

Raízes Unitárias

Modelagem de séries temporais:

A partir de valores observados de uma série temporal é possível inferir sobre os aspectos essenciais do processo estocástico gerador de dados. Isso possibilita analisar o seu:

- ->Comportamento no tempo
- ->Realizar de previsões

Equações de diferenças

Uma maneira eficiente de se modelar séries temporais é por meio de equações de diferenças.

Uma função de diferenças expressa o valor de uma variável como função de seus próprios valores defasados no tempo e de outras variáveis.

$$y_t = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + ... + \varepsilon_t$$

$$y_t = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \cdots + \varepsilon_t$$

Deterministica

Estocástica

A solução de equações de diferenças pode ser dividida em duas partes:

- -> a solução particular , relacionada a parte aleatória, estocástica
- -> e a solução homogênea, relacionada a parte determinística

Exemplo: Equação de segunda ordem

$$y_t = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \varepsilon_t$$

Equação homogênea

$$y_{t} = \alpha + \beta_{1}y_{t-1} + \beta_{2}y_{t-2}$$

$$=$$

$$y_{t} - \alpha - \beta_{1}y_{t-1} - \beta_{2}y_{t-2} = 0$$

Equação característica

$$x^2 - \beta_1 x - \beta_2 = 0$$

As raízes dessa equação são chamadas raízes características

sãojudas)

Se algum $\beta_i = 1$, o processo tem raiz(es) unitária(s)

A presença de raiz unitária induz comportamento nãoestacionário numa série temporal.

Testes em busca de raízes unitárias em séries temporais, para testar se os processos são estacionários ou não.

Teste de Dick-Fuller

Considere o modelo:

$$y_t = \beta_1 y_{t-1} + \varepsilon_t$$

A ideia é estimar esse modelo e utilizar a hipótese nula

$$H_0: \beta_1 = 1$$

Se $\beta_1 = 1$ o processo apresentará uma raíz unitária e, portanto, será não estacionário.

Logo, o teste de raíz unitária testa se $\beta_1 = 1$ ou não.

Assim, realizamos a seguinte transformação:

$$y_{t} = \beta_{1}y_{t-1} + \varepsilon_{t}$$

$$y_{t} - y_{t-1} = \beta_{1}y_{t-1} - y_{t-1} + \varepsilon_{t}$$

$$\Delta y_{t} = (\beta_{1} - 1)y_{t-1} + \varepsilon_{t}$$

$$\Delta y_{t} = \pi y_{t-1} + \varepsilon_{t}$$

Feitas estas transformações, testamos a hipótese nula H_0 de que $\pi=0$. Desta forma, se $\pi=0$, então $\beta_1=1$ e, consequentemente, y_t possui raiz unitária e não é estacionário.

O problema é que sob a hipótese nula a distribuição do teste não é convencional, não é igual a distribuição da estatística t, utilizada nos testes de hipóteses.

Por meio de simulações, Dickey e Fuller (1979) descobriram que a média da estatística t não era zero como se esperaria na distribuição t padrão.

Ou seja o uso da estatística t implicaria em rejeitar a hipótese nula quando é verdadeira com mais frequência, ou seja de se cometer o Erro Tipo I

Decisão	Realidade	
	H ₀ Verdadeira	H ₀ Falsa
Aceitar H ₀	Sem erro	Erro Tipo II
${\rm Rejeitar}~H_0$	Erro Tipo I	Sem erro

Assim Dickey e Fuller recalcularam da valor da estatística t e usaram as seguintes equações de estimação e suas respectivas estatísticas, considerando a existência de drift (intercepto) e tendência determinística.

$$\Delta y_t = \pi y_{t-1} + \varepsilon_t \qquad \tau$$

$$\Delta y_t = \mu + \pi y_{t-1} + \varepsilon_t \qquad \tau_{\mu}, \varphi_1$$

$$\Delta y_t = \mu + \varphi t + \pi y_{t-1} + \varepsilon_t \qquad \tau_{\tau}, \varphi_2$$

Se o valor apresentado no teste de Dick-Fuller for menor que a estatística de teste, rejeita-se H_0 : $b_1=1$ (a hipótese se de que há raiz unitária) e a série é estacionária.

DF < Estatística: não possui raiz unitária e a série é estacionária

DF > Estatística: possui raiz unitária e a série não é estacionária


```
install.packages("urca")
library("urca")
library(readxl)
interdaay <- read_excel("C:/Econometria/interdaay.xls",</pre>
                         col_types = c("date", "numeric", "numeric", "numeric")) :
```



```
colnames(interdaay)[3] <- "variacao"
interdaay <- interdaay[,-1]</pre>
dados_diarios <- ts(interdaay, start = 2017-01-10, frequency = 365)
plot(dados_diarios, col= "blue", main="Dados do Indice Bovespa", xlab="Dias")
variacao <- ts(interdaay$variacao, start = 2017-01-10, frequency = 365)
Ibovespa <- ts(interdaay$Ibovespa, start = 2017-01-10, frequency = 365)</pre>
Quantidade <- ts(interdaay$Quantidade, start = 2017-01-10, frequency = 365)
```



```
TesteDF_Variacao_none <- ur.df(variacao, "none", lags = 0)</pre>
summary(TesteDF_Variacao_none)
                                                    # Augmented Dickey-Fuller Test Unit Root Test #
                                                     ************************************
                                                    Test regression none
                                                    call:
                                                    lm(formula = z.diff \sim z.lag.1 - 1)
                                                    Residuals:
                                                        Min
                                                                10 Median
                                                                                    Max
                                                    -8.0931 -0.8798 -0.0037 0.8675 6.6005
                                                    Coefficients:
                                                           Estimate Std. Error t value Pr(>|t|)
                                                    z.lag.1 -0.99742 0.02399 -41.58 <2e-16 ***
                                                    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                    Residual standard error: 1.468 on 1740 degrees of freedom
                                                    Multiple R-squared: 0.4984, Adjusted R-squared: 0.4982
                                                    F-statistic: 1729 on 1 and 1740 DF, p-value: < 2.2e-16
                                                    Value of test-statistic is: -41.5838
                                                    Critical values for test statistics:
                                                                                         1% 5% 10%
                                                          1pct 5pct 10pct
```

tau1 -2.58 -1.95 -1.62

1% 5% 10% Significância

```
TesteDF_Variacao_drift <- ur.df(variacao, "drift", lags=0)
summary(TesteDF_Variacao_drift)</pre>
```



```
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression drift
call:
lm(formula = z.diff \sim z.lag.1 + 1)
Residuals:
   Min
            10 Median
                                  Max
-8.0978 -0.8845 -0.0084 0.8628 6.5958
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.004671 0.035182 0.133 0.894
           -0.997433 0.023993 -41.572 <2e-16 ***
z.lag.1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.468 on 1739 degrees of freedom
Multiple R-squared: 0.4985, Adjusted R-squared: 0.4982
F-statistic: 1728 on 1 and 1739 DF, p-value: < 2.2e-16
Value of test-statistic is: -41.5723 864.1266
```

Critical values for test statistics:

1pct 5pct 10pct
tau2 -3.43 -2.86 -2.57
phi1 6.43 4.59 3.78

TesteDF_Variacao_trend <- ur.df(variacao, "trend", lags = 0) summary(TesteDF_Variacao_trend)</pre>


```
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression trend
call:
lm(formula = z.diff \sim z.lag.1 + 1 + tt)
Residuals:
   Min
           1Q Median
                        3Q
                              Max
-8.0671 -0.8843 -0.0215 0.8662 6.5560
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.667e-02 7.041e-02 0.805
                                      0.421
z.laq.1 -9.979e-01 2.400e-02 -41.578 <2e-16 ***
     -5.970e-05 7.002e-05 -0.853
                                    0.394
tt
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.468 on 1738 degrees of freedom
Multiple R-squared: 0.4987, Adjusted R-squared: 0.4981
F-statistic: 864.4 on 2 and 1738 DF, p-value: < 2.2e-16
Value of test-statistic is: -41.5777 576.2362 864.3541
Critical values for test statistics:
     1pct 5pct 10pct
tau3 -3.96 -3.41 -3.12
phi2 6.09 4.68 4.03
phi3 8.27 6.25 5.34
```