

#### Precision/Recall

- When computing one of the two measures, it is important (if possible) to report the other
- The reason is that it is easy to increase one at the expense of the other
  - Predicting more positive would increase recall at the expense of precision
  - Predicting more negative would increase precision at the expense of recall
- Often their harmonic mean is used to report one is known as F-score:

$$F\text{-score} = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

# Pretraining and Contextualized Word Embeddings

#### Contextualized Word Embeddings

- Pre-neural NLP: manually crafted features, most supervised learning
- Labeled data is scarce, unlabeled data is abundant
  - And there is much we can learn from unlabeled data
  - Yet, supervised learning requires labeled data...
- Word embeddings liked word2vec partially address this:
  - Using unlabeled data we can get embeddings, which in turn can serve as features for supervised learning
- But bag-of-words embeddings give up on a lot of useful information:
  - Word order
  - Different senses/uses of a word are conflated

#### Contextualized Word Embeddings

- Neural language models implicitly represent much information about words
  - To predict the next word, we need to represent not only the neighbors of a word, but also their senses, their order etc.
  - They therefore implicitly induce embeddings from unlabeled data that contain richer information than, say, word2vec
- The same can potentially hold for sentences:
  - A sentence can be represented with a representation that can help predict the preceding and following sentence

## What does an LM need to know implicitly?

- Much like with Machine Translation, Language Modeling requires very diverse capabilities
- Grammar:

He grew up to be taller \_\_\_\_ (than)

I ate breakfast and \_\_\_ (then)

- Disambiguation:
  - The odd one out of the words crane, pelican, excavator, hoist and upraise is (pelican)

## What does an LM need to know implicitly?

General factual knowledge:

The capital of France is \_\_\_\_\_ (Paris)

• Paraphrasing:

Instead of saying that you could not disagree more, you can say (you strongly disagree)

Among many others...

#### Pre-training

- But for language models all we need is unlabeled text
- We can therefore train language models to perform next word prediction and use the obtained model as initialization for a downstream task
- This stage is known as pre-training and the supervised part is called fine-tuning
- Pre-training tends to be very demanding computationally, but many fine-tuned models can be used with it

#### Pre-training and Fine-tuning



## Pre-training and Fine-tuning

 For the fine-tuning task, we often replace the linear+softmax layer we used in the LM for decoding, with a task-specific sub-network

 Most common: a classification head – usually a feed forward network and a soft-max over the labels at the end



#### The BERT Model

- The first widely popular model to use pretraining
- The BERT model is a standard model for obtaining contextualized word embeddings
- The model is built like a *Transformer* **encoder**, except that instead of generating a list of vector embeddings, it feeds these vectors to a linear layer, followed by a soft-max
- BERT provides embeddings for each token in the input sequence – the computed vector that enters the linear layer



BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://arxiv.org/abs/1810.04805

#### Masked Language Models

- BERT is trained as a masked language model (MLM)
- MLMs are statistical models that, given a sentence where part of the tokens are replaced with masks, predict the identity of the masked tokens

#### My dog is [MASK] and likes to [MASK] the entire [MASK].

| Mask 1                                                             |       |
|--------------------------------------------------------------------|-------|
| Prediction                                                         | Score |
| My dog is <b>hungry</b> and likes to [MASK2] the entire [MASK3].   | 5.6%  |
| My dog is <b>friendly</b> and likes to [MASK2] the entire [MASK3]. | 4.8%  |
| My dog is <b>cute</b> and likes to [MASK2] the entire [MASK3].     | 3.7%  |
| My dog is <b>nice</b> and likes to [MASK2] the entire [MASK3].     | 2.9%  |
| My dog is <b>smart</b> and likes to [MASK2] the entire [MASK3].    | 2.4%  |

#### BERT's Training

- BERT's training is carried out by segmenting texts into windows in the size of the model's input window, and selecting 15% of the tokens (denote the set with *S*)
- The tokens in *S* are altered such that:
  - 80% of them are replaced with the special token <MASK>
  - 10% of them are replaced with a random token
  - 10% of them remain the same
- Denote the modified input sequence with x'



#### BERT's Training

• The loss function is then the cross entropy loss <u>over</u> the tokens in S:

$$L(\theta) = -\frac{1}{|S|} \sum_{i \in S} log(p_{\theta}(x_i|x'))$$

• During inference, no masking is employed



#### Fine Tuning BERT

- The standard paradigm for using BERT in NLP includes two phases:
  - Pre-training
  - Fine-tuning



## Examples for fine-tuning BERT

#### • POS tagging:

- Often viewed as an independent prediction task (not structured prediction)
- A classification head for each word
  - Its input is the BERT embedding and its output is a soft-max in the dimension of the number of POS tags.
- As usual, the j-th coordinate of the soft-max is interpreted as  $P(y_j|x_1,...,x_n)$
- Training set:
  - Each sample consists of the sentence  $(x_1,...,x_n)$ , index i, and gold POS tag for i-th token  $y_i^*$
  - Cross entropy loss over  $P(y_i^*|x_1,...,n)$

### Examples for fine-tuning BERT



Sequence labeling for part-of-speech tagging with a bidirectional transformer encoder. The output vector for each input token is passed to a simple k-way classifier.

#### Next Sentence Prediction

- BERT is in fact pretrained not only as a masked language, but also as a model for Next Sentence Prediction (NSP)
- NSP is the task that requires, given two sentences, to determine whether the two sentences form a sensible consecutive pair or is just two random sentences
  - NSP training data: positive pairs of adjacent sentences, negative pairs of random sentences



An example of the NSP loss calculation. Figure 11.7

#### Next Sentence Prediction

- Each training sample is prepended with a special [CLS] token. A special [SEP] token is added between the sentences
- The loss function is over the [CLS] where the labels are 1/0
- [CLS] is often used for fine-tuning on sentence classification tasks



Figure 11.7 An example of the NSP loss calculation.

## Examples for fine-tuning BERT

- Sentiment analysis:
  - Viewed as a sentence classification task
  - A classification head is placed over a special token ([CLS])
    - As before, usually a linear layer followed by a soft-max
  - The soft-max is interpreted as  $P(class | x_1,...,x_n)$ 
    - class takes values in the set of potential sentiment classes
  - Training set:
    - Each sample consists of the sentence  $(x_1,...,x_n)$ , gold POS tag for the sentence  $y^*$
    - The loss function is the expectation over log  $P(y^* | x_1,...,x_n)$

## Results of Fine-tuning BERT

- BERT achieved very impressive results across a range of token and sentence classification tasks, sequence prediction, as well as other baselines
- A very broad experimental setup in terms of task types and baselines
- It was widely adopted, and is still often used (about 5 years after its inception)
- For detailed results, see the original BERT paper

# Zero-shot Prediction: Alternative to using MLM for embeddings

- (Masked) language models can also be used to directly decode the answer as a token (without fine-tuning). This is called zero-shot prediction.
- For example, this can be used to answer the question "what movies did Brad Pitt appear in?"

On November 22, 2001, Pitt made a guest appearance in the eighth season of the television series *Friends*, playing a man with a grudge against <u>Rachel Green</u>, played by <u>Jennifer Aniston</u>, to whom Pitt was married at the time. [86] For this performance he was nominated for an <u>Emmy Award</u> in the category of <u>Outstanding Guest Actor in a Comedy Series</u>. [87] In December 2001, Pitt played <u>Rusty Ryan</u> in the heist film <u>Ocean's Eleven</u>, a remake of the 1960 <u>Rat Pack original</u>. He joined an ensemble cast including <u>George Clooney</u>, <u>Matt Damon</u>, <u>Andy García</u>, and Julia Roberts. [88] Well received by critics, <u>Ocean's Eleven</u> was highly successful at the box office, earning \$450 million worldwide. [32] Pitt appeared in two episodes of MTV's reality series <u>Jackass</u> in February 2002, first running through the streets of Los Angeles with several cast members in gorilla suits, [89] and in a subsequent episode participating in his own staged abduction. [90] In the same year, Pitt had a cameo role in George Clooney's directorial debut <u>Confessions of a Dangerous Mind</u>. [91] He took on his first voice-acting roles in 2003, speaking as the titular character of the <u>DreamWorks</u> animated film <u>Sinbad: Legend of the Seven Seas</u> [92] and playing <u>Boomhauer</u>'s brother, <u>Patch</u>, in an episode of the animated television series <u>King of the Hill</u>. [93]

Pitt appeared in the movie [MASK]





- 0.3 Ocean's Eleven
- 0.15 Confessions of a Dangerous Mind
- 0.01 Friends
- 0.01 Jackass

•••

#### Decoder-only Models

 Another prominent alternative to Transformer-based language models are decoder-only models

Sometimes referred to as GPT (generative pretraining) models

These models are left-to-right language models, consisting only of a

Transformer decoder



#### Fine-tuning Decoder-only Models

- Decoder-only models can also be fine-tuned
  - Implementation details vary but the crux is the same using the parameters of the pretrained model as the initialization for a prediction model built on top of it



## Left-to-right vs. Masked Language Models

- There has been much debate over recent years as to the relative merits of (ltr) LMs and MLMs
  - LMs define a probability distribution over strings, while MLMs do not
  - MLMs take both sides of the context into account in their representations (LMs only have representations of prefixes)
  - LMs can be easily fine-tuned not only for prediction, but also for text generation (this property turns out to be crucial)

#### Very Large Language Models



and they are continuing to get bigger since...

#### Prompting

- Large language models (to give a ballpark: > 1B parameters) have become good enough at some point, that instead of training them, people began to query them directly
  - "Prompt" is the technical name of the prefix of the text given



#### Prompting

Q: how big is France?

A:





#### Few-shot Learning

A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is:

We were traveling in Africa and we saw these very cute whatpus.

To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:

One day when I was playing tag with my little sister, she got really excited and she started doing these crazy farduddles.

A "yalubalu" is a type of vegetable that looks like a big pumpkin. An example of a sentence that uses the word yalubalu is:

I was on a trip to Africa and I tried this yalubalu vegetable that was grown in a garden there. It was delicious.

A "Burringo" is a car with very fast acceleration. An example of a sentence that uses the word Burringo is:

In our garage we have a Burringo that my father drives to work every day.

A "Gigamuru" is a type of Japanese musical instrument. An example of a sentence that uses the word Gigamuru is:

I have a Gigamuru that my uncle gave me as a gift. I love to play it at home.

To "screeg" something is to swing a sword at it. An example of a sentence that uses the word screeg is:

We screeghed at each other for several minutes and then we went outside and ate ice cream.

Few-shot learning: using a new word in a sentence

Language Models are Few-Shot Learners Brown et al., 2020 https://arxiv.org/pdf/2005.14165.pdf

#### Zero-shot Learning

- Zero-shot capabilities: a domain-general language model (can do anything if asked to)
- More of an ideal than an accomplished goal

Figure G.19: Formatted dataset example for Cycled Letters

#### Zero-shot Learning

- Zero-shot capabilities: a domain-general language model (can do anything if asked to)
- More of an ideal than an accomplished goal



Figure G.20: Formatted dataset example for DROP

#### Instruct Models

 Instruction models (like ChatGPT) do more than complete the next word – they are tuned to follow instructions

Prompt Explain the moon landing to a 6 year old in a few sentences.

Completion GPT-3

Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.

Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and sent them back to the earth so we could all see them.

#### Instruct Models

- This is achieved by a combination of fine-tuning them on many annotated instructions, as well as a reinforcement learning procedure
- More on this in the next lesson



Scaling Instruction-Finetuned Language Models https://arxiv.org/pdf/2210.11416.pdf

There are no good ways to evaluate language models

- Because
  - language models are used for very diverse goals
  - there are generally many very different ways to correctly follow an instruction or a set of examples
  - there are no good metrics to compare whether two texts are nearequivalent as responses to a task (e.g., similar translations, similar summaries etc.)

- Several directions are employed:
  - Multiple-choice tests
  - Building embedding-based metrics for comparing between machine output and a reference

- Several directions are employed:
  - Multiple-choice tests



Figure 3: Examples from the Microeconomics task.



Figure 4: Examples from the Conceptual Physics and College Mathematics STEM tasks.

- Benchmarks of many tests
  - HELM

A holistic framework for evaluating foundation models.





Embedding-based reference-based metrics



Figure 1: Illustration of the computation of the recall metric  $R_{\rm BERT}$ . Given the reference x and candidate  $\hat{x}$ , we compute BERT embeddings and pairwise cosine similarity. We highlight the greedy matching in red, and include the optional idf importance weighting.

#### Conclusion

- Pretraining has been a game changer in NLP in the last couple of years
- The first steps were contextualized word embeddings, that create word embeddings specific to the text where the word is situated
  - These are produced by a model that is later fine-tuned in a supervised manner
- The next step uses larger models allowed zero-shot/few-shot learning
- The latest are instruct models, which follow instructions in natural language