05 7.163172	5.277	68.613	23.6	7.215	0.46	14.701	68.468	2	0.17	0.315 -3.21888	0.58	0.208	3.357	115.13
Aransas	8189700	80.77	74.1	8.28	3.58	52.39	0.96	0.8	7.41 6.834647	7.649	66.351	19.05	7.078	0.54	11.781	58.559	32	0.105	4.128 -0.44942	1.053	0.112	7.664	35.038
San Fernando	8211900	67.75	69.6	4.74	1.48	28.01	1.36	0.91	3.92 6.886532	5.829	67.172	23.275	6.428	0.591	15.762	89.865	2	0.298	4.275 0.587787	0.907	0.173	20.306	13.834
Tranquitas	8212300	67.75	69.6	4.74	1.48	28.01	1.36	0.91	3.92 9.096387	9.971	66.132	22.525	7.988	0.75	17.988	68.769	2	0.153	0.125 -2.65926	0.781	0.313	24.06	1.763

turbidity Twater

PET and runoff.factor were removed because they were derived from precipitation data Similarly, I think I should reduce the variables included in my analysis:
Relative humidity is redundant with precipitation
Soil.Org is redundant with Soil permeability
Rip.forest is redundant with Bas.forest
D50 should be reported for orientation, but is not a useful predictor due to no variation
Bas.dev isn't an informative variable. It has one outlier and little variation otherwise

Bas.forest Bas.plant Soil.Perm Soil.Org Rip.forest log.cond DO

In my revised analysis, the number of environmental predictors is reduced from 25 to 17.

- 1. I will use PCA to ascertain which variables characterize variation among the sample locations
- 2. I will run univariate regressions using precipitation and variables identified in PCA
- 3. I will run multivariate nonlinear regressions using variables identified in PCA
- 4. I will run PCoA ordinations on community abundance data

Av.Flow

Goal: Conduct PCA on environmental variables to discern patterns of variation among the sites

Principle Component Axis	Standard deviation	Proportion of Variance	Cumulative Proportion
PC1	2.4957	0.2595	·
PC2	2.2056		0.4622
PC3	1.9068	0.1515	
PC4	1.7469	0.1272	
PC5	1.5634	0.1018	0.8427
PC6	1.32689	0.07336	0.91607
PC7	1.15941	0.05601	0.97208
PC8	0.65057	0.01764	0.98971
PC9	0.49691	0.01029	1
PC10	2.80E-15	0.00E+00	1.00E+00

Scree plot for PCA of sites and their environmental variables

Summary of PCA

• Unlike most PCAs, this scree plot does not have an exponential decay. PC1 + PC2 only accounts for 41.69% of the variation among sites.

PCA of 10 sites with selected environmental variables

variable	PC1	PC2
<mark>canopy</mark>	<mark>-0.80414</mark>	0.220828
bank.height	-0.71586	-0.2356
NH4.	<mark>-0.68092</mark>	0.404682
log.cond	-0.53953	0.239143
LFPP	-0.50937	0.454223
Twater	-0.45219	0.261157
Soil.Perm	-0.41537	-0.69273
PO4.	-0.20534	0.615143
Bas.dev	-0.2015	-0.53301
DO	-0.05358	0.122313
рН	-0.02303	0.01263
d50	0.084812	0.336731
Av.Flow	0.113341	0.160583
log.no3	0.122872	0.862227
HFPP	0.152055	-0.43224
Bas.forest	0.376102	-0.64802
Rosgen.Index	0.418434	0.340295
Rip.forest	0.43299	-0.62211
RH	0.463994	-0.06327
flash.index	0.508531	-0.10762
AP	0.572453	-0.31467
Bas.plant	0.635744	0.643684
turbidity	0.639434	0.456038
Soil.Org	0.640082	0.543809

PCA correlations ordered by PCA1

variable	PC1	PC2
<mark>Soil.Perm</mark>	-0.41537	<mark>-0.69273</mark>
Bas.forest	0.376102	<mark>-0.64802</mark>
Rip.forest	0.43299	<mark>-0.6221</mark> 1
Bas.dev	-0.2015	-0.53301
HFPP	0.152055	-0.43224
AP	0.572453	-0.31467
bank.heig ht	-0.71586	-0.2356
flash.inde x	0.508531	-0.10762
RH	0.463994	-0.06327
рН	-0.02303	0.01263
DO	-0.05358	0.122313
Av.Flow	0.113341	0.160583
canopy	-0.80414	0.220828
log.cond	-0.53953	0.239143
Twater	-0.45219	0.261157
d50	0.084812	0.336732
Rosgen.In dex	0.418434	0.340295
NH4.	-0.68092	0.404682
LFPP	-0.50937	0.454223
turbidity	0.639434	0.456038
Soil.Org	0.640082	0.543809
PO4.	-0.20534	0.615143
Bas.plant	0.635744	0.643684
log.no3	0.122872	0.862227

PCA correlations ordered by PCA2

- PCA1 has correlations greater than 0.6 with canopy, bank.height, NH4
- PCA2 has correlations greater than 0.6 with Soil.Perm, Bas.forest, & Rip.forest
 - With only ten sample sites, 6 environmental variables to be assessed using linear regression include the top 3 covariates with PC1 and PC2: "canopy", "bank,height", "NH4", "Soil.Org", "Bas.forest", "Rip.forest"

model		(Int)	AP	bnk.hgh	Bas.frs	cnp	NH4.	Rip.frs	Sol.Org df	logLik	AICc	delta	weight
	2	-0.336	0.01727						3	-0.985	12	0	0.241
	4	0.2589	0.01605	-0.9008					4	1.461	13.1	1.11	0.138
	6	-0.3085	0.01554		0.0158				4	1.108	13.8	1.81	0.097
	34	-0.2682	0.01438					0.01817	4	0.984	14	2.06	0.086
	10	0.2849	0.01314			-0.00534			4	0.69	14.6	2.65	0.064
	18	0.4036	0.01317				-2.67		4	0.688	14.6	2.65	0.064
	9	1.678				-0.0093			3	-2.622	15.2	3.27	0.047
	17	1.889					-4.647		3	-2.642	15.3	3.31	0.046
	33	0.9466						0.02858	3	-3.34	16.7	4.71	0.023
	1	1.261							2	-5.592	16.9	4.93	0.02

Top ten dredge outputs for fish Shannon versus 7 PCA-selected environmental variables

model_name	var1	estimate	var2	estimate2	adjusted_r2	f.stat	df	p.value
fm3	AP	0.321722	bank.height	-0.17679	0.6863	10.84493	3	0.007175
fm6	AP	0.311504	Bas.forest	0.168235	0.663337	9.866483	3	0.009187
fm34	AP	0.288174	Rip.forest	0.170771	0.654924	9.540603	3	0.010016
fm10	AP	0.263437	canopy	-0.17147	0.633976	8.794285	3	0.012311
fm18	AP	0.264055	NH4.	-0.17111	0.633851	8.790063	3	0.012325

Summary statistics for top five AICc ranked multivariate regression models for predicting fish Shannon index using 7 PCA-selected environmental variables

Precipitation is a predictor in the top 5 multivariate models and has the largest estimated slope compared to all other scaled environmental variables in the exhaustive multivariate regression.

Positive predictors of fish diversity include Bas.forest and Rip.forest # Negative predictors of fish diversity include bank height, canopy, and NH4+

Above: Shannon diversity of fish communities plotted against (A) annual precipitation (cm/yr) (B) canopy coverage (%) and (C) NH4+ (mg/L).

3 statistically significant regressions:

- + precipitation
- canopy
- NH4

predictor	estimate	df	r2	f.stat	p.value
<mark>AP</mark>	<mark>0.017271</mark>	<mark>2 8</mark>	<mark>0.602017</mark>	<mark>12.10136</mark>	<mark>0.008336</mark>
Bas.forest	0.021825	2 8	0.271423	2.980307	0.122558
Soil.Org	0.276431	2 8	0.121132	1.102616	0.324376
Rip.forest	0.028585	2 8	0.362586	4.550714	0.065462
bank.height	-1.12768	2 8	0.246026	2.610439	0.144825
<mark>canopy</mark>	<mark>-0.0093</mark>	<mark>2 8</mark>	<mark>0.447887</mark>	<mark>6.489777</mark>	<mark>0.034308</mark>
NH4.	<mark>-4.64708</mark>	<mark>2 8</mark>	<mark>0.445651</mark>	<mark>6.431349</mark>	<mark>0.034927</mark>

Linear regression statistics for fish Shannon diversity against PCA-selected variables

estimate	df	r2	f.stat	p.value
-0.00302	28	0.01736	0.141333	0.716733
0.016587	28	0.147817	1.38766	0.272652
-0.17543	28	0.046001	0.385754	0.551821
0.01767	28	0.130638	1.202154	0.304796
-0.8301	28	0.125697	1.150145	0.314801
-0.00022	28	0.000243	0.001946	0.965892
-0.06524	2 8	8.28E-05	0.000662	0.980096
	-0.00302 0.016587 -0.17543 0.01767 -0.8301 -0.00022	estimate df -0.00302 2 8 0.016587 2 8 -0.17543 2 8 0.01767 2 8 -0.8301 2 8 -0.00022 2 8 -0.06524 2 8	-0.00302 2 8 0.01736 0.016587 2 8 0.147817 -0.17543 2 8 0.046001 0.01767 2 8 0.130638 -0.8301 2 8 0.125697 -0.00022 2 8 0.000243	-0.00302 2 8 0.01736 0.141333 0.016587 2 8 0.147817 1.38766 -0.17543 2 8 0.046001 0.385754 0.01767 2 8 0.130638 1.202154 -0.8301 2 8 0.125697 1.150145 -0.00022 2 8 0.000243 0.001946

Above: Regression statistics for invertebrate Shannon index versus PCA-selected environmental predictors

Left: Pairs plots for invertebrate diversity and environmental variables

No significant correlations with invertebrate diversity

model	(Int)	AP	bnk.hgh	Bas.frs	cnp	NH4.	Rip.frs	Sol.Org	df	logLik	AICc	delta	weight
1	2.727								2	-5.886	17.5	0	0.397
5	2.727			0.1767					3	-5.086	20.2	2.69	0.104
33	2.727						0.1661		3	-5.186	20.4	2.89	0.094
3	2.727		-0.1629						3	-5.215	20.4	2.94	0.091
65	2.727							-0.09855	3	-5.651	21.3	3.81	0.059
2	2.727	-0.06054							3	-5.799	21.6	4.11	0.051
9	2.727				-0.00717				3	-5.885	21.8	4.28	0.047
17	2.727					-0.00418			3	-5.886	21.8	4.28	0.047
67	2.727		-0.2427					-0.1969	4	-4.25	24.5	7.01	0.012

Top ten AICc ranked multivariate regressions for invertebrate Shannon index using 7 PCA-selected variables

model_name	var1	estimate	var2	estimate2	adjusted_r2	f.stat	df	p.value
						1.3554		0.3180
im67	bank.height	-0.24268	Soil.Org	-0.19688	0.073198	03	3	16

10th AICc-ranked multivariate regression predicting invertebrate Shannon index

9/10 top AICc models contained one or fewer environmental predictors. Previous univariate regressions indicate no statistically significant correlations

Invertebrate model 67 indicates bank height and soil organic content as negative predictors of invertebrate shannon index. However, the p value for the model is 0.318 and the correlation coefficient is 0.073. So this multivarite regression is neither accurate nor statistically significant.

Regression analysis fails to provide useful environmental predictors for stream macroinvertebrate diversity in this survey.