Векторы и операторы

Краткий план:

• Определение линейного оператора.

Краткий план:

- Определение линейного оператора.
- Примеры линейных операторов.

Краткий план:

- Определение линейного оператора.
- Примеры линейных операторов.
- Как из двух операторов сделать новый оператор?

Линейный оператор

Идея линейности:

Результат действия не изменится, если поменять местами действие L и

• растягивание вектора, например, L(42a) = 42 L(a);

Линейный оператор

Идея линейности:

Результат действия не изменится, если поменять местами действие L и

- растягивание вектора, например, $\mathsf{L}(42a) = 42\,\mathsf{L}(a)$;
- усреднение двух векторов, $\mathsf{L}(0.5a + 0.5b) = 0.5\,\mathsf{L}(a) + 0.5\,\mathsf{L}(b).$

Определение

Линейный оператор L из \mathbb{R}^n в \mathbb{R}^k .

• Для любого числа t и вектора $a \in \mathbb{R}^n$: $\mathsf{L}(ta) = t \, \mathsf{L}(a)$.

Определение

Линейный оператор L из \mathbb{R}^n в \mathbb{R}^k .

- Для любого числа t и вектора $a \in \mathbb{R}^n$: $\mathsf{L}(ta) = t \, \mathsf{L}(a)$.
- Для любых двух векторов a и b из \mathbb{R}^n :

$$L(a+b) = \mathsf{L}(a) + \mathsf{L}(b).$$

Определение

Линейный оператор L из \mathbb{R}^n в \mathbb{R}^k .

- Для любого числа t и вектора $a \in \mathbb{R}^n$: $\mathsf{L}(ta) = t \, \mathsf{L}(a)$.
- Для любых двух векторов a и b из \mathbb{R}^n :

$$L(a+b) = \mathsf{L}(a) + \mathsf{L}(b).$$

Определение

Линейный оператор L из \mathbb{R}^n в \mathbb{R}^k .

- Для любого числа t и вектора $a \in \mathbb{R}^n$: $\mathsf{L}(ta) = t \, \mathsf{L}(a)$.
- Для любых двух векторов a и b из \mathbb{R}^n :

$$L(a+b) = \mathsf{L}(a) + \mathsf{L}(b).$$

Вместо скобок часто пишут знак умножения,

$$L(a) \equiv L \cdot a \equiv L a$$
.

Линейный оператор

Растягивание координат

Обобщаем умножение вектора на число!

$$L: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

Перестановка координат вектора

$$L: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_2 \\ a_3 \\ a_1 \end{pmatrix}$$

Пример. Отражение относительно $x_1 = x_2$:

Первый поворот

Поворот на 30° против часовой стрелки

Оператор $R:\mathbb{R}^2 o \mathbb{R}^2$

Первая проекция

Проекция на прямую $x_1 + 2x_2 = 0$

Оператор $H:\mathbb{R}^2 o \mathbb{R}^2$

Обрезка компонент вектора

Уменьшаем размерность, L : $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} o \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$

Дописывание нулей

Увеличиваем размерность пространства, L : $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$

Ничегонеделание

Определение

Единичный оператор, I, не меняет ни один вектор:

$$I(\mathbf{a}) = \mathbf{a}.$$

Делай раз, делай два!

• Если последовательно применить два линейных оператора, то получится линейный оператор, $\mathsf{L}_2(\mathsf{L}_1(\mathbf{a})) = \mathsf{L}(\mathbf{a}).$

- Если последовательно применить два линейных оператора, то получится линейный оператор, $\mathsf{L}_2(\mathsf{L}_1(\mathbf{a})) = \mathsf{L}(\mathbf{a}).$
- Важно: $\mathsf{L}_1:\mathbb{R}^n \to \mathbb{R}^k$, $\mathsf{L}_2:\mathbb{R}^k \to \mathbb{R}^p$.

- Если последовательно применить два линейных оператора, то получится линейный оператор, $\mathsf{L}_2(\mathsf{L}_1(\mathbf{a})) = \mathsf{L}(\mathbf{a}).$
- Важно: $\mathsf{L}_1:\mathbb{R}^n \to \mathbb{R}^k$, $\mathsf{L}_2:\mathbb{R}^k \to \mathbb{R}^p$.
- Доказательство

- Если последовательно применить два линейных оператора, то получится линейный оператор, $\mathsf{L}_2(\mathsf{L}_1(\mathbf{a})) = \mathsf{L}(\mathbf{a}).$
- Важно: $\mathsf{L}_1:\mathbb{R}^n \to \mathbb{R}^k$, $\mathsf{L}_2:\mathbb{R}^k \to \mathbb{R}^p$.
- Доказательство
 - $L_2(L_1(t\mathbf{a})) = L_2(t L_1(\mathbf{a})) = t L_2(L_1(\mathbf{a}))$

- Если последовательно применить два линейных оператора, то получится линейный оператор, $\mathsf{L}_2(\mathsf{L}_1(\mathbf{a})) = \mathsf{L}(\mathbf{a}).$
- Важно: $\mathsf{L}_1:\mathbb{R}^n \to \mathbb{R}^k$, $\mathsf{L}_2:\mathbb{R}^k \to \mathbb{R}^p$.
- Доказательство
 - $L_2(L_1(t\mathbf{a})) = L_2(t L_1(\mathbf{a})) = t L_2(L_1(\mathbf{a}))$
 - $\bullet \ \ \mathsf{L}_2(\mathsf{L}_1(\mathbf{a}+\mathbf{b})) = \mathsf{L}_2(\mathsf{L}_1(\mathbf{a}) + \mathsf{L}_1(\mathbf{b})) = \mathsf{L}_2(\mathsf{L}_1(\mathbf{a})) + \mathsf{L}_2(\mathsf{L}_1(\mathbf{b}))$

- Если последовательно применить два линейных оператора, то получится линейный оператор, $\mathsf{L}_2(\mathsf{L}_1(\mathbf{a})) = \mathsf{L}(\mathbf{a}).$
- Важно: $\mathsf{L}_1:\mathbb{R}^n \to \mathbb{R}^k$, $\mathsf{L}_2:\mathbb{R}^k \to \mathbb{R}^p$.
- Доказательство
 - $L_2(L_1(t\mathbf{a})) = L_2(t L_1(\mathbf{a})) = t L_2(L_1(\mathbf{a}))$
 - $\bullet \ \ \mathsf{L}_2(\mathsf{L}_1(\mathbf{a}+\mathbf{b})) = \mathsf{L}_2(\mathsf{L}_1(\mathbf{a}) + \mathsf{L}_1(\mathbf{b})) = \mathsf{L}_2(\mathsf{L}_1(\mathbf{a})) + \mathsf{L}_2(\mathsf{L}_1(\mathbf{b}))$
- Композицию также называют умножением.

$$L_1(\mathbf{a}) + L_2(\mathbf{a}) = L(\mathbf{a}).$$

• Если сложить результаты двух линейных операторов, то получится линейный линейный оператор,

$$L_1(\mathbf{a}) + L_2(\mathbf{a}) = L(\mathbf{a}).$$

• Важно: $\mathsf{L}_1:\mathbb{R}^n \to \mathbb{R}^k$, $\mathsf{L}_2:\mathbb{R}^n \to \mathbb{R}^k$.

$$L_1(\mathbf{a}) + L_2(\mathbf{a}) = L(\mathbf{a}).$$

- Важно: $\mathsf{L}_1:\mathbb{R}^n \to \mathbb{R}^k$, $\mathsf{L}_2:\mathbb{R}^n \to \mathbb{R}^k$.
- Доказательство

$$L_1(\mathbf{a}) + L_2(\mathbf{a}) = L(\mathbf{a}).$$

- Важно: $\mathsf{L}_1:\mathbb{R}^n \to \mathbb{R}^k$, $\mathsf{L}_2:\mathbb{R}^n \to \mathbb{R}^k$.
- Доказательство
 - $L_1(t\mathbf{a}) + L_2(t\mathbf{a}) = t L_1(\mathbf{a}) + t L_2(\mathbf{a}) = t(L_1(\mathbf{a}) + L_2(\mathbf{a}))$

$$L_1(\mathbf{a}) + L_2(\mathbf{a}) = L(\mathbf{a}).$$

- Важно: $\mathsf{L}_1:\mathbb{R}^n \to \mathbb{R}^k$, $\mathsf{L}_2:\mathbb{R}^n \to \mathbb{R}^k$.
- Доказательство
 - $L_1(t\mathbf{a}) + L_2(t\mathbf{a}) = t L_1(\mathbf{a}) + t L_2(\mathbf{a}) = t(L_1(\mathbf{a}) + L_2(\mathbf{a}))$
 - $L(\mathbf{a} + \mathbf{b}) = L_1(\mathbf{a} + \mathbf{b}) + L_2(\mathbf{a} + \mathbf{b}) = L_1(\mathbf{a}) + L_2(\mathbf{a}) + L_1(\mathbf{b}) + L_2(\mathbf{b}) = L(\mathbf{a}) + L(\mathbf{b})$