Упражнение. Фигуры Лиссажу с помощью хсоѕ

Имитационное моделирование

Королев И.А.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Королев Иван Андреевич
- · Студент, НФИбд-01-22
- Российский университет дружбы народов

Цель работы

Освоить систему компьютерной математики, предназначенной для решения вычислительных задач Scilab. Построить фигуры Лиссажу с различными параметрами.

Задание

Задание

Постройте с помощью xcos фигуры Лиссажу со следующими параметрами: 1. A = B = 1, a = 2, b = 2, δ = 0; $\pi/4$; $\pi/2$; $3\pi/4$; π ; 2. A = B = 1, a = 2, b = 4, δ = 0; $\pi/4$; $\pi/2$; $3\pi/4$; π ; 3. A = B = 1, a = 2, b = 6, δ = 0; $\pi/4$; $\pi/2$; $3\pi/4$; π ; 4. A = B = 1, a = 2, b = 3, δ = 0; $\pi/4$; $\pi/2$; $3\pi/4$; π .

Теоретическое введение

Scilab — система компьютерной математики, предназначенная для решения вычислительных задач. Основное окно Scilab содержит обозреватель файлов, командное окно, обозреватель переменных и журнал команд. Программа хсоз является приложением к пакету Scilab. Для вызова окна хсоз необходимо в меню основного окна Scilab выбрать Инструменты, Визуальное моделирование хсоз. При моделировании с использованием хсоз реализуется принцип визуального программирования, в соответствии с которым пользователь на экране из палитры блоков создаёт модель и осуществляет расчёты.

Выполнение лабораторной работы

Моделирование выражения для

кривой Лиссажу в Scilab

Моделирование выражения для кривой Лиссажу в Scilab

Математическое выражение для кривой Лиссажу:

$$\begin{cases} x(t) = Asin(at + \delta), \\ y(t) = Bsin(bt), \end{cases}$$

где A, B — амплитуды колебаний, a, b — частоты, δ — сдвиг фаз.

В модели, использованы следующие блоки xcos: - CLOCK_c — запуск часов модельного времени; - GENSIN_f — блок генератора синусоидального сигнала; - CANIMXY — анимированное регистрирующее устройство для построения графика типа y = f(x); - TEXT_f — задаёт текст примечаний

Моделирование выражения для

кривой Лиссажу в Scilab

Моделирование выражения для кривой Лиссажу в Scilab

Рис. 1: Моделирование выражения для кривой Лиссажу в Scilab

Для каждого случая будет необходимо изменять частоту и сдвиг фазы.

Построение с помощью xcos фигуры Лиссажу для первого случая

Построение с помощью хсоз фигуры Лиссажу для первого случая

В 1-м случае необходимо было построить фигуры Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 2, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;

Построение с помощью xcos фигуры Лиссажу для первого случая

Построение с помощью хсоз фигуры Лиссажу для первого случая

Рис. 2: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 2, $\delta = 0$;

Построение с помощью xcos фигуры Лиссажу для первого случая

Построение с помощью хсоѕ фигуры Лиссажу для первого случая

Рис. 3: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 2, $\delta = \pi/4$;

Построение с помощью хсоѕ фигуры
Лиссажу для первого случая

Построение с помощью хсоѕ фигуры Лиссажу для первого случая

Рис. 4: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 2, $\delta = \pi/2$;

Построение с помощью хсоз фигуры

Лиссажу для первого случая

Построение с помощью хсоѕ фигуры Лиссажу для первого случая

Рис. 5: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 2, $\delta = 3\pi/4$;

Построение с помощью xcos фигуры Лиссажу для первого случая

Построение с помощью хсоз фигуры Лиссажу для первого случая

Рис. 6: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 2, $\delta = \pi$;

Построение с помощью xcos фигуры Лиссажу для второго случая

Построение с помощью хсоѕ фигуры Лиссажу для второго случая

Во 2-м случае необходимо было построить фигуры Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 4, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;

Рис. 7: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 4, $\delta = 0$;

фигуры Лиссажу для второго случая

Построение с помощью xcos

Построение с помощью хсоѕ фигуры Лиссажу для второго случая

Рис. 8: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 4, δ = $\pi/4$;

Построение с помощью xcos фигуры Лиссажу для второго случая

Построение с помощью хсоѕ фигуры Лиссажу для второго случая

Рис. 9: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 4, δ = $\pi/2$;

Построение с помощью xcos фигуры Лиссажу для второго случая

Построение с помощью хсоѕ фигуры Лиссажу для второго случая

Рис. 10: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 4, δ = $3\pi/4$;

Построение с помощью xcos фигуры Лиссажу для второго случая

Построение с помощью хсоѕ фигуры Лиссажу для второго случая

Рис. 11: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 4, δ = π ;

Построение с помощью xcos фигуры Лиссажу для третьего случая

Построение с помощью хсоѕ фигуры Лиссажу для третьего случая

В 3-м случае необходимо было построить фигуры Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 6, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;

Построение с помощью xcos фигуры Лиссажу для третьего случая

Построение с помощью хсоѕ фигуры Лиссажу для третьего случая

Рис. 12: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 6, $\delta = 0$;

Построение с помощью xcos фигуры Лиссажу для третьего случая

Построение с помощью хсоз фигуры Лиссажу для третьего случая

Рис. 13: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 6, δ = $\pi/4$;

Построение с помощью xcos фигуры Лиссажу для третьего случая

Построение с помощью хсоз фигуры Лиссажу для третьего случая

Рис. 14: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 6, $\delta = \pi/2$;

Построение с помощью xcos фигуры Лиссажу для третьего случая

Построение с помощью хсоз фигуры Лиссажу для третьего случая

Рис. 15: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 6, δ = $3\pi/4$;

Построение с помощью хсоѕ фигуры Лиссажу для третьего случая

Построение с помощью хсоз фигуры Лиссажу для третьего случая

Рис. 16: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 6, δ = π ;

Построение с помощью xcos фигуры Лиссажу для четвертого случая

Построение с помощью хсоз фигуры Лиссажу для четвертого случая

В 4-м случае необходимо было построить фигуры Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 3, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;

Построение с помощью xcos фигуры Лиссажу для четвертого случая

Построение с помощью хсоѕ фигуры Лиссажу для четвертого случая

Рис. 17: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 3, $\delta = 0$;

Построение с помощью хсоѕ фигуры Лиссажу для четвертого случая

Построение с помощью хсоз фигуры Лиссажу для четвертого случая

Рис. 18: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 3, δ = $\pi/4$;

Построение с помощью xcos фигуры
Лиссажу для четвертого случая

Построение с помощью хсоз фигуры Лиссажу для четвертого случая

Рис. 19: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 3, δ = $\pi/2$;

Построение с помощью xcos фигуры Лиссажу для четвертого случая

Построение с помощью хсоѕ фигуры Лиссажу для четвертого случая

Рис. 20: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 3, δ = $3\pi/4$;

Построение с помощью xcos фигуры Лиссажу для четвертого случая

Построение с помощью хсоѕ фигуры Лиссажу для четвертого случая

Рис. 21: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 3, δ = π ;

Выводы

Освоил систему компьютерной математики, предназначенной для решения вычислительных задач Scilab. Построил фигуры Лиссажу с различными параметрами.