LOGISTIC REGRESSION & ASSIGNMENT 1 HANDOUT

MACHINE LEARNING 1 UE (INP.33761UF)

Thomas Wedenig

Apr 17, 2024

Institute of Theoretical Computer Science Graz University of Technology, Austria

TABLE OF CONTENTS

1. Logistic Regression - Recap

2. Logistic Regression - Demo

3. Assignment 1 Handout

LOGISTIC REGRESSION - RECAP

- We have a dataset $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$
- $\mathbf{x}^{(i)} \in \mathbb{R}^{D}$ and $y^{(i)} \in \mathcal{C}$
- $\cdot \ \mathcal{C} \text{ contains discrete classes, e.g. } \mathcal{C} = \{\texttt{cat}, \texttt{dog}, \texttt{rabbit}\}$
- \cdot Binary Classification: $\mathcal C$ contains 2 elements

(Informal) Binary Classification Problem

Let $C = \{-1, 1\}$. Given \mathcal{D} , find a function $g : \mathbb{R}^D \to C$ that "predicts the labels well":

$$g(\mathbf{x}) \approx \mathbf{y}$$

https://www.springboard.com/blog/data-science/regression-vs-classification/
Machine Learning 1 UE – Summer Semester 2024 – Logistic Regression & Assignment 1 Handout – Thomas Wedenig

CLASSIFICATION EXAMPLE

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Male	Clicked on Ad
0	68.95	35	61833.90	256.09	0	0
1	80.23	31	68441.85	193.77	1	0
2	69.47	26	59785.94	236.50	0	0
3	74.15	29	54806.18	245.89	1	0
4	68.37	35	73889.99	225.58	0	0
5	59.99	23	59761.56	226.74	1	0
6	88.91	33	53852.85	208.36	0	0
7	66.00	48	24593.33	131.76	1	1

LOGISTIC REGRESSION

- · Logistic Regression: A particular method for binary classification problems
- We want to model the conditional probability $p(y = 1 \mid \mathbf{x}) \in [0, 1]$
- · Given x, we use a linear function

$$f_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^{\mathsf{T}} \phi(\mathbf{x})$$

to compute a **logit** $\in (-\infty, \infty)$

• To convert the logit to a probability, we use the (logistic) sigmoid function:

$$p(y = 1 \mid \mathbf{x}) = \sigma(f_{\theta}(\mathbf{x})), \qquad \sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$p(y = 1 \mid \mathbf{x}) = \sigma(\boldsymbol{\theta}^T \phi(\mathbf{x})), \qquad \sigma(z) = \frac{1}{1 + \exp(-z)}$$

- σ maps a real number $\in (-\infty, \infty)$ to the interval [0,1]
- σ is differentiable everywhere and its gradients are informative $\textcircled{\ensuremath{\mathfrak{e}}}$
- Finally, use the predicted probability to make a decision
 - If $p(y = 1 \mid \mathbf{x}) \ge 0.5$, predict $\hat{y} = +1$
 - If $p(y = 1 | \mathbf{x}) < 0.5$, predict $\hat{y} = -1$

- · How to interpret the output of the linear function $f_{\theta}(\mathbf{x}) = \theta^{\mathsf{T}} \phi(\mathbf{x})$?
- Given x, let $\pi_x = p(y = 1 \mid x)$ be the predicted probability of success
- $f_{\theta}(\mathbf{x})$ models the log-odds:

$$\widetilde{f_{\theta}(\mathbf{x})} = \log\left(\frac{\pi_{\mathbf{x}}}{1 - \pi_{\mathbf{x}}}\right)$$

· From which follows that

$$\pi_{\mathsf{X}} = \sigma(f_{\boldsymbol{\theta}}(\mathsf{X}))$$

$$\exp(L) = \frac{\pi_x}{1 - \pi_x}$$

$$\exp(L) - \pi_x \cdot \exp(L) = \pi_x$$

$$exp(l) = \pi + \pi \cdot exp(l)$$

$$\frac{1}{11_{x}} = \frac{\exp(l)}{1 + \exp(l)} = \frac{\frac{1}{\exp(l)}}{\frac{1}{\exp(l)} + 1} = \frac{1}{\exp(-l) + 1} = 6(l)$$

$$\Pi_{x} = \frac{\exp(L)}{1 + \exp(L)}$$

INTERPRETATION

- · How to interpret the output of the linear function $f_{\theta}(\mathbf{x}) = \theta^{T} \phi(\mathbf{x})$?
- Given x, let $\pi_x = p(y = 1 \mid x)$ be the predicted probability of success
- $f_{\theta}(\mathbf{x})$ models the log-odds:

$$f_{\theta}(\mathbf{x}) = \log\left(\frac{\pi_{\mathbf{x}}}{1 - \pi_{\mathbf{x}}}\right)$$

· From which follows that

$$\pi_{\mathsf{X}} = \sigma(f_{\boldsymbol{\theta}}(\mathsf{X}))$$

Assumption of Logistic Regression !

We assume a linear relationship between $\phi(x)$ and the log-odds of the event happening.

Loss Function

· (Binary) Cross-Entropy Loss Function:

$$\mathcal{L}_{CE}(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}[y^{(i)} = 1] \log \pi_{\mathbf{x}^{(i)}} + \mathbb{1}[y^{(i)} = -1] \log (1 - \pi_{\mathbf{x}^{(i)}})$$

with
$$\pi_{\mathbf{x}^{(i)}} = \sigma(\boldsymbol{\theta}^{\mathsf{T}} \phi(\mathbf{x}^{(i)}))$$

· (Binary) Cross-Entropy Loss Function:

$$\mathcal{L}_{CE}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}[y^{(i)} = 1] \log \pi_{\mathbf{x}^{(i)}} + \mathbb{1}[y^{(i)} = -1] \log (1 - \pi_{\mathbf{x}^{(i)}})$$

with
$$\pi_{\mathbf{x}^{(i)}} = \sigma(\boldsymbol{\theta}^{\mathsf{T}} \phi(\mathbf{x}^{(i)}))$$

- · No closed form solution for $\theta^* = \operatorname{argmin}_{\theta} \mathcal{L}_{CE}(\theta)$
- But $\mathcal{L}_{CF}(\theta)$ is **differentiable** and **convex** in θ

- Use some **optimizer** to solve for θ^*
 - · e.g., Gradient Descent

REGULARIZATION/PENALTY

- In ML, we usually prefer "simple" models
- · We can encode this into the loss function
- Assumption: Simple models have parameter values in θ that are close to 0
- Thus, we may **penalize** the model if the following grows large:

$$\sum_{i=1}^D \theta_i^2 = \|\boldsymbol{\theta}\|_2^2$$

· We now minimize

$$\mathcal{L}(\boldsymbol{\theta}) = \mathcal{L}_{CE}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_2^2$$

where λ controls the **strength of regularization**

ASSIGNMENT 1 HANDOUT