LICENCE 1 – MÉTHODES ET TECHNIQUES DE CALCUL

R. Abdellatif

Feuille 3 – Continuité et dérivabilité de fonctions

I) Continuité d'une fonction : développer les automatismes

Exercice 1. —

Déterminer le domaine de définition, puis le domaine de continuité et l'existence éventuelle d'un prolongement par continuité pour les fonctions f et g définies par

$$f(x) = \begin{cases} (x^2 - 1)\sin\left(\frac{1}{x - 1}\right) & \text{si } x \neq 1 \\ 0 & \text{si } x = 1 \end{cases} \text{ et } g(x) = \begin{cases} \frac{|x - 1|}{1 - \sqrt{x}} & \text{si } x \in \mathbb{R}^+ \setminus \{1\} \\ 2 & \text{si } x = 1 \end{cases}.$$

Exercice 2. —

Déterminer le domaine de définition, puis le domaine de continuité de chacune des fonctions suivantes :

$$f = \left[x \mapsto \frac{x^2 + 3x + 4}{x - 1} \right]; \quad g = \left[x \mapsto x\sqrt{x^2 + 2x + 3} \right]; \quad h = \left[x \mapsto \frac{3x^3 - 3x}{5x\sqrt{x^4 - 1}} \right]; \quad k = \left[x \mapsto \mathbb{E}(2x) + 5x \right].$$

Exercice 3. —

Etant donnés des réels a,b,c, on considère la fonction f définie sur $\mathbb R$ par

$$f(x) = \begin{cases} \sqrt{1 - x^2} & \text{si } |x| < 1 \\ ax^2 + bx + c & \text{si } |x| \ge 1 \end{cases}.$$

- 1. Justifier pourquoi f est effectivement bien définie sur \mathbb{R} .
- 2. Déterminer les valeurs des réels a, b, c pour lesquels f est une fonction continue sur \mathbb{R} .

Exercice 4. —

Déterminer le domaine de définition, puis le domaine de continuité de chacune des fonctions suivantes :

$$f_1: x \mapsto \ln\left(\frac{1}{x-2}\right) ; \qquad f_2: y \mapsto \sqrt{3e^{y^2}+7} ; \qquad f_3: z \mapsto \frac{z^5+3z^3+2z}{5\ln(z)} ;$$

$$f_4: t \mapsto -e^{t^2} - 5t \; ; \quad f_5: x \mapsto 3\sin(x^2) + \sin(3x^2) \; ; \quad f_6: u \mapsto 12e^{u+3} - \cos 2u \; .$$

Exercice 5. —

Démontrer que l'équation

$$(E)$$
: $3x + 1 + \sin(x) = 0$

admet au moins une solution dans l'intervalle $\left[\frac{-\pi}{2};0\right[$.

II) Etude et applications supplémentaires des propriétés des fonctions continues

Exercice 6. —

Soit f une fonction continue sur un intervalle ouvert I de \mathbb{R} .

Est-il toujours vrai que la fonction |f| est, elle aussi, continue sur I?

UPJV – UFR des Sciences

2024 - 2025

LICENCE 1 – MÉTHODES ET TECHNIQUES DE CALCUL

R. Abdellatif

Feuille 3 – Continuité et dérivabilité de fonctions

Exercice 7. —

Soit f une fonction définie sur un intervalle ouvert I de \mathbb{R} telle que la fonction |f| soit continue sur I. Est-il toujours vrai que la fonction f est, elle aussi, continue sur I?

Exercice 8. —

Soient f et g deux fonctions définies sur I qui ne sont **pas** continues en $a \in I$. La fonction f + g peut elle alors être continue en a?

Exercice 9. —

Démontrer que toute fonction polynomiale de degré impair s'annule au moins une fois sur R.

Exercice 10. —

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue sur $[0; +\infty[$.

- 1. Supposons que f admet une limite **finie** en $+\infty$. Démontrer que f est bornée sur $[0, +\infty[$. Indication: On pourra se ramener à un cas d'application du théorème de Heine.
- 2. Supposons que $\lim_{x \to +\infty} f(x) = +\infty$. Démontrer que f est minorée sur $[0, +\infty[$.
- 3. Supposons que $\lim_{x\to +\infty} f(x)=0$. Démontrer que |f| possède un maximum sur \mathbb{R}^+ .

Exercice 11. —

Soit f une fonction définie sur [-1;1] et bornée sur cet intervalle.

- 1. Montrer que la fonction $\varphi = [x \in [-1, 1] \mapsto xf(x) \in \mathbb{R}]$ admet une limite en 0.
- 2. La fonction φ est-elle nécessairement continue en 0?
- 3. La fonction φ est-elle nécessairement continue sur l'intervalle] 1; 1[?

III) Dérivabilité d'une fonction et calcul de dérivées : encore plus d'automatismes

Exercice 12. —

Pour chacune des fonctions suivantes, déterminer son domaine de définition, son domaine de dérivabilité et, le cas échéant, calculer la fonction dérivée :

$$f = [x \mapsto 3x^2 + 12x - 7]$$
; $g = [x \mapsto (x^2 + 3)^2 - 49]$; $h = [x \mapsto \frac{2}{x} - 10]$;

$$\alpha = \left[x \mapsto \sqrt{4x^4 - 4x^2 + 1} \right] \; ; \quad \beta = \left[x \mapsto \frac{-2x + 5}{x^2 + 4} \right] \; ; \qquad \quad \gamma = \left[x \mapsto \frac{1}{5\sqrt{x} + 2} \right] \; .$$

Exercice 13. —

Pour chacune des fonctions suivantes, déterminer son domaine de définition, son domaine de dérivabilité et, le cas échéant, calculer la fonction dérivée :

$$A = \left[x \mapsto \frac{1}{e^{-\frac{1}{x-3}}} \right] \; ; \quad B = \left[x \mapsto \left(2e^{3x+2} \right)^3 \right] \; ; \quad C = \left[x \mapsto \ln(1-x) \right] \; ; \quad D = \left[x \mapsto \ln\left(\frac{e^x - 2}{3 - x^2}\right) \right] \; .$$

LICENCE 1 – MÉTHODES ET TECHNIQUES DE CALCUL

R. Abdellatif

Feuille 3 – Continuité et dérivabilité de fonctions

Exercice 14. —

Pour chacune des fonctions suivantes, déterminer son domaine de définition, son domaine de dérivabilité et, le cas échéant, calculer la fonction dérivée :

$$f = [x \mapsto 3\cos(x - 5)] \; ; \; g = \left[x \mapsto \frac{2}{\sin(5x - \pi)}\right] \; ; \; h = \left[x \mapsto \tan(2x^2)\right] \; .$$

Exercice 15. —

Déterminer les domaines de définition, de continuité et de dérivabilité de la fonction T définie par

$$T(z) = \begin{cases} \frac{\sin(x)}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}.$$

Calculer la fonction dérivée T' là où elle existe, puis étudier son domaine de continuité et l'existence éventuelle d'un prolongement par continuité sur son domaine de définition.

IV) Utilisation des propriétés de la fonction dérivée et tableaux de variations

Exercice 16. —

Déterminer le domaine de définition de chacune des fonctions suivantes, puis en étudier la parité et la monotonie et dresser le tableau de variations correspondant.

$$A = [x \mapsto -7x^3 + 3]$$
; $B = [x \mapsto (x^2 + 3)^2 - 49]$; $C = [x \mapsto \frac{2}{x} - 10]$;

$$D = \left[x \mapsto \frac{-2x+5}{x^2+4} \right] \; ; \quad E = \left[x \mapsto \frac{1}{5\sqrt{x}+2} \right] \; ; \qquad \quad F = \left[x \mapsto \sqrt{7x^2-4x-3} \right] \; .$$

Exercice 17. —

Pour chacune des fonctions suivantes, déterminer son domaine de définition, puis en étudier la parité et la monotonie et dresser le tableau de variations correspondant.

$$\alpha = \left[x \mapsto \frac{e^{2x+1}}{e^{3x-4}} \right] ; \qquad \beta = \left[x \mapsto \frac{2e^x}{e^{3x}-5} \right] ; \qquad \gamma = \left[x \mapsto \frac{\ln(1+x)}{x-3} \right] ;$$

$$\varphi = \left[x \mapsto \left|4\ln(x) + 3\right|\right] \; ; \quad \psi = \left[x \mapsto \exp\left(x^2 + 3x - 4\right)\right] \; ; \quad \delta = \left[x \mapsto \ln(|x|) + e^{-x}\right] \; .$$

Exercice 18. —

Pour chacune des fonctions suivantes, déterminer son domaine de définition, puis étudier sa parité, sa périodicité et sa monotonie, et dresser son tableau de variations.

$$f = [x \mapsto 4\operatorname{ch}(2x+5)] \; ; \; g = \left[x \mapsto \frac{2x^2 - 5}{\sin(2x - \pi)}\right] \; ; \; h = \left[x \mapsto \tan(x^2 - 9)\right] \; .$$

LICENCE 1 – MÉTHODES ET TECHNIQUES DE CALCUL

R. Abdellatif

Feuille 3 – Continuité et dérivabilité de fonctions

Exercice 19. —

On considère la fonction f(x) définie par $f(x) = x^3 + 2x^2 - 7x + 1$.

- 1. Déterminer les domaine de définition, de continuité et de dérivabilité de f.
- 2. Etudier la parité de la fonction f, puis sa monotonie.
- 3. Dresser le tableau de variations de la fonction f.
- 4. Selon la valeur de a, déterminer le nombre de solutions de l'équation f(x) = a.

Exercice 20. —

On considère la fonction α définie par

$$\alpha(x) := \frac{3x^2 + 2x - 1}{\sqrt{x+1}} \ .$$

- 1. Déterminer les domaines de définition, de continuité et de dérivabilité de α .
- 2. Calculer la fonction dérivée α' là où elle existe.
- 3. Dresser le tableau de variations de α .
- 4. Est-ce que la fonction α admet des asymptotes (verticales, horizontales, obliques)? Le cas échéant, préciser lesquelles.
- 5. Est-ce que la fonction α admet une tangente en x=0? Le cas échéant, donner l'équation de cette droite.

Exercice 21. —

Pour tout entier naturel $n \ge 1$, on note f_n la fonction définie par $f_n(x) := x^3 + 3x - n$.

- 1. Etant donné $n \geq 1$, dresser le tableau de variations de la fonction f_n .
- 2. Montrer que, pour tout $n \geq 1$, l'équation $f_n(x)$ admet une unique solution dans \mathbb{R} . Dans la suite, on notera u_n cette solution.
- 3. Montrer que pour tout $n \ge 1$, on a $0 \le u_n \le n^{\frac{1}{3}}$.
- 4. Montrer que la suite $(u_n)_{n\geq 1}$ est croissante. Indication: On pourra utiliser les résultats des deux premières questions.
- 5. En déduire l'existence et la valeur de $\lim_{n \to +\infty} \frac{u_n}{n^{\frac{1}{3}}}$.

Exercice 22. —

Etant donné un réel a, on note f_a la fonction définie par $f_a(x) := ax + \sin(x)$.

- 1. Déterminer les domaines de définition, de continuité et de dérivabilité de f_a .
- 2. A quelle condition nécessaire et suffisante sur a la fonction f_a est-elle strictement croissante (resp. décroissante)?
- 3. Montrer que f_2 est une bijection de \mathbb{R} dans \mathbb{R} . Admet-elle des asymptotes au voisinage des infinis?