で定義される写像 H: $\partial M_{Ci-1+\epsilon} \times J \rightarrow \partial M_{Ci-1+\epsilon} \times J$ は微分同相写像である。イソトピーの条件 (i) から Hは $t \leq 0$ とせる」の範囲では tによらず "一定」である。あとの都合で、Hの上下をひべり返した

$$\widetilde{H}(\alpha,t) = (h_{l-t}(\alpha),t)$$

を考える。 $\widetilde{H}: \partial M_{ci-1}+\epsilon \times J \to \partial M_{ci-1}+\epsilon \times J + \partial M_{ci-1}+\epsilon \times J$

(3.87)の両辺を同一視 なると、そこに含まれる開集合 Mci-i+EX(-8,1+8)には上向きバ外ル場Xが載っているが、この積分曲線が{p}×(-8,1+8)であるから、この開集合上ではXはベクトル場

であると考えられる。微分同相写像 \widetilde{H} : $\partial M_{C_{i-1}+\epsilon} \times (-\delta, 1+\delta) \rightarrow \partial M_{C_{i-1}+\epsilon} \times (-\delta, 1+\delta)$ により X を写した $\widetilde{H}_*(X)$ を考えると , \widetilde{H} が $t \leq 0$ と $t \geq 1$ の範囲で一定であることがら、その範囲で、 $\widetilde{H}_*(X)$ は $\frac{\partial}{\partial t}$ (= X) のままである。 J なわち、 開集合 $\partial M_{C_{i-1}+\epsilon} \times (-\delta, 1+\delta)$ の上 で

ベクトル場 Xを H*(X)に変え(も、つなぎ目(téoxtelの範囲)のところでもとの Xのままなので、開集合の Mc_{i-1} te \times (-8、1+8)の外ではもとの Xに 滑らかにつながる。こうにな形によって得られた M上の新しいベクトル 場を丫とすると、開集合 ∂Mc_{i-1} te \times (-8、1+8)上でのYの積分曲線は、図39に示されたようになっている。

図39 丫の積分曲線

ベクトル場 Xの積分曲線に沿って「流す」写像とは微分同相写像 Φ: Mci-1+ε→Mci-2 が決まったように、ベクトル場)Yの積分曲線に沿って流すことにより、微介同相写像

$$(3.89) \qquad \psi: M_{c_{i-1}+\xi} \to M_{c_{i}-\xi}$$