ADV: Trigonometry (Adv), T1 Trigonometry and Measure of Angles

(Adv)

Circular Measure (Y11)

Teacher: Troy McMurrich

Exam Equivalent Time: 82.5 minutes (based on HSC allocation of 1.5 minutes approx.

per mark)

T1 Trigonometry and Measure of Angles

HISTORICAL CONTRIBUTION

- T1 Trigonometry and Measure of Angles is a mixture of content that previously belonged to the Standard 2, Mathematics and Ext1 courses. Our analysis has it accounting for an estimated 6.3% of past papers.
- This topic has been split into four sub-topics for analysis purposes: 1-Trig Ratios, Sine and Cosine Rules (2.5%), 2- 3D Trigonometry (0.7%), 3-Bearings (1.3%) and 4-Circular Measure (1.8%).
- This analysis looks at the sub-topic Circular Measure.

HSC ANALYSIS - What to expect and common pitfalls

- Circular Measure (1.8%) has been examined in 7 of the last 9 HSC exams, including both exams of the new Advanced syllabus. Worth noting that the 2020 exam allocated a significant 4-marks to this topic.
- Circular measure questions have been well answered in recent years. We do flag this warning: students are encouraged to carefully revise questions in the period 2005-2010 which represent the highest levels of difficulty in this topic area, producing sub-50% mean marks in 5 of the 6 years.

Questions

1. Trigonometry, 2ADV T1 SM-Bank 1 MC

A windscreen wiper blade can clean a large area of windscreen glass, as shown by the shaded area in the diagram below.

The windscreen wiper blade is 30 cm long and it is attached to a 9 cm long arm.

The arm and blade move back and forth in a circular arc with an angle of 110° at the centre.

The area cleaned by this blade, in square centimetres, is closest to

- **A.** 786
- **B.** 1382
- **C.** 2573
- **D.** 4524

2. Trigonometry, 2ADV T1 2016 HSC 7 MC

The circle centred at \boldsymbol{O} has radius 5. Arc \boldsymbol{AB} has length 7 as shown in the diagram.

What is the area of the shaded sector **OAB**?

- $(A) \ \frac{35}{2}$
- (B) $\frac{35}{2}$
- (c) $\frac{125}{14}$
- (D) $\frac{125}{14}\pi$

3. Trigonometry, 2ADV T1 2021 HSC 12

A right-angled triangle \boldsymbol{XYZ} is cut out from a semicircle with centre \boldsymbol{O} . The length of the diameter \boldsymbol{XZ} is 16 cm and $\boldsymbol{\angle YXZ}$ = 30°, as shown on the diagram.

- a. Find the length of \boldsymbol{XY} in centimetres, correct to two decimal places. (2 marks)
- b. Hence, find the area of the shaded region in square centimetres, correct to one decimal place. (3 marks)

4. Trigonometry, 2ADV T1 2014 HSC 11g

The angle of a sector in a circle of radius 8 cm is $\frac{\pi}{7}$ radians, as shown in the diagram.

Find the exact value of the perimeter of the sector. (2 marks)

5. Trigonometry, 2ADV T1 2006 HSC 4a

In the diagram, ABCD represents a garden. The sector BCD has centre B and $\angle DBC = \frac{5\pi}{6}$

The points \pmb{A}, \pmb{B} and \pmb{C} lie on a straight line and $\pmb{A}\pmb{B} = \pmb{A}\pmb{D} = \pmb{3}$ metres.

Copy or trace the diagram into your writing booklet.

- i. Show that $\angle DAB = rac{2\pi}{3}$. (1 mark)
- ii. Find the length of \emph{BD} . (2 marks)
- iii. Find the area of the garden $\,ABCD$. (2 marks)

6. Trigonometry, 2ADV T1 2017 HSC 11e

In the diagram, OAB is a sector of the circle with centre O and radius 6 cm, where $\angle AOB = 30^{\circ}$

- i. Find the exact value of the area of the triangle \emph{OAB} . (1 mark)
- ii. Find the exact value of the area of the shaded segment. (1 mark)

7. Trigonometry, 2ADV T1 2004 HSC 4a

AOB is a sector of a circle, centre O and radius 6 cm.

The length of the arc \boldsymbol{AB} is $\boldsymbol{5\pi}$ cm.

Calculate the exact area of the sector AOB. (2 marks)

8. Trigonometry, 2ADV T1 2012 HSC 11f

The area of the sector of a circle with a radius of 6 cm is 50 cm².

Find the length of the arc of the sector. (2 marks)

9. Trigonometry, 2ADV T1 2013 HSC 13c

The region ABC is a sector of a circle with radius 30 cm, centred at C. The angle of the sector is θ . The arc DE lies on a circle also centred at C, as shown in the diagram.

The arc $m{DE}$ divides the sector $m{ABC}$ into two regions of equal area.

Find the exact length of the interval ${\it CD}$. (2 marks)

10. Trigonometry, 2ADV T1 2019 HSC 13b

The diagram shows a circle with centre $m{O}$ and radius 20 cm.

The points \boldsymbol{A} and \boldsymbol{B} lie on the circle such that $\angle AOB = 70^{\circ}$.

Find the perimeter of the shaded segment, giving your answer correct to one decimal place. (3 marks)

11. Trigonometry, 2ADV T1 2020 HSC 22

The diagram shows a regular decagon (ten-sided shape with all sides equal and all interior angles equal). The decagon has centre \mathbf{O} .

The perimeter of the shape is 80 cm.

By considering triangle \emph{OAB} , calculate the area of the ten-sided shape. Give your answer in square centimetres correct to one decimal place. (4 marks)

12. Trigonometry, 2ADV T1 2005 HSC 4a

A pendulum is 90 cm long and swings through an angle of 0.6 radians. The extreme positions of the pendulum are indicated by the points \boldsymbol{A} and \boldsymbol{B} in the diagram.

- i. Find the length of the arc $\it AB$. (1 mark)
- ii. Find the straight-line distance between the extreme positions of the pendulum. (2 marks)
- iii. Find the area of the sector swept out by the pendulum. (1 mark)

13. Trigonometry, 2ADV T1 2007 HSC 4c

An advertising logo is formed from two circles, which intersect as shown in the diagram.

The circles intersect at $m{A}$ and $m{B}$ and have centres at $m{O}$ and $m{C}$.

The radius of the circle centred at O is 1 metre and the radius of the circle centred at C is $\sqrt{3}$ metres. The length of OC is 2 metres.

- i. Use Pythagoras' theorem to show that $\angle OAC = \frac{\pi}{2}$. (1 mark)
- ii. Find $\angle ACO$ and $\angle AOC$. (2 marks)
- iii. Find the area of the quadrilateral $\it AOBC$. (1 mark)
- iv. Find the area of the major sector ACB. (1 mark)
- v. Find the total area of the logo (the sum of all the shaded areas). (2 marks)

14. Trigonometry, 2ADV T1 2010 HSC 6b

The diagram shows a circle with centre \boldsymbol{O} and radius 5 cm.

The length of the arc ${\it PQ}$ is 9 cm. Lines drawn perpendicular to ${\it OP}$ and ${\it OQ}$ at ${\it P}$ and ${\it Q}$ respectively meet at ${\it T}$.

- i. Find $\angle POQ$ in radians. (1 mark)
- ii. Prove that ΔOPT is congruent to ΔOQT . (2 marks)
- iii. Find the length of \it{PT} . (1 mark)
- iv. Find the area of the shaded region. (2 marks)

15. Trigonometry, 2ADV T1 2009 HSC 5c

The diagram shows a circle with centre O and radius 2 centimetres. The points A and B lie on the circumference of the circle and $\angle AOB = \theta$.

i. There are two possible values of $\, heta\,$ for which the area of $\,\Delta AOB\,$ is $\,\sqrt{3}\,$ square centimetres. One value is $\,\frac{\pi}{3}\,$.

Find the other value. (2 marks)

- ii. Suppose that $heta=rac{\pi}{3}$.
- (1) Find the area of sector AOB (1 mark)
- (2) Find the exact length of the perimeter of the minor segment bounded by the chord ${\it AB}$ and the arc ${\it AB}$. (2 marks)

16. Trigonometry, 2ADV T1 2008 HSC 7b

The diagram shows a sector with radius $\, r \,$ and angle $\, heta \,$ where $\, 0 < heta \leq 2\pi .$

The arc length is $\frac{10\pi}{3}$

- i. Show that $r \geq \frac{5}{3}$. (2 marks)
- ii. Calculate the area of the sector when ${\it r}=4$. (2 marks)

Copyright @ 2004-21 The State of New South Wales (Board of Studies, Teaching and Educational Standards NSW)

Worked Solutions

1. Trigonometry, 2ADV T1 SM-Bank 1 MC

$$\begin{aligned} \text{Area cleaned} &= \text{ large sector} - \text{small sector} \\ &= \frac{110}{360} \times \pi \times 39^2 \ - \frac{110}{360} \times \pi \times 9^2 \\ &= 1382.3.\dots \text{ cm}^2 \\ \Rightarrow B \end{aligned}$$

2. Trigonometry, 2ADV T1 2016 HSC 7 MC

$$\mathrm{Arc} = rac{ heta}{2\pi} imes 2\pi r = r heta$$
 $7 = 5 heta$
 $\therefore heta = rac{7}{5}$

Area of shaded sector

$$= \frac{1}{2}\theta r^2$$

$$= \frac{1}{2} \times \frac{7}{5} \times 5^2$$

$$= \frac{35}{2} u^2$$

$$\Rightarrow A$$

3. Trigonometry, 2ADV T1 2021 HSC 12

a.
$$\cos 30^{\circ} = \frac{XY}{16}$$

 $XY = 16 \cos 30^{\circ}$
 $= 13.8564$
 $= 13.86 \text{ cm (2 d.p.)}$

Worked Solutions

b. Area of semi-circle
$$=\frac{1}{2}\times\pi r^2$$

$$=\frac{1}{2}\pi\times 8^2$$

$$=100.531~\mathrm{cm}^2$$

Area of
$$\Delta XYZ=rac{1}{2}ab\sin C$$

$$=rac{1}{2} imes16 imes13.856 imes\sin30^\circ$$

$$=55.42~\mathrm{cm}^2$$

∴ Shaded Area =
$$100.531 - 55.42$$

= 45.111
= $45.1 \text{ cm}^2 (1 \text{ d.p.})$

4. Trigonometry, 2ADV T1 2014 HSC 11g

$$\begin{aligned} \text{Arc length} &= \frac{\theta}{2\pi} \times 2\pi r \\ &= \frac{\pi}{7} \times 8 \\ &= \frac{8\pi}{7} \text{ cm} \end{aligned}$$

Sector perimeter =
$$\arctan + 2 \times \text{radius}$$

= $\frac{8\pi}{7} + 16 \text{ cm}$

5. Trigonometry, 2ADV T1 2006 HSC 4a

i.

Show
$$\angle DAB = \frac{2\pi}{3}$$

$$\angle DBA = \pi - \frac{5\pi}{6} \quad (\pi \text{ radians in straight angle } ABC)$$

$$= \frac{\pi}{6} \text{ radians}$$

$$\therefore \angle BDA = \frac{\pi}{6}$$
 radians (base angles of isosceles $\triangle ADB$)

$$\therefore \angle DAB = \pi - \left(\frac{\pi}{6} + \frac{\pi}{6}\right) \text{ (angle sum of } \Delta ADB)$$

$$= \frac{2\pi}{3} \text{ radians} \dots \text{ as required}$$

ii. Using the cosine rule:

$$BD^{2} = AD^{2} + AB^{2} - 2 \times AD \times AB \times \cos \frac{2\pi}{3}$$

$$= 9 + 9 - (2 \times 3 \times 3 \times -0.5)$$

$$= 27$$

$$\therefore BD = \sqrt{27}$$

$$= 3\sqrt{3} \text{ m}$$

iii. Area of
$$\Delta ADB=rac{1}{2}ab\sin C$$

$$=rac{1}{2}\times 3\times 3\times \sinrac{2\pi}{3}$$

$$=rac{9}{2} imesrac{\sqrt{3}}{2}$$

$$=\frac{9\sqrt{3}}{4} m^2$$

Area of sector BCD

$$egin{aligned} &=rac{5\pi}{6} imes\pi r^2\ &=rac{5\pi}{12} imes\left(3\sqrt{3}
ight)^2\ &=rac{45\pi}{4}\,\,\mathrm{m}^2 \end{aligned}$$

 \therefore Area of garden ABCD

$$= \frac{9\sqrt{3}}{4} + \frac{45\pi}{4}$$
$$= \frac{9\sqrt{3} + 45\pi}{4} m^{2}$$

6. Trigonometry, 2ADV T1 2017 HSC 11e

i. Area
$$\Delta OAB=rac{1}{2}ab\sin C$$

$$=rac{1}{2} imes 6^2 imes \sin 30^\circ$$

$$=9~{
m cm}^2$$

ii. Area segment = Area sector - Area ΔOAB = $\frac{30}{360} \times \pi \times 6^2 - 9$ = $3\pi - 9$ cm²

7. Trigonometry, 2ADV T1 2004 HSC 4a

$$ext{Arc length} = rac{ heta}{2\pi} imes 2\pi r = r heta$$
 $ext{5}\pi = 6 heta$
 $ext{ } \therefore \ heta = rac{5\pi}{6} ext{ radians}$

Area of sector AOB

$$= \frac{\theta}{2\pi} \times \pi r^2$$

$$= \frac{1}{2}r^2\theta$$

$$= \frac{1}{2} \times 6^2 \times \frac{5\pi}{6}$$

$$= 15\pi \text{ cm}^2$$

8. Trigonometry, 2ADV T1 2012 HSC 11f

Area of sector, radius $6 \text{ cm} = 50 \text{ cm}^2$

$$rac{ heta}{2\pi} imes\pi r^2=50$$
 $rac{1}{2}r^2 heta=50$ $rac{1}{2} imes6^2 imes heta=50$ $heta=rac{50}{18}=rac{25}{9}$ radians

$$\therefore \text{ Length of Arc} = \frac{\theta}{2\pi} \times 2\pi r$$

$$= \theta \times r$$

$$= \frac{25}{9} \times 6$$

$$= \frac{50}{3} \text{ cm}$$

TIP: Many students find it easier to think of the area of a sector by calculating $\frac{\theta}{2\pi}$ multiplied by the area of a circle rather than remembering a formula.

9. Trigonometry, 2ADV T1 2013 HSC 13c

Area of sector
$$ABC=rac{1}{2}r^2 heta$$

$$=rac{1}{2}\times 30^2\times heta$$

$$=450 heta$$

Let CD = x

Area of sector
$$CDE = \frac{1}{2}x^2\theta$$

Since DE divides sector ABC in half,

Area sector
$$CDE=rac{1}{2} imes A$$
rea sector ABC $rac{1}{2}x^2 heta=rac{1}{2} imes 450 heta$ $x^2=450$ $x=\sqrt{450}$ $(x>0)$ $=15\sqrt{2}~\mathrm{cm}$

MARKER'S COMMENT: Simply finding the area of sector **ABC** achieved half marks in this challenging question! **Show your working.**

- \therefore The exact length of interval CD is $15\sqrt{2}$ cm.
- 10. Trigonometry, 2ADV T1 2019 HSC 13b

$$Arc AB = \frac{70}{360} \times 2\pi \times 20$$
$$= 24.43...$$

Using cosine rule,

$$AB^2 = 20^2 \times 20^2 - 2 \cdot 20 \cdot 20 \times \cos 70$$

= 526.383...
 $AB = 22.94...$

$$\therefore$$
 Perimeter = 24.43 + 22.94...
= 47.37
= 47.4 cm (1 d.p.)

11. Trigonometry, 2ADV T1 2020 HSC 22

$$\angle AOB = \frac{360}{10} = 36^{\circ}$$

$$AB = \frac{80}{10} = 8 \text{ cm}$$

 ΔAOB is made up of 2 identical right-angled triangles

$$an 18^\circ = rac{4}{x}$$
 $x = rac{4}{ an 18^\circ}$

$$\therefore$$
 Area of decagon = $20 \times \frac{1}{2} \times \frac{4}{\tan 18^{\circ}} \times 4$
= $492.429...$
= 492.4 cm^2 (to 1 d.p.)

12. Trigonometry, 2ADV T1 2005 HSC 4a

i.
$$\operatorname{Arc} AB = \frac{\theta}{2\pi} \times 2\pi r$$

$$= r\theta$$

$$= 90 \times 0.6$$

$$= 54 \text{ cm}$$

ii.

Using the cosine rule

Distance AB in straight line

$$AB^2 = 90^2 \times 90^2 - 2 \times 90 \times 90 \times \cos 0.6$$

= 2829.563...
 $\therefore AB = 53.193...$
= 53.2 cm (to 1 d.p.)

iii. Area of sector

$$= \frac{0.6}{2\pi} \times \pi r^2$$
= 0.3 × 90²
= 2430 cm²

i.

$\text{In } \Delta AOC$

$$AO^{2} + AC^{2} = 1^{2} + \sqrt{3}^{2}$$

= 1 + 3
= 4
= OC^{2}

 $\therefore \Delta AOC$ is right-angled and $\angle OAC = \frac{\pi}{2}$

ii.
$$\sin \angle ACO = \frac{1}{2}$$

$$\therefore \angle ACO = \frac{\pi}{6}$$

$$\sin \angle AOC = \frac{\sqrt{3}}{2}$$

$$\therefore \angle AOC = \frac{\pi}{3}$$

iii. Area AOBC

$$= 2 imes {
m Area} \, \Delta AOC$$

$$=2 imesrac{1}{2} imes b imes h$$

$$=2\times\frac{1}{2}\times1\times\sqrt{3}$$

$$=\sqrt{3}$$
 m²

iv.
$$\angle ACB = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3}$$

$$\therefore \angle ACB \text{ (reflex)} = 2\pi - \frac{\pi}{3}$$

$$=\frac{5\pi}{3}$$

Area of major sector ACB

$$= \frac{\theta}{2\pi} \times \pi r^2$$

$$= \frac{\frac{5\pi}{3}}{2\pi} \times \pi (\sqrt{3})^2$$

$$= \frac{5\pi}{6} \times 3$$

$$= \frac{5\pi}{2} \text{ m}^2$$

v.
$$\angle AOB = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$$

$$\therefore \angle AOB \text{ (reflex)} = 2\pi - \frac{2\pi}{3}$$

$$= \frac{4\pi}{3}$$

Area of major sector AOB

$$=\frac{\frac{4\pi}{3}}{2\pi}\times\pi\times1^{2}$$
$$=\frac{2\pi}{3} \text{ m}^{2}$$

... Total area of the logo

$$=rac{5\pi}{2}+rac{2\pi}{3}+{
m Area}~AOBC$$
 $=rac{15\pi+4\pi}{6}+\sqrt{3}$
 $=\left(rac{19\pi+6\sqrt{3}}{6}
ight){
m m}^{2}$

- 14. Trigonometry, 2ADV T1 2010 HSC 6b
- i. Length of $Arc = r\theta$

$$9 = 5 \times \angle POQ$$

$$\therefore \angle POQ = \frac{9}{5} \text{ radians}$$

ii.

Prove $\triangle OPT \cong \triangle OQT$ OT is common $\angle OPT = \angle OQT = 90^{\circ}$ (given) OP = OQ (radii) $\therefore \triangle OPT \cong \triangle OQT$ (RHS)

MARKER'S COMMENT: Know the difference between the congruency proof of **RHS** and **SAS**. Incorrect identification will lose a mark.

iii.

$$\angle POT = \frac{1}{2} \times \angle POQ$$
 (from part (ii))
 $= \frac{1}{2} \times \frac{9}{5}$
 $= \frac{9}{10}$ radians
 $\tan \angle POT = \frac{PT}{OP}$

◆◆ Mean mark below 30%.

MARKER'S COMMENT: Many students struggled to work in

$$\tan\!\left(\frac{9}{10}\right) = \frac{PT}{5}$$

 $\left(\frac{9}{10}\right) = \frac{PT}{5}$

$$PT = 5 \times \tan\left(\frac{9}{10}\right)$$

$$= 6.3007...$$

= 6.3 cm (to 1 d.p.)

iv. Shaded Area = Area OQTP - Area sector OQP

 ${\rm Area} \ OQTP = 2 \times {\rm Area} \ \Delta OPT$

$$=2\times\frac{1}{2}\times OP\times PT$$

$$= 5 \times 6.3007$$

$$\approx 31.503...$$

 $\approx 31.5~\text{cm}^2$

Area sector
$$OQP = rac{1}{2}r^2 heta$$

$$= rac{1}{2} imes 25 imes rac{9}{5}$$

$$= 22.5 ext{ cm}^2$$

∴ Shaded Area =
$$31.503 - 22.5$$

= $9.003...$
= 9.0 cm^2 (to 1 d.p.)

radians. Make sure you understand

♦ Mean mark 35%.

15. Trigonometry, 2ADV T1 2009 HSC 5c

i. Area
$$\triangle AOB = \frac{1}{2}ab\sin\theta$$

$$= \frac{1}{2} \times 2 \times 2 \times \sin\theta$$

$$= 2\sin\theta$$

$$2\sin\theta = \sqrt{3} \quad \text{(given)}$$

$$\sin\theta = \frac{\sqrt{3}}{2}$$

$$\therefore \theta = \frac{\pi}{3}, \ \pi - \frac{\pi}{3}$$

$$= \frac{\pi}{3}, \ \frac{2\pi}{3}$$

- \therefore The other value of θ is $\frac{2\pi}{3}$ radians
- ii. (1) Area of sector $AOB=\pi r^2 imes rac{ heta}{2\pi}$ $=rac{1}{2}r^2 heta$ $=rac{1}{2} imes 2^2 imes rac{\pi}{3}$ $=rac{2\pi}{3} ext{ cm}^2$
- ii. (2) Using the cosine rule:

$$AB^{2} = OA^{2} + OB^{2} - 2 \times OA \times OB \times \cos \theta$$

$$= 2^{2} + 2^{2} - 2 \times 2 \times 2 \times \cos \left(\frac{\pi}{3}\right)$$

$$= 4 + 4 - 4$$

$$= 4$$

$$\therefore AB = 2$$

$$egin{aligned} \operatorname{Arc} AB &= 2\pi r imes rac{ heta}{2\pi} \ &= r heta \end{aligned}$$

$$=\frac{2\pi}{3}$$
 cm

$$\therefore$$
 Perimeter $=\left(2+rac{2\pi}{3}
ight)$ cm

- 16. Trigonometry, 2ADV T1 2008 HSC 7b
- i. Show $r \geq \frac{5}{3}$

 $ext{Arc length} = r heta ext{ where } 0 < heta \leq 2\pi$

$$r heta=rac{10\pi}{3}$$

$$\therefore heta = rac{10\pi}{3r}$$

Using $0 \le \theta \le 2\pi$

$$0 \leq rac{10\pi}{3r} \leq 2\pi$$

$$rac{10\pi}{3} \leq 2\pi r$$

$$rac{5}{3} \leq r$$

- $\therefore r \geq \frac{5}{3}$... as required.
- ii. Area = $\frac{1}{2}r^2\theta$ = $\frac{1}{2}\times 4^2\times \frac{10\pi}{3\times 4}$ = $\frac{20\pi}{3}$ \mathbf{u}^2

Copyright © 2016-2022 M2 Mathematics Pty Ltd (SmarterMaths.com.au)