

UV Traitement du signal

Cours 7

Signaux discrets et Transformée de Fourier

De la Transformée de Fourier à temps discret (TFTD) à la Transformée de Fourier Discrète (TFD)

ASI 3

Contenu du cours

- Signaux discrets
 - Rappels, définition
 - Propriétés
- □ Transformée de Fourier des signaux à temps discret (TFTD)
 - Définition
 - Propriétés
- Transformée de Fourier discrète
 - Définition
 - Propriétés
 - Application de la TFD à l'analyse spectrale : précision et résolution
 - ◆ TFD rapide (Fast FFT)

Rappels: Signaux discrets

Rappels de base :

- IR Ensemble des réels : 1,234 ; -1 ; π ; etc.
- IN Ensemble des entiers naturels : 0, 1, 2, 3, 4, etc.
- \mathbb{Z} Ensemble des entiers relatifs : -2, -1, 0, 1, 2, 3, 4, etc.
- \mathbb{Q} Ensemble des nombres rationnels (quotient de deux \mathbb{Z}). ex : $\sqrt{2} \notin \mathbb{Q}$

Signal discret

Soit un signal x(t) échantillonné à une période T_e . Le signal échantillonné s'écrit :

$$x_e(t) = \sum_{n} x(nTe)\delta(t - nTe)$$

En considérant une période d'échantillonnage normalisée (T_e = 1) , on a :

$$x_e(t) = \sum_{n} x(n)\delta(t-n)$$
 On obtient la suite de valeurs $\{x(n)\}$ appelée signal discret.

- Ainsi, un signal discret est une suite $\{x(n)\}$ représentée par la fonction de $\mathbb{Z} \to \mathbb{C}$: $n \to x(n)$
 - ightharpoonup : la normalisation permet de considérer la suite de valeurs $x(nT_e)$ indépendamment du processus de discrétisation qui l'a générée.

Signaux discrets particuliers

Echelon unité

$$\Gamma(n) = \begin{cases} 1 \text{ pour } n \ge 0 \\ 0 \text{ sinon} \end{cases}$$

$$\Gamma(n) = \begin{cases} 1 \text{ pour } n \ge 0 \\ 0 \text{ sinon} \end{cases} \Rightarrow \frac{\text{Remarque}}{\text{Remarque}} : \Gamma(n) = \sum_{r=0}^{+\infty} \delta(n-r)$$

Impulsion discrète (fonction delta de Kronecker)

$$\delta(n) = \begin{cases} 1 \text{ pour } n = 0 \\ 0 \text{ sinon} \end{cases}$$

$$\delta(n) = \begin{cases} 1 \text{ pour } n = 0 \\ 0 \text{ sinon} \end{cases} \Rightarrow \frac{\text{Remarque}}{\delta(n)} : \delta(n) = \Gamma(n) - \Gamma(n-1)$$

Exponentielle décroissante causale

$$x(n) = a^n \Gamma(n), \quad a < 1 \quad \forall n \in \mathbb{Z}$$

Signal rectangulaire

$$\Pi_T(n) = \begin{cases}
1 \text{ pour } -T \le n \le T & T \in \mathbb{N} \\
0 \text{ sinon}
\end{cases}$$

Le signal est de longueur 2*T*+1

Signaux discrets périodiques

Définition de la périodicité

Un signal discret est périodique de période N si :

$$\exists N \in \mathbb{N} \text{ tel que } x(n+N) = x(n) \quad \forall n \in \mathbb{Z}$$

 \triangleright Remarque : la plus petite valeur de N est la période fondamentale

Exemples

- Signal sinusoïdal : $x(n) = A\cos(\omega_0 n + \varphi)$
- Signal exponential complexe : $x(n) = ae^{j\theta} 0^n$

En discret, les signaux sinusoïdaux ne sont pas nécessairement périodiques.

■ Condition de périodicité : $\omega_0 n = 2\pi k$ avec $n \in \mathbb{N}$ et $k \in \mathbb{Z}$

soit
$$\frac{2\pi}{\omega_0} = \frac{n}{k}$$
 avec $\frac{n}{k} \in \mathbb{Q}$

La période est l'<u>entier naturel N</u> (s'il existe) tel que $N = \frac{2\pi}{\omega_0}$

ightharpoonup : en continu, la condition de périodicité s'énonce $\frac{2\pi}{\omega_0} = \frac{n}{k} \in \mathbb{R}$ et est moins restrictive.

Energie et puissance des signaux discrets

Energie

$$E = \sum_{n=-\infty}^{+\infty} |x(n)|^2$$

Puissance moyenne

Si le signal est à énergie infinie, on définit la puissance moyenne

$$P = \lim_{N \to +\infty} \frac{1}{2N+1} \sum_{n=-\infty}^{+\infty} |x(n)|^2$$

■ Exemple: signal échelon discret

$$E = \sum_{n=0}^{+\infty} 1 = +\infty$$

$$P = \lim_{N \to +\infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |\Gamma(n)|^2 \to P = \lim_{N \to +\infty} \frac{1}{2N+1} \sum_{n=0}^{N} 1 \to P = \lim_{N \to +\infty} \frac{N+1}{2N+1} = \frac{1}{2}$$

Puissance moyenne d'un signal périodique

Si
$$N$$
 est la période alors $P = \lim_{N \to +\infty} \frac{1}{N} \sum_{n=0}^{\infty} |x(n)|^2$ Energie sur une période : $E = \sum_{n=0}^{N-1} |x(n)|^2$

Opération sur les signaux discrets

Soit
$$\{x(n)\} = \{x(n), n \in \mathbb{Z}\}$$
 et $\{y(n)\} = \{y(n), n \in \mathbb{Z}\}$, des signaux discrets

Multiplication par un scalaire

$$\lambda \in \mathbb{R}, \quad \lambda \{x(n)\} = \{\lambda x(n), n \in \mathbb{Z}\}$$

■ Somme de signaux discrets

$$\{x(n)\} + \{y(n)\} = \{x(n) + y(n), n \in \mathbb{Z}\}$$

Multiplication de signaux discrets

$$\{x(n)\} \times \{y(n)\} = \{x(n) \times y(n), n \in \mathbb{Z}\}$$

Ces opérations sur les signaux discrets donnent des signaux discrets.

Signaux définis par une relation de récurrence :

Aux équations différentielles dans le cas continu correspondent des équations de récurrence dans le cas discret. Ces équations permettent de décrire des signaux discrets et des opérations sur ces signaux à l'aide d'additions et multiplications scalaires.

■ Exemple : considérons l'équation récurrente :

$$x(n) = ax(n-1)$$
 avec $x(0) = c$ (condition initiale)

On montre aisément que la solution à cette équation est : $x(n) = c a^n \Gamma(n)$

Transformée de Fourier des signaux à temps discret (TFTD)

Question : Comment faire l'analyse fréquentielle de signaux discrets ?

Soit $x_e(t)$ un signal issu de l'échantillonnage de x(t): $x_e(t) = \sum_{n=-\infty}^{+\infty} x(nT_e)\delta(t-nT_e)$

• Que donne la TF "classique" du signal échantillonné ?

$$X_{e}(f) = \int_{-\infty}^{+\infty} \left(\sum_{n=-\infty}^{+\infty} x(nT_{e})\delta(t-nT_{e}) \right) e^{-j2\pi ft} dt \longrightarrow X_{e}(f) = \sum_{n=-\infty}^{+\infty} x(nT_{e}) \int_{-\infty}^{+\infty} \delta(t-nT_{e}) e^{-j2\pi ft} dt$$

En utilisant la définition de la distribution de Dirac, on a : $\int_{-\infty}^{+\infty} \delta (t - nT_e) e^{-j2\pi ft} dt = e^{-j2\pi nfT_e}$

Par conséquent :
$$X_e(f) = \sum_{n=-\infty}^{+\infty} x(nT_e)e^{-j2\pi nfT_e}$$

La TF d'un signal échantillonné est une combinaison linéaire d'exponentielles complexes pondérées par la valeur des échantillons.

Normalisation de la période d'échantillonnage : dorénavant et sauf mention contraire, on considerera que Te=1

$$X(f) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j2\pi nf}$$

TFTD

Définition

Soit x(n) un signal discret. La TFTD X(f) de ce signal est donnée par l'expression :

$$X_e(f) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j2\pi nf}$$

f est une variable continue

<u>La TF d'un signal discret</u> est une fonction continue ou non de la <u>variable continue</u> <u>f</u>

Remarque : idem que la TF d'un signal quelconque, avec une somme à la place de l'intégrale.

Condition d'existence de la TFTD

La TF d'un signal discret x(n) existe si $\sum_{n=-\infty}^{+\infty} |x(n)| < \infty$ i.e. si le <u>signal est absolument sommable</u>.

L'existence de la TFTD est donc liée à la convergence absolue de la série x(n)

(Exemple d'une série semi-convergente : $\sum_{n\geq 1} \frac{(-1)^n}{n} \operatorname{car} \sum_{n\geq 1} \frac{(-1)^n}{n}$ est finie mais pas $\sum_{n\geq 1} |\frac{(-1)^n}{n}|$)

TFTD

Périodicité de la TFTD

Soit
$$X(f)$$
 la TFTD du signal discret $x(n)$: $X(f) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j2\pi nf}$

$$X(f+1) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j2\pi n(f+1)}$$

$$X(f+1) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j2\pi nf}e^{-j2\pi n}$$

$$X(f+1) = X(f)$$

- La TF des signaux discrets est périodique de période f=1
- Toute l'information fréquentielle du signal est localisée dans l'intervalle de fréquence :

 $f \in \left[-\frac{1}{2}, \frac{1}{2}\right]$

x(n) est caractérisé par ce contenu fréquentiel

> Remarque

Si x(n) est réel, |X(f)| est paire et $\arg(X(f))$ est impair. On réduit donc l'analyse de X(f) sur l'intervalle de fréquence $f \in \left[0, \frac{1}{2}\right]$

TFTD

Périodicité de la TFTD : généralisation avec Fe ≠ 0

Pour un signal échantillonné à la fréquence F_e , sa TFTD $X_e(f)$ est périodique de période F_e

 \rightarrow l'information fréquentielle est contenue dans la bande $f \in \left[-\frac{F_e}{2}, \frac{F_e}{2} \right]$

On retombe sur un résultat connu, par un calcul différent!

☐ TF inverse des signaux discrets

TFTD:
$$X(f) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j2\pi nf}$$

Comme la TF des signaux discrets est périodique de période 1, l'expression de la TFTD inverse est donnée par :

$$x(n) = \int_{-\frac{1}{2}}^{\frac{1}{2}} X(f)e^{j2\pi nf} df$$

Remarque : Intégrale car f est une variable continue

Représentation spectrale

x(n), signal discret (support discret)

En fonction de la nature (périodique ou non) de x(n), on a deux types de représentation spectrale possibles :

 \square x(n) non périodique

X(f) est à support continu

Ex.:
$$x(n) = \begin{cases} 1 & n \in [-N, N-1] \\ 0 & \text{ailleurs} \end{cases}$$

□ x(n) périodique│ TFTD

X(f) est à support discret

Ex.: $x(n) = A.\cos(2\pi f_0 n)$

Exemple de TFTD

Soit
$$x(n) = \begin{cases} 1 & |n| \le N/2 \\ 0 & \text{ailleurs} \end{cases}$$

On a
$$X(f) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j2\pi nf}$$
 \longrightarrow $X(f) = \sum_{n=-N/2}^{N/2} e^{-j2\pi nf}$

X(f) est la somme de N+1 termes d'une suite géométrique de raison $e^{-j2\pi f}$ et de premier terme $e^{j\pi Nf}$

$$X(f) = e^{j\pi Nf} \frac{1 - e^{-j2\pi(N+1)f}}{1 - e^{-j2\pi f}}$$

$$X(f) = \frac{e^{-j\pi f} (e^{j\pi(N+1)f} - e^{-j\pi(N+1)f})}{e^{-j\pi f} (e^{j\pi f} - e^{-j\pi f})} = \frac{\sin \pi f (N+1)}{\sin \pi f}$$

Remarques (pour Te = 1)

- -Toute l'info est contenue dans [-1/2, 1/2]
- Périodique de période 1

Propriétés de la TFTD

Globalement, la TFTD possède les mêmes propriétés que la TF:

♦ X(f) est une fonction complexe. Si x(n) est réel :

$$|X(f)|$$
 : spectre d'amplitude est une fonction paire $\arg(X(f))$: spectre de phase est une fonction impaire

Etude sur l'intervalle de fréquence $f \in \left[0, \frac{1}{2}\right]$

Linéarité

$$a.x(n) + b.y(n) \rightarrow aX(f) + bY(f)$$

Décalage temporel

$$x(n-n_0) \to X(f)e^{-j2\pi f n_0}$$

 Décalage fréquentiel (ou modulation)

$$x(n)e^{j2\pi f_0n} \rightarrow X(f-f_0)$$

Propriétés de la TFTD

TF de la dérivée du signal

$$\frac{dx(n)}{dn} \rightarrow j2\pi f X(f)$$

 Relation de Parseval (conservation de l'énergie)

$$\sum_{n=-\infty}^{+\infty} |x(n)|^2 = \int_{-1/2}^{1/2} |X(f)|^2 df$$

Relations de Plancherel

$$x(n) * y(n) \rightarrow X(f).Y(f)$$

TFTD Inverse

$$x(n).y(n) \to X(f) * Y(f) = \int_{-1/2}^{1/2} X(u)Y(f-u)du$$

$$x(n).y(n) \to X(f) * Y(f) = \int_{-1/2}^{1/2} X(u)Y(f-u)du$$

$$x(n) = \int_{-1/2}^{1/2} X(f)e^{j2\pi nf} df \quad \text{ou} \quad x(n) = \int_{0}^{1} X(f)e^{j2\pi nf} df$$

Bilan sur la TFTD:

- La TF fonctionne sur un signal à temps discret
- Mais en fréquence, on repasse en continu
 - = on perd l'avantage du numérique!

De la TFTD à la Transformée de Fourier Discrète (TFD)

TFTD de
$$x(n)$$
: $X(f) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j2\pi nf}$

□ Objectif: On veut calculer la TF d'un signal discret à l'aide d'un calculateur

Difficultés

- Le calcul de la TF nécessite une infinité de points de mesures x(n) (pas toujours possible dans la pratique : contraintes temps réel, etc.)
- Le calculateur ne peut calculer une TFTD car sa réponse fréquentielle est forcément discrète = un nombre fini de points fréquentiel f_n alors que f varie continûment ...
- Solution : Transformée de Fourier Discrète (TFD)
 - Limiter la durée de x(n) i.e. considérer un nombre fini N de points temporels
 - Discrétiser la fréquence (considérer un nombre fini *L* de points fréquentiels)

A un nombre fini de valeurs x(1), ..., x(N), on fait correspondre un nombre fini de valeurs $X(f_1)$, ..., $X(f_t)$ telle que la TFD de x soit une approximation aussi bonne que possible de X(f)

Question

• Quelle est l'influence du nombre de points temporels N et du nombre de points fréquentiels L sur l'observation spectrale ?

Détermination de la TFD

Soit $\{x(0), x(1), ..., x(N-1)\}$ un signal discret de durée finie N. Sa TFTD est :

$$--X(f) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nf}$$

■ Discrétisation de la fréquence sur *L* points :

X(f) est périodique de période 1, donc : $f = k\Delta f$ avec $\Delta f = \frac{1}{I}$ et k = 0,...,L-1

L'approximation discrète de la TFTD de ce signal est :

F=k/L
$$X\left(\frac{k}{L}\right) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi} \frac{k}{L}n$$

$$k \text{ et } n \text{ ne jouent pas ie meme role :}$$

$$n : \text{variable temporelle } n = 0, ..., N-1$$

$$k : \text{variable fréquentielle } k = 0, ..., L-1$$

k et n ne jouent pas le même rôle :

k: variable fréquentielle k = 0, ..., L-1

- Notation : $X\left(\frac{k}{L}\right) = X(k)$ avec k = 0,...,L-1
- La TFTD inverse de *x*(*n*) est

L'approximation discrète de la TFTD inverse est

$$x(n) = \int_0^1 X(f)e^{j2\pi nf} df \qquad \longrightarrow \qquad \widetilde{x}(n) = \frac{1}{L} \sum_{k=0}^{L-1} X(k)e^{j2\pi \frac{k}{L}n} \qquad \underline{\text{c'est la TFD inverse.}}$$

 $\operatorname{car} X(f)$ est périodique de période 1

Transformée de Fourier Discrète (TFD)

Définition

■ La TFD évaluée sur un nombre L de points fréquentiels d'un signal discret est définie par :

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi \frac{k}{L}n}$$

N : nombre de points temporels

n: variable temporelle n = 0, ..., N-1

L : Nombre de points fréquentiels

k: variable fréquentielle k = 0, ..., L-1

- ightharpoonup Remarque: X(k) est périodique de période L
- La TFD inverse est :

> Remarque

$$\widetilde{X}(n) = \frac{1}{L} \sum_{k=0}^{L-1} X(k) e^{j2\pi \frac{k}{L}n}$$

 $\widetilde{x}(n) = \frac{1}{L} \sum_{k=0}^{L-1} X(k) e^{j2\pi \frac{k}{L}n}$ $\widetilde{x}(n)$ est une suite périodique de période L. La discrétisation de x(k) a entrainé une périodisation de x(n)

Dans la suite, sans perte de généralités et sauf mention contraire, on considérera L=N

> Remarque

On a vu avec la TFTD que : Discrétisation en temporel -> Périodisation en fréquentiel

Discrétisation en fréquentiel → Périodisation en temporel Ici avec la TFD:

TFD d'un signal périodique

Que se passe t'il si l'on applique la TFD à un signal périodique ?

Soit $x_p(n)$, un signal périodique de période N. Pour calculer sa TFD, on se restreint à une période

■ La TFD
$$X_p(k) = \sum_{n=0}^{N-1} x_p(n) e^{-j2\pi \frac{k}{N}n}$$

■ La TFD inverse $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_p(k) e^{j2\pi \frac{\kappa}{N}n}$ Si x(n) est une suite périodique de période N et x(n) coincide exactement avec $x_p(n)$

Ce n'est pas le cas pour un signal quelconque!

Suite x(n) périodique de période N

Suite X(k) périodique de période N

Propriétés de la TFD

La TFD possède les propriétés classiques de la TFTD mais tous les calculs d'indice k et n se font modulo N

Périodicité

X(k) est périodique de période N

Linéarité

 $a.x(n) + b.y(n) \rightarrow aX(k) + bY(k)$

Décalage temporel

$$x(n-n_0) \to X(k)e^{-j2\pi} \frac{k}{N} n_0$$

 Décalage fréquentiel ou modulation

$$x(n)e^{j2\pi \frac{k_0}{N}n} \to X((k-k_0) \operatorname{mod} N)$$

 Relation de Parseval : conservation de l'énergie

$$\sum_{n=0}^{N-1} |x(n)|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^2$$

TFD et convolution circulaire

Produit de convolution circulaire

Soit x(n) et y(n) deux signaux discrets de durée finie N. Leur produit de convolution circulaire est défini par

$$c(n) = x(n) \otimes y(n)$$
 avec $c(n) = \sum_{i=0}^{N-1} x(i).y((n-i) \mod N)$ $c(n)$ est donc périodique de période N

On peut voir la convolution circulaire comme la rotation d'une séquence autour d'une autre.

- > Exemple : Soit x(n)=1 pour $n \in \{0, 1, ..., 7\}$
 - convolution linéaire : $x(n) * x(n) = \{1, 2, ..., 7, 8, 7, ..., 2, 1\}$ pour $n \in \{0, 1, ..., 15\}$ x(0) = somme des x(i).x(0-i) = 1*1+1*0+1*0+...=1 x(1) = somme des x(i).x(1-i) = 1*1+1*1+1*0+...=2 ...
 - convolution. circulaire: $x(n) \otimes x(n) = 8 \text{ pour } n \in \{0, 1, ..., 7\}$ x(0) = somme des x(i).[x(0-i) mod 8] = 1*1+1*1+1*1+...=8x(1) = somme des x(i).[x(1-i) mod 8] = 1*1+1*1+1*1+...=8

TFD et convolution circulaire

$$x(n) \otimes y(n) \xrightarrow{TFD^{-1}} X(k).Y(k)$$

$$x(n).y(n) \xrightarrow{TFD^{-1}} \frac{1}{N} X(k) \otimes Y(k)$$

Introduction

On veut utiliser la TFD pour analyser le contenu fréquentiel d'un signal continu x(t). Ceci impose les opérations suivantes :

- Echantillonnage de x(t)
 - nantillonnage de x(t) \rightarrow choix de la fréquence d'échantillonnage F_e (fixé par le th de Shannon)
- Quantification pour générer le signal discret x(n)
- Troncature de x(n) à N échantillons
- Discrétisation du domaine fréquentiel en L points

Quelle est l'influence de ces 2 opérations sur le spectre donné par la TFD?

- Troncature du signal discret (fenêtrage temporel)
 - Opération dans le domaine temporel

Soit x(n) un signal discret. Le signal résultant de la troncature de x(n) à N d'échantillons est :

$$x_N(n) = x(n).h(n)$$
 avec $h(n) = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & \text{ailleurs} \end{cases}$ $h(n)$: fenêtre rectangulaire de largeur N

Note: si x(n) est issu de la discrétisation d'un signal à une période T_e , la durée d'observation est NT_e

Influence de la troncature dans le domaine fréquentiel :

Calculons la TFTD du signal tronqué.

$$x_N(n) = x(n).h(n)$$
 Théorème de $X_N(f) = X(f) * H(f)$

ightharpoonup Remarque : La TFTD du signal tronqué $x_N(n)$ est obtenue par filtrage de la TFD de x(n) à travers un filtre de réponse impulsionnelle H(f).

\square Echantillonnage de $X_N(f)$

■ La TFD $X_N(k)$ est obtenue par discrétisation du domaine fréquentiel de $X_N(f)$

$$f = k\Delta f$$
 avec $\Delta f = \frac{1}{L}$ et $k = 0,...,L-1$

- ■La distance entre 2 points fréquentiels est $\frac{1}{L}$ (ou : $\frac{F_e}{L}$ prise en compte fréquence d'échantillonnage)
- Avec l'opération de fenêtrage, on obtient : $X_N(k) = X(f) * H(f)|_{f=\frac{k}{L}}$
 - ightharpoonup Remarque: $X_N(k)$ est constitué d'échantillons de X(f) filtré à travers le filtre H(f).

Influences du fenêtrage temporel et de la discrétisation fréquentielle

■ TFD du signal tronqué $x_N(n)$: $X_N(k) = X(f) * H(f)|_{f = \frac{k}{L}}$ avec $k = 0, \dots, L-1$

➤ <u>Remarque</u>:

Le choix du pas fréquentiel 1/L (ou $F_{_{\it e}}/L$) aura une influence sur la précision de l'analyse spectrale (précision de mesure d'une fréquence particulière)

■ TFTD de la fenêtre rectangulaire

$$H(f) = \frac{\sin \pi f(N+1)}{\sin \pi f}$$

> Remarque

La convolution fréquentielle de X(f) par H(f) aura pour conséquence l'apparition d'ondulations dans le spectre $X_N(f)$ et donc dans $X_N(k)$: c'est le problème de résolution.

Précision de la TFD

Problématique :

- Fenêtrage -> le spectre de la sinusoïde apparaît sous forme de plusieurs raies non nulles
- La plus importante en module est proche de la vraie fréquence f_0
- L'erreur maximale commise sur cette estimation est 1/L

2objectifs :

Résolution en fréquence (largeur du lobe)
 permet de distinguer 2 fréquences proches

Exemple : soit un signal contenant 2 fréquences f1 et f2.

Si $|f_1-f_2|<1/N$, les lobes principaux seront trop proches pour les distinguer

- ightarrow la résolution en fréquence est de l'ordre de 1/N (ou F_e/N).
 - Résolution en amplitude (atténuation des lobes secondaires)
 permet de distinguer des raies spectrales de faibles amplitudes ou une raie de
 faible amplitude proche d'une raie d'amplitude élevée.

$$X_N(k) = X(f) * H(f)|_{f = \frac{k}{L}}$$

Correspond à l'estimation par la TFD de f0

Précision de la TFD

Amélioration de la précision

- Diminuer Fe = augmenterTe
 - Suppression des hautes fréquences
 - Amélioration de la précision sur les fréquences restantes
 - Altération du signal ...
- Augmentation du nombre de points fréquentiel L
 - Pas toujours possible ...
- Augmentation du nombre de points temporels N
 - Ajout d'échantillons nuls
 - Interpolation fréquentielle : "zéro padding"
 - Ajout de K-1 zéros entre les échantillons
 - Précision de 1/KN au lieu de 1/N
 - > Exemple en 1D :

$$[1, 2, 3] \rightarrow [1,0,0,2,0,0,3]$$

Application : zoom sur une image :

(voir http://perso.enst.fr/~maitre/BETI/zero_pad2/projet.html)

TFD et fenêtrage temporel

Objectif

Amélioration de l'analyse spectrale par pondération des échantillons avant filtrage

Réalisation

Remplacement de la fenêtre rectangulaire h(n) par une fenêtre dont la TF présente des ondulations plus faibles.

Exemples de fenêtre

■ Fenêtre de Hanning

$$h(n) = \begin{cases} 0.5 \left(1 + \cos\left(2\pi \frac{n}{N}\right) \right), & n = 0, \dots, N-1 \\ 0 & \text{ailleurs} \end{cases}$$

■ Fenêtre de Hamming

$$h(n) = \begin{cases} 0.54 - 0.46\cos\left(2\pi \frac{n}{N}\right), & n = 0,\dots, N-1\\ 0 & \text{ailleurs} \end{cases}$$

Chaque type de fenêtre a une réponse en fréquence particulière (largeur du lobe principale, amplitude des lobes secondaires, ...) qui permet de choisir au mieux la « bonne » en fonction des applications

En général les résolutions en fréquence et en amplitude sont d'autant meilleures que le lobe principal est étroit et les lobes secondaires sont de faibles amplitudes

Choix de la fenêtre

Critères de sélection

- rapport *A* entre les maximum du lobe central et des lobes secondaires de la TFD des fenêtres.
- atténuation des lobes secondaires de la TFD des fenêtres S.
- largeur du lobe central ∆F

0	Rectangle
9	
8-	Trionala
7 -	Triangle Hamming
6-	Hanning
5 -	
4 -	Blackman
3-	
2-	
1	
-0.5 -0.4 -0.3 -0.2 -0	.1 0 0.1 0.2 0.3 0.4 0.5

Type de fenêtre	Rapport d'amplitude entre le lobe principal et le lobe secondaire	Largeur du lobe principal
Rectangulaire	-13dB	2/N
Triangulaire	-25dB	4/N
Hanning	-31dB	4/N
Hamming	-41dB	4/N
Blackman	-57dB	6/N

Transformée de Fourier Rapide (FFT)

$$X_p(k) = \sum_{n=0}^{N-1} x_p(n) e^{-j2\pi \frac{k}{N}n}$$

- D'après la définition ci-dessus, il faut, pour calculer 1 valeur en fréquence de la TFD d'un signal de N points :
 - □ N-1 sommes complexes et N produits complexes
- Pour calculer une TFD à N points , il faudra donc :
 - □ N(N-1) sommes complexes N² produits complexes
- Sur un signal son wav de 6 secondes qui a 6*44100 = 264 600 points, on arrive à :
 - □ 10¹¹ opérations complexes !!!
- La FFT va permettre de diminuer cela

Transformée de Fourier Rapide

Objectif: trouver un algorithme de calcul efficace de la TFD de $\{x(n)\}$

La TFD de
$$\{x(n)\}$$
 s'écrit : $X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi} \frac{k}{N}^n$ $X_k = \sum_{n=0}^{N-1} x(n)W_N^{n,k}$ avec $W_N = e^{-j\frac{2\pi}{N}}$

- Propriétés de W_N
 - \blacksquare $W_N^{k+l} = W_N^k.W_N^l$

- $\blacksquare W_N^{l+kN} = W_N^l$ $\blacksquare W_N^{2.n.k} = W_{N/2}^{n.k}$

Ecriture matricielle (avec *N* pair)

$$\begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ \vdots \\ X_{\frac{N}{2}-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W^2 & \cdots & W^{2\left(\frac{N}{2}-1\right)} \\ 1 & W^4 & \cdots & W^{4\left(\frac{N}{2}-1\right)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & W^{2\left(\frac{N}{2}-1\right)} & W^{2\left(\frac{N}{2}-1\right)} \end{bmatrix} \begin{bmatrix} x_0 \\ x_2 \\ x_4 \\ \vdots \\ x_{2\left(\frac{N}{2}-1\right)} \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ W & W^3 & \cdots & W^{(N-1)} \\ W^2 & W^4 & \cdots & W^{2(N-1)} \\ \vdots & \vdots & \vdots \\ W^{\left(\frac{N}{2}-1\right)} & \vdots & \vdots \\ W^{\left(\frac{N}{2}-1\right)} & W^{3\left(\frac{N}{2}-1\right)} & W^{4\left(\frac{N}{2}-1\right)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_5 \\ \vdots \\ x_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_3 \\ x_5 \\ \vdots \end{bmatrix}$$

$$X_{0\cdots\frac{N}{2}-1} = T_{\frac{N}{2}}x_{pair} + DT_{\frac{N}{2}}x_{impair}$$

$$X_{\frac{N}{2}\cdots N-1} = T_{\frac{N}{2}}x_{pair} - DT_{\frac{N}{2}}x_{impair}$$

Conclusion

TFTD

- Idem TF mais avec une somme.
- Signal non périodique -> support en fréquence continu.
- Signal périodique -> support discret.
- La TFTD d'un signal est Périodique de période Fe.
- Mais impossible à exploiter par un calculateur ...

TFD

- Limitation de la durée du signal par fenêtrage.
- Discrétisation de la fréquence ...
- ... d'où une périodisation dans le temps.
- Le fenêtrage implique des déformations du spectre fréquentiel.
- Gourmand en calcul => FFT!