# Report 5 - Data Mining ID2222

# Enric Perpinyà Pitarch

During this report an implementation of Jabeja<sup>1</sup> will be discussed. In the task 1, a simple lineal implementation will be analyzed. In the task 2, an annealing implementation to avoid local optima will be discussed according to Katrina Ellison Geltman<sup>2</sup>. In the task 3 a simple improvement for the jabeja algorithm to minimize the cuts will be discussed.

#### Task 1

| Graph    | Node Policy | Edge-Cut | Swaps   | Migrations |
|----------|-------------|----------|---------|------------|
| 3elt     | LOCAL       | 3208     | 481018  | 3518       |
| 3elt     | HYBRID      | 866      | 348204  | 3596       |
| Add20    | LOCAL       | 3399     | 1300607 | 1593       |
| Add20    | HYBRID      | 1743     | 723575  | 1799       |
| Facebook | LOCAL       | 185394   | 7054113 | 47673      |
| Facebook | HYBRID      |          |         |            |

In this task 1 in the cases the parameters, unless specified in the table or elsewhere, have been alpha=2.0 and delta=0.005. All the other parameters are the default ones.

<sup>&</sup>lt;sup>1</sup> https://payberah.github.io/files/download/papers/jabeja.pdf

<sup>&</sup>lt;sup>2</sup> http://katrinaeg.com/simulated-annealing.html



3elt Graph in HYBRID Node Policy



3elt Graph in LOCAL Node Policy



Add20 Graph with HYBRID Node Policy



Add20 Graph with LOCAL Node Policy



Facebook graph with HYBRID Node Policy



Facebook graph with LOCAL Node Policy

## Task 2

For the task 2 we have used exponential decaying annealing. In this case we have used an HYBRID policy with a temperature 1 and alpha of 2.

| Graph    | Delta | Edge-cut | Swaps    | Migrations |
|----------|-------|----------|----------|------------|
| 3elt     | 0,8   | 1261     | 54173    | 3399       |
| 3elt     | 0,9   | 1256     | 58496    | 3426       |
| add20    | 0,8   | 2972     | 1651264  | 1793       |
| add20    | 0,9   | 2492     | 1424414  | 1774       |
| Facebook | 0,8   | Too long | Too long | Too long   |
| Facebook | 0,9   | Too long | Too long | Too long   |

In other to avoid the local minima stuck we have used as well a restart Temperature function. After 100 rounds of the edge count being constant we reset the temperature.

| Graph    | Annealing   | Delta | Edge-cut       | Swaps    | Migrations |
|----------|-------------|-------|----------------|----------|------------|
| 3elt     | Lineal      | 0,005 |                |          |            |
| 3elt     | Exponential | 0,9   | 1342           | 55110    | 3410       |
| add20    | Lineal      | 0,005 |                |          |            |
| add20    | Exponential | 0,9   | 2660           | 1480677  | 1780       |
| Facebook | Lineal      | 0,005 | Takes too long | Too long | Too long   |
| Facebook | Exponential | 0,9   | Too Long       | Too long | Too long   |



3elt with Delta = 0.8



3elt with delta = 0.9



Add20 with alpha = 0.8



Add20 with alpha = 0.9



3elt exponential with restart on 100 rounds



3elt lineal with restart on 100 rounds



Add20 exponential with restart on 100 rounds



Add20 lineal with restart on 100 rounds

## Task 3

In order to further improve the algorithm the idea I have in mind is to aproximate the annealing to the infinite so it converges to 0. Basically instead of using  $e^{c_{new}-c_{old}/T}->e^{1/T}$ , we use  $e^{(1/c_{old}-1/c_{new})/T}->e\infty/T=0$ .