Optimally switching between local and Bayesian optimization

Introduction of Bayesian optimization

Existing Problem

Detail in this paper

Results and conclusion

Introduction

Materials design and discovery:

Choosing the chemical structure, composition, or processing conditions of a material to meet design criteria.

For example:

We know shear modulus of material compounds belonging to the family of M_2AX phases.

How to find the combinations of atoms to meet this?

Introduction

Traditional approach: trial and error.

Introduction

Bayesian Optimization for the problem:

BO considers this problem parameterized by a k-dimensional vector x. That is, suppose that the space of materials designs in space R^k

BO :

BO is concerned with the global optimization of a black box function, considered to be expensive to evaluate.

Framework

Algorithm 1 Basic pseudo-code for Bayesian optimization

Place a Gaussian process prior on f

Observe f at n_0 points according to an initial space-filling experimental design. Set $n = n_0$.

while $n \leq N$ do

Update the posterior probability distribution on f using all available data

Let x_n be a maximizer of the acquisition function over x, where the acquisition function is computed using the current posterior distribution.

Observe $y_n = f(x_n)$.

Increment n

end while

Return a solution: either the point evaluated with the largest f(x), or the point with the largest posterior mean.

Gaussian processes

Two main acquisition functions

Expected Improvement:

Choose the point with the greatest improvement in expectation on the best value observed so far.

Predictive Entropy Search:

Choose the location expected to yield the greatest change in the information content of the GP model.

Stopping Criterion

- 1.Fix the number of iterations;
- 2.Fix a computational budget;
- 3.Probability of improvement on the incumbent solution.

Separating Global and Local Regret

■ BO aim to minimize the difference between the function value at the final recommended and the value at the true global.

$$\begin{split} \text{Regret} &= \mathbb{E}(\hat{y} - y_*) \\ &= \mathbb{E}(\hat{y} - y_i) + \mathbb{E}(y_i - y_*) \\ &= \mathbb{E}(\hat{y} - y_i) + \mathbb{E}(\max(y_i - y_o, 0)) \\ &= R_{\text{local}} + R_{\text{global}} \,, \end{split}$$

- ŷ denotes final recommended value;
- y_∗ denotes true global value;
- \triangleright y_i denotes the minimum value of S and y_0 denotes minimum value outside S.

Separating Global and Local Regret

- $ightharpoonup R_{local}$ represents the difference between our candidate point and the local value.
- $ightharpoonup R_{global}$ represents the difference between global point and the local value.

$$\begin{split} \text{Regret} &= \mathbb{E}(\hat{y} - y_*) \\ &= \mathbb{E}(\hat{y} - y_i) + \mathbb{E}(y_i - y_*) \\ &= \mathbb{E}(\hat{y} - y_i) + \mathbb{E}(\max(y_i - y_o, 0)) \\ &= R_{\text{local}} + R_{\text{global}} \,, \end{split}$$

- $if y_* = y_o; R_{alobal} > 0.$

Multiple Acquisition Functions

- Four distinct modes:
 - 1. Random Initialization;
 - 2. Bayesian Optimization;
 - 3. Global Regret Reduction;
 - 4. Local Optimization.

Global Regret Reduction

Direct our efforts towards reducing the probability of any other local minima which take lower values than our incumbent solution existing, reduction the global regret. So use a modified form of EI:

$$\alpha_{GRR} = (\mathbb{E}(y_i) - \mu)\Phi\left(\frac{\mathbb{E}(y_i) - \mu}{\sigma}\right) + \sigma\phi\left(\frac{\mathbb{E}(y_i) - \mu}{\sigma}\right)$$

Local Optimization

BFGS algorithm for local optimization;

$$y_k = g_{k+1} - g_k, \delta_k = x_{k+1} - x_k$$

$$\delta_k = H_k^{-1} y_k$$

$$B_{k+1} = B_k + rac{y_k y_k^T}{y_k^T \delta_k} - rac{B_k \delta_k \delta_k^T B_k}{\delta_k^T B_k \delta_k}$$

Local Optimization

- After global regret reduction, we have a both sufficiently high certainty that GP posterior is close to a minimum of the objective;
- BFGS algorithm for local optimization;

$$f(x) = \frac{1}{2}x^T H x + x^T g + c$$

H is positive definite matrix, $H = CC^T$ by Cholesky decomposition of H.

$$g(z) = \frac{1}{2}z^Tz + z^TR^Tg + c$$

Switching Flowchart

Identifying a Convex Region

 Convexity is characterized by Hessian matrix of the objective. We require for all x,

$$x^T H x > 0$$

We need to construct:

- 1. A method to determine the probability that the Hessian is positive definite at any point;
- 2. A method to determine, the largest region centered on the current posterior minimum with a required probability of being convex.

Convexity at a point

Making use of Cholesky decomposition to determine if a matrix is positive definite.

Algorithm 1 Positive Definite Test

```
Input: location x, tolerance \epsilon
G \leftarrow \text{GP\_model}
\text{Hmean}, \text{Hvar} \leftarrow \text{G.infer\_Hessian}(x)
\text{PVEcount} \leftarrow 0
n \leftarrow \frac{1}{\epsilon} - 2
\text{for } i = 1...n \text{ do}
h \leftarrow \text{draw\_Gaussian}(\text{Hmean}, \text{Hvar})
h^* \leftarrow \text{remove\_boundary\_elements}(h)
\text{if Cholesky}(h^*) \neq \text{FAIL then}
\text{PVEcount} \leftarrow \text{PVEcount} + 1
\text{end if}
\text{end for}
p \leftarrow \frac{PVE\text{count} + 1}{n + 2}
\text{Return} \quad p \geq 1 - \epsilon
```

Radius of a convex region

Find the hypersphere center at minimum posterior with the greatest possible radius R_{max} .

$$R_u(u) = \underset{PD(\hat{x}+ru)=1}{\arg\max} r$$

Binary search

Radius of a convex region

Algorithm 2 Positive Definite Sphere Radius Input: center x_{\min} , number of directions, n_u tolerance ϵ $u \leftarrow \texttt{random_unit_vector}$ $x_{\text{edge}} \leftarrow \texttt{dist_to_domain_boundary}$ $\hat{R} \leftarrow \|x_{\min} - x_{\text{edge}}\|$ for $i = 1...n_u$ do if $D(x + \hat{R}u) = 0$ then $\hat{R} \leftarrow \texttt{binarysearch}(u, \hat{R})$ end if $u \leftarrow \texttt{random_unit_vector}$ end for Return \hat{R}

Global regret

Definition

$$R_{global} = \iint_{y_i \times y_o} \max(y_i - y_o, 0) \, p(y_i) p(y_o) \, dy_i \, dy_o$$

• Consider $y_i \sim N(\mu_i, \delta_i^2)$.

$$\begin{split} R_{\text{global}} &= \int_{y_o} \int_{y_i = y_o}^{+\infty} \max(y_i - y_o, 0) p(y_i) \, dy_i \, p(y_o) dy_o \\ &= \int_{y_o} \left[(\mu_i - y_o) \Phi\left(\frac{\mu_i - y_o}{\sigma_i}\right) \right. \\ &\left. + \sigma_i \phi\left(\frac{\mu_i - y_o}{\sigma_i}\right) \right] p(y_o) dy_o \end{split}$$

Results

■ In-Model Objectives:

Results

Common Benchmark Functions

Results

■ GP Hyperparameter Optimization

Conclusion

- 1. Avoid the poor local convergence of Gaussian Process methods.
- 2. Be able to halt optimization once a specified value of global regret has been achieved.