1 Trouver F

1.1 Méthode matricielle

Soit $d \in \mathbb{N}^*$ la dimension dans laquelle on se place.

Soit $p := (p_i)_{i \in [1,n]} \in \mathbb{R}^d$ des coordonnées avec $n \in \mathbb{N}^*$.

On cherche $P \in \mathbb{R}[X,...,X^d]$ un polynôme qui s'annule en p_i pour tout $i \in \mathbb{N}$. On obtient un système d'équations :

$$P(p_1) = 0$$

$$P(p_2) = 0$$

$$\vdots$$

$$P(p_n) = 0$$

Au départ, on ne sait pas quelle forme le polynôme P aura. On choisit donc ici de considérer tous les termes dont l'exposant maximal est inférieur au nombre de points d'initialisation $n \in \mathbb{N}^*$.

Ainsi, on note $S^d(n)$ l'ensemble des combinaisons de d éléments à valeurs dans [1,n]. $S^d(n)$ est donc l'ensemble des combinaisons considérées des exposants d'un terme de P.

On note les éléments de $S^d(n)$ par s^j avec $j \in [1, n^d]$. Pour tout $j \in [1, n^d]$ et $i \in [1, d], s^j_i$ indique la valeur de l'élément i dans la combinaison s^j .

On cherche C une matrice colonne des coefficients de P tel que pour tout $j \in [1, n^d]$, C_j est le coefficient associé au terme de combinaison s^j .

Pour d=2:

Pour tout $i \in [1, n]$, posons $(x_i, y_i) := p_i$. Le système d'équation devient :

$$\begin{pmatrix} 1 & x_0 & y_0 & x_0y_0 & x_0^2 & y_0^2 & x_0^2y_0 & x_0y_0^2 & x_0^2y_0^2 \\ 1 & x_1 & y_1 & x_1y_1 & x_1^2 & y_1^2 & x_1^2y_1 & x_1y_1^2 & x_1^2y_1^2 \\ \vdots & \vdots \\ 1 & x_n & y_n & x_ny_n & x_n^2 & y_n^2 & x_n^2y_n & x_ny_n^2 & x_n^2y_n^2 \end{pmatrix} C = 0$$
 (1)

Posons A la première matrice du produit. (On a AC = 0)

On cherche P sous une forme la plus simple possible. On va donc extraire une matrice carrée de taille n inversible de A. Notons J' les indices des colonnes conservées. Notons $A_n := (A_{i,j})_{i \in [1,n], j \in J'}$ et on réduit C à $C_n := (C_j)_{j \in J'}$. Avec l'équation $A_nC_n = 0$, on s'assure que P s'annule en chaque point de p. Pour ne pas retomber sur le polynôme nul, on ajoute n'importe quel terme dont la combinaison s^{j_0} des exposants n'est pas déjà prise dans A_n . A ce terme, on fixe le coefficient de P à 1. On cherche désormais à résoudre:

$$\begin{bmatrix} A_n & \vdots \\ (0) & 1 \end{bmatrix} \begin{bmatrix} C_n \\ 1 \end{bmatrix} = \begin{bmatrix} (0) \\ 1 \end{bmatrix} \tag{2}$$

Appelons A'_n et C'_n les deux facteurs du membres de gauche. A'_n est évidemment inversible et nous pouvons en déduire le vecteur C'_n . On en déduit un polynôme P qui vérifie les conditions et conviendrait pour incarner F, la fonction de l'article étudié.

Revenons au cas général : $d \in \mathbb{N}^*$.

La méthode précédente s'applique de la même manière. La seule différence sera $S^d(n)$ utilisé à la place de $S^2(n)$ utilisé précédemment pour alimenter les colonnes de A.

1.1.1 Implémentation

Etape 1 : Créer $S^d(n)$ Etape 2 : Créer AEtape 3 : Extraire A_n

Etape 4 : Augmenter A_n en A'_n Etape 5 : Calculer C'_n puis P

Le problème de cette méthode

Le problème majeur est de trouver A_n . Cela peut demander beaucoup de temps et beaucoup de zones restent arbitraires.

2 Trouver A

2.1 Méthode matricielle

En gardant les notations précédentes et en appelant $G := (g_j)_{j \in [1,n]}$ les valeurs à prendre sur les points considérés, on se ramène à AC = G. On applique la même démarche que précédemment en s'arrêtant à A_n .