CSCI 210: Computer Architecture Lecture 23: Performance

Oberlin College
Dec. 1, 2021

Slides from Cynthia Taylor

Announcements

Problem Set 7 due Friday

Lab 6 due Sunday

Office Hours Friday 13:30–14:30

Measures of "Performance"

- Execution Time
- Frame Rate
- Throughput (operations/time)
- Responsiveness
- Performance / Cost
- Performance / Power

Match (Best) Performance Metric to Domain

Performance Metrics

- 1. Network Bandwidth (data/sec)
- 2. Network Latency (ms per roundtrip)
- **3.** Frame Rate (frames/sec)
- 4. Throughput (ops/sec)

Domains

Selection	Multiplayer Online Games	1080p video	Torrent Download	Google Server Farm
Α	4	3	1	2
В	4	1	3	2
С	2	1	3	4
D	2	3	1	4
E	None of the abo	ove		

Metrics for running a program

Execution Time – how long does it take to run?

CPI – cycles per instruction

Instruction Count – how many instructions does it have?

Clock cycle time

All Together Now

```
CPU Execution Time = Instruction X CPI X Clock Cycle Time
```

All Together Now

 You have a 1 billion (10⁹) instruction program, a 500 MHz processor, and an execution time of 3 seconds. What is the CPI for this program?

• Note that 1 MHz = 1 million (10⁶) cycles per second

Selection	СРІ
Α	3
В	15
С	1.5
D	15*10^9
E	None of the above

There are a number of people involved in processor / programming design

 Each of these elements of the performance equation can be impacted by different designer(s)

Next slides will be about who can impact what.

• What can a programmer influence?

Selection	Impacts
Α	IC
В	IC, CPI
С	IC, CPI, and CT
D	IC and CT
Е	None of the above

What can a compiler influence?

Selection	Impacts
Α	IC
В	IC, CPI
С	IC, CPI, and CT
D	CPI and CT
E	None of the above

What can an instruction set architect influence?

Selection	Impacts
Α	IC
В	IC, CPI
С	IC, CPI, and CT
D	CPI and CT
E	None of the above

What can a hardware designer influence?
 Assume they are designing a chip for a set ISA.

Selection	Impacts
Α	IC
В	IC, CPI
С	IC, CPI, and CT
D	CPI and CT
Ε	None of the above

If we run two different programs on the same machine, how do the number of instructions, CPI, and clock cycle time compare?

	Number of instructions	CPI	Clock cycle time
Α	Same	Same	Same
В	Different	Same	Same
C	Different	Different	Same
D	Different	Different	Different
Ε	Different	Same	Different

If we run the same program on two different machines with different ISAs, how do the number of instructions, CPI, and clock cycle time compare?

	Number of instructions	СРІ	Clock cycle time
Α	Same	Same	Same
В	Same	Same	Different
C	Same	Different	Different
D	Different	Different	Different
Ε	Different	Same	Same

If we run the same program on two different machines with the same ISA, how do the number of instructions, CPI, and clock cycle time compare?

	Number of instructions	CPI	Clock cycle time
Α	Same	Same	Same
В	Same	Same	Different
С	Same	Different	Different
D	Different	Different	Different
Ε	Different	Same	Same

How we can measure CPU performance

Millions of instructions per second

Performance on benchmarks—programs designed to measure performance

Performance on real programs

MIPS

MIPS = Millions of Instructions Per Second

= Instruction Count

Execution Time * 10⁶

- program-dependent
- deceptive

Peak throughput measures (simple programs)?

- Peak throughput measures (simple programs)?
- Synthetic benchmarks (whetstone, dhrystone,...)?

- Peak throughput measures (simple programs)?
- Synthetic benchmarks (whetstone, dhrystone,...)?
- Real applications

- Peak throughput measures (simple programs)?
- Synthetic benchmarks (whetstone, dhrystone,...)?
- Real applications
- SPEC (best of both worlds, but with problems of their own)
 - System Performance Evaluation Cooperative
 - Provides a common set of real applications along with strict guidelines for how to run them.
 - provides a relatively unbiased means to compare machines.

Danger in Benchmark-Specific Performance Measures

measures compiler as much as architecture!

Speedup

 Often want to compare performance of one machine against another

```
Performance = \frac{1}{\text{Execution Time}}

Speedup (A over B) = \frac{1}{\text{Performance}_{A}}

Speedup (A over B) = \frac{\text{ET}_{B}}{\text{ET}_{A}}
```

Reading

- Next lecture: Datapath
 - Section 5.2

Problem Set 7 due Friday

Lab 6 due Sunday