Introdução Decidibilidade Linguagens regulares Linguagens livres de contexto Exercícios

Teoria da Computação Decidibilidade

Leonardo Takuno {leonardo.takuno@gmail.com}

Centro Universitário Senac

- Introdução
- 2 Decidibilidade
- 3 Linguagens regulares
- 4 Linguagens livres de contexto
- 5 Exercícios

- Introdução
- 2 Decidibilidade
- 3 Linguagens regulares
- 4 Linguagens livres de contexto
- Exercícios

Estamos prontos para atacar a questão:

O que os computadores podem ou não fazer ?

Fazemos isso por considerar as questões:

Quais linguagens são Turing decidíveis, Turing reconhecíveis, ou nenhum ?

Assumindo a tese de Church-Turing, essas são propriedades fundamentais das linguagens.

- Introdução
- 2 Decidibilidade
- 3 Linguagens regulares
- 4 Linguagens livres de contexto
- 5 Exercícios

- Para mostrar que uma linguagem é decidível:
 - Escreva um decisor que a decide:
 - Deve-se mostrar que o decisor:
 - Pára sobre todas as entradas;
 - Aceita w se e somente se w pertence à linguagem;

Introdução Decidibilidade Linguagens regulares Linguagens livres de contexto Exercícios

Decidibilidade

Vamos estudar algum **padrão** de máquinas que são decisores. Estas máquinas nos ajudarão a construir provas mais complicadas.

- Introdução
- 2 Decidibilidade
- 3 Linguagens regulares
- 4 Linguagens livres de contexto
- 5 Exercícios

Teorema: A linguagem

$$A_{AFD} = \{\langle B, w \rangle | \text{B \'e um AFD que aceita a cadeia de entrada } w \}$$

é decidível.

Prova: Construimos um decisor M_{AFD} para A_{AFD} .

 $M_{AFD} =$ "Sobre a entrada $\langle B, w \rangle$, onde B é um AFD, e w, uma cadeia:

- Simule B sobre a entrada w;
- Se a simulação termina em um estado de aceitação, aceite. Se ela termina em um estado de não-aceitação, rejeite"

Teorema: A linguagem

 $A_{AFN} = \{\langle B, w \rangle | \text{B \'e um AFN que aceita a cadeia de entrada } w \}$

é decidível.

Prova: Construimos um decisor N_{AFN} para A_{AFN} .

 $N_{AFN} =$ "Sobre a entrada $\langle B, w \rangle$ onde B é um AFN, e w, uma cadeia:

- Onverta AFN B para um AFD equivalente C, usando um procedimento para essa conversão.
- 2 Rode a MT M_{AFD} sobre a entrada $\langle C, w \rangle$.
- \odot Se M_{AFD} aceita, aceite; caso contrário, rejeite".

Teorema: A linguagem

$$A_{EXR} = \{\langle R, w \rangle | R$$
 é uma expressão regular que gera a cadeia $w\}$

é decidível.

Prova: Construimos um decisor P_{EXR} para A_{EXR} .

 P_{EXR} = "Sobre a entrada $\langle R, w \rangle$, onde R é uma expressão regular e w é uma cadeia:

- Converta a expressão regular R para um AFN equivalente A usando um procedimento para essa conversão.
- 2 Rode a MT N_{AFN} sobre a entrada $\langle A, w \rangle$
- Se N aceita, aceite, se N rejeita, rejeite"

Teorema: A linguagem

$$V_{AFD} = \{ \langle A \rangle | A \text{ \'e um AFD e L(A)} = 0 \}$$

é decidível.

Prova: Construimos um decisor T para V_{AFD} .

T = "Sobre a entrada $\langle A \rangle$ onde A é um AFD:

- Marque o estado inicial de A;
- 2 Repita até que nenhum estado novo venha a ser marcado.
- Marque qualquer estado que tenha uma transição chegando nele a partir de qualquer estado que já está marcado.
- Se nenhum estado de aceitação estiver marcado, aceite, caso contrário rejeite.

Teorema: A linguagem

$$EQ_{AFD} = \{\langle A, B \rangle | A \in B \text{ são AFDs e L(A)} = L(B)\}$$

é decidível.

Prova: Para provar esse teorema construímos um novo AFD C que aceita somente as cadeias que são aceitas ou por A ou por B, mas não por ambos. Isto é,

$$L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)). \tag{1}$$

Além disso, $L(C) = \emptyset$ implica L(A) = L(B). A classe das linguagens regulares é fechada sob complemento, união e intersecção.

Portanto é possível construir uma máquina C de acordo com 1

Podemos construir um decisor M_{EQDFA} para EQ_{AFD} . $M_{EQDFA} =$ "Sobre a entrada $\langle A, B \rangle$ onde A e B são AFDs:

- 1 Construa o AFD C conforme descrito em 1.
- 2 Rode a MT T do Teorema anterior sobre a entrada $\langle C \rangle$.
- 3 Se T aceita, aceite. Se T rejeita, rejeite"

- Introdução
- 2 Decidibilidade
- 3 Linguagens regulares
- 4 Linguagens livres de contexto
- 5 Exercícios

Teorema: A linguagem

$$A_{GLC} = \{\langle G, w \rangle | \text{ G \'e uma GLC que gera a cadeia } w\}$$

é decidível.

Prova : Constuir a MT S para A_{GLC} :

 $S = \text{"Sobre } \langle G, w \rangle$, onde G é uma GLC, e w, uma cadeia:

- Converta G para uma gramática equivalente na forma normal de Chomsky
- ② Liste todas as derivações com 2n-1 passos, onde n é o comprimento de w, exceto se n=0; nesse último caso, liste todas as derivações com 1 passo.
- Se alguma dessas derivações gera w, aceite; se não, rejeite"

Teorema: A linguagem

$$V_{GLC} = \{\langle G \rangle | G \text{ \'e uma GLC e } L(G) = 0\}$$

é decidível.

Prova: Construa uma MT R para V_{GLC}

 $R = \text{"Sobre a entrada } \langle G \rangle$, onde G é uma GLC:

- Marque todos os símbolos terminais em G;
- Repita até que nenhuma variável venha a ser marcada;
- **3** Marque qualquer variável A onde G tem uma regra $A \rightarrow U_1 U_2 \cdots U_k$ e cada símbolo $U_1 U_2 \cdots U_k$ já tenha sido marcado.
- Se a variável inicial não está marcada, aceite, caso contrário, reieite.

Igualdade de GLCs

E sobre a a igualdade das linguagens

$$EQ_{GLC} = \{\langle G, H \rangle | G \text{ e H são GLCs com } L(G) = L(H) \}$$

?

- Para AFDs podemos usar o procedimento de decisão para V_{AFD} para provar que EQ_{AFD} é decidível.
- Para GLCs não é possível ... (Por quê?)
 - ... Por que GLCs não são fechados sobre o complemento e sobre a intersecção.

Mais tarde veremos que EQ_{GLC} não é decidível.

Teorema: Toda Linguagem livre-de-contexto é decidível.

Prova: Utilizaremos a MT S que decide A_{GLC} . Seja G uma GLC para A e projetemos uma MT M_G que decide A.

 $M_G =$ "Sobre a entrada w:

- **1** Rode a MT S sobre a entrada $\langle G, w \rangle$.
- 2 Se essa máquina aceita, aceite; se ela rejeita, rejeite."

Concatenação

Proposição : Sejam L1 e L2 linguagens decidíveis, então a concatenação L=L1 . L2 é também decidível.

Prova: Mostramos decidibilidade de L construindo um decisor para ele. Seja M1 e M2 decisores para L1 e L2, respectivamente, então podemos construir um decisor M para L como segue:

- M = "Sobre a entrada w,
 - Para cada caminho divida w em duas partes, $w = w_1 w_2$, faça
 - Execute M1 sobre w₁

 - Se qualquer combinação M1 e M2 aceita, aceite; caso contrário, rejeite."

- Introdução
- 2 Decidibilidade
- 3 Linguagens regulares
- 4 Linguagens livres de contexto
- Exercícios

Introdução Decidibilidade Linguagens regulares Linguagens livres de contexto Exercícios

Exercícios

1) Considere o problema de determinar se um AFD e uma expressão regular são equivalentes. Expresse este problema como linguagem e mostre que é decidível.

Exercícios (Solução)

Solução: Formulamos o problema como $EQ_{AFD,ER} = \{\langle A,R \rangle | A$ é um AFD, R é uma expressão regular e $L(A) = L(R)\}$. Construa a máquina T que decide $EQ_{AFD,ER}$.

T = "Sobre a entrada $\{\langle A,R\rangle \text{ onde } A \text{ \'e um AFD e } R \text{ \'e uma expressão regular}$

- ① Converta R em um AFD B equivalente. Portanto, L(B) = L(R).
- ② Execute a MT *MEQDFA* que decide EQ_{AFD} sobre a entrada $\langle A, B \rangle$.
- 3 Aceite se MEQDFA aceita, e rejeite caso contrário.

Exercícios

2) Seja $TODAS_{AFD} = \{\langle A \rangle | A \text{ \'e um AFD e } L(A) = \Sigma^* \}$ mostre que $TODAS_{AFD}$ \'e decidível.

Exercícios (Solução)

Solução: Construiremos uma MT M que decida $TODAS_{AFD}$. Para isso usaremos o decisor T que decide V_{AFD}

 $M = \text{"Sobre a entrada } \langle A \rangle \text{ onde } A \text{ \'e um AFD:}$

- Construir um AFD B tal que $L(B) = \overline{L(A)}$.
- Execute T sobre a entrada \(\begin{aligned} \begin{aligned} B \end{aligned} \). Dê como saída o que T der como saída.

Como V_{AFD} é decidível, $TODAS_{AFD}$ é decidível.

Introdução Decidibilidade Linguagens regulares Linguagens livres de contexto Exercícios

Exercícios

3) Seja *INFINITA*_{AFD} = $\{\langle A \rangle | A \text{ \'e um AFD e } L(A) \text{ \'e uma linguagem infinita } \}$. Mostre que *INFINITA*_{AFD} 'e decidível.

Exercícios (Solução)

Solução: A seguinte máquina de Turing M decide *INFINITA_{AFD}*. $M = "Sobre a entrada <math>\langle A \rangle$ onde A é AFD

- Seja k o número de estados de A
- Construa um AFD D que aceite todas as cadeias de comprimento k ou mais.
- **3** Construa um AFD M tal que $L(M) = L(A) \cap L(B)$
- **1** Teste $L(M) = \emptyset$, usando o decisor T de V_{AFD}
- 5 Se T aceita, rejeite; se T rejeita, aceite

Uma cadeia de comprimento k ou mais, onde k é o número de estados do AFD pode ser bombeada de maneira prescrita no lema de bombeamento para linguagens regulares para se obter uma quantidade infinita de cadeias aceitas.

Exercícios

4) Seja $A = \{\langle M \rangle | M \text{ \'e um AFD que n\~ao aceita nenhuma cadeia contendo um n\'umero ímpar de 1s}\}$. Mostre que A é decidível.

Exercícios (Solução)

A seguinte MT M decide A $M = "Sobre a entrada \langle M \rangle$:

- Onstrua um AFD O que aceite toda cadeia contendo um número ímpar de 1s.
- ② Construa o AFD B tal que $L(B) = L(M) \cap L(O)$.
- **3** Teste se $L(B) = \emptyset$, usando o decisor T de V_{AFD} .
- Se T aceita, aceite; se T rejeita, rejeite

Exercícios (Para casa)

- 5) Seja $A = \{\langle R, S \rangle | R \text{ e S são expressões regulares e } L(R) \subseteq L(S) \}$. Mostre que A é decidível.
- 6) Seja $INFINITA_{AP} = \{\langle M \rangle | M \text{ \'e um AP e } L(M) \text{ \'e uma linguagem infinita } \}$. Mostre que $INFINITA_{AP}$ é decidível.