

Project

Performance Analysis of Full Adder using different CMOS technology

VLS 503: DCMOS VLSI DESIGN

Instructor: Dr. Madhav Rao

Group members:

#	Name	Roll Number	Email-ID
1	Tushar Prakash Katole	MT2024518	katoletushar.prakash@iiitb.ac.in
2	Phaneendra M V	MT2024526	phaneendra.mv@iiitb.ac.in
3	Likithkumar R	MT2024528	rachaputi.likithkumar@iiitb.ac.in
4	Rojivadia Bhumitkumar	MT2024531	Rojivadia.bhumitkumar@iiitb.ac.in
5	Utkarsh Jain	MT2024538	utkarsh.jain@iiitb.ac.in
6	Vaibhav Naresh Dachewar	MT2024539	VaibhavNaresh.Dachewar@iiitb.ac.in

Abstract:

This report summarizes the implementation of full adder at transistor level using two technology nodes, i.e. 45nm and 90nm. We present the design and their simulations in cadence and give the comparative analysis of designs from the viewpoint of delay and power. The conclusion we derive is that as the technology node reduces the performance parameter improves.

Introduction:

Any digital CMOS system has an adder as one of the central and important subsystems, for example in microprocessors, the main block is Arithmetic and Logic Unit, where in adder is main subblock, other arithmetic also has adder as part of operation, for example multiplier. Adder designs have many different types of architectures with each having its own advantage in terms of speed/power/area requirements. Some architecture improves speed at the cost of area, while others have smaller area but offer lower speed. The basic cell is a 1-bit full adder which adds two binary numbers with a carry input and gives the output.

$$Sum = A \oplus B \oplus C_{in}$$

$$Carry = AB + BC_{in} + AC_{in}$$

Input			Output	
A	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Designs of Full Adder:

1. Full adder using XOR gate and NAND gate

Fig 1 – Full adder using XOR and NAND gate

Design 1: Full Adder using XOR and NAND gates			
Technology Nodes	45nm	90nm	
Average Power (uW)	1.52 uW	3.036 uW	
Delay (ps)	26.2 ps	29.85 ps	
Transistor Count	36	36	

2. Full Adder using NAND gate

Fig 2 – Full adder using NAND gates only

Design 2: Full Adder using NAND gates			
Technology Nodes	45nm	90nm	
Average Power (uW)	1.62 uW	3.12 uW	
Delay (ps)	26.24 ps	31.13 ps	
Transistor Count	44	44	

3. Full Adder design with 28 Transistors

Fig 3 – Full adder with 28 transistors

Design 3: Full Adder with 28 transistors			
Technology Nodes	45nm	90nm	
Average Power (uW)	1.01 uW	1.64 uW	
Delay (ps)	27.42 ps	28.37 ps	
Transistor Count	28	28	

I. Full Adder Design with XOR and NAND Gate using 45 nm CMOS Technology

a) Schematic:

II. Full Adder Design with NAND Gate using 45 nm CMOS Technology

a) Schematic:

III. Full Adder Design with 28 Transistors using 45 nm CMOS Technology

a) Schematic:

IV. Full Adder Design with XOR and NAND Gate using 90 nm Technology

a) Schematic:

V. Full Adder Design with NAND Gate using 90 nm Technology

a) Schematic:

VI. Full Adder Design with 28 Transistors using 90 nm CMOS Technology

a) Schematic:

NOVELTY WORK

4-bit Parallel Adder

Schematic:

I. 4-Bit adder using XOR-NAND gates with 45nm technology

II. 4-Bit adder using NAND gates 45nm technology

III. 4-Bit adder based on 28 Transistor 1-Bit adder 45nm technology

IV. 4-Bit adder using XOR-NAND gates with 90nm technology

Waveforms:

V. 4-Bit adder using NAND gates 90nm technology

VI. 4-Bit adder based on 28 Transistor 1-Bit adder 90nm technology

4-bit Parallel Adder Trends:

1. 4-Bit adder using XOR-NAND gates

4-Bit adder using XOR-NAND gates			
Technology Nodes	45nm	90nm	
Average Power (uW)	3.889 uW	8.167uW	
Delay (ps)	69.16 ps	86.7ps	
Transistor Count	144	144	

2. 4-Bit adder using NAND gates

4-Bit adder using NAND gates			
Technology Nodes	45nm	90nm	
Average Power (uW)	3.734 uW	7.636 uW	
Delay (ps)	66.95 ps	86.87 ps	
Transistor Count	176	176	

3. 4-Bit adder based on 28 Transistor 1-Bit adder

45nm Power (uW)

20

4-Bit adder based on 28 Transistor 1-Bit adder			
Technology Nodes	45nm	90nm	
Average Power (uW)	3.742 uW	7.804uW	
Delay (ps)	101.5 ps	106.3ps	
Transistor Count	112	112	

90nm Power (uW)
45nm Delay (ps)
90nm Transistors
90nm Transistors
90nm Transistors
45nm Transistors
90nm Transistors

Delay

Transistor Count

4-Bit Adder based on 28 Transistor 1-Bit Adder

Conclusion:

In this report, we did a comparative analysis of three different designs of adders for 1-bit adders in two different technology nodes, 45nm and 90nm. The percentage improvement in propagation delay for 45nm node over 90nm for design with 28 transistors is 3.35%, 15.70% in case of design with 44 transistors based on NAND gates and 12.06% in case of 36 transistors based on XNOR-NAND based design.

For 4-bit adders using above 1-bit adder designs is around 4.51% for design with 28 transistors, 22.93% for design with 44 transistors based on NAND gates and 20.23 % for 36 transistors based on XNOR-NAND based design.

References:

- [1] H. N. Y. Pwint and T. T. Hla, "Performance Analysis of Full Adder Using Different CMOS Technology," 2024 IEEE Conference on Computer Applications (ICCA), Yangon, Myanmar, 2024, pp. 1-5, doi: 10.1109/ICCA62361.2024.10532847.
- [2] V. Rajput, A. P. Singh, S. Tirkey and S. Nakhate, "Design of Full Adder Circuits with Optimized Power and Speed Using CMOS Technique," 2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 2024, pp. 1-5, doi: 10.1109/SCEECS61402.2024.10482060.
- [3] S. -K. Chang and C. -L. Wey, "A Fast 64-bit hybrid adder design in 90nm CMOS process," 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID, USA, 2012, pp. 414-417, doi: 10.1109/MWSCAS.2012.6292045.