Home Work #6 Schematic Tree and Decision Tree Analysis by Hand

Q1

The goal is to maximize the End Result: the portfolio value after the investment.

- b) The better choice is the Fund B the expected value of this branch 12.4K vs 11.1K for the Fund A branch.
- c) For the branches to be equal in case of fund A in a good economy the amount of 2.3K has to come from Fund A \rightarrow Good Economy branch. The value must be 2.3K more then 4K or 6.3K. Given the branch has 20% probability ahe absolute value must be 6.3K * 5 or 31.5K so the return must be at least 21.5K vs 10K as originally stated.

Q2

The goal is to maximize the EMV of Winings Taken Home

a) The full tree starts from Q1 and there is 75% chance of having \$1000 after the first question. After the decision of Answering the Question #2 the EMV is \$1000 for NO . The EMV is 1446 after applying the 2/3 probability of having 2200 = 1000 + 1200 in winings. To deside on Answering the Question #3 or not let's compare NO that gives 2200 and 50% chance of having 3700: 2200 > 1850 hence by denying the answering the Q3 we have 2200 of EMV. If first two qiestions answered correctly there is no point in answering the Q3

Q3

The goal is to minmize the EMV of Support cost per episode

 $\frac{75\%}{35} = 0.75 \times 25 + 0.25 \times 65$ Assign 25 $\frac{61}{7} = \frac{25\%}{65} = \frac{65}{140}$

b) The assignment of Group 1 specialist in the case where probability of him solving the problem is 75% have EMV of \$35 vs \$40 if the Group 1 takes it first. The Group 1 has to handle this request.

d) The assignment of Group 2 specialist in the case where probability of the Group 1 specialist solving the problem is 55% gives EMV of \$40 vs \$43 if done the other way. The Group 2 has to handle this request.

Q4

- a) The Probability of part to be scrapped is the same no matter what order the operations are performed. What is the probability that a part is ruined?
 - * Probability of Success (1 0.1)(1 0.2) = %72
 - * Probability of Failure %100 %72 = %28

b) The EMV has the value of -10 when Lathe #2 starts and -15 otherwise: Lathe #2 has to start first.

My hand drawings had incorrect calculations: I have assumed the loss of \$500 in cost of material per scrapped part is incurred and Value is -10 - I got some suspitions but maybe this is *subsidised* business. Here is the proper tree:

