

Dimensionality	reduction	is a	a common	task in	data	analysis	

If 3 variables all give the same information, why not just have 1?

Dimensionality reduction is a common task in data analysis

If 3 variables all give the same information, why not just have 1?

There are two related methods for reducing dimensionality:

Dimensionality reduction is a common task in data analysis

If 3 variables all give the same information, why not just have 1?

There are two related methods for reducing dimensionality:

Principle Components Analysis (PCA)

Dimensionality reduction is a common task in data analysis

If 3 variables all give the same information, why not just have 1?

There are two related methods for reducing dimensionality:

- Principle Components Analysis (PCA)
- Factor Analysis

PCA is one way to reduce dimensionality. Let M be an $N imes J$ matrix of data						

$$\underbrace{M}_{N\times J} = \underbrace{\theta}_{N\times J} \times \underbrace{\Lambda}_{J\times J}$$

Decompose M as follows:

$$\underbrace{M}_{N\times J} = \underbrace{\theta}_{N\times J} \times \underbrace{\Lambda}_{J\times J}$$

• Λ are stacked eigenvectors

$$\underbrace{M}_{N\times J} = \underbrace{\theta}_{N\times J} \times \underbrace{\Lambda}_{J\times J}$$

- Λ are stacked eigenvectors
- θ is an orthogonalized transformation of M (columns of θ are independent)

$$\underbrace{\mathcal{M}}_{N\times J} = \underbrace{\boldsymbol{\theta}}_{N\times J} \times \underbrace{\boldsymbol{\Lambda}}_{J\times J}$$

- Λ are stacked eigenvectors
- θ is an orthogonalized transformation of M (columns of θ are independent)
- ullet Λ indicates the rotation angle to get from heta back to M

$$\underbrace{\mathcal{M}}_{N\times J} = \underbrace{\boldsymbol{\theta}}_{N\times J} \times \underbrace{\boldsymbol{\Lambda}}_{J\times J}$$

- Λ are stacked eigenvectors
- θ is an orthogonalized transformation of M (columns of θ are independent)
- Λ indicates the rotation angle to get from θ back to M
- If M were orthogonal to begin with, $\Lambda = I$ and $M = \theta$

Nothing on the previous slide helps us with dimensionality reduction per se
Reduce dimensionality by choosing the largest-magnitude eigenvectors

Nothing on the previous slide helps us with dimensionality reduction per se

• Reduce dimensionality by choosing the largest-magnitude eigenvectors

ullet These represent the dimensions eta with the greatest variance

Nothing on the previous slide helps us with dimensionality reduction per se

- Reduce dimensionality by choosing the largest-magnitude eigenvectors
- ullet These represent the dimensions eta with the greatest variance
- We say that we "select the first K principal components of M"

Mathematically, we "reduce" (i.e. "approximate") M by choosing a subset of θ and Λ

$$\underbrace{\widetilde{M}}_{N\times J} = \underbrace{\theta_k}_{N\times K} \times \underbrace{\Lambda'_k}_{K\times J}$$

Mathematically, we "reduce" (i.e. "approximate") M by choosing a subset of $oldsymbol{ heta}$ and Λ

$$\underbrace{\widetilde{M}}_{N\times J} = \underbrace{\theta_k}_{N\times K} \times \underbrace{\Lambda'_k}_{K\times J}$$

$$M = \boldsymbol{\theta}_{k} \boldsymbol{\Lambda}_{k}^{'} + \boldsymbol{\varepsilon}$$

Mathematically, we "reduce" (i.e. "approximate") M by choosing a subset of θ and Λ

$$\underbrace{\widetilde{M}}_{N\times J} = \underbrace{\boldsymbol{\theta}_k}_{N\times K} \times \underbrace{\boldsymbol{\Lambda}'_k}_{K\times J}$$

$$M = \boldsymbol{\theta}_{k} \Lambda_{k}^{'} + \boldsymbol{\varepsilon}$$

where $\varepsilon \equiv M - \widetilde{M}$ is a $N \times J$ matrix

Use PC1 for all further analysis