Programme de khôlles ECG1-B

Semaines 21 et 22 -

EV de dimension finie, Variables aléatoires discrètes

• Énoncés / notions à connaitre :

Espaces vectoriels de dimension finie

- Un espace vectoriel de dimension finie est un espace admettant une famille génératrice finie.
- Dimension d'un espace vectoriel de dimension finie : nombre de vecteurs commun à toutes les bases de E. Dimension des espaces vectoriels usuels : \mathbb{R}^n , $\mathcal{M}_{n,p}(\mathbb{R})$, $\mathbb{R}_n[X]$.
 - Deux espaces isomorphes ont même dimension.
- Comparaison du cardinal d'une famille libre/génératrice de E avec la dimension de E.
- Lorsque $Card(\mathcal{F}) = \dim(E)$, la famille est génératrice ssi elle est libre ssi c'est une base.
- Théorème de la base extraite, Théorème de la base incomplète.
- Notion de rang d'une famille de vecteurs. Calcul pratique du rang et conséquences.
- Dimension d'un sous-espace vectoriel F de E.

Variables aléatoires discrètes

- Notion de variable aléatoire discrète. Système complet d'évènements associé à une variable aléatoire X. Support et loi de probabilité d'une variable aléatoire discrète.
- Fonction de répartition F_X d'une variable aléatoire discrète X.
- Calcul de la loi de probabilité d'un transfert : X^2 , |X|, etc...
- Définition de l'espérance d'une variable aléatoire discrète. Propriétés générales (linéarité, positivité, croissance). Théorème de transfert pour le calcul de E(q(X)).
- Définition de la variance d'une variable aléatoire discrète.
 - Formule de Koenig-Huygens : X admet une variance si et seulement si X^2 admet une espérance et dans ce cas $V(X) = E(X^2) E(X)^2$.
 - Variance d'une transformation affine. Variable aléatoire de variance nulle.
- Loi discrètes usuelles : loi uniforme $\mathcal{U}(\llbracket 1, n \rrbracket)$, loi binomiale $\mathcal{B}(n, p)$, loi géométrique $\mathcal{G}(p)$, loi de Poisson $\mathcal{P}(\lambda)$. Interprétation de ces lois, valeur de l'espérance et de la variance.

• Démonstrations à connaitre :

- Formule de Koenig-Huygens : X admet une variance ssi X^2 admet une espérance, et dnas ce cas $V(X) = E(X^2) E(X)^2$. (Proposition 5)
- Calcul de l'espérance et de la variance d'une loi géométrique. (Proposition 8)
- Calcul de l'espérance et de la variance d'une loi de Poisson. (Proposition 9)