

Introduction to Machine Learning for everyone

Thanh Tran, PhD candidate

https://thanhvotran.github.io/

A new paradigm...

Al, Machine Learning and Deep Learning

Typology of ML systems

ML systems are traditionally classified in three categories, according to the amount and type of human supervision during training. Hybrid approaches exist.

Supervised Learning: expected results (called labels or tags) are given to the system along with training data.

Unsupervised Learning: training data comes without the expected results. The system must discover some structure in the data by itself.

Reinforcement Learning: without being given an explicit goal, the system's decisions produce a reward it tries to maximize.

Regression

The system predicts continuous values. Examples: temperature forecasting, asset price prediction...

Classification

OF QUEENSLAND
AUSTRALIA

The system predicts discrete values: input is categorized.

- Binary: only two possibles classes. Examples: cat/not a cat, spam/legit mail, benign/malignant tumor.
- Multiclass: several mutually exclusive classes.
 Example: handwritten digit recognition.
- Multilabel: several non-mutually exclusive classes.
 Example: face recognition.

Clustering

Data is partitioned into groups.

Anomaly Detection

The system is able to detect abnomal samples (outliers).

How do "machines" learn actually?

Algorithm 1: K Nearest Neighbors

Prediction is based on the k nearest neighbors of a data sample.

Algorithm 2: Decision Trees

Build a tree-like structure based on a series of discovered questions on the data.

Algorithm 3: Neural Networks (Deep Learning)

Layers of loosely neuron-inpired computation units that can approximate any continuous function.

Python-based Machine Learning Liraries

Linear Regression with Python

Problem: Predicting sales based on an advertisement on TV, Radio and Newspaper.

1		TV	Radio	Newspaper	Sales
2	1	230.1	37.8	69.2	22.1
3	2	44.5	39.3	45.1	10.4
4	3	17.2	45.9	69.3	9.3
5	4	151.5	41.3	58.5	18.5
	5	180.8	10.8	58.4	12.9
7	6	8.7	48.9	75	7.2
8	7	57.5	32.8	23.5	11.8
	8	120.2	19.6	11.6	13.2
10	9	8.6	2.1	1	4.8
11	10	199.8	2.6	21.2	10.6
13	44	00.1	- A	04.0	0.0

Reference

Machine Learning landspace's plots, https://colab.research.google.com/github/bpesquet/mlhandbook/

Example of LR, https://www.mishrark.com/machine-learning/3-regression/simple-linear-regression-in-python