

08/01/97

A

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Dale E. Yelton and Mae Joanne Rosok

Docket: 30436.46USU1

Title: **A METHOD FOR INHIBITING IMMUNOGLOBULIN-INDUCED TOXICITY
RESULTING FROM THE USE OF IMMUNOGLOBULINS IN THERAPY AND IN VIVO
DIAGNOSIS**

CERTIFICATE UNDER 37 CFR 1.10

'Express Mail' mailing label number: EM297040805US

Date of Deposit: August 1, 1997

I hereby certify that this paper or fee is being deposited with the United States Postal Service 'Express Mail Post Office To Addressee' service under 37 CFR 1.10 and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

By: *Sarah B. Adriano*
Name: Sarah B. Adriano

BOX PATENT APPLICATION
Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

We are transmitting herewith the attached:

- Transmittal sheet, in duplicate, containing Certificate under 37 CFR 1.10.
- Utility Patent Application: Spec. 77 pgs; 52 claims; Abstract 1 pgs.
The fee has been calculated as shown below in the "Claims as Filed" table.
- 56 sheets of informal drawings
- The U.S. Patent Office is hereby authorized to charge the filing fee of \$2,854.00 to Deposit Account No. 13-2724. Please charge any additional fees or credit overpayment to Deposit Account No. 13-2724. A duplicate of this sheet is enclosed.
- Return postcard

CLAIMS AS FILED

Number of Claims Filed	In Excess of:	Number Extra	Rate	Fee
Basic Filing Fee				\$790.00
Total Claims				
52	20	= 32	22.00	\$704.00
Independent Claims				
20	3	= 17	80.00	\$1360.00
MULTIPLE DEPENDENT CLAIM FEE				\$0.00
TOTAL FILING FEE				\$2854.00

MERCHANT, GOULD, SMITH, EDELL,
WELTER & SCHMIDT
Westwood Gateway II, Suite 400
11150 Santa Monica Blvd.
Los Angeles, CA 90025
(310) 445-1140

By: *Sarah B. Adriano*
Name: Sarah B. Adriano
Reg. No.: 34,470
Initials: SBA/pcv

**APPLICATION
FOR
UNITED STATES LETTERS PATENT**

To whom it may concern:

Be it known that

Dale E. Yelton and Mae Joanne Rosok

have invented certain new and useful improvements in
**A METHOD FOR INHIBITING IMMUNOGLOBULIN-INDUCED
TOXICITY RESULTING FROM THE USE OF IMMUNOGLOBULINS
IN THERAPY AND IN VIVO DIAGNOSIS**

of which the following is a full, clear and exact description.

5 **A METHOD FOR INHIBITING IMMUNOGLOBULIN-INDUCED
TOXICITY RESULTING FROM THE USE OF IMMUNOGLOBULINS IN
THERAPY AND IN VIVO DIAGNOSIS**

This application is based on United States provisional patent application Serial No. 60/023,033, filed August 2, 1996.

10

Throughout this application various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

15

TECHNICAL FIELD OF THE INVENTION

The present invention relates to methods for inhibiting or reducing immunoglobulin-induced toxicity resulting from therapy or in vivo diagnosis. Specifically, in lieu of 20 using unmodified antibodies or recombinant binding proteins for in vivo use, the invention provides the use of modified antibodies or recombinant binding proteins which have been structurally altered in the constant domain so that upon administration immunoglobulin-induced toxicity is reduced or inhibited.

25 **BACKGROUND OF THE INVENTION**

Over the years investigators have attempted to harness the immune system for therapeutic use. Immunoglobulin (Ig) molecules which constitute an important part of the immune system are of great interest because they (1) react with a diverse 30 family of ligands, (2) possess different effector functions and (3) are of great biological importance. Despite its potential, a persistent problem with

immunoglobulin immunotherapy has been, among other problems, the toxic effect to normal cells of using antibodies which recognize both normal and diseased cells. This problem is far-reaching because the majority of antibodies presently available recognize a target located on both normal and diseased cells (Slavin-Chiorini, et al.,

- 5 Int. J. Cancer 53: 97-103 (1993)).

The constant region can promote cell death through antibody dependent cell mediated cytotoxicity (ADCC) or by complement dependent cytotoxicity (CDC). Despite the deletion of portions of the constant region, particularly the CH₂ domain,

- 10 the antigen binding function can be retained (D. Yelton, M. Scharf, Mutant monoclonal antibody with alterations in biological functions, J. Exp. Methods 156:1131-1148 (1982)).

Others have generated a CH₂-deleted antibody (Mueller et al., Proc. Natl. Acad. Sci.

- 15 USA 87: 5702-5705 (1990)). Their findings provide that the CH₂-deleted antibody was cleared from the blood of tumor-bearing mice much faster than the corresponding intact antibody. Other in vivo findings also confirmed that a CH₂- deleted antibody, designated ch14.18DCH2, is a potentially useful reagent for radioimmunodetection of human tumors because of its reduced immunogenicity, 20 increased target specificity, and rapid clearance from circulation (Mueller et al., Proc. Natl. Acad. Sci. USA 87: 5702-5705 (1990)).

Generally, whole antibody molecules are composed of two heavy (H) and two light (L) chains which are held together by covalent bonds (disulfide) and non-covalent interactions. Each chain contains a variable region (V) and a constant region (C). 25 The variable regions at the amino termini of the two chains form the antigen binding region. The constant region of the H chain has three components or domains. Occasionally, the first constant region domain (CH₁) interacts with the C region of the L chain through hydrophobic interactions and generally a disulfide bond,

depending on isotype. The next C region stretch is the hinge-acting disulfide bond stably introduced between two H chains. The second constant region domain (CH_2) is adjacent to the hinge region. CH_2 contains sequences important for effector functions of the antibody, such as the sequences responsible for complement fixation, and Fc receptor binding. The third constant region domain (CH_3) is located at the carboxyl terminus of the H chain, and is considered to play an important role in H chain assembly as well as some C region functions.

Today many antibodies in clinical trials are directed against tumor associated antigens. Most tumor associated antigens are not tumor specific but are also generally found on the cell surface of some normal, non-tumorigenic cells. The clinical use of some antibodies directed against tumor associated antigens are limited because of the toxicity associated with their use. Therefore, there is a need for methods for inhibiting toxicity associated with immunoglobulin use in the field of disease therapy (e.g., therapy for tumors, kidney disease, and the like) and in vivo diagnosis.

We addressed this need by discovering methods for inhibiting or reducing toxicity to normal cells generally associated with immunoglobulin immunotherapy or in vivo diagnosis, wherein the immunoglobulin recognizes both diseased and normal cells. Our discovery involves generating immunoglobulin molecules or Ig fusion proteins having structurally altered constant regions which inhibit or reduce immunoglobulin-induced toxicity.

25 SUMMARY OF THE INVENTION

The present invention provides methods for inhibiting immunoglobulin-induced toxicity by using known immunoglobulin or Ig fusion protein molecules which are structurally altered in their constant regions so that the resulting structurally altered

immunoglobulin or Ig fusion protein molecules exhibit reduced or inhibited toxicity in vivo compared to their original unmodified counterparts.

Structural alteration of the constant region may be effected in a number of ways as
5 long as it results in reducing or inhibiting immunoglobulin-induced toxicity.

- In accordance with the practice of the invention, structural alteration of the constant region is effected by deletion of the entire constant region. In another embodiment, only the CH₂ domain is deleted. In another embodiment, only that portion of the
10 CH₂ domain that binds the Fc receptor is deleted. In yet another embodiment, only that portion of the CH₂ domain that binds the complement component C1q is deleted. Alternatively, in another embodiment, multiple deletions in discrete Fc receptor and complement component binding domains are effected.
- 15 Alternatively, structural alteration is effected by single or multiple mutations in the CH₂ domain such as amino acid insertions and substitutions. The mutation or mutations must result in inhibiting immunoglobulin-induced toxicity. By way of example, the amino acids in multiple toxicity associated domains in the constant region can be altered so as to render the constant region unable to mediate a ADCC
20 response or activate complement thereby inhibiting immunoglobulin induced toxicity resulting from immunotherapy. Alternatively, multiple amino acids in a single toxicity associated domain in the constant region can be altered.

Further alternatively, structural alteration can be effected by isotype switching
25 resulting in an altered immunoglobulin molecule that either does not induce toxicity or induces some limited toxicity but does not cause a harmful effect. For example, isotype switching can result in the constant region being unable to mediate a CDC or ADCC response or some other activity which mediates toxicity.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a line graph showing plasma clearance in high Le^Y expressing dogs using chimeric BR96 versus constant region mutant of cBR96-2.

5

Figure 2 is a schematic diagram of a plasmid designated pTWD-cJVK.L1 including the chimeric (c)BR96-light chain (SEQ ID NO. 11).

10 Figure 3 is a schematic diagram of a plasmid designated pD16hJ1.L1 including the human (h)BR96-light chain (SEQ ID NO. 13).

Figure 4 is a schematic diagram of a plasmid, designated pD17-hJm14-dCH2.H1, of hBR96-2A (i.e., human mutant BR96 having the H1, H2, and H3 mutations and the CH₂ deletion (PCT Application No. 95/305444, published March 6, 1996)).

15

Figure 5 is a schematic diagram of a plasmid, designated pD17-cJ-dCH2.H1, of cBR96-A (SEQ ID NO. 10) (i.e., chimeric BR96 having the CH₂ deletion (PCT Application No. 95/305444, published March 6, 1996)).

20 Figure 6 is a schematic diagram of a plasmid, designated pD17-cJ.H1, of cBR96.

Figure 7 is a line graph showing the results of an ELISA assay of (1) hBR96-2A-Dox to Le^y (closed diamond), (2) hBR96-2A to Le^y (96:0006A2 R/A)(closed square), (3) hBR96-2A to Le^y (96:0006B R/A)(closed triangle), and BR96-Dox to 25 Le^y (X).

Figure 8 is a line graph showing the results of an ELISA assay of (1) BR96-A-Dox to Le^y (closed diamond), (2) chiBR96 to Le^y (closed square), (3) cBR96-A to Le^y (96:0003 R/A)(closed triangle), and cBR96-Dox to Le^y (X).

- Figures 9a-c are schematic diagrams showing the steps for deleting a CH₂ domain.
- Figures 10a-c are schematic diagrams showing the construction of BR96 IgG1 CH₂ domain point mutations.
- Figure 11 is a schematic diagram showing the construction of the pNg1/14 vector.
- Figure 12 is a schematic diagram showing the construction of pD17-hBR96-2.
- Figure 13 is a schematic diagram showing the construction of pD17-hJm14-dCH2.H1.
- Figure 14 is the nucleic acid sequence of pD17-cJ-dCH2.H1, the plasmid shown in Figure 5, chimeric BR96 having the CH₂ deletion.
- Figure 15 is a line graph showing the results of an ELISA assay comparing whole chiBR96 and deleted CH₂ chiBR96 on Le^y.
- Figure 16 is a description of the seven structural alterations.
- Figure 17 is a schematic diagram of a plasmid designated pD17-hG1b.
- Figure 18 is the nucleic acid sequence of pD17-hJm14.H1.
- Figure 19 is the nucleic acid sequence of pD17-hG1b.
- Figure 20 is a line graph showing complement dependent cytotoxicity. In the legend, the closed square is hBR96-1; closed diamond is hBR96-2B; closed circle is

hBR96-2C; closed triangle is hBR96-2D; open square is hBR96-2H; open circle is hBR96-2A and open triangle is 2B8, anti-*Pseudomonas aeruginosa* flagella type b mAb, negative control.

- 5 Figure 21 is a line graph showing antibody dependent cell-mediated cytotoxicity. In the legend, the closed square is hBR96-1; closed diamond is hBR96-2B; closed circle is hBR96-2C; closed triangle is hBR96-2D; open square is hBR96-2H; open circle is hBR96-2A and open triangle is 2B8, anti-*Pseudomonas aeruginosa* flagella type b monoclonal antibody (mAb), negative control.

10

- Figure 22 is a line graph showing binding activity of hBR96-2 constant region mutants on LeY-HSA. In the legend, the solid diamond is hBR96-1; solid square is hBR96-2A (CH₂ deletion); solid triangle is hBR96-2B (235, 237 mutations); open square is hBR96-2C (318, 320, 322 mutations); open circle is hBR96-2D (331 mutation); and open triangle is hBR96-2H (235, 237, 318, 320, 322, 331 mutations).

- 15
- Figure 23 is a line graph showing binding activity of hBR96-2 constant region mutants on LNFPIII-BSA. LNFPIII is a lacto-N-fucopentasose, a Lewis X trisaccharide with an additional lactose spacer (V Labs, Covington, LA). In the legend, the solid diamond is hBR96-1; solid square is hBR96-2A (CH₂ deletion); solid triangle is hBR96-2B (235, 237 mutations); open square is hBR96-2C (318, 320, 322 mutations); open circle is hBR96-2D (331 mutation); and open triangle is hBR96-2H (235, 237, 318, 320, 322, 331 mutations).

20
25

Figures 24A and 24B provide a strategy for introducing multiple mutations by RPCR. (A) Diagram of the 1.4 kpb IgG heavy chain region showing the hinge CH₂ and CH₃ domains as boxed regions. Site-specific mutations to be introduced into CH₂ positions L1, L2, and L3 are encoded by complementary sets of mutant PCR

primers (A1 and A2; B1 and B2; and C1 and C2). The asterisks (*) indicate the number of amino acid changes introduced at each L position. The two PCR primers, Rs (Recombination -sense) and Ra (Recombination-antisense), flank the Eco-47-III restriction sites and mediate homologous recombination with vector ends. The 3' 5 ends of the oligonucleotides are represented by arrowheads. (B) A three-way homologous recombination event between fragments RsA2, A1Ra and the linearized vector produces the L1 mutant IgG. Two distally located sets of mutations (L1 and L2) are simultaneously introduced by increasing the number of recombining PCR produces as is shown in the four-way recombination of RsA2, A1B1, B1Ra with 10 vector.

Figure 25 is a gel showing Eco-47-III restriction endonuclease analysis of DNAs prepared from colonies generated by multiple PCR fragment RPCR. Lane M: 1kb ladder DNA marker (GIBCO/BRL Life Science Technology). Lanes 1-12: Twelve 15 randomly selected colonies resulting from quadruple homologous recombination events were used to prepare plasmid and digested with Eco47-III. Clones 1, 2, 6 and 9 contain the fully assembled 1.4 kpb insert.

Figure 26 provides the amino acid sequence for hBR96-2 heavy-chain variable 20 region and the human IgG1 constant region.

Figure 27 provides the amino acid sequence for hBR96-2A heavy-chain variable region and the human IgG1 constant region.

25 Figure 28 provides the amino acid sequence for chi BR96 heavy-chain variable region and the human IgG1 constant region without the CH₂ domain.

DETAILED DESCRIPTION OF THE INVENTION

DEFINITIONS

- 5 As used herein the term "inhibiting immunoglobulin-induced toxicity" means to reduce or alleviate symptoms generally associated with toxicity caused by immunoglobulin or Ig fusion protein therapy, e.g., toxicity mediated by effector functions of the Fc receptor. For example, BR96 antibody recognizes and binds BR96 antigen which is found at some levels in the gastrointestinal tract and at
10 elevated levels in tumors (as compared to the gastrointestinal tract of normal tissues). The binding of BR96 antibody to BR96 antigen *in vivo* causes symptoms associated with gastrointestinal toxicity. These symptoms include rapid onset of vomiting, often with blood, and nausea. In humans the bleeding is limited to the fundus of the stomach, causing erosion of the superficial mucosa of the stomach.
- 15 The pathology of the wound is limited and resolves. However, the extreme nature of the nausea and vomiting, unrelieved by anti-emetics, defines it as the dose-limiting toxicity. For highly elevated levels of other antigens found in the central nervous system (CNS), liver, and other locations, the toxicity will be characterized by
20 symptoms other than those described above.

As used herein the term "immunoglobulin molecule" can be produced by B cells or be generated through recombinant engineering or chemical synthetic means. Examples of immunoglobulin molecules include (1) antibodies, e.g., polyclonal and
25 monoclonal antibodies, chimeric or humanized, and (2) recombinant Ig containing binding proteins, e.g., Ig fusion proteins. Recombinant Ig containing binding proteins include cell surface proteins, e.g., CD antigens (in one embodiment, CTLA4), to which an Ig tail is joined.

As used herein the terms "structurally altered" or "structural alteration" means manipulating the constant region so that the resulting molecule or protein exhibits a diminished ability to induce toxicity. Structural alteration can be by chemical modification, proteolytic alteration, or by recombinant genetic means. Recombinant
5 genetic means may include, but is not limited to, the deletion, insertion and substitution of amino acid moieties.

As used herein the terms "multiple toxicity associated domains" means more than one discrete toxicity associated domain. As there appear to be at least two toxicity
10 associated domains in the immunoglobulin molecule, one roughly localized to amino acids 231-238 and another roughly localized to amino acids 310-331, an example of the structural alteration of multiple toxicity associated domains comprises the insertion, substitution or deletion of amino acid residues in both of these domains. This definition excludes structural alterations targeting a single toxicity associated
15 domain.

Merely by way of example, the constant region of the immunoglobulin molecule can be structurally altered so that the molecule no longer mediates a CDC or ADCC response. However, the methods of the invention encompasses the use of
20 structurally altered immunoglobulin molecules regardless of whether it mediates a CDC or ADCC response. The underlying requirement is that the altered molecule must inhibit immunoglobulin-induced toxicity.

Structural alteration can be effected in a number of ways. For example, structural
25 alteration can be effected by deletion of the entire constant region.

Alternatively, structural alteration can be effected by deletion of the entire CH₂ domain of the constant region. In this instance, deletion of the entire CH₂ domain may render the molecule unable to (1) bind an Fc receptor thereby eliminating the

molecule's possibility of mediating antibody-dependent cellular cytotoxicity (ADCC), (2) bind C1q, or (3) activate complement.

Alternatively, structural alteration can be effected by deletion of only that portion of
5 the CH₂ domain that binds the Fc receptor or complement.

Further alternatively, a single mutation or multiple mutations such as substitutions and insertions in the CH₂ domain can be made. The underlying requirement of any mutation is that it must inhibit, diminish, or block immunoglobulin-induced toxicity.

10 For example, this can be achieved by mutating the constant region such that the altered molecule is rendered unable to mediate a CDC response or an ADCC response, or to activate complement.

Alternatively, structural alteration can be effected by isotype switching (also known
15 as class switching) so that the altered molecule does not induce toxicity in the subject. In one embodiment, the constant region of the immunoglobulin is structurally altered so that it no longer binds the Fc receptor or a complement component, e.g., switching a molecule's original IgG isotype from IgG1 to IgG4. Isotype switching can be effected regardless of species, i.e., an isotype from a non-
20 human being can be switched with an isotype from a human being (E.D. Finkelman et al. (1990) Annu. Rev. Immunol. 8:303-333; T. Honjo et al. (1979) Cell 18: 559-568; T. Honjo et al. In "Immunoglobulin Genes" pp. 124-149 Academic Press, London)).

25 As used herein the term "Ig fusion protein" means any recombinantly produced antigen or ligand binding domain having a constant region which can be structurally altered.

As used herein "cytotoxic agent" includes antimetabolites, alkylating agents, anthracyclines, antibiotics, anti-mitotic agents, and chemotherapeutic agents. Specific examples within these groups include but are not limited to ricin, doxorubicin, daunorubicin, taxol, ethidium bromide, mitomycin, etoposide, 5 tenoposide, vincristine, vinblastine, colchicine, supporin, gelonin, PE40, bryodin, dihydroxy anthracin dione, actinomycin D, and 1-dehydrotosterone.

As used herein the term "BR96" refers to (1) the whole BR96 monoclonal antibody disclosed in PCT No. 95/305444, published March 6, 1996, (2) chimeric BR96 10 monoclonal antibody disclosed in PCT No. 95/305444, published March 6, 1996, or (3) BR96 mutant molecules disclosed in PCT No. 95/305444, published March 6, 1996.

As used herein, "treating" means to (1) provide tumor regression so that the tumor is 15 not palpable for a period of time (standard tumor measurement procedures may be followed (A.B. Miller et al. "Reporting results of cancer treatment" Cancer 47:207-214 (1981)); (2) stabilize the disease; or (3) provide any clinically beneficial effects.

As used herein, an "effective amount" is an amount of the antibody, 20 immunoconjugate, or recombinant molecule which kills cells or inhibits the proliferation thereof.

As used herein, "administering" means oral administration, administration as a suppository, topical contact, intravenous, intraperitoneal, intramuscular or 25 subcutaneous administration, or the implantation of a slow-release device such as a miniosmotic pump, to the subject.

As used herein, "pharmaceutically acceptable carrier" includes any material which when combined with the antibody retains the antibody's specificity or efficacy and is

non-reactive with the subject's immune system. Examples include, but are not limited to, any of the standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as oil/water emulsion, and various types of wetting agents. Other carriers may also include sterile solutions, tablets including
5 coated tablets and capsules.

Typically such carriers contain excipients such as starch, milk, sugar, certain types of clay, gelatin, stearic acid or salts thereof, magnesium or calcium stearate, talc, vegetable fats or oils, gums, glycols, or other known excipients. Such carriers may
10 also include flavor and color additives or other ingredients. Compositions comprising such carriers are formulated by well known conventional methods.

As used herein, "mutation" means a single amino acid or nucleic acid mutation or multiple mutations by whatever means, e.g., homologous recombination, error prone
15 PCR, or site directed mutagenesis.

In order that the invention herein described may be more fully understood, the following description is set forth.

20 **METHODS OF THE PRESENT INVENTION**

The present invention provides a method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulin during therapy or in vivo diagnosis. For example, the methods of the invention would be useful to minimize
25 the toxicity associated with prolonged clinical exposure to immunoglobulin use during or after tumor imaging with radiolabeled antibodies.

In accordance with the practice of this invention, the subject includes, but is not limited to, human, equine, porcine, bovine, murine, canine, feline, and avian

subjects. Other warm blooded animals are also included in this invention.

This method comprises administering an immunoglobulin molecule to the subject. The immunoglobulin can be IgG, IgM, or IgA. IgG is preferred.

5

- In one embodiment of the invention, the immunoglobulin molecule recognizes and binds Le^y. In another embodiment, the immunoglobulin recognizes and binds Le^x. In a further embodiment, the immunoglobulin is a monoclonal antibody BR96 produced by the hybridoma deposited on February 22, 1989 with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, MD 20852 and accorded ATCC Accession No.: HB 10036. In yet another embodiment, the immunoglobulin is a chimeric antibody ChiBR96 produced by the hybridoma deposited on May 23, 1990, with the ATCC, 12301 Parklawn Drive, Rockville, MD 20852 and accorded ATCC Accession No.: HB 10460.
- 10
- 15
- In accordance with the practice of the invention, the immunoglobulin can be a bispecific antibody with a binding specificity for two different antigens, one of the antigens being that with which the monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC binds. Also, in accordance with the practice of the invention, the immunoglobulin can be an anti-idiotypic antibody.
- 20

- As required by the invention, at least a portion of the constant region of the immunoglobulin molecule is structurally altered. Structural alteration can be effected by a number of means. In one embodiment, the entire constant region, i.e., CH₁, CH₂, and CH₃ domains, can be deleted.
- 25

In another embodiment, only the CH₂ domain is deleted from the immunoglobulin molecule (e.g., cBR96-A (Figure 5), hBR96-2A (Figure 4). In this embodiment, the

CH₂ deletion may result in a molecule unable to bind the Fc receptor or a complement component.

In another embodiment, only that portion of the CH₂ domain which binds the
5 complement component C1q is deleted. In yet another embodiment, mutations in specific portions of the CH₂ domain are made. For example, the immunoglobulin molecule may be modified by structurally altering multiple toxicity associated domains in the constant region so that immunoglobulin-induced toxicity is inhibited.

A discussion of such mutations are further found hereinafter.

10

Regardless of the means, the underlying requirement for any structural alteration of the constant region is that immunoglobulin-induced toxicity is substantially reduced or inhibited. In one embodiment, immunoglobulin-induced toxicity is inhibited by structurally altering the constant region such that the molecule's ability to mediate a
15 CDC response or ADCC response and/or activate the complement cascade is prevented or inhibited. Methods for determining whether the molecule is able to inhibit a CDC response are well known, e.g., one method involves a ⁵¹Cr-release test (H. Garrigues et al. Int. J. Cancer 29:511 (1982); I. Hellström et al. PNAS 82:1499 (1985)). Methods for determining whether the molecule is able to inhibit an ADCC
20 response are well known (I. Hellström et al. PNAS 82:1499 (1985)). Methods for determining whether the molecule is able to activate a complement cascade are well known.

In another embodiment of the invention, the method comprises administering to the
25 subject an Ig fusion protein having a structurally altered constant region. Structural alteration of the constant region may include deletion of the entire C region or portions thereof, e.g., alteration of the CH₂ domain so that the altered molecule no longer binds the Fc receptor or a complement component.

The invention further provides a method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy in a subject. The method comprises administering to the subject an antibody which has been modified so that at least a portion of the constant region has been structurally altered as discussed supra. In one 5 embodiment, the antibody recognizes and binds Le^y. In another embodiment, the antibody recognizes and binds to Le^x.

In accordance with the practice of this invention, the antibody can be monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of 10 HB 10036 as deposited with the ATCC. Alternatively, the antibody can be chimeric antibody ChiBR96 produced by the hybridoma having the identifying characteristics of HB 10460 as deposited with the ATCC. Further, the antibody can be a bispecific antibody with a binding specificity for two different antigens, one of the antigens being that with which the monoclonal antibody BR96 produced by the hybridoma 15 having the identifying characteristics of HB 10036 as deposited with the ATCC binds.

Additionally, the present invention provides a method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy for a disease in a 20 subject. The disease will vary with the antigen sought to be bound. Examples of diseases include but are not limited to immunological diseases, cancer, cardiovascular diseases, neurological diseases, dermatological diseases or kidney disease.

25 This method comprises the following steps. Step one provides selecting an antibody for a target. Generally, the target is associated with the disease and the antibody directed to the target is known. For example, the target can be the BR96 antigen and the antibody selected is BR96.

Step two of this method provides structurally altering the constant region of the antibody so selected so that immunoglobulin induced toxicity is inhibited. Inactivation can include any of the means discussed above. For example, inactivation can be effected by structurally altering multiple toxicity associated
5 domains in the CH₂ domain of the constant region of the Ig protein so selected.

Step three of this method provides administering the structurally altered antibody of step two to the subject under conditions that the structurally altered antibody recognizes and binds the target and that such binding directly or indirectly alleviates
10 symptoms associated with the disease.

In accordance with the invention, in one embodiment step one provides selecting an Ig fusion protein for a target. Further, the method provides mutating the Ig fusion protein so selected by structurally altering the CH₂ domain of the constant region of
15 the Ig protein by the same means discussed above.

The invention further provides methods to treat human carcinoma. For example, the immunoglobulin, antibody, or Ig fusion protein discussed above can be used in combination with standard or conventional treatment methods such as
20 chemotherapy, radiation therapy or can be conjugated or linked to a therapeutic drug, or toxin, as well as to a lymphokine or a tumor-inhibitory growth factor, for delivery of the therapeutic agent to the site of the carcinoma.

Techniques for conjugating therapeutic agents to immunoglobulins are well known
25 (see, e.g., Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellström et al., "Antibodies For Drug Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In

Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev., 62:119-58 (1982)).

5

- Alternatively, the structurally altered antibody or Ig fusion protein can be coupled to high-energy radiative agents, e.g., a radioisotope such as ^{131}I ; which, when localized at the tumor site, results in a killing of several cell diameters (see, e.g., Order, "Analysis, Results, And Future Prospective Of The Therapeutic Use Of
10 Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985)). According to yet another embodiment, the structurally altered BR96 antibody can be conjugated to a second antibody to form an antibody heteroconjugate for the treatment of tumor cells as described by Segal in United States Patent 4,676,980.
- 15 Still other therapeutic applications for the structurally altered antibody or Ig fusion protein of the invention include conjugation or linkage, e.g., by recombinant DNA techniques or protein chemical techniques, to an enzyme capable of converting a prodrug into a cytotoxic drug and the use of that antibody-enzyme conjugate in
20 combination with the prodrug to convert the prodrug to a cytotoxic agent at the tumor site (see, e.g., Senter et al., "Anti-Tumor Effects Of Antibody-alkaline Phosphatase", Proc. Natl. Acad. Sci. USA, 85:4842-46 (1988); "Enhancement of the in vitro and in vivo Antitumor Activities of Phosphorylated Mitomycin C and Etoposide Derivatives by Monoclonal Antibody-Alkaline Phosphatase Conjugates",
25 Cancer Research 49:5789-5792 (1989); and Senter, "Activation of Prodrugs by Antibody-Enzyme Conjugates: A New Approach to Cancer Therapy," FASEB J. 4:188-193 (1990)).

It is apparent therefore that the present invention encompasses pharmaceutical compositions including immunoglobulin molecules, antibodies, and Ig fusion proteins all having structurally altered CH₂ domains, and their use in methods for treating human carcinomas. For example, the invention includes pharmaceutical compositions for use in the treatment of human carcinomas comprising a pharmaceutically effective amount of a structurally altered BR96 and a pharmaceutically acceptable carrier.

The compositions may contain the structurally altered antibody or Ig fusion protein or antibody fragments, either unmodified, conjugated to a therapeutic agent (e.g., drug, toxin, enzyme or second antibody). The compositions may additionally include other antibodies or conjugates for treating carcinomas (e.g., an antibody cocktail).

The compositions of the invention can be administered using conventional modes of administration including, but not limited to, intrathecal, intravenous, intraperitoneal, oral, intralymphatic or administration directly into the tumor. Intravenous administration is preferred.

The composition of the invention can be in a variety of dosage forms which include, but are not limited to, liquid solutions or suspensions, tablets, pills, powders, suppositories, polymeric microcapsules or microvesicles, liposomes, and injectable or infusible solutions. The preferred form depends upon the mode of administration and the therapeutic application.

The compositions of the invention also preferably include conventional pharmaceutically acceptable carriers and adjuvants known in the art such as human serum albumin, ion exchangers, alumina, lecithin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, and salts or electrolytes such as protamine sulfate.

In accordance with the practice of the invention, the pharmaceutical carrier can be a lipid carrier. The lipid carrier can be a phospholipid. Further, the lipid carrier can be a fatty acid. Also, the lipid carrier can be a detergent. As used herein, a detergent

5 is any substance that alters the surface tension of a liquid, generally lowering it.

In one example of the invention, the detergent can be a nonionic detergent. Examples of nonionic detergents include, but are not limited to, polysorbate 80 (also known as Tween 80 or (polyoxyethylenesorbitan monooleate), Brij, and Triton (for example Triton WR-1339 and Triton A-20).

10 Alternatively, the detergent can be an ionic detergent. An example of an ionic detergent includes, but is not limited to, alkyltrimethylammonium bromide.

15 Additionally, in accordance with the invention, the lipid carrier can be a liposome. As used in this application, a "liposome" is any membrane bound vesicle which contains any molecules of the invention or combinations thereof.

The most effective mode of administration and dosage regimen for the compositions
20 of this invention depends upon the severity and course of the disease, the patient's health and response to treatment and the judgment of the treating physician.

The interrelationship of dosages for animals of various sizes and species and humans based on mg/m² of surface area is described by Freireich, E.J., et al. Cancer
25 Chemother., Rep. 50 (4): 219-244 (1966). Adjustments in the dosage regimen can be made to optimize the tumor cell growth inhibiting and killing response, e.g., doses can be divided and administered on a daily basis or the dose reduced proportionally depending upon the situation (e.g., several divided doses can be

administered daily or proportionally reduced depending on the specific therapeutic situation).

THE MOLECULES OF THE INVENTION

5

The present invention provides structurally altered BR96 or BR96 Ig fusion proteins. Structurally altered BR96 antibodies or Ig fusion proteins have the variable region of BR96 and a modified constant region. This modification provides structurally altered BR96 antibodies or Ig fusion proteins with the ability to inhibit
10 immunoglobulin-induced toxicity.

Various embodiments of structurally altered BR96 or BR96 Ig fusion proteins have been made.

- 15 In one embodiment, designated cBR96-A, the entire CH₂ domain of cBR96 was deleted. CBR96-A is expressed by the plasmid having the sequence shown in SEQ. ID. NO. 10. cBR96 is expressed by a plasmid having the sequence in SEQ ID NO. 9.
- 20 In another embodiment, designated hBR96-2A, the entire CH₂ domain of hBR96 was deleted. hBR96-A is expressed by the plasmid having the sequence shown in SEQ. ID. NO. 12. hBR96 is a mutant BR96 having the H1, H2, and H3 mutations described in PCT Application No. 95/305444, published March 6, 1996.
- 25 In yet another embodiment, designated hBR96-2B, the leucine residue located at amino acid position 235 is mutated to alanine. Additionally, the glycine residue located at amino acid position 237 is mutated to alanine. The amino acid position numbering used is described in Kabat et al. Sequences of Proteins of Immunological Interest 5th Edition (1991) United States Department of Health and Human Services.

In a further embodiment, designated hBR96-2C, the glutamic acid residue at position 318 is mutated to serine; the lysine residue located at position 320 is mutated to serine; and the lysine residue located at position 322 is mutated to serine
5 using standard protocols (Alexander R. Duncan and Greg Winter "The binding site for C1q on IgG" Nature 332:738 (1988)).

- In another embodiment, designated hBR96-2D, the proline residue at position 331 is mutated to alanine (M-H. Tao et al., "Structural features of human immunoglobulin
10 G that determine isotype-specific differences in complement activation" J. Exp. Med. 178:661-667 (1993); Y. Xu et al., "Residue at position 331 in the IgG1 and IgG4 domains contributes to their differential ability to bind and activate complement" J. Biol. Chem. 269:3469-3474 (1994)).
15 In an additional embodiment, designated hBR96-2E, the leucine residue at position 235 is mutated to alanine; the glycine residue located at position 237 is mutated to alanine; the glutamic acid residue located at position 318 is mutated to serine; the lysine residue located at position 320 is mutated to serine; and the lysine residue located at position 322 is mutated to serine (A. Morgan et al., "The N-terminal end
20 of the CH₂ domain of chimeric human IgG1 anti-HLA-DR is necessary for C1q, Fc(gamma)RI and Fc(gamma)RIII binding" Immunol. 86:319-324 (1995)).

In yet a further embodiment, designated hBR96-2F, the leucine residue located at position 235 is mutated to alanine; the glycine residue located at position 237 is mutated to alanine; and the proline residue located at position 331 is mutated to alanine.
25

In yet another embodiment, designated hBR96-2G, the glutamic acid residue located at position 318 is mutated to serine; the lysine residue located at position 320 is

mutated to serine; the lysine residue located at position 322 is mutated to serine; and the proline residue located at position 331 is mutated to alanine.

In another embodiment, designated hBR96-2H, the leucine residue located at 5 position 235 is mutated to alanine; the glycine residue located at position 237 is mutated to alanine; the glutamic acid residue at position 318 is mutated to serine; the lysine residue located at position 320 is mutated to serine; the lysine residue located at position 322 is mutated to serine; and the proline residue located at position 331 is mutated to alanine.

10

Depending on its form, a structurally altered BR96 antibody or fusion protein can be a monofunctional antibody, such as a monoclonal antibody, or bifunctional antibody, such as a bispecific antibody or a heteroantibody. The uses of structurally altered BR96, i.e., as a therapeutic or diagnostic agent, will determine the different forms of 15 structurally altered BR96 which is made.

Several options exists for antibody expression. Immunoexpression libraries can be combined with transfectoma technology, i.e., the genes for the Fab molecules derived from the immunoglobulin gene expression library can be connected to the 20 desired constant-domain exons. These recombinant genes can then be transfected and expressed in a transfectoma that would secrete an antibody molecule.

Once produced, the polypeptides of the invention can be modified, i.e., by amino acid modifications within the molecule, so as to produce derivative molecules. Such 25 derivative molecules would retain the functional property of the polypeptide, namely, the molecule having such substitutions will still permit the binding of the polypeptide to the BR96 antigen or portions thereof.

It is a well-established principle of protein chemistry that certain amino acid

substitutions, entitled "conservative amino acid substitutions," can frequently be made in a protein without altering either the conformation or the function of the protein.

- 5 Amino acid substitutions include, but are not necessarily limited to, amino acid substitutions known in the art as "conservative".

Such changes include substituting any of isoleucine (I), valine (V), and leucine (L) for any other of these hydrophobic amino acids; aspartic acid (D) for glutamic acid
10 (E) and vice versa; glutamine (Q) for asparagine (N) and vice versa; and serine (S) for threonine (T) and vice versa.

Other substitutions can also be considered conservative, depending on the environment of the particular amino acid and its role in the three-dimensional
15 structure of the protein. For example, glycine (G) and alanine (A) can frequently be interchangeable, as can alanine and valine (V).

Methionine (M), which is relatively hydrophobic, can frequently be interchanged with leucine and isoleucine, and sometimes with valine. Lysine (K) and arginine (R)
20 are frequently interchangeable in locations in which the significant feature of the amino acid residue is its charge and the differing pK's of these two amino acid residues are not significant. Still other changes can be considered "conservative" in particular environments.

- 25 In one embodiment of the present invention, the polypeptide is substantially pure, i.e., free of other amino acid residues which would inhibit or diminish binding of the polypeptide to its target and would inhibit or reduce gastrointestinal toxicity which are normally exhibited during or after antibody therapy.

NUCLEIC ACID MOLECULES ENCODING THE PRESENT INVENTION

The nucleotide sequences and the amino acid sequences of the variable and constant regions of BR96 are known. The sequence for the immunoglobulin constant region
5 is known and provided in Figure 18. Specific mutations in the constant region of the BR96 antibody were made. Nucleic acid molecules encoding the seven mutants described above (hBR96-2B through hBR96-2H) are as follows.

In hBR96-2B, alanine at amino acid positions 235 and 237 is encoded by codons
10 GCU, GCC, GCA, or GCG.

In hBR96-2C, serine at positions 318, 320, and 322 is encoded by UCU, UCC,
UCA, or UGG.

15 In hBR96-2D, alanine at position 331 is encoded by codons GCU, GCC, GCA, or GCG.

In hBR96-2E, alanine at positions 235 and 237 is encoded by codons GCU, GCC,
GCA, or GCG. Serine at positions 318, 320, and 322 is encoded by UCU, UCC,
20 UCA, or UGG.

In hBR96-2F, alanine at positions 235, 237, and 331 is encoded by codons GCU,
GCC, GCA, or GCG.

25 In hBR96-2G, serine at positions 318, 320, 322 is encoded by UCU, UCC, UCA, or UGG. Further, the alanine at position 331 is encoded by codons GCU, GCC, GCA, or GCG.

In hBR96-2H, alanine at positions 235, 237, and 331 is encoded by codons GCU,

GCC, GCA, or GCG. Additionally, serine at positions 318, 320, 322 is encoded by UCU, UCC, UCA, or UGG.

Any of the above can be deoxyribonucleic acid (DNA), e.g., complementary DNA
5 (cDNA), or ribonucleic acid (RNA).

IMMUNOCONJUGATES

Immunoconjugates (having whole antibody or Ig fusion proteins) may be
10 constructed using a wide variety of chemotherapeutic agents such as folic acid and anthracyclines (Peterson et al., "Transport And Storage Of Anthracyclines In Experimental Systems And Human Leukemia", in Anthracycline Antibiotics In Cancer Therapy, Muggia et al. (Eds.), p. 132 (Martinus Nijhoff Publishers (1982); Smyth et al., "Specific Targeting of Chlorambucil to Tumors With the Use of
15 Monoclonal Antibodies", J. Natl. Cancer Inst., 76:503-510 (1986)), including doxorubicin (DOX) (Yang and Reisfeld "Doxorubicin Conjugated with a Monoclonal Antibody Directed to a Human Melanoma-Associated Proteoglycan Suppresses Growth of Established Tumor xenografts in Nude Mice PNAS (USA)"
85:1189-1193 (1988)), Daunomycin (Arnon and Sela "In Vitro and in vivo Efficacy
20 of Conjugates of Daunomycin With Anti-Tumor Antibodies" Immunol. Rev., 65:5-27 (1982)), and morpholinodoxorubicin (Mueller et al., "Antibody Conjugates With Morpholinodoxorubicin and Acid-Cleavable Linkers", Bioconjugate Chem., 1:325-330 (1990)).

25 BR96 has been conjugated to doxorubicin and has been shown to be effective in therapy of certain cancers or carcinomas (Trail, P.A., Willner, D., Lasch, S.J., Henderson, A.J., Casazza, A.M., Firestone, R.A., Hellström, I., and Hellström, K.E. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science, 261:212-215, 1993).

In accordance with the practice of the invention, structurally altered BR96 can be used in forms including unreduced IgG, reduced structurally altered IgG, and fusion proteins (PCT Application No. 95/305444, published March 6, 1996).

5

Suitable therapeutic agents for use in making the immunoconjugate includes Pseudomonas exotoxin A (PE) in either the native PE or LysPE40 form. LysPE40 is a truncated form containing a genetically modified amino terminus that includes a lysine residue for conjugation purposes. Doxorubicin is also a suitable therapeutic
10 agent.

Additional examples of therapeutic agents include, but are not limited to, antimetabolites, alkylating agents, anthracyclines, antibiotics, and anti-mitotic agents.

15

Antimetabolites include methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine.

Alkylating agents include mechlorethamine, thiotepa chlorambucil, melphalan,
20 carmustine (BSNU) and lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin.

Anthracyclines include daunorubicin (formerly daunomycin) and doxorubicin (also
25 referred to herein as adriamycin). Additional examples include mitozantrone and bisantrene.

Antibiotics include dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC).

Antimitotic agents include vincristine and vinblastine (which are commonly referred to as vinca alkaloids).

- 5 Other cytotoxic agents include procarbazine, hydroxyurea, asparaginase, corticosteroids, mytotane (O,P'-(DDD)), interferons.

Further examples of cytotoxic agents include, but are not limited to, ricin, bryodin, gelonin, supporin, doxorubicin, taxol, cytochalasin B, gramicidin D, ethidium

- 10 bromide, etoposide, tenoposide, colchicine, dihydroxy anthracin dione, 1-dehydrotestosterone, and glucocorticoid.

Clearly analogs and homologs of such therapeutic and cytotoxic agents are encompassed by the present invention. For example, the chemotherapeutic agent

- 15 aminopterin has a correlative improved analog namely methotrexate.

Further, the improved analog of doxorubicin is an Fe-chelate. Also, the improved analog for 1-methylnitrosourea is lomustine. Further, the improved analog of vinblastine is vincristine. Also, the improved analog of mechlorethamine is

- 20 cyclophosphamide.

METHODS FOR MAKING MOLECULES OF THE INVENTION

There are multiple approaches to making site specific mutations in the CH₂ domain

- 25 of an immunoglobulin molecule. One approach entails PCR amplification of the CH₂ domain with the mutations followed by homologous recombination of the mutated CH₂ into the vector containing the desired immunoglobulin, e.g., hBR96-2. For example, hBR96-2B and hBR96-2D have been made by this method.

Another approach would be to introduce mutations by site-directed mutagenesis of single-stranded DNA. For example, vector pD17-hG1b, which contains only the constant region of IgG1 and not the V domain of hBR96, has the f1 origin of replication. This gives the vector the properties of a phagemid and site-directed 5 mutagenesis experiments can be performed according to the methods of Kunkel, et al. (Kunkel, T.A., J.D. Roberts, and R.A. Zakour, 1987 Methods Enzymol. 154:367-383) as provided in the Bio-Rad Muta-Gene® phagemid *in vitro* mutagenesis kit, version 2. For example, hBR96-2B, -C, -D, -E, -F, -G, and -H were made by this method.

10

In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting the scope of this invention in any manner.

15

EXAMPLE 1

The following standard ELISA protocol was used.

20 **Materials:** Immulon2 96 well plates and Genetic Systems Specimen Diluent Concentrate (10x); antibody conjugate was Goat Anti Human Kappa-HRP Mouse Adsorbed, Southern Biotech. at 1:10,000 in Genetic Systems Conjugate Diluent (1x); Genetic Systems EIA Chromogen Reagent (TMB) (1:100); Genetic Systems EIA Buffered Substrate (1x); primary antibody or antigen were AffiniPure F(ab')₂ 25 Fragment Goat Anti Human IgG Fc Fragment specific (Jackson Immuno Research), Goat Anti Human Kappa-UNLB (Southern Biotechnology Associates), Le^y-HSA (Alberta Research Council).

Methods: Dilute primary antibody or antigen to 1.0 µg/ml in 0.05M Carb/Bicarb buffer. Add 100µl of the diluted solution per well in Immulon 2 plates. Seal plates and incubate O.N. at 4°C.

- 5 Block plates by flicking them and blotting on paper towels. Add 200µl/well of Genetic Systems, Specimen Diluent Concentrate (1x). Incubate at least 1 hour at room temperature and then dump the contents of the plates. Wash the plates 3x in saline/Tween. Blot to dry. Allow the plates to dry at R.T. (45 min. to 1 hour). Seal and store the plates at 4°C.

10

Test samples as follows. Dilute samples and standards in Specimen Diluent at 1:10. Perform serial dilutions in separate round bottom plates. Transfer 100µl/well of final dilutions to antigen coated assay plates; then incubate O.N. at 4°C. Wash plates 3x with saline/Tween.

15

For conjugation add 100 µl/well of antibody-HRP conjugate in Genetic Systems Conjugate Diluent (1x). Incubate plates at Room Temp. for 60 min. Wash plates 3x in saline/Tween.

20

Add 100 µl/well of Genetic Systems EIA Chromogen Reagent (TMB) 1:100 in EIA Buffered Substrate (1x). Incubate at R.T. for 15 min. and stop with 1N H₂SO₄ 100 µl/well. Read plate at 450/630nm in EIA plate reader.

EXAMPLE 2

25

Construction of CH₂ deleted BR96 molecules

Strategy for Deleting CH₂ Domains: To construct CH₂ deleted BR96 molecules, the hinge, CH₂ and CH₃ domains were removed from chimeric BR96 and humanized

BR9696-2 IgG1 molecules by an Eco47-III restriction digestion in non-coding regions. The hinge and CH₃ domains were amplified by polymerase chain reaction (PCR) from a human IgG1 (pN γ 1.14) molecule lacking the CH₂ domain. Two oligonucleotides (Sense 49mer, Antisense 50mer) homologous to the sequences of
5 IgG1 constant region at both sides preserving E.co47-III sites were synthesized. The amplified hinge and CH₃ domain PCR fragments were added into Eco47-III sites on BR96 IgG1 molecules by in vivo homologous recombination (P. Bubeck et al., Nucleic Acid Research (1993) 21:3601-3602). The new BR96 IgG1 molecules were verified by restriction mapping and sequencing.

10

A sewing PCR strategy was used for the construction of CH₂ deleted human IgG1 (pN γ 1.14) (Robert M. Horton, et al. (1990) Biotech 8 (5)P, 528).

The CH₁ domain was amplified as a 580 bp fragment with a sense oligonucleotide
15 (5' TGG CAC CGA **AAG CTT** TCT GGG GCA GGC CAG GCC TGA 3') (primer A) and an antisense oligonucleotide (5' **TCC GAG CAT GTT GGT ACC CAC GTG GTG GTC GAC** GCT GAG CCT GGC TTC GAG CAG ACA 3') (primer B) from a linearized human IgG1 constant region vector (pN γ 1.7). The PCR fragment extends from the 5' end of the Hind-III site (in bold) through the Cel-II, Sal-I, Dra-
20 III, Kpn-I, 6 bp nucleotide spacer and Mro-I sites (in bold) at the 3' end of the CH₁ domain.

The CH₃ domain was then partially amplified (to the Xba-I site) with a sense primer (5' **GTC GAC CAC CAC GTG GGT ACC AAC ATG TCC GGA GCC ACA TGG ACA GAG GCC GGC T** 3') (primer C) and an antisense primer (5' CTG GTT CTT GTT CAT CTC CTC **TCT AGA TGG** 3') (primer D) from a linearized human IgG1 constant region vector (pN γ 1.7). A PCR fragment (about 150 bp) with Sal-I, Dra-III, Kpn-I, 6 nucleotide spacer and Mro-I sites (in bold) on its 5' end, extends only through the Xba-1 site (in bold) within the CH₃ domain.

The CH₁ and CH₃ partial PCR fragments were combined in a PCR without any primer. The reaction was run through two full cycles of denaturation and re-annealing to allow the fragments to combine at the homologous region at the 3' ends. Primers A and D (described above) were added to the reaction and the PCR cycle was completed. The polymerase extends the DNA with primer A and primer D, yielding a full-length (660 bp) PCR fragment. The newly extended PCR fragment is arranged from the 5' end to the 3' end in the following order: Hind-III - CH₁ - Cel-II - Sal-I - Dra-III - Kpn-I - 6 bp spacer - Mro-I - CH₃ partial - Xba-1.

10

The combined PCR fragment, with the CH₁ and partial CH₃ domains, was then cloned by a blunt end ligation into a Sma-I site on a pEMBL18 vector and the sequence was confirmed by dideoxy sequencing (Sanger et al. (1977) PNAS (USA) 74:5463-5466).

15

To transfer the CH₁ and partial CH₃ into a mammalian expression vector, both the pEMBL18 and pN γ 1.7 vectors were digested with Hind-III and Xba-I. The Hind-III and Xba-I fragment was ligated into the same sites on a linearized pN γ 1.7 vector. The new construct, with CH₁ and a full CH₃ domain, was designated the pN γ 1.10

20 vector.

The hinge fragment was amplified from a Hind-III digested pN γ 1.7 vector with the primers designed to flank the hinge exon with a Sal-I and a Dra-III cloning site at each end. These sites also exist between the CH₁ and CH₃ domains of the pN γ 1.10 construct. The sense oligonucleotide (5' ACC ATG **GTC GAC** CTC AGA CCT GCC AAG AGC CAT ATC 3') with a 6 bp spacer and a Sal-I cloning site (in bold) and the antisense oligonucleotide (5' CAT GGT **CAC GTG** GTG TGT CCC TGG ATG CAG GCT ACT CTA G 3') with a 6 bp spacer and a Dra-III cloning site (in bold) were used for the amplification of the hinge fragment (250 bp).

The hinge region PCR fragment was cloned into a Sma-I site on pEMBL18 by blunt end ligation. Both the pEMBL18 with the hinge domain and the pN γ 1.10 with the CH₂ and CH₃ domains were digested with Sal-1 and Dra-III. The digested hinge
5 fragment was cloned into the Sal-1 and Dra-III linearized sites on the pN γ 1.10 vector. The new construct, now carrying the CH₁, hinge and CH₃ domains, was designated pN γ 1.11.

To make the final CH₂ deleted human IgG1 construct, both the pN γ 1.11 construct
10 and pN γ 1.11 vector were digested with BamH1 and HindIII. A fragment containing the CH₁, hinge and CH₃ domains was cloned into the linearized pN γ 1.11 vector.

The new constant region IgG1 construct lacks the CH₂ domain and is designated pN γ 1.14 (Figure 11).

15 For digestion of BR96 IgG1 with Eco47-III, a restriction fragment with hinge, CH₂ and CH₃ domains was identified on the constant region sequence of BR96 IgG1 vector in both chimeric and humanized molecules. The 5' end of this fragment lies inside the intron between CH₁ and hinge and the 3' end is located inside the CH₃ intron of the BR96 IgG1 molecule. The hinge, CH₂ and CH₃ domains (1.368 kb
20 fragment) were removed from BR96 IgG1 molecules by Eco47-III restriction digestion. The Eco47-III is a blunt end cutter. The BR96 IgG1 DNA digested with this enzyme does not require any pretreatment before cloning. Figure 12 is a diagrammatic representation of the pD17-hBR96-2 vector showing the Eco47-III sites used in cloning.

25

The CH₂ deleted BR96 IgG1 was then constructed as follows. The hinge and CH₃ domains were amplified from a CH₂ deleted L6 IgG1 (pN γ 1.14) construct with a sense oligonucleotide (5'

CAGGGAGGGAGGGTGTCTGCTGGAAGCCAGGCT**CAGCGCTGACCTCAG**

- A 3') homologous to the constant region sequence of IgG1 at the 5' end of the Eco47-III site (in bold) and an antisense oligonucleotide
(5'GGAAAGAACCATCACAGTCTCGCAGGG
CCCAGGGCAGCGCTGGGTGCTT 3') homologous to the constant region
5 sequence of IgG1 at the 3' end of the Eco47-III site (in bold). The Eco47-III site at the 3' end of the pN γ 1.14 construct is modified in the cloning process. The Eco47-III site is thus introduced into an antisense primer and used in amplification of the hinge and CH₃ domains.
- 10 The pD17-BR96 IgG1 vector was digested with Eco47-III and the hinge, CH₂ and CH₃ domains were removed. The linearized pD17-BR96 IgG1 vector was mixed with equimolar amounts of hinge and CH₃ PCR fragments. Cotransformation of the PCR fragment with linearized DNA into E.coli DH5a competent cells resulted in a recombinant molecule, mediated by homologous recombination in bacteria. This
15 construct lacks the CH₂ domain of BR96 IgG1 molecules, and is designated pD17-BR96-dCH2 (Figure 13).

1.9 grams of CH₂-deleted chimeric BR96 was obtained as raw material from 89L of culture supernatant.

20

EXAMPLE 3

Toxicity, localization and clearance of CH₂-deleted chimeric BR96 was tested in vivo as follows.

25

Three dogs received 400 mg/m² of cBR96-A, the CH₂ deletion mutant of chimeric BR96, and two received chimeric BR96. Both molecules had been mildly reduced and alkylated. This is required to prevent dimerization of the deletion mutant into a tetravalent form. Both control dogs experienced the typical GI toxicity and none of

the three receiving the mutant displayed any toxicity. The control dogs and two of the test dogs were sacrificed at 1 hr to obtain duodenal tissue to measure antibody localization. Both control dogs had grossly visible GI pathology, and the test dogs had normal appearing GI tissue. The third dog has continued to show no signs of
5 toxicity.

Results: A significant amount of localization of the CH₂ deleted cBR96 (cBR96-A) occurred to the GI tract in dogs treated with 400 mg/m², although the intact chiBR96 localized slightly better. The levels of localization indicate that roughly equivalent
10 amounts of intact and CH₂ deleted cBR96 was delivered to the GI tract in these dogs.

Table 5. Localization of cBR96 to GI tissue.

Group	Animal	Specific	mean
Localization			
cBR96	#271	155	
			135
	#272	114	
	#273	126	
cBR96-A			89
	#274	52	

15

Using the mean level of specific localization, an amount of cBR96-A equivalent to at least 66% of the amount of cBR96 was delivered to the target organ of toxicity, the duodenum. Based on the dose ranging done with cBR96 in dogs (some clinical
20 signs of toxicity seen at doses of 10 mg/m²), even if this difference is real, it could

not explain the difference between significant toxicity and no toxicity, evaluation to date indicated that dogs treated with cBR96-A had no toxicity, pending microscopic histopathologic examination. This evaluation was based on analysis of 2 frozen blocks per dog and 2 sections per block. Replicates were quite good. We also ran 5 historical frozen tissues from dogs treated with native cBR96 or F(ab)2/BR96 and the levels of localization for those tissues were 110 and 0, respectively, consistent with our previous data.

Assuming that there is no toxicity at marginally higher (2X) doses of cBR96-A, 10 these data indicate that the CH₂ domain is associated with the induction of acute gastroenteropathy, and that the removal of this domain prevents the induction of gastroenteropathy mediated by BR96.

This study confirms the results showing that F(ab')2 is not toxic in the dog model 15 and that the toxicity is mediated by the constant region. The CH₂ deletion mutant is a candidate for targeting agents clinically. Because of the very long half-life of chimeric BR96, some decrease in the mutant's half-life should be acceptable.

Figure 1 shows the measurement of the clearance of the cBR96-A in high Le^Y 20 expressing dogs. The study used chimeric versus constant region mutant of cBR96-2.

CBR96-2 did clear faster than the chimeric BR96. The localization of cBR96-A to the gastrointestinal epithelium is not significantly affected by this more rapid 25 clearance. More than enough of the cBR96-A localized to have caused toxicity.

Discussion: The constant region of chimeric IgG is responsible for the GI toxicity seen in clinical trials, e.g. with chiBR96-dox. The GI toxicity seen in the dog model is very similar to the clinical toxicity. Both in man and dog, administration of the

unconjugated antibody mediates an acute GI toxicity characterized by rapid onset of vomiting, often with blood.

In man the bleeding is limited to the fundus of the stomach, causing erosion of the
5 superficial mucosa of the stomach. Although the pathology of the wound is limited and resolves, the extreme nature of the nausea and vomiting, unrelieved by anti-emetics, defines it as the dose-limiting toxicity.

This toxicity is mediated in man and dog by the antibody molecule alone. At higher
10 doses of the antibody-dox conjugate, additional toxicity is seen in the dog model, probably due to doxorubicin. Although the intact IgG of BR96 causes toxicity in dog and man, the F(ab')2 molecule (divalent and lacking only in the constant region) is not toxic in dogs. This finding has motivated our attempts at high levels, and improves the affinity and specificity of BR96 for tumor antigen.

15

The CH₂ domain is known to mediate complement and FcR binding. It was not known that structural alteration of the CH₂ domain would result in immunoglobulin-induced toxicity inhibition.

20 Toxicology study of hBR96-2B

The toxicology study of hBR96-2B in high Lewis Y expressor dogs (n=2) showed that a dose of 400 mg/m² did not cause hematemesis nor bloody stools, in contrast to BR96 which consistently causes one or both signs. A dog sacrificed at 24 hrs had
25 normal gross appearance of the GI tract, again in marked contrast to chimeric BR96 which causes hemorrhagic lesions and mucosal erosions.

EXAMPLE 4

- The polymerase chain reaction (PCR) is a widely used and versatile technique for the amplification and subsequent modification of immunoglobulin genes. The
- 5 rapidity and accuracy with which antibody genes can be modified in vitro has produced an assortment of novel antibody genes can be modified in vitro has produced an assortment of novel antibodies. For example, PCR methods have been used for engineering antibodies with increased affinity to antigen, for "humanizing" antibodies, and for modulating effector function (Marks, J.D., A.D. Griffiths, M.
- 10 Malmqvist, T. Clackson, J.M. Bye and G. Winter. 1992. Bypassing immunization: high affinity human antibodies by chain shuffling. *Bio/Technology* 10:779-783; Rosok, M.J., D.E. Yelton, L.J. Harris, J. Bajorath, K.-E. Hellstrom, I. Hellstrom, G.A. Cruz, K. Kristensson, H. Lin, W.D. Huse and S.M. Glaser. 1996. A combinatorial library strategy for the rapid humanization of anticarcinoma BR96
- 15 Fab. *J. Biol. Chem.* 271:22611-22618; Morgan, A.N., D. Jones, A.M. Nesbitt, L. Chaplin, M.W. Bodmer and S. Emtage. 1995. The N-terminal end of the CH2 domain of chimeric human IgG1 anti-HLA-DR is necessary for C1q, Fc γ RI and Fc γ RIII binding. *Immunology*. 86:319-324).
- 20 As part of a more comprehensive study, we desired to introduce various site specific mutations in the CH₂ constant domain of human IgG₁. Six specific amino acid residues distributed throughout the CH₂ domain previously identified to play a role in immune effector function were marked as targets for mutagenesis (Morgan, A.N., D. Jones, A.M. Nesbitt, L. Chaplin, M.W. Bodmer and S. Emtage. 1995. The N-
- 25 terminal end of the CH₂ domain of chimeric human IgG1 anti-HLA-DR is necessary for C1q, Fc γ RI and Fc γ RIII binding. *Immunology*. 86:319-324; Duncan, A.R. and G. Winter. 1988. The binding site for C1q on IgG. *Nature* 332:738-740; Tao, M.-H., R.I.F. Smith and S.L. Morrison. 1993. Structural features of human immunoglobulin G that determine isotype-specific differences in complement

activation. J.Exp.Med. 178:661-667). five of the six residues were grouped into two clusters-one cluster consisting of two residues, two amino acids apart (Location 1, or L1); and a second cluster consisting of three residues spanning a sequence of five amino acids (L2). The remaining amino acid position (L3) made for the total of six 5 residues. We were interested in constructing a panel of mutant CH₂ domain IgGs consisting of each L mutation by itself as well as in combination with other L mutants (e.g., L1; L1; and L2; L1, L2 and L3; etc.).

Various *in vitro* methods have been described where PCR is used to simultaneously 10 introduce distally located site-specific mutations within a gene sequence (Ho, S.N., H.D. Hunt, R.M. Horton, J.K. Pullen and L.R. Pease. 1989. Site-directed mutagenesis by overlap extension. Gene 77:51-59; Ge, L. and P. Rudolpf. 1996. Simultaneous introduction of multiple mutations using overlap extention PCR. BioTechniques 22:28-30). Alternatively, an *in vivo* procedure termed recombination 15 PCR (RPCR) has also successfully been used for rapidly and efficiently generating distally located site-specific mutations (Jones, D.H. and S.C. Winistorfer. 1993. Use of polymerase chain reaction for making recombinant constructs. p.241-250. In B.A. White (Ed.), Methods in Molecular Biology, Vol. 15. Humana Press Inc., Totowa, NJ, Jones, D.H. And B.H. Howard. 1991. A rapid method for 20 recombination and site-specific mutagenesis by placing homologous ends on DNA using polymerase chain reaction. BioTechniques 10:62-66). RPCR uses *E. Coli*'s recombination machinery to generate intact circular recombinant plasmids from a transfected mixture of linear PCR-generated product and linearized vector. *In vivo* recombination is mediated through the joining of nucleotide sequences designed into 25 the 5' ends of both PCR primers that are homologous to DNA sequences encoded by the vector. In this report we describe an extension of the RPCR procedure for simultaneously introducing complex combinations of mutations into an antibody CH₂ domain.

Humanized BR96 variable region heavy and light chain genes, previously cloned and co-expressed as an assembled active Fab fragment in an M13 phage expression vector, provided the starting material (Rosok, M.J., D.E. Yelton, L.J. Harris, J. Bajorath, K.-E. Hellstrom, I. Hellstrom, G.A. Cruz, K. Kristensson, H. Lin, W.D. Huse and S.M. Glaser. 1996. A combinatorial library strategy for the rapid humanization of anticarcinoma BR96 Fab. *J. Biol. Chem.* 271:22611-22618). The heavy and light chain V genes were amplified by PCR from a single-stranded M13 DNA template and subcloned by *in vivo* recombination (Jones, D.H. And B.H. Howard. 1991. A rapid method for recombination and site-specific mutagenesis by placing homologous ends on DNA using polymerase chain reaction. *BioTechniques* 10:62-66) into vectors pD17-hG1a and pD16-hC κ , to form pBR96-hG1a and pBR96-hC κ respectively. pD17-hG1a and pD16-hC κ are eukaryotic immunoglobulin expression vectors derived from pcDNA3 (Invitrogen, San Diego, CA). The plasmid pBR96-hG1a was further modified by site-directed mutagenesis to introduce two Eco47-III restriction sites flanking the immunoglobulin hinge-CH₂-CH₃ domains using standard procedures. The recipient vector was then prepared by digesting pBR96-hG1a with Eco47-III, isolating the vector backbone by agarose gel electrophoresis followed by extracting the vector DNA from the excised gel slice using the Qiagen Gel Extraction kit (Qiagen, Chatsworth, CA).

The strategy for introducing multiple mutations within the immunoglobulin CH₂ gene, shown in Figure 24, relies on the *in vivo* homologous recombination of several independently amplified PCR products with each other as well as with the pBR96-hG1a vector DNA. For introducing mutations at two distal locations two PCR products are synthesized (Figure 24B). One end of each PCR product is for recombining with an homologous end of the linear vector, and the other end, encoding the mutation(s) of interest, is for recombining with the neighboring PCR product. As shown in Figure 24B, additional distally-located mutations can be introduced into a target sequence by increasing the number of PCR products

- proportionately. The recombination of neighboring PCR products always occurs across the regions containing the desired mutations, therefore the oligonucleotide primers encoding these ends (e.g., A1, A2) contain complementary mutant residues.
- The mutagenic PCR primers contain at least 15 nucleotides of wild-type sequence
- 5 flanking each side of the mutant residues for either priming the polymerization reaction or mediating recombination. Two 49-nucleotide long PCR sense and anti-sense primers (Rs and Ra) contain sequences for recombining with the end regions of the Eco47-III digested pBR96-hG1a vector.
- 10 Each L mutation was amplified in a separate PCR reaction. The reaction conditions were 250 ng intact pBR96-hG1a DNA template, 10 ul of 1X *Pfu* buffer (Stratagene, Inc. San Diego, CA), 10 nmol dNTPs, 200ng each of the appropriate PCR primers, 10% dimethylsulfoxide (ATCC, Rockville, MD) and 2.5 units cloned *Pfu* DNA polymerase in a 100ul reaction volume. Samples were first denatured at 95° C for 5 min, cooled to 45°C for 5 min, and extended at 72°C for 1 min followed by 25 cycles of denaturation at 94°C for 45 sec, annealing at 45°C for 45 sec, extension at 72°C for 1 min/kb, followed by a final extension at 72°C for 7 min in a Perkin-Elmer DNA Thermal Cycler (Norwalk, CT). The amplified products were purified from a 1% agarose gel, extracted with Qiagen Gel Extraction kit and the recovered
- 15 DNA quantitated. 50 ng of each PCR product was mixed with 25 ng of the Eco47-III digested pBR96-hG1a vector, transfected into Max competent E. coli DH5 α according to the manufacturer's procedure (GIBCO BRL/Life Technologies, Gaithersburg, MD), and the entire transfection reaction plated onto selective LB agar plates containing 100 ug/ml ampicillin.
- 20
- 25 The results of several cloning experiments are summarized in the Table that follows. Typically the transformations produced from 80 to 200 bacterial colonies. Individual colonies were selected and grown overnight in 2 ml liquid cultures for isolation of miniprep plasmid DNA (Qiagen) and analysis by Eco47-III restriction

endonuclease mapping. Among 24 independent transformants analyzed from triple homologous recombination events (two PCR products plus vector) 11 clones contained the predicted 1.4 kpb DNA insert.

- 5 Figure 25 shows a sample diagnostic restriction analysis of DNA prepared from clones derived from quadruple homologous recombination events (three PCR products plus vector). Additional sampling of clones resulting from quadruple recombination yielded a cloning efficiency of 29% (7 clones containing inserts/24 clones sampled). At this point, due to the small sampling sizes, we do not know
10 whether the differences in the cloning efficiencies observed between the triple and quadruple recombination events are meaningful.

To evaluate the expression of Le γ -binding activity of the CH₂ mutant IgGs, miniprep DNAs from 6 clones derived from the triple recombination reaction and 6
15 clones derived from the quadruple recombination reaction exhibiting the predicted diagnostic Eco47-III restriction patterns were isolated, mixed with pBR96- hC κ DNA and used to co-transfect COS7 cells. 48 hour spent supernatants from 3 ml cultures were assayed for total IgG production and for Le γ binding activity by enzyme-linked immunosorbent assay (EIA) as described (Yelton, D.E., M.J. Rosok,
20 G.A. Cruz, W.L. Cosand, J. Bajorath, I. Hellstrom, K.-E. Hellstrom, W.D. Huse and S.M. Glaser. 1995. Affinity maturation of the BR96 anti-carcinoma antibody by codon-based mutagenesis. J.Immunol. 155:1994-2004). All twelve cultures were found to secrete approximately 2-3 ug/ml Le γ -reactive IgG. The spectrum of Le γ binding activities were all similar to that of native humanized BR96 IgG indicating
25 that the homologously recombined antibodies did not acquire any gross mutations that could affect antigen binding. To confirm that the desired CH₂ mutations had been incorporated, and to evaluate the recombined genes for misincorporated nucleotides, four of the clones producing functional antibody were sequenced using Sequenase Version 2 DNA Sequencing Kit (United States Biochemical). One clone

was found to contain a single nucleotide change within the forward PCR primer used for mediating recombination with vector DNA. We are uncertain whether this error occurred during chemical synthesis of the oligonucleotide primer or is a result of misincorporation during the PCR reaction, despite the fact that we used a

5 thermostable polymerase with proofreading activity.

A RPCR procedure for homologously recombining up to three separate PCR-generated mutated antibody sequence products into a eukaryotic expression vector for the rapid construction of engineered IgG molecules is described herein. The

10 advantage of this approach is the ability to simultaneously introduce multiple distally-located mutations with PCR products synthesized by a single round of PCR. Recombinant DNAs are produced with a reasonably high cloning efficiency and fidelity of correct nucleotide sequences. The ability to efficiently rejoin several distinct PCR products should permit combinatorial strategies for constructing

15 complexly mutated protein domains as well as broadening the number and location of desired mutations.

Analysis of transformants generated by multiple-fragment RPCR.

Mutant IgGs Constructed	PCR Fragments in reaction	HR ^a events	Colonies Analyzed	Cloning Efficiency ^b
2	2	triple	24	45%
2	3	quadruple	24	33%

^aHR-homologous recombination

^bCloning efficiency (number of clones containing 1.4kbp insert/total number of colonies)

EXAMPLE 5

This example provides two methods for introducing site specific mutations into the
5 CH2 domain of human IgG1 constant region containing vectors.

One method involves PCR amplification of a segment or segments of the constant
region, wherein mutations are introduced using appropriately constructed
oligonucleotides. The vector receiving the fragment(s) is digested with a restriction
10 enzyme to linearize the vector. PCR amplification primers are designed so that the
5' ends of the PCR fragments can hybridize to the DNA sequence of the vectors. If
more than one PCR fragment is amplified, then common sequences to the two
fragments are introduced by oligonucleotides. Bacteria are transfected with the PCR
fragments and with the digested vector. The fragments and vector can recombine by
15 homologous recombination using the bacteria's recombination machinery. Bacterial
colonies are selected and the DNA is analyzed by size and restriction map as a
preliminary determination that the vector and fragment(s) recombined correctly.
Correct insertion of fragments with the mutations is confirmed by dideoxynucleotide
sequence analysis. DNA is then introduced into mammalian cells as described for
20 the CH2 deleted antibody, and the expressed antibody analyzed for binding and
functional activity.

By way of example, mutations Leu to Ala at residue 235 in CH2 and Gly to Ala at
residue 237 were introduced by the procedure disclosed in Example 4. The heavy
25 chain vector used for this procedure was pD17-hG1a, similar to pD17-BR96 vector
described herein except that humanized V regions (Rosok, M.J., D.E. Yelton, L.J.
Harris, J. Bajorath, K-E. Hellstrom, I. Hellstrom, G.A. Cruz, K. Kristensson, H. Lin,
W.D. Huse, and S.M. Glaser, 1996. J. Biol. Chem 271 37:22611-22618) with three
affinity mutations (H1, H2, and H3 mutations) were substituted.

pBR96-hG1a contains two Eco47-III restriction sites flanking the Ig hinge-CH2-CH3 domains. The recipient vector was prepared by (1) digesting pBR96-hG1a with *Eco*47-III, (2) isolating the vector by agarose gel electrophoresis, and (3)

5 extracting the vector DNA from the excised gel slice using the Qiagen Gel Extraction kit (Qiagen, Chatsworth, CA). To introduce mutations at a single location, such as for positions 235 and 237, two PCR products were synthesized.

To introduce two distally located mutations, such as for mutant F (also referred to

10 herein as hBR96-2F) with mutations at 235, 237, 331, requires 3 PCR products. The recombination of neighboring PCR products occurs across the regions containing the desired mutations, therefore the oligonucleotide primers encoding these ends contain complementary mutant residues. The mutagenic PCR primers contain at least 15 nucleotides of wild-type sequence flanking each side of the mutant residues for

15 either priming the polymerization reaction or mediating recombination. Two 49-nucleotide long PCR sense and anti-sense primers containing sequences for recombining with the end regions of the *Eco*47-III digested pBR96-hG1a vector.

PCR amplification used 250 ng intact pBR96-hG1a DNA template, 10 μ l of 10X *Pfu* buffer (Stratagene, Inc., San Diego, CA), 10 nmol dNTPs, 200 ng each of the appropriate PCR primers, 10% dimethylsulfoxide (ATCC, Rockville, MD) and 2.5 units cloned *Pfu* DNA polymerase (Stratagen, Inc. San Diego, CA) in 100 μ l reaction. Samples were denatured at 95°C for 5 min, annealed at 45°C for 5 min, and extended at 72°C for 1 min followed by 25 cycles of denaturation at 94°C for 45 sec, annealing at 45°C for 45 sec, extension at 72°C for 1 min/kb, and a final extension at 72°C for 7 min. The amplified products were purified from a 1% agarose gel, extracted with the Qiagen Gel Extraction kit and quantitated. 50 mg of each PCR product was mixed with 25 ng of the *Eco*47-III digested pBR96-hG1a vector and transfected in E.coli MAX Efficiency DH5 α ™ according to the

manufacturer's instructions (GIBCO BRL/Life Technologies, Gaithersburg, MD).

The entire transfection reaction was plated onto LB agar plated containing 100 µg/ml ampicillin.

- 5 Bacterial colonies were selected and grown overnight at 37° C in 2 ml liquid cultures. DNA was isolated and analyzed by Eco47-III restriction endonuclease mapping. Clones with the correct size insert were sequenced (Sequenase Version 2, U.S. Biochemical Corp., Cleveland, OH).
- 10 The second method for introducing site specific mutations into the CH₂ domain of human IgG1 involved the method of Kunkel (1987 Methods Enzymology, supra). For this procedure pD17-hG1b DNA with the F1 origin of replication was introduced into electrocompetent E. coli CJ236 dut-ung- (Bio-Rad Laboratories, Hercules, CA) by electroporation according to manufacturer's instructions. PD17-
- 15 hG1b is a vector having a constant region but no variable region. The F1 ori site allows treatment of this vector as a phagemid.

Bacteria containing the plasmid were selected by ampicillin resistance. Single stranded uridylated DNA was prepared using the Muta-Gene Phagemid In Vitro

- 20 Mutagenesis Version 2 protocol (Bio-Rad). Mutations were introduced by site-directed mutagenesis with the appropriate antisense oligonucleotide. For molecules with mutations at more than one location, mutations were introduced by either of the two methods discussed above. One method would be to (1) prepare one mutant, for example, mutant 2C (also referred to herein as BR96-2C) with the mutations at
- 25 residues 318, 320, 322, (2) isolate ssDNA, and (3) introduce a second mutation set with the appropriate anti-sense oligonucleotide. The second method would be to anneal two antisense oligonucleotides with the same uridylated ssDNA and screen for mutants with both sets of changes. Mutant 2H (hBR96-2H) was also prepared by a combination of these methods.

The V region of humanized BR96-2 heavy chain was introduced by the homologous recombination method described above in pD17-hJm14.H1. The pD17-hJm14.H1 plasmid contains the BR96 humanized variable region with the H1/H2/H3 mutations and the plasmid was used to transfect mutant sequences into mammalian cells. The pD17G1b vector containing the Fc mutation(s) was digested with NheI for 3 hr at 37° C and the DNA isolated by methods described above. Insertion of the V region into the vector was determined by size and restriction enzyme mapping and confirmed by sequence analysis.

10

Transient expression of whole antibodies was performed by transfection of COS cells. For production of antibody, stable transfections of CHO cells were performed (see description of deleted CH2 mutant). All mutants were purified from CHO culture supernatants by protein A chromatography.

15

The oligonucleotide primers homologous to the vector and used to introduce the constant regions mutations were as follows:

Oligonucleotides homologous to vector sequences:

Sens(sense)CH2 E47-3-5: CAG GGA GGG AGG GTG TCT GCT GGA AGC
20 CAG GCT CAG CGC TGA CCT CAGA
D CH2 E47-3 A (antisense): GGA AAG AAC CAT CAC AGT CTC GCA GGG
GCC CAG GGC AGC GCT GGG TGC TT

Oligonucleotides to mutate Leu235 to Ala and Gly237 to Ala (underlined sequences
25 show sites of mutation):

Antisense CH2 L235-G237/aa: GAA GAG GAA GAC TGA CGG TGC CCC
CGC GAG TTC AGG TGC TGA GG

SensCH2 L235-G237/AA: CCT CAG CAC CTG AAC TCG CGG GGG CAC
CGT CAG TCT TCC TCT TC

Oligonucleotides to mutate Glu318, Lys320, Lys322 to Ser

Antis(antisense)CH2 EKK/SSS-2: CTG GGA GGG CTT TGT TGG AGA CCG
AGC ACG AGT ACG ACT TGC CAT TCA GCC

5 Oligonucleotides to mutate Pro331 to Ala:

Antis CH2 P331/A/3: GAT GGT TTT CTC GAT GGC GGC TGG GAG GGC

Sense CH2 P33/A: GCC CTC CCA GCC GCC ATC GAG AAA ACC ATC

Alternative antisense oligo to introduce Ala at 331 by site-directed mutation:

CH2P331A: GAT GGT TTT CTC GAT AGC GGC TGG GAG GGC TTT G

10

Oligonucleotides to mutate Glu318 to Ser, Lys320 to Ser, Lys322 to Ser, and Pro331 to Ala:

Antis CH2 EKKP/SSA-6: GAT GGT TTT CTC GAT GGC GGC TGG GAG
GGC TTT GTT GGA GAC CGA GCA CGA GTA CGA CTT GCC ATT CAG

15 CCA GTC CTG GTG

Sense CH2 EKKP/SSA-6: CAC CAG GAC TGG CTG AAT GGC AAG TCG
TAC TCG TGC TCG GTC TCC AAC AAA GCC CTC CCA GCC GCC ATC
GAG AAA ACC ATC

20

In vitro Assays of the Mutants

Results of the CDC demonstrate that mutant hBR96-2B has approximately 10 fold less activity than the control hBR96-1 (two affinity mutations, one in H2 and one in H3, refer to previous patent (Figure 20)). The mutants that have the least ability to kill cells in the presence of complement is hBR96-2C with the triple mutations at positions 318, 320, and 322 and the hBR96-2H mutant (least cytotoxic antibodies in the panel) which contains all six mutations at the three different locations. ADCC activity was most affected by the CH2 deleted hBR96-2 molecule (Figure 21).

hBR96-2B and -2H lost between 100 and 1000 fold activity to kill in the presence of effector cells. In the ADCC assay the hBR96-2B molecule also lost approximately 10 fold activity (Figure 21).

- 5 Figures 26-28 provide the amino acid sequences for the heavy chain variable region for both chimeric and humanized BR96 having the H1, H2, and H3 mutations. The amino acid sequence for the light chain variable region is known and methods for generating it are found in PCT Application No. 95/305444. Additionally provided is the amino acid sequence for the IgG1 constant region. Mutations in the constant
10 region are marked.

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- 5 (i) APPLICANT: Bristol-Myers Squibb Co.
- 10 (ii) TITLE OF THE INVENTION:
A METHOD FOR INHIBITING
IMMUNOGLOBULIN-INDUCED TOXICITY FROM THE USE OF
IMMUNOGLOBULINS IN THERAPY AND IN VIVO DIAGNOSIS
- 15 (iii) NUMBER OF SEQUENCES: 13
- 20 (iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: Merchant & Gould
(B) STREET: 11150 Santa Monica Blvd., Suite 400
(C) CITY: Los Angeles
(D) STATE: CA
(E) COUNTRY: USA
(F) ZIP: 90025
- 25 (v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Diskette
(B) COMPUTER: IBM Compatible
(C) OPERATING SYSTEM: DOS
(D) SOFTWARE: FastSEQ Version 2.0
- 30 (vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER: PCT/US97/_____.
(B) FILING DATE: 01-AUG-1997
(C) CLASSIFICATION:
- 35 (vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 60/023,033
(B) FILING DATE: 02-AUG-1996
- 40 (viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Adriano, Sarah B
(B) REGISTRATION NUMBER: 34,470
(C) REFERENCE/DOCKET NUMBER: 30436.43WOU1
- 45 (ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: 310-445-1140
(B) TELEFAX: 310-445-9031
(C) TELEX:
- 50 (2) INFORMATION FOR SEQ ID NO:1:
- 55 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 36 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

5 TGGCACCGAA AGCTTCTGG GGCAGGCCAG GCCTGA

36

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 57 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10 15 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

TCCGGACATG TTGGTACCCA CGTGGTGGTC GACGCTGAGC CTGGCTTCGA GCAGACA

57

20 (2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 55 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

25 30 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GTCGACCACC ACGTGGGTAC CAACATGTCC GGAGCCACAT GGACAGAGGC CGGCT

55

35 (2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CTGGTTCTTG TTCATCTCCT CTCTAGATGG

30

50 (2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 36 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

55 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ACCATGGTCG ACCTCAGACC TGCCAAGAGC CATATC

36

5 (2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 39 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: cDNA

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CATGGTCACG TGGTGTGTCC CTGGATGCAG GCTACTCTA

39

20 (2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 49 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

30 CAGGGAGGGA GGGTGTCTGC TGGAAGCCAG GCTCAGCGCT GACCTCAGA

49

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 50 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

40 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

45 GGAAAGAACC ATCACAGTCT CGCAGGGGCC CAGGGCAGCG CTGGGTGCTT

50

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8691 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

55 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GACGGATCGG GAGATCTGCT AGGTGACCTG AGGCGCGCCG GCTTCGAATA GCCAGAGTAA
CCTTTTTTTT TAATTTTATT TTATTTTATT TTTGAGATGG AGTTTGGCGC CGATCTCCCG

60

120

	ATCCCCCTATG	GTCGACTCTC	AGTACAATCT	GCTCTGATGC	CGCATAGTTA	AGCCAGTATC	180
	TGCTCCCTGC	TTGTGTGTTG	GAGGTGCGTG	AGTAGTGCAC	GAGCAAAATT	TAAGCTACAA	240
	CAAGGCAAGG	CTTGACCGAC	AATTGCATGA	AGAATCTGCT	TAGGGTTAGG	CGTTTGCAC	300
5	TGCTTCGCGA	TGTACGGGCC	AGATATAACGC	GTTGACATTG	ATTATTGACT	AGTTATTAAAT	360
	AGTAATCAAT	TACGGGGTCA	TTAGTTCAT	GCCCATATAT	GGAGTTCGC	GTTACATAAC	420
	TTACGGTAAA	TGGCCCGCCT	GGCTGACCGC	CCAACGACCC	CCGCCCATTG	ACGTCAATAA	480
	TGACGTATGT	TCCCAGTAGTA	ACGCAAAAG	GGACTTTCA	TTGACGTCAA	TGGGTGGACT	540
10	ATTTACGGTA	AACTGCCAC	TTGGCAGTAC	ATCAAGTGT	TCATATGCCA	AGTACGCC	600
	CTATTGACGT	CAATGACGGT	AAATGGCCCG	CCTGGCATT	TGCCCAGTAC	ATGACCTTAT	660
	GGGACTTTCC	TACTTGGCAG	TACATCTACG	TATTAGTCAT	CGCTATTACC	ATGGTGATGC	720
	GGTTTTGGCA	GTACATCAAT	GGGCGTGGAT	AGCGGTTTGA	CTCACGGGGA	TTTCCAAGTC	780
	TCCACCCCAT	TGACGTCAAT	GGGAGTTTGT	TTTGGCACCA	AAATCAACGG	GACTTCCAA	840
	AATGTCGTA	CAACTCCGCC	CCATTGACGC	AAATGGCGG	TAGGCAGTGA	CGGTGGGAGG	900
15	TCTATATAAG	CAGAGCTCTC	TGGCTAAGTA	GAGAACCCAC	TGCTTACTGG	CTTATCAGAA	960
	TTAATACGAC	TCACTATAGG	GAGACCAAG	CTTGGTACCA	ATTAAATTG	ATATCTCCTT	1020
	AGGTCTCGAG	TCTCTAGATA	ACCGGTCAAT	CGATTGAAAT	TCTTGCAGGC	GCTTGCTAGC	1080
	CACCATGGAG	TTGTGGTTAA	GCTTGGTCCT	TCCCTGTCCT	TGTTTTAAAA	GGTGTCCAGT	1140
	GTGAAGTGA	TCTGGTGGAG	TCTGGGGAG	GCTTAGTGCA	GCCTGGAGGG	TCCCTGAAAG	1200
20	TCTCCTGTGT	AACCTCTGGA	TTCACTTTCA	GTGACTATT	CATGTATTGG	GTTCGCCAGA	1260
	CTCCAGAGAA	GAGGCTGGAG	TGGGTGCGAT	ACATTAGTCA	AGGTGGTGT	ATAACCGACT	1320
	ATCCAGACAC	TGTAAAGGGT	CGATTCAACCA	TCTCCAGAGA	CAATGCCAAG	AAACACCTGT	1380
	ACCTGCAAT	GAGCCGTCTG	AAGTCTGAGG	ACACAGCCAT	GTATTACTGT	GCAAGAGGCC	1440
	TGGACGACGG	GGCCCTGGTTT	GCTTACTGGG	GCCAAGGGAC	TCTGGTCACG	GTCTCTGTAG	1500
25	CTAGCACCAA	GGGCCATCG	GTCTTCCCCC	TGGCACCCCTC	CTCCAAGAGC	ACCTCTGGG	1560
	GCACAGCGGC	CCTGGGCTGC	CTGGTCAAGG	ACTACTTCCC	CGAACCGGTG	ACGGTGTCTG	1620
	GGAACTCAGG	CGCCCTGACC	AGCGGCGTGC	ACACCTTCCC	GGCTGTCTA	CAGTCCTCAG	1680
	GACTCTACTC	CCTCAGCAGC	GTGGTCACCG	TGCCCTCCAG	CAGCTTGGGC	ACCCAGACT	1740
	ACATCTGCAA	CGTGAATCAC	AAGCCCAGCA	ACACCAAGGT	GGACAAGAAA	GTTGGTGAGA	1800
30	GGCCAGCACA	GGGAGGGAGG	GTGTCTGCTG	GAAGCCAGGC	TCAGCGCTCC	TGCCCCTGACG	1860
	CATCCCGGCT	ATGCAGCCCC	AGTCCAGGGC	AGCAAGGCAG	GCCCCGTCTG	CCTCTTCACC	1920
	CGGAGGCC	TGCCCGCCCC	ACTCATGCTC	AGGGAGAGGG	TCTTCTGGCT	TTTTCCCCAG	1980
	GCTCTGGCA	GGCACAGGCT	AGGTGCCCC	AAACCCAGGC	CTGCACACAA	AGGGGCAGGT	2040
	GCTGGGCTCA	GACCTGCCAA	GAGCCATATC	CGGGAGGGAC	CTGGCCCTGA	CCTAAGCCCA	2100
35	CCCCAAAGGC	CAAACCTCTC	ACTCCCTAG	CTCGGACACC	TTCTCTCC	CCAGATTCCA	2160
	GTAACCTCCA	ATCTCTCTC	TGCAAGAGCC	AAATCTGTG	ACAAAACCTA	CACATGCCA	2220
	CCGTGCCAG	GTAAGCCAGC	CCAGGCCCTCG	CCCTCCAGCT	CAAGGCGGG	CAGGTGCCCT	2280
	AGAGTAGCCT	GCATCCAGGG	ACAGGCCCA	GCCGGGTGCT	GACACGTCCA	CCTCCATCTC	2340
	TTCCCTCAGCA	CCTGAACCTCC	TGGGGGGACC	GTCAGTCTTC	CTCTTCCCCC	AAAACCCAA	2400
40	GGACACCCTC	ATGATCTCCC	GGACCCCTGA	GGTCACATGC	GTGGTGGTGG	ACGTGAGCCA	2460
	CGAAGACCC	GAGGTCAAGT	TCAACTGGTA	CGTGGACGGC	GTGGAGGTGC	ATAATGCCAA	2520
	GACAAAGCCG	CGGGAGGGAGC	AGTACAACAG	CACGTACCGT	GTGGTCAGCG	TCCTCACCGT	2580
	CCTGCACCAG	GAATGGCTGA	ATGGCAAGGA	GTACAAGTGC	AAGGTCTCCA	ACAAAGCCCT	2640
	CCCAGCCCC	ATCGAGAAAA	CCATCTCCAA	AGCCAAAGGT	GGGACCCGTG	GGGTGCGAGG	2700
45	GCCACATGGA	CAGAGGCCGG	CTCGGCCCCAC	CCTCTGCC	GAGAGTACCC	GCTGTACCAA	2760
	CCTCTGTCCC	TACAGGGCAG	CCCCGAGAAC	CACAGGTGTA	CACCTGCC	CCATCCCGGG	2820
	ATGAGCTGAC	CAAGAACCCAG	GTCAGCCTGA	CCTGCCTGGT	CAAAGGCTTC	TATCCCAGCG	2880
	ACATCGCCGT	GGAGTGGGAG	AGCAATGGGC	AGCGGGAGAA	CAACTACAAG	ACCACGCC	2940
	CCGTGCTGGA	CTCCGACGGC	TCCCTTCTTC	TCTACAGCAA	GCTCACCGTG	GACAAGAGCA	3000
50	GGTGGCAGCA	GGGGAAAGTC	TTCTCATGCT	CCGTGATGCA	TGAGGCTCTG	CACAACCACT	3060
	ACACGCAGAA	GAGCCCTCTC	CTGTCTCCGG	GTAAATGAGT	GCGACGGCCG	GCAAGCCCC	3120
	GCTCCCCGGG	CTCTCGCGGT	CGCACGAGGA	TGCTTGGCAC	GTACCCCTG	TACATACTTC	3180
	CCGGGCGCCC	AGCATGGAA	TAAAGCACCC	AGCGCTGCC	TGGGCCCTG	CGAGACTGTG	3240
	ATGGTTCTT	CCACGGGTCA	GGCCGAGTC	GAGGCCTGAG	TGGCATGAGG	GAGGCAGAGC	3300
	GGGTCCCACT	GTCCCCACAC	TGGCCAGGC	TGTGCAGGTG	TGCTCTGGCC	CCCTAGGGTG	3360
55	GGGCTCAGCC	AGGGGCTGCC	CTCGGCAGGG	TGGGGGATTT	GCCAGCGTGG	CCCTCCCTCC	3420
	AGCAGCACCT	GCCCTGGGCT	GGGCCACGGG	AAGCCCTAGG	AGCCCCTGGG	GACAGACACA	3480
	CAGCCCTGTC	CTCTGTAGGA	GACTGTCTG	TTCTGTGAGC	GCCCTGTCC	TCCCGACCTC	3540
	CATGCCCACT	CGGGGGCATG	CCTAGTCCAT	GTGCGTAGGG	ACAGGCCCTC	CCTCACCCAT	3600
	CTACCCCCAC	GGCACTAAC	CCTGGCTGCC	CTGCCAGGCC	TCGCACCCGC	ATGGGGACAC	3660

	AACCGACTCC	GGGGACATGC	ACTCTCGGGC	CCTGTGGAGG	GACTGGTGC	GATGCCACA	3720
	CACACACTCA	GCCCAGACCC	GTTCAACAAA	CCCCGCACTG	AGGTTGGCCG	GCCACACGGC	3780
	CACCACACAC	ACACGTGCAC	GCCTCACACA	CGGAGCCTCA	CCCGGGCGAA	CTGCACAGCA	3840
	CCCAGACCAAG	AGCAAGGTCC	TCGCACACGT	GAACACTCCT	CGGACACAGG	CCCCCACGAG	3900
5	CCCCACGCGG	CACCTCAAGG	CCCACGAGCC	TCTCGGCAGC	TTCTCCACAT	GCTGACCTGC	3960
	TCAGACAAAC	CCAGGCCCTCC	TCTCACAAGG	GTGCCCTCTG	AGCCGCCACA	CACACACAGG	4020
	GGATCACACA	CCACCGTCACG	TCCCTGGCCC	TGGCCCACCTT	CCCAGTGCCG	CCCTTCCCTG	4080
	CAGGACGGAT	CAGCCTCGAC	TGTGCCCTCT	AGTTGCCAGC	CATCTGTTGT	TTGCCCTCTC	4140
10	CCCGTGCCTT	CCTTGACCCCT	GBAAGGGTGC	ACTCCCACTG	TCCCTTCCTA	ATAAAATGAG	4200
	GAAATTGCAT	CGCATTGTCT	GAGTAGGTGT	CATTCTAATTC	TGGGGGGTGG	GGTGGGGCAG	4260
	GACAGCAAGG	GGGAGGATTG	GBAAGACAAT	AGCAGGCCATG	CTGGGGATGC	GGTGGGCTCT	4320
	ATGGCTTCTG	AGGCGGAAAG	AACCAGCTGG	GGCTCTAGGG	GGTATCCCCA	CGCGCCCTGT	4380
	AGCGGCGAT	TAAGCGCGGC	GGGTGTGGTG	GTTACGCGCA	GCCTGACCGC	TACACTTGCC	4440
15	AGCGCCCTAG	CGCCCGCTCC	TTTCGTTTC	TTCCCTTCCT	TTCTCGCCAC	TTTCGCCGGG	4500
	CCTCTAAAAA	AAGGGAAAAAA	AAGCATGCAT	CTCAATTAGT	CAGCAACCAT	AGTCCCGCCC	4560
	CTAACTCCGC	CCATCCCGCC	CCTAACCTCCG	CCCAGTCCCG	CCCATTCTCC	GCCCCATGGC	4620
	TGACTAATTT	TTTTTATTTA	TGCAGAGGCC	GAGGCCGCCT	CGGCCTCTGA	GCTATTCCAG	4680
	AACTAGTGAG	GAGGTTTTTT	TGGAGGCCTA	GGCTTTGCA	AAAAGCTTGG	ACAGCTCAGG	4740
20	GCTCGATTT	CGCGCCAAAC	TTGACGGCA	TCCTAGCGT	AAGGCTGGTA	GGATTTTATC	4800
	CCCGCTGCCA	TCATGGTTCG	ACCATTGAAC	TGCATCGTCG	CCGCTGCTCA	AAATATGGG	4860
	ATTGGCAAGA	ACGGAGACCT	ACCCCTGGCT	CCGCTCAGGA	ACGAGTTCAA	GTACTTCAA	4920
	AGAATGACCA	CAACCTCTTC	AGTGGAAAGGT	AAACAGAAC	TGGTGAATTAT	GGGTAGGAAA	4980
	ACCTGGTTCT	CCATTCTCTGA	GAAGAATCGA	CCTTTAAAGG	ACAGAATTAA	TATAGTTCTC	5040
25	AGTAGAGAAC	TCAAAGAACCC	ACCACGAGGA	GTCATTTTC	TTGCCAAAG	TTTGGATGAT	5100
	GCCTTAAGAC	TTATTGAACA	ACCGGAATTG	GCAAGTAAAG	TAGACATGGT	TTGGATAGTC	5160
	GGAGGCGAGT	CTGTTTACCA	GBAAGGCCATG	AATCAACCG	GCCACCTTAG	ACTCTTGTG	5220
	ACAAGGATCA	TGCAGGAATT	TGAAAGTGC	ACGTTTTTCC	CAGAAATTGA	TTTGGGAAA	5280
	TATAAACTTC	TCCCAGAATA	CCCAGCGTC	CTCTCTGAGG	TCCAGGAGGA	AAAAGGCATC	5340
30	AAGTATAAGT	TTGAAGTCTA	CGAGAAGAAA	GACTAACAGG	AAGATGCTT	CAAGTTCTCT	5400
	GCTCCCTCTC	TAAGCTATG	CATTTTTATA	AGACCATGGG	ACTTTGCTG	GCTTTAGATC	5460
	TCTTTGTGAA	GGAACCTTAC	TTCTGTGGTG	TGACATAATT	GGACAAACTA	CCTACAGAGA	5520
	TTTAAAGCTC	TAAGGTAAT	ATAAAATTTT	TAAGTGTATA	ATGTGTTAAA	CTACTGATT	5580
	TAATTGTTTG	TGTATTCTAG	ATTCCAACCT	ATGGAAC	TGAATGGGAG	CAGTGGTGG	5640
35	ATGCCTTAA	TGAGGAAAAC	CTGTTTGCT	CAGAAGAAAT	GCCATCTAGT	GATGATGAGG	5700
	CTACTGCTGA	CTCTCAACAT	TCTACTCCCTC	CAAAAAAGAA	GAGAAAGGT	GAAGACCCCA	5760
	AGGACTTTCC	TTCAGAATTG	CTAAGTTTT	TGAGTCATGC	TGTGTTTAGT	AATAGAAC	5820
	TTGCTTGCTT	TGCTATTCTAC	ACCACAAAGG	AAAAAGCTGC	ACTGCTATAC	AAGAAAATTA	5880
	TGGAAAATA	TTCTGTAAACC	TTTATAAGTA	GGCATAACAG	TTATAATCAT	AACATACTGT	5940
40	TTTTTCTTAC	TCCACACAGG	CATAGAGTGT	CTGCTATTAA	TAACTATGCT	AAAAATTGT	6000
	GTACCTTTAG	CTTTTAATT	TGTAAGGGG	TTAATAAGGA	ATATTGATG	TATAGTGCT	6060
	TGACTAGAGA	TCATAATCAG	CCATACCACA	TTTGTAGAGG	TTTACTTGC	TTTAAAAAAC	6120
	CTCCCACACC	TCCCCCTGAA	CCTGAAACAT	AAAATGAATG	CAATTGTTGT	TGTTAACTTG	6180
	TTTATTGAG	CTTATAATGG	TTACAAATAA	AGCAATAGCA	TCACAAATT	CACAAATAAA	6240
45	GCATTTTTT	CACTGCATT	TAGTTGTTG	TTGTC	AAAC	ATCTTATCAT	6300
	GTCTGGATCG	GCTGGATGAT	CCTCCAGCGC	GGGGATCTCA	TGCTGGAGTT	CTTCGCCAC	6360
	CCCAACTTGT	TTATTGAGC	TTATAATGGT	TACAAATAAA	GCAATAGCAT	CACAAATTTC	6420
	ACAAATAAAAG	CATTTTTTTC	ACTGCATTCT	AGTTGTTGGTT	TGTC	CATCAATGTA	6480
	TCTTATCATG	TCTGTATACC	GTGCACCTCT	AGCTAGAGCT	TGGCGTAAT	ATGGTCATAG	6540
	CTGTTCTCTG	TGTGAAATTG	TTATCCGTC	ACAATCCAC	ACAACATACG	AGCCGGAAGC	6600
50	ATAAAGTGT	AAGCCTGGGG	TGCCTAATGA	GTGAGCTAAC	TCACATTAAT	TGCGTTGCG	6660
	TCACTGCCCG	CTTTCCAGTC	GGGAAACCTG	TCGTGCCAGC	TGCAATT	AATCGGCCAA	6720
	CGCGCGGGGA	GAGGGGGTTT	GGTATTGGG	CGCTCTTCG	CTTCTCGCT	CACTGACTCG	6780
	CTGCGCTCGG	TCGTTGGCT	GGGGCGAGCG	GTATCAGCTC	ACTCAAAGGC	GGTAATACGG	6840
	TTATCCACAG	AATCAGGGGA	TAACGCAGGA	AAGAACATGT	GAGCAAAGG	CCAGCAAAG	6900
55	GCCAGGAACC	GTAAAAAGGC	CCGCTTGCTG	GGCTTTTCC	ATAGGCTCCG	CCCCCCTGAC	6960
	GAGCATCACA	AAAATCGACG	CTCAAGTCAG	AGGTGGCGAA	ACCCGACAGG	ACTATAAAAGA	7020
	TACCAGGGT	TTCCCCCTGG	AAGCTCCCTC	GTGCGCTCTC	CTGTTCCGAC	CCTGCCGCTT	7080
	ACCGGATACC	TGTCCGCTT	TCTCCCTTCG	GBAAGCGTGG	CGCTTTCTCA	ATGCTCACGC	7140
	TGTAGGTATC	TCAGTTCGGT	GTAGGTCGTT	CGCTCCAAGC	TGGGCTGTGT	GCACGAACCC	7200

	CCCGTTCA	CCGACCGCTG	CGCCTTATCC	GGTAACTATC	GTCTTGAGTC	CAACCCGTA	7260
	AGACACGACT	TATGCCACT	GGCAGCAGCC	ACTGGTAACA	GGATTAGCAG	AGCGAGGTAT	7320
	GTAGGCGGTG	CTACAGAGTT	CTTGAAGTGG	TGGCCTAACT	ACGGCTACAC	TAGAAGGACA	7380
5	GTATTTGGTA	TCTCGCCTCT	GCTGAAGCCA	GTTACCTTCG	GAAAAGAGT	TGGTAGCTCT	7440
	TGATCCGGCA	AACAAACCAC	CGCTGGTAGC	GGTGGTTTTT	TTGTTTGCAA	GCAGCAGATT	7500
	ACGCGCAGAA	AAAAAGGATC	TCAAGAAGAT	CCTTGATCT	TTTCTACGGG	GTCTGACGCT	7560
	CAGTGGAACG	AAAACTCACG	TTAAGGGATT	TTGGTCATGA	GATTATCAA	AAGGATCTTC	7620
10	ACCTAGATCC	TTTAAATTAA	AAAATGAAGT	TTTAAATCAA	TCTAAAGTAT	ATATGAGTAA	7680
	ACTTGGTCTG	ACAGTTACCA	ATGCTTAATC	AGTGAGGCAC	CTATCTCAGC	GATCTGTCTA	7740
	TTTCGTTCAT	CCATAGTTGC	CTGACTCCCC	GTCGTGTAGA	TAACCTACGAT	ACGGGAGGGC	7800
	TTACCATCTG	GCCCCAGTGC	TGCAATGATA	CCGCGAGACC	CACCGCTCAC	GGCTCCAGAT	7860
	TTATCAGCAA	TAAACCAGCC	AGCCCGAAGG	GCCGAGCGCA	GAAGTGGTCC	TGCAACTTTA	7920
	TCCGCCTCCA	TCCAGTCTAT	TAATTGTTGC	CGGGAAGCTA	GAGTAAGTAG	TTCGCCAGTT	7980
15	AATAGTTTGC	GCAACGTTGT	TGCCATTGCT	ACAGGCATCG	TGGTGTACAGC	CTCGTCGTTT	8040
	GGTATGGCTT	CATTCA	CGGTTCCCAA	CGATCAAGGC	GAGTTACATG	ATCCCCCATG	8100
	TTGTGAAAAA	AAGGGTTAG	CTCCCTCGGT	CCTCCGATCG	TTGTCAGAA	TAAGTTGGCC	8160
	GCAGTGTAT	CACTCATGGT	TATGGCAGCA	CTGCATAATT	CTCTTACTGT	CATGCCATCC	8220
	GTAAGATGCT	TTTCTGTGAC	TGGTGAGTAC	TCAACCAAGT	CATTCTGAGA	ATAGTGTATG	8280
	CGCGCAGCGA	GTTGCTTTG	CCGGCGTCA	ATACGGATA	ATACCGCGCC	ACATAGCAGA	8340
20	ACTTTAAAG	TGCTCATCAT	TGGAAAACGT	TCTTCGGGGC	GAAAACCTCTC	AAGGATCTTA	8400
	CCGCTGTTGA	GATCCAGTTC	GATGTAACCC	ACTCGTGCAC	CCAACTGATC	TTCAGCATTCT	8460
	TTTACTTTCA	CCAGCGTTTC	TGGGTGAGCA	AAAACAGGAA	GGCAAAATGC	CGCAAAAAG	8520
	GGAATAAGGG	CGACACGGAA	ATGTTGAATA	CTCATACTCT	TCCTTTTTCA	ATATTATTGA	8580
	AGCATTATC	AGGGTTATTG	TCTCATGAGC	GGATACATAT	TTGAATGTAT	TTAGAAAAAT	8640
25	AAACAAATAG	GGGTTCCCG	CACATTCCC	CGAAAAGTGC	CACCTGACGT	C	8691

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

30	(A) LENGTH: 8327 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

	GACGGATCGG	GAGATCTGCT	AGGTGACCTG	AGGCGCGCCG	GCTTCGAATA	GCCAGAGTAA	60
	CCTTTTTTTT	TAATTTTATT	TTATTTTATT	TTTGAGATGG	AGTTTGGCGC	CGATCTCCG	120
	ATCCCCATAG	GTGCACTCTC	AGTACAATCT	GCTCTGATGC	CGCATAGTTA	AGCCAGTATC	180
	TGCTCCCTGC	TTGTGTGTTG	GAGGTCGCTG	AGTAGTGCAC	GAGCAAATT	TAAGCTACAA	240
	CAAGGCAAGG	CTTGACCGAC	AATTGCA	AGAATCTGCT	TAGGGTTAGG	CGTTTTGCGC	300
	TGCTTCGCGA	TGTACGGGCC	AGATATACGC	GTTGACATTG	ATTATTGACT	AGTTATTAAAT	360
40	AGTAATCAAT	TACGGGGTCA	TTAGTTCAT	GCCCCATATAT	GGAGTTCCGC	GTTACATAAC	420
	TTACGGTAA	TGGCCCGCCT	GGCTGACCGC	CCAACGACCC	CCGGCCATTG	ACGTCAATAA	480
	TGACGTATGT	TCCCATAGTA	ACGCCAATAG	GGACTTTCCA	TTGACGTCAA	TGGGTGGACT	540
	ATTTACGGTA	AACTGCCAC	TTGGCAGTAC	ATCAAGTGT	TCATATGCCA	AGTACGCC	600
	CTATTGACGT	CAATGACGGT	AAATGGCCCG	CCTGGCATT	TGCCCAGTAC	ATGACCTTAT	660
50	GGGACTTTCC	TACTTGGCAG	TACATCTAGC	TATTAGTCAT	CGCTATTACC	ATGGTGTATGC	720
	GGTTTTGGCA	GTACATCAAT	GGGCGTGGAT	AGCGGTTTGA	CTCACGGGAA	TTTCCAAGTC	780
	TCCACCCCAT	TGACGTCAAT	GGGAGTTTGT	TTTGGCACCA	AAATCAACGG	GACTTTCAA	840
	AATGTCGTA	CAACTCCGCC	CCATTGACGC	AAATGGCGG	TAGGCGTGT	CGGTGGGAGG	900
55	TCTATATAAG	CAGAGCTCTC	TGGCTAACTA	GAGAACCAC	TGCTTACTGG	CTTATCGAAA	960
	TTAATACCGAC	TCACTATAGG	GAGACCAAG	CTTGGTACCA	ATTAAATTG	ATATCTCCTT	1020
	AGGTCTCGAG	TCTCTAGATA	ACCGGTCAAT	CGATTGGAAT	TCTTGC	GCTTGCTAGC	1080
	CACCATGGAG	TTGTGGTTAA	GCTTGGTCCT	TCCTTGTCC	TGTTTAAAAA	GGTGTCCAGT	1140
	GTGAAGTGA	TCTGGTGGAG	TCTGGGGAG	GCTTAGTGCA	GCCTGGAGGG	TCCCTGAAAG	1200
	TCTCCTGTGT	AACCTCTGGA	TTCACTTTCA	GTGACTATT	CATGTATTGG	GTTCGCCAGA	1260

	CTCCAGAGAA	GAGGCTGGAG	TGGGTGCGAT	ACATTAGTCA	AGGTGGTGAT	ATAACCGACT	1320
	ATCCAGACAC	TGTAAAGGGT	CGATTACCCA	TCTCCAGAGA	CAATGCCAAG	AAACACCCTGT	1380
	ACCTGCAAAT	GAGCCGCTG	AAGTCTGAGG	ACACAGCCAT	GTATTACTGT	GCAAGAGGCC	1440
	TGGACGACGG	GGCCTGGTTT	GCTTACTGGG	GCCAAGGGAC	TCTGGTCACG	GTCTCTGTAG	1500
5	CTAGCACCAA	GGGCCCATCG	GTCTTCCCCC	TGGCACCCCTC	CTCCAAGAGC	ACCTCTGGGG	1560
	GCACAGCGGC	CCTGGGCTGC	CTGGTCAAGG	ACTACTCCC	CGAACCGGTG	ACGGTGTCTG	1620
	GGAACTCAGG	CGCCCTGACC	AGCGGGCTGC	ACACCTCCC	GGCTGCTCTA	CAGTCCTCAG	1680
	GACTCTACTC	CCTCAGCAGC	GTGGTCACCG	TGCCCTCCAG	CAGCTGGGC	ACCCAGACCT	1740
10	ACATCTGCAA	CGTGAATCAC	AAGCCCAGCA	ACACCAAGGT	GGACAAGAAA	GTTGGTGAGA	1800
	GGCCAGCACA	GGGAGGGAGG	GTGTCTGCTG	GAAGCCAGGC	TCAGCGCTCC	TGCCTGGACG	1860
	CATCCCAGCT	ATGCAGCCCC	AGTCCAGGGC	AGCAAGGCAG	GCCCCGTCTG	CCTCTTCACC	1920
	CGGAGGCCTC	TGCCCCCCCC	ACTCATGCTC	AGGGAGAGGG	TCTTCTGGCT	TTTCCCCAG	1980
	GCTCTGGCA	GGCACAGGCT	AGGTGCCCCCT	AACCCAGGCC	CTGCACACAA	AGGGGCAGGT	2040
	GCTGGGCTCA	GACCTGCCAA	GAGCCATATC	CGGGAGGACC	CTGCCCTGA	CCTAAGCCCA	2100
15	CCCCAAAGGC	CAAACCTCTCC	ACTCCCTCAG	CTCGGACACC	TTCTCTCCTC	CCAGATTCCA	2160
	GTAACTCCA	ATCTCTCTC	TGCAGAGCCC	AAATCTGTG	ACAAAACCTA	CACATGCCCA	2220
	CCGTGCCAG	GTAAGCCAGC	CCAGGCCTCG	CCCTCCAGCT	CAAGGCGGGG	CAGGTGCCCT	2280
	AGAGTAGCCT	GCATCCAGGG	ACACACCACG	TGGGTACCAA	CATGTCCGGA	GCCACATGGA	2340
20	CAGAGGCCGG	CTCGGCCAC	CCTCTGCCCT	GAGAGTGAAC	GCTGTACCAA	CCTCTGTCCC	2400
	TACAGGGCAG	CCCCGAGAAC	CACAGGTGTA	CACCTGCCC	CCATCCCAGGG	ATGAGCTGAC	2460
	CAAGAACACG	GTCAGCCTGA	CCTGCCTGGT	CAAAGGCTTC	TATCCCAGCG	ACATGCCGT	2520
	GGAGTGGGAG	AGCAATGGGC	AGCCGGAGAA	CAACTACAAG	ACACAGCCTC	CCGTGCTGGA	2580
	CTCCGACGGC	TCTCTCTCC	TCTACAGCA	GCTCACCGTG	GACAAGAGCA	GGTGGCAGCA	2640
25	GGGGAACGTC	TTCTCATGCT	CCGTGATGCA	TGAGGCTCTG	CACAAACACT	ACACGCAGAA	2700
	GAGCCTCTCC	CTGTCCTCCGG	GTAAAATGAGT	GCGACGCCG	GCAAGCCCCC	GCTCCCCGGG	2760
	CTCTCGGGT	CGCACGAGGA	TGCTTGGCAC	GTACCCCCCTG	TACACTATTC	CCGGGCGCCC	2820
	AGCATGGAAA	TAAAGCACCC	AGCGCTGCC	TGGGCCCTG	CGAGACTGTG	ATGGTTCTTT	2880
	CCACGGGTCA	GGCCGAGTCT	GAGGCCCTGAG	TGGCATGAGG	GAGGCAGAGC	GGGTCCCAC	2940
30	GTCCCCACAC	TGGCCCAGGC	TGTGCAGGTG	TGCCTGGGCC	CCCTAGGGTG	GGGCTCAGCC	3000
	AGGGGCTGCC	CTCGCAGGG	TGGGGGATT	GCCAGCGTGG	CCCTCCCTCC	AGCAGCACCT	3060
	GCCCTGGGCT	GGGCCACGGG	AAGCCCTAGG	AGCCCTGGG	GACAGACACA	CAGCCCCCTGC	3120
	CTCTGTAGGA	GACTGTCTG	TTCTGTGAGC	GCCCCCTGTC	TCCCGACCTC	CATGCCCACT	3180
	CGGGGGCATG	CCTAGTCCAT	GTGCGTAGGG	ACAGGCCCTC	CCTCACCCAT	CTACCCCCAC	3240
35	GGCACTAAC	CCTGGCTGCC	CTGCCAGGC	TCGCACCCGC	ATGGGACAC	AACCGACTCC	3300
	GGGGACATGC	ACTCTCGGGC	CCTGTGGAGG	GACTGGTGCA	GATGCCACAA	CACACACTCA	3360
	GCCCCAGACCC	GTTCAACAAA	CCCCGCACTG	AGGTTGCCG	GCCACACGGC	CACCCACACAC	3420
	ACACGTGCAC	GCCTCACACA	CGGAGCCTCA	CCCGGGCGAA	CTGCACAGCA	CCCAGACCAG	3480
	AGCAAGGTCC	TCGCACACGT	GAACACTCCT	CGGACACAGG	CCCCCACGAG	CCCCACGCGG	3540
40	CACCTCAAGG	CCCACGAGCC	TCTCGGCAGC	TTCTCCACAT	GTCGACCTGC	TCAGACAAAC	3600
	CCAGCCCTCC	TCTCACAAGG	GTGCCCTGC	AGCCGCCACA	CACACACAGG	GGATCACACA	3660
	CCACGTCACT	TCCCTGGCCC	TGGCCCACTT	CCCAGTGCCG	CCCTTCCCTG	CAGGACGGAT	3720
	CAGCCTCGAC	TGTGCCCTCT	AGTTGCCAGC	CATCTGTTGT	TTGCCCTCTCC	CCCGTGCCTT	3780
	CCTTGACCT	GGAAAGGTGCC	ACTCCCACTG	TCCCTTCTCA	ATAAAATGAG	GAAATTGCTAT	3840
45	CGCATTTCT	GAGTAGGTGT	CATTCTATTCT	TGGGGGGTGG	GGTGGGGCAG	GACAGCAAGG	3900
	GGGAGGATGT	GGAAAGACAAT	AGCAGGCATG	CTGGGGATGC	GGTGGGCTCT	ATGGCTTCTG	3960
	AGGCAGGAAAG	AACCAGCTGG	GGCTCTAGGG	GGTATCCCCA	CGCGCCCTGT	AGCGGGCGCAT	4020
	TAAGCGGGC	GGGTGTGGTG	GTTACGCGCA	GGGTGACCGC	TACACTTGCC	AGCGCCCTAG	4080
	CGCCCGCTCC	TTTCGCTTTTC	TTCCCTTCTC	TTCTCGCCAC	TTTCGCCCCGG	CCTCTCAAAA	4140
50	AAGGGAAAAAA	AAGCATGCAT	CTCAATTAGT	CAGCAACCAT	AGTCCCGCCC	CTAACTCCGC	4200
	CCATCCCGCC	CCTAACTCCG	CCCAGTTCCG	CCCATTCTCC	GCCCCATGGC	TGACTAATT	4260
	TTTTTATTAA	TGCAAGAGGCC	GAGGCCGCC	CGGCCTCTGA	GCTATTCCAG	AAGTAGTGAG	4320
	GAGGCTTTTT	TGGAGGCC	GGCTTTTGCA	AAAAGCTTGG	ACAGCTCAGG	GCTGCGATT	4380
	CGCGCCAAAC	TTGACGGCAA	TCCTAGCGTG	AAGGCTGGTA	GGATTTTATC	CCCGCTGCCA	4440
55	TCATGGTTCG	ACCATTGAAC	TGCATCGTCG	CCGTGCTCCA	AAATATGGGG	ATTGGCAAGA	4500
	ACGGAGACCT	ACCCCTGGCCT	CCGCTCAGGA	ACGAGTTCAA	GTACTTCCAA	AGAATGACCA	4560
	CAACCTCTTC	AGTGAAGGT	AAACAGAAC	TGGTGAATTAT	GGGTAGGAAA	ACCTGGTTCT	4620
	CCATTCTGA	GAAGAATCGA	CCTTAAAGG	ACAGAATTAA	TATAGTTCTC	AGTAGAGAAC	4680
	TCAAAGAAC	ACCACGAGGA	GTCATTTTC	TTGCCAAAAG	TTGGATGAT	GCCTTAAGAC	4740
	TTATTGAACA	ACCGAATTG	GCAAGTAAAG	TAGACATGGT	TTGGATAGTC	GGAGGCAGTT	4800

	CTGTTTACCA GGAAGCCATG AATCAACCAG GCCACCTTAG ACTCTTTGTG ACAAGGATCA	4860
	TGCAGGAATT TGAAGGTGAC ACGTTTTTC CAGAAATTGA TTGGGGAAA TATAAACCTC	4920
	TCCCAGAATA CCCAGGCGTC CTCTCTGAGG TCCAGGAGGA AAAAGGCATC AAGTATAAGT	4980
5	TTGAAGTCTA CGAGAAGAAA GACTAACAGG AAGATGCTT CAAGTTCTCT GCTCCCCCTCC	5040
	TAAAGCTATG CATTTTTATA AGACCATGGG ACTTTTGCTG GCTTAGATC TCTTTGTGAA	5100
	GGAACCTTAC TTCTGTGGTG TGACATAATT GGACAAACTA CCTACAGAGA TTAAAGCTC	5160
	TAAGGTAAAT ATAAAATTTT TAAGTGTATA ATGTGTAAA CTACTGATTC TAATTGTTG	5220
	TGTATTTAG ATTCCAACCT ATGGAACGTG TGAATGGGAG CAGTGGTGGA ATGCCCTTAA	5280
10	TGAGGAAAAC CTGTTTGCT CAGAAGAAAT GCCATCTAGT GATGATGAGG CTACTGCTGA	5340
	CTCTCAACAT TCTACTCCTC CAAAAAAAGAA GAGAAAGGTA GAAGACCCCA AGGACTTCC	5400
	TTCAGAATTG CTAAGTTTT TGAGTCATGC TGTGTTAGT AATAGAACTC TTGCTTGCTT	5460
	TGCTATTAC ACCACAAAGG AAAAGCTGC ACTGCTATAC AAGAAAATTA TGGAAAATA	5520
	TTCTGTAACC TTTATAAGTA GGCATAACAG TTATAATCAT AACATACTGT TTTTCTTAC	5580
15	TCCACACAGG CATAGAGTGT CTGCTATTAA TAACTATGCT CAAAAATTGT GTACCTTAC	5640
	CTTTTTAATT TGTAAGGGG TTAATAAGGA ATATTTGATG TATAGTGCCT TGACTAGAGA	5700
	TCATAATCAG CCATACCACA TTTGTAGAGG TTTTACTTGC TTTAAAAAAAC CTCCCACACC	5760
	TCCCCCTGAA CCTGAAACAT AAAATGAATG CAATTGTTGT TGTTAACTTG TTTATTGCAG	5820
	CTTATAATGG TTACAAATAA AGCAATAGCA TCACAAATTTC CACAAATAAA GCATTTTTT	5880
	CACTGCATTC TAGTTGTGGT TTGTCACAAAC TCATCAATGT ATCTTATCAT GTCTGGATCG	5940
20	GCTGGATGAT CCTCCAGCGC GGGGATCTCA TGCTGGAGTT CTTCGCCAC CCCAACTTGT	6000
	TTATTGCGAGC TTATAATGGT TACAAATAAA GCAATAGCAT CACAAATTTC ACAAATAAAG	6060
	CATTTTTTC ACTGCAATTCT AGTTGTGGT TGTCCAAACT CATCAATGTA TCTTATCATG	6120
	TCTGTATACC GTCGACCTCT AGCTAGAGCT TGGCGTAATC ATGGTCATAG CTGTTTCTG	6180
25	TGTGAAATTG TTATCCGCTC ACAATTCCAC ACAACATACG AGCCGGAAGC ATAAAGTGT	6240
	AAGCCTGGGG TGCCCTAATGA GTGAGCTAAC TCACATTAAT TGCGTTGCGC TCACGCCCCG	6300
	CTTTCCAGTC GGGAAACCTG TCGTGCAGC TGCATTAATG AATCGGCCAA CGCGCGGGGA	6360
	GAGGCGTTT GCGTATTGGG CGCTCTTCCG CTTCTCGCT CACTGACTCG CTGGCCTCGG	6420
	TCGTTCGCTC CGGGCGAGCG GTATCAGCTC ACTCAAAGGC GGTAAATACGG TTATCCACAG	6480
30	AATCAGGGGA TAACCGAGGA AAGAACATGT GAGCAAAGG CCAGCAAAG GCCAGGAACC	6540
	GTAAAAAGGC CGCGTTGCTG GCGTTTTTCC ATAGGCTCCG CCCCCCTGAC GAGCATCAC	6600
	AAAATCGACG CTCAGTCAG AGGTGGCGAA ACCGACAGG ACTATAAAAGA TACCAAGCGT	6660
	TTCCCCCTGG AAGCTCCCTC GTGCGCTCTC CTGTTCCGAC CCTGCCGCTT ACCGGATACC	6720
	TGTCCGCCTT TCTCCCTTCG GGAAGCGTGG CGCTTTCTCA ATGCTCACGC TGTAGGTATC	6780
35	TCAGTTCGGT GTAGGTCGTT CGCTCCAAGC TGGGCTGTGT GCACGAACCC CCCGTTAC	6840
	CCGACCGCTG CGCCTTATCC GGTAACTATTC GTCTTGAGTC CAACCCGGTA AGACACGACT	6900
	TATCGCCACT GGCAGCAGCC ACTGGTAACA GGATTAGCAG AGCGAGGTAT GTAGGCGGTG	6960
	CTACAGAGTT CTTGAAGTGG TGGCCTAATC ACGGCTACAC TAGAAGGACA GTATTTGGTA	7020
	TCTGCGCTCT GCTGAAGCCA GTTACCTTCG GAAAAAGAGT TGGTAGCTCT TGATCCGGCA	7080
40	AAACAAACAC CGCTGGTAGC GGTGGTTTTT TTGTTTGCCTA GCAGCAGATT ACACGAGAA	7140
	AAAAGGATC TCAAGAAGAT CCTTTGATCT TTTCTACGGG GTCTGACGCT CAGTGGAACG	7200
	AAAACCTCACG TTAAGGGATT TTGGTCATGA GATTATCAA AAGGATCTTC ACCTAGATCC	7260
	TTTTAAATTA AAAATGAAGT TTTAAATCAA TCTAAAGTAT ATATGAGTAA ACTTGGTCTG	7320
	ACAGTTACCA ATGCTTAATC AGTGAGGCAC CTATCTCAGC GATCTGTCTA TTTCGTTCAT	7380
45	CCATAGTTGC CTGACTCCCC GTCGTGTAGA TAACTACGAT ACAGGGAGGGC TTACCATCTG	7440
	GCCCCAGTC TGCAATGATA CCGCGAGACC CACGCTCACC GGCTCCAGAT TTATCAGCAA	7500
	TAACCCAGCC AGCGGAAGG GCCGAGCGCA GAAGTGGTCC TGCAACTTTA TCCGCCTCCA	7560
	TCCAGTCTAT TAATTGTTGC CGGGAAGCTA GAGTAAGTAG TTCCGCGAGTT AATAGTTTGC	7620
	GCAACGTTGT TGCCATTGCT ACAGGCATCG TGGTGTACAG CTGCGCTTT GGTATGGCTT	7680
50	CATTCACTCTC CGGTTCCCAA CGATCAAGGC GAGTTACATG ATCCCCCATG TTGTGCAAAA	7740
	AAGCGGTTAG CTCCTTCGGT CCTCCGATCG TTGTCAGAAG TAAGTTGGCC GCAGTGTAT	7800
	CACTCATGGT TATGGCAGCA CTGCATAATT CTCTTACTGT CATGCCATCC GTAAGATGCT	7860
	TTTCTGTGAC TGGTGAGTAC TCAACCAAGT CATTCTGAGA ATAGTGTATG CGGCGACCGA	7920
	GTTGCTCTTG CCCGGCGTCA ATACGGGATA ATACCGGCC ACATAGCAGA ACTTTAAAAG	7980
55	TGCTCATCAT TGGAAAACGT TCTTCGGGGC GAAAACCTTC AAGGATCTTA CCGCTGTGA	8040
	GATCCAGTTC GATGTAACCC ACTCGTGCAC CCAACTGATC TTCAGCATCT TTTACTTTCA	8100
	CCAGCGTTTC TGGGTGAGCA AAAACAGGAA GGCAAAATGC CGCAAAAAAG GGAATAAGGG	8160
	CGACACGGAA ATGTTGAATA CTCATACTCT TCCCTTTCA ATATTATTGA AGCATTATAC	8220
	AGGGTTATTG TCTCATGAGC GGATACATAT TTGAATGTAT TTAGAAAAAT AAACAAATAG	8280
	GGGTTCCGCG CACATTCCC CGAAAAGTGC CACCTGACGT CCBRAAG	8327

(2) INFORMATION FOR SEQ ID NO:11:

		(i) SEQUENCE CHARACTERISTICS:	
5		(A) LENGTH: 8897 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
10		(ii) MOLECULE TYPE: cDNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
15	GGTACCAATT TAAATTGATA TCTCCTTAGG TCTCGAGCAC CATGAAGTTG CCTGTTAGGC TGTTGGTCTGATGTTCTGG ATTCCCTGCTT CCAGCAGTGA TGTTTGATG ACCCAAATTC CAGTCTCCCT GCCTGTCACT CTTGGAGATC AAGCGTCCAT CTCTTGAGA TCTAGTCAGA TCATTGTACA TAATAATGGC AACACCTATT TAGAATGGTA CCTGCAGAAA CCAGGCCAGT CTCCACAGCT CCTGATCTAC AAAGTTTCCA ACCGATTTC TGGGGTCCCA GACAGGTTCA GCGGCAGTGG ATCAGGGACA GATTTACAC TCAAGATCAG CAGAGTGGAG GCTGAGGATC	60 120 180 240 300 360	
20	TGGGAGTTTA TTACTGCTTT CAAGGTTACATGTTCCATT CACGTTCGGC TCAGGGACAA AGTTGGAAAT AAAACGTAAG TCTCGAGTCT CTAGATAACC GGTCATCGA TTGGAATTCT AAACTCTGAG GGGGTCGGAT GACGTGGCCA TTCTTGCCT AAAGCATTGA GTTTACTGCA AGGTCAGAAA AGCATGCAAACCCCTCAGAA TGGCTGCAAAG GAGCTCCAAC AAAACAATT AGAACCTTAT TAAGGAATAG GGGGAAGCTA GGAAGAAACT CAAACATCA AGATTTTAAA TACGCTTCTGCTT GGTCTCCTTG CTATAATTAT CTGGGATAAG CATGCTGTT TCTGCTGTC CCTAACATGC CCTTATCCGC AAACAACACA CCCAAGGGCA GAACCTTGT ACTTAAACAC CATCCTGTTT GCTTCTTCC TCAGGAACCTG TGGCTGCACC ATCTGTCTTC ATCTTCCC CATCTGATGA GCAGTTGAAA TCTGGAACCTG CCTCTGTTGT GTGCGCTGCTG AATAACTTCT ATCCCAGAGA GGCCAAAGTA CAGTGGAAAGG TGGATAACGC CCTCCAATCG GGTAACTCCC	420 480 540 600 660 720 780 840 900 960	
25	AGGAGAGTGT CACAGAGCAG GAGAGCAAGG ACAGCACCTA CAGCCTCAGC AGCACCC CGCTGAGCAA AGCAGACTAC GAGAAACACA AAGTCTACGC CTGCGAAGTC ACCCATCAGG GCCTGAGCTC GCCCGTCACA AAGAGCTTCACAGGGGAGA GTGTTAGAGG GAGAAGTGC CCCACCTGCT CCTCAGTTCC AGCCTGACCC CCTCCCATCC TTTGGCCTCT GACCCTTTT CCACAGGGGA CCTACCCCTA TTGCGGTCTT CCAGCTCATC TTTCACCTCA CCCCCCTCCT	1020 1080 1140 1200 1260	
30	CCTCCCTGGCT TTAAATTATG CTAATGTTGG AGGAGAATGA ATAAATAAAAG TGAATCTTG CACCTGTTGGT TTCTCTCTT CCTCATTAA TAATTATTAT CTGTTGTTTT ACCAACTACT CAATTCTCT TATAAGGGAC TAAATATGTA GTCATCCTAA GGCACTGAAAC CATTATAAAA AATCATCCTT CATTCTATT TACCTCTATCA TCCTCTGCAA GACAGTCCTC CCTCAAACCC ACAAGCCTTC TGTCCCTACA GTCCCCCTGGG CCATGGTAGG AGAGACTTGC TTCCCTGTTT	1320 1380 1440 1500 1560	
35	TCCCCCTCCTC AGCAAGCCCT CATAGTCCTT TTAAAGGTG ACAGGTCTTA CAGTCATATA TCCCTTGATT CAATTCCTG AGAATCAACC AAAGCAAATT TTTCAAAAGA AGAAACCTGC TATAAAGAGA ATCATTCAATT GCAACATGAT ATAAAATAAC AACACAATAA AAGCAATTAA ATAAACAAAC AATAGGGAAA TGTTTAAGTT CATCATGGTA CTTAGACTTA ATGGAATGTC ATGCTTATT TACATTTTTA ACACAGTACT GAGGGACTCC TGCTGCAA GGGCGTATT	1620 1680 1740 1800 1860	
40	GAGTACTTTC CACAACCTAA TTAAATCCAC ACTATACACTG GAGATTAAAA ACATTCATTA AAATGTTGCA AAGGTTCTAT AAGGCTGAGA GACAAATATA TTCTATAACT CAGCAATCCC ACTTCTAGAT GACTGAGTGT CCCCACCCAC CAAAAAACTA TGCAAGAATG TTCAAAGCAG CTTTATTTC AAAAGCCAAA AATTGGAAAT AGCCCGATTG TCCAACAATA GAATGAGTTA TTAAACTGTG GTATGTTTAT ACATTAGAAT ACCCAATGAG GAGAATTAAC AAGCTACAAC	1920 1980 2040 2100 2160	
45	TATACCTACT CACACAGATG AATCTCATAA AAATAATGTT ACATAAGAGA AACTCAATGC AAAAGATATG TTCTGTATGT TTTCATCCAT ATAAAGTTCA AAACCAGGT AAAATAAAAGT TAGAAATTG GATGAAATT ACTCTTAGCT GGGGGTGGGC GAGTTAGTGC CTGGGAGAAG ACAAGAAGGG GCTCTGGGG TCTTGGTAAT GTTCTGTTCC TCGTGTGGGG TTGTGCAGTT	2220 2280 2340 2400 2460	
50	ATGATCTGTG CACTGTTCTG TATACACATT ATGCTTCAAATAACTTCAC ATAAAGAACAA TCTTATACCC AGTTAAATAGA TAGAAGAGGA ATAAGTAATA GGTCAGAAC AACGCAGCTG GTAAGTGGGG GCCTGGGATC AAATAGCTAC CTGCCTAATC CTGCCCCWCTT GAGCCCTGAA TGAGTCTGCC TTCCAGGGCT CAAGGTGCTC AACAAAACAA CAGGCCTGCT ATTTCTGG CATCTGTGCC CTGTTGGCT AGCTAGGAGC ACACATACAT AGAAATTAAA TGAAACAGAC CTTCAGCAAG GGGACAGAGG ACAGAATTAA CCTTGCCCCAG ACACTGGAAA CCCATGTATG	2520 2580 2640 2700 2760	

	AACACTCACA	TGTTTGGAA	GGGGGAAGGG	CACATGTAAA	TGAGGACTCT	TCCTCATTTCT	2820
	ATGGGGCACT	CTGGCCCTGC	CCCTCTCAGC	TACTCATCCA	TCCAACACAC	CTTTCTAAGT	2880
	ACCTCTCTCT	GCCTACACTC	TGAAGGGGTT	CAGGAGTAAC	TAACACAGCA	TCCCTTCCCT	2940
5	CAAATGACTG	ACAATCCCTT	TGTCCCTGCTT	TGTTTTCTT	TCCAGTCAGT	ACTGGGAAAG	3000
	TGGGGAAGGA	CAGTCATGGA	GAAACTACAT	AAGGAAGCAC	CTTGCCCTTC	TGCCTCTTGA	3060
	GAATGTTGAT	GAGTATCAA	TCTTCAAAAC	TTTGGAGGTT	TGAGTAGGGG	TGAGACTCAG	3120
	TAATGTCCT	TCCAATGACA	TGAACCTGCT	CACTCATCCC	TGGGGGCCAA	ATTGAACAAT	3180
	CAAAGGCAGG	CATAATCCAG	TTATGAATTC	TTGCGGGCGC	TTGCTAGCTT	CACGTGTTGG	3240
10	ATCCAACCGC	GGAAGGGCCC	TATTCTATAG	TGTCACCTAA	ATGCTAGAGC	TCGCTGATCA	3300
	GCCTCGACTG	TGCCTTCTAG	TTGCCAGCCA	TCTGTTGTTT	GCCCCCTCCCC	CGTGCCTTCC	3360
	TTGACCCCTGG	AAGGTGCCAC	TCCCACGTGTC	CTTTCCTAAT	AAAATGAGGA	AATTGCATCG	3420
	CATTGTCGA	GTAGGTGTCA	TTCTATTCTG	GGGGGTGGGG	TGGGGCAGGA	CAGCAAGGGG	3480
	GAGGATTGGG	AAGACAATAG	CAGGCATGCT	GGGGATGCGG	TGGGCTCTAT	GGCTTCTGAG	3540
15	GCGGAAAGAA	CCAGCTGGGG	CTCTAGGGGG	TATCCCCACG	CGCCCTGTAG	CGGCGCATT	3600
	AGCGCGGCGG	GTGTTGGTGT	TACGCGCAGC	GTGACCGCTA	CACTTGCCAG	CGCCCTAGCG	3660
	CCCGCTCCTT	TCGCTTTCTT	CCCTTCCCTT	CTCGCCACGT	TCGCCGGGCC	TCTCAAAAAAA	3720
	GGGAAAAAAA	GCATGCATCT	CAATTAGTC	GCAACCATAG	TCCCGCCCT	AACTCCGCC	3780
	ATCCCGCCCC	TAACTCCGCC	CAGTTCCGCC	CATTCTCCGC	CCCATGGCTG	ACTAATT	3840
20	TTTATTTATG	CAGAGGCCGA	GGCCGCTCG	GCCTCTGAGC	TATTCCAGAA	GTAGTGAGGA	3900
	GGCTTTTTTG	GAGGCCCTAGG	CTTTTGCAAA	AAGCTTGGAC	AGCTCAGGGC	TGCGATTTCG	3960
	CGCCAAACCT	GACGCGAAC	CTAGCGTGAA	GGCTGGTAGG	ATTTTATCCC	CGCTGCCATC	4020
	ATGGTTGCAC	CATTGAAC	CATCGTCGCC	GTGTCACAA	ATATGGGGAT	TGGCAAGAAC	4080
	GGAGACCTAC	CCTGGCCTCC	GCTCAGGAAC	GAGITCAAGT	ACTTCAAAAG	AATGACCA	4140
25	ACCTCTTCAG	TGGAAGGTAA	ACAGAATCTG	GTGATTATGG	GTAGGAAAAC	CTGGTTCTCC	4200
	ATTCCTGAGA	AGAACATGACC	TTAAAGGAC	AGAAATTATA	TAGTTCTCAG	TAGAGAACTC	4260
	AAAGAACCCAC	CACGAGGAGC	TCATTTTCTT	GCCAAAAGTT	TGGATGATGC	CTTAAGACTT	4320
	ATTGAACAAAC	CGGAATTGGC	AACTAAAGTA	GACATGGTTT	GGATAGTCGG	AGGCAGTTCT	4380
	GTTTTACCAAG	AAGCCATGAA	TCAACCAGGC	CACCTTAGAC	TCTTGTGAC	AAGGATCATG	4440
30	CAGGAATTTG	AAAGTGACAC	GTTTTCTCCA	GAAATTGATT	TGGGGAAATA	AAACATTCTC	4500
	CCAGAATACC	CAGGCGTCCT	CTCTGAGGT	CAGGAGGAAA	AAGGCATCAA	GTATAAGTT	4560
	GAAGTCTACG	AGAAGAAAGA	CTAACAGGAA	GATGCTTCA	AGTCTCTGC	TCCCCCTCTA	4620
	AAGCTATGCA	TTTTTATAAG	ACCATGGGAC	TTTTGCTGGC	TTTAGATCTC	TTTGTGAAGG	4680
	AACCTTACTT	CTGTTGGTGT	ACATAATTGG	ACAAACTACC	TACAGAGATT	TAAAGCTCTA	4740
35	AGGTAAATAT	AAAATTTTTA	AGTGTATAAT	GTGTTAAACT	ACTGATTCTA	ATTGTTGTG	4800
	TATTTTATGAT	TCCAACCTAT	GGAACTGATG	AATGGGAGCA	GTGGTGAAT	GCCTTTAATG	4860
	AGGAAACACT	GTTTTGCTCA	GAAGAAATGC	CATCTAGTGA	TGATGAGGCT	ACTGCTGACT	4920
	CTCAACATTC	TACTCCTCCA	AAAAAGAAGA	GAAAGGTAGA	AGACCCCAAG	GACTTTCCCT	4980
	CAGAATTGCT	AAGTTTTTG	AGTCATGCTG	TGTTTAGTAA	TAGAACTCTT	GCTTGCTTTG	5040
40	CTATTACAC	CACAAAGGAA	AAAGCTGCAC	TGCTATACAA	GAAAATTATG	GAAAATATT	5100
	CTGTAACCTT	TATAAGTAGG	CATAACAGTT	ATAATCATAA	CATACTGTTT	TTTCTTACTC	5160
	CACACAGCA	TAGAGTGTCT	GCTATTAAATA	ACTATGCTCA	AAAATTGTGT	ACCTTTAGCT	5220
	TTTTAATTG	TAAAGGGGTT	ATAAAGGAAT	ATTTGATGTA	TAGTGCCTTG	ACTAGAGATC	5280
	ATAATCAGCC	ATACCACATT	TGTAGAGGT	TTACTTGCTT	AAAAAAACCT	CCCACACCTC	5340
45	CCCCCTGAACC	TGAAACATAA	AATGAATGCA	ATTGTTGTTG	TAACTTGTT	TATTGCAGCT	5400
	TATAATGGTT	ACAAATAAAAG	CAATAGCATC	ACAAATTCTCA	CAAATAAAGC	ATTTTTTCTA	5460
	CTGCATCTA	GTTGTTGGTTT	GTCCAAAAC	ATCAATGTT	CTTATCATGT	CTGGATCGGC	5520
	TGGATGATCC	TCCAGCGCGG	GGATCTCATG	CTGGAGTTCT	TCGCCCCACCC	CAACTTGT	5580
	ATTCGAGCTT	ATAATGGTTA	CAAATAAAGC	AATAGCATCA	CAAATTTCAC	AAATAAAGCA	5640
50	TTTTTTTCAC	TGCATTCTAG	TTGTGGTTTG	TCCAAACTCA	TCAATGTATC	TTATCATGTC	5700
	TGTATACCGT	CGACCTCTAG	CTAGAGCTTG	'GCGTAATCAT	GGTCATAGCT	GTTTCTGTG	5760
	TGAAATTGTT	ATCCGCTCAC	AATTCCACAC	AACATACGAG	CCGGAAGCAT	AAAGTGTAAA	5820
	GCCTGGGGTG	CCTAATGAGT	GAGCTAAC	ACATTAATTG	CGTTGCGCTC	ACTGCCGCT	5880
	TTCCAGTCGG	GAAACCTGTC	GTGCCAGCTG	CATTAATGAA	TCGGCCAACG	CGCGGGGAGA	5940
55	GGCGGTTTGC	GTATTGGGCG	CTCTTCCGCT	TCCTCGCTCA	CTGACTCGCT	TGCGCTCGGT	6000
	GTTCGGCTGC	GGCGAGCGGT	ATCAGCTCAC	TCAAAGCGG	TAATACGGTT	ATCCACAGAA	6060
	TCAGGGGATA	ACGCAGGAAA	GAACATGTGA	GCAAAAGGCC	AGCAAAAGGC	CAGGAACCGT	6120
	AAAAAGGCCG	CGTTGCTGGC	GTTTTCCAT	AGGCTCCGCC	CCCCTGACGA	GCATCACAAA	6180
	AATCGACGCT	CAAGTCAGAG	GTGGCGAAC	CCGACAGGAC	TATAAAGATA	CCAGGCCTTT	6240
	CCCCCTGGAA	GCTCCCTCGT	GCGCTCTCCT	GTTCCGACCC	TGCCGTTAC	CGGATACCTG	6300

PCT/GB98/00690

	TCCGCCTTTC TCCCTTCGGG AAGCGTGGCG CTTTCTCAAT GCTCACGCTG TAGGTATCTC	6360
	AGTTCGGTGT AGGTGCGTTCG CTCCAAGCTG GGCTGTGTGC ACGAACCCCC CGTTCAGCCC	6420
	GACCGCTGCG CCTTATCCGG TAACTATCGT CTTGAGTCCA ACCCGGTAAG ACACGACTTA	6480
5	TCGCCACTGG CAGCAGCCAC TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGCGGTGCT	6540
	ACAGAGTTCT TGAAGTGGTG GCCTAACTAC GGCTACACTA GAAGGCAGT ATTTGGTATC	6600
	TGCGCTCTGC TGAAGCCAGT TACCTTCGGA AAAAGAGTTG GTAGCTCTTG ATCCGGAAA	6660
	CAAACCACCG CTGGTAGCGG TGGTTTTTT GTTTGCAAGC AGCAGATTAC GCGCAGAAA	6720
	AAAGGATCTC AAGAAGATCC TTGATCTTT TCTACGGGT CTGACGCTCA GTGGAACGAA	6780
10	AACTCACGTT AAGGGATTTT GGTCAATGAGA TTATCAAAAA GGATCTTCAC CTAGATCCTT	6840
	TTAAATTAAA AATGAAGTTT TAAATCAATC TAAAGTATAT ATGAGTAAAC TTGGTCTGAC	6900
	AGTTACCAAT GCTTAATCAG TGAGGCACCT ATCTCAGCGA TCTGCTATT TCGTTCATCC	6960
	ATAGTTGCCT GACTCCCCGT CGTGTAGATA ACTACGATAC GGGAGGGCTT ACCATCTGGC	7020
	CCCAGTGTG CAATGATACC GCGAGACCCA CGCTCACCGG CTCCAGATTT ATCAGCAATA	7080
15	AACCAGCCAG CGGAAAGGGC CGAGCGCAGA AGTGGTCTG CAACTTTATC CGCCTCCATC	7140
	CAGTCTATTA ATTGTTGCCG GGAAGCTAGA GTAAGTAGTT CGCCAGTTAA TAGTTTGC	7200
	AACGTTGTTG CCATTGCTAC AGGCATCGTG GTGTCACGCT CGTCGTTTG TATGGCTTCA	7260
	TTCAGCTCCG GTTCCCAACG ATCAAGGCGA GTTACATGAT CCCCATGTT GTGCAAAAAA	7320
	GCGGTTAGCT CCTTCGGTCC TCCGATCGTT GTCAGAAGTA AGTTGGCCGC AGTGTATCA	7380
20	CTCATGGTTA TGGCAGCACT GCATAATTCT CTTACTGTCA TGCCATCCGT AAGATGCTT	7440
	TCTGTGACTG GTGAGTACTC ACCAAGTC TCTGAGAAT AGTGTATGCG GCGACCGAGT	7500
	TGCTCTTGCC CGGGCTCAAT ACGGGATAAT ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG	7560
	CTCATCATTTG GAAAACGTT TCAGGGCGA AAACCTCTCAA GGATCTTAC GCTGTTGAGA	7620
	TCCAGTTCGA TGTAAACCCAC TCGTGCACCC AACTGATCTT CAGCATCTT TACTTTCAC	7680
25	AGCGTTCTG GGTGAGCAAA AACAGGAAGG CAAAATGCCG CAAAAAGGG AATAAGGGCG	7740
	ACACGGAAAT GTTGAATACT CATACTCTTC CTTTTCAAT ATTATTGAAAG CATTATCAG	7800
	GGTTATTGTC TCATGAGCGG ATACATATTG GAATGTATTT AGAAAAATAA ACAAAATAGGG	7860
	GTTCCGCGCA CATTCCCCG AAAAGTGCCA CCTGACGTCG ACGGATCGGG AGATCTGCTA	7920
	GCCCCGGTGA CCTGAGGCACG GCCGGCTTCG AATAGCCAGA GTAACCTTT TTTTTAATT	7980
30	TATTTTATTT TATTTTGAG ATGGAGTTTG GCGCCGATCT CCCGATCCCC TATGGTCGAC	8040
	TCTCAGTACA ATCTGCTCTG ATGCCGCATA GTTAAGCCAG TATCTGCTCC CTGCTTGT	8100
	GTTGGAGGTC GCTGAGTAGT GCGCGAGCAA AATTTAAGCT ACAACAAGGC AAGGCTTGAC	8160
	CGACAATTGC ATGAAGAATC TGCTTAGGGT TAGGCGTTT GCGCTGCTTC GCGATGTACG	8220
	GGCCAGATAT ACGCGTTGAC ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG	8280
35	GTCATTAGTT CATAGCCCAT ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC	8340
	GCCTGGCTGA CCGCCCAACG ACCCCCCGCC ATTGACGTCA ATAATGACGT ATGTTCCCAT	8400
	AGTAACGCCA ATAGGGACTT TCCATTGAGC TCAATGGGT GACTATTTAC GGTAAACTGC	8460
	CCACTTGCA GTACATCAAG TGTATCATAT GCCAAGTACG CCCCTATTG ACGTCAATGA	8520
	CGGTAAATGG CCCGCTGGC ATTATGCCCA GTACATGACC TTATGGACT TTCCTACTTG	8580
40	GCAGTACATC TACGTATTAG TCATCGCTAT TACCATGGTG ATGCGGTTTT GGCAGTACAT	8640
	CAATGGCGT GGATAGCGGT TTGACTCAGG GGGATTCCA AGTCTCCACC CCATTGACGT	8700
	CAATGGGAGT TTGTTTTGGC ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAACAAC	8760
	CGCCCCATTG ACGCAAATGG GCGGTAGGG TGTCAGGTGG GAGGTCTATA TAAGCAGAGC	8820
	TCTCTGGCTA ACTAGAGAAC CCACTGCTTA CTGGTTATC GAAATTAATA CGACTCACTA	8880
	TAGGGAGAAC CAAGCTT	8897
45	(2) INFORMATION FOR SEQ ID NO:12:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 8321 base pairs	
50	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
	GGTACCAATT TAAATTGATA TCTCCTTAGG TCTCGAGTCT CTAGATAACC GGTCAATCGA	60
	TTGGAATTCT TGCGGCCGCT TGCTAGCCAC CATGGAGTTG TGGTTAAGCT TGGTCTTCT	120

	TGTCCCTGTT	TTAAAAGGTG	TCCAGTGTGA	AGTGCAACTG	GTGGAGTCTG	GGGGAGGCTT	180
	AGTCGAGCCT	GGAGGGTCCC	TGCGACTTTC	CTGTGCTGCA	TCTGGATTCC	CGTTCACTGA	240
	CTATTACATG	TATGGGGTTC	GCCAGGCTCC	AGGCAAGGGGA	CTGGAGTGGG	TCTCATACAT	300
	TAGTCAAGAT	GGTGTATAA	CCGACTATGC	AGACTCCGTA	AAGGGTCGAT	TCACCATCTC	360
5	CAGAGACAAT	GCAAAGAACAA	GCCTGTACCT	GCAAATGAAC	AGCCTGAGGG	ACGAGGACAC	420
	AGCCGTGTAT	TACTGTGCAA	GAGGCCCTGGC	GGACGGGGCC	TGGTTTGCTT	ACTGGGGCCA	480
	AGGGACTCTG	GTCACGGTCT	CTTCCGCTAG	CACCAAGGGC	CCATCGGTCT	TCCCCCTGGC	540
	ACCCCTCTCC	AAGAGCACCT	CTGGGGGCAC	AGCGGCCCTG	GGCTGCCTGG	TCAAGGACTA	600
10	CTTCCCCGAA	CCGGTGACGG	TGTCGTGGAA	CTCAGGCGCC	CTGACCAGCG	CGTGCACAC	660
	CTTCCCCGCT	GTCCTACAGT	CCTCAGGACT	CTACTCCCTC	AGCAGCGTGG	TCACCGTGCC	720
	CTCCAGCAGC	TTGGGCACCC	AGACCTACAT	CTGCAACGTG	AATACAAGC	CCAGCAACAC	780
	CAAGGTGGAC	AAGAAAGTTG	GTGAGAGGCC	AGCACAGGG	GGGAGGGTGT	CTGCTGGAAG	840
	CCAGGCTCAG	CGCTCCTGCC	TGGACGCATC	CCGGCTATGC	AGCCCCAGTC	CAGGGCAGCA	900
	AGGCAGGGCC	CGTCTGCCTC	TTCACCCGGA	GGCCTCTGCC	CGCCCCACTC	ATGCTCAGGG	960
15	AGAGGGTCTT	CTGGTTTTT	CCCCAGGCTC	TGGGAGGCA	CAGGCTAGGT	GCCCCTAACC	1020
	CAGGCCCTGC	ACACAAAGGG	GCAGGTGCTG	GGCTCAGACC	TGCCAAGAGC	CATATCCGGG	1080
	AGGACCTCTG	CCCTGACCTA	AGCCCACCC	AAAGGCAAA	CTCTCCACTC	CCTCAGCTCG	1140
	GACACCTCTC	CTCCTCCCAG	ATTCCAGTAA	CTCCCAATCT	TCTCTCTGCA	GAGCCAAAT	1200
	CTTGTGACAA	AACTCACACA	TGCCCCACCGT	GCCCAGGTAA	GCCAGCCCAG	GCCTCGCCCT	1260
20	CCAGCTCAAG	GCGGGACAGG	TGCCCTAGAG	TAGCCTGCAT	CCAGGGACAC	ACCACGTGGG	1320
	TACCAACATG	TCCGGAGGCC	CATGGACAGA	GGCCGGCTCG	GCCCACCCCTC	TGCCCCTGAGA	1380
	GTGACCGCTG	TACCAACCTC	TGTCCCTACA	GGGCAGGGCC	GAGAACCCACA	GGTGTACACC	1440
	CTGCCCCCAT	CCCGGGATGA	GCTGACCAAG	AACAGGGTCA	GCTGACCTG	CCTGGTCAA	1500
	GGCTTCTATC	CCAGCGACAT	CGCCGTGGAG	TGGGAGAGCA	ATGGGAGGCC	GGAGAACAAAC	1560
25	TACAAGACCA	CGCCTCCCCTG	GCTGGACTTC	GACGGCTCCT	TCTCCCTCTA	CAGCAAGCTC	1620
	ACCGTGGACA	AGAGCAGGTG	GCAGCAGGGG	AACGTCTTCT	CATGCTCCGT	GATGCATGAG	1680
	GCTCTGCACA	ACCACTACAC	GCAGAACAGC	CTCTCCCTGT	CTCCGGTAA	ATGAGTGCAG	1740
	CGGCCGGCAA	GCCCCCGCTC	CCCGGGCTCT	CGCGGTCGCA	CGAGGATGCT	TGGCACGTAC	1800
30	CCCCTGTACA	TACTTCCCAG	GCGCCCCAGCA	TGGAAATAAA	GCACCCAGCG	CTGCCCCGG	1860
	CCCCTCGAG	ACTGTGATGG	TTCTTTCCAC	GGGTCAAGGCC	GAGTCTGAGG	CCTGAGTGGC	1920
	ATGAGGGAGG	CAGAGCGGGT	CCCACTGTCC	CCACACTGGC	CCAGGCTGTG	CAGGTGTGCC	1980
	TGGGCCCCCT	AGGGTGGGGC	TCAGCCAGGG	GCTGCCCTCG	GCAGGGTGGG	GGATTGCCA	2040
	CGTGGCCCT	CCCTCCAGCA	GCACCTGCC	TGGGCTGGGC	CACGGGAAGC	CCTAGGAGCC	2100
	CCTGGGACA	GACACACAGC	CCCTGCCCTC	GTAGGAGACT	GTCCTGTTCT	GTGAGCGCCC	2160
35	CTGTCCCTCC	GACCTCCATG	CCCACTCGGG	GGCATGCC	GTCCATGTGC	GTAGGGACAG	2220
	GCCCTCCCTC	ACCCATCTAC	CCCCACGGCA	CTAACCCCTG	GCTGCCCTGC	CCAGCCTCGC	2280
	ACCCGATGG	GGACACAAAC	GACTCCGGGG	ACATGCACTC	TCGGGCCCTG	TGGAGGGACT	2340
	GGTGCAGATG	CCCACACACA	CACTCAGCCC	AGACCCGTT	AACAAACCCC	GCACTGAGGT	2400
	TGGCGGGCCA	CACGCCACC	ACACACACAC	GTGCACGCC	CACACAGGA	GCCTCACCCG	2460
40	GGCGAAGTGC	ACAGCACCCA	GACCAAGAGCA	AGGTCTCGC	ACACGTGAAC	ACTCCTCGGA	2520
	CACAGGCC	CACGAGCCCC	ACGCGGCACC	TCAAGGGCCA	CGAGCCTCTC	GGCAGCTTCT	2580
	CCACATGCTG	ACCTGCTCG	ACAAACCCAG	CCCTCCCTC	ACAAGGGTGC	CCCTGCAGCC	2640
	GCCACACACA	CACAGGGAT	CACACACCAC	GTCACGCC	TGGGCCCTGC	CCACTTCCCA	2700
	GTGCGGCCCT	TCCCTGCAGG	ACGGATCAGC	CTCGACTGTG	CCTTCTAGTT	GGCAGCCATC	2760
45	TGTTGTTG	CCCTCCCCCG	TGCCTCCCT	GACCCCTGGAA	GGTGCCTACTC	CCACTGTCT	2820
	TTCTTAATAA	AATGAGGAAA	TTGCATCGCA	TTGTCTGAGT	AGGTGTCATT	CTATTCTGGG	2880
	GGGTGGGGTG	GGGCAGGACA	GCAAGGGGG	GGATTGGGAA	GACAATAGCA	GGCATGCTGG	2940
	GGATGCGGTG	GGCTCTATGG	CTTCTGAGGC	GGAAAGAAC	AGCTGGGGCT	CTAGGGGTA	3000
	TCCCCACCGC	CCCTGTAGCG	GCGCATTAAG	CGCGGGGG	GTGGTGGTTA	CGCGCAGCGT	3060
50	GACCGCTACA	CTTGCCAGCG	CCCTAGCGCC	CGCTCCCTC	GCTTCTTCC	CTTCTTCT	3120
	CGCCACGTT	GCCGGGCC	TCAAAAAAAGG	GAAAAAAAGC	ATGCATCTCA	ATTAGTCAGC	3180
	AACCATAGTC	CCGCCCCCTAA	CTCCGCCCAT	CCGCCCTA	ACTCCGCCA	GTTCCGCCA	3240
	TTCTCCGCC	CATGGCTGAC	TAATTTTTT	TATTTATGCA	GAGGCCGAGG	CCGCCCTGGC	3300
	CTCTGAGCTA	TTCCAGAACT	AGTGAAGGAGG	CTTTTTGG	GGCCTAGGCT	TTTGCAAAA	3360
55	GCTTGGACAG	CTCAGGGCTG	CGATTTCGCG	CCAAACTTGA	CGGCAATCCT	AGCGTGAAGG	3420
	CTGGTAGGAT	TTTATCCCCG	CTGCCATCAT	GGTCGACCA	TTGAACGTGCA	TCGTCGCCGT	3480
	GTCCCCAAAT	ATGGGGATTG	GCAAGAACGG	AGACCTACCC	TGGCCTCCGC	TCAGGAACGA	3540
	GTTCAGTAC	TTCCAAAGAA	TGACCACAAAC	CTCTTCAGT	GAAGGTAAAC	AGAATCTGGT	3600
	GATTATGGGT	AGGAAAACCT	GGTTCTCCAT	TCCTGAGAAG	AATCGACCTT	TAAAGGACAG	3660

	AATTAATATA	GTTCTCAGTA	GAGAACTCAA	AGAACCAACCA	CGAGGGAGCTC	ATTTTCTTGC	3720
	CAAAAGTTG	GATGATGCCT	TAAGACTTAT	TGAACAAACCG	GAATTGGCAA	GTAAAGTAGA	3780
	CATGGTTTG	ATAGTCGGAG	GCAGTTCTGT	TTACCAGGAA	GCCATGAATC	AACCAGGCCA	3840
	CCTTAGACTC	TTTGTGACAA	GGATCATGCA	GGAATTGAA	AGTGACACGT	TTTTCCCAGA	3900
5	AATTGATTG	GGGAAATATA	AACTTCTCCC	AGAATACCCA	GGCGTCTCT	CTGAGGTCCA	3960
	GGAGGAAAAA	GGCATCAAGT	ATAAGTTGA	AGTCTACGAG	AAGAAAGACT	AACAGGAAGA	4020
	TGCTTTCAAG	TTCTCTGCTC	CCCTCCTAAA	GCTATGCATT	TTTATAAGAC	CATGGGACTT	4080
	TTGCTGGCTT	TAGATCTCIT	TGTGAAGGAA	CCCTACTTCT	GTGGTGTGAC	ATAATTGGAC	4140
10	AAACTACCTA	CAGAGATTTA	AAGCTCTAAG	GTAAATATAA	AATTTTTAAG	TGTATAATGT	4200
	GTAAAACCTAC	TGATTCTAAT	TGTTTGTGTA	TTTTAGATTG	CAACCTATGG	AACTGATGAA	4260
	TGGGAGCAGT	GGTGAATGC	CTTTAATGAG	GAAAACCTGT	TTTGCCTAGA	AGAAATGCCA	4320
	TCTAGTGTATG	ATGAGGCTAC	TGCTGACTCT	CAACATTCTA	CTCCTCCAAA	AAAGAAGAGA	4380
	AAGGTAGAAG	ACCCCAAGGA	CTTCCCTTCA	GAATTGCTAA	GTTTTTGAG	TCATGCTGTG	4440
	TTTAGTAATA	GAACTCTTGC	TTGCTTTGCT	ATTTACACCA	CAAAGGAAAA	AGCTGCACTG	4500
15	CTATACAAGA	AAATTATGGA	AAAATATTCT	GTAACCTTTA	TAAGTAGGCA	TAACAGTTAT	4560
	AATCATAACA	TACTGTTTTT	TCTTACTCCA	CACAGGCATA	GAGTGTCTGC	TATTAATAAC	4620
	TATGCTCAAA	AATTGTGTAC	CTTTAGCTTT	TTAATTGTA	AAGGGGTTAA	TAAGGAATAT	4680
	TTGATGTATA	GTGCCCTGAC	TAGAGATCAT	AATCAGCCAT	ACCACATTG	TAGAGGTTTT	4740
20	ACTTGCTTTA	AAAAACCTCC	CACACCTCCC	CCTGAACCTG	AAACATAAAAA	TGAATGCAAT	4800
	TGTTGTTGTT	AACTTGTTTA	TTGCAGCTTA	TAATGGTTAC	AAATAAAGCA	ATAGCATCAC	4860
	AAATTTCACA	AATAAAGCAT	TTTTTCACT	GCATTCTAGT	TGTGGTTGT	CCAAACTCAT	4920
	CAATGTATCT	TATCATGTCT	GGATCGGCTG	GATGATCCTC	CAGCGCGGGG	ATCTCATGCT	4980
	GGAGTTCTTC	GCCCCACCCCA	ACTTGTATTAT	TGCAGCTTAT	AATGGTTACA	AATAAAGCAA	5040
25	TAGCATCACA	AATTTCACAA	ATAAAGCATT	TTTTTCACTG	CATTCTAGTT	GTGGTTGTC	5100
	CAAACCTCATC	AATGTATCTT	ATCATGTCTG	TATACCGCTG	ACCTCTAGCT	AGAGCTTGGC	5160
	GTAATCATGG	TCATAGCTGT	TTCCCTGTGTC	AAATTGTTAT	CCGCTCACAA	TTCCACACAA	5220
	CATACGAGCC	GGAAAGATAAA	AGTGTAAAGC	CTGGGGTGCC	TAATGAGTGA	GCTAACTCAC	5280
	ATTAATTGCG	TTGCCTCAC	TGCCCCGCTT	CCAGTCGGGA	AACTGTCGT	GCCAGCTGCA	5340
30	TTAATGAATC	GGCCAACGCG	CGGGGAGAGG	CGGTTTGCGT	ATTGGGCGCT	CTTCCGCTTC	5400
	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT	TCGGCTGCGG	CGAGCGGTAT	CAGCTCACTC	5460
	AAAGGCGGTA	ATACGGTTAT	CCACAGAAC	AGGGGATAAC	GCAGGAAAGA	ACATGTGAGC	5520
	AAAAGGCCAG	CAAAGGCCA	GGAACCGTAA	AAAGGCCGCG	TTGCTGGCGT	TTTCCATAG	5580
	GCTCCGCC	CCTGACGAGC	ATCACAAAAA	TCGACGCTCA	AGTCAGAGGT	GGCGAAACCC	5640
35	GACAGGACTA	AAAGATACC	AGGCCTTCC	CCCTGGAAGC	TCCCTCGTGC	GCTCTCCTGT	5700
	TCCGACCCCTG	CCGCTTACCG	GATACTGTC	CGCCTTCTC	CCTCGGGAA	GCGTGGCGCT	5760
	TTCTCAATGC	TCACGCTGTA	GGTATCTAG	TTCGGGTAG	GTCGTTCGCT	CCAAGCTGGG	5820
	CTGTGTGCAC	GAACCCCCCG	TTCAGCCCGA	CCGCTCGGCC	TTATCCGGTA	ACTATCGTCT	5880
	TGAGTCCAAC	CCGGTAAGAC	ACGACTTATC	GCCACTGGCA	GCAGCCACTG	GTAACAGGAT	5940
40	TAGCAGAGCG	AGGTATGTAG	GGGGTGTAC	AGAGTTCTG	AAGTGGTGGC	CTAACTACGG	6000
	CTACACTAGA	AGGACAGTAT	TTGGTATCTG	CGCTCTGCTG	AAGCCAGTTA	CCTTCGGAAA	6060
	AAGAGTTGGT	AGCTCTTGAT	CCGGCAAACA	AACCACCGCT	GGTAGCGGTG	GTTTTTTTGT	6120
	TTGCAAGCAG	CAGATTACGC	GCAGAAAAAA	AGGATCTAA	GAAGATCCCT	TGATCTTTTC	6180
	TACGGGGTCT	GACGCTCAGT	GGAACGAAAA	CTCACGTTAA	GGGATTTGG	TCATGAGATT	6240
45	ATCAAAAGG	ATCTTCACCT	AGATCCCTTT	AAATTAAAAA	TGAAGTTTA	AATCAATCTA	6300
	AAGTATATAT	GAGTAAACTT	GGTCTGACAG	TTACCAATGC	TTAATCAGTG	AGGCACCTAT	6360
	CTCAGCGATC	TGTCTATTTC	GTTCATCCAT	AGTTGCGCTGA	CTCCCCGTCG	TGTAGATAAC	6420
	TACGATACGG	GAGGGCTTAC	CATCTGGCCC	CGATGCTGCA	ATGATACCGC	GAGACCCACG	6480
	CTCACCGGCT	CCAGATTAT	CAGCAAAAA	CCAGCCAGCC	GGAAAGGGCCG	AGGCCAGAAG	6540
50	TGGTCCTGCA	ACTTATCCG	CCTCCATCCA	GTCTATTAAAT	TGTTGCCGGG	AAGCTAGAGT	6600
	AAGTAGTTCG	CCAGTTAATA	GTGGCGCAA	CGTTGTTGCC	ATTGCTACAG	GCATCGTGGT	6660
	GTCACGCTCG	TCGTTTGGTA	TGGCTTCATT	CAGCTCCGGT	TCCCAACGAT	CAAGGCGAGT	6720
	TACATGATCC	CCCATGTTGT	GCAAAAAAGC	GGTTAGCTCC	TTCCGGTCCCTC	CGATCGTTGT	6780
	CAGAAGTAAG	TTGGCCGAG	TGTTATCACT	CATGGTTATG	GCAGCACTGC	ATAATTCTCT	6840
	TACTGTCTATG	CCATCCGTA	GATGCTTTTC	TGTGACTGGT	GAGTACTCAA	CCAAGTCATT	6900
55	CTGAGAATAG	TGTATGCGGC	GACCGAGTTG	CTCTTGGCC	GCGTCATAC	GGGATAATAC	6960
	CGCGCCACAT	AGCAGAACTT	TAAGAGTGC	CATCATTGGA	AAACGTTCTT	CGGGGGCAGAA	7020
	ACTCTCAAGG	ATCTTACCGC	TGTTGAGATC	CAGTCGATG	TAACCCACTC	GTGCACCCAA	7080
	CTGATCTCA	GCATTTTTA	CTTCAACAG	CGTTCTGGG	TGAGCAAAAA	CAGGAAGGCA	7140
	AAATGCCGCA	AAAAAGGAA	TAAGGGCGAC	ACGGAAATGT	TGAATACTCA	TACTCTCCCT	7200

	TTTTCAATAT TATTGAAGCA TTTATCAGGG TTATTGTCTC ATGAGCGGAT ACATATTG	7260
	ATGTATTTAG AAAAATAAAC AAATAGGGGT TCCGCGACA TTTCCCGAA AAGTGCACC	7320
	TGACGTCGAC GGATCGGGAG ATCTGCTAGG TGACCTGAGG CGCGCCGGCT TCGAATAGC	7380
5	AGAGTAACCT TTTTTTTTAA TTTTATTTTA TTTTATTTT GAGATGGAGT TTGGCGCCGA	7440
	TCTCCCGATC CCCTATGGTC GACTCTCAGT ACAATCTGCT CTGATGCCGC ATAGTTAAC	7500
	CAGTATCTGC TCCCTGCITG TGTGTTGGAG GTCGCTGAGT AGTGCAGCAG CAAAATTAA	7560
	GCTACAACAA GGCAAGGCTT GACCGACAAT TGCATGAAGA ATCTGCTTAG GGTTAGGCGT	7620
	TTTGCCTGTC TTCGGATGT ACGGGCCAGA TATACCGCTT GACATTGATT ATTGACTAGT	7680
10	TATTAATAGT AATCAATTAC GGGGTCAITTA GTTCATAGCC CATATATGGA GTTCCCGCTT	7740
	ACATAACTTA CGGTAAATGG CCCGCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG	7800
	TCAATAATGA CGTATGTTCC CATACTAAGC CCAATAGGGA CTTTCCATTG ACGTCAATGG	7860
	GTGGACTATT TACGGTAAAC TGCCCCTTG GCAGTACATC AAGTGTATCA TATGCCAAGT	7920
	ACGCCCTCA TTGACGTCAA TGACGGTAA TGGCCCGCTT GGCAATTATGC CCAGTACATG	7980
15	ACCTTATGGG ACTTTCCTAC TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG	8040
	GTGATGCGGT TTTGCAGTA CATCAATGGG CGTGGATAGC GGTTTACTC ACGGGGATT	8100
	CCAAGTCTCC ACCCCATTGA CGTCAATGGG AGTTTGTTTT GGCAACAAAA TCAACGGGAC	8160
	TTTCCAAAAT GTCGTAACAA CTCCGCCCA TTGACGCAA TGGCGGTAG GCGTGTACGG	8220
	TGGGAGGTCT ATATAAGCAG AGCTCTCTGG CTAACTAGAG AACCCACTGC TTACTGGCTT	8280
20	ATCGAAATTA ATACGACTCA CTATAGGGAG ACCCAAGCTT G	8321

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8897 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

	GACGGATCGG GAGATCTGCT AGCCGGGTG ACCTGAGGCG CGCCGGCTTC GAATAGCCAG	60
	AGTAACCTTT TTTTTTAATT TTATTTTATT TTATTTTGA GATGGAGTT GGCGCCGATC	120
25	TCCCGATCCC CTATGGTCGA CTCTCAGTAC AATCTGCTCT GATGCCGCAT AGTAAAGCCA	180
	GTATCTGCTC CCTGCTTGTG TGTGAGGCT CGCTGAGTAG TGCGCGAGCA AAATTTAAC	240
	TACAACAAGG CAAGGCTTGA CCGACAATTG CATGAAGAAT CTGCTTAGGG TTAGGCCTT	300
	TGCGCTGCTT CGCGATGTAC GGGCCAGATA TACGCGTTGA CATTGATTAT TGACTAGTTA	360
30	TTAATAGTAA TCAATTACGG GGTCTATTAGT TCATAGCCCA TATATGGAGT TCCGCGTTAC	420
	ATAACTTACG GTAATGGCC CGCCTGGCTG ACCGCCAAC GACCCCGCC CATTGACGTC	480
	AATAATGACG TATGTTCCCA TAGTAACGCC AATAGGGACT TTCCATTGAC GTCAATGGGT	540
	GGACTATTAA CGGTAACACTG CCCACTTGGC AGTACATCAA GTGTATCATA TGCCAAGTAC	600
35	GCCCCCTATT GACGTCAATG ACGGTAATG GCCCGCTGG CATTATGCC AGTACATGAC	660
	CTTATGGGAC TTTCTACTT GGCAGTACAT CTACGTATTA GTCATCGCTA TTACCATGGT	720
	GATGCGGTT TGGCAGTACA TCAATGGCG TGGATAGCGG TTGACTCAC GGGGATTCCC	780
40	AAGTCTCCAC CCCATTGACG TCAATGGGAG TTTGTTTGG CACCAAAATC AACGGGACTT	840
	TCCAAAATGT CGTAACAACT CGGCCCTATT GACGCAAATG GGCGGTAGGC GTGTACGGTG	900
	GGAGGTCTAT ATAAGCAGAG CTCTCTGGCT AACTAGAGAA CCCACTGCTT ACTGGCTTAT	960
45	CGAAAATTAAAT ACGACTCACT ATAGGGAGAC CCAAGCTGG TACCAATTAA AATTGATATC	1020
	TCCTTAGGTC TCGAGCACCA TGAAGTTGCC TGTTAGGCTG TTGGTGTCTGA TGTTCTGGAT	1080
	TCCTGCTTCC AGCAGTGTATG TTGTCTGAC CCAAACCCCA CTGTCAGTC CTGTCACGCT	1140
	TGGACAAACCT GCGTCCATCT CTTGCAGATC TAGTCAGATC ATTGTACATA ATAATGGCAA	1200
50	CACCTATCTG GAATGGTACC AGCAGAGACC AGGGCAGTCT CCACGGCTCC TGATCTACAA	1260
	AGTTTCCAAC CGATTTCTG GGGTCCCAGA CAGGTTCAGC GGCAGTGGAG CTGGGACAGA	1320
55	TTTCACACTC AAGATCAGCA GAGTGGAGGC TGAGGATGTG GGAGTTACT ACTGCTTCA	1380
	GGGTTCACAT GTTCCATTCA CGTTGGGCCA AGGGACAAAG TTGAAATCA AACGTAAGTC	1440
	TCGAGTCTCT AGATAACCGG TCAATCGATT GGAATTCTAA ACTCTGAGGG GGTGGATGA	1500
	CGTGGCCATT CTTTGCTAA AGCATTGAGT TTACTGCAAG GTCAGAAAAG CATGCAAAGC	1560
	CCTCAGAATG GCTGCAAAGA GCTCCAACAA AACATTAG AACTTTATTA AGGAATAGGG	1620

	GGAAGCTAGG	AAGAAACTCA	AAACATCAAG	ATTTTAAATA	CGCTTCCTGG	TCTCCTTGCT	1680
	ATAATTATCT	GGGATAAGCA	TGCTGTTTC	TGTCTGCCC	AAACATGCC	TTATCCGCAA	1740
	ACAACACACC	CAAGGGCAGA	ACTTTGTTAC	TTAACACCCA	TCCTGTTGC	TTCTTTCC	1800
	AGGAACATGTG	GCTGCACCAT	CTGTCTTCAT	CTTCCGCCA	TCTGATGAGC	AGTTGAAATC	1860
5	TGGAACTGCC	TCTGTTGTG	GCCTGCTGAA	TAACCTCTAT	CCAGAGAGG	CCAAAGTACA	1920
	GTGGAGGTG	GATAACGCC	TCCAATCGGG	TAACTCCCAG	GAGAGTGTCA	CAGAGCAGGA	1980
	GAGCAAGGAC	AGCACCTACA	GCCTCAGCAG	CACCCCTGACG	CTGAGCAAAG	CAGACTACGA	2040
	GAAACACAAA	GTCTACGCC	GCGAAGTCAC	CCATCAGGGC	CTGAGCTCG	CCGTCACAAA	2100
	GAGCTTCAAC	AGGGGAGAGT	GTTAGAGGGA	GAAGTGCC	CACCTGCTCC	TCAGTTCCAG	2160
10	CCTGACCCCC	TCCCACCTT	TGGCCTCTGA	CCCTTTTCC	ACAGGGGACC	TACCCCTATT	2220
	GGGGCCTCC	AGCTCATCTT	TCACCTCACC	CCCCTCC	TCCTGGCTT	TAATTATGCT	2280
	AATGTTGGAG	GAGAATGAAT	AAATAAAGTG	AATCTTGCA	CCTGTTGTTT	CTCTCTTCC	2340
	TCATTTAATA	ATTATTATCT	GTGTTTAC	CAACTACTCA	ATTCTCTTA	TAAGGGACTA	2400
	AATATGTA	CATCTTAAGG	CACGTAACCA	TTTATAAAA	TCATCTTCA	TTCTATTTTA	2460
15	CCCTATCATC	CTCTGCAAGA	CAGTCCTCC	TCAAACCCAC	AAGCCTCTG	TCCTCACAGT	2520
	CCCCCTGGGCC	ATGGTAGGAG	AGACTTGCTT	CCTGTTTTC	CCCTCCTCAG	CAAGCCCTCA	2580
	TAGTCCTTTT	TAAGGGTGAC	AGGTCTTACA	GTCATATATC	CTTGATTCA	ATTCCCTGAG	2640
	AATCAACCAA	AGCAAATTTT	TCAAAGAGAAG	AAACCTGCTA	AAAGAGAAT	CATTCAATTGC	2700
	AACATGATAT	AAAATAACAA	CACAATAAAA	GCAATTAAAT	AAACAAACAA	TAGGGAAATG	2760
20	TTTAAGTTCA	TCATGGTACT	TAGACTTAAT	GGAATGTCAT	GCCTTATTAA	CATTTTTAA	2820
	CAGGTACTGA	GGGACTCCTG	TCTGCCAAGG	GGCGTATTGA	GTACTTTCCA	CAACCTAATT	2880
	TAATCCACAC	TATACTGTGA	GATTTAAAAAC	ATTCAATTAA	ATGTTGCAA	GGTTCTATAA	2940
	AGCTGAGAGA	CAAATATAATT	CTATAACTCA	GCAATCCCAC	TTCTAGATGA	CTGAGTGTCC	3000
	CCACCCACCA	AAAAACTATG	CAAGAATGTT	CAAAGCAGCT	TTATTACAA	AAGCCAAAAA	3060
25	TTGGAAATAG	CCCGATTGTC	CAACAATAGA	ATGAGTTATT	AAACTGTTG	ATGTTTATAC	3120
	ATTAGAATAC	CCAATGAGGA	GAATTAACAA	GCTACAAC	TACCTACTCA	CACAGATGAA	3180
	TCTCATAAAA	ATAATGTTAC	ATAAGAGAAA	CTCAATGCAA	AAAGATATGTT	CTGTATGTTT	3240
	TCATCCATAT	AAAGTTCAAA	ACCAGGTAAA	AATAAAGTTA	AAAATTGGA	TGGAAATTAC	3300
	TCTTAGCTGG	GGGTGGCGA	GTAGTGCCT	GGGAGAAGAC	AAGAAGGGGC	TTCTGGGTC	3360
30	TTGGTAATGT	TCTGTTCTC	GTGTTGGGTT	GTGCAGTTAT	GATCTGTGA	CTGTTCTGTA	3420
	TACACATTAT	GCTTCAAAAT	AACTTCACAT	AAAGAACATC	TTATACCCAG	TTAATAGATA	3480
	GAAGAGGAAT	AAGTAATAGG	TCAAGACCAA	CGCAGCTGGT	AAAGGGGGC	CTGGGATCAA	3540
	ATAGCTACCT	GCCTAATCCT	GCCWCCTG	GCCCTGAATG	AGTCTGCCTT	CCAGGGCTCA	3600
	AGGTGCTCAA	AAAACAACCA	GGCCTGCTAT	TTTCCTGGCA	TCTGTCCT	TTTGGCTAG	3660
35	CTAGGAGCAC	ACATACATAG	AAATTAAATG	AAACAGACCT	TCAGCAAGGG	GACAGAGGAC	3720
	AGAATTAACC	TTGCCAGAC	ACTGGAAACC	CATGTATGAA	CACTCACATG	TTTGGGAAGG	3780
	GGGAAGGGCA	CATGAAATG	AGGACTCTTC	CTCATTCTAT	GGGGCACTCT	GGCCCTGCC	3840
	CTCTCAGCTA	CTCATCCATC	CAACACACCT	TTCTAAGTAC	CTCTCTCTGC	CTACACTCTG	3900
	AAGGGGTCA	GGAGTAACTA	ACACAGCATT	CCTTCCCTCA	AATGACTGAC	AATCCCTTTG	3960
40	TCCTGTTTG	TTTTCTTT	CAGTCAGTAC	TGGGAAAGTG	GGGAAGGACA	GTCATGGAGA	4020
	AACTACATAA	GGAAGCACCT	TGCCCTCTG	CCTCTTGAGA	ATGTTGATGA	GTATCAAATC	4080
	TTTCAAACTT	TGGAGGTTTG	AGTAGGGGTG	AGACTCAGT	ATGTCCTTC	CAATGACATG	4140
	AACTTGCTCA	CTCATCCCTG	GGGGCCAAAT	TGAACAATCA	AAGCAGGCA	TAATCCAGTT	4200
	ATGAAATTCTT	GGCCCGCGCTT	GCTAGCTTC	CCTGTTGGAT	CCACCCCGGG	AAGGGCCCTA	4260
45	TTCTATAGTG	TCACCTAAAT	GCTAGAGCTC	GCTGATCAGC	CTCGACTGTG	CCTTCTAGTT	4320
	GCCAGCCATC	TGTTGTTGC	CCCTCCCCCG	TGCCTTCTT	GACCCCTGGAA	GGTGCCACTC	4380
	CCACTGTCCT	TTCTCTAAAT	AATGAGGAAA	TTGCATCGCA	TTGTCAGT	AGGTGTCTT	4440
	CTATTCTGGG	GGGTGGGGTG	GGGCAGGACA	GCAAGGGGGA	GGATTGGAA	GACAATAGCA	4500
	GGCATGCTGG	GGATGCGGTG	GGCTCTATGG	CTTCTGAGGC	GGAAAGAAC	AGCTGGGCT	4560
50	CTAGGGGTA	TCCCCACGCG	CCCTGTAGCG	GCGCATTAAAG	CGGGCGGGT	GTGGTGGTTA	4620
	CGCGCAGCGT	GACCGCTACA	CTTGCCAGCG	CCCTAGCGCC	CGCTCTTTC	GCTTTCTTC	4680
	CTTCCTTCT	CGCCACGTT	GGCGGGCCTC	TCAAAAAAGG	AAAAAAAGC	ATGCATCTCA	4740
	ATTAGTCAGC	AACCATAGTC	CCGCCCCCTAA	CTCCGCCAT	CCCGCCCCCTA	ACTCCGCCA	4800
	GTTCCGCCCA	TTCTCCGCC	CATGGCTGAC	TAATTCTT	TATTTATGCA	GAGGCGGAGG	4860
55	CCGCCTCGGC	CTCTGAGCTA	TTCCAGAAGT	AGTGAGGAGG	CTTTTTGGA	GGCCTAGGCT	4920
	TTTGCAAAA	GCTTGGACAG	CTCAGGGCTG	CGATTCGCG	CCAAACTTGA	CGGCAATCCT	4980
	AGCGTGAAGG	CTGGTAGGAT	TTTATCCCG	CTGCCATCAT	GGTCGACCA	TTGAACGTCA	5040
	TCGTCGCCGT	GTCCAAAAT	ATGGGGATTG	GCAAGAACGG	AGACCTACCC	TGGCCTCCGC	5100
	TCAGGAACGA	GTTCAAGTAC	TTCCAAAGAA	TGACCACAAAC	CTCTTCAGTG	GAAGGTAAC	5160

	AGAATCTGGT GATTATGGGT AGGAAAACCT GGTTCTCCAT TCCTGAGAAG AATCGACCTT	5220
	TAAAGGACAG AATTAATATA GTTCTCAGTA GAGAACCAA AGAACCAACCA CGAGGAGCTC	5280
	ATTTCTTGC CAAAAGTTG GATGATGCC TAAGACTTAT TGAAACAACCG GAATTGGCAA	5340
	GTAAAGTAGA CATGGTTTGG ATAGTCGGAG GCAGTTCTGT TTACCCAGGA GCCATGAATC	5400
5	AACCAGGCCA CCTTAGACTC TTTGTGACAA GGATCATGCA GGAATTGAA AGTGACACGT	5460
	TTTTCCAGA AATTGATTTG GGGAAATATA AACTTCTCCC AGAATACCCA GGCGTCCTCT	5520
	CTGAGGTCCA GGAGGAAAAA GGCATCAAGT ATAAGTTGA AGTCTACGAG AAGAAAGACT	5580
	AACAGGAAGA TGCTTTCAAG TTCTCTGCTC CCCTCCTAAA GCTATGCATT TTTATAAGAC	5640
	CATGGGACTT TTGCTGGCTT TAGATCTCTT TGTGAAGGAA CCTTACTTCT GTGGTGTGAC	5700
10	ATAATTGGAC AAACATACCTA CAGAGATTTA AAGCTCTAAG GTAAATATAA AATTTTTAAG	5760
	TGTATAATGT GTTAAACTAC TGATTCTAAT TGTGTTGTGTA TTTTAGATTC CAACCTATGG	5820
	AACTGATGAA TGGGAGCAGT GGTGAATGC CTTTAATGAG GAAAACCTGT TTTGCTCAGA	5880
	AGAAATGCCA TCTAGTGTG ATGAGGCTAC TGCTGACTCT CAACATTCTA CTCCTCCAAA	5940
	AAAGAAGAGA AAGGTAGAAG ACCCCAAAGGA CTTTCCCTCA GAATTGCTAA GTTTTTTGAG	6000
15	TCATGCTGTG TTTAGTAATA GAACTCTTGC TTGCTTTGCT AATTACACCA CAAAGGAAA	6060
	AGCTGCACTG CTATACAAGA AAATTATGGA AAAATATTCT GTAACCTTTA TAAGTAGGCA	6120
	TAACAGTTAT AATCATAACA TACTGTTTT TCTTACTCCA CACAGGCATA GAGTGTCTGC	6180
	TATTAATAAC TATGCTAAA AATTGTGTAC CTTTAGCTT TTAATTGTA AAGGGGTTAA	6240
	TAAGGAATAT TTGATGTATA GTGCCCTGAC TAGAGATCAT AACACGCCAT ACCACATTG	6300
20	TAGAGGTTTT ACTTGCTTTA AAAAACCTCC CACACCTCCC CCTGAACCTG AAACATAAAA	6360
	TGAATGCAAT TGTGTTGTGTT AACTGTTTA TTGCGAGCTTA TAATGGTTAC AAATAAAGCA	6420
	ATAGCATCAC AAATTTCACA AATAAAGCAT TTTTTCACT GCATTCTAGT TGTGTTTGT	6480
	CCAAACTCAT CAATGTTACT TATCATGTCT GGATCGCTG GATGATCCCT CAGCGCGGG	6540
	ATCTCATGCT GGAGGTTCTC GCCCCCCCCA ACTTGTATTG TGCACTTAT AATGGTTACA	6600
25	AATAAAGCAA TAGCATCACA AATTTCACAA ATAAAGCATT TTTTTCACTG CATTCTAGTT	6660
	GTGGTTGTC CAAACTCATC AATGTATCTT ATCATGTCTG TATACCGCTG ACCTCTAGT	6720
	AGAGCTTGGC GTAATCATGG TCATAGCTGT TTCTGTGTG AAATTGTTAT CCGCTCACAA	6780
	TTCCACACAA CATACGAGCC GGAAGCATAA AGTGTAAAGC CTGGGGTGCCT TAATGAGTGA	6840
	GCTAACTCAC ATTAATTGCG TTGCGCTCAC TGCCCCCTT CCAGTCGGGA AACCTGTGTT	6900
30	GCCAGCTGCA TTAATGAATC GGCCAAACCGG CGGGGAGAGG CGGTTTGCCT ATTGGGCGCT	6960
	CTTCCGCTTC CTCGCTCACT GACTCGCTGC GCTCGGTGTC TGCGCTGCGG CGAGCGGTAT	7020
	CAGCTCACTC AAAGGGGTA ATACGGTTAT CCACAGAATC AGGGGATAAC GCAGGAAAGA	7080
	ACATGTGAGC AAAAGGCCAG CAAAGGCCA GGAACCGTAA AAAGGCCGCG TTGCTGGCGT	7140
	TTTTCCATAG GCTCCGCCCC CCTGACGAGC ATCACAAAAA TCGACGCTCA AGTCAGAGGT	7200
35	GGCGAAACCC GACAGGACTA TAAAGATACC AGGCCTTCC CCCTGGAAGC TCCCTCGTGC	7260
	GCTCTCTGT TCCGACCTG CCGCTTACCG GATACCTGTC CGCCTTCTC CCTTCGGGAA	7320
	GCGTGGCGCT TTCTCAATGC TCACGCTGTA GGTATCTCAG TTGGTGTAG GTCGTTCGCT	7380
	CCAAGCTGGG CTGTTGTCAC GAACCCCCCG TTCAGCCGA CGCTGCGCC TTATCCGGA	7440
	ACTATCGTCT TGAGTCCAAC CCGGTAAGAC ACGACTTATC GCACTGGCA GCAGCCACTG	7500
40	GTAAACAGGAT TAGCAGAGCG AGGTATGTAG GCGGTGCTAC AGAGTTCTTG AAGTGGTGGC	7560
	CTAACTACGG CTACACTAGA AGGACAGTAT TTGGTATCTG CGCTCTGCTG AAGCCAGTTA	7620
	CCCTCGGAAA AAGAGTTGGT AGCTCTTGTAT CCGGAAACAA AACCCACCGCT GGTAGCGGTG	7680
	GTTTTTTGT TTGCAAGCAG CAGATTACCG GCAGAAAAAA AGGATCTCAA GAAGATCCTT	7740
	TGATCTTTCT TACGGGGTCT GACGCTCAGT GGAACGAAAAA CTCACGTTAA GGGATTTGG	7800
45	TCATGAGATT ATCAAAAGG ATCTTCACCT AGATCTTTT AAATTAAAAA TGAAGTTTA	7860
	AATCAATCTA AAGTATATAT GAGTAAACTT GGTCTGACAG TTACCAATGC TTAATCAGTG	7920
	AGGCACCTAT CTCAGCGATC TGTCTATTTC GTTCATCCAT AGTTGCTGTA CTCCCCGTCG	7980
	TGTAGATAAC TACGATACCG GAGGGCTTAC CATCTGGCCC CAGTGTGCA ATGATACCGC	8040
	GAGACCCACG CTCACCGGCT CCAGATTAT CAGCAAAAAA CCAGCCAGCC GGAAGGGCCG	8100
50	AGCGCAGAAG TGGCTCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAAT TGTGCCCCGG	8160
	AAGCTAGAGT AAGTAGTTCG CCAGTTAAATA GTTGTGCGAA CGTTGTTGCC ATTGCTACAG	8220
	GCATCGGGT GTCAAGCGTCG TCGTTGGTA TGGCTTCATT CAGCTCCGGT TCCCAACGAT	8280
	CAAGGGAGT TACATGATCC CCCATGTTGT GCAAAAAAGC GGTAGCTCC TTGGTCTCTC	8340
	CGATCGTTGT CAGAAGTAAG TTGGCCGAG TGTTATCACT CATGGTTATG GCAGCACTGC	8400
55	ATAATTCTCT TACTGTCTG CCATCCGTA GATGCTTTTC TGTGACTGGT GAGTACTCAA	8460
	CCAAGTCATT CTGAGAATAG TGTATGCGC GACCAGTTG CTCTTGCCTCG GCGTCAATAC	8520
	GGGATAATAC CGGCCACAT AGCAGAACTT TAAAAGTGCT CATCATTGGA AAACGTTCTT	8580
	CGGGGCCAAA ACTCTCAAGG ATCTTACCGC TGTTGAGATC CAGTTGATG TAACCCACTC	8640
	GTGCACCCAA CTGATCTTCA GCATCTTTA CTTTCACCA CGTTTCTGGG TGAGCAAAA	8700

CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT TGAATACTCA
TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG TTATTGTCTC ATGAGCGGAT
ACATATTGAA ATGTATTTAG AAAAATAAAC AAATAGGGT TCCGCACACA TTTCCCCGAA
AAGTGCCACC TGACGTC

8760
8820
8880
8897

What is claimed is:

1. A method for inhibiting immunoglobulin-induced toxicity resulting from immunoglobulin immunotherapy in a subject comprising administering an immunoglobulin molecule to the subject, the immunoglobulin molecule having a variable region and a constant region, the immunoglobulin molecule being modified prior to administration by structurally altering multiple toxicity associated domains in the constant region so that immunoglobulin-induced toxicity is inhibited.
10
2. A method for inhibiting immunoglobulin-induced toxicity resulting from immunoglobulin immunotherapy in a subject comprising administering a structurally altered antibody to the subject, the structurally altered antibody comprising a variable region and a constant region, multiple toxicity associated domains in the constant region being modified so as to render the constant region unable to mediate an ADCC response or activate complement thereby inhibiting immunoglobulin-induced toxicity resulting from immunotherapy.
15
3. A method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy in a subject comprising administering an Ig fusion protein to the subject, the Ig fusion protein having multiple structurally altered toxicity associated domains in the constant region.
20
4. A method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy in a subject comprising administering an Ig fusion protein to the subject, the Ig fusion protein comprising a modified constant region, the
25

modification being a structural alteration in multiple toxicity associated regions within the CH₂ domain.

5. A method for preventing immunoglobulin-induced toxicity resulting from immunotherapy for a disease in a subject comprising:
 - (a) selecting an immunoglobulin which recognizes and binds a target, the target being associated with the disease;
 - 10 (b) mutating the immunoglobulin so selected by structurally altering multiple toxicity associated domains in the constant region of the immunoglobulin thereby creating a structurally altered immunoglobulin;
 - 15 (c) administering the structurally altered immunoglobulin of step (b) to the subject under conditions so that the structurally altered immunoglobulin recognizes and binds the target thereby alleviating symptoms associated with the disease, the structural alteration of the constant region thereby preventing immunoglobulin-induced toxicity in the subject.
- 20 6. A method for preventing immunoglobulin-induced toxicity resulting from immunotherapy for a disease in a subject comprising:
 - (a) selecting an Ig fusion protein which recognizes and binds a target, the target being associated with the disease;
 - 25 (b) structurally altering multiple toxicity associated domains in the CH₂ domain of the constant region of the Ig protein so selected;

- (c) administering the structurally altered Ig fusion protein of step (b) to the subject under conditions so that the structurally altered Ig fusion protein recognizes and binds the target thereby alleviating symptoms associated with the disease, the structural alteration of the CH₂ domain thereby preventing immunoglobulin-induced toxicity in the subject.
- 5
7. The method of claim 1, 2, 3, 4, 5, or 6, wherein the portion of the constant region is the CH₂ domain.
- 10
8. The method of claim 1 or 5, wherein the immunoglobulin molecule is IgG.
9. The method of claim 1 or 5, wherein the immunoglobulin molecule is IgM.
- 15
10. The method of claim 1 or 5, wherein the immunoglobulin molecule is IgA.
11. The method of claim 2, wherein the antibody recognizes and binds Le^y.
- 20
12. The method of claim 2, wherein the antibody recognizes and binds to Le^x.
13. The method of claim 2, wherein the antibody is a monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC.
- 25
14. The method of claim 2, wherein the antibody is a chimeric antibody ChiBR96 produced by the hybridoma having the identifying characteristics of HB 10460 as deposited with the ATCC.

15. The method of claim 1 or 5, wherein the immunoglobulin recognizes and binds Le^y.
16. The method of claim 1 or 5, wherein the immunoglobulin recognizes and binds to Le^x.
5
17. The method of claim 1 or 5, wherein the immunoglobulin is a monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC.
10
18. The method of claim 1 or 5, wherein the immunoglobulin is a chimeric antibody ChiBR96 produced by the hybridoma having the identifying characteristics of HB 10460 as deposited with the ATCC.
- 15 19. The method of claim 3, 4, or 6, wherein the Ig fusion protein recognizes and binds Le^y.
20
20. The method of claim 3, 4, or 6, wherein the Ig fusion protein recognizes and binds to Le^x.
20
21. The method of claim 3, 4, or 6, wherein the Ig fusion protein is a derivative of monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC.
- 25 22. The method of claim 3, 4, or 6, wherein the Ig fusion protein is a derivative of chimeric antibody ChiBR96 produced by the hybridoma having the identifying characteristics of HB 10460 as deposited with the ATCC.
23. A pharmaceutical composition comprising a pharmaceutically effective

- amount of a structurally altered immunoglobulin, and an acceptable carrier, the structurally altered immunoglobulin (1) recognizes and binds a target, the target is associated with cancer and (2) has an inactivated CH₂ domain.
- 5 24. A pharmaceutical composition comprising a pharmaceutically effective amount of structurally altered Ig fusion protein, and an acceptable carrier, the structurally altered Ig fusion protein (1) recognizes and binds a target, the target is associated with cancer and (2) has an inactivated CH₂ domain.
- 10 25. A method of treating carcinomas in vivo comprising administering to a subject a pharmaceutically effective amount of the composition of claim 23 or 24.
- 15 26. The method of claim 30, wherein the structurally altered immunoglobulin in the composition is labeled so as to directly or indirectly produce a detectable signal with a compound selected from the group consisting of a radiolabel, an enzyme, a chromophore, a chemiluminescer, and a fluorescer.
- 20 27. The method of claim 24, wherein the Ig fusion protein in the composition is labeled so as to directly or indirectly produce a detectable signal with a compound selected from the group consisting of a radiolabel, an enzyme, a chromophore, a chemiluminescer, and a fluorescer.
- 25 28. The method of claim 2 or 5, wherein the antibody is conjugated to a cytotoxic agent.
29. The method of claim 1, wherein the immunoglobulin is conjugated to a cytotoxic agent.

- ●
30. The method of claim 3, 4 or 6, wherein the Ig fusion protein is conjugated to
a cytotoxic agent.
31. The method of claim 28, 29, or 31, wherein the cytotoxic agent is selected
5 from the group consisting of antimetabolites, alkylating agents,
anthracyclines, antibiotics, anti-mitotic agents, and chemotherapeutic agents.
32. A method for treating a subject suffering from a cancer, the cancer being
10 characterized as a group of cells having a tumor associated antigen on the
cell surface, which method comprises administering to the subject a cancer
killing amount of the composition of claim 23 or 24 joined to a cytotoxic
agent under conditions which permit the molecule so joined to bind the
15 tumor associated antigen on the cell surface so as to kill the cells so bound
thereby curing the subject.
33. A pharmaceutical composition comprising a pharmaceutically effective
amount of a structurally altered BR96 antibody, the structurally altered
antibody having an inactivated CH₂ domain.
- 20
34. A method for treating a subject suffering from a proliferative type disease
characterized by cells having a BR96 antigen on the cell surface which
comprises administering to the subject an effective amount of the
composition of claim 33 joined to doxorubicin such that the
25 immunoconjugate binds the BR96 antigen and kills said cells thereby
treating the subject.
35. A method for inhibiting BR96 (ATCC: HB10036) induced toxicity resulting
from immunoglobulin immunotherapy in a subject comprising administering

AB65253-D2C1A

BR96 to the subject, the BR96 molecule being modified prior to administration, the modification comprising the deletion or substitution of at least one amino acid residue in the toxicity associated domain localized to amino acids 310-331 and the deletion or substitution of at least one amino acid residue in the toxicity associated domain localized to amino acids 231-238 so that complement and Fc receptor mediated toxicity is inhibited.

- 5 36. A method for preventing BR96 (ATCC: HB10036) induced toxicity resulting from immunotherapy for cancer in a subject comprising:

10

(a) mutating the BR96 polypeptide by the deletion or substitution of at least one amino acid residue in the toxicity associated domain localized to amino acids 310-331 and the deletion or substitution of at least one amino acid residue in the toxicity associated domain

15

localized to amino acids 231-238 so that complement and Fc receptor mediated immunoglobulin-induced toxicity is inhibited in the altered BR96 polypeptide; and

20

(b) administering the structurally altered BR96 polypeptide of step (a) to the subject under conditions so that the peptide recognizes and binds cancer associated Le^y antigens, thereby alleviating symptoms associated with the cancer, the structural alteration of the toxicity associated domains thereby preventing BR96 toxicity in the subject.

- 25 37. A chimeric BR96 antibody having a structurally altered constant region having the CH1 and CH3 domains but not the CH2 domain, the antibody being designated cBR96-A.

38. The chimeric BR96 antibody of claim 37 which is expressed by the plasmid having the sequence shown in SEQ ID NO. 10.
39. A BR96 antibody having humanized variable and constant regions, wherein
5 the constant region has been structurally altered so that the CH1 and CH3 domains are present but the CH2 domain is not, the antibody being designated hBR96-2A.
40. The BR96 antibody of claim 39 which is expressed by the plasmid having
10 the sequence shown in SEQ ID NO. 12.
41. A BR96 antibody designated hBR96-2B having a structurally altered constant region wherein leucine at amino acid position 235 is mutated to alanine and glycine at amino acid position 237 is mutated to alanine.
15
42. A BR96 antibody designated hBR96-2C having a structurally altered constant region wherein glutamic acid at amino acid position 318 is mutated to serine; lysine at amino acid position 320 is mutated to serine; and lysine at amino acid position 322 is mutated to serine.
20
43. A BR96 antibody designated hBR96-2D having a structurally altered constant region wherein proline at amino acid position 331 is mutated to alanine.
25 44. A BR96 antibody designated hBR96-2E having a structurally altered constant region wherein leucine at amino acid position 235 is mutated to alanine; glycine at amino acid position 237 is mutated to alanine; glutamic acid at amino acid position 318 is mutated to serine; lysine at amino acid

position 320 is mutated to serine; and lysine at amino acid position 322 is mutated to serine.

45. A BR96 antibody designated hBR96-2F having a structurally altered
5 constant region wherein leucine at amino acid position 235 is mutated to alanine; glycine at amino acid position 237 is mutated to alanine; and proline at amino acid position 331 is mutated to alanine.
46. A BR96 antibody designated hBR96-2G having a structurally altered
10 constant region wherein glutamic acid at amino acid position 318 is mutated to serine; lysine at amino acid position 320 is mutated to serine; and lysine at amino acid position 322 is mutated to serine; and proline at amino acid position 331 is mutated to alanine.
- 15 47. A BR96 antibody designated hBR96-2H having a structurally altered constant region wherein leucine at amino acid position 235 is mutated to alanine; glycine at amino acid position 237 is mutated to alanine; glutamic acid at amino acid position 318 is mutated to serine; lysine at amino acid position 320 is mutated to serine; lysine at amino acid position 322 is mutated to serine; and proline at amino acid position 331 is mutated to alanine.
20
48. A nucleic acid molecule which encodes the BR96 antibody of claim 37, 39, and 41-47.
25
49. A cDNA of claim 48.
50. A plasmid which comprises the nucleic acid molecule of claim 48.

51. A host vector system comprising a plasmid of claim 50 in a suitable host cell.
 52. A method for producing a protein comprising growing the host vector system of claim 51 so as to produce the protein in the host and recovering the protein so produced.

**A METHOD FOR INHIBITING IMMUNOGLOBULIN-INDUCED
TOXICITY RESULTING FROM THE USE OF IMMUNOGLOBULINS IN
THERAPY AND IN VIVO DIAGNOSIS**

5 ABSTRACT OF THE DISCLOSURE

The present invention provides a method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy in a subject comprising administering an immunoglobulin or Ig fusion protein molecule to the subject, the immunoglobulin
10 molecule having a variable region and a constant region, the immunoglobulin molecule being modified prior to administration by inactivation of at least a portion of the constant region.

15

k:\pros\30436\43usu1\appln\patapp1.doc

Figure 1. Plasma clearance in high LeY expressing dogs chimeric versus constant region mutant of cBR96-2.

Figure One

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

A- Hinge + CH2 + CH3 domains were removed from RR96 IgG1 construct by E. coli -III restriction digestion .

B. 2 - Hinge + CH3 domains amplified by PCR from L6 IgG1 construct lacking the CH2 domain .

Figure 9

G3 - Hinge +CH3 PCR fragment cloned by homologous recombination into E.co47-III site of BR96 IgG1 molecule.

Figure 9
(CONTINUED)

1- Introduction of mutations by site-directed mutagenesis on double-stranded plasmid DNA.

A- Mutations introduced into synthetic oligonucleotides used for the PCR amplification of CH2 domain.

B- Plasmid DNA linearized inside CH2 domain and co-transformed with PCR fragment into competent DH5 α .

C- Cloning mediated by homologous recombination yields transformants harbouring recombinant plasmids .

Figure 10

Figure 11

Figure 12

Figure 13

pD17-cJ-dCH2.H1

10	20	30	40	50	60	70	80	90
GACCGAATCGG	GAGATCTGCT	AGGTGACCTG	AGGGGGCGG	GCTTCGAATA	GCCAGAGTAA	CCTTCTTTT	TAATTTTATT	TATTTTTAT
CTGCCATGCC	CTCTAGACGA	TCCACTGGAC	TCCGGGGGC	CGAAGCTTAT	CGGTCTCATT	GGAAAAAAA	ATTAAATAA	AATAAAATAA
100	110	120	130	140	150	160	170	180
TTTGAGATGG	AGTTGGCGC	CGATCTCCC	ATCCCCATATG	GTCGACTCTC	AGTACAATCT	GCTCTGATGC	CGCATAGTTA	AGCCAGTATC
AAACTCTACC	TCAAACGGG	GCTAGGGGC	TAGGGGATAC	CAGCTGAGAG	TCATGTTAGA	CGAGACTACG	GCGTATCAAT	TCGGTCATAG
190	200	210	220	230	240	250	260	270
TGCTCCTGC	TITGTTGCTG	GAGGTGCTG	AGTAGTCGCTG	GAGCCAAATT	TAAGCTACAA	CAAGGCAAGG	CTTGACCGAC	AATGTCATGA
ACGAGGGACG	AACACACAAAC	CTCCAGGAC	TCATCACCGG	CTCGTTTAA	ATTGCGATGTT	GTTCGGTTC	GAAC TGCTG	TAAACGTACT
280	290	300	310	320	330	340	350	360
AGAACCTGCT	TAGGGTTAGG	CGTTTGC	TGCTTCGGCA	TGTACCGGGC	AGATATACGC	GTTGACATTG	ATTATTGACT	AGTTTATAAT
TCTTAGACGA	ATCCCACATCC	GCAAACGCG	ACGAAGCGCT	ACATGCCCCG	TCTATATGGC	CAACTGTAAC	TAATAACTGA	TCAATAATAA
370	380	390	400	410	420	430	440	450
AGTAATCAAT	TACGGGGTCA	T TAGTTTCATA	GCCCCATATATG	GGAGGTTCCGC	GTTACATAAC	T TAGGGTAAA	TGGCCCGCCT	GGCTGACCGC
TCATTAGTTA	ATGCCCGAGT	AATCZAACTAT	CGGGGTATATA	CCTCAAGGGC	CAATGTTATG	AATGCCATT	ACCGGGGGAA	CCGACTGGCC
460	470	480	490	500	510	520	530	540
CCAACGACCC	CCGCCCATTG	ACGTCAATAA	TCAGCTATGT	TCCCCTAGTA	ACGCCAATAG	GGACTTCCA	TGACGTCAA	TGGGTGGACT
GGTTGCTGGG	GGGGGGTAC	TGGCAAGTAC	TGGAGTTATT	ACTGCATACA	AGGGTATCAT	TGCGGTATTC	CCTGAAAGGT	AACTGCAGTT
550	560	570	580	590	600	610	620	630
ATTTACGGTA	AACTGCCAC	TTGGCAAGTAC	ATCAAGTGTAA	TCATATGCCA	AGTACGCC	CTATTGACGT	CAATGACGGT	AAATGGCCCG
TAATAGCCAT	TGACGGGTG	AACCGTCATG	TAGTCACAT	AGTATACGGT	TCATGCCGG	GATAACTGCA	GTTACTGCCA	TTTACCGGGC
640	650	660	670	680	690	700	710	720
CCTGGCATT	TGCCCAAGTAC	ATGACTTTAT	GGGACTTTCC	TACTTGGCAG	TACATCTACG	TATTAATGTC	CGCTTATTAC	ATGGTGATGC
GGACCGTAAT	ACGGGTCAAT	TACTGGTCAATG	TACTGGAATA	CCCTGAAAGG	ATGAAACCGTC	ATGTTAGATGC	GCGATAATGG	TACCACTACG
730	740	750	760	770	780	790	800	810
GGTTTGGCA	GTACATCAAT	GGGGGTGGAT	AGCGGTTG	CTCACGGGGA	TTTCCAAGTC	TCCACCCAT	TGACGTCAA	GGGAGTTGTT
CCAAACCGT	CATGTTAGTTA	CCCGAACCTA	TGGCCAAC	GAGTGGCCCT	AAAGGTTAG	AGGTGGGGTA	ACTGCAGTTA	CCCTCAAAACAA
820	830	840	850	860	870	880	890	900
TTGGCACCA	AAATCAACGG	GACTTTCCAA	AATGTCGTA	CAACTCCGCC	CCATTGACGC	AAATGGGGGG	TAGGGGTGTA	CGGTGGGAGG
AAACCGTGGT	TTAGTTGCGC	CTGAAAAGGT	TTACAGCATT	GTGGAGGGG	GGTAACTGCG	TTACCCGCC	ATCCGCACAT	GCCACCCCTCC

Figure 14

pD17-cJ-dCH2.H1

910	920	930	940	950	960	970	980	990
TCTATATAAG	CAGAGCTCTC	TGGCTAACTA	GAGAACCCAC	TGCTTACTGG	CITATCGAAA	TTAATACGAC	TCACTATAGG	GAGACCCAAG
AGATATATTG	GTCTCGAGAG	ACCGATTGAT	CTCTTGGGTG	ACGGAATGACC	GAATAGCTTT	AATATGCTG	AGTATATCC	CTCTGGGTTTC
1000	1010	1020	1030	1040	1050	1060	1070	1080
CTTGGTACCA	ATTTAAATTG	ATATCTCCCT	AGGTCTCGAG	TCTCTAGATA	ACCGGTCAAT	CGATTGGAAT	TCTTGCGGCC	GCTTGCTAGC
GAACCATGGT	TAATTTAAC	TATAGAGGAA	TCCAGAGGTC	AGAGATCTAT	TGGCCAGRTTA	GCTAACCTTA	AGAACGCCCG	CGAACGATCG
1090	1100	1110	1120	1130	1140	1150	1160	1170
CACCATGGAG	TTCGTGGTTAA	GCTTGGTCT	TCCTTGTCT	TGTTTTAAA	GGTGTCACT	GTGAAGTGA	TCTGGTGGAG	TCTGGGGAG
GTGGTACCTC	ACACCAATT	CGAACCGGA	AGGAACAGGA	ACAAAATTT	CCACAGGTCA	CACTTCACCT	AGACCACTC	AGACCCCTC
1180	1190	1200	1210	1220	1230	1240	1250	1260
GCTTAGTGCA	GCTTGGAGGG	TCCCCTGAAAG	TCTCCTGTGT	AACCTCTGGA	TTCACTTCA	GTGACTTAA	CATGTATGG	GTTCGCCAGA
CGAACATCGT	CGGACCTCC	AGGGACCTTC	AGGGACACAA	TTCGGAGACCA	TTGGAGACCT	AACTGAAAGT	CACTGATAAT	GTACATACCC
1270	1280	1290	1300	1310	1320	1330	1340	1350
CTCCAGAGAA	GAGGCTGGAG	TGGGTGCGAT	ACATTAAGTCA	AGGTGGTGTAT	ATAACCGACT	ATCCAGACAC	TGTAAGGGT	CGATTCCCA
GAGGTCTCTT	CTCCGACCTCT	ACCCAGCGTA	TGTAATCAGT	TCCACCACTA	TATTGGCTGA	TAGGTCTGTG	ACATTTCCA	GCTAAGTGGT
1360	1370	1380	1390	1400	1410	1420	1430	1440
TCTCCAGAGA	CAATGCCAAG	AACACCCCTGT	ACCTGCAAAT	GAGCCGTCTG	AAGTCGTAGG	ACACAGCCAT	GTATTACTGT	GCAAGAGGCC
AGAGGTCTCT	GTACGGTTTC	TGTTGGGACA	TGGACGTTTA	CTCGGAGAC	TTCAAGCTCC	TGTGTCGGTA	CATAATGACA	CGTCTCCGG
1450	1460	1470	1480	1490	1500	1510	1520	1530
TGGACGACGG	GGCCCTGGTT	GCTTACTGGG	GCAAAAGGAC	TCTGGTCACG	GTCTCTGTAG	CTAGCACCAA	GGGGCCCATCG	GTCCTCCCC
ACCTGCTGCC	CGGGACCAA	CGAATGACCC	CGGTTCCTTG	AGACCAAGTGC	CAGAGACATC	GATGTTGGTT	CCCCGGTAGC	CAGAAGGGG
1540	1550	1560	1570	1580	1590	1600	1610	1620
TGGCACCCCTC	CTCCAAGAGC	ACCTCTGGGG	GCACAGCGGC	CCTGGGCTGC	CTGGTCAGG	ACTACTTCCC	CGAACCGGGTG	ACGGTGTGTT
ACCGTGGGAG	GAGGTCTCC	TGGAGACCCC	CGTGTGCGCC	GGACCCGACG	GACCAAGGAT	TGATGAAGGG	GCTTGGCAC	TGCCACAGCA
1630	1640	1650	1660	1670	1680	1690	1700	1710
GGAACTCAGG	CGCCCTGACC	AGGGGGTGC	ACACCTTCCC	GGCTGTCCCTA	CAGTCCTCAG	GACTCTACTC	CCTCAGGAGC	GTGGTCACCG
CCTTGAGTCC	CGGGGACTCTG	TGCGCGCACG	TGTGGAAAGGG	CGGACAGGAT	GTCAGGGAGTC	CTGAGATGAG	GGAGTCGTG	CACCAAGTGGC
1720	1730	1740	1750	1760	1770	1780	1790	1800
TGCCCTCCAG	CAGCTGGGC	ACCCAGACCT	ACATCTGCA	CGTGAATCAC	AAGCCCAGCA	ACACCAAGGT	GGACAAGAAA	GTGGTGAAGA
ACGGGAGGT	GTCGAACCCG	TGGGTCTGGA	TGAGACGTT	GCACACTAGT	TTCGGGTCTGT	TGTGGTCCA	CCTGTTCTT	CAACCACTCT

Figure 14
(continued)

pD17-cJ-dCH2.H1

1810	1820	1830	1840	1850	1860	1870	1880
GGCCAGCACA	GGGAGGGAGG	GTGTCTGCTG	GAAGCCAGGC	TCAAGGGCTCC	CATCCCCGGCT	ATGCCAGCCCC	AGTCCAGGGC
CGGTCTGGTG	CCCTCCCTTC	CACAGACGAC	CTTCGGTCGG	AGTCGGGAGG	GTAGGGCCGA	TACGTGCCCC	TCAAGGTCGGG
1900	1910	1920	1930	1940	1950	1960	1970
AGCAAGGCAG	GCCCCGGTCG	CCTCTTCACC	CGGAGGGCTC	ACTCATGCTC	AGGGAGAGGG	TCTTCTGCT	TTTTCAGGAG
TCGTTCCGTC	CGGGCAGAC	GGAGAAGTGG	GCCTCCGGAG	ACGGGGGGGG	TGAGTAGCGAG	TCCCCTCTCCC	AGAAAGACGAA
1990	2000	2010	2020	2030	2040	2050	2060
GCTCTGGCA	GGCACAGGGT	AGGTGCCCT	AACCCAGGGC	CTGCAACACAA	AGGGCCAGGT	GACCTGCTCA	GAGCCATATC
CGAGACCCGT	CCGTGTCGCA	TCCACGGGAA	TGAGGTCGGG	GACGTTGTTT	TCCCCGTCA	CGACCCGGAGT	CTCGGTATAG
2080	2090	2100	2110	2120	2130	2140	2150
CGGGAGGACC	CTGGCCCTGA	CCTAACGCCA	CCCCAAAGGC	CAAACCTCTCC	CTCGGACACC	TTCCTCTCTC	CCAGATTCCA
GCCCTCTGG	GACGGGGACT	GGATTGGGT	GGGGTTTCGG	GTGGGGAGTC	GAGCCTGTGG	AAGAGAGGAG	GGTCTTAAGGT
2170	2180	2190	2200	2210	2220	2230	2240
GTAACTCCCA	ATCTTCTCTC	TGCAGAGGCC	AAATCTTGTG	ACAAAACCTCA	CACATGCCCA	CGTGGCCAG	CCAGGCCTCG
CATTGAGGT	TAGAAGAGAG	ACGTCTCGGG	TTAGAACAC	TGTTTGTAGT	GTGTTACGGGT	GGCACGGGTC	CATTGGTTCG
2260	2270	2280	2290	2300	2310	2320	2330
CCCTCCAGCT	CAAGGGGGAA	CAGGTCCCT	AGAGTAGCC	GCATTCAGGG	ACACACCACG	TGGTACCAA	GCCACATGGA
GGGAGGGTGA	GTTCGGCCCT	GTCCACGGGA	TCTCTCACTGG	CGACATGGTT	TGTGTGGTGC	ACCCATGGTT	GTACAGGCT
2350	2360	2370	2380	2390	2400	2410	2420
CAGAGGCCG	CTGGCCCAC	CCTCTGCCCT	GAGAGTGAC	GCTCTGTCCC	TACAGGGCAG	CCCGAGAAC	CACAGGTGTA
GTCTCCGGCC	GAGCCGGGTG	GGAGACGGGA	CTCTCACTGG	CGAGACAGGGG	ATGNCCTGTC	GGGGCTCTTG	GTGTCACAT
2440	2450	2460	2470	2480	2490	2500	2510
CACCTTCCC	CCATCCCGGG	ATGAGCTGAC	CAAGAACCG	GTCAGGCCAG	CATGCCCTTC	TATCCCAAGCG	ACATGCCGT
GTGGGACGGG	GGTAGGGCCC	TACTCGACTG	GTTCCTGGTC	CAGTCGGACT	GTTCGGAAAG	ATAGGGTCGC	TGTAGGGCCA
2530	2540	2550	2560	2570	2580	2590	2600
GGAGTGGGAG	AGCAATGGGC	AGCCGGAGAA	CAACTACAAG	ACACGCCCTC	CCGTGCTGGA	CTCCGACGGC	TCTACAGCAA
CCTCACCCCTC	TCGTTACCCG	TCGGCCCTCTT	GTGTGATGTT	TGGTGGGGAG	GGCACGACCT	GAGGCTGCCG	AGGAAGAAGG
2620	2630	2640	2650	2660	2670	2680	2690
GCTACCCGTG	GACAGAGGCA	GGTGGCAGCA	GGGAAACGTC	TTCCTCATGCT	CCGTGATGCA	TGAGGCTCTG	OACAACCACT
CGAGTGGCAC	CTGTTCTCGT	CCACCGTCGT	CCCCTTGCA	AAGAGTACGA	GGCACTACGT	ACTCCGAGAC	GTTGTTGGTGA

Figure 14
(continued)

pD17-cJ-dCH2.H1

2710	2720	2730	2740	2750	2760	2770	2780	2790
GAGCCCTCTCC	CCTGTCCTCC	GTAATGAGT	GCGACGGCCG	GCAGCCCCC	GCTCCCCGG	CTCTCGGGT	CCGACGAGGA	TGCTTGGCAC
CTCGGAGGG	GACAGAGGC	CATTACTCA	CGCTGCCGG	CGTTGGGG	CGAGGGCCC	GAGGGCCA	GGTGCTCCT	ACGAACCGTG
2800	2810	2820	2830	2840	2850	2860	2870	2880
GTACCCCTG	TACATACTTC	CGGGCGCCC	ACCATGAAA	TAAAGCACCC	AGCGCTGCC	TGGGCCCTG	CGAGACTGTG	ATGCTTCCTT
CATGGGGAC	ATGTATGAG	GGCCGGGGG	TGTTAACCTT	ATTTCTGGG	TCGGGACGGG	ACCGGGGAC	GCTCTGACAC	TACCAAGAAA
2890	2900	2910	2920	2930	2940	2950	2960	2970
CCACGGGTCA	GGCCGAGTCT	GAGGCCTGAG	TGGCATGAGG	GAGGCAGAGC	GGGTCCCACT	GTCCCCACAC	TGGCCAGGC	TGTGAGGTG
GGTGCCTCAGT	CCGGCTCAGA	CTCCGGACTC	ACCGTACTCC	CTCCGCTCTCG	CCCAGGGTGA	CAGGGGTGTC	ACCGGGTCCG	ACAGGTCCAC
2980	2990	3000	3010	3020	3030	3040	3050	3060
TGCCCTGGCC	CCCTAGGGTG	GGGCTAGCC	AGGGCTGCC	CTCGGCAGGG	TGGGGATT	GCCAGCGTGG	CCCTCCCTCC	AGCAGCACCT
ACGGACCCGG	GGGATCCAC	CCCGGATCGG	TCCCAGACGG	GAGCGTCCC	ACCCCTTAA	CGGTGCGACC	GGGAGGGAGG	TCGTCGTGGA
3070	3080	3090	3100	3110	3120	3130	3140	3150
GCCCTGGCT	GGCCCACGGG	AAGGCCCTAGG	AGGCCCTGGG	GACAGACACA	CAGCCCTGTC	CTCTCTAGGA	GACTGTCTG	TTCCTGTGAGC
CGGGACCCQA	CCCGGGTGGCC	TTCGGGATCC	TCCGGGACCC	CTGTCGTGTT	GTGCGGAGC	GAGACATCTT	CTGACAGGAC	AAGACACTCG
3160	3170	3180	3190	3200	3210	3220	3230	3240
GCCCTGTCC	TCCCGACCTC	CATGCCCACT	CGGGGCATG	CCTAGTCAT	GTCGCTAGGG	ACAGGCCCTC	CCTCACCCAT	CTACCCCCAC
CGGGACAGG	AGGGCTGGAG	GTACGGGTGA	GCCCCCGTAC	GGATCAGGTA	CACGCATCCC	TGTCGGGAG	GGAGTGGGTA	GATGGGGGTG
3250	3260	3270	3280	3290	3300	3310	3320	3330
GGCACTAAC	CCTGGCTGCC	CTGCCAGGCC	TGGCACCCGC	ATGGGGACAC	AACCGACTCC	GGGGACATGC	ACTCTCGGGC	CCTGTGGAGG
CCGTGATTGG	GGACCGACGG	GACGGGTGG	AGCGTGGGG	TACCCCTGTG	TTGGCTGAGG	CCCCGTACG	TGAGGCGCG	GGACACCTCC
3340	3350	3360	3370	3380	3390	3400	3410	3420
GACTGGCA	GATGCCACA	CACACACTCA	GCCCCAGACCC	GTTCAACAAA	CCCGCCACTG	AGGTGGCCG	GCCACACGGC	CACACACAC
CTGACCAACGT	CTACGGGTGT	GTGTGTGAGT	GGGGTCTGGG	CAAGTGTGTT	GGGGCGGTGAC	TCCAACGGC	CGGTGTCAGG	GTGGTGTGTC
3430	3440	3450	3460	3470	3480	3490	3500	3510
ACACGTGCAC	GCCTCACACA	CGGAGCCTCA	CCGGGGCGAA	CTGCACAGCA	CCAGACCCAG	AGCAAGGTCC	TGGCACACGT	GAACACTCCT
TGTGCACTG	CGGAGTGTGT	GCCTCGGAGT	GGGCCCCGCT	GACGTGTGCT	GGGTCTGGTC	TCGTCAGG	AGCGTGTGCA	CTTGTGAGGA
3520	3530	3540	3550	3560	3570	3580	3590	3600
CGGACACAGG	CCCCCACGAG	CCCCACAGGG	CACCTCAAGG	CCACAGAGGC	TCTCGGCAGC	TTCTCCACAT	GCTGACCTGTC	TCAGACAAAC
GCCTGTGTCC	GGGGGTGCTC	GGGGGTGCGCC	GTGGAGTTCC	GGGTGCTCGG	AGAGGGTGTG	AAAGGGTGTG	CGACTGGGAGC	AGTCTGTTG

Figure 14
(continued)

pD17-cJ-dCH2.H1

3610	3620	3630	3640	3650	3660	3670	3680
CCAGCCCTCC	TCTCACAGG	GTCGCCCTGC	AGCCGCCAAC	CACACACAGG	GGATCACACA	CCACCGTCACG	TCCCCTGGCC
GGTCGGAGG	AGAGTGTCCC	CACGGGGACG	TGGGGGTGT	GTTGTGTCCC	CCTAGTGTGT	GGTGCAGTGC	TGGCCCACCT
3700	3710	3720	3730	3740	3750	3760	3770
CCCAGTGGCG	CCCTTCCCTG	CAGGACGGAT	CAGCCTCGAC	TGTCGCCCTCT	AGTTCGCCAGC	CATCTGTGT	TTGCCCCCTCC
GGGTCA CGGC	GGGAAGGGAC	GTCCTGCCA	GTCGGAGCTG	ACACGGAAAGA	TCAACGGTGC	GTAGACAAAC	GGGGGAGG AACGGCAA
3790	3800	3810	3820	3830	3840	3850	3860
CCTTGACCCCT	GGAAGGTTGCC	ACTCCCACTG	TCCCTTCCTA	ATAAAATGAG	GAATATTGCA	CGCATTTGACT	GAGTAGGTGT
GGAAACTGGGA	CCTTCCACAGG	TGAGGGTGTAC	AGGAAAGGAT	TATTTCCTACT	CTTTAACGTA	GGCTAACAGA	CATTCTATTC
3880	3890	3900	3910	3920	3930	3940	3950
TGGGGGGTGG	GGTGGGGCAG	GACAGCAAGG	GGGAGGATG	GGAAGACAAT	AGCAGGCCATG	CTGGGGATATG	GGTGGGCTCT
ACCCCCCACC	CCACCCCGTC	CTGTCGPTCC	CCCTCTTAAC	CCTTCIGRTA	TCGTCCTGTAC	GACCCCTACTG	CCACCCGAGA
3970	3980	3990	4000	4010	4020	4030	4050
AGGCGAAAG	AACCAGGCTGG	GGCTCTAGGG	GGTATCCCA	CGCGCCCTGT	AGGGGGCAT	TAAGGGGCCAT	GTTAACGGCA
TCCGCCTTTC	TGGTCGACC	CCGAGATCCC	CCATAGGGGT	GCGGGGACAA	TCGCGCGTA	ATTCGGGCC	CCACACCCAC
4060	4070	4080	4090	4100	4110	4120	4130
GCGTGA CGGC	TACACTTGGC	AGCGCCCTAG	GCCCCGGCTTC	TTCGCTTTC	TTCCCTTCT	TTCTCGCCAC	GTTGGCCGGG
CGCACTGGCG	ATGTGAACGG	TCGGGGATC	GCGGGCGAGG	AAAGCGAAAG	AAGGGAAAGG	AAGAGGGTGT	CCTCTCAAAA
4150	4160	4170	4180	4190	4200	4210	4220
AAGGGAAAAA	AAGCATGCA	CTCAATTAGT	CAGCAACCAT	AGTCCCGCC	CTAAACTCCGC	CCATAACTCCG	CCAGTTCGG
TTCCTTTT	TTCGTAGTA	GAGTTAATCA	GTCTGTTGGTA	TCAGGGGGG	GATTGAGGCC	GGATTGGGG	GGTCAAGGG
4240	4250	4260	4270	4280	4290	4300	4320
CCCATCTCC	CCCCCATGGC	TGACTTAATT	TTTTTATTAA	TGGAGGGCC	GAGGGCCGGCT	CGGCCTCTGA	GCTTATTCCAG
GGGTAAGAGG	CGGGGTACCG	ACTGATTAAA	AAAATAAT	ACGTCTCCGG	CTCCGGGGG	GGGGAGACT	AAGTAGTGAG
4330	4340	4350	4360	4370	4380	4390	4410
GAGGCTTTT	TGGGGGCTA	GGCTTTGCA	AAAAGCTGG	ACAGCTCAGG	GCTGCCTTT	CGGCCAAAC	TGACGGCAA
CTCCGAAAAA	ACTCTCGGGAT	CCGA AAAACGT	TTTTCGAAC	TGTCTGAGTCC	CGACGCTAA	GGGGGTTTG	TCCTAGCGTG
4420	4430	4440	4450	4460	4470	4480	4500
AAGGCTGGTA	GGATTTTATC	CCCGCTGCCA	TCACTGGTTTG	ACCAATGAAC	TGGCATCGTGT	CCGTGTCCC	AAATATGGGG
TTCCGACCAT	CCTAAAATAG	GGGGGACGGT	AGTACCAAGC	TGGTAACCTG	ACGTAGCAGC	GGCACACGGGT	TAAACGTTCT

Figure 14
(continued)

pD17-cJ-dCH2.H1

4510	4520	4530	4540	4550	4560	4570	4580	4590
ACGGAGACCT	ACCCCTGGCCT	CGGCTCAGGA	ACGAGTTCAA	GTACTTCCA	AGAATGCCA	CAACCTCTTC	AGTGGAAAGGT	AAACAGAAC
TGCCTCTGGA	TGGGACCGGA	GGCGAAGTCCT	TGCTCAAGTT	CATGAAAGTT	TCTTACTGGT	GTGGAGAAAG	TCACCTTCCA	TTTGTCTTAG
4600	4610	4620	4630	4640	4650	4660	4670	4680
TGGTGTATT	GGGTAGGAAA	ACCTGGTCT	CCATTCTCGA	GAAGAATCGA	CCTTTAAAGG	ACAGAATTAA	TATAGTCTC	AGTAGAGAAC
ACCACTAATA	CCCATCCTTT	TGGACCAAGA	GGTAAGGACT	CTTCTTAGCT	GGAAATTCTC	TGTCTTAATT	ATATCAAGAG	TCATCTCTTG
4690	4700	4710	4720	4730	4740	4750	4760	4770
TCAAAGAAC	ACCAAGAGGA	GCTCATTTC	TGCCCCAAAG	TGGATGAT	GCCTTAAGAC	TATTTGAAACA	ACGGAAATTG	GCAAGTAAAG
AGTTCTTGG	TGGTGTCTCT	CGAGTAAAG	AACGGTTTTC	AAACTACTA	CGGAATTCTG	AATAACTTGT	TGGCTTAAC	CGTTCAATTTC
4780	4790	4800	4810	4820	4830	4840	4850	4860
TAGACATGGT	TGGGATAGTC	GGAGGCCAGT	CTGTTTACCA	GGAAAGCCATG	AATCAACAG	GCCACCTTAG	ACTCTTGTG	ACAAGGATCA
ATCTGTACCA	ACACCTATCAG	CCTCCCGTCA	GACAATTTGT	CCTTGGGTAC	TTAGTTGTC	CGGTGGAAATC	TGAGAAACAC	TGTTCCTTAGT
4870	4880	4890	4900	4910	4920	4930	4940	4950
TGCAAGGAATT	TGAAAGTGCAC	ACGTTTTTC	CAGAAATTGA	TTTGGGGAAA	TATAAACTTC	TCCCAGAATA	CCCAAGCGTC	CTCTCTGAGG
ACGTCTTAA	ACTTTCACTG	TGCAAAAGG	GTCTTTAACT	AAACCCCTT	ATATTGAG	AGGGTCTTAT	GGTCCCGAG	GAGGACTCC
4960	4970	4980	4990	5000	5010	5020	5030	5040
TCCAGGAGGA	AAAAGGCATC	AAGTATAAGT	TGGAAGTCAT	CGAGGAGAAA	GACTAACAGG	AAGATGCTTT	CAAGTTCTCT	GCTCCCTCC
AGGTCTCTCT	TTTTCGGTAG	TTCATATTCA	AACTTCACTG	GCTCTTCTTT	CTGATTTGTC	TTCTACGAAA	GTTCAGAGGA	CGGGGGAGG
5050	5060	5070	5080	5090	5100	5110	5120	5130
TAAAGCTATG	CATTTTATA	AGACCATGGG	ACTTTGGCTG	GCTTAGATC	TCTTGTGAA	GGAACCTTAC	TTCTGTGTTG	TGACATAATT
ATTCGATAC	GTAAAAATAT	TCTGGTACCC	TGAAACGAC	CGAAATCTAG	AGAAACACTT	CCTTGGAAATG	AAGACACAC	ACTGTATTAA
5140	5150	5160	5170	5180	5190	5200	5210	5220
GGACAAACTA	CCTACAGAGA	TTAAAGCTC	TAAGGTAAT	ATAAAATTT	TAAGTGTATA	ATGTGTAAA	CTACTGTATT	TAATTGTTG
CCTGTGTGAT	GGATGTCTCT	AAATTTCGAG	ATTCCCATTA	TATTAAAAA	ATTCAATAT	TACACAATT	GATGACTAAG	ATTAACAAAC
5230	5240	5250	5260	5270	5280	5290	5300	5310
TGTATTTAG	ATTCCAACCT	ATGGAACCTGA	TGAATGGGAG	CAGTGGTGG	ATGCCTTAA	TGAGGAAAC	CTGTTTGCT	CAGGAGAAC
ACATAAAATC	TAAGGTTGGA	TACCTTGACT	ACTTACCCCTC	GTCAACCACCT	TACGGAAATT	ACTCCCTTTG	GACAAACGA	GTCTCTCTTA
5320	5330	5340	5350	5360	5370	5380	5390	5400
GCCATCTAGT	GATGATGAGG	CTACTGCTGA	CTCTCAACAT	TCTACTCCTC	CAAAAAGAA	GAGAAAGGT	GAAGACCCCA	AGGACTTTCC
CGGTAGATCA	CTACTACTCC	GATGACGACT	GAGAGTTGTA	AGATGAGGAG	GTCTTTCCT	CTCTTCCAT	CTCTGGGGT	TCCTGAAAGG

Figure 14
(continued)

pD17-cJ-dCH2.H1

5410	5420	5430	5440	5450	5460	5470	5480	5490
TTCAGAATTG	CTAAGTTT	TGAGTCATGC	TGTGTTAGT	AATAGAAC	TTCGTTGCTT	TGCTTATTTAC	ACCACAAAGG	AAAAGCTGC
AAGTCTAAC	GATTAAAAA	ACTCAGTACG	ACACAATCA	TTATCTTGAG	AACGAACGAA	ACGGATAATG	TGGTGTTC	TTTTTCGACG
5500	5510	5520	5530	5540	5550	5560	5570	5580
ACTGCTATA	AAGAAAATTA	TGGAAAATTA	TTCTGTAA	TTTATAAGTA	GGCATTAACAG	TATATAATCAT	AACATATCTG	TTCCTTCTAC
TGACGATATG	TCTTTTAAT	ACCTTTTAT	AAGACATTGG	AAATATTCA	CCGTATGTG	ATATTTAGTA	TGTTATGACA	AAAAGAAATG
5590	5600	5610	5620	5630	5640	5650	5660	5670
TCCACACAGG	CATAGAGGTG	CTGCTTAA	TAACTATGCT	CAAALATTG	GTACCCCTAG	CTTTTTAATT	TGTAAAGGGG	TTAATAAGGA
AGGAGTGTCC	GTATCTACA	GACGATAATT	ATTGATACGA	GTTTTTRACA	CATGGAAATC	GAAAATTAA	ACATTCCCC	ATTATTCT
5680	5690	5700	5710	5720	5730	5740	5750	5760
ATATTGATG	TATACTGCC	TGACTAGAGA	TCATAATCAG	CCATACCA	TTCGTTAGGG	TTTTACTTGC	TTTTAAAAAC	CTCCCCACACC
TATRAACTAC	ATATCACCGA	ACTGATCTCT	AGTATTAGTC	GGTATGGGT	AAACATCTCC	AAATGTAACG	AAATTTTTG	GAGGGGTGTG
5770	5780	5790	5800	5810	5820	5830	5840	5850
TCCCCCTGAA	CCTGAAACAT	AAAATGAAAT	CAATTGTTGT	TGTTAACTTG	TTTATTGCG	CTTATAATGG	TTACAAATAA	AGCAATAGCA
AGGGGGACTT	GGACTTTGTA	TTTACTTAC	GTAAACAA	ACAAATTGAA	AAATAACGTC	GAATATTAC	AAATGTTTATT	TGTTTATGTT
5860	5870	5880	5890	5900	5910	5920	5930	5940
TCACAAATT	CACAAATAA	GCATTTT	CACTGCATT	TAGTTGTTG	TTGTCACAAAC	TGATCAATGT	ATCTTATCAT	GTCTGGATCG
AGTGTTTAAA	GTGTTTATT	CGTAAAAAA	GTGACGTAAG	ATCAACACCA	AAACGGTTG	AGTAGTTACA	TAGAAATGTA	CAGACCTAGC
5950	5960	5970	5980	5990	6000	6010	6020	6030
GCTGGATGAT	CCTCCAGCGC	GGGGATCTCA	TGCTGGAGTT	CTTCGCCAC	CCCAACTTGT	TTATTGCAGC	TTATAATGGT	TACAAATAAA
CGACCTACTA	GGAGGTGGCG	CCCTAGAGT	ACGACCTCAA	GAAGGGGTG	GGGTGAAACA	ATTAACGTG	AAATATACCA	ATGTTTATT
6040	6050	6060	6070	6080	6090	6100	6110	6120
GCATAGCAT	CACAATTTC	ACAAATAAG	CATTTTTC	ACTGCATTCT	AGTTGTTGGTT	TGTCACAAACT	CATCATGTA	TCTTATCATG
CGTTATCGTA	GTGTTAAAG	TGTTTATTTC	GTAAAAAAG	TGACGTAAGA	TCAACACCAA	ACAGGTTGA	GTAGTTACAT	AGAATAGTAC
6130	6140	6150	6160	6170	6180	6190	6200	6210
TCTGTATACC	GTCGACCTCT	AGCTAGAGCT	TGGCGTAATC	ATGGTCATAG	CTGTTCCCTG	TGTTGAAATTG	TTATCGCTC	ACAATTCCAC
AGACATATGG	CAGCTGGAGA	TCGATCTCGA	ACCGCATTAG	TACCACTATC	GACAAAGGAC	ACACTTTAAC	AATAGGCAG	TGTTAAGGTG
6220	6230	6240	6250	6260	6270	6280	6290	6300
ACACATACG	AGCCGGAAAGC	ATAAAGTGT	AAGCCTGGGG	TGCCCTAATGA	GTGAGCTAAC	TCACATTAA	TGCGGTGCGC	TCACTGCCG
TGTGTATGC	TCGGCCTCTG	TATTCACAT	TTCGGACCCC	ACGGATTACT	CACTCGATTG	AGTGTAAATT	ACGCCAACGGG	AGTGACGGG

Figure 14
(continued)

pD17-cJ-dCH2.H1

CTTTCAGTC	GGAAACCTG	TGGGCCAGC	TCGTGGCTCG	AAGCACGGTC	6310	6320	6330	6340	6350	6360	6370	6380
GAAAGTCAG	CCCTTTGAC	AGCTTGAC	AGCTTGAC	ACGTAATTAC	6400	6410	6420	6430	6440	6450	6460	6470
CTTCCCTCGCT	CACTGACTCG	CTGGGCTCGG	TCGTTGGCT	GCGGGAGCG	6480	6490	6500	6510	6520	6530	6540	6550
GAAGGGAGCA	GTGACTGAGC	GACCGAGCC	AGCAAGCCG	CAGCGCTCGC	6580	6590	6600	6610	6620	6630	6640	6650
TTAGTCCCCCT	ATTCGGTCTT	CTCTTGTACA	CTCGTTTCC	GGTGTTCAG	6670	6680	6690	6700	6710	6720	6730	6740
TTCCCCCTGG	AAGGCTCTC	CCCCCTGAC	GAGCATCAC	AAAATCGACG	6750	6760	6770	6780	6790	6800	6810	6820
TATCCGAGGC	GGGGGAGCTG	CTCGTAGTGT	TTTGTAGCTG	GAGTTCACTG	6850	6860	6870	6880	6890	6900	6910	6920
CGCTTCTCA	ATGGCTACGC	TGTAGGTATC	TCAGTTGGGT	GTAGGTCTGTT	6940	6950	6960	6970	6980	6990	7000	7010
GGGAAAGAGT	TACGAGTGGC	ACATCCATAG	AGTCAAAGCCA	CATCCAGCAA	7030	7040	7050	7060	7070	7080	7090	7100
CGAACCGCTG	CGCCCTATCC	GGTAACATACT	GTCTTGAGTC	CACCCGGTA	7110	7120	7130	7140	7150	7160	7170	7180
GGCTGGGAC	GGGGAAATGG	CCATTGATAG	CAGRACTCAG	GTGGGGCCAT	7190	7200	7210	7220	7230	7240	7250	7260
GGATTAGCG	AGCGAGGTAT	GTAGGGGGTG	CTACAGAGTT	CTTGAAGTGG	7270	7280	7290	7300	7310	7320	7330	7340
CCTAATCGTC	TCGGTCCATA	CATCCGCCAC	GATGTCTCAA	GAACTCACC	7350	7360	7370	7380	7390	7400	7410	7420
TCTGGGCTCT	GCTGAAGCCA	GTTACCTTCG	GAAGAAAGGT	TGGTAGCTCT	7450	7460	7470	7480	7490	7500	7510	7520
AGACGGAGA	CGACTTCGGT	CAATGGAAGC	CTTTTCTCA	ACCATCGAGA	7550	7560	7570	7580	7590	7600	7610	7620

Figure 14
(continued)

pD17-cJ-dCH2.H1

7210	TTAAGGGATT	TTCGGTCA	GATTACAA	AAGGATCTTC	ACCTAGATCC	TTTAAATTA	AAATGAACT	TTTAATCAA
	TTTGAGTGC	AATTCCCTAA	AACCACTACT	CTAATAGTTT	TTCCTAGAAC	TGGATCTAGG	AAATTTAAAT	TTTACTTC
7300	7310	7320	7330	7340	7350	7360	7370	7380
TCTAAAGTAT	ATATGAGTAA	ACTTGGTCTG	ACAGTTACCA	ATGCCCTAAC	AGTGAGGCAC	CTATCTCAGC	GTATCTCTA	TTCGTTCAT
	AGATTTCATA	TATACCTATT	TGAACCGAC	TGTCAATGGT	TACGAATTAG	TCACTCGTG	GATAGAGTCG	CTAGACAGAT
7390	7400	7410	7420	7430	7440	7450	7460	7470
CCATAGTGC	CTGACTCCCC	GTCTGTGAGA	TAACTAGCAT	ACGGAGGGC	TTACCATCTG	GCCCCAGTGC	TGCAATGATA	CCGCAGAGCC
	GGTATCAACG	GACTGAGGGG	CAGCACATCT	ATTGATGCTA	TGCCCCTCCG	AAATGGTAGAC	ACGTTACTAT	GGCGCTCTGG
7480	7490	7500	7510	7520	7530	7540	7550	7560
CACGCTCACC	GGCTCCAGAT	TTATCAGCAA	AAAACCAGCC	AGCCGGAAAGG	GCCGAGGCA	GAAGTGGTC	TGCCAACTTTA	TCCGCCTCCA
	GTGCGAGTGG	CCGAGGTCTA	AAATAGTCGT	ATTGGTCCGG	TCCGCCCTTC	CGGTCTGGGT	CTTCACCAAGG	ACGTTGAAT
7570	7580	7590	7600	7610	7620	7630	7640	7650
TCCAGTCTAT	TAATTTGTTGC	CGGGGAAGCTA	GAGTAAGTTAG	TTCGCCAGTT	AATAGTTTGC	GCAACGTTGT	TGCCATTGCT	ACAGGCATTCG
	AGGTCAAGATA	ATTAACAACG	GCCCTTCGAT	CTCATTCATC	AAAGGGTCAA	TTATCAAACG	CGTTGCAACA	TGTCGGTAGC
7660	7670	7680	7690	7700	7710	7720	7730	7740
TGGTGTACG	CTCGTCGTTT	GGTATGGCTT	CATTCAAGCTC	CGGTTCCCAA	CGATCAAGGC	GAGTTACATG	ATCCCCATG	TGTGCAAAA
	ACCAAGTGC	GAGCAGCAAA	CCATACCGAA	GTAAGTGGAG	GCCAAAGGGTT	GCTAGTTCGG	CTCAATGTAC	ACACGTTTT
7750	7760	7770	7780	7790	7800	7810	7820	7830
AAGCGGTTAG	CTCCTTCGGT	CCTCCGATCG	TTGTCAAGAAG	TAAGTTGGCC	GCAGTGTAT	CACTCATGGT	TATGGAGCA	CTGCATAATT
	TTCGCCAAATC	GAGGAAGCCA	GGAGGCTAGC	AAACAGTCCTC	ATTCAACCGG	CGTCACAAATA	GTGAGTACCA	ATACCGTCGT
7840	7850	7860	7870	7880	7890	7900	7910	7920
CTCTACTGT	CATGCCATCC	GTAAGATGCT	TTCCTGTGAC	TGGTAGGTAC	TCAACCAAGT	CATTCTGAGA	ATAGTGTATG	CGGGGACCGA
	GAGAATGACA	GTACGGTAGG	CATTCTACGA	AAAGACACTG	ACCACTCATG	AGTGGTTCA	GTAAGACTCT	TATCACATAC
7930	7940	7950	7960	7970	7980	7990	8000	8010
GTGTGCTCTTG	CCGGCCGTCA	ATACGGGATA	ATACCGGCC	ACATAGCAGA	ACTTTAAAG	TGCTCATCAT	TGGAAAACGT	TCTTGGGGC
	CAACGAAAC	GGGGCGCAGT	TATGCCCTAT	TATGGCGGG	TGTATCGTCT	TGAAATTTC	ACGAGTAGTA	ACCTTTGCA
8020	8030	8040	8050	8060	8070	8080	8090	8100
GAAAACTCTC	AAGGATCTTA	CCGGCTGTGA	GATGCCAGTTC	GATGTAACCC	ACTCGTGCAC	CCAACTGATC	TTCAGGATCT	TTTACTTTCA
	CTTTGAGAG	TTCCTAGAAAT	GGGACAACT	CTAGGTCAAG	CTACATTTGGG	TGAGCACGTC	GGTTGACTAG	AAGTCGTAGA

Figure 14
(continued)

pD17-cJ-dCH2.H1

8110	8120	8130	8140	8150	8160	8170	8180	8190
CCAGGGTTTC	TGGGTGAGCA	AAAACAGGAA	GGCAAATGCG	CGCAAAAAAG	GGAATAAGGG	CGAACACGGAA	ATGTTGAATA	CTCATACTCT
GGTCCAAAG	ACCCACTCGT	TTTTGTCCTT	CGGTTTACG	GGTTTTTC	CCTTATTCCC	GCTGTGCCTT	TACAACCTAT	GAGTATGAGA
8200	8210	8220	8230	8240	8250	8260	8270	8280
TCCTTTTCA	ATATTATTGA	AGCATTATC	AGGGTTATTG	TCTCATGAGC	GGATAACATAT	TTGAAATGTAT	TTAGAAAAAT	AAACAAATAG
AGGAAAAAGT	TATAATAACT	TCGTAATAG	TCCCAATAAC	AGAGTACTCG	CCTATGTATA	AACCTACATA	AATCTTTTA	TTTGTTTATC
8290	8300	8310	8320	8330				
GGCTTCGCG	CACATTTCGCC	CGAAAAGTGC	CACCTOACGT	C				
CCCAAGGGCG	GTGTAAGGG	GCTTTACG	GTGGACTGCA	G				

Figure 14
(continued)

Comparison of whole chiBR96 and
deleted CH2 chiBR96 on Ley/K ELISA

Figure 15

hBR96-2B: L235 to A235 and G237 to A237

hBR96-2C: E318 to S318, K320 to S320, and K322 to S322

hBR96-2D: P331 to A331

hBR96-2E: L235 to A235, G237 to A237, E318 to S318, K320 to S320, and K322 to S322

hBR96-2F: L235 to A235, G237 to A237, and P331 to A331

hBR96-2G: E318 to S318, K320 to S320, K322 to S322, and P331 to A331

hBR96-2H: L235 to A235, G237 to A237, E318 to S318, K320 to S320, K322 to S322, and P331 to A331

Figure 16

FIGURE 1. FIGURE 1. FIGURE 1. FIGURE 1. FIGURE 1.

FIGURE 18A

1 GGTACCAATT TAAATTGATA TCTCCTTAGG TCTCGAGTCT CTAGATAACC
51 GGTCAATCGA TTGGAATTCT TGCGGCCGCT TGCTAGCCAC CATGGAGTTG
101 TGGTTAACGCT TGGTCTTCCT TGTCCTTGTT TTAAAAGGTG TCCAGTGTGA
151 AGTGCAACTG GTGGAGTCTG GGGGAGGCCT AGTGCAGCCT GGAGGGTCCC
201 TGCGACTTTC CTGTGCTGCA TCTGGATTCC CGTTCAAGTGA CTATTACATG
251 TATTGGGTTTC GCCAGGCTCC AGGCAAGGGA CTGGAGTGGG TCTCATACAT
301 TAGTCAAGAT GGTGATATAA CCGACTATGC AGACTCCGTA AAGGGTCGAT
351 TCACCATCTC CAGAGACAAT GCAAAGAACAA GCCTGTACCT GCAAATGAAC
401 AGCCTGAGGG ACGAGGACAC AGCCGTGTAT TACTGTGCAA GAGGCCTGGC
451 GGACGGGGCC TGGTTTGCTT ACTGGGGCCA AGGGACTCTG GTCACGGTCT
501 CTTCCGCTAG CACCAAGGGC CCATCGGTCT TCCCCCTGGC ACCCTCCTCC
551 AAGAGCACCT CTGGGGGCAC AGCGGCCCTG GGCTGCCTGG TCAAGGACTA
601 CTTCCCCGAA CCGGTGACGG TGTCGTGGAA CTCAGGCGCC CTGACCAGCG
651 GCGTGCACAC CTTCCCGGCT GTCCTACAGT CCTCAGGACT CTACTCCCTC
701 AGCAGCGTGG TCACCGTGCC CTCCAGCAGC TTGGGCACCC AGACCTACAT
751 CTGCAACGTG AATCACAAGC CCAGCAACAC CAAGGTGGAC AAGAAAGTTG
801 GTGAGAGGCC AGCACAGGGA GGGAGGGTGT CTGCTGGAAG CCAGGCTCAG
851 CGCTCCTGCC TGGACGCATC CCGGCTATGC AGCCCCAGTC CAGGGCAGCA
901 AGGCAGGCCCG CGTCTGCCTC TTCACCCGGA GGCCTCTGCC CGCCCCACTC
951 ATGCTCAGGG AGAGGGTCTT CTGGCTTTT CCCCAGGCTC TGGGCAGGCA
1001 CAGGCTAGGT GCCCCTAACCC CAGGCCCTGC ACACAAAGGG GCAGGTGCTG
1051 GGCTCAGACC TGCCAAGAGC CATATCCGGG AGGACCCCTGC CCCTGACCTA
1101 AGCCCACCCC AAAGGCCAAA CTCTCCACTC CCTCAGCTCG GACACCTTCT
1151 CTCCTCCCAG ATTCCAGTAA CTCCCAATCT TCTCTCTGCA GAGCCCAAAT
1201 CTTGTGACAA AACTCACACA TGCCCACCGT GCCCAGGTAA GCCAGCCCAG
1251 GCCTCGCCCT CCAGCTCAAG GCGGGACAGG TGCCCTAGAG TAGCCTGCAT
1301 CCAGGGACAG GCCCCAGCCG GGTGCTGACA CGTCCACCTC CATCTTTCC

235 237

1351 TCAGCACCTG AACTCCTGG GGGACCGTCA GTCTTCCTCT TCCCCCCC
1401 ACCCAAGGAC ACCCTCATGA TCTCCGGAC CCCTGAGGTC ACATGCGTGG
1451 TGGTGGACGT GAGCCACGAA GACCCTGAGG TCAAGTTCAA CTGGTACGTG
1501 GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG AGGAGCAGTA
1551 CAACAGCACG TACCGTGTGG TCAGCGTCCT CACCGTCCTG CACCAGGACT
1601 GGCTGAATGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGCCCTCCCA
1651 GCCCCATCG AGAAAACCAT CTCCAAAGCC AAAGGTGGGA CCCGTGGGGT
1701 GCGAGGGCCA CATGGACAGA GGCCGGCTCG GCCCACCCCTC TGCCCTGAGA
1751 GTGACCGCTG TACCAACCTC TGTCCCTACA GGGCAGCCCC GAGAACAC
1801 GGTGTACACC CTGCCCAT CCCGGGATGA GCTGACCAAG AACCAAGTCA
1851 GCCTGACCTG CCTGGTCAAA GGCTTCTATC CCAGCGACAT CGCCGTGGAG
1901 TGGGAGAGCA ATGGGCAGCC GGAGAACAAAC TACAAGACCA CGCCTCCCGT
1951 GCTGGACTCC GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA
2001 AGAGCAGGTG GCAGCAGGGG AACGTCTTCT CATGCTCCGT GATGCATGAG
2051 GCTCTGCACA ACCACTACAC GCAGAAGAGC CTCTCCCTGT CTCCGGTAA
2101 ATGAGTGCAG CCGCCGGCAA GCCCCGCTC CCCGGCTCT CGCGGTCGCA
2151 CGAGGATGCT TGGCACGTAC CCCCTGTACA TACTTCCCGG GCGCCCAGCA
2201 TGGAAATAAA GCACCCAGCG CTGCCCTGGG CCCCTGCGAG ACTGTGATGG
2251 TTCTTCCAC GGGTCAGGCC GAGTCTGAGG CCTGAGTGGC ATGAGGGAGG
2301 CAGAGCGGGT CCCACTGTCC CCACACTGGC CCAGGCTGTG CAGGTGTGCC
2351 TGGGCCCCCT AGGGTGGGGC TCAGCCAGGG GCTGCCCTCG GCAGGGTGGG
2401 GGATTGCCA GCGTGGCCCT CCCTCCAGCA GCACCTGCC TGGGCTGGGC
2451 CACGGGAAGC CCTAGGAGCC CCTGGGGACA GACACACAGC CCCTGCCTCT
2501 GTAGGAGACT GTCCTGTTCT GTGAGCGCCC CTGTCCCTCCC GACCTCCATG
2551 CCCACTCGGG GGCATGCCTA GTCCATGTGC GTAGGGACAG GCCCTCCCTC
2601 ACCCATCTAC CCCCCACGGCA CTAACCCCTG GCTGCCCTGC CCAGCCTCGC
2651 ACCCGCATGG GGACACAAACC GACTCCGGGG ACATGCACTC TCGGGCCCTG
2701 TGGAGGGACT GGTGCAGATG CCCACACACA CACTCAGCCC AGACCCGTT
2751 AACAAACCCC GCACCTGAGGT TGGCCGGCCA CACGGCCACC ACACACACAC
2801 GTGCACGCCT CACACACGGA GCCTCACCCG GGCGAACTGC ACAGCACCCA

2851 GACCAGAGCA AGGTCCCTCGC ACACGTGAAC ACTCCTCGGA CACAGGCC
2901 CACGAGCCCC ACGCGGCACC TCAAGGCCA CGAGCCTCTC GGCAGCTTCT
2951 CCACATGCTG ACCTGCTCAG ACAAAACCCAG CCCTCCTCTC ACAAGGGTGC
3001 CCCTGCAGCC GCCACACACA CACAGGGGAT CACACACCAC GTCACGTCCC
3051 TGGCCCTGGC CCACTTCCCA GTGCCGCCCT TCCCTGCAGG ACGGATCAGC
3101 CTCGACTGTG CCTTCTAGTT GCCAGCCATC TGTTGTTGC CCCTCCCCCG
3151 TGCCTTCCTT GACCCTGGAA GGTGCCACTC CCACTGTCCT TTCCTAATAA
3201 AATGAGGAAA TTGCATCGCA TTGTCTGAGT AGGTGTCATT CTATTCTGGG
3251 GGGTGGGGTG GGGCAGGACA GCAAGGGGA GGATTGGAA GACAATAGCA
3301 GGCATGCTGG GGATGCGGTG GGCTCTATGG CTTCTGAGGC GGAAAGAAC
3351 AGCTGGGGCT CTAGGGGGTA TCCCCACGCG CCCTGTAGCG GCGCATTAAG
3401 CGCGGCGGGT GTGGTGGTTA CGCGCAGCGT GACCGCTACA CTTGCCAGCG
3451 CCCTAGCGCC CGCTCCTTTC GCTTTCTTCC CTTCTTTCT CGCCACGTT
3501 GCCGGGCCTC TCAAAAAAGG GAAAAAAAGC ATGCATCTCA ATTAGTCAGC
3551 AACCATAGTC CCGCCCCCTAA CTCCGCCCAT CCCGCCCTA ACTCCGCCA
3601 GTTCCGCCA TTCTCCGCC CATGGCTGAC TAATTTTTT TATTATGCA
3651 GAGGCCGAGG CCGCCTCGGC CTCTGAGCTA TTCCAGAAGT AGTGAGGAGG
3701 CTTTTTGGA GCCCTAGGCT TTTGAAAAA GCTTGGACAG CTCAGGGCTG
3751 CGATTTCGCG CCAAACCTGA CGGCAATCCT AGCGTGAAGG CTGGTAGGAT
3801 TTTATCCCCG CTGCCATCAT GGTCGACCA TTGAACCTGCA TCGTCGCCGT
3851 GTCCCAAAAT ATGGGGATTG GCAAGAACGG AGACCTACCC TGGCCTCCGC
3901 TCAGGAACGA GTTCAAGTAC TTCCAAAGAA TGACCACAAC CTCTTCAGTG
3951 GAAGGTAAAC AGAATCTGGT GATTATGGGT AGGAAAACCT GGTTCTCCAT
4001 TCCTGAGAAG AATCGACCTT TAAAGGACAG AATTAATATA GTTCTCAGTA
4051 GAGAACTCAA AGAACCAACCA CGAGGAGCTC ATTTTCTTGC CAAAAGTTG
4101 GATGATGCCT TAAGACTTAT TGAACAACCG GAATTGGCAA GTAAAGTAGA
4151 CATGGTTGG ATAGTCGGAG GCAGTTCTGT TTACCAGGAA GCCATGAATC
4201 AACCCAGGCCA CCTTAGACTC TTTGTGACAA GGATCATGCA GGAATTGAA
4251 AGTGACACGT TTTCCCAGA AATTGATTG GGGAAATATA AACTTCTCCC
4301 AGAATACCCA GGCGTCCTCT CTGAGGTCCA GGAGGAAAAA GGCATCAAGT

FIGURE 18C

4351 ATAAGTTGA AGTCTACGAG AAGAAAGACT AACAGGAAGA TGCTTCAAG
4401 TTCTCTGCTC CCCTCCTAAA GCTATGCATT TTTATAAGAC CATGGGACTT
4451 TTGCTGGCTT TAGATCTCTT TGTGAAGGAA CCTTACTTCT GTGGTGTGAC
4501 ATAATTGGAC AAACTACCTA CAGAGATTAA AAGCTCTAAG GTAAATATAA
4551 AATTTTAAG TGTATAATGT GTTAAACTAC TGATTCTAAT TGTTGTGTA
4601 TTTTAGATTC CAACCTATGG AACTGATGAA TGGGAGCAGT GGTGGAATGC
4651 CTTTAATGAG GAAAACCTGT TTTGCTCAGA AGAAATGCCA TCTAGTGATG
4701 ATGAGGCTAC TGCTGACTCT CAACATTCTA CTCCCTCCAAA AAAGAAGAGA
4751 AAGGTAGAAG ACCCCAAGGA CTTTCCTTCA GAATTGCTAA GTTTTTGAG
4801 TCATGCTGTG TTTAGTAATA GAACTCTTGC TTGCTTGCT ATTTACACCA
4851 CAAAGGAAAA AGCTGCACTG CTATACAAGA AAATTATGGA AAAATATTCT
4901 GTAACCTTA TAAGTAGGCA TAACAGTTAT AATCATAACA TACTGTTTT
4951 TCTTACTCCA CACAGGCATA GAGTGTCTGC TATTAATAAC TATGCTCAA
5001 AATTGTGTAC CTTTAGCTTT TTAATTGTA AAGGGGTTAA TAAGGAATAT
5051 TTGATGTATA GTGCCTTGAC TAGAGATCAT AATCAGCCAT ACCACATTTG
5101 TAGAGGTTTT ACTTGCTTTA AAAAACCTCC CACACCTCCC CCTGAACCTG
5151 AAACATAAAA TGAATGCAAT TGTTGTTGTT AACTTGTTA TTGCAGCTTA
5201 TAATGGTTAC AAATAAAGCA ATAGCATCAC AAATTCACA AATAAAGCAT
5251 TTTTTCACT GCATTCTAGT TGTGGTTGT CCAAACTCAT CAATGTATCT
5301 TATCATGTCT GGATCGGCTG GATGATCCTC CAGCGCGGGG ATCTCATGCT
5351 GGAGTTCTTC GCCCACCCCA ACTTGTTTAT TGCAGCTTAT AATGGTTACA
5401 AATAAAGCAA TAGCATCACA AATTCACAA ATAAAGCATT TTTTCACTG
5451 CATTCTAGTT GTGGTTGTC CAAACTCATC AATGTATCTT ATCATGTCTG
5501 TATACCGTCG ACCTCTAGCT AGAGCTTGGC GTAATCATGG TCATAGCTGT
5551 TTCCTGTGTG AAATTGTTAT CCGCTCACAA TTCCACACAA CATACTGCC
5601 GGAAGCATAA AGTGTAAAGC CTGGGGTGCC TAATGAGTGA GCTAACTCAC
5651 ATTAATTGCG TTGCGCTCAC TGCCCGCTTT CCAGTCGGGA AACCTGTCGT
5701 GCCAGCTGCA TTAATGAATC GGCCAACGCG CGGGGAGAGG CGGTTTGCCT
5751 ATTGGGCGCT CTTCCGCTTC CTCGCTCACT GACTCGCTGC GCTCGGTGCT
5801 TCGGCTGCGG CGAGCGGTAT CAGCTCACTC AAAGGCGGTA ATACGGTTAT

FIGURE 18D

5851 CCACAGAATC AGGGGATAAC GCAGGAAAGA ACATGTGAGC AAAAGGCCAG
5901 CAAAAGGCCA GGAACCGTAA AAAGGCCGCG TTGCTGGCGT TTTTCATAG
5951 GCTCCGCCCG CCTGACGAGC ATCACAAAAA TCGACGCTCA AGTCAGAGGT
6001 GGCAGAACCC GACAGGACTA TAAAGATACC AGGCAGTTCC CCCTGGAAGC
6051 TCCCTCGTGC GCTCTCCTGT TCCGACCCCTG CCGCTTACCG GATACCTGTC
6101 CGCCTTTCTC CCTTCGGGAA GCGTGGCGCT TTCTCAATGC TCACGCTGTA
6151 GGTATCTCAG TTCGGTGTAG GTCGTTCGCT CCAAGCTGGG CTGTGTGCAC
6201 GAACCCCCCG TTCAGCCGA CCGCTGCGCC TTATCCGGTA ACTATCGTCT
6251 TGAGTCCAAC CCGGTAAGAC ACGACTTATC GCCACTGGCA GCAGCCACTG
6301 GTAACAGGAT TAGCAGAGCG AGGTATGTAG GCGGTGCTAC AGAGTTCTTG
6351 AAGTGGTGGC CTAACTACGG CTACACTAGA AGGACAGTAT TTGGTATCTG
6401 CGCTCTGCTG AAGCCAGTTA CCTTCGGAAA AAGAGTTGGT AGCTCTTGAT
6451 CCGGCAAACA AACCAACCGCT GGTAGCGGTG GTTTTTTGT TTGCAAGCAG
6501 CAGATTACGC GCAGAAAAAA AGGATCTCAA GAAGATCCTT TGATCTTTTC
6551 TACGGGTCT GACGCTCAGT GGAACGAAAA CTCACGTTAA GGGATTTGG
6601 TCATGAGATT ATCAAAAAGG ATCTTCACCT AGATCCTTT AAATTAAAAAA
6651 TGAAGTTTA AATCAATCTA AAGTATATAT GAGTAAACTT GGTCTGACAG
6701 TTACCAATGC TTAATCAGTG AGGCACCTAT CTCAGCGATC TGTCTATTTC
6751 GTTCATCCAT AGTTGCCTGA CTCCCCGTCG TGTAGATAAC TACGATAACGG
6801 GAGGGCTTAC CATCTGGCCC CAGTGCTGCA ATGATAACCGC GAGACCCACG
6851 CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC GGAAGGGCCG
6901 AGCGCAGAAG TGGTCCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAT
6951 TGTTGCCGGG AAGCTAGAGT AAGTAGTTCG CCAGTTAATA GTTGCGCAA
7001 CGTTGTTGCC ATTGCTACAG GCATCGTGGT GTCACGCTCG TCGTTGGTA
7051 TGGCTTCATT CAGCTCCGGT TCCCAACGAT CAAGGCGAGT TACATGATCC
7101 CCCATGTTGT GCAAAAAAGC GGTTAGCTCC TTGGTCCCTC CGATCGTTGT
7151 CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG GCAGCACTGC
7201 ATAATTCTCT TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT
7251 GAGTACTCAA CCAAGTCATT CTGAGAATAG TGTATGCCGC GACCGAGTTG
7301 CTCTTGCCCCG GCGTCAATAC GGGATAATAC CGCGCCACAT AGCAGAACTT

FIGURE 18E

7351 TAAAAGTGCT CATCATTGGA AAACGTTCTT CGGGGCGAAA ACTCTCAAGG
7401 ATCTTACCGC TGTTGAGATC CAGTTCGATG TAACCCACTC GTGCACCCAA
7451 CTGATCTTCA GCATCTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAAA
7501 CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT
7551 TGAATACTCA TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG
7601 TTATTGTCTC ATGAGCGGAT ACATATTGA ATGTATTTAG AAAAATAAAC
7651 AAATAGGGGT TCCGCGCACA TTTCCCCGAA AAGTGCCACC TGACGTCGAC
7701 GGATCGGGAG ATCTGCTAGG TGACCTGAGG CGCGCCGGCT TCGAATAGCC
7751 AGAGTAACCT TTTTTTTAA TTTTATTAA TTTTATTTT GAGATGGAGT
7801 TTGGCGCCGA TCTCCCGATC CCCTATGGTC GACTCTCAGT ACAATCTGCT
7851 CTGATGCCGC ATAGTTAACG CAGTATCTGC TCCCTGCTTG TGTGTTGGAG
7901 GTCGCTGAGT AGTGCAGG CAAAATTAA GCTACAAACAA GGCAAGGCTT
7951 GACCGACAAT TGCATGAAGA ATCTGCTTAG GGTTAGGCCT TTTGCGCTGC
8001 TTCGCGATGT ACGGGCCAGA TATACGCGTT GACATTGATT ATTGACTAGT
8051 TATTAATAGT AATCAATTAC GGGTCATTA GTTCATAGCC CATATATGGA
8101 GTTCCCGCTT ACATAACTTA CGGTAAATGG CCCGCCTGGC TGACCGCCCA
8151 ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC CATAGTAACG
8201 CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGACTATT TACGGTAAAC
8251 TGCCCACATTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA
8301 TTGACGTCAA TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG
8351 ACCTTATGGG ACTTTCTAC TTGGCAGTAC ATCTACGTAT TAGTCATCGC
8401 TATTACCATG GTGATGCGGT TTTGGCAGTA CATCAATGGG CGTGGATAGC
8451 GGTTTGACTC ACGGGGATTT CCAAGTCTCC ACCCCATTGA CGTCAATGGG
8501 AGTTTGTGTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA
8551 CTCCGCCCCA TTGACGCAA TGGGCGGTAG GCGTGTACGG TGGGAGGTCT
8601 ATATAAGCAG AGCTCTCTGG CTAACTAGAG AACCCACTGC TTACTGGCTT
8651 ATCGAAATTAA ATACGACTCA CTATAGGGAG ACCCAAGCTT

FIGURE 19 A

pD17-hG1b

10	20	30	40	50
GGTACCAATT	TAAATTGATA	TCTCCCTTAGG	TCTCGAGTCT	CTAGATAACC
CCATGGTTAA	ATTAACTAT	AGAGGAATCC	AGAGCTCAGA	GATCTATTGG
70	80	90	100	110
TTGGAATTCT	TGCGGCCGCT	TGCTAGCACC	AAGGGCCCAT	CGGTCTTCCC
AACTTAAAGA	ACGCCGGGA	ACGATGTTGG	TTCGGGGTA	CCTGGCACCC
130	140	150	160	170
TCCTCCAAGA	GCACCTCTGG	GGGCACAGCG	GCCCTGGGCT	GCCTGGTCAA
AGGAGGTTCT	CGTGGAGACC	CCCGTGTGCC	CGGGACCCGA	GGACCAAGGG
190	200	210	220	230
CCCGAACCGG	TGACGGTGT	GTGGAACCTCA	GGGCCCTGTA	CCAGGGCGT
GGGCTTGGCC	ACTGCCACAG	CACCTTGAGT	CGGGGACT	GCACACTCTC
250	260	270	280	290
CCGGCTGTTC	TACAGTCTCTC	AGGACTCTAC	TCCCTCAGCA	GGGTGGTCAC
GGCGACAGG	ATGTCAAGGAG	TCCTGAGATG	AGGGAGTCGT	GGCACCCAGTG
310	320	330	340	350
AGCAGCTTGG	GCACCCAGAC	CTACATCTGC	AACGTGAATC	ACAAGCCCAG
TCGTCGAAC	CGTGGTCTG	GATGTAGACG	TTGCACTTAG	TGTTGGGTTC
370	380	390	400	410
GTGGACAAGA	AAGTGGTGA	GAGGCCAGCA	CAGGGAGGA	TGGAAGCCAG
CACTGTCT	TTCACCAACT	CTCCGGTCGT	GTCCCTCCCT	CAACACAGACG
430	440	450	460	470
GCTCAGCGCT	CCTGCCCTGGA	CGCATCCGG	CTATGCCGCC	CCAGTCCAGG
CGACTCGCGA	GGACGGACCT	GGCTGGGCC	GATACGTCGG	GGTCAGGTACG
490	500	510	520	530
AGGCCCGTC	TGCCCTCTCA	CCCGGAGGCC	TCTGCCGCC	CCACTCATGC
TCCGGGGCAG	ACGGAGAAGT	GGGCCCTCCGG	AGACGGGG	TCAGGGAGAG
550	560	570	580	590
GGTCTTCTGG	CTTTTTCCCC	AGGCTCTGGG	CAGGCACAGG	CTAGGTGCC
CCAGAACGACC	AAAAAAGGGG	TCCGAGACCC	GTCCCGTGTCC	GATCCACGGG
				600
				GATTGGGTCC

FIGURE 19B

pD17-hG1b

610 620 630 640 650 660
 CCCCTGCACAC AAAGGGCAG GTGCTGGGT CAGACCTGCC AAGAGCCATA TCCGGGAGGA
 GGGACGTGTG TTTCCCCGTC CACGACCCGA GTCTGGACGG TTCTCGGTAT AGGCCCTCCCT

 670 680 690 700 710 720
 CCCCTGCCCT GACCTAAGCC CACCCCAAG GCCAAACTCTT CCAACTCCCTC AGCTCGGACA
 GGGACGGGGAA CTGGATTCCG GTGGGTTTC CGGTTGAGA GGTGAGGGAG TCGAGCCTGT

 730 740 750 760 770 780
 CCTTCTCTCC TCCCAGATTTC CAGTAACCTCC CAATCTCTC TCTGCAGAGC CCAAATCTTIG
 GGAAGAGAGG AGGGTCTAAC GTCATTGAGG GTTAGAGAG AGACGTCTCG GGTCTAGAAC

 790 800 810 820 830 840
 TGACAAAACT CACACATGCC CACCGTGCCT AGGTAAGCCA GCCCAGGCCCT CGCCCTCCAG
 ACTGTTTGA GTGTGTACGG GTGGCACGGG TCCATTGGT CGGGTCCGGGA GCGGGAGGTIC

 850 860 870 880 890 900
 CTCAAAGGGGG GACAGGTGCC CTAGAGTAGC CTGGCATCCAG GGACAGGGCC CAGCCGGGTG
 GAGTTCCGGCC CTGTCCACGG GATCTCATCG GACGTAGGTC CCTGTCCGGG GTCGGCCAC

 910 920 930 940 950 960
 CTGACACGTC CACCTCCATC TCTTCCTCAG CACCTGAACCTTGAGA 235 950 237 960
 GACTGTGCAG GTGGAGGTAG AGAAGGAGTC GTGGACATTGA [CTTG]GGGGGA CCGTCAGTCT
 [GACCCCCCT] GGCAGTCAGA

 970 980 990 1000 1010 1020
 TCCTCTTCCC CCCAAAACCC AAGGACACCC TCATGATCTC CGGGACCCCT GAGGTCACTAT
 AGGAGAAGGGC GGGTTTTGGG TTCCCTGTGGG AGTACTAGAG GGCCTGGGA CTCCAGTGTAA

 1030 1040 1050 1060 1070 1080
 GCGTGGTGGT GGACGTGAGC CACGAAGACC CTGAGGTCAA GTTCAACTTGG TACGTGGACG
 CGCACCAACCA CCTTGCACTCG GTGCTCTCG GACTCCAGTT CAAGTTGACC ATGCACCTGC

 1090 1100 1110 1120 1130 1140
 GCGTGGAGGT GCATAATGCC AAGACAAAGC CGCGGGAGGA GCAGTACAAAC AGCACGTAC
 CGCACCTCCA CGTATTACGG TTCTGTGTTTCG GCGCCCTCTC CTGCTATGTTG TCCTGCGATGG

 1150 1160 1170 1180 1190 1200
 GCGTGGTCAG CGTCCTCACCA GTCCCTGCACC AGGACTGGCT GAATGGCAAG 318
 CACACCAGTC GCAGGAGTGG CAGGACGTGG TCCCTGACCGA CTTACCGTTC CTTACCGTTC
 [CTTG]TGTC

FIGURE 19C

pD17-hG1b

322	1210	1220	1230	321	1240	1250	1260
GCAAGGTCTC	CAACAAAGCC	CTCCCAGCC	CCATCGAGAA	AACCATCTCC	AAAGCCAAG		
CGTICCAGAG	GTTGGTTTCGG	GAGGGTCCGG	GGPAGCTCTT	TGGTAGAGG	TTTCGGTTTC		
1270	1280	1290	1300	1310	1320		
GTGGGACCCG	TGGGGTGGCA	GGGCCACATG	GACAGAGGCC	GGCTCGGCC	ACCTCTGCC		
CACCCCTGGGC	ACCCCACGCT	CCGGGTGTAC	CTGTCCTCGG	CCGAGCCGG	TGGAGACGG		
1330	1340	1350	1360	1370	1380		
CTGAGAGTGA	CCGCTGTACC	AACCTCTGTC	CCTACAGGGC	AGCCCCGAGA	ACCAACAGGTG		
GACTCTCACT	GGCGACATGG	CCTACTCGAC	GGATGTCCCC	TGGGGCTCT	TGGTGTCCAC		
1390	1400	1410	1420	1430	1440		
TACACCCCTGC	CCCCATCCCG	GGATGAGCTG	ACCAAGAAC	AGGTCAAGCT	GACCTGCTG		
ATGTGGGACCG	GGGGTAGGGC	CCTACTCGAC	TGGTTCTTGG	TCCAGTCGGA	TGGTGTCCAC		
1450	1460	1470	1480	1490	1500		
GTCAAAGGCT	TCTATCCCG	CGACATCGCC	GTGGAGTGGG	AGAGCAATTG	GCAGGCCGGAG		
CAGTTTCCGA	AGATAAGGGTC	GCTGTAGCGG	CACCTCACCC	TCTCGTTAAC	CGTGGCCCTC		
1510	1520	1530	1540	1550	1560		
AACAAC TACA	AGACCACGCC	TCCCGTGCTG	GAATCCGACG	GCTCCCTCTT	CCTCTACAGC		
TTGTGTGATGT	TCTGGTGC GG	AGGGCACGAC	CTGAGGCTGC	CGAGGAAGAA	GGAGATGTG		
1570	1580	1590	1600	1610	1620		
AAGCTCACCG	TGGACAAGAG	CAGGTGGCAG	CAGGGGAACG	TCTTCCTCATG	CTCCGTGATG		
TTCCGAGTGGC	ACCTGTTCTC	GTCCACCGTC	GTCCCCCTTGC	AGAAAGACTAC	GAGGCACTAC		
1630	1640	1650	1660	1670	1680		
CATGAGGCTC	TGCACAAACCA	CTACACGCC	AAGAGCCCT	CCCTGTCTCC	GGGTAAATGA		
GTACTCCGAG	ACGTGTTGGT	GATGTGCGTC	TTCTCGGAGA	GGGACAGGG	CCCATTTACT		
1690	1700	1710	1720	1730	1740		
GTGGGACGGC	CGGCAAGGCC	CGGTCTCCCG	GTGGCACGAG	GATGCTTGGC			
CACCGCTGCCG	GGCGTTCCGG	GGCGAGGGGC	CCGAGAGGCC	CAGCGTGC	CTACGAACCG		
1750	1760	1770	1780	1790	1800		
ACGTACCCCC	TGTACATACT	TCCCGGGCGC	CCAGCATGGA	AATAAAAGCAC	CCAGCGCTGC		
TGGCATGGGG	ACATGTATGA	AGGGCCCGCG	GGTCGTACCT	TIAATTTCGGT	GGTGGCGGACG		

FIGURE 19D

pD17-hG1b

CCTGGCCCCC	TGCGAGACTG	TGATGGTTCT	TTCCACGGGT	CAGGCCGAGT	CTGAGGGCCTG
GGACCCGGGG	ACGGCTCTGAC	ACTACCAAGA	AAGGTGCCCA	GTCCGGCTCA	GACTCCGGAC
1870	1880	1890	1900	1910	1920
AGTGGCATGA	GGGAGGCAGA	GCGGGTCCCA	CTGCCCCAC	ACTGGCCCAG	GCTGTGCAGG
TCACCGTACT	CCCTCCGTCT	CGCCCAAGGGT	GACAGGGGTG	TGACCCGGTC	CGACACGTCC
1930	1940	1950	1960	1970	1980
TGTGCCTGGG	CCCCCTAGGG	TGGGGCTCAG	CCAGGGGCTG	CCCTCGGCAG	GGTGGGGGAT
ACACGGACCC	GGGGATCCC	ACCCCGAGTC	GGTCCCCGAC	GGGAGCCGTC	CCACCCCCCTA
1990	2000	2010	2020	2030	2040
TTGCCAGCGT	GGCCCTCCCT	CCAGCAGCAC	CTGGCCTGGG	CTGGGCCACG	GGAAAGCCCTA
AACGGTGGCA	CCGGGAGGGAA	GGTCGTCTGTG	GACGGGACCC	GACCCGGTGC	CCITTGGGGAT
2050	2060	2070	2080	2090	2100
GGAGCCCCCTG	GGGACAGACA	CACAGCCCCCT	GCCTCTGTAG	GAGACTGTCC	TGTTCCTGTGA
CCTCGGGGAC	CCCTGTCTGT	GTGTGGGGAA	CGGAGACATC	CTCTGACAGG	ACAAGACACT
2110	2120	2130	2140	2150	2160
GCGCCCCCTGT	CCTCCCGACC	TCCATGCCCA	CTCGGGGGCA	TGCTGGGGAT	GGGGTTGGGT
CGGGGGACA	GGAGGGCTGG	AGGTACGGGT	GAGCCCCCGT	ACGACCCCTA	CGCCACCCCGA
2170	2180	2190	2200	2210	2220
CTATGGCTTC	TGAGGGGGAA	AGAACCAAGCT	GGGGCTCTAG	GGGGTATGCC	CACGGCCCT
GATAACCGAAG	ACTCCGCCCT	TCTTGTCGCA	CCCCGAGATC	CCCCATAGGG	GTGCGCCGGGA
2230	2240	2250	2260	2270	2280
GTAGCGGGCGC	ATTAAGCGCG	GCGGGTGTGG	TGGTTACGGC	CAGCGTACCC	GCTACACTTG
CATCGCCGGC	TAATTGCGGC	CGCCCAACACC	ACCAATGCGC	GTGCGACTGG	CGATGTGAAC
2290	2300	2310	2320	2330	2340
CCAGCGCCCT	AGCGCCCCGCT	CCTTTCGCTT	TCTTCCCTTC	CTTTCTCGCC	ACGTTCGCCG
GGTGGGGGAA	TGGGGGGGA	GGAAAGCGAA	AGAAGGGAG	GAAGAGGG	TGCAAGCGGC
2350	2360	2370	2380	2390	2400
GCTTCCCGG	TCAAGCTCTA	AATCGGGGCA	TCCCTT TAGG	GTTCGGATTT	AGTGCCTTAC
CGAAAGGGGC	AGTTCGAGAT	TAGGCCCCGT	AGGGAAATCC	CAAGGCTAAA	TCACGAAATG

FIGURE 19E

pD17-hG1b

2410	GGCACCTCGA	CCCCAAAAAA	CTTGATAGG	GIGATGGTT	ACGTAGTGGG	CCATCGCCCT	2460
	CCGTGGAGCT	GGGGTTTTT	GAACTAATCC	CACTACCAAG	TGCATCACCC	GGTAGCGGGAA	
2470	GATAGACGGT	TTTTCGCCCT	TTGACGTTGG	AGTCCACGTT	CTTTAATAGT	GGACTCTTGT	2520
	CTATCTGCCA	AAAAGCGGGA	AACTGCAAACC	TCAGGGTCAA	GAATTATACA	CCTGAGAACAA	
2530	TCCAAACTGG	AACAAACACTC	AACCCATATCT	CGGTCTATTTC	TTTTGATTTA	TAAGGGATT	2580
	AGGTTTGACC	TTGTTGTGAG	TTGGGATAGA	GCCAGATAAG	AAAACAAAT	ATTCCCTAAA	
2590	TGGGGATTTC	GGCCTATTGG	TTAAAAAATG	AGCTGATTAA	ACAAAAAATT	AACGCCAATT	2640
	ACCCCTAAAG	CCGGGATAACC	AATTTTTAC	TCGACTAAAT	TGTTTTTAAA	TTCGGCTTAA	
2650	AATTCTGTGG	AATGTGTGTC	AGTTAGGGTG	TGGAAAGTCC	CCAGGCTCCC	CAGGCAGGCA	2700
	TTAGACACC	TTACACACAG	TCAATCCAC	ACCTTTCAAG	GGTCCGAGGG	GTCCGTCCTGT	
2710	GAAGTATGCA	AAGCATGCA	CTCAATTAGT	CAGCAAACCAT	AGTCCCCGCC	CTAACTCCGC	2760
	CTTCATACGT	TTCGTACGTA	GAGTTATCA	GTCGTTGGTA	TCAGGGGG	GATTGAGGGCG	
2770	CCATCCCGCC	CCTAAACTCCG	CCCAGTTCCG	CCCATTCCTCC	GCCCCATGGC	TGACTTAATT	2820
	GGTAGGGCGG	GGATTGAGGC	GGGTCAAGGC	GGGTAAAGAGG	GGGGTACCG	ACTGATTAAA	
2830	TTTTTATTAA	TGCAGAGGCC	GAGGCCGCCT	CGGCCTCTGA	GCTATTCCAG	AAGTAGTGAG	2880
	AAAAATAAAAT	ACGTCTCCGG	CTCCGGCGGA	GGGGAGACT	CGATAAGGT	TTCATCACTC	
2890	GAGGCTTTT	TGGAGGGCTA	GGCTTTTGCA	AAAAGCTTGGG	ACAGCTCAGG	GCTGCGATT	2940
	CTCCGAAAAA	ACCTCCGGAT	CCGAAAACGT	TTTTCGAACC	TGTCGAGTCC	CGACGCTAAA	
2950	CGGCCAAC	TTGACGGCAA	TCCTAGCGTG	AAGGCTGGTA	GGATTTTATC	CCCGCTGCCA	3000
	GCGCGGTTT	AACTGCCGTT	AGGATCGCAC	TTCCGACCAT	CTTAAATAG	GGCCGACGGT	

FIGURE 19F

pD17-hG1b

3010	3020	3030	3040	3050	3060
TCATGGTTCG	ACCATTGAAC	TGCATCGTCG	CCGTGTCCCA	AAATACTGGG	ATTGGCAAGA
AGTACCAAGC	TGGTAACTTG	ACGTAGCAGC	GGCACAGGGT	TTTATACCCC	TAACCGTTCT
3070	3080	3090	3100	3110	3120
ACGGAGACCT	ACCCCTGGCCT	CCGCTCAGGA	ACGAGTCAA	GTACTTCCA	AGAATGACCA
TGCTCTGGAA	TGGGACCGGA	GGCGAGTCCT	TGCTCAAGTT	CATGAAGGTT	TCTTACTGGT
3130	3140	3150	3160	3170	3180
CAACCTCTTC	AGTGAAGGT	AAACAGAAC	TGGTGATTAT	GGGTAGAAA	ACCTGGTTCT
GTTGGAGAAG	TCACCTTCCA	TTTGTCTTAG	ACCACTAATA	CCCATCCTT	TGGACCAAGA
3190	3200	3210	3220	3230	3240
CCATTCCCTGA	GAAGGAATCGA	CCTTTAAAGG	ACAGAATTAA	TATAGTTCTC	AGTAGAGAAC
GGTAAGGACT	CTTCTTAGCT	GGAAATTTC	TGTCTTAATT	ATATCAAGAG	TCATCTCTTG
3250	3260	3270	3280	3290	3300
TCAAAGAAC	ACCACGAGGA	GCTCATTTTC	TTGCCAAAG	TTTGGATGAT	GCCCTTAAGAC
AGTTCTTG	TGGTGCTCCT	CGAGTAAAG	AACGGTTTC	AAACCTACTA	CGGAATTCTG
3310	3320	3330	3340	3350	3360
TTATTGAACA	ACCGGAATTG	GCAAGTAAAG	TAGACATGGT	TGGGATAGTC	GGAGGCAGTT
AATAACTTGT	TGGCCTAAC	CGTTCAATT	ATCTGTACCA	AACCTATCAG	CCTCCGTCAA
3370	3380	3390	3400	3410	3420
CTGTTACCA	GGAAAGCCATG	AATCAACCAG	GCCACCTTAG	ACTCTTGTG	ACAAGGATCA
GACAATGGT	CCTTCGGTAC	TTAGTGGTC	CGGTGGAAATC	TGAGAAACAC	TGTTCCCTAGT
3430	3440	3450	3460	3470	3480
TGCAGGAATT	TGAAAGTGAC	ACGTTTTCC	CAGAAATTGA	TTTGGGGAAA	TATAAACTTC
ACGTCCCTAA	ACTTCACTG	TGCCAAAAGG	GTCTTTAACT	AAACCCCTT	ATATTGAAAG
3490	3500	3510	3520	3530	3540
TCCCCAGAATA	CCCAAGGGTTC	CTCTCTGAGG	TCCAGGAGGA	AAAAGGCATC	AAGTATAAGT
AGGGTCTTAT	GGGTCCCGCAG	GAGAGACTCC	AGGTCCCTCT	TTTTCGGTAG	TTCATATTCA
3550	3560	3570	3580	3590	3600
TGGAAGTCTA	CGAGAAGAAA	GACTAACAGG	AAGATGCTTT	CAAGTCTCT	GCTCCCTCC
AACTTCAGAT	GCTCTTCTT	CTGATGTGCC	TCTACGAAA	GTTCAAGAGA	CGAGGGGAGG

FIGURE 19G

pD17-hG1b

3610	TAAGCTATG CATTTTATA AGACCATGGG ACTTTTGCTG GCTTTAGATC TCTTTGTGAA
	ATTTCGATAC GTAAAAATAT TCTGGTACCC TGAAAACGAC CGAAATCTAG AGAAACACTT
3670	3680 3690 3700 3710 3650 3660
GGAACCTTAC TTCTGTGGTG TGACATAATT GGACAAACTA CCTACAGAGA TTTAAAGCTC	
CCTTGGAAATG AAGACACCC ACTGTATTAA CCTGTTTGAT GGATGTCTCT AAATTCGAG	
3730	3740 3750 3760 3770 3780
TAAGGTAAT ATAAAATT TAAGTGTATA ATGTGTAAA CTACTGATTC TAATTGTTG	
ATTCCATTAA TATTAAAA ATTCAACATAT TACACAAATTG ATGACTAAG ATTAAACAAAC	
3790	3800 3810 3820 3830 3840
TGTATTAG ATTCCAACCT ATGGAACTGA TGAATGGGAG CAGTGGTGGAA ATGCCCTTAA	
ACATAAAATC TAAGGTGGAA TACCTTGACT ACTTACCCCTC GTCACCACT TACGGAATAT	
3850	3860 3870 3880 3890 3900
TGAGGAAAC CTGTTTTGCT CAGAAGAAAT GCCATCTAGT GATGATGAGG CTACTGCTGA	
ACTCCTTTG GACAAACAGA GTCTTCTTTA CGGTAGATCA CTACTACTCC GATGACGACT	
3910	3920 3930 3940 3950 3960
CTCTCAACAT TCTACTCCTC CAAAAAGAA GAGAAAGGTA GAAGACCCCAGA AGGACTTTCC	
GAGAGTGTAA AGATGAGGGAG GTTTTTCTT CTCTTTCCAT CTCTCTGGGT TCCTGAAAGG	
3970	3980 3990 4000 4010 4020
TTCAGAATTG CTAAGTTTT TGAGTCATGC TGTGTTTAGT AATAGAAACTC TTGCTTGCTT	
AAGTCTTAAC GATTCAAAAA ACTCAGTACG ACACAATCA TTATCTTGAG AACGAACGAA	
4030	4040 4050 4060 4070 4080
TGCTTATTAC ACCACAAAGG AAAAAGCTGC ACTGCTATAC AAGAAAATTA TGGAAAATAA	
ACGATAATG TGGTGTGTTCC TTTTTCGACG TGACGGATATG TTCTTTTAAT ACCTTTTTAT	
4090	4100 4110 4120 4130 4140
TTCGTAAACC TTTATAAGTA GGCATAACAG TTATAATCAT AACATACGT TTTTCTTAC	
AAGACATTTGG AAATATTCTAT CCGTATGTC ATATATTAGTA TTGTATGACA AAAAAGAAATG	
4150	4160 4170 4180 4190 4200
TCCACACAGG CATAGAGTGT CTGCTTAA TAACTATGCT CAAAATTGTTGT GTACCTTTAG	
AGGTGTGTCC GTATCTCACA GACGATAATT ATTGATAACGA GTTTTTAACCA CATGGAAATC	

FIGURE 19H

pD17-hG1b

4210	4220	4230	4240	4250	4260
CTTTTTAATT	TGTAAAGGGG	TTAATAAGGA	ATATTGATG	TATAGTGCCT	TGACTAGAGA
GAAAATTAA	ACATTCCCC	AATTATCCT	TATAAACTAC	ATATCACGGA	ACTGATCTCT
4270	4280	4290	4300	4310	4320
TCATAATCAG	CCATACCACA	TTTGTAGAGG	TTTTACTTGC	TTTAAAAAAC	CTCCACACCC
AGTATTAGTC	GGTATGGTGT	AAACATCTCC	AAAATGAACG	AAATTTTGTG	GAGGGTGTGG
4330	4340	4350	4360	4370	4380
TCCCCCTGAA	CCTGAAACAT	AAAATGAATG	CAATTGTTGT	TGTTAACTTG	TTTATTGCAG
AGGGGGACTT	GGACTTTGTA	TTTACTTAC	GTAAACAAACA	ACAATTGAAAC	AAATAACGTC
4390	4400	4410	4420	4430	4440
CTTATAATGG	TTACAAATAA	AGCAATAGCA	TCACAAATT	CACAAATAAA	GCATTTTTTT
GAATATACCC	AATGTTTATT	TCGTTATCGT	AGTGTAA	GTGTTTATT	CGTAAAAAAA
4450	4460	4470	4480	4490	4500
CACTGCATTG	TAGTGTGGT	TTGTCCAAC	TCATCAATGT	ATCTTATCAT	GTCTGGATCG
GTGACGTAAG	ATCAACACCA	AACAGTTTG	AGTAGTTACA	TAGAATAGTA	CAGACCTAGC
4510	4520	4530	4540	4550	4560
GCTGGATGAT	CCTCCAGCGC	GGGGATCTCA	TGCTGGAGTT	CTTCGGCCAC	CCCAACTTGT
CGACCTACTA	GGAGGTCGCG	CCCCTAGAGT	ACGACCTCAA	GAAGCGGGTG	GGGTTGAACA
4570	4580	4590	4600	4610	4620
TTATTGCAGC	TTATAATGGT	TACAAATAAA	GCAATAGCAT	CACAAATTTC	ACAAATAAAAG
AATAACGTG	AATAATTACCA	ATGTTTATT	CGTTATCGTA	GTGTTTAAG	TGTTTATTTC
4630	4640	4650	4660	4670	4680
CATTTTTC	ACTGCATCT	AGTTGTGGTT	TGTCCAAC	CATCAATGTA	TCTTATCATG
GTAAGGAAAG	TGACGTAAGA	TCAACACCAA	ACAGGTTGA	GTAGTTACAT	AGAATAGTAC
4690	4700	4710	4720	4730	4740
TCTGTATAAC	GTCGACCTCT	AGCTAGAGCT	TGGCGTAATC	ATGGTCATAG	CTGTTTCCTG
AGACATATGG	CAGCTGGAGA	TCGATCTCGA	ACCGCATTTAG	TACCAAGTATC	GACAAAGGAC
4750	4760	4770	4780	4790	4800
TGTGAAATTG	TtATCCGCTC	ACAATCCAC	ACAAACATACG	AGCCGGAAAGC	ATAAAAGTGTAA
ACACTTTAAC	AATAGGGCAG	TGTTAAGGTG	TGTTGTATGC	TGGGCCTTCG	TATTTCACAT

FIGURE 19I

pD17-hG1b

4810	4820	4830	4840	4850	4860
AAGCCCTGGG TTCGGACCC	TGCCCTAATGA ACGGATTACT	GTGAGCTAAC CACTCGATTG	TCACATTAAAT AGTGTAAATTA	TGCCTTGGC ACGCAACGGC	TCACTGCCCG AGTGACGGGC
4870	4880	4890	4900	4910	4920
CTTCCAGTC GAAAGGTCA	GGGAAACCTG CCCTTGGAC	TCGTGCCAGC AGCACGGTCG	TGCATTAAATG ACGTAATTAC	AATCGGGCAA TTAGCCGGTT	CGCGGGGA GCGGCCCT
4930	4940	4950	4960	4970	4980
GAGGGGTT CTCCGCCAA	GCGTATTGGG CGCATAACCC	CGCTCTTCCG GCGAGAAGGC	CITTCCTCGCT GAAGGAGCGA	CACTGACTCG GTGACTGAGC	CTGGGCTCGG GACGCCAGCC
4990	5000	5010	5020	5030	5040
TCGTTGGCT AGCAAGCCGA	GGGGGAGCG CGCCGCTCGC	GTATCAGCTC CATAGTCGAG	ACTCAAGGC TGAGTTCCG	GGTAATAACGG CCATTATGCC	TTATCCACAG AATAGGTGTC
5050	5060	5070	5080	5090	5100
AATCAGGGGA TTAGTCCCT	TAACCGAGGA ATTGGCTCCT	AAGAACATGT TTCTTGTCACA	GAGCAAAAGG CTCGTTTCC	CCAGCAAAAG GGTCGTTTC	GCCAGGAACC CGGTCCCTTG
5110	5120	5130	5140	5150	5160
GTAAAAAGGC CATTTTCCG	CGCGTTGCTG GCGAACGAC	GGGTTTTCC CGCAAAAGG	ATAGGCTCCG TATCCGAGGC	CCCCCCTGAC GGGGGGACTG	GAGCATCAC CTCGTAGTGT
5170	5180	5190	5200	5210	5220
AAATCGACC TTTTAGCTGC	CTCAAGTCAG GAGTCAGTC	AGGTGGGAA TCCACCGCTT	ACCCGACAGG TGGGCTGTCC	ACTATAAAGA TGATATTCT	TACCAAGGCGT ATGGTCCCGCA
5230	5240	5250	5260	5270	5280
TTCCCCCTGG AAGGGGACC	AAGCTCCCTC TTCGAGGGAG	GTGGCTCTC CACGCCAGAG	CTGTTCCGAC GACAAGGCTG	CCTGCCGCTT GGACGGGAA	ACCGGATAACC TGGCCTATGG
5290	5300	5310	5320	5330	5340
TGTCCGCCT ACAGGGGAA	TCTCCCTTCG AGAGGGAAAGC	GGAAAGCGTGG CCTTCGGCACC	CGCTTTCTCA GGCAAAGAGT	ATGCTCAGC TACGAGTGC	TGTAGGTATC ACATCCATAG
5350	5360	5370	5380	5390	5400
TCAGTTGGT AGTCAAGCCA	GTAGGTGCTT CATCCAGCAA	CGCTCCAAAGC GCGAGGTTTCG	TGGGCTGTGT ACCCGACACA	GCACGAACCC CGTGCTTGGG	CCCGTTAGC GGCCAAGTCG

FIGURE 19J

pD17-hG1b

5410	5420	5430	5440	5450	5460
CGGACCGCTG	CGCCTTATCC	GGTAACTATC	GTCTTGAGTC	CAACCCGGTA	AGACACGGACT
GGCTGGCGAC	GGGAAATAGG	CCATTGATAG	CAGAACCTCAG	GTGGGCCAT	TCTGTGCTGA
5470	5480	5490	5500	5510	5520
TATCGCCACT	GGCAGCAGCC	ACTGGTAACA	GGATTAGCAG	AGCGAGGTAT	GTAGGGGGTIG
ATAGCGGTGA	CCGTCGTCGG	TGACCATTGTT	CCTAACCGTC	TCGCTCCATA	CATCCGCCAC
5530	5540	5550	5560	5570	5580
CTACAGAGTT	CTTGAAGTGG	TGGCCTAACT	ACGGCTAACAC	TAGAAGGACA	GTATTGGTA
GATGTCCTAA	GAACATTCAAC	ACCGGATTGAA	TGCCGATGTTG	ATCTTCCCTGT	CATAAACCAT
5590	5600	5610	5620	5630	5640
TCTGCGCTCT	GCTGAAGCCA	GTTACCTTCG	GAAAAAGAGT	TGGTAGCTCT	TGATCCGGCA
AGACGGAGAA	CGACCTTCGGT	CAATGGAAGC	CTTTTCTCA	ACCATCGAGA	ACTAGGCCGT
5650	5660	5670	5680	5690	5700
AACAAACCAC	CGCTGGTAGC	GGTGGTTTTT	TTGTTTGCAA	GCAGCAGATT	ACGGCGAGAA
TTGTTGGTG	GGCACCATCG	CCACCAAAA	AACAAACGTT	CGTCGTCTAA	TGGCGTCTT
5710	5720	5730	5740	5750	5760
AAAAGGATC	TCAAGGAAGAT	CCTTGTATCT	TTCTCTACGGG	GTCTGACCGCT	CAGTGGAAACG
TTTTTCCTAG	AGTTCTCTCA	GGAAACTAGA	AAAGATGCC	CAGACTGCGA	GTCACCTTGC
5770	5780	5790	5800	5810	5820
AAAACTCAG	TTAAGGGAT	TTGGTCATGA	GATTACAAA	AAGGATCTTC	ACCTAGATCC
TTTTGAGTC	AATTCCCTAA	AACCAGTACT	CTAATAGTT	TTCCTAGAAG	TGGATCTAGG
5830	5840	5850	5860	5870	5880
TTTTAAATTAA	AAAATGAAGT	TTTAATCAA	TCTAAAGTAT	ATATGAGTAA	ACTTGGTCTG
AAAATTAAAT	TTTTACTTC	AAATTAGTT	AGATTTCATA	TATACTCATT	TGAACCAGAC
5890	5900	5910	5920	5930	5940
ACAGTTACCA	ATGCTTAATC	AGTGAGGCAC	CTATCTCAGC	GATCTGTCAT	TTTCGTTTCAT
TGTCAATGGT	TACGAATTAG	TCACTCCGTG	GATAGAGTCG	CTAGACAGAT	AAAGCAAGTA
5950	5960	5970	5980	5990	6000
CCATAGTTGC	CTGMACTCCCC	GTCGGTGTAGA	TAACTACGAT	ACGGGAGGGC	TTACCATCTG
GGTATCAACG	GACTGAGGGG	CAGCACATCT	ATTGATGGCTA	TGCCCTCCCG	AATGGTAGAC

FIGURE 19K

pD17-hG1b

6010	6020	GCCCAAGTGC CGGGTCACG	TGCAATGATA ACGTACTAT	CCGGAGACC GGCCTCTGG	CACGGCTCAC GTGGAGTGG	6030	6040	GGCTCCAGAT CCGAGGTCA	6050	TTATCAGCAA	6060
6070	6080	TAACCCAGCC ATTTGGTCGG	AGCCGGAAGG TCGGCTTC	GCCGAGCGCA CGGCTCGCGT	GAAGTGGTCC CTTCACCAAGG	6100	6110	TGCCAACTTAA ACGTTGAAT	6110	TCCGCCCTCA	6120
6130	6140	TCCAGTCTAT AGGTCAAGATA	TAATTGTTGC ATTAAACAACG	CGGGAAAGCTA GCCCTTCGAT	GAGTAAGTAG CTCATTCATC	6150	6160	TTGCCCAAGTT AAGGGTCAA	6170	AATAGTTTGC TTATCAAACG	6180
6190	6200	GCAACACGTT CGTTGCAACA	TGCCATTGCT ACGGTAACGA	ACAGGCATCG TGTCCGTAGC	TGGTGTCAAG ACCACAGTGC	6210	6220	CTCGTCGTT GAGCAGCAA	6230	GGTATGGCTT CCATACCGAA	6240
6250	6260	CATTCAGCTC GTAAGTCGAG	CGGTTCACAA GCCAAGGGTT	CGATCAAGGC GCTAGTTCCG	GAGTTACATG CTCAATGTAC	6270	6280	ATCCCCCATG TAGGGGGTAC	6290	TTGTGCAAAA AACACGTTT	6300
6310	6320	AAGCGGTTAG TTrGCCAAATC	CTCCCTTCGGT GAGGAAGCCA	CCTCCGATCG GGGGCTAGC	TTGTCAGAAC AACAGTCTTC	6330	6340	TAAGTTGGCC ATTCAACCGG	6350	GCAGTGTAT CGTCACAATA	6360
6370	6380	CACTCATGGT GTGAGTACCA	TATGGCAGCA ATACCGTCGT	CTGCATAATT GACGTATTAA	CTCTTACTGT GAGAAATGACA	6390	6400	6410	6420	GTAAGATGCT CATTTCTACGA	
6430	6440	TTrCTGTGAC AAAGACACTG	TGGTAGTAC ACCACCTCATG	TCAACCAAGT AGTTGGTCA	CATTCTGAGA GTAAGACTCT	6450	6460	6470	6480	CGGGGACCGA GCCGCTGGCT	
6490	6500	GTTGCTCTTG CAACGAGAAC	CCCGGGTCA GGGGCGCAGT	ATACGGATA TATGCCCTAT	6510	6520	6530	6540	ACATAGCAGA ACTTTAAAG		
6550	6560	TGCTCATCAT ACGAGTAGTA	TGGAAAACGT AGAAGCCCCG	TCTTCGGGGC CTTTGAGAG	GAAAACCTCT TCCTAGAAT	6570	6580	6590	6600	CCGCTGTTGA GGCGACAACT	

FIGURE 19L

pD17-hG1b

6610	6620	6630	6640	6650	6660
GATCCAGTTC	GATGTAACCC	ACTCGTGCAC	CCAACTGATC	TTCAGGCATCT	TTTACTTTCA
CTAGGTCAAG	CTACATTGGG	TGAGCACGTG	GGTTGACTAG	AAGTCGTAGA	AAATGAAAGT
6670	6680	6690	6700	6710	6720
CCAGCGTTTC	TGGGTGAGCA	AAAACAGGAA	GGCAAATGTC	CGCAAAAAAG	GGATAAGGG
GGTGGCAAG	ACCCACTCGT	TTTGTGCCCT	CGTTTACG	GGTTTTTC	CCTTATTCCC
6730	6740	6750	6760	6770	6780
CGACACGGAA	ATGTTGAATA	CTCATACTCT	TCCTTTTCA	ATATTATGAA	AGCATTATC
GCTGTGCCTT	TACAACTTAT	GAGTATGAGA	AGGAAAAAGT	TATAATACT	TCGTAATAG
6790	6800	6810	6820	6830	6840
AGGGTTATTG	TCTCATGAGC	GGATAACATAT	TTGAATGTAT	TTAGAAAAAT	AAACAAATAG
TCCCAATAAC	AGAGTACTCG	CCTATGTATA	AACTTACATA	ATCTTTTTA	TTTGTTTTAC
6850	6860	6870	6880	6890	6900
GGGTTCCGGG	CACATTCCC	CGAAAAGTGC	CACCTGACGT	CGACGGATCG	GGAGATCTGC
CCCAAGGGCGC	GTGTAAAGGG	GCTTTTCACG	GTGGACTGCA	GCTGCCTAGC	CCTCTAGACG
6910	6920	6930	6940	6950	6960
TAGGTGACCT	GAGGGCGCC	GGCTTGAAAT	AGCCAGAGTA	ACCTTTTTT	TTAATTTTAT
ATCACTGGAA	CTCCGGCGGG	CCGAAGCTTA	TCGGTCCTCAT	TGGAAAAAA	ATTAAAATA
6970	6980	6990	7000	7010	7020
TTTATTATT	TTTGAGATG	GAGTTGGCG	CCGATCTCCC	GATCCCCAT	GGTCGACTCT
AAATAAAATA	AAAACTCTAC	CTCAAACCGC	GGCTAGAGGG	C TAGGGGATA	CCAGCTGAGA
7030	7040	7050	7060	7070	7080
CAGTACAATIC	TGCTCTGATG	CCGCATAGTT	AAGCCAGTAT	CTGCTCCCTG	CTTGTGTGTT
GTCATGTTAG	ACGAGACTAC	GGCGTATCAA	TTCGGTICATA	GACGAGGGAC	GAACACACAA
7090	7100	7110	7120	7130	7140
GGAGGGCGCT	GAGTAGTGC	CGAGCAAAAT	TAAAGCTACA	ACAAGGCAAG	GCTTGACCCGA
CCTCCAGCGA	CTCATCACGC	GCTCGTTTA	AATTGGATGT	TGTTCCGGTC	CGAAACTGGCT
7150	7160	7170	7180	7190	7200
CATTGCATG	AAGAACATCTGC	TTAGGGTTAG	GGGTTTGCG	CTGCTTCGGC	ATGTAACGGCG
	TTCTAGACCG	AATCCAATC	CGCAAAACGC	GACGAAGCG	TACATGCCCG
	GTTAACGTAC				

FIGURE 19M

pD17-hG1b

7210	7220	7230	7240	7250	7260
CAGATATA CGTGTGACATT	GATTATTGAC	TAGTTATTAA	TAGTAATCAA	TACGGGGTC	
GTCTATATGC GCAACTGTAA	CTAATACTG	ATCAATAATT	ATCATTAGTT	AATGCCAG	
7270	7280	7290	7300	7310	7320
ATTAGTTCAT AGCCCATATA	TGGAGTTCCG	CGTTACATAA	CTTACGGTAA	ATGCCCGCC	
TAATCAAGTA TCGGGTATAT	ACCTCAAGGC	GCAATGTATT	GAATGCCATT	TACCGGGCGG	
7330	7340	7350	7360	7370	7380
TGGCTGACCG CCCAACGACC	CCCGCCCAT	GACGTCAATA	ATGACGTATG	TTCCCATAGT	
ACCGACTGGC GGGTGTGCTGG	GGCGGGTAA	CTGCAGTTAT	TACTGCATAC	AAGGGTATCA	
7390	7400	7410	7420	7430	7440
AACGCCAATA GGGACTTTC	ATTGACGTCA	ATGGGTGGAC	TATTACGGT	AAACTGCCA	
TTGCGGTTAT CCCTGAAAGG	TAACTGCAGT	TACCCACCTG	ATAAAATGCCA	TTTGACGGGT	
7450	7460	7470	7480	7490	7500
CTTGGCAGTA CATCAAAGTGT	ATCATATGCC	AAGTACGCC	CCTATTGACG	TCAATGACGG	
GAACCGTCAAT GTAGTTCACCA	TAGTATACGG	TTCATGGGG	GGATAACTGC	AGTTACTGCC	
7510	7520	7530	7540	7550	7560
TAATGGCCC GCCTGGCATT	ATGCCAGTA	CATGACCTTA	TGGGACTTTC	CTACTTGGCA	
ATTACCGGG CGGACCGTAA	TACGGTCAAT	GTACTGGAAT	ACCCCTGAAAG	GATGAACCGT	
7570	7580	7590	7600	7610	7620
GTACATCTAC GTATTAGTCA	TCGCTATTAC	CATGGTGTATG	CGGTTTGGC	AGTACATCAA	
CATGTAGATG CATAATCAGT	AGCGATAATG	GTACCACTAC	GCCAAACCG	TCATGTAGTT	
7630	7640	7650	7660	7670	7680
TGGGCGTGGAA TAGGGGTTG	ACTCACGGGG	ATTCCAAGT	CTCCACCCCA	TTGACGTCAA	
ACCCGCACCT ATGCCAAAC	TGAGTGGCCC	TAAAGGTCA	GAGGTGGGT	AACTGCAGT	
7690	7700	7710	7720	7730	7740
TGGGAGTTTG TTGTCGACC	AAAATCAAACG	GGACTTTCCA	AAATGTCCGA	ACPAACTCCGC	
ACCTCAAAC AAAACCGTGG	TTTTAGTTGC	CCTGAAGGT	TTTACACCAT	TGTTGAGGGCG	
7750	7760	7770	7780	7790	7800
CCCATGACG CAAATGGGGC	GTAGGGTGT	ACGGTGGGAG	GTCTATATAA	GCAGAGCTCT	
GGGTTAACTGC GTTTAACCCGC	CATCCGCACA	TGCCACCCCTC	CAGATATATT	CGTCTCGAGA	

FIGURE 19N

pD17-hG1b

7810 7820 7830 7840 7850 7860
CTGGCTAACT AGAGAACCCA CTGCTTACTG GCTTATCGAA ATTAATAACGA CTPCACTATAG
GACCGATGTGA TCTCTGGGT GACGAATGAC CGAATAGCTT TAATTATGCT GAGTGATATC

7870 7880
GGAGACCCAA GCTT
CCTCTGGGT CGAA

FIGURE 20

FIGURE 21

FIGURE 22

Binding activity of hBR96-2 constant region mutants on LeY-HSA

FIGURE 23

Binding activity of hBR96-2 constant region mutants on LNFPIII-BSA

Figure 24

Figure 25

Figure 26

hBR96-2 Heavy Chain Variable Region (V_H)

1 11 21 31 41
EVQLVESGGG LVQPGGSLRL SCAASGFPFS DYYMYWVRQA PGKGLEWVSY
51 61 71 81 91
ISQDGDDITDY ADSVKGRFTI SRDNAKNSLY LQMNSLRDED TAVYYCARGL
101 111
ADGAWEAYWG QGTLVTVSS

human IgG1 constant

1^{CH1} STKGPSVFPL APSSKSTSGG TAALGCLVKD
YFPEPVTVSW NSGALTSGVH TFPAVLQSSG LYSLSSVVTV PSSSLGTQTY
ICNVNHKPSN TKVDKKVEPK SCDKTHTCPP C^{CH2} APEL³³⁵ G³³⁷ SVFLFPPKPK
DTLMISRTPE VTCVVVDVSH EDPEVKFNWY VDGVEVHN³¹⁸ A³²⁰ K³²² NAK TKPREEQYNS
TYRVVSVLTV LHQDWLN³²³ G³²⁵ Y³²⁶ VSNKAL P³²⁷ AFLEKTISK AKGQPREPQV³³¹
YTLPPSRDEL TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTPPPVL
DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSLSPGK³³³
^{CH3}

Figure 27

hBR96-2A: Heavy Chain Variable Region (V_H)

1 11 21 31 41
EVQLVESGGG LVQPGGSLRL SCAASGFPFS DYYMYWVRQA PGKGLEWVSY
51 61 71 81 91
ISQDGDDITDY ADSVKGRFTI SRDNAKNSLY LQMNSLRDED TAVYYCARGL
101 111
ADGAWFAYWG QGTLVTVSS

hBR96-2A: Human Heavy Chain IgG1 Constant Region $\Delta CH2$

A STKGPSVFPL APSSKSTSGG TAALGCLVKD YFPEPVTVSW NSGALTSGVH
TFPAVLQSSG LYSLSSVVTV PSSSLGTQTY ICNVNHKPSN TKVDKKVEPK
SCDKTHTCPP CP GQPREPQV YTLPPSRDEL TKNQVSLTCL VKGFYPSDIA
VEWESNGQPE NNYKTPPPVLDSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM
HEALHNHYTQ KSLSLSPGK

Figure 28

This sequence is the chi BR96 IgG1 with CH2 deleted.

VH
1 EVNLVESGGG LVQPGGSLKV SCVTSGFTFS DYMYWVRQT PEKRLEVVAY
51 ISQGGDITDY PDTVKGRFTI SRDNAKNTLY LQMSRLKSED TAMYYCARGL
101 DDGAWFAYWG QCTLVTVSVA STKGPSVFPL APSSKSTS GG TAALGCLVKD
151 YFPEPVTVSW NSGALTSGVH TFPAVLQSSG LYSLSSVVTV PSSSLGTQTY
201 ICNVNHKPSN TKVDKKVEPK SCDKTHTCPP C^{CH3} GQPREFQV YTLPPSRDEL
251 TKNQVSLTCL VKGFYPSDIA VEWESENQPE NNYKTPPPVL DSDGSFFLYS
301 KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSSLSPGK