資料結構與演算法 I (Data Structure and Algorithms I) 2025 fall

2025/09/26

Abstract Data Type & Chapter 2

*第一次小考

- *下週五(10/3), 9:10-10:00上課, 10:10-11:40 考試
- *考試地點:管理大樓B0204/另外會借一間教室
- *範圍: 開學到今日上課結束範圍

2.1.1 C++ Class

- * C++ provides the *class* to support the distinction between specification and implementation and to hide the implementation of the ADT from it users.
- * The C++ class consists of four components:

```
* A class name
```

- * Data numbers
 - **₩** i. j, k
- * Member functions
 - # Get(); Set();
- * Levels of program access
 - * public
 - private
 - * protected

```
#ifndef RECTANGLE H
#define RECTANGLE H
   class Rectangle {
   public:
         Rectangle();
       ~Rectangle();
                             公用
         int GetHeight();
         int GetWidth();
   private:
                             私用
   int xLow, yLow, height, width;};
#endif
```

* public

* any public data member (member function) can be accessed (invoked) from anywhere in the program

private

* a private data member (member function) can be only accessed (invoked) from within its class or by a function or a class that is declared to be a friend.

protected

* A protected data member (member function) can only be accessed (invoked) from within its class or its subclasses or by a friend.

```
// In the source file Rectangle.cpp
#include "Rectangle.h"

// 用"Rectangle::"來指明GetHeight()與GetWidth()是Rectangle的成員函式
//成員函式是在它們所屬類別定義的外部實作的

int Rectangle::GetHeight() {return height;}
int Rectangle::GetWidth() {return width;}
```

```
// In a source file main.cpp
#include <iostream>
#include "Rectangle.h"
main() {
        Rectangle r, s; // 物件 r跟 s屬於類別Rectangle
        Rectangle *t = &s; // t 是類別物件s的指標
        // 使用":"來存取類別物件的成員。
        // 使用 "->" 透過指標來存取類別物件的成員。
  If (r.GetHigh() * r.GetWidth() > t \rightarrow GetHeight() * t \rightarrow GetWidth())
           cout << "r":
  else cout << "s";
  cout << "has the greater area" << endl;</pre>
```

2.1.4 Special Class Operations

* Constructors

- * a member function which initialize data members of an object
- * if it is provided for a class, it is automatically executed when an object of that class is created.
- * If not, memory is allocated for the data members of a class object, but the data member are not initialized Program 2.1

* Destructors

*Destructors are automatically invoked when a class object goes out of scope or when a class object is deleted

* Operator overloading

* Program 2.6, 2.7

2.1.5 Miscellaneous Topics

- * In C++, a *struct* is identical to a *class*, except that the default level of access is public
- A union is a structure that reserves storage for the largest of its data members so that only one of its data member can be stored, at any time.

C++ Gossip: Union

union是一種特殊的類別,使用關鍵字union來定義,union維護足夠的空間來置放多個資料成員中的「一種」,而不是為每一個資料成員配置空間, 在union中所有的資料成員共用一個空間,同時間只能儲存其中一個成員的資料,一個定義union的例子如下:

```
union StateMachine {
    char character;
    int number;
    char *str;
    double exp;
};
```

一個union只配置一個足夠大的空間以來容納最大長度的資料成員,以上例而言,最大長度是double型態,所以 StateMachine的記憶體空間 就是double型態的長度,union的成員預設為public,也可以宣告為protected或private, 當中可以定義建構函式、解構函式與 成員函式,例如:

```
C++
// declaring_a_union.cpp
union RecordType // Declare a simple union type
    char ch;
    int i;
    long l;
    float f;
    double d;
    int *int_ptr;
};
int main()
   RecordType t;
    t.i = 5; // t holds an int
    t.f = 7.25; // t now holds a float
```

2.1.6 ADT & C++ class

class NaturalNumber { // 從零開始到電腦上允許的最大整數 (MAXINT) 為止所形成的一串有順序的整數子範圍 pubic:

NaturalNumber Zero();// 回傳0

bool IsZero();// 如果*this是0則回傳true, 否則回傳false

NaturalNumber Add(NaturalNumber y);
// 回傳 *this+y與MAXINT中較小的一個

bool Equal(NaturalNumber y);
// 如果 *this = = y回傳true, 否則回傳false

NaturalNumber Successor();
// 如果 *this是MAXINT則回傳MAXINT,否則回傳 *this+1

NaturalNumber Subtract(NaturalNumber y);
// 如果 *this < y則回傳0, 否則回傳 *this-y

2.2 ADT of Array

- * ADT Array is
 - * An array只是 a consecutive set of memory locations嗎?
 - * A set of pairs < index, value > where for each value of index there is a value from the set item. Index is a finite ordered set of one or more dimensions
 - * In mathematical terms, we call this a "correspondence" or "mapping"
 - ***** Functions:
 - ** Array Create(j, list, iniValue)
 - * Item Retrieve(i)
 - * Array Store(i, x)

```
class General Array {
/*由許多數值對 < index, value > 所乘的集合,其中對於每一個 index ∈ IndexSet都有一
 個float 型態的value與其對應。IndexSet是一個有序且有限的一維或多維集合。例如,
 一維集合 \{0, ..., n-1\}, 二維集合 \{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0),
 1), (1, 2), (2, 0), (2, 1), (2, 2)}等。*/
 public:
                               GeneralArray(int j, RangeList list, float initValue = defaultValue);
        // 這個建構子會建立一個j維的浮點數陣列; 第k維的範圍由list的第k個元素來決定。
        // 對於每一個在索引集合裡的索引 i, 插入 <i, init Value> 到這個陣列裡。
                               float Retrieve(index i);
                            // 如果i屬於這個陣列的索引集,那麼回傳在這個陣列中相對應於i的浮點數;
                             // 否則, 丟出一個例外。
                               void Store(index i, float x);
                               // 如果i屬於這個陣列的索引集,那麼把跟i相對應的舊值換成x;
                               // 否則, 丟出一個例外。
}; //
```

GeneralArray is more general than the C++ Array as it is more flexible about the composition of the index set.

- 1. C++ Array requires the index set be a set of consecutive integers starting from 0;
- 2. C++ does not check an array index to ensure that it belongs to the range for which the array is defined.

2.3 The Polynomial ADT

- * Array are not only data structure in their own right, we can also use them to implement other abstract data type
 - * Ex: ordered list, or linear, list
 - * Examples:
 - Days of the week
 - * Values in a deck of card (Ace, 1,2,3,..., King)
 - * Years in World War II (1941, 1942, 1943, 1944)
 - * Perhaps the most common way to represent an ordered list is by an array where we associate the list element a_i with the array index i

We can perform many operations on lists, including:

- (1) Find the length, n, of the list
- (2) Read the list from left to right (or right to left)
- (3) Retrieve the ith element, $0 \le i \le n$
- (4) Store a new value into the ith position
- (5) Insert a new element at the position i, causing element numbered i,i+1, i+2...to become i+1,i+2, i+3...
- (6) Delete the element at position i, causing element numbered i+1, i+2...to become i,i+1, ...
- * Step $(1)\sim(4) \rightarrow$ sequential mapping is OK
- * Step(5)(6) require real effort > nonsequential mapping of ordered list would be better

Polynomial

*\(\alpha(x) = 3x^2 + 2x - 4\), \(b(x) = x^8 - 10x^5 - 3x^3 + 1\)
$$A(x) = a_n x^n + \dots + a_0 = \sum a_i x^i$$

$$A(x) + B(x) = \sum (a_i + b_i) x^i$$

$$A(x) \cdot B(x) = \sum a_i X^i \cdot \sum (b_i x^j)$$

- \Rightarrow 3x² \Rightarrow (3,2); 2x \Rightarrow (2,1); -4 \Rightarrow (-4,0)
- * The largest exponent of a polynomial is called its degree
- * Coefficients that are zero are not displayed
- * Examples

$$*A(x) = 2x^{1000} + 1$$
, degree = 1000

$$*B(x) = x^4 + 10x^3 + 3x^2 + 1$$
, degree = 4

ADT Polynomial

```
class Polynomial {
// p(x) = ;一個 \langle e_i, a_i \rangle 的有序對之集合,
// 其中a_i是一個非零的 float 係數而是e_i一個非負的整數指數。
public:
       Polynomial();
       // 建立多項式p(x) = 0。
       Polynomial Add(Polynomial poly);
       // 回傳 *this與poly兩個多項式之和。
       Polynomial Mult(Polynomial poly);
       //回傳*this與poly兩個多項式之積。
       float Eval(float f);
      // 求出當多項式 *this為 /時的值並且回傳它的結果。
```

};

Polynomial Representations 1

* Private

- # int degree; // degree ≤ MaxDegree
- # float coef [MaxDegree + 1];

a_{n-i} * x^{n-i} i=n

i=0

 a_n

Examples

- *a.degree = n
- *a.coef[i] = a_{n-i} , $0 \le i \le n$
- * Wasteful computer memory

Polynomial Representations 2

```
private:
  int degree;
  float *coef;
  Polynomial::Polynomial(int d)
  degree = d;
  coef = new float [degree+1];
```

實際需要多少,宣告多少不用MaxDegree

Polynomial Representations 3

class Polynomial; // forward delcaration

前置宣告:

http://blog.csdn.net/spritelw/article/details/965702不要在.h檔裡include了一堆其他的.h檔, 好處是當其.h修改時, 並不會影響到太多的cpp須要重新compile, 也加快了build project的速度, 其最大的好處是, .h檔不會太雜亂.

private:

```
static term termArray[MaxTerms];
static int free;
int Start, Finish;
```

For Sparse Polynomial

 $A(x) = 2x^{1000} + 1$,有很多項的係數為0

```
term Polynomial:: termArray[MaxTerms];
int Polynomial::free = 0; // location of next free location in temArray
```

Figure 2.1 Array Representation of two Polynomials

Represent the following two polynomials:

$$A(x) = 2x^{1000} + 1$$

$$B(x) = x^4 + 10x^3 + 3x^2 + 1$$

下一個可用空間的位置

	a.start	a.finish	b.start			b.finish	free
	\downarrow	\downarrow	\downarrow			\downarrow	↓
coef	2	1	1	10	3	1	
exp	1000	0	4	3	2	0	
	0	1	2	3	4	5	6

對於一個有n個非零項的多項式a a.finish=a.start+n-1

Is the representation 3 good ????

Depend on the number of nonzero

2.3.2 Polynomial Addition

- *Textbook: page 91-92
- *Try to figure out Program 2.8

*If you have any question, please discuss with me during the office hours.

2.4 Sparse Matrices

A general Matrix consists of **m** rows & **n** columns of numbers → m ×n

	行0	;	行1	行2		行0	行1		行2	行3	行4	行5	
列0		-27	3	4	列0	1:	5	0	0	22) -1	.5
列1		6	82	-2	列1)	11	3	0)	0
列2		109	-64	11	列2)	0	0	-6)	0
列3		12	8	9	列3)	0	0	0)	0
列4		48	27	47	列4	9	1	0	0	0)	0
					」 列5)	0	28	0)	0
	(a) a[5][3] (b) b[6][6]												

Only eight out of 36 possible elements are nonzero, and that is sparse (稀疏) No precise definition of when a matrix is sparse!

Question:

有一個5000 * 5000矩陣(25,000,000個元素), 只有500個有值, 電腦無法一次產生5000 * 5000矩陣,我們該如何處理?

2.4.2 Sparse Matrix Representation

- Use triple <row, column, value>
- * An array of triples to represent a sparse matrix
- * These triples be stored by rows with triples for the first row first, followed by those of the second row, and so on.

	列	行	值			列	行	值	
smArray[0]	0	0	15		smArray[0]	0	0	15	
[1]	0	3	22		[1]	0	4	91	
[2]	0	5	-15		[2]	1	1	11	
[3]	1	1	11		[3]	2	1	3	
[4]	1	2	3		[4]	2	5	28	
[5]	2	3	-6		[5]	3	0	22	
[6]	4	0	91		[6]	3	2	-6	
[7]	5	2	28		[7]	5	0	-15	
	(a)		an .		(b)		

Figure 2.3 sparse matrix and its transpose stored as triples

2.4.2 Sparse Matrix Representation

Use triple <*row*, *column*, *value*>

		列	行	值			列	行	值	
smArr	ay[0]	0	0	15	sm	Array[0]	0	0	15	
使用三元表示法	[1]	0	3	22		[1]	0	4	91	
区而—儿农小石	[2]	0	5	-15		[2]	1	1	11	
	[3]	1	1	11		[3]	2	1	3	
3/2	[4]	1	2	3		[4]	2	5	28	
7	[5]	2	3	-6	轉置矩陣	[5]	3	0	22	
	[6]	4	0	91		[6]	3	2	-6	
	[7]	5	2	28		[7]	5	0	-15	
	. 1	(:	a)				(b)		V

Figure 2.3 sparse matrix and its transpose stored as triples

Exercise

3	0	2	0
0	5	7	0
0	0	0	4
1	6	0	0

Use triple to express this matrix

2.4.3 Transposing a Matrix

For (each row i)

Store (i,j,value) of the original matrix as (j,i,value) of the transpose;

(0, 0, 15) which becomes (0, 0, 15)

(0, 3, 22) which becomes (3, 0, 22)

(5, 0, -15) which becomes (0, 5, -15)

(1, 1, 11) which becomes (1, 1, 11) ←要先被放於轉置矩陣中可是必須要轉完才知道它應該要被放在哪裡

For (for all elements in column j)

Store (i,j,value) of the original matrix as (j,i,value) of the transpose;

	列	行	值	_	列	行	值
smArray[0]	0	0	15	smArray[0]	0	0	15
[1]	0	3	22	[1]	0	4	91
[2]	0	5	-15	[2]	1	1	11
[3]	1	1	11	[3]	2	1	3
[4]	1	2	3	[4]	2	5	28
[5]	2	3	-6	[5]	3	0	22
[6]	4	0	91	[6]	3	2	-6
[7]	5	2	28	[7]	5	0	-15
		(a)				(b)	

Program 2.10 Transposing a Matrix

```
SparseMatrix SparseMatrix::Transpose()
// return the transpose of *this
   SparseMatrix b(cols, rows, terms);//capacity of b.smArray is terms
          int CurrentB = 0:
          for (int c = 0; c < cols; c++) // transpose by columns
              for (int i = 0; i < terms; i++)
             // find elements in column c
                     if (smArray[i].col == c) {
                      b.smArray[CurrentB].row = c;
                      b.smArray[CurrentB].col = smArray[i].row;
                      b.smArray[CurrentB].value = smArray[i].value;
                      CurrentB++:
                                                          O(columns * terms)
   return b;
                                                          =O(columns <sup>2</sup> * Rows)
 // end of transpose
```

Fast Matrix Transpose

- * The O(terms*columns) time => O(rows*columns²) when terms is the order of (rows*columns)
 - * Save space, waste time!

```
for(int i=0;i<row;i++)
for(int j=0;j<column;j++)
b[j][i]=a[i][j];

O(rows*columns)
```

- * A better transpose function in Program 2.11.
 - * It first computes how many terms in each columns of matrix a before transposing to matrix b.
 - * Then it determines where is the starting point of each row for matrix b.
 - * Finally it moves each term from a to b.

	列	行	值		列	行	值		
smArray[0]	0	0	15	smArray[0]	0	0	15		
[1]	0	3	22	[1]	0	4	91		
[2]	0	5	-15	[2]	1	1	11		
[3]	1	1	11	[3]	2	1	3		
[4]	1	2	3	[4]	2	5	28		
[5]	2	3	-6	[5]	3	0	22		
[6]	4	0	91	[6]	3	2	-6		
[7]	5	2	28	[7]	5	0	-15		
	(a)			(b)				

```
SparseMatrix SparseMatrix::FastTranspose( )
{// 在 O(terms + cols)的時間內回傳 *this 的轉置矩陣
  SparseMatrix b(cols, rows, terms);
  if (terms > 0)
  {// 非零的矩陣
    int *rowSize = new int[cols];
    int *rowStart = new int[cols];
    // 計算 rowSize[i] = b 的第 i 列之項數
                                                O(columns)
    fill(rowSize, rowSize + cols, 0); // 初始化
    for (int i = 0; i < terms; i ++) rowSize[smArray[i].col]++;
                                                           O(terms)
    // rowStart[i] = b 的第 i 列之起始位置
    rowStart[0] = 0;
    for (int i = 1; i < cols; i++) rowStart[i] = rowStart[i-1] + rowStart[i-1];
                                                                          O(columns-1)
    for (int i = 0; i < terms; i++)
    {// 從 *this 複製到 b
                                       O(terms)
      int j = rowStart[smArray[i].col];
      b.smArray[i].row= smArray[i].col;
      b.smArray[i].col = smArray[i].row;
      b.smArray[i].value = smArray[i].value;
                                                                 O(terms+columns)
      rowStart[smArray[i].col]++;
    } // for 結束
    delete [] rowSize;
    delete [] rowStart;
                                                                 O(row * column)
  } // if 結束
  return b;
```

2.4.4 Matrix Multiplication

* Definition: Given A and B, where A is m*n and B is n * p, the product matrix Result has dimension m*p. Its [i][j] element is

$$d_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$$

for $0 \le i \le m$ and $0 \le j \le p$.

已知
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \\ 3 & 2 \end{bmatrix}$$
、 $B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & -1 \end{bmatrix}$,則:

$$A \times B = \begin{bmatrix} 1 \times 1 + 4 \times 2 & 1 \times 2 + 4 \times 0 & 1 \times 3 + 4 \times (-1) \\ 2 \times 1 + 3 \times 2 & 2 \times 2 + 3 \times 0 & 2 \times 3 + 3 \times (-1) \\ 3 \times 1 + 2 \times 2 & 3 \times 2 + 2 \times 0 & 3 \times 3 + 2 \times (-1) \end{bmatrix} = \begin{bmatrix} 9 & 2 & -1 \\ 8 & 4 & 3 \\ 7 & 6 & 7 \end{bmatrix}$$

$$B \times A = \begin{bmatrix} 1 \times 1 + 2 \times 2 + 3 \times 3 & 1 \times 4 + 2 \times 3 + 3 \times 2 \\ 2 \times 1 + 0 \times 2 + (-1) \times 3 & 2 \times 4 + 0 \times 3 + (-1) \times 2 \end{bmatrix} = \begin{bmatrix} 14 & 16 \\ -1 & 6 \end{bmatrix}$$

2.5 Representation of Arrays

- * Multidimensional arrays are usually implemented by one dimensional array via either row major order or column major order.
- * It can be retrieved efficiently. And be able to retrieve array element easily

$$a[u_1][u_2][u_3]...[u_n] \rightarrow \text{The number of element is}$$

$$\prod_{i=1}^{n} u_i$$

Row major order

Sequential representation of a[u₁][u₂]

If alpha is the address of a[0][0] The address of a[i][0] is alpha+i*u2 The address of a[i][j] is alpha+i*u2+j

Sequential representation of a[u₁][u₂][u₃]

