线性代数 中国科学技术大学 2023 春 向量与数域

主讲: 杨金榜

地空楼 525

助教: 苏煜庭、陈鉴、夏小凡

2023年3月7号

课程考核方式

- 考核成绩为平时成绩、期中成绩和期末成绩加权平均.例如, 去年的比重是 2:4:4. 具体权重会由线性代数课题组根据期中 和期末考试的难易度来确定.
- ② 平时成绩包含作业成绩和上课考勤两部分.

什么是线性代数 (linear algebra)?

什么是线性代数 (linear algebra)?

线性代数是关于向量空间和线性映射的一个数学分支。

——维基百科

什么是线性代数 (linear algebra)?

线性代数是关于向量空间和线性映射的一个数学分支。

——维基百科

线性代数的方法广泛的用在数学其他分支、物理化学、计算机科 学、经济学等学科中。例如

- ❶ 泛函分析 (研究函数组成的空间);
- ② 量子力学(波函数,密度泛函理论);
- ③ 科学计算(天气预报);
- ❶ 机器学习(运动学正解);
- ⑤ 数据传输 (编码理论);
- 6 ...

- ① 空间中的向量
 - 向量的定义
 - 向量加法
 - 向量的数乘
 - 用点表示向量
 - 向量线性相关性
 - 坐标系与向量的坐标
- 2 数域
- 3 高维数组向量
- 4 求和号

什么是向量

我们初中学习过一些物理量包括速度、位移、力等等.

什么是向量

我们初中学习过一些物理量包括速度、位移、力等等.

数学上的抽象总结:

向量=既有大小,又有方向的量.

- ① 空间中的向量
 - 向量的定义
 - 向量加法
 - 向量的数乘
 - 用点表示向量
 - 向量线性相关性
 - 坐标系与向量的坐标
- 2 数域
- 3 高维数组向量
- 4 求和号

速度,力的合成 無數學语言抽象化 向量的加法

速度,力的合成 用数学语言抽象化 向量的加法

定义(向量的加法—平行四边形法则或者三角形法则)

速度,力的合成 用数学语言抽象化 向量的加法

速度,力的合成 用数学语言抽象化 向量的加法

速度,力的合成 ————— 向量的加法

速度,力的合成 用数学语言抽象化 向量的加法

速度,力的合成 ————— 向量的加法

性质(向量加法的基本性质)

① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$:

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$:
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- **3** 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$;

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- **3** 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$;
- **4** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$;

性质 (向量加法的基本性质)

- ① 加法交換律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- **3** 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$;
- **9** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$;

定义(向量的减法)

$$\vec{a} - \vec{b} := \vec{a} + (-\vec{b}).$$

性质(向量加法的基本性质)

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- **3** 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$;
 - **①** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$;

定义(向量的减法)

 $\vec{a} - \vec{b} := \vec{a} + (-\vec{b}).$

性质(向量加法的基本性质)

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- **3** 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$;
- **①** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$;

定义 (向量的减法)

$$\vec{a} - \vec{b} := \vec{a} + (-\vec{b}).$$

性质(向量加法的基本性质)

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- **3** 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$;
- **①** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$;

定义(向量的减法)

$$\vec{a} - \vec{b} := \vec{a} + (-\vec{b}).$$

性质(向量加法的基本性质)

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- **3** 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$;
- **①** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$;

定义 (向量的减法)

$$\vec{a} - \vec{b} := \vec{a} + (-\vec{b}).$$

性质(向量加法的基本性质)

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- **3** 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$;
- **①** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$;

定义(向量的减法)

$$\vec{a} - \vec{b} := \vec{a} + (-\vec{b}).$$

性质(向量加法的基本性质)

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- **3** 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$;
- **9** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$;

定义(向量的减法)

$$\vec{a} - \vec{b} := \vec{a} + (-\vec{b}).$$

- ① 空间中的向量
 - 向量的定义
 - 向量加法
 - 向量的数乘
 - 用点表示向量
 - 向量线性相关性
 - 坐标系与向量的坐标
- 2 数域
- 3 高维数组向量
- 4 求和号

定义(向量的数乘)

令 \vec{a} 为一向量, λ 为一实数.

• 若 $\lambda \ge 0$, 则 $\lambda \vec{a}$ 定义为长度为 $\lambda |\vec{a}|$ 且方向与 \vec{a} 相同的向量.

定义(向量的数乘)

令 \vec{a} 为一向量, λ 为一实数.

- 若 $\lambda \geq 0$, 则 $\lambda \vec{a}$ 定义为长度为 $\lambda |\vec{a}|$ 且方向与 \vec{a} 相同的向量.
- 若 $\lambda < 0$, 则 $\lambda \vec{a}$ 定义为长度为 $-\lambda |\vec{a}|$ 且方向与 \vec{a} 相反的向量.

定义(向量的数乘)

令 \vec{a} 为一向量, λ 为一实数.

- 若 $\lambda \ge 0$, 则 $\lambda \vec{a}$ 定义为长度为 $\lambda |\vec{a}|$ 且方向与 \vec{a} 相同的向量.
- 若 $\lambda < 0$, 则 $\lambda \vec{a}$ 定义为长度为 $-\lambda |\vec{a}|$ 且方向与 \vec{a} 相反的向量.

记号: 若 $\vec{a} \neq \vec{0}$, 则记 $\vec{a}^0 := \frac{1}{|\vec{a}|} \vec{a}$. 即, \vec{a}^0 为方向与 \vec{a} 相同的单位向量.

定义(向量的数乘)

令 \vec{a} 为一向量, λ 为一实数.

- 若 $\lambda \ge 0$, 则 $\lambda \vec{a}$ 定义为长度为 $\lambda |\vec{a}|$ 且方向与 \vec{a} 相同的向量.
- 若 λ < 0, 则 $\lambda \vec{a}$ 定义为长度为 $-\lambda |\vec{a}|$ 且方向与 \vec{a} 相反的向量.

记号: 若 $\vec{a} \neq \vec{0}$, 则记 $\vec{a}^0 := \frac{1}{|\vec{a}|} \vec{a}$. 即, \vec{a}^0 为方向与 \vec{a} 相同的单位向量.

注:零向量: $|\vec{a}|=0$. 规定任意方向都为零向量的方向.

性质(向量数乘的基本性质)

⑤ 数乘单位元: $1\vec{a} = \vec{a}$;

- ⑤ 数乘单位元: $1\vec{a} = \vec{a}$;
- **⑤** 数乘结合律: $\lambda(\mu\vec{a}) = (\lambda\mu)\vec{a}$;

- ⑤ 数乘单位元: $1\vec{a} = \vec{a}$;
- **⑤** 数乘结合律: $\lambda(\mu\vec{a}) = (\lambda\mu)\vec{a}$;
- ② 左分配律: $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;

- ⑤ 数乘单位元: $1\vec{a} = \vec{a}$;
- **③** 数乘结合律: $\lambda(\mu \vec{a}) = (\lambda \mu)\vec{a}$;
- ② 左分配律: $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;
- ③ 右分配律: $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$;

线性运算

定义(线性运算)

向量的加法和数乘运算统称为向量的线性运算.

线性运算

定义(线性运算)

向量的加法和数乘运算统称为向量的线性运算.

性质(向量集合上线性运算的八条基本性质)

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- **3** 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$;
- **o** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$;
- ⑤ 数乘单位元: $1\vec{a} = \vec{a}$;
- **⑤** 数乘结合律: $\lambda(\mu\vec{a}) = (\lambda\mu)\vec{a}$;
- ② 左分配律: $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;
- **③** 右分配律: $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$;

线性运算

定义(线性运算)

向量的加法和数乘运算统称为向量的线性运算.

性质(向量集合上线性运算的八条基本性质)

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$:
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- ③ 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$:
- **①** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$:
- **⑤** 数乘单位元: $1\vec{a} = \vec{a}$:
- **⑤** 数乘结合律: $\lambda(\mu\vec{a}) = (\lambda\mu)\vec{a}$;
- **②** 左分配律: $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;
- **③** 右分配律: $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$:

注: 我们将通过这八条性质来公理化地定义一般的线性空间或向 量空间 (第五章).

- ① 空间中的向量
 - 向量的定义
 - 向量加法
 - 向量的数乘
 - 用点表示向量
 - 向量线性相关性
 - 坐标系与向量的坐标
- 2 数域
- 3 高维数组向量
- 4 求和号

空间与全体向量集

空间与全体向量集

例

设成为一个非零向量。则

过原点与 \vec{a} 平行的直线 $\stackrel{1:1}{\longleftrightarrow} \{\lambda \vec{a} \mid \lambda \in \mathbb{R}\}.$

- ① 空间中的向量
 - 向量的定义
 - 向量加法
 - 向量的数乘
 - 用点表示向量向量线性相关性
 - 坐标系与向量的坐标
- 2 数域
- 3 高维数组向量
- 4 求和号

定义(线性组合)

设 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 为一组向量, $\lambda_1, \lambda_2, \dots, \lambda_m$ 为一组实数. 称向量

$$\lambda_1\vec{a}_1+\lambda_2\vec{a}_2+\cdots\lambda_m\vec{a}_m$$

为向量 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 的线性组合.

定义(线性组合)

设 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 为一组向量, $\lambda_1, \lambda_2, \cdots, \lambda_m$ 为一组实数. 称向量

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m$$

为向量 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 的线性组合.

定义(线性组合)

设 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 为一组向量, $\lambda_1, \lambda_2, \cdots, \lambda_m$ 为一组实数. 称向量

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m$$

为向量 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 的线性组合.

定义(线性组合)

设 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 为一组向量, $\lambda_1, \lambda_2, \cdots, \lambda_m$ 为一组实数. 称向量

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m$$

为向量 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 的线性组合.

定义(线性组合)

设 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 为一组向量, $\lambda_1, \lambda_2, \cdots, \lambda_m$ 为一组实数. 称向量

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m$$

为向量 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 的线性组合.

定义(线性组合)

设 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 为一组向量, $\lambda_1, \lambda_2, \cdots, \lambda_m$ 为一组实数. 称向量

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m$$

为向量 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 的线性组合.

定义(线性组合)

设 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 为一组向量, $\lambda_1, \lambda_2, \dots, \lambda_m$ 为一组实数. 称向量

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m$$

为向量 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 的线性组合.

定义(线性相关,线性无关)

给定一组向量 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$.

• 如果存在一组不全为零的实数 $\lambda_1, \lambda_2, \dots, \lambda_m$ 使得

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m = 0,$$

则称向量组 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 线性相关.

定义(线性相关,线性无关)

给定一组向量 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$.

• 如果存在一组不全为零的实数 $\lambda_1, \lambda_2, \dots, \lambda_m$ 使得

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m = 0,$$

则称向量组 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 线性相关.

• 反之, 若对任意一组不全为零的实数 $\lambda_1, \lambda_2, \dots, \lambda_m$ 都有

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m \neq 0,$$

则称向量组 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 的线性无关.

定义(线性相关,线性无关)

给定一组向量 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$.

• 如果存在一组不全为零的实数 $\lambda_1, \lambda_2, \dots, \lambda_m$ 使得

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m = 0,$$

则称向量组 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 线性相关.

• 反之, 若对任意一组不全为零的实数 $\lambda_1, \lambda_2, \dots, \lambda_m$ 都有

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m \neq 0,$$

则称向量组 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 的线性无关.

特别地,设 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 线性无关. 若 $\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots \lambda_m \vec{a}_m = 0$, 则 $\lambda_1 = \lambda_2 = \cdots = \lambda_m = 0$.

定义(线性相关,线性无关)

给定一组向量 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$.

• 如果存在一组不全为零的实数 $\lambda_1, \lambda_2, \dots, \lambda_m$ 使得

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m = 0,$$

则称向量组 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 线性相关.

• 反之, 若对任意一组不全为零的实数 $\lambda_1, \lambda_2, \cdots, \lambda_m$ 都有

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots \lambda_m \vec{a}_m \neq 0,$$

则称向量组 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 的线性无关.

特别地,设 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 线性无关. 若 $\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \dots + \lambda_m \vec{a}_m = 0$,则 $\lambda_1 = \lambda_2 = \dots = \lambda_m = 0$.

例

向量组 $\vec{a} + \vec{b} + \vec{c}$, $\vec{a} - \vec{b} - \vec{c}$, $\vec{a} + 2\vec{b} + 2\vec{c}$ 线性相关。

① 一个向量 \vec{a} 线性相关 \iff $\vec{a} = 0$;

- ① 一个向量 \vec{a} 线性相关 \iff $\vec{a} = 0$;
- ② 两个向量 \vec{a} , \vec{b} 线性相关 \iff \vec{a} 与 \vec{b} 平行 (共线);

- ① 一个向量 \vec{a} 线性相关 $\iff \vec{a} = 0$:
- ② 两个向量 \vec{a} . \vec{b} 线性相关 \iff \vec{a} 与 \vec{b} 平行 (共线);
- ③ 三个向量 \vec{a} , \vec{b} , \vec{c} 线性相关 ⇔ \vec{a} , \vec{b} , \vec{c} 共面;

- ② 两个向量 \vec{a} . \vec{b} 线性相关 \iff \vec{a} 与 \vec{b} 平行 (共线);
- ③ 三个向量 \vec{a} , \vec{b} , \vec{c} 线性相关 ⇔ \vec{a} , \vec{b} , \vec{c} 共面;
- 四个及四个以上的向量一定线性相关。

- ① 空间中的向量
 - 向量的定义
 - 向量加法
 - 向量的数乘
 - 用点表示向量
 - 向量线性相关性
 - 坐标系与向量的坐标
- 2 数域
- 3 高维数组向量
- 4 求和号

为了推广笛卡尔坐标系到坐标轴不相互垂直的情形,

为了推广笛卡尔坐标系到坐标轴不相互垂直的情形,

我们需要引入向量的基本定理.

定理(向量的基本定理)

设 \vec{e}_1 , \vec{e}_2 , \vec{e}_3 为空间中的三个不共面的向量, 则对每个向量 \vec{a} 都存 在唯一的三元有序实数组 (x_1, x_2, x_3) , 使得

$$\vec{a} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3.$$

定义(基、坐标)

称不共面的三个向量 $\vec{e}_1, \vec{e}_2, \vec{e}_3$ 为一组基. 若

$$\vec{a} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3,$$

则称 (x_1, x_2, x_3) 为向量 \vec{a} 在基 $\vec{e}_1, \vec{e}_2, \vec{e}_3$ 下的(仿射) 坐标.

定义(基、坐标)

称不共面的三个向量 $\vec{e}_1, \vec{e}_2, \vec{e}_3$ 为一组基. 若

$$\vec{a} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3,$$

则称 (x_1, x_2, x_3) 为向量 \vec{a} 在基 $\vec{e}_1, \vec{e}_2, \vec{e}_3$ 下的(仿射) 坐标.

仿射坐标系 = 点 $O + \overline{k}\vec{e}_1, \vec{e}_2, \vec{e}_3$ 记作 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$.

仿射坐标系

定义(基、坐标)

称不共面的三个向量 $\vec{e}_1, \vec{e}_2, \vec{e}_3$ 为一组基. 若

$$\vec{a} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3,$$

则称 (x_1, x_2, x_3) 为向量 \vec{a} 在基 $\vec{e}_1, \vec{e}_2, \vec{e}_3$ 下的(仿射) 坐标.

仿射坐标系 = 点
$$O + \overline{k}\vec{e}_1, \vec{e}_2, \vec{e}_3$$
 记作 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$.

推论(一一对应)

若给定仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$, 则有如下一一对应

向量的坐标运算

给定仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$, 我们用 (x_1, x_2, x_3) 表示向量 $x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3$.

向量的坐标运算

给定仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$, 我们用 (x_1, x_2, x_3) 表示向量 $x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3$. 则我们有

性质

 \bullet $(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3);$

向量的坐标运算

给定仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$, 我们用 (x_1, x_2, x_3) 表示向量 $x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3$. 则我们有

性质

- \bullet $(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3);$
- $\bullet \ \lambda(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda x_3).$

给定两个仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$ 和 $[O'; \vec{e}'_1, \vec{e}'_2, \vec{e}'_3]$.

给定两个仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$ 和 $[O'; \vec{e}_1, \vec{e}_2, \vec{e}_3]$.

问题

设空间中的点 P 在两个坐标系下的坐标分别为 (x, y, z) 和 (x', y', z'). 求两个坐标之间的关系式?

给定两个仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$ 和 $[O'; \vec{e}_1', \vec{e}_2', \vec{e}_3']$.

问题

设空间中的点 P 在两个坐标系下的坐标分别为 (x,y,z) 和 (x',y',z'). 求两个坐标之间的关系式?

为了回答这一问题, 我们需要给出两个坐标系之间的位置关系:

给定两个仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$ 和 $[O'; \vec{e}'_1, \vec{e}'_2, \vec{e}'_3]$.

问题

设空间中的点 P 在两个坐标系下的坐标分别为 (x, y, z) 和 (x',y',z'). 求两个坐标之间的关系式?

为了回答这一问题,我们需要给出两个坐标系之间的位置关系:

• 设 O 在 $[O'; \vec{e}_1, \vec{e}_2, \vec{e}_3]$ 下的坐标为 (x'_0, y'_0, z'_0) . 即

$$\overrightarrow{O'O} = x_0 \vec{e}_1' + y_0 \vec{e}_2' + z_0 \vec{e}_3'.$$

给定两个仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$ 和 $[O'; \vec{e}'_1, \vec{e}'_2, \vec{e}'_3]$.

问题

设空间中的点 P 在两个坐标系下的坐标分别为 (x, y, z) 和 (x', v', z'). 求两个坐标之间的关系式?

为了回答这一问题, 我们需要给出两个坐标系之间的位置关系:

• 设 O 在 $[O'; \vec{e}_1, \vec{e}_2, \vec{e}_3]$ 下的坐标为 (x'_0, y'_0, z'_0) . 即

$$\overrightarrow{O'O} = x_0 \vec{e}_1' + y_0 \vec{e}_2' + z_0 \vec{e}_3'.$$

• 设 \vec{e}_i 在基 $\vec{e}_1, \vec{e}_2, \vec{e}_3$ 下的坐标为 (a_{1i}, a_{2i}, a_{3i}) . 即 $\vec{e}_i = a_{1i}\vec{e}'_1 + a_{2i}\vec{e}'_2 + a_{3i}\vec{e}'_3.$

给定两个仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$ 和 $[O'; \vec{e}'_1, \vec{e}'_2, \vec{e}'_3]$.

问题

设空间中的点 P 在两个坐标系下的坐标分别为 (x, v, z) 和 (x', v', z'). 求两个坐标之间的关系式?

为了回答这一问题, 我们需要给出两个坐标系之间的位置关系:

• 设 O 在 $[O'; \vec{e}_1, \vec{e}_2, \vec{e}_3]$ 下的坐标为 (x'_0, y'_0, z'_0) . 即

$$\overrightarrow{O'O} = x_0 \vec{e}_1' + y_0 \vec{e}_2' + z_0 \vec{e}_3'.$$

• 设 \vec{e}_i 在基 \vec{e}'_1 , \vec{e}'_2 , \vec{e}'_3 下的坐标为 (a_{1i}, a_{2i}, a_{3i}) . 即

$$\vec{e}_j = a_{1j}\vec{e}_1' + a_{2j}\vec{e}_2' + a_{3j}\vec{e}_3'.$$

然后 P 在两个坐标系下的坐标之间的关系式可写为:

$$x' = a_{11}x + a_{12}y + a_{13}z + x'_0$$

$$y' = a_{21}x + a_{22}y + a_{23}z + y'_0$$

$$z' = a_{31}x + a_{32}y + a_{33}z + z'_0$$

给定两个仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$ 和 $[O'; \vec{e}'_1, \vec{e}'_2, \vec{e}'_3]$.

问题

设空间中的点 P 在两个坐标系下的坐标分别为 (x, v, z) 和 (x', v', z'). 求两个坐标之间的关系式?

为了回答这一问题, 我们需要给出两个坐标系之间的位置关系:

• 设 O 在 $[O'; \vec{e}_1, \vec{e}_2, \vec{e}_3]$ 下的坐标为 (x'_0, y'_0, z'_0) . 即

$$\overrightarrow{O'O} = x_0 \vec{e}_1' + y_0 \vec{e}_2' + z_0 \vec{e}_3'.$$

• 设 \vec{e}_i 在基 \vec{e}'_1 , \vec{e}'_2 , \vec{e}'_3 下的坐标为 (a_{1i}, a_{2i}, a_{3i}) . 即

$$\vec{e}_j = a_{1j}\vec{e}_1' + a_{2j}\vec{e}_2' + a_{3j}\vec{e}_3'.$$

然后 P 在两个坐标系下的坐标之间的关系式可写为:

$$x' = a_{11}x + a_{12}y + a_{13}z + x'_0$$

$$y' = a_{21}x + a_{22}y + a_{23}z + y'_0$$

$$z' = a_{31}x + a_{32}y + a_{33}z + z'_0$$

$$pf: \overrightarrow{O'P} = \overrightarrow{O'O} + \overrightarrow{OP}.$$

- 1 空间中的向量
- 2 数域
 - 复数
 - 数域
- 3 高维数组向量
- 4 求和号

$$z = \underbrace{\frac{x}{\lambda}}_{\text{Re}z} + \underbrace{\frac{iy}{\lambda}}_{\text{E}}$$

- 辐角: 实轴沿逆时针方向 旋转到 OP 的角度.
- 共轭: $\bar{z} := x iy$.
- 三角表示: $z = r(\cos \theta + i \sin \theta)$.

复数乘法的几何解释

设
$$\omega = a + ib = t(\cos \varphi + i \sin \varphi)$$
。 任取复平面中的点 $z = x + iy = r(\cos \theta + i \sin \theta)$,则根据复数的乘法和积化和差公式 $\omega \cdot z = (ax - by) + i(bx + ay) = rt(\cos(\theta + \varphi) + i \sin(\theta + \varphi))$.

复数乘法的几何解释

设 $\omega = a + ib = t(\cos \varphi + i \sin \varphi)$ 。 任取复平面中的点 $z = x + iy = r(\cos \theta + i \sin \theta)$,则根据复数的乘法和积化和差公式 $\omega \cdot z = (ax - by) + i(bx + ay) = rt(\cos(\theta + \varphi) + i \sin(\theta + \varphi))$.

若用坐标表示复数,则乘复数 ω 给出如下复平面的变换:

$$(x, y) \mapsto (ax - by, bx + ay).$$

复数乘法的几何解释

设 $\omega = a + ib = t(\cos \varphi + i \sin \varphi)$ 。任取复平面中的点 $z = x + iv = r(\cos \theta + i \sin \theta)$,则根据复数的乘法和积化和差公式 $\omega \cdot z = (ax - by) + i(bx + ay) = rt(\cos(\theta + \varphi) + i\sin(\theta + \varphi)).$

若用坐标表示复数、则乘复数 ω 给出如下复平面的变换:

$$(x, y) \mapsto (ax - by, bx + ay).$$

若用极坐标表示复数.则乘复数ω有如下几何解释:

$$z \longrightarrow \theta$$
缩 t 倍 $tz \longrightarrow tz \longrightarrow \omega z$.

- 1 空间中的向量
- 2 数域
 - 复数
 - 数域
- ③ 高维数组向量
- 4 求和号

复数域的任意子集称为数集. 例如: N, Z, Q, R,C, ···.

数域

复数域的任意子集称为数集. 例如: N, Z, Q, ℝ,C, · · · .

定义

若数集 F 至少包含两个元素, 且关于数的加减乘除封闭, 那么称 F 为数域.

数域

复数域的任意子集称为数集. 例如: N, Z, Q, R,C, · · · .

定义

若数集 F 至少包含两个元素, 且关于数的加减乘除封闭, 那么称 F 为数域.

例如: \mathbb{N} , \mathbb{Z} 不为数域. 而 \mathbb{Q} , \mathbb{R} , \mathbb{C} 均为数域.

复数域的任意子集称为数集. 例如: N, Z, Q, ℝ,C,···.

定义

若数集 \mathbb{F} 至少包含两个元素,且关于数的加减乘除封闭,那么称 \mathbb{F} 为数域.

例如: \mathbb{N} , \mathbb{Z} 不为数域. 而 \mathbb{Q} , \mathbb{R} , \mathbb{C} 均为数域.

例

数集 $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\$ 为一个数域.

复数域的任意子集称为数集. 例如: N, Z, Q, ℝ,C,···.

定义

若数集 F 至少包含两个元素, 且关于数的加减乘除封闭, 那么称 F 为数域.

例如: \mathbb{N} , \mathbb{Z} 不为数域. 而 \mathbb{Q} , \mathbb{R} , \mathbb{C} 均为数域.

例

数集 $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\$ 为一个数域.

性质

有理数域 \mathbb{Q} 为最小的数域. 即, 若 \mathbb{F} 为数域, 则 $\mathbb{Q} \subseteq \mathbb{F}$.

- 1 空间中的向量
- 2 数域
- 3 高维数组向量
 - 高维数组向量的定义
 - 高维数组向量的线性运算
 - 高维数组向量的线性相关性
- 4 求和号

高维数组向量的定义

设 ℙ 为数域, n 为正整数.

高维数组向量的定义

设 \mathbb{F} 为数域,n为正整数.

定义

我们称一个由n个 \mathbb{F} 上的数 a_1, a_2, \cdots, a_n 组成的有序数组

$$\vec{a} := (a_1, \cdots, a_n)$$

为数域 \mathbb{F} 上的一个n维数组向量. 其中 a_i 称为 \vec{a} 的第 i 个分量. 数域 \mathbb{F} 上n维数组向量全体记为 \mathbb{F}^n .

高维数组向量的定义

设 \mathbb{F} 为数域,n为正整数.

定义

我们称一个由n个 \mathbb{F} 上的数 a_1, a_2, \cdots, a_n 组成的有序数组

$$\vec{a} := (a_1, \cdots, a_n)$$

为数域 \mathbb{F} 上的一个 n 维数组向量. 其中 a_i 称为 \vec{a} 的第 i 个分量. 数 域 \mathbb{F} 上 n 维数组向量全体记为 \mathbb{F}^n .

记法:

行向量:
$$\vec{a} = (a_1, \cdots, a_n) \in \mathbb{F}^n$$
 列向量: $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{F}^n$

- 1 空间中的向量
- 2 数域
- ③ 高维数组向量
 - 高维数组向量的定义
 - 高维数组向量的线性运算
 - 高维数组向量的线性相关性
- 4 求和号

读
$$\vec{a}=(a_1,\cdots,a_n)\in\mathbb{F}^n, \vec{b}=(b_1,\cdots,b_n)\in\mathbb{F}^n, \lambda\in\mathbb{F}.$$

• $m \not \exists : \vec{a} + \vec{b} := (a_1 + b_1, a_2 + b_2, \cdots, a_n + b_n).$

读
$$\vec{a}=(a_1,\cdots,a_n)\in\mathbb{F}^n, \vec{b}=(b_1,\cdots,b_n)\in\mathbb{F}^n, \lambda\in\mathbb{F}.$$

- $m \not = \vec{a} + \vec{b} := (a_1 + b_1, a_2 + b_2, \cdots, a_n + b_n).$
- $\delta = (\lambda a_1, \lambda a_2, \cdots, \lambda a_n)$.

读
$$\vec{a}=(a_1,\cdots,a_n)\in\mathbb{F}^n, \vec{b}=(b_1,\cdots,b_n)\in\mathbb{F}^n, \lambda\in\mathbb{F}.$$

- $m \not \exists : \vec{a} + \vec{b} := (a_1 + b_1, a_2 + b_2, \cdots, a_n + b_n).$
- $\delta = (\lambda a_1, \lambda a_2, \cdots, \lambda a_n)$.
- 零向量: $\vec{0} := (0, \dots, 0)$.
- 负向量: $-\vec{a} := (-a_1, \cdots, -a_n)$.
- 相等: $\vec{a} = \vec{b} \iff a_i = b_i \quad i = 1, \dots, n$.

读 $ec{a}=(a_1,\cdots,a_n)\in \mathbb{F}^n, ec{b}=(b_1,\cdots,b_n)\in \mathbb{F}^n, \lambda\in \mathbb{F}.$

- $lackbox{ bis}$ 加法: $\vec{a} + \vec{b} := (a_1 + b_1, a_2 + b_2, \cdots, a_n + b_n).$

- 相等: $\vec{a} = \vec{b} \iff a_i = b_i \quad i = 1, \dots, n$.

八条基本性质:

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- **③** 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$;
- **•** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$;
- **⑤** 数乘单位元: $1\vec{a} = \vec{a}$;
- **⑤** 数乘结合律: $\lambda(\mu\vec{a}) = (\lambda\mu)\vec{a}$;
- ② 左分配律: $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;
- ③ 右分配律: $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$;

- 1 空间中的向量
- 2 数域
- ③ 高维数组向量
 - 高维数组向量的定义
 - 高维数组向量的线性运算
 - 高维数组向量的线性相关性
- 4 求和号

线性相关(高维数组向量)

读 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n \in \mathbb{F}^n, \lambda_1, \lambda_2, \cdots, \lambda_m \in \mathbb{F}.$

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots \lambda_m \vec{a}_m \qquad \longleftarrow 线性组合$$

线性相关(高维数组向量)

读 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n \in \mathbb{F}^n, \lambda_1, \lambda_2, \cdots, \lambda_m \in \mathbb{F}.$

定义(线性相关,线性无关)

一组向量 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 称为线性相关, 若存在一组不全为零的实数 $\lambda_1, \lambda_2, \dots, \lambda_m$ 使得

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m = 0.$$

反之,则称向量 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 的线性无关.

例

记 $\vec{e}_1 = (1, 0, \dots, 0), \vec{e}_2 = (0, 1, \dots, 0), \dots, \vec{e}_n = (0, 0, \dots, 1).$ 则 $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ 线性无关. 称这 n 个向量为基本向量.

例

记 $\vec{e}_1 = (1, 0, \dots, 0), \vec{e}_2 = (0, 1, \dots, 0), \dots, \vec{e}_n = (0, 0, \dots, 1).$ 则 $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ 线性无关. 称这 n 个向量为基本向量.

事实

基本向量线性无关,且任意n维数组向量都可以表示为基本向量的线性组合.

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \dots + x_n \vec{e}_n.$$

- 1 空间中的向量
- 2 数域
- ③ 高维数组向量
- 4 求和号
 - 求和号
 - 多重求和号
 - 条件求和

求和号

$$\sum_{i=1}^{n} a_i := a_1 + a_2 + \dots + a_n$$

求和号

$$\sum_{i=1}^{n} a_i := a_1 + a_2 + \dots + a_n$$

性质

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i; \qquad \sum_{i=1}^{n} \lambda a_i = \lambda \sum_{i=1}^{n} a_i$$

- 1 空间中的向量
- 2 数域
- ③ 高维数组向量
- 4 求和号
 - 求和号
 - 多重求和号
 - 条件求和

多重求和号

$$\sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} := \sum_{j=1}^{m} (a_{1j} + a_{2j} + \dots + a_{nj})$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} := \sum_{i=1}^{n} (a_{i1} + a_{i2} + \dots + a_{im})$$

多重求和号

$$\sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} := \sum_{j=1}^{m} (a_{1j} + a_{2j} + \dots + a_{nj})$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} := \sum_{i=1}^{n} (a_{i1} + a_{i2} + \dots + a_{im})$$

性质

$$\sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}.$$

有时候,将这一值简记为 $\sum a_{ii}$. $1 \le i, j \le n$

- 1 空间中的向量
- 2 数域
- ③ 高维数组向量
- 4 求和号
 - 求和号
 - 多重求和号
 - 条件求和

条件求和

$$\sum_{1 \le i \le j \le n} a_{ij} := a_{11} + (a_{12} + a_{22}) + \dots + (a_{1n} + a_{2n} + \dots + a_{nn}).$$

条件求和

$$\sum_{1 \le i \le j \le n} a_{ij} := a_{11} + (a_{12} + a_{22}) + \dots + (a_{1n} + a_{2n} + \dots + a_{nn}).$$

性质

$$\sum_{1 \le i \le j \le n} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{j} a_{ij} = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij}.$$

条件求和

$$\sum_{1 \le i \le j \le n} a_{ij} := a_{11} + (a_{12} + a_{22}) + \dots + (a_{1n} + a_{2n} + \dots + a_{nn}).$$

性质

$$\sum_{1 \le i \le j \le n} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{j} a_{ij} = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij}.$$

例

$$\sum_{i=1}^n \sum_{j=1}^m a_i b_j = \left(\sum_{i=1}^n a_i\right) \left(\sum_{j=1}^m b_j\right).$$