

Deployment of Bluesky @ BESSY II

Will Smith, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH william.smith@helmholtz-berlin.de

- BESSY II
- . Goals
- . Benefits of Bluesky
- Deployment at BESSY II
 - Device Integration
 - Experimental Flow Control
 - Data collection
 - · UI
 - Machine Learning Integration
- What's Next?

- Synchrotron focussing on soft X-Rays
- ~50 beamlines
- In operation for over 20 years
- Uses EPICS to control the accelerator and beamlines
- Huge variety of controls solutions at end stations, a lot use spec and LabView or home-grown

- Use a modern, widely used programming languages
- Use something open source and popular
- Make data acquired at BESSY II Findable,
 Accessible, Interoperable and Reproducible (FAIR)
- Enable new areas of research in data science
- Produce intuitive tools help increase scientific output
- Write reliable, version controlled software that can be centrally supported

Why Bluesky

- Python3
- Open source, extremely responsive developer community.
- In use in the US at NSLS II, APS, LCLS, SSRL, ALS and a growing community in Europe (BESSY II, MPG/FHI, Diamond, PSI/SLS ...) and around the world (CLS, ANSTO, PLS II)

Native support for EPICS with Ophyd

Ophyd Device Integration at BESSY II

Accelerator

- Many repeating segments
- Magnets power supplies, multiplexers, kickers, delay lines, Bunch-Bunch feedback tune values, Beam Position Monitors, Current Injection, Beam Size Monitors

Beamlines

- Variation between beamlines, but using common components and interfaces
- Shutters, Valves, Mirrors, Monochromators, Undulators, Bending Magnets, Apertures, Current Monitors, Cameras
- Devices classes can be reused between beamlines. Reduces workload to deploy
- EMIL in production use, in the process of deployment at AQUARIUS, KMC3, PM4, uSpot. More planned in the near future

Shared Repositories

Aiming to share and reuse as much as possible between deployments. Took inspiration from what we saw happening at labs in the US

bessyii devices

- Contains Ophyd device classes
- Same class of device is instantiated at different beamlines.

bessyii

Contains Bluesky plans or other scripts that can be reused

 deamline_name>tools

Bluesky plans or setup scripts specific to a particular beamline

Continuous Energy Scans

- We created a bluesky plan that starts a motor (monochromator), samples the readback and any detectors at fixed intervals.
- Assumes motor or mono moves slowly enough that error caused by polling the detectors sequentially is insignificant.
- Could be improved with hardware trigger system

Actuator

Physical System

Detector

Readback

Read Value

Data

Time Actuator Detector

t1

t2

Measurement program

RE(flyscan([det],motor,370,470,0.1))

Working with EPICS areaDetector

- We want to get parameters from cameras.
 Position, FWHM etc
- Cameras and Detectors can be given a standard interface with EPICS areaDetector
- Ophyd already provides an interface to that
- Analysed image from areaDetector to find focus of the end station by scanning position just using the built in scan plan.

RE(scan([camera], motor, -1200, -1100, 10))

FAIR Case Study at EMIL (WEBL05)

User Interface

Ipython

- Closest to spec
- Tab completion
- Produces live visualisations

RE(scan([det], motor, -1, 1, 10))

User Interface

Jupyter Notebook

- Web interface
- Allows you to save and share your notebook
- Nice for working on data and trying things out
- Brilliant for making tutorials
- Can produce live visualisations

QT GUI

- Nicest for simple use cases
- Minimal training needed
- Browsing the database is easy
- Performs best if it's decoupled from the run engine

QT GUI

- Nicest for simple use cases
- Minimal training needed
- Browsing the database is easy
- Performs best if it's decoupled from the run engine

ML Integration Studies (THAL01)

Reducing Harmonic Orbit Perturbations

- Tensorflow RL agent communicates with RE over ZMQ using and in house package called *Naus*
- Unfortunately was too slow for production use.
- Following developments of <u>Bluesky-</u> <u>Queueserver</u> and <u>Bluesky-Adaptive</u> hoping to build on this.
- See paper at this conference: THAL01
 by Luis Vera Ramirez and Pierre
 Schnizer

- Integrate more devices for the accelerator and end stations
- Roll out to other beamlines
- Deploy first working version of GUI
- · Continue working on making data FAIR

Conclusion

- Considerable progress in the last year at BESSY II deploying Bluesky for the accelerator and Beamlines
- Joining a growing and active community of users and developers
- Set of powerful tools that we can customise for our users specific needs
- Helping us realise our FAIR data goals

Colleagues at BESSY II

- Huiling He
- Luis Vera Ramirez
- Pierre Schnizer
- Rolland Müller
- Sebastian Kazarski
- Sebastian Sachse
- Simone Vadilonga
- The developers of the Bluesky packages!

https://blueskyproject.io/

Deployment at EMIL Beamlines

- Energy Materials In-Situ Laboratory
- 5 Endstations
- · Hard and Soft Beam
- 100's of devices and components (although lots of repeats)
- Beamline uses EPICS
- SISSY and PINK use EPICS, CAT uses SpecsLab
- SISSY Lab has UHV sample transfer system, various instruments

Options

SPEC

- Used by most beamlines at BESSY II, and many around the world.
- Simple command line interface
- Flexible and very well tested
- It's own language
- Licenced and not free
- Single developer
- No error checking or minimal tabbed completion

Sardana

- Based on python, open source
- Used by Alba, PETRA III, ESRF, ELI NP, MAX IV, SOLARIS .
- Designed around Tango, could use EPICS but nobody is doing this => no community support

Playing with pytest

- Ophyd provides python device abstraction
- We can write unit tests using the package pytest and use this to test IOC's and hardware does what we expect
- We have tests to check:
 - Devices exist
 - Devices are connected
 - Motors and valves move when asked
 - Devices operate as expected (when I set a value and read it back is it correct?)
- Challenging to implement in practice because we need hardware to test on and don't have a spare beamline!
- Has proved useful, and found bugs we wouldn't have otherwise

Working with EPICS areaDetector

- Images are acquired by the IOC under the direction of Bluesky
- Images are saved locally with a name that is saved in the mongodb database
- When the user accesses the run in the database the databroker fetches the image from the local storage
- Works with all devices that have FPICS areaDetector Support
- Reduces requirements on network and storage.

run with uid

Run Engine as a Service

