Announcements

- · HW#1
 - Grades online (end of last week)
 - Pick-up outside of 3051 Kemper Hall
- Group Project #1
 - Due this Friday (via hand-in)
- Individual HW#2
 - Due Monday (Feb 3rd)
- Wednesday Discussion
 - XPath examples

ECS-165B 1

XPath (and XQuery) using Zorba ← → C 🕯 🗋 try.zorba.io/queries/xquery Zorba 🔽 declare variable \$source := fn:doc("https://prod-c2g.s3.amazonaws.com/db/Winter2013/files/courses-noID.xml"); \$source//Chair <First Name>Jennifer</First Name> <Last_Name>Widom</Last_Name> </Chair> <First Name>Mark</First Name> <Middle_Initial>A.</Middle_Initial> <Last_Name>Horowitz</Last_Name> </Professor> <First_Name>Beth/First_Name> <Last_Name>Levin </Chair> ECS-165B 2

Definition 5.1 (XPath axes)

XPath Axes, related

self := ϵ

child := firstchild.nextsibling*

parent := $child^{-1}$ descendant := $child^+$

ancestor := $descendant^{-1}$

descendant-or-self := child*

ancestor-or-self := descendant-or-self⁻¹

following-sibling := nextsibling*

preceding-sibling := $following-sibling^{-1}$

following := ancestor-or-self.nextsibling $^+$.

descendant-or-self

 $preceding := following^{-1}$

dill fra. day

(parent. child)

= self usibly

[1] Monadic queries over tree-structured data, Gottlob, G. and Koch, C., Logic in Computer Science (LICS), 2002.

Definition 5.1 (XPath axes)

self := ϵ

child := firstchild.nextsibling*

descendant := child to the one or more

ancestor := $descendant^{-1}$

 $descendant-or-self := child^*$

 ${\it ancestor-or-self} \ := \ descendant-or-self^{-1}$

following-sibling := nextsibling*

 ${\it preceding-sibling} \ := \ following-sibling^{-1}$

 $following \ := \ ancestor\text{-}or\text{-}self.nextsibling}^+.$

descendant-or-self

preceding := $following^{-1}$

Given, Ifc, ns all ofly axis can be defined from those

Querying XML in SQL?

- XPath queries can involve **recursion**:
 - e.g. ancestor, descendant, preceding, following axes
- Traditionally: **no** recursion in SQL...
- Ergo:
 - Cannot evaluate queries e.g. /a//b in SQL!
 - Right?
 - unless we use WITH RECURSIVE
 - or ... special encodings!

ECS-165B

8

Querying XML in SQL?

- Cannot evaluate queries such as /a//b, right?
- Wrong! For example, use ...
 - ... XML **extensions** (e.g. in Postgres)
 - Of course we can always add custom functionality, e.g., for XPath

RECLASIVE

- ... clever encodings
 - e.g., *Interval Encoding* can reduce certain queries, to simple, non-recursive SQL queries (next slide)
 - Caveat: have to generate (and maintain) encoding with separate (outside of SQL) means

ECS-165B 9

XASR: eXtented Access Support Relations

10

Example 2.1 The tree shown in Figure 2 (a) can be represented by the XASR of Figure 2 (b). We can define the descendant axis as an SQL view

CREATE VIEW descendant AS
SELECT r1.pre, r2.pre FROM R r1, R r2
WHERE r1.pre < r2.pre AND r2.post < r1.post;
and the child axis as

CREATE VIEW child AS SELECT parent_pre, pre FROM R WHERE parent_pre is not NULL; [3] Processing queries on tree-structured data efficiently, Koch, C., PODS 2006.

ECS-165B

References

- Lots of basic XPath material out there ...
 - Google, e.g., "XPath tutorial"
- Some (quite) advanced resources:
 - [1] Monadic queries over tree-structured data, Gottlob, G. and Koch, C., Logic in Computer Science (LICS), 2002.
 - [2] Efficient Algorithms for Processing XPath Queries, Georg Gottlob, Christoph Koch, and Reinhard Pichler, ACM TODS, 2005
 - [3] Processing queries on tree-structured data efficiently, Koch, C., PODS 2006.
 - [4] An XML Toolkit for Light-weight XML Stream Processing, Yours Truly (TJ Green) et al., 2003, http://homes.cs.washington.edu/~suciu/XMLTK/

ECS-165B 11