

TECHNICAL REPORT BRL-TR-3030

BRL

THE PLE CUPY

TESTS FOR CONSISTENCY OF VULNERABILITY MODELS

DAVID W. WEBB

AUGUST 1989

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

DESTRUCTION NOTICE

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188			
1a. REPORT SEC UNCLASSIFIE		IFICATIO	N		16. RESTRICTIVE	MARKINGS		
2a. SECURITY CL		N AUTH	ORITY		3. DISTRIBUTION / AVAILABILITY OF REPORT			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			LE	Approved for public release; distribution unlimited				
4. PERFORMING	ORGANIZAT	ION REP	ORT NUMBE	R(S)	S. MONITORING	ORGANIZATION RE	PORT NU	MBER(S)
BRL-TR-3030								
6a. NAME OF PE	RFORMING	ORGANIZ	ZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF N	MONITORING ORGAN	IZATION	•
Ballistic Research Laboratory SLCBR-SE-P				SLCBR-SE-P	<u> </u>	ic Research I		tory
6c. ADDRESS (C) Aberdeen Pi	-			005-5066	ATTN:	ity, State, and ZIP C SLCBR-DD-S n Proving Gro		MD 21005-5066
8a. NAME OF FL ORGANIZATI		NSORING	G	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	NT INSTRUMENT IOE	NTIFICAT	ION NUMBER
8c. ADDRESS (Cit	ty, State, and	ZIP Code	e)		10. SOURCE OF	FUNDING NUMBERS		
				PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.	
11. TITLE (includ	le Security Ci	lassificati	ion)		<u> </u>			
		NCY OF	VULNERA	ABILITY MODELS				
12. PERSONAL A David W. We								
13a. TYPE OF RE		Ī	35. TIME CO	OVERED TO		ORT (Year, Month, D	lay) 15.	. PAGE COUNT
TR 16. SUPPLEMENT	TARY NOTAT	ION	PROIVI		August 1989	y 		<u></u>
17.	COSATI	CODES	<u> </u>	18 SUBJECT TERMS (6 model consister	Continue on reve	rse if necessary and	identify	by block number)
FIELD	GROUP	SU8-	GROUP (density function	$\mathbf{m} : \mathcal{R}_{\bullet} \mathcal{U}_{\bullet} \to \mathcal{I}$	co pow ed	•	,
1/2				cumulative dist	ribution fu	inction, TANK	STORA	BAT Velice (cr) . IT
vehicle vubetween the procedure	lnerabil: ese live is compa:	ity. -fire red wi	A statister results ith other	and identify by block mas been recentlestically based pand the predict candidate states timates of kill	procedure is tions of com- tistical pro-	proposed to opeter simulated ocedures in the	test :	for consistency odels. This
20. DISTRIBUTIO					21. ABSTRACT S	ECURITY CLASSIFICA	TION	
UNCLASSIF	IED/UNLIMIT	ED 🗓	SAME AS R	PT. DTIC USERS	225 TELEBURA		133 61	Sice control
22a. NAME OF RESPONSIBLE INDIVIDUAL David W. Webb			278-6646	(Include Area Code)	SLCB	R-SE-P		

ACKNOWLEDGEMENTS

The author wishes to acknowledge Dr. J. Richard Moore, retired from the Ballistic Research Laboratory, for the initial ideas and guidance in the research efforts, and Jerry Thomas and William E. Baker, Ballistic Research Laboratory, and Lawrence D. Losie, Vulnerability/Lethality Division, for their detailed look at the report; and Annette Wiseman for preparing the manuscript.

TABLE OF CONTENTS

Pag	zе
ACKNOWLEDGEMENTSiii	
LIST OF ILLUSTRATIONSvii	
I. INTRODUCTION	
II. TEST CONCEPTS	
III. PROCEDURE 1 - THE ORDER BY PROBABILITY (OP) PROCEDURE 3	
IV. PROCEDURE 2 - THE KILLS TEST	
V. PROCEDURE 3 - THE MORE-LIKELY RESPONSE (MLR) TEST 4	
VI. PROCEDURE 4 - THE SQUARED DISTANCE MEASURE (SDM) TEST 5	
VII. AN ILLUSTRATIVE EXAMPLE	
VIII. PROCEDURE COMPARISONS	}
IX. THE FISHBOWL ARGUMENT 13	}
X. FURTHER NOTES AND RECOMMENDATIONS21	l
XI. CONCLUSIONS	L
LIST OF SYMBOLS23	3
APPENDIX25	5
DISTRIBUTION LIST29)

LIST OF ILLUSTRATIONS

		Page
	etical 5-component example: All possible outcomes and measures ormance	. 7
	etical 5-component example: Summary of Order by Probability	. 8
3. Hypothe	etical 5-component example: Summary of Kills test	. 9
	etical 5-component example: Summary of More-Likely Response) test	.10
	etical 5-component example: Summary of Squared Distance re (SDM) test	.11
6. Hypoth	etical 5-component example: Rejection regions for each procedure	.12
7. Possible	power versus power plots	.14
8. Power v	versus power plots for K=6	.15
9. Power v	versus power plots for K=10	.16
10. Media	n power of the four candidate procedures	.17
11. Sample	e outcome space with events drawn proportional to density	.19
12. All pos	ssible 5% rejection regions for sample outcome space	.20

I. INTRODUCTION

Since the end of World War II and up until recent years the United States Army has conducted limited live-fire tests of armored fighting vehicles (AFVs) to investigate the interaction occurring between munitions and these vehicles. The live-fire tests were conducted only occasionally because of extremely high costs of resources necessary for those tests. Although vulnerability studies of AFVs have used the insights gathered from such vehicle tests, they have relied more on mathematical modeling, computer simulation, live-fire tests of components, and inferences made from firing at armor plate. The live-fire testing of armored vehicles has recently intensified involving a very limited number of vehicles and shots. One question which Army researchers wish to answer is how well do computer model predictions compare with the results from live-fire field testing of AFVs. The answer to that question is the topic of this report.

The outcome of a direct hit on a target vehicle may be examined on three different levels. We may look at

- 1. the entire system (e.g., catastrophic kill),
- 2. subsystems (e.g., personnel, fire control), and
- 3. components (e.g., projectile tubes, propellant cases).

If the test results are described as either "kill" or "no-kill", we have a Bernoulli trial in which the outcome can be one of only two possible states. Vulnerability estimates are expressed as kill probabilities (P_{ν}) 's, which represent the proportion of hits resulting in a kill.

Recently a computer model has been developed that incorporates randomness in its calculations so that simulated repeated firings at an AFV under identical shot conditions produce varying degrees of destruction. Through many runs of the model, vulnerability researchers can obtain hypothesized values (or estimates) of the true P_t's for the entire system, subsystems and components. It would be an experimental luxury to be able to fire munitions at hundreds of AFVs under the same shot conditions to see how well these hypothesized values from the model replicate the live-fire results. Due to the destructive nature of the test and the cost of AFVs, such an experiment is economically infeasible. Usually the same munition or different munition types are fired at vehicles under varying shot conditions with no duplication of shots and the experimenter is left to assess the validity of computer based vulnerability estimates from the firing of a single round. It is impossible to statistically analyze a hypothesized P_k on the basis of one fired round. However, if we look at a group of components, for example, then we can make a statistically valid statement for the corresponding group of P_k's if we assume that the components are independent. What is meant by independence is that the outcome of any component (kill or no-kill) has no influence on the probability that the other components in the group will be killed.

This report details four procedures for testing a group of hypothesized probabilities. The argument is presented that one of the four is the asymptotically most powerful test of the possible procedures. This problem was first studied by Dr. J. Richard Moore, formerly of the US Army Ballistic Research Laboratory (BRL), in response to requests from the Vulnerability/Lethality Division (VLD) of BRL. The author joined Dr. Moore in his research in 1986. Since then VLD has used some of the results in examining computed estimates, which were calculated with a expected value model, for consistency with observed test results from firings at AFVs.

II. TEST CONCEPTS

Assume that as a result of our computer simulation, we obtain a set of P_k estimates. Perhaps they are for a group of components within a subsystem of the AFV. Denote this set of estimates by the vector $[p_1^o, p_2^o, \cdots, p_l^o]$, where p_i^o is the estimated kill probability of the ith component of interest and l is the number of components. Also, let the true but unknown kill probabilities be denoted by the vector $[p_1, p_2, ..., p_l]$. If we assume that the components are independent, then we may begin to develop our test strategy by writing the null hypothesis:

$$H_0: p_1 = p_1^o, p_2 = p_2^o, ..., p_l = p_l^o.$$

Note that while this is similar to the hypothesis for the binomial test, one fundamental difference exists: We allow for the p_i^{o} 's to be unequal. We call this a test of generalized binomial proportions. The binomial test is a special case of this, namely $p_i = p_i$, for all i,j.

If the data do not support the null hypothesis, then it is rejected in favor of its converse, the alternative hypothesis,

$$H_A: p_i \neq p_i^0$$
 for some i.

The alternative hypothesis states that only one inequality has to exist; i.e., only one estimate needs to be incorrect. However, because the analysis is based upon as little as one round, gross inequalities are needed before a procedure will be able to reject the null hypothesis with satisfactory power.

Suppose we observe a set of l independent Bernoulli outcomes from the live fire testing (denoted by 0 or 1, corresponding to no-kill or kill, respectively), and write them in the form of a row vector $A = [a_1, a_2, ..., a_l]$. For example, if l=5, we may observe A = [0,1,0,0,1]. There are 2^l possible outcome vectors A_1 , A_2 , ..., A_2^l , which we collectively define to be Ω_1^l . Any test of the null hypothesis requires a measure of performance (MOP) for each of the 2^l outcomes and some ordering of the measure. At this point we branch our discussion into four different MOP's and thus four different testing procedures.

III. PROCEDURE 1 - THE ORDER BY PROBABILITY (OP) PROCEDURE

This procedure rejects the null hypothesis if the observed vector is among a defined critical set of "rarest" outcomes. The MOP for the procedure is simply P(A), the probability with which outcome A occurs assuming our hypothesized probabilities p_1^o , p_2^o , ..., p_l^o . The outcome set, Ω , is ordered by P(A) in increasing magnitude, and each outcome is numbered so that $A_{(1)}$ is the least likely outcome and $A_{(2')}$ is most likely. We then define a cumulative function B, where

$$B_{i} = \begin{cases} P(A_{(i)}) & i=1 \\ B_{i-1} + P(A_{(i)}) & i=2,3,4,...,2 \end{cases}$$

We pick a desired level of significance, α , and find "c" such that $c = \max\{j|B_j \le \alpha \text{ and } P(A_{(j)}) \ne P(A_{(j+1)})\}$. Then the set $RR_{op} = \{A_{(1)}, A_{(2)}, ..., A_{(c)}\}$ represents the c rarest outcomes in Ω and is the rejection region for the test of H_0 at a $100\alpha\%$ level of significance. The "test statistic" is the observed outcome vector A; if $A \in RR_{op}$, then H_0 is rejected.

IV. PROCEDURE 2 - THE KILLS TEST

This test uses for its MOP, the number of kills (1's) observed. The underlying notion is that under the null hypothesis, a certain number of kills is expected. Letting K(A) denote the number of kills in our observed outcome vector A, then the expected value of K(A) is

$$E[K(A)] = p_1^{\circ} + p_2^{\circ} + ... + p_l^{\circ}$$
$$= \sum_{i=1}^{l} p_i^{\circ}.$$

If the observed K(A) is much smaller than E[K(A)], then perhaps the model estimates are inflated estimates of the true kill probabilities. Likewise, if the observed K(A) is much larger than E[K(A)], then the estimated kill probabilities are probably too small.

To perform this test, we begin by calculating K(A) and P(A) for all 2^{I} outcomes. The outcomes are then ordered in increasing magnitude by K(A) and numbered, so that

$$K(A_{(1)}) \le K(A_{(2)}) \le \cdots \le K(A_{(2')}).$$

The order among outcomes with equal K(A) is irrelevant. Similar to the OP procedure the "cumulative function" is calculated. Since rejecting H_0 may be due to either too small or too large a value of K(A), a two-tailed test is used. Critical values c_1 and c_2 are selected so that the actual alpha level

$$P[K(A) \le c_1] + P[K(A) \ge c_2]$$

is maximized but still less than or equal to α . The rejection region for this test is $RR_K = \{A | K(A) \in \{0,1, \cdots c_1\} \cup \{c_2, c_2 + 1, \cdots l\}\}$. The model estimates will be rejected as inconsistent with the field tests if $A \in RR_K$.

V. PROCEDURE 3 - THE MORE-LIKELY RESPONSE (MLR) TEST

This test examines the number of more-likely, or "correct" responses where a more-likely response is defined as

$$\gamma_{i} = \begin{cases} 1 & \text{if } a_{i} = 0 \text{ when } p_{i}^{o} < .5, \text{ or if } a_{i} = 1 \text{ when } p_{i}^{o} > .5 \\ .5 & \text{if } p_{i}^{o} = .5 \\ 0 & \text{otherwise} \end{cases}$$

In other words a more-likely response is the response which we expect to see more often than not in the long run. So if $p_i^o = .8$ we would expect to observe a kill more often than a no-kill. If $a_i = 1$, a kill, then $\gamma_i = 1$ and the observed response is considered "correct". When $p_i^o = .5$, we are essentially saying that we have no inclination as to which response is more likely. Therefore we compromise and always assign $\gamma_i = .5$.

The MOP is the total number of correct responses

$$M(A) = \gamma_1 + \gamma_2 + \cdots + \gamma_l$$
$$= \sum_{i=1}^{l} \gamma_i.$$

The reasoning behind this procedure is that if we observe an unusually low number of more-likely responses, then our model estimates are too large when they should be smaller and/or too small when they should be larger. We also note that it is possible to observe too many correct responses. This would tend to indicate that our large estimates $(p_i^{\circ} > .5)$ are not large enough and/or that our small estimates $(p_i^{\circ} < .5)$ are not small enough.

The expected value of M(A) is

$$E[M(A)] = M_r + S^*/2 + M_{rr}$$

where

$$M_L = \sum_{j} (1 - p_j^o)$$
 for all $p_j^o < .5$
 $M_U = \sum_{j} p_j^o$ for all $p_j^o > .5$
 $S^{\bullet} = \text{number of } p_j^o \text{ equal to .5}$

We start by calculating M(A) and P(A) for all possible outcomes. The outcomes are arranged in increasing magnitude by M(A) without regard for ties so that

$$M(A_{(1)}) \le M(A_{(2)}) \le \cdots \le M(A_{(2')})$$

The cumulative function is computed as usual. Since obtaining a value of M(A) much smaller or larger than the expected value leads us to believe that H_0 is false, a two-tailed test is desired. Critical values c_1 and c_2 are selected as in the Kills test to maximize the actual alpha level. The rejection region becomes $RR_{MLR} = \{A|M(A) \in \{0,1, \cdots c_1\} \cup \{c_2, c_2 + 1, \cdots l\}\}$, and we will reject H_0 at the α level of significance if $A \in RR_{MLR}$. In practice, though, c_2 will usually not exist and a one-tailed test will be used instead.

VI. PROCEDURE 4 - THE SQUARED DISTANCE MEASURE (SDM) TEST

This test involves the calculation of a "squared distance measure" for each component of the outcome vector. The SDM is $(p_i^o - a_i)^2$. Squaring assures that all values are positive so that each component produces an additive effect; it also increases the "penalty" for responses which are very far from p_i^o . Note that the SDM for any given component must lie in the interval [0,1]; and the two values SDM may take on are more extreme the nearer to 0 or 1 p_i^o is. The SDM acts as a penalty function. As p_i^o approaches 0 (or 1), the penalty associated with being incorrect is greater. If p_i^o is close to .5 (i.e., we have less confidence in our ability to predict a_i), then the penalty for an incorrect response is not much different than the SDM for a correct response. The MOP is simply the sum of the SDM's,

$$S(A) = (p_1^o - a_1)^2 + (p_2^o - a_2)^2 + \cdots + (p_l^o - a_l)^2$$

$$= \sum_{i=1}^{l} (p_i^o - a_i)^2$$

The expected value of S(A) is

$$E[S(A)] = \sum_{i=1}^{l} p_i^o (1 - p_i^o)$$

Again, we calculate S(A) and P(A) for each of the 2^l outcomes, and arrange them in decreasing magnitude by S(A) with no regard for ties so that

$$S(A_{(1)}) \ge S(A_{(2)}) \ge \cdots \ge S(A_{(2')})$$

The B_i 's are computed in the usual fashion. We would tend to believe that H_0 is false if S(A) is too large, therefore a one-tailed procedure is used. Given alpha, we select c which satisfies

$$c = \max\{j | B_j \le \alpha \text{ and } S(A_{(j)}) \ne S(A_{(j+1)})\}.$$

The set of outcomes $RR_s = \{A|S(A) \ge S(A_{(c)})\}$ represents the rejection region for our test of H_0 . Therefore if $S(A) \ge S(A_{(c)})$ we reject H_0 at the α level of significance.

VII. AN ILLUSTRATIVE EXAMPLE

Assume that the model estimates of kill probabilities for five independent tank components are as follows:

$$A = [.23, .64, .19, .91, .70]$$

Figure 1 shows each of the $2^5 = 32$ possible vector outcomes along with their associated P(A_i), K(A_i), M(A_i), and S(A_i). The outcomes are ordered by a binary counting scheme. The OP procedure is illustrated in Figure 2. Note that the vectors are now ordered by their probability of occurrence. The rejection region for an $\alpha = .05$ level of significance is all the outcomes above the line. Figure 3 shows the Kills test ordering scheme and resultant twotailed rejection region outside the two lines. Note the additional columns $P[K(A_{(i)})]$ and $B[K(A_n)]$. Since our test statistic is K(A), vectors having an equal number of kills are indistinguishable. Therefore $P[K(A_{(i)})]$ represents the probability of getting $K(A_{(i)})$ kills and $B[K(A_{(i)})]$ represents the cumulative probability for the same number of kills. In Figure 4, the MLR test is shown. Although a two-tailed procedure can be used, the rejection region only includes a lower tail of six vectors. This is because the vector with $M(A_{(32)}) = 5$ has a probability mass greater than alpha. The columns $P[M(A_{(i)})]$ and $B[M(A_{(i)})]$ are analogous to the additional columns of Figure 3. We see the SDM test in Figure 5. It has a rejection region of 13 vectors containing the largest values of $S(A_{(i)})$. Note that $B_{14} < \alpha$, however $A_{(14)}$ is not in the rejection region. This is because $S(A_{(14)}) = S(A_{(15)})$ and $B_{15} > \alpha$. Recall that in each of the tests, outcomes with equal MOP's are considered indistinguishable. If we had allowed $A_{(14)} \in RR_s$ and $A_{(15)} \notin RR_s$ then we would be violating the rule by differentiating between two outcomes with the same SDM. Figure 6 summarizes the rejection regions of the four procedures, with OP having the largest region and the kills test having the smallest.

	The hypothesized probabilities are: [0.23, 0.64, 0.19, 0.91, 0.70]						
	Vector	Prob.	Kills	MLR	SDM		
	A _i	$P(A_i)$	K(A _i)	$M(A_i)$	S(A _i)		
	00000	0.00606	0	2	1.8167		
	00001	0.01415	1	2 3 3	1.4167		
4	00010	0.06130	1		0.9967		
	00011	0.14303	2	4	0.5967		
	00100	0.00142	1	1	2.4367		
ļ	00101	0.00332	2 2	2 2	2.0367		
	00110	0.01438	2	, 2 ,	1.6167		
	00111	0.03355	3	3 3 4	1.2167		
	01000	0.01078	1	.3 □	1.5367		
3	01001	0.02515	. 2		1.1367		
	01010	0.10897	3	4 -	0.7167		
	01011	0.25427	3	5	0.3167		
i	01100	0.00253	2	2	2.1567		
	01101	0.00590	3		1.7567		
ł	01110	0.02556	. 3	3	1.3367		
	01111	0.05964	₂ 4	14	0.9367		
	10000	0.00181	1	1	2.3567		
	10001	0.00423	2	2	1.9567		
	10010	0.01831	. 2	2	1.5367		
	10011	0.04272	.3	3	1.1367		
	10100	0.00042	2	0	2.9767		
	10101	0.00099	, 3	. 1	2.5767		
	10110	0.00429	3	1	2.1567		
	10111	0.01002	4	2	1.7567		
	11000	0.00322	2	2	2.0767		
	11001	0.00751	3	3	1.6767		
	11010	0.03255	3	3	1.2567		
	11011	0.07595	4	4	0.8567		
	11100	0.00076	3	1	2.6967		
	11101	0.00176	4	2 2	2.2967		
	11110	0.00764	4		1.8767		
	11111	0.01782	5	3	1.4767		

Figure 1. Hypothetical 5-component example: All possible outcomes and measures of performance.

The hypothesized probabilities are: [0.23, 0.64, 0.19, 0.91, 0.70]						
	Vector	Prob.	Cum.Prob.			
l i l		$P(A_{(i)})$	B _i			
•	A _(i)	1 (2 1 (i))	i			
1	10100	0.00042	0.00042			
1 1	11100	0.00042	0.00042			
2 3	10101	0.00078				
4			0.00217			
	00100	0.00142	0.00359			
5	11101	0.00176	0.00536			
6	10000	0.00181	0.00717			
7	01100	0.00253	0.00969			
8	11000	0.00322	0.01291			
9	00101	0.00332	0.01623			
10	10001	0.00423	0.02046			
11	10110	0.00429	0.02475			
12	01101	0.00590	0.03065			
13	00000	0.00606	0.03671			
14	11001	0.00751	0.04422			
15	11110	0.00764	0.05186			
16	10111	0.01002	0.06188			
17	01000	0.01078	0.07266			
18	00001	0.01415	0.08680			
19	00110	0.01438	0.10118			
20	11111	0.01782	0.11900			
21	10010	0.01831	0.13731			
22	01001	0.02515	0.16246			
23	01110	0.02556	0.18802			
24	11010	0.03255	0.22057			
25	00111	0.03355	0.25412			
26	10011	0.04272	0.29684			
27	01111	0.05964	0.35648			
28	00010	0.06130	0.41778			
29	11011	0.07595	0.49373			
30	01010	0.10897	0.60270			
31	00011	0.14303	0.74573			
32	01011	0.25427	1.00000			

Figure 2. Hypothetical 5-component example: Summary of Order by Probability (OP) Procedure.

i	Vector A _(i)	Kills			The hypothesized probabilities are: [0.23, 0.64, 0.19, 0.91, 0.70]						
i			Proh	Vector Kills Probability							
	- ~(i)	$K(A_{(i)})$	$P(A_{(i)})$	$P[K(A_{(i)})]$	B _i	ve Probability B[K(A _(i))]					
		((i)/	- (· -(i)/	- [((1)/1	-i	2[(· -(i)/)					
1	00000	0	0.00606	0.00606	0.00606	0.00606					
2	00001	1	0.01415		0.02021						
3	00010	1	0.06130		0.08151						
4	00100	1	0.00142	0.08945	0.08293	0.09552					
5	01000	1	0.01078		0.09371						
6	10000	1	0.00181		0.09552						
7	00011	2	0.14303	\	0.23855						
8	00101	2	0.00332	1	0.24186						
9	00110	2	0.01438	1	0.25624						
10	01001	2 2	0.02515		0.28139						
11	01010	2	0.10897	0.20255	0.39036	0.41006					
12	01100	2	0.00253	0.32355	0.39289	0.41906					
13	10001	2	0.00423		0.39711						
14	10010	2	0.01831		0.41542						
15	10100	2	0.00042		0.41585						
16	11000	2	0.00322	<i>†</i>	0.41906						
17	00111	3	0.03355 \		0.45262						
18	01011	3	0.25427		0.70689						
19	01101	3	0.00590		0.71278						
20	01110	3	0.02556		0.73835						
21	10011	3	0.04272	0.40811	0.78107	0.82717					
22	10101	3	0.00099	0.40011	0.78206	0.02/1/					
23	10110	3	0.00429		0.78635						
24	11001	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	0.00751		0.79387						
25	11010	3	0.03255		0.82642						
26	11100	3	0.00076		0.82717						
27	01111	4	0.05964		0.88682						
28	10111	4	0.01002		0.89684						
29	11011	4	0.07595	0.15501	0.97279	0.98218					
30	11101	4	0.00176		0.97455						
31	11110	4	0.00764		0.98218						
32	11111	5	0.01782	0.01782	1.00000	1.00000					

Figure 3. Hypothetical 5-component example: Summary of Kills test.

	The hypothesized probabilities are: [0.23, 0.64, 0.19, 0.91, 0.70]						
	Vector	Cumulati	ve Probability				
li	A _(i)	MLR M(A _(i))	P(A _(i))	bability P[M(A _(i))]	\mathbf{B}_{i}	$B[M(A_{(i)})]$	
	- (1)	(1)	- (- (1))	- [((1)-	⁻ 1	-[((1)/1	
1	10100	0	0.00042	0.00042	0.00042	0.00042	
2	00100	1	0.00142	0.000.1	0.00185	3.333.2	
3	10000	1	0.00181		0.00366		
4	10101	1	0.00099	0.00927	0.00465	0.00970	
5	10110	1	0.00429		0.00894		
6	11100	1	0.00076		0.00970		
7	00000	2	0.006061		0.01576 \		
8	00101	2	0.00332	1	0.01908		
9	00110	2	0.01438		0.03346		
10	01100	2 2 2	0.00253		0.03599		
11	10001	2	0.00423	0.07146	0.04021	0.08116	
12	10010	2	0.01831	0.07140	0.05852	0.00110	
13	10111	2	0.01002		0.06854		
14	11000	2	0.00322		0.07176		
15	11101	2 2 2 2 2 2 3	0.00176		0.07352		
16	11110	2	0.00764		0.08116		
17	00001	3	0.01415		0.09530		
18	00010	3	0.06130		0.15660		
19	00111	3	0.03355		0.19015		
20	01000	3	0.01078		0.20093		
21	01101	3	0.00590	0.25183	0.20683	0.33299	
22	01110	3 3 3 3 3 3 3	0.02556	0.23103	0.23239	3.3.2	
23	10011	3	0.04272		0.27511		
24	11001	3	0.00751		0.28262		
25	11010	3	0.03255		0.31517		
26	11111	3	0.01782		0.33299		
27	00011	4	0.14303		0.47602		
28	01001	4	0.02515		0.50117	<u> </u>	
29	01010	4	0.10897	0.41274	0.61014	0.74573	
30	01111	4	0.05964		0.66978		
31	11011	4	0.07595		0.74573 /	4 80000	
32	01011	5	0.25427	0.25427	1.00000	1.00000	
<u> </u>	L	L	L		L		

Figure 4. Hypothetical 5-component example: Summary of More-Likely Response (MLR) test.

	The hypothesized probabilities are: [0.23, 0.64, 0.19, 0.91, 0.70]						
	Vector	SDM	Cumulative Probability				
l i		$S(A_{(i)})$	$P(A_{(i)})$	ability P[S(A _(i))]	B _i	$B[S(A_{(i)})]$	
*	A _(i)		1 (1 1(i))	1 (O(x 1(i))1	i	D[O(1-(i)/)	
1	10100	2.9767	0.00042	0.00042	0.00042	0.00042	
2	11100	2.6967	0.00076	0.00076	0.00118	0.00118	
3	10101	2.5767	0.00099	0.00099	0.00217	0.00217	
4	00100	2.4367	0.00142	0.00142	0.00359	0.00359	
5	10000	2.3567	0.00181	0.00181	0.00540	0.00540	
6	11101	2.2967	0.00176	0.00176	0.00716	0.00717	
7	01100	2.1567	0.00253	0.00682	0.00969	0.01399	
8	10110	2.1567	0.00429	0.00002	0.01399		
9	11000	2.0767	0.00322	0.00322	0.01721	0.01721	
10	00101	2.0367	0.00332	0.00332	0.02053	0.02053	
11	10001	1.9567	0.00423	0.00423	0.02475	0.02475	
12	11110	1.8767	0.00764	0.00764	0.03239	0.03239	
13	00000	1.8167	0.00606	0.00606	0.03845	0.03845	
14	01101	1.7567	0.00590	0.01592	0.04435	0.05437	
15	10111	1.7567	0.01002	0.01392	0.05437		
16	11001	1.6767	0.00751	0.00751	0.06188	0.06188	
17	00110	1.6167	0.01438	0.01438	0.07626	0.07626	
18	01000	1.5367	0.01078)	0.00000	0.08704	0.10525	
19	10010	1.5367	0.01831	0.02909	0.10535 (0.10535	
20	11111	1.4767	0.01782	0.01782	0.12316	0.12316	
21	00001	1.4167	0.01415	0.01415	0.13731	0.13731	
22	01110	1.3367	0.02556	0.02556	0.16287	0.16287	
23	11010	1.2567	0.03255	0.03255	0.19542	0.19542	
24	00111	1.2167	0.03355	0.03355	0.22897	0.22897	
25	01001	1.1367	0.02515	0.07287	0.25412	0.29684	
26	10011	1.1367	0.04272 \	0.07207	0.29684	U.23UOT	
27	00010	0.9967	0.06130	0.06130	0.35814	0.35814	
28	01111	0.9367	0.05964	0.05964	0.41778	0.41778	
29	11011	0.8567	0.07595	0.07595	0.49373	0.49373	
30	01010	0.7167	0.10897	0.10897	0.60270	0.60270	
31	00011	0.5967	0.14303	0.14303	0.74573	0.74573	
32	01011	0.3167	0.25427	0.25427	1.00000	1.00000	
	<u> </u>						

Figure 5. Hypothetical 5-component example: Summary of Squared Distance Measure (SDM) test.

```
Order by Probability (OP) Procedure -- RR OP (14 outcomes)
  10100
  11100
  10101
  00100
  11101
  10000
  01100
  11000
  00101
  10001
  10110
  01101
  00000
  11001
Kills Test -- RR K (2 outcomes)
  00000
  11111
More-Likely Response (MLR) Test -- RR MLO (6 outcomes)
  10100
  00100
  10000
  10101
  10110
  11100
Squared Distance Measure (SDM) Test -- RR SDM (13 outcomes)
  10100
  11100
  10101
  00100
  10000
  11101
  01100
  10110
  11000
  00101
  10001
  11110
  00000
```

Figure 6. Hypothetical 5-component example: Rejection regions for each procedure.

VIII. PROCEDURE COMPARISONS

To study the four procedures, 2000 pairs of l-dimensional probability vectors were randomly generated for l = 5, 6, 7, 8, 9, and 10. The first vector of a pair (\vec{h}_0, \vec{h}_A) was considered the hypothesized probability vector and the second was considered the alternative probability vector. The level of significance was set at $\alpha = .05$. The power of each test (i.e., the probability of rejecting H_0 when H_A is true) was computed for each pair (\vec{h}_0, \vec{h}_A) .

Figure 7 shows a graphic way of comparing the power of two test procedures, call them A and B. For a given pair of vectors (\vec{h}_0, \vec{h}_A) , we compute the ordered pair (β_A, β_B) where β_A and β_B are the powers of A and B respectively. Then the scatterplot of all 2000 points, (β_A, β_B) , will give us a comparison of the two tests. If Procedure A is more powerful than Procedure B, then we expect to see a graph similar to Figure 7(A). If the opposite is true, the plot will be similar to Figure 7(B). But if both procedures have approximately the same power, then Figure 7(C) is the proper scatterplot.

Comparisons of the four procedures consistently show the OP procedure to be the most powerful (See Figures 8 and 9). The SDM test appears to be only slightly less powerful. The MLR and Kills tests both showed poor ability to reject H_0 when other ℓ 's were used.

These findings are reinforced when the median power of each procedure is computed. In Figure 10, we see again that OP slightly outpowers SDM, with MLR and Kills exhibiting less power. It is impossible to tell for certain which of the four procedures is best unless we know \vec{h}_A . But from the strictest viewpoint in which we assume no prior knowledge of the p_i 's, this is not the case. When we do not know any information about \vec{h}_A , we must assume that all possible \vec{h}_A 's are equally likely. Therefore it makes sense to pick that procedure with the greatest number of outcomes in its rejection region.

IX. THE FISHBOWL ARGUMENT

Assume that the null hypothesis we are interested in testing is one that completely defines the distribution of the outcome space Ω . For example, our illustrative example from Figures 1-6 is concerned with the null hypothesis

$$H_0$$
: $p_1 = .23$, $p_2 = .64$, $p_3 = .19$, $p_4 = .91$, $p_5 = .70$.

Given the estimated probabilities in this hypothesis, $P(A_i)$ can be calculated for all possible outcomes. Another null hypothesis that we may be interested in is:

$$H_0$$
: $p_1 = .23$, $p_2 = .64$, $p_3 = .19$, $p_4 = p_5$

Note that this does not contain all the probability estimates needed to compute P(A), however it is certainly a valid hypothesis. We will define a simple null hypothesis to be one that completely defines the distribution of the outcome space, and denote it by H_0^s .

Figure 7. Possible power versus power plots.

Figure 10. Median power of the four candidate procedures.

Now make the additional assumption that an experiment has a finite outcome space, Ω . If we are interested in testing some simple null hypothesis at the α level of significance, how many different ways can we perform a test of H_0^s and which is the optimal way?

To attempt to answer these questions let Ω be of size N, m < N, and $\{O_1, O_2, \cdots O_m\}$ be any subset of Ω such that under H_0^s ,

$$P(O_1) + P(O_2) + \cdots + P(O_m) \leq \alpha$$
.

Then we claim that $\{O_1, O_2, \cdots O_m\}$ is a rejection region for some test of H_0^s . Why? Because under H_0^s , the chance of observing an outcome from this subset is less than or equal to alpha, our desired level of significance. Therefore we have the foundations of a statistical test, even if the reasoning behind the selection of the subset is not specified.

To help explain this concept, Figure 11 shows an example of an outcome set with N=16. Each circle represents one of the 16 possible outcomes and its size is proportional to the density of the outcome under the simple null hypothesis. In Figure 12, each group of circles (outcomes) connected by a horizontal line symbolizes a subset satisfying our condition (i.e., $\alpha \le .05$) to be a rejection region for some test of the simple null hypothesis. The probability of observing an outcome from each subset is indicated by the number in the right column. Note that these values (which are computed by summing the probabilities of the outcomes in the subset) are all less than or equal to .05, the desired alpha level, and that the addition of any other outcome to each set makes the new sum greater than .05. We therefore consider each of these 24 subsets a rejection region to test H_0^6 .

For each rejection region, the probability of observing an outcome in that region is at most α under the simple null hypothesis. However, if some alternative hypothesis is true, the probability of observing an outcome in the rejection region (thereby correctly rejecting H_0^s) is some other value $1-\beta$, which we call the power of the test. Unfortunately the power is unknown to us if we do not know which alternative hypothesis is true. At best, we can only say that all alternative hypotheses are equally likely. Therefore each outcome in a rejection region is equally likely to occur, and the optimal rejection region is that one which contains the most outcomes. The way to build this rejection region is to include the least likely outcomes until no more can be added. In Figure 12, the star labels the rejection region that we would use since it contains six outcomes, more than any other rejection region.

As an analogy, assume you are given a small fishbowl partially filled with water and a large number of pebbles with which to completely fill it. Also assume that each pebble has a different volume. If you were instructed to raise the water level to the top of the fishbowl by adding as many pebbles as possible, how would you set out to do so? Instead of occupying space with one large pebble, you would fill the same space with smaller pebbles. Therefore you would begin by selecting the smallest pebble and putting it in the bowl. Then you would drop in the second smallest pebble. The third pebble would be the next smallest, and so on until the water level reaches the brim. The remaining pebbles would of course be the largest ones.

Figure 11. Sample outcome space with events drawn proportional to density.

Figure 12. All possible 5% rejection regions for sample outcome space.

The OP procedure uses this "fishbowl" technique by filling up the rejection region with those outcomes having the smallest probabilities. The only restriction to the technique is that the last outcome entered into the rejection region cannot have the same density as any outcome excluded from the region

X. FURTHER NOTES AND RECOMMENDATIONS

The OP procedure was only tested for l = 5, 6, 7, 8, 9 and 10, for two reasons. Firstly, the data that spawned this research was only for small l, namely $l \le 10$. Secondly, the computational time and storage needed to compute the P(A)'s, B's, etc. grows nearly exponentially with each unit increase in l. Simulations using l = 12 were attempted but ran non-stop for a couple of days on a Gould 9050 minicomputer.*

Since the SDM tests does a good job of mimicking the OP procedure it may be an easier test to use when l is larger than 10, if the distribution of S(A) can be approximated. Initial attempts to find such an approximation were not successful. A listing of the computer program is given in the Appendix at the end of this report.

XI. CONCLUSIONS

This problem is complicated by the fact that we must judge the entire set of computer generated estimates on a single shot. It must be admitted that while OP is the best procedure of those studied, occasionally H_0 was not rejected although the alternative hypothesis differed greatly from it. Great care must be taken in interpreting the final decision. In rejecting H_0 we can confidently say that the set of hypothesized kill probabilities is incorrect. However, venturing to say which components are incorrect and by how much is dangerous. It is vital to remember that we are trying to make inferences from one round. If we do not reject H_0 , then this does not allow us to "accept H_0 as being true". It simply says that there is not enough evidence to say that H_0 is false. We cannot validate the estimates, we can only state that they are consistent with the live fire results.

We must take care to see that our assumption of independent components is met. All the calculations involved in the OP procedure are made under these assumptions. Therefore the selection of components is critical, and we should avoid including incendiary components, shielded components, etc., in the analysis.

The OP procedure works best of the four tried because it does not lose any information by collapsing the data into a univariate test statistic. It simply creates that rejection region with the most outcomes.

Lawrence D. Losie of the Ballistic Research Laboratory has made recommendations for improving the computational efficiency of the OP procedure. This work is unpublished but may be obtained through private communication with Mr. Losie.

TABLE OF SYMBOLS

vector of observed outcomes Α ith ordered vector of observed outcomes armored fighting vehicle ith component of vector A a_i level of significance probability of observing that number of kills (or less) associated with the ith $B[K(A_{(i)})]$ ordered vector A_(i) probability of observing that MLR value (or less) associated with the ith ordered vector A_(i) $B[M(A_{(i)})]$ probability of obsrving that SDM value (or less) associated with the ith ordered vector A_(i) $B[S(A_{(i)})]$ cumulative function value of vector A_(i) B_i β_A C C_1 C_2 γ_i Epower of some test procedure A critical value for one-sided rejection region lower critical value for two-sided rejection region upper critical value for two-sided rejection region more likely response value for ith component of vector A expected value operator $\frac{H_{A}}{h_{A}}$ $\frac{H_{0}}{h_{0}}$ $\frac{H_{0}}{h_{0}}$ $\frac{H_{0}}{h_{0}}$ $\frac{H_{0}}{h_{0}}$ alternative hypothesis vectors of alternative probabilities null hypothesis vector of hypothesized probabilities null hypothesis which completely defines the distribution of the outcome space number of kills in vector A number of components M(A)number of "more-likely-responses" in vector A MLR more-likely-response MOP measure-of-performance expected number of non-kills for the group of components whose estimated M_{τ} probability of kill is less than one-half M_{II} expected number of kills for the group of components whose estimated probability of kill is greater than one-half $egin{array}{c} \mathbf{O}_{\mathrm{i}} \\ \mathbf{OP} \end{array}$ an element of the outcome space Ω order-by-probability P(A)probability of vector A probability of observing that number of kills associated with the ith ordered vector A_(i) $P[K(A_{(i)})]$ probability of observing that MLR value associated with the i^{th} ordered vector $A_{(i)}$ probability of observing that SDM value associated with the i^{th} ordered vector $A_{(i)}$ $P[M(A_{(i)})]$ $P[S(A_{(i)})]$ $\mathbf{P}_{\mathbf{k}}$ probability of kill true probability of kill for ith component $\begin{matrix} p_{i_o} \\ p_i^{\bullet} \end{matrix}$ estimated probability of kill for ith component RR rejection region S number of estimated probabilities equal to one-half SDM squared-distance-measure squared-distance-measure for vector A S(A)

set of all possible outcomes

 Ω

APPENDIX

APPENDIX

```
c FILE: vul.f
c This program takes a vector of k probabilities of 0.1 outcomes,
c enumerates all possible outcome vectors and calculates the
c probability of each, using the vector of outcome probabilities
c given. It then sorts each of the outcome vectors according to
c their probability of occurence. It calculates and prints the
c cumulative probability.
c k < 13, is the dimension of the vector.
c p(i), i=1,k is the vector of input probabilities.
c jout(i,j) is the 2**k by k matrix of possible outcome vectors.
c This program is written to run in the interactive mode but
c it can be run batch mode by reading k, the desired alpha level
c and p(i), i=1,k from one file and writing the results in
c another file. For example, vul.e < data.inp > data.out will
c read input from a file named data.inp and write the results
c into a file called data.out.
      common jout(4097,10),prob(4097),n,k
      double precision prob(4097), cum(4097)
      dimension p(12)
      read(5,*) k
      read(5,*) dalp
      read(5,*)(p(i),i=1,k)
      epsilon=0.0000001
      n=2**k
c GENERATE MATRIX OF ALL POSSIBLE OUTCOMES
      do 10 j=1.n
       do 10 i=1,k
        jout(j,i)=0
   10 continue
      do 20 i=1,k
       ni=2**(k-i)
       nj=2*ni
       do 20 nk=ni+l,n,nj
        do 20 nl=nk,nk+ni-l
         jout(nl,i)=l
   20 continue
      write(6,120)
      write(6,130)(p(i),i=1,k)
      write(6.140)
      write(6,150)
      do 30 i = 1, n
       prob(i) = 1.
       do 30 j = 1,k
        prob(i) = prob(i)*p(j)**(jout(i,j))*(1.-p(j))**(1-jout(i,j))
  30 Continue
```

```
c ORDER ALL OUTCOMES BY PROBABILITY, FROM LOWEST TO HIGHEST
      do 50 j=1, n-1
       do 50 m=j+l,n
        if (prob(j).gt.prob(m)) then
         do 40 i=1.k
          isave=jout(j,i)
          jout(j,i)=jout(m,i)
          jout(m,i)=isave
  40
         continue
         save=prob(j)
         prob(j)=prob(m)
         prob(m) = save
        endif
  50
      continue
c CALCULATE CUMULATIVE DISTRIBUTION FUNCTION
      cum(1) = prob(1)
      do 60 j=2.n
       cum(j) = cum(j-1) + prob(j)
  60
      continue
      do 70 i=1,n
       write(6,160)i,prob(i),cum(i),(jout(i,j),j=l,k)
      continue
c DETERMINE REJECTION REGION
      irr=n
  80
      irr=irr-1
      if (cum(irr).ge.dalp) goto 80
      if (prob(irr+1)-prob(irr).lt.epsilon) goto 80
      talp=cum(irr)
c OUTPUT REJECTION REGION VECTORS
      write(6,170)irr
      do 110 i=1,irr
       write(6,180)(jout(i,j),j=1,k)
 110
      continue
      write(6,190)talp
      format('The input probabilities are:')
 120
 130
      format(12f6.3)
 140
     format(//' Vector
                            Prob.
                                                   Vector')
                                     Cum. Prob.
 150
      format('
                       1/)
                 No.
 160 format(i6,2x,e10.5,f10.6,2x,11i2)
 170
      format(/'The rejection region consists of these ',i3,' vectors:'/)
 180
      format(4x,11i2)
      format(/'The true alpha level is ',f6.3)
 190
      stop
      end
```

No of Copies	Organization	No of <u>Copies</u>	Organization
(Unclass., unlimited) 12 (Unclass., limited) 2 (Classified) 2	Administrator Defense Technical Info Center ATTN: DTIC DDA Cameron Station Alexandria, VA 22304-6145	1	Commander US Army Missile Command ATTN: AMSMI-RD-CS-R (DOC) Redstone Arsenal, AL 35898-5010
1	HQDA (SARD-TR) WASH, DC 20310-0001	1	Commander US Army Tank Automotive Command ATTN: AMSTA-TSL (Technical Library) Warren, MI 48397-5000
1	Commander US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001	1	Director US Army TRADOC Analysis Command ATTN: ATAA-SL White Sands Missile Range, NM 88002-5502
1	Commander US Army Laboratory Command ATTN: AMSLC-DL Adelphi, MD 20783-1145	(Class. only)]	Commandant US Army Infantry School ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660
. 2	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-MSI Picatinny Arsenal, NJ 07806-5000	(Unclass. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5660
. 2	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-TDC Picatinny Arsenal, NJ 07806-5000	(Class. only)	The Rand Corporation P.O. Box 2138 Santa Monica, CA 90401-2138 Air Force Armament Laboratory ATTN: AFATL/DLODL
1	Director Benet Weapons Laboratory Armament RD&E Center US Army AMCCOM ATTN: SMCAR-LCB-TL Watervliet, NY 12189-4050		Eglin AFB, FL 32542-5000 Aberdeen Proving Ground Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen Cdr, USATECOM ATTN: AMSTE-TO-F
1	Commander US Army Armament, Munitions and Chemical Command ATTN: SMCAR-ESP-L Rock Island, IL 61299-5000		Cdr, CRDEC, AMCCOM ATTN: SMCCR-RSP-A SMCCR-MU SMCCR-MSI
1	Commander US Army Aviation Systems Command ATTN: AMSAV-DACL 4300 Goodfellow Blvd. St. Louis, MO 63120-1798		

Director
US Army Aviation Research
and Technology Activity
Ames Research Center
Moffett Field, CA 94035-1099

AUTHOR'S DISTRIBUTION LIST

No. of Copies	Organization	No. of Copies	Organization
		4	Dir, USAMSAA ATTN: AMXSY-R, A.W. Benton AMXSY-R, Bobby Bennett AMXSY-R, Harold Pasini AMXSY-R, Walter Mowchan AMXSY-G, Wilbert J. Brooks
		2	Dir, USACSTA ATTN: STECS-MA-A, Vernon Visnaw

1 Commander
US Army Development &
Employment Agency
ATTN: MODE-TED-SAB
Fort Lewis, WA 98433

1 AFWL/SUL Kirtland AFB, NM 87117

Aberdeen Proving Ground

2 Cdr, USATECOM
ATTN: AMSTE-TO-F
AMSTE-EV-S, Larry West

USER EVALUATION SHEET/CHANGE OF ADDRESS

ments/answers below will aid u		rove the quality	y of the reports	it publishes.
Does this report satisfy a not the report will be used.)				
How, specifically, is the reetc.}				
Has the information in this operating costs avoided, or	report led to any quan efficiencies achieved, e	tc? If so, plea	se elaborate	
General Comments. What do organization, technical cont	ent, format, etc.)			(Indicate change:
BRL Report Number		Divisio	n Symbol	
Check here if desire				
Check here for addre	ess change.			
Current address:	Organization _ Address _			
4.0				
	FOLD AND	TAPE CLOSE	D	
irector .S. Army Ballistic Re: FMN: SLCBR-DD-T(NEI) berdeen Proving Ground				NO POSTA NECESSAR IF MAILE IN THE UNITED STA
FICIAL BUSINESS	BUSINESS FIRST CLASS PERMIT	REPLY L	ABEL	
	POSTAGE WILL BE PAIL	BY DEPARTMENT	OF THE ARMY	
	4 18			
	5'			

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T(NEI)

Aberdeen Proving Ground, MD 21005-9989