

Lecture 1: Introduction to Software Engineering

What is Software Engineering?

Software is:

- (1) Instructions (computer programs) that when executed provide desired features, function, and performance;
- (2) Data structures that enable the programs to adequately manipulate information and
- (3) Documentation that describes the operation and use of the programs.
- Software is considered to be a collection of executable programming code, associated libraries and documentations.

What is Software Engineering?

- Engineering:
 - An engineering branch associated with the development of software product using welldefined scientific principles, methods and procedures.
- IEEE defines software engineering as:
 - The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software (the application of engineering to software).
 - The outcome of software engineering is an efficient and reliable software product

Software Types

- Generic developed to be sold to a range of different customers,
 - e.g. PC software such as Word or Excel
- Custom developed for a single customer according to their specification
- Cooperative Solutions
 - Starting with generic system and customizing it to the needs of a particular customer. For example, Resource Planning (ERP) system

Software Crisis: Late 1960's

5

- Late delivery; over budget Inaccurate schedule and costs
- Product does not meet specified requirements
- Inadequate documentation
- Complexities of software increased
- Demand became greater than ability to generate new software

History of Software Testing

What? I've done the coding and now you want to test it. Why? We haven't got time anyway.

1960s - 1980s Constraint OK, maybe you were right about testing. It looks like a nasty bug made its way into the Live environment and now costumers are complaining.

1990s Need Testers! you must work harder! Longer! Faster!

2000+

Asset

SOFTWARE CRISIS - WHY

- Poor data collection process with no historical data
- Poor communication between customer and developer
- Software Myths (3 types)
 - Managers (use of standards, state or art tools or if project is late, add more programmers)
 - Developers (job done on delivery of code, success = quality of program)
 - Customers (easy to accommodate change, a general statement sufficient to start coding)
- Existing Software can be difficult to maintain
- Poor software management "any manager can manage any project".
- Lack of or little formal training in the new techniques
- Resistance to change

Class Discussion questions

1. Why does it take so long to get software finished?

- 2. Why are development costs so high?
- 3. Why can't we find all errors before we give the software to our customers?

4. Why do we spend much time and effort in maintaining existing programs?

Need for Software Engineering

- Arises because of higher rate of change in user requirements and environment on which the software works.
- 1. Large software: as the size of software grows, there is need for a scientific process
- 2. Scalability: Enhancing existing software
- 3. Cost: Software is expensive as compared to hardware
- 4. Dynamic Nature
- 5. Quality Management: better process of software development, better quality.

Attributes of Quality Software

- a) Maintainability Change is inevitable thus Software must evolve to meet changing needs;
- b) Dependability Software must be trustworthy; e.g. reliability, security, safety.
- c) Efficiency -Software should not make wasteful use of system resources (memory and processor cycle)
- d) Usability Software must accepted by the users for what it was designed i.e. appropriate user interface & adequate documentation.

8/24/2023 ICS 2201 Software Eng Notes

Challenges of Software Engineering

- Increased Diversity
 - Inherent heterogeneity
 - Distributed systems, networks, different computers and software
 - Integration with legacy systems
- Reduced delivery times
 - Traditional software engineering techniques are time consuming
- Developing trustworthy systems
 - Users can trust the system
 - More so for remote software systems accessed through a web page

8/24/2023 ICS 2201 Software Eng Notes

Software engineering process activities

1. Software specification:

 customers & engineers identify the functionality of the software that is to be produced and the constraints on its operation.

2. Software development:

the software is designed and programmed.

3. Software validation:

 the software is checked to ensure that it is what the customer requires/needs.

4. Software evolution:

 the software is modified to reflect changing customer and market requirements.

Key Student Reflection Points

- 1. Software is a complex engineering product.
- 2. Approaches which work for constructing small programs for personal use do not scale-up to the challenges of real software construction.
- 3. A disciplined engineering process and associated management disciplined is needed.

14