

SUBJECT: Linear Algebra - TOPIC: Rank of a Matrix

Rank of a Matrix

Let A be a $m \times n$ real matrix. Rank(A) is defined as

- 1. The order of the largest non-singular square submatrix of A.
- 2. The number of linearly independent rows or columns of A.
- 3. The dimension of the row space or column space of A.
- 4. The number of non zero rows in the row reduced echlon form of A.
- 5. The order of the identity submatrix in the normal form of A
- 6. The rank of linear transformation from $\mathbb{R}^n \longrightarrow \mathbb{R}^m$ corresponding to A.

Eg:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{bmatrix}_{3\times 3}$$
 $B = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}_{3\times 3}$ $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{2\times 4}$.
 $\rho(A) = 3$ $\rho(B) = 2$ $\rho(C) = 2$.

Result:

- 1. Rank of the zero matrix is zero.
- 2. If A is a non-zero $m \times n$ matrix, then $1 \le rank(A) \le \min\{m, n\}$.
- 3. If A and B are two $m \times n$ matrices, then $rank(A+B) \leq rank(A) + rank(B)$.
- 4. If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then $rank(AB) \leq \min\{rank(A), rank(B)\}$.
- 5. If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then
 - (i) $rank(A) + rank(B) n \le rank(AB)$. (Sylvester's inequality)
 - (ii) rank(I AB) = rank(I BA).
- 6. If A is a non-zero skew symmetric matrix, then $rank(A) \geq 2$.

Since A is nonzero skew symmetric matrix, say $g \neq 0$ be element of A, then there exist at least one 2-rowed minor of matrix A. ie., Minor $\begin{bmatrix} 0 & g \\ -g & 0 \end{bmatrix}$ whose determinant is $g^2 \neq 0$.

- 7. Let $A \in M_{m \times n}(\mathbb{R})$, then $rank(A) = rank(A^T A) = rank(AA^T)$.
- 8. Let $A \in M_n(\mathbb{R})$, then rank(A) = n iff $det(A) \neq 0$. $A \in M_n(\mathbb{R})$

Necessary Condition: rank (A) = n implies there exist a non-singular square submatrix of order n, which equals A. ie., $|A| \neq 0$

Sufficient Condition: $|A| \neq 0$ implies A itself is a non-singular square submatrix of order n and the largest matrix. So, rank (A) = n

9. If det(A) = 0, then rank(A) < n.

(Using Contrapositive of above statement and rank $(A) \le n$)

- 10. Let $A \in M_n(\mathbb{R})$, then $rank(A) \ge rank(A^2) \ge rank(A^3) \cdots$. (Choose B = A in result rank $(AB) \le \min\{rank(A), rank(B)\}$)
- 11. Let A be an $m \times n$ matrix with $m \leq n$ and rank(A) = m. If B is a matrix of order $p \times m$, then rank(BA) = rank(B).
- 12. Let $T = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, where $A, B, C, D \in M_n(\mathbb{R})$, then

$$rank(T) = \begin{cases} rank(A) + rank(D - (CA^{-1}B)), & \text{if } A \text{ is invertible} \\ rank(A) + rank(D), & \text{if } A \text{ is not invertible} \end{cases}$$

Nullity of a matrix: Let A be an $m \times n$ matrix, then nullity of A is the dimension of the null space of A, denoted by dim(N(A)) or nullity(A). $N(A) = \{x : Ax = 0, x \in \mathbb{R}^n\}$ nullity(A) = n - rank(A) rank(A) + nullity(A) = number of columns.

Range space of A:

- 1. $Range(A) = \{Ax \in \mathbb{R}^m : x \in \mathbb{R}^n\}$, where A is an $m \times n$ matrix.
- 2. Range(A) is a subspace of R^m .
- 3. rank(A) = dim(Range(A)).
- 4. Columnullity(A) = n rank(A) = nullity(A).

Row space:

- 1. Let A be an $m \times n$ matrix, then $rowspace(A) = \{x^T A \in \mathbb{R}^n : forx \in \mathbb{R}^n\}$.
- 2. Row space is a subspace of \mathbb{R}^n .

Result: Let $A \in M_n(\mathbb{R})$, then $nullity(A) \leq nullity(A^2) \leq nullity(A^3) \cdots$. (Using rank(A)+ nullity(A)=n and rank (A) \geq rank (A^2) \geq rank (A^3) $\geq \ldots$)