Running head: LEBA 1

Light Exposure Behavior Assessment (LEBA): Development of a novel instrument to capture light exposure-related behaviours 2 Mushfigul Anwar Siraji^{1, *}, Rafael Robert Lazar^{2, 3, *}, Juliëtte van Duijnhoven⁴, Luc 3 Schlangen⁵, Shamsul Haque¹, Vineetha Kalavally⁶, Céline Vetter^{7, 8}, Gena Glickman⁹, Karin Smolders¹⁰, & Manuel Spitschan^{11, 2, 3} 5 ¹ Monash University, Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Malaysia 7 ² Psychiatric Hospital of the University of Basel (UPK), Centre for Chronobiology, Basel, Switzerland 9 ³ University of Basel, Transfaculty Research Platform Molecular and Cognitive 10 Neurosciences, Basel, Switzerland 11 ⁴ Eindhoven University of Technology, Department of the Built Environment, Building 12 Lighting, Eindhoven, Netherlands 13 ⁵ Eindhoven University of Technology, Department of Industrial Engineering and 14 Innovation Sciences, Intelligent Lighting Institute, Eindhoven, Netherlands 15 ⁶ Monash University, Department of Electrical and Computer Systems Engineering, 16 Malaysia, Selangor, Malaysia 17 ⁷ University of Colorado Boulder, Department of Integrative Physiology, Boulder, USA 18 ⁸ Ximes GmbH, Frankfurt, Germanv 19

⁹ Uniformed Services University of the Health Sciences, Department of Psychiatry,

Bethesda, USA 21 ¹⁰ Eindhoven University of Technology, Human-Technology Interaction Group, 22 Eindhoven, Netherlands 23 ¹¹ University of Oxford, Department of Experimental Psychology, Oxford, UK 24 * Joint first author

Author Note 26

Add complete departmental affiliations for each author here. Each new line herein 27 must be indented, like this line. 28

Enter author note here.

25

29

editing.

The authors made the following contributions. Mushfigul Anwar Siraji: Formal 30 Analysis, Visualization, Writing - original draft, Writing - review & editing;; Rafael Robert 31 Lazar: Data curation, Investigation, Project administration, Visualization, Writing -32 original draft, Writing - review & editing;; Juliëtte van Duijnhoven: Conceptualization, Methodology, Investigation, Writing – review & editing; Luc Schlangen: Conceptualization, Methodology, Investigation, Writing – review & editing; Shamsul Haque: Conceptualization, Supervision, Writing – review & editing; Vineetha Kalavally: Supervision, Writing - review & editing; Céline Vetter: Conceptualization, Writing review & editing; Gena Glickman: Conceptualization, Methodology, Writing - review & editing; Karin Smolders: Conceptualization, Methodology, Writing – review & editing; Manuel Spitschan: Conceptualization, Data curation, Investigation, Project administration, Visualization, Methodology, Writing - original draft, Writing - review &

Abstract 43

One or two sentences providing a **basic introduction** to the field, comprehensible to a

scientist in any discipline.

Two to three sentences of more detailed background, comprehensible to 46

scientists in related disciplines.

One sentence clearly stating the general problem being addressed by this

particular study. 49

48

55

56

One sentence summarizing the main result (with the words "here we show" or their 50

equivalent).

Two or three sentences explaining what the main result reveals in direct

comparison to what was thought to be the case previously, or how the main result adds

to previous knowledge.

One or two sentences to put the results into a more **general context**.

Two or three sentences to provide a **broader perspective**, readily comprehensible

to a scientist in any discipline.

Keywords: keywords 58

Word count: X 59

Light Exposure Behavior Assessment (LEBA): Development of a novel instrument to
capture light exposure-related behaviours

```
##
  ## The following packages were not installed by packrat and will be ignored:
  ##
                      0.6-9
  ##
          lavaan
                      2.1.9
          psych
  ##
66
  ##
          semTools
                      0.5 - 5
67
                      2.4.2
  ##
          devtools
68
          MOTE
  ##
                      1.0.2
69
  ##
70
  ## If you would like to overwrite them, call restore again with
  ## overwrite.dirty = TRUE.
```

73 Introduction

Light exposure is important

- Light exposure Behavior is important
- Table: Overview Existing Related Scales: items in total / items on light exposure
 (behaviour)
- Existing Scales: Review them in text
 - None of these do light exposure behavior.

80 Methods

Ethical approval

The cantonal ethics commission (Ethikkommission Nordwest- und Zentralschweiz, project ID Req-2021-00488) reviewed this project and issued an official clarification of responsibility (full document see Suppl. Fig X in appendix) stating: "The research project does not fall under the scope of the Human Research Act, because your project is using only anonymised data. An authorisation from the ethics committee is therefore not required and the EKNZ is not responsible for its review."

Bata Availability

Survey characteristics

Data was collected in a quantitative cross-sectional approach via a fully
anonymous online survey hosted on REDCap (Harris et al., 2019, 2009) by way of the
University of Basel sciCORE. Participants were recruited via the website of a Comic
co-released with the survey(Weinzaepflen & Spitschan, 2021)(
https://enlightenyourclock.org/participate-in-research), social media (i.e., LinkedIn,
Twitter, Facebook), mailing lists, word of mouth, the investigators' personal contacts, and
supported by distribution of the survey link via f.lux software (F.lux Software LLC, 2021).

Completing the online survey took approx. 15 to 20 minutes and was not compensated. The first page of the survey comprised a participant information sheet, where participants' informed consent to participate was obtained before any of the questions were displayed. Underaged participants (<18 years) were urged to obtain assent from their parents/legal guardians, before filling in the survey. Information on the first page included the objectives of the study, inclusion criteria, estimated duration, the use, storage and sharing of the data, compensation (none), and information about the

type of questions in the survey. Moreover, participants needed to confirm that they were participating the survey for the first time. To ensure high data quality, five attention check items were included in the survey (e.g., "We want to make sure you are paying attention. What is 4+5?"). The data analysed in this study was collected between 17.05.2021 and 03.09.2021. Questions incorporating retrospective recall were all aligned to the period of "past four weeks," matching the presented LEBA instrument.

In addition to the LEBA questionnaire, which is subject of the current study, the following variables and items were assessed but not included in the analysis:

- Sleep disturbance and sleep-related impairment (adult and pediatric versions)
 (Bevans et al., 2019; Daniel J. Buysse et al., 2010; Forrest et al., 2018; Harb,
 Hidalgo, & Martau, 2015; L. Yu et al., 2011)
 - Sleep duration, timing, and latency, chronotype, social jetlag, time in bed, work/sleep schedule and outdoor light exposure duration (version for adults and adolescents) (Roenneberg et al., 2003)
 - Sleep environment [@Olivier.2016]
- Meal timing & caffeine consumption [custom items]
- Light sensitivity (photophobia vs. photophilia) [@Wu.2017]
- Self-reported pubertal stage (only if younger than 18 years old) (Petersen,
 Crockett, Richards, & Boxer, 1988)

Furthermore, the following 1-item demographic variables were assessed:

Age

110

115

116

117

118

- Sex
- Gender identity
- Occupational Status
- COVID-19 related Occupational setting during the past four weeks

- · Time zone & country of residence
- English as native language

Participants

130

131

148

150

Table 1 summarizes the survey participants' demographic characteristics. Only 132 participants completing the full LEBA questionnaire were included, thus there are no 133 missing values in the item analyses. XX participants were excluded from analysis due to 134 not passing at least one of the "attention check" items. For exploring initial factor 135 structure (EFA), a sample of 250-300 is recommended (Comrey & Lee, 1992; 136 Schönbrodt & Perugini, 2013). For estimating the sample size for the confirmatory factor 137 analysis (CFA) we followed the N:q rule (Bentler & Chou, 1987; Jackson, 2003; Kline, 2015; Worthington & Whittaker, 2006), where ten participants per parameter is required to earn trustworthiness of the result. Our sample size exceeds these requirements: Anonymous responses from a total of n = 690 participants were included in the analysis of the current study, split into samples for exploratory (EFA: n = 428) and confirmatory 142 factor analysis (CFA: n = 262). The EFA sample included participants filling out the 143 questionnaire from 17.05.2021 to XX.XX.XXXX , whereas participants who filled out the 144 questionnaire from YY.YY.YYYY to 03.09.2021 were included in the CFA analysis. 145 Participants indicated filling out the online survey from a diverse range of geographic 146 locations. The four most common geographic locations included: 147

	Х
United States - America/New_York (UTC -04:00)	63
United Kingdom - Europe/London (UTC)	57
Germany - Europe/Berlin (UTC +01:00)	53
India - Asia/Kolkata (UTC +05:30)	38

For a full list of geographic locations, see Suppl. Table X in the appendix.

Age among all participants ranged from 11 years to 84 years [EFA: min = 11, max =

84; CFA: min = 12, max = 74], with an overall mean of ~ 33 years of age [Overall: M =151 32.95, SD = 14.57; EFA: M = 32.99, SD = 15.11; CFA: M = 32.89, SD = 13.66]. In total 152 325 (47%) of the participants indicated female sex [EFA: 189 (44%); CFA: 136 (52%)], 153 351 (51%) indicated male [EFA: 230 (54%); CFA: 121 (46%)] and 14 (2.0%) indicated 154 other sex [EFA: 9 (2.1%), CFA: 5 (1.9%)]. Overall, 49 (7.2%) [EFA: 33 (7.8%); CFA: 16 155 (6.2%)] participants indicated a gender-variant identity. In a "Yes/No" question regarding 156 native language, 320 (46%) of respondents [EFA: 191 (45%); CFA: 129 (49%)] indicated 157 to be native English speakers. For their "Occupational Status," more than half of the 158 overall sample reported that they currently work [Overall: 396 (57%); EFA: 235 (55%); 159 CFA: 161 (61%)], whereas 174 (25%) [EFA: 122 (29%); CFA: 52 (20%)] reported that 160 they go to school and 120 (17%) [EFA: 71 (17%); CFA: 49 (19%)] responded that they do 161 "Neither." With respect to the COVID-19 pandemic we asked participants to indicate their occupational setting during the last four weeks: In the overall sample 303 (44%) [EFA: 194 (45%); CFA: 109 (42%)] of the participants indicated that they were in a home office/ 164 home schooling setting., while 109 (16%) overall [EFA: 68 (16%); CFA: 41 (16%)] 165 reported face-to-face work/schooling. Lastly, 147 (21%) overall [EFA: 94 (22%); CFA: 53 166 (20%)] reported a combination of home- and face-to-face work/schooling, whereas 131 167 (19%) overall [EFA: 72 (17%); CFA: 59 (23%)] filled in the "Neither (no work or school, or 168 indication)" response option. We tested all demographic variables in Table 1 for 169 significant group differences between the EFA and CFA sample, applying Wilcoxon rank 170 sum test for the continuous variable "Age" and Pearson's Chi-squared test for all other 171 categorical variables via the gtsummary R package's "add_p" function (Sjoberg et al., 172 2021a). The p-values were corrected for multiple testing applying false discovery rate 173 (FDR) via the "add_q" function of the same package. After p-value (FDR) correction for 174 multiple testing, none of the demographic variables were significantly different between 175 the EFA sample and the CFA sample (all q-values $q \ge 0.2$, indicating equivalence). 176

Describe EFA and CFA sample separately.

- 2. Sampling technique: Convince sampling (non-probability sample)
- 3. Method: cross-sectional survey
- 4. How many missing data?
- 5. How incomplete data were addressed.
- 6. Why such sample was chosen?

Procedure

184

185

187

Development of the Scale.

- How the items were generated
- 2. How the literature was reviewed to identify construct adequacy of the items.
 - 3. Discuss the expert panel review process to assess content validity
- Data Collection. Timeline of data collection, mode of data collection.

189 Analytic Strategies

We used R (version 4.1.0), including several R packages, for our analyses. Initially, 190 our tool have six poin Likert type response scale(0:Does not apply/I don't know; 1:Never, 191 2:Rarely; 3:Sometimes; 4:Often; 5: Alsways). As our purpose was to capture light 192 exposure related behavior, "Does not apply/I don't know" and "Never" were providing 193 similar information. As such we decided to collapse "Does not apply/I don't know" and 194 "Never" options into one making it a 5 point Likert type response scale. Necessary assumptions of EFA, including sample adequacy, normality assumptions, quality of correlation matrix, were assessed. Our data violated both the univariate and multivariate 197 normality assumptions. Due to these violations and the ordinal nature of our response 198 data, we used a polychoric correlation matrix (C. Desjardins & Bulut, 2018) for the EFA. 199 We employed principal axis (PA) as a factor extraction method with varimax rotation. PA

is robust to the normality assumption violations (Watkins, 2020). The obtained latent 201 structure was confirmed by another factor extraction method: the minimum residuals 202 extraction method as well. We used a combination factor identification method including 203 scree plot(Cattell, 1966), Horn's parallel analysis (Horn, 1965), minimum average 204 partials method (Velicer, 1976), and hull method (Lorenzo-Seva, Timmerman, & Kiers, 205 2011) to identify factor numbers. Additionally, to determine the simple structure, we 206 followed the following guidelines recommended by psychometricians (i) no factors with 207 fewer than three items (ii) no factors with a factor loading <0.3 (iii) no items with 208 cross-loading greater than .3 across factors (Bandalos & Finney, 2018) We also 209 conducted psychometric analysis on non-merged response options data (supplementary 210 analysis) and rejected the latent structure obtained as the factors were less interpretable. 211

212 Results

Exploratory Factor Analysis

Sampling adequacy was checked using Kaiser-Meyer-Olkin (KMO) measures of 214 sampling adequacy(Kaiser, 1974). The overall KMO vale for 48 items was 0.63 which 215 was above the cutoff value (.50) indicating a mediocre sample (Hutcheson, 1999). 216 Table3 summarizes the univariate descriptive statistics for the 48 items. some of the 217 items were skewed with high Kurtosis values. Our data violated both univariate normality 218 (Shapiro-Wilk statistics; (Shapiro & Wilk, 1965)) and multivariate normality assumptions 219 (Marida's test;(Mardia, 1970)). Multivariate skew was = 583.80 (p <0.001) and multivariate kurtosis was = 2,749.15 (p < 0.001). Due to these violations and ordinal 221 nature of the response data polychoric correlations over Pearson's correlations was chosen (C. Desjardins & Bulut, 2018). Bartlett's test of sphericity (Bartlett, 1954), χ^2 (1128) = 5042.86, p < .001] indicated the correlations between items are adequate for 224 the EFA. However only 4.96% of the inter-item correlation coefficients were greater than

.30. The inter item correlation ranged between .44 to .91. And the corrected item-total correlations ranged between .10 to .44.

228

229

230

231

234

247

251

Scree plot (Figure 3) suggested a six-factor solution. Horn's parallel analysis (Horn, 1965) with 500 iterations also indicated a six-factor solution. However, the minimum average partial (MAP) method (Velicer, 1976) and Hull method (Lorenzo-Seva et al., 2011) suggested a five-factor solution. As a result, we tested both five-factor and six-factor solutions.

With initial 48 items we conducted three rounds of EFA gradually discarded problematic items. (cross-loading items and poor factor loading (<.30) items). Finally, a 235 five-factor EFA solution with 25 items was accepted with low RMSR = 0.08 (Brown, 236 2015), all factor-loading higher than .30 and no cross-loading greater than .30. We 237 confirmed this five-factor latent structure using varimax rotation with a minimum residual 238 extraction method (Table??). Table4 displays the factor-loading (structural coefficients) 239 and communality of the items. The absolute value of the factor-loading ranged from -.49 240 to .99 indicating strong coefficients. The commonalities ranged between .11 to .99. 241 However, the histogram of the absolute values of non-redundant residual-correlations 242 Fig5 showed 26% correlations greater than the absolute value of .05, indicating a 243 possible under-factoring. (C. D. Desjardins, 2018). Subsequently, we fitted a six-factor 244 solution. However, a factor emerged with only one salient variable loading in the 245 six-factor solution, thus disqualifying the six-factor solution (Table??).

In the five-factor solution, the first factor contained three items and explained 10.25% of the total variance with a satisfactory internal reliability coefficient (α = .86). All the items in this factor stemmed from the individual's preference to use blue light filters in different light environments. The second factor contained six items and explained 9.93% 250 of the total variance with a satisfactory internal reliability coefficient (α = .71). Items

under this factor commonly investigate an individual's hours spent outdoor. The third 252 factor contained five items and explained 8.83% of the total variance. Items under this 253 factor dealt with the specific behaviors pertaining to sleep. The internal consistency 254 reliability coefficient was, α = .68. The fourth factor contained five items and explained 255 8.44% of the total variance with an internal consistency coefficient, α = .62. These five 256 items stemmed from the behavior related to an individual's cellphone usage during the 257 sleep-wakeup time. Lastly, the fifth factor contained six items and explained 6.14% of the 258 total variance. This factor tried to measure an individual's behavior lead by the 259 awareness of light's influence on health. However, this factor showed unsatisfactory 260 internal consistency reliability (α = .53). It is essential to attain a balance between 261 psychometric properties and interpretability of the common themes when exploring the 262 latent structure. As all of the emerged factors are highly interpretable and relevant towards our aim to capture light exposure related behavior, regardless of the apparent low reliability of the two factors, we retain the five-factor solution with 23 items for our confirmatory factor analysis (CFA). Two items showed negative factor-loading (items 44 266 and 21). Upon inspection, it was understood that these items are negatively correlated to 267 the common theme, and thus in the CFA analysis, we reversed the response code for these two items.

Confirmatory Factor Analysis

271

273

276

We conducted a categorical confirmatory factor analysis with robust weighted least square (WLSMV) estimator as our response data was in ordinary nature(C. Desjardins & Bulut, 2018). Several indices are suggested to measure model fit. These indices can be categorized as absolute, comparative and parsimony fit indices (Brown, 2015). Absolute fit assess the model fit at an absolute level using indices including chi-square test statistics and the standardized root mean square (SRMR).parsimony fit indices including the root mean square error of approximation (RMSEA) considers the number of free

parameters in the model to assess the parsimony of the model. Comparative fit indices 278 evaluate the fit of the specified model solution in relation to a more restricted baseline 279 model restricting all covariances among the idicators as zero. Comparative fit index (CFI) 280 and the Tucker Lewis index (TLI) are such two comparative fit indices. Commonly used 281 Model fit guidelines (Hu & Bentle, 1999; Schumacker & Lomax, 2004) includes (i) 282 Reporting of chi-square test statistics (A non-significant test statistics is required to 283 reflect model fit) (i) CFI and TLI (CFI/TLI close to .95 or above/ranging between 90-95 284 and above) (ii) RMSEA (close to .06 or below), (iii) SRMR (close to .08 or below) to 285 estimate the model fit. Table 5 summarizes the fit indices of our fitted model. Our fitted 286 model failed to attain an absolute fit estimated by the chi-square test. However, the 287 chi-square test is sensitive to sample size and not recommended to be used as the sole 288 index of absolute model fit (Brown, 2015). Another absolute fit index we obtained in our analysis was SRMR which does not work well with categorical data (C.-Y. Yu, 2002). Subsequently, we judged the model fit based on the comparative fit indices: CFI, TLI and parsimony fit index-RMSEA. Our fitted model attained acceptable fit (CFI =.94; TLI = .93); 292 RMSEA = .06,[.05-.07, 90% CI]) with two imposed equity constrain on item pairs 32-33 293 and 19-17. However SRMR value was higher than the guideline (SRMR = .12). Further by allowing one pair of items (30-41) to covary their error variance and discarding two 295 item (item 37 & 26) for very low r-square value, our model attained best fit (CFI = .97; TLI 296 = .96); RMSEA = .05[.04-.06, 90% CI]) and SRMR value (SRMR = .09) was also close to 297 the suggestions of Hu and Bentle (1999). Since reliability coefficient Cronbach's alpha 298 tends to mis-measure reliability for multidimensional construct (Sijtsma, 2009) we report 299 Mcdonald's omega(total) as the internal consistency reliability coefficient. Mcdonald's 300 omega(total) is reported to be a satisfactory lower bound reliability coefficient that works 301 for both unidimensional and multidimensional construct (Zinbarg, Revelle, Yovel, & Li, 302 2005). Mcdonald's omega(total) for the five factors were .90, .80, .61, .72, .45 303 respectively. Mcdonald's omega(total) coefficient for the total scale was .73.

5 Analysing the quality of items by Item Information Theory

We sought the IRT to gether information regarding the item quality. IRT 306 complements the conventional classical test theory-based analysis by gathering 307 information on item discrimination and item difficulty (Baker, 2017). Here, an item's 308 quality is judged based on item information in relation to participants' latent trait level (θ) . 309 We gathered evidence on item quality by fitting each factor of LEBA with the graded 310 response model (7 to the combined EFA sample and CFA sample (n =690). Item 311 discrimination indicates the pattern of variation in the categorical responses with the changes in latent trait, and item information curve (IIC) indicates the amount of 313 information an item carries along the latent trait continuum. Here, we reported the item discrimination parameter and only discarded the items with relatively flat item information curve (information <.2) to develop the short form of LEBA. Baker (2017) categorized the 316 item discrimination in as none = 0; very low =0.01 to 0.34; low = 0.35 to 0.64; moderate = 317 0.65 to 1.34; high = 1.35 to 1.69; very high >1.70. Item discrimination parameters of our 318 scale fell in very high (10 items), high (4 items), moderate (4 items), low (5 items) 319 indicating a good range of discrimination along the latent trait. Examination of the item 320 information curve indicated 6 items (1, 25, 9, 38, 30, & 41) had relatively flat information 321 curves thus discarded. We also gathered evidence of item fit and person fit to our fitted 322 model. 323

Test information curve (TIC) indicate the amount of information an the full-scale carry along the latent trait continuum. As we treated each factor of LEBA as an unidmensional construct we obtain 5 TICs. These information curves indicated except blue filter factor, the other factor's TICs are roughly centered on the center of the trait continuum ((θ)). Also the amount of information changed rather steadily with the change of (θ). Thus we conferred the LEBA scale (except blue filter) estimated the light exposure related behavior with precision near the center of trait continuum (Baker, 2017)

324

329

which is sufficient to discriminate between latent trait measured by the each factor. The blue filter factor had a peak to the right side of the center of latent trait indicating its ability to providing information only for people who already have some preference towards using blue-filters.

Our result also indicated all the items fitted well to the respective models as
assessed by assessed by RMSEA value obtained from Signed-X2 index implementation.
All of the items had RMSEA value <.06 indicating adequate fit. Person fit indicates the
validity and meaningfulness of the fitted model at the participants latent trait level (C.
Desjardins & Bulut, 2018). We estimated the person fit statistics using standardized fit
index Zh statistics (Drasgow, Levine, & Williams, 1985). Zh < -2 should be considered as
a misfit. Fig indicates that Zh is larger than -2 for most participants, suggesting a good fit
of the selected IRT models.

The overall we can concluded that IRT analysis indicated LEBA is a psychometrically sound measure. Item fit indexes and person fit index for all five fitted model were acceptable. Items had diverse slope parameters indicating a good range of discrimination- the ability to differentiate respondents with different levels of the light exposure related behavior. All-in-all we can recommend the LEBA to be used to capture light exposure related behavior.

Discussion

References 350 Anwar Siraji, M. (2021). Tabledown: A companion pack for the book "basic & 351 advanced psychometrics in r". Retrieved from 352 https://github.com/masiraji/tabledown 353 Aust, F., & Barth, M. (2020). papaja: Prepare reproducible APA journal articles with R Markdown. Retrieved from https://github.com/crsh/papaja 355 Bajaj, A., Rosner, B., Lockley, S. W., & Schernhammer, E. S. (2011). Validation of 356 a light questionnaire with real-life photopic illuminance measurements: The 357 harvard light exposure assessment questionnaire. Cancer Epidemiology and 358 Prevention Biomarkers, 20(7), 1341–1349. 359 Baker, F. B. (2017). The Basics of Item Response Theory Using R (1st ed. 2017.). 360 Springer. 361 Bandalos, D. L., & Finney, S. J. (2018). Factor analysis: Exploratory and 362 confirmatory. In The reviewer's quide to quantitative methods in the social 363 sciences (pp. 98–122). Routledge. 364 Barth, M. (2021). tinylabels: Lightweight variable labels. Retrieved from 365 https://github.com/mariusbarth/tinylabels 366 Bartlett, M. (1954). A Note on the Multiplying Factors for Various Chi-square 367 Approximations. Journal of the Royal Statistical Society. Series B, 368 Methodological, 16(2), 296–298. 369 Bentler, P. M., & Chou, C.-P. (1987). Practical Issues in Structural Modeling. 370 Sociological Methods & Research, 16(1), 78–117. 371 https://doi.org/10.1177/0049124187016001004 372 Bevans, K. B., Meltzer, L. J., La Motte, A. de, Kratchman, A., Viél, D., & Forrest, C. 373 B. (2019). Qualitative development and content validation of the PROMIS 374

pediatric sleep health items. Behavioral Sleep Medicine, 17(5), 657–671.

https://doi.org/10.1080/15402002.2018.1461102

375

377	Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.).
378	New York, NY, US: The Guilford Press.
379	Bryer, J., & Speerschneider, K. (2016). Likert: Analysis and visualization likert
380	items. Retrieved from https://CRAN.R-project.org/package=likert
381	Buchanan, E. M., Gillenwaters, A., Scofield, J. E., & Valentine, K. D. (2019).
382	MOTE: Measure of the Effect: Package to assist in effect size calculations and
383	their confidence intervals. Retrieved from http://github.com/doomlab/MOTE
384	Buysse, Daniel J., Reynolds III, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J.
385	(1989). The pittsburgh sleep quality index: A new instrument for psychiatric
386	practice and research. Psychiatry Research, 28(2), 193-213.
387	Buysse, Daniel J., Yu, L., Moul, D. E., Germain, A., Stover, A., Dodds, N. E.,
388	Pilkonis, P. A. (2010). Development and validation of patient-reported outcome
389	measures for sleep disturbance and sleep-related impairments. Sleep, 33(6),
390	781-792. https://doi.org/10.1093/sleep/33.6.781
391	Cattell, R. B. (1966). The Scree Test For The Number Of Factors. Multivariate
392	Behavioral Research, 1(2), 245–276.
393	https://doi.org/10.1207/s15327906mbr0102_10
394	Chalmers, R. P. (2012). mirt: A multidimensional item response theory package
395	for the R environment. Journal of Statistical Software, 48(6), 1–29.
396	https://doi.org/10.18637/jss.v048.i06
397	Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Borges, B.
398	(2021). Shiny: Web application framework for r. Retrieved from
399	https://CRAN.R-project.org/package=shiny
400	Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis, 2nd ed.
401	Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc.
402	Conigrave, J. (2020). Corx: Create and format correlation matrices. Retrieved
403	from https://CRAN.R-project.org/package=corx

404	Dahl, D. B., Scott, D., Roosen, C., Magnusson, A., & Swinton, J. (2019). Xtable:
405	Export tables to LaTeX or HTML. Retrieved from
406	https://CRAN.R-project.org/package=xtable
407	Desjardins, C. D. (2018). Handbook of educational measurement and
408	psychometrics using R. (O. Bulut & ProQuest (Firm), Eds.). Boca Raton, FL:
409	CRC Press.
410	Desjardins, C., & Bulut, O. (2018). Handbook of Educational Measurement and
411	Psychometrics Using R. https://doi.org/10.1201/b20498
412	Dianat, I., Sedghi, A., Bagherzade, J., Jafarabadi, M. A., & Stedmon, A. W. (2013)
413	Objective and subjective assessments of lighting in a hospital setting:
414	Implications for health, safety and performance. Ergonomics, 56(10),
415	1535–1545.
416	Dinno, A. (2018). Paran: Horn's test of principal components/factors. Retrieved
417	from https://CRAN.R-project.org/package=paran
418	Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness
419	measurement with polychotomous item response models and standardized
420	indices. British Journal of Mathematical and Statistical Psychology, 38(1),
421	67–86.
422	Eklund, N., & Boyce, P. (1996). The development of a reliable, valid, and simple
423	office lighting survey. Journal of the Illuminating Engineering Society, 25(2),
424	25–40.
425	Epskamp, S. (2019). semPlot: Path diagrams and visual analysis of various SEM
426	packages' output. Retrieved from
427	https://CRAN.R-project.org/package=semPlot
428	Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom,
429	D. (2012). qgraph: Network visualizations of relationships in psychometric
430	data. Journal of Statistical Software, 48(4), 1-18.

431	F.lux Software LLC. (2021). F.lux (Version 4.120). Retrieved from
432	https://justgetflux.com/
433	Forrest, C. B., Meltzer, L. J., Marcus, C. L., La Motte, A. de, Kratchman, A.,
434	Buysse, D. J., Bevans, K. B. (2018). Development and validation of the
435	PROMIS pediatric sleep disturbance and sleep-related impairment item banks
436	Sleep, 41(6). https://doi.org/10.1093/sleep/zsy054
437	Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third).
438	Thousand Oaks CA: Sage. Retrieved from
439	https://socialsciences.mcmaster.ca/jfox/Books/Companion/
440	Fox, J., Weisberg, S., & Price, B. (2020). carData: Companion to applied
441	regression data sets. Retrieved from
442	https://CRAN.R-project.org/package=carData
443	Harb, F., Hidalgo, M. P., & Martau, B. (2015). Lack of exposure to natural light in
444	the workspace is associated with physiological, sleep and depressive
445	symptoms. Chronobiology International, 32(3), 368-375.
446	https://doi.org/10.3109/07420528.2014.982757
447	Harrell Jr, F. E., Charles Dupont, with contributions from, & others., many. (2021).
448	Hmisc: Harrell miscellaneous. Retrieved from
449	https://CRAN.R-project.org/package=Hmisc
450	Harris, P. A., Taylor, R., Minor, B. L., Elliott, V., Fernandez, M., O'Neal, L.,
451	others. (2019). The REDCap consortium: Building an international community
452	of software platform partners. Journal of Biomedical Informatics, 95, 103208.
453	Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G.
454	(2009). Research electronic data capture (REDCap)—a metadata-driven
455	methodology and workflow process for providing translational research
456	informatics support. Journal of Biomedical Informatics, 42(2), 377-381.
457	Henry, L., & Wickham, H. (2020). Purrr: Functional programming tools. Retrieved

458	nom https://oriAnt.h-project.org/package_pum
459	Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis.
460	Psychometrika, 30(2), 179-185. https://doi.org/10.1007/BF02289447
461	Horne, J. A., & Östberg, O. (1976). A self-assessment questionnaire to determine
462	morningness-eveningness in human circadian rhythms. International Journal
463	of Chronobiology.
464	Hu, L., & Bentle, P. M. (1999). Cutoff criteria for fit indexes in covariance structure
465	analysis: Conventional criteria versus new alternatives. Structural Equation
466	Modeling: A Multidisciplinary Journal, 6(1), 1–55.
467	https://doi.org/10.1080/10705519909540118
468	Hutcheson, G. D. (1999). The multivariate social scientist: Introductory statistics
469	using generalized linear models. London : SAGE.
470	lannone, R. (2016). DiagrammeRsvg: Export DiagrammeR graphviz graphs as
471	SVG. Retrieved from https://CRAN.R-project.org/package=DiagrammeRsvg
472	lannone, R. (2021). DiagrammeR: Graph/network visualization. Retrieved from
473	https://github.com/rich-iannone/DiagrammeR
474	Jackson, D. L. (2003). Revisiting Sample Size and Number of Parameter
475	Estimates: Some Support for the N:q Hypothesis. Structural Equation
476	Modeling, 10(1), 128-141. https://doi.org/10.1207/S15328007SEM1001_6
477	Johnson, P., & Kite, B. (2020). semTable: Structural equation modeling tables.
478	Retrieved from https://CRAN.R-project.org/package=semTable
479	Johnson, P., Kite, B., & Redmon, C. (2020). Kutils: Project management tools.
480	Retrieved from https://CRAN.R-project.org/package=kutils
481	Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2021).
482	semTools: Useful tools for structural equation modeling. Retrieved from
483	https://CRAN.R-project.org/package=semTools
484	Kaiser, H. F. (1974). An index of factorial simplicity. <i>Psychometrika</i> , 39(1), 31–36.

485	https://doi.org/10.1007/bf02291575
486	Kassambara, A. (2019). Ggcorrplot: Visualization of a correlation matrix using
487	'ggplot2'. Retrieved from https://CRAN.R-project.org/package=ggcorrplot
488	Kline, R. B. (2015). Principles and practice of structural equation modeling. The
489	Guilford Press.
490	Kowarik, A., & Templ, M. (2016). Imputation with the R package VIM. Journal of
491	Statistical Software, 74(7), 1–16. https://doi.org/10.18637/jss.v074.i07
492	Lishinski, A. (2021). lavaanPlot: Path diagrams for 'lavaan' models via
493	'DiagrammeR'. Retrieved from
494	https://CRAN.R-project.org/package=lavaanPlot
495	Lorenzo-Seva, U., Timmerman, M., & Kiers, H. (2011). The Hull Method for
496	Selecting the Number of Common Factors. Multivariate Behavioral Research,
497	46, 340-364. https://doi.org/10.1080/00273171.2011.564527
498	Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Methods and
499	algorithms for correlation analysis in r. Journal of Open Source Software,
500	5(51), 2306. https://doi.org/10.21105/joss.02306
501	Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with
502	applications. Biometrika, 57(3), 519-530.
503	https://doi.org/10.1093/biomet/57.3.519
504	Mock, T. (2021). gtExtras: A collection of helper functions for the gt package.
505	Retrieved from https://github.com/jthomasmock/gtExtras
506	Müller, K., & Wickham, H. (2021). Tibble: Simple data frames. Retrieved from
507	https://CRAN.R-project.org/package=tibble
508	Navarro-Gonzalez, D., & Lorenzo-Seva, U. (2021). EFA.MRFA: Dimensionality
509	assessment using minimum rank factor analysis. Retrieved from
510	https://CRAN.R-project.org/package=EFA.MRFA
511	Ooms, J. (2021a). Magick: Advanced graphics and image-processing in r.

512	Retrieved from https://CRAN.R-project.org/package=magick
513	Ooms, J. (2021b). Rsvg: Render SVG images into PDF, PNG, PostScript, or
514	bitmap arrays. Retrieved from https://CRAN.R-project.org/package=rsvg
515	Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report
516	measure of pubertal status: Reliability, validity, and initial norms. Journal of
517	Youth and Adolescence, 17(2), 117–133. https://doi.org/10.1007/BF01537962
518	Pornprasertmanit, S., Miller, P., Schoemann, A., & Jorgensen, T. D. (2021).
519	Simsem: SIMulated structural equation modeling. Retrieved from
520	https://CRAN.R-project.org/package=simsem
521	R Core Team. (2021). R: A language and environment for statistical computing.
522	Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
523	https://www.R-project.org/
524	Revelle, W. (2021). Psych: Procedures for psychological, psychometric, and
525	personality research. Evanston, Illinois: Northwestern University. Retrieved
526	from https://CRAN.R-project.org/package=psych
527	Roenneberg, T., Wirz-Justice, A., & Merrow, M. (2003). Life between clocks: Dail
528	temporal patterns of human chronotypes. Journal of Biological Rhythms,
529	<i>18</i> (1), 80–90.
530	Rosseel, Y. (2012). lavaan: An R package for structural equation modeling.
531	Journal of Statistical Software, 48(2), 1-36. Retrieved from
532	https://www.jstatsoft.org/v48/i02/
533	Ryu, C. (2021). Dlookr: Tools for data diagnosis, exploration, transformation.
534	Retrieved from https://CRAN.R-project.org/package=dlookr
535	Sarkar, D. (2008). Lattice: Multivariate data visualization with r. New York:
536	Springer. Retrieved from http://lmdvr.r-forge.r-project.org
537	Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations
538	stabilize? Journal of Research in Personality, 47(5), 609-612.

539	https://doi.org/10.1016/j.jrp.2013.05.009
540	Schumacker, R. E., & Lomax, R. G. (2004). A beginner's guide to structural
541	equation modeling. psychology press.
542	Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality
543	(complete samples). Biometrika, 52(3-4), 591-611.
544	https://doi.org/10.1093/biomet/52.3-4.591
545	Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of
546	cronbach's alpha. Psychometrika, 74(1), 107.
547	Sjoberg, D. D., Curry, M., Hannum, M., Larmarange, J., Whiting, K., & Zabor, E. C.
548	(2021b). Gtsummary: Presentation-ready data summary and analytic result
549	tables. Retrieved from https://CRAN.R-project.org/package=gtsummary
550	Sjoberg, D. D., Curry, M., Hannum, M., Larmarange, J., Whiting, K., & Zabor, E. C.
551	(2021a). Gtsummary: Presentation-ready data summary and analytic result
552	tables. Retrieved from https://CRAN.R-project.org/package=gtsummary
553	Stauffer, R., Mayr, G. J., Dabernig, M., & Zeileis, A. (2009). Somewhere over the
554	rainbow: How to make effective use of colors in meteorological visualizations.
555	Bulletin of the American Meteorological Society, 96(2), 203–216.
556	https://doi.org/10.1175/BAMS-D-13-00155.1
557	Terry M. Therneau, & Patricia M. Grambsch. (2000). Modeling survival data:
558	Extending the Cox model. New York: Springer.
559	Ushey, K., McPherson, J., Cheng, J., Atkins, A., & Allaire, J. (2021). Packrat: A
560	dependency management system for projects and their r package
561	dependencies. Retrieved from https://CRAN.R-project.org/package=packrat
562	van Lissa, C. J. (2021). tidySEM: Tidy structural equation modeling. Retrieved
563	from https://CRAN.R-project.org/package=tidySEM
564	Velicer, W. (1976). Determining the Number of Components from the Matrix of
565	Partial Correlations. Psychometrika, 41, 321-327.

566	https://doi.org/10.1007/BF02293557
567	Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (Fourth).
568	New York: Springer. Retrieved from https://www.stats.ox.ac.uk/pub/MASS4/
569	Verriotto, J. D., Gonzalez, A., Aguilar, M. C., Parel, JM. A., Feuer, W. J., Smith,
570	A. R., & Lam, B. L. (2017). New methods for quantification of visual
571	photosensitivity threshold and symptoms. Translational Vision Science &
572	Technology, 6(4), 18–18.
573	Watkins, M. (2020). A Step-by-Step Guide to Exploratory Factor Analysis with R
574	and RStudio. https://doi.org/10.4324/9781003120001
575	Weinzaepflen, C., & Spitschan, M. (2021). Enlighten your clock: How your body
576	tells time. Open Science Framework. https://doi.org/10.17605/OSF.IO/ZQXVF
577	Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal
578	of Statistical Software, 40(1), 1-29. Retrieved from
579	http://www.jstatsoft.org/v40/i01/
580	Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag
581	New York. Retrieved from https://ggplot2.tidyverse.org
582	Wickham, H. (2019). Stringr: Simple, consistent wrappers for common string
583	operations. Retrieved from https://CRAN.R-project.org/package=stringr
584	Wickham, H. (2021a). Forcats: Tools for working with categorical variables
585	(factors). Retrieved from https://CRAN.R-project.org/package=forcats
586	Wickham, H. (2021b). Tidyr: Tidy messy data. Retrieved from
587	https://CRAN.R-project.org/package=tidyr
588	Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,
589	Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source
590	Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
591	Wickham, H., & Bryan, J. (2019). Readxl: Read excel files. Retrieved from
592	https://CRAN.R-project.org/package=readxl

593	Wickham, H., François, R., Henry, L., & Müller, K. (2021). Dplyr: A grammar of
594	data manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr
595	Wickham, H., & Hester, J. (2021). Readr: Read rectangular text data. Retrieved
596	from https://CRAN.R-project.org/package=readr
597	Wilke, C. O. (2020). Cowplot: Streamlined plot theme and plot annotations for
598	'ggplot2'. Retrieved from https://CRAN.R-project.org/package=cowplot
599	Worthington, R. L., & Whittaker, T. A. (2006). Scale Development Research: A
600	Content Analysis and Recommendations for Best Practices. The Counseling
601	Psychologist, 34(6), 806-838. https://doi.org/10.1177/0011000006288127
602	Yu, CY. (2002). Evaluating cutoff criteria of model fit indices for latent variable
603	models with binary and continuous outcomes (Thesis). ProQuest
604	Dissertations Publishing.
605	Yu, L., Buysse, D. J., Germain, A., Moul, D. E., Stover, A., Dodds, N. E.,
606	Pilkonis, P. A. (2011). Development of short forms from the PROMIS™ sleep
607	disturbance and sleep-related impairment item banks. Behavioral Sleep
608	Medicine, 10(1), 6-24. https://doi.org/10.1080/15402002.2012.636266
609	Zeileis, A., & Croissant, Y. (2010). Extended model formulas in R: Multiple parts
610	and multiple responses. Journal of Statistical Software, 34(1), 1-13.
611	https://doi.org/10.18637/jss.v034.i01
612	Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P.,
613	Wilke, C. O. (2020). colorspace: A toolbox for manipulating and assessing
614	colors and palettes. Journal of Statistical Software, 96(1), 1-49.
615	https://doi.org/10.18637/jss.v096.i01
616	Zeileis, A., Hornik, K., & Murrell, P. (2009). Escaping RGBland: Selecting colors
617	for statistical graphics. Computational Statistics & Data Analysis, 53(9),
618	3259-3270. https://doi.org/10.1016/j.csda.2008.11.033
619	Zhu, H. (2021). kableExtra: Construct complex table with 'kable' and pipe syntax.

520	Retrieved from https://CRAN.R-project.org/package=kableExtra		
521	Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach's α , revelle's β		
522	and McDonald's ω h: Their relations with each other and two alternative		
523	conceptualizations of reliability. Psychometrika, 70(1), 123-133.		

Table 1

Existing related Scales

			Relevant	_
Name	Authors	Description	Items	Adaptations
Visual Light	(Verriotto	Eight-question survey to assess the	All items	
Sensitivity	et al.,	presence and severity of photosensitivity		
Questionnaire-8	2017)	symptoms		
Office Light	(Eklund	Multi-item questionnaire to assess		
Survey	&	electrical lighting environment in office		
	Boyce,			
	1996)			
Harvard Light	(Bajaj,	Self-administered semi-quantitative light	All Items	
Exposure	Ros-	questionnaire		
Assessment	ner,			
Questionnaire	Lock-			
	ley, &			
	Sch-			
	ern-			
	ham-			
	mer,			
	2011)			

		Relevant	
Name	Authors Description	Items	Adaptations
Hospital Lighting	(Dianat, 23 items questionnaire to assess	light	
Survey	Sedghi, environment in a hospital		
	Bagherzade,		
	Ja-		
	farabadi,		
	& Sted-		
	mon,		
	2013)		
Morningness-	(Horne 19 items questionnaire to unders	tand	
Eveningness	& Öst- your body clock		
Questionnaire	berg,		
	1976)		
Munich	(Roennebte7gitems questionnaire to unders	tand	
Chronotype	Wirz- individuals phase of entrainment		
Questionnaire	Justice,		
(MCTQ)	& Mer-		
	row,		
	2003)		
Assessment of	@Oliviet320eh6s questionnaire measuring	g your	
Sleep	sleep environment quality		
Environment			

			Relevant	
Name	Authors	Description	Items	Adaptations
The Pittsburgh	(Daniel	9 items inventory to measure sleep		
Sleep Quality	J.	quality and sleeping pattern		
Index (PSQI)	Buysse,			
	Reynold	s		
	III,			
	Monk,			
	Berman	,		
	&			
	Kupfer,			
	1989)			
Self-Rating of	@Xie.2	2029 litems questionnaire assessing four	Items 3.,	
Biological		dimensions of biological rhythm disorder	22., 23.,	
Rhythm Disorder		in adolescents (digital media use, sleep,	24., 25.	
for Adolescents		eating habits, and activity)	and 29.	
(SBRDA)				
Photosensitivity	@Wu.2	20167dichotomous (yes/no) items	All items	
Assessment		questionnaire to assess "photophobia"		
Questionnaire		and "photophilia," giving two final scores		
(PAQ)		of "photophobic" and "photophilic"		
		behaviours		

		1. EFA	2. CFA		
	Overall, N	Sample, N =	Sample, N =	p-	q-
Variable	= 690	428	262	value	value
Age	32.95	32.99 (15.11)	32.89 (13.66)	0.5	0.5
	(14.57)				
Sex				0.14	0.4
Female	325 (47%)	189 (44%)	136 (52%)		
Male	351 (51%)	230 (54%)	121 (46%)		
Other	14 (2.0%)	9 (2.1%)	5 (1.9%)		
Gender-Variant Identity	49 (7.2%)	33 (7.8%)	16 (6.2%)	0.4	0.5
Native English Speaker	320 (46%)	191 (45%)	129 (49%)	0.2	0.5
Occupational Status				0.040	0.2
Work	396 (57%)	235 (55%)	161 (61%)		
School	174 (25%)	122 (29%)	52 (20%)		
Neither	120 (17%)	71 (17%)	49 (19%)		
Occupational setting				0.3	0.5
Home office/Home	303 (44%)	194 (45%)	109 (42%)		
schooling					
Face-to-face	109 (16%)	68 (16%)	41 (16%)		
work/Face-to-face					
schooling					
Combination of home- and	147 (21%)	94 (22%)	53 (20%)		
face-to-face-					
work/schooling					
Neither (no work or school,	131 (19%)	72 (17%)	59 (23%)		
or in vacation)					

Table 3

Descriptive Statistics

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item1	2.27	1.39	0.74	-0.81	0.81*	.25
Item2	2.87	1.59	0.08	-1.60	0.83*	.19
Item3	3.36	1.38	-0.48	-1.03	0.87*	.16
Item4	1.47	1.18	2.38	4.00	0.43*	.28
Item5	4.01	1.40	-1.22	0.07	0.70*	.13
Item6	2.79	1.55	0.19	-1.48	0.85*	.20
Item7	2.26	1.25	0.70	-0.60	0.85*	.19
Item8	2.97	1.20	-0.06	-0.94	0.91*	10
Item9	2.94	1.03	-0.12	-0.40	0.91*	.10
Item10	2.74	1.04	0.09	-0.74	0.91*	.28
Item11	2.18	0.90	0.60	0.12	0.86*	.26
Item12	2.36	1.22	0.59	-0.62	0.87*	.25
Item13	2.73	1.46	0.20	-1.36	0.87*	.33
Item14	2.14	1.31	0.77	-0.78	0.80*	.26
Item15	3.26	1.09	-0.26	-0.45	0.91*	.14
Item16	1.56	1.23	2.00	2.45	0.50*	.32
Item17	1.54	1.21	2.07	2.75	0.49*	.31
Item18	1.12	0.49	5.02	27.80	0.25*	.16
Item19	1.05	0.36	7.23	52.98	0.13*	.18
Item20	1.04	0.33	8.99	85.28	0.10*	.16
Item21	1.14	0.59	4.79	24.05	0.25*	.16
Item22	3.57	1.07	-0.65	-0.17	0.88*	.21
Item23	2.56	1.27	0.33	-1.00	0.89*	.11

Table 3 continued

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item24	4.14	0.99	-1.23	1.14	0.79*	.19
Item25	2.59	1.41	0.27	-1.27	0.86*	.19
Item26	2.25	1.27	0.69	-0.64	0.84*	.18
Item27	3.80	1.29	-0.87	-0.42	0.82*	.17
Item28	3.76	1.14	-0.68	-0.45	0.86*	.00
Item29	2.44	1.31	0.38	-1.14	0.86*	.11
Item30	1.48	1.11	2.18	3.35	0.48*	.24
Item31	3.00	1.62	-0.08	-1.61	0.83*	.44
Item32	3.55	1.65	-0.60	-1.34	0.76*	.43
Item33	3.62	1.64	-0.68	-1.25	0.74*	.32
Item34	3.42	1.83	-0.45	-1.69	0.69*	.33
Item35	3.86	1.67	-0.99	-0.85	0.65*	.23
Item36	1.54	1.25	2.13	2.86	0.46*	.36
Item37	1.33	0.91	3.03	8.43	0.41*	.01
Item38	4.30	1.08	-1.79	2.53	0.67*	.22
Item39	1.96	0.98	1.02	0.69	0.82*	.05
Item40	2.16	1.19	0.71	-0.54	0.84*	.14
Item41	1.31	0.81	2.75	6.92	0.43*	.21
Item42	3.93	1.48	-1.06	-0.44	0.71*	.18
Item43	1.64	1.18	1.79	2.02	0.60*	.15
Item44	3.51	1.30	-0.70	-0.59	0.85*	.39
Item45	2.22	1.48	0.71	-1.02	0.76*	.30
Item46	1.76	1.23	1.35	0.44	0.66*	.38
Item47	2.11	1.17	0.77	-0.39	0.83*	.32

Table 3 continued

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item48	2.60	1.25	0.29	-0.86	0.89*	.35

Note. *p<.001

Table 4

Factor loadings and communality of the retained items

item	PA1	PA2	PA3	PA4	PA5	Communality	Uniqueness
item16	0.99					0.993	0.007
item36	0.94					0.899	0.101
item17	8.0					0.658	0.342
item11		0.79				0.642	0.358
item10		0.76				0.592	0.408
item12		0.65				0.465	0.535
item7		0.5				0.267	0.733
item8		-0.49				0.252	0.748
item9		0.32				0.113	0.887
item27			8.0			0.658	0.342
item3			8.0			0.682	0.318
item40			0.65			0.464	0.536
item30			0.45			0.353	0.647
item41			0.36			0.329	0.671
item33				0.74		0.555	0.445
item32				0.73		0.624	0.376
item35				0.66		0.454	0.546
item37				-0.39		0.174	0.826
item38				0.38		0.178	0.822
item46					0.6	0.422	0.578
item45					0.59	0.374	0.626
item25					0.41	0.193	0.807
item4					0.41	0.219	0.781
item1					0.4	0.17	0.83
item26					0.35	0.165	0.835
% of Variance	0.1	0.1	0.09	0.08	0.06		

Note. Only loading higher than .30 is reported

Table 5

Fit indices of CFA

Model	Chi-Squre	df	CFI	TLI	RMSEA	RMSEA 90% Lower CI	RMSEA 90% Upper CI	SRMR
Five factor model:25	448.51	222.00	.94	0.93	0.06	0.05	0.07	0.12
Five factor model:23	346.59	221.00	.97	0.96	0.05	0.04	0.06	0.09

Note. df: Degrees of Freedom; CFI: Comparative Fit Index; TLI: Tucker Lewis Index;RMSEA:Root Mean Square Error of Approximation; CI: Confidence Interval; SRMR: Standardized Root Mean Square

Table 6
Invariance Analysis

	Chi-Square	df	CFI	TLI	RMSEA	RMSEA 90% Lower CI	RMSEA 90% Upper	SRMR	Chi-Sqr comparison	df*	р
Configural	632.20	442.00	0.95	0.94	0.06	0.05	0.07	0.13	-	-	=
Metric	644.58	458.00	0.95	0.95	0.06	0.05	0.07	0.13	18.019a	16	0.323
Scalar	714.19	522.00	0.95	0.95	0.05	0.04	0.06	0.13	67.961b	64	0.344
Residual	714.19	522.00	0.95	0.95	0.05	0.04	0.06	0.13	0c	0	NA
Structural	691.49	542.00	0.96	0.96	0.05	0.04	0.06	0.13	12.617d	20	0.893

Note. a = Metric vs Configural; b = Scalar vs Metric; c = Residual vs Scalar; d = Structural vs Residual;* = df of model comparison

Table 7

IRT Item parameters for the LEBA Scale

	а	b1	b2	b3	b4
item16	28.55	0.78	0.90	1.06	1.40
item36	4.49	0.94	1.08	1.23	1.40
item17	2.81	0.97	1.11	1.38	1.62
item11	3.27	-0.79	0.65	1.54	2.31
item10	3.07	-1.27	-0.09	0.82	2.00
item12	1.72	-0.67	0.44	1.28	2.11
item7	1.09	-0.50	0.73	1.63	2.97
Ritem8	1.19	-2.26	-0.48	0.64	1.91
item9	0.91	-2.63	-0.96	1.11	3.49
item27	2.21	-1.88	-1.19	-0.73	0.30
item3	3.03	-1.24	-0.77	-0.20	0.66
item40	1.55	-0.51	0.46	1.32	2.22
item30	0.49	3.27	3.74	4.64	6.52
item41	0.51	3.87	4.78	6.39	8.91
item32	1.62	-1.03	-0.78	-0.42	0.16
item35	1.36	-1.09	-0.98	-0.75	-0.40
item38	0.40	-7.50	-5.58	-4.25	-0.91
item33	13.51	-0.66	-0.48	-0.24	0.13
item46	2.22	0.68	0.89	1.38	2.17
item45	1.51	0.30	0.55	1.17	1.91
item25	0.52	-1.37	-0.04	1.89	4.22
item4	0.84	2.44	2.80	3.18	3.67
item1	0.39	-0.91	1.52	3.25	5.53

Note. a = item discrimination parameter; b(1-4)

= response category difficulty parameter

Table 8

correlation coefficents of obtained

scores and estimated latent trait for

each factots

F1	F2	F3	F4	F5
.94***	.94**	.98***	.98***	.98***

Note. * p < 0.05; ** p < 0.01; *** p < 0.001

Figure 1. Development

Figure 2. Correlation plot of the items

Figure 3. Factor Identification (A) Parallel analysis (B) Scree Plot (C) Hull Method

Figure 4. Five Factor Solution

Figure 5. Histogram of residulas: five-factor solution

Items	St	mmary	Statistic	28	Grap	HIIOS		H	esponse Patt	ern	
LEBA Items	n	Mean	Median	SD	Histogram [†]	Density ²	Never	Rarely	Sometimes	Often	Always
EFA (n = 4	28)						40.000/	00.000/	12.62%	40.000/	40.540/
item01	428	2.3	2.0	1.4		_	42.29% (181)	22.20% (95)	(54)	12.38% (53)	10.51% (45)
item03	428	3.4	4.0	1.4		\sim	15.89% (68)	11.45% (49)	17.29% (74)	31.07% (133)	24.30% (104)
item04	428	1.5	1.0	1.2		^_	84.11% (360)	3.50% (15)	2.10% (9)	2.10% (9)	8.18% (35
item07	428	2.3	2.0	1.2		<u></u>	35.98% (154)	27.80% (119)	17.29% (74)	12.38% (53)	6.54% (28
item08	428	3.0	3.0	1.2		<u></u>	13.79%	22.20%	27.80%	25.93%	10.28%
item09	428	2.9	3.0	1.0			(59) 10.28%	(95) 19.63%	(119) 41.82%	(111)	5.84% (2)
							(44) 11.92%	(84)	(179)	(96)	
item10	428	2.7	3.0	1.0			(51) 22.43%	(134) 46.26%	(134)	(94)	3.50% (1
item11	428	2.2	2.0	0.9			(96)	(198)	(99)	7.01% (30)	1.17% (5
item12	428	2.4	2.0	1.2		\sim	29.91% (128)	29.67% (127)	21.50% (92)	12.15% (52)	6.78% (2
item16	428	1.6	1.0	1.2		^_	79.67% (341)	4.21% (18)	3.97% (17)	4.67% (20)	7.48% (3:
item17	428	1.5	1.0	1.2		^_	80.61% (345)	3.27% (14)	5.14% (22)	3.27% (14)	7.71% (3
item25	428	2.6	3.0	1.4		<u></u>	34.35% (147)	13.79%	22.20%	17.99% (77)	11.68%
item26	428	3.7	4.0	1.3		_	38.32% (164)	23.36%	20.09%	10.98%	7.24% (3
item27	428	3.8	4.0	1.3		\sim	8.41% (36)	11.21%	11.21%	30.37%	38.79%
						^	81.78%	(48)	(48)	(130)	(166)
item30	428	1.5	1.0	1.1		_	(350)	3.27% (14)	4.91% (21)	5.37% (23) 14.95%	4.67% (2 46.73%
item32	428	3.6	4.0	1.6		~	(99)	7.01% (30)	8.18% (35)	(64)	(200)
item33	428	3.6	4.0	1.6		~	21.96% (94)	7.01% (30)	7.24% (31)	14.49% (62)	49.30% (211)
item35	428	3.9	5.0	1.7		~	22.90% (98)	1.87% (8)	3.74% (16)	9.35% (40)	62.15% (266)
item36	428	1.5	1.0	1.3			82.24% (352)	3.04% (13)	3.04% (13)	2.34% (10)	9.35% (4
item37	428	2.3	2.0	1.3		<u></u>	38.32% (164)	23.36% (100)	20.09% (86)	10.98% (47)	7.24% (3
item38	428	4.3	5.0	1.1			5.37% (23)	3.50% (15)	5.37% (23)	27.57% (118)	58.18% (249)
item40	428	2.2	2.0	1.2		<u></u>	39.49% (169)	25.00% (107)	19.63%	11.45%	4.44% (1
item41	428	1.3	1.0	0.8		\wedge	85.05%	4.67% (20)	6.07% (26)	3.04% (13)	1.17% (5
• item45	428	2.2	1.0	1.5		~	(364)	7.01% (30)	16.36%	11.92%	11.68%
						_	(227) 67.06%		(70) 11.68%	(51)	(50)
item46 CFA (n =2	428	1.8	1.0	1.2			(287)	7.71% (33)	(50)	8.88% (38)	4.67% (2)
item01	262	2.3	2.0	1.4		~	40.46%	22.52%	14.50%	10.69%	11.83%
							(106)	(59)	(38)	(28) 28.24%	(31)
item03	262	3.7	4.0	1.3			(31) 89.31%	7.25% (19)	(46)	(74)	(92)
item04	262	1.3	1.0	8.0			(234)	2.29% (6)	3.44% (9)	3.05% (8)	1.91% (5
item07	262	2.1	2.0	1.2		<u></u>	43.13% (113)	23.66% (62)	14.50% (38)	14.12% (37)	4.58% (1
item08	262	3.0	3.0	1.2		\sim	14.12% (37)	22.90% (60)	20.99% (55)	32.06% (84)	9.92% (2)
item09	262	2.9	3.0	1.1		\sim	12.98% (34)	22.14% (58)	34.35% (90)	26.34% (69)	4.20% (1
item10	262	2.6	3.0	1.1		$\overline{}$	17.56% (46)	29.39% (77)	29.01% (76)	21.37% (56)	2.67% (7
item11	262	2.1	2.0	0.9		^	25.95% (68)	46.56% (122)	20.23%	5.34% (14)	1.91% (5
item12	262	2.3	2.0	1.2		<u></u>	32.06%	30.92%	19.08%	11.45%	6.49% (1
item16	262	1.6	1.0	1.3			(84) 78.24%	(81)	(50)	(30)	8.40% (2:
						_	(205) 80.15%				
item17	262	1.6	1.0	1.2		_	(210) 32.82%	3.44% (9)	5.34% (14)	2.67% (7)	8.40% (2 10.31%
item25	262	2.5	2.0	1.4			(86)	(48)	(57)	(44)	(27)
item27	262	4.0	4.0	1.2			6.11% (16)	7.25% (19)	8.02% (21)	33.59% (88)	45.04% (118)
item30	262	1.4	1.0	1.1		^	83.59% (219)	2.67% (7)	4.20% (11)	6.11% (16)	3.44% (9
item32	262	3.4	4.0	1.7		~~	25.95% (68)	4.20% (11)	11.45% (30)	16.79% (44)	41.60% (109)
item33	262	3.1	3.0	1.7		<u>~~</u>	32.44% (85)	6.11% (16)	11.83%	14.12% (37)	35.50% (93)
item35	262	3.6	5.0	1.8		~~	27.48% (72)	2.67% (7)	7.25% (19)	6.49% (17)	56.11% (147)
item36	262	1.6	1.0	1.3	—	^ -	80.53%	3.44% (9)	3.05% (8)	3.44% (9)	9.54% (2
_		4.3				_	(211)			21.37%	60.31%
item38	262		5.0	1.1			4.20% (11) 30.92%	7.63% (20) 27.10%	6.49% (17)	(56) 12.21%	(158)
item40	262	2.5	2.0	1.3			(81)	(71)	(49)	(32)	(29)
item41	262	1.2	1.0	0.7		^_	90.08% (236)	3.82% (10)	2.29% (6)	2.67% (7)	1.15% (
item45	262	2.0	1.0	1.4		^_	64.12% (168)	5.34% (14)	9.54% (25)	11.83% (31)	9.16% (2

Figure 6

Figure 7. (A) Five Factor Model of LEBA

Figure 8. Item information curves (A) blue filter (B) natural light (C)smart device (D)sleep environment (E)electic light

Figure 9. Test information curves (A) blue filter (B) natural light (C)smart device (D)sleep environment (E)electic light

Appendix A

Table A1

Factor loadings and communality of the retained items(Minmum Residual)

item	MR1	MR2	MR3	MR4	MR5	Communality	Uniqueness
item16	1					0.996	0.004
item36	0.94					0.897	0.103
item17	0.8					0.658	0.342
item11		0.79				0.642	0.358
item10		0.76				0.592	0.408
item12		0.65				0.465	0.535
item7		0.5				0.267	0.733
item8		-0.49				0.252	0.748
item9		0.32				0.113	0.887
item27			0.8			0.659	0.341
item3			0.8			0.683	0.317
item40			0.65			0.464	0.536
item30			0.45			0.353	0.647
item41			0.36			0.329	0.671
item33				0.74		0.555	0.445
item32				0.73		0.623	0.377
item35				0.66		0.455	0.545
item37				-0.39		0.175	0.825
item38				0.38		0.178	0.822
item46					0.6	0.422	0.578
item45					0.59	0.374	0.626
item25					0.41	0.193	0.807
item4					0.41	0.219	0.781
item1					0.4	0.17	0.83
item26					0.35	0.165	0.835
% of Variance	0.1	0.1	0.09	0.08	0.06		

Note. Only loading higher than .30 is reported

Table A2

Factor loadings and communality of the retained items(six factor)

item	PA1	PA4	PA2	PA3	PA5	PA6	Communality	Uniqueness
item19	1.78						3.318	-2.318
item5							0.11	0.89
item16		1					1.004	-0.004
item36		0.91					0.86	0.14
item17		0.81					0.691	0.309
item11			0.83				0.71	0.29
item10			0.79				0.638	0.362
item12			0.63				0.465	0.535
item8			-0.5				0.269	0.731
item7			0.47				0.268	0.732
item9			0.32				0.163	0.837
item33				0.83			0.698	0.302
item32				0.75			0.666	0.334
item35				0.64			0.446	0.554
item31				0.48			0.331	0.669
item38				0.39			0.191	0.809
item37				-0.35			0.153	0.847
item3					0.85		0.748	0.252
item27					8.0		0.644	0.356
item40					0.68		0.507	0.493
item46						0.6	0.431	0.569
item45						0.56	0.341	0.659
item4						0.43	0.265	0.735
item25						0.4	0.178	0.822
item1						0.36	0.142	0.858
item26						0.36	0.173	0.827
item13							0.087	0.913
item29							0.108	0.892

Appendix B

Disclaimer: This is a non-public version of LEBA (dated November 9, 2021) and still a work in progress. Please do not distribute!

LEBA captures light exposure-related behaviours on a 5 point Likert type scale
ranging from 1 to 5 (Never/Does not apply/I don't know = 1; Rarely = 2; Sometimes = 3;
Often = 4; Always = 5). The score of each factor is calculated by the summation of
scores of items belonging to the corresponding factor. The following instruction is given
before displaying the items: "Please indicate how often you performed the following
behaviours in the past 4 weeks."

Appendix C
LEBA Long Form (23 Items)

	Items	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
1	I wear blue-filtering,					
	orange-tinted, and/or					
	red-tinted glasses indoors					
	during the day.					
2	I wear blue-filtering,					
	orange-tinted, and/or					
	red-tinted glasses outdoors					
	during the day.					
3	I wear blue-filtering,					
	orange-tinted, and/or					
	red-tinted glasses within 1					
	hour before attempting to fall					
	asleep.					
4	I spend 30 minutes or less					
	per day (in total) outside.					

	Items	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
5	I spend between 1 and 3					
	hours per day (in total)					
	outside.					
6	I spend between 30 minutes					
	and 1 hour per day (in total)					
	outside.					
7	I spend more than 3 hours					
	per day (in total) outside.					
8	I spend as much time outside					
	as possible.					
9	I go for a walk or exercise					
	outside within 2 hours after					
	waking up.					
10	I use my mobile phone within					
	1 hour before attempting to					
	fall asleep.					

screen waking 12 I check wake t 13 I look a within attemp 14 I look a when I 15 I dim n screen	ek my phone when I up at night. at my smartwatch 1 hour before			
waking 12 I check wake to 13 I look a within attemp 14 I look a when I 15 I dim n screen	g up. k my phone when I up at night. at my smartwatch 1 hour before			
12 I check wake u 13 I look a within attemp 14 I look a when I 15 I dim n screen	ek my phone when I up at night. at my smartwatch 1 hour before			
wake to a look a within attempt 14 I look a when I look a screen	up at night. at my smartwatch 1 hour before			
13 I look a within attempt 14 I look a when I 15 I dim n screen	at my smartwatch 1 hour before			
within attempt 14 I look a when I 15 I dim n screen	1 hour before			
attempt 14 I look a when I 15 I dim n screen				
14 I look a when I 15 I dim n				
when I 15 I dim n screen	pting to fall asleep.			
15 I dim n	at my smartwatch			
screer	I wake up at night.			
	my mobile phone			
attemp	n within 1 hour before			
	pting to fall asleep.			
16 I use a	a blue-filter app on my			
compu				
hour b	uter screen within 1			
asleep	uter screen within 1 before attempting to fall			

	Items	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
17	I use as little light as possible					
	when I get up during the					
	night.					
18	I dim my computer screen					
	within 1 hour before					
	attempting to fall asleep.					
19	I use tunable lights to create					
	a healthy light environment.					
20	I use LEDs to create a					
	healthy light environment.					
21	I use a desk lamp when I do					
	focused work.					
22	I use an alarm with a dawn					
	simulation light.					
23	I turn on the lights					
	immediately after waking up.					

Latent Structure, Reliability and Structural Validity

The long form of LEBA consists 23 items with five factors.

Factor names

635 Items

Reliability Coefficients

McDonald's Omega

638 (N=262)

Reliability Coefficients

640 Cronbach's alpha

F1: Wearing blue light filters

642 **1-3**

.93

.90

F2: Spending time outdoors

4-9 (Item 4 is reversed)

.80

.78

F3: Using phone and smartwatch in bed

650 10-14

.61

.62

F4: Using light before bedtime

654 **15-18**

.72

.62

F5: Using light in the morning and during daytime

658 19-23

.45

.41

.73(Total scale)

LEBA -long form showed satisfactory structural validity (CFI =.97; TLI = .96; RMSEA = .05[.04-.06, 90% CI]; SRMR =

663 .09).

How to cite:

Appendix D

LEBA Short Form (17 Items)

	Short Form (17 Items)	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
01	I wear blue-filtering,					
	orange-tinted, and/or					
	red-tinted glasses indoors					
	during the day.					
02	I wear blue-filtering,					
	orange-tinted, and/or					
	red-tinted glasses outdoors					
	during the day.					
03	I wear blue-filtering,					
	orange-tinted, and/or					
	red-tinted glasses within 1					
	hour before attempting to fall					
	asleep.					
04	I spend 30 minutes or less					
	per day (in total) outside.					

	Short Form (17 Items)	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
5	I spend between 1 and 3					
	hours per day (in total)					
	outside.					
6	I spend more than 3 hours					
	per day (in total) outside.					
7	I spend as much time outside					
	as possible.					
8	I go for a walk or exercise					
	outside within 2 hours after					
	waking up.					
9	I use my mobile phone within					
	1 hour before attempting to					
	fall asleep.					
0	I look at my mobile phone					
	screen immediately after					
	waking up.					
1	I check my phone when I					
	wake up at night.					

	Short Form (17 Items)	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
12	I dim my mobile phone					
	screen within 1 hour before					
	attempting to fall asleep.					
13	I use a blue-filter app on my					
	computer screen within 1					
	hour before attempting to fall					
	asleep.					
14	I dim my computer screen					
	within 1 hour before					
	attempting to fall asleep.					
15	I use tunable lights to create					
	a healthy light environment.					
16	I use LEDs to create a					
	healthy light environment.					
17	I use an alarm with a dawn					
	simulation light.					

665 Latent Structure, Reliability and Structural Validity

The short form of LEBA consists 23 items with five factors.

Factor names	Items
F1: Wearing blue light filters	1-3
F2: Spending time outdoors	4-8 (Item 4 is reversed)
F3: Using phone and smart-watch in bed	9-11
F4: Using light before bedtime	12-14
F5: Using light in the morning and during daytime	15-17

667 How to cite:

Appendix E

Supplimentary Analysis

Figure E1. Correlation plot of the items

Horn's parallel analysis with 500 iterations indicated a five-factor solution. However,
Scree plot and the MAP method suggested 6-factor solution. five-factor solution. As a
result, we tested both five-factor and six-factor solutions.

Five Factor Solution[Unmerged Responses] (24 Items)

F1

I use light therapy applying a blue light box.

I use light therapy applying a light visor.

Five Factor Solution[Unmerged Responses] (24 Items)

I use light therapy applying a white light box.

I use light therapy applying another form of light device.

I use an alarm with a dawn simulation light.

F2

I spend more than 3 hours per day (in total) outside.

I spend between 1 and 3 hours per day (in total) outside.

I spend as much time outside as possible.

I spend 30 minutes or less per day (in total) outside.

I go for a walk or exercise outside within 2 hours after waking up.

I spend between 30 minutes and 1 hour per day (in total) outside.

F3

I look at my mobile phone screen immediately after waking up.

I use my mobile phone within 1 hour before attempting to fall asleep.

I check my phone when I wake up at night.

F4

I use a blue-filter app on my computer screen within 1 hour before attempting to fall asleep.

I seek out knowledge on how to improve my light exposure.

I dim my computer screen within 1 hour before attempting to fall asleep.

I discuss the effects of light on my body with other people.

I modify my light environment to match my current needs.

I dim my room light within 1 hour before attempting to fall asleep.

I use as little light as possible when I get up during the night.

F5

I wear blue-filtering, orange-tinted, and/or red-tinted glasses indoors during the day.

Five Factor Solution[Unmerged Responses] (24 Items)

I wear blue-filtering, orange-tinted, and/or red-tinted glasses outdoors during the day.

I wear blue-filtering, orange-tinted, and/or red-tinted glasses within 1 hour before attempting to fall asleep.

Figure E2. Factor Identification (A) Parallel analysis (B) Scree Plot

Figure E3. Histogram of residulas: five-factor solution

Table E1

Descriptive Statistics for Unmerged response options

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item1	2.16	1.51	0.49	-0.86	0.90*	.21
Item2	2.76	1.75	-0.10	-1.42	0.88*	.20
Item3	3.34	1.43	-0.58	-0.77	0.88*	.18
Item4	1.30	1.31	1.93	2.92	0.62*	.32
Item5	3.95	1.56	-1.42	0.75	0.70*	.19
Item6	2.70	1.66	0.02	-1.33	0.90*	.18
Item7	2.23	1.28	0.60	-0.59	0.89*	.18
Item8	2.95	1.24	-0.19	-0.70	0.93*	07
Item9	2.92	1.09	-0.37	0.11	0.91*	.14
Item10	2.73	1.07	-0.03	-0.52	0.92*	.27
Item11	2.17	0.93	0.44	0.20	0.89*	.25
Item12	2.34	1.26	0.46	-0.58	0.91*	.24
Item13	2.71	1.49	0.14	-1.29	0.89*	.28
Item14	2.11	1.34	0.68	-0.78	0.84*	.24
Item15	3.26	1.11	-0.34	-0.21	0.91*	.11
Item16	1.46	1.31	1.71	1.90	0.65*	.33
Item17	1.43	1.30	1.76	2.12	0.64*	.30
Item18	0.92	0.67	2.00	9.41	0.62*	.32
Item19	0.85	0.56	1.71	10.74	0.55*	.34
Item20	0.83	0.54	1.76	13.92	0.53*	.31
Item21	0.94	0.75	2.46	10.66	0.58*	.27
Item22	3.57	1.08	-0.72	0.08	0.88*	.19
Item23	2.53	1.31	0.22	-0.91	0.92*	.11
Item24	4.13	1.01	-1.39	2.01	0.78*	.19
Item25	2.57	1.43	0.22	-1.23	0.88*	.17

Table E2

Factor loadings and communality of the retained items [Unmerged Responses]

item	PA1	PA2	PA5	PA3	PA4	Communality	Uniqueness	Complexity
item19	0.99					1.01	-0.01	1.06
item20	0.91					0.87	0.13	1.11
item18	0.82					0.71	0.29	1.12
item21	8.0					0.68	0.32	1.16
item4	0.47					0.25	0.75	1.30
item11		0.83				0.69	0.31	1.01
item10		0.81				0.67	0.33	1.03
item12		0.56				0.37	0.63	1.37
item8		-0.44				0.21	0.79	1.11
item7		0.42				0.23	0.77	1.61
item9		0.33				0.12	0.88	1.10
item16			0.95			0.95	0.05	1.10
item17			0.74			0.60	0.41	1.17
item36	0.3		0.73			0.65	0.35	1.43
item3				0.85		0.75	0.25	1.05
item27				0.78		0.62	0.38	1.03
item40				0.71		0.51	0.49	1.05
item35					0.58	0.35	0.65	1.09
item48					0.57	0.35	0.65	1.14
item33					0.55	0.32	0.68	1.08
item47					0.52	0.29	0.71	1.19
item44					0.45	0.22	0.78	1.15
item31					0.41	0.21	0.79	1.48
item38					0.33	0.13	0.87	1.32
% of Variance	0.15	0.09	0.09	0.08	0.08	NA	NA	NA

Note. Only loading higher than .30 is reported