Niveau: lycée

1 Les lois de Kepler : rappels!

• Première loi:

Les planètes décrivent une ellipse dont le Soleil occupe l'un des foyers.

• Deuxième loi:

Le rayon Soleil-Planète balaie des aires égales pendant des intervalles de temps égaux.

$$\frac{dS}{dt}$$
 = constante.

• Troisième loi:

Le carré de la période de révolution est proportionnel au cube du demi grand-axe de l'orbite.

$$\frac{a^3}{T^2} = \text{cste.}$$

On se propose de

- Représenter l'orbite d'une planète dont on connait l'excentricité.
- Représenter la planète en mouvement keplerien sur son orbite.

2 Construction de l'orbite

2.1 Petits rappels sur les ellipses

Une ellipse est un ensemble de points dont la somme des distances à deux points fixes est constante. Ces points sont les foyers de l'ellipse. — Soit a un nombre réel positif. On pose MF + MF' = 2a. Soit O le milieu de [FF'].

La distance OF est la distance focale. On la note OF=c.

— Deux points remarquables sur la droite (FF'): A et A'.

Ils vérifient : AF + AF' = A'F + A'F' = 2a.

Donc AA' = 2a. a est la longueur du demi-grand axe.

— Deux points remarquables sur la perpendiculaire à (FF') en O: B et B'.

B est tel que : BF + BF' = 2a, donc BF = a. De même : BF' = a. D'après la propriété de Pythagore :

$$OB^2 + OF^2 = BF^2$$
. on pose $OB = b$ et on a :

$$b^2 + c^2 = a^2$$

— L'excentricité est par définition $e = \frac{c}{a}$

On en déduit :
$$b = a\sqrt{(1-e^2)}$$

2.2 Ouvrir Geogebra 2D...

Deux paramètres : le demi grand axe a et l'excentricité e.

Créer deux curseurs le premier a pour le demi grand axe exprimé en ua, l'autre e sans unité.

curseur	minimum	maximum	incrément	longueur
a	0,2	20	0,1	200
e	0	1	0,01	150

• Calcul de c, la distance foyer centre : taper dans la fenêtre de Saisie

$$\mathbf{c} = \mathbf{a} * \mathbf{e}$$

• Calcul du demi petit axe, b : taper dans la fenêtre de Saisie

$$\mathbf{b} = \mathbf{a} * \mathbf{sqrt} (1 - \mathbf{e} \wedge 2)$$

• Calcul de la période T, en jours, à partir de la troisième loi de Kepler :

$$T = \mathbf{sqrt} (\mathbf{a} \wedge 3) *365.25$$

- Tracé de l'ellipse
 - Placer le Soleil, S, au centre du graphique : créer le point **S=(0,0)**

S est le premier foyer de l'ellipse

Par convention, l'axe des abscisse est le grand axe de l'orbite. On placera le périhélie A' du côté des abscisses positives.

o Placer le centre de l'ellipse O, le second foyer F', le périhélie A' et l'aphélie A.

Créer les points **O=(-c,0)**

F'=(-2c,0)

A' = (a-c,0)

A=(-a-c,0)

• Tracer l'ellipse définie par ses deux foyers et son demi grand axe **a** :

© pensez à sauvegarder!

Faites varier les paramètres.

Que constate-ton aux faibles excentricités? Comparer les ellipses au cercle c de centre O et de rayon **a**. Pour faire joli...on peut changer l'aspect du Soleil, de l'orbite :

Clic droit propriétés et on choisit l'objet à modifier et les modifications en taille, en couleur...

3 Mouvement Keplerien

3.1 L'équation de Kepler et un peu de définitions

Les formules utilisées seront admises. Pour leur démonstration voir le fichier Kepler-démontré.pdf.

P est une planète qui orbite sur l'ellipse de centre O de demi grand axe a et d'excentricité e.

 \mathscr{C} le cercle de centre O et de rayon a.

P' est le point de $\mathscr C$ qui a la même abscisse que P donc la même période T que la planète P.

L'anomalie excentrique est l'angle $u = (\overrightarrow{OA'}, \overrightarrow{OP'})$.

Le temps est la variable de base de notre simulation : créer un curseur tps.

curseur	minimum	maximum	incrément	longueur
tps	0	2000	1	400

Le placer en bas du graphique.

Par définition, l'anomalie moyenne M varie proportionnellement au temps.

Calcul de l'anomalie moyenne M : taper dans la fenêtre de Saisie

$$M = 360^{\circ} / T * tps$$

On admet que l'anomalie excentrique est la solution de l'équation de Kepler :

$$(1) u - e \sin u = M$$
où u et M sont exprimées en radians.

On note θ l'angle de la position de la planète sur son orbite. On a $\theta = (\overrightarrow{SA'}, \overrightarrow{SP})$ On montre que :

(2)
$$\tan\left(\frac{\theta}{2}\right) = \sqrt{\frac{1+e}{1-e}} \tan\left(\frac{u}{2}\right)$$

où ρ est la distance de la planète au Soleil.

Donc si on trouve u, on calcule θ . Et si on a θ , on pourra calculer ρ et on saura où placer la planète sur son orbite! Mais comment trouver u?

3.2 La solution de l'équation de Kepler vue comme l'abscisse du point d'intersection de deux courbes élémentaires

On remarque que l'équation (1) équivaut à (1') : $u - M = e \sin u$.

La solution de (1') (qui varie évidemment en fonction du temps **tps** est l'abscisse du point d'intersection de la droite d'équation y = x - M et de la courbe d'équation $y = e \sin x$.

3.3 L'astre en mouvement sur son orbite

Pour tracer les deux courbes, dans la barre de saisie :

$$f_1:y=x-mod(M,2*pi)$$
 $f_2:y=e*sin(x)$

Pour trouver le point d'intersection des deux courbes à un instant donné :

Calcul de l'anomalie excentrique **u** à un instant donné, c'est à dire l'abscisse du point d'intersection des deux courbes :

$$u=x(I)$$

Calcul des coordonnées polaires de la planète à un instant donné.

On déduit de l'équation (2) la valeur de θ :

$$\theta$$
=2 atan(tan(u/2)sqrt((1+e)/(1-e)))180/pi

On déduit de l'équation (3) la longueur du rayon vecteur :

$$\rho = a(1-e^2)/(1+e\cos(\theta^\circ))$$

Il reste à créer la planète : $P=(\rho;\theta^{\circ})$

Faire varier le temps **tps**, observer le mouvement de la planète. Faire varier l'excentricité **e**...le demi grand-axe **a**.

Tracer le rayon vecteur : \mathbf{rv} = $\mathbf{segment}[\mathbf{S},\mathbf{P}]$ Afficher l'angle θ : θ '= $\mathbf{Angle}[(\mathbf{1},\mathbf{0}),\mathbf{S},\mathbf{P}]$

On peut cacher les fonctions f_1, f_2 et les points F' et I

3.4 La loi des aires : visualisation de la surface balayée en fonction du temps

On va évaluer l'aire balayée par le rayon vecteur, c'est à dire la partie du plan délimitée par l'ellipse, et l'angle orienté de vecteurs $(\overrightarrow{SA'}, \overrightarrow{SP})$. On l'appellera **sct**.

GeoGebra calcule l'aire d'un secteur de conique de centre , le centre de la conique, c'est à dire l'aire de la partie du plan délimitée par l'ellipse, et l'angle orienté de vecteurs $(\overrightarrow{OA}, \overrightarrow{OP})$. On l'appellera **soct**.

L'aire de **sct** est donc l'aire de **soct** diminuée de l'aire du triangle OSP.

Dans la barre de saisie :

L'aire de l'ellipse vaut πab . On peut "normaliser" l'aire de la surface balayée :

aire=(sct)/ (
$$\pi$$
 ab)

On peut aussi "normaliser" le temps.

Dans la fenêtre graphique 2, construire le point P_{aire} de coordonnées :

Activer la trace de ce point. Faire varier le temps **tps**, observer le mouvement de la planète. Faire varier l'excentricité **e**...le demi grand-axe **a**.

3.5 Visualisation du vecteur vitesse

On montre que la valeur de la vitesse à une position θ donnée est de la forme

$$(4) \boxed{V = \frac{K}{p} \sqrt{1 + 2e cos(\theta) + e^2}}$$
 avec (5) $\boxed{p = a(1 - e^2) \text{ et } K = \sqrt{GMp}}$, où M est la masse du corps central et G la constante de gravitation universelle.

On prendra $M \odot = 1,89 \times 10^{30} kg$ et $G = 6.67384 \times 10^{-11} m^3 / kg / s^2$. Taper:

$$M_S=1.89 \times 10 \wedge (30)$$

 $G=6.67384 \times 10 \wedge (-11)$

Calculer *p* et *K* avec geogebra ...attention aux unités : exprimer *a* en mètres!

$$p=a* (1-e \land 2) \times 1.5 \times 10 \land (11)$$

$$K=sqrt(G M_S p)$$

Calculer le module de la vitesse exprimée en km/s, on l'appelle **vit**

vit=
$$(K/p) * sqrt(1+ 2 e cos(\theta) + e \wedge 2)/1000$$

Vérifier les valeurs dans le cas de la Terre

Pour que le vecteur vitesse ne soit pas trop grand, à l'échelle du graphique, on le divise par 100 :

La direction du vecteur vitesse au point P est la tangente à l'ellipse en P. Construire la tangente à l'ellipse en P; on l'appelle d_tge

On note **v** un vecteur directeur unitaire de **d**_{**tge**}.

Pour construire le vecteur **Vvit**, on crée le point P' tel que Vvit = PP'.

5

Faites varier le paramètre tps. En quel point de l'orbite la vitesse est -elle maximale? minimale? Faites varier les paramètres a et e.

Des idées d'approfondissement...

Afficher sur la fenêtre graphique les différentes grandeurs Calculer la vitesse radiale.

décembre 2018