Normák, kondíciószámok

1. Mutassa meg, hogy a lineáris normált tér bármely x, y elemére

$$||x|| - ||y|| | \le ||x - y||$$

teljesül!

2. $||A||_1 = ?$, $||A||_{\infty} = ?$, $||A||_2 = ?$

$$A = \left(\begin{array}{cc} -1 & 2\\ 3 & -2 \end{array}\right).$$

3. Az alábbi A mátrix esetén $||A||_1 = ?$, $||A||_{\infty} = ?$ Adjon meg egy-egy olyan $x \neq 0$ vektort, mellyel $||Ax||_1 = ||A||_1 ||x||_1$, illetve $||Ax||_{\infty} = ||A||_{\infty} ||x||_{\infty}$ teljesül!

(a)
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -5 & 9 \\ -1 & 2 & 8 \end{pmatrix} \qquad A = \begin{pmatrix} -2 & 1 & 4 \\ 0 & -5 & 2 \\ -3 & 3 & -4 \end{pmatrix}$$

- ${\bf 4.}\,$ Mutassa meg, hogy az egységmátrix normája 1 minden indukált mátrixnormában!
- **5.** Legyen n > 1 és tekintsük $\mathbb{R}^{n \times n}$ -en az ú.n. Frobenius-normát:

$$||A|| = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}\right)^{1/2}, \qquad A \in \mathbb{R}^{n \times n}.$$

Származtatható-e ez a mátrixnorma valamilyen vektornormából?

6. Legyen $A = (a_{ij}) \in \mathbb{R}^{n \times n}$. Mutassa meg, hogy

$$||A|| = \max_{i,j} |a_{ij}|$$

normát definiál $\mathbb{R}^{n \times n}$ -en! Lehet-e ez a norma vektornorma által indukált?

7. Legyen λ az $A \in \mathbb{R}^{n \times n}$ mátrix egy tetszőleges sajátértéke. Mutassa meg, hogy

$$|\lambda| \le ||A||$$

teljesül minden indukált mátrixnorma esetén.

8. Számítsa ki $\operatorname{cond}_{\infty}(A)$ -t az alábbi mátrixok esetén!

$$A = \begin{pmatrix} 1 & 2 \\ 4 & -2 \end{pmatrix}; \quad A = \begin{pmatrix} 2 & -1 \\ 1 & a \end{pmatrix}, \ (a \in \mathbb{R}); \quad A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & -3 & -4 \\ 2 & 2 & 5 \end{pmatrix}.$$

9. Oldja meg az alábbi egyenletrendszereket, hasonlítsa össze a megoldásokat!

$$\begin{pmatrix} 1 & 1 \\ 1 & 1.0001 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \quad \text{és} \quad \begin{pmatrix} 1 & 1 \\ 1 & 1.0001 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2.0001 \end{pmatrix}$$

10. Oldja meg meg az Ax = b lineáris egyenletrendszert, ha

$$A = \begin{pmatrix} 1 & 0.99 \\ 0.99 & 0.98 \end{pmatrix}, \qquad b = \begin{pmatrix} 1.99 \\ 1.97 \end{pmatrix}.$$

Tegyük fel, hogy b helyett $b + \Delta b$ ismert,

$$b + \Delta b = \begin{pmatrix} 1.98 \\ 1.98 \end{pmatrix}.$$

Oldja meg az $A(x+\Delta x)=b+\Delta b$ lineáris egyenletrendszert! Számítsa ki a $\frac{\|\Delta x\|_{\infty}}{\|x\|_{\infty}}$, $\frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}$ relatív hibákat! Számísa ki az A kondíciószámát (∞ -normában)!

11. Legyen $A \in \mathbb{R}^{n \times n}$ reguláris mátrix, $0 \neq c \in \mathbb{R}$. cond(cA) = ?

MATLAB feladatok

- 1. Írjon 1-1 függvényt az 1- és ∞-mátrixnormák számítására!
- 2. Számítsa ki a 6×6 -os Hilbert-mátrix kondíciószámát 2- és ∞ -normában! (Használja a cond és hilb MATLAB-függvényeket!) Legyen B egy 6×6 -os véletlen mátrix (használja a rand függvényt), számítsa ki B kondíciószámát is (végezzen több kísérletet)!
- 3. Állítsa elő a következő $A \in \mathbb{R}^{100 \times 100}$ mátrixot és $b \in \mathbb{R}^{100}$ vektort, és a "backslash" operátort használva oldja meg az Ax = b egyenletrendszert (azaz alkalmazza az $x = A \setminus b$ parancsot). Ezután perturbálja a b vektort, pl. 1 helyett legyen b(100) = 1.00001 és oldja meg a rendszert újra. Számítsa ki az A kondíciószámát (adjon egy egzakt képletet is $\operatorname{cond}_{\infty}(A)$ -ra).

$$a_{ij} = \begin{cases} 1, & \text{ha } i = j, \\ -1, & \text{ha } i < j, \\ 0, & \text{egyébként,} \end{cases} b = (-98, -97, \dots, 0, 1)^{T}.$$

4. Írjon egy MATLAB-függvényt, mely adott $s \in (0,1)$ esetén előállítja az

$$A = A(s) = \frac{1}{s} \begin{pmatrix} 1 + s^2 & 1 - s^2 \\ 1 - s^2 & 1 + s^2 \end{pmatrix}$$

mátrixot, továbbá kiszámítja az $||A||_{\infty}$ és $\operatorname{cond}_{\infty}(A)$ értékeket!

5. Írjon egy MATLAB-függvényt, mely adott $s \in (0,1)$ és $\varepsilon > 0$ esetén megoldja az Ax = b lineáris egyenletrendszert, ahol A az előző feladatban adott mátrix, $b = (1,1)^T$, majd megoldja az egyenletrendszert akkor is, ha a b vektor $\delta b = (\varepsilon, -\varepsilon)^T$ hibával terhelten adott, továbbá kiszámítja a megoldás relatív hibáját (maximum-normában)!