AIA 1.2, ISM 1.1

30 ianuarie 2018, ora 11, sala ACB

Fără parțial

- 1. Inegalitatea lui Cauchy. Inegalitatea lui Minkowski (enunțuri, o demonstrație).
- 2. Fie $f: \mathbf{R}^3 \to \mathbf{R}^3$ o aplicație liniară care are matricea

$$A = \left(\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 2 & 2 & -2 \end{array}\right)$$

relativ la baza canonică $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}.$

- a) Determinați câte o bază și dimensiunea pentru Ker f și Im f;
- b) Determinați valorile proprii și vectorii proprii pentru f;
- c) Stabiliți dacă f este un endomorfism diagonalizabil.

Cu parțial

- 1. Distanțe în spațiu (formule, o demonstrație).
- 2. Fie punctul A(1,-1,0) și dreapta d de ecuații scalare parametrice:

$$\begin{cases} x = 1 + t \\ y = 2t \\ z = 1 - t \end{cases}, t \in \mathbf{R}.$$

- a) Scrieți ecuația planului π_1 care trece prin A și este perpendicular pe dreapta d;
 - b) Scrieți ecuația planului π_2 care conține punctul A și dreapta d;
- c) Scrieți ecuațiile planelor tangente la elipsoidul $E: x^2+y^2+2z^2-1=0$ și care sunt perpendiculare pe dreapta d.

Subiecte comune

- 3. Fie punctele A(1,-1,1), B(1,0,1), C(-1,2,1), D(0,1,2).
 - a) Verificați dacăA, B, C sunt puncte necoliniare;
 - b) Verificați dacă A, B, C, D sunt puncte necoplanare;
 - c) Calculați d(A, BC) și d(D, (ABC)).
- 4. Fie cuadrica $\Gamma: x^2 + y^2 + z^2 5x 4y 4z = 0$ și planul $\pi: x + 2y 2z = 0$.
 - a) Arătați că Γ este o sferă și determinați coordonatele centrului și raza;
- b) Arătați că planul π intersectează sfera Γ după un cerc γ și determinați coordonatele centrului acestui cerc și raza lui;
 - c) Scrieți ecuația planului tangent și ecuațiile normalei la Γ în punctul O.