Факультет компьютерных технологий и прикладной математики Кафедра информационных технологий 02.03.03

Приложение нейросетевых алгоритмов Лабораторная работа № 3

Тема: радиальные нейронные сети

Цель работы: получение знаний и практических навыков построения однослойных нейронных сетей.

Задание: требуется разработать алгоритм и программу решения задачи 1 на языке Python без использования специализированных библиотек.

Указания к работе. Студенты решают задачу № 1. Студент разрабатывает алгоритм и программу решения задачи на языке Python без использования специализированных библиотек, используя систему управления версиями и размещая её на личный Git репозиторий. Студенту будет необходимо подготовить отчёт по лабораторной работе в электронной форме. За лабораторную работу студент может получить оценку «зачтено», «удовлетворительно», «хорошо», «отлично».

Задача 1. Рассмотреть пример решения задачи аппроксимации данных с использованием искусственной нейронной сети на основе радиально симметричных функций. Дана экспериментальная зависимость в виде набора из 9 пар точек: значений независимой переменной x и соответствующих им значений функции отклика y, представленных в таблице.

Таблица 1 – Экспериментальная выборка данных

№ примера	X	У
1	-2,0	-0,48
2	-1,5	-0,78
3	-1,0	-0,83

4	-0,5	-0,67
5	0,0	-0,20
6	0,5	0,70
7	1,0	1,48
8	1,5	1,17
9	2,0	0,20

Требуется, используя данную выборку в качестве обучающей, получить аппроксимирующую нейронной модель В виде сети на основе Единственный радиально-симметричных функций. вход данной единственный независимой переменной, сети – значение выход – соответствующее ей значение функции.

Структура сети (рисунок 1), включает 5 скрытых нейронов (радиальных элементов). Требуется указать центры и радиусы скрытых радиальных элементов. В качестве центров радиальных элементов использовать значения независимой переменной в опытах 1, 3, 5, 7 и 9.

Указание:

Использовать функцию Гаусса, евклидову норму. Рассчитать веса по формуле: $w = \left(G^T G\right)^{-1} G^T y$.

Рисунок 1 – Структура радиальной нейронной сети

Рисунок 2 – График нейросетевой аппроксимирующей зависимости

Список источников:

- 1. Осовский С. Нейронные сети для обработки информации / Пер. с польск. И. Д. Рудинского. М.: Финансы и статистика, 2004. 344 с.
- 2. Харитонова А. А. Нейрокомпьютерные системы: методические указания к контрольной работе для специальностей / ПГУТИ. Самара: ПГУТИ, 2009. 69 с.
- 3. Глубокое обучение и нейронные сети с Python и Pytorch, введение. Часть I [Электронный ресурс]. URL: https://pythonist.ru/glubokoe-obuchenie-i-nejronnye-seti-s-python-i-pytorchvvedenie-chast-i/ (дата обращения: 27 января 2024).
- 4. РуТогсh [Электронный ресурс]. URL: https://pytorch.org/ (дата обращения: 27 января 2024).
- 5. Нейронные сети на основе радиально-симметричных функций [Электронный ресурс]. URL: https://neuronus.com/theory/nn/954-nejronnye-seti-na-osnove-radialnosimmetrichnykh-funktsij.html (дата обращения: 27 января 2024).