

HOMOGÉNÉISATION NUMÉRIQUE DE PROBLÈMES À INTERFACE FRACTALE

Armand WAYOFF Promotion: 2025

Stage effectué du 13 mai au 9 août 2024 à l'Unité de Mathématiques Appliquées de l'ENSTA Paris

Soutenance de PRe, 30 août 2024

Plan

1 Présentation du problème

2 Difficultés de la méthode EF classiques

3 La méthode LOD

Projecteurs

5 Expériences numériques

Problème type, Difficultés et Objectif

Présentation du problème

Trouver
$$u \colon \mathcal{H} \to \mathbb{R}$$
 tel que
$$\begin{cases} -\operatorname{div}(A \nabla u) = f & \operatorname{dans} \Omega \setminus \Gamma \\ \operatorname{conditions} \operatorname{de} \operatorname{saut} & \operatorname{sur} \Gamma \\ u = 0 & \operatorname{sur} \partial \Omega \end{cases}$$
, où
$$\begin{matrix} \Omega \subset \mathbb{R}^d, \\ \operatorname{l'espace} \mathcal{H} \operatorname{est} \operatorname{\grave{a}} \operatorname{\mathsf{d\acute{e}finir}}, \\ A \in \mathcal{S}^d(\mathbb{R}), \\ \operatorname{le} \operatorname{\mathsf{r\acute{e}seau}} \operatorname{\mathsf{d'interfaces}} \Gamma \operatorname{\mathsf{est}} \operatorname{\mathsf{fractal}} \end{matrix}$$

Problème type, Difficultés et Objectif

Trouver
$$u \colon \mathcal{H} \to \mathbb{R}$$
 tel que
$$\begin{cases} -\operatorname{div}(A \nabla u) = f & \operatorname{dans} \Omega \setminus \Gamma \\ \operatorname{conditions} \operatorname{de} \operatorname{saut} & \operatorname{sur} \Gamma \\ u = 0 & \operatorname{sur} \partial \Omega \end{cases}$$
, où
$$\begin{matrix} \Omega \subset \mathbb{R}^d, \\ \operatorname{l'espace} \mathcal{H} \operatorname{est} \grave{\operatorname{a}} \operatorname{d\'efinir}, \\ A \in \mathcal{S}^d(\mathbb{R}), \\ \operatorname{le} \operatorname{r\'eseau} \operatorname{d'interfaces} \Gamma \operatorname{est} \operatorname{fractal} \end{matrix}$$

Motivation

Présentation du problème

Modélisation de l'accumulation et de la libération de contraintes mécaniques dans les réseaux de failles géologiques.

La méthode LOD

Problème type, Difficultés et Objectif

Trouver $u: \mathcal{H} \to \mathbb{R}$ tel que

$$\begin{cases} -\operatorname{div}(A\nabla u) = f & \operatorname{dans} \Omega \setminus \Gamma \\ \operatorname{conditions} \operatorname{de} \operatorname{saut} & \operatorname{sur} \Gamma \\ u = 0 & \operatorname{sur} \partial \Omega \end{cases} , \quad \operatorname{où} \quad \begin{cases} \mathcal{L} \subset \mathbb{R} \\ \operatorname{l'espace} \mathcal{H} \text{ est à définir,} \\ A \in \mathcal{S}^d(\mathbb{R}), \\ \operatorname{le réseau d'interfaces} \Gamma \end{cases}$$

```
\Omega \subset \mathbb{R}^d.
le réseau d'interfaces 

☐ est fractal
```

Difficultés

Présentation du problème

La géométrie fractale de Γ entraîne

- des échelles spatiales non séparées ;
- une géométrie non périodique;
- un espace des solutions \mathcal{H} qui dépend de la géométrie fractale;

Les méthodes d'homogénéisation classiques ne sont pas adaptées

Problème type, Difficultés et Objectif

```
Trouver u \colon \mathcal{H} \to \mathbb{R} tel que  \begin{cases} -\operatorname{div}(A \nabla u) = f & \operatorname{dans} \Omega \setminus \Gamma \\ \operatorname{conditions} \operatorname{de} \operatorname{saut} & \operatorname{sur} \Gamma \\ u = 0 & \operatorname{sur} \partial \Omega \end{cases} , où  \begin{cases} \Omega \subset \mathbb{R}^d, \\ \operatorname{l'espace} \mathcal{H} \operatorname{est} \operatorname{\grave{a}} \operatorname{d\acute{e}finir}, \\ A \in \mathcal{S}^d(\mathbb{R}), \\ \operatorname{le} \operatorname{r\acute{e}seau} \operatorname{d'interfaces} \Gamma \operatorname{est} \operatorname{fractal} \end{cases}
```

Objectif

Présentation du problème

Développer une méthode d'approximation particulière, adaptée à la géométrie de \(\Gamma \)

Problème type, Difficultés et Objectif

Trouver u:
$$\mathcal{H} \to \mathbb{R}$$
 tel que

$$\begin{cases} -\operatorname{div}(A\nabla u) = f & \operatorname{dans} \Omega \setminus \Gamma \\ \operatorname{conditions} & \operatorname{de} \operatorname{saut} & \operatorname{sur} \Gamma \\ u = 0 & \operatorname{sur} \partial \Omega \end{cases} , \quad \text{où} \quad \begin{cases} \Omega \subset \mathbb{R}^n, \\ \operatorname{l'espace} \mathcal{H} & \operatorname{est} \grave{\mathsf{a}} & \operatorname{d\'efinir}, \\ A \in \mathcal{S}^d(\mathbb{R}), \\ \operatorname{locations} & \operatorname{l'espace} \mathcal{H} & \operatorname{d'interfaces} \Gamma \end{cases}$$

$$\Omega \subset \mathbb{R}^d$$
,
l'espace \mathcal{H} est à définir,
 $A \in \mathcal{S}^d(\mathbb{R})$,
le réseau d'interfaces Γ est fractal

Objectif

Développer une méthode d'approximation LOD, adaptée à la géométrie de \(\Gamma \)

Construction d'un opérateur d'interpolation $\Pi: \mathcal{H} \to \mathcal{S}$ tel que

$$\|v - \Pi v\|_{L^2(\Omega)} \leqslant c h \|v\|_{\mathcal{H}}$$
 et $\|\Pi v\|_{L^2(\Omega)} \leqslant c \|v\|_{\mathcal{H}}$ $\forall v \in \mathcal{H}$.

pour l'espace S des éléments finis \mathbb{P}_1 sur un maillage adapté au réseau Γ .

Définitions

Soit $\Omega \subset \mathbb{R}^d$, d=1,2,3 un domaine borné à frontière lipschitzienne peuplé d'interfaces Γ_j , $j \in \mathbb{N}$ deux à deux disjointes, affine par morceaux et de dimension d-1.

Réseau d'interfaces d'ordre
$$k$$
: $\Gamma^{(k)} = \bigcup_{j=1}^k \Gamma_j \xrightarrow[k \to \infty]{} \Gamma = \bigcup_{j=1}^\infty \Gamma_j$ (objet fractal).

Définitions

Présentation du problème

Soit $\Omega \subset \mathbb{R}^d$, d=1,2,3 un domaine borné à frontière lipschitzienne peuplé d'interfaces Γ_i , $i \in \mathbb{N}$ deux à deux disjointes, affine par morceaux et de dimension d-1.

Réseau d'interfaces d'ordre
$$k$$
: $\Gamma^{(k)} = \bigcup_{j=1}^k \Gamma_j \xrightarrow[k \to \infty]{} \Gamma = \bigcup_{j=1}^\infty \Gamma_j$ (objet fractal).

k désigne une échelle spatiale k grand \iff petite échelle

Exemple en 2D : $\Gamma^{(1)} = \Gamma_1$

Présentation du problème **Définitions**

Soit $\Omega \subset \mathbb{R}^d$, d=1,2,3 un domaine borné à frontière lipschitzienne peuplé d'interfaces Γ_i , $i \in \mathbb{N}$ deux à deux disjointes, affine par morceaux et de dimension d-1.

Réseau d'interfaces d'ordre
$$k$$
: $\Gamma^{(k)} = \bigcup_{j=1}^k \Gamma_j \xrightarrow[k \to \infty]{} \Gamma = \bigcup_{j=1}^\infty \Gamma_j$ (objet fractal).

k désigne une échelle spatiale k grand \iff petite échelle

Exemple en 2D : $\Gamma^{(2)}$ et Γ_1 , Γ_2

Définitions

Présentation du problème

Soit $\Omega \subset \mathbb{R}^d$, d=1,2,3 un domaine borné à frontière lipschitzienne peuplé d'interfaces Γ_i , $i \in \mathbb{N}$ deux à deux disjointes, affine par morceaux et de dimension d-1.

Réseau d'interfaces d'ordre
$$k$$
: $\Gamma^{(k)} = \bigcup_{j=1}^k \Gamma_j \xrightarrow[k \to \infty]{} \Gamma = \bigcup_{j=1}^\infty \Gamma_j$ (objet fractal).

k désigne une échelle spatiale k grand \iff petite échelle

Exemple en 2D : $\Gamma^{(3)}$ et Γ_1 , Γ_2 , Γ_3

Définitions

Présentation du problème

Soit $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3 un domaine borné à frontière lipschitzienne peuplé d'interfaces Γ_j , $j \in \mathbb{N}$ deux à deux disjointes, affine par morceaux et de dimension d - 1.

Réseau d'interfaces d'ordre
$$k$$
: $\Gamma^{(k)} = \bigcup_{j=1}^k \Gamma_j \xrightarrow[k \to \infty]{} \Gamma = \bigcup_{j=1}^\infty \Gamma_j$ (objet fractal).

Partitionnement d'ordre
$$k$$
, $\Omega^{(k)}$: $\Omega \setminus \Gamma^{(k)} = \bigcup_{G \in \Omega^{(k)}} G$.

Nombre fini de cellules $G \in \Omega^{(k)}$, deux à deux disjointes, ouvertes, simplemement connexes, sans fissures et étoilées :

Présentation du problème

Soit $\Omega \subset \mathbb{R}^d$, d=1,2,3 un domaine borné à frontière lipschitzienne peuplé d'interfaces Γ_i , $i \in \mathbb{N}$ deux à deux disjointes, affine par morceaux et de dimension d-1.

Réseau d'interfaces d'ordre
$$k$$
: $\Gamma^{(k)} = \bigcup_{j=1}^k \Gamma_j \xrightarrow[k \to \infty]{} \Gamma = \bigcup_{j=1}^\infty \Gamma_j$ (objet fractal).

Partitionnement d'ordre
$$k$$
, $\Omega^{(k)}$: $\Omega \setminus \Gamma^{(k)} = \bigcup_{G \in \Omega^{(k)}} G$.

Nombre fini de cellules $G \in \Omega^{(k)}$, deux à deux disjointes, ouvertes, simplemement connexes, sans fissures et étoilées :

$$G = \left\{ p_G + rs \mid s \in \mathbb{S}^{d-1}, 0 \leqslant r \leqslant \rho_G(s) \right\} \qquad R_G = \max_{s \in \mathbb{S}^{d-1}} \rho_G(s), \quad r_G = \min_{s \in \mathbb{S}^{d-1}} \rho_G(s).$$

Les partitions $\Omega^{(k)}$ pour $k \in \mathbb{N}$ sont de forme régulière dans le sens où

$$\exists \gamma \geqslant 1 \quad \forall k \in \mathbb{N} \quad \frac{R_G}{r_G} \leqslant \gamma \quad \forall G \in \Omega^{(k)}.$$

Espaces fonctionnels

Présentation du problème

$$\underline{\mathcal{C}}_{k,0}^1(\Omega) = \Big\{ v \colon \overline{\Omega} \setminus \underline{\Gamma}^{(k)} \to \mathbb{R} \; \Big| \; v_{|G} \in \underline{\mathcal{C}}^1\big(\,\overline{G}\,\big) \quad \forall G \in \underline{\Omega}^{(k)} \; \text{et} \; v_{|\partial\Omega} \equiv 0 \Big\}.$$

Exemple d'une fonction de $v \in \mathcal{C}^1_{1,0}(\Omega)$ en 2D

Espaces fonctionnels

Présentation du problème

$$\underline{\mathcal{C}}^1_{k,0}(\Omega) = \Big\{ v \colon \overline{\Omega} \setminus \Gamma^{(k)} \to \mathbb{R} \; \Big| \; v_{|G} \in \underline{\mathcal{C}}^1\big(\,\overline{G}\,\big) \quad \forall G \in \underline{\Omega}^{(k)} \text{ et } v_{|\partial\Omega} \equiv 0 \Big\}.$$

Définition. Produit scalaire et norme sur $C^1_{k,0}(\Omega)$

$$\langle v, w \rangle_k \stackrel{\text{def}}{=} \underbrace{\int_{\Omega \backslash \Gamma^{(k)}} \nabla v \cdot \nabla w \, \mathrm{d}x}_{\text{semi-norme } H^1 \text{ brisée}} + \sum_{j=1}^k (1+\mathrm{c})^j C_j \underbrace{\int_{\Gamma_j} \llbracket v \rrbracket \llbracket w \rrbracket \, \mathrm{d}\Gamma_j}_{\text{norme } L^2 \text{ pondérée des sauts}}, \quad v, w \in \mathcal{C}^1_{k,0}(\Omega),$$

avec la norme associée $||v||_k = \langle v, v \rangle_k^{1/2}$.

- $C_j > 0$ est une constante géométrique correspondant à la *vitesse de fracturation*;
- c > 0 est une constante de matériau;
- $(1+c)^j$ modélise la *résistance exponentielle* aux sauts à travers Γ_j lorsque j augmente.

Espaces fonctionnels

Présentation du problème

$$\underline{\mathcal{C}}^1_{k,0}(\Omega) = \Big\{ v \colon \overline{\Omega} \setminus \Gamma^{(k)} \to \mathbb{R} \ \Big| \ v_{|G} \in \underline{\mathcal{C}}^1\big(\,\overline{G}\,\big) \quad \forall G \in \underline{\Omega}^{(k)} \text{ et } v_{|\partial\Omega} \equiv 0 \Big\}.$$

Définition. Produit scalaire et norme sur $C_{k,0}^1(\Omega)$

$$\langle v, w \rangle_k \stackrel{\text{def}}{=} \int_{\Omega \setminus \Gamma^{(k)}} \nabla v \cdot \nabla w \, \mathrm{d}x + \sum_{j=1}^k (1+\mathrm{c})^j C_j \int_{\Gamma_j} \llbracket v \rrbracket \llbracket w \rrbracket \, \mathrm{d}\Gamma_j, \quad v, w \in \mathcal{C}^1_{k,0}(\Omega),$$

avec la norme associée $\|v\|_k = \langle v, v \rangle_k^{1/2}$.

Définition. Espace de HILBERT k-échelle

$$\mathcal{H}_k \stackrel{\text{def}}{=} \overline{\mathcal{C}_{k,0}^1(\Omega)}^{\|\cdot\|_k} \qquad (\mathcal{H}_k, \|\cdot\|_k) \text{ est complet}$$

Présentation du problème

$${\color{blue}\mathcal{C}^1_{k,0}(\Omega) = \Big\{ v \colon \overline{\Omega} \setminus {\color{blue}\Gamma^{(k)}} \to \mathbb{R} \; \Big| \; v_{|G} \in \mathcal{C}^1\big(\,\overline{G}\,\big) \quad \forall G \in {\color{blue}\Omega^{(k)}} \; \text{et} \; v_{|\partial\Omega} \equiv 0 \Big\}.}$$

Définition. Produit scalaire et norme sur $C_{k,0}^1(\Omega)$

$$\langle v, w \rangle_k \stackrel{\mathsf{def}}{=} \int_{\Omega \setminus \Gamma^{(k)}} \nabla v \cdot \nabla w \, \mathrm{d}x + \sum_{j=1}^k (1+\mathrm{c})^j C_j \int_{\Gamma_j} \llbracket v \rrbracket \llbracket w \rrbracket \, \mathrm{d}\Gamma_j, \quad v, w \in \mathcal{C}^1_{k,0}(\Omega),$$

avec la norme associée $||v||_k = \langle v, v \rangle_k^{1/2}$.

Définition. Espace de HILBERT k-échelle

$$\mathcal{H}_k \stackrel{\text{def}}{=} \overline{\mathcal{C}_{k,0}^1(\Omega)}^{\|\cdot\|_k} \qquad (\mathcal{H}_k, \|\cdot\|_k) \text{ est complet}$$

Proposition. Produit scalaire sur l'espace asymptotique fractal ${\cal H}$

$$\langle v, w \rangle = \int_{\Omega \setminus \Gamma} \nabla v \cdot \nabla w \, \mathrm{d}x + \sum_{i=1}^{\infty} (1 + \mathrm{c})^j C_j \int_{\Gamma_i} \llbracket v \rrbracket \llbracket w \rrbracket \, \mathrm{d}\Gamma_j \quad v, w \in \mathcal{H}.$$

Présentation du problème

Trouver
$$\mathbf{u} \in \mathcal{H}$$
 tel que $\mathbf{a}(\mathbf{u}, \mathbf{v}) = (f, \mathbf{v})$ pour tout $\mathbf{v} \in \mathcal{H}$

$$a(v,w) \stackrel{\mathsf{def}}{=} \int_{\Omega \setminus \Gamma} A \nabla v \cdot \nabla w \, \mathrm{d}x + \sum_{j=1}^{\infty} (1+\mathsf{c})^j C_j \int_{\Gamma_j} B[\![v]\!][\![w]\!] \, \mathrm{d}\Gamma_j, \quad \forall v,w \in \mathcal{H}$$

où $A: \Omega \setminus \Gamma \to \mathbb{R}^{d \times d}$ et $B: \Gamma = \bigcup_{j=1}^{\infty} \Gamma_j \to \mathbb{R}$ ont des propriétés bien choisies.

Présentation du problème

Trouver
$$u \in \mathcal{H}$$
 tel que $a(u, v) = (f, v)$ pour tout $v \in \mathcal{H}$

Trouver
$$u_{\mathcal{H}_k} \in \mathcal{H}_k$$
 tel que $a_k(u_{\mathcal{H}_k}, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{H}_k$

Trouver
$$u_{\mathcal{S}_k} \in \mathcal{S}_k$$
 tel que $a_k(u_{\mathcal{S}_k}, v) = (f, v)$ pour tout $v \in \mathcal{S}_k$

$$a_k(v_k, w_k) \stackrel{\mathrm{def}}{=} \int_{\Omega \setminus \Gamma^{(k)}} A \nabla v_k \cdot \nabla w_k \, \mathrm{d}x + \sum_{j=1}^k (1+\mathrm{c})^j C_j \int_{\Gamma_j} B[\![v_k]\!] [\![w_k]\!] \, \mathrm{d}\Gamma_j, \quad \forall v_k, w_k \in \mathcal{H}_k / \mathcal{S}_k$$

où
$$A: \Omega \setminus \Gamma \to \mathbb{R}^{d \times d}$$
 et $B: \Gamma = \bigcup_{j=1}^{\infty} \Gamma_j \to \mathbb{R}$ ont des propriétés bien choisies.

Trouver $\mathbf{u} \in \mathcal{H}$ tel que $\mathbf{a}(\mathbf{u}, \mathbf{v}) = (f, \mathbf{v})$ pour tout $\mathbf{v} \in \mathcal{H}$

Trouver $u_{\mathcal{H}_k} \in \mathcal{H}_k$ tel que $a_k(u_{\mathcal{H}_k}, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{H}_k$

Trouver $u_{S_k} \in S_k$ tel que $a_k(u_{S_k}, v) = (f, v)$ pour tout $v \in S_k$

$$\mathcal{S}_k = \operatorname{Vect} \left\{ \lambda_p^{(k)} \;\middle|\; p \in \mathcal{N}^{(k)}
ight\} \quad ext{avec} \quad \mathcal{N}^{(k)} = \bigcup_{G \in \Omega^{(k)}} \mathcal{N}_G^{(k)}.$$

Trouver
$$\mathbf{u} \in \mathcal{H}$$
 tel que $\mathbf{a}(\mathbf{u}, \mathbf{v}) = (f, \mathbf{v})$ pour tout $\mathbf{v} \in \mathcal{H}$

Trouver
$$u_{\mathcal{H}_k} \in \mathcal{H}_k$$
 tel que $a_k(u_{\mathcal{H}_k}, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{H}_k$

Trouver
$$u_{\mathcal{S}_k} \in \mathcal{S}_k$$
 tel que $a_k(u_{\mathcal{S}_k}, v) = (f, v)$ pour tout $v \in \mathcal{S}_k$

Proposition

Présentation du problème

Les trois problèmes sont bien posés.

Théorème. Convergence de la solution $u_{\mathcal{H}_k}$ vers la solution u

$$\lim_{k\to\infty}\|u-u_{\mathcal{H}_k}\|=0.$$

Théorème. Convergence de la solution u_{S_k} vers la solution u

$$\forall \varepsilon > 0$$
, $\exists k \in \mathbb{N}$, $\|u - u_{S_{\nu}}\| < \varepsilon$ et $\|u_{\mathcal{H}_{\nu}} - u_{S_{\nu}}\| < \varepsilon$.

Plan

1 Présentation du problème

2 Difficultés de la méthode EF classiques

3 La méthode LOD

Projecteurs

5 Expériences numériques

Présentation du problème

En supposant que la solution u du problème est suffisamment régulière, on obtient l'estimation d'erreur a priori classique [CL09, Théo. 2.4] :

$$\exists C$$
 indépendante de h_k et telle que $\|u - u_{S_k}\| \leqslant C h_k \|\nabla^2 u\|_{L^2(\Omega \setminus \Gamma)}$.

 Cette estimation établit une vitesse de convergence d'ordre 1 pour la méthode des éléments finis classique.

Présentation du problème

$$\exists C \text{ indépendante de } h_k \text{ et telle que } \|u - u_{\mathcal{S}_k}\| \leqslant C h_k \|\nabla^2 u\|_{L^2(\Omega \setminus \Gamma)}.$$

- Cette estimation établit une vitesse de convergence d'ordre 1 pour la méthode des éléments finis classique.
- Cependant, l'hypothèse de régularité de la solution n'est pas réaliste pour le problème que nous considérons.

Présentation du problème

$$\exists C \text{ indépendante de } h_k \text{ et telle que } \|u - u_{\mathcal{S}_k}\| \leqslant C h_k \|\nabla^2 u\|_{L^2(\Omega \setminus \Gamma)}.$$

- Cette estimation établit une vitesse de convergence d'ordre 1 pour la méthode des éléments finis classique.
- Cependant, l'hypothèse de régularité de la solution n'est pas réaliste pour le problème que nous considérons.
- L'estimation est inutile car $\nabla^2 u$ pourrait osciller à une petite échelle ε , soit $\|\nabla^2 u\|_{L^2(\Omega)} \approx \varepsilon^{-2}$.

Présentation du problème

$$\exists C$$
 indépendante de h_k et telle que $\|u - u_{\mathcal{S}_k}\| \leqslant C h_k \|\nabla^2 u\|_{L^2(\Omega \setminus \Gamma)}$.

- Cette estimation établit une vitesse de convergence d'ordre 1 pour la méthode des éléments finis classique.
- Cependant, l'hypothèse de régularité de la solution n'est pas réaliste pour le problème que nous considérons.
- L'estimation est inutile car $\nabla^2 u$ pourrait osciller à une petite échelle ε , soit $\|\nabla^2 u\|_{L^2(\Omega)} \approx \varepsilon^{-2}$.
- Donc à moins que $h_k \lesssim \varepsilon$, l'espace d'éléments finis S_k ne permet pas de saisir la comportement de la solution.

Présentation du problème

$$\exists C$$
 indépendante de h_k et telle que $\|u - u_{\mathcal{S}_k}\| \leqslant C h_k \|\nabla^2 u\|_{L^2(\Omega \setminus \Gamma)}$.

- Cette estimation établit une vitesse de convergence d'ordre 1 pour la méthode des éléments finis classique.
- Cependant, l'hypothèse de régularité de la solution n'est pas réaliste pour le problème que nous considérons.
- L'estimation est inutile car $\nabla^2 u$ pourrait osciller à une petite échelle ε , soit $\|\nabla^2 u\|_{L^2(\Omega)} \approx \varepsilon^{-2}$.
- Donc à moins que $h_k \lesssim \varepsilon$, l'espace d'éléments finis S_k ne permet pas de saisir la comportement de la solution.

Présentation du problème

En supposant que la solution u du problème est suffisamment régulière, on obtient l'estimation d'erreur a priori classique [CL09, Théo. 2.4] :

$$\exists C$$
 indépendante de h_k et telle que $\|u - u_{S_k}\| \leqslant C h_k \|\nabla^2 u\|_{L^2(\Omega \setminus \Gamma)}$.

- Cette estimation établit une vitesse de convergence d'ordre 1 pour la méthode des éléments finis classique.
- Cependant, l'hypothèse de régularité de la solution n'est pas réaliste pour le problème que nous considérons.
- L'estimation est inutile car $\nabla^2 u$ pourrait osciller à une petite échelle ε , soit $\|\nabla^2 u\|_{L^2(\Omega)} \approx \varepsilon^{-2}$.
- Donc à moins que $h_k \lesssim \varepsilon$, l'espace d'éléments finis S_k ne permet pas de saisir la comportement de la solution.

Si l'on souhaite garder des maillages relativement grossiers, il faut développer une méthode d'approximation particulière.

Plan

1 Présentation du problème

2 Difficultés de la méthode EF classiques

3 La méthode LOD

Projecteurs

5 Expériences numériques

Trouver $u_k \in \mathcal{S}_k$ tel que $\mathsf{a}(u_k, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{S}_k \subset \mathcal{H}$

Trouver
$$u_k \in \mathcal{S}_k$$
 tel que $\mathsf{a}(u_k, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{S}_k \subset \mathcal{H}$

$$a(u_k - u, v_k) = 0 \quad \forall v_k \in \mathcal{S}_k.$$

Trouver $u_k \in \mathcal{S}_k$ tel que $\mathsf{a}(u_k, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{S}_k \subset \mathcal{H}$

$$a(u_k-u,v_k)=0 \quad \forall v_k \in \mathcal{S}_k.$$

Première décomposition

Présentation du problème

Soit $\Pi_k : \mathcal{H} \to \mathcal{S}_k$ une projection. Pour tout $u \in \mathcal{H}$, on peut écrire

$$u = \underbrace{\Pi_k u}_{\in \operatorname{Im} \Pi_k = \mathcal{S}_k} + \underbrace{(I - \Pi_k) u}_{\in \operatorname{Ker} \Pi_k \stackrel{\operatorname{def}}{=} \mathcal{V}_k} \qquad u = u_{\mathcal{S}_k} + u_{\mathcal{V}_k}$$

Trouver $u_k \in \mathcal{S}_k$ tel que $\mathsf{a}(u_k, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{S}_k \subset \mathcal{H}$

$$a(u_k-u,v_k)=0 \quad \forall v_k \in \mathcal{S}_k.$$

Première décomposition

Présentation du problème

Soit $\Pi_k : \mathcal{H} \to \mathcal{S}_k$ une projection. Pour tout $u \in \mathcal{H}$, on peut écrire

$$u = \underbrace{\prod_{k} u}_{\in \operatorname{Im} \Pi_{k} = \mathcal{S}_{k}} + \underbrace{(\operatorname{I} - \Pi_{k})u}_{\in \operatorname{Ker} \Pi_{k} \stackrel{\operatorname{def}}{=} \mathcal{V}_{k}} \qquad u = u_{\mathcal{S}_{k}} + u_{\mathcal{V}_{k}}$$

Tentons d'approcher $u_{S_{\nu}}$ et d'estimer l'erreur d'approximation.

Trouver $u_k \in \mathcal{S}_k$ tel que $a(u_k, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{S}_k \subset \mathcal{H}$

$$a(u_k-u,v_k)=0 \quad \forall v_k \in \mathcal{S}_k.$$

Première décomposition

Présentation du problème

Soit $\Pi_k : \mathcal{H} \to \mathcal{S}_k$ une projection. Pour tout $u \in \mathcal{H}$, on peut écrire

$$u = \underbrace{\Pi_k u}_{\in \operatorname{Im} \Pi_k = \mathcal{S}_k} + \underbrace{(I - \Pi_k)u}_{\in \operatorname{Ker} \Pi_k \stackrel{\operatorname{def}}{=} \mathcal{V}_k} \qquad u = u_{\mathcal{S}_k} + u_{\mathcal{V}_k}$$

Tentons d'approcher u_{S_k} et d'estimer l'erreur d'approximation. On a

$$a(u_{\mathcal{S}_k}-u_k,v_k)=-a(u_{\mathcal{V}_k},v_k)\quad \forall v_k\in\mathcal{S}_k.$$

Présentation du problème

On en déduit par coercivité et continuité de la forme $a(\cdot, \cdot)$ que

$$\mathbf{a}\|u_{\mathcal{S}_k} - u_k\| \leqslant \mathbf{a}(u_{\mathcal{V}_k}, \mathbf{v}_k) \leqslant \mathbf{U}\|u_{\mathcal{V}_k}\| \qquad \mathbf{a}\|u_{\mathcal{V}_k}\| \leqslant \mathbf{a}(u_{\mathcal{V}_k}, \mathbf{v}_k) \leqslant \mathbf{U}\|u_{\mathcal{S}_k} - u_k\|$$

On en déduit par coercivité et continuité de la forme $a(\cdot, \cdot)$ que

$$\mathbf{a}\|u_{\mathcal{S}_k}-u_k\|\leqslant a(u_{\mathcal{V}_k},v_k)\leqslant \mathbf{U}\|u_{\mathcal{V}_k}\| \qquad \mathbf{a}\|\underbrace{u_{\mathcal{V}_k}}\|\leqslant a(u_{\mathcal{V}_k},v_k)\leqslant \mathbf{U}\|u_{\mathcal{S}_k}-u_k\|$$

$$\|u_{\mathcal{V}_k}\|^2 = \underbrace{\|\nabla u_{\mathcal{V}_k}\|_{L^2(\Omega \setminus \Gamma)}^2}_{\approx \varepsilon^{-1}} + \text{terme de saut}.$$

En réalité, l'estimation est trop grossière.

On en déduit par coercivité et continuité de la forme $a(\cdot, \cdot)$ que

$$\mathbf{a}\|u_{\mathcal{S}_k} - u_k\| \leqslant \mathbf{a}(u_{\mathcal{V}_k}, v_k) \leqslant \mathbf{U}\|u_{\mathcal{V}_k}\| \qquad \mathbf{a}\|\underbrace{u_{\mathcal{V}_k}}\| \leqslant \mathbf{a}(u_{\mathcal{V}_k}, v_k) \leqslant \mathbf{U}\|u_{\mathcal{S}_k} - u_k\|$$

$$\|u_{\mathcal{V}_k}\|^2 = \underbrace{\|\nabla u_{\mathcal{V}_k}\|_{L^2(\Omega \setminus \Gamma)}^2}_{\approx \varepsilon^{-1}} + \text{terme de saut.}$$

En réalité, l'estimation est trop grossière. Changeons l'espace de GALERKIN.

L'idée

Présentation du problème

Nous aimerions, dans l'idéal, que le terme $a(u_{\mathcal{V}_k}, v_k)$, $v_k \in \mathcal{S}_k$ soit nul.

Nouvel espace de GALERKIN : $\mathcal{W}_k \stackrel{\text{def}}{=} \left\{ w \in \mathcal{S}_k \mid a(v,w) = 0 \quad \forall v \in \mathcal{V}_k \right\} \quad \mathcal{W}_k = \mathcal{V}_k^{\perp_a}$

Ce nouvel espace \mathcal{W}_k mène à une nouvelle décomposition de la solution u sous la forme

$$u = u_{\mathcal{W}_k} + \widetilde{u}_{\mathcal{V}_k}$$
 avec $a(u_{\mathcal{W}_k}, \widetilde{u}_{\mathcal{V}_k}) = 0$.

Présentation du problème

Réécrivons donc une formulation variationnelle, cette fois dans \mathcal{W}_k

trouver
$$\widetilde{u}_k \in \mathcal{W}_k$$
 tel que $a(\widetilde{u}_k, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{W}_k$

Présentation du problème

Réécrivons donc une formulation variationnelle, cette fois dans \mathcal{W}_k

trouver
$$\widetilde{u}_k \in \mathcal{W}_k$$
 tel que $\mathsf{a}(\widetilde{u}_k, \mathsf{v}_k) = (f, \mathsf{v}_k)$ pour tout $\mathsf{v}_k \in \mathcal{W}_k$

En particulier, comme $\mathcal{W}_k \subset \mathcal{S}_k \subset \mathcal{H}$, on a $a(u,v_k)=(f$, $v_k)$ pour tout $v_k \in \mathcal{W}_k$ et

$$a(\widetilde{u}_k-u,v_k)=0 \quad \forall v_k\in \mathcal{W}_k.$$

Présentation du problème

Réécrivons donc une formulation variationnelle, cette fois dans \mathcal{W}_k

trouver
$$\widetilde{u}_k \in \mathcal{W}_k$$
 tel que $a(\widetilde{u}_k, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{W}_k$

En particulier, comme $W_k \subset \mathcal{S}_k \subset \mathcal{H}$, on a $a(u, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{W}_k$ et

$$a(\widetilde{u}_k-u,v_k)=0 \quad \forall v_k\in \mathcal{W}_k.$$

Reprenons la nouvelle décomposition qui mène à

$$a(u_{\mathcal{W}_k}-\widetilde{u}_k,v_k)=0\quad\forall v_k\in\mathcal{W}_k,$$

car $a(\widetilde{u}_{\mathcal{V}_k}, v_k) = 0$ pour tout \mathcal{W}_k par définition de \mathcal{W}_k .

Présentation du problème

Réécrivons donc une formulation variationnelle, cette fois dans \mathcal{W}_k

trouver
$$\widetilde{u}_k \in \mathcal{W}_k$$
 tel que $a(\widetilde{u}_k, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{W}_k$

En particulier, comme $\mathcal{W}_k \subset \mathcal{S}_k \subset \mathcal{H}$, on a $a(u, v_k) = (f, v_k)$ pour tout $v_k \in \mathcal{W}_k$ et

$$a(\widetilde{u}_k-u,v_k)=0 \quad \forall v_k\in \mathcal{W}_k.$$

Reprenons la nouvelle décomposition qui mène à

$$a(u_{\mathcal{W}_k} - \widetilde{u}_k, v_k) = 0 \quad \forall v_k \in \mathcal{W}_k,$$

car $a(\widetilde{u}_{\mathcal{V}_k}, v_k) = 0$ pour tout \mathcal{W}_k par définition de \mathcal{W}_k . On en déduit que

$$\|u_{\mathcal{W}_k} - \widetilde{u}_k\| = 0$$
 et $u_{\mathcal{W}_k} = \widetilde{u}_k$.

· Récapitulatif -

Présentation du problème

Nous avons obtenu deux décompositions :

Récapitulatif

Présentation du problème

Nous avons obtenu deux décompositions :

2
$$u = u_{W_k} + \tilde{u}_{V_k}$$
 tel que $a(u_{W_k}, \tilde{u}_{V_k}) = 0$.

Proposition

On a ainsi approché u_{S_k} dans le sens où $\prod_k \tilde{u}_k = u_{S_k}$.

Récapitulatif

Présentation du problème

Nous avons obtenu deux décompositions :

2
$$u = u_{W_k} + \tilde{u}_{V_k}$$
 tel que $a(u_{W_k}, \tilde{u}_{V_k}) = 0$.

Proposition

On a ainsi approché u_{S_k} dans le sens où $\prod_k \widetilde{u}_k = u_{S_k}$.

Remarque. [BLB22, p.337]

L'objectif essentiel de méthodes multi-échelles n'est paradoxalement pas de capturer précisément les petites échelles de la solution, mais principalement de capturer les *grandes* échelles.

Proposition. Décomposition a-orthogonale

Présentation du problème

L'espace d'éléments finis multi-échelles \mathcal{S}_k^{ms} est défini comme le complément orthogonal de $\mathcal{V}_k = \operatorname{Ker} \Pi_k$ dans \mathcal{H} , i.e.

$$\mathcal{H} = \mathcal{S}_k^{\mathsf{ms}} \overset{\perp}{\oplus} \mathcal{V}_k, \quad a(w, v) = 0 \quad \forall w \in \mathcal{S}_k^{\mathsf{ms}}, v \in \mathcal{V}_k.$$

$$\mathcal{S}_k^{\mathsf{ms}} = \left\{ v - \mathcal{C}_k v \mid v \in \mathcal{H} \right\} = \left\{ v - \mathcal{C}_k v \mid v \in \mathcal{S}_k \right\} = \mathsf{Vect}\left\{ (\mathbf{I} - \mathcal{C}_k) \lambda_p^{(k)} \mid p \in \mathcal{N}^{(k)} \right\}.$$

où $\mathcal{C}_k \colon \mathcal{H} \to \mathcal{V}_k$ est la projection orthogonale de \mathcal{H} dans \mathcal{V}_k ,

$$\dim \mathcal{S}_k^{\mathsf{ms}} = \dim \mathcal{S}_k$$

À gauche : fonction de base nodale . À droite : fonction de base modifiée [AH15]

Proposition. Décomposition a-orthogonale

Présentation du problème

L'espace d'éléments finis multi-échelles S_k est défini comme le complément orthogonal de $\mathcal{V}_k = \operatorname{Ker} \Pi_k \operatorname{dans} \mathcal{H}, i.e.$

$$\mathcal{H} = \mathcal{S}_k^{\mathsf{ms}} \overset{\perp}{\oplus} \mathcal{V}_k, \quad a(w, v) = 0 \quad \forall w \in \mathcal{S}_k^{\mathsf{ms}}, v \in \mathcal{V}_k.$$

$$\underline{\mathcal{S}_k^{\mathsf{ms}}} = \big\{ v - \mathcal{C}_k v \bigm| v \in \mathcal{H} \big\} = \big\{ v - \mathcal{C}_k v \bigm| v \in \mathcal{S}_k \big\} = \mathsf{Vect} \big\{ (\mathbf{I} - \mathcal{C}_k) \lambda_p^{(k)} \bigm| p \in \mathcal{N}^{(k)} \big\}.$$

où $\mathcal{C}_k : \mathcal{H} \to \mathcal{V}_k$ est la projection orthogonale de \mathcal{H} dans \mathcal{V}_k ,

$$\dim \mathcal{S}_k^{\mathsf{ms}} = \dim \mathcal{S}_k$$

$$\mathcal{H} = \underbrace{\mathcal{S}_k^{\mathsf{ms}}}_{\mathsf{espace des solutions}} \oplus \underbrace{\mathcal{V}_k}_{\mathsf{corrig\acute{e}}}$$
 espace grossier caractéristiques haute fréquence

Présentation du problème

Formulation variationnelle discrète multi-échelles

Trouver $u_k \in \mathcal{S}_k^{\mathsf{ms}}$ tel que $\mathsf{a}(u_k, \mathsf{v}) = (\mathsf{f} \ , \mathsf{v})$ pour tout $\mathsf{v} \in \mathcal{S}_k^{\mathsf{ms}}$.

Formulation variationnelle discrète multi-échelles

Trouver $u_k \in \mathcal{S}_k^{\mathsf{ms}}$ tel que $\mathsf{a}(u_k, \mathsf{v}) = (f, \mathsf{v})$ pour tout $\mathsf{v} \in \mathcal{S}_k^{\mathsf{ms}}$.

Théorème

Présentation du problème

Sous certaines hypothèses sur la projection $\Pi_k \colon \mathcal{H} \to \mathcal{S}_k$, le problème discret admet une unique solution $u_k \in \mathcal{S}_k^{ms}$ donnée par

$$u_k = (\mathbf{I} - \mathcal{C}_k) \mathbf{\Pi}_k u,$$

où $u \in \mathcal{H}$ désigne l'unique solution du problème à interfaces fractales.

De plus, sous certaines hypothèses géométriques, il existe une constante C indépendante de h_k telle que

$$||u-u_k||\leqslant C h_k||f||_{L^2(\Omega)}.$$

Formulation variationnelle discrète multi-échelles

Trouver $u_k \in \mathcal{S}_k^{\mathsf{ms}}$ tel que $\mathsf{a}(u_k, \mathsf{v}) = (f, \mathsf{v})$ pour tout $\mathsf{v} \in \mathcal{S}_k^{\mathsf{ms}}$.

Théorème

Présentation du problème

Sous certaines hypothèses sur la projection $\Pi_k \colon \mathcal{H} \to \mathcal{S}_k$, le problème discret admet une unique solution $u_k \in \mathcal{S}_k^{ms}$ donnée par

$$u_k = (\mathbf{I} - \mathcal{C}_k) \Pi_k u$$

où $u \in \mathcal{H}$ désigne l'unique solution du problème à interfaces fractales.

De plus, sous certaines hypothèses géométriques, il existe une constante C indépendante de h_k telle que

$$||u-u_k||\leqslant C\,h_k||f||_{L^2(\Omega)}.$$

Remarque

La solution u_k est égale à la projection de la solution u sur l'espace $\mathcal{S}_k^{\text{ms}}$.

Formulation variationnelle discrète multi-échelles

Trouver $u_k \in \mathcal{S}_k^{\mathsf{ms}}$ tel que $\mathsf{a}(u_k, \mathsf{v}) = (\mathsf{f}, \mathsf{v})$ pour tout $\mathsf{v} \in \mathcal{S}_k^{\mathsf{ms}}$.

Théorème

Présentation du problème

Sous certaines hypothèses sur la projection $\Pi_k \colon \mathcal{H} \to \mathcal{S}_k$, le problème discret admet une unique solution $u_k \in \mathcal{S}_k^{ms}$ donnée par

$$u_k = (\mathbf{I} - \mathcal{C}_k) \Pi_k u$$

où $u \in \mathcal{H}$ désigne l'unique solution du problème à interfaces fractales.

De plus, sous certaines hypothèses géométriques, il existe une constante C indépendante de h_k telle que

$$||u-u_k||\leqslant C\,h_k||f||_{L^2(\Omega)}.$$

Construisons un tel opérateur Π_k

Plan

1 Présentation du problème

2 Difficultés de la méthode EF classiques

3 La méthode LOD

4 Projecteurs

5 Expériences numériques

Objectif

Présentation du problème

• Construire $\Pi_k : \mathcal{H} \to \mathcal{S}_k$ tel que

$$\exists c, c' > 0 \quad \|v - \Pi_k v\|_{L^2(\Omega)}^2 \leqslant \left(1 + \frac{1}{c}\right) c \, d_k^2 \|v\|^2, \quad \text{et} \quad \|\Pi_k v\| \leqslant c' \|v\|, \quad \forall v \in \mathcal{H}.$$

- Objectif

Présentation du problème

• Construire $\Pi_k : \mathcal{H} \to \mathcal{S}_k$ tel que

$$\exists c, c' > 0 \quad \|v - \Pi_k v\|_{L^2(\Omega)}^2 \leqslant \left(1 + \frac{1}{c}\right) c \, d_k^2 \|v\|^2, \quad \text{et} \quad \|\Pi_k v\| \leqslant c' \|v\|, \quad \forall v \in \mathcal{H}.$$

• Inégalité de type Poincaré : estimer $\|v - \int_G v \, \mathrm{d}x\|_{L^2(G)}^2$ pour $G \in \Omega^{(k)} \setminus \Omega_{\infty}^{(k)}$

Inégalité locale de type POINCARÉ

Stratégie VERFÜRTH

Bibliographie

Inégalité locale de type POINCARÉ

Stratégie VERFÜRTH

Inégalité locale de type Poincaré

Stratégie VERFÜRTH

Inégalité locale de type POINCARÉ

Stratégie VERFÜRTH

Stratégie VERFÜRTH

Présentation du problème

Projecteurs

Stratégie VERFÜRTH

Présentation du problème

$$\left\| v - \int_{G} v \, dx \right\|_{L^{2}(G)}^{2} \leq \left\| v - \int_{B} v \, dx \right\|_{L^{2}(B)}^{2} + CR_{G} \left\| v - \int_{B} v \, dx \right\|_{L^{2}(\partial B)}^{2}$$

$$+ CR_{G} \left(1 + \frac{1}{c} \right) \left(R_{G} \| \nabla v \|_{L^{2}(G \setminus \Gamma^{(K)})}^{2} + \sum_{j=k+1}^{K} (1 + c)^{j-k} C_{k,j} \| [v] \|_{L^{2}(\Gamma_{j} \cap (G \setminus B))}^{2} \right)$$

Inégalité locale de type Poincaré

Stratégie VERFÜRTH

Présentation du problème

Proposition

Pour tout $k \in \mathbb{N}$ et pour toute cellule $G \in \Omega^{(k)} \setminus \Omega_{\infty}^{(k)}$, l'inégalité de POINCARÉ locale

$$\left\| v - \int_{G} v \, dx \right\|_{L^{2}(G)}^{2} \leqslant C \left(1 + \frac{1}{c} \right) d_{k} \left(d_{k} \| \nabla v \|_{L^{2}(G \setminus \Gamma)}^{2} + \sum_{j=k+1}^{\infty} (1 + c)^{j-k} C_{k,j} \| \llbracket v \rrbracket \|_{L^{2}(\Gamma_{j} \cap G)}^{2} \right)$$

est vérifiée pour tout $v \in \mathcal{H}$ avec une constante C ne dépendant que de la dimension d et de la régularité γ de $\Omega^{(k)}$.

Définition. Projecteur Π_k -

Présentation du problème

Pour tout $k \in \mathbb{N}$, $\Pi_k = \Pi_{\mathcal{S}_k} \circ \Pi_{\mathcal{H}_k} \colon \mathcal{H} \to \mathcal{S}_k$.

Projecteur Π_k pour la méthode LOD

Définition. Projecteur Π_k Pour tout $k \in \mathbb{N}$, $\Pi_k = \Pi_{\mathcal{S}_k} \circ \Pi_{\mathcal{H}_k} : \mathcal{H} \to \mathcal{S}_k$.

Présentation du problème

$$\begin{array}{c} \text{D\'efinition. Projecteur } \Pi_{\mathcal{H}_k} \\ \mathcal{H} \longrightarrow \mathcal{H}_k \\ \Pi_{\mathcal{H}_k} \colon \bigvee_{|_G \longmapsto} \left\{ \begin{array}{l} \arg \min_{v_k \in H^1(G)} \left\{ \| \nabla (v - v_k) \|_{L^2(G \setminus \Gamma)} \right| \\ \int_G (v - v_k) \, \mathrm{d}x = 0 \right\}, \\ \text{pour } G \in \Omega^{(k)} \setminus \Omega^{(k)}_\infty \\ v_{|_G}, \qquad \text{pour } G \in \Omega^{(k)} \end{array} \right. \end{array} \quad \begin{array}{c} \text{D\'efinition. Projecteur } \Pi_{\mathcal{S}_k} \\ \mathcal{H}_k \longrightarrow \mathcal{S}_k \\ \Pi_{\mathcal{S}_k} \colon \quad v \longmapsto \sum_{p \in \mathcal{N}^{(k)}} \left(\int_{\omega_p} v \, \mathrm{d}x \right) \lambda_p^{(k)} \\ \text{avec } \omega_p = \operatorname{supp} \lambda_p^{(k)} \text{ pour } p \in \mathcal{N}^{(k)}. \end{array}$$

$$\Pi_{\mathcal{S}_k} : \quad V \longmapsto \sum_{p \in \mathcal{N}^{(k)}} \left(f_{\omega_p} \, v \, \mathrm{d}x \right) \lambda_p^{(k)}$$

Définition. Projecteur $\Pi_{S_{\nu}}$

Projecteur Π_k pour la méthode LOD

Présentation du problème

$$v \in \mathcal{H} \xrightarrow{\text{troncature}} \Pi_{\mathcal{H}_k} v \in \mathcal{H}_k \xrightarrow{\text{quasi-interpolation}} \Pi_{\mathcal{S}_k} (\Pi_{\mathcal{H}_k} v) \in \mathcal{S}_k$$

$$\begin{array}{c} \text{D\'efinition. Projecteur } \Pi_{\mathcal{H}_k} \\ \mathcal{H} \longrightarrow \mathcal{H}_k \\ \Pi_{\mathcal{H}_k} \colon \bigvee_{|_G \longmapsto} \left\{ \begin{array}{l} \arg \min \limits_{v_k \in H^1(G)} \left\{ \| \nabla (v - v_k) \|_{L^2(G \setminus \Gamma)} \right| \\ \int_G (v - v_k) \, \mathrm{d}x = 0 \right\}, \\ \text{pour } G \in \Omega^{(k)} \setminus \Omega^{(k)}_\infty \\ v_{|_G}, \qquad \text{pour } G \in \Omega^{(k)} \end{array} \right. \\ \left\{ \begin{array}{l} \mathcal{H}_k \longrightarrow \mathcal{S}_k \\ \Pi_{\mathcal{S}_k} \colon \bigvee_{p \in \mathcal{N}^{(k)}} \left(\int_{\omega_p} v \, \mathrm{d}x \right) \lambda^{(k)}_p \\ \text{avec } \omega_p = \operatorname{supp} \lambda^{(k)}_p \text{ pour } p \in \mathcal{N}^{(k)}. \end{array} \right.$$

$$\Pi_{\mathcal{S}_k} : \qquad V \longmapsto \sum_{p \in \mathcal{N}^{(k)}} \left(\int_{\omega_p} v \, \mathrm{d}x \right) \lambda_p^{(k)}$$

Définition. Projecteur $\Pi_{S_{k}}$

Projecteur Π_k pour la méthode LOD

Définition. Projecteur Π_k —

Présentation du problème

Pour tout $k \in \mathbb{N}$, $\Pi_k = \Pi_{S_k} \circ \Pi_{\mathcal{H}_k} : \mathcal{H} \to \mathcal{S}_k$.

$$v \in \mathcal{H} \xrightarrow{\hspace{1cm} \mathsf{troncature} \hspace{1cm}} \Pi_{\mathcal{H}_k} v \in \mathcal{H}_k \xrightarrow{\hspace{1cm} \mathsf{quasi-interpolation} \hspace{1cm}} \Pi_{\mathcal{S}_k} (\Pi_{\mathcal{H}_k} v) \in \mathcal{S}_k$$

Théorème. Approximation et Stabilité

Sous certaines conditions sur la géométrie de Γ , il existe une constante c ne dépendant que de la dimension d'espace d, la régularité γ de $\Omega^{(k)}$, la régularité σ de $\mathcal{T}^{(k)}$, de constantes géométriques δ et C_{Γ} , la constante de matériau c telle que pour tout $k \in \mathbb{N}$,

$$\|v - \Pi_k v\|_{L^2(\Omega)} \leqslant ch_k \|v\|$$
 et $\|\Pi_k v\|_{L^2(\Omega)} \leqslant c\|v\|$ $\forall v \in \mathcal{H}$.

Nous avons construit un projecteur permettant d'appliquer la méthode LOD

Plan

1 Présentation du problème

2 Difficultés de la méthode EF classiques

3 La méthode LOD

4 Projecteurs

5 Expériences numériques

Expériences numériques

(avec une autre méthode que LOD mais aussi construite à partir de Π_k)

$$k=1,\ldots,k_{\mathsf{max}},\quad \Omega=\left]0\,;1\right[^2\subset\mathbb{R}^2,\quad \mathsf{c}=1,\quad A=\mathrm{I}\in\mathbb{R}^{d\times d},\quad B=1.$$

Réseau d'interfaces d'inspiration géologique qui sort du cadre théorique [KPY22, Fig. 2]

Conclusion

Présentation du problème

- La méthode numérique est robuste à la géométrie fractale du réseau d'interfaces;
- La précision de discrétisation est atteinte en quelques étapes;
- La méthode fonctionne au-delà du cadre des hypothèses théoriques.

Expériences numériques

Présentation du problème

(avec une autre méthode que LOD mais aussi construite à partir de Π_k)

$$k=1,\ldots,k_{\mathsf{max}},\quad \Omega=[0\,;1]^2\subset\mathbb{R}^2,\quad \mathsf{c}=1,\quad A=\mathrm{I}\in\mathbb{R}^{d\times d},\quad B=1.$$

Réseau d'interfaces d'inspiration géologique qui sort du cadre théorique [KPY22, Fig. 2]

Merci pour votre attention!

Bibliographie

Présentation du problème

La méthode LOD

- Xavier Blanc and Claude Le Bris, *Homogénéisation en milieu périodique... ou non une introduction*, Mathématiques et Applications, Springer International Publishing, Cham, 2022 (fre).
- Patrick Ciarlet and Éric Lunéville, La méthode des éléments finis : de la théorie à la pratique. Tome 1 : Concepts généraux, Les Presses de l'ENSTA, 2009.
- Ralf Kornhuber, Joscha Podlesny, and Harry Yserentant, *Numerical homogenization of fractal interface problems*, ESAIM: M2AN **56** (2022), no. 4, 1451–1481.

Théorème. Formulation forte du problème

Trouver u_k : $\mathcal{H}_k \to \mathbb{R}$ *telle que*

$$\begin{cases} -\operatorname{div}(A\nabla u_k) = f & \operatorname{dans} \ G \in \Omega^{(k)} \\ A\nabla u_k \cdot \nu_j = -(1+\operatorname{c})^j C_j B[\![u_k]\!] & \operatorname{sur} \ \Gamma_j \in \Gamma^{(k)} \\ [\![A\nabla u_k \cdot \nu_j]\!] = 0 & \operatorname{sur} \ \Gamma_j \in \Gamma^{(k)} \\ u_k = 0 & \operatorname{sur} \ \partial \Omega \end{cases}$$

Proposition. Propriétés des espaces \mathcal{H}_k

- l'espace \mathcal{H}_k est fermé, non vide et complet pour la norme $\|\cdot\|_k = \langle \cdot, \cdot \rangle_k^{1/2}$;
- les espaces $(\mathcal{H}_k)_{k\in\mathbb{N}}$ sont emboîtés, i.e. $\mathcal{H}_1\subset\mathcal{H}_2\subset\cdots\subset\mathcal{H}_i$;
- ces inclusions sont isométriques, i.e. pour $v \in \mathcal{H}_k$,

$$\|v\|_k = \|v\|_{k+1} = \cdots = \|v\|_{k+p}, \quad p \in \mathbb{N}.$$

Théorème. Injections continues

L'espace ${\mathcal H}$ satisfait aux propriétés d'injections continues suivantes

$$\mathcal{H} \subset L^2(\Omega)$$
 et $\mathcal{H} \subset H^s(\Omega)$

pour tout $s \in \left[0; \frac{1}{2}\right[$. En particulier, on peut énoncer l'inégalité type POINCARÉ suivante

$$\|v\|_{L^2(\Omega)} \leqslant C_{\mathsf{P}} \|v\|$$

avec $C_P = (1 + \frac{1}{c}) \operatorname{diam}(\Omega) \max \{\operatorname{diam}(\Omega), 1\}.$

Construction de l'espace fractal asymptotique ${\cal H}$

Définition

Soit \mathcal{H}_{∞} l'espace défini par $\mathcal{H}_{\infty} = \bigcup_{k \in \mathbb{N}} \mathcal{H}_k$.

Proposition. Produit scalaire sur \mathcal{H}_{∞}

On peut munir \mathcal{H}_{∞} du produit scalaire

$$\langle v, w \rangle_{\infty} \stackrel{\mathsf{def}}{=} \langle v, w \rangle_{\mathsf{max}\{\sigma(v), \sigma(w)\}} \quad v, w \in \mathcal{H}_{\infty}$$

de norme associée $\|\cdot\|_{\infty} = \langle \cdot, \cdot \rangle_{\infty}^{1/2}$, où $\sigma \colon \mathcal{H}_{\infty} \to \mathbb{N}$ la fonction qui a un élément $v \in \mathcal{H}_{\infty}$ associe le plus petit entier $\sigma(v)$ tel que $v \in \mathcal{H}_{\sigma(v)}$.

Soient $(v_k)_{k\in\mathbb{N}}$ et $(w_k)_{k\in\mathbb{N}}$ deux suites de CAUCHY de \mathcal{H}_{∞} ,

$$(v_k)_{k\in\mathbb{N}}\sim (w_k)_{k\in\mathbb{N}}\iff \|v_k-w_k\|_{\infty}\xrightarrow[k\to\infty]{}0.$$

L'espace \mathcal{H} est l'espace quotient de \mathcal{H}_{∞} par la relation d'équivalence \sim .

Construction de l'espace fractal asymptotique ${\cal H}$

Proposition. Produit scalaire sur ${\cal H}$ -

Soient $v=(v_k)_{k\in\mathbb{N}}$, $w=(w_k)_{k\in\mathbb{N}}\in\mathcal{H}$. La quantité

$$\|v\| \stackrel{\text{def}}{=} \lim_{k \to \infty} \|v_k\|_k = \lim_{k \to \infty} \|v_k\|_{\infty}$$

définit une norme sur \mathcal{H} . De plus, cette norme est associée au produit scalaire

$$\langle v, w \rangle \stackrel{\text{def}}{=} \lim_{k \to \infty} \langle v_k, w_k \rangle_k = \lim_{k \to \infty} \langle v_k, w_k \rangle_{\infty}$$

dans le sens où $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$. $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ est complet.

Corollaire

Les espaces $\bigcup_{k\in\mathbb{N}}\mathcal{C}^1_{k,0}(\Omega)$ et $(\mathcal{H}_k)_{k\in\mathbb{N}}$ sont denses dans \mathcal{H} .

Remarque

- ① L'exposant « ms » signifie « multi-échelles » et indique que l'espace $\mathcal{S}_k^{\text{ms}}$ contient également des informations aux petites échelles.
- **2** Comme dim $S_k^{\text{ms}} = \dim S_k$, on peut voir l'espace S_k^{ms} comme un espace d'éléments finis modifié et enrichi par les caractéristiques haute fréquence du problème :

$$\mathcal{H}$$
 = $\mathcal{S}_k^{\mathsf{ms}}$ $\overset{\perp}{\oplus}$ \mathcal{V}_k espace des solutions espace grossier caractéristiques haute fréquence

- 3 Dit rapidement, les fonctions de \mathcal{V}_k sont quelconques en dehors des nœuds, et « nulles » aux nœuds. Les fonctions de l'orthogonal $\mathcal{S}_k^{\text{ms}}$ sont donc, a contrario, libres aux nœuds et, dans l'esprit au moins, solutions du problème en dehors des nœuds [BLB22, p.367].
- ① Dit encore autrement, l'espace $\mathcal{S}_k^{\mathsf{ms}}$ est de même dimension que \mathcal{S}_k , l'espace d'éléments finis classiques \mathbb{P}_1 associé au maillage $\mathcal{T}^{(k)}$, et il est un raffinement de celui-ci au sens où, tout en ayant ses degrés de liberté aux nœuds du maillage, il est « entre les nœuds » beaucoup plus adapté dans son approximation du problème oscillant considéré [BLB22, p.367].