

Tutorial 4

Pengantar Sistem Digital

2023-2024 Gasal

RAE

Petunjuk Pengerjaan

- Silahkan mengerjakan soal ini sebagai latihan!
- Usahakan coba kerjakan soal sendiri lebih dahulu, baru lihat solusi atau bertanya kalau benar-benar stuck.
- Semangat semuanya! 🤩 🤩 🤩

Soal Tutorial

Rilis - 15/11/2023

Keterangan revisi

- 1. Jelaskan operasi yang dilakukan register transfer berikut! Jika invalid, sebutkan penyebabnya!
 - a. $K1: R2 \leftarrow R1, R1 \leftarrow R2$
 - b. K1 V K2 : R1 ← R2 V R1
 - c. $K1 + K1 : R2 \leftarrow R1 + R1$
 - d. $\overline{K0}$. K1 : R1 \leftarrow R1 \oplus R2
 - K0 . K1 : R2 ← R1 ⊕ R2
 - e. $K1 \wedge \overline{K2} : R0 \leftarrow R1 \wedge R2$
 - f. K1. K2. K3: $\overline{R1} \leftarrow R2 17$
- 2. Misal diberikan 3 register 8-bit dengan keadaan awal sebagai berikut:
 - Ra: 1100 1100
 - Rb: 1010 1010
 - Rc: 0101 0101

Selanjutnya, 6 micro-operation berikut akan dilakukan secara berurutan:

- a. Ra $\leftarrow \overline{Ra} + 1$
- b. Rb \leftarrow Rb + \overline{Ra} + 1
- c. Rc $\leftarrow \overline{Rc}$
- d. Ra ← Rc 1
- e. $Rb \leftarrow Rb \oplus Rc$

f.
$$Rc \leftarrow Rc + Rb$$

Tuliskanlah isi dari register yang bersangkutan setelah dilakukannya setiap micro-operation di atas. Sertakan cara mendapatkan hasil tersebut secara singkat.

Keterangan: Apabila terdapat overflow atau carry out setelah arithmetic micro-operation, asumsikan register tetap hanya akan menyimpan 8-bit dan mengabaikan overflow atau carry out bit tersebut.

3. Buatlah state table 1 dimensi dengan register A dan input B dengan register transfer seperti berikut:

 \overline{CX} . \overline{CY} : Hold State

 \overline{CX} . CY : A $\leftarrow \overline{A} \wedge B$

 $CX \cdot \overline{CY} : A \leftarrow A \lor B$

 $CX \cdot CY : A \leftarrow A \oplus \overline{B}$

Control Input		Present State	Input	Next State
СХ	CY	A(t)	B(t)	A(T+1)
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	

#PSDisFun

4. Perhatikan gambar register di bawah

Asumsikan *input pin* 'InputFill' akan selalu bernilai 0. Isilah bagian tabel yang kosong

Clock	$ _{3} _{2} _{1} _{0}$	Shift	$Q_3 Q_2 Q_1 Q_0$
t _o	1100	0	1100
t ₁	0110	1	0110
t ₂	1101	1	0011
t ₃	0110	0	
t ₄	1110	1	
t ₅	1110	1	

Asumsikan bahwa t0, t1, t2, dst. adalah saat clock naik (rising edge).