Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Лабораторная работа № 1 "Кодирование и шифрование"

по дисциплине Практическая линейная алгебра

Выполнила: студентка гр. R3238

Нечаева А. А.

Преподаватель: Перегудин Алексей Алексеевич

1 Задание 1. Шифр Хилла

1.1 Задание алфавита и сообщения

Таблица 1 – Используемый алфавит

Символ	Код	Символ	Код	Символ	Код
A	0	3	4	Ы	8
В	1	Л	5	Ь	9
Д	2	Н	6	R	10
Ë	3	П	7		

Зашифрованное сообщение: ЗВЁЗДНАЯПЫЛЬ

Размер алфавита в нашем случае:

$$n = 11$$

У числа 11 нет делителей, кроме единицы и самого числа.

1.2 Шифрование с помощью матрицы-ключа 2×2

Матрица-ключ размера 2×2 :

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix} \tag{1}$$

Проверка определителя:

$$\begin{vmatrix} 1 & 2 \\ 4 & 9 \end{vmatrix} = 1 \neq 0 \tag{2}$$

Запишем фразу, подлежащую шифрования с помощью кодов символов алфавита и разобьем наше сообщение на векторы.

Далее представлены фрагменты сообщения и соотвествующие векторы кодов:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Теперь зашифруем сообщение: матрично умножим ключ на каждый вектор и найдем остаток от деления на размер алфавита от результата:

$$\begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix} \times \begin{pmatrix} 4 \\ 1 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 6 \\ 25 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$
 (3)

$$\begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix} \times \begin{pmatrix} 3 \\ 4 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 11 \\ 48 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \tag{4}$$

$$\begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix} \times \begin{pmatrix} 2 \\ 6 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 14 \\ 62 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$$
 (5)

$$\begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix} \times \begin{pmatrix} 0 \\ 10 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 20 \\ 90 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 9 \\ 2 \end{pmatrix}$$
 (6)

$$\begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix} \times \begin{pmatrix} 7 \\ 8 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 23 \\ 100 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (7)

$$\begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix} \times \begin{pmatrix} 5 \\ 9 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 23 \\ 101 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 (8)

Декодируем полученный результат:

$$\begin{pmatrix} 6 \\ 3 \end{pmatrix} \rightarrow \textbf{\textit{H}} \ddot{\textbf{\textit{E}}} \ ; \ \begin{pmatrix} 0 \\ 4 \end{pmatrix} \rightarrow \textbf{\textit{A}} \textbf{\textit{A}} \ ; \ \begin{pmatrix} 3 \\ 7 \end{pmatrix} \rightarrow \ddot{\textbf{\textit{E}}} \boldsymbol{\Pi} \ ; \ \begin{pmatrix} 9 \\ 2 \end{pmatrix} \rightarrow \textbf{\textit{B}} \boldsymbol{\mathcal{\mathcal{J}}} \ ; \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightarrow \textbf{\textit{B}} \textbf{\textit{B}} \ ; \ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rightarrow \textbf{\textit{B}} \boldsymbol{\mathcal{\mathcal{J}}} \$$

Полученное сообщение: НЁАЗЁПЬДВВВД

1.3 Шифрование с помощью матрицы-ключа 3 × 3

Матрица-ключ размера 3×3 :

$$B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \tag{9}$$

Проверка определителя:

$$\begin{vmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 1 \neq 0 \tag{10}$$

Разобьем сообщение на фрагменты длины 3 и запишем соотвествующие им векторы кодов:

$$egin{aligned} egin{aligned} eg$$

Повторяем действия, описанные в разделе 1.2:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 5 \\ 3 \\ 7 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 5 \\ 3 \\ 7 \end{pmatrix}$$
 (11)

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 6 \\ 6 \\ 10 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 6 \\ 6 \\ 10 \end{pmatrix}$$
 (12)

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 10 \\ 7 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 10 \\ 7 \\ 7 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 10 \\ 7 \\ 7 \end{pmatrix}$$
 (13)

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 8 \\ 5 \\ 9 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 13 \\ 9 \\ 17 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 2 \\ 9 \\ 6 \end{pmatrix}$$
(14)

Декодируем:

$$\begin{pmatrix} 5 \\ 3 \\ 7 \end{pmatrix} \rightarrow \mathbf{\varPi\ddot{E}\Pi} \ ; \ \begin{pmatrix} 6 \\ 6 \\ 10 \end{pmatrix} \rightarrow \mathbf{HHH} \ ; \ \begin{pmatrix} 10 \\ 7 \\ 7 \end{pmatrix} \rightarrow \mathbf{H\Pi\Pi} \ ; \ \begin{pmatrix} 2 \\ 9 \\ 6 \end{pmatrix} \rightarrow \mathbf{\varPi\ddot{E}H}$$

Полученное сообщение: ЛЁПННЯЯППДЬН

1.4 Шифрование с помощью матрицы-ключа 4×4

Матрица-ключ размера 4×4 :

$$C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \tag{15}$$

Проверка определителя:

$$\begin{vmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{vmatrix} = -1 \neq 0 \tag{16}$$

Разобьем сообщение на фрагменты по 4 символа и предствим векторы полученных кодов:

$$egin{aligned} egin{aligned} eg$$

Повторяем действия, описанные в разделе 1.2:

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 4 \\ 1 \\ 3 \\ 4 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 9 \\ 3 \\ 11 \\ 5 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 9 \\ 3 \\ 0 \\ 5 \end{pmatrix}$$
 (17)

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 2 \\ 6 \\ 0 \\ 10 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 18 \\ 0 \\ 12 \\ 8 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 7 \\ 0 \\ 1 \\ 8 \end{pmatrix}$$
 (18)

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 7 \\ 8 \\ 5 \\ 9 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 24 \\ 5 \\ 21 \\ 15 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 2 \\ 5 \\ 10 \\ 4 \end{pmatrix}$$
(19)

Декодируем:

$$\begin{pmatrix} 9 \\ 3 \\ 0 \\ 5 \end{pmatrix} \rightarrow \textbf{\textit{BEAJI}} \; ; \begin{pmatrix} 7 \\ 0 \\ 1 \\ 8 \end{pmatrix} \rightarrow \textbf{\textit{IIABM}} \; ; \begin{pmatrix} 2 \\ 5 \\ 10 \\ 4 \end{pmatrix} \rightarrow \textbf{\textit{JIJI3}}$$

Полученное сообщение: ЬЁАЛПАВЫДЛЯЗ

1.5 Имитация вредоносного вмешательства

а) Повредим фразу, полученную в пункте 1.2

Таблица 2 – Повреждение первого результата

Исходные символы	Н	Ë	A	3	Ë	П	Ь	Д	В	В	В	Д
После атаки	Н	Л	A	3	Ь	П	Ь	Д	Ы	В	В	Д
Коды после атаки	6	5	0	4	9	7	9	2	8	1	1	2

Найдем обратную матрицу от первого ключа:

$$A^{-1} = \begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix}^{-1} = \begin{pmatrix} 9 & -2 \\ -4 & 1 \end{pmatrix} \tag{20}$$

Разобьем фразу *НЛАЗЬПЬДЫВВД* на фрагменты:

$$m{HJ}
ightarrow egin{pmatrix} 6 \ 5 \end{pmatrix} ; m{A}m{3}
ightarrow egin{pmatrix} 0 \ 4 \end{pmatrix} ; m{B}m{\Pi}
ightarrow egin{pmatrix} 9 \ 7 \end{pmatrix} ; m{b}m{\mathcal{J}}
ightarrow egin{pmatrix} 9 \ 2 \end{pmatrix} ; m{b}m{\mathcal{J}}
ightarrow egin{pmatrix} 1 \ 2 \end{pmatrix}$$

Расшифруем сообщение:

$$\begin{pmatrix} 9 & -2 \\ -4 & 1 \end{pmatrix} \times \begin{pmatrix} 6 \\ 5 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 44 \\ -19 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 0 \\ 3 \end{pmatrix} \tag{21}$$

$$\begin{pmatrix} 9 & -2 \\ -4 & 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 4 \end{pmatrix} (mod \ 11) = \begin{pmatrix} -8 \\ 4 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 (22)

$$\begin{pmatrix} 9 & -2 \\ -4 & 1 \end{pmatrix} \times \begin{pmatrix} 9 \\ 7 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 67 \\ -29 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
 (23)

$$\begin{pmatrix} 9 & -2 \\ -4 & 1 \end{pmatrix} \times \begin{pmatrix} 9 \\ 2 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 77 \\ -34 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 0 \\ 10 \end{pmatrix} \tag{24}$$

$$\begin{pmatrix} 9 & -2 \\ -4 & 1 \end{pmatrix} \times \begin{pmatrix} 8 \\ 1 \end{pmatrix} \pmod{11} = \begin{pmatrix} 70 \\ -31 \end{pmatrix} \pmod{11} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \tag{25}$$

$$\begin{pmatrix} 9 & -2 \\ -4 & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 5 \\ -2 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 5 \\ 9 \end{pmatrix}$$
 (26)

Декодируем полученный результат:

$$\begin{pmatrix} 0 \\ 3 \end{pmatrix} \rightarrow \textbf{\textit{A}} \, \boldsymbol{\ddot{E}} \, ; \, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \rightarrow \boldsymbol{\ddot{E}} \boldsymbol{\textit{3}} \, ; \, \begin{pmatrix} 1 \\ 4 \end{pmatrix} \rightarrow \textbf{\textit{B}} \boldsymbol{\textit{3}} \, ; \, \begin{pmatrix} 0 \\ 10 \end{pmatrix} \rightarrow \textbf{\textit{A}} \, \boldsymbol{\textit{A}} \, ; \, \begin{pmatrix} 4 \\ 2 \end{pmatrix} \rightarrow \boldsymbol{\textit{3}} \boldsymbol{\textit{J}} \, ; \, \begin{pmatrix} 5 \\ 9 \end{pmatrix} \rightarrow \boldsymbol{\textit{J}} \boldsymbol{\textit{b}}$$

Полученное сообщение: АЁ ЁЗ ВЗ АЯ ЗД ЛЬ

Заметим, что поврежденными участками после расшифровки оказались те пары букв, в которых мы провели подмену символов.

б) Повредим фразу, полученную в пункте 1.3

Таблица 2 – Повреждение второго результата

200011114		-P	~~~		opor.	Poo	Jul					
Исходные символы	Л	Ë	П	Н	Н	Я	Я	П	П	Д	Ь	Н
После атаки	Л	Ë	П	Н	Ы	A	Я	В	П	Д	Ь	Н
Коды после атаки	5	3	7	6	8	0	10	1	7	2	9	6

Найдем обратную матрицу от второго ключа:

$$B^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
 (27)

Разобьем фразу *ЛЁПНЫАЯВПДЬН* на фрагменты:

$$m{\it ЛЁ}m{\Pi}
ightarrow egin{pmatrix} 5 \ 3 \ 7 \end{pmatrix};$$
 $m{\it HЫA}
ightarrow egin{pmatrix} 6 \ 8 \ 0 \end{pmatrix}; m{\it ABM}
ightarrow egin{pmatrix} 10 \ 1 \ 7 \end{pmatrix};$
 $m{\it ДЬH}
ightarrow egin{pmatrix} 2 \ 9 \ 6 \end{pmatrix}$

Расшифруем сообщение:

$$\begin{pmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 5 \\ 3 \\ 7 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$$
 (28)

$$\begin{pmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 6 \\ 8 \\ 0 \end{pmatrix} (mod \ 11) = \begin{pmatrix} -8 \\ 14 \\ 8 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 3 \\ 3 \\ 8 \end{pmatrix}$$
(29)

$$\begin{pmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 10 \\ 1 \\ 7 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 6 \\ 4 \\ 1 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 6 \\ 4 \\ 1 \end{pmatrix}$$
 (30)

$$\begin{pmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 \\ 9 \\ 6 \end{pmatrix} \pmod{11} = \begin{pmatrix} -3 \\ 5 \\ 9 \end{pmatrix} \pmod{11} = \begin{pmatrix} 8 \\ 5 \\ 9 \end{pmatrix} \tag{31}$$

Декодируем полученный результат:

$$\begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix} \rightarrow \boldsymbol{3BE} \; ; \; \begin{pmatrix} 3 \\ 3 \\ 8 \end{pmatrix} \rightarrow \boldsymbol{\ddot{E}EH} \; ; \; \begin{pmatrix} 6 \\ 4 \\ 1 \end{pmatrix} \rightarrow \boldsymbol{H3B} \; ; \; \begin{pmatrix} 8 \\ 5 \\ 9 \end{pmatrix} \rightarrow \boldsymbol{\boldsymbol{BJJb}}$$

Полученное сообщение: ЗВЁ ЁЁЫ НЗВ ЫЛЬ

Аналогично предыдущему пункту ошибки проявились только в тех фрагментах, в которых были заменены символы.

в) Повредим фразу, полученную в пункте 1.4

Таблица 3 – Повреждение третьего результата

Исходные символы	Ь	Ë	A	Л	П	A	В	Ы	Д	Л	R	3
После атаки	В	П	A	Д	П	Α	В	Ы	Д	Л	Я	3
Коды после атаки	1	7	0	2	7	0	1	8	2	5	10	4

Найдем обратную матрицу от третьеого ключа:

$$C^{-1} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$
(32)

Разобьем сообщение на фрагменты по 4 символа и предствим векторы полученных кодов:

$$m{\Pi ABM}
ightarrow egin{pmatrix} 7 \ 0 \ 1 \ 8 \end{pmatrix};$$
 $m{ДЛЯ3}
ightarrow egin{pmatrix} 2 \ 5 \ 10 \ 4 \end{pmatrix}$

Повторим привычные действия для расшифровки сообщения:

$$\begin{pmatrix} -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 7 \\ 0 \\ 2 \end{pmatrix} (mod \ 11) = \begin{pmatrix} -6 \\ 8 \\ 7 \\ -1 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 5 \\ 8 \\ 7 \\ 10 \end{pmatrix}$$
(33)

$$\begin{pmatrix} -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} 7 \\ 0 \\ 1 \\ 8 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 2 \\ 6 \\ 0 \\ -1 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 2 \\ 6 \\ 0 \\ 10 \end{pmatrix} \quad (34)$$

$$\begin{pmatrix} -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 5 \\ 10 \\ 4 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 7 \\ -3 \\ 5 \\ -2 \end{pmatrix} (mod \ 11) = \begin{pmatrix} 7 \\ 8 \\ 6 \\ 9 \end{pmatrix}$$
(35)

Декодируем полученный результат:

$$\begin{pmatrix} 5 \\ 8 \\ 7 \\ 10 \end{pmatrix} \rightarrow \mathbf{\varPi}\mathbf{H}\mathbf{\Pi}\mathbf{H} \; ; \; \begin{pmatrix} 2 \\ 6 \\ 0 \\ 10 \end{pmatrix} \rightarrow \mathbf{\varPi}\mathbf{H}\mathbf{A}\mathbf{H} \; ; \; \begin{pmatrix} 7 \\ 8 \\ 6 \\ 9 \end{pmatrix} \rightarrow \mathbf{\varPi}\mathbf{H}\mathbf{H}\mathbf{J}\mathbf{b} \; ;$$

Полученное сообщение: **ЛЫПЯ ДНАЯПЫЛЬ**

Ь

Э

Ю

Я

11011

11100

11101

11110

11111

1.6 Вывод НУЖЕН ЛИ?

2 Задание 2. Взлом шифра Хилла

3 Задание 3. Код Хэмминга

Μ

Η

O

П

racellinga i ricinovino, eminin aviquani										
Символ	Код	Символ	Код	Символ	Код	Символ				
A	00000	И	01000	P	10000	Ш				
Б	00001	Й	01001	С	10001	Щ				
В	00010	K	01010	Т	10010	Ъ				
Γ	00011	Л	01011	У	10011	Ы				

01100

01101

01110

01111

Таблица 4 – Используемый алфавит

Слово: COBA. Соотвествующий код: 10001 01110 00010 00000.

Φ

X

П

Ч

3.1 Немного теории

00100

00101

00110

00111

Д

Е

Ж

G — порождающая матрица, размера 4×7 , по числу информационных и кодовых разрядов. Левая часть матрицы — участок 4×4 представляет собой единичную матрицу, а справа —

Кодирование производится по формуле:

$$Y = X \times G(mod2) \tag{36}$$

10100

10101

10110

10111

Получаем систематический код – код, в котором информационные разряды являются частью кодового вектора.

Для декодирования (проверки) используется проверочная матрица H размера 7×3 . Для каждой порождающей матрицы существует единственная проверочная матрица. Она повторяет правую часть порождающей матрицы и содержит в последних 3 строках единичную матрицу. Порождающая и проверочная матрицы являются взаимно перпендикулярными, то есть при их умножении получается нуль-матрица.

$$G \times H = 0 \tag{37}$$

s – синдромный вектор (синдром) размера (n - k).

$$s = Y \times H \tag{38}$$

Можем вычислить ошибку: ошибочный разряд соотвествует номеру строки (если считать с 1) порождающей матрицы с вычисленным синдромом. Таким образом, код Хэмминга позволяет исправлять ошибки в полученных сообщениях. Если синдром является нулевым вектором, значит, с высокой вероятностью ошибки нет.

3.2 Кодирование

Запишем матрицу G, согласно требованиям к ней, описанных выше.

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$
(39)

Теперь зададим проверочную матрицу H

$$H = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{40}$$

4 Задание 4. Код Хэмминг?