Chapter 12

Inferences for Population **Proportions**

Section 12.1 Confidence Intervals for One Population Proportion

Definition 12.1

Population Proportion and Sample Proportion

Consider a population in which each member either has or does not have a specified attribute. Then we use the following notation and terminology.

Population proportion, **p**: The proportion (percentage) of the entire population that has the specified attribute.

Sample proportion, \hat{p} : The proportion (percentage) of a sample from the population that has the specified attribute.

Formula 12.1

Sample Proportion

A sample proportion, \hat{p} , is computed by using the formula

$$\hat{p} = \frac{x}{n}$$

where x denotes the number of members in the sample that have the specified attribute and, as usual, *n* denotes the sample size.

Key Fact 12.1

The Sampling Distribution of the Sample Proportion

For samples of size n,

- the mean of \hat{p} equals the population proportion: $\mu_{\hat{p}} = p$ (i.e., the sample proportion is an unbiased estimator of the population proportion);
- the standard deviation of \hat{p} equals the square root of the product of the population proportion and one minus the population proportion divided by the sample size: $\sigma_{\hat{p}} = \sqrt{p(1-p)/n}$; and
- \hat{p} is approximately normally distributed for large n.

One-Proportion z-Interval Procedure

Purpose To find a confidence interval for a population proportion, p

Assumptions

- Simple random sample
- The number of successes, x, and the number of failures, n x, are both 5 or greater.
- **Step 1** For a confidence level of 1α , use Table II to find $z_{\alpha/2}$.
- Step 2 The confidence interval for p is from

$$\hat{p} - z_{\alpha/2} \cdot \sqrt{\hat{p}(1-\hat{p})/n}$$
 to $\hat{p} + z_{\alpha/2} \cdot \sqrt{\hat{p}(1-\hat{p})/n}$,

where $z_{\alpha/2}$ is found in Step 1, n is the sample size, and $\hat{p} = x/n$ is the sample proportion.

Step 3 Interpret the confidence interval.

Formula 12.2

Margin of Error for the Estimate of p

The **margin of error** for the estimate of *p* is

$$E=z_{\frac{\alpha}{2}}\cdot\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}.$$

Formula 12.3

Sample Size for Estimating p

• A $(1 - \alpha)$ -level confidence interval for a population proportion that has a margin of error of at most E can be obtained by choosing

$$n = 0.25 \left(\frac{Z_{\alpha/2}}{E}\right)^2$$

rounded up to the nearest whole number.

If you can make an educated guess, \hat{p}_g (g for guess), for the observed value of p, then you should instead choose

$$n = \hat{p}_g (1 - \hat{p}_g) \left(\frac{Z_{\alpha/2}}{E}\right)^2$$

rounded up to the nearest whole number.

• If you have in mind a likely range for the observed value of \hat{p} , then you should apply the preceding formula with your educated guess for the observed value of \hat{p} being the value in the range closest to 0.5.

Section 12.2

Hypothesis Tests for One **Population Proportion**

One-Proportion z-Test

Purpose To perform a hypothesis test for a population proportion, p

Assumptions

- 1. Simple random sample
- 2. Both np_0 and $n(1-p_0)$ are 5 or greater

Step 1 The null hypothesis is H_0 : $p = p_0$, and the alternative hypothesis is

(Two tailed) or
$$H_a: p < p_0$$
 or $H_a: p > p_0$ (Right tailed)

- Step 2 Decide on the significance level, α .
- Step 3 Compute the value of the test statistic

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

and denote that value z_0 .

Procedure 12.2 (cont.)

CRITICAL-VALUE APPROACH

P-VALUE APPROACH

Step 4 The critical value(s) are

$$\pm z_{\alpha/2}$$
 or $-z_{\alpha}$ or z_{α} (Two tailed) or (Right tailed)

Use Table II to find the critical value(s).

Step 5 If the value of the test statistic falls in the rejection region, reject H_0 ; otherwise, do not reject H_0 .

Use Table II to obtain the *P*-value. Step 4

Step 5 If $P \leq \alpha$, reject H_0 ; otherwise, do not reject H_0 .

Interpret the results of the hypothesis test.

OR

Section 12.3 Inferences for Two Population **Proportions**

Key Fact 12.2

The Sampling Distribution of the Difference Between Two Sample Proportions for Independent Samples

For independent samples of sizes n_1 and n_2 from the two populations,

- $\mu_{\hat{p}_1-\hat{p}_2}=p_1-p_2$ (i.e., the difference between sample proportions is an unbiased estimator of the difference between population proportions),
- $\sigma_{\hat{p}_1-\hat{p}_2} = \sqrt{p_1(1-p_1)/n_1 + p_2(1-p_2)/n_2}$, and
- $\hat{p}_1 \hat{p}_2$ is approximately normally distributed for large n_1 and n_2 .

Two-Proportions z-Test

Purpose To perform a hypothesis test to compare two population proportions, p_1 and p_2

Assumptions

- 1. Simple random samples
- 2. Independent samples
- 3. $x_1, n_1 x_1, x_2, \text{ and } n_2 x_2 \text{ are all 5 or greater}$

Step 1 The null hypothesis is H_0 : $p_1 = p_2$, and the alternative hypothesis is

(Two tailed) or
$$H_a$$
: $p_1 < p_2$ or H_a : $p_1 < p_2$ (Right tailed)

- Step 2 Decide on the significance level, α .
- **Step 3** Compute the value of the test statistic

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_p(1 - \hat{p}_p)}\sqrt{(1/n_1) + (1/n_2)}},$$

where $\hat{p}_p = (x_1 + x_2)/(n_1 + n_2)$. Denote the value of the test statistic z_0 .

Procedure 12.3 (cont.)

Step 6 Interpret the results of the hypothesis test.

Two-Proportions z-Interval Procedure

Purpose To find a confidence interval for the difference between two population proportions, p_1 and p_2

Assumptions

- Simple random samples
- 2. Independent samples
- 3. $x_1, n_1 x_1, x_2, \text{ and } n_2 x_2 \text{ are all 5 or greater}$
- Step 1 For a confidence level of 1α , use Table II to find $z_{\alpha/2}$.
- **Step 2** The endpoints of the confidence interval for $p_1 p_2$ are

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \cdot \sqrt{\hat{p}_1(1-\hat{p}_1)/n_1 + \hat{p}_2(1-\hat{p}_2)/n_2}.$$

Interpret the confidence interval. Step 3