

Middle East Technical University Civil Engineering Department

GENERAL INFORMATION ABOUT EUROCODE

and

DESGIN OF PILE FOUNDATIONS by EUROCODE 7

Zeynep ÇEKİNMEZ MSc Civil Engineer

OUTLINE

- > General Information about Eurocode
- > Terminology and Basic Principles of Eurocode
 - ✓ Limit States
 - ✓ Actions
 - ✓ Material Properties
 - ✓ Tolerance on Geometry
 - ✓ Resistances
- ➤ Design of Piles according to Eurocode 7
 - ✓ Design situations and limit states
 - ✓ Piles subject to Compression
 - ✓ Piles subject to Tension
 - ✓ Piles subject to Transverse Actions
- ➤ Reliability in the Design of Piles Design Approaches
- > References

General Information about Eurocode

- ➤ The *Eurocodes* are becoming widely used in Europe as a design code in Civil Engineering works.
- ➤ The *Eurocodes* are accompanied by National Annexes of various European countries.
- ➤ The *Eurocodes* are implemented by the national standards body (NSB) of:
 - * International Standardization Organization (ISO),
 - * European Committee for Standardization (CEN).

General Information about Eurocode

➤ Why Eurocode?

- ✓ Provides unique and common design criteria
- ✓ Increases competitiveness of European companies
- ✓ Provides common understanding in design between corparation parties (Owner, Contractor & Sub-contracters)
- ✓ Provides common basis for research and development
- ✓ Facilitates exchange of construction services
- ✓ Facilitates marketing and use of structural components
- ✓ Based on statistical, application and theoratical knowledge

7

Terminology and Basic Principles of Eurocode

A) LIMIT STATES

EN 1990 defines mainly 4 ultimate limit states:

(i) Loss of equilibrium (EQU) When;

$$E_{d,stb} \le E_{d,dst}$$

 $\Lambda_{EQU} = [(E_{d,dst} / E_{d,stb}) \times 100] \ge 100\%$

Where;

 $E_{d,stb}$: Stabilizing Design Effects $E_{d,dst}$: Destabilizing Design Effects

 Λ_{EOU} : Utilization Factor

Example: Overturning problem

(ii) Failure of excessive deformation (STR and GEO) When;

$$\begin{aligned} R_d \leq E_d \\ \Lambda_{STR(GEO)} = \left[(E_d \ / \ R_d) \ x \ 100 \right] \geq 100\% \end{aligned}$$

Where;

E_d: Design Effects of Actions

R_d: Design Resistance

 $\Lambda_{\mathrm{STR}(\mathrm{GEO})}$: Utilization Factor

Example: Moment developed on structure exceeds the design moment

- (iii) Failure caused by fatigue and/or other time-related effects (FAT)
- Pronounced mostly in road & rail bridges and tall slender structures.

Terminology and Basic Principles of Eurocode

(iv) Serviceability Limit States (SLS):

When;

$$C_d \le E_d$$

 $\Lambda_{SLS} = [(E_d / C_d) \times 100] \ge 100\%$

Where;

E_d: Design Effects of Actions (settlements, distortions, strains etc)

C_d: Limit Value of the Effect

 Λ_{SLS} : Utilization Factor

Example: Maximum settlement exceeds the permissible

settlement

COMBINATION OF ACTIONS

• Representative actions (F_{rep}) are defined from the characteristic actions (F_k) by means of combination factor (Ψ) :

$$F_{rep} = \Psi F_k$$

• Design actions (F_d) are defined from the representative actions (F_{rep}) by means of partial factor (γ) :

$$F_d = \gamma F_{rep}$$

• Thus design actions (F_d) used in calculations are:

$$F_d = \sum \sum \gamma_{(i)} \Psi_{(i)} F_{k,(i,j)}$$

TYPE of	Ψ	γ		
ACTION		Unfavourable	Favourable	
G	1.0		≤1.0	
Q _{k,(1)} (leading)	1.0	>1.0		
Q _{k,(i)} (accompanying)	<1.0	≥1.0		

There are:

- 2 different combinations of Ψ in case of F=F(G,Q)
- 4 different combinations of Ψ in case of F=F(G,Q,A)
- 3 different combinations of γ depending on the limit states

15

Terminology and Basic Principles of Eurocode

C) MATERIAL PROPERTIES

• Design material properties (X_d) are defined from the characteristic material properties (X_k) by means of partial factor (γ_M) :

$$X_d = \gamma_M X_k$$

 $(\gamma_M \mbox{ depends on persistant} \, / \, transient \mbox{ design situations and material type} \,)$

D) TOLERANCES ON GEOMETRY

• Design geometrical dimensions (a_d) are obtained by adding/subtracting the tolerance/safety margin (Δa) nominal geometrical dimensions (a_{nom}) :

$$a_d = a_{nom} \pm \Delta a$$

(Δa depends on persistant / transient design situations)

17

Terminology and Basic Principles of Eurocode

E) RESISTANCES

- Design resistance (R_d) is obtained whether by:
 - (i) By applying a single partial factor (γ_R)

$$R_d = [R\{F_d; \mathbf{X_k}; a_d\}] / \gamma_R$$

(ii) By using design values of all components

$$R_d = [R\{F_d; \mathbf{X_d} = (\mathbf{X_k}/\gamma_M); a_d\}]$$

Design of Piles According to Eurocode 7

B) PILES SUBJECT to COMPRESSION

• A pile can carry the design compressive action without exceeding the limit state if:

$$F_{cd} \le R_{cd}$$

Where;

 F_{cd} : Design compressive action R_{cd} : Design bearing resistance

Design of Piles According to Eurocode 7

B) PILES SUBJECT to TENSION

• A pile can carry the design tension action without exceeding the limit state if:

$$F_{td} \! \leq \! R_{td}$$

Where;

 F_{td} : Design tension action R_{td} : Design tensile resistance

Design of Piles According to Eurocode 7

C) PILES SUBJECT to TRANSVERSE ACTIONS

• A pile can carry the design transverse action without exceeding the limit state if:

$$H_k \le H_{Rk}$$

Where;

 \boldsymbol{H}_k : Characteristic Horizontal Action

 $\mathbf{H}_{\mathbf{R}\mathbf{k}}$: Characteristic Horizontal Resistance of pile

Reliability in Design of Piles – Design Approaches

Countries wanted to adopt different partial factors to:

- Actions (A)
- Materials (M)
- Resistances (R)

➤In order to accommodate <u>different point of view</u> of countries in design, Eurocode7 provides mainly three different "Design Approaches":

- (i) Design Approach 1 (DA1) (both combinations <u>must</u> be considered)
 - Combination 1
 - Combination 2
- (ii) Design Approach 2 (DA2)
- (iii) Design Approach 3 (DA 3)

Reliability in Design of Piles – Design Approaches For design of piles:								
Design Approaches		Partial Factors (γ)			Tolerance (Δa)			
		Actions (A)	Materials (M)	Resistances (R)	Dimensions (a)			
DA 1	Combination 1	V	X	√ (smaller and dep. on PILE TYPE)	X			
	Combination 2	√ (variable)	X	√ (larger and dep. on PILE TYPE)	X			
		_		$\sqrt{\text{(smaller and)}}$				

 \mathbf{X}

indep. from PILE TYPE) $\sqrt{\text{(smaller and })}$

indep. from

PILE TYPE)

Reliability in Design of Piles – Design Approaches

Design of piles may be performed by:

 $\sqrt{\text{(dep. on)}}$

STR/GEO)

• Testing

DA 2

DA3

- -Static Load Test
- -Dynamic Impact Test
- -Ground Tests
- Calculation

 \triangleright In design by testing some specific correlation factors are used depending on the test type. To be consistent with the design by testing, one may use a "model factor, γ_{Rd} " by applying it to skin and end-bearing resistances seperately in design by calculation.

>Since no such a value is given in Eurocode 7, $\gamma_{Rd} = 1.5$ can be taken into account in DA 1 and DA 2 according to Irish National Annex (*Decoding Eurocode 7*, 2008).

30

X

X

Reference

• Bond A. And Harris A. (2008). Decoding Eurocode 7, Taylor & Francis, UK.

31

THANKS FOR YOUR ATTENTION...

Any question?