Entity Relationship Modelling

DBI - Databases and Interfaces Dr Matthew Pike & Dr Yuan Yao

Recap

Relational Model

- Relations, Attributes, Schema, Tuples, Domains
- Degree and Cardinality
- Candidate Key, Primary Key, Foreign Key

Relational Algebra

- Selection, Projection
- Union, Set Difference, Intersection, Cartesian Product
- Natural Joint, Theta Joint, Rename

Cartesian Product vs Natural Joint

- Extended Cartesian product:
- $A = \{(c_1^1, \dots, c_1^n), \dots (c_r^1, \dots, c_r^n)\}$
- B = $\{(d_1^1, ..., d_1^m), ... (d_s^1, ..., d_s^m)\}$
- $A \times B = \{(c_i^1, \dots, c_i^n, d_i^1, \dots, d_i^m) \mid 1 \le i \le r, 1 \le j \le s\}$
- Natural Joint
- $A = \{(c_1^1, \dots, c_1^n), \dots (c_r^1, \dots, c_r^n)\}$
- B = $\{(d_1^1, ..., d_1^m), ... (d_s^1, ..., d_s^m)\}$
- Attr^a, ..., Attr^b in A and B have the same name
- $A \bowtie B = \{(c_i^1, \dots, c_i^n, d_j^1, \dots, d_j^{a-1}, d_j^{b+1}, \dots, d_j^m) \mid 1 \le i \le r, 1 \le j \le s, c_i^x = d_j^x, a \le x \le b\}$

Cartesian Product vs Natural Joint

R	
A	С
3	3
6	4
7	1

S		
В	O	D
5	1	6
4	3	9

What is the result of R x S?

What are the result of $R \bowtie S$?

Cartesian Product vs Natural Joint

Cartesian product:

RXS				
A	R.C	В	S.C	D
3	3	5	1	6
3	3	4	3	9
6	4	5	1	6
6	4	4	3	9
7	1	5	1	6
7	1	4	3	9

Natural Joint:

R⋈S			
A	C	В	D
3	3	4	9
7	1	5	6

R	
A	С
3	3
6	4
7	1

S		
В	C	D
5	1	6
4	3	9

Questions:

- 1) What happens if no tuple from R and S have the same C value?
- 2) What happens if R and S do not have common attribute?

Rename

 $\rho R(X, Y, Z)(S)$

S		
В	C	D
5	1	6
4	3	9

Create a copy

Rename in the new copy

Why we need Relational Model and Algebra?

- Relational Model and Algebra
 - Purely mathematical model based on set theory and first-order logic.
 - Operations are purely mathematical calculations.

- SQL
 - Based on the relational model
 - Tables, queries implements relational model and algebra

What we have learnt so far

- Some Database Concepts ...
- Some Mathematical Models ...
- Some Mathematical Operations ...
- Before creating and learning Database we need to know how to design it
 - What tables, keys and constraints are needed?
 - What is the database going to be used for?

Database Design

- Physical Design
 - How the database is stored in hardware
- Logical Design
 - Create the Database in a given DBMS
- Conceptual Design
 - Build a model independent of the choice of DBMS
- We will learn conceptual design in this lecture

This Lecture

- Entity/Relationship models
 - Entities and Attributes
 - Relationships
 - E/R Diagrams

- Further Reading
 - o Database Systems, Connolly & Begg, Chapter 12

Entity/Relationship Model

In a University database we might have Students, Modules and Lecturers

- Students might have their ID, Name, and Age
- Students could have relationships with Modules and Lecturers

Lecturer

Student

Age

Name

Module

Entity/Relationship Diagrams

E/R Models are often represented as E/R diagrams

- A conceptual view of database
- Independent of the choice of DBMS
- Can identify some problems in a design

Entity/Relationship Diagrams

Basic components:

- Entities: objects or things of interest
- Attributes: properties of an entity
- Relations: links between entities

Entities

- Entities represent objects or things of interest
 - Physical things like students, lecturers, employees, products
 - More abstract things like modules, orders, courses, projects

- Entities type:
 - A group of objects with same properties in the real world, e.g., Lecturer
- Entities instance (occurrence):
 - A uniquely identifiable of that particular type. E.g. Yuan Yao is an instances of Lecturer

Which are entities in this E/R Diagram?

E/R: Diagramming Entities

- In E/R Diagrams, we will represent Entities as boxes with rounded corners
- The box is labelled with the name of the class of objects represented by that entity

Attributes

- Attributes are facts, aspects, properties, or details about an entity
 - Students have IDs,
 names, ages,
 addresses, ...
 - Modules have codes, titles, credit weights, levels, ...

- Attributes have
 - A name
 - An associated entity (type or instance?)
 - Domains of possible values
 - For each instance of the associated entity, a value from the attributes domain

Which are attributes in this E/R Diagram?

E/R: Diagram Attributes

- In an E/R Diagram attributes are drawn as ovals
- Each attribute is linked to its entity by a line
- The name of the attribute is written in the oval

Relationships

- Relationships are an association between two or more entities
 - Each Student takes several Modules
 - Each Module is taught by a Lecturer
 - Each Employeeworks for a singleDepartment

- Relationships have
 - A name
 - A set of entities that participate in them
 - A degree
 - the number of entities that participate (most have degree 2)
 - A cardinality ratio

Relationships

 Relationship type: an association between two or more entity types. Relationship instance: a uniquely identifiable association that includes one instance from each participating entity type.

Degree of a relationship

Degree of a relationship: the number of participating entity.

Example:

- Each student has ID number.
- A teacher teaches a particular course and a particular class.
- A module may have other modules as its prerequisites.

Cardinality Ratios

- Each entity in a relationship can participate in zero, one, or more than one instances of that relationship
- We won't be dealing with optional (zero instances) of relationships
- This leads to 3 types of relationship...

- One to one (1:1)
 - Each lecturer has a unique office & offices are single occupancy
- One to many (1:M)
 - A lecturer may tutor many students, but each student has just one tutor
- Many to many (M:M)
 - Each student takes several modules, and each module is taken by several students

E/R: Diagram Relationships

- Relationships are shown as links between two entities
- The name is given in a diamond box
- The ends of the link show cardinality

Final Diagram

Relational Model	E/R Model
Relation	
Tuple	
Attribute	
Primary Key	
Foreign Key	

Relational Model	E/R Model
Relation	
Tuple	
Attribute	Attribute
Primary Key	
Foreign Key	

Relational Model	E/R Model
Relation	Entity Type
Tuple	Entity Instance
Attribute	Attribute
Primary Key	
Foreign Key	

Relational Model	E/R Model
Relation	Entity Type
Tuple	Entity Instance
Attribute	Attribute
Primary Key	Attribute
Foreign Key	

Relational Model	E/R Model
Relation	Entity Type
Tuple	Entity Instance
Attribute	Attribute
Primary Key	Attribute
Foreign Key	1:M relationship

What's next?

- We have learnt E/R Model and Diagram
- We will be given the problem description
- Task: design database for given problem

Problem Description → E/R Model