Quantum Attacks for Symmetric Crypto Systems

Anand Kasyup - EP22BTECH11012 Anirudh Saikrishnan - CS22BTECH11001 Yaswanth Balaji - EP22BTECH11007

Cryptography

Symmetric Key Cryptography

- Same secret key is used to both encrypt and decrypt messages.
- We know the complete algorithm
- We have access to a black box with the key and the algorithm embedded

Page 2 of 26

S-DES

Figure 1 The encryption process of S-DES.

- 8-bit block cipher with a 10-bit key
- Encryption:
 - \circ Ciphertext = IP⁻¹ \circ f(K₂) \circ SW \circ f(K₁) \circ IP(Plaintext)
- Decryption:
 - Plaintext = $IP^{-1} \circ f(K_1) \circ SW \circ f(K_2) \circ IP(Ciphertext)$
- The most efficient classical algorithm to break S-DES
 - Brute-force attack [1]

[1] Biryukov, A., & Shamir, A. (2002). Cryptanalysis of S-DES. Cryptology ePrint Archive

Overview

The Algorithms we are going to discuss:

- **1** VQAA for S-DES
- ② Grovers for S-DES
- Improved VQAA for S-DES (brief)

Current Quantum Era

- NISQ hardware [2]
 - Only tens of qubits
 - Low gate fidelities and shallow-depth circuits
- Hybrid quantum-classical algorithms were developed to work within these NISQ limitations
- Such methods excel at combinatorial optimization and finding Hamiltonian ground states, with applications in quantum chemistry, machine learning, and finance.
 - VQE [3] quantum chemistry
 - QAOA [4] optimization
- [2] The complexity of NISQ. Nature Communications, 2023. Nature Communications
- [3] The Variational Quantum Eigensolver: a review of methods and best practices. arXiv preprint arXiv:2108.03993, 2021. arXiv
- [4] The Quantum Approximate Optimization Algorithm and the Sherrington–Kirkpatrick Model. Quantum, 2022. Quantum Journal

VQAA Circuit

When we measure, we get one of the ciphertexts as output which corresponds to one of the keys. Our goal is to optimize the PQC to get the known cipher text when we measure

Ansatz

- 1-layer of ansatz requires n parameters
- circuit depths is n+2
- Gate Z represents a Pauli-Z gate

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

• Ry gate is a rotation gate with a parameter

$$RY = \begin{bmatrix} \cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{bmatrix}$$

Cost Function

$$H = w_{01}Z_{0}Z_{1} + w_{06}Z_{0}Z_{6} + w_{07}Z_{0}Z_{7} + w_{13}Z_{1}Z_{3} + w_{17}Z_{1}Z_{7}$$

$$+ w_{24}Z_{2}Z_{4} + w_{25}Z_{2}Z_{5} + w_{27}Z_{2}Z_{7} + w_{34}Z_{3}Z_{4} + w_{36}Z_{3}Z_{6}$$

$$+ w_{45}Z_{4}Z_{5} + w_{56}Z_{5}Z_{6} + \sum_{i=0}^{7} t_{i}Z_{i}.$$

$$t_i = \begin{cases} 0.5 & \text{if } V(i) = 1, \\ -0.5 & \text{if } V(i) = 0. \end{cases} \qquad w_{ij} = \begin{cases} 1 & \text{if } V(i) \neq V(j), \\ -1 & \text{if } V(i) = V(j). \end{cases}$$

3-regular graph

[5] A Variational Quantum Attack for AES-like Symmetric Cryptography. ZeGuo Wang, ShiJie Wei, Gui-Lu Long & Lajos Hanzo.

VQAA Circuit

fig: VQAA Circuit

VQAA Runtime & Results

- The 30-qubit VQAA circuit was executed on IBM Sherbrooke, a 127-qubit superconducting backend.
- Due to hardware constraints, the circuit could only be run once (1 shot).
- There was too much delay in between shots causing the backend to disconnect.
- The Hamiltonian landscape observed was highly noisy and rugged, making optimization difficult.
- Overall, the results obtained were not satisfactory, and the optimization did not converge to a meaningful solution.

Issues Faced

- High Qubit Count Limits Simulation
- The choice of Ansatz & Initial parameter selection
- Extending to other algorithms is not so easy and you need to create a quantum circuit for the algorithm

Solution?

Improved VQAA

Do we need quantum?

Yep

Do we need quantum?

- The most efficient quantum simulator Tensor Network method, was not able to run this algorithm efficiently. Bond order was very high.
- So quantum hardware is required. Can not turn this into a quantum-inspired classical algorithm

[6] Quantum Fourier Transform Has Small Entanglement. PRX Quantum, 2023.

Input: $f: \Sigma^n \to \Sigma$

Output: a string $x \in \Sigma^n$ satisfying f(x) = 1, or "no solution" if no such

strings exist

$$|x\rangle$$

$$|x\rangle$$

$$|-\rangle$$

$$|-\rangle$$

$$|z_f|$$

$$|z_f|$$

$$G = H^{\otimes n} Z_{\operatorname{OR}} H^{\otimes n} Z_f$$

One iteration of the grovers operator

[7] Grover's Algorithm. IBM Quantum Learning, Fundamentals of Quantum Algorithms course module.

$$egin{aligned} A_0 &= \left\{x \in \Sigma^n: f(x) = 0
ight\} \ A_1 &= \left\{x \in \Sigma^n: f(x) = 1
ight\} \end{aligned} \qquad egin{aligned} |A_0
angle &= rac{1}{\sqrt{|A_0|}} \sum_{x \in A_0} |x
angle \ |A_1
angle &= rac{1}{\sqrt{|A_1|}} \sum_{x \in A_1} |x
angle \end{aligned}$$

$$\ket{A_0} = rac{1}{\sqrt{|A_0|}} \sum_{x \in A_0} \ket{x} \ \ket{A_1} = rac{1}{\sqrt{|A_0|}} \sum_{x \in A_0} \ket{x}$$

$$heta=\sin^{-1}\!\left(\sqrt{rac{|A_1|}{N}}
ight)$$

$$Z_f |A_0
angle = |A_0
angle
onumber \ Z_f |A_1
angle = -|A_1
angle
onumber \ Z_f |$$

$$|u
angle = \sqrt{rac{|A_0|}{N}} |A_0
angle + \sqrt{rac{|A_1|}{N}} |A_1
angle.$$

$$H^{\otimes n}Z_{\operatorname{OR}}H^{\otimes n}=2|u
angle\langle u|-\mathbb{I}.$$

[7] Grover's Algorithm. IBM Quantum Learning, Fundamentals of Quantum Algorithms course module.

$$G|u
angle = \cos(3 heta)|A_0
angle + \sin(3 heta)|A_1
angle$$

$$|G^2|u
angle = \cos(5 heta)|A_0
angle + \sin(5 heta)|A_1
angle$$

$$|G^3|u
angle = \cos(7 heta)|A_0
angle + \sin(7 heta)|A_1
angle$$

$$heta=\sin^{-1}\!\left(\sqrt{rac{|A_1|}{N}}
ight)$$

$$G^t|u
angle = \cosigl((2t+1) hetaigr)|A_0
angle + \sinigl((2t+1) hetaigr)|A_1
angle.$$

$$tpprox rac{\pi}{4 heta}-rac{1}{2}.$$

[7] Grover's Algorithm. IBM Quantum Learning, Fundamentals of Quantum Algorithms course module.

[8] Denisenko, D. V. & Nikitenkova, M. V. "Application of Grover's Quantum Algorithm for SDES Key Searching." Journal of Experimental and Theoretical Physics 128(1)

Results

Results

Interpretation

- The circuit depth is very high => Very prone to errors
- The runtime is faster than variational algorithms plus the results are more promising. Given that we have efficient hardware, this method might be very good.
- Extending to more complex algorithms is not quite that straightforward. A quantum circuit is required and for larger keys, this might not be feasible after a point

Improved VQAA

Improved VQAA

Ansatz Used:

$$U(\theta, \varphi, \lambda) = \begin{pmatrix} \cos \frac{\theta}{2} & -e^{i\lambda} \sin \frac{\theta}{2} \\ e^{i\varphi} \sin \frac{\theta}{2} & e^{i(\varphi+\lambda)} \cos \frac{\theta}{2} \end{pmatrix}$$

[9] Aizpurua, B., Bermejo, P., Etxezarreta Martínez, J. & Orús, R. "Hacking Cryptographic Protocols with Advanced Variational Quantum Attacks."

Results

Fig: Improved VQAA cost function convergence for best params

- For a plaintext (10010111) and ciphertext (00111000), the correct key was 1010000010, which was retrieved by the Improved VQAA, was within the top 4 outputs.
- Among 1024 bitstring samples, the correct key appeared
 231 times, within the top 4 outputs, accounting for 96.8% of counts.
- Using multi-start warm-up with early stopping (// ∇E // < 10-6), optimization avoided barren plateaus and converged reliably.

Results

References

- Biryukov, A., & Shamir, A. (2002). Cryptanalysis of S-DES. Cryptology ePrint Archive
- The complexity of NISQ. Nature Communications, 2023. Nature Communications
- The Variational Quantum Eigensolver: a review of methods and best practices. arXiv preprint arXiv:2108.03993, 2021. arXiv
- The Quantum Approximate Optimization Algorithm and the Sherrington–Kirkpatrick Model. Quantum, 2022. Quantum Journal
- A Variational Quantum Attack for AES-like Symmetric Cryptography. ZeGuo Wang, ShiJie Wei, Gui-Lu Long & Lajos Hanzo.
- Quantum Fourier Transform Has Small Entanglement. PRX Quantum, 2023.
- Grover's Algorithm. IBM Quantum Learning, Fundamentals of Quantum Algorithms course module.
- Denisenko, D. V. & Nikitenkova, M. V. "Application of Grover's Quantum Algorithm for SDES Key Searching." Journal of Experimental and Theoretical Physics 128(1)
- Aizpurua, B., Bermejo, P., Etxezarreta Martínez, J. & Orús, R. "Hacking Cryptographic Protocols with Advanced Variational Quantum Attacks."

THANK YOU

