Festkörperphysik, SoSe 2023 Übungsblatt 11

Prof. Dr. Thomas Michely

Dr. Wouter Jolie (wjolie@ph2.uni-koeln.de)

II. Physikalisches Institut, Universität zu Köln

Ausgabe: Mittwoch, 28.06.2023

Abgabe: Mittwoch, 05.07.2023, bis 8 Uhr über ILIAS

Aufgabe Nr.:	1	2	3	4	Summe
Points:	5	7	6	2	20
Punkte:					

Bitte Aufgaben zusammen mit Aufgabenblatt als PDF hochladen. Namen, Matrikelnummer und Gruppennummer deutlich lesbar eintragen (sonst Punktabzug). Abgabe in Gruppen zu 2, max. 3 Personen erwünscht. Die Teammitglieder müssen in der gleichen Übungsgruppe sein.

1. [5 Punkte] Kurzfragen

Markieren Sie im folgenden die richtigen Satzenden (Mehrfachauswahl möglich).

• In der Relaxationszeitnäherung
$-$ ist der Effekt der Elektronenstöße eine zur Driftgeschwindigkeit v_D proportionale Rei-
m bungskraft.
$-$ ist die Relaxationszeit τ identisch mit der mittleren Zeit $\tau,$ vor der ein beliebig her-
ausgegriffenes Elektron seinen letzten Stoß hatte. \square
$-$ lenkt eine äußere Kraft die Fermikugel um δk aus. \square
$-$ entsteht die Auslenkung δk der Fermikugel durch Elektronen, die durch Stöße von der
Rückseite der Fermikugel zu ihrer Vorderseite transportiert werden. \Box
– steigt beim Ausschalten der äußeren Kraft die Driftgeschwindigkeit auf ihren Gle-
ichgewichtswert an. \square
• Das Wiedemann-Franz Gesetz
– besagt, dass das Produkt von thermischer Leitfähigkeit und Temperatur dividiert
durch die elektrische Leitfähigkeit eine Konstante ist. \square
$-$ besagt, dass die Lorenzzahl eine Konstante ist. \Box
– ergibt klassisch und mit korrekter Quantenstatistik gerechnet fast den gleichen Wert
für die Lorenzzahl, weil in der klassischen Rechnung die Stoßzeit τ um ca. den Faktor
100 überschätzt, die Wärmekapazität des freien Elektronengases aber um etwa den

Faktor 100 unterschätzt wurde.

	$-$ besagt, dass das Verhältnis von thermischer und elektrischer Leitfähigkeit proportional zu Temperatur ist. \Box
	$-$ berücksichtigt den Beitrag des Gitters zur Wärmeleitfähigkeit von Metallen. \Box
•	Der Hall-Effekt
	 ist der Aufbau eines elektrischen Feldes quer zur Stromdichte und zum Magnetfeld, wenn ein äußeres Magnetfeld senkrecht zur Stromdichte angelegt wird. □
	$-$ wird durch den Hallkoeffizienten charakterisiert, der umgekehrt proportional zur Stärke des Querfeldes ist. \Box
	$-$ liefert in der Theorie des freien Elektronengases einen positiven Hall-Koeffizienten, der von der Elektronendichte abhängt. \Box
	$-$ zeigt für den Hallwiderstand bei tiefen Temperaturen und in zweidimensionalen Elektronengasen ganzzahlige Vielfache der Klitzing-Konstante. \Box
	$-$ wird neben der Bestimmung der Ladungsträgerkonzentration auch für die Magnetfeldmessung eingesetzt. \Box
•	Das Bloch Theorem
	$-$ berücksichtigt explizit die Wechselwirkung der Elektronen miteinander. \square
	$-$ besagt, dass die Wellenfunktionen der Elektronen gitterperiodisch sein müssen. \Box
	$-$ besagt, dass die Wahrscheinlichkeitsdichte der Elektronen gitterperiodisch ist. \Box
	– besagt, dass die Wellenfunktion am Ort $r+R$ identisch mit der Wellenfunktion am Ort R ist, wenn man diese mit einem Phasenfaktor e^{ikR} multipliziert.
	$-$ ergibt sich aus der Schrödingergleichung, wenn die Fourierreihen für das gitterperiodische Potential und die Wellenfunktion eingesetzt werden. \Box
•	Bänder
	$-$ nennt man quasikontinuierliche Bereiche erlaubter Energien von Elektronen in Festkörpern. \Box
	$-$ ergeben sich, wenn die Gitterperiodizität des Potentials beim Lösen der Schrödingergleichung berücksichtigt wird. \Box
	 ergeben sich durch Verbreiterung diskreter Energieniveaus, wenn die Gitterkonstante weit voneinander entfernte Atome auf einem Gitter soweit reduziert wird, dass die Wellenfunktionen der Elektronen in diesen Energieniveaus anfangen zu überlappen.
	– ergeben sich, weil k in der Fourierdarstellung der Schrödingergleichung ein quasikontinuierlicher Parameter ist und es zu jedem k mehrere Energieeigenwerte geben kann.
	$-$ geben Anlass zum Bandindex $n,$ mit dem Wellenfunktionen im Bloch Theorem abgezähl werden. \Box

2. [7 Punkte] Zonenschema für freie Elektronen

Berechnen Sie die zwei niedrigsten Energien freier Elektronen in einem dreidimensionalen Kristall mit einfach kubischer Struktur, Gitterkonstante a=4 Å, an den reziproken Gitterpunkten (000), (100) und (010), in der Darstellung im reduzierten Zonenschema. Skizzieren Sie das reduzierte Zonenschema $E(k_x, 0, 0)$ in der ersten Brillouin-Zone und berechnen Sie die zwei niedrigsten Energien der Elektronen auch am Zonenrand.

3. [6 Punkte] Energielücke in einer eindimensionalen periodischen Struktur

Wir betrachten fast freie Elektronen in einem eindimensionalen, linearen Gitter (Gitterkonstante a). Elektronen mit Wellenvektor auf dem Rand der ersten Brillouinzone erfahren eine Bragg-Reflexion, so dass sich stehenden Wellen

$$\Psi_{\pm} = \frac{1}{\sqrt{2}} \left(e^{i\frac{\pi x}{a}} \pm e^{-i\frac{\pi x}{a}} \right)$$

für $k=\pm\pi/a$ bilden. Aufgrund der unterschiedlichen Aufenthaltswahrscheinlichkeitsdichten haben die beiden Wellenfunktionen in einem periodischen Kristallpotenzial der Form

$$U(x) = U_0 \cos\left(\frac{2\pi x}{a}\right)$$

nicht dieselbe Energie, so dass an dieser Stelle des k-Raums die Energieentartung aufgehoben wird und eine Energielücke entsteht.

Zeigen Sie, dass die Größe der Energieaufspaltung $\Delta E = E_+ - E_-$ gleich der Fourier-Komponente des Kristallpotenzials U(x) ist. Hinweis: Die Energie ist der Erwartungswert von H: $E_{\pm} = \langle \Psi_{\pm}|H|\Psi_{\pm}\rangle = \int \Psi_{+}^{*}H\Psi_{\pm}dx$.

4. [2 Punkte] Hall-Effekt

Berechnen Sie den Hall-Koeffizienten $A_{\rm H}$ für Natrium und Kalium. Vergleichen Sie die erhaltenen Werte mit den experimentellen Ergebnissen von $A_{\rm H}=-2,5\cdot 10^{-10}\,{\rm m}^3/{\rm C}$ (Natrium) bzw. $A_{\rm H}=-4,2\cdot 10^{-10}\,{\rm m}^3/{\rm C}$ (Kalium).

Erreichbare Gesamtpunktzahl: 20