2019 年全国硕士研究生入学统一考试数学(三)试题

	. ——-	·—····	
一、选择题:1~8	小题,每小题 4 分	·,共 32 分.下列每	题给出的四个选项中,只有一个选项符合题目要求的.
$(1) \exists x \to 0 \text{时}$	$+$,若 $x-\tan x$ 与	x^k 是同阶无穷小	, 则 <i>k</i> = ()
(A) 1	(B) 2	(C) 3	(D) 4
(2)已知方程 x^5 - :	5x + k = 0有3个	不同的实根,则/	k 的取值范围是 ()
$(A)(-\infty,-4)$	$(B)(4,-\infty)$	(C) $(4, -4)$	(D) (-4,4)
(3) 已知微分方程	$\frac{1}{2}y'' + ay' + by = 0$	ce^x 的通解为 $y = 0$	$(C_1 + C_2 x)e^{-x} + e^x$,则 a,b,c 依次为 ()
(A)1,0,1	(B)1,0,2	(C) 2,1,3	(D) 2,1,4
(4) 若 $\sum_{n=1}^{\infty} nu_n$ 绝对	于收敛, $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 条件	-收敛,则()	
$(A)\sum_{n=1}^{\infty}u_{n}v_{n}$	条件收敛		(B) $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛
(C) $\sum_{n=1}^{\infty} u_n v_n$ 收敛			(D) $\sum_{n=1}^{\infty} u_n v_n$ 发散
(5) 设4是4阶矩	阵, <i>A</i> *为 <i>A</i> 的伴	随矩阵,若线性	生方程组 $Ax = 0$ 的基础解中只有 2 个向量,则 $r(A^*)$
= ()			
(A) 0	(B) 1	(C) 2	(D) 3
(6) 设4是3阶实	对称矩阵, E 是	上3阶单位矩阵,	
为()			
(A) $y_1^2 + y_2^2 + y_3^2$			(B) $y_1^2 + y_2^2 - y_3^2$
(C) $y_1^2 - y_2^2 - y_3^2$			(D) $-y_1^2 - y_2^2 - y_3^2$
(7) 设A,B为随		A) = P(B)的充分	分必要条件是()
(A) $P(A \cup B)$	= P(A) + P(B)		(B) $P(AB) = P(A)P(B)$
(C) $P(A\overline{B}) = P(B\overline{A})$			(D) $P(AB) = P(\overline{AB})$
(8) 设随机变量 X 与 Y 相互独立,且都服从于正态分布 $N(\mu,\sigma^2)$,则 $P\{X-Y <1\}$ ()			
(A) 与 μ 无关,而与 σ^2 有关			(B) 与 μ 有关,而与 σ^2 无关

(C) 与 μ , σ^2 都有关

- (D) 与 μ , σ^2 都无关
- 二、填空题: 9~14 小题,每小题 4 分,共 24 分.

(9)
$$\lim_{n\to\infty} \left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)}\right)^n = \underline{\hspace{1cm}}$$

- (10) 曲线 $y = x \sin x + 2 \cos x \left(-\frac{\pi}{2} < x < \frac{3\pi}{2}\right)$ 的拐点坐标为 ______.
- (11 已知函数 $f(x) = \int_1^x \sqrt{1+t^4} dt$,则 $\int_0^1 x^2 f(x) dx =$ ______.
- (13)已知矩阵 $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & -1 \\ 0 & 1 & a^2 1 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 1 \\ a \end{pmatrix}$ 若线性方程组Ax = b有无穷多解,则a =______.
- (14) 设随机变量X的概率密度为 $f(x) = \begin{cases} \frac{x}{2}, & 0 < x < 2, \\ 0, & \text{其他} \end{cases}$ F(x)为X的分布函数,EX为X

的数学期望,则 $P\{F(X) > EX - 1\}=$

三、解答题: 15~23 小题,共94 分.解答应写出文字说明、证明过程或演算步骤.

(15)(本题满分 10 分)

已知函数
$$f(x) = \begin{cases} x^{2x}, & x > 0 \\ xe^x + 1, & x \le 0 \end{cases}$$
,求 $f'(x)$,并求 $f(x)$ 的极值.

(16)(本题满分 10 分)

设函数
$$f(u,v)$$
具有2阶连续偏导数,函数 $g(x,y) = xy - f(x+y,x-y)$,求 $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial x \partial y} + \frac{\partial^2 g}{\partial y^2}$

(17)(本题满分 10 分)

设函数
$$y(x)$$
是微分方程 $y'-xy=\frac{1}{2\sqrt{x}}e^{\frac{x^2}{2}}$ 满足条件 $y(1)=\sqrt{e}$ 的特解.

- (1) 求y(x);
- (2) 设平面区域 $D = \{(x, y) | 1 \le x \le 2, 0 \le y \le y(x) \}$, 求D绕x轴旋转所得旋转体的体积.

无水印版由【公众号:小盆考研】免费提供

更多考研数学视频文档资料, 【公众号: 小盆考研】, 回复【数学】免费获取

更多考研押题资料视频, 【公众号: 小盆考研】免费提供

更多考研数学预测卷,【公众号:小盆考研】,回复【数学预测】免费获取

无水印版由【公众号:小盆考研】免费提供

(18)(本题满分 10 分)

求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与x轴之间图形的面积.

(19)(本题满分 10 分)

- (1) 证明: 数列 $\{a_n\}$ 单调减少,且 $a_n = \frac{n-1}{n+2}a_{n-2}(n=2,3,L)$

(20)(本题满分 11 分)

已知向量组

I:
$$\alpha_1 = (1,1,4)^T$$
, $\alpha_2 = (1,0,4)^T$, $\alpha_3 = (1,2,a^2+3)^T$

II:
$$\beta_1 = (1,1,a+3)^T$$
, $\beta_2 = (0,2,1-a)^T$, $\beta_3 = (1,3,a^2+3)^T$

若向量组 I 与向量组 II 等价,求 a 的取值,并将 β_3 用 α_1 , α_2 , α_3 线性表示

(21)(本题满分 11 分)

已知矩阵
$$A = \begin{pmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}$$
与 $B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似.

- (2) 求可逆矩阵P,使得 $P^{-1}AP = B$.

(22)(本题满分 11 分)

设随机变量 X 与 Y 相互独立, X 服从参数为 1 的指数分布. Y 的概率分布为 $P\{Y=-1\}=p, P\{Y=1\}=1-p(0 Z=XY$

- (1) 求Z的概率密度;
- (2) p为何值时, X与Y不相关;
- (3) X与Z是否相互独立.

(23)(本题满分 11 分)

设总体
$$X$$
的概率密度为 $f(x;\sigma^2) = \begin{cases} \frac{A}{\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, x \ge \mu. \\ 0, x < \mu. \end{cases}$

其中 μ 是已知参数, $\sigma > 0$ 是未知参数,A是常数, X_1, X_2, \cdots, X_n 是来自总体X的简单随机样本.

- (1) 求A;
- (2) 求 σ^2 的最大似然估计量.