

Consideriamo le sequenti funzioni di variabile reale: $f_1(x)$, $f_2(x)$,..., $f_n(x)$

Inoltre considerium $S_{\pm}(x) \equiv f_{\pm}(x)$, $S_{2}(x) \equiv f_{\pm}(x) + f_{2}(x)$, ..., $S_{n}(x) \equiv f_{\pm}(x) + f_{2}(x) + ... + f_{n}(x)$

Per scriverla in forma compatta scriveremo $\sum_{n=1}^{\infty} f_n(x)$

Serie Numerica associata alla succ. di funz

Se questa SERIE converge, convergero:

ad una FUNZIONE (F(x))

$$= D \left(\sum_{n=2}^{\infty} \int_{\Omega} (x) = + (x) \right)$$

In the senso?

Fissato un valore numerico di x, si viene a formare una SERIE NUMERICA: ES: Sostituisco x=8, si forma una serie numerica (la x scompare); Se la serie NUMERICA, allora la serie di funzioni NEL PUNTO x=8 CONVERGE. Potre bbe pero onche dirergere ad oscillare.

L'insieme dei valori di χ puo essere battezzato "A" che è un sotto in sieme obi numeri reali -D ASR. L'insieme dei valori di A che rendono questa serie convergente, viene detto INSIEME DI CONVERGENZA.).

Diremo che la serie $f_n(x)$ Converge Puntualmente in tutti i punti dell'insieme A ad una funzione $\neq (x)$:

$$\sum_{n=1}^{\infty} \int_{n} (x) \stackrel{\text{"Converge Pintual motte"}}{=} + (x)$$

Esempio grafico: Supponiamo che l'insieme di convergenza sia un intervallo (a,b):

Si dice che una serie di funzioni converbe ad una certa $\pm(x)$ perchè piu' Termini si sommano, piu' la $F_n(x)$ ottenta coincide con la $\mp_{av}(x)$.

Es: $\sum_{n=1}^{\infty} e^{nx}$

1 Trovare l'insieme di convergenza PUNTUALE. 2 Se possibile Trovare la funzione somma.

Studiamo la serie con i criteri gia visti nelle serie numeriche:

$$\sum_{n=1}^{\infty} e^{nx} = \sum_{n=1}^{\infty} (e^{x})^{n}$$

$$e^{x} < 1 - 0 \text{ line}^{x} < \ln(1) - 0 \text{ } x < 0$$

$$e^{x} < 1 - 0 \text{ line}^{x} < \ln(1) - 0 \text{ } x < 0$$

2) Funz. Somma: Siccome abbiens una serie geom. essa con verge =0 A=]-00,0[$f(x) = \frac{1}{4-r} = \frac{1}{4-e^x}$ converge

Inoltre, se una serie e convengente, allora 7n e infinitesima, ouvero:

lim $\Sigma_n(x_0) = 0$ Ma titlo questo che vuol dire? Facciomo finta di fissare un ε molto piccolo. Se facendo la differenza $|F(x_0) - S_{100}(x_0)|$ ottenopo un valore $K > \varepsilon$, allova oumento ne calcolo $|F(x_0) - S_{200}(x_0)|$. Se la differenza $K < \varepsilon$, scelopo un $\varepsilon_1 < \varepsilon$, a ffinche $|F(x_0) - S_n(x_0)| < \varepsilon_1$, olovro amentare il numero di funzioni da sommare, e quindi n. Cosa capiamo? Piv' si sceglie E piccolo, piv' dobbiomo oumentare n.

Inoltre, preudiomo in considerazione un indice $P_0 \in \mathbb{N}$, con (n > P). Quando calcoliomo | F(xo)-Sn(xo)| il risultato potrebbe di pendere dal punto xo in cui si calcola: Ad esempio $X_0, x_1 \in A$, $X_0 \neq x_4 = 0$ $|f(x_0) - S_n(x_0)| \neq |f(x_4) - S_n(x_4)|$.

Quando $|f(x_0) - S_n(x_0)|$ con n > P dipende SOLO DA E e non da x, allora abbiomo una CONVERGENZA UNIFORME

$$\sum_{n=2}^{\infty} f_n(x) \xrightarrow{A} f(x)$$

$$ES: \sum_{n=0}^{\infty} x^n \qquad -1 < x < 1$$

intervallo a caso

-1< X<1 in [-½,½], dove la Serie di fe- puntualmente convergente, e- anche unifo rmenente convergente?