

Continuous Assessment Test - I

Programme Name & Branch: B. Tech.

Course Name & Code: Applied Linear Algebra & MAT 3004

Slot: C1+TC1+TCC1+V2

Exam Duration: 90 minutes

Maximum Marks: 50

Answer All the Questions ($5 \times 10 = 50$)

S. No.	Question
<i>s</i> .	Find the inverse of $A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$ using Gauss-Jordan method. [7]
	Prove or disprove, if A and B are invertible, then $A + B$ is invertible.[3]
2.	Let $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.
	Find LU decomposition of A.
	Under what conditions on b, does $Ax = b$ have a solution? [10]
	Let $A_{n \times n}$ be a matrix. Prove the following statements are equivalent. Ax = 0 has only the trivial solution $x = 0$.
3/	(2) A is row equivalent to $I_{n \times n}$. (5) A is invertible.
	45) Let $A = \{(x, y, z) \in R^3 \mid 2x + 3y - 4z = 0\}$. Prove that A forms subspace of R^3 . [5]
W.	Prove that $\{1 + 2x + x^2, 2 + 5x, 3 + 8x - 2x^2\}$ forms basis for $P_2(x)$. [10]
	Let $\alpha = \{v_1, v_2,, v_n\}$ be a basis of a vector space V . Prove that every element in V can be expressed uniquely as a linear combinations of v_1, v_2, v_n . [5]
Æ.	Let W be the subspace spanned by $\{(-1,1,0), (1,0,-1)\}$. Find a basis of W and extend to a basis of R^3 . [5]
hills	Join @vitquestionpapers_2K19 On Telegram