<3조 - 데이터 분석 프로젝트 2차> 제1안 스마트카드데이터를 활용한 온디맨드 서비스 분석

1. 문제 제시 배경

- 도시 팽창에 따른 교통혼잡이 주된 사회 문제를 해결하기 위해 '통합거리 비례제'를 통한 환승통행(버스, 지하철, 버스-지하철)이 시행되고 있다.
- 그에 대한 해결책의 일환으로 시장에서는 온디맨드 서비스가 활발히 논의되고 있고, 이를 활용한 MaaS 플랫폼이 다수 출시 되고 있다.
- 온디맨드 서비스? 고객의 요구나 수요에 대응하는 '주문형 서비스'
- 수요와 공급에 따른 교통 수단별 Circuity(우회계수)를 확인하고, 취약점을 찾아 수요가 필요한 지점에 서비스를 하는 것이 중요하다.

2. 목적

서울특별시 내의 대중교통 취약지점을 확인하고 온디맨드 서비스의 최적 입지에 대해 분석(Smart Card data 활용)

3. 분석 절차

3.1. 취약 지점의 파악

실제 통행 기록인 스마트카드 데이터를 활용하여, 서울시 내에서 대중교통 취약지점을 확인하고, 온디맨드 서비스가 어느 지점을 공략해서 서비스 되어야할지 파악.

3.2. 서울시 내에 25개 구에 대해 Circuity의 빈도를 파악하여 시각화

<예시1. 서울시 구별 Circuity 빈도 시각화>

- 3.3. Circuity가 빈도가 높은 4개의 구를 중심으로 세부적인 내용 탐색
- 버스, 지하철, 버스-지하철 환승통행에 대한 확인
- 위도, 경도 데이터를 활용한 대중교통 이용 고객의 루트 확인. 경로 검색데 이터를 시계열적으로 분석하면 교통수단 및 이용 장소 등의 변화를 유추할 수 있을 것이다.
- 3.4. 각 데이터의 분석결과를 전처리 및 시각화 과정을 통해 Circuity와의 관계성을 파악.

4. 예상 기대효과

- 혼잡한 지점, 평균 대기시간이 긴 지점 주변을 공략하면, 인원이 분산되는 효과를 얻을 수 있을 것.
- 대중교통이 미비한 지점, 역과의 거리가 너무 먼 지점 등은 택시 등을 이용하게 되므로, 효과를 얻을 수 있을 것.
- Circuity가 큰 지점은 그만큼 우회하게 되어 시간이 오래 걸린다는 것이므로, 이러한 분석을 통해 소비자의 요구를 효율적으로 해결할 수 있는 온디맨드서비스가 필요하게 될 것이다.