

FPV Tutorübung

Woche 1 Implications, Assertions and Conditions

Manuel Lerchner

20.04.2023

<u>Organisatorisches</u>

Grade Bonus

- Successful participation ($\geq 70\%$) in quizzes and programming tasks will lead to a bonus of 0.3 in the final exam, provided that you passed the exam.
- Programming homework and quizzes are to be submitted individually.
- Discussing solutions before the end of the week is considered plagiarism.
- Plagiarism will not be tolerated and will (at the very least) lead to exclusion from the bonus system

Changes

- Manual correction of homework not possible.
 However, non-programming exercises remain
 crucial for the exam
- 20% of the exam will be Single-Choice
- To receive points in the exam, your code needs to compile
- We currently anticipate an in-person exam using Artemis

Materialien

<u>Quiz</u>

Passwort:

T01: Recap Implications

```
1, x = 1 \implies 0 < x
 2. x < 6 \implies x = 3
 3. x > 0 \implies x > 0
 4. x = -2 \implies x < -1 \lor x > 1
 5. x = 0 \lor x = 7 \implies 4 \neq x
 6. x = 1 \implies x < 3 \land y > 0
 7. x < 8 \land y = x \implies y \neq 12
 8. x = 1 \lor y = 1 \implies x > 0
 9. x \neq 5 \implies false
10. true \implies x \neq y
11. false \implies x = 1
12. x > 1 \implies 2x + 3 = 5
13. A \wedge x = y \implies A
14. B \implies A \vee B
15. A \implies (B \implies A)
16. (A \Longrightarrow B) \Longrightarrow A
```


T02: Assertions

- 1. Which of the following assertions hold at point A?
 - \circ a) $i \geq 0$
 - \circ b) x=0
 - \circ c) $i \leq 10 \land x \neq 0$
 - \circ d) true
 - \circ e) i=0
 - \circ f) x = i
- 2. Which of the following assertions hold at point B?
 - \circ a) $x=0 \land i=0$
 - \circ b) x = i
 - \circ c) i < x
 - \circ d) 0 < i < 10
 - \circ e) $i \geq 0 \land x \geq 0$
 - \circ f) $n=1 \implies x=i$
- 3. Which of the following assertions hold at point C?
 - \circ a) $i \geq 0$
 - \circ b) i=10
 - \circ c) i>0
 - \circ d) $x \neq n$
 - \circ e) x = 10n
 - \circ f) $x = i * n \wedge i = 10$

T03: The Strong and the Weak

- 3. Which of the following assertions hold at point C?
 - $\begin{array}{l} \circ \text{ a) } i \geq 0 \\ \circ \text{ b) } i = 10 \\ \checkmark \\ \circ \text{ c) } i > 0 \\ \checkmark \\ \circ \text{ d) } x \neq n \\ \times \\ \circ \text{ e) } x = 10n \\ \checkmark \\ \circ \text{ f) } x = i*n \land i = 10 \\ \end{array}$

Again consider the assertions that hold at point C of assignment 2. Discuss the following questions:

- 1. When annotating the control flow graph, can you say that one of the given assertions is "better" than the others?
- 2. Can you arrange the given assertions in a meaningful order?
- 3. How can you define a stronger than relation formally?
- 4. How do true and false fit in and what is their meaning as an assertion?
- 5. What are the strongest assertions that still hold at A, B and C?

T04: Strongest Postconditions 1

T04: Strongest Postconditions 2

7

8.

T04: Strongest Postconditions 3

9.

FPV Tutorübung

Woche 2

Preconditions, Postconditions and Local Consistency

Manuel Lerchner

03.05.2023

<u>Quiz</u>

Passwort:

1.

2.

3.

- 1. For each of these graphs show whether the assertion Z holds...
- (a) ...using strongest postconditions and
- (b) ...using weakest preconditions.
- 2. Discuss advantages and disadvantages of either approach.

Post-Condition:

Pre-Condition:

Post-Condition:

Pre-Condition:

Post-Condition:

Pre-Condition:

T02: Local Consistency

Check whether the annotated assertions prove that the program computes an $x \neq 0$ and discuss why this is the case.

T02: Local Consistency (Extra Space)

T03: Trouble Sort

- 1. Annotate each program point in the following control flow diagram with a suitable assertion, then show that your annotations are locally consistent and prove that Z holds at the given program point.
- 2. Discuss the drawbacks of annotating each program point with an assertion before applying weakest preconditions, and discuss how you could optimize the approach to proving that Z holds.

T03: Trouble Sort (Extra Space)

FPV Tutorübung

Woche 3
MiniJava 2.0, Loop Invariants

Manuel Lerchner

09.05.2023

<u>Quiz</u>

Passwort:

In the lecture, the weakest precondition operator has been defined for all statements of MiniJava. In this assignment, we consider an extension of the MiniJava language, which provides four new statements:

1. rand x:

Assigns a random value to variable x,

2. $x = either e_0, \ldots, e_k$:

Assigns one of the values of the expressions e_0, \ldots, e_k to variable \mathbf{x} non-deterministically,

3. x = e in a, b:

Assigns the value 1 to variable x, if the value of expression e is in the range [a,b] and 0 if e is not in the range or the range is empty (a>b),

4. stop:

Immediately stops the program.

Define the weakest precondition operator $\mathbf{WP}[\![\ldots]\!](B)$ for each of these statements. ($\mathsf{In} + \mathsf{RrMS} + \mathsf{In} +$

Beispiele zum Testen:

$$WP[rand x;](B) =$$

WP[x = either
$$e_0$$
, $e_1 \dots e_k$](B) =

$$WP[x e in a, b](B) =$$

$$WP[stop](B) =$$

- 1. Discuss the problem that arises when computing weakest preconditions to prove Z.
- 2. How can you use weakest preconditions to prove Z anyway?
- 3. Try proving Z using the the loop invariants $x\geq 0$ and $i=0 \land x=1 \land n=0$ at the end of the loop body and in particular discuss these questions:
 - \circ a) How has a useful loop invariant be related to Z?
 - o b) What happens if the loop invariant is chosen too strong?
 - o c) What happens if the loop invariant is chosen too weak?
 - d) Can you give a meaningful lower and upper bound for useful loop invariants?
- 4. Retry proving Z using the loop invariant x=i! (again at the end of the loop body) and improve this invariant until the proof succeeds.

3. Try proving Z using the the loop invariants $x\geq 0$ and $i=0 \land x=1 \land n=0$ at the end of the loop body and in particular discuss these questions:

3. Try proving Z using the the loop invariants $x\geq 0$ and $i=0 \land x=1 \land n=0$ at the end of the loop body and in particular discuss these questions:

4. Retry proving Z using the loop invariant x = i! (again at the end of the loop body) and improve this invariant until the proof succeeds.

T03: Two b, or Not Two b

Prove Z using weakest preconditions.

T03: Two b, or Not Two b

Tipps zum finden von Loop Invarianten:

https://ttt.in.tum.de/recordings/Info2 2017 11 24-1/Info2 2017 11 24-1.mp4

Beispieltrace: n=3							
Variable \ Schleifendurchgang	0	1	2	3	4	5	6
x	0	2	5	7	10	12	15
i	0	0	1	1	2	2	3
b	0	1	0	1	0	1	0

