Lösungen Strom und Magnetismus

Martina Stadlmeier

08.09.2009

1. a)
$$\Delta Q = I \Delta t = 1200 \text{ C}$$

b) $N_e = \frac{\Delta Q}{e} = 7, 5 \cdot 10^{21}$

2. a)
$$N = \frac{I\Delta t}{2e} = 2, 3 \cdot 10^{12}$$

b) Zunächst muss man die Geschwindigkeit der Teilchen berechnen: $v=\sqrt{\frac{2E}{m}}=3,1\cdot 10^7\frac{m}{s}$

Dann verwendet man den Ansatz: $j=\frac{N}{V}qv=\frac{I}{A}$ $\Rightarrow N=5000$ c) $U=\frac{E}{2e}=10^7\,\mathrm{V}$

3.
$$R = \rho_s \frac{l}{A} = 2,0 \Omega$$

4. a) Bei gleicher Spannung U fließt genau dann derselbe Strom durch beide Drähte, wenn $R_{Cu}=R_{Fe},$ also

$$\rho_{Cu} \frac{1}{\pi r_{Cu}^2} = \rho_{Fe} \frac{1}{\pi r_{Fe}^2}$$

$$\Rightarrow \frac{r_{Cu}}{r_{Fe}} = \sqrt{\frac{\rho_{Fe}}{\rho_{Cu}}} = 2,4$$

b) Nein, dies ist nicht möglich, denn:

$$I(r) = \frac{U\pi}{\rho l}r^2 \Rightarrow j(r) = \frac{I(r)}{\pi r^2} = \frac{U}{\rho l}$$

Somit ist die Stromdichte nur abhängig vom spezifischen Widerstand und nicht vom Radius r.

5. Zur Veranschaulichung:

Um den Gesamtwiderstand R zu berechnen schlägt man folgenden Lösungsweg ein:

1

$$R = \rho \int_{l_0}^{l} \frac{1}{A(x)} dx$$

es gilt:

$$\sin \alpha = \frac{r_1}{l_0} = \frac{r_2}{l} \Rightarrow l_0 = \frac{r_1}{r_2}l$$

$$l - l_0 = L$$

$$A(x) = \pi r^2(x) = \pi \sin^2 \alpha \ x^2 = \frac{\pi r_1^2}{l_0^2} x^2$$

Das Einsetzten all dieser Beziehungen und Lösen des Integrals liefert schließlich:

$$R = \frac{\rho L}{\pi r_1 r_2}$$

6. a) Die Drähte sind in Serie geschaltet, somit fließt durch beide derselbe Strom *I* und man erhält:

$$\frac{U_{Cu}}{U_{Fe}} = \frac{R_{Cu}}{R_{Fe}}$$
 und es gilt: $U = U_{Cu} + U_{Fe}$

$$\Rightarrow U_{Cu} = 15 \, \mathrm{V}$$

$$\Rightarrow U_{Fe} = 85 \, \mathrm{V}$$

b)
$$j = \frac{I}{A} = \frac{U}{R\pi r^2} = 8, 5 \cdot 10^7 \frac{A}{m^2}$$
 c) $E = j\rho_s$

$$E_{Cu} = 1, 5 \frac{V}{m}$$

 $E_{Fe} = 8, 5 \frac{V}{m}$

7. Für das Verhältnis der Widerstände erhält man:

$$\begin{aligned} R_A &= \rho \frac{l}{\pi \, \underline{r}^2} \\ R_B &= \rho \frac{l}{\pi \, (r_a^2 - r_i^2)} \\ \frac{R_A}{R_B} &= 0,75 \end{aligned}$$

8. a)
$$p=\frac{RI^2}{V}=\rho j^2$$
 mit $j=\frac{E}{\rho}$ folgt dann $p=\frac{E^2}{\rho}$ b) $U=\sqrt{PR}=94$ mV Wegen $P=UI=UjA$ folgt $j=\frac{P}{U\pi r^2}=1,35\cdot 10^5\frac{A}{m^2}$

9. a)
$$\overline{I} = \frac{500 \cdot I \Delta t}{\frac{1s}{s}} = 25 \,\mu\text{A}$$

b) $\overline{P} = U \overline{I} = \frac{E}{q} \overline{I} = 1,25 \,\text{kW}$
 $P_{max} = U I = 25 \,\text{MW}$

10. Die Physik bei diesen Aufgaben besteht eigentlich nur darin, die ersten -in diesem Fall- drei Gleichungen aufzustellen:

$$U_a - I_1 R_1 + I_2 R_2 = 0$$

- $U_b - I_2 R_2 - I_3 R_3 = 0$
 $I_1 + I_2 = I_3$

Der Rest der Aufgabe ist Mathematik und besteht darin, das lineare Gleichungssystem zu lösen:

$$I_1 = \frac{U_a(R_2 + R_3) - U_b R_2}{R_1 R_2 + R_2 R_3 + R_1 R_3}$$

$$I_2 = \frac{-U_a R_3 - U_b R_1}{R_1 R_2 + R_2 R_3 + R_1 R_3}$$

$$I_3 = \frac{U_a R_2 - U_b (R_1 + R_2)}{R_1 R_2 + R_2 R_3 + R_1 R_3}$$

11. a)
$$R_{ges}=R_1+\frac{R_1R_3R_4}{R_2R_3+R_3R_4+R_2R_4}=120~\Omega$$
 b) $I_1=\frac{U}{R_{ges}}=0,05~\mathrm{A}$

$$I_2 = I_3 = 0.02 \,\mathrm{A}$$

 $I_4 = 0,013 \,\mathrm{A}$

12. a) Zeichnet man die Schaltung um, so erhält man:

$$R_{qes} = 63 \,\Omega$$

b)
$$U = U_0 \frac{R_{ges}}{R_i + R_{ges}} = 5,2 \, \text{V}$$

c) Am einfachsten berechnet man den Strom durch R_3 : $I_3 = \frac{U}{R_{ges}} = 52 \, \text{mA}$ Somit ergibt sich für I_4 : $I_4 = I - I_3 = \frac{U}{R_{gas}} - I_3 = 30,5$ mA

13. a)
$$U_1 = U_0 - R_i I \Rightarrow R_i = 13 \, m\Omega$$

$$R_a = \frac{U_1}{I} = 67 \, m\Omega$$

$$R_a = \frac{U_1}{I} = 67 \, m\Omega$$

b) $U_1 = U_0 \frac{R_a}{2R_a} = \frac{U_0}{2}$

c) Für den Fall a) ist die verbrauchte Leistung $P = UI = RI^2$

$$P_i = 0, 3 \text{ kW}$$

$$P_a = 1,5 \text{ kW}$$

Für den Fall b) muss zunächst noch der Strom I berechnet werden: I= $\frac{U_0}{2R_a} = 90 \text{ A.}$ $\Rightarrow P = 0,54 \text{ kW}$

$$\stackrel{2R_a}{\Rightarrow} P = 0,54 \text{ kW}$$

14. a)
$$Q_1 = C_1 U_1 = 0.02 \text{ C}$$

$$E_1 = \frac{1}{2}C_1U_1^2 = 10\,\mathbf{J}$$

Nach dem Verbinden fließt soviel Ladung auf den zweiten Kondesator, bis an beiden Kondensatoren dieselbe Spannung U_2 anliegt. Es gilt:

$$Q'_1 + Q_2 = Q_1$$

 $U_2 = \frac{C_2}{Q_2} = \frac{C_1}{Q'_1} \Rightarrow Q'_1 = \frac{C_1}{C_1 + C_2} Q_1 = 0,013 \text{ C}$

$$\Rightarrow E_1' = 4, 4 \mathbf{J}$$

b)
$$U_2 = \frac{Q_1'}{C_1} = 667 \,\mathrm{V}$$

b) $U_2=\frac{Q_1'}{C_1}=667\,\mathrm{V}$ Die Gesamtladung bleibt unverändert! Zur Berechnung der Gesamtenergie benötigt man noch die in C_2 gespeicherte Energie: $E_2 = \frac{1}{2}C_2U_2^2 = 2,22\,\mathrm{J}$

Die Gesamtenergie E beträgt somit 6,66J und ist geringer als die zu Beginn in Kondensator 1 gespeicherte Energie. Die Differenz ging als Joul'sche Wärme im Leitungswiderstand verloren.

15. Die Stromstärke I berechnet sich, indem man sich überlegt, wie oft das Elektron mit der Ladung e pro Sekunde um den Kern umläuft, also:

$$I = e \cdot f = e \cdot \frac{\omega}{2\pi}$$

 ω erhält man durch das Gleichgewicht zwischen Coulomb- und Radialkraft:

$$\frac{e^2}{4\pi\epsilon_0 r^2} = mr\omega^2$$

$$\Rightarrow I = \frac{e^2}{4\pi} \sqrt{\frac{1}{\pi \epsilon_0 r^3 m}} = 1 \text{ mA}$$

Das Magnetfeld um den Kern berechnet sich mit: $B = \frac{\mu_0 I}{2r} = 12,5 \,\mathrm{T}$

- 16. a) $j = nev_D = \frac{I}{A} \Rightarrow v_D = 0,78 \cdot 10^{-3} \frac{m}{s}$ b) $U_H = \frac{I}{ned} B = 0,156 \ \mu V$ c) $fracFl = BI = 20 \ \frac{N}{m}$
- 17. Hier wendet man das Ampérsche Gesetz an: $\oint B ds = \mu_0 I$, also $B(r) = \frac{\mu_0 I(r)}{2\pi r}$
 - $r \leq r_1 \Rightarrow B(r) = 0$
 - $r_1 \le r \le r_2 \Rightarrow B(r) = \frac{\mu_0 I}{2\pi r} \frac{r^2 r_1^2}{r_2^2 r_1^2}$
 - $r_2 \le r \le r_3 \Rightarrow B(r) = \frac{\mu_0 I}{2\pi r}$
 - $r_3 \le r \le r_4 \Rightarrow B(r) = \frac{\mu_0 I}{2\pi r} (1 \frac{r^2 r_3^2}{r_1^2 r_2^2})$
 - $r_4 < r \Rightarrow B(r) = 0$
- 18. Auch hier arbeitet man mit dem Ampérschen Gesetz:

$$\oint H \, ds = \oint H_E + H_L \, ds = IN$$

$$H_E(2\pi r - d) + H_L d = IN$$

Außerdem gilt immer, dass $B_L=B_E$, also $\mu_0H_L=\mu_0\mu_rH_E$

$$H_E = \frac{NI}{2\pi r + (\mu_r - 1)d} = 2,48 \cdot 10^3 \frac{A}{m}$$

$$H_L = \frac{NI\mu_r}{2\pi r + (\mu_r - 1)d} = 1,24 \cdot 10^6 \frac{A}{m}$$

- 19. a) $\overrightarrow{E} \perp \overrightarrow{v_0}$ und $\overrightarrow{E} \perp \overrightarrow{B}$
 - b) Ansatz: $Bqv_0 = Eq \Rightarrow \mu_0 H v_0 = \frac{U}{d} \Rightarrow H = \frac{U}{\mu_0 d} = 8 \cdot 10^3 \frac{A}{m}$
 - c) $B = \mu_0 nI \Rightarrow I = \frac{B}{\mu_0 n} = \frac{H}{n} = 20 \text{ A}$
 - d) Wenn $v > v_0$ dann erfolgt eine Ablenkung in Richtung des mangetischen Feldes, wenn $v < v_0$ erfolgt die Ablenkung in Richtung des elektrischen Feldes.

4