Introduction to Algorithms

6.046J/18.401J

Lecture 25

Prof. Piotr Indyk

🤝 Final Exam

- May 19, 2008, 9:00am 12 pm
- · Johnson Ice Rink
- Closed book:
 - two handwritten crib sheets
- · Coverage: everything except
 - L17 Hidden Markov Models II
 - L18 Computational Biology
 - L26 Parallel Algorithms
- Quiz review: Fri, 3-5pm, 32-155

© Piotr Indyk

Introduction to Algorithms

May 13, 2008 L25.2

🔙 Dealing with Hard Problems

- · What to do if:
 - Divide and conquer
 - Dynamic programming
 - Greedy
 - Linear Programming/Network Flows

does not give a polynomial time algorithm?

© Piotr Indvk

Introduction to Algorithms

May 13, 2008 L25,3

Dealing with Hard Problems

- Idea I: Ignore the problem
 - Can't do it! There are thousands of problems for which we do not know polynomial time algorithms
 - For example:
 - Traveling Salesman Problem (TSP)
 - Set Cover

© Piotr Indvk

Introduction to Algorithms

May 13, 2008 L25.4

Traveling Salesman Problem

- · Traveling Salesman Problem (TSP)
 - Input: undirected graph with lengths on edges
 - Output: shortest cycle that visits each vertex exactly
- Best known algorithm: Ω(2ⁿ) time

May 13, 2008 L25.5

Set Covering

- Set Cover:
 - Input: subsets $S_1 ... S_n$ of X, $\bigcup_i S_i = X, |X| = m$
 - Output: $C\subseteq \{1\dots n\}$, such that $\bigcup_{i\in C} S_i = X,$ and |C| minimal
- · Vertex cover: special case
 - -X = edges
 - $-S_v =$ edges incident to vertex v
- Best known algorithm: $\Omega(2^n)$ time

App: bank robbery

- X={plan, shoot, safe, drive, scary}
- - S_{Steve} = {plan, safe}
 - S_{Stevie}={shoot, scary, drive}
 - S_{Stevo} = {plan, drive}

© Piotr Indvk

Introduction to Algorithms

May 13, 2008 L25.6

Dealing with Hard Problems, ctd.

- Exponential time algorithms for small inputs
 - E.g., 1.274ⁿ time is not bad for n < 50 (such algorithm exists for Vertex Cover)
- Polynomial time algorithms for some inputs (e.g., average-case)
- Polynomial time algorithms for all inputs, but which return approximate solutions

© Piotr Indyk

Introduction to Algorithms

May 13, 2008 L25.7

🥽 Approximation Algorithms

- An algorithm A is ρ -approximate, if, on any input of size n:
 - The cost C_{Λ} of the solution produced by the algorithm, and
 - The cost C_{OPT} of the optimal solution are such that $C_A \leq \rho \ C_{OPT}$
- · We have seen:
 - 2-approximation algorithm for finding a median string (PS7)
- We will see:
 - 2-approximation algorithm for TSP in the plane
- ln(m)-approximation algorithm for Set Cover

Introduction to Algorithms

May 13, 2008 L2

🥽 Comments on Approximation

- " $C_{A} \leq \rho$ C_{OPT} " makes sense only for minimization problems
- For maximization problems, replace by " $C_A \ge 1/\rho \ C_{OPT}$ "
- Additive approximation "C_A≤ ρ + C_{OPT}" also makes sense, although difficult to achieve

© Piotr Indyk

Introduction to Algorithms

May 13, 2008 L25.9

TSP

© Piotr Indyk

Introduction to Algorithms

May 13, 2008 L25.10

2-approximation for TSP

- Compute MST T
 - An edge between any pair of points
 - Weight = distance between endpoints
- Compute a tree-walk W of T
 - Each edge visited twice
- Convert W into a cycle C using shortcuts

© Piotr Indy

Introduction to Algorithm:

May 13, 2008 L25.11

2-approximation: Proof

- Let C_{OPT} be the optimal cycle
- $Cost(T) \le Cost(C_{OPT})$
 - Removing an edge from C gives a spanning tree, T is a spanning tree of minimum cost
- Cost(W) = 2 Cost(T)
 - Each edge visited twice
- $Cost(C) \le Cost(W)$
 - Triangle inequality
- \Rightarrow Cost(C) \leq 2 Cost(C_{OPT})

© Piotr Indyk

Introduction to Algorithms

May 13, 2008 L25.12

Set Cover

© Piotr Indyk

Introduction to Algorithms

May 13, 2008 L25.13

🔼 Approximation for Set Cover

• Input: subsets $S_1...S_n$ of X, $\bigcup_i S_i = X$, |X| = m• Output: $C \subseteq \{1...n\}$, such that $\bigcup_{i \in C} S_i = X$, and |C| minimal

Greedy algorithm:

- Initialize C=∅
- · Repeat until all elements are covered:
 - Choose S_i which contains largest number of yet-not-covered elements
 - Add i to C
 - Mark all elements in S; as covered

© Piotr Indyk

Introduction to Algorithms

May 13, 2008 L25.14

Greedy Algorithm: Example

- $X=\{1,2,3,4,5,6\}$
- · Sets:
 - $-S_1=\{1,2\}$
 - $-S_2=\{3,4\}$
 - $-S_3=\{5,6\}$
 - $-S_4=\{1,3,5\}$
- Algorithm picks C=all sets
- · Not optimal!

© Piotr Indyk

Introduction to Algorithms

May 13, 2008 L25.15

ln(m)-approximation

- · Notation:
 - C_{OPT} = optimal cover
 - $k = |C_{OPT}|$ (we do not know k)
- Fact: At any iteration of the algorithm, there exists S, which contains at least 1/k fraction of yet-not-covered elements
- Proof:
 - C_{OPT} covers the (uncovered) elements using k sets
 - One of those sets must cover ≥1/k fraction of yet-not-covered elements
- Conclusion: greedy algorithm covers ≥1/k fraction of yetnot-covered elements in each step

© Piotr Indyk

Introduction to Algorithms

May 13, 2008 L25.16

In(m)-approximation

- Let u_i be the number of yet-not-covered elements at the end of step $i=0,1,2,\ldots$
- · We have

$$u_{i+1} \leq u_i (1-1/k) u_0 = m$$

- Therefore, after t=k ln m steps, we have $u_t \le u_0 \, (1 1/k)^t \le m \, (1 1/k)^{k \, \ln m} < m \, 1/e^{\ln m} = 1$
- I.e., all elements are covered by the k ln m sets chosen by greedy algorithm
- Opt size is $k \Rightarrow$ greedy is ln(m)-approximate

Piotr Indyl

Introduction to Algorithm.

May 13, 2008 L25.17

Approximation Algorithms

- · Very rich area
 - Algorithms use greedy, linear programming, dynamic programming
 - E.g., 1.01-approximate TSP in the plane
 - Sometimes can show that approximating a problem is as hard as finding exact solution!
 - E.g., 0.99 ln(m)-approximate Set Cover

© Piotr Indyk

ntroduction to Algorithms

May 13, 2008 L25.18