STAT1006 Week 6 Cheat Sheet

Lisa Luff

10/3/2020

Contents

inear Models
Fitting a Linear Relationship
Uses for Linear Models
imple Linear Regression (SLR)
SLR Population Equations
Estimating the Parameters
Conditions for SLR Inference
SLR Assumptions
The Least Squares Method
Interpretation
Variance
Inference About the Slope
Inference About the Intercept
Linear Modelling in R
Reading CSV Files in R

Linear Models

- The key idea is that of an additive model:
 - Response $y = \text{Explanatory} g(x_0, x_1, x_2, ..., \beta_0, \beta_1, \beta_2, ...) + \text{Error} \epsilon$
 - With assumptions about for form of $g(\cdot)$ and ϵ

Fitting a Linear Relationship

- We speculate that the relationship in the population follows the following model:
 - Response $y_i = Y$ Intersect $\beta_0 + \text{Slope} \beta_1 x_i + \text{Error} \epsilon_i$, where $\epsilon_i \sim N(0, \sigma^2)$
 - The parameters β_0 and β_1 are fixed constants that we want to estimate the values of using the observed data

Uses for Linear Models

- In some cases the underlying relationship is approximately linear
- A simple model might be "good enough" for the purposes
- Might be a good approximation to a non-linear model (eg. over a narrow region)
- Makes sense to try it before trying more complex models
- · All models are wrong, but some are useful

Simple Linear Regression (SLR)

- Used for a scatterplot that shows a relatively linear relationship between a numerical explanatory variable x and a numerical response variable y
 - Use least-squares line fitted to the data to predict y for a given value of x
 - The pattern of variation in the slope is described by its' sampling distribution
 - * Linear regression assumes equal variance of y (σ is the same for all values of x)
- When used on data from a random sample of a larger population, you can use statistical inference to answer questions about the relationship between x and y

SLR Population Equations

- In the population, the linear regression equation is:
 - $-\mu_y = \beta_0 + \beta_1 x$
 - * Where μ_y is the mean of y
- Sample data is used to estimate:
 - Data = Fit + Error
 - $-Y_i = (\beta_0 + \beta_1 X_i) + (\epsilon_i)$
 - * Where ϵ_i are independent and Normally distributed $N(0,\sigma)$

Estimating the Parameters

- β_0 , β_1 and σ of y are the unknown parameters of the regression model
- We use the random sample data to provide an unbiased estimate of the parameters
 - With the least-squares regression line: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$, where
 - * \hat{y} estimates mean response μ_y
 - * $\hat{\beta}_0$ estimates y intercept β_0
 - * $\hat{\beta}_1$ estimates slope of β_1
- Unbiased means that $\hat{\beta}_0$ and $\hat{\beta}_1$ are random variables, and are subject to variation in different samples
 - As such if you take lots of samples, then take the average of the estimate for $\hat{\beta}_0$ and $\hat{\beta}_1$, this will be equal to the true population values β_0 and β_1
 - * $E(\hat{\beta}_0) = \beta_0$ and $E(\hat{\beta}_1) = \beta_1$

Conditions for SLR Inference

- Based on that the slope and intercept of the least-squares line are statistics from the sample data and will be different for every sample we take.
- So to do this inference we need the following conditions:
 - For any fixed value of x, the response y varies according to a Normal distribution
 - Repeated responses are independent of each other
 - The mean response μ_y has a straight-line relationship with x given by a population regression line as seen above
 - The slope and intercept are unknown parameters
 - The standard deviation of $y(\sigma)$ is the same for all values of x, and σ is unknown

SLR Assumptions

- To allow completion of the model specifications we assume:
 - 1. $E(\epsilon_i) = 0$, for all i
 - 2. $var(\epsilon_i) = \sigma^2$, for all i
 - 3. ϵ_i and ϵ_j are independent for all $i \neq j$
 - 4. $\epsilon_i \sim N(0, \sigma^2)$ if we wish to make inferences about the regression model
- These assumptions imply that:
 - $E(Y|X = x) = \beta_0 + \beta_1 x$ and
 - $var(Y|X=x) = \sigma^2$
- Checking these assumptions is an important part of model-checking

The Least Squares Method

- The least squares regression line is found using the least squares method
 - A line is drawn on the scatterplot and the aim is to have the vertical distances of the observations from the drawn line to be as small as possible
 - The least squares regression line is the unique line using this method such that the sum of the squared vertical differences $(y-\hat{y})$ (to even out positive and negative) between the observed data y and the redicted value \hat{y} of the line is the smallest

- This method therefore aims to minimise the Sum of Squares of Error (SSE)

 - This include the table to the first section of the section of the

 - * There are called the *normal equations*, and are what you need to solve to find $\hat{\beta}_0$ and $\hat{\beta}_1$
- We can solve these equations using data points Y and X with

 - $-\hat{\beta}_0 = \overline{Y} \hat{\beta}_1 \overline{X}$ $-\hat{\beta}_1 = \frac{\sum (X_i \overline{X})(Y_i \overline{Y})}{\sum (X_i \overline{X})^2} \sim \frac{Cov(X, Y)}{Var(X)} = \frac{S_{xy}}{S_{xx}}$
- The regression line always passes through the mean of x and y

Interpretation

- $\beta_0 = y$ intercept = y value at x = 0
- This is only interpretable if x=0 is of practical value or interest $\hat{\beta}_1 = \text{slope} = \text{change in } y \text{ for every 1 unit of increase of } x$
- - Always interpretable

Variance

- $Var(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum (X_i \overline{X})^2} \right)$ $Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum (X_i \overline{X})^2}$
- - We can also use c_i to express this as $Var(\beta_1) = Var(\sum c_i(Y_i \overline{Y})) = Var(\sum c_iY_i)$
 - Or we can use matrices
 - Or just use R!

Variance of the Error

- $\sigma^2 = Var(\epsilon_i) = Var(y_i \beta_0 \beta_1 x_i)$
 - But we can only estimate the coefficients
- An unbiased estimate of σ^2 is
 - $-s^2 = \frac{SSE}{n-2} = \frac{1}{n-2} \sum_{i=1}^{n} \hat{\epsilon}_i^2$, where * s^2 is the variance of the sample error

 - * SSE is the Sum of Squares of the Error
 - * $\hat{\epsilon}_i^2$ is the estimate of the error
 - * The divisor is n-2 because we have estimated two parameters (degrees of freedom)

Inference About the Slope

- Sampling distribution of $\hat{\beta}_1$

 - If the assumptions are satisfied then; $\hat{\beta}_1|X \sim N(\beta_1, \frac{\sigma^2}{\sum (X_i \overline{X})^2})$, where
 - * Unknown σ^2 is estimates by s^2
- Test statistic T

 - Because we are estimating σ^2 with s^2 , we use $T = \frac{\hat{\beta}_1 \beta_1^0}{\sqrt{\sum (x_i \overline{x})^2}} = \frac{\hat{\beta}_1 \beta_1^0}{se(\hat{\beta}_1)} \sim t_{n-2}$, where
 - * se is standard error (standard deviation)
 - * t_{n-2} is the test distribution

Confidence Intervals

- If we assume that $\epsilon_i \sim N(0, \sigma^2)$
 - Then that means $Y_i|X_i \sim N(\beta_0 + \beta_i X_i, \sigma^2)$
 - * Because each parameter estimate is a linear function of the data Y, each estimate $\hat{\beta}$ is also normally distributed
 - We can place confidence intervals on the regression parameter estimates using central limit theorum, and the variance terms from above
- Using the arguments from the slope inference, we can calculate a $100(1-\alpha)\%$ confidence interval for
 - $-\hat{\beta}_1 \pm t_{\frac{\alpha}{2},n-2} \times se(\hat{\beta}_1)$

Significance Test for Regression Slope

- To test the hypothesis $H_0: \beta_1 =$ hypothesised value, compute the test statistic $-t = \frac{\hat{\beta}_1 - \text{hypothesised value}}{SE_{\hat{\beta}_1}}$
- Get the p-value by calculating the probability of getting a t statistic as large or larger in the direction specified by H_A for t distribution with df = n - 2

Testing the Hypothesis of No Relationship

- If we hypothesis that there is a relationship between x and y, then we test for β_1 - We rarely do a test of hypothesis for β_0 as it often has no practical interpretation
- 1. Hypotheses
- $H_0: \beta_1 = 0$ - Equivalent to testing the hypothesis of no correlation
- $H_A: \beta_1 \neq 0$
- 2. Test Statistic
- $T = \frac{\hat{\beta}_1 0}{se(\hat{\beta}_1)}$
- 3. Sampling distribution
- $T \sim t_{n-2}$
- 4. P-Value
- Determined by H_A
- P-value = $P(|t_{n-2}| > t)$ for two sided
- 5. and 6. Decision and Conslusion

Inference About the Intercept

- As demonstated before
 - $-\hat{\beta}_0|X \sim N(\beta_0, \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum (X_i \overline{X})^2}\right)), \text{ where}$ * σ^2 is estimated by s^2

• To test the hypothesis
$$H_0: \beta_0 = \beta_0^0$$
, R tests $H_0: \beta_0 = 0$ by default
- We use $T = \frac{\hat{\beta}_0 - \beta_0^0}{s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum (X_i - \bar{X})^2}}} = \frac{\hat{\beta}_0 - \beta_0^0}{se(\hat{\beta}_0^0)}$

• A $100(1-\alpha)\%$ confidence interval for β_0 is give by

$$-\hat{\beta}_0 \pm t_{\frac{\alpha}{2},n-2} \times se(\hat{\beta}_0)$$

Linear Modelling in R

- To find the linear model use the lm function
 - $variablelm = lm(reponse \sim explanatory, data = table/dataframe)$
 - R output of lm function shown with the summary function
 - * Residuals: Min, 1Q, Median, 3Q, Max
 - * Coefficients: Intercept and Explanatory
 - · For each: Estimate (gives intercept for intercept value and slope for explanatory value), Standard Error, t value, Pr(>|t|) (p-value for β_1) (twosided, halve for 1 sided, or use pt function with lower.tail = FALSE)
 - * Residual standard error and degrees of freedom
 - * Multiple R-squared and Adjusted R-squared
 - * F-statistic, degrees of freedom and p-value
 - There are different variables created by lm within the dataframe *variablelm*, including things like fitted which is \hat{y}_i
- To find the confidence interval use the confint function
 - confint(variablelm, level = percent as decimal) (default 95% CI)
 - R output of confint function
 - * Intercept and Explanatory
 - · Point Estimate, lower and upper confidence interval values for each
- To plot the least squares regression line using the abline function
 - First plot the data
 - Then add abline(variablelm, col = "colour", lwd = line width)
- To plot confidence intervals use matlines(sort(explanatory), civariable[order(explanatory), 2:3], lwd = line width, lty = 1)

Reading CSV Files in R

- You can click on the file in your directory and choose import
- OR use the read_csv function
 - library(readr)
 - variable <- read csv("name.csv")