Funzioni continue

Affinche una f. sia continua in un punto devono verificarsi 3 condizioni contemporarente.

- 1) $f(x_0)$ deve esistere =0 $x_0 \in \mathbb{D}$ 2) $\frac{7 \neq i \times i \neq 0}{x \neq 0}$ f(x) = e

2)
$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$$

$$f(x_0) = \lim_{x \to x_0} f(x) = 0$$

$$f(x_0) = 0$$

$$f(x$$

ES:
$$f(x) = \frac{x-3}{x+1}$$
 Continue in $x = -1$

$$=D$$
 $f(-1)$ \not , $\chi=-1$ \not \not \not D $=D$ $\frac{NO}{CONT}$

ES: $f(x) = \begin{cases} \frac{\sin x}{x} & \text{per } x \neq 0 \\ 1 & \text{per } x = 0 \end{cases}$

2 3 finito
$$\lim_{x\to 0} f(x) = \frac{\sin x}{x} - 0$$
 lim noteuole -> 1

3
$$f(x_0)=1$$
? $f(0)=1$

=0 Le junz. e' continue in R

Teorema esistenza degli zeri

· gli "zeri" sono i punti in cui la f interseca l'asse x, ovvero se f(xo)=0, xo e uno a

Se abbieno una f continua in I[a,b], presi due punti c,d dell'intervallo, se f(a)>0 e f(b)<0 (eviceversa), allora il teorema ci ga rontisce l'esistenza di almeno

Teorema di

Se fé continue nell'intervallo (o insieme) LIMITATO I=[a,b]

Alloro il teoremo di W. assicure l'esistenza di un Max e min Assoluto.

Punti di Discontinuita

I Specie -D lim dx e sx NON Coincidono

ES:
$$\frac{2}{1+3\frac{1}{x}}$$
 $\chi_0=0$ e on prodiction. Perche': $\lim_{x\to 0} f(x) = \frac{2}{1+3+\infty} + \infty = 0$

ES:
$$f(x) = \frac{e^{x}-1}{x^{2}}$$
 $x \neq 0$ -0 $\lim_{x\to 0^{+}} f(x) = \frac{e^{0}-1}{0^{+}} - 0$ $\lim_{x\to 0^{+}} \frac{D(e^{x}-1)}{D(x^{2})} = \frac{e^{x}}{2x}$

$$= D \lim_{x \to 0} \frac{e^{x}}{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$$

Quindi oltre oud essere diversi, almeno uno dei due lim -> +0

D
$$f = e$$
 $f(x_0) \neq e$
 $f(x_0) \neq e$
 $f(x_0) \neq e$

Quindi il lim dx e Sx 7 e finito non esiste f(xo)

Cambiam ento di variabile nei limiti

ES:
$$\lim_{x\to 0} \frac{e^{4x}-1}{13x}$$
 vogliono ricondurci a $\lim_{x\to 0} \frac{e^{x}-1}{x} = 1$

pongo
$$t = 4x = 0$$
 Se $x - 00$, allora $t = 4.0 = 0$ = 0 $t - 00$. Inoltre se $t = 4x = 0$ $x = \frac{t}{4}$

Riscrivendo:
$$\lim_{t\to 0} \frac{e^{t}-1}{13\frac{t}{4}} = \underbrace{\begin{pmatrix} e^{t}-1\\ t \end{pmatrix}}_{13} - \underbrace{\begin{pmatrix} e^{t}-1\\ 13 \end{pmatrix}}_{13}$$

Infinitesimi

$$\lim_{x\to\infty} f(x) = 0 = 0$$
 $f(x) = un$ infinitesimo

ES:
$$l_1 = x$$
, $\beta_1 = 1 - \cos x$. Qual e^{-1} l'inf. di ordine maggiore?

-D
$$\lim_{x\to 0} \frac{x}{1-\cos x} = \infty$$
 = D x et un infinitesimo di ordine inferiore rispetto a $f = 1-\cos x$

ES:
$$f(x) = \sin x$$
 $g(x) = 2x$ -0 $\lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2} \in \mathbb{R} \neq \emptyset$ =D Stesso ordine