Catalogue of Equivalent Quantum Circuits

This document contains a list of equivalent quantum circuits used by QSimplify as simplification rules, compiled from various sources [1] [2] [3].

1, Single-qubit equivalences

Tabla 1: Single-qubit circuits and their simplified versions.

Circuit	Equivalent version (simplified)
q — н — н —	q —
q - x - x -	q —
q - Y - Y -	q —
q - z - z -	q —
q — н — х — н —	q – z –
q — н — <mark>z —</mark> н —	q – x –

Circuit	Equivalent version (simplified)
q - s - s -	q – z –
q - Y - s - x -	q – s –
q - s - s [†] -	q —
q - s [†] - s -	q —
q - s - s - s -	q - s [†] -
q - s [†] - s [†] -	q – s –
q — T — T —	q – s –

Circuit	Equivalent version (simplified)
q - T - T [†] -	q —
q - T [†] - T -	q —

2. Two-qubit equivalences

Tabla 2: Two-qubit circuits and their simplified versions.

Circuit	Equivalent version (simplified)
q ₀ — H — H —	q ₀ ——
q_0 q_1	q ₀ ——

Circuit	Equivalent version (simplified)
q_0 q_1	q_0 — q_1 —
q_0 q_1	q_0 —— q_1 ——
q ₀ — н — н —	$q_0 \longrightarrow q_1$
q ₀ — н — н —	q_0 q_1
q ₀ - H - H - H -	q_0 q_1

Circuit	Equivalent version (simplified)
q_0 q_1	$q_0 - x - q_1 - x -$
q_0 q_1 X	q ₀ ————————————————————————————————————
q_0 Z q_1	$q_0 - z - q_1 - \cdots$
q_0 q_1 Z	q ₀ - z - q ₁ - z -
q_0 \times q_1	$q_0 - x - q_1 - z -$

3. Three-qubit equivalences

Tabla 3: Three-qubit circuits and their simplified versions.

Circuit	Equivalent version (simplified)
q_0 q_1 q_2	q_0 — q_1 — q_2 —
q_0 q_1 q_2	q ₀ — q ₁ — q ₂ —
q_0 q_1 q_2	$q_0 \longrightarrow q_1 \longrightarrow q_2 \longrightarrow$

Circuit	Equivalent version (simplified)
q_0 q_1 q_2	q_0 q_1 q_2
q_0 q_1 q_2	q_0 q_1 q_2
q_0 q_1 q_2	q_0 q_1 q_2

1. References

- [1] C. Lomont, «Quantum Circuit Identities,» ArXiv preprint, 16 de jul. de 2003. arXiv: quant-ph/0307111. dirección: https://arxiv.org/abs/quant-ph/0307111.
- [2] J. C. Garcia-Escartin y P. Chamorro-Posada, «Equivalent Quantum Circuits,» ArXiv preprint, 13 de oct. de 2011. arXiv: 1110.2998. dirección: https://arxiv.org/abs/1110.2998.
- [3] G. E. Crooks. «Gates, states, and circuits.» (2 de mar. de 2024), dirección: https://threeplusone.com/pubs/on_gates.pdf.