Lecture 3: Experiment 2 EE380 (Control Systems)

Ramprasad Potluri

Associate Professor potluri@iitk.ac.in

Manavaalan Gunasekaran

PhD student manvaal@iitk.ac.in

Department of Electrical Engineering Indian Institute of Technology Kanpur

Back

Forward Close

Contents

Procedure: Discussed in Lecture 3

1 Outline of the experiment	5	
2 Tasks common to all 6 experiments	6	
3 Homework (HW) vs. Lab work (LW)	7	
4 Dead zone and how to overcome it	8	
5 Least squares sys-id	9	
6 Loop-shaping (1/5): Typical G_{des}	10	
7 Loop-shaping (2/5): Example	11	←
8 Loop-shaping (3/5): $\zeta \longleftrightarrow M_p \longleftrightarrow PM$	12	1
9 Loop-shaping (4/5): $M_p \longleftrightarrow DD \longleftrightarrow PM$	13	Pack
10 Loop-shaping (5/5): Determination of ω_g	14	Back Forward
		Close

11 Discretization	15	3/23
12 Simulate; LW: C code, Implement, Analyze	16	
13 Work involved	17	
II Least squares sys-id theory: Part of Lecture 4	18	
14 Bilinear transform and Z-transform	19	
15 $G(s) \longleftrightarrow G(z)$	20	
16 How Z-transform used in our sys-id	21	
17 What is least squares sys-id? (1/2)	22	
18 What is least squares sys-id? (2/2)	23	
		44
		>>
		Back
		Forward
		Close

Part I
Procedure: Discussed in
Lecture 3

Outline of the experiment

Want speed of motor to track a sinusoid. Steps:

- Least squares system identification (sys-id).
- Recognition and compensation of plant's dead zone.
- Design controller using loop-shaping.
- Simulation on PC.
- Deployment on experimental setup.

orward

Tasks common to all 6 experiments

Simulation

- Perform PC-based simulation of CL system using GNU Octave.
- Perform PC-based simulation of digital control of a continuous-time system using GNU Octave.

Realization on hardware

- Utilize the various components of an integrated development environment (IDE): editor, compiler, linker, debugger, and programmer to program a μ C.
- Program controller using C language into μ C.
- Monitoring: read data into PC from μ C using UART modules.

Analysis

• Compare actual performance with predicted performance.

Back

Forward

Homework (HW) vs. Lab work (LW)

44

>>

Ť

Back

Forward

Dead zone and how to overcome it

If u < 2 V when $V_s = 12$ V, then V_m will be zero.

Overcoming dead zone

Forward

Least squares sys-id

- Place C code of triangular waveform generator in main-prog.c.
- Prepare setup to apply u in OL and collect ω from motor.
- Input u_1, u_2, u_3, \ldots forming the triangular waveform.
- Collect u_1, u_2, u_3, \ldots and $\omega_1, \omega_2, \omega_3, \ldots$ into terminal.log.
- Form readSID.m by replacing plots-related section of readplot.m with sys-id code from sysid.m.
- Execute readSID.m to obtain K, a, b of $\frac{K}{s^2 + as + b}$.

Forward

Loop-shaping (1/5): Typical G_{des}

Back

Forward Close

Loop-shaping (2/5): Example

 $DG = G_{des}$

44

>>

Forward

Loop-shaping (3/5): $\zeta \longleftrightarrow M_p \longleftrightarrow PM$

From Lecture 26 of EE250-2011

Back

Forward

Loop-shaping (4/5): $M_p \longleftrightarrow \mathrm{DD} \longleftrightarrow \mathrm{PM}$

From Lecture 26 of EE250-2011

Back

Forward

Back

Forward Close

Loop-shaping (5/5): Determination of ω_g

Discretization

44

>>

Back

Forward Close

Simulate; LW: C code, Implement, Analyze

- Simulation: easysim.m
- Discretized controller
 - \longrightarrow C code:

- Implement: As in demo slides
- Analyze: Compare results

```
  \begin{aligned}
    x_1(k+1) &= a_{11}x_1(k) + a_{12}x_2(k) + b_1u(k) \\
    x_2(k+1) &= a_{21}x_1(k) + a_{22}x_2(k) + b_2u(k) \\
    y(k) &= c_1x_1(k) + c_2x_2(k) + du(k)
  \end{aligned}
```

In main-prog.c before main() insert float x1[2],x2[2];
In main() insert x1[0] = x2[0] = 0;

```
x1[1] = a11 * x1[0] + a12 * x2[0] + b1 * u;

x2[1] = a21 * x1[0] + a22 * x2[0] + b2 * u;

y = c1 * x1[0] + c2 * x2[0] + d * u;

x1[0] = x1[1];

x2[0] = x2[1];
```


Back Forward

Work involved

- Unless order of controller changes in redesign, don't have to use log paper in lab.
- If prepared how to combine readplot.m & sysid.m, then:

$$Q9 + Q10 \le 30$$
 minutes
 $Q11 \le 30$ minutes
 $Q12 \le 20$ minutes
 $Q13 + Q15 \le 10$ minutes
Total: 1 hour 30 minutes

Remove compensation of dead zone and repeat.

orward

Part II Least squares sys-id theory: Part of Lecture 4 Back

Bilinear transform and Z-transform

- Both s-domain & z-domain are fictitious domains.
- *s*-domain simplifies working with differential equations; *z*-domain simplifies working with difference equations.
- Bilinear transform is not the only way to go $G(s) \leftrightarrow G(z)$.
- T_s is constrained by Nyquist sampling frequency.

Back

Forward

$$G(s) \longleftrightarrow G(z)$$

ullet Consider definitions of ${\mathcal L}$ and ${\mathcal Z}$

$$Y(s) = \mathcal{L} \{y(t)\} \triangleq \int_{t=0}^{\infty} y(t)e^{-st}dt$$
$$Y(z) = \mathcal{Z} \{y(k)\} \triangleq \sum_{k=0}^{\infty} y(k)z^{-k}$$

- Comparison suggests $z = e^{sT_s}$.
- To convert G(s) to G(z), can substitute $s = \frac{\ln z}{T_s}$.
- Easier to work with an approximation

$$z = e^{sT_s} = e^{\frac{sT_s}{2}} e^{\frac{sT_s}{2}} = \frac{e^{\frac{sT_s}{2}}}{e^{-\frac{sT_s}{2}}} = \frac{1 + \frac{\left(\frac{sT_s}{2}\right)}{1!} + \frac{\left(\frac{sT_s}{2}\right)^2}{2!} + \cdots}{1 + \frac{\left(-\frac{sT_s}{2}\right)^2}{1!} + \frac{\left(-\frac{sT_s}{2}\right)^2}{2!} + \cdots} \approx \frac{1 + \frac{sT_s}{2}}{1 - \frac{sT_s}{2}}$$

44

◀

•

Back

How Z-transform used in our sys-id

$$\underbrace{u(k)} \qquad \qquad \text{H-bridge} \qquad \underbrace{\omega(t)} \qquad \qquad \text{Encoder} \qquad \underbrace{\omega(k)}$$

- u(k) denotes sample of u(t) at sampling instant $t = kT_s$.
- Let $u(k) \to \omega(k)$ TF be G(z).
- Use u(k), $\omega(k)$ pairs to build G(z).
- Use bilinear transform to go from G(z) to G(s).

Important property of Z-transform used:

$$z^{-l}X(z) \leftrightarrow x(k-l)$$
 given $X(z) \leftrightarrow x(k)$.

orward

What is least squares sys-id? (1/2)

- Let $G(z) = \frac{b_1 z^2 + b_2 z + b_3}{z^3 + a_1 z^2 + a_2 z + a_3} = \frac{Y(z)}{U(z)}$.
- Cross multiply:

$$b_1z^2U(z) + b_2zU(z) + b_3U(z) = z^3Y(z) + a_1z^2Y(z) + a_2zY(z) + a_3Y(z).$$

• Multiply throughout by z^{-3} :

$$b_1 z^{-1} U(z) + b_2 z^{-2} U(z) + b_3 z^{-3} U(z) =$$

$$Y(z) + a_1 z^{-1} Y(z) + a_2 z^{-2} Y(z) + a_3 z^{-3} Y(z).$$

• Take \mathcal{Z}^{-1} to obtain difference equation

$$b_1 u(k-1) + b_2 u(k-2) + b_3 u(k-3) = y(k) + a_1 y(k-1) + a_2 y(k-2) + a_3 y(k-3).$$

44

1

Back

Forward Close

What is least squares sys-id? (2/2)

Consider
$$b_1u(k-1) + b_2u(k-2) + b_3u(k-3) = y(k) + a_1y(k-1) + a_2y(k-2) + a_3y(k-3)$$
. (1)

- Let $\sigma = [b_1 \quad b_2 \quad b_3 \quad -a_1 \quad -a_2 \quad -a_3]^{\mathsf{T}}$.
- Suppose we have data of u(k) and y(k) for k = 0, 1, ..., N.
- Problem: Find σ such that (1) holds for this data. I.E., find parameters of a TF that <u>fits</u> to input-output data.
- Let error in the fit be $\varepsilon(k,\sigma) = b_1 u(k-1) + b_2 u(k-2) + b_3 u(k-3) y(k) a_1 y(k-1) a_2 y(k-2) a_3 y(k-3).$
- Modified problem: Find σ to minimize $\mathcal{J}(\sigma) \triangleq \sum_{k=0}^{N} \varepsilon^{2}(k, \sigma)$.
- If $\mathcal{J}(\sigma = \sigma_0) = 0$, then find best estimate $\hat{\sigma}$ of σ_0 .

Back Forward