Physics through Computational Thinking

Practice Problems: Week 1 (Submission not required)

- **1.** Explore numerical function N[x].
- (a) N calculates numerical value of any expression. Lets find out Pi and E (the Euler number e) to 10 digits by evaluating the following commands.

- (b) Find Pi to 100 digits.
- (c) Find $2^{1/2}$ and $2^{1/3}$ up to 16 digits.
- 2. Can you reproduce the plot below by figuring out the suitable Mathematica code (one line only). Reproduce also the plot styling that is x-range, y-range, labeling, colors, line stroke, frame etc. You may need to look up documentation of the Plot function to be able to do this. Its a good idea to start navigating into documentation and also learn how to make your figures look nicer. See if you can figure out a few styling techniques on your own to make the figure look even better that what is presented here.

3. Sketch the following functions, first on a piece of paper analyzing them for their zeros, divergences, extrema and asymptotes. Next cross - check your sketch by plotting the function on Mathematica.

Hyperbolic functions:

- 1. $\cosh(x)$ 2. $\sinh(x)$ 3. $\tanh(x)$ 4. $\operatorname{cosech}(x)$ 5. $\operatorname{sech}(x)$ 6. $\coth(x)$.
- 7. $\ln x$ 8. $\ln(\ln(x))$ 9. $\ln(x)/x$ 10. $\ln(e^x 1)$ 11. $\ln\left(\frac{1-x}{1+x}\right)$ 12. $\frac{1}{x}\ln\left(\frac{1-x}{1+x}\right)$
- 13. $e^{-x}\cos(x)$ 14. $e^{-x}\sin(x)$ 15. $e^{-|x|}\cos(x)$ 16. $e^{-|x|}\sin(x)$ 17. xe^{-x^2} 18. $x-1+e^{-x}$

19.
$$x^x$$
 20. $x^{1/x}$ 21. $x^{|x|}$ 22. $|x|^{|x|}$ 23. $\frac{|x|^{1/2}}{1+|x|^{1/2}}$ 24. $\frac{|x|^{\frac{1}{2}}}{e^x+1}$

25.
$$e^{\frac{1}{x}}$$
 26. $e^{\frac{-1}{x^2}}$ 27. $e^{-12} - e^{-12}$ 28. e^{-12} 29. e^{-12} 29. e^{-12} 27. e^{-12} 27. e^{-12} 28. e^{-12} 29. $e^{$

4. For a quadratic function given by $y = a x^2 + b x + c$, where a > 0, find the equation of the minimum (x_{\min}, y_{\min}) as a function of b. Now rewrite y_{\min} as a function of x_{\min} . What is this function? Can you make a plot to show that the minima of the parabola $y = a x^2 + b x + c$ lies on the curve $y_{\min}(x_{\min})$? Use Manipulate to vary b and demonstrate that the minima always lies on this curve.

Hint: Try the following code. Can you figure what's going on? Modify this code to manipulate a and c also.

Manipulate
$$\Big[\text{Plot} \Big[\Big\{ a \, x^2 + b \, x + c \,, \, c - a \, x^2 \,, \, \frac{-b^2}{4 \, a} + c \Big\} \, / \,. \, \{ a \to 2 \,, \, b \to b1 \,, \, c \to 4 \} \, / / \, \, \text{Evaluate}, \\ \{ x \,, \, -2 \,, \, 2 \} \,, \, \text{Frame} \to \text{True}, \, \text{PlotRange} \to \{ -5 \,, \, 10 \} \Big] \,, \, \{ b1 \,, \, -6 \,, \, 6 \} \Big]$$

- **5.** Find the point of intersection for curves $y = \log x$ and $y = x^{1/3}$ up to three decimal accuracy. **Hint:** You can do this by hit and trial or use a built in Mathematica function like NSolve.
- **6.** Plot cosh(x) and its quadratic approximation at x = 0. Find the fractional deviation the quadratic approximation near x = 0 has with respect to $\cosh(x)$ at x = 0.5 and x = 1, that is if y(x) represent quadratic approximation to $\cosh(x)$ near x = 0, then find $\left| \frac{y(x) - \cosh(x)}{\cosh(x)} \right|_{x = 0.5}$ and $\left| \frac{y(x) - \cosh(x)}{\cosh(x)} \right|_{x=1.0}$
- 7. Electric field lines of a quadrupole: Plot the electric field lines and equipotential surfaces for the quadrupolar configuration: four charges of same magnitude and alternating sign on the corners of a square of side a, that is, +q at (0, 0) and (a, a) while -q at (a, 0) and (0, a). Use combination of StreamPlot and ContourPlot as shown in the lecture inside a Show function.
- 8. Magnetic field of a magnetic dipole: Magnetic field of a magnetic dipole is given by

$$\vec{B}(\vec{r}) = \frac{\mu_0 |\vec{m}|}{4 \pi r^3} \left(2 \cos \theta \, \hat{r} + \sin \theta \, \hat{\theta} \right) \tag{1}$$

Plot the magnetic field lines in the x-z plane as vector plot, stream plot and stream density plot. [Hint: Convert the magnetic field to Cartesian coordinates first.]