30^a Olimpiada Mexicana de Matemáticas Concurso Nacional

Acapulco, Guerrero, 2016 Primer día

- 1. Sean C_1 y C_2 dos circunferencias tangentes externamente en S tales que el radio de C_2 es el triple del radio de C_1 . Sea l una recta que es tangente a C_1 en P y tangente a C_2 en Q, con P y Q distintos de S. Sea T el punto en C_2 tal que TQ es diámetro de C_2 y sea R la intersección de la bisectriz de $\angle SQT$ con el segmento ST. Demuestra que QR = RT.
- 2. Una pareja de enteros positivos m, n es guerrera si existen enteros positivos a, b, c, d con m=ab, n=cd y a+b=c+d. Por ejemplo, la pareja 8, 9 es guerrera pues $8=4\cdot 2$, $9=3\cdot 3$ y 4+2=3+3. Se colorean los enteros positivos de la siguiente manera:
 - Empezamos coloreando el 3 y el 5.
 - Después, si algún entero positivo no está coloreado y este tiene una pareja guerrera que ya está coloreado, entonces lo coloreamos.

Encuentra todos los enteros positivos que eventualmente se colorean.

3. Encuentra el menor número real x que cumpla todas las siguientes desigualdades:

$$\lfloor x \rfloor < \lfloor x^2 \rfloor < \lfloor x^3 \rfloor < \ldots < \lfloor x^n \rfloor < \lfloor x^{n+1} \rfloor < \ldots$$

Nota: $\lfloor x \rfloor$ es el mayor número entero menor o igual a x, es decir, es el único número entero que cumple que $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$.

Segundo día

- 4. Decimos que un número entero no-negativo n "contiene" a otro número entero no-negativo m, si los dígitos de su expansión (o desarrollo) decimal aparecen en forma consecutiva en la expansión (o desarrollo) decimal de n. Por ejemplo, 2016 contiene a 2,0,1,6, 20, 16, 201 y 2016. Determina el mayor número entero n que no contiene a ningún múltiplo de 7.
- 5. En una cuadrícula de $n \times n$ se escriben los números del 1 al n^2 en orden, por renglones, de manera que en el primer renglón aparecen los números del 1 al n, en el segundo los números de n+1 a 2n, y así sucesivamente. Una operación permitida en la cuadrícula consiste en escoger cualesquiera dos cuadraditos que compartan un lado y sumar (o restar) el mismo número entero a los dos números que aparecen en esos cuadraditos. Por ejemplo, aquí abajo se muestran dos operaciones sucesivas permitidas en una cuadrícula de 4×4 : primero restando 7 a los cuadraditos sombreados y luego sumando 5 a los sombreados.

1	2	3	4	\rightarrow	1	2	3	4	\rightarrow	1	7	8	4
5	6	7	8		5	6	0	8		5	6	0	8
9	10	11	12		9	10	4	12		9	10	4	12
13	14	15	16		13	14	15	16		13	14	15	16

Determina para qué valores de n es posible lograr que todos los cuadraditos tengan escrito el número 0 después de repetir la operación tantas veces como sea necesario y, en los casos en que sea posible, determina el mínimo número de operaciones necesarias.

6. Sean ABCD un cuadrilátero inscrito en una cicunferencia, l_1 la recta paralela a BC que pasa por A y l_2 la recta paralela a AD que pasa por B. La recta DC corta a l_1 y l_2 en los puntos E y F, respectivamente. La recta perpendicular a l_1 que pasa por A corta a BC en P y la recta perpendicular a l_2 por B corta a AD en Q. Sean Γ_1 y Γ_2 las circunferencias que pasan por los vértices de los triángulos ADE y BFC, respectivamente. Demuestra que Γ_1 y Γ_2 son tangentes si y sólo si DP es perpendicular a CQ.