Lecture 6 – Tree-based methods, Bagging and Random Forests

Fredrik Lindsten

Division of Systems and Control Department of Information Technology Uppsala University.

Email: fredrik.lindsten@it.uu.se

Summary of Lecture 5 (I/III)

In **selecting** models/methods we are interested in their **generalization** performance obtained by investigating their predictive capabilities on **unseen test** data.

The expected test MSE

$$\mathbb{E}\left[\left(y_{\star} - \widehat{f}(x_{\star}; \mathcal{T})\right)^{2}\right]$$

refers to the average test MSE obtained if we computed successive estimates of f using a large number of training dataset and test each at x_* .

Summary of Lecture 5 (II/III)

 $MSE = (Bias)^2 + Variance + irreducible error$

$$\underbrace{\mathbb{E}\left[(y_{\star} - \hat{f}(x_{\star}; \mathcal{T}))^{2}\right]}_{\text{Expected test MSE}} = \underbrace{\left(\mathbb{E}\left[\hat{f}(x_{\star}; \mathcal{T})\right] - f(x_{\star})\right)^{2}}_{\text{(Bias)}^{2}} \\ + \underbrace{\mathbb{E}\left[\hat{f}(x_{\star}; \mathcal{T}) - \mathbb{E}\left[\hat{f}(x_{\star}; \mathcal{T})\right]\right]^{2}}_{\text{Variance}} \\ + \underbrace{\operatorname{Var}(\epsilon)}_{\text{irreducible error}}$$

The **bias-variance trade-off** is key to good generalization performance!

Summary of Lecture 5 (III/III)

Cross-validation is a method for estimating the test MSE using the training data.

Two approaches:

- Validation set: Randomly split the data into a training set and a validation set. Learn the model using the training set. Estimate the test MSE using the validation set.
- 2. k-fold cross-validation: Randomly split the data into k parts (or folds) of roughly equal size.
 - a) The first fold is treated as a validation set and the model is learned using the remaining k-1 folds. ${\sf MSE}_1$ is estimated using the validation set.
 - b) The procedure is repeated k times, each time a different fold is treated as the validation set.
 - c) Resulting estimate of the test MSE:

$$\mathsf{CV}_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \mathsf{MSE}_{i}.$$

Contents - Lecture 6

- 1. Classification and regression trees (CART)
- 2. Bagging a general variance reduction technique
- 3. Random forests

Note: mid-course evaluation available in the student portal. Open until Friday. Please fill it out, your feedback is much appreciated!

The idea behind tree-based methods

In both regression and classification settings we seek a function, $\widehat{f}(x)$ or $\widehat{G}(x)$ respectively, which maps the input x into a prediction.

One **flexible** way of designing this function is to partition the input space into disjoint regions and fit a simple model in each region.

- Classification: Majority vote within the region.
- Regression: Mean of training data within the region.

Finding the partition

The key challenge in using this strategy is to find a good partition.

Even if we restrict our attention to seemingly simple regions (e.g. "boxes"), finding an **optimal** partition w.r.t. minimizing the training error is **computationally infeasible!**

Instead, we use a "greedy" approach: recursive binary splitting.

1. Select one of the inputs X_j $(j \in \{1, ..., p\})$ and a cut-point s. Partition the input space into two half-spaces,

$$\{X : X_j < s\} \qquad \{X : X_j \ge s\}.$$

2. Repeat this splitting for each region until some stopping criterion is met (e.g., no region contains more than 5 training data points).

Recursive binary splitting

Partitioning of input space

Tree representation

Classification trees

Classification trees are constructed similarly to regression trees, but with *two differences*.

Firstly, the class prediction for each region is based on a majority vote within that region. Let

$$\widehat{p}_{mk} = \frac{1}{n_m} \sum_{i: x_i \in R_m} I(y_i = k)$$

be the proportion of training observations in the $m{\rm th}$ region that belong to the $k{\rm th}$ class. Then,

$$\widehat{G}(x) = \sum_{m=1}^{M} \widehat{c}_m I(x \in R_m),$$

where $\widehat{c}_m = \arg \max_k \widehat{p}_{km}$.

Classification trees

Secondly, the squared loss used to construct the tree needs to be replaced by a measure suitable to qualitative outputs.

Three common error measures are,

$$\text{Misclassification error:} \quad 1 - \max_{k} \widehat{p}_{mk} \qquad [= 1 - \widehat{p}_{m\widehat{c}_m}]$$

Gini index:
$$\sum_{k=1}^{K} \widehat{p}_{mk} (1 - \widehat{p}_{mk})$$

Entropy/deviance:
$$-\sum_{k=1}^{K} \widehat{p}_{mk} \log \widehat{p}_{mk}$$

Gini index and deviance are more sensitive to changes in the node probabilities than misclassification error and are often preferred in practice!

Classification error measures

ex) Spam data

Classification tree (rpart in R) for spam data:

	Tree	LDA	Random Forest
Test error:	11.3 %	10.9 %	4.5 %

Improving CART

The flexibility/complexity of classification and regression trees (CART) is decided by the tree depth.

- ! To obtain a small bias the tree need to be grown deep,
- ! but this results in a high variance!

The performance of (simple) CARTs is often unsatisfactory!

To improve the practical performance:

- ▲ **Pruning** grow a deep tree (small bias) which is then pruned into a smaller one (reduce variance).
- ▲ Ensemble methods average or combine multiple trees.
 - Bagging and Random Forests (this lecture)
 - Boosted trees (next lecture)

ex) Predicting US Supreme Court behavior

Random forest classifier built on SCDB data¹ to predict the votes of Supreme Court justices:

 $Y \in \{\text{affirm, reverse, other}\}\$ $X \sim 240\text{-dimensional feature vector}$

Result: 70% correct classifications

D. M. Katz, M. J. Bommarito II and J. Blackman. A General Approach for Predicting the Behavior of the Supreme Court of the United States. *PLoS ONE*, 12(4):1–18, 2017.

¹http://supremecourtdatabase.org

ex) Predicting US Supreme Court behavior

Not only have random forests proven to be "unreasonably effective" in a wide array of supervised learning contexts, but in our testing, random forests outperformed other common approaches including support vector machines [...] and feedforward artificial neural network models such as multi-layer perceptron

— Katz, Bommarito II and Blackman (PLoS ONE, 12(4), 2017)

Random forests

Bagging can drastically improve the performance of CART!

However, the B bootstrapped dataset are **correlated**

⇒ the variance reduction due to averaging is diminished.

Idea: De-correlate the B trees by randomly perturbing each tree.

A random forest is constructed by bagging, but for each split in each tree only a **random subset** of $q \leq p$ inputs are considered as splitting variables.

Rule of thumb: $q = \sqrt{p}$ for classification trees and q = p/3 for regression trees.2

²Proposed by Leo Breiman, inventor of random forests.

Random forest pseudo-code

Algorithm Random forest for regression

- 1. For b = 1 to B (can run in parallel)
 - (a) Draw a bootstrap data set $\mathcal{T}^{\star b}$ of size n from $\mathcal{T}.$
 - (b) Grow a regression tree $\hat{f}^{\star b}(x)$ by repeating the following steps until a minimum node size is reached:
 - i. Select q out of the p input variables uniformly at random.
 - ii. Find the variable X_j among the q selected, and the corresponding split point s, that minimizes the squared error.
 - iii. Split the node into two children with $\{X_j \leq s\}$ and $\{X_j > s\}$.
- 2. Final model is the average the B ensemble members,

$$\widehat{f}_{\mathsf{rf}}(x) = \frac{1}{B} \sum_{b=1}^{B} \widehat{f}^{\star b}(x).$$

Random forests

Recall: For i.d. random variables $\{Z_h\}_{h=1}^B$

$$\operatorname{Var}\left(rac{1}{B}\sum_{i=1}^{B}Z_{b}
ight)=rac{1-
ho}{B}\sigma^{2}+
ho\sigma^{2}$$

The random input selection used in random forests:

- ▼ increases the bias, but often very slowly
- \checkmark adds to the variance (σ^2) of each tree
- \blacktriangle reduces the correlation (ρ) of the trees

The reduction in correlation is typically the dominant effect \Rightarrow there is an overall reduction in MSE!

ex) Toy regression model

For the toy model previously considered...

Overfitting?

The complexity of a bagging/random forest model increases with an increasing number of trees B.

Will this lead to overfitting as B increases?

No – more ensemble members *does not* increase the *flexibility* of the model!

Regression case:

$$\widehat{f}_{\mathsf{rf}}(x) = \frac{1}{B} \sum_{b=1}^{B} \widehat{f}^{\star b}(x) \to \mathbb{E}[\widehat{f}^{\star}(x) \,|\, \mathcal{T}], \qquad \text{ as } B \to \infty,$$

where the expectation is w.r.t. the randomness in the data bootstrapping and input restriction.

Advantages of random forests

Random forests have several computational advantages:

- ▲ Embarrassingly parallelizable!
- \blacktriangle Using q < p potential split variables reduces the computational cost of each split.
- ▲ We *could* bootstrap fewer than n, say \sqrt{n} , data points when creating $\mathcal{T}^{\star b}$ very useful for "big data" problems.
- ... and they also come with some other benefits:
 - ▲ Often works well off-the-shelf few tuning parameters
 - ▲ Requires little or no input preparation
 - lacktriangle Implicitly estimates the importance of each input variable X_j

ex) Automatic music generation

ALYSIA: automated music generati on using random forests.

- User specifies the lyrics
- ALYSIA generates accompanying music via
 - rythm model
 - melody model
- Trained on a corpus of pop songs.

http://www.cs.sjsu.edu/~ackerman/ALYSIA_songs.html

M. Ackerman and D. Loker. Algorithmic Songwriting with ALYSIA. In: Correia J., Ciesielski V., Liapis A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART, 2017.

A few concepts to summarize lecture 6

CART: Classification and regression trees. A class of nonparametric methods based on partitioning the input space into regions and fitting a simple model for each region.

Recursive binary splitting: A greedy method for partitioning the input space into "boxes" aligned with the coordinate axes.

Gini index and deviance: Commonly used error measures for constructing classification trees.

Ensemble methods: Umbrella term for methods that average or combine multiple models.

Bagging: Bootstrap aggregating. An ensemble method based on the statistical bootstrap.

Random forests: Bagging of trees, combined with random feature selection for further variance reduction (and computational gains).