Formule du binôme

Quelques calculs généraux pour commencer

Calcul 1.1 — Fractions numériques.

0000

Simplifier, en donnant le résultat sous forme de fraction irréductible.

a)
$$\frac{3 \times 2 \times 1}{4 \times 3 \times 2} + \frac{5 \times 4 \times 3}{6 \times 5 \times 4}$$

c)
$$\frac{4 \times 3 \times 2 \times 1}{5 \times 4 \times 3 \times 2} + \frac{6 \times 5 \times 4 \times 3}{7 \times 6 \times 5 \times 4} ..$$

b)
$$\frac{4 \times 3 \times 2}{5 \times 4 \times 3} - \frac{6 \times 5 \times 4}{7 \times 6 \times 5} \dots$$

d)
$$\frac{5 \times 4 \times 3 \times 2}{6 \times 5 \times 4 \times 3} - \frac{7 \times 6 \times 5 \times 4}{8 \times 7 \times 6 \times 5} \dots$$

Calcul 1.2 — Fractions littérales.

Soit n un entier relatif quelconque, tel que dans chaque cas, les expressions considérées soient bien définies. Simplifier, en donnant le résultat aussi simplifié que possible.

a)
$$\frac{1}{n} - \frac{1}{n-1}$$

b)
$$\frac{n-1}{n(n+1)} - \frac{n+1}{n(n-1)}$$

c)
$$\frac{n(n-1)(n-2)}{(n+1)n(n-1)} + \frac{(n+2)(n+1)n}{(n+3)(n+2)(n+1)}$$

d)
$$\frac{(n+1)n(n-1)(n-2)}{(n+2)(n+1)n(n-1)} - \frac{(n+3)(n+2)(n+1)n}{(n+4)(n+3)(n+2)(n+1)} \dots$$

Premiers calculs

Calcul 1.3 — Coefficients binomiaux (I).

Calculer:

a)
$$\begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

d)
$$\binom{3}{3}$$

g)
$$\binom{4}{2}$$

b)
$$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

e)
$$\begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

h)
$$\begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

c)
$$\binom{3}{2}$$

f)
$$\begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

i)
$$\begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

Calcul 1.4 — Simplification de factorielles numériques.

0000

Écrire les expressions suivantes sous forme d'un entier ou d'une fraction irréductible :

c)
$$\frac{12! \times 6!}{8! \times 4!}$$

b)
$$\frac{10!}{7!}$$

d)
$$\frac{(6!)^2}{10! \times 8!}$$

Calcul 1.5 — Coefficients binomiaux (II).

Déterminer la valeur des coefficients binomiaux suivants sous forme d'un nombre entier :

a)
$$\binom{10}{3}$$

c)
$$\binom{12}{4}$$

b)
$$\binom{10}{7}$$

d)
$$\binom{12}{8}$$

Calcul 1.6 — Simplification de factorielles littérales.

Soit n un entier naturel. Écrire les expressions suivantes sous la forme la plus simplifiée possible :

a)
$$\frac{n!}{(n-2)!}$$

c)
$$\frac{(n^2-1)\times n!}{(n+1)!}$$

b)
$$\frac{(n+1)!}{(n-2)!}$$

d)
$$\frac{(n-1)!}{(n+1)!} + \frac{(n-2)!}{n!}$$

Calcul 1.7 — Coefficients binomiaux (III).

Soit n un entier supérieur ou égal à 3.

Déterminer la valeur des coefficients binomiaux suivants sous forme d'une fraction, aussi simplifiée que possible :

a)
$$\binom{n}{0}$$

e)
$$\binom{n}{n-3}$$

b)
$$\binom{n}{1}$$

f)
$$\binom{n}{n-2}$$

c)
$$\binom{n}{2}$$

g)
$$\binom{n}{n-1}$$

d)
$$\binom{n}{3}$$

$$\mathbf{h}) \quad \binom{n}{n} \quad \dots \quad \dots$$

Calcul 1.8 — Quelques développements.

Soit x un réel. À l'aide de la formule du binôme, développer les expressions suivantes :

a)
$$(1+x)^3$$

b)
$$(2-x)^4$$

c)
$$(x+3)^5$$

d)
$$\left(x - \frac{1}{2}\right)^6$$

Calcul 1.9 — Sommes binomiales (I).

Déterminer la valeur de chacune des sommes :

Calcul 1.10 — Sommes binomiales (II).

Soit n un entier naturel. Déterminer la valeur de chacune des sommes :

a)
$$\sum_{k=0}^{n} \binom{n}{k} \times 1^{k} \times 2^{n-k} \dots$$
 c)
$$\sum_{k=0}^{n} \binom{n}{k} \times \frac{1}{2^{n-k}} \dots$$

Calcul 1.11 — Sommes binomiales (III).

Soit n un entier naturel. Déterminer la valeur de chacune des sommes :

Calcul 1.12 — Sommes binomiales (IV).

Soit n un entier naturel non nul. Déterminer la valeur de chacune des sommes :

a)
$$\sum_{k=0}^{n} \binom{n}{k} \times (-1)^k \dots$$

c)
$$\sum_{k=0}^{n} \binom{n}{k} \times 2^{-k} \dots$$

b)
$$\sum_{k=0}^{n} \binom{n}{k} \times (-1)^{-k} \dots$$

d)
$$\sum_{k=0}^{n} \binom{n}{k} \times (-3)^{n-k} \dots$$

Calcul 1.13 — Sommes binomiales (V).

Soit n un entier naturel et soient a et b deux réels.

Déterminer une expression factorisée et réduite de chacune des sommes suivantes :

a)
$$\sum_{k=0}^{n} \binom{n}{k} \times a^k \dots$$

c)
$$\sum_{k=0}^{n} \binom{n}{k} a^{-k} \dots$$

b)
$$\sum_{k=0}^{n} \binom{n}{k} \times b^n$$

d)
$$\sum_{k=0}^{n} \binom{n}{k} \times a^k b^n \dots$$

Calculs plus avancés

Calcul 1.14 — Une formule bien utile.

Soient $n \in \mathbb{N}$ et $k \in [1, n]$.

Calculer $\binom{n+1}{k+1} - \frac{n+1}{k+1} \binom{n}{k}$

Calcul 1.15 — Sommes binomiales d'indices pairs et impairs.

Soit $n \in \mathbb{N}^*$. On note

$$\mathcal{P} = \sum_{\substack{k=0\\k \text{ pair}}}^{n} \binom{n}{k} \quad \text{et} \quad \mathcal{I} = \sum_{\substack{k=0\\k \text{ impair}}}^{n} \binom{n}{k}.$$

b) Exprimer
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k}$$
 à l'aide de \mathcal{P} et \mathcal{I}

c) En déduire les valeurs de
$$\mathcal P$$
 et de $\mathcal I$

Calcul 1.16 — Une somme binomiale classique.

Soit $n \in \mathbb{N}^*$. On considère la fonction $f: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto (1+x)^n. \end{array} \right.$

- a) La fonction f est dérivable. Calculer f'(x), pour $x \in \mathbb{R}$
- Exprimer f(x), pour $x \in \mathbb{R}$, sous la forme d'une somme
- En déduire une expression sous forme de somme de f'(x)
- En évaluant en x=1 les deux expressions obtenues pour f'(x), en déduire la valeur de $\sum_{k=0}^{n} k \binom{n}{k}$.

Calcul 1.17 — Une formule binomiale.

Soient $N, k \in \mathbb{N}$ tels que $0 \le k \le N$. On note $S(k, N) = \sum_{k=0}^{N} {n \choose k}$.

Combien valent les valeurs particulières suivantes? On attend une réponse aussi simple que possible.

- a) S(N, N)
- c) S(N-1,N)
- b) S(0, N)
- d) S(N-2,N)
- e) Exprimer S(k, N + 1) en fonction de S(k, N)

On note maintenant $T(k, N) = S(k, N) - {N+1 \choose k+1}$.

- f) Combien vaut, d'après la relation de Pascal, $\binom{N+1}{k} + \binom{N+1}{k+1}$?

- (a) $\binom{N+1}{k+2}$ (b) $\binom{N+2}{k}$ (c) $\binom{N+2}{k+1}$ (d) $\binom{N+2}{k+2}$

Calculer T(k, N+1) - T(k, N)

h) En déduire la valeur de $\sum_{n=k}^{N} \binom{n}{k}$

► Réponses et corrigés page ??

Fiche nº 1. Formule du binôme

Réponses

Réponses		
1.1 a)	1.5 c)	1.10 a) 3^n
	1.5 d)	1.10 b) 4^n
1.1 b) $\left[-\frac{6}{35} \right]$	1.6 a)	1.10 c)
1.1 c) $\frac{22}{35}$	1.6 b) $n^3 - n$	1.10 d) 2^n
35	1.6 c) $n-1$,
1.1 d) $\left[-\frac{1}{6} \right]$	1.6 d) $ \frac{2}{n^2 - 1} $	1.11 a)
1.2 a) $-\frac{1}{n(n-1)}$	1.7 a)	1.11 c) $\left[\left(\frac{3}{2} \right)^7 \right]$
1.2 b) $-\frac{4}{(n+1)(n-1)}$	1.7 c) $ \frac{n(n-1)}{2} $	1.11 d)
(n+1)(n-1)	2	1.12 a)
1.2 c) $\frac{2n^2 + 2n - 6}{(n+1)(n+3)}$	1.7 d) $ \frac{n(n-1)(n-2)}{6} $	1.12 b)
1.2 d) $ -\frac{8}{(n+2)(n+4)} $	1.7 e) $ \overline{ \frac{n(n-1)(n-2)}{6} } $	1.12 c) $\left\lfloor \left(\frac{3}{2}\right)^n \right\rfloor$
1.3 a)	1.7 f) $n(n-1)$	1.12 d) $(-2)^n$
1.3 b)	2	1.13 a)
1.3 c)	1.7 g)	1.13 b)
1.3 d) 1	1.7 h)	
1.3 e)	1.8 a) $x^3 + 3x^2 + 3x + 1$	1.13 c) $\left \left(\frac{1}{a} + 1 \right)^n \right $
1.3 f)	1.8 b) $x^4 - 8x^3 + 24x^2 -32x + 16$	1.13 d) $(ab+b)^n$
1.3 g) 6	$x^5 + 15x^4 + 90x^3$	1.14 0
1.3 h)	1.8 c)	1.15 a) $\boxed{\mathcal{P} + \mathcal{I}}$
1.3 i)	1.8 d) $x^6 - 3x^5 + \frac{15}{4}x^4 - \frac{5}{2}x^3$	1.15 b) $\boxed{\mathcal{P} - \mathcal{I}}$
1.4 a)	1.8 d) $+\frac{15}{16}x^2 - \frac{3}{16}x + \frac{1}{64}$	
1.4 b)		1.15 c)
1.4 c)	1.9 a)	
1.4 d) $\left \frac{1}{282\ 240} \right $	1.9 b)	1.16 a) $n(1+x)^{n-1}$
1.5 a)	1.9 c) $\left \left(\frac{3}{2} \right)^7 \right $	1.16 b) $\left \sum_{k=0}^{n} \binom{n}{k} x^k \right $
1.5 b)	1.9 d)	

Corrigés

1.17 b) N+1

1.1 a) On a
$$\frac{3 \times 2 \times 1}{4 \times 3 \times 2} + \frac{5 \times 4 \times 3}{6 \times 5 \times 4} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$$
.

1.1 b) On a
$$\frac{4 \times 3 \times 2}{5 \times 4 \times 3} - \frac{6 \times 5 \times 4}{7 \times 6 \times 5} = \frac{2}{5} - \frac{4}{7} = \frac{14}{35} - \frac{20}{35} = \frac{-6}{35}$$

1.1 c) On a
$$\frac{4 \times 3 \times 2 \times 1}{5 \times 4 \times 3 \times 2} + \frac{6 \times 5 \times 4 \times 3}{7 \times 6 \times 5 \times 4} = \frac{1}{5} + \frac{3}{7} = \frac{7}{35} + \frac{15}{35} = \frac{22}{35}$$
.

1.1 d) On a
$$\frac{5 \times 4 \times 3 \times 2}{6 \times 5 \times 4 \times 3} - \frac{7 \times 6 \times 5 \times 4}{8 \times 7 \times 6 \times 5} = \frac{1}{3} - \frac{1}{2} = \frac{2}{6} - \frac{3}{6} = -\frac{1}{6}$$
.

1.2 a) On a
$$\frac{1}{n} - \frac{1}{n-1} = \frac{n-1}{n(n-1)} - \frac{n}{n(n-1)} = \frac{-1}{n(n-1)}$$

1.2 b) On a

$$\frac{n-1}{n(n+1)} - \frac{n+1}{n(n-1)} = \frac{(n-1)^2}{n(n+1)(n-1)} - \frac{(n+1)^2}{n(n+1)(n-1)} = \frac{((n-1)-(n+1))((n-1)+(n+1))}{n(n+1)(n-1)} = \frac{-2 \times 2n}{n(n+1)(n-1)} = \frac{-4}{(n+1)(n-1)}.$$

1.2 c) On a

$$\frac{n(n-1)(n-2)}{(n+1)n(n-1)} + \frac{(n+2)(n+1)n}{(n+3)(n+2)(n+1)} = \frac{n-2}{n+1} + \frac{n}{n+3} = \frac{(n-2)(n+3)}{(n+1)(n+3)} + \frac{n(n+1)}{(n+1)(n+3)} = \frac{n^2+3n-2n-6+n^2+n}{(n+1)(n+3)} = \frac{2n^2+2n-6}{(n+1)(n+3)}.$$

1.2 d) On a

$$\frac{(n+1)n(n-1)(n-2)}{(n+2)(n+1)n(n-1)} - \frac{(n+3)(n+2)(n+1)n}{(n+4)(n+3)(n+2)(n+1)} = \frac{n-2}{n+2} - \frac{n}{n+4}$$

$$= \frac{(n-2)(n+4)}{(n+2)(n+4)} - \frac{n(n+2)}{(n+2)(n+4)}$$

$$= \frac{n^2 + 4n - 2n - 8 - n^2 - 2n}{(n+2)(n+4)} = \frac{-8}{(n+2)(n+4)}.$$

1.3 g) On a
$$\binom{4}{2} = \frac{4 \times 3}{2!} = 6$$
.

1.4 a) On a
$$\frac{5!}{3!} = \frac{5 \times 4 \times 3!}{3!} = 20.$$

1.4 b) On a
$$\frac{10!}{7!} = \frac{10 \times 9 \times 8 \times 7!}{7!} = 720.$$

1.4 c) On a
$$\frac{12! \times 6!}{8! \times 4!} = \frac{12 \times 11 \times 10 \times 9 \times 8! \times 6 \times 5 \times 4!}{8! \times 4!} = 12 \times 11 \times 10 \times 9 \times 6 \times 5 = 356 \ 400.$$

1.4 d) On a
$$\frac{(6!)^2}{10! \times 8!} = \frac{6! \times 6!}{10 \times 9 \times 8 \times 7 \times 6! \times 8 \times 7 \times 6!} = \frac{1}{10 \times 9 \times 8 \times 7 \times 8 \times 7} = \frac{1}{282\ 240}$$
.

1.5 a) On a
$$\binom{10}{3} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 10 \times 3 \times 4 = 120.$$

1.5 b) On a
$$\binom{10}{7} = \binom{10}{10-7} = \binom{10}{3} = 120$$
.

1.5 c) On a
$$\binom{12}{4} = \frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1} = 11 \times 5 \times 9 = 495.$$

1.5 d)
$$\binom{12}{8} = \binom{12}{12-8} = \binom{12}{4} = 495.$$

1.6 a) On a
$$\frac{n!}{(n-2)!} = \frac{n \times (n-1) \times (n-2)!}{(n-2)!} = n(n-1) = n^2 - n.$$

1.6 b) On a
$$\frac{(n+1)!}{(n-2)!} = \frac{(n+1)n(n-1)(n-2)!}{(n-2)!} = (n+1)n(n-1) = n^3 - n$$
.

1.6 c) On a
$$\frac{(n^2-1)\times n!}{(n+1)!} = \frac{(n-1)(n+1)n!}{(n+1)n!} = n-1$$
.

1.6 d) On a

$$\frac{(n-1)!}{(n+1)!} + \frac{(n-2)!}{n!} = \frac{(n-1)!}{(n+1)!} + \frac{(n+1)(n-2)!}{(n+1) \times n!} = \frac{(n-1)! + (n+1)(n-2)!}{(n+1)!}$$

$$= \frac{(n-2)!(n-1+n+1)}{(n+1) \times n \times (n-1) \times (n-2)!} = \frac{2n}{(n+1) \times n \times (n-1)} = \frac{2}{n^2 - 1}.$$

1.7 d) On a
$$\binom{n}{3} = \frac{n(n-1)(n-2)}{3!} = \frac{n(n-1)(n-2)}{6}$$
.

1.7 e) On a
$$\binom{n}{n-3} = \binom{n}{3} = \frac{n(n-1)(n-2)}{6}$$
.

1.8 a) On a
$$(1+x)^3 = \sum_{k=0}^{3} {3 \choose k} 1^{3-k} \times x^k = x^3 + 3x^2 + 3x + 1$$
.

1.8 b) On a
$$(2-x)^4 = \sum_{k=0}^4 {4 \choose k} 2^{4-k} \times (-x)^k = x^4 - 8x^3 + 24x^2 - 32x + 16$$
.

1.8 c) On a
$$(x+3)^5 = \sum_{k=0}^{5} {5 \choose k} 3^{5-k} \times x^k = x^5 + 15x^4 + 90x^3 + 270x^2 + 405x + 243$$
.

k=0 $^{\prime}$

1.8 d) On a
$$\left(x - \frac{1}{2}\right)^6 = \sum_{k=0}^6 \binom{6}{k} \left(\frac{1}{2}\right)^{6-k} \times x^k = x^6 - 3x^5 + \frac{15}{4}x^4 - \frac{5}{2}x^3 + \frac{15}{16}x^2 - \frac{3}{16}x + \frac{1}{64}$$
.

1.9 a) On a
$$\sum_{k=0}^{5} {5 \choose k} \times 1^k \times 2^{5-k} = (1+2)^5 = 3^5$$
.

1.9 b) On a
$$\sum_{k=0}^{6} {6 \choose k} \times 3^{6-k} = \sum_{k=0}^{6} {6 \choose k} \times 3^{6-k} \times 1^k = (3+1)^6 = 4^6$$
.

1.9 c) On a
$$\sum_{k=0}^{7} {7 \choose k} \times \frac{1}{2^{7-k}} = \sum_{k=0}^{7} {7 \choose k} \times \left(\frac{1}{2}\right)^{7-k} \times 1^k = \left(\frac{1}{2} + 1\right)^7 = \left(\frac{3}{2}\right)^7$$
.

1.9 d) On a
$$\sum_{k=0}^{8} {8 \choose k} = \sum_{k=0}^{8} {8 \choose k} \times 1^k \times 1^{8-k} = 2^8$$
.

1.10 a) On a
$$\sum_{k=0}^{n} \binom{n}{k} \times 1^k \times 2^{n-k} = (1+2)^n = 3^n$$
.

1.10 b) On a
$$\sum_{k=0}^{n} \binom{n}{k} \times 3^{n-k} = \sum_{k=0}^{n} \binom{n}{k} \times 3^{n-k} \times 1^{k} = (3+1)^{n} = 4^{n}$$

1.10 c) On a
$$\sum_{k=0}^{n} \binom{n}{k} \times \frac{1}{2^{n-k}} = \sum_{k=0}^{n} \binom{n}{k} \times \left(\frac{1}{2}\right)^{n-k} \times 1^{k} = \left(\frac{1}{2} + 1\right)^{n} = \left(\frac{3}{2}\right)^{n}$$
.

1.10 d) On a
$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} \times 1^{k} \times 1^{n-k} = (1+1)^{n} = 2^{n}$$
.

1.11 a) On a
$$\sum_{k=0}^{5} {5 \choose k} \times (-1)^k = \sum_{k=0}^{5} {5 \choose k} \times (-1)^k \times 1^{5-k} = (-1+1)^5 = 0.$$

1.11 b) On a
$$\sum_{k=0}^{6} {6 \choose k} \times (-1)^{-k} = \sum_{k=0}^{6} {6 \choose k} \times \left(\frac{1}{-1}\right)^k \times 1^{6-k} = (-1+1)^6 = 0.$$

1.11 c) On a
$$\sum_{k=0}^{7} {7 \choose k} \times 2^{-k} = \sum_{k=0}^{7} {7 \choose k} \times \left(\frac{1}{2}\right)^k \times 1^{7-k} = \left(\frac{1}{2} + 1\right)^7 = \left(\frac{3}{2}\right)^7$$
.

1.11 d) On a
$$\sum_{k=0}^{8} {8 \choose k} \times (-3)^{8-k} = \sum_{k=0}^{8} {8 \choose k} \times (-3)^{8-k} \times 1^k = (-3+1)^8 = (-2)^8 = 2^8 = 256.$$

1.12 a) On a
$$\sum_{k=0}^{n} \binom{n}{k} \times (-1)^k = \sum_{k=0}^{n} \binom{n}{k} \times (-1)^k \times 1^{n-k} = (-1+1)^n = 0.$$

1.12 b) On a
$$\sum_{k=0}^{n} \binom{n}{k} \times (-1)^{-k} = \sum_{k=0}^{n} \binom{n}{k} \times \left(\frac{1}{-1}\right)^{-k} \times 1^{n-k} = (-1+1)^n = 0.$$

1.12 c) On a
$$\sum_{k=0}^{n} \binom{n}{k} \times 2^{-k} = \sum_{k=0}^{n} \binom{n}{k} \times \left(\frac{1}{2}\right)^{k} \times 1^{n-k} = \left(\frac{1}{2} + 1\right)^{n} = \left(\frac{3}{2}\right)^{n}$$
.

1.12 d) On a
$$\sum_{k=0}^{n} \binom{n}{k} \times (-3)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} \times (-3)^{n-k} \times 1^{k} = (-3+1)^{n} = (-2)^{n}$$
.

1.13 a) On a
$$\sum_{k=0}^{n} \binom{n}{k} \times a^k = \sum_{k=0}^{n} \binom{n}{k} \times a^k \times 1^{n-k} = (a+1)^n$$
.

1.13 b) On a
$$\sum_{k=0}^{n} \binom{n}{k} \times b^{n} = \sum_{k=0}^{n} \binom{n}{k} b^{n-k} \times b^{k} = (b+b)^{n} = (2b)^{n}$$
.

1.13 c) On a
$$\sum_{k=0}^{n} \binom{n}{k} a^{-k} = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{a}\right)^{k} \times 1^{n-k} = \left(\frac{1}{a} + 1\right)^{n}$$
.

1.13 d) On a
$$\sum_{k=0}^{n} \binom{n}{k} \times a^k b^n = \sum_{k=0}^{n} \binom{n}{k} \times (ab)^k b^{n-k} = (ab+b)^n$$
.

1.14 On a
$$\binom{n+1}{k+1} - \frac{n+1}{k+1} \binom{n}{k} = \frac{(n+1)!}{(k+1)! \times (n+1-(k+1))!} - \frac{n+1}{k+1} \times \frac{n!}{k! \times (n-k)!} = 0.$$

1.15 a) On a
$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{\substack{k=0\\k \text{ pair}}}^{n} \binom{n}{k} + \sum_{\substack{k=0\\k \text{ impair}}}^{n} \binom{n}{k} = \mathcal{P} + \mathcal{I}.$$

1.15 b) On a
$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k = \sum_{\substack{k=0 \ k \text{ pair}}}^{n} \binom{n}{k} (-1)^k + \sum_{\substack{k=0 \ k \text{ impair}}}^{n} \binom{n}{k} (-1)^k = \sum_{\substack{k=0 \ k \text{ pair}}}^{n} \binom{n}{k} - \sum_{\substack{k=0 \ k \text{ impair}}}^{n} \binom{n}{k} = \mathcal{P} - \mathcal{I}.$$

1.15 c) Pour commencer, remarquons, d'après la formule de Newton, que

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} \times 1^{n-k} = (1+1)^{n} = 2^{n}$$
et
$$\sum_{k=0}^{n} \binom{n}{k} (-1)^{k} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} \times 1^{n-k} = (-1+1)^{n} = 0.$$

Les sommes \mathcal{P} et \mathcal{I} sont donc les solutions du système : $\begin{cases} \mathcal{P} + \mathcal{I} = 2^n \\ \mathcal{P} - \mathcal{I} = 0. \end{cases}$

Or, on a

$$\begin{cases} \mathcal{P} + \mathcal{I} = 2^n \\ \mathcal{P} - \mathcal{I} = 0 \end{cases} \iff \begin{cases} 2\mathcal{P} = 2^n \\ \mathcal{P} = \mathcal{I} \end{cases} \iff \mathcal{P} = \mathcal{I} = 2^{n-1}.$$

D'où le résultat.

.....

1.16 b) Pour
$$x \in \mathbb{R}$$
, la formule de Newton donne $f(x) = (1+x)^n = \sum_{k=0}^n \binom{n}{k} \times x^k \times 1^{n-k} = \sum_{k=0}^n \binom{n}{k} x^k$.

k=0 k=0 k=0

1.16 c) Pour
$$x \in \mathbb{R}$$
, on a donc $f'(x) = \sum_{k=0}^{n} \binom{n}{k} k x^{k-1} = \sum_{k=1}^{n} \binom{n}{k} k x^{k-1}$.

1.16 d) Soit $x \in \mathbb{R}$. Des calculs précédents, on déduit que $n(1+x)^{n-1} = \sum_{k=1}^{n} \binom{n}{k} k x^{k-1}$. Pour x = 1, on obtient $n(1+1)^{n-1} = \sum_{k=1}^{n} \binom{n}{k} k \times 1^{k-1} = \sum_{k=0}^{n} \binom{n}{k} k 1^{k-1}$. D'où la formule : $\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$.

1.17 a) On a
$$S(N, N) = \sum_{n=N}^{N} \binom{n}{N} = \binom{N}{N} = 1$$
.

1.17 b) On a
$$S(0, N) = \sum_{n=0}^{N} \binom{n}{0} = \sum_{n=0}^{N} 1 = N + 1$$
.

1.17 c) On a
$$S(N-1,N) = \binom{N-1}{N-1} + \binom{N-1}{N} = N+1$$
.

1.17 d) On a
$$S(N-2,N) = \binom{N-2}{N-2} + \binom{N-2}{N-1} + \binom{N-2}{N} = 1 + N - 1 + \frac{N(N-1)}{2} = \frac{N(N+1)}{2}$$
.

1.17 e) On a
$$S(k, N+1) = \sum_{n=k}^{N+1} \binom{n}{k} = \sum_{n=k}^{N} \binom{n}{k} + \binom{N+1}{k} = S(k, N) + \binom{N+1}{k}$$
.

1.17 g) On a

$$\begin{split} \mathsf{T}(k,N+1) - \mathsf{T}(k,N) &= \left(\mathsf{S}(k,N+1) - \binom{N+2}{k+1}\right) - \left(\mathsf{S}(k,N) - \binom{N+1}{k+1}\right) \\ &= \left(\mathsf{S}(k,N+1) - \mathsf{S}(k,N)\right) - \left(\binom{N+2}{k+1} - \binom{N+1}{k+1}\right). \end{split}$$

On a $\mathsf{S}(k,N+1)-\mathsf{S}(k,N)=\binom{N+1}{k}$. Mais, d'après la formule de Pascal : $\binom{N+2}{k+1}-\binom{N+1}{k+1}=\binom{N+1}{k}$. Donc,

$$T(k, N+1) - T(k, N) = {N+1 \choose k} - {N+1 \choose k} = 0.$$

1.17 h) La suite $(\mathsf{T}(k,N))_{N\geqslant k}$ est constante, d'après ce qui précède. Or, on a

$$\mathsf{T}(k,k) = \binom{k}{k} - \binom{k+1}{k+1} = 0.$$

Donc, on a $\mathsf{T}(k,N)=0$, pour $N\geqslant k$. Donc, on a $\mathsf{S}(k,N)=\sum_{n=k}^{N}\binom{n}{k}=\binom{N+1}{k+1}$.