Université Saclay-Paris-Sud

Feuille de TD 2

M303

Exercice 1. 1. Quel est l'ordre de 2 modulo 19 dans le groupe multiplicatif $(\mathbb{Z}/19\mathbb{Z})^{\times}$?

- 2. Montrer que pour tout entier $k \ge 0$, on a $2^{6k+2} = 4 \mod 9$.
- 3. Utiliser ceci pour montrer que $2^{2^{6k+2}} + 3 = 0 \mod 19$.

Exercice 2. 1. Soit g un entier ≥ 1 . Montrer qu'un entier a qui s'écrit $a_r a_{r-1} \dots a_0$ en base g est congru à $a_0 + \dots + a_r$ modulo g - 1.

- 2. Énoncer en base q une preuve étendant la preuve par 9 en base 10.
- 3. Montrer que modulo g+1, a est congru à $a_0-a_1+a_2...+(-1)^r a_r$; en déduire un analogue de la preuve par 11.

Exercice 3. 1. Montrer que tout groupe de cardinal premier est cyclique.

- 2. Montrer qu'un groupe G dont tous les éléments x vérifient $x^2 = 1_G$ est abélien. En déduire qu'un groupe de cardinal 4 est abélien.
- 3. Trouver, à isomorphisme près, tous les groupes de cardinal au plus 5 et tous les groupes abéliens de cardinal 6. Connaissez-vous un groupe non abélien de cardinal 6?

Exercice 4. Soit G l'ensemble des applications $f_i : \mathbb{R} - \{0, 1\} \to \mathbb{R} - \{0, 1\}$, pour $i \in \{0, \dots, 5\}$, données par

$$f_0(x) = x$$
, $f_1(x) = \frac{1}{1-x}$, $f_2(x) = \frac{x-1}{x}$, $f_3(x) = \frac{1}{x}$, $f_4(x) = \frac{x}{x-1}$, $f_5(x) = 1-x$.

- 1. (G, \circ) est-il un groupe (avec \circ la composition des applications) ?
- 2. Trouver les sous-groupes d'ordre 2.
- 3. Trouver les sous-groupes d'ordre 3 et les sous-groupes d'ordre 4.

Exercice 5. Soit le groupe $G = \mathbb{Z}/14\mathbb{Z} \times \mathbb{Z}/7^3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Combien G a-t-il d'éléments d'ordre 7^2 ? d'ordre 7^3 ? Justifier.

Exercice 6. Soit G le group $G := \mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Combien G a-t-il de sous-groupes d'ordre 4? On indiquera précisément la méthode pour les trouver.

Exercice 7. Parmi les assertions suivantes, dire celles qui sont vraies. Si elles sont fausses, donner un contre-exemple concret. Si elles sont vraies, donner une justification. Les lettres G et G' désignent des groupes finis et $f: G \to G'$ un morphisme de groupes.

- 1. Si x est un élément de G d'ordre fini n, alors f(x) est d'ordre un multiple de n.
- 2. Si x est un élement de G d'ordre fini n, alors f(x) est d'ordre un diviseur de n.
- 3. Si f est surjectif et si x est un élément de G d'ordre fini n, alors f(x) est d'ordre n.
- 4. Si d est un diviseur de l'ordre de G, il existe dans G un élément d'ordre d.

On suppose maintenant que G est de plus abélien.

- 1. Si l'ordre de G et son exposant sont égaux, alors G est cyclique.
- 2. Si G est d'ordre $3 \times 5 \times 20$, il existe dans G un élément d'ordre 5^2 .
- 3. Si G est d'ordre $3 \times 5 \times 20$, les diviseurs premiers de l'exposant de G sont 3 et 5.

Exercice 8. Soit $\phi: G \to H$ un morphisme de groupes bijectif ie un isomorphisme de groupes.

- 1. Montrer que l'application qui à tout sous-groupe G' de G associe $\phi(G')$ est une bijection de l'ensemble des sous-groupes de G sur l'ensemble des sous-groupes de H.
- 2. Montrer que pour tout $g \in G$, g et $\phi(g)$ ont même ordre.
- 3. Montrer que g est un générateur de G si et seulement si $\phi(g)$ engendre H.
- 4. Plus généralement, montrer que pour toute partie S de G, l'image du sous-groupe engendré par S est le sous-groupe de H engendré par $\phi(S)$.

Exercice 9 (Les endomorphismes de $(\mathbb{Z}, +)$). Soit f un morphisme de groupes de $(\mathbb{Z}, +)$ dans lui-même : on dira que f est un endomorphisme du groupe $(\mathbb{Z}, +)$.

- 1. Montrer que $\forall a \in \mathbb{N}, \ \forall b \in \mathbb{N}, \ f(ab) = af(b)$, puis en déduire la même assertion pour $a, b \in \mathbb{Z}$.
- 2. En déduire que $\forall a \in \mathbb{Z}, f(a) = af(1)$.
- 3. À quelle condition nécessaire et suffisante (portant sur f(1)) le morphisme f est-il injectif ?
- 4. Montrer que f est surjectif si et seulement si $f(1) = \pm 1$.
- 5. À quelle condition nécessaire et suffisante (portant sur f(1)) le morphisme f est-il un isomorphisme? Quelle est son application réciproque?

Exercice 10 (L'équation $ax^2 + by^2 = 1$). Étant donné un nombre premier p on note $\mathbb{F}_p := (\mathbb{Z}/p\mathbb{Z}, +, *)$ le corps à p éléments.

- 1. Montrer que pour p impair, l'équation $x^2 = 1$ a exactement deux solutions distinctes dans \mathbb{F}_p . Qu'en est-il pour p = 2?
- 2. Dans cette question et toutes les questions suivantes, p est un nombre premier impair. On note $\chi: \mathbb{F}_p^{\times} \to \mathbb{F}_p^{\times}$, $x \mapsto x^2$. Montrer que χ est un morphisme de groupes.
- 3. Déterminer le noyau de χ et donner son cardinal.
- 4. Donner le cardinal de l'image de χ . En déduire que l'ensemble C des carrés de \mathbb{F}_p ie $C:=\{x\in\mathbb{F}_p\mid\exists y\in\mathbb{F}_p,\ x=y^2\ \}$ possède $\frac{p+1}{2}$ éléments.
- 5. Soit $(a,b) \in \mathbb{F}_p^{\times} \times \mathbb{F}_p^{\times}$ un couple d'éléments. On note $A := \{x \in \mathbb{F}_p \mid \exists y \in \mathbb{F}_p, \ x = ay^2 \} \ \text{et} \ B := \{x \in \mathbb{F}_p \mid \exists y \in \mathbb{F}_p \ x = 1 by^2 \}.$ Quel est le cardinal de A (resp. B)?
- 6. En déduire que $A \cap B \neq \emptyset$.
- 7. Conclure finalement que pour tout couple (a,b) d'éléments non nuls de \mathbb{F}_p , l'équation $ax^2 + by^2 = 1$ possède toujours un couple solution dans $\mathbb{F}_p \times \mathbb{F}_p$.