Computability Exam Solutions

September 17, 2010

Exercise 1

Formal Statement and Proof of Closure under Unbounded Minimization

Statement: If $f: \mathbb{N}^{k+1} \to \mathbb{N}$ is computable, then $g: \mathbb{N}^k \to \mathbb{N}$ defined by $g(\vec{x}) = \mu y. f(\vec{x}, y)$ is also computable.

Definition:

```
g(\vec{x}) = \mu y.f(\vec{x},y) = \{
the least y such that f(\vec{x},y) = 0 if such y exists

↑ otherwise

}
```

Proof:

Let $f: \mathbb{N}^{k+1} \to \mathbb{N}$ be computable. Since f is computable, there exists a URM program P_f that computes f.

Construction of URM program for g:

Correctness:

- If $\exists y$ such that $f(\vec{x}, y) = 0$: The program finds the least such y and terminates
- If $\forall y$: $f(\vec{x}, y) \neq 0$: The program loops forever (correct behavior for 1)

Computability: Since P_g uses only basic URM instructions and calls the computable function f, g is computable.

Therefore, the set of computable functions is closed under unbounded minimization.

Exercise 2

Analysis of $f(x) = \phi_x(x) + 1$ if $\forall y \le x$: $\phi_y(y) \downarrow$, 0 otherwise

Answer: The function f is not computable.

Proof by contradiction:

Suppose f is computable. We'll derive a contradiction.

Define the set:

```
A = \{x \in \mathbb{N} : \forall y \le x. \, \phi_{\nu}(y) \downarrow \}
```

Then:

```
f(x) = \{
\phi_x(x) + 1 \text{ if } x \in A
0 \text{ if } x \notin A
```

If f is computable, we can decide membership in A:

```
x \in A \iff f(x) \neq 0 \land \varphi_x(x) \downarrow \land f(x) = \varphi_x(x) + 1
```

Constructing a contradiction:

Since we can decide A, define $h : \mathbb{N} \to \mathbb{N}$ by:

```
h(x) = \{
\phi_x(x) + 1 \text{ if } x \in A
\uparrow \text{ if } x \notin A
}
```

If f is computable, then A is decidable, so h is computable.

By the s-m-n theorem, \exists total computable $s: \mathbb{N} \to \mathbb{N}$ such that $\phi_{s(x)}(y) = h(x)$ for all y (constant function).

In particular, $\varphi_{s(x)}(s(x)) = h(x)$.

Case analysis:

Case 1: $s(x) \in A$ Then $\forall y \le s(x)$: $\phi_{\gamma}(y) \downarrow$, so in particular $\phi_{s(x)}(s(x)) \downarrow$. Also, $h(x) = \phi_{x}(x) + 1$, and $\phi_{s(x)}(s(x)) = h(x) = \phi_{x}(x) + 1$. For $s(x) \in A$, we need $\phi_{s(x)}(s(x)) \downarrow$, which is true.

Case 2: $s(x) \notin A$

Then $\exists y \leq s(x)$: $\phi_v(y) \uparrow$, and $h(x) \uparrow$, so $\phi_{s(x)}(s(x)) \uparrow$. But this means $\phi_{s(x)}(s(x)) \uparrow$, so $s(x) \notin A$ is consistent.

The contradiction arises from the self-referential nature and the fact that we're essentially trying to solve the halting problem uniformly.

Therefore, f is not computable.

Exercise 3

Classification of A = $\{x \mid \phi_x \text{ quasi-total}\}\$

A function f is quasi-total if it is undefined on a finite set of points.

A is saturated: $A = \{x \mid \phi_x \in A\}$ where $A = \{f \mid f \text{ is quasi-total}\}.$

A is not r.e.: We use Rice-Shapiro theorem. Consider any total function g (e.g., identity). Then g is quasitotal (undefined on 0 points), so $g \in A$.

For any finite function $\theta \subseteq g$, θ is defined only on finitely many points, so θ is quasi-total, hence $\theta \in A$.

This doesn't immediately give us Rice-Shapiro. Let me reconsider.

Consider a function g that is undefined everywhere except on finitely many points, so g is quasi-total. For any finite $\theta \subseteq g$, θ is also quasi-total.

Actually, let me try a different approach. Consider the everywhere undefined function \emptyset . This function is quasi-total (undefined on all points, which includes being undefined on finitely many). So $\emptyset \in A$.

Wait, let me clarify the definition. A function is quasi-total if its domain is co-finite (i.e., the complement of the domain is finite).

Consider the identity function id, which is total, hence quasi-total. So id \in A.

Consider a finite function $\theta \subseteq id$. Then θ has finite domain, so its complement is infinite. Therefore θ is not quasi-total, so $\theta \notin A$.

Since id \in A and \forall finite $\theta \subseteq$ id: $\theta \notin$ A, by Rice-Shapiro theorem, A is not r.e.

 $\bar{\bf A}$ is not r.e.: Consider a function g with infinite undefined set (not quasi-total). For finite $\theta \subseteq g$, $\bar{\bf \theta}$ still has finite domain, so $\bar{\bf \theta} \notin \bar{\bf A}$, hence $\bar{\bf \theta} \in \bar{\bf A}$.

Using similar Rice-Shapiro arguments, Ā is not r.e.

Final classification: A and Ā are both not r.e. (and hence not recursive).

Exercise 4

Proof that $\bar{K} \leq_m B$ where $B = \{x \in \mathbb{N} \mid \phi_x \text{ total}\}\$

Define $g: \mathbb{N}^2 \to \mathbb{N}$ by:

This can be implemented as:

```
g(x,y) = \mu z.H(x,x,z)
```

Since H is decidable, g is computable.

By the s-m-n theorem, there exists a total computable function $s : \mathbb{N} \to \mathbb{N}$ such that:

```
\phi_{s(x)}(y) = g(x,y)
```

Verification of the reduction:

- If $\mathbf{x} \notin \mathbf{K}$: Then $\phi_x(x) \uparrow$, so $\forall z \neg H(x,x,z)$, hence $\forall y : \phi_{s(x)}(y) = 0$. Therefore $\phi_{s(x)}$ is total, so $s(x) \in B$.
- If $\mathbf{x} \in \mathbf{K}$: Then $\phi_x(x) \downarrow$, so $\exists z$: H(x,x,z), hence $\forall y$: $\phi_{s(x)}(y) \uparrow$. Therefore $\phi_{s(x)}$ is nowhere defined (not total), so $s(x) \notin B$.

Therefore, $x \in \overline{K} \iff s(x) \in B$, which means $\overline{K} \leq_m B$ via s.

Exercise 5

s-m-n Theorem and Application

s-m-n Theorem: For every m, $n \ge 1$, there exists a total computable function $s_{m,n} : \mathbb{N}^{m+1} \to \mathbb{N}$ such that for all $e \in \mathbb{N}$, $\vec{x} \in \mathbb{N}^m$, $\vec{y} \in \mathbb{N}^n$:

```
\phi_{e}(m+n)(\vec{x}, \vec{y}) = \phi_{sm,n(e,x)}(n)(\vec{y})
```

Proof of existence of s : $\mathbb{N}^2 \to \mathbb{N}$ such that $W_{s(x,y)} = \{z : x \cdot z = y\}$

Define $g: \mathbb{N}^3 \to \mathbb{N}$ by:

This function is computable since:

- Multiplication $x \cdot z$ is computable
- Equality testing $x \cdot z = y$ is decidable
- Conditional branching is computable

By the s-m-n theorem (with m = 2, n = 1), there exists a total computable function s : $\mathbb{N}^2 \to \mathbb{N}$ such that:

```
\phi_{s(x,y)}(z) = g(x,y,z)
```

Verification:

```
W_{s(x,y)} = \{z : \varphi_{s(x,y)}(z) \downarrow\}= \{z : g(x,y,z) \downarrow\}= \{z : x \cdot z = y\}
```

Therefore, s is the desired function such that $W_{s(x \cdot y)} = \{z : x \cdot z = y\}.$