

## Set – a jugar con conjuntos



#### Las instancias de **Set** y **frozenset** ambos proporcionan las siguientes operaciones:

| Operación (Equivalente)            | <u>Resultado</u>                                            |
|------------------------------------|-------------------------------------------------------------|
|                                    |                                                             |
| len(s)                             | número de elementos en el conjunto s (cardinalidad)         |
| x in s                             | prueba x para la pertenencia a s                            |
| x not in s                         | prueba x para no membresía en s                             |
| s.issubset(t)<br>s < t<br>s <= t   | probar si cada elemento en s está en t<br>B ⊆ A<br>estricto |
| s.issuperset(t)<br>s > t<br>s >= t | prueba si cada elemento en t está en s<br>estricto          |

#### Las instancias de **Set** y **frozenset** ambos proporcionan las siguientes operaciones:

| Operación (Equivalente)            | <u>Resultado</u>                                       |
|------------------------------------|--------------------------------------------------------|
|                                    |                                                        |
| s.union(t)<br>s   t                | nuevo conjunto con elementos de s y t                  |
| s.intersection(t)<br>s & t         | nuevo conjunto con elementos comunes a s y t           |
| s.difference(t)<br>s - t           | nuevo conjunto con elementos en s pero no en t         |
| s.symmetric_difference(t)<br>s ^ t | nuevo conjunto con elementos en s o t pero no en ambos |
| s.copy()                           | nuevo conjunto con una copia superficial de s          |

## La siguiente tabla enumera las operaciones disponibles **Set** pero no encontradas en **frozenset**

| Operación (Equivalente)                  | <u>Resultado</u>                                                                                                                                        |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          |                                                                                                                                                         |
| s.isdisjoint(t)                          | devuelve True si el conjunto s no tienen ningún elemento en común con t. Dos conjuntos son disjuntos si y solo si su intersección es el conjunto vacío. |
| s.update(t) s  = t                       | devuelve el conjunto s con elementos agregados desde t                                                                                                  |
| s.intersection_update(t)<br>s & = t      | return set s manteniendo solo los elementos que también se encuentran en t                                                                              |
| s.difference_update(t)<br>s -= t         | devuelve set s después de eliminar los elementos encontrados en t                                                                                       |
| s.symmetric_difference_update(t) s ^ = t | devuelve el conjunto s con elementos de s o t pero no ambosdevuelve el conjunto s con elementos de s o t pero no ambos                                  |

# La siguiente tabla enumera las operaciones disponibles **Set** pero no encontradas en **frozenset**

| Operación (Equivalente) | <u>Resultado</u>                                                                   |
|-------------------------|------------------------------------------------------------------------------------|
|                         |                                                                                    |
| s.add(x)                | suma el elemento x al conjunto s                                                   |
| s.remove(x)             | quitar x del conjunto s ; aumenta KeyErrorsi no está presente                      |
| s.discard(x)            | elimina x del conjunto s si está presente                                          |
| s.pop()                 | eliminar y devolver un elemento arbitrario de s ;<br>aumenta KeyErrorsi está vacío |
| s.clear()               | eliminar todos los elementos del conjunto s                                        |

```
# Python Set Subset
# creamos A
A = \{1,2,3,4,5,6,7,8,9,10,11,12\}
# creamos B
B = \{4,3,7,8,11\}
# creamos la lista L desde del set A
L = list(A)
# usa el issubset para chequear si A es un subconjunto de B
print('el set A es Subset del set B?',A.issubset(B))
# usa el issubset para chequear si B es un subconjunto de A
print('el set B es Subset del set A?',B.issubset(A))
# usa el issubset para chequear si B es un subconjunto de la lista L
print('el set B es Subset de la lista A?',B.issubset(A))
```

### La siguiente tabla enumera las operaciones disponibles **Set** pero no encontradas en **frozenset**

```
# Python Set Subset
# creamos A
A = \{1,2,3,4,5,6,7,8,9,10,11,12\}
# creamos B
B = \{4,3,7,8,11\}
# creamos C
C = \{1,2,3,4,5,6,7,8,9,10,11,12\}
# usa el operador < para chequear si B es un subconjunto de A
print('B es subconjunto de A?',B <= A)</pre>
# usa el operador < para chequear si A es un subconjunto de A
print('A es subconjunto de B?',A <= B)</pre>
# usa el operador < para chequear si B es un subconjunto de A en forma estricta?
print('B es subconjunto estricto de A?',B < A)
# usa el operador < para chequear si C es un subconjunto de A en forma estricta?
print('C es subconjunto estricto de A?',C < A)
    https://docs.python.org/es/3.10/library/stdtypes.html#set-types-set-frozenset
```