

1

SEQUENCE LISTING

<110> NELSON, DAVID R.

<120> A LIVE, AVIRULENT STRAIN OF V. ANGUILLARUM THAT PROTECTS FISH AGAINST INFECTION BY VIRULENT V. ANGUILLARUM AND METHOD FOR MAKING THE SAME

<130> 5112

<140> 09/915,706

<141> 2001-07-26

<150> 60/220,733

<151> 2000-07-26

<160> 7

<170> PatentIn Ver. 2.1

<210> 1

<211> 3588

<212> DNA

<213> Vibrio anguillarum

<220>

<221> modified_base

<222> (3572)

<223> a, t, c, g, other or unknown

<400> 1

gtcgacttat tgcattgatg gcgtacatgg tagtgccatc cttcgttgc taacaagcgt 60
tgtataaaag cttggtcggt ttcatcaagt tgaacacaat actcatgatt tttcccactt 120
ccggaaaggg aaaagtgaaa atagctttg agatcagcct gttctagcag cttttcaatg 180
atcttttcg tcgttacgtt ttgaaaaatc tgacgactgc gttttagtgc caacaagcta 240
agtggatcca atatctctat ttgataataa aactgctgt tgcgtttgtc atatcctgtg 300
aattgcagag tgctacatcat acctgaaaaaa aacgcgtttc cagaatctaa ttcgtaaagac 360
acacaaacag ctttacatcg gttttggta tcgatctcca tggccgc gatggaaacg 420
gaaaactgac acccgccgga tacgcgttcc tctccgattt attgcgtgac aatataactt 480
ttgctatctg aaagcttaat ggtgagggag cgggtttgtt gcttaattc gttactgctc 540
atattcaattt aattcactat taaataaaaca gttctaaaag gctgtttattt ggatgaatat 600
tcgaaattt cacataataa ttgatgtat tattacttgc tgcgtttgtt tcaactttca 660
tgctctatac atgtaatata ttgcgttta gaccttaattt caaggtaattt tgcgttattt 720
attattatctt gaataatatg taatcgattt ctttgcgtt attttatgtt ttgcgttattt 780
tttaatgacg gtgagcttgc gcattcatat ttttgcgtt gacaacatct ttgcgttattt 840
attnaagata ttgttaatgc atgaggggtt tgcgttattt ttttgcgttattt aatcataata 900
aaatcaacaa tatatgttat tttgtgtctt ttatgttgc tctttaaag aggttaggtg 960
acctaaaggc cgcctaaataa tggcgtaaat tgcgttattt gatgttgcgttattt 1020
actattggca aattgacaaa tatgtcattt cgtatgaaac aatattgtt gatgttgcgtt 1080
ttgctgcggaa aataaaaattt tttctgggtt aaataactca aggccctctag cggtttccctt 1140
tatcttaaaa tacaggaaat agcgatttgc gttatttgcgactt aatgtcaacc 1200
taacagagca ggaacctatg ctttgcgttattt gatgttgcgttattt 1260
tgagtgtatgc ttgcgttattt taaacttgcgactt aatgtcaacc 1320
tacgttaatgc atttaatgcgactt gatgttgcgttattt 1380
ctgacgagag agatgcgttgc gatgttgcgttattt 1440
gtttgtatgc acatgttgcgactt aatgtcaacc 1500
ctgctcaattt ctttgcgttattt gatgttgcgttattt 1560
cggtttaatgc gatgttgcgttattt 1620

aatctgtatga	tgataagggc	aaagaaaagag	agcaagcaga	tgcgaaagt	aaagcatttt	1680
tccaaactagt	cggcgatagc	gaggaaaagct	cgattctcta	tgcgcgggt	ctgcaactgc	1740
ccttagtogg	ggaagtgacg	tttttgact	.ttcaaagtgc	agagagaaaa	ggcgaatca	1800
gccaactgaa	atctatgctt	acgaccacgg	tgccgcaaga	gcgttgc	attcaattca	1860
agatggaaaa	cgc当地acgt	tgtgtcaccc	aatttagatcg	tttgtcagcg	ttggtagca	1920
ctaagtgtca	ttctcttaggc	agtcaaagta	ccaaacttcgg	atttgcgaag	tcaactgtt	1980
cccgtgttga	aaacgcttt	gttcatctaa	gtggaattaa	gttagcaccg	aaagcggagg	2040
ccaagacagt	agagcaagag	gttgcgaaa	gttcagttc	tgaaggggag	ctgccaagcc	2100
atatggatac	aaaacatata	gagcgaatac	cgatggcattc	agagcaggct	cagaccgtaa	2160
gccaacactt	acacgcagga	aacctctctg	aactgggtaa	tttaaacaat	atgaaccgag	2220
acttagctt	ccattttgtt	agagaagtct	ctgattattt	tcgcccagagc	gaaccgcata	2280
gccccatttc	atttttgtta	aaaaaagcga	ttcgatgggg	atatttatcc	ttacctgagt	2340
tgctgcgaga	aatgtatgtcg	gaacaaaacg	gtgacgctct	tagtacgatt	tttaatgccc	2400
ccggatttga	tcatctcgat	cagggtttgc	tgccggaggt	gagtaactcca	acgggtggca	2460
ttgaaagccc	ccaaacaccc	caagcgaagc	cttccggttc	ggatccgcga	agtgttgaag	2520
agcatgtatc	tcagacttcc	cctgttagata	cccaatctaa	gcaagatcaa	aaaccacaat	2580
catccgc	tacgtcggctctg	agttggtaat	tggtttttaaa	aaataaggaa	aatcatggc	2640
aagtatttac	atgcgtgtaa	gcgggtcttca	agttgagggc	gcagcgcacta	tcgggtcact	2700
agaaaacggct	gaaggtaaaa	atgacgggtt	gtttgcaatc	aacttctact	cttgggggtgg	2760
cgctcgtaac	gttgctatgg	acatcggtaa	cgccaccaat	gcccgtttag	gcatgggttgg	2820
cgtaa	gtagcgtaa	cttaaaaggat	cgatgggtct	tctgaagacc	tactgttctt	2880
tttatttcaac	ccaggtaaag	acggtaaaac	tggtgaggtt	gcatttacta	agccttctaa	2940
cgatggtaa	ggtgcagacg	tttacttcca	agttaaagcta	aaaaaaagcac	gtttagttc	3000
ttacaacgtg	agccggactg	acggatctca	accgtacgag	agcctatctc	tttcttacac	3060
ttcttatttct	cagaagcatc	actatgagaa	agaaggttgt	gaactacaaa	gcccgttgt	3120
tgtgacttac	gacccatccga	ccggggaaaat	gacttcttgt	aagtaattct	ttcatttagac	3180
atgccacgtt	aattggcatg	tctatttcat	gaatatactca	tttttaggaca	ccgttatggc	3240
attgaaactca	caacataagc	gcgttagtaa	gaaccgtgtc	agcatcacct	atgacgttga	3300
aacgaatggc	gcccgtaaaga	cgaaaagagct	gccgtttgtt	gttggcgtca	ttggcgactt	3360
ttcaggacac	aaaccagaat	cagaaaaaagt	tgatttagaa	gagcgagagt	tcacgggtat	3420
cgataaagac	aacttcgata	cagtgtatggg	gcaaattcac	ccgcgtcttt	cgataaaggt	3480
tgataacaag	cttgctaatg	atgatagcca	gttgaagt	aacttgagcc	tccgttcgat	3540
aaaaagattt	caccaggaga	acttagttga	tntaaatttag	ccgcttaa		3588

<210> 2
<211> 463
<212> PRT
<213> *Vibrio anguillarum*

<400> 2
 Met Pro Leu Ser Lys His Gln Ile Glu Gln Leu Ser Lys Pro Leu Ser
 1 5 10 15
 Asp Asp Ser Ile Cys Gly Val Tyr Leu Lys Leu Glu Lys Ser Ala Phe
 20 25 30
 Arg Pro Leu Arg Asn Glu Phe Asn Val Ala Gln Thr Ala Leu Arg Lys
 35 40 45
 Leu Ser Gln Asn Pro Ser Ala Asp Glu Arg Asp Ala Leu Gln Glu Ala
 50 55 60
 Cys Leu Asn Lys Trp Lys Ile Leu Ser Asp Ser Leu Tyr Glu Gln Phe
 65 70 75 80
 Ser Lys Thr Thr Arg Asp Ile Glu Leu Ile Ser Trp Phe Val Ala Ala
 85 90 95

Gln Phe Leu Leu Asp Thr Thr Leu Glu Ser Ala Ala Asn Ser Leu Glu
 100 105 110
 Trp Leu Ala Asp Leu Ser Glu Lys His Trp Asp His Leu Asn Pro Val
 115 120 125
 Leu Pro Val Glu Thr Leu Lys Ser Asp Asp Asp Lys Gly Lys Glu Arg
 130 135 140
 Glu Gln Ala Asp Ala Lys Val Lys Ala Phe Phe Gln Leu Val Gly Asp
 145 150 155 160
 Ser Glu Glu Ser Ser Ile Leu Tyr Ala Pro Val Leu Gln Leu Pro Leu
 165 170 175
 Val Gly Glu Val Thr Phe Phe Gln Ser Ala Glu Arg Lys Gly
 180 185 190
 Glu Ile Ser Gln Leu Lys Ser Met Leu Thr Thr Val Ala Gln Glu
 195 200 205
 Arg Phe Ala Ile Gln Phe Lys Met Glu Asn Ala Lys Arg Cys Val Thr
 210 215 220
 Gln Leu Asp Arg Leu Ser Ala Leu Val Ser Thr Lys Cys His Ser Leu
 225 230 235 240
 Gly Ser Gln Ser Thr Asn Phe Gly Phe Ala Lys Ser Leu Leu Thr Arg
 245 250 255
 Val Glu Asn Ala Leu Val His Leu Ser Gly Ile Lys Leu Ala Pro Lys
 260 265 270
 Ala Glu Ala Lys Thr Val Glu Gln Glu Val Ala Glu Ser Ser Val Ser
 275 280 285
 Glu Gly Glu Leu Pro Ser His Met Asp Thr Lys His Ile Glu Arg Ile
 290 295 300
 Pro Met Ala Ser Glu Gln Ala Gln Thr Val Ser Gln His Leu His Ala
 305 310 315 320
 Gly Asn Leu Ser Glu Leu Gly Asn Leu Asn Asn Met Asn Arg Asp Leu
 325 330 335
 Ala Phe His Leu Leu Arg Glu Val Ser Asp Tyr Phe Arg Gln Ser Glu
 340 345 350
 Pro His Ser Pro Ile Ser Phe Leu Leu Glu Lys Ala Ile Arg Trp Gly
 355 360 365
 Tyr Leu Ser Leu Pro Glu Leu Leu Arg Glu Met Met Ser Glu Gln Asn
 370 375 380
 Gly Asp Ala Leu Ser Thr Ile Phe Asn Ala Ala Gly Leu Asn His Leu
 385 390 395 400

Asp Gln Val Leu Leu Pro Glu Val Ser Thr Pro Thr Val Gly Ile Glu
 405 410 415

Ser Pro Gln Thr Pro Gln Ala Lys Pro Ser Val Ser Asp Pro Arg Ser
 420 425 430

Val Glu Glu His Val Ser Gln Thr Ser Pro Val Asp Thr Gln Ser Lys
 435 440 445

Gln Asp Gln Lys Pro Gln Ser Ser Ala Thr Ser Ala Leu Ser Trp
 450 455 460

<210> 3

<211> 176

<212> PRT

<213> Vibrio anguillarum

<400> 3

Met Ala Ser Ile Tyr Met Arg Val Ser Gly Leu Gln Val Glu Gly Ala
 1 5 10 15

Ala Thr Ile Gly Gln Leu Glu Thr Ala Glu Gly Lys Asn Asp Gly Trp
 20 25 30

Phe Ala Ile Asn Ser Tyr Ser Trp Gly Gly Ala Arg Asn Val Ala Met
 35 40 45

Asp Ile Gly Asn Gly Thr Asn Ala Asp Ser Gly Met Val Gly Val Ser
 50 55 60

Glu Val Ser Val Thr Lys Glu Val Asp Gly Ala Ser Glu Asp Leu Leu
 65 70 75 80

Ser Tyr Leu Phe Asn Pro Gly Lys Asp Gly Lys Thr Val Glu Val Ala
 85 90 95

Phe Thr Lys Pro Ser Asn Asp Gly Gln Gly Ala Asp Val Tyr Phe Gln
 100 105 110

Val Lys Leu Glu Lys Ala Arg Leu Val Ser Tyr Asn Val Ser Gly Thr
 115 120 125

Asp Gly Ser Gln Pro Tyr Glu Ser Leu Ser Leu Ser Tyr Thr Ser Ile
 130 135 140

Ser Gln Lys His His Tyr Glu Lys Glu Gly Gly Glu Leu Gln Ser Gly
 145 150 155 160

Gly Val Val Thr Tyr Asp Leu Pro Thr Gly Lys Met Thr Ser Gly Lys
 165 170 175

<210> 4

<211> 117

<212> PRT

<213> Vibrio anguillarum

<220>
 <221> MOD_RES
 <222> (113)
 <223> Variable amino acid

<400> 4
 Met Ala Leu Asn Ser Gln His Lys Arg Val Ser Lys Asn Arg Val Ser
 1 5 10 15

Ile Thr Tyr Asp Val Glu Thr Asn Gly Ala Val Lys Thr Lys Glu Leu
 20 25 30

Pro Phe Val Val Gly Val Ile Gly Asp Phe Ser Gly His Lys Pro Glu
 35 40 45

Ser Glu Lys Val Asp Leu Glu Glu Arg Glu Phe Thr Gly Ile Asp Lys
 50 55 60

Asp Asn Phe Asp Thr Val Met Gly Gln Ile His Pro Arg Leu Ser Tyr
 65 70 75 80

Lys Val Asp Asn Lys Leu Ala Asn Asp Asp Ser Gln Phe Glu Val Asn
 85 90 95

Leu Ser Leu Arg Ser Met Lys Asp Phe His Pro Glu Asn Leu Val Asp
 100 105 110

Xaa Ile Glu Pro Leu
 115

<210> 5
 <211> 31
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Primer

<400> 5
 tttctgcagc tggttgaaat aactcaaggc c

31

<210> 6
 <211> 32
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Primer

<400> 6
 tttctgcagg gatccgaaac ggaaggcttc gc

32

<210> 7
 <211> 29

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 7
tttaagcttc acgcataatcatacttgcc