UNIVERSITY OF DHAKA

Department of Applied Mathematics

Program: B.S. (Honours) in Applied Mathematics

Year: 4th, Academic Session: 2019-2020

Course No: AMTH 450, Course Title: MATH LAB IV

Assignment Topic: Solving Problems on Mathematical Modeling in Biology and Physiology with its Applications

Instruction: Write programming code using Mathematica/MATLAB to get the outputs and visualize the results of the following problems.

Name: Roll: Group:

- Population growth can be modeled by the equation $\frac{dP}{dt} = rP(1-P)$, $P(0) = P_0$. Solve the model equation and animate the family of curves of the solution for $0.01 \le P_0 \le 1$ (thousand), and $-2 \le r \le 2$ on the time interval $0 \le t \le 20$. Also, determine the limiting value of the population when $t \to \infty$.
- 2. Solve the logistic equation $\frac{dN}{dt} = rN\left(1 \frac{N}{K}\right)$ and hence sketch the solution curves with initial population $N(0) = N_0$; $N_0 = 5,50,125,250,300$, and r = 0.025, K = 125 on the time interval $0 \le t \le 60$. Also, draw a direction field for the logistic equation.
- 3. The ecological predator-prey model is given by $\frac{\frac{dx(t)}{dt} = x(\alpha \beta y)}{\frac{dy(t)}{dt}} = y(\delta x \gamma)$, where x is the number of

prey and y is the number of predator. Solve the nonlinear system with $\alpha = \frac{2}{3}$, $\beta = \frac{4}{3}$, $\gamma = 1$, $\delta = 1$. Plot the solutions with x(0) = y(0) = 0.9 to 1.5 while taking step size 0.1. Place dots on the initial points of each solution curve.

- 4. The Lotka-Volterra model is governed by x'(t) = ax(t) bx(t)y(t), where a, b, c, and d are all positive constants. Solve the nonlinear system with $x(0) = x_0$, $y(0) = y_0$, and draw the graphs of these periodic solutions for the prey and the predator of the Lotka-Volterra system with $x_0 = y_0 = 0$ to 20 in the interval 0 < t < 60 when the values of the model parameters vary from -4 to 4.
- **5.** Display the cobweb plots of 10 iterations of the following maps:

(i)
$$x_{n+1} = rx_n(1-x_n)$$
, $x_0 = \frac{2}{10}$, $0 \le r \le 4$

(ii)
$$x_{n+1} = x_n + rx_n(1 - x_n), \ x_0 = \frac{1}{10}, 0 \le r \le 1$$

(iii)
$$x_{n+1} = \frac{rx_n^2}{x_n^2 + A}$$
, $0 \le x_0 \le 0.6$, $0 \le r \le 4$, $A = 2$

$$\frac{dS}{d\tau} = -\beta SI$$

6. Solve the SIR model
$$\frac{dI}{d\tau} = \beta SI - \gamma I$$
 with $S(0) = 0.9999, I(0) = 0.0001, R(0) = 0, \beta = 0.5,$ $\frac{dR}{d\tau} = \gamma I(\tau)$

 $\gamma = 0.714$, and plot the results with different colour indicated the susceptible, infected, and recovered population over time ($0 \le t \le 100$). Also, stack these plots to highlight that their sum is always one.

- 7. Solve the SIS model $S' = -\beta SI + \gamma I$ with S(0) = 0.9999, I(0) = 0.0001, $\beta = 0.25$, $\gamma = 0.0357$, and plot the results with different colour indicated the susceptible and infected, and recovered population over time $(0 \le t \le 100)$. Also, stack these plots to highlight that their sum is always one.
- **8.** Draw the vector field, nullclines, and equilibrium points for the following autonomous systems.

(i)
$$x' = 2x - y + 3(x^2 - y^2) + 2xy$$

 $y' = x - 3y - 3(x^2 - y^2) + 3xy$, (ii) $x' = x(1 - y) - xy$
 $y' = 2y\left(1 - \frac{y^2}{2}\right) + 3x^2y$, (iii) $y' = 2y\left(1 - \frac{y^2}{2}\right) - 3x^2y$,

(iv)
$$x' = 2x \left(1 - \frac{x}{2}\right) - xy \qquad x' = x(1 - x) - xy y' = y \left(\frac{9}{4} - y^2\right) - x^2 y$$
 (v)
$$y' = 2y \left(1 - \frac{y^2}{2}\right) - 3xy$$
 (vi)
$$x' = 5 \left(y + x - \frac{x^3}{3}\right) y' = 0.2 \left(x + 0.7 - 0.5y\right)$$

The End