Бином Ньютона

Ниже представлены задачи к лекции «Бином Ньютона» к курсу «100 уроков математики» Алексея Владимировича Саватеева.

Задачи разделены на 2 вида: типовые (их можно решить прямо используя формулу бинома Ньютона) и нетиповые (решение этих задач потребует большего количества времени и «математической смекалки»).

Часть 1. Типовые задачи

Задача 1. Разложить по формуле бином $(a - \sqrt{2})^6$.

Задача 2. Найти шестой член разложения $(1-2z)^{21}$.

Задача 3. Найдите два средних члена разложения $(a^3 + ab)^{21}$.

Задача 4. В биномиальном разложении $\left(x^3 + \frac{1}{x^3}\right)^{18}$ найти член разложения, не содержащий x.

Часть 2. Нетиповые задачи.

Определение 1. Треугольником Паскаля называется треугольная таблица, составленная из чисел по следующему правилу: строка с номером п состоит из n чисел, первое и последнее числа каждой строки равны единице, а каждое из остальных чисел равно сумме двух ближайших k нему чисел предыдущей строки. Число, стоящее на (k+1) —м месте (n+1) —й строки, обозначается $\binom{n}{k}$.

Задача 1. Выпишите первые 10 строк треугольника Паскаля.

Задача 2. Запишите в виде $\binom{a}{b}$. числа предыдущей строки, ближайшие к числу $\binom{n}{k}$.

Задача 3. Докажите, что $\binom{n}{k} = \binom{n}{k-1}$.

Задача 4. В каких строках треугольника Паскаля все числа нечётные?

Определение 2. Числом сочетаний из n по m называется количество m-элементных подмножеств множества из n элементов. Обозначение: C_n^m .

Задача 5. Найдите: а) C_{100}^1 , б) C_4^2 , в) C_5^2 , г) C_6^4 .

Задача 6. Раскройте скобки в выражениях (a + b), $(a + b)^2$, $(a + b)^3$, $(a + b)^4$ и выпишите результаты друг под другом. Обратите внимание, что коэффициенты образуют треугольник Паскаля.

Задача 7. Докажите, что: $(a+b)^n = \binom{n}{0} a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n} b^n$.

Задача 8. Правило Паскаля: $C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$.

Задача 9. Биномиальные коэффициенты членов разложения, равноотстоящих от концов разложения, равны между собой: $C_n^m = C_n^{n-1}$. (правило симметрии).

Задача 10. Докажите, что $\binom{n}{k} = C_n^k$.`

Задача 11. Сумма биномиальных коэффициентов всех членов разложения равна 2^n .

Задача 12. Сумма биномиальных коэффициентов, стоящих на нечетных местах, равна сумме биномиальных коэффициентов, стоящих на четных местах и равна 2^{n-1} .

Задача 13. Любой биномиальный коэффициент, начиная со второго, равен произведению предшествующего биномиального коэффициента и дроби $\frac{n-(m-1)}{m}, \text{ т.е. } C_n^m = C_n^{m-1} * \frac{n-(m-1)}{m}.$

Задача 14*. Докажите, что число способов пройти из левого нижнего угла прямоугольника $m \times n$ в правый верхний, двигаясь только вверх или вправо по границам клеток, равно $\binom{n+m}{n}$.