Ch 15 - Constrained Optimization

Case 1: objective function and constraints ore linear.

(Linear Programming)

Case 2: Nonlinear constrained optimization.

Unear Programming

objective function:

maximize $z = c_1 \times_1 + c_2 \times_2 + - - + c_n \times_n$ (profit)

cj: payoff of each unit of j'the activity.

xj: magnitude of jth activity.

2 : total payoff due to n activities.

constraints: aix x + aix x x + --- + ain x x < bi

bi: amount of the ith resource that is available (Resources are limited)

aij = amount of the ith resource that is consumed for each unit of jth activity.

constraint: x:>0

(grade)

Et Gas-processing plant: regular quality or premoun quality

	Procluct		
Resource	Regular	Premium	Resource Availability
Raw Gas	7 m3/tonne	11 m³/tome	77 m³/week
Production Time	10 hr/Honne	8 hr/ton	80 hr/week
Storage	g ton	6 ton	
Profet	150/60	175/ton	

. Only one of the grades can be produced at a time. Both grades are guaranteed to sell.

Develop a LP formulation to maximize the profit for this operation.

Soln How much of each gar should be produced to maximize the profit?

Total profit = 150 x1 + 175 x2 = = maximize = 150 x, + 175xz objective function

Total gas used = (7x1+11x2 (771) constraint (material)

Graphical Solution Step! : Draw the constraint

At
$$z=0 = (50 \times_1 + 175 \times_2 \implies \times_2 = \frac{-150}{175} \times_1$$

at $z=600 = 150 \times_1 + 175 \times_2$
 $x_2 = \frac{600}{175} - \frac{150}{175} \times_1$

at
$$t = (400 = 150 \times_1 + 175 \times_2 =) \times_1 = 4.9$$
 mox. profit $\times_2 = 3.9$ is 1400

Substitute the answer into constraints:

$$7(4.9) + 11(3.9) \stackrel{\sim}{=} 77$$
 just meet the revource and time constraints. 10(4.9) + 8(3.9) $\stackrel{\sim}{=} 80$ J (binding constraints) 4.9 9 hon-binding $3.9 \stackrel{\sim}{=} 6$

Conclusions

- · can increase profit by by increasing rawgas and production time resources
- · incrasing storage will have no impact on profit.
- * Four possible outcome in a linear programming problem
- 1) unique colution: a single pt (prev-example)
- 2) alternate solutions: objective function is parallel to one of the constraints.

 infinite # of optima

3) No feavible solution: problem is over constrained

4) Unbounded Problem: problem is underconstruined

