(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

1 (40) 6 (5) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1

(43) International Publication Date 22 August 2002 (22.08.2002)

PCT

(10) International Publication Number WO 02/064788 A2

(51) International Patent Classification⁷: C12N 15/12, C07K 14/47, C12Q 1/68, C12N 5/10, C07K 16/18, G01N 33/53

(21) International Application Number: PCT/US01/45080

(22) International Filing Date:

20 November 2001 (20.11.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/252,054

20 November 2000 (20.11.2000) U.

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US 20 Novemb

Filed on 20 November 2000 (20.11.2000)

(71) Applicant (for all designated States except US): DI-ADEXUS, INC. [US/US]; 343 Oyster Point Boulevard, South San Francisco, CA 94080 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MACINA, Roberto, A. [AR/US]; 4118 Crescendo Avenue, San Jose, CA 95136 (US). RECIPON, Herve [FR/US]; 85 Fortuna Avenue, San Francisco, CA 94115 (US). CHEN, Sei-Yu [---/US]; 160 Mira Street, Foster City, CA 94404 (US). SUN, Yongming [CN/US]; 551 Shoal Drive. Redwood City, CA 94065 (US). L1U, Chenghua [CN/US]; 1125 Ranchero Way #14, San Jose, CA 95117 (US).

- (74) Agents: LICATA, Jane, Massey et al.; Licata & Tyrrell P.C., 66 E. Main Street, Marlton, NJ 08053 (US).
- (81) Designated States (national): A.E., A.G., A.L., A.M., A.T., A.U., A.Z., B.A., B.B., B.G., B.R., B.Y., B.Z., C.A., C.H., C.N., C.O., C.R., C.U., C.Z., D.E., D.K., D.M., D.Z., E.C., E.E., E.S., F.I., G.B., G.D., G.E., G.I., G.M., H.R., H.U., I.D., I.L., I.N., I.S., J.P., K.E., K.G., K.P., K.R., K.Z., L.C., L.K., L.S., L.T., L.U., L.V., M.A., M.D., M.G., M.K., M.N., M.W., M.Z., N.O., N.Z., P.L., P.T., R.O., R.U., S.D., S.E., S.G., S.I., S.L., T.J., T.M., T.R., T.T., T.Z., U.A., U.G., U.S., U.Z., V.N., Y.U., Z.A., Z.W.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

7

(54) Title: COMPOSITIONS AND METHODS RELATING TO LUNG SPECIFIC GENES AND PROTEINS

(57) Abstract: The present invention relates to newly identified nucleic acids and polypeptides present in normal and neoplastic lung cells, including fragments, variants and derivatives of the nucleic acids and polypeptides. The present invention also relates to antibodies to the polypeptides of the invention, as well as agonists and antagonists of the polypeptides of the invention. The invention also relates to compositions comprising the nucleic acids, polypeptides, antibodies, variants, derivatives, agonists and antagonists of the invention and methods for the use of these compositions. These uses include identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-cancerous disease states in lung, identifying lung tissue, monitoring and identifying and/or designing agonists of polypeptides of the invention. The uses also include gene therapy, production of transgenic animals and cells, and production of engineered lung tissue for treatment and research.

टाटा-१५०

and the state of the second

COMPOSITIONS AND METHODS RELATING TO LUNG SPECIFIC GENES AND PROTEINS

This application claims the benefit of priority from U.S. Provisional Application Serial No. 60/252,054 filed November 20, 2000, which is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to newly identified nucleic acid molecules and polypeptides present in normal and neoplastic lung cells, including fragments, variants and derivatives of the nucleic acids and polypeptides. The present invention also relates to antibodies to the polypeptides of the invention, as well as agonists and antagonists of the polypeptides of the invention. The invention also relates to compositions comprising the nucleic acids, polypeptides, antibodies, variants, derivatives, agonists and antagonists of the invention and methods for the use of these compositions. These uses include identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-cancerous disease states in lung, identifying lung tissue and monitoring and identifying and/or designing agonists and antagonists of polypeptides of the invention. The uses also include gene therapy, production of transgenic animals and cells, and production of engineered lung tissue for treatment and research.

BACKGROUND OF THE INVENTION

Throughout the last hundred years, the incidence of lung cancer has steadily increased, so much so that now in many countries, it is the most common cancer. In fact, lung cancer is the second most prevalent type of cancer for both men and women in the United States and is the most common cause of cancer death in both sexes. Lung cancer deaths have increased ten-fold in both men and women since 1930, primarily due to an increase in cigarette smoking, but also due to an increased exposure to arsenic, asbestos, chromates, chloromethyl ethers, nickel, polycyclic aromatic hydrocarbons and other agents. See Scott, Lung Cancer: A Guide to Diagnosis and Treatment, Addicus Books (2000) and Alberg et al., in Kane et al. (eds.) Biology of Lung Cancer, pp. 11-52, Marcel Dekker, Inc. (1998). Lung cancer may result from a primary tumor originating in the

25

30

lung or a secondary tumor which has spread from another organ such as the bowel or breast. Although there are over a dozen types of lung cancer, over 90% fall into two categories: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). See Scott, supra. About 20-25% of all lung cancers are characterized as SCLC, while 70-80% are diagnosed as NSCLC. Id. A rare type of lung cancer is mesothelioma, which is generally caused by exposure to asbestos, and which affects the pleura of the lung. Lung cancer is usually diagnosed or screened for by chest x-ray, CAT scans, PET scans, or by sputum cytology. A diagnosis of lung cancer is usually confirmed by biopsy of the tissue. Id.

SCLC tumors are highly metastatic and grow quickly. By the time a patient has been diagnosed with SCLC, the cancer has usually already spread to other parts of the body, including lymph nodes, adrenals, liver, bone, brain and bone marrow. See Scott, supra; Van Houtte et al. (eds.), Progress and Perspective in the Treatment of Lung Cancer, Springer-Verlag (1999). Because the disease has usually spread to such an extent that surgery is not an option, the current treatment of choice is chemotherapy plus chest irradiation. See Van Houtte, supra. The stage of disease is a principal predictor of long-term survival. Less than 5% of patients with extensive disease that has spread beyond one lung and surrounding lymph nodes, live longer than two years. Id. However, the probability of five-year survival is three to four times higher if the disease is diagnosed and treated when it is still in a limited stage, i.e., not having spread beyond one lung. Id.

NSCLC is generally divided into three types: squamous cell carcinoma, adenocarcinoma and large cell carcinoma. Both squamous cell cancer and adenocarcinoma develop from the cells that line the airways; however, adenocarcinoma develops from the goblet cells that produce mucus. Large cell lung cancer has been thus named because the cells look large and rounded when viewed microscopically, and generally are considered relatively undifferentiated. See Yesner, Atlas of Lung Cancer, Lippincott-Raven (1998).

Secondary lung cancer is a cancer initiated elsewhere in the body that has spread to the lungs. Cancers that metastasize to the lung include, but are not limited to, breast cancer, melanoma, colon cancer and Hodgkin's lymphoma. Treatment for secondary lung cancer may depend upon the source of the original cancer. In other words, a lung

25

30

cancer that originated from breast cancer may be more responsive to breast cancer treatments and a lung cancer that originated from the colon cancer may be more responsive to colon cancer treatments.

The stage of a cancer indicates how far it has spread and is an important indicator of the prognosis. In addition, staging is important because treatment is often decided according to the stage of a cancer. SCLC is divided into two stages: limited disease, i.e., cancer that can only be seen in one lung and in nearby lymph nodes; and extensive disease, i.e., cancer that has spread outside the lung to the chest or to other parts of the body. For most patients with SCLC, the disease has already progressed to lymph nodes or elsewhere in the body at the time of diagnosis. See Scott, supra. Even if spreading is not apparent on the scans, it is likely that some cancer cells may have spread away and traveled through the bloodstream or lymph system. In general, chemotherapy with or without radiotherapy is often the preferred treatment. The initial scans and tests done at first will be used later to see how well a patient is responding to treatment.

In contrast, non-small cell cancer may be divided into four stages. Stage I is highly localized cancer with no cancer in the lymph nodes. Stage II cancer has spread to the lymph nodes at the top of the affected lung. Stage III cancer has spread near to where the cancer started. This can be to the chest wall, the covering of the lung (pleura), the middle of the chest (mediastinum) or other lymph nodes. Stage IV cancer has spread to another part of the body. Stage I-III cancer is usually treated with surgery, with or without chemotherapy. Stage IV cancer is usually treated with chemotherapy and/or palliative care.

A number of chromosomal and genetic abnormalities have been observed in lung cancer. In NSCLC, chromosomal aberrations have been described on 3p, 9p, 11p, 15p and 17p, and chromosomal deletions have been seen on chromosomes 7, 11, 13 and 19. See Skarin (ed.), Multimodality Treatment of Lung Cancer, Marcel Dekker, Inc. (2000); Genmill et al., pp. 465-502, in Kane, supra; Bailey-Wilson et al., pp. 53-98, in Kane, supra. Chromosomal abnormalities have been described on 1p, 3p, 5q, 6q, 8q, 13q and 17p in SCLC. Id. The loss of the short arm of chromosome 3p has also been seen in greater than 90% of SCLC tumors and approximately 50% of NSCLC tumors. Id.

A number of oncogenes and tumor suppressor genes have been implicated in lung cancer. See Mabry, pp. 391-412, in Kane, supra and Sclafani et al., pp. 295-316, in

Kane, *supra*. In both SCLC and NSCLC, the p53 tumor suppressor gene is mutated in over 50% of lung cancers. *See* Yesner, *supra*. Another tumor suppressor gene, FHIT, which is found on chromosome 3p, is mutated by tobacco smoke. *Id.*; Skarin, *supra*. In addition, more than 95% of SCLCs and approximately 20-60% of NSCLCs have an absent or abnormal retinoblastoma (Rb) protein, another tumor suppressor gene. The *ras* oncogene (particularly K-*ras*) is mutated in 20-30% of NSCLC specimens and the c-*erbB2* oncogene is expressed in 18% of stage 2 NSCLC and 60% of stage 4 NSCLC specimens. *See* Van Houtte, *supra*. Other tumor suppressor genes that are found in a region of chromosome 9, specifically in the region of 9p21, are deleted in many cancer cells, including p16^{INK4A} and p15^{INK4B}. *See* Bailey-Wilson, *supra*; Sclafani *et al.*, *supra*. These tumor suppressor genes may also be implicated in lung cancer pathogenesis.

In addition, many lung cancer cells produce growth factors that may act in an autocrine fashion on lung cancer cells. See Siegfried et al., pp. 317-336, in Kane, supra; Moody, pp. 337-370, in Kane, supra and Heasley et al., 371-390, in Kane, supra. In SCLC, many tumor cells produce gastrin-releasing peptide (GRP), which is a proliferative growth factor for these cells. See Skarin, supra. Many NSCLC tumors express epidermal growth factor (EGF) receptors, allowing NSCLC cells to proliferate in response to EGF. Insulin-like growth factor (IGF-I) is elevated in greater than 95% of SCLC and greater than 80% of NSCLC tumors; it is thought to function as an autocrine growth factor. Id. Finally, stem cell factor (SCF, also known as steel factor or kit ligand) and c-Kit (a proto-oncoprotein tyrosine kinase receptor for SCF) are both expressed at high levels in SCLC, and thus may form an autocrine loop that increases proliferation. Id.

Although the majority of lung cancer cases are attributable to cigarette smoking,
most smokers do not develop lung cancer. Epidemiological evidence has suggested that
susceptibility to lung cancer may be inherited in a Mendelian fashion, and thus have an
inherited genetic component. Bailey-Wilson, *supra*. Thus, it is thought that certain
allelic variants at some genetic loci may affect susceptibility to lung cancer. *Id*. One way
to identify which allelic variants are likely to be involved in lung cancer susceptibility, as
well as susceptibility to other diseases, is to look at allelic variants of genes that are
highly expressed in lung.

25

The lung is susceptible to a number of other debilitating diseases as well, including, without limitation, emphysema, pneumonia, cystic fibrosis and asthma. See Stockley (ed.), Molecular Biology of the Lung, Volume I: Emphysema and Infection, Birkhauser Verlag (1999), hereafter Stockley I, and Stockley (ed.), Molecular Biology of the Lung, Volume II: Asthma and Cancer, Birkhauser Verlag (1999), hereafter Stockley II. The cause of many these disorders is still not well understood and there are few, if any, good treatment options for many of these noncancerous lung disorders. Thus, there also remains a need for understanding of various noncancerous lung disorders and for identify treatments for these diseases.

The development and differentiation of the lung tissue during embryonic development is also very important. All of the epithelial cells of the respiratory tract, including those of the lung and bronchi, are derived from the primitive endodermal cells that line the embryonic outpouching. See Yesner, supra. During embryonic development, multipotent endodermal stem cells differentiate into many different types of specialized cells, which include ciliated cells for moving inhaled particles, goblet cells for producing mucus, Kulchitsky's cells for endocrine function, and Clara cells and type II pneumocytes for secreting surfactant protein. Id. Improper development and differentiation may cause respiratory disorders and distress in infants, particularly in premature infants, whose lungs cannot produce sufficient surfactant when they are born. Further, some lung cancer cells, particularly small cell carcinomas, appear multipotent, and can spontaneously differentiate into a number of cell types, including small cell carcinoma, adenocarcinoma and squamous cell carcinoma. Id. Thus, a better understanding of lung development and differentiation may help facilitate understanding of lung cancer initiation and progression.

Accordingly, there is a great need for more sensitive and accurate methods for predicting whether a person is likely to develop lung cancer, for diagnosing lung cancer, for monitoring the progression of the disease, for staging the lung cancer, for determining whether the lung cancer has metastasized and for imaging the lung cancer. There is also a need for better treatment of lung cancer. There is also a great need for diagnosing and treating noncancerous lung disorders such as emphysema, pneumonia, lung infection, pulmonary fibrosis, cystic fibrosis and asthma. There is also a need for compositions and 30 methods of using compositions that are capable of identifying lung tissue for forensic

25

30

purposes and for determining whether a particular cell or tissue exhibits lung-specific characteristics.

SUMMARY OF THE INVENTION

The present invention solves these and other needs in the art by providing nucleic acid molecules and polypeptides as well as antibodies, agonists and antagonists, thereto that may be used to identify, diagnose, monitor, stage, image and treat lung cancer and non-cancerous disease states in lung; identify and monitor lung tissue; and identify and design agonists and antagonists of polypeptides of the invention. The invention also provides gene therapy, methods for producing transgenic animals and cells, and methods for producing engineered lung tissue for treatment and research.

Accordingly, one object of the invention is to provide nucleic acid molecules that are specific to lung cells, lung tissue and/or the lung organ. These lung specific nucleic acids (LSNAs) may be a naturally-occurring cDNA, genomic DNA, RNA, or a fragment of one of these nucleic acids, or may be a non-naturally-occurring nucleic acid molecule. If the LSNA is genomic DNA, then the LSNA is a lung specific gene (LSG). In a preferred embodiment, the nucleic acid molecule encodes a polypeptide that is specific to lung. In a more preferred embodiment, the nucleic acid molecule encodes a polypeptide that comprises an amino acid sequence of SEQ ID NO: 116 through 208. In another highly preferred embodiment, the nucleic acid molecule comprises a nucleic acid sequence of SEQ ID NO: 1 through 115. By nucleic acid molecule, it is also meant to be inclusive of sequences that selectively hybridize or exhibit substantial sequence similarity to a nucleic acid molecule encoding an LSP, or that selectively hybridize or exhibit substantial sequence similarity to an LSNA, as well as allelic variants of a nucleic acid molecule encoding an LSP, and allelic variants of an LSNA. Nucleic acid molecules comprising a part of a nucleic acid sequence that encodes an LSP or that comprises a part of a nucleic acid sequence of an LSNA are also provided.

A related object of the present invention is to provide a nucleic acid molecule comprising one or more expression control sequences controlling the transcription and/or translation of all or a part of an LSNA. In a preferred embodiment, the nucleic acid molecule comprises one or more expression control sequences controlling the

15

30

transcription and/or translation of a nucleic acid molecule that encodes all or a fragment of an LSP.

Another object of the invention is to provide vectors and/or host cells comprising a nucleic acid molecule of the instant invention. In a preferred embodiment, the nucleic acid molecule encodes all or a fragment of an LSP. In another preferred embodiment, the nucleic acid molecule comprises all or a part of an LSNA.

Another object of the invention is to provided methods for using the vectors and host cells comprising a nucleic acid molecule of the instant invention to recombinantly produce polypeptides of the invention.

Another object of the invention is to provide a polypeptide encoded by a nucleic acid molecule of the invention. In a preferred embodiment, the polypeptide is an LSP. The polypeptide may comprise either a fragment or a full-length protein as well as a mutant protein (mutein), fusion protein, homologous protein or a polypeptide encoded by an allelic variant of an LSP.

Another object of the invention is to provide an antibody that specifically binds to a polypeptide of the instant invention..

Another object of the invention is to provide agonists and antagonists of the nucleic acid molecules and polypeptides of the instant invention.

Another object of the invention is to provide methods for using the nucleic acid molecules to detect or amplify nucleic acid molecules that have similar or identical nucleic acid sequences compared to the nucleic acid molecules described herein. In a preferred embodiment, the invention provides methods of using the nucleic acid molecules of the invention for identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-cancerous disease states in lung. In another preferred embodiment, the invention provides methods of using the nucleic acid molecules of the invention for identifying and/or monitoring lung tissue. The nucleic acid molecules of the instant invention may also be used in gene therapy, for producing transgenic animals and cells, and for producing engineered lung tissue for treatment and research.

The polypeptides and/or antibodies of the instant invention may also be used to identify, diagnose, monitor, stage, image and treat lung cancer and non-cancerous disease states in lung. The invention provides methods of using the polypeptides of the invention to identify and/or monitor lung tissue, and to produce engineered lung tissue.

15

The agonists and antagonists of the instant invention may be used to treat lung cancer and non-cancerous disease states in lung and to produce engineered lung tissue.

Yet another object of the invention is to provide a computer readable means of storing the nucleic acid and amino acid sequences of the invention. The records of the computer readable means can be accessed for reading and displaying of sequences for comparison, alignment and ordering of the sequences of the invention to other sequences.

DETAILED DESCRIPTION OF THE INVENTION

Definitions and General Techniques

Unless otherwise defined herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well-known and commonly used in the art. The methods and techniques of the present invention are generally performed according to conventional methods well-known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press (1989) and Sambrook et al., Molecular Cloning: A Laboratory Manual, 3d ed., Cold Spring Harbor Press (2001); Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992, and Supplements to 2000); Ausubel et al., Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology - 4th Ed., Wiley & Sons (1999); Harlow and Lane, Antibodies: A Laboratory 25 Manual, Cold Spring Harbor Laboratory Press (1990); and Harlow and Lane, Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press (1999); each of which is incorporated herein by reference in its entirety.

Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described 30 herein. The nomenclatures used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and

20

25

30

pharmaceutical chemistry described herein are those well-known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.

The following terms, unless otherwise indicated, shall be understood to have the following meanings:

A "nucleic acid molecule" of this invention refers to a polymeric form of nucleotides and includes both sense and antisense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above. A nucleotide refers to a ribonucleotide, deoxynucleotide or a modified form of either type of nucleotide. A "nucleic acid molecule" as used herein is synonymous with "nucleic acid" and "polynucleotide." The term "nucleic acid molecule" usually refers to a molecule of at least 10 bases in length, unless otherwise specified. The term includes single- and double-stranded forms of DNA. In addition, a polynucleotide may include either or both naturally-occurring and modified nucleotides linked together by naturally-occurring and/or non-naturally occurring nucleotide linkages.

The nucleic acid molecules may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen, etc.), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids, etc.) The term "nucleic acid molecule" also includes any topological conformation, including single-stranded, double-stranded, partially duplexed, triplexed, hairpinned, circular and padlocked conformations. Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of the molecule.

A "gene" is defined as a nucleic acid molecule that comprises a nucleic acid sequence that encodes a polypeptide and the expression control sequences that surround

15

30

the nucleic acid sequence that encodes the polypeptide. For instance, a gene may comprise a promoter, one or more enhancers, a nucleic acid sequence that encodes a polypeptide, downstream regulatory sequences and, possibly, other nucleic acid sequences involved in regulation of the expression of an RNA. As is well-known in the art, eukaryotic genes usually contain both exons and introns. The term "exon" refers to a nucleic acid sequence found in genomic DNA that is bioinformatically predicted and/or experimentally confirmed to contribute a contiguous sequence to a mature mRNA transcript. The term "intron" refers to a nucleic acid sequence found in genomic DNA that is predicted and/or confirmed to not contribute to a mature mRNA transcript, but rather to be "spliced out" during processing of the transcript.

A nucleic acid molecule or polypeptide is "derived" from a particular species if the nucleic acid molecule or polypeptide has been isolated from the particular species, or if the nucleic acid molecule or polypeptide is homologous to a nucleic acid molecule or polypeptide isolated from a particular species.

An "isolated" or "substantially pure" nucleic acid or polynucleotide (e.g., an RNA, DNA or a mixed polymer) is one which is substantially separated from other cellular components that naturally accompany the native polynucleotide in its natural host cell, e.g., ribosomes, polymerases, or genomic sequences with which it is naturally associated. The term embraces a nucleic acid or polynucleotide that (1) has been removed from its naturally occurring environment, (2) is not associated with all or a portion of a polynucleotide in which the "isolated polynucleotide" is found in nature, (3) is operatively linked to a polynucleotide which it is not linked to in nature, (4) does not occur in nature as part of a larger sequence or (5) includes nucleotides or internucleoside bonds that are not found in nature. The term "isolated" or "substantially pure" also can be used in reference to recombinant or cloned DNA isolates, chemically synthesized polynucleotide analogs, or polynucleotide analogs that are biologically synthesized by heterologous systems. The term "isolated nucleic acid molecule" includes nucleic acid molecules that are integrated into a host cell chromosome at a heterologous site, recombinant fusions of a native fragment to a heterologous sequence, recombinant vectors present as episomes or as integrated into a host cell chromosome.

A "part" of a nucleic acid molecule refers to a nucleic acid molecule that comprises a partial contiguous sequence of at least 10 bases of the reference nucleic acid

molecule. Preferably, a part comprises at least 15 to 20 bases of a reference nucleic acid molecule. In theory, a nucleic acid sequence of 17 nucleotides is of sufficient length to occur at random less frequently than once in the three gigabase human genome, and thus to provide a nucleic acid probe that can uniquely identify the reference sequence in a nucleic acid mixture of genomic complexity. A preferred part is one that comprises a nucleic acid sequence that can encode at least 6 contiguous amino acid sequences (fragments of at least 18 nucleotides) because they are useful in directing the expression or synthesis of peptides that are useful in mapping the epitopes of the polypeptide encoded by the reference nucleic acid. See, e.g., Geysen et al., Proc. Natl. Acad. Sci. 10 USA 81:3998-4002 (1984); and United States Patent Nos. 4,708,871 and 5,595,915, the disclosures of which are incorporated herein by reference in their entireties. A part may also comprise at least 25, 30, 35 or 40 nucleotides of a reference nucleic acid molecule, or at least 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400 or 500 nucleotides of a reference nucleic acid molecule. A part of a nucleic acid molecule may comprise no other nucleic acid sequences. Alternatively, a part of a nucleic acid may comprise other nucleic acid sequences from other nucleic acid molecules.

The term "oligonucleotide" refers to a nucleic acid molecule generally comprising a length of 200 bases or fewer. The term often refers to single-stranded deoxyribonucleotides, but it can refer as well to single- or double-stranded ribonucleotides, RNA:DNA hybrids and double-stranded DNAs, among others.

Preferably, oligonucleotides are 10 to 60 bases in length and most preferably 12, 13, 14, 15, 16, 17, 18, 19 or 20 bases in length. Other preferred oligonucleotides are 25, 30, 35, 40, 45, 50, 55 or 60 bases in length. Oligonucleotides may be single-stranded, e.g. for use as probes or primers, or may be double-stranded, e.g. for use in the construction of a mutant gene. Oligonucleotides of the invention can be either sense or antisense oligonucleotides. An oligonucleotide can be derivatized or modified as discussed above for nucleic acid molecules.

Oligonucleotides, such as single-stranded DNA probe oligonucleotides, often are synthesized by chemical methods, such as those implemented on automated oligonucleotide synthesizers. However, oligonucleotides can be made by a variety of other methods, including *in vitro* recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms. Initially, chemically synthesized DNAs

30

typically are obtained without a 5' phosphate. The 5' ends of such oligonucleotides are not substrates for phosphodiester bond formation by ligation reactions that employ DNA ligases typically used to form recombinant DNA molecules. Where ligation of such oligonucleotides is desired, a phosphate can be added by standard techniques, such as those that employ a kinase and ATP. The 3' end of a chemically synthesized oligonucleotide generally has a free hydroxyl group and, in the presence of a ligase, such as T4 DNA ligase, readily will form a phosphodiester bond with a 5' phosphate of another polynucleotide, such as another oligonucleotide. As is well-known, this reaction can be prevented selectively, where desired, by removing the 5' phosphates of the other polynucleotide(s) prior to ligation.

The term "naturally-occurring nucleotide" referred to herein includes naturally-occurring deoxyribonucleotides and ribonucleotides. The term "modified nucleotides" referred to herein includes nucleotides with modified or substituted sugar groups and the like. The term "nucleotide linkages" referred to herein includes nucleotides linkages such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoroaniladate, phosphoroamidate, and the like. See e.g., LaPlanche et al. Nucl. Acids Res. 14:9081-9093 (1986); Stein et al. Nucl. Acids Res. 16:3209-3221 (1988); Zon et al. Anti-Cancer Drug Design 6:539-568 (1991); Zon et al., in Eckstein (ed.) Oligonucleotides and Analogues: A Practical Approach, pp. 87-108, Oxford University Press (1991); United States Patent No. 5,151,510; Uhlmann and Peyman Chemical Reviews 90:543 (1990), the disclosures of which are hereby incorporated by reference.

Unless specified otherwise, the left hand end of a polynucleotide sequence in sense orientation is the 5' end and the right hand end of the sequence is the 3' end. In addition, the left hand direction of a polynucleotide sequence in sense orientation is referred to as the 5' direction, while the right hand direction of the polynucleotide sequence is referred to as the 3' direction. Further, unless otherwise indicated, each nucleotide sequence is set forth herein as a sequence of deoxyribonucleotides. It is intended, however, that the given sequence be interpreted as would be appropriate to the polynucleotide composition: for example, if the isolated nucleic acid is composed of RNA, the given sequence intends ribonucleotides, with uridine substituted for thymidine.

PCT/US01/45080 WO 02/064788

-13-

5

25

30

The term "allelic variant" refers to one of two or more alternative naturallyoccurring forms of a gene, wherein each gene possesses a unique nucleotide sequence. In a preferred embodiment, different alleles of a given gene have similar or identical biological properties.

The term "percent sequence identity" in the context of nucleic acid sequences refers to the residues in two sequences which are the same when aligned for maximum correspondence. The length of sequence identity comparison may be over a stretch of at least about nine nucleotides, usually at least about 20 nucleotides, more usually at least about 24 nucleotides, typically at least about 28 nucleotides, more typically at least about 32 nucleotides, and preferably at least about 36 or more nucleotides. There are a number of different algorithms known in the art which can be used to measure nucleotide sequence identity. For instance, polynucleotide sequences can be compared using FASTA, Gap or Bestfit, which are programs in Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wisconsin. FASTA, which includes, e.g., the programs FASTA2 and FASTA3, provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson, Methods Enzymol. 183: 63-98 (1990); Pearson, Methods Mol. Biol. 132: 185-219 (2000); Pearson, Methods Enzymol. 266: 227-258 (1996); Pearson, J. Mol. Biol. 276: 71-84 (1998); herein incorporated by reference). Unless otherwise specified, default parameters for a particular program or algorithm are used. For instance, percent sequence identity between nucleic acid sequences can be determined using FASTA with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) or using Gap with its default parameters as provided in GCG Version 6.1, herein incorporated by reference.

A reference to a nucleic acid sequence encompasses its complement unless otherwise specified. Thus, a reference to a nucleic acid molecule having a particular sequence should be understood to encompass its complementary strand, with its complementary sequence. The complementary strand is also useful, e.g., for antisense therapy, hybridization probes and PCR primers.

In the molecular biology art, researchers use the terms "percent sequence identity", "percent sequence similarity" and "percent sequence homology"

20

25

interchangeably. In this application, these terms shall have the same meaning with respect to nucleic acid sequences only.

The term "substantial similarity" or "substantial sequence similarity," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 50%, more preferably 60% of the nucleotide bases, usually at least about 70%, more usually at least about 80%, preferably at least about 90%, and more preferably at least about 95-98% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or Gap, as discussed above.

Alternatively, substantial similarity exists when a nucleic acid or fragment thereof hybridizes to another nucleic acid, to a strand of another nucleic acid, or to the complementary strand thereof, under selective hybridization conditions. Typically, selective hybridization will occur when there is at least about 55% sequence identity, preferably at least about 65%, more preferably at least about 75%, and most preferably at least about 90% sequence identity, over a stretch of at least about 14 nucleotides, more preferably at least 17 nucleotides, even more preferably at least 20, 25, 30, 35, 40, 50, 60, 70, 80, 90 or 100 nucleotides.

Nucleic acid hybridization will be affected by such conditions as salt concentration, temperature, solvents, the base composition of the hybridizing species, length of the complementary regions, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art. "Stringent hybridization conditions" and "stringent wash conditions" in the context of nucleic acid hybridization experiments depend upon a number of different physical parameters. The most important parameters include temperature of hybridization, base composition of the nucleic acids, salt concentration and length of the nucleic acid. One having ordinary skill in the art knows how to vary these parameters to achieve a particular stringency of hybridization. In general, "stringent hybridization" is performed at about 25°C below the thermal melting point (T_m) for the specific DNA hybrid under a particular set of conditions. "Stringent washing" is performed at temperatures about 5°C lower than the T_m for the specific DNA hybrid under a particular set of conditions. The T_m is the temperature at which 50% of the target sequence

20

hybridizes to a perfectly matched probe. See Sambrook (1989), supra, p. 9.51, hereby incorporated by reference.

The T_m for a particular DNA-DNA hybrid can be estimated by the formula: $T_m = 81.5^{\circ}\text{C} + 16.6 \, (\log_{10}[\text{Na}^+]) + 0.41 \, (\text{fraction G} + \text{C}) - 0.63 \, (\% \, \text{formamide}) - (600/\text{I})$ where I is the length of the hybrid in base pairs.

The T_m for a particular RNA-RNA hybrid can be estimated by the formula: $T_m = 79.8^{\circ}\text{C} + 18.5 \; (\log_{10}[\text{Na}^+]) + 0.58 \; (\text{fraction G} + \text{C}) + 11.8 \; (\text{fraction G} + \text{C})^2 - 0.35 \; (\% \; \text{formamide}) - (820/1).$

The T_m for a particular RNA-DNA hybrid can be estimated by the formula: $T_m = 79.8^{\circ}C + 18.5(\log_{10}[Na^{+}]) + 0.58 \text{ (fraction G + C)} + 11.8 \text{ (fraction G + C)}^2 - 0.50$ (% formamide) - (820/1).

In general, the T_m decreases by 1-1.5°C for each 1% of mismatch between two nucleic acid sequences. Thus, one having ordinary skill in the art can alter hybridization and/or washing conditions to obtain sequences that have higher or lower degrees of sequence identity to the target nucleic acid. For instance, to obtain hybridizing nucleic acids that contain up to 10% mismatch from the target nucleic acid sequence, 10-15°C would be subtracted from the calculated T_m of a perfectly matched hybrid, and then the hybridization and washing temperatures adjusted accordingly. Probe sequences may also hybridize specifically to duplex DNA under certain conditions to form triplex or other higher order DNA complexes. The preparation of such probes and suitable hybridization conditions are well-known in the art.

An example of stringent hybridization conditions for hybridization of complementary nucleic acid sequences having more than 100 complementary residues on a filter in a Southern or Northern blot or for screening a library is 50% formamide/6X SSC at 42°C for at least ten hours and preferably overnight (approximately 16 hours). Another example of stringent hybridization conditions is 6X SSC at 68°C without formamide for at least ten hours and preferably overnight. An example of moderate stringency hybridization conditions is 6X SSC at 55°C without formamide for at least ten hours and preferably overnight. An example of low stringency hybridization conditions for hybridization of complementary nucleic acid sequences having more than 100 complementary residues on a filter in a Southern or Northern blot or for screening a library is 6X SSC at 42°C for at least ten hours. Hybridization conditions to identify

25

30

nucleic acid sequences that are similar but not identical can be identified by experimentally changing the hybridization temperature from 68°C to 42°C while keeping the salt concentration constant (6X SSC), or keeping the hybridization temperature and salt concentration constant (e.g. 42°C and 6X SSC) and varying the formamide concentration from 50% to 0%. Hybridization buffers may also include blocking agents to lower background. These agents are well-known in the art. See Sambrook et al. (1989), supra, pages 8.46 and 9.46-9.58, herein incorporated by reference. See also Ausubel (1992), supra, Ausubel (1999), supra, and Sambrook (2001), supra.

Wash conditions also can be altered to change stringency conditions. An example of stringent wash conditions is a 0.2x SSC wash at 65°C for 15 minutes (see Sambrook (1989), supra, for SSC buffer). Often the high stringency wash is preceded by a low stringency wash to remove excess probe. An exemplary medium stringency wash for duplex DNA of more than 100 base pairs is 1x SSC at 45°C for 15 minutes. An exemplary low stringency wash for such a duplex is 4x SSC at 40°C for 15 minutes. In general, signal-to-noise ratio of 2x or higher than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization.

As defined herein, nucleic acid molecules that do not hybridize to each other under stringent conditions are still substantially similar to one another if they encode polypeptides that are substantially identical to each other. This occurs, for example, when a nucleic acid molecule is created synthetically or recombinantly using high codon degeneracy as permitted by the redundancy of the genetic code.

Hybridization conditions for nucleic acid molecules that are shorter than 100 nucleotides in length (e.g., for oligonucleotide probes) may be calculated by the formula: $T_m = 81.5^{\circ}\text{C} + 16.6(\log_{10}[\text{Na}^+]) + 0.41(\text{fraction G+C}) - (600/\text{N}),$ wherein N is change length and the [Na⁺] is 1 M or less. See Sambrook (1989), supra, p. 11.46. For hybridization of probes shorter than 100 nucleotides, hybridization is usually performed under stringent conditions (5-10°C below the T_m) using high concentrations (0.1-1.0 pmol/ml) of probe. Id. at p. 11.45. Determination of hybridization using mismatched probes, pools of degenerate probes or "guessmers," as well as hybridization solutions and methods for empirically determining hybridization conditions are well-known in the art. See, e.g., Ausubel (1999), supra; Sambrook (1989), supra, pp. 11.45-11.57.

30

The term "digestion" or "digestion of DNA" refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes referred to herein are commercially available and their reaction conditions, cofactors and other requirements for use are known and routine to the skilled artisan. For analytical purposes, typically, 1 µg of plasmid or DNA fragment is digested with about 2 units of enzyme in about 20 μ l of reaction buffer. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 μg of DNA are digested with 20 to 250 units of enzyme in proportionately larger volumes. Appropriate buffers and substrate amounts for particular restriction enzymes are described in standard laboratory manuals, such as those referenced below, and they are specified by commercial suppliers. Incubation times of about 1 hour at 37°C are ordinarily used, but conditions may vary in accordance with standard procedures, the supplier's instructions and the particulars of the reaction. After digestion, reactions may be analyzed, and fragments may be purified by electrophoresis through an agarose or polyacrylamide gel, using well-known methods that are routine for those skilled in the art.

The term "ligation" refers to the process of forming phosphodiester bonds between two or more polynucleotides, which most often are double-stranded DNAS. Techniques for ligation are well-known to the art and protocols for ligation are described in standard laboratory manuals and references, such as, e.g., Sambrook (1989), supra.

Genome-derived "single exon probes," are probes that comprise at least part of an exon ("reference exon") and can hybridize detectably under high stringency conditions to transcript-derived nucleic acids that include the reference exon but do not hybridize detectably under high stringency conditions to nucleic acids that lack the reference exon. Single exon probes typically further comprise, contiguous to a first end of the exon portion, a first intronic and/or intergenic sequence that is identically contiguous to the exon in the genome, and may contain a second intronic and/or intergenic sequence that is identically contiguous to the exon in the genome. The minimum length of genomederived single exon probes is defined by the requirement that the exonic portion be of sufficient length to hybridize under high stringency conditions to transcript-derived nucleic acids, as discussed above. The maximum length of genome-derived single exon probes is defined by the requirement that the probes contain portions of no more than one

20

25

30

exon. The single exon probes may contain priming sequences not found in contiguity with the rest of the probe sequence in the genome, which priming sequences are useful for PCR and other amplification-based technologies.

The term "microarray" or "nucleic acid microarray" refers to a substrate-bound collection of plural nucleic acids, hybridization to each of the plurality of bound nucleic acids being separately detectable. The substrate can be solid or porous, planar or non-planar, unitary or distributed. Microarrays or nucleic acid microarrays include all the devices so called in Schena (ed.), DNA Microarrays: A Practical Approach (Practical Approach Series), Oxford University Press (1999); Nature Genet. 21(1)(suppl.):1 - 60 (1999); Schena (ed.), Microarray Biochip: Tools and Technology, Eaton Publishing Company/BioTechniques Books Division (2000). These microarrays include substrate-bound collections of plural nucleic acids in which the plurality of nucleic acids are disposed on a plurality of beads, rather than on a unitary planar substrate, as is described, inter alia, in Brenner et al., Proc. Natl. Acad. Sci. USA 97(4):1665-1670 (2000).

The term "mutated" when applied to nucleic acid molecules means that nucleotides in the nucleic acid sequence of the nucleic acid molecule may be inserted, deleted or changed compared to a reference nucleic acid sequence. A single alteration may be made at a locus (a point mutation) or multiple nucleotides may be inserted, deleted or changed at a single locus. In addition, one or more alterations may be made at any number of loci within a nucleic acid sequence. In a preferred embodiment, the nucleic acid molecule comprises the wild type nucleic acid sequence encoding an LSP or is an LSNA. The nucleic acid molecule may be mutated by any method known in the art including those mutagenesis techniques described *infra*.

The term "error-prone PCR" refers to a process for performing PCR under conditions where the copying fidelity of the DNA polymerase is low, such that a high rate of point mutations is obtained along the entire length of the PCR product. See, e.g., Leung et al., Technique 1: 11-15 (1989) and Caldwell et al., PCR Methods Applic. 2: 28-33 (1992).

The term "oligonucleotide-directed mutagenesis" refers to a process which enables the generation of site-specific mutations in any cloned DNA segment of interest. See, e.g., Reidhaar-Olson et al., Science 241: 53-57 (1988).

30

The term "assembly PCR" refers to a process which involves the assembly of a PCR product from a mixture of small DNA fragments. A large number of different PCR reactions occur in parallel in the same vial, with the products of one reaction priming the products of another reaction.

The term "sexual PCR mutagenesis" or "DNA shuffling" refers to a method of error-prone PCR coupled with forced homologous recombination between DNA molecules of different but highly related DNA sequence in vitro, caused by random fragmentation of the DNA molecule based on sequence similarity, followed by fixation of the crossover by primer extension in an error-prone PCR reaction. See, e.g., Stemmer, 10 Proc. Natl. Acad. Sci. U.S.A. 91: 10747-10751 (1994). DNA shuffling can be carried out between several related genes ("Family shuffling").

The term "in vivo mutagenesis" refers to a process of generating random mutations in any cloned DNA of interest which involves the propagation of the DNA in a strain of bacteria such as E. coli that carries mutations in one or more of the DNA repair 15 pathways. These "mutator" strains have a higher random mutation rate than that of a wild-type parent. Propagating the DNA in a mutator strain will eventually generate random mutations within the DNA.

The term "cassette mutagenesis" refers to any process for replacing a small region of a double-stranded DNA molecule with a synthetic oligonucleotide "cassette" that differs from the native sequence. The oligonucleotide often contains completely and/or partially randomized native sequence.

The term "recursive ensemble mutagenesis" refers to an algorithm for protein engineering (protein mutagenesis) developed to produce diverse populations of phenotypically related mutants whose members differ in amino acid sequence. This method uses a feedback mechanism to control successive rounds of combinatorial cassette mutagenesis. See, e.g., Arkin et al., Proc. Natl. Acad. Sci. U.S.A. 89: 7811-7815 (1992).

The term "exponential ensemble mutagenesis" refers to a process for generating combinatorial libraries with a high percentage of unique and functional mutants, wherein small groups of residues are randomized in parallel to identify, at each altered position, amino acids which lead to functional proteins. See, e.g., Delegrave et al., Biotechnology Research 11: 1548-1552 (1993); Arnold, Current Opinion in Biotechnology 4: 450-455

25

(1993). Each of the references mentioned above are hereby incorporated by reference in its entirety.

"Operatively linked" expression control sequences refers to a linkage in which the expression control sequence is contiguous with the gene of interest to control the gene of interest, as well as expression control sequences that act in *trans* or at a distance to control the gene of interest.

The term "expression control sequence" as used herein refers to polynucleotide sequences which are necessary to affect the expression of coding sequences to which they are operatively linked. Expression control sequences are sequences which control the transcription, post-transcriptional events and translation of nucleic acid sequences. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (e.g., ribosome binding sites); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include the promoter, ribosomal binding site, and transcription termination sequence. The term "control sequences" is intended to include, at a minimum, all components whose presence is essential for expression, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.

The term "vector," as used herein, is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double-stranded DNA loop into which additional DNA segments may be ligated. Other vectors include cosmids, bacterial artificial chromosomes (BAC) and yeast artificial chromosomes (YAC). Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Viral vectors that infect bacterial cells are referred to as bacteriophages. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication). Other vectors can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable

20

25

of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "expression vectors"). In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" may be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include other forms of expression vectors that serve equivalent functions.

The term "recombinant host cell" (or simply "host cell"), as used herein, is intended to refer to a cell into which an expression vector has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein.

As used herein, the phrase "open reading frame" and the equivalent acronym "ORF" refer to that portion of a transcript-derived nucleic acid that can be translated in its entirety into a sequence of contiguous amino acids. As so defined, an ORF has length, measured in nucleotides, exactly divisible by 3. As so defined, an ORF need not encode the entirety of a natural protein.

As used herein, the phrase "ORF-encoded peptide" refers to the predicted or actual translation of an ORF.

As used herein, the phrase "degenerate variant" of a reference nucleic acid sequence intends all nucleic acid sequences that can be directly translated, using the standard genetic code, to provide an amino acid sequence identical to that translated from the reference nucleic acid sequence.

The term "polypeptide" encompasses both naturally-occurring and non-naturally-occurring proteins and polypeptides, polypeptide fragments and polypeptide mutants, derivatives and analogs. A polypeptide may be monomeric or polymeric. Further, a polypeptide may comprise a number of different modules within a single polypeptide each of which has one or more distinct activities. A preferred polypeptide in accordance with the invention comprises an LSP encoded by a nucleic acid molecule of the instant invention, as well as a fragment, mutant, analog and derivative thereof.

20

The term "isolated protein" or "isolated polypeptide" is a protein or polypeptide that by virtue of its origin or source of derivation (1) is not associated with naturally associated components that accompany it in its native state, (2) is free of other proteins from the same species (3) is expressed by a cell from a different species, or (4) does not occur in nature. Thus, a polypeptide that is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates will be "isolated" from its naturally associated components. A polypeptide or protein may also be rendered substantially free of naturally associated components by isolation, using protein purification techniques well-known in the art.

A protein or polypeptide is "substantially pure," "substantially homogeneous" or "substantially purified" when at least about 60% to 75% of a sample exhibits a single species of polypeptide. The polypeptide or protein may be monomeric or multimeric. A substantially pure polypeptide or protein will typically comprise about 50%, 60%, 70%, 80% or 90% W/W of a protein sample, more usually about 95%, and preferably will be over 99% pure. Protein purity or homogeneity may be indicated by a number of means well-known in the art, such as polyacrylamide gel electrophoresis of a protein sample, followed by visualizing a single polypeptide band upon staining the gel with a stain well-known in the art. For certain purposes, higher resolution may be provided by using HPLC or other means well-known in the art for purification.

The term "polypeptide fragment" as used herein refers to a polypeptide of the instant invention that has an amino-terminal and/or carboxy-terminal deletion compared to a full-length polypeptide. In a preferred embodiment, the polypeptide fragment is a contiguous sequence in which the amino acid sequence of the fragment is identical to the corresponding positions in the naturally-occurring sequence. Fragments typically are at least 5, 6, 7, 8, 9 or 10 amino acids long, preferably at least 12, 14, 16 or 18 amino acids long, more preferably at least 20 amino acids long, more preferably at least 25, 30, 35, 40 or 45, amino acids, even more preferably at least 50 or 60 amino acids long, and even more preferably at least 70 amino acids long.

A "derivative" refers to polypeptides or fragments thereof that are substantially similar in primary structural sequence but which include, e.g., in vivo or in vitro chemical and biochemical modifications that are not found in the native polypeptide. Such modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation,

20

covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. Other modification include, e.g., labeling with radionuclides, and various enzymatic modifications, as will be readily appreciated by those skilled in the art. A variety of methods for labeling polypeptides and of substituents or labels useful for such purposes are well-known in the art, and include radioactive isotopes such as ¹²⁵I, ³²P, ³⁵S, and ³H, ligands which bind to labeled antiligands (e.g., antibodies), fluorophores, chemiluminescent agents, enzymes, and antiligands which can serve as specific binding pair members for a labeled ligand. The choice of label depends on the sensitivity required, ease of conjugation with the primer, stability requirements, and available instrumentation. Methods for labeling polypeptides are well-known in the art. See Ausubel (1992), supra; Ausubel (1999), supra, herein incorporated by reference.

The term "fusion protein" refers to polypeptides of the instant invention comprising polypeptides or fragments coupled to heterologous amino acid sequences. Fusion proteins are useful because they can be constructed to contain two or more desired functional elements from two or more different proteins. A fusion protein comprises at least 10 contiguous amino acids from a polypeptide of interest, more preferably at least 20 or 30 amino acids, even more preferably at least 40, 50 or 60 amino acids, yet more preferably at least 75, 100 or 125 amino acids. Fusion proteins can be produced recombinantly by constructing a nucleic acid sequence which encodes the polypeptide or a fragment thereof in frame with a nucleic acid sequence encoding a different protein or peptide and then expressing the fusion protein. Alternatively, a fusion protein can be produced chemically by crosslinking the polypeptide or a fragment thereof to another protein.

cyclize the peptide.

that die op worden die bezignigen in die geno

The term "analog" refers to both polypeptide analogs and non-peptide analogs. The term "polypeptide analog" as used herein refers to a polypeptide of the instant invention that is comprised of a segment of at least 25 amino acids that has substantial identity to a portion of an amino acid sequence but which contains non-natural amino acids or non-natural inter-residue bonds. In a preferred embodiment, the analog has the same or similar biological activity as the native polypeptide. Typically, polypeptide analogs comprise a conservative amino acid substitution (or insertion or deletion) with respect to the naturally-occurring sequence. Analogs typically are at least 20 amino acids long, preferably at least 50 amino acids long or longer, and can often be as long as a full-length naturally-occurring polypeptide.

The term "non-peptide analog" refers to a compound with properties that are analogous to those of a reference polypeptide of the instant invention. A non-peptide compound may also be termed a "peptide mimetic" or a "peptidomimetic." Such compounds are often developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to useful peptides may be used to produce 15 an equivalent effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a desired biochemical property or pharmacological activity), but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: --CH₂NH--, --CH₂S--, --CH₂-CH₂--, --CH=CH--(cis and trans), --COCH₂--, --CH(OH)CH₂--, and --CH₂SO--, by methods well-known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) may also be used to generate more stable peptides. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo et al., Ann. Rev. 25 Biochem. 61:387-418 (1992), incorporated herein by reference). For example, one may

A "polypeptide mutant" or "mutein" refers to a polypeptide of the instant
invention whose sequence contains substitutions, insertions or deletions of one or more
amino acids compared to the amino acid sequence of a native or wild-type protein. A
mutein may have one or more amino acid point substitutions, in which a single amino

add internal cysteine residues capable of forming intramolecular disulfide bridges which

acid at a position has been changed to another amino acid, one or more insertions and/or deletions, in which one or more amino acids are inserted or deleted, respectively, in the sequence of the naturally-occurring protein, and/or truncations of the amino acid sequence at either or both the amino or carboxy termini. Further, a mutein may have the same or different biological activity as the naturally-occurring protein. For instance, a mutein may have an increased or decreased biological activity. A mutein has at least 50% sequence similarity to the wild type protein, preferred is 60% sequence similarity, more preferred is 70% sequence similarity. Even more preferred are muteins having 80%, 85% or 90% sequence similarity to the wild type protein. In an even more preferred embodiment, a mutein exhibits 95% sequence identity, even more preferably 97%, even more preferably 98% and even more preferably 99%. Sequence similarity may be measured by any common sequence analysis algorithm, such as Gap or Bestfit.

Preferred amino acid substitutions are those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter binding affinity or enzymatic activity, and (5) confer or modify other physicochemical or functional properties of such analogs. For example, single or multiple amino acid substitutions (preferably conservative amino acid substitutions) may be made in the naturally-occurring sequence (preferably in the portion of the polypeptide outside the domain(s) forming intermolecular contacts. In a preferred embodiment, the amino acid substitutions are moderately conservative substitutions or conservative substitutions. In a more preferred embodiment, the amino acid substitutions are conservative substitutions. A conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence (e.g., a replacement amino acid should not tend to disrupt a helix that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent sequence). Examples of art-recognized polypeptide secondary and tertiary structures are described in Creighton (ed.), Proteins, Structures and Molecular Principles, W. H. Freeman and Company (1984); Branden et al. (ed.), Introduction to Protein Structure, Garland Publishing (1991); Thornton et al., Nature 354:105-106 (1991), each of which are incorporated herein by reference.

As used herein, the twenty conventional amino acids and their abbreviations follow conventional usage. See Golub et al. (eds.), Immunology - A Synthesis 2nd Ed.,

20

25

Sinauer Associates (1991), which is incorporated herein by reference. Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as -, -disubstituted amino acids, N-alkyl amino acids, and other unconventional amino acids may also be suitable components for polypeptides of the present invention.

Examples of unconventional amino acids include: 4-hydroxyproline, γ-carboxyglutamate,
 -N,N,N-trimethyllysine, -N-acetyllysine, O-phosphoserine, N-acetylserine,
 N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, s-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the lefthand direction is the amino terminal direction and the right hand
 direction is the carboxy-terminal direction, in accordance with standard usage and convention.

A protein has "homology" or is "homologous" to a protein from another organism if the encoded amino acid sequence of the protein has a similar sequence to the encoded amino acid sequence of a protein of a different organism and has a similar biological activity or function. Alternatively, a protein may have homology or be homologous to another protein if the two proteins have similar amino acid sequences and have similar biological activities or functions. Although two proteins are said to be "homologous," this does not imply that there is necessarily an evolutionary relationship between the proteins. Instead, the term "homologous" is defined to mean that the two proteins have similar amino acid sequences and similar biological activities or functions. In a preferred embodiment, a homologous protein is one that exhibits 50% sequence similarity to the wild type protein, preferred is 60% sequence similarity, more preferred is 70% sequence similarity. Even more preferred are homologous proteins that exhibit 80%, 85% or 90% sequence similarity to the wild type protein. In a yet more preferred embodiment, a homologous protein exhibits 95%, 97%, 98% or 99% sequence similarity.

When "sequence similarity" is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions. In a preferred embodiment, a polypeptide that has "sequence similarity" comprises conservative or moderately conservative amino acid substitutions. A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino

WO 02/064788 PCT/US01/45080

-27-

acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well-known to those of skill in the art. See, e.g., Pearson, Methods Mol. Biol. 24: 307-31 (1994), herein incorporated by reference.

For instance, the following six groups each contain amino acids that are conservative substitutions for one another:

- 1) Serine (S), Threonine (T);
- 10 2) Aspartic Acid (D), Glutamic Acid (E);
 - 3) Asparagine (N), Glutamine (Q);
 - 4) Arginine (R), Lysine (K);

15

20

25

30

- 5) Isoleucine (I), Leucine (L), Methionine (M), Alanine (A), Valine (V), and
- 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).

Alternatively, a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al., Science 256: 1443-45 (1992), herein incorporated by reference. A "moderately conservative" replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.

Sequence similarity for polypeptides, which is also referred to as sequence identity, is typically measured using sequence analysis software. Protein analysis software matches similar sequences using measures of similarity assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG contains programs such as "Gap" and "Bestfit" which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. Other programs include FASTA, discussed supra.

A preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially blastp or tblastn. See, e.g., Altschul et al., J. Mol. Biol. 215: 403-410 (1990); Altschul et al., Nucleic Acids Res. 25:3389-402 (1997); herein incorporated by reference. Preferred parameters for blastp are:

Expectation value:

10 (default)

Filter:

seg (default)

Cost to open a gap:

11 (default)

Cost to extend a gap: 1 (default

Max. alignments: 5

15

20

100 (default)

Word size:

11 (default)

No. of descriptions:

100 (default)

Penalty Matrix:

BLOSUM62

The length of polypeptide sequences compared for homology will generally be at least about 16 amino acid residues, usually at least about 20 residues, more usually at least about 24 residues, typically at least about 28 residues, and preferably more than about 35 residues. When searching a database containing sequences from a large number of different organisms, it is preferable to compare amino acid sequences.

Database searching using amino acid sequences can be measured by algorithms other than blastp are known in the art. For instance, polypeptide sequences can be compared using FASTA, a program in GCG Version 6.1. FASTA (e.g., FASTA2 and FASTA3) provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson (1990), supra; Pearson (2000), supra. For example, percent sequence identity between amino acid sequences can be determined using FASTA with its default or recommended parameters (a word size of 2 and the PAM250 scoring matrix), as provided in GCG Version 6.1, herein incorporated by reference.

An "antibody" refers to an intact immunoglobulin, or to an antigen-binding portion thereof that competes with the intact antibody for specific binding to a molecular species, e.g., a polypeptide of the instant invention. Antigen-binding portions may be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. Antigen-binding portions include, inter alia, Fab, Fab', F(ab')2, Fv, dAb, and complementarity determining region (CDR) fragments, single-chain antibodies (scFv), chimeric antibodies, diabodies and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide. An Fab fragment is a monovalent fragment consisting of the VL, VH, CL and CH1 domains; an F(ab')2 fragment is a bivalent fragment comprising two Fab

10

20

25

30

fragments linked by a disulfide bridge at the hinge region; an Fd fragment consists of the VH and CH1 domains; an Fv fragment consists of the VL and VH domains of a single arm of an antibody; and a dAb fragment consists of a VH domain. See, e.g., Ward et al., Nature 341: 544-546 (1989).

By "bind specifically" and "specific binding" is here intended the ability of the antibody to bind to a first molecular species in preference to binding to other molecular species with which the antibody and first molecular species are admixed. An antibody is said specifically to "recognize" a first molecular species when it can bind specifically to that first molecular species.

A single-chain antibody (scFv) is an antibody in which a VL and VH region are paired to form a monovalent molecule via a synthetic linker that enables them to be made as a single protein chain. See, e.g., Bird et al., Science 242: 423-426 (1988); Huston et al., Proc. Natl. Acad. Sci. USA 85: 5879-5883 (1988). Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites. See e.g., Holliger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993); Poljak et al., Structure 2: 1121-1123 (1994). One or more CDRs may be incorporated into a molecule either covalently or noncovalently to make it an immunoadhesin. An immunoadhesin may incorporate the CDR(s) as part of a larger polypeptide chain, may covalently link the CDR(s) to another polypeptide chain, or may incorporate the CDR(s) noncovalently. The CDRs permit the immunoadhesin to specifically bind to a particular antigen of interest. A chimeric antibody is an antibody that contains one or more regions from one antibody and one or more regions from one or more other antibodies.

An antibody may have one or more binding sites. If there is more than one binding site, the binding sites may be identical to one another or may be different. For instance, a naturally-occurring immunoglobulin has two identical binding sites, a single-chain antibody or Fab fragment has one binding site, while a "bispecific" or "bifunctional" antibody has two different binding sites.

An "isolated antibody" is an antibody that (1) is not associated with naturally-associated components, including other naturally-associated antibodies, that accompany

15

20

it in its native state, (2) is free of other proteins from the same species, (3) is expressed by a cell from a different species, or (4) does not occur in nature. It is known that purified proteins, including purified antibodies, may be stabilized with non-naturally-associated components. The non-naturally-associated component may be a protein, such as albumin (e.g., BSA) or a chemical such as polyethylene glycol (PEG).

A "neutralizing antibody" or "an inhibitory antibody" is an antibody that inhibits the activity of a polypeptide or blocks the binding of a polypeptide to a ligand that normally binds to it. An "activating antibody" is an antibody that increases the activity of a polypeptide.

The term "epitope" includes any protein determinant capable of specifically binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three-dimensional structural characteristics, as well as specific charge characteristics. An antibody is said to specifically bind an antigen when the dissociation constant is less than 1 μ M, preferably less than 10 nM and most preferably less than 10 nM.

The term "patient" as used herein includes human and veterinary subjects.

Throughout this specification and claims, the word "comprise," or variations such as "comprises" or "comprising," will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

The term "lung specific" refers to a nucleic acid molecule or polypeptide that is expressed predominantly in the lung as compared to other tissues in the body. In a preferred embodiment, a "lung specific" nucleic acid molecule or polypeptide is expressed at a level that is 5-fold higher than any other tissue in the body. In a more preferred embodiment, the "lung specific" nucleic acid molecule or polypeptide is expressed at a level that is 10-fold higher than any other tissue in the body, more preferably at least 15-fold, 20-fold, 25-fold, 50-fold or 100-fold higher than any other tissue in the body. Nucleic acid molecule levels may be measured by nucleic acid hybridization, such as Northern blot hybridization, or quantitative PCR. Polypeptide levels may be measured by any method known to accurately quantitate protein levels, such as Western blot analysis.

15

30

Nucleic Acid Molecules, Regulatory Sequences, Vectors, Host Cells and Recombinant Methods of Making Polypeptides

Nucleic Acid Molecules

One aspect of the invention provides isolated nucleic acid molecules that are specific to the lung or to lung cells or tissue or that are derived from such nucleic acid molecules. These isolated lung specific nucleic acids (LSNAs) may comprise a cDNA, a genomic DNA, RNA, or a fragment of one of these nucleic acids, or may be a nonnaturally-occurring nucleic acid molecule. In a preferred embodiment, the nucleic acid 10 molecule encodes a polypeptide that is specific to lung, a lung-specific polypeptide (LSP). In a more preferred embodiment, the nucleic acid molecule encodes a polypeptide that comprises an amino acid sequence of SEQ ID NO: 116 through 208. In another highly preferred embodiment, the nucleic acid molecule comprises a nucleic acid sequence of SEQ ID NO: 1 through 115.

An LSNA may be derived from a human or from another animal. In a preferred embodiment, the LSNA is derived from a human or other mammal. In a more preferred embodiment, the LSNA is derived from a human or other primate. In an even more preferred embodiment, the LSNA is derived from a human.

By "nucleic acid molecule" for purposes of the present invention, it is also meant to be inclusive of nucleic acid sequences that selectively hybridize to a nucleic acid molecule encoding an LSNA or a complement thereof. The hybridizing nucleic acid molecule may or may not encode a polypeptide or may not encode an LSP. However, in a preferred embodiment, the hybridizing nucleic acid molecule encodes an LSP. In a more preferred embodiment, the invention provides a nucleic acid molecule that selectively hybridizes to a nucleic acid molecule that encodes a polypeptide comprising an amino acid sequence of SEQ ID NO: 116 through 208. In an even more preferred embodiment, the invention provides a nucleic acid molecule that selectively hybridizes to a nucleic acid molecule comprising the nucleic acid sequence of SEQ ID NO: 1 through 115.

In a preferred embodiment, the nucleic acid molecule selectively hybridizes to a nucleic acid molecule encoding an LSP under low stringency conditions. In a more preferred embodiment, the nucleic acid molecule selectively hybridizes to a nucleic acid molecule encoding an LSP under moderate stringency conditions. In a more preferred

20

25

embodiment, the nucleic acid molecule selectively hybridizes to a nucleic acid molecule encoding an LSP under high stringency conditions. In an even more preferred embodiment, the nucleic acid molecule hybridizes under low, moderate or high stringency conditions to a nucleic acid molecule encoding a polypeptide comprising an amino acid sequence of SEQ ID NO: 116 through 208. In a yet more preferred embodiment, the nucleic acid molecule hybridizes under low, moderate or high stringency conditions to a nucleic acid molecule comprising a nucleic acid sequence selected from SEQ ID NO: 1 through 115. In a preferred embodiment of the invention, the hybridizing nucleic acid molecule may be used to express recombinantly a polypeptide of the invention.

By "nucleic acid molecule" as used herein it is also meant to be inclusive of sequences that exhibits substantial sequence similarity to a nucleic acid encoding an LSP or a complement of the encoding nucleic acid molecule. In a preferred embodiment, the nucleic acid molecule exhibits substantial sequence similarity to a nucleic acid molecule encoding human LSP. In a more preferred embodiment, the nucleic acid molecule exhibits substantial sequence similarity to a nucleic acid molecule encoding a polypeptide having an amino acid sequence of SEQ ID NO: 116 through 208. In a preferred embodiment, the similar nucleic acid molecule is one that has at least 60% sequence identity with a nucleic acid molecule encoding an LSP, such as a polypeptide having an amino acid sequence of SEQ ID NO: 116 through 208, more preferably at least 70%, even more preferably at least 80% and even more preferably at least 85%. In a more preferred embodiment, the similar nucleic acid molecule is one that has at least 90% sequence identity with a nucleic acid molecule encoding an LSP, more preferably at least 95%, more preferably at least 97%, even more preferably at least 98%, and still more preferably at least 99%. In another highly preferred embodiment, the nucleic acid molecule is one that has at least 99.5%, 99.6%, 99.7%, 99.8% or 99.9% sequence identity with a nucleic acid molecule encoding an LSP.

In another preferred embodiment, the nucleic acid molecule exhibits substantial sequence similarity to an LSNA or its complement. In a more preferred embodiment, the nucleic acid molecule exhibits substantial sequence similarity to a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: 1 through 115. In a preferred embodiment, the nucleic acid molecule is one that has at least 60% sequence identity

15

20

with an LSNA, such as one having a nucleic acid sequence of SEQ ID NO: 1 through 115, more preferably at least 70%, even more preferably at least 80% and even more preferably at least 85%. In a more preferred embodiment, the nucleic acid molecule is one that has at least 90% sequence identity with an LSNA, more preferably at least 95%, more preferably at least 97%, even more preferably at least 98%, and still more preferably at least 99%. In another highly preferred embodiment, the nucleic acid molecule is one that has at least 99.5%, 99.6%, 99.7%, 99.8% or 99.9% sequence identity with an LSNA.

A nucleic acid molecule that exhibits substantial sequence similarity may be one that exhibits sequence identity over its entire length to an LSNA or to a nucleic acid molecule encoding an LSP, or may be one that is similar over only a part of its length. In this case, the part is at least 50 nucleotides of the LSNA or the nucleic acid molecule encoding an LSP, preferably at least 100 nucleotides, more preferably at least 150 or 200 nucleotides, even more preferably at least 250 or 300 nucleotides, still more preferably at least 400 or 500 nucleotides.

The substantially similar nucleic acid molecule may be a naturally-occurring one that is derived from another species, especially one derived from another primate, wherein the similar nucleic acid molecule encodes an amino acid sequence that exhibits significant sequence identity to that of SEQ ID NO: 116 through 208 or demonstrates significant sequence identity to the nucleotide sequence of SEQ ID NO: 1 through 115. The similar nucleic acid molecule may also be a naturally-occurring nucleic acid molecule from a human, when the LSNA is a member of a gene family. The similar nucleic acid molecule may also be a naturally-occurring nucleic acid molecule derived from a non-primate, mammalian species, including without limitation, domesticated species, e.g., dog, cat, mouse, rat, rabbit, hamster, cow, horse and pig; and wild animals, e.g., monkey, fox, lions, tigers, bears, giraffes, zebras, etc. The substantially similar nucleic acid molecule may also be a naturally-occurring nucleic acid molecule derived from a non-mammalian species, such as birds or reptiles. The naturally-occurring substantially similar nucleic acid molecule may be isolated directly from humans or other species. In another embodiment, the substantially similar nucleic acid molecule may be one that is experimentally produced by random mutation of a nucleic acid molecule. In another embodiment, the substantially similar nucleic acid molecule may be one that is

20

25

experimentally produced by directed mutation of an LSNA. Further, the substantially similar nucleic acid molecule may or may not be an LSNA. However, in a preferred embodiment, the substantially similar nucleic acid molecule is an LSNA.

By "nucleic acid molecule" it is also meant to be inclusive of allelic variants of an LSNA or a nucleic acid encoding an LSP. For instance, single nucleotide polymorphisms (SNPs) occur frequently in eukaryotic genomes. In fact, more than 1.4 million SNPs have already identified in the human genome, International Human Genome Sequencing Consortium, Nature 409: 860-921 (2001). Thus, the sequence determined from one individual of a species may differ from other allelic forms present within the population. Additionally, small deletions and insertions, rather than single nucleotide polymorphisms, are not uncommon in the general population, and often do not alter the function of the protein. Further, amino acid substitutions occur frequently among natural allelic variants, and often do not substantially change protein function.

In a preferred embodiment, the nucleic acid molecule comprising an allelic variant is a variant of a gene, wherein the gene is transcribed into an mRNA that encodes an LSP. In a more preferred embodiment, the gene is transcribed into an mRNA that encodes an LSP comprising an amino acid sequence of SEQ ID NO: 116 through 208. In another preferred embodiment, the allelic variant is a variant of a gene, wherein the gene is transcribed into an mRNA that is an LSNA. In a more preferred embodiment, the gene is transcribed into an mRNA that comprises the nucleic acid sequence of SEQ ID NO: 1 through 115. In a preferred embodiment, the allelic variant is a naturally-occurring allelic variant in the species of interest. In a more preferred embodiment, the species of interest is human.

By "nucleic acid molecule" it is also meant to be inclusive of a part of a nucleic acid sequence of the instant invention. The part may or may not encode a polypeptide, and may or may not encode a polypeptide that is an LSP. However, in a preferred embodiment, the part encodes an LSP. In one aspect, the invention comprises a part of an LSNA. In a second aspect, the invention comprises a part of a nucleic acid molecule that hybridizes or exhibits substantial sequence similarity to an LSNA. In a third aspect, the invention comprises a part of a nucleic acid molecule that is an allelic variant of an LSNA. In a fourth aspect, the invention comprises a part of a nucleic acid molecule that encodes an LSP. A part comprises at least 10 nucleotides, more preferably at least 15,

15

20

17, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400 or 500 nucleotides. The maximum size of a nucleic acid part is one nucleotide shorter than the sequence of the nucleic acid molecule encoding the full-length protein.

By "nucleic acid molecule" it is also meant to be inclusive of sequence that encoding a fusion protein, a homologous protein, a polypeptide fragment, a mutein or a polypeptide analog, as described below.

Nucleotide sequences of the instantly-described nucleic acids were determined by sequencing a DNA molecule that had resulted, directly or indirectly, from at least one enzymatic polymerization reaction (e.g., reverse transcription and/or polymerase chain reaction) using an automated sequencer (such as the MegaBACE™ 1000, Molecular Dynamics, Sunnyvale, CA, USA). Further, all amino acid sequences of the polypeptides of the present invention were predicted by translation from the nucleic acid sequences so determined, unless otherwise specified.

In a preferred embodiment of the invention, the nucleic acid molecule contains modifications of the native nucleic acid molecule. These modifications include nonnative internucleoside bonds, post-synthetic modifications or altered nucleotide analogues. One having ordinary skill in the art would recognize that the type of modification that can be made will depend upon the intended use of the nucleic acid molecule. For instance, when the nucleic acid molecule is used as a hybridization probe, the range of such modifications will be limited to those that permit sequencediscriminating base pairing of the resulting nucleic acid. When used to direct expression of RNA or protein in vitro or in vivo, the range of such modifications will be limited to those that permit the nucleic acid to function properly as a polymerization substrate. When the isolated nucleic acid is used as a therapeutic agent, the modifications will be limited to those that do not confer toxicity upon the isolated nucleic acid. 25

In a preferred embodiment, isolated nucleic acid molecules can include nucleotide analogues that incorporate labels that are directly detectable, such as radiolabels or fluorophores, or nucleotide analogues that incorporate labels that can be visualized in a subsequent reaction, such as biotin or various haptens. In a more preferred embodiment, the labeled nucleic acid molecule may be used as a hybridization probe.

Common radiolabeled analogues include those labeled with 33 P, 32 P, and 35 S, such as $-^{32}$ P-dATP, $-^{32}$ P-dCTP, $-^{32}$ P-dGTP, $-^{32}$ P-dTTP, $-^{32}$ P-ATP, $-^{32}$ P-ATP, $-^{32}$ P-CTP, $-^{32}$ P-GTP, $-^{32}$ P-UTP, $-^{35}$ S-dATP, α - 35 S-GTP, α - 33 P-dATP, and the like.

Commercially available fluorescent nucleotide analogues readily incorporated into the nucleic acids of the present invention include Cy3-dCTP, Cy3-dUTP, Cy5dCTP, Cy3-dUTP (Amersham Pharmacia Biotech, Piscataway, New Jersey, USA), fluorescein-12-dUTP, tetramethylrhodamine-6-dUTP, Texas Red®-5-dUTP, Cascade Blue®-7-dUTP, BODIPY® FL-14-dUTP, BODIPY® TMR-14-dUTP, BODIPY® TR-14-dUTP, Rhodamine Green™-5-dUTP, Oregon Green® 488-5-dUTP, Texas Red®-12-dUTP, BODIPY® 630/650-14-dUTP, BODIPY® 650/665-14-dUTP, Alexa Fluor® 488-5-dUTP, Alexa Fluor® 532-5-dUTP, Alexa Fluor® 568-5-dUTP, Alexa Fluor® 594-5-dUTP, Alexa Fluor® 546-14-dUTP, fluorescein-12-UTP, tetramethylrhodamine-6-UTP, Texas Red®-5-UTP, Cascade Blue®-7-UTP, BODIPY® FL-14-UTP, BODIPY® TMR-14-UTP, BODIPY® TR-14-UTP, Rhodamine Green[™]-5-UTP, Alexa Fluor® 488-5-UTP, Alexa Fluor® 546-14-UTP (Molecular Probes, Inc. Eugene, OR, USA). One may also custom synthesize nucleotides having 15 other fluorophores. See Henegariu et al., Nature Biotechnol. 18: 345-348 (2000), the disclosure of which is incorporated herein by reference in its entirety.

Haptens that are commonly conjugated to nucleotides for subsequent labeling include biotin (biotin-11-dUTP, Molecular Probes, Inc., Eugene, OR, USA; biotin-21-UTP, biotin-21-dUTP, Clontech Laboratories, Inc., Palo Alto, CA, USA), digoxigenin (DIG-11-dUTP, alkali labile, DIG-11-UTP, Roche Diagnostics Corp., Indianapolis, IN, USA), and dinitrophenyl (dinitrophenyl-11-dUTP, Molecular Probes, Inc., Eugene, OR, USA).

Nucleic acid molecules can be labeled by incorporation of labeled nucleotide analogues into the nucleic acid. Such analogues can be incorporated by enzymatic polymerization, such as by nick translation, random priming, polymerase chain reaction (PCR), terminal transferase tailing, and end-filling of overhangs, for DNA molecules, and in vitro transcription driven, e.g., from phage promoters, such as T7, T3, and SP6, for RNA molecules. Commercial kits are readily available for each such labeling approach. Analogues can also be incorporated during automated solid phase chemical synthesis. Labels can also be incorporated after nucleic acid synthesis, with the 5' phosphate and 3'

hydroxyl providing convenient sites for post-synthetic covalent attachment of detectable labels.

Other post-synthetic approaches also permit internal labeling of nucleic acids.

For example, fluorophores can be attached using a cisplatin reagent that reacts with the N7 of guanine residues (and, to a lesser extent, adenine bases) in DNA, RNA, and PNA to provide a stable coordination complex between the nucleic acid and fluorophore label (Universal Linkage System) (available from Molecular Probes, Inc., Eugene, OR, USA and Amersham Pharmacia Biotech, Piscataway, NJ, USA); see Alers et al., Genes, Chromosomes & Cancer 25: 301- 305 (1999); Jelsma et al., J. NIH Res. 5: 82 (1994); Van Belkum et al.; BioTechniques 16: 148-153 (1994), incorporated herein by reference. As another example, nucleic acids can be labeled using a disulfide-containing linker (FastTagTM Reagent, Vector Laboratories, Inc., Burlingame, CA, USA) that is photo- or thermally-coupled to the target nucleic acid using aryl azide chemistry; after reduction, a free thiol is available for coupling to a hapten, fluorophore, sugar, affinity ligand, or other marker.

One or more independent or interacting labels can be incorporated into the nucleic acid molecules of the present invention. For example, both a fluorophore and a moiety that in proximity thereto acts to quench fluorescence can be included to report specific hybridization through release of fluorescence quenching or to report exonucleotidic excision. See, e.g., Tyagi et al., Nature Biotechnol. 14: 303-308 (1996); Tyagi et al., Nature Biotechnol. 16: 49-53 (1998); Sokol et al., Proc. Natl. Acad. Sci. Tyagi et al., Nature Biotechnol. 16: 49-53 (1998); Sokol et al., Proc. Natl. Acad. Sci. USA 95: 11538-11543 (1998); Kostrikis et al., Science 279: 1228-1229 (1998); Marras et al., Genet. Anal. 14: 151-156 (1999); U. S. Patent 5,846,726; 5,925,517; 5,925,517; 5,723,591 and 5,538,848; Holland et al., Proc. Natl. Acad. Sci. USA 88: 7276-7280 (1991); Heid et al., Genome Res. 6(10): 986-94 (1996); Kuimelis et al., Nucleic Acids Symp. Ser. (37): 255-6 (1997); the disclosures of which are incorporated herein by reference in their entireties.

Nucleic acid molecules of the invention may be modified by altering one or more native phosphodiester internucleoside bonds to more nuclease-resistant, internucleoside bonds. See Hartmann et al. (eds.), Manual of Antisense Methodology: Perspectives in Antisense Science, Kluwer Law International (1999); Stein et al. (eds.), Applied Antisense Oligonucleotide Technology, Wiley-Liss (1998); Chadwick et al. (eds.),

Oligonucleotides as Therapeutic Agents - Symposium No. 209, John Wiley & Son Ltd (1997); the disclosures of which are incorporated herein by reference in their entireties. Such altered internucleoside bonds are often desired for antisense techniques or for targeted gene correction. See Gamper et al., Nucl. Acids Res. 28(21): 4332-4339 (2000), the disclosure of which is incorporated herein by reference in its entirety.

Modified oligonucleotide backbones include, without limitation, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U. S. Patents 3,687,808; 15 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, the disclosures of which are incorporated herein by reference in their entireties. In a preferred embodiment, the modified internucleoside 20 linkages may be used for antisense techniques.

Other modified oligonucleotide backbones do not include a phosphorus atom, but have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH₂ component parts. Representative U.S. patents that teach the preparation of the above backbones include, but are not limited to, U.S.

20

Patent 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437 and 5,677,439; the disclosures of which are incorporated herein by reference in their entireties.

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage are replaced with novel groups, such as peptide nucleic acids (PNA). In PNA compounds, the phosphodiester backbone of the nucleic acid is replaced with an amide-containing backbone, in particular by repeating N-(2-aminoethyl) glycine units linked by amide bonds. Nucleobases are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone, typically by methylene carbonyl linkages. PNA can be synthesized using a modified peptide synthesis protocol. PNA oligomers can be synthesized by both Fmoc and tBoc methods. Representative U.S. patents that teach the preparation of PNA compounds include, but are not limited to, U.S Patent 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Automated PNA synthesis is readily achievable on commercial synthesizers (see, e.g., "PNA User's Guide," Rev. 2, February 1998, Perseptive Biosystems Part No. 60138, Applied Biosystems, Inc., Foster City, CA).

PNA molecules are advantageous for a number of reasons. First, because the PNA backbone is uncharged, PNA/DNA and PNA/RNA duplexes have a higher thermal stability than is found in DNA/DNA and DNA/RNA duplexes. The Tm of a PNA/DNA or PNA/RNA duplex is generally 1°C higher per base pair than the Tm of the corresponding DNA/DNA or DNA/RNA duplex (in 100 mM NaCl). Second, PNA molecules can also form stable PNA/DNA complexes at low ionic strength, under conditions in which DNA/DNA duplex formation does not occur. Third, PNA also demonstrates greater specificity in binding to complementary DNA because a PNA/DNA mismatch is more destabilizing than DNA/DNA mismatch. A single mismatch in mixed a PNA/DNA 15-mer lowers the Tm by 8–20°C (15°C on average). In the corresponding DNA/DNA duplexes, a single mismatch lowers the Tm by 4–16°C (11°C on average). Because PNA probes can be significantly shorter than DNA probes, their specificity is greater. Fourth, PNA oligomers are resistant to degradation by enzymes, and the lifetime of these compounds is extended both *in vivo* and *in vitro* because nucleases and proteases

do not recognize the PNA polyamide backbone with nucleobase sidechains. See, e.g., Ray et al., FASEB J. 14(9): 1041-60 (2000); Nielsen et al., Pharmacol Toxicol. 86(1): 3-7 (2000); Larsen et al., Biochim Biophys Acta. 1489(1): 159-66 (1999); Nielsen, Curr. Opin. Struct. Biol. 9(3): 353-7 (1999), and Nielsen, Curr. Opin. Biotechnol. 10(1): 71-5 (1999), the disclosures of which are incorporated herein by reference in their entireties.

Nucleic acid molecules may be modified compared to their native structure throughout the length of the nucleic acid molecule or can be localized to discrete portions thereof. As an example of the latter, chimeric nucleic acids can be synthesized that have discrete DNA and RNA domains and that can be used for targeted gene repair and modified PCR reactions, as further described in U.S. Patents 5,760,012 and 5,731,181, Misra et al., Biochem. 37: 1917-1925 (1998); and Finn et al., Nucl. Acids Res. 24: 3357-3363 (1996), the disclosures of which are incorporated herein by reference in their entireties.

Unless otherwise specified, nucleic acids of the present invention can include any topological conformation appropriate to the desired use; the term thus explicitly comprehends, among others, single-stranded, double-stranded, triplexed, quadruplexed, partially double-stranded, partially-triplexed, partially-quadruplexed, branched, hairpinned, circular, and padlocked conformations. Padlock conformations and their utilities are further described in Banér et al., Curr. Opin. Biotechnol. 12: 11-15 (2001); Escude et al., Proc. Natl. Acad. Sci. USA 14: 96(19):10603-7 (1999); Nilsson et al., Science 265(5181): 2085-8 (1994), the disclosures of which are incorporated herein by reference in their entireties. Triplex and quadruplex conformations, and their utilities, are reviewed in Praseuth et al., Biochim. Biophys. Acta. 1489(1): 181-206 (1999); Fox, Curr. Med. Chem. 7(1): 17-37 (2000); Kochetkova et al., Methods Mol. Biol. 130: 189-201 (2000); Chan et al., J. Mol. Med. 75(4): 267-82 (1997), the disclosures of which are incorporated herein by reference in their entireties.

Methods for Using Nucleic Acid Molecules as Probes and Primers

The isolated nucleic acid molecules of the present invention can be used as

hybridization probes to detect, characterize, and quantify hybridizing nucleic acids in,
and isolate hybridizing nucleic acids from, both genomic and transcript-derived nucleic
acid samples. When free in solution, such probes are typically, but not invariably,

detectably labeled; bound to a substrate, as in a microarray, such probes are typically, but not invariably unlabeled.

In one embodiment, the isolated nucleic acids of the present invention can be used as probes to detect and characterize gross alterations in the gene of an LSNA, such as deletions, insertions, translocations, and duplications of the LSNA genomic locus through fluorescence in situ hybridization (FISH) to chromosome spreads. See, e.g., Andreeff et al. (eds.), Introduction to Fluorescence In Situ Hybridization: Principles and Clinical Applications, John Wiley & Sons (1999), the disclosure of which is incorporated herein by reference in its entirety. The isolated nucleic acids of the present invention can be used as probes to assess smaller genomic alterations using, e.g., Southern blot detection of restriction fragment length polymorphisms. The isolated nucleic acid molecules of the present invention can be used as probes to isolate genomic clones that include the nucleic acid molecules of the present invention, which thereafter can be restriction mapped and sequenced to identify deletions, insertions, translocations, and substitutions (single nucleotide polymorphisms, SNPs) at the sequence level.

In another embodiment, the isolated nucleic acid molecules of the present invention can be used as probes to detect, characterize, and quantify LSNA in, and isolate LSNA from, transcript-derived nucleic acid samples. In one aspect, the isolated nucleic acid molecules of the present invention can be used as hybridization probes to detect, characterize by length, and quantify mRNA by Northern blot of total or poly-A+- selected RNA samples. In another aspect, the isolated nucleic acid molecules of the present invention can be used as hybridization probes to detect, characterize by location, and quantify mRNA by in situ hybridization to tissue sections. See, e.g., Schwarchzacher et al., In Situ Hybridization, Springer-Verlag New York (2000), the disclosure of which is incorporated herein by reference in its entirety. In another preferred embodiment, the isolated nucleic acid molecules of the present invention can be used as hybridization probes to measure the representation of clones in a cDNA library or to isolate hybridizing nucleic acid molecules acids from cDNA libraries, permitting sequence level characterization of mRNAs that hybridize to LSNAs, including, without limitations, identification of deletions, insertions, substitutions, truncations, alternatively spliced forms and single nucleotide polymorphisms. In yet another preferred embodiment, the nucleic acid molecules of the instant invention may be used in microarrays.

15

25

30

All of the aforementioned probe techniques are well within the skill in the art, and are described at greater length in standard texts such as Sambrook (2001), *supra*; Ausubel (1999), *supra*; and Walker *et al.* (eds.), <u>The Nucleic Acids Protocols Handbook</u>, Humana Press (2000), the disclosures of which are incorporated herein by reference in their entirety.

Thus, in one embodiment, a nucleic acid molecule of the invention may be used as a probe or primer to identify or amplify a second nucleic acid molecule that selectively hybridizes to the nucleic acid molecule of the invention. In a preferred embodiment, the probe or primer is derived from a nucleic acid molecule encoding an LSP. In a more preferred embodiment, the probe or primer is derived from a nucleic acid molecule encoding a polypeptide having an amino acid sequence of SEQ ID NO: 116 through 208. In another preferred embodiment, the probe or primer is derived from an LSNA. In a more preferred embodiment, the probe or primer is derived from a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 115.

In general, a probe or primer is at least 10 nucleotides in length, more preferably at least 12, more preferably at least 14 and even more preferably at least 16 or 17 nucleotides in length. In an even more preferred embodiment, the probe or primer is at least 18 nucleotides in length, even more preferably at least 20 nucleotides and even more preferably at least 22 nucleotides in length. Primers and probes may also be longer in length. For instance, a probe or primer may be 25 nucleotides in length, or may be 30, 40 or 50 nucleotides in length. Methods of performing nucleic acid hybridization using oligonucleotide probes are well-known in the art. See, e.g., Sambrook et al., 1989, supra, Chapter 11 and pp. 11.31-11.32 and 11.40-11.44, which describes radiolabeling of short probes, and pp. 11.45-11.53, which describe hybridization conditions for oligonucleotide probes, including specific conditions for probe hybridization (pp. 11.50-11.51).

Methods of performing primer-directed amplification are also well-known in the art. Methods for performing the polymerase chain reaction (PCR) are compiled, *inter alia*, in McPherson, PCR Basics: From Background to Bench, Springer Verlag (2000); Innis et al. (eds.), PCR Applications: Protocols for Functional Genomics, Academic Press (1999); Gelfand et al. (eds.), PCR Strategies, Academic Press (1998); Newton et al., PCR, Springer-Verlag New York (1997); Burke (ed.), PCR: Essential Techniques, John Wiley & Son Ltd (1996); White (ed.), PCR Cloning Protocols: From Molecular

20

25

30

Cloning to Genetic Engineering, Vol. 67, Humana Press (1996); McPherson et al. (eds.), PCR 2: A Practical Approach, Oxford University Press, Inc. (1995); the disclosures of which are incorporated herein by reference in their entireties. Methods for performing RT-PCR are collected, e.g., in Siebert et al. (eds.), Gene Cloning and Analysis by RT-PCR, Eaton Publishing Company/Bio Techniques Books Division, 1998; Siebert (ed.), PCR Technique:RT-PCR, Eaton Publishing Company/ BioTechniques Books (1995); the disclosure of which is incorporated herein by reference in its entirety.

PCR and hybridization methods may be used to identify and/or isolate allelic variants, homologous nucleic acid molecules and fragments of the nucleic acid molecules of the invention. PCR and hybridization methods may also be used to identify, amplify and/or isolate nucleic acid molecules that encode homologous proteins, analogs, fusion protein or muteins of the invention. The nucleic acid primers of the present invention can be used to prime amplification of nucleic acid molecules of the invention, using transcript-derived or genomic DNA as template.

The nucleic acid primers of the present invention can also be used, for example, to prime single base extension (SBE) for SNP detection (See, e.g., U.S. Patent 6,004,744, the disclosure of which is incorporated herein by reference in its entirety).

Isothermal amplification approaches, such as rolling circle amplification, are also now well-described. See, e.g., Schweitzer et al., Curr. Opin. Biotechnol. 12(1): 21-7 (2001); U.S. Patents 5,854,033 and 5,714,320; and international patent publications WO 97/19193 and WO 00/15779, the disclosures of which are incorporated herein by reference in their entireties. Rolling circle amplification can be combined with other techniques to facilitate SNP detection. See, e.g., Lizardi et al., Nature Genet. 19(3): 225-32 (1998).

Nucleic acid molecules of the present invention may be bound to a substrate either covalently or noncovalently. The substrate can be porous or solid, planar or non-planar, unitary or distributed. The bound nucleic acid molecules may be used as hybridization probes, and may be labeled or unlabeled. In a preferred embodiment, the bound nucleic acid molecules are unlabeled.

In one embodiment, the nucleic acid molecule of the present invention is bound to a porous substrate, e.g., a membrane, typically comprising nitrocellulose, nylon, or positively-charged derivatized nylon. The nucleic acid molecule of the present invention

25

30

can be used to detect a hybridizing nucleic acid molecule that is present within a labeled nucleic acid sample, e.g., a sample of transcript-derived nucleic acids. In another embodiment, the nucleic acid molecule is bound to a solid substrate, including, without limitation, glass, amorphous silicon, crystalline silicon or plastics. Examples of plastics include, without limitation, polymethylacrylic, polyethylene, polypropylene, polyacrylate, polymethylmethacrylate, polyvinylchloride, polytetrafluoroethylene, polystyrene, polycarbonate, polyacetal, polysulfone, celluloseacetate, cellulosenitrate, nitrocellulose, or mixtures thereof. The solid substrate may be any shape, including rectangular, disk-like and spherical. In a preferred embodiment, the solid substrate is a microscope slide or slide-shaped substrate.

The nucleic acid molecule of the present invention can be attached covalently to a surface of the support substrate or applied to a derivatized surface in a chaotropic agent that facilitates denaturation and adherence by presumed noncovalent interactions, or some combination thereof. The nucleic acid molecule of the present invention can be bound to a substrate to which a plurality of other nucleic acids are concurrently bound, hybridization to each of the plurality of bound nucleic acids being separately detectable. At low density, e.g. on a porous membrane, these substrate-bound collections are typically denominated macroarrays; at higher density, typically on a solid support, such as glass, these substrate bound collections of plural nucleic acids are colloquially termed microarrays. As used herein, the term microarray includes arrays of all densities. It is, therefore, another aspect of the invention to provide microarrays that include the nucleic acids of the present invention.

Expression Vectors, Host Cells and Recombinant Methods of Producing Polypeptides

Another aspect of the present invention relates to vectors that comprise one or
more of the isolated nucleic acid molecules of the present invention, and host cells in
which such vectors have been introduced.

The vectors can be used, *inter alia*, for propagating the nucleic acids of the present invention in host cells (cloning vectors), for shuttling the nucleic acids of the present invention between host cells derived from disparate organisms (shuttle vectors), for inserting the nucleic acids of the present invention into host cell chromosomes (insertion vectors), for expressing sense or antisense RNA transcripts of the nucleic acids of the present invention *in vitro* or within a host cell, and for expressing polypeptides

25

30

encoded by the nucleic acids of the present invention, alone or as fusions to heterologous polypeptides (expression vectors). Vectors of the present invention will often be suitable for several such uses.

Vectors are by now well-known in the art, and are described, *inter alia*, in Jones et al. (eds.), Vectors: Cloning Applications: Essential Techniques (Essential Techniques Series), John Wiley & Son Ltd. (1998); Jones et al. (eds.), Vectors: Expression Systems:

Essential Techniques (Essential Techniques Series), John Wiley & Son Ltd. (1998);
Gacesa et al., Vectors: Essential Data, John Wiley & Sons Ltd. (1995); Cid-Arregui (eds.), Viral Vectors: Basic Science and Gene Therapy, Eaton Publishing Co. (2000);
Sambrook (2001), supra; Ausubel (1999), supra; the disclosures of which are incorporated herein by reference in their entireties. Furthermore, an enormous variety of vectors are available commercially. Use of existing vectors and modifications thereof being well within the skill in the art, only basic features need be described here.

Nucleic acid sequences may be expressed by operatively linking them to an expression control sequence in an appropriate expression vector and employing that expression vector to transform an appropriate unicellular host. Expression control sequences are sequences which control the transcription, post-transcriptional events and translation of nucleic acid sequences. Such operative linking of a nucleic sequence of this invention to an expression control sequence, of course, includes, if not already part of the nucleic acid sequence, the provision of a translation initiation codon, ATG or GTG, in the correct reading frame upstream of the nucleic acid sequence.

A wide variety of host/expression vector combinations may be employed in expressing the nucleic acid sequences of this invention. Useful expression vectors, for example, may consist of segments of chromosomal, non-chromosomal and synthetic nucleic acid sequences.

In one embodiment, prokaryotic cells may be used with an appropriate vector. Prokaryotic host cells are often used for cloning and expression. In a preferred embodiment, prokaryotic host cells include *E. coli*, *Pseudomonas*, *Bacillus* and *Streptomyces*. In a preferred embodiment, bacterial host cells are used to express the nucleic acid molecules of the instant invention. Useful expression vectors for bacterial hosts include bacterial plasmids, such as those from *E. coli*, *Bacillus* or *Streptomyces*, including pBluescript, pGEX-2T, pUC vectors, col E1, pCR1, pBR322, pMB9 and their

derivatives, wider host range plasmids, such as RP4, phage DNAs, e.g., the numerous derivatives of phage lambda, e.g., NM989, λGT10 and λGT11, and other phages, e.g., M13 and filamentous single-stranded phage DNA. Where E. coli is used as host, selectable markers are, analogously, chosen for selectivity in gram negative bacteria: e.g., typical markers confer resistance to antibiotics, such as ampicillin, tetracycline, chloramphenicol, kanamycin, streptomycin and zeocin; auxotrophic markers can also be used.

In other embodiments, eukaryotic host cells, such as yeast, insect, mammalian or plant cells, may be used. Yeast cells, typically S. cerevisiae, are useful for eukaryotic genetic studies, due to the ease of targeting genetic changes by homologous recombination and the ability to easily complement genetic defects using recombinantly expressed proteins. Yeast cells are useful for identifying interacting protein components, e.g. through use of a two-hybrid system. In a preferred embodiment, yeast cells are useful for protein expression. Vectors of the present invention for use in yeast will typically, but not invariably, contain an origin of replication suitable for use in yeast and a selectable marker that is functional in yeast. Yeast vectors include Yeast Integrating plasmids (e.g., YIp5) and Yeast Replicating plasmids (the YRp and YEp series plasmids), Yeast Centromere plasmids (the YCp series plasmids), Yeast Artificial Chromosomes (YACs) which are based on yeast linear plasmids, denoted YLp, pGPD-2, 2μ plasmids and derivatives thereof, and improved shuttle vectors such as those 20 described in Gietz et al., Gene, 74: 527-34 (1988) (YIplac, YEplac and YCplac). Selectable markers in yeast vectors include a variety of auxotrophic markers, the most common of which are (in Saccharomyces cerevisiae) URA3, HIS3, LEU2, TRP1 and LYS2, which complement specific auxotrophic mutations, such as ura3-52, his3-D1, leu2-D1, trp1-D1 and lys2-201.

Insect cells are often chosen for high efficiency protein expression. Where the host cells are from *Spodoptera frugiperda*, e.g., Sf9 and Sf21 cell lines, and expresSFTM cells (Protein Sciences Corp., Meriden, CT, USA)), the vector replicative strategy is typically based upon the baculovirus life cycle. Typically, baculovirus transfer vectors are used to replace the wild-type AcMNPV polyhedrin gene with a heterologous gene of interest. Sequences that flank the polyhedrin gene in the wild-type genome are positioned 5' and 3' of the expression cassette on the transfer vectors. Following co-

15

20

25

30

transfection with AcMNPV DNA, a homologous recombination event occurs between these sequences resulting in a recombinant virus carrying the gene of interest and the polyhedrin or p10 promoter. Selection can be based upon visual screening for lacZ fusion activity.

In another embodiment, the host cells may be mammalian cells, which are particularly useful for expression of proteins intended as pharmaceutical agents, and for screening of potential agonists and antagonists of a protein or a physiological pathway. Mammalian vectors intended for autonomous extrachromosomal replication will typically include a viral origin, such as the SV40 origin (for replication in cell lines expressing the large T-antigen, such as COS1 and COS7 cells), the papillomavirus origin, or the EBV origin for long term episomal replication (for use, e.g., in 293-EBNA cells, which constitutively express the EBV EBNA-1 gene product and adenovirus E1A). Vectors intended for integration, and thus replication as part of the mammalian chromosome, can, but need not, include an origin of replication functional in mammalian cells, such as the SV40 origin. Vectors based upon viruses, such as adenovirus, adeno-associated virus, vaccinia virus, and various mammalian retroviruses, will typically replicate according to the viral replicative strategy. Selectable markers for use in mammalian cells include resistance to neomycin (G418), blasticidin, hygromycin and to zeocin, and selection based upon the purine salvage pathway using HAT medium.

Expression in mammalian cells can be achieved using a variety of plasmids, including pSV2, pBC12BI, and p91023, as well as lytic virus vectors (e.g., vaccinia virus, adeno virus, and baculovirus), episomal virus vectors (e.g., bovine papillomavirus), and retroviral vectors (e.g., murine retroviruses). Useful vectors for insect cells include baculoviral vectors and pVL 941.

Plant cells can also be used for expression, with the vector replicon typically derived from a plant virus (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) and selectable markers chosen for suitability in plants.

It is known that codon usage of different host cells may be different. For example, a plant cell and a human cell may exhibit a difference in codon preference for encoding a particular amino acid. As a result, human mRNA may not be efficiently translated in a plant, bacteria or insect host cell. Therefore, another embodiment of this invention is directed to codon optimization. The codons of the nucleic acid molecules of

25

30

the invention may be modified to resemble, as much as possible, genes naturally contained within the host cell without altering the amino acid sequence encoded by the nucleic acid molecule.

Any of a wide variety of expression control sequences may be used in these vectors to express the DNA sequences of this invention. Such useful expression control sequences include the expression control sequences associated with structural genes of the foregoing expression vectors. Expression control sequences that control transcription include, e.g., promoters, enhancers and transcription termination sites. Expression control sequences in eukaryotic cells that control post-transcriptional events include splice donor and acceptor sites and sequences that modify the half-life of the transcribed RNA, e.g., sequences that direct poly(A) addition or binding sites for RNA-binding proteins. Expression control sequences that control translation include ribosome binding sites, sequences which direct targeted expression of the polypeptide to or within particular cellular compartments, and sequences in the 5' and 3' untranslated regions that modify the rate or efficiency of translation.

Examples of useful expression control sequences for a prokaryote, e.g., E. coli, will include a promoter, often a phage promoter, such as phage lambda pL promoter, the tre promoter, a hybrid derived from the trp and lac promoters, the bacteriophage T7 promoter (in E. coli cells engineered to express the T7 polymerase), the TAC or TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, or the araBAD operon. Prokaryotic expression vectors may further include transcription terminators, such as the aspA terminator, and elements that facilitate translation, such as a consensus ribosome binding site and translation termination codon, Schomer et al., Proc. Natl. Acad. Sci. USA 83: 8506-8510 (1986).

Expression control sequences for yeast cells, typically S. cerevisiae, will include a yeast promoter, such as the CYC1 promoter, the GAL1 promoter, the GAL10 promoter, ADH1 promoter, the promoters of the yeast _-mating system, or the GPD promoter, and will typically have elements that facilitate transcription termination, such as the transcription termination signals from the CYC1 or ADH1 gene.

Expression vectors useful for expressing proteins in mammalian cells will include a promoter active in mammalian cells. These promoters include those derived from mammalian viruses, such as the enhancer-promoter sequences from the immediate early

gene of the human cytomegalovirus (CMV), the enhancer-promoter sequences from the Rous sarcoma virus long terminal repeat (RSV LTR), the enhancer-promoter from SV40 or the early and late promoters of adenovirus. Other expression control sequences include the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase. Other expression control sequences include those from the gene comprising the LSNA of interest. Often, expression is enhanced by incorporation of polyadenylation sites, such as the late SV40 polyadenylation site and the polyadenylation signal and transcription termination sequences from the bovine growth hormone (BGH) gene, and ribosome binding sites. Furthermore, vectors can include introns, such as intron II of rabbit β-globin gene and the SV40 splice elements.

Preferred nucleic acid vectors also include a selectable or amplifiable marker gene and means for amplifying the copy number of the gene of interest. Such marker genes are well-known in the art. Nucleic acid vectors may also comprise stabilizing sequences (e.g., ori- or ARS-like sequences and telomere-like sequences), or may alternatively be designed to favor directed or non-directed integration into the host cell genome. In a preferred embodiment, nucleic acid sequences of this invention are inserted in frame into an expression vector that allows high level expression of an RNA which encodes a protein comprising the encoded nucleic acid sequence of interest. Nucleic acid cloning and sequencing methods are well-known to those of skill in the art and are described in an assortment of laboratory manuals, including Sambrook (1989), supra, Sambrook (2000), supra; and Ausubel (1992), supra, Ausubel (1999), supra. Product information from manufacturers of biological, chemical and immunological reagents also provide useful information.

Expression vectors may be either constitutive or inducible. Inducible vectors

25 include either naturally inducible promoters, such as the trc promoter, which is regulated by the lac operon, and the pL promoter, which is regulated by tryptophan, the MMTV-LTR promoter, which is inducible by dexamethasone, or can contain synthetic promoters and/or additional elements that confer inducible control on adjacent promoters. Examples of inducible synthetic promoters are the hybrid Plac/ara-1 promoter and the PL tetO-1 promoter. The PltetO-1 promoter takes advantage of the high expression levels from the PL promoter of phage lambda, but replaces the lambda repressor sites with two copies of operator 2 of the Tn10 tetracycline resistance operon, causing this promoter to

20

25

30

be tightly repressed by the Tet repressor protein and induced in response to tetracycline (Tc) and Tc derivatives such as anhydrotetracycline. Vectors may also be inducible because they contain hormone response elements, such as the glucocorticoid response element (GRE) and the estrogen response element (ERE), which can confer hormone inducibility where vectors are used for expression in cells having the respective hormone receptors. To reduce background levels of expression, elements responsive to ecdysone, an insect hormone, can be used instead, with coexpression of the ecdysone receptor.

In one aspect of the invention, expression vectors can be designed to fuse the expressed polypeptide to small protein tags that facilitate purification and/or visualization. Tags that facilitate purification include a polyhistidine tag that facilitates purification of the fusion protein by immobilized metal affinity chromatography, for example using NiNTA resin (Qiagen Inc., Valencia, CA, USA) or TALON™ resin (cobalt immobilized affinity chromatography medium, Clontech Labs, Palo Alto, CA, USA). The fusion protein can include a chitin-binding tag and self-excising intein, permitting chitin-based purification with self-removal of the fused tag (IMPACTTM system, New England Biolabs, Inc., Beverley, MA, USA). Alternatively, the fusion protein can include a calmodulin-binding peptide tag, permitting purification by calmodulin affinity resin (Stratagene, La Jolla, CA, USA), or a specifically excisable fragment of the biotin carboxylase carrier protein, permitting purification of in vivo biotinylated protein using an avidin resin and subsequent tag removal (Promega, Madison, WI, USA). As another useful alternative, the proteins of the present invention can be expressed as a fusion protein with glutathione-S-transferase, the affinity and specificity of binding to glutathione permitting purification using glutathione affinity resins, such as Glutathione-Superflow Resin (Clontech Laboratories, Palo Alto, CA, USA), with subsequent elution with free glutathione. Other tags include, for example, the Xpress epitope, detectable by anti-Xpress antibody (Invitrogen, Carlsbad, CA, USA), a myc tag, detectable by anti-myc tag antibody, the V5 epitope, detectable by anti-V5 antibody (Invitrogen, Carlsbad, CA, USA), FLAG® epitope, detectable by anti-FLAG® antibody (Stratagene, La Jolla, CA, USA), and the HA epitope.

For secretion of expressed proteins, vectors can include appropriate sequences that encode secretion signals, such as leader peptides. For example, the pSecTag2 vectors (Invitrogen, Carlsbad, CA, USA) are 5.2 kb mammalian expression vectors that

carry the secretion signal from the V-J2-C region of the mouse Ig kappa-chain for efficient secretion of recombinant proteins from a variety of mammalian cell lines.

Expression vectors can also be designed to fuse proteins encoded by the heterologous nucleic acid insert to polypeptides that are larger than purification and/or identification tags. Useful fusion proteins include those that permit display of the encoded protein on the surface of a phage or cell, fusion to intrinsically fluorescent proteins, such as those that have a green fluorescent protein (GFP)-like chromophore, fusions to the IgG Fc region, and fusion proteins for use in two hybrid systems.

Vectors for phage display fuse the encoded polypeptide to, e.g., the gene III

protein (pIII) or gene VIII protein (pVIII) for display on the surface of filamentous phage, such as M13. See Barbas et al., Phage Display: A Laboratory Manual, Cold Spring Harbor Laboratory Press (2001); Kay et al. (eds.), Phage Display of Peptides and Proteins: A Laboratory Manual, Academic Press, Inc., (1996); Abelson et al. (eds.), Combinatorial Chemistry (Methods in Enzymology, Vol. 267) Academic Press (1996).

Vectors for yeast display, e.g. the pYD1 yeast display vector (Invitrogen, Carlsbad, CA, USA), use the -agglutinin yeast adhesion receptor to display recombinant protein on the surface of S. cerevisiae. Vectors for mammalian display, e.g., the pDisplayTM vector (Invitrogen, Carlsbad, CA, USA), target recombinant proteins using an N-terminal cell surface targeting signal and a C-terminal transmembrane anchoring domain of platelet derived growth factor receptor.

A wide variety of vectors now exist that fuse proteins encoded by heterologous nucleic acids to the chromophore of the substrate-independent, intrinsically fluorescent green fluorescent protein from Aequorea victoria ("GFP") and its variants. The GFP-like chromophore can be selected from GFP-like chromophores found in naturally occurring proteins, such as A. victoria GFP (GenBank accession number AAA27721), Renilla reniformis GFP, FP583 (GenBank accession no. AF168419) (DsRed), FP593 (AF272711), FP483 (AF168420), FP484 (AF168424), FP595 (AF246709), FP486 (AF168421), FP538 (AF168423), and FP506 (AF168422), and need include only so much of the native protein as is needed to retain the chromophore's intrinsic fluorescence. Methods for determining the minimal domain required for fluorescence are known in the art. See Li et al., J. Biol. Chem. 272: 28545-28549 (1997). Alternatively, the GFP-like chromophore can be selected from GFP-like chromophores modified from

those found in nature. The methods for engineering such modified GFP-like chromophores and testing them for fluorescence activity, both alone and as part of protein fusions, are well-known in the art. See Heim et al., Curr. Biol. 6: 178-182 (1996) and Palm et al., Methods Enzymol. 302: 378-394 (1999), incorporated herein by reference in its entirety. A variety of such modified chromophores are now commercially available and can readily be used in the fusion proteins of the present invention. These include EGFP ("enhanced GFP"), EBFP ("enhanced blue fluorescent protein"), BFP2, EYFP ("enhanced yellow fluorescent protein"), ECFP ("enhanced cyan fluorescent protein") or Citrine. EGFP (see, e.g, Cormack et al., Gene 173: 33-38 (1996); United States Patent Nos. 6,090,919 and 5,804,387) is found on a variety of vectors, both plasmid and viral, which are available commercially (Clontech Labs, Palo Alto, CA, USA); EBFP is optimized for expression in mammalian cells whereas BFP2, which retains the original jellyfish codons, can be expressed in bacteria (see, e.g., Heim et al., Curr. Biol. 6: 178-182 (1996) and Cormack et al., Gene 173: 33-38 (1996)). Vectors containing these blue-shifted variants are available from Clontech Labs (Palo 15 Alto, CA, USA). Vectors containing EYFP, ECFP (see, e.g., Heim et al., Curr. Biol. 6: 178-182 (1996); Miyawaki et al., Nature 388: 882-887 (1997)) and Citrine (see, e.g., Heikal et al., Proc. Natl. Acad. Sci. USA 97: 11996-12001 (2000)) are also available from Clontech Labs. The GFP-like chromophore can also be drawn from other modified GFPs, including those described in U.S. Patents 6,124,128; 6,096,865; 6,090,919; 20 6,066,476; 6,054,321; 6,027,881; 5,968,750; 5,874,304; 5,804,387; 5,777,079; 5,741,668; and 5,625,048, the disclosures of which are incorporated herein by reference in their entireties. See also Conn (ed.), Green Fluorescent Protein (Methods in Enzymology, Vol. 302), Academic Press, Inc. (1999). The GFP-like chromophore of each of these GFP variants can usefully be included in the fusion proteins of the present 25

Fusions to the IgG Fc region increase serum half life of protein pharmaceutical products through interaction with the FcRn receptor (also denominated the FcRp receptor and the Brambell receptor, FcRb), further described in International Patent Application Nos. WO 97/43316, WO 97/34631, WO 96/32478, WO 96/18412.

For long-term, high-yield recombinant production of the proteins, protein fusions, and protein fragments of the present invention, stable expression is preferred. Stable

20

expression is readily achieved by integration into the host cell genome of vectors having selectable markers, followed by selection of these integrants. Vectors such as pUB6/V5-His A, B, and C (Invitrogen, Carlsbad, CA, USA) are designed for high-level stable expression of heterologous proteins in a wide range of mammalian tissue types and cell lines. pUB6/V5-His uses the promoter/enhancer sequence from the human ubiquitin C gene to drive expression of recombinant proteins: expression levels in 293, CHO, and NIH3T3 cells are comparable to levels from the CMV and human EF-1a promoters. The bsd gene permits rapid selection of stably transfected mammalian cells with the potent antibiotic blasticidin.

Replication incompetent retroviral vectors, typically derived from Moloney murine leukemia virus, also are useful for creating stable transfectants having integrated provirus. The highly efficient transduction machinery of retroviruses, coupled with the availability of a variety of packaging cell lines such as RetroPackTM PT 67, EcoPack2TM-293, AmpnoPack-293, and GP2-293 cell lines (all available from Clontech Laboratories, Palo Alto, CA, USA), allow a wide host range to be infected with high efficiency; varying the multiplicity of infection readily adjusts the copy number of the integrated provirus.

Of course, not all vectors and expression control sequences will function equally well to express the nucleic acid sequences of this invention. Neither will all hosts function equally well with the same expression system. However, one of skill in the art may make a selection among these vectors, expression control sequences and hosts without undue experimentation and without departing from the scope of this invention. For example, in selecting a vector, the host must be considered because the vector must be replicated in it. The vector's copy number, the ability to control that copy number, the ability to control integration, if any, and the expression of any other proteins encoded by the vector, such as antibiotic or other selection markers, should also be considered. The present invention further includes host cells comprising the vectors of the present invention, eitner present episomally within the cell or integrated, in whole or in part, into the host cell chromosome. Among other considerations, some of which are described above, a host cell strain may be chosen for its ability to process the expressed protein in the desired fashion. Such post-translational modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation,

15

20

25

30

and acylation, and it is an aspect of the present invention to provide LSPs with such post-translational modifications.

Polypeptides of the invention may be post-translationally modified. Posttranslational modifications include phosphorylation of amino acid residues serine, threonine and/or tyrosine, N-linked and/or O-linked glycosylation, methylation, acetylation, prenylation, methylation, acetylation, arginylation, ubiquination and racemization. One may determine whether a polypeptide of the invention is likely to be post-translationally modified by analyzing the sequence of the polypeptide to determine if there are peptide motifs indicative of sites for post-translational modification. There are a number of computer programs that permit prediction of post-translational modifications. See, e.g., www.expasy.org (accessed August 31, 2001), which includes PSORT, for prediction of protein sorting signals and localization sites, SignalP, for prediction of signal peptide cleavage sites, MITOPROT and Predotar, for prediction of mitochondrial targeting sequences, NetOGlyc, for prediction of type O-glycosylation sites in mammalian proteins, big-PI Predictor and DGPI, for prediction of prenylationanchor and cleavage sites, and NetPhos, for prediction of Ser, Thr and Tyr phosphorytation sites in eukaryotic proteins. Other computer programs, such as those included in GCG, also may be used to determine post-translational modification peptide motifs.

General examples of types of post-translational modifications may be found in web sites such as the Delta Mass database http://www.abrf.org/ABRF/Research Committees/deitamass/deltamass.html (accessed October 19, 2001); "GlycoSuiteDB: a new curated relational database of glycoprotein glycan structures and their biological sources" Cooper et al. Nucleic Acids Res. 29; 332-335 (2001) and http://www.glycosuite.com/ (accessed October 19, 2001); "O-GLYCBASE version 4.0: a revised database of O-glycosylated proteins" Gupta et al. Nucleic Acids Research, 27: 370-372 (1999) and http://www.cbs.dtu.dk/databases/OGLYCBASE/ (accessed October 19, 2001); "PhosphoBase, a database of phosphorylation sites: release 2.0.", Kreegipuu et al. Nucleic Acids Res 27(1):237-239 (1999) and http://www.cbs.dtu.dk/

databases/PhosphoBase/ (accessed October 19, 2001); or http://pir.georgetown.edu/pirwww/searcn/textresid.html (accessed October 19, 2001).

25

30

Tumorigenesis is often accompanied by alterations in the post-translational modifications of proteins. Thus, in another embodiment, the invention provides polypeptides from cancerous cells or tissues that have altered post-translational modifications compared to the post-translational modifications of polypeptides from normal cells or tissues. A number of altered post-translational modifications are known. One common alteration is a change in phosphorylation state, wherein the polypeptide from the cancerous cell or tissue is hyperphosphorylated or hypophosphorylated compared to the polypeptide from a normal tissue, or wherein the polypeptide is phosphorylated on different residues than the polypeptide from a normal cell. Another common alteration is a change in glycosylation state, wherein the polypeptide from the cancerous cell or tissue has more or less glycosylation than the polypeptide from a normal tissue, and/or wherein the polypeptide from the cancerous cell or tissue has a different type of glycosylation than the polypeptide from a noncancerous cell or tissue. Changes in grycosyration may be critical because carbohydrate-protein and carbohydrate-15 carbohydrate interactions are important in cancer cell progression, dissemination and invasion. See, e.g., Barchi, Curr. Pharm. Des. 6: 485-501 (2000), Verma, Cancer Biochem. Biophys. 14: 151-162 (1994) and Dennis et al., Bioessays 5: 412-421 (1999).

Another post-translational modification that may be altered in cancer cells is prenylation. Prenylation is the covalent attachment of a hydrophobic prenyl group (either farnesyl or geranylgeranyl) to a polypeptide. Prenylation is required for localizing a protein to a cerl membrane and is often required for polypeptide function. For instance, the Ras superfamily of GTPase signaling proteins must be prenylated for function in a cell. See, e.g., Prendergast et al., Semin. Cancer Biol. 10: 443-452 (2000) and Khwaja et al., Lancet 355: 741-744 (2000).

Other post-translation modifications that may be altered in cancer cells include, without limitation, polypeptide methylation, acetylation, arginylation or racemization of amino acid residues. In these cases, the polypeptide from the cancerous cell may exhibit either increased or decreased amounts of the post-translational modification compared to the corresponding polypeptides from noncancerous cells.

Other polypeptide alterations in cancer cells include abnormal polypeptide cleavage of proteins and aberrant protein-protein interactions. Abnormal polypeptide cleavage may be cleavage of a polypeptide in a cancerous cell that does not usually occur

20

25

in a normal cell, or a lack of cleavage in a cancerous cell, wherein the polypeptide is cleaved in a normal cell. Aberrant protein-protein interactions may be either covalent cross-linking or non-covalent binding between proteins that do not normally bind to each other. Alternatively, in a cancerous cell, a protein may fail to bind to another protein to which it is bound in a noncancerous cell. Alterations in cleavage or in protein-protein interactions may be due to over- or underproduction of a polypeptide in a cancerous cell compared to that in a normal cell, or may be due to alterations in post-translational modifications (see above) of one or more proteins in the cancerous cell. See, e.g., Henschen-Edman, Ann. N.Y. Acad. Sci. 936: 580-593 (2001).

Alterations in polypeptide post-translational modifications, as well as changes in polypeptide creavage and protein-protein interactions, may be determined by any method known in the art. For instance, alterations in phosphorylation may be determined by using anti-phosphoserine, anti-phosphothreonine or anti-phosphotyrosine antibodies or by amino acid analysis. Glycosylation alterations may be determined using antibodies specific for different sugar residues, by carbohydrate sequencing, or by alterations in the size of the glycoprotein, which can be determined by, e.g., SDS polyacrylamide gel electrophoresis (PAGE). Other alterations of post-translational modifications, such as prenylation, racemization, methylation, acetylation and arginylation, may be determined by chemical analysis, protein sequencing, amino acid analysis, or by using antibodies specific for the particular post-translational modifications. Changes in protein-protein interactions and in polypeptide cleavage may be analyzed by any method known in the art including, without limitation, non-denaturing PAGE (for non-covalent protein-protein interactions), SDS PAGE (for covalent protein-protein interactions and protein cleavage), chemical cleavage, protein sequencing or immunoassays.

In another embodiment, the invention provides polypeptides that have been post-translationarly modified. In one embodiment, polypeptides may be modified enzymatically or chemically, by addition or removal of a post-translational modification. For example, a polypeptide may be glycosylated or deglycosylated enzymatically. Similarly, polypeptides may be phosphorylated using a purified kinase, such as a MAP kinase (e.g., p38, ERK, or JNK) or a tyrosine kinase (e.g., Src or erbB2). A polypeptide may also be modified through synthetic chemistry. Alternatively, one may isolate the polypeptide of interest from a cell or tissue that expresses the polypeptide with the

20

25

desired post-translational modification. In another embodiment, a nucleic acid molecule encoding the polypeptide of interest is introduced into a host cell that is capable of post-translationally modifying the encoded polypeptide in the desired fashion. If the polypeptide does not contain a motif for a desired post-translational modification, one may alter the post-translational modification by mutating the nucleic acid sequence of a nucleic acid molecule encoding the polypeptide so that it contains a site for the desired post-translational modification. Amino acid sequences that may be post-translationally modified are known in the art. See, e.g., the programs described above on the website www.expasy.org. The nucleic acid molecule is then be introduced into a host cell that is capable of post-translationally modifying the encoded polypeptide. Similarly, one may delete sites that are post-translationally modified by either mutating the nucleic acid sequence so that the encoded polypeptide does not contain the post-translational modification motif, or by introducing the native nucleic acid molecule into a host cell that is not capable of post-translationally modifying the encoded polypeptide.

In selecting an expression control sequence, a variety of factors should also be considered. These include, for example, the relative strength of the sequence, its controllability, and its compatibility with the nucleic acid sequence of this invention, particularly with regard to potential secondary structures. Unicellular hosts should be selected by consideration of their compatibility with the chosen vector, the toxicity of the product coded for by the nucleic acid sequences of this invention, their secretion characteristics, their ability to fold the polypeptide correctly, their fermentation or culture requirements, and the ease of purification from them of the products coded for by the nucleic acid sequences of this invention.

The recommend nucleic acid molecules and more particularly, the expression vectors of this invention may be used to express the polypeptides of this invention as recombinant polypeptides in a heterologous host cell. The polypeptides of this invention may be full-length or less than full-length polypeptide fragments recombinantly expressed from the nucleic acid sequences according to this invention. Such polypeptides include analogs, derivatives and muteins that may or may not have biological activity.

Vectors of the present invention will also often include elements that permit in vitro transcription of itNA from the inserted heterologous nucleic acid. Such vectors

typically include a phage promoter, such as that from T7, T3, or SP6, flanking the nucleic acid insert. Often two different such promoters flank the inserted nucleic acid, permitting separate *in vitro* production of both sense and antisense strands.

Transformation and other methods of introducing nucleic acids into a host cell

(e.g., conjugation, protoplast transformation or fusion, transfection, electroporation, liposome delivery, membrane fusion techniques, high velocity DNA-coated pellets, viral infection and protoplast fusion) can be accomplished by a variety of methods which are well-known in the art (See, for instance, Ausubel, supra, and Sambrook et al., supra).

Bacterial, yeast, plant or mammalian cells are transformed or transfected with an expression vector, such as a plasmid, a cosmid, or the like, wherein the expression vector comprises the nucleic acid of interest. Alternatively, the cells may be infected by a viral expression vector comprising the nucleic acid of interest. Depending upon the host cell, vector, and method of transformation used, transient or stable expression of the polypeptide will be constitutive or inducible. One having ordinary skill in the art will be able to decide whether to express a polypeptide transiently or stably, and whether to express the protein constitutively or inducibly.

A wide variety of unicellular host cells are useful in expressing the DNA sequences of this invention. These hosts may include well-known eukaryotic and prokaryotic nosts, such as strains of, fungi, yeast, insect cells such as Spodoptera 20 frugiperda (SF9), animal cells such as CHO, as well as plant cells in tissue culture. Representative examples of appropriate host cells include, but are not limited to, bacterial cells, such as E. coli, Caulobacter crescentus, Streptomyces species, and Salmonella typhimurium; yeast cells, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris, Pichia methanolica; insect cell lines, such as those from Spodoptera frugiperda, e.g., Sf9 and Sf21 cell lines, and expresSFTM cells (Protein 25 Sciences Corp., Meriden, CT, USA), Drosophila S2 cells, and Trichoplusia ni High Five® Celis convarogen, Carlsbad, CA, USA); and mammalian cells. Typical mammalian cerls include BHK cells, BSC 1 cells, BSC 40 cells, BMT 10 cells, VERO cells, COS1 cents, COS7 cells, Chinese hamster ovary (CHO) cells, 3T3 cells, NIH 3T3 cells, 293 cells, HEPG2 cells, HeLa cells, L cells, MDCK cells, HEK293 cells, WI38 30 cells, murine ES cell lines (e.g., from strains 129/SV, C57/BL6, DBA-1, 129/SVJ), K562 cells, Jurkat cells, and BW5147 cells. Other mammalian cell lines are well-known and

readily available from the American Type Culture Collection (ATCC) (Manassas, VA, USA) and the Matienar Institute of General Medical Sciences (NIGMS) Human Genetic Cell Repository at the Coriell Cell Repositories (Camden, NJ, USA). Cells or cell lines derived from rung are particularly preferred because they may provide a more native post-translational processing. Particularly preferred are human lung cells.

Particular details of the transfection, expression and purification of recombinant proteins are well documented and are understood by those of skill in the art. Further details on the various recombinant aspects of each of the steps used in recombinant production of torcign genes in bacterial cell expression systems can be found in a number of texts and apparatory manuals in the art. See, e.g., Ausubel (1992), supra, Ausubel (1999), supra, Sambrook (1989), supra, and Sambrook (2001), supra, herein incorporated by reference.

Methods for introducing the vectors and nucleic acids of the present invention into the host cells are well-known in the art; the choice of technique will depend primarily upon the specific vector to be introduced and the host cell chosen.

Nucleic testa motecules and vectors may be introduced into prokaryotes, such as E. coli, in a number of ways. For instance, phage lambda vectors will typically be packaged using a packaging extract (e.g., Gigapack® packaging extract, Stratagene, La Jolla, CA, USA), and the packaged virus used to infect E. coli.

Plasmid vectors will typically be introduced into chemically competent or electrocompetent bacterial cells. E. coli cells can be rendered chemically competent by treatment, e.g., with CaCl2, or a solution of Mg2+, Mn2+, Ca2+, Rb+ or K+, dimethyl sulfoxide, citra amreitor, and hexamine cobalt (III), Hanahan, J. Mol. Biol. 166(4):557-80 (1983), and vectors introduced by heat shock. A wide variety of chemically competent strains are also available commercially (e.g., Epicurian Coli® XL10-Gold® Ultracompetent Ceils (Stratagene, La Jolla, CA, USA); DH5 competent cells (Clontech Laboratories, Paio Alto, CA, USA); and TOP10 Chemically Competent E. coli Kit (Invitrogen, Carlsbad, CA, USA)). Bacterial cells can be rendered electrocompetent, that is, competent to take up exogenous DNA by electroporation, by various pre-pulse 30 treatments; vectors are introduced by electroporation followed by subsequent outgrowth in selected mean. An extensive series of protocols is provided online in Electroprotocols

25

(BioRad, Richmond, CA, USA) (http://www.biorad.com/LifeScience/pdf/ New Gene Pulser.pdf).

Vectors can be introduced into yeast cells by spheroplasting, treatment with lithium salts, electroporation, or protoplast fusion. Spheroplasts are prepared by the action of hydrolytic enzymes such as snail-gut extract, usually denoted Glusulase, or Zymolyase, an enzyme from Arthrobacter luteus, to remove portions of the cell wall in the presence of osmotic stabilizers, typically 1 M sorbitol. DNA is added to the spheroplasts, and the mixture is co-precipitated with a solution of polyethylene glycol (PEG) and Ca²⁺. Subsequently, the cells are resuspended in a solution of sorbitol, mixed with molten agar and then tayered on the surface of a selective plate containing sorbitol.

For lithium-mediated transformation, yeast cells are treated with lithium acetate, which apparently permeabilizes the cell wall, DNA is added and the cells are co-precipitated with PEG. The cells are exposed to a brief heat shock, washed free of PEG and lithium acetate, and subsequently spread on plates containing ordinary selective medium. Increased frequencies of transformation are obtained by using specially-prepared single-stranded carrier DNA and certain organic solvents. Schiestl et al., Curr. Genet. 16(5-6): 339-46 (1989).

For electroporation, freshly-grown yeast cultures are typically washed, suspended in an osmotic protectant, such as sorbitol, mixed with DNA, and the cell suspension pulsed in an electroporation device. Subsequently, the cells are spread on the surface of plates containing selective media. Becker et al., Methods Enzymol. 194: 182-187 (1991). The efficiency of transformation by electroporation can be increased over 100-fold by using PEG, single-stranded carrier DNA and cells that are in late log-phase of growth. Larger constructs, such as YACs, can be introduced by protoplast fusion.

Mammatian and insect cells can be directly infected by packaged viral vectors, or transfected by chemical or electrical means. For chemical transfection, DNA can be coprecipitated with CaPO₄ or introduced using liposomal and nonliposomal lipid-based agents. Commercial kits are available for CaPO₄ transfection (CalPhosTM Mammalian Transfection Kit, Clontech Laboratories, Palo Alto, CA, USA), and lipid-mediated transfection can be practiced using commercial reagents, such as LIPOFECTAMINETM 2000, LIPOFECTAMINETM Reagent, CELLFECTIN® Reagent, and LIPOFECTIN® Reagent (Invitrogen, Carisbad, CA, USA), DOTAP Liposomal Transfection Reagent,

FuGENE 6, X-tremeGENE Q2, DOSPER, (Roche Molecular Biochemicals, Indianapolis, IN USA), EffectoneTM, PotyFect®, Superfect® (Qiagen, Inc., Valencia, CA, USA). Protocols for electroporating mammalian cells can be found online in Electroprotocols (Bio-Rad, Richmona, CA, USA) (http://www.bio-rad.com/LifeScience/pdf/

New_Gene_Pulser.pdf); Norton et al. (eds.), Gene Transfer Methods: Introducing DNA into Living Cells and Organisms, BioTechniques Books, Eaton Publishing Co. (2000); incorporated herein by reference in its entirety. Other transfection techniques include transfection by particle bombardment and microinjection. See, e.g., Cheng et al., Proc. Natl. Acad. Sci. USA 90(10): 4455-9 (1993); Yang et al., Proc. Natl. Acad. Sci. USA 87(24): 9568-72 (1990).

Production of the recombinantly produced proteins of the present invention can optionally be followed by purification.

Purification of recombinantly expressed proteins is now well by those skilled in the art. See, e.g., Thorner et al. (eds.), Applications of Chimeric Genes and Hybrid Proteins, Part A: Gene Expression and Protein Purification (Methods in Enzymology, 15 Vol. 326), Actuatennic Press (2000); Harbin (ed.), Cloning, Gene Expression and Protein Purification: Emperimental Procedures and Process Rationale, Oxford Univ. Press (2001); Marsnak et al., Strategies for Protein Purification and Characterization: A Laboratory Course Manual, Cold Spring Harbor Laboratory Press (1996); and Roe (ed.), Protein Purification Applications, Oxford University Press (2001); the disclosures of 20 which are incorporated herein by reference in their entireties, and thus need not be detailed here.

Briefly, however, if purification tags have been fused through use of an expression vector that appends such tags, purification can be effected, at least in part, by means appropriate to the tag, such as use of immobilized metal affinity chromatography for polyhistidine tags. Other techniques common in the art include ammonium sulfate fractionation, immunoprecipitation, fast protein liquid chromatography (FPLC), high performance riquid chromatography (HPLC), and preparative gel electrophoresis.

Polypeptides

Another object of the invention is to provide polypeptides encoded by the nucleic 30 acid molecules of the instant invention. In a preferred embodiment, the polypeptide is a lung specific potypeptide (LSP). In an even more preferred embodiment, the polypeptide

25

is derived from a potypeptide comprising the amino acid sequence of SEQ ID NO: 116 through 208. A potypeptide as defined herein may be produced recombinantly, as discussed supra, may be isolated from a cell that naturally expresses the protein, or may be chemically synthesized following the teachings of the specification and using methods well-known to those having ordinary skill in the art.

In another aspect, the polypeptide may comprise a fragment of a polypeptide, wherein the fragment is as defined herein. In a preferred embodiment, the polypeptide fragment is a fragment of an LSP. In a more preferred embodiment, the fragment is derived from a polypeptide comprising the amino acid sequence of SEQ ID NO: 116 through 208. A polypeptide that comprises only a fragment of an entire LSP may or may not be a polypeptide that is also an LSP. For instance, a full-length polypeptide may be lung-specific, while a fragment thereof may be found in other tissues as well as in lung. A polypeptide that is not an LSP, whether it is a fragment, analog, mutein, homologous protein or derivative, is nevertheless useful, especially for immunizing animals to prepare anti-LSP antibodies. However, in a preferred embodiment, the part or fragment is an LSP. Methods of determining whether a polypeptide is an LSP are described *infra*.

Fragments of at teast 6 contiguous amino acids are useful in mapping B cell and T cell epitopes of the reference protein. See, e.g., Geysen et al., Proc. Natl. Acad. Sci. USA 81: 3998-4002 (1984) and U.S. Patents 4,708,871 and 5,595,915, the disclosures of which are incorporated herein by reference in their entireties. Because the fragment need not itself be immunogenic, part of an immunodominant epitope, nor even recognized by native antibody, to be useful in such epitope mapping, all fragments of at least 6 amino acids of the proteins of the present invention have utility in such a study.

Fragments of at least 8 contiguous amino acids, often at least 15 contiguous amino acids, are useful as immunogens for raising antibodies that recognize the proteins of the present invention. See, e.g., Lerner, Nature 299: 592-596 (1982); Shinnick et al., Annu. Rev. Microbiol. 37: 425-46 (1983); Sutcliffe et al., Science 219: 660-6 (1983), the disclosures of which are incorporated herein by reference in their entireties. As further described in the above-cited references, virtually all 8-mers, conjugated to a carrier, such as a protein, prove immunogenic, meaning that they are capable of eliciting antibody for the conjugated peptide; accordingly, all fragments of at least 8 amino acids of the proteins of the present invention have utility as immunogens.

Fragments or at least 8, 9, 10 or 12 contiguous amino acids are also useful as competitive mnsostors of binding of the entire protein, or a portion thereof, to antibodies (as in epitope mapping) and to natural binding partners, such as subunits in a multimeric complex or to acceptors or ligands of the subject protein; this competitive inhibition 5 permits identification and separation of molecules that bind specifically to the protein of interest, U.S. Patents 5,539,084 and 5,783,674, incorporated herein by reference in their entireties.

The protein, or protein fragment, of the present invention is thus at least 6 amino acids in length, pricarry at least 8, 9, 10 or 12 amino acids in length, and often at least 15 amino acids in rangin. Often, the protein of the present invention, or fragment thereof, is at least 20 antino acids in length, even 25 amino acids, 30 amino acids, 35 amino acids, or 50 amino acids or more in length. Of course, larger fragments having at least 75 amino acids, 100 amino acids, or even 150 amino acids are also useful, and at times preferred.

One having ordinary skill in the art can produce fragments of a polypeptide by truncating the macreic acid molecule, e.g., an LSNA, encoding the polypeptide and then expressing a recombinantly. Alternatively, one can produce a fragment by chemically synthesizing a portion of the full-length polypeptide. One may also produce a fragment by enzymatically cleaving either a recombinant polypeptide or an isolated naturallyoccurring potypeptide. Methods of producing polypeptide fragments are well-known in the art. See, e.g., Sambrook (1989), supra; Sambrook (2001), supra; Ausubel (1992), 20 supra; and Ausubel (1999), supra. In one embodiment, a polypeptide comprising only a fragment of polypeptide of the invention, preferably an LSP, may be produced by chemical or enzymatic cleavage of a polypeptide. In a preferred embodiment, a polypeptide iraginem is produced by expressing a nucleic acid molecule encoding a fragment of the potypeptide, preferably an LSP, in a host cell.

By "polypeptides" as used herein it is also meant to be inclusive of mutants, fusion proteins, nomologous proteins and allelic variants of the polypeptides specifically exemplifiea.

A mutant protein, or mutein, may have the same or different properties compared 30 to a naturally-occurring polypeptide and comprises at least one amino acid insertion, duplication, determine rearrangement or substitution compared to the amino acid sequence

of a native process. Small deletions and insertions can often be found that do not alter the function of the protein. In one embodiment, the mutein may or may not be lung-specific. In a preferred embodiment, the mutein is lung-specific. In a preferred embodiment, the mutein is a polypeptide that comprises at least one amino acid insertion, duplication, deletion, rearrangement or substitution compared to the amino acid sequence of SEQ ID NO: 116 through 200 in a more preferred embodiment, the mutein is one that exhibits at least 50% sequence identity, more preferably at least 60% sequence identity, even more preferably at reast 70%, yet more preferably at least 80% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 116 through 208. In yet a more preferred embodiment, the mutein exhibits at least 85%, more preferably 90%, even more preferably 95% of 96%, and yet more preferably at least 97%, 98%, 99% or 99.5% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 116 through 208.

-A muse... may we produced by isolation from a naturally-occurring mutant cell, tissue or organism. A mutein may be produced by isolation from a cell, tissue or organism that has occur experimentally mutagenized. Alternatively, a mutein may be produced by enemical manipulation of a polypeptide, such as by altering the amino acid residue to another amino acid residue using synthetic or semi-synthetic chemical techniques. In a preferred embodiment, a mutein may be produced from a host cell 20 comprising an ancrea nucleic acid molecule compared to the naturally-occurring nucleic acid molecule. The matance, one may produce a mutein of a polypeptide by introducing one or more attactions into a nucreic acid sequence of the invention and then expressing it recombinantly. These mutations may be targeted, in which particular encoded amino acids are attered or may be untargeted, in which random encoded amino acids within the polypeptide are antered. Wrateins with random amino acid alterations can be screened for a particular piotogical activity or property, particularly whether the polypeptide is lungspecific, as described below. Multiple random mutations can be introduced into the gene by methods well-known to the art, e.g., by error-prone PCR, shuffling, oligonucleotide arecteu mutagenesis, assembly PCR, sexual PCR mutagenesis, in vivo mutagenesis, causette mutagenesis, recursive ensemble mutagenesis, exponential 30 ensemble mutagenesis and site-specific mutagenesis. Methods of producing muteins with targeted or random amino acid atterations are well-known in the art. See, e.g.,

Sambrook (1989), supra; Sambrook (2001), supra; Ausubel (1992), supra; and Ausubel (1999), U.S. Patent 5,223,408, and the references discussed supra, each herein incorporated by reference.

By "pory repute" as used herein it is also meant to be inclusive of polypeptides homologous to assist potypopuldes exemplified herein. In a preferred embodiment, the polypeptide is numerogous to an LSP. in an even more preferred embodiment, the polypeptide is nontologous to an LSP selected from the group having an amino acid sequence of SEQ ID NO: 116 through 208. In a preferred embodiment, the homologous polypeptide is one that exhibits significant sequence identity to an LSP. In a more preferred embodiment, the polypeptide is one that exhibits significant sequence identity to an comprising an amino acid sequence of SEQ ID NO: 116 through 208. In an even more preferred amountment, the homologous polypeptide is one that exhibits at least 50% sequence alentity, more preferancy at least 60% sequence identity, even more preferably at 16404 7646, yet more preferably at least 80% sequence identity to an LSP comprising an tanno acid sequence of SEQ ID NO: 116 through 208. In a yet more 15 preferred embodiment, the homologous polypeptide is one that exhibits at least 85%, more preferably 90%, even more preferably 95% or 96%, and yet more preferably at least 97% or 98% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 110 turough 208. In another preferred embodiment, the homologous polypeptide is that exhibits at teast 99%, more preferably 99.5%, even more 20 preferably 99.07%, 99.7%, 99.8% or 99.9% sequence identity to an LSP comprising an amino acid sequence of SEQ ID Not 116 through 208. In a preferred embodiment, the amino acid substitutions are conservative amino acid substitutions as discussed above.

In another embodiment, the homologous polypeptide is one that is encoded by a nucleic acid molecule that selectively hybridizes to an LSNA. In a preferred embodiment, the nomologous polypeptide is encoded by a nucleic acid molecule that hybridizes to an LSNA under low stringency, moderate stringency or high stringency conditions, as defined herein. In a more preferred embodiment, the LSNA is selected from the group consisting of SEQ iD NO: I through 115. In another preferred embodiment, the nomologous polypeptide is encoded by a nucleic acid molecule that hybridizes to a nucleic acid molecule that encodes an LSP under low stringency, moderate stringency or high stringency conditions, as defined herein. In a more preferred

WO 02/064788

25

embodiment, the LSP is selected from the group consisting of SEQ ID NO: 116 through 208.

The homologous polypeptide may be a naturally-occurring one that is derived from another sp. 108 especially one derived from another primate, such as chimpanzee, gorilla, rhesus and pache, papoon or gorilla, wherein the homologous polypeptide 5 comprises an an the sequence that exhibits significant sequence identity to that of SEQ ID NO: 1 to through 208. The normalogous polypeptide may also be a naturallyoccurring polypeptide from a human, when the LSP is a member of a family of polypeptides. The homologous polypeptide may also be a naturally-occurring polypeptide derived from a non-primate, mammalian species, including without limitation, domesticated species, e.g., dog, cat, mouse, rat, rabbit, guinea pig, hamster, cow, horse, gotton got The homologous polypeptide may also be a naturally-occurring polypeptide derived from a non-mammalian species, such as birds or reptiles. The naturally-occurring a miorogous protein may be isolated directly from humans or other species. Alternativery, the nucleic acid molecule encoding the naturally-occurring homologous polypeptide may be isolated and used to express the homologous polypeptide recombinantly. In another embodiment, the homologous polypeptide may be one that is experimentally produced by random mutation of a nucleic acid molecule and subsequent expression of the nucleic acid molecule. In another embodiment, the homologous $p_{\Phi^{*}, p} e_{P}$ tide may be one that is experimentally produced by directed 20 mutation of one an acre cours to after the encoded amino acid of an LSP. Further, the homologous passen, may or may not encode polypeptide that is an LSP. However, in a preferred embodiment, the homologous polypeptide encodes a polypeptide that is an LSP.

Relateuness of proteins can also be characterized using a second functional test, the ability of a first protein competitively to inhibit the binding of a second protein to an antibody. It is marriore, another aspect of the present invention to provide isolated proteins not oary demical in sequence to those described with particularity herein, but also to provide sourced proteins ("cross-reactive proteins") that competitively inhibit the binding of antibodies to all or to a portion of various of the isolated polypeptides of the present invention. Such competitive inhibition can readily be determined using immunoassays well-known in the art.

30

As discussed above, single nucleotide polymorphisms (SNPs) occur frequently in eukaryotic genomes, and the sequence determined from one individual of a species may differ from other literic forms present within the population. Thus, by "polypeptide" as used herein it: 100 about to be inclusive of polypeptides encoded by an allelic variant of a nucleic acreation but encoding an LSP. In a preferred embodiment, the polypeptide is encoded by an inclusive variant of a gene that encodes a polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO: 116 through 208. In a yet more preferred embodiment, the polypeptide is encoded by an allelic variant of a gene that has the nucleic acid sequence selected from the group consisting of SEQ ID.

NO: 1 through 115.

In another embodiment, the invention provides polypeptides which comprise derivatives of 1.21, eptide encoued by a nucleic acid molecule according to the instant invention. In a preferred embodiment, the polypeptide is an LSP. In a preferred embodiment, an polypeptide has an amino acid sequence selected from the group consisting of SEQ is NO: 116 through 208, or is a mutein, allelic variant, homologous protein or fragment thereof. In a preferred embodiment, the derivative has been acetylated, carboxylated, phosphorylated, glycosylated or ubiquitinated. In another preferred embodiment, the derivative has been labeled with, e.g., radioactive isotopes such as ¹²⁵L, ²⁻¹², and ³H. In another preferred embodiment, the derivative has been labeled with managements, encounter agents, enzymes, and antiligands that can serve as specific ormany pair members for a labeled ligand.

Polyper tide modifications are well-known to those of skill and have been described in great detail in the scientific literature. Several particularly common modifications, grycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as, for instance Creighton, Protein Structure and Molecular Properties, Properties, Properties, Protein and Company (1993). Many detailed reviews are available on this publication as, for example, those provided by Wold, in Johnson (ed.), Posttranslational Selection Modification of Proteins, pgs. 1-12, Academic Press (1983); Seifter et al., are in Enzymol. 182: 626-646 (1990) and Rattan et al., Ann. N.Y. Acad. Sci. 663: 48-62 (1992).

WO 02/064788

15

It will be appreciated, as is well-known and as noted above, that polypeptides are not always entirely tinear. For instance, polypeptides may be branched as a result of ubiquitination, and they may be circular, with or without branching, generally as a result of posttranslation, and they may be circular, with or without branching, generally as a result of posttranslation, are they have a result of posttranslation, are they have a result of posttranslation, and they may be synthesized by non-translation natural process and by entirely synthesized methods, as well, wieddifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. In fact, brockage of the amino or carboxyl group in a polypeptide, or both, by a covalent modification, is common in naturally occurring and synthetic polypeptides and such modifications may be present in polypeptides of the present invention, as well. For instance, the the content of maintain residue of polypeptides made in E. coli, prior to proteolytic processing, and our variabily will be N-formylmethionine.

Userus passes anneure (and post-translational) modifications include conjugation – to detectable racers, such as fluorophores. A wide variety of amine-reactive and thiol-reactive fluorophore derivatives have been synthesized that react under nondenaturing conditions with electroninal amino groups and epsilon amino groups of lysine residues, on the one hand, and with free thiol groups of cysteine residues, on the other.

Kits the Amazone commercially that permit conjugation of proteins to a variety of amine-reactive and reactive manophores: Molecular Probes, Inc. (Eugene, OR, USA), e.g., on the time for conjugating proteins to Alexa Fluor 350, Alexa Fluor 430, Fluorescein-the america Fluor 488, Oregon Green 488, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 546

A wide variety of other amine-reactive and thiol-reactive fluorophores are

25 available commercially (Molecular Probes, Inc., Eugene, OR, USA), including Alexa
Fluor® 350, Alexa Fluor® 488, Alexa Fluor® 532, Alexa Fluor® 546, Alexa Fluor®
568, Alexa Fluor® 194, Alexa Fluor® 647 (monoclonal antibody labeling kits available
from Molecular Probes, Inc., Eugene, OK, USA), BODIPY dyes, such as BODIPY
493/503, BODIPY - L. BODIPY ROG, BODIPY 530/550, BODIPY TMR, BODIPY
30 558/568, BODIPY 358/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591,
BODIPY TR, BODIPY 630/650, BODIPY 650/665, Cascade Blue, Cascade Yellow,
Dansyl, lissaname modamine B, Marina Blue, Oregon Green 488, Oregon Green 514,

25

Pacific Blue, rhodamine 6G, rhodamine green, rhodamine red, tetramethylrhodamine, Texas Red (available from Molecular Probes, Inc., Eugene, OR, USA).

The polypeptides of the present invention can also be conjugated to fluorophores, other proteins, and other macromotecules, using bifunctional linking reagents. Common homobifunctional to thems anctude, a.g., APG, AEDP, BASED, BMB, BMDB, BMH, BMOE, BM[PL 114 DM[PEO]4, 033, BSOCOES, DFDNB, DMA, DMP, DMS, DPDPB, DSC, Long Quomant's (Cargont), DSS, DST, DTBP, DTME, DTSSP, EGS, HBVS, Sulfo-BSUCOES, Sulfo-DST, Sulfo-EGS (all available from Pierce, Rockford, IL, USA); common neterobifunctional cross-linkers include ABH, AMAS, ANB-NOS, 10 APDP, ASBA, EMPA, BMPH, BMPS, EDC, EMCA, EMCH, EMCS, KMUA, KMUH, GMBS, LC-SMCC, LC-SPDP, MBS, M2C2H, MPBH, MSA, NHS-ASA, PDPH, PMPI, SADP, SAED AND SANPAH, JASD, SATP, SBAP, SFAD, SIA, SIAB, SMCC, SMPB, SMPP: Living 1, 30°6P, Stato-EMCS, Sulfo-GMBS, Sulfo-HSAB, Sulfo-KMUS, Sulfo-LC-SPD: Suns MES, Suns-NHS-LC-ASA, Sulfo-SADP, Sulfo-SANPAH, Sulfo-SIAB, Saido SWCC, Sulio-SiviPB, Sulfo-LC-SMPT, SVSB, TFCS (all available Pierce, Rockford, AL, USA).

The porpreptides, fragments, and fusion proteins of the present invention can be conjugated, using such cross-linking reagents, to fluorophores that are not amine- or thiol-reactive. Turns tabels that usefully can be conjugated to the polypeptides, fragments, and the proteins of the present invention include radioactive labels, echosonographic contrast reagents, and MRI contrast agents.

The possepandes, fragments, and fusion proteins of the present invention can also usefully be contugated using cross-unking agents to carrier proteins, such as KLH, bovine thyrogiopunia, and even bovine serum albumin (BSA), to increase immunogenicity for raising anti-LSP antibodies.

The posypeptides, fragments, and fusion proteins of the present invention can also usefully be contamined to polyeur/iene glycol (PEG); PEGylation increases the serum half-life of present aummistered attravenously for replacement therapy. Delgado et al., Crit. Rev. There were Carrier Syst. 9(3-4): 249-304 (1992); Scott et al., Curr. Pharm. 30 Des. 4(6): 442 Po (1998); DeSamus et al., Curr. Opin. Biotechnol. 10(4): 324-30 (1999), incorporated mercin by reference in their entireties. PEG monomers can be attached to the protein directly or through a linker, with PEGylation using PEG monomers activated with tresyl chierles (2.2,2-trifluoroethanesulphonyl chloride) permitting direct attachment under milu conditions.

In yet another embodiment, the invention provides analogs of a polypeptide encoded by a margine held molecule according to the instant invention. In a preferred embodiment, the parageptide is at the P. In a more preferred embodiment, the analog is derived from a process true naving part or all of the amino acid sequence of SEQ ID NO: 116 through 200 preferred embodiment, the analog is one that comprises one or more substitutions of non-natural amino acids or non-native inter-residue bonds compared to the matherally-occurring polypeptide. In general, the non-peptide analog is structurally similar to an LSP, but one or more peptide linkages is replaced by a linkage 10 selected from the group consisting of --CH2NH--, --CH2S--, --CH2-CH2--, embodiment, the non-perture amang comprises substitution of one or more amino acids of an LSP with the minimo acid of the same type or other non-natural amino acid in order chemical peptian symmesis: peptides assembled from D-amino acids are more resistant to proteolytic attack; incorporation of D-amino acids can also be used to confer specific three-dimensional comformations on the peptide. Other amino acid analogues commonly added during communication synthesis metude ornithine, norleucine, phosphorylated amino acids (typican, prospinoserine, prospinothreonine, phosphotyrosine), L-malonyltyrosine, 20 a non-hydroty. And a manage of phosphotyrosine (see, e.g., Kole et al., Biochem. Biophys. Res. Com. 207 117 321 (1993)), and various haiogenated phenylalanine derivatives.

Non-nacetta autino acids can be incorporated during solid phase chemical synthesis or by recombinant techniques, although the former is typically more common.

25 Solid phase chemical synthesis of peptides is well established in the art. Procedures are described, intermine in Chan et al. (eds.), Fmoc Solid Phase Peptide Synthesis: A

Practical Application of Practical Approach Series), Oxford Univ. Press (March 2000);

Jones, Amine and Peptide Anthesis (Oxford Chemistry Primers, No 7), Oxford Univ. Press (1900), Oxford Univ. Press (1900); the disclosures of which are incorporated herein by reference in their emiretics.

are personal on and analogs. Biotin, for example can be added during synthes... . mymiculo vacarbonyl)-L-lysine (FMOC biocytin) (Molecular using biotinoy: 5 into a fusion process. Let Let E. coli Bank substrate peptide. The FMOC and tBOC derivatives of anacytem-tysine (Morecular Probes, Inc., Eugene, OR, USA) can be used to incorporate the anocya chromophore at selected sites in the peptide sequence during pairing with the second speed of the second resonance energy transfer (FRET) 10 many acted the corresponding tBOC derivative (both from EDANS-FMC. Molecular Production of Eugene, Oct. USA). Tetramethylrhodamine fluorophores can be incorporated district automated throck synthesis of peptides using (FMOC)-TMR-.. tys.ne (fviolecular Probes, Inc. Eugene, OR, USA). Other and radio and analogues that can be incorporated during chemical 15 side-chain production applied the aystems, Inc., Poster City, CA, USA); the allyl side chain permits and an experied are inched-chain, sulfonated, glycosylated, and phosphorylate and a sub-A large manners of other plano C-protected non-natural amino acid analogues 20 capable of incomposition during enemical synthesis are available commercially, including, e.g., Prince-2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, Fmoc-3-endoaminobicycio: 2.2.1 proprane-2-endo-carboxylic acid, Fmoc-3-exo-aminobicycle the sends aboxylic acid. Emoc-3-exo-amino-bicyclo[2.2.1]heptbicyclo[2.2... 25 trans-2-amino and conextine on the contraction of t acid, Fmoc-cia - amino-i-cyclopantanecarboxylic acid, Fmoc-1-amino-1cyclopropanee...coxytic acid, Finoc-D-2-amino-4-(ethylthio)butyric acid, Fmoc-L-2-30 amino-4-(ethyntalogoutyric acid, Finoc-L-buthionine, Fmoc-S-methyl-L-Cysteine, Fmoc-

2-aminobenzo. 1601 (antitraniii) acid), Fmoc-3-aminobenzoic acid, Fmoc-4-aminobenzo. 1611 (antitraniii) acid), Fmoc-3-aminobenzoic acid, Fmoc-4-aminobenzoic acid, Fmoc-N-(4-aminobenzoic acid

PCT/US01/45080

Non-manner and uses can also be added biosynthetically by engineering a suppressor tikes a local different annatural amino acid. Conventional site-directed mutagenesis is alsed to introduce the chosen stop codon UAG at the site of interest in the protein gene. When the acylated suppressor tRNA and the mutant gene are combined in an *in vitro* transcription/translation system, the unnatural amino acid is incorporated in response to the according to a protein containing that amino acid at the specified position. Lie according to the distribute Sci. USA 96(9): 4780-5 (1999); Wang et al., Science 292(5) and 185-500 (2001).

25 Fusion Protein

30

The present invention further provides fusions of each of the polypeptides and fragments of the present invention to heterologous polypeptides. In a preferred embodiment, the polypeptide is an LSP. In a more preferred embodiment, the polypeptide time accordance to the heterologous polypeptide comprises part or all of the amino acid seasons. Alstrophysical 116 through 208, or is a mutein, homologous polypeptide, annual accordance meteof. In an even more preferred embodiment, the nucleic acid that the proceding the rusion protein comprises all or part of the nucleic

20

25

30

acid sequence of the AD NO: I mough 115, or comprises all or part of a nucleic acid sequence that set the service hybridized or is homologous to a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: I through 115.

The function of the protein of the present invention have particular utility.

The necessary as polypeptide included within the fusion protein of the present invention is as a sensitive action and ength, often at least 8 amino acids in length, and usefully at least 25 mm is acids in length. Fusions that include larger polypeptides. The sensitive action and even entire proteins (such as GFP chromophore) and agreement are particular useful.

As described above in the description of vectors and expression vectors of the present invention, which discussion is incorporated here by reference in its entirety, heterologous perspectides to be included in the fusion proteins of the present invention can usefully a manage design at to facilitate purification and/or visualization of recombinant.

Although pure the mass can be reincorporated into fusions that are chemically synthesized. The accompanient of the provides sufficient purity that further purification be accompanient expression expression tags as above described retain their utility even when the protein is produced by chemical synthesis, and when so included render the fusion proteins of the present invention useful as directly detectable markers of the present of a potypoptide of the invention.

As an according to the fusion proteins of an according to the fusion proteins of an according to the cumulative column and a GST fusion protein can be purified on a constrainty column and a GST fusion protein can be purified on a constrainty column and a GST fusion protein can be purified on a constrainty column and a GST fusion protein can be purified on a constrainty column and a GST fusion protein can be purified on a

tomatical parameters of the way for the

glutathione affirmly commin. Similarly, a fusion protein comprising the Fc domain of IgG can be purified and a commindered of a such a committee of a column and a fusion protein comprising an epitope tag such and a common protein of using an immunoaffinity column containing an anti-c-myc and a column and gene by an analysis and gene by an azymatic creavage site that can be cleaved after purification. See also the discussion of nucleic acid molecules encoding fusion proteins that may be expressed on the surface of a cell.

Other userus protein fusions of the present invention include those that permit use of the protein of the present invention as bait in a yeast two-hybrid system. See Bartel et al. (eds.), The Annual Yeast Hybrid a mornalist, Emer. Applishing (2000); Fields et al., Trends Genet. 10(8): al., Curr. Opin . Some muoi. 6(1). 104 (1995); Allen et al., Trends Biochem. Sci. -20(12): 511-6 (1992) Drees, Carr. Spin. Chem. Biol. 3(1): 64-70 (1999); Topcu et al., Pharm. Res. 17(19): 1049-55 (2000); Pashena et al., Gene 250(1-2): 1-14 (2000); Colas et al., (1996) Genetic adjection of peptide aptamers that recognize and inhibit cyclindependent kinade de Januare 380, 1948-550; Norman, T. et al., (1999) Genetic selection of Inhibition of rammanan cell promoration by genetically selected peptide aptamers that functionally analysis a EZF action. Oncogene 18, 4357-4363; Xu et al., (1997) Cells that register 10 g. at regationships among proteins. Proc Natl Acad Sci USA. 94, 12473-12478; Yang, et al., (1995) Protein peptide interactions analyzed with the yeast twohybrid system. Acids Res. 23, 1152-1156; Kolonin et al., (1998) Targeting cyclindependent kinasies in Grosophiia with peptide aptamers. Proc Natl Acad Sci USA 95, 14266-14271; Same and all (1990), an artificial cell-cycle inhibitor isolated from a combinatoriai Proc Na. . . A Sci U S A 95, 14272-14277; Uetz, P.; Giot, L.; al, e.; Fields, S.; Plane (1991). A. (2002) A comprehensive analysis of protein-protein interactions in a management of maine. Nature 403, 623-627; Ito, et al., (2001) A Acad Sci US A 38, 4309-4574, and disclosures of which are incorporated herein by reference in their entireties. Typically, such fusion is to either E. coli LexA or yeast

mains. - and bait plasmids are available that express the bait GAL4 DNA o... fused to a nuclear and interior segment Other unclust region proteins include those that permit display of the encoded protein on the an tage of a phage of cell, fusions to intrinsically fluorescent proteins, such as green fluoremand motein (Girri and fusions to the IgG Fc region, as described above, amorate. ... by reference in its entirety. which discuss... is of the present invention can also usefully be يا لينه يير The true A, anthrax tox... the factor, it is order to effect ablation of cells that bind or take up the proteins of the present invention. Fusion garaness include, ameralia, myc, hemagglutinin (HA), GST, immunoglobut...., productosidane biotin trpE, protein A, β-lactamase, -amylase, maltose binding process, alcohor anydrogenase, polyhistidine (for example, six histidine of the post-peptide), lacZ, green fluorescent protein , g. c., 11 te.; at the amino the 15 (GFP), yeast _____ actor, Calleton, Calleton, activation or DNA binding domain, luciferase, and the constant domain of also contain sites, to a specific enzymatic cleavage, such as a site that is recognized by enzymes such all mactor XIII, trypain, pepsin, or any other enzyme known in the art. Fusion proteins - last picutly be made by either recombinant nucleic acid methods, as described above the medity sylvation during teamiques well-known in the art (e.g., a chemical class-linking.Jdti Merrifield sya-Another the entropy of fam. The aroteins is that the epitope tag can be used to bind the fusion process and state or assume through an affinity linkage for screening binding proteins or other than all of the LSP. 25 As further, apparitied below the isolated polypeptides, muteins, fusion proteins, homologous processes or allelic various of the present invention can readily be used as specific immunouted to raise annuaties that specifically recognize LSPs, their allelic and Tine . Anies, in turn can be used, inter alia, specifically to variants and is assay for the processing assay for the process of the continuous particularly LSPs, e.g. by ELISA for detection of processing samples are as serum, by immunohistochemistry or laser

scanning cytom. ... or detection approtein in tissue samples, or by flow cytometry, for

25

30

detection of intragentatic protein in tent suspensions, for specific antibody-mediated isolation and/or particulation of LSA's, as for example by immunoprecipitation, and for use as specific agone is or intragonists or LSPs.

One may admine when a polypeptides including muteins, fusion proteins,

homologous process a union was are functional by methods known in the art. For instance, residual and activities and using methods known in the art, such as alanine scanning mutaginesis. Canningna. At al., Science 244(4908): 1081-5 (1989); transposon linker scanning matagenesis, Chen at al., Gene 263(1-2): 39-48 (2001); combinations of homolog- and admine-scanning matagenesis, Jin et al., J. Mol. Biol. 226(3): 851-65 (1992); combinations attaining scanning, Weiss et al., Proc. Natl. Acad. Sci USA 97(16): 8950-4 (2000 and admine scanning, Weiss et al., Proc. Natl. Acad. Sci USA 97(16): 8950-4 (2000 and admine scanning and assay. Transposon linker scanning kits are available containing and by time and assay. Transposon linker scanning kits are available containing and containing and assay. Transposon linker scanning kits are available containing and containing and assay. Transposon linker scanning kits are available containing and containing and assay. Transposon linker scanning kits are available containing and containing and assay. Transposon linker scanning kits are available containing and containing and assay. Transposon linker scanning kits are available containing and containing and assay. Transposon linker scanning kits are available containing and containin

Purification in the polypointees including fragments, homologous polypeptides, muteins, analogal derivatives and lasion proteins is well-known and within the skill of one having ordinary skill in the last. See, e.g., Scopes, Protein Purification, 2d ed. (1987). Purification of a subminimum of the population of the mically-system of population and readily be effected, e.g., by HPLC.

According to the analysis. At the present invention to provide the isolated proteins of the present invention appare or substantially pure form in the presence of absence of a magnificant agent. So to lizing agents include both proteinaceous or non-proteinaceous material and are with-known in the art. Stabilizing agents, such as albumin and polyethylene grycol (PEG) are known and are commercially available.

Although right toxels of parity are preferred when the isolated proteins of the present invariable and as replacement therapy, the homeometric present invariant are also useful at lower purity. For example, part the appropriate of the present invention can be used as immunogens to raise antipolicy appointment to male.

	In present a suppositionant, and purified and substantially purified proteins of the
	present invent. Tomps
	monomers, this action, and polyacrytamide.
	The pure the iraginary malogs, derivatives and fusions of the present
5	invention can and the defitteen and substrate. The substrate can be porous or solid,
	planar or non-product the bond case of covalent or noncovalent.
	For example, the potype, thus, fragments, analogs, derivatives and fusions of the
	present invention that ascitally be and to a porous substrate, commonly a membrane,
	typically comments a modeliting solyvinylidene fluoride (PVDF), or cationically
10	derivatized, in the proteins, fragments, and fusions of the
	present invent
	specifically to a summed a of the present invention.
	As anom
	of the present in annual can user any se bound to a substantially nonporous substrate,
15	such as plastic, a mateer and quantity antibodies, e.g. in serum, that bind specifically to
	the immobilized statem of the prosent invention. Such plastics include
	polymethylae:
	polyvinyichte. t. kik. iene, polyk. grene, polycarbonate, polyacetal,
	polysulfone, contractions the senitrate, introcellulose, or mixtures thereof; when
20	the assay is per a management and a more than the plastic is typically polystyrene.
	The poly legicles, fragment analogs, derivatives and fusions of the present
	invention can arise no attached to a substrate suitable for use as a surface enhanced laser
	desorption ional alternature; so to adned, the protein, fragment, or fusion of the present
	invention is u.g., at the ofinding and then detecting secondary proteins that bind with
25	sufficient affile that to the affice-bound protein to indicate biologic interaction
	there between a second of the present invention can also be
	attached to a an analysis of a surface plasmon resonance detection; so
	attached, the programment and anon of the present invention is useful for binding
	and then detection the resolution processing that bind with sufficient affinity or avidity to the
30	exical interaction there between

Antibodies

20

25

30

In another dispers, the invention provides antibodies, including fragments and derivatives the cold that pind specific to polypeptides encoded by the nucleic acid molecules of the assention, as were at antibodies that bind to fragments, muteins, derivatives and the restriction of the passention at LSP, or a fragment, mutein, derivative, analog or fusion protein as the restriction of the molecules of the passential through 208, or a fragment, mutein, derivative, analog or fusion protein as the restriction of the molecules of the passential through 208, or a fragment, mutein, derivative, analog or a polypeptide that the passential through 208, or a fragment, mutein, derivative, analog or analog or also protein an ereof.

The annual dies of the present invention can be specific for linear epitopes, discontinuous epitopes, or confermational epitopes of such proteins or protein fragments, either as present of the protein in an native conformation or, in some cases, as present on the proteins as a some as every solubilization in SDS. New epitopes may be also due to a differ. The particular of a LSP may be glycosylated in cancerous cells, but not glycon and an normal and or visa versa. In addition, alternative splice forms of a LSP may be analyzed to an arget for anticancer therapy. For example, a LSP may be N-terminal anguaged in cancer, peris exposing new epitopes to which antibodies may selectively bind an anagnostic of an argetic uses.

As is a constraint of the degree to which an antibody can discriminate as among molecular and the site and the will depend, in part, upon the conformational relatedness of the present internal containing to mon-LSP polypeptides by at least 2-fold, will discriminate over adventitions binding to non-LSP polypeptides by at least 2-fold, more typically and mast 5-fold. Applically by more than 10-fold, 25-fold, 50-fold, 75-fold, and often by after than 100-fold, and on occasion by more than 500-fold or 1000-fold. When used to detect the processor protein fragments of the present invention, the antibody of all the finite of the presence of the presence

Typician and affinity of an antibody (or antibody multimer, as in the case of an Igaa community) of the seent invention for a protein or protein fragment of the present invention and the action about 1 x 10° motor (M), typically at least about 5 x 10°

	⁷ M, 1 x 10 ⁻⁷ w	adities of a crast 1 x 10^{-8} M, 5 x 10^{-9} M, 1 x 10^{-10} M
	and up to 1 X . While	Hy useru!
	The array and division	avention can be naturally-occurring forms, such as
	InG InM Ini.	an any avian, reptilian, or mammalian species.
5	Human months Carl. to	infrequently, be drawn directly from human
,	donors or human dans, an this class	tantibodies to the proteins of the present invention
	will typically in a manded from the	autoimmunization, such as autoimmune
	immunization and the protein or	totein fragments of the present invention. Such
	antibodies wile	. Avariably be polyclonal. In addition, individual
10	natural ani	, and clouds to generate monoclonals.
	Human Standard	quently oppared using transgenic animals that
	man huma:	a, which transgenic animals can be affirmatively
	immunized with an attein timing	en of the present invention. Human ig-transgeme
	mice complie we that him hundle	antipodies and methods of producing numan
15	antihodies ther mora abon specific	munization are described, inter ana, in O.S. I atoms
	6 162 963: 6 15	/75,181; 5,939,598; 5,8 77,397; 5,874,299 ;
	5 03 4 219. 5	1,016; 5,033, 425; 5,625,126; 5,369,823;
	F F A F 907 . 5	the disclosures of which are incorporated herein by
	reference in the control of the cont	introdies are typically monoclonal, and are typically
20	produced using actual rues deven	are for production of murine antibodies.
	Human to breakles are pur	and often preferred, when the
	Attacking of the action invention	to be administered to human beings as in vivo
	diagnostic or the the static agents.	ande recipient immune response to the administered
	antibody will come supplement	ss than that occasioned by administration of an
25		such as use.
	InG i	agA antibodies of the present invention can also be
	obtained from the contract of	mammats such as rodents (typically mouse, but
	-1 est quipo	morphs, typically rabbits, and also larger
	mammale such a meteo, goals.	and horses, and other egg laying birds of reptiles
3	o meh se chicke i in idigators.	mample, avian antibodies may be generated using
	techniques describera in WO 00/	25 May 2000, the contents of which are
	hereby incorperrir cam	in such calles, as with the transgenic human-

antibody-production is made, fortuneds immunization is not required, and
the non-human and garden different annualized, according to standard
immunization process, with the coasin or protein fragment of the present invention.
As discussed 200ve, virtually all fragments of 8 or more contiguous amino acids
As discussed above, virtually an Hagmond of the proteins of the proteins of the proteins of the present investion can be used effectively as immunogens when
of the proteins of the present invention can be used out of the proteins of the proteins of the present invention can be used out of the proteins of the protein such as bovine thyroglobulin, keyhole limpet conjugated to a such as a protein such as a protein such as a protein such as
hemocyanin, o
those describe
inferred by fusion of the polypopular
Immunity of the present invention of the present invention of the present invention of the present invention in the prese
of the present in standard office an intest of a branched polylysine core matrix; these can be produced of a single phase a linesis on a branched polylysine core matrix; these
the fall A corroyade high purity, increased at 12-37
improved mety in vaccine development. Tant of the
chemical definition and improved states of the chemical definition and the chemical definition an
15 (1988). Protocol All aboratory Manual,
(eds.), Using Antibodies, A Lagrency
(a) Coligan et al. (eds.), <u>currons zero</u>
6 (20(11): Zoja, Wichiocionar 2 (2001)
A prince and Engineered Antibody Dorward
Carrier to the Grand (2000); Gloss M. Special State
a reporting the disclosures of which are most per-
den include mulliple minumentary
omplete adjuvant, and Freund's incomplete adjuvant,
avation (Wors, Sential Intitution
Applied to the non-time of manimals and avialt species out to pro-
vies having certain advantages in
the proteins of the present in our
enrifying and distinguishing parties.
albodies from Invall species may
education in the state of the process in the state of the state of the process in the state of the process in the state of t
(Vikinge et
(1 mm. B

	Following an example and an including an are present invention can be produced
	using any art-action in the art, Coligan,
	Basic Methods in Annibody Product
	Characterization Size Press (2000 Harlow, supra; Davis (ed.), Monoclonal Antibody Characterization Size Press (2000 Harlow, supra; Davis (ed.), Monoclonal Antibody
	Characterization, Old Press (2005 Press (2
5	Protocols, Vol. 40, Framana Fress, 1997, Econoly, Antibody Solution: An Antibody Techniques, John Wiley & Son Eco. (1997); Kenney, Antibody Solution: An Antibody
	Methods Manual Companies (1997), incorporated herein by reference in their
	or there.
	des include, inter alia, production of monoconst
	antibodies by it and a state of the color of antibodies or fragments or derivatives
10	where the transfer of the state
	etion are not mutually exclusive. Botton
	protein tragments of the prosent in
	the state of the s
	genes encoding antibodies spectral
15	resent his callful can be closed and a
	ired protein, as futflet described in
	5,627,052, the state of the sta
	and the second s
20	- who receives the dest cells is particularly useful when hagnesses
20	resent invention are desired.
	Host constitution of either whole antibodies, antibody
	in the property votic or eukaryotic.
	Prokate to mean are part of arrivation producing phage displayed antibodies
•	
2	aniayed antibodies, in which antibody variable regis
	the gene III protein (pin) or gone
	filamentous phage, such as with a series of the series of
	nin Riotechnot. (10), 010-0 (2007)
	2.8 (1998) (1998) (1998) (1998)
	ant Opinion of Biolectinology 6.
	Aujame et a: 155-168 (1997); Hoogenboom, Trends in
	• • • • • • • • • • • • • • • • • • •

25

-81-

Following immunization, the antibodies of the present invention can be produced using any art-accepted technique. Such techniques are well-known in the art, Coligan, supra; Zola, supra; Howard et al. (eds.), Basic Methods in Antibody Production and Characterization, CRC Press (2000); Harlow, supra; Davis (ed.), Monoclonal Antibody Protocols, Vol. 45, Humana Press (1995); Delves (ed.), Antibody Production: Essential Techniques, John Wiley & Son Ltd (1997); Kenney, Antibody Solution: An Antibody Methods Manual, Chapman & Hall (1997), incorporated herein by reference in their entireties, and thus need not be detailed here.

Briefly, however, such techniques include, *inter alia*, production of monoclonal antibodies by hybridomas and expression of antibodies or fragments or derivatives thereof from host cells engineered to express immunoglobulin genes or fragments thereof. These two methods of production are not mutually exclusive: genes encoding antibodies specific for the proteins or protein fragments of the present invention can be cloned from hybridomas and thereafter expressed in other host cells. Nor need the two necessarily be performed together: *e.g.*, genes encoding antibodies specific for the proteins and protein fragments of the present invention can be cloned directly from B cells known to be specific for the desired protein, as further described in U.S Patent 5,627,052, the disclosure of which is incorporated herein by reference in its entirety, or from antibody-displaying phage.

Recombinant expression in host cells is particularly useful when fragments or derivatives of the antibodies of the present invention are desired.

Host cells for recombinant production of either whole antibodies, antibody fragments, or antibody derivatives can be prokaryotic or eukaryotic.

Prokaryotic hosts are particularly useful for producing phage displayed antibodies of the present invention.

The technology of phage-displayed antibodies, in which antibody variable region fragments are fused, for example, to the gene III protein (pIII) or gene VIII protein (pVIII) for display on the surface of filamentous phage, such as M13, is by now well-established. See, e.g., Sidhu, Curr. Opin. Biotechnol. 11(6): 610-6 (2000); Griffiths et al., Curr. Opin. Biotechnol. 9(1): 102-8 (1998); Hoogenboom et al., Immunotechnology, 4(1): 1-20 (1998); Rader et al., Current Opinion in Biotechnology 8: 503-508 (1997); Aujame et al., Human Antibodies 8: 155-168 (1997); Hoogenboom, Trends in

Biotechnol. 15: 62-70 (1997); de Kruif et al., 17: 453-455 (1996); Barbas et al., Trends in Biotechnol. 14: 230-234 (1996); Winter et al., Ann. Rev. Immunol. 433-455 (1994).
Techniques and protocols required to generate, propagate, screen (pan), and use the antibody fragments from such libraries have recently been compiled. See, e.g., Barbas
(2001), supra; Kay, supra; Abelson, supra, the disclosures of which are incorporated herein by reference in their entireties.

Typically, phage-displayed antibody fragments are scFv fragments or Fab fragments; when desired, full length antibodies can be produced by cloning the variable regions from the displaying phage into a complete antibody and expressing the full length antibody in a further prokaryotic or a eukaryotic host cell.

Eukaryotic cells are also useful for expression of the antibodies, antibody fragments, and antibody derivatives of the present invention.

For example, antibody fragments of the present invention can be produced in Pichia pastoris and in Saccharomyces cerevisiae. See, e.g., Takahashi et al., Biosci.

Biotechnol. Biochem. 64(10): 2138-44 (2000); Freyre et al., J. Biotechnol. 76(2-3):1

57-63 (2000); Fischer et al., Biotechnol. Appl. Biochem. 30 (Pt 2): 117-20 (1999);

Pennell et al., Res. Immunol. 149(6): 599-603 (1998); Eldin et al., J. Immunol. Methods.

201(1): 67-75 (1997);, Frenken et al., Res. Immunol. 149(6): 589-99 (1998); Shusta et al., Nature Biotechnol. 16(8): 773-7 (1998), the disclosures of which are incorporated herein by reference in their entireties.

Antibodies, including antibody fragments and derivatives, of the present invention can also be produced in insect cells. See, e.g., Li et al., Protein Expr. Purif. 21(1): 121-8 (2001); Ailor et al., Biotechnol. Bioeng. 58(2-3): 196-203 (1998); Hsu et al., Biotechnol. Prog. 13(1): 96-104 (1997); Edelman et al., Immunology 91(1): 13-9 (1997); and Nesbit et al., J. Immunol. Methods 151(1-2): 201-8 (1992), the disclosures of which are incorporated herein by reference in their entireties.

Antibodies and fragments and derivatives thereof of the present invention can also be produced in plant cells, particularly maize or tobacco, Giddings et al., Nature Biotechnol. 18(11): 1151-5 (2000); Gavilondo et al., Biotechniques 29(1): 128-38 (2000); Fischer et al., J. Biol. Regul. Homeost. Agents 14(2): 83-92 (2000); Fischer et al., Biotechnol. Appl. Biochem. 30 (Pt 2): 113-6 (1999); Fischer et al., Biol. Chem. 380(7-8): 825-39 (1999); Russell, Curr. Top. Microbiol. Immunol. 240: 119-38 (1999); and Ma et

25

al., Plant Physiol. 109(2): 341-6 (1995), the disclosures of which are incorporated herein by reference in their entireties.

Antibodies, including antibody fragments and derivatives, of the present invention can also be produced in transgenic, non-human, mammalian milk. See, e.g. Pollock et al., J. Immunol Methods. 231: 147-57 (1999); Young et al., Res. Immunol. 149: 609-10 (1998); Limonta et al., Immunotechnology 1: 107-13 (1995), the disclosures of which are incorporated herein by reference in their entireties.

Mammalian cells useful for recombinant expression of antibodies, antibody fragments, and antibody derivatives of the present invention include CHO cells, COS cells, 293 cells, and myeloma cells.

Verma et al., J. Immunol. Methods 216(1-2):165-81 (1998), herein incorporated by reference, review and compare bacterial, yeast, insect and mammalian expression systems for expression of antibodies.

Antibodies of the present invention can also be prepared by cell free translation, as further described in Merk et al., J. Biochem. (Tokyo) 125(2): 328-33 (1999) and Ryabova et al., Nature Biotechnol. 15(1): 79-84 (1997), and in the milk of transgenic animals, as further described in Pollock et al., J. Immunol. Methods 231(1-2): 147-57 (1999), the disclosures of which are incorporated herein by reference in their entireties.

The invention further provides antibody fragments that bind specifically to one or more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention.

Among such useful fragments are Fab, Fab', Fv, F(ab)'₂, and single chain Fv (scFv) fragments. Other useful fragments are described in Hudson, *Curr. Opin. Biotechnol.* 9(4): 395-402 (1998).

It is also an aspect of the present invention to provide antibody derivatives that

invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or

one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention.

Among such useful derivatives are chimeric, primatized, and humanized antibodies; such derivatives are less immunogenic in human beings, and thus more suitable for *in vivo* administration, than are unmodified antibodies from non-human mammalian species. Another useful derivative is PEGylation to increase the serum half life of the antibodies.

Chimeric antibodies typically include heavy and/or light chain variable regions (including both CDR and framework residues) of immunoglobulins of one species, typically mouse, fused to constant regions of another species, typically human. See, e.g., United States Patent No. 5,807,715; Morrison et al., Proc. Natl. Acad. Sci USA.81(21): 6851-5 (1984); Sharon et al., Nature 309(5966): 364-7 (1984); Takeda et al., Nature 314(6010): 452-4 (1985), the disclosures of which are incorporated herein by reference in their entireties. Primatized and humanized antibodies typically include heavy and/or light chain CDRs from a murine antibody grafted into a non-human primate or human antibody V region framework, usually further comprising a human constant region, Riechmann et al., Nature 332(6162): 323-7 (1988); Co et al., Nature 351(6326): 501-2 (1991); United States Patent Nos. 6,054,297; 5,821,337; 5,770,196; 5,766,886; 5,821,123; 5,869,619; 6,180,377; 6,013,256; 5,693,761; and 6,180,370, the disclosures of which are incorporated herein by reference in their entireties.

Other useful antibody derivatives of the invention include heteromeric antibody complexes and antibody fusions, such as diabodies (bispecific antibodies), single-chain diabodies, and intrabodies.

It is contemplated that the nucleic acids encoding the antibodies of the present
invention can be operably joined to other nucleic acids forming a recombinant vector for
cloning or for expression of the antibodies of the invention. The present invention
includes any recombinant vector containing the coding sequences, or part thereof,
whether for eukaryotic transduction, transfection or gene therapy. Such vectors may be
prepared using conventional molecular biology techniques, known to those with skill in
the art, and would comprise DNA encoding sequences for the immunoglobulin V-regions
including framework and CDRs or parts thereof, and a suitable promoter either with or
without a signal sequence for intracellular transport. Such vectors may be transduced or

15

20

30

transfected into eukaryotic cells or used for gene therapy (Marasco et al., Proc. Natl. Acad. Sci. (USA) 90: 7889-7893 (1993); Duan et al., Proc. Natl. Acad. Sci. (USA) 91: 5075-5079 (1994), by conventional techniques, known to those with skill in the art.

The antibodies of the present invention, including fragments and derivatives thereof, can usefully be labeled. It is, therefore, another aspect of the present invention to provide labeled antibodies that bind specifically to one or more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention.

The choice of label depends, in part, upon the desired use.

For example, when the antibodies of the present invention are used for immunohistochemical staining of tissue samples, the label is preferably an enzyme that catalyzes production and local deposition of a detectable product.

Enzymes typically conjugated to antibodies to permit their immunohistochemical visualization are well-known, and include alkaline phosphatase, β-galactosidase, glucose oxidase, horseradish peroxidase (HRP), and urease. Typical substrates for production and deposition of visually detectable products include o-nitrophenyl-beta-Dgalactopyranoside (ONPG); o-phenylenediamine dihydrochloride (OPD); p-nitrophenyl phosphate (PNPP); p-nitrophenyl-beta-D-galactopryanoside (PNPG); 3',3'diaminobenzidine (DAB); 3-amino-9-ethylcarbazole (AEC); 4-chloro-1-naphthol (CN); 5-bromo-4-chloro-3-indolyl-phosphate (BCIP); ABTS®; BluoGal; iodonitrotetrazolium (INT); nitroblue tetrazolium chloride (NBT); phenazine methosulfate (PMS); phenolphthalein monophosphate (PMP); tetramethyl benzidine (TMB); tetranitroblue 25 tetrazolium (TNBT); X-Gal; X-Gluc; and X-Glucoside.

Other substrates can be used to produce products for local deposition that are luminescent. For example, in the presence of hydrogen peroxide (H₂O₂), horseradish peroxidase (HRP) can catalyze the oxidation of cyclic diacylhydrazides, such as luminol. Immediately following the oxidation, the luminol is in an excited state (intermediate reaction product), which decays to the ground state by emitting light. Strong enhancement of the light emission is produced by enhancers, such as phenolic

WO 02/064788

30

compounds. Advantages include high sensitivity, high resolution, and rapid detection without radioactivity and requiring only small amounts of antibody. See, e.g., Thorpe et al., Methods Enzymol. 133: 331-53 (1986); Kricka et al., J. Immunoassay 17(1): 67-83 (1996); and Lundqvist et al., J. Biolumin. Chemilumin. 10(6): 353-9 (1995), the disclosures of which are incorporated herein by reference in their entireties. Kits for such enhanced chemiluminescent detection (ECL) are available commercially.

The antibodies can also be labeled using colloidal gold.

As another example, when the antibodies of the present invention are used, e.g., for flow cytometric detection, for scanning laser cytometric detection, or for fluorescent immunoassay, they can usefully be labeled with fluorophores.

There are a wide variety of fluorophore labels that can usefully be attached to the antibodies of the present invention.

For flow cytometric applications, both for extracellular detection and for intracellular detection, common useful fluorophores can be fluorescein isothiocyanate (FITC), allophycocyanin (APC), R-phycoerythrin (PE), peridinin chlorophyll protein (PerCP), Texas Red, Cy3, Cy5, fluorescence resonance energy tandem fluorophores such as PerCP-Cy5.5, PE-Cy5, PE-Cy5.5, PE-Cy7, PE-Texas Red, and APC-Cy7.

Other fluorophores include, *inter alia*, Alexa Fluor® 350, Alexa Fluor® 488, Alexa Fluor® 532, Alexa Fluor® 546, Alexa Fluor® 568, Alexa Fluor® 594, Alexa Fluor® 647 (monoclonal antibody labeling kits available from Molecular Probes, Inc., Eugene, OR, USA), BODIPY dyes, such as BODIPY 493/503, BODIPY FL, BODIPY R6G, BODIPY 530/550, BODIPY TMR, BODIPY 558/568, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY TR, BODIPY 630/650, BODIPY 650/665, Cascade Blue, Cascade Yellow, Dansyl, lissamine rhodamine B, Marina Blue, Oregon Green 488, Oregon Green 514, Pacific Blue, rhodamine 6G, rhodamine green, rhodamine red, tetramethylrhodamine, Texas Red (available from Molecular Probes, Inc., Eugene, OR, USA), and Cy2, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, all of which are also useful for fluorescently labeling the antibodies of the present invention.

For secondary detection using labeled avidin, streptavidin, captavidin or neutravidin, the antibodies of the present invention can usefully be labeled with biotin.

25

30

When the antibodies of the present invention are used, e.g., for Western blotting applications, they can usefully be labeled with radioisotopes, such as ³³P, ³²P, ³⁵S, ³H, and ¹²⁵I.

As another example, when the antibodies of the present invention are used for radioimmunotherapy, the label can usefully be ²²⁸Th, ²²⁷Ac, ²²⁵Ac, ²²³Ra, ²¹³Bi, ²¹²Pb, ²¹²Bi, ²¹¹At, ²⁰³Pb, ¹⁹⁴Os, ¹⁸⁸Re, ¹⁸⁶Re, ¹⁵³Sm, ¹⁴⁹Tb, ¹³¹I, ¹²⁵I, ¹¹¹In, ¹⁰⁵Rh, ^{99m}Tc, ⁹⁷Ru, ⁹⁰Y, ⁹⁰Sr, ⁸⁸Y, ⁷²Se, ⁶⁷Cu, or ⁴⁷Sc.

As another example, when the antibodies of the present invention are to be used for *in vivo* diagnostic use, they can be rendered detectable by conjugation to MRI contrast agents, such as gadolinium diethylenetriaminepentaacetic acid (DTPA), Lauffer et al., Radiology 207(2): 529-38 (1998), or by radioisotopic labeling.

As would be understood, use of the labels described above is not restricted to the application for which they are mentioned.

The antibodies of the present invention, including fragments and derivatives thereof, can also be conjugated to toxins, in order to target the toxin's ablative action to cells that display and/or express the proteins of the present invention. Commonly, the antibody in such immunotoxins is conjugated to *Pseudomonas* exotoxin A, *diphtheria* toxin, *shiga* toxin A, *anthrax* toxin lethal factor, or ricin. *See* Hall (ed.), Immunotoxin Methods and Protocols (Methods in Molecular Biology, vol. 166), Humana Press (2000); and Frankel *et al.* (eds.), Clinical Applications of Immunotoxins, Springer-Verlag (1998), the disclosures of which are incorporated herein by reference in their entireties.

The antibodies of the present invention can usefully be attached to a substrate, and it is, therefore, another aspect of the invention to provide antibodies that bind specifically to one or more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, attached to a substrate.

Substrates can be porous or nonporous, planar or nonplanar.

20

25

For example, the antibodies of the present invention can usefully be conjugated to filtration media, such as NHS-activated Sepharose or CNBr-activated Sepharose for purposes of immunoaffinity chromatography.

For example, the antibodies of the present invention can usefully be attached to paramagnetic microspheres, typically by biotin-streptavidin interaction, which microspheres can then be used for isolation of cells that express or display the proteins of the present invention. As another example, the antibodies of the present invention can usefully be attached to the surface of a microtiter plate for ELISA.

As noted above, the antibodies of the present invention can be produced in prokaryotic and eukaryotic cells. It is, therefore, another aspect of the present invention to provide cells that express the antibodies of the present invention, including hybridoma cells, B cells, plasma cells, and host cells recombinantly modified to express the antibodies of the present invention.

In yet a further aspect, the present invention provides aptamers evolved to bind specifically to one or more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention.

In sum, one of skill in the art, provided with the teachings of this invention, has available a variety of methods which may be used to alter the biological properties of the antibodies of this invention including methods which would increase or decrease the stability or half-life, immunogenicity, toxicity, affinity or yield of a given antibody molecule, or to alter it in any other way that may render it more suitable for a particular application.

Transgenic Animals and Cells

In another aspect, the invention provides transgenic cells and non-human organisms comprising nucleic acid molecules of the invention. In a preferred embodiment, the transgenic cells and non-human organisms comprise a nucleic acid molecule encoding an LSP. In a preferred embodiment, the LSP comprises an amino

20

acid sequence selected from SEQ ID NO: 116 through 208, or a fragment, mutein, homologous protein or allelic variant thereof. In another preferred embodiment, the transgenic cells and non-human organism comprise an LSNA of the invention, preferably an LSNA comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1 through 115, or a part, substantially similar nucleic acid molecule, allelic variant or hybridizing nucleic acid molecule thereof.

In another embodiment, the transgenic cells and non-human organisms have a targeted disruption or replacement of the endogenous orthologue of the human LSG. The transgenic cells can be embryonic stem cells or somatic cells. The transgenic non-human organisms can be chimeric, nonchimeric heterozygotes, and nonchimeric homozygotes. Methods of producing transgenic animals are well-known in the art. See, e.g., Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual, 2d ed., Cold Spring Harbor Press (1999); Jackson et al., Mouse Genetics and Transgenics: A Practical Approach, Oxford University Press (2000); and Pinkert, Transgenic Animal Technology: A Laboratory Handbook, Academic Press (1999).

Any technique known in the art may be used to introduce a nucleic acid molecule of the invention into an animal to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection. (see, e.g., Paterson et al., Appl. Microbiol. Biotechnol. 40: 691-698 (1994); Carver et al., Biotechnology 11: 1263-1270 (1993); Wright et al., Biotechnology 9: 830-834 (1991); and U.S. Patent 4,873,191 (1989 retrovirus-mediated gene transfer into germ lines, blastocysts or embryos (see, e.g., Van der Putten et al., Proc. Natl. Acad. Sci., USA 82: 6148-6152 (1985)); gene targeting in embryonic stem cells (see, e.g., Thompson et al., Cell 56: 313-321 (1989)); electroporation of cells or embryos (see, e.g., Lo, 1983, Mol. Cell. Biol. 3: 1803-1814 (1983)); introduction using a gene gun (see, e.g., Ulmer et al., Science 259: 25 1745-49 (1993); introducing nucleic acid constructs into embryonic pleuripotent stem cells and transferring the stem cells back into the blastocyst; and sperm-mediated gene transfer (see, e.g., Lavitrano et al., Cell 57: 717-723 (1989)).

Other techniques include, for example, nuclear transfer into enucleated oocytes of nuclei from cultured embryonic, fetal, or adult cells induced to quiescence (see, e.g., 30 Campell et al., Nature 380: 64-66 (1996); Wilmut et al., Nature 385: 810-813 (1997)). The present invention provides for transgenic animals that carry the transgene (i.e., a

20

25

30

nucleic acid molecule of the invention) in all their cells, as well as animals which carry the transgene in some, but not all their cells, i. e., mosaic animals or chimeric animals.

The transgene may be integrated as a single transgene or as multiple copies, such as in concatamers, e. g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, e.g., the teaching of Lasko et al. et al., Proc. Natl. Acad. Sci. USA 89: 6232-6236 (1992). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, *in situ* hybridization analysis, and reverse transcriptase-PCR (RT-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product.

Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background that is appropriate for an experimental model of interest.

Transgenic animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of

the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

Methods for creating a transgenic animal with a disruption of a targeted gene are also well-known in the art. In general, a vector is designed to comprise some nucleotide sequences homologous to the endogenous targeted gene. The vector is introduced into a cell so that it may integrate, via homologous recombination with chromosomal sequences, into the endogenous gene, thereby disrupting the function of the endogenous gene. The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene in only that cell type. See, e.g., Gu et al., Science 265: 103-106 (1994). The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. See, e.g., Smithies et al., Nature 317: 230-234 (1985); Thomas et al., Cell 51: 503-512 (1987); Thompson et al., Cell 5: 313-321 (1989).

15

20

25

30

In one embodiment, a mutant, non-functional nucleic acid molecule of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous nucleic acid sequence (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides of the invention *in vivo*. In another embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the targeted gene. Such approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive targeted gene. See, e.g., Thomas, supra and Thompson, supra. However this approach can be routinely adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site *in vivo* using appropriate viral vectors that will be apparent to those of skill in the art.

In further embodiments of the invention, cells that are genetically engineered to express the polypeptides of the invention, or alternatively, that are genetically engineered not to express the polypeptides of the invention (e.g., knockouts) are administered to a patient *in vivo*. Such cells may be obtained from an animal or patient or an MHC

15

20

25

30

compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (e.g., lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered in vitro using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or alternatively, to disrupt the coding sequence and/or endogenous regulatory sequence associated with the polypeptides of the invention, e.g., by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc.

The coding sequence of the polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, of the polypeptides of the invention. The engineered cells which express and preferably secrete the polypeptides of the invention can be introduced into the patient systemically, *e.g.*, in the circulation, or intraperitoneally.

Alternatively, the cells can be incorporated into a matrix and implanted in the body, e.g., genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. See, e.g., U.S. Patents 5,399,349 and 5,460,959, each of which is incorporated by reference herein in its entirety.

When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well-known techniques which prevent the development of a host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.

Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

20

Computer Readable Means

A further aspect of the invention relates to a computer readable means for storing the nucleic acid and amino acid sequences of the instant invention. In a preferred embodiment, the invention provides a computer readable means for storing SEQ ID NO: 1 through 115 and SEQ ID NO: 116 through 208 as described herein, as the complete set of sequences or in any combination. The records of the computer readable means can be accessed for reading and display and for interface with a computer system for the application of programs allowing for the location of data upon a query for data meeting certain criteria, the comparison of sequences, the alignment or ordering of sequences meeting a set of criteria, and the like.

The nucleic acid and amino acid sequences of the invention are particularly useful as components in databases useful for search analyses as well as in sequence analysis algorithms. As used herein, the terms "nucleic acid sequences of the invention" and "amino acid sequences of the invention" mean any detectable chemical or physical characteristic of a polynucleotide or polypeptide of the invention that is or may be reduced to or stored in a computer readable form. These include, without limitation, chromatographic scan data or peak data, photographic data or scan data therefrom, and mass spectrographic data.

This invention provides computer readable media having stored thereon sequences of the invention. A computer readable medium may comprise one or more of the following: a nucleic acid sequence comprising a sequence of a nucleic acid sequence of the invention; an amino acid sequence comprising an amino acid sequence of the invention; a set of nucleic acid sequences wherein at least one of said sequences comprises the sequence of a nucleic acid sequence of the invention; a set of amino acid sequences wherein at least one of said sequences comprises the sequence of an amino acid sequence of the invention; a data set representing a nucleic acid sequence comprising the sequence of one or more nucleic acid sequences of the invention; a data set representing a nucleic acid sequence comprising the sequence of an amino acid sequence encoding an amino acid sequence comprising the sequence of an amino acid sequence of the invention; a set of nucleic acid sequences wherein at least one of said sequences comprises the sequence of a nucleic acid sequence of the invention; a set of amino acid sequences wherein at least one of said sequences comprises the sequence of an amino acid sequence of the invention; a data set

representing a nucleic acid sequence comprising the sequence of a nucleic acid sequence of the invention; a data set representing a nucleic acid sequence encoding an amino acid sequence comprising the sequence of an amino acid sequence of the invention. The computer readable medium can be any composition of matter used to store information or data, including, for example, commercially available floppy disks, tapes, hard drives, compact disks, and video disks.

Also provided by the invention are methods for the analysis of character sequences, particularly genetic sequences. Preferred methods of sequence analysis include, for example, methods of sequence homology analysis, such as identity and similarity analysis, RNA structure analysis, sequence assembly, cladistic analysis, sequence motif analysis, open reading frame determination, nucleic acid base calling, and sequencing chromatogram peak analysis.

A computer-based method is provided for performing nucleic acid sequence identity or similarity identification. This method comprises the steps of providing a nucleic acid sequence comprising the sequence of a nucleic acid of the invention in a computer readable medium; and comparing said nucleic acid sequence to at least one nucleic acid or amino acid sequence to identify sequence identity or similarity.

A computer-based method is also provided for performing amino acid homology identification, said method comprising the steps of: providing an amino acid sequence comprising the sequence of an amino acid of the invention in a computer readable medium; and comparing said an amino acid sequence to at least one nucleic acid or an amino acid sequence to identify homology.

A computer-based method is still further provided for assembly of overlapping nucleic acid sequences into a single nucleic acid sequence, said method comprising the steps of: providing a first nucleic acid sequence comprising the sequence of a nucleic acid of the invention in a computer readable medium; and screening for at least one overlapping region between said first nucleic acid sequence and a second nucleic acid sequence.

Diagnostic Methods for Lung Cancer

30

The present invention also relates to quantitative and qualitative diagnostic assays and methods for detecting, diagnosing, monitoring, staging and predicting cancers by

20

25

comparing expression of an LSNA or an LSP in a human patient that has or may have lung cancer, or who is at risk of developing lung cancer, with the expression of an LSNA or an LSP in a normal human control. For purposes of the present invention, "expression of an LSNA" or "LSNA expression" means the quantity of LSG mRNA that can be measured by any method known in the art or the level of transcription that can be measured by any method known in the art in a cell, tissue, organ or whole patient. Similarly, the term "expression of an LSP" or "LSP expression" means the amount of LSP that can be measured by any method known in the art or the level of translation of an LSG LSNA that can be measured by any method known in the art.

The present invention provides methods for diagnosing lung cancer in a patient, in particular squamous cell carcinoma, by analyzing for changes in levels of LSNA or LSP in cells, tissues, organs or bodily fluids compared with levels of LSNA or LSP in cells, tissues, organs or bodily fluids of preferably the same type from a normal human control, wherein an increase, or decrease in certain cases, in levels of an LSNA or LSP in the patient versus the normal human control is associated with the presence of lung cancer or with a predilection to the disease. In another preferred embodiment, the present invention provides methods for diagnosing lung cancer in a patient by analyzing changes in the structure of the mRNA of an LSG compared to the mRNA from a normal control. These changes include, without limitation, aberrant splicing, alterations in polyadenylation and/or alterations in 5' nucleotide capping. In yet another preferred embodiment, the present invention provides methods for diagnosing lung cancer in a patient by analyzing changes in an LSP compared to an LSP from a normal control. These changes include, e.g., alterations in glycosylation and/or phosphorylation of the LSP or subcellular LSP localization.

In a preferred embodiment, the expression of an LSNA is measured by determining the amount of an mRNA that encodes an amino acid sequence selected from SEQ ID NO: 116 through 208, a homolog, an allelic variant, or a fragment thereof. In a more preferred embodiment, the LSNA expression that is measured is the level of expression of an LSNA mRNA selected from SEQ ID NO: 1 through 115, or a hybridizing nucleic acid, homologous nucleic acid or allelic variant thereof, or a part of any of these nucleic acids. LSNA expression may be measured by any method known in the art, such as those described *supra*, including measuring mRNA expression by

20

25

Northern blot, quantitative or qualitative reverse transcriptase PCR (RT-PCR), microarray, dot or slot blots or *in situ* hybridization. *See*, *e.g.*, Ausubel (1992), *supra*; Ausubel (1999), *supra*; Sambrook (1989), *supra*; and Sambrook (2001), *supra*. LSNA transcription may be measured by any method known in the art including using a reporter gene hooked up to the promoter of an LSG of interest or doing nuclear run-off assays. Alterations in mRNA structure, *e.g.*, aberrant splicing variants, may be determined by any method known in the art, including, RT-PCR followed by sequencing or restriction analysis. As necessary, LSNA expression may be compared to a known control, such as normal lung nucleic acid, to detect a change in expression.

In another preferred embodiment, the expression of an LSP is measured by determining the level of an LSP having an amino acid sequence selected from the group consisting of SEQ ID NO: 116 through 208, a homolog, an allelic variant, or a fragment thereof. Such levels are preferably determined in at least one of cells, tissues, organs and/or bodily fluids, including determination of normal and abnormal levels. Thus, for instance, a diagnostic assay in accordance with the invention for diagnosing over- or underexpression of LSNA or LSP compared to normal control bodily fluids, cells, or tissue samples may be used to diagnose the presence of lung cancer. The expression level of an LSP may be determined by any method known in the art, such as those described supra. In a preferred embodiment, the LSP expression level may be determined by radioimmunoassays, competitive-binding assays, ELISA, Western blot, FACS, immunohistochemistry, immunoprecipitation, proteomic approaches: two-dimensional gel electrophoresis (2D electrophoresis) and non-gel-based approaches such as mass spectrometry or protein interaction profiling. See, e.g, Harlow (1999), supra; Ausubel (1992), supra; and Ausubel (1999), supra. Alterations in the LSP structure may be determined by any method known in the art, including, e.g., using antibodies that specifically recognize phosphoserine, phosphothreonine or phosphotyrosine residues, two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and/or chemical analysis of amino acid residues of the protein. Id.

In a preferred embodiment, a radioimmunoassay (RIA) or an ELISA is used. An antibody specific to an LSP is prepared if one is not already available. In a preferred embodiment, the antibody is a monoclonal antibody. The anti-LSP antibody is bound to a solid support and any free protein binding sites on the solid support are blocked with a

25

protein such as bovine serum albumin. A sample of interest is incubated with the antibody on the solid support under conditions in which the LSP will bind to the anti-LSP antibody. The sample is removed, the solid support is washed to remove unbound material, and an anti-LSP antibody that is linked to a detectable reagent (a radioactive substance for RIA and an enzyme for ELISA) is added to the solid support and incubated under conditions in which binding of the LSP to the labeled antibody will occur. After binding, the unbound labeled antibody is removed by washing. For an ELISA, one or more substrates are added to produce a colored reaction product that is based upon the amount of an LSP in the sample. For an RIA, the solid support is counted for radioactive decay signals by any method known in the art. Quantitative results for both RIA and ELISA typically are obtained by reference to a standard curve.

Other methods to measure LSP levels are known in the art. For instance, a competition assay may be employed wherein an anti-LSP antibody is attached to a solid support and an allocated amount of a labeled LSP and a sample of interest are incubated with the solid support. The amount of labeled LSP detected which is attached to the solid support can be correlated to the quantity of an LSP in the sample.

Of the proteomic approaches, 2D PAGE is a well-known technique. Isolation of individual proteins from a sample such as serum is accomplished using sequential separation of proteins by isoelectric point and molecular weight. Typically, polypeptides are first separated by isoelectric point (the first dimension) and then separated by size using an electric current (the second dimension). In general, the second dimension is perpendicular to the first dimension. Because no two proteins with different sequences are identical on the basis of both size and charge, the result of 2D PAGE is a roughly square gel in which each protein occupies a unique spot. Analysis of the spots with chemical or antibody probes, or subsequent protein microsequencing can reveal the relative abundance of a given protein and the identity of the proteins in the sample.

Expression levels of an LSNA can be determined by any method known in the art, including PCR and other nucleic acid methods, such as ligase chain reaction (LCR) and nucleic acid sequence based amplification (NASBA), can be used to detect malignant cells for diagnosis and monitoring of various malignancies. For example, reverse-transcriptase PCR (RT-PCR) is a powerful technique which can be used to detect the presence of a specific mRNA population in a complex mixture of thousands of other

20

25

mRNA species. In RT-PCR, an mRNA species is first reverse transcribed to complementary DNA (cDNA) with use of the enzyme reverse transcriptase; the cDNA is then amplified as in a standard PCR reaction.

Hybridization to specific DNA molecules (e.g., oligonucleotides) arrayed on a solid support can be used to both detect the expression of and quantitate the level of expression of one or more LSNAs of interest. In this approach, all or a portion of one or more LSNAs is fixed to a substrate. A sample of interest, which may comprise RNA, e.g., total RNA or polyA-selected mRNA, or a complementary DNA (cDNA) copy of the RNA is incubated with the solid support under conditions in which hybridization will occur between the DNA on the solid support and the nucleic acid molecules in the sample of interest. Hybridization between the substrate-bound DNA and the nucleic acid molecules in the sample can be detected and quantitated by several means, including, without limitation, radioactive labeling or fluorescent labeling of the nucleic acid molecule or a secondary molecule designed to detect the hybrid.

The above tests can be carried out on samples derived from a variety of cells, bodily fluids and/or tissue extracts such as homogenates or solubilized tissue obtained from a patient. Tissue extracts are obtained routinely from tissue biopsy and autopsy material. Bodily fluids useful in the present invention include blood, urine, saliva or any other bodily secretion or derivative thereof. By blood it is meant to include whole blood, plasma, serum or any derivative of blood. In a preferred embodiment, the specimen tested for expression of LSNA or LSP includes, without limitation, lung tissue, fluid obtained by bronchial alveolar lavage (BAL), sputum, lung cells grown in cell culture, blood, serum, lymph node tissue and lymphatic fluid. In another preferred embodiment, especially when metastasis of a primary lung cancer is known or suspected, specimens include, without limitation, tissues from brain, bone, bone marrow, liver, adrenal glands and colon. In general, the tissues may be sampled by biopsy, including, without limitation, needle biopsy, e.g., transthoracic needle aspiration, cervical mediatinoscopy, endoscopic lymph node biopsy, video-assisted thoracoscopy, exploratory thoracotomy, bone marrow biopsy and bone marrow aspiration. See Scott, supra and Franklin, pp. 529-570, in Kane, supra. For early and inexpensive detection, assaying for changes in LSNAs or LSPs in cells in sputum samples may be particularly useful. Methods of obtaining and analyzing sputum samples is disclosed in Franklin, supra.

All the methods of the present invention may optionally include determining the expression levels of one or more other cancer markers in addition to determining the expression level of an LSNA or LSP. In many cases, the use of another cancer marker will decrease the likelihood of false positives or false negatives. In one embodiment, the one or more other cancer markers include other LSNA or LSPs as disclosed herein. Other cancer markers useful in the present invention will depend on the cancer being tested and are known to those of skill in the art. In a preferred embodiment, at least one other cancer marker in addition to a particular LSNA or LSP is measured. In a more preferred embodiment, at least two other additional cancer markers are used. In an even more preferred embodiment, at least three, more preferably at least five, even more preferably at least ten additional cancer markers are used.

Diagnosing

15

20

30

In one aspect, the invention provides a method for determining the expression levels and/or structural alterations of one or more LSNAs and/or LSPs in a sample from a patient suspected of having lung cancer. In general, the method comprises the steps of obtaining the sample from the patient, determining the expression level or structural alterations of an LSNA and/or LSP and then ascertaining whether the patient has lung cancer from the expression level of the LSNA or LSP. In general, if high expression relative to a control of an LSNA or LSP is indicative of lung cancer, a diagnostic assay is considered positive if the level of expression of the LSNA or LSP is at least two times higher, and more preferably are at least five times higher, even more preferably at least ten times higher, than in preferably the same cells, tissues or bodily fluid of a normal human control. In contrast, if low expression relative to a control of an LSNA or LSP is indicative of lung cancer, a diagnostic assay is considered positive if the level of expression of the LSNA or LSP is at least two times lower, more preferably are at least five times lower, even more preferably at least ten times lower than in preferably the same cells, tissues or bodily fluid of a normal human control. The normal human control may be from a different patient or from uninvolved tissue of the same patient.

The present invention also provides a method of determining whether lung cancer has metastasized in a patient. One may identify whether the lung cancer has metastasized by measuring the expression levels and/or structural alterations of one or more LSNAs and/or LSPs in a variety of tissues. The presence of an LSNA or LSP in a certain tissue

at levels higher than that of corresponding noncancerous tissue (e.g., the same tissue from another individual) is indicative of metastasis if high level expression of an LSNA or LSP is associated with lung cancer. Similarly, the presence of an LSNA or LSP in a tissue at levels lower than that of corresponding noncancerous tissue is indicative of 5 metastasis if low level expression of an LSNA or LSP is associated with lung cancer. Further, the presence of a structurally altered LSNA or LSP that is associated with lung cancer is also indicative of metastasis.

In general, if high expression relative to a control of an LSNA or LSP is indicative of metastasis, an assay for metastasis is considered positive if the level of expression of the 10 LSNA or LSP is at least two times higher, and more preferably are at least five times higher, even more preferably at least ten times higher, than in preferably the same cells, tissues or bodily fluid of a normal human control. In contrast, if low expression relative to a control of an LSNA or LSP is indicative of metastasis, an assay for metastasis is considered positive if the level of expression of the LSNA or LSP is at least two times lower, more preferably are at least five times lower, even more preferably at least ten times lower than in preferably the same cells, tissues or bodily fluid of a normal human control.

The LSNA or LSP of this invention may be used as element in an array or a multi-analyte test to recognize expression patterns associated with lung cancers or other lung related disorders. In addition, the sequences of either the nucleic acids or proteins may be used as elements in a computer program for pattern recognition of lung disorders.

Staging

20

The invention also provides a method of staging lung cancer in a human patient. The method comprises identifying a human patient having lung cancer and analyzing 25 cells, tissues or bodily fluids from such human patient for expression levels and/or structural alterations of one or more LSNAs or LSPs. First, one or more tumors from a variety of patients are staged according to procedures well-known in the art, and the expression level of one or more LSNAs or LSPs is determined for each stage to obtain a standard expression level for each LSNA and LSP. Then, the LSNA or LSP expression levels are determined in a biological sample from a patient whose stage of cancer is not known. The LSNA or LSP expression levels from the patient are then compared to the

WO 02/064788 PCT/US01/45080

-101-

standard expression level. By comparing the expression level of the LSNAs and LSPs from the patient to the standard expression levels, one may determine the stage of the tumor. The same procedure may be followed using structural alterations of an LSNA or LSP to determine the stage of a lung cancer.

5 Monitoring

20

Further provided is a method of monitoring lung cancer in a human patient. One may monitor a human patient to determine whether there has been metastasis and, if there has been, when metastasis began to occur. One may also monitor a human patient to determine whether a preneoplastic lesion has become cancerous. One may also monitor a human patient to determine whether a therapy, e.g., chemotherapy, radiotherapy or surgery, has decreased or eliminated the lung cancer. The method comprises identifying a human patient that one wants to monitor for lung cancer, periodically analyzing cells, tissues or bodily fluids from such human patient for expression levels of one or more LSNAs or LSPs, and comparing the LSNA or LSP levels over time to those LSNA or LSP expression levels obtained previously. Patients may also be monitored by measuring one or more structural alterations in an LSNA or LSP that are associated with lung cancer.

If increased expression of an LSNA or LSP is associated with metastasis, treatment failure, or conversion of a preneoplastic lesion to a cancerous lesion, then detecting an increase in the expression level of an LSNA or LSP indicates that the tumor is metastasizing, that treatment has failed or that the lesion is cancerous, respectively. One having ordinary skill in the art would recognize that if this were the case, then a decreased expression level would be indicative of no metastasis, effective therapy or failure to progress to a neoplastic lesion. If decreased expression of an LSNA or LSP is associated with metastasis, treatment failure, or conversion of a preneoplastic lesion to a cancerous lesion, then detecting an decrease in the expression level of an LSNA or LSP indicates that the tumor is metastasizing, that treatment has failed or that the lesion is cancerous, respectively. In a preferred embodiment, the levels of LSNAs or LSPs are determined from the same cell type, tissue or bodily fluid as prior patient samples. Monitoring a patient for onset of lung cancer metastasis is periodic and preferably is done on a quarterly basis, but may be done more or less frequently.

The methods described herein can further be utilized as prognostic assays to identify subjects having or at risk of developing a disease or disorder associated with increased or decreased expression levels of an LSNA and/or LSP. The present invention provides a method in which a test sample is obtained from a human patient and one or 5 more LSNAs and/or LSPs are detected. The presence of higher (or lower) LSNA or LSP levels as compared to normal human controls is diagnostic for the human patient being at risk for developing cancer, particularly lung cancer. The effectiveness of therapeutic agents to decrease (or increase) expression or activity of one or more LSNAs and/or LSPs of the invention can also be monitored by analyzing levels of expression of the 10 LSNAs and/or LSPs in a human patient in clinical trials or in in vitro screening assays such as in human cells. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the human patient or cells, as the case may be, to the agent being tested.

Detection of Genetic Lesions or Mutations

The methods of the present invention can also be used to detect genetic lesions or mutations in an LSG, thereby determining if a human with the genetic lesion is susceptible to developing lung cancer or to determine what genetic lesions are responsible, or are partly responsible, for a person's existing lung cancer. Genetic lesions can be detected, for example, by ascertaining the existence of a deletion, insertion and/or substitution of one or more nucleotides from the LSGs of this invention, a 20 chromosomal rearrangement of LSG, an aberrant modification of LSG (such as of the methylation pattern of the genomic DNA), or allelic loss of an LSG. Methods to detect such lesions in the LSG of this invention are known to those having ordinary skill in the art following the teachings of the specification.

Methods of Detecting Noncancerous Lung Diseases 25

The invention also provides a method for determining the expression levels and/or structural alterations of one or more LSNAs and/or LSPs in a sample from a patient suspected of having or known to have a noncancerous lung disease. In general, the method comprises the steps of obtaining a sample from the patient, determining the expression level or structural alterations of an LSNA and/or LSP, comparing the expression level or structural alteration of the LSNA or LSP to a normal lung control,

25

30

and then ascertaining whether the patient has a noncancerous lung disease. In general, if high expression relative to a control of an LSNA or LSP is indicative of a particular noncancerous lung disease, a diagnostic assay is considered positive if the level of expression of the LSNA or LSP is at least two times higher, and more preferably are at least five times higher, even more preferably at least ten times higher, than in preferably the same cells, tissues or bodily fluid of a normal human control. In contrast, if low expression relative to a control of an LSNA or LSP is indicative of a noncancerous lung disease, a diagnostic assay is considered positive if the level of expression of the LSNA or LSP is at least two times lower, more preferably are at least five times lower, even more preferably at least ten times lower than in preferably the same cells, tissues or bodily fluid of a normal human control. The normal human control may be from a different patient or from uninvolved tissue of the same patient.

One having ordinary skill in the art may determine whether an LSNA and/or LSP is associated with a particular noncancerous lung disease by obtaining lung tissue from a patient having a noncancerous lung disease of interest and determining which LSNAs and/or LSPs are expressed in the tissue at either a higher or a lower level than in normal lung tissue. In another embodiment, one may determine whether an LSNA or LSP exhibits structural alterations in a particular noncancerous lung disease state by obtaining lung tissue from a patient having a noncancerous lung disease of interest and determining the structural alterations in one or more LSNAs and/or LSPs relative to normal lung tissue.

Methods for Identifying Lung Tissue

In another aspect, the invention provides methods for identifying lung tissue. These methods are particularly useful in, e.g., forensic science, lung cell differentiation and development, and in tissue engineering.

In one embodiment, the invention provides a method for determining whether a sample is lung tissue or has lung tissue-like characteristics. The method comprises the steps of providing a sample suspected of comprising lung tissue or having lung tissue-like characteristics, determining whether the sample expresses one or more LSNAs and/or LSPs, and, if the sample expresses one or more LSNAs and/or LSPs, concluding that the sample comprises lung tissue. In a preferred embodiment, the LSNA encodes a

polypeptide having an amino acid sequence selected from SEQ ID NO: 116 through 208, or a homolog, allelic variant or fragment thereof. In a more preferred embodiment, the LSNA has a nucleotide sequence selected from SEQ ID NO: 1 through 115, or a hybridizing nucleic acid, an allelic variant or a part thereof. Determining whether a sample expresses an LSNA can be accomplished by any method known in the art. Preferred methods include hybridization to microarrays, Northern blot hybridization, and quantitative or qualitative RT-PCR. In another preferred embodiment, the method can be practiced by determining whether an LSP is expressed. Determining whether a sample expresses an LSP can be accomplished by any method known in the art. Preferred methods include Western blot, ELISA, RIA and 2D PAGE. In one embodiment, the LSP has an amino acid sequence selected from SEQ ID NO: 116 through 208, or a homolog, allelic variant or fragment thereof. In another preferred embodiment, the expression of at least two LSNAs and/or LSPs is determined. In a more preferred embodiment, the expression of at least three, more preferably four and even more preferably five LSNAs and/or LSPs are determined.

In one embodiment, the method can be used to determine whether an unknown tissue is lung tissue. This is particularly useful in forensic science, in which small, damaged pieces of tissues that are not identifiable by microscopic or other means are recovered from a crime or accident scene. In another embodiment, the method can be used to determine whether a tissue is differentiating or developing into lung tissue. This is important in monitoring the effects of the addition of various agents to cell or tissue culture, e.g., in producing new lung tissue by tissue engineering. These agents include, e.g., growth and differentiation factors, extracellular matrix proteins and culture medium. Other factors that may be measured for effects on tissue development and differentiation include gene transfer into the cells or tissues, alterations in pH, aqueous:air interface and various other culture conditions.

Methods for Producing and Modifying Lung Tissue

In another aspect, the invention provides methods for producing engineered lung tissue or cells. In one embodiment, the method comprises the steps of providing cells, introducing an LSNA or an LSG into the cells, and growing the cells under conditions in which they exhibit one or more properties of lung tissue cells. In a preferred

embodiment, the cells are pluripotent. As is well-known in the art, normal lung tissue comprises a large number of different cell types. Thus, in one embodiment, the engineered lung tissue or cells comprises one of these cell types. In another embodiment, the engineered lung tissue or cells comprises more than one lung cell type. Further, the culture conditions of the cells or tissue may require manipulation in order to achieve full differentiation and development of the lung cell tissue. Methods for manipulating culture conditions are well-known in the art.

Nucleic acid molecules encoding one or more LSPs are introduced into cells, preferably pluripotent cells. In a preferred embodiment, the nucleic acid molecules encode LSPs having amino acid sequences selected from SEQ ID NO: 116 through 208, or homologous proteins, analogs, allelic variants or fragments thereof. In a more preferred embodiment, the nucleic acid molecules have a nucleotide sequence selected from SEQ ID NO: 1 through 115, or hybridizing nucleic acids, allelic variants or parts thereof. In another highly preferred embodiment, an LSG is introduced into the cells. Expression vectors and methods of introducing nucleic acid molecules into cells are well-known in the art and are described in detail, *supra*.

Artificial lung tissue may be used to treat patients who have lost some or all of their lung function.

Pharmaceutical Compositions

20

10

In another aspect, the invention provides pharmaceutical compositions comprising the nucleic acid molecules, polypeptides, antibodies, antibody derivatives, antibody fragments, agonists, antagonists, and inhibitors of the present invention. In a preferred embodiment, the pharmaceutical composition comprises an LSNA or part thereof. In a more preferred embodiment, the LSNA has a nucleotide sequence selected from the group consisting of SEQ ID NO: 1 through 115, a nucleic acid that hybridizes thereto, an allelic variant thereof, or a nucleic acid that has substantial sequence identity thereto. In another preferred embodiment, the pharmaceutical composition comprises an LSP or fragment thereof. In a more preferred embodiment, the LSP having an amino acid sequence that is selected from the group consisting of SEQ ID NO: 116 through 208, a polypeptide that is homologous thereto, a fusion protein comprising all or a portion of the polypeptide, or an analog or derivative thereof. In another preferred embodiment, the

pharmaceutical composition comprises an anti-LSP antibody, preferably an antibody that specifically binds to an LSP having an amino acid that is selected from the group consisting of SEQ ID NO: 116 through 208, or an antibody that binds to a polypeptide that is homologous thereto, a fusion protein comprising all or a portion of the polypeptide, or an analog or derivative thereof.

Such a composition typically contains from about 0.1 to 90% by weight of a therapeutic agent of the invention formulated in and/or with a pharmaceutically acceptable carrier or excipient.

Pharmaceutical formulation is a well-established art, and is further described in

Gennaro (ed.), Remington: The Science and Practice of Pharmacy, 20th ed., Lippincott,
Williams & Wilkins (2000); Ansel et al., Pharmaceutical Dosage Forms and Drug

Delivery Systems, 7th ed., Lippincott Williams & Wilkins (1999); and Kibbe (ed.),

Handbook of Pharmaceutical Excipients American Pharmaceutical Association, 3rd ed.

(2000), the disclosures of which are incorporated herein by reference in their entireties,
and thus need not be described in detail herein.

Briefly, formulation of the pharmaceutical compositions of the present invention will depend upon the route chosen for administration. The pharmaceutical compositions utilized in this invention can be administered by various routes including both enteral and parenteral routes, including oral, intravenous, intramuscular, subcutaneous, inhalation, topical, sublingual, rectal, intra-arterial, intramedullary, intrathecal, intraventricular, transmucosal, transdermal, intranasal, intraperitoneal, intrapulmonary, and intrauterine.

Oral dosage forms can be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Solid formulations of the compositions for oral administration can contain

suitable carriers or excipients, such as carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, or microcrystalline cellulose; gums including arabic and tragacanth; proteins such as gelatin and collagen; inorganics, such as kaolin, calcium carbonate, dicalcium phosphate, sodium chloride; and other agents such as acacia and alginic acid.

10

25

30

Agents that facilitate disintegration and/or solubilization can be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate, microcrystalline cellulose, corn starch, sodium starch glycolate, and alginic acid.

Tablet binders that can be used include acacia, methylcellulose, sodium carboxymethylcellulose, polyvinylpyrrolidone (Povidone™), hydroxypropyl methylcellulose, sucrose, starch and ethylcellulose.

Lubricants that can be used include magnesium stearates, stearic acid, silicone fluid, talc, waxes, oils, and colloidal silica.

Fillers, agents that facilitate disintegration and/or solubilization, tablet binders and lubricants, including the aforementioned, can be used singly or in combination.

Solid oral dosage forms need not be uniform throughout. For example, dragee cores can be used in conjunction with suitable coatings, such as concentrated sugar solutions, which can also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.

Oral dosage forms of the present invention include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Additionally, dyestuffs or pigments can be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Liquid formulations of the pharmaceutical compositions for oral (enteral) administration are prepared in water or other aqueous vehicles and can contain various suspending agents such as methylcellulose, alginates, tragacanth, pectin, kelgin, carrageenan, acacia, polyvinylpyrrolidone, and polyvinyl alcohol. The liquid formulations can also include solutions, emulsions, syrups and elixirs containing, together with the active compound(s), wetting agents, sweeteners, and coloring and flavoring agents.

20

25

30

The pharmaceutical compositions of the present invention can also be formulated for parenteral administration. Formulations for parenteral administration can be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions.

For intravenous injection, water soluble versions of the compounds of the present invention are formulated in, or if provided as a lyophilate, mixed with, a physiologically acceptable fluid vehicle, such as 5% dextrose ("D5"), physiologically buffered saline, 0.9% saline, Hanks' solution, or Ringer's solution. Intravenous formulations may include carriers, excipients or stabilizers including, without limitation, calcium, human serum albumin, citrate, acetate, calcium chloride, carbonate, and other salts.

Intramuscular preparations, e.g. a sterile formulation of a suitable soluble salt form of the compounds of the present invention, can be dissolved and administered in a pharmaceutical excipient such as Water-for-Injection, 0.9% saline, or 5% glucose solution. Alternatively, a suitable insoluble form of the compound can be prepared and administered as a suspension in an aqueous base or a pharmaceutically acceptable oil base, such as an ester of a long chain fatty acid (e.g., ethyl oleate), fatty oils such as sesame oil, triglycerides, or liposomes.

Parenteral formulations of the compositions can contain various carriers such as vegetable oils, dimethylacetamide, dimethylformamide, ethyl lactate, ethyl carbonate, isopropyl myristate, ethanol, polyols (glycerol, propylene glycol, liquid polyethylene glycol, and the like).

Aqueous injection suspensions can also contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Non-lipid polycationic amino polymers can also be used for delivery. Optionally, the suspension can also contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

Pharmaceutical compositions of the present invention can also be formulated to permit injectable, long-term, deposition. Injectable depot forms may be made by forming microencapsulated matrices of the compound in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot

10

15

20

25

injectable formulations are also prepared by entrapping the drug in microemulsions that are compatible with body tissues.

The pharmaceutical compositions of the present invention can be administered topically.

For topical use the compounds of the present invention can also be prepared in suitable forms to be applied to the skin, or mucus membranes of the nose and throat, and can take the form of lotions, creams, ointments, liquid sprays or inhalants, drops, tinctures, lozenges, or throat paints. Such topical formulations further can include chemical compounds such as dimethylsulfoxide (DMSO) to facilitate surface penetration of the active ingredient. In other transdermal formulations, typically in patch-delivered formulations, the pharmaceutically active compound is formulated with one or more skin penetrants, such as 2-N-methyl-pyrrolidone (NMP) or Azone. A topical semi-solid ointment formulation typically contains a concentration of the active ingredient from about 1 to 20%, e.g., 5 to 10%, in a carrier such as a pharmaceutical cream base.

For application to the eyes or ears, the compounds of the present invention can be presented in liquid or semi-liquid form formulated in hydrophobic or hydrophilic bases as ointments, creams, lotions, paints or powders.

For rectal administration the compounds of the present invention can be administered in the form of suppositories admixed with conventional carriers such as cocoa butter, wax or other glyceride.

Inhalation formulations can also readily be formulated. For inhalation, various powder and liquid formulations can be prepared. For aerosol preparations, a sterile formulation of the compound or salt form of the compound may be used in inhalers, such as metered dose inhalers, and nebulizers. Aerosolized forms may be especially useful for treating respiratory disorders.

Alternatively, the compounds of the present invention can be in powder form for reconstitution in the appropriate pharmaceutically acceptable carrier at the time of delivery.

The pharmaceutically active compound in the pharmaceutical compositions of the present invention can be provided as the salt of a variety of acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts

30

tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms.

After pharmaceutical compositions have been prepared, they are packaged in an appropriate container and labeled for treatment of an indicated condition.

The active compound will be present in an amount effective to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

A "therapeutically effective dose" refers to that amount of active ingredient, for example LSP polypeptide, fusion protein, or fragments thereof, antibodies specific for LSP, agonists, antagonists or inhibitors of LSP, which ameliorates the signs or symptoms of the disease or prevents progression thereof; as would be understood in the medical arts, cure, although desired, is not required.

The therapeutically effective dose of the pharmaceutical agents of the present invention can be estimated initially by *in vitro* tests, such as cell culture assays, followed by assay in model animals, usually mice, rats, rabbits, dogs, or pigs. The animal model can also be used to determine an initial preferred concentration range and route of administration.

For example, the ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population) can be determined in one or more cell culture of animal model systems. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as LD50/ED50. Pharmaceutical compositions that exhibit large therapeutic indices are preferred.

The data obtained from cell culture assays and animal studies are used in formulating an initial dosage range for human use, and preferably provide a range of circulating concentrations that includes the ED50 with little or no toxicity. After administration, or between successive administrations, the circulating concentration of active agent varies within this range depending upon pharmacokinetic factors well-known in the art, such as the dosage form employed, sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors specific to the subject requiring treatment. Factors that can be taken into account by the practitioner include the severity of the disease state, general health of the subject, age,

10

15

25

30

weight, gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every, 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. Where the therapeutic agent is a protein or antibody of the present invention, the therapeutic protein or antibody agent typically is administered at a daily dosage of 0.01 mg to 30 mg/kg of body weight of the patient (e.g., 1 mg/kg to 5 mg/kg). The pharmaceutical formulation can be administered in multiple doses per day, if desired, to achieve the total desired daily dose.

Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

Conventional methods, known to those of ordinary skill in the art of medicine, can be used to administer the pharmaceutical formulation(s) of the present invention to the patient. The pharmaceutical compositions of the present invention can be administered alone, or in combination with other therapeutic agents or interventions.

20 Therapeutic Methods

The present invention further provides methods of treating subjects having defects in a gene of the invention, e.g., in expression, activity, distribution, localization, and/or solubility, which can manifest as a disorder of lung function. As used herein, "treating" includes all medically-acceptable types of therapeutic intervention, including palliation and prophylaxis (prevention) of disease. The term "treating" encompasses any improvement of a disease, including minor improvements. These methods are discussed below.

Gene Therapy and Vaccines

The isolated nucleic acids of the present invention can also be used to drive in vivo expression of the polypeptides of the present invention. In vivo expression can be driven from a vector, typically a viral vector, often a vector based upon a replication

and the second of the second o

20

30

incompetent retrovirus, an adenovirus, or an adeno-associated virus (AAV), for purpose of gene therapy. *In vivo* expression can also be driven from signals endogenous to the nucleic acid or from a vector, often a plasmid vector, such as pVAX1 (Invitrogen, Carlsbad, CA, USA), for purpose of "naked" nucleic acid vaccination, as further described in U.S. Patents 5,589,466; 5,679,647; 5,804,566; 5,830,877; 5,843,913; 5,880,104; 5,958,891; 5,985,847; 6,017,897; 6,110,898; and 6,204,250, the disclosures of which are incorporated herein by reference in their entireties. For cancer therapy, it is preferred that the vector also be tumor-selective. *See*, *e.g.*, Doronin *et al.*, *J. Virol.* 75: 3314-24 (2001).

In another embodiment of the therapeutic methods of the present invention, a therapeutically effective amount of a pharmaceutical composition comprising a nucleic acid of the present invention is administered. The nucleic acid can be delivered in a vector that drives expression of an LSP, fusion protein, or fragment thereof, or without such vector. Nucleic acid compositions that can drive expression of an LSP are administered, for example, to complement a deficiency in the native LSP, or as DNA vaccines. Expression vectors derived from virus, replication deficient retroviruses, adenovirus, adeno-associated (AAV) virus, herpes virus, or vaccinia virus can be used as can plasmids. See, e.g., Cid-Arregui, supra. In a preferred embodiment, the nucleic acid molecule encodes an LSP having the amino acid sequence of SEQ ID NO: 116 through 208, or a fragment, fusion protein, allelic variant or homolog thereof.

In still other therapeutic methods of the present invention, pharmaceutical compositions comprising host cells that express an LSP, fusions, or fragments thereof can be administered. In such cases, the cells are typically autologous, so as to circumvent xenogeneic or allotypic rejection, and are administered to complement defects in LSP production or activity. In a preferred embodiment, the nucleic acid molecules in the cells encode an LSP having the amino acid sequence of SEQ ID NO: 116 through 208, or a fragment, fusion protein, allelic variant or homolog thereof.

Antisense Administration

Antisense nucleic acid compositions, or vectors that drive expression of an LSG antisense nucleic acid, are administered to downregulate transcription and/or translation of an LSG in circumstances in which excessive production, or production of aberrant protein, is the pathophysiologic basis of disease.

10

20

30

Antisense compositions useful in therapy can have a sequence that is complementary to coding or to noncoding regions of an LSG. For example, oligonucleotides derived from the transcription initiation site, e.g., between positions -10 and +10 from the start site, are preferred.

Catalytic antisense compositions, such as ribozymes, that are capable of sequence-specific hybridization to LSG transcripts, are also useful in therapy. See, e.g., Phylactou, Adv. Drug Deliv. Rev. 44(2-3): 97-108 (2000); Phylactou et al., Hum. Mol. Genet. 7(10): 1649-53 (1998); Rossi, Ciba Found. Symp. 209: 195-204 (1997); and Sigurdsson et al., Trends Biotechnol. 13(8): 286-9 (1995), the disclosures of which are incorporated herein by reference in their entireties.

Other nucleic acids useful in the therapeutic methods of the present invention are those that are capable of triplex helix formation in or near the LSG genomic locus. Such triplexing oligonucleotides are able to inhibit transcription. See, e.g., Intody et al., Nucleic Acids Res. 28(21): 4283-90 (2000); McGuffie et al., Cancer Res. 60(14): 3790-9 (2000), the disclosures of which are incorporated herein by reference. Pharmaceutical compositions comprising such triplex forming oligos (TFOs) are administered in circumstances in which excessive production, or production of aberrant protein, is a pathophysiologic basis of disease.

In a preferred embodiment, the antisense molecule is derived from a nucleic acid molecule encoding an LSP, preferably an LSP comprising an amino acid sequence of SEQ ID NO: 116 through 208, or a fragment, allelic variant or homolog thereof. In a more preferred embodiment, the antisense molecule is derived from a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 115, or a part, allelic variant, substantially similar or hybridizing nucleic acid thereof.

25 Polypeptide Administration

In one embodiment of the therapeutic methods of the present invention, a therapeutically effective amount of a pharmaceutical composition comprising an LSP, a fusion protein, fragment, analog or derivative thereof is administered to a subject with a clinically-significant LSP defect.

Protein compositions are administered, for example, to complement a deficiency in native LSP. In other embodiments, protein compositions are administered as a vaccine to elicit a humoral and/or cellular immune response to LSP. The immune response can

10

15

20

25

医二氯甲酚 化二氯甲酚 医二氯甲酚

be used to modulate activity of LSP or, depending on the immunogen, to immunize against aberrant or aberrantly expressed forms, such as mutant or inappropriately expressed isoforms. In yet other embodiments, protein fusions having a toxic moiety are administered to ablate cells that aberrantly accumulate LSP.

In a preferred embodiment, the polypeptide is an LSP comprising an amino acid sequence of SEQ ID NO: 116 through 208, or a fusion protein, allelic variant, homolog, analog or derivative thereof. In a more preferred embodiment, the polypeptide is encoded by a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 115, or a part, allelic variant, substantially similar or hybridizing nucleic acid thereof.

Antibody, Agonist and Antagonist Administration

In another embodiment of the therapeutic methods of the present invention, a therapeutically effective amount of a pharmaceutical composition comprising an antibody (including fragment or derivative thereof) of the present invention is administered. As is well-known, antibody compositions are administered, for example, to antagonize activity of LSP, or to target therapeutic agents to sites of LSP presence and/or accumulation. In a preferred embodiment, the antibody specifically binds to an LSP comprising an amino acid sequence of SEQ ID NO: 116 through 208, or a fusion protein, allelic variant, homolog, analog or derivative thereof. In a more preferred embodiment, the antibody specifically binds to an LSP encoded by a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 115, or a part, allelic variant, substantially similar or hybridizing nucleic acid thereof.

The present invention also provides methods for identifying modulators which bind to an LSP or have a modulatory effect on the expression or activity of an LSP. Modulators which decrease the expression or activity of LSP (antagonists) are believed to be useful in treating lung cancer. Such screening assays are known to those of skill in the art and include, without limitation, cell-based assays and cell-free assays. Small molecules predicted via computer imaging to specifically bind to regions of an LSP can also be designed, synthesized and tested for use in the imaging and treatment of lung cancer. Further, libraries of molecules can be screened for potential anticancer agents by assessing the ability of the molecule to bind to the LSPs identified herein. Molecules identified in the library as being capable of binding to an LSP are key candidates for

女别为体的 人名意西克克克 经营营

10

15

20

25

30

further evaluation for use in the treatment of lung cancer. In a preferred embodiment, these molecules will downregulate expression and/or activity of an LSP in cells.

In another embodiment of the therapeutic methods of the present invention, a pharmaceutical composition comprising a non-antibody antagonist of LSP is administered. Antagonists of LSP can be produced using methods generally known in the art. In particular, purified LSP can be used to screen libraries of pharmaceutical agents, often combinatorial libraries of small molecules, to identify those that specifically bind and antagonize at least one activity of an LSP.

In other embodiments a pharmaceutical composition comprising an agonist of an LSP is administered. Agonists can be identified using methods analogous to those used to identify antagonists.

In a preferred embodiment, the antagonist or agonist specifically binds to and antagonizes or agonizes, respectively, an LSP comprising an amino acid sequence of SEQ ID NO: 116-through 208, or a fusion protein, allelic variant, homolog, analog or derivative thereof. In a more preferred embodiment, the antagonist or agonist specifically binds to and antagonizes or agonizes, respectively, an LSP encoded by a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 115, or a part, allelic variant, substantially similar or hybridizing nucleic acid thereof.

Targeting Lung Tissue

The invention also provides a method in which a polypeptide of the invention, or an antibody thereto, is linked to a therapeutic agent such that it can be delivered to the lung or to specific cells in the lung. In a preferred embodiment, an anti-LSP antibody is linked to a therapeutic agent and is administered to a patient in need of such therapeutic agent. The therapeutic agent may be a toxin, if lung tissue needs to be selectively destroyed. This would be useful for targeting and killing lung cancer cells. In another embodiment, the therapeutic agent may be a growth or differentiation factor, which would be useful for promoting lung cell function.

In another embodiment, an anti-LSP antibody may be linked to an imaging agent that can be detected using, e.g., magnetic resonance imaging, CT or PET. This would be useful for determining and monitoring lung function, identifying lung cancer tumors, and identifying noncancerous lung diseases.

30

Control of the Contro

EXAMPLES

Example 1: Gene Expression analysis

LSGs were identified by a systematic analysis of gene expression data in the LIFESEQ® Gold database available from Incyte Genomics Inc (Palo Alto, CA) using the data mining software package CLASP™ (Candidate Lead Automatic Search Program). CLASP™ is a set of algorithms that interrogate Incyte's database to identify genes that are both specific to particular tissue types as well as differentially expressed in tissues from patients with cancer. LifeSeq® Gold contains information about which genes are expressed in various tissues in the body and about the dynamics of expression in both normal and diseased states. CLASP™ first sorts the LifeSeq® Gold database into defined tissue types, such as breast, ovary and prostate. CLASP™ categorizes each tissue sample by disease state. Disease states include "healthy," "cancer," "associated with cancer," "other disease" and "other." Categorizing the disease states improves our ability to identify tissue and cancer-specific molecular targets. CLASP™ then performs a simultaneous parallel search for genes that are expressed both (1) selectively in the 15 defined tissue type compared to other tissue types and (2) differentially in the "cancer" disease state compared to the other disease states affecting the same, or different, tissues. This sorting is accomplished by using mathematical and statistical filters that specify the minimum change in expression levels and the minimum frequency that the differential expression pattern must be observed across the tissue samples for the gene to be considered statistically significant. The CLASP™ algorithm quantifies the relative abundance of a particular gene in each tissue type and in each disease state.

To find the LSGs of this invention, the following specific CLASP™ profiles were utilized: tissue-specific expression (CLASP 1), detectable expression only in cancer tissue (CLASP 2), highest differential expression for a given cancer (CLASP 4); differential expression in cancer tissue (CLASP 5), and. cDNA libraries were divided into 60 unique tissue types (early versions of LifeSeq® had 48 tissue types). Genes or ESTs were grouped into "gene bins," where each bin is a cluster of sequences grouped together where they share a common contig. The expression level for each gene bin was calculated for each tissue type. Differential expression significance was calculated with rigorous statistical significant testing taking into account variations in sample size and

relative gene abundance in different libraries and within each library (for the equations used to determine statistically significant expression see Audic and Claverie "The significance of digital gene expression profiles," Genome Res 7(10): 986-995 (1997), including Equation 1 on page 987 and Equation 2 on page 988, the contents of which are incorporated by reference). Differentially expressed tissue-specific genes were selected based on the percentage abundance level in the targeted tissue versus all the other tissues (tissue-specificity). The expression levels for each gene in libraries of normal tissues or non-tumor tissues from cancer patients were compared with the expression levels in tissue libraries associated with tumor or disease (cancer-specificity). The results were analyzed for statistical significance.

For some of the nucleotide sequences found by mRNA subtraction, the following tissue expression levels were observed:

	DEGREE TO THE	SEQ ID NO: 18 SEQ ID NO: 19	BRN .001 BRN .001	KID .0013 KID .0013	THY .002 THY .002	TST .0027 TST .0027
15	DEV0273 39	SEQ ID NO: 39 SEQ ID NO: 40 SEQ ID NO: 66 SEO ID NO: 69	LIV .0019 LIV .0019 SAG .1383 SAG .1383	PIT .2301 PIT .2301	BMR .2381 BMR .2381 BMR .2381	URE .2474 URE .2474 URE .2474
20	DEX0273_70 DEX0273_88	SEQ ID NO: 70 SEQ ID NO: 88	SAG .1383 SAG .1383	PIT .2301 PIT .2301	BMR .2381	URE .2474

Abbreviation for tissues:

BLO Blood; BRN Brain; CON Connective Tissue; CRD Heart; FTS Fetus; INL Intestine, Large; INS Intestine, Small; KID Kidney; LIV Liver; LNG Lung; MAM Breast; MSL Muscles; NRV Nervous Tissue; OVR Ovary; PRO Prostate; STO Stomach; THR Thyroid Gland; TNS Tonsil / Adenoids; UTR Uterus

The chromosomal locations for the sequences are as follows:

chromosome 4 DEX0273 1 chromosome 1 DEX0273_3 DEX0273_4 chromosome 22 chromosome 9 DEX0273_8 DEX0273 9 chromosome 9 DEX0273 31 chromosome 20 DEX0273 32 chromosome 16 35 DEX0273_33 chromosome 16 DEX0273_35 chromosome 9 DEX0273_40 chromosome 10 DEX0273_41 chromosome 9 DEX0273_42 chromosome 9 DEX0273_48 chromosome 6 DEX0273_56 chromosome 22

25

DEX0273_59 chromosome 3 DEX0273 60 chromosome 10 DEX0273_64 chromosome 1 DEX0273_66 chromosome 8 5 DEX0273_67 chromosome 8 DEX0273_70 chromosome 8 DEX0273_71 chromosome 17 DEX0273 81 chromosome 12 DEX0273_89 chromosome 8 DEX0273_97 chromosome 22 chromosome 19 DEX0273 103 chromosome 21 DEX0273_106 chromosome 22 DEX0273_108 chromosome 9 DEX0273_111 chromosome 6 15 DEX0273_112

Example 2: Relative Quantitation of Gene Expression

Real-Time quantitative PCR with fluorescent Taqman probes is a quantitation detection system utilizing the 5'- 3' nuclease activity of Taq DNA polymerase. The method uses an internal fluorescent oligonucleotide probe (Taqman) labeled with a 5' reporter dye and a downstream, 3' quencher dye. During PCR, the 5'-3' nuclease activity of Taq DNA polymerase releases the reporter, whose fluorescence can then be detected by the laser detector of the Model 7700 Sequence Detection System (PE Applied Biosystems, Foster City, CA, USA). Amplification of an endogenous control is used to standardize the amount of sample RNA added to the reaction and normalize for Reverse Transcriptase (RT) efficiency. Either cyclophilin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ATPase, or 18S ribosomal RNA (rRNA) is used as this endogenous control. To calculate relative quantitation between all the samples studied, the target RNA levels for one sample were used as the basis for comparative results (calibrator). Quantitation relative to the "calibrator" can be obtained using the standard curve method or the comparative method (User Bulletin #2: ABI PRISM 7700 Sequence Detection System).

The tissue distribution and the level of the target gene are evaluated for every sample in normal and cancer tissues. Total RNA is extracted from normal tissues, cancer tissues, and from cancers and the corresponding matched adjacent tissues. Subsequently, first strand cDNA is prepared with reverse transcriptase and the polymerase chain reaction is done using primers and Taqman probes specific to each target gene. The

15

20

results are analyzed using the ABI PRISM 7700 Sequence Detector. The absolute numbers are relative levels of expression of the target gene in a particular tissue compared to the calibrator tissue.

One of ordinary skill can design appropriate primers. The relative levels of expression of the LSNA versus normal tissues and other cancer tissues can then be determined. All the values are compared to normal tissue (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

The relative levels of expression of the LSNA in pairs of matching samples and 1 cancer and 1 normal/normal adjacent of tissue may also be determined. All the values are compared to normal tissue (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

In the analysis of matching samples, the LSNAs show a high degree of tissue specificity for the tissue of interest. These results confirm the tissue specificity results obtained with normal pooled samples.

Further, the level of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual are compared. This comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent).

Altogether, the high level of tissue specificity, plus the mRNA overexpression in matching samples tested are indicative of SEQ ID NO: 1 through 115 being diagnostic markers for cancer.

Example 3: Protein Expression

The LSNA is amplified by polymerase chain reaction (PCR) and the amplified DNA fragment encoding the LSNA is subcloned in pET-21d for expression in *E. coli*. In addition to the LSNA coding sequence, codons for two amino acids, Met-Ala, flanking the NH₂-terminus of the coding sequence of LSNA, and six histidines, flanking the COOH-terminus of the coding sequence of LSNA, are incorporated to serve as initiating Met/restriction site and purification tag, respectively.

An over-expressed protein band of the appropriate molecular weight may be observed on a Coomassie blue stained polyacrylamide gel. This protein band is confirmed by Western blot analysis using monoclonal antibody against 6X Histidine tag.

Large-scale purification of LSP was achieved using cell paste generated from 6-liter bacterial cultures, and purified using immobilized metal affinity chromatography (IMAC). Soluble fractions that had been separated from total cell lysate were incubated with a nickle chelating resin. The column was packed and washed with five column volumes of wash buffer. LSP was eluted stepwise with various concentration imidazole buffers.

Example 4: Protein Fusions

20

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5'and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector. For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 2, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced. If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. See, e. g., WO 96/34891.

15

20

25

Example 5: Production of an Antibody from a Polypeptide

In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/1 of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100, µg/ml of streptomycin. The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP20), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands *et al.*, *Gastroenterology* 80: 225-232 (1981).

The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies. Using the Jameson-Wolf methods the following epitopes were predicted. (Jameson and Wolf, CABIOS, 4(1), 181-186, 1988, the contents of which are incorporated by reference).

```
DEX0273_119 Antigenicity Index(Jameson-Wolf)

positions AI avg length
150-165 1.11 16

DEX0273_125 Antigenicity Index(Jameson-Wolf)
positions AI avg length
55-76 1.00 22

35 DEX0273_132 Antigenicity Index(Jameson-Wolf)
```

	positions	AI avg	length
	3-27	1.06	25
	DEX0273_136 Antigeni	icity Inde	ex(Jameson-Wolf)
	positions	Al avg	length
5	36-46	1.18	11
_	DEX0273_138 Antigeni	icity Inde	ex(Jameson-Wolf)
	positions	Al avg	length
	45-59	1.10	15
	15-26	1.03	12
10	DEX0273_139 Antigen	icity Inde	ex(Jameson-Wolf)
10	positions	Alavg	length
	24-36	1.06	13
	DEX0273_143 Antigen	icity Ind	ex(Jameson-Wolf)
	positions	Alavg	length
15	96-110	1.11	15
13	74-89	1.05	16
	DEX0273_145 Antigen	icity Ind	
	positions	ΔΙ avo	length
	439-450	1.05	12
20		1.04	15
20	407-421	1.03	20
	643-662 DEX0273_150 Antigen		
		A Love	length
	positions	1.16	31
	24-54	1.16	14
25	147-160		
	DEX0273_151 Antiger	acity inc	length
	positions		
	140-150	1.14	11
	121-135	1.07	15 Jan (Jamasan Wolf)
30		ncity inc	lex(Jameson-Woll)
	•		length
	40-58	1.15	19
	100-141	1.15	42
	19-35	1.11	17
35	230-248	1.09	19
	203-224	1.09	22
	158-173	1.07	16
	DEX0273_160 Antige:	nicity In	dex(Jameson-Wolf)
	positions		length
40	8-41	1.04	34
	DEX0273_161 Antige	nicity In	dex(Jameson-Wolf)
	positions	AI ave	g length
	46-55	1.06	10
	DEX0273_162 Antige	nicity In	dex(Jameson-Wolf)
45	positions	AI av	g length
	53-62	1.10	10
	36-50	1.01	15
	DEX0273_166 Antige	nicity In	dex(Jameson-Wolf)
	positions	AI av	g length
50	140-152	1.04	13
50	DEX0273_167 Antige	enicity Ir	ndex(Jameson-Wolf)
	positions	AI av	g length
	49-58	1.05	10
	DEX0273_170 Antige	enicity I	ndex(Jameson-Wolf)
55	positions	Al av	g length
33	25-41	1.09	17
	DEX0273_171 Antig	enicity I	ndex(Jameson-Wolf)
	positions	Al av	g length
	Positions		-

			56
	DEX0273_173 Antigenici	ity Inde	x(Jameson-Wolf)
		I avg	
_		.22	35
5	DEX0273_175 Antigenici	ity Inde	x(Jameson-Woli)
		Iavg	
	•••	.15	20
		.09	20
10	DEX0273_178 Antigenic	ity inde Mavg	A(Janneson-Won)
10		.12	10
	DEX0273_179 Antigenic		
	positions A	My mac	length
			11
15	DEX0273_180 Antigenic		
13	positions A	AI avg	length
		.21	12
	DEX0273_182 Antigenic		
	positions	AI avg	length
20		.02	30
	DEX0273_186 Antigenic	ity Inde	ex(Jameson-Wolf)
	positions	Al avg	length
		1.13	26
	114-123	1.02	10
25	DEX0273_187 Antigenio	ity Inde	ex(Jameson-Wölf)
	positions	AI avg	length
		1.17	17
	DEX0273_188 Antigenio	city Ind	ex(Jameson-Wolf)
	positions	AI avg	length
30		1.07	
	••	1.06	19
		1.03	41
	DEX0273_189 Antigenio	city Ind	ex(Jameson-Woll)
			length
35		1.17 1.16	35 13
	87-99 DEX0273_190 Antigenio		
	DEX02/3_190 Anugenic	AT ava	length
		1.20	24
40			
40	positions	Al avo	length
	6-119	1.10	114
	DEX0273_196 Antigeni		
	positions	AI avg	length
45	138-157	1.06	20
73	87-99		13
	206-237	1.00	32
	DEX0273_197 Antigeni	icity Ind	lex(Jameson-Wolf)
	positions	Al avg	length
50	4-21	1.11	18
• •	55-67	1.11	13
			dex(Jameson-Wolf)
	positions	_	length
	36-47	1.10	12
55			dex(Jameson-Wolf)
	positions		g length
	43-52	1.18	10
	DEX0273_201 Antigen	icity in	dex(Jameson-Wolf)

```
positions
                            AI avg length
                            1.14
                                   13
             127-139
     DEX0273_202 Antigenicity Index(Jameson-Wolf)
                            Al avg length
             positions
5
             168-183
                            1.08
                                   16
                            1.04
                                   21
             58-78
     DEX0273_203 Antigenicity Index(Jameson-Wolf)
             positions
                            Al avg length
                            1.12
             50-76
     DEX0273_208 Antigenicity Index(Jameson-Wolf)
10
            positions
                            Al avg length
                                   22
             142-163
                            1.11
                                   45
                            1.03
             79-123
             65-77
                            1.01
                                   13
15
     The predicted helical regions are as follows:
                    PredHel=3
                                    Topology=04-22i29-51o61-78i
     DEX0273_122
                                    Topology=010-32i
     DEX0273_125
                    PredHel=1
                    PredHel=1
                                    Topology=i7-250
     DEX0273 129
                                    Topology=i5-27o
     DEX0273 130
                    PredHel=1
20
                                   Topology=i7-28o
     DEX0273_137
                    PredHel=1
                                    Topology=i30-48o52-71i97-119o
                    PredHel=3
     DEX0273 146
                                    Topology=i13-35o
     DEX0273_147
                    PredHel=1
                                    Topology=i7-260
                    PredHel=1
     DEX0273_149
                                    Topology=i63-850
                    PredHel=1
    DEX0273 162
25
                                    Topology=04-26i178-2000
                    PredHel=2
     DEX0273_169
                                    Topology=i2-24o34-56i61-83o93-115i128-150o155-177i184-206o210-232
     DEX0273_176
                    PredHel=8
                                    Topology=i21-43o58-80i92-114o
     DEX0273_177
                    PredHel=3
                                    Topology=i61-83o
                    PredHel=1
     DEX0273 182
                                    Topology=015-37i185-2070
                    PredHel=2
     DEX0273_185
30
                                    Topology=i13-35050-72i79-980108-130i137-1590
                    PredHel=5
     DEX0273_192
                                    Topology=i5-27o61-83i96-118o128-150i
                    PredHel=4
     DEX0273 193
     DEX0273 195
                    PredHel=2
                                    Topology=i7-29o39-61i
                                    Topology=i5-27o
     DEX0273 207
                    PredHel=1
             Examples of post-translational modifications (PTMs) of the LSP of this invention are
35
```

listed below. In addition, antibodies that specifically bind such post-translational modification may be useful as a diagnostic or as therapeutic. Using the ProSite database (Bairoch et al., Nucleic Acids Res. 25(1):217-221 (1997), the contents of which are incorporated by reference the following PTMs were predicted for the LSPs of the invention (http://npsa-pbil.ibcp.fr/cgi

	DEX0273 127	Ck2_Phospho_Site 7-10; Pkc_Phospho_Site 34-36;
	DEX0273_128	Ck2 Phospho Site 25-28 Pkc Phospho Site 25-27;
	DEX0273_131	Camp_Phospho_Site 78-81; Ck2_Phospho_Site 21-24; Myristyl 47-52;
	-	Dka Dhashha Site 80-87-81-83-
5	DEX0273_132	Amidation 17-20; Asn_Glycosylation 72-75;90-93;101-104; Ck2_Phospho_Site
		3-6;27-30;79-82; Pkc_Phospho_Site 3-5;73-75;78-80;79-81;
	DEX0273_133	Ck2_Phospho_Site 9-12;
	DEX0273_134	Pkc_Phospho_Site 24-26;
	DEX0273_135	Ck2 Phospho Site 4-7;
10	DEX0273_137	Myristyl 51-56;63-68; Pkc_Phospho_Site 96-98;
	DEX0273_138	Asn_Glycosylation 54-57; Ck2 Phospho_Site 16-19;23-26;31-34; Myristyl 32-37;
	DEX0273_139	Asn_Glycosylation 9-12; Myristyl 6-11;13-18;25-30; Pkc_Phospho_Site 17-
	DEX0273_140	19;31-33;
15	DEV0272 142	Asn_Glycosylation 118-121; Ck2_Phospho_Site 19-22;185-188; Myristyl 108-
15	DEX0273_143	113. Pkc Phospho Site 180-182; Tvr Phospho Site 182-189;
	DEX0273 145	Asn Glycosylation 287-290:344-347; Camp Phospho Site 252-255;/10-/13;
	DEA0213_143	Ck2 Phospho Site 6-9·12-15·17-20:61-64:101-104:118-121;187-190;251-
		254-790-293-338-341-398-401:459-462:514-517;522-525;546-549; Myristyl
20		55_60.73_78.76_81.107_112:550_555:596-601; Pkc Phospho Site 94-96;210-
		212;251-253;289-291;406-408;567-569;568-570;571-573; Tyr_Phospho_Site
		321-328;646-654;
	DEX0273_146	Myristyl 37-42;39-44;136-141; Pkc_Phospho_Site 27-29;67-69;76-78;161-163;
	DEX0273_147	Leucine Zipper 6-27; Myristyl 14-19;
25	DEX0273_148	Amidation 20-23; Ck2_Phospho_Site 16-19;
	DEX0273_149	Myristyl 21-26; Asn_Glycosylation 47-50;157-160; Camp_Phospho_Site 60-63;
	DEX0273_150	Ck2_Phospho_Site 27-30; Myristyl 155-160; Pkc_Phospho_Site 46-48;
		Tyr Phospho Site 130-137;
20	DEV0172 151	Camp Phospho_Site 146-149; Ck2_Phospho_Site 109-112;155-158;
30	DEX0273_151	Pkc_Phospho_Site 101-103;123-125;155-157;162-164;186-188;
	DEX0273_155	Ck2 Phospho_Site 8-11; Glycosaminoglycan 42-45; Myristyl 44-49;
	DEX0213_133	Pkc Phospho Site 20-22:21-23:
	DEX0273_156	Asn_Glycosylation 76-79; Ck2_Phospho_Site 21-24; Myristyl 35-40;
35		Pkc Phospho Site 8-10;
	DEX0273 157	Myristyl 49-54; Pkc_Phospho_Site 34-36;62-64;
	DEX0273_158	Ck2_Phospho_Site 79-82; Leucine_Zipper 15-36; Myristyl 19-24;31-36;44-
		49;94-99; Pkc Phospho Site 12-14;26-28;89-91;
	DEX0273_159	Asn_Glycosylation 148-151; Pkc_Phospho_Site 27-29;127-129;
40		Prokar Lipoprotein 18-28;
	DEX0273_160	Pkc_Phospho_Site 44-46; Myristyl 50-55; Pkc_Phospho_Site 32-34;47-49;54-56;
	DEX0273_161	Myristyl 32-37;
	DEX0273_163 DEX0273_164	Camp_Phospho_Site 27-30; Ck2_Phospho_Site 17-20; Pkc_Phospho_Site 11-
45	DEX0213_104	13:14-16:30-32;
73	DEX0273_165	App. Glycocylation 45-48:50-53: Ig. Mhc 25-31:
	DEX0273_166	Asn Glycosylation 79-82; Camp Phospho Site 49-52; Ck2_Phospho_Site 24-
		27-37-40: Myristyl 66-71:88-93; Pkc Phospho_Site 32-34;48-30;148-130;
	DEX0273_167	Asn_Glycosylation 98-101; Camp_Phospho_Site 36-39;53-56;
50		Ck2 Phospho Site 85-88; Myristyl 58-63;66-71;72-77;109-114;
		Pkc Phospho Site 8-10;25-27;45-47;100-102; Prokar Lipoprotein 63-73;
	DEX0273_168	Asn_Glycosylation 45-48;50-53; Ig_Mhc 25-31; Asn_Glycosylation 171-174; Ck2_Phospho_Site 78-81;90-93; Myristyl 57-
	DEX0273_169	62;60-65; Pkc_Phospho_Site 106-108; Tyr_Phospho_Site 119-127;
	DEV0222 170	Ck2_Phospho_Site 9-12; Myristyl 44-49; Pkc_Phospho_Site 16-18;32-34;
55	DEX0273_170	Tyr_Phospho_Site 30-36;
	DEX0273 171	Ck2 Phospho Site 56-59; Pkc Phospho Site 6-8;115-117;
	DEX0273_171 DEX0273_172	Myristyl 9-14;36-41;67-72; Pkc Phospho Site 32-34;75-77;
	DEVATIO	enginger runs sur e we the

	DEX0273_173	Camp_Phospho_Site 26-29;27-30; Ck2_Phospho_Site 38-41; Myristyl 21-26;45-50; Pkc_Phospho_Site 24-26;25-27;30-32;34-36;38-40;
	DEX0273_174	Ck2_Phospho_Site 15-18;67-70;104-107; Myristyl 57-62;76-81;87-92;
5	DEX0273_175	Camp_Phospho_Site 96-99; Ck2_Phospho_Site 80-83; Pkc_Phospho_Site 47-
	DEX0273 176	Pkc_Phospho_Site 232-234; Prokar_Lipoprotein 20-30;135-145;141-151;
	DEX0273_170 DEX0273_177	Myristyl 83-88; Prokar_Lipoprotein 53-63;
		Ck2_Phospho_Site 65-68; Myristyl 42-47; Pkc_Phospho_Site 28-30;
10	DEX0273_178	Rgd 11-13;
10	DEX0273_179	Myristyl 12-17;35-40;62-67; Pkc_Phospho_Site 75-77;
	DEX0273_180	Ck2_Phospho_Site 25-28; Pkc_Phospho_Site 4-6;25-27;63-65;71-73;
	DEX0273_181	Myristyl 11-16;16-21; Pkc_Phospho_Site 27-29;32-34;55-57;
	DEX0273_182	Myristyl 11-10;10-21; PRC_PROSPRO_SRE 27-29,32-34,33-37,
		Tyr_Phospho_Site 6-14;7-14; Asn Glycosylation 20-23;47-50; Ck2_Phospho_Site 42-45; Myristyl 60-65;
15	DEX0273_183	Pkc Phospho Site 8-10;48-50;89-91;90-92; Rgd 15-17;
	DEX0273_184	Asn_Glycosylation 45-48;50-53; Ig_Mhc 25-31;
	DEX0273_185	Asn Glycosylation 178-181; Ck2 Phospho Site 85-88;97-100; Myristyl 64-
		69;67-72; Pkc Phospho Site 39-41;113-115; Tyr Phospho Site 126-134;
20	DEX0273_186	Asn Glycosylation 15-18; Ck2 Phospho Site 18-21;61-64;129-132; Myristyl
	_	33-38;74-79;119-124;120-125; Pkc_Phospho_Site 52-54;61-63;
	DEX0273 187	Camp_Phospho_Site 56-59; Ck2_Phospho_Site 46-49; Myristyl 23-28;72-
	_	77;83-88;84-89; Pkc_Phospho_Site 59-61;78-80;88-90;
	DEX0273_188	Amidation 20-23:160-163; Ck2 Phospho Site 13-16;103-106;166-169;
25	-	Myristyl 24-29;97-102;127-132;137-142;157-162;197-202; Pkc_Phospho_Site
		39-41;73-75;103-105;110-112;132-134;166-168; Rgd 163-165;
	DEX0273 189	Amidation 64-67: Ck2 Phospho Site 72-75; Glycosaminoglycan 54-57;
	22	Myristyl 84-89; Pkc_Phospho_Site 16-18;46-48;72-74;88-90;
	DEX0273 190	Pkc Phospho Site 5-7:
30	DEX0273_191	Camp Phospho Site 10-13:107-110:108-111; Ck2 Phospho Site 78-81;100-
		103;111-114;132-135; Pkc_Phospho_Site 8-10;13-15;63-65;111-113;142-144;
	DEX0273_193	Ck2_Phospho_Site 48-51;87-90; Leucine_Zipper 109-130;116-137; Myristyl
		94-99:129-134:
	DEX0273_194	Asn Glycosylation 67-70;81-84; Camp_Phospho_Site 43-46;51-54;
35		Ck2_Phospho_Site 2-5;29-32;46-49;104-107; Pkc_Phospho_Site 29-31;40-
55		42.46.48.54.56.55.57.66.68:104-106: Tyr Phospho Site 8-16;
	DEX0273_195	Ck2 Phospho Site 83-86;87-90; Pkc_Phospho_Site 67-69; Prokar_Lipoprotein
		7 17: Tur Phospho Site 62-70:
	DEX0273_196	Camp Phospho Site 297-300; Ck2 Phospho Site 137-140;139-142;180-
40		193 227 230 268 271 Myristyl 9-14:91-96:302-307; Pkc Phospho Site 20-
		22;95-97;139-141;150-152;169-171;197-199;227-229;268-270;275-277;305-
		307∙
	DEX0273_197	Ck2_Phospho_Site 104-107; Pkc_Phospho_Site 21-23;31-33;41-43;56-58;80-
	-	82.
45	DEX0273_198	Camp_Phospho_Site 27-30; Ck2_Phospho_Site 36-39; Myristyl 57-62;
,,,	DEX0273_199	Asn Glycosylation 77-80; Leucine Zipper 81-102;
	DEX0273_201	Ck2 Phospho Site 129-132:141-144:278-281; Myristyl 57-62;66-71;74-
		79;212-217;244-249; Pkc_Phospho_Site 120-122;128-130;129-131;203-
		205-224-226-227-229:256-258:338-340:
50	DEX0273_202	Camp Phospho Site 60-63; Ck2 Phospho Site 130-133;209-212; Ig_Mhc 200-
50		206; Myristyl 19-24;28-33;71-76;75-80;109-114;116-121;167-172;
		Pkc Phospho Site 66-68:196-198;
	DEX0273 203	Asn Glycosylation 48-51; Myristyl 98-103;128-133;133-138;
		Pkc_Phospho_Site 2-4;69-71;110-112;
55	DEX0273 204	Pkc Phospho Site 10-12:43-45:
,,,	DEX0273_205	Amidation 110-113: Camp Phospho Site 5-8;6-9;44-47; Ck2_Phospho_Site
		51-54;67-70; Pkc_Phospho_Site 8-10;9-11;47-49;94-96;

25

30

35

		Asn_Glycosylation 8-11; Ck2_Phospho_Site 53-56; Myristyl 31-36;32-37; Pkc_Phospho_Site 20-22;41-43;53-55;
5	DEX0273_207	Myristyl 36-41; Pkc_Phospho_Site 21-23;44-46; Amidation 57-60; Asn_Glycosylation 3-6; Camp_Phospho_Site 59-62; Ck2_Phospho_Site 20-23;128-131;153-156; Myristyl 122-127;124-129;125-130;

Example 6: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA is isolated from individual patients or from a family of individuals that have a phenotype of interest. cDNA is then generated from these RNA samples using protocols known in the art. See, Sambrook (2001), supra. The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO: 1 through 115. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky et al., Science 252(5006): 706-9 (1991). See also Sidransky et al., Science 278(5340): 1054-9 (1997).

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies). The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations are then cloned and sequenced to validate the results of the direct sequencing. PCR products is cloned into T-tailed vectors as described in Holton et al., Nucleic Acids Res., 19: 1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

Genomic rearrangements may also be determined. Genomic clones are nick-translated with digoxigenin deoxyuridine 5' triphosphate (Boehringer Manheim), and FISH is performed as described in Johnson et al., Methods Cell Biol. 35: 73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C-and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. *Id.* Image collection, analysis and

25

30

chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 7: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

Antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 µg/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described above. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced. The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove 15 unbound polypeptide. Next, 50 µl of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbound conjugate. 75 µl of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution are added to each well and incubated 1 hour at room 20 temperature.

The reaction is measured by a microtiter plate reader. A standard curve is prepared, using serial dilutions of a control sample, and polypeptide concentrations are plotted on the X-axis (log scale) and fluorescence or absorbance on the Y-axis (linear scale). The concentration of the polypeptide in the sample is calculated using the standard curve.

Example 8: Formulating a Polypeptide

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of

20

25

30

administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1, µg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 µg/kg/hour to about 50 mg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrastemal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semipermeable polymer matrices in the form of shaped articles, e. g., films, or microcapsules. Sustained-release matrices include polylactides (U. S. Pat. No.3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22: 547-556 (1983)), poly (2-hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15: 167-277 (1981), and R. Langer, Chem. Tech. 12: 98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE Epstein et al., Proc. Natl. Acad. Sci. USA 82: 3688-3692 (1985); Hwang et al., Proc. Natl. Acad.

Sci. USA 77: 4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U. S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, I. e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation.

For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides. Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e. g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

10

15

20

25

30

. . .

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e. g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1 % (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container (s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

Example 9: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose $0.1\text{-}100~\mu\text{g/kg}$ of the polypeptide for six consecutive days. Preferably, the

polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided above.

Example 10: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided above.

Example 11: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e. g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37°C for approximately one week.

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks. pMV-7 (Kirschmeier, P. T. et al., DNA, 7: 219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5'and 3'end sequences respectively as set forth in Example 1. Preferably, the 5'primer contains an EcoRI site and the 3'primer

30

includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB 101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+aml2 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media.

If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

25 Example 12: Method of Treatment Using Gene Therapy-In Vivo

Another aspect of the present invention is using *in vivo* gene therapy methods to treat disorders, diseases and conditions. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide.

The polynucleotide of the present invention may be operatively linked to a promoter or any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known

25

30

in the art, see, for example, W0 90/11092, W0 98/11779; U. S. Patent 5,693,622; 5,705,151; 5,580,859; Tabata H. et al. (1997) Cardiovasc. Res. 35 (3): 470-479, Chao J et al. (1997) Pharmacol. Res. 35 (6): 517-522, Wolff J. A. (1997) Neuromuscul. Disord. 7 (5): 314-318, Schwartz B. et al. (1996) Gene Ther. 3 (5): 405-411, Tsurumi Y. et al. (1996) Circulation 94 (12): 3281-3290 (incorporated herein by reference).

The polynucleotide constructs may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). The polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides of the present invention may also be delivered in liposome formulations (such as those taught in Felgner P. L. et al. (1995) Ann. NY Acad. Sci. 772: 126-139 and Abdallah B. et al. (1995) Biol. Cell 85 (1): 1-7) which can be prepared by methods well known to those skilled in the art.

The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

The polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by

20

30

the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. *In vivo* muscle cells are particularly competent in their ability to take up and express polynucleotides.

For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 µg/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

The dose response effects of injected polynucleotide in muscle *in vivo* is determined as follows. Suitable template DNA for production of mRNA coding for polypeptide of the present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.

Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about

المرازي المرازي والمرازي والمرازي والمنطق والمرازي والمنطق

0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.

After an appropriate incubation time (e. g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice.

The results of the above experimentation in mice can be use to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA.

Example 13: Transgenic Animals

10

20

The polypeptides of the invention can also be expressed in transgenic animals. Animals of any species, including, but not limited to, mice, rats, rabbits, hamsters, guinea pigs, pigs, micro-pigs, goats, sheep, cows and non-human primates, e. g., baboons, monkeys, and chimpanzees may be used to generate transgenic animals. In a specific embodiment, techniques described herein or otherwise known in the art, are used to express polypeptides of the invention in humans, as part of a gene therapy protocol.

Any technique known in the art may be used to introduce the transgene (i. e., polynucleotides of the invention) into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection (Paterson et al., Appl. Microbiol. Biotechnol. 40: 691-698 (1994); Carver et al., Biotechnology (NY) 11: 1263-1270 (1993); Wright et al., Biotechnology (NY) 9: 830-834 (1991); and Hoppe et al., U. S. Patent 4,873,191 (1989)); retrovirus mediated gene transfer into germ lines (Van der Putten et al., Proc. Natl. Acad. Sci., USA 82: 6148-6152 (1985)), blastocysts or embryos; gene targeting in embryonic stem cells (Thompson et al., Cell 56: 313-321 (1989)); electroporation of cells or embryos (Lo, 1983, Mol Cell. Biol. 3: 1803-1814 (1983)); introduction of the polynucleotides of the invention using a gene gun (see, e. g., Ulmer et al., Science 259: 1745 (1993); introducing nucleic acid constructs into embryonic pleuripotent stem cells and transferring the stem cells back into the blastocyst; and sperm mediated gene transfer (Lavitrano et al., Cell 57: 717-723 (1989); etc. For a review of such techniques, see Gordon, "Transgenic Animals," Intl.

Rev. Cytol. 115: 171-229 (1989), which is incorporated by reference herein in its entirety.

Any technique known in the art may be used to produce transgenic clones containing polynucleotides of the invention, for example, nuclear transfer into enucleated

(Campell et al., Ivalure 380: 04-00 (1990); William et al., Ivalure 383. 810813 (1997)).

The present invention provides for transgenic animals that carry the transgene in

大流气 医乳腺性蛋白蛋白

(rt-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product.

Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background that is appropriate for an experimental model of interest.

Transgenic animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

20 Example 14: Knock-Out Animals

Endogenous gene expression can also be reduced by inactivating or "knocking out" the gene and/or its promoter using targeted homologous recombination. (E. g., see Smithies et al., Nature 317: 230-234 (1985); Thomas & Capecchi, Cell 51: 503512 (1987); Thompson et al., Cell 5: 313-321 (1989); each of which is incorporated by reference herein in its entirety). For example, a mutant, non-functional polynucleotide of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous polynucleotide sequence (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides of the invention *in vivo*. In another embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the targeted gene. Such

25

30

approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive targeted gene (e. g., see Thomas & Capecchi 1987 and Thompson 1989, supra). However this approach can be routinely adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site in vivo using appropriate viral vectors that will be apparent to those of skill in the art.

In further embodiments of the invention, cells that are genetically engineered to express the polypeptides of the invention, or alternatively, that are genetically engineered not to express the polypeptides of the invention (e. g., knockouts) are administered to a patient *in vivo*. Such cells may be obtained from the patient (I. e., animal, including human) or an MHC compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (e. g., lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered *in vitro* using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or alternatively, to disrupt the coding sequence and/or endogenous regulatory sequence associated with the polypeptides of the invention, e. g., by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc.

The coding sequence of the polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, of the polypeptides of the invention. The engineered cells which express and preferably secrete the polypeptides of the invention can be introduced into the patient systemically, e. g., in the circulation, or intraperitoneally.

Alternatively, the cells can be incorporated into a matrix and implanted in the body, e. g., genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. (See, for example, Anderson et al. U. S. Patent 5,399,349; and Mulligan & Wilson, U. S. Patent 5,460,959 each of which is incorporated by reference herein in its entirety).

When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well known techniques which prevent the

development of a host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.

Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

All patents, patent publications, and other published references mentioned herein are hereby incorporated by reference in their entireties as if each had been individually and specifically incorporated by reference herein. While preferred illustrative embodiments of the present invention are described, one skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration only and not by way of limitation. The present invention is limited only by the claims that follow.

CLAIMS

We claim:

- 1. An isolated nucleic acid molecule comprising
- (a) a nucleic acid molecule comprising a nucleic acid sequence that encodes
 an amino acid sequence of SEQ ID NO: 116 through 208;
 - (b) a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: 1 through 115;
 - (c) a nucleic acid molecule that selectively hybridizes to the nucleic acid molecule of (a) or (b); or
- (d) a nucleic acid molecule having at least 60% sequence identity to the nucleic acid molecule of (a) or (b).
 - 2. The nucleic acid molecule according to claim 1, wherein the nucleic acid molecule is a cDNA.
 - 3. The nucleic acid molecule according to claim 1, wherein the nucleic acid molecule is genomic DNA.
- 4. The nucleic acid molecule according to claim 1, wherein the nucleic acid molecule is a mammalian nucleic acid molecule.
 - 5. The nucleic acid molecule according to claim 4, wherein the nucleic acid molecule is a human nucleic acid molecule.
- 25 6. A method for determining the presence of a lung specific nucleic acid (LSNA) in a sample, comprising the steps of:
 - (a) contacting the sample with the nucleic acid molecule according to claim 1 under conditions in which the nucleic acid molecule will selectively hybridize to a lung specific nucleic acid; and
- 30 (b) detecting hybridization of the nucleic acid molecule to a LSNA in the sample, wherein the detection of the hybridization indicates the presence of a LSNA in the sample.

- 7. A vector comprising the nucleic acid molecule of claim 1.
- 8. A host cell comprising the vector according to claim 7.

5

9. A method for producing a polypeptide encoded by the nucleic acid molecule according to claim 1, comprising the steps of (a) providing a host cell comprising the nucleic acid molecule operably linked to one or more expression control sequences, and (b) incubating the host cell under conditions in which the polypeptide is produced.

10

- 10. A polypeptide encoded by the nucleic acid molecule according to claim 1.
- 11. An isolated polypeptide selected from the group consisting of:
- (a) a polypeptide comprising an amino acid sequence with at least 60% sequence identity to of SEQ ID NO: 116 through 208; or
 - (b) a polypeptide comprising an amino acid sequence encoded by a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: 1 through 115.
- 12. An antibody or fragment thereof that specifically binds to the polypeptide 20 according to claim 11.
 - 13. A method for determining the presence of a lung specific protein in a sample, comprising the steps of:
- (a) contacting the sample with the antibody according to claim 12 under
 conditions in which the antibody will selectively bind to the lung specific protein; and
 - (b) detecting binding of the antibody to a lung specific protein in the sample, wherein the detection of binding indicates the presence of a lung specific protein in the sample.
- 30 14. A method for diagnosing and monitoring the presence and metastases of lung cancer in a patient, comprising the steps of:

. Ber 1981 ber 1981 ber 1981 ber 1981 ber 1982 be

- (a) determining an amount of the nucleic acid molecule of claim 1 or a polypeptide of claim 6 in a sample of a patient; and
- (b) comparing the amount of the determined nucleic acid molecule or the polypeptide in the sample of the patient to the amount of the lung specific marker in a normal control; wherein a difference in the amount of the nucleic acid molecule or the polypeptide in the sample compared to the amount of the nucleic acid molecule or the polypeptide in the normal control is associated with the presence of lung cancer.
- 15. A kit for detecting a risk of cancer or presence of cancer in a patient, said

 kit comprising a means for determining the presence the nucleic acid molecule of claim 1

 or a polypeptide of claim 6 in a sample of a patient.
- 16. A method of treating a patient with lung cancer, comprising the step of administering a composition according to claim 12 to a patient in need thereof, wherein
 said administration induces an immune response against the lung cancer cell expressing the nucleic acid molecule or polypeptide.
 - 17. A vaccine comprising the polypeptide or the nucleic acid encoding the polypeptide of claim 11.

	÷		
A			

1

SEQUENCE LISTING

<pre><110> Macina, Roberto Recipon, Herve Chen, Sei-Yu Sun, Yongming Liu, Chenghua diaDexus, Inc.</pre>	
<120> Compositions and Methods Relating to Lung Specific Genes and Proteins	
<130> DEX-0274	
<150> 60/252,054 <151> 2000-11-20	
<160> 208	
<170> PatentIn version 3.1	
<210> 1 <211> 402 <212> DNA <213> Homo sapien	
<400> 1 cgtggtcgcg gcgaggtaca actctgagat ggtaacttac tctccagagc tcccctctgg	60
gattaggctg aggttatcct gtgtgggaaa ggcttgaggt cacactctta tctggcttcc	120
gattaggctg aggttatcct gtgtgggaaa ggctgagga tcactaataa gcatttactt	180
togocttcac tttcctgctt acttcaccct tttattagga tcactaataa gcatttactt	240
gataaatcac tggcctatga accttcatct cagggtctac ttctgggaaa actgacctag	300
aagacaaatt atacaccaag geetaatggg tgageteatt atteeetett aaataaacae	360
ttagtttttt tcaagtattc aacatggcat gtgcaccttc ctactttgtt ttgggtgaaa	
aaaaaatcag caaccaacat tacatgccct ctgttattat at	402
<210> 2 <211> 236 <212> DNA <213> Homo sapien	
<400> 2 cgtggtccgc ggcgaggtgc cgtttgaggc tagtttttta aggcacaact cagaccctga	60
ttagactgga taggaacaga tottgaaaga atootattaa tgatacttga tatotgtota	120
tacgctataa tggcctacgt tatgatcatg aattagtcca tgctaaaatg gccagactaa	180
ggtggtaacg gggaattaaa caagctggac atggataggc cgtggatgtc gccaca	236

<210> 3 <211> 210

PCT/US01/45080

<212> DNA <213> Homo sapien	
<400> 3 ggtcgcggcg aggtgaaagg actgcttgag cccgggaggc tgaggctacg atgacccatg	60
tttgtgccac tgcactccag cctgggcgcc aaagcgagac cccgtctcaa aaaacaaaaa	120
caaaacaaaa tgaaacaatt aacaaagtaa cagacaacct acagaatggt agaaaatatt	180
tgccaactat gcatccaaca aagatctaat	210
<210> 4. <211> 3193 <212> DNA <213> Homo sapien	
<400> 4 ctagtgctgg cagacactgg ctttttattt ttaggataag aaaacaggca tattctttgt	60
ggtccattat ctagagccca tacttgggca gcatttgaaa tttcacctta accacagaca	120
gggctccagg gaagtggaga tgtaattett acaacaacag ttetgateat ggccatggtg	180
atgactttcc aggtctcgtg ttcaagtggt gccagaatgc aggagccggt gggcagccct	240
gaggggttgc cttggccgca gcctctgtgc acgctcttcc tggtgtcctc ttacccggta	300
gctgtgcgct tgttcccgtg agaacagcct gcttccagag tgcccaggag tgctggtcag	360
ggacagtgcc cgtgaggctg cagaggaggt ggggtccatg gcccacccat ctctccctcg	420
ccagcagccc tggccagtgt catcctggtg tagaaagggt tgcgcacagg ataggaggga	480
gccacagttc ttgcttagct gtgctcacga ccggcttgca gtcctgtgtt tcttaagatt	540
gtatttggaa tggtaatatc cttagaattt tgggatattg agcttcatgg attttctctc	600
caaaacaagc cagcacaact aactgtagca gaattgtatc cactcattca ttcaactgag	660
atgaagtgee etecetttte eagggeetgg getagtteet ggaatgeaac agagatttee	720
gtggacacag tetetagtet cacagageat atagtetagt ceaegattgg caagetgeaa	780
ccacagaccc agtccggcac tctgcccatt tttctaagtg aaattttctt ggaatacagt	840
cacagetgtt tttttaacat ggtgtettgg etaettteag getgegaegg gagaattgaa	900
tagttgtgac agagaccaca ggcccactga aagggacaaa cagggctgaa aatactcact	960
gtttggccct ttccagaata gcaagtttgc tggcccttga gctagcctgc ctttatgggg	1020
ttttttttgt ttgttttttt aagotttcag ottcatgotg otgtattttt agttgaagtg	1080
ttctgagtaa cagtcagtgt ataaaagggg attgcagaaa aaaatgaggg cttgctttac	1140
tcaacaqaaa atatggccct teetgaatga cactaggaga gtcattttat ctcatacatt	1200

3

cccttcattt cgttggtgga catttgttga aaccggcact caatggtcaa accgtctgtg 1260 ccctccagtt gctgacagtc ctgcaggaag atggacaaga ggcccagtgc tgacagtcac 1320 acgactetea etaettgaat gaggggaetg tgggtgeaae tagaaaatat gttgattett 1380 1440 agecattece acettgeete teegtteaga acceeagetg egagetgttt gttteeetge ctggaaatga tgttttaggc aggttcctta atttctcagg tctgtctcag ataataaaaa 1500 getetttgta tgageeteag aactgtetet teagtgaatg aaattaceag teattataeg 1560 aagggacttt aaaaaatttg tggaaatact gaagtaaaag atgataaaaa aataaaaact 1620 tcatttcttg gctgggcaca gtggcttatg tttgtaatcc cagtactttg ggaggctgag 1680 tgtagtccca gctacttggg aggcagaggg aggaggatta cttgagccca ggagtttgag 1800 gttgcagtga gctgtgatca caccactgca ctctagcctg gacaacagag caagatcctc 1860 totottaaaa coaccaacaa tgacaacaac aaaacaacat ttttatttot caatgtaago 1920 tocatcaagg toaagatact tttgtaagct gtgacaccag coatttagto cacctctaaa 1980 gaattgcggg ctctgggaat ttaaccatgt cagtgcagcc tttttaacat tattaacgga 2040 agaaaaaatg agtgctttta aagatttttt aaaatgagga aacaaagtca gaaggagcaa 2100 aatcgggact gtaaggtgga tgcctaatga tttcccaaca aaactcttga agaattgccc 2160 ttatttgatg agaagaatga gccaggagca ttgtcatcgt ggagaaagac actggtgagg 2220 ctttcctggg tgtgtttttg ctaaagcttc ggctaacttt ctcaaaacac tctcataata 2280 agatgttatt gtggccagat gcggtggctc acgcctgtaa tcccagcact ttgggaggct 2340 gaggtgggca gatcacgagg tcaggaaatc gagaccatcc tggctaacat ggtgaaaccc 2400 egtecegtet ecactaaaaa tacaaaaaat tagetgggeg tggtggeagg cacetetagt 2460 cccagctact ccagctactc ggaaggctga ggcaggagaa tggcgtgaac ctgggaggca 2520 gagettgeag etagetgaga ttgtgecaet geacteeage etgggegaea gagegagaet 2580 ccatctcaaa aaacaaaaac aaaacaaaat gaaacaatta acaaagtaac agacaaccta 2640 cagaatggta gaaaatattt gccaactatg catccaacaa agatctaata tccagaatct 2700 ataagaagct tcaaaaaatt tacaagcgaa aaacaagcaa cccattaaaa agaaagtggg 2760 2820 caaagaacat gaacacattt caaaagaaga catatatgca tttaaaaaagc atataaaaat

cactcatcat cactaatcac tacagaagtg cataccatct cacaccagtc agaatggctg

ttactagaaa gtcaataaat aacagatgct ggcaaggttg tggagaaaat ggaacacata

cactgttggt gggagtgtaa attagtttag ccactgtgga aagcaggttg gtgattcctc

2880

2940

PCT/US01/45080

aaagaactca	gaattaccat	tcaactcagc	aatcccatta	ttcccaaagg	aatgcatatc	3060
ccaaggaaat	ataaatcatt	gtaccataaa	ggcacatgca	cgtgtatgtc	cattgcagca	3120
ctgttcacaa	tagcaaagat	aaggaatcaa	cctaaatgtg	cattaataat	aggctggctc	3180
gtgccgaatt	ctt					3193
	sapien					
<400> 5 gcgtggtcgc	ggcgaggttt	tttttttt	tttttttt	ttttttttg	gatcaataaa	60
accaccccca	cttgttgttt	tttgtgggaa	accccaattt	tggtcctggg	gttaacccct	120
ttgggagtct	cccaaggtgt	tggtcttccc	cggggtaacc	ccaaagatat	gggtcccatt	180
cccttattta	aacaatttta	aatctgtgtt	ttagggggac	cagcctatca	acatcgtgtg	240
tttcttacac	tattgggggg	atttatgttt	ccacccctat	aaagatgggt	tttatgctct	300
atgtgatagc	ctccttggaa	aatataatgc	tggcccctat	ataaacaata	acacacaaca	360
aataccgcgc	taatagagtg	ggccccaaat	tacaggagaa	gccccacgat	ggtcgatcaa	420
caccaatcta	acacctcgtg	gacatatgtc	acacatctgt	atctacacaa	aaaaactagg	480
gcggcgcaca	tactactcac	ccccacctc	tggtgtgcgc	caacgaggag	agcgagaagg	540
gacaccacac	cagagagtgc	ccacgccagg	agaagacacc	gageggatae	ccacgccaga	600
agatcgacaa	ccacgcaggc	acatatacgt	ggggcacaac	aaagacacac	aagagaatgc	660
ccatcatagt	agcaactacg	caagaaggag	aagaagaaag	aaagaaccca	gcgggcgcac	720
aggcgagacc	aacctgcgac	actaacaggg	cgcgacacta	cccctgcagt	ggaccaacta	780
gatccaccaċ	ggacgaagaa	acaagaaccc	tggt			814
<210> 6 <211> 189 <212> DNA <213> Homo	o sapien					
<400> 6 caagtgcatg	taaacttgtc	aaagtaagtg	tgtgagggct	cactgcttat	cacccctagg	60
ttatcagcag	tgagccctca	cacacttact	ttgacaattc	atcatcttgt	tctatattcc	120
ccttcaagag	gtccatccag	ttttggccca	tccggggaat	ctaagggaga	ttattcatct	180
aggaatoga						18:

<211> <212>	7 475 DNA Homo	sapien					
<222>	(428	_feature)(428) , g or t					
<400> gccgccc	7 :999	caggtcccag	ttcatatgtg	acatctttt	aaaaaaaata	acaacaaaaa	60
aaaaatg	gaga	gaaaagctaa	aaaaaaaaa	gtaagggttg	accggttatg	ggtttccatc	120
ccacata	acaa	tatctgttta	aaaggattcc	ctgtaaaatt	agtttaaagg	gttttggccc	180
tagaaat	tece	gtagttctac	tccttagagc	actcacgcca	tgggtctttc	ccttccccgg	240
ggtttta	aaac	cttcatatac	cttccagaaa	tttgggagag	caaaattttt	ggcttggtcc	300
actggca	acta	tcatttataa	aaaagctggg	cgtaattcca	tgggcctatt	agctgttccc	360
ctggtgt	ttga	atattggttt	atcccggctc	cacaaattcc	ccacacacaa	acttaaccgg	420
gaccaa	angg	aaagacaaca	aaaaagcgac	acaacacgac	gaaaacaccc	agaca	475
<210> <211> <212> <213> <220> <221> <222> <223>	mis (41	o sapien c_feature 2)(499) c, g or t					
<400> cctatg	8 jtgat	ggatcgcgga	cgaggtacca	gataatcctt	acatgatato	ctggaaagcc	60
						caagcatttg	120
ctagct	tago	: tttacaacac	: agatgatgct	atgggccaca	gcaacttgag	gacttgcctg	180
agcctt	tgtto	: caggttaatt	agacgttgct	aaaagggtgg	g gctcattgtt	: aagtttggtt	240
tctaac	ctaca	ttactaaaat	tagaaacctt	aatataactt	tottotatag	g ttcaataacc	300
						a aatggattga	360
agcaga	atggg	g ttaagagtaa	a gggtcttgtg	g tgttatgtg	c tacataggc	c cnnnnnnnn	420
nnnnn	nnnnı	nnnnnnnn	n nnnnnnnn	nnnnnnnnn	n nnnnnnnn	n nnnnnnnnn	480
nnnnn	nnnn	n nnnnnnnn	a gcattgtat	t ttcacaacg	t aggaacaag	a aaaaaaacaa	540

PCT/US01/45080

6

aatacaaata gacatgacac acaaagaca	ac aacacatcaa	ttaaataaat	agaaactaat	600
acgcacataa aaaaattgta aa				622
<210> 9 <211> 799 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (589)(676)	•			
<223> a, c, g or t				
<400> 9 ttttttttt ttccccagac cacttcca	at gctggattac	gtctcctcca	aatgtgtatc	60
tggagagtga taatagtata ttaatttc	at gggaagtggt	ctggggaaaa	agtaacaaga	120
aatctaataa aaaacataac tcatagtt	gc tgatatgata	aatgataaat	ttgatatgag	180
agaaagcagc aggttatatt tgtaacca	at tatccttaca	tgatatcctg	gaaaacccct	240
caggeetgag teaaattggg atggetgg	tc ccccagcatg	acccaaacaa	gcatttgcta	300
gcttagcttt acaacacaga tgatgcta	tg ggccacagca	acttgaggac	ttgcctgagc	360
cttgttccag gttaattaga cgttgcta	aa agggtgggct	cattgttaag	tttggtttct	420
aactacatta ctaaaattag aaacctta	at ataactttct	tctatagttc	aataacctgg	480
atgaggtata tetgecetge ttataaga	tg tacacattat	gtagcaaaat	ggattgaagc	540
agatgggtta agagtaaggg tettgtgt	gt tatgtgctac	ataggcccnn	nnnnnnnnn	600
nnnnnnnnn nnnnnnnnn nnnnnnn	nn nnnnnnnnn	nnnnnnnn	nnnnnnnn	660
nnnnnnnnn nnnnnnagca ttgtattt	tc acaacgtagg	aacaagaaaa	aaaacaaaat	720
acaaatagac atgacacaca aagacaca	ac acatcaatta	aataaataga	aactaatacg	780
cacataaaaa aattgtaaa				799
<210> 10 <211> 344 <212> DNA <213> Homo sapien				
<221> misc_feature <222> (55)(304)				
<223> a, c, g or t				

<400> 10

7

	gcgtggtcgc	ggcgaggtac	ttacttcaag	caaataaatg	cggtggctcg	tgccnnnnnn	60
	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	120
•	nnnnnnnnn	nnnnnnnnn	nnnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	180
						nnnnnnnnn	240
							300
	nnntgaaaa	taaaataaaa	tatatattta	caggcctaca	actt		344

<210> 11

. . . .

. . .

aaaacaatat accaaaaatc tagatttttt cttcacatac aacaaatctt acccagggtt 3	60
	20
tttggttcaa atacctgtct catttctttc cacatccgaa gttcttataa tcggtaaaca 4	35
taatactagc tactg	
<210> 13	
<210> 13 <211> 469	
<212> DNA	
<213> Homo sapien	
<400> 13 cattctaggg tttcctttga gagaccggtc actgctgtcg caagtctcag ggagatggta	60
	L20
	180
agagegttea aatactttee ettaatttta teedacaget tyttaetege toottoor	
tacttgagat gctattaggg tgtgcacatt tcctataggt gactttcgca atccgggcaa	240
gatggggctt tactctgaaa gactatctac tggggggagg tgtgagggaa cagaaattct	300
ttcaaaagct gcccaaagag gtgttcaaag tttttgtccc tatcttccag tgtgttagcc	360
	420
	469
9990944444	
<210> 14	
<211> 741	
<212> DNA <213> Homo sapien	
<220> <221> misc feature	
<222> (607)(607)	
<pre><223> a, c, g or t</pre>	
<400> 14	
<400> 14 tegageggeg ceegggeagg tacatggget atgggeetet tgaggetgtg teatgageea	60
tggtcattca tattcagctc agaataaacc tcttcaaata tttgataagg tctagaattt	120
tteeteaaca etgeagatgt getatettet tataaaaaaa tetgaattat aecaattetg	180
tagaagtgta ttaatctttc ctgcatacag aaaagattct ggtgtctttt tctatattat	240
caacaaacaa catattaata tctatatgtt gcacacagec attatttcaa tacagetaaa	300
gataatattt caaaaattat agagaaagaa caacagaaat gaagaaagtt tttctatcct	360
tttgttttat attcttagaa taaactagaa aactctgtta ttactcctta cacaggtaga	420
atatgttgtg tatatttett ttaaggeaaa aacatageae ttgtgttttt teaaaeattt	480

9

tctttggatt	aaatatgttt	ttatcaataa	taaaaacctt	ttatcacaga	ggttttacaa	540
					ggaacaccct	600
					tctccccgcg	660
					cgccccaca	720
	cccccccc					741
CCCGCCCGG		J				

<211> 850 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (716)...(716) <223> a, c, g or t

<210> 15

acacgagggc actacacttg aagatatctg gctgaattaa tgttcacctt ccatgtatta 60 atttatgtct tcgcttataa ttcctatctc cctaaaatgt ataaaattaa actataactt 120 gactacctcg ggcactttct caggacctct tgaggactgt acctgagcca tggttattca 180 tattggctca gaataaacct ctttaaatat ttgataaggt ctagaatttt tcctcaacac 240 tgcagatgtg ctatcttctt ataaaaaaat ctgaattata ccaattctgt agaagtgtat 300 taatctttcc tgcatacaga aaagattctg gtgtcttttt ctatattatc aacaaacaac 360 atattaatat ctatatgttg cacacagcca ttatttcaat acagctaaag ataatatttc 420 aaaaattata gagaaagaac aacagaaatg aagaaagttt ttctatcctt ttgttttata 480 ttottagaat aaactagaaa actotgttat tactoottac acaggtagaa tatgttgtgt 540 atatttcttt taaggcaaaa acatagcact tgtgtttttt caaacatttt ctttggatta 600 aatatgtttt tatcaataat aaaaaccttt tatcacagag gttttacaaa caaaaaaaaa 660 acaaaaacaa caaaacaaca caaaaaaggg tcggggggg gaacaccctg tggcgncaaa 720 cagegegtgt gtetececet gggggtgega catttgtgtt eteceegege eccaeaatte 780 cccccaaat ttgcgcacac acaaacccga accacacccc gcccccacac ccgccccgcc 850 ccccccccg

<210> 16 <211> 616 <212> DNA <213> Homo sapien

WO 02/064788

		10			
<400> 16 aggcagtgtc tgcgaagtca	ataacacaca	taggtgtgcc	atcaggtgtc	ccgttttgcg	60
ccagtagaag cctcgacgct	ctctcagtgt	ctctggctat	ttaggctgac	aaggcaaact	120
agtagaagtc tctctttacc	caagacccag	tgtagaagtg	aaactctggc	atttgagatg	180
tatacttttc tggcctcatt	ttgagacttt	tgaatatccc	catcacgata	ttgattattt	240
tttgccggca gtcctaagaa	gggatgattc	acgggtctgg	gggaaaaccg	ccagccacga	300
gttcatgggc agtaagattg	gtggaccgac	gctgtggttc	aagaattccg	aaatctattg	360
acctgcaggt ttggaagggc	ctcttgcaag	agcctgggcg	tagtcctagg	ccataggctg	420
gtccccgggt gtaactgtgt	atccggccca	gtccaaaagg	ccaagagcaa	cccggacccc	480
acagactcga ggcagcagcg	cgtagagaat	accgataaca	accaagacga	gaggctacaa	540
cacgagagca gaaacgagga	gataacacaa	aacgagagac	ccacagagga	cgaaaaagta	600
acagagaaac acagcg					616
<210> 17 <211> 876 <212> DNA <213> Homo sapien	-	-			-
<221> misc_feature <222> (206)(206) <223> a, c, g or t					
<400> 17 ccaccccagg gggggggggg	cggggacctt	aaacttacag	gtcccaggaa	aatgggtgtt	60
gggatcccag ttctttggca	cattggtctc	tctcctgaaa	ataaacatct	ccaaacatat	120
taacactcct ctctctaaag	cctggggtgt	aattccatgg	gtccataagc	tggttccctg	180
gtggtggaac atgggtgctc	teccenegeg	tccacaatat	ctccccacca	caaacatata	240
caccgagaca caaaagagag	gacgaacgaa	gaggaaaaca	gcgcaggaca	ccgcccgaaa	300
acaagggagc cccgccaagc	accacaaaga	aaacaaaaga	aaccgaacag	gacaaggagc	360
gacaacccag aacagagaac	aagagggaag	aagagaaaca	caaacaaaca	gacggaaaac	420

aaacggaacg caagagacac acggaacgac gaacaggcga agaagagacg ccaaccacac

aagacagaaa agcgaacacg aaacaaaacc gccgcaggaa cccacagcga cccagaaaac

gcaacacaag accagcaaaa cagcgcagag gcacgcaacg cagaagacgg caaggggcac

caaggagaaa acaggagacg acggaggcgg cgggcaagaa acgacacaag agggaagagg acgaggggaa gggaagaggg aaagacaagg cgagcagaga aagtcagcag aaacaacgga

PCT/US01/45080

480

540

600

660

agaaagacac	cgaaaccacg	acagcgaaaa	gaacacaaga	caagcagaca	agacaaagaa	780
gaacggaaca	agcaaagaac	gaacacaaaa	gcacagaagc	cagagcaaca	gagaaagaga	840
agaaacagaa	acaaagaaga	aggacgagag	gcgaac			876
<210> 18 <211> 474 <212> DNA <213> Homo	o sapien					
<400> 18 cgtggtcgcg	gcgaggtacc	gaaggtgtca	gtgttgggga	tggagagtca	tagtggtgat	60
aagcctggta	agtaacctca	ccaggacgtg	ccaaagacag	gtcagcgagg	tgaagggact	120
gtggaagcaa	ggtaagggga	ggtgaagttg	tagtggaatt	tgggaggtgc	ttactgatct	180
tcttgcaggc	cctacaaatg	ttattcaaac	ctctgggcaa	atgtattagt	cacttgaccc	240
tccacgaact	cctccaagga	cttcagggat	taacgctgtt	gccacctggc	tcctcagagc	300
ggccagtcac	cgtggtgctt	cagaatcagg	taacatgtct	aggaggcttt	tttccataga	360
tggctttcag	gttggtatca	ctgataaggg	gtaagttggg	ggacagtctc	atctctacac	420
aaatcttatc	ctctgcagtg	cttctctatt	tctagtaagc	acatgatcac	ctgg	474
<210> 19 <211> 563 <212> DNA <213> Home	o sapien					
<400> 19 ggtgtcagtg	tgctgaggag	gtctgagtaa	aagattagga	cgccctgata	aatgttgagc	60
ccctatctac	ttttcttaga	gaaggattcc	taggacaagt	aggtaccgaa	ggtgtcagtg	120
ttggggatgg	agagtcatag	tggtgataag	cctggtaagt	aacctcacca	ggacgtgcca	180
aagacaggtc	agcgagggaa	gggactgtgg	aagcaaggta	aggggaggtg	aagttgtagt	240
ggaatttggg	aggtgcttac	tgatcttctt	gcaggcccta	caaatgttat	tcaaacctct	300
gggcaaatgt	attagtcact	tgaccctcca	cgaactcctc	caaggacttc	agggattaac	360
gctgttgcca	cctggctcct	cagageggee	cagtcaccgt	ggtgcttcag	aatcaggtga	420
acatagtcta	ggaggctttt	ttccatagat	ggctttcagg	ttggtatcac	tgataagggg	480
taagttgggg	gacagtetea	tctctacaca	aatcttatco	: tctgcagtgc	ttctctattt	540
ctagtaagca	catgatcacc	tgg				563

<210> 20

WO 02/064788

PCT/US01/45080 WO 02/064788

<211> 630 <212> DNA <213> Homo sapien	
<400> 20 aggatgatog atcatatggg ogcatgggto totagatgot gotogagogg ogcagtgtga	60
tggattggtc gcggccgagg tacttccttt atccagacat aaatttaatg tgttgcaatc	120
tatttgacat gatttottac aaaatttaag tttgtgggtt aagtottatt tttagagato	180
aatgotgata ottataaaat gocaottgaa aagatttoag ttgtgttgot taataccaaa	240
tattgcctac tttttgcaac atatttaaaa ataaagtaga aattcagctt cttaatacaa	300
atgtatgttg tttaatgaag caaaagtgaa gagactgaat tgttaattta ttttctagag	360
tgtctccaca ttcaaatggg cggatgatca ttggaaggtg gagggcatat taaataaaag	420
gcatttccat ctgcctatag ttgccagtta tctcaggaag ttagtgcatt gttttaatga	480
ggttacagtt tetggetaga tttecetagt gaggttagtg etatttgtge cacagagtge	540
atttgccagt cattttacca ctgtgtctca attttgagta gagggcaaga ataaatcatt	600
taatttattc ttaaaacctg gggaaaataa	630
<210> 21 <211> 538 <212> DNA <213> Homo sapien	
<400> 21 tgctcgagcc gcgccatagt gatggatgcg gccgaggtac cctacatcaa agtctgcatt	60
caggtgatta taatattccc tcgtgcccat gccgaagaat gtatcacaga gaaattgtgc	120
ctgtttatga ggttctttcg gtgataactg gccttcaaat tcaggttttc agtggcaagg	180
aagctgacag tgttataaag cggtctattg gttggggtcc attctttaag cccaggtgtt	240
acaaccettg aaaaaaaaat gagtcaaagt gttgttcatg tgaggtatce taagagtaga	300
cacagaggct actacagtat actacgattg acatttaggc ctgatgtctc cgtcaggttc	360
ctttagactt tctcagattt tccttttcct tgaggacttc aatagttatg ggtagtgctg	420
gctgactgta tcctttcatc tatctcacca gaagtataat acttttattt cgtttgagta	480
taaattettg caccetaaat aagttgteet tagteatttg tattagetaa caaaatae	538

<210> 22

<211> 197 <212> DNA <213> Homo sapien

<400> 22

13

aaggaccagg aacccgtaga acaggaccgc gatgcagggc agataaccaa tagggatccg 60 acaccetgga egagecatea cagaagateg aacggeecaa gteegaagtg gegaaceeeg 120 gcacagggac ttacaagata ccagcggtcc ccccggaggg ccccgaggcc gcccagaccg 180 197 aacaggggaa cgggaac <210> 23 <211> 1059 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (414)..(414) <223> a, c, g or t <220> <221> misc_feature <222> (426)..(426) <223> a, c, g or t <400> 23 gtgaatacac toactatagg gootgttgoo totagatgot gotogagogg ogcagtgtga 60 tggatcgtgg tcgcggcccg agataccatg tagtgctgtg tcttctccca aaaagatgtg 120 tatttagctt aggaaagaaa tgcaaagtgt ggttgataaa atggctcatg aaagtgcagt 180 gagactgacc ccatcctgta ttcagggata ggccatccct ctctgccagt gaagagagac 240 actatettta tateegtaat accaegtata gaetetggge tteeetgtag teeecetggg 300 gatagtgtcc tccaccccct attagtgtat tagtgtatta ctcgtggtcg tgcggtgaat 360 gtcgtctgct gagtgaggtg gatgtcttgg tctaggttac tatttttgga acantaactg 420 gctaanaccc cttcggaaca cacaaaaaca gggcaggatg tatattttaa tttttaaaa 480 tttaccattt tatttcacgt tattgtacca agctcatgaa atgttttact atttggtcag 540 aaaagtgaca ttatggcaca ttgcattcct aagatttaat acatggtttc tcagggaggt 600 tgaaatacag tatcctgaat cttaaatatt atagaactct taaacaattt tggcttagct 660 ggagaagget ggggtatatt taagaatgta tgtgttetge atataeteet ttaagaaaca 720 gattttccag gctggctgtg gtggctcaca cccattaatc cccaacaact ttgtggggga 780 agcgcccgag ggcagcgagg gattgcttga ggcccaggag ttcgagacag cttaggcaac 840 agagcaagac tgatctctat taaaaaataat aaaaagaacc cgctttgaga taatagtgat 900 aacccctgac tcgtcatatc acctagacaa ttgagattcg acactggctg ggatacgaga 960

14

ccagttgccg acctgtttct ggttcctttc ggtggggacg tttaaggggc caggcttttc 1020 1059 cogtototac cogtggtaat cggtctggtc tgcgtgtca <210> 24 <211> 1052 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (114)..(114) <223> a, c, g or t <220> <221> misc feature <222> (151)..(151) <223> a, c, g or t <220> <221> misc feature <222> (284)..(284) <223> a, c, g or t <220> <221> misc feature <222> (447)..(447) <223> a, c, g or t <400> 24 gcgtggtcgc ggccgaggta cgtgccgcgg aatatgcccc gcttgcaatc gacatcatcg 60 gtgccaaggg acctacgcat ccatcgcaga tgaacggtgg tccgacggct tgancaacgg 120 gtcatcagga caaggttgta agtgagacca ngttttatag atagcttatg catattctcg 180 cggaggccaa ttacgtatga ctcggggtga tgtcagaatg agttccatct ctccgagttg 240 tgccaagggc ctgatgtgcg ttccgctcgt cagataagaa cttngttaga ccttgcgacg 300 360 aaccaaaaaa aaacaaaaaa aacaaaccaa cacaaaagcg cgttggcgcg tgtaaacacc 420 480 agatgggctc tatacacgcg tgtgtanacc ccttgtgtgt gtcgacatat gtgtgtgtac teccegeget ecceacaaat acteeccea cacaaaacat atecceegge acacaaacgg 540 600 660 aagaacaaca cagaaacaaa aaaaaagcaa agacgggacg aggaaaaagc acaaaacgaa 720

15

agaaaaggaa aagagaagca gagaggagaa ggaaaaaaga gagaagaagg aacgaaccaa 780 aaagaaaaca gagaaagaga cagaacgaaa gaaagcgaca agacacaagc aaagagagcg 840 acaagaaaag acagaaaaaa agacaggaga caagaagaaa cagaaaaaga aagaagcaga 900 acaacaaaga gggaaaaaag aaaatagcaa aacgcaaaca gaaacaacaa acggaagaaa 960 gaccggacaa aacgagagag gagaagagaa aggcacaaag aaagaaaaag agaaaagcag 1020 1052 agaaagaaga caaccaaaag aaagaaagaa cg <210> 25 <211> 1124 <212> DNA <213> Homo sapien <220> <221> misc feature <222> (186)..(186) <223> a, c, g or t <220> <221> misc feature <222> (223)..(223) <223> a, c, g or t <220> <221> misc_feature <222> (356)..(356) <223> a, c, g or t <220> <221> misc_feature <222> (519)..(519) <223> a, c, g or t <400> 25 tagetgette etttetetet egegegeggt gtggtggeag caggegeage eeageetega 60 aatgcagaac gacgccggcg agttcgtgga cctgtacgtg ccgcggaaat gctccgctag 120 caatcgcatc atcggtgcca agggaccacg catccatcca gatgaacggt ggtccgacgg 180 cttgancaac gggtcatcag gacaaggttg taagtgagac cangttttat agatagctta 240 tgcatattct cgcggaggcc aattacgtat gactcggggt gatgtcagaa tgagttccat 300 ctctccgagt tgtgccaagg gcctgatgtg cgttccgctc gtcagataag aacttngtta 360 gacettgega egaegaaate cacaegaeta gtegagaaet aattetaggt cataacataa 420 catacatgac aaaaccaaaa aaaacaaaa aaaacaaacc aacacaaaag cgcgttggcg 480

16

cgtgtaaaca ccagatgggc tctatacacg cgtgtgtana ccccttgtgt gtgtcgacat 540 atgtgtgtgt acteccegeg etceccacaa atacteccee cacacaaaac atatecceeg 600 660 gaaacaaaga gaaagacaaa aaggaaagga gagaaggaaa gcaggaaaaa agcaagaaag 720 780 gcacaaaacg aaagaaaagg aaaagagaag cagagaggag aaggaaaaaa gagagaagaa 840 ggaacgaacc aaaaagaaaa cagagaaaga gacagaacga aagaaagcga caagacacaa 900 gcaaagagag cgacaagaaa agacagaaaa aaagacagga gacaagaaga aacagaaaaa 960 gaaagaagca gaacaacaaa gagggaaaaa agaaaatagc aaaacgcaaa cagaaacaac 1020 1080 1124

<210> 26

<211> 659

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (239)..(239)

<223> a, c, g or t

<400> 26 tcgcggccga ggtttttttt tttttttt tttttttgtgg gtgtttaaaa gtttaagtta 60 ggatatgggc ccatatacca aaagcctca agggacaaca aagcctgtgc ccctctctcc 120 tataaggggg tgcccctctc aagagcccct atttgtgtgt gttaaacact ctcagagagg 180 aaaagetete gaactetete tgtggageee ttetecetet eeeteacgag tgtgtgggng 240 aaaactgtgc ccgaggattg agaggataaa ctccgtggct taaaatctct tggtgtattc 300 cccaaatatt aatgccccca acacaatat tgtggaatat caccaccact tatttaaaat 360 atacacttac acatatctcc catatttaac gcggtctcaa tgagaatgtg gtattcacgt 420 ggcacatatt ctcaccatat tacacatctc gtggcacata ctccacaaga agcaagcgcc 480 tttgggcgag ggggatctct tatattctac aagcctgtgg gggatatatc tcgatgtggc 540 gcccatataa gcgctgtgtg ttccgcggtg gtgtgtgaaa atgtgtggta tatctcgcgg 600 ctctcaccaa attctccacc acacaaaatt cgccggacaa caaaaaaggg ggggggggg 659

<210> 27

PCT/US01/45080

17

<211> 1337 <212> DNA

<213> Homo sapien

ttttttttt ttttttttt ttttaaagtg ggtaaaaatc tttatttatc tattttataa 60 attcacttgt gcaagaacaa cacttctcct caaaaatact tttccccccc aaaagagctt 120 aaaaaaataa gaaaaagagc taattagggt aggcagaaag tgtctcttgg gagacacccc 180 tctctgtgtt ttctcagagg gagaagcctc tagtgccggg cgtgtgtgtg tctccaacca 240 ccgagaggtc ttgtgccacc agagggggcg agagagtctc tctccctgtg agacctctgt 300 gacacttgtg cgccagagac acctetetet gtgtggtgtt gtggcgcctc tcgcggagag 360 agacagcaac gccccaagct ctctgcgtgg gcggtgtgag agactctccg tttctcctct 420 cgagtctcag tgtgcgccca acacaggtgt tgtgtatctc tccactatat atagacgcca 480 teteteteta taacacaett tteteaetet etataagaga gatatatate teetatagag 540 tatataataa agatototat actacocata tatattgtgt gagggcgcgc actatgtgtg 600 tgggtatatc tcccacagtt gggtgtttaa ccacacaaag aaacacatat aatctctatc 660 totototgtg coatatatat tatgtgtgtg tgtagacato tttatataag aggagaacaa 720 cagegeatgt agagagaatg tgacetetet etatatgtte teacacacae aacaegtgtg 780 gggtgtgaaa tctctctcta tatgtgtgtg tctctcccac gaagttgtgt ctccccggtg 840 gggatggtgg ggggctctcc accccggaga caatgatgcc ccaatttctc ctctccctat 900 tetegegatg gatgegeega gaataataat ttacaccata tatetetetg ttttttacac 960 acceatgttg tgggtgccca taaaggggag cgcggcaccc aaacatgatt agtgggagag 1020 1080 agaatgtgaa aaaaaatata aacgaggccc gaggggggcg cagaataaaa ctacgagggg ggtccacaat agaagctccg aagatgtacc ccgccggggt ggttgcggca ccactattcg 1140 tggttgttat atcccccggt ctccccaccc atatttcccc cccccataat caattagaca 1200 gaacacaaac aacacaaaac acaacaaagc agactacaag caaaaaagac gaaccaaacc 1260 agegacatag aaacaccace aaccacaaaa caacgcacca gcaaaaccac acaacaccac 1320 1337 acccatacag aaacaaa

<210> 28

<211> 164

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

18

<222> (111)..(111)
<223> a, c, g or t

<400> 28
acattgctaa ataacttctt aggaagagat gtggggtggc aaacccttgc acgtctgaaa 60
atatccagat agattcggct agtgtgtgag cacactgttg aaatgtcatc ntctccctgt 120
gactcttaca cggacactct ctctctattg tctataaacg cttg 164

<210> 29
<211> 183
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature

ggcataatca tggacaatag ctgtcccctg tgtgaatttg tttccgccac aattccatct	660
cacacaacaa aatggt	676
Cacacaa uniggi	
<210> 31 <211> 2040 <212> DNA <213> Homo sapien	
<400> 31 accattttgt tgtgtgagat ggaattgtgg cggaaacaaa ttcacacagg ggacagctat	60
tgtccatgat tatgccaagc ttctcttgaa aatatgcaat aaagaacaaa aaggaaaaag	120
gcctacataa aataccaacc tttgttaaaa tgaaatgcta taataaagag tagacactat	180
gaagtttcca caatggtaat tcacgttctc agtaccaaca taggcaaggg cacacagacg	240
tagaaattat aaagtaattt ccacaaagag ccctctttga atactaaaga ctgtagtact	300
tgctaaatac taaatactag aagccctatg aaatttttta tattaaggga gcaataaaaa	360
tttttttttt tgtttttgag acagagtctc gctctgtctc tcatggcctg gagatgcaac	420
taggcacaat actcggttca catgcaacat caaatatcct gggctcaaag atgatccctt	480
ccacactcag cctcttgaga tagactggga gcacacagat agtgcgccac ccacacacca	540
gactagatgt gtgtgtgtgt ctgtgtgtct gtatgtgtgt gtgtatgtgt gtagagactg	600
ggtttcgcca tgttgcccgt gtgtgtgtgt gtgtgtgtgt gtgtgtgt	660
gtagggactg ggtttcacca tgttgcccag gtgtgtgcat gtgtgtgtgt gtgtgtgtgt	720
gtagggactg ggtttcacca tgttgcccag gtgtgtgttt gtgtgtgtag agactgggtt	780
togocatgit goccaggigt gigtgigtgi aaagaciggg titocccaig tigcacaago	840
tggtctattc tcaaactact gagctcaggc aatctgccca ccacagtctc ccaaagtgct	900
tggattacag gcagaagcca cagtgcctgg ccagcataaa ctattctaaa tagctttttt	960
tatttaacta ataaatctag acagattaaa cattttagag gacctctaaa atactatgcc	1020
ctgtggaaaa caagacaaag cactaattcc atacagcttg ccttgggaca gattctccct	1080
tcagtctcat ctgtgtaata cttattattc tcaaagaaag tgaacacata gagcgacatt	1140
taaattccaa gatgtaacaa aaccttaatg ttaacattaa aaaattaaaa tctcagagtg	1200
tgccacacca taggtgctta attaaaaaaa aacatactaa acagtgaaaa tggatgaccc	1260
agtecttage ctatgttatg gagttagega ageaagetee agtgeeetgt ggettagtea	1320
tacaataaat acttactgtc acacagtggc tgctcagtaa atatttatgc tttttaaact	1380
aaacagtgaa aatgggtgac cagtccttag cctttgctta tgaagtgagc agaagcaaac	1440

	20			
tccagtgccc agtggcttag tcatacaata	aatatttact	gagcagctac	tttgtgccac	1500
acactatgct aggttcttgg caacaaggac	actgtttggt	cattaaggaa	acatggaaaa	1560
gtgagggatg ccccctctcc aagcaagcct	gaccccctcc	gcatggcctc	caacacacgg	1620
ctgcttccac tctgggctgg caggtggatc	tgtttacaga	tgttatctct	ctcatgaatc	1680
agctgcagaa cctgatgaaa cagaacacat	tataggtaat	cacaatctca	ccaaagaacc	1740
ttacagaaag caataccgct cttactatgt	atcctccaag	gtcaattttc	acataattaa	1800
gaggctaatt aaaccagaca cacaaaatca	cctattccct	aacttttgtt	caagccccat	1860
tctatttgtc tcagacactt cacctgatgg	catctctgct	ttcaaagagt	agagagaaga	1920
aagtaagcag aggtcagatt aaagccatgg	gagctgaata	caggtagtgc	tgacactagg	1980
gtcagcaggc aaagcaggaa aaaaatggca	cttctttcag	ctagcttaca	aagcagtcac	2040
<210> 32 <211> 285 <212> DNA <213> Homo sapien <400> 32				
atgccgaccg gcgctagtgt gatggatgcg	gcgcccgggc	aagtactaca	gatgggcgcc	60
accacatcca gctaattttt gtatttatgt	tggttggttg	gttttttgtt	ttcgttttag	120
tttgtggaga gacaggtttt tgctgtttcc	caggctattc	taaagttcta	ggctctgcct	180
gcatcagcct cccggggagc tgggattaca	ggcgtgagcc	actgtgccca	gcccttagaa	240
ataattttct ccacctccat tcctctgact	cttggtttgt	gcctc		285
<210> 33 <211> 618 <212> DNA <213> Homo sapien <400> 33				
tteegagegg egecagtagt gatggatgte	gcggacgagg	tgattttggt	gatagaatta	60
caaaaactgc tagtggattt ttttttttt	tttttttt	tttggaaacg	gtttttgcct	120
ctgtcccccg gctggttgcg gggttgtctc	ggtcttgacc	cccgccccc	gggtgcagtg	180
atttccctgc ctcatttccc attgctggga	ctacgggcgt	gcaccaccac	gcccagctat	240
ttttggtatt ttatagcaga gacagggttt	cccagtgtgg	gccgggcgtg	gttctcgaac	300
tttccgaccc tcaaattgac ctccgccctc	cttgggccct	cccaaagttg	cgtgggacta	360
ccaggcgttg agccccggcc gtggcctcca	atatttccgt	tgtccataaa	ttccaacagt	420
tggccctccc tttgagccat cgaggtgtgg	gggcaaaaaa	aacatctttc	ggttaatatt	480

aaaatgggcg ttctatccca	tcacagacag	ggcaaaggag	ggggcgacaa	aaagctggga	540
					600
gtateettgg gecataagge	tgttccctgg	tgtgaaattg	geeeeege		C10
cacacataac cagaccac					618
<210> 34 <211> 365					
<212> DNA					
<213> Homo sapien					
<400> 34 aaaaaaagaa gaagttctgc	aatttggatt	tctccccata	agttagacag	gggaagaaga	60
					120
tgagaaatta gaaaattcat					
actccttagg ggcaaaacaa	ggcaggtctt	atagaagggc	tgggtcggct	gtaacttctt	180
caagggtaaa ccaccaacaa	taaagtctgg	gggtaattca	tggtccatag	cctgttccct	240
gttgtgaaca tggtttatcc					300
acgaaacgag taaaaaccaa					360
acgaaacgag taaaaaccaa	gacaaccacc	addacgaaca	, J	_	365
agaga					300
<210> 35 <211> 276					
<211> 276 <212> DNA					
<213> Homo sapien					
<400> 35			. ********	tcaaaggagc	60
accaaattga taaacagcag					
ccacagcttc agagtgagat	aaggaaaag	a acgggaaact	gggggagaaa	a ataccagggg	120
gcataatgca gactaaggg	gggaggggc	a agtggagtg	g tcaggaaagg	g ccagtctgag	180
gaaatgacat ttcatccga					240
					276
aggagacaac atacgcaaa	g tecetgggg	c aggaaa			
<210> 36					
<210> 36 <211> 506					
<212> DNA					
<213> Homo sapien					
<400> 36 accaaattga taaacagca		r ctataasaa	a tatatatto	a tcaaaggagc	60
					120
ccacagette agagtgaga					
gcataatgca gactaaggg	t gggagggg	a agtggagtg	g tcaggaaag	g ccagtctgag	180
gaaatgacat ttcatccga					240

aggagacaac atacgcaaag tccctggggc a	ggaaagagt 1	ttggtacatt	tgaggaccaa	300
atagaaaact ggtatggcct tggtttatca t	ggctgacat	acaaagtcca	ttgcagatct	360
gaagtgatgg octagggaga gagcaggacc t	ggaatgcca	cagaccccag	atcatcttcc	420
gtatataagg tgggcttcag agtttagctt c	ctctctaac	ctcagagtca	ccaggaggaa	480
tcaggaagca atttcaccac tctcct				506
<210> 37 <211> 249 <212> DNA <213> Homo sapien <400> 37				
acaggaaggg gtcaaggtgg agagcaggct a	agaggaggc	tggcgagatg	ggccaggtca	60
ccatggcatg ctccacactg ctgggtgtag g	gaatgcatca	cggggaggtg	ctgacacttt	120
cagggtagac agggaacgtg gactgccaca c	caccgactca	gggaaaagcc	aacagtccca	180
tatgtaaatt ttaaagttag ctttagaaaa t	aagttaaca	gttatcagag	caaaagtaag	240
gataaagga				249
<210> 38 <211> 406 <212> DNA <213> Homo sapien				
<pre><400> 38 agatgcatgt gctcgtcagt gtctccgtcc (</pre>	gctacggtgt	tgcgtctatg	cgtggtttgc	60
acgctgtgcg tctgggtcat gccttgcctg	ctgttgtcct	cttgtacatc	tcagcgcacg	120
aattactcaa tcacgaccta tgactgacgt	caatgacggt	gaagcggaat	cttcatgcac	180
acatecatat gagggtcacg atgaatgtcg	gctacagcga	tgcgaggtag	tggcacaaat	240
ccagggcgcc agacacagca ttggctgacg	tggtgagtga	taggtatctt	acggcagggg	300
agcatctgtg agtacagtca ccacaacgct	atgagcgtaa	ctcaatgtgt	acactagact	360
agttatcctt gtgttgaaac ttgtatatcc	agctcacata	ttccat		406
<210> 39 <211> 253 <212> DNA <213> Homo sapien				
<400> 39 aagaattttc tttagagagc aaaacatcat	tttgtggcaa	ttcagaggaa	a cagtgaagat	60
ttctagcctc agatactggt gtggaagaag	tagcagagct	taatgctag	a tcggctaaca	120

tatttagggc c	tgggagtca	tagttgacga	tggagttttc	aggaagatca	ttgtgagccg	180
ctgtggtatt t						240
aaatttctga t						253
addecedage	3					
<210> 40 <211> 1198 <212> DNA <213> Homo	sapien					
<400> 40 agtgagaaaa	gaaactgaac	aaaaaaggat	tctgaagaaa	tgttgaaagc	aaagaagaga	60
gtttttccat						120
ccccacatgg	tgcagagtaa	aaaggtgaac	ttgtgccgcc	cctttcccaa	aagaactgct	180
tccagagcag						240
					gaaaaccaaa	300
ttggatagga	aaaaccaaga	agctcctatt	tctaaagatg	ttccagtgcc	aacaaatgct	360
					taagccacct	420
					gaaccccaga	480
aacagaaagc	agctacaacc	tgtcaaagga	gaactgcttc	: aaagcttcaa	tcagaaattt	540
caagaggttg	tcaagaagat	gggattagca	taaatagtgt	tcaaccagaa	a aataccacag	600
cggctcacaa	tgatcttcct	gaaaactcca	togtcaacta	tgactccca	g gccctaaata	660
tgttagccga	tctagcatta	agctctgcta	cttcttccad	accagtate	gaggctagaa	720
atcttcactg	ttcctctgaa	ttgccacaaa	a atgatgttt	gctctctaa	a gaaaattctt	780
					a ggtgaattac	840
tacctaaccc	atcttctgat	aggaagagta	a attctggate	c agacttaac	t gttagccaag	900
atgaagaaag	cttggttcc	t tgtagtcag	g cccctgcta	a agcccagtc	a gcacttactg	960
aggaaatgct	agaatcttc	a gatgcaagc	c aaagctctt	c tgtttctgt	g gaacattcat	1020
atgccctgct	: ccttacaga	a cattcaaag	a aacatctac	a ggagagaga	g atactaagcc	1080
ctctgtttcc	caggaatgg	g acaaaaagc	c ctgaagcag	c aaccccagt	g gggaaagtca	114
				c teetgaega		119

<210> 41 <211> 151 <212> DNA

<213> Homo sapien

<400> 41 ccgcccgggc	aggtacctaa	acaggccaaa	tgttgccttt	ggggttcctg	tttcaacagc	60
atggtgtgaa	gcgccgcatc	aaccttctct	gcctattaaa	ataaaatgtc	ataaactcat	120
cctgcaaggt	ggcaaattcc	tcaagaatat	g			151
<210> 42 <211> 3096 <212> DNA <213> Homo	s sapien					
<400> 42 ttcctcacga	aactcccagg	cgctgtatag	gaaacataaa	tccgttgtca	ggcagcagta	60
gcacgctgtt	gctctcggag	cttggctgct	cgttcgtgct	cgcaaccact	aaggtctacg	120
caaacctcca	cggtttcctt	ccgccttcgc	gtcacctttc	taagaaattc	ccagagggca	180
gcgcagacgg	ggcgggctct	gagactccgg	geteegeete	tttccgggaa	ccgcccacta	240
cccaggactc	cgacagaggg	tgaaaaaaga	taacttccgg	tctcgcgatc	gtctctaatc	300
tcgcgagaag	agaaggcggc	cgccatcggc	cgaacggagg	cggtggcgag	ggaggggtg	360
tggccgggga	gcgcgaagtc	cccgggagta	agggagaggg	ggcggggtcg	cgcgtcccgg	420
gcatacgcat	gcgtgcacgc	tgccggtcgg	gctgggctga	gaggggaggg	ggcggcggcg	480
gccgaggcgg	cgtcgttatt	tccgtggtcc	ggacagtgcg	tggcggcgcg	ggtgaccacg	540
ggagaagtag	gcataatggt	tatgaaagct	tctgtagatg	atgacgattc	aggatgggag	600
ctcagtatgc	cagaaaaaat	ggagaaaagc	aatacaaact	gggtggacat	tacccaagat	660
tttgaagaag	cttgtcgaga	attaaagttg	ggagaactac	ttcatgataa	gctatttggt	720
ctttttgaag	ccatgtctgc	tattgaaatg	atggatccca	agatggatgc	tggcatgatt	780
ggaaaccaag	ttaatcgaaa	agttctcaat	tttgaacaag	ctatcaagga	tggcactatt	840
aaaattaaag	atctcacctt	gcctgaactg	atagggatta	tggatacatg	tttttgctgt	900
ttgataacgt	ggttagaagg	ccattcactg	gcacagacag	tatttacgtg	cctttacatt	960
cataatccag	actttataga	agatcctgct	atgaaggctt	ttgctctggg	aatcttgaaa	1020
atctgtgaca	ttgcaaggga	aaaagtaaat	aaagctgctg	tttttgaaga	ggaagatttt	1080
cagtcaatga	cttatggatt	taaaatggct	aacagtgtga	cagatetteg	agttacaggc	1140
atgctaaaag	atgtggagga	tgacatgcaa	agaagagtaa	agagtactcg	aagtcgacaa	1200
ggagaagaaa	gagatccaga	agttgaacta	gaacaccaac	aatgtttagc	agtattcagc	1260
agagtgaaat	ttactcqtqt	qttactgaca	gtgcttatag	cctttactaa	gaaagagacc	1320

agtgctgttg	cagaagctca	aaaattgatg	gttcaagcag	cagatettet	ttctgccatt	1380
cataattcat	tgcatcatgg	catccaggcc	cagaatgata	ctacaaaagg	agatcatcca	1440
			cagaggctac			1500
			gtgaactatt			1560
			acaaatttac			1620
			ctttcaagat			1680
			catctcatgc			1740
cttcggtctt	ttgtcagatc	ctccgagtgc	tttcccccaa	gtgctaccta	tataataatc	1800
			ttactcactg			1860
ttattcagat	ccatggacat	aacagggctc	gacagagaga	taagcttggt	catattcttg	1920
aggaatttgc	caccttgcag	gatgagttta	tgacatttta	ttttaatagg	cagagaaggt	1980
tgatgcagcg	cttcacacca	tgctgttgaa	acaggaaccc	caaaggcaac	atttggcctg	2040
tttaggtacc	tgggtccttt	accataacct	tegeattatg	atacagtacc	ttctaagtgg	2100
ctttgaattg	gaactctaca	gtatgcacga	gtactattac	atatattggt	atctctctga	2160
attcctttac	gcatggttga	tgtcaacatt	gagtcgtgcc	gatggctctc	aaatggcaga	2220
ggaaaggata	atggaagagc	agcagaaagg	ccgtagtagt	aaaaaaacaa	agaaaaaaaa	2280
			aatgagccaa			2340
			catggacggc			2400
tgagcttgat	agtgaacaag	ı ttcggtatga	acacaggttt	gctccattca	acagtgtgat	2460
gaccccgccg	ccagtgcact	acttacagtt	caaggaaatg	tctgacctca	ataaatatag	2520
ccctcctcct	cagtctcctg	aactgtatgt	ggcagctagt	aagcactttc	aacaggcaaa	2580
aatgatatto	gaaaatatto	ctaacccgg	ccatgaggtt	aatagaattt	taaaggttgc	2640
caaacccaac	: tttgtggtta	tgaagttatt	ggcaggagga	cacaaaaagg	aatctaaagt	2700
tcctcctgaa	tttgatttct	ctgctcataa	a atattttcct	gttgtgaaac	ttgtttgaga	2760
gagactgggg	aggtggccat	aaaggggcag	g agtettettt	cagacccaac	tcttagaggg	2820
cacatcacca	a ggctccaca	cacgggaag	t gagatggatt	tcttgggtaa	caactcatta	2880
			t atgacatgaa			2940
			g tcttattgaa			3000
					aaaatagtgt	3060
		t cttgacaaa				3096

<210>	43						
<211>	965						
<212>	DNA						
<213>	Homo	sapien					
<400>	43						
gcgtggl	tcgc	ggcgaggtct	tttttttt	tttttttt	ttttttggga	tgggaaaatt	60
ttatta	aaat	ggggaacact	gtttaaatct	tctggggcca	tgaaacccca	tcaggcagtc	120
taaaaa	aacc	atcggggagg	tctgaggatc	acttgacccc	aaaattttga	ggtctgtata	180
agctgg	gggt	aaccggggct	catagcgtgg	ttcccgggtg	tgaaatggtt	acccgcctca	240
caaatc	ccac	aacaacataa	cggagacaag	gagcctacgg	tgacaaccac	cctaggagca	300
gcccata	aata	agaggagaac	acaaacacac	agacacatgg	cgagcacaga	aaaagaccag	360
aagaca	caac	gacggggaca	cacgtgcgag	gccacggcag	cgcataaaag	agaacgaggg	420
cgcaac	gagc	acgacgggga	gaacaaacgc	gaggagaaca	ggcagaaaaa	taggagcagg	480
ccacta	ctcc	ggatgaacca	cccggcatca	accataaaca	caccactcag	ccccaccccg	540
agaccc	gcta	cagacaaagc	caacaaccga	cggctaaaac	caccacacct	tccacgcaca	600
aaaaaa	gcgg	agcgcgaaaa	taccaggtgg	taaccaccaa	cacagaaaaa	catacgagcg	660
gaaaaa	caca	cgaccaggta	aaaaagaaca	attgtgtaag	cgcaaaaacg	gaccaacaaa	720
aaacga	cgca	gacaggcacc	accggcaaaa	aaaggccccg	cagcatagca	tgagggtaca	780
tcacac	aaga	cagactcagg	acccacccag	cgacagaagg	cacaccaaaa	aacgcgacac	840
ccacaa	gagc	tcacacggtg	gcaccaacaa	ccccaacagg	acacagatcc	agaacaacca	900
aggcgg	gtgc	ccccaagaa	aacatccact	agaggggact	ccacaagaca	cgaagccacc	960
gaccg							965
<210><211><212><213>	44 325 DNA Homo	o sapien					
		<u>-</u>					
<400> aaaaaa	44 .cgca	gcttgttggc	acaacacctg	tagtcccaac	tgtcttaaga	ggccttgcgg	60
gcagga	ggca	ccactttgaa	cccccgggt	gggtgtgggc	ctgcccttga	gctaatgatt	120
cgtgcc	cact	tgcactccaa	gccctggtgt	tgaccgatgc	aggaccctgt	tctctctgac	180
accagg	tctt	ctctcggtgg	tgttttgggg	ctgcttaccc	acaattttt	caccttggtt	240
ctcttc	tggt	ccctaatact	ggctcgaaac	caacctttcc	agttcttatt	taaacccaaa	300

aaacccttgt	tggtccaacc	tggcc				325
<210> 45 <211> 333 <212> DNA <213> Homo	o sapien					
<400> 45				aacaccaata	tastaastac	60
				ggcgccagtg		
				atatatctct		120
tgcctcttaa	aaggtaaaga	aaggcaggtt	ggacccatga	catatcttct	aggccacagc	180
tctgaacaca	ttgcaagaga	aatattcaag	caaagtgaaa	ggaaagcagc	acattttcag	240
catcttaata	gtgaagctat	catactgaag	gaaaccatat	gagaaaggga	tatagaaagg	300
gcaccccttc	tcttcatttc	cctctaacac	tgg			333
<210> 46 <211> 273 <212> DNA <213> Home	o sapien					
<400> 46 cggccgaggt	gtagggtgtg	tggtgtgtgt	ttagggtgtg	gtgtgtggtg	tgtgatgtgt	60
gtgtggtgtg	tgtggtatgt	agtatatgtg	gtatgtggtg	tgtgtcgtgt	gtgtggtgga	120
tacacaactc	tatactaaaa	gccaatgagt	tgtttactta	aagtgggtga	actttatgct	180
				ggaagccctc		240
gtcagcctaa	cccagccctg	cactcatctg	acc			273
<400> 47 ttttttttt	atgattaagg	aattctgttc	attaaaagag	atcaacaatc	attacatatt	60
ttatgcttgt	atcaaaatat	tacatgtacc	tcataaatat	atacaacaat	tatgtattgt	120
tcttctatta	catatagcag	tttagaagtc	agactgttac	cactgcagat	aacgtttgat	180
tttcagcatt	tctataaaat	. ttccataaaa	attaaaaatt	ttcttaaaac	aaattaaaga	240
tatcaataag	, taaaaaagta	tatatttgca	atgcatatat	ttgacaaaag	attcatatcc	30
agaatacata	aagagccctt	acaaatcaat	gacaaaagac	: atctaaaaga	caaacaaaac	36
-					tagtcatcag	42

28

agaaatgcaa	aaggaaacca	taatgagagg	tcaccacatg	atcaccacat	tggctaaaat	480
aaaaaatacc	aaaatgccaa	gtgttggtga	gaatgtaggg	aaactggaac	tcgtgtacac	540
tgctggtggg	aatgcaaaat	agtgcacctg	ctttggaaaa	gagtctggga	gttcctctaa	600
aagctcaatg	tagaattacc	atatgaccca	gcaattccac	tectetgtat	agacccaaga	660
gaactgaaaa	catatggtca	aatacaactt	gctcatgaat	gtttataatg	acgttattta	720
tgatagccaa	aaagtggaaa	caacccaaat	gtccatcagt	gcatacatgc	aacaatgtgg	780
atgaaccttg	aaaacattaa	gttaaatgaa	agaagctggt	cgcacaaaga	tcacacagta	840
aatgagtcca	tctgtatgaa	aagtcccaag	aataggccaa	tctatagagg	cagaaggtaa	900
attagtggtt	gtcaggggct	aggaaggaag	tggatgggaa	atggctgcaa	acagcatgag	960
gtgttttggg	tggtgatgga	aacattctgc	agtgacattg	tggtgatgga	tacacaactc	1020
tatactaaaa	gccaatgagt	tgtttactta	aagtgggtga	actttatgct	atacaaatta	1080
tatctcaata	cagatttctt	taagtcttca	ggaagccctc	tggtaaagaa	gtcagcctaa	1140
cccagccctg	aactcatctg	accaccaaag	cttttcctca	cattggcacc	ctgagaaact	1200
ggtattctga	agaacgcgct	ttaggaaaaa	ctgctttaga	caacaggaat	ttggtaagaa	1260
gaactttgtt	tctgtgaaca	catatttgca	tgtcagggta	catccttttg	tatattattt	1320
atatttagtg	tgtctatgtc	ttgtcttctt	ggtagcttta	caagaatttc	gaggagagaa	1380
agtatgattt	tgtctctttg	aattcctact	tctcaccacc	cataatgtgg	tgcacacata	1440
aatatctgta	aatatgcagt	tagaactttg	catcactaat	gagttaatta	aactattcaa	1500
caaagccaaa	aatacatatc	atggtc				1526

<210> 48

<211> 962

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (53)..(662)

<223> a, c, g or t

<400> 48

29

300 360 420 nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnatacttc cgattcctcg catcaactga 480 540 600 660 nnaacagaga tgagcgacac acacagaaaa ggaactaata caaggaatac aaaacgcggg 720 ttaccacacc atgcgaaaga cacccatcga agcagcaaac caatagtccg aaaccgtggc 780 aggaataacg gaataactag acacgcatat tatcccaaaa gagaaagcgt agcagcgtaa 840 acaaaaacac acagcaggaa ggaatcagac gaaagaagga cgaacgacca gagcgagggg 900 aaaaaccccg aaaaacgacg agctaacgga aaacgccgaa acaacggaga agaatatacg 960 962 ga

<210> 49 <211> 1757 <212> DNA

<213> Homo sapien

<220>

<221> misc_feature
<222> (609)..(609)
<223> a, c, g or t

<400> 49 gacccggccg cccgggcggg taaaaactag aaggtttctc ttccacttga tgttgtgccc 60 cttcactcat attgattgct gagagacgat atgaggggtc atcatgtgaa cactctgaac 120 gctaaatgta atactaacgt gctcatcgag cagcggcagg gattagcgat actctcttca 180 ctgaccctga tgttcttgag tccttggggt ctactccatg gtatgtcccg ttaagtcttg 240 tgagccagta catctgttac ttcgtgtccc tggaagcgtc ttgaactatc attttccccg 300 tggaaaacca gtggcaaggc cgtccaaagt cgagtgtcgg tattcacaag agcgtcgagt 360 grattggage atattggete agteacaaac atteaagteg teceteeett eccatggteg 420 accatgcata gagagctggc gtactagcgg cgtccatgct agaaaacctc gacgtagacc 480 tatacatcct ctatgtgcaa aacgatctat aaaggaccgt aagcttcgcc caaaggtttc 540 tacatcggta gagccacctc ccgggcataa cgggtgggtt ccctcctcaa gcccccttaa 600

PCT/US01/45080

atctatacnc (ctcgccgtgt	ttggttcggt	gccccgcccc	gttgaggcaa	cataccctaa	660
cattggcaag	attgcgggct	ttgcaaaagg	gcatcgctag	taagggggcc	ttgtgagcct	720
aaaaaacccc	gcctttttag	cccctacgta	caccagtacc	gaatttccct	ctcttggggt	780
cccgcccgag	ggaacacaaa	tggtcacctt	tcctttcagt	gccatactcc	accttleccc	840
cgcgcgtagc	ctgaccttac	ttaattggca	atgagggtca	aaatccaacg	ttcgcaataa	900
ggtggccccc	gaaatatgtc	agggcattcc	ctagtttgtt	ctattaacgg	gccccaatgg	960
taacgtcggt	gcgccgcaaa	gtctccgatc	acggggagaa	ttatgctgtt	cagacacaca	1020
acagagaaac	gcgggggcat	tatcacttaa	tgttgtatct	ctacgcaagg	gcgtaactcc	1080
cccccgcgtc	accctatcac	tcaccgttat	gtggcgattg	tccaatggaa	gcactcccaa	1140
gggacgcggt	tgcgcatttt	ggccttttgg	aagagtttgt	ggcccccct	cattggggct	1200
tgtttaaacc	ctttaggtgc	ttggcacggt	gtgggtctgg	ccccctcgg	ggtccccttt	1260
tggaagggtt	cccaaggtta	ggtctcttct	cgttccaatg	gacttttagg	cggccaaagg	1320
ggttgatcca	caacgttgcg	accgttttag	cattagagga	aacacgtgat	taaggggaaa	1380
gcggaagaaa	acaaagggtt	tacccttcac	acctgtgcgg	gggtacaagc	taaaaggtcc	1440
acaacggttg	tgtcacagaa	accccccgca	gatggttttg	cccttcacaa	ccccttccga	1500
aaaaatggtg	gatggggcgc	cccttggtgc	ttcaccccct	tgtgggaaag	gttcacaccg	1560
gtgggttgag	acacctctgc	gaaacaaggg	ggccctatgg	ggagcgagga	aaaacatcac	1620
actgtgtgtg	cccattcaac	ggctttgtgt	ttcccgctgg	tgtaacattg	aggtgatcga	1680
gatcaacaca	cgggctccac	atatccacac	agacgacaac	acgacacaca	acgacacaga	1740
cacagacgaa	cagacgt					1757

and the state of t

. . .

<210> 50

<211> 1670

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature
<222> (293)..(293)
<223> a, c, g or t

<220>

<221> misc_feature

<222> (1029)..(1029) <223> a, c, g or t

<400> 50

PCT/US01/45080

gegggeegee geggggeagg tettttattt aaatageeat gateeatgat agggatgeta 60 gatetatgat aagaaaagea egacacagte caetggaact geacatagte etcaaaagge 120 agggatcatg catccgtcca ggcatactca tgtatccaag ctttatcatc attcaactac 180 acagogtgot aatttgaago ttatottaga ttoogataat cocactggoa acctagottg 240 agtaatgagg cgcgcgcgag gagcgtaagg ccgttcgtgg cgttgtaatt gtntctcttg 300 aagegeeeac tegegtegta tatttgegge geagtaatet ggtgegteea eteatgteee 360 agaggtettt cacgatetta getgagtgae tgggagagae tgtgtgteaa eeacaegeat 420 gcgcgcgagt tgtgttcttg ggctctcctt ttgcagtata cactagttcg atggcacagg 480 gaccgatatg cgtgtgcgcg cattgagttc cgtgcatata tgggcttttc tatacaacat 540 tatetetgeg egtteaggte actegagaac teccaataga gggtetagag ttggtggatt 600 ctatccatcg atatttacct aagtacattg tgttagcggc cccactttct cctcggtcag 660 ttgtcttctc ccacgaactc gggcggatgg cacccattat ttctggcccc agagagcctg 720 tggcagcttt agtccatggg tacagttagt acatggctcg tgtctcgtgg tgtattgccc 780 acatttgctg tgaggtgcgc gcctttcgac cgcgagtggg cctatctact tgagctacgg 840 gggggagaag ggcgagggtt cccgggggct ttattctccc cccgttagag cccgttggga 900 agggcccggg cctgtggctt ttcccacttg ggggtgtgtg ggggtccact tttttgggcc 960 gtgtttccac gacatgccca cacgtggttg tgccccacgc ggacggtgaa acccaattcc 1020 ctcttggtna cccgagacac agccgttttc ctcttgggac catttgggaa agggcccccc 1080 agcaatttgg gtcccccccg gggaaaagga aagggctttc tcgatctcaa aagggccttg 1140 aggagcaggt acacctccat tggggtcaca aaaggcgtgt gtttcgcggt ggtggttgcc 1200 aaacattgtg ggttattccg ggcttcagca caatttcccc acacgtctac cacgaggagc 1260 accaaaaatg agggagcagg acgaagagga caagggggag agagcgcagg aggcgagagg 1320 cggggcagac caggagcagc agacagcaca aacggaagac ggaagaggaa gtaacaccgg 1380 acgagaacag ggcaaggcag ggacccaagg cggacaaagc acccgcgaac tcgaacgagc 1440 gagcagggga gcgcgcgcag gatcgagacg ccacgagaag gagaaggcat cgaggagtag 1500 gaggegeega ggeagaacae aegeeaceeg agaccagaae ageaegetea gtggaegega 1560 cgagacacgc ggacagacga gacgaaacag aaggagteet cgaacgcgga caggecagca 1620 aggccagaga gcgcagcgcg caccaaagaa gcgaagaaaa gggacacgta 1670

<210> 51 <211> 148

<212> DNA <213> Homo sapien	
<400> 51 ggcgagaaag tgatactcaa tataggcgac tggccttata atcatgtcga gccggctgca	a 60
gtgttgaatg gatagegtgg tegegaegag gtaetteetg ggtgggeeaa geeaeeeea	120
agagttatgt ttaccgagga ccctgaag	148
<210> 52 <211> 393 <212> DNA <213> Homo sapien	
<400> 52 gctttttttt tttttttt ttttggccag tgctttctac tttattaaac atcagagag	c 60
ccaaatagaa tgtccccggg ggagggaggc acttaagagg caccactaga ggggagagg	a 120
gaaagagggc acccctgggg aaagaagaa tccaccaccc acaagaagac accaactct	c 180
tccacaaaaa gagggctcca cacaatttga ttctcctaag gggaggacgc aggcgcagg	g 240
ctccacggcc ttcaaaattt gtgggtgata taacgcgttc gaggatgtag aagggaccc	c 300
caageetggg eggttaaaet eagtgggete aatageegtg ttteeegtgg tggtgaaat	t 360
gggttactcc ggctcaccaa ttccccaaca aat	393
<210> 53 <211> 574 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (156)(156) <223> a, c, g or t	
<220> <221> misc_feature <222> (176)(176) <223> a, c, g or t	
<220> <221> misc_feature <222> (215)(215) <223> a, c, g or t	
<221> misc_feature <222> (226)(226) <223> a, c, g or t	

PCT/US01/45080

```
<220>
<221> misc_feature
<222> (234)..(234)
<223> a, c, g or t
<220>
<221> misc_feature
<222> (237)..(238)
<223> a, c, g or t
<220>
<221> misc_feature
<222> (272)..(272)
<223> a, c, g or t
<220>
<221> misc_feature
<222> (277)..(277)
<223> a, c, g or t
<220>
<221> misc_feature
<222> (299)..(300)
<223> a, c, g or t
<220>
<221> misc_feature
 <222> (306)..(306)
<223> a, c, g or t
<220>
 <221> misc_feature
 <222> (343)..(344)
<223> a, c, g or t
 <220>
 <221> misc_feature
 <222> (383)..(383)
 <223> a, c, g or t
 <220>
 <221> misc_feature
 <222> (428)..(428)
 <223> a, c, g or t
```

.

<400> 53 tacacggccg agcatgttca cgcacgtgga tccgagagcg ccgctgcact tcagtcactg

60

the following state of the second square of

Contract Contract of the Contract Contract

```
ttcttacgcg ccccgtggtg atggacacgt gccgagcgtg ctgcgagctc gagctctgga
                                                                    120
attgacgctg cggaggacaa catacgaact aggcantgtg aacgactgcg ctaaangtcg
                                                                    180
tacttgttgg gctaagacgg gtgcgacttg acacngcgtc tcaacntcga cgancgnnta
                                                                    240
gtgcatcctg cgctcagcgg ggggttgccg antggantag cactctcacc ctttaatann
                                                                    300
gcttgngctg ctaatgtcac tggctgcact agcgttgtgt tcnncttgtg ctgaacactg
                                                                    360
tgtttattcc tgcatcgagc aanttcgcat cgatcaacat aaggaaagcc actgcgctcc
actooggnog togacgaagt gtcacagcga gcagacgcag tacgaacgcc acaagcgagc
                                                                    480
ccaccccgc agacgcgcc ccgacacacc gacaccgcgc gccagccgcc acgcgccaac
                                                                    540
cgcgcccacc acacccacac caccgcacca ggcc
                                                                    574
<210> 54
<211>
      1332
<212> DNA
<213> Homo sapien
<220>
<221> misc feature _
<222> (389)..(389)
<223> a, c, g or t
<220>
<221> misc_feature
<222> (646)..(646)
<223> a, c, g or t
<220>
<221> misc feature
<222> (989)..(989)
<223> a, c, g or t
<400> 54
gageggeege eegggeaggt acaatettat ttattgaaca tettgaggtg ggeatgggeg
                                                                     60
agagggagga aagcagctac ttcggtaaac gagtttctac aagaactatg tgctcagtaa
                                                                    120
cccgggtgct ccagttgtac gtgtagtgaa acttcgactt ttccacaaca ttggcaggca
                                                                    180
cgaccatttt ccgtgtcgca tgggtggact atatggatca gcagtggagc tgacctgtcg
                                                                    240
agogtotago actgacottg actgggacto acctttcacg atoccacgtt ttgccattat
                                                                    300
```

thetacaach tetecaachea contenaaaa cactachach chaacaacaa cacaaatacc 480

35

ggtacgctga cttcacggtg ggtgttgatg cctcgccctt cgagcgactc tgttggcggg

540

:

36

<211> 468 <212> DNA <213> Homo sapien <400> 56 ggtgtatgtc tataggccct gttatctaat gctgctcagc cggcgcggta tgtgatggat 60 gtggcgcggc cgaggtactc cttcaacaag ggatcgaccc tagctactca ggaggctgag 120 180 gtggaataat tgtttgaggc caggagttcc agatcagccc gggcaacatc atgcgacccc atctctaaaa acatcttttt aaaaatgagc caggtgtggt agcatgcacc cgtagtctca 240 300 qctactcagg agcctgaggc aggaggaagg tttcaacata ggagatcgag gctgctgtga gctatgatcg tgctactgca ctccagcctg ggtgacacag caagttcctg tttccaaaca 360 420 gcaagttccg gtggtggatt tttttcccgg ccatccccaa tttgaaac 468 <210> 57 <211> 499 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (243)..(243) <223> a, c, g or t <220> <221> misc_feature <222> (258)..(258) <223> a, c, g or t <400> 57 ccgcccgggc tggtacacga gcgaatggct agatgtttac tcgctctcac tgctgcgaga ccatcagcct gctcaatcga cttgggtagg ccgcgacgtg acaacaacct gaacggccag 120 acaagcccgc aagtcggaat cgatcttcca tggctacggg ccttgtggca cgagcacgct 180 ctagtgctac acgcgagcaa tcttcagcac gctagccact ggctagccac cgagagcacc 240 300 tgntctccgg ggagcagnca tttgaactcg taggcgagca acgtgagcac tcatcgagag 360 aacgggtcag ccgttgggcg ctaggtcact ggctcgatag gctgctcctc ctgttgctga 420 atagtgette teegetteac aggtteeage tacaacgaga egageageet ttgaccagge aggtcagget gacctggttc ttggtcaget catcccggga tgggggcagg gtgtacctcg 480

gccgcgacca cgctaagcc

PCT/US01/45080 WO 02/064788

37

<210> 58	
<211> 424 <212> DNA	
<213> Homo sapien	
<400> 58 ccgcccggcc aggtactctt agtacagatg gggtctcacc atgttgcgac cagactggtc	60
tctaacattg tgacctctga agctgatcca acctgccctg cggcgtcccg aagagtgctc	120
gggattacta gcgcaacgag ccactatgcc tggacctcta ttgttcatgt acataccatg	180
ttcttacaga tagtgaaaat aggtcagata tcttagaaat aggtattccg tgttcgtaag	240
ttccgactgt ggatatgaat gcatatcttg gtgtattgtc tgcttgctca gataaatgat	300
tcatcgcaaa ccacgacaac ttggtccaat ggtgacgttg ttcatctttg actttaagac	360
aagatgcatg catagttcat atcactagag tccctttcaa gaacagaggc ctgctcgtta	420
catg	424
<210> 59	
<211> 1264	
<212> DNA	
<213> Homo sapien	
<400> 59	
cctgaaaggt ttttcccgtt cgtgcacacc tcctttacca ctagcccttt cgggttttac	60
accegtggce gaccagggce attgaaagce egttecatae gtaaaatagg agaggacete	120
aattgtttgt tttgagcaga ctttgcccgt cccagctgac catacgtgaa ctcggactta	180
cgcaacggcc cttccaagct caactactcc cacccaggct gggactacag gcacatgcca	240
ccacattcgc ctaattttgt attttctgta gagacagagt ttcaccatgt tgcccaccct	300
ggtcttggaa ctcctgggct caagggatct gctggccttg gcctctcaaa gtgctggggt	360
tataggcatg agcctataac cctcaaatat cttaagaaaa gtaactgact gcagttgaaa	420
acaggtaatt gaaattgtgg taagtgaaac catggataaa gcgggactac tgtacatgct	480
cattaaaaaa aattaagggc caggcatggt ggccttacac ctgtagtcct agctactcag	540
gatgtctgag tcatggaatg actgcctgat tcccagtgtt gagctcgatg gcgtactatg	600
atctgtgatc acacaccact gcactccagc ctgcgtacca caagatcctg tctcaaaaaa	660
tatataaagt aaaaagagtg attttattta tttatgaaac agggtctcac tctgtcgccc	720
aggetggagt geaatggeat gatettgget eactgeagte teegeetett gggtteaage	780
gattetettg ceteageete etgagtaget gggaetacag geaetegeea ceatgeecag	840
cgtaattttt ttgtattttt agtagagatg gggtctcacc atgttgcgac caggctggtc	900

38

960 totaacattg tgacctotga agotgatoca acotgocotg oggogtocog aagagtgoto qqqattacta gcgcaacgag ccactatgcc tqqacctcta ttgttcatgt acataccatg 1020 1080 ttcttacaga tagtgaaaat aggtcagata tcttagaaat aggtattccg tgttcgtaag ttccgactgt ggatatgaat gcatatcttg gtgtattgtc tgcttgctca gataaatgat 1140 tcatcgcaaa ccacgacaac ttggtccaat ggtgacgttg ttcatctttg actttaagac 1200 1260 aagatgcatg catagttcat atcactagag tccctttcaa gaacagaggc ctgctcgtta 1264 catg <210> <211> 1512 <212> DNA <213> Homo sapien <400> 60 gtggtcgcgg ccgagcgtca catttccaat cttaatagac gcatagccag acttctgctt 60 120 ctgatgactg agctacaggc tacagtgagc taggctccca accggttctc aacattctgt attgttggta taattattct cccagcactt ctatactatt-gtctgcccgt agtgcctcgc - 180 taagagagca catgctaggc tcagttatgc tcgaagcgag acatctagtg tcttcgacgc 240 ageggetata tagetggeta teateaaagt eecaggetet egageecaag aaggeetetg 300 ggcgctacac tccaatggat cgactatgca tgctcctcgc ctgctgttag aatagttggt 360 ctactccage tecacaacte teacacacaa caactaegga aggeaaggta caetegetge 420 qtccaqcaqa ccactgccgc catttaacgc gcaggccgag cctcaccacg acatgcctga 480 540 cateccccat agteccaact tecatgetge tactgacget etecacetta ttgtecettg ccaacactct aagccacttt tcctcgttca tcgcccccc aaacaacaca cacgcacatt 600 gttcgcctca ctcgcacagc gctcttgggc ccgctaaacg tcccattgcg ttccattaag 660 gccctcggtc ttcccatgct tgctgcaccc ttctggcttc tattctcgga cttccagcta 720 agtttcccta tccaqccaca tcataccact cagtcatgca aatgccactc acccccgtca 780 840 ctctgtctcc cgccccatcc ctcccctctc cacccgtcgt ctccgtctca ccctcgcccg qcqcqccacc tcctcccact ccgccaccct tctaccccgc cctcgcctac ctctctacca 900 geacteceat etetatecee ectetettee ateceacace accececte caccacagee 960 qccattcaac tgcccccac tccacaccac ctccgcccca cacacaacta ctcacccatc 1020 egeterages actoraces etcaceteat aacacceta gacccacaes caegeceses 1080 ccaccacqca tocactacac caccatatco cccctcaaca ccacctcccc ccctctacac 1140

39

tcaaccetet ettececace ecetetecac caatacaace ecteteaata etcatacace 1200
atcattcaaa etgetactac ecacceccaa eteteacaca cacceatgag aaccaacaat 1260
catcacteta tactetacec eccategete tetecaccac ecceacgeac ecgecacace 1320
eccaccecte atcacegeca ecacetecta etetacttac tecetecata eacceggeet 1380
eccacteete tacgteecca etecteetea accatataca etecteecge etactetete 1440
ecgataacte eccacatate etetetatea ecceaactee ecceetecca etaccacete 1500
accacacaca ac 1512

<210> 61

<211> 775

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (12)..(12)

<223> a, c, g or t

<400> 61 cgtggtcgcg gncgaggtac ataccgtctt tttttttttt ttttttttt ggaaacagtt 60 tegttatgtt tgcccaggtt ggattgactt ggcgcaatct cggttcatta gaacctccac 120 ctcccgggtt acaccccatt ctccgtgcct aagccccccg aaatagcgtg ggaataacgg 180 gcccccgcaa accacgaccc ggttaaattt tggaaatatc tagttagaag acacgggttt 240 tecceegttg tttgcccgag ggatggetet egaateetee ttgaeetttg tgaacteeca 300 cccacctagg ccttccccaa agttgctggg atacaacgag gcgtgaacca ttgcccccgg 360 ccaaattcac agttccttat caaagaatat accccagatt aaaatctctg ttgattgata 420 accgataatc cccaatatta gtgtaaaaat tttacggaaa agtgttatcc taaatagacc 480 tettaggeca aaataccagg tetgtatgag aggecatetg atgeceteaa tetgtecagt 540 acatetecca gaagacetgt aaaaatatae eeettttttg gtggggcata tgaacttttt 600 caacgggagt agaatctcaa tgtgtagaac cagatgtccc tgaatggaaa atttggattc 660 ctaaaaagtg tgtcccttcc taattggctg tccctaattg gataattaaa tcctgtatta 720 tgaaaatctt gggcaaaacc tacagtttgc atattccatt accccatggt agttc 775

<210> 62

<211> 918

<212> DNA

<213> Homo sapien

WO 02/064788

<220>
<221> misc_feature
<222> (505)..(505)
<223> a, c, g or t

<400> 62 cgagtttttt tttttttt tttttttaa aaaggaaaac ccggtaatga ttgtcggggt 60 tagagggata ggaggaaaat gggggatagg cgtgttttga ccattgaggg gtgttttccc 120 tcggtggtga attagagggt ttaatgtgtt gtgtcttaag tggtgggtgg gtgtgagtgt 180 240 qacqcccat tgtgtgtgtg tgtggtggtt aaatatatgt gtataagagt gggagtataa taggcgcgtg gtgcacatag atctagtgtg tgtgaagtct ccgtggtgaa gtataggaaa 300 cagagtgtat ctttgtgtgt atctcacgag aaacagatgt gtgtgtgtgt taccatagac 360 acacacagag agagagtttc tcctccccga gatatagcgt gtatacaata gagtgagggg 420 gggagtataa agggcgcgaa gaggttataa gcgcgagaag agcccttgtg tggctataag 480 540 aaaqaqttct ctttctctac aaaanagagc ggctttattt attagatgtg tgaggcgagt tattagaaaa gtottttgtg aaaaagtgot coototgtta gagagagaga gagatattac 600 660 tacqtqtatg gtgcgcgcac gcgttgttgt gaaagatggt tgcgcgctat cgcggaaaag gaatgtgggc acgattgttg atggccggtg ggggccccac gacacatatg agttatacat 720 gatgaggaga gagaatgtgt ttaacaggtc ctccccgggg gggggggca gcgagaatta 780 ttatttgtag aacaatatgt gatagetgtt gtgegeeece geeggtggtg ttaaaaaaaeg 840 900 cctctaggtg gggcggaaat aacacctccg agtgggggc tccacaatag gcgcgttgtg 918 ttccccgcgg tggggtgg

<210> 63 <211> 807 <212> DNA <213> Homo sapien

<400> 63
gtcgcggcga ggtacaaaaa ttagctgggt gttggggcac gtgcctgtgg tcccagctac 60
tgggaggctg agccaggaga atcagttgaa ccaggagtca gaggttgcag tgagccccga 120
gatcgcgcca cagcactcca gcctggcaac acagcgagac tcccatcgga actaaacata 180
tataaaacaa aaaaaaaag acgctggtgg cggttacctc gtgtggccat ggctgtgtt 240
cccgtggtgt gtggaaaatg gtttctctcc cgctccacaa aatccccact cacaaacttt 300
acgaagcaaa tgtccatgca caaatactga atctccaaat cgttatacat attttcgtga 360
tactgatacc tccaattaag gaacatgctt acacacggtt acagcattgc gaagtacgtg 420

PCT/US01/45080

aaatacttct	cagagaacac	gacggtagac	ggcacgtaac	acgagaaagc	atcagagaga	480
gcgcctagtt	cctcgactag	acttaccgac	tactgcctag	gatatcacga	caggttccca	540
gacatagggt	actcgcacgg	aacctggtag	atggcactag	gaagaccatt	gaaaagagct	600
taattagaat	aactataaac	tacacccact	attgaaaacg	ttcaatgtag	ccccagcgat	660
cgatgacaac	ggcggaaaga	tgaacagtaa	agcacacgga	ggcttacatt	tcctagcctt	720
	acctggacta					780
	agcgagctag					807
<210> 64 <211> 513						
<212> DNA						
<213> Hom	o sapien					
<400> 64	tcactatagg	ggcaatggtg	catctagatg	catgctcgag	cggcgcagtt	60
	caagaccagc					120
	cttggcgtgg					180
						240
	cttgaacccg					
ctccagcctg	ggcaacagag	caagacgtcc	gtctcaaaaa	agaaagaaaa	aaaaaaaag	300
ctgggggcgt	aatctcatgt	ggctcattag	ccgtgtttcc	cgtggtgggt	gagacattgg	360
cttattccgg	cttcgacaat	tctccaccac	cagaacatța	cccgcagacc	agggggtgtg	420
ttcataggcg	acgaaagagt	aggagtagcc	tgcatggtca	tgccgatgcg	atgaacatcg	480
ttataggcag	, atcacgtaca	agtgacgtgt	acc			513
<210> 65						
<211> 432						
	no sapien					
	_					
<400> 65 acgtatccgt	t cgcatcaact	gaactcgctg	acgctcggat	cgctgtcggc	gtgcgagacg	6
		•			cacgagaatc	12
					: acagacaaga	18
					gcgatacaga	24
					ccaacgaaaa	30
					a ggagactaag	36
cccyaaacy	- 45-564454			=		

tagaaagcaa tacacaaggc agttggaccc cccgtggaag cgtccacatc atgagagcgt	420
actccactgt ac	432
<210> 66 <211> 457 <212> DNA <213> Homo sapien	
<400> 66 gcgtggtcgc ggccgaggta cttatacccc ctaaatatat aaaacatttt taaaagaaaa	60
aaaggaagaa actattcata catgcaacaa cttggatgga tttcaaggga attatgctga	120
atgaaaaaag atcagcctcg taagattaca ttctgtatga ttccattcat acaacattct	180
tgaaatgaca aaattacaga gatggaggac agaacagtgg tagccacagg ttggggtgag	240
ggtataagaa agggatgtgg ctgcggttgt aaaagggcag tgcaagggat ccatgtgaca	300
gaactgttct gtctcttgtg atggtggtca catgaatcta cacatgtgat aatattgcat	360
agaattaaat acacatacac gaaaaaagtt caagcagttg agcacaaata ttttaattgt	420
ctaaaatgac attttcttta agagttatct acagttc	457
<210> 67 <211> 2593 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (2340)(2340) <223> a, c, g or t	
<400> 67 ctattatgtt teccaatttg tecaggteet teeteegtgt gtaagtagee egagaagget	60
tocacattog gegettteta ggeteceege eeggttttea geecatgtee teecagttge	120
cgccgcaggt gccaatggtg tgacagttaa cccgacagaa ctacttttat gcctcaggag	180
aggaagacac aaggagtcaa aagggggaaa aaaaaagttt gggttcatag tagcaggaac	240
attaacagaa tagcctgaga ttttaacagc ataactcatt ccctcttcca cctttgtact	300
ttatccaggt caacacatca gggttctcta acgattccag tattctgttt ctttactgta	360
agatacatgt aattettgee aetgtgatta aacaageeet gtaatagtea geagggttaa	420
aaagagatta eggaaaggat aaaeteetae etaetttett gggagatgtg ggaaagattt	480
caagtcacag catttttcat gactgtttat aaacaatggt catttatatc cacactttct	540
cttatttaca ttagttttgg cccttaggca actcatactc ctacagtgat tattggcttt	600

43

gettteataa eatgtatttt taagtattta etetettaat ggeeetegat gtetatttta 660 tacatcatat ctcttaattc tctagatgga acactgaagg acaggaatta agtaagtgac 720 tggccatgca agggttggaa attttactta tttttccttg gtagaagtta tgttaaaaat 780 tcaagcaacc acatatctaa cagaggaatt ttatctagga tatataaaaa acctctcaaa 840 actcaatagt aaaaagaaca aatgacctaa atagaaaata gacaaaagac atgaagacat 900 ttcaccgaag aggatacata gatggcaaat tagcacacaa aaagatactc aacatcatta 960 gccattggaa atgcaaatta aaaccacatg tggtatcatt acacacatct atgtgaatgg 1020 1080 ttaagataaa aaatagtagt aataccaaat gctggtgagg atgtgaagaa actggatcaa tcatacattg ctgtctgaat tgtatgagtg gctgtatgta aaaagtagag ccactctgga 1140 aaaagagtag ggtagtttct tacaaaaata tatgtgttta ccatacaacc caacagttgc 1200 ccttttgagc atttatccca gaaaatgaaa atgtatgttc acataaaaac ctgtacatga 1260 atgttcacag cagctttatt agggcaaaaa actgaaaaca actcttatgt cctttagtgg 1320 gtgaatggtt aagcaaactg tggtacatcc ataccatgga atactactca gcaatcaaaa 1380 1440 ggaactgccc ccacttcacc acgatgcaat atatgcatgt aagaaatctg tacttatacc ccctaaatat ataaaacatt tttaaaagaa aaaaaggaag aaactattca tacatgcaac 1500 aacttggatg gatttcaagg gaattatgct gaatgaaaaa agatcagcct cgtaagatta 1560 1620 cattetgtat gattecatte atacaacatt ettgaaatga caaaattaca gagatggagg agcagaacag tggtagccac aggttggggt gagggtataa gaaagggatg tggctgcggc 1680 tgtaaaaggg cagtgcaagg gatccatgtg acagaactgt tctgtctctt gtgatggtgg 1740 tcacatgaat ctacacatgt gataatattg catagaatta aatacacata cacgaaaaaa 1800 gttcaagcag ttgagcacaa atattttaat tgtctaaaat gacattttct ttaagagtta 1860 tctacagttc aaagcccact tttatgaggt gtcacatcca tcaccatttt aagagatata 1920 aaatcatgaa aagatatcac cagaagctat gtaaacattt cagctaaggg taaagagaaa 1980 gttaagggtg ttttcacaag gaaattgaaa gagggcaatc caaatgaagt caacatggtc 2040 2100 acacaaaaat cttggtaaaa gaactagaat ggaagcccaa gctgctgagc aagtgggaga agaaaagaaa acatagtcca aacagatcac acaagggaac ccaggacaaa tgctgacttt 2160 2220 ggcattatct aggtaacccc tatttgtcgt catacgcgac tctaataatg gacctatagt tgcaaagcca gtcatagtcc taccaaattc aagagaggtc cctcattgac tcggggatgt 2280 agtgtggacc ccatgtcccc cacaccaaac cagatcattt gtggtaagaa agcaccaccn 2340

gcttttgtgg d	cactgctgta	agaagcaata	ggccggcacc	caccagagat	gttcttgtgc	2400
ttgtgaacaa g	gaccgagaaa	aattgccttt	tcatcaagta	ataaatcctg	gccttaaaaa	2460
acgctccagt	gattacccac	tgggggataa	ccaggcgacc	accatcatgg	accccatttt	2520
ttgtcccaag a	attggggatc	tattaataac	aatttttctt	tttttttaat	ggggcaacac	2580
gtaaccaaaa	ttg					2593
<210> 68 <211> 1253						
<212> DNA <213> Homo	sapien					
<400> 68						
tgcggccggc	cgggcaggtc	ttgcctggat	gaggccagcg	gacacatgaa	gagaagccca	60
gtatctcatt	taatcttaag	agactctcta	tgtcaaggat	tcccgtgtgg	gggctgaaaa	120
tgtacagtga	gataaaatta	tgaacggcca	cttagtcatc	acgtccattc	gtgcttgctc	180
caatgtttcc	atgggctgga	cgcgtctctc	aagcagagag	gctaatctga	ctcttatgct	240
aggaagactg	atggctgctg	ggactaagga	cccagaacag	ttccatgaga	tgaggcgacg	300
acgattacga	tgacccctcc	gctagtgccc	agatggtgac	ccactttcgc	gtctgctcaa	360
tgtgccagtg	cttcgaagtg	gatccagctt	gctttctgaa	ttagtgagtt	cctggagcta	420
acatgatggc	cataatcgga	ttctttcacc	gctcttggag	cagcaaagct	catggactag	480
gaacactggc	taagaagcga	aagcacacaa	atgagaacgc	ggaaagatcg	aaaaaggcag	540
gtgcagacgt	atttgaagga	aaagccctga	aaagtaatgc	cgtgtacatc	cgacagettg	600
gactgttcct	gtgtgtgcaa	agcacacgta	agaaatgtaa	ggcagagaag	atctcgttac	660
gcatgggtca	gtccattttt	atggaacccc	tttttgcgtg	gggacagggt	gtgggatgag	720
cggaaacctt	ttaatgcatg	gttcccatag	tcaaacttca	cccgccttga	tatgggcaac	780
ttttggagcc	cagtacaaga	aaacagttgc	ccgtcaagaa	gaagcatcgg	tatcgagggt	840
aagcccttag	ggggttgggc	ccctagttga	atgtcaattg	ggttgaattt	cacgccaaga	900
atggttgctc	gagatatggt	atactttgtt	ccaattctgt	ggacttggag	aacccatgca	960
attgactatg	ctaaaaggag	agaaaccaac	acgtgggtgc	acacccccaa	aattccggcg	1020
ttgaagagaa	ggcactccag	cgggacaatt	tcggcaacaa	attggggggg	cctttttacc	1080
					tgagcaattt	1140
					aaggggtctt	1200
		acctggagaa				1253

<210> 69 <211> 454 <212> DNA <213> Homo sapien	
<400> 69 tggtcgcggc cgaggtactt atacccccta aatatataaa acatttttaa aagaaaacaa	60
ggaagaaact attcatacat gcaacaactt ggatggattt caagggaatt atgctgaatg	120
aaaaaagatc agcctcgtaa gattacattc tgtatgattc cattcataca acattcttga	180
aatgacaaaa ttacagagat ggaggacaga acagtggtag ccgcaggttg gggtgagggt	240
ataagaaagg gatgtggctg cggttgtaaa agggcagtgc aagggatcca tgtgacagaa	300
ctgttctgtc tcttgtgatg gtggtcacat gaatctacac atgtgataat attgcataga	360
attaaataca catacacgaa aaaagttcaa gcagttgagc acaaatattt taattgtcta	420
aaatgacatt ttctttaaga gttatctaca gttc	454
<pre><210> 70 <211> 1722 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (1696)(1696) <223> <220> <221> misc_feature <222> (1696)(1696) <223></pre>	
tttggcccta ccagcccttc tcttttcttt ttcgttagct gtttgctttt tttgatccag	60
ctctgtctat attagtcctt gccatctctt ccatctgccc attaactctc tctagtgcct	120
ccgtgaggag atttcataag gacctgctag tgactggcgc gtacgagatc tccgatcagt	180
ctgggggege tggeggeetg egeageeace teaagateae agattetget ggeeatatte	240
tctactccaa agaggatgca accaagggga aatttgcctt taccactgaa gattatgaca	300
tgtttgaagt gtgttttgag agcaagggaa cagggeggat acetgaecaa etegtgatee	360
tagacatgaa gcatggagtg gaggcgaaaa attacgaaga gattgcaaaa gttgagaagc	420
tcaaaccatt agaggtagag ctgcgacgcc tagaagacct ttcagaatct attgttaatg	480
attttgccta catgaagaag agagaagagg agatgcgtga taccaacgag tcaacaaaca	540

PCT/US01/45080 WO 02/064788

600	gctacctggc	cattggacta	tgttttgtct	atcttttcaa	atacttcagc	ctcgggtcct
660	tgaatgaggc	gattgagtaa	ccaagaaatt	ttcttcaagg	cctgcgacgc	aggtcttcta
720	gcctggccta	gctgggacgt	gcagaacatc	acctcagcca	cccaccttgt	atattctcct
780	aactgatctc	ttcttgccag	cgttggagct	catcaaggca	ccaacagcac	aggcatccta
840	gggacttctt	aagtcaatga	tacacccaac	gggtaccacc	ggaggacatg	ttttggtgtg
900	gagtcaccta	tctattatta	caacaatagg	actggttttg	taggattttg	tttaatttgg
960	gggttccctt	catttgtcct	ccaaagtcag	ctagataatg	taggggttac	tgacaaaaaa
1020	gcttgggctt	ttgctcagca	cttctcccac	gttttcttt	tttggactat	gtgtgatctg
1080	tggattgccc	tgacttcatt	gtgaccatgt	agatttttgt	tcttttacca	ccattctagt
1140	tgaaatgttt	tacccttagc	actttctctt	aacaccctta	tccttgtgaa	tctttcaatt
1200	gatggatgtg	ttaaaatggt	tttatatctc	ttttcatgat	tggtgatatc	acatagcttc
1260	tcattttaga	aaagaaaatg	gataactctt	ttgaactgta	aaagtgagct	acacctcata
1320	tttaattcta	tgtatgtgta	acttttttcg	aāctgcttga	atttgtgctc	caattaaaat
1380	gaacagttct	acaagagaca	gaccaccatc	agattcatgt	tcacatgtgt	tgcaatatta
1440	tcttataccc	cacatccctt	cagccgcagc	tgccctttta	tcccttgcac	gtcacatgga
1500	gtcatttcaa	ctgtaatttt	tcctccatct	cactgttctg	ctgtggctac	tcaccccaac
1560	ttttttcatt	gaggctgatc	gtaatcttac	catacagaat	tgaatggaat	gaatgttgta
1620	tcttcctttt	atgaatagtt	tgttgcatgt	ccatccaagt	cccttgaaat	cagcataatt
1680	catgcatata	gatttcttac	ataagtacag	tttagggggt	gttttatata	tttcttttat
1722		tt	tttttgtggc	gagcaattcc	gtgaantggg	ttgcatcgtg

<210> 71 <211> 623

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature
<222> (477)..(477)
<223> a, c, g or t

<400> 71 geggeegeee gggeaggtgg geagateaee tgaggteagg agtttgagae caggetggee 120 aacatggcga aaccccatct ctaccaaaaa tacacaaaat tagtcgggcg tggtggcggg tgcctgtaat cccagctact caggaggctg aggcaggaga attacttgaa ctcggagggc 180

agaggttgca gtgagccg	ag atcgcaccac	tgcactccag	tctgagtgac	agagtgagac	240
actgtcttaa aaaaaaaa	aa aaaagatttt	tggacctgtt	gttcattcat	ttaagcgtga	300
attaattgtt cattttca	aa cctatttta	agttattggg	cttataacat	ttttctgtct	360
ttcttatttt gtttttta	aa agatttaccc	cggaaagctt	tggcgttaat	ccatggtcat	420
agcttgtttc cctttggt	gt gttgagacca	tttttgttta	tttccctggc	tttccancta	480
aattttccac cacccaac	ct ctccgcaaga	aaccaaaaaa	tgggcgaaca	cggcgcggaa	540
gaagaagege gtagaegg	gc gcagcggcag	aggaacaaaa	gcgagaacca	gcaaggggaa	600
aaaaagggag agcaggca	aa ctg				623
<210> 72 <211> 1452 <212> DNA <213> Homo sapien					
<400> 72 gcgtgctcgc ggccgagt	ta ctgtccgctg	tgccagtgcc	cttgagcaat	tactgcggac	60
ttcaagctca aggacgga	igg ccttcagtta	gacaatgtag	tgcccatctt	taggagccgc	120
tagcgcctga acctgtga	ıga tgtctccacc	gtcggattct	cgatcatgat	cccttacggg	180
gagtgcccta gattccc	ta cgggacccga	gctcatgcat	tggagggact	agcatctcat	240
gaccataggg tggtccto	ege gagaaaccca	gtagtctctt	gcccatgtgt	cttctaacta	300
gagaaccatt acagtgto	caa cctccctaag	gccgttgtca	agcgtacgtg	gtacctcgag	360
cctcttctca acttcgt	gt tgttgattag	gcggtcttcc	ctggagtatg	ccgtggccct	420
cagteceete teettag	gca gataatggct	tgggtatgcg	cccaggtggc	atttgaaccg	480
cttttgcccc taggccc	ega tgcgtcgtgg	ctcaccccct	gggcccttgg	cgtgtctccc	540
gctaacgtac gccgtct	ttc gagcccgatg	ctctcggcga	cttccccgtt	gtgtgcccat	600
tgcgacccca agctggt	tag gacttaggta	ttccccacct	tgcaggggac	cccagggcaa	660
ccatggcgtc cacttcc	tgc ccaccgcttc	tegeaegtte	cgacttcgct	gccttctcca	720
gggtgggacc gtttccg	ggc acatgctctt	ccaacgcgcc	cccacaagca	cttcggaaca	780
ctgggcgtgg tgcccca	ttt tgaccttatt	ggttccccaa	cgcccacctt	tggtttccct	840
tagatccaag gttactt	ccc cccccccta	agttggtcgg	ttagaggacg	cggcgggcta	900
atttgcgcgc gcgcacc	ccg atttctccta	gcttttcccc	cctttgcgtg	ctctttctca	960
tttcccccat tttaccg	cac gggggacaac	ttatccttac	agcaccggcc	tttatgttcg	1020
cggtacacac gtcccga	ttt gccgtccagt	tacggccttt	cgttctcccc	ctttgttttg	1080

tcttgacaca cttctggctt ct	taactcccg	ggcccattca	caccaaagtt	ttccccccaa	1140
caagcaacat acgcgccacc co	ggagccaca	caacaaccac	cccacacgaa	cccgcactcc	1200
acacacccca ccccgacccc go	cccctcca	cctcccacac	cccacaccac	cctctaaatc	1260
cacccccac ccacacccaa co	catccctcc	ctaccacacc	actcccacac	acacctcaca	1320
ccacaacaac cccacacacc ag	gcaccactc	caaccacacc	tegtacacca	acccacccca	1380
ctcacacccc acaacccacc c	gaccccaca	ctcaccccca	caccctcaca	caacacaaca	1440
accaacctcc ct					1452
<210> 73 <211> 438 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (226)(226) <223> a, c, g or t		-			
<400> 73 ctagtctcga gtttttttt t	:tttttttt	tttttttt	ttttggaagg	gtttaaaaat	60
ttttttttt tggaaatttt c	ctggaatta	ttaaaaaccc	cctttgggga	gggaaaaaat	120
atcaccccat ggaatattgg g	gaaaaaaata	tgcaaacacc	gttgaagaaa	tctccgtgcc	180
ccttctcccc cccagggggc a	acgaccccgt	aagtaatgaa	cttgtngcgt	acctctgtgg	240
ctcattagcc gtgtcccccg t	gtgtgttag	aaagtgggtt	tacccgctcc	acatactccc	300
accacaacat tagcgagcac a	aggcctcatc	acacgctcca	catctactat	tacatctatc	360
aatctcactc atccaccact a	actctcctct	tctactatcc	tacccacaca	tcaccactac	420
ctaatccccc atctgcga					438
<210> 74 <211> 239 <212> DNA <213> Homo sapien					
<400> 74 ggcggcgcag ggtgtccgtc c	caggetggeg	ggttgccgaa	ccccgctcg	ccggccgcgt	60
gecetteegg geatgegetg g	ggccaccggg	agaacgacct	ttgccttggc	gccgtgctgt	120
gttgtgcgcc ttgttttgcg g	gtccgcttcg	gcggcgcacg	cgcacgcgac	cagtgggctt	180
ccgtgtcccc ctgtagggtt c	ctgtcgcacc	ccggtgtggt	ggactgcgta	cacatgcgg	239

PCT/US01/45080

1080

1140

1200

<210> 75 <211> 1282 <212> DNA <213> Homo sapien <220> <221> misc feature <222> (218)..(218) <223> a, c, g or t <220> <221> misc feature <222> (311)..(311) <223> a, c, g or t <400> 75 ggggccgggc cgggcggtgt tctcagatat acaacaagat tatcgcaggg catactggct 60 gagatgcctg cgcgatcact agttccactc gagcatgtgg cgatgttgta gtggacgaag 120 tetgeceget gagagtetea egggaegtgt gettgeaggt ggttegaeae gaegaaegae 180 240 gtcgagaaga aggtagaccc atcgggagct cccctacnac tcgcgtgtga tgagcgtggt atctctcgtt cttgtacata tagtaataca ctggaataca cagattatgc acgcactaag 300 agcctaattg ntgatgtgaa gttgtcttaa agtcaagggt gctagacgtt cttggccggg 360 taattcgagt gcggtcgact acgcttgttg ttccttgctt gtgtatacat atggttgaac 420 480 tegegggeat egagetaatg ttetegaete acacacacag ataacgggaa ggecaatagg aacagacatt cttactcgcg ggcattacag tagaccttcg aaaacacact cattgagtgt 540 ctccacgtcg ctccagcatc acatcaaacg tttgtaattg atatcggaat attcaataat 600 gggttccctc tctttcttca cattggggaa cttaaacaca cgaggtagaa aggtcacttt 660 gaageceagt tagtattgee attgggtget tegattaaet teettgaagg gtgeteettt 720 gcctgttagc aacatactct tctgcgttgg attacacagg gcatgctggc aactatccat 780 ctaggaccta aactgtattc catatttgga ttgaccaaat tggaccgttt ccaaatccaa 840 ttttattgct gcaaggcctt agaagcaggg gactggtttc caacaacact tagttagcac 900 caattteett tetaceetat aagcaaacaa gacaaaaaca etaaageeet ttggtggegg 960 cttaacactt ccattggggc ctacgaataa agccccgata ttgcccccat tggtttggct 1020

tggcacaaca cattccggtt tcaattcccc cggggctttc caaccctaaa ctttaccccg

aggaaatagg agccatttgg ggctggctca acaagacaca ctggagcgta cactcgacgc

catcagcacg accgcatcag	gctggacatg	cgacaaagca	aggatactca	ccctacgcca	1260
cccgccacaa ccgctccgcg	cg				1282
<210> 76 <211> 1074 <212> DNA <213> Homo sapien					
<400> 76 gttctctaga tcatgctcga	gcggcgcagt	gtatggatcg	tggtcgcggc	cgaggtgttt	60
tgtcacctct ggtttataat	gatcaggaag	aaaccacagg	atgtgaggtc	caacttcgac	120
tgctcgccca aaggttgcgt	aacttgtaaa	agagtctcca	ttcagagcat	ggttgtgctc	180
ccattcccga tgctatcgtt	atcttcctaa	ttagactaat	gatgaagcag	tgtctgtaca	240
tatgcttgca actttagtat	tcggccatct	ttgggttcat	cgtatgggtt	ggtctggacg	300
cgtgtgaatc ttgcctttcg	ttagggttcg	ttcgttcgca	gcggactgga	gcccttcttc	360
cttccccaag cacgagggtt	tgctcccact	cttcaggcaa	gtatcttgtg	ggctatgcgt	420
tcgcggttgg gtcttccaca	gtccttctgg	gtgaccatac	gtcttttcgt	ccactaagtg	480
teccagettg etegetgatg	ctttgaagcg	catagattcc	cgcatttttg	agagetegtg	540
ttcgaagcat gcactgcgct	cacgttttgt	gatgggtgct	ttgcctcggt	gagactcaat	600
tgtgtctaac atctgtttgg	ttttgtttcc	cctgtgtggc	agtccacaac	ggtacttacc	660
atgctttcct cggcacgatg	gttgggtttt	cgtcagttct	tgtgactaac	gcaactaggc	720
gcctcccttc ttgtccttcg	cctcttcagg	gacgctagtt	ccgcgtggtc	tectecegeg	780
gcagtgcatg gattctttcc	tggaccgagg	gtcggatgtg	tactcccgtt	tggttaggta	840
actgatatec ggcgttgcgt	gtcgatcgtg	ctctcgctct	tggcatccgg	tegecegttg	900
ggagegtgge cetaegttte	ccccgtgcct	cggggtttcc	gccaggcgga	ttgcctgccc	960
tggcctttgg gcttgactct	tcaacacaat	tgcccgcctt	tttttttcc	acacggcttg	1020
actettgeet cetatetgge	g cctcggtagc	ccccgtttg	gtttttcata	cccg	1074

<210> 77 <211> 1343 <212> DNA

<213> Homo sapien

<220>

<221> misc_feature
<222> (452)..(452)
<223> a, c, g or t

WO 02/064788

51

PCT/US01/45080

<220>
<221> misc_feature
<222> (607)..(607)
<223> a, c, g or t

<220>

<221> misc_feature <222> (855)..(855)

<223> a, c, g or t

<400> 77 60 gcgtggtcgc ggccgaggta caccctgcac ccgcatcccg ggaggagatg accaaaaacc agtgtcagcc tgacactggc ctggttctta ggacttcgta cctccagccg tatcattcag 120 cccgtggcag ttggcgagaa tgcaatgacg aggtcagcgc tggtataaag cagaactagc 180 gaagateeta egaeteatee teattgeetg gaacgteega aegggeetea ettetteget 240 300 ctactaccga ctagaggact tcgagcctgt tggaggatcg agacgcagtc aatgtgcgtc gtgccaatgg cgaagcgtgg acaacagtet tttgcgtcca atagetteee etggatgtae 360 ttgtcagtgt aggtgctccc ttggctagct aagccgtctg ttcaactgcc cagagacgat 420 480 gccgtcctcc cgtgatctcc aggggttaac anttgaagtt gctggatcgg tccggcgata agtegecece tgtetteteg ecetgggggt getegteegg gggeteggae ggeetgaaeg 540 gcaattgeet tggggeetet gataceeece ggteetacea ttaettteee catgtggeae 600 660 ccaaggncca agtggggaga cgtttaacac gggtcacccc gcatgcccac tctgtaccct cttaaagata tacaatataa acataccaaa atagagagga taacaagagc ccttgtgggg 720 aggagtatac cctaacgtgt ggggaagctc acccatgagg cagttgcgta tacccgcgtg 780 840 ggtgttggcg ccacacggtg tgctggtgtt ctattctgcc ccggttctct tggcgcaaaa aatatactcc tcacntcgag gcaagaccct ttttgcggcg cgcgcaaagc tcagcacaaa 900 accccgtttt tgggaacaag ggggaacttg gggtgcaact tggaataggt ctcaggtgaa 960 cogcacacgo ggaaactttg tagagggaaa accotgtgtg aaccoacaca aagggttgga 1020 cgcgccccct tttgtgaagt tttaagctta accettttgg aaccecatte cgttgggttg 1080 gaagccccat aaacccgttg gagcttaggg ggaaactttc cccgagggaa gcagagtttt 1140 1200 tgtataaaac ccaacacaca acaaacgaca aaaaaacagc aagacaaaaa cacaacagaa gaaaacgaga aagcacagac agttgtaggg cagagagaaa cccaccgcag tgggactcac 1260 acacagagog tgtgtgtoot occcagcagg gtgtgtagta aaaaaggogg ggaagcaogo 1320 1343 caqcggccac agcacagccc gcg

<210> 78 <211> 1530 <212> DNA <213> Homo sapien

<400> 78

ttttttttt tttttttt tttttttt ttttttaatg gggaaaaaat ttttttccc 60 tttttttaat tctcttggcc aaaaaaaatc ttcctccaaa aattattttc ccccccacaa 120 agagtttaaa aaaataaaga aaagcagtct attgggtcgg gccaaatagt ttttgtggag 180 acacctcctg ctqtqtttaa cagaggagag agaqctcctc ttqtgqcqqq cqqtqtqqtc 240 cccacaccag agagagttct cgccgcaaga cagagaggag aagagatatc tctccctgct 300 gagaccegta gatatatatg tegeacgaca cacetetett gtgtggagtg tgteggegee 360 tctccgagag aaaaaaaaa acgcccaaat atctctctgg aggcgggaga gacacgccct 420 attatctccc actacagage actgtgtggg cgcacacaga gtgtgtgttc tctctacaag 480 taagagacat ctctctat aacacatatt cacactctac taagaggaga tatatatctc 540 tgtačagtat gatagagate tetgtatace ataattatat ggtgaggeag ceataatgtg 600 tgtagatgta tatcccacag tgtgttttaa caaaagagag accaactatt tttttctctc 660 tectetetga ageggaatat atattgtgtg tgtagtagag cattataete atetataage 720 agaccacaca getegatgtg agaagaaaat aataacacet eteatettga agtgtttett 780 cacaacacaa acacactgtg tgggggggga gaacactctc tctttatgtg tgtcgtcccc 840 900 cccaaggtgt gatctcccgt gagaaagtgg gggcctcccc cccccaagag aaaaaggcac atatetecet etecetatea egegtgtgtg eteggggaat teteaceaat atatetettg 960 tataaaacac aaagatgtgg ggaccaaaga ggggaggaga cacacaaaag attatgtgtg 1020 1080 gaggactatg tgaacaacaa taaagagegg egggggggg gagataaaca caccatagtg cgccgccaat agagagtgag ttaaccccgc gggtggtgtg agaacacatt gtgttatatc 1140 acgccggaca cacaaaaatt ccccccaaa tagatataca gacagtaaat gaaaccacaa 1200 aacagtgaga tacaccatga caaagtaaca acagaccaca ataataacat agagcatgtt 1260 gaaagaaaca cacaactacc agctgtaaca aaacaataaa caaacagaga gacacaccac 1320 aaaaaaaacaa ccagcacagc acagagagta gcacaaagcc gaagaccaga gtactcaaga 1380 caacacaca aagaaacagc acggagcaga ccagacagga ctgacgagca agcagcgaca 1440 aagtgagaca agaacagcag caacaatcac acgaacacga acaagaagcg taatgaagca 1500 gatcagctga aaggcaagac gcacgagaag 1530

53

<210> 79 <211> 1428 <212> DNA <213> Homo sapien

<400> 79 60 ttttttttt tttttttt tttggaaaaa cttttaataa tggtaatggt ggttgggggt acaggggtga tgtccaaatg cccaggaggc cataggggtt atagggcaaa gggggacgca 120 caaaatgttg gaaagataga gggcggctgg ccatcaaagc tggggggctt caggccaaaa 180 acagggagct ggagggaacg ccacaagggg agggacattt cctggcgagt tggcgtggaa 240 cccactgtaa gcaacccagg tgtccctgga gaaaagcgcc ctccttctgt ggtgggaaag 300 atataacaca cgcacacgga gggagaaagc gtgtgggggg tgatattcac agtgggtcgc 360 420 atacgctgtg ttccctgggt gtgtgagaat atgtgtggta tatctcgcgg gctctcacca 480 540 aaaaaaacaa caagaaaaaa aaacaaaaaa cacagaacaa caacaaaagc aaaaaaagaa 600 660 aacaagcaaa aaggaaaaaa aacacaaaaa caacaagcga aaacccaaaa acacgcaaac 720 780 aacaccaaca caacaacac caaagaaaac aaaaaagaaa aaaacaacaa aaaaccaaaa agacacaaag agacagaaca gaaaaagaaa aacaacaacc ccaaacagaa caaaacgacg 840 accaaaaaca tagaaaataa aacaaaaaaa aaacacaaag aaaaaaaaac aaacaaaaga 900 aaagagaaaa gaacacaaca acaaaagaaa acgcaaacaa aacaaaacag aaaaaacaca 960 1020 aacaacacaa aacaaaaaac aacacacaaa acaacacacg acaaaaccca acacaaaccg 1080 aaagagagca aacaaaagca aacggacaaa cacaaacaca aacaacacaa gagcaaaaca 1140 1200 aacataaaaa agcaaaagca aacaagggag acacacaaag caaacccaac acacaaaaag 1260 1320 1380 aaaaacaaca aagcagaaca aaaaaaaaaa cagaaaaaca agaaaaatga gagagaacaa gacaaaaaca ggaaacgaca aaagcacaga taggacagaa aagaagga 1428

<210> 80

<211> 1581

<212> DNA

900

960

1020

1080

1140

213> Homo sapien	
220>	
221> misc_feature	
222> (351)(351)	
223> a, c, g or t	
220>	
221> misc_feature	
222> (692)(692)	
223> a, c, g or t	
220>	
221> misc_feature	
(222> (778)(778)	
223> a, c, g or t	
(400> 80 state to the total total at a tart of the tota	60
geggeegeee gggeaggtae atteegtate tatttttat tattatttat atatatttat	00
tggaaacag tetegetttg teececagtg tgggattgca gggggeegea ateetgeggt 1	120
ttacagetgg gaacetcace acetecegeg ggtacacage geceatatte cacegggeet :	180
acgagoccao caogaagtaa gotoggggaa tacagogtgg gogoogogao caccagogoo 2	240
acgageceae caegaagtaa geteggggaa taeagegegg gegeegegaa enters.	
cgcggacaaa tatatagggt aattataaga gaaagacaac acagggggtt ttcacacccg :	300
	360
gtgtgtataa accacaggag agtgtggctc tctcagatat cctcctgtga ncctgtgtgt :	300
gtgatotoac accccacaco ototogggca ototoacaca aaaggtgtgc ggggagatat	420
cacacagggc ggtgtgaccc gccattgtgt gcgcgccgcg ggcaccaata tatccagtgt	480
	540
tctcttatat cacaagagag aaatataaaa accccacaga gatatataaa tatctctgtg	310
agaatcgtga gatcaccaga tatatatagc ggccccaata tatatataag agtgtagaaa	600
accaatatct ataaaagagg aaatgatgga gctatctcta taaaaatatt aagagcatct	660
and the second of the second o	720
ctattgagcg cgacgaaaat ataaccccac gncgtctgtg tagtgagaac aggggtaata	
totgaggagt gogototaaa caatatogtg tgtgcacaaa gtaaaaatat otooccanaa	780
	0.4.6
aaacgcgtgt aaaaaatata acaccccct cttttttgtg ggttgggggg gccaaatatt	840

tgagaaaact ttttctacac acaggggga gtattcgaga caattcccca caatgtgatt

agagcaacca cggaagtgtg gccctagaat attgggagag aaactttggg gagtatctcc

ttaaaaaggg tgggttgtat ccattttcta aaaaatgggg gcgtggtccc cttaaaaaatt

tggggataaa catttaaaat accagggtta taagtgaatt acacatccgg gagggggagc

aaaagggaag cctaacaaga agttttttt gaaacaaata ataatccaaa atatataatt

tcccaatgtg	tgttgcaatg	tattttgcta	tttgatatgt	gataaaaaaa	ttaaaaaact	1200
				aaaaaacaaa		1260
				agatgacccg		1320
				caaaaaagaa		1380
				gataaacagt		1440
				agagaaaaga		1500
				tgcagcaaca		1560
	aaacagacaa					1581
<210> 81 <211> 769 <212> DNA <213> Home	o sapien					
<400> 81 aatgccatgt	cgagcggcgc	agttgtgatg	gatggtgggc	cggcgccgac	ggtacttgtg	60
					cgtcagcaac	120
					atgtccatag	180
					cttatggtct	240
					g agctcgacga	300
					atcttgagtc	360
					tacccattca	420
ctcttatcag	aatacccga	g gcatggcgg	a ccacttaag	g tcaggagtt	aagaccagcc	480
tggccaacat	ggtgaaacc	c cgtttaata	t tttacatta	a aatataaaa	a ttagctgggc	540
atagtggcad	acgcctgta	a tcccagcta	c tctggaggc	t gaggcagga	g aattgcttga	600
acttgtggag	g gcagaagtt	a cagtgagcc	g agatcgcac	c actacactc	c aacctaggca	660
acagagcga	g actccgtct	c gaaaaaaaa	a agatatcaa	a aaaaaaaa	g gttgggggta	720
acctgggcc	a tagtgtccc	t gtgtgaatt	g ttttccgcc	c catttccca		769
<210> 82 <211> 67 <212> DN <213> Ho	9					
<400> 82 gcgtggtcg	c ggccgaggt	a ctttggcct	c totggagat	a gaaggotta	it tcagcagagc	60
					g agcgacgagt	120

WO 02/064788

PCT/US01/45080

56

agtcaccacg	taggacagcg	acacgcaaag	gacaagctac	cgtacgaaga	ccatcaagac	180
gatgctaccg	cctgtagcgc	atgatgcaga	acgctacgga	acgtacgagg	aaatcagcaa	240
caggtcatac	agaccatgct	gacagtcagc	cgcaatcagt	ggccatgaag	gngtcgacac	300
gcggtcacca	gaaagatgcc	ttccaacaag	gaggcgcacg	acgtgatata	acgagcgaga	360
cgcaaatgat	cgtacaccgg	cacacgtgag	atcccctcta	ggatatcgca	cgaacgtgga	420
caccctcatc	acccatatct	catgttgcga	ccatcgctga	acctcatata	tatatcgcca	480
gcgacgtgga	gaacaccata	aatccccctt	acttcagcgg	ggtgcccttc	gcaaaagtct	540
tacaagtcta	ttatcaacac	gtacaagcgc	accacacttc	acttcacatc	tcatataggg	600
cgtaataaca	tttagttgct	aaaatgtatc	gagaagggaa	gacatgcaat	taagagtaaa	660
agtgcaattc	ttttaagaa					679
<210> 83						
<211> 1180)					
<212> DNA						
<213> Homo	sapien					
<400> 83						
geggeegeee	gggcaggttt	tttttttt	tttttttt	ggaaagagaa	accccggtat	60

tgattgtcgg ggttagagga gatagagagg aaaatgtggg ggaataggtg tgttttagac catgtgaggg tgtgttttcc ctcggtggtg aagtgagggt ttaagtgttg tgtaagtggt 180 gcggtgcggt gtgagtgtag acgccccatt gtggtgtgtg tggtggttaa attatgtgct 240 300 aagagaggca gtatattgag ggcgtgtgtg acacatagat gtgtgtgtgg aagtctccgt gtgtaagttg aggaagaagt gtgaatatgt gtgacactcg aggaaaacac accggtgggt 360 ttcacctaac ccaccgagaa gagagttctc ctcccagagg tgagggttta atatagggtg 420 480 agagggggat atagagcgcg cgaaagagta taatagacag agaaagaggc cttgttgctc ctataaaaag aagctctcta tctacaaaag gaggggctat atatagtagg ggggagaaga 540 tatagaagat ttgtcgaaga ggtctcctgt gtagaaagag agggaatttt cagtgagagt 600 ggcgcacagc gtgtgttgaa agtgtgcgcg tatacccgac aaagtaatgt gagagagtat 660 gtgtgcgctt gagcgcccca agaaaacaca tagtctcaag tgacaggaga tagttgttta 720 ccagecece gtgggggge egegacaact tetagtggee accaectgt tgaaagetgt 780 gtgccccccg cgtggttgta aaaagcctgt ggggggagcg taataaaccc tccaagggtg 840 900 ggcctccaat ataagcgcgt tggtgatacc ccgccgtggg ttggtgttgg cacaacaagg tggtggcgtt attaaccatc cgcgggctct tctacaacca agatggtgcg tcccccagac 960

gagacaaaac att	tggtggg ggggtggagg	ctacaccaaa	caaagtggag	agtggggaga	1020
gagacacaga cagt	taggcag atagggagag	aagaggagta	caaagacgag	agagcaagag	1080
aaagatagaa gaag	gagagaa gaagagaggg	gaagagaagg	cagaaggcag	acagcgcagg	1140
aagagaggcg aaca	aggcaag aaagacagca	aagagacaga			1180
<210> 84 <211> 516 <212> DNA <213> Homo sap	pien				
<400> 84 ctacggactc gcg	cgcgacg cggccactca	gctcactcaa	caggccggcc	cagcacgcgc	60
catcccacag aca	ccagggg atcaacgcca	ggacaagacc	catgtgagca	caaagggcca	120
cgcaaaggcc agg	acccgca cacaaacggo	cgccgctcgc	tgcccggtta	accactaggg	180
ctccgtcccc ccc	tgtacgg ctgcagccac	aggtacactc	gatcgcctca	cgttcagagt	240
ggtgatcgca tcc	gacaggg actataagag	cttacccagg	cggttgcgcc	acatggaatc	300
caccctacgg tgc	gccactc ctggtcccga	caccttacag	cacaccggag	tacctggccc	360
catcacccat cgg	gaacagg tggggtccta	taccacaccg	ttacggatac	ccccgcggc	420
agccgacagc caa	acggctg tgtacaacco	acteegeegg	cggcgcccac	acagagcaac	480
gcctaggaaa cca	aaaacaa ttacacgaaa	aatgaa			516
<210> 85 <211> 669 <212> DNA <213> Homo sa	pien				
<221> misc_fe					
<222> (421) <223> a, c, g					
<220> <221> misc_fe <222> (538) <223> a, c, g	(538)				
<400> 85	ttttttt ttttttt	t teccaacteq	gggggcaata	tttttaatta	60
_	atattta caaagatgc				120
	rasses seattte				180

58

			30			
cgggggggcg	ggggctgggt	ggcaccggca	gtggttcccc	ctggtggtgc	agcaccttgc	240
agactggccg	ggacttcgga	gaccaaaagt	gactccacaa	tagcaaagac	cctccagctc	300
tttcctgtgg	tataattcca	ttctccccaa	ccccagtgt	gtccgtgtgt	ttccctgtgc	360
cgctccccac	gattcgcatt	tctccaggga	caacggtccc	tcacgttaac	teggtegggg	420
ngagtacact	cgtggtcctg	gaaagagtgt	gggggataca	ctcgtgtggt	gctcaatagc	480
cgtgagttct	cgcgtggggg	gtgaatagat	gtgggttact	cgcgctctcc	aacaaatntc	540
ctccagcaac	aaaccattac	cccggaagca	caaacggggg	gcggcaaggg	gagcaacaac	600
caagccaaca	caacacaaag	aggagaacaa	ccaacaatat	gcaacaacaa	agcaacaaga	660
aaacaagaa						669
<210> 86 <211> 371 <212> DNA <213> Hom						
<400> 86 cgagcggccg	cccgggcagg	tgctttttt	tttttttt	tttttttt	ggtttatgct	60
taaatcttt	tttttcagcc	tcagggggtg	ggggtggcgt	ggagaccatg	tgaacttctc	120
aggtctccag	, agaaaatgtg	ggtttgtgga	tetecagete	tttgtgccat	ttgtgctctc	180
tctctgtgaa	ataaacacct	caaaaacatt	tacacctcct	ctcttaagcc	gtggggcgta	240
tatctctcgt	gtggctcaca	atagccgtgt	ttccgcgggt	tgtgaaagtg	tgtttacccg	300
cctcccaatt	cccccaaaa	catccaagaa	aggggtacco	acaaaaggaa	caaaggagaa	360
aaagaaacca	a C					371
<220> <221> mi: <222> (3						
<400> 87 ttagatgca	t gctcgagcg	c gcgcattgt	g atggattgg	t cgcggcgag	g ttccgacagt	60
cagccgcat	c ttctttatg	c gtcgccagc	c ggaggccac	a tegeteagt	a caccatggta	120
gaaggtgaa	g gtcggagtc	a acaggattt	a ggtcgtatt	g ggcgcctgg	t tcaccaggac	180

tgctttataa ctctggtaaa gtggaatatt gtttcgccat caagtgaccc ctttcattga

PCT/US01/45080 WO 02/064788

cctcaactac	agtggctttg	acatgttcca	atatgattcc	gatcccatgg	gcaaatttcc	300
atggcgaccg	tccagggctg	taagaacggg	gnnnnnnnn	nnnnnnnnn	nnnnnnnn	360
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnn	nnnnaggta	420
tcatgagtat	atagatcgtt	aatccccacc	agactagact	ttgaacttta	gtcagacttg	480
aagatttggg	cacgttatcc	ggtgtcattt	actaggacgg	tgcatttctt	gcgttctgtg	540
atgactgtga	tcttctcctc	agcacgaaga	cgttgtctgt	attgtcggca	gggatacggc	600
ctcactcacg	actttccttc	ggtcttcctt	tgttctcccc	tttaagctcc	gtttgatttc	660
aagctggtgg	ttctacgggc	atcttggggt	ttctccccct	attcagtgtt	attctcggaa	720
tctgcgtttg	tcagcttcgt	tgatgtcctt	ttaggcctaa	tattccaatt	gtttggcctc	780
ggggaaccct	taacatgttc	ctaatgactt	tagtgtccga	caagcttggc	cgtactccct	840
gtccgttgcc	tgttcctgtg	ttggccttgt	ttccccggtc	gcgatccccg	catttccacc	900
aatccggggt	tccccctgga	gccccggcc	cccgttccac	ctccgcgtac	cggacgcgcc	960
ttccccctgg	cgtggcttta	ctctccctc	ccggtccg			998
	o sapien					
<400> 88 gcgtggtcgc	ggccgaggaa	cttatacccc	ctaaatatat	aaaacatttt	taaaagaaaa	60
aaaggaagaa	actattcata	catgcaacaa	cttggatgga	tttcaaggga	attatgctga	120
atgaaaaaag	atcagcctcg	taagattaca	ttctgtatga	ttccattcat	acaacattct	180
tgaaatgaca	aaattacaga	gatggaggac	agaacagtgg	tagccacagg	ttggggtgag	240
ggtataagaa	agggatgtgg	ctgcggttgt	aaaagggcag	tgcaagggat	ccatgtgaca	300
gaactgttct	gtctcttgtg	atggtggtca	catgaatcta	cacatgtgat	aatattgcat	360
agaattaaat	acacatacac	gaaaaaagtt	caagcagttg	agcacaaata	ttttaattgt	420
ctaaaatgac	attttcttta	agagttatct	acagttc			457

<210> 89

<211> 3100 <212> DNA <213> Homo sapien

<220>
<221> misc_feature

<222> (49)..(49)

<223> a, c, g or t

<220>
<221> misc_feature
<222> (91)..(91)
<223> a, c, g or t

<400> 89 gtotggtttg tttggcccac cagcccggcg cggccctttt ccgttagcnt tgctgctttt 60 tttcctqctc qqccccagat tggtccttgc natctccttc catctgccca ttaactctcg 120 caaqtqcctc cgtgaggaga ttcacaagga cctgctagtg actggcgcgt acgagatctc 180 240 egaceagtet gggggegetg geggeetgeg eagecacete aagateaeag attetgetgg ccatattctc tactccaaag aggatgcaac caaggggaaa tttgccttta ccactgaaga 300 ttatgacatg tttgaagtgt gttttgagag caagggaaca gggcggatac ctgaccaact 360 cgtgatccta gacatgaagc atggagtgga ggcgaaaaat tacgaagaga ttgcaaaagt 420 tgagaagete aaaceattag aggtagaget gegaegeeta gaagaeettt cagaatetat _ 480 tgttaatgat tttgcctaca tgaagaagag agaagaggag atgcgtgata ccaacgagtc 540 aacaaacact cgggtcctat acttcagcat cttttcaatg ttttgtctca ttggactagc 600 660 tacctggcag gtcttctacc tgcgacgctt cttcaaggcc aagaaattga ttgagtaatg 720 aatgaggcat attotoctoo caccttgtac ctcagccagc agaacatcgc tgggacgtgc 780 ctgqcctaag gcatcctacc aacagcacca tcaaggcacg ttggagcttt cttgccagaa ctgatctctt ttggtgtggg aggacatggg gtaccaccta cacccaacaa gtcaatgagg 840 qacttctttt taatttggta ggattttgac tggttttgca acaataggtc tattattaga 900 960 gtcacctatg acaaaaaata ggggttacct agataatgcc aaagtcagca tttgtcctgg 1020 ttgggcttcc attctagttc ttttaccaag atttttgtgt gaccatgttg acttcatttg 1080 gattgccctc tttcaatttc cttgtgaaaa cacccttaac tttctcttta cccttagctg 1140 aaatgtttac atagcttctg gtgatatctt ttcatgattt tatatctctt aaaatggtga 1200 1260 tggatgtgac acctcataaa agtgagcttt gaactgtaga taactcttaa agaaaatgtc attttagaca attaaaatat ttgtgctcaa ctgcttgaac ttttttcgtg tatgtgtatt 1320 1380 taattctatg caatattatc acatgtgtag attcatgtga ccaccatcac aagagacaga 1440 acagttetgt cacatggate cettgeactg ceettttaca geegeageea catecettte 1500 ttataccete accecaacet gtggctacca ctgttctgct cctccatctc tgtaattttg

PCT/US01/45080

tcatttcaag	aatgttgtat	gaatggaatc	atacagaatg	taatcttacg	aggctgatct	1560
tttttcattc	agcataattc	ccttgaaatc	catccaagtt	gttgcatgta	tgaatagttt	1620
cttccttttt	ttcttttaaa	aatgttttat	atatttaggg	ggtataagta	cagatttctt	1680
acatgcatat	attgcatcgt	ggtgaagtgg	gggcagttcc	ttttgattgc	tgagtagtat	1740
tccatggtat	ggatgtacca	cagtttgctt	aaccattcac	ccactaaagg	acataagagt	1800
tgttttcag t	tttttgccct	aataaagctg	ctgtgaacat	tcatgtacag	gtttttatgt	1860
gaacatacat	tttcattttc	tgggataaat	gctcaaaagg	gcaactgttg	ggttgtatgg	1920
taaacacata	tatttttgta	agaaactacc	ctactcttt	tccagagtgg	ctctactttt	1980
tacatacagc	cactcataca	attcagacag	caatgtatga	ttgatccagt	ttcttcacat	2040
cctcaccagc	atttggtatt	actactattt	tttatcttaa	ccattcacat	agatgtgtgt	2100
aatgatacca	catgtggttt	taatttgcat	ttccaatggc	taatgatgtt	gagtatcttt	2160
ttgtgtgcta	atttgccatc	tatgtatcct	cttcggtgaa	atgtcttcat	gtcttttgtc	2220
tattttctat	ttaggtcatt	tgttctttt	actattgagt	tttgagaggt	tttttatata	2280
tcctagataa	aattcctctg	ttagatatgt	ggttgcttga	atttttaaca	taacttctac	2340
caaggaaaaa	taagtaaaat	ttccaaccct	tgcatggcca	gtcacttact	taattcctgt	2400
ccttcagtgt	tccatctaga	gaattaagag	atatgatgta	taaaatagac	atcgagggcc	2460
attaagagag	taaatactta	aaaatacatg	ttatgaaagc	aaagccaata	atcactgtag	2520
gagtatgagt	tgcctaaggg	ccaaaactaa	tgtaaataag	agaaagtgtg	gatataaatg	2580
accattgttt	ataaacagtc	atgaaaaatg	ctgtgacttg	aaatctttcc	cacatetece	2640
aagaaagtag	gtaggagttt	atcctttccg	taatctcttt	ttaaccctgc	tgactattac	2700
agggcttgtt	taatcacagt	ggcaagaatt	acatgtatct	tacagtaaag	aaacagaata	2760
ctggaatcgt	tagagaaccc	tgatgtgttg	acctggataa	agtacaaagg	tggaagaggg	2820
aatgagttat	gctgttaaaa	tctcaggcta	ttctgttaat	gttcctgcta	ctatgaaccc	2880
aaacttttt	tttccccctt	ttgactcctt	gtgtcttcct	ctcctgaggc	ataaaagtag	2940
	ttaactgtca					3000
tgaaaaccgg	gcggggagcc	tagaaagcgc	cgaatgtgga	agccttctcg	ggctacttac	3060
acacggagga	aggacctgga	caaattggga	aacataatag			3100

in the control of the second of the control of the

<210> 90

<211> 1304 <212> DNA

<213> Homo sapien

<400> 90 tactcgaact	gaccgttgac	tatgacactt	ttcggctcct	gtgaacgttg	ctggccccaa	60
tgctgtactg	atccatctag	acaccagagt	agactgttca	taggatgcct	agatagggta	120
ccacgagacg	aatcgttccg	gctgacattg	ttggattacc	cctggggtcc	agtagcctca	180
ttcgctctag	cgagtcgact	accgttgcgt	actgggtcat	cttagtacta	gcgcgcatag	240
gatcatggaa	cagctactgg	cgttagatca	atggagtcag	tgagccatgc	tctctcgctg	300
gtgctggaca	gttgtagcta	tatgccgact	tccagccaca	ctatccgact	accaagcact	360
aacctgagac	aagagccaca	gctccctcac	ctaggactga	tatcagatat	ggggaacgta	420
tgacactttc	gcaatcacac	atttgagcga	cagggacggt	cactcatggg	gagcacttac	480
gtatgaatga	agcccaacag	agagacggta	ggagggatat	aggaggcgcc	gctgccatat	540
gtctggatta	atccagtttt	agtggctcaa	ccaaaggacc	tacatatcag	cgcatatggg	600
ctacgttggg	aatgaaggcc	acttcatata	cccttcagag	atccgcgcta	tccctagtgt	660
gggatgccca	acacattgta	ctacacaaca	cgcataggca	ccatagcgca	aagatcccca	720
catagaccat	tcgtcacacg	agtccgggct	accgtacccc	atagactcct	acctccattc	780
gcgatcctac	cacctggctt	gtacccgtac	cccctgtgtg	gtaaggcaac	agaggataaa	840
ttatcctaaa	aacttggatc	ttaggtgccg	cgttgttggg	ggcccaccaa	ggaatccacg	900
aaggggacat	gaatcgacaa	accgatatta	gaagagetae	ttttatccct	tttaagaagg	960
ccctttcgac	ggtcccctcc	ttttcggata	taacccgggg	acacatccga	aaggataggt	1020
gcattataaa	atcttcccaa	agagccccgc	ggacaatcgc	acatgcggaa	ccatatcgac	1080
cgatatgcat	attacccccg	tggtgctccc	cgggagagga	gtcgttggaa	caagaggaac	1140
gggggaacaa	gaaagaaaca	acttgcatgc	gcctgtatac	cctaaatcct	ttgacaagct	1200
ttagcactgg	agacccctcc	cggaaggcat	gtagattcgt	gagagacaaa	ttccataaaa	1260
aagcgtccct	taccaatgtt	tgttccgatg	ggactataga	9999		1304
<210> 91 <211> 993						

the second of th

gtggtcgcgg cgaggtgctt ttttttttt ttttttttt tttttttt ttttttggttt aaaggtgaaa aagccaaaaa ttttttttt caattgaagg gaaccataat cccccgtgtt gggttacccc 120 agggaattcc acagtccatc aaaaggaacc attccaaata atagctaaaa atctgatagg 180

<211> 993 <212> DNA

<213> Homo sapien

63

cegeggacea gtggggteta ttatgggeaa gggtgtgett teaceceeaa atgttteetg	240
gagaaaaagg atgcccagtg tgctccgggt ggcgcaaaaa gaacaagggc aggaaatgtg	300
gtggggtggg ggagaggcgc ttgggttgag aaaaacacac tggagacgca ggacgcaggg	360
tgtcactttc tgatetecea ggetetggaa tatgegeeat gtgegeetgg geacatatat	420
aagggacaca aaaatatcgc gcttttgtga acatatcggg agatgttgtg gggctggggg	480
cogogtgtgg cgctccagog cottgtatat tococagoat otttgggggg cgccagggtg	540
ggtgtggtga tccacggatg gtccaacgag tatttgacga cctatccggc ggtcttaacc	600
ccgtttgaac cccgcgtcct ctatctaaaa aaatattccc caaaacaaac acaaattttt	660
geggeggtgg gtgggggggc geegtttggg ttgteeecea gatateeegg ggggtgtggg	720
gggacagaaa agtggggggt atgcccgtgg ggcggggcgg	780
aagteggegt etetttggge eccaegegtt gatgtataag ggegaaggee etetetttae	840
aaacaaacgg gcgcgtgctt ggctctcagg ccccaggggc gaggggaggc gtccctacag	900
ctgtgcgcgt ggacaccctt tggcgtccct gttgtgtaga gctctggggt gttgtgaggc	960
gcaattggct gctgtcttac cacaactctt gtt	993
<210> 92 <211> 1439 <212> DNA <213> Homo sapien	
<400> 92 tggtcgcggc cgaggtgctt ttttttttt tttttttt tttttttt tttgtggttt aaaggttgac	60
accacccaaa atctttttt tttacaaccg tgacggggcc cattaagtcc cccttgttgg	120
ggtatacccc agaggaaagt tacacagttc tcactcaaaa ggacaccaat tctcaaatta	180
atatagcata aaaaactcgt gaatgaggcc gcggaaccag tgtgggccat atatatgtgg	240
cacacgagtg tgggcacatc tctacatctc tcccacacag agttctctcg ctgtggaaag	300
agaggtatgt ctcccacacg gtgtgccctg tgggtggcac acaagaacac acagaggcgc	360
gaggaaagag tgtggtgtgg tgtggtggat gaggggcctg tgggcgagag agagagacac	420
acaccaccct gtagagagag agccggagag acacacaggt ggtcgtcaca cacttgtgag	480
actotototo ccacgggggg ccgagaaaaa tgtgtggcac cagggtcgcc gtgcgcacac	540
actataaaag agggagacga cacacaaaaa acaatgtgtg cgcgtgtgag aaagacaata	600

gtgagagaga gaggtgtagt gggcgcgagt gggcgcgcgc gaggggggcg cctcacaaga

gegeeggtga gaaateteee agagaceaet tgtgtgtgga gaggegeeca cagggggegg

660

eggggagact	ctcacagaga	gtgggtctac	aaagagagat	gtgtgagaca	cacacaactc	780
gcgtgtgcgc	gtaacacaca	cgcgcggaga	aaatacccgc	gcgggtctct	ctctacacaa	840
haaaacaaca	tatctcaaaa	aaaaaaacac	aaaacaaaca	catagtgggg	ggcgggggga	900
gggggcgggt	ggcgcgccac	actagttgag	agacaaatct	ccccagaga	aaacaccgca	960
ggggagagag	cgcgatgagg	gcgcaacaaa	caaaatactg	tgcgcgagta	accaccccgg	1020
ggggggagag	acgcggagac	accttctgaa	aaaggagcgc	acccgaaaat	aaaccccggc	1080
gctcatctcg	agtggtggca	gcccaacagc	caacgcgggc	ggtgtgaagt	taaaccacca	1140
gtagaccgca	cagagaacaa	caccccacca	acactcccac	cacaaaaaac	aaacaaaaac	1200
acacacaagc	acaaacacaa	acgagatgag	ggaacacccc	acaccaaaga	aggaagctca	1260
cccaccagaa	gacaacacag	gcgcggacga	gaagcgaagc	agagaaccac	atatcaaaca	1320
acatgcgttg	gtgcaccaac	agcgggggtg	gcaaaaccca	aaccctcgtg	tggtgagaca	1380
gaccaccacc	cccagaaggt	gggcgaccaa	aaagaaaacc	cacctcgaag	gagaaaatg	1439
	–					

<210> 93

<211> 889

<212> DNA

<213> Homo sapien

<400> 93 ccgccgcggg caggtattct gctacaaacc agcaaagaca ttggaacact atgacccgta 60 ttatgtcggc gcatgagctg aactcctagg ctacagctct atagcctcct tattcgaggc cgagcgtggg tccagtccga ggcgagacct tgtctagggt agagctacca acatctacaa 180 cgtctatcgt cacgagccca tgcgatttgt aagtaaagtc ttcgttgcca tagtgaatta 240 ccgcgatcag taatgcgtga ggagcatgtg gcgtcaaccg ttggacctag gttctccgcg 300 taattaactc gggaattcca ccgcgactac tgtgcggtta ttcctctctg cagtaaatga 360 caatcagtat aggcctctgc gacgtgtaca atcagtggac gtcattacgc cttgggtttc 420 cggtgattgg ctgtaaacag tatgcatgta gctccggctt cacagacatg tatccatgca 480 gcacatacat tagcggaagg ccagcaaata aaccgagtgg gaatggatgg cgacgccgag 540 600 tggcgtatgg tagacgccgc ccaggggact cgagcaggga aaacgaaccg gccattacca ccgtcggaat agtacactca aagcggaaca agcctaggtg gcgagagctc aggatcccag 660 catgaaggac cagtgaacgt cccctggagg acactccgtc ggatagctcc gaaagggcct 720 ttgtgtggac gtgctacaag ttactaccta tgcgggatcc caatgctaca gccaattgga 780 tacctcccta tgtggtaaga gttcgaaaga caccattggg tataagatca cctggctgtc 840

889 gaaagcgaca gtttccccaa ccaccagaat cactatccgg aatggccaa <210> 94 <211> 626 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (176)..(176) <223> a, c, g or t <220> <221> misc_feature <222> (246)..(246) <223> a, c, g or t <400> 94 tggcgaatgg gcctctagat gctgctcgtg cggcgcctgt gtgatggatt ttttttttt 60 120 tttttttttc cccccgggg tgggggggg tggggggaaaa taacctttgg gcccanagaa 180 240 aagatgtggt gttgtggtcc tcccgctagt aggaccatat gtgtgctctc ctcgtgaaaa taaccncctc totacacaga agatattcac toctototot otototatac aggotgtgtg 300 gagogtatca ogocagagtg agtoacaaat gagogagtog tgttogogot gtgtgagtgg 360 gaaatagaga tgtgtgatct catctcgcgg cgcttctaca caaccatatc atctccacac 420 aacacagcac agcactacta gtacgacgac acgacgacga cgagacgacg gggaacaaga 480 540 600 gaggaagaga ggcgcaaagg agacagaagg acaaacgaca aaagaggagg cggacgagag 626 aagaggaggg agggaagggg cgaaac <210> 95 507 <211> <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (98)..(98) <223> a, c, g or t <400> 95 atgggccatg gcggtagtga agctcccagg tgcctatgag gcaggggttt ccacctgaat 60 WO 02/064788

PCT/US01/45080

1020

1074

66

			00			
gagcatctct	gatagcatga	tcatccgacg	ctactcanga	tgaaagtggg	aacatggatt	120
ggacaacgtt	catcagagtg	gttggtcagg	ctgtacggcc	aatgttccgg	tgccttcaaa	180
tctcttgatc	aaagatggcc	acgtggacaa	atcctagggt	gaacgaatcc	agtgagtggc	240
atgcagctga	cgtatgtatt	ccttgaacat	ggaagcctcc	aggagcctga	ccccgtcacc	300
gactatggta	taggagatca	cctggagccg	tgccgcatcg	tcatccgcag	ggaccggatc	360
gctgttctgc	gagtctacat	ctttgtgggg	cctgcttgat	gacagaagca	ttggcgataa	420
ctcgtggtca	atagtctgta	atccgttgtg	atgaaaatat	gttgatccta	gttcacaatt	480
tcacggaaga	atataaggaa	ggcaagg				507
	1 o sapien			·		
<400> 96 cgtgatagat	cactataggg	ccattggtta	tctagatgca	tgctcgagcg	gcgcatttgt	60
gatggatagc	ggċgċċġġġġ	aggtacatgt	ggaaggtgga	taacaggccc	gtccaatcgg	120
gttgctgcct	ccaggagagt	gtcacattgg	atcaggacgg	ctggactagt	cacctacgag	180
cctcatggca	gcagcctgac	gctgagcaag	gcggattacg	agaaacagaa	taggtctacg	240
ccgtgcgaat	tcacccgatc	acggtgccgt	gagtttctgg	ctccgtctct	atgagcgttc	300
aaccggggag	aaggtgtccg	tagggagtac	gttgccccc	actcgtgtgt	ccttcgagct	360
tccägcctgt	tgacctcgcc	gtcccactcg	gtttggttcg	tgcgtgcacc	gcttatctcg	420
cacaggggca	tctacgccct	atctggcggt	cgtccaggct	cattcattgt	ctcgcgtcca	480
tcctccttcg	ctcctcgctt	ggcttctgtg	tttgcttgtg	ttggcgggac	gacatgtaac	540
taacaataaa	gatgacggtc	gtctatgccc	aaacaaacaa	aaaaaaaca	aaaaaacaa	600
aagagactcc	gtggggcgtt	actccctatg	gtggcccaat	gagacggtgt	gtctccccgt	660
gggtggttga	aactgtgtgt	gttctctccg	gcaacaccaa	tattctcccc	ccgcacaaca	720
ttctccgacg	accccaaacg	cagaagcaca	ccacacacaa	cccacgaacc	acactacaac	780
aaacaacacc	tgaaaaagaa	ctggtagcag	cacaagtaaa	acaaggcgcc	ccagcgagcc	840
cacaaaaaac	accaatcgaa	caatgccgga	agaagagaag	cacaggacgt	gaaagactaa	900
tgccgcaact	cgaacacgaa	gagaagccga	actgcaacct	accgacgaag	tgcgatgaaa	96

tacgacagga agccagccgc cgcgcatagg caacatcttc gctagaatga cgacgagtat

cgacataggt cgagagacga cgacgtagac accgaaccgt cgatacagag cgtt

67

<212> DI	7 32 NA omo sapien					
<400> 9' aaaagggal	7 tg atgattcacc	tatagggcga	tggttctcta	gatcatgctc	gagcggcgcc	60
agtgtgat	gg atgccgcccg	ggcaggtacc	tgggaggcgg	aggttgcagt	gagctgagat	120
cgtgacac	cg cactccagcc	tgggcgacag	agcgagactc	catctcaaaa	aaaaaacaga	180
aacagaaa	ca gaaaaaaaaa	aaaaaaggga	ggaggcagag	ccagacctca	ttttacaaac	240
gcctgaag	ct gggggtaatc	atggtcatag	cgtgtccctg	ggtggtgaaa	ttggttattc	300
cggcgctca	ac aaatttccac	cacaacaatt	accggaggca	agcgggagga	gagtgaaaaa	360
cgaatgata	ag ggagacaaaa	aaagaagagg	aaaagaacaa	gcaaggagga	gaaagagaga	420
gaaaccaaa	ac aaaagaagag	acgagagaaa	gcaaaagaag	aggaaagcag	agaaaggaaa	480
gaaagaaa	aa aaagagatga	ggaaagaaag	caaagaaaga	ggaaaacgac	aaacaggaaa	540
cataggcaa	ac agaaaagaga	acaacgaagc	aaaaccacac	agaaagaaaa	taagaagaca	600
aacaaggga	aa gagaacaagg	caaagaagga	acaagaacaa	gagaataagg	aaaaaaaac	660
aaaagagca	aa aggaaaataa	gagagaaaac	aacaacaaaa	aaaaacaaaa	gaaaaagaac	720
gcacaagag	ga aaaaaaacta	gagaaaaaca	aaagaagaca	aaaacaaaac	gcaacaagaa	780
ccaaagaaa	aa gagcacacga	gaacaaagca	cgaaaacacc	aaaaggaacc	aa	832
<212> Di <213> Ho	77 NA omo sapien					
<400> 98 gacagtaaa	8 ag acgcaaggcc	cggcgagatt	gtcacaacat	gcagatgaaa	agaactcaga	60
gataaaaa	gc aattagcgac	atcaaaagca	cagacaaacc	aagcacggaa	aagcactgaa	120
gaagaccaa	ag gctgaaataa	gacagaacgt	cagacacaaa	agacagcgag	agaagaacga	180
gggaaagg	ca gtactggaga	gcaacaacaa	cacagacaca	ccaccagaca	ccagcatgag	240
actcgaaag	ga agaaacgaga	cggacacagg	caagcgagca	caaagccagg	aaccaggaac	300
caacgacaç	ga aacgagcggg	gaaagaagaa	gccggaagag	ttcccaagcg	aagagacagt	360
caacgggc	ga gtaagcgagc	caagagaaac	caggaagcaa	atcggtcgaa	gcaaacacac	420
aggggaccg	ga gagacaaaga	cgggaggcaa	aggaaaaaag	gaaagccaaa	gaaggcagac	480
aggcaagaa	ag agggaagata	cagaaccaca	tagggggccc	aagaccacac	aacaggcaca	540

of the age of also the first of the control of the

aagcaagcac	agaacgaaca	graayayagc	aacgaaa			57
<210> 99 <211> 171 <212> DNA <213> Hom						
<400> 99 cgtggtcgcg	gccgaggtct	tttttttt	tttttttctt	tgttttttgg	gggtgttgcc	60
ccaaattttt	tggagaaata	atagagacac	atagggaaaa	aaatttcaag	aagggtctcc	120
cgcggagggg	tttgggagaa	tcactacctc	ccaggtgtgt	gtggggcgtg	ggcgtgcacc	180
gtgagagggt	gggccgagga	ctgtgccgga	agactcacga	aaagctgtgg	tgcgttatct	240
cggtggcgca	atacgcgcgt	ggtgtccgcg	tggtggtgag	agagtgtgtg	tatatctcgc	300
ggcctcacca	attctccacc	accagcaatt	aaccagaaca	caatatccgg	ctcaacaatt	360
ccacaccaac	atacgaagca	gaagaaaacc	aatacaaaca	tgacactgag	cgagatagcg	420
agacaaagaa	cggagccaca	gaaatatgac	caaaaaagag	agaacaaaaa	cccacagaga	480
cagacagaca	aagaaagaac	aaaaatgaac	aagaaaacaa	agaaaaaaaa	aaacacaaga	540
cgagagagaa	aaaaggagac	gacgagaaaa	acaagaaata	aagagagaag	cgagacaaac	600
agaacaaagg	agcaacaaaa	acaaaacgag	caaaaaaaca	acggaaccac	tacaccacca	660
agaaaaccca	agcaaagaaa	acagaaacga	gcgccattaa	gcagacacac	gaacagagag	720
agaaaaacaa	aagacacaaa	caaccaaaac	acacatatag	taggatagat	agaagtgtaa	780
taataaaagg	caggagtgaa	gtataaacga	tactccaagc	cgaacaagaa	gacatatcaa	840
aaagggagta	gcataaatat	cataaaccaa	ataatacaga	atgaatatag	agtgcaagac	900
acaaacatct	gatttagtac	aacatagaaa	aaaatatagg	gatgaacaat	aagagatcac	960
aaaaaagag	ggaagacaac	tgctaaggaa	aacagaccac	aggatgagta	aaaataaaaa	1020
gaggaacaca	cgaaaagaga	aaacagatga	gagaaaaata	acgagtagga	aaacacaaga	1080
aaaaaagga	aaaacaacag	caggagaaac	ccaccggaca	agagaaaaca	aaaggcaata	1140
agcaaacaaa	aaagaacaaa	aacaaacaag	caaaacgaac	agccaaaaag	aagagaaacc	1200
agaaggggga	gtggggagag	caaaacacaa	ccaaaagaca	aagaaggaga	gaacaaaaat	1260
aaaccaagaa	gaaaaaaaga	gaaagaaaag	agaaagacac	acacacccac	gggaaaacga	1320
gaagcacacg	ccacacaaag	aaaagaaagc	aaacaaaac	aaaggatcaa	taccaacaaa	1380
aaccagtgag	cacgggagta	gttagccaag	ggaagaaatc	aatcagaaca	acacaggacg	1440
gcaaatacaa	caaccccaaa	ctctgtgaaa	aaaacatgaa	ggctagacac	gaaatcaaca	1500

69

aacaaaaaca caaacagacg agatagaaag aaaaagagaa caataaatca ga	gacagaga	1560
aggaagaata agagcaatac gacaagagca cagcaagaac ataggtagga ac		1620
gaggcgaaga gaacaccaca gcagagcaga acacgacgcg gcaaaacgca ag		1680
caacataaga aacggcaaac aaacaaacaa ggacaaa		1717
<210> 100 <211> 1423		
<212> DNA <213> Homo sapien		
<400> 100 gtcgcggccg aggtacaagc ctttttttt tttttttt ttttttt tt	ttttcccc	60
ccgcgggtga ttttttttt ggttttttct ctatttgtga gtgtgcttgg gt	gtgtggtg	120
caggtgettt agtgtggeac aagecaette tetetegagg ggaeceetee ca	aagaacccg	180
tggggtgtgg aattacggct ctgtggcacc cattcacgag gaaagcttgt g	tgggttact	240
ctcctgtggt ctcacatatg ctgtgtgtct ctcctgtgtg tgtgtagaaa to	gtgtgatat	300
atotogogot otoacacata tototocaca cacacacaca catatatgoa g	gagacacac	360
acagtgaaaa taagggagaa ccaaacataa aaacaaaaaa agaacggcca g		420
cacacacaaa caaaaacata caaaaaacac aacacacac		480
agaaaacaaa acaaaaaaaa aaacacatac ccacaaaaac caaacaacac a	aacacaaaa	540
aaacacacaa aaaaaaaaaa aacaaaacaa accaacaa		600
aaaataacag acaaaaaatc aaaaataata aacacaacta taatatcact a	taaacataa	660
aaaaataaaa caaacaaaca actaaaaaca aaactacaaa agacacctta c		720
ctccacacaa cacaacacaa cacaatacca taatatacga aaaacaataa a		780
aataatcaat aacacaccat cacatcaata acacaataaa caaaaatata a	ataatacata	840
tataaatcac acaaatactc actatatcta atactaaaca aaatacaaaa a	aaaacaaaa	900
aaaacagaac acaaacatat caaacaaacg aaatcacaac acaaccaaat a	accacaccaa	960
actaaacaaa aacaaaaaaa accacacaac acaaaaaaga aaaaaataaa .	aacaaacaat	1020
Caaacaaaac aacaacaaaa aaacaaacaa aaataacaaa aaaaatcata		1080
aaaacacata cactattaat aataaaaaac aaacaaac		1140
gacataccac aaataaaaac aaacaaacta ttataacaca gaacaacaac		1200
aaataatcaa aacataaaaa atataaaaaa aactaaaaat acacaaaaat		1260
aaacaaacaa aaaaaaatac aacaaaaaaa acaacaccaa aacataaaaa	aaaacaaaac	1320

aaacacacaa aaaaaaaaa	aaaacaaaaa	adadCatada	Cacacaaaaa	aataaaaaa	1380
aaaaaaaaa aaataacacc	aaaaaaataa	acaacaaaac	caa		1423
<210> 101 <211> 1627 <212> DNA <213> Homo sapien					
<400> 101 tttttttt ttttttt	tttggttggt	caatgaggat	tattaattgg	gggttaacat	60
aattgcaggg aaaaagggtc	gggatagact	ggggaagtgg	ggagaagaaa	cacccctctc	120
cccggggaac tcctgtgcag	ctctccgagg	ctctcccgtg	gggtgtgggg	tataaagtgt	180
ggggacacct tatgtgacac	ttctcgtggt	gagggcgccc	accgtgtgtc	ttctctctcc	240
gagegggttg egeteteeet	ctctcgagtg	cgcgtggtga	cacgcgtgtg	cgcgagcgct	300
gtgtgtagcc tctctctgtg	tgggtgagac	acttctccca	gctgtggctg	ctgcgcgggc	360
gtctcgagtg actctcgagt	gtgttagcgc	tgtggctgtg	gccgcggcgt	tcacgtgtgt	420
gtgagtgtgt cgctctctgt	gtgtgtgtgc	gagagagcgt	gtgtgtggtg	tggcgtctct	480
ccacactctc ctcgcgtctc	tgttgaagag	agtgagcgag	ttgtgtcgca	cactctgtgt	540
cgctctctcc agcagagctg	ccccagctgt	gtcgtcacac	agagtctctc	cccgcgggtg	600
atacaagagt ctcccactgt	ggagactcca	cagacacaca	cacactacag	agtgtgtgtg	660
ggcccctctg tgtgtgtgcg	gctgtgtgga	gagactctct	ctctcagaga	gagagagaga	720
ggggggagg acacacaaca	gagagtgtga	ccacagagtg	tggggcgggt	gtgcgccctc	780
tgaggggcc gagtaggcac	ccctcatatg	aggcagcggg	gcgtagacac	ccctgctggt	840
ggtgtctccc cccaaggtat	cctccccgag	aaaaaacaca	ataatatgat	gtaggatcat	900
cacacttata accttatatg	cgggggggtc	ccccacaaa	cacagcggca	gaaacagatg	960
tataaaatat aagactccga	ggggcgccca	taacaactcc	gccgcggggg	gtatatcacg	1020
aaagcaccac acaagcgttg	atatgtgggc	ctcaccacgg	ggggttggag	gcaccgccgg	1080
ggtgttgttc cccccccac	aagaagctgt	tgtggcggtc	atcctcccct	aaagaaagaa	1140
aacatttccg ggcacaacga	gggggagaa	ctcccccca	tgagaagggg	ggggccgccg	1200
aggagatagc cgcagataaa	taccaaactc	tcaaatgaga	atgaaaatta	gtcaaccacc	1260
agaaatggcc acccacatgg	tgtgtgtggg	cctccctgtt	tggggacccc	attaggtagc	1320
gacaactcat cgtggtggtg	tggtgcgcac	ccccaatcg	gtgtggccga	caccaatctc	1380
cttcttctat tatatcttct	tcccccaaa	ctatatggaa	aaacgcctgt	ctgcagcggg	1440

PCT/US01/45080 WO 02/064788

71

gtcagaaaaa accatcattc atgtggggcg gccacaaata aaaaccatca ggtgtcgatc	1500
accecettgg gtggttgtgg caagaaccaa etttetgteg gtcaaateee eeegagetge	1560
accecettgg gtggttgtgg caagaactaa ereedsysty y	1620
aaccacaaat tttcgcccca ccattacatc atcatcaaaa tcaaacagca atcaaacaag	1627
aaactcg	
<210> 102 <211> 936 <212> DNA <213> Homo sapien	
<pre><221> misc_feature <222> (401)(401)</pre>	
<223> a, c, g or t	
<400> 102 gcgtgggtcg cgggcgaggt acaaggcaga ggccacacgg aggattcttg acactaagaa	60
gcacagggga caagcagaat cgttaatact gcgctgtgtg ctttggtgtg atcgtcagaa	120
gttgtgttgg acagacactg tgtccaggtc aggaaactga tgctataaca gacaagcatg	180
ttcacacgat acagcattta gaacacaggg tgagcatagt cggctcgtgt caaggaggag	240
ttcacacgat acagcattta gaacacaggg components	300
taactcgcta tggaggagag tactaggcag aagaggagca gagaattgcc tccgagttag	360
cagtagtgta tagactgttg gtgtatgcta caccggtgca aggcagtgct acaacattgt	420
cctggagtta agagctgtac ctaaatagag cgcggttctg nttatctctt aagatagaca	480
catattotat agacaccatg atacctttga totgoggoag tagacatago gtoactagag	540
aagtaagaga ctttttgaag ctgcatgcac gagtatcggt caaagcgtat ggactgggtg	
agggggagca tgagtaggag tttccctact tctagcgtgt gtcgaaagtc agaagaccga	600
cttgagagag tacatgggac agataaatat aacgtgtgtg gtcgtgtggt atattgcgtg	660
aacggggggg ttttcgccgt aaaccgaatt tgtctgctta gtttagcaga gggaagatcg	720
gaatttccac tgggcgtcag tgtccgatat tggtttaaag acttgaacat cgagaaccga	780
atttgtttct gtagggcgta aagcacaggg gctgggttcc agcagagtta gtaccagacc	840
atttcgtttt taccttgaca aaaagtcgaa ggagataaag ccttgggcgt tgaaggtcca	900
	936
tgggtgccat tagcctggtt accctggtgg tgaaaa	
<210> 103 <211> 502	

<212> DNA <213> Homo sapien

gcggccgccc	gggcaggtct	gtaatcccaa	cactttggga	ggctgaggca	ggaggattct	60
ggggtcagga	gttcgaggcc	acactggcca	acatggggaa	agcccgtctc	tactgaaaac	120
acaaaaatta	gctgggcatg	gtggtgggtg	ccggtaatcc	cagctactca	ggaggctgag	180
gcaggagaat	cgcttgatcc	caggaggcag	aagttgcagt	gagctgagat	cgcgccattg	240
tactccagcc	tgggcgacag	agcgcgactc	catctcataa	agaaaaatat	tttaaaacca	300
tttctaaaac	aaaaaaaaa	aaaaaaagaa	aaaaaaggct	tgggggtacc	ccgtgtggcc	360
aaatagcgtg	ttccctgtgt	gttgacagtt	gtgttttctc	cgctccaaca	aattctccca	420
ccaccaacaa	tatacgacga	caaaaagggg	cgagcggagg	agc g ggcccc	gaaccggcga	480
ccgggaaccc	gcgcgcgaga	ac				502
	sapien				٠	
	ggccgaggta	ccagcccaga	acccagtagc	tcttctgggt	ggctagaccc	60
agaagagcaa	taacaatcac	agcagttggc	tctcgggaag	cccatcccta	ggggaagggg	120
gagaacacca	cattaaggga	tcaccctgtg	gaacaagaga	atctgaacag	cagctcttga	180
gcttcagatc	tttcctctaa	cgtagtctac	ccaagtgaga	aggaaccaga	aaaacaattc	240
tgataatgac	aaaacaaagt	tctataacac	ccccaaaaga	tcacgttagc	tcaccagcaa	300
tggatccaaa	ccaagaagaa	atctctgaat	tgccagaaaa	agaattcaga	aggccaatta	360
ttcagctact	caaggagaca	ccagataaag	gtgtaaacca	acttaaagga	attaaaataa	420
taatacagga	tatggatgaa	aaagtctcca	gagaaataga	tatcataaat	aaaaatcaat	480
cacaacttct	ggaagtgaaa	gacatactta	gagaaataca	aaatacactg	gcaagtttca	540
acaatggact	agaacaagta	gaagaatgaa	ctacagaact	cgaagacaag	gctctggaat	600
taacccaatc	cagcaaaaaa	aaaacaaaaa	aaaaaaggc	tgggggaaac	cggggccaag	660
gcggcccggg	gggaatggtt	ccggccacaa	tececaaege	aa		702
<400> 105	o sapien					
aagatgatga	atatataggc	gaatgggcct	ctaatgcatg	ctcgagcggc	ggcagtgtga	60

PCT/US01/45080

						120
	cggcgaggta					
aaaaaaaaa	aaaagagtaa	aacatctcca	taccttaaaa	aaaaattctg	agcctctatt	180
tttagacttg	tgatgattcg	atacgaccaa	tgtattttat	cattgttatt	ttaattatta	240
tttgctcttg	ccaaagcacg	ttctgtgatt	tggtgcttct	agtttgcttg	ttttcatttt	300
aagaaccaga	cacttctctc	aaatcctttt	tttaaagatg	gaggtataga	taagtgaatt	360
taaagaaaca	ggtaaaaaat	aataatttag	tgttctggat	tcttcttaac	agaactttac	420
agactagcat	ggc					433
<210> 106 <211> 266' <212> DNA <213> Home	7 o sapien					
<400> 106	tgctgcaggt	gctgattgtc	ttggaacacc	acctgggtcg	ggcccatgag	60
	accagcccga					120
	ccctgcagta					180
	tgaggggtct					240
	cgcattcctt					300
	agatttgcaa					360
	ctgtcagcac					420
	aaggtctaac					480
	ccatggctgc					540
	tgcctcgaac					600
gaggagacto	aaaagagacc	tgtcgatctc	ctaggggcca	cgaagggatc	ctcttccgtt	660
tactttaaaa	ccaccaaaac	cataagacaa	aaaattttag	acttcttaaa	ccccttgacg	720
gcccatcttg	gggttcagtt	gacagcggct	gttgcggcag	tgtggagcag	aaagaaagcc	780
	gtaagatgaa					840
	gtgcactcag					900
gtggtgaaga	ggccacccca	agtcaaaggg	ggtgatgaga	aatcgcccct	agtggacatt	960
					gtcctccaaa	1020
					tggttttatt	1080
					atttcttccc	1140

č	aaggtattga	tctatgcttt	tccttctcca	gagagttaac	atcttaaaat	ctgtgcagcg	1200
t	tactttgaac	actttatatg	agcgaagctt	tatgtgaggc	ctgttaaact	ttaaaaggct	1260
,	tggatttgca	ttaaattqat	acagaaaaag	aaaaaacca	catataggga	agtgttaaag	1320
ä	acctctttta	gaaaaaggag	aaatgggcca	ggcgcggtgg	ctcacacctg	caatcccagc	1380
ě	actttgggag	gtggaggcag	gcggatcact	tgaggccagg	agtttgagac	cagcctagtc	1440
4	aacatggtga	aaccctatct	ctactaaaaa	tacaaaaatt	agtccggcat	ggtggcgtgc	1500
•	gcctgtaatc	ccagctactc	gggaggctga	ggcaggagaa	ttgcatgaac	ccaggaggcg	1560
!	gaggttgcag	cgagccaaga	cctcaccact	gctctccagc	ctgggtgaca	gagcaaggct	1620
	ctgtctcaaa	aaaaaaaaa	aaaaaaggc	aaaatgattg	tttctggtgg	cgttctcagt	1680
	gtgccttccc	atgttttatg	tggagaggta	tctgctttga	tttgctaagt	taatatatgt	1740
	attaggtgtc	tcagctaaga	gagcattaaa	ggggattccg	caggtttttc	cccatggatg	1800
	aaaaagaagc	tttactggac	ctcattcaga	tcttacaatg	gccgcatccc	aggtgcagct	1860
	ctgtgttgca	gaaaatgagg	gtgaggtggc	tgggtgcggt	ggctcagcgc	ctgtaatccc	1920
	agcactttgg	gaggctagag	tgggtgagtc	acttgaggcc	aggagtttga	gaccagcctg	1980
	gccaacgtgg	taaaacccta	tgtctactaa	aactacaaaa	aattagccag	ggcttggtgg	2040
	cagcatgcct	gtagtcccag	ctactcggga	agctgaggca	ggtgaatcac	ttgaacccag	2100
	gaggcagagg	ttgcagtgag	ctgagatcac	accactgcac	tccaggctgg	gggacagaat	2160
	gagactctat	ctcaattaaa	aaaaaaaaa	aaagagtaaa	acatctccat	accttaaaaa	2220
	aaaattctga	gcctctattt	ttagacttgt	gatgattcga	tacgaccaat	gtattttatc	2280
	attgttattt	taattattat	ttgctcttgc	caaagcacgt	tctgtgattt	ggtgcttcta	2340
	gtttgcttgt	tttcatttta	agaaccagac	acttctctca	aatcctttt	ttaaagatgg	2400
	aggtatagat	: aagtgaattt	aaagaaacag	gtaaaaaata	ataattagtg	ttctggattc	2460
	ttcttaacag	, aactttacag	actagcatgg	caaagcttct	ctccgatctt	agtgtggaca	2520
	gtgctcgctg	g caaccatggg	aataacctta	ccaaatcact	: cttgaacatt	catgataaac	2580
	aacttcaaca	a tgacccagct	cctgctcaca	cttccataat	gagctatcta	aataagttag	2640
	aaacaaatta	a cagttttaca	cattcag				2667

<210> 107 <211> 718

<211> 718 <212> DNA

<213> Homo sapien

75

•

<220>
<221> misc_feature
<222> (611)..(611)
<223> a, c, g or t

<400> 107 agtgagggga ggtcagcgtg aggggggggg tggagaagaa gtgtccctac gaatgtcata 60 ggteteagee teacececae caegggagae atagagetge aggateecag gggaeggggt 120 ctcatccgtc ccaaccacaa gggcaatcaa agcccttctc cctgcgactc aataacaacc 180 gtcaaataaa aaatatcatc aatgacaatc aaaagaaaaaa aagaaaaaaa aaaaaaaaa 240 300 agagaaaaaa cggagacaaa gagacacaaa cgacacaaca gagacacgag agcacgaaac 360 420 accggacgca gcaacaaaga acacgcagaa acaagacaaa cgaacacaac agcgcgagca 480 caggaacaag aagaccagaa gagcaaggaa gacgagctag cggccaggca gacgaagaga caggaggcca gagaagcaca caacacaggc gaaggagaag aagcaggacg gagaacgggg 540 600 660 gagccaaagc nagaagagga acgaagaaga gcgaacgacg acgaacacgc gcgcagaccg caaggaagag aacggaacaa gagaagcagc agagaaacga gaaacagaag agagaagg 718

<210> 108 <211> 2112 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (2005)..(2005)

<223> a, c, g or t

...

-

<400> 108 atggaggtta agagtaatgg cagcgacagc aaggggaaca ggatccccag tcacttattg 60 ggctccagcc ctggggctga atgctactta attatcttca acctccaatc tgaggatgag 120 gccgagtatc actgtggaga gagccacatg tttgatggtg aggatggctc gagactgact 180 240 ctgactcatg gggcagctcc tgtgcgcagg ggagtctcag tctctgaggc ctcctatgag 300 ctgacacage cacceteggt gtcagtgtcc ccaggacaaa eggecaggat cacctgetet ggagatgcat tgccaaaaaa atatgcttat tggtaccagc agaagtcagg ccaggcccct 360 gtgctggtca tctatgagga cagcaaacga ccctccggga tccctgagag attctctggc 420 480 tecageteag ggacaatgge cacettgaet ateagtgggg cecaggtgga ggatgaaget

The state of the s

gactactact gttactcaac agacagcagt gatgacatga accaggtaca ctgctctaag 540 ttctgcctta aggagagtgt tcctccacca ctgctgttca gggaagccca gaggccaggc 600 cacaaactag cgaacatggc caccetgacc atcagcaggg etcagactga ggacgagget 660 gactattact gtcacaggat aaagctggtg aaagagggcc tggatgaaag gacacacaaa 720 gcgtatcttt catctagtgg taaaggatgt gagttccata tggtgaagcc tgggtcaccc 780 cttggcccag acgtcctagg gtcctgggcc cagtctgtgc tgacgcagcc gccctcaqtq 840 totggggccc cagggcagag ggtcaccatc tootgcactg ggagcagctc caacatcggg 900 graggttatg actatgtaca rtggtaccag ragetterag gaaragerer raactratg 960 atttatgagg tegetaageg acceteaggg gtttetgate gettetetgg eteeaagtet 1020 ggcaacacgg cctccctgac catctctggg ctccaggctg aggacgaggc tgattattac 1080 tgctgctcat atgcaggcag ctacacttgg gtgttcggcg gagggaccaa gctgaccgtc 1140 ctaggtcagc ccaaggctgc cccctcggtc actctgttcc cgccctcctc tgaggagctt 1200 caagccaaca aggccacact ggtgtgtctc ataagtgact tctacccggg agccgtgaca 1260 gtggcctgga aggcagatag cagccccgtc aaggcgggag tggagaccac cacacctcc 1320 aaacaaagca acaacaagta cgcggccagc agctacctga gcctgacgcc tgagcagtgg 1380 aagteecaca aaagetacag etgecaggte aegeatqaag ggagcacegt ggagaagaca 1440 gtggcccta cagaatgttc ataggttctc atccctcacc ccccaccacg ggagactaga 1500 gctgcaggat cccaggggag gggtctctcc tcccacccca aggcatcaag cccttctccc 1560 1620 aaaaaaaaaa aaaaaagaat gagggaaaaa aaacaaggaa aaaaaacaag aagaacacac 1680 ggaggagaga gagaagagaa aaaacggaga caaagagaca caaacgacac aacagagaca 1740 cgagagcacg aaacaccgga cgcagcaaca aagaacacgc agaaacaaga caaacgaaca 1800 caacagcgcg agcacaggaa caagaagacc agaagagcaa ggaagacgag ctagcggcca 1860 ggcagacgaa gagacaggag gccagagaag cacacaacac aggcgaagga gaagaagcag 1920 gacggagaac ggggaaaccg aggagagaag gaacgagagc agaacagaaa gaaaaaccaa 1980 agacagagac agcagagcca aagcnagaag aggaacgaag aagagcgaac gacgacgaac 2040 acgcgcgcag accgcaagga agagaacgga acaagagaag cagcagagaa acgagaaaca 2100 gaagagagaa gg 2112

<210> 109

77

<211> 2168 <212> DNA <213> Homo sapien

<220>

<221> misc_feature
<222> (1144)..(1144)
<223> a, c, g or t

<400> 109 agccccccgg ccgcgggtaa tgacactata ggcgacttgg gctctctaga tacatactcg 60 agetggegee gaggtataat aggatatgee tgaggtacga gaagcacagt ceetaaattt 120 ctagctagct ataggaacca gataagaaat gaagaaaaaa gaaggcatat caatgataca 180 240 cggtacaaga agcatgatac gatgactgtg cgtgtcacat atactaatgt actaagtgag 300 gtacggcgac cgataccaaa atatgcccca atgtgcctgg tgctccacag catcttacca 360 tatcccatgc atgcaaaatg catggtaagc acatggtgtc caaatgtgtc agcctactat 420 actaaaacaa ccacatgcag cacccataac agatgcaaca tgcaaagcac caaacaggga 480 cacacagcac aactegetat ettaacgata gaacagatee aateeccaga etataacatg 540 ttattaaccc atggcctact acaggccgct caatggaacc tgggtttatc cttaaagcaa 660 gcacgetega gcaataatea egaacategt eetgaaegge gggeaetgeg ttaagtgete 720 cgcgcacctc aagactgggc aatactctac cccctttaaa ctacatgaca acatggcccc 780 cttacctgct ggctaccctt accaccttaa caaggaccaa cagggccaga ccacacttta 840 tatggttacc gccccgggcc ttaacagaag tcccaaataa ctcctcccc gttacaagct 900 gegecacage geaaccatat ataaaaacae caaccatggt gtgeacaete atacagegee 960 acaatggcac acacatggca attacacgag acggcatccg tagctatatg ctaacacact 1020 gccacagagg tttacatcgt gggtggcatt tatgcgcacc acacggccta gcgctaaagg 1080 ccatgtatat ttacgtaaaa cccgcaacaa gctgccccca ccagcgtcac cagcgccacc 1140 acanccatca atoggoaago tttcacaaac tatogocaat ttaacacatg ggtggccaac 1200 accaccgegg ctggacaccc cccaggttgc cgtgcacata tcactgccac taactaccga 1260 ttatccccca cgctccagtc ctagttctct atgcacttat agccgaacgt cgagttccgt 1320 atataagcga gaacgaaggt ggttactaca accagccgct ggggtgcgca ctactcctat 1380 gacctettag gtcagaccgt acagtgcgtg cagcageeca eeggegtggg eggeetacca 1440

tattggcagc	gcacgtctta	tgaacaggca	caccaatact	ggtagtgtca	aaactacgac	1500
atcggacaca	cgcaacgtgt	caacacgtta	acaaacatcc	cccgactcct	gtaatactgc	1560
gacacaacta	gtcgagtgtg	gtaattctcc	ccaccctcta	tacatatcag	aacccaccag	1620
cagcgtggca	cccaccatgt	tatctccgat	gtgtatcggt	tcagcacact	gcggtggaaa	1680
ccccttgtgc	tgcgaccttc	cctacttaca	ggcgtcgtgt	caactttccc	cgggcggtat	1740
ggcacattag	tgccgcgcct	tagactaaca	cttccacttt	gtcgcgctgc	catcgacacc	1800
tttgctgctt	tatttttcgc	cctctttgac	ttctgggtca	gtaaaatatt	gcccatccga	1860
ttctaggtgc	gtgatgcata	ccatagcgat	tagtataaat	atcccattac	ggatcaaagg	1920
cgttgacatt	accccgtatt	gtgtgtgcta	tgaccgtccc	ataacgaggc	gggtgctacg	1980
tatcgggtac	tcagctcttc	ataacgcccc	taataaatac	tatatatcac	ggggctccat	2040
acagggtatt	actacacgag	tggtgtacta	atacagcgcg	ctctcgtgtt	gatctgctcc	2100
tagtaatacg	gtgaaaatac	cactaaacta	accggccttc	ggcggataga	cacatgtcgt	2160
gataagcg						2168

<210> 110

<211> 959

<212> DNA

<213> Homo sapien

<400> 110 ggggccgggg cgggcggtat acttcaagat atacaaaaga ttatcccagg gcatactggc 60 120 tgagatagcc tgcgcgaatc actagtccac tacgggtgtg gcgagattgg agacgaagtc tgctcggctt agagtccacg tggagtgtct tggcaggggt ttgcacacgg acggaccgcg 180 240 agaaaaggta aaccettegg ageeteeaca eteegggggt gataageegt ggateetete ggtgatgaca ctaagcttat actcaccgac atacaacaat atgcacgcaa ccaagaccta 300 attgctgtat gtgagggttc cttacagcga aggggcaaga gcgtttgtgg cgtacagtcg 360 agtaggtcga ataagcttgt tttccgttgt tgtttgaaga atatgttaat accgcttcaa 420 cagattttcc cctaagccaa cgaaaagcct attaccgcgg gaaatggcca aactctagga 480 gggaccgcgt gaggtccctt tacccgcctt gggcattccc cagatgggtt atgggttgag 540 ccaccgcgcc gttgtgggcc cccaccgggt cgtccgcccg ttatatccac gcgtaaccag 600 agggcttaat ttaccgggga aaccctcccc acgataacgt ccgtttaact tgggggggcg 660 cgcttaccta tggattagcg gtcgaaggtg acaataagga gaaccaatac cggttcgaag 720 aaaaacgcgc gcatttaggt tgccgttgat atgaagagac ctctcatacc agagcgcgag 780

PCT/US01/45080 WO 02/064788

79

actccccaat atcaaacga	g ccacgttggg	ttgtatcacc	cgaccaatcc	gatatatgac	840
ttatgacaag cagacaatt	a taaggttaag	atatattcgg	cacgcagggt	tcacatacca	900
aacccaaaca gactatatt	c gcacacaaga	ggaggggccg	cattccccca	tgtgatatg	959
<pre><210> 111 <211> 815 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (206)(305) <223> a, c, g or t</pre>					
<400> 111 ggaatgatac actcactat	a ggaccattgg	ttactctaga	tgcatgctcg	agcggcggta	60
tgtgatggat agcgtggtc					120
ttcctgtttc aacagcato					180
ggtggcaaat tcctcaaga					240
nnnnnnnnn nnnnnnnn					300
nnnnnagcgc ggggagcta	a gggagtaaga	ı ctaagtggaa	agagaagtaa	gaagtagaac	360
atgacgatgg agaggata					420
aaagatgagg catagaaa					480
gaggcatgtt acagagaa	a gagatcaag	a gagatcaaaa	a gacaggcca	c aaagacaaga	540
cggaggagga gaacgaaa	aa gaagtcaga	a gaaaacaaa	a aacgagaga	a taacagaaat	600
caacacagca acaagaga	gc agacaaggc	a agagcaaaa	g aaacacaag	c aacagagaga	660
agccaaacga aaaaaaag	aa aagggagac	a gcagacgaa	a gagaccaag	c gacaccgaca	720
gatggaacgc aaaagaga	ac agcacagag	a ggaaggaag	g aaagaaatc	g aaaccagggc	780
gaagcgggcg agaaacaa	ga aaagagagg	c caggg			815

<210> 112 <211> 736 <212> DNA

<213> Homo sapien

<220>

<220>
<221> misc_feature
<222> (439)..(439)
<223> a, c, g or t

<400> 112	gagaatcgct	tgaacacggg	aggcggaggt	tgcagtgagc	cgagatcgcg	60
	ccagcctgga					120
						180
	ttggaagttg					240
	cagctccatt					
ttaaattcca	ttaaatttaa	ttctcagatt	tatttggaga	aggaaggtaa	gattttctta	300
ttagaacccg	cacacttgga	acctgggtta	agcgcttggg	cggtaactca	tgggctcata	360
ggctggttcc	cgtgggtggt	gaacattggc	ttattccggc	ttccacaatt	ctcccactac	420
aacattccgg	gaagcaacnt	cactggaaga	tgaataatgg	cagatgtgtg	aattggagca	480
acactctact	tcattggact	cagtggactc	ctagatgcgc	aaaacatcac	aagaaggatg	540
ggggccagag	atctacagat	ggtcatcata	caacgagaag	cattacaagt	gagaactatc	600
cacgaacgaa	caaagagctg	aaatgagata	ctgaaggtca	tatatgcacc	ggataacgga	660
cagtagacaa	tagactccct	ttggagagat	ctggaccaga	gatggatatc	aatgatatgg	720
caatatgctg	gatcca		-		-	736
-						
<210> 113						
<211> 588						
	o sapien					
<400> 113				aggagettt	++++++++	60
	gcctatgtga					
tttttttt	ttttaagag	gggtttaaaa	aatttttctt	tttggaaaat	tttctggaaa	120
gtatttaaaa	cccctttgg	ggaaggaaaa	aaaccaaccc	aatgtgaaat	tttaggaaaa	180
aaaagtgcga	aaagcagcgt	gcgaaaactc	cgtgcgccct	ttccacccca	gggggcccac	240
gcccggaaat	taacgcgtgg	gggataacca	gggccccata	aggcgtgtgt	tcccgcggtg	300
tgtgacaagt	gtggatatct	ccgcgcccac	caattctccc	caacaacaca	ttcccgaaac	360
aaaacgggaa	a gagaggaaaa	aaaaaaaca	aaaaaaaaa	aacagagtac	aaatataaca	420
acgcaaacg	atactcgggg	cccaagcgga	ggtgaaggtc	agaagaataa	aaagagagaa	480
gcgagcgag	c ageggtegag	cgagagaaaa	gcagacacaa	acaacagcca	accaaggaag	540

588

 $\label{eq:constraints} (-1) \partial_{x} (u_{x} - u_{y}) \partial_{x} (u_{x} - u_{y}) = (-1) \partial_{x} (u_{x} - u_{y}) \partial_{x} (u_{y} - u_{y}) \partial_{x} ($

ggagcagaag aaaacgaaag aggagaaaca aaggcaaaga aagacaaa

<210> 114 <211> 1098 <212> DNA <213> Homo sapien

81

<220> <221> misc_feature <222> (327)..(327) <223> a, c, g or t <220> <221> misc_feature <222> (342)..(342) <223> a, c, g or t <220> <221> misc_feature <222> (471)..(471) <223> a, c, g or t <400> 114 ccggcccggg ccggtggcgc ttcgggagcc gcgggttatg tttgcagaca tggacaagtc 60 caatgaacca caccactatc acaaaccagg tcccgaagag atgggcacga gaaatgggta 120 ctcaagaaga ccccgattca tcgaatgagt actgacattc ttcgtctaca cgggcggttg 180 cgaccaccaa aggttccctg gaggagaaca tggcgcattc tgcctcgtca cggcacatgc 240 gaaggatggg ccttagcagg caagatgcac ggccgagagc gaagtgccga gaggccagtg 300 ggatgeteet gttgeeggag tgeetantea atggeeegte gnteaaageg ecaatgggae 360 420 ctttggccgt acagttgctc cacgcccgaa gcttggctgt aagtcagtgg ntcatagcat 480 gtttccctgt gtgaaagttg ttagtccgct tcacaagttc catcacaaca taccggagca 540 tggcgcatct tgagtaacgg cctctgtgat gaggcttagc atcagctatt tgcgtgctga 600 ggaaaacata totggaotgo tggtgoatao oggoaotato gaaagaotga caotgaaaag 660 720 caacagactg acatggccac aacactaccg gaacagccct agcgcatgcg ataaaggtat 780 catagggtat cgtcaacagc atgcatgcgt gaaccatgga tataccatat aactggaata atggtgaaac acaatacaat ggggaattta actccagatc acgacactaa cctgggacac 840 cgaaggaata cggagatttt aactaccaat cacatggttg aacccataga aaaggcaaca 900 tgaagcaagc aagactggcc ataccaacca acacaggaaa cagggcgccc atggcggaac 960 aacaaagggg ccacaaccac agcacacacg acaaccaggc gcaccaccac gggccggtca 1020 taaaccacgg acccatacag caggccaccc cgcgtgaatc aacatggcaa tcaagggaca 1080

caacagacac acacaacc

1098

<210> 115

<211> 816						
<212> DNA						
<213> Hom	o sapien					
<400> 115						
gagaactagt	ctcgagtttt	tatttattgt	tttttagggt	gtttctcttt	ttttggggaa	60
eegettettg	ctgtgtccgc	ccaggettga	actgcatgtg	ttgcgatctt	gggcttcgtt	120
aastaattat	+~~+ <i>a</i> +++ <i>a</i> +	~~~+++~~				
gcaccgctgc	tgctctttct	gggttteage	ggggtgtcta	grggrccrtc	tacccctcct	180
tataaataaa	ttagtgtttc	cataattatt	attataccac	caccaccat	aaatatatt	240
9904449343	0003030000	0303900300	aregeeeee	cagegeeege	gggtetattt	240
tttatcattc	ttgtgttttc	acgattaaca	aaacagtgtt	tttcccccct	ctattagatc	300
		_	J J		3333	
ctggtctgtt	ttccggaagc	tccgtgcacg	tctgtattac	agcctcgcag	agtctccaaa	360
cccactctcc	aagtgcggca	gcgtgaatta	taggcgaggc	tatgtgtagc	acgcctacca	420
eggageeetg	cacacagatg	grggrratet	acccctcgtg	tgcacaccat	gtttttgtgg	480
cacctcacta	agettattet	aattaacaaa	aggtagtatt	aataaaaatt	201012000	540
ogcoccyccy	agcttattgt	ggccaacaga	aggegeeeee	ggccgcaacc	agegeacaac	540
gcttggagct	ctaacctttt	ttatataata	acacccotoo	tattttgcat	otgaagagaa	600
					gegaagagaa	000
cgggtccatt	ataaaggcga	gagaaaagta	agacctgttt	gtcactattt	ctgtttccat	660
			_			
gtgtaaccgt	tgttttttc	cccccaaaat	taaccgactt	tttttacttt	tgcaaaaaaa	720
aaaaaaaag	gtcttggggt	aaccacaggg	ccaaacgggg	tccccgggga	aaatttttt	780
20000000	2.25 to 2.25					
accgggacac	aattccccaa	cacttagaaa	aaaaac			816

<210> 116

<211> 33

<212> PRT

<213> Homo sapien

<400> 116

Met Leu Val Ala Asp Phe Phe Phe Thr Gln Asn Lys Val Gly Arg Cys 5

Thr Cys His Val Glu Tyr Leu Lys Lys Thr Lys Cys Leu Phe Lys Arg 25

Glu

<210> 117 <211> 18

<212> PRT

<213> Homo sapien

83

<400> 117

Met Ile Leu Asp Ile Cys Leu Tyr Ala Ile Met Ala Tyr Val Met Ile 1 5 10 15

Met Asn

<210> 118

<211> 52

<212> PRT

<213> Homo sapien

<400> 118

Met Thr His Val Cys Ala Thr Ala Leu Gln Pro Gly Arg Gln Ser Glu
1 5 10 15

Thr Pro Ser Gln Lys Thr Lys Thr Lys Gln Asn Glu Thr Ile Asn Lys
20 25 30

Val Thr Asp Asn Leu Gln Asn Gly Arg Lys Tyr Leu Pro Thr Met His 35 40 45

Pro Thr Lys Ile 50

<210> 119

<211> 192

<212> PRT

<213> Homo sapien

<400> 119

Lys Ala Asn Asn Ala Gln Ser Asn Arg Gln Pro Thr Glu Trp Ala Lys
1 5 10 15

Ile Phe Ala Asn Tyr Ala Ser Asn Lys Asp Leu Ile Ser Arg Ile Tyr 20 25 30

Lys Lys Leu Gln Lys Ile Tyr Lys Arg Lys Thr Ser Asn Pro Leu Lys 35 40 45

Arg Lys Trp Ala Lys Asn Met Asn His Ile Ser Lys Glu Asp Ile Tyr 50 55 60

Ala Phe Lys Lys His Ile Lys Asn His Ser Ser Ser Leu Ile Thr Thr 65 70 75 80

WO 02/064788

84

PCT/US01/45080

Glu Val His Tyr His Leu Thr Pro Val Arg Met Ala Val Thr Arg Lys
85 90 95

Ser Ile Asn Asn Arg Cys Trp Gln Gly Cys Gly Glu Asn Gly Thr Ile 100 \$105\$

His Cys Trp Trp Glu Cys Lys Leu Val Ala Pro Leu Trp Lys Ala Gly
115 120 125

Trp Ala Phe Leu Lys Glu Leu Arg Ile Thr Ile Gln Leu Ser Asn Pro 130 135 140

Ile Ile Pro Lys Gly Met His Ile Pro Arg Lys Tyr Lys Ser Leu Tyr 145 150 155 160

His Lys Gly Thr Cys Thr Cys Met Ser Ile Ala Ala Leu Phe Thr Ile
165 170 175

Ala Lys Ile Arg Asn Gln Pro Lys Cys Ala Leu Ile Ile Gly Trp Leu 180 185 190

<210> 120

<211> 99

<212> PRT

<213> Homo sapien

<400> 120

Met Ser His Ile Cys Ile Tyr Thr Lys Lys Leu Gly Arg Arg Thr Tyr 1 5 10 15

Tyr Ser Pro Pro Thr Ser Gly Val Arg Gln Arg Gly Glu Arg Glu Gly 20 25 30

Thr Pro His Gln Arg Val Pro Thr Pro Gly Glu Asp Thr Glu Arg Ile 35 40 45

Pro Thr Pro Glu Asp Arg Gln Pro Arg Arg His Ile Tyr Val Gly His 50 55 60

Asn Lys Asp Thr Gln Glu Asn Ala His His Ser Ser Asn Tyr Ala Arg 65 70 75 80

Arg Arg Arg Lys Lys Glu Pro Ser Gly Arg Thr Gly Glu Thr Asn 85 90 95

Leu Arg His

<210> 121

<211> 21 <212> PRT <213> Homo sapien

<400> 121

Met Gly Gln Asn Trp Met Asp Leu Leu Lys Gly Asn Ile Glu Gln Asp 10

Asp Glu Leu Ser Lys 20

<210> 122

<211> 79

<212> PRT

<213> Homo sapien

<400> 122

Met Phe Leu Val Ser Ser Phe Asp Ile Val Leu Phe Ser Cys Leu Phe

Leu Arg Pro Leu Val Leu Cys Cys Pro Phe Ser Pro Ser Ser Tyr Val 25

Gly Leu Cys Gly Val Tyr Phe Pro Val Leu Phe Leu Thr Ile Arg Phe 40

Val Phe Phe Phe Phe Val Ser Pro Phe Ser Cys Phe Leu Phe Leu 55 60

Arg Leu Cys Ser Ala Val Val Pro Leu Val Gly Ile Val Cys Leu 70 65

<210> 123 <211> 27

<212> PRT

<213> Homo sapien

<400> 123

Met Val Phe Lys Pro Val His Asn Thr Val Leu Gln Phe Ser Glu Leu 10 5

Pro Pro Thr Gly Ile Ile Pro Gln Tyr Pro

WO 02/064788

86

20

25

<210> 124 <211> 54

<212> PRT <213> Homo sapien

<400> 124

Met Phe Arg Pro Gly Phe Gly Tyr Tyr Ile Asn Pro Pro Gly Pro Pro 5 10

Pro Asn Pro Ala Ser Val Asn Arg Ala Asn Thr Leu Glu Asp Arg Asp

Lys Asn Phe Glu His Leu Phe Gly Gln Leu Lys Glu Phe Leu Phe 40

Pro His Thr Ser Pro Gln 50

<210> 125 <211> 91

<212> PRT

<213> Homo sapien

<400> 125

Met Cys Phe Ser Val Thr Phe Ser Ser Ser Val Gly Leu Ser Phe Cys 10

Val Ile Ser Ser Phe Leu Leu Ser Cys Cys Ser Leu Ser Ser Trp Leu 20 25

Leu Ser Val Phe Ser Thr Arg Cys Cys Leu Glu Ser Val Gly Ser Gly

Leu Leu Leu Ala Phe Trp Thr Gly Pro Asp Thr Gln Leu His Pro Gly

Thr Ser Leu Trp Pro Arg Thr Thr Pro Arg Leu Leu Gln Glu Ala Leu 70

Pro Asn Leu Gln Val Asn Arg Phe Arg Asn Ser 85

<210> 126 <211> 53

PCT/US01/45080 WO 02/064788

87

<212> PRT

<213> Homo sapien

<400> 126

Met Leu Phe Lys Pro Leu Gly Lys Cys Ile Ser His Leu Thr Leu His

Glu Leu Leu Gln Gly Leu Gln Gly Leu Thr Leu Leu Pro Pro Gly Ser 25

Ser Glu Arg Pro Val Thr Val Val Leu Gln Asn Gln Val Thr Cys Leu 40 35

Gly Gly Phe Phe Pro 50

<210> 127

<211> 37 <212> PRT <213> Homo sapien

<400> 127

Met Leu Leu Glu Arg Arg Ser Val Met Asp Trp Ser Arg Pro Arg Tyr 10

Phe Leu Tyr Pro Asp Ile Asn Leu Met Cys Cys Asn Leu Phe Asp Met 25 20

Ile Ser Tyr Lys Ile 35

<210> 128

<211> 50

<212> PRT

<213> Homo sapien

<400> 128

Met Tyr His Arg Glu Ile Val Pro Val Tyr Glu Val Leu Ser Val Ile 5

Thr Gly Leu Gln Ile Gln Val Phe Ser Gly Lys Glu Ala Asp Ser Val 20

Ile Lys Arg Ser Ile Gly Trp Gly Pro Phe Phe Lys Pro Arg Cys Tyr 40 35

Agriculture with a second control of the control of

WO 02/064788

88

Asn Pro 50

<210> 129 <211> 26 <212> PRT

<213> Homo sapien

<400> 129

Met Ala Arg Pro Gly Cys Arg Ile Pro Ile Gly Tyr Leu Pro Cys Ile 10

Ala Val Leu Phe Tyr Gly Phe Leu Val Leu 20

<210> 130

<211> 68 <212> PRT <213> Homo sapien

<400> 130 ... -

Met Thr Ser Gln Gly Leu Ser Leu Leu Ser Gln Ser Gly Phe Phe Leu 10

Leu Phe Leu Ile Glu Ile Ser Leu Ala Leu Leu Pro Lys Leu Ser Arg 25 20

Thr Pro Gly Pro Gln Ala Ile Pro Arg Cys Pro Arg Ala Leu Pro Pro 35 40

Gln Ser Cys Trp Gly Leu Met Gly Val Ser His His Ser Gln Pro Gly 55

Lys Ser Val Ser 65

<210> 131

<211> 86 <212> PRT

<213> Homo sapien

<400> 131

Met Arg Met Trp Tyr Ser Arg Gly Thr Tyr Ser His His Ile Thr His

Leu Val Ala His Thr Pro Gln Glu Ala Ser Ala Phe Gly Arg Gly Gly 20 25

and the contract of the contra

89

Ser Leu Ile Phe Tyr Lys Pro Val Gly Asp Ile Ser Arg Cys Gly Ala 40

His Ile Ser Ala Val Cys Ser Ala Val Val Cys Glu Asn Val Trp Tyr 55

Ile Ser Arg Leu Ser Pro Asn Ser Pro Pro His Lys Ile Arg Arg Thr 65 70

Thr Lys Lys Gly Gly Gly 85

<210> 132

<211> 111
<212> PRT
<213> Homo sapien

<400> 132

Met Ile Ser Gly Arg Glu Asn Val Lys Lys Asn Ile Asn Glu Ala Arg 5

Gly Gly Arg Arg Ile Lys Leu Arg Gly Gly Ser Thr Ile Glu Ala Pro

Lys Met Tyr Pro Ala Gly Val Val Ala Ala Pro Leu Phe Val Val Val 40

Ile Ser Pro Gly Leu Pro Thr His Ile Ser Pro Pro His Asn Gln Leu 55

Asp Arg Thr Gln Thr Thr Gln Asn Thr Thr Lys Gln Thr Thr Ser Lys 70

Lys Asp Glu Pro Asn Gln Arg His Arg Asn Thr Thr Asn His Lys Thr 85

Thr His Gln Gln Asn His Thr Thr Pro His Pro Tyr Arg Asn Lys 105

<210> 133

<211> 36 <212> PRT

<213> Homo sapien

<400> 133

PCT/US01/45080

in the what was taken to surger and in the case

Met Thr Phe Gln Gln Cys Ala His Thr Leu Ala Glu Ser Ile Trp Ile

Phe Ser Asp Val Gln Gly Phe Ala Thr Pro His Leu Phe Leu Arg Ser 25

Tyr Leu Ala Met 35

<210> 134 <211> 35 <212> PRT

<213> Homo sapien

<400> 134

Met Leu His Val Asn Arg Val Leu Cys Leu Val Ala Ser Pro Gly His 10

Glu Arg Gln Ser Glu Thr Leu Ser Gln Lys Gln Lys Lys Lys Phe Leu 20

Leu Leu Pro 35

<210> 135

<211> 94

<212> PRT <213> Homo sapien

<400> 135

His Pro His Thr Arg Leu Asp Val Cys Val Cys Leu Cys Val Cys Met 5

Cys Val Cys Met Cys Val Glu Thr Gly Phe Arg His Val Ala Arg Val 25 20

Cys Val Cys Val Cys Val Cys Val Cys Val Cys Val Cys Arg Asp Trp

Val Ser Pro Cys Ala Gln Val Cys Ala Cys Val Cys Val Cys 50

Val Gly Thr Gly Phe His His Val Ala Gln Val Cys Val Cys 70

PCT/US01/45080 WO 02/064788

91

Arg Asp Trp Val Ser Pro Cys Cys Pro Gly Val Cys Val Cys 85

<210> 136

<211> 66

<212> PRT <213> Homo sapien

<400> 136

Met Leu Val Gly Trp Phe Phe Val Phe Val Leu Val Cys Gly Glu Thr

Gly Phe Cys Cys Phe Pro Gly Tyr Ser Lys Val Leu Gly Ser Ala Cys 25

Ile Ser Leu Pro Gly Ser Trp Asp Tyr Arg Arg Glu Pro Leu Cys Pro 35 40

Ala Leu Arg Asn Asn Phe Leu His Leu His Ser Ser Asp Ser Trp Phe 50

Val Pro 65

<210> 137

<211> 137

<212> PRT

<213> Homo sapien

<400> 137

Met Asp Val Ala Asp Glu Val Ile Leu Val Ile Glu Leu Gln Lys Leu

Leu Val Asp Phe Phe Phe Phe Phe Phe Phe Trp Lys Arg Phe Leu

Pro Leu Ser Pro Gly Trp Leu Arg Gly Cys Leu Gly Leu Asp Pro Arg 40 35

Pro Pro Gly Ala Val Ile Ser Leu Pro His Phe Pro Leu Leu Gly Leu 55

Arg Ala Cys Thr Thr Thr Pro Ser Tyr Phe Trp Tyr Phe Ile Ala Glu

Thr Gly Phe Pro Ser Val Gly Arg Ala Trp Phe Ser Asn Phe Pro Thr

92

85

90

95

in the second of the control of the second of the second

Leu Lys Leu Thr Ser Ala Leu Leu Gly Pro Ser Gln Ser Cys Val Gly 100

Leu Pro Gly Val Glu Pro Arg Pro Trp Pro Pro Ile Phe Pro Leu Ser 120

Ile Asn Ser Asn Ser Trp Pro Ser Leu 130

<210> 138

<211> 61

<212> PRT

<213> Homo sapien

<400> 138

Met Asp His Glu Leu Pro Pro Asp Phe Ile Val Gly Gly Leu Pro Leu 10

Lys Lys Leu Gln Pro Thr Gln Pro Phe Tyr Lys Thr Cys Leu Val Leu 20 25 30

Pro Leu Arg Ser Phe Pro Ser Asn Leu Cys Phe Ser Pro Cys Ser Pro 35

Pro Tyr Glu Phe Ser Asn Phe Ser Ser Ser Pro Val 55 50

<210> 139

<211> 41

<212> PRT <213> Homo sapien

Met Pro Pro Gly Ile Phe Ser Pro Ser Phe Pro Phe Phe Ser Leu Ser 5

His Ser Glu Ala Val Gly Ser Phe Asp Glu His Ile Pro Ser Thr Gly 25

Gln Glu Ser Cys Cys Leu Ser Ile Trp

<210> 140

<211> 39

93

<212> PRT

<213> Homo sapien

<400> 140

Met Leu His Thr Ala Gly Cys Arg Asn Ala Ser Arg Gly Gly Ala Asp 1 5 10 15

Thr Phe Arg Val Asp Arg Glu Arg Gly Leu Pro His Thr Asp Ser Gly 20 25 30

Lys Ser Gln Gln Ser His Met 35

<210> 141

<211> 51

<212> PRT

<213> Homo sapien

<400> 141

Met Leu Pro Cys Arg Lys Ile Pro Ile Thr His His Val Ser Gln Cys
1 5 10 15

Cys Val Trp Arg Pro Gly Phe Val Pro Leu Pro Arg Ile Ala Val Ala 20 25 30

Asp Ile His Arg Asp Pro His Met Asp Val Cys Met Lys Ile Pro Leu 35 40 45

His Arg His

<210> 142

<211> 40

<212> PRT

<213> Homo sapien

<400> 142

Met Leu Ala Asp Leu Ala Leu Ser Ser Ala Thr Ser Ser Thr Pro Val

Ser Glu Ala Arg Asn Leu His Cys Ser Ser Glu Leu Pro Gln Asn Asp 20 25 30

1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,19

Val Leu Leu Ser Lys Glu Asn Ser 35 40 WO 02/064788

the second section of the second

<210> 143

<211> 192

<212> PRT

<213> Homo sapien

<400> 143

Pro Gln Lys Arg Lys Arg Gly Ala Glu Val Leu Thr Ala Gln Phe Val 1 5 10 15

Gln Lys Thr Lys Leu Asp Arg Lys Asn Gln Glu Ala Pro Ile Ser Lys 20 25 30

Asp Val Pro Val Pro Thr Asn Ala Lys Arg Ala Arg Lys Gln Glu Lys 35 40 45

Ser Pro Val Lys Thr Val Pro Arg Ala Lys Pro Pro Val Lys Lys Ser 50 55 60

Pro Gln Lys Gln Arg Val Asn Ile Val Lys Gly Asn Glu Asn Pro Arg 65 70 75 80

Asn Arg Lys Gln Leu Gln Pro Val Lys Gly Glu Leu Ala Ser Lys Leu 85 90 95

Gln Ser Glu Ile Ser Arg Gly Cys Gln Glu Asp Gly Ile Ser Ile Asn 100 \$105\$ 110

Ser Val Gln Pro Glu Asn Thr Thr Ala Ala His Asn Asp Leu Pro Glu 115 120 125

Asn Ser Ile Val Asn Tyr Asp Ser Gln Ala Leu Asn Met Leu Ala Asp 130 · 135 140

Leu Ala Leu Ser Ser Ala Thr Ser Ser Thr Pro Val Ser Glu Ala Arg 145 150 155 160

Asn Leu His Cys Ser Ser Glu Leu Pro Gln Asn Asp Val Leu Leu Ser 165 170 175

Lys Glu Asn Ser Leu Arg Gly Thr Ser Asp His Glu Tyr His Arg Gly 180 185 190

and the first of the state of the

<210> 144

<211> 24

<212> PRT

<213> Homo sapien

PCT/US01/45080 WO 02/064788

95

<400> 144

Met Leu Pro Leu Gly Phe Leu Phe Gln Gln His Gly Val Lys Arg Arg 5

Ile Asn Leu Leu Cys Leu Leu Lys 20

<210> 145

<211> 733 <212> PRT

<213> Homo sapien

<400> 145

Met Val Met Lys Ala Ser Val Asp Asp Asp Ser Gly Trp Glu Leu

Ser Met Pro Glu Lys Met Glu Lys Ser Asn Thr Asn Trp Val Asp Ile

Thr Gln Asp Phe Glu Glu Ala Cys Arg Glu Leu Lys Leu Gly Glu Leu

Leu His Asp Lys Leu Phe Gly Leu Phe Glu Ala Met Ser Ala Ile Glu 55

Met Met Asp Pro Lys Met Asp Ala Gly Met Ile Gly Asn Gln Val Asn 70

Arg Lys Val Leu Asn Phe Glu Gln Ala Ile Lys Asp Gly Thr Ile Lys

Ile Lys Asp Leu Thr Leu Pro Glu Leu Ile Gly Ile Met Asp Thr Cys

Phe Cys Cys Leu Ile Thr Trp Leu Glu Gly His Ser Leu Ala Gln Thr 120 115

Val Phe Thr Cys Leu Tyr Ile His Asn Pro Asp Phe Ile Glu Asp Pro 135

Ala Met Lys Ala Phe Ala Leu Gly Ile Leu Lys Ile Cys Asp Ile Ala 155

Arg Glu Lys Val Asn Lys Ala Ala Val Phe Glu Glu Glu Asp Phe Gln

96

165

170

175

Ser Met Thr Tyr Gly Phe Lys Met Ala Asn Ser Val Thr Asp Leu Arg 180 185 190

Val Thr Gly Met Leu Lys Asp Val Glu Asp Asp Met Gln Arg Arg Val 195 200 205

Lys Ser Thr Arg Ser Arg Gln Gly Glu Glu Arg Asp Pro Glu Val Glu 210 215 220 .

Leu Glu His Gln Gln Cys Leu Ala Val Phe Ser Arg Val Lys Phe Thr 225 230 235 240

Arg Val Leu Leu Thr Val Leu Ile Ala Phe Thr Lys Lys Glu Thr Ser 245 250 255

Ala Val Ala Glu Ala Gln Lys Leu Met Val Gln Ala Ala Asp Leu Leu 260 265 270

Ser Ala Ile His Asn Ser Leu His His Gly Ile Gln Ala Gln Asn Asp 275 280 285

Thr Thr Lys Gly Asp His Pro Ile Met Met Gly Phe Glu Pro Leu Val 290 295 300

Asn Gln Arg Leu Leu Pro Pro Thr Phe Pro Arg Tyr Ala Lys Ile Ile 305 310 315 320

Lys Arg Glu Glu Met Val Asn Tyr Phe Ala Arg Leu Ile Asp Arg Ile 325 330 335

Lys Thr Val Cys Glu Val Val Asn Leu Thr Asn Leu His Cys Ile Leu 340 345 350

Asp Phe Phe Cys Glu Phe Ser Glu Gln Ser Pro Cys Val Leu Ser Arg

Ser Leu Leu Gln Thr Thr Phe Leu Val Asp Asn Lys Lys Val Phe Gly 370 375 380

Thr His Leu Met Gln Asp Met Val Lys Asp Ala Leu Arg Ser Phe Val 385 390 395 400

97

Asp Pro Pro Val Leu Ser Pro Lys Cys Tyr Leu Tyr Asn Asn His Gln 405 410 415

Ala Lys Asp Cys Ile Asp Ser Phe Val Thr His Cys Val Arg Pro Phe 420 425 430

Cys Ser Leu Ile Gln Ile His Gly His Asn Arg Ala Arg Gln Arg Asp 435 440 445

Lys Leu Gly His Ile Leu Glu Glu Phe Ala Thr Leu Gln Asp Glu Phe 450 455 460

Met Thr Phe Tyr Phe Asn Arg Ala Glu Lys Val Asp Ala Ala Leu His 465 470 475 480

Thr Met Leu Leu Lys Gln Glu Pro Gln Arg Gln His Leu Ala Cys Leu 485 490 495

Gly Thr Trp Val Leu Tyr His Asn Leu Arg Ile Met Ile Gln Tyr Leu 500 505 510

Leu Ser Gly Phe Glu Leu Glu Leu Tyr Ser Met His Glu Tyr Tyr Tyr 515 520 520 525

Ile Tyr Trp Tyr Leu Ser Glu Phe Leu Tyr Ala Trp Leu Met Ser Thr 530 540

Leu Ser Arg Ala Asp Gly Ser Gln Met Ala Glu Glu Arg Ile Met Glu 545 550 555 560

Glu Gln Gln Lys Gly Arg Ser Ser Lys Lys Thr Lys Lys Lys Lys 575 575

Val Arg Pro Leu Ser Arg Glu Ile Thr Met Ser Gln Ala Tyr Gln Asn 580 585 590

Met Cys Ala Gly Met Phe Lys Thr Met Val Ala Phe Asp Met Asp Gly 595 600 605

Lys Val Arg Lys Pro Lys Phe Glu Leu Asp Ser Glu Gln Val Arg Tyr 610 615 620

Glu His Arg Phe Ala Pro Phe Asn Ser Val Met Thr Pro Pro Pro Val 625 630 630 635 640

and the second s

His Tyr Leu Gln Phe Lys Glu Met Ser Asp Leu Asn Lys Tyr Ser Pro 645 650 655

Pro Pro Gln Ser Pro Glu Leu Tyr Val Ala Ala Ser Lys His Phe Gln 660 665 670

Gln Ala Lys Met Ile Leu Glu Asn Ile Pro Asn Pro Asp His Glu Val 675 680 685

Asn Arg Ile Leu Lys Val Ala Lys Pro Asn Phe Val Val Met Lys Leu 690 695 700

Leu Ala Gly Gly His Lys Lys Glu Ser Lys Val Pro Pro Glu Phe Asp 705 710 715 720

Phe Ser Ala His Lys Tyr Phe Pro Val Val Lys Leu Val 725 730

<210> 146 - - -

<211> 177

<212> PRT

<213> Homo sapien

<400> 146

Met Phe Phe Cys Val Gly Gly Tyr His Leu Val Phe Ser Arg Ser Ala 1 5 10 15

Phe Phe Val Arg Gly Arg Cys Gly Gly Phe Ser Arg Arg Leu Leu Ala 20 25 30

Leu Ser Val Ala Gly Leu Gly Val Gly Leu Ser Gly Val Phe Met Val 35 40 45

Asp Ala Gly Trp Phe Ile Arg Ser Ser Gly Leu Leu Phe Phe Cys 50 55 60

Leu Phe Ser Ser Arg Leu Phe Ser Pro Ser Cys Ser Leu Arg Pro Arg 65 70 75 80

Ser Leu Cys Ala Ala Val Ala Ser His Val Cys Pro Arg Cys
85 90 95

Val Phe Trp Ser Phe Ser Val Leu Ala Met Cys Leu Cys Val Cys Val
100 105 110

PCT/US01/45080 WO 02/064788

99

Leu Leu Leu Trp Ala Ala Pro Arg Val Val Thr Val Gly Ser 120 115

Leu Ser Pro Leu Cys Cys Cys Gly Ile Cys Glu Ala Gly Asn His Phe 135

Thr Pro Gly Asn His Ala Met Ser Pro Gly Tyr Pro Gln Leu Ile Gln 150

Thr Ser Lys Phe Trp Gly Gln Val Ile Leu Arg Pro Pro Arg Trp Phe 170

Phe

<210> 147

<211> 56

<212> PRT <213> Homo sapien

<400> 147

Met Gln Asp Pro Val Leu Ser Asp Thr Arg Ser Ser Leu Gly Gly Val 10 5

Leu Gly Leu Leu Thr His Asn Phe Phe Thr Leu Val Leu Phe Trp Ser 25

Leu Ile Leu Ala Arg Asn Gln Pro Phe Gln Phe Leu Phe Lys Pro Lys 40

Lys Pro Leu Leu Val Gln Pro Gly 50

<210> 148

<211> 42 <212> PRT

<213> Homo sapien

<400> 148

Met Thr Asn Gly Arg Met Gly Leu Arg Cys Met Pro Ser Gly Ala Ser

Val Met Asp Ala Gly Arg Arg Ala Gly Thr Ala Asp Phe Gln Ser Lys 25 20

100

Asp Ile Tyr Leu Leu Tyr His Ile Ala Ser 35

<210> 149

<211> 27

<212> PRT

<213> Homo sapien

<400> 149

Met Cys Val Trp Cys Val Trp Tyr Val Val Tyr Val Val Cys Gly Val

Cys Arg Val Cys Gly Gly Tyr Thr Thr Leu Tyr 20

<210> 150 <211> 186

<212> PRT

<213> Homo sapien

<400> 150

Lys Ile Phe Leu Lys Gln Ile Lys Asp Ile Asn Lys Ala Lys Ser Ile

Tyr Leu Gln Cys Ile Tyr Leu Thr Lys Asp Ser Tyr Pro Glu Tyr Ile 20

Lys Ser Pro Tyr Lys Ser Met Thr Lys Asp Ile Ala Lys Thr Asn Lys 40

Thr Arg Cys Thr Met Ala Ser Gln His Ile Leu Lys Arg Phe Ser Ile

Ser Leu Val Ile Arg Glu Met Gln Lys Glu Thr Ile Met Arg Gly His 70

His Met Ile Thr Thr Leu Ala Lys Ile Lys Asn Thr Gln Asn Ala Lys 85 90

Cys Trp Ala Glu Cys Arg Glu Thr Gly Thr Arg Val His Cys Trp Trp 100 105

Glu Cys Lys Ile Val His Leu Leu Trp Lys Arg Val Trp Glu Phe Leu

Ala Lys Leu Asn Val Glu Leu Pro Tyr Asp Pro Ala Ile Pro Leu Leu

101

130 135 140

Cys Ile Asp Pro Arg Glu Leu Lys Thr Tyr Gly Gln Asn Thr Thr Cys 145 150 155 160

Ser Ala Met Phe Ile Met Thr Leu Phe Met Ile Ala Lys Lys Trp Lys 165 170 175

Gln Pro Lys Cys Pro Ser Arg Cys Pro Ser 180 185

<210> 151

<211> 201

<212> PRT

<213> Homo sapien

<400> 151

Met Pro Ser Pro Ser Arg Gly Val Ser Ile Leu Arg Ala Leu Pro Cys

Ser Leu Val Arg Val Arg Gly Cys Phe Val Arg Leu Gly Ser Leu Pro $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Cys Pro Val Leu Val Arg Cys Tyr Phe Leu Phe Arg Leu Pro Phe Val

Leu Ser Ala Ala Pro Gly Leu Pro Arg Leu Ser Pro Pro Ala Leu Ser 50 55 60

Pro Pro Cys Pro Leu Arg Pro Ala Pro Ser Phe Leu Val Leu Leu Val 65 70 75 80

Val Asp Val Trp Gly Asn Cys Ala Glu Ala Arg Asn Asn Pro Gln Cys 85 90 95

Leu Ala Thr Thr Thr Ala Lys His Thr Pro Phe Val Thr Pro Met Glu
100 105 110

Val Tyr Leu Leu Leu Lys Ala Leu Leu Arg Ser Arg Lys Pro Phe Pro 115 120 125

Phe Pro Arg Gly Gly Pro Lys Leu Leu Gly Gly Pro Phe Pro Asn Gly 130 135 140

Pro Lys Arg Lys Thr Ala Val Ser Arg Val Thr Lys Arg Glu Leu Gly

102

145 150 155 160

Phe Thr Val Arg Val Gly His Asn His Val Trp Ala Cys Arg Gly Asn 165 170

Thr Ala Gln Lys Ser Gly Pro Pro His Thr Pro Lys Trp Glu Lys Pro 185 190

Gln Ala Arg Ala Leu Pro Asn Gly Leu 195 200

<210> 152

<211> 27 <212> PRT <213> Homo sapien

<400> 152

Met Asp Ser Val Val Ala Thr Arg Tyr Phe Leu Gly Gly Pro Ser His 1 5 10 15

Pro Arg Glu Leu Cys Leu Pro Arg Thr Leu Lys

<210> 153

<211> 17

<212> PRT

<213> Homo sapien

<400> 153

Met Phe Asn Lys Val Glu Ser Thr Gly Gln Lys Lys Lys Lys Lys 5 10

Lys

<210> 154 <211> 29

<212> PRT

<213> Homo sapien

<400> 154

Met Val Val Pro Gly Lys Leu Cys Lys Gly Leu Pro Tyr Lys Thr Ala 5 10

Ile Leu Thr Phe Cys Pro Thr Cys Thr Tyr Gly Ser Tyr 25

103

<210> 155 <211> 53 <212> PRT <213> Homo sapien

<400> 155

Met Ile Val Leu Leu His Ser Ser Leu Gly Asp Thr Ala Ser Ser Cys
1 10 15

Phe Gln Thr Thr Thr Arg Lys Gln Asn Lys Lys Lys Lys Lys Lys Lys 20 25 30

Lys Lys Arg Leu Gly Tyr Trp Ala Ser Ser Gly Gly Phe Phe Ser 35 40 45

Arg Pro Ser Pro Ile 50

<210> 156

<211> 81

<212> PRT

<213> Homo sapien

<400> 156

Trp Lys Gln Glu Leu Ala Val Ser Pro Arg Leu Glu Cys Ser Ser Thr 1 5 10 10

Ile Ile Ala His Ser Ser Leu Asp Leu Leu Cys Ala Asn Leu Pro Pro 20 25 30

Ala Ser Gly Ser Ala Val Ala Glu Thr Thr Gly Ala Cys Tyr His Thr 35 40 45

Trp Leu Ile Phe Lys Lys Met Phe Leu Glu Met Gly Ser His Asp Val

Ala Arg Ala Asp Leu Glu Leu Leu Ala Ser Asn Asn Tyr Ser Thr Ser 65 70 75 80

.

Ala

<210> 157

<211> 71

<212> PRT

<213> Homo sapien

WO 02/064788

104

<400> 157

Met His Ala Ser Cys Leu Lys Val Lys Asp Glu Gln Arg His His Trp

Thr Lys Leu Ser Trp Phe Ala Met Asn His Leu Ser Glu Gln Ala Asp 25

Asn Thr Pro Arg Tyr Ala Phe Ile Ser Thr Val Gly Thr Tyr Glu His 40

Gly Ile Pro Ile Ser Lys Ile Ser Asp Leu Phe Ser Leu Ser Val Arg 55

Thr Trp Tyr Val His Glu Gln

<210> 158

<211> 108 <212> PRT

<213> Homo sapien

<400> 158

Phe Tyr Leu Phe Met Lys Gln Gly Leu Thr Leu Ser Pro Arg Leu Glu 10

Cys Asn Gly Met Ile Leu Ala His Cys Ser Leu Arg Leu Leu Gly Ser

Ser Asp Ser Leu Ala Ser Ala Ser Ala Val Ala Gly Thr Thr Gly Thr 40

Arg His His Ala Gln Arg Asn Phe Phe Val Phe Leu Val Glu Met Gly

Ser His His Val Ala Thr Arg Leu Val Ser Asn Ile Val Thr Ser Glu 70 75

Ala Asp Pro Thr Cys Pro Ala Ala Ser Arg Arg Val Leu Gly Ile Thr 85 90

Ser Ala Thr Ser His Tyr Ala Trp Thr Ser Ile Val

<210> 159

105

PCT/US01/45080

<211> 279

<212> PRT

<213> Homo sapien

<400> 159

Met Leu Ala Ala Pro Phe Trp Leu Leu Phe Ser Asp Phe Gln Leu Ser 1 5 10 15

Phe Pro Ile Gln Pro His His Thr Thr Gln Ser Cys Lys Cys His Ser 20 25 30

Pro Pro Ser Leu Cys Leu Pro Pro His Pro Ser Pro Leu His Pro Ser 35 40 45

Ser Pro Ser His Pro Arg Pro Ala Arg His Leu Leu Pro Leu Arg His 50 55 60

Pro Ser Thr Pro Pro Ser Pro Thr Ser Leu Pro Ala Leu Pro Ser Leu 65 70 75 80

Ser Pro Leu Ser Ser Ile Pro His His Pro Pro Ser Thr Thr Ala Ala 85 90 95

Ile Gln Leu Pro Pro Thr Pro His His Leu Arg Pro Thr His Asn Tyr

Ser Pro Ile Arg Ser Ser His Ser Thr Pro Ser Pro His Asn Thr Pro 115 120 125

Arg Pro Thr Pro Thr Pro Pro Pro Pro Arg Ile His Tyr Thr Thr Ile 130 135 140

Ser Pro Leu Asn Thr Thr Ser Pro Pro Leu His Ser Thr Leu Ser Ser 145

Pro Pro Pro Leu His Gln Tyr Asn Pro Ser Gln Tyr Ser Tyr Thr Ile 165 170 175

Ile Gln Thr Ala Thr Thr His Pro Gln Leu Ser His Thr Pro Met Arg

Thr Asn Asn His His Ser Ile Leu Tyr Pro Pro Ser Leu Ser Pro Pro 195 200 205

Pro Pro Arg Thr Arg His Thr Pro Pro Pro His His Arg His His Leu

WO 02/064788

106

220

210 215

Leu Leu Tyr Leu Leu Pro Pro Tyr Thr Arg Pro Pro Thr Pro Leu Arg 230 235

Pro His Ser Ser Ser Thr Ile Tyr Thr Pro Pro Ala Tyr Ser Leu Pro 250

Ile Thr Pro Thr Ile Ser Ser Leu Ser Pro Gln Leu Pro Pro Ser His 260 265

Tyr His Leu Thr Thr Gln His 275

<210> 160

<211> 50

<212> PRT <213> Homo sapien

<400> 160

Met Gln Thr Val Gly Phe Ala Gln Asp Phe His Asn Thr Gly Phe Asn 5 10

Tyr Pro Ile Arg Asp Ser Gln Leu Gly Arg Asp Thr Leu Phe Arg Asn 20

Pro Asn Phe Pro Phe Arg Asp Ile Trp Phe Tyr Thr Leu Arg Phe Tyr

Ser Arg 50

<210> 161 <211> 91 <212> PRT

<213> Homo sapien

<400> 161

Met Tyr Asn Ser Tyr Val Ser Trp Gly Pro His Arg Pro Ser Thr Ile

Val Pro Thr Phe Leu Phe Arg Asp Ser Ala Gln Pro Ser Phe Thr Thr 25

Thr Arg Ala Arg Thr Ile His Val Val Ile Ser Leu Ser Leu Ser Asn

107

Arg Gly Ser Thr Phe Ser Gln Lys Thr Phe Leu Ile Thr Arg Leu Thr 55 60 50

His Leu Ile Asn Lys Ala Ala Leu Phe Cys Arg Glu Arg Glu Leu Phe 75 70

Leu Ile Ala Thr Gln Gly Leu Phe Ser Arg Leu 85

<210> 162

<211> 109

<212> PRT

<213> Homo sapien

<400> 162

Met Phe Leu Asn Trp Arg Tyr Gln Tyr His Glu Asn Met Tyr Asn Asp 5

Leu Glu Ile Gln Tyr Leu Cys Met Asp Ile Cys Phe Val Lys Phe Val

Ser Gly Asp Phe Val Glu Arg Glu Arg Asn His Phe Pro His Thr Thr 40

Gly Asn Thr Ala Met Ala Thr Arg Gly Asn Arg His Gln Arg Leu Phe

Phe Phe Val Leu Tyr Met Phe Ser Ser Asp Gly Ser Leu Ala Val Leu 70 75

Pro Gly Trp Ser Ala Val Ala Arg Ser Arg Gly Ser Leu Gln Pro Leu 85

Thr Pro Gly Ser Thr Asp Ser Pro Gly Ser Ala Ser Gln 100 105

<210> 163

<211> 44

<212> PRT <213> Homo sapien

Met Thr Met Gln Ala Thr Pro Thr Leu Ser Ser Pro Met Asn Thr Pro 5 10

WO 02/064788

Pro Gly Leu Arg Val Met Phe Trp Trp Trp Arg Ile Val Glu Ala Gly 20 25 30

Ile Ser Gln Cys Leu Thr His His Gly Lys His Gly 35

<210> 164

<211> 53

<212> PRT

<213> Homo sapien

<400> 164

Ser Glu Thr Asp Gly Gly Arg Pro Pro His Arg Arg Leu Ser Arg Lys 20 25 30

Gln Tyr Thr Arg Gln Leu Asp Pro Pro Trp Lys Arg Pro His His Glu 35 40 45

Ser Val Leu His Cys 50

<210> 165

<211> 60

<212> PRT

<213> Homo sapien ·

<400> 165

Met Asp Pro Leu His Cys Pro Phe Thr Thr Ala Ala Thr Ser Leu Ser 1 10 15

Tyr Thr Leu Thr Pro Thr Cys Gly Tyr His Cys Ser Val Leu His Leu 20 25 30

Cys Asn Phe Val Ile Ser Arg Met Leu Tyr Glu Trp Asn His Thr Glu 35 40 45

Cys Asn Leu Thr Arg Leu Ile Phe Phe His Ser Ala 50 60

<210> 166

<211> 213

<212> PRT

<213> Homo sapien

<400> 166

WO 02/064788

Ser Asn Arg Gly Ile Leu Ser Arg Ile Tyr Lys Lys Pro Leu Lys Thr 1 5 10 15

Gln Ala Ala Lys Glu Gln Met Thr Ala Ile Glu Asn Arg Gln Lys Thr 20 25 30

Ala Arg His Phe Thr Glu Glu Asp Thr Ala Met Ala Asn Ala His Thr 35 40 45

Lys Arg Tyr Ser Thr Ser Leu Ala Ile Glu Met Gln Ile Lys Thr Thr 50 55 60

Cys Gly Ile Ile Thr Thr Ser Met Ala Met Val Lys Ile Lys Asn Ser 65 70 75 80

Ser Asn Thr Lys Cys Trp Ala Gly Cys Glu Glu Thr Gly Ser Ile Ile 85 90 95

His Cys Cys Leu Asn Cys Met Ser Gly Cys Met Ala Lys Val Glu Pro

Leu Trp Lys Lys Ser Ala Gly Ser Phe Leu Gln Lys Tyr Met Cys Leu 115 120 125

Pro Tyr Asn Pro Thr Val Ala Leu Leu Ser Ile Tyr Pro Glu Asn Glu 130 135 140

Asn Val Cys Ser His Lys Thr Cys Thr Ala Met Phe Thr Ala Ala Phe 145 150 155 160

Ile Arg Ala Lys Asn Ala Lys Gln Leu Leu Cys Pro Leu Val Gly Glu 165 170 175

Trp Leu Ser Lys Leu Trp Tyr Ile His Thr Met Glu Tyr Tyr Ser Ala 180 185 190

Ile Lys Arg Asn Cys Pro His Phe Thr Thr Met Gln Tyr Met His Val

Arg Asn Leu Tyr Leu 210

110

<210> 167

<211> 127

<212> PRT

<213> Homo sapien

<400> 167

Met Ser Ile Gly Leu Asn Phe Thr Pro Arg Met Val Ala Arg Asp Met

1 10 15

Val Tyr Phe Val Pro Ile Leu Trp Thr Trp Arg Thr His Ala Ile Asp 20 25 30

Tyr Ala Lys Arg Arg Glu Thr Asn Thr Trp Val His Thr Pro Lys Ile 35 40 45

Pro Ala Leu Lys Arg Arg His Ser Ser Gly Thr Ile Ser Ala Thr Asn 50 55 60

Trp Gly Gly Leu Phe Thr Gln Gly Cys Lys Val Gly Lys Glu Lys Pro 65 70 75 80

Ser Leu Pro Leu Thr Ser His Glu Gln Phe Cys Ala Gly Val Tyr Pro 85 90 95

Ile Asn Thr Thr Gln Arg Thr Ile Ile Pro Pro Arg Gly Leu Leu Pro
100 105 110

Ser Leu Ser Pro Leu Pro Gly Glu Phe Thr Phe Phe Val Met Trp

<210> 168

<211> 60

<212> PRT

<213> Homo sapien

<400> 168

Met Asp Pro Leu His Cys Pro Phe Thr Thr Ala Ala Thr Ser Leu Ser 1 5 10 15

Tyr Thr Leu Thr Pro Thr Cys Gly Tyr His Cys Ser Val Leu His Leu
20 25 30

Cys Asn Phe Val Ile Ser Arg Met Leu Tyr Glu Trp Asn His Thr Glu 35 40 45

Cys Asn Leu Thr Arg Leu Ile Phe Phe His Ser Ala

111

50 55 60

<210> 169

<211> 211

<212> PRT

<213> Homo sapien

<400> 169

Pro Phe Ser Phe Leu Phe Arg Ala Leu Phe Ala Phe Phe Asp Pro Ala 1 5 10 15

Leu Ser Ile Leu Val Leu Ala Ile Ser Phe His Leu Pro Ile Asn Ser 20 25 30

Leu Ala Cys Leu Arg Glu Glu Ile His Lys Asp Leu Leu Val Thr Gly 35 40 45

Ala Tyr Glu Ile Ser Asp Gln Ser Gly Gly Ala Gly Gly Leu Arg Ser 50 55

His Leu Lys Ile Thr Asp Ser Ala Gly His Ile Leu Tyr Ser Lys Glu 65 70 75 80

Asp Ala Thr Lys Gly Lys Phe Ala Phe Thr Thr Glu Asp Tyr Asp Met 85 90 95

Phe Glu Val Cys Phe Glu Ser Lys Gly Thr Gly Arg Ile Pro Asp Gln 100 105 110

Leu Val Ile Leu Asp Met Lys His Gly Val Glu Ala Lys Asn Tyr Glu 115 120 125

Glu Ile Ala Lys Val Glu Lys Leu Lys Pro Leu Glu Val Glu Leu Arg 130 135 140

Arg Leu Glu Asp Leu Ser Glu Ser Ile Val Asn Asp Phe Ala Tyr Met 145 150 155 160

Lys Lys Arg Glu Glu Glu Met Arg Asp Thr Asn Glu Ser Thr Asn Thr 165 170 175

Arg Val Leu Tyr Phe Ser Ile Phe Ser Met Phe Cys Leu Ile Gly Leu 180 185 190

Ala Thr Trp Gln Val Phe Tyr Leu Arg Arg Phe Phe Lys Ala Lys Lys

112

195 200 205

Leu Ile Glu 210

<210> 170

<211> 49

<212> PRT

<213> Homo sapien

<400> 170

Pro Lys Leu Ser Gly Val Asn Leu Leu Lys Asn Lys Ile Arg Lys Thr 20 25 30

Glu Lys Cys Tyr Lys Pro Asn Asn Leu Lys Ile Gly Leu Lys Met Asn 35 40 45

Asn

<210> 171

<211> 146

<212> PRT

<213> Homo sapien

<400> 171

Met Phe Ala Val His Thr Ser Arg Phe Ala Val Gln Leu Arg Pro Phe 1 5 10 15

Val Leu Pro Leu Cys Phe Val Leu Thr His Phe Trp Leu Leu Thr Pro 20 25 30

Gly Pro Ile His Thr Lys Val Phe Pro Pro Thr Ser Asn Ile Arg Ala 35 40 45

Thr Arg Ser His Thr Thr Thr Pro His Glu Pro Ala Leu His Thr 50 55 60

Pro His Pro Asp Pro Ala Pro Ser Thr Ser His Thr Pro His His Pro 65 70 75 80

Leu Asn Pro Pro Pro Thr His Thr Gln Pro Ser Leu Pro Thr Thr Pro 85 90 95

113

Leu Pro His Thr Pro His Thr Thr Thr Pro His Thr Ser Thr Thr 105 100

Pro Thr Thr Pro Arg Thr Pro Thr His Pro Thr His Thr Pro Gln Pro

Thr Arg Pro His Thr His Pro His Thr Leu Thr Gln His Asn Asn Gln 135

Pro Pro 145

<210> 172 <211> 78 <212> PRT

<213> Homo sapien

<400> 172

Met Cys Thr Gln Ser Thr Thr Pro Gly Cys Asp Arg Thr Leu Gln Gly 10 5

Asp Thr Glu Ala His Trp Ser Arg Ala Arg Ala Pro Pro Lys Arg Thr

Ala Lys Gln Gly Ala Gln His Ser Thr Ala Pro Arg Gln Arg Ser Phe

Ser Arg Trp Pro Ser Ala Cys Pro Glu Gly His Ala Ala Gly Glu Arg

Gly Phe Gly Asn Pro Pro Ala Trp Thr Asp Thr Leu Arg Arg 70

<210> 173 <211> 78

<212> PRT

<213> Homo sapien

<400> 173

Met Tyr Lys Asn Glu Arg Tyr His Ala His His Thr Arg Val Val Gly 5

Glu Leu Pro Met Gly Leu Pro Ser Ser Arg Arg Ser Ser Cys Arg 25 20

Thr Thr Cys Lys His Thr Ser Arg Glu Thr Leu Ser Gly Gln Thr Ser 40

Ser Thr Thr Thr Ser Pro His Ala Arg Val Glu Leu Val Ile Ala Gln 55

Ala Ser Gln Pro Val Cys Pro Ala Ile Ile Leu Leu Tyr Ile 70

<210> 174 <211> 111 <212> PRT <213> Homo sapien

<400> 174

Met Leu Asp Thr Ile Glu Ser His Arg Gly Lys Ala Pro Ile Thr Lys 10

Arg Glu Arg Ser Ala Cys Phe Glu His Glu Leu Ser Lys Met Arg Glu 20 25

Ser Met Arg Phe Lys Ala Ser Ala Ser Lys Leu Gly His Leu Val Asp 35 40

Glu Lys Thr Tyr Gly His Pro Glu Gly Leu Trp Lys Thr Gln Pro Arg

Thr His Ser Pro Gln Asp Thr Cys Leu Lys Ser Gly Ser Lys Pro Ser 70

Cys Leu Gly Lys Glu Glu Gly Leu Gln Ser Ala Ala Asn Glu Arg Thr

Leu Thr Lys Gly Lys Ile His Thr Arg Pro Asp Gln Pro Ile Arg 105

<210> 175

<211> 134 <212> PRT <213> Homo sapien

<400> 175

Met Cys Tyr Arg Glu Arg Cys Leu Leu Leu Val Glu Arg Thr His Thr 1 5

PCT/US01/45080 WO 02/064788

115

Leu Cys Ala Pro Thr Gln Cys Ser Val Val Gly Asp Asn Arg Ala Cys 25

Leu Ser Arg Leu Gln Arg Asp Ile Trp Ala Phe Phe Phe Ser Arg

Arg Gly Ala Asp Thr Leu His Thr Arg Glu Val Cys Arg Ala Thr Tyr 50

Ile Ser Thr Gly Leu Ser Arg Glu Arg Tyr Leu Phe Ser Ser Leu Ser 70

Cys Gly Glu Asn Ser Leu Trp Cys Gly Asp His Thr Ala Arg His Lys 90

Arg Ser Ser Leu Ser Ser Val Lys His Ser Arg Arg Cys Leu His Lys 105

Asn Tyr Leu Ala Arg Pro Asn Arg Leu Leu Phe Phe Ile Phe Leu Asn

Ser Leu Trp Gly Gly Lys 130

<210> 176

<211> 234

<212> PRT <213> Homo sapien

<400> 176

Met Phe Val Leu Leu Cys Cys Leu Cys Leu Cys Leu Ser Val Cys 10 5

Phe Cys Leu Leu Ser Phe Gly Leu Cys Trp Val Leu Ser Cys Val Val

Leu Cys Val Val Phe Cys Phe Val Leu Phe Val Cys Val Leu Phe Phe

Val Leu Ser Leu Leu Phe Phe Leu Cys Cys Phe Cys Gly Phe Val Phe 55

Phe Leu Phe Cys Phe Val Cys Val Phe Phe Cys Cys Cys Val Leu Phe

116

Ser Phe Leu Leu Phe Val Phe Phe Ser Leu Cys Phe Phe Phe Val Leu 85 90 95

Phe Ser Met Phe Leu Val Val Val Leu Phe Cys Leu Gly Leu Leu Phe 100 105 110

Phe Phe Cys Ser Val Ser Leu Cys Leu Phe Gly Phe Leu Leu Phe 115 120 125

Phe Ser Phe Leu Phe Ser Leu Val Phe Val Val Leu Val Leu Phe Ala 130 135 140

Cys Phe Trp Val Phe Ala Cys Cys Phe Cys Val Phe Phe Pro Phe Cys 145 150 155 160

Leu Leu Val Phe Phe Phe Phe Leu Phe Phe Val Phe Arg Leu Phe Phe 165 170 175

Phe Ser Phe Ser Leu Phe Ser Phe Phe Ala Phe Val Val Leu Cys
180 - 185 190

Phe Phe Ser Phe Ser Phe Phe Pro Leu Phe Phe Val Phe Phe Phe Phe Phe 210 220

Phe Phe Phe Phe Ser Phe Gly Ser Ser Arg 225 230

<210> 177

<211> 123

<212> PRT

<213> Homo sapien

and well the control of the control

<400> 177

Met Ser Val Phe Ala Leu Ala Gly Arg Ser Cys Cys Ser Val Cys

1 10 15

Cys Arg Val Ser Pro Val Cys Arg Leu Leu Cys Ser Cys Val Ser Phe 20 25 30

Leu Cys Cys Leu Ala Ala Ser His Ile Ile Ser Ser Leu Gly Ile Arg
35 40 45

PCT/US01/45080 WO 02/064788

117

Leu Leu Thr Val Tyr Leu Tyr Ser Cys Phe Ser Ile Phe Ala Cys Leu 55

Ala Phe Phe Leu Ser Phe Phe Phe Val Gly Phe Leu Ile Phe Tyr 75

Glu Leu Gly Gly Thr His Cys Phe Pro Arg Arg Val Ile Phe Leu Leu 90

Pro Pro Val Leu Thr Pro His Arg Ser Phe Phe Phe Leu Phe Phe Val 105 100

Phe Phe Phe Ser Ser Val His Gln Thr Pro Leu 120

<210> 178

<211> 83

<212> PRT <213> Homo sapien

<400> 178

Met Gly Arg Lys Thr Ile His Thr Gly Thr Leu Trp Pro Arg Leu Pro 10

Pro Thr Phe Phe Phe Phe Asp Ile Phe Phe Phe Ser Arg Arg Ser Leu

Ala Leu Leu Pro Arg Leu Glu Cys Ser Gly Ala Ile Ser Ala His Cys

Asn Phe Cys Leu His Lys Phe Lys Gln Phe Ser Cys Leu Ser Leu Gln 60 55 50

Ser Ser Trp Asp Tyr Arg Arg Val Pro Leu Cys Pro Ala Asn Phe Tyr

Ile Leu Met

<210> 179

<211> 71

<212> PRT

<213> Homo sapien

<400> 179

Met Arg Val Ser Thr Phe Val Arg Tyr Pro Arg Gly Asp Leu Thr Cys

118

10

Ala Gly Val Arg Ser Phe Ala Ser Arg Ser Leu Tyr His Val Val Arg 25

Leu Leu Val Gly Arg His Leu Ser Gly Asp Arg Val Ser Thr Pro Ser

Trp Pro Leu Ile Ala Ala Asp Cys Gln His Gly Leu Tyr Asp Leu Leu 55

Leu Ile Ser Ser Tyr Val Pro

<210> 180

<211> 84

<212> PRT <213> Homo sapien

<400> 180

Met Phe Cys Leu Val Trp Gly Thr His His Leu Gly Cys Arg Arg Ala 5

Arg Gly Trp Leu Ile Thr Pro Pro Pro Cys Cys Ala Asn Thr Asn Pro

Arg Arg Gly Ile Thr Asn Ala Leu Ile Leu Glu Ala His Pro Trp Arg

Val Tyr Tyr Ala Pro Pro Thr Gly Phe Leu Gln Pro Arg Gly Gly His

Thr Ala Phe Asn Ser Val Val Ala Thr Arg Ser Cys Arg Gly Pro Pro 70 75

Thr Gly Gly Trp

<210> 181 <211> 74 <212> PRT <213> Homo sapien

<400> 181

Met Glu Ser Thr Leu Arg Cys Ala Thr Pro Gly Pro Asp Thr Leu Gln 5 10

His Thr Gly Val Pro Gly Pro Ile Thr His Arg Glu Gln Val Gly Ser 25

Tyr Thr Thr Pro Leu Arg Ile Pro Pro Ala Ala Ala Asp Ser Gln Thr 40 35

Ala Val Tyr Asn Pro Leu Arg Arg Arg Pro His Arg Ala Thr Pro 60

Arg Lys Pro Lys Thr Ile Thr Arg Lys Met 70

<210> 182 <211> 87 <212> PRT

<213> Homo sapien

<400> 182

Met Glu Leu Tyr His Arg Lys Glu Leu Glu Gly Leu Cys Tyr Cys Gly

Val Thr Phe Gly Leu Arg Ser Pro Gly Gln Ser Ala Arg Cys Cys Thr 20

Thr Arg Gly Asn His Cys Arg Cys His Pro Ala Pro Ala Pro Pro Pro 40

Gly Ala Pro Leu Arg Ile Ser Glu Lys Leu Lys Pro Ser Val Ser Leu 55

Gly Gly Phe Leu Arg Ser Ile Ile Ile Leu Leu Phe Asn Ser Ile Phe 75 70 65

Val Asn Ile Lys Ser Ser Phe 85

<210> 183

<211> 105

<212> PRT <213> Homo sapien

Met Leu Lys Ser Phe Phe Phe Ser Leu Arg Gly Trp Gly Trp Arg Gly 5 10

The second of the second

120

Asp His Val Asn Phe Ser Gly Leu Gln Arg Lys Cys Gly Phe Val Asp

Leu Gln Leu Phe Val Pro Phe Val Leu Ser Leu Cys Glu Ile Asn Thr 40

Ser Lys Thr Phe Thr Pro Pro Leu Leu Ser Arg Gly Ala Tyr Ile Ser

Arg Val Ala His Asn Ser Arg Val Ser Ala Gly Cys Glu Ser Val Phe 70

Thr Arg Leu Pro Ile Pro Pro Lys Thr Ser Lys Lys Gly Val Pro Thr

Lys Gly Thr Lys Glu Lys Lys Pro 100

<210> 184

<211> 60 <212> PRT

<213> Homo sapien

<400> 184

Met Asp Pro Leu His Cys Pro Phe Thr Thr Ala Ala Thr Ser Leu Ser 10

Tyr Thr Leu Thr Pro Thr Cys Gly Tyr His Cys Ser Val Leu His Leu 25

Cys Asn Phe Val Ile Ser Arg Met Leu Tyr Glu Trp Asn His Thr Glu

Cys Asn Leu Thr Arg Leu Ile Phe Phe His Ser Ala 50 55

<210> 185

<211> 218

<212> PRT

<213> Homo sapien

<400> 185

Ser Gly Leu Phe Gly Pro Pro Ala Arg Arg Gly Pro Phe Pro Leu Ala

PCT/US01/45080 WO 02/064788

121

Leu Leu Phe Phe Leu Leu Gly Pro Arg Leu Val Leu Ala Ile Ser 25

Phe His Leu Pro Ile Asn Ser Arg Lys Cys Leu Arg Glu Glu Ile His 40 45

Lys Asp Leu Leu Val Thr Gly Ala Tyr Glu Ile Ser Asp Gln Ser Gly 50

Gly Ala Gly Gly Leu Arg Ser His Leu Lys Ile Thr Asp Ser Ala Gly 70

His Ile Leu Tyr Ser Lys Glu Asp Ala Thr Lys Gly Lys Phe Ala Phe 90

Thr Thr Glu Asp Tyr Asp Met Phe Glu Val Cys Phe Glu Ser Lys Gly 105

Thr Gly Arg Ile Pro Asp Gln Leu Val Ile Leu Asp Met Lys His Gly 115 120

Val Glu Ala Lys Asn Tyr Glu Glu Ile Ala Lys Val Glu Lys Leu Lys 135

Pro Leu Glu Val Glu Leu Arg Arg Leu Glu Asp Leu Ser Glu Ser Ile 155 150

Val Asn Asp Phe Ala Tyr Met Lys Lys Arg Glu Glu Glu Met Arg Asp

Thr Asn Glu Ser Thr Asn Thr Arg Val Leu Tyr Phe Ser Ile Phe Ser 180

Met Phe Cys Leu Ile Gly Leu Ala Thr Trp Gln Val Phe Tyr Leu Arg 200

Arg Phe Phe Lys Ala Lys Lys Leu Ile Glu 215

<210> 186 <211> 139

<212> PRT

<213> Homo sapien

<400> 186

122

Met Gln Val Val Ser Phe Leu Phe Pro Arg Ser Ser Cys Ser Asn Asp 1 5 10 15

Ser Ser Pro Gly Glu His His Gly Gly Asn Met His Ile Gly Arg Tyr \$20\$

Gly Ser Ala Cys Ala Ile Val Arg Gly Ala Leu Trp Glu Asp Phe Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Met His Leu Ser Phe Arg Met Cys Pro Arg Val Ile Ser Glu Lys Glu 50 55 60

Gly Thr Val Glu Arg Ala Phe Leu Lys Gly Ile Lys Val Ala Leu Leu 65 70 75 80

Ile Ser Val Cys Arg Phe Met Ser Pro Ser Trp Ile Pro Trp Trp Ala 85 90 95

Pro Asn Asn Ala Ala Pro Lys Ile Gln Val Phe Arg Ile Ile Tyr Pro 100 - 105 110

Leu Leu Pro Tyr His Thr Gly Gly Thr Gly Thr Ser Gln Val Val Gly 115 120 125

Ser Arg Met Glu Val Gly Val Tyr Gly Val Arg 130 135

<210> 187

<211> 118

<212> PRT

<213> Homo sapien

<400> 187

Met Leu Trp Gly Trp Gly Pro Arg Val Ala Leu Gln Arg Leu Val Tyr

Ser Pro Ala Ser Leu Gly Gly Ala Arg Val Gly Val Val Ile His Gly 20 25 30

Trp Ser Asn Glu Tyr Leu Thr Thr Tyr Pro Ala Val Leu Thr Pro Phe 35 40 45

Glu Pro Arg Val Leu Tyr Leu Lys Lys Tyr Ser Pro Lys Gln Thr Gln 50 60

123

Ile Phe Ala Ala Val Gly Gly Gly Ala Pro Phe Gly Leu Ser Pro Arg 65 70 75 80 80

Tyr Pro Gly Gly Cys Gly Gly Thr Glu Lys Trp Gly Val Cys Pro Trp 85 90 95

Gly Gly Ala Ala Leu Leu Val Lys Pro Glu Lys Ser Ala Ser Leu Trp

Ala Pro Arg Val Asp Val 115

<210> 188 <211> 202

<212> PRT

<213> Homo sapien

<400> 188

Met Trp His Thr Ser Val Gly Thr Ser Leu His Leu Ser His Thr Glu
1 5 10 15

Phe Ser Arg Cys Gly Lys Arg Gly Met Ser Pro Thr Arg Cys Ala Leu 20 25 30

Trp Val Ala His Lys Asn Thr Gln Arg Arg Glu Glu Arg Val Trp Cys
35 40 45

Gly Val Val Asp Glu Gly Pro Val Gly Glu Arg Glu Arg His Thr Pro 50 55 60

Pro Cys Arg Glu Arg Ala Gly Glu Thr His Arg Trp Ser Ser His Thr 65 70 75 80

Cys Glu Thr Leu Ser Pro Thr Gly Gly Arg Glu Lys Cys Val Ala Pro 85 90 95

Gly Ser Pro Cys Ala His Thr Ile Lys Glu Gly Asp Asp Thr Gln Lys

Thr Met Cys Ala Arg Val Arg Lys Thr Ile Val Arg Glu Arg Gly Val

Val Gly Ala Ser Gly Arg Ala Arg Gly Gly Arg Leu Thr Arg Ala Pro 130 135 140

124

Val Arg Asn Leu Pro Glu Thr Thr Cys Val Trp Arg Gly Ala His Arg 145 150 155 160

Gly Arg Arg Gly Asp Ser His Arg Glu Trp Val Tyr Lys Glu Arg Cys 165 170 175

Val Arg His Thr Gln Leu Ala Cys Ala Arg Asn Thr His Ala Arg Arg 180 185 190

Lys Tyr Pro Arg Gly Ser Leu Ser Thr Gln
195 200

<210> 189

<211> 102

<212> PRT

<213> Homo sapien

<400> 189

Met Thr Ile Ser Ile Gly Leu Cys Asp Val Tyr Asn Gln Trp Thr Ser

1 10 15

Leu Arg Leu Gly Phe Pro Val Ile Gly Cys Lys Gln Tyr Ala Cys Ser 20 25 30

Ser Gly Phe Thr Asp Met Tyr Pro Cys Ser Thr Tyr Ile Ser Gly Arg 35 40 45

Pro Ala Asn Lys Pro Ser Gly Asn Gly Trp Arg Arg Val Ala Tyr 50 55 60

Gly Arg Arg Pro Gly Asp Ser Ser Arg Glu Asn Glu Pro Ala Ile 65 70 75 80

Thr Thr Val Gly Ile Val His Ser Lys Arg Asn Lys Pro Arg Trp Arg

Glu Leu Arg Ile Pro Ala 100

<210> 190

<211> 65

<212> PRT

<213> Homo sapien

<400> 190

Met Leu Leu Ser Ser Ser Arg Pro His Lys Asp Val Asp Ser Gln Asn

125

1 5 10 15

Ser Asp Pro Val Pro Ala Asp Asp Asp Ala Ala Arg Leu Gln Val Ile $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ser Tyr Thr Ile Val Gly Asp Gly Val Arg Leu Leu Glu Ala Ser Met 35 40 45

Phe Lys Glu Tyr Ile Arg Gln Leu His Ala Thr His Trp Ile Arg Ser 50 60

Pro 65

<210> 191

<211> 145

<212> PRT

<213> Homo sapien

<400> 191

Met Thr Val Val Tyr Ala Gln Thr Asn Lys Lys Thr Lys Lys Thr 1 10 15

Lys Glu Thr Pro Trp Gly Val Thr Pro Tyr Gly Gly Pro Met Arg Arg 20 25 30

Cys Val Ser Pro Trp Val Val Glu Thr Val Cys Val Leu Ser Gly Asn 35 40 45

Thr Asn Ile Leu Pro Pro His Asn Ile Leu Arg Arg Pro Gln Thr Gln 50 55 60

Lys His Thr Thr His Asn Pro Arg Thr Thr Leu Gln Gln Thr Thr Pro 65 70 75 80

Glu Lys Glu Leu Val Ala Ala Gln Val Lys Gln Gly Ala Pro Ala Ser 85 90 95

Pro Gln Lys Thr Pro Ile Glu Gln Cys Arg Lys Lys Arg Ser Thr Gly
100 105 110

Arg Glu Arg Leu Met Pro Gln Leu Glu His Glu Glu Lys Pro Asn Cys 115 120 125

Asn Leu Pro Thr Lys Cys Asp Glu Ile Arg Gln Glu Ala Ser Arg Arg

Companies to the second of the second of the second

126

130 135 140

Ala 145

<210> 192

<211> 167

<212> PRT <213> Homo sapien

<400> 192

Met Val Pro Phe Gly Val Phe Val Leu Cys Ser Arg Val Leu Phe Ser

Leu Val Leu Val Ala Phe Cys Phe Cys Leu Leu Leu Phe Phe Ser Ser 25

Phe Phe Ser Leu Val Arg Ser Phe Ser Phe Val Phe Phe Cys Cys

Phe Leu Ser Tyr Phe Pro Leu Leu Phe Cys Phe Phe Leu Ile Leu 50 55

Leu Phe Leu Phe Leu Cys Leu Val Leu Phe Pro Cys Leu Ser Ser 70

Tyr Phe Leu Ser Val Trp Phe Cys Phe Val Val Leu Phe Ser Val Ala

Tyr Val Ser Cys Leu Ser Phe Ser Ser Phe Phe Ala Phe Phe Pro His 105

Leu Phe Phe Phe Leu Ser Phe Leu Cys Phe Pro Leu Leu Leu 115 120

Ser Leu Val Ser Ser Phe Val Trp Phe Leu Ser Leu Ser Pro Pro Cys 130 135

Leu Phe Phe Ser Ser Ser Phe Phe Val Ser Leu Ser Phe Val Phe His 145 150 155

Ser Pro Pro Ala Cys Leu Arg

<210> 193

127

<211> 151 <212> PRT

<213> Homo sapien

<400> 193

Met Trp Phe Cys Ile Phe Pro Leu Leu Ala Cys Leu Pro Ser Leu Ala 10

Phe Leu Phe Ser Phe Ala Ser Arg Leu Cys Leu Ser Val Pro Cys Val

Phe Ala Ser Thr Asp Leu Leu Pro Gly Phe Ser Trp Leu Ala Tyr Ser

Pro Val Asp Cys Leu Phe Ala Trp Glu Leu Phe Arg Leu Leu Ser

Pro Leu Val Ser Val Val Gly Ser Trp Phe Leu Ala Leu Cys Ser Leu

Ala Cys Val Arg Leu Val Ser Ser Phe Glu Ser His Ala Gly Val Trp 85 90

Trp Cys Val Cys Val Val Val Ala Leu Gln Tyr Cys Leu Ser Leu Val 100

Leu Leu Ser Leu Ser Phe Val Ser Asp Val Leu Ser Tyr Phe Ser Leu 120

Gly Leu Leu Gln Cys Phe Ser Val Leu Gly Leu Ser Val Leu Met 135

Ser Leu Ile Ala Phe Tyr Leu

<210> 194

<211> 122

<212> PRT

<213> Homo sapien

and the street was the control of th

<400> 194

Met Thr Leu Ser Glu Ile Ala Arg Gln Arg Thr Glu Pro Gln Lys Tyr

Asp Gln Lys Arg Glu Asn Lys Asn Pro Gln Arg Gln Thr Asp Lys Glu

Arg Thr Lys Met Asn Lys Lys Thr Lys Lys Lys Asn Thr Arg Arg 35 40

Glu Arg Lys Lys Glu Thr Thr Arg Lys Thr Arg Asn Lys Glu Arg Ser

Glu Thr Asn Arg Thr Lys Glu Gln Gln Lys Gln Asn Glu Gln Lys Asn

Asn Gly Thr Thr Pro Pro Arg Lys Pro Lys Gln Arg Lys Gln Lys 90

Arg Ala Pro Leu Ser Arg His Thr Asn Arg Glu Arg Lys Thr Lys Asp 100 105

Thr Asn Asn Gln Asn Thr His Ile Val Gly 115

<210> 195 <211> 90 <212> PRT

<213> Homo sapien

<400> 195

Met Cys Phe Phe Phe Cys Phe Val Phe Phe Leu Leu Phe Phe Ala 5

Cys Val Cys Cys Val Phe Cys Met Phe Leu Phe Val Cys Val Leu Leu

Ala Gly Arg Ser Phe Phe Val Phe Met Phe Gly Ser Pro Leu Phe Ser 40

Leu Cys Val Ser Pro Ala Tyr Met Cys Val Cys Val Trp Arg Asp Met

Cys Glu Ser Ala Arg Tyr Ile Thr His Phe Tyr Thr His Thr Gly Glu 70

Thr His Ser Ile Cys Glu Thr Thr Gly Glu 85

<210> 196

<211> 310

129

<212> PRT

<213> Homo sapien

<400> 196

et in the free section of the contract of the

Met Thr Ala Thr Thr Ala Ser Cys Gly Gly Gly Asn Asn Thr Pro Ala 1 5 10 15

Val Pro Pro Thr Pro Arg Gly Glu Ala His Ile Ser Thr Leu Val Trp 20 25 30

Cys Phe Arg Asp Ile Pro Pro Ala Ala Glu Leu Leu Trp Ala Pro Leu 35 40 45

Gly Val Leu Tyr Phe Ile His Leu Phe Leu Pro Leu Cys Leu Trp Gly 50 60

Asp Pro Pro Ala Tyr Lys Val Ile Ser Val Met Ile Leu His His Ile 65 70 75 80

Ile Val Phe Phe Leu Gly Glu Asp Thr Leu Gly Gly Asp Thr Thr Ser 85 90 95

Arg Gly Val Tyr Ala Pro Leu Pro His Met Arg Gly Ala Tyr Ser Ala 100 105 110

Pro Ser Glu Gly Ala His Pro Pro His Thr Leu Trp Ser His Ser Leu 115 120 125

Leu Cys Val Leu Pro Pro Ser Leu Ser Leu Ser Glu Arg Glu Ser Leu 130 135 140

Ser Thr Gln Pro His Thr His Arg Gly Ala His Thr His Ser Val Val 145 150 155 160

Cys Val Cys Leu Trp Ser Leu His Ser Gly Arg Leu Leu Tyr His Pro

Arg Gly Glu Thr Leu Cys Asp Asp Thr Ala Gly Ala Ala Leu Leu Glu 180 185 190

Arg Ala Thr Gln Ser Val Arg His Asn Ser Leu Thr Leu Phe Asn Arg 195 200 205

Asp Ala Arg Arg Val Trp Arg Asp Ala Thr Pro His Thr Arg Ser Leu 210 215 220

Ala His Thr His Arg Glu Arg His Thr His Thr His Val Asn Ala Ala 225 230 235 240

Ala Thr Ala Thr Ala Leu Thr His Ser Arg Val Thr Arg Asp Ala Arg 245 250 255

Ala Ala Ala Thr Ala Gly Arg Ser Val Ser Pro Thr Gln Arg Glu Ala 260 265 270

Thr His Ser Ala Arg Ala His Ala Cys His His Ala His Ser Arg Glu 275 280 285

Gly Glu Arg Asn Pro Leu Gly Glu Arg Arg His Thr Val Gly Ala Leu 290 295 300

Thr Thr Arg Ser Val Thr 305 310

<210> 197

<211> 122

<212> PRT

<213> Homo sapien

<400> 197

Met Phe Lys Ser Leu Asn Gln Tyr Arg Thr Leu Thr Pro Ser Gly Asn 1 5 10 15

Ser Asp Leu Pro Ser Ala Lys Leu Ser Arg Gln Ile Arg Phe Thr Ala 20 25 30

Lys Thr Pro Pro Phe Thr Gln Tyr Thr Thr Arg Pro His Thr Leu Tyr 35 40 45

Leu Ser Val Pro Cys Thr Leu Ser Ser Arg Ser Ser Asp Phe Arg His 50 55 60

Thr Leu Glu Val Gly Lys Leu Leu Leu Met Leu Pro Leu Thr Gln Ser 65 70 75 80

Ile Arg Phe Asp Arg Tyr Ser Cys Met Gln Leu Gln Lys Val Ser Tyr 85 90 95

Phe Ser Ser Asp Ala Met Ser Thr Ala Ala Asp Gln Arg Tyr His Gly 100 105 110

Part For the State of the State

WO 02/064788

Marketing and Appendix and Appendix and Appendix

131

Val Tyr Arg Ile Cys Val Tyr Leu Lys Arg 115 120 <210> 198 <211> 91 <212> PRT <213> Homo sapien <400> 198 Met Glu Ser Arg Ser Val Ala Gln Ala Gly Val Gln Trp Arg Asp Leu Ser Ser Leu Gln Leu Leu Pro Pro Gly Ile Lys Arg Phe Ser Cys Leu 20 25 30 Ser Leu Leu Ser Ser Trp Asp Tyr Arg His Pro Pro Pro Cys Pro Ala 40 Asn Phe Cys Val Phe Ser Arg Asp Gly Leu Ser Pro Cys Trp Pro Val 55 Trp Pro Arg Thr Pro Asp Pro Arg Ile Leu Leu Pro Gln Pro Pro Lys 70 Val Leu Gly Leu Gln Thr Cys Pro Gly Gly Arg <210> 199 <211> 107 <212> PRT <213> Homo sapien <400> 199 Met Thr Lys Gln Ser Ser Ile Thr Pro Pro Lys Asp His Val Ser Ser Pro Ala Met Asp Pro Asn Gln Glu Glu Ile Ser Glu Leu Pro Glu Lys

Glu Phe Arg Arg Pro Ile Ile Gln Leu Leu Lys Glu Thr Pro Asp Lys 35 40 45

25

Gly Val Asn Gln Leu Lys Gly Ile Lys Ile Ile Ile Gln Asp Met Asp 50 55 60 Glu Lys Val Ser Arg Glu Ile Asp Ile Ile Asn Lys Asn Gln Ser Gln 70

Leu Leu Glu Val Lys Asp Ile Leu Arg Glu Ile Gln Asn Thr Leu Ala 90

Ser Phe Asn Asn Gly Leu Glu Gln Val Glu Glu

<210> 200

<211> 32

<212> PRT

<213> Homo sapien

<400> 200

Met Leu Val Cys Lys Val Leu Leu Arg Arg Ile Gln Asn Thr Lys Leu

Leu Phe Phe Thr Cys Phe Phe Lys Phe Thr Tyr Leu Tyr Leu His Leu . 20__ 25 - - - . . . 30 - / .

<210> 201

<211> 342

<212> PRT <213> Homo sapien

a Maria Maria Maria da Maria Maria de la como en la maria de la competición de la participación de la competic

<400> 201

Leu Leu Lys Leu Cln Val Leu Ile Val Leu Glu His His Leu Gly

Arg Ala His Glu Glu Ala Glu Asn Gln Pro Asp Leu Ser Arg Glu Trp

Gln Arg Ala Leu Asn Phe Gln Gln Ala Ile Ser Ala Leu Gln Tyr Val 40

Gln Pro His Pro Leu Thr Ser Gln Gly Leu Leu Val Ser Ala Val Val . 55

Arg Gly Leu Gln Pro Ala Tyr Gly Tyr Gly Met His Pro Ala Trp Val 70 75

Ser Leu Val Thr His Ser Leu Pro Tyr Phe Gly Lys Ser Leu Gly Trp 90

133

Thr Val Thr Pro Phe Val Val Gln Ile Cys Lys Asn Leu Asp Asp Leu 100 $$ 105 $$ 110 $$

Val Lys Gln Tyr Glu Ser Glu Ser Val Lys Leu Ser Val Ser Thr Thr 115 120 125

Ser Lys Arg Glu Asn Ile Ser Pro Asp Tyr Pro Leu Thr Leu Leu Glu 130 135 140

Gly Leu Thr Thr Ile Ser His Phe Cys Leu Leu Glu Gln Ala Asn Gln 145 150 155 160

Asn Lys Lys Thr Met Ala Ala Gly Asp Pro Ala Asn Leu Arg Asn Ala 165 170 175

Arg Asn Ala Ile Leu Glu Glu Leu Pro Arg Thr Val Asn Thr Met Ala 180 185 190

Leu Leu Trp Asn Val Leu Arg Lys Glu Glu Thr Gln Lys Arg Pro Val
195 200 205

Asp Leu Leu Gly Ala Thr Lys Gly Ser Ser Ser Val Tyr Phe Lys Thr 210 215 220

Thr Lys Thr Ile Arg Gln Lys Ile Leu Asp Phe Leu Asn Pro Leu Thr 225 230 235 235

Ala His Leu Gly Val Gln Leu Thr Ala Ala Val Ala Ala Val Trp Ser 245 250 255

Arg Lys Lys Ala Gln Arg His Ser Lys Met Lys Ile Ile Pro Thr Ala 260 265 270

Ser Ala Ser Gln Leu Thr Leu Val Asp Leu Val Cys Ala Leu Ser Thr 275 280 285

Leu Gln Thr Asp Thr Leu Leu His Leu Val Lys Glu Val Val Lys Arg 290 295 300

Pro Pro Gln Val Lys Gly Gly Asp Glu Lys Ser Pro Leu Val Asp Ile 305 310 315

Pro Val Leu Gln Phe Cys Tyr Ala Phe Leu Gln Arg Ala Tyr Ser Pro 325 330 335

the state of the s

Pro Ser Ser Lys Asn Phe 340

<210> 202

<211> 221 <212> PRT

<213> Homo sapien

<400> 202

Salah Kabupatèn Balang Bal

Gly Ser Trp Ala Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Gly

Ala Pro Gly Gln Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn

Ile Gly Ala Gly Tyr Asp Tyr Val His Trp Tyr Gln Gln Leu Pro Gly 40

Thr Ala Pro Lys Leu Met Ile Tyr Glu Val Ala Lys Arg Pro Ser Gly

Val Ser Asp Arg Phe Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu 70 75

Thr Ile Ser Gly Leu Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys

Ser Tyr Ala Gly Ser Tyr Thr Trp Val Phe Gly Gly Gly Thr Lys Leu

Thr Val Leu Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro 120

Pro Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu 135

Ile Ser Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp 145 150 155

Ser Ser Pro Val Lys Ala Gly Val Glu Thr Thr Pro Ser Lys Gln 165

Ser Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu

WO 02/064788

Gln Trp Lys Ser His Lys Ser Tyr Ser Cys Gln Val Thr His Glu Gly 195 200 205

Ser Thr Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 210 215 220

<210> 203

<211> 150

<212> PRT

<213> Homo sapien

<400> 203

Met Thr Val Arg Val Thr Tyr Thr Asn Val Leu Ser Glu Val Arg Arg 1 5 10 15

Pro Ile Pro Lys Tyr Ala Pro Met Cys Leu Val Leu His Ser Ile Leu 20 25 30

Pro Tyr Pro Met His Ala Lys Cys Met Val Ser Thr Trp Cys Pro Asn 35 40 45

Val Ser Ala Tyr Tyr Thr Lys Thr Thr Cys Ser Thr His Asn Arg 50 55 60

Cys Asn Met Gln Ser Thr Lys Gln Gly His Thr Ala Gln Leu Ala Ile 65 70 75 80

Leu Thr Ile Glu Gln Ile Gln Ser Pro Asp Tyr Asn Met Leu Leu Thr 85 90 95

His Gly Leu Leu Gln Ala Ala Gln Trp Asn Leu Gly Leu Ser Leu Lys 100 \cdot 105 110

Gln Gln Arg Tyr Ala Gln Leu Ala Ser Arg Thr Arg His Ala Asn Gly
115 120 125

Ile Pro Ala Thr Gly Ala Arg Ser Ser Asn Asn His Glu His Arg Pro

Glu Arg Arg Ala Leu Arg 145 150

<210> 204

<211> 47

<212> PRT

<213> Homo sapien

<400> 204

Met Ser Val Ser Ile Ser Leu Val Ser Ser Pro Arg Gly Ser Thr Ala 1 5 10 15

Tyr His Pro Arg Ser Val Glu Ala Pro Lys Gly Leu Pro Phe Leu Ala 20 25 30

Val Arg Pro Cys Ala Asn Pro Cys Gln Asp Thr Pro Arg Gly Leu 35 40 45

<210> 205

<211> 130

<212> PRT

<213> Homo sapien

<400> 205

Met Arg His Arg Lys Arg Lys Ser Thr Arg Arg Lys Lys Arg Arg Arg 1 10 15

Ile Glu Glu Arg His Val Thr Glu Asn Arg Asp Gln Glu Arg Ser Lys 20 25 30

Asp Arg Pro Gln Arg Gln Asp Gly Gly Glu Arg Lys Arg Ser Gln 35 40 45

Lys Lys Thr Lys Asn Glu Arg Ile Thr Glu Ile Asn Thr Ala Thr Arg 50 $\,$ 55 $\,$ 60

Glu Gln Thr Arg Gln Glu Gln Lys Lys His Lys Gln Gln Arg Glu Ala 65 70 75 80

Lys Arg Lys Lys Arg Lys Gly Arg Gln Gln Thr Lys Glu Thr Lys Arg 85 90 95

His Arg Gln Met Glu Arg Lys Arg Glu Gln His Arg Glu Glu Gly Arg

Lys Glu Ile Glu Thr Arg Ala Lys Arg Ala Arg Asn Lys Lys Arg Glu 115 120 125

Ala Arg 130

Signapolita de esperante de espe

```
<210> 206
<211> 58
<212> PRT
```

<213> Homo sapien

<400> 206

Met Asn Asn Gly Arg Cys Val Asn Trp Ser Asn Thr Leu Leu His Trp

Thr Gln Trp Thr Pro Arg Cys Ala Lys His His Lys Lys Asp Gly Gly

Gln Arg Ser Thr Asp Gly His His Thr Thr Arg Ser Ile Thr Ser Glu 40

Asn Tyr Pro Arg Thr Asn Lys Glu Leu Lys 50 55

<210> 207

<211> 60 <212> PRT

<213> Homo sapien

<400> 207

Met Arg Leu Arg Cys Tyr Ile Cys Thr Leu Phe Phe Phe Cys Phe

Phe Phe Phe Leu Ser Ser Arg Phe Val Ser Gly Met Cys Cys Trp Gly 20

Glu Leu Val Gly Ala Glu Ile Ser Thr Leu Val Thr His Arg Gly Asn 35

Thr Arg Leu Met Gly Pro Trp Leu Ser Pro Thr Arg 55

<210> 208

<211> 188

<212> PRT

<213> Homo sapien

<400> 208

Met Gln Asn Thr Thr Gly Val Thr Thr Gln Lys Arg Leu Glu Leu Gln

Ala Leu Tyr Thr Asn Cys Asp Gln Glu His Leu Leu Leu Thr Thr Ile 25

- Ser Ser Ala Arg Arg His Lys Asn Met Val Cys Thr Arg Gly Val Asp 35 40 45
- Asn His His Leu Cys Ala Gly Leu Arg Gly Arg Arg Ala Thr His Ser 50 55 60
- Leu Ala Tyr Asn Ser Arg Cys Arg Thr Trp Arg Val Gly Leu Glu Thr 65 70 75 80
- Leu Arg Gly Cys Asn Thr Asp Val His Gly Ala Ser Gly Lys Gln Thr 85 90 95
- Arg Thr Gln Gln Arg Gly Glu Lys His Cys Phe Val Asn Arg Glu Asn 100 105 110
- Thr Arg Met Ile Lys Asn Arg Pro Thr Gly Ala Gly Gly Thr Ile Thr 115 120 125
- Thr Thr Glu Thr Leu Thr His Leu Gln Gly Gly Val Glu Gly Pro Leu 130 135 140
- Asp Thr Pro Leu Lys Pro Arg Lys Ser Asn Asp Ala Thr Lys Pro 145 150 155 160
- Lys Ile Ala Thr His Ala Val Gln Ala Trp Ala Asp Thr Ala Arg Ser 165 170 175
- Gly Ser Pro Lys Lys Glu Lys His Pro Lys Lys Gln 180 185

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 August 2002 (22.08.2002)

PCT

(10) International Publication Number WO 02/064788 A3

- (51) International Patent Classification⁷: C12N 15/12, C07K 14/47, C12Q 1/68, C12N 5/10, C07K 16/18, G01N 33/53
- (21) International Application Number: PCT/US01/45080
- (22) International Filing Date:

20 November 2001 (20.11.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/252,054

20 November 2000 (20.11.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US Filed on 60/252,054 (CIP) 20 November 2000 (20.11.2000)

- (71) Applicant (for all designated States except US): DI-ADEXUS, INC. [US/US]; 343 Oyster Point Boulevard, South San Francisco, CA 94080 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MACINA, Roberto, A. [AR/US]; 4118 Crescendo Avenue, San Jose, CA 95136 (US). RECIPON, Herve [FR/US]; 85 Fortuna Avenue, San Francisco, CA 94115 (US). CHEN, Sei-Yu [—/US]; 160 Mira Street, Foster City, CA 94404 (US). SUN, Yongming [CN/US]; 551 Shoal Drive, Redwood City, CA 94065

- (US). LIU, Chenghua [CN/US]; 1125 Ranchero Way #14, San Jose, CA 95117 (US).
- (74) Agents: LICATA, Jane, Massey et al.; Licata & Tyrrell P.C., 66 E. Main Street, Marlton, NJ 08053 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, IT, GB, GD, GE, GH, GM, HR, HU, ID, IL. IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report:
11 December 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

3

07/004/00/

(54) Title: COMPOSITIONS AND METHODS RELATING TO LUNG SPECIFIC GENES AND PROTEINS

(57) Abstract: The present invention relates to newly identified nucleic acids and polypeptides present in normal and neoplastic lung cells, including fragments, variants and derivatives of the nucleic acids and polypeptides. The present invention also relates to antibodies to the polypeptides of the invention, as well as agonists and antagonists of the polypeptides of the invention. The invention also relates to compositions comprising the nucleic acids, polypeptides, antibodies, variants, derivatives, agonists and antagonists of the invention and methods for the use of these compositions. These uses include identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-cancerous disease states in lung, identifying lung tissue, monitoring and identifying and/or designing agonists of polypeptides of the invention. The uses also include gene therapy, production of transgenic animals and cells, and production of engineered lung tissue for treatment and research.

Interpional Application No PCT/US 01/45080

A. CLASSI IPC 7	IFICATION OF SUBJECT MATTER C12N15/12 C07K14/47 C12Q1/69 G01N33/53	8 C12N5/10	C07K16/18						
According to	o International Patent Classification (IPC) or to both national classific	cation and IPC							
	SEARCHED								
Minimum do	ocumentation searched (classification system followed by classificat $C07K$	ion symbols)							
Documental	tion searched other than minimum documentation to the extent that s	such documents are included in th	ne fields searched						
	ata base consulted during the international search (name of data ba		erms used)						
EPO-Internal, WPI Data, BIOSIS, CHEM ABS Data									
C. DOCUMENTS CONSIDERED TO BE RELEVANT									
Category °	Citation of document, with indication, where appropriate, of the rel	levant passages	Relevant to claim No.						
Υ	WO 00 08206 A (MACINA ROBERTO A YONGMING (CN); YANG FEI (CN); REG HERVE) 17 February 2000 (2000-02-see pages 16-27, examples of quargene expresion of LSG, claims 1-7	1-17							
γ			1 17						
1	WO 96 02552 A (BOLLON ARTHUR P ; (PHARMACEUTICS INC (US); TORCZYNSK 1 February 1996 (1996-02-01) the whole document	1-17							
Y	WO 99 40190 A (SHIMADA YOSHIKAZU MASAMI (JP); OZAKI KOUICHI (JP); 12 August 1999 (1999-08-12) claims 1-23 and translated descri the derived EP1074621 application	HORIE M) iption in	1-17						
		-/							
		-/							
	I								
X Furth	ner documents are listed in the continuation of box C.	χ Patent family members a	are listed in annex.						
° Special cal	tegories of cited documents :	"T" later document published afte	er the international filling date						
"A" docume	ent defining the general state of the art which is not	or priority date and not in cor	of the international filing date offict with the application but siple or theory underlying the						
"E" earlier d	ered to be of particular refevance locument but published on or after the international	invention "X" document of particular relevan							
filing da "L" docume:	ate nt which may throw doubts on priority claim(s) or	cannot be considered novel	or cannot be considered to en the document is taken alone						
which i citation	which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the								
"O" docume other n	ent referring to an oral disclosure, use, exhibition or neans	document is combined with a	one or more other such docu-						
other means "P" document published prior to the international filing date but later than the priority date claimed ments, such combination being obvious to a person skilled in the art. "&" document member of the same patent family									
Date of the a	actual completion of the international search	Date of malling of the interna	ational search report						
6 March 2003		0 4. 07. 03							
Name and m	nailing address of the ISA	Authorized officer							
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fay: (+31-70) 340, 2015	Vix. 0							

Interpional	Application No
PCT/US	Application No 01/45080

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claim 16 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-17 (all partially)
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1: claims 1-17 (all partially)

An isolated nucleic acid molecule comprising the nucleic acid of SEQ ID N 1, and its encoded amino acid sequence of SEQ ID N 116.

Inventions 2-115: claims 1-17 (all partially)

An isolated nucleic acid molecule comprising the nucleic acid of SEQ ID N 2 to 115, and their encoded amino acid sequence of SEQ ID N 117-208.

information on patent family members

Interplication No
PCT/US 01/45080

Patent document cited in search report		Publication Patent family date member(s)			Publication date
WO 0008206	Α	17-02-2000	CA EP JP WO	2347656 A1 1104486 A1 2002522046 T 0008206 A1	17-02-2000 06-06-2001 23-07-2002 17-02-2000
WO 9602552	Α	01-02-1996	US AU AU BR CA EP JP WO US	5589579 A 700915 B2 3359295 A 9508417 A 2195403 A1 0804451 A1 10503087 T 9602552 A1 5773579 A	31-12-1996 14-01-1999 16-02-1996 18-11-1997 01-02-1996 05-11-1997 24-03-1998 01-02-1996 30-06-1998
WO 9940190	Α	12-08-1999	CA CN EP WO US	2319668 A1 1289366 T 1074621 A1 9940190 A1 2002151025 A1 6403785 B1	12-08-1999 28-03-2001 07-02-2001 12-08-1999 17-10-2002 11-06-2002

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)