

Course Name : Computer Organization & Architecture Laboratory

VHDL program

- Verilog Hardware Description Language.
- VHSIC (Very High Speed Integrated Circuit) hardware description language.
- Defined by IEEE standards.
- Used to describe digital and mixed-signal systems.
- In a VHDL design, each unit to be modelled is known as design entity/VHDL entity.
- Two types of ingredients: entity declaration and architecture declaration.

Structure of VHDL program

• Every VHDL program consists of at least one entity/architecture pair.

ENTITY

- •List with specifications of all inputs and outputs pins of the circuit.
- •Syntax entity NAME is port (

 port_name : signal_mode signal_type;

 port_name : signal_mode signal_type;

 ...);

 end NAME;


```
    Example - entity OR_gate is port (
        A: in std_logic;
        B: in std_logic;
        Y: out std_logic;
        );
        end OR_gate;
```

- Name of the **ENTITY** should not be reserved word in VHDL.
- ENTITY name should be same as the file name.

ARCHITECTURE

- description of how the circuit of design works.
- •Syntax -

architecture ARCHITECTURE_NAME of ENTITY_NAME is [declarations]

begin

(code)

end ARCHITECTURE_NAME;

•Example – architecture or_logic of OR_gate is

begin

 $Y \leq A OR B$;

end or_logic;

•Name of the **ARCHITECTURE** should not be reserved word in VHDL.

Mode of the signal

- •Mode of the signal may be In, OUT, INOUT or BUFFER.
- •Unidirectional pin IN, OUT.
- •Bidirectional pin INOUT.
- •BUFFER When output signal is used internally in design.

Type of the signal

•Type of the signal BIT, STD_LOGIC, INTEGER, etc.

Create a New Project in ModelSim

Open ModelSim -> Click File -> New -> Project -> Provide Project Name and Location -> Click OK -> Project will be created and Add Items to the project dialog box opens -> Click on Create New File -> Create a new project file opens up -> Give a file name AND_gate and select the file type as VHDL -> Click OK -> Project will be created and the AND_gate will be added -> Double click on the named file AND_gate.vhd and editor will open -> Write the code.

Compile the code on ModelSim

Save file by clicking Ctrl+S -> Click on Compile on the toolbar -> Compile All.

Green tick mark appears along with the Compile of the entity_name.vhd was successful" if the code is error free. Red mark appears if the code has error.

Simulate the design circuit

Click on Simulate on the toolbar - > Start Simulate -> A dialog box opens and a folder appears Work -> Click on Work -> Select entity_name.vhd (for example, OR_gate.vhd) -> Click on OK. Simulation window opens -> Click on Add -> Click on Wave -> Click on Cursor (A yellow cursor will be added) - > Right click on the entity_name.vhd -> Click on Add all signals to wave -> Wave form window opens with declared inputs and outputs on the right side of the window -> Right click on inputs a and b -> Select Force -> Set the value for a as 0 and do the same for b -> Click OK -> Click on the Run option on the toolbar.

OR Gate

Symbol:

$$A \longrightarrow Y = A \text{ OR } B$$

Α	В	Y = A + B
0	0	0
0	1	1
1	0	1
1	1	1

AND Gate

Symbol:

Α	В	Y = A . B
0	0	0
0	1	0
1	0	0
1	1	1

NOT Gate

Symbol:

$$A-\longrightarrow Y=\overline{A}$$

Α	Y = A'
0	1
1	0

NOR Gate

Symbol:

$$A \rightarrow B \rightarrow Y = \overline{A+B}$$

Α	В	Y = A . B
0	0	1
0	1	0
1	0	0
1	1	0

NAND Gate

Symbol:

$$A-B B-X=\overline{A.B}$$

Α	В	Y = A . B
0	0	1
0	1	1
1	0	1
1	1	0

XOR Gate

Symbol:

$$A \rightarrow B$$

Α	В	Y = A . B
0	0	0
0	1	1
1	0	1
1	1	0

XNOR Gate

Symbol:

Α	В	Y = A . B
0	0	1
0	1	0
1	0	0
1	1	1

Libraries imported

Library IEEE; use IEEE.std_logic_1164.all;

Code for OR Gate

Output for OR Gate

Considering a=0 and b=0. Waveforms on the graph for 100 ps.

Output for OR Gate

Truth Table for OR Gate

Α	В	Υ	Timings (ps)
0	0	0	0-100
0	1	1	100-200
1	0	1	200-300
1	1	1	300-400

Code for NOR Gate

Output for NOR Gate

Half Adder

Symbol:

Α	В	C (Carry)	S (Sum)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Code for Half Adder

Output for Half Adder

Full Adder

Symbol:

Full Adder

Α	В	Cin	Cout	Sum
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	0	1	1	0
1	1	1	1	1

Thank You

