Maths for CS – Assignment 2b

Module Code 55-402612

The function $f: N \rightarrow N$ is defined recursively by the formula

$$f(n) = \begin{cases} 1 & n = 0 \\ 3f(n-1) - 1 \text{ otherwise} \end{cases}$$

- a) Use the above definition to calculate f(1), f(2), f(3), f(4), and f(5).
 - i. f(1) = 1 = 1
 - ii. f(2) = 3f(2-1)-1 = 3f(1)-1 = 3(1)-1 = 3-1 = 2
 - iii. f(3) = 3f(3-1)-1 = 3f(2)-1 = 3(2)-1 = 6-1 = 5
 - iv. f(4) = 3f(4-1)-1 = 3f(3)-1 = 3(5)-1 = 15-1 = 14
 - v. f(5) = 3f(5-1)-1 = 3f(4)-1 = 3(14)-1 = 42-1 = 41

n	1	2	3	4	5
f(n)	1	2	5	14	41

b) Prove by induction that

$$f(n) = \frac{3^n + 1}{2}$$

for all $n \in N$.

i. Check that it works for the base case:

$$f(0) = \frac{3^0 + 1}{2} = \frac{1 + 1}{2} = \frac{2}{2} = 1$$

ii. Assume that

$$f(k) = \frac{3^k + 1}{2}$$

for some $k \ge 0$

iii. We want

$$f(k+1) = \frac{3^{k+1} + 1}{2}$$

iv.
$$f(k+1) = 3f((k+1)-1)-1$$

$$f(k+1) = 3f(k) - 1$$

$$f(k+1) = 3\left(\frac{3^k + 1}{2}\right) - 1$$

$$f(k+1) = \frac{3(3^k) + 3}{2} - 1$$

$$f(k+1) = \frac{3^{k+1}+3}{2} - 1$$

$$f(k+1) = \frac{3^{k+1}+3}{2} - \frac{2}{2}$$

$$f(k+1) = \frac{3^{k+1}+1}{2}$$

c) Another function g: $N \rightarrow Z$ is defined by g(n) = 2n - 1. State $(g \circ f)(n)$ for $n \in N$.

n	1	2	3	4	5
f(n)	1	2	5	14	41
(g ∘ f)(n)	1	3	9	27	81

$$(g \circ f)(n) = 3^{n-1}$$

d) A further function h: $Z \rightarrow R$ is defined by h(n) = n^2 . State (h \circ g)(n) for n \in N.

n	1	2	3	4	5
f(n)	1	2	5	14	41
(g ∘ f)(n)	1	3	9	27	81
(h ∘ g)(n)	1	9	81	729	6561

$$(h \circ g)(n) = 9^{n-1}$$

e) Hence, show that $((h \circ g) \circ f) = (h \circ (g \circ f))$.

Let n = 3

$$f(n) = 5$$

h o g(f(n)) = $9^{5-1} = 6561$

g o f(n) = 81
h(g o f(n)) =
$$81^2$$
 = 6561