F61: Nuclear Magnetic Resonance

T. Gierlich und A. Impertro

May 26th, 2017

Outline

Introduction and Theoretical Concepts

Part I: Relaxation Times

Introduction

- Nuclear: Interaction of the nuclear spin...
- ► Magnetic: ...with magnetic fields
- ▶ Resonance: → resonant interaction
- ► **Spectroscopy**: Resolve the different signal components

Applications

- ▶ Non-destructive detection of substances in a sample
- Determination of molecular structures and dynamics
- Multidimensional imaging

Theoretical Concepts - Working Principle

Figure: Magnetization

Figure: Larmor-Precession of M_{\perp}

- Nuclei with spin J have a magnetic moment μ
- ▶ Minimal energy → Dipole aligned parallel to B-field
- ightharpoonup Ensemble of many nuclei: Measurable magnetization \vec{M}
- ▶ Ground state $\rightarrow M_{\perp} = 0$
- Excited states have a component $M_{\perp} \neq 0$
- $ightharpoonup M_{\perp}$ precesses around the field lines with the Larmor frequency

$$\omega_L = \gamma B_0 \tag{1}$$

 \triangleright ω_L can be measured!

Theoretical Concepts - Working Principle

How can we create an excited state?

An oscillating B-Field $\vec{B_1}$ rotates the magnetization \vec{M} by an angle

$$\alpha = \gamma B_1 \Delta t \tag{2}$$

- ▶ By choosing Δt , we can create:
 - ► A perpendicular magnetization (90°-Pulse)
 - ► An anti-parallel magnetization (180°-Pulse)

Figure: Rotation of M due to a HF-Pulse

Theory of Relaxation

Excited states decay into the Ground State on a characteristic timescale.

The decay is of exponential nature and described in the Bloch equations:

$$\frac{dM_{\perp}(t)}{dt} = -\frac{M_{\perp}(t)}{T_2} \tag{3}$$

$$\frac{dM_{\parallel}(t)}{dt} = -\frac{M_{\parallel}(t) - M_0}{T_1} \tag{4}$$

- ▶ *T*₂: Spin-Lattice Relaxation
- ► T₁: Spin-Spin Relaxation

T_2 -Measurement: Spin Echo

Spin-Echo principle

Figure: Principle of the spin-echo method

Pulse sequence

Figure: Spin-Echo measurement with au=10 ms

Disadvantage: Dephasing for long measurement times!

T_1 -Measurement: Spin Echo

Figure: T2-Messung Probe 1 mit Fit.

Figure: T2-Messung Probe 3 mit Fit.

T₂-Measurement: Carr-Purcell Sequence

Improve dephasing problem of spin-echo method:

- ▶ Inject a 180°-Pulse on odd multiples of a time τ .
- ▶ The system is phase coherent on even multiples of a time τ .

Figure: T2-Messung über Carr-Purcell Probe 1 mit Fit.

Figure: T2-Messung über Carr-Purcell Probe 3 mit Fit.

T_1 -Measurement: Spin Echo

Spin-Echo, but start with a 180°-Pulse (Anti-parallel Magnetization)

Figure: T1-Messung Probe 1 mit Fit.

Figure: T1-Messung Probe 3 mit Fit.

Relaxation Times: Evaluation

Table: Relaxation times: Measured values

Zeit	$T_1 \; [\mathrm{ms}]$	$T_2~\mathrm{[ms]}$	$T_2~\mathrm{[ms]}$
Methode	Spin-Echo	Spin-Echo	Carr-Purcell
,	$(125,5\pm0,6)\ (150,5\pm1,2)$, ,	, ,