8.2 Próbkowanie i konwertery C/A i A/C

1. Układy próbkująco-pamiętające

Układy próbkująco-pamiętające (ang. sample&hold) pobierają próbkę sygnału wejściowego i pamiętają ją aż do następnego próbkowania (por. rys.1.). Dla zagadnień związanych z próbkowaniem zasadnicze jest następujące twierdzenie o próbkowaniu:

Twierdzenie (Kotielnikowa-Shannona o próbkowaniu):

Niech dla pewnych liczby rzeczywistych dodatnich ω_g i T oraz funkcji rzeczywistej $f \in C(R)$ (funkcja ciągła), takiej że $f \in L^1(R,l_1)$ (funkcja całkowalna), spełnione będą warunki $\frac{2\pi}{T} \geq 2\omega_g$ oraz supp $\hat{f} \subset [-\omega_g,\omega_g]$ (gdzie \hat{f} jest transformatą Fouriera funkcji f). Wówczas dla każdego $t \in R$ mamy

$$f(t) = \sum_{k=-\infty}^{+\infty} f(k \cdot T) \frac{\sin(\omega_g(t - kT))}{\omega_g(t - kT)}$$
 (*)

Zbieżność szeregu (*) jest zbieżnością punktową.

Rys.1. Próbkowanie jednowymiarowego sygnału deterministycznego

Podobne twierdzenie można sformułować dla sygnałów losowych, a dokładniej dla procesów stochastycznych stacjonarnych w szerszym sensie.

Sens praktyczny powyższego twierdzenia jest taki, że przy spełnieniu pewnych warunków dotyczących sygnału (sygnałem jest funkcja f) potrafimy odtworzyć sygnał w dowolnym punkcie pobierając próbki sygnału dostatecznie gęsto. Niewiarygodne, przecież pomiędzy chwilami próbkowania sygnału nie oglądamy! No tak ale założenia o funkcji f są mocne,

bardzo mocne. Częstotliwość, z którą trzeba co najmniej próbkować sygnał f, żeby móc odzyskać funkcję f, nazywa się częstotliwością Nyquista.

Rys. 2. Prosty układ próbkująco pamiętający a) oznaczenie schematowe b) rozwiązanie układowe

2. Konwertery cyfrowo-analogowe

Przetworniki cyfrowo-analogowe czyli *konwertery C/A* (ang. *Digital to Analog Converters*, w skrócie *D/A*) służą do zamiany słowa binarnego w ustalonym kodzie numerycznym - np. NKB - na odpowiadającą temu słowu wartość napięcia (por. rys 3.).

Konwertery C/A znajdują zastosowanie w komputerowych systemach pomiarowych, cyfrowym przetwarzaniu sygnałów, sprzęcie audio i automatyce.

Rys.3. Konwerter C/A

Rys.4. Współpraca mikroprocesora z przetwornikiem C/A; na wyjściu układu możemy mieć podłączoną np. żarówkę, grzałkę czy silnik elektryczny; zmieniając słowo binarne przesyłane do konwertera zmieniamy np. szybkość obrotową silnika elektrycznego

Prosty przetwornik cyfrowo-analogowy wykorzystujący sumator na wzmacniaczu operacyjnym pokazany jest na rys. 5. Zasada jego działania wynika wprost z zasady działania sumatora. Zakładamy, że oporniki dołączone do węzła "-" wzmacniacza operacyjnego mają wartości $R_1=R$, $R_2=2R$, $R_3=4R$,..., $R_n=2^{n-1}R$. Klucze P0, P1,...,P(n-1) sterowane są bitami przetwarzanego słowa binarnego $a_{n-1}, a_{n-2}, ..., a_0$. Jedynka włącza klucz, zero wyłącza. U_{ref} oznacza napięcie referencyjne, czyli napięcie wzorcowe.

Wadą układu są duże różnice wartości oporników $R_1, R_2, ..., R_n$. Napięcie na wyjściu układu jest równe

$$U_{wy}(a_{n-1}, a_{n-2}, ..., a_0) = -U_{ref} \frac{R_f}{R} \sum_{i=0}^{n-1} a_i \cdot 2^i$$

Rys. 5. Prosty konwerter C/A

Innym (częściej stosowanym) układem przetwornika C/A jest tzw. przetwornik drabinkowy.

3. Konwertery analogowo-cyfrowe

Przetworniki analogowo-cyfrowe, czyli *konwertery A/C* albo konwertery D/A (ang. *Digital to Analog Converters*), służą do zamiany wartości analogowej napięcia na słowo binarne reprezentujące w ustalonym kodzie numerycznym wartość napięcia wejściowego. Mówimy, że konwerter jest *n*-bitowy, jeśli słowo wyjściowe konwertera jest *n*-bitowe.

Konwertery A/C znajdują zastosowanie w komputerowych systemach pomiarowych, cyfrowym przetwarzaniu sygnałów, sprzęcie audio i automatyce.

Koncepcyjnie najprostszym przetwornikiem A/C jest układ z bezpośrednim porównaniem nazywany również *konwerterem typu flash*. Układy tego typu należą do najszybszych. Typowy czas konwersji dla takiego układu jest rzędu 10 ns. Zasada działania jest następująca: Załóżmy dla uproszczenia, że napięcie wejściowe U_{we} jest nieujemne i mniejsze równe od napięcia referencyjnego. Napięcie wejściowe podawane jest na układ 2^n komparatorów i porównywane równolegle z pośrednimi napięciami wzorcowymi

$$U_{ref,k} = \frac{1}{2} \cdot \frac{U_{ref}}{2^n} + k \frac{U_{ref}}{2^n}$$

uzyskanymi z dzielnika oporowego. Na wyjściu układu komparatorów analogowych pojawia się słowo kodowe 2^n bitowego kodu temperaturowego, które translator kodu zamienia na odpowiadające mu słowo n-bitowe w kodzie NKB.

Rys. 6. Układ konwertera typu flash

Bardzo popularnym i często stosowanym konwerterem jest tzw. *konwerter A/C z sukcesywną aproksymacją* nazywany również *konwerterem z porównaniem sukcesywnym*. Schemat układu pokazany jest na rys. 7a). Układ przeprowadza konwersję napięcia U_{we} w n krokach (w n taktach zegara), gdzie n jest liczbą bitów konwertera. Najpierw w rejestrze SAR ustawiane jest n-bitowe słowo 1000...0 czyli $a_{n-1}=1$ i $a_k=0$ dla k=0,1,...,n-2, a następnie wynik konwersji C/A tego słowa porównywany jest z napięciem wejściowym U_{we} . Jeśli słowo binarne jest za małe (tzn. konwersja na wartość analogową daje napięcie mniejsze od U_{we}), to pozostawiamy 1 na pozycji a_{n-1} na stałe (tzn. przyjmujemy $a_{n-1}=1$), w przeciwnym razie ustawiamy na stałe $a_{n-1}=0$. Podobnie postępujemy z kolejnym bitem a_{n-2} . Podstawiamy $a_{n-2}=1$ i sprawdzamy wynik konwersji słowa

11000...0 ustawiając zależnie od wyniku porównania bit a_{n-2} . Przebieg napięcia na wyjściu konwertera C/A wchodzącego w skład konwertera A/C z sukcesywną aproksymacją pokazany jest na rys. 7b). Po n taktach zegara wszystkie bity słowa $a_{n-1}a_{n-2}...a_0$ są już prawidłowo ustawione.

Komparator analogowy

We

We

Układ SAR

Succsessive Aproximation Register

CLK (zegar)

Konwerter C/A

a)

Rys. 7. a) Konwerter A/C z sukcesywną aproksymacją; b) Przebieg napięcia na wyjściu konwertera C/A

Warto jeszcze wspomnieć o tzw. konwerterach $\Delta - \Sigma$. Są to układy osiągające dokładności przekraczające 20 bitów, doskonale nadające się do scalenia.

Istnieje dużo rozmaitego typu układów konwerterów. Zainteresowanych tym tematem odsyłamy do literatury [5]. Niektóre mikroprocesory jednoukładowe (mikrokontrolery) i mikroprocesory sygnałowe wyposażone są we własne przetworniki A/C (i niekiedy C/A umieszczone wewnątrz układu scalonego mikroprocesora.

Rys. 8. Najprostszy układ konwertera A/C z licznikiem modulo 2ⁿ

Układ przetwornika A/C na ogół współpracuje z układem próbkująco-pamiętającym (por. rys. 9.)

Rys. 9. Współpraca układu S/H z konwerterem A/C

4. Bramki analogowe i multipleksery analogowe

Bramka analogowa to elektroniczna realizacja najprostszego klucza mechanicznego. Klucz elektroniczny ma jednak 2 zalety, których nie ma klucz mechaniczny: jest bardzo mały i jest bardzo szybki. Bramki analogowe wykonuje się na ogół jako układy MOS. O ile rozwarcie bramki w układach tego typu można uznać za idealne, o tyle włączona bramka analogowa ma oporność różniczkową rzędu $100~\Omega$. Jeśli 2^n bramek analogowych wyposażymy w układ dekodera umożliwiający wybór jednej z bramek jako przekazującej sygnał na wyjście, to otrzymamy multiplekser analogowy

Rys. 10. Bramka analogowa