- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS						
ACTUAL		Class=Yes	Class=No				
	Class=Yes	а	b				
CLASS	Class=No	С	d				

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS						
ACTUAL		Class=Yes	Class=No				
	Class=Yes	a (TP)	b (FN)				
CLASS	Class=No	c (FP)	d (TN)				

Most widely-used metric:

Accuracy
$$= \frac{a+d}{a+b+c+d} = \frac{TP + TN}{TP + TN + FP + FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS						
ACTUAL	C(i j)	Class=Yes	Class=No				
	Class=Yes	C(Yes Yes)	C(No Yes)				
CLASS	Class=No	C(Yes No)	C(No No)				

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS					
ACTUAL CLASS	C(i j)	+	-			
	+	-1	100			
	-	1	0			

Model M ₁	PREDICTED CLASS				
ACTUAL CLASS		+	-		
	+	150	40		
	-	60	250		

Model M ₂	PREDICTED CLASS				
ACTUAL CLASS		+	•		
	+	250	45		
	=	5	200		

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS						
ACTUAL		Class=Yes	Class=No				
	Class=Yes	а	b				
CLASS	Class=No	С	d				

Accuracy is proportional to	o cost if
-----------------------------	-----------

1.
$$C(Yes|No)=C(No|Yes) = q$$

2.
$$C(Yes|Yes)=C(No|No) = p$$

$$N = a + b + c + d$$

Accuracy =
$$(a + d)/N$$

Cost = p (a + d) + q (b + c)
= p (a + d) + q (N - a - d)
= q N - (q - p)(a + d)
= N [q - (q-p)
$$\times$$
 Accuracy]

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F - measure (F) =
$$\frac{2 rp}{r + p} = \frac{2 a}{2 a + b + c}$$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

 How to obtain a reliable estimate of performance?

- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve:
 - Arithmetic sampling (Langley, et al)
 - Geometric sampling (Provost et al)

Effect of small sample size:

- Bias in the estimate
- Variance of estimate

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

Step 1: Split data into train and test sets

Step 2: Build a model on a training set

Step 3: Evaluate on test set

A note on parameter tuning

- It is important that the test data is not used in any way to create the classifier
- Some learning schemes operate in two stages:
 - Stage 1: builds the basic structure
 - Stage 2: optimizes parameter settings
- The test data can't be used for parameter tuning!
- Proper procedure uses three sets: training data, validation data, and test data
 - Validation data is used to optimize parameters

Making the most of the data

- Once evaluation is complete, all the data can be used to build the final classifier
- Generally, the larger the training data the better the classifier (but returns diminish)
- The larger the test data the more accurate the error estimate

Classification: Train, Validation, Test split

Evaluation on "small" data

- The holdout method reserves a certain amount for testing and uses the remainder for training
 - Usually: one third for testing, the rest for training
- For "unbalanced" datasets, samples might not be representative
 - Few or none instances of some classes
- Stratified sample: advanced version of balancing the data
 - Make sure that each class is represented with approximately equal proportions in both subsets

Evaluation on "small" data

- What if we have a small data set?
 - The chosen 2/3 for training may not be representative.
 - The chosen 1/3 for testing may not be representative.

Repeated holdout method

repeated holdout method

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training (possibly with stratification)
 - The error rates on the different iterations are averaged to yield an overall error rate
- Still not optimum: the different test sets overlap.
 - Can we prevent overlapping?

Cross-validation

- Cross-validation avoids overlapping test sets
 - First step: data is split into k subsets of equal size
 - Second step: each subset in turn is used for testing and the remainder for training
- This is called k-fold cross-validation
- Often the subsets are stratified before the crossvalidation is performed
- The error estimates are averaged to yield an overall error estimate

Cross-validation example:

More on cross-validation

- Standard method for evaluation: stratified ten-fold crossvalidation
- Why ten? Extensive experiments have shown that this is the best choice to get an accurate estimate
- Stratification reduces the estimate's variance
- Even better: repeated stratified cross-validation
 - E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)

Leave-One-Out cross-validation

- Leave-One-Out:
 a particular form of cross-validation:
 - Set number of folds to number of training instances
 - I.e., for n training instances, build classifier n times
- Makes best use of the data
- Involves no random subsampling
- Very computationally expensive
 - (exception: NN)

Summary of Evaluation Methods

- Use Train, Test, Validation sets for "LARGE" data
- Balance "un-balanced" data
- Use Cross-validation for small data
- Don't use test data for parameter tuning use separate validation data
- Most Important: Avoid Overfitting

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshol	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Slide References

- Slides for Chapter 4 from "Introduction to Data Mining" by Pang-Ning Tan, Michael Steinbach, Vipin Kumar
- Some slides from Dr.Chengkai Li's lecture on Model evaluation