Codebook

Leonardo Dantas

6/8/2021

This dataset contains 19 variables extracted and cleaned from the original research—see Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012.

All original files are available at https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip

Data Processing:

The text files provided by Anguita et al. contain different statistics of the x, y, and z coordinates of different movement types detected by the smartphones of 30 test subjects as they performed 6 different types of movements. The processed dataset, run_var_mean.csv, is a subset of such—selecting only the mean and standard deviation of the individual XYZ observations—in which each variable corresponds the average of these observations for each activity and each subject.

Identifier Variables:

- subject a numeric identifier (1-30) of the 30 test subjects in the original experiment.
- type_exercise a character identifier of the 6 types of physical activities detected by the smartphone. The types of exercise inclyde laying, sitting, standing, walking, walking_downstairs, and walking_upstairs.

Feature Variables:

(Excerpt from Original Experiment)

The features selected for this database come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz.

Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroMag, tBodyGyroJerkMag).

Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).

These signals were used to estimate variables of the feature vector for each pattern: '-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.

- tBodyAcc-XYZ
- tGravityAcc-XYZ
- tBodyAccJerk-XYZ
- \bullet tBodyGyro-XYZ
- \bullet tBodyGyroJerk-XYZ
- tBodyAccMag
- tGravityAccMag
- tBodyAccJerkMag
- tBodyGyroMag
- \bullet tBodyGyroJerkMag
- fBodyAcc-XYZ
- fBodyAccJerk-XYZ
- fBodyGyro-XYZ
- fBodyAccMag
- fBodyAccJerkMag
- fBodyGyroMag
- fBodyGyroJerkMag