

A Deep Learning Approach for Brain Tumor Classification and Segmentation Using a Multiscale Convolutional Neural Network

Group Members: 1. Unnat Maaheshwari (B21072)

- 2. Aman Kumar Mohanty (B21036)
- 3. Shashank Dwivedi (B21023)
- 4. Srijan Sood (B21227)

Outline

This research paper introduces an innovative deep learning framework for the automatic segmentation and classification of brain tumors by:

- Using a multiscale convolutional neural network (CNN) to process MRI images at three spatial scales.
- Mirroring hierarchical visual processing for enhanced accuracy.
- Identifying meningioma, glioma, and pituitary tumors across sagittal, coronal, and axial views.
- Eliminating the need for preprocessing steps to remove structures like the skull or vertebral column.

Background

- Brain tumors require accurate segmentation and classification for effective diagnosis and treatment.
- Manual analysis of MRI images is time-consuming and prone to errors.
- Recent advancements in deep learning, particularly convolutional neural networks (CNNs), have significantly improved medical image analysis.
- Multiscale processing, inspired by the human visual system, enhances feature extraction and model performance.
- This research leverages a multiscale CNN to automatically segment and classify brain tumors from MRI data, aiming to improve accuracy and efficiency.

Objectives

- Develop and evaluate a fully automatic brain tumor segmentation and classification model using a multiscale CNN.
- Identify and distinguish between meningioma, glioma, and pituitary tumors from T1-weighted contrast-enhanced MRI images.
- Enhance model accuracy and robustness by leveraging multiscale processing.

Information about Dataset

- 3064 T1 weighted Contrast Enhanced Images
- 233 patients with 3 kinds of Brain Tumors:
 - 1. Meningioma 708 Slices (Label: 1)
 - 2. Glioma 1426 Slices (Label: 2)
 - 3. Pituitary Tumor 930 Slices (Label: 3)

State-of-the-art (SOTA)

- Utilizes a novel multiscale CNN that mimics the hierarchical processing of the human visual system.
- Excels in segmentation tasks, validated by superior performance in metrics like Dice Coefficient and Sensitivity.

Methodology

1. Multi-Pathway CNN Architecture:

Classifies each pixel within MRI slices using a sliding window technique.

2. Data Augmentation:

- Utilizes elastic transformation to enhance model robustness.
- Prevents overfitting for more reliable results using drop-out layers.

3. Testing:

Tested on a publicly available dataset of 3064 MRI slices from 233 patients.

Implementation - Results

Implementation - Analysis

Original Model:

- 1. Accuracy: 0.973
- 2. Dice Index: 0.828 (average)
- 3. Sensitivity: 0.940 (average)

Our Implementation:

- 1. Accuracy: 0.831
- 2. Dice Index: 0.717 (average)
- 3. Sensitivity: 0.78 (average)

Objectives Achieved

- Fully automatic segmentation and classification using multiscale CNN.
- No need for preprocessing steps like skull stripping.
- Achieved 0.831 accuracy.
- Dice Index: 0.717
- Sensitivity: 0.78
- Segmentation and classification of meningiomas, gliomas, and pituitary tumors.
- Developed an FCN architecture and apply the method to other imaging fields.

Future Scope and Conclusion

- Assists medical professionals in diagnosing brain tumors more efficiently and accurately.
- Promises improved patient outcomes.
- Future work will explore the adaptability of this multiscale CNN approach to other medical imaging challenges.
- Emphasizes the model's potential for broad applicability in healthcare diagnostics.

Thank You

