Mining Massive Datasets

Lecture 14

Artur Andrzejak http://pvs.ifi.uni-heidelberg.de

Introduction to GPU-Programming with CUDA: Motivation

Slides (partially modified) by:

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Square Matrix Multiplication Example

- Input: matrices M and N
- Output: matrix P = M * N
 - Size WIDTH x WIDTH

Each Matrix is Stored in a 1D-Array

=> Element M[i,j] is adressed via M[i*WIDTH + j]

A Simple Host (CPU) Version in C

```
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
  for (int i = 0; i < Width; ++i)
                                                                         k
     for (int j = 0; j < Width; ++j) {
        double sum = 0;
        for (int k = 0; k < Width; ++k) {
          double a = M[i * width + k];
          double b = N[k * width + j];
          sum += a * b;
        P[i * Width + j] = sum;
                                                           Result matrix
```

Square Matrix Multiplication Example

Each Thread Runs Following Code

```
void MatrixMulKernel (float* Md, float* Nd, float* Pd, int Width)
float Pvalue = 0;
for (int k = 0; k < Width; ++k) {
    float Melement = Md[threadIdx.y*Width+k];
    float Nelement = Nd[k*Width+threadldx.x];
    Pvalue += Melement * Nelement;
                                                           tx
 Pd[threadldx.y*Width+threadldx.x] = Pvalue;
                                                        Pd
 Where do threadIdx.x and
```

- Where do threadidx.x and threadidx.y come from?
 - Their values are "magically" assigned by hardware
 - Different pairs of values for each thread

Back to Life, Back to Reality

- Problem: we not have systems with WIDTH x WIDTH many cores for large values of WIDTH
- Solution: Split Pd into tiles and compute all entries in a tile in parallel
- => How to code this easily?

TILE WIDTH-1

Introduction to GPU-Programming with CUDA: CUDA Architecture

Slides (partially modified) by:

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Blocks of Threads in CUDA

- The CUDA programming model allows very large number of (virtual) threads
- These are grouped into blocks
 - Each block contains multiple threads, arranged as a 1D, 2D, or 3D array; here: 3D array
- Blocks correspond to units of hardware (streaming multiprocesors, SM)

G8o CUDA mode – A **Device** Example

 Each block (or a part of it, a warp) runs on a separate streaming multiprocessor SM

Threads within Blocks

- Each SM has many streaming processors (SPs)
 - Each SP executes "own" thread, all SPs the same code
 - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
 - Threads in different blocks <u>cannot</u> cooperate

Grid of Blocks

Blocks are organized into a 1D or 2D Grid

- Grid is the <u>unit of execution</u>
 - => A program is always executed as a grid of blocks
- BUT: We cannot specify the order of execution of the blocks
 - => Each block is completely independent of other blocks

Back to the Matrix Example

 Each 2D thread <u>block</u> computes a (TILE_WIDTH)² sub-matrix (<u>tile</u>)

Each has (TILE_WIDTH)² threads

- The whole matrix is split into a 2D grid of tiles (or, equivalently blocks)
- => Because of CUDA's grid of blocks we don't need nested loops over tiles!

You still need to put a loop around the kernel call for cases where WIDTH/TILE_WIDTH is greater than max grid size (64K)!

Matrix Multiplication Using Multiple Blocks

- Break-up Pd into tiles
- Each block calculates one tile
 - Each thread calculates one element
- Block size equal tile size

012 TILE WIDTH-1

A Small Example

A Small Example: Multiplication

Revised Matrix Multiplication Kernel using Multiple Blocks

```
_global___ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
// Calculate the row index of the Pd element and M
int Row = blockIdx.y*TILE WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N
int Col = blockIdx.x TILE WIDTH + threadIdx
                           Values provided "magically" by
float Pvalue = 0;
                           the CUDA-environment
// each thread computes one
                                                   matrix
for (int k = 0; k < Width; ++k)
  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
Pd[Row*Width+Col] = Pvalue;
```

Introduction to GPU-Programming with CUDA: Blocks, Threads and Warps

Slides (partially modified) by:

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

Grid of Blocks and Block of Threads

- Threads are organized in CUDA in two levels:
 - Block of threads: a container of threads with 1D, 2D or 3D indexing
 - Grid of blocks: a container of blocks with 1D or 2D indexing
- A single <u>identical</u> program (kernel) is launched on a grid of blocks
 - Each thread receives "magically" different blockin-grid and thread-in-block indices

Why Execution over a Grid of Blocks?

- 1. Our code doesn't need one or two outer loops for iterating over blocks (= tiles for MM)
- 2. Scalability: If a (future) GPU has more processors, more blocks can be executed in parallel (=> Good to have many blocks!)

G8o Example: Executing Thread Blocks

HD keeps track of block id's, thread id's and their status => limitations

- Blocks are assigned to **Streaming**
 - In total, max. 768 threads per SM
 - Use max #threads per SM (later more):
 - Good: 256 (threads/block) * 3 blocks => 768 threads
 - Bad: 512 (threads/block) * 1 block => 512 threads

Thread Scheduling/Execution

Each block is divided in 32-thread warps

- 4 cycles per warp needed on G80
- How many warps per SM?
 - 3 blocks are assigned to a SM
 - Each block has 256 threads
 - How many warps are there in an SM?
 - Each block is divided into 256/32 = 8Warps
 - There are 8 * 3 = 24 Warps
- At any point in time, <u>only one</u> of the 24 warps will be selected for instruction fetch and execution

SM Warp Scheduling

SM multithreaded Warp scheduler

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

warp 3 instruction 96

- Switching between warps allows for (memory) latency hiding
 - While a warp waits for data from memory, other warps (with ready data) are executed
 - No overhead: hardware implements zero-overhead Warp scheduling

It is important to <u>have many threads</u> <u>per SM</u> (see "Use max #threads per SM") on slide 8

More threads => more warps per SM => higher probability to find a warp with ready data (operands) => better latency hiding

Thread Divergence at Branching

- Main performance concern with branching is divergence
 - = Threads <u>within a single</u><u>warp</u> take different paths

 G80: Different execution paths are serialized

Introduction to GPU-Programming with CUDA: Memory Efficiency

Slides (partially modified) by:

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign

CUDA Memory Model Overview

- Global memory
 - Main means of communicating R/W data between host and device
 - Contents visible to all threads
 - Long latency access
- We will focus on optimizing access to global memory only

Optimizing Memory Access of a Single Warp

- When accessing global memory, peak performance utilization occurs when all threads in a <u>half warp</u> read or write continuous memory locations
- Such (good) access
 pattern is called
 coalesced access
 pattern (dt. vereinigt)

Half Warp = 16 threads

Coalesced Access and Compute

Capability

 16 mem. transactions (each) at compute capability 1.0 or 1.1

Optimizing Matrix Access /1

Matrices are stored in the global memory

Optimizing Matrix Access /2

Nd: Good or bad?

Layout:

Matrices are stored in the global memory

Nd: Good or bad?

Md: Good or bad?

Thank you.

Questions?

Additional Slides

Introduction to GPU-Programming with CUDA: Clustering on GPUs

Was sollen wir parallelisieren?

- Zur Vereinfachung werden i.A. nur Teile eines Programmes auf GPU programmiert
 - Aufwändiges wird auf GPU parallelisiert, Rest seriell auf CPU ausgeführt
- Was parallelisieren wir bei k-Means?
 - Berechnung der Abstände zwischen Punkten (Samples) und Centroiden und ihre Zuordnung zu den Centroiden

Serieller Code (CPU)

Paralleler Code (GPU)

KernelA<<< nBlk, nTid >>>(args);

Serieller Code (CPU)

Paralleler Code (GPU)

KernelA<<< nBlk, nTid >>>(args);

Kernel Routine - Übersicht

- Sei nts die Gesamtanzahl der GPU-Threads
- Der Thread t (t aus {0,..,nts-1}) bearbeitet
 Samples mit Indices t, t+nts, t+2*nts,..., t+p*nts (< n, #Samples)
- Für jeden dieser Samples s_i:
 - Für jeden Centroid C_i (der k aktuellen Centroide):
 - Berechne die quadrierte Entfernung D²(s_i, c_i)
 - Falls D²(s_i, c_j) kleiner ist als bisherige min. Centroid-Entfernung:
 - Setze C_i als den nächsten (nearest) Centroid für s_i fest
- Warte, bis alle Threads fertig sind

Kernel – Parameter und Eingaben

- Wir haben die Anzahl der Blöcke (gridDim, ein 1D-Vektor) und die Anzahl der Threads pro Block (blockDim, auch ein 1D-Vektor) festgelegt
 - Abhängig von der GPU und Datengröße
- Jeder Thread bekommt "magisch" die Werte:
 - gridDim, blockDim, blockIdx, threadIdx
- Wir haben als weitere Eingabe für den Kernel:
 - dataSize (= n), numDims (= d), numClusters (= k)
 - data[][] Matrix: n Samples mit jeweils d Koordinaten
 - centroids[][] Matrix: k aktuelle Centroide, jeweils d El.
 - membership[] Vektor von n Integers: Zuordnung von Samples zu den Centroiden bzw. Clustern

Kernel - Pseudocode

```
threadId = blockDim*blockIdx + threadIdx
nts = blockDim*gridDim // total # of threads
for i = threadId to dataSize-1 step nts: // get sample s<sub>i</sub>
  minDistance = MAX DOUBLE
  clusterIdx = 0
  for j = 0 to numClusters-1:
                                          // for each centroid C<sub>i</sub> ...
     distance = 0
     for dim = 0 to numDims-1: // compute D^2(s_i, c_i)
        distance = distance + (data[dim][i] - centroids[j][dim])^2
     if distance < minDistance then:
        minDistance = distance
        clusterIdx = j
  membership[i] = clusterIdx
synchronize threads
```

Code für Sample S_i und Centroid C_i

```
for dim = 0 to numDims-1: // compute D²(s<sub>i</sub>, c<sub>j</sub>)
  distance = distance + (data[dim][i] - centroids[j][dim])^2
if distance < minDistance then:
  minDistance = distance
  clusterIdx = j</pre>
```

- Roter Code: Berechnet distance = D²(s_i, c_j)
- Violetter Code: Überprüft, ob distance ein neues
 Minumum ist, ggf. aktualisiert clusterldx
- Der rote Code ist kritisch für die Leistung
 - Warum? Was ist da interessant?

Zugriff auf Matrix data

- Matrix data ist im Speicher transponiert
 - Angrenzende Speicherzellen halten (i.A.) die gleiche Koordinate von zwei verschiedenen Samples – warum?
- distance = distance + (data[dim][i] centroids[j][dim])^2
 - Diese Anweisung wird <u>gleichzeitig</u> für eine ganze Warp ausgeführt, mit i-Werten: q, q+1,q+2, ..., q+31
 - D.h. Wir bekommen einen "coalesced"-Zugriff auf data!

Referenz und Ergebnisse

- Kapitel 5 aus "Scaling Up Machine Learning"
 - Meichun Hsu, Ren Wu and Bin Zhang: "Uniformly Fine-Grained Data-Parallel Computing for Machine Learning Algorithms" (Achtung: viele grobe Fehler!)

Datensatz				Zeiten (s)			Speedups (CPU v	
\overline{N}	D	k	M	MineBench	HPLC	HPLG	MineBench	HPLC
2M	2	100	50	154	36	1.45	106	25
2M	2	400	50	563	118	2.16	261	55
2M	8	100	50	314	99	2.48	127	40
2M	8	400	50	1214	354	4.53	268	78
4M	2	100	50	308	73	2.88	107	25
4M	2	400	50	1128	236	4.36	259	54
4M	8	100	50	629	197	4.95	127	40
4M	8	400	50	2429	709	9.03	269	79

- MineBench = open source kmeans; HPLC = optimiertes kmeans auf CPU; HPLG = kmeans auf GPU
- CPU: Xeon 5345@ 2.33 GHz; GPU = GeForce GTX 280 (1GB)