Parameter Selection Algorithms for High-dimensional Linear Models

Zhaoxue Tong

Penn State University Department of Statistics

Outline

Introduction

Background Goals

Algorithms for Fitting High-Dimensional Linear Models LASSO & SCAD LAT & RAT

Numerical Results

Conclusion

Background

High-dimensional Sparse Linear Model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

n: # of observations.

p: # of predictors.

 \boldsymbol{X} : $n \times p$ design matrix, $\boldsymbol{p} > \boldsymbol{n}$, each row $X_i \sim N(0, \Sigma)$.

 \boldsymbol{Y} : $n \times 1$ response vector.

 β : $p \times 1$ coefficient vector, a **small** subset of β_i 's is non-zero.

 ϵ : noise, $var(\epsilon) = \sigma^2 < \infty$.

Goal: Consistently estimate β and recover its support.

Methods:

- Penalization-based methods: LASSO, SCAD;
- Penalization-free methods: LAT, RAT (Wang et al. 2016).

Advantages of LAT and RAT:

- ▶ Theory: Random design model; highly correlated predictors; general noise; ultra-high dimensional setting ($\ln p = o(n)$).
- ightharpoonup Computation: **Parallelizable** for large p; **non-iterative**.

Goals

More rigorous comparison of LASSO, SCAD, LAT and RAT in terms of

- Coefficient estimation;
- Variable selection;
- Runtime.

LASSO & SCAD

- Least Absolute Shrinkage and Selection Operator (LASSO)
 - Estimates β by minimizing

$$L(\boldsymbol{\beta}) = \frac{1}{2n}||\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}||^2 + \lambda||\boldsymbol{\beta}||_1.$$

- Alternating Direction Method of Multipliers algorithm.
- Smoothly Clipped Absolute Deviation (SCAD)
 - Estimates β by minimizing

$$L(\beta_1,...,\beta_p) = \frac{1}{2n}||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||^2 + \sum_{j=1}^p p_{\lambda}(|\beta_j|).$$

- Cyclic Coordinate Descent algorithm.
- Select the tuning parameter $\hat{\lambda} = \arg\min_{\lambda} \mathsf{HBIC}(\lambda)$.

5/9

LAT & RAT

 $\underline{\mathsf{Idea}}$: Pre-selection + Hard thresholding + OLS

Motivation of Pre-selection:

OLS estimator :
$$\hat{\beta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$
.
Ridge estimator: $\hat{\beta} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}_p)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$.

$$(\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{X}^{T}\boldsymbol{Y} = \lim_{\lambda \to 0} (\boldsymbol{X}^{T}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}\boldsymbol{X}^{T}\boldsymbol{Y};$$

$$(\boldsymbol{X}^{T}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}\boldsymbol{X}^{T}\boldsymbol{Y} = \boldsymbol{X}^{T}(\boldsymbol{X}\boldsymbol{X}^{T} + \lambda \boldsymbol{I}_{n})^{-1}\boldsymbol{Y}, \quad \forall p, n, \lambda > 0.$$

High-dimensional version of the OLS:

$$\hat{\boldsymbol{\beta}}^{(HD)} = \lim_{\lambda \to 0} \boldsymbol{X}^T (\boldsymbol{X} \boldsymbol{X}^T + \lambda \boldsymbol{I}_n)^{-1} \boldsymbol{Y} = \boldsymbol{X}^T (\boldsymbol{X} \boldsymbol{X}^T)^{-1} \boldsymbol{Y}$$
$$= \boldsymbol{X}^T (\boldsymbol{X} \boldsymbol{X}^T)^{-1} \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{X}^T (\boldsymbol{X} \boldsymbol{X}^T)^{-1} \boldsymbol{\epsilon} = \Phi \boldsymbol{\beta} + \boldsymbol{\eta}.$$

If β is sparse and Φ is diagonally dominant, we can use $\hat{\beta}^{(HD)}$ for dimension reduction.

LAT & RAT

Algorithm 1: Least-squares Adaptive Thresholding (LAT)

Input: $\{X_i, Y_i\}_{i=1}^n, d = [n/\ln(n)], \delta = .2$

Output: Estimated β Stage 1: Pre-selection

1: $\hat{\beta}^{(HD)} = \mathbf{X}^T (\mathbf{X} \mathbf{X}^T)^{-1} \mathbf{Y}$. Denote the model corresponding

to the *d* largest $|\hat{\beta}_i^{(HD)}|$'s as \tilde{M}_d .

Stage 2: Hard thresholding

 $\mathbf{2} : \hat{\boldsymbol{\beta}}^{(OLS)} = (\boldsymbol{X}_{\tilde{M}_d}^T \boldsymbol{X}_{\tilde{M}_d})^{-1} \boldsymbol{X}_{\tilde{M}_d}^T \boldsymbol{Y};$

 $\hat{\sigma}^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 / (n - d);$

4 : $\bar{C} = (X_{\tilde{M}_d}^T X_{\tilde{M}_d})^{-1}$;

5 : Hard threshold $\hat{eta}^{(OLS)}$ by MEAN $(\sqrt{2\hat{\sigma}^2ar{\mathcal{C}}_{ii}\ln(4d/\delta)})$.

Denote the refined model as \hat{M} ;

Stage 3: Refinement

 $\mathbf{6} : \hat{\boldsymbol{\beta}}_{\hat{M}} = (\boldsymbol{X}_{\hat{M}}^T \boldsymbol{X}_{\hat{M}})^{-1} \boldsymbol{X}_{\hat{M}}^T \boldsymbol{Y};$

7: $\hat{\boldsymbol{\beta}}_i = 0, \forall i \notin \hat{M};$

return $\hat{oldsymbol{eta}}$

Non-iterative!

Ridge Adaptive Thresholding (RAT): replace \bar{C} with its ridge version $(\mathbf{X}_{\tilde{M}_d}^T \mathbf{X}_{\tilde{M}_d} + r\mathbf{I}_d)^{-1}$.

Numerical Results

Experiment		LAT	RAT	LASSO	SCAD
Experiment	DATOR				
1	RMSE	0.4835	0.4835	0.8718	0.0251
	# FPs	0.0650	0.0650	0.0350	0.0000
	# FNs	0.2300	0.2300	0.0000	0.0000
	Time	4.2	4.0	20.7	61.2
2	RMSE	0.0565	0.0575	1.9849	0.0521
	# FPs	0.0350	0.0350	0.0350	0.0000
	# FNs	0.0000	0.0000	0.0000	0.0000
	Time	3.3	3.3	23.3	274.7
3	RMSE	23.6069	9.4343	9.4710	7.0446
	# FPs	0.7500	0.1800	0.0000	0.0200
	# FNs	1.1750	1.1700	0.0050	0.0050
	Time	10.0	9.6	208.7	252.1
4	RMSE	0.0045	0.0045	0.1526	0.0044
	# FPs	0.0100	0.0100	0.0600	0.0000
	# FNs	0.0000	0.0000	0.0000	0.0000
	Time	4.2	3.8	15.7	325.4
5	RMSE	0.0268	4.1056	0.2427	0.0218
	# FPs	0.0800	0.0050	0.1250	0.0000
	# FNs	0.0000	0.9750	0.0000	0.0000
	Time	4.8	4.6	21.0	80.5

Table 1: Results for (n, p) = (200, 1000)

Report

- root mean squared error (RMSE) $||\hat{\beta} \beta||_2$;
 - false negatives (#FN);
 - false positives (#FP);
 - walltime.
- Coefficient estimation: 1.SCAD 2.LAT/RAT;
- Variable selection: 1.SCAD 2.LASSO;
- Runtime: 1.LAT/RAT 2.LASSO.

Conclusion

- 1. Coefficient estimation: SCAD;
- 2. Variable selection: SCAD;
- 3. Runtime: LAT.