- 1. For the following relations R on set $A = \{a, b, c\}$, determine if R is reflexive, symmetric, transitive, and/or anti-symmetric?
 - a. $R = \{(a,b), (b,a), (a,c), (c,a)\}$
 - b. $R = \{(a, a), (a, b), (b, a)\}$
 - c. $R = \{(a,b), (b,c), (a,c), (b,b)\}$
- 2. The following argument claims to show that symmetric and transitivity implies reflexivity. Find the flaw in the argument. [Hint. Pay attention to quantifiers.]

$$x \sim y \Rightarrow y \sim x \land ((x \sim y \land y \sim x) \Rightarrow x \sim x)$$

- 3. For the following relations *R* on sets *A*, determine if *R* is reflexive, symmetric, transitive, and/or anti-symmetric?
 - a. $A = \mathbb{N}, x \sim y \text{ iff } x \mid y$
 - b. $A = \mathbb{N}, x \sim y \text{ iff } x < y + 1$
 - c. $A = \mathbb{Z}, x \sim y \text{ iff } x y \in \mathbb{Z}$
 - d. $A = \mathbb{N}^2$, $(x_1, y_1) \sim (x_2, y_2)$ iff $x_1 y_2 = x_2 y_1$
 - e. A = a group of friends, $a \sim b$ iff a and b have the same birthday
- 4. * (The birthday paradox) Consider a party of *n* people. What is the likelihood that some pair of two people share the same birthday? Alternatively, what is the smallest *n* such that the likelihood is greater than 50%?
- 5. Let R be an equivalence relation on A. Then for all $a, b \in A$, show that the following three statements are equivalent.
 - a. *a*∼*b*
 - b. $[a] \cap [b] \neq \emptyset$
 - c. [a] = [b]
- 6. Suppose R is a reflexive relation on A, and for all $a,b,c\in A$ we have

$$(a \sim b \land a \sim c) \Rightarrow b \sim c$$

Show that R is an equivalence relation.

- 7. [Review] Prove or disprove $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
- 8. [Review] Prove $\sum_{i=1}^{n} 1/i^2 \le 2 1/n$ for all $n \in \mathbb{N}$.
- 9. [Review] Prove $9 \mid 4^n 3n + 8$ for all $n \in \mathbb{N}$.
- 10. * Find all integer solutions to

$$\frac{x^6-3}{x^2+2}$$

- 11.* Are there more rational numbers than there are integers?
- 12. Construct a relation *R* on the set [6] that is reflexive, transitive, and <u>not</u> symmetric.
- 13. Construct a relation R on the set [6] that is reflexive, anti-symmetric, and <u>not</u> transitive.
- 14. Show that the lexicographical order relation \leq on \mathbb{Z}^2 is a partial order.

$$(x_1, y_1) \le (x_2, y_2)$$
 iff $x_1 < x_2 \lor (x_1 = x_2 \land y_1 \le y_2)$

15. * Express the mathematical condition for the lexicographical \leq on \mathbb{Z}^n .

		1		8	4	6		
	4		2				3	
		7				5		9
		6				1		7
						3		6
			1		6			
				7				5
	8							
3		4					2	