# Jordan Quiver, Part I

## Talk 10 on Hall Algebras and Quantum Groups

# 1 The Jordan Quiver and its Nilpotent Representations

**Definition 1.** The *Jordan quiver* is the quiver that consists of a single vertex and a single edge, which is necessarily a loop.

Throughout this talk the Jordan quiver is denoted by Q. See Figure 1 for a visualization. In the following we write  $\mathbb{k}$  to mean a field or  $\mathbb{F}_1$ .

A representation of the Jordan quiver over  $\mathbbm{k}$  is the same as a pair (V,f) consisting of a  $\mathbbm{k}$ -vector space V together with an endomorphism f of V. A homomorphism of representations  $\varphi \colon (V,f) \to (W,g)$  is then precisely a homomorphism of vector spaces  $\varphi \colon V \to W$  that makes the following square diagram commute:

$$V \xrightarrow{\varphi} W$$

$$f \downarrow \qquad \qquad \downarrow g$$

$$V \xrightarrow{\varphi} W$$

If  $(V, f) \cong (W, g)$  then in particular  $V \cong W$  as vector spaces. So to understand the isomorphism classes of Q-representations over  $\mathbbm{k}$  we may assume that V = W. The commutativity of the above square diagram, together with the requirement that  $\varphi$  is an isomorphism, means precisely that the endomorphisms f, g of V are similar. We hence find that that the isomorphism classes of Q-representations over  $\mathbbm{k}$  correspond one-to-one to conjugacy classes of endomorphisms of  $\mathbbm{k}$ -vector spaces.

Suppose that V is finite-dimensional. If  $\mathbb{k}$  is a field then these conjugacy classes are can be understood via the rational canonical form. In the case that  $\mathbb{k}$  is also algebraically closed, or that it is  $\mathbb{F}_1$ , or that we are interested only in nilpotent endomorphisms, one can use the usual Jordan normal form.



Figure 1: The Jordan quiver Q.



Figure 2: The representations  $N_{(4,3,3,2)}$  and  $N_{(2,3,2,4,3)}$  over  $\mathbb{F}_1$ .

**Recall 2.** A representation  $V = ((V_i)_{i \in \Gamma_0}, (f_\alpha)_{\alpha \in \Gamma_1})$  of a quiver  $\Gamma = (\Gamma_0, \Gamma_1)$  is *nilpotent* if there exists some  $N \ge 0$  such that for every path  $\alpha_n, \ldots, \alpha_1$  in  $\Gamma$  of length  $n \ge N$  we have  $f_{\alpha_n} \circ \cdots \circ f_{\alpha_1} = 0$ . (See [Szc11, Definition 4.4].)

If  $\Gamma$  is finite and has no oriented cycles then every representation of  $\Gamma$  is nilpotent.

A representation (V, f) of the Jordan quiver is nilpotent if and only if the endomorphism f is nilpotent. We will in the rest of this talk restrict our attention to finite-dimensional, nilpotent representations of the Jordan quiver.

**Definition 3.** The category  $\operatorname{Rep}^{\operatorname{nil}}(Q, \mathbb{k})$  is the full subcategory of  $\operatorname{Rep}(Q, \mathbb{k})$  whose objects are the finite-dimensional, nilpotent representations of Q over  $\mathbb{k}$ . The set of isomorphism classes in  $\operatorname{Rep}^{\operatorname{nil}}(Q, \mathbb{k})$  is denoted by  $\operatorname{Iso}(Q, \mathbb{k})$ .

Every nilpotent endomorphism on a finite-dimensional k-vector space admits a Jordan normal form. We can therefore classify the isomorphism classes of  $\mathbf{Rep}^{\mathrm{nil}}(Q, k)$ : For every dimension  $d \geq 0$  let

$$\mathbf{N}_d \coloneqq \left( \mathbb{k}^d, \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix} \right)$$

if k is a field, and let

$$N_d := (\{0, 1, \dots, d\}, [d \mapsto (d-1) \mapsto (d-2) \mapsto \dots \mapsto 1 \mapsto 0 \mapsto 0])$$

if  $\mathbb{k} = \mathbb{F}_1$ . For every tupel  $(d_1, \dots d_n)$  of dimensions  $d_i \geq 0$  let

$$N_{(d_1,\ldots,d_n)} := N_{d_1} \oplus \cdots \oplus N_{d_n}$$
.

See Figure 2 for a visualization of  $N_{(d_1,...,d_n)}$ .

**Proposition 4** (Jordan normal form for nilpotent endomorphisms). Let k be any field.

1. Every finite-dimensional, nilpotent representation of Q over k is isomorphic to a representation of the form  $N_{(d_1,...,d_n)}$  for some  $n \ge 0$  and  $d_1,...,d_n \ge 1$ .

2. Two such representations  $N_{(d_1,\ldots,d_n)}$  and  $N_{(d'_1,\ldots,d'_m)}$  are isomorphic if and only if n=m and the tuples  $(d_1,\ldots,d_n)$  and  $(d'_1,\ldots,d'_m)$  are the same up to permutation.

We can reformulate the above proposition in terms of partitions:

**Definition 5.** For every  $n \ge 0$  let Par(n) be the set of partition of the number n, i.e.

$$Par(n) := \{(\lambda_1, \dots, \lambda_l) \mid \lambda_1 \ge \dots \ge \lambda_l \ge 1, \lambda_1 + \dots + \lambda_l = n\}.$$

The set of all partitions is denoted by

$$\operatorname{Par} := \coprod_{n \geq 0} \operatorname{Par}(n).$$

**Corollary 6.** The representations  $N_{\lambda}$  with  $\lambda \in Par$  form a set of representatives for  $Iso(Q, \mathbb{k})$ .

We find in particular that the category  $\mathbf{Rep}^{\mathrm{nil}}(Q, \mathbb{k})$  admits only finitely many isomorphism classes of objects.

# **2** The Hall Algebra of the Jordan Quiver over $\mathbb{F}_q$

We consider for  $\mathbb{k}$  the finite field  $\mathbb{F}_q$ .

**Proposition 7.** The category  $\operatorname{Rep}^{\operatorname{nil}}(Q)$  is hereditary.

**Lemma 8.** Let  $S := N_1$ .

- 1. The representation *S* is the unique simple object of  $\mathbf{Rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)$  (up to isomorphism).
- 2. The Groethendieck group  $K_0(\mathbf{Rep}^{\mathrm{nil}}(Q, \mathbb{F}_q))$  is freely generated by the class [S]. Thus

$$K_0(\mathbf{Rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)) \cong \mathbb{Z}$$

via the map  $[M] \mapsto \dim(M)$ .

3. We have both  $\text{Hom}(S, S) = \mathbb{F}_q$  and  $\text{Ext}^1(S, S) = \mathbb{F}_q$ .

Proof.

- 1. The indecomposable objects of  $\mathbf{Rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)$  are precisely  $N_i$  with  $i \geq 1$ . The representation  $N_i$  has (up to isomorphism) the subrepresentations  $N_j$  with  $j = 0, \dots, i$ . Thus only  $N_1$  is simple.
- 2. This follows from the previous assertion since each objects of  $\mathbf{Rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)$  admits a composition series, whose composition factors are necessarily *S*.

<sup>&</sup>lt;sup>1</sup>We want to point out that in this talk we do not allow a partition to contain zero as an entry. This is done purely for technical reasons.

3. We have  $\text{Hom}(S, S) = \mathbb{F}_q$  because *S* is one-dimensional.

Computation of  $\operatorname{Ext}^1(S, S)$ : Can be done via homological algebra or by explicit counting of Yoneda extensions. (It still needs to be decided which one to use.)

**Corollary 9.** The Euler form of  $\operatorname{Rep}^{\operatorname{nil}}(Q, \mathbb{F}_q)$  is trivial.

*Proof.* Let  $K := K_0(\mathbf{Rep}^{\mathrm{nil}}(Q, \mathbb{F}_q))$ . We can regard the Euler form of  $\mathbf{Rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)$  as a bilinear form

$$\langle -, - \rangle : K \times K \to \mathbb{Q}^{\times}$$
.

Since *S* is a generator of *K* is sufficies to show that  $\langle S, S \rangle = 1$ . This holds true because

$$\langle S, S \rangle = \left( \# \operatorname{Hom}(S, S) \right) \cdot \left( \# \operatorname{Ext}^{1}(S, S) \right)^{-1} = q \cdot q^{-1} = 1.$$

This proves the assertion.

We find from the above that  $\mathbf{Rep}^{\mathrm{nil}}(Q, \mathbb{F})$  is a abelian, finitary, hereditary category, which admits only finitely many isomorphism classes of objects (i.e. it is essentially finite). We are thus well-prepared to consider the Hall algebra  $\mathbf{H}(Q, \mathbb{F}_q)$ .

- 1. The underlying vector space of  $\mathbf{H}(Q, \mathbb{F}_q)$  is free on the set of isomorphism classes, Iso $(Q, \mathbb{F}_q)$ . This basis is indexed by the set of partitions Par.
- 2. The multiplication on  $\mathbf{H}(Q, \mathbb{F}_q)$  is given by

$$[M] \cdot [N] = \sum_{[R] \in Iso(Q, \mathbb{F}_q)} C_{M, N}^R[R]$$

where

 $C_{M,N}^R$  = number of subrepresentations L of R with  $L \cong N$  and  $R/L \cong M$ .

The multiplicative neutral element of  $\mathbf{H}(Q, \mathbb{F}_q)$  is given by  $1_{\mathbf{H}(Q, \mathbb{F}_q)} = [0]$ .

3. Since the Euler form of  $\mathbf{Rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)$  vanishes and  $\mathrm{Iso}(Q, \mathbb{F}_q)$  is finite we find that Green's product makes the Hall algebra  $\mathbf{H}(Q, \mathbb{F}_q)$  into a bialgebra. Its comultiplication is given by

$$\Delta([M]) = \sum_{[M],[N] \in \text{Iso}(Q,\mathbb{F}_q)} \frac{1}{a_R} P_{M,N}^R[M] \otimes [N]$$

where  $a_R$  is the size of the automorphism group  $\operatorname{Aut}(R)$ , and  $P_{M,N}^R$  is the number of short exact sequences  $0 \to N \to R \to M \to 0$ . The counit  $\varepsilon \colon \mathbf{H}(Q, \mathbb{F}_q) \to \mathbb{C}$  is given by

$$\varepsilon([M]) = \begin{cases} 1 & \text{if } M = 0, \\ 0 & \text{otherwise.} \end{cases}$$

4. We have a grading on  $\mathbf{H}(Q, \mathbb{F}_q)$  over the Grothendieck group  $K(\mathbf{Rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)) \cong \mathbb{Z}$ , given by

$$\deg([M]) = \dim(M).$$

This grading makes  $\mathbf{H}(Q, \mathbb{F}_q)$  into a graded bialgebra.

5. The graded bialgebra  $\mathbf{H}(Q, \mathbb{F}_q)$  is connected (i.e. its degree zero part is the ground field). It is therefore already a graded Hopf algebra.

We will in the rest of this talk be mostly concerned with the upcoming Hall algebra  $\mathbf{H}(Q, \mathbb{F}_1)$ . But we will here compute at least some of the structure constants of  $\mathbf{H}(Q, \mathbb{F}_q)$ . For this we follow [Scho9, Example 2.2].

**Recall 10.** For  $k \in \mathbb{N}$  the quantum integer  $[k]_q$  is given by

$$[k]_q = 1 + q + q^2 + \dots + q^{k-1} = \frac{q^k - 1}{q - 1}.$$

We have  $[0]_q = 0$  and  $[1]_q = 1$ . The *quantum factorial* is given by

$$[k]_q! = [k]_q[k-1]_q \cdots [1]_q.$$

For  $k, l \in \mathbb{N}$  the *quantum binomial* is given by

$$\begin{bmatrix} k \\ l \end{bmatrix}_q = \frac{[k]_q \cdots [k-l+1]_q}{[l]_q!} \,.$$

If l > k then this is zero, and if  $l \le k$  then the quantum binomial can also be expressed as

$${k \brack l}_q = \frac{[k]_q!}{[l]_q! [k-l]_q!} .$$

The quantum binomial satsfies the recursive relation

$$\begin{bmatrix} k \\ l \end{bmatrix}_q = q^l \begin{bmatrix} k-1 \\ l \end{bmatrix}_q + \begin{bmatrix} k-1 \\ l-1 \end{bmatrix}_q$$

for all  $k, l \in \mathbb{N}$ . It hence follows by induction that the quantum binomial  $\begin{bmatrix} k \\ l \end{bmatrix}_q$  is a polynomial in q with natural coefficients, i.e.

$$\begin{bmatrix} k \\ l \end{bmatrix}_q \in \mathbb{N}[q] .$$

By taking the limit  $q \to 1$  (i.e. by setting q equal to 1) the quantum integer [k] becomes the usual integer k, the quantum factorial  $[k]_q!$  becomes the usual factorial k! and the quantum binomial coefficient  $[l]_q^k$  becomes the usual binomial  $(l]_q^k$ .

**Lemma 11.** For all dimensions  $n, d \ge 0$  we have

$$\#\mathrm{Gr}(d,n,\mathbb{F}_q) = \begin{bmatrix} n \\ d \end{bmatrix}_q.$$

*Proof.* If d > n then both numbers are zero, so suppose that  $d \le n$ . Let

$$F_d(n) := (q^n - 1) \cdots (q^n - q^{d-1}) = (q - 1)^d q^{d(d-1)/2} [n]_q \cdots [n - d + 1]_q$$

This is the number of linear independent tupels  $(v_1, \dots, v_d)$  of vectors in  $\mathbb{F}_q^n$ . We find that

$$\#\mathrm{Gr}(d,n,\mathbb{F}_q) = \frac{F_d(n)}{\#\mathrm{GL}(d,\mathbb{F}_q)}.$$

We have  $\#GL(d, \mathbb{F}_q) = F_d(d)$  and thus

$$\#\mathrm{Gr}(d,n,\mathbb{F}_q) = \frac{F_d(n)}{F_d(d)} = \frac{[n]_q \cdots [n-d+1]_q}{[d]_q \cdots [1]_q} = \frac{[n]_q \cdots [n-d+1]_q}{[d]_q!} = \begin{bmatrix} n \\ d \end{bmatrix}_q,$$

as claimed.

**Example 12.** For any three partition  $\lambda, \mu, \kappa \in \text{Par}$  we abbreviate the structure constant

$$C_{\mathbf{N}_{\lambda},\mathbf{N}_{\mu}}^{\mathbf{N}_{\kappa}}$$

as  $C_{\lambda,\mu}^{\kappa}$ .

1. Let  $\lambda=(1^n)$  and  $\mu=(1^m)$ . We consider the partition  $\kappa:=(1^{n+m})$ . The action of the edge of the Jordan quiver Q on the representations  $N_{\lambda}$ ,  $N_{\mu}$  and  $N_{\kappa}$  is trivial. We thus find that every m-dimensional linear subspace L of  $N_{\kappa}$  satisfies the conditions  $L\cong N_{\mu}$  and  $N_{\kappa}/L\cong N_{\lambda}$ . The structure constant  $C_{\lambda,\mu}^{\kappa}$  is therefore given by

$$\begin{split} C_{\lambda,\mu}^{\kappa} &= \text{number of } m\text{-dimensional linear subspaces of } \mathbf{N}_{\kappa} \\ &= \text{number of } m\text{-dimensional linear subspaces of } \mathbb{F}_q^{n+m} \\ &= \# \mathrm{Gr}(m,n+m,\mathbb{F}_q) \\ &= \begin{bmatrix} n+m \\ m \end{bmatrix}_q. \end{split}$$

We see in particular that  $C_{\lambda,\mu}^{\kappa}$  depends is a polynomial way on q. We have for example

$$C_{(1^n),(1)}^{(1^{n+1})} = \#\mathrm{Gr}(1,n+1,\mathbb{F}_q) = \#\mathbb{P}^n(\mathbb{F}_q) = \frac{q^{n+1}-1}{q-1} = [n+1]_q = 1+q+\cdots+q^n\,,$$

and also

$$\begin{split} C_{(1^n),(1,1)}^{(1^{n+2})} &= \begin{bmatrix} n+2 \\ 2 \end{bmatrix}_q = \frac{[n+2]_q[n+1]_q}{[2]_q} \\ &= \frac{(1+q+\dots+q^n)(1+q+\dots+q^{n+1})}{1+q} \\ &= \begin{cases} (1+q+\dots+q^n)(1+q^2+\dots+q^n) & \text{if } n \text{ is even,} \\ (1+q^2+\dots+q^{n-1})(1+q+\dots+q^{n+1}) & \text{if } n \text{ is odd.} \end{cases} \end{split}$$



Figure 3: The representations  $N_{(2,1)}$  over  $\mathbb{F}_q$ .

2. Let now  $\lambda = (n)$  and  $\mu = (m)$ . We consider the partition  $\kappa = (n+m)$ . The representation  $N_{\kappa}$  has the standard basis  $e_1, \ldots, e_{n+m}$ , and the subrepresentations of  $N_{\kappa}$  are given by  $\langle e_1, \ldots, e_i \rangle$  for  $i = 0, \ldots, n+m$ . The subrepresentations  $L := \langle e_1, \ldots, e_m \rangle$  is the unique one that is isomorphic to  $N_{\mu}$ , and its quotient  $N_{\kappa}/L$  is isomorphic to  $N_{\lambda}$ . Thus

$$C_{(n),(m)}^{(n+m)} = 1$$
.

3. Let us compute the coefficients  $C_{(1),(2)}^{(2,1)}$  and  $C_{(2),(1)}^{(2,1)}$ . We use for  $N_{(2,1)}$  the basis  $e_1, e_2, e_3$  with  $\alpha e_1 = e_2$  and  $\alpha e_2 = \alpha e_3 = 0$  where  $\alpha$  denotes the loop of Q. See Figure 3.

The coefficient  $C_{(1),(2)}^{(2,1)}$  is the number of subrepresentations L of  $N_{(2,1)}$  with  $L \cong N_2$  and  $N_{(2,1)}/L \cong N_1$ . The condition  $L \cong N_2$  means that L is cyclically generated by a vector  $v = ae_1 + be_2 + ce_3$  with  $a \neq 0$ . We may assume that a = 1. Then

$$\langle v \rangle_{\mathbb{F}_q Q} = \langle v, \alpha v \rangle_{\mathbb{F}_q} = \langle e_1 + b e_2 + c e_3, e_2 \rangle_{\mathbb{F}_q} = \langle e_1 + c e_3, e_2 \rangle \,.$$

For any such subrepresentation L the quotient  $N_{(2,1)}/L$  is one-dimensional and thus isomorphic to  $N_1$ . We get for every coefficient  $c \in \mathbb{F}_q$  a different representation. Hence

$$C_{(1),(2)}^{(2,1)} = \#\mathbb{F}_q = q.$$

The coefficient  $C_{(1),(2)}^{(2,1)}$  is the number of subrepresentations L of  $N_{(2,1)}$  with  $L \cong N_1$  and  $N_{(2,1)}/L \cong N_2$ . The condition  $L \cong N_1$  means that L is cyclically generated by a nonzero vector  $v = be_2 + ce_3$  with  $a \neq 0$ .

If  $b \neq 0$  then we may assume that b = 1, so that  $v = e_2 + ce_3$ . Then  $N_{(2,1)}/L$  has the basis vectors  $[e_1]$ ,  $[e_3]$  with  $\alpha[e_1] = -c[e_3]$  and  $\alpha[e_3] = 0$ . Thus  $N_{(2,1)}/L \cong N_2$  if  $c \neq 0$  and  $N_{(2,1)}/L \cong N_{(1,1)}$  if c = 0. In the case  $b \neq 0$  we thus have q - 1 choices for L.

If b=0 then  $c\neq 0$  and we may assume that c=1. Then  $v=e_3$  and thus Then  $N_{(2,1)}/L\cong N_2$ . We thus find that there are q choices for L, i.e

$$C_{(2),(1)}^{(2,1)} = q.$$

4. One finds in the same way as above that more generally

$$C_{(n),(1)}^{(n,1)} = q = C_{(1),(n)}^{(n,1)}$$

for every  $n \ge 2$ .

We observe that in the above examples we always have  $C_{\lambda,\mu}^{\kappa} = C_{\mu,\lambda}^{\kappa}$ . We will see in next week's talk that the Hall algebra  $\mathbf{H}(Q, \mathbb{F}_q)$  is indeed commutative, which means precisely that  $C_{\lambda,\mu}^{\kappa} = C_{\mu,\lambda}^{\kappa}$  for any three partitions  $\lambda, \mu, \kappa \in \operatorname{Par}$ .

# 3 The Hall Algebra of the Jordan Quiver over $\mathbb{F}_1$

We will now consider the case that  $\mathbb{k}$  is  $\mathbb{F}_1$ . We have seen in last week's talk how to construct the Hall algebra of Q over  $\mathbb{F}_1$ :

**Recall 13.** The Hall algebra  $\mathbf{H}(Q, \mathbb{F}_1)$  is a graded, cocommutative Hopf algebra (over the ground field  $\mathbb{C}$ ). Its structure is given as follows:

- The underlying vector space of  $\mathbf{H}(Q, \mathbb{F}_1)$  is the free  $\mathbb{C}$ -vector space on the set  $\mathrm{Iso}(Q, \mathbb{F}_1)$ . The set  $\mathrm{Iso}(Q, \mathbb{F}_1)$  is indexed by the set of partitions Par.
- The grading of  $\mathbf{H}(Q, \mathbb{F}_1)$  is given by  $\mathbf{H}(Q, \mathbb{F}_1)_d = \langle [M] \mid \dim(M) = d \rangle_{\mathbb{C}}$ .
- The multiplication of  $\mathbf{H}(Q, \mathbb{F}_1)$  is given by

$$[M] \cdot [N] := \sum_{[R] \in \mathrm{Iso}(Q, \mathbb{F}_1)} C_{M, N}^R[R]$$

where the structure coefficients  $C_{M,N}^R$  are given by

$$C_{MN}^R = \#\{\text{subrepresentations } L \text{ of } R \mid L \cong N, R/L \cong M\}.$$

- The multiplicative neutral element of  $\mathbf{H}(Q, \mathbb{F}_1)$  is given by  $1_{\mathbf{H}(Q, \mathbb{F}_1)} = [0]$ .
- The comultiplication of  $\mathbf{H}(Q, \mathbb{F}_1)$  is given by

$$\Delta([M]) = \sum_{\substack{[R], [L] \in \text{Iso}(Q, \mathbb{F}_1) \\ M \cong R \oplus L}} [R] \otimes [L].$$

We see in particular that an isomorphism class [M] is primitive in  $\mathbf{H}(Q, \mathbb{F}_1)$  if and only if the representation M is indecomposable. We have seen that more generally the Lie algebra of primitive elements of  $\mathbf{H}(Q, \mathbb{F}_1)$  has a basis consisting of all such [M].

**Example 14.** We can again compute some structure constants:

1. Let again  $\lambda = (1^n)$  and  $\mu = (1^m)$ , and consider  $\kappa = (1^{n+m})$ . We find as before that

$$C_{\lambda,\mu}^{\kappa}=$$
 number of  $m$ -dimensional subspaces of  $N_{n+m}=\binom{n+m}{m}$ .

This is the same result as before by taking the limit  $q \to 1$ .

2. Let again  $\lambda = (n)$  and  $\mu = (m)$  and consider  $\kappa = (n + m)$ . We find as before that

$$C_{\lambda,\mu}^{\kappa}=1$$
.

3. Let us compute the product  $[N_i] \cdot [N_j]$ . We observe that if  $[R] \in \text{Iso}(Q, \mathbb{F}_1)$  and L is a subrepresentation of R that is isomorphic to  $N_j$  then the quotient R/L results from R by contracting one of the Jordan chains by j elements. If  $R/L \cong N_i$  then this means that R

consists of a single Jordan chain of length i+j, or of two Jordan chains of length i and j respectively. Thus

$$[N_i] \cdot [N_j] = a[N_{(i,j)}] \cdot b[N_{i+j}]$$

We have seen above that  $b = C_{(i),(j)}^{(i+j)} = 1$ . The coffient a is the number of entries of (i, j) that are of length j. Thus

$$a = \begin{cases} 1 & \text{if } i \neq j, \\ 2 & \text{if } i = j. \end{cases}$$

Thus

$$[\mathbf{N}_i]\cdot[\mathbf{N}_j] = \begin{cases} [\mathbf{N}_{(i,j)}] + [\mathbf{N}_{i+j}] & \text{if } i\neq j, \\ 2[\mathbf{N}_{(i,j)}] + [\mathbf{N}_{i+j}] & \text{if } i=j. \end{cases}$$

We see in particular that  $[N_i]$  and  $[N_i]$  commute.

4. We find in the same way that for all  $i_1, ..., i_r \ge 1$  and  $j \ge 1$ ,

$$[N_{(i_1,...,i_r)}] \cdot [N_j] = a[N_{(i_1,...,i_r,j)}] + \sum_{\lambda} b_{\lambda}[N_{\lambda}],$$

where  $\lambda$  runs through all distinct tupels of the form  $\lambda = (i_1, \dots, i_k + j, \dots, i_r)$  with  $1 \le k \le r$ . The coefficient a is given by

$$a = \text{how often } j \text{ occurs in } (i_1, \dots, i_r, j)$$

and the coefficient of  $b_{\lambda}$  for  $\lambda = (i_1, ..., i_k + j, ..., i_r)$  are given by

$$b_{\lambda} = \text{how often } i_k + j \text{ occurs in } \lambda$$
.

We have for example

$$[N_{(5,3,3,2,1)}] \cdot [N_2] = 2[N_{(5,3,3,2,2,1)}] + [N_{(7,3,3,2,1)}] + 2[N_{(5,5,3,2,1)}] + [N_{(5,4,3,3,1)}] + 3[N_{(5,3,3,3,2)}].$$

We see by induction that  $\mathbf{H}(Q, \mathbb{F}_1)$  is generated as an algebra by the  $N_i$  with  $i \ge 1$ .

**Corollary 15.** The Hall algebra  $\mathbf{H}(Q, \mathbb{F}_1)$  is commutative.

**Remark 16.** We have seen last week that the Hall algebra  $\mathbf{H}(Q, \mathbb{F}_1)$  is the universal enveloping algebra of its Lie algebra of primitive elements, which in turn is spanned (as a vector space) by the  $N_i$ . We have thus already seen last week that  $\mathbf{H}(Q, \mathbb{F}_1)$  is generated by the  $N_i$  as an algebra.

We have hence shown that  $\mathbf{H}(Q, \mathbb{F}_1)$  is a commutative, cocommutative, graded Hopf algebra We will in the following show that it is actually the ring of symmetric functions.

# 4 The Ring of Symmetric Functions

#### 4.1 Definition

For every  $k \ge 0$  we denote by

$$\Lambda^{(k)} := \mathbb{C}[x_1, \dots, x_k]^{S_k}$$

the algebra of symmetric polynomials in k variables. We have for every  $r \ge 0$  a homomorphism of graded algebras

$$\Lambda^{(k+1)} \to \Lambda^{(k)}, \quad f(x_1, \dots, x_r, x_{k+1}) \mapsto f(x_1, \dots, x_r, 0).$$

**Definition 17.** The ring of symmetric functions  $\Lambda$  is the limit

$$\Lambda := \lim_{k > 0} \left( \Lambda^{(k+1)} \to \Lambda^{(k)} \right)$$

in the category of graded rings. The elements of  $\Lambda$  are symmetric functions.

**Warning 18.** A symmetric function is – contrary to its name – not a function.

Let us make the above definition more explicit: For every  $n \ge 0$  we have

$$\begin{split} &\Lambda_n = \lim_{k \geq 0} \left( \Lambda_n^{(k+1)} \to \Lambda_n^{(k)} \right) \\ &= \left\{ \left( f_k(x_1, \dots, x_n) \right)_{k \geq 0} \, \middle| \, f_k(x_1, \dots, x_k) \in \Lambda_n^{(k)} \text{ for every } k \geq 0 \text{ such that } \\ &f_{k+1}(x_1, \dots, x_k, 0) = f_k(x_1, \dots, x_k) \text{ for every } k \geq 0 \right\}, \end{split}$$

and we have overall

$$\Lambda = \bigoplus_{n \ge 0} \Lambda_n$$

as vector spaces. The multiplication on  $\Lambda$  is given by  $(f_k)_{k\geq 0} \cdot (g_k)_{k\geq 0} = (f_k \cdot g_k)_{k\geq 0}$  for all  $(f_k)_{k\geq 0} \in \Lambda_n$  and  $(g_k)_{k\geq 0} \in \Lambda_m$ .

A homogeneous symmetric function f, say of degree n, is thus the same as a "consistent choice" of homogeneous symmetric polynomials  $f_k \in \Lambda^{(k)}$  of degree n for every  $k \ge 0$ . We have for every number of variables  $k \ge 0$  a homomorphism of graded algebras

$$\Lambda \to \Lambda^{(k)}, \quad f \mapsto f(x_1, \dots, x_k)$$

that is given by projection onto the k-th component. For any two symmetric functions f, g we have by construction of  $\Lambda$  that

$$f = g \iff f(x_1, \dots, x_k) = g(x_1, \dots, x_k)$$
 for every  $k \ge 0$ .

**Example 19.** We have for every number of variables  $k \ge 0$  and every degree  $n \ge 0$  the *elementary symmetric polynomial* 

$$e_n^{(k)}(x_1,\ldots,x_k) := \sum_{1 \le i_1 < \cdots < i_n \le k} x_{i_1} \cdots x_{i_n},$$

with  $e_n^{(k)} = 0$  whenever n > k. These polynomials are homogeneous and satisfy the conditions

$$e_n^{(k+1)}(x_1,\ldots,x_k,0) = e_n^{(k)}(x_1,\ldots,x_k)$$

for all  $k \ge 0$ . These elementary symmetric polynomials  $e_n^{(k)}$  with  $k \ge 0$  therefore assemble into a single homogeneous symmetric function

$$e_n \in \Lambda_n$$
.

This is the *n*-th elementary symmetric function.

We find similarly that the power symmetric polynomials

$$p_n^{(k)}(x_1,\ldots,x_k) := x_1^n + \cdots + x_k^n$$

and the completely homogenous symmetric polynomials

$$h_n^{(k)}(x_1,\dots,x_k) := \sum_{1 \leq i_1 \leq \dots \leq i_n \leq k} x_{i_1} \cdots x_{i_n} = \sum \text{monomials of homogeneous degree } n$$

result in homogeneous symmetric functions

$$p_n, h_n \in \Lambda$$
.

These are the power symmetric functions and completely homogeneous symmetric functions.

**Warning 20.** The ring of symmetric functions  $\Lambda$  is *not* the limit of the rings of symmetric polynomials  $\Lambda^{(k)}$  in the category of (commutative) rings. Indeed, the symmetric polynomials

$$f_k(x_1, \dots, x_k) := x_1 + x_1 x_2 + \dots + x_1 \dots x_k$$

satisfy the compatibility condition  $f_{k+1}(x_1, ..., x_k, 0) = f_k(x_1, ..., x_k)$  for every  $k \ge 0$ . But there exists no symmetric function  $f \in \Lambda$  with  $f(x_1, ..., x_k) = f_k(x_1, ..., x_k)$  for every  $k \ge 0$ .

An arbitrary family  $(f_k)_{k\geq 0}$  of compatible symmetric polynomials  $f_k \in \Lambda^{(k)}$  defines a symmetric function if and only if the degrees  $\deg(f_k)$  are bounded, i.e. if there exists some degree  $d\geq 0$  with  $\deg(f_k)\leq d$  for every  $k\geq 0$ .

### 4.2 The Fundamental Theorem on Symmetric Functions

The fundamental theorem of symmetric polynomials asserts that for every number of variables  $k \geq 0$  the elementary symmetric polynomials  $e_1^{(k)}, \dots, e_k^{(k)}$  form an algebraically independent generating set for the algebra of symmetric polynomials  $\Lambda^{(k)}$ . It follows from this that the completely homogeneous symmetric polynomials  $h_1^{(k)}, \dots, h_k^{(k)}$  form an algebraically independent generating set for  $\Lambda^{(k)}$ , and one can show that the same holds true for the power symmetric polynomials  $p_1^{(k)}, \dots, p_k^{(k)}$ .

<sup>&</sup>lt;sup>2</sup>For the elementary symmetric polynomials  $e_i^{(k)}$  and homogeneous symmetric polynomials  $h_i^{(k)}$  these statements do not only hold over the ground field  $\mathbb{C}$ , but over every commutative ring. For the power symmetric polynomials  $p_i^{(k)}$  we need to work over a field in which the numbers  $1, \ldots, k$  are invertible.

For every partition  $\lambda \in Par$  we can consider the symmetric polynomials

$$e_{\lambda}^{(k)} \coloneqq e_{\lambda_1}^{(k)} \cdots e_{\lambda_l}^{(k)} \,, \quad h_{\lambda}^{(k)} \coloneqq h_{\lambda_1}^{(k)} \cdots h_{\lambda_l}^{(k)} \,, \quad p_{\lambda}^{(k)} \coloneqq p_{\lambda_1}^{(k)} \cdots p_{\lambda_l}^{(k)} \,.$$

We have just formulated that the symmetric polynomials  $e_{\lambda}^{(k)}$  for  $\lambda \in \text{Par}$  with length  $\leq k$  form a vector space basis for  $\Lambda^{(k)}$ , and similarly for  $h_{\lambda}^{(k)}$  and  $p_{\lambda}^{(k)}$ . We can generalize these families of symmetric polynomials to symmetric functions:

**Example 21.** For every  $\lambda \in \text{Par}$  with  $\lambda = (\lambda_1, ..., \lambda_l)$  we consider the symmetric functions

$$e_{\lambda} := e_{\lambda_1} \cdots e_{\lambda_l}, \quad h_{\lambda} := h_{\lambda_1} \cdots h_{\lambda_l}, \quad p_{\lambda} := p_{\lambda_1} \cdots p_{\lambda_l}.$$

and note that

$$e_{\lambda}(x_1, ..., x_k) = e_{\lambda}^{(k)}(x_1, ..., x_k),$$
  
 $h_{\lambda}(x_1, ..., x_k) = h_{\lambda}^{(k)}(x_1, ..., x_k),$   
 $p_{\lambda}(x_1, ..., x_k) = p_{\lambda}^{(k)}(x_1, ..., x_k).$ 

Another important family of symmetric polynomials are the *monomial symmetric polynomials*: For every partition  $\lambda \in \text{Par}$  with  $\lambda = (\lambda_1, ..., \lambda_k)$  the corresponding monomial symmetric polynomial is given by

$$m_{\lambda}^{(k)}(x_1,\ldots,x_k) = \sum \text{distinct permutations of } x_1^{\lambda_1}\cdots x_k^{\lambda_k}.$$

These polynomials also form a basis of  $\Lambda^{(k)}$ . They too can be generalized to symmetric functions.

**Example 22.** Let  $\lambda \in \text{Par}$  be a partition with  $\lambda = (\lambda_1, \dots, \lambda_l)$ . For every  $k \geq l$  we again define

$$m_{\lambda}^{(k)}(x_1,\ldots,x_k) = \sum \text{distinct permutations of } x_1^{\lambda_1}\cdots x_k^{\lambda_k}.$$

For k < l we set

$$m_{\lambda}^{(k)} \coloneqq 0$$
.

Then

$$m_{\lambda}^{(k+1)}(x_1,\ldots,x_k,0) = m_{\lambda}^{(k)}(x_1,\ldots,x_k)$$

for every  $k \ge 0$ , and each  $m_{\lambda}^{(k)}$  is homogeneous of degree  $|\lambda|$ . We therefore get a well-defined homogeneous symmetric function

$$m_{\lambda} \in \Lambda$$
,

which we call the *monomial symmetric function* associated to  $\lambda$ .

We now want to generalize the fundamental theorem on symmetric polynomials to symmetric functions. The key observation behind this is the following:

**Proposition 23.** The map  $\Lambda_n^{(k+1)} \to \Lambda_n^{(k)}$  is an isomorphism whenever  $k \ge n$ .

*Proof.* A basis of  $\Lambda_n^{(k)}$  is given by the symmetric polynomials  $e_{\lambda}^{(k)}$  where  $\lambda$  is of length k and the partition  $\lambda = (\lambda_1, \dots, \lambda_k)$  satisfies

$$\lambda_1 + 2\lambda_2 + \dots + k\lambda_k = n.$$

A basis of  $\Lambda_n^{(k)}$  is given by the symmetric polynomials  $e_\mu^{(k+1)}$  where  $\mu$  is of length k+1 and the partition  $\mu=(\mu_1,\ldots,\mu_k,\mu_{k+1})$  satisfies

$$\mu_1 + 2\mu_2 + \dots + k\mu_k + (k+1)\mu_{k+1} = n.$$

If  $k \ge n$  then k+1 > n and we find that  $\mu_{k+1} = 0$ . We now find that the map  $\Lambda_n^{(k+1)} \to \Lambda_n^{(k)}$  restricts to a bijection between those bases.

**Corollary 24.** The map  $\Lambda_n \to \Lambda_n^{(k)}$  is an isomorphism whenever  $k \ge n$ .

**Corollary 25.** The following families of symmetric functions form vector space bases of  $\Lambda$ :

- 1. The elementary symmetric polynomials  $e_{\lambda}$  with  $\lambda \in Par$ .
- 2. The complete homogeneous symmetric polynomials  $h_{\lambda}$  with  $\lambda \in Par$ .
- 3. The power symmetric polynomials  $p_{\lambda}$  with  $\lambda \in Par$ .
- 4. The monomial symmetric polynomials  $m_{\lambda}$  with  $\lambda \in Par$ .

**Corollary 26.** The elementary symmetric functions  $e_i$  with  $i \ge 1$  form an algebraically independent algebra generating set for  $\Lambda$ , and similarly for the  $h_i$  and the  $p_i$ .

**Corollary 27.** We have  $\Lambda \cong \mathbb{C}[X_1, X_2, X_3, ...]$  as graded algebras, where  $X_i$  is of degree i.

**Remark 28.** It follows from Corollary 24 for any two symmetric functions  $f, g \in \Lambda$  that

$$f = g \iff f(x_1, \dots, x_k) = g(x_1, \dots, x_k)$$
 for some  $k \ge \deg(f), \deg(g)$ .

**Remark 29.** We have for every number of variables  $k \geq 0$  an embedding of graded algebras  $\Lambda^{(k)} \to \Lambda$  given by  $e_i^{(k)} \to e_i$ . (The homomorphism  $\Lambda \to \Lambda^{(k)}$  is a retract for this inclusion.) We can thus regard  $\Lambda^{(k)}$  as subring of  $\Lambda$ . It then follows that

$$\Lambda \cong \underset{k>0}{\text{colim}} \left( \Lambda^{(k)} \to \Lambda^{(k+1)} \right)$$

where the homomorphism  $\Lambda^{(k)} \to \Lambda^{(k+1)}$  are given by the embeddings  $e_i^{(k)} \mapsto e_i^{(k+1)}$ .

### 4.3 Hopf Algebra Structure

We can endow the algebra of symmetric functions  $\Lambda$  with the structure of a graded Hopf algebra.

**Lemma 30.** Let G, H be two groups. Let V be a representation of G and let W be a representation of H. Then

$$(V\otimes W)^{G\times H}=V^G\otimes W^H.$$

*Proof.* The inclusion  $V^G \otimes W^H \subseteq (V \otimes W)^{G \times H}$  can be checked on simple tensors. Let on the other hand  $x \in (V \otimes W)^{G \times H}$ . We may choose a basis  $(v_i)_{i \in I}$  of V and write  $x = \sum_{i \in I} v_i \otimes w_i$  for some unique vectors  $w_i \in W$ . For every element  $h \in H$  we then have

$$\sum_{i\in I} v_i \otimes w_i = x = (1, h)x = \sum_{i\in I} v_i \otimes (hw_i).$$

It follows from the uniqueness of the  $w_i$  that  $hw_i = w_i$  for every  $h \in H$  and every  $i \in I$ , and thus  $w_i \in W^H$  for every  $i \in I$ . This shows that  $x \in V \otimes W^H$ . We find in the same way that  $x \in V^G \otimes W^H$ , and thus  $x \in (V \otimes W^H) \cap (V^G \otimes W) = V^G \otimes W^H$ .

We have now for any two number of variables  $k, l \ge 0$  a homomorphism of graded algebras

$$\begin{split} \Delta_{kl} \colon \Lambda^{(k+l)} &= \mathbb{C}[x_1, \dots, x_{k+l}]^{S_{k+l}} \\ &\subseteq \mathbb{C}[x_1, \dots, x_{k+l}]^{S_k \times S_l} \\ &\cong (\mathbb{C}[x_1, \dots, x_k] \otimes \mathbb{C}[x_{k+1}, \dots, x_{k+l}])^{S_k \times S_l} \\ &\cong (\mathbb{C}[x_1, \dots, x_k] \otimes \mathbb{C}[x_1, \dots, x_l])^{S_k \times S_l} \\ &= \mathbb{C}[x_1, \dots, x_k]^{S_k} \otimes \mathbb{C}[x_1, \dots, x_l]^{S_l} \\ &= \Lambda^{(k)} \otimes \Lambda^{(l)}. \end{split}$$

We would like to have a homomorphism of graded algebras  $\Delta: \Lambda \to \Lambda \otimes \Lambda$  such that for all degrees  $k, l \geq 0$  the square diagram

$$\Lambda \xrightarrow{---} \Lambda \otimes \Lambda$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Lambda^{(k+l)} \xrightarrow{\Delta_{kl}} \Lambda^{(k)} \otimes \Lambda^{(l)}$$

commutes. The composition  $\Lambda \to \Lambda^{(k)} \otimes \Lambda^{(l)}$  is given on the algebra generators  $p_i$  of  $\Lambda$  by

$$p_i \mapsto p_i^{(k)} \otimes 1 + 1 \otimes p_i^{(l)}$$
.

Such an algebra homomorphism  $\Delta$  is thus given by

$$\Delta(p_i) = p_i \otimes 1 + 1 \otimes p_i.$$

The homomorphism  $\Delta$  makes the algebra  $\Lambda$  into a cocommutative, graded bialgebra. The counit is given on algebra generators by

$$\varepsilon(p_i) = 0$$

for every  $i \ge 0$ . Since  $\Lambda$  is graded and connected it follows that it is already a graded Hopf algebra. Its antipode is given on algebra generators by

$$S(p_i) = -p_i$$

for every  $i \ge 0$ .

We have made  $\Lambda$  into a commutative, cocommutative, graded Hopf algebra.

# 5 The Isomorphism $H(Q, \mathbb{F}_1) \cong \Lambda$

Both  $\mathbf{H}(Q, \mathbb{F}_1)$  and  $\Lambda$  are commutative, cocommutate, graded Hopf algebras. They are isomorphic as graded Hopf Algebras:

The ring of symmetric functions  $\Lambda$  has is, as a commutative algebra, freely generated by the power symmetric functions  $p_1, p_2, ...$  There hence exists a unique, surjective algebra homomorphism  $\Phi: \Lambda \to \mathbf{H}(Q, \mathbb{F}_1)$  with  $\Phi(p_i) = [N_i]$  for every  $i \geq 1$ . We note that  $\Phi$  is a homomorphism of graded algebras because both  $p_i$  and  $[N_i]$  are of degree i. We also have for every degree  $n \geq 0$  that

$$\dim \Lambda_n = \#\{(\lambda_1,\ldots,\lambda_k) \in \operatorname{Par} \mid \lambda_1 + 2\lambda_2 + \cdots + k\lambda_k = n\} = \dim \mathbf{H}(Q,\mathbb{F}_1)_n,$$

with these dimensions being finite. It thus follows from the surjectivity of  $\Phi$  that it is already an isomorphism of graded algebras.

The algebra isomorphism  $\Phi$  is already an isomorphism of Hopf algebras: It sufficies to check that  $\Phi$  is compatible with the comultiplication of the algebra generators  $[N_i]$ . This holds since  $p_i$  is primitive in  $\Lambda$  and  $[N_i]$  is primitive in  $\mathbf{H}(Q, \mathbb{F}_1)$ .

We have shown altogether that  $\Phi$  is an isomorphism of graded Hopf algebras.

### References

- [Scho9] Olivier Schiffmann. Lectures on Hall Algebras. October 23, 2009. arXiv: 0611617v2 [math.RT].
- [Szc11] Matthew Szczesny. Representations of Quivers over  $\mathbb{F}_1$  and Hall Algebras. July 25, 2011. arXiv: 1006.0912v3 [math.QA].