- 1. A reversible reaction having two reactants in equilibrium if the concentration of reactants are doubled, the equilibrium constant will
 - (1) Become 4 times
 - (2) Become $\frac{1}{4}$ times
 - (3) Become $\frac{1}{16}$ th times
 - (4) Remains the same
- 2. Reaction $A(g) + B(g) \rightleftharpoons C(g) + D(g)$.

If the concentration of A is doubled then

- (1) Equilibrium constant (K_c) will be doubled
- (2) Equilibrium constant (K_c) will be halved
- (3) Equilibrium constant (K_c) remains unaffected
- (4) Equilibrium constant (K_c) will become four times
- 3. The concentration of a pure solid or liquid phase is not included in the expression of equilibrium constant because
 - (1) solid liquid concentrations are independent of their quantities.
 - (2) solid and liquids react slowly.
 - (3) solid and liquids at equilibrium do not interact with gaseous phase.
 - (4) the molecules of solids and liquids cannot migrate to the gaseous phase.
- 4. If K₁ and K₂ are the equilibrium constants for a reversible reaction at T₁ K and T₂ K temperature. respectively $(T_1 < T_2)$ and the reaction takes place with neither heat evolution nor absorption, then
 - (1) $K_1 > K_2$ at high temperature
 - (2) $K_1 < K_2$ at high temperature
 - (3) $K_1 = K_2$ only at high temperature
 - (4) $K_1 = K_2$ at any temperature

5. For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, the relation between the degree of dissociation of N₂O₄(g) at pressure, P with its equilibrium constant K_P is

$$(1) \quad \alpha = \frac{K_P / P}{4 + K_P / P}$$

(2)
$$\alpha = \frac{K_P}{4 + K_P}$$

(3)
$$\alpha = \left[\frac{K_P / P}{4 + K_P / P} \right]^{1/2}$$

$$(4) \quad \alpha = \left[\frac{K_{P}}{4 + K_{P}}\right]^{1/2}$$

- 6. At T K, a compound AB₂(g) dissociates according to the reaction $2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$, with degree of dissociation 'x' which is small compared with unity. The expression for 'x' in terms of the equilibrium constant, K_P and the total pressure P is
 - (1) $\frac{K_p}{p}$
- (2) $(K_P)^{1/3}$
- (3) $\left(\frac{2K_{P}}{P}\right)^{1/3}$ (4) $\left(\frac{K_{P}}{P}\right)^{1/3}$
- 7. The equilibrium $SOCl_2 \rightleftharpoons SO_2(g) + Cl_2(g)$ is attained at 25°C in a closed rigid container and helium gas is introduced. Which of the following statements is correct?
 - (1) Concentration of SO₂ is increased.
 - (2) More Cl₂ is formed.
 - (3) Concentrations of all change.
 - (4) Concentrations will not change.
- 8. Which of the following will shift the reaction $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$, $\Delta H = (+)$ ve to the left hand side?
 - (1) Addition of PCl₅
 - (2) Increase in pressure
 - (3) Increase in temperature
 - (4) Catalyst

- 9. For the given equilibrium reaction $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$. The addition of more $CaCO_3(s)$ causes
 - (1) The decrease in the concentration of $CO_2(g)$
 - (2) The increase in the concentration of $CO_2(g)$
 - (3) No change in the concentration of $CO_2(g)$
 - (4) Increase in the concentration of CaO(s)
- 10. Given the following reaction at equilibrium $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

Some inert gas is added at constant volume. Predict which of the following facts will be affected?

- (1) More of NH₃(g) is produced
- (2) Less of NH₃(g) is produced
- (3) No affect on the degree of advancement of reaction at equilibrium
- (4) K_p of reaction is increased
- 11. $\log \frac{K_P}{K_C} + \log RT = 0$ is a relationship for the reaction:
 - (1) $PCl_5 \Longrightarrow PCl_3 + Cl_2$
 - (2) $2SO_2 + O_2 \Longrightarrow 2SO_3$
 - (3) $H_2 + I_2 \Longrightarrow 2HI$
 - (4) $N_2 + 3H_2 \Longrightarrow 2NH_3$

- 12. For the dissociation reaction $N2O4(g) \Longrightarrow 2NO2(g)$, the degree of dissociation (α) in terms of Kp and total equilibrium pressure P is:
 - (1) $\alpha = \sqrt{\frac{4P + K_p}{K_p}}$ (2) $\alpha = \sqrt{\frac{K_p}{4P + K_p}}$
 - (3) $\alpha = \sqrt{\frac{K_P}{4P}}$ (4) None of these
- In a vessel containing N₂, H₂ and NH₃ at equilibrium, some helium gas is introduced so that total pressure increase while temperature and volume remain constant. According to Le Chatelier's principle, the dissociation of NH₃:
 - (1) increases
 - (2) decreases
 - (3) remains unaltered
 - (4) changes unpredictably

