Course	ENGR 13300	Semester	Fall 24
Assignment Name	EX3 Ind 3	Section	022
Student 1 Name	Shivum Thatte	Student 3 Name	Ankur Raghavan
Student 1 Purdue login	sthatte	Student 3 Purdue login	raghav21
Student 2 Name	Andrew Gafford	Student 4 Name	Aristuto Paul
Student 2 Purdue login	agafford	Student 4 Purdue login	paul 175
List collaborators if any			

Academic Integrity Statement: I/We have not used material obtained from any other unauthorized source, either modified or unmodified. Neither have I/we provided access to my/our work to another. The solution I/we am/are submitting is my/our own original work.

Problem Description our team has a sample of an unidentified bacterial specimen, and you would like to model its growth.

nput Section:		
Table 1:		
Time (hours)	Ва	cterial Count
	0	10
	2	15
	4	25
	6	40
	8	60
	10	80
	12	100
	14	120
	16	150
	18	180
	20	200
	22	220
	24	230
	26	240
	28	250
	30	255
	32	258
	34	259
	36	260
	38	260
	40	260

Calculation Sec	tion:
Table 2:	
Log10 Time	Log10 Bacterial Count
UNDEFINED	1
0.301	1.176
0.602	1.398
0.778	1.602
0.903	1.778
1.000	1.903
1.079	2.000
1.146	2.079
1.204	2.176
1.255	2.255
1.301	2.301
1.342	2.342
1.380	2.362
1.415	2.380
1.447	2.398
1.477	2.407
1.505	2.412
1.531	2.413
1.556	2.415
1.580	2.415
1.602	2.415

What type of transline did you use to best fit the data in that plot? Justify your answers. We used third-order polynomial rgression models for the top left, top right, and bottom right graphs because these are the closest to the actual trend of the data. For the bottom left graph (time vs leg bacteria count), the data follows a logarithmic shape, so we used a logarithmic regression line.

Use the model you chose in the previous question to predict the number of bacteria present after 19.5 hours. Is this number consistent with the given dataset? Why or why not?

We plugged in the value 19.5 into the equation for the trendline and received a value of 2.22 which gave us a value of 166 bacteria. This is not consistent with our data set as the bacteria was at 180 at 18 seconds and 200 at 20 seconds, indicating that the bacteria count at 19.5 seconds should be somewhere between these values.

Question c)

Use the model you chose in the first question to predict the time when there were 20 bacteria present. Is this number consistent with the given dataset? Why or why not?

1

log(20) = .4739ln(x) + .8133 x=2.7988 hrs

This is consistent because in the data, between 2 and 4 hrs there was 15 and 25 bacteria count respectively. Since 20 is between these and 2.7988 hrs is also between the data is consistent with the calculation