Counter with 7-seg display

Figure 7. Seven-segment display

Figure 3-1: Seven-Segment LED Digit Control

Hex to BCD

Operation	Tens	Units	Binary
HEX			E
Start			1 1 1 0
Shift 1		1	1 1 0
Shift 2		1 1	1 0
Shift 3		1 1 1	0
Add 3		1 0 1 0	0
Shift 4	1	0 1 0 0	
BCD	1	4	

- 1. Shift the binary number left one bit.
- 2. If 8 shifts have taken place, the BCD number is in the *Hundreds*, *Tens*, and *Units* column.
- 3. If the binary value in any of the BCD columns is 5 or greater, add 3 to that value in that BCD column.
- 4. Go to 1.

Operation	Hundreds	Tens	Units	Bin	ary
HEX				F	F
Start				1 1 1 1	1 1 1 1
Shift 1			1	1 1 1 1	1 1 1
Shift 2			1 1	1 1 1 1	1 1
Shift 3			1 1 1	1 1 1 1	1
Add 3			1 0 1 0	1 1 1 1	1
Shift 4		1	0 1 0 1	1 1 1 1	
Add 3		1	1 0 0 0	1 1 1 1	
Shift 5		1 1	0001	1 1 1	
Shift 6		1 1 0	0 0 1 1	1 1	
Add 3		1001	0 0 1 1	1 1	
Shift 7	1	0 0 1 0	0 1 1 1	1	
Add 3	1	0 0 1 0	1 0 1 0	1	
Shift 8	1 0	0 1 0 1	0 1 0 1		
BCD	2	5	5		

```
module add3(in,out);
input [3:0] in;
output [3:0] out;
reg [3:0] out;
always @ (in)
        case (in)
        4'b0000: out <= 4'b0000;
        4'b0001: out <= 4'b0001;
        4'b0010: out <= 4'b0010;
        4'b0011: out <= 4'b0011;
        4'b0100: out <= 4'b0100;
        4'b0101: out <= 4'b1000;
        4'b0110: out <= 4'b1001;
        4'b0111: out <= 4'b1010;
        4'b1000: out <= 4'b1011;
        4'b1001: out <= 4'b1100;
        default: out <= 4'b0000;
        endcase
endmodule
```

Here is a structural Verilog module corresponding to the logic diagram.

```
module binary to BCD(A,ONES, TENS, HUNDREDS);
input [7:0] A;
output [3:0] ONES, TENS;
output [1:0] HUNDREDS;
wire [3:0] c1,c2,c3,c4,c5,c6,c7;
wire [3:0] d1,d2,d3,d4,d5,d6,d7;
assign d1 = \{1'b0, A[7:5]\};
assign d2 = \{c1[2:0], A[4]\};
assign d3 = \{c2[2:0],A[3]\};
assign d4 = \{c3[2:0], A[2]\};
assign d5 = \{c4[2:0],A[1]\};
assign d6 = \{1'b0,c1[3],c2[3],c3[3]\};
assign d7 = \{c6[2:0], c4[3]\};
add3 m1(d1,c1);
add3 m2(d2,c2);
add3 m3(d3,c3);
add3 m4(d4,c4);
add3 m5(d5,c5);
add3 m6(d6,c6);
add3 m7(d7,c7);
assign ONES = \{c5[2:0],A[0]\};
assign TENS = \{c7[2:0], c5[3]\};
assign HUNDREDS = \{c6[3], c7[3]\};
```


Time multiplexing module

(a) Block diagram of an LED time-multiplexing module

(b) Block diagram of a decoder testing circuit

Numbers	Common Cathode		Common Anode	
	(DP)GFEDCBA	HEX Code	(DP)GFEDCBA	HEX Code
0	00111111	0x3F	11000000	0xC0
1	00000110	0x06	11111001	0xF9
2	01011011	0x5B	10100100	0xA4
3	01001111	0x4F	10110000	0xB0
4	01100110	0x66	10011001	0x99
5	01101101	0x6D	10010010	0x92
6	011111101	0x7D	10000010	0x82
7	00000111	0x07	11111000	0xF8
8	01111111	0x7F	10000000	0x80
9	01101111	0x6F	10010000	0x90

Multiplexing 7-seg display

