### Modified False Position Method

# Mayank Pathania 204103314

February 4, 2021

### 1 Question No.5

return zeros;

```
Algorithm 1 Modified False Position Method
procedure FALSE_POSITION(start_point, end_point, increment)
   a = start\_point;
   b = a + increment;
   evaluate f(a);
   evaluate f(b);
   set very low error;
   initialize empty vector zeros;
   while (b \le end\_point) do
      if (f(a) * f(b) < 0) then
                                   mid = \frac{a * f(b) - b * f(a)}{f(b) - f(a)};
          evaluate f(mid);
          if (abs(b-a) < error) then
                                                                        ▶ Or when very close to zero
             store mid in zeros;
             a = b;
             f(a) = f(b);
             b = a + increment;
             evaluate f(b);
          else if (f(mid) * f(a) < 0) then
             b = mid;
             f(b) = mid;
             f(a) = f(a)/2;
          else
             a = mid;
             f(a) = f(mid);
             f(b) = f(b)/2;
      else
          a = b;
          f(a) = f(b);
          b = a + increment;
          evaluate f(b);
```

▶ empty zeros means no solution found

### 2 Flow Chart



### 3 Results

### 3.1 Problem a) $xe^x$

### 3.1.1 Parameters

 $\begin{array}{lll} start\_point: & -2 \\ end\_point: & 2 \\ increment: & 4 \\ \boldsymbol{\epsilon}: & \textbf{10}^{-9}; \end{array}$ 

### **3.1.2** Output

| root                      | function evaluations |
|---------------------------|----------------------|
| $9.65697 \times 10^{-11}$ | 38                   |
| Total                     | 39                   |

### 3.1.3 Observations

The algorithm found root in 38 iterations and terminated in 39 iterations.

### 3.2 Problem b) $x^3 - 2x + 1$

#### 3.2.1 Parameters

start\_point : -2end\_point : 2increment : 0.5 $\epsilon$  :  $10^{-9}$ ;

#### **3.2.2** Output

| root     | function evaluations |
|----------|----------------------|
| -1.61803 | 31                   |
| 0.618034 | 67                   |
| 1        | 105                  |
| Total    | 107                  |

#### 3.2.3 Observations

The algorithm found first solution in 31 iterations then next in 36 iterations and third root in 38 iterations and terminated after 107 iterations.

## 3.3 Problem c) $\sin(x) - \frac{1}{x}$

#### 3.3.1 Parameters

start\_point : -2end\_point : 2increment : 0.5 $\epsilon$  :  $10^{-9}$ ;

#### 3.3.2 Output

| root                      | function evaluations |
|---------------------------|----------------------|
| -1.11416                  | 33                   |
| $1.60452 \times 10^{-10}$ | 92                   |
| 1.11416                   | 124                  |
| Total                     | 126                  |

#### 3.3.3 Observations

 $1.60452 \times 10^{-10}$  is not a solution to the problem. But because of the termination condition the algorithm treats the point as a solution. A check can be made to ignore this value i.e. only include the point if function value at that point is close to zero.