CLIPPEDIMAGE= JP405137297A

PAT-NO: JP405137297A

DOCUMENT-IDENTIFIER: JP 05137297 A TITLE: AC GENERATOR FOR VEHICLE

PUBN-DATE: June 1, 1993

INVENTOR-INFORMATION:

NAME

ADACHI, KATSUMI

ASSIGNEE-INFORMATION:

NAME -

COUNTRY

MITSUBISHI ELECTRIC CORP

N/A

APPL-NO: JP03325183

APPL-DATE: November 12, 1991

INT-CL_(IPC): H02K009/06; H02K019/22 US-CL-CURRENT: 123/339.25,310/51,310/63

ABSTRACT:

PURPOSE: To suppress air flowing noise by suppressing an air flow rate of a fan when a rotor is rotated at a predetermined speed or more, and to decrease the air flowing noise by reducing the air flow rate of the fan at the time of low output.

CONSTITUTION: A pair of fans 30, 31 at both end sides of pole cores 5, 6 are supported to a rotary shaft 8 side through bearings 32, 33. Main plates 30a, 31a of the fans 30, 31 are opposed to the outer end faces of the cores 5, 6 through axial air gaps. Parts of magnetic fluxes of the cores 5, 6 are branched to the plates 30a, 31a of the fan, and the fans 30, 31 are rotated by a magnetic coupling force.

COPYRIGHT: (C)1993, JPO& Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FI

(11)特許出願公開番号

特開平5-137297

(43)公開日 平成5年(1993)6月1日 -

(51) Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

H02K 9/06

G 6435-5H

C 6435-5H

19/22

7254-5H

審査請求 未請求 請求項の数1(全 6 頁)

(21)出願番号

特願平3-325183

(22)出願日

平成3年(1991)11月12日

(71)出願人 000006013

三菱電機株式会社

東京都千代田区丸の内二丁目2番3号

(72) 発明者 足立 克己

姫路市千代田町840番地 三菱電機株式会

社姫路製作所内

(74)代理人 弁理士 村上 博 (外1名)

(54) 【発明の名称】 車両用交流発電機

(57) 【要約】

回転子が所定の回転速度以上になるとファン 【目的】 の風量が抑制され、風騒音を抑え、また、低出力ではそ れに応じてファンの風量が低減し、風騒音を低下させ る。

磁極鉄心 5、6の両端側の1対のファン3 【構成】 0、31を回転軸8側に軸受32、33を介し支持し、 ファン30、31の主板30a、31aを磁極鉄心5、 6の外端面に軸方向のエアギャップを介し対向させ、磁 極鉄心5、6の磁束の一部をファンの主板30a、31 aに分流させ、磁気連結力によりファン30、31を回 転させる。

1:固定手

8:回転軸 30,31:ファン

4:回触子 5,6: 磁極鉄心 30a,37a:主板 7:耐磁コイル

32,33:軸登

1

【特許請求の範囲】

固定子内に配置され、励磁コイルを保持 【請求項1】 し軸方向に合わされた異極性の1対の磁極鉄心が回転軸 に固定された回転子と、上記各磁極鉄心の外端側に配設 された1対のファンを備えた車両用交流発電機におい て、

上記各ファンは上記回転軸側に軸受を介し支持され、主 板が上記磁極鉄心の端面に軸方向のエアギャップを介し 対向していて、磁極鉄心の磁束の一部が上記主板を通る 転につれ回転されるようにしたことを特徴とする車両用 交流発電機。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、ブラケット支持の突 極回転形回転子の車両用交流発電機に関し、特に回転子 のファンの連結回転手段にかかわる。

[0002]

【従来の技術】図5は従来の車両用交流発電機の縦断面 図である。図において、1は固定子で、固定子鉄心2 20 と、固定子コイル3とからなる。4は回転子で、次のよ うに構成されている。5及び6は異極性の磁極鉄心で、 双方の磁極歯部5a及び6aが円周方向に交互に出され ている。7は双方の磁極鉄心間に保持された励磁コイ ル、8は磁極鉄心5、6を固着した回転軸、9は回転軸 8に絶縁スリープを介し固定された1対のスリップリン グ、10及び11は磁極鉄心5及び6に固定されたファ ンである。

【0003】次に、12及び13は前ブラケット及び後 プラケットで、締付けボルト14により固定子鉄心2を *30* 結合している。前プラケット12には通風のため、端部 に複数の吸気孔12aと、外周部に複数の排気孔12b とが設けられている。また、後ブラケット13には通風 のため、端部に複数の吸気孔13aと、外周部に複数の 排気孔13bとが設けられている。回転軸8は軸受15 及び16を介し、前プラケット12及び後プラケット1 3に支持されている。17は回転軸8に固定されたプー リで、機関の回転がベルトを介し伝えられ、回転子4を 回転させる。

圧を直流電圧に整流して出力する整流器、19は整流器 出力電圧を検出し、励磁電流を制御し端子電圧を所定値 に調整する電圧調整器である。20はブラシ保持器で、 保持したプラシ21をスリップリング9に圧接させ励磁 電流を通じる。

【0005】上記交流発電機において、回転子4が回転 されると、固定子コイル3に交流電圧が誘導され電力を 供給し発熱する。ファン10、11の回転による通風 で、固定子1部、回転子4部を冷却する。

【0006】図6は従来の交流発電機の出力電圧Vと励 50 6a、12a、12b、13a、13bは図5と同様で

磁量ATを一定にしたときの、回転速度Nに対する出力 電流 I (全負荷)、風音レベルPi、冷却風量Qi、及び 発電機の温度上昇 T1の関係を示す。回転速度Nが高い ときは、出力電流 I に対する冷却風量 Q1 が必要以上に " 多くなり、風音レベルPェが大きくなっている。

【0007】また、図7は回転速度Nと出力電圧Vを一 定にしたときの、励磁量ATに対する出力電流I、風音 レベルPi、冷却風量Qi、及び発電機温度上昇Tiの関 係を示す。回転子の磁極の励磁量に比例した出力電流Ⅰ ようにしており、磁気連結によりファンが磁極鉄心の回 10 に関係なく、同一の冷却風量であるので、低励磁量にお いても、必要以上の風量であり、風音レベルP1も大き くなっている。

[0008]

【発明が解決しようとする課題】上記のような従来の車 両用交流発電機では、ファン10、11は磁極鉄心5、 6に固着されており、回転速度が高くなると、出力に対 し、冷却風量が過大になり、風騒音が大きく、風損が大 となるという問題点があった。また、任意の回転速度に おいても、励磁量に比例した出力と関係なく、同一の冷 却風量であり、低励量において必要以上の冷却風量とな り、風騒音が低下できないという問題点があった。

【0009】この発明は、このような問題点を解決する ためになされたもので、所定の回転速度以上になるとフ アンの風量が抑制され、風騒音を押え、また、低出力で はそれに応じて風量が下がり、風騒音が低下する車両用 交流発電機を得ることを目的としている。

[0010]

【課題を解決するための手段】この発明にかかる車両用 交流発電機は、磁極鉄心の両端側のファンを、回転軸側 に軸受を介し支持し、磁極鉄心の磁束の一部がファンの 主板に分流する磁路を形成し、励磁の磁束量に応じファ ンが磁極鉄心に対し、磁気連結度が高められて回転され るようにしたものである。

[0011]

【作用】この発明においては、発電時には磁極鉄心が励 磁されており、その磁束の一部がファンの主板を通るこ とにより、ファンが磁極鉄心に磁気的に連結され、磁極 鉄心の回転速度が低いときはほぼ同一速度で回転され る。磁極鉄心の回転速度が増大するに従って、ファンの 【0004】18は固定子コイル3に誘導された交流電 40 通風抵抗が増し所要駆動トルクが増大し、磁極鉄心の回 転速度に対しファンの滑りが大きくなり、磁束量につり 合った回転速度になる。磁極鉄心が所定速度以上になる と、ファンの回転速度が抑制され、高回転速度域での風 騒音が低く抑えられる。また、低出力のときは、磁極鉄 心の磁束量が低下しているので、ファンの磁気連結度が 下がって回転速度が低下し、風騒音が低減する。

[0012]

【実施例】実施例1. 図1はこの発明による車両用交流 発電機の縦断面図であり、1~9、12~21、5a、

3

ある。前側のファン30は軸受32を介し回転軸8に回転自在に支持され、主板30aが磁極鉄心5の端面に小さいエアギャップを介し軸方向に対向している。また、後側のファン31は軸受33を介しスリップリング9の絶縁スリープに回転自在に支持され、主板31aが磁極鉄心6の端面に小さいエアギャップを介し軸方向に対向している。

【0013】上記ファン30、31の磁極鉄心5、6への磁気連結作用を図2に示す。磁極鉄心5からの磁束Φは磁極歯部5 aからエアギャップを通り固定子鉄心2に 10入り、再びエアギャップを通り隣の磁極歯部6 aに入り、磁極鉄心6から磁極鉄心5に至る。磁極鉄心5の磁束の一部が端面からエアギャップを経てファン30の主板30 aを通る。これにより、ファン30は磁極鉄心5に対する磁気連結力が作用され、磁極鉄心5の回転に応じ回転される。一方、磁極鉄心6の磁束の一部が端面からエアギャップを経てファン31の主板31 aを通る。これにより、ファン30は磁極鉄心6に対する磁気連結力が作用され、磁極鉄心6の回転に応じ回転される。

【0014】図3は、交流発電機の出力電圧Vと励磁量 20 ATを一定にしたときの、回転速度Nに対する出力電流 I (全負荷)、冷却風量Q、風音レベルP、及び発電機 の温度上昇Tの関係を、従来の図6と対比して示す。回転子4が低い回転速度では、ファン10、11は所要駆動トルクが小さいので、ほぼ回転子4の速度で回転される。回転子4の回転速度が上昇するに従って、ファン10、11の所要駆動トルクが増大して回転子4に対し滑りが大きくなり、磁束量に比例した磁気連結力とファン 10、11の所要駆動トルクのつり合った回転速度で回転される。回転子4が所定回転速度以上になると、ファ 30 ン10、11は抑制された回転速度にされ、高回転速度 域での風騒音が低く抑えられる。

【0015】図4は、回転子回転速度N及び出力電圧Vを一定にしたときの、励磁量ATに対する出力電流I、冷却風量Q、風音レベルP及び発電機の温度上昇の関係を、従来の図7と対比して示す。発電機出力に比例する磁束量の関係から、低出力のときは磁束量が減少し、ファン10、11の磁気連結力も下がり回転子4の回転速

度に対し滑りを生じ回転速度が低下し、風騒音が下げられる。

[0016]

【発明の効果】以上のように、この発明によれば、磁極 鉄心の両端側の1対のファンを、回転軸側に軸受を介し 支持し、ファンの主板を磁極鉄心の端面に軸方向のエア ギャップを介し対向させ磁気連結させたので、回転子が 高回転速度になると、ファンが滑りを生じて回転速度が 抑制され、風騒音が低く抑えられる。また、発電機出力が低下すると、磁束量の減少によりファンの磁気連結力が低下し回転速度が下がり、風騒音が低くなり、さらに、ファン回転のための余分な駆動力が節減される。

【図面の簡単な説明】

【図1】この発明による車両用交流発電機の一実施例の 縦断面図である。

【図2】図1の磁極鉄心とファンの磁束の流れを示す説明図である。

【図3】図1の回転子回転速度に対するファンの特性及び発電機出力電流、温度上昇の関係を示す曲線図である。

【図4】図1の励磁量に対するファンの特性及び発電機出力電流、温度上昇の関係を示す曲線図である。

【図5】従来の車両用交流発電機の縦断面図である。

【図6】図5の回転子の回転速度に対するファンの特性 及び発電機出力電流、温度上昇の関係を示す曲線図であ る。

【図7】図5の励磁量に対するファンの特性及び発電機出力電流、温度上昇の関係を示す曲線図である。

【符号の説明】

- 1 固定子
- 4 回転子
- 5、6 磁極鉄心
- 7 励磁コイル
- 8 回転軸
- 30、31 ファン
- 30a、32a 主板
- 32,33 軸受

32 8

[図1]

【図2】

1:国定子 8:回転軸 4:回軸子 30,31:ファン 5,6:破極鉄心 30a,31a:主板 7:耐磁コイル 32,33:軸変

[図3]

【図4】

【図5】

【図6】

[図7]

