Variational Autoencoders

Shangsong Liang
Sun Yat-sen University

Orignially produced by Alon Oring

Recap - Autoencoders

- Traditional AE are models designed to output a reconstruction of their input by deconstructing input data into hidden representations and reconstructing them into the original input
- The appeal of this setup is that the model learns its own definition of a salient representation based only on data – no labels or heuristics

Variational Autoencoders

- A probabilistic twist on autoencoders that enables:
 - Novel image synthesis from random samples
 - Transition from image to image or from mode to mode
 - Aggregation of similar images to close locations in the latent space

3	9	8	3	3	5	4	3
8	Ç	G	в	9	5	7	3
4	3	9	0	1	6	1	9
1	9	4	3	7	2	1	2
2	7	÷	1	Ь	Ø	8	3
0	6	3	3	0	9	1	Ô
6	4	3	8	9	9	0	C
9	8	6	8	0	1	l	9

Motivation

 Variational Autoencoders are a deep learning technique for learning useful latent representations

Regular Autoencoder on MNIST dataset

Variational Autoencoder on CelebA dataset

Architecture

- Very similar to the regular autoencoder
- The probabilistic nature of the VAE is enabled using a sampling layer

VAE - Probabilistic Intuition

Latent Space Representation

Variational Autoencoder

Information Theory Recap

Information - Definition and Intuition

• Lets define an information function, , in terms of an event with probability . What should be its properties?

 is monotonically decreasing – an increase in the probability decreases the information from an observed event

Information due to independent events is additive

We can guess entropy is

Entropy - Definition

• The entropy is defined as the expected value of the information of a random variable:

Entropy - Intuition

- The maximum entropy is the one that corresponds to the least amount of knowledge defined by the probability density function
- When can we expect maximum entropy for the following cases:
 - Among probability distributions over a finite range of values?
 - Among probability distributions over a infinite range of values?

Kullback-Leibler Divergence

• Let's define a measure of similarity between distributions and

How about:

However, we take the expectation with respect to and obtain

Kullback-Leibler Divergence Properties

- KL measure is a divergence, not a distance
- A condition of a measure to be a metric is to be symmetric

Information Theory - Summary

 The entropy of a distribution gives the minimum number of bits per message that would be needed on average to losslessly encode events drawn from

• The cross entropy is the **total** number of bits per message needed to encode events drawn from true distribution if using an optimal code for

 KL Divergence measures the average number of extra bits per message

Information Theory Perspective

Latent Variable Models - General Case

- We can only see our training data,
- We assume the data is governed by some unobserved random variable,
- The image generation process consists of two steps: a value of is generated from some prior distribution, and an image is generated from a conditional distribution
- We can now obtain two important expressions:

Learning Statistical Models

 Using expectation-maximization algorithm we can iteratively find a maximum likelihood or maximum a posteriori estimates of the parameters in our statistical model and we are done:

• For many models, this evidence integral is unavailable in closed form or requires exponential time to compute. The evidence is what we need to compute the conditional posterior using Bayes

Intractability

- We can "solve" the intractable part in two ways
 - Variational Inference
 - Markov Chain Monte Carlo (Does not scale well with large datasets)

Variational Inference

Variational Inference

Suppose we are given an intractable probability distribution

 We can approximate the intractable distribution using some other tractable distribution,

 What will help us choose a distribution that will best approximate the intractable posterior?

Information Theory Revisited

 We interpret the unobserved variables z as a latent representation or code, therefore, we shall refer to the model as a probabilistic encoder, since given a datapoint it produces a distribution over the possible values of the code

• Similarly, we refer to as a **probabilistic decoder**, since given a code it produces a **distribution** over the possible values of

Back to the optimization problem

• Lets substitute our intractable optimization problem:

With a variational optimization problem:

Our goal is to find the closest in divergence to the exact conditional

Does this transition really help us?

Let the derivations begin

"Minimizing" KL Divergence

$$\log p(x) = KL(q(z \lor x) \lor ip(z|x)) + \mathcal{L}(\phi)$$

"Minimizing" KL Divergence

$$\log p(x) = KL(q(z \lor x) \lor ip(z|x)) + \mathcal{L}(\phi)$$

Evidence Lower BOund (ELBO)

Putting it all together

Assume P is Gaussian. What does this mean? What about Bernoulli?

We push the approximate posterior to the prior

What we have so far

- We want to learn a latent variable model
- The likelihood and posterior are intractable and we can't use EM
- We approximate the posterior using a tractable function and use KL divergence to pick the best possible approximation
- Because we cannot compute the KL, we optimize an alternative objective that is equivalent to the KL up to an added constant
- The ELBO has similar properties to a regularized autoencoder

Neural Network Perspective

In practice

- How should we pick the approximating functions?
- A probabilistic encoder, approximating the true (intractable) posterior distribution
- A generative decoder

 , which notably does not rely on any input

The Variational Autoencoder

Features as Probability Distributions

Features as Probability Distributions

Features as Probability Distributions

The Variational Autoencoder

Sample Layer

Back-Propagation through Random Operations

KL Divergence for Gaussian Distributions

Recall that the density function for a multivariate Gaussian is:

Consider two such distributions and compute

KL Divergence in code

$$KZ\left[N(\mu,\Sigma)\vee iN(0,1)\right] = -\frac{1}{2}\left[n + \log\left(\det(\Sigma)\right) - \mu^T \mu - tr(\Sigma)\right]$$

```
vae = Model(x, x_recon)
recon_loss = metrics.binary_crossentropy(x, x_recon)
kl_loss = -0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-
1)
vae_loss = K.mean(kl_loss(
vae.add_loss(vae_loss)
vae.compile(optimizer='rmsprop', loss=None)
```

Back to VAE motivation

- VAE are a deep learning technique for learning useful latent representations
 - Image Generation
 - Latent Space Interpolation
 - Latent Space Arithmetic
- Is the new learned latent space useful?

Latent Space Visualizations

Generating Numbers (MNIST)

Generating Images from VAE

"Generating" Images from Traditional AE

Generating Faces (CelebA)

Latent Space Interpolation

• If the latent space representation is useful, maybe we could take two different images, represent them as points in latent space, and create images from the line connecting the two points?

Latent Space Arithmetic

 Instead of interpolation, could we extract the latent vector responsible for a specific attribute?

Latent Space Arithmetic

woman with glasses

Latent Space Arithmetic

Music VAE

Summary

- Probabilistic spin to traditional autoencoders
- Defines an intractable distribution and optimizes a variational lower bound
- Allows data generation and a useful latent representation
- Samples blurrier and lower quality images compared to state-of-the-art techniques

Bibliography

- https://arxiv.org/pdf/1312.6114.pdf
- https://arxiv.org/pdf/1606.05908.pdf
- https://arxiv.org/pdf/1502.04623.pdf
- http://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and.html
- http://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-variational-autoencoder-in.html
- https://ermongroup.github.io/cs228-notes/extras/vae/
- http://kvfrans.com/variational-autoencoders-explained/
- https://stats.stackexchange.com/questions/267924/explanation-of-the-free-bits-technique-for-variational-autoencoders
- http://szhao.me/2017/06/10/a-tutorial-on-mmd-variational-autoencoders.html
- https://www.cs.princeton.edu/courses/archive/spring17/cos598E/Ghassen.pdf
- https://www.jeremyjordan.me/variational-autoencoders/