## ME 596 (562) Spacecraft Attitude Dynamics and Control

Rigid Body Dynamics: Center of Mass Refresher

Professor Christopher D. Hall Mechanical Engineering

University of New Mexico

March 18, 2018

## Center of Mass of a System of Particles

For a system mass particles of mass  $m_i, i = 1, ..., n$ 

We can easily calculate total mass

$$m = \sum_{i=1}^{n} m_i$$

- ► Total mass is sometimes called the "zeroth moment of inertia"
- We can easily determine the location of the center of mass

$$m\mathbf{r}_c = \sum_{i=1}^n m_i \mathbf{r}_i$$

where  ${\bf r}$  is the  $3\times 1$  matrix whose components are the components of the vector  ${\vec r}_c$  from O to the mass center c



## **Center of Mass Calculations**

First, let's note that there's a slight abuse of notation here, since we use i in referring to the inertial reference frame and its unit vectors, as well as in referring to the  $i_{th}$  of n particles. It should be clear which is which, but if not, ask!

Write 
$$\vec{\mathbf{r}}_i$$
 as  $x_i \, \hat{\mathbf{i}}_1 + y_i \, \hat{\mathbf{i}}_2 + z_i \, \hat{\mathbf{i}}_3$ . Thus  $\mathbf{r}_i = \begin{bmatrix} x_i & y_i & z_i \end{bmatrix}^\mathsf{T}$ 

Write 
$$\vec{\mathbf{r}}_c$$
 as  $x_c \,\hat{\mathbf{i}}_1 + y_c \,\hat{\mathbf{i}}_2 + z_c \,\hat{\mathbf{i}}_3$ . 0 Thus  $\mathbf{r}_c = \begin{bmatrix} x_c & y_c & z_c \end{bmatrix}^\mathsf{T}$ 

Calculate the components of  $\vec{\mathbf{r}}_c$  in  $\mathcal{F}_i$  as

$$x_c = \frac{1}{m} \sum_{i=1}^n m_i x_i$$

$$y_c = \frac{1}{m} \sum_{i=1}^n m_i y_i$$

$$z_c = \frac{1}{m} \sum_{i=1}^n m_i z_i$$