Hamiltonian Monte Carlo

Dr. Jarad Niemi

Iowa State University

September 12, 2017

Adapted from Radford Neal's MCMC Using Hamltonian Dynamics in Handbook of Markov Chain Monte Carlo (2011).

Hamiltonian system

Considering a body in a frictionless 1-dimensional environment, let

- m be its mass,
- q be its position, and
- *p* be its momentum.

The mass has

- ullet potential energy U(q) (which is proportional to its height) and
- kinetic energy $K(p) = p^2/(2m)$.

Hamilton's equations

Extending this to *d* dimensions, we have

- position vector q and
- momentum vector p.

The Hamiltonian H(q, p) describes the time evolution of the system through

$$\begin{array}{ccc} \frac{dq_i}{dt} & = & \frac{\partial H}{\partial p_i} \\ \frac{dp_i}{dt} & = & -\frac{\partial H}{\partial q_i} \end{array}$$

for i = 1, ..., d.

Potential and kinetic energy

For Hamiltonian Monte Carlo, we usually use Hamiltonian functions that can be written as follows:

$$H(q,p)=U(q)+K(p)$$

where

- U(q) is called the potential energy and will be defined to be minus the log probability density of the distribution for q (plus any constant that is convenient) and
- \bullet K(p) is called the kinetic energy and is usually defined as

$$K(p) = p^{\top} M^{-1} p/2$$

where M is a symmetric, positive-definite "mass matrix", which is typically diagonal, and is often a scalar multiple of the identity matrix. This form for K(p) corresponds to minus the log probability density (plus a constant) of the zero-mean Gaussian distribution with covariance matrix M.

The resulting Hamilton's equations are

$$\frac{dq_i}{dt} = [M^{-1}p]_i, \qquad \frac{dp_i}{dt} = -\frac{\partial U}{\partial q_i}.$$

One-dimensional example

Suppose

$$H(q, p) = U(q) + K(p), \quad U(q) = q^2/2, \quad K(p) = p^2/2$$

The dynamics resulting from this Hamiltonian are

$$\frac{dq}{dt} = p, \quad \frac{dp}{dt} = -q.$$

Solutions of the form

$$q(t) = r\cos(a+t), \quad p(t) = -r\sin(a+t)$$

for some constants r and a.

One-dimensional example simulation

Hamiltonian dynamics is reversible, i.e. the mapping T_s from the state at time t, (q(t), p(t)), to the state at time t + s, (q(t + s), p(t + s)), is one-to-one, and hence as an inverse, T_{-s} . Under our usual assumptions for HMC, the inverse mapping can be obtained by negative p, applying T_s , and then negating p again. The reversibility of Hamiltonian dynamics is important for showing convergence of HMC.

Conservation of the Hamiltonian

The dynamics conserve the Hamiltonian since

$$\frac{dH}{dt} = \sum_{i=1}^{d} \left[\frac{dq_i}{dt} \frac{\partial H}{\partial q_i} + \frac{dp_i}{dt} \frac{\partial H}{\partial p_i} \right]
= \sum_{i=1}^{d} \left[\frac{\partial H}{\partial p_i} \frac{\partial H}{\partial q_i} - \frac{\partial H}{\partial q_i} \frac{\partial H}{\partial p_i} \right]$$

If h is conserved, then the acceptance probability based on Hamiltonian dynamics is 1. In practice, we can oly make H approximately invariant.

Conservation of the Hamiltonian

Volume preservation

If we apply the mapping T_s to point in some region R of (q, p) space with volume V, the image of R under T_s will also have volume V. This feature simplifies calculation of the acceptance probability for Metropolis updates.

Euler's method

For simplicity, assume

$$H(q,p) = U(q) + K(p), \qquad K(p) = \sum_{i=1}^{d} \frac{p_i^2}{2m_i}.$$

One way to simulate Hamiltonian dynamics is to discretize time into increments of e, i.e.

$$\begin{array}{ll} p_i(t+e) &= p_i(t) + e\frac{dp_i}{dt}(t) &= p_i(t) - e\frac{\partial U}{\partial q_i}(q(t)) \\ q_i(t+e) &= q_i(t) + e\frac{dq_i}{dt}(t) &= q_i(t) + e\frac{p_i(t)}{m_i} \end{array}$$

Leapfrog method

An improved approach is the leapfrog method which has the following updates:

$$p_{i}(t+e/2) = p_{i}(t) - (e/2)\frac{\partial U}{\partial q_{i}}(q(t))$$

$$q_{i}(t+e) = q_{i}(t) + e\frac{p_{i}(t+e/2)}{m_{i}}$$

$$p_{i}(t+e) = p_{i}(t+e/2) - (e/2)\frac{\partial U}{\partial q_{i}}(q(t+e))$$

The leapfrog method is reversible and preserves volume exactly.

Leap-frog simulator

```
leap_frog = function(U, grad_U, e, L, theta, omega) {
  omega = omega - e/2 * grad_U(theta)

  for (1 in 1:L) {
    theta = theta + e * omega
    if (1<L) omega = omega - e * grad_U(theta)
  }
  omega = omega - e/2 * grad_U(theta)
  return(list(theta=theta,omega=omega))
}</pre>
```

Leap-frog simulator

Conservation of the Hamiltonian

Probability distributions

The Hamiltonian is an energy function for the joint state of "position", q, and "momentum", p, and so defines a joint distribution for them, via

$$P(q,p) = \frac{1}{Z} \exp(-H(q,p))$$

where Z is the normalizing constant.

If H(q, p) = U(q) + K(p), the joint density is

$$P(q,p) = \frac{1}{7} \exp\left(-U(q)\right) \exp\left(-K(p)\right).$$

If we are interested in a posterior distribution, we set $q = \theta$ and

$$U(\theta) = -\log \left[p(y|\theta)p(\theta) \right].$$

Hamiltonian Monte Carlo algorithm

Set tuning parameters

- L: the number of steps
- e: stepsize
- $D = \{d_i\}$: covariance matrix for ω

Let $\theta^{(i)}$ be the current value of the parameter θ . The leap-frog Hamiltonian Monte Carlo algorithm is

- 1. Sample $\omega \sim N_d(0, D)$.
- 2. Simulate Hamiltonian dynamics on location $\theta^{(i)}$ and momentum ω via the leapfrog method (or any reversible method that preserves volume) for L steps with stepsize e. Call these updated values θ^* and $-\omega^*$.
- 3. Set $\theta^{(i+1)} = \theta^*$ with probability min $\{1, \rho(\theta^{(i)}, \theta^*)\}$ where

$$\rho(\theta^{(i)}, \theta^*) = \frac{p(\theta^*|y)}{p(\theta^{(i)}|y)} \frac{p(\omega^*)}{p(\omega^{(i)})} = \frac{p(y|\theta^*)p(\theta^*)}{p(y|\theta^{(i)})p(\theta^{(i)})} \frac{N_d(\omega^*; 0, D)}{N_d(\omega^{(i)}; 0, D)}$$

otherwise set $\theta^{(i+1)} = \theta^{(i)}$.

Reversibility

A reversible simulation means that

- if you simulate from (θ, ω) to (θ', ω') for some step size e and number of steps L then
- if you simulate from (θ', ω') for the same e and L, you will end up at (θ, ω) .

If we use q to denote our simulation "density", then reversibility means

$$q(\theta', \omega' | \theta, \omega) = q(\theta, \omega | \theta', \omega')$$

and thus in the Metropolis-Hastings calculation, the proposal is symmetric. In order to ensure reversibility of our proposal, we need to negate momentum after we complete the leap-frog simulation, but so long as $p(\omega) = p(-\omega)$ this will not affect our acceptance probability.

Volume preserving results in perfect acceptance

Recall that we accept with probability $\min\{1, \rho(\theta^{(i)}, \theta^*)\}$ where

$$\rho(\theta^{(i)}, \theta^*) = \frac{p(\theta^*|y)}{p(\theta^{(i)}|y)} \frac{p(\omega^*)}{p(\omega^{(i)})}$$

Volume is preserved if

$$p(\theta^{(i)}|y)p(\omega^{(i)}) = p(\theta^*|y)p(\omega^*) \implies \frac{p(\theta^*|y)}{p(\theta^{(i)}|y)} \frac{p(\omega^*)}{p(\omega^{(i)})} = 1$$

This will only be the case if the simulation is perfect! But we have discretization error. The acceptance probability accounts for this error.

```
HMC_neal = function(U, grad_U, epsilon, L, current_q) {
 q = current_q
 p = rnorm(length(q),0,1)
 current_p = p
 p = p-epsilon*grad_U(q)/2
 for (i in 1:L) {
   q = q+epsilon*p
   if (i!=L) p = p -epsilon * grad_U(q)
 p = p-epsilon * grad_U(q)/2
 p = -p
 current_U = U(current_q)
 current_K = sum(current_p^2)/2
 proposed_U = U(q)
 proposed_K = sum(p^2)/2
 if (runif(1) < exp(current_U-proposed_U+current_K-proposed_K))</pre>
   return(q)
 else {
   return(current_q)
```

```
theta = HMC(1e4, function(x) -x^2/2, function(x) -x, list(e=1,L=1), list(theta=0))
hist(theta, freq=F, 100)
curve(dnorm, add=TRUE, col='red', lwd=2)
```


Tuning parameters

There are three tuning parameters:

- e: step size
- L: number of steps
- D: covariance matrix for momentum

Let $\Sigma = V(\theta|y)$, then an optimal normal distribution for ω is $N(0, \Sigma^{-1})$. Typically, we do not know Σ , but we can estimate it using posterior samples. We can update this estimate throughout burn-in (or warm-up).

Effect of e and L

```
n_reps = 1e4
d = expand.grid(e=10^seq(-3,0,by=1), L=10^seq(0,2))
r = ddply(d, .(e,L), function(xx) {
    data.frame(
    iteration = 1:n_reps,
    theta = HMC(n_reps, function(x) -x^2/2, function(x) -x, list(e=xx$e,L=xx$L), list(theta=0)))
})
```


Random-walk vs HMC

https://www.youtube.com/watch?v=Vv3f0QNWvWQ

Summary

Hamiltonian Monte Carlo (HMC) is a Metropolis-Hastings method using parameter augmentation and a sophisticated proposal distribution based on Hamiltonian dynamics such that

- the acceptance probability can be kept near 1
- while still efficiently exploring the posterior.

HMC still requires us to set tuning parameters

- e: step size
- L: number of steps
- D: covariance matrix for momentum

and can only be run in models with continuous parameters in \mathbb{R}^d (or transformed to \mathbb{R}^d).