Практика по алгоритмам #1

Тема: асимптотика

2 сентября

Собрано 8 сентября 2015 г. в 14:29

Содержание

1	Теория	2
2	Первая порция задач	2
3	История про синус	2
4	Доказательство того, что $(\log n)^{100} < n^{1/3}$	3
5	Проверьте корректность, докажите	3
6	Домашнее задание	4

1 Теория

• f = O(g) $\exists N, C > 0$: $\forall n \ge N, f(n) \le C \cdot g(n)$ Или более грубо: $\exists C > 0$: $f \le C \cdot g$ при достаточно больших n. И еще более грубо: $\exists C > 0$: $f \le C \cdot g$.

Далее везде будем использовать самый грубый вариант и опускать слова "при достаточно больших n".

- $f = o(g) \quad \forall C > 0 \colon f(n) < C \cdot g(n)$ По-другому: $\lim_{n \to +\infty} \frac{f}{g} = 0 \Leftrightarrow \forall \varepsilon > 0 \colon \frac{f}{g} < \varepsilon \Leftrightarrow \forall \varepsilon > 0 \colon f < \varepsilon g$
- $\bullet \ f = \Theta(g) \quad \exists A,B > 0 \colon A \cdot g \leq f \leq B \cdot g$

2 Первая порция задач

Найдите короткую запись через Θ . Если такой не существует, объяснить, почему, и записать через O.

- 1. 2n
- 2. 2n + 1
- 3. $n^2 + 5n + 1$
- 4. $\frac{n^2+3}{7n+1}$
- 5. $n(2 + \sin n)$
- 6. $n(1 + \sin n)$
- 7. $\frac{\arctan n}{n} + \frac{\log \log n}{\log n}$
- 8. Докажите: $\forall f, g > 0 \colon f + g = \Theta(\max(f, g))$

3 История про синус

Докажем, что $\forall \varepsilon > 0, y \in [-1..1] \quad \exists n \in \mathbb{N} \colon |y - \sin n| < \varepsilon.$

 π иррационально $\Rightarrow \forall i,j \in \mathbb{N}, i \neq j \colon (i \mod 2\pi) \neq (j \mod 2\pi)$. Рассмотрим первые n натуральных чисел, им соответствуют разные остатки по модулю 2π , то есть разные точки на единичной окружности. Есть две точки i и j на расстоянии не больше $\varepsilon = \frac{2\pi}{n}$. $(|j-i| \mod 2\pi) \leq \varepsilon$. Рассмотрим точки $x = \arcsin y, k = \lfloor \frac{x}{|j-i|} \rfloor \Rightarrow |y-\sin(k|j-i|)| < \varepsilon$

4 Доказательство того, что $(\log n)^{100} < n^{1/3}$

Докажем, что $\forall a > 0, C > 1 : n^a = O(C^x)$.

По ходу доказательства предполагаем, что мы не знакомы с производными, пределами...

- 1. $n^a = O(C^n)$
- $2. \ n^a \leq C^n \ |$ докажем для константы 1
- 3. $n^a \le 2^{n \log C} \mid C = 2^{\log C}, (a^b)^c = a^{cb}$
- 4. $n \leq 2^{n \frac{\log C}{a}}$ | возвели в степень $\frac{1}{a}$
- 5. $n \leq 2^{nC_2} \mid C_2 = \frac{\log C}{a}$
- 6. $zC_3 \le 2^z \mid z = nC_2, C_3 = (C_2)^{-1}$
- 7. Достаточно доказать при достаточно больших z. Пусть $z \geq C_3$, осталось $z^2 \leq 2^z$. Докажем по индукции, далее база и переход.
- 8. $z \in [10..11) \Rightarrow z^2 \le 2^z$ m $2z + 1 \le z^2$
- 9. $(z+1)^2=z^2+(2z+1)\leq z^2+z^2\leq 2^z+2^z=2^{z+1}$ if $2(z+1)+1=(2z+1)+2\leq z^2+2\leq z^2+2z+1=(z+1)^2$

Докажем, что $\forall \varepsilon > 0, a > 0 \colon n^{\varepsilon} = \Omega(\log^a n).$

- 1. $n^{\varepsilon} \geq \log^a n$ | докажем для константы 1
- $2. (e^{\varepsilon})^k \ge k^a | \log n = k, e^k = n$
- 3. $C^k \geq k^a \mid C = e^{\varepsilon}$, свели к предыдущей задаче

5 Проверьте корректность, докажите

- 1. $2^{n+3} = \Theta(2^n)$
- 2. $2^{2n+1} = \Theta(2^n)$
- 3. $g(n) = O(f(n)) \Rightarrow 2^g(n) = O(2^f(n))$
- 3. $g(n) = o(f(n)) \Rightarrow 2^g(n) = o(2^f(n))$
- 4. $f(n) + g(n) = \Theta(\frac{f(n)+g(n)}{2})$
- 5. $n^{logn} = O(1.1^n)$
- $6. \ \frac{n^3}{n^2 + n \log n} = O(n \log n)$
- 7. $f(n) = O(f(\frac{n}{2}))$
- 8. $f(n) + o(f(n)) = \Theta(f(n))$
- 9. $\log n! = \Theta(n \log n)$
- 10. $n^n = O(n!)$
- 11. $n \log n \log n! = \Theta(n)$

6 Домашнее задание

1. $4.\{5,6,7,8,9\}$

При решении 4.5 можно ссылаться на уже доказанные факты.

2. Заполнить табличку. A = O(B)? A = o(B)? и т.д.

A	B	O	О	Θ	ω	Ω
n	n^2	+	+	_	_	_
$ \lg^k n \\ n^k $	n^{ϵ}					
n^k	c^n					
$\frac{\sqrt{n}}{2^n}$	$n^{\sin n}$					
2^n	$2^{n/2}$					
$n^{\lg m}$	$m^{\lg n}$					
$\lg(n!)$	$\lg(n^n)$					

3. Упорядочить функции в порядке возрастания. Если какие-то функции равны $(f = \Theta(g))$, указать это. Здесь $\lg n$ — двоичный логарифм, $\ln n$ — натуральный логарифм.

Примечание:
$$\lg^*(n) = \begin{cases} 0 & \text{если } n \leq 1; \\ 1 + \lg^*(\lg n) & \text{иначе} \end{cases}$$

4. Посчитать точно:

$$\sum_{k=0}^{\infty} \frac{1}{2^k}$$

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k}$$