

### THUẬT TOÁN BUBBLE SORT

- 1. Hồ Thái Ngọc
- 2. ThS. Võ Duy Nguyên
- 3. TS. Nguyễn Tấn Trần Minh Khang



# **BÀI TOÁN DẪN NHẬP 1**



 Bài toán: Hãy liệt kê các cặp giá trị nằm kế tiếp nhau trong mảng một chiều các số nguyên.

— Ví dụ:

- Kết quả: (12,43), (43,1), (1,34), (34,22).





- Bài toán: Hãy liệt kê các cặp giá trị nằm kế tiếp nhau trong mảng một chiều các số nguyên.
- Hàm cài đặt

```
11.void LietKe(int a[],int n)

12.{

13. | for(int i=0; i<=n-2; i++)

14. | cout << "(" << a[i] << "," << a[i+1] << ")";

15.}
```



## **BÀI TOÁN DẪN NHẬP 2**



— Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.





- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- ─ Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 99 | 16 | 43 | 56 | 41 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 99 | 16 | 43 | 56 | 41 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- ─ Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 99 | 16 | 43 | 41 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- ─ Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 99 | 16 | 43 | 41 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- ─ Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 99 | 16 | 43 | 41 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- ─ Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 99 | 16 | 43 | 41 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 99 | 16 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|  |  |  |  | vt |    |    |    |    |    |    |    |
|--|--|--|--|----|----|----|----|----|----|----|----|
|  |  |  |  |    |    |    |    |    |    |    | 15 |
|  |  |  |  | 22 | 66 | 81 | 99 | 16 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 99 | 16 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 99 | 16 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 99 | 16 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 99 | 16 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 99 | 16 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 16 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 16 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 16 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 81 | 16 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 16 | 81 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 16 | 81 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |   |   |   |   |   |   |   | vt |    |    |    |    |    |    |    |
|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|   |   |   |   |   |   |   |   | 22 | 66 | 16 | 81 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 66 | 16 | 81 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |   |   |   |   |   |   |   | vt |    |    |    |    |    |    |    |
|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|   |   |   |   |   |   |   |   | 22 | 16 | 66 | 81 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 16 | 66 | 81 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 22 | 16 | 66 | 81 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |   |   |   |   |   |   |   | vt |    |    |    |    |    |    |    |
|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|   |   |   |   |   |   |   |   | 22 | 16 | 66 | 81 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 16 | 22 | 66 | 81 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 16 | 22 | 66 | 81 | 99 | 41 | 43 | 56 |



- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Ví dụ:

|   |  |  |  | vt |    |    |    |    |    |    |    |
|---|--|--|--|----|----|----|----|----|----|----|----|
| 0 |  |  |  |    |    |    |    |    |    |    |    |
|   |  |  |  | 16 | 22 | 66 | 81 | 99 | 41 | 43 | 56 |



— Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.





- Bài toán: Hãy đưa giá trị nhỏ nhất trong đoạn [vt..(n-1)] về đầu bằng phương pháp nổi bọt bằng cách duyệt mảng từ cuối mảng về vị trí vt.
- Hàm cài đặt



#### TƯ TƯỞNG THUẬT TOÁN BUBBLE SORT

#### Tư tưởng thuật toán bubble sort



- Tư tưởng của thuật toán Bubble Sort là nhẹ nổi lên và nặng chìm xuống.
- —Khái niệm nặng nhẹ là khái niệm trừu tượng.



### THUẬT TOÁN BUBBLE SORT

#### Thuật toán bubble sort



- Bước 0: Đưa giá trị nhỏ nhất trong đoạn [0..(n-1)] về đầu bằng phương pháp nổi bọt.
- Bước 1: Đưa giá trị nhỏ nhất trong đoạn [1..(n-1)] về đầu bằng phương pháp nổi bọt.
- **—** ...
- Bước i: Đưa giá trị nhỏ nhất trong đoạn [i...(n-1)] về đầu bằng phương pháp nổi bọt.
- ...
- Bước (n-2): Đưa giá trị nhỏ nhất trong đoạn  $[(n-2) \dots (n-1)]$  về đầu bằng phương pháp nổi bọt.



#### HÀM CÀI ĐẶT CHUẨN

### Hàm cài đặt chuẩn



 Bài toán: Định nghĩa hàm sắp mảng một chiều các số nguyên tăng dần bằng thuật toán Bubble sort.

```
- Hàm cài đặt
11.void HoanVi(int& a,int& b)
12.{
13.         int temp = a;
14.         a = b;
15.         b = temp;
16.}
```

#### Hàm cài đặt chuẩn



#### Hàm cài đặt

```
11.void BubbleSort(int a[],int n)
12.{
       for(int i=0; i<=n-2; i++)
13.
           for(int j=n-1; j>=i+1; j--)
14.
15.
               if(a[j]<a[j-1])
                    swap(a[j],a[j-1]);
16.
                                         bot.
17.}
```

Bước i: Đưa giá trị nhỏ nhất trong đoạn [i...(n-1)] về đầu bằng phương pháp nổi



#### CHẠY TỪNG BƯỚC THUẬT TOÁN



– Hãy sắp xếp mảng sau tăng dần:

 Thứ tự các bước khi sắp tăng dần mảng trên bằng thuật toán bubble sort.



Bước 01: Nhẹ nổi lên, nặng chìm xuống lần 1.

**24** 

45

**23** 

13

43

-1

24 | 45 | 23 | 13 | 43 | -1





Bước 01: Nhẹ nổi lên, nặng chìm xuống lần 1.

| 24 | 24 | 24 | 24 | 24 | -1 |
|----|----|----|----|----|----|
| 45 | 45 | 45 | 45 | -1 | 24 |
| 23 | 23 | 23 | -1 | 45 | 45 |
| 13 | 13 | -1 | 23 | 23 | 23 |
| 43 | -1 | 13 | 13 | 13 | 13 |
| -1 | 43 | 43 | 43 | 43 | 43 |



Bước 02: Nhẹ nổi lên, nặng chìm xuống lần 2.

| -  |  |
|----|--|
| 24 |  |
| 45 |  |

| _ | 1 |  |
|---|---|--|
|   |   |  |

-1

-1



- Bước 03: Nhẹ nổi lên, nặng chìm xuống lần 3.

-1

-1

-1

-1



Bước 04: Nhẹ nổi lên, nặng chìm xuống lần 4.

-1

-1

-1



Bước 05: Nhẹ nổi lên, nặng chìm xuống lần 5.

-1

-1



# Bubble sort và mảng một chiều PROJECT H01 – DỰ ÁN H01

#### Bubble sort và mảng một chiều



- Viết chương trình thực hiện các yêu cầu sau:
  - + Nhập mảng một chiều từ các tập tin: intdata01.inp; intdata02.inp; ...; intdata09.inp; intdata10.inp; intdata11.inp; intdata12.inp; intdata13.inp;
  - + Sắp xếp mảng tăng dần bằng thuật toán Bubble sort.
  - + Xuất mảng sau khi sắp xếp ra các tập tin: intdata01.out; intdata02.out; ...; intdata09.out; intdata10.out; intdata11.out; intdata12.out; intdata13.out;

#### Bubble sort và mảng một chiều



- Định dạng tập tin intdataxx.inp và intdataxx.out
  - + Dòng đầu tiên: số phần tử của mảng (n).
  - + Dòng tiếp theo: lưu n số nguyên tương ứng với các giá trị trong mảng.

```
*intdata01.inp - Notepad

File Edit Format View Help

10
24 56 53 44 -54 6 63 -47 91 -99
```



## BIẾN THỂ CÀI ĐẶT 01

## Biến thể cài đặt 01



- —Tư tưởng của thuật toán Bubble Sort là nhẹ nổi lên và nặng chìm xuống.
- Tư tưởng của thuật toán Bubble Sort biến thể 1 là nặng chìm xuống và nhẹ nổi lên.
- –Khái niệm nặng nhẹ là khái niệm trừu tượng.

### Biến thể cài đặt 01



#### Hàm cài đặt



# Bubble sort và mảng một chiều PROJECT H02 – DỰ ÁN H02

### Bubble sort và mảng một chiều



- Viết chương trình thực hiện các yêu cầu sau:
  - + Nhập mảng một chiều từ các tập tin: intdata01.inp; intdata02.inp; ...; intdata09.inp; intdata10.inp; intdata11.inp; intdata12.inp; intdata13.inp;
  - + Sắp xếp mảng tăng dần bằng thuật toán Bubble sort với biến thể 1.
  - + Xuất mảng sau khi sắp xếp ra các tập tin: intdata01.out; intdata02.out; ...; intdata09.out; intdata10.out; intdata11.out; intdata12.out; intdata13.out;

#### Bubble sort và mảng một chiều



- Định dạng tập tin intdataxx.inp và intdataxx.out
  - + Dòng đầu tiên: số phần tử của mảng (n).
  - + Dòng tiếp theo: lưu n số nguyên tương ứng với các giá trị trong mảng.

```
*intdata01.inp - Notepad

File Edit Format View Help

10
24 56 53 44 -54 6 63 -47 91 -99
```



# Thuật toán Bubble sort và mảng cấu trúc MẢNG CẤU TRÚC

### Bubble sort và mảng cấu trúc



- Bài toán: Định nghĩa hàm sắp mảng một chiều các phân số tăng dần bằng thuật toán Bubble sort.
- Khai báo kiểu dữ liệu biểu diễn phân số.

```
11.struct phanso
12.{
13.     int tu;
14.     int mau;
15.};
16.typedef struct phanso PHANSO;
```





```
11. int SoSanh(PHANSO x, PHANSO y)
12.{
13.
       float a = (float)x.tu/x.mau;
14.
       float b = (float)y.tu/y.mau;
15.
       if(a>b)
16.
            return 1;
17.
       if(a<b)
18.
            return -1;
19.
       return 0;
20.}
```





```
11. void BubbleSort(PHANSO a[], int n)
12.{
       for(int i=0; i<=n-2; i++)
13.
           for(int j=n-1; j>=i+1; j--)
14.
15.
                if(SoSanh(a[j],a[j-1])==-1)
16.
17.
                    PHANSO temp = a[i];
18.
                    a[i] = a[j];
19.
                    a[j] = temp;
20.
```



# Bubble sort và mảng cấu trúc PROJECT H03 – DỰ ÁN H03

### Bubble sort và mảng cấu trúc



- Viết chương trình thực hiện các yêu cầu sau:
  - + Nhập mảng một chiều từ các tập tin: phansodata01.inp; phansodata02.inp; ...; phansodata09.inp; phansodata10.inp; phansodata11.inp; phansodata12.inp; phansodata13.inp;
  - + Sắp xếp mảng phân số tăng dần bằng thuật toán Bubble sort.
  - + Xuất mảng sau khi sắp tăng ra các tập tin: phansodata01.out; phansodata02.out; ...; phansodata09.out; phansodata10.out; phansodata11.out; phansodata12.out; phansodata13.out;

## Bubble sort và mảng cấu trúc



- Định dạng tập tin
  - + phansodataxx.inp,
  - + phansodataxx.out
- Dòng đầu tiên: số phần tử của mảng (n).
- -n dòng tiếp theo: mỗi dòng lưu hai số nguyên tương ứng với phân số trong mảng.

| ×    | phans | oda |
|------|-------|-----|
| File | Edit  | For |
| 10   |       |     |
| 4    | 2     |     |
| -3   | 5     |     |
| -2   | 2     |     |
| -1   | 4     |     |
| 5    | -2    |     |
| -3   | 4     |     |
| 1    | -3    |     |
| 4    | 3     |     |
| 0    | -3    |     |
| 0    | 2     |     |



# Thuật toán Bubble sort và ma trận MA TRẬN



 Bài toán: Định nghĩa hàm sắp ma trận các số nguyên tăng dần bằng thuật toán Bubble sort.

|   | 0  | 1  | 2  | 3  |
|---|----|----|----|----|
| 0 | 89 | 12 | 78 | 91 |
| 1 | 61 | 37 | 8  | 18 |
| 2 | 78 | 23 | 35 | 22 |

Ma trận trước khi sắp tăng

|   | 0  | 1  | 2  | 3  |
|---|----|----|----|----|
| 0 | 8  | 12 | 18 | 22 |
| 1 | 23 | 35 | 37 | 61 |
| 2 | 78 | 78 | 89 | 91 |

Ma trận sau khi sắp tăng



#### Định nghĩa hàm



#### PROJECT H04 – DỰ ÁN H04



- Viết chương trình thực hiện các yêu cầu sau:
  - + Nhập ma trận các số nguyên từ các tập tin: intmatran01.inp; intmatran02.inp; ...; intmatran09.inp; intmatran10.inp; intmatran11.inp; intmatran12.inp; intmatran13.inp;
  - + Sắp xếp ma trận tăng dần bằng thuật toán Bubble sort.
  - + Xuất ma trận sau khi sắp xếp ra các tập tin: intmatran01.out; intmatran02.out; ...; intmatran09.out; intmatran10.out; intmatran11.out; intmatran12.out; intmatran13.out;

#### Bubble sort và ma trận



- Định dạng tập tin
  - + intmatranxx.inp và
  - + intmatranxx.out
- Dòng đầu tiên: lưu hai số nguyên tương ứng với số hàng ma trận (m) và số cột ma trận (n).
- -m dòng tiếp theo: mỗi dòng lưu n số nguyên tương ứng với các giá trị trong ma trận.





# Thuật toán Bubble sort và dslk đơn DANH SÁCH LIÊN KẾT ĐƠN

#### Bubble sort và dslk đơn



 Bài toán: Định nghĩa hàm sắp xếp danh sách liên kết đơn các số nguyên tăng dần bằng thuật toán Bubble sort.





### Thuật toán Bubble sort và dslk đơn

PROJECT H05 – DỰ ÁN H05

### Thuật toán Bubble sort và dslk đơn

- Viết chương trình thực hiện các yêu cầu sau:
  - + Nhập dslk đơn các số nguyên từ các tập tin: intdata01.inp; intdata02.inp; ...; intdata09.inp; intdata10.inp; intdata11.inp; intdata12.inp; intdata13.inp;
  - + Sắp xếp dslk đơn các số nguyên tăng dần bằng thuật toán Bubble sort.
  - + Xuất dslk đơn các số nguyên sau khi sắp xếp ra các tập tin: intdata01.out; intdata02.out; ...; intdata09.out; intdata10.out; intdata11.out; intdata12.out; intdata13.out;

#### Thuật toán Bubble sort và dslk đơn

- Định dạng tập tin intdataxx.inp và intdataxx.out
  - + Dòng đầu tiên: số phần tử của dslk đơn các số nguyên (n).
  - + Dòng tiếp theo: lưu n số nguyên tương ứng với các giá trị trong dslk đơn các số nguyên.

```
*intdata01.inp - Notepad

File Edit Format View Help

10
24 56 53 44 -54 6 63 -47 91 -99
```



# Thuật toán Bubble sort và dslk kép **DANH SÁCH LIÊN KẾT KÉP**

#### Bubble sort và dslk kép



 Bài toán: Định nghĩa hàm sắp xếp danh sách liên kết kép các số nguyên tăng dần bằng thuật toán Bubble sort.





### PROJECT H06 – DỰ ÁN H06

#### Bubble sort và dslk kép



- Viết chương trình thực hiện các yêu cầu sau:
  - + Nhập dslk kép các số nguyên từ các tập tin: intdata01.inp; intdata02.inp; ...; intdata09.inp; intdata10.inp; intdata11.inp; intdata12.inp; intdata13.inp;
  - + Sắp xếp dslk kép các số nguyên tăng dần bằng thuật toán Bubble sort.
  - + Xuất dslk kép các số nguyên sau khi sắp xếp ra các tập tin: intdata01.out; intdata02.out; ...; intdata09.out; intdata10.out; intdata11.out; intdata12.out; intdata13.out;

#### Bubble sort và dslk kép



- Định dạng tập tin intdataxx.inp và intdataxx.out
  - + Dòng đầu tiên: số phần tử của dslk kép các số nguyên (n).
  - + Dòng tiếp theo: lưu n số nguyên tương ứng với các giá trị trong dslk kép các số nguyên.

```
*intdata01.inp - Notepad

File Edit Format View Help

10
24 56 53 44 -54 6 63 -47 91 -99
```



#### ĐỘ PHỰC TẠP CỦA THUẬT TOÁN





 Hãy đánh giá độ phức tạp của thuật toán Bubble sort dựa trên hàm cài đặt chuẩn.

## Độ phức tạp của thuật toán





#### Thuật toán Bubble sort

#### ĐẶC ĐIỂM – ĐIỂM MẠNH – ĐIỂM YẾU

### Đặc điểm – điểm mạnh – điểm yếu



- Đặc điểm thuật toán bubble sort:
  - + Độ phức tạp về thời gian (time complexity):  $O(n^2)$ .
  - + Độ phức tạp về bộ nhớ (space complexity): O(1).
  - + Trường hợp xấu nhất (worst case):  $O(n^2)$ .
  - + Trường hợp trung bình (average case):  $O(n^2)$ .
  - + Trường hợp tốt nhất (best case): O(n).
  - + Ôn định.

### Đặc điểm – điểm mạnh – điểm yếu



- Điểm mạnh:
  - + Thuật toán rõ ràng, dễ hiểu.
  - + Thuật toán dễ cài đặt.
  - + Không yêu cầu dung lượng bộ nhớ lớn.





### Đ<mark>ặc điểm – điểm</mark> mạnh – điểm yếu



- Điểm yếu:
  - + Thời gian thực hiện thuật toán lâu.
  - + Không nhận biết mảng đã được sắp xếp.



#### Cảm ơn quí vị đã lắng nghe

Nhóm tác giả Hồ Thái Ngọc ThS. Võ Duy Nguyên TS. Nguyễn Tấn Trần Minh Khang