Chapter11 图与网络分析

(Graph Therory and Network Analysis)

Graph Theory and Network Analysis

第十一章 图与网络分析

本章主要内容:

- 图与网络的基本知识
- 中国邮路问题
- 最短路问题
- 最大流问题

图论起源——哥尼斯堡七桥问题

问题:一个散步者能否从任一块陆地出发,走过七座桥,且每座桥只走过一次,最后回到出发点? 1736年29岁的欧拉

结论:不能。每个结点关联的

边数要均为偶数。

环球旅行问题:

英国数学家哈密尔顿(Hamilton) 发明了一种游戏 他用一个实心正12面体象征地球, 正12面体的20个顶点分别表示世 界上20座名城 要求游戏者从任一城市出发,寻找 一条可经由每个城市一次且仅一次 再回到原出发点的路,这就是"环 球旅行"问题。 要在图由找一条经过每个占一次日

要在图中找一条经过每个点一次且 仅一次的路,称为<mark>哈密尔顿回路</mark>。

环球旅行问题的解

另一个著名的问题: 中国邮路问题

给定一个图**G**,每边e有非 负的长度,要求一条回路经 过每条边至少一次,且满足 总长最短。

图论中图是由点和边构成,可以反映一些对象之间的关系。一般情况下图中点的相对位置如何、点与点之间联线的长短曲直,对于反映对象之间的关系并不是重要的。

图的定义:

若用点表示研究的<mark>对象</mark>,用边表示这些对象之间的<mark>联系</mark>,则图**G**可以定义为点(顶点)和边的集合,记作:

$$G = \{V, E\}$$

其中: V——点集 E——边集

※ 图G区别于几何学中的图。这里只关心图中有多少个点以及哪些点之间有连线。

例如:在一个人群中,对相互认识这个关系我们可以用图来 表示。

可见图论中的图与几何图、工程图是不一样的。

定义: 图中的点用v表示,边用e表示。对每条边可用它所连

接的点表示,记作: $e_1 = [v_1, v_1]$; $e_2 = [v_1, v_2]$;

$$V = \{v_1, v_2, v_3, v_4, v_5\},\$$

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\},\$$

•端点,关联边,相邻

若有边e可表示为e=[v_i , v_j],称 v_i 和 v_j 是边e的端点,反之称边e为点 v_i 或 v_j 的关联边。若点 v_i 、 v_j 与同一条边关联,称点 v_i 和 v_j 相邻;若边 e_i 和 e_j 具有公共的端点,称边 e_i 和 e_i 相邻。

边数: m(G)=|E|=m

顶点数: n(G)=|V|=n

◆无向图,有向图

无向边与无向图:若图中任一条边的端点无序,即 (v_i, v_j) 与 (v_i, v_i) 是同一条边,则称它为无向边,此时图称为无向图。

有向图:若图中边 (v_i, v_j) 的端点是有序的,则称它是有向边(或弧), v_i 与 v_j 分别称为这条有向边的始点和终点,相应的图称为有向图。

● 环,多重边,简单图

如果边e的两个端点相重,称该边为环。 如右图中边 e_1 为环。如果两个点之间多 于一条,称为多重边,如右图中的 e_4 和 e_5 , 无环、无多重边的图称作简单图。含多 重边的图称为多重图。

• 完全图

每一对顶点间都有边相连的无向简单图称为无向完全图; 有向完全图是指每一对顶点间有且仅有一条有向边的简单 图。

完全图顶点数n与边数m间成立如下关系:

m=n(n-1)/2

• 二部图 (偶图)

图G=(V,E)的点集V可以分为两各非空子集X,Y,集 $X \cup Y=V,X \cap Y=\emptyset$,使得同一集合中任意两个顶点均不相邻,称这样的图为二部图(偶图)。

(a)明显为二部图,(b)也是二部图,但不明显,改画为(c)时可以清楚看出。

• 次,奇点,偶点,孤立点

与某一个点 v_i 相关联的边的数目称为点 v_i 的次(也叫做度),记作 $d(v_i)$ 。右图中 $d(v_1) = 4$, $d(v_3) = 5$, $d(v_5) = 1$ 。次为奇数的点称作奇点,次为偶数的点称作偶点,次为1的点称为悬挂点,次为0的点称作孤立点。

图的次:一个图的次等于各点的次之和。

图的基本概念与模型

图中顶点次的基本性质:

定理1 任何图中, 顶点次数之和等于所有边数的2倍。

证明:由于每条边必与两个顶点关联,在计算点的次时,每条边均被计算了两次,所以顶点次数的总和等于边数的2倍。

定理2 任何图中,次为奇数的顶点必为偶数个。

证明: 设V1和V2分别为图G中奇点与偶点的集合。由定理1可得:

$$\sum_{v \in V_1} d(v) + \sum_{v \in V_2} d(v) = \sum_{v \in V} d(v) = 2m$$

2m为偶数,且偶点的次之和 $\sum_{v \in V_1} d(v)$ 也为偶数,所以 $\sum_{v \in V_1} d(v)$ 必为偶数,即奇数点的个数必为偶数。

定义6 在有向图中,以顶点v为始点的边数称为顶点v的出次,记为d+(v);以v为终点的边数称为v的入次,记为d-(v)。顶点v的出次与入次的和称为点v的次。

定义7 图G=(V, E), 若E'是E的子集,若V'是V的子集,且E'中的边仅与V'中的顶点相关联,则称G' = (V', E')为图G的一个子图,特别地,若V' = V, 则称G'为G的一个生成子图(支撑子图)。

• 子图,生成子图(支撑子图)

图 $G_1 = \{V_1, E_1\}$ 和图 $G_2 = \{V_2, E_2\}$ 如果有 $V_1 \subseteq V_2$ 和 $E_1 \subseteq E_2$ 称 G_1 是 G_2 的一个子图。 若有 $V_1 = V_2$, $E_1 \subseteq E_2$,则称 G_1 是 G_2 的一个生成子图(支撑子图)。

网络(赋权图)

设图G = (V, E),对G的每一条边 (v_i, v_j) 相应赋予数量指标 w_{ij} , w_{ij} 称为边 (v_i, v_j) 的Q,赋予权的图Q 称为网络(或赋权图)。 权可以代表距离、费用、通过能力(容量)等等。

端点无序的赋权图称为无向网络,端点有序的赋权图称为<mark>有</mark> 向网络。

● 链,圈,连通图

而非初等链

定义8 无向图中一个点、边交错的序列,序列中的第一个和最后一个元素都是点,若其中每条边以序列中位于它之前和之后的点为端点,则称这个点边序列为图中连接其第一个点与最后一个点的称为链。链中所含的边数称为链长。

$$\mu = \{v_0, e_1, v_1, \cdots, e_k, v_k\}$$

简单链:没有重复边;初等链:既无重复边也无重复点。对有向图可类似定义链,如果各边方向一致,则称为道路。

• 链,圈,连通图

定义9 若在无向图中,一条链的第一个点与最后一个点重合,则称这条链为圈。只有重复点而无重复边的圈为简单圈,既无重复点又无重复边的圈为初等圈。

非简单的圈

有向图	无向图
道路	链 (或道路)
回路	圈 (或回路)

道路(边的方向一致)

连通图

定义10 一个图中任意两点间至少有一条链相连,则称此图为 连通图。任何一个不连通图总可以分为若干个连通子图,每 一个称为原图的一个分图(连通分支)。

连通图

非连通图

欧拉回路

定义13 连通图G中,若存在一条道路,经过每边一次且仅一次,则称这条道路为欧拉道路。若存在一条回路经过每边一次也仅一次,则称这条回路为欧拉回路。

具有欧拉回路的图称为欧拉图(E图)。

定理3 无向连通图G是欧拉图,当且仅当G中无奇点

树与最小生成树

7个村庄要在他们之间架设电话线,要求任何两个村庄都可以互相通电话(允许中转),并且电话线根数最少?

分析:用七个点代表村庄,如果在某两个村庄之间架设电话线,则相应的在两点之间连一条边,这样电话给写为什么?以用一个图来表示,并且满足如下要求:

- •连通图
- •图中有圈的话,从圈中任去掉一条边,余下的图仍连通

树与最小生成树

如果G=(V, E)是一个无圈的连通图,则称G为树。

- 树中任两点必有一条链且仅有一条链;
- 在树的两个不相邻的点之间添加一条边,就得到一个圈; 反之,去掉树的任一条边,树就成为不连通图;
- n个顶点的树有 (n-1) 条边。

树是无圈连通图中边数最多的,也是最脆弱的连通图!

图的生成树

•如果图G=(V, E) 的部分图G'=(V, E') 是树,则称G'是G的生成树。

点保留 边可去 仍是树 不唯一

 生成树上各树枝上权值的和称为它的长度,其中长度 最短的生成树,称其为该图的最小生成树。

思考:如何铺设电话线,使得电话线长度最少?

树与最小生成树

定理:图中任一个点i,若j是与相邻点中距离最近的,则边[i,j]一定必含在该图的最小生成树内。

推论: 把图的所有点分成 和 对 两个集合,则两集合之间连线的最短边一定包含在最小生成树内。

如何用最短的线路将三部电话连起来?

此问题可抽象为设 $\triangle ABC$ 为等边三角形,连接三顶点的路线(称为网络)。这种网络有许多个,其中最短路线者显然是二边之和(如 $AB \cup AC$)。

但若增加一个周转站(新点P),连接4点的新网络的最短路线为PA+PB+PC。最短新路径之长N比原来只连三点的最短路径O要短。这样得到的网络不仅比原来节省材料,而且稳定性也更好。

问题描述:

就是从给定的网络图中找出一点到各点或任意两点之间 距离最短的一条路.

有些问题,如选址、管道铺设时的选线、设备更新、投资、某些整数规划和动态规划的问题,也可以归结为求最短路的问题。因此这类问题在生产实际中得到广泛应用。

例6.4 渡河游戏

一老汉带了一只狼、一只羊、一捆草料要从南岸过河到 北岸,河上只有一条独木舟,每次除了人以外,只能带一样 东西;另外,如果人不在,狼就要吃羊,羊就要吃草料,问 应该怎样安排渡河,才能做到既把所有东西都运过河去,并 且在河上来回次数最少?这个问题就可以用求最短路方法解 决。

定义:

- 1) 人—M (Man) ,狼—W (Wolf) , 羊—G (Goat) , 草—H (Hay)
- 2) 点—— v_i 表示河岸的状态
- 3) 边—— e_k 表示由状态 v_i 经一次渡河到状态 v_i
- 4) 权——边 e_k上的权定为 1

我们可以得到下面的加权有向图

状态说明:

$$v_1,u_1 = (M,W,G,H); v_2,u_2 = (M,W,G); v_3,u_3 = (M,W,H);$$

 $v_4,u_4 = (M,G,H); v_5,u_5 = (M,G)$

此游戏转化为在下面的二部图中求从 v_1 到 u_1 的最短路问题。

求最短路有两种算法:

- 狄克斯屈拉(Dijkstra)标号算法
- 逐次逼近算法

狄克斯屈拉(Dijkstra)标号算法的基本思路:

若序列 $\{v_s, v_1, ..., v_n\}$ 是从 v_s 到 v_t 间的最短路,则序列 $\{v_s, v_1, ..., v_{n-1}\}$ 必为从 v_s 到 v_{n-1} 的最短路。

假定 $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \neq v_1 \rightarrow v_4$ 的最短路,则 $v_1 \rightarrow v_2 \rightarrow v_3$ 一定是 $v_1 \rightarrow v_3$ 的最短路, $v_2 \rightarrow v_3 \rightarrow v_4$ 也一定是 $v_2 \rightarrow v_4$ 的最短路。

求网络图的最短路,设图的起点是 v_s ,终点是 v_t ,以 v_i 为起点 v_j 为终点的弧记为 (i, j) 距离为 d_{ij}

P标号(点标号): b(j) 一起点 v_s 到点 v_i 的最短路长;

T标号(边标号): $k(i,j)=b(i)+d_{ij}$,

步骤:

- 1. 令起点的标号; b(s) = 0。
- 2. 找出所有 v_i 已标号 v_j 未标号的弧集合 $B=\{(i,j)\}$ 如果这样的弧不存在或 v_i 已标号则计算结束;
- 3. 计算集合B中弧 $k(i, j)=b(i)+d_{ij}$ 的标号
- 4. 选一个点标号 $b(l) = \min_{j} \{k(i,j) | (i,j) \in B\}$, 在终点 v_l 处标号b(l), 返回到第2步。

例6.5 求下图v₁到v₇的最短路长及最短路线

v₁到v₇的最短路长及最短路线如图所示:

 v_7 已标号,计算结束。从 v_1 到 v_7 的最短路长是 11,

最短路线: $V_1 \rightarrow V_4 \rightarrow V_6 \rightarrow V_7$

从上例知,只要某点已标号,说明已找到起点v_s到该点的最短路线及最短距离,因此可以将每个点标号,求出v_s到任意点的最短路线,如果某个点v_j不能标号,说明v_s不可达v_i。

注:无向图最短路的求法只将上述步骤2将弧改成边即可。

例6.6 求下图v1到各点的最短距离及最短路线。

v₁到各点的最短距离及最短路线如图所示:

所有点都已标号,点上的标号就是v₁到该点的最短距离,最短路线就是红色的链。

算法适用条件:

Dijkstra算法只适用于全部权为非负情况,如果某边上权为负的,算法失效。

例6.7 如右图所示中按dijkstra算 法可得 $P(v_1)=5$ 为从 $v_s \rightarrow v_1$ 的最短 路长显然是错误的,从 $v_s \rightarrow v_2 \rightarrow v_1$ 路长只有3。

那么若有某些 $w_{ij} < 0$,如何求解?

设 $d^{(k)}(v_s,v_j)$ 为 v_s 至 v_j 的至多含 k-1 个中间点的最短路长,则

i)
$$d^{(1)}(v_s, v_j) = w_{sj}$$
 $(j = 1, \dots, |V|)$

ii) 对 $k = 2, 3, \cdots$

$$d^{(k)}(v_s, v_j) = \min_{i} \{d^{(k-1)}(v_s, v_i) + w_{ij}\} \quad (j = 1, \dots, |V|)$$

若 G 不含权和为负数的圈,则 v_s 至每个 v_j 的最短路至多有 |V| - 2 个中间点,此时, v_s 至 v_j 的最短路长为

$$d^{(|V|-1)}(v_s,v_j),$$

例6.8 设备更新问题。某公司使用一台设备,在每年年初,公司就要决定是购买新的设备还是继续使用旧设备。如果购置新设备,就要支付一定的购置费,当然新设备的维修费用就低。如果继续使用旧设备,可以省去购置费,但维修费用就高了。请设计一个五年之内的更新设备的计划,使得五年内购置费用和维修费用总的支付费用最小。已知:

设备每年年初的价格表

年份	1	2	3	4	5
年初价格	11	11	12	12	13

设备维修费如下表

使用年数	0-1	1-2	2-3	3-4	4-5
每年维修费用	5	6	8	11	18

解:将问题转化为最短路问题,如下图:用 v_i 表示"第i年年初购进一台新设备",弧(v_i , v_j)表示第i年年初购进的设备一直使用到第j年年初。

$$W_{13} = 11 + 5 + 6 = 22$$

$$W_{14} = 11 + 5 + 6 + 8 = 30$$

$$W_{15} = 11 + 5 + 6 + 8 + 11 = 41$$

長,把权数赋

$$W_{34} = 12 + 5 = 17$$

2	_
3	
4	

$$W_{23} = 11 + 5 = 16$$

$$W_{25} = 11 + 5 + 6 + 8 = 30$$

$$W_{45} = 12 + 5 = 17$$

$$W_{56} = 13 + 5 = 18$$

最终得到下图,可知, v_1 到 v_6 的距离是53,最短路径有两条: $v_1 \rightarrow v_3 \rightarrow v_6$ 和 $v_1 \rightarrow v_4 \rightarrow v_6$

如何制定一个运输计划使生产地到销售地的产品输送量最大。这就是一个网络最大流问题。

基本概念:

1. 容量网络: 队网络上的每条弧 (v_i,v_j) 都给出一个最大的通过能力,称为该弧的<mark>容量</mark>,简记为 c_{ij} 。容量网络中通常规定一个发点(也称源点,记为 v_s)和一个收点(也称汇点,记为 v_t),

2. 网络的最大流

是指网络中从发点到收点之间允许通过的最大流量。

3. 流与可行流

流是指加在网络各条弧上的实际流量,对加在弧 (v_i,v_j) 上的载量记为 f_{ij} 。若 $f_{ij}=0$,称为零流。

满足以下条件的一组流称为可行流。

- ullet 容量限制条件。容量网络上所有的弧满足: $0 \le f_{ij} \le c_{ij}$
- 中间点平衡条件。

$$\sum f(v_i, v_j) - \sum f(v_j, v_i) = 0 \quad (i \neq s, t)$$

● 若以v(f)表示网络中从v_s→v_t的流量,则有:

$$v(f) = \sum f(v_s, v_j) - \sum f(v_j, v_t) = 0$$

标示方式: 每条边上标示两个数字,第一个是<mark>容量</mark>,第二 是流量

结论:任何网络上一定存在可行流。(零流即是可行流)

网络最大流问题:

指满足容量限制条件和中间点平衡的条件下,使v(f)值 达到最大。

●割集

容量网络G = (V, E, C) , v_s 为始点, v_t 为终点。如果把V分成两个非空集合 S, \overline{S} ,使 $v_s \in S$, $v_t \in \overline{S}$,则所有始点属于S ,而终点属于 \overline{S} 的弧的集合,称为由S决定的割集,记作 (S, \overline{S}) 。割集中由S到 \overline{S} 所有弧的容量之和,称为这个割集的容量,记为 $C(S, \overline{S})$

$$S = (v_s, v_2) \quad \overline{S} = (v_1, v_3, v_4, v_t)$$

$$(S, \overline{S}) = \{(v_s, v_1), (v_2, v_4), (v_2, v_3)\}$$

$$C(S, \overline{S}) = l_{s1} + l_{24} + l_{23} = 7 + 6 + 5 = 18$$

设
$$S = \{v_1, v_2, v_5\}$$
 $\bar{S} = \{v_3, v_4, v_6, v_7\}$
则 割集 $(S, \bar{S}) = \{(v_1, v_3), (v_2, v_4), (v_5, v_7)\}$
 $= l_{13} + l_{24} + l_{57}$ 容量为24
 $= 9 + 6 + 9 = 24$

而 (v_3, v_2) 和 (v_4, v_5) 不是该集中的弧

设
$$S' = \{v_1, v_2\}$$
 $\bar{S}' = \{v_3, v_4, v_5, v_6, v_7\}$

則 割集
$$(S', \bar{S}') = \{(v_1, v_3), (v_2, v_4), (v_2, v_5)\}$$
 容量为20
= $l_{13} + l_{24} + l_{25}$
= $9 + 6 + 5 = 20$

最大流—最小割定理

由发点 v_s 到收点 v_t 任一可行流量W显然必须受割集 (S,\bar{S}) 容量的限制,即有:

$$W \leq C(S, \bar{S})$$

容量最小的割集称为最小割集

网络理论中著名的最大流最小割定理:

对于任一容量网络,从发点到收点的最大流量等于最小割量。

若 μ 是联结发点 v_s 和收点 v_t 的一条链,我们规定链的方向是从 v_s 到 v_t ,则链上的弧被分成两类:前向弧、后向弧。

设f 是一个可行流, μ 是从 ν_s 到 ν_t 的一条链,若 μ 满足前向弧都是非饱和弧,后向弧都是非零流弧,则称 μ 是(可行流f 的)一条增广链。

求最大流的标号法

标号法思想是: 先找一个可行流。对于一个可行流,经过标号过程得到从发点 ½ 到收点 ¼ 的增广链; 经过调整过程沿增广链增加可行流的流量,得新的可行流。重复这一过程,直到可行流无增广链,得到最大流。

从任一个可行流 f出发(若网络中没有给定 初始可行流 f,可从零流开始),经历如下两过程:

- ▶标号过程─用来找增广链的过程
- ▶ 调整过程─用来增大增广链流量的过程

求网络最大流的标号算法:

[基本方法]

- (1) 找出第一个可行流,(例如所有弧的流量 $f_{ij}=0$ 。)
- (2) 用标号的方法找一条增广链
- 首先给发点s标号(∞),标号中的数字表示允许的最大调整量。
- 选择一个点 *v_i* 已标号并且另一端未标号的弧沿着某条链 向收点检查:

- 如果弧的起点为 v_i ,并且有 $f_{ij} < C_{ij}$,则给 v_j 标号为($C_{ij} f_{ij}$)
- 如果弧的方向指向 v_i , 并且有 $f_{ii} > 0$, 则 v_i 标号(f_{ii})
- (3) 重复第(2)步,可能出现两种结局:
- 标号过程中断,t 无法标号,说明网络中不存在增广链,目前流量为最大流。同时可以确定最小割集,记已标号的点集为V,未标号的点集合为V',(V,V')为网络的最小割。
- *t* 得到标号,反向追踪在网络中找到一条从s到t得由标号点及相应的弧连接而成的增广链。继续第(4)步

(4) 修改流量。设原图可行流为f,令

$$f' = \begin{cases} f + \varepsilon(t) & \text{对增广链上所有前向弧} \\ f' = \begin{cases} f - \varepsilon(t) & \text{对增广链上所有后向弧} \\ f & \text{所有非增广链上的弧} \end{cases}$$

得到网络上一个新的可行流f'。

(5) 擦除图上所有标号,重复(1)-(4)步,直到图中找不到任何增广链,计算结束。

例6.10 用标号算法求下图中 $s \rightarrow t$ 的最大流量,并找出最小割。

解: (1) 先给s标号(∞)

(2) 检查与s点相邻的未标号的点,因 f_{s1} < c_{s1} ,故对 v_1 标号 $\epsilon(1)$ =min{ ∞ , c_{s1} - f_{s1} }=1,

(2) 检查与 v_1 点相邻的未标号的点,因 $f_{13} < c_{13}$,故对 v_3 标号 $\epsilon(3)$ =min{1, c_{13} - f_{13} }= min{1, 6}= 1

(3) 检查与 v_3 点相邻的未标号的点,因 $f_{3t} < c_{3t}$,故对 v_t 标号 $\epsilon(t)$ =min{1, c_{3t} - f_{3t} }= min{1, 1}= 1

(4) 修改增广链上的流量,非增广链上的流量不变,得到新的可行流。

(5) 擦除所有标号,重复上述标号过程,寻找另外的增广链。

(5) 擦除所有标号,重复上述标号过程,寻找另外的增广链。

(6) 修改增广链上的流量,非增广链上的流量不变,得到新的可行流。

(7) 擦除所有标号,重复上述标号过程,寻找另外的增广链。

(7) 重复上述标号过程,寻找另外的增广链。

例6.9 求下图 $s \rightarrow t$ 的最大流,并找出最小割

解: (1) 在已知可行流的基础上,通过标号寻找增广链。

存在增广链 $s \rightarrow v_2 \rightarrow v_3 \rightarrow t$

(2) 修改增广链上的流量,非增广链上的流量不变,得到新的可行流。

(3) 擦除原标号,重新搜寻增广链。

(4) 重新搜寻增广链。

存在增广链: $s \rightarrow v_2 \rightarrow v_5 \rightarrow v_3 \rightarrow t$

(5) 修改增广链上的流量,非增广链上的流量不变,得到新的可行流。

(6) 擦除原标号

(7) 重新搜寻增广链。 存在增广链: $s \rightarrow v_5 \rightarrow v_3 \rightarrow t$ 1(1) 7(6) 4(3) 3(2) 4(3) **(1)** (∞) 3(2) 2(2) $\varepsilon(5)$ =min $\{\infty,1\}=1$ $\varepsilon(5) = \min\{1,2\} = 1$ 13(3) 5(4) 10(7) 8(6) 4(4) \mathbf{V}_2 $\varepsilon(5) = \min\{1,1\} = 1$

(8) 调整增广链上的流量,非增广链流量不变,得到新的可行流

(9) 擦除原标号

(10) 重新标号,搜索增广链 存在增广链: $s \rightarrow v_1 \rightarrow v_5 \rightarrow v_4 \rightarrow t$

(11) 调整增广链上的流量,非增广链流量不变,得到新的可行流

(11) 擦除标号,在新的可行流上重新标号。

(11) 擦除标号,在新的可行流上重新标号。

无法标号,不存在增广链,此可行流已为最大流。最大流量为14。 $V = \{s, v_2\}, V' = \{v_1, v_3, v_4, v_5, t\},$ 最小割为 $\{V, V'\}$

最小费用流问题

除了考虑流量,还要考虑"费用"因素。

网络 G = (V, A, c, b) ,其中权 $c_{ij} \ge 0$ 是弧 (v_i, v_j) 的容量,权 b_{ij} 是弧 (v_i, v_j) 上单位流量的费用。

v₀ 是指定的流值

最小费用流问题

给定流f, 定义增量网络G(f) = (V, A', c', b')如下:

$$A' = A^+ \cup A^-$$
, 其中,

$$(v_i, v_j) \in A^+, c'_{ij} = c_{ij} - f_{ij}, b'_{ij} = b_{ij};$$

若
$$(v_i,v_i) \in A 且 f_{ii} > 0$$
,则

$$(v_j, v_i) \in A^-, c'_{ji} = f_{ij}, b'_{ji} = -b_{ij}$$

G(f) 中的最小费用增广路: 以 b'_{ij} 为权的 s-t 最短路。

最小费用流问题

最小费用流算法:

- i) 给初始流 f=0;
- ii) 构造增量网络 G(f);
- iii) 在 G(f) 中求最小费用增广路,若不存在,则 f 已是最小费用最大流;若求得增广路 P,则按以下方式修改 f:

其中
$$\delta = \min \left\{ v_0 - v(f), \min_{(v_i, v_j) \in P} c'_{ij} \right\}$$
 o

若 $v(f) = v_0$, 则终止, 否则返回 ii)。

最小费用流算法(圈算法):

- i) 利用最大流昇法水一个流值为 ν_0 的流 f;
 - ii) 构造增量网络 G(f);
- iii) 在 G(f) 中求负费用圈,若不存在,则 f 已是流值为 ν_0 的最小费用流;若发现负费用圈 C,则按以下方式修改 f:

$$f_{ij} = \begin{cases} f_{ij} + \delta, & (v_i, v_j) \in C \cap A^+ \\ f_{ij} - \delta, & (v_j, v_i) \in C \cap A^- \\ f_{ij}, &$$
 否则

其中
$$\delta = \min_{(v_i, v_j) \in C} c'_{ij}$$
 。

然后返回 ii)。

求流值为3的最小费用流:

