

TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY KATEDRA KYBERNETIKY A UMELEJ INTELIGENCIE

Subsymbolická umelá inteligencia v rozhodovacích procesoch

Prednáška predmetu Rozhodovanie a zložitosť

Michal Puheim, Ladislav Madarász

Obsah prezentácie

- Základné typy rozhodovacích problémov
- Úvod do systémov umelej inteligencie
- Prístupy k tvorbe inteligentných systémov
- Subsymbolická umelá inteligencia
- Prostriedky subsymbolickej UI
- Neurónové siete
- Evolučné algoritmy
- Fuzzy inferenčné systémy
- Fuzzy kognitívne mapy

Základné typy rozhodovacích problémov riešených Ul

- Dichotomické rozhodovanie:
 - áno,
 - nie.
- Klasifikácia:
 - triedy,
 - nominálne označené (labelled) hodnoty.
- Zhlukovanie:
 - zhluky,
 - nominálne neoznačené (unlabelled) hodnoty.
- Predikcia:
 - numerické hodnoty.

Ďalšie typy problémov riešených prostriedkami Ul

- transformácia signálov,
- optimalizácia
- plánovanie, rozvrhovanie, navigácia
- identifikácia a modelovanie systémov,
- monitoring a diagnostika,
- riadenie,
- rozpoznávanie vzorov,
- a iné...

Oblasti výskumu v Ul

- reprezentácia znalostí
 - symbolická, numerická, grafická
- programovacie jazyky
 - Lisp, Prolog, Eclipse, XML
- expertné systémy
 - diagnostické, rozhodovacie, plánovacie
- rozpoznávanie obrazov
- spracovanie prirodzenej reči
- robotika
- vnímanie prostredie (kognícia)
- dokazovanie (a odvodzovanie) matematických viet
- adaptívne učiace sa systémy

Systémy umelej inteligencie

"Cieľom systémov umelej inteligencie je vypracovať paradigmy alebo algoritmy, ktoré požadujú od stroja riešiť úlohy, ktoré by vyriešil len človek so znalosťami."

Požiadavky na systémy Ul

- vedieť uložiť znalosti,
 - knowledge representation,
- aplikovať znalosti pre riešenie problému,
 - uvažovanie (reasoning),
- získavať nové znalosti počas experimentov,
 - učenie (learning).

Prístupy k riešeniu problémov v umelej inteligencii

- 2 prístupy k riešeniu problémov,
- popisuje ich už Turingov manifest UI z roku 1948,
- obe prístupy majú svoje uplatnenie,

• Top-Down,

- prístup zhora nadol,
- klasický prístup,
- logika a symbolická reprezentácia,
- expertné systémy,
- symbolická UI,

Bottom-Up,

- prístup zdola nahor,
- moderný prístup,
- masívny paralelizmus vo výpočtoch,
- neurónové siete,
- subsymbolická UI.

Symbolická umelá inteligencia

- "Good old fashioned UI",
- používa symbolické uvažovanie (prístup zhora nadol),
- znalosti sú reprezentované v symbolickej forme,
- logické operácie sú vykonávané v závislosti od týchto znalostí s cieľom dosiahnuť riešenia a predikcie do budúcnosti,
- snaha o dokazovanie pravdivosti a vyhýbanie sa protikladom
- riešenia sú pochopiteľné a dokázateľné (logikou)
- filozofia ľudská inteligencia je racionálna a môže byť reprezentovaná logickými systémami zahŕňajúcimi dokazovanie pravdivosti faktov.

Subsymbolická umelá inteligencia (1)

- "výpočtová" inteligencia (soft computing),
- znalosti nie sú reprezentované v symbolickej forme,
- program je reprezentovaný veľkým množstvom numerických parametrov, ktoré definujú:
 - správanie (mapovanie vstupov a výstupov),
 - rozpoznávanie vzorov (napr. rukou písaného textu),
- parametre môžu byť modifikované veľkým množstvom interakcií s prostredím (reálnym/virtuálnym svetom) pokiaľ program funguje,
- nezaujíma sa o protiklady, obsahuje veľké množstvo protichodných pravidiel a môže meniť pravidlá správania,

Subsymbolická umelá inteligencia (2)

- masívny paralelizmus vo výpočtoch,
- systém UI dynamický systém,
- podporená:
 - rozvojom číslicových počítačov,
 - stagnáciou symbolickej UI,
- inšpirácia:
 - nízkoúrovňové percepčné procesy (connectionism),
 - biologické procesy, evolučné princípy,
 - prírodné javy, nové fyzikálne a matematické teórie (kvantová mechanika, teória chaosu, neurčitosti).

Subsymbolická umelá inteligencia (3)

- riešenie môže byť:
 - ťažko analyzovateľné,
 - nie optimálne,
 - avšak stále lepšie ako symbolické riešenie (ktoré je navyše často nemožné odvodiť).
- filozofia:
 - čokoľvek funguje, funguje (whatever works, works),
 - evolúcia nemá dôvod konštruovať logické systémy,
 - myseľ (dokonca aj teoretického logika) je založená na neracionálnej súťaži konfliktných ideí, pravidiel a mémov,
 - väčšina ľudí používa logiku zriedkavo, ak vôbec.

Symbolická VS subsymbolická UI

- subsymbolická Ul
 - nerieši problémy symbolickej UI,
 - prináša vlastné problémy,
- trendom je využívanie predností oboch prístupov
 - hybridizácia metód (napr. fuzzy expertné systémy)
 - kombinácia metód (napr. situačné riadenie)
- príkladom sú hierarchické kontrolné systémy, kde
 - najnižšie (reaktívne) vrstvy sú subsymbolické,
 - vyššie (kognitívne) vrstvy sú symbolické

Prostriedky subsymbolickej UI (1)

- neurónové siete
 - učenie a adaptačné schopnosti
- evolučné algoritmy
 - systematické náhodné hľadanie, optimalizácia
- fuzzy logika
 - reprezentácia neurčitosti

Prostriedky subsymbolickej UI (2)

Zdroj obrázku - [1]

Neurónové siete (1)

- neurónová sieť (NS) je masívne paralelný procesor, ktorý má sklon k uchovávaniu znalostí a ich ďalšiemu využívaniu.
- má schopnosť aproximácie ľubovoľnej funkcie pomocou vzoriek vstupných a výstupných dát bez ohľadu na znalosť matematického modelu problému.
- je uznávaným spôsobom riešenia širokého spektra problémov:
 - klasifikácia do tried, predikcia, zhlukovanie,
 - aproximácia funkcií, tranformácia signálov,
 - asociačné problémy, simulácia pamäte,
- je robustnou alternatívou ku konvenčným deterministickým a programovateľným metódam

Neurónové siete (2)

základnou procesnou jednotkou NS je tzv. umelý neurón:

$$in_i = \sum_{j=1}^{N} w_{ij} y_j + \Theta_i$$

$$x_i = f(in_i) = \frac{1}{1 + e^{-\delta in_i}}$$

$$y_i = out(x_i) = x_i$$

Zdroj obrázku - [2]

Neurónové siete (3)

- neuróny sa v NS skladajú do zložitejších štruktúr (topológií),
- napr. ľubovoľná štruktúra popísateľná orientovaným grafom,
- vlastnosti takejto siete sa však ťažko analyzujú,
- najčastejšie sú využívané siete s pravidelnými štruktúrami,
- najpoužívanejšou topológiou je viacvrstvová štruktúra:
 - jedna vstupná vrstva,
 - jedna výstupná vrstva,
 - jedna alebo viaceré skryté vrstvy
- topológie NS rozdeľujeme do dvoch základných skupín:
 - dopredné NS,
 - rekurentné NS.

Neurónové siete (4)

Zdroj obrázku - [2]

Neurónové siete (5)

Zdroj obrázku - [2]

Učenie neurónových sietí

- Činnosť NS je možné rozdeliť do dvoch fáz:
 - fáza učenia,
 - fáza života.
- Učenie je proces, v ktorom sa synaptické váhy (SV) menia na základe nejakých pravidiel. Pravidlá vyvolávajúce zmeny SV sú podmienené typom učenia NS:
 - Kontrolované učenie (supervised learning)
 - Nekontrolované učenie (unsupervised learning)

Evolučné algoritmy (1)

- Genetické algoritmy predstavujú dynamicky sa rozvíjajúcu oblasť výpočtovej inteligencie.
- V rôznych oblastiach spoločenského života stojí človek pred úlohou optimalizovať systém, čo nie je v väčšine prípadov jednoduché.
- Príkladom efektívnej optimalizácie je adaptácia biologických organizmov na prostredie v ktorom žijú.
- Uvedomením si, že evolúcia živých organizmov je vlastne sústavným riešením optimalizačného problému vzniká možnosťvyužitia biologického prístupu v rôznych oblastiach ľudskej činnosti.

Evolučné algoritmy (2)

- Biologickí jedinci v prírode súťažia medzi sebou o prežitie a možnosť reprodukcie na základe ich prispôsobenia sa prostrediu.
- V priebehu mnohých generácií sa štruktúra jedincov vyvíjala na základe Darwinovho procesu prirodzeného výberu a prežitia len tých jedincov, ktorí majú najväčšiu vhodnosť.
- Táto metafora bola použitá J. H. Hollandom pri návrhu genetických algoritmov (1975), t. j. efektívnych algoritmov optimalizácie.

Evolučné algoritmy (3)

- Princípom je evolúcia jedincov v populácií počas viacerých generácií.
- Vyhodnotenie jedincov určuje funkcia vhodnosti.
- Do ďalšej generácie sa vyberajú jedinci s najvyššou vhodnosťou.
- Používajú sa genetické operátory:
 - mutácia
 - kríženie (rekombinácia)

Evolučné algoritmy (4)

- Ak predpokladáme, že riešená úloha pozostáva z N- zložiek, potom každé jej riešenie (genotyp jedinca) predstavuje jeden bod v N- rozmernom priestore.
- Obvykle sa však pracuje s (N+1) rozmerným priestorom, v ktorom pribudne ďalší rozmer – vhodnosť príslušného riešenia.
- Keď považujeme vhodnosť ako funkciu N premenných, potom môžeme ju prakticky interpretovať ako hyperplochu v tomto priestore (krajina vhodnosti – Fitness Landscape).
- Úlohou EA je nájsť globálny extrém tejto plochy a neuviaznuť pri jeho hľadaní v niektorom z lokálnych extrémov.

Fuzzy systémy (1)

- 2 základné pojmy:
 - fuzzy množina len matematický aparát,
 - fuzzy logika širší pojem, zahŕňa fuzzy množiny,

Fuzzy systémy (2)

- Pomocou FM môžeme aproximovať ľubovoľnú spojitú funkciu.
- Podobne, ako keby sme použili
 - metódu najmenších štvorcov
 - neurónové siete, atď.
- Pomocou FM môžeme formalizovať znalosti, ktoré sú vágne v jazykovej podobe. Poznatky o okolitom svete získavame alebo na základe vlastných skúseností, alebo sa o nich dozvieme sprostredkovane na základe skúsenosti iných ľudí, pričom tieto skúsenosti sú tlmočené prevažne v jazykovej forme. Tieto poznatky sa snažíme zoskupovať do kauzálnych reťazcov, ktoré nám umožňujú predikovať chovanie objektov okolitého sveta.
- Fuzzy kognitívne mapy.

Klasické kognitívne mapy

- · orientovaný graf,
- uzly reprezentujú koncepty (pojmy),
- hrany reprezentujú vzájomné kauzálne vzťahy,
- ostré (crisp) hodnoty {-1, 0, 1},
- popis komplexných dynamických systémov,
- jednoducho zrozumiteľná grafická reprezentácia.

Zdroj obrázku - [3]

Fuzzy kognitívne mapy (1)

- Kosko (1986),
- orientovaný fuzzy graf,
- fuzzy hodnoty v intervale <-1,1>, resp. <0,1>.

$$FKM = (C, W, \alpha, \beta)$$

- $C = \{C_1, C_2, ..., C_n\}$ je konečná množina konceptov,
- $W = \{w_{11}, w_{12}, ..., w_{nm}\}$ je konečná množina váh,
- $\alpha \rightarrow <$ -1, 1> mapovanie hodnoty konceptu na st. príslušnosti,
- $\beta \rightarrow <-1$, 1> podobne ako α pre váhy

Fuzzy kognitívne mapy (2)

$$A_{j}^{t+1} = p \left(A_{j}^{t} + \sum_{i=1, i \neq j}^{n} A_{i}^{t} . w_{ij} \right)$$

Zdroj obrázku - [4]

Fuzzy kognitívne mapy (3)

Výhody FKM:

- jednoduchosť návrhu a určenia parametrov,
- flexibilita reprezentácie (je možné jednoducho pridávať/odoberať nové koncepty),
- jednoduchosť použitia, zrozumiteľnosť a transparentnosť pre netechnických expertov,
- nízka výpočtová náročnosť,
- zvládnutie dynamických efektov vďaka spätnoväzobnej štruktúre modelovaného systému.

Nedostatky FKM (1)

- Prepojenia medzi konceptami FKM sú iba numerické,
 - vzťahy medzi nimi by teda mali byť lineárne.
- Nepočíta sa s časovým oneskorením,
 - v praxi má každý kauzálny vzťah rôzne časové oneskorenie.
- Nezahŕňajú súčasný výskyt viacerých príčin,
 - používajú sa iba pravidlá typu "ak A potom B",
 - neuvažuje sa s pravidlami typu "ak (A1 a A2) potom B".

Nedostatky FKM (2)

Zdroj obrázku - [4]

Rozšírenia FKM

- a) Nonlinear weights
- β) Conditional weights

Zdroj obrázku - [4]

Úlohy riešiteľné pomocou FKM

FKM sú vhodné na riešenie dvoch hlavných tried úloh:

- 1. hľadanie atraktora,
- úlohou je hľadanie takých parametrov (váh), pri ktorých sa FKM po určitom čase dostane z ľubovoľného počiatočného stavu do žiadaného cieľového stavu (resp. stabilného limitného cyklu).
- 2. regresia,
- úlohou je hľadanie parametrov (váh) FKM v úlohe modelu reálneho dynamického systému použitím sady historických dát.

Metódy učenia FKM

Prístupy k učeniu FKM môžu byť teda v zásade kategorizované nasledovne:

- 1) prístupy s nekontrolovaným učením,
 - založené na Hebbovom učení (HL),
 - Differential HL, Active HL, Nonlinear HL, Data Driven HL (DDHL)...
- 2) prístupy s kontrolovaným učením,
 - založené na evolúcii populácie,
 - Genetic algorithm, Particle Swarm Optimization, Simulated annealing, Tabu search...
 - založené na metóde najmenšej kvadratickej chyby (LMS – Least Mean Square),
 - Delta Rule, Backpropagation of Error, Backpropagation through Time...

Návrhy na modifikácie FKM (1)

- Zohľadnenie (okrem proporčného aj) derivačného a integračného účinku medzi konceptami.
- Viacparametrové polynomiálne váhy medzi konceptami.
- Parametrizovateľná nelineárna funkcia výpočtu hodnoty konceptu.
- Realizácia váh smerujúcich do konceptu pomocou viacvrstvovej doprednej neurónovej siete.

Návrhy na modifikácie FKM (2)

 Zohľadnenie (okrem proporčného aj) derivačného a integračného účinku medzi konceptami.

$$u_{ij}^{t} = A_{i}^{t} \cdot w_{ij}$$

$$u_{ij}^{t} = P_{i}^{t} \cdot w_{ij}^{P} + D_{i}^{t} \cdot w_{ij}^{D} + I_{i}^{t} \cdot w_{ij}^{I}$$

$$P_{i}^{t} = A_{i}^{t} \quad D_{i}^{t} = \frac{d A_{i}^{t}}{dt} \quad I_{i}^{t} = \int_{0}^{t} A_{i}^{t} dt$$

$$A_{j}^{t+1} = p \left(A_{j}^{t} + \sum_{i=1, i \neq j}^{n} u_{ij}^{t} \right)$$

$$C_{1}$$

$$C_{2}$$

$$A_{i}^{t} = C_{2}$$

$$C_{3}$$

Návrhy na modifikácie FKM (3)

Viacparametrové polynomiálne váhy medzi konceptami.

$$u_{ij}^{t} = f\left(A_{i}^{t}\right)$$

$$f(A_i^t) = w^{ij} \cdot A_i^t$$

$$f(A_i^t) = \sum_{k=0}^n w_k^{ij} \cdot (A_i^t)^k$$

Návrhy na modifikácie FKM (4)

• Parametrizovateľná nelineárna funkcia výpočtu hodnoty konceptu.

$$A_{j}^{t+1} = p \left(A_{j}^{t} + \sum_{i=1, i \neq j}^{n} A_{i}^{t} . w_{ij} \right) \qquad A_{j}^{t+1} = p \left(A_{j}^{t} + \prod_{i=1, i \neq j}^{n} A_{i}^{t} . w_{ij} \right)$$

$$A_{j}^{t+1} = p(A_{j}^{t} + f_{j}(A_{i}^{t}, w_{ij})), i = 1...n, i \neq j$$

$$f_{j}(A_{i}^{t}, w_{ij}) = \sum_{k=1}^{m} v_{j}^{k} f_{j}^{k}(A_{i}^{t}, w_{ij}), i=1...n, i \neq j$$

Návrhy na modifikácie FKM (5)

 Realizácia váh smerujúcich do konceptu pomocou viacvrstvovej doprednej neurónovej siete.

Návrhy na modifikácie FKM (6)

- Realizácia váh smerujúcich do konceptu pomocou viacvrstvovej doprednej neurónovej siete.
 - Univerzálna aproximačná teoréma v NS postačuje jedna skrytá vrstva (resp. dve) na aproximáciu ľubovoľnej funkcie.

Aplikačné oblasti FKM

- riadenie predikcia, interpretácia, monitorovanie,
- biznis plánovanie, manažment, rozhodovanie, inferencia,
- medicína podpora rozhodovania, modelovanie, predikcia, klasifikácia,
- robotika navigácia, učenie, predikcia,
- životné prostredie reprezentácia, odvodzovanie znalostí a uvažovanie, tvorba politík,
- informačné technológie modelovanie, analýza.

Použité literárne zdroje

- [1] Ladislav Madarász, Ján Vaščák, Rudolf Andoga, Tomáš Karoľ: "Rozhodovanie, zložitosť a neurčitosť: Teória a prax" elfa, s.r.o., 2010, ISBN 978-80-8086-142-1
- [2] Peter Sinčák, Gabriela Andrejková: "Neurónové siete Inžiniersky prístup (Dopredné neurónové siete)", č. 1. Košice: Elfapress, 1996, ISBN 80-88786-38-X.
- [3] Vaščák, J., Madarász L., "Adaptation of Fuzzy Cognitive Maps a Comparison Study," Acta Polytechnica Hungarica, Vol. 7, No. 3, pp.109,122, 2010.
- [4] Ketipi, M.K., Koulouriotis, D.E., Karakasis, E.G., Papakostas, G.A., Tourassis, V.D., "Nonlinear cause-effect relationships in Fuzzy Cognitive Maps," 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp.836,843, 27-30 June 2011.
- [5] Papageorgiou, E.I., "Learning Algorithms for Fuzzy Cognitive Maps A Review Study,"IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol.42, no.2, pp.150,163, March 2012.
- [6] Papageorgiou, E. I., Salmeron, J. L., "A Review of Fuzzy Cognitive Maps research during the last decade," IEEE Transactions on Fuzzy Systems, vol.21, no.1, pp.66,79, Feb. 2013.
- [7] Gregor, Michal., Groumpos, P. P., "Training Fuzzy Cognitive Maps Using Gradient-Based Supervised Learning", IFIP Advances in Information and Communication Technology, Volume 412, pp 547-556, Jan. 2013.
- [8] Ján Vaščák: "Fuzzy Rozhodovanie", prezentácia, 2011.
- [9] Marián Mach: Evolučné algoritmy: Prvky a princípy. 1. vydanie, elfa s.r.o., Košice, November 2009. 250 s., ISBN 978-80-8086-123-0
- [10] http://computing.dcu.ie/~HUMPHRYS/Notes/Al/survey.html

Ďakujem za pozornosť!

??? Otázky ???