IN THE CLAIMS:

- 1. (Original) A communication circuit comprising:
- a near end transmitter;
- a hybrid having an input in communication with an output of said near end transmitter;
 - a near end replication transmitter;
 - a high pass filter responsive to said near end replication transmitter;
- a subtractor to subtract an output from said high pass filter from the output from said near end transmitter and an output of said hybrid; and
 - a near end receiver responsive to an output of said subtractor.
- 2. (Original) A communication circuit of Claim 1, wherein said hybrid comprises an isolation transformer.
- 3. (Original) A communication circuit of Claim 1, wherein said hybrid comprises an active circuit.
- 4. (Original) A communication circuit of Claim 1 wherein said near end replication transmitter is adjustable.
- (Original) A communication circuit of Claim 4, wherein said near end replication transmitter comprises a current generator in communication with an adjustable load.
- 6. (Original) A communication circuit of Claim 4, wherein said near end replication transmitter comprises an adjustable current generator in communication with a load.
 - 7. (Original) A communication circuit of Claim 1, further comprising an

adjustable capacitive load in communication with said near end replication transmitter to maximize signal delay matching between said near end transmitter and said near end replication transmitter.

- 8. (Original) A communication circuit of Claim 7, further comprising an adaptive control circuit, wherein said adjustable capacitive load is responsive to said adaptive control circuit.
- 9. (Original) A communication circuit of Claim 1, wherein said high pass filter comprises an inductor having similar characteristics as said hybrid.
- 10. (Original) A communication circuit of Claim 1, wherein said high pass filter comprises a combination of a resistance and a capacitance.

11. - 16. (Canceled)

17. (Original) A communication circuit comprising:

near end transmitting means for transmitting a transmitted signal;

hybrid means having an input in communication with an output of said near end transmitting means for communicating the transmitted signal to and a received signal from a channel;

near end replication transmitting means for generating a replication signal;

high pass filter means for high pass filtering the replication signal;

subtracting means for the high pass filtered replication signal from the transmitted and received signals; and

near end receiving means for receiving an output signal from said subtracting means.

18. (Original) A communication circuit of Claim 17, wherein said hybrid means comprises an isolation transformer.

Application No. 10/737,743 Attorney's Docket No. MP0020 Page 4

- 19. (Original) A communication circuit of Claim 17, wherein said hybrid means comprises an active circuit.
- 20. (Original) A communication circuit of Claim 17, wherein said near end replication transmitting means is adjustable.
- 21. (Original) A communication circuit of Claim 20, wherein said near end replication transmitting means comprises a current generator means for generating a current and in communication with an adjustable load.
- 22. (Original) A communication circuit of Claim 20, wherein said near end replication transmitting means comprises an adjustable current generator means for generating a current in communication with a load.
- 23. (Original) A communication circuit of Claim 20, wherein said near end replication transmitting means maximizes the amplitude matching between said near end transmitting means and said near end replication transmitting means.
- 24. (Original) A communication circuit of Claim 17, further comprising an adjustable capacitive load means in communication with said near end replication transmitting means for maximizing signal delay matching between said near end transmitting means and said near end replication transmitting means.
- 25. (Original) A communication circuit of Claim 24, further comprising an adaptive control means for controlling said adjustable capacitive load.
- 26. (Original) A communication circuit of Claim 17, wherein said high pass filter means comprises an inductor means having similar characteristics as said hybrid means.
 - 27. (Original) A communication circuit of Claim 17, wherein said high pass filter

means comprises a combination of a resistance and a capacitance.

28. - 33. (Canceled)

- 34. (Original) A communication circuit of Claim 4, wherein said near end replication transmitter maximizes the amplitude matching between said near end transmitter and said near end replication transmitter.
 - 35. (Original) A communication method comprising the steps of:
 - (a) transmitting a transmitted signal;
 - (b) combining the transmitted signal with a received signal from a channel;
 - (c) generating a replication signal;
 - (d) high pass filtering the replication signal;
- (e) subtracting the high pass filtered replication signal from the transmitted and received signals; and
 - (f) receiving an output signal from step (e).
- 36. (Original) A communication method of Claim 35, further comprising the step of (g) adjusting the replication signal.
- 37. (Original) A communication method of Claim 36, wherein step (g) comprises the steps of adjusting a current and adjusting a load.
- 38. (Original) A communication method of Claim 36, wherein step (g) comprises the step of adjusting a current.
- 39. (Original) A communication method of Claim 36, wherein step (g) comprises the steps of maximizing the amplitude matching between the replication signal and the transmitted signal.

40. - 43. (Canceled)

44. (Original) A communication circuit comprising:

a near end circuit comprising:

a near end transmitter;

a near end hybrid having a first terminal in communication with an output of said near end transmitter and a second terminal;

a near end replication transmitter;

a near end high pass filter responsive to said near end replication transmitter;

a near end subtractor to subtract an output from said near end high pass filter

from the output from said near end transmitter and said near end hybrid; and

a near end receiver responsive to an output of said near end subtractor; and a far end circuit comprising:

a far end transmitter;

a far end hybrid having a third terminal in communication with an output of said far end transmitter and a fourth terminal in communication with the second terminal of said near end hybrid;

a far end replication transmitter;

a far end high pass filter responsive to said far end replication transmitter;

a far end subtractor to subtract an output from said far end high pass filter from the output from said far end transmitter and said far end hybrid; and

a far end receiver responsive to an output of said far end subtractor.

45. (Canceled)

46. (Original) A communication circuit comprising:

near end communication means comprising:

near end transmitting means for transmitting a first signal;

near end hybrid means having a first terminal in communication with an output of said near end transmitting means for communicating the first signal to and in

communication with a second signal from a channel;

near end replication transmitting means for transmitting a near end replication signal;

near end high pass filter means for high pass filtering the near end replication signal;

near end subtracting means for subtracting the near end high pass filtered replication signal from the first signal from said near end transmitting means and the second signal from said near end hybrid means; and

near end receiving means for receiving an output signal from said near end subtracting means; and

far end communication means comprising:

far end transmitting means for transmitting the second signal;

far end hybrid means having a second terminal in communication with an output of said far end transmitting means for communicating the second signal to and the first signal from the channel;

far end replication transmitting means for generating a far end replication signal;

far end high pass filter means for high pass filtering the far end replication signal;

subtracting means for the far end high pass filtered replication signal from the second signal from the far end transmitting means and the first signal from said far end hybrid means; and

far end receiving means for receiving an output signal from said subtracting means.

- 47. (Canceled)
- 48. (Original) A communication method comprising the steps of:
- (a) transmitting a first signal;
- (b) combining the first signal with a second signal from a channel;

- (c) generating a first replication signal;
- (d) high pass filtering the first replication signal;
- (e) subtracting the high pass filtered first replication signal from the first and second signals;
 - (f) receiving an output signal from step (e);
 - (g) transmitting the second signal;
 - (h) combining the second signal with the first signal from the channel;
 - (i) generating a second replication signal;
 - (j) high pass filtering the second replication signal;
- (k) subtracting the high pass filtered second replication signal from the first and second signals; and
 - (1) receiving an output signal from step (k).
 - 49. (Canceled)
- 50. (Original) A communication circuit of Claim 5, further comprising a calibration circuit to adjust the adjustable load against a reference load.
- 51. (Original) A communication circuit of Claim 1, wherein said near end replication transmitter comprises a voltage multiplier.
 - 52. 53. (Canceled)
- 54. (Original) A communication circuit of Claim 21, further comprising a calibration means for calibrating the adjustable load against a reference load.
- 55. (Original) A communication circuit of Claim 17, wherein said near end replication transmitting means comprises a voltage multiplier means for multiplying an output of said replication transmitting means.

56. - 57. (Canceled)

- 58. (Currently Amended) A method of Claim 35, wherein step (c) comprises the step of multiplying an output of the replication signal.
- 59. (Currently Amended) A method of Claim 37, further comprising the step of calibrating the load against a reference load.
 - 60. 84. (Canceled)
 - 85. (Previously Presented) A communication circuit, comprising:
 - a near end transmitter;
- a hybrid including an input in communication with an output of the near end transmitter;
 - a near end replication transmitter;
- a high pass filter responsive to the near end replication transmitter for high-pass filtering a signal received from the near end replication transmitter;
- a subtractor to subtract an output from the high pass filter from the output from the near end transmitter and an output of the hybrid; and
 - a near end receiver responsive to an output of the subtractor.
- 86. (Previously Presented) The communication circuit of claim 85, wherein the hybrid comprises an isolation transformer.
- 87. (Previously Presented) The communication circuit of claim 85, wherein the hybrid comprises an active circuit.
- 88. (Previously Presented) The communication circuit of claim 85, wherein the near end replication transmitter is adjustable.

- 89. (Previously Presented) The communication circuit of claim 88, wherein the near end replication transmitter comprises an adjustable gain control.
- 90. (Previously Presented) The communication circuit of claim 88, wherein the near end replication transmitter comprises a current generator in communication with an adjustable load.
- 91. (Previously Presented) The communication circuit of claim 88, wherein the near end replication transmitter comprises an adjustable current generator in communication with a load.
- 92. (Previously Presented) The communication circuit of Claim 88, wherein the near end replication transmitter maximizes the amplitude matching between the near end transmitter and the near end replication transmitter.
- 93. (Previously Presented) The communication circuit of claim 85, further comprising:

an adjustable capacitive load in communication with the near end replication transmitter to maximize signal delay matching between the near end transmitter and the near end replication transmitter.

94. (Previously Presented) The communication circuit of claim 93, further comprising:

an adaptive control circuit,

wherein the adjustable capacitive load is responsive to the adaptive control circuit.

95. (Previously Presented) The communication circuit of claim 85, wherein the high pass filter comprises an inductor including characteristics similar to the hybrid.

96. (Previously Presented) The communication circuit of claim 85, wherein the high pass filter comprises a combination of a resistance and a capacitance.