1. Introducción

Objetivo del manual El objetivo de este manual es guiar al lector a través del proceso de realizar una encuesta, recopilar datos y calcular las medidas de tendencia central utilizando Microsoft Excel.

Importancia de las medidas de tendencia central

Las medidas de tendencia central, como la media, mediana y moda, son fundamentales para resumir y comprender la distribución de un conjunto de datos. Estas medidas nos ayudan a identificar el valor típico o central dentro de los datos.

Estructura del manual

El manual se divide en varias secciones que abarcan desde la realización de una encuesta hasta el cálculo de las medidas de tendencia central para datos agrupados y no agrupados en Excel.

2. Realización de una Encuesta

Definición del objetivo de la encuesta

Antes de realizar una encuesta, es crucial definir claramente el objetivo. ¿Qué información deseas obtener? Esto ayudará a diseñar un cuestionario eficaz y relevante.

Diseño del cuestionario

El cuestionario debe ser claro y conciso. Incluye preguntas cerradas y abiertas para obtener tanto datos cuantitativos como cualitativos. Asegúrate de que las preguntas sean neutrales para evitar sesgos.

Selección de la muestra

Define tu población objetivo y selecciona una muestra representativa. Puedes usar métodos de muestreo aleatorio, estratificado o por conveniencia, dependiendo de los recursos y el objetivo del estudio.

Recolección de datos

Distribuye el cuestionario a la muestra seleccionada. Puedes utilizar encuestas en papel, en línea, entrevistas telefónicas, entre otros métodos. Asegúrate de recopilar los datos de manera ética y confidencial.

3. Procesamiento de Datos en Excel

Introducción a Excel

Microsoft Excel es una herramienta poderosa para el análisis de datos. Permite organizar, manipular y analizar grandes volúmenes de información de manera eficiente.

Importación de datos a Excel

- 1. Abrimos Excel y creamos un nuevo libro.
- 2. Obtenemos los datos del forms.
- 3. Nos aseguramos de que los datos estén organizados en columnas con encabezados claros.

Organización de datos

- Verificamos que los datos estén limpios (sin errores o valores atípicos).
- Usa funciones de filtrado y ordenación para revisar y organizar los datos según sea necesario

4. Califique de 1 a 100 la fácil adquisición de helado Polito en nuestro medio? (valor entero Ej: 80)

Creamos una tabla para los datos no agrupados

Media

- 1. Selecciona la celda donde deseas que aparezca la media.
- 2. Usa la función =PROMEDIO(rango de datos).

Mediana

- 1. Selecciona la celda donde deseas que aparezca la mediana.
- 2. Usa la función = MEDIANA (rango_de_datos).

Moda

1. Selecciona la celda donde deseas que aparezca la moda.

2. Usa la función = MODA (rango_de_datos).

Amplitud

- 1. Calcula el valor máximo con =MAX(rango_de_datos).
- 2. Calcula el valor mínimo con =MIN(rango_de_datos).
- 3. Resta el mínimo del máximo: =MAX(rango_de_datos) MIN(rango_de_datos).

Desviación Media Absoluta (DAM)

- 1. Calcula la media con =PROMEDIO(rango_de_datos).
- 2. Calcula la diferencia absoluta de cada dato con la media.
- 3. Calcula la media de esas diferencias absolutas.

Varianza

- 1. Selecciona la celda donde deseas que aparezca la varianza.
- 2. Usa la función =VAR.P(rango_de_datos) para la varianza poblacional o =VAR.S(rango_de_datos) para la varianza muestral.

Desviación Estándar

- 1. Selecciona la celda donde deseas que aparezca la desviación estándar.
- 2. Usa la función =DESVEST.P(rango_de_datos) para la desviación estándar poblacional o =DESVEST.S(rango_de_datos) para la desviación estándar muestral.

Cuartiles (Q1, Q2, Q3)

- 1. Selecciona la celda donde deseas que aparezca el cuartil.
- 2. Usa la función =CUARTIL(rango_de_datos, número_de_cuartil), donde el número de cuartil puede ser 1, 2 o 3.

5. Cálculo de Medidas de Tendencia Central para Datos Agrupados

Creamos la tabla para datos agrupados

1120			· J*												
	Α	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	О
1	Intervalos	cia Absolut	Absoluta A	cia Relativa	a Relativa A	arca de Cla	fx	x - xprom	x - xprom	' x - xpron	c - xprom)^	(x - xprom) [/]	^2		
2	-1 - 13	6	6	0,054545	0,054545	6	36	-74,7273	74,72727	448,3636	5584,165	33504,99			
3	14 - 28	3	9	0,027273	0,081818	21	63	-59,7273	59,72727	179,1818	3567,347	10702,04			
4	29 - 43	1	10	0,009091	0,090909	36	36	-44,7273	44,72727	44,72727	2000,529	2000,529			
5	44 - 58	6	16	0,054545	0,145455	51	306	-29,7273	29,72727	178,3636	883,7107	5302,264			
6	59 - 73	7	23	0,063636	0,209091	66	462	-14,7273	14,72727	103,0909	216,8926	1518,248			
7	74 - 88	25	48	0,227273	0,436364	81	2025	0,272727	0,272727	6,818182	0,07438	1,859504			
8	89 - 103	62	110	0,563636	1	96	5952	15,27273	15,27273	946,9091	233,2562	14461,88			
9															
10															
11															
12															
13															

Media

- 1. Calcula el punto medio de cada intervalo de clase.
- 2. Multiplica cada punto medio por su frecuencia.
- 3. Suma estos productos.
- 4. Divide la suma entre el total de frecuencias.

Mediana

- 1. Identifica el intervalo de clase que contiene la mediana.
- 2. Usa la fórmula para calcular la mediana de datos agrupados: $\begin{tabular}{l} Mediana = L + (N2-Ff) \times c \times \{Mediana\} = L + \left(f(x) F(x) \times f(x) \right) \times (Mediana) = L + \left(f(x) F(x) \times f(x) \right) \times (Mediana) = L + (f(x) F(x) \times f(x) \times f(x) \right) \times (Mediana) = L + (f(x) F(x) \times f(x) \times$

Moda

- 1. Identifica el intervalo modal.
- 2. Usa la fórmula para calcular la moda de datos agrupados: $\label{eq:moda} \begin{tabular}{l} $Moda=L+((fm-f1)(2fm-f1-f2))\times c\times\{Moda\}=L+((fm-f1)(fm-f1))\times c\times\{(f_m-f_1-f_2)\}\} \end{tabular} $$ $Moda=L+((2fm-f1-f2)(fm-f1))\times c \end{tabular} $$ Donde: o LLL es el límite inferior del intervalo modal. o fmf_mfm es la frecuencia del intervalo modal. o f1f_{1}f1 es la frecuencia del intervalo anterior al modal. o f2f_{2}f2 es la frecuencia del intervalo siguiente al modal. o ccc es el tamaño del intervalo. \\$

Amplitud

1. Calcula la diferencia entre el límite superior del último intervalo y el límite inferior del primer intervalo.

Desviación Media Absoluta (DAM)

- 1. Calcula la media de los datos agrupados.
- 2. Calcula la diferencia absoluta de cada punto medio de intervalo con la media.
- 3. Multiplica cada diferencia por su frecuencia.
- 4. Calcula la suma de esos productos y divide entre el total de frecuencias.

Varianza

- 1. Calcula la media de los datos agrupados.
- 2. Calcula el cuadrado de la diferencia entre cada punto medio y la media.
- 3. Multiplica cada cuadrado por su frecuencia.
- 4. Calcula la suma de esos productos y divide entre el total de frecuencias.

Desviación Estándar

1. La desviación estándar es la raíz cuadrada de la varianza.

Cuartiles (Q1, Q2, Q3)

1. Usa la fórmula para calcular los cuartiles de datos agrupados:

6. Conclusión

Resumen de los pasos

Hemos cubierto desde la realización de una encuesta hasta el procesamiento y análisis de los datos en Excel. Las medidas de tendencia central son cruciales para comprender los datos recolectados.

Importancia de las medidas de tendencia central en el análisis de datos

Estas medidas nos ayudan a resumir los datos y a identificar patrones o tendencias. Son fundamentales para la toma de decisiones basada en datos.

Recomendaciones finales

Practica regularmente el análisis de datos para mejorar tus habilidades. Usa Excel u otras herramientas estadísticas para facilitar el proceso