Constraint Satisfaction Problem: Filtering

03/03/2025

Koustav Rudra

Filtering

03/03/2025

Koustav Rudra

Ordering: Minimum Remaining Values

- Choose the variable to expand that has fewest legal values left in its domain
 - Most constrained variable
 - X1 = [R, G, B] X2 = [B]

NT

WA

Q

NSW

Ordering: Least Constraining Values (LCV)

• Choose the value of a variable that rules out the fewest values in the remaining variables

CSPs: Recap

- CSP Structure
 - Variables
 - Domains
 - Constraints
 - Implicit (code to compute)
 - Explicit (list of legal tuples)
 - Unary / Binary / n-ary
 - Goals
 - Find any solution
 - Find optimal solution

CSP Solver

• Backtracking give huge gain in speed

- Ordering
 - Which variable should be processed next (MRV)?
 - In what order values of the chosen variable be tried (LCV)?
- Filtering
 - Can we detect eventual failure early?
 - Arc consistency

NP-hard

- Structure
 - Can we exploit the problem structure?

CSP: Efficient Solver

03/03/2025

Koustav Rudra

K-Consistency

• Consistency Non-violence of constraints

- Degrees of consistency
 - 1-consistency (node consistency)
 - Unary constraints
 - 2-consistency (Arc consistency)
 - Any consistent assignment to one can be extended to other
 - Binary
 - K-consistency
 - Any consistent assignment to K-1 nodes can be extended to the Kth node

Strong K-Consistency

- Strong K-consistent → K-1, K-2,...,1 consistent
- Strong N-consistency ensures solution without backtracking [N variable CSP]
 - Choose random assignment of any variable
 - Choose a new variable
 - 2-consistency \rightarrow there is a choice consistent with the first
 - Choose another variable
 - 3-consistency \rightarrow there is a choice consistent with the first two
 - ...
- What is the limitation?
 - Enforcing strong N-consistency as hard as having the solution
- Trade-off between arc-consistency and K-consistency
 - E.g., 3-consistency aka Path-consistency

Problem Structure

- Independent Subproblems
 - Mainland and Tasmania do not interact
- How to identify independent subproblems?
 - Connected components of constraint graph
- What is the benefit?
 - Without decomposition running time: $O(d^n)$
 - Let n variables broken into subproblem of c variables
 - Worst case: $O(\frac{n}{c}d^c)$ \rightarrow Linear in n
- Let n=100, c=20, d=2
 - Without decomposition: 2¹⁰⁰
 - With decomposition: $5 * 2^{20}$

Thank You