> Markscheme

1		
а	$\frac{16}{2.0}$ = 8.0 m s ⁻² \checkmark	[1]
b	Impulse = area = 32 N s ✓	[4]
	$2 \times v - 2 \times (-4) = 32 \Rightarrow v = 12 \text{ m s}^{-1} \checkmark$	
	Change in KE: $\frac{1}{2} \times 2 \times 12^2 - \frac{1}{2} \times 2 \times (-4)^2 = 128 \text{ J}$	
	Average power: $\frac{128}{4}$ = 32 W \checkmark	
	OR	
	Impulse = area = 32 N s ✓	
	$2 \times v - 2 \times (-4) = 32 \Rightarrow v = 12 \text{ m s}^{-1} \checkmark$	
	$\overline{P} = \overline{F} \frac{u+v}{2} \checkmark$	
	$\overline{P} = 8.0 \times \frac{-4.0 + 12}{2} = 32 \text{ W} \checkmark$	

II	5.0 years read from graph at intersection point ✓	[1]
	OR	
	$\frac{3.0 \text{ ly}}{0.60 \text{c}} = 5.0 \text{ yr } \checkmark$	
	$\gamma = \frac{5}{4} \checkmark$	[2]
	$\Delta t' = \gamma (\Delta t - \frac{v}{c^2} \Delta x) = \frac{5}{4} \times (5.0 - \frac{0.60c}{c^2} \times 3.0 \text{ ly}) = 4.0 \text{ yr } \checkmark$	
	OR	
	$\gamma = \frac{5}{4} \checkmark$ $\Delta t' = \frac{5.0}{\gamma} = 4.0 \text{ yr } \checkmark$	
	$\Delta t' = \frac{5.0}{\gamma} = 4.0 \text{ yr } \checkmark$	
	OR	
	$\gamma = \frac{5}{4} \checkmark$	
	$\gamma = \frac{5}{4} \checkmark$ $\Delta t' = \frac{3.0}{\frac{1.25}{0.60c}} = \frac{2.4 \text{ ly}}{0.60c} = 4.0 \text{ yr } \checkmark$	

3			
а		A very small percentage of the incident alpha particles were scattered at very large scattering angles \checkmark	[2]
		This required a huge electric force that could only be provided if the positive charge of the atom was concentrated in a very small, massive object ✓	
b	ı	$^{239}_{94}$ Pu $\rightarrow ^{235}_{92}$ U + $^{4}_{2}\alpha$ \checkmark	[2]
		Correct numbers for U ✓	
	Ш	235 × 7.5909 + 4 × 7.0739 − 239 × 7.5603 ✓	[2]
		5.25 MeV ✓	
	Ш	Binding energy per nucleon is a measure of the stability of a nucleus \checkmark	[2]
		And uranium is more stable than plutonium \checkmark	
С		Protons tend to break a nucleus apart because the electric force is repulsive \checkmark	[3]
		Putting extra neutrons means average distance between protons increases and so tendency to split decreases 🗸	
		And neutrons contribute to bonding through the strong nuclear force \checkmark	

4			
а		In a transverse wave the displacement is at right angles to the direction of energy transfer \checkmark	[2]
		In a longitudinal wave the displacement is parallel to the direction of energy transfer \checkmark	
b	ı	λ = 0.30 m √	[2]
		$v = f\lambda = 250 \times 0.30 = 75 \text{ m s}^{-1} \checkmark$	

5			
а		Luminosity also depends on area 🗸	[2]
		Star Z has a much larger area than X \checkmark	
b	I	$\frac{L_z}{L_Y} = \frac{4\pi\sigma R_z^2 T_z^4}{4\pi\sigma R_y^2 T_Y^4} = 10^6 \checkmark$ $\frac{R_z}{R_Y} = \sqrt{10^6 \times \frac{20000^4}{2500^4}} \checkmark$ $= 6.4 \times 10^3$	[3]
С	I	X: by radiation pressure caused by fusion reactions ✓	[1]
	Ш	Y: by electron degeneracy pressure ✓	[1]

6		
а	Uniform lines from left to right in the interior \checkmark	[2]
	Edge effects 🗸	
b	$E = \frac{V}{d} = \frac{240}{2.0 \times 10^{-2}} = 2.2 \times 10^4 \text{ N C}^{-1} \checkmark$	[1]
С	$qV = \frac{1}{2}mv^2 \Rightarrow v = \sqrt{\frac{2qV}{m}} \checkmark$ $\frac{v_p}{v_a} = \sqrt{\frac{q_p m_a}{q_a m_p}} = \sqrt{\frac{1}{2} \times 4} = \sqrt{2} \checkmark$	[2]
	$\frac{\dot{v}_a}{v_a} = \sqrt{\frac{\dot{q}_a m_p}{q_a m_p}} = \sqrt{\frac{\dot{2}}{2}} \times 4 = \sqrt{2} $	

7			
а		The speed at launch so that the projectile reaches infinity with zero speed \checkmark	[1]
b		$\frac{1}{2}mu^2 - \frac{GMm}{R} = -\frac{GMm}{r} \checkmark$	[3]
		$\frac{1}{2}m \times \frac{1}{4} \times \frac{2GM}{R} - \frac{GMm}{R} = -\frac{GMm}{r} \checkmark$	
		$r = \frac{4R}{3} \checkmark$	
С	I	Along top part of major axis ✓	[1]
		not to scale	
	II	It is less ✓	[2]
		Because at P the potential energy is a maximum and so kinetic energy a minimum ✓	
		OR	
		Angular momentum <i>mvr</i> is conserved ✓	
		r is maximum at P so speed is minimum ✓	

8			
а	I	$N = 7.0 \times 6.02 \times 10^{23} = 4.2 \times 10^{24} \checkmark$	[2]
		$4.2 \times 10^{24} \times 3.0 \times 10^{-30} = 1.3 \times 10^{-5} \mathrm{m}^3$ \checkmark	
	II	$V = \frac{RnT}{P} \checkmark$	[2]
		$V = \frac{8.31 \times 7.0 \times 270}{3.0 \times 10^5} = 5.2 \times 10^{-2} \mathrm{m}^3 \checkmark$	
	Ш	7 × 4 = 28 g ✓	[1]
b		One of the assumptions of the kinetic theory of gases states that the volume of the molecules is negligible compared to the volume of the gas \checkmark Here $\frac{V_{\text{molecules}}}{V} = \frac{1.3 \times 10^{-5}}{5.2 \times 10^{-2}} = 2.5 \times 10^{-4}$ which is very small \checkmark	[2]
С		$\frac{P_{1}}{T_{1}} = \frac{P_{2}}{T_{2}} \Rightarrow T_{2} = T_{1} \times \frac{P_{2}}{P_{1}} \checkmark$ $T_{2} = 270 \times \frac{5.0}{3.0} = 450 \text{ K} \checkmark$	[2]

d			[1]
е	I	Vertical straight line \checkmark $\Delta U = \frac{3}{2}Rn\Delta T = \frac{3}{2} \times 8.31 \times 7.0 \times (450 - 270) = 15706 \text{ J} \checkmark$	[1]
	II	Realization that $Q = \Delta U \checkmark$ $c = \frac{Q}{m\Delta T} = \frac{15705}{0.028 \times (450 - 270)} = 3.1 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \checkmark$	[2]
f		$E = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{E} \checkmark$ $\lambda = \frac{1.24 \times 10^{-6}}{1.86} = 666.6 \approx 667 \text{ nm } \checkmark$	[2]
g	I	[2] max from Electromagnetic radiation with an infinite range of wavelengths With a peak determined by temperature Radiation emitted by a body at some finite kelvin temperature Radiation with an intensity proportional to the 4th power of the kelvin temperature	[2] max
	II	Helium has energy levels separated by 1.86 eV ✓ This energy difference is unique to helium ✓ The dip implies that photons of this energy are absorbed by helium ✓	[3]

9			
а		$V = \frac{2\pi R}{T} = \frac{2\pi \times 1.5 \times 10^{11}}{365 \times 24 \times 60 \times 60} \checkmark$	[2]
		$v = 2.99 \times 10^4 \approx 3.0 \times 10^4 \mathrm{m\ s^{-1}} = 30 \mathrm{km\ s^{-1}}$	
b	I	$Mv - mv = (M + m)u \checkmark$	[1]
		Result follows	
	П	$m = \frac{2 \times 2 \times 10^{25}}{(2.99 \times 10^4)^2} = 4.47 \times 10^{16} \text{ kg } \checkmark$	[1]
С	I	$R = \frac{GM_{\odot}}{u^2} \checkmark$	[2]
		u < v so R increases ✓	

	П	The mass of the asteroid is much smaller than that of earth so change in	[1]
	"	R is not significant	ניו
		(For the aficionados!	
		$GM_0 = GM_0 = GM_0 (M+m)^2 = GM_0 M^2 (1+\frac{m}{M})^2$	
		$u^{2} = \frac{GM_{\odot}}{R'} \Rightarrow R' = \frac{GM_{\odot}}{\left(\frac{M-m}{M+m}v\right)^{2}} = \frac{GM_{\odot}(M+m)^{2}}{v^{2}(M-m)^{2}} = \frac{GM_{\odot}}{v^{2}} \frac{M^{2}(1+\frac{m}{M})^{2}}{M^{2}(1-\frac{m}{M})^{2}}$	
		$R = \frac{GM_{\odot}}{v^2} \times \frac{(1 + \frac{m}{M})^2}{(1 - \frac{m}{M})^2} = R \frac{(1 + \frac{m}{M})^2}{(1 - \frac{m}{M})^2}$	
		From Mathematics HL we know that	
		$\frac{(1+\frac{m}{M})^2}{(1-\frac{m}{M})^2} \approx (1+\frac{2m}{M})(1+\frac{2m}{M}) \approx 1+\frac{4m}{M}$	
		Hence the change in orbit radius is an increase of	
		$\Delta R \approx R \times \frac{4m}{M} \approx 1.5 \times 10^{11} \times 4 \times \frac{5 \times 10^{16}}{6 \times 10^{24}} \approx 5 \text{ km}$ and so insignificant.)	
<u> </u>	ļ		
d		Thermal energy needed	[4]
		$M \times 850 \times (1700 - 300) + M \times 1.6 \times 10^5 + M \times 1450 \times (2600 - 1700) + M \times 1.1 \times 10^7 \checkmark$	
		$= M \times 1.3655 \times 10^7 \checkmark$	
		$M = \frac{2 \times 10^{25}}{1.3655 \times 10^7} \checkmark$	
		$M = 1.46 \times 10^{18} \approx 1.5 \times 10^{18} \text{ kg } \checkmark$	
	II	Smaller ✓	[2]
		Some of the kinetic energy will go as thermal energy in the asteroid and	
		the surrounding air ✓	
	Ш	Volume of rocks vaporized is $\frac{1.46 \times 10^{18}}{2800}$ = 5.21 × 10 ¹⁴ m ³ ✓	[2]
		Side of cube $(5.21 \times 10^{14})^{1/3} = 8 \times 10^4 \text{ m} \approx 80 \text{ km } \checkmark$	
е	I	Z = 18 ✓	[2]
		A = 40 ✓	
	II	Decay constant is $\frac{\ln 2}{1.2 \times 10^{10}} = 5.78 \times 10^{-11} \text{ yr}^{-1} \checkmark$	[3]
		$0.996 = e^{-5.78 \times 10^{-11xt}} \checkmark$	
		$t = 6.9 \times 10^7 \text{ yr} \approx 69 \text{ million years } \checkmark$	