ARH1 - Jesenski ispitni rok 2016-2017 (13.9.2017.)

1. zadatak – TEORIJA (ukupno 23 boda):							
1. a (7 bodova) 4-bitna ALU oduzima brojeve 0110-110: stanja zastavica će biti: prijenos=, ništica=, pred oduzimanja promotrimo kao 4-bitne brojeve u formatu operand 1101 je i rezultat je ZA SVE IZRAČUNA.	znak= 2'k , njil	_, preljev novi su izn	= <i>i</i> i osi : pr	Ako operar vi operand	n de i rezulta l 0110 je	t gornjeg , drugi	
4-bitni format 2'k može prikazati brojeve u opsegu od _ do prekoračenja opsega (dopišite "je" ili "nije"). Kod o d kada je zastavica u stanju							
b (1 bod) Ukoliko poziv makronaredbe smije prethoda u suprotnom slučaju dovoljan je i ase	-	oj definici	ji, pot	reban je ba	irem	asembler,	
1.c (3 boda) Napišite smjerove FRISC-ovih priključaka: A	ADR je			, DATA je		,	
READ je, WRITE je							
Rastući brid CLOCK-a: Padajući brid CLOCK-a:		Rastući br Padajući k	orid CL			- - -	
1.e (4 boda) Nakon uključenja ARM7 izvodi se ovaj programski odsječak. Uz svako naredbu napišite koliko ciklusa traje pojedino izvođenje (npr. 5x1C+2x2C znači da naredba pčet puta traje po jedan ciklus i jednom traje dva ciklusa).	LAB Uku p	BHS STR	RO, LAB RO,	REZULT RO, #1 [R1]	cikl		
1.f (2 boda) Za procesor ARM upišite u registar R0 naved sintaksu ATLAS-a kao na predavanjima (tj. rotaciju u lije 0020 4000 ₁₆	vo). Ako	se pojedi 0400 0002	ni broj 2 ₁₆	ne može ι		ite "NE":	
1.g (0,5 boda) Specifičnost podatkovne sabirnice kod AF	RM-a je	da					

2. FRISC (14 bodova) Za procesor FRISC napisati potprogram DIJELI koji prima dva parametra preko stoga. Potprogram mora cjelobrojno podijeliti primljene parametre metodom uzastopnog oduzimanja. Parametri i rezultat moraju biti u 32-bitnom formatu 2'k. Dijeljenje s nulom zanemarite, tj. drugi operand nikada neće biti nula. Rezultat dijeljenja treba vratiti preko R0.

U memoriju se **na adresi 1000₁₆** nalazi **blok** sa 300₁₆ <u>16-bitnih podataka s bitom za predznak</u>. Glavni program mora, pomoću potprograma DIJELI, **svaki od brojeva iz bloka** podijeliti s brojem -78₁₆, arezultate dijeljenja treba spremiti u memoriju kao <u>32-bitne podatke u formatu 2'k</u> u **blok ua adresi 2000**₁₆.

3. FRISC (17 bodova) na **FRISC** je spojena bezuvjetna vanjska jedinica BJ, i sklopovi DMA, CT i GPIO (adrese odaberite sami). **CT i GPIO** zahtijevaju prekide **INT**, ne mogu se međusobno prekidati, a CT ima **prioritet**.

Potrebno je sa GPIO (spojen na INT) **čitati 8-bitne NBC podatke i spremati** ih kao **bajtove** u memorijski **blok** MEMBL koji počinje na adresi 1000₁₆.

Svake 3 sekunde potrebno je pomoću DMA-sklopa prenijeti sve podatke iz bloka MEMBL na bezuvjetnu jedinicu BJ. Nakon što dma-prijenos završi, daljnji podatci koji se primaju od GPIO-a ponovno se pune od početne adrese 1000₁₆. DMA treba raditi zaustavljanjem procesora.

Kašnjenje od 3 sekunde ostvarite pomoću CT-a (spojen na INT), na čiji ulaz je spojen signal od 100 Hz.

Pretpostavite da je DMA dovoljno brz da završi znatno prije nego što isteknu 3 sekunde. Također pretpostavite da unutar 3 sekunde GPIO neće prepuniti MEMBL.

Glavni program vrti beskonačnu petlju.

4. ARM (14 bodova) Za **ARM** treba napisati **potprogram ABS** koji preko registra **R1** prima <u>32-bitni broj u formatu s bitom za predznak</u>. Potporgram ABS računa **apsolutni iznos broja** i vraća ga registrom **R0**. (Zbog jednostavnosti, potprogram ABS treba pretvarati "negativnu nulu" u "pozitivnu nulu".)

Napisati **potprogram BRISI** koji u **bloku 32-bitnih brojeva u formatu s bitom za predznak briše** (tj. zamjenjuje nulom) sve brojeve čija je apsolutna vrijednost **strogo veća od 50**₁₆. Blok podataka zadan je početnom adresom i brojem podataka u bloku. **Početna adresa** prenosi se u potprogram preko **stoga**, a **broj podataka** prenosi se registrom **R0**. Također, potprogram treba **prebrojati obrisane** podatke, te njihov broj vratiti pozivatelju preko registra **R0**.

U glavnom programu treba pomoću potprograma BRISI obraditi blok od 100₁₆ brojeva na adresi 1000₁₆. Broj obrisanih podataka treba pohraniti na lokaciju BROJ_OBRISANIH.

5. ARM (17 bodova) Na **procesor ARM** spojeni su sklopovi GPIO i RTC (adrese im odaberite sami). Na ulaz sklopa RTC spojen je signal frekvencije **10 kHZ**, a RTC je spojen na **IRQ**.

Na **vrata A** sklopa GPIO spojen je **temperaturni sklop** kao na predavanjima (*podsjetnik: bitovi 0-5 su iznos temperature, bit 6 je ulazni za dojavu valjanog očitanja, bit 7 je izlazni za dojavu da je temperatura pročitana*).

Na **vrata B** sklopa GPIO spojen je **LCD-prikaznik** kao na predavanjima (*podsjetnik: bitovi 0-6 služe za slanje znaka, a bit 7 za slanje sinkronizacijskog impulsa, 04 prikazuje interno stanje, 0D briše interno stanje*).

Napišite program koji svakih **5 sekundi (kašnjenje ostvarite RTC-om i prekidima IRQ)** obavlja **provjeru** temperature i **ispisuje** rezultat provjere na LCD-u. **Provjera** se odvija tako da se očita **trenutačna** temperatura **Tt** i usporedi sa **željenom** temperaturom **Tž** koja je upisana u **memorijsku lokaciju ZELJ_TEMP**. Temperature su **NBC** brojevi.

Ispis na LCD-u ovisi o **odnosu Tt i Tž**. Ako Tt==Tž, treba ispisati "=" (ASCII-kôd **3D**). Ako je Tt>Tž, treba ispisati "+" (ASCII-kôd **2B**). Ako je Tt<Tž, treba ispisati "-" (ASCII-kôd **2D**).

Za ispis pojedinog znaka na LCD **potrpogram** LCDWR (kao na predavanjima) LCDWR prima **ASCII-znak** registrom **R0**, a **adresu** GPIO-a registrom **R1**. LCDWR šalje znak na LCD, a LCD je spojen na vrata B.

Glavni program izvodi beskonačnu petlju.