Φ ункция $y = ax^2 + bx + c$ (квадратичная)

нули функции (точки пересечения с осью х) корни квадратного уравнения

$$D = b^2 - 4ac$$
$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$

вершина параболы:

$$x_{\rm B} = -\frac{b}{2a} \quad y_{\rm B} = y(x_{\rm B})$$

$$a = y(x_{\rm B} + 1) - y(x_{\rm B})$$

$$b = -2ax_{\scriptscriptstyle \rm B}$$

$$c = y(0)$$

a > 0ветви направлены вверх a < 0ветви направлены вниз

a > 1парабола «прижата» к оси у

точка пересечения с осью у ab > 0 сдвиг вдоль оси х налево

аb < 0 сдвиг вдоль оси х направо

D > 0 парабола пересекает ось x в двух

Φ ункция $y = x^n$ (степенная)

Квадратные неравенства

$$ax^2 + bx + c \ge 0$$

- решить квадратное уравнение
- схематично изобразить параболу корни, направление ветвей
- выписать нужные промежутки

$$np: x^2 - 4x + 3 \ge 0$$
$$x_1 = 1, x_2 = 3$$

$$x \in (-\infty; 1] \cup [3; +\infty)$$

$$np: \ x^2 - 4x + 3 < 0$$

$$x_1 = 1, x_2 = 3$$

$$x \in (1;3)$$
 $np: x^2 - 4x + 4 < 0$

$$D = 0 \quad x_1 = 2$$

$$x \in \{2\}$$

$$np: \ x^2 - 3x + 4 > 0$$
$$D < 0$$

$$x \in R$$

Графический метод решения уравнений и неравенств с двумя переменными

для уравнений - нахождение точек пересечения линий координатной плоскости

для неравенств - нахождение пересечения областей координатной плоскости

$$y = kx + b (ax + by + c = 0)$$
 прямая
 $y = \frac{k}{c} (xy = k)$ гипербо

$$y = ax^2 + bx + c$$

$$y = ax^2 + bx + c$$
 параоола $(x - x_0)^2 + (y - y_0)^2 = r^2$ окружность радиуса r

c центром в точке $(x_0; y_0)$

$$np: \begin{cases} x^2 + y^2 \le 4 \\ x + y \ge 1 \end{cases}$$

Φ ункция y = |x| (модуль)

 $|x| = \begin{cases} x, & \text{если } x \ge 0 \\ -x, & \text{если } x < 0 \end{cases}$ решение уравнений и неравенств с модулем

 $F(|g(x)|,x) \ge 0 \Rightarrow$ рассмотреть две ветви

$$\begin{cases} g(x) \ge \mathbf{0} \\ F(g(x), x) \ge 0 \end{cases}$$
$$\begin{cases} g(x) < \mathbf{0} \\ F(-g(x), x) \ge 0 \end{cases}$$

Элементы комбинаторики

комбинаторика ~ подсчет количества комбинаций

комбинаторное правило умножения - если нужно выбрать к элементов из некоторого множества элементов, и 1-ый элемент можно выбрать n_1 способами, ..., k-ый элемент - n_k способами, то число всех возможных комбинаций равно $n_1 \cdot n_2 \cdot ... \cdot n_k$

пр: сколько вариантов обеда можно составить, если в столовой есть 2 первых блюда, 4 вторых блюда и 3 напитка? $\Rightarrow 2 \cdot 4 \cdot 3 = 24$

факториал
$$n! = n \cdot (n-1) \cdot (n-2) \dots \cdot 1$$
 $(0! = 1)$ $np: 5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$

Виды комбинаций:

перестановки

 $P_n = n!$

из празличных элементов

пр: сколькими способами можно расставить 5 книг на полке? $\Rightarrow P_5 = 5! = 120$

перестановки с повторениями

если 1-ый элемент повторяется
$$n_1$$
 $\overline{P_n} = \frac{n!}{n_1! \; n_2! \; ... \; n_k!}$ раз, ..., k -ый элемент - n_x раз

$$\overline{P_n} = \frac{n!}{n_1! \, n_2! \dots n_k!}$$

пр: сколькими способами можно расположить в ряд 3 белых и 2 черных шара?

$$\Rightarrow \overline{P_5} = \frac{5!}{3!2!} = 10$$

размешения

выбор k элементов из n различных $A_n^k = \frac{n!}{(n-k)!}$ элементов, порядок важен

пр: сколькими способами можно выбрать председателя и заместителя из 5 человек?

$$\Rightarrow A_5^2 = \frac{5!}{(5-2)!} = \frac{5!}{3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = 20$$

размешения с повторениями если элементы могут повторяться

 $\overline{A_n^k} = n^k$

пр: сколько трехзначных чисел можно записать с помощью цифр 1,2,3,4,5?

$$\Rightarrow \overline{A_5^3} = 5^3 = 125$$

сочетания

выбор k элементов из n различных $C_n^k = \frac{n!}{k!(n-k)!}$ элементов, порядок не важен

пр: сколькими способами можно выбрать 3 дежурных из 5 человек?

$$\Rightarrow C_5^3 = \frac{5!}{2!2!} = 10$$

сочетания с повторениями если элементы могут повторяться

 $\overline{C_n^k} = \frac{(n+k-1)!}{k! (n-1)!}$

пр: сколькими способами можно собрать букет из 3 роз, если в магазине есть розы 5-ти цветов? $\Rightarrow \overline{C_5^3} = \frac{7!}{3!4!} = 35$

$$\Rightarrow \overline{C_5^3} = \frac{7!}{3!4!} = 35$$

Бином **Ньютона** $(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$ (коэффициенты из треугольника Паскаля)

Элементы теории вероятностей

(элементарный) исход - один из равновозможных случаев (вариант того, что может произойти)

пр: бросают кубик - возможно 6 исходов - выпадет одно из 6 чисел

событие - условие, которое может выполниться или не выполниться

пр: рассмотрим событие (условие) A =«выпадет число меньше 3»

классическое определение вероятности:

вероятность события ~ отношение числа исходов, благоприятных (подходящих) событию, к общему числу исходов

np: событию A подходят 2 исхода (выпадет 1 или 2)

⇒ вероятность события A $P(A) = \frac{2}{\epsilon} = \frac{1}{2}$

статистическое определение вероятности (из эксперимента): отношение числа

испытаний, в которых произошло событие, к числу всех испытаний

пр: при проверке партии семян выяснилось, что из 1000 посаженных семян взошло 805

⇒ вероятность того, что семечко из этой партии взойдет: $P = \frac{805}{1000}$

свойства вероятности:

- достоверное событие:

 $P(\Omega) = 1$ (обязательно произойдет)

- невозможное событие:

 $P(\emptyset) = 0$ (обязательно не произойдет)

- противоположное событие:

$$P(\bar{A}) = 1 - P(A)$$

- произведение (пересечение) событий: $AB = A \cap B = \langle \text{произойдет и A, и B} \rangle$

условная вероятность (наступления события В при условии наступления события А)

$$P(B|A) = \frac{P(AB)}{P(A)} \Rightarrow P(AB) = P(A)P(B|A)$$

если А и В - независимые события (наступление события А не меняет вероятность наступления события В), то $P(AB) = P(A) \cdot P(B)$

- сумма (объединение) событий:

 $A + B = A \cup B = \langle \text{произойдет или A, или B} \rangle$ P(A+B) = P(A) + P(B) - P(AB)

если А и В - несовместные события (не могут произойти одновременно), то

$$P(AB) = 0; P(A + B) = P(A) + P(B)$$

- разность событий:

 $A - B = A \setminus B =$ «А произойдет, В не произойдет»

$$P(A - B) = P(A)P(\bar{B})$$

Арифметический корень n-ой степени

$$\left(\sqrt[n]{a}\right)^n = \sqrt[n]{a^n} = a \quad (a \ge 0)$$

(п - показатель, а - подкоренное выражение)

 $\sqrt[n]{a}$ при a < 0 определен только для нечетных п

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} \ (a \ge 0)$$

$$np: \ 4^{\frac{2}{3}} = \sqrt[3]{4^2} = \sqrt[3]{16} = \sqrt[3]{8 \cdot 2} = 2\sqrt[3]{2}$$
$$4^{\frac{2}{3}} = (2^2)^{\frac{2}{3}} = 2^{2\frac{2}{3}} = 2^{\frac{4}{3}} = 2^{1+\frac{1}{3}} = 2 \cdot 2^{\frac{1}{3}}$$

Меры центральной тенденции

среднее арифметическое $\frac{a_1 + a_2 + \dots + a_n}{a_1 + a_2 + \dots + a_n}$ среднее геометрическое $\sqrt[n]{a_1 a_2 \dots a_n}$

среднее гармоническое $\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}}$

$$\frac{n}{1 + \frac{1}{a_2} + \dots + \frac{1}{a_n}}$$

Последовательности

числовая последовательность - упорядоченный набор чисел (с заданным правилом вычисления каждого следующего числа)

пр: числа Фибоначчи (сумма двух предыдущих)

$$1, 1, 2, 3, 5, 8, 13, 21...$$

 $x_1 = 1, x_2 = 1, x_{n+1} = x_{n-1} + x_n$

Арифметическая прогрессия:

$$a_{n+1} = a_n + d$$
 (d - «разность»)

$$a_{n+1} = a_n + d \quad (d$$
 - «разность»)

$$a_n = a_1 + d(n-1) = kn + b$$
 $S_n = \frac{a_1 + a_n}{2} \cdot n$

Геометрическая прогрессия:

$$b_{n+1} = b_n \cdot q \quad (q$$
 - «знаменатель»)

$$b_n = b_1 q^{n-1}$$
 $S_n = b_1 \cdot \frac{q^{n-1}}{q-1}$

бесконечно убывающая: при |q| < 1 $S_n o rac{b_1}{4}$

предел последовательности - число, к которому стремятся члены последовательности

при $n \to \infty \ \{x_n\} \to A \ \Leftrightarrow \ \lim_{n \to \infty} x_n = A \ \Leftrightarrow$

 $\forall \varepsilon > 0 \; \exists N > 0 : \forall n > N \; |x_n| < \varepsilon$

число Эйлера $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2,718$

Таблица квадратов

11 ² = 121	21 ² = 441	31 ² = 961	41 ² = 1681	51 ² = 2601	61 ² = 3721	$71^2 = 5041$	81 ² = 6561	91 ² = 8281
12 ² = 144	22 ² = 484	32 ² = 1024	42 ² = 1764	52 ² = 2704	62 ² = 3844	$72^2 = 5184$	82 ² = 6724	$92^2 = 8464$
13 ² = 1 69	$23^2 = 529$	33 ² = 1089	43 ² = 1849	53 ² = 2809	$63^2 = 3969$	$73^2 = 5329$	83 ² = 6889	$93^2 = 8649$
14 ² = 1 96	$24^2 = 576$	34 ² = 115 6	44 ² = 1936	54 ² = 2916	$64^2 = 4096$	$74^2 = 5476$	84 ² = 7056	$94^2 = 8836$
15 ² = 225	$25^2 = 625$	35 ² = 1225	$45^2 = 2025$	$55^2 = 3025$	$65^2 = 4225$	$75^2 = 5625$	85 ² = 7225	$95^2 = 9025$
$16^2 = 256$	$26^2 = 676$	36 ² = 1296	46 ² = 2116	56 ² = 3136	$66^2 = 4356$	$76^2 = 5776$	86 ² = 7396	$96^2 = 9216$
$17^2 = 289$	27 ² = 729	37 ² = 13 69	$47^2 = 2209$	57 ² = 3249	67 ² = 4489	$77^2 = 5929$	87 ² = 7569	$97^2 = 9409$
$18^2 = 324$	28 ² = 784	38 ² = 1444	$48^2 = 2304$	58 ² = 3364	68 ² = 4624	$78^2 = 6084$	88 ² = 7744	$98^2 = 9604$
$19^2 = 361$	29 ² = 841	39 ² = 1521	49 ² = 2401	59 ² = 3481	69 ² = 4761	$79^2 = 6241$	89 ² = 7921	99 ² = 9801
$20^2 = 400$	$30^2 = 900$	40 ² = 1 600	$50^2 = 2500$	60 ² = 3600	$70^2 = 4900$	80 ² = 6400	90 ² = 8100	

Таблица степеней

n	2 ⁿ	3 ⁿ	4 ⁿ	5 ⁿ	6 ⁿ	7 ⁿ	8 ⁿ	9 ⁿ
1	2	3	4	5	6	7	8	9
2	4	9	16	25	36	49	64	81
3	8	27	64	125	216	343	512	729
4	16	81	256	625	1296	2401	4096	6561
5	32	243	1024	3125	7776	16807	32768	59049
6	64	729	4096	15625	46656	117649	262144	531441
7	128	2187	16384	78125	279936	823543	2097152	4782969
8	256	6561	65536	390625	1679616	5764801	16777216	43046721
9	512	19683	262144	1953125	10077696	40353607	134217728	387420489
10	1024	59049	1048576	9765625	60466176	282475249	1073741824	3486784401