EVALUATION OF NACA 2408 AIRFOIL AS A 2D GLIDER WING

Paul Yuska, AE516, 1/27/2020

Introduction:

Figure 1: Airfoil Shape for NACA 2408

Table 1: Freestream Conditions

Pressure	1 atm / 101,300 Pa		
Velocity	17.88 m/s		
Density	1.225 kg/m3		
Temperature	298 K		
Reynolds Number	1,000,000		

Table 2: XFOIL Estimates for Max Cl and Cl/Cd at Re = 1e6

Max Cl	12.75 deg	1.3714
Max CI/Cd	2.5 deg	86.812

Methodology:

Figure 2: Computational Domain Grid

Figure 3: Near-Field Grid

Figure 4: Leading Edge Grid

Figure 5: Trailing Edge Grid

Table 3: Grid Specifics

Cell Count	21,234
Normal-to-Wall Spacing	1e-5 m
Submodels Chosen	k-ω, SST
Numerical Scheme	SIMPLE
Spatial Accuracy	2 nd Order

Table 4: Boundary Conditions

Airfoil Surface	Wall, no-slip		
Tunnel Floor/Ceiling	Symmetry		
Inlet	Velocity inlet		
Outlet	Pressure outlet		

Table 5: Reference Values

Area	1 m2		
Density	1.225 kg/m3		
Depth	1 m		
Enthalpy	0 J/kg		
Length	1 m		
Pressure	0 Pa		
Temperature	298 K		
Velocity	17.88 m/s		
Viscosity	1.7894e-5 kg/m-s		
Gamma	1.4		

Results:

AoA (deg)	Cl	Cd	CI/Cd	Cm	Lift (N)	Drag (N)	Mom (N-m)
-2.25	-0.0230	0.0101	-2.3278	0.0492	-4.5893	1.9715	9.6441
0	0.2151	0.0101	21.194	0.0489	42.122	1.9875	9.5842
3.5	0.5823	0.0121	48.317	0.0478	114.04	2.3601	9.3606
7	0.9359	0.0166	56.518	0.0454	183.26	3.2425	8.8981
10.5	1.2618	0.0261	48.344	0.0407	247.09	5.1110	7.9666
12.5	1.3882	0.0378	36.699	0.0370	271.83	7.4070	7.2373

Figure 6: Lift coefficient comparison.

Figure 7: Drag coefficient comparison

Figure 8: Moment coefficient comparison.

Figure 9: Coefficient ratio comparison.

Figure 10: Zero-lift (-2.25 deg AoA) pressure contour and streamlines.

Figure 11: 0 deg AoA pressure contours and streamlines.

Figure 12: 3.5 deg AoA pressure contours and streamlines.

Figure 13: 7 deg AoA pressure contours and streamlines.

Figure 14: 10.5 deg AoA pressure contours and streamlines.

Figure 15: Max lift (12.5 deg AoA) pressure contours and streamlines.

Figure 16: Wall y+ along airfoil.

Figure 17: Boundary layer development toward TE of airfoil.

Discussion:

The XFOIL and Fluent lift coefficient curves match quite well (<10% difference). The drag, moment, and ratio of coefficients do not match as closely. This is likely due to differences in turbulence or viscosity models for the flow. NACA 2408 is a thin airfoil, and therefore does not create much form drag; the remaining sources of drag are induced drag, which, being a function of lift, should be quite accurate, and viscous drag. Differences in how XFOIL calculates turbulence will result in significant differences in resultant drag.

Appendix: Convergence Histories

-2.2 deg AoA:

0 deg AoA:

3.5 deg AoA

7 deg AoA:

10.5 deg AoA:

12.5 deg AoA:

