Floating and Fixed-Point Binary

2020

Ando Ki, Ph.D. adki@future-ds.com

Table of contents

- Classification of numbers
- Number systems
- Positive & negative
- Fractional number
- Floating & fixed-point
- Fixed-point quantization and overflow
- Fixed-point math

Classification of numbers

- Natural number: 자연수
- Whole number: (정수)
- Integer: 정수
- Rational number: 유리수
- Irrational number: 무리수
- Real number:실수
- Complex number: 복소수

Number Systems

- PNS (Positional Number System) a number is represented by a string of digits. Each digit position is weighted by a power of the base or radix.
 - ▶ Position of coefficient determines its value.
- Radix the radix or base is the number of unique digits, including zero, that a positional numeral system uses to represent numbers.
 - ▶ Decimal is natural (we count in base 10) (Radix or Base 10) digits {0,1,...,8,9}
 - \blacktriangleright Binary is used in digital system (Radix or Base 2) digits $\{0,1\}$
 - ▶ Octal is used for representing multi-bits (group of 3 bits) numbers in digital systems. - (Radix or Base 8=2³) digits {0,1,...,6,7}
 - Hexadecimal is used for representing multi-bits (group of 4 bits) numbers in digital systems- (Radix or Base 16=2⁴) digits {0,1,...9,A,B,...,F}

- Decimal: 십진수
 - Positional radix 10 code system
 - Coefficient in position is multiplied by radix (10) raised to the power determined by its position, e.g.,

$$4*10^3 + 8*10^2 + 5*10^1 + 6*10^0 = (4,856)_{10}$$

- Binary: 이진수
 - ▶ Positional radix 2 code system
 - ► Two symbols, B = { 0, 1 }
 - Easily implemented using switches
 - Easy to implement in electronic circuitry
 - Algebra invented by George Boole (1815-1864) allows easy manipulation of symbols

$$(0101)_2 = 0*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = (5)_{10}$$

Positive and negative of binary for integer number

- Positive numbers
 - Unsigned binary

- Negative numbers
 - Sign/magnitude numbers
 - Two's complement

sign magnitude

Numbers with fractions: real number

- Floating-point
 - the binary-point (or decimal-point) floats to the right of the most significant 1
 - use a special form to represent almost fractional real numbers.

 $0.00000123 \longrightarrow 1.23x10^{-6}$ → 1.0x10⁻¹ → 1.24567x10² 124.567 $1230000.456 \longrightarrow 1.230000456 \times 10^6$

- Fixed-point
 - The binary-point (or decimal-point) is fixed
 - The binary point is not a part of the representation but is
 - The number of integer and fraction bits must be agreed upon by those generating and those reading the number.

01101100 0110.1100

 $2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$

- Possible errors
 - truncation error
 - round off errors using floating-point numbers because not all real numbers can be represented accurately
 - - attempting to represent a number that is greater than the upper bound for the given number of bits
 - underflow error
 - attempting to represent a number that is less than the lower bound for the given number of bits

Format of floating-point: IEEE 754

- For a single-precision number,
 - ▶ the exponent is stored in the range 1~254 (0 and 255 have special meanings), and is biased by subtracting 127 to get an exponent value in the range -126~+127.
- For +0.0 of single-precision, it is {1'b0, 8'h00, 23'h0000}, where 23'h0000 means 0.0.
- When all bits of exponent is 1, it can be +/-Infinity or +/-NaN (Not a Number)
 - S=0, E=all 1, M=all 0 → +Infinity.
 - S=0, E=all 1, M=not all 0 → +NaN.
 - S=1, E=all 1, M=all 0 → -Infinity.
 - S=1, E=all 1, M=not all 0 → -NaN.

Deep-Learning Workshop (7)

How to convert floating to fixed-point

- Fractional decimal to fixed-point binary
 - Converting a fractional number (represented as a decimal) to a fractional binary number works by repeated multiplication by 2.
 - ► convert 0 0.6*2 = 1.2 0.2*2 = 0.4 0.4*2 = 0.8 0.8*2 = 1.6 $\Rightarrow 0.1001100110011...(2)$ 0.6*2 = 1.20.2*2 = 0.4
- Fixed-point binary to fractional decimal
 - Simply divide a fixed factor
 - It is a shifting the radix point a fixed number of places to the left.
 - Ex: 8-bit width fixed-point binary with 3-bit fractional part.
 - **○** 0011_0101 (0x35₁₆, 53₁₀)
 - **3** 00110.101 (6.626, 53/8 = 53>>3)

0.625*2 = 1.25 0.25 *2 = 0.5 0.5 *2 = 1.0

Negative fixed-point number

- As with integers, negative fractional numbers can be represented two ways:
 - Sign/magnitude notation
 - Two's complement notation
- Represent -7.5₁₀ using an 8-bit binary representation with 4 integer bits and 4 fraction bits.
 - ► Sign/magnitude:
 - 11111000
 - ► Two's complement:

1. +7.5: 01111000 2. Invert bits: 10000111 3. Add 1 to lsb: + 1 10001000

Convert floating to fixed-point

- Say 'A' is real nunber
- 1. multiply 2**f, where f is the number of bits of fractional part
- 2. take integer part (C) of the result (B)
- 3. this B is fixed-point number of 'A' with f-bit fraction

Project: find fixed-point binary number

- Ex: Represent 6.5₁₀ using an 8-bit binary representation with 4 integer bits and 4 fraction bits.
- Ex: Represent 6.75₁₀ using an 8-bit binary representation with 4 integer bits and 4 fraction bits.
- Ex: Represent 7.5₁₀ using an 8-bit binary representation with 4 integer bits and 4 fraction bits.
- Ex: Represent -5.645₁₀ using an 8-bit 2's complement binary representation with 4 integer bits and 4 fraction bits.

Integer, floating-point, fixed-point

- Integer
 - a kind of fixed point type
 - ► Manipulation is fast and cheap
 - Poor for modeling continuous real-world behavior
- Floating-point
 - Better approximation to real number
 - Good for modeling continuous behavior
 - Manipulation is slow and expensive
 - Requires more hardware to implement the functionality
- Fixed-point
 - Used in many signal processing applications
 - Requires less hardware to implement the functionality than floating-point

Fixed-point quantization

- Operations performed on fixed-point data types are done using arbitrary precision.
- The resulting operand is cast to fit the fixed-point data type object.
- The quantization (rounding/truncation) is applied by the casting operation.
- Quantization modes:
 - Truncation
 - Rounding

Quantization: truncation

- Always rounded towards minus infinity
- ► The redundant bits are always deleted.

What is data type

Data type is the way how we interpret the meaning of bit sequences.

 $\boxed{0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0} \ \underset{0 \ \text{A46/70 as integer}}{} \text{`F' as char type;}$

 $\begin{array}{c|c} 1 & 0 & 0 & 0 & 1 & 0 \\ \hline & 1 & 0 & 0 & 0 & 1 & 0 \\ \hline & 0 & 0 & 0 & 0 & 1 & 0 \\ \hline & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 130 & 0 & 0 & 0 & 0 \\ \hline & 130 & 0 & 0 & 0 \\ \hline & 130 & 0 & 0 & 0 & 0 \\ \hline & 130 & 0 & 0 & 0 &$

Signed and unsigned

- Signed data types
 - 2's complement signed
 - ▶ In 2's complement notation, one more negative value than positive value can be represented.

References				