Math103A Modern Algebra

seraph

October 22, 2024

Contents

	Group and Subgroups			
	1.1	Binary Operators	2	
	1.2	Groups	4	
	1.3	Abelian Groups	Į.	
	1.4	Non Abelian Groups	7	
	1.5	Subgroups	8	
	1.6	Cyclic Groups	11	

Chapter 1

Group and Subgroups

Lecture 2

binary operator?

Binary Operators 1.1

Definition 1.1.1. A binary operation * on S is a function mapping every element in $S \times S$ into S

Exercise. Let $M(\mathbb{R}) = \text{set of all square matrices in } \mathbb{R}$, is + a binary operator on M?

Answer. No, because different sized matrices cannot add together.

Exercise. Let $\mathbb{Z}^+ = \{1, 2, 3, ...\}$, then we define a * b = c s.t. c is at least 5 more than a + b, is * a

*

*

Answer. No, because the output isn't unique. $1 * 2 = \{8, 9, 10...\}$.

Definition 1.1.2. If (S,*) is a binary algebraic structure, then $H\subseteq S$ is closed under this operation iff $\forall a, b \in H, a * b \in H$

Note. If $M_2(\mathbb{R})$ are all 2×2 matrices over \mathbb{R} , then $(M_2(\mathbb{R}), +)$ is a proper algebraic structure.

Exercise. If $H \subseteq M_2(\mathbb{R})$, $H = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \right\}$, is H closed under +?

Answer. Yes *

Proof.
$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a+c & -(b+d) \\ b+d & a+c \end{bmatrix} \in H$$

Exercise. Let $\mathbb{C} = \{a + bi : a, b \subseteq \mathbb{R}\}$, is \mathbb{C} closed under addition and multiplication?

Answer. Yes, using Euler's formula we know that $a + bi = \sqrt{a^2 + b^2}e^{i\theta}$, so it will stay complex under + and \times .

Exercise. Let $H \subseteq \mathbb{C}$ and $H = \{a + bi : \sqrt{a^2 + b^2} = 1\}$, is H closed under addition / multiplication?

Answer. It is closed under multiplication but not addition.

Example. Let (S,*) and (S',*) be two algebraic structures, we want to show whether they are the same.

Answer. Need to consider basic properties: * is commutative $\Leftrightarrow a * b = b * a$ Let $\mathcal{F} =$ the set of functions $f : \mathbb{R} \to \mathbb{R}$, we argue that $f \circ g$ is not commutative

Proof. \circ is not commutative on \mathcal{F} because lets say $h = \sin(x)$, $g = e^x$, then

$$h \circ g = h(g(x)) = \sin(e^x) \in \mathcal{F}$$

$$g \circ h = g(h(x)) = e^{\sin(x)} \in \mathcal{F}$$

but $\sin(e^x) \neq e^{\sin(x)}$, so back to the question, it may or may not be the same depending on what * is.

Definition 1.1.3. If we have a structure (\mathcal{F}, \circ) , then \circ is associative, i.e. $f \circ (g \circ h) = (f \circ g) \circ h$

Proof. Computing them shows that they are equal

$$(f\circ (g\circ h))(x)=f((g\circ h)(x))=f(g(h(x)))$$

$$((f\circ g)\circ h)(x)=(f\circ g)(h(x))=f(g(h(x)))$$

Exercise. $\mathbb{Z}^+ = \{1, 2, 3, 4...\}$, and define $a * b = 2^{a \cdot b}$, is $(\mathbb{Z}^+, *)$ 1. commutative, 2. associative?

Answer.

1. Yes, $a * b = 2^{a \cdot b} = 2^{b \cdot a} = b * a$

2. No,
$$2*(3*4) \neq (2*3)*4$$

Exercise. Given (S,*) where * is commutative and associative. Given $H \subseteq S$ where $H = \{a \in S : a*a=a\}$, show that H is closed under *.

Proof. a * a = a and b * b = b, we can show [a * b] * [a * b] = [a * b] because by associativity and commutativity

$$[a * b] * [a * b] = a * b * a * b = a * a * b * b = a * b$$

Lecture 3

Definition 1.1.4. Let (S, *) be an algebraic structure, and $e \in S$ s.t. $\forall a \in S, a * e = a = e * a$ Then e is called the identity element of S.

Example.

 $(\mathbb{Z},+)$ has identity element 0.

 (\mathbb{Z}^+,\times) has identity element 1.

 $(\mathbb{Z}^+,+)$ has no identity element.

Theorem 1.1.1. If (S, *) has an identity element, it is unique.

Proof. For sake of contradiction, suppose e and e' are both identity elements of S. Then e = e * e' = e'.

*

Definition 1.1.5. Let (S,*) be an algebraic structure, and $x \in S$. If $\exists x' \in S$ s.t. x*x' = x'*x = e, then x' is called the inverse of x.

Example.

 $(\mathbb{Z},+)$, the inverse of a is -a.

 $(\mathbb{Z}^+,+)$, has no inverses

 (\mathbb{Z}, \times) , the inverse of a is $\frac{1}{a}$ if $a \neq 0$.

1.2 Groups

Definition 1.2.1. A group is an algebraic structure (G, *) if:

- 1. * is associative.
- 2. \exists an identity element $e \in G$.
- 3. $\forall a \in G, \exists \text{ an inverse } a' \in G.$

Example. $G = \{e, a, b\}$ where

$$e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad a = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}, \quad b = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

 (G, \times) where \times is standard matrix multiplication is a group.

(G,+) where + is standard matrix addition is not a group because it is not closed under addition.

Definition 1.2.2. A group (G, *) is **abelian** if $\forall a, b \in G$, a * b = b * a.

Example. Consider $(\mathbb{Q}^+,*)$ where * is defined by $a*b=\frac{ab}{2}$.

Associativity: For any $a, b, c \in \mathbb{Q}^+$

$$(a*b)*c = \left(\frac{ab}{2}\right)*c = \frac{\left(\frac{ab}{2}\right)c}{2} = \frac{abc}{4} = a*(b*c)$$

Thus, * is associative.

Identity element: We need $e \in \mathbb{Q}^+$ such that $\forall a \in \mathbb{Q}^+$,

$$a * e = \frac{ae}{2} = a$$
 and $e * a = \frac{ea}{2} = a$

Solving $\frac{ae}{2} = a$ gives e = 2. Thus, 2 is the identity element. **Inverses:** For any $a \in \mathbb{Q}^+$, we need $a' \in \mathbb{Q}^+$ such that

$$a * a' = \frac{aa'}{2} = 2$$
 and $a' * a = \frac{a'a}{2} = 2$

Solving $\frac{aa'}{2} = 2$ gives $a' = \frac{4}{a}$. Thus, every element has an inverse.

Therefore, $(\mathbb{Q}^+, *)$ is a group.

Commutativity: For any $a, b \in \mathbb{Q}^+$,

$$a * b = \frac{ab}{2} = \frac{ba}{2} = b * a$$

Thus, $(\mathbb{Q}^+, *)$ is an abelian group.

Theorem 1.2.1. Let (G, *) be a group. Then

- 1. The identity element is unique (Theorem 1.1.1).
- 2. Every element has a unique inverse .

Proof. Let a, a', a'' be inverses of $a \in G$. Then a' = a' * e = a' * (a * a'') = (a' * a) * a'' = e * a'' = a''.

Corollary 1.2.1. Let (G, *) be a group and $a, b \in G$. If $a * b \in G$, then the inverse of (a * b) is b' * a', where b' is the inverse of b and a' is the inverse of a.

Proof.

$$(a*b)*(b'*a') = a*(b*b')*a' = a*e*a' = a*a' = e$$

 $(b'*a')*(a*b) = b'*(a'*a)*b = b'*e*b = b'*b = e$

Lecture 4

1.3 Abelian Groups

Example. $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$ is an albelian group under addition.

Example. Let $\mathbb{R}^2=\left\{\begin{bmatrix}a\\b\end{bmatrix}:a,b\in\mathbb{R}\right\}$, $(\mathbb{R}^2,\,+)$ is an albelian group.

Example. Let $\mathbb{P}_1 = \{ax + b : a, b \in \mathbb{R}\}$., $(\mathbb{P}_1, +)$ is an albelian group.

Definition 1.3.1. A **group isomorphism** is a bijective group homomorphism. Specifically, if $(G, *_1)$ and $(H, *_2)$ are groups, a function $\phi : G \to H$ is called a group isomorphism if:

- 1. ϕ is a homomorphism, i.e., $\forall a, b \in G, \phi(a *_1 b) = \phi(a) *_2 \phi(b)$.
- 2. ϕ is bijective, i.e., ϕ is both injective (one-to-one) and surjective (onto).

If such a function ϕ exists, we say that G and H are **isomorphic** and write $G \cong H$.

Exercise. Let $(\mathbb{Z}, +)$ and $(2\mathbb{Z}, +)$ be groups under addition. Define the function $\phi : \mathbb{Z} \to 2\mathbb{Z}$ by $\phi(n) = 2n$ for all $n \in \mathbb{Z}$. Do we have an isomorphism between $(\mathbb{Z}, +)$ and $(2\mathbb{Z}, +)$?

Answer. 1. ϕ is a homomorphism: For all $a, b \in \mathbb{Z}$,

$$\phi(a+b) = 2(a+b) = 2a + 2b = \phi(a) + \phi(b).$$

- 2. ϕ is bijective:
 - Injective: Suppose $\phi(a) = \phi(b)$. Then 2a = 2b, which implies a = b. (For an output check if the input are the same)
 - Surjective: For any $m \in 2\mathbb{Z}$, there exists $n \in \mathbb{Z}$ such that m = 2n. Hence, $\phi(n) = m$.

Therefore, ϕ is an isomorphism, and $(\mathbb{Z}, +) \cong (2\mathbb{Z}, +)$.

Lecture 5

1.3.1 More Abelian Examples

Example. $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ where $+_n$ is addition modulo n. When $a, b \in \mathbb{Z}_n$, $a +_n b = (a + b)$ mod n.

• Many groups are isomorphic to \mathbb{Z}_n .

Remark (Fact). Any group of size 1 is isomorphic to \mathbb{Z}_1 .

Exercise. If we have a group $\mathbb{Z}_2 = 0, 1$ equipped with $(\mathbb{Z}_2, +)$ and an abstract group $G = \{e, a\}$. Do these groups have the same structure?

Answer. We can check its operation table.

Remark (Fact). Any group of size 2 is isomorphic to \mathbb{Z}_2 .

Exercise. Let $G = \{I, A, B\}$ where I is the identity matrix, $A = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$, and $B = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$. Is this group isomorphic to \mathbb{Z}_3 ?

Answer. This is also isomorphic to \mathbb{Z}_3 .

We can check it using the same method as above.

Remark (Fact). All groups on 3 elements is isomorphic to \mathbb{Z}_3 .

Theorem 1.3.1. Let (G,*) be a group. If we fix $a,b \in G$, then:

- 1. a * x = b has a unique solution for x.
- 2. y * a = b has a unique solution for y.

Example. $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ and the Klein 4-group $V_4 = \{e, a, b, c\}$ with their operation tables:

Proof. Check the diagonals and it is clear that they are not isomorphic.

Theorem 1.3.2. Every group on 4 elements is isomorphic to either $(\mathbb{Z}_4, +)$ or (V, *).

6

Partial proof. Generate all possible tables and check if they are isomorphic to $(\mathbb{Z}_4, +)$ or (V, *). Turns out they will only be isomorphic to one of these two groups.

Lecture 6

1.3.2 Circle Algrbra

Example. Define $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$. Then $(\mathbb{C}, +)$ is an abelian group.

Remark. (\mathbb{C}, \times) is not abelian group because 0 does not have an inverse.

Note. So we come up with a notation $\mathbb{C}^* = \mathbb{C} - \{0\}$. (\mathbb{C}^*, \times) is an abelian group.

Note (Euler's Formula). $z \in \mathbb{C}^*$, z = a + bi. Then $z = |z|e^{i\theta}$. where $|z| = \sqrt{a^2 + b^2}$ and $\theta = \arctan(\frac{b}{a})$.

Example. 1. Let $u = \{z \in \mathbb{C}^*, |z| = 1\}$. Then (u, \times) is an abelian group.

Example (Roots of Unity). Let $n \in \mathbb{N}$. Then $u_n = \{z \in \mathbb{C}^*, z^n = 1\}$.

- 1. $u_1 = \{1\}.$
- 2. $u_2 = \{1, -1\}.$
- 3. $u_3 = \{1, e^{\frac{2\pi i}{3}}, e^{\frac{4\pi i}{3}}\}.$
- 4. $u_4 = \{1, i, -1, -i\}.$
- 5. $u_n = \{e^{\frac{2\pi ik}{n}} \mid k = 0, 1, 2, \dots, n-1\}.$

Note. (u_n, \times) is an abelian group of order n. Also, $u_n \cong \mathbb{Z}_n$.

1.4 Non Abelian Groups

1.4.1 Permutation Groups

Note (Notation). From now on, if (G, *) is a group, we will write a*b as ab. a^k means $a*a*\ldots*a$ (k times). a^{-k} means $a^{-1}*a^{-1}*\ldots*a^{-1}$ (k times). Operator should be clear from context so most of the time we will omit it.

Definition 1.4.1. The order of a group G is the number of elements in G.

Definition 1.4.2. Let A be a set. A permutation of A is a bijection $\phi: A \to A$.

Example. Let A = 1, 2, 3, 4, 5Let σ be a permutation of A. Then $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix}$. **Definition 1.4.3.** Let's define a composite operator on S_A . Let $\sigma, \tau \in S_A$. Then $\sigma \circ \tau$ is a permutation of A defined by $(\sigma \circ \tau)(x) = \sigma(\tau(x))$.

Theorem 1.4.1. A set (S_A, \circ) is a group.

Proof.

- 1. Associativity: Let $\sigma, \tau, \rho \in S_A$. Then $(\sigma \circ \tau) \circ \rho = \sigma \circ (\tau \circ \rho)$.
- 2. Identity: The identity element is the identity permutation id(x) = x.
- 3. Inverse: Let $\sigma \in S_A$. Then σ^{-1} is the inverse of σ . This reverse the mapping of σ .

Lecture 7

Example (Finite Setting). Let $A = \{1, 2, 3, \dots, n\}$. $S_A = S_n =$ the symmetric group on n letters. (S_n, \circ) is a group.

Remark. $|S_n| = n!$.

Example. Let $\sigma \in S_6$ and we define σ with the two row notation as follows:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 6 & 2 & 5 & 1 \end{pmatrix}$$

Example (Disjoint Cycles). There is a notion that is 1. shorter and 2. more "natural":

$$\sigma = (1, 3, 6)(2, 4)$$

Definition 1.4.4 (Dihedral Group). Let $D_n \in S_n$.

 $P_n = \text{regular n-gon in the plane with vertices } 0, 1, 2, \dots, n-1 \text{ in counter-clockwise order with origin at } (1, 0).$

$$D_n = \{e, \rho, \rho^2, \rho^3, \dots, \rho^{n-1}, \mu, \mu\rho, \dots, \mu\rho^{n-1}\}$$

where ρ is a counter-clockwise rotation and μ is a horizontal reflection.

Definition 1.4.5. D_n is the set of permutations (bijections) $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ such that ϕ preserves the distance between vertices of P_n .

Theorem 1.4.2. D_n are reflections and rotations of P_n . $|D_n| = 2n$.

Theorem 1.4.3. D_n is a group under composition.

Lecture 8

1.5 Subgroups

As previously seen. If \mathbb{C}^* is a nonzero complex number, then (\mathbb{C}^*, \times) is a group. We also know that (U_n, \times) is a group and $(U_n, \times) \in \mathbb{C}^*$.

Definition 1.5.1. Let G be a group. If $H \in G$, and H is a group under the same operator as G, then H is called a subgroup of G.

Remark. From the previous definition, we can see that (U_n, \times) is a subgroup of (\mathbb{C}^*, \times) .

Example. Let G be a group. If $G = \{e, \dots\}$ and H = e, then H is a subgroup of G. H is called the trivial subgroup.

Proof.

- 1. H is closed under the same operator as G.
- 2. H is associative under the same operator as G.
- 3. H has an identity element under the same operator as G.
- 4. H has an inverse element under the same operator as G.

Exercise. Let $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ and $+_4$ is addition mod 4. Analyze the subgroups of this group.

Answer. Let $H = \{0, 1\}$, then H is NOT a subgroup of G. Because H is not closed under $+_4$. However, if $H = \{0, 2\}$, then H is a subgroup of G. We also have the trivial subgroup $H = \{0\}$. \circledast

As previously seen. Recall that there are exactly two 2 non-isomporphic groups of size 4. One is \mathbb{Z}_4 and the other is the Klein 4-group.

Subgroup Diagram of \mathbb{Z}_4

Subgroup Diagram of Klein 4-group

Note.

9

Theorem 1.5.1. Let G be a group. If $H \in G$, then H is a subgroup of G if and only if:

- 1. H is closed under the same operator as G.
- 2. H has an identity element under the same operator as G.
- 3. H has an inverse element under the same operator as G.

Remark. If $H \in G$ is finite, then it's easier to check if H is a subgroup of G.

Theorem 1.5.2. If G is a group and we have a finite subset $H \in G$. Then it is a subgroup of G if and only if it is closed under the same operator on G.

Proof.

- (\Rightarrow) If H is a subgroup of G, then by definition of being a subgroup, H is closed under this operator.
- (\Leftarrow) H is finite, and |H|=n. We know H is closed under the same operator as G. We can check the properties:
 - 1. H is closed under the same operator as G. (Given)
 - 2. Identity: |H| = n, and $H = \{a^1, a^2, \dots, a^n, a^{n+1}\}$. By pigeonhole principle, there exists 2 elements a^i, a^j and i < j that are the same.

$$a^{-i}a^i = a^{-i}a^j$$

$$e = \underbrace{a^{-1}a^{-1}\dots a^{-1}}_{i \text{ times}} \underbrace{aaa\dots a}_{i \text{ times}} = \underbrace{a^{-1}a^{-1}\dots a^{-1}}_{i \text{ times}} \underbrace{aaa\dots a}_{j \text{ times}} = a^{j-i}$$

Therefore e is in H.

3. Inverse: Let $a \in H$, we need to find $a^{-1} \in H$. |H| = n, and $H = \{a^1, a^2, \dots, a^n, a^{n+1}\}$. By pigeonhole principle, there exists 2 elements a^i, a^j and i < j that are the same.

Case 1: Suppose j - i = 1, then $a = a^{-1} = e \in H$.

Case 2: Suppose $j-1 \ge 2$, then we multiply a^{-1} to both sides of $e=a^{j-i}$. Then by construction of the list:

$$a^{-1} = a^{-1}e = a^{-1}a^{j-i} = a^{j-i-1} \in H$$

Lecture 9

1.5.1 Cyclic Subgroups

Exercise. Let $\mathbb{Z}_{12} = \{0, 1, 2, \dots, 11\}$ and H is the trivial subgroup. What is the smallest subgroup of \mathbb{Z}_{12} that contains 3?

Answer. Let $H = \{0, 3, 6, 9\}$, we can see that this is the smallest because we use 3 to generate the other numbers. Additionally, H is isomorphic to \mathbb{Z}_4 .

Remark. If G is a group and H is a subgroup of G.

If $a \in H$ then $a^n \in H \quad \forall \quad n \in \mathbb{Z}$, where $a^0 = e$ is the identity element.

Theorem 1.5.3. Let G be a group and $a \in G$ and set $H = \{a^n : n \in \mathbb{Z}\}$, then H is a subgroup, and it's the smallest subgroup of G that contains a.

Proof.

- 1. H is closed: Given $a^r, a^s \in H$, then $(a^r)(a^s) = a^{r+s} \in H$.
- 2. H has an identity element: $e = a^0 \in H$.
- 3. H has an inverse element: $a^r \in H$, take $a^{-r} \in H$ such that $a^r(a^{-r}) = a^{-r}(a^r) = e$.

CHAPTER 1. GROUP AND SUBGROUPS

Definition 1.5.2. Let G be a group and $a \in G$. If $H = \{a^n : n \in \mathbb{Z}\}$, then H is called the cyclic subgroup generated by a. We denote $H = \langle a \rangle$.

Definition 1.5.3. A group G is cyclic if $G = \langle a \rangle$ for some $a \in G$.

Example. $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ is a cyclic group $= \langle 1 \rangle$.

Example. $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ is a cyclic group $= \langle 1 \rangle$. 1 is a generator for \mathbb{Z}_4 . We can see 3 is also a generator for \mathbb{Z}_4 . But 2 is not a generator for \mathbb{Z}_4 .

Example. $U_n = \text{the } n^{th} \text{ roots of unity.}$

$$U_n = \{e^{2\pi i k/n} : k = 0, 1, 2, \dots, n-1\}$$

So this is a cyclic group generated by $e^{2\pi i/n}$. So $U_n = \langle e^{2\pi i/n} \rangle$.

Exercise. S_{10} is a permutation on $A = \{1, 2, \dots, 10\}$. $\sigma = (1, 10)(2, 9)(3, 8)(4, 7)(5, 6)$ Compute $|\langle \sigma \rangle|$.

Answer. $\sigma \circ \sigma = (1, 10)(2, 9)(3, 8)(4, 7)(5, 6) \circ (1, 10)(2, 9)(3, 8)(4, 7)(5, 6) = (1)(2)(3) \cdots (10) = i$ So $|\langle \sigma \rangle| = 2$.

1.6 Cyclic Groups

Theorem 1.6.1. Every cyclic group is abelian.

Proof. Let $G = \langle a \rangle$ be a cyclic group.

Let $a^r, a^s \in G$.

Then

$$(a^r)(a^s) = a^{r+s} = a^{s+r} = (a^s)(a^r)$$

So G is abelian.

Example. Let $\mathbb{Z}_{10} = \{0, 1, 2, \cdots, 9\}.$

$$\langle 2 \rangle = \{0, 2, 4, 6, 8\}$$

did not generate all of \mathbb{Z}_{10} .

$$\langle 3 \rangle = \{0, 3, 6, 9, 2, 5, 8, 1, 4, 7\}$$

generated all of \mathbb{Z}_{10} .

You can check if they have a common divisor or not to determine if they generate all of \mathbb{Z}_{10} .

Theorem 1.6.2 (Division Algorithm). n = qm + r

Theorem 1.6.3. Let G be a cyclic group. Then any subgroup of G is also cyclic.

Lecture 10

Theorem 1.6.4. If $G = \langle a \rangle$

1. If
$$|G| = \infty \Longrightarrow G \cong (\mathbb{Z}, +)$$

2. If
$$|G| = n \Longrightarrow G \cong (\mathbb{Z}_n, +_n)$$

Proof. Case 1:

Suppose $|G| = \infty$, For all positive $m \ge 1$, $a^m \ne e$

Goal is show that $G \cong (\mathbb{Z}, +)$

We need to check all elements in G are distinct. For sake of contradiction, suppose there exists i < j such that:

$$a^i = a^j \Rightarrow e = a^{j-i}$$

But j-i is a positive integer. This contradicts the assumption that $a^m \neq e$ for all positive m, so every element in G is distinct.

So we can define:

$$\phi: G \to \mathbb{Z}, \phi(a^i) = i$$

This is a bijection.

Case 2:

There exists positive m > 0 such that $a^m = e$.

Again we define $\phi: G \to \mathbb{Z}_m$ by $\phi(a^i) = i \mod m$

Example. Let $\mathbb{Z}_{12} = \{0, 1, 2, \dots, 11\}$ equipped with addition modulo 12.

Let $\langle 3 \rangle$ = the subgroup of \mathbb{Z}_{12} generated by 3.

We get $\langle 3 \rangle = \{0, 3, 6, 9\}$

 $|\langle 3 \rangle| = 4$

 $\langle 8 \rangle = \{0, 8, 4\}$

 $|\langle 8 \rangle| = 3$

Remark. The size of a subgroup of a finite cyclic group depends on the divisors.

Definition 1.6.1 (Greatest Common Divisor). Fix integers r and s. $\gcd(r,\,s)$ is the largest positive integer that divides both r and s.

Definition 1.6.2. Fix r and s. The gcd(r, s) is the generator of the cyclic subgroup of

$$H = \{n \cdot r + m \cdot s : n, m \in \mathbb{Z}\} \le \mathbb{Z}$$

 $H = \langle \gcd(r, s) \rangle$

Corollary 1.6.1. Fix r and s. If there exists $m, n \in \mathbb{Z}$ such that $n \cdot r + m \cdot s = 1$, then $\gcd(r, s) = 1$. So r and s are coprime.

Proof.

As previously seen. Recall that let $G = \langle a \rangle$. If G is a cyclic group generated by a, then ANY subgroup of G is also cyclic.

$$(\mathbb{Z},+)=\langle 1\rangle$$

Fix r and s. $H \subseteq \mathbb{Z}$ and $H = \{m \cdot r + n \cdot s : m, n \in \mathbb{Z}\}$

By the above theorem, (H, +) is cyclic because it is a subgroup of a cyclic group. Now we also show that H is a subgroup:

- 1. H is closed under addition: $m_1 \cdot r + n_1 \cdot s + m_2 \cdot r + n_2 \cdot s = (m_1 + m_2) \cdot r + (n_1 + n_2) \cdot s$
- 2. Identity: $0 \cdot r + 0 \cdot s = 0$
- 3. H is closed under inverses: $m \cdot r + n \cdot s \Rightarrow -m \cdot r + -n \cdot s$, and (mr + ns) + (-mr ns) = 0

Example. $\mathbb{Z}_4 = \{0, 1, 2, 3\}$

All subgroups of \mathbb{Z}_4 are cyclic.

- $\langle 0 \rangle = \{0\}$
- $\langle 1 \rangle = \{0, 1, 2, 3\} \cong \mathbb{Z}_4$ $\langle 2 \rangle = \{0, 2\} \cong \mathbb{Z}_2$ $\langle 3 \rangle = \{0, 1, 2, 3\} \cong \mathbb{Z}_4$

Theorem 1.6.5. Let $G = \langle a \rangle$ be a cyclic group of order n. $G = \{e, a, a^2, \cdots, a^{n-1}\}$

- 1. Let $a^s \in G$, then $|H| = |\langle a^s \rangle| = \frac{n}{\gcd(n,s)}$
 - 2. Moreover, $a^s, a^t \in G$, if gcd(s, n) = d = gcd(t, n), then $\langle a^s \rangle = \langle a^t \rangle$

Proof. Let m be the smalllest positive integer such that $(a^s)^m = e$.

We want to show that $|H| = m = \frac{n}{d}$. If $(a^s)^m = e$, then $a^{sm} = e = (a^{s \cdot m})$

If
$$(a^s)^m = e$$
 then $a^{sm} = e = (a^{s \cdot m})^n$

Which will have some multiple of n on the exponent.

Let
$$d = \gcd(s, n)$$
.

We know $d = u \cdot n + v \cdot s$ for some integers $u, v \in \mathbb{Z}$.

$$1 = u(\frac{n}{d}) + v(\frac{s}{d})$$

 $(\frac{n}{d})$ and $(\frac{s}{d})$ are coprime from the corollary above.

We know $s \cdot m$ is a multiple of n. It follows that $\left(\frac{sm}{n}\right) = \left(\frac{m\frac{s}{d}}{n^d}\right)$ is an integer.

Hence, $(\frac{n}{d})$ must divide m.

CHAPTER 1. GROUP AND SUBGROUPS

13