Chapter 1

A Simplified LME Framework for Method Comparison

1.1 Model Terms for Roy's Techniques

 \boldsymbol{b}_i is a m-dimensional vector comprised of the random effects.

$$\boldsymbol{b}_i = \begin{pmatrix} b_{1i} \\ b_{21} \end{pmatrix} \tag{1.1}$$

V represents the correlation matrix of the replicated measurements on a given method. Σ is the within-subject VC matrix.

 ${\pmb V}$ and ${\pmb \Sigma}$ are positive definite matrices. The dimensions of ${\pmb V}$ and ${\pmb \Sigma}$ are $3\times 3(=p\times p)$ and $2\times 2(=k\times k)$.

It is assumed that V is the same for both methods and Σ is the same for all replications. $V \otimes \Sigma$ creates a $6 \times 6 (= kp \times kp)$ matrix. \mathbf{R}_i is a sub-matrix of this.

1.2 Model terms

It is important to note the following characteristics of this model. Let the number of replicate measurements on each item i for both methods be n_i , hence $2 \times n_i$ responses. However, it is assumed that

there may be a different number of replicates made for different items. Let the maximum number of replicates be p. An item will have up to 2p measurements, i.e. $\max(n_i) = 2p$.

Later on X_i will be reduced to a 2×1 matrix, to allow estimation of terms. This is due to a shortage of rank. The fixed effects vector can be modified accordingly. Z_i is the $2n_i \times 2$ model matrix for the random effects for measurement methods on item i. b_i is the 2×1 vector of random-effect coefficients on item i, one for each method. ϵ is the $2n_i \times 1$ vector of residuals for measurements on item i. G is the 2×2 covariance matrix for the random effects. R_i is the $2n_i \times 2n_i$ covariance matrix for the residuals on item i. The expected value is given as $E(y_i) = X_i\beta$. (?) The variance of the response vector is given by $Var(y_i) = Z_iGZ'_i + R_i$ (?).