In [1]: ▶

import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

In [2]: ▶

df=pd.read_csv(r"C:\Users\OneDrive\Desktop\jupyter\BreastCancerPrediction.csv")
df

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothi		
0	842302	М	17.99	10.38	122.80	1001.0			
1	842517	М	20.57	17.77	132.90	1326.0			
2	84300903	М	19.69	21.25	130.00	1203.0			
3	84348301	М	11.42	20.38	77.58	386.1			
4	84358402	М	20.29	14.34	135.10	1297.0			
564	926424	М	21.56	22.39	142.00	1479.0			
565	926682	М	20.13	28.25	131.20	1261.0			
566	926954	М	16.60	28.08	108.30	858.1			
567	927241	М	20.60	29.33	140.10	1265.0			
568	92751	В	7.76	24.54	47.92	181.0			
569 rows × 33 columns									

In [3]:

df.head()

Out[3]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothne
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	

5 rows × 33 columns

→

In [4]: ▶

df.tail()

Out[4]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes		
564	926424	М	21.56	22.39	142.00	1479.0			
565	926682	М	20.13	28.25	131.20	1261.0			
566	926954	М	16.60	28.08	108.30	858.1			
567	927241	М	20.60	29.33	140.10	1265.0			
568	92751	В	7.76	24.54	47.92	181.0			
5 rows × 33 columns									

In [5]: ▶

```
df.drop(['Unnamed: 32'],axis=1)
```

Out[5]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothi			
0	842302	М	17.99	10.38	122.80	1001.0				
1	842517	М	20.57	17.77	132.90	1326.0				
2	84300903	М	19.69	21.25	130.00	1203.0				
3	84348301	М	11.42	20.38	77.58	386.1				
4	84358402	М	20.29	14.34	135.10	1297.0				
564	926424	М	21.56	22.39	142.00	1479.0				
565	926682	М	20.13	28.25	131.20	1261.0				
566	926954	М	16.60	28.08	108.30	858.1				
567	927241	М	20.60	29.33	140.10	1265.0				
568	92751	В	7.76	24.54	47.92	181.0				
569 rows × 32 columns										

In [6]: ▶

```
plt.scatter(df["radius_mean"],df["texture_mean"])
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

Out[6]:

Text(0, 0.5, 'texture_mean')

In [7]: ▶

from sklearn.cluster import KMeans
km=KMeans()
km

Out[7]:

▼ KMeans KMeans() In [8]: ▶

```
y_predicted=km.fit_predict(df[["radius_mean","texture_mean"]])
y_predicted
```

C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(

Out[8]:

```
array([0, 1, 1, 6, 1, 0, 1, 5, 2, 2, 5, 5, 3, 2, 2, 7, 5, 5, 1, 0, 0, 4,
       0, 3, 5, 0, 5, 1, 2, 0, 3, 6, 3, 3, 5, 5, 5, 6, 2, 5, 2, 2, 3, 5,
       2, 1, 6, 6, 4, 2, 2, 0, 6, 1, 5, 6, 1, 5, 6, 4, 4, 6, 2, 4, 2,
       6, 6, 6, 0, 1, 4, 3, 0, 6, 5, 4, 0, 3, 6, 2, 0, 3, 3, 4, 1, 5, 3,
       2, 0, 2, 5, 0, 6, 5, 3, 6, 6, 4, 5, 2, 4, 6, 6, 6, 6, 6, 6, 1, 2,
       6, 2, 5, 6, 4, 2, 4, 0, 5, 1, 4, 1, 1, 4, 0, 0, 2, 1, 0,
                                                                3, 4, 5,
       5, 0, 1, 2, 6, 4, 0, 4, 4, 5, 6, 0, 4, 4, 6, 5, 0, 6, 2, 6,
       0, 6, 5, 5, 4, 4, 6, 1, 1, 2, 1, 5, 4, 5, 3, 0, 4, 5, 0, 4,
       6, 5, 2, 4, 1, 3, 5, 4, 5, 4, 1, 6, 6, 0, 2, 2, 6, 7, 2, 0, 2, 1,
       1, 5, 6, 5, 3, 2, 6, 0, 6, 5, 2, 0, 1, 6, 1, 3, 2, 0, 6, 6,
       0, 0, 6, 5, 0, 0, 4, 0, 2, 2, 5, 7, 7, 3, 4, 5, 3, 1, 7, 7, 0, 4,
       6, 2, 3, 6, 6, 4, 2, 4, 3, 6, 1, 0, 1, 0, 3, 0, 5, 7, 3, 5, 5, 5,
       5, 3, 6, 2, 0, 6, 0, 4, 1, 4, 3, 6, 4, 1, 6, 0, 3, 4, 1, 5, 0, 6,
       2, 4, 6, 6, 5, 5, 0, 6, 4, 0, 4, 6, 5, 2, 1, 6, 3, 6, 6, 2,
         4, 6, 0, 4, 4, 6, 6, 4, 1, 6, 6, 4, 1, 4, 1, 4, 6, 0, 6, 5, 5,
       0, 6, 6, 4, 6, 5, 0, 1, 6, 3, 0, 6, 4, 1, 4, 4, 6, 0, 4, 4, 6, 5,
       1, 2, 4, 6, 6, 0, 4, 6, 6, 2, 6, 5, 0, 1, 3, 6, 1, 1, 5, 0, 1, 1,
       0, 0, 6, 7, 0, 6, 4, 4, 2, 6, 0, 2, 4, 0, 4, 3, 4, 6, 5, 1, 6, 0,
       6, 6, 4, 6, 1, 4, 6, 0, 4, 6, 0, 2, 1, 6, 6, 6, 2, 5, 7, 2, 2, 5,
       4, 2, 6, 0, 4, 5, 6, 2, 4, 2, 6, 6, 5, 6, 1, 1, 0, 5, 6, 0, 5, 0,
       6, 3, 0, 6, 1, 2, 3, 0, 5, 1, 2, 3, 7, 0, 6, 7, 7, 2, 2, 7, 3, 3,
       7, 6, 6, 5, 5, 6, 3, 6, 6, 7, 0, 7, 4, 0, 5, 0, 4, 5, 6, 5, 0, 0,
       0, 0, 0, 1, 6, 5, 2, 0, 1, 4, 5, 5, 6, 6, 1, 1, 0, 2, 0, 1, 4, 4,
       6, 6, 0, 2, 4, 0, 5, 0, 5, 6, 1, 1, 6, 0, 4, 1, 6, 6, 4, 4, 6, 4,
       0, 4, 6, 6, 0, 1, 6, 1, 2, 2, 2, 2, 4, 2, 2, 7, 5, 2, 6, 6, 6, 2,
       2, 2, 7, 2, 7, 7, 6, 7, 2, 2, 7, 7, 7, 3, 1, 3, 7, 3, 2])
```

In [9]: ▶

```
df["cluster"]=y_predicted
df.head()
```

Out[9]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothne		
0	842302	М	17.99	10.38	122.80	1001.0			
1	842517	М	20.57	17.77	132.90	1326.0			
2	84300903	М	19.69	21.25	130.00	1203.0			
3	84348301	М	11.42	20.38	77.58	386.1			
4	84358402	М	20.29	14.34	135.10	1297.0			
5 rows × 34 columns									
4							•		

In [10]: ▶

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["radius_mean"],df1["texture_mean"],color="red")
plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

Out[10]:

Text(0, 0.5, 'texture_mean')


```
In [11]:
```

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["texture_mean"]])
df["texture_mean"]=scaler.transform(df[["texture_mean"]])
df.head()
```

Out[11]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothne
0	842302	М	17.99	0.022658	122.80	1001.0	_
1	842517	М	20.57	0.272574	132.90	1326.0	
2	84300903	М	19.69	0.390260	130.00	1203.0	
3	84348301	М	11.42	0.360839	77.58	386.1	
4	84358402	М	20.29	0.156578	135.10	1297.0	

5 rows × 34 columns

```
→
```

```
In [12]:
```

```
scaler.fit(df[["radius_mean"]])
df["radius_mean"]=scaler.transform(df[["radius_mean"]])
df.head()
```

Out[12]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothne
0	842302	М	0.521037	0.022658	122.80	1001.0	
1	842517	М	0.643144	0.272574	132.90	1326.0	
2	84300903	М	0.601496	0.390260	130.00	1203.0	
3	84348301	М	0.210090	0.360839	77.58	386.1	
4	84358402	М	0.629893	0.156578	135.10	1297.0	

5 rows × 34 columns

```
→
```

In [13]:

```
y_predicted=km.fit_predict(df[["radius_mean","texture_mean"]])
y_predicted
```

C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(

Out[13]:

```
array([5, 1, 1, 4, 1, 5, 1, 2, 2, 3, 2, 5, 7, 2, 2, 3, 2, 2, 1, 5, 5, 0,
       5, 6, 2, 1, 2, 1, 2, 1, 7, 4, 7, 7, 5, 2, 2, 4, 2, 2, 2, 4, 7, 2,
       2, 1, 0, 4, 0, 2, 4, 5, 4, 1, 2, 4, 1, 2, 4, 0, 0, 4, 2, 0, 3,
       4, 4, 4, 5, 1, 0, 7, 5, 4, 2, 5, 1, 7, 4, 4, 5, 6, 7, 0, 1, 2, 7,
       2, 5, 2, 2, 5, 4, 2, 7, 4, 4, 0, 2, 3, 0, 4, 4, 4, 5, 4, 6, 4,
       4, 4, 2, 4, 0, 4, 0, 5, 2, 1, 0, 1, 6, 5, 5, 5, 3, 1, 5, 7,
       2, 5, 1, 2, 4, 0, 5, 0, 0, 5, 4, 5, 0, 0, 4, 2, 5, 5, 2, 4,
       5, 4, 1, 1, 0, 0, 4, 1, 1, 2, 6, 2, 0, 1, 7, 5, 0, 2, 5, 0, 0, 0,
       4, 2, 2, 5, 6, 7, 2, 0, 2, 0, 1, 4, 4, 5, 2, 2, 4, 3, 2, 5, 2, 1,
       1, 2, 4, 1, 6, 2, 4, 5, 4, 1, 2, 5, 1, 4, 6, 7, 2, 5, 4, 4,
       5, 5, 4, 2, 5, 5, 0, 5, 3, 2, 1, 3, 3, 7, 0, 2, 6, 1, 3, 7, 5, 5,
       4, 2, 7, 4, 5, 5, 3, 0, 7, 4, 1, 1, 1, 5, 7, 5, 2, 3, 7, 7, 1, 2,
       1, 7, 4, 2, 5, 4, 5, 0, 6, 0, 7, 4, 0, 1, 5, 5, 7, 0, 1,
                                                                2,
       4, 5, 4, 4, 2, 2, 5, 4, 5, 5, 0, 4, 5, 4, 1, 4, 7, 4, 4, 3,
       5, 5, 4, 5, 5, 0, 4, 4, 0, 1, 4, 4, 0, 1, 5, 1, 0, 4, 5, 4, 2, 2,
       5, 4, 4, 0, 4, 1, 5, 1, 4, 6, 5, 0, 0, 1, 0, 0, 4, 5, 0, 0, 4, 2,
       6, 3, 0, 4, 4, 5, 0, 4, 4, 2, 4, 1, 5, 1, 7, 4, 1, 6, 2, 5,
       5, 5, 4, 3, 5, 4, 0, 0, 2, 4, 5, 2, 0, 5, 0, 7, 0, 0, 2, 6, 4,
       2, 4, 0, 4, 1, 0, 4, 5, 0, 4, 5, 2, 1, 4, 4, 4, 4, 2, 3, 4, 4, 2,
       0, 4, 4, 5, 0, 2, 4, 4, 0, 4, 4, 4, 2, 4, 1, 1, 5, 2, 4, 5, 2, 5,
                               2, 1, 4, 7, 3, 5, 4, 3, 3, 3, 3, 3,
       4, 7, 5, 4, 1, 3, 7, 5,
       3, 4, 4, 2, 2, 4, 7, 4, 4, 3, 5, 3, 0, 5, 2, 5, 0, 2, 4, 2, 5, 5,
       5, 5, 5, 1, 0, 1, 2, 5, 1, 0, 2, 2, 4, 4, 1, 1, 5, 3, 5, 6, 0, 0,
       4, 4, 5, 2, 0, 5, 2, 5, 2, 4, 1, 1, 4, 5, 0, 6, 4, 2, 0, 0, 4, 0,
       5, 0, 4, 4, 5, 1, 4, 1, 2, 3, 3, 3, 0, 3, 3, 3, 2, 2, 0, 0, 4, 3,
       4, 4, 3, 4, 3, 3, 4, 3, 2, 3, 3, 3, 3, 7, 6, 7, 7, 7, 3])
```

In [14]: ▶

```
df["New Cluster"]=y_predicted
df.head()
```

Out[14]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothne	
0	842302	М	0.521037	0.022658	122.80	1001.0		
1	842517	М	0.643144	0.272574	132.90	1326.0		
2	84300903	М	0.601496	0.390260	130.00	1203.0		
3	84348301	М	0.210090	0.360839	77.58	386.1		
4	84358402	М	0.629893	0.156578	135.10	1297.0		
5 rows × 35 columns								
4							•	

In [15]: ▶

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["radius_mean"],df1["texture_mean"],color="red")
plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

Out[15]:

Text(0, 0.5, 'texture_mean')


```
In [16]: ▶
```

```
km.cluster_centers_
```

Out[16]:

In [17]: ▶

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["radius_mean"],df1["texture_mean"],color="red")
plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

Out[17]:

Text(0, 0.5, 'texture_mean')


```
In [18]: ▶
```

```
k_rng=range(1,10)
sse=[]
```

H In [19]:

```
for k in k_rng:
   km=KMeans(n clusters=k)
   km.fit(df[["radius_mean","texture_mean"]])
    sse.append(km.inertia )
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n init` expl
icitly to suppress the warning
 warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
  warnings.warn(
C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
```

icitly to suppress the warning

warnings.warn(

C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages \sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_i nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl icitly to suppress the warning

warnings.warn(

[27.81750759504308, 14.87203295827117, 10.2527514961052, 8.4869345239613 7, 7.0429186646684165, 6.037449585367043, 5.1176819845116475, 4.442791704 260917, 4.013525716011234]

C:\Users\samit\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_i
nit` will change from 10 to 'auto' in 1.4. Set the value of `n_init` expl
icitly to suppress the warning
 warnings.warn(

Out[19]:

Text(0, 0.5, 'Sum of Squared Error')

for the given dataset we can use multiple models, for that models we get different types of accuracies but that accuracies is not good so, that's why we will take it as a clustering and done with K-Means Clustering