Programación de la EDU-CIAA en lenguaje C (sin RTOS)

Bioing. Juan Manuel Reta Mgt Eduardo Filomena

RUSE Red Universitaria de Sistemas Embebidos

Presentación

Historia

Sistemas Embebidos

....

Hardware Abstraction Layer

Objetivos del Curso

- Analizar las principales características de la arquitectura de los microcontroladores ARM Cortex M4 en general y del LPC4337 en particular.
- Estudiar el hardware de la EDU-CIAA-NXP y de la CIAA-NXP.
- Presentar herramientas de gestión de repositorio.
- Comprender los pasos de instalación del IDE de la CIAA.
- Analizar en forma general el estándar POSIX y sus ventajas.
- Presentar el concepto de capa de abstracción de hardware (HAL) y ejercitar con la biblioteca LPCOpen.

Presentación Objetivos

Historia

Sistemas Embebidos Software Embebido

Hardware Abstraction Layer

Eran los 60 y los laboratorios AT&T Bell junto al MIT trabajaban en un sistema operativo experimental: Multics (Multiplexed Information and Computing Service), diseñado para funcionar en un GE-645, un potente ordenador de aquella época. Ken Thompson y Dennis Ritchie son los responsables del proyecto.

Presentación Obietivos

Historia

Sistemas Embebidos Software Embebido

Hardware Abstraction Lay

.PCOpen

- Multics no funcionó como se esperaba.
- Ken Thompson y Dennis Ritchie, comenzaron a trabajar en un juego sobre la GE-645.
- ▶ Al querer portar el *Space Travel* a una PDP-7 teminaron desarrollando UNICS.
- ► AT&T Bell decidió subvencionar el desarrollo incorporando programadores, entre ellos a Brian Kernighan. UNICS pasa a llamarse UNIX.

Presentación

Objetivos

Histori

Sistemas Embebidos

Software Embedia

Hardware Abstraction Layer

.PCOpen

Definición

Un sistema embebido es un sistema electrónico contenido -embebido- dentro de un equipo completo que incluye otras partes (mecánicas, electromecánicas, etc.)

JM. Cruz

Presentación

Histori

Sistemas Embebidos

Hardware
Abstraction Laver

_PCOpen

En buena parte de las aplicaciones reales como cerebro de un sistema embebido se recurre a un microcontrolador.

Requisitos de Diseño:

- Tamaño reducido, bajo consumo.
- Costo competitivo.
- ► Eficiencia, confiabilidad y re-usabilidad.
- Determinismo y tiempo de respuesta óptimo para la aplicación.
- Funcionalidades escalables.

Presentación

Historia

Sistemas Embebidos

Joitware Linber

Hardware Abstraction Layer

Históricamente sea cual fuese la función específica del sistema embebido se ha requerido contar con:

- Las conectividades en uso corriente (USB, Ethernet, Wifi, Bluetooth, Zigbee, etc.)
- ► Las interfaces de usuario en uso corriente (display LED, touch screen, multimedia, etc.)

Éstos requerimientos (en permanente evolución) obligan a contar con **plataformas** de rendimiento y **recursos en crecimiento** que permitan atender el incremento del procesamiento necesario para soportar nuevos periféricos con capacidad de atender las nuevas conectividades e interfaces de usuario requeridas por el mercado (usuarios)

Presentación Objetivos Historia

Sistemas

Embebidos
Software Embebido
Hardware

Abstraction Layer

El Paradigma

 Prácticas de Ingeniería de Software que sirvan para organizar el ciclo de vida de un proyecto/producto y mejorar la eficiencia del trabajo en equipo

 Técnicas de modelado en el desarrollo de sistemas embebidos.(Diagramas de Estado, de Actividad,UML) Presentación

Histori

Sistemas Embebidos

Software Embebido

Hardware Abstraction Layer

.PCOpen

- ► Funcionalidad ¡Qué funcione bien!
- Confiable Que funcione bien siempre
- ► **Testeable** Que resulte sencillo vericicar si funciona bien.
- ▶ **Portable** que pueda compilarse y correr en diferentes plataformas.
- ► **Reusabilidad** Que pueda se reutilizado para diferentes aplicaciones.
- Simple Sencillo de interpretar y mantener.

Historia

Sistemas Embebidos

Software Embebido Hardware Abstraction Laver

Objectivo.

Historia

Embebidos
Software Embebido

Hardware

COpen

Objetivo

Historia

Sistemas Embebidos

Software Embebido

Hardware Abstraction Layer

Datasheets

Presentación

... .

Historia

Sistemas Embebidos

Software Embebido

Hardware Abstraction Layer

Hardware Abastraction Layer

Es la parte de software que se relaciona directamente con el hardware. Su función es proveer una interfaz entre los recursos del hardware y la aplicación o el sistema operativo.

Fig: Ing. Juan Manuel Cruz

Presentación

Objetive

Historia

Sistemas Embebidos

Hardware Abstraction Laver

Fig: Ing. Juan Manuel Cruz

Objetive

Historia

Embebidos

Hardware Embedido

Abstraction Layer

Objetivo

Historia

Sistemas Embebidos

Software Embebido

Abstraction Layer