Communication Networks II

Stream Control Transmission Protocol (SCTP)

Prof. Dr.-Ing. **Ralf Steinmetz**KOM - Multimedia Communications Lab

Overview

- 1 Introduction
- 2 SCTP Basics
 - 2.1 SCTP Concepts: Association and Streams
 - 2.2 SCTP Concepts: Strict vs. Partial Order
 - 2.3 SCTP: Further Concepts
 - 2.4 SCTP: 4-way Handshake
- 3 SCTP Packet Format and Chunks
- **4 SCTP Comparison to other Transport Protocols**
- **5 SCTP Main Features and Extensions**
- **6 Main SCTP Application Scenarios**
- 7 Conclusion and Outlook

1 Introduction

SCTP – Stream Control Transmission Protocol

see also

http://www.sctp.de

and: source of very many Slides

■ Prof. E.Rathgeb, Duisburg-Essen .. thanks

Motivation

For signaling with high reliability but, low overhead

- Additional transport protocol from IETF
- TCP too limited for some applications:
 - e.g., transport signaling from PSTN networks (SS7) over IP-based networks

Goals

- initial goal
 - to replace SS7 signaling in PSTN with SCTP
- now:
 - SCTP as a universal transport protocol (e.g., for SIP)
- future:
 - To replace TCP (in some cases)

Examples:

- Strict order-of-transmission delivery of data with multiple streams
 - partial order within a stream of multiplexed streams sufficient
- Stream-orientation of TCP inconvenient
 - application must set record markings
 - better: message-orientation
- TCP cannot deal with multi-homing
 - i.e., one server with several IP addresses
- TCP is vulnerable to DoS attacks
 - e.g., SYN flooding

SCTP – Some References

Specification in

RFC 2960

Stream Control Transmission Protocol

RFC 2719

Architectural Framework for Signaling Transport

RFC 3057

■ ISDN Q.921-User Adaptation Layer

see also

- http://www.sctp.de/
- http://www.tdr.wiwi.uni-due.de/forschung/forschungsprojekte/sctp/#c11432

2 SCTP – Basics

2.1 SCTP Concepts: Association and Streams

Connection-oriented:

- concept of 'association'
 - bi-directional
 - generalization of TCP-connections:
 - each association endpoint can have several IP addresses (multi-homing)
 - each association can contain several streams (multi-streaming)

Stream A:

- Stream: sequence of user messages to be delivered in order
 - up to 2^16 per direction
 - → in contrast to the notion of 'stream' of TCP
- Reliable data transfer
 - confirmed, no duplicates, error-free

2.2 SCTP Concepts: Strict vs. Partial Order

Strictly ordered delivery optional

- packets of a stream within an association are delivered in order
 - partial order
- optional: to retain order between packets of all streams
 - strict order

effects

- strict order:
 - data transmission stalled if one stream is stalled
- partial order:
 - transmission for non-stalled streams can continue

Example:

HTTP with multiple embedded files (images)

- Order of arrival of image data not relevant
- Retrieving the text can continue even if loading the image is blocked
 - e.g., if the image is located on a different server which is highly loaded

2.3 SCTP: Further Concepts

Message segmentation according to path-MTU

- Path-MTU:
 - maximum transfer unit supported on the path between the endpoints
- Path-MTU discovery mechanism as specified in RFC 1191

Test whether the communication partner is alive:

Heartbeats

Flow control and congestion control similar to TCP (Selective Ack,...)

Coexistence with TCP

Security means:

- 32-bit checksum (like e.g. Adler-32, CRC-32)
- 4-way handshake using cookies against DoS attacks

2.4 SCTP: 4-way Handshake

No state information kept at the station receiving the

'INIT' message

- no vulnerability for SYN flooding
- state information established only after the third step,
 - the 'COOKIE' message

To increase efficiency

 user data can be sent already with the 'COOKIE ECHO' and 'COOKIE ACK' messages

Association Teardown

- Additional feature of SCTP disconnect
 - No half-open states as in TCP
 - Due to asymmetric disconnect

3 SCTP – Packet Format and Chunks

Association

 SCTP connection between two endpoints

Stream

Unidirectional logical channel

Chunk

- Unit of information within an SCTP packet,
- consisting of
 - a chunk header and
 - specific content

SCTP – Packet Format and Chunks

Multiplexing of several user messages: Chunk Bundling

Chunk:

SCTP – Packet Format: Common Header

source port / destination port (2 Byte each):

As in TCP or UDP

verification tag: for validation of the sender of the SCTP message

protection against blind attacks (unauthorized shutdown of association)

checksum:

- Adler-32: currently proposed in the RFC
- CRC-32: proposed recently, better error detection properties for small packets
- RFC 3309: Stream Control Transmission Protocol (SCTP) Checksum Change

SCTP - Packet Format: INIT Chunk Format

Type=1 Flags: None	Chunk Length
Initia	ate Tag
Advertised Rece	iver Credit Window
Number of outbound streams	Number of inbound streams
Initial Transmissio	n Sequence Number
Optional/Variable	-Length Parameters

Initiate Tag: random number used in all subsequent messages

protect against blind attacks

Advertised Receiver Credit Window:

dedicated buffer space reserved for the association

Number of outbound streams:

the sender of this INIT chunk wants to open

Number of inbound streams:

maximum the sender of this INIT message can support

Variable-Length parameter

among others.: list of IP addresses (multi-homing!) being part of the association

4 SCTP – Comparison to other Transport Protocols

Table I. Comparison of Transport-Layer Protocols

FEATURE	SCTP	TCP	UDP
Connection-oriented	Yes	Yes	No
Half-closed connections	No	Yes	N/A
Protection against blind DoS attacks	Yes	No	N/A
Dynamic address manipulation	$Optional^a$	No	N/A
Reliable data transfer	Yes	Yes	No
Partially reliable data transfer	$Optional^b$	No	No
Preservation of application message boundaries	Yes	No	Yes
Application PDU fragmentation/bundling	Yes	Yes	No
Ordered data delivery	Yes^c	Yes	No
Unordered data delivery	Yes	No	Yes
Full-duplex data transmission	Yes	Yes	Yes
Flow and congestion control	Yes	Yes	No
Selective acknowledgments	Yes	Optional	No
Path max. transmission unit discovery	Yes	Yes	No
Explicit congestion notification support	Yes	Yes	No
Multistreaming	Yes	No	No
Multihoming	Yes	No	No

^aCovered with DAR extension, see RFC 5061 [Stewart et al. 2007].

from ACM Computing Survey Aug. 2012

- A Taxonomy and Survey of SCTP Research
 - LUKASZ BUDZISZ, Technische Universitaet Berlin
 - JOHAN GARCIA and ANNA BRUNSTROM, Karlstad University
 - RAMON FERRUS, Universitat Politecnica de Catalunya

^bCovered with PR-SCTP extension, see RFC 3758 [Stewart et al. 2004].

^cThe data within a stream is delivered in order.

SCTP – Comparison to other Transport Protocols

Connection oriented (4 way handshake)	Connection oriented (3 way handshake)	Connectionless	
Reliable (more flexible delivery)	Reliable	Unreliable	
Message stream oriented (multi-streaming)	Byte stream oriented	Message oriented	
Adaptive flow control	Adaptive flow control		
Multi-homing			
Overhead : 28 bytes (data)	Overhead: 20-32 bytes	Overhead: 8 bytes	
Extensible			
SCTP	ТСР	UDP	
IP			

Example of TCP vs. SCTP

Connection oriented (4 way handshake)	Connection oriented (3 way handshake)	
Reliable (more flexible delivery)	Reliable	
Message stream oriented (multi-streaming)	Byte stream oriented	
СОТР	TOD	
SCTP	ТСР	
IP		

5 SCTP – Main Features and Extensions

Multi-Streaming

- Multiplexing of several independent application flows
 - within one SCTP association via multiple streams
- Avoids head of line blocking

Multi-Homing

- SCTP endpoints support multiple IP addresses
 - to create redundant network paths between SCTP endpoints
- Compensates network failures

Flexible delivery

SCTP provides ordered delivery and unordered delivery

TCP-friendly adaptive flow control

SCTP protocol extensions

- Partial reliability extension (http://tools.ietf.org/html/draft-ietf-tsvwg-prsctp-03)
 - Retransmission can be limited for some transported messages
- Dynamic address reconfiguration (http://tools.ietf.org/html/draft-ietf-tsvwg-addip-sctp-08)
 - Add and drop IP addresses of established associations dynamically

SCTP main Features – Multi-Streaming and Message Bundling

Multiplexing of multiple message streams within one association

S1, S2, S3, . . . , SN – SCTP streams D1 – D6 – SCTP data chunks

SCTP main Features – Multi-Homing

Multi-Homing

- SCTP endpoints support multiple IP addresses
 - to create redundant network paths between SCTP endpoints

Only primary path carries data traffic, other paths used for retransmissions only

Inactive paths are monitored by heartbeats

NI - Network interface

6 Main SCTP Application Scenarios

■ IP-based transport of signaling information

Reliable Server Pooling (RSerPool)

Primary Motivation: Signaling Transport (SS7)

- Strict availability requirements
- Availability by component redundancy
- Usage of inexpensive standard IP-based (SCTP) components
- Software layer for redundancy

Reliable Server Pooling (by IETF RSerPool WG)

- Lightweight (also usable for small embedded devices)
- Real-time (time constraints)
- Scalable (up to large company networks, not the global Internet)
- Extendable (e.g. new server selection policies)
- Simple (automatic configuration)

Additional Application Scenarios for RSerPool:

- GRID Computing / Distributed Computing
- Mobility Management
- Load Balancing (e.g. web servers; applications actively discussed at 60th IETF)

7 Conclusion and Outlook

SCTP is a promising multi-purpose IETF transport protocol

- Incorporated already in SIGTRAN, RSerPool and Diameter protocols
- Other potential applications have been identified (SIP, mobility, ...)
- It can be deployed easily because it is TCP friendly

Multi-homing feature of SCTP is highly beneficial

- To cope with network failures (fast failover)
- To improve data throughput in critical scenarios

Standard security protocols (IPSec, TLS) can be used with SCTP

- Some limitations and potential performance issues
- Secure-SCTP extension avoids these drawbacks
 - Not standardized