A.Using either the housing dataset OUTPUT:

Out[13]: longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value ocean_proximity 20046 36.06 25.0 1505.0 NaN 1392.0 359.0 1.6812 47700.0 3024 -119.46 35.14 30.0 2943.0 NaN 1565.0 584.0 2.5313 45800.0 INLAND NEAR BAY 15663 -122.44 37.80 52.0 3830.0 NaN 1310.0 963.0 3.4801 500001.0 20484 -118.72 34.28 17.0 3051.0 NaN 1705.0 495.0 5.7376 218600.0 <1H OCEAN 34.0 NEAR OCEAN 9814 -121.93 36.62 2351.0 NaN 1063.0 428.0 3.7250 278000.0


```
In [33]: housing.describe()
Out[33]:
                longitude
                                       latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value roor

        count
        16512.000000
        16512.000000
        16512.000000
        16512.000000
        16354.000000
        16512.000000
        16512.000000
        16512.000000

                                                                                                                                                              16512.000000
             mean -119.575635
                                     35.639314
                                                            28.653404 2622.539789
                                                                                           534.914639 1419.687379
                                                                                                                        497 011810
                                                                                                                                            3.875884
                                                                                                                                                             207005.322372

        std
        2.001828
        2.137963
        12.574819
        2138.417080
        412.665649
        1115.663036
        375.696156
        1.904931
        115701.297250

              min
                     -124.350000
                                      32.540000
                                                              1.000000
                                                                           6.000000
                                                                                             2.000000
                                                                                                            3.000000
                                                                                                                           2 000000
                                                                                                                                             0.499900
                                                                                                                                                               14999 000000
            25% -121.800000 33.940000 18.000000 1443.000000 295.000000 784.000000 279.000000 2.566950
                                                                                                                                                             119800.000000
              50%
                      -118.510000
                                      34.260000
                                                             29.000000 2119.000000
                                                                                           433.000000
                                                                                                         1164.000000
                                                                                                                         408.000000
                                                                                                                                             3.541550
                                                                                                                                                              179500.000000
            75% -118.01000 37.720000 37.00000 3141.000000 621.000000 35682.00000 602.000000 4.745325

max -114.310000 41.950000 52.00000 39320.000000 6210.000000 35682.000000 5368.000000 15.000100
                                                                                                                                                             263900.000000
                                                                                                                                                             500001 000000
In [34]: housing = strat_train_set.drop("median_house_value", axis=1) # drop labels for training set housing_labels = strat_train_set["median_house_value"].copy()
In [35]: # DATA Cleaning
# we will fill the the numerical missing values with their medians.
# Scikit-Learn provides a handy class to take care of missing values: SimpleImputer
from sklearn.impute import SimpleImputer
imputer= SimpleImputer(strategy='median')
 In [39]: imputer.statistics_
Out[39]: array([-118.51 , 34.26 , 29. ,2119. , 433. 1164. , 408. , 3.54155])
 In [40]: #checking if it is same as the median
housing_num.median().values
Out[40]: array([-118.51 , 34.26 , 29. , 2119. , 433. 1164. , 408. , 3.54155])
 In [41]: X= imputer.transform(housing_num)
 In [42]: # HANDLING CATEGORICAL ATTRIBUTES
            housing_cat = housing[["ocean_proximity"]]
housing_cat.head(10)
Out[42]:
                     ocean_proximity
             12655
                            INLAND
              15502
                       NEAR OCEAN
                       INLAND
              2908
              14053
                       NEAR OCEAN
              20496 <1H OCEAN
              1481
                          NEAR BAY
              18125 <1H OCEAN
              5830
                          <1H OCEAN
              17989 <1H OCEAN
               4861
                          <1H OCEAN
```

```
In [49]: #let's measure RSME(root mean squared error) of our model
              from sklearn.metrics import mean_squared_error
             housing_predictions = lin_reg.predict(housing_prepared)
lin_mse = mean_squared_error(housing_labels, housing_predictions)
lin_rmse = np.sqrt(lin_mse)
lin_rmse
 Out[49]: 68627.87390018745
 In [50]: from sklearn.tree import DecisionTreeRegressor
tree_reg= DecisionTreeRegressor()
             tree_reg.fit(housing_prepared, housing_labels)
 Out[50]: DecisionTreeRegressor()
In [51]: #Let's evatuale on training set
housing_predictions = tree_reg.predict(housing_prepared)
tree mse = mean_squared_error(housing_labels, housing_predictions)
tree_rmse = np.sqrt(tree_mse)
tree_rmse
 Out[51]: 0.0
In [52]: # cross validation use the train_test_split function to split the training set into a
# smaller training set and a validation set, then train your models against the smaller training
#set and evaluate them against the validation set.
from sklearn.model_selection import cross_val_score
              In [66]:
# Let's see the scores
def display_scores(scores):
    print("Scores:", scores)
    print("Mean:", scores.mean())
    print("Standard deviation:", scores.std())
             display_scores(tree_rmse_scores)
              Scores: [71950.33336763 70846.90656375 67743.15019504 70397.56313608
               70125.24497351 77752.48231597 71302.6193184 73142.52222559 67090.60583868 70416.37529487]
              Mean: 71076,78032295093
              Standard deviation: 2801.870696246111
Scores: [71762.76364394 64114.99166359 67771.17124356 68635.19072082 66846.14089488 72528.03725385 73997.08050233 68802.33629334
               66443.28836884 70139.79923956]
              Mean: 69104.07998247063
              Standard deviation: 2880.328209818065
```

```
In [55]: # Let's try Random Forest Regressor
                # (Random Forests work by training many Decision Trees on random subsets of the features, # then averaging out their predictions)
                 from sklearn.ensemble import RandomForestRegressor
                forest\_reg = RandomForestRegressor(n\_estimators=100, random\_state=42) \\forest\_reg.fit(housing\_prepared, housing\_labels)
 Out[55]: RandomForestRegressor(random_state=42)
 In [56]: housing_predictions = forest_reg.predict(housing_prepared)
forest_mse = mean_squared_error(housing_labels, housing_predictions)
forest_rmse = np.sqrt(forest_mse)
 Out[56]: 18650.698705770003
  In [64]: from sklearn.model_selection import cross_val_score
                forest_rmse_scores = np.sqrt(-forest_scores)
                display_scores(forest_rmse_scores)
                Scores: [51559.63379638 48737.57100062 47210.51269766 51875.21247297 47577.50470123 51863.27467888 52746.34645573 50065.1762751 48664.66818196 54055.90894609]
                 Mean: 50435.58092066179
                 Standard deviation: 2203.3381412764606
In [55]: # Let's try Random Forest Regressor
# (Random Forests work by training many Decision Trees on random subsets of the features,
              # then averaging out their predictions)
from sklearn.ensemble import RandomForestRegressor
              forest\_reg = RandomForestRegressor(n\_estimators=100, random\_state=42) \\forest\_reg.fit(housing\_prepared, housing\_labels)
Out[55]: RandomForestRegressor(random state=42)
In [56]: housing_predictions = forest_reg.predict(housing_prepared)
               forest_mse = mean_squared_error(housing_labels, housing_predictions)
forest_rmse = np.sqrt(forest_mse)
              forest rmse
Out[56]: 18650.698705770003
In [64]: from sklearn.model selection import cross val score
              forest_scores = cross_val_score(forest_reg, housing_prepared, housing_labels,
              scoring="neg_mean_squared_error", cv=10)
forest_rmse_scores = np.sqrt(-forest_scores)
              display_scores(forest_rmse_scores)
              Scores: [51559.63379638 48737.57100062 47210.51269766 51875.21247297 47577.50470123 51863.27467888 52746.34645573 50065.1762751 48664.66818196 54055.90894609]
               Mean: 50435.58092066179
              Standard deviation: 2203.3381412764606
               import numpy as np
                # Parameter arid for RandomizedSearchCV
               param_distribs = {
    'n_estimators': randint(low=1, high=200),
                       'max_features': randint(low=1, high=8),
               # Best parameters
print("Best parameters:", rnd_search.best_params_)
                # Score of each hyperparameter combination tested during randomized search
                cvres = rnd_search.cv_results_
for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
    print("RMSE:", np.sqrt(-mean_score), "Parameters:", params)
               Best parameters: {'max_features': 7, 'n_estimators': 180}
RMSE: 49117.55344336652 Parameters: {'max_features': 7, 'n_estimators': 180}
RMSE: 51450.63202856348 Parameters: {'max_features': 5, 'n_estimators': 15}
RMSE: 50692.53588182537 Parameters: {'max_features': 3, 'n_estimators': 72}
RMSE: 50693.614493515 Parameters: {'max_features': 5, 'n_estimators': 21}
RMSE: 49162.89877456354 Parameters: {'max_features': 7, 'n_estimators': 122}
RMSE: 50655.798471042704 Parameters: {'max_features': 3, 'n_estimators': 75}
RMSE: 50513.856319990606 Parameters: {'max_features': 3, 'n_estimators': 75}
RMSE: 5031.17201976928 Parameters: {'max_features': 5, 'n_estimators': 100}
RMSE: 50302.90440763418 Parameters: {'max_features': 3, 'n_estimators': 150}
RMSE: 65167.02018649492 Parameters: {'max_features': 5, 'n_estimators': 2}
```

B. Using the customer churn dataset:

OUTPUT:

Visualizing our dataset

Demographic Variables

	Churn
('Female', 'No')	0.7308
('Female', 'Yes')	0.2692
('Male', 'No')	0.7384
('Male', 'Yes')	0.2616

	Churn
('No', 'No')	0.7639
('No', 'Yes')	0.2361
('Yes', 'No')	0.5832
('Yes', 'Yes')	0.4168

	Churn
('No', 'No')	0.6704
('No', 'Yes')	0.3296
('Yes', 'No')	0.8034
('Yes', 'Yes')	0.1966

	Churn
('No', 'No')	0.6872
('No', 'Yes')	0.3128
('Yes', 'No')	0.8455
('Yes', 'Yes')	0.1545

#Customer account information Visualization

#monthly charges

Out[18]: <matplotlib.legend.Legend at 0x2a0709e7a00>


```
In [26]:
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(14,12))
sn.despine()

# Gray for No Churn, highLight Churn!
colors = ["#553939", "#808080", "#A2785C","#A9A9A9"]
# Set custom color palette
sn.set_palette(sn.color_palette(colors))
ax = sn.countplot(x="contract", hue="cluster", data=df, ax = axes[0,0]).set(title='Contracts by Cluster', xlabel=None, ylabel = Nax = sn.countplot(x="contract", hue="cluster", data=df, ax = axes[0,1]).set(title='SeniorCitizen by Cluster', xlabel=None, ylabel = Nax = sn.countplot(y='InternetService', hue="cluster", data=df, ax = axes[1,0]).set(title='InternetService by Cluster', xlabel=None, ylabel = Nax = sn.countplot(y='InternetService', hue="cluster", data=df, ax = axes[1,0]).set(title='InternetService by Cluster', xlabel=None, ylabel=None, yl
```

