Bootstrap Hypothesis Tests in Credit Risk

Andrija Djurovic

www.linkedin.com/in/andrija-djurovic

Bootstrapping in Credit Risk

- Generally underutilized in the credit risk area.
- Bootstrapping finds application across various domains within credit risk modeling.
- Particularly useful for testing metrics where there is little consensus on the standard error of the estimate
 or when statistical testing procedures are absent.
- Various methods exist for calculating bootstrap confidence intervals and p-values, with the percentile
 method likely being the most commonly used. Computing the p-value is not always straightforward
 because bootstrapping does not produce data conforming to the null hypothesis.
- The examples from the following slides demonstrate the percentile method with centered values as:
 estimate bootstrapped distribution + null hypothesis value with the p-value calculated as
 a percentage of more extreme values than the estimate.
- Advantages:
 - does not rely on any distributional assumption
 - flexible application across a wide range of metrics
 - useful for identifying bias
 - easy to implement.
- Disadvantages:
 - computational intensity
 - assumption of independence (although this can be addressed to a certain extent)
 - accuracy concerns for smaller sample sizes.

Example 1: Population Stability Index (1-sided test)

Dataset:

##		Bin	Base	cnt.	Base	pct.	Target	cnt.	Target	pct.	PSI
##	1	1		119		0.22		155		0.35	0.18
##	2	2		130		0.24		139		0.31	0.18
##	3	3		39		0.07		24		0.05	0.18
##	4	4		263		0.48		131		0.29	0.18

Testing Hypothesis:

 $H_0: PSI \leq 0.15$

Visualization:

p-value:

[1] "21.26%"

Example 2: Herfindahl-Hirschman Index (1-sided test)

Dataset:

##		Rating Grade	#	obs.	DR	HHI
##	1	01 (-Inf,0.0199)		202	0.01	0.194
##	2	02 [0.0199,0.0263)		54	0.02	0.194
##	3	03 [0.0263,0.0369)		96	0.03	0.194
##	4	04 [0.0369,0.0903)		204	0.06	0.194
##	5	05 [0.0903,0.15)		103	0.11	0.194
##	6	06 [0.15,0.197)		41	0.12	0.194
##	7	07 [0.197,Inf)		50	0.32	0.194

Testing Hypothesis:

 $H_0: HHI \geq 0.20$

Visualization:

p-value:

[1] "23.72%"

Example 3: Area Under Curve (2-sided test)

Dataset:

Development sample AUC 79%. Application portfolio AUC 75.2%.

Visualization:

Testing Hypothesis:

 $H_0: AUC = 0.79$

p-value:

2*min(c(left-side p-value, right-side p-value))

[1] "2.06%"