Cognoms:	
2on Control Arquitectura de Computadors	Curs 2010-2011 Q2
Problema 1. (4 puntos)	
A pleno rendimiento, una CPU funciona a una frecuencia de 3 GHz y está alim la CPU funciona a una frecuencia de 1 GHz y está alimentada a 1 V. Hemos me rendimiento es de 120W y en modo bajo consumo es de 27,5 W. En estos dat a conmutación y la debida a fugas. Tanto la corriente de fugas (I) como la c mismas en ambos modos.	edido que el consumo de la CPU en alto os solo se considera la potencia debida
a) Calcula la corriente de fugas (I) y la carga capacitiva equivalente (C) de la	CPU (usar prefijo más adecuado del SI)
Hemos simulado la ejecución de un programa en esta CPU con un sistema de	e memoria en donde todos los accesos
a memoria tardan 1 ciclo sean aciertos o fallos (denominaremos $\mathbf{CPU}_{\mathbf{IDEAL}}$ obtenido que el programa se ejecuta en 15×10^9 ciclos, ejecuta 5×10^9 instruccy de estos, 500×10^6 son fallos de cache. Durante la ejecución de un programa	a esta combinación simulada) y hemos iones, realiza 6x10 ⁹ accesos a memoria
b) Calcula el CPI, el numero de accesos por instrucción, la tasa de fallos y el la CPU_{IDEAL} .	el tiempo de ejecución del programa en
Queremos integrar esta CPU con una cache unificada (instrucciones+datos) m en 4 bancos. Esta cache no está segmentada y su tiempo de acceso es de 0,6 es mayor que el tiempo de ciclo del procesador, por lo que al acceder a cache, ciclos, y por tanto se produce una pequeña penalización respecto a la CPU _{IDE} de que el acceso sea un fallo de cache, hay una penalización adicional de 20	ns. Obsérvese que el tiempo de acceso el procesador se bloquea durante unos EAL (incluso en caso de acierto). En caso
c) Calcula los ciclos de penalización en caso de acierto y de fallo.	
d) Calcula el CPI, y el tiempo de ejecución cuando ejecutamos el programa	a con la cache multibanco.

5 September 2011 11:17 am 1/6

Nuestra CPU es capaz de continuar ejecutando instrucciones mientras se accede la cache, sin embargo en el apartado d) bloqueamos la CPU en cada acceso para evitar lanzar un segundo acceso a la cache antes de que acabe el acceso anterior. Una posible mejora, que denominaremos control de bloqueos de cache, consiste en no bloquear la CPU en cada acceso, sino solamente si se inicia un acceso antes de que el anterior haya terminado. La CPU no soporta loads no bloqueantes, por lo que en caso de fallo siempre bloquearemos la CPU mientras se trae el bloque del siguiente nivel de la jerarquía (ciclos de penalización adicional). Sabemos que la probabilidad de realizar un acceso es la misma en todos los ciclos y es independiente de lo sucedido en ciclos anteriores. Durante los ciclos que no está bloqueada, la CPU se comporta exactamente igual que en el caso ideal.

e)	Calcula el tiempo medio entre accesos (en ciclos), la probabilidad de acceder a memoria en un ciclo determinado y la probabilidad de que al realizar un acceso la cache esté ocupada.
f)	Calcula el CPI, y el tiempo de ejecución cuando ejecutamos el programa en la CPU con control de bloqueos de cache.
ban en k cada acce sien	una cache organizada en bancos el acceso a cada banco es independiente, por lo que es posible acceder a un co aunque otro este ocupado. Una posible mejora, que denominaremos control de bloqueos de banco, consiste bloquear la CPU solamente en caso de que accedamos a un banco ocupado. En nuestro caso, sabemos que en a acceso la probabilidad de acceder a cualquiera de los 4 bancos es la misma, y que es independiente de los esos anteriores. Como en el caso anterior, la CPU no soporta loads no bloqueantes, por lo que en caso de fallo appre bloquearemos la CPU mientras se trae el bloque del siguiente nivel de la jerarquía (ciclos de penalización cional).
g)	Calcula la probabilidad de que al realizar un acceso el banco accedido esté ocupado.
h)	Calcula el CPI, y el tiempo de ejecución cuando ejecutamos el programa en la CPU con control de bloqueos de banco.

5 September 2011 11:17 am 2/6

Cognoms:		Nom:
2on Control	Arquitectura de Computadors	Curs 2010-2011 Q2
Problema 2. (3 p	untos)	
Dado el siguiente d	código en ensamblador:	
	<pre>movl \$0, %esi movl \$0, %ebx : movl v(,%esi,4), %eax addl %eax, %ebx incl %esi cmp \$200000000,%esi : jne for movl %ebx, resultado</pre>	
Sunoniendo un pro		cceso de un ciclo), un IPC (Instrucciones Por Ciclo) de
0,4 y una frecuenc		ceess de different, diffire (mistracelones For Ciclo) de
a) Calcula cuant	o tiempo tarda en ejecutarse el bucle anteri	or.
de fallos del 6,25%		noria real con una cache de datos que tiene una tasa s siempre acierta. Medimos de nuevo el tiempo de
b) Calcula la per "INDEFINIDO		emos incorporado. Si no se puede calcular contestad
	guientes características de la cache a partir no puede averiguarse escribid "INDEFINIDO	de la tasa de fallos para el bucle anterior. Si alguna".
Tamaño Línea:		
Tamaño Cache:		
Asociatividad:		
en vuelo aunque s		e NON-BLOCKING que puede soportar hasta 16 fallo dor ejecuta las instrucciones en orden y se bloque
-	rucciones hay entre la que provoca el fallo d ache NON-BLOCKING?	de cache y la que necesita el dato? ¿cual es el nuevo

5 September 2011 11:17 am 3 / 6

Para mejorar el rendimiento del programa se decide incorporar al bucle anterior el siguiente código de prefetch software (además de la caché NON-BLOCKING). Para ello se inserta una línea de código con la instrucción "prefetch" que hace que la línea con la dirección indicada se cargue en cache si no estaba en ella.

	<pre>movl \$0, %esi movl \$0, %ebx for: prefetch v+64(,%esi,4) // carga la línea indicada en cache movl v(,%esi,4), %eax addl %eax, %ebx incl %esi cmp \$200000000,%esi</pre>
	fin: jne for movl %ebx, resultado
<u>e)</u>	Calcula el tamaño mínimo que debería tener la cache para poder aprovechar el código del bucle anterior?
)	¿Cuantas instrucciones se ejecutan desde que el procesador tiene en %eax el dato de una línea de cache hasta que necesita en %eax el primer dato de la siguiente línea de cache? ¿Cuantos ciclos tarda en ejecutarlas sabiendo que en esas instrucciones no tiene fallos en cache? ¿Es suficiente para esconder la latencia de un fallo de cache?
g)	Calcula cual es el nuevo tiempo de ejecución con el código de prefetch.
ara	a mejorar aún más el programa se decide desenrollar el bucle un factor 2.
n)	¿Cuantas iteraciones tendrá el bucle? ¿Cuantas instrucciones se ejecutarán en cada iteración (suponed que NO usamos instrucciones SIMD)?

latencia de un fallo de cache? ¿Cual será el nuevo tiempo de ejecución en este caso?

En este nuevo caso: ¿Cuantas instrucciones se ejecutan desde que el procesador tiene en %eax el dato de una línea de cache hasta que necesita en %eax el primer dato de la siguiente línea de cache? ¿Cuantos ciclos tarda en ejecutarlas sabiendo que en esas instrucciones no tiene fallos en cache? ¿Es suficiente para esconder la

5 September 2011 11:17 am 4/6

Cognoms:	. Nom:
2on Control Arquitectura de Computadors	Curs 2010-2011 Q2

Problema 3. (2 puntos)

En el pasado control, programamos en ensamblador x86 la rutina Xprob3 que llamaba a la rutina Exa. En la siguiente figura se muestra el código C de las rutinas Xprob3 y Exa, y parte de las traducción a x86 de la rutina Xprob3:

```
int Exa(int v[], int x) {
                                          Xprob3: ...
  int i;
                                          for:
                                                 movl 12(%ebp), %eax
  i = v[x];
                                                 pushl (%eax)
 return v[i];
                                                 pushl %ebx
                                                 call Exa
int XProb3(int v[], int *p, int m){
                                                 addl $8, %esp
                                                 addl %eax, (%ebx, %esi, 4)
  int i;
 for (i=0; i<1000000; i++)
                                                 incl %esi
    v[i] += Exa(v, *p);
                                                 cmpl $1000000, %esi
 return *p + m;
                                                 jl for
}
                                          endfor: ...
```

a)	Traduce a ensamblador del x86 la subrutina Exa. Dibujad el bloque de activación de la rutina Exa.

Supongamos que en nuestro procesador todas las instrucciones tardan 1 ciclo en ejecutarse. Además, cada acceso a memoria de datos (lectura o escritura) cuesta 1 ciclo adicional.

b) Completa la siguiente tabla la siguiente tabla:

	#instrucciones ejecutadas	#accesos a memoria de datos	# ciclos
1 iteración del for (Xprob3) sin contar la rutina Exa			
rutina Exa (estimación)			
1 iteración del for (Xprob3) contando la rutina Exa			

5 September 2011 11:17 am 5/6

Suponiendo que nuestro procesador funciona a 2 GHz.

c)	Calcula (considerando las 10 ⁶ iteraciones del bucle for) el número total de instrucciones ejecutadas, el número total de accesos a memoria de datos, el CPI, el tiempo de ejecución, los MIPS.
Supo	oniendo que cada instrucción ocupa 4 bytes y que todos los accesos a memoria de datos son de 4 bytes.
d)	Calcula el ancho de banda consumido por esta subrutina (instrucciones y datos), considerando las 10 ⁶ iteraciones del bucle for.
Prol	blema 4. (1 punto)
	ponemos de un DIMM de memoria DRAM síncrona (SDRAM) con las siguientes características:
• 8	3 chips de 1 byte cada uno por DIMM; Latencia de fila: 4 ciclos; Latencia de columna: 3 ciclos; Latencia de orecarga: 2 ciclos; Frecuencia de reloj: 200 MHz.
	ita memoria realizamos un acceso en lectura en el que leemos un paquete de 32 bytes. Para indicar la ocupación os distintos recursos utilizaremos la siguiente nomenclatura:
f	ACT: comando ACTIVE; RD: comando READ; PRE: comando PRECHARGE; @F: ciclo en que se envía la dirección de fila; @C: ciclo en que se envía la dirección de columna; Di: ciclo en que se transmite el paquete de datos i (D0, D1, D2,)
a)	Rellena el siguiente cronograma indicando la ocupación de los distintos recursos para una operación de lectura
	de 32 bytes.
CL Cic	
Coi	m
@ Dat	
b)	Calcula el tiempo de ciclo de la memoria (en ns.) y el ancho de banda real suponiendo que somos capaces de iniciar un nuevo acceso a un bloque de 32 bytes tan pronto hemos completado el acceso anterior.
	militari an macro access a an anoque ac on a property in the control of the contr

5 September 2011 11:17 am 6/6