Mathematics W4043 Algebraic Number Theory Assignment # 4

Benjamin Church
Worked With Matthew Lerner-Brecher

December 17, 2017

1. Let
$$q_1(X,Y) = q_1(Xe_1 + Ye_2) = X^2 + 15Y^2$$
 and $q_2(X,Y) = 3X^2 + 5Y^2$. Now,
$$b_{i,i}^{(1)} = B_1(e_i, e_i) = q_1(e_i + e_i) - q_1(e_i) - q_1(e_i)$$

Thus,

$$B^{(1)} = \begin{pmatrix} b_{11}^{(1)} & b_{12}^{(1)} \\ b_{21}^{(1)} & b_{22}^{(1)} \end{pmatrix} = \begin{pmatrix} 4 - 1 - 1 & 16 - 1 - 15 \\ 16 - 15 - 1 & 60 - 15 - 15 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 30 \end{pmatrix}$$

Thus, the discriminant, $\Delta_1 = -\det B^{(1)} = -(2 \cdot 30) = -60$. Next,

$$b_{ij}^{(2)} = B_2(e_i, e_j) = q_2(e_i + e_j) - q_2(e_i) - q_2(e_j)$$

Thus,

$$B^{(2)} = \begin{pmatrix} b_{11}^{(2)} & b_{12}^{(2)} \\ b_{21}^{(2)} & b_{22}^{(2)} \end{pmatrix} = \begin{pmatrix} 12 - 3 - 3 & 8 - 3 - 5 \\ 8 - 5 - 3 & 20 - 5 - 5 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 10 \end{pmatrix}$$

Thus, the discriminant, $\Delta_2 = -\det B^{(2)} = -60$. However, suppose that there existed $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ s.t. that q_1 factors as $q_2 \circ f = q_1$. Then $q_1(1,0) = 1$ so $q_2 \circ f(1,0) = 1$ but $f(1,0) \in \mathbb{Z}^2$ and on \mathbb{Z}^2 the form $3X^2 + 5Y^2 \neq 1$ so the desired f cannot exist.

- 2. Let $K = \mathbb{Q}(\sqrt{-d})$ with square-free $d \in \mathbb{Z}^+$ and $q(x) = \mathcal{N}_{\mathbb{Q}}^K(x)$.
 - (a) If $d \equiv 1, 2 \mod 4$ then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-d}]$ so $\mathcal{O}_K = \mathbb{Z} \oplus \mathbb{Z}\sqrt{-d}$ thus, $\{1, \sqrt{-d}\}$ is a \mathbb{Z} basis of \mathcal{O}_K as a \mathbb{Z} -module of rank 2. Then,

$$b_{ij} = B(e_i, e_j) = q(e_i + e_j) - q(e_i) - q(e_j) = N_{\mathbb{Q}}^K (e_i + e_j) - N_{\mathbb{Q}}^K (e_i) - N_{\mathbb{Q}}^K (e_j)$$

Thus,

$$B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$= \begin{pmatrix} q(1+1) - q(1) & q(1+\sqrt{-d}) - q(1) - q(\sqrt{-d}) \\ q(\sqrt{-d}+1) - q(\sqrt{-d}) - q(1) & q(\sqrt{-d}+\sqrt{-d}) - q(\sqrt{-d}) - q(\sqrt{-d}) \end{pmatrix}$$

$$= \begin{pmatrix} 4 - 1 - 1 & 1 + d - 1 - d \\ 1 + d - d - 1 & 4d - d - d \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2d \end{pmatrix}$$

Thus, the discriminant, $\Delta_q = -\det B = -4d$. If $d \equiv 3 \mod 4$ then $\mathcal{O}_K = \mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right]$ so $\mathcal{O}_K = \mathbb{Z} \oplus \mathbb{Z} \frac{1+\sqrt{-d}}{2}$ thus, $\left\{1, \frac{1+\sqrt{-d}}{2}\right\}$ is a \mathbb{Z} basis of \mathcal{O}_K as a \mathbb{Z} -module of rank 2. Then,

$$b_{ij} = B(e_i, e_j) = q(e_i + e_j) - q(e_i) - q(e_j) = N_{\mathbb{Q}}^K (e_i + e_j) - N_{\mathbb{Q}}^K (e_i) - N_{\mathbb{Q}}^K (e_j)$$

Thus,

$$\begin{split} B &= \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{11} \end{pmatrix} \\ &= \begin{pmatrix} q(1+1) - q(1) - q(1) & q\left(1 + \frac{1+\sqrt{-d}}{2}\right) - q(1) - q\left(\frac{1+\sqrt{-d}}{2}\right) \\ q\left(\frac{1+\sqrt{-d}}{2}+1\right) - q\left(\frac{1+\sqrt{-d}}{2}\right) - q(1) & q\left(\frac{1+\sqrt{-d}}{2}+\frac{1+\sqrt{-d}}{2}\right) - q\left(\frac{1+\sqrt{-d}}{2}\right) - q\left(\frac{1+\sqrt{-d}}{2}\right) \end{pmatrix} \\ &= \begin{pmatrix} 4 - 1 - 1 & \frac{9}{4} + \frac{d}{4} - 1 - \left(\frac{1}{4} + \frac{d}{4}\right) \\ \frac{9}{4} + \frac{d}{4} - \left(\frac{1}{4} + \frac{d}{4}\right) - 1 & 1 + d - \left(\frac{1}{4} + \frac{d}{4}\right) - \left(\frac{1}{4} + \frac{d}{4}\right) \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & \frac{1+d}{2} \end{pmatrix} \end{split}$$

Thus, the discriminant, $\Delta_q = -\det B = -d$. Therefore, in either case, $\Delta_q = \Delta_d$. Both quadratic forms are postivie definite due to the positive definiteness of the complex conjugate norm on $\mathbb C$ i.e. $z \neq 0 \implies z\bar{z} > 0$ so $x \neq 0 \implies q(x) = \mathrm{N}_{\mathbb Q}^K(x) = x\bar{x} > 0$. These are equivalent because the only non identity Galois conjugate in an order two complex field extension is complex conjugation and thus $\mathrm{N}_{\mathbb Q}^K(x) = x\sigma(x) = x\bar{x}$.

(b) K is a complex field extension of \mathbb{Q} thus the elemet $\sigma: x \mapsto \bar{x}$ is a non-identity automorphism in $Gal(K/\mathbb{Q})$. Since the order of $K/\mathbb{Q} = 2$ this must be the only non-identity Galois conjugate. Now for τ ranging over all $G = Gal(K/\mathbb{Q})$

$$q(x) = \mathcal{N}_{\mathbb{Q}}^{K}(x) = \prod_{\tau \in G} \tau(x) = \mathrm{id}(x)\sigma(x) = x\sigma(x)$$

Thus,

$$B_{q}(x,y) = q(x+y) - q(x) - q(y) = (x+y)\sigma(x+y) - x\sigma(x) - y\sigma(y)$$

$$= x\sigma(x) + x\sigma(y) + y\sigma(x) + y\sigma(y) - x\sigma(x) - y\sigma(y)$$

$$= x\sigma(y) + y\sigma(x) = x\sigma(y) + \sigma^{2}(y)\sigma(x) = x\sigma(y) + \sigma(x\sigma(x))$$

$$= \operatorname{Tr}_{\mathbb{O}}^{K}(x\sigma(y))$$

in which i have used the fact that $\sigma^2 = id$ which holds because the order of the Galois group is 2.

- (c) Let $I \subset \mathcal{O}_K$ be an ideal and define $q_I : I \to \mathbb{Q}$ by $q_I(x) = \mathrm{N}_{\mathbb{Q}}^K(x) / \mathrm{N}(I)$. First, for any $\alpha \in I$ by closure of ideals, $(\alpha) \subset I$ thus by Dedekind prime factorization, there exists an ideal $J \subset \mathcal{O}_K$ such that $(\alpha) = IJ$ so in particular, $\mathrm{N}_{\mathbb{Q}}^K(\alpha) = \mathrm{N}((\alpha)) = \mathrm{N}(I)\mathrm{N}(J)$ so $\mathrm{N}(I) \mid \mathrm{N}_{\mathbb{Q}}^K(\alpha)$. Thus, $q_I(\alpha) = \mathrm{N}_{\mathbb{Q}}^K(\alpha) / \mathrm{N}(I) \in \mathbb{Z}$. Since, $\mathrm{N}_{\mathbb{Q}}^K(\alpha)$ is a norm on I then because $\mathrm{N}(I)$ is constant, $q_I(\alpha) = \mathrm{N}_{\mathbb{Q}}^K(\alpha) / \mathrm{N}(I) \in \mathbb{Z}$ satisfies all the norm axioms and by above has its image inside \mathbb{Z} . Thus, q_I is a perfectly good norm and I is a \mathbb{Z} -module of free rank 2 because $[K : \mathbb{Q}] = 2$ implies that \mathcal{O}_K is a \mathbb{Z} -module of free rank 2 and I is a submodule of finite type. Thus, (I, q_I) is a quadratic space.
- (d) Since $[K : \mathbb{Q}] = 2$ then \mathcal{O}_K is a \mathbb{Z} -module of free rank 2 so $\mathcal{O}_K = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2$ and any ideal $I \subset \mathcal{O}_K$ is also a \mathbb{Z} -module of free rank 2 expressed as $I = \mathbb{Z}e_1c_1 \oplus \mathbb{Z}e_2c_2$ for $c_1, c_2 \in \mathbb{Z}$.

Then $\mathcal{O}_K/I \cong \mathbb{Z}/c_1\mathbb{Z} \times \mathbb{Z}/c_2\mathbb{Z}$ so $N(I) = [\mathcal{O}_K : I] = [\mathbb{Z} : c_1\mathbb{Z}][\mathbb{Z} : c_2\mathbb{Z}] = c_1c_2$. Now we calculate the matrix associated with the bilinear form,

$$b_{ij} = B_I(e_i c_i, e_j c_j) = q(e_i c_i + e_j c_j) - q(e_i c_i) - q(e_j c_j)$$

$$= (N_{\mathbb{Q}}^K (e_i c_i + e_j c_j) - N_{\mathbb{Q}}^K (e_i c_i) - N_{\mathbb{Q}}^K (e_j c_j)) / N(I)$$

$$= B_K(e_i c_i, e_j c_j) / N(I) = (e_i c_i \sigma(e_j c_j) + e_j c_j \sigma(e_i c_i)) / N(I)$$

But integers are fixed under every automorphism thus,

$$b_{ij}^I = B_I(e_ic_i, e_jc_j) = (e_i \sigma(e_j) + e_j \sigma(e_i))c_ic_j/N(I) = B_K(e_i, e_j) c_ic_j/N(I) = b_{ij}c_ic_j/N(I)$$

Thus,

$$B_I = \begin{pmatrix} b_{11}^I & b_{12}^I \\ b_{21}^I & b_{11}^I \end{pmatrix} = \frac{1}{N(I)} \begin{pmatrix} b_{11}c_1^2 & b_{12}c_1c_2 \\ b_{21}c_2c_1 & b_{22}c_2^2 \end{pmatrix}$$

Thus, the discriminant,

$$\Delta_I = -\det B^I = -(b_{11}b_{22}(c_1c_2)^2 - b_{12}b_{21}(c_1c_2)^2)/N(I)^2$$

= $-(b_{11}b_{22} - b_{12}b_{21})(c_1c_2)^2/N(I)^2 = -\det B = \Delta_d$

because $N(I) = c_1c_2$ and from before, $\Delta_d = -\det B = -(b_{11}b_{22} - b_{12}b_{21})$.

3. Let $D(x_1, ..., x_n) = \det \text{Tr}(x_1, x_2)$.

(a)
$$\operatorname{Tr}(x_i x_j) = \sum_{k=1}^n \sigma_k(x_i x_j) = \sum_{k=1}^n \sigma_k(x_i) \sigma_k(x_j)$$
. Now define $A_{ki} = \sigma_k(x_i)$ then,

$$\sum_{k=1}^{n} \sigma_k(x_i x_j) = \sum_{k=1}^{n} A_{ki} A_{kj} = \sum_{k=1}^{n} (A^{\top})_{ik} A_{kj} = (A^{\top} A)_{ij}$$

Thus,

$$D(x_1, ..., x_n) = \det \operatorname{Tr}(x_1, x_2) = \det (A^{\top} A) = (\det A)^2 = (\det \sigma_i(x_j))^2$$

(b) Let
$$y_i = \sum_{j=1}^n A_{ij} x_j$$
 with $A_{ij} \in \mathbb{Q}$. Now,

$$D(y_1, \dots, y_n) = (\det \sigma_i(y_j))^2 = \left(\det \sigma_i \left(\sum_{k=1}^n A_{jk} x_k\right)\right)^2 = \left(\det \left(\sum_{k=1}^n \sigma_i (x_k) (A^\top)_{kj}\right)\right)^2$$
$$= (\det A)^2 (\det \sigma_i(x_j))^2 = (\det A)^2 D(x_1, \dots, x_n)$$

(c) Let $K = \mathbb{Q}(\alpha)$ and f be the minimal polynomial of α . Now,

$$f(x) = (x - \sigma_1(\alpha))(x - \sigma_2(\alpha)) \dots (x - \sigma_n(\alpha)) = \prod_{i=1}^n (x - \sigma_i(x))$$

because the embeddings permute the roots of f. Thus,

$$f'(x) = \sum_{k=1}^{n} \prod_{j \neq k}^{n} (x - \sigma_j(\alpha))$$

Plugging in a root,

$$f'(\sigma_i(\alpha)) = \sum_{k=1}^n \prod_{j \neq k}^n (\sigma_i(\alpha) - \sigma_j(\alpha)) = \prod_{j \neq i}^n (\sigma_i(\alpha) - \sigma_j(\alpha))$$

Now consider the norm,

$$N_{\mathbb{Q}}^{K}(f'(\alpha)) = \prod_{i=1}^{n} \sigma_{i}(f'(\alpha)) = \prod_{i=1}^{n} f'(\sigma_{i}(\alpha)) = \prod_{i=1}^{n} \prod_{j \neq i}^{n} (\sigma_{i}(\alpha) - \sigma_{j}(\alpha))$$

which holds because each σ_i is an automorphism. This product ranges twice over all pairs but in the opposite orders. Therefore, this product is equal to the square of the product over all pairs multiplied by n(n-1)/2 (the number of pairs) minus signs from swapping the orders of terms i.e.

$$N_{\mathbb{Q}}^{K}(f'(\alpha)) = (-1)^{\frac{n(n-1)}{2}} \left[\prod_{i>j}^{n} (\sigma_{i}(\alpha) - \sigma_{j}(\alpha)) \right]^{2}$$

By Vandermonde's determinant formula,

$$\prod_{i>j}^{n} (\sigma_i(\alpha) - \sigma_j(\alpha)) = \det \sigma_i(\alpha)^{j-1} = \det \sigma_i(\alpha^{j-1})$$

Thus,

$$\left[\prod_{i>j}^{n} (\sigma_i(\alpha) - \sigma_j(\alpha))\right]^2 = (\det \sigma_i(\alpha^{j-1}))^2 = D(1, \alpha, \alpha^2, \dots, \alpha^{n-1})$$

Therefore,

$$D(1, \alpha, \alpha^2, \dots, \alpha^{n-1}) = (-1)^{\frac{n(n-1)}{2}} \mathcal{N}_{\mathbb{Q}}^K (f'(\alpha))$$

However, the $f'(\alpha) \neq 0$ because f is the minimal polynomial of alpha and thus does not have a double root at α . Therefore, $\mathcal{N}_{\mathbb{Q}}^{K}(f'(\alpha)) \neq 0$ and thus, $D(1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}) \neq 0$. A set of n elements $\{x_{1}, \dots, x_{n}\}$ forms a basis if and only if it is related to some basis by an invertable matrix. In particular, $\{x_{1}, \dots, x_{n}\}$ is a basis iff the matrix A such that $x_{i} = \sum_{j=1}^{n} A_{ij}\alpha^{j-1}$ is invertible. In this case,

$$D(x_1, \dots, x_n) = (\det A)^2 D(1, \alpha, \dots, \alpha^{n-1})$$

Because $D(1, \alpha, \dots, \alpha^{n-1}) \neq 0$, we have that,

$$D(x_1,\ldots,x_n)=0 \iff \det A=0 \iff A \text{ is invertible } \iff \{x_1,\ldots x_n\} \text{ is a basis}$$

Because a bilinear form is degenerate if and only if its associated matrix has zero determinant, we conclude that,

$$\operatorname{Tr}(xy)$$
 is degenerate \iff $\det \operatorname{Tr}(x_i x_j) = D(x_1, \dots, x_n) = 0 \iff \{x_1, \dots, x_n\}$ is a basis

4. Let $\{v_1, \ldots, v_n\}$ be a basis of \mathbb{R}^n then define:

$$G = \left\{ \sum_{i=1}^{n} z_i v_i \mid z_i \in \mathbb{Z} \right\}$$

and

$$D = \left\{ \sum_{i=1}^{n} d_i v_i \mid d_i \in [0, 1) \right\}$$

(a) Let $v \in \mathbb{R}^n$ then because $\{v_1, \dots, v_n\}$ is a basis, there is a decomposition with $c_i \in \mathbb{R}$,

$$v = c_1 v_1 + \dots c_n v_n$$

Now take $d_i = \lfloor c_i \rfloor$ and $z_i = c_i - \lfloor c_i \rfloor$. We have $z_i + d_i = c_i - \lfloor c_i \rfloor + \lfloor c_i \rfloor = c_i$ also, $z_i \in \mathbb{Z}$ and $d_i = |c_i| \in [0, 1)$. Now take,

$$g = \sum_{i=1}^{n} z_i v_i \in G$$
 and $d = \sum_{i=1}^{n} d_i v_i \in D$

And therefore,

$$g + d = \sum_{i=1}^{n} (z_i + d_i)v_i = \sum_{i=1}^{n} c_i v_i = v$$

Suppose there were another decomposition, g' + d' = v with

$$g' = \sum_{i=1}^{n} z'_i v_i \in G$$
 and $d = \sum_{i=1}^{n} d'_i v_i \in D$

and then,

$$g + d = \sum_{i=1}^{n} (z'_i + d'_i)v_i = v$$

but $\{v_1, \ldots, v_n\}$ is a basis so the decomposition is unique. Thus, $z'_i + d'_i = z_i + d_i$ so $z'_i - z_i = d_i - d'_i \in \mathbb{Z}$ but $z_i, z'_i \in [0, 1)$ so $z'_i = z_i$ and thus $d_i = d'_i$ so the decomposition in G and D is indeed unique.

(b) Using the notation $B_{\delta}(x) = \{v \in \mathbb{R}^n \mid |v - x| < \delta\}$. Now, G is a discrete set because around each $g \in G$ the ball $B_{\frac{1}{2}}(g)$ contains no other points of G. Also, D is a bounded set i.e. $D \subset B_R(0)$ for $R = |v_1| + \cdots + |v_n|$. Define the set

$$H = \{ h \in G \mid B_r(0) \cap D_h \neq \emptyset \}$$

Thus, $D_h \subset B_R(h)$ so if $B_r(0) \cap D_h \neq \emptyset$ then $\exists x \in B_r(0) \cap D_h$ so |h| < |x| + |h - x| < r + R because x is in both balls. Thus, if $h \in H$ then $|h| < r + R = \delta$ so $H \subset B_\delta(0) \subset \overline{B_\delta(0)}$. The closure of this ball is compact by Heine-Borrel. Furthermore, $H \subset G$ by construction so $H \subset G \cap \overline{B_\delta(0)}$. However, G is discrete and $\overline{B_\delta(0)}$ is compact so their intersection is finite. Thus, H is finite.