Suites numériques 1^{ère} STMG

•00000000000

Suites arithmétiques

Définition et représentation graphique

0.00000000000

Définition et représentation graphique

On considère une liste de nombres formée par tous les nombres impairs rangés dans l'ordre croissant : 1, 3, 5, 7, ...

On considère une liste de nombres formée par tous les nombres impairs rangés dans l'ordre croissant : 1, 3, 5, 7, ...

On note u_n l'ensemble des "éléments" de cette suite de nombres tel que :

$$u_0 = 1$$
 $u_1 = 3$ $u_2 = 5$ $u_3 = 7$...

Suites arithmétiques

Exemple

000000000000

Définition et représentation graphique

On considère une liste de nombres formée par tous les nombres impairs rangés dans l'ordre croissant : 1, 3, 5, 7, ...

On note u_n l'ensemble des "éléments" de cette suite de nombres tel que :

$$u_0 = 1$$
 $u_1 = 3$ $u_2 = 5$ $u_3 = 7$...

On a ainsi défini une **suite numérique**.

On peut lui associer une fonction définie sur $\mathbb N$ par u:

$$\mathbb{N} \longmapsto \mathbb{R}$$
$$n \longmapsto u(n) = u_n$$

Définition : Suite numérique

Une **suite numérique** u_n est une liste ordonnée de nombres réels telle qu'à tout entier n on associe un nombre réel noté u_n .

 u_n est appelé le **terme de rang** n de cette suite (ou d'indice n).

Définition : Suite définie par une formule explicite

Lorsqu'on définit une suite par une formule **explicite**, chaque terme de la suite est exprimé en fonction de n et indépendamment des termes précédents.

Exemples

• Pour tout $n \in \mathbb{N}$, on donne : $u_n = 2n$ qui définit la suite des nombres pairs.

Définition : Suite définie par une formule explicite

Lorsqu'on définit une suite par une formule **explicite**, chaque terme de la suite est exprimé en fonction de n et indépendamment des termes précédents.

Exemples

• Pour tout $n \in \mathbb{N}$, on donne : $u_n = 2n$ qui définit la suite des nombres pairs. Les premiers termes de cette suite sont donc :

$$u_0 = 2 \times 0 = 0$$

 $u_1 = 2 \times 1 = 2$
 $u_2 = 2 \times 2 = 4$
 $u_3 = 2 \times 3 = 6$

• Pour tout $n \in \mathbb{N}$, on donne : $v_n = 3 \times n^2 - 1$.

Définition et représentation graphique

• Pour tout $n \in \mathbb{N}$, on donne : $v_n = 3 \times n^2 - 1$.

Les premiers termes de cette suite sont donc :

$$v_0 = 3 \times 0^2 - 1 = 3 \times 0 - 1 = 0$$

 $v_1 = 3 \times 1^2 - 1 = 3 \times 1 - 1 = 2$
 $v_2 = 3 \times 2^2 - 1 = 3 \times 4 - 1 = 11$
 $v_3 = 3 \times 3^2 - 1 = 3 \times 9 - 1 = 26$

Lorsqu'on définit une suite par une relation de **récurrence**, chaque terme de la suite est exprimé en fonction du terme précédent.

Lorsqu'on définit une suite par une relation de **récurrence**, chaque terme de la suite est exprimé en fonction du terme précédent.

Exemples

• On définit la suite u_n par : $u_0 = 5$ et chaque terme de la suite est le **triple** de son précédent.

Lorsqu'on définit une suite par une relation de **récurrence**, chaque terme de la suite est exprimé en fonction du terme précédent.

Exemples

• On définit la suite u_n par : $u_0 = 5$ et chaque terme de la suite est le **triple** de son précédent.

Les premiers termes de cette suite sont donc :

$$u_0 = 5$$

 $u_1 = 3 \times u_0 = 3 \times 5 = 15$
 $u_2 = 3 \times u_1 = 3 \times 15 = 45$

Lorsqu'on définit une suite par une relation de **récurrence**, chaque terme de la suite est exprimé en fonction du terme précédent.

Exemples

Définition et représentation graphique

00000 00000000

• On définit la suite u_n par : $u_0 = 5$ et chaque terme de la suite est le **triple** de son précédent.

Les premiers termes de cette suite sont donc :

$$u_0 = 5$$

 $u_1 = 3 \times u_0 = 3 \times 5 = 15$
 $u_2 = 3 \times u_1 = 3 \times 15 = 45$

De façon générale, on peut noter : $u_{n+1} = 3 \times u_n$

000000000000

• On définit la suite v_n par : $v_0 = 3$ et pour tout $n \in \mathbb{N}$, $v_{n+1} = 4 \times v_n - 6$

0000000000000

• On définit la suite v_n par : $v_0=3$ et pour tout $n\in\mathbb{N}$, $v_{n+1}=4\times v_n-6$ Les premiers termes de cette suite sont donc :

$$v_0 = 3$$

 $v_1 = 4 \times v_0 - 6 = 4 \times 3 - 6 = 6$
 $v_2 = 4 \times v_1 - 6 = 4 \times 6 - 6 = 18$
 $v_3 = 4 \times v_2 - 6 = 4 \times 18 - 6 = 66$

0000000000000

Suites arithmétiques

• On definit la suite v_n par : $v_0 = 3$ et pour tout $n \in \mathbb{N}$, $v_{n+1} = 4 \times v_n - 6$ Les premiers termes de cette suite sont donc :

$$v_0 = 3$$

 $v_1 = 4 \times v_0 - 6 = 4 \times 3 - 6 = 6$
 $v_2 = 4 \times v_1 - 6 = 4 \times 6 - 6 = 18$
 $v_3 = 4 \times v_2 - 6 = 4 \times 18 - 6 = 66$

Contrairement à une suite définie par une formule explicite, il n'est pas possible, dans l'état, de calculer par exemple v_{13} sans connaître v_{12} .

Remarque

Définition et représentation graphique

000000000000

Cependant il est possible d'écrire un algorithme avec Python :

```
Cependant il est possible d'écrire un algorithme avec Python : v=3
```

```
for i in range(1,10):
    v=4*v-6
    print(i,v)
```

Et on obtient :

Définition et représentation graphique

(1, 6)

- (2, 18)
- (3, 66)
- (4, 258)
- (5, 1026)
- (6, 4098)
- (7, 16386)
- (8, 65538)
- (9, 262146)

Ou sur une calculatrice :

Définition et représentation graphique

Suites arithmétiques

Ou sur une calculatrice :

Définition et représentation graphique

0000000000000

A noter : Le mot récurrence vient du latin recurrere qui signifie "revenir en arrière".

Représentation graphique d'une suite

Dans un repère du plan, on représente une suite par un nuage de points de coordonnées $(n; u_n)$.

Représentation graphique d'une suite

Dans un repère du plan, on représente une suite par un nuage de points de coordonnées $(n; u_n)$.

Exemple

Définition et représentation graphique

0000000000000

Pour tout $n \in \mathbb{N}$, on donne : $u_n = \frac{n^2}{2} - 3$.

On construit le tableau de valeurs avec les premiers termes de la suite :

n	0	1	2	3	4	5	6	7	8
u _n	-3	-2,5	-1	1,5	5	9,5	15	21,5	29

000000000000

Il est possible d'obtenir un nuage de points à l'aide d'un tableur

	А		В
1	n		un
2		0	-3
3		1	-2.5
4		2	-1
5		3	1.5
6		4	5
7		5	9.5
8		6	15
9		7	21.5
10		8	29

FIGURE 1 – Les termes de la suite u_n calculés par un tableur

 ${\rm Figure} \ 2 - {\rm Les} \ {\rm termes} \ {\rm de} \ {\rm la} \ {\rm suites} \ u_n \ {\rm représent\'es} \ {\rm par} \ {\rm un} \ {\rm nuage} \ {\rm de} \ {\rm points}$

On a représenté ci-dessous le nuage de points des premiers termes d'une suite u_n :

On a représenté ci-dessous le nuage de points des premiers termes d'une suite u_n :

FIGURE 3 – Les termes de la suites u_n représentés par un nuage de points

On a représenté ci-dessous le nuage de points des premiers termes d'une suite u_n :

FIGURE 3 – Les termes de la suites u_n représentés par un nuage de points

On peut conjecturer que cette suite est **croissante**.

On constate par exemple que $u_1 < u_2$ ou encore $u_4 < u_5$.

De manière générale, on peut écrire : $u_n < u_{n+1}$

Définition : Variation d'une suite numérique

Soit une suite numérique u_n .

Définition : Variation d'une suite numérique

Soit une suite numérique u_n .

- La suite u_n est **croissante** signifie que pour tout entier n, on a $u_{n+1} \ge u_n$.
- La suite u_n est **décroissante** signifie que pour tout entier n, on a $u_{n+1} \le u_n$.

Définition : Variation d'une suite numérique

Soit une suite numérique u_n .

- La suite u_n est **croissante** signifie que pour tout entier n, on a $u_{n+1} \ge u_n$.
- La suite u_n est **décroissante** signifie que pour tout entier n, on a $u_{n+1} \le u_n$.

FIGURE 4 – Suite croissante en rouge et décroissante en bleu

Méthode : Étudier les variations d'une suite

a) Pour tout $n \in \mathbb{N}$, on donne la suite u_n définie par : $u_{n+1} = u_n + 2$. Démontrer que la suite u_n est croissante.

Méthode : Étudier les variations d'une suite

Suites arithmétiques

- a) Pour tout $n \in \mathbb{N}$, on donne la suite u_n définie par : $u_{n+1} = u_n + 2$. Démontrer que la suite u_n est croissante.
- b) Pour tout $n \in \mathbb{N}$, on donne la suite v_n définie par : $v_n = 4n + 4$. Démontrer que la suite v_n est croissante.

(a) Calculons $(u_{n+1} - u_n)$ et étudions son signe.

 $u_{n+1} - u_n = u_n + 2 - u_n = 2 > 0 \Longrightarrow On en déduit que <math>u_n$ est croissante.

(a) Calculons $(u_{n+1} - u_n)$ et étudions son signe.

 $u_{n+1} - u_n = u_n + 2 - u_n = 2 > 0 \Longrightarrow On$ en déduit que u_n est croissante.

(b) Caculons $(v_{n+1} - v_n)$ et étudions son signe.

(a) Calculons $(u_{n+1} - u_n)$ et étudions son signe.

 $u_{n+1} - u_n = u_n + 2 - u_n = 2 > 0 \Longrightarrow On$ en déduit que u_n est croissante.

(b) Caculons $(v_{n+1} - v_n)$ et étudions son signe.

On a : $v_n = 4n + 4$ donc $v_{n+1} = 4(n+1) + 4 = 4n + 4 + 4 = 4n + 8$

(a) Calculons $(u_{n+1} - u_n)$ et étudions son signe.

 $u_{n+1} - u_n = u_n + 2 - u_n = 2 > 0 \Longrightarrow On$ en déduit que u_n est croissante.

(b) Caculons $(v_{n+1} - v_n)$ et étudions son signe.

On a:
$$v_n = 4n + 4$$
 donc $v_{n+1} = 4(n+1) + 4 = 4n + 4 + 4 = 4n + 8$

$$v_{n+1} - v_n = (4n+8) - (4n+4)$$

= $4n+8-4n-4$
= $4 > 0$

(a) Calculons $(u_{n+1} - u_n)$ et étudions son signe.

 $u_{n+1} - u_n = u_n + 2 - u_n = 2 > 0 \Longrightarrow On$ en déduit que u_n est croissante.

(b) Caculons $(v_{n+1} - v_n)$ et étudions son signe.

On a: $v_n = 4n + 4$ donc $v_{n+1} = 4(n+1) + 4 = 4n + 4 + 4 = 4n + 8$

$$v_{n+1} - v_n = (4n+8) - (4n+4)$$

= $4n+8-4n-4$
= $4 > 0$

Pour tout *n* entier $v_{n+1} - v_n > 0 \Longrightarrow$ On en déduit que la suite (u_n) est croissante.

Suites arithmétiques

Exemples

• Considérons une suite numérique (u_n) où la **différence** entre un terme et son précédent reste constante et égale à 5.

Exemples

• Considérons une suite numérique (u_n) où la **différence** entre un terme et son précédent reste constante et égale à 5.

Si le premier terme est égal à 3, les premiers termes successifs sont :

$$u_0 = 3$$

$$u_1 = 8$$

$$u_2 = 13$$

$$u_2 = 18$$

Exemples

• Considérons une suite numérique (u_n) où la **différence** entre un terme et son précédent reste constante et égale à 5.

Si le premier terme est égal à 3, les premiers termes successifs sont :

$$u_0 = 3$$

$$u_1 = 8$$

$$u_2 = 13$$

$$u_2 = 18$$

Une telle suite est appelée une suite **arithmétique** de raison 5 et de premier terme 3. La suite est donc définie par : $u_{n+1} = u_n + 5$ et $u_0 = 3$.

• Soit la suite numérique v_n de premier terme 5 et de raison -2.

• Soit la suite numérique v_n de premier terme 5 et de raison -2.

Les premiers termes successifs sont :

$$v_0 = 5$$

 $v_1 = 5 - 2 = 3$
 $v_2 = 3 - 2 = 1$
 $v_3 = 1 - 2 = -1$

La suite est donc définie par : $v_{n+1} = v_n - 2$ et $v_0 = 5$.

Définition : Suite arithmétique

Une suite (u_n) est une **suite arithmétique** s'il existe un nombre r tel que pour tout entier n, on a :

$$u_{n+1}=u_n+r$$

Le nombre r est appelé **raison** de la suite.

Soit (u_n) est une suite **arithmétique** de raison r

• Si r > 0 alors la suite (u_n) est **croissante**.

- Si r > 0 alors la suite (u_n) est **croissante**.
- Si r = 0 alors la suite (u_n) est **constante**.

- Si r > 0 alors la suite (u_n) est **croissante**.
- Si r = 0 alors la suite (u_n) est **constante**.
- Si r < 0 alors la suite (u_n) est **décroissante**.

- Si r > 0 alors la suite (u_n) est **croissante**.
- Si r = 0 alors la suite (u_n) est **constante**.
- Si r < 0 alors la suite (u_n) est **décroissante**.

Soit (u_n) est une suite **arithmétique** de raison r

- Si r > 0 alors la suite (un) est croissante.
- Si r = 0 alors la suite (u_n) est **constante**.
- Si r < 0 alors la suite (u_n) est **décroissante**.

Exemple

La suite arithmétique (u_n) définie par $u_{n+1} = u_n - 4$ et $u_0 = 5$ est décroissante car de raison -4 < 0.

Démonstration

Etudions le signe de $u_{n+1} - u_n$.

Etudions le signe de $u_{n+1} - u_n$.

 (u_n) est une suite arithmétique de raison r donc $u_{n+1} = u_n + r$.

Etudions le signe de $u_{n+1} - u_n$.

 (u_n) est une suite arithmétique de raison r donc $u_{n+1} = u_n + r$.

On a donc:

$$u_{n+1} - u_n = (u_n + r) - u_n$$
$$= r$$

Etudions le signe de $u_{n+1}-u_n$. (u_n) est une suite arithmétique de raison r donc $u_{n+1}=u_n+r$. On a donc :

$$u_{n+1} - u_n = (u_n + r) - u_n$$
$$= r$$

• Si r > 0 alors $u_{n+1} - u_n > 0$ et la suite (u_n) est **croissante**.

Etudions le signe de $u_{n+1} - u_n$.

 (u_n) est une suite arithmétique de raison r donc $u_{n+1} = u_n + r$.

On a donc:

$$u_{n+1} - u_n = (u_n + r) - u_n$$
$$= r$$

- Si r > 0 alors $u_{n+1} u_n > 0$ et la suite (u_n) est **croissante**.
- Si r < 0 alors $u_{n+1} u_n < 0$ et la suite (u_n) est **décroissante**.

Représentation graphique d'une suite arithmétique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Représentation graphique d'une suite arithmétique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

Figure 5 – Représentation de $u_{n+1} = u_n - 0.5$ et $u_0 = 4$

Suites géométriques

Exemples

• Considérons une suite numérique (u_n) où le **rapport** entre un terme et son précédent reste constant et égale à 2.

Exemples

• Considérons une suite numérique (u_n) où le **rapport** entre un terme et son précédent reste constant et égale à 2.

$$u_0 = 5$$

$$u_1=10$$

$$u_2 = 20$$

$$u_2 = 40$$

Exemples

• Considérons une suite numérique (u_n) où le **rapport** entre un terme et son précédent reste constant et égale à 2.

$$u_0 = 5$$

 $u_1 = 10$

$$u_2 = 20$$

$$u_2 = 40$$

Une telle suite est appelée une suite **géométrique** de raison 2 et de premier terme 5. La suite est donc définie par : $u_{n+1} = 2 \times u_n$ et $u_0 = 5$.

• Soit la suite géométrique v_n de premier terme 4 et de raison 0, 1.

• Soit la suite géométrique v_n de premier terme 4 et de raison 0, 1.

Les premiers termes successifs sont :

$$v_0 = 4$$

 $v_1 = 4 \times 0.1 = 0.4$
 $v_2 = 0.4 \times 0.1 = 0.04$
 $v_3 = 0.04 \times 0.1 = 0.004$

• Soit la suite géométrique v_n de premier terme 4 et de raison 0, 1.

Les premiers termes successifs sont :

$$v_0 = 4$$

 $v_1 = 4 \times 0.1 = 0.4$
 $v_2 = 0.4 \times 0.1 = 0.04$
 $v_3 = 0.04 \times 0.1 = 0.004$

La suite est donc définie par : $v_{n+1} = 0, 1 \times v_n$ et $v_0 = 4$.

Définition : Suite géométrique

Une suite (u_n) est une **suite géométrique** s'il existe un nombre q, strictement positif, tel que pour tout entier n, on a :

$$u_{n+1} = q \times u_n$$

Le nombre q est appelé **raison** de la suite.

Exemple : Intérêt d'un capital

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%.

Exemple : Intérêt d'un capital

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%.

Chaque année, le capital est multiplié par 1,04.

Ce capital suit une progression **géométrique** de raison 1,04.

Exemple : Intérêt d'un capital

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%.

Chaque année, le capital est multiplié par 1,04.

Ce capital suit une progression **géométrique** de raison 1,04.

On a ainsi:

$$u_0 = 500$$

 $u_1 = 1,04 \times 500 = 520$
 $u_2 = 1,04 \times 520 = 540,80$
 $u_3 = 1,04 \times 540,80 = 562,432$

De manière générale : $u_{n+1} = 1,04 \times u_n$ avec $u_0 = 500$

Soit (u_n) est une suite **géométrique** de raison q et de premier terme u_0 **strictement** positif.

Soit (u_n) est une suite **géométrique** de raison q et de premier terme u_0 **strictement positif**.

• Si q > 1 alors la suite (u_n) est **croissante**.

Suites arithmétiques

Soit (u_n) est une suite **géométrique** de raison q et de premier terme u_0 **strictement** positif.

- Si q > 1 alors la suite (u_n) est **croissante**.
- Si q = 1 alors la suite (u_n) est **constante**.

Suites arithmétiques

Soit (u_n) est une suite **géométrique** de raison q et de premier terme u_0 **strictement** positif.

- Si q > 1 alors la suite (u_n) est **croissante**.
- Si q = 1 alors la suite (u_n) est **constante**.
- Si 0 < q < 1 alors la suite (u_n) est **décroissante**.

Exemple

La suite géométrique (u_n) définie par $u_{n+1} = 0, 5 \times u_n$ et $u_0 = 5$ est **décroissante** car la raison est q = 0.5 et 0 < q < 1.

Exemple

La suite géométrique (u_n) définie par $u_{n+1} = 0, 5 \times u_n$ et $u_0 = 5$ est **décroissante** car la raison est q = 0.5 et 0 < q < 1.

FIGURE 6 – Représentation de $u_{n+1} = 0.5 \times u_n$ et $u_0 = 5$

Représentation graphique d'une suite géométrique

Les points de la représentation graphique d'une suite **géométrique** ne sont pas alignés.

Les points de la représentation graphique d'une suite géométrique ne sont pas alignés.

Exemple

Soit la suite géométrique (u_n) définie par $u_{n+1} = 1,04 \times u_n$ et $u_0 = 500$.

FIGURE 7 – Représentation de $u_{n+1} = 1.04 \times u_n$ et $u_0 = 500$

Définition et représentation graphique 0000000000000

Suites arithmétiques

Récapitulatif

Définition et représentation graphique

Suite arithmétique

	u_n une suite arithmétique de raison r et de 1^{er} terme u_0	Exemple : $r = -0.5$ et $u_0 = 4$
Définition	$u_{n+1} = u_n + r$	$u_{n+1} = u_n - 0.5$
Variation	$r>0\Rightarrow u_n$ croissante $r<0\Rightarrow u_n$ décroissante	$r=0.5<0\Rightarrow u_n$ décroissante
Représentation	Les points de la représentation sont alignés. On parle de croissance linéaire.	Représentation de $u_{n+1} = u_n - 0.5$

Définition et représentation graphique

Suite géométrique

	u_n une suite géométrique de raison $q > 0$ et de 1^{er} terme $u_0 > 0$	Exemple : $q = 2$ et $u_0 = 4$
Définition	$u_{n+1}=u_n\times q$	$u_{n+1}=u_n\times 2$
Variation	$q>1\Rightarrow u_n$ croissante $0< q<1\Rightarrow u_n$ décroissante	$q=2>0\Rightarrow u_n$ croissante
Représentation	Les points de la représentation ne sont pas alignés.	Représentation de $u_{n+1}=2\times u_n$