

LEVE I ADTC-TR- 78-57 FINAL REPORT

VELOCITY WINDOW DETECTOR .

12 04 223

(1+) Aug 78

PREPARED BY MAJOR LAPSLEY R. /CALDWELL TEST TRACK DIVISION 6535TH TEST GROUP HOLLOMAN AIR FORCE BASE, NEW MEXICO

> APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

ARMAMENT DEVELOPMENT AND TEST CENTER.

AIR FORCE SYSTEMS COMMAND - UNITED STATES AIR FORCE

EGLIN AIR FORCE BASE, FLORIDA

404 038

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED.

WALLACE B. ADAM, Lt Colonel, USAF Chief, Test Track Division SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	REAL RECTIONS BEFORE CONVELITING FORM
T REPORT NUMBER	YT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER
ADTC-TR-78-57	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Velocity Window Detector	Final
Tereerey window seconds.	5 PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(8)
Lapsley R. Caldwell	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT PROJECT, TASK
6585 Test Group (AFSC)	AREA & WORK UNIT NUMBERS
Test Track Division (TKI)	
Holloman AFB, New Mexico 88330	JON: 99930000
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
6585 Test Group (AFSC)	August 1978
Holloman AFB, New Mexico 88330	
14. MONITORING AGENCY NAME & ADDRESS(If different from	Controlling Office) 15. SECURITY CLASS. (of this report)
6585 Test Group (AFSC)	Unclassified
Holloman AFB, New Mexico 88330	150 DECLASSIFICATION DOWNGRADING
	SCHEDULE N/A
16. DISTRIBUTION STATEMENT (of this Report)	
17. DISTRIBUTION STATEMENT (of the abstract entered in Bloc Approved for public release; distribut	
Approved for public release, discribut	Ton diffinited.
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identifications)	ify by block number)
Backet Slads	
Rocket Sleds Track Testing	
Velocity Measurement	
This report describes a velocity of a test item is within a specially window). If the velocity window). If the velocity window detector initiates a desired event.	vindow detector that senses that the pecified tolerance, (hence the name

ABSTRACT

This report describes a velocity window detector that senses that the velocity of a test item is within a specified tolerance, (hence the name velocity window). If the velocity window criteria is satisfied then the detector initiates a desired event.

(11)	State Section D
MANNOMED METURATION	
DISTRIBUTIO	N/AVAILABILITY COORS
	N/AVAILABILITY COORS

TABLE OF CONTENTS

		PAGE
ABSTRA	CT	I
TABLE	OF CONTENTS	11
LIST 0	F FIGURES	111
LIST 0	F TABLES	IV
Ι.	INTRODUCTION	
11.	GENERAL DISCUSSION	
III.	PARAMETER SELECTION	
IV.	FUNCTIONAL DESCRIPTION	
٧.	OPERATING INSTRUCTIONS	
VI.	SWITCHES AND INDICATORS	
VII.	MODIFICATIONS TO MODEL 9800 CAMERA CONTROLLER	
VIII.	TEST RESULTS	
	APPENDIX A SCHEMATICS	
	APPENDIX B DETECTOR CARD WIRE LIST	
	APPENDIX C DETECTOR CARD PARTS LIST	
	APPENDIX D TIMING DIAGRAMS	

LIST OF FIGURES

TRACK STATIONS	1
VELOCITY PROFILE	11
FUNCTIONAL DIAGRAM	111
DATA LED INDICATOR	IV
TIME DELAY TEST	V
ODERATIONAL TESTS	VI

LIST OF TABLES

TYPICAL EXAMPLES	1
TYPICAL MISSION PARAMETERS	2
VELOCITY WINDOW PARAMETERS	3
EXTERNAL TIMING CODE RATES	4
EXTERNAL CONNECTIONS	5
SWITCHES	6
INDICATORS	7
TEST POINT VOLTAGES	8
VELOCITY WINDOW MODIFICATIONS (J102)	9
OPERATIONAL TESTS	1

I. INTRODUCTION:

This report describes a velocity window detector designed for use at the AF High Speed Test Track, Holloman Air Force Base, New Mexico.

II. GENERAL DISCUSSION:

The purpose of the velocity window detector is to sense that a test item, usually a sled, is moving at a desired velocity within a specified tolerance, (hence the name window). If the velocity window criteria is met then the detector initiates a desired event. As shown in Figure I, the sled passes track station 1, (S_1) , at time T_1 and next passes track station 2, (S_2) , at time T_2 . The average velocity between S_1 and S_2 is:

$$V_{12} = \frac{S_2 - S_1}{T_2 - T_1} = \frac{S_{12}}{T_{12}}$$

The time, (T_{12}) , that is required for the sled to travel from track station 1 to track station 2, is:

$$T_{12} = \frac{S_{12}}{V_{12}}$$

As an example, if track station 1 is at 6350 ft, track station 2 is at 6950 ft, track station 3 is 7000 ft and the average velocity is 1000 ft/sec then:

$$S_{12} = 6950 - 6850 = 100 \text{ ft}$$

$$T_{12} = \frac{100 \text{ ft}}{1000 \text{ ft/sec}} = 100 \text{ msec}$$

The sled would take 100 msec to travel from S_1 to S_2 . If the velocity remained 1000 ft/sec for the 50 ft between S_2 and S_3 then the sled would take 50 msec to travel from S_2 to S_3 .

FIGURE 1

TRACK STATIONS

If the velocity is not equal to the desired velocity V_{12} , but is instead equal to K times the desired velocity then:

$$V_{12} = KV_{12}$$

$$T_{12} = \frac{S_{12}}{V_{12}} = \frac{S_{12}}{KV_{12}} = \frac{1}{K} T_{12}$$

Where T_{12} is the actual time, V_{12}' is the desired velocity and T_{12}' is the expected travel time at the desired velocity V_{12}' . As an example if S_1 is 6850 ft, S_2 is 6950 ft, S_3 7000 ft, V_{12}' is 1000 ft/sec and V_{12} is 10% low:

$$V_{12} = .90 V_{12}^{1}$$

$$T_{12} = \frac{1}{.9} T_{12}^{1} = \frac{1}{.9} (100 \text{ ms}) = 111.1 \text{ msec}$$

if V₁₂ was 10% high, then:

$$T_{12} = \frac{1}{1.1} T_{12} = \frac{1}{1.1} (100 \text{ ms}) = 90.91 \text{ ms}$$

Table 1 shows several examples. In each example the distance between S_1 and S_2 is 100 ft and between S_2 and S_3 is 50 ft. The high velocity results in a low time, (window start time), the low velocity results in a high time (window stop time). Window times are rounded to the nearest millisecond.

TABLE 1
Typical Examples

DESIRED VELOCITY	+% ERROR	NOMINAL TIME	START TIME	STOP TIME	T ₂₃
1000 ft/sec	10%	100 msec	91 msec	111 msec	50 ms
1000	5	100	95	105	50
1200	10	83.33	76	93	42
1200	5	83.33	79	33	42
800	10	125	114	139	63
300	5	125	119	132	63

 T_{23} is the nominal time required for the sled to travel from S_2 to S_3 when the event is initiated. These calculations assume the nominal velocity continues between S_2 and S_3 . This time must be greater than the time delay that is required to arm the event initiator. For an ejection test using a screen box power supply this time should be equal to or greater than 50 milliseconds.

III. PARAMETER SELECTION.

The previous section discussed the general theory of what the velocity window detector does, and how the window parameters are used to determine velocity performance. This section will describe how the velocity window parameters are calculated, given certain desired mission performance. The data in Table 2 and Figure II will be used as an example for calculating window parameters.

TABLE 2 TYPICAL MISSION PARAMETERS

Event Initiation Track Station	7000 ft
Launch Point	5929 ft
Distance of Event from Launch Point	1071 ft
Velocity at 1071 from Launch Point (Fig II)	456 ft/sec
Velocity Window in Percent	+10%

A. Since the event must be at track station 7000:

$$S_3 = 7000$$

B. S_2 must be chosen such that $T_{23} \ge 50$ ms. We will assume that the velocity is constant between S_2 and S_3 :

 $V_{23}^{1} = 456$

Minimum time corresponds to max velocity therefore:

$$V_{23} = 1.10 V_{23}$$
 $50 \text{ ms} \le T_{23} = \frac{S_{23}}{V_{23}}$
 $S_{23} \ge 50 \text{ ms} (V_{23}) = 50 \text{ ms} (1.1 V_{23}')$
 $S_{23} \ge 50 \text{ ms} (1.1)(456 \text{ ft/sec})$
 $S_{23} \ge 25.08 \text{ ft}$

let $S_{23} = 30 \text{ ft}$

then

$$S_2 = S_3 - S_{23}$$

 $S_2 = 7000 - 30$
 $S_2 = 6970 \text{ ft (track station)}$

- C. S_1 is arbitrarily chosen as $S_1 = S_2 100 = 6870$ ft
- D. From the listing corresponding to Figure II we see that at 30 to 130 ft, $(S_2 \text{ to } S_1)$, before the desired event, the nominal velocity is approximately

454 ft/sec. The window times are:

Nominal:
$$T_{12}' = \frac{S_{12}}{V_{12}'} = \frac{100}{454}$$

$$T_{12}' = 220 \text{ ms}$$
Window start time = $\frac{T_{12}'}{K} = \frac{220}{1.10} = 200 \text{ ms}$
Window stop time = $\frac{T_{12}'}{K} = \frac{220}{.90} = 244 \text{ ms}$

These calculated parameters are summarized in Table 3.

TABLE 3
VELOCITY WINDOW PARAMETERS

\$1	7000	ft
\$2	6970	ft
\$3	6870	ft
Start time	200	msec
Stop time	244	msec

IV. FUNCTIONAL DESCRIPTION:

A block diagram of the velocity window detector is shown in Figure III. Signal names corresponding to the circuit are shown in parenthesis.

A. Phase Locked Clock: The internal clock is phase locked to an external reference source. The external source may be GT* IRIG, or a square wave, at any nominal rate specified in Table 4, as selected on switch S_1 .

TABLE 4
EXTERNAL TIMING CODE RATES

50 kHz

20 kHz

10 kHz

5 kHz

2 KHZ

The phase lock clock will track the external reference but if the external clock is lost, the internal clock will rapidly drift off frequency. The input is transformer coupled, permitting the external signal to be either polarity. The input signal level should be between 2 and 20 volts peak to peak.

* GT is an internal Track time code.

WELDCITY WINDOW DETECTOR FUNCTIONAL DIAGRAM

III 3d/51s

- B. Counter: The counter is cleared each millisecond or until breakwire 1 is broken. When the sled reaches track station S_1 it opens breakwire 1 and the counter starts counting up at a 1 KHZ rate (which results in a one millisecond resolution).
- C. <u>Comparator</u>: Before the window start time, the comparator checks the counter contents against the start time switch setting. When they are equal the window is opened. After the window is opened the comparator checks the counter contents against the stop time switches. When the counter contents equals the stop time switches the window is closed. It should be noted that with this technique the window may be opened indefinitely by selecting a stop time that is less than the start time.
- C. Detector: If the sled opens breakwire 2 at track station S_2 while the window is open then the detector will activate the event initiator. The event initiator will remain activated until the velocity window is reset. If the sled does not cut breakwire 2 while the window is open then the event initiator will not be activated.
- D. Event Initiator: The event initiator is a high voltage power supply at track station S_3 . The high voltage is armed through a relay controlled by a second relay in the detector. Time delays, under nominal conditions, in the two relays and trackside cable are 10 to 20 milliseconds. Therefore, the time required for the sled to move from S_2 to S_3 should be in excess of 50 milliseconds to insure proper arming.

V. OPERATING INSTRUCTIONS:

- A. Insure that cables are connected as shown in Table 5.
- B. Set code rate to 2, (2KHZ).
- C. Turn power on. The power indicator and the data indicator should turn on.

TABLE 5

EXTERNAL CONNECTIONS

CONNECTOR	PIN	SIGNAL	REMARKS
	A B C	115 VAC Ground 115 VAC	Chassis ground
J2	A B	BW2 L BW2 H	Breakwire 2
J3	A B	BW1 L BW1 H	Breakwire 1
J4	A B E	Relay arm N.O. contact Ground	Contact close when event initiation occurs.
J5	A B C	Ext timing Ext timing Ground	External timing, 2-20 volts, either polarity, (usually 2KHZ GT timing)
J6		Ext timing	Same as J5 A.
J7		Ext timing	Same as J5 B.

D. Set: HR MIN SEC MS

Start time = 00 00 09 696

Stop time = 00 00 16 969

- E. Push reset. LED*indicators BW1, BW2 and VEL should be off.
- F. Open breakwire #1. Immediately LED indicator BW1 should light.

 Approximately 13 seconds after BW1, open breakwire 2. Both indicators

 BW2 and VEL should go on. The trackside screen box should be armed and
 hot at this time.
- G. Reconnect both breakwire and push reset. Indicators BW1, BW2, and VEL should go off.
- H. Steps F and G should be repeated twice. Once BW2 should be opened before 9.696 seconds, and once BW2 should be opened after 16.969 seconds, in each case indicator BW2 should turn on, but VEL should not turn on.
 - I. Insure that both breakwires are properly reconnected and installed.
- J. Set the mission velocity window start time and velocity window stop time.
- K. Push reset. The velocity window detector is now ready and indicators BW1, BW2 and VEL should be off.
- L. After the mission the indicators should show if BWl and BW2 were broken. If BW2 occurred between the start and stop times then VEL should be on.
- * Light emitting diode

VI. SWITCHES AND INDICATORS:

TABLE 6

SWITCHES

SWITCH FUNCTION

Power Applies AC power to all circuitry.

Code Rate Selects desired timing code rate (normally set to 2 for 2KHZ

G.T. timing).

Start time Selects desired window start time with respect to

BWI opening, to activate velocity window.

Stop time Selects desired window stop time, with respect to BW1

opening, to deactivate velocity window.

Reset Resets relay control and velocity window timing circuits.

SBW1 Simulates opening of first breakwire.

SBW2 Simulates opening of second breakwire.

TABLE 7

INDICATORS

INDICATORS FUNCTION

Power On indicates the internal power supply is on.

Data On indicates that an external signal is applied to the

external timing input. It does not indicate that the

clock is phased locked to the external signal.

BWl On indicates that breakwire 1 was broken.

BW2 On indicates that breakwire 2 was broken.

VEL On indicates that breakwire 2 was broken between the

start time and the stop time.

TABLE 8

TEST POINT VOLTAGES

Breakwire Shorted

Breakwire Open

TP1 to TP2 (TP3 to TP4)

2.4-3.3 volts (Depends upon breakwire resistance up to 2000) 8.0 volts

VII. MODIFICATIONS TO MODEL 9800 CAMERA CONTROLLER:

The velocity window detector is a modified model 9800 camera controller (DATUM, part number 9800-610). This section describes the modifications necessary to convert the model 9800 camera controller for use either as a camera controller or as a velocity window detector.

- A. The following wiring modifications to the model 9800 camera controller are required:
 - 1. Remove the following wires:

FROM	TO	SIGNAL	
Pin 12 C1	Pin 10 C9	Fwd	
E25	Pin 1 D 7	TCC3	

- 2. Add the wires to J102 shown in Table 8.
- 3. On the LED Driver Card (DATUM, part number 16160) jumper plug P102 pin 6 to pin 8 and pin 5 to pin 7. These jumper wires added to the LED Driver Card replaces the wires removed in 1 above when the LED Driver Card is inserted.
 - B. To use as a velocity window detector:
- Remove D4 (SN74107) and replace with jumper plug D4 substitute.
 (This holds STB1 and STB2 at a zero).
 - 2. Add front panel for rack mount.
 - 3. Remove LED Driver Card and replace with the detector card.
 - C. To use as a model 9800 camera controller:
 - 1. Remove front panel.
- Remove detector card and replace with LED Driver Card, (modified as discussed in A.4. above).

TABLE 9

VELOCITY WINDOW MODIFICATIONS (J102 Pins)

	PRESENT	ADD	REMARKS
1	•	+5V	+5V (+5 volts pwr)
2		+5V	+5V (+5 volts pwr)
3		E15	Reset
4		1001	200KHZ
5		1009	Fwd
6		906	TCC3
7		1201	Zero
3 .		107	Vel
9			
10	TP1, J3B	No change	BW1H(Breakwire 1 hi)
11			
12			
13			
14	Ground	No change	Gnd (pwr ground)
15			
16			
17			
18			
19			
20			
21	TP2, TP4	No change	GND (signal ground)
22	TP3, J2B	No change	BW2H(Breakwire 2 hi)
23			
24			
25	J2A	No change	BW2L(Breakwire 2 low
26	R2 -CT	No change	Not used
27			
28	J3A	No change	BWIL(Breakwire 1 low
29	R1 - CT	No change	Not used
30	+8V	No change	+8V (+8 volts)

- 3. Remove jumper plug in D4 and replace with SN74107.
- C. As an operator aid an indicator can be added to show that external time pulses are present at the camera controller. This modification adds an LED indicator to the Datum Model 7800 camera controller. The purpose of the LED is to provide an indication that pulse timing is arriving at the camera controller. The DATA indicator does not indicate that the internal clock is phase locked to the external timing. This modification consists of:
 - 1. Replace R26 (150 ohm) with a 50 ohm resistor.
 - 2. Mount a LED on the front panel.
 - 3. Insert the LED between R1 and R26 as shown in Figure IV.

When external timing is present the pulse train will pass through steering diodes CR1 (or CR2) capacitor Cl and transformer Tl and switch the output, (DATA), of F5. This will cause D7 pin 10 to switch current through the LED (DS5). If external timing is not present DATA will be a zero and the output D7 pin 10 will be high.

DATA LED INDICATOR FIGURE IV

4

DATA

VIII. TEST RESULTS:

A. Time Delays:

Of particular concern for the velocity window is the time delay between the time (T_2) that breakwire 2 is broken and the time that the event initiator (screenbox) is activated. The control signal that energizes the screenbox must pass through two relays, the first relay in the velocity window controls the second relay (trackside in the screenbox power supply) that applies the high voltage to the screenbox.

In order to measure a worst case delay the circuit of Figure V was used. The velocity window control signal was routed from the Track Data Center to <u>FOX 90</u>, 2 and looped to a screenbox power supply back to a screenbox power supply at the Track Data Center. The total length of cable was approximately 36,000 feet. The measured time delay between breakwire 2 and voltage on the screenbox power supply output was 13 milliseconds.

B. Operational Tests:

The velocity window was tested on several active sled tests. The test setup is shown in Figure VI and test results are summarized in Table 10.

OPERATIONAL TEST RESULTS

TABLE 10

MISSION	S ₁₂	S _{23.}	START TIME	STOP LIME	112	T ₂₃
6P-J2A	100 ft	50 ft	96 ms	117 ms	113 ms	83 ms
42G-A3A	150 ft	50 ft	81 ms	98 ms	91 ms	

TIME DELAY TESTS

OPERATIONAL TEST #1

6P 23 JUN 78

FIGURE VI A

OPERATIONAL TEST #2

42G 12 JUL 78

FIGURE VI B

APPENDIX A

SCHEMATICS

SCHEMATICS

These modifications allow the controller to be used either as a camera controller or as a velocity window detector. Details of the modifications are in Section VII of this report.

When the controller is configured as a velocity window detector, some of the controller electronics are not utilized. The following schematics do not reflect electronics that are in the controller, but that are not used in the velocity window configuration. Schematics for the camera controller are provided in the Model 9800 controller manual.

5

Sheet 1 of

INPUT & VCO

24

MINOR COUNTER/COMPARATOR (MILLISECOND, HUNDREDTH SECOND)

(UNIT SECOND, TEN SECOND, UNIT MINUTES, TEN MINUTES, UNIT HOURS, SIGN)

Sheet 4 of 5

POWER SUPPLY

SWITCH CAPD ASSY

1. EMINH OURNIT TERMS ARE LABLED BY THE SM. FONCTION, S TOR START OF C TOR STOP, DARRETE: HOIS * HUNDRED DAYS, DECORED BLD 1, START TIME

CAMBION WIRE-WRAP CARD, P/N715-1015-01

APPENDIX B

DETECTOR CARD WIRE LIST

WIRE LIST FOR DETECTOR CARD

FROM	10	SIG	FROM	TO	SIG
1P102		+5V	762	Ground	Ground
2P102		+5V	1462	+5V	+5V
14P102		Ground	663	9G5	Lvel
21P102		Ground	763	Ground	Ground
3P102	163	Reset	1463	+5V	+57
4P102	162	200KHZ	164	13G6	BWIL
6P102	2G3	TCC3	2G4	6G4	Ground
7P102	1162	Zero			
3P102	563	Ve1			
10P102	166	BW1H	664	3G4	Ground
22P102	4G6	BWTH	8G4	12G4	Ground
25P102	566	BW1L	1264	Gnd	Ground
23P102	266	BW1L	5G4	1066	BW2L
30P102	11G6	+8V	964	43111	
261	461	5R1	1364	33111	
461	10G1	5R1	165	265	+5V
10G1	1261	5R1	265	3G5	+5V
12G1	4G3	5RT	365	+5V	+5V
261	1465	5R1	565	7,1111	
3G1	13111	BW1S	6G5	6J111	
3G1	1365	BW1S	7G5	5J111	
1G1	1361	Reset	1265	2J111	BW2S
561	562		143111	2J102	+5V
6G1	262	SWBT	3G2	12G2	
361	1065	LBW2	1262	1362	
961	3G3	SWB2	1466	1166	+8V
1161	1265	BW2S			
1361	163	Reset			
761	Ground	Ground			
1461	+5V	+5V			
462	5G2				
662	3G5	LBW1			

APPENDIX C

DETECTOR CARD PARTS LIST

		TAKES ELSE - DELECTOR CAND			
ITEM NO.	STOCK/PART NO.	DESCRIPTION	MFR	UNIT TOTAL	REF NO
-	5999P5003684801	Card, Wire Wrap - General Purpose	Combion	Pro-e	
2	5000 100-1200	Capacitor, 100 uf	Sprague	_	10
~	5935-00-132-5978	14 Pin, I/C Socket	Vector	9	
4	5935-00-132-5979	16 Pin, I/C Socket	Vector	P	
S	5962-00-865-4625	1/C, 7400	Texas Inst.	-	25
9	5962-00-106-4289	1/C, 7474	Texas Inst	2	61,3
7	4N33	I/C (Optical Isolator)	Monsanto	2	64
00	5935-00-141-2506	Adapter Plug		2	65, 6
on	5905-00-114-0710	Resistor, 330 ohm, ½W		7	R4-810
10	5905-00-617-2610	Resistor, 1K ohm, 1/8W		m	R1-R3
		PARTS LIST - D4 SUB			
_	5935-00-141-2506	Adapter Plug		_	
2	5910-00-893-7428	Capacitor, .001 µf/200VDC		-	
m	5905-00-617-2610	Resistor, 1K ohm, 1/8W		_	

		PARTS LIST - VELOCITY WINDOW PANEL	PANEL	
ITEM NO.	STOCK/PART NO.	DESCRIPTION	MFR	UNIT TOTAL
_	5930-00-823-0018	Switch, P.B. (Red)	Alco	
2	5930-00-637-0710	Switch, P.B. (Blk)	Alco	_
m	5961P4304H1	LED-Red		-
4	5961P4304H5	LED-Green		-
10	5961P4304H7	LED-Amber		-
9	5995P5000014801 P/N CP-16-D-24-S	Cable & Plug Assy		

APPENDIX D

TIMING DIAGRAMS

