Podział elementów przełącznikowych

Przyrządem	przełącznikowym	nazywa	się	taki	przy	rząd
półprzewodnikowy, kto	óry dla pewnych v	wartości napi	ęcia j	polaryzacji	ma	dwa
stabilne stany pracy: bl	okowania lub przev	vodzenia.				

<u>Do</u>	prz	yrza	<u>idów</u>	przeła	<u> įczni</u>	<u>kow</u>	<u>ych</u>	należ	<u>ą:</u>
-----------	-----	------	-------------	--------	---------------	------------	------------	-------	-----------

- □ tranzystor jednozłączowy;
- □ elementy wielowarstwowe: (struktury czterowarstwowe jednokierunkowe oraz pięciowarstwowe dwukierunkowe).

Elementy jednokierunkowe charakteryzują się możliwością przełączania tylko przy jednej polaryzacji (w kierunku przewodzenia), natomiast elementy dwukierunkowe mogą przełączać przy obu polaryzacjach.

Innym kryterium podziału może być liczba elektrod i warstw.

Wyróżnia się elementy:

- dwukońcówkowe: *dynistor* (czterowarstwowy) i *diak* (pięciowarstwowy),
- □ trójkońcówkowe: *tyrystor* (czterowarstwowy) i *triak* (pięciowarstwowy).

Tranzystor jednozłączowy (dioda z podwójną bazą)

Model warstwowy tranzystora jednozłączowego.

$$\label{eq:continuity} \begin{split} \text{Jeżeli} \ U_E < U_{E'} + U_D \ \text{, to złącze p-n} \\ \text{polaryzowane jest } w \ \text{kierunku} \\ \text{zaporowym.} \end{split}$$

Jeżeli $U_E > U_{E'} + U_D$, to złącze p-n polaryzowane jest w kierunku przewodzenia.

Schemat zastępczy tranzystora jednozłączowego – polaryzacja.

Charakterystyka prądowo-napięciowa tranzystora jednozłączowego

Charakterystyka tranzystora jednozłączowego przy stałej rezystancji bazy.

Charakterystyka tranzystora jednozłączowego przy uwzględnieniu zmniejszenia rezystancji bazy w wyniku wstrzykiwania nośników przez złącze emiterowe.

Modele warstwowe dynistora

Model warstwowy dynistora.

Struktura dynistora jako połączenie dwóch tranzystorów.

Charakterystyka prądowo – napięciowa dynistora.

Rozpływ prądów w dynistorze

Składowe prądów w strukturze dynistora w stanie blokowania.

Między złączami j_1 oraz j_2 występuje dodatnie *sprzężenie zwrotne*, które jest czynnikiem prowadzącym do przejścia ze *stanu blokowania* do *przewodzenia*.

$$I_A = \alpha_2 I_A + \alpha_1 I_K + I_g$$

gdzie: I_A - prąd anody. I_g - prąd generacji, wytwarzany w warstwie zaporowej j_C . I_K - prąd katody, równy prądowi anodowemu.

$$I_A = \frac{I_g}{1 - (\alpha_1 + \alpha_2)}$$

Jeżeli suma współczynników wzmocnienia prądowego tranzystorów T_1 oraz T_2 równa $(\alpha_1+\alpha_2)\to 1$, to wartość prądu anodowego $I_A\to\infty$. Jest to warunek przełączania w dynistorze (tyrystorze).

Przed przełączeniem, w stanie blokowania przez dynistor (tyrystor) płynie prąd I_A porównywalny z prądem generacji w warstwie zaporowej I_g .

Model warstwowy tyrystora

Model warstwowy i polaryzacja normalna tyrystora.

Charakterystyka prądowo – napięciowa tyrystora dla różnych wartości prądu bramki I_G [mA].

Polaryzacja złącz dynistora (tyrystora) w różnych zakresach pracy

Zakres polaryzacji zaporowej:

Złącza j_1 oraz j_2 spolaryzowane w kierunku zaporowym, złącze j_C w kierunku przewodzenia.

Zakres blokowania:

Złącza j_1 oraz j_2 spolaryzowane w kierunku przewodzenia, złącze j_C w kierunku zaporowym.

Zakres przewodzenia:

Wszystkie złącza spolaryzowane w kierunku przewodzenia.