Лекции по суперматематике

Оганес М. Худавердян 17 февраля 2021 г.

Это конспект лекций на 15 февраля 2021 ИППИ, ИТМФ МГУ, мехмат МГУ

Содержание

1	Двойственное описание для точек и отображений	1
2	Отображения	4

Очень грубо говоря, суперматематика, это наука в которой используются коммутирующие и антикоммутирующие переменные.

Обычные (коммутирующие) переменные $\{x^i\} = \{x^1, x^2, \dots, x^m\}$ принимают значения в числах, им можно сопоставить $mov\kappa u$.

Антикоммутирующие переменные $\{\theta^a\} = \{\theta^1, \theta^2, \dots, \theta^n\}$ это символы, такие что

$$\theta^a \theta^b = -\theta^b \theta^a, \quad (x^i x^j = x^j x^i, x^i \theta^a = \theta^a x^i)$$

Им трудно сопоставить точки 1 Чтоб работать в суперматематике, нам надо освоить двойственый язык.

1 Двойственное описание для точек и отображений

1.1 Точки

Пусть \mathbf{R}^p - p-мерное аффинное пространство, (множество точек). Обозначим $A = C^{\infty}(\mathbf{R}^m)$ алгебру гладких функций на \mathbf{R}^m .

Мы иногда будем использовать алгебру $C(\mathbf{R}^m)$ алгебру непрерывных функций на \mathbf{R}^m .

Определение 1. каждой **точке** $P \in \mathbf{R}^p$ сопоставим гомоморфизм σ_P , такой, который сопоставляет каждой функции f её значение в этой точке:

$$\mathbf{R}^m \ni P \mapsto \sigma_P \colon \sigma_P(f) = f(P) .$$

Понятно, что это гомоморфизм алгебры функций в числа, менее очевидно, что верно и обратное:

Теорема 1. Пусть D-область в \mathbf{R}^m , пусть σ_D произвольный ненулевой гомоморфизм алгебры функций $C^{\infty}(D)$ в \mathbf{R} :

$$\sigma_D \not\equiv 0, \sigma_D(f+g) = \sigma_D(f) + \sigma_D(g), \sigma_D(fg) = \sigma_D(f)\sigma_D(g).$$
 (1)

Тогда существует такая точка $P \in D$, что для любой функции $f \in C^{\infty}(D)$

$$\sigma_D(f) = f(P)$$
.

Иными словами множество точек области D = множеству гомоморфизмов из алгебры функций на D в вещественные числа.

Эта теорема позволяет реконструировать точки по алгебре функций $A=C^{\infty}(D)$. Заметим также, что она позволяет восстановить значение функции в точке. Если точка, это гомоморфизм σ алгебры функций в числа, то значение данной функции $f\in A$ на данной точке σ равно значемию 'точки' σ на элементе f.

 $^{^{1}}$ мы это сделаем в дальнейшем, используя язык так называемых Λ -точек.

Докажем эту теорему.

Доказательство теоремы.

Для простоты рассмотрим случай области D = (0, 1).

Пусть σ гомоморфизм алгебры $A=C^{\infty}(0,1)$ в ${\bf R}$. Пусть значение этого гомоморфизма на функции f=x равно s: $\sigma(x)=s$. Покажем, что число $s\in(0,1)$. Действительно, если $s\not\in(0,1)$, то функция $h=\frac{1}{x-s}$ хорошо определена и $\sigma(x-s)=0$. Мы видим, что

$$\sigma\left((x-s)\frac{1}{x-s}\right) = \sigma(x-s)\sigma\left(\frac{1}{x-s}\right) = 0$$

и с другой стороны

$$\sigma\left(\left(x-s\right)\frac{1}{x-s}\right) = 1.$$

Противоречие, значит $s \in [0, 1]$.

Теперь покажем. что для произвольной гладкой функции $g \in C^{\infty}(0,1)$, выполняется условие $\sigma(g) = g(s)$. Пусть $\sigma(g) = t$. Мы хотим показать, что t = g(s). Рассмотрим функцию

$$r = (x - s)^2 + (g - t)^2$$
.

Легко понять, что $\sigma(r)=0$, значит функция r необратима, (так как функция $\frac{1}{r}$ не существует). Мы приходим к выводу, что функция r() обращается в нуль, хотя бы в одной из точек интервала (0,1). Но если функция r(x) обращается в нуль, то это может быть лишь точка x=s. Значит g(s)=t.

Exercise 1

Пройдет ли предыдущее доказательство, если алгебру гладких функций в $C^{\infty}(0,1)$ заменить на алгебру непрерывных функций $C^{0}(0,1)$.

Exercise 2

Пройдёт ли предыдущее доказательство если алгебру гладких функций в $C^{\infty}([0,1])$ заменить на произвольную алгебру функций, которые *разделяют* точки отрезка [0,1].

Exercise 3

Найти и обсудить 'дырку' в следующем рассуждении

Пусть σ гомоморфизм, такой, что $\sigma(x) = s \in \mathbf{R}$. Тогда очевидно, что $\sigma(x^2) = s^2$ и для любого натурального n, $\sigma(x^n) = s^n$. Значит для любого многочлена P(x), $\sigma(P(x)) = P(s)$. Теперь теорема Вейерштрасса об апроксимации гладкой функцией полиномами даёт, что для любой гладкой функции g(x), $\sigma(g(x)) = g(s)$.

2 Отображения

Пусть снова \mathbf{R}^p - p-мерное аффинное пространство, (множество точек). Обозначим также $A = C^{\infty}(\mathbf{R}^m)$ алгебру гладких функций на \mathbf{R}^m .

Определение 2. каждому отображению $F: \mathbf{R}^m \to \mathbf{R}^n$ сопоставим гомоморфизм τ_F , такой, который сопоставляет каждой гладкой функции на \mathbf{R}^m ($f \in C^{\infty}(\mathbf{R}^n)$) гладкую функцию ма \mathbf{R}^n ($\tau_F(f) \in C^{\infty}(\mathbf{R}^n)$) такую, что значение функции $\tau_F(f)$ на произвольной точке $P \in \mathbf{R}^m$ равно значению функции f на точке Q = F(P):

$$\tau_F(f)(P) = f(F(P))$$
.

Замечание 1. Правило 'против шёрстки' Отображения F и гомоморфизм функций τ_F идут в противоположных нзоравлениях ('против шёрстки').

Замечание 2. Гомоморфизм (2) построенный по отображению F обозначают F^* ,

Так же как и в случае точек верно и обратное

Теорема 2. Пусть U-область в \mathbf{R}^m и V-область в \mathbf{R}^n , и τ гомоморфизм (против 'шёрстки') алгебры $C^{\infty}(V)$ в алгебру $C^{\infty}(U)$. Тогда существует отображение $F \colon \mathbf{R}^m \to \mathbf{R}^n$ такое, что

$$au=F^*$$
 , то есть для любой функции $f\in C^\infty(D)$ $au(f)=f(F(P))$.

Иными словами множество отображений = множеству гомоморфизмов из алгебры функций на V в алгебру функций на U.

Докажем эту теорему.

Доказательство теоремы.

Пусть P произвольная точка на U. Возьмём произвольную гладкую функцию f на V. Значение образа этой функции под действием гомоморфизма τ на данной точке P задаёт гомоморфизм алгебры гладких функций на V в вещественные числа, то есть согласно теореме 2 мы приходим к точке Q такой что

$$\tau(f)(P) = f(Q)$$

Это равенство приводит к определению точки Q = F(P). Она задаёт гомоморфизм алгебры гладких функций

Пример 2.1. Пусть φ отображение пространств

$$\varphi \quad \mathbf{R}^2 \mapsto \mathbf{R}^2 \colon \begin{cases} x = u \\ y = \frac{v}{u} \end{cases}$$
(2)

Что тут написано? Мы 'привыкли' 'читать эту формулу так точке с координатами (u,v) сопоставляется точка с координатами (x,y)

Однако другой читатель скажет:

Формула определяет гомоморфизм гладких функций на плоскости ${\bf R}^2$, зависящих от x,y в гладкие функции на плоскости ${\bf R}^2$, зависящие от u,v. Гомоморфизм задан на образующих: Функция x переходит в функцию u и функция y переходит в функцию $\frac{v}{u}$; любая гладкая функция f(x,y) переходит в гладкую функцию $f(x,y)\big|_{x=u,y=\frac{v}{u}}$.

Кто прав? Оба правы. Формулу можно читать по разному!

Пример 2.2. Пусть φ отображение пространств

$$\varphi \quad \mathbf{R}^1 \mapsto \mathbf{R}^2 \colon \begin{cases} x = \cos t \\ y = \sin t \end{cases}$$
(3)

Что тут написано? Мы 'привыкли' 'читать эту формулу так точке t на прямой сопоставляется точка с координатами

$$\begin{cases} x = \cos t \\ y = \sin t \end{cases}$$

Другой скажет: в этой формуле определяется гомоморфизм функций на плоскости ${\bf R}^2$ в функции на ${\bf R}$. Формулы задают значения гомоморфизма на образующих: функция x переходит в функцию $\cos t$ и функция y переходит в функцию $\sin t$. Конечно, закон определяет образ любой (гладкой) функции. Например, функция $\frac{e^{-2xy}}{x^4+y^4}$ перейдет в функцию

$$\frac{e^{-2\cos t \sin t}}{\cos^4 t + \sin^4 t} = \frac{e^{-\sin 2t}}{1 - \frac{1}{2}\sin 2t} \,,$$

и для любой гладкой функции f = f(x, y)

$$\sigma(f) = f(x, y)x = \cos t, y = \sin t$$

И в заключение

задача-шутка

Рассмотрим набор разных простых чисел $\{p_i\}$, $i=1,\ldots,N,\ p_i\neq p_j$; также рассмотрим набор матуральных чисел, $\{i\}$, $i=1,\ldots,N$, так что каждое a_i меньше p_i . Найти число K, которое при делении на простое число p_i даст остаток a_i .

Вы скажете: это китайская теорема об остатках. Какое отношение она имеет к курсу?

Оказывается, используя идеи двойственности можно свести эту задачу к задаче построения...