## Gradient Domain blending (1D)









Blending derivatives

Slide credit: Alyosha Efros, Derek Hoiem

# Gradient hole-filling (1D)





It is impossible to faithfully preserve the gradients

Slide credit: Alyosha Efros, Derek Hoiem

## Example



**Gradient Visualization** 

Source: Evan Wallace







Specify object region



Slide credit: Alyosha Efros, Derek Hoiem

Source: Evan Wallace

## Poisson Blending Algorithm

A good blend should preserve gradients of source region without changing the background

### Treat pixels as variables to be solved

- Minimize squared difference between gradients of foreground region and gradients of target region
- Keep background pixels constant

Target (background)

$$\mathbf{v} = \arg\min_{i \in S, j \in N_i \cap S} \sum_{i \in S, j \in N_i \cap \neg S} ((v_i - v_j) - (s_i - s_j))^2 + \sum_{i \in S, j \in N_i \cap \neg S} ((v_i - t_j) - (s_i - s_j))^2$$
Output
Source (foreground)

*i* current pixel's index

 $N_i$  Current pixel's neighbors neighbor pixel index

S = S foreground/background mask

v: output pixels

s: source pixels

t: background (target) pixels

Slide credit: Alyosha Efros, Derek Hoiem

Perez et al. 2003

## Examples

### Gradient domain processing

 $\mathbf{v} = \arg\min_{i \in S, j \in N_i \cap S} \sum_{i \in S, j \in N_i \cap \neg S} ((v_i - v_j) - (s_i - s_j))^2 + \sum_{i \in S, j \in N_i \cap \neg S} ((v_i - t_j) - (s_i - s_j))^2$ Output Source (foreground)

#### source image

| <sup>1</sup> 20        | <sup>5</sup> <b>20</b> | <sup>9</sup> <b>20</b>  | <sup>13</sup> <b>20</b> |
|------------------------|------------------------|-------------------------|-------------------------|
| <sup>2</sup> <b>20</b> | <sup>6</sup> 80        | <sup>10</sup> <b>20</b> | <sup>14</sup> <b>20</b> |
| <sup>3</sup> <b>20</b> | <sup>7</sup> 20        | <sup>11</sup> 80        | <sup>15</sup> 20        |
| <sup>4</sup> <b>20</b> | <sup>8</sup> 20        | <sup>12</sup> <b>20</b> | <sup>16</sup> <b>20</b> |

#### background image

| <sup>1</sup> <b>10</b> | <sup>5</sup> <b>10</b> | <sup>9</sup> <b>10</b>  | <sup>13</sup> <b>10</b> |
|------------------------|------------------------|-------------------------|-------------------------|
| <sup>2</sup> <b>10</b> | <sup>6</sup> <b>10</b> | <sup>10</sup> <b>10</b> | <sup>14</sup> <b>10</b> |
| <sup>3</sup> <b>10</b> | <sup>7</sup> <b>10</b> | <sup>11</sup> <b>10</b> | <sup>15</sup> <b>10</b> |
| <sup>4</sup> <b>10</b> | <sup>8</sup> <b>10</b> | <sup>12</sup> <b>10</b> | <sup>16</sup> <b>10</b> |

#### target image

Target (background)

| <sup>1</sup> <b>10</b> | <sup>5</sup> <b>10</b>  | <sup>9</sup> <b>10</b>        | <sup>13</sup> <b>10</b> |
|------------------------|-------------------------|-------------------------------|-------------------------|
| <sup>2</sup> <b>10</b> | $^6$ $\mathbf{v_1}$     | $^{10}$ <b>v</b> <sub>3</sub> | <sup>14</sup> <b>10</b> |
| <sup>3</sup> <b>10</b> | $^{7}$ $\mathbf{v}_{2}$ |                               | <sup>15</sup> <b>10</b> |
| <sup>4</sup> <b>10</b> | <sup>8</sup> <b>10</b>  | <sup>12</sup> <b>10</b>       | <sup>16</sup> <b>10</b> |

e.g., pixel 
$$v_1$$
 left  $(v_1 - 10) - (80 - 20)^2 + ((v_1 - 10) - (80 - 20))^2$ 

right bottom 
$$((v_1 - v_3) - (80 - 20))^2 + ((v_1 - v_2) - (80 - 20))^2$$

# Gradient-domain editing

Creation of image = least squares problem in terms of: 1) pixel intensities; 2) differences of pixel intensities



$$\hat{\mathbf{v}} = \underset{\mathbf{v}}{\operatorname{arg\,min}} \sum_{i} (\mathbf{a}_{i}^{T} \mathbf{v} - b_{i})^{2}$$

$$\hat{\mathbf{v}} = \underset{\mathbf{v}}{\operatorname{arg\,min}} (\mathbf{A} \mathbf{v} - \mathbf{b})^{2}$$

Use sparse linear equation solver in Python and MATLAB

## Examples

### Gradient domain processing

 $\mathbf{v} = \arg\min_{i \in S, j \in N_i \cap S} \sum_{i \in S, j \in N_i \cap \neg S} ((v_i - v_j) - (s_i - s_j))^2 + \sum_{i \in S, j \in N_i \cap \neg S} ((v_i - t_j) - (s_i - s_j))^2$ Output Source (foreground)

### source image

| <sup>1</sup> 20        | <sup>5</sup> <b>20</b> | <sup>9</sup> <b>20</b>  | <sup>13</sup> <b>20</b> |
|------------------------|------------------------|-------------------------|-------------------------|
| <sup>2</sup> <b>20</b> | <sup>6</sup> 80        | <sup>10</sup> <b>20</b> | <sup>14</sup> <b>20</b> |
| <sup>3</sup> <b>20</b> | <sup>7</sup> 20        |                         | <sup>15</sup> 20        |
| <sup>4</sup> <b>20</b> | <sup>8</sup> <b>20</b> | <sup>12</sup> <b>20</b> | <sup>16</sup> <b>20</b> |

### background image

|                        | 0                      |                         | 0                       |
|------------------------|------------------------|-------------------------|-------------------------|
| <sup>1</sup> <b>10</b> | <sup>5</sup> <b>10</b> | <sup>9</sup> <b>10</b>  | <sup>13</sup> <b>10</b> |
| <sup>2</sup> <b>10</b> | <sup>6</sup> <b>10</b> | <sup>10</sup> <b>10</b> | <sup>14</sup> <b>10</b> |
| <sup>3</sup> <b>10</b> | <sup>7</sup> <b>10</b> | '                       | <sup>15</sup> <b>10</b> |
| <sup>4</sup> <b>10</b> | <sup>8</sup> <b>10</b> | <sup>12</sup> <b>10</b> | <sup>16</sup> <b>10</b> |

### target image

Target (background)

| <sup>1</sup> <b>10</b> | <sup>5</sup> <b>10</b>  | <sup>9</sup> <b>10</b>              | <sup>13</sup> <b>10</b> |
|------------------------|-------------------------|-------------------------------------|-------------------------|
| <sup>2</sup> <b>10</b> | $^6$ $\mathbf{v_1}$     | <sup>10</sup> <b>v</b> <sub>3</sub> | <sup>14</sup> <b>10</b> |
| <sup>3</sup> <b>10</b> | $^{7}$ $\mathbf{v}_{2}$ | $\mathbf{v_4}$                      | <sup>15</sup> <b>10</b> |
| <sup>4</sup> <b>10</b> | <sup>8</sup> <b>10</b>  | <sup>12</sup> <b>10</b>             | <sup>16</sup> <b>10</b> |

e.g., pixel 
$$v_1 = ((v_1 - 10) - (80 - 20))^2 + ((v_1 - 10) - (80 - 20))^2$$

Least squares: 
$$((v_1 - v_3) - (80 - 20))^2 + ((v_1 - v_2) - (80 - 20))^2$$

Linear equation:  $4v_1 - 10 - 10 - v_3 - v_2 = (80 - 20) \times 4$ 

# Perez et al., 2003









target source mask





no blending

gradient domain blending

# What's the difference?



gradient domain blending



no blending



## Perez et al, 2003











Local color changes

### Limitations:

- Can't do contrast reversal (gray on black -> gray on white)
- Colored backgrounds "bleed through"
- Images need to be very well aligned

## Drawing in Gradient Domain

#### **Real-Time Gradient-Domain Painting**

James McCann\* Carnegie Mellon University Nancy S. Pollard<sup>†</sup> Carnegie Mellon University



James McCann & Nancy Pollard **Real-Time Gradient-Domain Painting**,

SIGGRAPH 2009

(CMU paper)

## Drawing in Gradient Domain



James McCann & Nancy Pollard

Real-Time Gradient-Domain Painting,

SIGGRAPH 2009