大學入學考試中心 九十八學年度指定科目考試試題 數學甲

--作答注意事項---

考試時間:80分鐘

作答方式:第壹部分請用 2B 鉛筆在答案卡之「解答欄」內劃記。修正時應以橡皮擦拭,請 勿在答案卡上使用修正液。

第貳部分作答於「非選擇題答案卷」,請在規定之欄位以較粗的黑色或藍色原子筆、鋼珠筆或中性筆作答,並標明題號。

第壹部分作答示例:請仔細閱讀下面的例子。

(一)單選題只用1,2,3,4,5等五個格子,而不需要用到-,±以及6,7,8,9,0等格子;多選題只用1,2,3,4等四個格子,而不需要用到-,±以及5,6,7,8,9,0等格子。

例: 若第 1 題為單選題,選項為(1)3 (2)5 (3)7 (4)9 (5)11,而正確的答案為 7,亦即選項(3)時,考生要在答案卡第 1 列 3 劃記 (注意不是 7),如:

				解		答		根	司				
1	1	2	3	4	5	6	7	8	9	0	ō	$\overset{\pm}{\Box}$	

例:若第5題為多選題,正確選項為(1)與(3)時,考生要在答案卡的第5列的一與 3劃記,如:

5 1 2 3 4 5 6 7 8 9 0 - ±

(二)選填題的題號是 A, B, C, ..., 而答案的格式每題可能不同, 考生必須依各題的格式填答, 且每一個列號只能在一個格子劃記。

例:若第 C 題的答案格式是 $\frac{20(21)}{50}$,而答案是 $\frac{-7}{50}$ 時,則考生必須分別在答案 卡的第 20 列的 二 與第 21 列的 7 劃記,如:

第壹部分:選擇題(單選題、多選題及選填題共佔74分)

一、單選題(18分)

說明:第1至3題為單選題,每題選出一個最適當的選項,劃記在答案卡之「解答欄」。每題答對得6分,答錯或劃記多於一個選項者倒扣1.5分,倒扣到本大題之實得分數為零為止。未作答者,不給分亦不扣分。

- 1. 數學教科書所附的對數表中, $\log 4.34 = 0.6375$ 、 $\log 4.35 = 0.6385$ 。根據 $\log 4.34$ 和 $\log 4.35$ 的查表值以內插法求 $\log 4.342$,設求得的值為 p ,則下列哪一個選項是正確的?
 - (1) $p = \frac{1}{2}(0.6375 + 0.6385)$
 - (2) $p = 0.2 \times 0.6375 + 0.8 \times 0.6385$
 - (3) $p = 0.8 \times 0.6375 + 0.2 \times 0.6385$
 - (4) p = 0.6375 + 0.002
 - (5) p = 0.6385 0.002

- 2. 擲一均勻硬幣,若連續三次出現同一面就停止。設:
 - a 為恰好投擲三次停止的機率;
 - b 為在第一次是反面的情況下,恰好在第四次停止的條件機率;
 - c 為在第一、二次都是反面的情況下,恰好在第五次停止的條件機率。
 - 則下列哪一個選項是正確的?
 - (1) a = b = c
 - (2) a > b > c
 - (3) a < b < c
 - (4) a < b = c
 - (5) a > b = c

- 3. 複數 $z_1 = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4}$ 、 $z_2 = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$ 與它們的乘積 $z_1 z_2$ 在複數平面上對應的點 分別為 $P \cdot Q$ 與 $R \circ$ 則 $\angle QPR$ 等於下列哪一個選項?

 - (1) $\frac{\pi}{12}$ (2) $\frac{\pi}{10}$ (3) $\frac{\pi}{9}$ (4) $\frac{\pi}{8}$ (5) $\frac{\pi}{6}$

二、多選題(32分)

說明:第4至7題,每題各有4個選項,其中至少有一個是正確的。選出正確選項,劃記在 答案卡之「解答欄」。每題8分,各選項獨立計分,每答對一個選項,可得2分,每答 錯一個選項,倒扣2分,完全答對得8分;整題未作答者,不給分亦不扣分。在備答 選項以外之區域劃記,一律倒扣2分。倒扣到本大題之實得分數為零為止。

- 4. 設 a , b 為 實 數 。 如 果 空 間 中 某 一 平 面 通 過 (a,0,0) , (0,b,0) , (0,0,3) , (1,2,3) 這 些 點 , 則 下列哪些選項是正確的?
 - (1) a,b有可能都是正數
 - (2) a,b有可能是一個正數一個負數
 - (3) a,b有可能都是負數
 - (4) a,b有可能只有一個等於 0

- 5. 在坐標空間中,一正立方體的八個頂點分別為(0,0,0)、(1,0,0)、(1,1,0)、(0,1,0)、(0,0,1)、(1,0,1)、(1,1,1)與(0,1,1)。若A、B分別為此正立方體兩稜邊的中點,則向量 \overline{AB} 可能為下列哪些選項?
 - (1) (1,0,0)
 - (2) $(\frac{1}{2},0,0)$
 - (3) $(\frac{1}{2},0,1)$
 - $(4) \quad (0, -\frac{1}{2}, -\frac{1}{2})$

- 6. 設 y = f(x)是一個實係數四次多項式,其函數圖形在 (-1,2)和 (1,2)各有一個反曲點,且知在 (-1,2)和 (1,2)此函數圖形切線的斜率分別為 1 和 -1,則下列哪些選項是正確的?
 - (1) x+1是 f''(x)的因式
 - (2) f'(x)的常數項不等於零
 - (3) f'(-x) = -f'(x)
 - (4) f(x)的首項係數是1

- 7. 已知丟某枚銅板,其出現正面的機率為 p,出現反面的機率為 (1-p),將此枚銅板丟擲 n次,在丟擲過程中,正面第一次出現時,可得獎金 1元,正面第二次出現時,可再得獎金 2元,正面第三次出現時,可再得獎金 3元,以此類推。試問下列哪些選項是正確的?
 - (1) 若n次丟擲中出現正面k次,總共得到獎金 $\frac{1}{2}(k^2-k)$ 元
 - (2) 丟擲銅板第二次之後,累計得獎金 1 元的機率為 $2(p-p^2)$
 - (3) 總共得到獎金 2 元的機率為 $\frac{n(n-1)}{2}p^2(1-p)^{n-2}$
 - (4) 總共得到獎金 $\frac{1}{2}(n^2-n)$ 元的機率為 $n(p^{n-1}-p^n)$

三、選填題(24分)

說明: A 至 C 題為選填題,將答案劃記在答案卡之「解答欄」所標示的列號(8-15)內。 每一題完全答對得8分,答錯不倒扣;未完全答對不給分。

A. 在 A 、 B 兩支旗竿底端連線段中的某一點測得 A旗竿頂端的仰角為 29° 、 B旗竿 頂端的仰角為 15° 。在底端連線段中的另一點測得 A旗竿頂端的仰角為 26° 、 B旗竿頂端的仰角為 19° 。則 A旗竿高度和 B旗竿高度的比值約為 8.9 (四捨五入到小數點後第一位)。

θ	15°	19°	26°	29°	
$\cot \theta$	3.73	2.90	2.05	1.80	

B. 對矩陣 $\begin{pmatrix} 4 & 9 & a \\ 3 & 7 & b \end{pmatrix}$ 作列運算若干次後得到 $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$,

則
$$(a,b) = (101)$$
 , 1213) \circ

C. $\triangle ABC$ 為邊長為 5 的正三角形,P點在三角形內部,若線段長度 \overline{PB} = 4且 \overline{PC} = 3,則 $\cos \angle ABP = 0.14$ (四捨五入到小數點後第二位, $\sqrt{2}$ 的近似值是 1.414, $\sqrt{3}$ 的近似值是 1.732)。

一 一 一 一以下第貳部分的非選擇題,必須作答於答案卷 一 一 一

第貳部分:非選擇題(佔26分)

說明:本大題共有二題計算證明題,答案務必寫在答案卷上,並於題號欄標明題號(一、二) 與子題號((1)、(2)),同時必須寫出演算過程或理由,否則將予扣分。每題配分標於題 末。

一. 設 R代表坐標平面上由下列兩個不等式所定義的區域,

$$\begin{cases} x^2 + y^2 \le 4 \\ y \ge 1 \end{cases}$$

求函數 x+y在區域 R上的最大值與最小值。(13分)

- 二.設四次多項式 $f(x) = x(1-x)(1+x^2)$
 - (1) 選取積分區間 $a \le x \le b$,使得定積分 $\int_a^b f(x)dx$ 達到最大值,並求此最大值;(7分)
 - (2) 設 c > 0 , 求 證 $\int_{-c}^{c} f(x) dx$ 恆 為 負 值 。(6 分)