Exercice 1

On consdière la suite (u_n) définie par :

$$u_0 = 1 \quad \forall n \in \mathbf{N} \quad u_{n+1} = \sqrt{u_n^2 + \frac{1}{2^n}}$$

1. a) Programmer une fonction en Python def liste_suite(n):, qui prend en entrée un entier n et retourne en sortie la liste $[u_0, ..., u_n]$

```
from __future__ import divison
from math import sqrt

def liste_suite(n):

u = 1

y

#----fin
```

- **b)** Conjecturer la limite de la suite (u_n) à l'aide de votre programme, vous devriez reconnaître une constante assez connue.
- **2.** Montrer que $\forall n \in \mathbb{N} \quad u_n \geq 1$.
- **3.** Montrer que $\forall n \in \mathbb{N} \quad 0 \le u_{n+1} u_n \le \frac{1}{2^{n+1}}$.
- **4.** (classique) Déduire que $\forall n \in \mathbb{N}$ $u_n \le u_0 + \sum_{k=1}^n \frac{1}{2^k}$.
- **5.** Montrer que la suite (u_n) est convergente.
- **6.** Soit (v_n) la suite définie :

$$\forall n \in \mathbb{N} \quad v_n = u_n^2$$

- **a)** Pour tout entier naturel n exprimer v_n en fonction de n.
- **b)** En déduire la limite ℓ de la suite (u_n) .
- **7.** Donner un équivalent simple de ℓu_n

Exercice 2

Soit (x_n) la suite définie par :

$$x_0 \in]0,1[\forall n \in \mathbb{N} \quad x_{n+1} = x_n - x_n^2.$$

- **1.** Détreminer le sens de variations de la suite (x_n) .
- **2.** Montrer que : $\forall n \in \mathbb{N} \quad x_n \in]0,1[$.
- **3.** En déduire la nature de la suite (x_n) et sa limite éventuelle.