

Universidade do Minho Escola de Ciências

Licenciatura em Engenharia Informática

Departamento de Matemática e Aplicações

2° Teste :: 11 de junho de 2015

Nome

Número (_____

Justifique, convenientemente, todas as suas respostas. As respostas ao Exercício 1 são dadas nesta folha.

Exercício 1. [5 valores] Indique o valor lógico de cada uma das seguintes afirmações:

a) Na figura seguinte estão representados alguns conjuntos de nível de uma função $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ de classe \mathscr{C}^1 . O vetor aplicado em A poderá corresponder a $\nabla f(A)$;

- b) Se $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ atinge um mínimo local em P, então P também é ponto de mínimo local de g, definida por g(x,y)=f(x,y)+5.
- c) Se $\mathcal{R}=[0,1]\times[0,2]$, $\mathcal{S}=[0,1]\times[0,1]$ e $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ é um função integrável em \mathcal{R} , então $\iint_{\mathcal{R}}f(x,y)\,dA=2\iint_{\mathcal{S}}f(x,y)\,dA.$
- d) O integral triplo $\int_0^1 \int_2^3 \int_4^5 f(x,y,z) \, dx \, dy \, dz$ calcula-se sobre o paralelepípedo definido por $\{(x,y,z) \in \mathbb{R}^3: \ 0 \leq x \leq 1, \ 2 \leq y \leq 3, \ 4 \leq z \leq 5\}.$

e) Se $\int_{\mathcal{C}} {m F} \cdot d{m r} = 0$, para uma determinada curva fechada ${\mathcal{C}}$, então ${m F}$ é um campo de gradientes.

Exercício 2. [2 valores] Encontre os pontos da elipse definida pela equação $2x^2 + y^2 = 1$ cuja reta tangente não interseta a reta definida pela equação y = 4x - 4.

Exercício 3. [3 valores] Identifique e classifique os pontos críticos da função definida por

$$f(x,y) = 2x^2 - 4xy + y^4 + 2.$$

Exercício 4. [1 valor] Considere a região plana \mathcal{R} , sombreada na figura.

Apresente um único integral duplo que represente a área de $\mathcal{R}.$

Exercício 5. [2 valores] Considere o integral duplo $\int_0^4 \int_0^{\frac{4-y}{2}} f(x,y) \, dx \, dy$.

- a) Esboce a região de integração.
- b) Reescreva o integral, mudando a ordem de integração.

Exercício 6. [3 valores] Considere a figura (taça esférica) relativa a uma secção de uma superfície esférica.

Sabendo que a superfície esférica tem de raio 5cm:

b) Calcule o volume da taça, usando um sistema de coordenadas apropriado.

Exercício 7. [1 valor] Considere um campo vetorial F, esboçado na figura onde também se representam as trajetórias \mathcal{C}_1 , \mathcal{C}_2 e \mathcal{C}_3 .

Ordene, por ordem crescente, os integrais de linha $\int_{\mathcal{C}_1} m{F} \cdot dm{r}$,

$$\int_{\mathcal{C}_2} \boldsymbol{F} \cdot d\boldsymbol{r} \in \int_{\mathcal{C}_3} \boldsymbol{F} \cdot d\boldsymbol{r}.$$

Exercício 8. [3 valores] Sejam F um campo vetorial definido por F(x,y)=(x+y,y) e $\mathcal C$ uma curva cujo traço é o quarto da circunferência de raio 1 e centro na origem que vai do ponto (1,0) até ao ponto (0,1).

Calcule
$$\int_{\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r}$$
.