

Marco Listanti

Esercizi strato di rete (parte 3)

Esercizio 1 (1)

- Si consideri la rete in figura
- Si utilizzi l'algoritmo di Dijkstra per calcolare il percorso più breve dal nodo x a tutti gli altri nodi della rete
- Si mostri il funzionamento dell'algoritmo e si determini la tabella di routing associata al nodo x

Esercizio 1 (2)

		NODI							
PASSO	INSIEME T _k	†	u	V	w	у	z		
	* K	D(†), p(†)	D(u), p(u)	D(v), p(v)	D(w), p(w)	D(y), p(y)	D(z), p(z)		
0	×	∞	∞	3, x	6, x	6, x	8, x		
1	ΧV	7, v	6, v		6, x	6, x	8, x		
2	xvu	7, v			6, x	6, x	8, x		
3	×uvw	7, v				6, x	8, x		
4	xuvwy	7, v					8, x		
5	xuvwyt						8, x		
6	xuvwytz								

D(i) = costo minimo per percorso tra il nodo di origine ed il nodo "i"

p(i) = predecessore del nodo "i" sul percorso minimo tra in nodo origine il nodo "i"

Esercizio 1 (3)

La tabella di routing del nodo x sarà

Destinazione	Next Hop
Nodo †	V
Nodo u	V
Nodo v	V (locale)
Nodo w	W (locale)
Nodo y	y (locale)
Noco z	Z (locale)

Esercizio 2 (1)

- Si considerino le stesse ipotesi dell'esercizio precedente
- Si determini lo spanning tree a costo minimo che ha come radice il nodo v
- Si determini inoltre la tabella di routing associata al nodo v

Esercizio 2 (2)

		NODI								
PASSO	T _k	†	u	×	w	у	z			
		D(t), p(t)	D(u), p(u)	D(x), $p(x)$	D(w), p(w)	D(y), p(y)	D(z), p(z)			
0	V	4, †	3, u	3, x	4, w	8, y	∞			
1	vu	4, †		3, x	4, w	8, y	∞			
2	vux	4, †			4, w	8, y	11, ×			
3	vuxt				4, w	8, y	11, ×			
4	vuxtw					8, y	11, ×			
5	vuxtwy						11, ×			
6	vuxtwyz									

D(i) = costo minimo per percorso tra il nodo di origine ed il nodo "i";

p(i) = predecessore del nodo "i" sul percorso minimo tra in nodo origine il nodo "i"

Esercizio 2 (3)

La tabella di routing del nodo v sarà

Destinazione	Next Hop
Nodo †	T (locale)
Nodo u	U (locale)
Nodo v	V (locale)
Nodo w	W (locale)
Nodo y	y (locale)
Noco z	У

Esercizio 3 (1)

- Si consideri la rete in figura e si assuma che inizialmente ciascun nodo conosca solo il costo associato ai suoi archi incidenti
- Si consideri l'algoritmo "distance vector"
- Si determinino, passo dopo passo, le tabelle delle distanze dei nodi U, V, e Z

Esercizio 3 (2)

Condizioni iniziali

Riceve il distance vector da X e V

Cond. Iniziali			Nodi	destina	zione	
		U	V	X	У	Z
Nodi	V	8	0	8	∞	∞
origine	X	8	∞	0	∞	∞
	Z	8	6	2	∞	0

	Pass	so 1		Nodi	destina	zione	
			U	V	X	У	Z
Riceve il distance vector da U. X e Z	Noai	٧	1	0	3	∞	6
Riceve il distance vector da Y, V e Z	origina	X	4	3	0	3	2
vector da X, V		Z	7	5	2	5	0

Esercizio 3 (3)

Pas	so 2	Nodi destinazione			zione	
		J	V	X	У	Z
Nodi	V	1	0	3	3	5
origine	X	4	3	0	3	2
	Z	6	5	2	5	0

Riceve il distance vector da X e V

	Pass	so 3		Nodi	destina	zione	
			U	V	X	У	Z
Riceve il distance vector da U. X e Z	Nodi	٧	1	0	3	3	5
Riceve il distance vector da Y, V e Z	origina	X	4	3	0	3	2
vector da X, V		Z	6	5	2	5	0

Esercizio 4 (1)

- Si consideri il segmento di rete in figura
- Il nodo x è collegato solamente a w e y
 - Il nodo w ha un percorso minimale non noto verso la destinazione u di costo 5
 - Il nodo y ha un percorso minimale non noto verso u di costo 6
- (a) Si determini il vettore delle distanze di x per le destinazioni w, y e u
- (b) Si determinino le variazioni nel costo dei collegamenti sia per c(x,w) che per c(x,y) in modo tale che x informi i suoi vicini di un nuovo percorso a costo minimo verso u
- (c) Si determini una variazione nel costo dei collegamenti sia per c(x,w) che per c(x,y) tale che x non informi i suoi vicini di un nuovo percorso a costo minimo verso u

Esercizio 4 (2)

Quesito a

- $D_{x}(w) = c(x, w) = 2$
- $D_{x}(y) = c(x,w) + c(w,y) = 4$
- D_x(u) = c(x,w) + c(w,u) = 7

Quesito b

- Se il nuovo valore di c(x,y) è c(x,y) >= 1, $D_x(u)$ rimane uguale a 7, il nodo x non informerà i suoi vicini
- If $c(x,y) = p_1 < 1$, il cammino minimale verso y avrà costo uguale p_1+6 . e il next hop sarà il nodo y, quindi x informerà i suoi vicini della variazione di costo
- Se $c(x,w) = p_2 \le 1$, il cammino minimale verso u continuerà a passare attraverso w e il suo costo sarà uguale a $b + p_2$; x informerà i suoi vicini della variazione di costo.
- If $c(x,w) = p_3 > 6$, il cammino minimale verso u passerà attraverso y ed il suo costo sarà 11; x informerà i suoi vicini di questo nuovo cammino

Quesito c

Qualsiasi variazione del costo c(x,y) (posto che c(x,y) >=1) non causerà il cambiamento del cammino minimale verso u e quindi x non emetterà nessun messaggio

Esercizio 5 (1)

- Si consideri una topologia di rete generica e la versione sincrona dell'algoritmo distance vector
- In ciascuna iterazione, un nodo invia il proprio vettore delle distanze ai suoi vicini
- Si assuma che inizialmente ciascun nodo conosca solo i costi dei rami verso i suoi vicini
- Si determini
 - qual è il massimo numero di iterazioni prima che l'algoritmo converga
 - una stima del tempo massimo di convergenza

Esercizio 5 (2)

- L'ipotesi di funzionamento sincrono comporta che, in un passo, tutti i nodi calcolino le loro tabelle delle distanze e le trasmettano ai nodi vicini
- Si consideri un generico nodo (nodo "A") e si osservi che in ogni iterazione:
 - il generico nodo "A" scambia i "distance vector" con un nodo adiacente (nodo "B");
 - a sua volta il nodo "B" scambia il vettore delle distanze con i propri vicini (insieme b) che saranno nodi a distanza 1 o 2 da "A"
- Di conseguenza dopo la prima iterazione i nodi dell'insieme b conosceranno i cammini a costo minimo di 1 o 2 hop verso il nodo "A"

Esercizio 5 (3)

- Sia d il diametro della rete, ovvero la lunghezza più elevata tra i cammini minimi esistenti tra una qualsiasi coppia di nodi della rete
- In base al ragionamento precedente, dopo d-1 iterazioni tutti i nodi della rete conosceranno il costo minimo dei cammini composti da d hop verso tutti gli altri i nodi della rete
- Poichè d è la lunghezza massima di un cammino di rete, l'algoritmo convergerà dopo un numero massimo di d-1 iterazioni

Esercizio 5 (4)

- Supponiamo che al tempo t=0 avvenga una variazione di stato in un ramo uscente dal nodo "A"
- Supponiamo inoltre che
 - la lunghezza massima dei rami della rete sia L_{max}=L km
 - il massimo tempo di trasmissione di un distance vector sia t_{t,max} secondi
 - il tempo massimo di elaborazione necessario ad un nodo per il calcolo del proprio distance vector sia t_{e,max} secondi
- Poichè il numero massimo di iterazioni è uguale a d-1, il tempo massimo di convergenza (T_{conv,max}) sarà

$$T_{conv,max} = (d-1) \cdot (t_{t,max} + t_{e,max} + 5 \cdot L10^{-6})$$

Esercizio 6 (1)

- Si consideri la rete mostrata in figura
- I costi associati ai link sono:

$$c(x,y)=4$$

$$c(x,z)=50$$

$$c(y,w)=1$$

$$c(z,w)=1$$

$$c(y,z)=3$$

Si assuma che sia usata l'inversione avvelenata (poisoned reverse) nell'algoritmo di instradamento distance vector

Esercizio 6 (2)

- Quesito (a)
 - Quando l'algoritmo è stabilizzato, qual è il valore delle distanze da x riportata nei distance vector che i router z, y e w si scambiano?
- Quesito (b)
- Si assuma che al tempo t0 il costo del collegamento tra x e y assuma il valore 60
 - Si verificherà il problema del conteggio all'infinito?
 - Quante iterazioni sono necessarie perché l'instradamento raggiunga uno stato stazionario ?

Esercizio 6 (3)

- Quesito (a)
 - Quando l'algoritmo ha raggiunto lo stato stabile, i vettori delle distanze sono i seguenti:

		Nodo destinazione						
		Z	×					
	Z		1	2	6			
Nodo	W	1		1	5			
Nodo origi ne	У	2	1		4			
	X	6	5	4				

Esercizio 6 (4)

- Quesito (a)
 - Nello stato stabile gli instradamenti sono i seguenti

Esercizio 6 (5)

- Quesito (a)
 - La regola dell'inversione avvelenata prescrive che "se un nodo α , per raggiungere γ , instrada i pacchetti verso β , il nodo α comunica a β che la sua distanza verso γ è infinita (in questo modo β non instraderà i pacchetti per γ verso α)"
 - Di conseguenza le distanze dal nodo x annunciate dai nodi z, w e y sono le seguenti:

		Nod	o destinaz	ione
		Z	W	У
	Z		$D_z(x)=\infty$	D _z (x)=6
Nodo origine	W	D _w (x)=5		D _w (x)=∞
	У	$D_{y}(x)=4$	$D_{y}(x)=4$	

Esercizio 6 (6)

- Quesito (b)
 - L'inversione avvelenata non evita il conteggio all'infinito
 - Infatti, il processo di convergenza è mostrato nelle tabelle seguenti
 - al tempo t1, y aggiorna il suo distance vector e informa i nodi w e z
 - ai tempi t1, t2, t3, t4 proseguono le iterazioni ed il costo dei cammini cresce e tra i nodi w, y, z si forma un loop nel calcolo dei costi verso il router x

Tempo	†0	†1	†2	†3	†4
Z	$D_z^{w}(x) = \infty$ $D_z^{y}(x) = 6$		Nessuna variazione	$D_z^{w}(x) = \infty$ $D_z^{y}(x) = 11$	
W	$D_{w}^{y}(x) = \infty$ $D_{w}^{z}(x) = 5$		$D_{w}^{y}(x) = \infty$ $D_{w}^{z}(x) = 10$		Nessuna variazione
У	$D_y^w(x)=4$ $D_y^z(x)=4$	$D_{y}^{w}(x)=9$ $D_{y}^{z}(x)=\infty$		Nessuna variazione	$D_{y}^{w}(x)=14$ $D_{y}^{z}(x)=\infty$

Esercizio 6 (7)

Continuando le iterazioni

- al tempo t1, y aggiorna il suo distance vector e informa i nodi w e z
- al tempo t27, z rivela che il costo minimo verso $x \in 50$, attraverso il link diretto
- al tempo t29, w apprende che il costo minimo verso x è 51 attraverso z
- al tempo t30, y aggiorna a 52 il suo costo minimo verso x (verso w)
- Infine, al tempo t31, il routing si stabilizza

Tempo	†27	†28	†29	† 30	†31
Z	$D_z^{w}(x)=50$ $D_z^{y}(x)=50$				$D_z^{w}(x) = \infty$ $D_z^{y}(x) = 55$ $D_z^{z}(x) = 50$
W		$D_{w}^{y}(x) = \infty$ $D_{w}^{z}(x) = 50$	$D_{w}^{y}(x)=51$ $D_{w}^{z}(x)=\infty$		$D_{w}^{w}(x) = \infty$ $D_{w}^{y}(x) = \infty$ $D_{w}^{z}(x) = 51$
У		$D_{y}^{w}(x)=53$ $D_{y}^{z}(x)=\infty$		$D_y^w(x) = \infty$ $D_y^z(x) = 52$	$D_y^w(x)=52$ $D_y^y(x)=60$ $D_y^z(x)=53$

Networking Grou

Telecomunicaziohi - Prot. Marco Listanti - A.A. 2019/2020

Esercizio 7 (1)

Si consideri la LAN Ethernet mostrata in figura in cui sono riportati anche gli indirizzi MAC degli apparati
Router

Nome	Indirizzo MAC
PC1	00-CC-AA-11-22-01
PC2	00-CC-AA-11-22-02
PC3	00-CC-AA-11-22-03
PC4	00-CC-AA-11-22-04
PC5	00-CC-AA-11-22-05
PC6	00-CC-AA-11-22-06
PC7	00-CC-AA-11-22-07
Server	00-CC-AA-11-22-0A
Router	00-CC-AA-11-22-0B

Esercizio 7 (2)

(a) Ipotizzando che la lunghezza di tutti i segmenti di collegamento siano uguali a D=400 metri, determinare il limite teorico (Lmin) della dimensione minima della trama (si supponga un ritardo di propagazione δ =5 μ s/km ed un ritmo di trasmissione delle trame uguale a R=40 Mbit/s)

Esercizio 7 (3)

(b) Supponendo che, all'istante t, le tabelle di inoltro (forwarding table) degli switch siano:

Switch1		Switch2	
Indirizzo	Interfaccia	Indirizzo	Interfaccia
00-CC-AA-11-22-03	1.1	00- <i>CC</i> -AA-11-22-03	2.4
00-CC-AA-11-22-04	1.2	00- <i>CC</i> -AA-11-22-04	2.3

Indicare l'insieme dei collegamenti sui quali vengono inoltrate le trame inviate dal terminale avente indirizzo MAC SOURCE_MAC_ADD e dirette verso il terminale con indirizzo MAC DEST_MAC_ADD

T	rama	
	1	

SOURCE_MAC_ADD	00-CC-AA-11-22-0A	
DEST_MAC_ADD	00-CC-AA-11-22-04	

Trama	SOURCE_MAC_ADD	00-CC-AA-11-22-02	
2	DEST_MAC_ADD	00-CC-AA-11-22-0B	

(c) Riempire, se necessario, le altre righe delle tabelle di switch dopo che siano inoltrate le due trame 1 e 2

Esercizio 7 (4)

Quesito (a)

La lunghezza minima L_{min} di una trama è data da

$$\frac{L_{\min}}{C} \ge 2 \cdot t_{p_max}$$

- dove $t_{p_{max}}$ è il massimo tempo di ritardo tra due terminali nello stesso dominio di collisione
- La massima distanza tra due terminali è d_{max}=800 m
 - da cui

$$L_{min} \ge 2 \cdot C \cdot t_{p_max} = 2 \cdot C \cdot 0.8 \cdot 5 \cdot 10^{-6}$$

- quindi
- L_{min}=320 bit

Esercizio 7 (5)

■ Quesito (b): percorso trama 1: da Server → PC4

OA → SW4	sw4 → sw2	sw2 → sw3	sw3 → 04
	SW4 → PC6		
	SW4 → PC7		

Switch₂
2.4

1.1

2.4

2.3

Switch₄

4.1

4.4

PC2

PC3

PC4

PC5

Server

4.1

A.4

PC6

PC7

Router

Esercizio 7 (6)

Quesito (b): percorso trama 2: da PC2 → Router

PC2 → SW1	sw4 → sw2	SW2 → Router		
PC2 → PC1		SW2 → SW3	SW3 → PC4	SW4 → Server
PC2 → PC3		SW2 → SW4	SW3 → PC5	SW4 → PC6
				SW4 → PC7

Router

Esercizio 7 (7)

Quesito (c)

Le tabelle di forwarding degli switch si modificano in questo modo:

Switch1		Switch2	
Indirizzo	Interfaccia	Indirizzo	Interfaccia
00- <i>CC-AA-</i> 11-22-03	1.1	00- <i>CC-AA-</i> 11-22-03	2.4
00- <i>CC-AA-</i> 11-22-04	1.2	00- <i>CC-AA-</i> 11-22-04	2.3
00-CC-AA-11-22-02	1,1	00-CC-AA-11-22-0A	2,2
		00-CC-AA-11-22-02	2.1

Switch3		Switch4	
Indirizzo	Interfaccia	Indirizzo	Interfaccia
00-CC-AA-11-22-0A	3.3	00-CC-AA-11-22-0A	4.2
00-CC-AA-11-22-02	3.3	00-CC-AA-11-22-02	4.1

