Конспект лекций по алгебре

Лектор: Игорь Борисович Жуков

Оглавление

Элементы теории чисел		2
1	Делимость	2
2	Отношение эквивалентности и разбиение на классы	2
3	Сравнение по модулю	3
4	Кольцо классов вычетов	4
5	Наибольший общий делитель	6
6	Взаимно простые числа	8
7	Линейные диофантовы уравнения	9
8	Простые числа	9
9	Основная теорема арифметики	10
10	Китайская теорема об остатках	12
11	Функция Эйлера	13
12	Построение поля комплексных чисел	16
13	Temp	17
14	Temp	17
15	Temp	17

Элементы теории чисел

1 Делимость

Определение. $a,b\in\mathbb{Z},a\mid b\iff \exists c\in\mathbb{Z}:b=ac$

Свойства:

- 1. $a \mid a$ рефлексивность
- 2. $a \mid b, b \mid c \implies \exists c \in \mathbb{Z} : b = ac$ транзитивность
- 3. $a \mid b, k \in \mathbb{Z} \implies ka \mid kb$
- 4. $a \mid b_1, a \mid b_2 \implies a \mid (b_1 \pm b_2)$
- 5. $\pm 1 \mid a$
- 6. a и b ассоциированны, если $a\mid b,\ b\mid a\implies a=\pm b$
- 7. a, a' и b, b' ассоциированны, тогда $a \mid b \iff a' \mid b'$
- 8. $k \neq 0, ka \mid kb \iff a \mid b$

2 Отношение эквивалентности и разбиение на классы

Определение. Отношение эквивалентности — бинарное отношение, удовлетворяющее следующим свойствам: рефлексивность, симметричность, транзитивность.

Определение. Разбиение на классы множества M — это представление M в виде $M = \bigcup_{i \in I} M_i$, где M_i — классы, I — индексное множество, $M_i \cap M_j = \emptyset$ при $i \neq j$.

Теорема. Пусть $M = \bigcup_{i \in I} M_i$ — разбиение на классы, тогда $a \sim b \iff \exists i: a,b \in M_i.$

Доказательство. рефлексивность, симметричность — очевидны транзитивность: $a \sim b, b \sim c \implies \exists i, j: a, b \in M_i$ и $b, c \in M_j$ $b \in M_i \cap M_j \iff M_i \cap M_j \neq \emptyset \implies i = j \implies a, c \in M_i \implies a \sim c$

Теорема. $\exists \sim -$ отношение эквивалентности на M. Значит \exists разбиение на классы $M = \bigcup_{i \in I} M_i$ такое, что $\forall a, b \in M: a \sim b \iff \exists i: a, b \in M_i$.

Доказательство.

$$\begin{array}{l} [a] = \{b \in M \mid a \sim b\} - \text{ класс}, \ a \in M \\ \forall a_1, a_2 \in M : [a_1] \cap [a_2] = \emptyset \text{ или } [a_1] = [a_2] \ \exists [a_1] \cap [a_2] \neq \emptyset \implies \exists x \in [a_1] \cap [a_2] \\ x \in [a_1], x \in [a_2] \implies x \sim a_1, x \sim a_2 \implies a_2 \sim a_1 \\ [a_2] \subset [a_1], c \in [a_2] \implies c \sim a_2 \implies c \sim a_1 \implies c \in [a_1] \\ [a_1] \subset [a_2], c \in [a_1] \implies c \sim a_1 \implies c \sim a_2 \implies c \in [a_2] \\ \exists \text{начит } [a_1] = [a_2] \end{array}$$

$$\begin{split} I &= \{[a] \mid a \in M\} \\ \forall \mathfrak{A}, \mathfrak{B} \in I : \mathfrak{A} \cap \mathfrak{B} &= \emptyset \\ a_1, a_2 \in \mathfrak{A} &\Longrightarrow [a_1] = \mathfrak{A} = [a_2] \implies a_2 \in [a_1] \implies a_2 \sim a_1 \\ a_1 \in \mathfrak{A}, a_2 \in \mathfrak{B} &\Longrightarrow \neg (a_1 \sim a_2), \text{ так как иначе } a_1 \in [a_2] \implies \mathfrak{B} \in \mathfrak{A} \implies \mathfrak{A} \cap \mathfrak{B} \neq \emptyset \end{split}$$

Определение. Фактор-множество по отношению эквивалентности \sim — множество I, обозначим его как M/\sim

Пример:
$$\mathbb{Z}/\sim=\{[z]\mid z\in\mathbb{Z}\}=\{[0],[1],[2],\dots\}$$

3 Сравнение по модулю

Определение. $\exists a,b,m \in \mathbb{Z}$. Говорят, что $m \mid (a-b)$.

Свойства:

- 1. $\equiv -$ рефлексивно
- $2. \equiv -$ симметрично
- 3. $\equiv -$ транзитивно
- 4. $a \equiv b, d \mid m \implies a^d \equiv b$
- 5. $a \equiv b, k \in \mathbb{Z} \implies ka \equiv kb$
- 6. $a \equiv b, k \in \mathbb{Z} \implies ka \equiv kb$
- 7. $a_1 \equiv b_1, a_2 \equiv b_2 \implies a_1 \pm a_2 \equiv b_1 \pm b_2$
- 8. $a_1 \equiv b_1, a_2 \equiv b_2 \implies a_1 a_2 \equiv b_1 b_2$

4 Кольцо классов вычетов

Определение. Множество классов вычетов по модулю m — это множество всех вычетов по модулю m.

Обозначается как $\mathbb{Z}/m\mathbb{Z} \iff \mathbb{Z}/m \iff \mathbb{Z}/\equiv m$

Теорема. $\exists m \in \mathbb{N}$. $Tor \partial a$

- 1. $\mathbb{Z}/m\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}\$
- 2. $|\mathbb{Z}/m\mathbb{Z}| = m$

Доказательство.

- 1. $a \in \mathbb{Z}$ (!) $\overline{a} = \overline{r}$, $0 \leqslant r < m$
 - а) $a \geqslant 0$, $\exists r$ наименьшее число, такое что $r \geqslant 0$, $a \equiv r$ $r \geqslant m \implies r m \equiv a, r m \geqslant 0, r m < r$. Противоречие с выбором r. Значит r < m, тоесть r искомое.
 - b) a < 0, $a' = a \pm (-a)m = a(1-m) \ge 0$ $\overline{a} = \overline{a'} = \overline{r}$, $0 \le r < m$
- 2. предположим $\overline{r} = \overline{r'}, \ 0 \leqslant r, r' < m.$ $|r' r| < m \implies m \mid (r r') \implies r' r = 0$

Следствие: Теорема о делениии с остатком — $\exists a \in \mathbb{Z}, b \in \mathbb{N} \implies \exists !q,r \in \mathbb{Z}$

- 1. $a = bq + r, \ 0 \le r < b$
- 2. $0 \le r < b$

Доказательство.

Существование:

В
$$\mathbb{Z}/b\mathbb{Z}$$
 рассмотрим $\overline{a} \in \{\overline{0},\overline{1},\ldots,\overline{b-1}\}$, тогда если $\overline{a} = \overline{r},\ 0 \leqslant r < b$ $a \equiv r \iff a = bq + r,\ q \in \mathbb{Z}$

Единственность:

$$\exists a = bq + r = bq' + r', \ 0 \leqslant r, r' < b \iff \overline{bq + r} = \overline{bq' + r'} \iff \overline{r} = \overline{r'} \iff r = r' \implies bq = bq' \implies q = q'$$

Определение. q — неполное частное при делении a на b, r — остаток при делении a на b

Определение. Операция на множестве M — бинарная операция $M \times M \to M$

На $\mathbb{Z}/m\mathbb{Z}$ определим операцию сложения и умножения по модулю m:

•
$$\overline{a} + \overline{b} = \overline{a+b}$$

$$\bullet \ \overline{a} \cdot \overline{b} = \overline{a \cdot b}$$

Пример:

$$\overline{m=4,\mathbb{Z}}/4\mathbb{Z}=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$$

Определение. $e \in M$ — нейтральный элемент относительно операции(*) на M, если $\forall a \in M$ справедливо a*e=e*a=a

Предложение. Операции сложения и умножения на $\mathbb{Z}/m\mathbb{Z}$ обладают следующими свойствами:

1.
$$A + B = B + A$$
 — коммутативность сложения

2.
$$(A + B) + C = A + (B + C)$$
 — ассоциативность сложения

3.
$$A + \overline{0} = A$$
— существование нейтрального элемента относительно сложения

4.
$$A + A' = \overline{0}$$
 — существование обратного элемента относительно сложения

5.
$$AB = BA$$
 — коммутативность умножения

6.
$$(AB)C = A(BC)$$
 — ассоциативность умножения

7.
$$A \cdot \overline{1} = A$$
 — существование нейтрального элемента относительно умножения

8.
$$A \cdot (B+C) = A \cdot B + A \cdot C$$
 — дистрибутивность умножения относительно сложения.

9.
$$(B+C) \cdot A = B \cdot A + C \cdot A$$
 — дистрибутивность сложения относительно умножения.

Определение. Кольцом называется множество M с операциями сложения и умножения, для которых выполнены аналоги свойств 1-4 и 8-9.

Определение. Кольцо коммутативное, если выполнены свойство 5.

Определение. Колько ассоциативное, если выполнено свойство 6.

Определение. Кольцо с единицей, если выполнено свойство 7.

Определение. $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x + y = n \implies n$ — нейтральный элемент относительно сложения.

<u>Замечание:</u> Если (*) — операция на M, то существует единственный нейтральный элемент относительно (*).

Доказательство. e, e' — нейтральные элементы относительно (*), тогда e = e * e' = e'.

Предложение. В нашем курсе все кольца будут ассоциативные с единицей.

Лемма. В любом кольце $0 \cdot a = 0$.

Доказательство.
$$0 + 0 = 0 \implies (0 + 0) \cdot a = 0 \cdot a \implies 0 \cdot a + 0 \cdot a = 0 \cdot a$$

$$\exists 0 \cdot A \neq 0 \implies \exists b : b + 0 \cdot A = 0$$

$$0 = b + 0 \cdot a = b + (0 \cdot a + 0 \cdot a) = (b + 0 \cdot a) + (0 \cdot a) = 0 + (0 \cdot a) = (0 \cdot a)$$

Определение. A^* — множество обратимых элементов A.

Примеры:

- $\bullet \ \mathbb{R}^* = \mathbb{R} \setminus \{0\}$
- $\mathbb{Z}^* = \{-1, 1\}$
- $(\mathbb{Z}/4\mathbb{Z})^* = \{\overline{1}, \overline{3}\}$
- $(\mathbb{Z}/5\mathbb{Z})^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

Определение. Полем называется коммутативное кольцо F, такое что $F^* = F \setminus \{0\}$.

5 Наибольший общий делитель

Определение. R — коммутативное кольцо, $a, b \in R$.

Элемент d называется наибольшим общим делителем, если:

- $1. d \mid a, d \mid b$
- $2. d' \mid a, d' \mid b \implies d' \mid d$

Предложение.

1. d_1, d_2 — наибольшие общие делители, тогда d_1, d_2 — ассоциированны.

2. $\exists d_1$ — наибольший общий делитель, d_2 ассоциированн c d_1 , тогда d_2 — тоже наибольший общий делитель.

Доказательство.

- 1. По свойству 2. $d_1 \mid d_2, \ d_2 \mid d_1 \implies d_1, \ d_2$ ассоциированны.
- 2. $d_2 \mid d_1, \ d_1 \mid a, \ d_1 \mid b \implies d_2 \mid a, \ d_2 \mid b$ Пусть d_2 не наибольший, тогда $\exists d' > d_2$. $d' \mid a, \ d' \mid b \implies d' \mid d_1$ $d' \mid d_1, \ d_1 \mid d_2 \implies d' \mid d_2$ Противоречие

Предложение. $\exists a, b \in \mathbb{Z} \implies$

- 1. $\exists d \in \mathbb{Z} : a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$
- 2. npu этом d наибольший общий делитель a, b.

Доказательство.

- 1. $I=a\mathbb{Z}+b\mathbb{Z}$, заметим что $0\in I$, так как 0a+0b=0. $I=\{0\}\implies I=0\mathbb{Z}$ $I\neq\{0\}\implies c\in I\implies -c\in I$, так как $-(ax+by)=a\cdot -x+b\cdot -y$ То есть в I есть положительные числа. $d=\min\{c\mid c\in I,c>0\}$, докажем что $a\mathbb{Z}+b\mathbb{Z}=d\mathbb{Z}$ " \subset ": $d\in I\implies d=ax_0+by_0,x_0,y_0\in\mathbb{Z}\implies \forall z\in\mathbb{Z}: dz=a(x_0z)+b(y_0z)\in I$ " \supset ": $\exists c\in I,d\in\mathbb{N}\implies \exists q,r\in\mathbb{Z}: c=dq+r,0\leqslant r< d$ $c=ax_1+by_1,x_1,y_1\in\mathbb{Z}$ $d=ax_0+by_0,x_0,y_0\in\mathbb{Z}$ $r=c-dq=a(x_1-x_0q)+b(y_1-y_0q)\in I$ Ho $r< d\stackrel{defn(d)}{\Longrightarrow} r=0\implies c\in d\mathbb{Z}$
- 2. $a = a1 + b0 \in I = d\mathbb{Z} \implies d \mid a$ $b = a0 + b1 \in I = d\mathbb{Z} \implies d \mid b$ $\exists d' \mid a, d' \mid b, d = ax_0 + by_0$ $d' \mid ax_0, d' \mid by_0 \implies d' \mid d$

Следствие:

- 1. $a, b \in \mathbb{Z}$: Тогда наибольший общий делитель a, b существует.
- 2. Если d наибольший общий делитель a, b, то $\exists x, y \in \mathbb{Z} : d = ax + by$ (Линейное представление наибольшего общего делителя).

Доказательство.

- 1. Доказали в двух частях предложения.
- 2. $\exists d_0$ наибольший общий делитель a, b, то есть $d_0 = ax_0 + by_0$ d ассоцирован с $d_0 \implies d = d_0 \mathbb{Z}, z \in \mathbb{Z} \implies d = a(x_0 z) + b(y_0 z)$

Определение. $HOД(a,b) = \gcd(a,b)$ — неотрицательный наибольший общий делитель a,b.

Предложение. $\exists a_1, a_2, b \in \mathbb{Z} : a_1 \equiv a_2$ $Tor \partial a \gcd(a_1, b) = \gcd(a_2, b).$

Доказательство. (!) $\{c:c\mid a_1,c\mid b\}=\{c:c\mid a_2,c\mid b\}$ "С": $a_2-a_1=bm\implies a_2=a_1+bm$ $c\mid a_1,c\mid b\implies c\mid a_2$ "Э": $a_1-a_2=bm\implies a_1=a_2+bm$ $c\mid a_2,c\mid b\implies c\mid a_1$ $\forall x\in\{c:c\mid a_1,c\mid b\}:x\mid\gcd(a_1,b)$ $\forall x\in\{c:c\mid a_2,c\mid b\}:x\mid\gcd(a_2,b)$ $\gcd(a_1,b)=\gcd(a_2,b)$

Определение. Алгоритм Евклида $gcd(a, b) = gcd(b, a \mod b)$, если $b \neq 0$

6 Взаимно простые числа

Определение. Числа a и b называются взаимно простыми, если $\gcd(a,b)=1$.

Предложение.

- 1. $\exists a,b \in \mathbb{Z}, \ mor \partial a \ a \bot b \iff \exists m,n \in \mathbb{Z} : am+bn=1.$
- $2. \ a_1 \bot b, a_2 \bot b \implies a_1 a_2 \bot b.$
- 3. $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbb{Z} \ u \ \forall i, j : a_i \perp b_j \implies a_1 \ldots a_m \perp b_1 \ldots b_n$.
- $4. \ a \mid bc, \ a \perp b \implies a \mid c.$
- 5. $ax \equiv ay$, $a \perp m \implies x \equiv y$.
- 6. $gcd(a, b) = d \implies a = da', b = db', a' \perp b'.$

Доказательство.

- 1. m и n существуют согласно линейному представлению НОД. $d = \gcd(a,b), d \mid a,d \mid b \implies d \mid (am+bn) = 1 \implies d \mid 1 \implies d = 1.$
- 2. $1 = a_1 m_1 + b n_1, 1 = a_2 m_2 + b n_2 \implies 1 = a_1 a_2 (m_1 m_2) + b (a_1 m_1 n_2 + a_2 m_2 n_1 + b n_1 n_2) \implies a_1 a_2 \perp b.$
- 3. $a_1 \perp b, \ldots, a_n \perp b \implies a_1 \ldots a_n \perp b$ $a_1 \ldots a_n \perp b_1, \ldots, a_1 \ldots a_n \perp b_n \implies a_1 \ldots a_n \perp b_1 \ldots b_n$
- 4. 1 = am + bn, c = acm + bcn $a \mid acm, a \mid bcn \implies a \mid c.$
- 5. $m \mid (ax ay), a \perp m \implies m \mid (x y) \implies x \equiv y$.
- 6. $d \mid a, d \mid b \implies a = da', \ b = db' : a', b' \in \mathbb{Z}$ $d = am + bn, \ m, n \in \mathbb{Z}$ $d = 0 \implies a' = b' = 1 = da'm + db'm$ $d \neq 0 \implies 1 = a'm + b'n \implies a' \perp b'.$

7 Линейные диофантовы уравнения

Определение. Линейным диофантовым уравнением с двумя неизвестными называется уравнение вида ax + by = c, где $a, b, c \in \mathbb{Z}$.

Для решения нужно найти пару $(x,y) \in \mathbb{Z}^2: ax + by = c$. Пример: 12x + 21y = 5 — уравнение не имеет решений. Если $\gcd(a,b) \mid c$, то решение существует, иначе — нет. нужно доделать параграф

8 Простые числа

Определение. Число $p \in \mathbb{Z}$ называется простым, если $p \notin \{-1, 0, 1\}$ и все делители p - 3то ± 1 и p.

Свойства:

- 1. p простое \iff -p простое.
- 2. p простое, $a \in \mathbb{Z} \implies p|a$ или $p \bot a$.
- 3. p,q простые $\implies p,q$ ассоциированны или $p\bot q$.

4. $p \mid ab \implies p \mid a$ или $p \mid b$.

Предложение. $\exists a \neq \pm 1, mor \partial a \ cyweembyem простое число <math>p: p \mid a.$

Доказательство. $a = 0 \implies p = 239$ $a = 1 \implies a > 0$ Индукция по a: a - простое $\implies p = a, p \mid a$ a - не простое, $\exists d: 1 < d < a, d \mid a$

a = dd', тогда по индукционному переходу существует простое число $p: p \mid d$

Определение. Составное число — это число отличное от 0, и не являющееся простым.

Решето Эратосфена

 $p \mid d, d \mid a \implies p \mid a$

 $2, 3, 4, 5, 6, 7, 8, 9, \ldots, 100$

- 2 простое, вычеркиваем все числа кратные 2
- 3 простое, вычеркиваем все числа кратные 3
- 4 составное, пропускаем
- и.т.д.

Теорема. (Теорема Евклида) Существует бесконечно много простых чисел

Доказательство. $\exists p_1, p_2, \dots p_n$ — все простые числа $N = p_1 p_2 \dots p_n + 1 \implies$ \exists простое число $p : p \mid N, p > 0 \implies \exists j : p = p_j \implies p \mid (N-1) \implies p \mid 1 \implies p = \pm 1$ Противоречие

9 Основная теорема арифметики

Теорема. $\exists n \geqslant 2$. Тогда n можно представить в виде произведения простых чисел, и такое представление единственно с точностью до порядка сомножителей.

Доказательство.

Существование:

 $\Box n_0$ — наименьшее число ($\geqslant 2$), для которого такого представления нету. n_0 — составное число $\implies n_0 = ab, 2 \leqslant a, b < n_0$ По минимальности $\implies a = p_1 \dots p_k, b = q_1 \dots q_l$, все p_i, q_j — простые.

 $\implies n_0 = p_1 \dots p_k q_1 \dots q_l - \Pi$ ротиворечие

Единственность:

 $n = p_1 \dots p_k = q_1 \dots q_l, p_i, q_j$ — простые.

Нудно доказать: $k=l,\ q_1,\ldots,q_k$ совпадают с p_1,\ldots,p_k с точностью до порядка.

Не умаляя общности иожно считать: $k \leq l$.

Индукция по k:

$$k=1$$
: $p_1=q_1\dots q_l$, p_1 — простое $\Longrightarrow l=1, p_1=q_1$ k > 1: $p_k\mid n \Longrightarrow p_k\mid (q_1\dots q_l) \Longrightarrow \exists j: p_k\mid q_j \Longrightarrow p_k\sim q_j \Longrightarrow p_k=q_j \Longrightarrow p_1\dots p_{k-1}=q_1\dots \hat{q}_j\dots q_l,\ k-1\leqslant l-1$

 $k-1 < k \implies$ применим индукционный переход:

k-1=l-1 и $q_1,\ldots,\hat{q_j},\ldots,q_k$ — это p_1,\ldots,p_{k-1} с точностью до порядка. \Longrightarrow $q_1, \ldots, (q_i = p_k), \ldots, q_k$ — это p_1, \ldots, p_k с точностью до порядка.

Определение. Каноническое разложение (факторизация) числа n — это представление n в виде $p_1^{r_1} \dots p_s^{r_s}$, где p_i — разложение n на простые множители, $r_i \in \mathbb{N}$

Примеры:

- $n = 112 = 2^4 \cdot 7$
- $n = 6006 = 2^1 \cdot 3^1 \cdot 7^1 \cdot 11^1 \cdot 13^1$

Предложение. $\exists a = p_1^{r_1} \dots p_s^{r_s}, b = p_1^{t_1} \dots p_s^{t_s}$ Tогда $a \mid b \iff r_i \leqslant t_i \ \forall i \in \{1, \ldots, s\}$

Доказательство. "⇒":

$$b = a \cdot p_1^{t_1 - r_1} \dots p_s^{t_s - r_s}$$

$$"\Leftarrow":$$

$$\begin{array}{l} b = ac \ c = p_1^{m_1} \dots p_s^{m_s} p_{s+1}^{m_{s+1}} \dots p_n^{m_n} \\ p_1^{t_1} \dots p_s^{t_s} = p_1^{r_1 + m_1} \dots p_s^{r_s + m_s} p_{s+1}^{m_{s+1}} \dots p_n^{m_n} \implies \\ t_i = r_i + m_i \ \forall i \in \{1, \dots, s\}, m_{s+1} = \dots = m_n = 0 \implies t_i \geqslant r_i \ \forall i \in \{1, \dots, s\} \end{array}$$

Cледcmвue: $\exists a = p_1^{r_1} \dots p_s^{r_s}$

Тогда $\{d>0: d\mid a\} = \{p_1^{t_1}\dots p_s^{t_s}\mid 0\leqslant t_i\leqslant r_i,\ \forall i\in\{1,\dots,s\}\}$

Следствие: $\exists a = p_1^{r_1} \dots p_s^{r_s}, \ b = p_1^{t_1} \dots p_s^{t_s}$ Тогда $\gcd(a,b) = p_1^{\min(r_1,t_1)} \dots p_s^{\min(r_s,t_s)}$

Определение. $\exists a,b \in \mathbb{Z}$. Число $c \in \mathbb{Z}$ называется наименьшим общим кратным чисел a и b, если

- 1. $a \mid c, b \mid c$
- 2. Если $a \mid c', b \mid c'$, то $c \mid c'$

Предложение. $\exists a = p_1^{r_1} \dots p_s^{r_s}, b = p_1^{t_1} \dots p_s^{t_s}$ Тогда $c = p_1^{max(r_1,t_1)} \dots p_s^{max(r_s,t_s)}$ — наименьшее общее кратное чисел a u b

Доказательство.
$$a \mid c, b \mid c$$
 — очевидно $\exists a \mid c', b \mid c', c' = p_1^{m_1} \dots p_s^{m_s} p_{s+1}^{m_{s+1}} \dots p_n^{m_n}$ $a \mid c', b \mid c' \implies r_i \leqslant m_i, \ t_i \leqslant m_i, \ \forall i \in \{1, \dots, s\} \implies max(r_i, t_i) \leqslant m_i, \ \forall i \in \{1, \dots, s\} \implies c \mid c'$

Определение. HOK(a,b) = lcm(a,b) — положительное значение наименьшего общего кратного чисел a и b.

 $Cnedcmeue: \ \exists a,b \in \mathbb{N}$ Тогда $lcm(a,b) \cdot \gcd(a,b) = ab$ Доказательство. $min(r_i,t_i) + max(r_i,t_i) = r_i + t_i$

10 Китайская теорема об остатках

Теорема. Пусть $(m_1, m_2) = 1; a_1, a_2 \in \mathbb{Z}.$

1.
$$\exists x \in \mathbb{Z}$$
:
$$\begin{cases} x_0 \equiv a_1 \\ x_0 \equiv a_2 \\ x_0 \equiv a_2 \end{cases}$$

2. $\exists x_0 \ y$ довлетворяет системе выше Тогда для $x \in \mathbb{Z}$: $x \ y$ довлетворяет системе выше $\iff x \equiv_{m_1m_2} x_0$

Доказательство.

1. $x_0=a_1+km_1=a_2+lm_2\implies km_1-lm_2=a_2-a_1$ — линейное диофантово уравнение с дыумя неизвестными k,l $(m_1,m_2)=1\implies$ у него есть решение (k_0,l_0) $x_0=a_1+k_0m_1$ — искомое

$$x = x_0$$
 $x = x_0$ $x =$

Определение. $\exists R, S$ — кольца с единицей. Отображение $\varphi: R \to S$ называется изоморфизмом колец, если: φ биекция.

1.
$$\forall r_1, r_2 : \varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$$

2.
$$\forall r_1, r_2 : \varphi(r_1 r_2) = \varphi(r_1) \varphi(r_2)$$

Предложение. $\exists (m_1, m_2) = 1$

Тогда существует изоморфизм

 $\mathbb{Z}/m_1m_2\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z}$

 $[a]_{m_1m_2} \mapsto ([a]_{m_1}, [a]_{m_2})$

Доказательство. Проверим корректность: $\exists [a]_{m_1m_2} = [a']_{m_1m_2} \implies$

$$a \underset{m_1m_2}{\equiv} a' =$$

$$\begin{cases} a \equiv a' \\ a \equiv a' \\ a \equiv a' \end{cases} \implies ([a]_{m_1}, [a]_{m_2}) = ([a']_{m_1}, [a']_{m_2})$$

$$\varphi([a]_{m_1m_2} + [b]_{m_1m_2}) = \varphi([a+b]_{m_1m_2}) = \varphi([a+b]_{m_1}, [a+b]_{m_2}) = \varphi([a]_{m_1} + [a]_{m_2}) + \varphi([b]_{m_1} + [b]_{m_2}) = \varphi([a]_{m_1m_2}) + \varphi([b]_{m_1m_2})$$

Для умножения аналогично.

Проверим сюръективность φ

$$X = ([a_1]_{m_1}, [a_2]_{m_2})$$

$$X=([a_1]_{m_1},[a_2]_{m_2})$$
 По китайской теореме об остатках $\exists a\in\mathbb{Z}: \begin{cases} a\equiv a_1\\m_1\\a\equiv a_2\\m_2 \end{cases}$

про сюръективность \Longrightarrow биекция:

$$|Y| = |Z| < \infty$$

$$\varphi:Y\to Z$$

Тогда φ инъективна $\iff \varphi$ сюръективна что-то про принцип дирихле и готово)

11Функция Эйлера

Предложение. $\exists m \in \mathbb{N}; \ a \in \mathbb{Z}$

$$[a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \iff (a,m)=1$$

Доказательство. $[a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \iff \exists [b]_m : [a]_m \cdot [b]_m = [1]_m \iff$

 $\exists b \in \mathbb{Z}: \ ab \underset{m}{\equiv} 1 \iff \\ \exists b, c \in \mathbb{Z}: \ ab = 1 + mc \iff$

 $\exists b, c \in \mathbb{Z}: ab - mc = 1 \iff (a, m) = 1$

 ${\it Cnedcmeue:} \ {\mathbb Z}/m{\mathbb Z}$ - поле $\iff m$ — простое число.

Доказательство. считаем $m \geqslant 1$

$$m=1 \colon \mathbb{Z}/1\mathbb{Z}=\{\overline{0}\}$$

$$m$$
 — простое: $(a,m)=1$ для $\forall a\in\{1,2,\ldots,m-1\}\Longrightarrow (\mathbb{Z}/m\mathbb{Z})^*=\{\overline{1},\overline{2},\ldots,\overline{m-1}\}$ m — составное: $m=ab,\ 2\leqslant a\leqslant m-1$ $(a,m)\neq 1\implies \overline{a}\notin (\mathbb{Z}/m\mathbb{Z})^*$

Определение. \mathbb{F}_{p^r} — поле из n элементов $\iff n=p^r,\ p\in\mathbb{P},\ r\in\mathbb{N}$ (хз что это)

Определение. $\exists m \in \mathbb{N} : \varphi(n) = |(\mathbb{Z}/m\mathbb{Z})^*|$ Функция $\varphi \times \mathbb{N} \to \mathbb{N}$ — функция Эйлера.

Предложение. $\exists p \in \mathbb{P}, r \in \mathbb{N}.$ Тогда $\varphi(p^r) = p^r - p^{r-1}.$

Доказательство.
$$\varphi(p^r) = |\{a \mid 0 \leqslant a \leqslant p^r - 1, \ (a, p^r) = 1\}| = p^r - |\{a \mid 0 \leqslant a \leqslant p^r - 1, \ (a, p) \neq 1\}| = p^r - |\{a \mid 0 \leqslant a \leqslant p^r - 1, \ p \mid a\}| = p^r - p^{r-1}$$

Предложение. $\exists m, n \in \mathbb{N}, \ (m, n) = 1.$ Тогда $\varphi(mn) = \varphi(m) \cdot \varphi(n).$ (Мультипликативность)

Доказательство. Построим отображение $\lambda: (\mathbb{Z}/mn\mathbb{Z})^* \times (\mathbb{Z}/m\mathbb{Z})^* \to (\mathbb{Z}/n\mathbb{Z})^*$: $[a]_{mn} = A \in (\mathbb{Z}/mn\mathbb{Z})^* \mapsto ([a]_m, [a]_n)$

$$[a]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^* \implies (a, mn) = 1 \implies \begin{cases} (a, m) = 1 \\ (a, n) = 1 \end{cases} \begin{cases} [a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \\ [a]_n \in (\mathbb{Z}/n\mathbb{Z})^* \end{cases}$$

Проверка корректности:

$$[a]_{mn} = [a']_{mn} \implies ([a]_m, [a]_n) = ([a']_m, [a']_n)?$$

$$[a]_{mn} = [a']_{mn} \implies a \equiv a' \implies \begin{cases} a \equiv a' \\ a \equiv a' \end{cases} \begin{cases} [a]_m = [a']_m \\ [a]_n = [a']_n \end{cases}$$

Проверим что λ — биекция:

Инъективность:

$$\lambda([a]_{mn}) = \lambda([b]_{mn}) \implies \begin{cases} [a]_m = [b]_m & \text{chineese theorem} \\ [a]_n = [b]_n \end{cases} \xrightarrow{\text{chineese theorem}} a \underset{mn}{\equiv} b \implies [a]_{mn} = [b]_{mn}$$

Сюръективность:

Рассмотрим $([b]_m, [c]_n) \in (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$.

$$(m,n) = 1 \xrightarrow{chineese \ theorem} \exists a : \begin{cases} a \equiv b \\ a \equiv c \end{cases}$$

$$\begin{cases} (b,m) = 1 \implies (a,m) = 1 \\ (c,m) = 1 \implies (a,n) = 1 \end{cases} \implies (a,mn) = 1 \implies [a]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^*$$

$$\lambda([a]_{mn}) = ([a]_m, [a]_n) = ([b]_m, [c]_n) \implies \lambda$$
 — биекция.

$$\lambda$$
 — биекция $\implies |(\mathbb{Z}/mn\mathbb{Z})^*| = |(\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*| \implies \varphi(mn) = \varphi(m) \cdot \varphi(n)$

 $Cnedcmeue: \exists m_1, \dots, m_k$ — попарно взаимно простые числа.

Тогда
$$\varphi(\prod_{i=1}^k m_i) = \prod_{i=1}^k \varphi(m_i).$$

Доказательство. Индукция по k.

База:
$$k=1 \implies \varphi(m_1)=\varphi(m_1)$$

Переход: $n-1 \rightarrow n$

$$(m_n, m_1) = \ldots = (m_n, m_{n-1}) = 1 \implies (m_1, \ldots, m_n) = 1 \implies$$

$$\varphi(m_1 \dots m_n) = \varphi(m_1 \dots m_{n-1})\varphi(m_n) = \varphi(m_1) \dots \varphi(m_{n-1})\varphi(m_n)$$

Следствие: $\exists n = p_1^{r_1}, \dots, p_s^{r_s}$ — разложение числа n на простые множители.

$$\implies \varphi(n) = \prod_{i=1}^{s} (p_i^{r_i} - p_i^{r_i-1})$$

Доказательство. По следствию:
$$\varphi(n) = \varphi(\prod_{i=1}^s p_i^{r_i}) = \prod_{i=1}^s \varphi(p_i^{r_i}) = \prod_{i=1}^s (p_i^{r_i} - p_i^{r_i-1})$$

Теорема. $\exists m \in \mathbb{N}, a \in \mathbb{Z}, (a,m) = 1 \implies a^{\varphi(m)} \equiv 1 - meopema$ Эйлера.

Пемма. Пусть R-accoulamuвное кольцо с единицей.

1.
$$a, b \in R^* \implies ab \in R^*$$

2.
$$a \in R^*$$
, $x, y \in R \implies ax = ay \implies x = y$, $xa = ya \implies x = y$

Доказательство.

1. a' — обратный к a элемент, b' — обратный к b элемент.

$$(ab)(b'a') = a(bb')a' = aa' = 1$$

 $(b'a)(ab) = b'(aa')b = bb' = 1$

$$(b'a)(ab) = b'(aa')b = bb' = 1$$

2. a' — обратный к a элемент.

$$ax = ay \implies a'ax = a'ay \implies x = y$$

$$xa = ya \implies xaa' = yaa' \implies x = y$$

Доказательство. (теоремы Эйлера)

$$(\mathbb{Z}/m\mathbb{Z})^* = \{A_1, A_2, \dots, A_{\varphi(m)}\}\$$

$$[a]_m, A_j \in (\mathbb{Z}/m\mathbb{Z})^* \stackrel{lemma-1}{\Longrightarrow}$$

$$[a]_m A_1, \dots, [a]_m A_{\varphi(m)}$$
 — различные элементы $([a]_m A_j = [a]_m A_k \overset{lemma-2}{\Longrightarrow} A_j = A_k) \Longrightarrow \{[a]_m A_1, \dots, [a]_m A_{\varphi(m)}\} = (\mathbb{Z}/m\mathbb{Z})^* \Longrightarrow$

$$([a]_m A_i = [a]_m A_k \stackrel{lemma-2}{\Longrightarrow} A_i = A_k) \implies$$

$$\{[a]_m A_1, \dots, [a]_m A_{\varphi(m)}\} = (\mathbb{Z}/m\mathbb{Z})^* \implies$$

$$[a]_m A_1 \cdot \ldots \cdot [a]_m A_{\varphi(m)} = A_1 A_2 \ldots A_{\varphi(m)} \Longrightarrow$$

$$[a]_m^{\varphi(m)} A_1 A_2 \dots A_{\varphi(m)} = [1]_m A_1 A_2 \dots A_{\varphi(m)} \stackrel{lemma-2}{\Longrightarrow}$$

$$[a]_m^{\varphi(m)} = [1]_m \implies [a^{\varphi(m)}]_m = [1]_m \implies a^{\varphi(m)} \equiv 1$$

Теорема. (Малая теорема Ферма)
$$\exists p \in \mathbb{P}, a \in \mathbb{Z} \implies a^p \equiv a$$

Доказательство.

$$(a,p) = 1 \implies a^{p-1} \equiv 1 \implies a^{p-1}a \equiv 1a \implies a^p \equiv a$$

 $(a,p) \neq 1 \implies a \equiv 0 \implies a^p \equiv 0 \implies a^p \equiv a$

Теорема. (Теорема Вильсона) $p \in \mathbb{P} \implies (p-1)! \equiv -1$

Доказательство. В
$$(\mathbb{Z}/m\mathbb{Z})^*$$

$$\frac{\overline{(p-1)!}}{(p-1)!} = \overline{1} \cdot \overline{2} \cdot \dots \cdot \overline{p-1} = \prod_{A \in (\mathbb{Z}/m\mathbb{Z})^*} A = \prod_{A^2 = \overline{1}} \cdot \prod_{A^2 \neq \overline{1}} = \prod_{A^2 = \overline{1}} \cdot (A_1 \cdot A_1' \cdot \dots) = \prod_{A^2 = \overline{1}} \cdot \overline{1} = \prod_{A^2 = \overline{1}} A^2 = \overline{1} \iff A^2 - \overline{1}^2 = \overline{0} \iff (A - \overline{1})(A + \overline{1}) = \overline{0} \stackrel{\mathbb{Z}/p\mathbb{Z}-field}{\iff} A - \overline{1} = \overline{0}, A + \overline{1} = \overline{0} = \prod_{A^2 = \overline{1}} p \neq 2 \implies \overline{1} \cdot \overline{-1} = \overline{-1}$$

$$p \neq 2 \implies \overline{1} \cdot \overline{-1} = \overline{-1}$$

$$p = 2 \implies \overline{1} = \overline{-1}$$

12 Построение поля комплексных чисел

Определение. $\mathbb{C} = \mathbb{R} \times \mathbb{R} = \{(a, b) \mid a, b \in \mathbb{R}\}$

Определение.

- Сложение на \mathbb{C} : $(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2)$
- Умножение на \mathbb{C} : $(a_1,b_1)\cdot(a_2,b_2)=(a_1a_2-b_1b_2,a_1b_2+a_2b_1)$

Предложение. $(\mathbb{C},+,\cdot)$ - none.

Доказательство.

- Коммутативность сложения очевидно.
- Ассоциативность сложения очевидно.
- (0,0) нейтральный элемент сложения.
- (-a, -b) обратный элемент к (a, b).
- Коммутативность умножения очевидно.
- Ассоциативность умножения проверяется.

- Дистрибутивность проверяется.
- (1,0) нейтральный элемент умножения.

•
$$(a,b)z_1z_2 = (1,0)$$
: $z_1 = (a,-b)$, $z_2 = \frac{1}{a^2+b^2}$

Определение. \mathbb{C} — поле комплексных чисел.

Определение. $c \in \mathbb{C}$ — комплексное число.

Предложение. $\mathbb{R}' = \{(a,0) \mid a \in \mathbb{R}\}$

R' замкнуто относительно сложения, вычитания, умножения, содержит единицу, то есть является подкольцом поля \mathbb{C} .

 $\implies \mathbb{R}' - c$ амо является кольцом относительно сложения, умножения, ограниченных на \mathbb{R}' .

 $\mathbb{R} \xrightarrow{\varphi} \mathbb{R}'(a \mapsto (a,0)), \ \varphi(a)$ — изоморфизм колец, т.е. φ — биекция и $\varphi(a+b) = \varphi(a) + \varphi(b);$ $\varphi(ab) = \varphi(a)\varphi(b).$

Отождествим (a,0) с вещественным числом a.

$$(a,0)\cdot(0,1) = (0,a)$$

$$(a,b) = (a,0) + (0,b) = (a,0) + (b,0) \cdot (0,1) = a + b \cdot (0,1) = a + bi$$

- 13 Temp
- 14 Temp
- 15 Temp