

Topología

Tercer examen parcial

Instrucciones:

- 1. Esta es una evaluación individual con una duración de 1 hora y 30 minutos. Contará con 10 minutos adicionales para escanear y subir las respuesta en formato pdf en el aula virtual en la actividad destinada para tal fin
- 2. Debe seleccionar y responder solamente 3 preguntas
- 3. Cada pregunta tiene el mismo valor
- 4. Las respuestas deben estar totalmente justificadas
- 1. Sea (X,τ) un espacio topológico, $A,F\subset X,A$ compacto y F cerrado. Muestre que $A\cap F$ es compacto
- 2. Considere $\mathbb R$ con la topología complemento finito. Muestre que todo subconjunto de $\mathbb R$ es compacto
- 3. Sea $\{A_n\}_{n\in\mathbb{Z}_+}$ una colección de supespacios conexos de un espacio topológico X, tales que $A_n\cap A_{n+1}\neq\emptyset$, muestre que $\cup_{n\in\mathbb{Z}_+}A_n$ es conexo
- 4. Sea (X,τ) un espacio conexo. Pruebe que la diagonal $\Delta=\{(x,x):x\in X\}$ es un subconjunto conexo de $X\times X$
- 5. Sea (X, τ) un espacio topológico, muestre que X es conexo si y sólo si para cualesquiera $x, y \in X$ existe un subconjunto conexo A de X tal que $x, y \in A$
- 6. Muestre que la unión de arco-conexos que tienen un punto en común es arco-conexo
- 7. Sean X,Y espacios topológicos, X compacto Y $T_2, f: X \to Y$. Muestre que f(cl(A)=cl(f(A)) para todo subconjunto A de X
- 8. Sean X,Y espacios topológicos, X secuencialmente compacto Y $T_2, f: X \to Y$ sobreyectiva. Muestre que Y es secuencialmente compacto