CS557: Cryptography

Cryptographic Hash Function III

S. Tripathy IIT Patna

Detailed view of Hash Function

MD5 Overview

Truth Table for Logical function g

b	c	d	F	G	Н	I
0	0	0	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	1	1	0
0	1	1	1	0	0	1
1	0	0	0	0	1	1
1	0	1	0	1	0	1
1	1	0	1	1	0	0
1	1	1	1	1	1	0
1	1	1	1	1	1	

IV: h1 = 0x67452301, h2 = 0xefcdab89, h3= 0x98badcfe, h4 = 0x10325476

 $CV_0 = IV$

 $MD = CV_{L-1}$

RIPEMD-160 Overview

RIPE (RACE Integrity Primitives Evaluation) in 1992

- 1. pad message so its length is 448 mod 512
- 2. append a 64-bit length value to message
- 3. initialise 5-word (160-bit) buffer (A,B,C,D,E) to (67452301,efcdab89,98badcfe,10325476,c3d2e1f0)
- 4. process message in 16-word (512-bit) chunks:
 - use 10 rounds of 16 bit operations on message block & buffer - in 2 parallel lines of 5
 - add output to input to form new buffer value
- 5. output hash value is the final buffer value

RIPEMD-160 Round

RIPEMD-160 verses MD5 & SHA-1

- brute force attack harder (160 like SHA-1 vs 128 bits for MD5)
- not vulnerable to known attacks, like SHA-1 though stronger (compared to MD4/5)
- slower than MD5 (more steps)
- · all designed as simple and compact
- SHA-1 optimised for big endian CPU's vs RIPEMD-160 & MD5 optimised for little endian CPU's

Secure Hash Algorithm (SHA-1)

- SHA was designed by NIST & NSA in 1993, revised 1995 as SHA-1
- US standard for use with DSA signature scheme
 - standard is FIPS 180-1 in 1995, also Internet RFC3174
 - the algorithm is SHA, the standard is SHS
- produces 160-bit hash values
- now the generally preferred hash algorithm
- based on design of MD5 with key differences

SHA-1 Compression Function

 each round has 20 steps which replaces the 5 buffer words thus:

```
(A,B,C,D,E) < -
(E+f(t,B,C,D)+(A<<5)+W_t+K_t),A,(B<<30),C,D)
```

- t is the step number
- f(t,B,C,D) is nonlinear function for round
- \cdot w_t is derived from the message block
- K_t is a constant value is integer part of
 - -2^{30} sqrt(2) **for** 0<t<19
 - -2^{30} sqrt(3) **for** 20<t<39
 - -2^{30} sqrt(5) **for** 40<t<59
 - -2^{30} sqrt (10) **for** $50 \le t \le 79$

SHA-1

One iteration within the SHA-1 compression function

Src: Wikipedea

В	C	D	f ₀₁₉	f ₂₀₃₉	f ₄₀₅₉	f ₆₀₇₉
0	0	O	0	0	0	0
0	0	1	1	1	0	1
0	1	0	0	1	0	1
0	1	1	1	0	1	0
1	0	O	0	1	0	1
1	0	1	0	0	1	0
1.	1	0	1	0	1	0
1.	1	1	1	1	1	1

SHA-1 versus MD5

- brute force attack is harder (160 vs 128 bits for MD5)
- a little slower than MD5 (80 vs 64 steps)
- both designed as simple and compact
- optimised for big endian CPU's (vs MD5 which is optimised for little endian CPU's)
- Collision failure found in 2005 in 2³³ operations Revised Secure Hash Standard
- NIST have issued a revision FIPS 180-2
- adds 3 additional hash algorithms
- SHA 2: SHA-256, SHA-384, SHA-512
 - · designed for compatibility with increased security
 - structure & detail is similar to SHA-1
- SHA-3: Winner selected from solicitations in 2012

Collision resistance

- Def: A Collision for H: $M \rightarrow T$ is a pair $(x,x') \in M$ s.t $x \neq x'$ but H(x) = H(x')
 - As |M| > |T| collision exists
 - Pigeon hole principle
 - A function H: $M \rightarrow T$ is collision resistant hash function (CRHF) if it is hard to find even single collision pair $(x \ x')$

Finding Collision

- How to find a collision (for 256 bit output)
 - try 2130 randomly chosen inputs
 - 99.8% chance that two of them will collide
- This works no matter what H is, but it takes too long
 - If a computer calculates 10,000 hashes/sec, it would
 - take 10^{27} years to compute 2^{128} hashes

Table Comparison of SHA Properties

	SHA-1	SHA-256	SHA-384	SHA-512
Message digest size	160	256	384	512
Message size	< 264	<264	< 2128	< 2128
Block size	512	512	1024	1024
Word size	32	32	64	64
Number of steps	80	80	80	80
Security	80	128	192	256

Notes: 1. All sizes are measured in bits.

2. Security refers to the fact that a birthday attack on a message digest of size n produces a collision with a workfactor of approximately $2^{n/2}$.

Thanks