- BA 870 - Group Project

Financial and Accounting Analytics of Stock Returns Around Covid-19 Market Shock

Shangkun(Sherry) Zuo, szuo@bu.edu;
Yuqi(Yoki) Liu, yokiliu@bu.edu;
Yanni Lan, lanyanni@bu.edu;
Jiayuan Zou, jyzou@bu.edu;
Ziyan Pei, ziyanpei@bu.edu;
Siqi Zhang, zhangsq@bu.edu

Cohort B April 19, 2020

2019 Financial Accounting Characteristics that Explain Varying Exposures to Covid-19 Market Shock

Upload data to Pandas Dataframes

▼ Import 2019 Data

```
1 from google.colab import files
2 uploaded = files.upload()
```

Choose Files 2019_ratios

• 2019_ratios.csv(text/csv) - 178969 bytes, last modified: 4/17/2020 - 100% done Saving 2019_ratios.csv to 2019_ratios.csv

```
1 import pandas as pd
2 import numpy as np
3 df = pd.read_csv('2019_ratios.csv')
4 pd.DataFrame.from_records(df)
5 df.head()
```

 \Box Earnings Long-Global Data Cash and Cost of **Before** Current Ticker Data Assets Term Company Company Name Assets Cash Short-Term Goods Interest Date - Total Debt -Total Investments Sold and Total Taxes **AMERICAN** 0 1045 20191231 8206.00 59995.000 280.000 3984.000 32027.00 28875.00 3706.00 2019 AAL **AIRLINES GROUP INC PINNACLE** 2019 1 1075 20191231 **PNW** WEST CAPITAL 1030.03 18479.247 10.283 10.283 2208.32 4884.43 671.96 CORP **ABBOTT** 1078 20191231 5041.00 2 2019 15667.00 67887.000 3860.000 4140.000 11949.00 17416.00 **LABORATORIES ADVANCED** 3 1161 20191231 AMD 2019 **MICRO** 4597.00 6028.000 1466.000 1507.000 3721.00 685.00 583.00 **DEVICES** AIR PRODUCTS 4618.30 18942.800 2248.700 1209 20190930 & CHEMICALS 2414.700 2120.50 INC

```
1 df.shape
```

▼ Import 2020 Data

```
1 from google.colab import files
2 uploaded = files.upload()
```

 \Box

Choose Files BA870 Project...ta 2020.xlsx

• BA870 Project Data 2020.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 340388 bytes, last modified: 4/14/2020 - 100% done

Caving RAR70 Project Data 2020 vlev to RAR70 Project Data 2020 vlev

```
1 df2 = pd.read_excel('BA870 Project Data 2020.xlsx')
2 df2.head()
```

₽		tic	conm_x	Last Price	YTD Ret	1-mth Ret	3-mth Ret	12- mth Ret	BothSP- NASDAQ	SP500	Ticker	gvkey	datadate	fyear	cusip
	0	Α	Agilent Technologies	70.42	-0.1745	-0.1233	-0.1673	-0.1406	0	1	А	126554.0	20191031.0	2019.0	00846U101
	1	AAL	American Airlines Gp	9.39	-0.6726	-0.4739	-0.6604	-0.7214	1	1	AAL	1045.0	20191231.0	2019.0	02376R102
	2	AAON	Aaon Inc	44.91	-0.0911	-0.2006	-0.1080	-0.0194	0	0	AAON	21542.0	20191231.0	2019.0	360206
	3	AAP	Advance Auto Parts Inc	84.65	-0.4715	-0.3505	-0.4690	-0.5070	0	1	AAP	145977.0	20191231.0	2019.0	00751Y106
	4	AAPL	Apple Inc	241.41	-0.1779	-0.1656	-0.1883	0.2358	1	1	AAPL	1690.0	20190930.0	2019.0	37833100

```
1 #only leave those columns we will use for analysis
2 df3=df2[['tic','YTD Ret']]
3 #rename columns
4 df3=df3.rename(columns={"tic": "Ticker", "YTD Ret":"YTD"})
5 df3.head()
```

Ľ∍		Ticker	YTD
	0	А	-0.1745
	1	AAL	-0.6726
	2	AAON	-0.0911
	3	AAP	-0.4715
	4	AAPL	-0.1779

▼ Data Cleaning

```
1 import warnings
2 warnings.filterwarnings('ignore')
```

In this section, we will have a detailed data cleaning for the general dataset, as well as seperate into 9 industrial catergories.

Remove unnecessary variables and rename the columns

```
1 # Remove unnecessary data columns
2 cols_remove = [0,1,2,4]
3 df.drop(df.columns[cols_remove],axis=1, inplace=True)
4 # Rename variables
5 renamed_columns = ["Ticker", "CA", "TA", "Cash", "CHE", "COGS", "Long_Term_Debt", "EBIT", "Employees", "Inventory", "Godf.columns = renamed_columns
7 df.head()
```

C→		Ticker	CA	TA	Cash	CHE	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI
	0	AAL	8206.00	59995.000	280.000	3984.000	32027.00	28875.00	3706.00	133.70	1851.00	18311.000	1686.00
	1	PNW	1030.03	18479.247	10.283	10.283	2208.32	4884.43	671.96	6.21	345.92	2078.365	538.32
	2	ABT	15667.00	67887.000	3860.000	4140.000	11949.00	17416.00	5041.00	107.00	4316.00	10863.000	3687.00
	3	AMD	4597.00	6028.000	1466.000	1507.000	3721.00	685.00	583.00	11.40	982.00	2359.000	341.00
	4	APD	4618.30	18942.800	2248.700	2414.700	4892.70	3227.40	2120.50	17.70	388.30	1820.900	1760.00

Rearrange Industry Calssification

```
1 #check frequency count for SIC
2 #df['SIC'].value_counts().to_dict()
3 #could uncomment the code line below to view
```

We want to classify these companies to different industries, which could give us specific overviews for the different industries. The first two digits in range 01-09 is Ariculture, Foresty, and Fishing. However, since there is only 1 row which the SIC is 100 (also is the 0100) in that range, we decide to delete that row since it could not stand for an entire industry.

```
1 df.drop(df[df["SIC"]==100].index, inplace=True)

1 # Change 4-digit SIC code to 2-digit SIC code
2 df['SIC'] = (df['SIC']).astype(str).str[:2]

1 #transfer SIC from string to integer
2 df['SIC'] = df['SIC'].astype(int)

1 df.head()
```

₽		Ticker	CA	TA	Cash	CHE	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI
	0	AAL	8206.00	59995.000	280.000	3984.000	32027.00	28875.00	3706.00	133.70	1851.00	18311.000	1686.00
	1	PNW	1030.03	18479.247	10.283	10.283	2208.32	4884.43	671.96	6.21	345.92	2078.365	538.32
	2	ABT	15667.00	67887.000	3860.000	4140.000	11949.00	17416.00	5041.00	107.00	4316.00	10863.000	3687.00
	3	AMD	4597.00	6028.000	1466.000	1507.000	3721.00	685.00	583.00	11.40	982.00	2359.000	341.00
	4	APD	4618.30	18942.800	2248.700	2414.700	4892.70	3227.40	2120.50	17.70	388.30	1820.900	1760.00

▼ SIC Code Classification

01-09: Agriculture, Forestry, and Fishing (ignore since only 1 record)

10-14: Mining (--> group 1)

15-17: Construction (--> group 2)

20-39: Manufacturing (--> group 3)

40-49: Transportation, Communications, Electric, Gas, and Sanitary Services (--> group 4)

50-51: Wholesale Trade (--> group 5)

52-59: Retail Trade (--> group 6)

60-67: Finance, Insurance, and Real Estate (--> group 7)

70-89: Services (--> group 8)

90-99: Public Administration (--> group 9)

```
1 df['Group'] = pd.cut(df['SIC'], [10,14,17,39,49,51,59,67,89,99], labels=["1","2","3","4","5","6","7","8","9"], include
2 df.head()
```

Ľ→		Ticker	CA	TA	Cash	CHE	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI
	0	AAL	8206.00	59995.000	280.000	3984.000	32027.00	28875.00	3706.00	133.70	1851.00	18311.000	1686.00
	1	PNW	1030.03	18479.247	10.283	10.283	2208.32	4884.43	671.96	6.21	345.92	2078.365	538.32
	2	ABT	15667.00	67887.000	3860.000	4140.000	11949.00	17416.00	5041.00	107.00	4316.00	10863.000	3687.00
	3	AMD	4597.00	6028.000	1466.000	1507.000	3721.00	685.00	583.00	11.40	982.00	2359.000	341.00
	4	APD	4618.30	18942.800	2248.700	2414.700	4892.70	3227.40	2120.50	17.70	388.30	1820.900	1760.00

```
1 #check frequency count for Group this time
2 df['Group'].value_counts().to_dict()
```

C→

```
{'1': 33,
'2': 10,
'3': 478,
'4': 108,
'5': 23,
'6': 62,
'7': 273,
'8': 225,
'9': 4}
```

From our observation, most of companines are in the Manufacturing, Finance, Insurance and Real Estate and Service group.

Check missing values

```
1 #check any NA in each variable
2 df.isna().any()
  Ticker
                       False
   CA
                        True
   TA
                        False
   Cash
                        True
   CHE
                       False
   COGS
                       False
   Long_Term_Debt
                        True
   EBIT
                       False
   Employees
                        True
   Inventory
                        True
   CL
                        True
   NI
                       False
   PP&E
                        True
   Sales
                        False
   Interest_Expense
                        True
   Zip
                        True
   SIC
                        False
   Group
                       False
   dtype: bool
```

We notice that there is a great amount NaNs in the Interest_Expense. Since other information lacks, we assume that some companies have great operation so they don't have that much debt. We decide to replace the NAs with 0.

```
1 df['Interest_Expense'].fillna(0, inplace=True)
```

Replace all missing values in Cash with alternative variables in WRDS CHE(Cash and Short-Term Investments). For example, in banking industry they don't classify their liquity asset as Cash.

```
1 df.Cash.fillna(df.CHE,inplace=True)
1 #remove CHE column since we want to focus on Cash
2 del df['CHE']
1 #counting missing values
2 df.isna().sum()
                          0
   Ticker
                        250
   CA
   TA
                          0
   Cash
   COGS
                          0
                          7
   Long_Term_Debt
   EBIT
                          0
   Employees
                         33
   Inventory
                         19
   CL
                        250
   NI
                          0
   PP&E
                         30
                          0
   Sales
                          0
   Interest_Expense
   SIC
                          0
                          0
   Group
```

▼ Subset Dataset based on Group

dtype: int64

```
1 mining=df[df.Group == '1']
```

```
2 construction=df[df.Group == '2']
3 manufacturing=df[df.Group == '3']
4 transportation=df[df.Group == '4']
5 wholesale=df[df.Group == '5']
6 retail=df[df.Group == '6']
7 finance=df[df.Group == '7']
8 service=df[df.Group == '8']
9 administration=df[df.Group == '9']
```

In the next following step, we are going to look deeper into other missing values and replace the values with reasonable explanations.

Replace Missing Values

Mining Industry

```
1 #counting missing values
2 mining.isna().sum()
   Ticker
                        0
   CA
                        0
   TA
   Cash
   COGS
   Long Term Debt
   EBIT
   Employees
   Inventory
   CL
   NI
   PP&E
                        0
   Sales
   Interest_Expense
   Zip
   SIC
                        0
                        0
   Group
   dtype: int64
1 #replace missing value with column median
2 mining.fillna(mining.median(), inplace=True)
```

Construction Industry

```
1 #counting missing values
2 construction.isna().sum()
                            0
   Ticker
    \mathsf{C}\mathsf{A}
                            5
    TA
    Cash
    COGS
   Long Term Debt
    \mathtt{EBIT}
   Employees
    Inventory
    CL
    NI
    PP&E
    Sales
    Interest_Expense
    Zip
    SIC
                            0
    Group
    dtype: int64
```

1 construction[construction['Inventory'].isnull()]

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP&E
	144	J	4111.768	11462.711	631.068	10086.602	1201.245	760.086	52.0	NaN	3073.706	847.184	308.143

The company that missing the inventory record is Jacobs Engineering Group Inc. It is an American international technical professional services firm. The company provides technical, professional and construction services, so this company does not have inventory, thus we replace with 0.

```
1 #replace missing value with column median
2 construction.fillna(construction.median(), inplace=True)
```

Manufacturing Industry

COGS Long_Term_Debt EBIT Employees Inventory CLNIPP&E Sales 0 Interest_Expense 0 Zip SIC 0 Group 0 dtype: int64

1 manufacturing[manufacturing['Zip'].isnull()]

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	135	TT	6217.200	20492.300	1303.600	10967.900	5317.300	2235.500	50.0	1712.200	4861.900	1410.900	23
	146	JCI	12393.000	42287.000	2805.000	15450.000	6708.000	1223.000	104.0	1814.000	9070.000	5674.000	33
	1071	CMPR	240.300	1868.376	35.279	1280.829	1070.422	184.911	13.0	66.310	520.749	95.052	۷
	1073	SIMO	565.199	697.729	323.166	217.806	0.000	73.444	NaN	88.439	125.763	64.399	

After reviewing the company information, TT (TRANE TECHNOLOGIES PLC) and JCI(JOHNSON CONTROLS INTL PLC) are both in Ireland, so they do not have Zip code, thus replace with '00000', this does not affect that much because we just don't want to remove records for our ratios analysis, but we will remove foreign countires for our geo analysis; company CMPR(CIMPRESS PLC) zip code is 02451, company SIMO (SILICON MOTION TECH) zip code is 95131.

```
1 manufacturing.loc[manufacturing['Ticker'] == "CMPR", 'Zip'] = "02451"
2 manufacturing.loc[manufacturing['Ticker'] == "SIMO", 'Zip'] = "95131"
3 manufacturing.loc[manufacturing['Ticker'] == "TT", 'Zip'] = "00000"
4 manufacturing.loc[manufacturing['Ticker'] == "JCI", 'Zip'] = "00000"
1 manufacturing[manufacturing['Inventory'].isnull()]
```

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP&E	Sal
	472	SAGE	1035.093	1084.15	126.705	712.709	26.848	-708.124	0.675	NaN	112.128	-680.238	42.897	6.8

SAGE(SAGE THERAPEUTICS INC) is a biopharmaceutical company, so the company should have inventory, thus we will replace with column median.

```
1 #replace missing value with column median
2 manufacturing.fillna(manufacturing.median(), inplace=True)
```

Transportation Industry

```
1 #counting missing values
2 transportation.isna().sum()
```

С⇒

0 Ticker $\mathsf{C}\mathsf{A}$ 0 TA0 Cash COGS 0 Long_Term_Debt EBIT 0 Employees Inventory CL 0 NI0 PP&E 0 Sales Interest_Expense 0 Zip 0 SIC 0 0 Group dtype: int64

```
1 #replace missing value with column median
2 transportation.fillna(transportation.median(), inplace=True)
```

▼ Wholesale Trade Industry

```
1 #counting missing values
2 wholesale.isna().sum()
   Ticker
                          0
   \mathsf{C}\mathsf{A}
                          1
   TA
                          0
   Cash
   COGS
   Long_Term_Debt
   EBIT
   Employees
   Inventory
   CL
                          1
   NI
                          0
   PP&E
                          0
   Sales
                          0
   Interest_Expense
                          0
   Zip
                          0
   SIC
                          0
   Group
                          0
   dtype: int64
1 #replace missing value with column median
2 wholesale.fillna(wholesale.median(), inplace=True)
```

▼ Retail Trade Industry

```
1 #counting missing values
2 retail.isna().sum()
                         0
   Ticker
                         0
   CA
   TA
   Cash
                         0
   COGS
                         0
   Long_Term_Debt
                         0
   EBIT
   Employees
                         3
   Inventory
   \mathsf{CL}
   NI
   PP&E
   Sales
                         0
   Interest_Expense
                         0
   Zip
   SIC
                         0
                         0
   Group
   dtype: int64
1 #replace missing value with column median
2 retail.fillna(retail.median(), inplace=True)
```

▼ Finance Industry

We try to download the dataset by set up Industry Format with FS for finance industry, but there is no difference with previous data. We also try to download chs, but it's empty.

```
1 #counting missing values
2 finance.isna().sum()
                           0
   Ticker
   CA
                         231
   TA
                           0
   Cash
                           0
   COGS
                           0
   Long_Term_Debt
                           1
   EBIT
   Employees
                           8
   Inventory
                           7
   \mathsf{CL}
                         231
   NI
                           0
   PP&E
                          29
                           0
   Sales
   Interest_Expense
                           0
   Zip
                           0
                           0
   SIC
                           0
   Group
   dtype: int64
1 #replace missing value with column median
2 finance.fillna(finance.median(), inplace=True)
```

Important Notice: We replace the NaNs with industry median because we didn't find other better solution to replace the missing values. We also tried the method that professor suggest on the Q&A, but with the limitation on total assets, sales, and sic, WRDS returns no matching data.

▼ Service Industry

```
1 #counting missing values
2 service.isna().sum()
Ticker
    CA
                         7
                         0
    TA
   Cash
                         0
   COGS
   Long Term Debt
   EBIT
                         0
   Employees
                        13
    Inventory
   CL
                         7
   NI
                         0
   PP&E
                         0
   Sales
                         0
   Interest_Expense
                         0
                         2
    Zip
                         0
   SIC
   Group
                         0
   dtype: int64
1 service[service['Zip'].isnull()]
```

₽		Ticker	CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP&E
	778	AFYA	276.584	724.557	234.651	63.198	66.815	51.051	NaN	0.978	82.90	38.291	102.894
	1119	MLCO	1894.672	9488.422	1394.982	3637.915	4744.284	761.068	23.078	43.959	1525.46	373.173	5834.952

After reviewing the company information, AFYA(AFYA LTD) is in Brazil, MLCO(MELCO RESORTS & ENTERTAINMEN) is in Hongkong, so they do not have Zip code, thus replace with '00000'.

```
1 service.loc[service['Ticker'] == "AFYA", 'Zip'] = "00000"
2 service.loc[service['Ticker'] == "MLCO", 'Zip'] = "00000"

1 #replace missing value with column median
2 service.fillna(service.median(), inplace=True)
```

▼ Public Administration Industry

```
1 #counting missing values
2 administration.isna().sum()
```

```
Ticker
CA
TA
Cash
COGS
Long_Term_Debt
Employees
Inventory
CL
NI
PP&E
Sales
Interest_Expense
Zip
SIC
Group
dtype: int64
```

```
1 #replace missing value with column median
```

▼ Financial Ratios Formula

Cash Ratios

$$CashToAssets = \frac{Cash}{TotalAssets}$$

$$CashToLiability = \frac{Cash}{CurrentLiabilities}$$

$$CashToInterest = \frac{Cash}{InterestCharges}$$

Liquidity Ratios

$$CurrentRatio = \frac{TotalCurrentAssets}{TotalCurrentLiabilities}$$

$$QuickRatio = \frac{CurrentAssets-Inventories}{CurrentLiabilities}$$

Asset Management Ratios

$$InventoryTurnover = \frac{CostofGoodsSold}{Inventories}$$

$$FixedAssetsTurnover = \frac{AnnualSales}{NetFixedAssets}$$

$$TotalAssetsTurnover = \frac{AnnualSales}{TotalAssets}$$

Debt Management Ratios

$$LongTermDebtRatio = \frac{TotalLong-TermDebt}{TotalAssets}$$

$$InterestCoverage = \frac{EBIT}{InterestCharges}$$

Operation Ratios

$$ROA = \frac{NetIncome}{TotalAssets}$$

$$SalesPerEmployee = \frac{Sales}{NumberOfEmployees}$$

The ratio we try to look at are all list above, we will measure the company from its liquidity, asset management, profit management, and liability aspects, and try to highlight the most statistically and economically significant findings in each industry.

Notice: We revise those 4 ratios (Cash To Interest, Inventory Turnover, Interest Coverage, Sales Per Employee) for our calculation in case those 0 be in the denominator bring infinite numbers for ratios, but we will explain those in the correct way.

Analytics Based on Industry

- ▼ Mining Industry
- ▼ Data Merge

² administration.fillna(administration.median(), inplace=True)

2 mining2 = pd.merge(mining, df3, how='left', on='Ticker')

- 3 #drop those columns are not affect by outliers
- 4 mining2.drop(['Zip','SIC','Group'],axis=1,inplace=True)
- 5 mining2.head()

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	0	HES	3156.000	21782.000	1545.000	3106.000	7733.000	637.000	1.775	261.000	2510.000	-408.000	1756
	1	APA	1961.000	18107.000	247.000	3465.000	8752.000	-1332.000	3.163	502.000	1855.000	-3553.000	1415
	2	HAL	11212.000	25377.000	2268.000	18498.000	11265.000	2058.000	55.000	3139.000	4878.000	-1131.000	836
	3	HP	1115.086	5839.515	347.943	2014.913	479.356	-12.269	8.510	149.653	410.238	-33.656	45(
	4	MRO	2135.000	20245.000	858.000	1652.000	5608.000	437.000	2.000	72.000	1745.000	480.000	1719

▼ Check Outliers

- 1 #statistics description
- 2 mining2.describe()

₽		CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	C
	count	33.000000	33.000000	33.000000	33.000000	33.000000	33.000000	33.000000	33.000000	33.00000
	mean	4040.744697	20496.967394	1004.910485	4907.731242	5340.165515	786.001879	12.239121	825.148212	2722.77742
	std	5630.964495	24133.782956	1427.390920	6520.079495	7464.320258	1591.760630	22.940608	1360.087766	3931.48027
	min	50.634000	361.603000	0.963000	60.536000	43.709000	-1756.000000	0.089000	0.000000	40.01800
	25%	319.585000	3461.682000	64.615000	668.688000	784.734000	39.319000	0.791000	30.000000	271.67000
	50%	1362.000000	13717.000000	247.000000	2070.000000	3172.357000	259.498000	2.900000	125.479000	1182.00000
	75%	5273.339000	24732.000000	1545.000000	5231.000000	6942.000000	1067.400000	9.173000	767.297000	2510.00000
	max	18681.000000	109330.000000	5190.200000	25838.000000	39391.000000	6330.000000	105.000000	4608.000000	14949.00000

Note that there appears to be big outliers (common for financial ratios)

Evidence: Large difference in mean and median of variables. The maximum and minimum are really far away from the IQR.

▼ Transform Variables

- 1 from scipy.stats.mstats import winsorize
- 2 from scipy import stats
- 3 # Convert variables
- $4 \ \#$ Using Winsorize to convert outliers
- 5 for col in mining2.columns[1:]:
- mining2[col] = winsorize(mining2[col], limits=[0.05,0.05], inplace=True)
- 1 #statistics description recheck
- 2 mining2.describe()

₽		CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL
	count	33.000000	33.000000	33.000000	33.000000	33.000000	33.000000	33.000000	33.000000	33.000000
	mean	3988.126545	19321.352818	1001.856152	4685.493788	4623.035636	724.696697	11.120545	810.663364	2667.437485
	std	5493.358738	20311.647662	1418.076112	5877.115723	4720.740266	1348.020329	18.793272	1320.511186	3760.570505
	min	82.235000	382.322000	2.370000	66.700000	82.423000	-1362.071000	0.176000	0.000000	64.800000
	25%	319.585000	3461.682000	64.615000	668.688000	784.734000	39.319000	0.791000	30.000000	271.670000
	50%	1362.000000	13717.000000	247.000000	2070.000000	3172.357000	259.498000	2.900000	125.479000	1182.000000
	75%	5273.339000	24732.000000	1545.000000	5231.000000	6942.000000	1067.400000	9.173000	767.297000	2510.000000
	max	16913.000000	70514.000000	5088.000000	18498.000000	15687.000000	3913.000000	68.000000	4130.000000	13098.000000

 $^{1\ \}mbox{\#}$ Add important useful varialbes back

² mining2['SIC']=mining['SIC'].values

³ mining2['Group']=mining['Group'].values

⁴ mining2['Zip']=mining['Zip'].values

⁵ mining? head()

J MITHITHYZ . HEAU()

₽	Ti	cker	CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	0	HES	3156.000	21782.000	1545.000	3106.000	7733.000	637.000	1.775	261.000	2510.000	-408.000	1756
	1	APA	1961.000	18107.000	247.000	3465.000	8752.000	-1332.000	3.163	502.000	1855.000	-3553.000	1415
	2	HAL	11212.000	25377.000	2268.000	18498.000	11265.000	2058.000	55.000	3139.000	4878.000	-1131.000	836
	3	HP	1115.086	5839.515	347.943	2014.913	479.356	-12.269	8.510	149.653	410.238	-33.656	45(
	4	MRO	2135.000	20245.000	858.000	1652.000	5608.000	437.000	2.000	72.000	1745.000	480.000	1719

Calculate Financial Ratios

```
1 # Calculate financial ratios
2 mining2['CashToAssets'] = (mining2.Cash/mining2.TA)
3 mining2['CashToLiability'] = 1/(mining2.Cash/mining2['Interest_Expense'])
4 mining2['CashToLiability'] = (mining2.Cash/mining2.CL)
5 mining2['CurrentRatio'] = (mining2.CA/mining2.CL)
6 mining2['QuickRatio'] = (mining2.CA-mining2.Inventory)/mining2.CL
7 mining2['InventoryTurnover'] = 1/(mining2.COGS/mining2.Inventory)
8 mining2['FixedAssetsTurnover'] = (mining2.Sales/mining2['PP&E'])
9 mining2['FotalAssetsTurnover'] = (mining2.Sales/mining2.TA)
10 mining2['LongTermDebtRatio'] = (mining2['Long_Term_Debt']/mining2.TA)
11 mining2['InterestCoverage'] = 1/(mining2.EBIT/mining2['Interest_Expense'])
12 mining2['ROA'] = (mining2.NI/mining2.TA)
13 mining2['SalesPerEmployee']=1/(mining2.Sales/(mining2.Employees*1000))
```

1 mining2.head()

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	0	HES	3156.000	21782.000	1545.000	3106.000	7733.000	637.000	1.775	261.000	2510.000	-408.000	1756
	1	APA	1961.000	18107.000	247.000	3465.000	8752.000	-1332.000	3.163	502.000	1855.000	-3553.000	1415
	2	HAL	11212.000	25377.000	2268.000	18498.000	11265.000	2058.000	55.000	3139.000	4878.000	-1131.000	836
	3	HP	1115.086	5839.515	347.943	2014.913	479.356	-12.269	8.510	149.653	410.238	-33.656	45(
	4	MRO	2135.000	20245.000	858.000	1652.000	5608.000	437.000	2.000	72.000	1745.000	480.000	1719

- $1 \ \#$ Delete unnecessary variables after using
- 2 mining2.drop(mining2.columns[1:14],axis=1,inplace=True)
- 3 mining2.head()

₽		Ticker	YTD	SIC	Group	Zip	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	Inventor
	0	HES	-0.4983	13	1	10036	0.070930	0.270550	0.615538	1.257371	1.153386	
	1	APA	-0.7898	13	1	77056	0.013641	1.769231	0.133154	1.057143	0.786523	
	2	HAL	-0.6890	13	1	77032	0.089372	0.261023	0.464945	2.298483	1.654982	
	3	HP	-0.6597	13	1	74119	0.059584	0.067505	0.848149	2.718144	2.353349	
	4	MRO	-0.7312	13	1	77056- 2723	0.042381	0.326340	0.491691	1.223496	1.182235	

- $1\ \# statistics$ ratio description check
- 2 mining2.describe()

₽

	YTD	SIC	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	InventoryTurnover	F
count	33.00000	33.000000	33.000000	33.000000	33.000000	33.000000	33.000000	33.000000	
mean	-0.60460	12.787879	0.049169	3.084887	0.393976	1.549595	1.241453	0.118953	
std	0.21513	0.960390	0.054288	7.244795	0.380207	0.770671	0.619125	0.113662	
min	-0.89980	10.000000	0.000533	0.067505	0.006561	0.472083	0.436552	0.000000	
25%	-0.73120	13.000000	0.011063	0.199683	0.086807	1.057143	0.841652	0.020835	
50%	-0.66560	13.000000	0.039234	0.290220	0.324446	1.291266	1.116031	0.076976	
75%	-0.49830	13.000000	0.059584	1.943089	0.507109	1.998443	1.628490	0.181402	
max	-0.00340	14.000000	0.216338	35.683966	1.905864	3.526235	3.341049	0.381587	

Industry Overview

Here are 33 companies in total under mining catergory. Mining industry invest heavily on fixed assest, so their fixed assest turnover is 0.9 on average. However, its mean ROA is negative, which indicates that mining industry is facing downsizing and losing the sales since 2019.

More importantly, the mean YTD is -0.60, which is the greatest across all industries we analyzed. It means that Mining industry has been nearly crushed by COVID-19 event in 2020.

▼ OLS

```
1 import statsmodels.api as sm
1 #mining
2 data1=[]
3 data2=[]
4 data3=[]
5 data4=[]
6 for i in range(5,17):
    X = mining2.iloc[:, i]
    y = mining2['YTD']
    X = sm.add_constant(X) # adding a constant
10
   model = sm.OLS(y,X).fit()
11
    summary=model.summary()
12
    name=mining2.iloc[:, i].name
13
    params=model.params[1]
14
    pvalue=model.pvalues[1]
15
    rsquared = model.rsquared
16
    data1.append(name)
17
    data2.append(params)
18
    data3.append(pvalue)
19
    data4.append(rsquared)
20
    summary_7 = pd.DataFrame(list(zip(data1, data2,data3,data4)), columns =['variable', 'params','pvalue','rsquared'])
21 summary_7
```

	variable	params	pvalue	rsquared
0	CashToAssets	-0.522139	0.464828	0.017361
1	CashToInterest	-0.005132	0.336172	0.029867
2	CashToLiability	0.074653	0.464229	0.017407
3	CurrentRatio	0.100430	0.039735	0.129438
4	QuickRatio	0.074650	0.229890	0.046155
5	InventoryTurnover	0.798620	0.014451	0.178036
6	FixedAssetsTurnover	-0.021534	0.621540	0.007957
7	TotalAssetsTurnover	-0.232295	0.269901	0.039117
8	LongTermDebtRatio	-0.514747	0.052234	0.116189
9	InterestCoverage	0.015900	0.467813	0.017132
10	ROA	0.892612	0.001356	0.285636
11	SalesPerEmployee	0.017776	0.490409	0.015471

Analysis:

C→

significant determinants of stock returns. AS we can see from the results above that ROA affects the stock returns positively, which indicates the higher profit that mining industry make, the higher stock returns will get.

Meanwhile, the reverse of inventory turnover ratio is positivly correlated to YTD. It indicates that the longer the companies in mining convert the inventories to revenues, the higher YTD it will be. Apparently, the situation of mining industry is different from most of other industries which need to have lower inventory turnover ratios in order to generate YTD. The reason is that mining industry is not an efficient industry, which perform slowly in selling its inventories in short term. Also, with the start of WFH policy, the uncertainties across the supply chain affecting commodity prices. Most mining operations around the world have been placed into shutdown.

```
1 # Multi Regression
2 X = mining2.iloc[:,5:17]
3 y = mining2['YTD']
4 X = sm.add_constant(X) # adding a constant
5 model = sm.OLS(y,X).fit()
6 model.summary()
                      OLS Regression Results
C
      Dep. Variable: YTD
                                        R-squared:
                                                      0.513
                      OLS
          Model:
                                      Adj. R-squared: 0.221
         Method:
                      Least Squares
                                         F-statistic:
          Date:
                      Sun, 19 Apr 2020 Prob (F-statistic): 0.128
          Time:
                      23:21:37
                                      Log-Likelihood: 16.265
    No. Observations: 33
                                            AIC:
                                                      -6.531
       Df Residuals:
                      20
                                            BIC:
                                                      12.92
        Df Model:
                      12
     Covariance Type: nonrobust
                          coef std err t P>Itl [0.025 0.975]
                         -0.5852 0.156 -3.743 0.001 -0.911 -0.259
            const
        CashToAssets
                        -0.1557 1.522 -0.102 0.919 -3.330 3.018
       CashToInterest
                        -0.0031 0.006 -0.559 0.582 -0.015 0.009
                        0.0607 0.320 0.190 0.851 -0.607 0.728
       CashToLiability
        CurrentRatio
                         0.0970 0.218 0.446 0.661 -0.357 0.551
         QuickRatio
                         -0.0459 0.273 -0.168 0.868 -0.615 0.523
      InventoryTurnover 0.5227 0.691 0.756 0.458 -0.919 1.964
     FixedAssetsTurnover -0.0056 0.066 -0.086 0.933 -0.143 0.132
     TotalAssetsTurnover -0.2762 0.313 -0.882 0.388 -0.929 0.377
     LongTermDebtRatio -0.0852 0.311 -0.274 0.787 -0.734 0.564
      InterestCoverage 0.0167 0.021 0.788 0.440 -0.027 0.061
            ROA
                         0.5961 0.371 1.607 0.124 -0.177 1.370
      SalesPerEmployee -0.0163 0.033 -0.486 0.632 -0.086 0.054
       Omnibus:
                    14.211 Durbin-Watson: 2.151
    Prob(Omnibus): 0.001 Jarque-Bera (JB): 16.413
         Skew:
                    1.203
                              Prob(JB):
                                           0.000273
        Kurtosis:
                    5.480
                              Cond. No.
                                           370.
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Analysis:

For the last step, we also applied multiple regression on the mining industry, which means we keep all other variables constant to see the performance of each individual variable. Comparing with our previous single regression results, no variable is significant under multiple regression.

Specifically, though mining industry has very low YTD since 2020, its multiple Adjusted r-squared is around 22% which means those ratios still explains 22% of YTD even with an unforseen COVID-19 situation in 2020. Our assumption is that maybe mining industry does not perform very well in 2019 with a negative mean ROA, so its prediction to 2020 YTD is still acceptable.

(For the last step, we also applied multiple regression on the mining industry, which means we keep all other variables the same to see the performance of each individual variable. Combining the concluion from the previous single regression and the p-value, we notice that for both models, Quick Ratio, Total Asset Turnover and Long Term Debt Ratio are significantly affecting the minning industry. However, the R square score is 0.9, which means mining industry doesn't effected by COVID-19 that much, because we still get a relative accurate score by using the historial data from 2019. That might also because the industry hasn't perform so well in 2019 neither due to the global sources and competition. Moreover, nearly half of the ratios have negative effect on stock return.)

Construction Industry

▼ Data Merge

- 1 #merge industry 2019 and 2020 data
- 2 construction2 = pd.merge(construction, df3, how='left', on='Ticker')
- 3 #drop those columns are not affect by outliers
- 4 construction2.drop(['Zip','SIC','Group'],axis=1,inplace=True)
- 5 construction2.head()

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP&I
	0	AEGN	450.215	995.513	64.874	925.033	299.882	64.315	4.900	57.193	234.041	-20.892	172.557
	1	J	4111.768	11462.711	631.068	10086.602	1201.245	760.086	52.000	0.000	3073.706	847.184	308.143
	2	LEN	912.707	29359.511	1445.996	17564.046	7014.438	2461.181	10.106	19738.586	670.448	1849.052	279.527
	3	PHM	912.707	10715.597	1217.913	7788.885	2835.121	1348.353	5.245	8513.027	670.448	1016.700	181.742
	4	NVR	912.707	3809.815	1140.585	5829.044	690.806	1051.175	5.700	2253.264	670.448	878.539	135.258

▼ Check Outliers

- 1 #statistics description
- 2 construction2.describe()

₽		CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	
	count	10.000000	10.000000	10.000000	10.00000	10.00000	10.000000	10.00000	10.000000	10.000000	
	mean	1433.021100	8502.800900	674.516500	7089.04820	1748.03790	905.876000	14.01200	4531.423700	995.748400	
	std	1352.405841	8952.964025	595.001396	5818.10369	1994.93253	829.919553	17.41855	6917.127805	915.191838	
	min	450.215000	995.513000	38.345000	687.00000	299.88200	64.315000	0.95300	0.000000	234.041000	
	25%	912.707000	1707.202500	131.414000	1723.75700	692.15550	236.153500	4.98625	56.087500	670.448000	
	50%	912.707000	6070.748500	529.034000	6808.96450	1097.12250	723.111500	7.30800	899.074000	670.448000	
	75%	912.707000	11275.932500	1198.581000	10219.19600	1717.75400	1274.058500	10.00450	6948.086250	670.448000	
	max	4111.768000	29359.511000	1494.300000	17564.04600	7014.43800	2461.181000	52.00000	19738.586000	3073.706000	1

Note that there appears to be big outliers (common for financial ratios)

Evidence: Large difference in mean and median of variables. The maximum and minimum are really far away from the IQR.

▼ Transform Variables

- 1 from scipy.stats.mstats import winsorize
- 2 from scipy import stats
- 3 # Convert variables
- $4 \ \#$ Using Winsorize to convert outliers
- 5 for col in construction2.columns[1:]:
- 6 construction2[col] = winsorize(construction2[col], limits=[0.05,0.05], inplace=True)
- 1 #statistics description recheck
- 2 construction2.describe()

₽		CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	
	count	10.000000	10.000000	10.000000	10.00000	10.00000	10.000000	10.00000	10.000000	10.000000	
	mean	1433.021100	8502.800900	674.516500	7089.04820	1748.03790	905.876000	14.01200	4531.423700	995.748400	
	std	1352.405841	8952.964025	595.001396	5818.10369	1994.93253	829.919553	17.41855	6917.127805	915.191838	
	min	450.215000	995.513000	38.345000	687.00000	299.88200	64.315000	0.95300	0.000000	234.041000	
	25%	912.707000	1707.202500	131.414000	1723.75700	692.15550	236.153500	4.98625	56.087500	670.448000	
	50%	912.707000	6070.748500	529.034000	6808.96450	1097.12250	723.111500	7.30800	899.074000	670.448000	
	75%	912.707000	11275.932500	1198.581000	10219.19600	1717.75400	1274.058500	10.00450	6948.086250	670.448000	
	max	4111.768000	29359.511000	1494.300000	17564.04600	7014.43800	2461.181000	52.00000	19738.586000	3073.706000	1

^{1 #} Add important useful varialbes back

² construction2['SIC']=construction['SIC'].values

3 construction2['Group']=construction['Group'].values

4 construction2['Zip']=construction['Zip'].values

5 construction2.head()

[→		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP&I
	0	AEGN	450.215	995.513	64.874	925.033	299.882	64.315	4.900	57.193	234.041	-20.892	172.557
	1	J	4111.768	11462.711	631.068	10086.602	1201.245	760.086	52.000	0.000	3073.706	847.184	308.140
	2	LEN	912.707	29359.511	1445.996	17564.046	7014.438	2461.181	10.106	19738.586	670.448	1849.052	279.527
	3	PHM	912.707	10715.597	1217.913	7788.885	2835.121	1348.353	5.245	8513.027	670.448	1016.700	181.742
	4	NVR	912.707	3809.815	1140.585	5829.044	690.806	1051.175	5.700	2253.264	670.448	878.539	135.258

Calculate Financial Ratios

```
1 # Calculate financial ratios
2 construction2['CashToAssets'] = (construction2.Cash/construction2.TA)
3 construction2['CashToLinterest'] = 1/(construction2.Cash/construction2['Interest_Expense'])
4 construction2['CashToLiability'] = (construction2.Cash/construction2.CL)
5 construction2['CurrentRatio'] = (construction2.CA/construction2.CL)
6 construction2['QuickRatio'] = (construction2.CA-construction2.Inventory)/construction2.CL
7 construction2['InventoryTurnover'] = 1/(construction2.COGS/construction2.Inventory)
8 construction2['FixedAssetsTurnover'] = (construction2.Sales/construction2['PP&E'])
9 construction2['TotalAssetsTurnover'] = (construction2.Sales/construction2.TA)
10 construction2['LongTermDebtRatio'] = (construction2.['Long_Term_Debt']/construction2.TA)
11 construction2['InterestCoverage'] = 1/ (construction2.EBIT/construction2['Interest_Expense'])
12 construction2['ROA'] = (construction2.NI/construction2.TA)
13 construction2['SalesPerEmployee']=1/(construction2.Sales/(construction2.Employees*1000))
```

1 construction2.head()

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP&I
	0	AEGN	450.215	995.513	64.874	925.033	299.882	64.315	4.900	57.193	234.041	-20.892	172.557
	1	J	4111.768	11462.711	631.068	10086.602	1201.245	760.086	52.000	0.000	3073.706	847.184	308.140
	2	LEN	912.707	29359.511	1445.996	17564.046	7014.438	2461.181	10.106	19738.586	670.448	1849.052	279.527
	3	PHM	912.707	10715.597	1217.913	7788.885	2835.121	1348.353	5.245	8513.027	670.448	1016.700	181.742
	4	NVR	912.707	3809.815	1140.585	5829.044	690.806	1051.175	5.700	2253.264	670.448	878.539	135.258

- 1 # Delete unnecessary variables after using
- 2 construction2.drop(construction2.columns[1:14],axis=1,inplace=True)
- 3 construction2.head()

₽		Ticker	YTD	SIC	Group	Zip	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	Inventor
	0	AEGN	-0.3330	16	2	63005- 1195	0.065166	0.215834	0.277191	1.923659	1.679287	
	1	J	-0.1209	16	2	75201	0.055054	0.132865	0.205312	1.337723	1.337723	
	2	LEN	-0.4015	15	2	33172	0.049251	0.292331	2.156761	1.361339	-28.079551	
	3	PHM	-0.5124	15	2	30326	0.113658	0.135230	1.816566	1.361339	-11.336181	
	4	NVR	-0.3795	15	2	20190	0.299381	0.023201	1.701228	1.361339	-1.999494	

- 1 #statistics ratio description recheck
- 2 construction2.describe()

С→

	YTD	SIC	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	InventoryTurnover
count	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000
mean	-0.356220	15.500000	0.112837	0.279948	0.986837	1.438874	-5.329983	0.480804
std	0.116808	0.707107	0.113542	0.336448	0.919582	0.204270	10.366950	0.516377
min	-0.513200	15.000000	0.019780	0.023201	0.057193	1.266484	-28.079551	0.000000
25%	-0.398800	15.000000	0.050702	0.133456	0.185886	1.361339	-9.002009	0.019529
50%	-0.368150	15.000000	0.065440	0.156138	0.725134	1.361339	0.020334	0.242241
75%	-0.311925	16.000000	0.109180	0.273207	1.787731	1.361339	1.319913	1.055878
max	-0.120900	17.000000	0.341600	1.188030	2.228808	1.923659	1.679287	1.123806

Industry Overview

Here are only 10 companies in total under the Construction category. The YTD for construction category is around -0.35, showing that it received a great negative stock returns since 2020 due to COVID-19.

For its ratios since 2019, the mean Quick Ratio is -5.32, which shows that construction industry's companies are not able to fully pay off its current liabilities in the short term. The scale of ratio number is also large, it might be caused by the fact that we only have 10 observations left in this category.

▼ OLS

 \Box

```
1 import statsmodels.api as sm
1 #construction
2 data1=[]
3 data2=[]
4 data3=[]
5 data4=[]
6 for i in range(5,17):
    X = construction2.iloc[:, i]
    y = construction2['YTD']
9
    X = sm.add_constant(X) # adding a constant
    model = sm.OLS(y,X).fit()
11
    summary=model.summary()
    name=construction2.iloc[:, i].name
12
13
    params=model.params[1]
14
    pvalue=model.pvalues[1]
15
    rsquared = model.rsquared
16
    data1.append(name)
17
    data2.append(params)
18
    data3.append(pvalue)
    data4.append(rsquared)
19
20
    summary_7 = pd.DataFrame(list(zip(data1, data2,data3,data4)), columns =['variable', 'params','pvalue','rsquared'])
21 summary_7
```

	variable	params	pvalue	rsquared
0	CashToAssets	-0.121588	0.745044	0.013969
1	CashToInterest	-0.133949	0.270829	0.148857
2	CashToLiability	-0.057253	0.191096	0.203161
3	CurrentRatio	0.114501	0.579128	0.040094
4	QuickRatio	0.004582	0.243559	0.165347
5	InventoryTurnover	-0.178346	0.006732	0.621608
6	FixedAssetsTurnover	-0.000851	0.090879	0.315823
7	TotalAssetsTurnover	0.080055	0.496093	0.059755
8	LongTermDebtRatio	-0.171659	0.406876	0.087415
9	InterestCoverage	-0.304528	0.625214	0.031240
10	ROA	-0.499783	0.434820	0.077905
11	SalesPerEmployee	0.061347	0.003567	0.674682

Analysis:

According to the summary result above, we noticed that Inverntory Turnover and SalesPerEmployee are statistically and economically significant determinants of stock returns. But the increase in Inventory Turnover will decrease the stock returns. The employees in the construction industry by default is skilled workers, electricians, engineers and more. Additionally, according to the report from Construction Dive, the Economist estimated that 30% of building products and raw materials for Construction Industry in the U.S are imported from China, which is the nation's largest single supplier. With global affection, material shortfall seems to impact construction in the US.

```
1 construction2.describe()

CreentRatio OuickRatio InventoryTurnover
```

→		YTD	SIC	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	InventoryTurnover
	count	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000
	mean	-0.356220	15.500000	0.112837	0.279948	0.986837	1.438874	-5.329983	0.480804
	std	0.116808	0.707107	0.113542	0.336448	0.919582	0.204270	10.366950	0.516377
	min	-0.513200	15.000000	0.019780	0.023201	0.057193	1.266484	-28.079551	0.000000
	25%	-0.398800	15.000000	0.050702	0.133456	0.185886	1.361339	-9.002009	0.019529
	50%	-0.368150	15.000000	0.065440	0.156138	0.725134	1.361339	0.020334	0.242241
	75%	-0.311925	16.000000	0.109180	0.273207	1.787731	1.361339	1.319913	1.055878
	max	-0.120900	17.000000	0.341600	1.188030	2.228808	1.923659	1.679287	1.123806

```
1 # Multi Regression
2 X = construction2.iloc[:,[5, 6, 11,12,13,14,15,16]]
3 y = construction2['YTD']
4 X = sm.add_constant(X) # adding a constant
5 model = sm.OLS(y,X).fit()
6 model.summary()
```

₽		OLS Regression Results					
	Dep. Variable:	YTD	R-squared:	0.950			
	Model:	OLS	Adj. R-squared:	0.546			
	Method:	Least Squares	F-statistic:	2.355			
	Date:	Sun, 19 Apr 2020	0.467				
	Time:	23:22:23	Log-Likelihood:	22.749			
	No. Observations:	10	AIC:	-27.50			
	Df Residuals:	1	BIC:	-24.77			
	Df Model:	8					

Covariance Type: nonrobust

 const
 std err
 t
 P>ItI
 [0.025]
 0.975]

 const
 -0.8059
 0.433
 -1.861
 0.314
 -6.309
 4.697

 CashToAssets
 -1.3738
 1.599
 -0.859
 0.548
 -21.688
 18.940

 CashToInterest
 0.2281
 0.481
 0.474
 0.718
 -5.880
 6.337

 FixedAssetsTurnover
 -0.0029
 0.003
 -1.098
 0.470
 -0.037
 0.031

 TotalAssetsTurnover
 -0.1307
 0.138
 -0.945
 0.518
 -1.888
 1.626

 LongTermDebtRatio
 -0.4738
 0.858
 -0.552
 0.679
 -11.371
 10.424

 InterestCoverage
 2.8271
 3.186
 0.887
 0.538
 -37.649
 43.303

 ROA
 5.2544
 3.694
 1.422
 0.390
 -41.682
 52.191

 SalesPerEmployee
 0.0832
 0.031
 2.660
 0.229
 -0.314
 0.481

 Omnibus:
 2.711
 Durbin-Watson:
 1.634

 Prob(Omnibus):
 0.258
 Jarque-Bera (JB):
 0.310

 Skew:
 -0.023
 Prob(JB):
 0.856

 Kurtosis:
 3.861
 Cond. No.
 1.83e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.83e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

Analysis:

Since we only have 10 observations, instead of using all ratios, we adopt 8 financial ratios which are not calculated by CA and CL and do not have extreme value of financial ratios from single variable OLS analysis into multiple regression model. In other words, during the data cleaning stage, since CA and CL have 5 NAs, we replaced these NAs by industry mean. Meanwhile, since we have too less data points, such substitutions might pose more unpredictive errors into our model. Therefore we did not put CashToLiability, CurrentRatio and Quick Ratio into model.

The result shows that no variables in the multiple regression are significant. However, though our variables are not significant, the overall Rsquared adjusted is 54.6%, which is much higher than usual multiple regression models in other industries. We think that this situation is caused by overfitting problem, since we only have 10 observations in the dataset. Even though R-squared adjusted is plausible, the model itself is not predictive. Therefore, we think we nee do obtain more observations in the future to better predict construction industry's YTD in 2020.

Manufacturing Industry

Data Merge

- 1 #merge industry 2019 and 2020 data 2 manufacturing2 = pd.merge(manufacturing, df3, how='left', on='Ticker') 3 #drop those columns are not affect by outliers 4 manufacturing2.drop(['Zip','SIC','Group'],axis=1,inplace=True)

 - 5 manufacturing2.head()

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	0	ABT	15667.000	67887.000	3860.000	11949.000	17416.000	5041.000	107.000	4316.000	10863.000	3687.000	897
	1	AMD	4597.000	6028.000	1466.000	3721.000	685.000	583.000	11.400	982.000	2359.000	341.000	70
	2	APD	4618.300	18942.800	2248.700	4892.700	3227.400	2120.500	17.700	388.300	1820.900	1760.000	1033
	3	ATRI	132.338	262.031	45.048	73.525	0.268	40.529	0.616	42.093	11.274	36.761	3
	4	SWKS	2234.600	4839.600	851.300	1353.000	0.000	1042.100	9.000	609.700	374.000	853.600	120

Check Outliers

- 1 #statistics description
- 2 manufacturing2.describe()

₽		CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	
	count	478.000000	478.000000	478.000000	478.000000	478.000000	478.000000	478.000000	478.000000	478.
	mean	4491.602207	14522.359408	1227.360960	5639.507105	3936.748379	1267.901833	17.283195	1093.265937	3238.
	std	12540.774663	36900.634988	3698.413693	18058.999422	9754.081894	3930.142591	30.860213	3960.669928	10426.
	min	4.324000	10.113000	1.593000	0.000000	0.000000	-939.431000	0.006000	0.000000	1.
	25%	380.115500	609.991000	95.641750	162.729250	41.594250	-26.475250	0.578000	18.588000	83.
	50%	996.062000	2144.296000	266.421000	787.448000	476.874000	148.973000	4.074000	219.400000	352.
	75%	3375.900000	11259.358750	833.401000	3706.668000	3449.375000	1064.965500	18.000000	871.250000	1868.
	max	162819.000000	362597.000000	48844.000000	211152.000000	102408.000000	63930.000000	267.000000	76622.000000	105718.

Note that there appears to be big outliers (common for financial ratios)

Evidence: Large difference in mean and median of variables. The maximum and minimum are really far away from the IQR.

▼ Transform Variables

- 1 from scipy.stats.mstats import winsorize
- 2 from scipy import stats
- 3 # Convert variables
- 4 # Using Winsorize to convert outliers
- 5 for col in manufacturing2.columns[1:]:
- manufacturing2[col] = winsorize(manufacturing2[col], limits=[0.05,0.05], inplace=True)
- 1 #statistics description recheck
- 2 manufacturing2.describe()

 \Box

	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL
count	478.000000	478.000000	478.000000	478.000000	478.000000	478.000000	478.00000	478.000000	478.000000
mean	3252.930362	10833.331121	815.457918	3362.393615	3179.283615	910.790636	15.24141	770.864833	2128.058010
std	5119.159679	18424.269519	1265.323813	5448.262644	5729.367957	1616.665020	22.86501	1206.583850	3932.977719
min	103.951000	147.985000	20.707000	15.822000	0.744000	-220.545000	0.09700	0.000000	17.002000
25%	380.115500	609.991000	95.641750	162.729250	41.594250	-26.475250	0.57800	18.588000	83.848250
50%	996.062000	2144.296000	266.421000	787.448000	476.874000	148.973000	4.07400	219.400000	352.594000
75%	3375.900000	11259.358750	833.401000	3706.668000	3449.375000	1064.965500	18.00000	871.250000	1868.225000
max	19780.000000	69396.000000	4825.430000	20276.500000	22155.800000	5929.000000	80.00000	4316.000000	15322.000000

```
1 # Add important useful varialbes back
2 manufacturing2['SIC']=manufacturing['SIC'].values
3 manufacturing2['Group']=manufacturing['Group'].values
4 manufacturing2['Zip']=manufacturing['Zip'].values
```

₽	T	cker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	0	ABT	15667.000	67887.000	3860.000	11949.000	17416.000	5041.000	80.000	4316.000	10863.000	3687.000	897
	1	AMD	4597.000	6028.000	1466.000	3721.000	685.000	583.000	11.400	982.000	2359.000	341.000	70
	2	APD	4618.300	18942.800	2248.700	4892.700	3227.400	2120.500	17.700	388.300	1820.900	1760.000	1033
	3	ATRI	132.338	262.031	45.048	73.525	0.744	40.529	0.616	42.093	17.002	36.761	3
	4	SWKS	2234.600	4839.600	851.300	1353.000	0.744	1042.100	9.000	609.700	374.000	853.600	120

▼ Calculate Financial Ratios

5 manufacturing2.head()

```
1 # Calculate financial ratios
2 manufacturing2['CashToAssets'] = (manufacturing2.Cash/manufacturing2.TA)
3 manufacturing2['CashToLinterest'] = 1/(manufacturing2.Cash/manufacturing2['Interest_Expense'])
4 manufacturing2['CashToLiability'] = (manufacturing2.Cash/manufacturing2.CL)
5 manufacturing2['CurrentRatio'] = (manufacturing2.CA/manufacturing2.CL)
6 manufacturing2['QuickRatio'] = (manufacturing2.CA-manufacturing2.Inventory)/manufacturing2.CL
7 manufacturing2['InventoryTurnover'] = 1/(manufacturing2.COGS/manufacturing2.Inventory)
8 manufacturing2['FixedAssetsTurnover'] = (manufacturing2.Sales/manufacturing2['PPRE'])
9 manufacturing2['TotalAssetsTurnover'] = (manufacturing2.Sales/manufacturing2.TA)
10 manufacturing2['LongTermDebtRatio'] = (manufacturing2['Long_Term_Debt']/manufacturing2.TA)
11 manufacturing2['InterestCoverage'] = 1/(manufacturing2.EBIT/manufacturing2['Interest_Expense'])
12 manufacturing2['ROA'] = (manufacturing2.NI/manufacturing2.TA)
13 manufacturing2['SalesPerEmployee']=1/(manufacturing2.Sales/(manufacturing2.Employees*1000))
```

1 manufacturing2.head	()	ļ
-----------------------	---	---	---

₽	Tic	ker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	0 A	ABT	15667.000	67887.000	3860.000	11949.000	17416.000	5041.000	80.000	4316.000	10863.000	3687.000	897
	1 A	MD	4597.000	6028.000	1466.000	3721.000	685.000	583.000	11.400	982.000	2359.000	341.000	7 C
	2 A	NPD	4618.300	18942.800	2248.700	4892.700	3227.400	2120.500	17.700	388.300	1820.900	1760.000	1033
	3 A	TRI	132.338	262.031	45.048	73.525	0.744	40.529	0.616	42.093	17.002	36.761	8
	4 SW	/KS	2234.600	4839.600	851.300	1353.000	0.744	1042.100	9.000	609.700	374.000	853.600	120

```
1 # Delete unnecessary variables after using
```

С→

² manufacturing2.drop(manufacturing2.columns[1:14],axis=1,inplace=True)

³ manufacturing2.describe()

	YTD	SIC	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	InventoryTurnover
count	478.000000	478.000000	478.000000	478.000000	478.000000	478.000000	478.000000	478.000000
mean	-0.279433	31.378661	0.176831	0.255843	1.473923	3.922866	3.385347	0.302313
std	0.189446	5.261398	0.182799	0.719715	2.324561	4.411587	4.540315	0.405663
min	-0.595600	20.000000	0.002358	0.000000	0.009158	0.269628	-9.415753	0.000000
25%	-0.417800	28.000000	0.058925	0.007289	0.309443	1.538205	1.056604	0.107394
50%	-0.286050	28.500000	0.121826	0.082403	0.753826	2.690610	1.904644	0.21985€
75%	-0.154375	36.000000	0.212118	0.241213	1.569809	5.063452	4.528078	0.381757
max	0.098000	39.000000	0.973483	11.580645	21.210511	66.088990	65.659864	4.454815

Industry Overview

Here are 478 companies in total under the Manufacturing Industry category. Firstly, we notice that its YTD is -0.27, which means that on average, there is an investment loss on manufacturing companies overall. However, compared with other 8 industries, the scale of YTD is the smallest. It may caused by increasing demand of facial masks and other medical and protection products during COVID-19 situation.

We observe that the means of Interest Coverage Ratio and ROA are also negative. These facts demonstrate that manufacturing companies overall are losing money across the year of 2019, and its ability to pay its interest expense is not good. Meanwhile, manufacturing has only 0.17 mean of Cash to Assets Ratio, which is less than 1. It means that its ability of covering liabilities in short term is weak. This situation is normal for manufacturing industry, since manufacturing industry invests heavily on fixed assets and is expecting to gain the returns for over a year.

▼ OLS

```
1 import statsmodels.api as sm
1 #manufacturing
2 data1=[]
3 data2=[]
4 data3=[]
5 data4=[]
6 for i in range(5,17):
    X = manufacturing2.iloc[:, i]
    y = manufacturing2['YTD']
8
    X = sm.add_constant(X) # adding a constant
    model = sm.OLS(y,X).fit()
10
11
    summary=model.summary()
12
    name=manufacturing2.iloc[:, i].name
13
    params=model.params[1]
14
    pvalue=model.pvalues[1]
    rsquared = model.rsquared
15
    data1.append(name)
16
17
    data2.append(params)
18
    data3.append(pvalue)
19
    data4.append(rsquared)
    summary_7 = pd.DataFrame(list(zip(data1, data2,data3,data4)), columns =['variable', 'params','pvalue','rsquared'])
21 summary_7
```

C⇒

	variable	params	pvalue	rsquared
0	CashToAssets	0.024926	0.599903	0.000578
1	CashToInterest	-0.009806	0.416418	0.001388
2	CashToLiability	0.008705	0.019504	0.011408
3	CurrentRatio	0.005527	0.004826	0.016567
4	QuickRatio	0.005676	0.002880	0.018505
5	InventoryTurnover	0.050815	0.017322	0.011840
6	FixedAssetsTurnover	0.000784	0.505188	0.000933
7	TotalAssetsTurnover	-0.060516	0.003666	0.017597
8	LongTermDebtRatio	-0.054490	0.107849	0.005423
9	InterestCoverage	-0.001122	0.694896	0.000323
10	ROA	0.076923	0.052768	0.007858
11	SalesPerEmployee	-0.000609	0.033799	0.009429

Analysis:

1 # Multi Regression

According to the summary result above, we noticed that CashToLiability, Current Ratio, Quick Ratio, Inventory Turnover, TotalAsset Turnover and SalesPerEmployee are statistically and economically significant determinants of stock returns. However, even though those ratios are significant, they cannot explained the YTD based on their nearly 0% r-squared. In addition, as we mentioned before, the manufacturing companies are lossing money over the year 2019, and its overall performance of total asset turnover and sales generated by each employee are not good. It reconciles with the results above that the TotalAsset Turnover and SalesPerEmployee has negative effects on stock returns.

```
2 X = manufacturing2.iloc[:,5:17]
3 y = manufacturing2['YTD']
4 X = sm.add_constant(X) # adding a constant
5 model = sm.OLS(y,X).fit()
6 model.summary()
                     OLS Regression Results
\Box
      Dep. Variable:
                     YTD
                                                   0.086
                                      R-squared:
                     OLS
         Model:
                                    Adj. R-squared: 0.062
         Method:
                                       F-statistic:
                     Least Squares
                                                   3.631
          Date:
                     Sun, 19 Apr 2020 Prob (F-statistic): 3.22e-05
          Time:
                     23:23:01
                                    Log-Likelihood: 138.88
    No. Observations: 478
                                         AIC:
                                                    -251.8
      Df Residuals:
                     465
                                          BIC:
                                                   -197.6
        Df Model:
                     12
     Covariance Type: nonrobust
                                            P>Itl [0.025 0.975]
                                std err
                          coef
                                        t
                        -0.2253
                                0.027 -8.237 0.000 -0.279 -0.172
           const
       CashToAssets
                        -0.0682
                                0.080 -0.848 0.397 -0.226 0.090
                                0.012 -0.217 0.828 -0.027 0.022
       CashToInterest
                        -0.0027
       CashToLiability
                       0.0119
                                0.007 1.746 0.081 -0.001 0.025
                        -0.0201
        CurrentRatio
                                0.011 -1.757 0.080 -0.043 0.002
                        0.0214
         QuickRatio
                                0.011 1.983 0.048 0.000 0.043
     Inventory Turnover\\
                       0.0429
                                0.022 \quad 1.973 \quad 0.049 \ 0.000 \quad 0.086
    FixedAssetsTurnover -5.62e-05 0.001 -0.047 0.963 -0.002 0.002
    LongTermDebtRatio -0.0326 0.034 -0.952 0.341 -0.100 0.035
      InterestCoverage -0.0004 0.003 -0.147 0.883 -0.006 0.005
                       ROA
     SalesPerEmployee -0.0006 0.000 -2.168 0.031 -0.001 -5.87e-05
       Omnibus:
                   16.735 Durbin-Watson: 1.906
    Prob(Omnibus): 0.000 Jarque-Bera (JB): 11.737
```

Warnings:

Skew:

Kurtosis:

0.266

2.446

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.00283

311.

Prob(JB):

Cond. No.

Analysis:

For multiple regression, we can see that Quick Ratio, TotalAssets Turnover, Inventory Turnover, ROA and SalesPerEmployee are statistically and economically significant determinants of stock returns.

Overall the variables we chosen explained 6.2% variability of YTD in the beginning of 2020. The results are not plausible. Moreover, among all multiple regression, manufacturing industry has the lowest adjusted R squared, which further highlights the fact that both positive and negative dramatic effects brought by COVID-19 to this industry make its YTD cannot be fully explained by 2019 financial ratios. Combined with analysis of single linear regression, we assume that manufacturing industry received huge influence from COVID-19. Its YTD becomes less

▼ Transportation Industry

Data Merge

```
1 #merge industry 2019 and 2020 data
2 transportation2 = pd.merge(transportation, df3, how='left', on='Ticker')
3 #drop those columns are not affect by outliers
4 transportation2.drop(['Zip','SIC','Group'],axis=1,inplace=True)
5 transportation2.head()
```

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP
	0	AAL	8206.000	59995.000	280.000	32027.000	28875.000	3706.000	133.700	1851.00	18311.000	1686.00	43732.0
	1	PNW	1030.030	18479.247	10.283	2208.320	4884.430	671.960	6.210	345.92	2078.365	538.32	14377.7
	2	ALK	2037.000	12993.000	221.000	6379.000	2703.000	1107.000	24.134	72.00	3201.000	769.00	8613.0
	3	ECOL	332.971	2231.244	41.281	421.373	822.104	74.094	3.800	0.00	180.770	33.14	536.1
	4	AEP	4077.800	75892.300	246.800	10454.600	26110.600	2592.300	17.408	1169.20	10299.100	1921.10	61095.5

▼ Check Outliers

C→

```
1 #statistics description
2 transportation2.describe()
```

÷		CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	
	count	108.000000	108.000000	108.000000	108.000000	108.000000	108.000000	108.000000	108.000000	108.0000
	mean	4071.209000	39733.981602	905.693972	8454.817167	14661.794417	2529.558019	29.321176	412.904148	5361.0199
	std	7435.049702	70039.432149	1740.570691	14358.589861	24439.510500	4838.914928	62.073499	878.937397	9301.8020
	min	29.133000	301.940000	0.248000	73.939000	0.000000	-2702.480000	0.000000	0.000000	33.6920
	25%	638.298500	3674.802250	67.187250	1387.421000	1331.386250	189.550750	4.566250	1.106250	503.3480
	50%	2046.100000	17983.623500	245.269000	3591.000000	7939.450000	1212.934500	11.558500	81.000000	2428.6825
	75%	3889.025000	46462.500000	862.750000	8241.500000	18352.500000	2639.250000	22.814750	440.650000	5547.3657
	max	54761.000000	551669.000000	12130.000000	84141.000000	173113.000000	31069.000000	495.000000	6246.000000	68911.0000

Note that there appears to be big outliers (common for financial ratios)

Evidence: Large difference in mean and median of variables. The maximum and minimum are really far away from the IQR.

▼ Transform Variables

```
1 from scipy.stats.mstats import winsorize
2 from scipy import stats
3 # Convert variables
4 # Using Winsorize to convert outliers
5 for col in transportation2.columns[1:]:
6 transportation2[col] = winsorize(transportation2[col], limits=[0.05,0.05], inplace=True)
```

- 1 #statistics description recheck
- 2 transportation2.describe()

С⇒

	CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL
count	108.000000	108.000000	108.000000	108.000000	108.000000	108.000000	108.000000	108.000000	108.000000
mean	3125.055102	33087.032074	733.497120	7082.499565	11750.211537	1977.658509	23.569306	326.311556	4398.405056
std	3409.206334	39301.956629	1048.261154	9015.737117	12612.501949	2256.806929	34.047045	498.505868	5187.311607
min	151.814000	932.182000	7.726000	264.667000	173.774000	23.189000	0.352000	0.000000	76.326000
25%	638.298500	3674.802250	67.187250	1387.421000	1331.386250	189.550750	4.566250	1.106250	503.348000
50%	2046.100000	17983.623500	245.269000	3591.000000	7939.450000	1212.934500	11.558500	81.000000	2428.682500
75%	3889.025000	46462.500000	862.750000	8241.500000	18352.500000	2639.250000	22.814750	440.650000	5547.365750
max	12037.000000	148188.000000	3561.000000	34044.000000	43413.000000	8150.000000	133.700000	1768.000000	18311.000000

```
1 # Add important useful variables back
2 transportation2['SIC']=transportation['SIC'].values
3 transportation2['Group']=transportation['Group'].values
4 transportation2['Zip']=transportation['Zip'].values
5 transportation2.head()
```

₽		Ticker	CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP
	0	AAL	8206.000	59995.000	280.000	32027.000	28875.000	3706.000	133.700	1768.00	18311.000	1686.00	43732.0
	1	PNW	1030.030	18479.247	10.283	2208.320	4884.430	671.960	6.210	345.92	2078.365	538.32	14377.7
	2	ALK	2037.000	12993.000	221.000	6379.000	2703.000	1107.000	24.134	72.00	3201.000	769.00	8613.0
	3	ECOL	332.971	2231.244	41.281	421.373	822.104	74.094	3.800	0.00	180.770	33.14	536.1
	4	AEP	4077.800	75892.300	246.800	10454.600	26110.600	2592.300	17.408	1169.20	10299.100	1921.10	61095.5

Calculate Financial Ratios

```
1 # Calculate financial ratios
2 transportation2['CashToAssets'] = (transportation2.Cash/transportation2.TA)
3 transportation2['CashToInterest'] = 1/(transportation2.Cash/transportation2['Interest_Expense'])
4 transportation2['CashToLiability'] = (transportation2.Cash/transportation2.CL)
5 transportation2['CurrentRatio'] = (transportation2.CA/transportation2.CL)
6 transportation2['QuickRatio'] = (transportation2.CA-transportation2.Inventory)/transportation2.CL
7 transportation2['InventoryTurnover'] = 1/(transportation2.COGS/transportation2.Inventory)
8 transportation2['FixedAssetsTurnover'] = (transportation2.Sales/transportation2['PP&E'])
9 transportation2['TotalAssetsTurnover'] = (transportation2.Sales/transportation2.TA)
10 transportation2['LongTermDebtRatio'] = (transportation2['Long_Term_Debt']/transportation2.TA)
11 transportation2['InterestCoverage'] = 1/(transportation2.EBIT/transportation2['Interest_Expense'])
12 transportation2['ROA'] = (transportation2.NI/transportation2.TA)
13 transportation2['SalesPerEmployee']=1/(transportation2.Sales/(transportation2.Employees*1000))
```

1 transportation2.head()

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP
	0	AAL	8206.000	59995.000	280.000	32027.000	28875.000	3706.000	133.700	1768.00	18311.000	1686.00	43732.0
	1	PNW	1030.030	18479.247	10.283	2208.320	4884.430	671.960	6.210	345.92	2078.365	538.32	14377.7
	2	ALK	2037.000	12993.000	221.000	6379.000	2703.000	1107.000	24.134	72.00	3201.000	769.00	8613.0
	3	ECOL	332.971	2231.244	41.281	421.373	822.104	74.094	3.800	0.00	180.770	33.14	536.1
	4	AEP	4077.800	75892.300	246.800	10454.600	26110.600	2592.300	17.408	1169.20	10299.100	1921.10	61095.5

- 1 # Delete unnecessary variables after using
- 2 transportation2.drop(transportation2.columns[1:14],axis=1,inplace=True)
- 3 transportation2.describe()

	YTD	SIC	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	InventoryTurnover
count	108.000000	108.000000	108.000000	108.000000	108.000000	108.000000	108.000000	108.000000
mean	-0.316982	46.787037	0.041617	3.258854	0.327216	1.098626	1.022044	0.043761
std	0.200373	2.771858	0.063590	6.099523	0.556575	0.773169	0.790226	0.048108
min	-0.714000	40.000000	0.000375	0.000855	0.004280	0.146189	0.125806	0.000000
25%	-0.435450	45.000000	0.005975	0.343851	0.045212	0.628352	0.504458	0.001430
50%	-0.275000	48.000000	0.016950	1.019857	0.153308	0.826427	0.722943	0.029940
75%	-0.159700	49.000000	0.059083	2.934685	0.357372	1.427473	1.344188	0.068471
max	-0.031700	49.000000	0.428481	36.210277	4.453163	5.303900	5.303900	0.209274

Industry Overview

The YTD's mean of transportation industry is negative for Transportation industry, and the scale is -0.31, which is relatively large, indicating that transportation industry is facing negative influences by COVID-19 situation. For example, according to government regulations, most citizens cannot go outside.

We notice that the reverse of Inventory Turnover is around 0.04, which indicates that there are around 25 days for transportation industry to convert its inventory into sales. Due to properties of transportation industry, its inventory turnover ratio is nearly the highest around all industries.

▼ OLS

 \Box

```
1 import statsmodels.api as sm
1 #transportation
2 data1=[]
3 data2=[]
4 data3=[]
5 data4=[]
6 for i in range(5,17):
    X = transportation2.iloc[:, i]
    y = transportation2['YTD']
9
    X = sm.add_constant(X) # adding a constant
10
   model = sm.OLS(y,X).fit()
11
    summary=model.summary()
    name=transportation2.iloc[:, i].name
12
13
    params=model.params[1]
14
    pvalue=model.pvalues[1]
15
    rsquared = model.rsquared
16
    data1.append(name)
17
    data2.append(params)
18
    data3.append(pvalue)
19
    data4.append(rsquared)
    summary_7 = pd.DataFrame(list(zip(data1, data2,data3,data4)), columns =['variable', 'params','pvalue','rsquared'])
21 summary_7
```

	variable	params	pvalue	rsquared
0	CashToAssets	0.177606	0.562319	0.003177
1	CashToInterest	0.004579	0.150257	0.019426
2	CashToLiability	0.048014	0.168816	0.017787
3	CurrentRatio	0.038383	0.126095	0.021935
4	QuickRatio	0.032633	0.184364	0.016563
5	InventoryTurnover	0.857053	0.032639	0.042343
6	FixedAssetsTurnover	-0.001027	0.859334	0.000298
7	TotalAssetsTurnover	0.023061	0.533889	0.003661
8	LongTermDebtRatio	-0.107448	0.357815	0.007983
9	InterestCoverage	0.017772	0.390264	0.006972
10	ROA	0.295204	0.404057	0.006577
11	SalesPerEmployee	-0.013674	0.087432	0.027307

Analysis:

Overall, we noticed that only Inventory Turnover and sales Per Employee are statistically significant determinants of stock returns. However, the scale of Sales Per Employee is very small, around -0.01, which indicates there is no meaningful economical effect on stock returns, and due to its properties, Transportation industry's performance may not rely on the average revenue generated by each employee very much. Meanwhile, the reverse of Inventory Turnover ratio has positive effects on YTD, which means that differnt from other industries requires low inventory turnover ratio, for transportation industry, the longer days of converting invetories into revenue, the more likely the company is having higher YTD.

```
1 # Multi Regression
2 X = transportation2.iloc[:,5:17]
3 y = transportation2['YTD']
4 X = sm.add_constant(X) # adding a constant
5 model = sm.OLS(y,X).fit()
6 model.summary()

C OLS Regression Results
Dep. Variable: YTD R-squared: 0.201
Model: OLS Adj. R-squared: 0.100
```

Method: Least Squares F-statistic: 1.995 Sun, 19 Apr 2020 Prob (F-statistic): 0.0329 Date: Time: 23:23:37 Log-Likelihood: 33.011 AIC: No. Observations: 108 -40.02 BIC: Df Residuals: 95 -5.153 **Df Model:** 12

Covariance Type: nonrobust

coef std err t P>Itl [0.025 0.975] -0.3814 0.087 -4.362 0.000 -0.555 -0.208 const CashToAssets -1.2650 0.740 -1.708 0.091 -2.735 0.205 **CashToInterest** 0.0040 0.003 1.181 0.241 -0.003 0.011 **CashToLiability** 0.1587 0.113 1.402 0.164 -0.066 0.383 -0.4210 0.335 -1.256 0.212 -1.087 0.245 CurrentRatio QuickRatio 0.4670 0.345 1.353 0.179 -0.218 1.152 InventoryTurnover 1.5582 0.713 2.185 0.031 0.142 2.974 FixedAssetsTurnover -0.0129 0.008 -1.528 0.130 -0.030 0.004 TotalAssetsTurnover 0.1524 0.068 2.233 0.028 0.017 0.288 LongTermDebtRatio -0.1570 0.130 -1.210 0.229 -0.415 0.101 InterestCoverage -0.0017 0.024 -0.069 0.945 -0.050 0.046 ROA 0.1833 0.372 0.492 0.624 -0.556 0.923 SalesPerEmployee -0.0158 0.008 -1.878 0.063 -0.033 0.001 Omnibus: 3.058 **Durbin-Watson:** 2.019

 Omnibus:
 3.058
 Durbin-Watson:
 2.019

 Prob(Omnibus):
 0.217
 Jarque-Bera (JB):
 3.006

 Skew:
 -0.359
 Prob(JB):
 0.222

 Kurtosis:
 2.609
 Cond. No.
 321.

Warnings

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Analysis:

For multiple regression, the results are similar to single OLS regression for transportation industry. Controlling with all ratios, <code>Sales per Employee</code>, <code>Total assets Turnover</code>, <code>Inventory Turnover</code> and <code>Cash to Assets</code> are statistically significant, which shows that the ability of generating revenue by total assets, and the ability of paying short-term liabilities are positively correlated with stock returns of Transportation industry.

Overall, our model has 10.0% adjusted R-squared value, which is not plausible and indicates the industry receives unforseen effects from COVID-19.

Wholesale Trade Industry

Data Merge

```
1 #merge industry 2019 and 2020 data
2 wholesale2 = pd.merge(wholesale, df3, how='left', on='Ticker')
3 #drop those columns are not affect by outliers
4 wholesale2.drop(['Zip','SIC','Group'],axis=1,inplace=True)
5 wholesale2.head()
```

	Ticker	CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
0	AVT	6876.336	8564.556	546.105	16851.648	1419.922	611.451	15.5	3008.424	2578.576	176.337	45
1	CAH	25747.000	40963.000	2531.000	138260.000	7579.000	1678.000	49.5	12822.000	24109.000	1363.000	235
2	GPC	7938.616	14645.629	276.992	13066.428	3627.623	1132.602	55.0	3831.183	6394.120	621.085	229
3	GWW	3555.000	6005.000	360.000	6939.000	2085.000	1388.000	25.3	1655.000	1678.000	849.000	162
4	SYY	8141.505	17966.522	513.460	47995.335	8122.058	2656.752	69.0	3216.034	6103.183	1674.271	450

▼ Check Outliers

1 #statistics description

2 wholesale2.describe()

₽		CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CI
	count	23.000000	23.000000	23.00000	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000
	mean	5312.137587	8841.764739	458.71613	21856.750957	2094.475217	745.636087	18.357696	2156.661522	4168.586413
	std	7367.656074	10959.681956	828.21377	44306.992332	2295.810443	679.179847	19.252880	3310.627948	7531.201358
	min	127.515000	390.360000	7.97300	268.751000	5.412000	9.451000	1.000000	20.941000	90.629000
	25%	1303.646500	2046.140500	31.29150	1936.946000	522.850000	184.172500	5.150000	328.515000	501.361000
	50%	2781.139500	4715.000000	154.00000	6593.092000	1335.803000	611.451000	11.261000	771.000000	1559.387500
	75%	5782.077500	10672.256000	505.60450	13899.464000	2997.246500	1094.301000	21.974000	2890.600500	3034.988000
	max	28132.054000	40963.000000	3374.19400	174543.941000	8122.058000	2656.752000	69.000000	12822.000000	29581.294000

Note that there appears to be big outliers (common for financial ratios)

Evidence: Large difference in mean and median of variables. The maximum and minimum are really far away from the IQR.

▼ Transform Variables

- 1 from scipy.stats.mstats import winsorize
- 2 from scipy import stats
- 3 # Convert variables
- 4 # Using Winsorize to convert outliers
- 5 for col in wholesale2.columns[1:]:
- 6 wholesale2[col] = winsorize(wholesale2[col], limits=[0.05,0.05], inplace=True)
- 1 #statistics description recheck
- 2 wholesale2.describe()

₽		CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	С
	count	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000	23.00000
	mean	5209.478935	8781.828391	422.321913	20281.411696	2070.889696	715.928000	17.801174	2080.757261	3931.52219
	std	7040.651932	10710.626440	702.237853	38943.703329	2232.908799	593.773574	17.691149	3063.344853	6735.85532
	min	151.420000	802.844000	14.100000	319.889000	6.003000	68.969000	2.200000	36.889000	110.44600
	25%	1303.646500	2046.140500	31.291500	1936.946000	522.850000	184.172500	5.150000	328.515000	501.36100
	50%	2781.139500	4715.000000	154.000000	6593.092000	1335.803000	611.451000	11.261000	771.000000	1559.38750
	75%	5782.077500	10672.256000	505.604500	13899.464000	2997.246500	1094.301000	21.974000	2890.600500	3034.98800
	max	25747.000000	39171.980000	2531.000000	138260.000000	7579.000000	1913.948000	55.000000	11060.254000	24109.00000

- 1 # Add important useful varialbes back
- 2 wholesale2['SIC']=wholesale['SIC'].values
- 3 wholesale2['Group']=wholesale['Group'].values
- 4 wholesale2['Zip']=wholesale['Zip'].values
- 5 wholesale2.head()

	Ticker	CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
0	AVT	6876.336	8564.556	546.105	16851.648	1419.922	611.451	15.5	3008.424	2578.576	176.337	45
1	CAH	25747.000	39171.980	2531.000	138260.000	7579.000	1678.000	49.5	11060.254	24109.000	1363.000	235
2	GPC	7938.616	14645.629	276.992	13066.428	3627.623	1132.602	55.0	3831.183	6394.120	621.085	229
3	GWW	3555.000	6005.000	360.000	6939.000	2085.000	1388.000	25.3	1655.000	1678.000	849.000	162
4	SYY	8141.505	17966.522	513.460	47995.335	7579.000	1913.948	55.0	3216.034	6103.183	1363.000	254

Calculate Financial Ratios

```
1 # Calculate financial ratios
2 wholesale2['CashToAssets'] = (wholesale2.Cash/wholesale2.TA)
3 wholesale2['CashToInterest'] = 1/(wholesale2.Cash/wholesale2['Interest_Expense'])
4 wholesale2['CashToLiability'] = (wholesale2.Cash/wholesale2.CL)
5 wholesale2['CurrentRatio'] = (wholesale2.CA/wholesale2.CL)
6 wholesale2['QuickRatio'] = (wholesale2.CA-wholesale2.Inventory)/wholesale2.CL
7 wholesale2['InventoryTurnover'] = 1/(wholesale2.COGS/wholesale2.Inventory)
8 wholesale2['FixedAssetsTurnover'] = (wholesale2.Sales/wholesale2['PP&E'])
9 wholesale2['TotalAssetsTurnover'] = (wholesale2.Sales/wholesale2.TA)
10 wholesale2['LongTermDebtRatio'] = (wholesale2.EBIT/wholesale2.TA)
11 wholesale2['InterestCoverage'] = 1/(wholesale2.EBIT/wholesale2['Interest_Expense'])
12 wholesale2['ROA'] = (wholesale2.NI/wholesale2.TA)
13 wholesale2['SalesPerEmployee']=1/(wholesale2.Sales/(wholesale2.Employees*1000))
```

1 wholesale2.head()

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	0	AVT	6876.336	8564.556	546.105	16851.648	1419.922	611.451	15.5	3008.424	2578.576	176.337	45
	1	CAH	25747.000	39171.980	2531.000	138260.000	7579.000	1678.000	49.5	11060.254	24109.000	1363.000	235
	2	GPC	7938.616	14645.629	276.992	13066.428	3627.623	1132.602	55.0	3831.183	6394.120	621.085	229
	3	GWW	3555.000	6005.000	360.000	6939.000	2085.000	1388.000	25.3	1655.000	1678.000	849.000	162
	4	SYY	8141.505	17966.522	513.460	47995.335	7579.000	1913.948	55.0	3216.034	6103.183	1363.000	254

- 1 # Delete unnecessary variables after using
- 2 wholesale2.drop(wholesale2.columns[1:14],axis=1,inplace=True)
- 3 wholesale2.describe()

₽		YTD	SIC	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	InventoryTurnover
	count	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000
	mean	-0.325178	50.347826	0.042860	0.697742	0.209778	1.961242	1.189793	0.176079
	std	0.186448	0.486985	0.049680	1.180446	0.372864	0.954535	0.596714	0.124039
	min	-0.597100	50.000000	0.007211	0.000000	0.009136	1.067941	0.609181	0.028944
	25%	-0.454350	50.000000	0.016200	0.093917	0.047140	1.337310	0.839351	0.073502
	50%	-0.361500	50.000000	0.027444	0.246974	0.099164	1.745066	1.038374	0.178524
	75%	-0.167000	51.000000	0.061680	0.567215	0.213163	2.135219	1.364622	0.240441
	max	-0.043400	51.000000	0.245800	4.792377	1.787089	4.693270	3.019463	0.511837

Industry Overview

There are 23 observations in Wholesale industry. YTD 's mean is -0.32, indicating negative stock returns since 2020 with outbreak of COVID-19.

Moreover, the mean of reverse of inventory turnover ratio inventory turnover is 0.17, which means on average, it has inventory turnover ratio around 5 to 6 for whole sale companies to convert its products into sales.

However, the mean cash to assets ratio is only 0.69, indicating that the liquidity of wholesale industry is relatively low.

1 import statsmodels.api as sm

```
1 #wholesale
2 data1=[]
3 data2=[]
4 data3=[]
5 data4=[]
6 for i in range(5,17):
    X = wholesale2.iloc[:, i]
    y = wholesale2['YTD']
8
    X = sm.add_constant(X) # adding a constant
10
   model = sm.OLS(y,X).fit()
11
    summary=model.summary()
12
    name=wholesale2.iloc[:, i].name
13
    params=model.params[1]
14
    pvalue=model.pvalues[1]
15
    rsquared = model.rsquared
16
    data1.append(name)
17
    data2.append(params)
18
    data3.append(pvalue)
19
    data4.append(rsquared)
    summary_7 = pd.DataFrame(list(zip(data1, data2,data3,data4)), columns =['variable', 'params','pvalue','rsquared'])
20
```

₽		variable	params	pvalue	rsquared
	0	CashToAssets	1.659697	0.034604	0.195574
	1	CashToInterest	-0.065698	0.048373	0.173013
	2	CashToLiability	0.146749	0.174111	0.086127
	3	CurrentRatio	0.039957	0.349121	0.041846
	4	QuickRatio	0.025718	0.708878	0.006775
	5	InventoryTurnover	-0.066151	0.841962	0.001937
	6	FixedAssetsTurnover	0.002511	0.133434	0.103987
	7	TotalAssetsTurnover	0.063140	0.020902	0.228969
	8	LongTermDebtRatio	-0.350825	0.128628	0.106469
	9	InterestCoverage	-0.329797	0.127971	0.106816
	10	ROA	0.562179	0.381373	0.036676
	11	SalesPerEmployee	-0.031743	0.360563	0.039942

Analysis:

According to the summary result above, we noticed that CashToAssets, CashToInterest and TotalAssets Turnover are statistically and economically significant determinants of stock returns. Because of the stay home policy since the breakout of COV-19, the need of wholesale industry has increased rapidly which proves these affects, which is correspond to the TotalAssets Turnover explained the stock returns most (23% r-squared).

```
1 # Multi Regression
2 X = wholesale2.iloc[:,5:17]
3 y = wholesale2['YTD']
4 X = sm.add_constant(X) # adding a constant
5 model = sm.OLS(y,X).fit()
6 model.summary()
```

₽

OLS Regression Results

YTD Dep. Variable: R-squared: 0.784 Model: OLS Adj. R-squared: 0.525 Method: Least Squares F-statistic: 3.029 Date: Mon, 20 Apr 2020 Prob (F-statistic): 0.0444 Time: 00:48:38 Log-Likelihood: 24.142 No. Observations: 23 AIC: -22.28 **Df Residuals:** 10 BIC: -7.523

Df Model: 12 **Covariance Type:** nonrobust

coef std err t P>Itl [0.025 0.975] const -0.4646 0.212 -2.191 0.053 -0.937 0.008 CashToAssets 5.0574 2.671 1.893 0.088 -0.894 11.009 CashToInterest 0.0993 0.054 1.837 0.096 -0.021 0.220 CashToLiability -0.2464 0.407 -0.605 0.559 -1.154 0.661 CurrentRatio 0.0247 0.148 0.167 0.871 -0.306 0.355 QuickRatio -0.1481 0.215 -0.688 0.507 -0.628 0.331 InventoryTurnover 0.0806 0.771 0.105 0.919 -1.637 1.798 FixedAssetsTurnover -0.0004 0.003 -0.157 0.879 -0.006 0.006 TotalAssetsTurnover 0.0695 0.037 1.861 0.092 -0.014 0.153 LongTermDebtRatio -0.7120 0.304 -2.345 0.041 -1.388 -0.036 InterestCoverage -0.0876 0.215 -0.408 0.692 -0.567 0.391 ROA 1.6599 0.702 2.364 0.040 0.095 3.225 **SalesPerEmployee** -0.0177 0.052 -0.343 0.739 -0.133 0.098

 Omnibus:
 4.207
 Durbin-Watson:
 2.104

 Prob(Omnibus):
 0.122
 Jarque-Bera (JB):
 2.461

 Skew:
 -0.749
 Prob(JB):
 0.292

 Kurtosis:
 3.568
 Cond. No.
 3.49e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.49e+03. This might indicate that there are strong multicollinearity or other numerical problems.

With the application of multiple regression on the wholesale industry, we get a fairly high adjusted R-squared of 52.5% compared with other industries, indicating that 2019 ratios can predict 2020 YTD with 52.5% explained variability. However, we cannot rule out the effect of overfitting, since we only have 23 observations for this industry. In order to have more accurate result, we will need to implement this regression with more data in the future.

We notice that cash to assets, cash to interest, total assets turnover, long-term debt ratio and ROA are significant. Except long-term debt ratio, other four significant variables are all positively related to YTD. Specifically, ROA has the greatest scale of coefficients, indicating with every 1% increase of ROA, the companies in wholesale industry will have 1.65% increase of YTD.

For Long-term debt ratio, which has negative correlation with YTD, it indicates that for wholesale industry companies, the less long-term debt ratio is, the higher its YTD. This correlation can be reconciled with the fact that wholesale companies with lower long-term debt ratios are healthier and performing better.

Retail Trade Industry

Data Merge

- 1 #merge industry 2019 and 2020 data
 2 retail2 = pd.merge(retail, df3, how='left', on='Ticker')
- 3 #drop those columns are not affect by outliers
- 4 retail2.drop(['Zip','SIC','Group'],axis=1,inplace=True)
- 5 retail2.head()

₽		Ticker	CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	0	BBY	8857.000	15591.000	2229.000	32778.000	3395.000	2053.000	125.0	5174.000	8060.000	1541.000	503
	1	CBRL	242.380	1581.225	36.884	2528.987	400.000	282.844	73.0	154.958	392.474	223.401	116
	2	WEN	554.047	4994.529	300.195	597.530	3636.145	265.297	13.3	3.891	349.698	136.940	203
	3	TGT	12902.000	42779.000	2577.000	54617.000	13613.000	4641.000	368.0	8992.000	14487.000	3281.000	2851
	4	DG	5177.868	22825.084	240.320	18760.108	10731.121	2333.304	143.0	4676.848	4543.560	1712.555	1207

▼ Check Outliers

1 #statistics description

2 retail2.describe()

₽		CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	
	count	62.000000	62.000000	62.000000	62.000000	62.000000	62.000000	62.000000	62.000000	62.0
	mean	7209.600355	22720.151935	1563.693984	26363.661274	8524.109242	2157.712403	141.320419	3610.083645	7193.8
	std	15764.594257	49125.561724	4825.030296	61080.035076	16321.534253	3991.268130	303.326452	6886.154134	16386.2
	min	30.190000	166.113000	3.372000	41.105000	0.000000	-59.778000	0.412000	0.315000	32.9
	25%	484.777000	1995.855000	86.473000	1413.407750	828.209750	153.499750	13.500000	135.338000	361.3
	50%	1921.602000	5260.134000	270.257500	4464.149000	2538.202500	622.140500	46.250000	1290.350500	1377.4
	75%	5140.572250	19485.850000	892.550000	15533.625000	8065.525000	2026.500000	128.000000	4123.584750	4527.0
	max	96334.000000	236495.000000	36092.000000	383618.000000	83625.000000	19152.000000	2200.000000	44435.000000	87812.0

Note that there appears to be big outliers (common for financial ratios)

Evidence: Large difference in mean and median of variables. The maximum and minimum are really far away from the IQR.

▼ Transform Variables

```
1 \ \mathsf{from} \ \mathsf{scipy.stats.mstats} \ \mathsf{import} \ \mathsf{winsorize}
```

- 2 from scipy import stats
- 3 # Convert variables
- 4 # Using Winsorize to convert outliers
- 5 for col in retail2.columns[1:]:
- 6 retail2[col] = winsorize(retail2[col], limits=[0.05,0.05], inplace=True)
- 1 #statistics description recheck
- 2 retail2.describe()

₽		CA	та	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	
	count	62.000000	62.000000	62.000000	62.000000	62.000000	62.000000	62.000000	62.000000	62.0000
	mean	4990.176774	14970.984145	969.352968	20781.406694	7390.636823	1981.411984	106.084919	2993.668435	4914.1188
	std	6850.657397	19367.271399	1556.885514	36908.284245	12046.213907	3344.238639	128.375586	4251.093905	7552.1347
	min	181.546000	730.721000	27.911000	352.481000	63.711000	23.495000	1.114000	3.891000	157.9230
	25%	484.777000	1995.855000	86.473000	1413.407750	828.209750	153.499750	13.500000	135.338000	361.3522
	50%	1921.602000	5260.134000	270.257500	4464.149000	2538.202500	622.140500	46.250000	1290.350500	1377.4945
	75%	5140.572250	19485.850000	892.550000	15533.625000	8065.525000	2026.500000	128.000000	4123.584750	4527.0955
	max	23485.000000	67598.000000	5683.000000	131394.000000	46875.900000	12702.000000	415.700000	14531.000000	25769.0000

- 1 # Add important useful varialbes back
- 2 retail2['SIC']=retail['SIC'].values
- 3 retail2['Group']=retail['Group'].values
- 4 retail2['Zip']=retail['Zip'].values
- 5 retail2.head()

□→		Ticker	CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	0	BBY	8857.000	15591.000	2229.000	32778.000	3395.000	2053.000	125.0	5174.000	8060.000	1541.000	503
	1	CBRL	242.380	1581.225	36.884	2528.987	400.000	282.844	73.0	154.958	392.474	223.401	116
	2	WEN	554.047	4994.529	300.195	597.530	3636.145	265.297	13.3	3.891	349.698	136.940	203
	3	TGT	12902.000	42779.000	2577.000	54617.000	13613.000	4641.000	368.0	8992.000	14487.000	3281.000	2851
	4	DG	5177.868	22825.084	240.320	18760.108	10731.121	2333.304	143.0	4676.848	4543.560	1712.555	1207

▼ Calculate Financial Ratios

```
1 # Calculate financial ratios
2 retail2['CashToAssets'] = (retail2.Cash/retail2.TA)
3 retail2['CashToInterest'] = 1/(retail2.Cash/retail2['Interest_Expense'])
4 retail2['CashToLiability'] = (retail2.Cash/retail2.CL)
5 retail2['CurrentRatio'] = (retail2.CA/retail2.CL)
6 retail2['QuickRatio'] = (retail2.CA-retail2.Inventory)/retail2.CL
7 retail2['InventoryTurnover'] = 1/(retail2.COGS/retail2.Inventory)
8 retail2['FixedAssetsTurnover'] = (retail2.Sales/retail2['PP&E'])
9 retail2['TotalAssetsTurnover'] = (retail2.Sales/retail2.TA)
10 retail2['LongTermDebtRatio'] = (retail2['Long_Term_Debt']/retail2.TA)
11 retail2['InterestCoverage'] = 1/(retail2.EBIT/retail2['Interest_Expense'])
12 retail2['ROA'] = (retail2.NI/retail2.TA)
13 retail2['SalesPerEmployee']=1/(retail2.Sales/(retail2.Employees*1000))
```

 \Box Ticker CA TA CLCash COGS Long_Term_Debt EBIT Employees Inventory NI 0 **BBY** 8857.000 15591.000 2229.000 32778.000 3395.000 2053.000 125.0 5174.000 8060.000 1541.000 503 1 **CBRL** 242.380 1581.225 36.884 2528.987 400.000 282.844 73.0 154.958 392.474 223.401 116 2 WEN 554.047 4994.529 300.195 597.530 3636.145 265.297 13.3 3.891 349.698 136.940 203 3 TGT 12902.000 42779.000 2577.000 54617.000 13613.000 4641.000 368.0 8992.000 14487.000 3281.000 2851 10731.121 2333.304 4 5177.868 22825.084 240.320 18760.108 143.0 DG 4676.848 4543.560 1712.555 1207

```
1 # Delete unnecessary variables after using
2 retail2.drop(retail2.columns[1:14],axis=1,inplace=True)
3 retail2.describe()
```

₽		YTD	SIC	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	InventoryTurnover
	count	62.000000	62.000000	62.000000	62.000000	62.000000	62.000000	62.000000	62.000000
	mean	-0.351305	56.306452	0.070625	0.420825	0.303614	1.388556	0.703901	0.271819
	std	0.224729	2.440026	0.051753	0.597944	0.259738	0.758658	0.633395	0.514098
	min	-0.746100	52.000000	0.002761	0.000000	0.009041	0.353909	-0.657679	0.005858
	25%	-0.503625	54.000000	0.024381	0.054929	0.119469	0.913356	0.272945	0.080374
	50%	-0.355700	57.000000	0.059038	0.211332	0.227453	1.149586	0.526408	0.157861
	75%	-0.221325	58.000000	0.102465	0.601228	0.418536	1.602452	0.938837	0.269055
	max	0.039900	59.000000	0.233922	3.785898	1.066491	3.993714	2.700082	3.660766

Industry Overview:

We have 62 companies for Retailing Industry. Overall, the YTD's mean is negative with -0.35, which indicates that Retailing Industry is hurt severely by COVID-19 situation since 2020 even more than transportation industry.

The reverse of inventory turnover ratio (InventoryTurnover) for retailing is around 0.27, meaning that it is efficient. Also, the fixed assets turnover ratio has mean of 4.95, which demonstrates the fact that retailing industry is very efficient compared with other industries.

However, the mean of interest coverage ratio is only 0.22, which is much lower than 1.5, indicating the overall retailing industry does not have a good ability of paying its interest expense in short term.

→ OLS

```
1 import statsmodels.api as sm
1 #retail
2 data1=[]
3 data2=[]
4 data3=[]
5 data4=[]
6 for i in range(5,17):
    X = retail2.iloc[:, i]
    y = retail2['YTD']
8
9
   X = sm.add_constant(X) # adding a constant
    model = sm.OLS(y,X).fit()
10
11
    summary=model.summary()
    name=retail? ilog[ · il name
```

```
14
    name-recarry.rroc[., r].name
13
    params=model.params[1]
14
    pvalue=model.pvalues[1]
15 rsquared = model.rsquared
   data1.append(name)
16
17
   data2.append(params)
18
   data3.append(pvalue)
19
    data4.append(rsquared)
   summary_7 = pd.DataFrame(list(zip(data1, data2,data3,data4)), columns =['variable', 'params','pvalue','rsquared'])
20
```

₽		variable	params	pvalue	rsquared
	0	CashToAssets	-0.121284	0.829385	0.000780
	1	CashToInterest	0.043914	0.365783	0.013652
	2	CashToLiability	-0.061611	0.582328	0.005071
	3	CurrentRatio	0.024926	0.515536	0.007081
	4	QuickRatio	0.001522	0.973598	0.000018
	5	InventoryTurnover	0.003732	0.947497	0.000073
	6	FixedAssetsTurnover	0.004920	0.321838	0.016359
	7	TotalAssetsTurnover	0.116071	0.007029	0.114935
	8	LongTermDebtRatio	-0.037961	0.677856	0.002896
	9	InterestCoverage	-0.105760	0.093122	0.046279
	10	ROA	0.548613	0.265493	0.020622
	11	SalesPerEmployee	-0.005980	0.138212	0.036261

Analysis:

For single variabel OLS analysis, we can see that only <code>Total</code> assets turnover and <code>Interest</code> Coverage rates are significant. Also, its scales have economical effect on <code>YTD</code>. With higher total assets turnover, the companies in Retailing will have higher stock returns. In contrast, the higher Interest Coverage ratio will result in lower stock returns. In other words, in general, for companies in retailing industry, the harder the companies are able to cover its interest expenses, the higher <code>YTD</code> they will be. It reconciles the fact that most retailing companies are having low interest coverage ratios.

```
1 # Multi Regression
2 X = retail2.iloc[:,5:17]
3 y = retail2['YTD']
4 X = sm.add_constant(X) # adding a constant
5 model = sm.OLS(y,X).fit()
6 model.summary()
```

C→

OLS Regression Results

Dep. Variable: YTD R-squared: 0.265 Adj. R-squared: 0.085 Model: OLS Method: Least Squares F-statistic: 1.470 Date: Mon, 20 Apr 2020 Prob (F-statistic): 0.168 00:49:42 Time: Log-Likelihood: 14.617 No. Observations: 62 AIC: -3.234 **Df Residuals:** BIC: 24.42 49

Df Model: 12
Covariance Type: nonrobust

coef std err t P>Itl [0.025 0.975] -0.7386 0.165 -4.480 0.000 -1.070 -0.407 const CashToAssets -0.9978 1.193 -0.836 0.407 -3.395 1.400 CashToInterest 0.0578 0.060 0.968 0.338 -0.062 0.178 CashToLiability 0.0618 0.286 0.217 0.829 -0.512 0.636 CurrentRatio 0.0635 0.076 0.835 0.408 -0.089 0.216 QuickRatio 0.0412 0.118 0.348 0.730 -0.197 0.279 InventoryTurnover 0.0708 0.101 0.704 0.485 -0.131 0.273 FixedAssetsTurnover -0.0024 0.007 -0.345 0.732 -0.017 0.012 TotalAssetsTurnover 0.1982 0.072 2.753 0.008 0.054 0.343 **LongTermDebtRatio** 0.0898 0.119 0.753 0.455 -0.150 0.330 InterestCoverage -0.0851 0.079 -1.076 0.287 -0.244 0.074 ROA -0.1233 0.663 -0.186 0.853 -1.455 1.209 SalesPerEmployee -0.0019 0.005 -0.411 0.683 -0.011 0.007

 Omnibus:
 0.565
 Durbin-Watson:
 2.050

 Prob(Omnibus):
 0.754
 Jarque-Bera (JB):
 0.682

 Skew:
 0.087
 Prob(JB):
 0.711

 Kurtosis:
 2.517
 Cond. No.
 485.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Analysis:

For multiple regression, controlling all ratios, no variables are significant except Total Asset Turnover, which reconciles our single variable OLS analysis.

However, the adjusted Rsquared for retailing industry is only 0.085, indicating that our regression did a poor estimate for YTD in 2020 using 2019 data. It unveils the fact that COVID-19, as a black swan, has a huge unforseen effect on Retailing industry.

Finance Industry

Data Merge

```
1 #merge industry 2019 and 2020 data
2 finance2 = pd.merge(finance, df3, how='left', on='Ticker')
3 #drop those columns are not affect by outliers
4 finance2.drop(['Zip','SIC','Group'],axis=1,inplace=True)
```

5 finance2.head()

₽	Ti	cker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	0	AXP	1220.1695	198321.000	23932.000	36250.000	43003.000	9582.000	64.500	0.000	1270.0465	6759.000	48
	1	AFL	1220.1695	152768.000	4896.000	17594.000	6565.000	4735.000	11.729	0.000	1270.0465	3304.000	5
	2	AIG	1220.1695	525064.000	2856.000	37687.000	36083.000	6617.000	46.000	0.000	1270.0465	3348.000	26
	3	ANAT	1220.1695	28597.566	452.001	3322.606	157.997	694.377	2.123	0.000	1270.0465	620.363	1
	4 E	BPOP	1220.1695	52115.324	388.311	534.878	1146.637	1457.182	8.560	181.275	1270.0465	671.135	7

▼ Check Outliers

```
1 #statistics description
2 finance2.describe()
```

₽

	CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	
count	273.000000	2.730000e+02	273.000000	273.000000	273.000000	273.000000	273.000000	273.000000	273.0
mean	2430.459661	8.593982e+04	2298.575890	5346.007718	9245.877853	2129.955315	12.839564	4516.533659	2398.6
std	6499.997589	2.967833e+05	9581.950661	17133.796898	32432.891105	6311.719856	36.610811	35540.591601	6738.€
min	58.826000	2.572000e+02	0.300000	1.888000	0.000000	-861.000000	0.000000	0.000000	13.4
25%	1220.169500	5.620319e+03	78.618000	97.257000	234.664000	147.499000	0.779000	0.000000	1270.0
50%	1220.169500	1.340062e+04	215.469000	493.031000	1117.151000	384.532000	2.123000	2.141000	1270.0
75%	1220.169500	3.788536e+04	808.036000	2071.955000	5531.000000	1401.601000	7.365000	58.162000	1270.0
max	67979.000000	2.687379e+06	133546.000000	184557.000000	261720.000000	63197.000000	325.000000	402390.000000	68816.0

Note that there appears to be big outliers (common for financial ratios)

Evidence: Large difference in mean and median of variables. The maximum and minimum are really far away from the IQR.

▼ Transform Variables

```
1 from scipy.stats.mstats import winsorize
2 from scipy import stats
3 # Convert variables
4 # Using Winsorize to convert outliers
5 for col in finance2.columns[1:]:
6 finance2[col] = winsorize(finance2[col], limits=[0.05,0.05], inplace=True)
```

- 1 #statistics description recheck
- 2 finance2.describe()

_										
₽		CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL
	count	273.000000	273.000000	273.000000	273.000000	273.000000	273.000000	273.000000	273.000000	273.000000
	mean	1512.229467	49849.359084	1356.439121	3619.390176	5102.355974	1369.175033	8.856850	233.366297	1507.583603
	std	1327.460206	92217.713061	2901.729528	7607.727369	8890.785488	2158.824038	15.458293	646.097789	1216.433989
	min	607.600000	1338.986000	19.032000	27.078000	20.964000	39.728000	0.077000	0.000000	305.558000
	25%	1220.169500	5620.319000	78.618000	97.257000	234.664000	147.499000	0.779000	0.000000	1270.046500
	50%	1220.169500	13400.618000	215.469000	493.031000	1117.151000	384.532000	2.123000	2.141000	1270.046500
	75%	1220.169500	37885.361000	808.036000	2071.955000	5531.000000	1401.601000	7.365000	58.162000	1270.046500
	max	7068.000000	381508.000000	12123.000000	29360.000000	36083.000000	8144.000000	56.600000	2661.000000	6436.451000

- 1 # Add important useful varialbes back
- 2 finance2['SIC']=finance['SIC'].values
- 3 finance2['Group']=finance['Group'].values
- 4 finance2['Zip']=finance['Zip'].values
- 5 finance2.head()

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	0	AXP	1220.1695	198321.000	12123.000	29360.000	36083.000	8144.000	56.600	0.000	1270.0465	5369.000	48
	1	AFL	1220.1695	152768.000	4896.000	17594.000	6565.000	4735.000	11.729	0.000	1270.0465	3304.000	5
	2	AIG	1220.1695	381508.000	2856.000	29360.000	36083.000	6617.000	46.000	0.000	1270.0465	3348.000	26
	3	ANAT	1220.1695	28597.566	452.001	3322.606	157.997	694.377	2.123	0.000	1270.0465	620.363	1
	4	ВРОР	1220.1695	52115.324	388.311	534.878	1146.637	1457.182	8.560	181.275	1270.0465	671.135	7

▼ Calculate Financial Ratios

- 1 # Calculate financial ratios
- 2 finance2['CashToAssets'] = (finance2.Cash/finance2.TA)
- 3 finance2['CashToInterest'] = 1/(finance2.Cash/finance2['Interest_Expense'])
- 4 finance2['CashToLiability'] = (finance2.Cash/finance2.CL)
- 5 finance2['CurrentRatio'] = (finance2.CA/finance2.CL)

```
6 finance2['QuickRatio'] = (finance2.CA-finance2.Inventory)/finance2.CL
7 finance2['InventoryTurnover'] = 1/(finance2.COGS/finance2.Inventory)
8 finance2['FixedAssetsTurnover'] = (finance2.Sales/finance2['PP&E'])
9 finance2['TotalAssetsTurnover'] = (finance2.Sales/finance2.TA)
10 finance2['LongTermDebtRatio'] = (finance2['Long_Term_Debt']/finance2.TA)
11 finance2['InterestCoverage'] = 1/(finance2.EBIT/finance2['Interest_Expense'])
12 finance2['ROA'] = (finance2.NI/finance2.TA)
13 finance2['SalesPerEmployee']=1/(finance2.Sales/(finance2.Employees*1000))
```

1 finance2.head()

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	
	0	AXP	1220.1695	198321.000	12123.000	29360.000	36083.000	8144.000	56.600	0.000	1270.0465	5369.000	48
	1	AFL	1220.1695	152768.000	4896.000	17594.000	6565.000	4735.000	11.729	0.000	1270.0465	3304.000	5
	2	AIG	1220.1695	381508.000	2856.000	29360.000	36083.000	6617.000	46.000	0.000	1270.0465	3348.000	26
	3	ANAT	1220.1695	28597.566	452.001	3322.606	157.997	694.377	2.123	0.000	1270.0465	620.363	1
	4	BPOP	1220.1695	52115.324	388.311	534.878	1146.637	1457.182	8.560	181.275	1270.0465	671.135	7

- 1 # Delete unnecessary variables after using
- 2 finance2.drop(finance2.columns[1:14],axis=1,inplace=True)
- 3 finance2.head()

₽		Ticker	YTD	SIC	Group	Zip	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	Inventor:
	0	AXP	-0.4088	61	7	10285	0.061128	0.067862	9.545320	0.960728	0.960728	
	1	AFL	-0.3873	63	7	31999	0.032049	0.046569	3.854977	0.960728	0.960728	
	2	AIG	-0.6014	63	7	10038	0.007486	0.288058	2.248737	0.960728	0.960728	
	3	ANAT	-0.4510	63	7	77550	0.015806	0.000000	0.355893	0.960728	0.960728	
	4	BPOP	-0.4596	60	7	918	0.007451	0.000000	0.305745	0.960728	0.817997	

- 1 #statistics description
- 2 finance2.describe()

₽		YTD	sic	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	InventoryTurnover
	count	273.000000	273.000000	273.000000	273.000000	273.000000	273.000000	273.000000	273.000000
	mean	-0.382985	62.175824	0.036116	0.619733	0.953641	1.045438	0.866102	0.365608
	std	0.152047	2.641273	0.063457	1.574531	2.125765	0.350554	0.624916	1.072643
	min	-0.610000	60.000000	0.001255	0.000000	0.014985	0.465368	-1.134471	0.000000
	25%	-0.497800	60.000000	0.009421	0.000000	0.069807	0.960728	0.913397	0.000000
	50%	-0.407900	61.000000	0.014618	0.000000	0.169654	0.960728	0.959042	0.010819
	75%	-0.285100	63.000000	0.031777	0.273782	0.590530	0.960728	0.960728	0.310016
	max	-0.043500	67.000000	0.462440	11.241099	9.545320	4.270368	4.160778	11.101764

Industry Overview

Here are 273 companies in total under Finance catergory. It is one of the largest group in the dataset. YTD of financial industry has a mean of negative -0.38, indicating the lowest stock return since 2020 by effects from COVID-19 across other industries.

Meanwhile, we think the ratios related to the interests, current assets(CA) and current liability(CL) wouldn't be so accurate, because we are missing some of the data from WRDS data resources. Although we tried lots of different method to replace the NaNs, we didn't find any better solution than replace with industrial median.

Overall, finance companies has a great operation in liquity and assest management. 2019 is still a bull stock market.

▼ OLS

```
1 import statsmodels.api as sm
```

- 1 #finance
- 2 data1=[]

[→

```
3 data2=[]
4 data3=[]
5 data4=[]
6 for i in range(5,17):
7 X = finance2.iloc[:, i]
    y = finance2['YTD']
9
   X = sm.add_constant(X) # adding a constant
10 model = sm.OLS(y,X).fit()
11
    summary=model.summary()
12
    name=finance2.iloc[:, i].name
    params=model.params[1]
13
14
    pvalue=model.pvalues[1]
15
    rsquared = model.rsquared
16
    data1.append(name)
    data2.append(params)
17
18
   data3.append(pvalue)
19
    data4.append(rsquared)
    summary_7 = pd.DataFrame(list(zip(data1, data2,data3,data4)), columns =['variable', 'params','pvalue','rsquared'])
21 summary_7
```

	variable	params	pvalue	rsquared
0	CashToAssets	0.492619	0.000631	0.042270
1	CashToInterest	-0.004718	0.421406	0.002387
2	CashToLiability	-0.007191	0.097350	0.010109
3	CurrentRatio	0.044019	0.094228	0.010300
4	QuickRatio	0.030343	0.039481	0.015553
5	InventoryTurnover	-0.013149	0.126282	0.008605
6	FixedAssetsTurnover	-0.000155	0.247684	0.004928
7	TotalAssetsTurnover	0.166319	0.000027	0.063042
8	LongTermDebtRatio	0.049621	0.268319	0.004520
9	InterestCoverage	-0.021565	0.243984	0.005006
10	ROA	1.206439	0.000010	0.069630
11	SalesPerEmployee	-0.000793	0.893852	0.000066

Analysis:

According to the summary result above, we notice that Cash to Assets, Quick Ratio, Total Assets Turnover and ROA are statistically and economically significant (with 0.05 threshold) determinants of finance stock returns. They are moving in the same direction with the stock returns because with the global spreading of the decrease, the economic development has been sharply harmed. Financial companies are mostly working closely with investment and trading. Their total assets are shrinking rapidly due to the stock market and global layoff. Thus, the balance sheet variables related to the current operations are affected mostly by the stock market crash. Special notes for the result, because we replaced lots of Current Asset and Current Liability missing data with median, the model result might not be so accurate. We think the real situation might be even worse than what we currently have.

```
1 # Multi Regression
2 X = finance2.iloc[:,5:17]
3 y = finance2['YTD']
4 X = sm.add_constant(X) # adding a constant
5 model = sm.OLS(y,X).fit()
6 model.summary()
```

 \Box

OLS Regression Results

Dep. Variable: YTD R-squared: 0.115 OLS Model: Adj. R-squared: 0.074 Method: Least Squares F-statistic: 2.824 Date: Mon, 20 Apr 2020 Prob (F-statistic): 0.00118 Log-Likelihood: 144.07 Time: 00:50:20 No. Observations: 273 AIC: -262.1 **Df Residuals:** BIC: 260 -215.2

Df Model: 12
Covariance Type: nonrobust

	coef	std err	t	P>ItI	[0.025	0.975]
const	-0.3889	0.035	-11.093	0.000	-0.458	-0.320
CashToAssets	0.2400	0.210	1.142	0.254	-0.174	0.654
CashToInterest	-0.0079	0.008	-1.033	0.302	-0.023	0.007
CashToLiability	-0.0114	0.006	-1.959	0.051	-0.023	5.95e-05
CurrentRatio	-0.0018	0.041	-0.043	0.966	-0.083	0.079
QuickRatio	-0.0145	0.026	-0.567	0.571	-0.065	0.036
InventoryTurnover	-0.0112	0.010	-1.149	0.252	-0.030	800.0
FixedAssetsTurnover	-2.569e-05	0.000	-0.154	0.878	-0.000	0.000
TotalAssetsTurnover	0.0801	0.049	1.620	0.106	-0.017	0.178
LongTermDebtRatio	0.0467	0.065	0.721	0.471	-0.081	0.174
InterestCoverage	-0.0226	0.025	-0.890	0.374	-0.073	0.027
ROA	0.5989	0.358	1.671	0.096	-0.107	1.304
SalesPerEmployee	-0.0005	0.006	-0.074	0.941	-0.013	0.012

 Omnibus:
 6.215
 Durbin-Watson:
 2.103

 Prob(Omnibus):
 0.045
 Jarque-Bera (JB):
 6.380

 Skew:
 0.359
 Prob(JB):
 0.0412

 Kurtosis:
 2.786
 Cond. No.
 3.00e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Analysis:

As we expected, the finance industry adjusted r squared runs nearly the worst among all 9 industries we analyzed with (0.074, only slightly higher than manufacturing industry). Based on the P-value result from the multiple regression, reversed <code>cash to Liability, ROA</code> and <code>Total Asset Turnover</code> ratios are related to stock return. That also reveals the financial industry is highly related to the stock market. The result is reasonable because with the COVID-19, in these short four months, we saw lots of unpredictable events happened at the same time. President Trumps's announcements, CDC's actions, and oil prices drop all affected the investors' confidence in the stock market.

Service Industry

Data Merge

- 1 #merge industry 2019 and 2020 data
 2 service2 = pd.merge(service, df3, how='left', on='Ticker')
 3 #drop those columns are not affect by outliers
- 4 service2.drop(['Zip','SIC','Group'],axis=1,inplace=True)
- 5 service2.head()

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP
	0	ADSK	2659.300	6179.300	1774.700	238.600	2046.800	366.800	10.10	0.000	3219.200	214.500	600.5
	1	ADP	34342.300	41887.700	1949.200	7677.600	2002.200	3080.800	58.00	0.000	32627.700	2292.800	764.2
	2	RHI	1628.849	2311.408	270.478	3479.649	202.200	620.390	221.60	0.000	940.692	454.433	369.4
	3	MGLN	1673.043	3092.173	325.249	6932.257	724.542	95.657	10.10	44.962	910.147	55.902	188.8
	4	CHDN	221.200	2551.000	96.200	880.300	1491.100	233.800	0.55	0.000	301.200	137.500	937.3

▼ Check Outliers

- 1 #statistics description
- 2 service2.describe()

COGS Long_Term_Debt CA TA Cash EBIT Employees Inventory 225.000000 225.000000 225.000000 225.000000 225.000 count 225.000000 225.000000 225.000000 225.000000 23.902340 4231.873404 10616.314031 907.609129 2398.350738 2917.347538 1000.198622 55.964667 2428.795 mean 31035.316260 16661.303517 4320.652040 61.317261 6971.188 std 2231.266928 6386.557421 7703.751195 255.953781 min 5.520000 17.837000 0.402000 0.000000 0.000000 -1226.225000 0.037000 0.000000 12.139 25% 352.457000 1014.552000 93.628000 167.740000 120.497000 11.933000 1.987000 0.000000 204.544 50% 920.707000 2370.900000 236.232000 487.410000 572.944000 128.063000 5.949500 0.000000 573.139 75% 2134.200000 1752.453 7335.358000 686.000000 1744.919000 2062.670000 566.612000 17.500000 5.738000 492.000000 2063.000000 175552.000000 286556.000000 19079.000000 79107.000000 42959.000000 69420.000 max 60245.000000

Note that there appears to be big outliers (common for financial ratios)

Evidence: Large difference in mean and median of variables. The maximum and minimum are really far away from the IQR.

▼ Transform Variables

C

```
1 from scipy.stats.mstats import winsorize
2 from scipy import stats
3 # Convert variables
4 # Using Winsorize to convert outliers
5 for col in service2.columns[1:]:
6 service2[col] = winsorize(service2[col], limits=[0.05,0.05], inplace=True)
```

- 1 #statistics description recheck
- 2 service2.describe()

₽		CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	
	count	225.000000	225.000000	225.000000	225.000000	225.000000	225.000000	225.000000	225.000000	225.000000	
	mean	2273.599391	7121.107227	684.402982	1629.133760	2170.480684	473.888529	15.496411	15.473787	1619.823844	
	std	3558.218092	10611.670669	1073.063985	2470.575844	3497.489900	789.536866	21.727740	37.148995	2605.605093	
	min	147.223000	372.279000	18.032000	46.200000	0.109000	-170.946000	0.779000	0.000000	55.754000	
	25%	352.457000	1014.552000	93.628000	167.740000	120.497000	11.933000	1.987000	0.000000	204.544000	
	50%	920.707000	2370.900000	236.232000	487.410000	572.944000	128.063000	5.949500	0.000000	573.139000	
	75%	2134.200000	7335.358000	686.000000	1744.919000	2062.670000	566.612000	17.500000	5.738000	1752.453000	
	max	14584.700000	41887.700000	4226.000000	8729.100000	12502.700000	2812.000000	81.000000	141.518000	10382.000000	2

- 1 # Add important useful variables back
 2 service2['SIC']=service['SIC'].values
- 3 service2['Group']=service['Group'].values
- 4 service2['Zip']=service['Zip'].values
- 5 service2.head()

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP
	0	ADSK	2659.300	6179.300	1774.700	238.600	2046.800	366.800	10.100	0.000	3219.200	214.500	600.5
	1	ADP	14584.700	41887.700	1949.200	7677.600	2002.200	2812.000	58.000	0.000	10382.000	2292.800	764.2
	2	RHI	1628.849	2311.408	270.478	3479.649	202.200	620.390	81.000	0.000	940.692	454.433	369.4
	3	MGLN	1673.043	3092.173	325.249	6932.257	724.542	95.657	10.100	44.962	910.147	55.902	188.8
	4	CHDN	221.200	2551.000	96.200	880.300	1491.100	233.800	0.779	0.000	301.200	137.500	937.3

▼ Calculate Financial Ratios

- 1 # Calculate financial ratios
- 2 service2['CashToAssets'] = (service2.Cash/service2.TA)
- 3 service2['CashToInterest'] = 1/(service2.Cash/service2['Interest_Expense'])
- 4 service2['CashToLiability'] =(service2.Cash/service2.CL)
- 5 service2['CurrentRatio'] = (service2.CA/service2.CL)

6 service2['QuickRatio'] = (service2.CA-service2.Inventory)/service2.CL
7 service2['InventoryTurnover'] = 1/(service2.COGS/service2.Inventory)
8 service2['FixedAssetsTurnover'] = (service2.Sales/service2['PP&E'])
9 service2['TotalAssetsTurnover'] = (service2.Sales/service2.TA)
10 service2['LongTermDebtRatio'] = (service2['Long_Term_Debt']/service2.TA)
11 service2['InterestCoverage'] = 1/(service2.EBIT/service2['Interest_Expense'])
12 service2['ROA'] = (service2.NI/service2.TA)
13 service2['SalesPerEmployee']=1/(service2.Sales/(service2.Employees*1000))

1 service2.head()

₽		Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP
	0	ADSK	2659.300	6179.300	1774.700	238.600	2046.800	366.800	10.100	0.000	3219.200	214.500	600.5
	1	ADP	14584.700	41887.700	1949.200	7677.600	2002.200	2812.000	58.000	0.000	10382.000	2292.800	764.2
	2	RHI	1628.849	2311.408	270.478	3479.649	202.200	620.390	81.000	0.000	940.692	454.433	369.4
	3	MGLN	1673.043	3092.173	325.249	6932.257	724.542	95.657	10.100	44.962	910.147	55.902	188.8
	4	CHDN	221.200	2551.000	96.200	880.300	1491.100	233.800	0.779	0.000	301.200	137.500	937.3

- 1 # Delete unnecessary variables after using
- 2 service2.drop(service2.columns[1:14],axis=1,inplace=True)
- 3 service2.head()

₽		Ticker	YTD	SIC	Group	Zip	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	Inventor
	0	ADSK	-0.2423	73	8	94903	0.287201	0.000000	0.551286	0.826075	0.826075	
	1	ADP	-0.2459	73	8	7068	0.046534	0.066643	0.187748	1.404806	1.404806	
	2	RHI	-0.3987	73	8	94025	0.117019	0.000000	0.287531	1.731543	1.731543	
	3	MGLN	-0.4667	87	8	85034	0.105185	0.111155	0.357359	1.838212	1.788811	
	4	CHDN	-0.4136	79	8	40222	0.037711	0.737006	0.319389	0.734396	0.734396	

1 service2.describe()

₽		YTD	sic	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	InventoryTurnover
	count	225.00000	225.000000	225.000000	225.000000	225.000000	225.000000	225.000000	225.000000
	mean	-0.27907	75.191111	0.137476	0.296136	0.696980	1.895291	1.871889	0.018344
	std	0.19964	4.392964	0.124663	0.744919	0.764347	1.184515	1.177046	0.059854
	min	-0.63090	70.000000	0.002741	0.000000	0.023658	0.468324	0.468324	0.000000
	25%	-0.42880	73.000000	0.048775	0.018683	0.244905	1.169627	1.134980	0.000000
	50%	-0.26910	73.000000	0.101171	0.100593	0.431943	1.515876	1.513464	0.000000
	75%	-0.14720	75.000000	0.180226	0.268475	0.848138	2.416341	2.398153	0.012084
	max	0.08720	87.000000	0.634871	9.061038	5.171215	9.153507	9.153507	0.535278

Industry Overview

There are 225 companies in Service industry. The YTD mean is -0.27, indicating that it has negative stock returns since 2020, and implies that it receives negative effects from COVID. However, compared with other industries' YTD in 2020, Service Industry has the smallest decrease YTD.

Specifically, service industry has very low reservse of inventory turnover ratio (InventoryTurnover), whose mean is 0.018. In other words, its inventory turnover ratio is around 55, which is the slowest one company compared with all industries in converting inventories into sales. We think it is due to the properties of service industry: most of services industry does not have too many inventories, except its storage of beverages and foods, such as Hotels.

Also, the reverse of interest coverage ratio (interestCoverage) has mean of 0.13, indicating its interest coverage ratio is around 7, indicating high abilities of paying liabilities in short term. Specifically, according to industry ratios in 2019, legal services in services industry has the greatest positive interest coverage ratio, which is around 47.87.

Project - Colaboratory

```
1 import statsmodels.api as sm
1 #service
2 data1=[]
3 data2=[]
4 data3=[]
5 data4=[]
6 for i in range(5,17):
    X = service2.iloc[:, i]
8
    y = service2['YTD']
    X = sm.add_constant(X) # adding a constant
    model = sm.OLS(y,X).fit()
10
    summary=model.summary()
11
    name=service2.iloc[:, i].name
12
13
    params=model.params[1]
14
    pvalue=model.pvalues[1]
    rsquared = model.rsquared
15
16
    data1.append(name)
17
    data2.append(params)
18
    data3.append(pvalue)
19
    data4.append(rsquared)
    summary_7 = pd.DataFrame(list(zip(data1, data2,data3,data4)), columns =['variable', 'params','pvalue','rsquared'])
20
21 summary_7
```

	variable	params	pvalue	rsquared
0	CashToAssets	0.315510	2.998025e-03	0.038816
1	CashToInterest	-0.068123	1.156731e-04	0.064612
2	CashToLiability	0.035102	4.403135e-02	0.018061
3	CurrentRatio	0.035387	1.538949e-03	0.044083
4	QuickRatio	0.035962	1.378265e-03	0.044956
5	InventoryTurnover	0.068789	7.583411e-01	0.000425
6	FixedAssetsTurnover	0.001761	1.783473e-01	0.008108
7	TotalAssetsTurnover	-0.053618	1.224245e-01	0.010666
8	LongTermDebtRatio	-0.335047	3.239989e-08	0.128323
9	InterestCoverage	-0.041604	8.166161e-02	0.013532
10	ROA	0.072268	5.251999e-01	0.001813
11	SalesPerEmployee	-0.002392	3.014783e-01	0.004787

Analysis:

 \Box

4/19/2020

According to the summary result above, we noticed that Cash to assets, Cash to Interest, LongTermDebtRatio and Current Ratio are statistically and economically significant determinants of stock returns. From the above variables, LongTermDebtRatio is positively correlated to YTD. It indicates that it takes longer for the service company to convert the inventories to revenues. It moving in the same direction as YTD. Due to COVID-19, the service industry is facing huge challenges in maintaining their operations. Duet the loss of customers and closed for all physical stores. Even many big companies like AMC movie theater are plan to start their bankruptcy protection. Their long term debt will be big issues and some companies might not be able to pay back the money.

```
1 X = service2.iloc[:,5:17]
2 y = service2['YTD']
3 X = sm.add_constant(X) # adding a constant
4 model = sm.OLS(y,X).fit()
5 model.summary()
```

C→

OLS Regression Results

Dep. Variable: YTD R-squared: 0.216 Model: OLS Adj. R-squared: 0.172 Method: Least Squares F-statistic: 4.877 Date: Mon, 20 Apr 2020 Prob (F-statistic): 4.35e-07 Time: 00:50:56 Log-Likelihood: 71.194 No. Observations: 225 AIC: -116.4 **Df Residuals:** BIC: -71.98 212

Df Model: 12
Covariance Type: nonrobust

P>Itl [0.025 0.975] coef std err t const -0.2066 0.042 -4.870 0.000 -0.290 -0.123 CashToAssets 0.3944 0.166 2.371 0.019 0.067 0.722 CashToInterest -0.0318 0.018 -1.759 0.080 -0.067 0.004 CashToLiability -0.0741 0.034 -2.191 0.030 -0.141 -0.007 CurrentRatio 0.1900 0.279 0.680 0.497 -0.361 0.741 QuickRatio -0.1563 0.280 -0.558 0.578 -0.709 0.396 InventoryTurnover -0.2508 0.329 -0.762 0.447 -0.900 0.398 FixedAssetsTurnover 0.0015 0.001 1.016 0.311 -0.001 0.004 TotalAssetsTurnover -0.1213 0.040 -3.007 0.003 -0.201 -0.042 LongTermDebtRatio -0.2593 0.064 -4.024 0.000 -0.386 -0.132 InterestCoverage -0.0127 0.023 -0.556 0.579 -0.058 0.032 ROA 0.1522 0.113 1.352 0.178 -0.070 0.374 **SalesPerEmployee** 0.0010 0.002 0.442 0.659 -0.004 0.006

 Omnibus:
 2.115
 Durbin-Watson:
 1.873

 Prob(Omnibus):
 0.347
 Jarque-Bera (JB):
 2.033

 Skew:
 0.160
 Prob(JB):
 0.362

 Kurtosis:
 2.661
 Cond. No.
 573.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Analysis: With the application of multiple regression on the service industry, Cash to assets, Cash to Liability, LongTermDebt Ratio and TotalAssetsTurnover are statistically and economically significant determinants of stock returns, which make sense in the service industry under the COVID-19 situation.

In reality, the service industry have suffered heavy losses in the epidemic. The "Stay-at-home" cost the company a large number of customers. Relatively speaking, this is an impact on the overall industry, so there will be no significant changes due to individual differences. This is why adjusted Rsquared is only 0.17.

Public Administration Industry

Data Merge

```
1 #merge industry 2019 and 2020 data
2 administration2 = pd.merge(administration, df3, how='left', on='Ticker')
```

- $\ensuremath{\text{3}}\xspace$ #drop those columns are not affect by outliers
- 4 administration2.drop(['Zip','SIC','Group'],axis=1,inplace=True)
- 5 administration2

₽	Tick	er	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP&E	£
	0 HC	N 2	24303.0	58679.0	9067.0	22975.0	11644.0	7397.0	113.000	4421.0	18098.0	6143.0	5998.0	36
	1 BRK	.B 2	24303.0	817729.0	64175.0	211678.0	98830.0	105481.0	391.539	19852.0	18098.0	81417.0	180282.0	327
	2 (GE 2	24303.0	266048.0	36394.0	67328.0	70403.0	8902.0	205.000	14104.0	18098.0	-4979.0	46186.0	95
	3 II	EP 2	24303.0	24639.0	3794.0	8280.0	8839.0	-1386.0	28.033	1812.0	18098.0	-1098.0	5163.0	8

▼ Check Outliers

```
1 #statistics description
```

С⇒

² administration2.describe()

	CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	
count	4.0	4.000000	4.00000	4.000000	4.000000	4.000000	4.000000	4.000000	4.0	
mean	24303.0	291773.750000	28357.50000	77565.250000	47429.000000	30098.500000	184.393000	10047.250000	18098.0	2037
std	0.0	366508.242904	27826.65126	92864.726462	44495.774339	50459.372307	155.862679	8407.623024	0.0	4095
min	24303.0	24639.000000	3794.00000	8280.000000	8839.000000	-1386.000000	28.033000	1812.000000	18098.0	-497
25%	24303.0	50169.000000	7748.75000	19301.250000	10942.750000	5201.250000	91.758250	3768.750000	18098.0	-206
50%	24303.0	162363.500000	22730.50000	45151.500000	41023.500000	8149.500000	159.000000	9262.500000	18098.0	252
75%	24303.0	403968.250000	43339.25000	103415.500000	77509.750000	33046.750000	251.634750	15541.000000	18098.0	2496
max	24303.0	817729.000000	64175.00000	211678.000000	98830.000000	105481.000000	391.539000	19852.000000	18098.0	8141

Note that there appears to be big outliers (common for financial ratios)

Evidence: Large difference in mean and median of variables. The maximum and minimum are really far away from the IQR.

Transform Variables

```
1 from scipy.stats.mstats import winsorize
2 from scipy import stats
3 # Convert variables
4 # Using Winsorize to convert outliers
5 for col in administration2.columns[1:]:
6 administration2[col] = winsorize(administration2[col], limits=[0.05,0.05], inplace=True)
```

- 1 #statistics description recheck
- 2 administration2.describe()

₽		CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	
	count	4.0	4.000000	4.00000	4.000000	4.000000	4.000000	4.000000	4.000000	4.0	
	mean	24303.0	291773.750000	28357.50000	77565.250000	47429.000000	30098.500000	184.393000	10047.250000	18098.0	2037
	std	0.0	366508.242904	27826.65126	92864.726462	44495.774339	50459.372307	155.862679	8407.623024	0.0	4095
	min	24303.0	24639.000000	3794.00000	8280.000000	8839.000000	-1386.000000	28.033000	1812.000000	18098.0	-497
	25%	24303.0	50169.000000	7748.75000	19301.250000	10942.750000	5201.250000	91.758250	3768.750000	18098.0	-206
	50%	24303.0	162363.500000	22730.50000	45151.500000	41023.500000	8149.500000	159.000000	9262.500000	18098.0	252
	75%	24303.0	403968.250000	43339.25000	103415.500000	77509.750000	33046.750000	251.634750	15541.000000	18098.0	2496
	max	24303.0	817729.000000	64175.00000	211678.000000	98830.000000	105481.000000	391.539000	19852.000000	18098.0	8141

- 1 # Add important useful variables back
 2 administration2['SIC']=administration['SIC'].values
- 3 administration2['Group']=administration['Group'].values
- 4 administration2['Zip']=administration['Zip'].values
- 5 administration2.head()

C→	I	cker	CA	TA	Cash	COGS	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP&E	1
	0	HON	24303.0	58679.0	9067.0	22975.0	11644.0	7397.0	113.000	4421.0	18098.0	6143.0	5998.0	3€
	1	BRK.B	24303.0	817729.0	64175.0	211678.0	98830.0	105481.0	391.539	19852.0	18098.0	81417.0	180282.0	327
	2	GE	24303.0	266048.0	36394.0	67328.0	70403.0	8902.0	205.000	14104.0	18098.0	-4979.0	46186.0	95
	3	IEP	24303.0	24639.0	3794.0	8280.0	8839.0	-1386.0	28.033	1812.0	18098.0	-1098.0	5163.0	8

▼ Calculate Financial Ratios

- 1 # Calculate financial ratios
- 2 administration2['CashToAssets'] = (administration2.Cash/administration2.TA)
- 3 administration2['CashToInterest'] = 1/(administration2.Cash/administration2['Interest_Expense'])
- 4 administration2['CashToLiability'] = (administration2.Cash/administration2.CL)
- 5 administration2['CurrentRatio'] = (administration2.CA/administration2.CL)
- 6 administration2['QuickRatio'] = (administration2.CA-administration2.Inventory)/administration2.CL
- 7 administration2['TnyentoryTurnover'] = 1/(administration2.COGS/administration2.Tnyentory) https://colab.research.google.com/drive/1U1qXUeQNMVpJQR8JGgATapFdQrHRoX1J#scrollTo=Bkl9ory3xJFX&uniqifier=3&printMode=true

8 administration2['FixedAssetsTurnover'] = (administration2.Sales/administration2['PP&E']) 9 administration2['TotalAssetsTurnover'] = (administration2.Sales/administration2.TA) 10 administration2['LongTermDebtRatio'] = (administration2['Long Term Debt']/administration2.TA) 11 administration2['InterestCoverage'] = 1/(administration2.EBIT/administration2['Interest_Expense']) 12 administration2['ROA'] = (administration2.NI/administration2.TA) 13 administration2['SalesPerEmployee']=1/(administration2.Sales/(administration2.Employees*1000))

1 administration2.head()

₽	,	Ticker	CA	TA	Cash	cogs	Long_Term_Debt	EBIT	Employees	Inventory	CL	NI	PP&E	\$
	0	HON	24303.0	58679.0	9067.0	22975.0	11644.0	7397.0	113.000	4421.0	18098.0	6143.0	5998.0	36
	1	BRK.B	24303.0	817729.0	64175.0	211678.0	98830.0	105481.0	391.539	19852.0	18098.0	81417.0	180282.0	327
	2	GE	24303.0	266048.0	36394.0	67328.0	70403.0	8902.0	205.000	14104.0	18098.0	-4979.0	46186.0	95
	3	IEP	24303.0	24639.0	3794.0	8280.0	8839.0	-1386.0	28.033	1812.0	18098.0	-1098.0	5163.0	8

- 1 # Delete unnecessary variables after using 2 administration2.drop(administration2.columns[1:14],axis=1,inplace=True)
 - 3 administration2.head()

₽]→ Tio		YTD	SIC	Group	Zip	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	Inventor
	0	HON	-0.2799	99	9	28202	0.154519	0.039374	0.500995	1.342856	1.098574	
	1	BRK.B	-0.2126	99	9	68131	0.078480	0.061722	3.545972	1.342856	0.245939	
	2	GE	-0.3970	99	9	2210	0.136795	0.109139	2.010940	1.342856	0.563543	
	3	IEP	-0.2631	99	9	10153	0.153984	0.159462	0.209636	1.342856	1.242734	

1 administration2.describe()

 		YTD	SIC	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	InventoryTurnover	Fixed
	count	4.000000	4.0	4.000000	4.000000	4.000000	4.000000	4.000000	4.000000	
	mean	-0.288150	99.0	0.130944	0.092424	1.566886	1.342856	0.787698	0.178633	
	std	0.077999	0.0	0.035932	0.053324	1.537554	0.000000	0.464561	0.057613	
	min	-0.397000	99.0	0.078480	0.039374	0.209636	1.342856	0.245939	0.093784	
	25%	-0.309175	99.0	0.122216	0.056135	0.428155	1.342856	0.484142	0.167766	
	50%	-0.271500	99.0	0.145389	0.085430	1.255968	1.342856	0.831059	0.200954	
	75%	-0.250475	99.0	0.154117	0.121720	2.394698	1.342856	1.134614	0.211822	
	max	-0.212600	99.0	0.154519	0.159462	3.545972	1.342856	1.242734	0.218841	

Industry Overview

Here are only 4 companies in total under Public Administration catergory, which is the smallest group in the dataset. YTD of Public Administration industry has a mean of negative -0.28, indicating lower stock return since 2020 by effects from COVID-19. The mean of Fixed Assets Turnover is 2.92 which indicates the industry is pretty efficient on the utilization of fixed assets.

▼ OLS

 \Box

```
1 import statsmodels.api as sm
```

Since Public Administration Industry only has 4 tickers, and 3 of them are replaced by one when replace missing values in CA and CL. Thus we will not use those ratios since they are totally the same across the Administration industry, and are not helpful for our analysis.

- 1 ## drop ratios contain inf or nans since those are not meaningful 2 administration3=administration2.drop(['CashToLiability','CurrentRatio','CurrentRatio'],axis=1)
- 1 #administration
- 2 data1=[]
- 3 data2=[]
- 4 data3=[]
- 5 data4=[]
- 6 for i in range (5 14).
- https://colab.research.google.com/drive/1U1qXUeQNMVpJQR8JGgATapFdQrHRoX1J#scrollTo=Bkl9ory3xJFX&uniqifier=3&printMode=true

```
O TOT T TH THINGE (3,177).
7 X = administration3.iloc[:, i]
8 y = administration3['YTD']
9 X = sm.add_constant(X) # adding a constant
   model = sm.OLS(y,X).fit()
10
11
    summary=model.summary()
    name=administration3.iloc[:, i].name
12
    params=model.params[1]
13
    pvalue=model.pvalues[1]
14
15
    rsquared = model.rsquared
    data1.append(name)
16
17
    data2.append(params)
18
    data3.append(pvalue)
19
    data4.append(rsquared)
    summary_7 = pd.DataFrame(list(zip(data1, data2,data3,data4)), columns =['variable', 'params','pvalue','rsquared'])
20
21 summary_7
```

₽		variable	params	pvalue	rsquared
	0	CashToAssets	-0.988534	0.544611	0.207379
	1	CashToInterest	-0.339642	0.767803	0.053916
	2	QuickRatio	-0.003965	0.976384	0.000558
	3	InventoryTurnover	-0.868379	0.358580	0.411419
	4	FixedAssetsTurnover	0.000403	0.988948	0.000122
	5	TotalAssetsTurnover	0.105938	0.824555	0.030781
	6	LongTermDebtRatio	-0.296211	0.616758	0.146875
	7	InterestCoverage	-0.143875	0.334009	0.443544
	8	ROA	0.510217	0.489941	0.260160

Analysis:

Because there are only 4 observations in public administration industry which gives multiple regression too less data, we decide to do the single regression only.

According to the single variable OLS summary above, no variables are significant in statistical sense. From economical perspective, most variables are negative. For instance, cash to interest, cash to assets and interest coverage ratio. Such negative correlations indicating that administration industry have unusual behaviors compared with other industries. Specifically, its YTD return would increase as its ability of paying interest by cash increase. We assume that it is caused by the fact that we only have 4 observations. Also, since there are not enough obervations in this industry, the rsquared wouldn't be convincing enough, and we will be needing more data to do a deeper analysis to see how COV-19 is affecting the stock returns.

Combine Industry Datasets

```
1 data = pd.concat([mining2, construction2, manufacturing2, transportation2, wholesale2, retail2, finance2, service2, a
1 data.head()
```

₽		Ticker	YTD	SIC	Group	Zip	CashToAssets	CashToInterest	CashToLiability	CurrentRatio	QuickRatio	Inventor
	0	HES	-0.4983	13	1	10036	0.070930	0.270550	0.615538	1.257371	1.153386	
	1	APA	-0.7898	13	1	77056	0.013641	1.769231	0.133154	1.057143	0.786523	
	2	HAL	-0.6890	13	1	77032	0.089372	0.261023	0.464945	2.298483	1.654982	
	3	HP	-0.6597	13	1	74119	0.059584	0.067505	0.848149	2.718144	2.353349	
	4	MRO	-0.7312	13	1	77056- 2723	0.042381	0.326340	0.491691	1.223496	1.182235	

```
1 data.isna().sum()
```

 \Box

0 Ticker 0 YTD SIC 0 Group 0 Zip 0 CashToAssets 0 CashToInterest 0 CashToLiability 0 CurrentRatio 0 QuickRatio 0 InventoryTurnover 0 FixedAssetsTurnover 0 0 TotalAssetsTurnover LongTermDebtRatio 0 InterestCoverage 0 0 SalesPerEmployee dtype: int64

```
1 #statistics description check
2 data.describe()
```

₽	YTD		SIC	CashToAssets	CashToInterest	CashToLiability	CashToLiability CurrentRatio QuickRa		InventoryTurnov
	count	1216.000000	1216.000000	1216.000000	1216.000000	1216.000000	1216.000000	1216.000000	1216.0000
	mean	-0.319963	48.985197	0.113857	0.704915	0.994922	2.391219	2.013177	0.2331
	std	0.196885	19.012401	0.146245	2.532957	1.866415	3.106430	3.319168	0.5978
	min	-0.899800	10.000000	0.000375	0.000000	0.004280	0.146189	-28.079551	0.0000
	25%	-0.457825	34.000000	0.019333	0.004107	0.146229	0.960728	0.907068	0.0000
	50%	-0.326800	49.000000	0.064136	0.104300	0.389704	1.406910	1.129765	0.0791
	75%	-0.184275	63.000000	0.144403	0.366929	1.047614	2.640582	2.152606	0.2634
	max	0.098000	99.000000	0.973483	36.210277	21.210511	66.088990	65.659864	11.1017

Dataset Overview

In the last part of our analysis, we combined the subset as a whole and reviewed the changes that happened around us stock market. There are a total of 1216 companies in the dataset we are looking at. The mean return is negative due to the COVID-19 impact. As we can see from the statistics, the Cash the liquidity ratio is affected, with the global layoff and unemployment rate rising, the economic activities are low. The government is trying to apply fiscal policy to stimulate the economy. We saw a lot of things happen in these short four months, and still in an unstable period.

```
1 #data.to_csv("project_data.csv",index=False,header=True)
2 # could uncomment the code line below to download the data
1 #Check OLS for entire dataset
2 data1=[]
3 data2=[]
4 data3=[]
6 # all_inf_or_nan = data.isin([np.inf, -np.inf, np.nan]).all(axis='columns')
7 # data=data[~all_inf_or_nan]
8 for i in range(5,17):
    X = data.iloc[:, i]
    y = data['YTD']
    X = sm.add_constant(X) # adding a constant
11
12
    model = sm.OLS(y,X).fit()
13
    summary=model.summary()
14
    name=data.iloc[:, i].name
15
    params=model.params[1]
16
    pvalue=model.pvalues[1]
17
    rsquared = model.rsquared
18
    data1.append(name)
19
    data2.append(params)
20
    data3.append(pvalue)
21
    data4.append(rsquared)
    summary_7 = pd.DataFrame(list(zip(data1, data2,data3,data4)), columns =['variable', 'params','pvalue','rsquared'])
22
23 summary_7
```

	variable	params	pvalue	rsquared
0	CashToAssets	0.214327	2.385527e-08	0.025345
1	CashToInterest	-0.004818	3.066228e-02	0.003842
2	CashToLiability	0.008066	7.644353e-03	0.005846
3	CurrentRatio	0.010913	1.509160e-09	0.029648
4	QuickRatio	0.010090	2.386429e-09	0.028934
5	InventoryTurnover	-0.004596	6.268093e-01	0.000195
6	FixedAssetsTurnover	-0.000221	1.720352e-01	0.001536
7	TotalAssetsTurnover	0.023742	1.882319e-02	0.004537
8	LongTermDebtRatio	-0.065239	5.277208e-03	0.006392
9	InterestCoverage	-0.003272	2.507349e-01	0.001087
10	ROA	0.076019	3.789096e-02	0.003545
11	SalesPerEmployee	-0.000442	1.317555e-01	0.001870

Analysis

When looked at the dataset as a whole, we are surprised to see all the variables are significant to the model. Cash To Assets, Current Ratio and Quick Ratio are contributed most to the model based on r squared result. Due to the combining dataset, the r square result overall is lower. Because we have the data from all 9 industries together and they are influences the model result accuracy.

```
1 #Multi Regression
2 X = data.iloc[:,5:17]
3 y = data['YTD']
4 X = sm.add_constant(X) # adding a constant
5 model = sm.OLS(y,X).fit()
6 model.summary()
                       OLS Regression Results
C→
      Dep. Variable:
                      YTD
                                         R-squared:
                                                       0.072
          Model:
                      OLS
                                       Adj. R-squared: 0.063
         Method:
                      Least Squares
                                         F-statistic:
                                                       7.788
          Date:
                      Mon, 20 Apr 2020 Prob (F-statistic): 4.19e-14
          Time:
                      00:52:11
                                       Log-Likelihood: 296.72
    No. Observations: 1216
                                            AIC:
                                                       -567.4
       Df Residuals:
                      1203
                                            BIC:
                                                       -501.1
        Df Model:
                      12
     Covariance Type: nonrobust
                          coef std err
                                               P>ltl [0.025 0.975]
            const
                         -0.3500 0.012 -29.023 0.000 -0.374 -0.326
        CashToAssets
                         0.2500 0.052 4.786
                                              0.000 0.148 0.352
                         -0.0008 0.002 -0.371 0.711 -0.005 0.004
       CashToInterest
       CashToLiability
                         -0.0089 0.004 -2.164 0.031 -0.017 -0.001
        CurrentRatio
                         0.0059 0.005 1.153
                                              0.249 -0.004 0.016
         QuickRatio
                         0.0041 0.005 0.881
                                              0.378 -0.005 0.013
      InventoryTurnover -0.0053 0.009 -0.564 0.573 -0.024 0.013
     FixedAssetsTurnover -0.0002 0.000 -1.248 0.212 -0.001 0.000
     TotalAssetsTurnover 0.0161 0.011 1.483
                                              0.138 -0.005 0.037
     LongTermDebtRatio -0.0581 0.024 -2.461 0.014 -0.104 -0.012
      InterestCoverage -0.0003 0.003 -0.125 0.900 -0.006 0.005
            ROA
                         0.1541 0.040 3.805 0.000 0.075 0.233
      SalesPerEmployee -0.0007 0.000 -2.318 0.021 -0.001 -0.000
       Omnibus:
                    12.090 Durbin-Watson: 1.789
    Prob(Omnibus): 0.002 Jarque-Bera (JB): 9.251
         Skew:
                    0.114
                              Prob(JB):
                                            0.00980
        Kurtosis:
                  2.638
                              Cond. No.
                                            366.
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Analysis

The whole dataset model r square is **0.072**. Cash to Liability and Long-term Debt Ratio negatively impact the model. In summary, in the industry level, the required adjust for multiple regression:

- 1. Wholesales Industry 0.55
- 2. Construction Industry 0.54
- 3. Mining Industry **0.22**
- 4. Service Industry 0.17
- 5. Transportation Industry 0.1
- 6. Retail Industry 0.08
- 7. Finance Industry **0.074**
- 8. Manufacturing Industry 0.06

The whole dataset model predicts is not as well as industrial level prediction. But still, the influence is across all the industry. Some companies are struggling with surviving, but we also saw lots of possibilities in the zoom, CVS and grocery stores.

Visualization

Average YTD Comparison based on Industries

Avg YTD in Different Industries

Based on this graph above, we could find out that on average, all industries are negatively affected by the COVID-19. Mining Industry has the largest negative effect by the COVID-19, and those followed by Finance Industry, Construction Industry, Retail Industry, Wholesale Industry, Transportation Industry, and Administration Industry. Manufacturing and Service Industry has the smallest negative effect by the COVID-19. Those findings connected the result for each industry finding that we have done.

▼ Average YTD Comparison based on Zip

Based on the graph above, it shows what happened to YTD based on Zip Code. The lighter color area means the larger negative effect on the Stock market by the COVID-19. Overall, we can see most companies(tickers) have been negatively affected, and even though COVID-19 brings some positive effect to some companies, we can see it's very tiny since those AVG(YTD) are all less than 0.1 which is close to 0. Dive into deeply, 94949(Marin County, CA), 94041(Mountain View, CA), 98021(Snohomish County, WA) are some zip code have positive average YTD. As we guess, those may because there are more tech firms which are more important when people work remotely or work at home.

Average YTD Comparison based on States

▼ Combine Data for State Level Visualization

```
1 from google.colab import files
2 uploaded = files.upload()
```

Choose Files state_level.csv

• **state_level.csv**(text/csv) - 36233 bytes, last modified: 4/18/2020 - 100% done Saving state_level.csv to state_level.csv

```
1 import pandas as pd
2 import numpy as np
```

- 3 YTD = pd.read_csv('state_level.csv')
- 4 pd.DataFrame.from_records(YTD)
- 5 YTD.head()

→		Ticker	YTD	SIC	Group	Zip	state	state2
	0	HES	-0.4983	13	1	10036	NY	New York
	1	APA	-0.7898	13	1	77056	TX	Texas
	2	HAL	-0.6890	13	1	77032	TX	Texas
	3	HP	-0.6597	13	1	74119	OK	Oklahoma
	4	MRO	-0.7312	13	1	77056	TX	Texas

state_level.csv is a file we use after manually remove foreign countries since for the geolocation analysis we want to focus on only the United States. We also transfer those Zip into State in that file. Also to match that states Reporting Cases of COVID-19 to CDC_.csv file we find from the CDC web page that only has the records for the US.

```
1 from google.colab import files
```

² uploaded = files.upload()

Choose Files States Report... to CDC_.csv

• States Reporting Cases of COVID-19 to CDC_.csv(text/csv) - 4991 bytes, last modified: 4/18/2020 - 100% done Saving States Reporting Cases of COVID-19 to CDC_.csv to States Reporting Cases of COVID-19 to CDC_.csv

```
1 import pandas as pd
2 import numpy as np
3 cases = pd.read_csv('States Reporting Cases of COVID-19 to CDC_.csv')
4 pd.DataFrame.from_records(cases)
5 cases.head()
```

URL	Community Transmission	Cases Reported	Range	Jurisdiction	₽
http://www.adph.org/	Yes, defined area(s)	4572	1001 to 5000	Alabama	0
http://dhss.alaska.gov/Pages/default.aspx	Yes, defined area(s)	309	101 to 1000	Alaska	1
http://dhss.as/	NaN	None	None	American Samoa	2
http://www.azdhs.gov/	Yes, widespread	4507	1001 to 5000	Arizona	3
https://www.healthy.arkansas.gov/	Yes, widespread	1702	1001 to 5000	Arkansas	4

```
1 #merge industry 2019 and 2020 data
```

³ geo.head()

₽		Ticker	YTD	SIC	Group	Zip	state	state2	Jurisdiction	Range	Cases Reported	Community Transmission	UR
	0	HES	-0.4983	13	1	10036	NY	New York	New York	10001 or more	224438	Yes, widespread	https://www.health.ny.go
	1	APA	-0.7898	13	1	77056	TX	Texas	Texas	10001 or more	17371	Undetermined	https://www.dshs.state.tx.us
	2	HAL	-0.6890	13	1	77032	TX	Texas	Texas	10001 or more	17371	Undetermined	https://www.dshs.state.tx.us
	3	HP	-0.6597	13	1	74119	OK	Oklahoma	Oklahoma	1001 to 5000	2465	Yes, widespread	https://www.ok.gov/healtl

^{1 #}only leave those columns we will use for analysis

⁵ geo.head()

₽		Ticker	YTD	Group	State	Range	Cases
	0	HES	-0.4983	1	New York	10001 or more	224438
	1	APA	-0.7898	1	Texas	10001 or more	17371
	2	HAL	-0.6890	1	Texas	10001 or more	17371
	3	HP	-0.6597	1	Oklahoma	1001 to 5000	2465
	4	MRO	-0.7312	1	Texas	10001 or more	17371

^{1 #}geo.to_csv("geo.csv",index=False,header=True)

▼ Average YTD in Different States

² geo = pd.merge(YTD, cases, how='left', left_on=['state2'],right_on=['Jurisdiction'])

² geo=geo[['Ticker','YTD','Group','state2','Range','Cases Reported']]

^{3 #}rename columns

⁴ geo=geo.rename(columns={"state2": "State", "Cases Reported":"Cases"})

^{2 #}could uncommened above to save the data

From this chart above, we can tell that Nevada is the state that has been affect the most, and the COVID-19 has large negative affect also for states such as CT, ME, SD, OK, ID. Califonia is the state was been affect least, we think maybe there are more software companies and IT firms which also work well when everything transfer to work online.

Average YTD in Different States with Cases and Ticker Count in that State

More deeply to see, since every state may have different companies, this may have a large effect on the sum of YTD, so we use the average YTD rather than the sum of YTD. We can see even California is the state that has the smallest effect by COV-19, it has the highest companies(tickers).

▼ Cases in Different States with Avg YTD and Ticker Count in that State

From this chart above, we could see most COVID-19 cases are appearing in New York, Massachusetts, Illinois, and California, that may because some large cities are in those states, and there is a larger population. However, based on the previous chart, those states are not where has the largest negative COVID-19 effect on the stock market. Thus, we don't think there is a positive correlation between COVID-19 cases and stock returns.

OLS Regression

We want to run a regression to check our findings.

```
1 geo.head()

Cricker YTD Group State Range Cases

HES -0.4983 1 New York 10001 or more 224438
```

```
APA -0.7898
1
                                      10001 or more
                                                       17371
                                Texas
2
      HAL -0.6890
                                      10001 or more
                                Texas
                                                       17371
3
           -0.6597
                            Oklahoma
                                        1001 to 5000
                                                        2465
     MRO -0.7312
                                      10001 or more
                                                       17371
                                Texas
```

```
1 import statsmodels.api as sm
2 geo['Cases'] = pd.to_numeric(geo.Cases,errors='coerce')
3 X = geo['Cases']
4 y = geo['YTD']
5 X = sm.add_constant(X) # adding a constant
6 model = sm.OLS(y,X).fit()
7 model.summary()
```

С⇒

OLS Regression Results

Dep. Variable: YTD R-squared: 0.001 OLS Model: Adj. R-squared: -0.000 Method: **Least Squares** F-statistic: 0.8427 Date: Mon, 20 Apr 2020 Prob (F-statistic): 0.359 Time: 00:54:26 Log-Likelihood: 193.49 No. Observations: 999 AIC: -383.0 BIC: **Df Residuals:** 997 -373.2

Df Model: 1

Covariance Type: nonrobust

coef std err t P>ItI [0.025 0.975]const -0.3320 0.007 -45.038 0.000 -0.346 -0.318 Cases 9.073e-08 9.88e-08 0.918 0.359 -1.03e-07 2.85e-07

Omnibus: 20.593 **Durbin-Watson:** 1.808 Prob(Omnibus): 0.000 Jarque-Bera (JB): 13.237 Skew: 0.138 Prob(JB): 0.00134 2.508 Cond. No. 8.71e+04 **Kurtosis:**

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 8.71e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

Conclusion

Thus, we can conclude that Geographic Location does not have to affect the results of COV-19 shock. If we look at the regression on YTD & cases, it seems that the number of cases doesn't affect the stock returns since the coefficient for Cases is close to 0, and the p-value is 0.359 which is larger than 0.05, and also it's R-square is only 0.001. Those firms in larger cities may have less negative stock returns in 2020 after COVID-19 shock because of their special industry. Thus, the results of COVID-19 shock is not determined by only the case numbers in those different locations.