## CS1021 Tutorial 2

Q1 The NXP LPC2468 has 512KiB of flash memory starting at address 0x00000000. What is the last address of the memory area (in hexadecimal)?

Convert 524,288 to hexadecimal

| 16 | 524,288 | _   |
|----|---------|-----|
| 16 | 32,768  | r 0 |
| 16 | 2,048   | r 0 |
| 16 | 128     | r 0 |
| 16 | 8       | r 0 |
| 16 | 0       | r 8 |

524,288 = 0x00080000

Last address of memory area is 0x00000000 + 0x00080000 - 1 = 0x0007FFFF

Need to subtract 1 because first byte at offset 0 (not 1).

- Q2 The NXP LPC2468 has 64KiB of read write memory starting at address 0x40000000. What is the last address of the memory area (in hexadecimal)?
- Q3 One hundred <u>8 bit</u> unsigned integers are stored consecutively in memory starting at address 0x00002000. What is the address of the byte containing (i) the first integer (ii) the 22<sup>nd</sup> integer (iii) the 75<sup>th</sup> integer and (iv) the last integer?
- Q4 One hundred 32 bit signed integers are stored consecutively in memory starting at address 0x004420C0. What is the address of the word containing (i) the first integer (ii) the 22<sup>nd</sup> integer (iii) the 75<sup>th</sup> integer and (iv) the last integer?



The first integer is stored at 0x004420c0. As each integer is 32 bits or 4 bytes, the address of the  $2^{nd}$  integer is 0x004420c0 + 4 = 0x004420c4, and so on. The  $n^{th}$  integer is at address 0x004420c0 + 4(n-1). If n = 100, the  $100^{th}$  integer is at address 0x004420c0 + 4(n-1).

4\*99 = 0x004420c0 + 0x018c = 0x0044224C. The addresses of the  $22^{nd}$  (0x00442114) and  $75^{th}$  (0x004421E8) integers can be computed in a similar way.

- Q5 Assuming that x is stored in R1, y in R2, z in R3 and the result in R0:
  - (i) Write ARM assembly language instructions to compute x + y + z.

```
ADD R0, R1, R2 ; R0 = x + y
ADD R0, R0, R3 ; R0 = x + y + z
```

- (ii) Write ARM assembly language instructions to compute y x z.
- (iii) Write ARM assembly language instructions to compute  $x^2 + y^2 + z^2$ .
- (iv) Write ARM assembly language instructions to compute 5(x + y).

```
MOV R0, #5; R0 = 5
ADD R4, R1, R2; R4 = x + y
MUL R0, R4, R0; R0 = 5*(x + y)
```

Need to work around the limitations of the MUL instruction - dst and src1 registers must not be the same and src2 cannot be an immediate value.

- (v) Write ARM assembly language instructions to compute (x + y)(y z).
- (vi) Write ARM assembly language instructions to compute  $3x^4 5x 16y^4z^4$ .

```
MOV
         R0, #3 ; R0 = 3
         R4, R1, R1 ; R1 = x^2
MUL
MUL
                       ; R4 = 3x^2
         RO, R4, RO
                       ; R0 = 3x^4
MUL
         RO, R4, RO
MOV
         R4, #5 ; R4 = 5
MUL
         R4, R1, R4; R4 = 5x
SUB
         R0, R0, R4 ; R0 = 3x^4 - 5x
ADD
         R4, R2, R2; R4 = 2y
         R4, R3, R4; R4 = 2yz
MUL
MUL
         R5, R4, R4 ; R5 = 4y^2z^2
                       ; R5 = 16y^4z^4
MUL
         R4, R5, R5
SUB
         RO, RO, R4
                       ; R0 = 3x^4 - 5x - 16y^4z^4
```

Need to work around the limitations of the MUL instruction - dst and src1 registers must not be the same and src2 cannot be an immediate value.