Elementary Number Theory: Homework3

刘泓尊 2018011446 计84

liu-hz18@mails.tsinghua.edu.cn

2020年5月2日

Exercises 4.1

5. 若 a 是奇数,则 $a^2 \equiv 1 \mod 8$

证明. 设 $a=2k+1, k\in\mathbb{Z}$, 则 $a^2=(2k+1)^2=4k^2+4k+1=4k(k+1)+1$. 当 k 为偶数时, k=2l, 4k(k+1)=8l(2l+1); 当 k 为奇数时, k=(2l+1), 4k(k+1)=8(2l+1)(l+1). 所以 $8\mid 4k(k+1), k\in\mathbb{Z}$. 进而 $8\mid a^2-1$.

10. 若 $m > 0, a \equiv b \mod m$, 则 $a \mod m = b \mod m$

证明. 因为 $a \equiv b \mod m$,则 $a = b + km, k \in \mathbb{Z}$. 进而 $a \mod m = (b + km) \mod m = (b \mod m) + (km \mod m) = b \mod m$.

所以
$$a \mod m = b \mod m$$

11. 若 $a \mod m = b \mod m$, 则 $a \equiv b \mod m$

证明. 因为 $a \mod m = b \mod m$, 所以 $(a-b) \mod m = 0$, 所以 $a-b=km, k \in \mathbb{Z}$, 即 a=b+km

所以
$$a \equiv b \mod m$$
.

15. 若 $a_j \equiv b_j \mod m, (j = 1, 2, \dots, n),$ 则 (1) $\sum_{j=1}^n a_j \equiv \sum_{j=1}^n b_j \mod m,$ (2) $\prod_{j=1}^n a_j \equiv \prod_{j=1}^n b_j \mod m$

证明. 用数学归纳法给出证明.

- n = 1 是平凡的, $a_1 \equiv b_1 \mod m$, 进而 $\sum_{j=1}^1 a_j \equiv \sum_{j=1}^1 b_j \mod m$; $\prod_{j=1}^1 a_j \equiv \prod_{j=1}^1 b_j \mod m$.
- n = 2 时, $a_1 \equiv b_1 \mod m, a_2 \equiv b_2 \mod m$, 所以 $m \mid (a_1 b_1), m \mid (a_2 b_2)$.

因为 $(a_1+a_2)-(b_1+b_2)=(a_1-b_1)+(a_2-b_2)$,所以 $m\mid (a_1+a_2)-(b_1+b_2)$,即 $(a_1+a_2)\equiv (b_1+b_2)$ mod m.

因为 $(a_1a_2) - (b_1b_2) = (a_1a_2) + (a_1b_2) - (a_1b_2) - (b_1b_2) = a_1(a_2 + b_2) - b_2(a_1 + b_1)$,所以 $m \mid a_1a_1 - b_1b_2$,即 $a_1a_2 \equiv b_1b_2 \mod m$

• 假设上述两个命题对 n 成立,则对于 n+1 有:

 $\sum_{j=1}^{n} a_j \equiv \sum_{j=1}^{n} b_j \mod m$, $a_{n+1} \equiv b_{n+1} \mod m$. 由归纳基础, $\sum_{j=1}^{n+1} a_j \equiv \sum_{j=1}^{n+1} b_j \mod m$. 同理, $\prod_{j=1}^{n} a_j \equiv \prod_{j=1}^{n} b_j \mod m$, $a_{n+1} \equiv b_{n+1} \mod m$. 由归纳基础, $\prod_{j=1}^{n+1} a_j \equiv \prod_{j=1}^{n+1} b_j \mod m$.

37. $m_1, m_2, \dots m_k$ 两两互素, $M = m_1 m_2 \dots m_k$ 且 $M_j = M/m_j, j = 1, 2, \dots, k$. 证明当 a_1, a_2, \dots, a_k 分别取遍 m_1, m_2, \dots, m_k 的完全剩余系时, $M_1 a_1 + M_2 a_2 + \dots + M_k a_k$ 取遍 M 的完全剩余系

证明. a_i 有 m_i 中取法,则 $\sum_{i=1}^k M_i a_i$ 有 $\prod_{i=1}^k m_i$ 种取法。即 M 种;

只需证: M 种取法中任意两种模 M 不同余.

假设有 $\sum_{i=1}^k M_i a_{i_1} \equiv \sum_{i=1}^k M_i a_{i_2} \mod M, a_{i_1} \neq a_{i_2}, \forall i = 1, 2, \cdots, k$

那么, $M \mid \sum_{i=1}^k M_i(a_{i_1} - a_{i_2})$, 进而 $m_1 \mid \sum_{i=1}^k M_i(a_{i_1} - a_{i_2})$.

因为 m_i 两两互素,所以 $m_i \nmid M_i, m_i \mid M_j (j \neq i)$,进而 $m_i \mid M_i (a_{i_1} - a_{i_2})$,进而 $m_i \mid (a_{i_1} - a_{i_2})$, 所以 $a_{i_1} \equiv a_{i_2} \mod m_i$. 矛盾!

所以 $M_1a_1 + M_2a_2 + \cdots + M_ka_k$ 取遍 M 的完全剩余系。

Exercise 4.2

15. 同余方程 $x^2 \equiv 1 \mod p^k$, p 为奇素数, 恰有两个不同余的解 $x \equiv \pm 1 \mod p^k$.

证明. $x^2-1=(x+1)(x-1)\equiv 0 \mod p^k$, 所以 $p^k\mid (x+1)(x-1)$. 因为 (x+1)-(x-1)=2, 所以 $(x+1,x-1)\leq 2$.

因为 p 是奇素数,则或者有 $p \mid (x+1)$,或者有 $p \mid (x-1)$; 即或者有 $p^k \mid (x+1)$,或者有 $p^k \mid (x-1)$. 所以 $x \equiv \pm 1 \mod p^k$.

16. 同余方程 $x^2 \equiv 1 \mod 2^k$ 在 k > 2 时恰有 4 个不同余的解,它们是 $x = \pm 1$ 或 $x = \pm (1 + 2^{k-1}) \mod 2^k$; 在 k = 1 时仅有一个解; k = 2 是有两个不同余的解

证明. k > 2 时, $x^2 - 1 \equiv (x+1)(x-1) \equiv 0 \mod 2^k$,所以 $2^k \mid (x+1)(x-1)$. 注意 到 (x+1) - (x-1) = 2,即两者的线性组合中有 2,所以 $(x+1,x-1) \leq 2$,所以或者有 $2^{k-1} \mid x+1,2 \mid x-1$,或者有 $2^{k-1} \mid x-1,2 \mid x+1$ 。

所以或者有 $x = t2^{k-1} + 1$ 或者有 $x = t2^{k-1} - 1$, $t \in \mathbb{Z}$

所以 x 模 2^k 的解只有 4 个,即 $x = \pm 1$ 或 $x = \pm (1 + 2^{k-1}) \mod 2^k$.

k=1 时,只有一个解 $x \equiv 1 \mod 2$.

k=2 时,有两个解 $x \equiv \pm 1 \mod 2^2$.

Exercises 4.3

19. 考虑模不一定互素的同余方程组

$$x \equiv a_1 \mod m_1$$
 $x \equiv a_2 \mod m_2$
 \dots
 $x \equiv a_r \mod m_r$

上述方程组有解当且仅当对所有整数对 (i, j) 有 $(m_i, m_j) \mid (a_i - a_j), 1 \le i < j \le r$, 且该解模 $[m_1, m_2, \dots, m_r]$ 唯一.

先证明 r=2 的情况,即同余方程组

$$x \equiv a_1 \mod m_1$$

 $x \equiv a_2 \mod m_2$

有解当且仅当 $(m_1, m_2) \mid (a_1 - a_2)$,且若有解则该解模 $[m_1, m_2]$ 唯一.

证明. 设第一个同余方程的解为 $x = a_1 + km_1(k \in \mathbb{Z})$,带入第二个同余方程得到: $a_1 + km_1 \equiv a_2 \mod m_2$,转换为关于 k 的方程 $km_1 \equiv (a_2 - a_1) \mod m_2$,等价于 $a_2 - a_1 = k_1m_1 + k_2m_2, k_1, k_2 \in \mathbb{Z}$. 上述方程有解当且仅当 $(m_1, m_2) \mid (a_2 - a_1)$ 。 设特解为 $k = k_0$,则通解为 $k = k_0 + m_2 t/(m_1, m_2), t \in \mathbb{Z}$. 所以 $x = a_1 + km_1 = a_1 + \left(k_0 + \frac{m_2 t}{(m_1, m_2)}\right) = a_1 + k_0 m_1 + \frac{m_1 m_2}{(m_1, m_2)} t = a_1 + k_0 m_1 + [m_1, m_2]t$.

设 $x_0 = a_1 + k_0 m_1$, 进而上述同余方程组有解 $x = x_0 + [m_1, m_2]t$, $t \in \mathbb{Z}$. 所以上述方程组有解,且模 $[m_1, m_2]$ 唯一.

下面证明原命题:

证明. r=2 时已证。假设原命题对 r 成立。对于 r+1 的情形,有前 r 个方程满足 (m_i,m_j) $| (a_i-a_j),1\leq i< j\leq r$ 时有模 $M=[m_1,m_2,\cdots,m_r]$ 的唯一解 A,且 $x\equiv a_{r+1}\mod m_{r+1}$.则上述条件转化为同余方程组

$$x \equiv A \mod M$$
$$x \equiv a_{r+1} \mod m_{r+1}$$

上述方程有解当且仅当 $(M, m_{r+1}) \mid (A - a_{r+1})$.

下证上述条件等价于 $(m_i, m_{r+1}) \mid (a_i - a_{r+1}), i \in [1, r]$:

因为 $m_i \mid [m_1, m_2, \dots, m_r], i \in [1, r]$, 进而 $(M, m_{r+1}) = (m_i, m_{r+1}), i \in [1, r]$. 所以 $(M, m_{r+1}) \mid (A - a_{r+1})$ 等价于 $(m_i, m_{r+1}) \mid (A - a_{r+1})$. 进而 $(A - a_{r+1}) = k(m_i, m_{r+1})$. 两侧同时模 m_i 得到 $(a_i - a_{r+1}) \equiv km_{r+1} \mod m_i$,等价于 $(m_i, m_{r+1}) \mid (a_i - a_{r+1}), i \in [1, r]$

采用上述引理的方法,上述方程有解 $x=x_0+[[m_1,m_2,\cdots,m_r],m_{r+1}]t=x_0+[m_1,m_2,\cdots,m_{r+1}].$ 该解模 $[m_1,m_2,\cdots,m_{r+1}]$ 唯一。

Exercise 6.3

10. 设 a, n 是互素的正整数,若 n 是以 a 为基的伪素数,则 n 也是以 \overline{a} 为基的伪素数,其中 \overline{a} 是 a 模 n 的逆.

证明. $a^n \equiv a \mod n$, $1 \equiv \overline{a^n} a^n \equiv \overline{a^n} a^n \equiv \overline{a^n} a \mod n$. 所以 $\overline{a} \equiv \overline{a^n} \mod n$. 即 $\overline{a} \not\equiv a \not\equiv a \pmod n$. 即 $\overline{a} \not\equiv a \not\equiv a \pmod n$.

Exercise 7.1

21. 若 (m,n) = p, 其中 m,n 为正整数, p 为素数, 则 $\phi(mn) = p\phi(m)\phi(n)/(p-1)$ 证明. 因为 (m,n) = p, 所以 $p \mid n,p \mid m$. 不妨设 n = kp, 其中 (n,k) = (m,k) = 1. 所以 $\phi(n) = \phi(kp) = \phi(k)\phi(p) = \phi(k)(p-1)$. 根据例 7.7 有 $\phi(mp) = p\phi(m)$ 。所以 $\phi(mn) = \phi(mkp) = \phi(mp)\phi(k) = p\phi(m)\phi(n)/(p-1)$.

22. 若 m, k 为正整数,则 $\phi(m^k) = m^{k-1}\phi(m)$.

证明. 设 m 的素数幂分解为 $m = \prod_{i=1}^r p_i^{a_i}$. 所以 $\phi(m) = \prod_{i=1}^r \phi(p_i^{a_i})$. 进而 $m^k = \prod_{i=1}^r p_i^{ka_i}$, $\phi(m^k) = \prod_{i=1}^r \phi(p_i^{ka_i})$. 因为 $\phi(p_i^{ka_i}) = p_i^{ka_i-1}(p_i-1) = p_i^{(k-1)a_i}p^{a_i-1}(p_i-1) = p^{(k-1)a_i}\phi(p_i^{a_i})$. 所以 $\phi(m^k) = \prod_{i=1}^r \phi(p_i^{ka_i}) = \prod_{i=1}^r p^{(k-1)a_i} \prod_{i=1}^r \phi(p_i^{a_i}) = m^{k-1}\phi(m)$

23.a,b 为正整数,则 $\phi(ab) = (a,b)\phi(a)\phi(b)/\phi((a,b))$,进而推出 (a,b) > 1 时,有 $\phi(ab) > \phi(a)\phi(b)$

证明. 对 a,b 进行素分解,设 $a=r_1^{a_1}r_2^{a_2}\cdots r_s^{a_s}p_1^{m_1}p_2^{m_2}\cdots p_t^{m_t},\,b=r_1^{a_1}r_2^{a_2}\cdots r_s^{a_s}q_1^{n_1}q_2^{n_2}\cdots q_l^{n_l}.$ 所以

$$\phi(ab) = ab \left((1 - \frac{1}{r_1})(1 - \frac{1}{r_2}) \cdots (1 - \frac{1}{r_s}) \right) \left((1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_t}) \right) \left((1 - \frac{1}{q_1}) \cdots (1 - \frac{1}{q_l}) \right)$$

$$\phi(a) = a \left((1 - \frac{1}{r_1})(1 - \frac{1}{r_2}) \cdots (1 - \frac{1}{r_s}) \right) \left((1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_t}) \right)$$

$$\phi(b) = b \left((1 - \frac{1}{r_1})(1 - \frac{1}{r_2}) \cdots (1 - \frac{1}{r_s}) \right) \left((1 - \frac{1}{q_1}) \cdots (1 - \frac{1}{q_l}) \right)$$

$$\phi((a, b)) = (a, b)(1 - \frac{1}{r_1})(1 - \frac{1}{r_2}) \cdots (1 - \frac{1}{r_s})$$

所以

$$\phi(ab) = \frac{(\phi(a)\phi(b))}{\frac{(a,b)}{\phi((a,b))}} = \frac{(a,b)\phi(a)\phi(b)}{\phi((a,b))}$$