1 The Master Method (Theorem)

1.1 Recurrence Format

- 1. Base Case: $T(n) \leq a$ constant for all sufficiently small n
- 2. For all larger n:

$$T(n) \le aT(\frac{n}{b}) + O(n^d)$$

Where:

 $a = \text{number of recursive calls } (\geq 1)$

b = input size shrinkage factor (>1)

 $d = \text{exponent in running time of "combine step"} (\geq 0) \text{ (outside of loop)}$

[a, b, d independent of n]

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

In first case the base of log doesn't matter (differs by constant factor). In third case, log is in the exponent, so it matters.

Ex. 1: Merge Sort

a=2 number of recursive calls

b=2 we recurse on $\frac{1}{2}$ of the array

d=1 merge step

Case 1:

$$T(n) \le O(n^d \log n) = O(n \log n)$$

Ex. 2: Binary Search

a=1 compare element to the middle element and recurse on left or right

b=2 half of the array

d=0 outside of loop you just do one comparison, constant time

$$T(n) = O(n^d \log n) = O(n \log n)$$

Ex. 3: Integer Multiplication (no Gauss trick)

a = 4

 $b=2 \frac{n}{2}$ digits

d=1 linear time

Case 3:

$$T(n) = O(n^{\log_b a}) = O(n^{\log_2 4}) = O(n^2)$$

Ex. 4: With Gauss's trick:

a = 3

b=2

c = 1

Case 3:

$$T(n) = O(n^{\log_b a}) = O(n^{\log_2 3}) = O(n^{1.59})$$

Ex. 5: Strassen's Matrix Multiplication

a = 7

b=2

d=2 linear in the matrix size (quadratic number of entries)

$$T(n) = O(n^{\log_2 7}) = O(n^{2.81})$$

Ex. 6: Fictitious recurrence

$$T(n) \le 2T(\frac{n}{2}) + O(n^2)$$

a = 2

b=2

d=2

Case 2:

$$T(n) = O(n^2)$$

1.2 Proof I

Recursion tree approach, remember what tree types the three cases correspond to.

1. $T(1) \le c$

Assume: recurrence is

2. $T(n) \leq aT(\frac{n}{h}) + cn^d$

3. n is a power of b

Idea: generalize MergeSort analysis

At each level $j=0,1,2,\ldots,\log_b n$, there are $\mathbf{a^j}$ subproblems each of size $\frac{\mathbf{n}}{\mathbf{b^j}}$.

 $\log_b n$ - number of times you can divide n by b before reaching 1.

[5:40] - The Recursion Tree

1.2.1 Work at a Single Level

Total work at level j [ignoring work in recursive calls]

$$\leq a^j \times c \times \left[\tfrac{n}{b^j} \right]^d = c n^d \times \left[\tfrac{a}{b^d} \right]^j$$

Total Work

Summing? all levels $j = 0, 1, 2, \dots, \log_b n$:

*
$$Total \, work \leq cn^d \times \sum_{j=0}^{\log_b n} \left[\frac{a}{b^d}\right]^j$$

1.3 Interpretation of the 3 Cases

How to think about (*)

Our upper bound on the work at level j:

$$cn^d \times \left[\frac{a}{b^d}\right]^j$$

*is a sum of the above expressions

1.3.1 Interpretation

a = rate of subproblem proliferation (RSP)

 b^d rate of work shrinkage per subproblem (RWS)

If RSP < RWS, then the amount of work is decreasing with the recursion level j. Most work at the root [might expect $O(n^d)$].

If RSP > RWS, then the amount of work is increasing with the recursion level j. Most work at the leaves [might expect O(#leaves).

If RSP = RWS, then the amount of work is the same at every recursion level j. [merge sort, expect $O(n^d \log n)$].

1.4 Proof II

$$Total\ work \le cn^d \times \sum_{j=0}^{\log_b n} \left[\frac{a}{b^d} \right]^j \qquad \ (*)$$

If $a = b^d$, then

$$total \, work = cn^{d}(\log_{b} n + 1)$$
$$= O(n^{d} \log n)$$

If $a < b^d$, then

call $\frac{a}{h^d} := r \le a$ constant (independent of n)

$$total\ work = O(n^d)$$

If $a > b^d$, then

 $\operatorname{call} \frac{a}{h^d} := r > 1$

$$total\ work = O(n^d \times (\frac{a}{b^d})^{\log_b n})$$

Note: $b^{-d \log_b n} = (b^{\log_b n})^{-d} = n^{-d}$, so

$$total\ work = O(a^{\log_b n}) = O(\#leaves)$$

 $a^{\log_b n} = n^{\log_b a}$

Expression on left more intuitive, on right simpler to apply.