Spatial Indexing Data Structure

Tree Hierarchy

Binary Search Idea

Search for David

- Go to somewhere around middle
 See Miranda
- 2. Go to middle of the first halfSee Gilfoyle
- 3 Go left side again See Caitlyn

Searching in a phone book

- Suppose we are looking for "David" in a phone book
- We open the phone book to the middle and see that the names there begin with M
 - M is larger than (comes after) D
 - We can now limit our search to the section that contains A to M
- We turn to the middle of the first half and see that the names there begin with G
 - G is larger than D
 - We can now limit our search to the section that contains A to G
- We turn to the middle page of this section, and find that the names there begin with C
 - C is smaller than D
 - We can now limit our search to the section that contains C to G
- And so on, until we are down to the single page that contains the name "David."

Binary Search

11	31	41	51	61	71	81	101	131
1	2	3	4	5	6	7	8	9
	†					†		

1000
500
250
125
62
31
15
7
3
1
0

Logarithm

Binary Search

11	31	41	51	61	71	81	101	131
1	2	3	4	5	6	7	8	9
	†					†		

Items	Sequential Worst case	Binary Search
1K	1K	$log_2 (1K) = 10$
1Million	1 M	$log_2 (1M) = 20$
1 Billion	1 Billion	$log_2 (1 B) = 30$

1000	
500	
250	
125	
62	
31	
15	
7	
3	
1	
0	

Logarithm

Binary Tree

Binary Search Tree

1, 3, 4, 6, 7, 8, 10, 13, 14

Left Child < Root

Right Child >= Root

Search for 5?

Does 5 exist?

B-Tree

Pop quiz: Is this binary tree or B-Tree?

R-tree (Ris rectangle)

- 1. Similar to B-tree rectangle tree.
- 2. Spatial indexing
- 3. Fast logarithmic search

Types of Spatial Queries

- Spatial Range Queries
 - Find all cities within 50 miles of Ames
 - Query has associated region (location, boundary)
 - Answer includes overlapping or contained data regions
- Nearest-Neighbor Queries
 - Find the 10 cities nearest to Ames
 - Results must be ordered by proximity
- Spatial Join Queries

Range Query

Quadtree

Quadtree

Space Partitioning

World Map - Quad tree (Parks)

R-tree

- 1. Similar to B-tree rectangle tree.
- 2. Spatial indexing
- 3. Fast logarithmic search

R-tree query example

- 1. Similar to B-tree rectangle tree.
- 2. Spatial indexing
- 3. Fast logarithmic search

R1 R4 R11 R3 R9 R5 R13 Rtree R10 R14 R8 R12 R2 | R7 R18 R17 R6 R16 R19 R15 R1 R2 R3 R4 R5 R6 R7 R11 R12 R17 R18 R19 R9 R10 R13 R14 R15 R16 R8

Anecdote

• Chicago Insurance Company example (NU)

Range Query can be done using R-tree

