Introduction to Machine Learning

Boosting Gradient Boosting: XGBoost

Learning goals

- Overview over XGB
- Regularization in XGB
- Approximate split finding

XBG - EXTREME GRADIENT BOOSTING

- Open-source and scalable tree boosting system
- Efficient implementation in C++ with interfaces to many other programming languages
- Parallel approximate split finding
- Additional regularization techniques
- Feature and data subsampling
- Cluster and GPU support
- Highly optimized and often achieves top performance in benchmarks – if properly tuned

3 EXTRA REGULARIZATION TERMS

$$\mathcal{R}_{\text{reg}}^{[m]} = \sum_{i=1}^{n} L\left(y^{(i)}, f^{[m-1]}(\mathbf{x}^{(i)}) + b^{[m]}(\mathbf{x}^{(i)})\right) + \lambda_1 J_1(b^{[m]}) + \lambda_2 J_2(b^{[m]}) + \lambda_3 J_3(b^{[m]}),$$

- $J_1(b^{[m]}) = T^{[m]}$: Nr of leaves to penalize tree depth
- $J_2(b^{[m]}) = \|\mathbf{c}^{[m]}\|_2^2$: L2 penalty over leaf values
- $J_3(b^{[m]}) = \|\mathbf{c}^{[m]}\|_1$: L1 penalty over leaf values

TREE GROWING

- Grown to max depth
- Fully expanded and leaves split even if no improvement
- At the end, each split that did not improve risk is pruned

SUBSAMPLING

Data Subsampling: XGB uses stochastic GB.

Feature Subsampling: Similar to mtry in a random forest only a random subset of features is used for split finding.

The fraction of features for a split can be randomly sampled for each

- tree
- 2 level of a tree
- split

Feature subsampling speeds up training even further and can create a more diverse ensemble that often performs better.

APPROXIMATE SPLIT-FINDING ALGORITHMS

- Speeds up tree building for large data
- Considers not all, but only / splits per feature
- Usually percentiles of the empirical distribution of each feature
- Computed once (global) or recomputed after each split (local)
- Called Histogram-based Gradient Boosting

Blue lines are percentiles and red = selected split

DROPOUT ADDITIVE-REGRESSION TREES

DART introduces idea of dropout regularization used in DL to boosting

- In iteration m we construct $\hat{b}^{[m]}$
- To compute PRs we need $\hat{f}^{[m-1]}$
- We compute this differently, by using random subset $D \subset \hat{b}^{[1]}, \dots \hat{b}^{[m-1]}$ of size $(m-1) \cdot p_{\text{drop}}$ is ignored
- To avoid *overshot predictions* in ensemble, we scale the BLs at the end of the iteration, by $\frac{1}{|D|+1}\hat{b}^{[m]}$ and $\frac{|D|}{|D|+1}\hat{b}$ $\forall \hat{b} \in D$.
- $p_{drop} = 0$: Ordinary GB
- p_{drop} = 1: All BLs are trained independently, and equally weighted.
 Model is very similar to random forest.
- $\Rightarrow p_{drop}$ is smooth transition from GB to RF

PARALLELISM AND GPU COMPUTATION

- GB is inherently sequential, not easy to parallelize
- But: Building of BLs can be parallelized
- Data sort and split eval in different branches of tree BLs can be computed in parallel by using efficient block data structures
- Can also gain huge speed-up by moving from CPU to GPU

OVERVIEW OF IMPORTANT HYPERPARAMETERS

HP (as named in software)	Туре	Typical Range	Trafo	Default	Description
eta	R	[-4, 0]	10 ^x	0.3	learning rate (also called ν) shrinks contribution of each boosting update
nrounds	I	{1,,5000}	-	-	number of boosting iterations. Can also be optimized with early stopping.
g amma	R	[-7, 6]	2 ^x	0	minimum loss reduction required to make a further partition on a leaf node of the tree
max_depth	1	$\{1, \ldots, 20\}$	_	6	maximum depth of a tree
colsample_bytree	R	{1, , 20} [0.1, 1]	-	1	subsample ratio of columns for each tree
colsample_bylevel	R	[0.1, 1]	-	1	subsample ratio of columns for each depth level
lambda	R	[-10, 10]	2 ^x	1	L2 regularization term on weights
alpha	R	[-10, 10]	2 ^x	0	L1 regularization term on weights
subsample	R	[0.1, 1]	-	1	subsample ratio of the training in- stances

