Discrete Mathematics, 2016 Fall - Worksheet 10

October 17, 2016

Instructor: Zsolt Pajor-Gyulai, CIMS

1.	Plea	se state the contrapositive of each of the following statements:
	(a)	If x is odd, then x^2 is odd. If x^2 is not odd then x is not odd.
	(b)	If x is non-zero, then x^2 is positive.
	(-)	If x^2 is not positive, then x is zero.
2.		we by the contrapositive method that if a does not divide b , then the equation $ax^2 + b - a = 0$ has no positive integer solution for x .
		of. We prove the contrapositive, i. e. that if $ax^2 + bx + b - a = 0$ has a positive integer tion then a divides b.
	Since gives a po	time that there is a positive integer solution $ax^2 + bx + b - a = 0$, denote this by k , where k is an integer solution, we have $k \in \mathbb{Z}$ and $ak^2 + bk + b - a = 0$. Rearranging this is $a(1-k^2) = b(k+1)$, which can also be written as $b(k+1) = a(1-k)(1+k)$. Since k is sitive integer, $k+1 \neq 0$ and we can simplify by it to get $b = a(1-k)$. Since $1-k \in \mathbb{Z}$, means $a b$.
3.		each of the following statements, write the first sentences of a proof by contradiction (do attempt to complete the proofs). Please use the phrase "for the sake of contradiction".
	(a)	If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
		<i>Proof.</i> Let $A \subseteq B, B \subseteq C$ and for the sake of contradiction assume $A \not\subseteq C$. []
	(b)	The sum of two negative integers is a negative integer.
		<i>Proof.</i> Let x and y be two negative integers and for the sake of contradiction assume $x+y$ is positive. $[\ldots]$
	(c)	If the square of a rational number is an integer, then the rational number must also be an integer.
		<i>Proof.</i> Let q be a rational number such that $q^2\mathbb{Z}$ and for the sake of contradiction assume that q is not an integer. $[]$

4. Prove the following statements by contradiction.		
	(a)	Consecutive integers cannot be both even.
		<i>Proof.</i> Let x be an integer and assume for the sake of contradiction that x and $x+1$ are both even. Then there are integers k_1 and k_2 such that $x=2k_1$ and $x+1=2k_2$. Combining the two, we get $2k_1+1=2k_2$ which implies $k_1-k_2=1/2$. Since k_1 and k_2 are integers, this is impossible.
	(b)	Consecutive integers cannot be both odd.
		<i>Proof.</i> Let x be an integer and assume for the sake of contradiction that x and $x+1$ are both odd. In particular, this means that there is an integer b such that $x+1=2c+1$. Substracting 1 from both sides, we get $x=2c$ which means that x is even. Since we have proved in class that a number cannot be both even and odd, this contradicts the assumption that x is odd. This proves the claim.
	(c)	If the sum of two primes is prime, then one of the primes must be 2 (you may assume that every integer is either even or odd, but never both.)
		<i>Proof.</i> Let p_1 and p_2 be two primes such that p_1+p_2 is also a prime and assume for the sake of contradiction that neither p_1 nor p_2 equals 2. Since $p_1 \neq 2$, p_1 must not be divisible by 2 and therefore it is odd and there is an integer $k_1 \in \mathbb{Z}$ such that $p_1 = 2k_1 + 1$. Similarly $p_2 = 2k_2 + 1$ for some integer $k_2 \in \mathbb{Z}$. Then $p_1 + p_2 = 2(k_1 + k_2 + 1)$ which means $2 (p_1 + p_2)$. Since $p_1 + p_2$ is also a prime, this means $p_1 + p_2 = 2$. But as $p_1, p_2 \geq 2$, this is impossible.
	(d)	Suppose n is an integer that is divisible by 4. Then $n+2$ is not divisible by 4.
		<i>Proof.</i> Let n be an integer divisible by 4. For the sake of contradiction, assume that $n+2$ is divisible by 4. This means that there is an integer $k \in \mathbb{Z}$, such that $n+2=4k$, which means $n=4k-2$, which contradicts the assumption that n is divisible by 4. \square
	(e)	Let A and B be sets. Then $(A - B) \cap (B - A) = \emptyset$.

5. Prove by the method of smallest counterexample that $1+2+3+\cdots+n=n(n+1)/2$ for all positive integer n.

each other, which proves the claim.

Proof. Let A and B be sets and for the sake of contradiction suppose $(A-B) \cap (B-A) \neq \emptyset$. This means that there is an element $x \in (A-B) \cap (B-A)$. On one hand, this means $x \in A-B$ which in turn implies that $x \in A$ but $x \notin B$. On the other hand $x \in B-A$ which implies $x \in B$ but $x \notin A$. These two are in contradiction to

Proof. For the sake of contradiction assume that there is a positive integer such that the claim is not true. Let n* be the smallest such number. Note that $n* \neq 1$ as $1 = 1 \cdot 2/2$. This means that n* - 1 is a positive integer and

$$1+2+3+\cdots+n^*-1=\frac{(n^*-1)n^*}{2}.$$

Adding n^* to both side of this equation gives

$$1 + 2 + 3 + \dots + n^* = \frac{(n^* - 1)n^*}{2} + n^* = \frac{(n^*)^2 - n^* + 2n^*}{2} = \frac{(n^*)^2 + n^*}{2} = \frac{n^*(n^* + 1)}{2}$$

which contradicts n^* being a counterexample.

6. Prove by the method of smallest counterexample that $n < 2^n$ for all $n \in \mathbb{N}$.

Proof. For the sake of contradiction, assume that there is a $k \in \mathbb{N}$ such that $k > 2^k$ and by the well ordering principle assume that it is the smallest such natural. As $0 < 2^0 = 1$, we now that $k \neq 0$. This implies that $k - 1 \in \mathbb{N}$ and since k - 1 < k, we have by assumption that $k - 1 < 2^{k-1}$. By adding 1 to both sides of this, we get

$$k < 2^{k-1} + 1 < 2^{k-1} + 2^{k-1} = 2 \cdot 2^{k-1} = 2^k$$

using that for $k \geq 1$, we have $1 \leq 2^{k-1}$. This contradicts the assumption that k is a counterexample which proves the claim.

7. Prove by the method of smallest counterexmaple that when $a \neq 0, 1$, then

$$a^{0} + a^{1} + a^{2} + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1}, \quad \forall n \in \mathbb{N}.$$

Proof. p131 in the textbook.

8. For all integers $n \ge 5$, we have $2^n > n^2$.

Proof. p132 in the textbook. \Box