CSE 152 Section 2 **Recap: Geometric Image Formation**

April 08, 2019

Owen Jow

Pinhole Perspective Projection

Light ray bounces off something in world, passes through pinhole, gets recorded on back wall of camera.

Virtual Image Plane

Relevant Equations

Vanishing Points

Projected point at infinity (point to which line converges in projective space)

Homogeneous Coordinates

Make translation and perspective projection "linear"

Projective Geometry

- Geometry in projective space
 - Euclidean space + points at infinity
 - Allows for transformations between Euclidean points and points at infinity

projective line
Euclidean line + point at

Euclidean line + point at infinity

3D Rotation

- 3D rotation matrix \in SO(3)
 - \circ 3x3 orthogonal matrix \rightarrow transpose is inverse
 - o If you consider points as fixed and frame as changing, rows are new axes in current frame

$${}_{A}^{B}R = egin{bmatrix} - & {}^{A}i_{B} & - \ - & {}^{A}j_{B} & - \ - & {}^{A}k_{B} & - \end{bmatrix}$$

 ${}^{B}_{A}R$: rotation matrix, transforms points in frame A to points in frame B ${}^{A}i_{B}, {}^{A}j_{B}, {}^{A}k_{B}$: frame B axes in coordinate system A

Rigid Transformation

- Rotation, then translation
- Preserves distances between pairs of points

$$^{B}P = {}^{B}_{A}R^{A}P + {}^{B}O_{A}$$

frame A coordinates → frame B coordinates

 AP , BP : point in frame A, point in frame B BAR : rotation matrix (frame A coords \rightarrow frame B coords) BO_A : frame A origin in frame B coordinates

Full Camera Projection Process

$$\mathbf{p} = \underbrace{\begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}}_{\text{intrinsic matrix}} \underbrace{\begin{bmatrix} - & - & - & | - \\ - & \mathbf{R} & - & | \mathbf{t} \\ - & - & - & | - \end{bmatrix}}_{\text{extrinsic matrix}} \mathbf{p}$$
homogeneous inhomogeneous homogeneous

3x1 point in

camera coords

- Extrinsic matrix: world coords
- Intrinsic matrix: camera coords

3x1 point in

image coords

(rigid transf.) → camera coords

 $(\texttt{projection}) \rightarrow \qquad \quad image \ coords$

4x1 point in world coords

Section Takeaways

- How to:
 - perform perspective projection
 - compute locations of vanishing points
- Intuition about:
 - homogeneous coordinates and projective geometry
 - 3D rotations and rigid transformations
 - full camera projection process

Q & A