Introduction Classes Asso. multi-mono Asso. multi-multi Classes-Associations Asso. mono-mono (rare) Classes Faibles Héritages

Bases de Données : Modèle Logique (Algèbre Relationnelle)

Stéphane Devismes

Université Grenoble Alpes

26 août 2020

Traduction du modèle conceptuel (diagrammes) vers le modèle logique (algèbre relationnelle).

Traduction du modèle logique (algèbre relationnelle) vers le modèle physique (SQL).

Introduction

- 2 Classes
- 3 Asso. multi-mono
- 4 Asso. multi-multi
- 6 Classes-Associations
- 6 Asso. mono-mono (rare)
- Classes Faibles
- 8 Héritages

Il y a des contraintes qui ne peuvent être exprimées que comme des commentaires dans chacun des 3 modèles (si on se limite à SQL pour le modèle physique).

Mais ce ne sont pas tout-à-fait les mêmes contraintes dans les 3 modèles...

À la fin, en utilisant les déclencheurs de PL/SQL on doit pouvoir exprimer toutes les contraintes.

On pourrait aussi gérer les contraintes au niveau de l'application (par exemple, JDBC), mais c'est déconseillé.

S. Devismes (UGA) Modèle Logique 26 août 2020 4 / 51 S. Devismes (UGA) Modèle Logique 26 août 2020 5 / 5

IntroductionClassesAsso. multi-monoAsso. multi-multiClasses-AssociationsAsso. mono-mono (rare)Classes FaiblesHéritages00●00000000000000000000000000000000000

Clé primaire

La traduction du modèle conceptuel (diagrammes) vers le modèle logique (algèbre relationnelle) que nous présentons ici propose, **pour chaque relation** construite, un **ensemble d'attributs**

• dont les valeurs déterminent les valeurs de tous les attributs.

Dans l'immense majorité des cas,

• cet ensemble est minimal pour la propriété précédente.

Dans la suite, on le qualifiera donc (de manière un peu abusive) de clé primaire.

Dans le cas où la propriété de minimalité n'est pas satisfaite, il s'agit d'une superclé, c'est-à-dire un ensemble d'attribut *A* contenant (au moins) une clé. Il suffit donc d'**extraire une clé** *C* **de la superclé** *A* et d'utiliser celle-ci comme contrainte de clé primaire.

S. Devismes (UGA)		Modèle Logique			26 août 2020	6 / 51			
Introduction 0000000		Asso. multi-mono	Asso. multi-multi	Classes-Associations	Asso. mono-mono (rare)	Classes Faibles	Héritages 0000000		
Projection: exemple									

	R_1						
Α	В	С					
а	b	С					
а	y	С					
X	y	z					
u	V	w					
r	s	t					
r	s	Z					

$$R_1[A] = \{a, x, u, r\}$$

$$R_1[A,B] = \{\langle a,b\rangle, \langle a,y\rangle, \langle x,y\rangle, \langle u,v\rangle, \langle r,s\rangle\}$$

Projection

Pour tout relation R et tout ensemble A d'attributs de R, on note R[A] la projection de R sur A.

Le résultat d'une projection est un ensemble.

Soient R_1 et R_2 deux relations, K_2 la clé primaire de R_2 , et supposons que les attributs qui composent K_2 sont aussi des attributs de R_1 , alors la contrainte de clé étrangère ou contrainte d'intégrité référentielle disant que les attributs K_2 de R_1 font référence à la clé primaire K_2 de R_2 est notée :

$$R_1[K_2] \subseteq R_2[K_2]$$
.

S. Devismes (UGA) Modèle Logique 26 août 2020 8 / 51 S. Devismes (UGA) Modèle Logique 26 août 2020 9 / 5

ntroduction Classes Asso. multi-mono Asso. multi-multi Classes-Associations Asso. mono-mono (rare) Classes Faibles Héritages

Cardinalités

Nous allons tout d'abord considérer les « cas de base » où les cardinalités 0..* (multi) ou 0..1 (mono).

Ensuite on ajoutera des contraintes lorsque 0..* est remplacé par 1..* ou lorsque 0..1 est remplacé par 1.

Pour les autres cardinalités, on se ramène a un des cas traités ici, en ajoutant des contraintes (en commentaire si nécessaire).

re) Classes Faibles	Héritages
000	000000

Classes → Relations

Soit *C* une classe qui n'est ni une classe faible ni une sous-classe ni une super-classe.

Alors C est traduite par une relation R_C .

Chaque attribut de C est un attribut de R_C , la clé primaire de R_C est celle de C.

Attention, la suite de la traduction pourra faire apparaître des attributs supplémentaires pour R_C . Cette remarque est valable pour toute la suite des traductions.

$$\begin{array}{c|c}
\hline C \\
\hline K \\
\hline A
\end{array}
\mapsto R_C(\underline{K},A,\ldots)$$

Fonction partielle

Soit S une association multi-mono de C_1 vers C_2 qui n'est ni une référence (pour une classe faible) ni un héritage. Soient R_1 et R_2 les relations construites à partir de C_1 et C_2 .

Fonction partielle :
$$I_1 = 0..*$$
 et $I_2 = 0..1$

Alors S est traduite en ajoutant à R_1 les attributs de K_2 avec la contrainte de clé étrangère disant que ces attributs font référence à la clé primaire K_2 de R_2 .

$$\begin{array}{c|c}
\hline C_1 \\
\hline K_1 \\
\hline A_1
\end{array}
\xrightarrow{0..*} \xrightarrow{S = 0..1} \overline{C_2} \\
\hline K_2 \\
\hline A_2
\end{array} \mapsto R_1(\underline{K_1}, A_1, \underline{K_2}, \ldots), R_2(\underline{K_2}, A_2, \ldots)$$

$$R_1[\underline{K_2}] \subseteq R_2[\underline{K_2}]$$

S. Devismes (UGA) Modèle Logique 26 août 2020 13 / 51 S. Devismes (UGA) Modèle Logique 26 août 2020 15 / 5

Introduction Classes Asso. multi-mono Asso. multi-multi Classes-Associations Asso. mono-mono (rare) Classes Faibles Héritages

Fonction totale

$$I_1 = 0..* \text{ et } I_2 = 1$$

On doit ajouter la contrainte que les attributs K_2 dans R_1 ont toujours une valeur.

Lorsque B est un ensemble d'attributs de R, on note « B pas \mathtt{NULL} dans R » pour dire que chacun des attributs de B a une valeur en chaque ligne de la table R.

Fonction totale surjective

$$I_1 = 1..* \text{ et } I_2 = 1$$

On a à la fois $R_1[K_2] = R_2[K_2]$ et chaque attribut de K_2 a une valeur dans R_1 .

$$\begin{array}{c|c} \hline C_1 \\ \hline K_1 \\ \hline A_1 \\ \end{array} \xrightarrow{1..*} \begin{array}{c|c} S & 1 \\ \hline K_2 \\ \hline A_2 \\ \end{array} \quad \mapsto \quad R_1(\underline{K_1},A_1,\underline{K_2},\ldots), \; R_2(\underline{K_2},A_2,\ldots) \\ \\ R_1[K_2] = R_2[K_2] \\ \hline K_2 \; \text{pas NULL dans} \; R_1 \\ \end{array}$$

duction Classes Asso. multi-mono Asso. multi Classes-Associations Asso. mono-mono (rare) Classes Faibles Héritages

Fonction partielle surjective

$$I_1 = 1..* \text{ et } I_2 = 0..1$$

On doit renforcer la contrainte $R_1(K_2) \subseteq R_2(K_2)$ en égalité $R_1[K_2] = R_2[K_2]$.

$$\frac{C_1}{\frac{K_1}{A_1}} \xrightarrow{1..*} \xrightarrow{S = 0..1} \frac{C_2}{\frac{K_2}{A_2}} \mapsto R_1(\underline{K_1}, A_1, \underline{K_2}, \dots), R_2(\underline{K_2}, A_2, \dots)$$

$$R_1[\underline{K_2}] = R_2[\underline{K_2}]$$

S. Devismes (UGA) Modèle Logique 26 août 2020 18 / 51 S. Devismes (UGA) Modèle Logique 26 août 2020 19 / 5

Exemple (2/2)

Méthode

Soit S une association multi-multi entre C_1 et C_2 .

Soient R_1 et R_2 les relations construites à partir de C_1 et C_2 , et soient K_1 et K_2 leurs clés primaires.

Alors S est traduite par une relation R_3 .

Les attributs de R_3 correspondent à **l'ensemble des attributs de** K_1 **et de** K_2 (avec renommage si besoin pour ne pas les confondre).

La clé primaire de R_3 est formée de tous ses attributs.

De plus on a **deux contraintes de clé étrangère** : les attributs K_1 de R_3 font référence à la clé de R_1 , et les attributs K_2 de R_3 font référence à la clé de R_2 :

 $R_3[K_1] \subseteq R_1[K_1]$ et $R_3[K_2] \subseteq R_2[K_2]$.

$$\frac{C_{1}}{K_{1}} \xrightarrow{1..*} \xrightarrow{S = 0..*} \frac{C_{2}}{K_{2}} \mapsto R_{1}(\underline{K_{1}}, A_{1}, ...), R_{2}(\underline{K_{2}}, A_{2}, ...), R_{3}(\underline{K_{1}}, \underline{K_{2}}),$$

$$R_{3}[K_{1}] \subseteq R_{1}[K_{1}], R_{3}[K_{2}] = R_{2}[K_{2}]$$

S. Devismes (UGA) Modèle Logique 26 août 2020 23 / 51 S. Devismes (UGA) Modèle Logique 26 août 2020 24 / 51

Cas de base : $I_1 = 0..*$ et $I_2 = 1..*$

Cas de base :
$$I_1 = 1..*$$
 et $I_2 = 1..*$

Asso multi-multi

$$\begin{array}{c|c}
\hline C_1 \\
\hline K_1 \\
\hline A_1
\end{array} \xrightarrow{0..*} \xrightarrow{S = 1..*} \overline{C_2} \\
\hline K_2 \\
\hline A_2
\end{array} \mapsto R_1(\underline{K_1}, A_1, \ldots), R_2(\underline{K_2}, A_2, \ldots), R_3(\underline{K_1}, \underline{K_2}),$$

$$R_3[K_1] = R_1[K_1], R_3[K_2] \subseteq R_2[K_2]$$

$$\begin{array}{c|c}
\hline C_1 \\
\hline K_1 \\
\hline A_1
\end{array} \xrightarrow{1..*} \xrightarrow{S = 1..*} \overline{C_2} \\
\hline K_2 \\
\hline A_2
\end{array} \mapsto R_1(\underline{K_1}, A_1, \ldots), R_2(\underline{K_2}, A_2, \ldots), R_3(\underline{K_1}, \underline{K_2}),$$

$$R_3[K_1] = R_1[K_1], R_3[K_2] = R_2[K_2]$$

En résumé : 5 tables

Auteurs (nom, prenom)

Oeuvres (isbn, titre)

Livres (numL, isbn, numA)

Ecrivains(isbn, nom, prenom)

Adherents (numA, nom, prenom, adresse)

avec 4 contraintes de clés étrangères et 2 autres contraintes :

Livres [numA] ⊂ Adhérents [numA]

Livres [isbn] ⊂ Oeuvres [isbn]

Ecrivains [isbn] ⊆ Oeuvres [isbn]

Ecrivains [nom, prenom]

Auteurs [nom, prenom]

isbn pas NULL dans Livres

Un adhérent emprunte au plus 5 livres

S. Devismes (UGA) Modèle Logique 26 août 2020 27 / 51 S. Devismes (UGA) Modèle Logique 26 août 2020

Méthode pour le cas multi-multi

Soit C_3 une classe-association **multi-multi** entre C_1 et C_2 .

c'est similaire au cas de l'association multi-multi

Ici on traite le cas de base : $I_1 = I_2 = 0..*$

$$\begin{array}{c|c}
\hline C_1 \\
\hline K_1 \\
\hline A_1
\end{array} \xrightarrow{0..*} \xrightarrow{0..*} \overline{C_2} \\
\downarrow \\
\hline C_3 \\
\hline A_3
\end{array} \mapsto R_1(\underline{K_1}, A_1, \ldots), R_2(\underline{K_2}, A_2, \ldots), R_3(\underline{K_1}, \underline{K_2}, A_3),$$

$$R_3[K_1] \subseteq R_1[K_1], R_3[K_2] \subseteq R_2[K_2]$$

Méthode pour le cas multi-mono (rare)

Soit C_3 une classe-association **multi-mono** entre C_1 et C_2 .

c'est similaire au cas de l'association multi-mono

Ici on traite le cas de base : $I_1 = 0..*$ et $I_2 = 0..1$

$$\begin{array}{c|c}
\hline C_1 \\
\hline K_1 \\
\hline A_1
\end{array} \xrightarrow{0..*} \xrightarrow{0..1} \overline{C_2} \\
\downarrow \\
\hline C_3 \\
\hline A_2
\end{array} \mapsto R_1(\underline{K_1}, A_1, K_2, \underline{A_3}, \ldots), R_2(\underline{K_2}, A_2, \ldots),$$

$$R_1[K_2] \subseteq R_2[K_2]$$

 K_2 est NULL dans $R_1 \Rightarrow A_3$ est NULL dans R_1

Exemple : Elèves / Diplôme

Exemple : ajouter la date d'emprunt

S. Devismes (UGA) Modèle Logique 26 août 2020 32 / 51 S. Devismes (UGA) Modèle Logique 26 août 2020 33 / 5'

Introduction Classes Asso. multi-mono Asso. multi-multi Classes-Associations Asso. mono-mono (rare) Classes Faibles Héritages

Méthode (1/3)

Soit S une association mono-mono de C_1 et C_2 . Soient R_1 et R_2 les relations construites à partir de C_1 et C_2 .

Cas:
$$I_1 = 0..1$$
 et $I_2 = 0..1$.

Alors S est traduite en ajoutant à R_1 les attributs de K_2 avec la contrainte de clé étrangère disant que ces attributs font référence à la clé primaire K_2 de R_2 et une contrainte d'unicité de K_2 dans R_1 . (Les rôles de R_1 et R_2 sont interchangeables.)

$$\begin{array}{c|c}
\hline C_1 \\
\underline{K_1} \\
A_1
\end{array}
\xrightarrow{0..1} S \quad 0..1
\xrightarrow{C_2} K_2 \\
\underline{K_2} \\
A_2$$

$$\mapsto R_1(\underline{K_1}, A_1, \underline{K_2}, \dots), R_2(\underline{K_2}, A_2, \dots)$$

$$R_1[\underline{K_2}] \subseteq R_2[\underline{K_2}]$$

Méthode (3/3)

Soit S une association mono-mono de C_1 et C_2 . Soient R_1 et R_2 les relations construites à partir de C_1 et C_2 .

Cas :
$$I_1 = 1$$
 et $I_2 = 1$.

Alors S est traduite en ajoutant à R_1 les attributs de K_2 avec la contrainte de clé étrangère disant que ces attributs font référence à la clé primaire K_2 de R_2 . De plus K_2 est unique et non-nulle dans R_1 . (Les rôles de R_1 et R_2 sont interchangeables.)

$$\begin{array}{|c|c|c|c|}\hline C_1 \\ \hline K_1 \\ \hline A_1 \\ \hline \end{array} \xrightarrow{1 \quad S \quad 1} \overline{C_2} \\ \hline K_2 \\ \hline A_2 \\ \hline \end{array} \mapsto R_1(\underline{K_1}, A_1, \underline{K_2}, \dots), R_2(\underline{K_2}, A_2, \dots)$$

 $R_1[K_2] = R_2[K_2]$ K_2 est unique dans R_1 K_2 est non-nulle dans R_1 uction Classes Asso. multi-mono on transport of the first of the firs

Méthode (2/3)

Soit S une association mono-mono de C_1 et C_2 . Soient R_1 et R_2 les relations construites à partir de C_1 et C_2 .

Cas :
$$I_1 = 0..1$$
 et $I_2 = 1$.

Alors S est traduite en ajoutant à R_1 les attributs de K_2 avec la contrainte de clé étrangère disant que ces attributs font référence à la clé primaire K_2 de R_2 . De plus K_2 est unique et non-nulle dans R_1 .

Plusieurs exemples possibles :

- Employé/Ordinateur : chaque ordinateur est utilisé par exactement 1 employé et chaque employé travaille sur 0 ou 1 ordinateur
- Personne en couple (boucle sur une seule table)
- . . .

Nous traitons maintenant le premier cas.

S. Devismes (UGA) Modèle Logique 26 août 2020 37 / 51 S. Devismes (UGA) Modèle Logique 26 août 2020 38 / 51

Exemple: Employé/Ordinateur

S. Devismes (UGA)			Modèle Logique			26 août 2020	39 / 51
Introduction 0000000		Asso. multi-mono	Asso. multi-multi	Classes-Associations	Asso. mono-mono (rare)	Classes Faibles ○●○	Héritages 0000000
Métho	nde ((2/2)					

• En général :

• Si $l_2 = 1..*$ alors la contrainte est $R_2[K_1] = R_1[K_1]$.

Méthode (1/2)

Soit $C_2 \Rightarrow C_1$ une référence de C_2 (classe faible) vers C_1 .

Soit R_1 la relation construite à partir de C_1 .

Alors C_2 est traduite par une relation R_2 .

Les attributs de R_2 sont formés de tous les attributs de K_1 auxquels on ajoute tous ceux de C_2 .

La clé primaire de R_2 est formée de K_1 et du complément de clé primaire de C_2 .

S. Devismes (UGA) Modèle Logique 26 août 2020 42 / 51 S. Devismes (UGA) Modèle Logique 26 août 2020 43 /

3 Méthodes

Nous considérons l'héritage suivant : les classes C_2, \ldots, C_k $(k \ge 2)$ sont des sous-classes de C_1 .

				26 août 2020	
Asso. multi-mono	Asso. multi-multi	Classes-Associations	Asso. mono-mono (rare)	Classes Faibles	Héritages ○○●○○○

Première Méthode

- Une relation R_1 pour C_1 .
 - Les attributs de R_1 sont ceux de C_1 .
 - La clé primaire de R_1 est la clé K_1 de C_1 .
- Une relation R_i pour toute classe C_i avec $2 \le i \le k$.
 - Les attributs de R_i sont les attributs de K_1 + ceux de C_i .
 - La clé primaire de R_i est K_1 .
 - On a une contrainte de clé étrangère pour chaque R_i avec $2 \le i \le k$.
 - Pour tout i, j avec $2 \le i < j \le k$ on a une contrainte $R_i[K_1] \cap R_i[K_1] = \emptyset$.
 - Si l'héritage est complet, on en plus la contrainte $R_1[K_1] = \bigcup_{i=2}^{k} R_i[K_1]$.

Exemple pour k = 3.

 $R_1(\underline{K_1}, A_1, ...), R_2(\underline{K_1}, A_2), R_3(\underline{K_1}, A_3),$ $R_2[K_1] \subseteq R_1[K_1]$ $R_3[K_1] \subseteq R_1[K_1]$ $R_2[K_1] \cap R_3[K_1] = \emptyset$

Si l'héritage est complet : $R_1[K_1] = R_2[K_1] \cup R_3[K_1]$

S. Devismes (UGA)		N)	Modèle Logique				46 / 51
roduction		Asso. multi-mono	Asso. multi-multi	Classes-Associations	Asso. mono-mono (rare)	Classes Faibles	Héritages ○○○●○○○

Deuxième Méthode

Pour un héritage exclusif et complet (ajouter une classe « autres » si besoin).

ATTENTION : à éviter si C_1 est impliquée dans d'autres associations.

- Pas de relation pour C_1 .
- Une relation R_i pour toute classe C_i avec $2 \le i \le k$.
 - Les attributs de R_i sont les attributs de C_1 + ceux de C_i .
 - La clé primaire de R_i est K_1 , la clé de C_1 .
- Pour tout i, j avec $2 \le i < j \le k$ on a une contrainte $R_i[K_1] \cap R_i[K_1] = \emptyset$.

Exemple pour k = 3.

S. Devismes (UGA) Modèle Logique 26 août 2020 47 / 51 S. Devismes (UGA) Modèle Logique 26 août 2020 48 / 51

S. Devis	S. Devismes (UGA)			Modèle Logique			49 / 51
Introduction 000000	Classes 00	Asso. multi-mono	Asso. multi-multi	Classes-Associations	Asso. mono-mono (rare)	Classes Faibles	Héritages ○○○○○●
Exem	nle						
Exem	pie						

S. Devismes (UGA) Modèle Logique 26 août 2020 51 / 51

Introduction Classes Asso. multi-mono Asso. multi-multi Classes-Associations occasions occasion

Troisième Méthode

Pour un héritage avec une seule sous-classe.

- Une seule relation R_1 pour C_1 et C_2 .
- Les attributs de R_1 sont ceux de C_1 + ceux de C_2 + un attribut spécial « is- C_2 » de type Nombre.
- La valeur de « is- C_2 » est 1 si l'objet appartient à C_2 et 0 sinon.
- La clé primaire de R_1 est K_1 , la clé de C_1 .
- Pour chaque ligne de R_1 , si « is- C_2 » vaut 0 alors les attributs de C_2 ont pour valeur NULL.

S. Devismes (UGA) Modèle Logique 26 août 2020 50 / 5