

DATA ANALYSIS

Week 4: Correlations and regression

logistics: class survey (February)

- https://forms.gle/hw6kQzznP73Rrifh6
- link also on Canvas (under class surveys)
- due Feb 20 (**Tuesday midnight**, so we can talk about it in class on Wed)
- 1 point that counts towards your final points/grade
 - submit on Canvas (it's an "assignment" on Canvas)
- I value your feedback
- anonymous survey! please be honest and reflective
- you will get a code at the end of the survey (on the thank you screen)
 - copy-paste this code on Canvas to get credit

logistics: midterm 1

logistics: review for midterm 1

- practice midterm is available on Canvas (Modules > Midterm 1)
- conceptual portion (40% of total midterm)
 - 40 multiple-choice/true-false questions
 - try to practice in a timed/closed-book manner
- computational portion (60% of total midterm)
 - short answer questions
 - sheets-based questions
 - answers will be posted on Tuesday
 - actual exam: you will submit a **downloaded** PDF + **downloaded** Sheets file on Canvas

some bonus content

- guesssing correlations and tracking your performance!
- why is a correlation restricted to -1 and 1?

today's agenda

more on correlations

assessing model fit

recap: correlation and regression

- Pearson's correlation (r) measures the linear relationship between two variables

$$\rho(population) = \frac{\sum (X - \mu_X)(Y - \mu_Y)}{(N)\sigma_X \sigma_Y} = \frac{\sum z_X z_Y}{N} \quad \text{OR} \quad r(sample) = \frac{\sum (X - M_X)(Y - M_Y)}{(N - 1)s_X s_Y} = \frac{\sum z_X z_Y}{N - 1}$$

linear regression uses r to fit a straight line to the data

$$b = \frac{\sum (X - M_x)(Y - M_y)}{\sum (X - M_x)^2} = r \frac{S_x}{S_y}$$

$$a = M_y - bM_x$$

regression toward the mean

- if two variables are imperfectly correlated, extreme scores on one variable are associated with less extreme scores on the other variable, on average
- consider two measurements of intelligence, one before and one after a treatment
 - data = model + error
- the first measurement likely has some error with respect to the true value, due to several factors
- the second measurement will try to again estimate the true value
- since values closer to the mean are more likely, the second measurement is likely to be closer to the mean than the first extreme value

regression toward the mean

$$\hat{Y} = a + bX$$

$$b = r \frac{s_x}{s_y}$$

$$a = M_y - bM_x$$

$$\hat{Y} = M_y - bM_x + bX = M_y + b(X - M_x)$$

$$\hat{Y} - M_y = b(X - M_x)$$

$$\hat{Y} - M_y = r \frac{s_y}{s_x} (X - M_x)$$

$$\frac{\hat{Y} - M_y}{s_y} = r \frac{(X - M_x)}{s_x}$$

$$\hat{Z_y} = r Z_x$$

If $r \neq \mp 1$, $\widehat{z_y}$ (predicted value of Y) is less [extreme] than the value of $X(z_x)$

Bonus: If you know the z-score of X and the correlation, you can find the <u>predicted</u> z-score for Y!

how good is the line of best fit?

- even the line of "best" fit may ultimately not fit the data
 very well due to the inherent variability in the data
- how we assess model fit?
- data = model + error
- data = a + bX + error
- our favorite friend: sum of squared errors (SS)!

$$\hat{Y} = a + bX = predictions$$

$$SS_{error} = \sum_{i=1}^{n} (y_i - a - bx_i)^2 = \sum (Y - \hat{Y})^2$$

understanding goodness/errors

$$SS_{total} = SS_{model} + SS_{error}$$

$$SS_{total} = \sum (Y - M_y)^2$$

$$SS_{error} = \sum (Y - \hat{Y})^2$$

$$SS_{model} = \sum (\hat{Y} - M_{y})^{2}$$

coefficient of determination (R²)

- what proportion of the total error variance is explained by my model?
- $R^2 = \frac{SS_{model}}{SS_{total}} = r^2$ in the case of simple linear regression (i.e., Y = a + bX) (proof)
- R^2 denotes the **percentage of variance** explained in Y due to X
- when multiple variables are involved, R^2 reflects the variance explained by the full model

other variables in the mix

- sometimes, more than one variable (X and Z) may impact the key variable of interest (Y)
- in such cases, it is difficult to isolate the impact of one variable (X) on another (Y), without taking into account the variance shared by the variables (X and Z)
 - three relationships r_{xy} , r_{xz} , r_{yz}
- partial correlation of X and Y

$$r_{XY.Z} = \frac{r_{XY} - (r_{XZ}r_{YZ})}{\sqrt{(1 - r_{XZ}^2)(1 - r_{YZ}^2)}}$$

multiple regression

- multiple linear regression refers to finding a model that best predicts a variable of interest
 (Y) using more than one variable (X₁, X₂, etc.)
- data = model + error
 - *linear*: Y = bX + a + error
 - *multiple*: $Y = b_1 X_1 + b_2 X_2 + a + error$
- for two variables, we are fitting a *plane* to the data instead of a line
- more to come! we will discuss a family of models within the framework of "general linear models"

standard error of estimate / r

- how far away is an average data point from the line of best fit?
- similar concept to standard deviation, $s = \sqrt{\frac{ss}{df}}$
- standard error of estimate (regression model) = "average" SS_{error}

$$SE_{model} = \sqrt{\frac{SS_{error}}{df}} = \sqrt{\frac{SS_{error}}{n-2}}$$

standard error for correlation

 $r^2 = explained variance$

 $unexplained\ variance = 1 - explained\ variance = 1 - r^2$

$$SE_r = s_r = \sqrt{\frac{1 - r^2}{n - 2}}$$

conceptual differences

- technically, regression involves predicting a random variable (Y) using a fixed variable (X). In this situation, no sampling error is involved in X, and repeated replications will involve the same values for X (this allows for prediction)
 - example: X is an experimental manipulation
- correlation describes the situation in which both X and Y are random variables. In this case, the values for X and Y vary from one replication to another and thus sampling error is involved in both variables
 - example: X and Y both naturally vary

can we trust our models?

- our goal is to find the best model for our data and generalize to the population
- but how do we know that our sample is representative of the population? how do we know our models are good enough?
- after midterm 1!

population

all individuals of interest

sample

 the small subset of individuals who were studied

Pearson's r assumptions

- continuous scale: variables should be on interval /
 ratio scale: if the distance between the values is not
 equal, estimates of variability are difficult
- homoskedasticity: dispersion of Y remains relatively similar across the range of X
- no significant outliers
- variables should be approximately normally distributed

non-continuous data

- when data are not interval/ratio, Pearson's r is not appropriate
- other alternatives exist
 - both variables ordinal: spearman's *rho*
 - one variable dichotomous (binomial): point biserial
 - both variables dichotomous: phi
- all alternatives are simply variations/extensions of Pearson's r
- remember, data = model + error
- when the data changes, the model also changes

spearman's rho

- typically used for ordinal scales, non-linear relationships, or when outliers may need to be included
- uses ranks / ordering of scores instead of the raw scores themselves
- Pearson's r may underestimate the relationship but ranks may reveal a strong relationship
- if r is higher than rho, that typically means there is more of a linear trend in the data

example

- a set of scores
- we first calculate Pearson's r=CORREL(X,Y)
- then we compute ranks
 - lowest numbers get lower ranks
- compute the pearson's *r* for ranks!=CORREL(rank_x, rank_y)

Person	X	•	Y
Α		3	12
В		4	10
С		10	11
D		11	9
E		12	2

rank_x	rank_y
	1 5
	2 3
	3 4
	4 2
	5 1

pearson
-0.6485442507

spearman	
	-0.9

activity: calculate spearman's rho

- calculate the correlation between two items from the statistics survey from class
- sheet (fake data)

Student	I will like statistics	I will have no idea of what's going on in this statistics course.
1	6	2
2	5	1
3	3	4
4	7	7
5	4	3

spearman's rho: handling ties

when two or more scores are the same,
 their ranks are the average of the ranks
 they would have gotten if the scores were
 different

score	
	7
	8
	2
	7
	4
	2
	4

spearman's rho: handling ties

when two or more scores are the same,
 their ranks are the average of the ranks
 they would have gotten if the scores were
 different

score		initial_ranks	
	7	6	—
	8	7	,
	2	2	
	7	5	
	4	4	—
	2	1	—
	4	3	—

spearman's rho: handling ties

when two or more scores are the same,
 their ranks are the average of the ranks
 they would have gotten if the scores were
 different

score	initial_ran	ks	final_ranks
7	7	6	5.5
8	3	7	7
2	2	2	1.5
7	7	5	5.5
4	L	4	3.5
	2	1	1.5
4	l .	3	3.5

spearman's rho: other formula

$$r = \frac{\sum (X - \mu_x)(Y - \mu_y)}{(N)\sigma_x \sigma_y}$$

 given that ranks do away with the original scores, this formula can be simplified when there are no ties

$$r_{s} = 1 - \frac{6\sum D^{2}}{n(n^{2} - 1)}$$

where D is difference between X and Y ranks for each data point

- proof

X	Υ	rank_x	rank_y	D	D^2
3	12	1	5	-4	16
4	10	2	3	-1	1
10	11	3	4	-1	1
11	9	4	2	2	4
12	2	5	1	4	16

spearman's rho: other formula

- what is D if the ranks of X and Y are in the same order?
- what is r?

$$r_{\rm s} = 1 - \frac{6\sum D^2}{n(n^2 - 1)}$$

X	Y	rank_x	rank_y	D	D ²
3	12	1	5	-4	16
4	10	2	3	-1	1
10	11	3	4	-1	1
11	9	4	2	2	4
12	2	5	1	4	16

point biserial and phi

- similar idea as Pearson's r but now our variables are not interval/ratio
- just converting the dichotomous variable to
 0/1 numeric representations
 - point biserial : one variable dichotomous
 - phi : both variables dichotomous
- convert to numeric representations
- proceed as before

puzzle score	group
11	(
9	(
4	(
5	(
6	(
7	(
12	(
10	(
7	•
13	•
14	•
16	•
9	•
11	•
15	•
11	•
meanX	meanY
10	0.5

point biserial and phi

- similar idea as Pearson's r but now our variables are not interval/ratio
- just converting the dichotomous variable to
 0/1 numeric representations
 - point biserial : one variable dichotomous
 - phi : both variables dichotomous
- convert to numeric representations
- proceed as before

z_x*z_y	z_y	z_x	sqy	sqx	group	puzzle score
-0.2901905	-1	0.2901905	0.25	1	0	11
0.2901905	-1	-0.2901905	0.25	1	0	9
1.741143	-1	-1.741143	0.25	36	0	4
1.4509525	-1	-1.4509525	0.25	25	0	5
1.160762	-1	-1.160762	0.25	16	0	6
0.8705715001	-1	-0.8705715001	0.25	9	0	7
-0.5803810001	-1	0.5803810001	0.25	4	0	12
(-1	0	0.25	0	0	10
-0.8705715001	1	-0.8705715001	0.25	9	1	7
0.8705715001	1	0.8705715001	0.25	9	1	13
1.160762	1	1.160762	0.25	16	1	14
1.741143	1	1.741143	0.25	36	1	16
-0.2901905	1	-0.2901905	0.25	1	1	9
0.2901905	1	0.2901905	0.25	1	1	11
1.4509525	1	1.4509525	0.25	25	1	15
0.2901905	1	0.2901905	0.25	1	1	11
r			SSy	SSx	meanY	meanX
0.5803810001			4	190	0.5	10
			sd_y	sd_x		
			0.5	3.446012188		

next time

- **before** class
 - complete: Week 4 quiz
 - submit: PS3
 - *fill out*: class survey (February)
 - practice: midterm 1 review questions
- during class
 - reviewing concepts + preparing for midterm 1!