CSC165H1 Problem Set 1

Yulin WANG, Dana Zhao, Qidi Zhou Wednesday January 24

1. Propositional formulas

(a)(i) The truth table for (a)

(a)(ii) A logically equivalent formula for (a)

$$\begin{array}{cccc} (p \Rightarrow q) \Rightarrow \neg q & \equiv & (\neg p \vee q) \Rightarrow \neg q & (equivalence\ from\ class) \\ & \equiv & \neg (\neg p \vee q) \vee \neg q & (equivalence\ from\ class) \\ & \equiv & (p \wedge \neg q) \vee \neg q & (DeMorgan's\ Law) \end{array}$$

(b)(i) The truth table for (b)

p	$\neg \mathbf{r}$	q	$\neg p$		$\neg p \Rightarrow q$	$(p \Rightarrow \neg r) \land (\neg p \Rightarrow q)$
$\overline{\mathrm{T}}$	Τ	Т	F	Τ	Т	T
\mathbf{T}	Τ	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$
${\rm T}$	F	T	F	\mathbf{F}	${ m T}$	${ m F}$
\mathbf{F}	Τ	T	Τ	${ m T}$	${ m T}$	${ m T}$
${ m T}$	F	F	F	\mathbf{F}	${ m T}$	${ m F}$
\mathbf{F}	Τ	F	\mathbf{T}	${ m T}$	F	${ m F}$
\mathbf{F}	F	T	Τ	${ m T}$	${ m T}$	${ m T}$
F	F	\mathbf{F}	${\rm T}$	Τ	F	${ m F}$

(b)(ii) A logically equivalent formula for (b)

$$(p \Rightarrow \neg r) \land (\neg p \Rightarrow q) \quad \equiv \quad (\neg p \lor \neg r) \land (\neg p \Rightarrow q) \quad (equivalence \ from \ class)$$

$$\equiv \quad (\neg p \lor \neg r) \land (p \lor q) \quad (equivalence \ from \ class)$$

2. Fixed Points

- (a) F(x): $\exists x \in \mathbb{N}, f(x) = x$
- (b) L(a): $P = \{x \in \mathbb{N} | f(x) = x\}, \exists a \in P, \forall x \in P, (a < x) \lor (a = x)\}$
- (c) G(x): $P = \{x \in \mathbb{N} | f(x) = x\}, \exists a \in P, \forall x \in P, (x < a) \lor (x = a)$
- (d)(1) The fixed points of f are: $\{0, 1, 2, 3, 4, 5, 6\}$
- (d)(2) The least fixed point of f is: 0
- (d)(3) The greatest fixed point of f is: 6

3. Partial Orders

- (a) R(x, y): $\exists k \in \mathbb{N}, x = ky$, where $x,y \in \mathbb{N}$
- (b) R(a,a) = R(b,b) = R(c,c) = R(d,d) = True and all other values are False.
- (c) R(a,a) = R(b,d) = R(c,d) = True and all other values are False.

Justify: 1.a is maximal: Since R(a,a) is True, so a is maximal. 2.not a greatest element: Since R(b,d) = R(c,d) = True, we know: $\forall b,c,d \in D, \ (b \leq d) \land (c \leq d), \ so \ d \ is \ also \ maximal.$ Since we cannot figure the relation between a and d, so a is not a greatest element.

4. One-to-one functions

(a)
$$4 \times 4 \times 4 = 64$$

(b)
$$4 \times 3 \times 2 = 24$$

(c)
$$3 \times 2 \times 1 \times C_4^2 = 36$$

(d)
$$\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, R(x, y) \land (\forall z \in \mathbb{N}, R(x, z) \Rightarrow z = y)$$

(e) Function(R)
$$\land$$
 ($\forall y \in \mathbb{N}, \exists x \in \mathbb{N}, R(x, y)$)

(f) Function(R)
$$\land$$
 ($\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, R(x, y) \Rightarrow (\forall z \in \mathbb{N}, R(z, y) \Rightarrow z = x)$)

(g) Function(R)
$$\land$$
 (\forall z \in \mathbb{N} , \exists y \in \mathbb{N} , z $<$ y \land (\exists x \in \mathbb{N} , R(x, y)))

(h) Function(R)
$$\wedge$$
 ($\exists z \in \mathbb{N},\, \forall y \in \mathbb{N},\, (\forall x \in \mathbb{N},\, \neg R(x,\,y)) \Rightarrow y \leq z)$