

# Building the BioAssay Research Database

#### A Next-Generation Platform for Annotating and Understanding Chemical Biology Datasets

Joshua A. Bittker
Director of Lead Discovery
Center for the Science of Therapeutics

January 22, 2014



#### What is BARD?

A public platform for sharing chemical biology data that uses a standard representation and common language for organizing bioassays and their results.

**Goal:** To help researchers develop and test hypotheses on the influence of different probes on biological functions.





#### Precompetitive opportunities with BARD

- Standardized & controlled vocabulary to describe the context of experimental results
- Open source software platform to register assays, and to query and visualize public bioassay data
- An open standard for sharing bioassay annotations and data with the public or between organizations





#### Precompetitive opportunities with BARD

- Standardized & controlled vocabulary to describe the context of experimental results
- Open source software platform to register assays, and to query and visualize public bioassay data
- An open standard for sharing bioassay annotations and data with the public or between organizations





### Constructing a biologist-focused vocabulary







#### BARD top level concepts & sources







#### Curation of BARD-managed terms







#### Curation of BARD-managed terms







# Curation of BARD-managed terms

| 1/1                                |                                                        | Logged in as: jbittker Logout |                   |  |
|------------------------------------|--------------------------------------------------------|-------------------------------|-------------------|--|
| BARD BioAssay Research Database    | Structure IDs                                          |                               | QUERY CART Empty  |  |
| DIOASSAY RESEARCH DATABASE         |                                                        | HOW TO •                      | My BARD SUPPORT ~ |  |
|                                    |                                                        | HOW 10 *                      | SUPPORT           |  |
| Propose New 1                      | erm (page 2 of 2)                                      |                               |                   |  |
| Selected Parent term               | assay kit name                                         |                               |                   |  |
| Definition of selected parent term | Defined set of commercially avai                       |                               |                   |  |
| 2. Enter the name of               | your term and a definition for it. (both are required) |                               |                   |  |
| Proposed term *                    |                                                        |                               |                   |  |
| Proposed definition *              |                                                        |                               |                   |  |
|                                    |                                                        |                               |                   |  |
| 3. Enter additional o              | otional information about your term.                   |                               |                   |  |
| Abbreviation                       |                                                        |                               |                   |  |
| Synonyms(Comma<br>separated)       |                                                        |                               |                   |  |
|                                    |                                                        |                               |                   |  |
| 4. Explain why you n               | eed to add this term.                                  |                               |                   |  |
| Explanation/Comments               |                                                        |                               |                   |  |

New terms are provisional but can be used immediately to avoid delays





#### Leveraging of external ontologies

Ensembl:ENSRNOP00000009756

# Any updates to a referenced ontology are incorporated into BARD



UniProtKB)

All target-based screens that GO indicates are associated to the queried pathway (and phenotypic assays directly annotated with the pathway)



CCL11

Eotaxin

sapiens

## Leveraging of external ontologies

# Any updates to a referenced ontology are incorporated into BARD







New evidence added to GO is reflected in BARD search results





#### Precompetitive opportunities with BARD

- Standardized & controlled vocabulary to describe the context of experimental results
- Open source software platform to register assays, and to query and visualize public bioassay data
- An open standard for sharing bioassay annotations and data with the public or between organizations





## Build using component-based architecture







## Build using component-based architecture







# Structure for capturing bioassay relationships







#### Interactive tools: assay definition

Autocomplete & definitions for controlled terms



#### Interactive tools: projects







## Guided process for defining bioassays

 Suggests path for providing minimum information necessary to define an assay; Allows cloning & editing of existing public protocols



Logic checks for consistency







#### Using annotations: Finding & understanding bioassay data







#### Using annotations: Finding & understanding bioassay data

 Simple autocomplete interface allows basic searching by free text or specific annotation; searching by IDs or structures
 Click here to view demo video on youtube



#### Using annotations: Finding & understanding bioassay data

 Filtering results allows a focus on the desired understanding: By target, assay details, reagent, etc.

Click here to view demo video on youtube



#### Visualizing data using structured annotations

Filtering and visualizing activity allows rapid understanding of multiple datasets



#### Additional uses of annotations

Establishing a measure of similarity between assays to enable clustering of protocols



Plugin architecture allows direct calls to warehouse API for metadata



| Name                   | Lead<br>Author[s] | Institution          | Brief Description                                                                             | Status                 |
|------------------------|-------------------|----------------------|-----------------------------------------------------------------------------------------------|------------------------|
| Badapple               | Jeremy<br>Yang    | UNM                  | Evidence-based promiscuity scores                                                             | released Oct<br>2012   |
| SmartCyp               | Rajarshi<br>Guha  | NCGC                 | Prediction of which sites in a molecule that are most liable to metabolism by Cytochrome P450 | released<br>March 2013 |
| WhichCyp               | Rajarshi<br>Guha  | NCGC                 | Prediction of which Cytochrome P450 isoform(s) is(are) likely to bind a drug-like molecule    | released<br>June 2013  |
| HScaf                  | Jeremy<br>Yang    | UNM                  | Scaffold analysis                                                                             | In<br>development      |
| TBE (kNN)              | Oleg<br>Ursu      | UNM                  | kNN, nearest neighbors bioactivity profiler                                                   | In development         |
| TBE<br>(Filtering)     | Jeremy<br>Yang    | UNM                  | Druglike/leadlike/probelike suitability filtering                                             | In<br>development      |
| Assay based similarity | Vlado<br>Dancik   | Broad                | Compound similarity based on bioactivity                                                      | In<br>development      |
| TBE (SVM)              | Lars<br>Carlssong | AstraZeneca<br>& UNM | SVM classifier                                                                                | Planned                |
| ALOGPS                 | Igor<br>Tetko     | HZM &<br>UNM         | LogP prediction                                                                               | Planned                |
| TBE (QSAR)             | Alex<br>Tropsha   | UNC &<br>UNM         | QSAR modeling                                                                                 | Planned                |





#### Precompetitive opportunities with BARD

- Standardized & controlled vocabulary to describe the context of experimental results
- Open source software platform to register assays, and to query and visualize public bioassay data
- An open standard for sharing bioassay annotations and data with the public or between organizations





# Sharing bioassays using a common language

Controlled vocabulary with public references

| 230 | high-signal control   | BAILO: saxpy protocols askey component askey component rare-saxpy option rates askey control rates high-sayal control.  Contains the substrate litration without inhibitor to reflect the maximum enzyme activity at each substrate concentration. Depending on the composition of the inhibitor stocks, DMSO might be needed in the control wells to assure consistency across all the experiments.                                                                                                                                                                                                                                                                                                                                                                                                                    | BioAssay Ontology :<br>http://www.bioassayontology.org/bao#BAO_0000156             |
|-----|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 231 | low-signal control    | BAID- Basing protocol- basing component raise basing component raise basing central raises have signal control.  Contains the substrate triation without enzyme or substrate and without inhibitor. The low controls should reflect the signal expected for no enzyme activity at each substrate concentration. Depending on the composition of the inhibitor stocks, DMSO registed be needed in the control wells to assure consistency across all the experiments.                                                                                                                                                                                                                                                                                                                                                    | BioAssay Ontology :<br>http://www.bioassayontology.org/bao#BAO_0000168             |
| 232 | negative control      | IDATIC- assay protoco- assay component- assay component rise- assay certificate negative control.  Used to determine the baseline against which the effect of the test perturbagen is compared. Often the negative control is the solvent (e.g., DMSO) in which the perturbagen was dissolved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BioAssay Ontology :<br>http://www.bioassayontology.org/bao#BAO_0000079             |
| 233 | positive control      | BARD- assay protocol- assay component- assay component rise- assay cellination rise- assay control roles positive control.  A chemical compound or reagent used in each plate of an assay to normalize the response of the test perturbagens (by plate). The positive control is known from previous experiments or is a previously established standard. It is usually highly active, resulting in a strong response of the intended effect. In an inhibition assay, the positive control would usually result in the complete inhibition, which measurement is then used for normalization. In an activation assay it would result in high activation, which measurement is then used for normalization. Using controls provides an external reference and reduces the number of false negatives and false positives. | BioAssay Ontology :<br>http://www.bioassayontology.org/bao#BAO_0000000             |
| 151 | cell-culture role     | BARCh assay protocol- assay component- assay component role- assay definition role- cell-culture role                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                    |
| 249 | antibiotic            | BARC+ assay protocol- assay component- assay component role+ assay definition nole+ cell-culture role+ artificitio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Open Biemedical Ontologies - CHEBI :<br>http://purl.obolibrary.org/obo/CHEBI_22582 |
| 250 | differentiation agent | BARD- assay protocol- assay component- assay component role- assay defiction role- cell-culture role- differentiation agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BioAssay Ontology :<br>http://www.bioassayontology.org/bao#BAO_0002087             |
| 251 | fixative              | SARD- assay protocol- assay component- assay component role- assay definition role- cell-culture role- fixative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Open Biomedical Ontologies - CHEBI :<br>http://purl.obolibrary.org/obo/CHEBI_50913 |

Business rules: what is required to minimally define an assay?
 2. Biology \*\*

| biology                  |                                                                                                                                                                                            |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| biology                  | macromolecule                                                                                                                                                                              |  |  |  |
| target, there should one | ogy defined as a something that can be considered a molecular other item that references one of the following terms ( GO gene-NCBI accession number, UniProt accession number, gene Entrez |  |  |  |

Object relational structure





# Formalizing object relationships







## **Assay Definition Format**



## Using with private data

- User ID: Currently Atlassian Crowd, changing to Mozilla Persona
- Objects owned by teams, editable by users on team

 Desktop client allows direct import of private structures and assays, including encrypted structure transfer for comparison to public data store



 Private deployments- open source code and documentation for creating internal build. 3<sup>rd</sup> party licenses required: Oracle, ChemAxon





#### Upcoming improvements

- Query tools public, demonstrations on BioAssay Research Database YouTube channel
- Annotation tool release Feb 2014
- Addition of public datasets beyond MLP including signature-based data e.g. LINCS
- Release of additional plugins
- Normalization of chemical names and structures to further standardize data





# Long-Term Path Forward





Sustained Community Engagement

http://bard.nih.gov





#### **Direct Contributors**



NIH Molecular Libraries - Glenn McFadden, Mike North, Ajay Pillai

National Center for Advancing Translational Sciences – Chris Austin (PI), John Braisted, Marc Ferrer, Rajarshi Guha, Ajit Jadhav, Dac-Trung Nguyen, Tyler Peryea, Noel Southall, Cordelle Tanega, Henrike Veith



**Broad Institute** – Benjamin Alexander, Jacob Asiedu, Kay Aubrey, Joshua Bittker, Steve Brudz, Simon Chatwin, Paul Clemons, Vlado Dancik, Siva Dandapani, Andrea DeSouza, Krittika D'Silva, Dan Durkin, Lillian Grassin-Drake, David Lahr, Jeri Levine, Katie Loveluck, Lynn Mar, Judy McGloughlin, Phil Montgomery, Jose Perez, Shaita Picard, Caroline Rizzo, Jason Rose, *Stuart Schreiber (PI)*, Mark Stein, Gil Walzer, Xiaorong Xiang



**University of New Mexico** – Cristian Bologa, Steve Mathias, Tudor Oprea, *Larry Sklar (PI)*, Oleg Ursu, Anna Waller, Jeremy Yang





**University of Miami** – Saminda Abeyruwan, Hande Küküc, Vance Lemmon, Ahsan Mir, Magdalena Przydzial, Kunie Sakurai, *Stephan Schürer (PI)*, Uma Vempati, Ubbo Visser



**Vanderbilt University** – *Eric Dawson (PI)*, Bill Graham, Craig Lindsley, Shaun Stauffer



Sanford-Burnham Medical Research Institute – "T.C." Chung, Jena Diwan, Michael Hedrick, Gavin Magnuson, Siobhan Malany, Ian Pass, Anthony Pinkerton, *Michael Jackson (PI)*, Sumeet Salaniwal, Derek Stonich



Scripps Research Institute - Yasel Cruz, Jill Ferguson, Mark Southern (PI)