Results

March 23, 2013

Tables of Friedman, Aligned Friedman, Bonferroni-Dunn, Holm, Hochberg and Hommel Tests

Table 1: Average Rankings of the algorithms (Friedman)

Ranking	2.5250000000000004	3.475	4.3999999999999	2.699999999993	3.45	4.4499999999999
Algorithm	L-Co-R	ETS	Croston	Theta	RW	ARIMA

Friedman statistic (distributed according to chi-square with 5 degrees of freedom: 18.892857142857014. P-value computed by Friedman Test: 0.002012483956556732.

Table 2: Average Rankings of the algorithms (Aligned Friedman)

,)04	01	66
	Ranking	44.075	55.975	85.05	47.800000000000004	58.650000000000001	71,44999999999999
	 	7			47.8000	58.6500	71.4499
	Algorithm	L-Co-R	ELS	$\operatorname{Croston}$	Γ heta	RW	ARIMA

Aligned Friedman statistic (distributed according to chi-square with 5 degrees of freedom: 16.937011402048096. P-value computed by Aligned Friedman Test: 0.004620818831952422.

Table 3: Average Rankings of the algorithms (Quade)

m Ranking	2.369047619047619	3.3357142857142854	1 4.766666666666667	2.8285714285714283	3.571428571428571	7 1 1 2 8 5 7 1 7 2 8 5 7 1 7 2 7
Algorithm	L-Co-R	ELS	Croston	Theta	RW	ARIMA

Quade statistic (distributed according to F-distribution with 5 and 95 degrees of freedom: 5.707188328311547. P-value computed by Quade Test: 1.2002699582555516E-4.

Table 4:		51		Estimation		4
		D I D	Croston	Ineta	HW	ARIMA
0.000 -0.0	9	0.08267	-1.183	-0.05508	-0.07708	-0.4376
0.08267 0	0	0.000	-1.100	0.02758	0.005583	-0.3549
1.183 1.	1.	1.100	0.000	1.128	1.106	0.7455
0.05508 -0.02758	-0.02	758	-1.128	000'0	-0.02200	-0.3825
0.07708 -0.005583	0.005	583	-1.106	0.02200	000'0	-0.3605
0.4376 0.3549	0.35	649	-0.7455	9688 U	9098 0	0000

5 (FRIEDMAN)	Bom
Table 5: Holm / Hochberg / Holland / Rom / Finner / Li Table for $\alpha = 0.05$ (FRIEDMAN)	Holland
Finner /	r/Hommel
/ Rom /	Holm /Hochberg /Hommel
Holland	Holm
/ Hochberg /	ξ
Table 5: Holm	$\gamma = (B_0 = B_1)/SE$
	algorithm

i	algorithm	$z = (R_0 - R_i)/SE$, O d	Holm/Hochberg/Hommel	Holland	Rom	Finner	Li
ಬ	ARIMA	3.253843880704787	0.0011385483161214366	0.01	0.010206218313011495	0.010515350115740741	0.010206218313011495	0.012243169665332404
4	Croston	3.169328455231934	0.001527916221622385	0.0125	0.012741455098566168	0.013109375000000001	0.0203082697337702	0.012243169665332404
က	ELS	1.6057930839841812	0.10831938073000413	0.016666666666666666	0.016952427508441503	0.016666666666666666	0.03030721741231923	0.012243169665332404
2	RW	1.5635353712477553	0.11792672274114391	0.025	0.025320565519103666	0.025	0.040204113647960726	0.012243169665332404
П	Theta	0.295803989154979	0.7673797763586844	0.05	0.0500000000000000044	0.05	0.0500000000000000044	0.05

	Finner
(ALIGNED FRIEDMAN)	Rom
e for $\alpha = 0.05$	Holland
Rom / Finner / Li Tabl	Holm/Hochberg/Hommel
Hochberg / Holland /	d
Table 6: Holm / Hod	$z = (R_0 - R_i)/SE$
	i algorithm
	. 6

			/					
i	algorithm	$z = (R_0 - R_i)/SE$	d	Holm/Hochberg/Hommel	Holland	Rom	Finner	Ľi
ಬ	Croston	3.724999999999999	1.9531522198380164E-4	0.01	0.010206218313011495 0	0.010515350115740741	0.010206218313011495	0.013953490250670551
4	ARIMA	2.4886363636363624	0.012823404999015473	0.0125	0.012741455098566168	0.013109375000000001	0.0203082697337702	0.013953490250670551
က	$_{\mathrm{RW}}$	1.325000000000000008	0.18517115131358966	0.016666666666666666	0.016952427508441503	0.016666666666666666	0.03030721741231923	0.013953490250670551
2	ETS	1.0818181818181818	0.279333259447317	0.025	0.025320565519103666	0.025	0.040204113647960726	0.013953490250670551
П	Theta	0.3386363636363638	0.7348836852372596	0.05	0.0500000000000000044	0.05	0.0500000000000000044	0.05

Hommel's procedure rejects those hypotheses that have a p-value ≤ 0.0125 . Holland's procedure rejects those hypotheses that have a p-value $\leq 0.012741455098566168$. Rom's procedure rejects those hypotheses that have a p-value ≤ 0.01310937500000001 . Finner's procedure rejects those hypotheses that have a p-value ≤ 0.03030721741231923 . Li's procedure rejects those hypotheses that have a p-value $\leq 0.013953490250670551$. Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value ≤ 0.01 . Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.01 . Holm's procedure rejects those hypotheses that have a p-value ≤ 0.0125 .

Table 7: Holm / Hochberg / Holland / Rom / Finner / Li Table for $\alpha=0.05$ (QUADE)

			/			() () () () () ()		
i	algorithm	$z = (R_0 - R_i)/SE$	d	Holm/Hochberg/Hommel	Holland	Rom	Finner	Ŀ
23	Croston	2.246671117454661	0.02466105341680431	0.01	0.010206218313011495	0.010515350115740741	0.010206218313011495	0.017538733615913085
4	ARIMA	1.6487487147954256	0.09919912555062183	0.0125	0.012741455098566168	0.013109375000000001	0.0203082697337702	0.017538733615913085
3	RW	1.1266821393392292	0.25987689656740265	0.01666666666666666	0.016952427508441503	0.016666666666666666	0.03030721741231923	0.017538733615913085
2	$_{ m ELS}$	0.9058078189539148	0.3650375817619201	0.025	0.025320565519103666	0.025	0.040204113647960726	0.017538733615913085
1	Theta	0.43059337206429926	0.6667640612976514	0.05	0.0500000000000000044	0.05	0.0500000000000000044	0.05

Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value ≤ 0.01 . Holm's procedure rejects those hypotheses that have a p-value ≤ 0.01 . Hommel's procedure rejects those hypotheses that have a p-value ≤ 0.01 . Holland's procedure rejects those hypotheses that have a p-value $\leq 0.010206218313011495$. Finner's procedure rejects those hypotheses that have a p-value $\leq 0.010206218313011495$. Li's procedure rejects those hypotheses that have a p-value $\leq 0.017538733615913085$.

_
\widehat{z}
F
J
\leq
片
出
\mathbb{Z}
Œ
p-values (
usted
Adi
∞
Table

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			•	,		
ARIMA 0.0011385483161214366 0.005692741580607183 Croston 0.001527916221622385 0.007639581108111925 ETS 0.10831938073000413 0.5415969036500207 RW 0.11792672274114391 0.5896336137057195 Theta 0.7673797763586844 3.838898881793422	algorithm	unadjusted p	p_{Bonf}	p_{Holm}	p_{Hoch}	p_{Homm}
\circ	ARIMA	0.0011385483161214366	0.005692741580607183	$0.005692741580607183 \\ 0.005692741580607183 \\ 0.005692741580607183 \\ 0.005692741580607183 \\ 0.00455419326448574659 \\ 0.005692741580607183 \\ 0.00455419326448574659 \\ 0.005692741580607183 \\ 0.00455419326448574659 \\ 0.0045648574659 \\ 0.004648574659 \\ 0.0046648574659 \\ 0.0046648574659 \\ 0.004648574659 \\ 0.004648574659 \\ 0.004664857469 \\ 0.004664857469 \\ 0.0046649649 \\ 0.004664857469 \\ 0.004664857469 \\ 0.004664857469 \\ 0.004664857469 \\ 0.004664857469 \\ 0.004664857469 \\ 0.004664857469 \\ 0.004664857469 \\ 0.004664857469 \\ 0.004664857469 \\ 0.004664857469 \\ 0.004664857469 \\ 0.00466485749 \\ 0.00466485749 \\ 0.004664749 \\ 0.00466499 \\ 0.004664749 \\ 0.004664749 \\ 0.00466474$	0.005692741580607183	0.0045541932644857465
00	Croston	0.001527916221622385	\circ	0.00611166488648954	0.00611166488648954	0.00611166488648954
0	ELS	0.10831938073000413	0	0.3249581421900124	0.23585344548228782	0.21663876146000827
	$_{\mathrm{RW}}$	0.11792672274114391	0	0.3249581421900124	0.23585344548228782	0.23585344548228782
	Theta	0.7673797763586844		0.7673797763586844	0.7673797763586844	0.7673797763586844

Table 9: Adjusted p-values (FRIEDMAN)

				taring and Language (respectively)	(, •	
	algorithm	unadjusted p	p_{Holl}	p_{Rom}	p_{Finn}	p_{Li}
	ARIMA	0.0011385483161214366	0.005679793408439826	0.0054137442100815536	0.005679793408439826	0.004870612155375046
7	Croston	0.001527916221622385	0.006097671981010522	0.005827570809525186	0.005679793408439826	0.006525425410241451
က	ELS	0.10831938073000413	0.29102979831721254	0.23585344548228782	0.1739324819093101	0.3177084132825845
4	RW	0.11792672274114391	0.29102979831721254	0.23585344548228782	0.1739324819093101	0.33640778776740937
2	Theta	0.7673797763586844	0.7673797763586844	0.7673797763586844	0.7673797763586844	0.7673797763586844

Table 10: Adjusted p-values (ALIGNED FRIEDMAN)

(unadjusted p pBonf pHolm pHolm pHomm	$.9531522198380164 \\ E-4 \\ 9.765761099190082 \\ E-4 \\ 9.76576109082 \\ E-4 \\ 9.7657$	$12823404999015473 \qquad 0.06411702499507736 \qquad 0.05129361999606189 \qquad 0.05129361999606189 \qquad 0.05129361999606189$	$(8517115131358966 \qquad 0.9258557565679483 \qquad 0.55513453940769 \qquad 0.55513453940769 \qquad 0.41899998891709755 \qquad 0.41899998891709759 \qquad 0.41899998891709755 \qquad 0.41899998891709755 \qquad 0.41899998891709757 \qquad 0.4189999891709757 \qquad 0.4189999891709757 \qquad 0.41899998891709757 \qquad 0.41899998891709757 \qquad 0.41899998891709757 \qquad 0.4189999891709757 \qquad 0.41899998891709757 \qquad 0.41899998891709757 \qquad 0.4189999891709757 \qquad 0.4189999891709757 \qquad 0.4189999891709757 \qquad 0.4189999891709757 \qquad 0.4189999891709757 \qquad 0.418999989170977 \qquad 0.418999989170977 \qquad 0.418999989170977 \qquad 0.418999989170977 \qquad 0.418999989170977 \qquad 0.418999989170977 \qquad 0.41899997 \qquad 0.41899997 \qquad 0.41899997 \qquad 0.4189997 \qquad 0.4189997 \qquad 0.4189997 \qquad 0.418997 \qquad 0.41899 \qquad 0.418997 \qquad 0.41899 \qquad 0.418997 \qquad 0.41899 \qquad 0.418997 \qquad 0.41899 \qquad 0.4189$	$2793333259447317 \qquad 1.396666297236585 \qquad 0.558666518894634 \qquad 0.5586666518894634 \qquad 0.5586666518896666518896666666666666666666$	$7348836852372596 \qquad 3.674418426186298 \qquad 0.7348836852372596 \qquad 0.7348836852372596 \qquad 0.7348836852372596$
		ī	0.012823404999015473	0.18517115131358966	0.279333259447317	0.7348836852372596
	algorithm	Croston	ARIMA	RW	4 ETS	Theta
			7	က	4	ro

_
_
_
I.
$\overline{}$
_
$\overline{}$
_
Τ,
_
Υ
T
1
_
_
Т
,
_
-
_
÷
1
1
_
U.
Œ
_
<u>.</u>
5
٦
2-V2 116S
,
July to
4
٠,
U.
Ξ
_
C
÷
٠.
٠.
٠ د
٠.
٠ م
٠ ح
٥ -

p_{Li}	7.361728620605408E-4	0.04613736032405669	0.41122874888594063	0.5130563142290968	0.7348836852372596
p_{Finn}	9.76194704061184E-4	0.03175084805240935	0.2891510476336189	0.3360000461430823	0.7348836852372596
p_{Rom}	9.287147828365147E-4	0.04890929201054769	0.555513453940769	0.5586666518894634	0.7348836852372596
noHd	9.76194704061184E-4	0.050315389369322006	0.4589976023279928	0.4806395449061177	0.7348836852372596
unadjusted p	1.9531522198380164E-4	0.012823404999015473	0.18517115131358966	0.279333259447317	0.7348836852372596
algorithm	Croston	ARIMA	RW	$_{ m ELS}$	$_{ m Theta}$
	1	2	3	4	2

Table 12: Adjusted p-values (QUADE)

				(î	
	algorithm	unadjusted p	p_{Bonf}	p_{Holm}	p_{Hoch}	p_{Homm}
	Croston	0.02466105341680431	0.12330526708402154	0.12330526708402154	0.12330526708402154	0.12330526708402154
2	ARIMA	0.09919912555062183	0.4959956277531091	0.3967965022024873	0.3967965022024873	0.3967965022024873
33	RW	0.25987689656740265	1.2993844828370134	0.779630689702208	0.6667640612976514	0.5475563726428802
4	ETS	0.3650375817619201	1.8251879088096004	0.779630689702208	0.6667640612976514	0.6667640612976514
2	Theta	0.6667640612976514	3.3338203064882572	0.779630689702208	0.6667640612976514	0.6667640612976514

(OIIADE)	
۲	
_	
◁	
Ξ	
\subset	2
_	
ŭ	2
1	
-	
5	>
2-values	
•	
7	
7	5
Adinstad	
Ę	
4	
Š	
Ç.,	
а	,
Table	
4	
Ë	
_	

			and the second	(Title)	î	
	algorithm	unadjusted p	p_{Holl}	p_{Rom}	p_{Finn}	p_{Li}
1	Croston	0.02466105341680431	0.11737173183596417	0.11726216029596791	0.11737173183596417	0.06890545033861034
2	ARIMA	0.09919912555062183	0.3415615310525164	0.37835184953753254	0.22985589101843873	0.2293965817087193
3	$_{\mathrm{RW}}$	0.25987689656740265	0.5945737320361731	0.6667640612976514	0.3944175667015578	0.4381576002299951
4	ETS	0.3650375817619201	0.5968227274252496	0.6667640612976514	0.4331932329240813	0.5227716232447331
2	$_{ m Theta}$	0.6667640612976514	0.6667640612976514	0.6667640612976514	0.6667640612976514	0.6667640612976514