LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING Tillämpad matematik – Linjära system 2015–08–17 kl 14–19

Hjälpmedel: utdelat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och förklara dina beteckningar. Alla svar skall förenklas så långt som möjligt.

1. Låt $f(t) = \theta(t) \cdot \theta(2 - t)$.

a) Rita grafen för
$$f(t)$$
. (0.2)

b) Beräkna
$$f'(t)$$
. (0.2)

c) Bestäm en kausal primitiv funktion till
$$f(t)$$
, (0.3)

d) Beräkna faltningen
$$\theta(t) * f''(t)$$
. (0.3)

- 2. a) Hur transformeras matrisen för en kvadratisk form vid ett linjärt koordinatbyte? Vilken är skillnaden mellan denna transformationsformel och motsvarande formel vid linjära avbildningar? (0.2)
 - b) Vad menas med att ett system i insignal-utsignalform är kausalt? (0.2)
 - c) Ge exempel på ett linjärt tidsinvariant system som inte är stabilt. (0.2)
 - d) För vilka tal a är matrisen

$$\left[\begin{array}{cc} a & 0 \\ a+1 & a \end{array}\right]$$

ortogonal? Motivera svaret. (0.2)

e) Förenkla
$$(e^{it} - e^{-it}) \delta'(t)$$
. (0.2)

3. a) Beräkna samtliga egenvektorer till matrisen

$$A = \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right].$$

(0.2)

b)
$$\ddot{A}r$$
 matrisen A diagonaliserbar? (0.2)

c) Beräkna exponentialmatrisen
$$e^{At}$$
. (0.3)

d) Lös begynnelsevärdesproblemet

$$\begin{cases} x_1' = x_1 + 2x_2 \\ x_2' = x_2 \end{cases}, x_1(0) = 1, x_2(0) = 3.$$

(0.3)

V.g. vänd!

- **4.** Systemet \mathcal{S} är kausalt, linjärt och tidsinvariant. Om man sänder in signalen $w(t) = \theta(t)$ så kommer signalen $y(t) = (e^{-t} e^{-3t}) \theta(t)$ ut.
 - a) Bestäm systemets impulssvar och överföringsfunktion. (0.3)
 - b) $\ddot{A}r$ systemet stabilt? (0.2)
 - c) Ange utsignalerna $y_1(t)$ och $y_2(t)$, om insignalerna är $w_1(t) = \sin t \ \theta(t)$ respektive $w_2(t) = \sin t$. (0.5)
- 5. För en matris A är det karakteristiska polynomet lika med

$$p_A(\lambda) = (\lambda^2 - 4\lambda + 5)(\lambda + 4)(\lambda + 5)\lambda.$$

- a) Är matrisen diagonaliserbar? (0.2)
- b) $\ddot{A}r$ matrisen inverterbar? (0.2)
- c) Är matrisen symmetrisk? (0.2)
- d) Är matrisen ortogonal? (0.2)
- e) Bestäm $\operatorname{tr} A$ och $\det A$. (0.2)
- **6.** Bestäm en funktion f(x), som för x > 0 uppfyller ekvationen

$$f(x) + e^{3x} = 2 \int_0^x f(y) \sin 3(x - y) dy.$$

LYCKA TILL!