Introduction to Algebra II, Field Theory

AnLei

Contents

1	Bas	ics	1
	1.1	Characteristic	1
	1.2	Field extensions	2
	1.3	Prime subfield	4
	1.4	Simple Extension	4
	1.5	Algebraic Extension	7
	1.6	Composite Field	8
	1.7	Example of Extensions	8
	1.8	Algebraic Elements	8
2	2 Splitting fields and algebraic closures		8
3	Sep	arable Extensions	8
4	Сус	clomotic Polynomials and Extensions	8

1 Basics

1.1 Characteristic

Definition 1 (Characteristic). Let F be a field. The characteristic of F is defined by

$$\operatorname{char} F := \begin{cases} \min\{n \in \mathbb{N} : n \cdot 1_F = \underbrace{1_F + \dots + 1_F}_{n} = 0\} & \text{if such } n \text{ exists} \\ 0 & \text{otherwise} \end{cases}$$

Proposition 1. char F is a either a prime or 0.

Proof.

Suppose $p = \operatorname{char} F = ab$ for some $a, b \in \mathbb{N}_{\geq 1}$. Then $p1_F = (ab)1_F = (a1_F)(b1_F) = 0$. Since F is a integral domain, $(a1_F) = 0$ or $(b1_F) = 0$, which contradicts with the minimality of p.

1.2 Field extensions 1 BASICS

1.2 Field extensions

Definition 2 (Field Extension). K is a **field extension** of F if K is a field containing a subfield F, denoted by K/F.

Examples:

- 1. $\mathbb{C}/\mathbb{R}/\mathbb{Q}$ (\mathbb{C} is a field extension of \mathbb{R} and \mathbb{R} is a field extension of \mathbb{Q})
- 2. For any squarefree integer $D \neq 1$, $\mathbb{C}/\mathbb{Q}(\sqrt{D})/\mathbb{Q}$.

我們有 $\mathbb{C}=\mathbb{R}+\mathbb{R}i$ 作為 \mathbb{R} 的 field extension。對於任意 $a+bi\in\mathbb{C}$,我們可以將其視為以 $a,b\in\mathbb{R}$ 作為係數, $\{1,i\}$ 作為基底而得到的一個向量。事實上,可以觀察到若 K/F,則 $(K,F,+,\cdot)$ 是一個向量空間,其中加法使用兩個 K 的元素,而乘法為 K 中元素與 F 元素的係數積。

Definition 3 (Degree). If K/F, the **degree** [K:F] is defined by the dimension of K as an F-vector space.

$$[K:F] = \dim_F(K)$$

Examples:

- 1. $[\mathbb{C}:\mathbb{R}]=2$ since \mathbb{C}/\mathbb{R} has a basis $\{1,i\}$
- 2. $[\mathbb{Q}(\sqrt{D}):\mathbb{Q}] = 2$ since $\mathbb{Q}(\sqrt{D})/\mathbb{Q}$ has a basis $\{1,\sqrt{D}\}$
- 3. $[\mathbb{R}:\mathbb{Q}]=\infty$, since $\dim_{\mathbb{Q}}(\mathbb{R})=\infty$.

Proof.

Let [L:K] = m, K:F = n (both finite) and

 $\alpha_1, \ldots, \alpha_m$ be basis of L/K

 β_1, \ldots, β_n be basis of K/F

這邊就直接猜 L/F 的一組基底是

$$C = \bigcup_{i=1}^{m} \bigcup_{j=1}^{n} \{\alpha_i \beta_j\}$$

• $C \operatorname{span} L/K$

對於任意 $x \in L$, 存在 $a_1, \ldots, a_m \in K$ 使得

$$x = \sum_{i=1}^{m} a_i \alpha_i$$

而其中的係數 α_i 又可以用 F 中的係數表示

$$a_i = \sum_{j=1}^n b_{ij} \beta_j \quad b_{ij} \in F$$

所以

$$x = \sum_{i,j} b_{ij} \boxed{\alpha_i \beta_j}$$

1.2 Field extensions 1 BASICS

• C is linearly independent

若存在 $b_{ij} \in F$ 使得

$$\sum_{i,j} b_{ij} \alpha_i \beta_j = 0$$

只要寫成

$$\sum_{i=1}^{m} \left(\sum_{j=1}^{n} b_{ij} \beta_j \right) \alpha_i = 0$$

因為 α_i 在 L/K 中是線性獨立的,所以

$$\left(\sum_{j=1}^{n} b_{ij} \beta_j\right) = 0 \quad \forall i$$

再一次,因為 β_j 在 K/F 中是線性獨立的,所以:

$$b_{ij} = 0 \quad \forall i, j$$

所以 C 是 L/F 上的基底,且

$$[L:F] = |C| = mn = [L:K][K:F]$$

無窮的證明暫略.....

Definition 4 (Subfield generated by elements). 假定 F 是一個 field K/F 。並且令:

$$\alpha_1 \dots \alpha_n \in K$$

由於 subfield 的交集還是 subfield,所以若令 $\mathcal J$ 為 K 中「同時包含 F 與 $\alpha_1 \dots \alpha_n$ 的 subfield 形成的搜集」,也就是:

$$\mathcal{J} = \{ J \subseteq K \mid K/J, \text{ and } J/F \text{ and } \alpha_1 \dots \alpha_n \in J \}$$

則所有這樣的 subfield 形成的交集:

$$\bigcap_{I \in \mathcal{I}} J$$

仍然會是一個 K 中同時包含 F 與 $\alpha_1 \dots \alpha_n$ 的 subfield。且這是所有「K 中同時包含 F 與 $\alpha_1 \dots \alpha_n$ 的 subfield」中最小的 subfield,稱為 subfield generated by $\alpha_1 \dots \alpha_n$ over F,並且記成:

$$F(\alpha_1, \alpha_2 \dots \alpha_n) = \bigcap_{J \in \mathcal{J}} J$$

如果只有一個 α ,則 $F(\alpha)$ 成為一個 simple extension, α 為一個 primitive element。

1.3 Prime subfield 1 BASICS

現在我們來看這個 extension $E=F(\alpha_1,\alpha_2\dots\alpha_n)$ 實際上長什麼樣子。因為 $\alpha_1,\dots,\alpha_n\in E$ 而 E 有加法和乘法的封閉性,所以任何以 F 中元素為係數的 α_1,\dots,α_n 的多項式都在 E 裡面。而 E 也有除法的封閉性 (因為乘法有逆),所以應該包含所有這些多項式的分式:

$$F(\alpha_1, \dots, \alpha_n) \supseteq \left\{ \frac{f(\alpha_1, \dots, \alpha_n)}{g(\alpha_1, \dots, \alpha_n)} : f, g \in F[\alpha_1, \dots, \alpha_n], g \neq 0 \right\}$$

可以驗證由這些多項式分式的蒐集應該也是一個 field,所以也是 $\mathcal J$ 中的元素,但 E 又是其中最小的,所以" \subseteq " 也成立,於是等號成立。

1.3 Prime subfield

Definition 5 (Prime Subfield). The prime subfield P of a field F is the minimal subfield of F containing 1_F :

$$P = \bigcap_{\substack{F/S\\1_T \in S}} S$$

i.e. the subfield generated by 1_F .

我們能夠定義一個 natural ring homomorphism。如果 char F=p>0,考慮 $\phi:\mathbb{Z}\to F, \phi(a)=a1_F\circ\phi$ 的 kernel 是

$$\ker \phi = \{ a \in \mathbb{Z} : \phi(a) = a \cdot 1_F = 0_F \} = \{ a \in \mathbb{Z} : p|a \} = p\mathbb{Z}$$

 ϕ 的 image 就是 F 的 prime subfield。所以由 1st theorem of isomorphism 我們有 $P \cong \mathbb{Z}/p\mathbb{Z}$ 。

如果 $\operatorname{char} F = 0$,考慮 $\phi: \mathbb{Q} \to P, \phi(a/b) = (a1_F)(b1_F)^{-1}$ 。因為 $b \neq 0$ 所以 $(b1_F) \neq 0_F$, ϕ 是 well-defined。 ϕ 是可逆的:

$$\phi^{-1}((a1_F)(b1_F)^{-1}) = \frac{a}{b}$$

所以 ϕ 是一個 ring isomorphism, $P \cong \mathbb{Q}$ 。可以總結如下

Proposition 2. Let P be prime subfield of a field F.

- If char F > 0, then $P \cong \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$
- If char F = 0, then $P \cong \mathbb{Q}$

1.4 Simple Extension

Definition 6 (Simple Extension). If K/F, we say that K is a simple extension if $K = F(\alpha)$ for some $\alpha \in K$.

一個 extension 是否 simple 並不顯然,即使我們使用兩個以上的元素 extent 也可能得到一個 simple extension,比如 $\mathbb{Q}[\sqrt{2},\sqrt{3}]=\mathbb{Q}[\sqrt{2}+\sqrt{3}]$ (作業題)。

Definition 7 (algebraic/transcendental). Let K/F be a field extension. An element $\alpha \in K$ is said to be algebraic over F is α is a root of some nonzero polynomial over F. If no such polynomials exist, then we say α is **transcendental** over F. If every element of K is algebraic over F, then we say K is an **algebraic** extension of F.

1.4 Simple Extension 1 BASICS

Theorem 2. Let p(x) be an irreducible polynomial in F[x]. Then there is an extension field K s.t. p(x) has a root in K.

Proof.

Let K = F[x]/(p(x)). By Prop 15 of Chapter 9, K is a field. It contains F as a subfield. (To be more rigorous, K contains a subfield $\{a + (p(x)) : a \in F\}$ which is isomorphic to F.) It's clear $\alpha = x + (p(x)) \in K$ is a root of p(x). $(p(\alpha) = p(x) + (p(\alpha)) = 0 + (p(x)))$

Proposition 3 (Minimal Polynomial: 以特定元素為根的多項式存在唯一的最小元素). Assume α is algebraic over F. Then $\exists !$ monic irredubcible polynomial $m_{\alpha,F}(x) \in F[x]$ s.t.

$$\begin{cases} \alpha \text{ is a root of } m_{\alpha,F}(x) \\ \text{a polynomial } f(x) \text{ has } \alpha \text{ as a root } \Leftrightarrow m_{\alpha,F}(x)|f(x) \end{cases}$$

The polynomial $m_{\alpha,F}(x)$ is called the **minimal polynomial** of α over F. We define the **degree** of α over F to be $deg(m_{\alpha,F}(x))$.

Proof.

Let $I_{\alpha} := \{f(x) \in F[x], f(\alpha) = 0\}$. It's straightforward to check that I is an ideal of F[x]. By the assumption that α is algebraic over F, $I_{\alpha} \neq \{0\}$. Let p(x) be a polynomial s.t. $I_{\alpha} = (p(x))$. Check p(x) is irreducible. Assume $p(x) = a(x)b(x), a(x), b(x) \in F[x]$. We want to show that one of a(x), b(x) is a unit, i.e. one of a(x), b(x) is a nonzero constant polynomial. Now we have

$$a(\alpha)b(\alpha) = p(\alpha) = 0$$

$$\Rightarrow a(\alpha) = 0 \text{ or } b(\alpha) = 0$$

If $a(\alpha) = 0$, then $a(x) \in I_{\alpha} = (p(x))$

$$\Rightarrow p(x)|a(x)$$

$$deg(a(x)) \geq deg(p(x)) \geq deg(a(x))$$

$$\Rightarrow deg(a(x)) = deg(p(x)) = deg(b(x)) = 0$$

 \Rightarrow b(x) is a nonzero constant polynomial, i.e. $b(x) \in F[x]^{\times}$. Likewise, if $b(\alpha) = 0$, then $a(x) \in F[x]^{\times}$. This proves that p(x) is irreducible. Set

$$m_{\alpha,F}(x) = \frac{1}{\text{(leading coefficients of } p(x))} p(x)$$

Then $m_{\alpha,F}(x)$ is the polynomial with the claimed properties.

Theorem 3. Given a simple extension $F(\alpha)$ of F, where α is algebraic over F with minimal polynomial m(x). Then

$$F(\alpha) \cong F[x]/(m(x))$$

Proof.

Consider the surjective ring homomorphism (evalutation at α) $\psi: F[x] \to F(\alpha)$, $p(x) \mapsto p(\alpha)$. The kernel is the set of polynomials having α as a root, which is simple the ideal (m(x)) of multiples of m. By the first isomorphism theorem

$$F(\alpha) \cong F[x]/(m(x))$$

Corollary 1 (Extension as a vector space). If α is algebraic over F, then

- $[F(\alpha), F] = \deg m_{\alpha, F} =: n$
- $\{1, \alpha, \dots, \alpha^{n-1}\}$ is a basis of $F(\alpha)$ over F
- $F(\alpha) = F[\alpha]$

Proof.

Let $n = \deg m$, then the coset representatives are the remainders in the division by m(x),

$$F[x]/(m(x)) = \{a_0 + a_1x + \dots a_{n-1}x^{n-1} : a_i \in F\}$$

Equivalently, this says that the set $1, \bar{x}, \dots, \bar{x}^{n-1}$ forms an F-basis for F(x)/(m(x)). Applying the isomorphism to $F(\alpha)$ shows that the set $\{1, \dots, \alpha^{n-1}\}$ is an F-basis for $F(\alpha)$. Therefore, we have $[F(\alpha): F] = n$. Furthermore, we see immediately that $F(\alpha) = F[a]$.

Thus, for example, if K is a finite extension of \mathbb{F}_p . Let $n = |K : \mathbb{F}_p|$ and $\{\alpha_1, \dots, \alpha_n\}$ be a basis of K/\mathbb{F}_p , then

$$K = \{a_1\alpha_1 + \dots + a_n\alpha_n : a_i \in \mathbb{F}_n\}$$

so $|K| = p^n$. Since every finite field F has a prime subfield P isomorphic to \mathbb{F}_p , the cardinality of a finite field must be a prime power.

Corollary 2. (Algebraic Equivalence) If α and β are two elements in K/F have the same minimal polynomials, then the fields $F(\alpha)$ and $F(\beta)$ are isomorphic as fields. Explicitly, there is an isomorphism $\phi: F(\alpha) \to F(\beta)$ that fixes F (i.e. sends every element in F to itself) and sends α to β

Proof.

Let m(x) be the common minimal polynomials. $F(\alpha)$ and $F(\beta)$ are both isomorphic to F[x]/(m(x)). Thus $F(\alpha)$ and $F(\beta)$ are isomorphic.

Proposition 4 (Algebraic iff Finite Degree). α is algebraic over $F \Leftrightarrow [F(\alpha):F] < \infty$

Proof.

" \Rightarrow " is clear. Conversely, suppose that $[F(\alpha):F]=n<\infty$. Consider $1,\alpha,\ldots,\alpha^n$, the former n-1 terms form a basis of $F(\alpha)$ over F. So $\alpha^n=a_0+a_1\alpha+\cdots+a_n\alpha^n$ for some $a_i\in F$. So $a_0+a_1\alpha+\cdots-a_n\alpha^n=0$. Thus α is algebraic over F

Corollary 3 (Finite-degree Extensions are Algebraic). If K/F is a finite extension, then K/F is an algebraic extension. (The converse is not true in general)

1.5 Algebraic Extension

Theorem 4 (Finite Algebraic Extensions). If K/F is a field extension with $K = F(\alpha_1, \ldots, \alpha_n)$, then

K/F is algebraic \iff each of the the α_i are algebraic over F

In this case,

$$[K:F] \le \prod_{i=1}^{n} [F(\alpha_i):F]$$

and every element of K is a polynomial with coefficients from F in the α_i

Proof.

(" \Rightarrow "): Prove the negation. If any of the α_i is transcendental over F then K is not algebraic over F.

(" \Leftarrow "): Suppose the α_i are algebraic. For each i we have $F(\alpha_1, \ldots, \alpha_i) = F(\alpha_1, \ldots, \alpha_{i-1})(\alpha_i)$. Since a simple extension is algebraic if and only if it has finite degree. By the chain rule we have

$$[K:F] = \prod_{i=1}^{n} [F(\alpha_1, \dots, \alpha_i) : F(\alpha_1, \dots, \alpha_{i-1})]$$

So [K:F] is also finite, K/F is algebraic.

Now, consider the minimal polynomial m(x) of α_i over F and the minimal polynomial m'(x) of α_i over $F(\alpha_1, \ldots, \alpha_{i-1})$. Since m(x) is also a polynomial in $F(\alpha_1, \ldots, \alpha_{i-1})$ having α_i as a root, by properties of minimal polynomials we see that m'(x)|m(x), so

$$[F(\alpha_1, \dots, \alpha_i) : F(\alpha_1, \dots, \alpha_{i-1})] = \deg m' \le \deg m = [F(\alpha_i) : F]$$

Taking the product from i = 1 to n yields

$$[K:F] = \prod_{i=1}^{n} [F(\alpha_i):F]$$

More explicitly, every element of $K = F(\alpha_1, \dots, \alpha_n)$ is an F-linear combination of elements of the form $\alpha_1^{c_1} \dots \alpha_n^{c_n}$, where each c_i is an integer with $0 \le c_i \le [F(\alpha_i) : F]$

$$F(\alpha_1, \dots, \alpha_n) = \{b_{1\dots n}\alpha_1^{c_1}\dots \alpha_n^{c_n}: b_{1\dots n}\in F, c_i\in \mathbb{Z}, 0\leq c_i\leq [F(\alpha_i):F]\}$$

Theorem 5 (Towers of Algebraic Extensions). If L/K is an algebraic extension, and K/F is an algebraic extension, then L/F is an algebraic extension.

Proof.

These results are obvious if the extensions have finite degree. the content is when one of the extensions has infinite degree (but is still algebraic).

Consider any $\alpha \in L$. Since L/K is algebraic, α is algebraic over K and is the root of some polynomial $p(x) = a_0 + a_1 x + \dots + a_n x^n \in K[x]$. Since K/F is also algebraic, each of the a_i are algebraic over F, so the extension $E = F(a_0, \dots, a_n)$ has finite degree over F.

Furthermore, $|E(\alpha):E| < \infty$ because α is the root of a nonzero polynomial in E[x]. Thus, since $|E(\alpha):E|$ and |E/F| are both finite, so does $|E(\alpha):F|$. So α is a root of a polynomial of finite degree over F, so α is algebraic over F. This holds for all $\alpha \in L$, so L is algebraic over F.

1.6 Composite Field

1.7 Example of Extensions

By using our results on simple and composite extensions, along with the chain rule of field degrees, we can often say a great deal about extensions of small degree. First, we can characterize quadratic extensions:

Proposition 5 (Quadratic Extensions). F: field with char $\neq 2$; K/F: a quadratic extension (i.e. [K:F]=2). Then $K=F(\alpha)$ for any $\alpha \in K \setminus F$.

Proof.

If
$$\alpha \in K \setminus F$$
, then the set $\{1, \alpha\}$ is basis for K/F since $[K : F] = 2$. Thus $K = F(\alpha)$

Determine the degree of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ over \mathbb{Q}

1.8 Algebraic Elements

2 Splitting fields and algebraic closures

3 Separable Extensions

4 Cyclomotic Polynomials and Extensions

Definition 8 (nth root of unity). Let $\zeta_n = e^{2\pi i/n}$ and μ_n denote the group of nth root of unity over \mathbb{Q} .

$$\mu_n = \{1, \zeta_n, \dots, \zeta_n^{n-1}\}$$

這些元素就是 $x^n-1\in\mathbb{Q}[x]$ 的所有根。 $\xi\notin\mathbb{Q}$,可以用他 extent 出 x^n-1 的 splitting field $E=\mathbb{Q}(\xi)$ 。

Definition 9 (Primitive). $\zeta \in \mu_n$ is primitive if $\langle \zeta \rangle = \mu_n$, i.e. if $\zeta = \zeta_n^k$ where (k, n) = 1.

Remark 1. 可以 recall 一些 group theory 的東西:

- $\mathbb{Z}/n\mathbb{Z}$ 和 μ_n 之間有一個 isomorphism: $a\mapsto \zeta_n^a$,且 μ_n 中有 $\varphi(n)$ 個 primitive 的元素。
- $|\zeta_n^i| = n/(n,i)$

Definition 10 (Cyclomotic Polynomial). Define the nth cyclotomic polynomial $\Phi_n(x)$ to be the polynomial whose roots are the primitive nth roots of unity:

$$\Phi_n(x) := \prod_{\substack{\zeta \text{ primitive } \in \mu_n \\ (k,n)=1}} (x - \zeta) = \prod_{\substack{1 \le k < n \\ (k,n)=1}} (x - \zeta_n^k) \in E[x]$$

so $\deg \Phi_n = \varphi(n)$

現在我們來看一個包含完整的 root of unity 的 x^n-1 如何拆分成 Cyclomotic Polynomials: 如果 n=p 是質數,則

$$x^{p} - 1 = (x - 1)(x^{p-1} + x^{p-2} + \dots + 1) = (x - 1)\Phi_{p}(x)$$

如果 n 不是質數,比如

$$x^{4} - 1 = (x - 1)(x + 1)(x^{2} + 1)$$
$$x^{6} - 1 = (x^{3} - 1)(x^{3} + 1) = (x - 1)(x + 1)(x^{2} + x + 1)(x^{2} - x + 1)$$

$$x^n - 1 = \prod_{\zeta \in \mu_n} (x - \zeta)$$

可以將 μ_n 中的元素以它們的 order d(為 n 的因數) 分類

$$x^{n} - 1 = \prod_{\substack{d \mid n}} \prod_{\substack{\zeta \in \mu_{n} \\ |\zeta| = d}} (x - \zeta)$$

因為 $\mu_d=\{1,\zeta_d,\dots,\zeta_d^{d-1}\}$ 中元素的 order 為 $|\zeta_d^i|=d/(d,i)$ 。所以第二個連乘相當於把 μ_d 中的 primitive 元素收集起來:

$$x^{n} - 1 = \prod_{\substack{d \mid n \ 1 \le k < d \\ (k,d) = 1}} (x - \zeta_{d}^{k}) = \prod_{\substack{d \mid n \ }} \Phi_{d}(x)$$

在 Definition 10中我們是在 E[X] 中定義的,現在我們證明他實際上在 $\mathbb{Z}[X]$ 中而且是 monic 。

Lemma 1. $\Phi_n(x) \in \mathbb{Z}[x]$ and is monic.

Proof.

We already have

$$x^n - 1 = \prod_{d|n} \Phi_d(x)$$

We now prove by induction on n.

$$n-1 \Rightarrow \Phi_1(x) = x-1$$

Assume the statement holds until n-1. Now

$$\Phi_n(x) = \frac{x^n - 1}{\prod_{d|n, d \neq n} \Phi_d(x)} \in \mathbb{Z}[x]$$

where the above fraction polynomial is in $\mathbb{Z}[x]$ because both the numerator and the denominator are monic. \square

用以上 Lemma 的證明方式我們也能遞迴地找出各個 Cyclotomic polynomials:

- $\Phi_1 = x 1$
- $\Phi_2 = x + 1$
- $x^3 1 = \Phi_1 \Phi_3$, so $\Phi_3 = x^2 + x + 1$
- $x^4 1 = \Phi_1 \Phi_2 \Phi_4$, so $\Phi_4 = x^2 + 1$
- $x^6 1 = \Phi_1 \Phi_2 \Phi_3 \Phi_6$, so $\Phi_6 = x^2 x + 1$
- $\Phi_8 = x^4 + 1$
- $\Phi_9 = x^6 + x^3 + 1$
- $\Phi_{10} = x^4 x^3 + x^2 x + 1$
- $\Phi_{12} = x^4 x^2 + 1$

更進一步,我們還能發現它們 irreducible

Theorem 6. $\Phi_n(x)$ is irreducible over \mathbb{Q}

Proof.

Let $f(x) = m_{\zeta_n,\mathbb{Q}}(x)$. Then $f(x)|\Phi_n(x)$. We'll show that $f(x) = \Phi_n(x)$. This implies $\Phi_n(x)$ is irreducible over \mathbb{Q} . Proving " $f(x) = \Phi_n(x)$ " \Leftrightarrow " $\forall k$ such that (k,n) = 1, $f(\zeta_n^k) = 0$ ". So it suffices to show that $\forall k, (k,n) = 1, f(\zeta_n^k) = 0$. (\forall primitive *n*th roots ζ of unity, $f(\zeta) = 0$.)

We first prove the case k=p is a prime. Write $\Phi_n(x)=f(x)g(x)$. (By Gauss's lemma, $f,g\in\mathbb{Z}[x]$.) We have

$$\Phi_n(\zeta_n^p) = 0$$

Suppose that $f(\zeta_n^p) \neq 0$, then $g(\zeta_n^p) = 0$. $\Rightarrow \zeta_n$ is a root of $g(x^p)$. $\Rightarrow f(x)|g(x^p)$. Say $g(x^p) = f(x)h(x)$. Now consider the reduction modulo p. Say $g(x) = a_m x^m + \cdots + a_n$. Since $\overline{a_m}^p = \overline{a_m} \ \forall a_m \in \mathbb{Z}$. $(\overline{a_n} = \text{residue class})$ of a_n modulo p.) We have

$$\overline{g(x^p)} = \overline{a_m} x^{pm} + \dots + \overline{a_0}$$

$$= \overline{a_m} x^{pm} + \dots + \overline{a_0}^p$$

$$= (\overline{a_m} x^m + \dots + \overline{a_0})^p = \overline{g(x)}^p$$

Therefore

$$\overline{g(x)}^p = \overline{f(x)h(x)}$$

Since $(\mathbb{Z}/p\mathbb{Z})[x]$ is a UFD, this implies that $GCD(\overline{f(x)}, \overline{g(x)}) \neq 1$. $\Rightarrow \overline{\Phi_n(x)} = \overline{f(x)g(x)}$ has a repeated root. However we can show that $\overline{\Phi_n(x)}$ has no repeated roots (which will be proved below). This yields a contradiction. Thus we must have $f(\zeta_n^p) = 0$.

We will now show the claim. We'll show that $\overline{x^n-1}$ has no repeated roots. Then since $\overline{\Phi_n(x)}|\overline{x_n-1},\overline{\Phi_n(x)}|$ does not have a repeated root either. Here $D(\overline{x^n-1})=\overline{nx^{n-1}}$. Since $p\not\mid n,\bar{n}\neq \bar{0}$. We have

$$\overline{x^n - 1} = (\overline{n^{-1}x})D(\overline{x^n - 1}) - 1$$

$$\Rightarrow (\overline{x^n - 1}, D(\overline{x^n - 1})) = 1$$

 $\Rightarrow \overline{\Phi_n(x)}$ has no repeated roots.