Taller 11

Use aproximaciones con diferencias finitas hacia adelante y hacia atrás y centradas para estimar la primera y segunda derivada en x = 0.7 y h = 0.1 de la función $f(x) = 0.22X^4 - 0.56$ $X^2 + 4.8$

Calcule además el valor verdadero de las derivadas.

```
Tables

X_1 = 0, 3

Y_1 = 0, 3

Y_2 = 0, 3 \times \frac{3}{2} \times \frac{3}{
```

	$f'(x_1) = f(x_1+1) - f(x_1-1) + O(n^2)$ (central)
	f'(x1)= f(0,3)-f(0,6) =
adelante	
	$f'(0,7) = 0.12(0,8)^4 - 0.56(0,8)^2 + 4.8 - 0.12(0,7)^4 - 0.56(0,7)^2 + 4.3$
	f'(0,1)= -0,4671
atras	A0 40 A0
	f'(0,3): 0,12(0,3)4-0,56(0,3)2+4,8-0,22(0,6)4-0,56(0,6)2+4,8
	f'(0,3)? -0,4849
and a	

centrada	f'(0,3) = 0,22(0,8)4-0,56(0,8)2+4,8-0,22(0,6)4-0,56(0,6)2+4,8
	0/2
	f'(0,7) ≥ -0,476
X1+2=0,9	Sognada adelante
X1-2 = 0,5	
X, + 1:0,6	f"(0,2)= f(0,2)-2+ (0,2)+ f (0,7) (0,1)2
	f"(071= 0,574
e 10 1	
Segunda atra	$f''(0,3) = \frac{f(0,3)^{-2}f(0,6) + f(0,5)}{(0,1)^{2}}$
	f" (0,7) = -0,1652

	$f'(0,t) = f(0,t) - 2f(0,t) + f(0,t)$ $(0,1)^2$
	f"(0,7)= 0,574
Segunda atras	
3	f"(0,3)=f(0,3)=2f(0,6)+f(0,5)
	(0,1)2
	f'(0,7)= -0,1652
	1 (0,1)0,1652
0 1 01 1	da
Segnda central	
Segnoa Cerma	
Segmon Cermo	$f''(0,2) = f(0,8) - 2f(0,2) + f(0,6)$ $(0,1)^2$
Segreta Cerson	$f''(0,3) = f(0,3) - 2f(0,3) + f(0,6)$ $(0,1)^2$
323000	
323000 62350	$f''(0,3) = f(0,3) - 2f(0,3) + f(0,6)$ $(0,1)^2$
303000	$f''(0,3) = f(0,3) - 2f(0,3) + f(0,6)$ $(0,1)^2$
303000	$f''(0,3) = f(0,3) - 2f(0,3) + f(0,6)$ $(0,1)^2$

• Realice los cálculos de la primera y segunda diferencias centradas para el mismo punto x= 0,7 y h = 0,05. Comparado con los valores verdaderos ¿es este resultado mejor que el anterior?

