THINGS TO KNOW ABOUT THE INNER PRODUCT

Axioms of the inner product

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$;
- 2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$;
- 3. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$;
- $\mathbf{4.} \quad \langle \mathbf{u}, \mathbf{u} \rangle \geq 0 \text{ and } \langle \mathbf{u}, \mathbf{u} \rangle = 0 \quad \underline{\mathbf{iff}} \quad \mathbf{u} = \mathbf{0}.$

Definitions

- 1. Length: $||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.
- 2. Distance: $dist(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} \mathbf{v}||$.
- 3. **u** and **v** are **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Properties of the length

- 1. $||c\mathbf{v}|| = |c| ||\mathbf{v}||$.
- 2. Pythagoras Theorem: Two vectors \mathbf{u} and \mathbf{v} are orthogonal $\underline{\mathbf{iff}}$ $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$.
- 3. Cauchy-Schwarz Inequality: $|\langle u, v \rangle| \le ||u|| \, ||v||$.
- 4. Triangle Inequality: $||u+v|| \le ||u|| + ||v||$.