CS/B.TECH/ECE/ODD/SEM-7/EC-703A/2017-18

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: EC-703A

RF AND MICROWAVE ENGINEERING

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

(Multiple Choice Type Questions)						
			for any	ten of the $10 \times 1 = 10$		
i) Re:	flex Klystron is	s a/an				
a)	amplifier	b)	oscillator	•		
c)	attenuator	d)	filter.			
ii) Magnetron is a/an						
<u> a</u>)	amplifier					
b)	oscillator					
c)	c) both amplifier and oscillator					

phase shifter.

70311

017-18 CS

3/B.	TEC	H/ECE/ODD/SEM-7/E	C-70)3A/2017 10
	:\ ^	Travelling Wave Tube is	, bas	ically
iii		An oscillator		
	a)	ınlifier		
	b)	and amplifier		
	c)	1100	scilla	ator.
	d)	ne most powerful solid s	tate	microwave device is
iv)		Gunn diode	b)	IMPATT diode
	a)			Varactor.
	c)	MESFET microwave frequency	ra, ra	nge, the most noisy
v)	In	microwave frequency miconductor device is		6-7
	a)	IMPATT	b)	TRAPATT
	c)	GUNN	d)	
:1	•	matched load is a	,	
VIJ	a)	Fixed attenuator	b)	Variable attenuator
	,	Phases shifter	d)	Rotary attenuator.
•••	c)	rge microwave power c		
V11)			er er	•
	a)			
	,	bolometer		
	•	wattmeter		
	d)	wave meter.	n h	e measured with the
viii)) Mic	crowave frequency ca	com m	
/		p of a http://www.makaut.	b)	wave meter
	a)	frequency meter	ď)	CRO.
	c)	counter attering parameters o	an	be measured with th
ix)	Sca	ttering parameters		
		p of Spectrum Analyzer	b)	Network Analyzer
	a)	-	d)	Bolometer.
	c)	CRO rostrip power divider	is a	
x)		rosuip power arrange	b)	
	a)	two port network	d)	one port network.

three port network

c)

CS/B.TECH/ECE/ODD/SEM-7/EC-703A/2017-18

xi) A cavity is a

- band pass filter
- high pass filter
- band stop filter
- low pass filter.

xii) Waveguide is a

- band pass filter
- high pass filter
- low pass filter
- all pass filter.

-GROUP - B

(Short Answer Type Questions)

 $3 \times 5 = 15$ Answer any three of the following.

- Discuss the high frequency limitation of transistors, comparing and contrasting them with those of vacuum 2 + 3rube. http://www.makaut.com
- Why ferrite device are called non reciprocal device. 3.
- What are the various sources of error in microwave power measurements and how can they be minimized?

3 + 2

- Why the conventional tubes like triode, tetrode cannot generate microwave power?
- Why TM₀₁ or TM₁₀ mode is not possible in rectangular waveguide?

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

A 20 mW signal is fed into one of a lossless H-plane 7. a) T-junction. Calculate the power delivered through each port when other port are terminated in matched load.

CS/B.TECH/ECE/ODD/SEM-7/EC-703A/2017-18

- Derive the wave equation for a TM wave and obtain all the field components in a rectangular waveguide.
- How are waveguide different from two wire transmission line? Discuss the similarities and 5 + 5 + 5dissimilarities. http://www.makaut.com
- For a directional coupler the incident power is 550 8. mW. Calculated the power I the main arm and auxiliary arm. The coupling factor is 30dB.
 - Describe the operation of Rate-Race junction.
 - Explain the double minimum method of measuring VSWR.
- A wave is propagated in a rectangular waveguide at 6 GHz. Calculate cutoff wavelength and group 9. velocity for dominant mode.
 - Describe the operations of 2-hole directional coupler. Give the various parameters of the directional coupler.
 - Describe the scattering matrix relation between the input and output of a $(n \times n)$ junction.
- How is slotted line used for measurement of 10. a) impedance of unknown load?
 - Explain the working principle of two cavity klystron amplifier by giving the apple-gate diagram. b)
 - Explain the impedance matching network. c)

 3×5

- Write short notes on any three of the following:
 - Magnetron http://www.makaut.com a)
 - IMPATT b)
 - Microstrip line c)
 - MESFET d)
 - Microwave filter. e)