Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2010/2011 AL210 - Algebra 2

Esercitazione 5 (26 Novembre 2010)

Esercizio 1. Determinare tutti gli ideali destri, sinistri e bilateri dell'anello $M_2(\mathbb{R})$.

Soluzione: Per gli ideali destri e sinistri si veda il libro di testo.

Facciamo vedere che per ogni $n \geq 2$, $M_n(\mathbb{R})$ è privo di ideali bilateri non banali

Sia $n \geq 2$. Siano $1 \leq i, j \leq n$, sia E(i,j) la matrice i cui elementi sono tutti nulli, salvo $E(i,j)_{ij} = 1$. Sia J un ideale bilatero di $M_n(\mathbb{R})$, non nullo. Allora esiste $M \in M_n(\mathbb{R})$ tale che $M \neq 0, M \in J$. Quindi esistono $1 \leq i, j \leq n$ tali che $M_{ij} \neq 0$. Allora per ogni $1 \leq s \leq n$, $\frac{1}{M_{ij}} E(h,i) M E(j,h) = E(h,h)$, quindi $E(h,h) \in J$. Ma allora $Id = \sum_{h=1}^n E(h,h) \in J$, quindi $J = M_n(\mathbb{R})$.

Esercizio 2. Sia A un anello commutativo e $I,\ J$ ideali di A. Si definisce l'insieme:

$$IJ := \{x_1y_1 + \dots + x_ny_n : n \in \mathbb{N}, x_i \in I, y_i \in J, i = 1, \dots, n\}.$$

- (a) Provare che IJ è un ideale contenuto nell'ideale $I \cap J$.
- (b) Provare che se $A = \mathbb{Z}$, $I = 4\mathbb{Z}$ e $J = 6\mathbb{Z}$, allora $IJ \neq I \cap J$.
- (c) Provare che se A è un anello unitario e I + J = A, allora $IJ = I \cap J$.

Soluzione:

(a) Il fatto che IJ sia un sottogruppo additivo è banale. Sia ora $a \in A$ e $z = x_1y_1 + \cdots + x_my_m \in IJ$, allora

$$az = a(x_1y_1 + \dots + x_my_m) = (ax_1)y_1 + \dots + (ax_m)y_m \in IJ,$$

poiché $ax_i \in I, \forall i = 1, \dots, m$.

Per ogni $i=1,\ldots,m$ si ha $x_iy_i\in I\cap J$, dunque ogni $z\in IJ$ è anche un elemento di $I\cap J$ e $IJ\subseteq I\cap J$.

- **N.B.** il sottoinsieme $\{xy : x \in I, y \in J\}$ NON è un ideale. Non è infatti un sottogruppo additivo di (A, +). Per trovare un controesempio è sufficiente considerare i due ideali $(2, X^2)$ e $(3, X^3)$ in $\mathbb{Z}[X]$ e far vedere che $2X^3 + 3X^2$ non può essere del tipo f(X)g(X) con $f(X) \in (2, X^2)$ e $g(X) \in (3, X^3)$.
- (b) Non è difficile verificare che $IJ = 24\mathbb{Z}$ e $I \cap J = 12\mathbb{Z}$.
- (c) Se A è unitario e I+J=A, allora esistono $x\in I$ ed $y\in J$ tale che 1=x+y. Preso comunque $z\in I\cap J$ allora $z=z\cdot 1=z(x+y)=zx+zy\in IJ$, infatti zx e zy sono entrambi prodotto di un elemento di I per un elemento di J.

Esercizio 3. Dimostrare che un dominio finito è un campo.

Soluzione: Sia D un dominio finito. Facciamo vedere che preso comunque un elemento non nullo $h \in D$, h è invertibile. Consideriamo l'applicazione

$$\begin{array}{ccc} \varphi_h : D & \longrightarrow & D \\ x & \longmapsto & hx \end{array}$$

Si ha che φ_h è iniettiva (e dunque suriettiva, essendo D finito), infatti $\varphi_h(x) = \varphi_h(y)$ se e solo se hx = hy se e solo se hx - hy = h(x - y) = 0. Siccome D è un dominio e h è diverso da zero, si deve avere x = y e φ_h è iniettiva.

Dunque φ_h è una biiezione ed esiste $x \in D$ tale che $\varphi_h(x) = 1$ e dunque hx = 1 e $x = h^{-1}$.

Esercizio 4. Verificare che la composizione di omomorfismi è un omomorfismo.

Soluzione: Siano A, B, C anelli e $\varphi : A \to B$ e $\psi : B \to C$ omomorfismi di anelli. Facciamo vedere che presi comunque $x, y \in A$ si ha:

- (i) $\psi(\varphi(x+y)) = \psi(\varphi(x)) + \psi(\varphi(y))$.
- (ii) $\psi(\varphi(xy)) = \psi(\varphi(x))\psi(\varphi(y)).$
- (i) $\psi(\varphi(x+y)) = \psi(\varphi(x) + \varphi(y)) = \psi(\varphi(x)) + \psi(\varphi(y)).$
- (ii) $\psi(\varphi(xy)) = \psi(\varphi(x)\varphi(y)) = \psi(\varphi(x))\psi(\varphi(y)).$

Esercizio 5. Sia A un anello e sia $a \in U(A)$. Dimostrare che:

- (a) L'applicazione $\varphi_a:A\to A$ definita da $\varphi_a(x):=a^{-1}xa$ è un omomorfismo di anelli.
- (b) Per $a, b \in U(A)$ si ha $\varphi_a \circ \varphi_b = \varphi_{ba}$.
- (c) φ_a è un isomorfismo per ogni a.

Soluzione:

- (a) Siano $x,y\in A$, allora $\varphi_a(x+y)=a^{-1}(x+y)a=(a^{-1}x+a^{-1}y)a=a^{-1}xa+a^{-1}ya=\varphi_a(x)+\varphi_a(y)$. Per il prodotto si ha: $\varphi_a(xy)=a^{-1}(xy)a=a^{-1}x\cdot 1\cdot ya=a^{-1}x(aa^{-1})ya=\varphi_a(x)\varphi_a(y)$.
- (b) Siano $a, b \in U(A)$ ed $x \in A$, allora $\varphi_a \circ \varphi_b(x) = \varphi_a(b^{-1}xb) = a^{-1}b^{-1}xba = (ba)^{-1}x(ba) = \varphi_ba(x)$.
- (c) Facciamo vedere che, dato comunque $a \in U(A)$, φ_a è iniettiva. Supponiamo $\varphi_a(x) = \varphi_a(y)$ per qualche $x,y \in A$, allora $a^{-1}xa = a^{-1}ya$ e dunque $aa^{-1}xaa^{-1} = aa^{-1}yaa^{-1}$, da cui x = y. Mostriamo che φ_a è suriettiva. Sia $z \in A$, allora l'elemento $z' := aza^{-1}$ di A è tale che $\varphi_a(z') = z$. Dunque φ_a è un isomorfismo per ogni $a \in U(A)$.

Esercizio 6. Siano A_1 , A_2 anelli unitari e $f: A_1 \to A_2$ un omomorfismo suriettivo di anelli unitari. Dimostrare che $f(U(A_1)) \subseteq U(A_2)$ e trovare un esempio in cui tale contenimento è proprio.

Soluzione: Facciamo vedere che, dati A_1 ed A_2 anelli unitari, se f è un omomorfismo di A_1 in A_2 , allora $f(U(A_1)) \subseteq U(A_2)$ nei seguenti due casi:

- (i) se f è un omomorfismo di anelli unitari, oppure
- (ii) se f è suriettivo.
- (i) Sia $x \in U(A_1)$, allora $1_{A_2} = f(1_{A_1}) = f(xx^{-1}) = f(x)f(x^{-1})$ e dunque $f(x) \in U(A_2)$.
- (ii) Poiché f è suriettivo, esiste $y\in A_1$ tale che $f(y)=1_{A_2}$. Sia $x\in U(A_1)$, allora $1_{A_2}=f(y)=f(xx^{-1}y)=f(x)f(x^{-1}y)$ e dunque $f(x)\in U(A_2)$.

Un esempio in cui il contenimento $f(U(A_1)) \subseteq U(A_2)$ è proprio si ha prendendo $A_1 = \mathbb{Z}$, $A_2 = \mathbb{Z}_5$ ed $f = \pi$ la proiezione canonica. In tal caso, f è un omomorfismo di anelli unitari suriettivo. Gli unici elementi invertibili di \mathbb{Z} sono 1 e - 1, con immagine rispettivamente $\overline{1}$ e $\overline{4}$ in \mathbb{Z}_5 . Però, essendo \mathbb{Z}_5 un campo, anche $\overline{2}$ e $\overline{3}$ sono invertibili, ma non appartengono a $f(U(\mathbb{Z}))$.