Física III

Fundamentos de Electromagnetismo

Índice

1. coordinadas cartisianas	4
2. Cordenadas Cilindricas	4
3. Coordenadas Esfericas	4
4. Carga Electrica	6
5. Ley de Coulomb	6
6. Distribucion Discreta Cargas	e

capítulo 1

Análisis Vectorial

- 1-1 Coordenadas Cartesianas
- 1-2 Coordenadas Cilíndricas
- 1-3 Coordenadas Esféricas

coordinadas cartisianas

2. Cordenadas Cilindricas

Coordenadas Esfericas 3.

Capítulo I: Sistema de Coordenadas

28 Octubre 2025, 6:59 am (GMT-4) — Asignación - I —

Ejercicio 1- (Vector Coord. Cilíndricas)

Encuentre una expresión para el vector unitario del vector \vec{A} mostrado en la figura en coordenadas cilíndricas.

Resp.(s):
$$\vec{e}_A = \frac{r_0 \vec{e}_r - h \vec{k}}{\sqrt{r_0^2 + h^2}}$$

Ejercicio 2- (Área cilindrica)

Calcule el área de una superficie de una superficie cilindrica descrita por $r=5,\,30^{\circ} \leq \phi \leq 60^{\circ}$ y $0 \leq z \leq 3$

Resp.(s):
$$S = \frac{5\pi}{2}$$

Ejercicio 3– Un cilindro circular de radio r=5 cm es concéntrico con el eje z y se extiende entre z = -3 cm y z = 3cm. Emplee la ecuación:

$$dv = r dr d\phi dz$$

para determinar el volumen del cilindro.

Resp.(s): $V = 471.2 \,\mathrm{cm}^3$

Ejercicio 4– (Área cilindrica)

La franja esférica señalada en la figura es una sección de una esfera de 3 cm de radio. Calcule el área de la franja.

Resp.(s): $S = 20.7 \,\mathrm{cm}^2$

Ejercicio 5– Dados el punto $P_1(3,4,3)$ y el vector

$$\vec{A} = 2\vec{\imath} - 3\vec{\jmath} + 4\vec{k}$$

definidos en coordenadas cartesianas, exprese P_1 y \vec{A} en coordenadas cilíndricas y evalúe \vec{A} en P_1 . Resp.(s): $P_1=P_1(5,306,9^\circ,3); \ \vec{A}=3,6\vec{e}_r-0,2\vec{e}_\phi+4\vec{k}$

Ejercicio 6- Exprese el vector

$$\vec{A} = (x+y)\vec{\imath} - (y-x)\vec{\jmath} + z\vec{k}$$

en coordenadas esféricas.

Resp.(s): $\vec{A} = R\vec{e}_R - R\sin\phi\vec{e}_\theta$

Ejercicio 7– El punto $P(2\sqrt{3}, \pi/3, -2)$ se daen coordenadas cilíndricas. Exprese P en coordenadas esféricas.

Resp.(s): $P = P(4, 2\pi/3, \pi/3)$

Ejercicio 8- Trasnforme el vector

$$\vec{A} = (x+y)\vec{\imath} - (y-x)\vec{\jmath} + z\vec{k}$$

de coordenadas cartesianas a cilíndricas.

Resp.(s): $\vec{A} = R\vec{e}_R - R\sin\phi\vec{e}_\theta$

CAPÍTULO 2

Electroestática

- 2-1 Carga Eléctrica
- 2-2 Ley de Coulomb
- 2-3 Distribuciones Discretas de Carga
- 2-4 Distribuciones Continuas de Carga
- 2-5 Campo Eléctrico
- **2-6** Ley de Gauss
- 2-7 Potencial Eléctrico

- 4. Carga Electrica
- 5. Ley de Coulomb
- 6. Distribucion Discreta Cargas