Suggested Problems 2

- (1) Let Z_1 and Z_2 be i.i.d from N(0,1). Find $P(Z_1^2 + Z_2^2 < 1)$.
- (2) Let $X_1, \ldots, Y_N \stackrel{iid}{\sim} N(\mu, \sigma^2)$ and $Y_1, \ldots, Y_N \stackrel{iid}{\sim} N(\mu, \sigma^2)$ be two independent sets of random variables. Find the median of $\bar{X} \bar{Y}$.
- (3) Let X_1, X_2, X_3 be i.i.d from $N(\mu = 60, \sigma^2 = 10)$. Find $E[S^2]$ and $Var(S^2)$.
- (4) Let X_1, \ldots, X_N be i.i.d from $N(\mu_X, \sigma^2)$ and Y_1, \ldots, Y_M be i.i.d from $N(\mu_Y, 4\sigma^2)$ and the Xs and Ys are independent. Find the distribution of

$$\frac{4\sum_{n=1}^{N}(X_n-\bar{X})^2+\sum_{m=1}^{M}(Y_m-\bar{Y})^2}{4\sigma^2}.$$

(5) Let X_1, X_2, X_3, X_4 be i.i.d N(0,1) What is the distribution of (a) $(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + (X_3 - \bar{X})^2 + (X_4 - \bar{X})^2$ (b)

$$\frac{(X_1 - X_2 + X_3 + X_4)^2}{4}$$

- (6) Let $X_n \stackrel{iid}{\sim} Geometric(p)$ so that $f(x) = p(1-p)^{x-1}$ for $x = 1, 2, 3, \ldots$ Use the factorization theorem to find a sufficient statistic for p.
- (7) Let $X_n \stackrel{iid}{\sim} f_{\theta}$ where

$$f_{\theta}(x) = 2x\theta^{-2} \exp(-(x/\theta)^2) \text{ for } x > 0.$$

Use the factorization theorem to find a sufficient statistic for θ .

- (8) Let $X_n \stackrel{iid}{\sim} U(0,\theta)$. Use the factorization theorem to find a sufficient statistic for θ .
- (9) Let $X_n \stackrel{iid}{\sim} f_\theta$ where

$$f_{\theta}(x) = \frac{\theta}{(1+x)^{\theta+1}} \text{ for } x > 0.$$

Use the factorization theorem to find a sufficient statistic for θ .

(10) Let $X_n \stackrel{iid}{\sim} f_{\lambda}$ where

$$f_{\lambda}(x) = \frac{1}{2}\lambda^3 x^3 \exp(-\lambda x)$$
 for $x > 0$.

Use the factorization theorem to find a sufficient statistic for λ .