Maths pour l'image : algèbre linéaire et géométrie Fiche d'exercices 3 - matrices

Exercice 1

- 1. Soient les matrices $A = \begin{pmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 0 & 3 \\ 1 & -1 & 2 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & -1 & 0 & 3 \\ 3 & 0 & 1 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$. Vérifier que le produit des matrices est associatif, c'est-à-dire que $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.
- 2. Soient les matrices $A = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix}$. Calculer AB et BA. Le produit de matrices est-il commutatif?

Exercice 2

Soient les matrices d'applications linéaires de \mathbb{R}^3 dans \mathbb{R}^3 (dans la base canonique de \mathbb{R}^3) suivantes. Déterminer les expressions de ces applications linéaires (du type h(x, y, z) = (2x + y, z, 3y)).

1.
$$M(f,B) = \begin{pmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$
 2. $M(g,B) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ -2 & 5 & -1 \end{pmatrix}$

Exercice 3

- 1. Soient les applications linéaires de \mathbb{R}^3 dans \mathbb{R}^3 définies des manières suivantes. Déterminer leurs matrices dans la base canonique de \mathbb{R}^3 .
 - (a) f(x, y, z) = (x + 2y z, x + y + z, z)
 - (b) g(x, y, z) = (0, z, y)
- 2. Déterminer les matrices dans B des fonctions suivantes où f et g sont les fonctions définies précédemment :
 - (a) $f \circ g(x, y, z) = f(g(x, y, z))$
 - (b) $g \circ f(x, y, z) = g(f(x, y, z))$

Exercice 4

Déterminer les matrices des transformations géométriques de \mathbb{R}^3 suivantes (dans la base canonique).

- 1. La rotation r_1 d'angle $\frac{3\pi}{2}$ autour de l'axe des z (dans le sens trigonométrique, vu depuis l'axe des z)
- 2. La rotation r_2 d'angle $\frac{\pi}{6}$ autour de l'axe des y (dans le sens trigonométrique, vu depuis l'axe des y)
- 3. La composition de r_2 avec $r_1: r_2 \circ r_1$
- 4. La composition de r_1 avec $r_2: r_1 \circ r_2$
- 5. L'homotéthie h_3 de rapport 3
- 6. La symétrie s par rapport au plan d'équation y = z
- 7. La projection p sur le plan z=0