Math 55, Handout 6.

FUNCTIONS. ((38)

Blanket assumption: A, B are nonempty sets.

- 1.1. A function $f:A\to B$ (also called mapping $\mathfrak s$ or $\mathfrak t$ ransformations) is an assignment of exactly one element of $\mathfrak B$ to each element of $\mathfrak A$
- 1.2. The domain of a function $f: A \to B$ is , the codomain is β If f(a) = b, we say b is an image of a and a is a preimage of b. The range of $f: A \to B$ is the set of all images of elements of A
- 1.3. Let $f: A \to B$, let $C \subseteq A$, and let $D \subseteq B$. The (full) image of C is Vhall A

The (full) pre-image of D is Under f

Q1. Let $f: \mathbb{Q} \to \mathbb{Q}$ be the function $f(x) = x^2$. What is the full pre-image of the set \mathbb{N} and why? t:= IN here i.e. we are looking for elements XED such that X2 EN

ARITHMETIC FOR REAL-VALUED FUNCTIONS.

1.4. Let $f_1, f_2: A \to \mathbb{R}$. Then $f_1 + f_2$ and $f_1 f_2$ are **defined by**

$$(f_1 + f_2) \longrightarrow (f_1) + (f_2)$$

$$(f_1 \cdot f_2) \longrightarrow (f_1) \cdot (f_2)$$

Q2. Let $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ be the functions $f_1(x) = x^2 - 1$, $f_2(x) = x + 1$. Write down formulas for the

functions
$$f_1 + f_2$$
 and $f_1 f_2$.

$$f_1 + f_2 = \chi^2 - 1 + \chi + 1 = \chi^2 + \chi$$

$$f_1 + f_2 = \chi^2 - 1 + \chi + 1 = \chi^2 + \chi$$

$$f_1 + f_2 = \chi^2 - 1 + \chi + 1 = \chi^2 + \chi$$

PROPERTIES OF FUNCTIONS. (141)

- 1.5. A function $f:A\to B$ is called one-to-one, or injunction , if and only if f(a)=f(b) implies that a=b for all a and b in the domain
- 1.6. A function $f:A\to B$ is called **onto**, or surjection , if and only if for every element $b\in B$ there is an element $a\in A$ with f(a)=b.
- 1.7. If a function $f: A \to B$ is both one-to-one and onto, it is called **blief on**
- 1.8. A function $f:A\to B$ is invertible means it has an inverse function $f^{-1}:A\to B$. A function is invertible if and only if it is a one-to-one correspondence
- 1.9. Let $f: A \to B$, $g: B \to C$. The composition $g \circ f: A \to C$ is defined by: q(f(x))
- Q3. What are the functions $f_1 \circ f_2$ and $f_2 \circ f_1$ for the functions f_1 and f_2 from Q2?

$$f_1 \circ f_2 = (x+1)^2 - 1$$
 $f_2 \circ f_1 = (x^2-1) + 1$

CARDINALITY OF SETS. (170)

- 2.1. Two sets A and B (written |A| = |B|) have the same cardinality if there is a one-to-one correspondence from 1 to B
- 2.2. A set is called **countable** if it is **finite** or has the same cardinality as the set of positive into If a set is not countable, it is called UNCOUNTABLE.
- Q4. Underline all of the following sets that are countable:

Q5. Prove that the set of all finite subsets of \mathbb{N} is countable.

lets suppose that subset of N (si, where i represents the # of elements in the subset)

So is an empfyset

so is countable that all finite subsets of IN

so is countable are countable