

Discrete Mathematics MH1812

Topic 10.1 - Graph Theory I Dr. Wang Huaxiong

What's in store...

By the end of this lesson, you should be able to...

- Explain what is a graph.
- Explain the difference between the simple graph, multigraph and directed (multi) graph.
- Explain the concepts of the Euler path and circuit.
- Use the Euler theorem in graph theory.

Introduction to Graphs: Definition

A graph G = (V,E) is a structure consisting of a set V of vertices (nodes) and a set E of edges (lines joining vertices).

- Two vertices u and v are adjacent in G if $\{u,v\}$ is an edge of G.
- If $e = \{u, v\}$, the edge e is called incident with the vertices u and v.

Graphs are useful to represent data.

Types of Graphs: Subgraphs

A graph $H = (V_H, E_H)$ is a subgraph of $G = (V_G, E_G)$ if V_H is a subset of V_G and E_H is a subset of E_G .

- $V_H = \{v_1, v_2, v_5\}$ is a subset of V_G
- $E_H = \{e_1, e_2, e_3\}$ is a subset of E_G

Types of Graphs: Simple Graphs

A simple graph is a graph that has no loop (= edge $\{u,v\}$ with u = v) and no parallel edges between any pair of vertices.

From\To	Hong Kong	Singapore	Beijing	Taipei	London
Hong Kong		4 Flights			
Singapore	2 Flights		3 Flights	1 Flight	1 Flight
Beijing	1 Flight	2 Flights			
Taipei					
London		1 Flight	1 Flight		1 Flight

Draw a graph to see whether there are direct flights between any two cities (in either direction).

Types of Graphs: Simple Graphs

From\To	Hong Kong	Singapore	Beijing	Taipei	London
Hong Kong		4 Flights			
Singapore	2 Flights		3 Flights	1 Flight	1 Flight
Beijing	1 Flight	2 Flights			
Taipei					
London		1 Flight	1 Flight		1 Flight

Draw a graph to see whether there are direct flights between any two cities (in either direction).

Types of Graphs: Multigraphs

A multigraph is a graph that has no loop and at least 2 parallel edges between some pair of vertices.

From\To	Hong Kong	Singapore	Beijing	Taipei	London
Hong Kong		4 Flights			
Singapore	2 Flights		3 Flights	1 Flight	1 Flight
Beijing	1 Flight	2 Flights			
Taipei					
London		1 Flight	1 Flight		1 Flight

Draw a graph with an edge for each flight that operates between two cities (in either direction).

Types of Graphs: Multigraphs

From\To	Hong Kong	Singapore	Beijing	Taipei	London
Hong Kong		4 Flights			
Singapore	2 Flights		3 Flights	1 Flight	1 Flight
Beijing	1 Flight	2 Flights			
Taipei					
London		1 Flight	1 Flight		1 Flight

Draw a graph with an edge for each flight that operates between two cities (in either direction).

Types of Graphs: Directed (Multi) Graphs

A directed graph is a graph where edges $\{u,v\}$ are ordered, that is, edges have a direction. Parallel edges are allowed in directed multigraphs. Loops are allowed for both.

From\To	Hong Kong	Singapore	Beijing	Taipei	London
Hong Kong		4 Flights			
Singapore	2 Flights		3 Flights	1 Flight	1 Flight
Beijing	1 Flight	2 Flights			
Taipei					
London		1 Flight	1 Flight		1 Flight

Draw a graph to see whether there are direct flights between any two cities (direction matters).

Types of Graphs: Directed (Multi) Graphs

From\To	Hong Kong	Singapore	Beijing	Taipei	London
Hong Kong		4 Flights			
Singapore	2 Flights		3 Flights	1 Flight	1 Flight
Beijing	1 Flight	2 Flights			
Taipei					
London		1 Flight	1 Flight		1 Flight

Draw a graph to see whether there are direct flights between any two cities (direction matters).

Euler Theorem: The Mathematician

Leonhard Euler introduced graphs in 1736 to solve the Königsberg Bridge problem.

What is the "Königsberg Bridge problem"?

Kaliningrad (Königsberg) in Russia

Leonhard Euler 1707 - 1783

Euler Theorem: Origin (Bridges of Königsberg)

Königsberg (now known as Kaliningrad in Russia) has 7 bridges.

- People tried (without success) to find a way to walk all 7 bridges without crossing a bridge twice.
- Leonhard Euler proved that it was impossible to walk all seven bridges without crossing a bridge twice.

Seven Bridges of Königsberg

Euler Circuit: Definitions

A Euler path (Eulerian trail) is a walk on the edges of a graph which uses each edge in the original graph exactly once.

The beginning and end of the walk may or may not be the same vertex.

A Euler circuit (Eulerian cycle) is a walk on the edges of a graph which starts and ends at the same vertex, and uses each edge in the original graph exactly once.

Euler Circuit

- Suppose the beginning and end are the same node u.
- The graph must be connected.

• At every vertex $v \neq u$, we reach v along one edge and go out along another, thus the number of edges incident at v (called the degree of v) is even.

Euler Circuit

• The node *u* is visited once the first time we leave, and once the last time we arrive, and possibly in between (back and forth), thus the degree of *u* is even.

 Since the Königsberg Bridges graph has odd degrees, it has no solution!

20

Euler Theorem

The degree of a vertex is the number of edges incident with it.

Theorem: consider a connected graph G.

- 1. If *G* contains an Euler path that starts and ends at the same node, then all nodes of *G* have an even degree.
- 2. If *G* contains an Euler path, then exactly two nodes of *G* have an odd degree.

Euler Theorem

- Suppose G has an Euler path, which starts at v and finishes at w.
- Add the edge {*v*,*w*}.
- Then by the first part of the theorem, all nodes have even degrees, except for v and w which have odd degrees.

Euler Theorem: Examples

Note: Euler Theorem actually states an "if and only if" statement.

Let's recap...

- Graph theory has numerous applications (e.g., networks, distributed systems, coding theory)
- Parts of a graph:
 - Vertex
 - Edge
 - Adjacent
 - Incident

Let's recap...

- Types of graphs:
 - Simple graph
 - Multigraph
 - Directed (multi) graph
- Euler path, Euler circuit and Euler theorem

