01/09 - Aula 8 - Esboçando gráficos: primeiros passos

Definição 6.1.

A função f(x) é crescente no intervalo I ($I \subset \mathbb{R}$) se, nesse intervalo, quando x aumenta de valor, f(x) também aumenta de valor.

Em outras palavras, f é crescente se vale a implicação

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

para quaisquer $x_1, x_2 \in I$.

$$T = (a,b) = \{x \in \mathbb{R} \mid a < x < b\}$$

$$T = [a,b] = \{x \in \mathbb{R} \mid a < x < b\}$$

$$T = [a,b] = \{x \in \mathbb{R} \mid a < x < b\}$$

Figura 6.1. f é crescente em um certo intervalo I.

Obs: Seja
$$f(x) = x^2 + 1$$
, $f(x) = \{(x,y) | y = x^2 + 1\}$

A função f(x) é decrescente no intervalo I $(I \subset \mathbb{R})$ se, nesse intervalo, quando x cresce em valor, f(x) decresce. Em outras palavras, f é decrescente se vale a implicação

$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

para quaisquer $x_1, x_2 \in I$.

Figura 6.2. f é decrescente em um certo intervalo I.

$$\chi_1 < \chi_2 \Rightarrow f(\kappa_{\perp}) < f(\kappa_1)$$

Pergunta: Existe algum critério baseado na análise da derivada de uma função f(x) que nos permita concluir se uma função é crescente ou decrescente?

$$f(-2) = 2(-2) = -4(0) \Rightarrow f(-2)(0)$$

Teorema 6.1. Suponhamos que f é contínua no intervalo fechado [a, b] e tem derivada nos pontos do intervalo aberto]a, b[.

- 1. Se f'(x) > 0 nos pontos do intervalo aberto a,b[, então f é crescente no intervalo [a, b].
- 2. Se f'(x) < 0 nos pontos do intervalo aberto]a, b[, então f é decrescente no intervalo [a, b].

Obs Ja, 65 = (a, b) = { xer | a< x < b }

$$f(x) = \frac{1}{1-x}$$
 $f(x) = \frac{1}{1-x}$
 $f(x) = R - \{1\}$

$$\lim_{X \to 1^{-}} \frac{1}{1-X}$$

Exemplo: Encontre os intervalos onde a função abaixo seja crescente ou decrescente

$$\frac{5(3)}{2} = (\frac{3}{2})^2 - 3 \cdot (\frac{3}{2}) = \frac{9}{4} - \frac{9}{2} = -\frac{9}{4}$$

$$y = x - 3x$$
; $y = 0 \Rightarrow (x, 0) \in abscisso$

$$(x_{1,0}) (x_{2,1})$$

$$x^{2} - 3x = 0 \Leftrightarrow x \cdot (x-3) = 0 \Rightarrow x = 0 \text{ on } x-3 = 0$$

$$P = (0,0) \cdot P' = (3,0) \qquad x = 3$$

Existe
$$C \in [a,b] + q$$
. $f'(c) = f(b) - f(a) \Rightarrow$

$$f(b) - f(a) = f(c) (b-a)$$
 (1)

Se
$$a < b \Rightarrow f(b) - f(a) = f'(c) (b-a) >0 \Rightarrow f(a) < f(b)$$

$$(+) \qquad (+)$$

logo, f(x) el crescente

Exemplo: Determine os intervalos de crescimento e decrescimento da função $f(x) = x^3 - 3x^2$

Etapa 1: Calcular as raízes da função: f(x)=0

$$f(x)=0 \Rightarrow x^3-3x^2=0 \Rightarrow x^2.(x-3)=0 \Rightarrow x^2=0 \text{ on } x=3.$$

Paizes: { 0,3}

Etapa 2: Estudar o sinal da função derivada f'(x)

Note que
$$f'(x) = 3x^{2} - 6x = 3x(x-2) = 0 \implies x = 0$$
 on $x = 2$

$$y=3x(y-2)$$
 +++++ ----+++++

Logo, f(x) > 0 se $x \in (-\infty, 0)$ on $x \in (2, +\infty) \Rightarrow f(x)$ crescente f(x) < 0 se $x \in (0, 2)$ em $(-\infty, 0] \cup [2, +\infty)$ $f(x) \in decressents$ em [0, 2]

$$f(0) = 0^3 - 3.0^2 = 0$$

$$f(2) = 2^3 - 3.2^2 = 8 - 12 = -4$$

Etapa 3: Esboçar o gráfico

$$5(x)=0 \Rightarrow x=0 \text{ on } x=2$$

on seja, Six) e' criscente

em (-0,0] U[2,0)

Note que f'(0) = \$ ou seja,

5 mas derivail on x=0

$$f'(0) = \lim_{x \to 0} f(x) - f(0) = \lim_{x \to 0} \frac{1x}{x}$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}$$

$$f'(x)$$
 >0 >e $x \in (0, +\infty) =$ $f(x) = |x| e^{-1}$ crescent em $[0, +\infty)$

Definição 6.2 (Pontos de máximo e pontos de mínimo locais).

Um ponto x_0 , no domínio da função f, é um ponto de mínimo local de f se existe um intervalo [a,b] contido no domínio de f, com $a < x_0 < b$, tal que $f(x) \ge f(x_0)$ para todo x em [a,b].

Isto ocorre, por exemplo, no caso em que existem intervalos $[\alpha, x_0]$ e $[x_0, b]$ contidos em D(f) tais que f é decrescente em $[\alpha, x_0]$ e é crescente em $[x_0, b]$. Veja figura 6.5.

Se, ao contrário, $f(x) \le f(x_0)$, para todo x em [a,b], x_0 é um ponto de máximo local de f.

Isto se dá, por exemplo, quando existem intervalos $[a,x_0]$ e $[x_0,b]$ contidos em D(f) tais que f é crescente em $[a,x_0]$ e decrescente em $[x_0,b]$. Veja figura 6.6.

f(x0) valor de mínimo local

$$x_0 \in (a,b)$$
, $\forall x \in (a,b)$
 $f(x) \geqslant f(x_0)$

x0 é ponto de mínimo local

 x_0 é um ponto de mínimo local se a função f(x) for decrescente à esquerda de x_0 e for crescente à direita do ponto x_0

Derivadas de ordem superior e concavidades do gráfico

$$f''(x) = (f'(x))' = \lim_{\Delta x \to 0} \frac{f'(x + \Delta x) - f'(x)}{\Delta x}$$

$$E_{x}$$
: $f(x) = x^{2} \Rightarrow f'(x) = 2x \Rightarrow f'(x) = (f(x))' = (2x)' = 2$

$$f'(x) = \lim_{\Delta x \to 0} f'(x + \Delta x) - f'(x) = \lim_{\Delta x \to 0} 2(x + \Delta x) - 2x = 2$$

Not acoes:
$$f'(x) = f(x) = \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$

Obs:
$$S(t) = S_0 + \sigma t + \alpha \frac{t}{2}$$

$$S(t) = v + at \Rightarrow S(t) = a$$

$$f'''(x) = f(x) = \frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^3y}{dx^2}\right), \text{ onde } y = f(x)$$

$$f^{(n)}(x) = (f^{(n-1)}(x))' = \frac{d^n y}{dx^n} = \frac{d}{dx} \left(\frac{d^{n-1} y}{dx^{n-1}} \right)$$