

数学分析上

笔记整理

姓名: 刘斯宇 学号: 17341110

目录

1	微积分的进一步应用	2
2	再论实数系	4
3	数项级数	6
4	广义积分	9
5	函数项级数	12
6	函数的幂级数展开	14
7	傅里叶级数	16

- ☑ 第八章--微积分的进一步应用
- ☑ 第九章--再论实数系
- ☑ 第十章--数项级数
- ☑ 第十一章--广义积分
- ☑ 第十二章--函数项级数
- ☑ 第十三章--函数的幂级数展开
- ☑ 第十四章--傅里叶级数

1 微积分的进一步应用

定理 1.1 (带佩亚诺余项的泰勒公式) 若 f(x) 在 x=a 有 n 阶微商, 即 $f^{(n)}(a)$ 存在,则当 xa 时

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + o((x - a)^n)$$

定理 1.2 设 f(x) 在 a 点 $n(n \ge 2)$ 次可微,且

$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0, \quad f^{(n)}(a) \neq 0$$

则当 n 为奇数时,f(x) 在 a 点不取极值. 当 n 为偶数时, 若 $f^{(n)}(a) > 0$, 则 f(x) 在 a 取极小值; 若 $f^{(n)}(a) < 0$, 则 f(x) 在 a 取极大值.

定理 1.3 (唯一性) 若

$$f(x) = A_0 + A_1(x - a) + A_2(x - a)^2 + \dots + A_n(x - a)^n + o((x - a)^n)$$
$$= B_0 + B_1(x - a) + B_2(x - a)^2 + \dots + B_n(x - a)^n + o((x - a)^n)$$

则

$$A_i = B_i, i = 0, 1, \cdots, n$$

定理 1.4 若 f(x) 在包含 a 的一个区间有 n+1 阶连续微商,则对此区间内的任意 x,有下面的 泰勒公式成立:

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x)$$

其中

$$R_n(x) = \frac{1}{n!} \int_a^x (x - t)^n f^{(n+1)}(t) dt$$

或

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

其中 ξ 在 α 和 β 之间, 或 $R_n(x) = \frac{(x-a)^{n+1}}{n!} (1-\theta)^n f^{(n+1)}(a+\theta(x-a))$ 其中 $0 < \theta < 1$

2 再论实数系

定义 2.1 如果实数集合 A 有上界, 且上界中有最小数 , 则称 为数集 A 的上确界, 记 = supA; 如果实数集合 A 有下界, 且下界中有最大的数 a, 则称 a 为数集 A 的下确界, 记为 a= infB. 这里 sup 是 supremum; 的缩写, m inf 是 infimum 的缩写.

定理 2.1 (确界定理) 在实数系 R 内, 非空的有上 (下) 界的数集必有上 (下) 确界存在.

定义 2.2 设 E 是一个由实数开区间构成的集合,S 是一一个实数子集,如果对任意 xS,有区间 (a,b)E,使得 x(a,b),则称 E 是 S 的一个覆盖.E 是 S 的覆盖,用集合的符号可写成

$$S\subset\bigcup_{E_a\in E}E_a$$

如果 E 由有限个区间组成, 则称这是有限覆盖.

定理 2.2 (博雷尔 (Borel,1871 — 1956) 有限覆盖定理) 实数闭区间 [a,b] 的任一个覆盖 E, 必存在有限的子覆盖. 这定理是说, 若 [a,b] 有一个覆盖 E, 则存在 E 的有限子集 (有限个开区间), 它本身已构成了 [a,b] 的一个覆盖.

定义 2.3 设一组实数的闭区间序列 $[a_n,b_n]$, $n=1,2,\cdots$ 满足: $(i)[a_{n+1},b_{n+1}]\subset [a_n,b_n]$ n=1,2,3... $(ii)\lim_{n\to\infty}(b_n-a_n)=0$ 则称 $[a_n,b_n]$ 构成一个区间套

定理 2.3 (区间套定理) 设 $[a_n,b_n]$ 是一个区间套,则必存在唯一的实数 r, 使得 r 包含在所有的区间里,即

$$r \in \bigcap_{n=1}^{\infty} [a_n, b_n]$$

定理 2.4 (波尔察诺一魏尔斯特拉斯紧致性定理) 有界数列必有收敛子数列. 定理说, 如果数列 x_n 在闭区间 [a,b] 内, 即满足 ax,b(对任意 n)(有上界 b 与下界 a), 则 x, 必有收敛子数列.

定义 2.4 在数系 S 中, 如果数列 x_n 满足下列性质: 任给 >0, 存在 N, 使得只要 n>N, m>N, 有 $|x_n-x_m|< E$, 则称 x_n 为 S 的基本列, 或称为柯西列.

定义 2.5 称数系 S 是完备的, 如果 S 中的每个基本列都在 S 中有极限存在.

定理 2.5 (柯西) 实数系 R 是完备的.

定理 2.6 (柯西收敛原理) 在实数系中,数列 x_n 有极限存在的充分必要条件是:任给 e>0,存在 N, 当 n>N,m>N 时,有 $|x_n-x_m|<\epsilon$.

定理 2.7 对于 [a,b] 上的有界函数 f(x) 与 [a,b] 的任一个分法, 达布上和 S 是 (随中间点; 的选取而变的一切) 黎曼和的上确界, 而达布下和是黎曼和的下确界, 即

$$S = \sup_{\varepsilon_i \in [x_{i-1}, x_i]} \sum_{i=1}^n f(\varepsilon_i) \Delta x_i$$

$$s = \inf_{\varepsilon_i \in [x_{i-1}, x_i]} \sum_{i=1}^n f(\varepsilon_i) \Delta x_i$$

定理 2.8 若在一个分法 (Δ) 的分点之外添加新的分点以构成新的分法 (Δ'),则达布上和不增大而达布下和不减小: $s \leq s' \leq S' \leq S$, 其中 S = S 与 S = S 为相应于 (Δ) 的达布和,而 S' = S' 为相应于 (Δ') 的达布和.

定理 2.9 任一个下和总不超过任一个上和,即使它们对应于不同的分法.

定理 2.10 (达布定理) 当 (Δ)0 时, 达布上和 S 的极限是上积分, 达布下和 S 的极限是下积分:

$$\lim_{\lambda \to 0} S = \overline{I}$$

$$\lim_{\lambda \to 0} s = \underline{I}$$

并且 $s \leq \underline{I} \leq \overline{I} \leq S$

定理 2.11 (达布定理) f(x) 在 [a,b] 上 (按黎曼意义) 可积的充要条件是上积分等于下积分:

$$\overline{I}=\underline{I}$$

定理 2.12 f(x) 在 [a,b] 可积的充要条件是

$$\lim_{\lambda \to 0} (S - s) = 0$$

定理 2.13 在 [a,b] 上有界且仅有有限个间断点的函数 f(x), 必在 [a,b] 可积.

定理 2.14 若 f(x) 在 [a,b] 单调,则 f(x) 在 [a,b] 可积.

3 数项级数

定义 3.1 若级数 $\sum_{k=1}^{\infty} u_k$ 的部分和数列 $\{S_n\}$ 有极限存在(设为 S),则称级数 $\sum_{k=1}^{\infty} u_k$ 收敛,S 称为级数的和,记作 $\sum_{k=1}^{\infty} u_k = S$, 此时也称级数 $\sum_{k=1}^{\infty} u_k$ 收敛到 S,若部分和数列 $\{S_n\}$ 没有极限存在,则称该级数发散,此时它没有和。

定理 3.1 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,c 为任一常数,则级数 $\sum_{n=1}^{\infty} cu_n$ 也收敛,且 $\sum_{n=1}^{\infty} cu_n = c \sum_{n=1}^{\infty} u_n$.

定理 3.2 若级数 $\sum_{n=1}^{\infty} u_n$ 、 $\sum_{n=1}^{\infty} v_n$ 收敛,则级数 $\sum_{n=1}^{\infty} (u_n + v_n)$ 也收敛,且 $\sum_{n=1}^{\infty} (u_n \pm v_n) = \sum_{n=1}^{\infty} u_n \pm \sum_{n=1}^{\infty} v_n$.

定理 3.3 任意改变级数有限项的数值,不改变收敛性。

定理 3.4 (收敛的必要条件) 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则一般项 u_n 趋向于 0,则 $\lim_{n\to\infty} u_n = 0$.

定义 3.2 若级数的每一项都是非负的,则称此级数为正项级数。

定理 3.5 正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充分必要条件是部分和数列 $\{S_n\}$ 有上界。

定理 3.6 (比较判别法) 设有两个正项级数 $\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \cdots$, $\sum_{n=1}^{\infty} v_n = v_1 + v_2 + \cdots$,

若对充分大的n (即存在N, 当n > N 时)有 $u_n \leq v_n$ 其中c > 0与n 无关,则

- (1) 当 $\sum_{n=1}^{\infty} v_n$ 收敛时, $\sum_{n=1}^{\infty} u_n$ 收敛;
- (2) 当 $\sum_{n=1}^{\infty} u_n$ 发散时, $\sum_{n=1}^{\infty} v_n$ 发散。

定理 3.7 (比较判别法的极限形式) 设给定两正项级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 若 $\lim_{n\to\infty} = l$,则

- (1) 当 $0 < l < +\infty$ 时, $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 同时收敛或同时发散;
- (2) 当 l=0 时,由 $\sum_{n=1}^{\infty} v_n$ 收敛可推出 $\sum_{n=1}^{\infty} u_n$ 收敛;
- (3) 当 $l = +\infty$ 时,由 $\sum_{n=1}^{\infty} u_n$ 收敛推出 $\sum_{n=1}^{\infty} v_n$ 收敛。

定理 3.8 (比较判别法的另一形式) 设给定两正项级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$,若当 n 充分大后,有 $\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$ 则由 $\sum_{n=1}^{\infty} v_n$ 收敛可推出 $\sum_{n=1}^{\infty} u_n$ 收敛;由 $\sum_{u=1}^{\infty} u_n$ 发散可推出 $\sum_{n=1}^{\infty} v_n$ 发散。

定理 3.9 (达朗贝尔判别法) 设正项级数 $\sum_{n=1}^{\infty} u_n$ 的每一项都不为 0,且满足 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = l$ 则

- (1) 当 l < 1 时,级数 $\sum_{n=1}^{\infty} u_n$ 收敛;
- (2) 当 l > 1 时,级数 $\sum_{n=1}^{\infty} u_n$ 收敛;

定理 3.10 (柯西判别法) 设正项级数 $\sum_{n=1}^{\infty} u_n$ 满足 $\lim_{n\to\infty} \sqrt[n]{u_n} = l$ 则

- (1) 当 l < 1 时, 级数 $\sum_{n=1}^{\infty} u_n$ 收敛;
- (2) 当 l > 1 时,级数 $\sum_{n=1}^{\infty} u_n$ 收敛;

定理 3.11 对任意 r > p > 1, 存在 N, 使当 n > N 时, 有 $1 + \frac{r}{n} > (1 + \frac{1}{n})^p$.

定理 3.12 (拉阿比(Raabe)判别法)设正项级数 $\sum_{n=1}^{\infty} u_n$ 的项满足 $\lim_{n\to\infty} n(\frac{u_n}{u_{n+1}}-1)=S$ 则

- (1) 当 S > 1 时,级数 $\sum_{n=1}^{\infty} u_n$ 收敛;
- (2) 当 S < 1 时,级数 $\sum_{n=1}^{\infty} u_n$ 收敛;

定理 3.13 (柯西积分判别法) 若 $f(x) \ge 0$ 在 $[1, +\infty)$ 连续,单调下降, $u_n = f(n)$,则正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充分必要条件时极限 $\lim_{x \to +\infty} \int_1^x f(t) dt$ 存在。

定理 3.14 (莱布尼茨判别法) 设交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n(u_n > 0, n = 1, 2, \cdots)$ 中的数列 $\{u_n\}$ 单调下降趋向于 0,则交错级数收敛。

定理 3.15 (柯西收敛原理) 级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充分必要条件是: 对任给的 $\varepsilon > 0$, 存在 N, 只要 n > N,对任意正整数 p,有 $|u_{n+1} + u_{n+2} + \cdots + u_{n+p}| < \varepsilon$.

定理 3.16 若级数 $\sum_{n=1}^{\infty} |u_n|$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛。

定义 3.3 若级数 $\sum_{n=1}^{\infty} |u_n|$ 收敛,则称级数 $\sum_{n=1}^{\infty} u_n$ 是绝对收敛的;若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,但级数 $\sum_{n=1}^{\infty} |u_n|$ 发散,则称级数 $\sum_{n=1}^{\infty} u_n$ 是条件收敛的。

定理 3.17 (达朗贝尔判别法) $若 \lim_{n \to \infty} \frac{|u_{n+1}|}{|u_n|} = l$ 则

- (1) 当 l < 1 时级数 $\sum_{n=1}^{\infty} u_n$ 绝对收敛;
- (2) 当 l > 1 时级数 $\sum_{n=1}^{\infty} u_n$ 发散。

定理 3.18 (阿贝尔引理) 设

- (i) $\{a_k\}(k=1,2,\cdots,m)$ 单调 (单调上升或单调下降);
- (ii) $B_k = \sum_{j=1}^k b_j (k=1,2,\cdots,m)$ 有界,即存在 M>0,使得 $|B_k| \leq M(k=1,2,\cdots,m)$ 则 $|\sum_{k=1}^m a_k b_k| \leq M(|a_n|+2|a_m|)$.

定理 3.19 (狄利克雷判别法) 设

- (i) 级数 $\sum_{n=1}^{\infty} b_n$ 的部分和 $B_n = \sum_{k=1}^{\infty} b_k$ 有界,即存在 M > 0,使得 $|B_n| \leq M(n = 1, 2, \cdots)$;
 - (ii) 数列 $\{a_n\}$ 单调趋向于 0,则级数 $\sum_{k=1}^{\infty} a_n b_n$ 收敛。

定理 3.20 (阿贝尔判别法) 设

- (i) 级数 $\sum_{n=1}^{\infty} b_n$ 收敛;
- (ii) 数列 $\{a_n\}$ 单调有界,则级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛。

定理 3.21 若 $\sum_{n=1}^{\infty} u_n$ 级数收敛,其和为 $S,0 = p_0 < p_1 < p_2 < \cdots < p_k < p_{k+1} < \cdots$ 是任一严格上升的正整数数列, $\lim_{k\to\infty} p_k = +\infty$,则级数 $\sum_{k=0}^{\infty} (\sum_{j=p_k+1}^{p_{k+1}} u_j) = (u_1 + \cdots + u_{p_1}) + (u_{p_1+1} + \cdots + u_{p_2}) + (u_{p_k+1} + \cdots + u_{p_{k+1}}) + \cdots$ 也收敛,且其和仍为 S.

定理 3.22 若 $\sum_{n=1}^{\infty} u_n$ 级数绝对收敛,其和为 S,而 $\sum_{k=1}^{\infty} u_{j_k}$ 是 $\sum_{n=1}^{\infty} u_n$ 的任意一个重排,则 $\sum_{k=1}^{\infty} u_{j_k}$ 也绝对收敛,且其和仍为 S.

定理 3.23 (黎曼) 若 $\sum_{n=1}^{\infty} u_n$ 条件收敛,则

- (1) 适当重排,可使新级数发散;
- (2) 对任意实数 σ , 可找到 $\sum_{n=1}^{\infty} u_n$ 的适当重排, 是其和为 σ .

定理 3.24 若 $\sum_{n=1}^{\infty} u_n$ 条件收敛,则 $\sum_{n=1}^{\infty} u_n^+, \sum_{n=1}^{\infty} u_n^-$ 发散,并且发散到 $+\infty$ 与 $-\infty$.

定理 3.25 (柯西) 若级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 均绝对收敛,其和分别为 s 与 t,则他们各项之积 $u_i v_k (i, k=1, 2, \cdots)$ 按任何方式排列所构成的级数也绝对收敛,且其和为 st.

4 广义积分

定义 4.1 设函数 f(x) 在 $[a, +\infty)$ 由定义,并且在任意有限区间上可积,若极限 $\lim_{A\to +\infty}\int_a^A f(x)dx$ 存在,则称此极限值为 f(x) 在无穷区间上 $[a, +\infty)$ 的广义积分,记为 $\int_a^{+\infty} f(x)dx$ = $\lim_{A\to +\infty}\int_a^A f(x)dx$.

这时也称积分 $\int_a^{+\infty} f(x)dx$ 是收敛的。若极限 $\lim_{A\to +\infty} \int_a^A f(x)dx$ 不存在,则称积分 $\int_a^{+\infty} f(x)dx$ 是发散的,这时还使用记号 $\int_a^{+\infty} f(x)dx$,但它并不表示一个数。

类似地又可以定义积分 $\int_{-\infty}^a f(x)dx = \lim_{A \to -\infty} \int_A^a f(x)dx$. 当 $\int_a^{+\infty} f(x)dx$ 与 $\int_{-\infty}^a f(x)dx$ 都收敛时, 我们就说 $\int_{-\infty}^{+\infty} f(x)dx$ 收敛, 并且定义 $\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^a f(x)dx + \int_a^{+\infty} f(x)dx$ 。

显然,右边这两个数的和时与的选择无关的。事实上, $\int_{-\infty}^a f(x)dx + \int_a^{+\infty} f(x)dx = \int_{-\infty}^b f(x)dx + \int_b^a f(x)dx + \int_a^b f(x)dx + \int_b^{+\infty} f(x)dx = \int_{-\infty}^b f(x)dx + \int_b^{+\infty} f(x)dx + \int_b^{+\infty} f(x)dx$ 若 $\int_a^{+\infty} f(x)dx$ 与 $\int_{-\infty}^a f(x)dx$ 中由一个发散,则称 $\int_{-\infty}^{+\infty} f(x)dx$ 是发散的。

显然 $\int_{-\infty}^{+\infty} f(x)dx = \lim_{A' \to -\infty A \to +\infty} \int_{A}^{A'} f(x)dx$ 必须注意的是,这里 $A' \to -\infty$ 与 $A \to +\infty$ 两者之间是独立变化的。

定理 4.1 (无穷项积分的柯西收敛原理) 广义积分 $\int_a^{+\infty} f(x)dx$ 收敛的充分必要条件是对任 给 $\varepsilon > 0$,存在 A > 0,当 A', A'' > A 时,有 $|\int_{A''}^{A'} f(x)dx| < \varepsilon$ 和无穷级数相仿,有下面的定理。

定理 4.2 若 $\int_a^{+\infty} |f(x)| dx$ 收敛,且在任意有限区间 [a,A] 可积,则 $\int_a^{+\infty} f(x) dx$ 收敛.

定理 4.3 (比较判别法) 设 f(x) 在 $[a, +\infty)$ 有定义且在任何有限区间 [a, A] 可积,

(i) 若存在数 B,当 $x\geqslant B$ 时, $|f(x)|\leqslant \varphi(x)$ 而 $\int_a^{+\infty}\varphi(x)dx$ 收敛,则 $\int_a^{+\infty}|f(x)|dx$ 收敛。

若 $|f(x)| \ge \varphi(x) > 0$ (当 x > B), $\int_a^{+\infty} \varphi(x) dx$ 发散, 则 $\int_a^{+\infty} |f(x)| dx$ 发散。

(ii) 若 $\varphi(x) > 0$,且 $\lim_{x \to +\infty} \frac{|f(x)|}{\varphi(x)} = l$,则当 $0 \le l < +\infty$ 时,由 $\int_a^{+\infty} \varphi(x) dx$ 收敛 可推出 $\int_a^{+\infty} |f(x)| dx$ 收敛,时,由 $\int_a^{+\infty} \varphi(x) dx$ 发散可以推出 $\int_a^{+\infty} |f(x)| dx$ 发散。

定理 4.4 设函数 f(x) 定义 $[a,+\infty)$ 并在任意有限区间 [a,A] 可积。

(i) 若存在 p>1, B>a, 使得 $|f(x)| \leq \frac{C}{x^p}$, 当 x>B, 其中 C 是常数, 则 $\int_a^{+\infty} |f(x)| dx$ 收敛;

若存在 $p \leq 1$,及 B > a,使得 $|f(x)| \geqslant \frac{C}{xP}$,当 x > B,其中 C > 0 是常数,则 $\int_a^{+\infty} |f(x)| dx$ 发散。

(ii)若 $\lim_{x \to +\infty} x^p |f(x)| = \lim_{x \to +\infty} \frac{|f(x)|}{\frac{1}{x^p}} = l$ 则当 $0 \le l < +\infty, p > 1$ 时, $\int_a^{+\infty} |f(x)| dx$ 收敛;当 $0 \le l < +\infty, p \le 1$ 时。 $\int_a^{+\infty} |f(x)| dx$ 发散。

定理 4.5 (积分第二中值定理) 设 f(x) 在 [a,b] 上可积,而 g(x) 在 [a,b] 上单调,则在 [a,b] 存在 ε ,使得 $\int_a^b f(x)g(x)dx = g(a)\int_a^\varepsilon f(x)dx + g(b)\int_\varepsilon^b f(x)dx$.

特别地,如果 g(x) 单调上升且 $g(a) \ge 0$,那么存在 $\varepsilon \in [a,b]$,使得 $\int_a^b f(x)g(x)dx = g(b) \int_s^b f(x)dx$

如果 g(x) 单调下降且 $g(b) \ge 0$, 那么存在 $\varepsilon \in [a,b]$ 使得 $\int_a^b f(x)g(x)dx = g(a)\int_a^\varepsilon f(x)dx$.

定理 4.6 (狄利克雷判别法) 若 $\int_a^A |f(x)| dx$ 有界,即存在 M>0,使 $|\int_a^A |f(x)| dx| \leq M$, $\forall A>a$,g(x) 单调且当 $x\to +\infty$ 时 g(x) 趋向于 0,则积分 $\int_a^{+\infty} f(x)g(x) dx$ 收敛。

定理 4.7 (阿贝尔判别法) 若 $\int_a^{+\infty} f(x)dx$ 收敛 ,g(x) 在 $[a,+\infty)$ 单调有界 ,则 $\int_a^{+\infty} f(x)g(x)dx$ 收敛。

定义 4.2 设函数 f(x) 在区间 (a,b] 有定义且在任意区间 $[a+\eta,b]$ 可积(其中 $\eta>0$),在 $(a,a+\eta)$ 无界,若极限 $\lim_{\eta\to 0^+}\int_{a+\eta}^b f(x)dx$ 存在,则称瑕积分 $\int_a^b f(x)dx$ 是收敛的,且积 分值等于极限值,并用符号 $\int_a^b f(x)dx$ 表示这个积分值: $\int_a^b f(x)dx = \lim_{\eta\to 0^+}\int_{a+\eta}^b f(x)dx$ 若上述极限不存在,则称瑕积分 $\int_a^b f(x)dx$ 发散。

定理 4.8 (柯西收敛原理) 设瑕积分 $\int_a^b f(x)dx$ 只有唯一的瑕点 a,则 $\int_a^b f(x)dx$ 收敛的充分 必要条件是任给 $\varepsilon > 0$,存在 $\eta > 0$,当时 $0 < \eta', \eta'' < \eta'$,有 $|\int_{a+\eta'}^{a+\eta''} f(x)dx| < \varepsilon$.

有柯西原理后,便知对瑕积分可以引进绝对收敛与条件收敛的概念,并推知,绝对收敛的瑕积分必收敛,但反之不然。

定理 4.9 (比较判别法) 设瑕积分 $\int_a^b f(x)dx$ 只有唯一的瑕点 a.

- (i) 若存在 $\delta > 0$,使得 $|f(x)| \leq \varphi(x)$,当 $a < x < a + \delta$,而 $\int_a^b \varphi(x) dx$ 收敛,则 $\int_a^b |f(x)| dx$ 收敛。若 $|f(x)| \geq \varphi(x) > 0$,当 $a < x < a + \delta$,而 $\int_a^b \varphi(x) dx$ 发散,则 $\int_a^b |f(x)| dx$ 发散。
- (ii) 若 $\varphi(x) > 0$ 且 $\lim_{x \to a^+} \frac{|f(x)|}{\varphi(x)} = l$,则当 $0 \leqslant l < +\infty$ 时,由 $\int_a^b \varphi(x) dx$ 收敛,可推出 $\int_a^b |f(x)| dx$ 收敛;当时,由 $\int_a^b \varphi(x) dx$ 发散,可推出 $\int_a^b |f(x)| dx$ 发散。

定理 4.10 设瑕积分 $\int_a^b f(x)dx$ 只有唯一的瑕点 a.

(i) 若存在 p < 1 与 $\delta > 0$,使得 $|f(x)| \leq \frac{c}{(x-a)^p}$,当 $a < x < a + \delta$,其中 c 是常数,则 $\int_a^b |f(x)| dx$ 收敛。

若存在 $p\geqslant 1$ 及 $\delta>0$,使得 $|f(x)|\geqslant \frac{c}{(x-a)^p}$,当 $a< x< a+\delta$,其中 c 是正常数,则 $\int_a^b |f(x)|dx$ 发散。

(ii) 若 $\lim_{x\to a^+}(x-a)^p|f(x)|=\lim_{x\to a^+}\frac{|f(x)|}{(x-a)^p},$ 则当 $0\leqslant l<+\infty,\ p<1$ 时, $\int_a^b|f(x)|dx$ 收敛;当 $0\leqslant l<+\infty,\ p\geqslant 1$ 时, $\int_a^b|f(x)|dx$ 发散。

定理 4.11 (狄利克雷判别法) 设积分 $\int_a^b f(x)g(x)dx$ 有唯一的瑕点 a, $\int_{a+\eta}^b f(x)dx$ 是 η 有界函数,g(x) 单调且当 $x \to a$ 时趋向于零,那么积分 $\int_a^b f(x)g(x)dx$ 收敛。

定理 4.12 (阿贝尔判别法) 设积分 $\int_a^b f(x)g(x)dx$ 有唯一的瑕点 a, $\int_a^b f(x)dx$ 收敛,g(x) 单调有界,则 $\int_a^b f(x)g(x)dx$ 收敛。

5 函数项级数

定义 5.1 设函数序列 $\{f_n(x)\}$ 中的每个 $f_n(x)$ 都在 X 上有定义。另外有 f(x) 在 X 上有定义。若对任给 $\varepsilon>0$,存在时依赖于 ε 的正整数 $N=N(\varepsilon)$,使得当 n>N 时,有 $|f_n(x)-f(x)|<\varepsilon$

对 $x \in X$ 一致也成立,则称函数序列 $f_n(x)$ 在 X 一致收敛到 f(x)。

定理 5.1 若函数序列 $\{f_n(x)\}$ 的每一项 $f_n(x)$ 在 [a,b] 上连续,且 $\{f_n(x)\}$ 在 [a,b] 一致收敛到 f(x),则 f(x) 在 [a,b] 连续。

定理 5.2 若函数序列 $\{f_n(x)\}$ 的每一项在 [a,b] 连续,且 $\{f_n(x)\}$ 在 [a,b] 一致收敛到 f(x),则 $\int_a^b f(x) dx = \lim_{n \to +\infty} \int_a^b f_n(x) dx$

定理 5.3 若函数序列 $\{f_n(x)\}$ 在 [a,b] 逐点收敛到 f(x),而每一项 $f_n(x)$ 在 [a,b] 都有连续的微商 $f'_n(x)$,且 $\{f'_n(x)\}$ 在 [a,b] 一致收敛到 $\sigma(x)$,则 f(x) 在 [a,b] 有微商,且 $f'(x) = \sigma(x)$.

定义 5.2 设给定函数项级数 $\sum_{k=1}^{\infty} u_k(x)$,如果它的部分和序列 $S_n(x) = \sum_{k=1}^{\infty} u_k(x)$ 在 X 一致连续到函数 S(x),那么称级数 $\sum_{k=1}^{\infty} u_k(x)$ 在 X 一致收敛到和函数 S(x)。

定理 5.4 (柯西原理) 函数项级数 $\sum_{k=1}^{\infty} u_k(x)$ 在 X 一致收敛的充分必要条件是,对任给的 $\varepsilon > 0$,存在与 x 无关的 N,只要 n > N,对任意正整数 p 及任意 $x \in X$,都有 $|\sum_{k=n+1}^{n+p} u_k(x)| = |u_{n+1}(x) + u_{n+2}(x) + \cdots + u_{n+p}(x)| < \varepsilon$ 。

定理 5.5 函数项级数在 X 一致收敛的必要条件是一般项构成的函数序列 $\{u_nx\}$ 在 X 一致收敛于 0.

定理 5.6 (魏尔斯特拉斯判别法, 或称 M 判别法, 或称控制收敛判别法) 若对函数项级数 $\sum_{k=1}^{\infty} u_k(x)$, 存在 $M_k(k=1,2,\cdots)$, 使得 $|u_k(x)| \leq M_k$ 而正项数值级数 $\sum_{k=1}^{\infty} M_k$ 收敛,则 $\sum_{k=1}^{\infty} u_k(x)$ 在 X 一致收敛。

定义 5.3 称函数序列 $\{f_n(x)\}$ 在 X 一致有界,如果存在数 M > 0,使得 $|f_n(x)| \leq M$ 对一 切 $x \in X$ 和 $n = 1, 2, \cdots$ 一同时成立。

定理 5.7 (狄利克雷判别法) 设函数项级数 $\sum_{n=1}^{\infty} b_n(x)$ 的部分和序列 $\{\sum_{k=1}^{\infty} b_k(x)\}$ 在 X 上一致有界,对每个固定的 $x \in X$,数列 $\{a_n(x)\}$ 是单调的,且当 $n \to \infty$ 时函数序列 $a_n(x)$ 在 X 一直趋向于 0,则函数项级数 $\sum_{n=1}^{\infty} a_n(x) b_n(x)$ 在 X 一致收敛。

定理 5.8 (阿贝尔判别法) 设函数项级数 $\sum_{n=1}^{\infty} b_n(x)$ 在 X 一致收敛,函数序列 $\{a_n(x)\}$ 在 X 一致有界,且对每一个 $x \in X$ 是单调数列,则级数 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ 在 X 一致收敛。

定理 5.9 (和函数的连续性) 若 $u_n(x)(n=1,2,\cdots)$ 在 [a,b] 连续,函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在 [a,b] 一致收敛到 S(x),则和函数 S(x) 在 [a,b] 连续。

定理 5.10 (迪尼 Dsini) 若在闭区间 [a,b] 上, $u_n(x)(n=1,2,\cdots)$ 且在 [a,b] 连续,函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在 [a,b] 逐点收敛到 S(x),S(x) 在 [a,b] 连续,则级数 $\sum_{n=1}^{\infty} u_n(x)$ 在 [a,b] 一致收敛。

定理 5.11 (逐项积分) 若 $u_n(x)(n=1,2,\cdots)$ 在 [a,b] 连续,函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在 [a,b] 一致连续到 S(x),则 $\int_a^b S(x) dx = \sum_{n=1}^{\infty} \int_a^b u_n(x) dx$.

定理 5.12 (逐项求导) 若 $u_n(x)(n=1,2,\cdots)$ 在 [a,b] 有连续的微商 $u'_n(x)$, $\sum_{n=1}^{\infty} u_n(x)$ 在 [a,b] 逐点收敛到 S(x), $\sum_{n=1}^{\infty} u'_n(x)$ 在 [a,b] 一致连续到 $\sigma(x)$,则 S(x) 在 [a,b] 可导,且 $S'(x) = \sigma(x)$ 。

6 函数的幂级数展开

定理 6.1 (阿贝尔第一定理) 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在点 $x_1 (\neq 0)$ 收敛,则对满足不等式 $|x| < |x_1|$ 的一切点 x,幂级数都绝对收敛;若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x_2 (\neq 0)$ 处发散,则对满足不等式 $|x| > |x_1|$ 的一切点 x,幂级数都发散。

定理 6.2 对任意给定的幂级数,必存在唯一的 $r(r满足 0 \le r \le +\infty)$,使得幂级数在 |x| < r 绝对收敛,在 |x| > r 发散。

定理中r的称为幂级数的收敛半径。

定理 6.3 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的相邻两项系数之比满足条件 $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = \rho$,则幂级数的收敛半径 $r=\frac{1}{\rho}$ $(\rho=0$ 时理解为 $r=+\infty$, $\rho=+\infty$ 时理解为 r=0)。

定理 6.4 (阿贝尔第二定理) (1) 若幂级数的收敛半径为r > 0,则对任意b: 0 < b < r 幂级数在 [-b,b] 一致收敛;

- (2) 若幂级数的收敛半径为r > 0, 且幂级数在r收敛,则幂级数在[0,r]一致收敛;
- (3) 若幂级数的收敛半径为r > 0, 且幂级数在-r收敛,则幂级数在[-r,0]一致收敛。

定理 6.5 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 r>0,则它的和函数在 (-r,r) 连续。

定理 6.6 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 r,且幂级数在 r 收敛,则它的和函数在 [0,r] 连续,特别地 $\lim_{x\to r^-}\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n r^n$ 。

定理 6.7 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 r,和函数为 S(x),即 $S(x) = \sum_{n=0}^{\infty} a_n x^n (1) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n + \cdots$,-r < x < r,则幂级数在收敛区间内部可以逐项微商与逐项积分,即 $\int_n^x S(t) dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} 2 = a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + \cdots + \frac{1}{n+1} a_n x^{n+1} + \cdots$, $-r < x < rS'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} (3) = a_1 + 2a_2 x + 3a_3 x^2 + \cdots + n a_n x^{n-1} + \cdots$,-r < x < r,且 (2)、(3) 中的幂级数收敛半径仍然是 r。

定理 6.8 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 r > 0,则其和函数 S(x) 在 (-r,r) 内任意次可微,且 $S^{(k)}(x)$ 等于 $\sum_{n=0}^{\infty} a_n x^n$ 逐项微商 k 次所得的幂级数 $S^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n x^{n-k}$, -r < x < r。

定理 6.9 (唯一性) (i)如果函数 f(x) 在 (-r,r)(r>0) 可以展开成幂级数 $f(x) = \sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \cdots + a_k x^k + \cdots, -r < x < r$,那么必有 $a_k = \frac{1}{k!} f^{(k)}(0), k = 0, 1, 2, \cdots$ 。

(ii) 如果函数 f(x) 在 $(x_0-r,x_0+r)(r>0)$ 可以展开成幂级数 $f(x)=\sum_{k=0}^\infty a_k(x-x_0)^k=a_0+a_1(x-x_0)+\cdots+a_k(x-x_0)^k+\cdots$, $x_0-r< x< x_0+r$,那么系数 a_k 满足 $a_k=\frac{1}{k!}f^{(k)}(x_0)$, $k=0,1,2,\cdots$,通常称 $\sum_{k=0}^\infty \frac{f^{(k)}(0)}{k!}x^k=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots+\frac{f^{(k)}(0)}{k!}x^k+\cdots$ 为 f(x) 的麦克劳林级数,称 $\sum_{k=0}^\infty \frac{f^{(k)}(0)}{k!}(x-x_0)^k=f(0)+f'(0)(x-x_0)+\frac{f''(0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(k)}(0)}{k!}(x-x_0)^k+\cdots$ 为 f(x) 在 x_0 的泰勒级数。

定理 6.10 若 f(x) 的各阶微商在 (-r,r) 一致有界,即存在 M>0,使 $|f^{(n)}(x)| \leq M$, $\forall x \in (-r,r)$, $n=0,1,2,\cdots$,则 f(x) 在 (-r,r) 可以展开成幂级数 $f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n$,-r< x < r。

7 傅里叶级数

定理 7.1 三角函数中任意两个不同函数的乘积,在区间 $[-\pi,\pi]$ 上的积分为 0,即 $\int_{-\pi}^{\pi} \sin nx dx = 0$, $\int_{-\pi}^{\pi} \cos nx dx (n = 1,2,\cdots)$;

 $\int_{-\pi}^{\pi} \sin mx \cos nx dx (m, n = 1, 2, \cdots);$ $\int_{-\pi}^{\pi} \sin mx \sin nx dx, \int_{-\pi}^{\pi} \cos mx \cos nx dx (m \neq n, m, n = 1, 2, \cdots).$

定义 7.1 设 f(x) 以 2π 为周期,在 $[-\pi,\pi]$ 绝对可积,则由公式 $\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos nx dx, n = 0,1,2,\cdots \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin nx dx, n = 1,2,\cdots \end{cases}$ 决定的 a_n,b_n ,称为 f(x) 的傅里叶系数(或简称为傅氏系数),称由这些 a_n,b_n 决定的三角 级数 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 为 f(x) 的傅里叶级数(或傅氏级数) 记为 $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$.

定理 7.2 (黎曼—勒贝格) 若 g(t) 在 [a,b] 绝对可积,则 $\lim_{p\to+\infty}\int_a^b g(t)\sin ptdt=0$, $\lim_{p\to+\infty}\int_a^b g(t)\cos ptdt=0$.

定理 7.3 若 f(x) 以 2π 为周期,且在 $[-\pi,\pi]$ 绝对可积,则 f(x) 的傅里叶系数当 $n \to +\infty$ 时趋向于 0,即 $\lim_{n\to +\infty} a_n = \lim_{n\to +\infty} b_n = 0$

定理 7.4 (黎曼局部化定理) 若 f(x) 以 2π 为周期,在 $[-\pi,\pi]$ 绝对可积,则 f(x) 的傅里叶 级数在某点 x_0 的收敛或发散,只与函数 f(x) 在 x_0 附近的性质有关。

定理 7.5 (迪尼判别式) 若 f(x) 以 2π 为周期,在 $[-\pi,\pi]$ 绝对可积,且存在 $\delta > 0$,使得 $\int_0^{\delta} \frac{|\varphi(t)|}{t} dt$ 存在,其中 $\varphi_{x_0} = f(x_0 + t) + f(x_0 - t) - 2S$,则 f(x) 的傅里叶级数在 x_0 收敛 到 S,即 $S_n(f;x_0) \to S$ $(n \to +\infty)$.

定理 7.6 (利普希茨判别法) 若 f(x) 以 2π 为周期,在 $[-\pi,\pi]$ 绝对可积,且 x_0 在 a(a>0) 满足阶的利普希茨条件,即存在 $\delta>0$ 与常数 M,使得 $|f(x_0\pm t)-f(x_0)| \leq Mt^a (0< t \leq \delta)$ 成立,则函数 f(x) 的傅里叶级数在 x_0 收敛到 $f(x_0)$ 。

定理 7.7 若 f(x) 以 2π 为周期,在 $[-\pi,\pi]$ 绝对可积,且 f(x) 在 x_0 有左右微商 $f'_+(x_0)f'_-(x_0)$ 存在,则 f(x) 的傅里叶级数在 x_0 收敛到 $f(x_0)$ 。

定理 7.8 若 f(x) 以 2π 为周期, 在 $[-\pi,\pi]$ 逐段可微,则 f(x) 的傅里叶级数在 f(x) 的连续点收敛到,在 f(x) 的不连续点收敛到 $\frac{f(x+0)+f(x-0)}{2}$ 。

定理 7.9 若 f(x) 以 2π 为周期,在 $[-\pi,\pi]$ 内除有限个可去间断点或第一类间断点外是连续的,且 $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$,则

 $(i)\sum_{n=1}^{\infty} \frac{b_n}{n}$ 收敛;

(ii)
$$\int_0^x f(t)dt - \frac{a_0}{2}x = \sum_{n=1}^\infty \frac{b_n}{n} + \sum_{n=1}^\infty \frac{a_n \sin nx - b_n \cos nx}{n}$$

$$\Rightarrow - + n x \Rightarrow 0$$

定理 7.10 (费耶) 若 f(x) 是以 2π 为周期的连续函数: $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$,其中傅里叶级数的部分和记作 $S_0(x) = \frac{a_0}{2}, S_n(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)(n \ge 1)$ 。则 $\sigma_n(x) = \frac{S_0(x) + S_1(x) + \dots + S_n(x)}{n+1} - \frac{1}{n+1} \sum_{k=0}^{\infty} S_k(x)$ 当 $n \to \infty$ 时在 $[-\pi, \pi]$ 一致收敛到 f(x)。

定理 7.11 若 f(x) 以 2π 为周期,在 $[-\pi,\pi]$ 平方可积的函数,则在所有 n 阶三角多项式 $T_n(x)$ 中,当 $T_n(x)$ 取 f(x) 的傅里叶级数的 n 阶部分和 $S_n(x)$ 时,f(x) 与 $T_n(x)$ 的均方误差最小,即 $\frac{1}{2\pi}\int_{-\pi}^{\pi}|f(x)-S_n(x)|^2dx=min_{\{T_n\}}\Delta_n^2=min_{\{T_n\}}\frac{1}{2\pi}\int_{-\pi}^{\pi}|f(x)-T_n(x)|^2dx$,其中最小值是对所有 n 阶三角多项式取的,而 $S_n(x)=\frac{a_0}{2}+\sum_{k=1}^n(a_k\cos kx+b_k\sin kx)$ 是 f(x) 的傅里叶级数的 n 阶部分和,而且 $\frac{1}{2\pi}\int_{-\pi}^{\pi}|f(x)-S_n(x)|^2dx=min_{\{T_n\}}\Delta_n^2=min_{\{T_n\}}\frac{1}{2\pi}\int_{-\pi}^{\pi}|f(x)-T_n(x)|^2dx$

定理 7.12 (贝塞尔不等式) 设 f(x) 以 2π 为周期,在 $[-\pi,\pi]$ 平方可积,则 f(x) 的傅里叶系数 a_k,b_k 满足 $\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \leqslant \frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$ 。

定理 7.13 设 f(x) 在区间 [a,b] 上黎曼可积,则对任给 $\varepsilon > 0$,存在 [a,b] 上的连续函数 g(x),使得

$$\int_{a}^{b} |f(x) - g(x)|^{2} dx < \varepsilon \, \mathbb{E} \, g(a) = f(a), g(b) = f(b).$$

定理 7.14 设 f(x) 以 2π 为周期,在 $[-\pi,\pi]$ 平方可积,则对任给 $\varepsilon > 0$,存在三角多项式 T(x),使得 $(\frac{1}{2\pi}\int_{-\pi}^{\pi}|f(x)-T(x)|^2dx)^{\frac{1}{2}}<\varepsilon$

定理 7.15 若 f(x) 以 2π 为周期,在 $[-\pi,\pi]$ 平方可积的函数,则 f(x) 的傅里叶级数的部分和 $S_n(x)$ 在 $[-\pi,\pi]$ 平均收敛到 f(x),即 $\lim_{n\to\infty} (\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - S_n(x)|^2 dx)^{\frac{1}{2}} = 0$

定理 7.16 (帕塞瓦尔等式) 若 f(x) 以 2π 为周期,在 $[-\pi,\pi]$ 平方可积,则 $\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$.