Set Theory

CSE-103: Discrete Mathematics

Introduction to Set Theory

- A set is a structure, representing an <u>unordered</u> collection (group, plurality) of zero or more <u>distinct</u> (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- The objects in a set are called the <u>elements</u> or <u>members</u> of that set.

Basic notations for sets

- For sets, we'll use variables S, T, U, ...
- We can denote a set S in writing by listing all of its elements in curly braces:
 - {a, b, c} is the set of whatever 3 objects are denoted by a, b, c.
- Set builder notation: For any proposition P(x) over any universe of discourse, $\{x|P(x)\}$ is the set of all x such that P(x).
 - e.g., $\{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \}$

Basic properties of sets

- Sets are inherently <u>unordered</u>:
 - No matter what objects a, b, and c denote,{a, b, c} = {a, c, b} = {b, a, c} ={b, c, a} = {c, a, b} = {c, b, a}.
- All elements are <u>distinct</u> (unequal); multiple listings make no difference!
 - $\{a, b, c\} = \{a, a, b, a, b, c, c, c, c\}.$
 - This set contains at most 3 elements!

Definition of Set Equality

- Two sets are declared to be equal if and only if they contain <u>exactly the same</u> elements.
 - Two sets A and B are equal if and only if ∀x(x ∈ A ↔ x ∈ B)
 i.e. A=B.
- In particular, it does not matter how the set is defined or denoted.
- For example: The set {1, 2, 3, 4} =
 {x | x is an integer where x>0 and x<5 } =
 {x | x is a positive integer whose square is >0 and <25}

Infinite Sets

- Conceptually, sets may be *infinite* (*i.e.*, not *finite*, without end, unending).
- Symbols for some special infinite sets:
 - **N** = {0, 1, 2, 3,...}, The natural numbers
 - **Z** = {..., -2, -1, 0, 1, 2,...}, The integers
 - **Z+** = {1, 2, 3,...}, The positive integers
 - **— Q** = {p/q | p ∈ Z, q ∈ Z, and $q \neq 0$ }, The rational numbers
 - R, the set of real numbers such as:
 374.1828471929498181917281943125...
 - R+, The positive real numbers
 - **– C**, The of complex numbers.

Venn Diagram

- Used to represent sets graphically.
 - Universal set consist of all elements of interest.
 Then the set is drawn as a circle or other geometrical shape with its all members within the rectangle.
 - Sometimes points are used to represent elements of the set.

Venn Diagrams

Basic Set Relations: Member of

- x∈S ("x is in S") is the proposition that object x is an ∈lement or member of set S.
 - -e.g. $3 \in \mathbb{N}$, "a" $\in \{x \mid x \text{ is a letter of the alphabet}\}$
- Can define <u>set equality</u> in terms of ∈ relation:
 ∀S,T: S=T ↔ (∀x: x∈S ↔ x∈T)
 "Two sets are equal **iff** they have all the same members."
- $x \notin S : \exists \neg (x \in S)$ "x is not in S"

The Empty Set

- ∅ ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\emptyset = \{\} = \{x | \text{False}\}$
- No matter the domain of discourse, we have the axiom

 $\neg \exists x: x \in \emptyset$

Subset and Superset Relations

- $S \subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S \subseteq T \Leftrightarrow \forall x (x \in S \rightarrow x \in T)$
- ∅⊆S, S⊆S.
- $S \supseteq T$ ("S is a superset of T") means $T \subseteq S$.
- Note $S=T \Leftrightarrow S \subseteq T \land S \supseteq T$.
- $S \subseteq T$ means $\neg (S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$

Proper (Strict) Subsets & Supersets

• $S \subseteq T$ ("S is a proper subset of T") means that $S \subseteq T$ but $T \subset S$. Similar for $S \supset T$.

Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- E.g. let $S=\{x \mid x \subseteq \{1,2,3\}\}$ then $S=\{\emptyset,$ $\{1\}, \{2\}, \{3\},$ $\{1,2\}, \{1,3\}, \{2,3\},$ $\{1,2,3\}\}$
- Note that 1 ≠ {1} ≠ {{1}} !!!!

Cardinality and Finiteness

- |S| (read "the *cardinality* of S") is a measure of how many different elements S has.
- E.g., $|\varnothing|=0$, $|\{1,2,3\}|=3$, $|\{a,b\}|=2$, $|\{\{1,2,3\},\{4,5\}\}|=\underline{2}$
- We say S is infinite if it is not finite.
- What are some infinite sets we've seen?

The Power Set Operation

- The power set P(S) of a set S is the set of all subsets of S. $P(S) = \{x \mid x \subseteq S\}$.
- E.g. P({a,b}) = { \varnothing , {a}, {b}, {a,b}}.
- Sometimes P(S) is written 2^{S} . Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out that |P(N)| > |N|.
 There are different sizes of infinite sets!

Ordered *n*-tuples

- For n∈N, an ordered n-tuple or a <u>sequence of length</u>
 n is written (a₁, a₂, ..., aₙ). The first element is a₁, etc.
- These are like sets, except that duplicates matter, and the order makes a difference.
- Note $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., *n*-tuples.

Cartesian Products of Sets

- For sets A, B, their Cartesian product $A \times B := \{(a, b) \mid a \in A \land b \in B \}.$
- $E.g. \{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Note that for finite A, B, $|A \times B| = |A||B|$.
- Note that the Cartesian product is **not** commutative: $\neg \forall AB$: $A \times B = B \times A$.
- Extends to $A_1 \times A_2 \times ... \times A_n$...

The Union Operator

- For sets A, B, their union A∪B is the set containing all elements that are either in A, or ("V") in B (or, of course, in both).
- Formally, $\forall A,B: A \cup B = \{x \mid x \in A \ \lor x \in B\}.$
- Note that A∪B contains all the elements of A and it contains all the elements of B:

 $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$

Union Examples

- $\{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}$
- $\{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} \in \{2,3,5,7\}$

The Intersection Operator

- For sets A, B, their intersection A∩B is the set containing all elements that are simultaneously in A and ("∧") in B.
- Formally, $\forall A,B: A \cap B \equiv \{x \mid x \in A \land x \in B\}$.
- Note that A∩B is a subset of A and it is a subset of B:

 $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$

Intersection Examples

- $\{a,b,c\}\cap\{2,3\} = _{\varnothing}$
- $\{2,4,6\}\cap\{3,4,5\} = \{4\}$

Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. (A∩B=∅)
- Example: the set of even integers is disjoint with the set of odd integers.

Inclusion-Exclusion Principle

- How many elements are in A∪B?
 |A∪B| = |A| + |B| |A∩B|
- Example:

$$\{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}$$

 $\{2,3,5\} \cup \{3,5,7\} = \{3,5\}$

Subtract out items in intersection, to compensate for double-counting them!

Set Difference

- For sets A, B, the difference of A and B, written A-B, is the set of all elements that are in A but not B.
- $A B :\equiv \{x \mid x \in A \land x \notin B\}$ = $\{x \mid \neg (x \in A \rightarrow x \in B)\}$
- Also called:
 The <u>complement of B with respect to A</u>.

Set Difference Examples

```
• \{1,2,3,4,5,6\} - \{2,3,5,7,9,11\} =
• \mathbf{Z} - \mathbf{N} = \{ \dots, -1, 0, 1, 2, \dots \} - \{ 0, 1, \dots \}
             = \{x \mid x \text{ is an integer but not a nat. }\#\}
             = \{x \mid x \text{ is a negative integer}\}
             = \{ \dots, -3, -2, -1 \}
```

Set Difference - Venn Diagram

Set Complements

- The *universe of discourse* can itself be considered a set, call it *U*.
- The *complement* of *A*, written *A*, is the complement of *A* w.r.t. *U*, *i.e.*, it is *U*–*A*.
- *E.g.*, If *U*=**N**,

$$\overline{\{3,5\}} = \{0,1,2,4,6,7,\dots\}$$

More on Set Complements

An equivalent definition, when U is clear:

$$\overline{A} = \{x \mid x \notin A\}$$

Set Identities

- Identity: $A \cup \emptyset = A \quad A \cap U = A$
- Domination: $A \cup U = U$ $A \cap \emptyset = \emptyset$
- Idempotent: $A \cup A = A = A \cap A$
- Double complement: $\overline{(\overline{A})} = A$
- Commutative: $A \cup B = B \cup A$ $A \cap B = B \cap A$
- Associative: $A \cup (B \cup C) = (A \cup B) \cup C$

 $A\cap (B\cap C)=(A\cap B)\cap C$

Set Identities

- Distributed: A∩(B∪C) = (A ∩ B)∪(A ∩ C)
 A∪(B ∩ C) = (A ∪ B)∩(A ∪ C)
- Absorption: $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$
- Complement: $A \cap A' = \emptyset$ $A \cup A' = U$

*

DeMorgan's Law for Sets

Exactly analogous to (and derivable from)
 DeMorgan's Law for propositions.

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where E_3 are set expressions), here are three useful techniques:

- Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
- Use logical equivalences.
- Use a membership table.

Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, x∈(A∩B) \cup (A∩C).
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$

Method 2: logical Equivalence

• Prove that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$

$$- \overline{A \cup (B \cap C)} = \overline{A} \cap \overline{(B \cap C)}$$

$$=\overline{A}\cap(\overline{B}\cup\overline{C})$$

$$= (\overline{B} \cup \overline{C}) \cap \overline{A}$$

$$\overline{C} \cup \overline{B} \cap \overline{A}$$

De Morgan's Law

De Morgan's Law

Commutative Law

Commutative Law

Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use "1" to indicate membership in the derived set, "0" for non-membership.
- Prove equivalence with identical columns.

Membership Table Example

Prove $(A \cup B) - B = A - B$.

A	В	$A \cup B$	$(A \cup B) - B$	B A - B
0	0	0	0	0
0	1	1	0	0
1	0	1	1	1
1	1	1	0	0

*

Generalized Union

- Binary union operator: A∪B
- *n*-ary union: $A \cup A_2 \cup ... \cup A_n :\equiv ((...((A_1 \cup A_2) \cup ...) \cup A_n))$ (grouping & order is irrelevant)
- "Big U" notation: $\bigcup_{i=1}^{n} A_{i}$
- Or for infinite sets of sets: $\bigcup_{A \in X} A$

Generalized Intersection

- Binary intersection operator: A∩B
- n-ary intersection:
 A∩A₂∩...∩A_n≡((...((A₁∩A₂)∩...)∩A_n)
 (grouping & order is irrelevant)
- "Big Arch" notation: $\prod_{i=1}^{n} A_{i}$
- Or for infinite sets of sets: $\bigcap_{A \in X} A$

Thank You

- Study all the solved problem from your text book.
- Try to solve related problems from exercise.

*