ECE 302: Probabilistic Methods in Electrical and Computer Engineering

Fall 2020

Instructor: Prof. Stanley H. Chan

Final

Fall 2020

Name: Elizs Talcott	Session (circle one): Morning) Evening / DRC
Please copy and write the following statement:	
I certify that I have neither given nor receive	d unauthorized aid on this exam.
I certify that I have reflect given nor received (Please copy and write the above statement.)	I unauthorized aid on this exam.
	Eli Falcott
	(Signature)

Please state clearly each step you take to reach the final answer. A correct final answer without proper explanations will not receive the full credit.

Problem	Score
Q1	, , , , , , , , , , , , , , , , , , ,
Q2	
Q3	
Total	
	9

Exercise 1. (30 POINTS)

(a) (6 points)

$$P_{X}(0) = \frac{1}{2}, P_{X}(1) = \frac{1}{2}, P_{Y}(0) = \frac{1}{2}, P_{Y}(1) = \frac{1}{2}, P_{Y$$

(b) (8 points)

Find PMF of
$$Z(\frac{1}{2})$$

For case i) $Z(\frac{1}{2}) = 0$ $P[case] = \frac{1}{2}(\frac{1}{2}) = \frac{1}{4}$

ii) $Z(\frac{1}{2}) = 0$

iii) $Z(\frac{1}{2}) = 1$

iii) $Z(\frac{1}{2}) = 1$

iii) $Z(\frac{1}{2}) = 0$

$$P[Z(\frac{1}{2}) = 0] = \frac{3}{4}$$

(c) (8 points)

Find
$$E[z|t]$$
 ($w_z(t)$) $\chi = Bernoulli w| p = 0.5$
 $Y = Bernoulli w| p = 0.5$
 $E[z|t) = Z \times v(t-Y) P[cose]$
 $= o(\frac{1}{4}) + o(\frac{1}{4}) + v(t)(\frac{1}{4}) + v(t-1)(\frac{1}{4})$
 $E[z|t] = \frac{1}{4}v(t) + \frac{1}{4}v(t-1)$

(d) (8 points)

Find joint PMF of
$$7(\frac{1}{2})$$
 and $7(\frac{1}{2})$

For case 1) $7(\frac{1}{2}) = 0$ $7(\frac{3}{2}) = 0$ $7(\frac{3}{2})$

Exercise 2. (30 POINTS)

(a) (10 points)

$$f_{T}(t) = \begin{cases} \lambda e^{-\lambda t}, t \ge 0 \\ 0, t \ge 0 \end{cases}$$

$$V = \max\{T_{1}, T_{2}\}, V = \min\{T_{1}, T_{2}\}, \text{ find } f_{0}(t)$$

$$F_{0}(t) = (1 - e^{-\lambda T_{1}})(v(T_{1} - T_{2})) + (1 - e^{-\lambda T_{2}})(1 - v(T_{1} - T_{2})) = 0$$

$$F_{0}(t) = v(T_{1} - T_{2}) - e^{-\lambda T_{1}}(T_{1} - T_{2}) + 1 - v(T_{1} - T_{2}) = 0$$

$$F_{0}(t) = \max\{(1 - e^{-\lambda T_{1}}), (1 - e^{-\lambda T_{2}})\}(t)$$

(b) (12 points)

 $V = min \{T_1, T_2\}$ $F_{V}(t) = min \{(1-e^{\lambda T_1}), (1-e^{\lambda T_2})\}(t)$

(c) (4 points)

 $P_1 = P[T_1 \ge T_2], P_2 = P[T_1 \cup T_2]$ $E[0] = P_1(\frac{1}{\lambda})$

(d) (4 points)

Exercise 3. (40 POINTS)

(a) (4 points)

$$X(t, \varepsilon) = A(\varepsilon)t + B(\varepsilon), -\infty L + L\infty$$

$$Dx = E[X(t)] = E[A(\varepsilon)t + B(\varepsilon)] = tE[A(\varepsilon)] + E[B(\varepsilon)]$$

$$M_X(t) = M_A + M_B$$

(b) (12 points)

Find
$$R_X(t_1, t_2)$$
, Is it was?

$$R_X(t_1, t_2) = \mathbb{E}[X(t_1)X(t_2)] = \mathbb{E}[(A|E)t_1 + B|E))(A|E)t_2 + B|E))$$

$$= \mathbb{E}[A^2(E)t_1 + A_2 + A_3(E)t_1 + B(E) + A_3(E)t_2 + B(E) + B^2(E)]$$

$$= t_1 t_2 \mathbb{E}[A^2(E)] + t_1 \mathbb{E}[A|E) B(E)] + t_2 \mathbb{E}[A|E) B(E)] + \mathbb{E}[B^2(E)]$$

$$= m_A^2 t_1 t_2 + m_A m_B t_1 + m_A m_B t_2 + m_B^2$$

$$= (m_A t_1 + m_B)(m_A t_2 + m_B)$$
Since $m_X(t)$ is not constant, X is NOT WSS

(c) (14 points)

Find
$$M_X(s)$$
 $X(t) = A(\varepsilon)t + B(\varepsilon)$
 $M_A(s) = e^{M_A s + \frac{\sigma_A^2 s^2}{2}}$
 $M_B(s) = e^{M_B s + \frac{\sigma_B^2 s^2}{2}}$

(d) (5 points)

Find
$$f_{x}(t)$$

$$F_{x}(t) = \int_{-\infty}^{\infty} A(\varepsilon)t + B(\varepsilon) dt$$

$$= \left[\frac{1}{2}A(\varepsilon)t^{2} + B(\varepsilon)t\right]_{-\infty}^{\infty}$$

(e) (5 points)

Useful Identities

1.
$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + \dots = \frac{1}{1-r}$$

4.
$$\sum_{k=1}^{\infty} kr^{k-1} = 1 + 2r + 3r^2 + \dots = \frac{1}{(1-r)^2}$$

2.
$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

1.
$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + \dots = \frac{1}{1-r}$$
2.
$$\sum_{k=1}^{\infty} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
3.
$$\sum_{k=1}^{\infty} kr^{k-1} = 1 + 2r + 3r^2 + \dots = \frac{1}{(1-r)^2}$$
5.
$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^3 + \dots + n^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

3.
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots$$
 6. $(a+b)^n = \sum_{k=0}^n {n \choose k} a^k b^{n-k}$

6.
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Common Distributions

Bernoulli
$$\mathbb{P}[X=1]=p$$

$$\mathbb{E}[X] = p$$
 $Var[X] = p(1-p)$ $M_X(s) = 1 - p + pe^s$

$$M_X(s) = 1 - p + pe^s$$

Binomial
$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-1}$$

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 $\mathbb{E}[X] = np$ $\operatorname{Var}[X] = np(1-p)$ $M_X(s) = (1-p+pe^s)^n$

$$M_X(s) = (1 - p + pe^s)^{\eta}$$

Geometric
$$p_X(k) = p(1-p)^{k-1}$$

$$\mathbb{E}[X] = \frac{1}{p}$$
 $\operatorname{Var}[X] = \frac{1}{p}$

$$M_X(s) = \frac{pe}{1 - (1 - p)e^s}$$

Poisson
$$p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$\mathbb{E}[X] = \lambda \qquad \operatorname{Var}[X] = \lambda$$

$$M_X(s) = e^{\lambda(e^s - 1)}$$

Geometric
$$p_X(k) = p(1-p)^{k-1}$$
 $\mathbb{E}[X] = \frac{1}{p}$ $\operatorname{Var}[X] = \frac{1-p}{p^2}$ $M_X(s) = \frac{pe^s}{1-(1-p)e^s}$
Poisson $p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$ $\mathbb{E}[X] = \lambda$ $\operatorname{Var}[X] = \lambda$ $M_X(s) = e^{\lambda(e^s - 1)}$
Gaussian $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $\mathbb{E}[X] = \mu$ $\operatorname{Var}[X] = \sigma^2$ $M_X(s) = e^{\mu s + \frac{\sigma^2 s^2}{2}}$

$$F[Y] = \frac{1}{I} \qquad \text{Vor}[Y] = \frac{1}{I}$$

$$M_X(s) = \frac{\lambda}{\lambda - s}$$

Exponential
$$f_X(x) = \lambda \exp \{-\lambda \}$$

Exponential
$$f_X(x) = \lambda \exp\{-\lambda x\}$$
 $\mathbb{E}[X] = \frac{1}{\lambda}$ $\operatorname{Var}[X] = \frac{1}{\lambda^2}$ $M_X(s) = \frac{\lambda}{\lambda - s}$ Uniform $f_X(x) = \frac{1}{b-a}$ $\mathbb{E}[X] = \frac{a+b}{2}$ $\operatorname{Var}[X] = \frac{(b-a)^2}{12}$ $M_X(s) = \frac{e^{sb} - e^{sa}}{s(b-a)}$

$$M_X(s) = \frac{e^{sb} - e^{sa}}{\lambda - s}$$

Fourier Transform Table

$$f(t) \longleftrightarrow F(w)$$

$$f(t) \longleftrightarrow F(w)$$

1.
$$e^{-at}u(t) \longleftrightarrow \frac{1}{a+jw}, a>0$$

$$\operatorname{sinc}^2(\frac{Wt}{2}) \longleftrightarrow \frac{2\pi}{W}\Delta(\frac{w}{2W})$$

2.
$$e^{at}u(-t) \longleftrightarrow \frac{1}{a-jw}, a > 0$$

1.
$$e^{-at}u(t) \longleftrightarrow \frac{1}{a+jw}, \ a > 0$$
 10. $\operatorname{sinc}^2(\frac{Wt}{2}) \longleftrightarrow \frac{2\pi}{W}\Delta(\frac{w}{2W})$
2. $e^{at}u(-t) \longleftrightarrow \frac{1}{a-jw}, \ a > 0$ 11. $e^{-at}\operatorname{sin}(w_0t)u(t) \longleftrightarrow \frac{w_0}{(a+jw)^2+w_0^2}, \ a > 0$
3. $e^{-a|t|} \longleftrightarrow \frac{2a}{a^2+w^2}, \ a > 0$ 12. $e^{-at}\operatorname{cos}(w_0t)u(t) \longleftrightarrow \frac{a+jw}{(a+jw)^2+w_0^2}, \ a > 0$
4. $\frac{a^2}{a^2+t^2} \longleftrightarrow \pi a e^{-a|w|}, \ a > 0$ 13. $e^{-\frac{t^2}{2\sigma^2}} \longleftrightarrow \sqrt{2\pi} \sigma e^{-\frac{\sigma^2 w^2}{2}}$

3.
$$e^{-a|t|} \longleftrightarrow \frac{2a}{a^2 + w^2}, \ a > 0$$

$$e^{-at}\cos(w_0t)u(t)\longleftrightarrow \frac{a+jw}{(a+jw)^2+w_0^2},\ a>0$$

4.
$$\frac{a^2}{a^2+t^2} \longleftrightarrow \pi a e^{-a|w|}, \ a > 0$$

$$e^{-\frac{t^2}{2\sigma^2}} \longleftrightarrow \sqrt{2\pi}\sigma e^{-\frac{\sigma^2 u}{2}}$$

5.
$$te^{-at}u(t) \longleftrightarrow \frac{1}{(a+jw)^2}, \ a>0$$

$$\delta(t) \longleftrightarrow 1$$

6.
$$t^n e^{-at} u(t) \longleftrightarrow \frac{n!}{(a+jw)^{n+1}}, a > 0$$

$$1 \longleftrightarrow 2\pi\delta(w)$$

7.
$$\operatorname{rect}(\frac{t}{\tau}) \longleftrightarrow \tau \operatorname{sinc}(\frac{w\tau}{2})$$

$$\delta(t-t_0)\longleftrightarrow e^{-jwt_0}$$

8.
$$\operatorname{sinc}(Wt) \longleftrightarrow \frac{\pi}{W}\operatorname{rect}(\frac{w}{2W})$$

$$e^{jw_0t}\longleftrightarrow 2\pi\delta(w-w_0)$$

9.
$$\Delta(\frac{t}{\tau}) \longleftrightarrow \frac{\tau}{2} \operatorname{sinc}^2(\frac{w\tau}{4})$$

Some definitions:

$$\operatorname{sinc}(t) = \frac{\sin(t)}{t} \qquad \operatorname{rect}(t) = \begin{cases} 1, & -0.5 \le t \le 0.5, \\ 0, & \text{otherwise.} \end{cases} \qquad \Delta(t) = \begin{cases} 1 - 2|t|, & -0.5 \le t \le 0.5, \\ 0, & \text{otherwise.} \end{cases}$$

14.

15.

16.

17.

Basic Trigonometry

$$e^{j\theta} = \cos \theta + j \sin \theta$$
, $\sin 2\theta = 2 \sin \theta \cos \theta$, $\cos 2\theta = 2 \cos^2 \theta - 1$.

$$\cos A \cos B = \frac{1}{2}(\cos(A+B) + \cos(A-B)) \quad \sin A \sin B = -\frac{1}{2}(\cos(A+B) - \cos(A-B))$$
$$\sin A \cos B = \frac{1}{2}(\sin(A+B) + \sin(A-B)) \quad \cos A \sin B = \frac{1}{2}(\sin(A+B) - \sin(A-B))$$