Chapter 2: Getting to Know Your Data

Dong-Kyu Chae

PI of the Data Intelligence Lab @HYU
Department of Computer Science & Data Science
Hanyang University

Contents

- Data Objects and Feature Types
- Basic Statistical Descriptions of Data
- Data Visualization

- Measuring Data Similarity and Dissimilarity
- Summary

Graphic Displays of Basic Statistical Descriptions

- □ Boxplot: graphic display of five-number summary
- □ **Histogram:** x-axis: values/ranges, y-axis: frequencies
- **Quantile plot:** each value x_i is paired with f_i indicating that approximately f_i of data are $\leq x_i$
- Quantile-quantile (q-q) plot:
 - The quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of two feature values is plotted as points in the 2D space

Histogram Analysis

- Histogram: Graph display of frequencies shown as bars
- It shows what proportion of cases fall into each of several categories
 - The categories are usually specified as nonoverlapping intervals of some variable
 - The categories (bars) must be adjacent

Quantile Plot

- Sort data in increasing order, and display all the data points
 - Allowing users to assess both the overall behavior and unusual occurrences
 - \Box f_i indicates that approximately (100 x f_i)% of the data are below or equal to the value x_i)

Quantile-Quantile (Q-Q) Plot

- Displays the quantiles of one univariate distribution of a dataset against the corresponding quantiles of another dataset
 - Example: Shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile.
 - Unit prices of items sold at Branch 1 tend to be cheaper than those at Branch 2.

Scatter Plot

- Each pair of feature values is treated as the coordinates and plotted as a point in the 2D space
- It shows correlation between two features
- Also provides an overview to see clusters of points, outliers, etc

Scatter Plot

Examples of positively and negatively correlated data

□ In the example below, the left half fragment is positively correlated, and the right half is negative correlated

Scatter Plot

Uncorrelated data

Contents

- Data Objects and feature Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity

Summary

Similarity and Dissimilarity

■ Similarity

- Numerical measure of how much alike two data objects are
- This value is higher when objects are more alike
- Often falls in the range [0,1]

Dissimilarity (e.g., distance)

- Numerical measure of how much different two data objects are
- Lower when objects are more alike
- \square Minimum dissimilarity is often 0 $[0,\infty]$
- Proximity refers to a similarity or dissimilarity

Matrix for Data

- Data matrix (n-by-p)
 - n data points with p dimensions (features)
 - Two modes

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity (distance) matrix (n-by-n)

- n data points, but registers only the distance

□ A triangular matrix

□ Single mode

dissimilarity (or distance)

To symmetric

$$d(2,1) \quad 0$$

$$d(3,1) \quad d(3,2) \quad 0$$

$$\vdots \quad \vdots \quad \vdots$$

$$d(n,1) \quad d(n,2) \quad \dots \quad 0$$

Similarity matrix

Proximity Measure for Nominal Features

- Nominal features can take 2 or more states
 - E.g., COLOR: [red, yellow, blue, green, etc...]
- Method 1: Simple matching
 - \square m: # of matches, p: total # of nominal features

$$d(i,j) = \frac{p-m}{p} \qquad sim(i,j) = \frac{m}{p}$$

- Method 2: Use multiple binary features to express one nominal feature
 - Creating a new binary feature for each of the M nominal states
 - E.g., a nominal feature **COLOR**: [red, yellow, blue, green] can be expressed by four binary features:

red =>
$$[0, 1]$$
; yellow => $[0, 1]$; blue => $[0, 1]$; green => $[0, 1]$

Proximity Measure for Binary Features

□ A contingency table for two different objects:

Obj
$$j$$

$$0 \text{ Sum}$$

$$0 \text{ Obj } j$$

$$0 \text{ Obj } j$$

$$0 \text{ Sum}$$

$$0$$

Proximity measure for symmetric binary features:

$$d(i,j) = \frac{r+s \# \text{ of mismatch features}}{q+r+s+t} = p \qquad sim(i,j) = \frac{q+t \# \text{ of match features}}{q+r+s+t} = p$$

- □ Used when two results (0, 1) are equally important (similar with Method 1)
- □ Proximity measure for asymmetric binary features:
 + (# of match on 0 which is out of our interest) 가 없어진

$$d(i,j) = \frac{r+s}{q+r+s} = P-t \qquad sim(i,j) = \frac{q}{q+r+s} \qquad \text{ef. of otherwal}$$

Used when one is much more important than the other.

Dissimilarity between Asymmetric Binary Features

Example

matches on D

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3 Test-4
Jack	M	Y	N	P	N	N mis motion
Mary	F	Y	N	P	N	P
Jim	M	Y	P	N	N	N N

- □ Gender is a symmetric feature (ignored in this case)
- Assume that the remaining features are asymmetric
- Let the values (and P be), and the value (and P be), and (and P

Proximity Measure for Numeric Features

- □ First of all, we need to standardize / normalize numeric data (will be introduced in the next chapter)
 - To match scale of each feature

$$z = \frac{x - \mu}{\sigma}$$

Numeric TU처는 각각 다른 Scale 가지고 있으므로

Z-score: (normalized method)

- x: raw score to be standardized, μ: mean of the population, σ: standard deviation
- Meaning: the distance between the raw score and the population mean in units of the standard deviation
 - "-" when the raw score is below the mean
 - "+" when the raw score is above the mean

Matrix for Numeric Data

Data Matrix

point	attribute1	attribute2
x1	1	2
<i>x2</i>	3	5
<i>x3</i>	2	0
<i>x4</i>	4	5

Distance Matrix

(with Euclidean Distance)

	<i>x1</i>	<i>x2</i>	<i>x3</i>	<i>x4</i>
x1	0			
<i>x2</i>	3.61	0		
<i>x3</i>	5.1	5.1	0	
<i>x4</i>	4.24	1	5.39	0

$$d(i,j) = \sqrt{\sum_{f=1}^{p} (x_{if} - x_{jf})^2}$$

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j)=\sqrt[h]{|x_{i1}-x_{j1}|^h+|x_{i2}-x_{j2}|^h+\cdots+|x_{ip}-x_{jp}|^h}$$

h is hyperparameter

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two pdimensional data objects, and h is the order (the distance so defined is also called L-h norm)

If h=2, it is equal to Euclidean Distance (L-2 norm)

Special Cases of Minkowski Distance

 $\Box h = 1$: Manhattan (city block, L₁ norm) distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

 $\Box h = 2$: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- $\Box h \rightarrow \infty$. Supremum (L_{max} norm, L_{\infty} norm) distance
 - ☐ This is the maximum difference between any component (feature) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{\bar{h}}{h}} = \max_{f} |x_{if} - x_{jf}|$$

Example: Minkowski Distance

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

Manhattan (L_1)

L	x1	x2	х3	x4	
x1	9				
x2	5	0			
х3	3	6	0		
x4	6	1	7	0	

Euclidean (L₂)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

L_{∞}	x 1	x2	х3	x4
x1	0			
x2	3	0		
х3	2	5	0	
x4	3	1	5	0

Distance on Numeric Data: Minkowski Distance

Minkowski distance : A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

Properties

- \Box (d(i,j) > 0) if $i \neq j$, and d(i,i) = 0 (**Positive** definiteness)

□ A distance that satisfies these properties is a metric

In other words, Metric is the distance function batisfying all these three

- Minkowski distance is Metric

properties

Cosine Similarity

A document can be represented by thousands of words, each recording the *frequency* of a particular word in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

Documents are represented as n-dimensional vectors

□ **Cosine measure:** If *A* and *B* are two vectors, then:

Therefore
$$\mathbf{A} \cdot \mathbf{B} = \underline{\|\mathbf{A}\| \|\mathbf{B}\| \cos \theta}$$
 cosine similarity $= \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$ \rightarrow \mathbf{F} therefore the feature \mathbf{B}

where • indicates dot product, ||A|| is the length of vector A

Item 2

Example: Cosine Similarity

- $\Box \cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$
 - □ It focuses more on **vector direction**, rather than coordinate distance
- **□** Ex: Find the similarity between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

$$d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$$

$$d_{1} \bullet d_{2} = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = \mathbf{25}$$

$$||d_{1}|| = (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5}$$

$$= \mathbf{6.481}$$

$$||d_{2}|| = (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)^{0.5} = (17)^{0.5}$$

$$cos(d_1, d_2) = 0.94$$

Distance for Ordinal Features

- □ Order is important, e.g., grade, size, etc...
- ■Such values can be expressed by rank (integers)
 - \square Replace *i*-th object in the *f*-th feature x_{if} by their *rank:* r_{if}

$$r_{if} \in \{1, ..., M_f\}$$

□ Finally the rank values are mapped onto [0, 1] by:

Normalization
$$V_{if} \rightarrow Z_{if} = \frac{V_{if}}{M_f-1}$$
 that point $\frac{1}{2}$ 02 or so that M_f if M_f highest rank value

■Then we can use any distance/dissimilarity measures for numeric data

Features of Mixed Type

- A database may contain various feature types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted average to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

Summary

- Data feature types: nominal, binary, ordinal, numerical (interval-scaled, ratio-scaled)
- Gain insight into the data by:
 - Basic statistical data description: central tendency, dispersion
 - 5 numbers summary, visualized by a boxplot.
- Visualizations
 - Scatter plot, QQ plot, histogram, etc...
- Measure data similarity
 - Minkowski Distance and its special cases
 - Cosine similarity

Thank You

