Weekly Study Report

Wang Ma

2024-09-13

Electrical, Computer, and Systems Engineering Department Rensselaer Polytechnic Institute

Outline

1. Paper Reading: Uncertainty in Causal Graphs	2
2. Paper Reading: Diversity-enhanced Probabilistic Ensemble	11
3. Paper Reading: Semantic Attribution for Explainable UQ	20
4. Plans for Next Week	22

 Paper Reading: Uncertainty in Causal Graphs

1.1 Causal Relationship Vs. Correlation

In real-world tasks, such as prediction, classification or decision-making, data are not only correlated with the target, the relationships are determined by latent causal relations.

- Traditional ML: focus on the **correlation** among variables
- Causal Inference: try to capture the **causal mechanisms** among variables, say, how does a variable influences our targets variable

This helps us better <u>understand the data generation mechanism</u> and <u>make robust</u> <u>predictions under different conditions</u>, such as <u>varying domains</u>.

1.2.1 Data Generation Process

- *X*: high-dimensional data
- *Y*: target variable for prediction
- U: domain-specific information
- Z: latent, high-level variables for generation X
 - Z_p : parent variables which directly influence Y
 - Z_c : child variables directly affected by Y
 - Z_s : spouse variables related to Y through other connections
 - Z_o : spurious variables correlated with Y but not causally linked

1.2.2 Prediction Tasks uncer Domain Generalizations Settings

- Prediction goal: $p(y|x^t, D)$
- MLE approach: $G^* = \max p(D|G)$. Challenging, requiring a sufficient number of data, worse than SOTA domain generalization approaches.

1.2.3 Bayesian Inference: Sampling G from constructed posterior p(G|D)

The Bayesian causal discovery is usually employed when:

- the data is limited
- point-estimation causal discovery methods lead to poorly calibrated predictions.

More importantly, BI renders the ability to quantify uncertainty.

$$p(y|\boldsymbol{x}^{t}, \mathcal{D}) = \int_{\mathcal{G}} p(y|\boldsymbol{x}^{t}, \mathcal{G}, \mathcal{D}) p(\mathcal{G}|\boldsymbol{x}^{t}, \mathcal{D}) \, d\mathcal{G} \propto \mathbb{E}_{\mathcal{G} \sim p(\mathcal{G}|\mathcal{D})} \Big[p(y|\boldsymbol{x}^{t}, \mathcal{G}) p(\boldsymbol{x}^{t}|\mathcal{G}) \Big]$$
(1)

1.2.3.1 The Invariant Prediction Mechanism

- Z_{cmb} : the Causal Markov Blanket (CMB) variables, containing Z_p , Z_c and Z_s .

$$p(y|\boldsymbol{x}^t,\mathcal{G}) = \int_{\boldsymbol{z}} \sum_{u} p(y|\boldsymbol{x}^t,\boldsymbol{z},u,\mathcal{G}) p(\boldsymbol{z},u|\boldsymbol{x}^t,\mathcal{G}) \, \mathrm{d}\boldsymbol{z} = \int_{\boldsymbol{z}_{cmb}^{\mathcal{G}}} p(y|\boldsymbol{z}_{cmb}^{\mathcal{G}}) p(\boldsymbol{z}_{cmb}^{\mathcal{G}}|\boldsymbol{x}^t,\mathcal{G}) \, \mathrm{d}\boldsymbol{z}_{cmb}^{\mathcal{G}}$$

1.2.3.2 Sample Density Estimation in Graphs

Recall Eq.(1):

$$p(y|x^t, D) \propto \mathbb{E}_{G \sim p(G|D)}[p(y|x^t, D)p(x^t|G)]$$

Directly get p(x|G) is challenging due to the unavailability of U for x^t in the target domain; the causal mechanisms in the target domain are also unknown.

$$p(x^t \mid G) \propto e^{-\alpha U_e(x|G)}$$

1.2.4 Uncertainty Quantification in 3 Levels

- 1. Causal Graph Uncertainty U(G): Quantifies the uncertainty in the causal graph's posterior distribution, indicating confidence in the learned graph. It can be calculated from p(G|D).
- 2. Single-Graph Prediction Uncertainty $U_e(x|G)$: Measures uncertainty in predictions for a given graph G, which is critical for OOD predictions. It can be calculated from $p(y|x^t,G)$ (epistemic uncertainty).
- 3. Bayesian Inference Uncertainty U(x|D): Quantifies the uncertainty in the final predictions by incorporating all possible graphs. It can be calculated from $p(y|x^t, D)$.

1.3 The Proposed Algorithm: UCD-Bayes

1.3.1 The Training Procedure

1. Learning Latent Variables via iVAE

$$\mathcal{L}_{\text{iVAE}} = \underbrace{-\mathbb{E}_{q_{\boldsymbol{\psi}}(\boldsymbol{z}|\boldsymbol{x})} \big[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z}) + \log p_{\boldsymbol{T},\boldsymbol{\lambda}}(\boldsymbol{z}|\boldsymbol{y},\boldsymbol{u}) - \log q_{\boldsymbol{\psi}}(\boldsymbol{z}|\boldsymbol{x})\big]}_{\mathcal{L}_{\text{ELBO}}} + \underbrace{\mathbb{E}_{q_{\boldsymbol{\psi}}(\boldsymbol{z}|\boldsymbol{x})} \big[\|\nabla_{\boldsymbol{z}}q_{\boldsymbol{\psi}}(\boldsymbol{z}|\boldsymbol{x}) - \nabla_{\boldsymbol{z}}p_{\boldsymbol{T},\boldsymbol{\lambda}}(\boldsymbol{z}|\boldsymbol{y},\boldsymbol{u})\|^2\big]}_{\mathcal{L}_{\text{SM}}}$$

- 2. Bayesian Causal Discovery via DAG-GFlowNet
 - DAG-GFLowNet: estimates the posterior distribution over causal graphs p(G|D)
 - Goal: The goal of this step is to sample a diverse set of causal graphs from the posterior distribution p(G|D), capturing uncertainty about the true causal structure. These graphs are crucial for the Bayesian inference procedure.
- 3. Invariant Prediction Mechanism Learning
 - A prediction model $p_{\varphi}\Big(Y|Z_{cmb}^{G_l}\Big)$ is trained for each sampled causal graph G_l using the identified CMB variables.

1.3 The Proposed Algorithm: UCD-Bayes

1.3.2 The Inference Procedure

Obtained: a causal graph set $G = \{G^l\}_{l=1}^L$ and predictors $\{p_{\varphi^l}(y|Z_{cmb}^{G_l})\}$. Given an input x^t from test domain, we

1. Compute Single-Graph Prediction Uncertainty $\left\{U_e\left(x^t|G^l\right)\right\}_{l=1}^L$

To identify which causal graphs are more suitable for predicting a given test sample. This allows the model to weigh predictions from different graphs based on their fit to the new data.

2. Estimate Data Density $\{p(x^t|G^l)\}_{l=1}^L$

The goal is to estimate the likelihood of the test sample under each causal graph to prioritize predictions from graphs that are more consistent with the test data.

3. Bayesian Model Averaging for Final Prediction

$$p(y|x^t, D) \propto \mathbb{E}_{G^l \sim p(G|D)} \left[p\left(y|z_{cmb}^{G_l}\right) p\left(x^t|G^l\right) \right]$$

2. Paper Reading: Diversityenhanced Probabilistic Ensemble

2.1 Background

Laplacian Approximation: to construct the posterior distribution $p(\theta \mid D, \beta)$ around a θ_{map} , where

$$\theta_{map} = \arg \max_{\theta} \log p(\theta \mid D, \beta).$$

And we have

$$p(\theta|D,\beta) \approx N(\theta_{map}, \Sigma),$$

where
$$\Sigma = -(H)^{-1}$$
 and $H = \nabla_{\theta}^2 \log p(\theta|D,\beta) | \theta = \theta_{map}$.

2.2 Probabilistic Ensemble

A mixture of Gaussian in constructed to better approximate the posterior distribution:

$$p(\theta|D,\beta) \approx \sum_{i=1}^{N} \lambda_i N(\theta;\theta_i,\Sigma_i).$$

The Bayesian predictive function:

$$\begin{split} p(y|x,D) &\approx \int p(y|x,\theta) \sum_{i=1}^N \lambda_i N(\theta;\theta_i,\Sigma_i) d\theta \\ &\approx \frac{1}{S} \sum_{i=1}^S p(y|x,\theta^s) \end{split}$$

Proposition 3.1: Convergence of PE

$$\sup_{\theta} |p(\theta|D,\beta) - \sum_{i=1}^{N} \lambda_i N(\theta;\theta_i,\Sigma_i)| \to 0$$

2.2 Probabilistic Ensemble

Proposition 3.2: Better posterior approximation

$$KL(p(\theta \mid D, \beta) \| p_{PE}(\theta)) \leq \sum_{i=1}^{N} \lambda_i KL\big(p(\theta; D, \beta) \parallel p_{LA}^i(\theta)\big)$$

Proposition 3.3: Error Reduction and Diversity Measurement

$$-\log \mathbb{E}_{\theta}[p(y^*|x,\theta)] \leq \mathbb{E}_{\theta}[-\log p(y^*|x,\theta)]$$

$$-\inf_{\theta} \frac{1}{2p(y^*|x,\theta)^2} \mathbb{V}_{\theta}[p(y^*|x,\theta)]$$

$$(7)$$
where $\inf_{\theta} \frac{1}{p(y^*|x,\theta)^2}$ is bounded given $p(y^*|x,\theta) \in [0,1]$ and $\mathbb{V}_{\theta}[p(y^*|x,\theta)]$ is the variance of probabilistic ensemble model prediction.
$$\mathbb{V}_{\theta}[p(y^*|x,\theta)] = \mathbb{E}_{\theta}[(p(y^*|x,\theta) - \mathbb{E}_{\theta}[p(y^*|x,\theta)])^2] \quad (8)$$

2.2 Probabilistic Ensemble

Proposition 3.4: Enhanced Diversity of PE

$$\begin{split} p_{DE} &= \sum \lambda_i \delta(\theta, \theta_i) \mathord{\sim} (\mu_D, \Sigma_D) \\ p_{PE} &= \sum_{i=1}^N \lambda_i N(\theta; \theta_i, \Sigma_i) \mathord{\sim} (\mu_P, \Sigma_P) \\ \mu_D &= \mu_P \quad \Sigma_D < \Sigma_P \end{split}$$

Proposition 3.5: Overconfidence Reduction of PE

$$\lim_{\eta \to \infty} p_{PE}(y = c | \eta x) \le \sum_{i=1}^{N} \frac{\lambda_i}{1 + \sum_{j \ne c} \exp\{-t_i^{(j)} - t_i^{(c)}\}}$$
(10)

2.3 Adaptive Uncertainty-Guided Ensemble Learning (AUEL)

The uncertainty-guided training loss:

$$L_{nll}(\theta) = -\frac{1}{B} \sum_{m=1}^{B} w(x_m) \log(y_m \mid x_m, \theta),$$

where

$$w(x_m) = \frac{\exp(a * \log(u(x_m)) + b)}{\sum_{j=1}^{B} \exp(a * \log(u(x_j)) + b)}.$$

While a standard Negative Log-likelihood loss is:

$$L_{nll} = \frac{1}{N} \sum_{i=1}^{N} \log(y_i \mid x_i, \theta).$$

2.3 Adaptive Uncertainty-Guided Ensemble Learning (AUEL)

Proposition 3.6: Prediction Error Bound

• The prediction error of the ensemble is bounded by the total uncertainty, providing a theoretical basis for the uncertainty-guided training approach.

Proposition 3.7: Balance with Uncertainty

• For imbalanced classification problems, the model tends to focus on minority classes, ensuring that epistemic uncertainty plays a key role in preventing overconfidence in majority class predictions.

2.4 Mixture of Gaussian Refinement

Parameters waiting tuned: $\left\{\left\{\lambda_i\right\}_{i=1}^N, \left\{\theta_i\right\}_{i=1}^N, \left\{\Sigma_i\right\}_{i=1}^N\right\}$

E-step: construct the loss function $Q(\phi|\phi^0, \mathcal{D})$ as the expected value of the log-likelihood function of ϕ with respect to the current conditional distribution of Z given ϕ^0 and \mathcal{D} .

$$\log p(\mathcal{D}|\phi) = \sum_{m=1}^{M} \log p(\mathcal{D}_{m}|\phi)$$

$$= \sum_{m=1}^{M} \log \sum_{i=1}^{N} \frac{p(Z=i|\mathcal{D}_{m},\phi^{0})}{p(Z=i|\mathcal{D}_{m},\phi^{0})} p(\mathcal{D}_{m},Z=i|\phi)$$

$$\geq \sum_{m=1}^{M} \sum_{i=1}^{N} p(Z=i|\mathcal{D}_{m},\phi^{0}) \log \frac{p(\mathcal{D}_{m},Z=i|\phi)}{p(Z=i|\mathcal{D}_{m},\phi^{0})}$$

$$:= Q(\phi|\phi^{0},\mathcal{D})$$
(13)

M-step: maximize $Q(\phi|\phi^0, \mathcal{D})$ with respect to ϕ .

$$\phi^* = \arg\max_{\phi} Q(\phi|\phi^0, \mathcal{D}) \tag{14}$$

2.4 Mixture of Gaussian Refinement

Closed-form solution for $\{\lambda_i^*\}_{i=1}^N$:

$$\lambda_{i}^{*} = \frac{\sum_{m=1}^{M} p(Z=i|\mathcal{D}_{m},\phi^{0})}{\sum_{m=1}^{M} \sum_{j=1}^{N} p(Z=j|\mathcal{D}_{m},\phi^{0})}$$
(15)
$$\text{Letting } p_{m}(\theta) = p(y_{m}|x_{m},\theta),$$

$$p(Z=i|\mathcal{D}_{m},\phi^{0}) = \frac{\lambda_{i}^{0} \int p_{m}(\theta) \mathcal{N}(\theta;\theta_{i}^{0},\Sigma_{i}^{0}) d\theta}{\sum_{j=1}^{N} \lambda_{j}^{0} \int p_{m}(\theta) \mathcal{N}(\theta;\theta_{j}^{0},\Sigma_{j}^{0}) d\theta}$$
(16)

Then given $Z \sim Cat(\{\lambda_i\})$, we assign each data samples to its top l nearest components based on their weighted log-likelihood (i.e., $l = \frac{N}{2}$).

3. Paper Reading: Semantic
Attribution for Explainable UQ

3. Paper Reading: Semantic Attribution for Explainable UQ

4. Plans for Next Week

4. Plans for Next Week

- 1. Hands-on Coding: build basic Resnet/WideResnet/Transformer and do Uncertainty Quantification & Evaluation on them using MC-DropOut and Deep Ensemble. (read original papers before coding)
- 2. Other paper reading (tentative) plan about Hanjing's work:
 - Uncertainty-Guided Probabilistic Transformer for Complex Action Recognition
 - Beyond Dirichlet-based Models: When Bayesian Neural Networks Meet Evidential Deep Learning
- 3. A long-term thing: Build up my knowledge in Causal Inference/Discovery (I will talk it with Naiyu later for a tentative study plan.)