expansion of the medium had a negligible effect on the total energy loss.

Since the partonic production spectrum observed at RHIC can be approximated by a power law, we use the momentum Jacobian $(p_T^f = (1 - \epsilon)p_T^i)$ as the survival probability of hard partons; see Appendix B. Following the factorization theorem and Glauber approach [366], we distribute partons in the overlap region according to $\rho_{\text{coll}} = T_{AA}$ and isotropically in azimuth; hence

$$R_{AA}(\phi; b) = \frac{\iint dx dy \ T_{AA}(x, y; b) (1 - \epsilon(x, y, \phi; b))^n}{N_{\text{coll}}(b)},$$
(3.5)

where $4 \lesssim n \lesssim 5$. The difference between n=4 and n=5 is less than 10%, and in this paper we will always use the former.

We evaluate $R_{AA}(\phi)$ at 24 values of ϕ from 0-2 π and then find the Fourier modes R_{AA} and v_2 of this distribution. We label the results of this model in the plots as GREL for geometric radiative energy loss. A different method for finding v_2 , not used here, assumes the final parton distribution is given exactly by R_{AA} and v_2 , and then determines v_2 from the ratio of $R_{AA}(0)$ and $R_{AA}(\pi/2)$; this systematically enhances v_2 , especially at large centralities.

Choosing 40 - 50% centrality as a good representative, we calculate the line in (R_{AA}, p_T) space corresponding to $0 \le \kappa < \infty$, Fig. 3.1. One sees in the figure that the curve does not cross the error ellipse for the relevant Phenix π^0 data. This is despite the simplifying use of hard sphere geometry, where we took $R_{HS} = 6.78$ fm to ensure that $\langle r_{\perp,WS}^2 \rangle = \langle r_{\perp,HS}^2 \rangle$, that amplifies the v_2 . Since the experimental errors are the most basic estimate—it would