数据库系统概论新技术篇

数据仓库与联机分析处理技术(2)

陈红

中国人民大学信息学院

数据仓库与OLAP技术

- ❖从数据库到数据仓库
- ❖数据仓库的特征与体系结构
- ❖数据仓库与OLAP的关键技术
- ❖新的研究方向

数据仓库与OLAP的关键技术

- **❖**多维数据模型
- **❖CUBE**计算技术
- ❖实体化视图技术
- ❖精简数据方体技术
- ❖索引技术

数据仓库与OLAP的关键技术

- **❖**多维数据模型
- **❖CUBE**计算技术
- ❖实体化视图技术
- ❖精简数据方体技术
- ❖索引技术

多维数据模型

- ❖ 数据仓库和OLAP服务器基于多维数据模型。
- ❖ 多维数据模型将数据看作数据方体(Data Cube),它通过维 (dimension)和度量(measure)进行定义。
- ❖ 维可以有层次。

Month, Product, City上的数据立方体

多维数据模型实际上是把度量看成是由维组成的多维空间上的值

多维数据模型的实现

- ❖基于关系数据库
 - ■星型模式
 - ■雪片模式
 - ■事实群模式

❖基于多维数组

星型模式

星型模式

雪片模式

事实群模式

多维数组存储

❖存储方法

■多维数组只存储数据方体的度量值,维值由 数组的下标隐式给出。

Fact table view:

sale	prodld	storeld	amt
	p1	с1	12
	p2	c1	11
	p1	сЗ	50
	p2	c2	8

Multi-dimensional cube:

dimensions = 2

3-D Cube

Fact table view:

sale	prodld	storeld	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	сЗ	1	50
	p2	c2	1	8
	p1	с1	2	44
	p1	c2	2	4

Multi-dimensional cube:

dimensions = 3

两类方法的比较

- ❖ 关系存储

 - △不存在稀疏数据 问题
 - ♡访问速度不如多维数组快

- ❖ 多维数组存储
 - △存储效率高
 - ♂访问速度快
 - ♡不同维的访问效率差别很大
 - ②在数据稀疏的情况下,由于大 量无效值的存在,存储效率下 降

多维数组存储

- ❖解决不同维的访问效率差别大的问题
 - ■将一个n维数组分成多个小的n维数据块

(chunk)的方法。

24

多维数组存储

- ❖解决不同维的访问效率差别大
 - ■将一个n维数组分成多个小(chunk)的方法。
- ❖解决数据稀疏造成空间浪费的
 - ■采用数据压缩技术,如头文件/ 压缩方法等。

多维分析操作

❖建立在关系聚集操作上的一组复合操作

❖基本的分析是求聚集函数(aggregation)

多维分析的基础:

• 例: 求第一天的销售总额

In SQL: SELECT sum(amt) FROM SALE WHERE date = 1

sale	prodld	storeld	date	amt
	p1	с1	1	12
	p2	с1	1	11
	p1	сЗ	1	50
	p2	c2	1	8
	p1	с1	2	44
	p1	c2	2	4

多维分析的基础:聚集

• 例:按照每天求销售总额

In SQL: SELECT date, sum(amt) FROM SALE GROUP BY date

sale	prodld	storeld	date	amt
	p1	с1	1	12
	p2	с1	1	11
	p1	сЗ	1	50
	p2	c2	1	8
	p1	с1	2	44
	p1	c2	2	4

ans	date	sum	
	1	81	
	2	48	

多维分析的基础:

• 例: 按照每天和产品求销售总额

In SQL:

SELECT prodld, date, sum(amt) FROM SALE

GROUP BY prodld, date

聚集函数

- ❖分布型
 - ■可以分布计算的聚集函数。
 - ■例如: sum(), count(), max(), min()
- ❖代数型
 - ■可以由一个具有M个参数的代数函数计算得到,其中每个参数可以用一个分布型聚集函数得到。
 - ■例如: AVG()
- ❖整体型
 - ■描述它的子聚集所需的存储没有一个常数界。
 - ■例如: median(); rank()

多维分析操作

- ❖切片(slice) & 切块(dice)
- ❖上卷(roll-up), 下钻(drill down)
- ❖旋转(pivoting)

切片/切块操作

❖实质上对应于where/having 子句

钻取操作

• 钻取操作就是在不同粒度表之间的切换

sale	prodld	storeld	date	amt
	p1	с1	1	12
	p2	с1	1	11
	p1	сЗ	1	50
	p2	c2	1	8
	p1	с1	2	44
	p1	c2	2	4

rollup -	sale	prodld	date	amt
Joliup		p1	1	62
		p2	1	19
drill-down		p1	2	48

旋转操作

• 旋转操作就是转动观察数据的视角,提供数据的另一种展现方式。

OLAP服务器

- ❖多维数据存储
- **❖**多维数据操作

OLAP服务器基本实现

- *ROLAP: **Relational On-Line Analytical Processing**
- *****MOLAP: **Multi-Dimensional On-Line Analytical Processing**
- * HOLAP **Hybrid On-Line Analytical Processing**

ROLAP Server

ROLAP: Relational On-Line Analytical Processing

❖ ROLAP数据存取过程

sale	prodld	date	sum
	p1	1	62
	p2	1	19
	p1	2	48

MOLAP Server

* MOLAP: Multi-Dimensional On-Line Analytical Processing

HOLAP结构

- ❖ HOLAP: Hybrid On-Line Analytical Processing
- ❖HOLAP将ROLAP和MOLAP结合起来

例如,将细节数据存在关系数据库中,而将综合数据存在MOLAP服务器中

既利用了ROLAP可扩展性好的优点,也利用MOLAP计算速度快的优点。

小结

- ❖多维数据模型的概念
- ❖多维数据模型的实现方法
 - ■基于关系数据库
 - ■基于多维数组
- ❖多维分析操作
 - ■切片&切块
 - ■上卷,下钻
 - ■旋转

- ❖OLAP服务器基本实现
 - **■** ROLAP
 - **MOLAP**
 - **HOLAP**

