CS109 – Data Science

Verena Kaynig-Fittkau

vkaynig@seas.harvard.edu
staff@cs109.org

Announcements

- Due date for HW4 has been changed!
- Now due Monday 11/03
- No late days, just one dropbox

Announcements

- Chris Wiggins, the Chief Data Scientist at the New York Times, is presenting in the IACS seminar tomorrow
- Lunch at 12:30, seminar starts at 1 pm
- MD G115

Separating Hyperplane

- x: data point
- y: label $\in \{-1, +1\}$
- w: weight vector
- b: bias

Maximum Margin Classification

Tips and Tricks

- SVMs are not scale invariant
- Check if your library normalizes by default
- Normalize your data
 - mean: 0, std: 1
 - map to [0,1] or [-1,1]
- Normalize test set in same way!

XOR problem revised

Did we add information to make the problem seperable?

SVM Applet, Part 2

http://www.ml.inf.ethz.ch/education/lectures and seminars/annex estat/Classifier/JSupport VectorApplet.html

Parameter Tuning

Given a classification task

- Which kernel?
- Which kernel parameter values?
- Which value for C?

Try different combinations and take the best.

Grid Search

Zang et al., "Identification of heparin samples that contain impurities or contaminants by chemometric pattern recognition analysis of proton NMR spectral data", Anal Bioanal Chem (2011)

Multi Class

One vs All

- Train n classifier for n classes
- Take classification with greatest positive margin
- Slow training

Multi Class

One vs One

- Train n(n-1)/2 classifiers
- Take majority vote
- Fast training

Multi Class

Number of samples

Unsupervised Learning

- K-means
- Hierarchical Clustering
- Mean-shift

Rand index, stability

Applications

Unsupervised Setting

Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

K-means – Algorithm

• Initialization:

choose k random positions

— assign cluster centers $\mu^{(j)}$ to these positions

K-means

Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

K-means

- Until Convergence:
 - Compute distances $||x^{(i)} \mu^{(j)}||$
 - Assign points to nearest cluster center

– Update Cluster centers:

$$\mu^{(j)} = \frac{1}{N_j} \sum_{x_i \in C_j} x_i$$

K-means

Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

K-means Example

K-means Example

K-means Example

K-means Summary

- Guaranteed to converge
- Result depends on initialization

Number of clusters is important

- Sensitive to outliers
 - Use median instead of mean for updates

Initialization Methods

- Random Positions
- Random data points as Centers
- Random Cluster assignment to data points

Start several times

How to find k

- Cross Validation
- Partition data into n folds
- Cluster on n-1 folds
- Compute sum of squared distances to centroids for validation set

Mean Shift

- 1. Put a window around each point
- 2. Compute mean of points in the frame.
- 3. Shift the window to the mean
- 4. Repeat until convergence

Mean Shift

http://w ww.youtu be.com/w atch?v=k maQAsot T9s

Mean Shift

Fischer et al., "Clustering with the Connectivity Kernel", NIPS (2003)

Mean Shift Summary

- Does not need to know number of clusters
- Can handle arbitrary shaped clusters
- Robust to initialization
- Needs bandwidth parameter (window size)
- Computationally expensive
- Very good article:

http://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/

Multi-feature object trajectory clustering for video analysis

Nadeem Anjum Andrea Cavallaro

Hierarchical Clustering

- Produces complete structure
- No predefined number of clusters

- Similarity between clusters:
 - single-linkage: $\min\{d(x,y): x \in \mathcal{A}, y \in \mathcal{B}\}$
 - complete-linkage: $\max\{d(x,y):x\in\mathcal{A},y\in\mathcal{B}\}$
 - average linkage: $\frac{1}{|\mathcal{A}|\cdot|\mathcal{B}|}\sum_{x\in\mathcal{A}}\sum_{y\in\mathcal{B}}d(x,y)$

Single Linkage

 $\min\{d(x,y):x\in\mathcal{A},y\in\mathcal{B}\}$

Complete Linkage

 $\max\{d(x,y): x \in \mathcal{A}, y \in \mathcal{B}\}\$

Linkage Matters

- Single linkage: tendency to form long chains
- Complete linkage: Sensitive to outliers
- Average-link: Trying to compromise between the two

http://home.dei.polimi.it/matteucc/Clustering/tutorial-html/AppletH.html

Chaining Phenomenon

Outlier Sensitivity

+ 2*epsilon

- 1*epsilon

http://nlp.stanford.edu/IR-book/html/htmledition/img1569.png

Swiss Role Problem

only adjacent clusters can be merged together

Tree of Life

http://www.zo.utexas.edu/faculty/antisense/DownloadfilesToL.html