Cálculo Infinitesimal 3 - Lista 2 - 2020

Prof. Flavio Dickstein.

Questão 1. Seja F(x,y)=(x,-y) e seja γ o triângulo de vértices A=(-1,0), B=(1,0) e C=(0,1). Considere η como a normal unitária que aponta para fora de T. Determine $\int_{\gamma} F \cdot d\eta$, o fluxo de F através γ . (Resp.: 0.)

Questão 2. Repita o exercício para F(x,y)=(x,y). (Resp.: 2.)

Questão 3. Seja $f: [-1,1] \to \mathbb{R}$ definido por f(x) = 1 se $x \in [0,1]$, f(x) = 0 se $x \in [-1,0)$. Considere uma partição \mathcal{P} do intervalo [-1,1] e seja $[x_i, x_{i+1}]$ o intervalo que contem x = 0. Mostre que $U(\mathcal{P}) = 1 - x_i$ e que $L(\mathcal{P}) = 1 - x_{i+1}$, onde U e L são as somas de Riemann máxima e mínima associadas a \mathcal{P} . Mostre que $U(\mathcal{P}) \to 1$ e $L(\mathcal{P}) \to 1$ quando $|\mathcal{P}| \to 0$. Conclua que f é integrável e que $\int_{-1}^{1} f = 1$.

Figura 1

Questão 4. O exercício anterior mostra que uma descontinuidade não prejudica a integral. Vejamos o caso de mais de uma descontinuidade.

- (i) Seja $f:[-1,1]\to\mathbb{R}$ tal que f(0)=1, f(0,5)=2 e f(x)=0 nos outros pontos. Faça como acima e mostre que f é integrável, com $\int_{-1}^1 f=0$.
- (ii) Seja $f:[-1,1]\to\mathbb{R}$ tal que $f(\frac{1}{n})=1$ para todo n e f(x)=0 nos outros pontos. Mostre que f é integrável, com $\int_{-1}^1 f=0$.

Em geral, se f é descontínua em um número enumerável de pontos, f será integrável.

Figura 2

Questão 5. Vejamos agora o caso de duas variáveis. Seja $B = [-1,1] \times [0,1]$ e seja f(x,y) = 0, se x < 0 e f(x,y) = 1, se $x \ge 0$. Seja $\mathcal P$ uma partição de B. Calcule $L(\mathcal P)$, $U(\mathcal P)$ e mostre que ambos convergem a 1 quando $|\mathcal P| \to 0$. Conclua que f é integrável e que $\int \int_B f = 1$.

Aqui, $\{0\} \times [0,1]$ é o conjunto de descontinuidades de f. Ele não é finito, nem mesmo enumerável. Mas ele tem área zero, e é isso que conta. Em geral, f é integrável se ele é descontínuo apenas em um conjunto de medida nula. Medida nula é um conceito técnico para dizer que o conjunto tem área zero.

Figura 3

Figura 4