CS 403/503, Programming Languages Spring 2021 Exam One

Date: 02/22/2021

Name: Eland Anthony

1). Basic Concepts

a). Name two solutions to the dangling pointer problem. (4 points)

Utilizing tombstones to safely deallocates pointers by being assigned invalid values and prevents a pointer from ever pointing to a deallocated variable.

Lock and Key Method, which uses lock values and the dispose to maintain its address value but clear the lock value.

b). Name two methods to reclaim garbage. (4 points)

The eager approach to reclaiming garbage utilizes reference counters. Reference counters maintain a counter that stores the number of pointers that are currently pointing at the cell for each cell.

The lazy approach to reclaiming garbage, known as the mark-sweep operation.

- c). Name the three things added to a context-free grammar to make an attribute grammar. (6 points)
 - attributes,
 - attribute computation functions,
 - and predicate functions.

- **d).** Given the following C program, what is the value of z after the assignment statement in main? (6 points)
- assuming operands are evaluated from left to right. 10
- assuming operands are evaluated from right to left. 20

```
int x = 5;
int fun(int i) {
          int y = x;
           x = x*i;
          return y;
}
int main() {
          int z = x + fun(2);
```

2). (20 points) Consider the following program, written with the syntax of JavaScript.

```
function sub() {
   var x;
   function sub1() {
         var x;
         function sub2() {
               var x;
               x = 20;
               sub3();
         }
         x = 10;
         sub2();
   function sub3() {
         document.write("x = " + x + "");
   x = 5;
   sub1();
}
```

- Under static-scoping, what value of x is displayed in function sub3?
- Under dynamic-scoping, what value of x is displayed in function sub3? 20
- **3). (20 points)** Eliminate the goto statements in the following pseudocode segment and rewrite it using a loop structure in C, C++, Java, or C#.

```
n = 191
k = 2
loop:
if k >= n \text{ then goto } out
r = n \% k
if r is 0 \text{ then goto } out
k = k + 1
```

4). (20 points) The following grammar is ambiguous. Rewrite it to make it unambiguous.

```
<A> \rightarrow <A> and. <A> \mid (<B>)
<B> \rightarrow <B> .or. <B> \mid <C>
<C> \rightarrow T \mid F
```

Answer:

}

A -> A * T
T -> A | B
B -> B | F
F -> B | C
C -> T | F

5). (20 points) Given the following grammar and the corresponding LR parsing table, complete the next eight (8) LR parsing actions.

	T-		_		М
	Е.	\rightarrow	Ю.	_	Γ
1.		-			 _

2.
$$E \rightarrow T$$

3.
$$T \rightarrow T * F$$

4.
$$T \rightarrow F$$

5.
$$F \rightarrow (E)$$

6.
$$F \rightarrow id$$

	Action						Goto		
State	id	+	*	()	\$	E	Т	F
0	\$5			S4			1	2	3
1		S6				accept			
2		R2	S7		R2	R2			
3		R4	R4		R4	R4			
4	\$5			S4			8	2	3
5		R6	R6		R6	R6			
6	\$5			S4				9	3
7	\$5			S4					10
8		S6			S11				
9		R1	S7		R1	R1			
10		R3	R3		R3	R3			
11		R5	R5		R5	R5			

Stack	Input	Action
OT2*7(4E8	+ id) \$	Shift 6
OT2*7(4E8+6	Id) \$	Shift 5
OT2*7(4E8+6id5)\$	Reduce 6[6, F]
OT2*7(4E8+6F3)\$	Reduce 4[6, T]
OT2*7(4E8+6T9)\$	Reduce 1[4, E]
OT2*7(4E8)\$	Shift 11
OT2*7(4E8)11	\$	Reduce 5[7, F]
0T2*7F10	\$	Reduce 3 [0, T]

0T2	\$ Reduce 2 [0, E]
0E1	\$ accept