→ Point de vue de spé

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ définies par $u_0=1, w_0=2$ et pour tout $n\in\mathbb{N}$,

$$u_{n+1} = \frac{u_n + 2w_n}{3} \quad \text{et } w_{n+1} = \frac{u_n + 4w_n}{5} \, .$$

questions préliminaires :

	Α		В	C
1				
2	ln:		u_n	vn
3		0	1	2
4		1	1,666666667	1,8
5		2	1,75555556	1,773333333
6		3	1,767407407	1,769777778
7		4	1,768987654	1,769303704
8		5	1,769198354	1,769240494
9		6	1,769226447	1,769232066
10		7	1,769230193	1,769230942
11		8	1,769230692	1,769230792

- a) Calculer « à la main » $u_1 et w_1$.
- b) A la calculatrice, calculer u_{10} et w_{10} .
- c) Quelles conjectures peut-on faire?
- d) Quelle formule doit-on mettre dans la cellule B4? Dans la cellule C4?

1. Soit la suite $(t_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $t_n=w_n-u_n$.

- (a) Montrer que $(t_n)_{n\in\mathbb{N}}$ est géométrique.
- (b) Exprimer t_n en fonction de n. En déduire que, pour tout n, $t_n > 0$.
- (c) Calculer la limite, si elle existe, de $(t_n)_{n\in\mathbb{N}}$.

2. Montrer que pour tout entier naturel n, on a $u_n < w_n$

- 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 5. En déduire que les suites $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent pais son les convergent bers v_n in line 6. On pose pour tout entien potent

6. On pose pour tout entier naturel n, $x_n = 3u_n + 10w_n$

- a) Montrer que $(x_n)_{n \in \mathbb{N}}$ est constante
- b) En déduire la limite de $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$

Suit ooksocente. (Un) 77. (Wn) V

→ Point de vue de maths expert

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ définies par $u_0=1, w_0=2$ et pour tout $n\in\mathbb{N}$,

$$u_{n+1} = \frac{u_n + 2w_n}{3}$$
 et $w_{n+1} = \frac{u_n + 4w_n}{5}$.

On introduit les matrices suivantes
$$A = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{5} & \frac{4}{5} \end{pmatrix}$$
 et pour tout entier naturel n $U_n = \begin{pmatrix} u_n \\ w_n \end{pmatrix}$

1) a) Montrer que pour tout entier naturel n , $U_{n+1} = A \times U_n$

- 1) a) Montrer que pour tout entier naturel n, $U_{n+1} = A \times U_n$
 - b) En déduire u_1 et w_1 .
 - c) Exprimer pour tout entier naturel n , U_n en fonction de A et de U_0 .
- 2) On introduit les matrices $D = \begin{pmatrix} 1 & 0 \\ 0 & \frac{2}{15} \end{pmatrix}$ et $P = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{-10}{\sqrt{109}} \\ \frac{\sqrt{2}}{2} & \frac{3}{\sqrt{109}} \end{pmatrix}$
 - a) Montrer que P est inversible et $P^{-1} = \begin{pmatrix} \frac{3\sqrt{2}}{13} & \frac{10\sqrt{2}}{13} \\ \frac{-\sqrt{109}}{13} & \frac{\sqrt{109}}{13} \end{pmatrix}$
 - b) Déterminer $P^{-1}AP$
 - c) Montrer par récurrence, pour tout entier naturel n non nul $A^n = P \times D^n P^{-1}$
 - d) pour tout entier naturel n non nul, déterminer D^n
- 3) Déterminer pour tout entier naturel n non nul A^n
- 4) En déduire l'expression de u_n et w_n . et les limites de ces deux suites