Diskrete Strukturen (WS 2023-24) - Halbserie 12

12.1

Zei $n \in \mathbb{N}$ mit n > 1, und sei $a \in \mathbb{Z}/n = \{0, 1, 2, \dots, n-1\}$ so dass ggt(a, n) = 1. Beweisen Sie, dass es existiert $b \in \mathbb{Z}/n$ so dass $ab \equiv 1 \mod n$.

 $12.2 ag{4}$

In der Vorlesung haben wir die Bezout-identität gesehen: falls $x, y \in \mathbb{N}$ und ggt(x, y) = 1 dann wir können $u, v \in \mathbb{Z}$ finden mit ux + vy = 1. Wir haben auch gesehen, dass die Lösung (u, v) kann man effektiv finden, mitte des Euklidischen Algorthmus.

Seien jetzt $a, b \in \mathbb{N}$ mit ggt(a, b) = 1, und seien $k \in \mathbb{Z}/a$, $l \in \mathbb{Z}/b$. Benutzen sie die Bezout-identität, um zu zeigen, dass es $X \in \mathbb{Z}$ existiert mit $X \equiv k \mod a$ and $X \equiv l \mod b$.

 $12.3 ag{3}$

Seien p,q verschiedene Primzahlen and sei n:=pq. Wie viele Elemente $a\in\mathbb{Z}/n$ gibt es mit der Eigenschaft ggt(a,pq)=1? Hinweis: betrachten Sie konkrete Beispiele von p und q um eine gute Hypothese erst zu stellen.

- 12.4 Sei G die multiplikative Gruppe modulo 35, d.h. die Elemente sind $a \in \mathbb{Z}/35$ mit ggt(a,35)=1 und die Operation ist $x \oplus y:=xy \mod 35$. Aus den obigen Aufgaben wissen wir dass das tatsätzlich eine Gruppe ist, und auch wie viele Elemente diese Gruppe hat. Finden Sie ein kartesiches Produkt $H:=\mathbb{Z}/n_1\times\ldots\times\mathbb{Z}/n_k$ sodasss G und H isomorph sind.
- 12.5 Sei $n \in \mathbb{N}$ und $a \in \mathbb{Z}/n$. Sei $k \in \mathbb{N}$ eine Zahl mit d Dezimalstellen. Finden Sie ein algorthmus um $a^k \mod n$ zu berechnen, der effizient ist, im folgenden Sinn: es existiert eine konstante C (von n abhängig), so dass der Algorithmus brauch nicht mehr als Cd Schritte, vobei ein Schritt ist eine operation \cdot oder + mod n. (z.B. $a \cdot a \cdot a + a$ sind "drei Schritte").
- **12.6** Finden Sie zwei verschieden Primzahlen p mit der Eigenschaft dass $\forall a \in \mathbb{Z}/p^*$ existiert n mit $a \equiv 2^n \mod p$. (Es ist unbekannt ob es unendlich viele solche Primzahlen gibt. Die Vermutung dass es so ist heißt "Artins Vermutung")