Математический анализ

Данил Заблоцкий

19 марта 2024 г.

Оглавление

5	Дифференциальное исчисление функций многих переменных						
	5.1	Производная по вектору	3				
	5.2	Основные теоремы дифференциального исчисления функций					
		многих переменных	6				
	5.3	Производные высших порядков	8				
	5.4	Формула Тейлора	10				
	5.5	Экстремумы функций многих переменных	12				
	5.6	Теорема о неявной функции	15				
	5.7	Приложение теоремы о неявной функции	19				
	5.8	Условный экстремум функции многих переменных	30				
6	Теория рядов 38						
	6.1	Введение	38				
		6.1.1 Гармонический ряд	39				
		6.1.2 Основные свойства сходящихся рядов	40				
	6.2	Сходимость положительных рядов	43				
	6.3	Сходимость знакопеременных рядов	52				
	6.4	Свойства сходящихся рядов	57				
	6.5	Умножение рядов	61				
	6.6	Двойные и повторные ряды	63				
	6.7	Поточечная и равномерная сходимость семейства функций	68				
	6.8	Равномерная сходимость функциональных рядов	73				
	6.9	Свойства предельной функции					
	6.10	Степенные ряды	83				
	6.11	Ряд Тейлора	86				
	6.12	Разложение элементарных функций в степенной ряд	87				
7	Интегралы, зависящие от параметра 90						
	7.1	Собственные интегралы, зависящие от параметра	90				
	7.2	Несобственные интегралы, зависящие от параметра	94				
	7.3	Функциональные свойства несобственного интеграла, завися-					
		щего от параметра	98				
	7.4	Эйлеровы интегралы	103				
		7.4.1 β -функция	103				
		$7.4.2$ γ -функция	105				

8	Кратные интегралы				
	8.1	Mepa	Жордана в \mathbb{R}^n	109	
		8.1.1	Свойства клеточных множеств	110	
		8.1.2	Мера клеточного множества	111	
		8.1.3	Свойства меры клеточных множеств	111	
		8.1.4	Множества, измеримые по Жордану	113	
		8.1.5	Свойства множеств меры нуль	114	
		8.1.6	Свойства множеств, измеримых по Жордану		
	8.2	Краті	ный интеграл Римана	116	
		8.2.1	Классы интегрируемых функций	117	
		8.2.2	Свойства кратного интеграла Римана	118	
	8.3	Сведе	ение кратных интегралов к повторам	120	
	8.4	Замен	на переменной в кратном интеграле	122	
9	Кри	иволи	нейные интегралы	124	
	_	9.0.1	Свойства криволинейного интеграла I-го рода	124	

Глава 5

Дифференциальное исчисление функций многих переменных

Лекция 1: Функции многих переменных

от 01 сен 10:28

5.1 Производная по вектору

Примечание. Пусть $x = (x_1, x_2, x_3) = x(t), f(x(t)) = f(x_1, x_2, x_3),$ тогда:

$$\frac{df(x(t))}{dt} = \frac{\partial f}{\partial x_1} \cdot \frac{dx_1}{dt} + \frac{\partial f}{\partial x_2} \cdot \frac{dx_2}{dt} + \frac{\partial f}{\partial x_3} \cdot \frac{dx_3}{dt} =
= \frac{\partial f}{\partial x_1} \cdot v_1 + \frac{\partial f}{\partial x_2} \cdot v_2 + \frac{\partial f}{\partial x_3} \cdot v_3,$$

где $\vec{v} = \{v_1, v_2, v_3\}$ – скорость частицы, перемещающейся по γ -ну x(t).

Определение 1 (Производная функции по вектору). Пусть D в \mathbb{R}^n – область, $f:D\to\mathbb{R},\ x_0\in D$, вектор $v\in T\mathbb{R}^n_{x_0}$ – касательное пространство к \mathbb{R}^n в точке x_0 (совокупность всех векторов, исходящих из точки x_0). Производной функции f по вектору v называется величина

$$\frac{\partial f}{\partial \vec{v}} = D_{\vec{v}} f(x_0) \coloneqq \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t}, \text{ если } \lim \exists.$$

Утверждение. Пусть $f:D\to\mathbb{R}$ – дифференцируемо в точке $x_0\in D$. Тогда $\forall \vec{v}\in T\mathbb{R}^n_{x_0}\exists \frac{\partial f}{\partial \vec{v}}(x_0)$:

$$\frac{\partial f}{\partial \vec{v}}(x_0) = \frac{\partial f}{\partial x_1}(x_0) \cdot v_1 + \frac{\partial f}{\partial x_2}(x_0) \cdot v_2 + \ldots + \frac{\partial f}{\partial x_n}(x_0) \cdot v_n = df(x_0) \cdot \vec{v},$$

где $df(x_0) \cdot \vec{v}$ – скалярное произведение,

$$df(x_0) = \left\{ \frac{\partial f}{\partial x_1}(x_0), \frac{\partial f}{\partial x_2}(x_0), \dots, \frac{\partial f}{\partial x_n}(x_0) \right\},$$

$$\vec{v} = \{v_1, v_2, \dots, v_n\}$$

Доказательство. Рассмотрим отображение $\gamma:[0;1] \to \mathbb{R}^n$:

$$\vec{\gamma}(t) = \vec{x_0} + \vec{v} \cdot t \Leftrightarrow \vec{\gamma}(t) = \left\{ \begin{array}{l} x_1 = x_0^{(1)} + v_1 \cdot t \\ x_2 = x_0^{(2)} + v_2 \cdot t \\ \vdots \\ x_n = x_0^{(n)} + v_n \cdot t \end{array} \right\}, \quad t \in [0; 1]$$

Заметим, что $\gamma(t)$ дифференцируемо в точке t = 0 \Rightarrow отображение $f \circ \gamma : [0;1] \to \mathbb{R}$ — дифференцируемо в точке t = 0.

$$f \circ \gamma = f(\gamma(t)) \Rightarrow$$

$$\Rightarrow \frac{df(\gamma(t))}{dt}\bigg|_{t=0} = \left(\frac{\partial f}{\partial x_1} \cdot \frac{dx_1}{dt} + \frac{\partial f}{\partial x_2} \cdot \frac{dx_2}{dt} + \dots + \frac{\partial f}{\partial x_n} \cdot \frac{dx_n}{dt}\right)\bigg|_{t=0} =$$

$$= \left(\frac{\partial f}{\partial x_1} \cdot v_1 + \frac{\partial f}{\partial x_2} \cdot v_2 + \dots + \frac{\partial f}{\partial x_n} \cdot v_n\right)\bigg|_{t=0} = df(\gamma(0)) \cdot \vec{v}$$

Если f дифференцируемо в точке $x_0 \Rightarrow \forall \vec{\gamma}(t) = \vec{x_0} + \vec{v} \cdot t$:

$$\frac{df(\gamma(t))}{dt} := \lim_{t \to 0} \frac{f(x_0 + v \cdot t) - f(x_0)}{t} = \frac{\partial f}{\partial \vec{v}}(x_0)$$

Утверждение (Известно из алгебры). Если $L: \mathbb{R}^n \to \mathbb{R}$ – линейное, то

$$L(x) = \dot{a} \cdot \dot{x},$$

$$(L(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 L(x_1) + \lambda_2 L(x_2))$$

где $\vec{a} \cdot \vec{x}$ – скалярное произведение.

Определение 2 (Градиент функции в точке). Пусть $f:D o\mathbb{R},\ D$ область в \mathbb{R}^n , f – дифференцируема в точке $x \in D$. Вектор $\vec{a} \in \mathbb{R}^n$:

$$df(x) \cdot h = \vec{a} \cdot h, \quad h \in \mathbb{R}$$

называется градиентом функции f в точке $x \in \mathbb{R}^n$ и обозначается

Если в \mathbb{R}^n зафиксировать ортонормированный базис, то

$$gradf(x) = \left\{ \frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x) \right\}$$

Определение 3 (Производная по направлению вектора). Если $\vec{v} \in T\mathbb{R}^n_{x_0},$ $|\vec{v}|$ = 1, то $\frac{\partial f}{\partial \vec{v}}(x)$ называется производной по направлению вектора \vec{v} .

Пример.

$$\begin{cases} \cos\alpha = \cos\langle\vec{v},0x\rangle \\ \cos\beta = \cos\langle\vec{v},0y\rangle \end{cases} - направляющие косинусы$$

Рис. 5.1: $\vec{v} = \{\cos \alpha, \cos \beta\}$

Так как при данных условиях $\vec{v} = \{\cos \alpha_1, \cos \alpha_2, \dots, \cos \alpha_n\}$:

$$\frac{\partial f}{\partial \vec{v}}(x) = \frac{\partial f}{\partial x_1} \cdot \cos \alpha_1 + \ldots + \frac{\partial f}{\partial x_n} \cdot \cos \alpha_n.$$

Примечание (Смысл градиента). Градиент показывает направление самого быстрого возрастания функции.

5.2 Основные теоремы дифференциального исчисления функций многих переменных

Теорема 1 (О среднем). Пусть D – область в \mathbb{R}^n , $x \in D$, $x+h \in D$, [x,x+ $h] \in D, \ f:D \to \mathbb{R}$ — дифференцируемо на (x,x+h) и непрерывно на [x, x+h]. Тогда $\exists \xi \in (x, x+h)$:

$$f(x+h)-f(x)=f'(\xi)\cdot h=\frac{\partial f}{\partial x_1}(\xi)\cdot h^1+\frac{\partial f}{\partial x_2}(\xi)\cdot h^2+\ldots+\frac{\partial f}{\partial x_n}(\xi)\cdot h^n,$$

где $\{1, 2, \dots, n\}$ над h – индексы.

Доказательство. Рассмотрим отображение $\gamma:[0;1] \to D$, определен-

$$\gamma(t) = x + t \cdot h, \quad \gamma(t) = \begin{cases} x_1(t) = x_1 + t \cdot h^1 \\ x_2(t) = x_2 + t \cdot h^2 \\ \vdots \\ x_n(t) = x_n + t \cdot h^n \end{cases},$$

$$x = (x_1, x_2, \dots, x_n), \quad h = \{h^1, h^2, \dots, h^n\}, \ t \in [0; 1],$$

$$\gamma(0) = x,$$

$$\gamma(1) = x + h, \quad [0; 1] \xrightarrow{\gamma} [x; x + h].$$

Заметим, что gamma(t) дифференцируемо на (0;1), непрерывно на [0;1], причем $(x_i(t))' = h^i$.

Рассмотрим функцию $F(t) = f(\gamma(t)), F: [0;1] \to \mathbb{R}$. Имеем:

- 1. F дифференцируема на (0;1) (как композиция двух дифферен-
- 2. F непрерывна на [0;1] (как композиция двух непрерывных).

Следовательно, по теореме Лагранжа:

$$F(1) - F(0) = F'(\tau) \cdot (1 - 0), \ \tau \in (0; 1)$$

$$f(x + h) - f(x) = \left(f(\gamma(\tau))\right)' \cdot 1$$

$$\left(f(\gamma(\tau))\right)' \cdot 1 = f'(\gamma(\tau)) \cdot \gamma'(\tau) = \frac{\partial f}{\partial x_1} \cdot h' + \frac{\partial f}{\partial x_2} \cdot h_2 + \dots + \frac{\partial f}{\partial x_n} \cdot h^n.$$

$$f(x+h)-f(x)=\left(\frac{\partial f}{\partial x_1}(\xi) \quad \cdots \quad \frac{\partial f}{\partial x_n}(\xi)\right)\cdot \begin{pmatrix} h^1\\ \vdots\\ h^n \end{pmatrix}=f'(\xi)\cdot h.$$

Следствие. Пусть D – область в \mathbb{R}^n , $f:D\to\mathbb{R}$ – дифференцируема на D и $\forall x\in D$ d(fx)=0 (то есть $\forall i$ $\frac{\partial f}{\partial x_i}=0$). Тогда f(x)=const.

Доказательство. Пусть $x_0 \in D$ и $B(x_0, \rho) \subset D$ — шар \exists , так как D область. Тогда $\forall x \in B(x_0, \rho) \quad [x_0; x] \subset B(x_0, \rho) \subset D$. Следовательно:

$$f(x) - f(x_0) = f'(\xi) \cdot (x - x_0) = 0.$$

$$\left\{ \frac{\partial f}{\partial x_1}(\xi), \dots, \frac{\partial f}{\partial x_n}(\xi) \right\}$$

Таким образом, $\forall x \in B(x_0, \rho) \ f(x) = f(x_0)$. Построим путь из точки x_0 к некоторой точке $x \in D$:

$$\gamma: [0;1] \to D, \qquad \begin{array}{c} \gamma(0) = x_0 \\ \gamma(1) = x \end{array}.$$

По определению пути, γ – непрерывно. Тогда $\exists \delta: \ \forall 0 \leqslant t \leqslant \delta$

$$\gamma(t) \in B(x_0, \rho) \Rightarrow f(\gamma(t)) = f(x_0), \ t \in [0; \delta],$$

где t – точка из $B(x_0, \rho)$.

Пусть $\Delta = \sup \delta \Rightarrow f(\gamma(\Delta)) = f(x_0)$. Покажем, что $\Delta = 1$.

Пусть $\Delta < 1$ ($\Delta \neq 1$). Построим шар $B(\gamma(\Delta), \rho_{\Delta})$. Тогда $\exists \varepsilon > 0$: $\Delta - \varepsilon < t < \Delta + \varepsilon$.

Но тогда $f(\gamma(\Delta+\varepsilon))=f(x_0)$ (так как точка $\gamma(\Delta+\varepsilon)\in B(\gamma(\Delta),\rho_\Delta)$) – противоречие с тем, что $\Delta = \sup \delta \Rightarrow \Delta = 1$.

 $\gamma(1)$ = x и f(x) = $f(x_0)$ \Rightarrow так как $x \in D$ – произведение точек, то имеем, что $\forall x \in D \ f(x) = f(x_0) \Rightarrow f(x) - const.$

Теорема 2 (Достаточное условие дифференцируемости функции). Пусть D – область в \mathbb{R}^n , $f:D\to\mathbb{R}$, f имеет непрерывные частные производные в каждой окрестности точки $x \in D$. Тогда f – дифференцируема в точке x.

Доказательство. Без ограничения общности, будем считать, что окрестность точки $x_0 \in D$ является шаром $B(x_0, \rho) \subset D$.

Пусть $h: x_0 + h \in B(x_0, \rho)$. Здесь

$$x_0 = (x^1, x^2, \dots, x^n)$$

 $x_0 + h = (x^1 + h^1, x^2 + h^2, \dots, x^n + h^n)$

Заметим, что точки

$$x_{1} = (x^{1}, x^{2} + h^{2}, \dots, x^{n} + h^{n})$$

$$x_{2} = (x^{1}, x^{2}, x^{3} + h^{3}, \dots, x^{n} + h^{n})$$

$$\vdots$$

$$x_{n-1} = (x^{1}, x^{2}, x^{3}, \dots, x^{n-1}, x^{n} + h^{n})$$

$$\in B(x_{0}, \rho).$$

$$f(x_0 + h) - f(x_0) =$$

$$= f(x_0 + h) - f(x_1) + f(x_1) - f(x_2) + f(x_2) - \dots$$

$$\dots - f(x_{n-1}) + f(x_{n-1}) - f(x_0) =$$

$$= f(x^1 + h^1, \dots, x^n + h^n) - f(x^1, x^2 + h^2, \dots, x^n + h^n) +$$

$$+ f(x^1, x^2 + h^2, \dots, x^n + h^n) - f(x^1, x^2, \dots, x^n + h^n) +$$

$$+ f(x^1, x^2, \dots, x^n + h^n) - \dots - f(x^1, x^2, \dots, x^{n-1}, x^n) +$$

$$+ f(x^1, x^2, \dots, x^{n-1}, x^n + h^n) - f(x^1, x^2, \dots, x^n) =$$

$$= \begin{vmatrix} \text{Теорема Лагранжа для} \\ \text{функции одной переменной} \end{vmatrix} =$$

$$= \frac{\partial f}{\partial x_1} (x^1 + \theta^1 h^1, x^2 + h^2, \dots, x^n + h^n) \cdot h^1 +$$

$$+ \frac{\partial f}{\partial x^2} (x^1, x^2 + \theta^2 h^2, \dots, x^n + h^n) \cdot h^2 + \dots$$

$$\dots + \frac{\partial f}{\partial x^n} (x^1, x^2, \dots, x^n + \theta^n h^n) \cdot h^n.$$

Используя непрерывность частных производных, запишем:

$$f(x_0 + h) - f(x_0) =$$

$$= \frac{\partial f}{\partial x^1}(x^1, x^2, \dots, x^n) \cdot h^1 + \alpha^1(h^1) + \dots$$

$$\dots + \frac{\partial f}{\partial x^n}(x^1, x^2, \dots, x^n) \cdot h^n + \alpha^n(h^n),$$

где $\alpha^1, \alpha^2, \dots, \alpha^n$ стремятся к нулю при $\vec{h} \to 0$. Это означает, что:

$$f(x_0 + h) - f(x_0) = L(x_0) \cdot h + \underset{h \to 0}{o}(h)$$

(где $L(x_0) = \frac{\partial f}{\partial x^1}(x_0) \cdot h^1 + \ldots + \frac{\partial f}{\partial x^n}(x_0) \cdot h^n = df(x_0)$) \Rightarrow

 \Rightarrow по определению f(x) дифференцируема в точке x_0 .

Лекция 2: Производные высших порядков

от 06 сен 08:47

5.3 Производные высших порядков

Определение 4 (Вторая производная функции по переменным). Пусть $f: D \to \mathbb{R}, \ D$ – область в \mathbb{R}^n . Производная по переменной x^j от производной по переменной x^i называется второй производной функции f $no\ nepemerhum\ x^i, x^j$ и обозначается

$$rac{\partial^2 f}{\partial x^i \partial x^j}(x)$$
 или $f_{x^i,x^j}''(x)$.

Теорема 3 (О смешанных производных). Пусть D – область в \mathbb{R}^n , f: $D \to \mathbb{R}, x \in D, f$ имеет в D непрерывные смешанные производные (второго порядка). Тогда эти производные не зависят от порядка дифференцирования.

Доказательство. Пусть $\frac{\partial^2 f}{\partial x^i \partial x^j}$ и $\frac{\partial^2 f}{\partial x^j \partial x^i}$ – непрерывны в точке $x \in D$. Так как остальные переменные фиксированы, то можно считать,

что f зависит только от двух переменных. Тогда $D \subset \mathbb{R}^2, \ f:D \to \mathbb{R}$ и $\frac{\partial^2 f}{\partial x \partial y}$ и $\frac{\partial^2 f}{\partial y \partial x}$ — непрерывны в точке $x_0 = (x, y) \in D.$

Покажем, что $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

Рассмотрим функции:

$$\begin{aligned} \phi(t) &= f(x+t\cdot\Delta x,y+\Delta y) - f(x+t\cdot\Delta x,y) \\ \psi(t) &= f(x+\Delta x,y+t\cdot\Delta y) - f(x,y+t\cdot\Delta y) \end{aligned}, \quad t\in[0;1].$$

Имеем:

$$\phi(1) - \phi(0) = f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y) - f(x, y + \Delta y) + f(x, y)$$

$$\psi(1) - \psi(0) = f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y) - f(x + \Delta x, y) + f(x, y)$$

Тогда:

$$\phi(1) - \phi(0) = \psi(1) - \psi(0) \tag{5.1}$$

$$\begin{split} \phi(1) - \phi(0) &= \phi'(\xi) \cdot (1 - 0) = \\ &= \frac{\partial f}{\partial x} (x + \xi \cdot \Delta x, y + \Delta y) \cdot \Delta x + \frac{\partial f}{\partial y} (x + \xi \cdot \Delta x, y + \Delta y) - \\ &\quad - \frac{\partial f}{\partial x} (x + \xi \cdot \Delta x, y) \cdot \Delta x - \frac{\partial f}{\partial y} (x + \xi \cdot \Delta x, y) \cdot 0 = \\ &= \left(\frac{\partial f}{\partial x} (x + \xi \cdot \Delta x, y + \Delta y) - \frac{\partial f}{\partial x} (x + \xi \cdot \Delta x, y) \right) = \\ &= \left| \begin{array}{c} \text{по теореме Лагранжа для} \\ \text{функции 1-ой переменной} \end{array} \right| = \\ &= \frac{\partial^2 f}{\partial x \partial y} (x + \xi \cdot \Delta x, y + \eta \cdot \Delta y) \Delta x \Delta y. \end{split}$$

Положим $(x + \xi \Delta x, y + \eta \cdot \Delta y) = P \in \Pi$.

Аналогично:

$$\psi(1) - \psi(0) = \psi'(\xi) \cdot (1 - 0) =$$

$$= \frac{\partial f}{\partial x} (x + \Delta x, y + \xi \cdot \Delta y) \cdot 0 + \frac{\partial f}{\partial y} (x + \Delta x, y + \xi \cdot \Delta y) \cdot \Delta y -$$

$$- \frac{\partial f}{\partial x} (x, y + \xi \cdot \Delta y) \cdot 0 - \frac{\partial f}{\partial y} (x, y + \xi \cdot \Delta y) \cdot \Delta y =$$

$$= \left(\frac{\partial f}{\partial y} (x + \Delta x, y + \xi \cdot \Delta y) - \frac{\partial f}{\partial y} (x, y + \xi \cdot \Delta y) \right) \Delta y =$$

$$= \begin{vmatrix} \text{по теореме Лагранжа для} \\ \text{функции 1-ой переменной} \end{vmatrix} =$$

$$= \frac{\partial^2 f}{\partial y \partial x} (x + \tau \cdot \Delta x, y + \xi \cdot \Delta y) \Delta y \Delta x$$

Положим, что $(x + \tau \cdot \Delta x, y + \xi \cdot \Delta y) = Q$. Тогда из 5.1 следует, что:

$$\begin{array}{cccc} \frac{\partial^2 f}{\partial x \partial y}(P) \Delta x \Delta y & = & \frac{\partial^2 f}{\partial y \partial x}(Q) \Delta x \Delta y \\ & & & & & & & \\ \frac{\partial^2 f}{\partial x \partial y} \big(x + \xi \cdot \Delta x, y + \eta \cdot \Delta y\big) & = & \frac{\partial^2 f}{\partial y \partial x} \big(x + \tau \cdot \Delta x, y + \xi \cdot \Delta y\big) \end{array}.$$

Используя непрерывность частных производных при $\Delta x \to 0$ и $\Delta y \to 0 \Rightarrow$

$$x + \xi \cdot \Delta x \to x$$
, $y + \eta \cdot \Delta y \to y$.

Таким образом.

$$\frac{\partial^2 f}{\partial x \partial u} = \frac{\partial^2 f}{\partial u \partial x}.$$

5.4 Формула Тейлора

Определение 5 (Гладкая функция класса $C^{(k)}$). Пусть D — область в \mathbb{R}^n , $f:D\to\mathbb{R}$. Будем говорить, что f является гладкой функцией класса $C^{(k)}$ (k-го порядка), то есть $f\in C^{(k)}(D,\mathbb{R})$, если f имеет непрерывные частные производные до k-го порядка включительно.

Теорема 4 (Формула Тейлора). Пусть D — область в $\mathbb{R}^n,\ f:D\to\mathbb{R},\ f\in C^{(k)}(D,\mathbb{R}),\ x\in D,\ x+h\in D,\ [x;x+h]\subset D.$ Тогда:

$$f(x+h) = f(x) + \sum_{i=1}^{k-1} \frac{1}{i!} \left(\frac{\partial}{\partial x^1} \cdot h^1 + \ldots + \frac{\partial}{\partial x^n} \cdot h^n \right)^i \cdot f(x) + R^k,$$

Г

где R^k – остаточный член,

$$R^{k} = \frac{1}{k!} \left(\frac{\partial}{\partial x^{1}} \cdot h^{1} + \dots + \frac{\partial}{\partial x^{n}} \cdot h^{n} \right)^{k} \cdot f(x + \xi \cdot h),$$
$$x = (x^{1}, \dots, x^{n}), \quad h = (h^{1}, \dots, h^{n}).$$

Доказательство. Рассмотрим функцию:

$$\phi(t) = f(x + t \cdot h), \ t \in [0; 1]$$

Применим формулу Тейлора к $\phi(t)$:

$$\phi(1) = \phi(0) + \frac{1}{1!} \cdot \phi'(0) \cdot (1 - 0) + \frac{1}{2!} \cdot \phi''(0) \cdot (1 - 0)^2 + \frac{1}{3!} \cdot \phi'''(0) \cdot (1 - 0)^3 + \dots + \frac{1}{k!} \cdot \phi^{(k)} \cdot (1 - 0)^k.$$
 (5.2)
$$\phi(1) = f(x + h), \quad \phi(0) = f(x).$$

$$\phi'(0) = f'(x+th) \cdot (x+t \cdot h)_k' \Big|_{t=0} =$$

$$= \left(\frac{\partial f(x+t \cdot h)}{\partial x^1} \quad \frac{\partial f(x+t \cdot h)}{\partial x^2} \quad \dots \quad \frac{\partial f(x+t \cdot h)}{\partial x^n} \right) \cdot \begin{pmatrix} h^1 \\ h^2 \\ \vdots \\ h^n \end{pmatrix} \Big|_{t=0} =$$

$$= \left(\frac{\partial f(x+t \cdot h)}{\partial x^1} \cdot h^1 + \frac{\partial f(x+t \cdot h)}{\partial x^2} \cdot h^2 + \dots + \frac{\partial f(x+t \cdot h)}{\partial x^n} \cdot h^n \right) \Big|_{t=0} =$$

$$= \frac{\partial f}{\partial x^1}(x) \cdot h^1 + \frac{\partial f}{\partial x^2}(x) \cdot h^2 + \dots + \frac{\partial f}{\partial x^n}(x) \cdot h^n =$$

$$= \left(\frac{\partial}{\partial x^1} \cdot h^1 + \dots + \frac{\partial}{\partial x^n} \cdot h^n \right) \cdot f(x)$$

$$\phi''(0) = \left(\sum_{i=1}^{n} \frac{\partial f(x+t \cdot h)}{\partial x^{i}} \cdot h^{i}\right)_{t}' \bigg|_{t=0} =$$

$$= \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f(x+t \cdot h)}{\partial x^{i} \partial x^{j}} \cdot h^{i} h^{j}\right) \bigg|_{t=0} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f(x)}{\partial x^{i} \partial x^{j}} \cdot h^{i} h^{j} =$$

$$= \left(\frac{\partial}{\partial x^{1}} \cdot h^{1} + \dots + \frac{\partial}{\partial x^{n}} \cdot h^{n}\right)^{2} \cdot f(x)$$

И так далее. Подставим получившиеся выражения в 5.2 и получим искомое.

Пример. Запишем формулу Тейлора для функции f(x,y):

$$f(x,y) = f(x_0, y_0) + \frac{1}{1!} \left(\frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y \right) +$$

$$+ \frac{1}{2!} \left(\frac{\partial^2 f}{\partial x^2}(x_0, y_0) \cdot (\Delta x)^2 +$$

$$+ 2 \cdot \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \cdot (\Delta y)^2 \right) +$$

$$+ \frac{1}{3!} \cdot \left(\frac{\partial^3 f}{\partial x^3}(x_0, y_0) \cdot (\Delta x)^3 + 3 \cdot \frac{\partial^3 f}{\partial x^2 \partial y}(x_0, y_0) \cdot (\Delta x)^2 \Delta y +$$

$$+ 3 \cdot \frac{\partial^3 f}{\partial x \partial y^2}(x_0, y_0) \cdot \Delta x (\Delta y)^2 + \frac{\partial^3 f}{\partial y^3}(x_0, y_0) \cdot (\Delta y)^3 \right) + \dots$$

$$\dots + \frac{1}{k!} \cdot \left(\frac{\partial}{\partial x} \Delta x + \frac{\partial}{\partial y} \Delta y \right)^k \cdot f(x_0 + \xi \cdot \Delta x, y_0 + \eta \cdot \Delta y),$$

$$\Delta x = x - x_0, \quad \Delta y = y - y_0.$$

5.5 Экстремумы функций многих переменных

Определение 6 (Точка локального максимума (минимума)). Пусть X — метрическое пространство (МП), $f: X \to \mathbb{R}$. Точка x_0 называется точкой локального максимума (минимума), если $\exists U(x_0) \subset X: \ \forall x \in U(x_0)$

$$f(x) \le f(x_0) \quad (f(x) \ge f(x_0))$$

Теорема 5 (Необходимое условие локального экстремума). Пусть D – область в $\mathbb{R}^n,\ f:D\to\mathbb{R},\ x_0\in D$ – точка локального экстремума, тогда в точке $x_0\ \forall i=\overline{1,n}$

$$\frac{\partial(x_0)}{\partial x^i} = 0.$$

Доказательство. Фиксируем все переменные за исключением x^i , тогда можно рассматривать функцию $f(x^1,\ldots,x^i,\ldots,x^n)$ как функцию одной переменной, для которой x_0 – точка локального экстремума, следовательно $\frac{\partial f}{\partial x^i}(x_0)=0$,

i – произвольная $\Rightarrow \forall i$ выполняется.

Определение 7 (Критическая точка функции). Пусть D – область в \mathbb{R}^n , $f: D \to \mathbb{R}^k$ – дифференцируемо в точке $x_0 \in D$. Точка x_0 называ-

ется *критической точкой функции* f(x), если:

$$rank\Im f(x_0) < \min(n,k),$$

где $\Im f(x_0)$ – матрица Якоби функции $f(x_0)$.

Пример. $f: \mathbb{R}^3 \to \mathbb{R}^2$

$$f(x,y,z) = \begin{pmatrix} x \cdot y \\ y - z \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix}$$

$$\Im f(x,y,z) = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \end{pmatrix} = \begin{pmatrix} y & x & 0 \\ 0 & 1 & -1 \end{pmatrix} \implies$$

$$\Rightarrow (x_0) = \begin{cases} x = 0 \\ y = 0 \\ z = t \end{cases}$$
 - критическая точка.

$$n = 3, \quad k = 2$$

Примечание. Множество точек прямой, получаемой пересечением плоскостей x = 0 и y = 0 — множество критических точек функции f(x, y, z).

Определение 8 (Квадратичная форма на касательном пространстве). Пусть D – область в \mathbb{R}^n , $f:D\to\mathbb{R}$, f имеет производную в точке $x_0\in D$. На касательном пространстве $T\mathbb{R}^n_{(x_0)}$ определим квадратичную форму

$$Q(h) = \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(x_{0}) \cdot h^{i} h^{j}, \quad Q: T\mathbb{R}^{n} \to \mathbb{R}.$$

Теорема 6 (Достаточное условие локального экстремума). Пусть D — область в \mathbb{R}^n , $f:D\to\mathbb{R}$ дифференцируема в точке $x\in D,\ x$ — критическая точка для $f,\ f\in C^n(D,\mathbb{R}),\ n$ = 2. Тогда, если:

- 1. Q(h) знакоположительна, то в точке x локальный минимум.
- 2. Q(h) знакоотрицательна, то в точке x локальный максимум.
- 3. Q(h) может принимать различные значения (> 0,< 0), тогда в точке x нет экстремума.

Доказательство. По формуле Тейлора:

$$f(x+h) - f(x) = \frac{1}{2} \cdot \sum_{i,j=1}^{n} \frac{\partial^{2} f(x)}{\partial x^{i} \partial x^{j}} \cdot h^{i} h^{j} + o(\|h\|^{2}) =$$

$$= \frac{\|h\|^{2}}{2} \cdot \left(\sum_{i,j=1}^{n} \frac{\partial^{2} f(x)}{\partial x^{i} \partial x^{j}} \cdot \frac{h^{i}}{\|h\|} \frac{h^{j}}{\|h\|} + \alpha(h)\right) = \begin{vmatrix} \text{где } \alpha(h) \to 0 \text{ при} \\ h \to 0 \end{vmatrix} =$$

$$= \frac{\|h\|^{2}}{2} \cdot \left(Q\left(\frac{h}{\|h\|}\right) + \alpha(h)\right).$$

Вектор $\frac{h}{\|h\|} < S^{(n-1)}$ — единичная (n-1)-мерная сфера. Сфера $S^{(n-1)}$ — компактное множество \Rightarrow по теореме Больцано - Вейерштраса, $\exists e_1, e_2 \in S^{(n-1)}$:

$$Q_1(e_1) = \max Q(h) = M$$
, $Q_2(e_2) = \min Q(h) = m$

1. Если Q(h) – знакоположительна $\Rightarrow m > 0$. Следовательно, $\exists \delta > 0$: $\forall h \ \|h\| < \delta, \ |\alpha(h)| < m$

$$Q\left(\frac{h}{\|h\|}\right) + \alpha(h) > 0,$$

следовательно, $\forall h: \|h\| < \delta$

$$f(x+h) - f(x) > 0,$$

по определению, x – точка локального минимума (здесь $\|h\| < \delta$ – аналог понятия окрестности точки x).

2. Если Q(h) — знакоотрицательна, то M < 0. Тогда $\exists \delta > 0 : \forall h \ \|h\| < \delta \ |\alpha(h)| < -M$

$$Q\left(\frac{h}{\|h\|}\right) + \alpha(h) < 0,$$

следовательно, $\forall h: \|h\| < \delta$

$$f(x+h) - f(x) < 0,$$

тогда x – точка локального максимума.

3. Если Q(h) – знакопеременна, то $m < 0 < M, \ \forall t > 0$

$$Q(t \cdot e_2) < 0, \quad Q(t \cdot e_1) > 0,$$

тогда в точке x нет экстремума.

Замечание. На практике для определения тах и те можно пользоваться критерием Сильвестра из алгебры.

Определение 9 (Наеявно заданная уравнением функция). Пусть D – область в \mathbb{R}^k , Ω – область в \mathbb{R}^k , $F:D\times\Omega\to\mathbb{R}^k$.

Пусть функция $f: D \to \Omega$:

$$y = f(x) \Leftrightarrow F(x, y) = 0.$$

Говорят, что уравнение F(x,y) = 0 неявно задает функцию y = f(x).

Пример. $x^2 + y^2 = 1$

$$y = \pm \sqrt{1 - x^2}, \quad y = \left\{ \begin{array}{ll} \sqrt{1 - x^2}, & x \in Q \\ -\sqrt{1 - x^2}, & x \notin Q \end{array} \right.$$

Лекция 3: Теорема о неявной функции

от 12 сен 10:30

5.6 Теорема о неявной функции

Теорема 7 (О неявной функции). Пусть F(x,y) отображает окрестность $U(x_0;y_0) \subset \mathbb{R}^2$ в $\mathbb{R}, \ F: U(x_0,y_0) \to \mathbb{R}.$

Пусть F имеет следующие свойства:

- 1. $F(x_0, y_0) = 0$.
- 2. $F(x,y) \in C^P(U,\mathbb{R}), p \ge 1.$
- 3. $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$.

Тогда \exists открезки $I_x, I_y: f: I_x \rightarrow I_y$:

- 1. $I_x \times I_y \subset U(x_0, y_0)$.
- 2. $\forall x \in I_x \ y = f(x) \Leftrightarrow F(x,y) = 0$.
- 3. $f \in C^P(I_x, I_y)$.
- 4. $\forall x \in I_x \ f'(x) = -\frac{F'_x(x,y)}{F'_y(x,y)}$.

Доказательство. Будем считать, что окрестность $U(x_0,y_0)$ – круг с центром в точке (x_0,y_0) . Для определенности будем считать, что $F_y'(x_0,y_0)>0$.

В силу непрерывности F'_y \exists окрестность $V(x_0,y_0) \subset U(x_0,y_0)$: $\forall (x,y) \in V$ $F'_y(x,y) > 0$. Если посмотрим на функцию F(x,y) при фиксированной x как на функцию по переменной y, то $F(\overline{x},y)$ будет монотонной (в силу того, что $F'_y(\overline{x},y) > 0$). Тогда для $\beta = \frac{1}{2}\tau$, где τ – радиус круга $U(x_0,y_0)$.

$$F(x_0, y_0 - \beta) < F(x_0, y_0) < F(x_0, y_0 + \beta).$$

Так как F(x,y) непрерывна, то $\exists \delta > 0: \forall x \in [x_0 - \delta, x_0 + \delta]$

$$F(x, y_0 - \beta) < 0$$
, $F(x, y_0 + \beta) > 0$.

При фиусированном x функция $f(\overline{x}, y)$ непрерывно монотонна, на концах отрезка $[y_0 - \beta; y_0 + \beta]$ имеет разные знаки, тогда $\exists ! y_x \in [y_0 - \beta; y_0]$ $\beta; y_0 + \beta]$: $F(\overline{x}, y_x) = 0$. В силу непрерывности F(x, y) по $x, \exists \delta > 0$: $\forall x \in [x_0 - \delta; x_0 + \delta] F(x, y_x = 0).$

Определим функцию $f: [x_0 - \delta; x_0 + \delta] \rightarrow [y_0 - \beta; y_0 + \beta]$ положив, что $y = f(x) \Leftrightarrow F(x,y) = 0$, то есть $y_x = f(x)$. Положим $f \in C^{(P)}(I_x, I_y)$.

1. Покажем, что f – непрерывна.

Для начала покажем, что f непрерывна в точке x_0 .

Пусть $\varepsilon > 0$ задано. Покажем, что $\exists \delta > 0: \ \forall x \in (x_0 - \delta; x_0 + \delta) \Rightarrow$ $f(x) \in (y_0 - \varepsilon; y_0 + \varepsilon).$

Будем считать, что $\varepsilon < \beta \Rightarrow [y_0 - \varepsilon; y_0 + \varepsilon] \subset [y_0 - \beta; y_0 + \beta] \Rightarrow$ найдется отрезок $[x_0 - \delta; x_0 + \delta]$ и функция

$$\hat{f}(x) : [x_0 - \delta; x_0 + \delta] \to [y_0 - \varepsilon; y_0 + \varepsilon],$$
$$\hat{f}(x) = y \Leftrightarrow F(x, y) = 0.$$

Ho на $[x_0-\delta;x_0+\delta] \hat{f}(x) \equiv f(x) \Rightarrow f([x_0-\delta;x_0+\delta]) \subset [y_0-\varepsilon;y_0+\varepsilon] \Rightarrow$ f(x) непрерывна в точке x_0 .

Теперь, пусть $x \in I_x = [x_0 - \delta; x_0 + \delta].$

Для точки (x,y_x) выполнены все условия теоремы \Rightarrow \exists отрезок $[x-\alpha;x+\alpha]=\widehat{I}_x$ и $[y_x-\gamma;y_x+\gamma]=\widehat{I}_y$ и функция $g:\widehat{I}_x o \widehat{I}_y:g(\overline{x})=y\Leftrightarrow F(\overline{x},y)=0\ \forall \overline{x}\in\widehat{I}_x.$

Ho на отрезке $[x-\alpha;x+\alpha]$ функция $g(x) \equiv f(x)$.

По построению g(x) непрерывна в точке x, следовательно и f(x)непрерывна в точке x.

2. Покажем, что f(x) дифференцируема на I_x .

Пусть $x \in I_x$, $x + \Delta x \in I_x$, y = f(x), $y + \Delta y = f(x + \Delta x)$. Тогда

$$0 = F(x + \Delta x, y + \Delta y) - F(x, y) =$$

$$= \begin{vmatrix} \text{Теорема} \\ \text{о среднем} \end{vmatrix} = F'_x(x + \theta \cdot \Delta x, y + \theta \cdot \Delta y) \Delta x +$$

$$+ F'_y(x + \theta \cdot \Delta x, y + \theta \cdot \Delta y) \Delta y, \ 0 < \theta < 1 \Rightarrow$$

$$\Rightarrow \frac{\Delta y}{\Delta x} = \frac{-F_x'(x + \theta \cdot \Delta x, y + \theta \cdot \Delta y)}{F_y'(x + \theta \cdot \Delta x, y + \theta \cdot \Delta y)}$$

Поскольку f – непрерывная функция, то при $\Delta x \to 0: \Delta y \to 0$ $0 (f(x + \Delta x) - f(x) = \Delta y \rightarrow 0)$. Тогда:

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{-F'_x(x, y)}{F'_y(x, y)}$$

$$(5.3)$$

Из теоремы о непрерывности композиции непрерывной функции $\Rightarrow f'(x)$ – непрерывна в точке $x \Rightarrow f \in C^{(1)}(I_x, I_y)$.

Если $F \in C^{(p)}(U, \mathbb{R}), p > 1$, то:

$$f''(x) = \left(-\frac{F_x'(x,y)}{F_y'(x,y)}\right)' = \frac{(-F_x')' \cdot F_y' + F_x' \cdot (F_y')'}{(F_y')^2} = -\left(F_{xx}'' + F_{xy}'' \cdot f'(x)\right) \cdot F_y' + F_x' \cdot \left(F_{yx}'' + F_{yy}'' \cdot f'(x)\right) = \frac{\int_{y'(x)}^{y'(x)} (F_y')^2}{(F_y')^2}, \quad (5.4)$$

где $F''_{xx}, F''_{xy}, F''_{yy}$ вычисляются в точке $(x, f(x)) \Rightarrow f(x) \in C^{(2)}(I_x, I_y)$, если $F(x,y) \in C^{(2)}(U,\mathbb{R}).$

Заметим, что в левой части выражения 5.4 производная функции f имеет порядок на 1 больше, чем производная функции f в правой части. Тогда по индукции можно показать, что $f \in$ $C^{(p)}(I_x, I_y)$, если $F(x, y) \in C^{(p)}(U, \mathbb{R})$.

Теорема 8 (О неявной функции вида $F(x^1,\ldots,x^m,y)=0$). Если $F:U\to\mathbb{R}$, где $U\subset\mathbb{R}^{m+1}$ — окрестность точки $(x_0,y_0)=(x_0^1,\ldots,x_0^m,y_0)\in\mathbb{R}^{m+1}$:

- 1. $F(x_0, y_0) = F(x_0^1, \dots, x_0^m, y_0) = 0$
- 2. $F \in C^{(p)}(U, \mathbb{R})$.
- 3. $F_y'(x_0,y_0)=F_y'(x_0^1,\dots,x_0^m,y_0)\neq 0$, тогда $\exists (m+1)$ -мерный промежуток $I=I_x^m\times I_y^1$, где:

$$I_x^m = \{ x = (x^1, \dots, x^m) \in \mathbb{R}^m \mid |x^i - x_0^i| < \alpha^i, \ i = \overline{1, m} \},$$
$$I_y^1 = \{ y \in \mathbb{R} \mid |y - y_0| < \beta \},$$

 $I \subset U$ и \exists функция $f: I_x^m \to I_y^1$:

- (a) $f \in C^{(p)}(I_x^m, I_y^1)$. (b) $\forall (x,y) \in I = I_x^m \times I_y^1 \quad y = f(x^1, \dots, x^m) \Leftrightarrow F(x^1, \dots, x^m, y) = 0$. (c) $f'(x) = -\frac{F'_x(x,y)}{F'_y(x,y)}$, to ects $\frac{\partial f}{\partial x^i} = -\frac{F'_{x^i}(x,y)}{F'_y(x,y)}$.

Доказательство. Повторить доказательство теоремы 7, понимая под

ГЛАВА 5. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ 17 МНОГИХ ПЕРЕМЕННЫХ

x набор (x^1,\ldots,x^m) , под δ – набор $(\alpha^1,\ldots,\alpha^m)$.

Если в функциях $f(x^1,\ldots,x^m)$ и $F(x^1,\ldots,x^m,y)$ фиксировать все переменные, кроме x^i и y, то мы окажемся в условиях теоремы 7, при этом роль x играет переменная $x^i \Rightarrow$ верен пункт 3.

И рассуждая аналогично доказательству теоремы 7, получаем, что

$$f \in C^{(p)}(I_x^m, I_y^1)$$
, если $F \in C^{(p)}(U, \mathbb{R})$.

Примечание (Общий случай). Рассмотрим систему уравнений:

$$\begin{cases}
F^{1}(x^{1}, \dots, x^{m}, y^{1}, \dots, y^{n}) = 0 \\
F^{2}(x^{1}, \dots, x^{m}, y^{1}, \dots, y^{n}) = 0 \\
\vdots \\
F^{n}(x^{1}, \dots, x^{m}, y^{1}, \dots, y^{n}) = 0
\end{cases} (5.5)$$

которую будем решать относительно $y^1,\dots,y^n,$ то есть искать *локально* эквивалентную систему функциональных связей,

$$\begin{cases} y^{1} = f^{1}(x^{1}, \dots, x^{m}) \\ y^{2} = f^{1}(x^{1}, \dots, x^{m}) \\ \vdots \\ y^{n} = f^{1}(x^{1}, \dots, x^{m}) \end{cases}$$
(5.6)

Для кратности и удобства будем считать, что $x=(x^1,\ldots,x^m),\ y=(y^1,\ldots,y^n),$ тогда систему 5.5 будем записывать как F(x,y)=0, а систему 5.6 – как y=f(x). Если

$$x_0 = (x_0^1, \dots, x_0^m), \quad y_0 = (y_0^1, \dots, y_0^n),$$

 $\alpha = (\alpha^1, \dots, \alpha^m), \quad \beta = (\beta^1, \dots, \beta^n),$

то запись $|x-x_0| < \alpha$ или $|y-y_0| < \beta$ будет означать, что

$$|x^{i} - x_{0}^{i}| < \alpha^{i}, i = \overline{1, m}$$

 $|y^{i} - y_{0}^{i}| < \beta^{i}, i = \overline{1, n}$

Далее положим, что

$$f'(x) = \begin{pmatrix} \frac{\partial f^1}{\partial x^1} & \cdots & \frac{\partial f^1}{\partial x^m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f^n}{\partial x^1} & \cdots & \frac{\partial f^n}{\partial x^m} \end{pmatrix} (x)$$

$$F'_x(x,y) = \begin{pmatrix} \frac{\partial F^1}{\partial x^1} & \cdots & \frac{\partial F^1}{\partial x^m} \\ \vdots & \ddots & \vdots \\ \frac{\partial F^n}{\partial x^1} & \cdots & \frac{\partial F^n}{\partial x^m} \end{pmatrix} (x,y)$$

$$F'_y(x,y) = \begin{pmatrix} \frac{\partial F^1}{\partial y^1} & \cdots & \frac{\partial F^1}{\partial y^m} \\ \vdots & \ddots & \vdots \\ \frac{\partial F^n}{\partial y^1} & \cdots & \frac{\partial F^n}{\partial y^m} \end{pmatrix} (x,y)$$

ГЛАВА 5. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ 18 МНОГИХ ПЕРЕМЕННЫХ

Заметим, что матрица $F'_{y}(x,y)$ – квадратная, следовательно она обратима тогда и только тогда, когда $|F'_y(x,y)| \neq 0$ (определитель $\neq 0$).

Обозначим матрицу, обратную к $F_y'(x,y)$ как $\left[F_y'(x,y)\right]^{-1}$

Теорема 9 (О неявной функции, общий случай). Пусть $F: U(x_0, y_0) \to$ \mathbb{R}^n , где $U(x_0,y_0) \subset \mathbb{R}^{m+n}$ – окрестность точки (x_0,y_0) такая, что

- 1. $F \in C^{(p)}(U, \mathbb{R}^n), p \ge 1.$
- 2. $F(x_0, y_0) = 0$.
- 3. $F'_y(x_0, y_0)$ обратная матрица.

Тогда $\exists (n+m)$ -мерный промежуток $I=I^m_x\times I^n_y\subset U(x_0;y_0),$ где

$$\begin{split} I_x^m &= \left\{ x \in \mathbb{R}^m \mid |x - x_0| < \alpha \right\}, \\ I_x^n &= \left\{ y \in \mathbb{R}^n \mid |y - y_0| < \beta \right\}, \end{split}$$

- то есть $f: I_x^m \to I_y^n$:

 $\forall (x,y) \in I_x^m \times I_y^n \ F(x,y) = 0 \Leftrightarrow y = f(x)$.

 $f'(x) = \left[F_y'(x,y) \right]^{-1} \cdot F_x'(x,y)$.

Доказательство. Например, можно посмотреть в Зориче.

5.7 Приложение теоремы о неявной функции

Определение 10 (Диффиоморфизм класса $C^{(p)}$, гомеоморфизм). Пусть D, G – области в \mathbb{R}^n . Отображение $f: D \to G$ называтеся диффиоморфизмом класса $C^{(p)}$, $p \ge 0$, если:

- 1. f обратимое.
- 2. $f \in C^{(p)}(D, G)$. 3. $f^{-1} \in C^{(p)}(D, G)$.

При p = 0 f называется $\emph{гомеомор}$ физмом, то есть f – гомеоморфизм, если f – взаимно однозначное отображение и f, f^{-1} – непрерывны.

Пример.
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^x$$
 — нет. $f: \mathbb{R} \to \mathbb{R}_+, \ f(x) = e^x$ — да, диффиоморфизм класса C^∞ .

Пример.
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$$
 – нет. $f: \mathbb{R}_+ \to \mathbb{R}_+$ – да, диффиоморфизм класса C^{∞} .

Пример. $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^3$ – гомеоморфизм класса C^0 , но не диффиоморфизм, так как $f^{-1} = \sqrt[3]{y}$ теряет непрерывность.

Теорема 10 (Об обратной функции). Пусть D – область в $\mathbb{R}^n, \ f: D \to$ \mathbb{R}^n , $x_0 \in D$. Kpome того,

- $f \in C^{(p)}(D, \mathbb{R}^n), p \ge 1.$

Тогда \exists окрестности U, V точек x_0 и y_0 соответственно:

- $f: U \to V$ диффиоморфизм U на V класса $C^{(p)}(U,V)$.
- $\forall y \in V [f^{-1}]'(y) = [f'(x)]^{-1}, y = f(x).$

Доказательство. Рассмотрим F(x,y) = y - f(x).

- 1. $F(x,y) \in C^{(p)}(D \times \mathbb{R}^n, \mathbb{R}^n)$.
- 2. $F'_x(x_0, y_0) = -f'(x)$ обратима.
- 3. $F(x,y) = 0 \Leftrightarrow y = f(x)$.

Следовательно, по теореме 7 $\exists n\text{-мерные}$ промежутки I^n_x и I^n_y и \exists

- 2. $g(y) = x \Leftrightarrow F(x,y) = 0 \Leftrightarrow y = f(x)$. 3. $g(y) \in C^{(p)}(I_y^n, I_x^n)$. 4. $\forall y \in I_y^n \ g'(y) = -\left[F_x'(g(y), y)\right] \cdot F_y'(g(y), y)$, fig. g'(y), $\left[F_x'(g(y), y)\right]$, $\left[F_x'(g(y), y)\right]$ $F'_{u}(g(y),y)$ – матрицы.

$$f(x) = \begin{pmatrix} f^{1}(x^{1}, \dots, x^{n}) \\ f^{2}(x^{1}, \dots, x^{n}) \\ \vdots \\ f^{n}(x^{1}, \dots, x^{n}) \end{pmatrix}$$

$$F(x,y) = \begin{pmatrix} y^{1} - f^{1}(x^{1}, \dots, x^{n}) \\ y^{2} - f^{2}(x^{1}, \dots, x^{n}) \\ \vdots \\ y^{n} - f^{n}(x^{1}, \dots, x^{n}) \end{pmatrix} = \begin{pmatrix} F^{1}(x, y) \\ F^{2}(x, y) \\ \vdots \\ F^{n}(x, y) \end{pmatrix}$$

$$F'_{x}(x,y) = \begin{pmatrix} \frac{\partial F^{1}}{\partial x^{1}} & \cdots & \frac{\partial F^{1}}{\partial x^{n}} \\ \frac{\partial F^{2}}{\partial x^{1}} & \cdots & \frac{\partial F^{2}}{\partial x^{n}} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F^{n}}{\partial x^{1}} & \cdots & \frac{\partial F^{n}}{\partial x^{n}} \end{pmatrix} (x,y) = \begin{pmatrix} -\frac{\partial f^{1}}{\partial x^{1}} & \cdots & -\frac{\partial f^{1}}{\partial x^{n}} \\ -\frac{\partial f^{2}}{\partial x^{1}} & \cdots & -\frac{\partial f^{1}}{\partial x^{n}} \\ \vdots & \ddots & \vdots \\ -\frac{\partial f^{n}}{\partial x^{1}} & \cdots & -\frac{\partial f^{n}}{\partial x^{n}} \end{pmatrix}$$

$$F'_{y}(x,y) = \begin{pmatrix} \frac{\partial F^{1}}{\partial y^{1}} & \cdots & \frac{\partial F^{1}}{\partial y^{n}} \\ \frac{\partial F^{2}}{\partial y^{1}} & \cdots & \frac{\partial F^{2}}{\partial y^{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F^{n}}{\partial y^{1}} & \cdots & \frac{\partial F^{n}}{\partial y^{n}} \end{pmatrix} (x,y) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Положим $V = I_y^n$, U = g(V).

Тогда из 1. и 2. $\Rightarrow f\big|_U$ и $g\big|_V$ – взаимно обратны. Из 4. $\Rightarrow \forall y \in V$

$$g'(y) = -\left[F'_x(g(y), y)\right]^{-1} = \left[f'(x)\right]^{-1},$$

$$g'(y) = \left[f^{-1}(y)\right]^{-1} \Rightarrow$$

$$\Rightarrow \left[f'(x)\right]^{-1} = \left[f^{-1}(x)\right]'.$$

Исходя из свойств отображения f и приведенных выше построений, f — диффиоморфизм. \square

Лекция 4: Продолжение

от 17 сен 8:44

Определение 11 (k-мерная поверхность). Множество $S \subset \mathbb{R}^n$ называется k-мерной поверхностью, если $\forall x \in S \ \exists U(x) \subset \mathbb{R}^n$ и \exists диффиоморфизм $\phi: U(x) \to I^n$:

$$\phi(U(x)\cap S)=I^k,$$

где $I^n = \{x \in \mathbb{R}^n \mid |x^i| < 1\}$

$$I^k = \{x \in \mathbb{R}^n \mid x^{k+1} = x^{k+2} = \dots = x^n = 0\}.$$

Пример. $S = \mathbb{R}^n$ – поверхность в \mathbb{R}^n ,

$$t^i(x^i) = \frac{2}{\pi} \cdot \arctan x^i,$$

$$\mathfrak{I} = \begin{pmatrix}
\frac{\partial t^1}{\partial x^1} & \frac{\partial t^1}{\partial x^2} & \cdots & \frac{\partial t^1}{\partial x^n} \\
\frac{\partial t^2}{\partial t^2} & \frac{\partial t^2}{\partial t^2} & \cdots & \frac{\partial t^2}{\partial t^n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial t^n}{\partial x^1} & \frac{\partial t^n}{\partial x^2} & \cdots & \frac{\partial t^n}{\partial x^n}
\end{pmatrix} = \begin{bmatrix}
\frac{2}{\pi} \cdot \frac{1}{1 + (x^1)^2} & 0 & \cdots & 0 \\
0 & \frac{2}{\pi} \cdot \frac{1}{1 + (x^2)^2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{2}{\pi} \cdot \frac{1}{1 + (x^n)^2}
\end{pmatrix}$$

Утверждение. Пусть задана система уравнений:

$$\begin{cases}
F^{1}(x^{1}, \dots, x^{n}) = 0 \\
\vdots \\
F^{n-k}(x^{1}, \dots, x^{n}) = 0
\end{cases}, F^{i}(x) \in C^{(1)} \tag{5.7}$$

Кроме того,

$$\begin{vmatrix} \frac{\partial F^1}{\partial x^1} & \dots & \frac{\partial F^1}{\partial x^n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F^{n-k}}{\partial x^1} & \dots & \frac{\partial F^{n-k}}{\partial x^n} \end{vmatrix} (x) \neq 0, \quad \forall x \in \mathbb{R}^n$$

Тогда решение этой системы является k-мерной поверхностью в \mathbb{R}^n .

Доказательство. По теореме о неявной функции, система 5.7 эквивалентна системе

$$\begin{cases} x^{k+1} = f^1(x^1, \dots, x^k) \\ x^{k+2} = f^2(x^1, \dots, x^k) \\ \vdots \\ x^n = f^{n-k}(x^1, \dots, x^k) \end{cases}$$

Положим:

$$t^{1} = x^{1}$$

$$t^{2} = x^{2}$$

$$\vdots$$

$$t^{k} = x^{k}$$

$$t^{k+1} = x^{k+1} - f^{1}(x^{1}, \dots, x^{k}) = 0$$

$$t^{k+2} = x^{k+2} - f^{2}(x^{1}, \dots, x^{k}) = 0$$

$$\vdots$$

$$t^{n} = x^{n} - f^{n-k}(x^{1}, \dots, x^{k}) = 0$$

Таким образом построенное отображение является диффиоморфизмом \Rightarrow решение системы 5.7 – k-мерная поверхность в \mathbb{R}^n .

Определение 12 (Локальная карта или параметризация поверхности). Пусть S-k-мерная поверхность в \mathbb{R}^n , $x_0 \in S$ и $\phi: U(x_0) \to I^n$ – диффиоморфизм:

 $\phi(U(x_0)\cap S)=I^k.$

Ограничение ϕ^{-1} на I^k будем называть локальной картой или параметризацией поверхности S в окрестности точки x_0 .

Определение 13 (Касательное пространство). Пусть S-k-мерная поверхность в $\mathbb{R}^n, x_0 \in S, x = x(t) : \mathbb{R}^k \to \mathbb{R}^n$ — параметризация S в окрестности точки x_0 , при этом $x_0 = x(0)$.

Kacameльным пространством (или плоскостью) к S в точке x_0 называется k-мерная плоскость, заданная уравнением:

$$x = x_0 + x'(0) \cdot t, \tag{5.8}$$

$$x_0 = (x_0^1, x_0^2, \dots, x_0^n)$$

$$x(t) = \begin{cases} x^1(t^1, \dots, t^k) \\ x^2(t^1, \dots, t^k) \\ \vdots \\ x^n(t^1, \dots, t^k) \end{cases}$$

$$x'(t) = \begin{pmatrix} \frac{\partial x^1}{\partial t^1} & \cdots & \frac{\partial x^1}{\partial t^k} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^n}{\partial t^1} & \cdots & \frac{\partial x^n}{\partial t^k} \end{pmatrix} (t), \quad t = \begin{pmatrix} t^1 \\ t^2 \\ \vdots \\ t^k \end{pmatrix}$$

Таким образом касательное пространство задается системой из 5.8:

$$\begin{cases} x^1 = x_0^1 + \frac{\partial x^1}{\partial t^1}(0) \cdot t^1 + \dots + \frac{\partial x^1}{\partial t^k}(0) \cdot t^k \\ x^2 = x_0^2 + \frac{\partial x^2}{\partial t^1}(0) \cdot t^1 + \dots + \frac{\partial x^2}{\partial t^k}(0) \cdot t^k \\ \vdots \\ x^n = x_0^n + \frac{\partial x^n}{\partial t^1}(0) \cdot t^1 + \dots + \frac{\partial x^n}{\partial t^k}(0) \cdot t^k \end{cases}$$

Пример. Пусть γ = $\gamma(t)$ — гладкая кривая в $\mathbb{R}^3, \ \gamma: \left\{ \begin{array}{l} x=x(t) \\ y=y(t) \\ z=z(t) \end{array} \right.$

Обозначим $x_0 = x(0)$, $y_0 = y(0)$, $z_0 = z(0)$.

5.8 — касательное пространство к кривой γ в точке x_0 .

$$\begin{cases} x = x_0 + x'(0) \cdot t \\ y = y_0 + y'(0) \cdot t \\ z = z_0 + z'(0) \cdot t \end{cases} \Rightarrow \begin{cases} x - x_0 = x'(0) \cdot t \\ y - y_0 = y'(0) \cdot t \\ z - z_0 = z'(0) \cdot t \end{cases}$$

$$\Rightarrow \frac{x - x_0}{x'(0)} = \frac{y - y_0}{y'(0)} = \frac{z - z_0}{z'(0)} = t.$$

Пример. $x^2 + y^2 + z^2 = 1$

Пусть $z_0 > 0$, тогда в окрестности точки (x_0, y_0, z_0) сферу можно параметризировать следующими уравнениями:

$$\left\{ \begin{array}{l} x=u \\ y=v \\ z=\sqrt{1-u^2-v^2} \end{array} \right. .$$

Касательное пространство к сфере в точке (x_0, y_0, z_0) :

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix} (u_0, v_0) \cdot \begin{pmatrix} u \\ v \end{pmatrix} \Rightarrow$$

$$\Rightarrow \begin{cases} x = x_0 + \frac{\partial x}{\partial u} (u_0, v_0) \cdot u + \frac{\partial x}{\partial v} (u_0, v_0) \cdot v \\ y = y_0 + \frac{\partial y}{\partial u} (u_0, v_0) \cdot u + \frac{\partial y}{\partial v} (u_0, v_0) \cdot v \\ z = z_0 + \frac{\partial z}{\partial u} (u_0, v_0) \cdot u + \frac{\partial z}{\partial v} (u_0, v_0) \cdot v \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} x = x_0 + u \\ y = y_0 + v \\ z = z_0 - \frac{u_0}{\sqrt{1 - u_0^2 - v_0^2}} \cdot u - \frac{v_0}{\sqrt{1 - u_0^2 - v_0^2}} \cdot v \end{cases}.$$

Утверждение. Пусть S-k-мерная поверхность в \mathbb{R}^n задается системой уравнений:

$$\left\{ \begin{array}{l} F^1(x^1,\ldots,x^n) = 0 \\ \vdots \\ F^{n-k}(x^1,\ldots,x^n) = 0, \end{array} \right. , \text{ причем} \left| \begin{array}{l} \frac{\partial F^1}{\partial x^{k+1}} & \ldots & \frac{\partial F^1}{\partial x^n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F^{n-1}}{\partial x^{k+1}} & \ldots & \frac{\partial F^{n-1}}{\partial x^n} \end{array} \right| (x_0) \neq 0 \ (5.9)$$

Тогда касательная плоскость к S в точке x_0 задается системой уравнений:

$$\begin{cases} \frac{\partial F^{1}}{\partial x^{1}}(x_{0}) \cdot (x^{1} - x_{0}^{1}) + \ldots + \frac{\partial F^{1}}{\partial x^{n}}(x_{0})(x^{n} - x_{0}^{n}) = 0 \\ \vdots \\ \frac{\partial F^{n-k}}{\partial x^{1}}(x_{0}) \cdot (x^{1} - x_{0}^{1}) + \ldots + \frac{\partial F^{n-k}}{\partial x^{n}}(x_{0})(x^{n} - x_{0}^{n}) = 0 \end{cases},$$

или кратко:

$$F'(x_0) \cdot (x - x_0) = 0.$$

Доказательство. Обозначим $(x^1,...,x^k) = u, (x^{k+1},...,x^n) = v,$

$$F = \begin{pmatrix} F^1 \\ \vdots \\ F^{n-k} \end{pmatrix}.$$

Тогда условия утверждения запишем в виде:

$$F(u,v) = 0, \quad |F'_{v}(u_0,v_0)| \neq 0.$$

Тогда по теореме о неявной функции система 5.9 эквивалентна системе

$$\begin{cases} u = u \\ v = f(u) \end{cases}.$$

Тогда касательная плоскость задается:

роль
$$t = \begin{pmatrix} t^1 \\ \vdots \\ t^k \end{pmatrix}$$
 играет $u = \begin{pmatrix} x^1 \\ \vdots \\ x^k \end{pmatrix}$.

Тогда систему можно записать в виде:

$$\begin{cases} x^{1} = t^{1} \\ \vdots \\ x^{k} = t^{k} \\ x^{k+1} = f^{1}(t^{1}, \dots, t^{k}) \\ \vdots \\ x^{n} = f^{n-k}(t^{1}, \dots, t^{k}) \end{cases},$$

$$t_0 = (t_0^k, \dots, t_0^k) = (x_0^1, \dots, x_0^k)$$

$$x'(t_0) = \begin{pmatrix} \frac{\partial x^1}{\partial t^1} & \cdots & \frac{\partial x^1}{\partial t^k} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^k}{\partial t^1} & \cdots & \frac{\partial x^k}{\partial t^k} \\ \frac{\partial x^k}{\partial t^1} & \cdots & \frac{\partial x^k}{\partial t^k} \end{pmatrix} (t_0),$$

$$\vdots & \vdots & \vdots & \vdots \\ \frac{\partial f^{n-k}}{\partial t^1} & \cdots & \frac{\partial f^{n-k}}{\partial t^k} \end{pmatrix}$$

$$x = x_0 + x'(t_0) \cdot t.$$

$$\begin{cases} x^1 = x_0^1 + 1 \cdot t^1 \\ \vdots \\ x^k = x_0^k + 1 \cdot t^k \\ x^{k+1} = x_0^{k+1} + \frac{\partial f^1}{\partial t^1}(t_0) \cdot t^1 + \cdots + \frac{\partial f^1}{\partial t^k}(t_0) \cdot t^k \\ \vdots \\ x^n = x_0^n + \frac{\partial f^{n-k}}{\partial t^1}(t_0) \cdot t^1 + \cdots + \frac{\partial f^{n-k}}{\partial t^k}(t_0) \cdot t^k \end{cases}$$

$$\vdots$$

$$t^1 = x^1 - x_0^1,$$

$$t^2 = x^2 - x_0^2,$$

$$\vdots$$

$$t^k = x^k - x_0^k.$$

$$\vdots$$

$$t^k = x^k - x_0^k.$$
Из теоремы 7:
$$\begin{cases} x^1 - x_0^1 = t^1 \\ \vdots \\ x^k - x_0^k = t^k \\ x^{k+1} - x_0^{k+1} = \frac{\partial f^1}{\partial t^1}(t_0) \cdot (x^1 - x_0^1) + \cdots + \frac{\partial f^1}{\partial t^k}(t_0) \cdot (x^k - x_0^k) \\ \vdots \\ x^n - x_0^n = \frac{\partial f^{n-k}}{\partial t^1}(t_0) \cdot (x^1 - x_0^1) + \cdots + \frac{\partial f^{n-k}}{\partial t^k}(t_0) \cdot (x^k - x_0^k) \\ \begin{cases} u - u_0 = u - u_0 \\ v - v_0 = f'(u_0) \cdot (u - u_0) \end{cases} \\ \begin{cases} u - u_0 = u - u_0 \\ v - v_0 = f'(u_0) \cdot (u - u_0) \end{cases} - F_v'(u_0, v_0) \cdot (u - u_0)$$

$$\begin{cases} u - u_0 = u - u_0 \\ v - v_0 = -[F_v'(u_0, v_0)]^{-1} \cdot F_u'(u_0, v_0) \cdot (u - u_0) \\ \end{cases} - F_v'(u_0, v_0) \end{cases}$$

Примечание. Итак, мы вывели, что если поверхность задана системой

уравнений

$$\begin{cases} F^{1}(x^{1},...,x^{n}) = 0 \\ \vdots & \text{или } F(x) = 0, \\ F^{n-k}(x^{1},...,x^{n}) = 0 \end{cases}$$

$$F = \begin{pmatrix} F^{1}(x) \\ \vdots \\ F^{n-k}(x) \end{pmatrix}, \quad x = (x^{1}, \dots, x^{n}) \\ x_{0} = (x^{1}_{0}, \dots, x^{n}_{0}) .$$

Тогда уравнение касательной плоскости кратко записывается:

$$F_x'(x_0)\cdot(x-x_0)=0.$$

Обозначим $x - x_0 = \xi$, то есть:

$$\xi = \begin{pmatrix} \xi^1 \\ \vdots \\ \xi^n \end{pmatrix} = \begin{pmatrix} x' - x_0' \\ \vdots \\ x^n - x_0^n \end{pmatrix}.$$

Таким образом получаем, что уравнение касательного пространства (плоскости) имеет вид:

$$F_x'(x_0) \cdot \xi = 0.$$

Таким образом касательнаое пространство (плоскость) к поверхности, заданной уравнением F(x) = 0, в точке x_0 состоит из векторов ξ , удовлетворяющих уравнению:

$$F_x'(x_0) \cdot \xi = 0 \tag{5.11}$$

Лекция 5: Продолжение

от 22 сен 10:29

Теорема 11 (О структуре касательного пространства). Пусть S-k-мерная поверхность в $\mathbb{R}^n,\ x_0\in S$. Тогда касательное пространство TS_{x_0} в точке x_0 состоит из направляющих векторов касательных к гладким кривым на поверхности S, проходящих через точку x_0 .

Доказательство. Пусть x = x(t) – гладкая кривая в \mathbb{R}^n , то есть

$$\begin{cases} x^1 = x^1(t) \\ \vdots \\ x^n = x^n(t) \end{cases}, t \in \mathbb{R}.$$

 $x_0 = x(t_0)$. Касательный вектор в точке x_0 к кривой имеет вид:

$$\begin{pmatrix} \frac{dx^1}{dt}(t_0) \\ \vdots \\ \frac{dx^n}{dt}(t_0) \end{pmatrix} = \begin{pmatrix} x^{1'}(t_0) \\ \vdots \\ x^{n'}(t_0) \end{pmatrix}.$$

1. Пусть S-k-мерная поверхность, задана системой уравнений F(x)=0 и пусть x=x(t) – гладкая кривая на S. Покажем, что вектор

$$x'(t_0) = \begin{pmatrix} \frac{dx^1}{dt}(t_0) \\ \vdots \\ \frac{dx^n}{dt}(t_0) \end{pmatrix}$$
: $x'(t_0) \in TS_{x_0}, x_0 = x(t_0),$ то есть покажем,

что $x'(t_0)$ удовлетворяет уравнению $F'_x(t_0) \cdot \xi = 0$.

Так как кривая x = x(t) лежит на S, то F(x(t)) = 0 — верно. Продифференцируем F(x(t)) = 0 по t в точке x_0 :

$$F'_{x}(x_0) \cdot x'(t_0) = 0,$$

это и есть уравнение касательного пространства, то есть $x'(t_0)$ удовлетворяет уравнению касательного пространства $F_x'(x_0) \cdot \xi = 0$

2. Пусть $\xi=(\xi^1,\xi^2,\dots,\xi^n)\in TS_{x_0},$ то есть ξ удовлетворяет уравнению $F_x'(x_0)\cdot \xi=0$

Покажем, что \exists гладкая кривая l на поверхности S:

- $x_0 \in l$
- ξ ялвяется направляющим вектором касательной к l в точке x_0

Поверхность S задана системой уравнений:

$$\begin{cases} F^{1}(x) = 0 \\ \vdots \\ F^{n-k}(x) = 0 \end{cases}$$
 (5.12)

Пусть

$$\begin{vmatrix} \frac{\partial F^1}{\partial x^{k+1}} & \cdots & \frac{\partial F^1}{\partial x^n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F^{n-k}}{\partial x^{k+1}} & \cdots & \frac{\partial F^{n-k}}{\partial x^n} \end{vmatrix} (x_0) \neq 0.$$

По теореме о неявной функции, система 5.12 эквивалентна системе:

$$\begin{cases} x^{k+1} = f^{1}(x^{1}, \dots, x^{k}) \\ \vdots \\ x^{n} = f^{n-k}(x^{1}, \dots, x^{k}) \end{cases}$$
 (5.13)

Обозначим $u=(x^1,\ldots,x^k),\ v=(x^{k+1},\ldots,x^n),$ тогда 5.13 имеет вил:

$$v = f(u)$$
.

Тогда по утверждению касательное пространство задается уравнениями:

$$\begin{cases} x^{k+1} = x_0^{k+1} + \frac{\partial f^1}{\partial x^1}(x_0) \cdot (x^1 - x_0^1) + \dots + \frac{\partial f^1}{\partial x^k}(x_0) \cdot (x^k - x_0^k) \\ \vdots \\ x^n = x_0^n + \frac{\partial f^{n-k}}{\partial x^1}(x_0) \cdot (x^1 - x_0^1) + \dots + \frac{\partial f^{n-k}}{\partial x^k}(x_0) \cdot (x^k - x_0^k) \end{cases}$$
(5.14)

Пусть

$$\eta = \begin{pmatrix} \eta' \\ \vdots \\ \eta^k \\ \eta^{k+1} \\ \vdots \\ \eta^n \end{pmatrix} = \begin{pmatrix} x^1 - x_0^1 \\ \vdots \\ x^k - x_0^k \\ x^{k+1} - x_0^{k+1} \\ \vdots \\ x^n - x_0^n \end{pmatrix}.$$

Тогда система 5.14 примет вид:

$$\begin{cases}
\eta^{k+1} = \frac{\partial f^{1}}{\partial x^{1}}(x_{0}) \cdot \eta^{1} + \ldots + \frac{\partial f^{1}}{\partial x^{k}}(x_{0}) \cdot \eta^{k} \\
\vdots \\
\eta^{n} = \frac{\partial f^{n-k}}{\partial x^{1}}(x_{0}) \cdot \eta^{1} + \ldots + \frac{\partial f^{n-k}}{\partial x^{k}}(x_{0}) \cdot \eta^{k}
\end{cases} (5.15)$$

Таким образом, если вектор $\xi \in TS_{x_0}$, то он полностью определяется своими первыми k координатами, а остальные можно волучить с помощью системы 5.15.

Построим кривую в \mathbb{R}^n , то есть зададим ее уравнением x = x(t):

$$l: \left\{ \begin{array}{l} x^{1} = x_{0}^{1} + \xi^{1}t \\ \vdots \\ x^{k} = x_{0}^{k} + \xi^{k}t \\ x^{k+1} = f^{1}(x_{0}^{1} + \xi^{1}t, \dots, x_{0}^{k} + \xi^{k}t) \\ \vdots \\ x^{n} = f^{n-k}(x_{0}^{1} + \xi^{1}t, \dots, x_{0}^{k} + \xi^{k}t) \end{array} \right\} v = f(u)$$

$$(5.16)$$

Пусть точка x_0 соответствует параметру t = 0:

$$x(0) = \begin{cases} x^1 = x_0^1 \\ \vdots \\ x^k = x_0^k \\ x^{k+1} = f^1(x_0^1, \dots, x_0^k) \\ \vdots \\ x^n = f^{n-k}(x_0^1, \dots, x_0^k) \end{cases},$$

то есть кривая проходит через точку x_0 .

Далее, функция f удовлетворяет условию $v = f(u) \Leftrightarrow F(u, v) = 0$. Тогда $F(u, f(u)) = 0 \Rightarrow l$, заданная системой 5.16, $l \in S$.

$$(5.16)'_{t}: x'_{t}(0) = \begin{pmatrix} \xi^{1} \\ \vdots \\ \xi^{k} \\ \frac{\partial f^{1}}{\partial x^{1}}(x_{0}) \cdot \xi^{1} + \dots + \frac{\partial f^{1}}{\partial x^{k}}(x_{0}) \cdot \xi^{k} \\ \vdots \\ \frac{\partial f^{n-k}}{\partial x^{1}}(x_{0}) \cdot \xi^{1} + \dots + \frac{\partial f^{n-k}}{\partial x^{k}}(x_{0}) \cdot \xi^{k} \end{pmatrix} = \begin{pmatrix} \xi^{1} \\ \vdots \\ \xi^{k} \\ \xi^{k+1} \\ \vdots \\ \xi^{n} \end{pmatrix}.$$

Таким образом построили гладкий путь, лежащий на поверхности S, проходящий через точку $x_0 \in S$, вектор $x'(t_0)$ – его касательный вектор $\in TS_{x_0}$.

5.8 Условный экстремум функции многих переменных

Задача. Дана функция $u = f(x^1, \dots, x^n)$ и дана поверхность, заданная уравнениями:

$$\begin{cases}
F^{1}(x^{1}, \dots, x^{n}) = 0 \\
\vdots \\
F^{m}(x^{1}, \dots, x^{n}) = 0
\end{cases}$$
(5.17)

Нужно найти точку $x_0 = (x_0^1, \dots, x_0^n)$, в которой:

$$f(x_0^1, \dots, x_0^n) = \max_{\text{(min)}} f(x^1, \dots, x^n),$$

где тах (min) берется по всем точкам (x_0^1, \ldots, x_0^n) , удовлетворяющих уравнениям 5.17.

Задача (Геометрическая формулировка). Пусть система 5.17 задает в пространстве \mathbb{R}^n *т*-мерную поверхность S. Найти точку $x_0 \in S : \exists U_x(x_0) = U(x_0) \cap S : \forall x \in U_s(x_0)$:

$$f(x) \leq f(x_0)$$
 (или $f(x) \geq f(x_0)$)

Определение 14 (Линия уровня (*c*-уровень)). Пусть $f: D \to \mathbb{R}, \ D \subset \mathbb{R}^n$ область. Линией уровня (*c*-уровнем) функции f называется множество

$$N_c = \{x \in D \mid f(x) = c\}.$$

Лемма 1. Если x_0 – точка условного локального экстремума для функции f и x_0 не является критической для функции f (то есть $df(x_0) \neq 0$), то касательное пространство $TS_{x_0} \subset TN_{x_0}$, где

$$N_{x_0} = \{x \in D \mid f(x) = f(x_0)\},\$$

- поверхность уровня, проходящая через x_0 .

Доказательство. Пусть $\xi \in TS_{x_0}$. Пусть x = x(t) – гладкая кривая на $S: x(0) = x_0, x'(0) = \xi$ (по теореме 11).

Так как точка x_0 – условный экстремум для функции f, то точка t = 0 есть локальный экстремум для функции f(x(t)) (по теореме Ферма,

потом нужно добавить ссылку),

$$[f(x(t))]'_t(0) = 0 \Leftrightarrow f'_x(x_0) \cdot x'_t(0) = 0$$
 (5.18)

Касательное пространство к N_{x_0} в точке x_0 имеет уравнение:

$$f_x'(x_0) \cdot \xi = 0 \tag{5.19}$$

Заметим, что 5.18 и 5.19 – одно и то же уравнение, то есть

$$x_t'(0) = \xi \Rightarrow x_t'(0) \in TN_{x_0}.$$

Теорема 12 (Необходимое условие условного локального экстремума). Пусть система уровнений

$$\begin{cases}
F^{1}(x^{1}, \dots, x^{n}) = 0 \\
\vdots \\
F^{n-k}(x^{1}, \dots, x^{n}) = 0
\end{cases}$$
(5.20)

задает (n-k)-мерную гладкую поверхность S в $D \subset \mathbb{R}^n$, D – область. Функция $f:D o\mathbb{R}$ – гладкая. Если $x_0\in S$ является точкой условного локального экстремума для функции f, то существует такой набор чисел $\lambda_1, \lambda_2, \ldots, \lambda_{n-k} \in \mathbb{R}$:

$$gradf(x_0) = \sum_{i=1}^{n-k} \lambda_i \cdot gradF^i(x_0).$$

Доказательство. Касательное пространство TS_{x_0} задается системой

$$\begin{cases}
\frac{\partial F^{1}}{\partial x^{1}}(x_{0}) \cdot \xi^{1} + \dots + \frac{\partial F^{1}}{\partial x^{n}}(x_{0}) \cdot \xi^{n} = 0 \\
\vdots \\
\frac{\partial F^{n-k}}{\partial x^{1}}(x_{0}) \cdot \xi^{1} + \dots + \frac{\partial F^{n-k}}{\partial x^{n}}(x_{0}) \cdot \xi^{n} = 0
\end{cases} ,$$
(5.21)

но $\forall i = \overline{1, n-k}$:

$$\left\{\frac{\partial F^i}{\partial x^1}\cdot (x_0),\ldots,\frac{\partial F^i}{\partial x^n}\cdot (x_0)\right\} = gradF^i(x_0).$$

Перепишем 5.21 в виде:

$$\begin{cases} \left(gradF^{1}(x_{0}),\xi\right)=0\\ \vdots\\ \left(gradF^{n-k}(x_{0},),\xi\right)=0 \end{cases}$$

$$(5.22)$$

Касательное пространство TN_{x_0} к $N_{x_0} = \{x \in D \mid f(x) = f(x_0)\}$

задается уравнением: $f'(x_0) \cdot \xi = 0$. Заметим, что:

$$f'(x_0) = gradf(x_0) = \left\{ \frac{\partial f(x_0)}{\partial x^1}, \dots, \frac{\partial f(x_0)}{\partial x^n} \right\} \Rightarrow$$

$$\Rightarrow f'(x_0) \cdot \xi = 0 \Leftrightarrow \left(gradf(x_0), \xi \right) = 0 \tag{5.23}$$

Таким образом из леммы 1 следует, что $\forall \xi$, удовлетворяющего системе уравнений 5.22, так же удовлетворяет уравнению 5.23, то есть из того, что $\forall i \in \overline{1, n-k}$

$$\xi \perp gradF^{i}(x_{0}) \Rightarrow \xi \perp gradf(x_{0}) \Rightarrow$$

$$\xi \perp gradF^{i}(x_{0}) \Rightarrow \xi \perp gradf(x_{0}) \Rightarrow$$

$$\Rightarrow \exists \lambda_{1}, \dots, \lambda_{n-k} \in \mathbb{R}:$$

$$gradf(x_{0}) = \sum_{i=1}^{n-k} \lambda_{i} \cdot gradF^{i}(x_{0}).$$

Метод Лагранжа

Задача. Пусть требуется найти условный экстремум функции $f:D \to \mathbb{R},\ D$ – область в $\mathbb{R}^n,$ на поверхности S, заданной системой уравнений:

$$\begin{cases} F^1(x^1,\ldots,x^n) = 0 \\ \vdots \\ F^k(x^1,\ldots,x^n) = 0 \end{cases}$$

Составим функцию Лагранжа:

$$L(x,\lambda) = L(x^1,\ldots,x^n,\lambda^1,\ldots,\lambda^k) =$$

$$= f(x^1,\ldots,x^n) + \sum_{i=1}^k \lambda^i \cdot F^i(x^1,\ldots,x^n),$$

 $\lambda=(\lambda^1,\dots,\lambda^k),\ \lambda^i\in\mathbb{R}$ – коэффициент, в общем случае пока неизвестен.

Необходимое условие локального экстремума для функции L:

$$\left\{ \begin{array}{l} \frac{\partial L}{\partial x^1} = \frac{\partial f}{\partial x^1} + \sum_{i=1}^k \lambda^i \cdot \frac{\partial F^i}{\partial x^1} = 0 \\ \vdots \\ \frac{\partial L}{\partial x^n} = \frac{\partial f}{\partial x^n} + \sum_{i=1}^k \lambda^i \cdot \frac{\partial F^i}{\partial x^n} = 0 \\ \frac{\partial L}{\partial x^1} = F^1(x^1, \dots, x^n) = 0 \\ \vdots \\ \frac{\partial L}{\partial \lambda^k} = F^k(x^1, \dots, x^n) = 0 \end{array} \right\} \text{ поверхность } S$$
 (5.24)

Определение 15 (Условный экстремум). Пусть $f:D\to \mathbb{R},\ D\subset \mathbb{R}^n$ – область, S – поверхность в $D,\ условным$ экстремумом функции f называется экстремум функции $f|_{S}$.

Лекция 6: Продолжение

от 28 сен 8:48

Достаточное условие условного локального экстремума

Примечание. Пусть $f: D \to \mathbb{R}, \ D \in \mathbb{R}^n$ – область, $f \in C^{(2)}(D, \mathbb{R}), \ S - (n-k)$ -мерная поверхность в D, заданная системой уравнений:

$$\begin{cases} F^1(x^1,\ldots,x^n) = 0 \\ \vdots \\ F^k(x^1,\ldots,x^n) = 0 \end{cases}.$$

Функция Лагранжа:

$$L(x,\lambda) = f(x^1,\ldots,x^n) + \sum_{i=0}^k \lambda_i \cdot F^i(x^1,\ldots,x^n).$$

Здесь $\lambda_1, \dots, \lambda_k$ выбираются таким образом, чтобы было выполнено необходимое условие условного экстремума в точке x_0 (5.24).

$$\begin{cases} \frac{\partial L}{\partial x^i} = 0 \\ \vdots & \Rightarrow x_0, \quad \lambda_1, \dots, \lambda_k. \\ \frac{\partial L}{\partial \lambda_i} = 0 \end{cases}$$

Теорема 13 (Достаточное условие условного экстремума). Если при введенных выше условиях квадратичная форма

$$Q(\xi) = \sum_{i,j=1}^{n} \frac{\partial^{2} L}{\partial x^{i} \partial x^{j}} (x_{0}) \cdot \xi^{i} \xi^{j}, \ \left(\xi = (\xi^{1}, \dots, \xi^{n}) \right)$$

- 1. Знакоопределена на TS_{x_0} :
 - ullet если Q знакоположительна, то точка x_0 точка условного локального min
 - ullet если Q знакоотрицательна, то точка x_0 точка условного локального max
- 2. Если Q может принимать значения разных знаков, то в точке x_0 условного экстремума не наблюдается.

Доказательство. Заметим, что $f|_S$ и $L|_S$ совпадают. В самом деле, если $x \in S$, то:

$$L(x,\lambda) = f(x_{||x_{1},...,x_{n}}) + \sum_{i=1}^{k} \lambda_{i} \cdot F^{i}(x) = f(x).$$

Поэтому покажем, что условие знакопостоянства Q является достаточным для экстремума функции $L|_{\mathfrak{o}}$.

Имеем, что

$$\begin{cases} \frac{\partial L}{\partial x^1}(x_0) = 0 \\ \vdots \\ \frac{\partial L}{\partial x^n}(x_0) = 0 \end{cases}$$

По формуле Тейлора:

$$L|_{S}(x) - L(x_{0}) = \sum_{i,j=1}^{n} \frac{\partial^{2} L(x_{0})}{\partial x^{i} \partial x^{j}} \cdot (x^{i} - x_{0}^{i})(x^{j} - x_{0}^{j}) + o(\|x - x_{0}\|^{2}) \quad (5.25)$$

Так как S-m=(n-k)-мерная поверхность, то существует гладкое отображение $x(t): \mathbb{R}^m \to \mathbb{R}^n: x=x(t) \in S \ \forall t \in \mathbb{R}^m, \ x(0)=x_0.$ Отображение x(t) биективно отображает \mathbb{R}^m на $U_S(x_0)=U(x_0)\cap S.$

Если
$$x \in S$$
, то условие дифференцируемости $x(t)$:

$$x - x_0 = x(t_{e^{\square m}}) - x(0) = x'(0) \cdot t + o(||t||)$$

или

$$\begin{cases} x^1 - x_0^1 = \frac{\partial x^1}{\partial t^1}(0) \cdot t^1 + \ldots + \frac{\partial x^1}{\partial t^m}(0) \cdot t^m + o(\|t\|) \\ \vdots \\ x^n - x_0^n = \frac{\partial x^n}{\partial t^1}(0) \cdot t^1 + \ldots + \frac{\partial x^n}{\partial t^m}(0) \cdot t^m + o(\|t\|) \end{cases}$$

или кратко

$$\begin{cases} x^{1} - x_{0}^{1} = \sum_{i=1}^{m} \frac{\partial x^{1}}{\partial t^{i}}(0) \cdot t^{i} + o(\|t\|) \\ \vdots \\ x^{n} - x_{0}^{n} = \sum_{i=1}^{m} \frac{\partial x^{n}}{\partial t^{i}}(0) \cdot t^{i} + o(\|t\|) \end{cases}$$
(5.26)

Подставим 5.26 в 5.25:

$$L|_{S}(x) - L(x_{0}) = \frac{1}{2} \cdot \sum_{i,j=1}^{n} \frac{\partial^{2}L(x_{0})}{\partial x^{i} \partial x^{j}} \cdot \underbrace{\left(\sum_{\alpha=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}}(0) \cdot t^{\alpha} + o(\|t\|)\right)}_{x^{i} - x_{0}^{i}} \cdot \underbrace{\left(\sum_{\beta=1}^{m} \frac{\partial x^{j}}{\partial t^{\beta}}(0) \cdot t^{\beta} + o(\|t\|)\right)}_{x^{j} - x_{0}^{j}} + o(\|t\|) + o(\|x - x_{0}\|^{2}) = \underbrace{\frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2}L(x_{0})}{\partial x^{i} \partial x^{j}} \cdot \left[\left(\sum_{\alpha=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}}(0) \cdot t^{\alpha}\right) \cdot \left(\sum_{\beta=1}^{m} \frac{\partial x^{i}}{\partial t^{\beta}}(0) \cdot t^{\beta}\right) + \underbrace{\left(\sum_{\alpha=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}}(0) \cdot t^{\alpha}\right) \cdot o(\|t\|) + o(\|t\|)\right]}_{c(\|x - x_{0}\|^{2})} + \underbrace{\left(\sum_{\beta=1}^{m} \frac{\partial x^{i}}{\partial t^{\beta}}(0) \cdot t^{\beta}\right)}_{c(x,\beta=1)} \cdot \underbrace{\left(\sum_{\alpha,\beta=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}} \cdot \frac{x^{i}}{\partial t^{\beta}} \cdot t^{\alpha} \cdot t^{\beta} + o(\|t\|^{2}) = \underbrace{\frac{\|t\|^{2}}{2}}_{c(x,\beta=1)} \cdot \underbrace{\sum_{i,j=1}^{n} \frac{\partial^{2}L(x_{0})}{\partial x^{i} \partial x^{j}}}_{c(x,\beta=1)} \cdot \underbrace{\sum_{\alpha,\beta=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}} \cdot \frac{\partial x^{j}}{\partial t^{\beta}} \cdot \frac{t^{\alpha}}{\|t\|} \cdot \underbrace{t^{\beta}}_{\|t\|}}_{t^{\beta}\|t^{\beta}} + o(\|t\|^{2}) = \underbrace{\frac{\|t\|^{2}}{2}}_{c(x,\beta=1)} Q(\xi) + o(\|t\|^{2}).$$

Таким образом получаем, что

$$L|_{S}(x) - L(x_0) = \frac{\|t\|^2}{2} \cdot Q(\xi) + o(\|t\|^2), \ \xi \in TS_{x_0}.$$

Тогда, если Q > 0, то

$$L|_{S}(x) - L(x_0) > 0 \Rightarrow x_0 - \min$$
 для $L|_{S}(x) \Rightarrow x_0 - \min$ для $f|_{S}$.

Если Q < 0, то

$$L\big|_S(x)-L(x_0)<0\Rightarrow x_0$$
 – локальный тах для $L\big|_S(x)\Rightarrow$
$$\Rightarrow x_0$$
 – локальный тах для $f\big|_S$ $(\forall x\in U_S(x_0))$

Если Q — знакопеременна, то не для всех $x \in U_S(x_0)$ разность $L|_S(x) - L(x_0)$ имеет постоянный знак \Rightarrow в этом случае в точке x_0 нет экстремума.

Докажем (♥), то есть покажем, что

$$o(\|t\|) \cdot \sum_{\alpha=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}} \cdot t^{\alpha} = o(\|t\|^{2})$$

И

$$o(\|x - x_0\|^2) = o(\|t\|^2), \ x \in S.$$

В самом деле,

$$\left| \sum_{\alpha=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}}(0) \cdot t^{\alpha} \right| \leq \sum_{\alpha=1}^{m} \left| \frac{\partial x^{i}}{\partial t^{\alpha}}(0) \right| \cdot \left| t^{\alpha} \right| \leq \|t\| \cdot \sum_{\alpha=1}^{m} \left| \frac{\partial x^{i}}{\partial t^{\alpha}}(0) \right| = \underbrace{A \cdot \|t\|}_{\substack{\text{const} > 0}}.$$

Таким образом,

$$\begin{split} o\big(\|t\|\big)\cdot \left|\sum_{\alpha=1}^m \frac{\partial x^i(0)}{\partial t^\alpha}\cdot t^\alpha\right| &\leqslant o\big(\|t\|\big)\cdot O\big(\|t\|\big) = \\ &= \omega(t)\cdot \|t\|\cdot \gamma(t)\cdot \|t\| = \left| \begin{array}{c} \text{где } \omega(t)\to 0 \text{ при } t\to 0, \\ \gamma(t)-\text{ ограниченная функция} \end{array} \right| = \\ &= \alpha(t) \cdot \|t\|^2 = o\big(\|t\|^2\big), \ \, \frac{\alpha(t)\to 0,}{t\to 0}, \\ \frac{\|t\|^2}{\omega(t)\gamma(t)} &= o\big(\|t\|^2\big), \ \, \frac{\alpha(t)\to 0,}{t\to 0}, \end{split}$$

Далее, если
$$x \in S$$
, то

Далее, если
$$x \in S$$
, то
$$\|x - x_0\|^2 = \left\| \begin{pmatrix} x^1 - x_0^1 \\ \vdots \\ x^n - x_0^n \end{pmatrix} \right\|^2 = \frac{1}{2} \left\| \left(\sum_{\alpha=1}^m \frac{\partial x^1}{\partial t^\alpha} \cdot t^\alpha + o(\|t\|) \right) \right\|^2 = \frac{1}{2} \left\| \sum_{\alpha=1}^m \frac{\partial x^1}{\partial t^\alpha} \cdot t^\alpha + o(\|t\|) \right\|^2 = \frac{1}{2} \left\| \sum_{\alpha=1}^m \frac{\partial x^1}{\partial t^\alpha} \cdot t^\alpha + o(\|t\|) \right\|^2 + \dots + \left(\sum_{\alpha=1}^m \frac{\partial x^n}{\partial t^\alpha} + o(\|t\|) \right)^2 = \frac{1}{2} \left\| \sum_{\alpha=1}^m \frac{\partial x^1}{\partial t^\alpha} \cdot t^\alpha \right\|^2 + \dots + \left(\sum_{\alpha=1}^m \frac{\partial x^n}{\partial t^\alpha} \right)^2 + o(\|t\|^2) \le \frac{1}{2} \left\| \sum_{\alpha=1}^m \frac{\partial x^1}{\partial t^\alpha} \right\|^2 + \dots + \left(\max_{\alpha} \frac{\partial x^n}{\partial t^\alpha} \right)^2 \cdot \left(\sum_{\alpha=1}^m t^\alpha \right)^2 \le \frac{1}{2} \left\| t \right\|^2 \cdot \left(\left(\max_{\alpha} \frac{\partial x^1}{\partial t^\alpha} \right)^2 + \left(\max_{\alpha} \frac{\partial x^n}{\partial t^\alpha} \right)^2 \right) \le \frac{1}{2} \left\| t \right\|^2 \cdot \left(\max_{\alpha} \left(\max_{\alpha} \frac{\partial x^1}{\partial t^\alpha} \right) \right)^2 \cdot n = B \|t\|^2 = o(\|t\|^2).$$

Поэтому

$$o(\|x - x_0\|^2) =$$

$$= \beta(x - x_0) \cdot \|x - x_0\|^2 = \beta(t) \cdot \|x - x_0\|^2 \leqslant \beta(t) \cdot B \cdot \|t\|^2 =$$

$$= o(\|t\|^2)$$

$$(\beta(x - x_0) \to 0 \text{ при } x \to x_0 \Leftrightarrow t \to 0)$$

Глава 6

Теория рядов

6.1 Введение

Определение 16 (Ряд). Рядом называется выражение:

$$a_1 + a_2 + \ldots + a_n + \ldots, \quad a_i \in \mathbb{R}.$$

Числа a_i называются членами ряда, a_n – n-ым членом ряда.

$$\sum_{n=1}^{\infty} a_n \tag{6.1}$$

Рассмотрим числа:

$$A_1 = a_1,$$

 $A_2 = a_1 + a_2,$
 \vdots
 $A_n = a_1 + a_2 + \ldots + a_n.$

Числа A_1, A_2, \dots, A_n называются частичными суммами ряда 6.1.

Определение 17 (Сходящийся ряд). Говорят, что ряд $6.1\ cxodumcs$, если существует конечный предел частичных сумм, то есть

$$\exists \lim_{n \to \infty} A_n = A.$$

Тогда сумма бесконечного ряда 6.1 полагается равной

$$A = \sum_{n=1}^{\infty} a_n.$$

$$10 + 1 + \frac{1}{10} + \frac{1}{10^2} + \ldots + \frac{1}{10^n} + \ldots = 10 + \sum_{k=0}^{\infty} \frac{1}{10^k}$$

$$10+1+\frac{1}{10}+\frac{1}{10^2}+\dots+\frac{1}{10^n}+\dots=10+\sum_{k=0}^{\infty}\frac{1}{10^k}$$

$$A_n = \frac{1}{10^0}+\frac{1}{10^1}+\dots+\frac{1}{10^n} = \frac{1\cdot(q^n-1)}{q-1} =$$

$$= \frac{\frac{1}{10^n}-1}{\frac{1}{10}-1} = \frac{1-\frac{1}{10^n}}{\frac{9}{10}} = \frac{10}{9}\cdot\left(1-\frac{1}{10^n}\right)$$

$$\lim_{n\to\infty}A_n = \lim_{n\to\infty}\frac{10}{9}\left(1-\frac{1}{10^n}\right) = \frac{10}{9}$$

6.1.1 Гармонический ряд

Определение 18 (Среднее гармоническое). Число c называется cpedним гармоническим чисел a и b $(a, b \neq 0)$, если

$$\frac{1}{c} = \frac{1}{2} \cdot \left(\frac{1}{a} + \frac{1}{b}\right).$$

Определение 19 (Гармонический ряд). Ряд вида

$$\sum_{n=1}^{\infty} \frac{1}{n} \tag{6.2}$$

называется гармоническим.

Примечание. Докажем, что ряд 6.2 расходится.

Если $\exists \varepsilon > 0 \ \forall N \ \exists n > N \ \exists p > 0$

$$|a_{n+1} + \ldots + a_{n+p}| \geqslant \varepsilon$$

$$\left| \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+p} \right| \ge \left| \frac{1}{n+p} + \frac{1}{n+p} + \dots + \frac{1}{n+p} \right| =$$

$$= \frac{p}{n+n} = \frac{1}{n+2},$$

то есть для $\forall N: \ \varepsilon=\frac{1}{2}, \ p=n, \ n=N+1 \Rightarrow$ по критерию Коши, гармонический ряд 6.2 расходится.

6.1.2 Основные свойства сходящихся рядов

Теорема 14 (Критерий Коши). Ряд 6.1 сходится тогда и только тогда, когда $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N, \ \forall p > 0$

$$|a_{n+1} + \ldots + a_{n+p}| < \varepsilon.$$

Доказательство. Ряд 6.1 сходится $\underset{\text{по определению}}{\Leftrightarrow} \exists \lim_{n \to \infty} A_n \Leftrightarrow A_n - \text{фундаментальная последовательность: } \forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N \ \text{и} \ \forall p > 0$

$$|A_n - A_{n+p}| < \varepsilon$$
, (критерий Коши сходимости последовательности).

Имеем

$$|A_n - A_{n+p}| =$$

$$= |a_1 + a_2 + \dots + a_n - (a_1 + a_2 + \dots + a_n + \dots + a_{n+p})| =$$

$$= |a_{n+1} + \dots + a_{n+p}| < \varepsilon.$$

Замечание. Со всякой последовательностью x_n можно связать ряд, частичными суммами которого являются члены этой последовательности. Пусть:

$$x_1, x_2, \ldots, x_n, \ldots$$

Тогда ряд

$$\underbrace{x_1}_{a_1} + \underbrace{(x_2 - x_1)}_{a_2} + \underbrace{(x_3 - x_2)}_{a_3} + \ldots + \underbrace{(x_n - x_{n-1})}_{a_n} + \ldots,$$

$$A_n = a_1 + \ldots + a_n = x_1 + (x_2 - x_1) + \ldots + (x_n - x_{n-1}) = x_n.$$

Теорема 15 (Необходимое условие сходимости ряда). Если ряд 6.1 сходится, тогда:

$$\lim_{n\to\infty} a_n = 0.$$

Доказательство. Пусть ряд 6.1 сходится, тогда $\exists \lim_{n \to \infty} A_n$:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (A_n - A_{n-1}) =$$

$$= \lim_{n \to \infty} A_n - \lim_{n \to \infty} A_{n-1} = 0$$

Лекция 7: Продолжение

от 2 окт 10:32

Определение 20 (тый остатный ряд). Пусть дан ряд 6.1. Ряд вида

$$\sum_{n=m+1}^{\infty} a_n \tag{6.3}$$

называется т-ым остатным ряда 6.1.

Теорема 16 (Об остатке ряда). Следующие условия эквивалентны:

- 1. Ряд 6.1 сходится.
- 2. Любой его остаток сходится.
- 3. Некоторый его остаток 6.3 сходится.

Доказательство.

• Докажем, что из $1. \Rightarrow 2.$

Пусть ряд 6.1 сходится и его сумма равна A.

Пусть $A_k^* = \sum_{n=m+1}^{m+k} a_n - k$ -тая частичная сумма ряда 6.3.

Ряд 6.3 сходится, если $\exists \lim_{k \to \infty} A_k^*$.

$$A_k^* = \underbrace{A_{m+k}}_{\text{частичная сумма}} -A_m.$$

$$\lim_{k \to \infty} A_k^* = \lim_{k \to \infty} (A_{m+k} - A_m) =$$

$$= \lim_{k \to \infty} A_{m+k} - \lim_{k \to \infty} A_m = A - A_m.$$

$$\lim_{const = A_m} A_m = A - A_m.$$

- Доказательство того, что из 2. \Rightarrow 3. очевидно.
- Докажем, что из $3. \Rightarrow 1.$

Пусть ряд 6.3 – сходится.

Тогда при n > m:

т-тая частичная сумма ряда 6.3

$$A_n = A_m + \underbrace{A_{n-m}^*}_{\sum_{k=m+1}^{m+(n-m)} a_k}$$

$$A_n = \underbrace{a_1 + a_2 + \ldots + a_m}_{A_m} + \underbrace{a_{m+1} + \ldots + a_n}_{A_{m-m}^*}.$$

Ряд 6.1 сходится $\underset{\text{по опр.}}{\Longleftrightarrow} \exists \lim_{n \to \infty} A_n$.

Рассмотрим:

$$\lim_{n\to\infty} A_n = \lim_{n\to\infty} \left(A_m + A_{n-m}^* \right) = \lim_{n\to\infty} A_m + \lim_{n\to\infty} A_{n-m}^* = \lim_{n\to\infty} A_{m=const}^*$$

$$\exists, \text{ так как ряд}$$

$$6.3 \text{ суолится}$$

 $\Rightarrow \exists \lim_{n \to \infty} A_n \Rightarrow 6.1$ сходится.

Примечание. Обозначим α_m – сумма m-того остатка ряда = сумме ряда 6.3:

$$\alpha_m = \sum_{n=m+1}^{\infty} a_n$$

(6.3 сходится в этом случае)

Следствие. Ряд 6.1 сходится $\Leftrightarrow \lim_{m \to \infty} \alpha_m = 0$.

Доказательство. Самостоятельно.

Определение 21 (Сумма рядов). Пусть даны ряды

(A)
$$\sum_{n=1}^{\infty} a_n$$
, (B) $\sum_{n=1}^{\infty} b_n$.

Суммой рядов A, B называется ряд:

$$(A+B) \sum_{n=1}^{\infty} (a_n + b_n).$$

Теорема 17. Если ряды (A), (B) сходятся, то:

- 1. $\forall a \in \mathbb{R}$ ряд $\sum_{n=1}^{\infty} \alpha a_n$ сходится и его сумма равна $\alpha \cdot A$, где $A = \sum_{n=1}^{\infty} a_n$.
- 2. Ряд (A+B) сходится и его сумма равна A^*+B^* , где $A^*=\sum_{n=1}^\infty a_n,$ $B^*=\sum_{n=1}^\infty b_n.$

Доказательство. 1. Пусть ряд (A) сходится.

Рассмотрим ряд $\sum_{n=1}^{\infty} \alpha \cdot a_n$:

$$A_n' = \sum_{k=1}^n \alpha \cdot a_k,$$

$$\lim_{n\to\infty}A'_n=\lim_{n\to\infty}\sum_{k=1}^n\alpha\cdot a_k=\alpha\cdot\lim_{n\to\infty}\sum_{k=1}^na_k=\alpha\cdot A$$

2. Самостоятельно.

6.2 Сходимость положительных рядов

Определение 22 (Положительный ряд). Ряд (A) называется *положительным*, если $\forall n \ a_n > 0$.

Теорема 18. Положительный ряд (*A*) сходится \Leftrightarrow его частичные суммы ограничены, то есть ∃M > 0: ∀n $A_n < M$.

Доказательство. Заметим, что последовательность частичных сумм A_n возрастает, то есть $\forall n \ A_{n+1} > A_n$.

По теореме Вейерштрасса, возрастающая последовательность A_n имеет предел \Leftrightarrow она ограничена, то есть $\exists M>0: \ \forall n\ A_n < M$.

Теорема 19 (1-ый признак сравнения). Пусть даны ряды (A), (B), причем $a_n > 0, \ b_n > 0 \ \forall n$.

Если $\exists N \in \mathbb{N}: \ \forall n > N \ a_n \leqslant b_n$, то:

- 1. Из сходимости ряда $(B) \Rightarrow$ сходимость ряда (A).
- 2. Из расходимости ряда $(A) \Rightarrow$ расходимость ряда (B).

Доказательство.

- 1. Пусть ряд (B) сходится \Rightarrow по теореме 18 его частичные суммы ограничены \Rightarrow по неравенству $a_n \leqslant b_n$ частичные суммы ряда (A) также ограничены \Rightarrow по 18 ряд (A) сходится.
- 2. Аналогично.

Теорема 20 (2-ой признак сравнения). Пусть даны ряды (A), (B), причем $a_n > 0, \ b_n > 0 \ \forall n$.

Если $\lim_{n\to\infty} \frac{a_n}{b_n} = k, \ k \in [0; \infty],$ то:

- 1. При $k = \infty$ из сходимости $(A) \Rightarrow$ сходимость ряда (B).
- 2. При k = 0 из сходимости ряда $(B) \Rightarrow$ сходимость ряда (A).

3. При $0 < k < \infty$ ряды (A) и (B) ведут себя одинаково. const≠0

Доказательство. Переписать доказательство для несобственных интегралов, заменив слово "интеграл" на слово "ряд".

Теорема 21 (3-й признак сравнения). Пусть даны ряды (A), (B), причем $a_n > 0$, $b_n > 0 \, \forall n$.

чем $a_n > 0, \ b_n > 0 \ \forall n.$ Если $\exists N \in \mathbb{N} \cup \{0\}: \ \forall n > N \ \frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n},$ то:

- 1. Из сходимости ряда $(B) \Rightarrow$ сходимость ряда (A).
- 2. Из расходимости ряда $(A) \Rightarrow$ расходимость ряда (B).

Доказательство. Можно считать, что N = 0. Тогда $\forall n > N$ имеем:

$$\frac{a_2}{a_1} \leqslant \frac{b_2}{b_1}; \quad \frac{a_3}{a_2} \leqslant \frac{b_3}{b_2}; \quad \frac{a_4}{a_3} \leqslant \frac{b_4}{b_3}; \quad \dots; \quad \frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}.$$

Перемножим левые и правые части:

$$\frac{a_2 \cdot a_3 \cdot a_4 \cdot \ldots \cdot a_{n+1}}{a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_n} \leqslant \frac{b_2 \cdot b_3 \cdot b_4 \cdot \ldots \cdot b_{n+1}}{b_1 \cdot b_2 \cdot b_3 \cdot \ldots \cdot b_n},$$

$$\frac{a_{n+1}}{a_1}\leqslant \frac{b_{n+1}}{b_n}\Rightarrow a_{n+1}\leqslant \frac{a_1}{b_1}\cdot b_{n+1} \text{ (по теореме 19)}.$$

- 1. Если ряд (B) сходится \Rightarrow сходится ряд $\sum_{n=1}^{\infty} \frac{a_1}{b_1} \cdot b_{n+1} \Rightarrow$ сходится ряд $\sum_{n=1}^{\infty} a_{n+1} \Rightarrow$ сходится (A).
- 2. Аналогично.

Теорема 22 (Интегральный признак Коши-Маклорена). Пусть дан положительный ряд (A).

Пусть функция f(x) удовлетворяет следующим условиям:

- 1. $f(x): [1; +\infty) \to \mathbb{R}$
- 2. f(x) непрерывна.
- 3. f(x) монотонна.
- 4. $f(x) = a_n, \forall n \in \mathbb{N}$.

Тогда ряд (A) и интеграл $\int_{1}^{\infty} f(x)dx$ ведут себя одинаково.

Доказательство. Ограничимся случаем, когда f(x) монотонно убывает.

Рассмотрим функцию $\phi(x) = a_n$ при $n \le x < n+1$ и $\psi(x) = a_{n+1}$ при

 $n \le x < n+1$. Тогда $\forall x \in [1; +\infty)$:

$$\psi(x) \leqslant f(x) \leqslant \phi(x)$$
.

$$\int_{1}^{N} \psi(x) dx \leqslant \int_{1}^{N} f(x) dx \leqslant \int_{1}^{N} \phi(x) dx \Rightarrow$$

$$\Rightarrow \sum_{n=1}^{N} a_{n+1} \leqslant \int_{1}^{N} f(x) dx \leqslant \sum_{n=1}^{N} a_{n}$$
частичная сумма ряда (A) частичная сумма ряда (A)

- Если интеграл сходится, то частичная сумма $\sum_{n=1}^{N} a_{n+1}$ ограничена \Rightarrow ряд (A) сходится.
- ullet Если интеграл расходится, то частичная сумма $\sum_{n=1}^{N} a_n$ непрерывна \Rightarrow ряд (A) – расходится.
- Если ряд (A) сходится, то $\sum_{n=1}^{N} a_n$ ограничена $\Rightarrow \int_1^N f(x) dx$ ограничен $\Rightarrow \int_1^\infty f(x) dx$ сходится.
- Если ряд (A) расходится \Rightarrow частичная сумма $\sum_{n=1}^{N} a_{n+1}$ неограничена ⇒ интеграл расходится.

Пример. $\sum_{n=1}^{\infty} \frac{1}{n^p}$. Рассмотрим $f(x) = \frac{1}{x^p}$ на $[1; +\infty)$ – неограниченно монотонно \searrow ,

$$f(n) = \frac{1}{n^p}.$$

 $\sum_{n=1}^\infty \frac{1}{n^p}$ ведет себя одинаково с интегралом $\int_1^\infty \frac{dx}{x^p}$ — сходится при p>1 и расходится при $p\leqslant 1$ \Rightarrow ряд $\sum_{n=1}^\infty \frac{1}{n^p}$ сходится при p>1 и расходится при $p \le 1$.

Пример. $\sum_{n=1}^{\infty} \frac{1}{n \cdot \ln n}$. $f(x) = \frac{1}{x \ln x}, \ x \in [e; +\infty), \ {\Bbb Z}, \ {\rm непрерывна}.$

$$f(x) = \frac{1}{n \ln x}, x \in [e; +\infty), \nearrow$$
, непрерывна.

$$\int_{e}^{\infty} \frac{dx}{x \ln x} = \lim_{b \to \infty} \int_{e}^{b} \frac{d(\ln x)}{\ln x} =$$

$$= \lim_{b \to \infty} \left(\ln(\ln x) \right) \Big|_{e}^{b} = \lim_{b \to \infty} \ln(\ln b) = \infty \Rightarrow$$

 \Rightarrow ряд $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ расходится (по интегралу Коши-Маклорена).

Теорема 23 (Радикальный признак Коши). Пусть ряд (A) положительный и $\varlimsup_{n\to\infty}\sqrt[n]{a_n}=q$. Тогда:

- 1. При q < 1 ряд (A) сходится.
- 2. При q > 1 ряд (A) расходится.
- 3. При q = 1 может как сходиться, так и расходиться.

Доказательство.

1. Пусть q < 1. Возьмем число r: q < r < 1. Тогда $\exists N: \forall n > N$

$$\sqrt[n]{a_n} < r \Rightarrow a_n < r^n$$
.

 $0 < r < 1 \Rightarrow \sum_{n=1}^{\infty} r^n$ — сходится \Rightarrow по 1-му признаку сравнения сходится ряд (A).

- 2. Пусть q > 1, тогда существует подпоследовательность $\sqrt[n_i]{a_{n_i}} \to q$ при $i \to \infty \Rightarrow a_{n_i} \to q^{n_i} > 1 \Rightarrow a_n \to 0 \Rightarrow$ необходимое условие сходимости не выполняется \Rightarrow ряд (A) расходится.
- 3. Рассмотрим ряды $\sum_{n=1}^{\infty} \frac{1}{n}$ и $\sum_{n=1}^{\infty} \frac{1}{n^2}$:

$$\lim_{n\to\infty} \sqrt[n]{\frac{1}{n}} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{n^2}} = 1.$$

Теорема 24 (Признак Даламбера). Пусть ряд (A) положительный и $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = d$. Тогда:

- 1. При d < 1 ряд (A) сходится.
- 2. При d > 1 ряд (A) расходится.
- 3. При d = 1 может как сходиться, так и расходиться.

Доказательство.

1. Пусть d < 1. Возьмем $d < r < 1 \Rightarrow \exists N: \ \forall n > N \ \frac{a_{n+1}}{a_n} < r,$

$$b_1 = \frac{a_2}{a_1};$$
 $b_2 = \frac{a_3}{a_2};$ $b_3 = \frac{a_4}{a_3};$...; $b_n = \frac{a_{n+1}}{a_n};$

Можно считать, что N = 0, тогда $\forall n > N$:

$$a_2 < r \cdot a_1$$

 $a_3 < r \cdot a_2 < r^2 \cdot a_1$
 $a_4 < r \cdot a_3 < r^3 \cdot a_1$.
 \vdots
 $a_{n+1} < r^n \cdot a_1$

Так как 0 < r < 1, то $\sum_{n=1}^{\infty} r^n \cdot a_1$ сходится \Rightarrow сходится ряд (A) по 1 признаку сравнения.

- 2. Самостоятельно.
- 3. $\sum_{n=1}^{\infty} \frac{1}{n}$, $\sum_{n=1}^{\infty} \frac{1}{n^2}$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{n+1} = 1,$$

$$\lim_{n \to \infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1.$$

Г

Лекция 8: Продолжение

от 5 окт 8:50

Теорема 25 (Признак Раббе). Пусть ряд (A) – положительный. Если $\lim_{n\to\infty} n\cdot \left(\frac{a_n}{a_{n+1}}-1\right)$ = r, то:

- 1. При r > 1 ряд (A) сходится.
- 2. При r < 1 ряд (A) расходится.
- 3. При r = 1 ряд (A) может как сходиться, так и расходиться.

Доказательство.

1. Пусть r>1. Возьмем p и q: $1 . Так как <math>\lim_{n \to \infty} n \cdot \left(\frac{a_n}{a_{n+1}} - 1\right) = r$, то $\exists N_1: \ \forall n>N_1 \ n \cdot \left(\frac{a_n}{a_{n+1}} - 1\right) > q$, то есть:

$$\frac{a_n}{a_{n+1}} > 1 + \frac{q}{n}. (6.4)$$

Далее, рассмотрим:

$$\lim_{n\to\infty}\frac{(1+\frac{1}{n})^p-1}{\frac{1}{n}} \quad \overset{\text{формула}}{=} \quad \lim_{n\to\infty}\frac{1+\frac{p}{n}+o\left(\frac{1}{n}\right)-1}{\frac{1}{n}} = p < q \Rightarrow$$

 $\Rightarrow \exists N_2: \ \forall n > N_2:$

$$\frac{\left(1 + \frac{1}{n}\right)^p - 1}{\frac{1}{n}} < q \Rightarrow \left(1 + \frac{1}{n}\right)^p < 1 + \frac{q}{n}.\tag{6.5}$$

Сравниваем неравенства 6.4 и 6.5, получим, что при $n > \max(N_1, N_2)$:

$$\left(1 + \frac{1}{n}\right)^p < 1 + \frac{q}{n} < \frac{a_n}{a_{n+1}} \Rightarrow$$

$$\Rightarrow \frac{a_n}{a_{n+1}} > \left(1 + \frac{1}{n}\right) = \frac{(n+1)^p}{n^p} = \frac{\frac{1}{n^p}}{\frac{1}{(n+1)^p}}.$$

Ряд $\sum_{n=1}^{\infty} \frac{1}{n^p}$ сходится при p > 1:

$$\frac{a_n}{a_{n+1}} > \frac{\frac{1}{n^p}}{\frac{1}{(n+1)^p}} \Rightarrow a_n \cdot \frac{1}{(n+1)^p} > \frac{1}{n^p} \cdot a_{n+1} \Rightarrow \frac{a_{n+1}}{a_n} < \frac{\frac{1}{(n+1)^p}}{\frac{1}{n^p}}.$$

По 3-му признаку сравнения, ряд (A) сходится при $p > 1 \Rightarrow$ при r > 1.

2. Пусть r < 1. Тогда $\exists N: \ \forall n > N$:

$$n \cdot \left(\frac{a_n}{a_{n+1}} - 1\right) < 1 \Rightarrow$$

$$\Rightarrow \frac{a_n}{a_{n+1}} < 1 + \frac{1}{n} = \frac{n+1}{n} = \frac{\frac{1}{n}}{\frac{1}{n+1}} \Rightarrow$$

$$\Rightarrow \frac{a_{n+1}}{a_n} > \frac{\frac{1}{n+1}}{\frac{1}{n}}.$$

Ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ – гармонический, расходящийся \Rightarrow по 3-му признаку сравнения ряд (A) расходится.

3. <u>Упражнение:</u> привести 2 примера рядов (сходящийся, расходящийся), но r = 1 в обоих случаях.

Теорема 26 (Признак Кумера). Пусть дан ряд (A) – положительный. Пусть числа $c_1, c_2, \ldots, c_n, \ldots$: $\forall n > N$ $c_n > 0$ и ряд $\sum_{n=1}^{\infty} c_n$ – расходится. Если

$$\lim_{n \to \infty} \left(c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} \right) = k,$$

то

1. При k > 0 ряд (A) сходится.

- 2. При k < 0 ряд (A) расходится.
- 3. При k = 0 может как сходиться, так и расходиться.

Доказательство.

1. Пусть k > 0. Возьмем $0 . Тогда <math>\exists N : \ \forall n > N$:

$$\begin{split} c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} > p &\Rightarrow \\ &\Rightarrow c_n \cdot a_n - c_{n+1} \cdot a_{n+1} > p \cdot a_{n+1} > 0 \Rightarrow \\ &\Rightarrow c_n \cdot a_n > c_{n+1} \cdot a_{n+1}, \quad \forall n > N \end{split}$$

Тогда последовательность $\{c_n \cdot a_n\}$ убывает и ограничена снизу \Rightarrow последовательность сходится.

Пусть $c = \lim_{n \to \infty} c_n \cdot a_n$. Рассмотрим ряд:

$$\sum_{m=1}^{n} (c_m \cdot a_m - c_{m+1} \cdot a_{m+1}) =$$

$$= (c_1 \cdot a_1 - c_2 \cdot a_2) + (c_2 \cdot a_2 - c_3 \cdot a_3) + \dots + (c_n \cdot a_n - c_{n+1} \cdot a_{n+1}) =$$

$$= c_1 \cdot a_1 - c_{n+1} \cdot a_{n+1},$$

$$\lim_{n \to \infty} \sum_{m=1}^{n} (c_m \cdot a_m - c_{m+1} \cdot a_{n+1}) =$$

$$= \lim_{n \to \infty} (c_1 \cdot a_1 - c_{n+1} \cdot a_{n+1}) = c_1 \cdot a_1 - c \Rightarrow$$

 \Rightarrow сходится ряд $\sum_{n=1}^{\infty} (c_n \cdot a_n - c_{n+1} \cdot a_{n+1}) \Rightarrow$ из того, что $c_n \cdot a_n - c_{n+1} \cdot a_{n+1} > p \cdot a_{n+1} > 0$ и 1-го признака сравнения \Rightarrow ряд $\sum_{n=1}^{\infty} p \cdot a_{n+1}$ сходится \Rightarrow ряд (A) сходится.

2. Пусть $k < 0 \Rightarrow \exists N : \forall n > N$

$$\begin{split} c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} < 0 \Rightarrow \\ \Rightarrow \frac{a_n}{a_{n+1}} < \frac{c_{n+1}}{c_n} = \frac{\frac{1}{c_n}}{\frac{1}{c_+ n+1}} \Rightarrow \frac{a_{n+1}}{a_n} > \frac{\frac{1}{c_{n+1}}}{\frac{1}{c_n}}. \end{split}$$

 $\sum_{n=1}^{\infty}\frac{1}{c_n}$ расходится \Rightarrow по 3-му признаку сравнения ряд (A) расходится.

3. Придумать 2 примера когда k = 0 и ряды сходятся/расходятся.

L

Теорема 27 (Признак Бертрана). Пусть ряд (A) – положительный. Если

$$\lim_{n\to\infty} \ln n \cdot \left[n \cdot \left(\frac{a_n}{a_{n+1}} - 1 \right) \right] = B,$$

то

- 1. При B > 1 ряд (A) сходится.
- 2. При B < 1 ряд (A) расходится.
- 3. При B = 1 ряд (A) может как сходиться, так и расходиться.

Доказательство. Рассмотрим ряд $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln n}$ – расходится. Составим последовательность Кумера:

$$k_{n} = \underbrace{n \cdot \ln n}_{c_{n}} \cdot \frac{a_{n}}{a_{n+1}} - \underbrace{(n+1) \cdot \ln(n+1)}_{c_{n+1}} =$$

$$= \left| \ln(n+1) = \ln \left(n \cdot \frac{n+1}{n} \right) = \ln n + \ln \left(1 + \frac{1}{n} \right) \right| =$$

$$= n \cdot \ln n \cdot \frac{a_{n}}{a_{n+1}} - (n+1) \cdot \left(\ln n + \ln \left(1 + \frac{1}{n} \right) \right) =$$

$$= n \cdot \ln n \cdot \frac{a_{n}}{a_{n+1}} - n \cdot \ln n - \ln n - \ln \left(1 + \frac{1}{n} \right)^{n+1} =$$

$$= \ln n \left(n \cdot \frac{a_{n}}{a_{n+1}} - n - 1 \right) - \ln \left(1 + \frac{1}{n} \right)^{n+1} =$$

$$= \ln n \cdot \left(n \left(\frac{a_{n}}{a_{n+1}} - 1 \right) - 1 \right) - \ln \left(1 + \frac{1}{n} \right)^{n+1};$$

$$\lim_{n \to \infty} k_n =$$

$$= \lim_{n \to \infty} \left[\underbrace{\ln n \cdot \left(n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{B} - \ln \left(1 + \frac{1}{n} \right) - \ln \left(1 + \frac{1}{n} \right) \right] =$$

$$= B - 1,$$

по признаку Кумера, при B-1>0 ряд (A) сходится, при B-1<0 ряд (A) расходится, при B=1 ряд (A) может как сходиться, так и расходиться.

Теорема 28 (Признак Гаусса). Ряд $(A), a_n > 0, \forall n \in \mathbb{N}, \lambda, \mu \in \mathbb{R}$. Если

$$\frac{a_n}{a_{n+1}} = \left(\lambda + \frac{\mu}{n}\right) + O\left(\frac{1}{n^2}\right),\,$$

TC

- 1. При $\lambda > 1$, ряд (A) сходится.
- 2. При $\lambda < 1$, ряд (A) расходится.
- 3. При $\lambda = 1$ и
 - (a) $\mu > 1 \Rightarrow$ ряд (A) сходится.
 - (b) $\mu \le 1 \Rightarrow$ ряд (A) расходится.

Доказательство.

1. Если $\lambda < 1$, то

$$\begin{split} \lim_{n\to\infty} \frac{a_{n+1}}{a_n} &= \left[\lim_{n\to\infty} \left(\lambda + \frac{\mu}{n} + O\left(\frac{1}{n^2}\right)\right)\right]^{-1} = \\ &= \left[\lim_{n\to\infty} \left(\lambda + \frac{\mu}{n} + \underbrace{\frac{1}{n^2} \cdot \Omega\left(\frac{1}{n^2}\right)}\right)\right]^{-1} = \frac{1}{\lambda}, \end{split}$$

по признаку Даламбера, если $\frac{1}{\lambda} < 1,$ то есть $\lambda > 1,$ ряд (A) схолится.

- $2. \Rightarrow$ из 1.
- 3. Если λ = 1, то

$$\frac{a_n}{a_{n+1}} = 1 + \frac{\mu}{n} + O\left(\frac{1}{n^2}\right),$$

$$n\left(\frac{a_n}{a_{n+1}} - 1\right) = \mu + n \cdot O\left(\frac{1}{n^2}\right),$$

$$\lim_{n \to \infty} \left(n \cdot \frac{a_n}{a_{n+1}} - 1\right) = \lim_{n \to \infty} \left(\mu + n \cdot \frac{1}{n^2} \cdot \Omega\left(\frac{1}{n^2}\right)\right) = \mu \Rightarrow$$

$$\Rightarrow$$
 по признаку Раббе \Rightarrow $\left[\begin{array}{c} \mu > 1 \Rightarrow (A)$ сходится. $\mu < 1 \Rightarrow (A)$ расходится.

Пусть μ = 1, тогда

$$\begin{split} \lim_{n \to \infty} \ln n \cdot \left(n \cdot \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right) &= \\ &= \lim_{n \to \infty} \ln n \cdot \left(n \cdot \left(1 + \frac{1}{n} + O\left(\frac{1}{n^2} \right) - 1 \right) - 1 \right) = \\ &= \lim_{n \to \infty} \ln n \cdot \left(1 + n \cdot O\left(\frac{1}{n^2} \right) - 1 \right) = \\ &= \lim_{n \to \infty} \ln n \cdot n \cdot O\left(\frac{1}{n^2} \right) = \\ &= \lim_{n \to \infty} \left(\ln n \cdot n \cdot \frac{1}{n^2} \cdot \Omega\left(\frac{1}{n^2} \right) \right) = \\ &= \lim_{n \to \infty} \frac{\ln n}{n} \cdot \Omega\left(\frac{1}{n^2} \right) = 0. \end{split}$$

В самом деле,

$$\lim_{n\to\infty}\frac{\ln n}{n}=\lim_{n\to\infty}\frac{1}{n}\cdot\ln n=\lim_{n\to\infty}\ln n^{\frac{1}{n}}=\lim_{n\to\infty}\ln \sqrt[n]{n}=0\Rightarrow$$

 \Rightarrow по прихнаку Бертрана ряд (A) расходится.

6.3 Сходимость знакопеременных рядов

Примечание. Пусть дан ряд (A). Если $\exists N: \forall n>N$ a_n не меняет знак, то исследование сходимости такого ряда сводится к исследованию сходимости положительных рядов. Будем считать, что "+"и "-"бесконечно много. Такие ряды будем называть знакопеременными.

Определение 23 (Абсолютно сходящийся ряд). Ряд (A) называется *абсолютно сходящимся*, если сходится ряд

$$(A^*) \sum_{n=1}^{\infty} |a_n|.$$

Утверждение. Если ряд (A) абсолютно сходящийся, то он сходящийся.

Доказательство. Пусть ряд (A) абсолютно сходящийся, то есть сходится ряд (A^*) \Rightarrow по критерию Коши $\forall \varepsilon > 0 \ \exists N: \ \forall n > N \ \forall p > 0$

$$|a_{n+1}| + |a_{n+1}| + \ldots + |a_{n+1}| < \varepsilon.$$

Пусть $\varepsilon > 0$ задано. Рассмотрим:

$$|A_{n+p} - A_n| = |a_{n+1} + \ldots + a_{n+p}| \le |a_{n+1}| + \ldots + |a_{n+p}| < \varepsilon \Rightarrow$$

 \Rightarrow ряд (A) сходится.

Определение 24 (Условно сходящийся ряд). Если ряд (A) сходится, а ряд (A^*) расходится, то ряд (A) называется условно сходящимся.

Определение 25 (Знакочередующийся ряд). Ряд (A) называется *зна-кочередующимся*, если $\forall n \in \mathbb{N}$ $a_n \cdot a_{n+1} < 0$. Обозначим знакочередующийся ряд:

$$(\overline{A}) \sum_{n=1}^{\infty} (-1)^{n-1} \cdot a_n, \quad a_n > 0 \ \forall n \in \mathbb{N}.$$

Теорема 29 (признак Лейбница). Пусть ряд $(\overline{A}), \ a_n > 0 \ \forall n$ удовлетворяет условиям:

- 1. $a_1 \geqslant a_2 \geqslant a_3 \geqslant \ldots \geqslant a_n \geqslant \ldots$
- $2. \lim_{n\to\infty} a_n = 0.$

Тогда ряд (\overline{A}) сходится и его сумма $S: 0 < S \le a_1$.

Доказательство. Рассмотрим:

$$S_{2n} = a_1 - a_2 + a_3 - \dots + a_{2n-1} - a_{2n} =$$

= $(a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2n-1} - a_{2n}),$

тогда $\forall i: a_i-a_{i+1}\geqslant 0 \Rightarrow S_{2n}\geqslant 0 \ \forall n\Rightarrow$ последовательность $S_{2n}\nearrow$. С другой стороны,

$$S_{2n} = a_1 - \underbrace{(a_2 - a_3)}_{\geqslant 0} - \underbrace{(a_4 - a_5)}_{\geqslant 0} - \dots - \underbrace{(a_{2n-2} - a_{2n-1})}_{\geqslant 0} - a_{2n} \Rightarrow$$

 $\Rightarrow S_{2n} \leqslant a_1 \ \forall n.$

Таким образом, S_{2n} не убывает и ограничена сверху \Rightarrow по теореме Вейерштрасса $\Rightarrow \exists \lim_{n \to \infty} S_{2n} = S$.

Далее,

$$\lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} (S_{2n} + a_{2n+1}) = \lim_{n \to \infty} S_{2n} + \lim_{n \to \infty} a_{2n+1} = S + 0 = S.$$

Таким образом, $\lim_{n\to\infty} S_n = S$.

Так как $0 < S_n \le a_1$ (если $S_n = 0$, то a_1 может быть = 0, что невозможно, так как $a_n > 0$) \Rightarrow (берем пределы от неравенства) $0 < S \le a_1$.

Следствие. Если знакочередующийся ряд (\overline{A}) сходящийся, то сумма его n-го остатка имеет знак (n+1)-го члена ряда и не больше его по модулю.

Пример. Рассмотрим ряд

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n-1} \frac{1}{n} + \dots, \tag{6.6}$$

по признаку Лейбница:

- 1. $1 > \frac{1}{2} > \frac{1}{3} > \ldots > \frac{1}{n}$;
- $2. \lim_{n \to \infty} \frac{1}{n} = 0$
- \Rightarrow 6.6 сходится, $0 < S \le 1$;

Пример. Рассмотрим

$$\sum_{n=1}^{\infty}\left|(-1)^{n-1}\frac{1}{n}\right|=\sum_{n=1}^{\infty}\frac{1}{n}$$
 — расходящийся \Rightarrow

⇒ ряд 6.6 – условно сходящийся.

Лемма 2. Если

- 1. Числа a_1, a_2, \dots, a_n либо не возрастают, либо не убывают.
- 2. Суммы $B_1=b_1,\ B_2=b_1+b_2,\ \dots,\ B_n=b_1+b_2+\dots+b_n:\ \forall k=1,\dots,n\quad |B_k|\leqslant L.$

Тогда

$$\left| \sum_{k=1}^{n} a_k \cdot b_k \right| \leqslant L \cdot (|a_1| + |a_n|) \tag{6.7}$$

Доказательство. Рассмотрим

$$a_{1} \cdot b_{1} + a_{2} \cdot b_{2} + \ldots + a_{n} \cdot b_{n} =$$

$$= a_{1} \cdot B_{1} + a_{2} \cdot (B_{2} - B_{1}) + a_{3} \cdot (B_{3} - B_{2}) + \ldots + a_{n} \cdot (B_{n} - B_{n-1}) =$$

$$= a_{1} \cdot B_{1} + a_{2} \cdot B_{2} - a_{2} \cdot B_{1} + a_{3} \cdot B_{3} - a_{3} \cdot B_{2} + \ldots + a_{n} \cdot B_{n} - a_{n} \cdot B_{n-1} =$$

$$= B_{1} \cdot (a_{1} - a_{2}) + B_{2} \cdot (a_{2} - a_{3}) + B_{3} \cdot (a_{3} - a_{4}) + \ldots + B_{n-1} \cdot (a_{n-1} - a_{n}) + a_{n} \cdot B_{n} =$$

$$= \sum_{k=1}^{n-1} B_{k} \cdot (a_{k} - a_{k-1}) + a_{n} \cdot B_{n}.$$

Таким образом,

$$\left| \sum_{k=1}^{n} a_k \cdot b_k \right| = \left| \sum_{k=1}^{n-1} B_k \cdot (a_k - a_{k+1}) + a_n \cdot B_n \right| \le$$

$$\le \sum_{k=1}^{n-1} |B_k| \cdot |a_k - a_{k+1} + |a_n| \cdot |B_n| \le L \cdot \left(\sum_{k=1}^{n-1} |a_k - a_{k+1}| + |a_n| \right) =$$

$$= L \cdot (|a_1| + |a_n| + |a_n|) = L \cdot (|a_1| + 2 \cdot |a_n|).$$

Теорема 30 (Признак Абеля и Дирихле).

- 1. Абеля. Если
 - ullet последовательность $\{a_n\}$ монотонна и ограничена,
 - ряд $\sum_{n=1}^{\infty} b_n$ сходится,

то ряд $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

- 2. Дирихле. Если
 - последовательность $\{a_n\}$ монотонна и $\lim_{n \to \infty} a_n = 0$,
 - частичные суммы ряда (B) ограничены, то есть $\exists k > 0: \forall n \mid \sum_{m=1}^n b_m \mid < k,$

то $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

Доказательство.

1. Пусть выполнены условия признака Абеля. Тогда $\exists M>0: |a_n| \le M$. Пусть $\varepsilon>0$ задано. Возьмем номер $N: \ \forall n>N, \ \forall p>0$

$$\left| \sum_{k=n+1}^{n+p} b_k \right| < \varepsilon^* = \frac{\varepsilon}{3 \cdot M}.$$

Частичные суммы ряда $\sum_{n=1}^\infty a_n\cdot b_n$ имеют вид $S_n=a_1\cdot b_1+\ldots+a_n\cdot b_n$. По критерию Коши найдем $N_1:\ \forall n>N_1, \forall p>0$

$$|S_{n+p} - S_n| < \varepsilon,$$

$$\begin{aligned} |a_{n+1} \cdot b_{n+1} + a_{n+2} \cdot b_{n+2} + \ldots + a_{n+p} \cdot b_{n+p}| &\leqslant \\ &\leqslant \varepsilon^* \cdot \left(|a_{n+1}| + 2 \cdot |a_{n+p}| \right) \leqslant \varepsilon^* \cdot 3 \cdot M = \frac{\varepsilon}{3 \cdot M} = \varepsilon \Rightarrow \end{aligned}$$

 \Rightarrow по критерию Коши ряд $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

2. Пусть выполнены условия признака Дирихле. Так как $\lim_{n\to\infty}a_n=0,$ то $\exists N:\ \forall n>N \quad (\varepsilon>0$ задано):

$$|a_n| < \frac{\varepsilon}{3 \cdot k}, \quad \left| \sum_{k=1}^n b_k \right| \leqslant k.$$

По критерию Коши:

$$\begin{split} |S_{n+p} - S_n| &= |a_{n+1} \cdot b_{n+1} + \ldots + a_{n+p} \cdot b_{n+p}| \stackrel{\text{по } \text{_{JEMMe}}}{\leqslant} \\ &\leqslant k \cdot \left(|a_{n+1}| + 2 \cdot |a_{n+p}|\right) < k \cdot \frac{3 \cdot \varepsilon}{3 \cdot k} = \varepsilon. \end{split}$$

Г

Пример.
$$\sum_{n=1}^{\infty} \frac{\sin(n \cdot x)}{n} = \sum_{n=1}^{\infty} \frac{1}{n} \cdot \sin(n \cdot x)$$

 $a_n = \frac{1}{n} \to 0$ при $n \to \infty$. Оценим частичную сумму $\sum_{n=1}^{\infty} \sin(n \cdot x)$:

$$\sin x + \sin(2 \cdot x) + \sin(3 \cdot x) + \dots + \sin(n \cdot x) =$$

$$= \frac{1}{\sin \frac{x}{2}} \cdot \left(\sin x \cdot \sin \frac{x}{2} + \sin(2 \cdot x) \cdot \sin \frac{x}{2}\right) =$$

$$= \frac{1}{2} \cdot \frac{1}{\sin \frac{x}{2}} \cdot \left(\cos \frac{x}{2} - \cos \frac{3 \cdot x}{2} + \frac{3 \cdot x}{2} - \cos \frac{5 \cdot x}{2} + \dots \right)$$

$$\dots + \cos \frac{(2 \cdot n - 1) \cdot x}{2} - \cos \frac{(2 \cdot n + 1) \cdot x}{2}\right) =$$

$$= \frac{1}{2} \cdot \frac{1}{\sin \frac{x}{2}} \cdot \left(\cos \frac{x}{2} - \cos \frac{(2 \cdot n + 1) \cdot x}{2}\right) =$$

$$= \frac{2 \cdot \sin \frac{(n + 1) \cdot x}{2} \cdot \sin \frac{n \cdot x}{2}}{2 \cdot \sin \frac{x}{2}}.$$

Тогда

$$\left| \sum_{k=1}^{n} \sin(k \cdot x) \right| = \left| \frac{\sin \frac{(n+1) \cdot x}{2} \cdot \sin \frac{n \cdot x}{2}}{\sin \frac{x}{2}} \right| \leqslant \frac{1}{\sin \frac{x}{2}},$$

 $\frac{x}{2} \neq \pi \cdot k, \ k \in \mathbb{Z} \Rightarrow x \neq 2 \cdot \pi \cdot k, \ k \in \mathbb{Z}.$

По признаку Дирихле ряд $\sum_{n=1}^{\infty} \frac{\sin(n \cdot x)}{n}$ сходится.

Лекция 9: Продолжение

от 9 окт 10:25

6.4 Свойства сходящихся рядов

Примечание. Рассмотрим ряд:

$$1 - 1 + 1 - 1 + 1 - 1 + \dots$$

Если

$$(1-1)+(1-1)+\ldots+(1-1)+\ldots,$$

то

$$1 + (-1 + 1) + (-1 + 1) + \dots$$

Пусть дан ряд (A). Составим из ряда (A) ряд (\widetilde{A}) :

$$\underbrace{\frac{\left(a_{1}+a_{2}+\ldots+a_{n_{1}}\right)}{\widetilde{a}_{1}}}_{\widetilde{a}_{1}} + \underbrace{\frac{\left(a_{n_{1}+1}+a_{n_{1}+2}+\ldots+a_{n_{2}}\right)}{\widetilde{a}_{2}}}_{\widetilde{a}_{2}} + \ldots + \underbrace{\left(a_{n_{k}+1}+\ldots+a_{n_{k}+1}\right)}_{\widetilde{a}_{k+1}} + \ldots = \sum_{k=1}^{\infty} \sum_{l=n_{k-1}+1}^{n_{k}} a_{l} = \widetilde{A}, \quad a_{n_{0}} = a_{1}.$$

Теорема 31 (Сочетательное свойство сходящихся рядов).

- 1. Если ряд (A) сходится, то для любой возрастающей последовательности n_k ряд (\widetilde{A}) сходится и их суммы совпадают $(A = \widetilde{A})$.
- 2. Если ряд (\widetilde{A}) сходится и внутри каждой скобки знак не меняется, то ряд (A) сходится и их суммы совпадают, то есть $\widetilde{A}=A$.

Доказательство.

1. Пусть ряд (A) сходится, \widetilde{A}_k – частичные суммы ряда (\widetilde{A}):

$$\begin{split} \widetilde{A}_1 &= \widetilde{a}_1 = \sum_{k=1}^{n_1} a_k = A_{n_1} \\ \widetilde{A}_2 &= \widetilde{a}_1 + \widetilde{a}_2 = \sum_{k=n_1+1}^{n_2} a_k = A_{n_1} \\ \vdots \\ \widetilde{A}_k &= A_{n_k} \end{split} .$$

Так как ряд (A) сходится, то $\exists \lim_{k \to \infty} A_{n_k}$ = A, следовательно:

$$\begin{array}{rcl} A & = & \lim_{k \to \infty} A_{n_k} = \\ = & \lim_{n \to \infty} \widetilde{A}_k & = & \widetilde{A} \end{array}$$

2. Пусть ряд (\widetilde{A}) сходится. Имеем:

при:
$$a_1 > 0$$
: $A_1 < A_2 < \ldots < A_{n_1}$ $a_1 < 0$: $A_1 > A_2 > \ldots > A_{n_1}$

• Далее, если $a_{n_1+1} > 0$, тогда:

при
$$a_1 > 0$$
: $A_{n_1+1} < A_{n_1+2} < \ldots < A_{n_2}$

$$A_{n_1} = \widetilde{A}_1 < A_{n_2} = \widetilde{A}_2,$$

при $a_1 < 0$: $A_{n_1} < 0$ и $A_{n_1} < A_{n_2}$

$$\widetilde{A}_1 < \widetilde{A}_2$$
.

• Если же $a_{n_1+1} < 0$, тогда:

при:
$$\begin{array}{ll} a_1 < 0: & A_{n_1} = \widetilde{A}_1 > A_{n_2} = \widetilde{A}_2 \\ a_1 > 0: & A_{n_1} = \widetilde{A}_1 > \widetilde{A}_2 \end{array}$$
 .

Аналогично, пока n меняется от n_k до n_{k+1} , то будем иметь либо $A_{n_k} < A_n < A_{n_{k+1}}$, либо $A_{n_k} > A_n > A_{n_{k+1}}$.

Ряд (\widetilde{A}) – сходится \Rightarrow $\exists \lim_{k \to \infty} \widetilde{A}_k = \lim_{k \to \infty} \widetilde{A}_{k+1} = \widetilde{A} \Rightarrow$ по теореме о 2-х миллиционерах:

$$\lim_{k\to\infty} A_n = \widetilde{A}.$$

Лемма 3. Если ряд (A) абсолютно сходящийся, то ряды (P) и (Q) сходятся и A = P - Q.

Доказательство. Пусть (A^*) – сходится $\Rightarrow \sum_{n=1}^{\infty} |a_n| = A^*$.

 A_n^* – частичные суммы ряда (A^*) .

Имеем $P_{n_k} = a_{n_1} + a_{n_2} + \ldots + a_{n_k}$, где $n_1 < n_2 < \ldots < n_k \leqslant n$,

Пример.

(A)
$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$$
,

(P)
$$\sum_{n=1}^{\infty} p_n = \underbrace{a_1 + a_3 + a_4 + a_6}_{P_3}$$
,

$$(A^*)\underbrace{|a_1| + |a_2| + |a_3| + |a_4| + |a_5|}_{A_*^*} + \dots$$

$$\begin{array}{cccc} & \text{ т.к. } (A^*) \\ P_{n_k} \leqslant A_n^* & \xrightarrow{\text{ сходится }} & A_n^* \leqslant A^* \\ Q_{n_m} \leqslant A_n^* & & & & P_{n_k} \leqslant A^* \\ Q_{n_m} \leqslant A^* & & & Q_{n_m} \leqslant A^* \end{array}$$

Далее,

$$A_n = P_{n_k} - Q_{n_m}, \text{ где } \begin{array}{l} n_k \leqslant n \\ n_m \leqslant n \end{array}$$
 (при $n \to \infty \Rightarrow \begin{array}{l} k \to \infty \\ m \to \infty \end{array}$)

Далее, так как (A) сходится абсолютно \Rightarrow (A) сходится \Rightarrow

$$\Rightarrow \exists A = \lim_{n \to \infty} A_n = \lim_{k, m \to \infty} (P_{n_k} - Q_{n_m}) =$$

$$= \lim_{k \to \infty} P_{n_k} - \lim_{m \to \infty} Q_{n_m} = P - Q.$$

Теорема 32 (Переместительное свойство сходящихся рядов). Если ряд (A) абсолютно сходится, то его сумма не зависит от перестановки членов ряда.

Доказательство. Пусть ряд (A) сходится абсолютно \Rightarrow ряд (A^*) сходится. Пусть ряд

$$(A')$$
 $\sum_{n=1}^{\infty} a'_n$

получен из ряда (A) путем перестановки его членов. Покажем, что ряд (A') сходится и A = A' (их суммы совпадают).

1. Пусть (A) – знакоположительный, то есть $\forall n \in \mathbb{N} \ a_n > 0$. Рассмотрим частичные суммы ряда (A'):

$$A'_k = a'_1 + a'_2 + \ldots + a'_k = a_{n_1} + a_{n_2} + \ldots + a_{n_k}$$

Пусть $n' = \max\{n_1, n_2, \dots, n_k\}$. Тогда:

$$A'_{k} \leq a_1 + a_2 + \ldots + a_{n_i} + \ldots + a_{n'} = A_{n'},$$

где $A_{n'}-n'$ -я частичная сумма ряда (A). Так как (A) сходится и знакоположительный $\Rightarrow A_{n'} \leqslant A$.

Таким образом получаем, что $\forall k \ A_k' \leqslant A \Rightarrow$ последовательность $A_k' \nearrow$ и ограничена, тогда:

$$\exists \lim_{k \to \infty} A_k' = A' \leqslant A.$$

С другой стороны, ряд (A') получен перестановкой членов ряда $(A) \Rightarrow A' \geqslant A \Rightarrow A' \leqslant A \leqslant A' \Rightarrow A = A'.$

2. Пусть ряд (A) сходится абсолютно, то есть (A^*) сходится. С рядом (A) свяжем два ряда:

$$(P) \sum_{n=1}^{\infty} p_n, \quad (Q) \sum_{n=1}^{\infty} q_n,$$

где p_n – положительные члены ряда (A), q_n – отрицательные члены ряда (A), взятые по модулю, причем все члены рядов (P) и (Q) взяты в том же порядке, как они стояли в ряде (A).

Если ряд (A) сходится абсолютно, то сходится ряд (A^*) , (A^*) – положительный ряд \Rightarrow $(A^{*'})$ сходится (получен путем перестановки членов ряда (A^*)) \Rightarrow по лемме сходятся ряды (P') и (Q') и A' = P' - Q'.

$$(A) \xrightarrow{(P)} (A^*) \xrightarrow{(A^*)} \underbrace{(A^*)}_{\text{cx.}}$$

$$(A) \xrightarrow{\downarrow} (A')$$

$$(Q) \qquad (P') \qquad (Q')$$

- (P') положительный ряд \Rightarrow по пункту 1, (P) сходится,
- ullet (Q') положительный ряд \Rightarrow по пункту 1, (Q) сходится

$$\mathsf{H}\ P' = P,\ Q' = Q \Rightarrow A' = P - Q = A.$$

Лемма 4. Если ряд (A) сходится условно, то ряды (P) и (Q) расходятся.

Доказательство. Рассмотрим

$$A_n = P_k - Q_m,$$

где $k \leqslant n, \ m \leqslant n \ (k+m=n).$

$$A_n^* = P_k^* + Q_m^*,$$

$$\lim_{n \to \infty} A_n = A; \quad \lim_{n \to \infty} A_n^* = \infty.$$

Допустим, что ряд (P) сходится \Rightarrow (P^*) сходится, а так же $\exists \lim_{k \to \infty} P_k = P \Rightarrow \exists \lim_{m \to \infty} Q_m = A - P \Rightarrow Q^* - \text{сходится} \Rightarrow (A^*)$ имеет предел. Противоречие \Rightarrow (P) расходится.

Для
$$(Q)$$
 – аналогично.

Теорема 33 (Римана о перестановке членов условно сходящегося ряда). Если ряд (A) условно сходится, то $\forall B \in \mathbb{R}$ (в том числе $B = \pm \infty$) \exists перестановка ряда (A) такая, что полученный ряд сходится и имеет сумму B. Более того, \exists перестановка ряда (A) такая, что частичные суммы полученного ряда не стремятся ни к конечному, ни к бесконечному пределу.

Доказательство. Пусть $B \in \mathbb{R}$. Возьмем номера:

$$n_1: p_1 + p_2 + \ldots + p_{n_1} \geqslant B,$$

 $n_2: p_1 + p_2 + \ldots + p_{n_1} - q_1 - q_2 - \ldots - q_{n_2} \leqslant B.$

Более того, элементы p и q будем брать столько, сколько это необходимо для выполнения этого условия.

Возьмем:

$$n_3: p_1 + p_2 + \ldots + p_{n_1} - q_1 - q_2 - \ldots - q_{n_2} + p_{n_1+1} + p_{n_1+2} + \ldots + p_{n_3} \geqslant B$$

и так далее.

Таким образом получим ряд

$$(p_1 + \ldots + p_{n_1}) + (-q_1 - \ldots - q_{n_2}) + (p_{n_1+1} + \ldots + p_{n_3}) + (-q_{n_2+1} - \ldots - q_{n_4}) + \ldots$$

- этот ряд сходится к B.

Действительно, так как ряд (A) сходится, то $\lim_{n\to\infty} a_n = 0$.

Так как количество членов p_i и q_i бралось лишь столько, сколько необходимо, то соответствующие частичные суммы отличаются от B разве что на последнее слогаемое в этой частичной сумме, которое стремится к нулю $\Rightarrow \lim_{n\to\infty} A'_n = B$.

6.5 Умножение рядов

Примечание. Пусть даны ряды (A),(B). Составим таблицу:

	a_1	a_2		a_n	
$\overline{b_1}$	a_1b_1	a_2b_1	•••	$a_n b_1$	
$\overline{b_2}$	a_1b_2	a_2b_2	•••	$a_n b_2$	
- :	:	:	٠.	÷	٠.
$\overline{b_n}$	a_1b_n	a_2b_n	•••	$a_n b_n$	
- i	:	:	٠.	:	٠.

Определение 26 (Произведение рядов, форма Коши). Произведением рядов (A) и (B) назовем ряд, членами которого ялвяются элементы на строке таблицы a_ib_j , взятые в произвольном порядке.

Если числа выбираются по диагоналям, то произведение называет-

ся формой Коши:

$$a_1b_1 + (a_1b_2 + a_2b_1) + \dots$$

Теорема 34 (Коши о произведении рядов). Если ряды (A), (B) абсолютно сходятся, A и B – их суммы, то \forall их произведение абсолютно сходится и равно $A \cdot B$.

Доказательство. Рассмотрим r-тую частичную сумму ряда

$$(A \cdot B)^* \sum_{r=1}^{\infty} |a_{n_r} \cdot b_{k_r}|,$$

$$S_r = |a_{n_1} \cdot b_{k_1}| + |a_{n_2} \cdot b_{k_2}| + \dots + |a_{n_r} \cdot b_{k_r}| \le$$

$$\le (|a_{n_1}| + |a_{n_2}| + \dots + |a_{n_r}|) \cdot (|b_{k_1}| + |b_{k_2}| + \dots + |b_{k_r}|) \le$$

$$\le (|a_1| + |a_2| + \dots + |a_m|) \cdot (|b_1| + |b_2| + \dots + |b_m|),$$

где $m = \max\{n_1, n_2, \dots, n_r, k_1, k_2, \dots, k_r\}.$

Так как ряды (A) и (B) сходятся абсолютно, то есть сходятся ряды (A^*) и (B^*) , то $S_r \leqslant A^* \cdot B^* \Rightarrow$ последовательность $S_r \nearrow$ и ограничена $\Rightarrow \exists \lim_{r \to \infty} S_r \Rightarrow$ ряд $(A \cdot B)^*$ сходится \Rightarrow ряд $(A \cdot B) -$ сходится, причем его сумма не зависит от порядка суммирования.

Будем суммировать ряд $A \cdot B$ по квадратам:

$$\underbrace{a_1b_1}_{c_1} + \underbrace{\left(a_1b_2 + a_2b_2 + a_2b_1\right)}_{c_2} + \underbrace{\left(a_1b_3 + a_2b_3 + a_3b_3 + a_3b_2 + b_3b_1\right)}_{c_3} + \dots$$

$$S_1 = a_1b_1 = A_1 \cdot B_1$$

$$S_2 = c_1 + c_2 = a_1b_1 + (a_1b_2 + a_2b_2 + a_2b_1) = (a_1 + a_2) \cdot (b_1 + b_2) = A_2 \cdot B_2$$

$$S_3 = c_1 + c_2 + c_3 = (a_1 + a_2 + a_3) \cdot (b_1 + b_2 + b_3) = A_3 \cdot b_3$$

$$\vdots$$

$$S_n = A_n \cdot B_n$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (A_n \cdot B_n) = \lim_{n\to\infty} A_n \cdot \lim_{n\to\infty} B_n = A \cdot B$$

Лекция 10: Продолжение

от 13 окт 8:46

6.6 Двойные и повторные ряды

Примечание. Рассмотрим таблицу:

(*)	a_{11}	a_{12}	a_{13}	•••	a_{1k}	•••
	a_{21}	a_{22}	a_{23}		a_{2k}	•••
	÷	:	:	٠.	:	٠.
	a_{n1}	a_{n2}	a_{n3}	•••	a_{nk}	•••
	÷	÷	:	٠.	÷	٠.

Определение 27 (Повторный ряд). *Повторным рядом* называются выражения

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk},\tag{6.8}$$

И

$$\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{nk}.$$
(6.9)

Говорят, что ряд 6.8 сходится, если сходятся все ряды (A_n) по строкам $(\sum_{k=1}^\infty a_{n_k}=A_n)$ и сходится ряд $\sum_{n=1}^\infty A_n$.

Определение 28 (Двойной ряд). *Двойным рядом* называется выражение:

$$\sum_{n.k=1}^{\infty} a_{nk} \tag{6.10}$$

Говорят, что ряд 6.10 сходится, если:

$$\exists A = \lim_{\substack{K \to \infty \\ N \to \infty}} A_{NK} = \lim_{\substack{K \to \infty \\ N \to \infty}} \sum_{n=1}^{N} \sum_{k=1}^{K} a_{nk}.$$

То есть $\forall \varepsilon > 0 \ \exists N_0$ и $K_0: \ \forall N > N_0$ и $\forall k > K_0$

$$\left|\underbrace{\sum_{n=1}^{N}\sum_{k=1}^{K}a_{nk}}_{A_{NK}}-A\right|<\varepsilon.$$

Определение 29 (Простой ряд). Пусть ряд

$$\sum_{r=1}^{\infty} U_r \tag{6.11}$$

построен из элементов таблицы, взятых в произвольном порядке. Такой ряд будем называть npocmыm, связанным с данной таблицей.

Теорема 35 (О связи сходимости простого и повторного рядов).

- 1. Если ряд 6.11 абсолютно сходится, то ряд 6.8 сходится и его сумма равна U.
- 2. Если после замены элементов таблицы (\star) их модулями ряд 6.8^* ходится, то ряд 6.11 сходится абсолютно и суммы рядов 6.8 (без модулей) и 6.11 совпадают.

Доказательство.

1. Пусть 6.8^* сходится. Покажем, что все ряды по строкам сходятся:

$$(A_n)$$
 $\sum_{k=1}^{\infty} a_{nk} \quad (\forall n \in \mathbb{N})$

и сходится ряд $\sum_{n=1}^{\infty} A_n$.

Рассмотрим

$$|a_{n1}| + |a_{n2}| + \ldots + |a_{nk}| \le |u_1| + |u_2| + \ldots + |u_r|,$$

где r выбран таким образом, чтобы среди $|u_i|$ были все слагаемые $|a_{n1},\dots,a_{nk}|$.

Таким образом,

$$\underbrace{|a_{n1}| + \ldots + |a_{nk}|}_{A_{nk}^*} \leqslant U^* \Rightarrow \exists \lim_{k \to \infty} A_{nk}^* = A_n^* \Rightarrow$$

 \Rightarrow ряд $\sum_{k=1}^{\infty} a_{nk} \ \forall n \in \mathbb{N}$ сходится абсолютно \Rightarrow он сходится.

Далее, пусть $\varepsilon > 0$ задано. Выберем номер $r_0: \ \forall r > r_0$

$$\sum_{i=1}^{\infty} |u_{r+i}| < \frac{\varepsilon}{3}.$$

Тогда

$$\left| \sum_{i=1}^{r} u_i - U \right| = \left| \sum_{i=1}^{\infty} u_{r+i} \right| \leqslant \sum_{i=1}^{\infty} |u_{r+i}| < \frac{\varepsilon}{3}$$

Так как ряды по строкам сходятся, то $\forall n$ выберем m(n):

$$\left| \sum_{k=1}^{m(n)} a_{n_k} - A_n \right| < \frac{\varepsilon}{3}.$$

Наконец, выберем номер N_0 такой, что все числа u_1,u_2,\ldots,u_{r_0}

содержались бы в первых N_0 строках:

$$\begin{split} \left| \sum_{n=1}^{N_0} A_n - U \right| &= \\ &= \left| \sum_{n=1}^{N_0} A_n - \sum_{n=1}^{N_0} \sum_{k=1}^{m(n)} a_{n_k} + \sum_{n=1}^{N_0} \sum_{k=1}^{m(n)} a_{n_k} - \sum_{i=1}^{r_0} u_i + \sum_{i=1}^{r_0} u_i - U \right| &\leq \\ &\leq \sum_{n=1}^{N_0} \left| A_n - \sum_{k=1}^{m(n)} a_{n_k} \right| + \left| \sum_{n=1}^{N_0} \sum_{k=1}^{m(n)} a_{n_k} - \sum_{i=1}^{r_0} u_i \right| + \left| \sum_{i=1}^{r_0} u_i - U \right| &< \\ &< \frac{\varepsilon}{3} + \sum_{i=r_0+1}^{\infty} (u_i) + \frac{\varepsilon}{3} < \frac{\varepsilon}{3} \cdot 3 = \varepsilon. \end{split}$$

2. Пусть ряд $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} |a_{n_k}| = A^*$ сходится.

Тогда $\forall r \; \exists N, K$ такие, что числа u_1, \ldots, u_r содержатся в N первых строчках и K первых столбцах таблицы:

$$\sum_{i=1}^r |u_i| \leqslant \sum_{n=1}^N \sum_{k=1}^K |a_{n_k}| \leqslant A^* \Rightarrow$$

 $\Rightarrow |u_r|$ \nearrow и ограничен \Rightarrow ряд 6.11 сходится абсолютно \Rightarrow по пункту 1. суммы рядов 6.11 и 6.8 равны.

Теорема 36 (Свойства двойных рядов).

1. Если ряд 6.10 сходится, то

$$\lim_{n\to\infty} a_{nk} = 0.$$

2. (Критерий Коши) Ряд 6.10 сходится \Leftrightarrow $\forall \varepsilon>0$ $\exists N_0,K_0: \forall n>N_0, \ \forall k>K_0, \ \forall p>0, \ \forall q>0$

$$\left|\sum_{n=1}^{p}\sum_{k=1}^{q}a_{(N_0+n)(K_0+k)}\right|<\varepsilon.$$

3. Если ряд 6.10 сходится, то $\forall c \in \mathbb{R}$ ряд

$$\sum_{n,k=1}^{\infty} (c \cdot a_{nk})$$

сходится, и его сумма равна $c \cdot A$ (где $A = \sum_{n,k=1}^{\infty} a_{nk}$).

4. Если ряд 6.10 сходится и ряд

$$\sum_{n,k=1}^{\infty} b_{nk}$$

сходится, то

$$\sum_{n,k=1}^{\infty} (a_{nk} + b_{nk}) = A + B,$$

а к тому же – сходится.

5. Если $\forall n, \ \forall k \ a_{nk} \geqslant 0,$ то ряд 6.10 сходится \Leftrightarrow его частичные суммы ограничены в совокупности.

Доказательство.

1. Пусть ряд 6.10 сходится. Заметим, что

$$A_{nk} = \sum_{i,j=1}^{n,k},$$

$$a_{nk} = A_{nk} - A_{n(k-1)} - A_{(n-k)k} + A_{(n-1)(k-1)}$$

 $\Rightarrow a_{nk} \rightarrow 0.$

2. (Критерий Коши) На декартовом произведении №№ введем базу:

$$B_{nk} = \{(n,k): n > N_0, k > K_0\}.$$

Тогда критерий Коши сходимости ряда – это есть критерий Коши существования предела функции A_{nk} по данной базе.

- 3. Самостоятельно.
- 4. Самостоятельно.
- 5. | ⇒ | Очевидно.
 - $|\Leftarrow|$ Пусть множество $\{A_{nk}\}$ ограничено. Пусть $A=\sup\{A_{nk}\}$. Покажем, что A – сумма ряда 6.10. Пусть $\varepsilon>0$ задано. Выберем N_0 и K_0 :

$$A - A_{N_0 K_0} < \varepsilon$$
 (no onp. sup)

Тогда $\forall n > N_0$ и $\forall k > K_0$ $A_{nk} \geqslant A_{N_0K_0} \Rightarrow 0 < A - A_{nk} \leqslant A - A_{N_0K_0} < \varepsilon \Rightarrow |A - A_{nk}| < \varepsilon.$

 \Rightarrow ряд 6.10 сходится.

Теорема 37 (О связи сходимости двойного ряда и повторного). Если

- ряд 6.10 сходится (двойной),
- все ряды по строкам сходятся,

тогда повторный ряд $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk}$ сходится и

$$A = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk} = \sum_{n,k=1}^{\infty} a_{nk}.$$

Доказательство. Пусть $\varepsilon > 0$ задано. Выберем $N_0, K_0: \forall n > N_0$ и $k > K_0$

$$\left| \sum_{i=1}^{n} \sum_{j=1}^{k} a_{ij} - A \right| < \frac{\varepsilon}{2}. \tag{6.12}$$

$$\sum\limits_{i,j=1}^{n,k}a_{ij}$$
 = A_{nk} двойного ряда.

В неравенстве 6.12 переходим к пределу при $k \to \infty.$ Тогда $\forall n > N_0$

$$\left| \sum_{i=1}^{n} \sum_{j=1}^{\infty} a_{ij} - A \right| = \left| \sum_{i=1}^{n} A_n - A \right| < \frac{\varepsilon}{2} < \varepsilon$$

 \Rightarrow повторный ряд $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk} = A$.

Теорема 38 (О связи сходимости двойного и простого рядов). Если ряд 6.10^* сходится, то сходится ряд 6.11.

И наоборот, если сходится ряд 6.11*, то сходится ряд 6.10.

И в обоих случаях суммы рядов равны:

$$\sum_{n,k=1}^{\infty} a_{nk} = \sum_{r=1}^{\infty} u_r$$

Доказательство.

• $|\Rightarrow|$ Пусть двойной ряд сходится абсолютно, то есть сходится ряд $\sum_{n,k=1}^{\infty}|a_{nk}|.$

Тогда для любого номера $S \exists N, K$ такие, что все числа u_1, \ldots, u_S содержатся в первых N строках и первых K столбцах, тогда:

$$|u_1| + |u_2| + \ldots + |u_S| \le \sum_{n=1}^{N} \sum_{k=1}^{K} |a_{nk}| \le A^* = \sum_{n,k=1}^{\infty} |a_{nk}| \Rightarrow$$

 \Rightarrow последовательность $U_i^* \nearrow$ и ограничена \Rightarrow ряд $\sum_{r=1}^\infty u_r$ сходится абсолютно \Rightarrow сходится.

• $\mid \leftarrow \mid$ Пусть ряд $\sum_{r=1}^{\infty} |u_r|$ сходится $\Rightarrow \forall N, K \; \exists S$: все числа $a_{11}, a_{12}, \dots, a_{1K}, a_{21}, \dots, a_{2K}, \dots, a_{N1}, \dots$

содержатся среди чисел u_1, \ldots, u_S . Тогда

$$A_{NK}^* = \sum_{n=1}^{N} \sum_{k=1}^{K} |a_{nk}| \le \sum_{r=1}^{S} |u_r| \le U^* = \sum_{r=1}^{\infty} |u_r| \Rightarrow$$

 \Rightarrow ряд $\sum_{n,k=1}^{\infty} a_{nk}$ сходится.

Покажем, что $\sum_{n,k=1}^{\infty} a_{nk} = \sum_{r=1}^{\infty} u_r$.

Так как ряд $\sum_{r=1}^{\infty} u_r$ сходится абсолютно, то расположим элементы по квадратам:

$$\begin{aligned} a_{11} &= u_{r_1} \\ a_{12} + a_{22} + a_{21} &= u_{r_2} + u_{r_3} + u_{r_4} \\ \vdots \\ A_{nn} &= a_{11} + \ldots + a_{nn} = U_n = u_{r_1} + \ldots + u_{r_n} \\ A &= \lim_{n \to \infty} A_{nn} = \lim_{n \to \infty} U_n = U. \end{aligned}$$

Теорема 39 («Главная»). Пусть дана таблица (*) (a_{ij}) и по ней построены ряды 6.8, 6.9, 6.10, 6.11.

Если после замены элементов таблицы их модулями хотя бы один из 4-х рядов становится сходящимся, то сходятся остальные и их суммы равны.

Доказательство. Из четырех предыдущих теорем \Rightarrow «Главная» теорема

Лекция 11: Продолжение

от 17 окт 10:28

6.7 Поточечная и равномерная сходимость семейства функций

Определение 30 (Семейство функций, параметры). *Семейство функций* – это произвольное множество функций.

Пусть $f: X \times T \to Y$. Если по каким-либо соображениям элементам множества T уделяется особое внимание, то будем их называть параметрами.

То есть $\forall t \in T$ можно рассмотреть функцию

$$f_t(x) = f(x,t).$$

В этом случае будем говорить, что задано семейство функций, зависящих от параметра t.

Пример. $T = \mathbb{N}$, тогда $f_n(x) = x^n$.

Примечание. Пусть задано семейство отображений $f_t: X \to Y_\rho, Y -$ метрическое пространство с заданной метрикой $\rho, t \in T$.

Пусть \mathfrak{B} – база на T.

Определение 31 (Сходимость в точке). Будем говорить, что семейство $\{f_t\}$ сходится в точке $x \in X$, если $f_t(x)$ как функция аргумента t имеет предел по базе \mathfrak{B} , то есть $\exists y_x \in Y_\rho \colon \forall \varepsilon > 0 \ \exists B \in \mathfrak{B} \colon \forall t \in B$

$$\rho(f_t(x), y_x) < \varepsilon.$$

Определение 32 (Область сходимости, предельная функция). Множество $E = \{x \in X : \{f_t\} \text{ сходится в точке } x\}$ называется областью cxodumocmu семейства $\{f_t\}$ по базе \mathfrak{B} .

Далее, на E введем функцию, положив

$$f(x) = \lim_{\mathfrak{B}} f_t(x).$$

Функция f(x) называется предельной.

Определение 33 (Поточечная сходимость по базе). Пусть дано семейство $f_t: X \to Y_u$ и $f: X \to Y$. Будем говорить, что f_t сходится по базе \mathfrak{B} поточечно к f на X, если $\forall x \in X \ \forall \varepsilon > 0 \ \exists B_x \in \mathfrak{B}: \ \forall t \in B_x$

$$\rho(f_t(x), f(x)) < \varepsilon.$$

Обозначение:

$$f_t \xrightarrow{\mathfrak{B}} f$$
 (на X)

Определение 34 (Равномерная сходимость по базе). Семейство $\{f_t\}$ сходится равномерно по базе $\mathfrak B$ к f на X, если $\forall \varepsilon > 0 \ \exists B \in \mathfrak B$: $\forall t \in B$ и $\forall x \in X$

$$\rho(f_t(x), f(x)) < \varepsilon.$$

Обозначение:

$$f_t \underset{\mathfrak{B}}{\Longrightarrow} f \text{ (Ha } X)$$

Определение 35 (Поточечная сходимость). Пусть $f_n: X \to \mathbb{R}$ – последовательность функций и $f: X \to \mathbb{R}$. Семейство $\{f_n\}$ $cxo\partial umc$ я nomoчeчно к f на X, если $\forall x \in X$ $\exists f(x) = \lim_{n \to \infty} f_n(x), \ \forall \varepsilon > 0 \ \exists N: \ \forall n > N$

$$|f_n(x) - f(x)| < \varepsilon.$$

Обозначение:

$$f_n \xrightarrow[n \to \infty]{} f$$
 (Ha X)

Определение 36 (Равномерная сходимость). Последовательность $\{f_n\}$ равномерно сходится к f на X при $n \to \infty$, если $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > \infty$

$$|f_n(x) - f(x)| < \varepsilon.$$

Обозначение:

$$f_n \Longrightarrow_{n \to \infty} f$$
 (Ha X)

Пример. $f_n: \mathbb{R} \to \mathbb{R}, \quad f_n(x) = x^n$

Имеем при фиксирвоанном x:

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0, & -1 < x < 1 \\ 1, & x = 1 \\ +\infty, & x > 1 \\ \nexists, & x \leqslant -1 \end{cases}$$

Таким образом область сходимости этой последовательности E =(-1;1]. На множестве E определим предельую функцию

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = \begin{cases} 0, & x \in (-1;1) \\ 1, & x = 1 \end{cases}$$

Покажем, что f_n сходится к f на E неравномерно, то есть $\exists \varepsilon >$ $0 \ \forall N \in \mathbb{N}: \ \exists n > N \ \exists x \in X:$

$$|f_n(x) - f(x)| \ge \varepsilon.$$

Возьмем $\varepsilon = \frac{1}{2}$. Пусть N задано произвольно. Возьмем n = N+1 и $x: x^n = \frac{3}{4}$, то есть $x = \sqrt[n]{\frac{3}{4}}$. Тогда:

$$|f_n(x) - f(x)| = \left| \left(\sqrt[n]{\frac{3}{4}} \right)^n - 0 \right| = \frac{3}{4} > \frac{1}{2}$$

Пример. $f_n(x) = \frac{x}{1+n^2x^2}$ $\forall x \in X$:

$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{x}{1+n^2x^2} = 0.$$

Таким образом, $f(x) = 0 \ \forall x \in \mathbb{R}$. Покажем, что $f_n \Longrightarrow f$ на \mathbb{R} .

Имеем:

$$|f_n(x) - 0| = \left| \frac{x}{1 + n^2 x^2} \right| = \frac{1}{2n} \cdot \left| \frac{2nx}{1 + n^2 x^2} \right| \le$$

$$\le \left| \begin{array}{c} 0 \le (1 - nx)^2 = 1 + n^2 x^2 - 2nx \Rightarrow \\ \Rightarrow 2nx \le 1 + n^2 x^2 \end{array} \right| \le \frac{1}{2n} \cdot 1 = \frac{1}{2n}.$$

Пусть $\varepsilon > 0$ задано. Возьмем $N: \ \forall n > N \ \frac{1}{2n} < \varepsilon, \ N = \left[\frac{1}{2\varepsilon}\right]$. Таким

образом, $\forall n > N \ \forall x \in \mathbb{R}$

$$|f_n(x)| \le \frac{1}{2n} < \frac{1}{2N} = \varepsilon \Rightarrow$$

$$\Rightarrow f_n(x) \xrightarrow[n \to \infty]{} f(x)$$
 на \mathbb{R}^{∞}

Пример. $f_n(x) = \frac{n \cdot x}{1 + n^2 x^2}$

 $\forall x \in \mathbb{R}$

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{n \cdot x}{1 + n^2 x^2} = 0 \Rightarrow$$

 $\forall x \in \mathbb{R} \ f(x) = 0$ (имеется поточечная сходимость).

Покажем, что данное семейство не имеет равномерной сходимости к f. Рассмотрим $f_n(x) - f(x) = f_n(x) = \frac{n \cdot x}{1 + n^2 x^2}$:

$$f'_n(x) = \frac{n \cdot (1 + n^2 x^2) - n \cdot x \cdot (2xn^2)}{(1 + n^2 x^2)^2} = \frac{n - n^3 x^2}{(1 + n^2 x^2)^2} = 0, \quad x = \pm \frac{1}{n}$$

Далее, $f_n\left(\frac{1}{n}\right) = \frac{1}{2}$. Возьмем $\varepsilon = \frac{1}{4}$.

Тогда если N задано, то выберем n=N+1 и $x=\frac{1}{n}$.

$$\left| f_n(x) - f(x) \right|_{x = \frac{1}{n}} = \frac{1}{2} > \frac{1}{4} \Rightarrow$$

 $\Rightarrow f_n(x) \xrightarrow[n \to \infty]{} f(x)$ (пока что придется обозначать как $\xrightarrow[n \to \infty]{}$, так как нормально я не научился).

Теорема 40 (Критерий Коши сходимости семейства функций). Пусть Y – полное метрическое пространство, $f_t: X \to Y, \ t \in T$ – семейство $\{f_t\}$ равномерно сходится на X по базе $\mathfrak{B} \Leftrightarrow \forall \varepsilon > 0 \ \exists B \in \mathfrak{B}: \ \forall t_1, t_2 \in B$ и $\forall x \in Y$

$$\rho(f_{t_1}(x); f_{t_2}(x)) < \varepsilon.$$

Определение 37 (Равномерная сходимость семейства функций по базе). Будем говорить, что семейство функций $f_t: X \to Y$ равномерно сходится на X по базе \mathfrak{B} , если:

1. $\exists f: X \to Y:$

$$\lim_{\mathfrak{B}} f_t(x) = f(x), \quad \forall x \in X.$$

2. f_t сходится равномерно к f на X по базе \mathfrak{B} .

Теорема 41 (Формулировка критерия Коши для послед. $f_n(x)$). Последовательность $f_n(x)$ равномерно сходится на $X \Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N \ \forall p > 0 \ \forall x \in X$

$$|f_n(x) - f_{n+p}(x)| < \varepsilon.$$

Доказательство.

• $|\Rightarrow|$ Проведем доказательство для $Y=\mathbb{R}.$

Пусть семейство f_t сходится равномерно на X по базе \mathfrak{B} , то есть $\exists f(x): X \to \mathbb{R}$:

$$f_t(x) \underset{\mathfrak{B}}{\Longrightarrow} f(x).$$

Покажем, что выполнено условие Коши.

Пусть $\varepsilon > 0$ задано. Выберем $B \in \mathfrak{B} : \forall t \in B \ \forall x \in X$

$$|f_t(x)-f(x)|<\frac{\varepsilon}{2}.$$

Тогда $\forall t_1, t_2 \in B \ \forall x \in X$

$$|f_{t_{1}}(x) - f_{t_{2}}(x)| = |f_{t_{1}}(x) - f(x) + f(x) - f_{t_{2}}(x)| \le \le |f_{t_{1}}(x) - f(x)| + |f_{t_{2}}(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

• $| \Leftarrow | \Pi yctb \forall \varepsilon > 0 \exists B \in \mathfrak{B} :$

$$\forall t_1, t_2 \in B \text{ if } \forall x \in X \quad \left| f_{t_1}(x) - f_{t_2}(x) \right| < \varepsilon \tag{6.13}$$

Зафиксируем $x \in X$. Тогда выражение 6.13 есть точная формулировка критерия Коши существования предела функции $f_t(x)$ по базе $\mathfrak{B} \Rightarrow \forall x \in X \ \exists \lim_{\mathfrak{B}} f_t(x) = f(x)$.

Покажем, что $f_t(x) \underset{\mathfrak{B}}{\Longrightarrow} f(x)$ на X.

В 6.13 перейдем к пределу по базе $\mathfrak B$ по переменной t_1 . Получим, что

$$|f(x)-f_{t_2}(x)|<\varepsilon.$$

Таким образом получаем равномерную сходимость семейства $f_{t_2}(x)$ к f на X по базе \mathfrak{B} , то есть $\forall \varepsilon > 0 \; \exists B \in \mathfrak{B} \; \forall t_2 \in B \; \mathsf{u} \; \forall x \in X$

$$|f_{t_2}(x) - f(x)| < \varepsilon.$$

Следствие. Пусть X,Y — метрические пространства, $E \subset X, \ x_0 \in E$ — предельная точка для E. Семейство $f_t: X \to Y$:

- 1. f_t сходится на E по базе \mathfrak{B} .
- 2. f_t расходится в точке x_0 по базе \mathfrak{B} .
- 3. $\forall t \ f_t$ непрерывно в точке x_0 .

Тогда на E семейство f_t сходится неравномерно.

Доказательство. Применим критерий Коши, покажем, что $\exists \varepsilon > 0: \forall B \in \mathfrak{B} \ \exists t_1, t_2 \in B$ и $\exists x \in E:$

$$\rho_Y(f_{t_1}(x), f_{t_2}(x)) \geqslant \varepsilon.$$

Таким образом f_t расходится в точке x_0 , тогда $\exists \varepsilon > 0: \forall B \in \mathfrak{B} \ \exists t_1, t_2 \in B$:

$$\rho_Y(f_{t_1}(x_0), f_{t_2}(x_0)) \geqslant \varepsilon.$$

Так как f_{t_1} и f_{t_2} непрерывны, тогда $\exists U(x_0) \subset X: \ \forall x \in U(x_0)$

$$\rho_Y(f_{t_1}(x), f_{t_2}(x)) \geqslant \varepsilon.$$

Возьмем $\forall x \in U(x_0) \cap E \Rightarrow$ тогда в x будет выполняться неравенство

$$\rho_Y(f_{t_1}(x), f_{t_2}(x)) \geqslant \varepsilon \Rightarrow$$

 $\Rightarrow f_t$ на E сходится неравномерно.

Следствие (Из следствия выше). Если $f_t:(a;b] \to D, \ D$ – область в Y:

- 1. $\forall t \ f_t$ непрерывно в точке b.
- 2. f_t сходится на (a;b) по \mathfrak{B} .
- 3. f_t расходится в точке b.

Тогда на (a;b) f_t сходится неравномерно.

6.8 Равномерная сходимость функциональных рядов

Определение 38 (Функциональный ряд). Пусть $f_n: X \to \mathbb{R}, \ X$ – произвольное множество.

Функциональным рядом называется выражение вида

$$\sum_{n=1}^{\infty} f_n(x) \tag{6.14}$$

Говорят, что ряд 6.14 сходится на X поточечно, если на X сходится поточечно последовательность его частичных сумм. Ряд 6.14 равномерно сходится на X, если на X равномерно сходится последовательность его частичных сумм.

Теорема 42 (Критерий Коши равномерной сходимости функциональных рядов). Ряд 6.14 равномерно сходится на $X \Leftrightarrow \forall \varepsilon > 0 \ \exists N: \ \forall n > N \ \forall p > 0 \ \forall x \in X$

$$|f_{n+1}(x) + \ldots + f_{n+p}(x)| < \varepsilon.$$

Доказательство. Самостоятельно.

Следствие. Если:

- 1. Ряд 6.14 сходится на (a; b).
- 2. Расходится в точке b.
- 3. $\forall n \ f_n(x)$ непрерывно в точке b.

Тогда ряд 6.14 сходится на (a;b) неравномерно.

Доказательство. Следует из предыдущих следствий.

Лекция 12: Продолжение

от 20 окт 10:31

Определение 39 (Абсолютная сходимость). Ряд 6.14 сходится абсолютно на X, если на X сходится ряд

$$\sum_{n=1}^{\infty} |f_n(x)|.$$

Теорема 43. Пусть ряды (A), (B) такие, что:

- 1. $\forall n$ функции $a_n(x)$ и $b_n(x)$ определены на X.
- $2. \ \exists N: \ \forall n > N$

$$|a_n(x)| \le b_n(x) \quad \forall x \in X.$$

3. Ряд (B) сходится на X равномерно.

Тогда ряд (A) сходится на X равномерно.

Доказательство. Пусть $\varepsilon > 0$ задано. Выберем $N: \ \forall n > N, \ \forall p > 0 \ \forall x \in X$

$$b_{n+1}(x) + \ldots + b_{n+p}(x) < \varepsilon.$$

Тогда $\forall n > N, \ \forall p > 0, \ \forall x \in X$

$$|a_{n+1}(x) + \dots + a_{n+p}(x)| \le$$

 $\le |a_{n+1}(x)| + \dots + |a_{n+p}(x)| \le b_{n+1}(x) + \dots + b_{n+p}(x) < \varepsilon \Rightarrow$

 \Rightarrow по критерию Коши ряд (A) сходится равномерно на X.

Следствие (Мажорантный признак Вейерштрасса). Пусть

1. $\forall n \; \exists M_n$:

$$|a_n(x)| \le M_n \quad \forall x \in X.$$

2. Ряд $\sum_{n=1}^{\infty} M_n$ сходится.

Тогда ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится на X абсолютно и равномерно.

Определение 40 (Неубывающая (невозрастающая) последовательность). Последовательность $f_n: X \to \mathbb{R}$ называется неубывающей (невозрастающей) на X, если $\forall x \in X$ последовательность f_n не убывает (не возрастает).

Теорема 44 (Признаки Абеля и Дирихле).

Абеля

Пусть функции $a_n(x)$ и $b_n(x)$ удовлетворяют условиям:

- ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на X,
- последовательность $\{b_n(x)\}$ равномерно ограничена на X и монотонна (то есть $\exists L > 0: \ \forall n \in \mathbb{N}$ и $\forall x \in X \ |b_n(x)| \leqslant L$),

тогда ряд

$$\sum_{n=1}^{\infty} \left(a_n(x) \cdot b_n(x) \right)$$

сходится на X равномерно.

2. Дирихле

- частичные суммы ряда $\sum_{n=1}^{\infty} a_n(x)$ равномерно ограничены на X (то есть $\exists M>0: \ \forall n \ \text{и} \ \forall x \in X \quad \left|\sum_{k=1}^n a_k(x)\right| \leqslant M),$
- последовательность $\{b_n(x)\}$ монотонна и равномерно на X стремится к 0,

тогда ряд

$$\sum_{n=1}^{\infty} \left(a_n(x) \cdot b_n(x) \right)$$

сходится на X равномерно.

Доказательство. Рассмотрим

$$\begin{aligned} \left| a_{n+1}(x) \cdot b_{n+1}(x) + a_{n+2}(x) \cdot b_{n+2}(x) + \dots + a_{n+p}(x) \cdot b_{n+p}(x) \right| &= \\ &= \left| \left(A_{n+1} - A_n \right) \cdot b_{n+1}(x) + \left(\left(A_{n+2} - A_n \right) - \left(A_{n+1} - A_n \right) \right) \cdot b_{n+2}(x) + \dots \\ &\quad \dots + \left(\left(A_{n+p} - A_n \right) - \left(A_{n+p-1} - A_n \right) \right) \cdot b_{n+p}(x) \right| &= \\ &= \left| \left(A_{n+1} - A_n \right) \cdot b_{n+1}(x) + \left(A_{n+2} - A_n \right) \cdot b_{n+2}(x) - \left(A_{n+1} - A_n \right) \cdot b_{n+2}(x) + \dots \\ &\quad \dots + \left(A_{n+p} - A_n \right) \cdot b_{n+p}(x) - \left(A_{n+p-1} - A_n \right) \cdot b_{n+p}(x) \right| &= \\ &= \left| \left(A_{n+1} - A_n \right) \cdot \left(b_{n+1}(x) - b_{n+2}(x) \right) + \left(A_{n+2} - A_n \right) \cdot \left(b_{n+2}(x) - b_{n+3}(x) \right) + \dots \\ &\quad \dots + \left(A_{n+p-1} - A_n \right) \cdot \left(b_{n+p-1}(x) - b_{n+p}(x) \right) + \left(A_{n+p} - A_n \right) \cdot b_{n+p}(x) \right| &= \\ &= \left| \sum_{k=1}^{p-1} \left(\left(A_{n+k} - A_n \right) \cdot \left(b_{n+k}(x) - b_{n+k-1}(x) \right) \right) + \left(A_{n+p} - A_n \right) \cdot b_{n+p}(x) \right| &\leq \\ &\leq \sum_{k=1}^{p-1} \left(\left| A_{n+k} - A_n \right| \cdot \left| b_{n+k}(x) - b_{n+k+1}(x) \right| \right) + \left| A_{n+p} - A_n \right| \cdot \left| b_{n+p}(x) \right|. \end{aligned}$$

Если выполнены условия Абеля, то $\forall \varepsilon > 0$ выберем $N: \ \forall n > N, \ \forall p > 0 \ \forall x \in X$

$$\left|a_{n+1}(x) + a_{n+2}(x) + \ldots + a_{n+p}(x)\right| < \frac{\varepsilon}{3 \cdot L}.$$

Тогда

$$\sum_{k=1}^{p-1} \left(\left| A_{n+k} - A_n \right| \cdot \left| b_{n+k}(x) - b_{n+k+1}(x) \right| \right) + \left| A_{n+p} - A_n \right| \cdot \left| b_{n+p}(x) \right| <$$

$$< \frac{\varepsilon}{3 \cdot L} \left(\sum_{k=1}^{p-1} \left| b_{n+k}(x) - b_{n+k+1}(x) \right| + \left| b_{n+p}(x) \right| \right) \le$$

$$\leq \frac{\varepsilon}{3 \cdot L} \left(\left| b_{n+1}(x) \right| + 2 \left| b_{n+p}(x) \right| \right) < \frac{\varepsilon}{3 \cdot L} \cdot 3 \cdot L = \varepsilon \Rightarrow$$

 \Rightarrow по критерию Коши, $\sum_{n=1}^{\infty} \left(a_n(x) \cdot b_n(x)\right)$ сходится равномерно на X. Пусть выполнены условия Дирихле. Тогда $\forall \varepsilon > 0$ выберем $N: \ \forall n > N \ \forall x > X$

$$|b_n(x)| < \frac{\varepsilon}{3 \cdot M}.$$

$$\sum_{k=1}^{p-1} \left(|A_{n+k} - A_n| \cdot |b_{n+k}(x) - b_{n+k+1}(x)| \right) + |A_{n+p} - A_n| \cdot |b_{n+p}(x)| \le$$

$$\le \frac{\varepsilon}{p \cdot M} \left(\sum_{k=1}^{p-1} |A_{n+k} - A_n| + |A_{n+p} - A_n| \right) =$$

$$= \frac{\varepsilon}{p \cdot M} \left(|a_{n+1}(x)| + |a_{n+1}(x) + a_{n+2}(x)| + \dots + |a_{n+1}(x) + \dots + a_{n+p}(x)| \right) \le$$

$$\le \frac{\varepsilon}{p \cdot M} \cdot (p \cdot M) = \varepsilon.$$

6.9 Свойства предельной функции

Теорема 45 (Условия коммутирования двупредельных переходов). Пусть X, T — множества, \mathfrak{B}_x — база на X, \mathfrak{B}_T — база на T, Y — полное МП, $f_t: X \to Y, \ f: X \to Y$:

- $f_t \Longrightarrow_T f$ на X,
- $\forall t \in T \exists \lim_{\mathfrak{B}_X} = A_t$,

тогда существуют и равны два повторных предела:

$$\underset{\mathfrak{B}_T}{\lim} \underset{\mathfrak{B}_X}{\lim} f_t(x) = \underset{\mathfrak{B}_X}{\lim} \underset{\mathfrak{B}_T}{\lim} f_t(x).$$

Запишем условия и утверждение теоремы в форме диаграмы:

$$\begin{array}{ccc}
f_t(x) & \Longrightarrow & f(x) \\
\forall t, \, \mathfrak{B}_X & & \downarrow & & \downarrow \\
A_t & \xrightarrow{---} & A
\end{array}$$

→ - дано, --> - утверждение

Доказательство. Докажем наличие нижней стрелки, то есть покажем, что

$$\exists \lim_{\mathfrak{B}_T} = A.$$

Пусть $\varepsilon > 0$ задано. Выберем элемент $B_t \in \mathfrak{B}_T \ \forall t_1, t_2 \in B_t$ и $\forall x \in X$

$$\rho(f_{t_1}(x), f_{t_2}(x)) < \frac{\varepsilon}{2},$$

это можно сделать, так как \exists равномерная сходимость f_t к f по \mathfrak{B}_T на X

Зафиксируем t_1 и t_2 и перейдем к пределу по базе \mathfrak{B}_X в неравенстве

$$\rho(A_{t_1}, A_{t_2}) < \frac{\varepsilon}{2} < \varepsilon.$$

Таким образом для функции $A_t:T\to Y$ выполняются условия критерия Коши \exists -ия предела функции по базе $\mathfrak{B}_T\Rightarrow\exists \lim_{\mathfrak{B}_T}A_t=A.$

Покажем, что $\lim_{\mathfrak{B}_X} f(x) = A$. Рассмотрим

$$\rho(f(x), A) \leq \rho(f(x), f_t(x)) + \rho(f_{t_2}(x), A_t) + \rho_t(A_t, A).$$

Пусть $\varepsilon > 0$ задано. Выберем $B_t' \in \mathfrak{B}_T: \ \forall t \in B_t'$ и $\forall x \in X$

$$\rho(f(x), f_t(x)) < \frac{\varepsilon}{3}.$$

Затем выберем $B''_t \in \mathfrak{B}_T : \ \forall t \in B''_t$

$$\rho(A_t,A)<\frac{\varepsilon}{3}.$$

Зафиксируем $t \in B'_t \cap B''_t$. Выберем $B_x \in \mathfrak{B}_X : \forall x \in B_x$

$$\rho(f_t(x), A_t) < \frac{\varepsilon}{3} \quad (f_t \to A_t).$$

Тогда $\forall x \in B_x$

$$\rho(f(x), A) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Теорема 46 (Непрерывность предельной функции). Пусть X,Y — метрические пространства, $\mathfrak B$ — база на $T,\ f_t:X\to Y,\ f:X\to Y$:

- $\forall t \in T$ функция f_t непрерывна в точке $x_0 \in X$,
- семейство $f_t \Longrightarrow f$ на X,

тогда функция f непрерывна в точке x_0 .

Доказательство. Имеем

$$f_{t}(x) \Longrightarrow_{\mathfrak{B}} f(x)$$

$$\forall t \text{ при} \downarrow \qquad \qquad \downarrow$$

$$f_{t}(x_{0}) \xrightarrow{\mathfrak{B}} A = f(x_{0})$$

Следствие. Если $\forall n \ f_n(x)$ непрерывна в точке x_0 и ряд $\sum_{n=1}^{\infty} f_n(x)$ равномерно сходится в точке x_0 , тогда сумма функционального ряда непрерывна в точке x_0 .

Доказательство. Очевидно.

Теорема 47 (Интегрируемость предельной функции). Пусть $f_t:[a;b] \to \mathbb{R}, \ f:[a;b] \to \mathbb{R}$:

- $\forall t \in T$ f_t интегрируема по Риману на [a;b],
- $f_t \Longrightarrow_{\mathfrak{B}} f$ на [a;b] (\mathfrak{B} база на T),

тогда:

1. f интегрируема по Риману на [a;b].

2.

$$\int_{a}^{b} f(x)dx = \lim_{\mathfrak{B}} \int_{a}^{b} f_{t}(x)dx \Leftrightarrow \lim_{\mathfrak{B}} \int_{a}^{b} f_{t}(x)dx = \int_{a}^{b} \lim_{\mathfrak{B}} f_{t}(x)dx.$$

Доказательство.

$$\int_{a}^{b} f(x)dx = \lim_{\lambda(P)\to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} =$$

$$= \lim_{\lambda(P)\to 0} \sigma(f(P,\xi)) = \lim_{\lambda(P)\to 0} \lim_{\mathfrak{B}} \sigma(f_{t},(P,\xi)) = \lim_{\mathfrak{B}} \lim_{\lambda(P)\to 0} \sigma(f_{t},(P,\xi)) =$$

$$= \lim_{\mathfrak{B}} \int_{a}^{b} f_{t}(x)dx.$$

$$\sigma_{t} = \sigma(f_{t}, (P, \xi)) \xrightarrow{\stackrel{--}{\mathfrak{B}}} \sigma(f, (P, \xi))$$

$$\downarrow^{\forall t} \qquad \qquad \downarrow^{\lambda(P) \to 0} \qquad \qquad \downarrow^{\lambda(P) \to 0} \qquad \qquad (6.15)$$

$$\int_{a}^{b} f_{t}(x) dx \xrightarrow{g} \int_{a}^{b} f(x) dx$$

(я не научился делать утверждение для равномерной сходимости)

Пусть \mathcal{P} – множество разбиений с отмеченными точками отрезка [a;b]. Тогда функции $\sigma(f_t,(P,\xi))$ и $\sigma(f,(P,\xi))$ функции на \mathcal{P} .

Покажем, что семейство $\sigma_t = \sigma(f_t, (P, \xi))$ сходится равномерно к функции $\sigma(f, (P, \xi))$:

$$\left| \sigma (f_t, (P, \xi)) - \sigma (f, (P, \xi)) \right| =$$

$$= \left| \sum_{i=1}^n f_t(\xi_i) \Delta x_i - \sum_{i=1}^n f(\xi_i) \Delta x_i \right| \leq \sum_{i=1}^n \left| f_t(\xi_i) - f(\xi_i) \right| \Delta x_i.$$

Пусть $\varepsilon > 0$ задано. Выберем элемент $B \in \mathfrak{B}: \ \forall t \in B, \ \forall x \in [a;b]$

$$\left| f_t(x) - f(x) \right| < \frac{\varepsilon}{h-a}.$$

Тогда

$$\sum_{i=1}^{n} \left| f_t(\xi_i) - f(\xi_i) \right| \Delta x_i < \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = \frac{\varepsilon}{b-a} \cdot (b-a) = \varepsilon.$$

Таким образом $|\sigma_t - \sigma| < \varepsilon \Rightarrow \sigma_t \Longrightarrow_{\mathfrak{B}} \sigma \Rightarrow$ по теореме 45 все стрелки в диаграмме 6.15 доказаны \Rightarrow все переходы в равенстве законны.

Теорема 48 (Дини). Пусть X – компактное метрическое пространство. Последовательность $f_n: X \to \mathbb{R}$ монотонна на X и $\forall x \ f_n$ непрерывна на X.

Если $f:X\to\mathbb{R}$ непрерывна на X, то эта сходимость равномерная.

Доказательство. Для $\forall x \in X$ выберем номер $N_x : \forall n > N_x$

$$|f_n(x) - f(x)| < \varepsilon$$
, где $\varepsilon > 0$ задано.

Так как f_{N_x} и f непрерывны, то $\exists U_x \subset X \ \forall y \in U_x$

$$|f_{N_x}(y) - f(y)| < \varepsilon$$
, (используя непрерывность).

Таким образом для каждого $x \in X$ построим такую окружность U_x . Семейство таких окрестностей является открытым покрытием пространства X.

Пусть $\{U_{X_1},U_{X_2},\dots,U_{X_k}\}$ – конечное подпокрытие X. Положим $N=\max\{N_{X_1},N_{X_2},\dots,N_{X_1=k}\}$. Тогда $\forall n>N,\ \forall x\in X$

$$|f_n(x) - f(x)| < \varepsilon.$$

Это и есть равномерная сходимость.

Лекция 13: Продолжение

от 27 окт 10:34

Теорема 49 (Дифференцируемость предельной функции). Пусть $-\infty < a < b < +\infty \ (a,b-$ конечны $),\ f_t:(a;b) \to \mathbb{R},\ f:(a;b) \to \mathbb{R}:$

- $\forall t \in T$ f_t дифференцируема на (a; b),
- $\exists \phi : (a;b) \to \mathbb{R} : f'_t \Longrightarrow_{\mathfrak{B}} \phi \text{ Ha } (a;b),$
- $\exists x_0 \in (a;b) : f_t(x_0) \to f(x_0),$

тогда:

- 1. $f_t \underset{\mathfrak{B}}{\Longrightarrow} f$ Ha (a;b).
- 2. f дифференцируема на (a;b).
- 3. $\forall x \in (a; b) \ f'(x) = \phi(x)$.

Доказательство. Докажем, что семейство функций f_t сходится к f равномерно на (a;b):

$$\begin{aligned} \left| f_{t_{1}}(x) - f_{t_{2}}(x) \right| &= \\ &= \left| f_{t_{1}}(x) - f_{t_{2}}(x) + f_{t_{1}}(x_{0}) - f_{t_{1}}(x_{0}) + f_{t_{2}}(x_{0}) - f_{t_{2}}(x_{0}) \right| \leqslant \\ &\leqslant \left| \left(f_{t_{1}}(x) - f_{t_{1}}(x_{0}) \right) - \left(f_{t_{2}}(x) - f_{t_{2}}(x_{0}) \right) \right| + \left| f_{t_{1}}(x_{0}) - f_{t_{2}}(x_{0}) \right| = \\ &= \left| f'_{t_{1}}(\xi) - f'_{t_{2}}(\xi) \right| \cdot \left| x - x_{0} \right| + \left| f_{t_{1}}(x_{0}) - f_{t_{2}}(x_{0}) \right|. \end{aligned}$$

Пусть $\varepsilon > 0$ задано. Выберем $B \in \mathfrak{B}$ (\mathfrak{B} – база на T) $\forall t_1, t_2 \in B$

$$\left| f_{t_1}(x_0) - f_{t_2}(x_0) \right| < \frac{\varepsilon}{2}$$

и $\forall x \in (a;b)$ и $\forall t'_1, t'_2 \in B$:

$$\left|f'_{t'_2}(x) - f'_{t'_2}(x)\right| < \frac{\varepsilon}{2(b-a)}.$$

Тогда $\forall t_1, t_2 \in B$ и $\forall x \in (a; b)$

$$|f_{t_1}(x) - f_{t_2}(x)| < \frac{\varepsilon}{2(b-a)} \cdot (b-a) + \frac{\varepsilon}{2} = \varepsilon.$$

Итак, $f_t \Longrightarrow f$ на (a;b). Покажем, что предельная функция f дифференцируема на (a;b) и $\forall x \in (a;b)$

$$f'(x) = \phi(x)$$
:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =$$

$$= \lim_{h \to 0} \frac{\lim_{\mathcal{B}} f_t(x+h) - \lim_{\mathcal{B}} f(x)}{h} = \lim_{h \to 0} \lim_{\mathcal{B}} \frac{f_t(x+h) - f_t(x)}{h} \stackrel{(\star)}{=} \lim_{\mathcal{B}} \lim_{h \to 0} \frac{f_t(x+h) - f_t(x)}{h} = \lim_{\mathcal{B}} f'_t(x) = \phi(x).$$
However, seventhere, here your (*). Here, $x \in (a; h)$, $x + h \in (a; h)$

Покажем законность перехода (*). Пусть $x \in (a;b), x+h \in (a;b).$ Рассмотрим

$$F_{t}(h) = \xrightarrow{f_{t}(x+h)-f_{t}(x)} \xrightarrow{\xrightarrow{-}} \xrightarrow{g} \xrightarrow{f(x+h)-f(x)} = F(h)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Докажем существование двойной верхней стрелки. Имеем:

$$\begin{cases}
f_t(x) \xrightarrow{\mathfrak{B}} f(x) \\
f_t(x+h) \xrightarrow{\mathfrak{B}} f(x+h)
\end{cases} \Rightarrow F_t(h) \xrightarrow{\mathfrak{B}} F(h),$$

$$\begin{aligned} |F_{t_1}(h) - F_{t_2}(h)| &= \\ &= |f'_{t_1}(\xi) \cdot |h| \\ &= \left| \underbrace{\frac{f_{t_1}(x+h) - f_{t_1}(x)}{h}}_{= f'_{t_1}(\xi) \cdot |h|} - \frac{f_{t_2}(x+h) - f_{t_2}(x)}{h} \right| = \\ &= \frac{1}{|h|} |f'_{t_1}(\xi) \cdot |h| - f'_{t_2}(\xi) \cdot |h|| = \\ &= |f'_{t_1}(\xi) - f'_{t_2}(\xi)|, \ \xi \in (x; x+h). \end{aligned}$$

Пусть $\varepsilon > 0$ задано. Тогда $\exists B \in \mathfrak{B}: \ \forall t_1, t_2 \in B$

$$\left|f'_{t_1}(\xi) - f'_{t_2}(\xi)\right| < \varepsilon.$$

Таким образом семейство $\{F_t(h)\}$ сходится равномерно на (a;b). Правая вертикальная стрелка следует из теоремы 45.

Следствие. Если

- $\forall n \ f_n(x)$ непрерывна на (a;b),
- ряд $\sum_{n=1}^{\infty} f_n(x)$ равномерно сходится на (a;b),

то его сумма $f(x) = \sum_{n=1}^{\infty} f_n(x)$ непрерывна на (a;b), то есть $\forall x_0 \in (a;b)$

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} f_n(x).$$

Следствие. Если

- $\forall n \ f_n(x) \in R[a;b]$ (интегрируема на [a;b]),
- ряд $\sum_{n=1}^{\infty} f_n(x)$ равномерно сходится на [a;b],

то его сумма интегрируема на [a;b] и

$$\int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx.$$

Следствие. Если

- $\forall n \ f_n(x)$ дифференцируема на (a;b),
- $\exists x_0 \in [a;b]$: ряд $\sum_{n=1}^{\infty} f_n(x_0)$ сходится,
- ряд $\sum_{n=1}^{\infty} f'_n(x)$ сходится равномерно на (a;b),

то

- 1. Ряд сходится на (a; b) равномерно.
- 2. Его сумма дифференцируема на (a; b).
- 3. $\forall x \in (a;b)$

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

6.10 Степенные ряды

Определение 41 (Степенной ряд). *Степенным рядом* называется выражение вида

$$\sum_{n=0}^{\infty} \left(a_n \cdot (x - x_0)^n \right)$$

или

$$\sum_{n=0}^{\infty} (a_n \cdot x^n). \tag{6.16}$$

Теорема 50 (О сходимости степенного ряда).

- 1. Областью сходимости степенного ряда 6.16 является промежуток (-R;R), где $R\geqslant 0$ $(+\infty)$.
- 2. $\forall [\alpha; \beta] \subset (-R; R)$ ряд 6.16 сходится равномерно на $[\alpha; \beta]$.
- 3. Число R, называемое радиусом сходимости степенного ряда 6.16, может быть вычислено:

$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}.$$

Доказательство. Воспользуемся признаком Коши:

$$\overline{\lim_{n\to\infty}} \sqrt[n]{|a_n|\cdot|x|^n} = |x|\cdot\overline{\lim_{n\to\infty}} \sqrt[n]{|a_n|} = k.$$

При k<1 ряд $\sum_{n=0}^{\infty}|a_n\cdot x^n|$ сходится \Rightarrow ряд 6.16 сходится абсолютно. Покажем, что при k>1 ряд 6.16 расходится. Для этого покажем, что при k>1 $a_n\cdot x^n \nrightarrow 0$.

В самом деле, \exists подпоследовательность номеров n_k и $\exists k: \ \forall k > K$

$$|a_{n_k} \cdot x^{n_k}| > \left(\frac{1+k}{2}\right)^{n_k} > 1 \Rightarrow a_n \cdot x^n \underset{n \to \infty}{\to} 0.$$

Таким образом, $|x| \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} < 1$,

$$|x| < \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}} = R \Rightarrow x \in (-R; R)$$
 – область сходимости 6.16.

При k = 1 ряд 6.16 может как сходиться, так и расходиться.

Таким образом, доказали пункты 1. и 3..

Докажем пункт 2.:

Пусть $[\alpha; \beta] \subset (-R; R)$. Возьмем x_0 :

$$-R < -x_0 < \alpha < \beta < x_0 < R$$
.

Тогда $\forall x \in [\alpha; \beta]$

$$|a_n \cdot x^n| < |a_n \cdot x_0^n|.$$

Заметим, что так как $x_0 \in (-R; R)$, то ряд $\sum_{n=0}^{\infty} |a_n \cdot x_0^n|$ сходится \Rightarrow по признаку Вейерштрасса ряд 6.16 сходится равномерно на $[\alpha; \beta]$. \square

Теорема 51 (Абеля, о сумме степенного ряда). Если R – радиус сходимости ряда 6.16 и ряд $\sum_{n=0}^{\infty} (a_n \cdot R^n)$ сходится, то

$$\lim_{x \to R} \sum_{n=0}^{\infty} (a_n \cdot x^n) = \sum_{n=0}^{\infty} (a_n \cdot R^n).$$

Доказательство. Заметим, что сумма ряда является непрерывной на интервале сходимости.

В самом деле, если $x_0 \in (-R; R)$, то $\exists x_0 \in [\alpha; \beta]$: по теореме 50 на $[\alpha; \beta]$ ряд 6.16 сходится равномерно \Rightarrow его сумма является непрерывной функцией на $[\alpha; \beta]$, то есть она непрерывна в точке x_0 .

Так как $x_0 \in (-R; R)$ произвольная \Rightarrow сумма ряда 6.16 непрерывна на (-R; R).

Покажем, что ряд 6.16 равномерно сходится на промежутке $[\alpha; R]$, где $\alpha > -R$.

В самом деле, $\forall x \in [\alpha; R]$:

$$\sum_{n=0}^{\infty} |a_n \cdot x^n| = \sum_{n=0}^{\infty} \left(a_n \cdot R^n \cdot \left| \left(\frac{x}{R} \right)^n \right| \right).$$

Здесь ряд $\sum_{n=0}^{\infty} (a_n \cdot R^n)$ – сходится, а последовательность $\left\{ \left(\frac{|x|}{R}\right)^n \right\}$ монотонна и равномерно ограничена \Rightarrow по теореме Абеля ряд 6.16 сходится на $[\alpha; R]$ равномерно \Rightarrow сумма его непрерывна на $[\alpha; R] \Rightarrow$

$$\Rightarrow \lim_{x \to R} \sum_{n=0}^{\infty} (a_n \cdot x^n) = \sum_{n=0}^{\infty} (a_n \cdot R^n).$$

Теорема 52 (Об интегрировании степенного ряда). Пусть дан ряд 6.16. Пусть S(x) – его сумма, R – радиус сходимости ряда 6.16. Тогда $\forall \overline{x} \in (-R;R)$ функция S(x) интегрируема на $[0;\overline{x}]$ (или на $[\overline{x};0]$) и

$$\int_0^{\overline{x}} S(x) dx = \int_0^{\overline{x}} \left(\sum_{n=0}^{\infty} (a_n \cdot x^n) \right) dx = \sum_{n=0}^{\infty} \int_0^{\overline{x}} (a_n \cdot x^n) dx = \sum_{n=0}^{\infty} \left(\frac{a_n}{n+1} \cdot \overline{x}^{n+1} \right).$$

Если ряд 6.16 сходится при x = R, то утверждение остается верным и для \overline{x} = R.

Теорема 53 (О дифференцировании степенного ряда). Пусть дан ряд 6.16. Пусть S(x) – его сумма, R – радиус сходимости ряда 6.16. Тогда

 $\forall x \in (-R; R)$ функция S(x) дифференцируема в точке x и

$$S'(x) = \left(\sum_{n=0}^{\infty} (a_n \cdot x^n)\right)' = \sum_{n=0}^{\infty} (a_n \cdot x^n)' = \sum_{n=0}^{\infty} (a_n \cdot n \cdot x^{n-1}).$$

Если ряд $\sum_{n=0}^{\infty} (a_n \cdot n \cdot x^{n-1})$ сходится при x = R(-R), то утверждение теоремы остается верно и при x = R.

Доказательство. Имеем,

$$R = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}}.$$

Пусть R' и R'' – радиусы сходимости рядов $\sum_{n=0}^{\infty} \left(\frac{a_n}{n_1} \cdot x^{n+1} \right)$ и $\sum_{n=0}^{\infty} (a_n \cdot n \cdot x^{n-1}), \text{ соответственно:}$

Таким образом для ряда 6.16 выполняется условия теорем об интегрировании и дифференцировании предельной функции.

Условия равномерной сходимости следуют из теоремы 50.

Теорема 54 (Об единственности). Если существует окрестность U точки x = 0 суммы рядов $\sum_{n=0}^{\infty} (a_n \cdot x^n)$ и $\sum_{n=0}^{\infty} (b_n \cdot x^n)$ совпадают для всех

$$a_n = b_n$$
.

Доказательство. Положим $x = 0 \Rightarrow a_0 = b_0$. Далее рассмотрим ряд $\sum_{n=1}^{\infty} ((a_n - b_n) \cdot x^n)$. Он сходится на U, так как сходятся исходные ряды. Пусть $\sum_{n=0}^{\infty} (a_n \cdot x^n) = S_a(x), \ \sum_{n=0}^{\infty} (b_n \cdot x^n) = S_b(x)$. По условию теоремы, $\forall x \in U(0)$

$$S_a(x)\equiv S_b(x),$$

$$\sum_{n=0}^\infty (a_n\cdot x^n)-\sum_{n=0}^\infty (b_n\cdot x^n)=S_a(x)-S_b(x)\equiv 0$$

$$\sum_{n=1}^\infty \left((a_n-b_n)\cdot x^{n-1}\right)\equiv 0$$
 Поделим $\sum_{n=1}^\infty \left((a_n-b_n)\cdot x^{n-1}\right)\equiv 0$ на $x\neq 0$, получится ряд

$$\sum_{n=1}^{\infty} \left((a_n - b_n) \cdot x^{n-1} \right) \equiv 0.$$

Перейдем к пределу в $\sum_{n=1}^{\infty} ((a_n - b_n) \cdot x^{n-1}) \equiv 0$ при $x \to 0$:

$$0 \equiv \lim_{x \to 0} \sum_{n=1}^{\infty} \left((a_n - b_n) \cdot x^{n-1} \right) = \sum_{n=1}^{\infty} \lim_{x \to 0} \left((a_n - b_n) \cdot x^{n-1} \right) = a_1 - b_1 \Rightarrow$$

$$\Rightarrow a_1 = b_1$$
. И так далее $\Rightarrow \forall n \ a_n = b_n$.

Лекция 14: Продолжение

от 2 нояб 10:34

6.11 Ряд Тейлора

Определение 42 (Ряд Тейлора). Пусть f(x) бесконечно дифференцируема в окрестности точки x_0 . *Рядом Тейлора* функции f(x) в этой окрестности называется ряд:

$$f(x) \approx f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n + \ldots$$

Утверждение. Если функция f(x) в окрестности точки x_0 является суммой степенного ряда $\sum_{n=0}^{\infty} (a_n \cdot (x-x_0)^n)$, то этот ряд является ее рядом Тейлора.

Доказательство. Имеем, $\forall x \in U(x_0) = (x_0 - \varepsilon; x_0 + \varepsilon)$:

$$f(x) = \sum_{n=0}^{\infty} (a_n \cdot (x - x_0)^n).$$
 (6.17)

Положим, что $x=x_0$, тогда $f(x_0)=a_0$. Продифференцируем выражение 6.17 и вычислим производную в точке $x=x_0$ (и далее по аналогии):

$$f'(x_0) = 1 \cdot a_1;$$

$$f''(x_0) = 2 \cdot 1 \cdot a_2 \Rightarrow a_2 = \frac{f''(x_0)}{1 \cdot 2} = \frac{f''(x_0)}{2!};$$

$$f'''(x_0) = 3 \cdot 2 \cdot 1 \cdot a_3 \Rightarrow a_3 = \frac{f'''(x_0)}{1 \cdot 2 \cdot 3} = \frac{f'''(x_0)}{3!};$$

$$\vdots$$

$$f^{(n)}(x_0) = n \cdot (n-1) \cdot \dots \cdot 1 \cdot a_n \Rightarrow a_n = \frac{f^{(n)}(x_0)}{1 \cdot 2 \cdot \dots \cdot n} = \frac{f^{(n)}(x_0)}{n!}.$$

6.12 Разложение элементарных функций в степенной ряд

Лемма 5. Если f(x) — ∞-но дифференцируемая функция на [0; H] и $\exists L > 0: \ \forall n \in \mathbb{N}$ и $\forall x \in [0; H]$

$$|f^{(n)}(x)| \leqslant L,$$

то на [0;H] функция f может быть разложена в степенной ряд (ряд Тейлора).

Доказательство. Имеем:

$$|f(x) - F_n(x)| = |f(x) - \sum_{k=0}^{n} \left(\frac{f^{(k)}(0)}{k!} \cdot x^k \right)| = |R_n(x)|,$$

где $F_n(x)$ — частичная сумма ряда Тейлора (степенной ряд), $R_n(x)$ — остаточный член в формуле Тейлора.

Так как f(x) есть сумма ряда $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n \Leftrightarrow R_n(x)$ должен \to к 0 при $n \to \infty$.

Рассмотрим

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot x^{n+1}, \quad 0 < \xi < x.$$

Если выполнены условия леммы, то

$$|R_n(x)| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot x^{n+1} \right| = \frac{|f^{(n+1)}(\xi)|}{(n+1)!} \cdot |x^{n+1}| \le \frac{L \cdot H^{n+1}}{(n+1)!},$$

$$\lim_{n \to \infty} \frac{L \cdot H^{n+1}}{(n+1)!} = 0 \Rightarrow$$

 \Rightarrow (упражнение: доказать) $\Rightarrow R_n(x) \to 0$ при $n \to \infty$.

Примечание.

1. $f(x) = e^x$

Тогда
$$\forall n \ f^{(n)}(x) = e^x, \ f^{(n)}(0) = 1.$$
 Так как $\forall x \in [0; H], \ \forall n \in \mathbb{N}$
$$0 < f^{(n)}(x) \leqslant e^H = L.$$

В силу произвольности H ряд Тейлора для функции $f(x) = e^x$ сходится на $(-\infty; +\infty)$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} + \ldots$$

2. $f(x) = \sin x$, $f(x) = \cos x$

$$f^{(n)}(x) = (\sin x)^{(n)} = \sin\left(x + n \cdot \frac{\pi}{2}\right) \Rightarrow$$
$$\Rightarrow \left|f^{(n)}(x)\right| = \left|\sin\left(x + n \cdot \frac{\pi}{2}\right)\right| \leqslant 1 = L \Rightarrow$$

 \Rightarrow ряд Тейлора для $\sin x$ сходится на $(-\infty; +\infty)$ и имеет своей суммой $\sin x,$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^{n-1} \cdot \frac{x^{2n-1}}{(2n-1)!} + \dots
(\sin x)'
\downarrow
\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^{n-1} \cdot \frac{x^{2n}}{(2n)!} + \dots$$

3. $f(x) = \ln(1+x)$

$$\ln(1+x) \sim x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \cdot \frac{x^n}{n} + \dots$$
$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}} = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{\frac{1}{n}}}} = 1 \Rightarrow$$

 \Rightarrow интервал сходимости $x \in (-1;1)$. Проверим границы точки $x = -1 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot (-1)^n}{n} = (-1) \cdot \sum_{n=1}^{\infty} \frac{1}{n}$ – расходится.

 $x = -1 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ — сходится по признаку Лейбница \Rightarrow для данного степенного ряда интервал сходимости: $x \in (-1;1]$.

$$f^{(n)}(r)$$

$$f'(x) = (\ln(1+x))' = \frac{1}{1+x}$$

$$f''(x) = -\frac{1}{(1+x)^2}$$

$$f'''(x) = \frac{2}{(1+x)^3}$$

$$\vdots$$

$$f^{(n)}(x) = \frac{(-1)^{n-1} \cdot (n-1)!}{(1+x)^n}$$

Рассмотрим остаточный член ряда в форме Коши:

$$R_n(x) = \frac{f^{(n+1)}(\xi x)}{n!} \cdot ((1-\xi) \cdot x)^n \cdot x, \quad 0 < \xi < 1.$$

Тогда

$$|R_n(x)| = \left| \frac{(-1)^n \cdot n!}{(1+\xi x)^{n+1} \cdot n!} \cdot ((1-\xi) \cdot x)^n \cdot x \right| = \frac{(1-\xi)^n}{(1+\xi x)^n} \cdot \frac{|x|^{n+1}}{(1+\xi x)}.$$

Что бы показать, что $R_n(x) \to 0$ при $n \to \infty$, нужно доказать, что $\frac{1-\xi}{1+\xi x} < 1$.

(a) 0 < x < 1

(b) -1 < x < 0

Из рисунков видно, что $\forall \xi \in (0;1)$ и $\forall x \in (-1;1]$ $\frac{1-\xi}{1+\xi x} < 1$. Таким образом, $R_n(x) \to 0$ при $n \to \infty \Rightarrow$

$$\Rightarrow ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots \quad x \in (-1;1]$$

4. Биномиальный ряд

$$(1+x)^{m} \sim 1+m\cdot x+\frac{m\cdot (m-1)}{2!}\cdot x^{2}+\ldots+\frac{m\cdot (m-1)\cdot \ldots\cdot (m-n+1)\cdot x^{n}}{n!}+\ldots$$

$$f^{(n)}(x)=\left[(1+x)^{m}\right]^{(n)}=m\cdot (m-1)\cdot \ldots\cdot \left(m-(n-1)\right)\cdot (1+x)^{m-n},$$

$$R_{n}(x)=\frac{f^{(n+1)}(\xi x)}{n!}\cdot \left((1-\xi)\cdot x\right)^{n}\cdot x=$$

$$=\frac{m\cdot (m-1)\cdot \ldots\cdot (m-n)\cdot (1+\xi x)^{m-n+1}}{n!}\cdot \left((1-\xi)\cdot x\right)^{n}\cdot x,\ \xi\in (0;1),$$

$$|R_{n}(x)|=\underbrace{\frac{m\cdot (m-1)\cdot \ldots\cdot (m-n)}{n!}\cdot \left(\frac{1-\xi}{1+\xi x}\right)^{n}\cdot (1+\xi x)^{m-1}\cdot \underbrace{|x|^{n+1}}_{\to 0}\to 0}_{\to 0}$$
при $n\to\infty$.

Тогда

$$(1+x)^m = 1+m\cdot x + \frac{m(m-1)x^2}{2!} + \ldots + \frac{m(m-1)\ldots(m-n+1)}{n!}x^n + \ldots, \ x \in (-1,1).$$

Примечание (Упражнение). Доказать, что область сходимости степенного ряда: $x \in (-1;1)$.

Глава 7

Интегралы, зависящие от параметра

Определение 43 (Интеграл, зависящий от параметра). *Интегралом*, зависящим от параметра называется функция

$$F(y) = \int_{E_y} f(x, y) dx = \int_{\alpha(y)}^{\beta(y)} f(x, y) dx.$$

7.1 Собственные интегралы, зависящие от параметра

Теорема 55. Если функция f(x,y) непрерывна на $P = [a;b] \times [c;d]$, то функция $F(y) = \int_a^b f(x,y) dx$ непрерывна на [c;d].

Доказательство. Пусть $y_0 \in [c;d]$. Покажем, что F(y) непрерывна в точке y_0 .

$$|F(y) - F(y_0)| =$$

$$= \left| \int_a^b f(x, y) dx - \int_a^b f(x, y_0) dx \right| = \left| \int_a^b \left(f(x, y) - f(x, y_0) \right) dx \right| \le$$

$$\le \int_a^b |f(x, y) - f(x, y_0)| dx.$$

Так как f(x,y) непрерывна на P и P – компактное, то f(x,y) – равномерно непрерывна на $P\Rightarrow \forall \varepsilon>0 \; \exists \delta>0:\; \forall \; M_1 \; , \; M_2 \; \in P:$ $(x_1,y_1) \; (x_2,y_2)$

$$\rho((x_1, y_1), (x_2, y_2)) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} < \delta \Rightarrow$$

$$\Rightarrow |f(x_1, y_1) - f(x_2; y_2)| < \varepsilon.$$

Пусть $\varepsilon > 0$ задано. Выберем $\delta > 0$: $\forall M_1, M_2 \in P$:

$$\rho(M_1, M_2) < \delta \Rightarrow \left| f(x_1, y_1) - f(x_2, y_2) \right| < \frac{\varepsilon}{h - a}$$

$$\begin{aligned} \left| F(y) - F(y_0) \right| \leqslant \\ \leqslant \int_a^b \left| f(x,y) - f(x,y_0) \right| dx < \int_a^b \frac{\varepsilon}{b-a} dx = \\ &= \frac{\varepsilon}{b-a} \cdot \int_a^b dx = \frac{\varepsilon}{b-a} \cdot (b-a) = \varepsilon \end{aligned}$$
 $\Rightarrow F(y)$ непрерывна в точке y_0 , где точка y_0 – прозвольная.

 \Rightarrow F(y) непрерывна в точке y_0 , где точка y_0 – прозвольная.

Замечание. Заметим, что равномерная непрерывность f(x,y) на Pвлечет за собой то, что f(x,y) равномерно сходится к $f(x,y_0)$ при $y \to y_0$, то есть $f(x,y) \Longrightarrow_{y \to y_0} f(x,y_0)$. Следовательно,

$$\lim_{y \to y_0} F(y) =$$

$$= \lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx = \int_a^b f(x, y_0) dx =$$

$$= F(y_0).$$

Лемма 6. Если:

• f(x,y) непрерывна на P,
• $\frac{\partial f}{\partial y}(x,y)$ непрерывна на P,
то $F(y)=\int_a^b f(x,y)dx$ дифференцируема на [c;d] и

$$F'(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) dx.$$

$$F'(y) = \lim_{h \to 0} \left(\frac{1}{h} \cdot \left(F(y+h) - F(y) \right) \right) = \lim_{h \to 0} \left(\int_a^b f(x,y+h) dx - \int_a^b f(x,y) dx \right) =$$

$$= \lim_{h \to 0} \left(\frac{1}{h} \cdot \left(\int_a^b \left(f(x,y+h) - f(x,y) \right) \right) dx \right) = \left| \begin{array}{c} \text{по теореме} \\ \text{Лагранжа} \end{array} \right| =$$

$$= \lim_{h \to 0} \left(\frac{1}{h} \cdot \int_a^b \frac{\partial f}{\partial y}(x,y+\theta h) \cdot h \right) dx = \lim_{h \to 0} \int_a^b \frac{\partial f}{\partial y}(x,y+\theta \cdot h) dx =$$

$$= \left| \begin{array}{c} \text{используя непрерывность} \\ \text{производной } \frac{\partial f}{\partial y} \end{array} \right| = \int_a^b \lim_{h \to 0} \frac{\partial f}{\partial y}(x,y+\theta \cdot h) dx =$$

$$= \int_a^b \frac{\partial f}{\partial y}(x,y) dx.$$

Теорема 56 (О дифференцировании собственного интеграла, зависящего от параметра). Пусть:

- $\alpha(y), \beta(y)$ дифференцируемые на [c;d],• $\forall y \in [c;d] \ a \leq \alpha(y) \leq b$ и $a \leq \beta(y) \leq b,$ f(x,y) непрерывна на $P = [a;b] \times [c;d],$ $\frac{\partial f}{\partial y}$ непрерывна на P,

тогда F(y) = $\int_{\alpha(y)}^{\beta(y)} f(x,y) dx$ дифференцируема на [c;d] и

$$F'(y) = \int_{\alpha(y)}^{\beta(y)} \frac{\partial f}{\partial y}(x,y) dx + f(\beta(y),y) \cdot \beta'(y) - f(\alpha(y),y) \cdot \alpha'(y)$$
 (формула Лейбница)

Доказательство. Используя лемму 6, рассмотрим функцию

$$\Phi(y,\alpha(y),\beta(y)) = \int_{\alpha(y)}^{\beta(y)} f(x,y)dx:$$

$$= \Phi'_{y} \cdot y'_{y} + \Phi'_{\alpha} \cdot \alpha'_{y} + \Phi'_{\beta} \cdot \beta'_{y}$$

$$\Phi'_{y} = \Phi'_{y} \cdot y'_{y} + \Phi'_{\alpha} \cdot \alpha'_{y} + \Phi'_{\beta} \cdot \beta'_{y}$$

$$F'_{y} = \int_{\alpha(y)}^{\beta(y)} \frac{\partial f}{\partial y}(x, y) dx + f(\beta, y) \cdot \beta'_{y} - f(\alpha, y) \cdot \alpha'_{y}$$

Теорема 57 (Об интегрировании собственного интеграла по параметру). Если f(x,y) непрерывна на $P = [a;b] \times [c;d]$, то функция F(y) = $\int_a^b f(x,y)dx$ интегрируема на [c;d] и

$$\int_{c}^{d} F(y)dy = \int_{c}^{d} \left(\int_{a}^{b} f(x,y)dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx.$$

Обычно пишут:

$$\int_{c}^{d} dy \int_{a}^{b} f(x,y) dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy.$$

Доказательство. Рассмотрим функции

$$\phi(u) = \int_{c}^{u} \left(\int_{a}^{b} f(x, y) dx \right) dy,$$

$$\psi(u) = \int_{a}^{u} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

 $\phi(u)$ и $\psi(u)$ непрерывны и дифференцируемы на [a;b].

В самом деле, $F(y) = \int_a^b f(x,y) dx$ непрерывна на [c;d] (так как f(x,y) непрерывна на P и по теореме 55). А функция $\phi(u) = \int_c^u F(y) dy$ – непрерывна и дифференцируема на

[c;d] (по теореме 55).

При этом

$$\phi'(y) = F(u) = \int_a^b f(x, u) fx.$$

Далее, функция $\Phi(x,u) = \int_c^u f(x,y) dy$. $\Phi(x,u)$ — дифференцируема по u и $\Phi'_u(x,u) = f(x,u)$.

$$\psi'(u) = \int_a^b \Phi'_u(x, u) dx = \int_a^b f(x, u) fx.$$

Имеем, что $\phi'(u) = \psi'(u) \ \forall u \in [c; d] \Rightarrow$

$$\Rightarrow \phi(u) - \psi(u) = const \ \forall u \in [c; d].$$

Заметим, что $\phi(c) - \psi(c) = 0 - 0 = 0 \Rightarrow \forall u \in [c;d] \phi(u) - \psi(u) = 0 \Rightarrow$ $\phi(u) = \psi(u) \Rightarrow$

$$\Rightarrow \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dx = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

Лекция 15: Продолжение

от 7 нояб 8:43

7.2 Несобственные интегралы, зависящие от параметра

Определение 44 (Несобственный интеграл, зависящий от параметра). Пусть $\forall y \in Y \ \exists \int_a^{\omega} f(x,y) dx$.

 $Hecoбcmвенным\ интегралом,\ зависящим\ om\ napaметра\ y$ называется функция

 $F(y) = \int_{a}^{\omega} f(x, y) dx. \tag{7.1}$

Пример.

$$\int_{1}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{1}^{b} f(x)dx.$$

Определение 45 (Равномерно сходящийся интеграл). Говорят, что интеграл 7.1 сходится на Y равномерно, если $\forall \varepsilon > 0 \ \exists B \in [a;\omega) : \ \forall b \in (B;\omega)$

$$\left| \int_b^{\omega} f(x,y) dx \right| < \varepsilon.$$

Примечание. Далее, рассмотрим семейство функций

$$F_b(y) = \int_a^b f(x, y) dx, \ b \in [a; \omega). \tag{7.2}$$

Утверждение. Интеграл 7.1 сходится на Y равномерно \Rightarrow семейство функций 7.2 сходится на Y равномерно при $b \to \omega$.

Доказательство.

1. Интеграл 7.1 сходится на Y равномерно $\stackrel{\text{по опр.}}{\Leftrightarrow} \forall \varepsilon > 0 \ \exists B \in [a;\omega): \forall b \in (B;\omega)$

$$\left| \int_b^{\omega} f(x,y) dx \right| < \varepsilon.$$

2. Семейство функций 7.2 равномерно сходится на Y при $b \to \omega \overset{\text{по опр.}}{\Leftrightarrow} \forall \varepsilon > 0 \ \exists \widetilde{B} \in [a;\omega): \ \forall b \in (\widetilde{B};\omega)$

$$|F_b(y) - F(y)| < \varepsilon, \ \forall y \in Y.$$

Но

$$|F_b(y) - F(y)| = \left| \int_a^b f(x, y) dx - \int_a^\omega f(x, y) dx \right| =$$

$$= \left| -\left(\int_a^b f(x, y) dx + \int_a^\omega f(x, y) dx \right) \right| = \left| \int_a^\omega f(x, y) dx \right|.$$

Пример. $\int_0^{+\infty} e^{-xy} dx$

1. Если $y \le 0$, то интеграл расходится.

2. y > 0.

Пусть $y_0 > 0$, тогда $\forall y \geqslant y_0$

$$\int_{b}^{+\infty} e^{-xy} dx = -\frac{1}{y} e^{-xy} \Big|_{b}^{+\infty} = \frac{1}{y} \cdot e^{-by} \leqslant \frac{1}{y^{2}} \cdot e^{-by_{0}}.$$

В самом деле,

$$\left(\frac{1}{y} \cdot e^{-by}\right) = -\frac{1}{y^2} \cdot e^{-by} + \frac{1}{y}(-b) \cdot e^{-by} = -\frac{1}{y} \cdot e^{-by} \left(\frac{1}{y} + b\right) < 0.$$

Отсюда $\forall y\geqslant y_0$ имеем, если $\varepsilon>0$ задано, то взяв $B>0:\ \frac{1}{y_0}\cdot e^{-By_0}<\varepsilon$ получим $\forall b>B\ \forall y\geqslant y_0$

$$\left| \int_{b}^{+\infty} e^{-xy} dx \right| < \varepsilon \Rightarrow$$

 \Rightarrow на множестве $y \geqslant y_0 \int_0^{+\infty} e^{-xy} dx$ сходится равномерно.

Если $y_0 > y > 0$ интеграл расходится.

В самом деле, если ε = 1 и по заданному B выберем b = B + 1 и для $y>0: \frac{1}{y}\cdot e^{-xy}>1.$ Получим:

$$\left| \int_0^\infty e^{-xy} dx \right| > 1.$$

Теорема 58 (Критерий Коши равномерной сходимости несобственного интеграла зависящего от параметра). Интеграл $F(y) = \int_a^\omega f(x,y) dx$ равномерно сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists B \in [a;\omega) : \ \forall b_1,b_2 \in (B;\omega) \ \forall y \in Y$

$$\left| \int_{b_1}^{b_2} f(x, y) dx \right| < \varepsilon.$$

Доказательство. Для семейства функций $F_b(y) = \int_a^b f(x,y) dx$ равномерная сходимость на Y при $b \to \infty$ равносильна утверждению $\forall \varepsilon >$

 $0 \exists B \in [a; \omega) : \forall b_1, b_2 \in (B; \omega)$ и $\forall y \in Y$

$$|F_{b_1}(y) - F_{b_2}(y)| < \varepsilon,$$

$$|F_{b_1}(y) - F_{b_2}(y)| < \varepsilon,$$

$$|F_{b_1}(y) - F_{b_2}(y)| =$$

$$= \left| \int_a^{b_1} f(x, y) dx - \int_a^{b_2} f(x, y) dx \right| = \left| -\left(\int_a^{b_1} f(x, y) dx + \int_a^{b_2} f(x, y) dx \right) \right| =$$

$$= \left| \int_{b_1}^{b_2} f(x, y) dx - \int_a^{b_2} f(x, y) dx \right| < \varepsilon.$$

Следствие. Пусть f(x,y) непрерывна на множестве $[a;\omega) \times [c;d]$, $\int_a^\omega f(x,y)dx$ сходится на [c;d) и расходится в точке y = d. Отсюда следует, что $\int_a^\omega f(x,y)dx$ на [c;d) сходится неравномерно.

Доказательство. Так как при y=d $\int_a^\omega f(x,y)dx$ расходится \Rightarrow $\exists \varepsilon>0 \ \forall B\in [a;\omega)\ \exists b_1,b_2\in (B;\omega)$:

$$\left| \int_{b_1}^{b_2} f(x, d) dx \right| \geqslant \varepsilon.$$

Далее, в силу непрерывности функции f(x,y) на $[a;\omega) \times [c;d]$ следует, что $F(y) = \int_{b_1}^{b_2} f(x,y) dx$ непрерывна на [c;d] (смотреть теорему

Следовательно, \exists окрестность $(d - \delta; d]$: $\forall y \in (d - \delta; d]$

$$\left| \int_{b_1}^{b_2} f(x, y) dx \right| \geqslant \varepsilon.$$

Таким образом, $\exists \varepsilon > 0: \forall B \in [a; \omega) \exists b_1, b_2 \in (B; \omega):$

$$\left| \int_{b_1}^{b_2} f(x, y) dx \right| \geqslant \varepsilon$$

 \Rightarrow по критерию Коши $\int_a^\omega f(x,y)dx$ сходится на [c;d) неравномерно. \square

Пример. $\int_1^{+\infty} \frac{\sin x}{x^y} dx$, если y > 0, то интеграл сходится по признаку

При y=0 интеграл расходится \Rightarrow на интервале y>0 интеграл сходится неравномерно.

Теорема 59 (Признак Вейерштраса). Пусть

1.
$$\forall y \in Y$$
 и $\forall x \in [a; \omega)$

$$|f(x,y)| \leq g(x,y).$$

2. $\int_a^{\omega} g(x,y)dx$ – равномерно сходится на Y.

Тогда $\int_a^{\omega} f(x,y)dx$ – равномерно сходится на Y.

Доказательство. Имеем

$$\left| \int_{b_1}^{b_2} f(x, y) dx \right| \le \int_{b_1}^{b_2} |f(x, y)| dx \le \int_{b_1}^{b_2} g(x, y) dx.$$

Так как $\int_a^\omega g(x,y)dx$ сходится равномерно на Y, то по признаку Коши

$$\left| \int_{b_1}^{b_2} g(x, y) dx \right| < \varepsilon$$

 $\Rightarrow \int_a^\omega f(x,y) dx$ сходится равномерно на Y.

Следствие. Если $\forall y \in Y, \ \forall x \in [a; \omega)$

$$|f(x,y)| \geqslant g(x),$$

то из сходимости $\int_a^\omega g(x)dx \Rightarrow$ равномерна сходимость

$$\int_a^{\omega} f(x,y) dx \text{ Ha } Y.$$

Теорема 60 (Признаки Абеля и Дирихле).

1. Признак Абеля:

Если

- (a) $\int_a^\omega g(x,y)dx$ равномерно сходится на Y.
- (b) $\forall y \in Y$ функция f(x,y) монотонна по x и равномерно ограничена, то есть $\exists M > 0: \ \forall x \in [a;\omega)$ и $\forall y \in Y$

$$|f(x,y)| \leq M$$
.

Тогда

$$\int_{a}^{\omega} (f(x,y) \cdot g(x,y)) dx - \text{сходится равномерно на } Y.$$

2. Признак Дирихле:

Если

(a) $\int_a^b g(x,y)dx$ ограничена в совокупности, то есть $\exists L>0: \ \forall y \in Y$ и $\forall b \in [a;\omega)$

$$\left| \int_{a}^{b} g(x, y) dx \right| \leqslant L.$$

(b) $\forall y \in Y \ f(x,y)$ монотонна по x и $f(x,y) \to 0$ равномерно при $x \to \omega$.

Тогда

$$\int_a^{\omega} (f(x,y) \cdot g(x,y)) dx - \text{сходится равномерно на } Y.$$

Доказательство.

$$\left| \int_{b_1}^{b_2} \left(f(x,y) \cdot g(x,y) \right) dx \right|^{2-\mathfrak{H}}$$
 теорема о среднем
$$= \left| f(b_1,y) \cdot \int_{b_1}^{\xi} g(x,y) dx + f(b_2,y) \cdot \int_{\xi}^{b_2} g(x,y) dx \right| \leqslant$$

$$\leqslant |f(b_1,y)| \cdot \left| \int_{b_1}^{\xi} g(x,y) dx \right| + |f(b_2,y)| \cdot \left| \int_{\xi}^{b_2} g(x,y) dx \right|.$$

1. Пусть выполнены (а) и (b) для признака Абеля. Пусть $\varepsilon > 0$ задано, тогда

$$\left| \int_{b_1}^{\varepsilon} g(x,y) dx \right| < \frac{\varepsilon}{2 \cdot M} \quad \text{if} \quad \left| \int_{\xi}^{b_2} g(x,y) dx \right| < \frac{\varepsilon}{2 \cdot M} \Rightarrow$$

$$\Rightarrow \left| \int_{b_1}^{b_2} \left(f(x,y) \cdot g(x,y) \right) dx \right| < M \cdot \frac{\varepsilon}{2 \cdot M} + M \cdot \frac{\varepsilon}{2 \cdot M} = \varepsilon \Rightarrow$$

 $\Rightarrow \int_a^\omega \left(f(x,y)\cdot g(x,y)\right)\!dx$ сходится равномерно на Y по критерию Коши.

2. Пусть выполнены (a) и (b) для признака Дирихле. Пусть $\varepsilon > 0$ задано, тогда:

$$|f(x,y)| < \frac{\varepsilon}{2 \cdot L} \Rightarrow \left| \int_{b_1}^{b_2} \left(f(x,y) \cdot g(x,y) \right) dx \right| < \frac{\varepsilon}{2 \cdot L} \cdot L + \frac{\varepsilon}{2 \cdot L} \cdot L = \varepsilon \Rightarrow$$

 $\Rightarrow \int_a^\omega (f(x,y) \cdot g(x,y)) dx$ сходится равномерно на Y.

7.3 Функциональные свойства несобственного интеграла, зависящего от параметра

Теорема 61 (О предельном переходе под знаком несобственного интеграла). Если

1.
$$\forall b \in [a; \omega)$$

$$f(x,y) \Longrightarrow_{y} \phi(x)$$

на [a;b], где \mathfrak{B}_y – база на Y.

2. $\int_a^{\omega} f(x,y)dx$ сходится равномерно на Y.

Тогла

$$\lim_{\mathfrak{B}_{y}} F(y) = \lim_{\mathfrak{B}_{y}} \int_{a}^{\omega} f(x,y) dx = \int_{a}^{\omega} \lim_{\mathfrak{B}_{y}} f(x,y) dx = \int_{a}^{\omega} \phi(x) dx.$$

Доказательство. Имеем $F_b(y) = \int_a^b f(x,y) dx$

Докажем левую вертикальную стрелку. Вспомним теорему 47.

- 1. $\forall y \in Y \ f(x,y)$ интегрируется на [a;b] (из условия $2 \Rightarrow$)
- 2. $f(x,y) \underset{\mathfrak{B}_y}{\Rightarrow} \phi(x)$ на $[a;b] \Rightarrow$

$$\int_{a}^{b} \phi(x)dx = \lim_{\mathfrak{B}_{y}} \int_{a}^{b} f(x,y)dx$$

 \Rightarrow используя теорему 44, доказывается утверждение этой теоремы. \qed

Следствие (Непрерывность несобственного интеграла, зависящего от параметров). Если

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;d]$.
- 2. $\int_a^{\omega} f(x,y)dx$ равномерно сходится на [c;d].

Тогда $F(y) = \int_a^{\omega} f(x,y) dx$ непрерывна на [c;d].

Доказательство. $y_0 \in [c;d]$. Докажем, что F(y) непрерывна в точке y_0 , то есть докажем, что $\lim_{y \to y_0} F(y) = F(y_0)$.

Имеем:

$$\lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^{\omega} f(x, y) dx \stackrel{?}{=}$$

$$\stackrel{?}{=} \int_a^{\omega} \lim_{y \to y_0} f(x, y) dx \xrightarrow{\text{Hend. } f(x, y)} \int_a^{\omega} f(x, y_0) dx = F(y_0).$$

Проверим, выполняются ли условия теоремы 61. База: $y \to y_0$. Надо показать, что

- 1. $f(x,y) \xrightarrow[y \to y_0]{\mathbb{I}} f(x,y_0)$ Ha $[a;b] \forall b \in [a;\omega)$.
- 2. Дано.

Покажем 1.

Так как f(x,y) непрерывна на $[a;\omega)\times[c;d]\Rightarrow f(x,y)$ равномерно непрерывна на $[a;b]\times[c;d]$ (по теореме Кантора) \Rightarrow $\forall (x,y_0)$ $\exists U\subset[a;b]\times[c;d]$: $\forall (x,y)\in U$

$$|f(x,y) - f(x,y_0)| < \varepsilon \Rightarrow$$

 \Rightarrow (?) обоснован.

Лекция 16: Продолжение

от 15 нояб 10:32

Теорема 62 (О дифференцировании несобственного интеграла по параметру). Если

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;d]$ и имеет непрерывную производную по y.
- 2. $\int_a^\omega f_y'(x,y)dx$ равномерно сходится на [c;d].
- 3. $\int_a^\omega f(x,y)dx$ сходится хотя бы в одной точке $y_0\in (c;d)$.

Тогла

- 1. $\int_a^\omega f(x,y)dx$ сходится равномерно на $[c';d'] \in (c;d).$
- 2. $F(y) = \int_a^\omega f(x,y) dx$ дифференцируема на (c;d).
- 3. $F'(y) = (\int_a^{\omega} f(x, y) dx)'_y = \int_a^{\omega} f'_y(x, y) dx$.

Доказательство. Рассмотрим семейство функций $F_b(y) = \int_a^b f(x,y) dx$. Имеем $\forall b \ F_b(y)$ дифференцируема на (c;d) и

$$F'_b(y) = \int_a^b f'_y(x, y) dx$$
 (теорема 56).

Далее, $F_b'(y)$ сходится равномерно на (c;d) при $f \to \omega$ и $F_b(y)$ сходится хотя бы в одной точке $y=y_0\in (c;d)$ при $b\to \omega$.

Следовательно, по теореме 49, семейство $F_b(y)$ сходится равномерно на [c';d'] при $b \to \omega$. Предельная функция F(y) дифференцируема и

$$F'(y) = \lim_{b \to \omega} F'_b(y) = \lim_{b \to \omega} \int_a^{\omega} f'_y(x, y) dx = \int_a^{\omega} f'_y(x, y) dx.$$

Теорема 63 (Об интегрировании несобственного интеграла по парамет-

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;d]$.
- 2. $\int_a^{\omega} f(x,y)dx$ равномерно сходится на [c;d].

Тогда функция $F(y) = \int_a^\omega f(x,y) dx$ интегрируема по Риману на

$$\int_{c}^{d} dy \int_{a}^{\omega} f(x,y) dx = \int_{a}^{\omega} dx \int_{c}^{d} f(x,y) dy.$$

Доказательство. Имеем $\forall b \in [a; \omega)$

$$\int_{c}^{d} dy \int_{a}^{b} f(x,y) dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy \text{ (теорема 57)}.$$

$$\lim_{b \to \omega} \int_{c}^{d} dy \int_{a}^{b} f(x, y) dx =$$

$$= \lim_{b \to \omega} \int_{a}^{b} dx \int_{c}^{d} f(x, y) dy \stackrel{\text{onp.}}{=} \int_{a}^{\omega} dx \int_{c}^{d} f(x, y) dy,$$

$$\lim_{b \to \omega} \int_{c}^{d} dy \int_{a}^{b} f(x, y) dx =$$

$$= \int_{c}^{d} \left(\lim_{b \to \omega} \int_{a}^{b} f(x, y) dy \right)^{\text{onp.}} \int_{c}^{d} dy \int_{a}^{\omega} f(x, y) dx.$$

Покажем правомерность предельного перехода. Рассмотрим семейство функций $F_b'(y) = \int_a^b f(x,y) dx$. Покажем, что для этого семейства выполняются условия теоремы 47.

В самом деле,

- 1. $\forall b \in [a;\omega) \ F_b(y)$ непрерывна на [c;d] (теорема $61) \Rightarrow \forall b \in [a;\omega) \ F_b(y)$ интегрируема по Риману на [c;d].
- 2. Так как $\int_a^\omega f(x,y)dx$ равномерно сходится на [c;d], то множество $F_b(y)$ сходится равномерно на [c;d] к F(y) при $b \to \omega$.

Теорема 64 (О перестановке несобственного интерграла, зависящего от параметра). Пусть

- 1. f(x,y) непрерывна на $[a;\omega)\times[c;\widetilde{\omega})$. 2. $\forall d\in[c;\widetilde{\omega})$ $\int_a^\omega f(x,y)dx$ сходится равномерно на [c;d].
- 3. $\forall b \in [a; \omega) \int_{c}^{\widetilde{\omega}} f(x, y) dx$ сходится равномерно на [a; b].

4. Существует хотя бы одни из интегралов:

$$\int_a^{\omega} dx \int_c^{\widetilde{\omega}} \big| f(x,y) \big| dy \quad \text{или} \quad \int_c^{\widetilde{\omega}} dy \int_a^{\omega} \big| f(x,y) \big| dx.$$

Тогда существует

$$\int_{a}^{\omega} dx \int_{c}^{\widetilde{\omega}} f(x,y) dy = \int_{c}^{\widetilde{\omega}} dy \int_{a}^{\omega} f(x,y) dx.$$

Доказательство. $\forall d \in [c; \widetilde{\omega})$ верно равенство

$$\int_{c}^{d} dy \int_{a}^{\omega} f(x,y) dx = \int_{a}^{\omega} dx \int_{c}^{d} f(x,y) dy \text{ (теорема 63)}.$$

$$\int_{c}^{\widetilde{\omega}} dy \int_{a}^{\omega} f(x,y) dx \stackrel{\text{oup.}}{=} \lim_{d \to \widetilde{\omega}} \int_{c}^{d} dy \int_{a}^{\omega} f(x,y) dx =$$

$$= \lim_{d \to \widetilde{\omega}} \int_{a}^{\omega} dx \int_{c}^{d} f(x,y) dy \stackrel{?}{=} \int_{a}^{\omega} \left(\lim_{d \to \widetilde{\omega}} \int_{c}^{d} f(x,y) dy \right) dx =$$

$$= \int_{a}^{\omega} dx \int_{c}^{\widetilde{\omega}} f(x,y) dy.$$

Докажем возможность предельного перехода. Рассмотрим семейство $\Phi_d(x) = \int_c^d f(x,y) dy$. Имеем:

- 1. $\forall b \in [a;\omega) \ \Phi_d(x) \Longrightarrow_{d \to \widetilde{\omega}} \Phi(x) = \int_c^{\widetilde{\omega}} f(x,y) dy$ на [c;d] (условие 3.).
- 2. $\int_a^\omega \Phi_d(x) dx$ равномерно сходится на $[c; \widetilde{\omega})$.

Покажем пункт 2.

 $\forall d \in [c; \widetilde{\omega})$ и $\forall x \in [a; \omega)$

$$\left|\Phi_d(x)\right| = \left|\int_c^d f(x,y)dy\right| \leqslant \int_c^d \left|f(x,y)\right|dy \leqslant \int_c^{\widetilde{\omega}} \left|f(x,y)\right|dy \underset{d \to \widetilde{\omega}}{\Longrightarrow} \phi(x).$$

Допустим, что $\exists \int_a^\omega dx \int_c^{\widetilde{\omega}} |f(x,y)| dy$. Тогда получаем, что $\int_a^\omega \phi(x) dx$ сходится и не зависит от $d\Rightarrow$ по признаку Вейерштрасса $\int_a^\omega \Phi_d(x) dx$ сходится равмномерно на $[c;\widetilde{\omega})\Rightarrow$ выполняется условие теоремы $61\Rightarrow$ вопрос о предельном переходе снят.

7.4 Эйлеровы интегралы

7.4.1 β -функция

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} \cdot (1-x)^{\beta-1} dx$$

1. **ΟΟΦ**

Утверждение. $B(\alpha, \beta)$ определенная при всех $\alpha > 0, \beta > 0$.

Доказательство.
$$\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx = \int_0^{\frac{1}{2}} x^{\alpha-1} (1-x)^{\beta-1} dx + \int_{\frac{1}{2}}^1 x^{\alpha-1} (1-x)^{\beta-1} dx.$$
 Рассмотрим

$$x^{\alpha-1}(1-x)^{\beta-1} = \frac{(1-x)^{\beta-1}}{x^{1-\alpha}} \underset{x\to 0}{\sim} \frac{1}{x^{1-\alpha}},$$

$$\lim_{x \to 0} \frac{(1-x)^{\beta-1}}{x^{1-\alpha}} : \frac{1}{x^{1-\alpha}} = \lim_{x \to 0} (1-x)^{\beta-1} = 1.$$

Рассмотрим $x^{\alpha-1}(1-x)^{\beta-1} = \frac{(1-x)^{\beta-1}}{x^{1-\alpha}} \underset{x\to 0}{\sim} \frac{1}{x^{1-\alpha}},$ $\lim_{x\to 0} \frac{(1-x)^{\beta-1}}{x^{1-\alpha}} : \quad \frac{1}{x^{1-\alpha}} = \lim_{x\to 0} (1-x)^{\beta-1} = 1.$ $\int_0^{\frac{1}{2}} \frac{dx}{x^{1-\alpha}} \text{ сходится при } 1-\alpha < 1 \Rightarrow \alpha > 0.$ Аналогично можно показать, что $\int_{\frac{1}{2}}^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ сходится при $\beta > 0$.

2. Симметричность

$$B(\alpha,\beta) = B(\beta,\alpha).$$

Утверждение.
$$B(\alpha,\beta) = B(\beta,\alpha).$$
 Доказательство. Замена $t=1-x \Rightarrow x=1-t,\ dx=-dt,$
$$\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx =$$

$$= \int_1^0 (1-t)^{\alpha-1} \cdot t^{\beta-1} (-dt) = \int_0^1 t^{\beta-1} (1-t)^{\alpha-1} dt =$$

$$= B(\beta,\alpha).$$

3. Формула понижения

Примечание (Формула понижения для β -функции).

$$B(\alpha,\beta) = \int_0^1 \underbrace{x^{\alpha-1}}_u \underbrace{(x-1)^{\beta-1} dx}_v =$$

$$= \begin{vmatrix} u = x^{\alpha-1} & du = (\alpha-1)x^{\alpha-2} dx \\ v = -\frac{1}{\beta}(1-x)^{\beta} & dv = (x-1)^{\beta-1} dx \end{vmatrix} =$$

$$= -x^{\alpha-1}(1-x)^{\beta} \cdot \frac{1}{\beta} \Big|_0^1 + \int_0^1 \frac{1}{\beta}(1-x)^{\beta}(\alpha-1)x^{\alpha-2} dx =$$

$$= \frac{\alpha-1}{\beta} \int_0^1 x^{\alpha-2}(1-x)^{\beta} dx = \frac{\alpha-1}{\beta} \int_0^1 \frac{1-x}{1-x}x^{\alpha-2}(1-x)^{\beta} dx =$$

$$= \frac{\alpha-1}{\beta} \int_0^1 (1-x)x^{\alpha-2}(1-x)^{\beta-1} dx =$$

$$= \frac{\alpha-1}{\beta} \int_0^1 (x^{\alpha-2}(1-x)^{\beta-1} - x^{\alpha-1}(1-x)^{\beta-1}) dx =$$

$$= \frac{\alpha-1}{\beta} \left(\int_0^1 (1-x)^{\beta-1} dx - \int_0^1 x^{\alpha-1}(1-x)^{\beta-1} dx \right) =$$

$$= \frac{\alpha-1}{\beta} \left(B(\alpha-1,\beta) - B(\alpha,\beta) \right).$$

$$B(\alpha, \beta) = \frac{\alpha - 1}{\beta} \Big(B(\alpha - 1, \beta) - B(\alpha, \beta) \Big) \Rightarrow$$

$$\Rightarrow B(\alpha, \beta) \Big(1 + \frac{\alpha - 1}{\beta} \Big) = \frac{\alpha - 1}{\beta} B(\alpha - 1, \beta).$$

$$B(\alpha, \beta) = \frac{\alpha - 1}{\beta + \alpha - 1} - B(\alpha - 1, \beta), \quad \alpha > 1, \beta > 0.$$

Пусть $\beta = 1$:

$$B(\alpha,1) = \int_0^1 x^{\alpha-1} dx = \frac{x^{\alpha}}{\alpha} \Big|_0^1 = \frac{1}{\alpha}.$$

Далее, если $\beta = n \in \mathbb{N}$, то

$$B(\alpha, n) = B(n, \alpha) =$$

$$= \frac{n-1}{\alpha+n-1} \cdot B(n-1, \alpha) = \frac{n-1}{\alpha+n-1} \cdot \frac{n-2}{\alpha+n-2} \cdot B(n-2, \alpha) =$$

$$= \frac{(n-1)!}{(\alpha+n-1)(\alpha+n-2)\dots(\alpha+1)} \cdot B(\alpha, 1) =$$

$$= \frac{(n-1)!}{(\alpha+n-1)\dots(\alpha+1)\alpha}.$$

Отсюда:

$$B(m,n) = \frac{(n-1)!}{(m+n-1)\dots(m+1)m} = \frac{(n-1)!\cdot(m-1)!}{(m+n-1)!}$$

γ -функция

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} \cdot e^{-x} dx$$

1. **ΟΟΦ**

Утверждение. $\Gamma(\alpha)$ определенная при $\alpha > 0$.

Доказательство.

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} \cdot e^{-x} dx = \int_0^1 x^{\alpha - 1} e^{-x} dx + \int_1^{+\infty} x^{\alpha - 1} e^{-x} dx.$$

Заметим, что

$$\lim_{x \to 0} \frac{(x^{\alpha - 1}e^{-x})}{x^{\alpha - 1}} = 1 \Rightarrow x^{\alpha - 1}e^{-x} \sim \frac{1}{x^{1 - \alpha}} = x^{\alpha - 1}.$$

 $\int_0^1 \frac{1}{x^{1-\alpha}} dx$ сходится при $1-\alpha < 1 \Rightarrow \alpha > 0.$

Далее, $e^{-x} \to 0$ при $x \to +\infty \Rightarrow \forall \beta \in \mathbb{R}$ $e^{-x} = o(x^{\beta})$ при $x \to +\infty$.

$$e^{-x} = \alpha(x) \cdot x^{\beta}$$
, где $\alpha(x) \to 0$ при $x \to +\infty$.

 $x^{\beta} \to 0$ при $x \to +\infty$, если $\beta < 0$.

$$x^{\beta} \to +\infty$$
 при $x \to +\infty$, если $\beta > 0$.
Но $\infty = \frac{1}{0} \Rightarrow \lim_{x \to +\infty} \frac{e^{-x}}{x^{\beta}} = 0$.

Таким образом, сходимость интеграла $\int_1^{+\infty} x^{\alpha-1} e^{-x} dx$ та же, что и сходимость интеграла $\int_1^{-\infty} x^{\alpha-1} x^{\beta} dx$.

Можно подобрать такую β , что $\forall \alpha \in \mathbb{R}$

$$\int_1^{+\infty} x^{\alpha-1} x^{\beta} dx - \text{сходится} \Rightarrow$$

$$\Rightarrow \int_1^{+\infty} x^{\alpha-1} e^{-x} dx \text{ сходится при } \forall \alpha \in \mathbb{R} \Rightarrow$$

 \Rightarrow $\Gamma(\alpha)$ определена при $\alpha > 0$.

2. Правило дифференцирования $\Gamma(\alpha)$

Утверждение. $\forall \alpha > 0 \ \Gamma(\alpha)$ дифференцируема в точке α и

$$\Gamma'(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln x dx.$$

Более того, $\Gamma(\alpha)$ бесконечно дифференцируема в точке α и n-ная производная

$$\Gamma^{(n)}(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln^n x dx.$$

Доказательство. Теорема 62.

$$\Gamma'(\alpha) = \left(\int_0^{+\infty} x^{\alpha - 1} e^{-x} dx\right)_{\alpha}' \stackrel{?}{=}$$

$$\stackrel{?}{=} \int_0^{+\infty} (x^{\alpha - 1} e^{-x})_{\alpha}' dx = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln x dx.$$

$$\boxed{(a^x)_x' = a^x \cdot \ln a}$$

Покажем, что условия теоремы 62 выполняются:

- (a) $f(x,\alpha) = x^{\alpha-1}e^{-x}$ дифференцируема по α на $[\alpha \varepsilon; \alpha + \varepsilon]$.
- (b) $\int_0^{+\infty} x^{\alpha-1} e^{-x} \ln x dx$ равномерно сходится на $[\alpha \varepsilon; \alpha + \varepsilon]$.
- (c) $\int_0^{+\infty} x^{\alpha-1} e^{-x} dx$ сходится хотя бы в одной точке отрезка $[\alpha \varepsilon; \alpha + \varepsilon]$.

Докажем пункт 2.

$$\int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln x dx = \int_0^1 x^{\alpha - 1} e^{-x} \ln x dx + \int_1^{+\infty} x^{\alpha - 1} e^{-x} \ln x dx.$$

Пусть $\alpha_0 > 0$.

Выберем $\varepsilon < \frac{\alpha_0}{2}$. Рассмотрим $\alpha \in [\alpha_0 - \varepsilon; \alpha_0 + \varepsilon]$.

Если $\alpha_0 > 1$

Можно выбрать ε : $\alpha_0 - \varepsilon > 1$. Тогда

$$\lim_{x \to 0} x^{\alpha - 1} \ln x =$$

$$= \left| 0 \cdot \infty = \frac{1}{\infty} \cdot \infty = \frac{\infty}{\infty} \right| = \lim_{x \to 0} \frac{\ln x}{x^{1 - \alpha}} = \lim_{x \to 0} \frac{\frac{1}{x}}{(1 - \alpha)x^{-\alpha}} = \lim_{x \to 0} \frac{1}{(1 - \alpha)x^{-\alpha}} =$$

$$= \lim_{x \to 0} \frac{1}{1 - \alpha} \cdot x^{\alpha - 1} = 0.$$

Таким образом при $\alpha_0 > 1$ точка 0 не является особенной.

Если
$$\alpha_0 < 1 \ \forall \alpha \in [\alpha_0 - \varepsilon; \alpha_0 + \varepsilon]$$

$$|x^{\alpha-1}\ln x| \leqslant x^{\alpha_0-\varepsilon-1}|\ln x|.$$

Покажем, что

$$\begin{aligned} x^{\alpha_0-\varepsilon-1}|\ln x| &= 0 \ \left(x^{\alpha_0-\varepsilon-1} \cdot x^{\frac{\alpha_0-\varepsilon-1}{2}}\right) \Leftrightarrow \\ &\Leftrightarrow x^{\alpha_0-\varepsilon-1}|\ln x| &= \alpha(x) \cdot x^{\alpha_0-\varepsilon-1} \cdot x^{\frac{\alpha_0-\varepsilon-1}{2}} \Leftrightarrow \\ &\Leftrightarrow |\ln x| &= \alpha(x) \cdot x^{\frac{\alpha_0-\varepsilon-1}{2}} \Leftrightarrow \\ &\Leftrightarrow \lim_{x\to 0} \frac{\frac{1}{x}}{\frac{\alpha_0-\varepsilon-1}{2} \cdot x^{\frac{\alpha_0-\varepsilon-1}{2}}} &= \lim_{x\to 0} \frac{1}{x} \cdot x^{-\left(\frac{\alpha_0-\varepsilon-1}{2}-1\right)} = \lim_{x\to 0} x^{-\left(\frac{\alpha_0-\varepsilon-1}{2}\right)} = 0. \end{aligned}$$

Таким образом, по признаку Вейерштрасса, $\int_0^1 x^{\alpha-1} e^{-x} \ln x dx$ будет сходиться при сходимости интеграла

$$\int_0^1 x^{\alpha_0-\varepsilon-1} \cdot x^{\frac{\alpha_0-\varepsilon-1}{2}} dx = \int_0^1 x^{\frac{3}{2}(\alpha_0-\varepsilon-1)} dx = \int_0^1 \frac{dx}{x^{-\frac{3}{2}(\alpha_0-\varepsilon-1)}}$$
 сходится при $-\frac{3}{2} \underbrace{(\alpha_0-\varepsilon-1)}^{<0} < 1$.

сходится при
$$-\frac{3}{2}$$
 $(\alpha_0 - \varepsilon - 1) < 1$.

Так как $\int_0^{+\infty} x^{\alpha_0-\varepsilon-1} \cdot x^{\frac{\alpha_0-\varepsilon-1}{x}} dx$ сходится по признаку Вейерштрасса, то $\int_0^{+\infty} x^{\alpha-1} e^{-x} \ln x dx$ сходится равномерно на $[\alpha_0 - \varepsilon; \alpha_0 + \varepsilon]$.

$$e^{-x}x^{\alpha-1}\ln x \leqslant e^{-x}x^{\alpha_0+\varepsilon-1}\ln x.$$

Так как $\int_0^{+\infty} e^{-x} x^{\alpha_0+\varepsilon-1} \ln x dx$ сходится, то и сходится равномерно на $\left[\alpha_0-\varepsilon;\alpha_0+\varepsilon\right]$ и $\int_0^{+\infty} e^{-x} x^{\alpha-1} \ln x dx$.

Аналогичное доказательство имеет место быть и для $\Gamma^{(n)}(lpha)$. \square

3. Формула понижения

Примечание (Формула понижения для γ -функции).

$$\Gamma(\alpha+1) = \int_0^{+\infty} x^{\alpha} e^{-x} dx =$$

$$= \begin{vmatrix} u = x^{\alpha} & du = \alpha x^{\alpha-1} dx \\ v = -e^{-x} & dv = e^{-x} dx \end{vmatrix} = x^{\alpha} (-e^{-x}) \Big|_0^{+\infty} + \int_0^{+\infty} \alpha x^{\alpha-1} e^{-x} dx =$$

$$= \alpha \int_0^{+\infty} x^{\alpha-1} e^{-x} dx = \alpha \Gamma(\alpha).$$

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

Пусть α = $n \Rightarrow$

$$\Rightarrow \Gamma(n+1) =$$

$$= n\Gamma(n) = n(n-1)\Gamma(n-1) = n(n-1)(n-2)\Gamma(n-2) =$$

$$= n(n-1)\dots\Gamma(1),$$

$$\Gamma(1) = \int_0^{+\infty} x^0 e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1.$$

$$\Gamma(n+1) = n!$$

Лекция 17: Продолжение

от 19 нояб 8:47

Глава 8

Кратные интегралы

8.1 Мера Жордана в \mathbb{R}^n

Определение 46 (Непересекающиеся и попарно непересекающиеся множества). Множества A и B называются n непересекающимися, если $A \cap B = \emptyset$.

Множества A_1,\ldots,A_n называются попарно непересекающимися, если $\forall i,j\in\{1,\ldots,n\}$ A_i и A_j — непересекающиеся.

Определение 47 (Разбиение множества). *Разбиением* множества A называется совокупность попарно непересекающихся множеств A_1, \ldots, A_n .

Определение 48 (Клетка). Множество

$$\Pi = \{ (x_1, \dots, x_n) : \ a_i \le x_i < b_i, \ i = \overline{1, n} \}$$
(8.1)

называется κ леткой в \mathbb{R}^n .

Пустое множество также считается клеткой.

в \mathbb{R} — [a;b) полуинтервалы

 $_{
m B}\,\mathbb{R}^2$ прямоугольники, у которых удалены

клетки: соответствующиеся стороны

в \mathbb{R}^3 — параллелепипеды, у которых удалены

соответствующиеся грани

Определение 49 (Клеточное множество). Множество $A \subset \mathbb{R}^n$ называется *клеточным*, если оно является объединением конечного числа попарно непересекающихся клеток.

8.1.1 Свойства клеточных множеств

Свойсто (1)

Утверждение. Пересечение двух клеток есть клетка.

Доказательство. Достаточно заметить, что $[a;b) \cap [c;d)$ есть либо тоже полуинтервал, либо \varnothing (того же вида).

Свойсто (2)

Утверждение. Объединение конечного числа непересекающихся клеточных множеств является клеточным множеством.

Свойсто (3)

Утверждение. Пересечение двух клеточных множеств есть клеточное множество.

Доказательство. Пусть A и B – клеточные множества, $\Pi_1, \Pi_2, \ldots, \Pi_n$ – разбиение $A, \Pi'_1, \Pi'_2, \ldots, \Pi'_k$ – разбиение множества B.

Пересечение $A \cap B$ состоит из клеток $\Pi_{ij} = \Pi_i \cap \Pi'_j$, $i = \overline{1, n}$, $j = \overline{1, k}$, причем клетки Π_{ij} попарно не пересекаются.

• Свойсто 4

Утверждение. Разность двух клеток есть клеточное множество.

Доказательство. Если клетка R является пересечением клеток Π и Q, то:

$$\Pi \setminus Q = \Pi \setminus R$$
,

и существует разбиение клетки Π такая, что клитка R является одной из клеток разбиения. \square

Свойсто (5)

Утверждение. Разность двух клеточных множеств есть клеточное множество.

Доказательство. Пусть множество A разбито на клетки Π_1,Π_2,\ldots,Π_n и Q – некоторая клетка.

Множества $K_i = \Pi_i \setminus Q$ есть попарно непересекающиеся клеточные множества (в силу $\widehat{4}$ -го свойства). Множество $A \setminus Q$ есть $\bigcup_i K_i$, тогда в силу $\widehat{2}$ -го свойства $\bigcup_i K_i$ – клеточное множество.

Пусть B — клеточное множество, имеет разбиение $\Pi_1', \Pi_2', \ldots, \Pi_k'$. Множество $A \setminus B$ можно получить, последовательно вычитая из A клетки $\Pi_1', \Pi_2', \ldots, \Pi_k'$, каждый раз получая клеточное множество за конечное число шагов.

Свойсто (6)

Утверждение. Объединение конечного числа клеточных множеств есть клеточное множество.

Доказательство. Если A и B – клеточные множества, то в силу $\widehat{3}$ -го и $\widehat{5}$ -го свойств, множества $A \smallsetminus B, \ B \smallsetminus A$ и $A \cap B$ являются конечными. Тогда:

$$A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$$

– клеточное множество по свойству 2.

8.1.2 Мера клеточного множества

Определение 50 (Мера клетки). *Мерой* $m(\Pi)$ клетки Π , определенной 8.1, называется число:

$$m(\Pi) = (b_1 - a_1) \cdot \ldots \cdot (b_n - a_n) \tag{8.2}$$

Мера пустого множества равна нулю по определению.

Определение 51 (Мера клеточного множества). *Мерой* m(A) *клеточно-го множества* A, разбитого на клетки $\Pi_1, \Pi_2, \ldots, \Pi_n$ называется число:

$$m(A) = \sum_{i=1}^{n} m(\Pi_i)$$
 (8.3)

Лемма 7. Мера клеточного множества не зависит от способа разбиения множества на клетки.

Доказательство. Можно показать, что при \forall разбиении Π_1, \dots, Π_k клетки Π мера Π как клеточного множества всегда равна $m(\Pi)$, определяемой 8.2.

Для \mathbb{R}^1 очевидна верна формула 8.3,

$$m(\Pi) = \sum_{i} m(\Pi_i).$$

В общем случае для клетки Π можно провести аналогичные рассуждения. \square

8.1.3 Свойства меры клеточных множеств

Свойсто (1)

Утверждение. Если клеточные множества A_1, \ldots, A_n попарно не

пересекаются, то

$$m(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} m(A_i)$$
 (8.4)

Свойство (2)

Утверждение. Если A и B – клеточные множества и $A \subset B$, то

$$m(B) = m(A) + m(B \setminus A) \tag{8.5}$$

и $m(A) \leqslant m(B)$.

Доказательство. A и $B \setminus A$ — не пересекающиеся множества, $A \cup (B \setminus A) = B \Rightarrow$ по свойству (1)

$$m(B) = m(A) + m(B \setminus A) \Rightarrow m(A) \leqslant m(B).$$

Свойство (3)

Утверждение. Если A_1, \ldots, A_n – клеточные множества, то

$$m(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} m(A_i)$$
 (8.6)

Докажем для n = 2, по индукции можно доказать $\forall n.$

Имеем A_1 и A_2 , заметим, что $A_1 \subset A_1 \cup A_2 = B, \ B \setminus A_1 \subset A_2$

$$m(A_1 \cup A_2) = m(B) \stackrel{\text{\scriptsize \textcircled{5}}}{=} m(A_1) + m(B \setminus A_1) \leq m(A_1) + m(A_2).$$

Свойство (4)

Утверждение. Для \forall клеточного множества A и $\forall \varepsilon > 0$ \exists клеточное множество

$$A_{\varepsilon}: A_{\varepsilon} \subset \overline{A_{\varepsilon}} \subset A^{\circ} \subset A,$$

где $\overline{A_\varepsilon}$ – замыкание множества A_ε, A° – совокупность все внутренних точке множества A.

Доказательство. Достаточно доказать для клетки 8.1.

Из определения клетки \Rightarrow точка $(x_1, \dots, x_n) \in G\Pi$ $(G\Pi - \text{граница}$ клетки), если $\exists i : x_i = a_i$ или $x_i = b_i$.

Сдвигаем левые концы полуинтервалов $[a_i;b_i)$ вправо, а правые – влево \Rightarrow построена клетка Π_{ε} , которая не содержит граничных точек клетки $\Rightarrow \Pi_i \subset \overline{\Pi_{\varepsilon}} \subset \Pi^{\circ} \subset \Pi$.

8.1.4 Множества, измеримые по Жордану

Определение 52 (Измеримое по Жордану множество). Множество $Q \subset \mathbb{R}$ называется *измеримым по Жордану*, если $\forall \varepsilon > 0 \exists$ клеточные множества A и B:

$$A \subset \Omega \subset B$$
 и $m(B) - m(A) < \varepsilon$.

Определение 53 (Мера для измеримого по Жордану множества). Если Ω – измеримое по Жордану множество, то его *мерой* $m(\Omega)$ называется число для $\forall A$ и B – клеточных множеств: $A \subset \Omega \subset B$ выполнено

$$m(A) \leqslant m(i) \leqslant m(B)$$
.

Лемма 8. Определение меры измеримого по Жордану множества корректно, число $m(\Omega)$ \exists и !, причем

$$m(\Omega) = \sup_{A \subset \Omega} m(A) = \inf_{B \supset \Omega} m(B).$$

Доказательство. Пусть A и B – некоторые клеточные множества, $A \subset \Omega \subset B \Rightarrow A \subset B \Rightarrow m(A) \leqslant m(B)$.

 \exists число γ , разделяющее числовые множества $\{m(A)\}$ и $\{m(B)\}$, порожденные клеточными множествами $A \subset \Omega$ и клеточными множествами $B \supset \Omega$, то есть

$$m(A) \leqslant \sup_{A \subset \Omega} m(A) \leqslant \gamma \leqslant \inf_{B \supset \Omega} m(B) \leqslant m(B).$$

В качестве $m(\Omega)$ можно взять γ . Таким образом существование числа $m(\Omega)$ доказано.

Теперь докажем, что γ – единственное.

Пусть есть два числа α и β : $\,\forall A$ и B – клеточных множеств: $A \subset \Omega \subset B$

$$\boxed{m(A) \leqslant \alpha \leqslant \beta \leqslant m(B)} \tag{8.7}$$

Так как Ω измеримо по Жордану, то $\forall \varepsilon > 0$ \exists клеточные множества A_ε и B_ε :

$$m(B_{\varepsilon}) - m(A_{\varepsilon}) < \varepsilon, \quad A_{\varepsilon} \subset \Omega \subset B_{\varepsilon}$$
 по свойству (4)

Из 8.7 и 8.7 \Rightarrow $m(B) - m(a) \geqslant m(B_{\varepsilon}) - m(A_{\varepsilon}) \geqslant \beta - \alpha \Rightarrow 0 \leqslant \beta - \alpha \leqslant m(B_{\varepsilon}) - m(A_{\varepsilon}) < \varepsilon \Rightarrow 0 \leqslant \beta - \alpha < \varepsilon$.

В силу производности
$$\varepsilon \Rightarrow \alpha = \beta$$
.

8.1.5Свойства множеств меры нуль

Свойство (1)

Утверждение. Если $E \subset \mathbb{R}^n$ и $\forall \varepsilon > 0 \ \exists B = B_{\varepsilon} : \ E \subset B$ и m(B) < $\varepsilon \Rightarrow m(E) = 0.$

Доказательство. Пусть $A = \emptyset \Rightarrow A \subset E \subset B \Rightarrow m(B) - m(A) =$ m(B) – 0, m(B) < $\varepsilon \Rightarrow E$ – измеримое по Жордану множество и $m(E) \leq m(B) < \varepsilon$.

В силу произвольности $\varepsilon \Rightarrow m(E) = 0$.

Определение 54 (Множество меры нуль). Множество, удовлетворяющее условию свойства (1), называется множеством меры нуль.

Свойство (2)

Утверждение. Объединение конечного числа множеств меры нуль есть множество меры нуль.

Доказательство. Пусть E_1 и E_2 – множества меры нуль.

 $m(E_1)=m(E_2)=0\Rightarrow \forall \varepsilon>0$ $\exists B_1$ и $B_2:$ $E_1\subset B_1$ и $E_2\subset B_2$ и $m(B_1)<\frac{\varepsilon}{2},$ $m(B_2)<\frac{\varepsilon}{2}.$

$$(E_1 \cup E_2) \subset (B_1 \cup B_2).$$

 $(E_1 \cup E_2) \subset (B_1 \cup B_2).$ $m(B_1 \cup B_2) \leqslant m(B_1) + m(B_2) \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow$ $\Rightarrow m(E_1 \cup E_2) \leqslant m(B_1 \cup B_2) < \varepsilon.$

$$\Rightarrow m(E_1 \cup E_2) \leqslant m(B_1 \cup B_2) < \varepsilon$$

В силу произвольности $\varepsilon \Rightarrow m(E_1 \cup E_2) = 0$.

Свойство (3)

Утверждение. Подмножество множества меры нуль есть множество меры нуль.

Доказательство. Пусть $E_1 \subset E$, где $m(E) = 0 \Rightarrow \forall \varepsilon > 0 \; \exists B : E \subset B$

Тогда $E_1 \subset E \subset B \Rightarrow m(E_1) \leqslant m(E) \leqslant m(B) \leqslant \varepsilon \Rightarrow m(E_1) < \varepsilon$ и в силу произвольности $\varepsilon \Rightarrow m(E_1) = 0$.

Лемма 9. Если связное множество $A \subset \mathbb{R}^n$ не имеет общих точек с границей множества $B \subset \mathbb{R}^n$, то A лежит либо внутри B, либо в дополнении к B.

Теорема 65 (Критерий измеримости множества в \mathbb{R}^n). Множество $\Omega \subset \mathbb{R}$ измеримо по Жордану $\Leftrightarrow \Omega$ – ограничено и $m(G\Omega)$ = 0 (его граница меры нуль).

Доказательство.

• \implies Пусть $\Omega \subset \mathbb{R}^n$ измеримо по Жордану $\implies \forall \varepsilon > 0 \; \exists A \; \mathsf{u} \; B - \mathsf{k}$ леточные множества: $A \subset \Omega \subset B \; \mathsf{u} \; m(B) - m(A) < \varepsilon$.

Из свойства 4 (из 8.1.3) \Rightarrow множество A не содержит все граничные точки Ω , а множество B – содержит. Тогда клеточное множество $B \setminus A \supset G\Omega$.

$$m(B \setminus A) = m(B) - m(A) < \varepsilon \quad \text{if} \quad m(G\Omega) \leq m(B \setminus A) < \varepsilon \Rightarrow$$

 \Rightarrow в силу произвольности $\varepsilon \Rightarrow m(G\Omega) = 0$.

• \leftarrow Пусть $m(G\Omega)$ = 0 и Ω – ограниченное множество в \mathbb{R}^n .

Пусть $\varepsilon > 0$ задано. Построим множество $C: C\Omega \subset C$ и $m(C) < \varepsilon$ $(8.1.5, 1) \Rightarrow \Pi \smallsetminus C$ – клеточное множество, не содержащее граничных точек Ω .

Пусть
$$\Pi \setminus C = \bigcup_{i=1}^{n} \Pi_i$$
.

Так как Π_i не содержат граничных точек, то либо $\Pi_i \cap \Omega = \emptyset$, либо $\Pi_i \subset \Omega$ (лемма 9). Перенумеруем Π_i таким образом, чтобы $\Pi_1, \ldots, \Pi_k \subset \Omega$, $\Pi_{k+1}, \ldots, \Pi_n \cap \Omega = \emptyset$.

Обозначим
$$A = \bigcup\limits_{i=1}^n \Pi_i, \ B = \bigcup\limits_{i=1}^n \Pi_i,$$

$$D = A \cup C = \Pi \setminus B \Rightarrow A \subset \Omega \subset D,$$

$$m(D) - m(A) =$$

= $m(A \cup C) - m(A) = m(\Pi \setminus B) - m(A) = m(C) < \varepsilon \Rightarrow$
 $\Rightarrow m(D) - m(A) < \varepsilon,$

где $A \subset \Omega \subset D \Rightarrow \Omega$ – измеримое по Жордану множество.

8.1.6 Свойства множеств, измеримых по Жордану

Свойство (1)

Утверждение. Если множества Ω_1 и Ω_2 измеримы по Жордану, то множества $\Omega_1 \cup \Omega_2, \ \Omega_1 \cap \Omega_2, \ \Omega_1 \setminus \Omega_2$ также измеримы по Жордану.

Свойство (2)

Утверждение. Если множества $\Omega_i,\ i=\overline{1,n}$ измеримы по Жордану, то множество $\bigcup_{i=1}^n \Omega_i$ измеримо по Жордану и

$$m\left(\bigcup_{i=1}^{n}\Omega_{i}\right) \leqslant \sum_{i=1}^{n}m(\Omega_{i})$$

и более того, если Ω_i попарно не пересекаются, то

$$m\left(\bigcup_{i=1}^n\Omega_i\right)=\sum_{i=1}^n m(\Omega_i).$$

Лекция 18: Продолжение

от 24 нояб 10:32

8.2 Кратный интеграл Римана

Определение 55 (Разбиение совокупности измеримых по Жордану множеств). Пусть множество $G \subset \mathbb{R}^n$ измеримо по Жордану.

Совокупность измеримых по Жордану множеств $G_i \subset \mathbb{R}^n, \ i=\overline{1,N},$ попарно пересекающихся $G=\bigcup_{i=1}^n G_i$ называются разбиением множества G.

Обозначение:
$$T = \{G_i\}$$

Определение 56 (Мелкость разбиения). Число $l(T) = \max d(G_i)$ называется мелкостью разбиения T.

Определение 57 (Интегральная сумма Римана от функции на множестве). Пусть функция $f(x) = f(x_1, \ldots, x_n) : G \to \mathbb{R}$ определена на измеримом по Жордану множестве $G \subset \mathbb{R}^n$, $T = \{G_{ij}\}$ — разбиение множества G.

Возьмем $\xi_i \in G_i$, $i = \overline{1, N}$.

Выражение

$$\sigma_T = \sigma_T(f, \xi, G) = \sum_{i=1}^N f(\xi_i) m(G_i)$$

называется интегральной суммой Римана от функции $f(x) = f(x_1, ..., x_n)$ на множестве, соответствующей разбиению T и выборке $\xi = (\xi_1, ..., \xi_N)$.

Определение 58 (Предел интегральной суммы). Число I называется $npedenom\ uhmerpanhoù\ суммы\ \sigma_T$ при мелкости разбиения $l(T) \to 0$,

если $\forall T:\ l(T) < \delta$ и $\forall \xi = (\xi_1, \dots, \xi_n)$ верно неравенство

$$|I - \sigma_T(f, \xi, G)| < \varepsilon.$$

Обозначение: $I = \lim_{l(T) \to 0} \sigma_T$.

Примечание. Число I будем называть *кратным интегралом Римана* от функции f(x) по множеству G, а функцию f(x) – интегрируемой на множестве G.

При n=2 кратный интеграл Римана называется $\partial soйным$ и обозначается

$$\iint\limits_C f(x,y)dxdy.$$

При n = 3 - mройным и обозначается

$$\iiint\limits_G f(x,y,z)dxdydz.$$

Теорема 66 (Критерий интегрируемости). Ограниченная формула f(x) интегрируема на измеримом по Нордану множестве $G \subset \mathbb{R}^n \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \colon \; \forall T \; l(T) < \delta$

$$\overline{S_T} - S_T < \varepsilon$$

(то есть
$$\overline{S_T} - S_T \to 0$$
 при $l(T) \to 0$)

Доказательство. Смотреть доказательство соответствующей теоремы для $\int_a^b f(x)dx$.

Теорема 67 (Критерий интегрируемости, более сильная). Ограниченная функция f(x) интегрируема на измеримом по Жордану множестве $G \subset \mathbb{R}^n \Leftrightarrow \forall \varepsilon > 0 \; \exists T \;$ множества G:

$$\overline{S_T} - S_T < \varepsilon$$
.

Доказательство. Без доказательства.

8.2.1 Классы интегрируемых функций

Теорема 68. Непрерывная на измеримом по Жордану компактном множестве G, функция f(x) интегрируема на этом множестве.

Доказательство. Доказательство аналогично доказательству соответствующей теореме для $\int_a^b f(x)dx$.

Теорема 69. Пусть функция f(x) ограничена на измеримом компакте $G \subset \mathbb{R}^n$ и множество разрыва f(x) имеет Жорданову меру нуль. Тогда f(x) интегрируема на G.

Доказательство. Без доказательства.

8.2.2 Свойства кратного интеграла Римана

Свойство (1)

Утверждение. Справедливо равенство

$$\int_G 1dx = m(G).$$

Свойство (2)

Утверждение. Если f(x) > 0 и f(x) — интегрируемая на измеримом по Жордану множестве G функция, то

$$\int_{G} f(x)dx \geqslant 0.$$

• Свойство (3)

Утверждение. Если $f_1(x)$ и $f_2(x) = f_2(x_1, \dots, x_n)$ – интегрируемые на измеримом по Жордану множестве G функции, $\alpha, \beta \in \mathbb{R}$, то и функция $\alpha \cdot f_1(x) + \beta \cdot f_2(x)$ интегрируема на G и

$$\int_{G} (\alpha \cdot f_1(x) + \beta \cdot f_2(x)) dx = \alpha \int_{G} f_1(x) dx + \beta \int_{G} f_2(x) dx.$$

• Свойство (4)

Утверждение. Если $f_1(x)$ и $f_2(x)$ – интегралы на измеримом по Жордану множестве G и $\forall x \in G$ $f_1(x) \leqslant f_2(x)$, то

$$\int_{G} f_1(x)dx \le \int_{G} f_2(x)dx.$$

Свойство (5)

Утверждение. Если функция f(x) непрерывна на измеримом связном компакте G, то $\exists \xi \in G$:

$$\int_G f(x)dx = f(\xi)m(G).$$

Свойство (6)

Утверждение. Если G_k , $k = \overline{1,m}$ если разбиение множества G, то функция f(x) интегрируема на $G \Leftrightarrow f(x)$ интегрируема на G_k , $k = \overline{1,m}$, при этом

$$\int_{G} f(x)dx = \sum_{k=1}^{m} \int_{G_k} f(x)dx.$$

Свойство (7)

Утверждение. Произведение интегрируемых на измеримом множестве G функцией является интегрируемой на G функцией.

Свойство (8)

Утверждение. Если f(x) интегрируема на множестве G функция, то функция |f(x)| также интегрируема

$$\left| \int_{G} f(x) dx \right| \le \int_{G} |f(x)| dx.$$

Лемма 10. Пусть функция f(x) ограничена на измеримом по Жордану множестве G, а E есть множество меры нуль.

Если $\forall T = \{G_k\}, \ k = \overline{1,m}$ отбрасывать в интегральной сумме σ_T слагаемые, соответствующие тем множествам G_i , которые имеют непустое пересечение с E, то это не повлияет ни на существование предела интегральной суммы при $l(T) \to 0$, ни на величину этого предела.

Теорема 70. Пусть G – измеримое множество в \mathbb{R}^n и функция f(x) интегрируема на G. Тогда график функции f(x) имеет в \mathbb{R}^{n+1} Жорданову меру нуль.

8.3 Сведение кратных интегралов к повторам

Теорема 71 (Формула сведения двойного интеграла по прямоугольнику к повторному). Пусть

1. Функция f(x,y) интегрируема на прямоугольнике

$$\Pi = \{(x, y): a \leqslant x \leqslant b, c \leqslant y \leqslant d\}.$$

2. $\int_{c}^{d} f(x,y)dy \exists \forall x \in [a;b].$

Тогда функция $F(x) = \int_{c}^{d} f(x,y) dy$ интегрируема на отрезке [a;b] и справедлива формула:

$$\left| \iint\limits_{\Pi} f(x,y) dx dy = \int_a^b dx \int_c^d f(x) dy \right|$$

Доказательство. Возьмем произвольное разбиение отрезков [a;b] и [c;d] точками

$$a = x_0 < x_1 < \ldots < x_n = b$$

 $c = y_0 < y_1 < \ldots < y_m = d$

и обозначим Π_1,\dots,Π_n и Π'_1,\dots,Π'_m соответсвующие промежутки разбиения.

Тогда

$$\Pi = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} \Pi_{ij},$$

где $\Pi_{ij} = \{(x,y): x \in \Pi_i, y \in \Pi'_i\}.$

Положим

$$M_{ij} = \sup_{(x,y)\in\Pi_{ij}} f(x,y), \quad m_{ij} = \inf_{(x,y)\in\Pi_{ij}} f(x,y).$$

Так как $\int_c^d f(x,y) dy$ $\exists \ \forall x \in [a;b],$ то $\forall x \in \Pi_i$ справедливо неравенство

$$m_{ij} \cdot \Delta y_i \leqslant \int_{y_{i-1}}^{y_i} f(x,y) dy \leqslant M_{ij} \cdot \Delta y_i,$$

где $\Delta y_i = y_i - y_{j-1}$.

Суммируем эти неравенства по индексу j:

$$\sum_{j=1}^{m} m_{ij} \Delta y_i \leqslant \int_{c}^{d} f(x, y) dy \leqslant \sum_{j=1}^{m} M_{ij} \Delta y_j$$
 (8.9)

Введем обозначения:

$$F(x) = \int_{c}^{d} f(x,y)dy, \quad M_{i} = \sup_{x \in \Pi_{i}} F(x), \quad m_{i} = \inf_{x \in \Pi_{i}} F(x).$$

Тогда из 8.9 ⇒

$$\sum_{j=1}^{m} m_{ij} \Delta y_j \leqslant m_i \leqslant M_i \leqslant \sum_{j=1}^{m} M_{ij} \Delta y_j \Rightarrow$$

$$\Rightarrow 0 \leqslant M_i - m_i \leqslant \sum_{j=1}^{m} (M_{ij} - m_{ij}) \Delta y_j$$
(8.10)

Домножим на Δx_i неравенство 8.10 и просуммируем по i:

$$0 \leqslant \sum_{i=1}^{n} (M_i - m_i) \Delta x_i \leqslant \sum_{i=1}^{n} \sum_{j=1}^{m} (M_{ij} - m_{ij}) m(\Pi_{ij}) =$$
$$= \overline{S}(f, \Pi) - \underline{S}(f, \Pi) \to 0 \text{ при } l(T) \to 0,$$

так как f(x,y) интегрируема на прямоугольнике $\Rightarrow \sum_{i=1}^n (M_i - m_i) \Delta x_i \to 0$ при $\max |\Delta x_i| \to 0 \Rightarrow F(x)$ интегрируема на $[a;b] \Rightarrow \exists$

$$\int_a^b F(x)dx = \int_a^b dx \int_c^d f(x,y)dy.$$

Покажем, что он равен двойному. Интегрируем неравенство 8.9

$$\sum_{j=1}^{m} m_{ij} \Delta y_j \Delta x_i \leqslant \int_{x_{i-1}}^{x_i} dx \int_{c}^{d} f(x, y) dy \leqslant \sum_{j=1}^{m} M_{ij} \Delta y_j \Delta x_i.$$

Cуммируем по i:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} m(\Pi_{ij}) \leq \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy \leq \sum_{i=1}^{n} \sum_{j=1}^{m} M_{ij} m(\Pi_{ij}).$$

$$\underline{S}(f,\Pi) \leqslant \int_a^b dx \int_c^d f(x,y)dy \leqslant \overline{S}(f,\Pi).$$

С другой стороны, из условий следует, что

$$\underline{S} \leqslant \iint_{\Pi} f(x,y) dx dy \leqslant \overline{S}.$$

Разность \overline{S} – \underline{S} может быть сколь угодно малой \Rightarrow

$$\Rightarrow \iint_{\Pi} f(x,y) dx dy = \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy.$$

Следствие. Пусть $\exists \iint_{\Pi} f(x,y) dx dy$ и $\forall x \in [a;b] \exists \int_{c}^{d} f(x,y) dy$ и $\forall y \in [c;d] \exists \int_{a}^{b} f(x,y) dx$.

Тогда

$$\iint\limits_\Pi f(x,y)dxdy = \int_a^b dx \int_c^d f(x,y)dy = \int_c^d dy \int_a^b f(x,y)dx.$$

Определение 59 (Элементарная область относительно оси Oy). Пусть $\phi(x)$ и $\psi(x)$ непрерывные на отрезке [a;b] функции и $\phi(x) < \psi(x) \ \forall x \in [a;b]$.

Область $\Omega = \{(x,y): \phi(x) < y < \psi(x), \ a < x < b\}$ называется элементарной областью относительно оси Oy.

Теорема 72 (Сведение двойного интеграла по элементарной области к повторному). Пусть Ω — элементарная относительно оси Oy область, функция f(x,y) интегрируема на $\overline{\Omega} = \Omega \cup G\Omega$ и $\forall x \in [a;b] \exists \int f(x,y) dx$. Тогда справедлива следующая формула:

$$\iint\limits_{\Omega} f(x,y)dxdy = \int_{a}^{b} dx \int_{\phi(x)}^{\psi(x)} f(x,y)dy. \tag{8.11}$$

Доказательство. Есть на фотографиях.

Следствие. Для функции, непрерывной на $\overline{\Omega}$, справедлива формула 8.11.

Лекция 19: Продолжение

от 1 дек 10:32

8.4 Замена переменной в кратном интеграле

Примечание. Пусть G — ограниченная область в \mathbb{R}^n , $F:G\to\mathbb{R}^n$ — взаимнооднозначное и непрерывно дифференцируемое отображение, которое аналитически задается при помощи непрерывно дифференцируемых функций:

$$x_1 = \phi_1(u_1, \dots, u_n), \dots, x_n = \phi_n(u_1, \dots, u_n).$$

Будем считать, что для функций $\phi_i,\ i$ = $\overline{1,n}$ выполнены следующие условия:

- 1. Производные $\frac{\partial \phi_i}{\partial u_j}$ ограничены в G.
- 2. Производные $\frac{\partial \phi_i}{\partial u_j}$ равномерно непрерывны в G.
- 3. Якобиан отображения удовлетворяет при $u = (u_1, \dots, u_n) \in G$ условно:

$$|\Im(u)| \geqslant \alpha > 0$$

(якобиан – определитель матрицы Якоби $\| \frac{\partial \phi_i}{\partial u_i} \|)$

Теорема 73 (Формула замены переменных в кратном интеграле). Пусть отображение $F: \Omega \to \mathbb{R}^n$ ($\Omega \subset \mathbb{R}^n$ – открытое множество) является взаимнооднозначным и удовлетворяет условиям 1.-3.

Пусть G — измеримый компат: $G \subset \Omega$. Тогда, если функция $f(x) = f(x_1, \ldots, x_n)$ непрерывна на множестве G' = F(G), то справедлива следующая формула замены переменных в кратном интеграле:

$$\int_{G'} f(x)dx = \int_{G'} \dots \int_{G'} f(x_1, \dots, x_n) dx_1 dx_2 \dots dx_n =$$

$$= \int_{G} f(\phi_1(u), \dots, \phi_n(u)) |\Im(u)| du,$$

$$u = (u_1, \dots, u_n), \quad du = du_1 du_2 \dots du_n.$$

Глава 9

Криволинейные интегралы

Примечание. Пусть на некотором множестве, содержащем кривую Γ задано непрерывная функция R(x, y, z).

Если гладкая кривая Г задана уравнением

$$\overline{r} = \overline{r}(A)$$
 или
$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}, \ \alpha \leqslant t \leqslant \beta,$$

то определенный интеграл

$$\int_{\alpha}^{\beta} R(x(t), y(t), z(t)) \cdot |\overline{r}'(t)| dt =$$

$$= \int_{\alpha}^{\beta} R(x(t), y(t), z(t)) \cdot \sqrt{x'^{2}(t) + y'^{2}(t) + z'^{2}(t)} dt.$$

Будем называть *криволинейным интегралом І-го рода* от функции R(x,y,z) по кривой Γ и обозначать:

$$\int_{\Gamma} R(x,y,z)ds$$

То есть

$$\int_{\Gamma} R(x,y,z)ds = \int_{\alpha}^{\beta} R(x(t),y(t),z(t)) |\overline{r}'(t)| dt.$$

9.0.1 Свойства криволинейного интеграла І-го рода

Свойство (1)

Утверждение. Криволинейный интеграл I-го рода не зависит от параметризации кривой.

Свойство (2)

Утверждение. Криволинейный интеграл I-го рода не зависит от ориентации кривой, то есть

$$\int\limits_{\Gamma}R(x,y,z)ds=\int\limits_{\overline{\Gamma}}\overline{R}(x,y,z)ds.$$

Свойство (3)

Утверждение. Криволинейный интеграл I-го рода аддитивен относительно кривой, если $\Gamma = \bigcup\limits_{i=1}^N \Gamma_i$, то

$$\int\limits_{\Gamma} R(x,y,z)ds = \sum_{i=1}^{N} \int\limits_{\Gamma_{i}} R(x,y,z)ds.$$

Примечание. Пусть $\Omega \subset \mathbb{R}^3$ – область, в каждой точке которой задан вектор. Тогда говорят, что в области Ω задано векторное поле.

Если фиксирована декартова прямоугольная система координат, то векторное поле можно задать при помощи трех скалярных функций:

$$\overline{F}(x,y,z) = \{P(x,y,z), Q(x,y,z), R(x,y,z)\}.$$

Если функции P,Q,R непрерывны в области Ω , то и поле $\overline{F}(x,y,z)$ называется непрерывным в области Ω .

Если P,Q,R непрерывно дифференцируемы в Ω , то и векторное поле \overline{F} называется непрерывно дифференцируемым в Ω .

Если можно так подобрать ДСК, что $R\equiv 0,$ а P и Q не зависят от z, то векторное поле \overline{F} называется *плоским*:

$$\overline{F}(x,y) = \{P(x,y), Q(x,y)\}.$$

Пусть в области $\Omega \subset \mathbb{R}^3$ определено непрерывное векторное поле $\overline{F}(x,y,z) = \{P(x,y,z), Q(x,y,z), R(x,y,z)\}, \ \overline{r} = \overline{r}(t), \ \alpha \leq t \leq \beta, \$ уравнение гладкой (кусочно гладкой) кривой $\Gamma \subset \Omega$.

Тогда

$$\int_{\alpha}^{\beta} \overline{F}(x(t), y(t), z(t)) \cdot \overline{r}'(t) dt = \int_{\alpha}^{\beta} \left(P(x(t), y(t), z(t)) \cdot x'(t) + Q(x(t), y(t), z(t)) \cdot y'(t) + R(x(t), y(t), z(t)) \cdot z'(t) \right) dt$$

называется κp иволинейным интегралом II-го pода от векторного поля \overline{F} на кривой $\Gamma \subset \Omega.$

Тогда по определению

$$\int_{\Gamma} (\overline{F}, d\overline{r}) = \int_{\alpha}^{\beta} F(x(t), y(t), z(t)) \overline{r}'(t) dt.$$