Unit 3. Section 2. Function Families

Review from Section 1.

	Standard Form	Vertex Form	
Equation	$f(x) = ax^2 + bx + c, a \neq 0$	$f(x) = a(x - h)^2 + k, a \neq 0$	
Vertex	$\left(-\frac{b}{2a}, f\left(\frac{b}{2a}\right)\right)$	(h,k)	
Axis of Symmetry	$x = -\frac{b}{2a}$	x = h	
Extremum	$x = -\frac{b}{2a}$	x = h	
	The extremum is a minimum if $a > 0$ and a maximum if $a < 0$.		

Warm Up

1

For each of the following quadratic functions in the standard form:

- 1. Calculate the coordinates of the vertex.
- 2. Use the coordinates from step 1 to write the vertex form equation of the same function.
- 3. In Desmos, type the original function and the function from step 1. Do the functions overlap? Why or why not?

	$f(x) = 4x^2 + 3x - 1$	$g(x) = -x^2 + x$
а		
b		
$-\frac{b}{2a}$		
$f\left(-\frac{b}{2a}\right)$		
1) Vertex		
2) Vertex Form		
3) Overlap?		

Function Families

Write down characteristics of a specific family. It can be your own family, or one from movies, books, or your own imagination.

A **family of functions** is a group of functions with graphs that display one or more similar characteristics.

The **parent function** of a family is the function with the simplest form. All the other functions in the family can be obtained from the parent function.

3.2. Function Families and Transformations

Family Name	Parent Function	Graph	Characteristics
Constant	f(x) = 1	-4 -2 0 2 4	1
Linear	f(x) = x	-A -2 6 2 4	
Absolute Value	f(x) = x	2 0 2 4	1
Quadratic	$f(x) = x^2$	4 2 0 2 4	K

Function Transformations

A transformation of a function consists of one or more of the following sliding, flipping, compressing or stretching the graph. The result is a new graph and a new function.

Reflection Over the x-axis

A **reflection** over the x-axis is a transformation that moves every point in the graph straight up or down at the same distance across the x-axis as the original point is to the x-axis. We can write the reflection algebraically as

$$(x, f(x)) \rightarrow (x, -f(x))$$

For each function, choose a point on the blue graph, and draw an arrow to the reflection of that point over the x-axis.

Horizontal Translations

A horizontal translation moves every point of the graph on a horizontal line in the same direction by the same constant distance.

For each function, choose a point on the blue graph, and draw an arrow to the horizontal translation of that point in the green graph.

Vertical Translations

A vertical translation moves every point of the graph on a vertical line in the same direction by the same constant distance.

For each function, choose a point on the blue graph, and draw an arrow to the vertical translation of that point in the purple graph.

Vertical Dilations

A vertical dilation moves every point of the graph on a vertical line in the same direction by an amount proportional to the value of the function at that point.

For each function, choose a point on the blue graph, and draw an arrow to the vertical dilation of that point in the red graph.

