Analysis I WS 2015

___1. Übungsblatt zur Vorlesung Analysis I _____

Aufgabe 1: Vollständige Induktion

4 Punkte

Beweisen Sie mit vollständiger Induktion

- 1. $5^n 1$ ist durch 4 teilbar.
- 2. $3^{2^n} 1$ ist durch 2^{n+2} teilbar.
- 3. Die Anzahl A_n aller Teilmengen einer n-elementigen Menge ist gegeben durch $A_n = 2^n$.

Aufgabe 2: Indirekter Beweis

4 Punkte

Es seien $a_1, \ldots, a_m \in \mathbb{N}$. Beweisen Sie: Gilt für ein $n \in \mathbb{N}$

$$\prod_{i=1}^{m} (1 + a_i) > 2^n, \text{ so folgt } \sum_{i=1}^{m} a_i > n.$$

Hinweis: Zeigen Sie zunächst $(1+k) \leq 2^k \, \forall k \in \mathbb{N}$ mit vollständiger Induktion.

Aufgabe 3: Vollständige Induktion

4 Punkte

- 1. Gegeben sei ein Schachbrett mit der Seitenlänge 2^n , von dem ein beliebiges Feld entfernt wird. Zeigen Sie, dass das Brett mit "L"-förmigen Kartonstückchen überdeckt werden kann. Die Kartonstückchen sind dabei so groß, dass sie genau drei Felder bedecken. Die Kartonstücke dürfen sich nicht überlappen.
- 2. Zeigen Sie, dass für jede natürliche Zahl n die Zahl $2^{2n}-1$ durch 3 teilbar ist.

Aufgabe 4: Vollständige Induktion

4 Punkte

Wo steckt der Fehler in folgendem Induktionsbeweis?

Behauptung: für $n \ge 1$ gilt: je n natürliche Zahlen sind gleich.

Beweis:

- Induktionsanfang: Für n = 1 ist die Behauptung offensichtlich wahr.
- Induktionsschritt: Die Bahauptung gelte für $n \in \mathbb{N}$ (Induktionsannahme). Betrache die Menge $\{a_1, a_2, \ldots, a_n, a_{n+1}\}$ von n+1 natürlichen Zahlen. Die natürlichen Zahlen a_1, a_2, \ldots, a_n bzw. $a_2, a_3, \ldots, a_n, a_{n+1}$ sind nach Induktionsannahme gleich, d.h.

$$a_1 = a_2 = \dots = a_n$$
 bzw. $a_2 = a_3 = \dots = a_{n+1}$

Damit folgt $a_1 = a_2 = \cdots = a_{n+1}$, also die Behauptung. \square

Prof. Dr. B. Dreseler