ThinkDSP. Лабораторная 1. Звуки и сигналы.

Шерепа Никита 26 апреля 2021 г.

Содержание

1	Упражнение 1.2	5
2	Упражнение 1.3	10
3	Упражнение 1.4	12
4	Вывод	14

Список иллюстраций

1	Записанный звук	6
2	Сегмент	6
3	Фрагмент сегмента	7
4	Спектр сегмента	7
5	Основные и доминирующие частоты	8
6	Фильтрация гармоник: low_pass	9
7	Фильтрация гармоник: high_pass	10
8	Сложный сигнал	11
9	Спектр сложного сигнала	12
10	Замедленный звук	13
11	Ускоренный звук	14

Листинги

1	Загрузка и прослушивание звука
2	Визуализация звука
3	Сегмент и его прослушивание
4	Визуализация сегмента
5	Фрагмент сегмента
6	Спектр сегмента
7	Основные и доминирующие частоты
8	Пики спектра
9	Фильтрация гармоник: low_pass
10	Фильтрация гармоник: high_pass
11	Сложный сигнал
12	Прослушивание сложного сигнала
13	Спектр сложного сигнала
14	Прослушивание спектра сложного сигнала
15	Функция stretch
16	Замедленние звука
17	Визуализация замедленного звука
18	Ускоренние звука
19	Визуализация ускоренного звука

1 Упражнение 1.2

1. Задание

Скачайте с сайта http://freesound.org образец звука, включающий музыку, речь или иные звуки, имеющие четко выраженную высоту. Выделите примерно полсекундный сегмент, в котором высота постоянна. Вычислите и распечатайте спект выбранного сегмента. Как связаны тембр звука и гармоническая структруа, видимая в спектре?

Использвуйте *high_pass*, *low_pass* и *band_stop* для фильтрации тех или иных грамоник. Затем преобразуйте спектры обратно в сигнал и прослушайте его. Как звук соотносится с изменениями, сделанными в спектре?

2. Ход работы

Вместо скачивания звука я записал свой - /res/throat singing.wav

```
from thinkdsp import read_wave

wave = read_wave('res/throat_singing.wav')
wave.normalize()
wave.make_audio()
Листинг 1: Загрузка и прослушивание звука
```

Звучит как какое-нибудь тувинское горловое пение.

Затем я визуализировал звук

wave.plot()

Листинг 2: Визуализация звука

Рис. 1: Записанный звук

Затем я выделил полусекундный сегмент

- segment = wave.segment(start=1.0, duration=0.5)
- segment.make_audio()

Листинг 3: Сегмент и его прослушивание

И визуализировал его

segment.plot()

Листинг 4: Визуализация сегмента

Рис. 2: Сегмент

segment.segment(start=1.1, duration=0.01).plot() Листинг 5: Фрагмент сегмента

Рис. 3: Фрагмент сегмента

Затем я выделил спектр сегмента

- spectrum = segment.make_spectrum()
- spectrum.plot(high=7000)

Листинг 6: Спектр сегмента

Рис. 4: Спектр сегмента

```
spectrum = segment.make_spectrum()
spectrum.plot(high=1000)
```

Листинг 7: Основные и доминирующие частоты

Рис. 5: Основные и доминирующие частоты

Теперь выведем самые высокие точки спектра и их частоты в порядке убывания

```
spectrum.peaks()[:30]
     [(805.2011660028415, 128.0),
     (717.7534137378161, 322.0),
     (674.4257107121337, 386.0),
     (662.1792673529742, 194.0),
     (590.2975588029225, 192.0),
     (522.1861101938315, 388.0),
     (452.49523817628216, 324.0),
     (451.2926648076347, 384.0),
10
     (401.46804683039875, 130.0),
     (386.27598232673955, 320.0),
     (304.0156833122087, 258.0),
13
     (282.4848989689322, 328.0),
14
     (272.01525283371285, 326.0),
15
     (230.78182369574293, 202.0),
16
     (229.5602546915074, 256.0),
17
     (222.41384500322584, 200.0),
```

```
(213.0448913102804, 64.0),
19
     (203.73496641597413, 204.0),
20
     (203.0809167531178, 260.0),
     (199.3804441543911, 382.0),
     (197.24287528975682, 314.0),
23
     (192.08672045960517, 450.0),
24
     (187.7791701290673, 132.0),
25
     (182.9641942180879, 392.0),
26
     (167.77207719800455, 316.0),
27
     (160.52351987778476, 190.0),
28
     (158.17239516488624, 182.0),
29
     (155.35505888892268, 206.0),
30
     (151.3961428346756, 126.0),
31
     (150.398009639692, 452.0)]
```

Листинг 8: Пики спектра

Теперь отфильтруем гармоники

```
spectrum.low_pass(2000)
    spectrum.make_wave().make_audio()
3
    spectrum.make_wave().plot()
```

Листинг 9: Фильтрация гармоник: low pass

Рис. 6: Фильтрация гармоник: low pass

Как видно из графика, звук поредел, а звучать он стал глухо, какбудто из-за стены.

```
spectrum.high_pass(2000)
spectrum.make_wave().make_audio()

spectrum.make_wave().plot()
```

Листинг 10: Фильтрация гармоник: high pass

Рис. 7: Фильтрация гармоник: high pass

Звук стал похож на высокочастотный писк, как у звукового сигнала перед записью сообщения на автооответчик на телефоне.

2 Упражнение 1.3

1. Задание

Создайте сложный сигнал из объектов SinSignal и CosSignal, суммируя их. Обработайте сигнал для получения wave и прослушайте его. Вычислите Spectrum и распечатайте. Что произойдет при добавлении частотных компонент, не кратных основным?

2. Ход работы

Создадим сложный сигнал

```
from thinkdsp import SinSignal

signal = (SinSignal(freq=300, amp=0.9) +
SinSignal(freq=520, amp=2.0) +
```

- 5 SinSignal(freq=750, amp=0.3))
- 6 signal.plot()

Листинг 11: Сложный сигнал

Рис. 8: Сложный сигнал

- wave2 = signal.make_wave(duration=1)
- wave2.apodize()
- wave2.make_audio()

Листинг 12: Прослушивание сложного сигнала

Звук похож на какую-нибудь низкую ноту, прозвучавщую из терменвокса.

Теперь вычислим спектр сложного сигнала

- spectrum = wave2.make_spectrum()
- spectrum.plot(high=2000)

Листинг 13: Спектр сложного сигнала

Рис. 9: Спектр сложного сигнала

Теперь добавим в звук новую частоту и прослушаем

```
signal += SinSignal(freq=850)
signal.make_wave().make_audio()
Листинг 14: Прослушивание спектра сложного сигнала
```

Теперь звук похож на какую-нибудь высокую ноту, прозвучавщую из терменвокса.

3 Упражнение 1.4

Звук стал выше (freq = 850).

1. Задание

Напишите функцию *stretch*, берущую wave и коэффициент изменения. Она должна ускорять или замедлять сигнал изменением *ts* и *framerate*. Подсказка: должно получиться всего две строки кода.

2. Ход работы

Напишем функцию stretch и прослушаем полученный результат

```
wave3 = read_wave('res/throat_singing.wav')
wave3.normalize()
wave3.make_audio()

def stretch(wave, factor):
```

```
wave.ts *= factor
```

vave.framerate /= factor

Листинг 15: Функция stretch

Попробуем замедлить звук

- stretch(wave3, 1.5)
- wave3.make_audio()

Листинг 16: Замедленние звука

Получился очень зловещий и низкий звук, как-будто какой-то огр недовольно мелодично рычит

Визуализируем результат

wave3.plot()

Листинг 17: Визуализация замедленного звука

Рис. 10: Замедленный звук

Попробуем ускорить звук

- stretch(wave3, 0.5)
- wave3.make_audio()

Листинг 18: Ускоренние звука

Получился очень забавный высокий звук, как-будто какой-нибудь маленький тувинский мальчик осваивает горловое пение.

Визуализируем результат

wave3.plot()

Листинг 19: Визуализация ускоренного звука

Рис. 11: Ускоренный звук

4 Вывод

В результате выполнения лабораторной работы получены навыки работы со звуками: обработка, понижение/повышение частоты, вычисление пиков. Оказывается, работа со звуками очень занимательное и в какойто мере забавное занятие, потому что всегда интересно послушать, что получится на выходе, в результате обработки.