CS101 Homework Assignment 2

Tadius Frank

September 17, 2021

1. Academic Honesty Declaration

In the process of finishing this homework:

- (a) I had conversations about the contents and solutions of this assignment with the following people: Melat Feseha
- (b) I consulted the following resources, such as books, articles, webpages:
 - https://wch.github.io/latexsheet/
 - $\bullet \ \, https://en.wikibooks.org/wiki/LaTeX/Basics$
- (c) I did not look at the answers of any other students.
- (d) I did not provide my answers to other students.

2. Writing Component

(a) Give a careful proof of the following proposition using proof by induction: For all $i \leq 0$, and all strings $w \in \sum_{i} (w^{R})^{i} = (w^{i})^{R}$, where w^{R} is the reverse of string w.

Solution: Let a integers i. Let a string w be given. We go by induction on i.

- (i = 0)- $(RHS) (W^R)^i = (W^R)^0 = \epsilon$ - $(LHS) (W^i)^R = (W^0)^R = \epsilon$ Since $\epsilon = \epsilon$, this is immediate and we are finished.
- (i = n+1) We must prove that $(w^R)^{n+1} = (w^{n+1})^R$. Our IH shows that $(w^R)^n = (w^n)^R$.

$$\begin{array}{lll} (w^R)^{n+1} & = & (w^R)^n \parallel (w^R)^1 \\ & = & (w^n)^R \parallel (w^R)^1 \text{ by IH} \\ & = & (w^n)^R \parallel (w^R) \text{ by 2.1 section theorem} \\ & = & (w \times w^n)^R \\ & = & (w^{n+1})^R \end{array}$$

Since $(w^{n+1}) = (w^{n+1})$, this is immediate and we are finished.

- (b) Are the following sets closed under the following operations? If not, what are their respective closures?
 - i. The even length strings over the alphabet $\{a,b\}$ under Kleene star. **Solution:** The even length strings over alphabet $\{a,b\}$ are closed under the operation Kleene Star because the result would be strings of even lengths which is in the set of even length strings.
 - ii. The odd length strings over the alphabet $\{a,b\}$ under concatenation. **Solution:** The odd length strings over alphabet $\{a,b\}$ are not closed under the concatenation operation because some of the results would be strings of even lengths which are not present in the set of odd length strings.