

Intelligent Supervision

2021 / 2022

Lab Assignment 3

Data-driven Dispatcher with Machine Learning

Duration: 3 Weeks (to be submitted on 10/01/2022)

General Description

In the last assignment of the Intelligent Supervision course, we will take a look at some concepts of Machine Learning, framing them in the context of our supervision architecture.

The goal will be to develop a simple data-driven dispatcher module (goto_x, goto_y, goto_z) using machine learning, meaning that the behaviour of the dispatcher will not be explicitly programmed, but instead derived from the data.

Required Software

The list of material to be used during this assignment is as follows:

- Anaconda Navigator
- VS Code
- Simulation from Lab 2
- Base project provided in CLIP

1. Objectives

The base source files required for this assignment are available on CLIP. The end result should look similar to Figure 1.

Figure 1 - Overview of the assignment

The main goals can be summarized as:

- 1. Generating an adequate dataset for model training.
- 2. Training a machine learning model to serve as the dispatcher. It receives the X, Y, Z positions from the warehouse state and the goal positions, then outputs the corresponding actions (e.g., move_x_right).
- 3. Integrating the approach with the simulation from Lab 2.

Each week supporting slides will be provided to guide the students in achieving these objectives.

2. Submission Deadline and Guidelines

- Completed projects should be submitted via the course's **Moodle page** before the end of the deadline.
- Projects should be executed in groups of 2 or 3 (maximum) students.
- The project folder (encompassing all relevant files) should be submitted as a single archive file (e.g., .rar, .zip), named following the template "studentNumber1_studentNumber2_studentNumber3.rar".
- Deadline is 10th of January, 23:59 GMT.

3. Evaluation Criteria

All of the goal/value pairs listed below are based on the assumption that a correct implementation is submitted.

Goal	Value
Generate dataset (for 1 axis)	1
Load and prepare data	2
Train-test split	2
Train different (at least 2) models	4
Test/Validate models in a separate notebook (ipynb)	3
Test with the Python GUI	1
Integrate with the simulation / C webserver	1
Adapt for all 3 axes	6

3. Lab Planning

- Week 1 Generating the dataset and base implementation for 1 axis.
- Week 2 Validate the models and finalize base implementation. Begin extending for 3 axes.
- Week 3 Finalize the assignment. Implementation of any bonus functionalities.

Additional Reference Material

- Scikit-Learn Package Documentation: https://scikit-learn.org/0.21/documentation.html
- Pandas Package Documentation: https://pandas.pydata.org/docs/
- Weekly slides provided for the lab classes in CLIP