9/3/25, 5:21 PM **Cheat Sheet: Evaluating and Validating Machine Learning Models**

	ating and Validating Machine Learning Models	
Model evaluation metrics and me	Description Description	Code Syntax
		from sklearn.metrics import classification_report # y_true: True labels # y_pred: Predicted labels # target_names: List of target class names
Jacob Aire was 4	Generates a report with precision, recall, F1-score, and support for each class in classification problems. Useful for model evaluation. Hyperparameters: target_names: List of labels to include in the report.	report = classification_report(y_true, y_pred, target_names=["class1", "class2"])
classification_report	Pros: Provides a comprehensive evaluation of classification models. Limitations: May not provide enough insight for imbalanced datasets.	
		from sklearn.metrics import confusion_matrix # y_true: True labels # y_pred: Predicted labels conf_matrix = confusion_matrix(y_true, y_pred)
confusion_matrix	Computes a confusion matrix to evaluate the classification performance, showing counts of true positives, false positives, true negatives, and false negatives. Hyperparameters: labels: List of class labels to include. Pros: Essential for understanding classification errors.	
	Limitations: Doesn't give insights into prediction probabilities.	
		from sklearn.metrics import mean_squared_error # y_true: True values
	Calculates the mean squared error (MSE), a common metric for regression models. Lower values indicate better performance.	<pre># y_pred: Predicted values # sample_weight: Optional, array of sample weights mse = mean_squared_error(y_true, y_pred)</pre>
mean_squared_error	Hyperparameters: sample_weight: Weights to apply to each sample. Pros: Simple and widely used metric. Limitations: Sensitive to outliers, as large errors are squared.	
		from sklearn.metrics import root_mean_squared_error # y_true: True values # y_pred: Predicted values
	Calculates the root mean squared error (RMSE), which is the square root of the MSE. RMSE gives more interpretable results as it is in the same units as the target. Hyperparameters:	<pre># sample_weight: Optional, array of sample weights rmse = root_mean_squared_error(y_true, y_pred)</pre>
root_mean_squared_error	sample_weight: Weights to apply to each sample. Pros: More interpretable than MSE. Limitations: Like MSE, it can be sensitive to large errors and outliers.	
		<pre>from sklearn.metrics import mean_absolute_error # y_true: True values # y_pred: Predicted values mae = mean_absolute_error(y_true, y_pred)</pre>
mean_absolute_error	Measures the average magnitude of errors in predictions, without considering their direction. Useful for understanding the average error size. Hyperparameters: sample_weight: Optional sample weights.	
	Pros: Less sensitive to outliers compared to MSE. Limitations: Does not penalize large errors as much as MSE or RMSE.	
		from sklearn.metrics import r2_score # y_true: True values
		<pre># y_true: True values # y_pred: Predicted values r2 = r2_score(y_true, y_pred)</pre>
r2_score	Computes the coefficient of determination (R ²), which represents the proportion of variance explained by the model. A higher value indicates a better fit. Pros : Provides a clear indication of model performance. Limitations : Doesn't always represent model quality, especially for non-linear models.	
		from sklearn.metrics import silhouette_score # X: Data used in clustering # labels: Cluster labels for each sample score = silhouette_score(X, labels, metric='euclidean')
silhouette_score	Measures the quality of clustering by assessing the cohesion within clusters and separation between clusters. Higher scores indicate better clustering. Hyperparameters: metric: Distance metric to use.	Score = Sithouette_Score(X, tabets, metric= euctidean*)
	Pros: Useful for validating clustering performance. Limitations: Sensitive to outliers and choice of distance metric.	
		from sklearn.metrics import silhouette_samples
	Provides silhouette scores for each individual sample, indicating how well it fits its assigned cluster.	<pre># X: Data used in clustering # labels: Cluster labels for each sample samples = silhouette_samples(X, labels, metric='euclidean')</pre>
silhouette_samples	Hyperparameters: metric: Distance metric to use. Pros: Offers granular insight into each sample's clustering quality.	
	Limitations: Same as silhouette_score; sensitive to outliers and distance metric.	
		from sklearn.metrics import davies_bouldin_score # X: Data used in clustering # labels: Cluster labels for each sample
	Measures the average similarity ratio of each cluster with the most similar cluster. Lower values indicate better clustering.	<pre>db_score = davies_bouldin_score(X, labels)</pre>
davies_bouldin_score	Pros: Provides a simple, effective clustering evaluation. Limitations: May not work well with highly imbalanced clusters.	
		from sciny spatial import Voronoi
		<pre>from scipy.spatial import Voronoi # points: Coordinates for Voronoi diagram vor = Voronoi(points)</pre>
Voronoi	Computes the Voronoi diagram, which partitions space based on the nearest neighbor. Pros: Useful for spatial analysis and clustering. Limitations: Limited to use cases that involve spatial partitioning of data.	
		<pre>from scipy.spatial import voronoi_plot_2d # vor: Voronoi diagram object voronoi_plot_2d(vor, show_vertices=True)</pre>
voronoi_plot_2d	Plots the Voronoi diagram in 2D for visualizing clustering results. Hyperparameters: show_vertices: Whether to display the vertices. Pros: Great for visualizing spatial clustering.	
	Limitations: Limited to 2D spaces and large datasets may cause performance issues.	
		<pre>import matplotlib.patches as patches # Create a rectangle with specified width, height, and position rectangle = patches.Rectangle((0, 0), 1, 1, color='blue')</pre>
matplotlib.patches.Patch	Creates custom shapes such as rectangles, circles, or ellipses for adding to plots. Hyperparameters: color: Fills color of the shape.	
	Pros: Versatile for visual customization. Limitations: May not support all shapes or complex customizations.	
		from sklearn.metrics import explained_variance_score # v true: True values
	Macourage the proportion of variance avaleiged by the second like the second l	<pre># y_true: True values # y_pred: Predicted values ev_score = explained_variance_score(y_true, y_pred)</pre>
explained_variance_score	Measures the proportion of variance explained by the model's predictions. A higher score indicates better performance. Pros: Helps in assessing the fit of regression models. Limitations: Not suitable for classification tasks.	
		from sklearn.linear_model import Ridge # alpha: Regularization strength (larger values indicate stronger regularization) ridge = Ridge(alpha=1.0)
Ridge regression	Performs ridge regression (L2 regularization) to avoid overfitting by penalizing large coefficients. Hyperparameters: alpha: Regularization strength. Pros: Helps reduce overfitting in regression models.	
	Pros: Helps reduce overfitting in regression models. Limitations: May not work well with sparse data.	
		from sklearn.linear_model import Lasso # alpha: Regularization strength (larger values indicate stronger regularization) lasso = Lasso(alpha=0.1)
Lacro	Performs lasso regression (L1 regularization), which encourages sparsity by penalizing the absolute value of coefficients. Hyperparameters:	lasso = Lasso(alpha=0.1)
Lasso regression	alpha: Regularization strength. Pros: Encourages sparse solutions, useful for feature selection. Limitations: May struggle with multicollinearity.	
		from sklearn.pipeline import Pipeline
		<pre># steps: List of tuples with name and estimator/transformer pipeline = Pipeline(steps=[('scaler', StandardScaler()), ('model', Ridge(alpha=1.0))])</pre>
Pipeline	Chains multiple steps of preprocessing and modeling into a single object, ensuring efficient workflow. Pros : Simplifies code, ensures reproducibility. Limitations : May not work well with complex pipelines requiring dynamic configurations.	
		<pre>from sklearn.model_selection import GridSearchCV # estimator: Model to be tuned # param_grid: Dictionary with parameters to search over grid_search = GridSearchCV(estimator=Ridge(), param_grid={'alpha': [0.1, 1.0, 10.0]})</pre>
GridSearchCV	Performs exhaustive search over a specified parameter grid to find the best model configuration. Hyperparameters: param_grid: Dictionary of parameter grids.	yıтu_searcн = viтusearchev(estimator=кійде(), param_gr10={`atpna`: [0.1, 1.0, 10.0]})
	Pros: Ensures optimal model parameters. Limitations: Computationally expensive for large grids.	
X7		
Visualization strategies for k-mes Process Name		Snippet
Multiple runs of k-means		# Number of runs for KMeans with different random states

Multiple runs of k-means	Executes KMeans clustering multiple times with different random initializations to assess variability in cluster assignments.	
		# Number of runs for KMeans with different random states
	Advantage: Helps visualize consistency.	<pre>n_runs = 4 inertia_values = [] plt.figure(figsize=(12, 12))</pre>
	Limitation: Computationally costly for large datasets.	<pre># Run K-Means multiple times with different random states for i in range(n_runs):</pre>
		<pre>kmeans = KMeans(n_clusters=4, random_state=None) # Use the default `n_init` kmeans.fit(X)</pre>
		<pre>inertia_values.append(kmeans.inertia_) # Plot the clustering result</pre>
		<pre>plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], c='red', s=200, marker='x', label='Centroids') plt.title(f'K-Means Clustering Run {i + 1}')</pre>
		<pre>plt.xlabel('Feature 1') plt.ylabel('Feature 2')</pre>
		plt.legend()
		<pre>plt.tight_layout() plt.show()</pre>
		# Print inertia values
		<pre>for i, inertia in enumerate(inertia_values, start=1): print(f'Run {i}: Inertia={inertia:.2f}')</pre>

Range of k values to test
k_values = range(2, 11)
Store performance metrics
inertia_values = []
for k in k_values:
 kmeans = KMeans(n_clusters=k, random_state=42)
 y_kmeans = kmeans.fit_predict(X)
 # Calculate and store metrics
 inertia_values.append(kmeans.inertia_)
Plot the inertia values (Elbow Method)
plt.figure(figsize=(18, 6))
plt.subplot(1, 3, 1)
plt.plot(k_values, inertia_values, marker='o')
plt.title('Elbow Method: Inertia vs. k')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia') Evaluates the optimal number of clusters by plotting inertia (within-cluster sum of squares) for different **k** values. Elbow method Advantage: Easy to interpret. Limitation: Subjective elbow point. # Range of k values to test
k_values = range(2, 11)
Store performance metrics
silhouette_scores = []
for k in k_values:
 kmeans = KMeans(n_clusters=k, random_state=42)
 y_kmeans = kmeans.fit_predict(X)
 silhouette_scores.append(silhouette_score(X, y_kmeans))
Plot the Silhouette Scores
plt.figure(figsize=(18, 6))
plt.subplot(1, 3, 2)
plt.plot(k_values, silhouette_scores, marker='o')
plt.title('Silhouette Score vs. k')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Silhouette Score') Determines the optimal number of clusters by evaluating Silhouette Scores for different **k** values. **Advantage:** Considers both cohesion and separation. **Limitation:** High computation for large datasets. Silhouette method # Range of k values to test
k_values = range(2, 11)
Store performance metrics
davies_bouldin_indices = []
for k in k_values:
 kmeans = KMeans(n_clusters=k, random_state=42)
 y_kmeans = kmeans.fit_predict(X)
 davies_bouldin_indices.append(davies_bouldin_score(X, y_kmeans))
Plot the Davies-Bouldin Index
plt.figure(figsize=(18, 6))
plt.subplot(1, 3, 3)
plt.plot(k_values, davies_bouldin_indices, marker='o')
plt.title('Davies-Bouldin Index vs. k')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Davies-Bouldin Index') Evaluates clustering performance by calculating DBI for different **k** values. **Advantage:** Quantifies compactness and separation. **Limitation:** Sensitive to cluster shapes and density. Davies-Bouldin Index

Authors <u>Jeff Grossman</u> <u>Abhishek Gagneja</u>

