UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/687,224	10/16/2003	Tu Shao-Chi	2003-0527 / 24061.105	8045
42717 HAYNES AND	7590 12/22/2010 D BOONE, LLP	0	EXAM	IINER
IP Section	IP Section CHUMPITAZ, BOB R			AZ, BOB R
2323 Victory A Suite 700	venue		ART UNIT	PAPER NUMBER
Dallas, TX 752	19		3629	
			MAIL DATE	DELIVERY MODE
			12/22/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

	Application No.	Applicant(s)	
	10/687,224	SHAO-CHI ET AL.	
Office Action Summary	Examiner	Art Unit	
	BOB CHUMPITAZ	3629	
The MAILING DATE of this communication a Period for Reply	appears on the cover sheet wi	th the correspondence address -	
A SHORTENED STATUTORY PERIOD FOR REF WHICHEVER IS LONGER, FROM THE MAILING - Extensions of time may be available under the provisions of 37 CFR after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory perions a finite or poly within the set or extended period for reply will, by state the Any reply received by the Office later than three months after the main earned patent term adjustment. See 37 CFR 1.704(b).	DATE OF THIS COMMUNIC 1.136(a). In no event, however, may a rood will apply and will expire SIX (6) MON tute, cause the application to become AB	CATION. Seply be timely filed THS from the mailing date of this communication ANDONED (35 U.S.C. § 133).	
Status			
1) ■ Responsive to communication(s) filed on <u>22</u> 2a) ■ This action is FINAL . 2b) ■ The 3 ■ Since this application is in condition for allow closed in accordance with the practice under	his action is non-final. vance except for formal matt	•	s is
Disposition of Claims			
4) ☐ Claim(s) 1,3-6,9-12,14-19,21,22 and 24 is/au 4a) Of the above claim(s) is/are withden 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) 1, 3-6, 9-12, 14-19, 21, 22, 24 is/are 7) ☐ Claim(s) is/are objected to. 8) ☐ Claim(s) are subject to restriction and	rawn from consideration.		
Application Papers			
9) The specification is objected to by the Exami 10) The drawing(s) filed on is/are: a) and an applicant may not request that any objection to the Replacement drawing sheet(s) including the correct of the oath or declaration is objected to by the	ccepted or b) objected to line drawing(s) be held in abeyan ection is required if the drawing	ce. See 37 CFR 1.85(a). s) is objected to. See 37 CFR 1.12	, .
Priority under 35 U.S.C. § 119			
12) Acknowledgment is made of a claim for foreign a) All b) Some * c) None of: 1. Certified copies of the priority docume 2. Certified copies of the priority docume 3. Copies of the certified copies of the priority docume application from the International Bure * See the attached detailed Office action for a li	ents have been received. ents have been received in A riority documents have been eau (PCT Rule 17.2(a)).	pplication No received in this National Stage	
Attachment(s) 1) \[\sum \text{Notice of References Cited (PTO-892)} \]	4) ☐ Interview S	ummary (PTO-413)	
2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	Paper No(s)/Mail Date formal Patent Application	

DETAILED ACTION

The following is a Non-Final Office Action in response to communication received on February 22, 2010. Claims 1, 6 and 21 have been amended. Claims 1, 3-6, 9-12, 14-19, 21-22 and 24 are pending and addressed below.

Request for Continued Examination

The Request filed on **2/22/2010** for Continued Examination (RCE) under 37 CFR 1.114 based on parent Application No. **10/687,224** is acceptable and a RCE has been established. An action on the RCE follows.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 1, 3-6, 9-12 and 14-19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Yang et al. (US 2003/0233290 A1, hereinafter Yang) in view of Hagen et al. (US 6,748,287 B1, hereinafter Hagen).

As per claim 1, Yang discloses a system comprising:

"a first computer system associated with a primary provider and a second computer system associated with a secondary provider," ((Abstract) a global supply chain management system in an environment of multiple suppliers forming supply chains for one or more buyers connected over the internet; [paragraph]

Page 3

Art Unit: 3629

[0027, 50] Fig. 1 depicts a plurality of supply chain management systems; [0070, 73] Fig. 9 computer system network for the supply chain management system; see also Figs. 9-11 systems for supply management); "wherein the first computer system and the second computer system are operably coupled to a first network providing for an exchange of information, the information pertaining to the semiconductor-related product," ([0015, 17-19, 25] semiconductor supply chain, global processor provides reports for numerous data types including activitybased transaction reports including detail for each buyer and supplier stage; [0050] Fig. 1 depicts a supply chain management system serving all the multiple buyers and the multiple suppliers; where the multiple buyers and multiple suppliers are connected over the internet and hence are able to exchange supply chain information rapidly and essentially in real time; [0070] a two-way communication redundancy process for providing services to the buyers and suppliers (clients) via a network; [0073] database holding information using the supply chain management system; see also, claim 2: maintaining information in supply chain management system).

With respect to: "wherein the first computer system performs: assigning a predetermined event element to the semiconductor-related product at the secondary provider, wherein the predetermined event element is a product-specific process parameter, collecting the exchanged information and collecting event information upon an occurrence of a predetermined event element associated with the semiconductor-related product," Yang discloses a

semiconductor supply chain [0017-19] and wherein each of a local supply chain management system are typically characterized as having their own terminology, specifications and other supply chain parameters [0052]. Yang further discloses a semiconductor manufacturing environment for manufacturing a wafer lot, that include processing stages of Fab, Wafer Sort, Assembly and Final Test, each performed by a supplier and authorized and controlled by purchase orders. In the semiconductor manufacturing industry, the output at any stage is a variable, for example, varying as to supply chain parameters, such as quantity, quality and delivery time [0059]. Additionally, Hagen teaches pertinent subject matter directed to an adaptive real-time work-in-progress tracking, prediction, and optimization system used for coordinating a semiconductor supply chain. Hagen further teaches wherein advance notices enable quality information exchange between potentially competitive vendors in the supply chain (col. 3, lines 48-52; see also claims 2, 11 and its associate text). Hagen teaches coordinating operations of a semiconductor supply chain with multiple vendors; where each vendor performs tasks before handing off product to next vendor. The tasks may be manufacturing, service, or other tasks. Each task performed by the supply chain vendor may be a combination of multiple steps (e.g., task 1 contains steps s1, s2, s3...s120) (col. 4, lines 41- col. 5, line 61; see also Fig.1 and associated text). Hagan teaches wherein certain steps are assigned to a yield group "process," other to "sort" and so on (col. 13, lines 30-33). Furthermore, Hagen teaches work in process (WIP) tracking system database, where the WIP database stores a data representation of the semiconductor supply chain, including the current status of

Application/Control Number: 10/687,224

Art Unit: 3629

WIP in the supply chain (col. 10, lines 6-34). Lastly, Hagen teaches where the WIP tracking system is controlled by a fabless semiconductor provider, the fabless semiconductor provider may follow an ASIC, ASSP or other business model. The fabless semiconductor provider coordinates with the supply chain vendors to establish WIP tracking system protocols, such as contents, format and frequency of WIP updates, the manner to identify individual units of products on the supply chain, etc. The protocols may be simple or complex and may differ from one vendor to the next. Ideally, all vendors would use a common protocol which is directly compatible with the WIP tracking system. In reality, however, each vendor may dictate its own protocol (col. 7, lines 47-63). One of ordinary skill in the art would have recognized that the method for communicating with the WIP system by each individual vendor would have been performed via an individual in-house business system and it would have been obvious to one of ordinary skill in the art at the time of the invention to provide such information channel between vendors and customers in the supply chain system in order to exchange information. Therefore, it would also have been obvious to one of ordinary skill in the art at the time of the invention to modify the supply chain management system for semiconductor manufacturing, comprising suppliers for each manufacturing stage as disclosed by Yang to include interrelated event elements for the semiconductor supply chain as taught by Hagen in order to assign all the required event elements required for completing a stage of the semiconductor manufacturing process in an efficient and improved system that optimizes the supply chain management processes flow by reducing and adapting

to any impact caused by unpredictable incidents or errors occurring in throughout the supply chain system.

Page 6

Yang further discloses: "providing the collected exchanged information and the collected event information to a customer associated with the semiconductor-related product, wherein the event information includes an abnormality alert," ([0009, 21] the interrelationship among each buyer and the upstream and down stream suppliers requires an exchange of "current" information that permits real-time visibility into the status of the supply chain, fast indication of abnormal events and other information that permits exception management; the supply chain management system performs alert processes based upon alert conditions for specific events/reports/process of the supply chain; [0050] multiple buyers and multiple suppliers are connected over the internet and hence are able to exchange supply information rapidly and essentially in real time; [0072] the processed data is stored in the processed data store which can be communicated to the clients; [0093] reports that show work in progress information; [0186] buyer request).

Examiner notes:

(1) The Examiner asserts that the data identifying "wherein the event information includes an abnormality alert" is simply a label for the event information and adds little, if anything, to the claimed acts or steps and thus does not serve to distinguish over the prior art. Any differences related merely to the meaning and information conveyed through labels (i.e., abnormality alert information) which

does not explicitly alter or impact the steps of the method does not patentably distinguish the claimed invention from the prior art in terms of patentability. Therefore, the type of information being collected does not functionally alter or relate to the steps of the method and merely labeling the information differently from that in the prior art does not patentably distinguish the claimed invention.

(2) A recitation directed to the manner in which a claimed apparatus is intended to be used does not distinguish the claimed apparatus from the prior art- if the prior art has the capability to so perform. See MPEP 2114 and Ex parte Masham, 2 USPQ2d 1647 (1987). Please note this applies to claims 1 and 3-5.

As per claim 3, Yang further discloses wherein the first and second computer systems are operably coupled by a first network for exchanging information between the primary and secondary providers, and the providing the collected exchanged information and the collected event information uses a second network, different from the first network ([0035, 53] hardware block diagram of a computer system network for the supply chain management system; see Fig. 9 and associated text; [0070] computer system network; [0072] the processed data is stored in the processed data store which can be communicated to the clients; [0186] buyer request; see also Figs. 1, 9 computer system network).

As per claim 4, Yang further discloses wherein the exchange of information uses a dedicated bi-directional path of the first network, and wherein the collecting the exchanged information provides continuously collecting the exchanged information

Application/Control Number: 10/687,224

Art Unit: 3629

([0015] continuously updated data base; [0050] multiple buyers and multiple suppliers are connected over the internet and hence are able to exchange supply information rapidly and essentially in real time; [0070, 208] supply chain management services to the buyers and suppliers in a network via internet connection).

As per claim 5, Yang further discloses an enterprise control system that includes a customer interface in the form of a web browser, wherein the enterprise control system receives the collected exchanged information and the collected event information from the first computer system ([0061, 64, 68] each of the suppliers receive "current" and accurate information from upstream suppliers through use of communications; [0070] supply chain management service; [0179] onscreen operations or other i-commerce methods of communication provided to buyers and suppliers).

As per claim 6, Yang discloses a method of business-to-business exchange between providers in a semiconductor manufacturing environment, the method comprising:

"exchanging a product from a primary provider to a secondary provider, wherein the primary provider is a semiconductor fab and the product is a lot of semiconductor wafers," ([0009] in order to have efficient and economical supply chain management, the interrelationship among each buyer and the upstream and down stream suppliers requires an exchange of "current" information that permits real-time visibility into the status of the supply chain, fast identification of abnormal events and other information that permits exception management; [0020] in the semiconductor manufacturing industry in order to procure finished

goods (e.g. semiconductor chip), a buyer first orders wafers from a Fab supplier (primary provider); once the work at the Fab supplier is finished, the buyer orders sorting from a Wafer Sort supplier (secondary provider); after the Wafer Sort work is finished, the buyer orders Assembly from an Assembly supplier (3rd provider); and finally, the buyer orders Final Test from a Final Test supplier (4th provider). The supply chain management system is able to perform group order generation for groups of dependent suppliers in the supply chain; [0059] I1 input is a wafer lot).

With respect to: "assigning event elements to the product, wherein the event elements include a plurality of process steps performed by the secondary provider wherein the event elements are stored in a memory unit, and wherein the assigning event elements to the product includes the secondary provider defining a first event element using a first computer system associated with the secondary provider and the primary provider modifying the first event element using a second computer system associated with the primary provider, wherein the first event element is a product-specific process parameter," Yang discloses a semiconductor supply chain [0017-19] and wherein each of a local supply chain management system are typically characterized as having their own terminology, specifications and other supply chain parameters [0052]. The supply chain management system generates orders for each of the suppliers [0211]. The supply chain management system is able to perform group order generation for groups of dependent suppliers in the supply chain [0207]. Orders are known by different

names including purchase orders (PO) that logically are for goods and work orders (WO) that logically are for services [0015]. Yang further discloses a semiconductor manufacturing environment for manufacturing a wafer lot, that include processing stages of Fab, Wafer Sort, Assembly and Final Test, each performed by a supplier and authorized and controlled by purchase orders. In the semiconductor manufacturing industry, the output at any stage is a variable, for example, varying as to supply chain parameters, such as quantity, quality and delivery time [0059]. Additionally, Hagen teaches pertinent subject matter directed to an adaptive real-time work-in-progress tracking, prediction, and optimization system used for coordinating a semiconductor supply chain. Hagen further teaches wherein advance notices enable quality information exchange between potentially competitive vendors in the supply chain (col. 3, lines 48-52; see also claims 2, 11 and its associate text). Hagen teaches coordinating operations of a semiconductor supply chain with multiple vendors; where each vendor performs tasks before handing off product to next vendor. The tasks may be manufacturing, service, or other tasks. Each task performed by the supply chain vendor may be a combination of multiple steps (e.g., task 1 contains steps s1, s2, s3...s120) (col. 4, lines 41- col. 5, line 61; see also Fig.1 and associated text). Hagan teaches wherein certain steps are assigned to a yield group "process," other to "sort" and so on (col. 13, lines 30-33). Furthermore, Hagen teaches work in process (WIP) tracking system database, where the WIP database stores a data representation of the semiconductor supply chain, including the current status of WIP in the supply chain (col. 10, lines 6-34). Lastly, Hagen teaches where the

WIP tracking system is controlled by a fabless semiconductor provider, the fabless semiconductor provider may follow an ASIC, ASSP or other business model. The fabless semiconductor provider coordinates with the supply chain vendors to establish WIP tracking system protocols, such as contents, format and frequency of WIP updates, the manner to identify individual units of products on the supply chain, etc. The protocols may be simple or complex and may differ from one vendor to the next. Ideally, all vendors would use a common protocol which is directly compatible with the WIP tracking system. In reality, however, each vendor may dictate its own protocol (col. 7, lines 47-63). One of ordinary skill in the art would have recognized that the method for communicating with the WIP system by each individual vendor would have been performed via an individual in-house business system and it would have been obvious to one of ordinary skill in the art at the time of the invention to provide such information channel between vendors and customers in the supply chain system in order to exchange information. Therefore, it would also have been obvious to one of ordinary skill in the art at the time of the invention to modify the supply chain management system for semiconductor manufacturing, comprising suppliers for each manufacturing stage as disclosed by Yang to include interrelated event elements for the semiconductor supply chain as taught by Hagen in order to assign all the required event elements required for completing a stage of the semiconductor manufacturing process in an efficient and improved system that optimizes the supply chain management processes flow by reducing and adapting

to any impact caused by unpredictable incidents or errors occurring in throughout the supply chain system.

Yang further discloses: "transmitting information associated with the product throughout a virtual fab, wherein the transmission of information occurs continuously and multi-directionally between the providers through the virtual fab," ([0005] exchanging information among buyers and suppliers; [0050] multiple buyers and multiple suppliers are able to exchange information over the internet), and "wherein the information is associated with the assigned event elements, and wherein the information includes a time of an event element and a quantity of the product yielded," ([0025] lot tracking maintenance such as cycle time, yield analysis, cost reporting each stage of the supply chain; [0085-0087] estimated finished good is calculated based on the standard cycle time of each stage); and wherein the virtual fab includes the first computer system and the second computer system operably coupled to a network and wherein the transmitting information includes the primary provider transmitting a second event element to the secondary provider based on the received information, wherein the second event element is a product-specific process parameter of a process performed by the secondary provider ([0070, 209, 211, 213] computer system network for the supply chain management system; see Fig. 9 and associated text).

Yang further discloses: "storing at least a portion of the transmitted information in the memory unit," ([0072] the processed data is stored in the processed data store which can be communicated to the clients); and "providing the portion of the transmitted information to a third computer system associated with a customer in response to a customer request using the network, wherein the event information includes an abnormality alert," ([0009, 21] the interrelationship among each buyer and the upstream and down stream suppliers requires an exchange of "current" information that permits real-time visibility into the status of the supply chain, fast indication of abnormal events and other information that permits exception management; the supply chain management system performs alert processes based upon alert conditions for specific events/reports/process of the supply chain; [0072] the processed data is stored in the processed data store which can be communicated to the clients; [0186] buyer request; see also Figs. 1, 9 computer system network).

Examiner notes:

(1) The Examiner asserts that the data identifying "wherein the event information includes an abnormality alert" is simply a label for the event information and adds little, if anything, to the claimed acts or steps and thus does not serve to distinguish over the prior art. Any differences related merely to the meaning and information conveyed through labels (i.e., abnormality alert information) which does not explicitly alter or impact the steps of the method does not patentably distinguish the claimed invention from the prior art in terms of patentability.

Therefore, the type of information being collected does not functionally alter or relate to the steps of the method and merely labeling the information differently from that in the prior art does not patentably distinguish the claimed invention.

As per claims 9 and 10, the Yang/Hagen combination disclose claim 6 as rejected above, where Yang does not expressly disclose "wherein the event elements include a second event element including a process completion at a predetermined check point" and "wherein the event elements of the primary provider and the secondary provider comprise product process steps, the event elements track the product through the virtual fab". However, Hagen teaches WIP update's that includes the entire sequence of steps executed since the last update (typically including quantity and time of completion) rather than just listing the current step. This type of WIP update may be referred to as a "transaction history" update. In this step the completion of every step typically is time stamped (col. 7, lines 3-9; see also col. 10, lines 35-56 advance notice engine). Therefore it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the semiconductor manufacturing supply chain system of Yang to include WIP updates as taught Hagen in order to track completion time for all event elements so that wafer fabrication flow can move on smoothly and therefore reducing the semiconductor manufacturing cycle time and will help reduce time delays, costs of goods and services.

As per claim 11, Yang further discloses wherein the information includes product lot identification and product lot history ([0024-0025] lot tracking stores the genealogy of a lot and lot history; [0165] lot tracking).

As per claim 12, Yang further discloses wherein the step of providing uses a service system interface for communicating between a computer system associated with the customer and a computer system associated with the semiconductor fab ([0179] onscreen operations or other i-commerce methods of communication provided to buyers and suppliers; [0070] supply chain management service).

As per claim 14, Yang further discloses wherein the primary provider is a semiconductor fab facility ([0020] buyer and supplier within the semiconductor manufacturing industry).

As per claim 15, Yang further discloses wherein the secondary provider is a sub-contractor ([0020] assembly supplier).

As per claim 16, Yang further discloses wherein the primary provider is a semiconductor design house ([0019] IC-design house deals with multiple suppliers that provide various outsourcing functions at different supplier stages).

As per claim 17, Yang further discloses wherein the secondary provider is a equipment vendor ([0020] assembly supplier).

As per claims 18 and 19, the Yang/Hagen combination disclose claim 6 as rejected above, but do not expressly disclose "wherein the event elements of the primary provider and secondary provider comprise product process steps to occur at the secondary

Page 16

Art Unit: 3629

provider, the event elements track the product through the virtual fab" and "wherein the event elements include manufacturing process checkpoints".

However, Yang discloses semiconductor manufacturing environment processing stages including fab, wafer sort, assembly and final test [0059], and generating purchase orders for multistage processing in order for work to be performed through the stages by authorization and specifying the terms and conditions ([0062, 134] see data integrity unit 88-6 on Fig. 11). In addition, Hagen teaches wherein the each task performed by the supply chain vendors may be a combination of multiple steps. Some of phases of the semiconductor manufacturing may be divided among vendors in any number of ways (col. 5, lines 38 – col. 6, line 19). The fabless semiconductor provider coordinates with the supply chain vendors to establish WIP tracking system protocols, such as contents, format and frequency of WIP updates, the manner to identify individual units of products on the supply chain, etc. The fabless semiconductor provider receives the WIP updates from supply chain vendors. The data contained in the WIP updates may be relevant to different customers, different products and/or different orders for a product. The WIP tracking system processes the WIP updates received from the supply chain vendors and generates various WIP reports, which are made available to supply chain vendors and customers, as well as for internal use, as applicable (col. 7, line 48 – col. 8, line 5). Lastly, Hagen teaches a consistency checking module for consistency checking the WIP updates (Claim 28). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the semiconductor manufacturing supply

chain system of Yang to include the WIP tracking system as taught by Hagen in order to mange and track event elements of the wafer fabrication in order to reduce and errors or problems that may affect the semiconductor manufacturing cycle time, which will help reduce time delays, costs of goods and services.

Claims 21, 22 and 24 are rejected under 35 U.S.C. 103(a) as being unpatentable over Yang in view of Hagen in further view of Arackaparambil et al. (US 2002/0156548 A1, hereinafter Arackaparambil).

As per claim 21, Yang discloses a computer readable medium including computer-readable instructions for tracking and managing a plurality of product and information through a semiconductor manufacturing environment the computer-readable instructions comprising:

"instructions for establishing a virtual fab with a plurality of entities, each entity associated with an internal process to a semiconductor fab or an external process to the semiconductor fab," ([0036, 71] Fig. 10 depicts a software block diagram for the supply chain management system; [0070] the application server 95-1 and the application server 95-2 execute programs for performing supply chain management in the multiple buyer, multiple supplier environment, see also Fig. 9 and associated text); and "wherein at least one of the plurality of entities is associated with an internal process and at least one of the entities is associated with an external process," ([0014, 59, 67] global processor executes data integrity processes to improve the reliability of the supply information; [0069-71] Fig. 8 depicts a supply chain management system operating in an environment of

multiple buyers and multiple supplier; for the semiconductor manufacturing industry the multistage supply chain includes a plurality of stages organized functionally).

With respect to: "instructions for assigning a plurality of event elements for tracking the product through the plurality of entities of the virtual fab, wherein a plurality of event elements are provided for each of the plurality of entities of the virtual fab, and wherein the plurality of event elements include at least one process-specific product parameter and at least one abnormality alert," Yang discloses a semiconductor supply chain [0017-19] and wherein each of a local supply chain management system are typically characterized as having their own terminology, specifications and other supply chain parameters [0052]. Yang further discloses wherein the interrelationship among each buyer and the upstream and down stream suppliers requires an exchange of "current" information that permits real-time visibility into the status of the supply chain, fast indication of abnormal events and other information that permits exception management [0009, 21]. The supply chain management system generates orders for each of the suppliers [0211]. The supply chain management system is able to perform group order generation for groups of dependent suppliers in the supply chain [0207]. Orders are known by different names including purchase orders (PO) that logically are for goods and work orders (WO) that logically are for services [0015]. Yang further discloses a semiconductor manufacturing environment for manufacturing a wafer lot, that include processing stages of Fab, Wafer Sort,

Page 19

Art Unit: 3629

Assembly and Final Test, each performed by a supplier and authorized and controlled by purchase orders. In the semiconductor manufacturing industry, the output at any stage is a variable, for example, varying as to supply chain parameters, such as quantity, quality and delivery time [0059]. Additionally, Hagen teaches pertinent subject matter directed to an adaptive real-time work-inprogress tracking, prediction, and optimization system used for coordinating a semiconductor supply chain. Hagen further teaches wherein advance notices enable quality information exchange between potentially competitive vendors in the supply chain (col. 3, lines 48-52; see also claims 2, 11 and its associate text). Hagen teaches coordinating operations of a semiconductor supply chain with multiple vendors; where each vendor performs tasks before handing off product to next vendor. The tasks may be manufacturing, service, or other tasks. Each task performed by the supply chain vendor may be a combination of multiple steps (e.g., task 1 contains steps s1, s2, s3...s120) (col. 4, lines 41- col. 5, line 61; see also Fig.1 and associated text). Hagan teaches wherein certain steps are assigned to a yield group "process," other to "sort" and so on (col. 13, lines 30-33). Furthermore, Hagen teaches work in process (WIP) tracking system database, where the WIP database stores a data representation of the semiconductor supply chain, including the current status of WIP in the supply chain (col. 10, lines 6-34). Lastly, Hagen teaches where the WIP tracking system is controlled by a fabless semiconductor provider, the fabless semiconductor provider may follow an ASIC, ASSP or other business model. The fabless semiconductor provider coordinates with the supply chain vendors to establish WIP tracking system protocols, such as

contents, format and frequency of WIP updates, the manner to identify individual units of products on the supply chain, etc. The protocols may be simple or complex and may differ from one vendor to the next. Ideally, all vendors would use a common protocol which is directly compatible with the WIP tracking system. In reality, however, each vendor may dictate its own protocol (col. 7, lines 47-63). One of ordinary skill in the art would have recognized that the method for communicating with the WIP system by each individual vendor would have been performed via an individual in-house business system and it would have been obvious to one of ordinary skill in the art at the time of the invention to provide such information channel between vendors and customers in the supply chain system in order to exchange information. Therefore, it would also have been obvious to one of ordinary skill in the art at the time of the invention to modify the supply chain management system for semiconductor manufacturing, comprising suppliers for each manufacturing stage as disclosed by Yang to include interrelated event elements for the semiconductor supply chain as taught by Hagen in order to assign all the required event elements required for completing a stage of the semiconductor manufacturing process in an efficient and improved system that optimizes the supply chain management processes flow by reducing and adapting to any impact caused by unpredictable incidents or errors occurring in throughout the supply chain system.

Yang further discloses: "instructions for a communications interface for interacting with a enterprise control entity and the plurality of event elements,"

([0021] i-commerce onscreen operations or other methods of communication; [0050] internet communication means between buyers and multiple suppliers, see Fig. 1 and associated text).

Yang does not expressly further discloses: "instructions for controlling the product quality, wherein the product quality may be controlled by at least two of the plurality of entities." However, Yang discloses supply chain management system containing a multi-lot processor with communication means via internet [0068-69]; supply chain parameter such as quantity, quality, and delivery time [0059]; and data integrity unit includes a data checking unit and data cleansing to improve quality of data [0092-93]). Yang also discloses where downstream orders depend upon the performance of the upstream orders and where the output at any stage is a variable such as quality [0059]. In addition, Hagen teaches where advance notices enable quality information exchange between vendors in the supply chain (col. 3, lines 48-52). Furthermore, Arackaparambil teaches a quality management component (QMC) which provides quality analysis and flexible data collection. It is able to determine corrective manufacturing tactics in order to ensure conformance to predetermine business rules [0083]. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the Yang/Hagen combination to include a quality management component as taught by Arackaparambil in order to allow providers, operating the system, a component that monitors quality during the manufacturing production process in order to make sure that the information received is within a compliance standard.

Yang further discloses: "instructions for determining a future location for the product and the associated information through the virtual fab via the enterprise control entity," ([0165-167] lot tracking data used for all the production; [0025] lot tracking maintenance such as cycle time, yield analysis, cost reporting each stage of the supply chain; [0085-87] estimated finished good is calculated based on the standard cycle time of each stage; see also [0018] and Fig. 23 Work in progress inventory report); and "instructions for amending the associated information to the recordable medium through the virtual fab," ([0023] lot tracking information consists of dynamic data, where data can be changed during the manufacturing processes; [0072] via communication over the internet data is converted via converter and stored in the raw data store).

As per claim 22, Yang further discloses wherein the plurality of entities include:

at least one entity associated with a primary provider manufacturing executing system in the virtual fab ([0010] dominating buyer or dominating supplier); at least one entity associated with a secondary provider manufacturing executing system in the virtual fab ([0010] dominating buyer or dominating supplier); at least one entity associated with a manufacturer of the semiconductor equipment vendor ([0009-10] outsourcing semiconductor manufacturing industry between buyers and suppliers); at least one entity associated with a manufacturer of the sub-contractor ([0173] reporting accuracy among multiple suppliers and multiple buyers and multiple suppliers); at least one entity associated with a manufacturer

of the semiconductor design house ([0019] IC-design house deals with multiple suppliers that provide various outsourcing functions at different supplier stages); at least one entity associated with a customer of products being manufactured by the semiconductor fab ([0017, 27] semiconductor manufacturing supply chain; [0069] multistage supply chain environment for multiple buyers and multiple suppliers; [0132-133] multiple supplier branch in a supply chain transaction); and at least one entity associated with engineering support for the either or both of the primary and second manufacturing executing system ([0178] production control engineers and other production control personnel).

As per claim 24, the Yang/Hagen combination disclose claim 6 as rejected above, but do not expressly disclose "the primary provider performing quality control function at the secondary provider using the information received." However, Yang discloses where downstream orders depend upon the performance of the upstream orders and where the output at any stage is a variable such as quality [0059]. In addition, Hagen teaches where advance notices enable quality information exchange between vendors in the supply chain (col. 3, lines 48-52). Furthermore, Arackaparambil teaches a quality management component (QMC) which provides quality analysis and flexible data collection. It is able to determine corrective manufacturing tactics in order to ensure conformance to predetermine business rules [0083]. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the Yang/Hagen combination to include a quality management component as taught by Arackaparambil in order to allow providers, operating the system, a component that monitors quality during

the manufacturing production process in order to make sure that the information received is within a compliance standard.

Please note:

A recitation of the intended use of the claimed invention must result in a structural difference between the claimed invention and the prior art in order to patentably distinguish the claimed invention from the prior art. If the prior art structure is capable of performing the intended use, then it meets the claim. See e.g. In re Collier, 158 USPQ 266, 267-68 (CCPA 1968) (where the court interpreted the claimed phrase "said ferrule-forming member being crimpable onto said shield means" and held that the shield means was not a positive element of the claim since "[t]here is no positive inclusion of 'shield means' in what is apparently intended to be a claim to structure consisting of a combination of elements." As a courtesy, the Examiner has bolded and italicized the claim language considered as intended use.

Applicant(s) are reminded that optional or conditional elements do not narrow the claims because they can always be omitted. See e.g. MPEP §2106 II C: "Language that suggest or makes optional but does not require steps to be performed or does not limit a claim to a particular structure does not limit the scope of a claim or claim limitation. [Emphasis in original.]"; and In re Johnston, 435 F.3d 1381, 77 USPQ2d 1788, 1790 (Fed. Cir. 2006) "As a matter of linguistic precision, optional elements do not narrow the claim because they can always be omitted." In re Johnston, 435 F.3d 1381, 77 USPQ2d 1788, 1790 (Fed. Cir. 2006)(where the Federal Circuit affirmed the Board's claim construction of

"further including that said wall may be smooth, corrugated, or profiled with increased dimensional proportions as pipe size is increased" since "this additional content did not narrow the scope of the claim because these limitations are stated in the permissive form 'may."").

Functional recitation(s) have been considered but given less patentable weight because they fail to add any steps and are thereby regarded as intended use language. A recitation of the intended use of the claimed invention must result in additional steps. See Bristol-Myers Squibb Co. v. Ben Venue Laboratories, Inc., 246 F.3d 1368, 1375-76, 58 USPQ2d 1508, 1513 (Fed. Cir. 2001) (Where the language in a method claim states only a purpose and intended result, the expression does not result in a manipulative difference in the steps of the claim.).

Response to Arguments

Applicant's arguments filed January 25, 2010 with respect to the rejection(s) of independent claim(s) 1, 6 and 21, and the associated dependent claims, have been fully considered but are not persuasive. In the remarks, Applicant argues the following:

(1) Claims 1, 3-6, 9-12 and 14-19 were rejected under 35 U.S.C. 103(a) as being unpatentable over Yang, et al. (U.S. Patent Application Publication No.2003/0233290 hereinafter referred to as "Yang") in view of Hagen, et al. (U.S. Patent No. 6,748,287 hereinafter referred to as "Hagen"). Claims 21-22 and 24 were rejected under 35 U.S.C. §103(a) as being unpatentable over Yang in view of Hagen in further view of Arackaparambil, et al. (U.S. Patent Application

Publication No. 2002101 56548 hereinafter referred to as "Arackaparambil"). Applicant traverses these rejections on the grounds that the references are defective in establishing a prima facie case of obviousness with respect to the listed claims. The Examiner has not shown that all words in the claim have been considered. For example, claim 1, in part, recites "providing the collected exchanged information and the collected event information to a customer associated with the semiconductor-related product, wherein the event information includes an abnormality alert." The Examiner has asserted that Yang discloses "providing the collected exchanged information and the collected event information to a customer associated with the semiconductor-related product." Office Action mailed November 24, 2009, page 5. However, the rejection makes no reference to the event information including "an abnormality alert", as is provided in amended claim 1. Thus, for this independent reason alone, the Examiner's burden of factually supporting a prima facie case of obviousness has clearly not been met, and the rejection under 35 U.S.C. 103 should be withdrawn for independent claim 1 and its dependent claims. Dependent claims 6 and 21 recite elements similar to that provided in amended claim 1, as discussed above. Accordingly, it is submitted that the independent claims 6 and 21 and their respective dependent claims are allowable at least for the same reasons.

In response to argument (1), the Examiner respectfully disagrees, based on the same reasoning as noted in the response to argument dated 11/24/09. For purposes to clarify and expedite prosecution, in addition to the cited passages of Yang as noted above, given the broadest reasonable interpretation to the claim

language, the Examiner considers the following interpretation-clarifications to represent the claimed language limitations of the current application. Yang discloses the following: "First computer system associated with a primary provider and a second computer system associated with a secondary provider....coupled to a first network for an exchange of information..." ([0013] discloses a global supply chain management system in an environment of multiple suppliers forming supply chains for one or more buyers connected over the internet. Figs. 1 and 2 show the global supply chain management system (applicable to a semiconductor environment) comprising one or more buyers (primary provider) and multiple suppliers (secondary provider). The internet is an efficient electronic link among buyers and suppliers for exchange of supply chain information (product specific process information) [0005-6]). "Providing the collected exchanged information and the collected event information to a customer associated with the semiconductor-related product ([0213] once orders are generated buyer/user/customer is notified before next order is needed to be submitted to a supplier)." Yang in view of Hagen disclose: "wherein the first computer system performs: "assigning a predetermined event element to the semiconductor-related product at the secondary provider, wherein the predetermined event element is a product-specific process parameter", "collecting the exchanged information" and "collecting event information upon an occurrence of a predetermined event element associated with the semiconductor-related product," The Examiner points to the following Yang citations to better clarify any obviousness confusion. In relation to the claim limitations, Yang teaches

Page 28

wherein the first computer system performs: "assigning a predetermined event element to the semiconductor-related product at the secondary provider, wherein the predetermined event element is a product-specific process parameter," ([0211] The supply chain management system generates orders for each of the suppliers; The supply chain management system is able to perform group order generation for groups of dependent suppliers in the supply chain [0207]. Orders are known by different names including purchase orders (PO) that logically are for goods and work orders (WO) that logically are for services [0015]. The assignment of predetermined event element is broadly interpreted to mean supply chain transactions within the generated order. Supply chain transaction in a semiconductor environment, for example include at least one of the following: fab stage, wafer shipping, wafer sort stage, assembly stage, final test stage, where each product specific semiconductor manufacturing process parameter in the manufacturing process depend from at least one other interdependent manufacturing process [0133])"; "collecting the exchanged information ([0005-6])" and "collecting event information upon an occurrence of a predetermined event element associated with the semiconductor-related product ([0213] once orders are generated)." Furthermore, by combining the teachings of Hagen, the noted claim limitations are met. Hagen teaches a work in progress tracking system for coordinating a semiconductor supply chain, which lets customers monitor the work process, so that participating supply chain vendors can be well managed (col. 6, lines 31-33, two party system, providing exchange of information). A customer contracts directly with each vendor in the semiconductor supply chain,

Page 29

Art Unit: 3629

to perform the tasks necessary to manufacture the product (col. 5, lines 18-21). Hagen disclosure further teaches tasks, which encompasses the entire processes performed by one vendor, before handling off to the next vendor (col. 5, lines 38-53, tasks are dependent of each other). Each task performed by a vendor may be a combination of multiple steps being performed for the manufactured product (col. 6, lines 35-36). The manufacturing process or vendor roles provide customer to vendor (or vendor to vendor, the same entity may play the roles of multiple vendors) interactions throughout the product manufacturing process, so that to exchange product specific information (col. 6, lines 1-19). For example, the final test vendor depends upon and requires supply information both from the packaging vendor and a provider of testing boards before it can complete or act upon performing the final tests (col. 5, lines 8-10). It would have been obvious to one of ordinary skill in the art at the time of the invention to understand and consider that such product test result data or any data obtained at any stage of the manufacturing process, prior to handing off product to a following stage, to have a crucial and important affect on the following stages of product manufacturing. As noted above, Yang discloses wherein the supply chain management system is able to perform group order generation for groups of dependent suppliers in the supply chain, therefore creating and determining event or stages for the manufacturing of a product [0207]. Each supplier or vendor in the supply chain has a predetermined task to perform based on the product being manufactured, and stages of the manufacturing process can be affected by the results of a previous dependent event, whether it be the total outcome of wafer units that

passed a particular test, or units the failed a test. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the global supply chain management system of Yang to include the process of generating product specific tasks (orders) within a semiconductor manufacturing environment as taught by Hagen in order to provide a production management system that incorporates at least two providers, where said provider executes and generates work product condition assignment tasks to one or more providers interrelated in the production management system. Please see rejections above.

Conclusion

Examiner has pointed out particular references contained in the prior arts of record in the body of this action for the convenience of the applicant. Although the specified citations are representative of the teachings in the art and are applied to the specific limitations within the individual claim, other passages and figures may apply as well. It is respectfully requested from the applicant, in preparing the response, to consider fully the entire references as potentially teaching all or part of the claimed invention, as well as the context of the passage as taught by the prior arts or disclosed by the examiner.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to BOB CHUMPITAZ whose telephone number is (571) 270-5494. The examiner can normally be reached on M-TR: 7:30 AM - 6:00 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, JAMISUE PLUCINSKI can be reached on (571) 272-6811. The fax phone

Application/Control Number: 10/687,224 Page 31

Art Unit: 3629

number for the organization where this application or proceeding is assigned is 571-270-

6494. Information regarding the status of an application may be obtained from the Patent

Application Information Retrieval (PAIR) system. Status information for published

applications may be obtained from either Private PAIR or Public PAIR. Status

information for unpublished applications is available through Private PAIR only. For

more information about the PAIR system, see http://pair-direct.uspto.gov. Should you

have questions on access to the Private PAIR system, contact the Electronic Business

Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO

Customer Service Representative or access to the automated information system, call

800-786-9199 (IN USA OR CANADA) or 571-272-1000.

B. C.

Examiner, Art Unit 3629

/Jamisue A. Plucinski/

Supervisory Patent Examiner, Art Unit 3629