1 Falin hleðsla

1.1 Kynning

Óþekkt punkthleðsla Q er föst á einhverju svæði. Rafeind sem er skotið af stað samsíða z-ásnum langt frá óþekktu punkthleðslunni mun sveigja af leið sinni í átt að mæliskjá fyrir aftan óþekktu punkthleðsluna. Það er hægt að komast að eiginleikum óþekktu punkthleðslunnar með því að breyta hreyfiorku og upphafsstaðsetningu, (x_i, y_i) , rafeindageislans og með því að mæla staðsetninguna (x_f, y_f) þar sem rafeindirnar skella á mæliskjánum. Mæliskjárinn er endanlega stór og liggur hornrétt á z-ásinn í xy-planinu nánar tiltekið í z=0.

Það gæti verið gagnlegt í þessu verkefni að rifja upp tvístrunarjöfnu Rutherfords:

$$b = \frac{kqQ}{2E} \frac{1}{\tan(\theta/2)},$$

par sem b táknar kennilengd árekstrarins, E táknar orku rafeindarinnar, $q=-1.602\times 10^{-19}\mathrm{C}$ er hleðsla rafeindarinnar, $k=8.99\times 10^9~\mathrm{Nm^2/C^2}$ er fasti Coulombs, og θ er tvístrunarhornið. Kennilengd árekstrarins, b, er skilgreind á myndinni hér að neðan og er stysta vegalengdin milli rafeindarinnar og óþekktu punkthleðslunnar ef punkthleðslan hefði ekki haft nein áhrif á braut rafeindarinnar og hún hefði farið eftir beinni línu. Tvístrunarhornið, θ , er einnig skilgreint á myndinni hér að neðan og táknar hornið á milli upphaflegu stefnu rafeindarinnar og lokastefnu hennar þegar hún er langt frá óþekktu punkthleðslunni, Q.

1.2 Verkefnið

Verkefni ykkar er að ákvarða staðsetninguna, (x_Q,y_Q,z_Q) , á óþekktu punkthleðslunni og einnig stærðina og formerkið á hleðslunni Q, eins nákvæmlega og unnt er. Þið ættuð að gefa gróft mat á óvissunni á stærðargráðunni í niðurstöðum ykkar. Staðsetning rafeindageislans er normaldreifð og óvissan í staðsetningunni á henni er af stærðargráðunni $0.5\,\mathrm{mm}$.

Eins og í öllum tilraunum þarftu að merkja á skýran hátt allar töflur með einingum, skilgreindum stærðum og niðurstöðum mælinga; merkja ása allra grafa og leiða út jöfnur þannig að ljóst sé hvað þú hefur mælt og hvernig þú leiðir út niðurstöður þínar.

1.3 Viðmót fyrir forritið

Forritið biður um spennumun til þess að hraða rafeindunum yfir:

Beam accelerating voltage in V:

Sláið inn tölu á bilinu 1 og 10000 til að stilla spennumuninn og ýtið á **enter**. Forritið mun síðan biðja ykkur um x-hnit upphafsstaðsetningarinnar, x_i , með eftirfarandi kvaðningu:

x-coordinate of the electron beam in cm:

Sláið inn tölu á bilinu -20 og 20 og ýtið á **enter** til þess að stilla x-hnit upphafsstaðsetningarinnar á rafeindinni. Að lokum mun forritið biðja um y-hnitið á upphafsstaðsetningu rafeindarinnar, y_i , með eftirfarandi kvaðningu:

y-coordinate of the electron beam in cm:

Sláið inn tölu á bilinu -20 og 20 og ýtið á **enter**. Ef einhver af tölunum sem þú slóst inn eru utan skilgreinda bilsins, þá mun forritið gefa þér eftirfarandi kvaðningu:

Invalid entry.

og mun biðja þig um að slá inn gildin aftur ásamt því að minna þig á á hvaða bili stærðirnar eru skilgreindar.

Eftir að þessar þrjár tölur hafa verið skráðar mun forritið gefa þér eftirfarandi úttak:

Electron beam fired with parameters (x, y, V) =

og á eftir jafnaðarmerkinu mun forritið skrifa gildin sem þú valdir, þar á eftir færðu eftirfarandi úttak:

Electron detected at (x, y) =

og á eftir jafnaðarmerkinu mun standa staðsetninguna sem rafeindin mældist á skjánum. Hinsvegar, ef rafeindin hittir ekki skjáinn (sem er endanlega stór), þá færðu eftirfarandi úttak:

Electron not detected...

Þú getur síðan slegið inn nýtt sett af upphafsgildum V,x,y (í þessari röð).

2 Svartur kassi

2.1 Kynning

Þú hefur aflfræðilegan svartan kassa sem er ílát með massann m_1 . Inni í ílátinu er lóð með massann m_2 sem hangir úr lofti ílátsins í nær massalausum gormi með gormstuðul k_1 . Annar massi m_3 er festur við massann m_2 með öðrum massalausum gormi með gormstuðul k_2 . Það er lítilsháttar loftmótstaða sem er háð hraða hlutanna. Þyngdarhröðun jarðar er $g=9.81\,\mathrm{m/s^2}$ og er samsíða hliðum kassans.

Kassann má færa upp og niður með hröðun sem er föst á ákveðnu bili. Hægt er að stilla hröðunina og tímann sem kassinn á að finna fyrir henni í forritinu með því að setja inn upplýsingar um lengd (í sek) og hröðun (í m/s^2) fyrir hvert skref. Hermilíkanið sýnir í "rauntíma" kraftinn F sem þarf að verka á kassann til að halda gefinni hröðun á hverjum tíma og gefur einnig upp tímann. Hermilíkanið setur einnig mælingarnar í textaskrá í sömu möppu og forritið. Allar hermitilraunirnar byrja með sama gildi á massanum.

Athugaðu: Séerhver mæling á krafti F hefur ákveðna tilviljunarkennda óvissu. Gormarnir eru línulegir ef lenging þeirra er frekar lítil en ólínulegir ef lengdin breytist mikið. Gildin k_1 og k_2 eru skilgreind sem gormstuðlar gormanna fyrir litla lengdarbreytingu nálægt jafnvægisstöðu þeirra. Krafturinn F og hröðunin hafa jákvæða stefnu upp. Hliðarlengdir kassans eru $0.6 \, \mathrm{m}$ og kassinn er í upphafi í miðju herbergi með hæðina $3 \, \mathrm{m}$. Tilraunin endar sjálfkrafa ef kassinn rekst í loftið eða gólfið eða ef annar hvor massinn rekst á kassann eða hinn massann. Myndin er ekki í réttum hlutföllum. Í

2.2 Verkefni

Verkefnið felst í að ákvarða öll gildin: m_1, m_2, m_3, k_1, k_2 . Þú þarft ekki að gera grein fyrir óvissu.

Eins og í öllum tilraunum þarftu að merkja á skýran hátt allar töflur með einingum, skilgreindum stærðum og niðurstöðum mælinga; merkja ása allra grafa og leiða út jöfnur þannig að ljóst sé hvað þú hefur mælt og hvernig þú leiðir út niðurstöður þínar.

2.3 Viðmót fyrir forritið

Í upphafi spyr forritið um nokkrar stærðir. Þið hafið eftirfarandi val:

- Sláðu inn tvær tölur og ýttu á enter til þess að bæta þeim við hröðunarbreytinguna, t.d. 1.5 -0.4
 Fyrri talan táknar tímalengd skrefastærðarinnar í sekúndum (verður að vera margfeldi af 0.01 s) og seinni talan táknar hröðunina í einingunum m/s² (og verður að vera á bilinu -30 og 30).
- sláið inn repeat n þar sem n er jákvæð heiltala sem þið megið velja, og ýtið síðan á **enter** t.d. repeat 10 Heiltalan táknar hversu oft þið viljið endurtaka þessa aðgerð. Í hvert skipti sem þið gerið repeat þurfiði að ljúka því með því að gera endrepeat á eftir aðgerðinni (meira um það neðar).
- Skrifið endrepeat til þess að ljúka endurtekningunum. Ef þú byrjar tilraun þá munu allar aðgerðir sem þú biður um á milli repeat og endrepeat vera keyrðar eins oft og þú biður um það. Þú getur ekki gert tvöfalda lykkju, þ.e. þú getur ekki gert repeat inni í öðru repeat.
- Skrifaðu sample og á eftir því tölu og síðan enter til þess að breyta sýnitökutímanum, t.d. sample 0.4.
 Talan sem kemur á eftir sample á að vera nýji sýnitökutíminn, sem er tíminn sem líður milli þess að úttak er skrifað í texta skránna. Sýnitökutíminn þarf að vera margfeldi af 0.01 s, sem er einnig grunnstillingin.
- Skrifið begin til þess að hefja tilraunina eftir að þið hafið slegið inn gildin sem þið viljið að komi fram.

Þið getið einnig skrifað margar aðgerðir í sömu línu og síðan ýtt á **enter**. Til dæmis, getur þú skrifað:

sample 0.4 repeat 10 1.5 0.4 1.5 -0.4 endrepeat begin

til þess að byrja tilraun þar sem þú breytir sýnitökutímanum í 0.4 s og hröðun kassans í annars vegar $a=0.4\,\mathrm{m/s^2}$ og hinsvegar $a=-0.4\,\mathrm{m/s^2}$ tíu sinnum.

Ef þú slærð inn ógilt inntak, þá færðu eitthvað af eftirfarandi villuboðum, svo að þú getir reynt að lagfæra inntakið þitt:

- Ef hröðunin sem þú velur er ekki á skilgreindu bili: Acceleration is out of range.
- Ef tímaskref hröðunarinnar er ekki á skilgreindu bili: Duration is out of range.
- Ef sýnitökutíminn er ekki á skilgreindu bili: Sampling time is out of range.
- Ef þú ert með of stóran fjölda af endurtekningum: Number of repeat times is out of range.
- Ef þú reynir að búa til repeat-lykkju þá færðu eftirfarandi boð:
 - Cannot repeat actions inside another repeat.
- Ef þú gleymir að gera endrepeat gætir þú fengið: Cannot end repeat outside repeat.
- Í öllum öðrum tilvikum færð þú: Invalid entry.

Eftir að þú skrifar begin, mun forritið biðja þig um nafn á úttakstextaskrá með eftirfarandi kvaðningu:

Enter name for output file (e.g. "results"). You should use Latin letters and numbers because some special characters are not allowed.

Skrifaðu nafn og ýttu á **enter**. Við mælum með því að þú notir aðeins latneska stafi og tölur í nafninu á textaskránni (t.d. ekki bil eða íslenska stafi). Ef þú velur nafn sem inniheldur stafi sem eru ekki latneskir þá munu mælingarnar þínar ekki vera vistaðar í textaskránna. Mælingarnar þínar munu síðan vera vistaðar í .txt skrá með nafninu sem þú valdir í sömu möppu og forritið þitt.

Að þessu loknu mun forritið sýna:

Begin experiment.

og hefja keyrslu á tilrauninni. Forritið mun síðan sýna tímann sem hefur liðið frá því að tilraunin hófst (Time (s)), og mælt gildi á kraftinum, F (Force (N)) og hröðun kassans, (Accel (m/s^2)). Þessar mælingar munu einnig vera skrifaðar út í textaskránni með svipuðum hætti.

Forritið mun síðan birta eitthvað af eftirfarandi skilaboðum:

- Ef tilraunin heppnaðist: Experiment ended successfully.
- Ef kassinn rakst á loftið:
- The box hit the ceiling. Experiment ended.
 Ef kassinn rakst á gólfið:
- The box hit the floor. Experiment ended.
- Ef massarnir sem eru inni í kassanum rekast saman eða ef annar af mössunum rekast á kassann sjálfann: Masses and/or the box collided. Experiment ended.

Eftir að tilrauninni lýkur, getur þú hafið aðra mælingu.