Project Development Phase Model Performance Test

Date	18 November 2022	
Team ID	PNT2022TMID23758	
Project Name	Project – Efficient Water Quality Analysis and Prediction Using Machine Learning	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Regression	from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators = 10, random_state = 0) regressor.fit(x_train, y_train) y_pred = regressor.predict(x_test) from sklearn import metrics print('MAE:',metrics.mean_absolute_err or(y_test,y_pred)) print('MSE:',metrics.mean_squared_erro r(y_test,y_pred)) print('RMSE:',np.sqrt(metrics.mean_squ ared_error(y_test,y_pred))) MAE: 1.013774436090232 MSE: 6.2406858345864675 RMSE: 2.498136472370248 #accuracy of the model metrics.r2_score(y_test, y_pred) 0.9659820315121997	MAE: 1.013774436090232 MSE: 6.2406858345864675

2.	Hyperparameter	r SPACE = [
	tuning	skopt.space.Real(0.01, 0.5, name='lea	
		rning rate', prior='log-uniform'),	
		skopt.space.Integer(1, 30, name='max	
		depth'),	
		skopt.space.Integer(2, 100, name='nu	
		m leaves'),	
		skopt.space.Real(0.1, 1.0, name='feat	
		ure fraction', prior='uniform'),	I Post State Commence
			best result: 0.6509559162948146 best parameters: [0.014509467657194726, 21, 26, 0.9723402117733363, 0.6065207062490089]
		skopt.space.Real(0.1, 1.0, name='subs	0-51 parameter 5. [0.014-0040107154120] 21; 20; 0.572.94211775500; 0.000220002450005]
		ample', prior='uniform')]	
		@skopt.utils.use_named_args(SPACE)	
		def objective(**params):	
		return -1.0 * train_evaluate(params)	
		results = skopt.forest_minimize(objectiv	
		e, SPACE, n_calls=30, n_random_starts	
		=10)	
		best_auc = -1.0 * results.fun	
		best params = results.x	
		print('best result: ', best auc)	
		print('best parameters: ', best params)	
		F()	
3.	Validation	def train evaluate(search params):	
	Method	path = "water potability.csv"	
		data = pd.read_csv(path)	
		X = data.drop(['Sulfate','Potability'], a	
		xis=1)	
		y = data['Potability']	
		X_train, X_valid, y_train, y_valid = tr	
		ain_test_split(X, y, test_size=0.2, rando	
		m_state=1234)	
		train_data = lgb.Dataset(X_train, label	validation AUC: 0.6509559162948146
		=y_train) valid data = lgb.Dataset(X valid, labe	
		l=y valid, reference=train data)	
		-y_vand, reference-train_data)	
		params = {'objective': 'binary',	
		'metric': 'auc',	
		**search params}	
		model = lgb.train(params, train_data,	
		num_boost_round=300,	
		early_stopping_rounds=30	
		, valid_sets=[valid_data],	
		valid_names=['valid'])	
		score = model.best_score['valid']['auc']	
		return score	
		ifname == 'main':	
		score = train_evaluate(SEARCH_PA	
		RAMS) print('validation AUC:', score)	
		print vandation ACC., Score)	

	Confusion	print('XGB Classifier\n')			
	Matrix (XGB Classifier)	<pre>xgb = XGBClassifier() xgb.fit(X_train, y_train)</pre>	0 344	143	300
		<pre>y_xgb = xgb.predict(X_test) print(metrics.classification_report(y_t</pre>	5 344	143	250 200
		est, y_xgb)) print(modelAccuracy.append(metrics. accuracy_score(y_test, y_xgb)))	H 55	277	150 100
		<pre>sns.heatmap(confusion_matrix(y_test, y_xgb), annot=True, fmt='d') plt.show()</pre>	0	1	
7.	Precision Recall F1 Score (Random	<pre>print('Random Forest Classifier\n') Rfc = RandomForestClassifier() Rfc.fit(X_train, y_train)</pre>	Random Forest Classifier precision	recall f1-score	support
	Forest Classifier)	<pre>y_Rfc = Rfc.predict(X_test) print(metrics.classification_report(y_t est, y_Rfc))</pre>	0 0.84 1 0.71	0.78 0.81 0.79 0.74 0.78	487 332 819
		print(modelAccuracy.append(metrics. accuracy_score(y_test, y_Rfc)))	macro avg 0.77 weighted avg 0.79	0.78 0.78 0.78 0.78	819 819
	Precision Recall F1 Score	<pre>print('XGB Classifier\n') xgb = XGBClassifier() xgb.fit(X_train, y_train)</pre>	XGB Classifier	33 64	
	(XGB Classifier)	<pre>y_xgb = xgb.predict(X_test) print(metrics.classification_report(y_t</pre>	precision 0 0.86 1 0.66	recall f1-score 0.71 0.78 0.83 0.74	support 487 332
		est, y_xgb)) print(modelAccuracy.append(metrics. accuracy_score(y_test, y_xgb)))	accuracy macro avg 0.76 weighted avg 0.78	0.76 0.77 0.76 0.76 0.76	819 819 819
8.	Precision- Recall or PR curve	from scikitplot.metrics import plot_roc_curve from sklearn.metrics import plot_precision_recall_curve plot_precision_recall_curve(Rfc,X_test ,y_test) plt.plot([0,1], [0.2035,0.2035], c='k') plt.legend(loc='best') plot_precision_recall_curve(xgb,X_test ,y_test) plt.plot([0,1], [0.2035,0.2035], c='k') plt.plot([0,1], [0.2035,0.2035], c='k') plt.legend(loc='best')	Function plot, precision_recall_curve is deprecal function plot, precision_recall_curve is deprecal function plot, precision_recall_curve is deprecal enterlocation_technology_curve_is_ function plot, precision_recall_curve is deprecal enterlocation_recall_curve is deprecall enterlocation_recall_curve is deprecal enterlocation_recall_curve is deprecal enterlocation_recall_curve is deprecal enterlocation_recall_curve is deprecall enterlocation_recall_curve is deprecall_curve is deprecalled enterlocation_recall_curve is deprecalled enterlocation_recalled enterlocation_	ed; Function "plot_precision_precall_curve fils/deprecation.py:E7: Futureserning: ed; Function "plot_precision_precall_curve 777) 10	t [*] Is deprecated in 1.0

