

Best Available Copy

File Edit View Favorites Tools Help

Handbook of CHEMISTRY and PHYSICS

85th Edition, 2004-2005

Site Published: Not Available Hits: 9

Navigation icons: Back, Forward, Home, Stop, Refresh, Search, Help, Print, Copy, Paste, Find, Exit.

HIGH TEMPERATURE SUPERCONDUCTORS

C. N. R. Rao and A. K. Raychaudhuri

The following tables give properties of a number of high temperature superconductors. Table 1 lists the crystal structure (space group and lattice constants) and the critical transition temperature T_c for the more important high temperature superconductors so far studied. Table 2 gives energy gap, critical current density, and penetration depth in the superconducting state. Table 3 gives electrical and thermal properties of some of these materials in the normal state. The tables were prepared in November 1992 and updated in November 1994.

REFERENCES

1. Ginsburg, D.M., Ed., *Physical Properties of High-Temperature Superconductors*, Vols. I—III, World Scientific, Singapore, 1989—1992.
2. Rao, C.N.R., Ed., *Chemistry of High-Temperature Superconductors*, World Scientific, Singapore, 1991.
3. Shackelford, J.F., *The CRC Materials Science and Engineering Handbook*, CRC Press, Boca Raton, 1992, 98—99 and 122—123.
4. Kaldus, E., Ed., *Materials and Crystallographic Aspects of HT_c-Superconductivity*, Kluwer Academic Publ., Dordrecht, The Netherlands, 1992.
5. Malik, S.K. and Shah, S.S., Ed., *Physical and Material Properties of High Temperature Superconductors*, Nova Science Publ., Commack, N.Y., 1994.
6. Chmaissse, O. et. al., *Physica*, C230, 231—238, 1994.
7. Antipov, E.V. et. al., *Physica*, C215, 1—10, 1993.

HIGH TEMPERATURE SUPERCONDUCTORS

C. N. R. Rao and A. K. Raychaudhuri

The following tables give properties of a number of high temperature superconductors. Table 1 lists the crystal structure (space group and lattice constants) and the critical transition temperature T_c for the more important high temperature superconductors so far studied. Table 2 gives energy gap, critical current density, and penetration depth in the superconducting state. Table 3 gives electrical and thermal properties of some of these materials in the normal state. The tables were prepared in November 1992 and updated in November 1994.

REFERENCES

1. Ginsburg, D.M., Ed., *Physical Properties of High-Temperature Superconductors*, Vols. I—III, World Scientific, Singapore, 1989—1992.
2. Rao, C.N.R., Ed., *Chemistry of High-Temperature Superconductors*, World Scientific, Singapore, 1991.
3. Shackelford, J.F., *The CRC Materials Science and Engineering Handbook*, CRC Press, Boca Raton, 1992, 98—99 and 122—123.
4. Kaldis, E., Ed., *Materials and Crystallographic Aspects of HT_c Superconductivity*, Kluwer Academic Publ., Dordrecht, The Netherlands, 1992.
5. Malik, S.K. and Shah, S.S., Ed., *Physical and Material Properties of High Temperature Superconductors*, Nova Science Publ., Commack, N.Y., 1994.
6. Chmaisssem, O. et al., *Physica*, C230, 231—238, 1994.
7. Antipov, E.V. et al., *Physica*, C215, 1—10, 1993.

Table 1
Structural Parameters and Approximate T_c Values of High-Temperature Superconductors

Material	Structure	T_c/K (maximum value)
La ₂ CuO _{4+δ}	Bmab; $a = 5.355$, $b = 5.401$, $c = 13.15$ Å	39
La _{2-x} Sr _x (Ba _x)CuO ₄	I4/mmm; $a = 3.779$, $c = 13.23$ Å	35
La ₂ Ca _{1-x} Sr _x Cu ₂ O ₆	I4/mmm; $a = 3.825$, $c = 19.42$ Å	60
YBa ₂ Cu ₃ O ₇	Pmmm; $a = 3.821$, $b = 3.885$, $c = 11.676$ Å	93
YBa ₂ Cu ₄ O ₈	Ammm; $a = 3.84$, $b = 3.87$, $c = 27.24$ Å	80
Y ₂ Ba ₄ Cu ₇ O ₁₅	Ammm; $a = 3.851$, $b = 3.869$, $c = 50.29$ Å	93
Bi ₂ Sr ₂ CuO ₆	Amaa; $a = 5.362$, $b = 5.374$, $c = 24.622$ Å	10
Bi ₂ CaSr ₂ Cu ₂ O ₈	A ₂ 2aa; $a = 5.409$, $b = 5.420$, $c = 30.93$ Å	92
Bi ₂ Ca ₂ Sr ₂ Cu ₃ O ₁₀	A ₂ 3aa; $a = 5.39$, $b = 5.40$, $c = 37$ Å	110
Bi ₂ Sr ₂ (Ln _{1-x} Ce _x) ₂ Cu ₂ O ₁₀	P4/mmm; $a = 3.888$, $c = 17.28$ Å	25
Tl ₂ Ba ₂ CuO ₆	A ₂ 2aa; $a = 5.468$, $b = 5.472$, $c = 23.238$ Å;	
	I4/mmm; $a = 3.866$, $c = 23.239$ Å	92
Tl ₂ CaBa ₂ Cu ₂ O ₈	I4/mmm; $a = 3.855$, $c = 29.318$ Å	119
Tl ₂ Ca ₂ Ba ₂ Cu ₃ O ₁₀	I4/mmm; $a = 3.85$, $c = 35.9$ Å	128
Tl(BaLa)CuO ₅	P4/mmm; $a = 3.83$, $c = 9.55$ Å	40
Tl(SrLa)CuO ₅	P4/mmm; $a = 3.7$, $c = 9$ Å	40
(Tl _{0.5} Pb _{0.5})Sr ₂ CuO ₅	P4/mmm; $a = 3.738$, $c = 9.01$ Å	40
TlCaBa ₂ Cu ₂ O ₇	P4/mmm; $a = 3.856$, $c = 12.754$ Å	103
(Tl _{0.5} Pb _{0.5})CaSr ₂ Cu ₂ O ₇	P4/mmm; $a = 3.80$, $c = 12.05$ Å	90
TlSr ₂ Y _{0.5} Ca _{0.5} Cu ₂ O ₇	P4/mmm; $a = 3.80$, $c = 12.10$ Å	90
TlCa ₂ Ba ₂ Cu ₃ O ₈	P4/mmm; $a = 3.853$, $c = 15.913$ Å	110
(Tl _{0.5} Pb _{0.5})Sr ₂ Ca ₂ Cu ₂ O ₉	P4/mmm; $a = 3.81$, $c = 15.23$ Å	120
TlBa ₂ (La _{1-x} Ce _x) ₂ Cu ₂ O ₉	I4/mmm; $a = 3.8$, $c = 29.5$ Å	40
Pb ₂ Sr ₂ La _{0.5} Ca _{0.5} Cu ₃ O ₈	Cmmm; $a = 5.435$, $b = 5.463$, $c = 15.817$ Å	70
Pb ₂ (Sr,La) ₂ Cu ₂ O ₆	P22 ₁ 2; $a = 5.333$, $b = 5.421$, $c = 12.609$ Å	32
(Pb,Cu)Sr ₂ (La,Ca)Cu ₂ O ₇	P4/mmm; $a = 3.820$, $c = 11.826$ Å	50
(Pb,Cu)(Sr,Eu)(Eu,Ce)Cu ₂ O _x	I4/mmm; $a = 3.837$, $c = 29.01$ Å	25
Nd _{2-x} Ce _x CuO ₄	I4/mmm; $a = 3.95$, $c = 12.07$ Å	30
Ca _{1-x} Sr _x CuO ₂	P4/mmm; $a = 3.902$, $c = 3.35$ Å	110
Sr _{1-x} Nd _x CuO ₂	P4/mmm; $a = 3.942$, $c = 3.393$ Å	40
Ba _{0.6} K _{0.4} BiO ₃	Pm3m; $a = 4.287$ Å	31
Rb ₂ CsC ₆₀	$a = 14.493$ Å	31
NdBa ₂ Cu ₃ O ₇	Pmmm; $a = 3.878$, $b = 3.913$, $c = 11.753$	58