Видове полупроводникови материали

1. Класификация на полупроводниковите материали

2. Основни полупроводникови материали

Химически елементи от IV валентна група на Менделеевата таблица

2.1. Силиций (Si)

Основни свойства

- ightharpoonup широка забранена зона $\Delta W = 1,12 \text{ eV}$
 - това определя високата му работна температура
- ightharpoonup малка подвижност на електроните $\mu_n = 0.14 \text{ m}^2/\text{V.s}$
 - ограничава използването му при високи честоти
- ightharpoonup висока температура на топене $T_{\rm T} = 1414~{\rm ^{\circ}C}$
 - трудно се получава и пречиства

2.1. Силиций (Si)

Особености

- ✓ Образува стабилен оксид SiO_2 с отлични диелектрични и физични свойства (близки до тези на кварца)
- \Rightarrow SiO₂ може да се използа
 - > като материал за електрическа изолация
 - като защитно покритие при технологичните процеси за изготвяне на активни прибори
- ✓ Легираният полисилиций има специфично съпротивление р със строго контролирана стойност
- ⇒ може да се използа
 - > за реализиране на електрически връзки в схемата
 - > за реализиране на слойни резистори

планарно-епитаксиална технология за изготвяне интегрални схеми

2.1. Силиций (Si)

Основни приложения

интегрални схеми

слънчеви елементи

2.2. Германий (Ge)

Основни свойства

- ightharpoonup тясна забранена зона $\Delta W = 0.72 \; \mathrm{eV}$
 - **———** ниска работна температура
- ightharpoonup голяма подвижност на електроните $\mu_n = 0.39 \text{ m}^2/\text{V.s}$
 - работи до високи честоти
- \triangleright ниска температура на топене $T_{\rm T} = 936$ °C

_____ добра технологичност

Особености

- ✓ Образува аморфен оксид GeO₂, който е разтворим дори във вода
- ⇒ Gе много трудно може да се използва за интегрални схеми

2.2. Германий (Ge)

Основни приложения

дискретни елементи (високочестотни)

> диоди

> транзистори

датчици на Хол

3. Полупроводникови химически съединения

Химически съединения между два елемента А и В, като индексът с римска цифра представлява валентната им група

3.1. Полупроводникови химически съединения от типа $A^{\mathrm{III}}B^{\mathrm{V}}$

Класифицират се по металоидния елемент т.е. фосфиди (AlP, GaP и InP), арсениди (AlAs, GaAs и InAs) и антимониди (AlSb, GaSb и InSb).

Основни приложения

полупроводникови лазери

фотоприбори

▶ светодиоди

≻фотодиоди

3.1. Полупроводникови химически съединения от типа $A^{\mathrm{III}} B^{\mathrm{V}}$

GaAs (галиев арсенид)

Основни свойства

ightharpoonup голяма подвижност на електроните $\mu_n = 0.95 \text{ m}^2/\text{V.s}$

работи до високи честоти

Основни приложения

високочестотни интегрални схеми и прибори

3.2. Полупроводникови химически съединения от типа $A^{\mathrm{II}}B^{\mathrm{VI}}$

оксиди (Cu_2O, ZnO)

Класифицират се по металоидния елемент т.е. сулфиди, селениди и телуриди.

Основни приложения

термистори

фоторезистори

12/16

3.3. Полупроводникови химически съединения от типа $A^{\mathrm{IV}}B^{\mathrm{IV}}$

SiC (силициев карбид)

Основни свойства

ightharpoonup много широка забранена зона $\Delta W = 2,39 \; {\rm eV}$

Основни приложения

интегрални схеми за работа при тежки климатични услония

микросензорни системи

4. Методи за получаване и пречистване на полупроводникови материали

Изтегляне на монокристал от стопилка

Зонно топене

Безтиглово зонно топене

4.1. Изтегляне на монокристал от стопилка

тигел

стопилка

изтегляне на монокристали от различни полупроводникови материали

4.2. Безтиглово зонно топене

пречистване и получаване на монокристали от силиций