Lista 05 de Linguagens Formais e Autômatos

Turma do 3° ano

 $2^{\underline{0}}$ Período de 2023

Definição de um Autômato de Pilha (AP)

$$AP = (\mathcal{Q}, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- ullet Um conjunto de estados finito, $\mathcal Q$
- $\bullet\,$ Um conjunto de símbolos de entrada $\Sigma\,$
- \bullet Um conjunto de símbolos da pilha Γ
- Uma função de transição $\delta: \mathcal{Q} \times \Sigma \times \Gamma \to 2^{\mathcal{Q} \times \Gamma^*}$.
- Um estado inicial q_0
- Um símbolo inicial para a pilha Z_0
- \bullet Um conjunto de estados finais $F\subseteq \mathcal{Q}$

Aceitação por estado final : Se é possível usar a função δ para consumir toda a entrada e entrar em um estado final, esta palavra está na linguagem do autômato de aceitação por estado final.

Identificação Uma identificação de um autômato é formado pela tripla (q, w, W), onde q é o estado em que ele se encontra, w é o que resta para processar da string, e W é o estado da pilha. Uma identificação expressa um momento em que a string está sendo processada.

1. Projete um AP para aceitar as seguintes linguagens:

- (a) $\{0^n 1^n \mid n \ge 1\}$
- (b) O conjunto de todos os strings de 0's e 1's tais que nenhum prefixo tenha mais 1's do que 0's.
- (c) O conjunto de todos os strings de 0's e 1's que tenham a mesma quantidade de 1 e 0.
- (d) $\{a^n b^m c^{2(n+m)} \mid n \ge 0, m \ge 0\}$
- (e) Palavras em $\{0,1\}^*$ tais que a quantidade de 0's seja duas vezes maior que a quantidade de 1's.
- 2. O AP $P = (\{q_0, q_1, q_2, q_3, f\}, \{a, b\}, \{Z_0, A, B\}, \delta, q_0, Z_0, \{f\})$ tem as seguintes regras:

$$\delta(q_0, a, Z_0) = (q_1, AAZ_0) \quad \delta(q_0, b, Z_0) = (q_2, BZ_0) \quad \delta(q_0, \varepsilon, Z_0) = (f, \varepsilon)
\delta(q_1, a, A) = (q_1, AAA) \quad \delta(q_1, b, A) = (q_1, \varepsilon) \quad \delta(q_1, \varepsilon, Z_0) = (q_0, Z_0)
\delta(q_2, a, B) = (q_3, \varepsilon) \quad \delta(q_2, b, B) = (q_2, BB) \quad \delta(q_2, \varepsilon, Z_0) = (q_0, Z_0)
\delta(q_3, \varepsilon, B) = (q_2, \varepsilon) \quad \delta(q_3, \varepsilon, Z_0) = (q_1, AZ_0)$$

- (a) forneça uma sequência de identificações mostrando que o string bab faz parte da linguagem.
- (b) forneça uma sequência de identificações mostrando que o string abb faz parte da linguagem.
- (c) forneça o conteúdo da pilha depois de ter lido b^7a^4 a partir de sua entrada.