

1. Aspectos do Modelo Mamdani Vantagens e desvantagens

- Conforme observado em unidades anteriores, verifica-se que os sistemas de inferência fuzzy do tipo Mamdani, são definidos por regras linguísticas, cujos antecedentes e consequentes são especificados por conjuntos fuzzy.
- As principais vantagens dos sistemas fuzzy de tipo Mamdani são as seguintes:
 - A estrutura do sistema de tipo Mamdani é formada por antecedentes e consequentes representados por conjuntos fuzzy.
 - A interpretabilidade deste sistema se torna mais intuitiva, pois tanto os antecedentes como os consequentes são conjuntos fuzzy, os quais facilitam o entendimento do comportamento entrada/saída.
 - Ambos os antecedentes e consequentes foram projetados pelo especialista que domina o processo a ser mapeado, deixando então o ajuste mais aderente.
- As principais ressalvar associadas aos sistemas fuzzy de tipo Mamdani são as seguintes:
 - Ambos os <u>antecedentes</u> e <u>consequentes</u> terão que ser ajustados pelo projetista/especialista, sendo que tal processo pode demandar um excessivo esforço.
 - A complexidade do ajuste dos consequentes frente aos antecedentes também crescerá em função da <u>quantidade de termos fuzzy</u> definidos para cada variável de entrada/saída.

2

2. Modelo Takagi-Sugeno (TS) Introdução ao modelo TS No modelo TS (Takagi-Sugeno), os sistemas de inferência fuzzy serão constituídos pela seguinte estrutura: - Antecedentes → Definidos por conjuntos fuzzy (similar ao modelo Mamdani). Consequentes → Definidos por funções polinomiais. As principais vantagens dos sistemas fuzzy de tipo TS são as seguintes: Os consequentes das regras podem ser automaticamente obtidos por meio de regressão linear O especialista fica então responsável por ajustar somente os antecedentes das regras, economizando-se assim o esforço que se teria para também ajustar os A prototipagem dos processos a ser mapeados pode ser executada de maneira bem mais rápida e eficiente. As principais ressalvas associadas aos sistemas fuzzy de tipo TS são as seguintes: A interpretabilidade dos consequentes pode demandar <u>mais esforço</u> a fim de se compreender o relacionamento entrada/saída do processo. Há a necessidade de se ter disponível uma coleção de valores relacionando as entradas com as saídas, de modo que os coeficientes das funções polinomiais possam ser calculados.

4. Inferência no Modelo TS

Formato de estruturação de regras

- Conforme visto, deve-se então frisar que as únicas diferenças do sistema de inferência fuzzy TS frente ao modelo de Mamdani estão nos seguintes aspectos:
 - Consequentes → Definidos por funções polinomiais.
 - Requisitos de Aplicabilidade → Necessidade de uma coleção de dados entradas/saídas a fim de ajustar as funções polinomiais.

Estruturação de Regras:

 Sem nenhuma perda de generalidade, considera-se aqui um sistema composto de duas entradas (x e y) e uma saída (z). As variáveis linguísticas de entrada (x e y) são definidas respectivamente no conjunto de termos {A₁, A₂} e {B₁, B₂}. Portanto, tem-se:

```
Fato 1: x \notin A'
Fato 2: y \notin B'
Regra 1: Se (x \notin A_1) E (y \notin B_1) então z_1 = f_1(x, y)
Regra 2: Se (x \notin A_1) E (y \notin B_2) então z_2 = f_2(x, y)
Regra 3: Se (x \notin A_2) E (y \notin B_1) então z_3 = f_3(x, y)
Regra 4: Se (x \notin A_2) E (y \notin B_2) então z_4 = f_4(x, y)
Consequência: z = f(z_1, z_2, z_3, z_4)
```

4. Inferência no Modelo TS

Procedimentos operacionais

 Assim, mediante essas regras, basta-se especificar agora o formato das funções polinomiais f_i(x,y) envolvidas com o sistema.

```
Fato 1: x \in A'
Fato 2: y \in B'
Regra 1: Se (x \in A_1) E (y \in B_1) então z_1 = f_1(x, y)
Regra 2: Se (x \in A_1) E (y \in B_2) então z_2 = f_2(x, y)
Regra 3: Se (x \in A_2) E (y \in B_1) então z_3 = f_3(x, y)
Regra 4: Se (x \in A_2) E (y \in B_2) então z_4 = f_4(x, y)
Consequência: z = f(z_1, z_2, z_3, z_4)
```

 As funções polinomiais f_i(x,y) no modelo TS são assumidas funções lineares, sendo que neste caso tem-se duas alternativas, ou sejam:

```
> z_i = f_i(x, y) = \gamma_i {constante} → Modelo TS de ordem 0
> z_i = f_i(x, y) = a_i x + b_i y + c_i → Modelo TS de ordem 1
```

- Portanto, há aqui a necessidade de se obter os coeficientes das funções polinomiais.
- Tais coeficientes são obtidos a partir dos valores de entradas/saídas que foram disponibilizados, usando-se o método da regressão linear.

5. Defuzzificação no Modelo TS

Produção da resposta final crisp

 Portanto, por meio agora dos diversos valores fornecidos por z_i, basta-se agora combinar esses valores a fim de se produzir o resultado final defuzzificado, o qual será atribuído à própria variável z.

```
Fato 1: x \in A'

Fato 2: y \in B'

Regra 1: Se (x \in A_1) E (y \in B_1) então z_1 = f_1(x, y)

Regra 2: Se (x \in A_1) E (y \in B_2) então z_2 = f_2(x, y)

Regra 3: Se (x \in A_2) E (y \in B_1) então z_3 = f_3(x, y)

Regra 4: Se (x \in A_2) E (y \in B_2) então z_4 = f_4(x, y)

Consequência: z = f(z_1, z_2, z_3, z_4)
```

 Neste caso, um dos operadores de defuzzificação mais utilizados é aquele dado pela média ponderada, considerando-se aqui o grau de ativação μ_i de cada regra ativada R_i, isto é:

$$z = \frac{\sum \mu_i \cdot z_i}{\sum \mu_i}$$

6. Projeto de Sistemas Fuzzy

Principais fases de projeto

- Em resumo, o projeto de Sistemas de Inferência
 Fuzzy do tipo TS é constituído de 5 fases principais:
 - 1. Fuzzificação das entradas.
 - 2. Aplicação de operadores fuzzy (conectivos).
 - Identificação de todas as regras que estejam ativadas.
 - 4. Determinação das contribuições individuais produzidas pelas funções polinomiais associadas aos consequentes das regras.
 - Combinação das contribuições individuais com o intuito de se produzir o resultado final (defuzzificado), a ser atribuído como resposta do sistema.

7. Exemplo CompletoFase de definição do problema (I) Especificação das Variáveis do Problema > A determinação da pressão a ser imprimida num sistema automatizado para freios automotivos pode ser estimada a partir da quantidade de movimento (massa e velocidade) do veículo. Os especialistas envolvidos com o projeto do sistema especificaram o seguinte sistema fuzzy para ser aplicado neste problema: Variáveis de Entrada: Velocidade (km/h) $\rightarrow v \in [0; 180]$ Massa do veículo (ton) $\rightarrow m \in [0; 2,4]$ Variáveis de Saída: Pressão no freio (atm) $\rightarrow p \in [0; 1]$ Deseja-se então conhecer qual seria a pressão a ser exercida nos freios para um veículo com massa de 1,5 ton e com uma velocidade instantânea de 155 km/h. Os operadores fuzzy a serem utilizados serão os seguintes: Conectivo → E (Mínimo), OU (Máximo) ➤ Implicação → Takagi-Sugeno ➤ Defuzzificação → Média Ponderada

8. Funções de Regressão Procedimentos de obtenção das funções de regressão (I)

- Considerando-se que se tem à disposição um conjunto de entradas/saídas conhecidas, torna-se então possível obter as respectivas funções de regressão.
- Como exemplo, sejam duas variáveis linguísticas de entrada (x e y), compostas respectivamente pelos conjuntos de termos fuzzy $\{A_1, A_2, A_3\}$ e $\{B_1, B_2, B_3\}$, cujas funções de pertinência são dadas por:

8. Funções de Regressão

Procedimentos de obtenção das funções de regressão (II)

O relacionamento das duas variáveis de entrada (x e y) com a variável de saída z é dada pela seguinte tabela:

Amostras ⊀

	X	y	Z
(1	0,15	2,36	1,62
2	0,20	2,84	3,21
3	0,29	2,96	1,93
4	0,35	1,81	2,39
5	0,48	1,12	1,74
6	0,62	0,83	2,43
7	0,74	2,15	0,76
8	0,81	0,27	1,40
9	0,93	0,89	0,84
(10	0,94	2,25	3,41

- Assim, para cada regra que compõem o sistema, pode-se então aplicar a regressão nos pontos pertencentes ao seu domínio de ativação.
- Como exemplo, seja a regra R dada por:

R: Se $(x \in "A_3")$ e $(y \in "B_2")$ então $z_R = f(x,y)$

Neste caso, basta-se então realizar regressão linear $\{z_R = a.x + b.y + c\}$ nos pontos em que (0.5 < x < 1.0) e (0.75 < y < 2.25). Portanto, os pontos considerados nesta regressão seriam as amostras 6, 7 e 9.

