Computer System

Computer System

- 1. ส่วนรับข้อมูลหรืออินพุต (**Input)**
- 2. ส่วนส่งข้อมูลหรือเอาต์พุต (Output)
- 3. ส่วนประมวลผลกลาง (Central processing unit)
 - ALU (Arithmatic Logical Unit)
- 4. ส่วนเก็บข้อมูลหรือคำสั่งที่เรียกว่าหน่วยความจำ (**Memory**)
 - Data Memory
 - Program Memory

1. ส่วนรับข้อมูลหรืออินพุต (Input)

• เป็นส่วนหรือวงจรที่ใช้เชื่อมต่อคอมพิวเตอร์กับอุปกรณ์ภายนอกโดยทำหน้าที่แปลงสัญญาณ จากอุปกรณ์ภายนอกให้มีระดับลอจิกที่ เหมาะสมกับวงจรภายใน เรียกทับศัพท์ว่าวงจรอินเตอร์เฟช (Interface circuit) เพื่อส่งต่อให้หน่วยประมวลผลใช้เป็นข้อมูล ประกอบการประมวลผลตามชุดคำสั่งที่ได้เขียนขึ้น เช่นวงจรแป้นพิมพ์ เป็นวงจรที่เปลี่ยนพลังงานกลจากการกดแป้นพิมพ์เป็นพลังงานไฟฟ้า ในระดับแรงดัน 5 โวลต์และ 0 โวลต์เพื่อเป็นลอจิก 1 และลอจิก 0

2. ส่วนส่งข้อมูลหรือเอาต์พุต (Output)

• เป็นส่วนหรือวงจรที่ใช้เชื่อมต่อคอมพิวเตอร์กับอุปกรณ์ภายนอกโดยทำ หน้าที่รับสัญญาณไฟฟ้า จากหน่วยประมวลผลที่เป็นลอจิก 1 และ ลอจิก 0 ที่ระดับแรงดัน 5 โวลต์และ 0 โวลต์ ส่งให้กับอุปกรณ์ ภายนอก ที่นำระดับแรงดันนี้ไปใช้งาน

3. ส่วนประมวลผลกลาง (Central processing unit)

• ส่วนประมวลผลกลางเป็นหัวใจของระบบคอมพิวเตอร์ โดยทำหน้าที่คิด ประมวลผลซึ่งมีส่วน การประมวลผลทางคณิตศาสตร์และลอจิก (Arithmetic and logic unit) หรือที่เรียกว่าทับศัพท์ว่า ALU โดยการประมวลผลจะกระทำตามชุดคำสั่งที่เก็บไว้ใน หน่วยความจำ

4. ส่วนเก็บข้อมูลหรือคำสั่งที่เรียกว่าหน่วยความจำ (Memory)

เป็นส่วนที่ใช้เก็บข้อมูลหรือใช้เก็บชุดคำสั่งที่เขียนขึ้นเพื่อให้ระบบ คอมพิวเตอร์ทำงานอย่างใดอย่างหนึ่งตามต้องการ โดยหน่วยความจำ ที่ใช้ในระบบคอมพิวเตอร์มี 2 แบบด้วยกันคือ

4. ส่วนเก็บข้อมูลหรือคำสั่งที่เรียกว่าหน่วยความจำ (Memory)

- 1. หน่วยความจำถาวร เป็นหน่วยความจำ ที่มักใช้เก็บโปรแกรม ซึ่ง
 หน่วยความจำ ชนิดนี้จะต้องเป็นหน่วยความจำ ที่สามารถคงข้อมูลไว้ได้แม้
 กระทั้งไม่มีไฟเลี้ยง
- a) ROM คุณสมบัติ โปรแกรมจากโรงงานและลบไม่ได้
- b) PROM คุณสมบัติ โปรแกรมเองได้ครั้งเดียวและลบไม่ได้
- c) EPROM คุณสมบัติ โปรแกรมเองได้หลายครั้งและลบได้ด้วยแสง UV
- d) E2PROM คุณสมบัติ โปรแกรมเองได้หลายครั้งและลบได้ด้วยไฟฟ้า
- e) Flash memory คุณสมบัติ โปรแกรมเองได้หลายครั้งและลบได้ด้วย ไฟฟ้า

4. ส่วนเก็บข้อมูลหรือคำสั่งที่เรียกว่าหน่วยความจำ (Memory)

2. หน่วยความจำชั่วคราว เป็นหน่วยความจำที่ใช้พักข้อมูลใน ระหว่างการประมวลผล โดยเป็น

หน่วยความจำที่สามารถอ่านได้และเขียนข้อมูลกลับได้ในระดับไฟเลี้ยง ปกติ และรักษาข้อมูลไว้ได้ตราบ ที่ยังมีไฟเลี้ยงอยู่ หรือรักษาข้อมูลไว้ได้ ตราบที่ยังไม่มีข้อมูลใหม่มาทับข้อมูลเดิม จากคุณสมบัติที่ต้องการ ดังกล่าวมีหน่วยความจำที่มีให้ใช้งานเพียงแต่จะไม่สามารถรักษาข้อมูล ไว้ได้ถ้าไม่มีไฟเลี้ยง ซึ่งหน่วยความจำแบบนี้สามารถอ่านและเขียน ข้อมูลแบบสุ่มตำแหน่งได้ที่เรียกว่า RAM (Random access memory)

ระบบตัวเลขและรหัส

จากความก้าวหน้าทางเทคโนโลยีได้มีการพัฒนาเครื่องคอมพิวเตอร์ขึ้นมาใช้งาน โดย เครื่องคอมพิวเตอร์เป็นเครื่องใช้ไฟฟ้าซึ่งถูกออกแบบมาเพื่อที่จะรับรู้สภาวะเพียงสอง สภาวะเท่านั้น เพื่อป้องกันการผิดพลาดของข้อมูลคือ สภาวะมีแรงดันไฟฟ้าโดย เรียกว่าลอจิก 1 และสภาวะไม่มีแรงดันไฟฟ้าโดยเรียกว่าลอจิก 0 ในระบบ คอมพิวเตอร์ที่มีความเร็วต่า แรงดันไฟฟ้าสา หรับลอจิก 1 จะมีค่าเท่ากับ 5 โวลต์และ แรงดันไฟฟ้าสาหรับลอจิก 0 จะมีค่าเท่ากับ 0 โวลต์ แต่สาหรับคอมพิวเตอร์ที่มีความเร็ว สูงค่าระดับแรงดันลอจิก 1 จะลดลงเพื่อลดความร้อนที่เกิดขึ้นกับตัวประมวลผลกลาง

• ดังนั้นการประมวลผลต่าง ๆ ของคอมพิวเตอร์จึงใช้งานในระบบตัวเลขฐาน 2 หรือที่ เรียกว่าเลขไบนารี่ (Binary) ตัวเลขที่ใช้ระบบเลขฐาน 10 คือ 0, 1, 2, ... 9 และใน ระบบเลขฐาน 2 มีเพียงเลข 0 กับ 1 เท่านั้น

การแปลงเลขฐาน 10 เป็น ฐาน 2

• การแปลงเลขฐาน 10 ให้เป็นเลขฐาน 2 นั้นทำได้โดยการหารเลขฐาน 10 ด้วย 2 และเก็บค่าผลลัพธ์ โดยเศษของการหารครั้งแรกจะเป็ นเลขฐานที่ต้องการแปลงในบิตต่า สุด (LSB: Least significant bit) ส่วนผลหารจะไปหารครั้งถัดไปด้วย 2 เศษของการหารในครั้งนี้ จะเป็นเลขฐานที่ต้องการแปลงในบิตถัดขึ้นมา ส่วนผลลัพธ์ก็นา ไปหาร ด้วยเลขฐานที่ต้องการแปลงทา อย่างนี้ไปจนกระทั่งผลหารมีค่าเป็น 0

การแปลงเลขฐาน 10 เป็น ฐาน 2

ตัวอย่า	ตัวอย่าง การแปลงเลขฐาน 10 เป็นเลขฐาน 2							
โจทย์ จ	งแปลงเ	ค่า 45 ₁₀	เป็นเลขฐาน 2					
วิธีทำ								
			ผลลัพธ์	เศษ				
	45/2	=	22	1	บิตค่าต่ำสุด (LSB: Least significant bit)			
	22/2	=	11	0				
	11/2	=	5	1				
	5/2	=	2	1				
	2/2	=	1	0				
	1/2	=	0	1	บิตค่าสูงสุด (MSB: Most significant bit)			
คำตอบ	J 45 ₁₀	=	1011012					

การแปลงเลขฐาน 2 เป็น ฐาน 10

การแปลงเลขฐาน 2 ให้เป็นเลขฐาน 10 ต้องทำความเข้าใจเกี่ยวกับ น้ำหนักของตัวเลขที่อยู่ในตำแหน่งต่าง ๆ ก่อน น้ำหนักของตัวเลขที่อยู่ ขวาสุด (LSB: Least significant bit) จะมีค่าเท่ากับเลขฐาน นั้น ๆ ยกกำลังศูนย์และเลขตำแหน่งถัดมาจะมีน้ำหนักเท่ากับเลขฐาน นั้น ๆ ยกกำลังหนึ่ง เป็นเช่นนี้ไปเรื่อย ๆ ครบทุกหลัก สาหรับการหาค่า เลขฐาน 2 ให้เป็นเลขฐานสิบจะหาได้จากการรวมกันของผลคูณใน ตัวเลขในตำแหน่งต่าง ๆ กับน้ำหนักของตัวเลขในตำแหน่งนั้น ๆ ดัง ตัวอย่าง

การแปลงเลงฐาน 2 เป็น ฐาน 10

ตัวอย่าง การแปลงเลขฐาน 2 เป็นเลขฐาน 10

โจทย์ จงแปลงเลขฐาน 2 ของเลข 11010₂ ให้เป็นเลขฐาน 10

วิธีทำ

น้ำหนัก	24	2 ³	2 ²	21	2 ⁰
เลข	1	1	0	1	0
ผลคูณ	1×2 ⁴ =16	1×2 ³ =8	$0 \times 2^2 = 0$	1×2 ¹ =2	0×2 ⁰ =0

$$11010_2 = 16+8+0+2+0 = 26_{10}$$

ระบบเลงฐาน 16

ระบบเลขฐาน 16 (HEX: Hexadecimal) เป็นเลขที่ถูกเรียกใช้ในระบบคอมพิวเตอร์ซึ่งใช้แทนตัวเลขที่เป็น เลขฐาน 2 เพื่อให้ง่ายต่อการใช้งานเนื่องจากเลขฐาน 2 มี แค่เลข 0 และ 1 เท่านั้น ดังเช่น 1000100101102 แต่เมื่อ เขียนเป็นเลขฐาน 16 จะได้เพียง 89616 ในระบบเลขฐาน 2 ที่มีเพียงเลข 2 ตัวคือ 0 กับ 1 ในระบบเลขฐาน 10 มีเลข 10 ตัวคือ 0, 1, 2, ... 9 และในระบบเลขฐาน 16 มีตัวเลข 16 ตัว โดย 10 เลขแรกใช้เลขเดียวกับเลขฐาน 10 คือ 0 ถึง 9 ส่วนที่เหลืออีก 6 ตัว จะใช้ตัวอักษรภาษาอังกฤษแทน คือ A, B, C, D, E, Cและ F ดังตารางที่ 1-1

ตารางที่ 1-1 ความสัมพันธ์ของเลขฐาน

เลขฐาน 10	เลขฐาน 2	เลขฐาน 16
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F

การแปลงเลงฐาน 2 เป็น ฐาน 16

ในการแปลงเลขฐาน 2 ให้เป็นเลขฐาน 16 สามารถทำได้โดยการแบ่งกลุ่มตัวเลขของเลขฐาน 2 เริ่มจากขวาไปซ้ายเป็นกลุ่ม ๆ ละ 4 บิต และใช้จากตารางแสดงความสัมพันธ์ของเลขฐานในการแปลง เลขฐานได้โดยตรงดังตัวอย่าง

ตัวอย่าง การแปลงเลขฐาน 2 ให้เป็นเลขฐาน 16 โดยการแบ่งกลุ่มตัวเลข							
โจทย์ จงแปลงค่า 100111110101 ₂ เป็นเลขฐาน 16							
วิธีทำ แบ่งกลุ่มตัวเลขของเลขฐาน 2 เริ่มจากขวาไปซ้ายเป็นกลุ่ม ๆ ละ 4 บิต							
1001 1111 0101 จากโจทย์							
9 F 5							
คำตอบ	1001111101012	=	9F5 _H				

การแปลงเลขฐาน 16 เป็น ฐาน

ตัวอย่าง การแปลงเลขฐาน 16 ให้เป็นเลขฐาน 2 โดยการแบ่งกลุ่มตัวเลข								
โจทย์ จงแปลงค่า A72	โจทย์ จงแปลงค่า A72B ₁₆ เป็นเลขฐาน 2							
วิธีทำ								
	A	7	2	В	จากโจทย์			
	1010	0111	0010	1011				
คำตอบ A72B ₁₆	=	10100	1110010	10112				

การแปลงเลขฐาน 16 เป็น ฐาน 10

```
    ตัวอย่าง การแปลงเลขฐาน 16 ให้เป็นเลขฐาน 10 โดยรวมจากน้ำหนักในแต่ละหลัก
    โจทย์ จงแปลงค่า ABC<sub>16</sub> เป็นเลขฐาน 10
    วิธีทำ
    น้ำหนักฐาน 16
    16²
    16¹
    16⁰
    A(10) B(11) C(12)
    ABC<sub>16</sub> = (10×16²)+(11×16¹)+(12×16⁰)
    = 2560+176+12
    คำตอบ
    = 2748<sub>10</sub>
```

ดิจิทัลพื้นฐาน

ดิจิทัล (Digital) เป็นการอธิบายเทคโนโลยีอิเล็กทรอนิกส์ที่ใช้สร้าง เก็บ และประมวลข้อมูลในลักษณะ 2 สถานะที่เรียกว่าลอจิก คือ บวก แสดงด้วยลอจิก 1 และไม่บวกแสดงด้วยลอจิก 0 ดังนั้นข้อมูลส่งผ่าน หรือเก็บด้วยเทคในโลยีดิจิทัล เป็นการแสดงด้วยลอจิก 0 และ 1 แต่ละ ค่าของตำแหน่งสถานะเหล่านี้เป็นการอ้างแบบ Binary digital ดิจิทัลมีความเกี่ยวข้องกับไมโครคอนโทรลเลอร์ทั้งฮาร์ดแวร์และ ซอฟต์แวร์ สาหรับหน่วยการเรียนนี้จะกล่าวถึงระดับแรงดันไฟฟ้าของ ลอจิกดิจิทัล และคุณสมบัติของลอจิกเกตชนิดต่าง ๆ ที่เกี่ยวข้องกับการ ใช้งานของไมโครคอนโทรลเลอร์ ดังนี้

Voltages as Logic Values

Voltages as Logic Values

In any digital circuit, logic values are represented as electrical voltages. Here now is the BIG benefit of digital electronics: we don't need a precise voltage to represent a logical value. For most digital inputs, the LPC1678 interprets any input voltage below 1.0 V as logic 0, and any input voltage above 2.3 V as Logic 1.

ลอจิกเกตของเลขฐาน 2

ระบบเลขฐาน 2 สามารถนำลอจิกผ่านวงจรต่าง ๆ เพื่อให้ได้ลอจิกที่เปลี่ยนไป โดยวงจรดังกล่าว เรียกว่าวงจรลอจิกเกตโดยมีวงจรต่าง ๆ ดังนี้

- 1. แอนด์เกต (AND gate)
- 2. ออร์เกต (OR gate)
- 3. เอ็กซ์คลูซีฟออร์เกต (XOR gate)
- 4. แนนด์เกต (NAND gate)
- 5. นอร์เกต (NOR gate)
- 6. น็อตเกต (NOT gate)

แอนด์เกต (AND gate)

แอนด์เกตเป็นวงจรที่มีอินพุตตั้งแต่ 2
อินพุตขึ้นไป เมื่อนำค่าลอจิกมาผ่านวงจรแล้ว
ให้ค่าลอจิกทางเอาต์พุตที่มีความสัมพันธ์กับ
อินพุตคือ เมื่ออินพุตทุกอินพุตมีลอจิกเป็น 1
จะส่งผลให้ลอจิกทางเอาต์พุตเป็นลอจิก 1 แต่
ถ้าหากอินพุตมีค่าลอจิก 0 ในอินพุตใดอินพุต
หนึ่งหรือทั้งหมดจะส่งผลให้ลอจิกทางเอาต์พุต
เป็นลอจิก 0

แอนเ	กต (AN	D Gate)	
อิน	พุต	เอาต์พุต	
A	В	Q	A
0	0	0	B-)-0
0	1	0	
1	0	0	
1	1	1	

ออร์เกต (OR gate)

ออร์เกตเป็นวงจรที่มีอินพุตตั้งแต่ 2 อินพุตขึ้นไป เมื่อนำค่าลอจิกมาผ่านวงจรแล้ว ให้ค่าลอจิกทางเอาต์พุตที่มีความสัมพันธ์กับ อินพุตคือ เมื่ออินพุตใดอินพุตหนึ่งหรือทุก อินพุตมีลอจิกเป็น 1 จะส่งผลให้ลอจิกทาง เอาต์พุตเป็นลอจิก 1 หากทุกอินพุตมีค่าลอจิก 0 จะส่งผลให้เอาต์พุตมีลอจิก 0

ŧ	อร์เกต (OR		
	อินพุต	เอาต์พุต	
A	В	Q	
0	0	0	
0	1	1	B
1	0	1	
1	1	1	

เอ็กซ์คลูซีฟออร์เกต (XOR gate)

เอ็กคลูซีฟออร์เกตเป็นวงจรที่มีอินพุต ตั้งแต่ 2 อินพุต เมื่อนำค่าลอจิกมาผ่านวงจร แล้วให้ค่าลอจิกทางเอาต์พุตที่มีความสัมพันธ์ กับอินพุตคือ เมื่ออินพุตทั้งสองอินพุตมีค่า ลอจิกเดียวกัน (ลอจิก 0 ทั้งสองอินพุต หรือ ลอจิก 1 ทั้งสองอินพุต)จะทำให้เอาต์พุตมีค่า ลอจิกเป็น 0 และถ้าอินพุตมีค่าลอจิกต่างกัน ส่งผลให้ลอจิกทางเอาต์พุตเป็นลอจิก 1

	ช์คลูซีฟย XOR G		
อิน	พุต	เอาต์พุต	
A	В	Q	A
0	0	0	B—)
0	1	1	
1	0	1	
1	1	0	

น็อตเกต (NOT gate)

น็อตเกตหรือบางครั้งเรียกว่าอินเวอร์เตอร์ เป็นวงจรที่มีอินพุตเพียงอินพุตเดียว เมื่อนำค่า ลอจิกมาผ่านวงจรแล้วให้ค่าลอจิกทางเอาต์พุตมีค่า ลอจิกตรงข้ามกับอินพุต

น็อตเกต (NOT Gate)	
อินพุต	เอาต์พุต	
A	Q	A- O-Q
0	1	
1	0	

แนนด์เกต (NAND gate)

Q = NOT(A)

AND Gate

Q = A AND B

NAND Gate

Q = A NAND B

Truth Table

Input A	Output Q
0	1
1	0

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table

Input A	Input B	Output Q
0	0	1
0	1	1
1	0	1
1	1	0

นอร์เกต (NOR gate)

Q = NOT(A)

Q = A OR B

Q = A NOR B

Truth Table

Input A	Output Q
0	1
1	0

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

Truth Table

Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	0