Auto Insurance Company Data Analysis

Team Members

Srija Gupta Mohammed Rehan

Data

- Dataset has sample of the claims data collected by auto-insurance provider, Indian Money, Bangalore, India
- Collected by the organization during claims processing and reporting of claim data at the end of the year
- Dataset has 15 variables and 7702 observations
- Derived 4 variables: Zone, Vehicle Category, Revenue, Profit
- ▶ **Dependent Variable**: Premium and Claim Amount
- ▶ Independent variables: Age Group, IDV, Gender, Zone, Vehicle Category

Business/Research Question

- What factors affect the profitability of Indian Money Insurance company?
- Is there an impact of geography when it comes to the profitability of auto insurance?
- Does Age Group or Gender affect the profitability of auto Insurance?

Hypothesis

- ▶ The profitability of Indian Money is higher for female drivers in North zone.
- The profitability of Indian Money is higher for drivers having age more than 40 years.
- The profitability of Indian Money is higher for vehicles with cubic capacity more than 2200.

Variables Used For Analysis

Name	Data Type	Variable	Description
Year	Factor	CV	7 Years of Data
IDV	Numeric	IV	Insured Declared value of Car
Gender	Factor	IV	Male or Female
Zone	Factor	IV	Divided Regions of the Country
Age Group	Factor	IV	Age groups of Applicants
ClaimsInd	Factor	IV	Claims Take(0-not taken,1-Taken)
Vehicle Category	Factor	IV	Clubbed to Cubic Capacity size
Revenue	Numeric	DV	Derived from Premium minus Claim
Profit	Numeric	DV	Profitability - Derived column(Revenue %)

Profit Univariate Analysis

Original Data- With Outliers

Without Outliers

Relevant Analysis

- Profit with IDV
- Profit with Gender
- Profit with Zone
- Profit with Age Group
- Profit with Vehicle Category
- Linear Model

Profit with IDV

Profit has a strong correlation with IDV


```
> cor.test(ins_rm_ex_IDV_pro_r$IDV,ins_rm_ex_IDV_pro_r$profit)
        Pearson's product-moment correlation
data: ins_rm_ex_IDV_pro_r$IDV and ins_rm_ex_IDV_pro_r$profit
t = 82.823, df = 6223, p-value < 0.00000000000000022
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.7120742 0.7357153
sample estimates:
      cor
0.7241074
```

Analysis - Gender

Our Hypothesis - Profit more for Female as to Male

Profit with Gender


```
gender_No_outlier_anova <- aov(Profit~Gender,data=ins_rm_ex_IDV_pro)</pre>
> summary(gender_No_outlier_anova)
              Df Sum Sq Mean Sq F value Pr(>F)
                                  2.022 0.155
Gender
                          5.244
            6233 16165 2.593
Residuals
> T_gender_No_outlier_anova <- TukeyHSD(gender_No_outlier_anova)
> T_gender_No_outlier_anova
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = Profit ~ Gender, data = ins_rm_ex_IDV_pro)
$Gender
                  diff
Male-Female 0.06563905 -0.02485273 0.1561308 0.1550896
```

Conclusion - We fail to reject Null Hypothesis and thus there is no relationship of Profit by Gender

Analysis - Zone

Our Hypothesis - Profit more for North Zone as to other zones

Profit with Zone


```
> summary(zone_No_outlier_anova)
             Df Sum Sq Mean Sq F value Pr(>F)
                       1.872 0.722 0.539
           6231 16165
                        2.594
Residuals
> T_zone_No_outlier_anova <- TukeyHSD(zone_No_outlier_anova)
> T_zone_No_outlier_anova #no relation
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = profit ~ Zone, data = ins_rm_ex_IDV_pro)
$Zone
                     diff
North-East -0.0676722936 -0.23071534 0.09537075 0.7099404
South-East -0.0083692591 -0.19138525 0.17464673 0.9994201
West-East -0.0686146540 -0.28258235 0.14535304 0.8431045
South-North 0.0593030345 -0.07203768 0.19064375 0.6519885
West-North -0.0009423604 -0.17280773 0.17092301 0.9999990
West-South -0.0602453949 -0.25116298 0.13067219 0.8493551
```

Conclusion - We fail to reject Null Hypothesis and thus there is no relationship of Profit by Zone

Analysis - Age Group

Our Hypothesis - Profit more for Age Group over 40 years than rest

Profit with Age Group


```
> summary(Age_No_outlier_anova)
              Df Sum Sq Mean Sq F value Pr(>F)
                          3.427
                                 1.322 0.252
Residuals
            6229 16153
                          2.593
> T_Age_No_outlier_anova <- TukeyHSD(Gender_No_outlier_anova)</p>
> T_Age_No_outlier_anova #no relation
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = profit ~ Gender, data = ins_rm_ex_IDV_pro)
$Gender
                  diff
                                         upr
                                                 p adj
Male-Female 0.06563888 -0.02485266 0.1561304 0.1550896
```

Conclusion - We fail to reject Null Hypothesis and thus there is no relationship of Profit by Age Group

Analysis - Vehicle Category

Our Hypothesis - Profit more for Large Size CC vehicles that rest of categories

Profit with Vehicle Category


```
> VehicleCat_No_outlier_anova <- aov(Profit~Vehicle_Cat,data=ins_rm_ex_IDV_pro)
> summary(VehicleCat_No_outlier_anova)
             Df Sum Sq Mean Sq F value
                                                 Pr(>F)
              Vehicle Cat
Residuals 6232 11898
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> T_VehicleCat_No_outlier_anova <- TukeyHSD(VehicleCat_No_outlier_anova)
> T_VehicleCat_No_outlier_anova
 Tukey multiple comparisons of means
   95% family-wise confidence level
Fit: aov(formula = Profit ~ Vehicle_Cat, data = ins_rm_ex_IDV_pro)
$vehicle cat
                                 diff
                                                      upr p adi
CC-Medium Sized-CC-Large Sized -1.436567 -1.573591 -1.2995437
CC-Small Sized-CC-Large Sized -2.467407 -2.596858 -2.3379569
CC-Small Sized-CC-Medium Sized -1.030840 -1.121248 -0.9404321
```

Conclusion - We are successful to reject the Null Hypothesis.

Profit increase as the CC size of Vehicle increases.

Linear Model - Profit by IDV + Vehicle Category

```
> mod_r<- lm (profit~IDV+Vehicle_Cat, data=ins_rm_ex_IDV_pro_r) #value improves to 52.52%
> summary(mod_r)
Call:
lm(formula = profit ~ IDV + Vehicle_Cat, data = ins_rm_ex_IDV_pro_r)
Residuals:
            10 Median
   Min
                           30
                                 Max
-7.9886 -0.2483 -0.0822 0.2215 6.1873
Coefficients:
                             Estimate Std. Error t value
                                                                     Pr(>ltl)
                         80.648942064  0.076745076  1050.868 < 0.00000000000000000
(Intercept)
IDV
                          0.000005724 0.000000100 57.227 < 0.0000000000000000
Vehicle_CatCC-Medium Sized -0.188144371 0.051833393 -3.630
                                                                     0.000286
                                                   -3.651
Vehicle_CatCC-Small Sized -0.217725677 0.059638505
                                                                     0.000264 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.103 on 6221 degrees of freedom
Multiple R-squared: 0.5255, Adjusted R-squared: 0.5252
F-statistic: 2296 on 3 and 6221 DF, p-value: < 0.00000000000000022
```

Linear Model - Profit by IDV + Vehicle Category ...

Conclusion

- > As per our analysis based on the available dataset,
 - Profit is not dependent on age & gender of the driver.
 - Profit is not dependent on any geographical zone.
 - Profit of the company increases with the increase in cubic capacity of the vehicle.

"Company should focus on insuring vehicles with higher cubic capacity".

*Limitations: There are many other factors like experience of driver, driver's state of mind and severity of accident which may further affect the profitability and affect the models (r-square) value.

Questions?

or

Suggestions.