NATIONAL CENTER FOR IMMUNIZATION AND RESPIRATORY DISEASES Reverse transcription methods impact genome sequencing coverage for RNA viruses

R.L. Marine<sup>1</sup>, N. Momin<sup>2</sup>, D.D. Wagner<sup>2</sup>, G. Nabakooza<sup>3</sup>, and M.S. Oberste<sup>1</sup>

<sup>1</sup>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; <sup>2</sup>Eagle Global Scientific LLC, Atlanta, Georgia, USA; <sup>3</sup>Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA

# Reverse transcription methods generate distinct and reproducible coverage profiles, with traditional two-step methods resulting in the most even coverage patterns for small linear RNA virus genomes

## **BACKGROUND**

Sequencing of viral pathogens has become indispensable for tracking the evolution and spread of disease. For sequencing of RNA viruses, sample preparation requires converting extracted RNA to cDNA, as most of the existing next-generation sequencing platforms require DNA as template. Previous studies have evaluated the impact of different library preparation methods and sequencing platforms on the quality and completeness of assembled genomes, but the effects of RNA to cDNA conversion strategies are underexplored.

# **METHODS**

In this study, we prepared a panel of four enterovirus (EV) D68 and three EV-A71 isolates for sequencing using four random reverse transcription (RT) procedures (Figure 1):

- a laboratory-developed one-step (OS) RT protocol
- a sequence-independent single-primer amplification (SISPA)
- two traditional two-step RT procedures leveraging enzymes/protocols available through **Thermo** Fisher and New England BioLabs (**NEB**)

| STEP             | One-step*                                                         | SISPA                           | NEB                                                                                                | Thermo                                                         |
|------------------|-------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| First Strand RT  | qScript Flex,<br>random hexamer<br>and oligo dT<br>primer (1:100) | SuperScript IV,<br>N1-8N primer | NEB Ultra II RNA First Strand<br>Synthesis Module, random<br>primer and oligo dT primer<br>(1:100) | SuperScript IV, , random<br>hexamer and oligo dT pr<br>(1:100) |
| Second Strand RT | Vent exo-                                                         | Klenow 3'->5' exo-              | NEBNext® Ultra™ II Non-<br>Directional RNA Second                                                  | Second strand cDNA<br>Synthesis Kit#                           |
| Additional Steps |                                                                   | N1 PCR                          | Strand Synthesis Module                                                                            |                                                                |

\*For the one-step procedure, first strand and second strand are performed as one reaction/step

Figure 1. Enzymes/kits used for each step of the four RT procedures

After reverse transcribing all samples using each procedure, samples were purified using SPRI bead cleanup (1.8X) and sequencing libraries were prepared using the Illumina DNA library preparation kit.

Prepared libraries were sequenced on an Illumina MiSeq 300 cycle paired-end run.

# **DATA ANALYSIS**

Raw fastq data was processed using Trimmomatic v0.39 to removed low quality bases, adapters and reads less than 50 bp after trimming. Filtered fastq data was then mapped to respective reference genomes using Geneious Prime v 2023.1.1 ("Low Sensitivity/Fastest" setting and no fine tuning) to determine the number/percentage of reads mapped and general coverage statistics. For the coverage pattern analysis, filtered datasets were normalized per sample by random subsampling using seqtk v1.3.

## **RESULTS**

- The SISPA method generated a higher proportion (9.9–63.5%) of target virus reads per sample compared to the one-step (0–15.5%) and two-step RT procedures (0.5–20.4%) (Figure 2)
- The one-step and two-step RT procedures generated greater breadth and evenness of read coverage
  - Read coverage CV was 28.4–34.2% and 24.5–35.0% for Thermo Fisher and NEB two-step RT procedure samples, respectively, compared to 39.2–70.3% with the one-step RT procedure and 73.7–94.5% with the SISPA procedure (Table 1)
- The SISPA method generated the most distinct read coverage patterns compared to other RT methods (Pearson's r values of 0.54–0.92 for intra-method comparisons vs 0.22–0.59 for inter-method comparisons, Table 2)
- Higher read coverage at the 3' ends of EV-D68 and EV-A71 genomes was obtained for the NEB and Thermo two-step RT procedure (Figure 3)

# **CONCLUSIONS**

For whole genome sequencing of viruses, RT methods which produce more even coverage profiles (traditional two-step) are preferable for generating complete assemblies and maximizing the number of samples per sequencing run. Conversely, because of the high proportion of viral reads obtained using the SISPA method, this procedure may be favored when viral detection is the main goal of sequencing.

# FIGURES/TABLES

**Table 1.** Mean read coverage and coefficient of variation (CV) for EV-D68 and EV-A71 samples.

|                        | One-step |      | SISPA |      | NEB  |      | Thermo |      |
|------------------------|----------|------|-------|------|------|------|--------|------|
|                        | Mean     | CV   | Mean  | CV   | Mean | CV   | Mean   | CV   |
| EV-D68 Fermon          | 1        | *    | 2124  | 73.7 | 28   | 35.0 | 20     | 34.2 |
| EV-D68 USA/MO/14-18949 | 126      | 42.2 | 3954  | 83.8 | 1125 | 27.6 | 822    | 28.4 |
| EV-D68 USA/MO/18954    | 1319     | 42.5 | 3203  | 85.4 | 1528 | 28.9 | 711    | 30.8 |
| EV-D68 USA/IL/14-18952 | 1078     | 39.2 | 11744 | 75.7 | 1782 | 24.5 | 118    | 29.0 |
| EV-A71 USA/AK/16-19516 | 368      | 52.2 | 4388  | 91.5 | 1297 | 26.1 | 455    | 30.0 |
| EV-A71 USA/CT/16-19519 | 218      | 40.3 | 5825  | 94.5 | 1804 | 26.3 | 1068   | 29.7 |
| EV-A71 USA/WA/16-19522 | 309      | 70.3 | 7785  | 68.3 | 1073 | 27.1 | 900    | 33.0 |

<sup>\*</sup>CV not considered due to low number of reads for sample:



**Figure 2.** The percent viral reads mapped per sample, grouped by RT procedure OS- One-step

Table 2. Pearson correlation coefficient (r) values for comparisons of EV-D68 and EV-A71 coverage profiles generated using the same RT method ("Intra") or using differing RT methods ("Inter")

|          | EV-       | D68       | EV-A71    |           |  |
|----------|-----------|-----------|-----------|-----------|--|
|          | Intra     | Inter     | Intra     | Inter     |  |
| One-step | 0.88-0.94 | 0.33-0.74 | 0.57-0.83 | 0.22-0.85 |  |
| SISPA    | 0.76-0.92 | 0.23-0.59 | 0.54-0.89 | 0.22-0.45 |  |
| NEB      | 0.77-0.82 | 0.23-0.78 | 0.66-0.82 | 0.25-0.81 |  |
| Thermo   | 0.86-0.91 | 0.48-0.78 | 0.75-0.84 | 0.36-0.85 |  |
|          | -         |           |           |           |  |



**Figure 3.** The depth of read coverage across the length of EV-D68 genomes (left panels) and EV-A71 genomes (right panels). Each row depicts the coverage patterns for a particular RT procedure: One-step (OS), SISPA, NEB and Thermo. The EV-D68 Fermon sample was not included in this figure/analysis due to low read coverage.





**CONTACT INFO** 

Rachel Marine rmarine@cdc.gov

