SMT-based Weighted Model Integration with Structure Awareness (Supplementary material)

Giuseppe Spallitta¹ Gabriele Masina¹ Paolo Morettin² Andrea Passerini¹ Roberto Sebastiani¹

¹University of Trento ²KU Leuven

$[y = w]_{\mathcal{EUF}}$ **DEFINITION**

Algorithm 1 is such that, given a FIUC $^{\mathcal{LR}\mathcal{A}}$ weight function w on conditions Ψ , Convert (w,\emptyset) returns $\langle w', \operatorname{defs}, \mathbf{y} \rangle$ s.t. $[y = w]_{\mathcal{EUF}} \stackrel{\text{def}}{=} (y = w') \wedge \bigwedge_{\varphi_i \in \operatorname{defs}} \varphi_i$, on variables $\mathbf{x} \cup \mathbf{y}, \mathbf{A}$.

Algorithm 1 Convert(w, conds)

returns $\langle w', \mathsf{defs}, \mathbf{y} \rangle$

w': the term w is rewritten into

conds: the current partial assignment to conditions Ψ , representing the set of conditions which w depends on defs: a set of definitions in the form $y_i=w_i$ needed to rewrite w into w'

y: newly-introduced variables labeling if-then-else terms f^g : uninterpreted function naming the function/operator g

```
1: if ({w constant or variable}) then
               return \langle w, \emptyset, \emptyset \rangle
  3: if (w == (w_1 \bowtie w_2), \bowtie \in \{+, -, \cdot, /\}) then
               \langle w'_i, \mathsf{defs}_i, \mathbf{y}_i \rangle = \mathsf{Convert}(w_i, \mathsf{conds}), i \in \{1, 2\}
               return \langle f^{\bowtie}(\mathsf{w}_1',\mathsf{w}_2'),\mathsf{defs}_1\cup\mathsf{defs}_2,\mathbf{y}_1\cup\mathbf{y}_2\rangle
  6: if (w == g(w_1, ..., w_k), g unconditioned) then
  7:
               \langle w'_i, \mathsf{defs}_i, \mathbf{y}_i \rangle = \mathsf{Convert}(w_i, \mathsf{conds}), i \in 1, ..., k
               return \langle f^g(\mathbf{w}'_1,...,\mathbf{w}'_k), \cup_{i=1}^k \mathsf{defs}_i, \cup_{i=1}^k \mathbf{y}_i \rangle
  9: if (w == (If \psi Then w<sub>1</sub> Else w<sub>2</sub>)) then
               \langle \mathsf{w}_1', \mathsf{defs}_1, \mathbf{y}_1 \rangle = \mathsf{Convert}(\mathsf{w}_1, \mathsf{conds} \cup \{ \psi \})
10:
                \langle \mathsf{w}_2', \mathsf{defs}_2, \mathbf{y}_2 \rangle = \mathsf{Convert}(\mathsf{w}_2, \mathsf{conds} \cup \{\neg \psi\})
11:
               let y be a fresh variable
12:
               \mathsf{defs} = \mathsf{defs}_1 \cup \mathsf{defs}_2 \cup
13:
                      \begin{array}{l} (\bigvee_{\psi_i \in \mathsf{conds}} \neg \psi_i \vee \neg \psi \vee (y = \mathsf{w}_1') \cup \\ (\bigvee_{\psi_i \in \mathsf{conds}} \neg \psi_i \vee \quad \psi \vee (y = \mathsf{w}_2') \cup \\ (\bigvee_{\psi_i \in \mathsf{conds}} \neg \psi_i \vee \neg (y = \mathsf{w}_1') \vee \neg (y = \mathsf{w}_2')) \end{array} 
14:
15:
16:
               \mathbf{y} = \mathbf{y}_1 \cup \mathbf{y}_2 \cup \{y\}
17:
               return \langle y, \mathsf{defs}, \mathbf{y} \rangle
18:
```

Dataset	$ \mathbf{A} $	$ \mathbf{x} $	# Train	# Valid
balance-scale	3	4	1875	205
iris	3	4	450	50
cars	33	7	2115	234
diabetes	1	8	4149	459
breast-cancer	12	4	1650	180
glass2	1	9	970	100
glass	7	9	1280	140
breast	1	10	4521	495
solar	25	3	2522	273
cleve	17	6	2492	266
hepatitis	14	6	940	100
heart	3	11	2268	252
australian	34	6	6210	690
crx	38	6	6688	736
german	41	10	12600	1386
german-org	13	12	15000	1650
auto	56	16	2522	260
anneal-U	74	9	21021	2301

Table 1: UCI datasets considered in our experiments. We report the number of Boolean and continuous variables, training and validation data size.