Higher-order topology in condensed matter systems

University of Florida, November

Outline

1. Introduction—Band topology

2. Higher-order topology and boundary obstructed topology

3. Chiral Dirac superconductors

Bands structure

Electrons on a lattice can be described by local degrees of freedom,

 $|R|i\rangle$

- R donate lattice coordinate.
- ▶ *i* donate (pseudo)spin degrees of freedom.

Bands structure

Electrons on a lattice can be described by local degrees of freedom,

$$|{m R}|i\rangle$$

- R donate lattice coordinate.
- ▶ *i* donate (pseudo)spin degrees of freedom.

For free electrons,

$$\begin{aligned} |\boldsymbol{k} \ i\rangle &= \sum_{\boldsymbol{R}} e^{i\boldsymbol{k}\cdot\boldsymbol{R}} \, |\boldsymbol{R} \ i\rangle \\ \langle \boldsymbol{k}' \ i|H|\boldsymbol{k} \ j\rangle &= \mathcal{H}^{ij}(\boldsymbol{k}) \delta_{\boldsymbol{k},\boldsymbol{k}'} \end{aligned}$$

- lacktriangle Translational symmetry ightarrow conservation of crystal momentum.
- Diagonalizing the Hamiltonian we end up with a set of bands.
- lacksquare We will refer to $\mathcal{H}(m{k})$ as the Hamiltonian.
- We are interested in gapped systems (insulators).

Topology of the occupied bands

Suppose we are studying systems with some symmetry group. Define an equivalence between $\mathcal{H}^0(\mathbf{k})$ and $\mathcal{H}^1(\mathbf{k})$:

$$\mathcal{H}^0({m k}) pprox \mathcal{H}^1({m k})$$
 iff \exists

- \vdash $\mathcal{H}(\mathbf{k},t)$; $\mathcal{H}(\mathbf{k},0) = \mathcal{H}^0(\mathbf{k})$, $\mathcal{H}(\mathbf{k},1) = \mathcal{H}^1(\mathbf{k})$,
- $ightharpoonup \mathcal{H}({m k},t)$ for all values of $t\in[0,1]$ is:
 - 1. Gapped
 - 2. Preserve the symmetry

Topology of the occupied bands

Suppose we are studying systems with some symmetry group. Define an equivalence between $\mathcal{H}^0(\mathbf{k})$ and $\mathcal{H}^1(\mathbf{k})$:

$$\mathcal{H}^0({m k}) pprox \mathcal{H}^1({m k})$$
 iff \exists

- \vdash $\mathcal{H}(\mathbf{k},t)$; $\mathcal{H}(\mathbf{k},0) = \mathcal{H}^0(\mathbf{k})$, $\mathcal{H}(\mathbf{k},1) = \mathcal{H}^1(\mathbf{k})$,
- $ightharpoonup \mathcal{H}(m{k},t)$ for all values of $t\in[0,1]$ is:
 - 1. Gapped
 - 2. Preserve the symmetry

- ▶ This can be thought as deforming the occupied (and empty bands) bands from those of $\mathcal{H}^0(\mathbf{k})$ to those of $\mathcal{H}^1(\mathbf{k})$.
- If this deformation is possible, then the occupied bands of $\mathcal{H}^0(\mathbf{k})$ and $\mathcal{H}^1(\mathbf{k})$ are topologically equivalent.

Topological classification

Topological classification require a survey of all possible gapped Hamiltonian and grouping them into equivalence classes under the restrictions of some symmetry group.

Space of Hamiltonians with some symmetry

► Find topological invariants that differentiate one class from the other.

Internal symmetries

Internal symmetries are those that do not change the positions of the particles: $m{R} o m{R}$.

Internal symmetries

Internal symmetries are those that do not change the positions of the particles: $m{R} o m{R}$.

Three important internal symmetries:

- ightharpoonup Time-reversal symmetry (\mathcal{T})
- ightharpoonup Particle-hole symmetry (\mathcal{P})
- ightharpoonup Chiral symmetry (C)

Complete topological classification exists for the 10 AZ classes.

Internal symmetries

Internal symmetries are those that do not change the positions of the particles: $m{R} o m{R}$.

Three important internal symmetries:

- ightharpoonup Time-reversal symmetry (\mathcal{T})
- ightharpoonup Particle-hole symmetry (\mathcal{P})
- ightharpoonup Chiral symmetry (C)

Complete topological classification exists for the 10 AZ classes.

AZ	\mathcal{T}^2	\mathcal{P}^2	\mathcal{C}^2
A	0	0	0
AIII	0	0	1
Al	1	0	0
BDI	1	1	1
D	0	1	0
DIII	-1	1	1
All	-1	0	0
CII	-1	-1	1
C	0	-1	0
CI	1	-1	1

Gapless boundaries

- A boundary interpolates between a topological system and the vacuum.
- Internal symmetries are not broken on the boundary.

Gapless boundaries

- ► A boundary interpolates between a topological system and the vacuum.
- Internal symmetries are not broken on the boundary.

Topological systems protected by internal symmetries *only* will in general have gapless boundaries.

Examples

In 2D:

Chern insulators.

Protecting symmetries: None.

Topological invariant: Chern number.

Examples

In 2D:

Chern insulators.

Protecting symmetries: None.

Topological invariant: Chern number.

<u>In 1D:</u>

SSH chain.

Protecting symmetry: Chiral symmetry

Topological invariant: Polarization

Outline

1. Introduction—Band topology

2. Higher-order topology and boundary obstructed topology

3. Chiral Dirac superconductor

Higher-order topology

Can we find topological systems systems with gapped boundaries?

First-order topology; gapless mode on boundaries of co-dimension 1.

Second-order topology; gapless mode on boundaries of co-dimension 2.

The protecting symmetry must be broken on the boundary. Internal symmetries are not enough.

Spacial symmetries

Spacial symmetries are those that change the position of the particles. $m{R} o m{R}'$.

Examples of spacial symmetries:

$$C_4: (R_x, R_y) \to (-R_y, R_x)$$
 $C_2: (R_x, R_y) \to (-R_x, -R_y)$

 C_4 and C_2 are broken on the boundaries.

A cheap way to get corner modes

► These corner zero modes are not protected by a bulk gap closing.

Higher-order and boundary-obstructed topologies

Boundary-obstructed topology

- What kinds of system would show such surface signature?
- ▶ What kinds of topological invariants we can find?

Outline

1. Introduction—Band topology

Higher-order topology and boundary obstructed topology

3. Chiral Dirac superconductors

Superconductors

The BdG form for superconducting Hamiltonian,

$$H = \frac{1}{2} \int \frac{d\boldsymbol{k}}{(2\pi)^d} \begin{bmatrix} \Psi^\dagger(\boldsymbol{k})\Psi(-\boldsymbol{k}) \end{bmatrix} \begin{bmatrix} \mathcal{H}_n(\boldsymbol{k}) & \Delta(\boldsymbol{k}) \\ \Delta^\dagger(\boldsymbol{k}) & -\mathcal{H}_n^*(-\boldsymbol{k}) \end{bmatrix} \begin{bmatrix} \Psi(\boldsymbol{k}) \\ \Psi^\dagger(-\boldsymbol{k}) \end{bmatrix}$$

- $\qquad \qquad \Psi^{\dagger}(\mathbf{k}) = (a_1(\mathbf{k}), \dots, a_N(\mathbf{k})).$
- $ightharpoonup \mathcal{H}_n(m{k})$ is the normal state Hamiltonian.
- $lackbox\Delta(oldsymbol{k})$ is the superconducting order parameter.
- ▶ The BdG Hamiltonian $\mathcal{H}(\boldsymbol{k}) = \begin{bmatrix} \mathcal{H}_n(\boldsymbol{k}) & \Delta(\boldsymbol{k}) \\ \Delta^{\dagger}(\boldsymbol{k}) & -\mathcal{H}_n^*(-\boldsymbol{k}) \end{bmatrix}$ allows us to study the topology of superconductors within the same framework as insulating Hamiltonians.
- ▶ BdG Hamiltonians has an *intrinsic* particle-hole symmetry.

Apoorv Tiwari University of Zurich

Yuxuan Wang University of Florida

Chiral Dirac superconductors

Can we find a low energy criteria that guarantee the existence of the corner modes?

In 2D

- Dirac points in the normal state.
- ▶ A p + ip superconducting order parameter gapping the Dirac points.
- With C_4 symmetry \rightarrow second-order topology
- With C₂ symmetry → boundary-obstructed topology.

Summary

- Topological band systems are those that cannot be deformed to the vacuum without:
 - 1. Closing a gap
 - 2. Breaking the symmetry
- ► Topologies protected by internal symmetries alone lead to first-order topology (gapless boundaries).
- Including spacial symmetries can lead to a much richer topological structure.
- ► Higher-order topologies have gapless modes on boundaries with co-dimension higher than one.
- Boundary-obstructed topologies are only protected by a boundary gap closing.