Generación y Predicción de Procesos Estocásticos mediante CNN

Diego Alejandro Hernández Juan José Castrillón Universidad EAFIT Noviembre 2024

Contenidos

- Introducción
- Metodología
- Proceso de Reversión a la Media
- Movimiento Geométrico Browniano
- Arquitectura de WaveNet
- Convoluciones Dilatadas en WaveNet
- Conexiones Residuales y de Salto
- Resultados del Modelo con Reversión a la Media
- Resultados del Modelo con GBM
- Conclusiones

Introducción

Los métodos tradicionales para simular procesos estocásticos, como ARIMA y Monte Carlo, son limitados por su dependencia de suposiciones previas y complejidad.

Este estudio propone usar WaveNet, una red neuronal convolucional no paramétrica, para simular procesos estocásticos sin necesidad de suposiciones previas. WaveNet captura patrones y fluctuaciones en series de tiempo, simplificando el modelado y ampliando sus aplicaciones

Nos enfocaremos en evaluar la capacidad de predicción de WaveNet con procesos que tengan un mayor grado de aleatoriedad que el elegido en el paper.

Metodología

La metodología tiene dos componentes principales:

 Datos de Procesos Estocásticos: Se generan o utilizan datos históricos de procesos estocásticos clásicos, como la reversión a la media y el movimiento geométrico browniano (GBM), que reflejan dinámicas reales o simuladas.

2. Predicción con WaveNet: La arquitectura WaveNet se entrena sobre estas trayectorias para aprender patrones temporales y realizar predicciones sobre los valores futuros del proceso. El objetivo principal es predecir con precisión el comportamiento futuro del proceso estocástico, capturando tanto patrones a corto plazo como dependencias temporales de largo alcance.

Proceso de Reversión a la media

El proceso de reversión a la media sigue una ecuación diferencial estocástica (EDE) que describe cómo una variable tiende a regresar a su valor medio μ con fluctuaciones aleatorias. La ecuación se define como:

$$dX_t = \theta(\mu - X_t) dt + \sigma dW_t$$

Donde:

- θ : Velocidad de reversión a la media, controla qué tan rápido X_t converge hacia μ .
- μ : Valor medio al que el proceso tiende a regresar.
- σ: Volatilidad o magnitud del ruido estocástico.
- dW_t : Incremento de un proceso de Wiener, representando el componente aleatorio.

La forma discretizada del proceso se obtiene aplicando el esquema de Euler-Maruyama:

$$X_{t+1} = X_t + \theta(\mu - X_t)\Delta t + \sigma\sqrt{\Delta t}Z_t$$

Gráfica de Reversión a la Media

Aplicaciones del Proceso de Reversión a la Media

- Modelado de tasas de interés, describiendo cómo tienden a regresar a un nivel promedio a lo largo del tiempo.
- Simulación de precios de activos que muestran una tendencia hacia un valor de equilibrio, como commodities o ciertos bonos.
- Análisis de sistemas físicos con fuerzas restauradoras, como en osciladores amortiguados.
- Representación de procesos biológicos, como la regulación de poblaciones hacia un nivel de equilibrio.
- Estudio de temperaturas o fenómenos climáticos que tienden a estabilizarse alrededor de un promedio.

Movimiento Geométrico Browniano

El movimiento geométrico browniano es un modelo común para simular precios de activos financieros. Sigue la ecuación diferencial estocástica:

$$dX_t = X_t \left(\mu \, dt + \sigma \, dW_t \right)$$

Donde:

- μ: Tasa de retorno esperada del proceso.
- \bullet σ : Volatilidad, que mide la amplitud de las fluctuaciones del proceso.
- dW_t : Incremento de un proceso de Wiener, representando el componente aleatorio.

La solución exacta de esta ecuación es:

$$X_{t+1} = X_t \cdot \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)\Delta t + \sigma\sqrt{\Delta t}Z_t\right)$$

Gráfica MGB

Aplicaciones del MGB

- Modelado de precios de activos financieros, como acciones, bonos y otros instrumentos.
- Base del modelo Black-Scholes para la valuación de opciones financieras.
- Simulación Monte Carlo para generar trayectorias de precios y evaluar riesgos financieros.
- Análisis de estrategias de inversión, midiendo la efectividad de coberturas y portafolios diversificados.
- Simulación de fondos de retiro o pensión, proyectando su evolución en el tiempo considerando incertidumbre y volatilidad.
- Modelado en biología para analizar el crecimiento poblacional y dinámicas ecosistémicas.

Causal CNN

Causal dilated CNN

Arquitectura de la red

Convoluciones Dilatadas en WaveNet

La arquitectura WaveNet utiliza convoluciones causales dilatadas para modelar datos temporales de manera eficiente, asegurándose de capturar dependencias de largo alcance sin perder resolución temporal.

Fórmula Principal de Activación

El bloque de activación principal en WaveNet combina convoluciones dilatadas con una activación gated no lineal. La fórmula general es:

$$z = \tanh(W_f * x) \odot \sigma(W_g * x)$$

Esta activación combina:

- tanh: Camino principal. Extrae características no lineales del dato de entrada.
- σ: Camino de la puerta. Regula el flujo de información, permitiendo que ciertos valores pasen mientras bloquea otros.

Fórmula Condicional General

En WaveNet, las convoluciones pueden incluir condicionamientos globales o locales para modelar características específicas del proceso. La fórmula de activación se expande a:

$$z = \tanh(W_f * x + V_f * h) \odot \sigma(W_g * x + V_g * h)$$

Conexiones Residuales y de Salto

WaveNet utiliza conexiones residuales y de salto para mejorar la propagación de gradientes y permitir el entrenamiento de redes profundas:

Conexión Residual: La salida de cada bloque se suma a su entrada original:

$$SalidaResidual = Entrada + BloquedeActivación$$

Conexión de Salto: La salida de cada capa también se pasa directamente a la salida final del modelo, mejorando la resolución y combinando características de todas las capas:

$$SalidaFinal = \sum_{i} SalidadelaCapa_{i}$$

Evaluación del Modelo con Reversión a la Media

- El modelo **no captura correctamente** las dinámicas características del proceso de reversión a la media.
- Las predicciones se estabilizan en un valor promedio fijo , en lugar de reflejar las oscilaciones propias del proceso.
- Las trayectorias de reversión a la media presentan una mayor complejidad estadística, lo que exige ajustes adicionales en los hiperparámetros.
- Se requiere realizar modificaciones en la arquitectura del modelo para mejorar su capacidad de aprendizaje.
- MSE = 20.061,235

Predicción del Modelo para la Reversión a la Media

Evaluación del Modelo con Trayectorias de GBM

- El modelo entrenado con trayectorias de Movimiento Geométrico Browniano (GBM) muestra **un desempeño notablemente mejor.**
- Las predicciones siguen de cerca las trayectorias reales, capturando tanto la tendencia como la variabilidad del proceso.
- El GBM presenta patrones más consistentes y predecibles, con cambios porcentuales multiplicativos y una estructura más estable.
- La estabilidad del GBM facilita el aprendizaje de la arquitectura WaveNet, mejorando la precisión en la predicción de valores futuros.
- MSE = 0.0123

Predicción del Modelo para el GBM

Conclusiones

- WaveNet es prometedora para simular procesos como el GBM, gracias a su capacidad de capturar patrones no lineales y dependencias de largo alcance.
- Mostró limitaciones al modelar procesos complejos como la reversión a la media, requiriendo ajustes en hiperparámetros y arquitectura.
- WaveNet logró alta precisión con el GBM, destacando su efectividad en procesos con estructuras estables y multiplicativas.
- Es necesario explorar su aplicación en procesos más complejos y multivariantes.
- Este estudio posiciona a WaveNet como una alternativa no paramétrica frente a métodos tradicionales.

Referencias

- Fernandes Neto, F., Bueno, R. D. L. D. S., Cavalcanti, P. D., & Admasu, A. S. (2020). Generating Stochastic Processes Through Convolutional Neural Networks. *Journal of Control, Automation and Electrical Systems*, 31, 294–303. https://doi.org/10.1007/s40313-020-00567-v
- van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. arXiv. https://doi.org/10.48550/arXiv.1609.03499