### Exercise 5. Problem 1

Consider the set consisting of the following clauses:

$$\neg p_0 \vee \neg p_1 \vee \neg p_2, \quad p_0 \vee \neg p_2, \quad \neg p_0 \vee p_1, \quad p_1 \vee p_2, \quad \neg p_0 \vee \neg p_1 \vee p_2.$$

Show how GSAT can find a model of this set starting with the initial random interpretation  $\{p_0 \mapsto 1, p_1 \mapsto 0, p_2 \mapsto 1\}$ .

| flip | interpretation |                       |                       | sa | tisfie | d clau                | uses  | candidates   | flipped  |
|------|----------------|-----------------------|-----------------------|----|--------|-----------------------|-------|--------------|----------|
| no.  | $p_0$          | <i>p</i> <sub>1</sub> | <i>p</i> <sub>2</sub> |    | $p_0$  | <i>p</i> <sub>1</sub> | $p_2$ | for flipping | variable |
| 1    | 1              | 0                     | 1                     | 4  |        |                       |       |              |          |
|      |                |                       |                       |    |        |                       |       |              |          |
|      |                |                       |                       |    |        |                       |       |              |          |
|      |                |                       |                       |    |        |                       |       |              |          |

| flip | interpretation |                       |                       | sa | tisfie                | d clau                | uses  |              |          |
|------|----------------|-----------------------|-----------------------|----|-----------------------|-----------------------|-------|--------------|----------|
| no.  | $p_0$          | <i>p</i> <sub>1</sub> | <i>p</i> <sub>2</sub> |    | <b>p</b> <sub>0</sub> | <i>p</i> <sub>1</sub> | $p_2$ | for flipping | variable |
| 1    | 1              | 0                     | 1                     | 4  | 4                     | 4                     | 3     |              |          |
|      |                |                       |                       |    |                       |                       |       |              |          |
|      |                |                       |                       |    |                       |                       |       |              |          |
|      |                |                       |                       |    |                       |                       |       |              |          |

| flip | interpretation |                       |       | sa | tisfie | d clau                | uses  | candidates   | flipped               |
|------|----------------|-----------------------|-------|----|--------|-----------------------|-------|--------------|-----------------------|
| no.  | $p_0$          | <i>p</i> <sub>1</sub> | $p_2$ |    | $p_0$  | <i>p</i> <sub>1</sub> | $p_2$ | for flipping | variable              |
| 1    | 1              | 0                     | 1     | 4  | 4      | 4                     | 3     | $p_0, p_1$   | <i>p</i> <sub>1</sub> |
| 2    | 1              | 1                     | 1     |    |        |                       |       |              |                       |
|      |                |                       |       |    |        |                       |       |              |                       |
|      |                |                       |       |    |        |                       |       |              |                       |

| flip | interpretation |                       |       | sa | tisfie                | d clau                | ıses  | candidates   | flipped               |
|------|----------------|-----------------------|-------|----|-----------------------|-----------------------|-------|--------------|-----------------------|
| no.  | $p_0$          | <i>p</i> <sub>1</sub> | $p_2$ |    | <b>p</b> <sub>0</sub> | <i>p</i> <sub>1</sub> | $p_2$ | for flipping | variable              |
| 1    | 1              | 0                     | 1     | 4  | 4                     | 4                     | 3     | $p_0, p_1$   | <i>p</i> <sub>1</sub> |
| 2    | 1              | 1                     | 1     | 4  |                       |                       |       |              |                       |
|      |                |                       |       |    |                       |                       |       |              |                       |
|      |                |                       |       |    |                       |                       |       |              |                       |

| flip | interpretation |                       |       | sa | tisfie | d clau                | ıses  | candidates   | flipped               |
|------|----------------|-----------------------|-------|----|--------|-----------------------|-------|--------------|-----------------------|
| no.  | $p_0$          | <i>p</i> <sub>1</sub> | $p_2$ |    | $p_0$  | <i>p</i> <sub>1</sub> | $p_2$ | for flipping | variable              |
| 1    | 1              | 0                     | 1     | 4  | 4      | 4                     | 3     | $p_0, p_1$   | <i>p</i> <sub>1</sub> |
| 2    | 1              | 1                     | 1     | 4  | 4      | 4                     | 4     |              |                       |
|      |                |                       |       |    |        |                       |       |              |                       |
|      |                |                       |       |    |        |                       |       |              |                       |

| flip | interpretation |                       |       | sa | tisfie | d clau                | ıses  | candidates      | flipped               |  |
|------|----------------|-----------------------|-------|----|--------|-----------------------|-------|-----------------|-----------------------|--|
| no.  | $p_0$          | <i>p</i> <sub>1</sub> | $p_2$ |    | $p_0$  | <i>p</i> <sub>1</sub> | $p_2$ | for flipping    | variable              |  |
| 1    | 1              | 0                     | 1     | 4  | 4      | 4                     | 3     | $p_0, p_1$      | <i>p</i> <sub>1</sub> |  |
| 2    | 1              | 1                     | 1     | 4  | 4      | 4                     | 4     | $p_0, p_1, p_2$ | $p_2$                 |  |
| 3    | 1              | 1                     | 0     |    |        |                       |       |                 |                       |  |
|      |                |                       |       |    |        |                       |       |                 |                       |  |

| flip | interpretation |                       |       | sa | tisfie | d clau                | ıses  | candidates      | flipped               |
|------|----------------|-----------------------|-------|----|--------|-----------------------|-------|-----------------|-----------------------|
| no.  | $p_0$          | <i>p</i> <sub>1</sub> | $p_2$ |    | $p_0$  | <i>p</i> <sub>1</sub> | $p_2$ | for flipping    | variable              |
| 1    | 1              | 0                     | 1     | 4  | 4      | 4                     | 3     | $p_0, p_1$      | <i>p</i> <sub>1</sub> |
| 2    | 1              | 1                     | 1     | 4  | 4      | 4                     | 4     | $p_0, p_1, p_2$ | $p_2$                 |
| 3    | 1              | 1                     | 0     | 4  |        |                       |       |                 |                       |
|      |                |                       |       |    |        |                       |       |                 |                       |

| flip | inte  | interpretation        |       |   | tisfie                | d clau                | uses                  | candidates      | flipped               |
|------|-------|-----------------------|-------|---|-----------------------|-----------------------|-----------------------|-----------------|-----------------------|
| no.  | $p_0$ | <i>p</i> <sub>1</sub> | $p_2$ |   | <b>p</b> <sub>0</sub> | <i>p</i> <sub>1</sub> | <i>p</i> <sub>2</sub> | for flipping    | variable              |
| 1    | 1     | 0                     | 1     | 4 | 4                     | 4                     | 3                     | $p_0, p_1$      | <i>p</i> <sub>1</sub> |
| 2    | 1     | 1                     | 1     | 4 | 4                     | 4                     | 4                     | $p_0, p_1, p_2$ | $p_2$                 |
| 3    | 1     | 1                     | 0     | 4 | 5                     | 3                     | 4                     |                 |                       |
|      |       |                       |       |   |                       |                       |                       |                 |                       |

| flip | interpretation |                       |       | sa | tisfie                | d clau                | uses                  | candidates      | flipped               |
|------|----------------|-----------------------|-------|----|-----------------------|-----------------------|-----------------------|-----------------|-----------------------|
| no.  | $p_0$          | <i>p</i> <sub>1</sub> | $p_2$ |    | <b>p</b> <sub>0</sub> | <i>p</i> <sub>1</sub> | <i>p</i> <sub>2</sub> | for flipping    | variable              |
| 1    | 1              | 0                     | 1     | 4  | 4                     | 4                     | 3                     | $p_0, p_1$      | <i>p</i> <sub>1</sub> |
| 2    | 1              | 1                     | 1     | 4  | 4                     | 4                     | 4                     | $p_0, p_1, p_2$ | $p_2$                 |
| 3    | 1              | 1                     | 0     | 4  | 5                     | 3                     | 4                     | $p_0$           | $p_0$                 |
|      | 0              | 1                     | 0     |    |                       |                       |                       |                 |                       |

| flip | interpretation |                       |       | sa | tisfie                | d clau                | ıses  | candidates      | flipped               |
|------|----------------|-----------------------|-------|----|-----------------------|-----------------------|-------|-----------------|-----------------------|
| no.  | $p_0$          | <i>p</i> <sub>1</sub> | $p_2$ |    | <b>p</b> <sub>0</sub> | <i>p</i> <sub>1</sub> | $p_2$ | for flipping    | variable              |
| 1    | 1              | 0                     | 1     | 4  | 4                     | 4                     | 3     | $p_0, p_1$      | <i>p</i> <sub>1</sub> |
| 2    | 1              | 1                     | 1     | 4  | 4                     | 4                     | 4     | $p_0, p_1, p_2$ | $p_2$                 |
| 3    | 1              | 1                     | 0     | 4  | 5                     | 3                     | 4     | $p_0$           | $p_0$                 |
|      | 0              | 1                     | 0     | 5  |                       |                       |       |                 |                       |

| flip | interpretation |                       |       | sa | tisfie | d clau                | uses  | candidates      | flipped               |
|------|----------------|-----------------------|-------|----|--------|-----------------------|-------|-----------------|-----------------------|
| no.  | $p_0$          | <i>p</i> <sub>1</sub> | $p_2$ |    | $p_0$  | <i>p</i> <sub>1</sub> | $p_2$ | for flipping    | variable              |
| 1    | 1              | 0                     | 1     | 4  | 4      | 4                     | 3     | $p_0, p_1$      | <i>p</i> <sub>1</sub> |
| 2    | 1              | 1                     | 1     | 4  | 4      | 4                     | 4     | $p_0, p_1, p_2$ | $p_2$                 |
| 3    | 1              | 1                     | 0     | 4  | 5      | 3                     | 4     | $p_0$           | $p_0$                 |
|      | 0              | 1                     | 0     | 5  |        |                       |       |                 |                       |

The model found after 3 flips is  $\{p_0 \mapsto 0, p_1 \mapsto 1, p_2 \mapsto 0\}$ .



### Exercise 5. Problem 2

#### Consider the set consisting of the following clauses:

For each of the variables  $p_0, p_1, p_2, p_3, p_4$  find the probability that WSAT will choose this variable for flipping when the current interpretation is  $\{p_0 \mapsto 0, p_1 \mapsto 0, p_2 \mapsto 0, p_3 \mapsto 0, p_4 \mapsto 0\}$ .

WSAT will first select clauses false in the current interpretation. These are

$$\begin{array}{c} p_1 \lor p_2 \\ p_0 \lor p_2 \lor p_4 \end{array}$$

WSAT will first select clauses false in the current interpretation. These are

$$p_1 \lor p_2 p_0 \lor p_2 \lor p_4$$

Each of these clauses will be selected with the equal probability, that is,  $\frac{1}{2}$ .

WSAT will first select clauses false in the current interpretation. These are

$$p_1 \lor p_2 p_0 \lor p_2 \lor p_4$$

Each of these clauses will be selected with the equal probability, that is,  $\frac{1}{2}$ .

The following table shows the probabilities that a given clause and a variable in it will be selected for flipping:

| clause                  | $p_0$      | $p_1$         | $p_2$          | <i>p</i> <sub>3</sub> | <i>p</i> <sub>4</sub> |
|-------------------------|------------|---------------|----------------|-----------------------|-----------------------|
| $p_1 \vee p_2$          | 0          | $\frac{1}{4}$ | $\frac{1}{4}$  | 0                     | 0                     |
| $p_0 \vee p_2 \vee p_4$ | <u>1</u> 6 | 0             | <u>1</u>       | 0                     | <u>1</u> 6            |
| total                   | <u>1</u>   | $\frac{1}{4}$ | <u>5</u><br>12 | 0                     | <u>1</u>              |

The bottom row of this table contains the answer.

### Exercise 5. Problem 3

Show validity of the following formula using semantic tableaux:

$$(p \rightarrow r) \rightarrow (p \lor q \rightarrow r \lor q).$$

$$((p \to r) \to (p \lor q \to r \lor q)) = 0$$

$$((p \to r) \to (p \lor q \to r \lor q)) = 0$$

$$((p \to r) \to (p \lor q \to r \lor q)) = 0$$

$$|$$

$$(p \to r) = 1$$

$$(p \lor q \to r \lor q) = 0$$

$$((p \to r) \to (p \lor q \to r \lor q)) = 0$$

$$| (p \to r) = 1$$

$$(p \lor q \to r \lor q) = 0$$

$$((p \rightarrow r) \rightarrow (p \lor q \rightarrow r \lor q)) = 0$$

$$|$$

$$(p \rightarrow r) = 1$$

$$(p \lor q \rightarrow r \lor q) = 0$$

$$|$$

$$(p \lor q) = 1$$

$$(r \lor q) = 0$$

$$((p \rightarrow r) \rightarrow (p \lor q \rightarrow r \lor q)) = 0$$

$$|$$

$$(p \rightarrow r) = 1$$

$$(p \lor q \rightarrow r \lor q) = 0$$

$$|$$

$$(p \lor q) = 1$$

$$(r \lor q) = 0$$

$$((p \rightarrow r) \rightarrow (p \lor q \rightarrow r \lor q)) = 0$$

$$| (p \rightarrow r) = 1$$

$$(p \lor q \rightarrow r \lor q) = 0$$

$$| (p \lor q) = 1$$

$$(r \lor q) = 0$$

$$| r = 0$$

$$q = 0$$

$$((p \rightarrow r) \rightarrow (p \lor q \rightarrow r \lor q)) = 0$$

$$| (p \rightarrow r) = 1$$

$$(p \lor q \rightarrow r \lor q) = 0$$

$$| (p \lor q) = 1$$

$$(r \lor q) = 0$$

$$| r = 0$$

$$q = 0$$

$$((p \rightarrow r) \rightarrow (p \lor q \rightarrow r \lor q)) = 0$$

$$| (p \rightarrow r) = 1$$

$$(p \lor q \rightarrow r \lor q) = 0$$

$$| (p \lor q) = 1$$

$$(r \lor q) = 0$$

$$| r = 0$$

$$q = 0$$

$$p = 1$$

$$q = 1$$

$$((p \rightarrow r) \rightarrow (p \lor q \rightarrow r \lor q)) = 0$$

$$| (p \rightarrow r) = 1$$

$$(p \lor q \rightarrow r \lor q) = 0$$

$$| (p \lor q) = 1$$

$$(r \lor q) = 0$$

$$| r = 0$$

$$q = 0$$

$$p = 1$$

$$q = 1$$
closed

$$((p \rightarrow r) \rightarrow (p \lor q \rightarrow r \lor q)) = 0$$

$$\begin{vmatrix} (p \rightarrow r) = 1 \\ (p \lor q \rightarrow r \lor q) = 0 \end{vmatrix}$$

$$\begin{vmatrix} (p \lor q) = 1 \\ (r \lor q) = 0 \end{vmatrix}$$

$$\begin{vmatrix} r = 0 \\ q = 0 \end{vmatrix}$$

$$p = 1 \qquad q = 1$$
closed

$$((p \rightarrow r) \rightarrow (p \lor q \rightarrow r \lor q)) = 0$$

$$| (p \rightarrow r) = 1$$

$$(p \lor q \rightarrow r \lor q) = 0$$

$$| (p \lor q) = 1$$

$$(r \lor q) = 0$$

$$| r = 0$$

$$q = 0$$

$$p = 1 q = 1$$

$$closed$$

$$p = 0 r = 1$$

$$((p \rightarrow r) \rightarrow (p \lor q \rightarrow r \lor q)) = 0$$

$$| (p \rightarrow r) = 1$$

$$(p \lor q \rightarrow r \lor q) = 0$$

$$| (p \lor q) = 1$$

$$(r \lor q) = 0$$

$$| r = 0$$

$$q = 0$$

$$p = 1 \qquad q = 1$$

$$closed$$

$$p = 0 \qquad r = 1$$

$$((p \rightarrow r) \rightarrow (p \lor q \rightarrow r \lor q)) = 0$$

$$| (p \rightarrow r) = 1$$

$$(p \lor q \rightarrow r \lor q) = 0$$

$$| (p \lor q) = 1$$

$$(r \lor q) = 0$$

$$| r = 0$$

$$q = 0$$

$$p = 1 q = 1$$
closed
$$p = 0 r = 1$$

$$((p \rightarrow r) \rightarrow (p \lor q \rightarrow r \lor q)) = 0$$

$$| (p \rightarrow r) = 1$$

$$(p \lor q \rightarrow r \lor q) = 0$$

$$| (p \lor q) = 1$$

$$(r \lor q) = 0$$

$$| r = 0$$

$$q = 0$$

$$p = 1 q = 1$$
closed
$$p = 0 r = 1$$