1.3 역학과수치적분 동명대학교 강영민

역학

- * 역학
 - * 힘에 기반하여 운동을 이해
- * 중요한 공식 (뉴턴의 제2법칙)
 - * f = ma
- * 강체는....회전힘 = 회전질량*회전가속

$$au = \mathbf{I}\dot{\omega}$$

운동방정식의적분

$$* f = ma$$

* 다시 말하면...

$$\mathbf{f} = m \frac{d\mathbf{v}}{dt}$$

* dv = ?

$$\frac{\mathbf{f}dt}{m} = d\mathbf{v}$$

$$\int_{t_1}^{t_2} \frac{\mathbf{f} dt}{m} = \int_{\mathbf{v}_1}^{\mathbf{v}_2} d\mathbf{v}$$

힘이 (이 시간 동안) 상수일 경우

$$\frac{\mathbf{f}}{m}(t_2 - t_1) = \mathbf{v}_2 - \mathbf{v}_1$$

$$\frac{\mathbf{f}}{m}\Delta t = \Delta \mathbf{v}$$

초기조건문제

- * 초기 조건
 - * x(t), v(t)
 - * 시간 t에서의 위치와 속도
- * 문제
 - * 조금의 시간 dt가 흐른 뒤를 예측
 - * 예측의 대상 위치 x(t+dt)와 속도 v(t+dt)를 구하기
- * x(t+dt), v(t+dt)를 초기 조건으로 예측을 반복

속도의갱신

*
$$v1 = v(t) \leftarrow$$

- * 찾아야하는속도
 - v2 = v(t+dt)

$$\frac{\mathbf{f}}{m}(t_2 - t_1) = \mathbf{v}_2 - \mathbf{v}_1$$

$$\frac{\mathbf{f}}{m}\Delta t = \Delta \mathbf{v}$$

* 다음 프레임(t+dt)에서의 속도
$$\mathbf{v}(t+\Delta t) = \mathbf{v}(t) + \frac{\mathbf{f}(t)}{m} \Delta t$$

* 혹은
$$\mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \mathbf{a}(t)\Delta t$$

위치의갱신

* 속도와위치

$$\mathbf{v} = d\mathbf{s}/dt$$

$$\mathbf{v}dt = d\mathbf{s}$$

* 수치 적분

$$\mathbf{v}(t + \Delta t)\Delta t = \Delta \mathbf{s}$$

- * 시간 t에서 가해지는 힘 혹은 가속도를 알 수 있다면
 - * 시간 t+dt에서의 위치와 속도를 추정할 수 있다.

실시간시뮬레이션

- * 힘을계산한다: f
- * 가속도를 계산한다: a = f/m
- * 정해진 시간 간격이 흐른 뒤의 속도를 계산한다.
 - * 오일러 적분

$$\mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \mathbf{a}\Delta t$$

- * 시간 간격이 흐른 뒤의 위치도 계산한다.
 - * 오일러 적분

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \mathbf{v}(t + \Delta t)\Delta t$$

결과

1.4다양한힘모델

동명대학교 게임공학과 강영민

힘

- * 힘은
 - * 운동을 유발한다.
- * 역학에서 매우 중요하다.
- * 다양한 모델이 존재한다.

다룰개념들

- * 역장(힘의 장): 예 중력
- * 마찰: 운동에 저항하는 접촉력
- * 유체 항력: 유체 내에 움직이는 물체에 가해지는 저항력
- * 압력: 단위 면적 당 가해지는 힘
- * 부력: 유체에 잠긴 객체를 "위로" 밀어 올리는 힘
- * 스프링-댐퍼: 객체를 탄성으로 묶어 놓는 힘
- * 회전력: 물체를 회전하게 만드는 "힘의 모멘트"

힘의장

- * 힘의 장(force field)
 - * 물체에 가해지는 힘을 표현하는 벡터의 장
- * 좋은 예
 - * 중력장
 - * 전자기장

Gravitational force field

* 만유인력

$$|\mathbf{f}_u| = Gm_1m_2/r^2$$

* G: 중력계수

$$6.673 \times 10^{-11} (N \cdot m^2)/kg^2$$

- * r: 두질량사이의거리
- * m_{1,2}: 각각의 질량
- * 지구에서의 중력

* 지구의 질량: $5.98 \times 10^{24} kg$

* 지구 반지름: $6.38 \times 10^6 m$

* 중력 가속도

$$\frac{Gm_{earth}}{r^2} \simeq (\frac{6.673 \times 5.98}{6.38^2}) \times 10m/s^2 \simeq 9.8034m/s^2$$

마찰력

- * 접촉면에 의한 저항력
 - * 접촉력
 - * 법선 방향으로 가해지는 힘:N이 중요
- * 두종류의 마찰력
 - * 정지 마찰력: 최대의 마찰력 $|\mathbf{f}_{max}| = \mu_s \mathbf{N}$
 - * 운동 마찰력 $|\mathbf{f}_k| = \mu_k \mathbf{N}$

마찰계수

- * 잘 알려진 표면의 마찰계수
 - * Ms: 정지마찰계수 / Mu: 운동마찰계수

Surface condition	M _s	Mu	% difference
Dry glass on glass	0.94	0.4	54%
Dry iron on iron	1.1	0.15	86%
Dry rubber on pavement	0.55	0.4	27%
Dry steel on steel	0.78	0.42	46%
Dry Teflon on Teflon	0.04	0.04	
Dry wood on wood	0.38	0.2	47%
Ice on ice	0.1	0.03	70%
Oiled steel on steel	0.10	0.08	20%

유체항력

- * 마찰력과 유사
 - * 마찰력은 항력에서 주요한 요소
 - * 하지만 마찰력이 전부는 아님
- * 천천히 움직이는 객체의 점성 항력: 층류(laminar) 상태
 - * f = -C v
- * 빠르게 움직이는 객체의 항력: 난류(turbulence) 상태
 - * $f = -C v^2$

압력

- * 압력은힘이아님
 - * 압력 = 단위 면적 당 가해지는 힘
 - * F = PA (힘 = 압력 x 면적)
 - P = F/A
- * 압력이 중요한 시뮬레이션 예들
 - * 보트, 호버크래프트...

부력

- * 유체 내의 서로 다른 압력에 의해 발생
- ◈ 수평으로 작용하는 힘의 총합 = 0
- * 수직으로 작용하는 힘의 총합 = 아래쪽 면에 작용하는 힘 윗면에 작용하는 힘
- * F = PA
- * 압력: 밀도와 중력의 수
 - * 위쪽에 작용하는 압력

$$\mathbf{P}_t = \rho \mathbf{g} h_t$$

* 아래쪽에 작용하는 압력

$$\mathbf{P}_b = \rho \mathbf{g} h_b$$

부력

$$\mathbf{f}_t = \mathbf{P}_t A_t = \rho \mathbf{g} h_t s^2$$
$$\mathbf{f}_b = \mathbf{P}_b A_b = \rho \mathbf{g} h_b s^2$$

$$\mathbf{f}_b - \mathbf{f}_t = \rho \mathbf{g} h_b s^2 - \rho \mathbf{g} h_t s^2$$

$$= \rho \mathbf{g} (h_b - h_t) s^2$$

$$= -\rho \mathbf{g} s^3$$

$$= -\rho \mathbf{g} V \quad (V : volume)$$

스프링힘

- * 후크(Hookd)의 법칙
 - * 스프링의 길이를 x만큼 늘이거나 줄이는 데에 필요한 힘은 이 길이에 비례한다.
 - * f = -k x
 - * k: 스프링계수
- * 아무런 힘이 가해지지 않은 상태에서의 스프링 길이 (휴지 상태 길이):r
- * 현재 스프링의 길이: L
 - * 힘의 크기: $|\mathbf{f}| = k_s(L-r)$
 - * 힘의 방향: 스프링 양쪽에 x1과 x2의 위치에 물체가 달려 있을 때

$$\begin{array}{c|c} * & \mathbf{x}_1 - \mathbf{x}_2 \\ \hline |\mathbf{x}_1 - \mathbf{x}_2| & - \frac{\mathbf{x}_1 - \mathbf{x}_2}{|\mathbf{x}_1 - \mathbf{x}_2|} \end{array}$$

댐퍼

- * 스프링은 영원히 진동하지 않는다
 - * 에너지가사라짐
 - * 간단한모델
 - * 댐핑힘

$$\mathbf{f}_d = k_d(\mathbf{v}_1 - \mathbf{v}_2)$$

스프링과댐퍼

$$\mathbf{f}_1 = -(k_s(L - r) + k_d(\mathbf{v}_1 - \mathbf{v}_2) \cdot \frac{\mathbf{L}}{L}) \frac{\mathbf{L}}{L}$$

$$\mathbf{f}_2 = -\mathbf{f}_1$$

힘과토크

- * 힘
 - * 선 가속도를 일으킨다
- * 토크
 - * 회전 가속을 일으킨다
- * 토크:
 - ◈ 벡터이다
 - * 크기
 - * 얼마나 빠르게 회전 속도가 바뀌는지
 - * |rxf|
 - * 방향
 - * 회전 축 = (rxf) / |rxf|

$$\tau = \mathbf{r} \times \mathbf{f}$$

