Harmonic Progression Theory and Problems 1-10

Shiv Shankar Dayal

September 18, 2021

Harmonic Progresion

Unequal numbers $a_1,a_2,a_3,...$ are said to be in H.P., if $\frac{1}{a_1},\frac{1}{a_2},\frac{1}{a_3},...$ are in A.P. Thus, you can observe that no term in an H.P. can be 0 because that will make reciprocal infinite.

nth term of an H.P. = $\frac{1}{\text{corresponding term in corresponsing A.P}}$

If a is the first term and b is the nth term then c.d. $d=\frac{\frac{1}{b}-\frac{1}{a}}{n-1}$ There are no special properties of an H.P. but when we solve problems related to H.P. we treat its reciprocals as an A.P.

1. Find the 100th term of the sequence $1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots$

Solution: Clearly, we have corresponding A.P. as $1,3,5,7,\ldots$ Thus, first term a=1 and common difference d=2

$$t_{100} = a + (100 - 1)d = 199$$

 $\textbf{2.} \ \ \text{If} \ p \text{th term of an H.P. is} \ qr, \ \text{and} \ q \text{th term is} \ rp, \ \text{prove that} \ r \text{th term is} \ pq.$

Solution: Let a be the first term and d be the common difference of corresponding A.P. The pth and qth term of the A.P. will be $\frac{1}{qr}$ and $\frac{1}{qr}$ respectively.

For A.P. nth term = a + (n-1)d

$$\frac{1}{qr} = a + (p-1)d$$

$$\frac{1}{pr} = a + (q - 1)d$$

Subtracting $\frac{q-p}{pqr}=(q-p)d :: d=\frac{1}{pqr}$

$$\Rightarrow \frac{1}{qr} = a + (p-1)d \Rightarrow a = \frac{1}{pqr}$$

Now it is trivial to find rth term.

3. If the pth, qth and rth terms of an H.P. be respectively a,b and c, then prove that (q-r)bc+(r-p)ca+(p-q)ab=0

Solution: $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P. and are pth, qth and rth term respectively. Let x be the first term and d be the common difference of this A.P.

$$\frac{1}{a} = x + (p-1)d$$

Multiplying with abc, we get

$$bc = abc[x + (p-1)]d$$

$$(q-r)bc = (q-r)abc[x+(p-1)d] \\$$

Similarly for qth term, we have

$$(r-p)ca=(r-p)abc[x+(q-1)d] \\$$

and for rth term

$$(p-q)ab = (p-q)abc[x+(r-1)d] \\$$

Now we can add all the terms and prove the result.

4. If a,b,c are in H.P., prove that $\frac{a-b}{b-c}=\frac{a}{c}$

Solution: Since a, b, c are in H.P

$$\frac{2}{b} = \frac{1}{a} + \frac{1}{c}$$
$$b = \frac{2ca}{c+a}$$

Substituting in $\frac{a-b}{b-c}$

$$\frac{a - \frac{2ca}{c+a}}{\frac{2ca}{c+a} - c} \Rightarrow \frac{a^2 - ac}{ac - c^2} = \frac{a}{c}$$

5. If a,b,c,d are in H.P., then, prove that ab+bc+cd=3ad

Solution: Since a,b,c,d are in H.P., therefore $\frac{1}{a},\frac{1}{b},\frac{1}{c},\frac{1}{c}$ are in A.P. Let x the common difference.

$$\frac{1}{b} - \frac{1}{a} = x \Rightarrow ab = \frac{1}{x}(a-b)$$

Similarly,

$$bc = \frac{1}{x}(b-c)$$

$$cd = \frac{1}{x}(c-d)$$

Adding, we get

$$ab + bc + cd = \frac{1}{x}(a - d) = \frac{1}{\frac{1}{d} - \frac{1}{a}}(a - d) = 3ad$$

6. If x_1,x_2,x_3,\ldots,x_n are in H.P., prove that $x_1x_2+x_2x_3+x_3x_4+\ldots+x_{n-1}x_n=(n-1)x_1x_n$

Solution: Let d be the common difference of corresponding A.P. Following like previous probelm

$$\frac{1}{x_2}-\frac{1}{x_1}=d\Rightarrow x_1x_2=\frac{1}{d}(x_1-x_2)$$

$$\frac{1}{x_3} - \frac{1}{x_2} = d \Rightarrow x_2 x_3 = \frac{1}{d}(x_2 - x_3)$$

•••

$$\frac{1}{x_n}-\frac{1}{x_{n+1}}=d\Rightarrow x_{n-1}x_n=\frac{1}{d}(x_{n-1}-x_n)$$

Adding all these, we get

$$x_1x_2 + x_2x_3 + \dots \\ x_{n-1}x_n = \frac{1}{d}(x_1 - x_n)$$

Also,

$$\frac{1}{x_n}-\frac{1}{x_1}=(n-1)d$$

Sunstituting the value of \emph{d} we can obtain desired result.

7. If a,b,c are in H.P., show that $\frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b}$ are in H.P.

Solution: Given a,b,c are in H.P. which implies $\frac{1}{a},\frac{1}{b},\frac{1}{c}$ are in A.P.

$$\Rightarrow \frac{a+b+c}{a}, \frac{a+b+c}{b}, \frac{a+b+c}{c} \text{ are in A.P.}$$

$$1+\frac{b+c}{a}, 1+\frac{c+a}{b}, 1+\frac{a+b}{c} \text{ are in A.P.}$$

$$\frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c} \text{ are in A.P.}$$

$$\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b} \text{ are in H.P.}$$

8. If a^2, b^2, c^2 are in A.P. show that b+c, c+a, a+b are in A.P.

Solution:

$$\begin{aligned} a^2, b^2, c^2 & \text{ are in A.P.} \\ \Rightarrow b^2 - a^2 &= c^2 - b^2 \\ \Rightarrow \frac{b-a}{(c+a)(b+c)} &= \frac{c-b}{(a+b)(c+a)} \\ \Rightarrow \frac{b+c-c-a}{(c+a)(b+c)} &= \frac{c+a-a-b}{(a+b)(c+a)} \\ \Rightarrow \frac{1}{c+a} - \frac{1}{b+c} &= \frac{1}{a+b} - \frac{1}{c+a} \\ \Rightarrow \frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b} & \text{ are in H.P.} \\ \Rightarrow b+c, c+a, a+b & \text{ are in H.P.} \end{aligned}$$

9. Find the sequence whose nth term is $\frac{1}{3n-2}$. Is tihs sequence an H.P.?

Solution: $t_1=1, t_2=\frac{1}{4}, t_3=\frac{1}{7}$ nth term of corresponding A.P. $t_n=3n-2$ and n-1th term of corresponding A.P. $t_{n-1}=3n-5$ Thus, common difference $d=t_{n-1}-t_n=3$ which is a constant and thus, we can say that corresponding reciprocals will form an H.P.

10. If mth term of an H.P. be n and nth term be m, prove that (m+n)th term $=\frac{mn}{m+n}$ and (mn)th term =1

Solution: Reciprocals in A.P. would be $t_m=\frac{1}{n}$ and $t_n=\frac{1}{m}$. Let a be the first term and d be the common difference.

$$t_m = a + (m-1)d = \frac{1}{n}$$

and

$$t_n=a+(n-1)d=\frac{1}{m}$$

Subtracting

$$(m-n)d = \frac{m-n}{mn} \Rightarrow d = \frac{1}{mn}$$

Substituting d in t_m , we have

$$a = \frac{1}{n} - \frac{m-1}{mn} = \frac{1}{mn}$$

Now,

$$t_{m+n}=\frac{1}{mn}+(m+n-1)\frac{1}{mn}=\frac{m+n}{mn}$$

Reciprocal is desired $\frac{mn}{m+n}$ Similarly,

$$t_{mn} = a + (mn-1)d = \frac{1}{mn} + (mn-1)\frac{1}{mn} = 1$$