1

IN-2022

EE23BTECH11210-Dhyana Teja Machineni*

QUESTION:

A sinusoidal carrier wave with amplitude A_c and frequency f_c is amplitude modulated with a message signal m(t) having frequency $0 < f_m << f_c$ to generate the modulated wave s(t) given by $s(t) = A_c (1 + m(t)) cos(2\pi f_c t)$ The message signal that can be retrieved completely using envelope detection is

2)
$$m(t) = 1.5 \sin(2\pi f_m t)$$

3)
$$m(t) = 2\sin(4\pi f_m t)$$

4)
$$m(t) = 2\cos(4\pi f_m t)$$

Solution:

Parameter	Description
s(t)	Amplitude Modulated Wave
M(t)	Message Signal
c(t)	Carrier Signal
f_c	Frequency of Carrier Signal
f_m	Frequency of Message Signal

TABLE I

VARIABLES AND THEIR DESCRIPTIONS

$$c(t) = A_c \cos(2\pi f_c t) \tag{1}$$

$$M(t) = A_m \cos(2\pi f_m t) \tag{2}$$

$$s(t) = (A_c + M(t))\cos(2\pi f_c t)$$
(3)

$$= A_c \left(1 + \frac{A_m}{A_c} \cos(2\pi f_m t) \right) \cos 2\pi f_c t \qquad (4)$$

$$= A_c \left(1 + m \left(t \right) \right) \cos 2\pi f_c t$$

Modulation Index of $s(t) = \mu = \frac{A_m}{A_n}$

- μ < 1 Signal is Can be detected
- $\mu = 1$ Signal Cannot be detected
- $\mu > 1$ Over modulation
- 1) $m(t) = 0.5 \cos(2\pi f_m t)$

$$\frac{A_m}{A_c} = 0.5 \tag{6}$$

$$\mu < 1 \tag{7}$$

(5)

: Signal can be retrieved completely.

2) $m(t) = 1.5 \sin(2\pi f_m t)$

$$\frac{A_m}{A_c} = 1.5 \tag{8}$$

$$\mu > 1$$
 (9)

: Signal cannot be retrieved completely.

3) $m(t) = 2 \sin(4\pi f_m t)$

$$\frac{A_m}{A_c} = 2 \tag{10}$$

$$\mu > 1 \tag{11}$$

:. Signal cannot be retrieved completely.

$$4) m(t) = 2 \cos(4\pi f_m t)$$

$$\frac{A_m}{A_c} = 2 \tag{12}$$

$$\mu > 1 \tag{13}$$

: Signal cannot be retrieved completely.

