Multiplicação de Matrizes

Carlos Alberto Ynoguti Jonas Lopes de Vilas Boas

Multiplicação de matrizes

```
MATRIX-MULTIPLY (A, B)

1 if columns[A] \neq rows[B]

2 then error "incompatible dimensions"

3 else for i \leftarrow 1 to rows[A]

4 do for j \leftarrow 1 to columns[B]

5 do C[i, j] \leftarrow 0

6 for k \leftarrow 1 to columns[A]

7 do C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]

8 return C
```

Custo: se A é (**p** x **q**) e B é (**q** x **r**), então o número de vezes que a linha 7 será executada é **pqr**.

Problema

Multiplicar uma cadeia <A1,A2, ..., An> de matrizes.

Como a multiplicação de matrizes é associativa, podemos escolher quais queremos multiplicar primeiro.

```
Exemplo: A1 x A2 x A3 x A4
```

$$A1 \times (A2 \times (A3 \times A4))$$
 ((A1 x A2) x A3) x A4

$$A1 \times ((A2 \times A3) \times A4)$$
 $(A1 \times A2) \times (A3 \times A4)$

$$(A1 \times (A2 \times A3)) \times A4$$

E daí?

Suponha que queremos calcular A1 x A2 x A3, A1 (10 x 100), A2 (100 x 5), A3 (5 x 50)

Custos:

(A1 x A2) x A3: 7500 multiplicações escalares

A1 x (A2 x A3): 75000 multiplicações escalares

10 vezes!

Problema

Determinar a ordem em que estas matrizes devem ser multiplicadas de forma a minimizar o número de operações a serem realizadas.

Etapa 1: estrutura de uma colocação ótima de parênteses

Sequência de matrizes a multiplicar

$$A_{i...j} = A_i \times A_{i+1} \times \cdots \times A_j$$

Queremos dividi-la da seguinte forma:

$$(A_i \times A_{i+1} \times \cdots \times A_k) \times (A_{k+1} \times A_{k+2} \times \cdots \times A_j)$$
custo 3

de maneira a minimizar o número de operações

Etapa 2: uma solução recursiva

m[i][j]: número mínimo de multiplicações para calcular Ai..j

Custo total: $A_{1..n}=m[1][n]$

Podemos definir m[i][j] recursivamente:

i=j: m[i][i]=0, i=0,1,2,...,n

i < j : m[i][k] + m[k+1][j] + p[i-1]p[k]p[j]

Problema: não sabemos o ponto ótimo k

p armazena as dimensões das matrizes

Etapa 2: uma solução recursiva

Fato: os valores de k vão de i até j-1

$$m[i][j] = \begin{cases} 0, & i = j \\ \min_{i \le k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_k p_j\}, & i < j \end{cases}$$

Cálculo dos custos ótimos

- 1. Custo para cadeias de 1 matriz: m[i][i]=0; i=1,...,n (multiplicação de cadeias de 1 matriz apenas -> nada a fazer).
- 2. Custo para cadeias de 2 matrizes: m[i][i+1]; i=1,2,...,n-1 (também é trivial)
- 3.Custo para cadeias de 3 matrizes: m[i][i+2]; i=1,2,...,n-2 (não tão trivial)

Custo para cadeias de 3 matrizes

```
A1 x A2 x A3

Duas opções:
(A1 x A2) x A3 \quad \text{custo: } m[1][2] + p[0]p[2]p[3]
A1 x (A2 x A3) \quad \text{custo: } p[0]p[1]p[3] + m[2][3]
escolhemos a que der o menor custo

Se optarmos pela primeira, s[1][3]=2, senão s[1][3]=1 (ponto de corte)
```

Cálculo dos custos ótimos

4. Vamos nesta toada até chegar ao caso de multiplicação de n matrizes.

Exemplo

matriz	dimensão
$\overline{A_0}$	30×35
A_1	35 imes 15
A_2	15 imes 5
A_3	5×10
A_4	10×20
A_5	20×25

Solução

Vetor das dimensões das matrizes: $p=\{30,35,15,5,10,20,25\}$

Primeiro, definimos como 0 todas os custos de multiplicação de uma matriz (m [i][j]=0 para i=j)

Solução
$$m[i][j] = \begin{cases} 0, & i=j \\ \min\limits_{i \leq k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_kp_j\}, & i < j \end{cases}$$
 Para $k = i ... j-1$

Para k = 0

 $p = \{30, 35, 15, 5, 10, 20, 25\}$

Solução
$$m[i][j] = \begin{cases} 0, & i=j \\ \min\limits_{i \leq k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_kp_j\}, & i < j \end{cases} \quad \text{Para } k = i \dots j-1$$

Para k = 1

 $p = \{30, 35, 15, 5, 10, 20, 25\}$

m[1][2] = m[1][1] + m[2][2] + p[0]*p[1]*p[2]m[1][2] = 0 + 0 + 35*15*5 = 26253

s

$$A_0 * (A_1) * (A_2) * A_3 * A_4 * A_5$$

Corte: 0 1 2 3 4

Solução
$$m[i][j] = \begin{cases} 0, & i=j \\ \min\limits_{i \leq k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_kp_j\}, & i < j \end{cases}$$
 Para $k = i ... j-1$

s

Para k = 2

 $p = \{30, 35, 15, 5, 10, 20, 25\}$

m[2][3] = m[2][2] + m[3][3] + p[1]*p[2]*p[3]m[2][3] = 0 + 0 + 15*5*10 = 7504 5 3 157500 0 0 2625 1 $\mathbf{2}$ 750 2 i34 4 55 0

m

Corte:

 $A_0 * A_1 * (A_2) * (A_3) * A_4 * A_5$

Solução
$$m[i][j] = \begin{cases} 0, & i=j \\ \min\limits_{i \leq k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_kp_j\}, & i < j \end{cases}$$
 Para $k = i ... j-1$

Para k = 3

 $p = \{30, 35, 15, 5, 10, 20, 25\}$

m[3][4] = m[3][3] + m[4][4] + p[2]*p[3]*p[4]m[3][4] = 0 + 0 + 5*10*20 = 10003

m

$$A_0 * A_1 * A_2 * (A_3) * (A_4) * A_5$$

Corte: 0 1 2 3 4

Solução
$$m[i][j] = \begin{cases} 0, & i=j \\ \min\limits_{i \leq k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_kp_j\}, & i < j \end{cases}$$
 Para $k = i ... j-1$

s

Para k = 4

 $p = \{30, 35, 15, 5, 10, 20, 25\}$

m[4][5] = m[4][4] + m[5][5] + p[3]*p[4]*p[5]m[4][5] = 0 + 0 + 10*20*25 = 50004 5 3 5 0 157500 0 2625 1 $\mathbf{2}$ 750 2 i31000 $\mathbf{3}$ 4 4 5000 4 5 5

$$A_0 * A_1 * A_2 * A_3 * (A_4) (A_5)$$
0 1 2 3 4

0

m

s

m[0][2] = m[0][1] + m[2][2] + p[-1]*p[1]*p[2]

Solução
$$m[i][j] = \begin{cases} 0, & i = j \\ \min_{i \le k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_kp_j\}, & i < j \end{cases}$$
 Para $k = i ... j-1$

Para k = 0

 $p = \{30, 35, 15, 5, 10, 20, 25\}$

m[0][2] = m[0][0] + m[1][2] + p[-1]*p[0]*p[2]m[0][2] = 0 + 2625 + 30*35*5 = 2625 + 5250 =**7875** $\mathbf{2}$ 2 $\mathbf{5}$

Para k = 1

m

m[0][2] = 15750 + 0 + 30*15*5 = 15750 + 5250 =**18000**

Solução
$$m[i][j] = \begin{cases} 0, & i = j \\ \min_{i \le k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_kp_j\}, & i < j \end{cases}$$
 Para $k = i ... j-1$

Para k = 1

 $p = \{30, 35, 15, 5, 10, 20, 25\}$

m[1][3] = m[1][1] + m[2][3] + p[0]*p[1]*p[3]m[1][3] = 0 + 750 + 35*15*10 = 750 + 5250 = 6000 *j* 2 $\mathbf{2}$ 2 $\mathbf{5}$ Para k = 2ms

m[1][3] = m[1][2] + m[3][3] + p[0]*p[2]*p[3]

m[0][2] = 2625 + 0 + 35*5*10 = 2625 + 1750 = 4375

$$(A_0)*(A_1 * A_2) (A_3)* A_4 * A_5$$

s

Solução
$$m[i][j] = \begin{cases} 0, & i = j \\ \min_{i \le k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_kp_j\}, & i < j \end{cases}$$
 Para $k = i ... j-1$

Para k = 2

 $p = \{30, 35, 15, 5, 10, 20, 25\}$

m[2][4] = m[2][2] + m[3][4] + p[1]*p[2]*p[4]m[2][4] = 0 + 1000 + 15*5*20 = 1000 + 1500 =**2500**5 3 5 15750 7875 0 0 0 0 2625 4375 2 1 $\mathbf{2}$ 2500 0 2 i31000 0 34 4 5000 0 4 $\mathbf{5}$ 0

Para k = 3

m[2][4] = m[2][3] + m[4][4] + p[1]*p[3]*p[4]

m[2][4] = 750 + 0 + 15*10*20 = 750 + 3000 = 3750

$$(A_0)*(A_1 * A_2) * (A_3 * A_4) * A_5$$

Corte:

m

s

Solução
$$m[i][j] = \begin{cases} 0, & i = j \\ \min\limits_{i \le k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_kp_j\}, & i < j \end{cases}$$
 Para $k = i ... j-1$

Para k = 3

$$p = \{30, 35, 15, 5, 10, 20, 25\}$$

m[3][5] = m[3][3] + m[4][5] + p[2]*p[3]*p[5]m[3][5] = 0 + 5000 + 5*10*25 = 5000 + 1250 = 6250 2 $\mathbf{2}$ ii1000 3500

Para k = 4

m[3][5] = m[3][4] + m[5][5] + p[2]*p[4]*p[5]

m[3][5] = 1000 + 0 + 5*20*25 = 1000 + 2500 =**3500**

$$(A_0)*(A_1 * A_2)*(A_3 * A_4) * (A_5)$$

0 1 2 3 4

Continuando, calculamos os custos de multiplicação das combinações de para todos os conjuntos de matrizes, aproveitando os resultados anteriores.

Para k = i .. j-1

Solução

$$m[i][j] = \begin{cases} 0, & i = j \\ \min_{i \le k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_k p_j\}, & i < j \end{cases}$$

Para k = 0

 $p = \{30, 35, 15, 5, 10, 20, 25\}$

m[0][3] = m[0][0] + m[1][3] + p[-1]*p[0]*p[3]m[0][3] = 0 + 4375 + 30*35*10 =**14875** 5 1 0 5 7875 9375 15750 0 0 0 26254375 0 2 1 $\mathbf{2}$ 2500 750 2 33500 1000 0 34 4 5000 0 4 $\mathbf{5}$ 0 Para k = 1

m

m[0][3] = m[0][1] + m[2][3] + p[-1]*p[1]*p[3]m[0][3] = 15750 + 750 + 4500 =**21000**

Para k = 2

m[0][3] = m[0][2] + m[3][3] + p[-1]*p[2]*p[3]m[0][3] = 7875 + 0 + 1500 = 9375

$$((A_0)*(A_1 * A_2))*(A_3 * A_4)*(A_5)$$

0 1 2 3 4

$$((A_0)*(A_1 * A_2))*(A_3 * A_4)*(A_5)$$

Solução

$$p = \{30, 35, 15, 5, 10, 20, 25\}$$

	$oldsymbol{j}$									$oldsymbol{j}$						
		0	1	2	3	4	5			0	1	2	3	4	5	
i	0	0	15750	7875	9375	11875	15125	-	0		0	0	2	2	2	
	1		0	2625	4375	7125	10500		1			1	2	2	2	
	2			0	750	2500	5375		2				2	2	2	
	3				0	1000	3500		3					3	4	
	4					0	5000		4						4	
	5						0		5							
				r	n				,				s			

$$((A_1(A_2A_3))((A_4A_5)A_6))$$

```
30 \times 35
                                                                     A_0
MATRIX-CHAIN-ORDER (p)
                                                                     A_1
                                                                                35 \times 15
 1 n \leftarrow length[p] - 1
                                                                     A_2
                                                                                15 \times 5
 2 for i \leftarrow 1 to n
                                                                     A_3
                                                                                5 \times 10
           do m[i, i] \leftarrow 0
                                                                     A_4 10 \times 20
     for l \leftarrow 2 to n
                                \triangleright l is the chain length.
                                                                     A_5
                                                                                20 \times 25
           do for i \leftarrow 1 to n-l+1
                    do j \leftarrow i + l - 1
                        m[i, j] \leftarrow \infty
                        for k \leftarrow i to j-1
                             do q \leftarrow m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j
10
                                 if q < m[i, j]
11
                                    then m[i, j] \leftarrow q
12
                                          s[i, j] \leftarrow k
13
     return m and s
```

dimensão

matriz

Determinando a ordem ótima

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i = j

2 then print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Para o exemplo anterior, a saída seria:

$$((A_1(A_2A_3))((A_4A_5)A_6))$$