

Structures élastiques - LU3ME006 Problème 3

Exo 1 (\sim 6 points)

On considère une poutre droite [OB] dirigée suivant l'axe $O\overrightarrow{x}$, de longueur 3ℓ . La poutre repose en A $(x=2\ell)$ sur un appui simple mobile et en B $(x=3\ell)$ sur un appui simple fixe. On applique un couple ponctuel autour de \overrightarrow{z} d'intensité $\Gamma>0$ en son extrémité O (x=0). Sa section carrée de côté a suivant le plan Oyz est constante le long de la poutre.

On désigne par I le moment d'inertie de la section de la poutre par rapport à son axe principal d'inertie dirigé suivant l'axe \vec{z} . Le matériau constitutif est homogène, isotrope, linéairement élastique, de module d'élasticité E. Enfin, on fait l'hypothèse d'Euler-Bernoulli.

1) En reprenant les résultats établis au problème 2 (voir la correction)

$$\begin{array}{lcl} M_z^{\scriptsize\textcircled{\scriptsize 1}}(x) & = & -\Gamma & \qquad (0 \leq x \leq 2\ell) \\ M_z^{\scriptsize\textcircled{\scriptsize 2}}(x) & = & \frac{\Gamma}{\ell}(x-3\ell) & \qquad (2\ell \leq x \leq 3\ell) \end{array}$$

et en s'appuyant sur les lois de comportement et les relations cinématiques, déterminer en fonction de Γ le long de la poutre [OB]:

- la rotation de la section droite $\omega_z(x)$ $(\omega_z^{\textcircled{1}}(x) \text{ pour } 0 \le x \le 2\ell \text{ et } \omega_z^{\textcircled{2}}(x) \text{ pour } 2\ell \le x \le 3\ell).$
- le déplacement vertical $u_y(x)$ $(u_y^{\textcircled{1}}(x) \text{ pour } 0 \le x \le 2\ell \text{ et } u_y^{\textcircled{2}}(x) \text{ pour } 2\ell \le x \le 3\ell).$
- 2) En déduire que :

$$\mathbf{a)} \ \omega_O = \omega_z^{\textcircled{1}}(0) = \frac{7}{3} \frac{\Gamma \ell}{EI}$$

b)
$$v_O = u_y^{\text{1}}(0) = -\frac{8}{3} \frac{\Gamma \ell^2}{EI}$$

Année Universitaire 2019-2020

Exo 2 (\sim 14 points)

On considère une poutre droite [OA] dirigée suivant l'axe $O\vec{x}$, de longueur 3ℓ . La poutre repose en O(x=0) sur un appui simple fixe et en $B(x=2\ell)$ sur un appui simple mobile. On applique une densité linéique de force $-p\vec{y}$ sur le segment [OB] ainsi qu'une force ponctuelle $-F\vec{y}$ au point $A(x=3\ell)$. On suppose que les axes $(G\vec{y})$ et $(G\vec{z})$ sont axes principaux d'inertie.

On désigne par I le moment d'inertie de la section de la poutre par rapport à son axe principal d'inertie dirigé suivant l'axe \vec{z} . Le matériau constitutif est homogène, isotrope, linéairement élastique, de module d'élasticité E. Enfin, on fait l'**hypothèse d'Euler-Bernoulli**.

- 1) En appliquant le principe fondamental de la statique, déterminer les réactions aux appuis en O et B lorsque la structure est en équilibre.
- 2) Etablir les expressions des composantes du torseur de cohésion (effort normal N(x), effort tranchant $T_y(x)$ et moment fléchissant $M_z(x)$) dans la poutre.
- 3) En s'appuyant sur les lois de comportement et les relations cinématiques, déterminer le long de la poutre [OA]:
 - la rotation de la section droite $\omega_z(x)$ $(\omega_z^{(1)}(x) \text{ pour } 0 \le x \le 2\ell \text{ et } \omega_z^{(2)}(x) \text{ pour } 2\ell \le x \le 3\ell).$
 - le déplacement vertical $u_y(x)$ $(u_y^{\textcircled{1}}(x) \text{ pour } 0 \le x \le 2\ell \text{ et } u_y^{\textcircled{2}}(x) \text{ pour } 2\ell \le x \le 3\ell).$
- 4) En déduire le déplacement vertical en A $(v_A = u_y(3\ell))$ et la rotation de la section droite en B $(\omega_B = \omega_z(2\ell))$.

Année Universitaire 2019-2020 2/2