Information Theory Course Project

Filling Data Gaps in Fertilizer Statistics

ARASH HATEFI

March 2022

1. Problem Definition

Swedish official statistics on nitrogen (N) fertilizer use in agriculture are published every year¹. The public dataset, however, has several missing data which we aim to retrieve from the available values using an information theory analysis. Here, a simplified version of the original dataset is used nonetheless, the same procedure can be applied to the original dataset as well. The dataset, applied method, and results are discussed within this brief report.

2. Dataset

A simplified version of the Swedish official statistics on nitrogen (provided by Rasmus Einarsson) was used to demonstrate the procedure. Two types of nitrogen-based fertilizer are presented in the original dataset: synthetic nitrogen fertilizer and animal manure. Therefore, four different fertilization strategies may exist: (1) only synthetic nitrogen fertilizers, (2) synthetic and manure nitrogen fertilizers in combination, (3) only manure nitrogen fertilizers, or (4) no nitrogen fertilizers. In the simplified dataset, only the two first strategies were considered (synthetic nitrogen fertilizer with or without manure nitrogen fertilizer). The total value of used nitrogen fertilizer is denoted by m(reported in kg). The applications of fertilizers are also grouped by the region (r), crop (c), and strategy (s). As an example, the amount of fertilizer used in region r for crop c with strategy s is denoted by m_{rcs} . m_r , m_c , m_s , m_{rc} , m_{rs} , and m_{cs} are also defined in the same way. We can write

$$m = \sum_{s \in S} \sum_{r \in R} \sum_{c \in C} m_{rcs}$$
 (1)

where S, R, and C are the set of all possible strategies, regions, and crops respectively. Similar equations can be also defined for m_r , m_c , m_s , m_{rc} , m_{rs} , and m_{cs} as well. The area of crop c harvested in region r and fertilized using strategy s is denoted by a_{rcs} (reported in ha). The values of m_r , m_c , m_{rc} , m_{cs} , and a_{rcs} are defined in separate files, namely mr.csv, mr.csv

3. Data Retreival Methods

Here, the concept of Shannon Entropy from information theory is used for retrieving the missing data. Entropy is a measure of randomness involved in a stochastic process. Higher values of entropy are associated with random distributions with less predictable outcomes. In a Bernoulli process with two outcomes with probabilities p and p-1 the entropy is defined as

$$H = -\left[p\log_2 p + (1-p)\log_2(1-p)\right] \tag{2}$$

taking its maximum value (s=1) for p=0.5 and minimum value (s=0) for p=0 or p=1 which is expected due to the definition of entropy. Note that in the definition, we assume that $0\log_2 0 \equiv 0$.

¹www.statistikdatabasen.scb.se/pxweb/sv/ssd/START MI MI1001

Similarly, for a discrete stochastic process with n possible outcomes $x_1, ... x_n$ the entropy is

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$
 (3)

where $p(x_i)$ is the probability of outcome x_i .

Two entropy-based distribution prediction methods namely cross-entropy minimization [1][2] and entropy maximization method [3] were used to tackle the problem. These methods are briefly discussed below.

3.1. Entropy Maximization Method

According to this method, the best probability distribution approximating a stochastic process subject to some constraints is the one that maximizes the entropy. Let us assume a stochastic process with n possible outcomes $x_1, \dots x_n$ subject to the following m constraints

$$c_i = f_i[p(x_1), \dots, p(x_n)], \quad i \in \{1, \dots, m\}$$
 (4)

where $p(x_i)$ is the probability of outcome x_i . The best approximations for the values of $p(x_1), ..., p(x_n)$ are

$$\hat{p}(x_1), \dots, \hat{p}(x_n) = \underset{p(x_1), \dots, p(x_n)}{\operatorname{argmax}} - \sum_{i=1}^n p(x_i) \log_2 p(x_i)$$

Subject to
$$c_i = 0, i \in \{1, ..., m\}$$
 (5)

Therefore, we have a constrained optimization problem which is easy to solve. As an example, using the Lagrange multipliers method we can convert the constrained optimization problem to an unconstrained problem with the following objective function:

$$\mathcal{L}(p(x_1), \dots, p(x_n), \lambda_1, \dots, \lambda_m)$$

$$= \left[-\sum_{i=1}^{n} p(x_i) \log_2 p(x_i) \right] + \sum_{i=0}^{m} \lambda_i c_i$$
 (6)

where λ_i is the coefficient of the i'th constraint. To find the minimum, one can solve the gradient equation:

$$\nabla \mathcal{L} = 0 \qquad (7)$$

3.2. Cross-Entropy Minimization Method

The cross-entropy minimization approach provides a model formulation for cases where prior knowledge on the target distribution is available. The method works based on minimizing the Kullback–Leibler divergence (KL divergence) between a prior distribution and a target distribution subjected to several constraints. KL-divergence for two distributions p_1, p_2, \ldots, p_n and q_1, q_2, \ldots, q_n is defined as

$$KL(p||q) = -\sum_{i=1}^{n} p_i \log_2 \frac{q_i}{p_i}$$
 (8)

Which is a measure of how q differs form p. KL-divergence is a non-negative quantity and its minimum occurs at zero for two similar distributions. Minimizing the KL divergence between a fixed distribution p and a variable distribution q is equivalent to minimizing their cross-entropy term defined as

$$CE(p,q) = -\sum_{i=1}^{n} p_i \log_2 q_i$$
 (9)

Therefore, the method is called cross-entropy minimization.

The complete formulation of the cross-entropy minimization method for estimating a constraint distribution, when a prior distribution π is available is

$$\hat{p}(x_1), \dots, \hat{p}(x_n) = \underset{p(x_1), \dots, p(x_n)}{\operatorname{argmin}} - \sum_{i=1}^n p(x_i) \log_2 \frac{\pi(x_i)}{p(x_i)}$$

Subject to
$$c_i = 0, i \in \{1, ..., m\}$$
 (10)

which can be also represented as a maximization problem as follow:

$$\hat{p}(x_1), \dots, \hat{p}(x_n) = \underset{p(x_1), \dots, p(x_n)}{argmax} \sum_{i=1}^{n} p(x_i) \log_2 \frac{\pi(x_i)}{p(x_i)}$$

Subject to
$$c_i = 0, i \in \{1, ..., m\}$$
 (11)

Here also the Lagrange multipliers method can be used for finding the distribution as discussed in the previous part.

$$\mathcal{L}(p(x_1), \dots, p(x_n), \lambda_1, \dots \lambda_m)$$

$$= \left[\sum_{i=1}^n P(x_i) \log_2 \frac{\pi(x_i)}{P(x_i)} \right] + \sum_{i=0}^m \lambda_i c_i \qquad (12)$$

where λ_i is the coefficient of the i'th constraint. To find the minimum of the Lagrangean, the gradient equation can be used as discussed in the last section.

4. Preparing the Dataset

As mentioned previously, the goal of the project is to estimate the missing m_{rcs} values from other available measures in the dataset. To proceed with an information theory approach, one needs to represent the used fertilizers as a probability distribution. To this end, we divide the values of m_{rcs} , m_r , m_c , m_s , m_{rc} , m_{rs} , and m_{cs} to an estimation of m (total amount of nitrogen fertilizers used) to get p_{rcs} , p_r , p_c , p_s , p_{rc} , p_{rs} , and p_{cs} . The estimation for m was obtained using the following formula from the dataset:

$$m \approx \frac{1}{3} \left(\sum_{c \in C} m_c + \sum_{r \in R} m_r + \sum_{c \in C} \sum_{s \in S} m_{cs} \right)$$
 (13)

The possible constraints to take into account are

$$\begin{split} \sum_{s \in S} \sum_{r \in R} p_{crs} \approx p_c \quad ; \quad \forall c \in C \quad \ & (14) \\ \sum_{s \in S} \sum_{c \in C} p_{crs} \approx p_r \quad ; \quad \forall r \in R \quad \ & (15) \\ \sum_{r \in R} p_{rcs} \approx p_{cs} \quad ; \quad \forall c \in C, \forall s \in S \quad \ & (16) \\ \sum_{s \in S} p_{rcs} \approx p_{cr} \quad ; \quad \forall c \in C, \forall r \in R \quad \ & (17) \end{split}$$

Note that the approximation sign (\approx) in constraints is because of rounding errors that exist in the dataset.

To use the above constraint equations with the Lagrange multipliers method, we represent them in

a standard form with the right side being equal to zero. We then store the left sides (that are basically zero quantities) to separate sets:

$$\mathbb{C}_1 = \{ \forall c \in C | \sum_{s \in S} \sum_{r \in R} p_{crs} - p_c \}$$
 (18)

$$\mathbb{C}_2 = \{ \forall r \in R \mid \sum_{s \in S} \sum_{c \in C} p_{crs} - p_r \}$$
 (19)

$$\mathbb{C}_3 = \{ \forall c \in C, \forall s \in S | \sum_{r \in R} p_{rcs} - p_{cs} \}$$
 (20)

$$\mathbb{C}_4 = \{ \forall c \in C, \forall r \in R | \sum_{s \in S} p_{rcs} - p_{cr} \}$$
 (21)

Also, as some m_{rcs} values are available in the dataset, one can also add the following set of constraints to the problem:

$$[p_{crs}]_i = p(x_i)$$
 ; $i \in I$ (22)

Where $[p_{crs}]_i$ is the value of p_{crs} in the ith row and I is the set of row indices that their values are available. The above set of constraints can be written as

$$\mathbb{C}_5 = \{ i \in I | [p_{crs}]_i - p(x_i) \}$$
 (23)

In the case of the used dataset, the total number of independent constraints is larger than the number of variables, making the problem over-constraint. This is because of the error in the dataset so that, as an example, the sum of m_{rc} values for a specific region r^* is not exactly equal to m_{r^*} , but an approximation to it. There are two approaches for handling the issue. First, one can simply ignore some of the constraints (say \mathbb{C}_1 and \mathbb{C}_2 as they are to some extent incorporated in \mathbb{C}_3 and \mathbb{C}_4) and use a subset of independent constraints. Another approach is to directly solve the over-constraint problem and accept a certain amount of deviation from each of the constraints. The second approach is expected to perform better as all the constraints are approximations and the more constraint we use, the lower would be the effect of the noise in the dataset (like rounding errors) on the solution.

Here, we solve the problem using four different sets of constraints as shown below:

$$\mathbb{C}_I = \mathbb{C}_1 \cup \mathbb{C}_2 \qquad (24)$$

$$\mathbb{C}_{II} = \mathbb{C}_3 \cup \mathbb{C}_4 \qquad (25)$$

$$\mathbb{C}_{III} = \mathbb{C}_1 \cup \mathbb{C}_2 \cup \mathbb{C}_3 \cup \mathbb{C}_4 \quad (26)$$

$$\mathbb{C}_{IV} = \mathbb{C}_1 \cup \mathbb{C}_2 \cup \mathbb{C}_3 \cup \mathbb{C}_4 \cup \mathbb{C}_5 \quad (27)$$

5. Finding the Missing values

The missing values are found using the entropy maximization and cross-entropy minimization methods, each applied to problems with constraints set \mathbb{C}_I , \mathbb{C}_{II} , \mathbb{C}_{III} or \mathbb{C}_{IV} . For the cross-entropy minimization method we also need a prior distribution. We solve the problem with two different priors. In the first attempt we consider a uniform distribution, as the distribution with the maximum uncertainty for the prior knowledge. For a more advanced prior we assure the amount of nitrogen fertilizer is proportional to the harvesting area.

$$m_{crs} \propto a_{crs}$$
 (28)

Therefore, one can find the prior distribution as

$$\pi_{crs} = \frac{a_{crs}}{\sum_{c \in C} \sum_{s \in S} \sum_{r \in R} a_{crs}} \quad (29)$$

For solving each of the constraint optimization problems (including the over-constraint ones), we minimized the second norm of the Lagrangean gradient. The new objective is

$$\hat{p}(x_1), \dots, \hat{p}(x_n) = \underset{p(x_1), \dots, p(x_n)}{\operatorname{argmin}} \|\nabla \mathcal{L}\| \qquad (30)$$

Which is an unconstraint non-linear optimization problem easily solvable by Matlab. The set of parameters used in each optimization process is listed in table 1.

Table 1: proposed settings for solving the problem

Name	Method	Constraints	Prior		
Setting 1	Entropy Maximization	\mathbb{C}_I	-		
Setting 2	Entropy Maximization	\mathbb{C}_{II}	-		
Setting 3	Entropy Maximization	\mathbb{C}_{III}	-		
Setting 4	Entropy Maximization	\mathbb{C}_{IV}	-		
Setting 5	Cross-Entropy Minimization	\mathbb{C}_I	Uniform		
Setting 6	Cross-Entropy Minimization	\mathbb{C}_I	$m_{crs} \propto a_{crs}$		
Setting 7	Cross-Entropy Minimization	\mathbb{C}_{II}	Uniform		
Setting 8	Cross-Entropy Minimization	\mathbb{C}_{II}	$m_{crs} \propto a_{crs}$		
Setting 9	Cross-Entropy Minimization	\mathbb{C}_{III}	Uniform		
Setting 10	Cross-Entropy Minimization	\mathbb{C}_{III}	$m_{crs} \propto a_{crs}$		
Setting 11	Cross-Entropy Minimization	\mathbb{C}_{IV}	Uniform		
Setting 12	Cross-Entropy Minimization	\mathbb{C}_{IV}	$m_{crs} \propto a_{crs}$		

Also, the predicted values using the entropy maximization and cross-entropy minimization methods are available in tables 2 and 3 respectively.

Table 2: Found Values using the Entropy Maximization Method

			M							
Region	Crop	Strategy*	Setting 1	Setting 2	Setting 3	Setting 4	Real Values			
P01	Cereals	S	9745	17063	17127	18163	18248			
PO1	Cereals	S & M	9745	3753	3806	2894	2907			
PO1	Ley Silage	S	4801	1159	1223	1225	1215			
PO1	Ley Silage	S & M	4801	2468	2591	2444	2440			
PO1	Ley Pasture	S	231	203	194	117	-			
PO1	Ley Pasture	S & M	231	164	168	50	-			
PO1	Other	S	2977	7444	7638	8708	8776			

^{*} S: synthetic, S & M: synthetic and manure

Table 3 (Continue)

PO1	Other	S & M	2977	2611	2652	1767	1778
P02	Cereals	S	6611	8285	8397	7356	7376
P02	Cereals	S & M	6611	1822	1866	2985	2956
P02	Ley Silage	S	3257	2435	2522	1980	1972
P02	Ley Silage	S & M	3257	5183	5343	5786	5775
P02	Ley Pasture	S	157	260	151	229	256
P02	Ley Pasture	S & M	157	210	130	24	-
P02	Other	S	2020	3929	4100	2814	2840
P02	Other	S & M	2020	1378	1423	2877	2876
PO3	Cereals	S	8911	18740	18827	19657	19685
P03	Cereals	S & M	8911	4122	4184	3478	3436
P03	Ley Silage	S	4390	1593	1643	1907	1887
P03	Ley Silage	S & M	4390	3391	3481	3160	3146
P03	Ley Pasture	S	212	195	196	175	218
P03	Ley Pasture	S & M	212	158	170	28	-
P03	Other	S	2722	2727	2847	3334	3364
P03	Other	S & M	2722	956	988	654	662
P04	Cereals	S	8414	17405	17501	18673	18701
P04	Cereals	S & M	8414	3828	3890	2905	2873
P04	Ley Silage	S	4145	1521	1577	3017	2992
P04	Ley Silage	S & M	4145	3238	3341	1842	1830
P04	Ley Pasture	S	200	187	190	225	269
P04	Ley Pasture	S & M	200	151	164	13	-
P04	Other	S	2571	2739	2859	3495	3518
P04	Other	S & M	2571	960	992	505	513
P05	Cereals	S	5546	4427	4590	3699	3726
P05	Cereals	S & M	5546	973	1020	2013	1934
P05	Ley Silage	S	2732	4062	4183	2476	2450
P05	Ley Silage	S & M	2732	8645	8859	10424	10400
P05	Ley Pasture	S	132	314	59	497	490
P05	Ley Pasture	S & M					
P05	Other	S	132 1694	254 750	51 919	61	-
P05	Other	S & M	1694	263	320	570 472	594 476
P05	Cereals	S				1402	
P06	Cereals	S & M	1512 1512	2155	1802		1436
P06	Ley Silage	S		474	400	933	931
P06	Ley Silage	S & M	745	833	825	1323	1312
P06		S	745	1774	1748	1232	-
P06 P06	Ley Pasture	S S & M	36	168	180	233	
	Ley Pasture		36	136	156	99	-
P06	Other	S & M	462	637	359	284	-
P06	Other		462	223	125	96	-
P07	Cereals	S	891	737	720	343	-
P07	Cereals	S & M	891	162	160	148	-
P07	Ley Silage	S	439	772	677	592	-
P07	Ley Silage	S & M	439	1644	1434	1757	-
P07	Ley Pasture	S	21	168	157	168	-
P07	Ley Pasture	S & M	21	136	136	71	-
P07	Other	S	272	637	313	203	-
P07	Other	S & M	272	223	109	69	-
P08	Cereals	S	993	757	721	426	-
P08	Cereals	S & M	993	167	160	183	-
P08	Ley Silage	S	489	914	772	970	-
P08	Ley Silage	S & M	489	1946	1634	1840	1826
P08	Ley Pasture	S	24	168	195	98	-
P08	Ley Pasture	S & M	24	136	169	42	-
P08	Other	S	303	637	389	120	-
P08	Other	S & M	303	223	135	40	-

Table 3: Found Values using the Cross-Entropy Minimization Method

			М								
Region	Crop	Strategy*	Setting 5	Setting 6	Setting 7	Setting 8	Setting 9	Setting 10	Setting 11	Setting 12	Real Values
P01	Cereals	S	9724	16917	14575	17966	16845	17956	17411	18221	18248
P01	Cereals	S & M	9724	3983	3317	3046	3761	3067	2953	2869	2907
P01	Ley Silage	S	4786	1372	1156	1258	1262	1272	1197	1201	1215
P01	Ley Silage	S & M	4786	2324	2356	2376	2670	2396	2541	2448	2440
P01	Ley Pasture	S	269	227	42	200	304	187	819	183	-
P01	Ley Pasture	S & M	269	70	39	69	255	76	384	73	-
P01	Other	S	2965	8315	6013	8647	7466	8634	8525	8759	8776
P01	Other	S & M	2965	2301	2553	1828	2641	1832	1514	1765	1778
P02	Cereals	S	6595	6586	7711	7393	8412	7413	7193	7374	7376
P02	Cereals	S & M	6595	3520	1747	2845	1877	2874	2923	2945	2956
P02	Ley Silage	S	3246	2037	2283	1795	2546	1810	2068	1958	1972
P02	Ley Silage	S & M	3246	6022	4644	5922	5382	5953	5775	5790	5775
P02	Ley Pasture	S	182	244	271	274	45	267	204	225	256
P02	Ley Pasture	S & M	182	49	252	61	37	70	181	66	-
P02	Other	S	2011	2410	3919	2798	4006	2803	2800	2842	2840
P02	Other	S & M	2011	3220	1662	2857	1417	2871	2648	2877	2876
P03	Cereals	S	8891	18351	15922	19476	18484	19483	18932	19700	19685
P03	Cereals	S & M	8891	4704	3626	3596	4127	3623	3629	3441	3436
P03	Ley Silage	S	4376	2087	1542	1946	1707	1963	2031	1890	1887
P03	Ley Silage	S & M	4376	2971	3142	3090	3610	3108	3223	3173	3146
P03	Ley Pasture	S	246	226	120	230	340	225	308	184	218
P03	Ley Pasture	S & M	246	34	112	39	285	45	170	41	-
P03	Other	S	2711	3280	2522	3328	2687	3338	2978	3363	3364
P03	Other	S & M	2711	814	1066	631	950	635	728	656	662
P04	Cereals	S	8395	17686	14848	18806	17206	18844	17971	18680	18701
P04	Cereals	S & M	8395	3432	3379	2628	3841	2652	3020	2842	2873
P04	Ley Silage	S	4132	3505	1458	3004	1637	3038	2953	2984	2992
P04	Ley Silage	S & M	4132	1887	2971	1804	3461	1819	2084	1848	1830
P04 P04	Ley Pasture	S & M	232	242	34	295	299	283	176	233	269
P04 P04	Ley Pasture	SWI	232	23	32	31	250	35	188	37	-
P04 P04	Other Other	S & M	2560	3319	2546	3522	2708	3529	3135	3517	3518
P04 P05	Cereals	S	2560	565	1077	458	958	460	696	508	513
P05	Cereals	S & M	5532 5532	3569	4371	3625 1936	4525	3675	3667	3720	3726 1934
P05	Ley Silage	S		2646	987		1009	1976	1876	1925	
P05	Ley Silage Ley Silage	S & M	2722 2722	2398 9788	3749 7614	2317 10550	4114 8696	2334 10596	2530 10257	2454 10431	2450 10400
P05	Ley Pasture	S									
P05	Ley Pasture	S & M	153 153	486 137	251 233	526 164	334 280	412 151	413 170	465 145	490
P05	Other	S	1686	527	715	511	816	533	681	566	594
P05	Other	S & M	1686	658	303	488	289	511	435	487	476
P06	Cereals	S	1526	1348	2989	1482	1989	1476	1536	1432	1436
P06	Cereals	S & M	1526	1036	674	820	444	823	731	918	931
P06	Ley Silage	S	751	1416	958	1330	788	1324	1582	1282	1312
P06	Ley Silage	S & M	751	1203	1953	1261	1666	1252	817	1326	-
P06	Ley Pasture	S	42	104	1671	163	96	158	311	147	_
P06	Ley Pasture	S & M	42	104	1553	17	80	20	146	18	-
P06	Other	S	465	298	872	421	623	406	597	307	_
P06	Other	S & M	465	94	370	101	220	98	374	94	_
P07	Cereals	S	914	368	2619	433	946	362	1087	277	-
P07	Cereals	S & M	914	346	591	293	213	247	171	262	-

^{*} S: synthetic, S & M: synthetic and manure

Table 3 (Continue)

P07	Ley Silage	S	450	852	922	836	616	817	525	757	-
P07	Ley Silage	S & M	450	1428	1881	1563	1303	1525	1584	1639	-
P07	Ley Pasture	S	25	93	1671	155	85	154	163	142	-
P07	Ley Pasture	S & M	25	9	1553	17	71	20	76	18	-
P07	Other	S	279	120	872	181	556	178	313	134	-
P07	Other	S & M	279	32	370	37	197	36	196	35	-
P08	Cereals	S	1005	453	2638	564	991	516	1086	369	-
P08	Cereals	S & M	1005	299	595	269	223	248	171	247	-
P08	Ley Silage	S	495	965	1004	945	738	912	512	961	-
P08	Ley Silage	S & M	495	1740	2048	1902	1561	1830	1901	1850	1826
P08	Ley Pasture	S	28	49	1671	85	85	81	193	81	-
P08	Ley Pasture	S & M	28	22	1553	43	72	48	90	47	-
P08	Other	S	306	61	872	96	557	91	371	73	-
P08	Other	S & M	306	30	370	37	197	35	232	36	-

6. Interpreting the Results

The coefficient of determination (r^2) is used as a measure for comparing the accuracy of different solutions. r^2 is a measure of success in predicting correct values which takes its maximum value at one when predictions are identical to real values. The mathematical formula for r^2 is as follow:

$$r^{2} = 1 - \frac{\sum_{c \in C} \sum_{s \in S} \sum_{r \in R} (\hat{p}_{crs} - p_{crs})^{2}}{\sum_{c \in C} \sum_{s \in S} \sum_{r \in R} (\bar{p} - p_{crs})^{2}}$$
(31)

where \bar{p} is the average of p_{crs} values and \hat{p}_{crs} are the predicted values. As some p_{crs} values are missing from the table, only the available ones with their corresponding predictions are considered in predicting r^2 .

The values of r^2 for each of the solutions are shown in table 3.

Using the cross-entropy minimization method with uniform distribution, we get approximately the same results from entropy maximization. This is due to the fact that the maximum of the entropy function for a random process occurs at uniform distribution (In other words, by using the uniform prior distribution, equation 12 becomes same as equation 6). The slight deviations are due to the numerical errors. By considering the amount of fertilizer being proportional to the harvesting area, the cross-

Table 4: r^2 Values for Different Settings

	· ,, · · · · · · · · · · · · · · · ·					
Solution	r^2					
Setting 1	0.38059					
Setting 2	0.96983					
Setting 3	0.97047					
Setting 4	0.99878					
Setting 5	0.38055					
Setting 6	0.98844					
Setting 7	0.94346					
Setting 8	0.99955					
Setting 9	0.96721					
Setting 10	0.99953					
Setting 11	0.99711					
Setting 12	0.99999					

entropy minimization method outperforms the entropy maximization which is expected because in reality, the amount of fertilizer correlates with the harvesting area. Finally, adding more constraints generally improves the accuracy of prediction and the highest accuracies are achieved in the over-constraint optimizations, where all five at of constraints are taken into account. The drawback of adding the fifth set of constraints (\mathbb{C}_5) is that using these extra constraints makes it difficult to estimate the accuracy of predictions for missing values from the accuracy of presented values. This is because both methods have a better performance on predicting the available values which were fed to them within constraints in \mathbb{C}_5 . The predicted values (\hat{p}_{crs}) versus the available ones in the table (p_{crs}) for different settings are shown in figure 1.

Figure 1: The predicted values (\hat{p}_{crs}) versus the available ones in the table (p_{crs}) for different settings

Figure 1 (Continue)

7. Conclusion

In this work, cross-entropy minimization and entropy maximization methods were used for estimating the missing data in the Swedish statistics on nitrogen fertilizers. Both methods did an acceptable job of predicting the missing data, while the first one outperformed the second when used with a realistic prior distribution. It was seen that increasing the number of constraints can be beneficial for reaching higher predictions accuracy, even though it may result in an over-constraint problem which can be relaxed by considering the constraints as approximations to reality.

References

- [1] You, L. and S. Wood (2005). Assessing the Spatial Distribution of Crop Areas Using a Cross-Entropy Method. International Journal of Applied Earth Observation and Geoinformation. Bridging Scales and Epistemologies Linking Local Knowledge with Global Science in Multi-Scale Assessments 7(4), pp. 310–323.
- [2] You, L., S. Wood, U. Wood-Sichra, and W. Wu (2014). Generating Global Crop Distribution Maps: From Census to Grid. Agricultural Systems 127, pp. 53–60.
- [3] Guiasu, S. and Shenitzer, A. (1985). The principle of maximum entropy. The Mathematical Intelligencer. pp. 42–48.