MIT OpenCourseWare http://ocw.mit.edu

6.004 Computation Structures Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

### Cost/Performance Tradeoffs:

a case study

Digital Systems Architecture 1.01







Lab #3 due tonight!

6.004 - Spring 2009 3/5/09 modified 2/23/09 10.44 LO9 - Multipliers 1

# Making a 2n-bit multiplier using n-bit multipliers

3/5/09

### ${\it Given n-bit multipliers:}$

6.004 - Spring 2009





#### Synthesize 2n-bit multipliers:





LO9-Multipliers 3

### Binary Multiplication

а х **b** 

a b

n bits

n bits

....

2n bits  $since (2^n-1)^2 < 2^{2n}$ 

EASY PROBLEM: design combinational circuit to multiply tiny (1-, 2-, 3-bit) operands...

HARD PROBLEM: design circuit to multiply BIG (32-bit, 64-bit) numbers

We can make big multipliers out of little ones!

Engineering Principle:
Exploit STRUCTURE in problem.

6.004 - Spring 2009 3/5/09 LO9 - Multipliers 2

### Our Basis:

#### n=1: minimalist starting point

Multiplying two 1-bit numbers is pretty simple:





the logic gets more complex, but some optimizations are possible...

6.004 - Spring 2009 3/5/09 LO9 - Multipliers 4

### Our induction step:

#### 2n-bit by 2n-bit multiplication:

- 1. Divide multiplicands into n-bit pieces
- 2. Form 2n-bit partial products, using n-bit by n-bit multipliers.
- 3. Align appropriately
- 4. Add.



Induction: we can use the same structuring principle to build a 4n-bit multiplier from our newly-constructed 2n-bit ones...

3/5/09 6.004 - Spring 2009 LO9 - Multipliers 5

#### **Brick Wall view**

of partial products

Making 4n-bit multipliers from n-bit ones: 2 "induction steps"





3/5/09 109 - Multipliers 6 6.004 - Spring 2009

# Multiplier Cookbook: Chapter 1

### Given problem:



#### Subassemblies:

- · Partial Products
- Adders





Step 1: Form (& arrange) Partial Products:

**REGROUP** partial



 $\Theta(...)$  implies both inequalities; O(...) implies only the

second.

# Performance/Cost Analysis

#### "Order Of" notation:

"g(n) is of order 
$$f(n)$$
"  $g(n) = \Theta(f(n))$ 

$$g(n) = \Theta(f(n))$$
 if there exist  $C_2 \ge C_1 > 0$ ,  
such that for all but finitely many integral  $n \ge 0$ 

$$c_1 \circ f(n) \le g(n) \le c_2 \circ f(n)$$

g(n) = O(f(n))

#### Example:

$$n^2 + 2n + 3 = \Theta(n^2)$$

$$n^2 \le (n^2 + 2n + 3) \le 2n^2$$

"almost always"

Partial Products:  $\Theta(n)$ Things to Add:

Adder Width:  $\Theta(n)$ Hardware Cost:

> $O(n^2)$  ?? Latency:

6.004 - Spring 2009 3/5/09 LO9 - Multipliers 8

3/5/09 6.004 - Spring 2009 LO9 - Multipliers 7

#### Observations:





 $\Theta(n^2)$  partial products.  $\Theta(n^2)$  full adders. Hmmm.

6.004 - Spring 2009 3/5/09 LO9 - Multipliers 9

## Repackaging Function

Engineering Principle #2:

Put the Solution where the Problem is.



 $\Theta(n^2)$  partial products.  $\Theta(n^2)$  full adders.



How about n<sup>2</sup> blocks, each doing a little multiplication and a little addition?

6.004 - Spring 2009 3/5/09 LO9 - Multipliers 10

#### Goal:

Array of Identical Multiplier Cells



(A+B),



#### Necessary Component: Full Adder

Takes 2 addend bits plus carry bit. Produces sum and carry output bits.

CASCADE to form an n-bit adder.

6.004 - Spring 2009 L09 - Multipliers 11

## Design of 1-bit multiplier "Brick":



#### Brick design:

- AND gate forms 1x1 product
- 2-bit sum propagates from top to bottom
- · Carry propagates to left

Wastes some gates... but consider (say) optimized 4x4-bit brick!

#### Array Layout:

- · operand bits bused diagonally
- · Carry bits propagate right-to-left
- Sum bits propagate down



6.004 - Spring 2009 3/5/09 LO9 - Multipliers 12

### Latency revisited

### Here's our combinational multiplier:



What's its propagation delay?

Naive (but valid) bound:

- · O(n) additions
- $\cdot$  O(n) time for each addition
- Hence O(n<sup>2</sup>) time required

#### On closer inspection:

- Propagation only toward left, bottom
- Hence longest path bounded by length + width of array: O(n+n) = O(n)!

6.004 - Spring 2009 LO9 - Multipliers 13

# Multiplier Cookbook: Chapter 2

#### Combinational Multiplier:



6.004 - Spring 2009 3/5/09 LO9 - Multipliers 14

# Combinational Multiplier:

best bang for the buck?

Suppose we have LOTS of multiplications.

Can we do better from a cost/performance standpoint?



# The Pipelining Bandwagon...

where do I get on?

#### WE HAVE:

- Pipeline rules "well formed pipelines"
- Plenty of registers
- Demand for higher throughput.

What do we do? Where do we define stages?



6.004 - Spring 2009 LO9 - Multipliers 15

6.004 – 5pring 2009 LO9 - Multipliers 16

# Stupid Pipeline Tricks



6.004 - Spring 2009 LO9 - Multipliers 17

### Even Stupider Pipeline Tricks



#### WORSE idea:

- · Doesn't break long combinational paths
- NOT a well-formed pipeline...
  - ... different register counts on alternative paths
  - ... data crosses stage boundaries in both directions!

#### Back to basics:

what's the point of pipelining, anyhow?

3/5/09 109 - Multipliers 18 6.004 - Spring 2009

### Breaking O(n) combinational paths



LO9 - Multipliers 19

6.004 - Spring 2009

# Multiplier Cookbook: Chapter 3



### Moving down the cost curve...



6.004 – Spring 2009 LO9 - Multipliers 21

### (Ridiculous?)

# Extremes Dept...

Cost minimization: how far can we go?



Suppose we want to minimize hardware (at any cost)...

- · Consider bit-serial!
  - Form and add 1-bit partial product per clock
  - Reuse single "brick" for each bit b<sub>i</sub> of slice;
  - Re-use slice for each bit of a operand

### Multiplier Cookbook: Chapter 4



#### Sequential Multiplier:

- Re-uses a single n-bit "slice" to emulate each pipeline stage
- · a operand entered serially
- · Lots of details to be filled in...

Stages: 1

Clock Period:  $\Theta(1)$  (constant!)

Hardware cost for n by n bits:  $\Theta(n)$ 

Latency:  $\Theta(n)$ 

Throughput:  $\Theta$  (1/n)

6.004 – Spring 2009 3/5/09 LO9 - Multipliers 22

# Multiplier Cookbook: Chapter 5

### Bit Serial multiplier:

- Re-uses a single brick to emulate an n-bit slice
- · both operands entered serially
- O(n²) clock cycles required
- Needs additional storage (typically from existing registers)



LO9 - Multipliers 24

Stages:  $\Theta(1/n)$ 

Clock Period:  $\Theta$  (1) (constant) Hardware cost for n by n bits:  $\Theta$  (1) + ?

Latency:  $\Theta$  (n<sup>2</sup>)

Throughput:  $\Theta$  (1/n<sup>2</sup>)

6.004 – Spring 2009 3/5/09

6.004 – Spring 2009 LO9 - Multipliers 23

# Summary:

| Scheme:       | \$            | Latency       | Thruput         |
|---------------|---------------|---------------|-----------------|
| Combinational | $\Theta(n^2)$ | <b>⊖</b> (n)  | Θ(1/n)          |
| N-pipe        | $\Theta(n^2)$ | <b>⊖</b> (n)  | Θ(1)            |
| Slice-serial  | <b>⊖</b> (n)  | <b>⊖</b> (n)  | <b>Θ</b> (1/n)  |
| Bit-serial    | <b>Θ</b> (1)* | $\Theta(n^2)$ | $\Theta(1/n^2)$ |

 $\ensuremath{\textit{Lots}}$  more multiplier technology: fast adders, Booth Encoding, column compression, ...

6.004 – Spring 2009 3/5/09 LO9 - Multipliers 25