Practice Problems 3

- **Question 1.** Write the equations of a VAR(1) model for two variables, X_t and Y_t .
- **Question 2.** What is Granger causality and how do we test it?
- **Question 3.** What are the impulse-response functions?
- Question 4. Explain what spurious regression problem is and give an example.
- **Question 5.** Explain what is means if X_t and Y_t are cointegrated. Give an example.
- Question 6. Explain the idea behind error correction model. Draw a diagram illustrating the error correction mechanism.
- Question 7. Write the equations of a vector error correction VEC(1) model for two variables, X_t and Y_t .
- Question 8. How is cointegration used in pairs trading strategy?
- Question 9. Explain what volatility clustering means.
- Question 10. Explain the difference between moving average (MA) and exponentially weighted moving average (EWMA) models of the conditional variance.
- **Question 11.** Write the equation for the autoregressive conditional heteroscedasticity ARCH(1) model. Explain the intuition behind this model.
- Question 12. Write the equation for the generalized autoregressive conditional heteroscedasticity GARCH(1,1) model. Explain the intuition behind this model.
- Question 13. Explain what 1% VaR is and draw a diagram to illustrate this.
- **Question 14.** Why is the Student-t distribution more suitable for ARCH and GARCH models than the normal distribution?

Question 15. Consider a bivariate VAR

$$y_{1t} = c_1 + \alpha_{11}y_{1t-1} + \alpha_{12}y_{1t-2} + \beta_{11}y_{2t-1} + \beta_{12}y_{2t-2} + \varepsilon_{1t}$$

$$y_{2t} = c_2 + \alpha_{21}y_{1t-1} + \alpha_{22}y_{1t-2} + \beta_{21}y_{2t-1} + \beta_{22}y_{2t-2} + \varepsilon_{2t}$$

where $y_{1,t} = 400\Delta \log GDP_t$ is the growth rate of the U.S. real GDP and $y_{2,t} = 400(\Delta \log SP500_t - \Delta \log p_t^{GDP})$ is the inflation adjusted return of S&P 500. The results of the estimation are shown below.

Are coefficients $\alpha_{11}, \alpha_{12}, \beta_{11}, \beta_{12}$ statistically significant? What does this imply?

Are coefficients $\alpha_{21}, \alpha_{22}, \beta_{21}, \beta_{22}$ statistically significant? What does this imply?

Vector Autoregression Estimates Date: 05/06/17 Time: 20:10 Sample: 1961Q1 2016Q4 Included observations: 224

Standard errors in () & t-statistics in []

	GRGDP	RRSP500		
GRGDP(-1)	0.212529	0.115068		
3.132. (.,	(0.06396)	(0.17949)		
	[3.32266]	[0.64108]		
	[[
GRGDP(-2)	0.153916	-0.202858		
	(0.06236)	(0.17500)		
	[2.46802]	[-1.15917]		
RRSP500(-1)	0.068634	0.106164		
	(0.02401)	(0.06739)		
	[2.85804]	[1.57542]		
RRSP500(-2)	0.097935	-0.082856		
	(0.02446)	(0.06864)		
	[4.00359]	[-1.20705]		
С	1.799362	1.040329		
9	(0.28879)	(0.81038)		
	[6.23071]	[1.28375]		
	[0.200]	[
R-squared	0.234021	0.023754		
Adj. R-squared	0.220030	0.005923		
Sum sq. resids	1829.631	14407.26		
S.E. equation	2.890411	8.110892		
F-statistic	16.72712	1.332149		
Log likelihood	-553.0672	-784.1925		
Akaike AIC	4.982743	7.046361		
Schwarz SC	5.058896	7.122514		
Mean dependent	3.030036	0.801988		
S.D. dependent	3.272810	8.135018		
Determinant resid covaria	nce (dof adi.)	534.9741		
Determinant resid covaria		511.3579		
Log likelihood		-1334.236		
Akaike information criterio	n	12.00211		
Schwarz criterion		12.15442		

Question 16. Interpret the results of the Granger causality test for a VAR with three variables: $y_{1,t} = 400\Delta \log GDP_t$ is the growth rate of the U.S. real GDP and $y_{2,t} = 400(\Delta \log SP500_t - \Delta \log p_t^{GDP})$ is the inflation adjusted return of S&P 500, and y_{3t} is the Leading Index for the United States.

Discuss what these Granger causality imply about the usefulness of each of the threes variables when it comes to predicting the other ones.

Is there any economic intuition behind these results?

VAR Granger Causality/Block Exogeneity Wald Tests

Date: 05/11/17 Time: 10:58 Sample: 1961Q1 2016Q4 Included observations: 139

Depen	ident	variab	le: G	RGDP
-------	-------	--------	-------	------

Excluded	Chi-sq	df	Prob.
RRSP500 LI	3.689833 22.08652	1 1	0.0547 0.0000
All	27.70217	2	0.0000

Dependent variable: RRSP500

Excluded	Chi-sq	df	Prob.
GRGDP LI	0.021518 0.206983	1 1	0.8834 0.6491
All	0.673715	2	0.7140

Dependent variable: LI

Excluded	Chi-sq	df	Prob.
GRGDP RRSP500	2.487304 9.320140	1 1	0.1148 0.0023
All	12.78463	2	0.0017

Question 17. Interpret the results of the cointegration test for $\log p^{oil}$ and $\log p^{gas}$.

Date: 05/07/17 Time: 20:29 Sample: 1995M01 2010M12 Included observations: 192

Trend assumption: No deterministic trend (restricted constant)

Series: LOG(PGAS) LOG(POIL) Lags interval (in first differences): 1 to 2

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.146639	32.74225	20.26184	0.0006
At most 1	0.011889	2.296301	9.164546	0.7183

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None *	0.146639	30.44595	15.89210	0.0001
At most 1	0.011889	2.296301	9.164546	0.7183

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

Question 18. Consider a bivariate VEC

$$\Delta \log p_t^{GAS} = \gamma_1 z_{t-1} + \kappa_{11} \Delta \log p_{t-1}^{GAS} + \kappa_{12} \Delta \log p_{t-2}^{GAS} + \phi_{11} \Delta \log p_{t-1}^{OIL} + \phi_{12} \Delta \log p_{t-2}^{OIL} + \varepsilon_{1,t}$$

$$\Delta \log p_t^{OIL} = \gamma_2 z_{t-1} + \kappa_{21} \Delta \log p_{t-1}^{GAS} + \kappa_{22} \Delta \log p_{t-2}^{GAS} + \phi_{21} \Delta \log p_{t-1}^{OIL} + \phi_{22} \Delta \log p_{t-2}^{OIL} + \varepsilon_{2,t}$$

where $z_{t-1} = \log p_{t-1}^{GAS} - \beta_1 \log p_{t-1}^{OIL} - \beta_0$ is the error terms measuring the deviation in period t-1 from the long run equilibrium. The results of the estimation are shown below.

Is the coefficient β_1 statistically significant? Interpret what the estimated value for β_1 means.

Are γ_1 and γ_2 statistically significant? Are the signs of γ_1 and γ_2 in the estimated VEC model consistent with error correction mechanism that moves the system back to the long run equilibrium, whenever there is a disruption and $z_{t-1} \neq 0$?

Vector Error Correction Estimates Date: 05/07/17 Time: 20:29 Sample: 1995M01 2010M12 Included observations: 192 Standard errors in () & t-statistics in []

Cointegrating Eq:	CointEq1	
LOG(PGAS(-1))	1.000000	
LOG(POIL(-1))	-0.597621 (0.01461) [-40.9023]	
С	1.587414 (0.05198) [30.5370]	
Error Correction:	D(LOG(PGAS))	D(LOG(POIL))
CointEq1	-0.327074 (0.07340) [-4.45601]	-0.108005 (0.12811) [-0.84307]
D(LOG(PGAS(-1)))	0.352504 (0.09747) [3.61644]	-0.115845 (0.17012) [-0.68095]
D(LOG(PGAS(-2)))	-0.127554 (0.09037) [-1.41151]	-0.032472 (0.15772) [-0.20588]
D(LOG(POIL(-1)))	0.103709 (0.06431) [1.61277]	0.201301 (0.11223) [1.79359]
D(LOG(POIL(-2)))	0.011155 (0.06267) [0.17799]	0.081658 (0.10939) [0.74652]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.357266 0.343518 0.518424 0.052653 25.98614 295.3517 -3.024497 -2.939667 0.005333 0.064985	0.037617 0.017032 1.579220 0.091897 1.827354 188.4180 -1.910604 -1.825773 0.009102 0.092690
Determinant resid covaria Determinant resid covaria Log likelihood Akaike information criterio Schwarz criterion	ance	1.10E-05 1.04E-05 556.2964 -5.659337 -5.438777

Question 19. Comment on the differences between MA(4), MA(24) and EWMA applied to obtain the 1-week-ahead volatility forecast for the S&P 500 returns.

Question 20. Consider ARCH(9) and GARCHJ(1,1) models for the S&P 500 daily returns. Write the equations for the two estimated models, with estimated parameter values plugged into these equations. Which model would be preferred by Akaike criterion and by Schwarz criterion?

S	SP500 daily returns—ARCH(9)								
Dependent Variable: R Method: ML - ARCH](BHHH) - Normal distribution Sample: 5815 8471 Included observations: 2657 Convergence achieved after 16 iterations Bollerslev-Wooldrige robust standard errors & covariance Variance backcast: ON GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-2)^2 + C(5)*RESID (-3)^2 + C(6)*RESID(-4)^2 + C(7)*RESID(-5)^2 + C(8)*RESID(-6)^2 + C(9)*RESID(-7)^2 + C(10)*RESID(-8)^2 + C(11)*RESID(-9)^2									
	Coefficient Std. Error z-Statistic Prob.								
С	0.037003	0.018214	2.031594	0.0422					
	Variance	e Equation							
С	0.271763	0.040891	6.645982	0.0000					
RESID(-1)^2	0.029949	0.028081	1.066510	0.2862					
RESID(-2)^2	0.149370	0.044623	3.347391	0.0008					
RESID(-3)^2	0.095260	0.026377	3.611510	0.0003					
RESID(-4)^2	0.101684	0.027620	3.681607	0.0002					
RESID(-5)^2	0.082439	0.023397	3.523482	0.0004					
RESID(-6)^2	0.060298	0.021251	2.837387	0.0045					
RESID(-7)^2	0.090927	0.030511	2.980119	0.0029					
RESID(-8)^2	0.142659	0.029601	4.819476	0.0000					
RESID(-9)^2	0.082659	0.023815	3.470870	0.0005					
R-squared	-0.000565	Mean depend	ent var	0.009761					
Adjusted R-squared	-0.004346	S.D. depende	nt var	1.146761					
S.E. of regression	1.149251	Akaike info c	riterion	2.910013					
Sum squared resid	3494.776	Schwarz crite	rion	2.934377					
Log likelihood	Log likelihood -3854.952 Durbin-Watson stat 2.079077								

Dependent Variable: R							
Method: ML - ARCH (BHHH) - Normal distribution							
Sample: 5815 8471							
Included observations:							
Convergence achieved							
Bollerslev-Wooldrige		l errors & cova	riance				
Variance backcast: ON	•						
GARCH = C(2) + C(3))*RESID(-1)^:	2 + C(4)*GAR	CH(-1)				
Coefficient Std. Error z-Statistic Prob.							
C	0.036267	0.0376					
	Variance	Equation :					
C	0.010421	0.005245	1.987099	0.0469			
RESID(-1)^2	0.065649	0.011338	5.790038	0.0000			
GARCH(-1)	0.927400	0.011045	83.96233	0.0000			
R-squared	-0.000534	Mean depend	ent var	0.009761			
Adjusted R-squared	-0.001666	6 S.D. dependent var 1.146761					
S.E. of regression	1.147716 Akaike info criterion 2.888638						
Sum squared resid	3494.671	Schwarz crite	erion	2.897498			
Log likelihood	-3833.556 Durbin-Watson stat 2.079139						

Question 21. Consider a GARCH(1,1) model for daily S&P 500 returns. On April 2, 2008, the 1-day-ahead conditional mean is $\mu_{t|t-1} = 0.036$, the 1-day-ahead conditional standard deviation $\sigma_{t|t-1} = 1.785$. Calculate the 1% VaR and 5% VaR, given that $\Phi^{-1}(0.05) = -1.645$ and $\Phi^{-1}(0.01) = -2.326$. Interpret these numbers, given a portfolio worth 1 million dollars.

Question 22. Consider GARCH(1,1) model for daily S&P 500 returns for the 1/2/1998 to 7/25/2008 sample. With normal innovations, the number of violations $r_t < r_t^{VaR(0.01)}$ is 42 which represents 1.58% of observations. With innovations from Student-t distribution the number of violations $r_t < r_t^{VaR(0.01)}$ is 30 or 1.13% of the sample.

Show where some of these violations can be seen in the figures below. Explain which of these models is more suitable to model volatility of daily S&P 500 returns and why.

