Clustering

Working with Unlabeled Data - Clustering Analysis

Reference

K-means clustering using scikit-learn


```
^LJ_^ ~, +1)
           s=50, c='lightblue',
           marker='v', edgecolor='black',
           label='Cluster 3')
plt.scatter(km.cluster_centers_[:, 0],
           km.cluster_centers_[:, 1],
           s=250, marker='*',
           c='red', edgecolor='black',
           label='Centroids')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend(scatterpoints=1)
plt.grid()
plt.tight_layout()
#plt.savefig('figures/10_02.png', dpi=300)
plt.show()
```

More research to do with:

- A smarter way of placing the initial cluster centroids using k-means++
- Hard versus soft clustering

- Using the elbow method to find the optimal number of clusters
 - Distortion is the average of the euclidean squared distance from the centroid of the respective clusters.
 - Inertia is the sum of squared distances of samples to their closest cluster centre.

```
# What is the 'distortion'?
print(f'Distortion: {km.inertia_:.2f}')
```

Distortion: 72.48

Quantifying the quality of clustering via silhouette plots

The Silhouette method evaluates clustering quality by considering how well each data point fits within its assigned cluster compared to other clusters.

Silhouette Coefficient:

For each data point:

Calculate (ai): the average distance to all other points in its own cluster (cohesion).

Calculate (bi): the average distance to all points in the nearest neighboring cluster (separation).

• The Silhouette Coefficient for that point is:

$$rac{b_i - a_i}{\max(a_i,b_i)}$$

Close to 1: Point is well-clustered. Close to 0: Point is near the decision boundary between clusters. Close to -1: Point might be in the wrong cluster.

Global Silhouette Coefficient:

The average of all individual Silhouette Coefficients provides an overall measure of clustering quality:

Close to 1: Good clustering (well-separated and cohesive clusters). Close to -1: Poor clustering (significant overlap or misclassification). Close to 0: Overlapping clusters or unclear clustering.

```
yticks = []
for i, c in enumerate(cluster_labels):
    c_silhouette_vals = silhouette_vals[y_km == c]
   c_silhouette_vals.sort()
   y_ax_upper += len(c_silhouette_vals)
   color = cm.jet(float(i) / n_clusters)
   plt.barh(range(y_ax_lower, y_ax_upper), c_silhouette_vals, height=1.0,
             edgecolor='none', color=color)
   yticks.append((y_ax_lower + y_ax_upper) / 2.)
   y_ax_lower += len(c_silhouette_vals)
silhouette_avg = np.mean(silhouette_vals)
plt.axvline(silhouette_avg, color="red", linestyle="--")
plt.yticks(yticks, cluster_labels + 1)
plt.ylabel('Cluster')
plt.xlabel('Silhouette coefficient')
plt.tight_layout()
plt.show()
```

• Grouping clusters in bottom-up fashion

```
np.random.seed(123)

variables = ['X', 'Y', 'Z']
labels = ['ID_0', 'ID_1', 'ID_2', 'ID_3', 'ID_4']

X = np.random.random_sample([5, 3])*10
df = pd.DataFrame(X, columns=variables, index=labels)
df
```

Next steps: Generate code with row_dist

View recommended plots

New interactive sheet

from scipy.cluster.hierarchy import linkage

Locating regions of high density via DBSCAN

```
from sklearn.datasets import make_moons

X, y = make_moons(n_samples=200, noise=0.05, random_state=0)
plt.scatter(X[:, 0], X[:, 1])

plt.xlabel('Feature 1')
plt.ylabel('Feature 2')

plt.tight_layout()
plt.show()
```

```
from sklearn.cluster import AgglomerativeClustering

f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 3))

km = KMeans(n_clusters=2, random_state=0)
y_km = km.fit_predict(X)
```

```
ax1.scatter(X[y_km == 0, 0], X[y_km == 0, 1],
            edgecolor='black',
            c='lightblue', marker='o', s=40, label='cluster 1')
ax1.scatter(X[y_km == 1, 0], X[y_km == 1, 1],
            edgecolor='black',
            c='red', marker='s', s=40, label='cluster 2')
ax1.set_title('K-means clustering')
ax1.set_xlabel('Feature 1')
ax1.set_ylabel('Feature 2')
ac = AgglomerativeClustering(n_clusters=2, linkage='complete')
y_ac = ac.fit_predict(X)
ax2.scatter(X[y_ac == 0, 0], X[y_ac == 0, 1], c='lightblue',
            edgecolor='black',
            marker='o', s=40, label='Cluster 1')
ax2.scatter(X[y_ac == 1, 0], X[y_ac == 1, 1], c='red',
            edgecolor='black',
            marker='s', s=40, label='Cluster 2')
ax2.set_title('Agglomerative clustering')
ax2.set_xlabel('Feature 1')
ax2.set_ylabel('Feature 2')
plt.legend()
plt.tight_layout()
plt.show()
```

```
# Density-based clustering
from sklearn.cluster import DBSCAN

db = DBSCAN(eps=0.2, min_samples=5, metric='euclidean')
y_db = db.fit_predict(X)
plt_scatter(X[v]db == 0.01, X[v]db == 0.11
```

Your work

Task 1: Execute the provided code in your notebook to observe how the silhouette score aids in selecting the optimal number of clusters in K-means.

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

Task 2: Execute the provided code in your notehook to observe which clustering algorithms are

suitable for different data structures.

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html#sphx-glr-auto-examples-cluster-plot-cluster-comparison-py

Submit your notebook in PDF format to BrightSpace by 5/4/2025 11:50 pm.

```
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
from sklearn.datasets import make blobs
from sklearn.metrics import silhouette_samples, silhouette_score
# Generating the sample data from make_blobs
# This particular setting has one distinct cluster and 3 clusters placed close
# together.
X, y = make_blobs(
    n samples=500,
    n_features=2,
    centers=4,
    cluster std=1,
    center_box=(-10.0, 10.0),
    shuffle=True,
   random state=1,
) # For reproducibility
range_n_clusters = [2, 3, 4, 5, 6]
for n_clusters in range_n_clusters:
    # Create a subplot with 1 row and 2 columns
    fig, (ax1, ax2) = plt.subplots(1, 2)
    fig.set_size_inches(18, 7)
    # The 1st subplot is the silhouette plot
    # The silhouette coefficient can range from -1, 1 but in this example all
    # lie within [-0.1, 1]
    ax1.set xlim([-0.1, 1])
    # The (n clusters+1)*10 is for inserting blank space between silhouette
    # plots of individual clusters, to demarcate them clearly.
    ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
    # Initialize the clusterer with n_clusters value and a random generator
    # seed of 10 for reproducibility.
    clusterer = KMeans(n_clusters=n_clusters, random_state=10)
```

```
cluster labels = clusterer.fit predict(X)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette avg = silhouette score(X, cluster labels)
print(
    "For n_clusters =",
    n clusters,
    "The average silhouette_score is :",
    silhouette_avg,
)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y lower = 10
for i in range(n_clusters):
    # Aggregate the silhouette scores for samples belonging to
    # cluster i, and sort them
    ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
    ith_cluster_silhouette_values.sort()
    size_cluster_i = ith_cluster_silhouette_values.shape[0]
    y_upper = y_lower + size_cluster_i
    color = cm.nipy spectral(float(i) / n clusters)
    ax1.fill_betweenx(
        np.arange(y_lower, y_upper),
        0,
        ith_cluster_silhouette_values,
        facecolor=color,
        edgecolor=color,
        alpha=0.7,
    )
    # Label the silhouette plots with their cluster numbers at the middle
    ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
    # Compute the new y_lower for next plot
    y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set vticks([]) # Clear the vaxis labels / ticks
```

```
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
   # 2nd Plot showing the actual clusters formed
    colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
    ax2.scatter(
        X[:, 0], X[:, 1], marker=".", s=30, lw=0, alpha=0.7, c=colors, edgecolor="k"
    )
   # Labeling the clusters
   centers = clusterer.cluster_centers_
   # Draw white circles at cluster centers
    ax2.scatter(
        centers[:, 0],
        centers[:, 1],
        marker="o",
        c="white",
        alpha=1,
        s=200,
        edgecolor="k",
    )
   for i, c in enumerate(centers):
        ax2.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50, edgecolor="k")
   ax2.set_title("The visualization of the clustered data.")
    ax2.set_xlabel("Feature space for the 1st feature")
   ax2.set_ylabel("Feature space for the 2nd feature")
   plt.suptitle(
        "Silhouette analysis for KMeans clustering on sample data with n_clusters = %d"
       % n_clusters,
       fontsize=14,
        fontweight="bold",
    )
plt.show()
```

```
# Generate datasets. We choose the size big enough to see the scalability
# of the algorithms, but not too big to avoid too long running times
# =======
n \text{ samples} = 500
seed = 30
noisy_circles = datasets.make_circles(
    n_samples=n_samples, factor=0.5, noise=0.05, random_state=seed
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=0.05, random_state=seed)
blobs = datasets.make_blobs(n_samples=n_samples, random_state=seed)
rng = np.random.RandomState(seed)
no_structure = rng.rand(n_samples, 2), None
# Anisotropicly distributed data
random_state = 170
X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state)
transformation = [[0.6, -0.6], [-0.4, 0.8]]
X_aniso = np.dot(X, transformation)
aniso = (X_aniso, y)
# blobs with varied variances
varied = datasets.make_blobs(
    n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state
)
# ========
# Set up cluster parameters
# =======
plt.figure(figsize=(9 * 2 + 3, 13))
plt.subplots_adjust(
    left=0.02, right=0.98, bottom=0.001, top=0.95, wspace=0.05, hspace=0.01
)
plot num = 1
default base = {
    "quantile": 0.3,
    "eps": 0.3,
    "damping": 0.9,
    "preference": -200,
    "n_neighbors": 3,
    "n_clusters": 3,
    "min samples": 7,
    "xi": 0.05,
    "min_cluster_size": 0.1,
    "allow single cluster": True,
    "hdbscan_min_cluster_size": 15,
    "hdbscan_min_samples": 3,
    "random_state": 42,
}
```

```
datasets = [
    (
        noisy_circles,
        {
            "damping": 0.77,
            "preference": -240,
            "quantile": 0.2,
            "n_clusters": 2,
            "min_samples": 7,
            "xi": 0.08,
        },
    ),
        noisy_moons,
        {
            "damping": 0.75,
            "preference": -220,
            "n_clusters": 2,
            "min_samples": 7,
            "xi": 0.1,
        },
    ),
    (
        varied,
        {
            "eps": 0.18,
            "n_neighbors": 2,
            "min_samples": 7,
            "xi": 0.01,
            "min_cluster_size": 0.2,
        },
    ),
        aniso,
        {
            "eps": 0.15,
            "n_neighbors": 2,
            "min_samples": 7,
            "xi": 0.1,
            "min_cluster_size": 0.2,
        },
    ),
    (blobs, {"min_samples": 7, "xi": 0.1, "min_cluster_size": 0.2}),
    (no_structure, {}),
]
for i_dataset, (dataset, algo_params) in enumerate(datasets):
    # update parameters with dataset-specific values
    params = default_base.copy()
    params.update(algo params)
```

```
X, y = dataset
# normalize dataset for easier parameter selection
X = StandardScaler().fit_transform(X)
# estimate bandwidth for mean shift
bandwidth = cluster.estimate_bandwidth(X, quantile=params["quantile"])
# connectivity matrix for structured Ward
connectivity = kneighbors graph(
    X, n_neighbors=params["n_neighbors"], include_self=False
)
# make connectivity symmetric
connectivity = 0.5 * (connectivity + connectivity.T)
# ========
# Create cluster objects
# ========
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)
two means = cluster.MiniBatchKMeans(
    n_clusters=params["n_clusters"],
    random_state=params["random_state"],
ward = cluster.AgglomerativeClustering(
    n clusters=params["n clusters"], linkage="ward", connectivity=connectivity
spectral = cluster.SpectralClustering(
    n_clusters=params["n_clusters"],
    eigen_solver="arpack",
    affinity="nearest neighbors",
    random_state=params["random_state"],
)
dbscan = cluster.DBSCAN(eps=params["eps"])
hdbscan = cluster.HDBSCAN(
    min samples=params["hdbscan min samples"],
    min_cluster_size=params["hdbscan_min_cluster_size"],
    allow_single_cluster=params["allow_single_cluster"],
optics = cluster.OPTICS(
    min samples=params["min samples"],
    xi=params["xi"],
    min_cluster_size=params["min_cluster_size"],
affinity_propagation = cluster.AffinityPropagation(
    damping=params["damping"],
    preference=params["preference"],
    random_state=params["random_state"],
average_linkage = cluster.AgglomerativeClustering(
```

```
linkage="average",
    metric="cityblock",
    n clusters=params["n clusters"],
    connectivity=connectivity,
)
birch = cluster.Birch(n_clusters=params["n_clusters"])
gmm = mixture.GaussianMixture(
    n components=params["n clusters"],
    covariance_type="full",
    random_state=params["random_state"],
)
clustering algorithms = (
    ("MiniBatch\nKMeans", two_means),
    ("Affinity\nPropagation", affinity_propagation),
    ("MeanShift", ms),
    ("Spectral\nClustering", spectral),
    ("Ward", ward),
    ("Agglomerative\nClustering", average_linkage),
    ("DBSCAN", dbscan),
    ("HDBSCAN", hdbscan),
    ("OPTICS", optics),
    ("BIRCH", birch),
    ("Gaussian\nMixture", gmm),
)
for name, algorithm in clustering_algorithms:
    t0 = time.time()
    # catch warnings related to kneighbors_graph
    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore",
            message="the number of connected components of the "
            + "connectivity matrix is [0-9]{1,2}"
            + " > 1. Completing it to avoid stopping the tree early.",
            category=UserWarning,
        )
        warnings.filterwarnings(
            "ignore",
            message="Graph is not fully connected, spectral embedding"
            + " may not work as expected.",
            category=UserWarning,
        algorithm.fit(X)
    t1 = time.time()
    if hasattr(algorithm, "labels_"):
        y_pred = algorithm.labels_.astype(int)
    else:
        y pred = algorithm.predict(X)
```

```
plt.subplot(len(datasets), len(clustering_algorithms), plot_num)
        if i_dataset == 0:
            plt.title(name, size=18)
        colors = np.array(
            list(
                islice(
                    cycle(
                             "#377eb8",
                             "#ff7f00",
                             "#4daf4a",
                             "#f781bf",
                             "#a65628",
                             "#984ea3",
                             "#999999",
                             "#e41a1c",
                             "#dede00",
                         ]
                     ),
                    int(max(y_pred) + 1),
                )
            )
        )
        # add black color for outliers (if any)
        colors = np.append(colors, ["#000000"])
        plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred])
        plt.xlim(-2.5, 2.5)
        plt.ylim(-2.5, 2.5)
        plt.xticks(())
        plt.yticks(())
        plt.text(
            0.99,
            0.01,
            ("%.2fs" % (t1 - t0)).lstrip("0"),
            transform=plt.gca().transAxes,
            size=15,
            horizontalalignment="right",
        )
        plot_num += 1
plt.show()
```