~	
Candidate	No.
Candidate	110.

KADI SARVA VISWAVIDHYALAYA

MCA – Semester I (ATKT)

MC 02 - Fundamentals of Computer Organization

Date:	09-04-2013	Time: 10.00am – 1.00pm	Total Marks: 50
	Attempt all questions. Make suitable assumptions. Figures to the right indicates.		en e
Q1.	Answer the following		[10]
	a) Convert the binary n	umber 111011.1011 to its equivalent decimal repres-	entation.
	b) Convert the decimal	number 632.97 to its equivalent octal representation	l.
	c) Perform binary multi	plication on 10111.1 * 1011.11	
	d) Perform 2's complen	nent on -42-20	
	e) Perform 10's comple	ement on 24 -68	
Q2(a).	Fill up the following.		[10]
	1) Excess-3 code is also	known as	
	2) is	a means to describe how the output of a logic circuit	t depends on the
	logic level present at	the input.	
	3) A logic circuit that ac	dds three 1-bit number is called as	<u>.</u> .
	4) A group of	stores more than 1 bit of digital data.	
	5) The data stored in me	emory in terms of groups of binary bits are called as	
2 (b).	1) What is 2-4-2-1 code	?	
	2) Minimize the following	ng expression using K-Map	
	Y(A,B	$A(C,D) = \sum m(0,2,4,7,8,10,12,13)$	
		(Or)	
	1) State DeMorgan's Th	eorems	
	2) Minimize the following	ng expression using K-Map	
	Y(A,B	$A(C,D) = \prod M(1,2,3,8,9,10,11,14) \cdot d(7,15)$	
Q3.	Answer the following		[10]
	a) List out the steps to de	esign a combinational logic circuit using gates and d	esign a 1 bit
	comparator using logi	c gates.	
	b) Explain in detail abou	t Full Adder.	
		(Or)	P.T.O

- a) Write the algorithm of 9's complement BCD subtraction and explain it with an example.
 b) What are the applications of multiplexer? Implement the following expressions using a multiplexer. Y(A,B,C) = ∏M(0,1,4,5)
 Answer the following
 a) What is the limitation of S-R flip flop? How is it rectified in J-K flip flop? Explain them.
 b) State any 5 characteristics of flip-flops.
 (Or)
 a) Explain the excitation table of RS and JK flip flops.
- Q5. Answer the following

Q4.

[10]

[10]

a) Draw the functional diagram of the memory and explain its components.

b) Explain in detail about asynchronous loading of PISO shift register.

b) Briefly explain about any 5 characteristics of memory.

(Or)

- a) What are interrupts? Explain its types.
- b) Explain Instruction Cycle.