TOPICS IN MODERN GEOMETRY: PROBLEMS CLASS 4

Definition 0.1. Let (X, \mathcal{T}) be a topological space and $Y \subseteq X$. The **subspace topology** on Y is defined by the collection of open sets

$$\mathcal{S} = \{ U \cap Y : U \in \mathcal{T} \}.$$

Definition 0.2. Let R be a commutative ring with unity. Recall that $mSpec(R) \subseteq Spec(R)$ is the set of maximal ideals of R. We may consider mSpec(R) to be a topological space by endowing it with the subspace topology.

(1) Let $P = \{p_1, p_2, p_3, p_4\}$ be the following partially ordered set, considered as a topological space with the order topology. (Here, $p \to q$ means $p \le q$.)

- (a) List the open sets of P.
- (b) List the closed sets of P.
- (2) Describe $\operatorname{Spec}(R)$ and $\operatorname{mSpec}(R)$ for the following rings R, as explicitly as you can. In each case, say what $\operatorname{Spec}(R)$ and $\operatorname{mSpec}(R)$ as sets, then classify the closed sets of each.
 - (a) $R = \mathbb{Z}$
 - (b) $R = \mathbb{C}[x] \times \mathbb{C}[x]$
 - $(\mathbf{c}^*) \ R = \mathbb{Z}[x]$
 - $(\mathbf{d}^*) \ R = \mathbb{C}[x, y]$
- (3) Let R be a commutative ring with unity, and let I be an ideal of R.
 - (a) Prove that

$$\operatorname{Spec}(R/I) \cong \{ P \in \operatorname{Spec}(R) : P \ge I \}.$$

(b) Can you prove a similar statement about $\operatorname{Spec}(R_I)$, where $R_I = (R \setminus I)^{-1}R$ is the localisation?