Data 609 - Module7

Amit Kapoor

11/23/2021

Contents

```
Ex.1

Ex.2

Ex.3

# Libraries
library(e1071)
library(caret)

## Loading required package: lattice

## Loading required package: ggplot2
```

Ex.1

Use the svm() algorithm of the e1071 package to carry out the support vector machine for the PlantGrowth data set. Then, discuss the number of support vectors/samples. [Install the e1071 package in R if needed.]

Solution

```
# PlantGrowth datset
data(PlantGrowth)
head(PlantGrowth)
##
    weight group
## 1
      4.17 ctrl
## 2
      5.58 ctrl
      5.18 ctrl
## 4
       6.11 ctrl
      4.50 ctrl
## 5
## 6 4.61 ctrl
svm_pg <- svm(group ~ ., data = PlantGrowth)</pre>
summary(svm_pg)
##
## svm(formula = group ~ ., data = PlantGrowth)
##
##
## Parameters:
##
      SVM-Type: C-classification
```

```
## SVM-Kernel: radial
## cost: 1
##
## Number of Support Vectors: 29
##
## ( 10 9 10 )
##
##
## Number of Classes: 3
##
## Levels:
## ctrl trt1 trt2
```

It comes out that there are 29 support vectors out of 30 samples that are closer to the hyperplane and influence the orientation and position of the hyperplane. There are 3 classes.

Ex.2

Do a similar SVM analysis as that in the previous question using the iris data set. Discuss the number of support vectors/samples.

Solution

```
# iris datset
data("iris")
head(iris)
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                           3.5
                                        1.4
                                                     0.2 setosa
## 2
              4.9
                           3.0
                                        1.4
                                                     0.2 setosa
              4.7
                           3.2
## 3
                                        1.3
                                                     0.2
                                                          setosa
## 4
              4.6
                           3.1
                                        1.5
                                                     0.2
                                                          setosa
## 5
              5.0
                           3.6
                                        1.4
                                                     0.2 setosa
## 6
              5.4
                           3.9
                                        1.7
                                                     0.4 setosa
svm_iris <- svm(Species ~ ., data = iris)</pre>
summary(svm iris)
##
## Call:
## svm(formula = Species ~ ., data = iris)
##
##
## Parameters:
##
      SVM-Type: C-classification
##
    SVM-Kernel: radial
##
          cost:
                 1
##
## Number of Support Vectors: 51
##
##
    (8 22 21)
##
## Number of Classes: 3
##
## Levels:
```

setosa versicolor virginica

There are 51 support vectors and 3 classes in this case out of 150 samples in the dataset. In this case there is very less data for support vectors as compared to PlantGrowth dataset.

Ex.3

Use the iris data set (or any other data set) to select 80% of the samples for the training svm(), then use the rest 20% for validation. Discuss your results.

Solution

```
set.seed(609)
# partitioning for training and validation
partition <- createDataPartition(iris$Species, p=0.80, list = FALSE)
training <- iris[partition,]</pre>
validation <- iris[-partition,]</pre>
svm_train_iris <- svm(Species ~ ., data = training)</pre>
summary(svm_train_iris)
##
## Call:
## svm(formula = Species ~ ., data = training)
##
##
## Parameters:
##
      SVM-Type: C-classification
    SVM-Kernel: radial
##
##
          cost: 1
##
## Number of Support Vectors: 45
##
##
   (8 18 19)
##
##
## Number of Classes: 3
##
## Levels:
   setosa versicolor virginica
pred_valid <- predict(svm_train_iris, validation)</pre>
confusionMatrix(validation$Species, pred_valid)
## Confusion Matrix and Statistics
##
##
               Reference
## Prediction
               setosa versicolor virginica
##
     setosa
                     10
                                 0
                                            0
                                 9
                                            1
##
     versicolor
                      0
##
     virginica
                      0
                                 0
                                           10
##
## Overall Statistics
##
```

```
Accuracy : 0.9667
##
##
                    95% CI: (0.8278, 0.9992)
       No Information Rate: 0.3667
##
##
       P-Value [Acc > NIR] : 4.476e-12
##
##
                     Kappa : 0.95
##
   Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
##
                        Class: setosa Class: versicolor Class: virginica
## Sensitivity
                                1.0000
                                                  1.0000
                                                                    0.9091
## Specificity
                                                                    1.0000
                                1.0000
                                                  0.9524
## Pos Pred Value
                                1.0000
                                                  0.9000
                                                                    1.0000
## Neg Pred Value
                                1.0000
                                                  1.0000
                                                                    0.9500
## Prevalence
                                0.3333
                                                  0.3000
                                                                    0.3667
## Detection Rate
                                0.3333
                                                  0.3000
                                                                    0.3333
## Detection Prevalence
                                                  0.3333
                                0.3333
                                                                    0.3333
## Balanced Accuracy
                                                  0.9762
                                1.0000
                                                                    0.9545
```

The accuracy of the model has comeout as 96.67%. Here the training model shows 45 support vectors.