烯烃 亲电加成 自由基加成

一、烯烃的定义、结构特点和同分异构

定	义	含碳碳双键的碳氢化合物称为烯烃。烯烃属于不饱和烃		
通式		链状单烯烃的通式为: C _n H _{2n}		
结构特点		(1)双键碳原子为 sp ² 杂化 (2)双键碳原子和与其分别	,碳碳双键由一个 σ 键和一个 π 键组成 则相连的四个原子共平面	
		· c — c :	H 134pm H C C 116.7° H 121.6° H 乙烯分子的凯库勒模型	
	构造异构	碳架异构	2-丁烯 甲基丙烯	
		位置异构	1-丁烯 2-丁烯	
同分异构		官能团异构	2-丁烯 环丁烷	
	顺反异构	产生顺反异构(几何异构) (1) C=C 不能旋转 (2) 每个双键碳原子上连有 b		

	顺	如: H_3C $C=C$ CH_3	CH $C = C$ CH_3
异	反 异 构	M式 H ₃ C、C=C CH ₃	反式 H ₃ C C=C CH ₂ CH ₃
		CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ 順式	CH₃CH₂CH₂ CH₃ 反式

二、烯烃的命名

	普通	$H_2C = CH_2$ $CH_3 - CH = CH_2$ $CH_3C = CH_2$	
	命	CH ₃	适用于简
	名法	乙烯 丙烯 异丁烯 ethylene propene isobutene	单烯烃
构造异构体	系统命名法	命名原则:选择含碳碳双键的最长碳链为主链,按其碳原子数近双键一端给主链编号,使双键位次尽可能低;以双键中较小表示双键位置;取代基名称及位次处理方法与烷烃类似。例如CH ₃ CH ₂ C=CH ₂ CH ₃ CHCH ₂ CCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₄ 4-甲基 -2-丙基 -1-戊 2-ethyl-1-pentene 4-methyl-2-propyl-1-pe 环烯烃的命名原则与开链烯烃类似。例如:	、的碳原子序号 l: I ₃
	14	1,5-二甲基环己烯 3,4-二甲基环戊烯 1,5-dimethylcyclohexene 3,4-dimethylcyclopen 常见的烯基: CH ₂ =CH- CH ₃ CH=CH- CH ₂ =CHC 乙烯基 丙烯基 烯丙基	tene
		1,5-dimethylcyclohexene 3,4-dimethylcyclopen 常见的烯基: CH2=CH- CH3CH=CH- CH2=CHC 乙烯基	tene H ₂ —
反	順、	1,5-dimethylcyclohexene 3,4-dimethylcyclopen常见的烯基: CH ₂ =CH- CH ₃ CH=CH- CH ₂ =CHC	tene H ₂ 一 适用于两个
反异	顺反	1,5-dimethylcyclohexene 3,4-dimethylcyclopen 常见的烯基: CH2=CH- CH3CH=CH- CH2=CHC 乙烯基	tene H ₂ — 适用于两个 双键碳上连
顺反异构体	顺、	1,5-dimethylcyclohexene 3,4-dimethylcyclopen 常见的烯基: CH2=CH- CH3CH=CH- CH2=CHC 乙烯基	tene

Z、 E法 原反异	命名原则:首先将双键碳原子上的取代基分别按次序规则排列,较优基团位于同侧为 Z 型;较优基团位于异侧为 E 型。例如: H_3C H_3C $CH_2CH_2CH_3$ $CH_3CH_2CH_2$ $CH_3CH_2CH_3$ $CH_3CH_2CH_2$ $CH_3CH_3CH_2CH_3$	适用于的体。 两个双有相键。 原个对有基型的分子 所分子法
构体	反和 Z 、 E 是两种不同的表示方法,不存在必然的内在联系。例 H_3C $C=C$ H $C=C$ CH_3 $C=C$ CH_2 CH_3 $C=C$ CH_2 CH_3 $C=C$ C CH_3 $C=C$ C CH_3 C	如:

三、烯烃的物理性质

性状	烯烃的沸点、熔点和相对密度等物理性质随分子量的变化规律类似于烷烃。由于 π 键的可极化度比 σ 键大,烯烃的沸点较烷烃略高。反式异构体通常具有较好的对称性,因此熔点高于顺式异构体
波谱性质	IR: C=C 伸缩振动 $1675 \sim 1640 \text{cm}^{-1}$; C=C—H 伸缩振动 $3100 \sim 3010 \text{cm}^{-1}$, 面外弯曲振动 $1000 \sim 675 \text{cm}^{-1}$ 1 H-NMR: 双键上的 π 电子环电流的感应磁场使烯氢处于去屏蔽区,使烯氢在较低磁场发生共振吸收, δ 值为 $4.5 \sim 6.5$

四、烯烃的化学性质

催化加氢	通式	$C=C$ $+H_2$ $\xrightarrow{\text{催化剂}}$ $-C-C-H$ H
	机制	化学吸附、顺式加成: $C = C + H_2 \xrightarrow{\text{催化剂}} C - C + H_2 \xrightarrow{\text{H}} C - C + H_$
	催化剂	异相催化剂: Pt、Pd、Ni; 均相催化剂: RhCl(PPh3)3
	氢化热	1mol 烯烃氢化时所放出的热量。可用于判断烯烃的稳定性。反式烯烃比顺式烯烃稳定;双键上连有烷基较多的烯烃更稳定

_	_		续表		
	定义	居义 烯烃中π键受缺电子试剂的进攻而发生的加成反应称亲电加成反应 (electrophilic addition)			
		通式: $C=C \left\langle +HX \longrightarrow -\frac{1}{C} - \frac{1}{C} - \frac{1}{H} \right\rangle$	卤化氢活性: HI>HBr>HCl		
		机制: $C = C + H - X \longrightarrow -C - C - C - C - X$	容易发生碳正离子重排		
	加卤化氢	区域选择性:加成反应的主产物是经历较稳定中间体 碳正离子的结果 实例: CH2CH3+HI → CH2CH3	符合 Markovniko 规则,即氢加 到含氢较多的 碳原子上		
亲电加成		$(CH_3)_2CHCH = CH_2 + HCI \longrightarrow$ $(CH_3)_2CHCHCH_3 + (CH_3)_2CCH_2CH_3$ CI $重排产物$ CI CI CI CI CI CI CI I $CF_3 - CH = CH_2 + HCI \longrightarrow CF_3 - CH - CH_2$ I I	碳正离子重排 产物取决于碳正 离子的稳定性		
	加硫酸	通式: $C = C \left\langle + \text{HOSO}_2\text{OH} \longrightarrow -\frac{1}{C} - \frac{1}{C} - \frac{\text{H}_2\text{O}}{C} - \frac{1}{C} - \frac$	间接水合制醇 服从马氏规则 乙烯反应得到 伯醇,其余则 得仲醇或叔醇		
	加卤素	通式: $C=C$ $+ X_2$ \longrightarrow $-C$ $-C$ X	卤素活性: Cl ₂ >Br ₂ >I ₂ 反式加成 加溴可用来鉴 别烯烃		

			
	加卤素	实例: $+ Br_2 \xrightarrow{CCL_4} \xrightarrow{H} \xrightarrow{Br} + \xrightarrow{Br} \xrightarrow{H} \xrightarrow{CH_3} \xrightarrow{CH_3}$	既是立体选择性反应,又是立体专一性反应
亲		立体选择性反应(stereoselective reaction);当一个反应不体异构体,但实际只产生或优先产生一种立体异构体(此类反应称作立体选择性反应 立体专一性反应(stereospecific reaction);在立体化学上生成立体化学上有区别的产物,此类反应称作立体专一性	或一对对映体),
宋电加成	加次。卤酸	通式: $C = C$ $+ X_2 \xrightarrow{H_2O} -C -C -C + HX$ 机制: $C = C \xrightarrow{X_2} C \xrightarrow{C} C \xrightarrow{X_2} C -C \xrightarrow{OH_2}$ 实例: $Q = C \xrightarrow{X_2} C -C \xrightarrow{OH_2} C -C -C \xrightarrow{OH_2} C -C -C \xrightarrow{OH_2} C -C -C \xrightarrow{OH_2} C -C -$	水是溶剂,大量存在,因此主产物是邻卤代醇
		$(CH_3)_2C = CH_2 + Br_2 \xrightarrow{H_2O} (CH_3)_2C - CH_2Br$ OH $CH_3CH = CH_2 + Br_2 \xrightarrow{CH_3OH} CH_3CH - CHBr$ OCH_3	溴加到含氢较 多的碳上 在醇中反应

			
自由基加成	机制:	$CH_3CH = CH_2 + HBr \xrightarrow{\text{过氧化物}} CH_3CH_2CH_2Br$ $R = O - O - R \longrightarrow 2RO \cdot$ $RO \cdot + H - Br \longrightarrow ROH + Br \cdot$ $CH_3CH = CH_2 + Br \cdot \longrightarrow CH_3\dot{C}H - CH_2Br$ $H_3\dot{C}H - CH_2Br + H - Br \longrightarrow CH_3CH_2CH_2Br + Br \cdot$	反应条件为过 氧化物或光照 加成服从反马 氏规则 除 HBr 外, 其 他 HX 均不存在 过氧化物效应
硼氢化	RCH CH ₃	$= CH_2 \xrightarrow{BH_3, THF} (RCH_2CH_2)_3 B \xrightarrow{H_2O_2, OH^-} RCH_2CH_2OH$ $\xrightarrow{BH_3} (CH_3H)_3 B \xrightarrow{H_2O_2} OH^-$ $\xrightarrow{CH_3H} OH$	可制备伯醇顺式加成
反应		CH_3 $RCOOH$ CH_3 H H	烷基硼用羧酸 处理得到烷烃
	高锰酸	冷稀、碱性 KMnO ₄ : KMnO ₄ /OH H ₂ O,5℃ H OH OH	顺式加成,产物 为顺式邻二醇
氧化	钾氧化	酸性 $KMnO_4$: $CH_3CH_2CH = CH_2 \xrightarrow{KMnO_4/H^*} CH_3CH_2COOH + CO_2 \uparrow$ $COOH + COOH + $	双键断裂生成 CO ₂ 、酮、羧 酸;可用于推 测烯烃的结构
化反应	臭氧氧化	$(1)O_3 \longrightarrow CHO \\ + OHCCH_2CHO$	双键断裂,生成酮、醛;可用于推测烯烃结构
	环氧化	$\begin{array}{c} H_3C \\ H \end{array} \xrightarrow{CH_3} \begin{array}{c} CH_3 \\ H \end{array} \xrightarrow{CH_3CO_3H} \begin{array}{c} H_3C \\ H \end{array} \xrightarrow{CC-C} \begin{array}{c} CH_3 \\ H \end{array}$	顺式加成 常用的有机过 氧酸为过氧乙 酸、过氧苯甲 酸等

α- 氢	卤代	$CH_{3}-CH=CH_{2}+Cl_{2}\xrightarrow{h\nu}CH_{2}-CH=CH_{2}$ Cl $CH_{3}-CH=CH_{2}\xrightarrow{NBS, h\nu}CH_{2}-CH=CH_{2}$ $CH_{3}-CH=CH_{2}\xrightarrow{NBS, h\nu}CH_{2}-CH=CH_{2}$ R	自由基取代反应, 中间体为稳定的 烯丙基自由基。 NBS 是常用的溴 代试剂
的反应	氧化	CH_3 — CH = CH_2 + O_2 $\xrightarrow{Cu_2O}$ $\xrightarrow{350^{\circ}C, 0.25MPa}$ CH_2 = $CHCHO + H_2O$ CH_2 = $CHCH_3 + NH_3 + O_2$ $\xrightarrow{$ 含铈的磷钼酸铋 $\xrightarrow{470^{\circ}C}$ CH_2 = $CHCN + H_2O$	烯烃的 α- 氢易被 氧化
聚合		$n\left(\underset{R}{\searrow}C = C \underset{R'}{\swarrow}\right) \longrightarrow \left\{\begin{matrix} 1 & 1 \\ C & C \\ 1 & 1 \end{matrix}\right\}_{n}$	用于合成高分子材料

(冯秀娥)

