Ruffalo Noel Levitz Project

Team 1: Jisoo Lee, Jordan Kloewer, Ran An, Xuan Zhang

Today's Agenda

Data Gathering and Preparation

Modeling

Conclusion

Introduction

- 1. Assumptions
- 2. Challenges
- 3. Original Dataset

Assumptions

No external factors

Correct data

Use original dataset

Most important target variable

Challenges

Other Challenges

• Group members in different sections

Data Challenges

- Ignoring columns
- Missing values
- Incomplete rows

Modeling Challenges

- Too much time prepping data
- Unknown modeling techniques

Original Dataset

Name: Pledge

Number/Letter: 39, AM Description: Pledge flag

Format of Column: Single digit (1 or blank)

Column Type in R: Integer

Number of Missing/NAs in R: 244787

Questions About Column: What data is currently used that would cause someone to have a "pledge flag?"

Any person with data populated in PledgeAmt (Column BI) and PledgeTot (Column BJ) (excluding where the pledge amounts/totals = 0) should be flagged as pledges. These fields are also numeric versions of the FY17_PLEDGE_AMOUNT column which was character in the original data for some reason

Any Similar Columns/Do Number Match Up?: Pldg

ACTION: DELETE - the column Pldg is the exact same but that one is formatted as a binary variable (0,1) with no blank lines

- 15,000,000+ cells
- Data Dictionary
 - Column descriptions
 - Number/text format
 - Column type in R
 - Missing values
 - Related columns
 - Questions
- Data Visualizations

Original Dataset

Data Gathering and Preparation

- 1. Data Cleaning
- 2. Data Selection
- 3. Dataset Used For Modeling

Data Cleaning

- After examination,
 - Removed errors and outliers: negative talk time and age below 3
 - Transformed some columns to improve interpretability
 - STATE: change to CRegion to reduce the number of levels
 - RecentGradYr, LastGradYr: change to YearSinceRecentGrad to have numeric values
 - Deleted 32 irrelevant and duplicate columns such as PHONE_RESEARCH, PAYMENT_TYPE
- Changed missing values to 0, except of AGE
 - Normally missing values of AGE are replaced to mean/median of AGE, but to avoid misleading impact of 53,161 NAs of AGE on models, separated dataset into:
 - 1) Dataset without NAs of AGE
 - 2) Dataset with replaced NAs of AGE to median

- For models to predict whether donate or not,
 - Transformed NumGifts into Donor01 to have binary values
 - Further removed 11 columns like FSTGFTA, FSTGFTD, LSTGFTD
 - Extracted 4 highly correlated columns:
 - AGE YearSinceGrad & YearSinceRecentGrad
 - Ask_Amount_2 Ask_Amount_1 & Ask_Amount_3

- Left 14 columns with 252,725 rows
 - Predictors: SCHOOL, AGE, RECTYPE, GENDER, NumDegrees, SuccCont, AffilCount, client, Ask_Amount_2, InState, TotAttempts, TALK_TIME, and CRegion
 - Target: Donor01

Dataset Used for Modeling

- Had multiple datasets that we could use:
 - Depending on AGE:
 - trainset_rmAGE Dataset without NAs of AGE
 - trainset_medAGE Dataset with replaced NAs of AGE to median of AGE (45)
 - Depending on client, (no Winston-S due to too many incomplete rows):
 - trainset_UD Dataset for UDelaware
 - trainset_UM Dataset for UMissouri
 - Depending on balancing methods that we used*:
 - trainset_under Dataset with undersampling target variable
 - trainset_both Dataset with over and undersampling target variable

*undersampling: reduce the number of majority class in target variable *oversampling: increase the number of minority class in target variable

Modeling

- 1. Hypotheses
- 2. Modeling Techniques
- 3. Results
- 4. Evaluation Criteria

Hyphotheses

- Based on the findings:
 - Chance to donate
 - People living in certain areas or in-state tend to donate more than those living in other areas or out-of-state
 - Older individuals are more likely to donate than younger individuals
 - People with more call attempts tend to donate more than those with less call attempts
 - People with longer talk time have a higher chance of donating
 - Males have a higher chance to donate

Modeling Techniques Explored

- Decision Tree:
 - Used R-packages to help pick optimum parameters for min split, min bucket, max depth and complexity values
- Random Forest: advanced decision tree
 - Number of trees: the larger the better, but the longer to compute, results stops getting significantly better beyond a critical number
 - Number of variables: the lower the greater reduction of variance, but also the greater increase in bias
- Support Vector Machine (SVM):
 - Kernel: Radial Basis (rbfdot)
 - o Options: The parameter has been set from 0-1.
- Used Rattle and R-packages to build three models

Results -Decision Tree

Results -Random Forest


```
Tree 1 Rule 34 Node 2796 Decision 1

1: TALK TIME <= 41.5

2: CRegion IN ("Military", "Pacific", "ESCentral", "WSCentral", "Mountain", "WNCentral", "ENCentral"

3: SCHOOL IN ("Agriculture and Natural Resources", "Applied Science", "Continuing Education", "Educa

4: client IN ("UDelaware")

5: AffilCount <= 0.5

6: NumDegrees > 0.5

7: SuccCont IN ("0")

8: TotAttempts > 2.5

9: Ask_Amount 2 > 67.5

10: TotAttempts <= 7

11: TotAttempts <= 4.5

12: GENDER IN ("M", "U")

13: CRegion IN ("M", "Pacific", "ESCentral", "Mountain", "NewEngland", "Commonwealth", "SAtla
```

Results -SVM

Evaluation Criteria - Overall Dataset

Dataset	rmAGE	medAGE	rmAGE_under	rmAGE_both	
Tree	15, 5, 15, 0.0001	21, 7, 10, 0.0001	21, 7, 10, 0.0001	21, 7, 10, 0.0001	
FPR	0.0816	0.0707	0.1077	0.1071	
FNR	0.1311	0.1639	0.1089	0.1061	
F	0.8695	0.8457	0.8464	0.8462	
Forest	120, 3	120, 3	30, 3	30, 3	
FPR	0.0827	0.0693	0.1190	0.1118	
FNR	0.1239	0.1402	0.0812	0.0882	
F	0.8623	0.8605	0.8575	0.8594	
SVM	2	0.5		2	
FPR	-	0.0984 F	FPR: false positive rate (predicted 0 was really 1)		
FNR	-		FNR: false negative rate (predicted 1 was really 0)		
F	-	0.8444	F score: overall accuracy for binary target		

Evaluation Criteria - Client Specific

Dataset	UDelaware (UD)	UMissouri (UM)	UM_under	UM_both	
Tree	15, 5, 5, 0.0001	15, 5, 15, 0.0001	90, 30, 10, 0.0001	90, 30, 5, 0.0001	
FPR	0.0110	0.5014	0.4866	0.7421	
FNR	0.1556	0.1420	0.8543	0.6128	
F	0.8943	0.5674	0.1279	0.2487	
Forest	60, 3	90, 3	30, 3	30, 3	
FPR	0.0115	0.2879	0.8137	0.8239	
FNR	0.0969	0.1133	0.8401	0.8127	
F	0.9268	0.7045	0.1251	0.1251	
SVM	0.5	0.5	-	4	
FPR	0.0186	0.2199 F	FPR: false positive rate (predicted 0 was really 1)		
FNR	0.2232	0.1447 FN	FNR: false negative rate (predicted 1 was really 0)		
F	0.9628	0.5745	F score: overall accuracy for binary target		

Conclusion

- 1. Final Best Model
- 2. Insights
- 3. Recommendations
- 4. Final Takeaways

Final Best Model

Important Factors

- Age
- Total Attempts
- Talk Time

Insignificant Factors

- Number of degrees
- Client's location
- Gender

Strategic Recommendations

• Target people in the 55-75 age group

Tactical Recommendations

- Delaware clients: set optimal ask amount
- Missouri clients: focus on older people

Final Takeaways

THANK YOU!