DirichletProcesses

Dirichlet Processes

overview

- useful for discrete set with infinite possibilities, but where fewer are prefered
- can be thought of as distribution over categories

background

mixture model

- assume data is generated by k mixture components
- (compositions = categories)
 - each category is its own distribution
- generative model
 - $-Y_i \sim Gauss(\mu, \sigma^2)$
 - each Y_i sampled from normal distribution
- \exists prior distribution on μ, σ^2
 - let $\sigma = 1$, $\mu \sim Gauss(0,1)$
 - so now there's a distribution on the parameters of Y_i
 - strongly resists means falling far from 0

graphical model

- shows the dependencies
 - first you need hyperparameters in h
 - then you need to sample mu
 - then you can sample Y_i
- mixture model adds an extra step:
 - assume data came from 1 of k components
 - assume for now that each one was Gaussian
- assume the data looks something like this (density)

Histogram of log(bimodalData)

- how do we construct 1 distribution for the whole dataset?
 - need to combine 2 gaussians
- method for combining:
 - flip a coin, if it's heads, sample from one distribution, if it's tails, sample from the other
 - so the height of each distribution goes down, but they still add up to 1
 - this is true as long as the higher level distribution adds up to 1
 - component weights: odds on the coin
 - this is a mixture model

clustering/categories

- model with mixing distributions
 - mixture distribution is a discrete R.V.
 - formalized as vector of weights
- how to learn mixture distributions
 - let Z_i be r.v.~ $Categorical_k(\Theta)$
 - indexed over datapoints
- categorical distribution
 - biased die with k outcomes
- so $Y_i \sim Gauss(\mu_{z_i}, \sigma_{z_i}^2)$
- now what if we don't know k
 - don't know how many categories there will be
 - so we make k infinite
- NB: when we see infinite in this context, go from thinking about distributions to thinking about processes
 - we need an algorithmic process
 - we can always get more precision out of the algorithm if needed

stick breaking process

- how do we ensure that $\sum_{\forall \Theta} \Theta = 1$
 - choose first theta from some distribution between [0,1]
 - * call this π_1
 - then choose π_2 from $1 \pi_1$
 - repeat k times
- in this process, probability of stopping at component k is :
 - $-(1-\pi_1)(1-\pi_2)...(1-\pi_{k-1})\pi_k$
 - $-P(\Theta_j) = \pi_j \prod_{k=1}^{j-1} (1 \pi_k)$
- this is the Dirichlet process
- favors stopping earlier (product of fewer fractions)
- we use the Beta distribution to sample each π .
 - Beta takes two parameters (pseudocounts)
 - let them be ψ_h, ψ_t (pretend counts of heads (h) and tails (t))
 - pseudocounts may be <1
 - the mean is always $\frac{\psi_h}{\psi_h + \psi_t}$
- lets you sample coin weights π_i
- usually written as $DP(G_0, \alpha)$ where $\pi_i \sim Beta(1, \alpha)$
- this is just a distribution over infinite vectors of probabilities
 - a distribution over distributions
- G_0 is the prior distribution on parameters of each component
 - how you sample μ (in our case) if you get to a component that you've never reached before
 - called the base distribution or base measure
 - it is a distribution over kinds of things you want back

different approach

• assume this graphical model (biased coin):

- suppose you don't know Θ (the weight of the coin)
 - first sample Θ from Beta(1,1)
 - then sample f from $Bernoulli(\Theta)$
 - flips are independent
- BUT if you don't know Θ then the flips are **not** independent
 - informationally entangled when you observe data
 - e.g. HHHHHTHHHH would make you think H is more likely than tails (i.e. heads-biased coin)
- so:

$$P(\Theta|f, \psi_h, \psi_t) = \frac{P(f|\Theta)P(\Theta|\psi_h, \psi_t)}{\int_{\forall \Theta} P(f|\Theta)P(\Theta|\psi_h, \psi_t)d\Theta}$$

sequential update scheme

• Polya urn representation

- assume a fair coin, flip it, add 1 to the resulting side and renormalize
- i.e. start with .5,.5 heads and tails
 - say you get heads, now .67, .33
 - say you get tails next, back to .5,.5
- if you follow this scheme, P(next outcome) has the same distribution as the Bayesian formula generative model above
- this coin scheme is for the Beta-Binomial distribution

Chinese restaurant process

- for Dirichlet, imagine a restaurant with infinite tables
 - each table has a dish that is served at that table
 - first customer sits at any table
 - second customer sits at new table with probability $\frac{\alpha}{1+\alpha}$ and at the same table as the first with
 - probability $\frac{1}{1+\alpha}$ after that, the n+1th customer sits at a new table with probability $\frac{\alpha}{n+\alpha}$ and at occupied table k with probability $\frac{n_k}{n+\alpha}$ where n_k is the number of people currently at table k
- label the tables with observations from the base distribution
 - then this is also the same distribution (Dirichlet process)
- going back to the mixture model:
 - each flip resulting from a Θ partition is analogous to each μ sampled
 - each customer is analogous to the z_i 's
 - observations drawn from a table are parametrized by μ_i