The © Joy © of Description Logics

Scott Sanner

(ssanner@cs.toronto.edu)

Talk Outline

- Motivations and history
- Importance of subsumption and taxonomy
- Semantics for conceptual logics
- Algorithms for subsumption
- Example applications to IR/NLP and Semantic Web
- Frontiers for research

• In the beginning (60's & early 70's): knowledge representation (KR) focused primarily on **semantic networks**, e.g.

- As pointed out by Woods (1975), what does this semantic net denote?
 - If it's a telephone, it's black?
 - A concept consisting of all black telephones?
 - An instance of a black telephone?

- So all was not well in KR, semantic nets seemed to lack formal semantics, until...
 - "What's in a Link" (Woods, 1975): Provides a logical foundation for semantic networks
 - Structured Inheritance Networks (Brachman, 1977): Provides further foundations for *structured concepts*, *subsumption*, *and automatic taxonomic classification*
 - Initial KL-ONE Proposal (Woods & Brachman, 1977):
 Provides first conceptual language based on these ideas

- Ideas from "What's in a Link":
 - Identifies difference between concept and instance level (i.e. instances are the extension of concepts)
 - Points out the need for quantificational import (∀,∃)
 in concept-level links (i.e. role restrictions)

- More ideas from "What's in a Link":
 - Points out distinctions between assertional (⇒)
 and structural links (⇔)

Assertional:

$\forall x. \ Dog(x) \Rightarrow$ $\exists y. \ lives-in(x,y)^Place(y)$ $\exists lives-in.Place$ kind-of Dog

Structural:

Aside: We now have the foundations for a convenient concept notation (actually description logic):

English	FOL	DL
Dog with a Spot	$DWS(x) \Leftrightarrow$	DWS ⇔
(DWS)	$Dog(x) \wedge (\exists y.has(x,y)$	Dog ☐ ∃has.Spot
	^ Spot(y))	
Large Dog with	$LDWDS(x) \Leftrightarrow$	LDWDS ⇔
a Dark Spot	$(\text{Dog}(x) \land \text{Large}(x)) \land$	Dog □ Large □
(LDWDS)	$(\exists y.has(x,y)$	∃has.(Spot ☐ Dark)
	^ (Spot(y) ^ Dark(y))	

^{*}Note that since variables are not explicit in the DL notation, all relational restrictions are necessarily independent

- Ideas from "Structured Inheritance Networks" and KL-ONE Proposal:
 - Proposes idea that <u>structured concepts</u> may subsume each other based on definitional constituents
 - Furthermore, this subsumption relation can be used to organize concepts into a taxonomy (i.e. partial order)

- Subsumption and the related issue of taxonomic classification are perhaps two of the most beautiful and original ideas in knowledge representation
 - Semantics for such relationships is criterial and can be inferred from definition
 - Provides a mechanism for automatically generating specificity/generality hierarchies
 - Because real-world information often represented at differing levels of specificity/generality, leads to many uses in IR, NLP, Information Integration

• Problem:

- Subsumption and taxonomy are important concepts
- But no formally defined semantics for conceptual logics or algorithms for subsumption computation so far

History:

- Semantics critical to the definition of algorithms for subsumption
- Seminal work by Levesque and Brachman (1985) showed that slight alterations in language expressiveness led to extreme changes in computational tractability

Answer:

- There is no single answer for semantics and subsumption algorithm
- Virtually all subsequent work has focused on semantics and computational tractability
- This has led to two major veins of research...

• Two main approaches to conceptual logic semantics and subsumption:

1) Extensional Approach:

- o Direct subset of FOL model-theoretic semantics
- o A subsumes B iff there is no model of $B \cap A$
- o Basis for most recent description logic research

2) Intensional (Structural) Approach:

- o Assumes an intensional definition of concepts
- o For conjunctively defined concepts:

 A subsumes B iff every conjunctive constituent of A subsumes some conjunctive constituent of B
- o Can provide intensional definitions for disjunction, negation, and restriction subsumption as well...

Summary: A Brief History of Time

1985: Levesque & Brachman: Semantics & Tractability

Formal Model Theoretic Semantics, Tradeoff b/w expressiveness / tractability Early 1990's: Europe: Need expressiveness and extensional completeness

Thus, have to use EXP-TIME tableaux algorithms

Late 90's, Present: Horrocks & Others: Description Logics, FACT

Lots of theoretical results and expressive (but complex) satbased EXP-TIME subsumption algorithms.

Extensional
Approach

Intensional Approach

70's, Early 1980's: Logical foundations & KL-One

Big Bang

Ambiguous semantics, undecidable, but fundamental ideas that gave birth to a field 1989: AT&T Research: Classic

Most expressive, extensionally complete polynomial subsumption language (using structural algorithm) Early 1990's: Woods: Need intensional semantics and efficient taxonomy algorithms

9

Use structural subsumption (sound w.r.t. extensional semantics) and provide scalable, polynomial tax classification algorithms

Late 90's, Present: Sun Research: Conceptual Indexing

Extremely efficient structural algorithms for building large taxonomies, applied to NLP-based web search

• Extensional Semantics: Note: Under an interpretation I, concepts are just sets of satisfying instances!

Constructor	Syntax	Semantics
concept name	A	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
top	Т	$\Delta^{\mathcal{I}}$
bottom	\perp	Ø
conjunction	$C\sqcap D$	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
disjunction (\mathcal{U})	$C \sqcup D$	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
negation (\mathcal{C})	$\neg C$	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
universal	$\forall R.C$	$\{x \mid \forall y : R^{\mathcal{I}}(x, y) \to C^{\mathcal{I}}(y)\}$
existential (${\cal E}$)	$\exists R.C$	$\{x \mid \exists y : R^{\mathcal{I}}(x, y) \land C^{\mathcal{I}}(y)\}$
cardinality (${\cal N}$)	$\geqslant n R$	$\{x \mid \sharp \{y \mid R^{\mathcal{I}}(x,y)\} \ge n\}$
	$\leq n R$	$\{x \mid \sharp \{y \mid R^{\mathcal{I}}(x,y)\} \le n\}$
qual. cardinality (\mathcal{Q})	$\geqslant nR.C$	$\{x \mid \sharp \{y \mid R^{\mathcal{I}}(x,y) \land C^{\mathcal{I}}(y)\} \ge n\}$
	$\leq nR.C$	

Source: http://www.cs.man.ac.uk/~franconi/dl/course/slides/prop-DL/propositional-dl.pdf

- Sample tableaux for extensional subsumption (i.e. unsatisifiability check):
 - Does ¬∃CHILD.¬Male subsume ∀CHILD.Male?
 - I.e., Does ∀CHILD.Male | ∃CHILD.¬Male have no model?

$x: ((\forall \texttt{CHILD.Male}) \sqcap (\exists \texttt{CHILD.} \neg \texttt{Male}))$		
$x \colon (\forall \mathtt{CHILD}.\mathtt{Male})$	<i>□-rule</i>	
$x : (\exists \mathtt{CHILD}. \neg \mathtt{Male})$	44	
x CHILD y	∃-rule	
$y \colon \neg \mathtt{Male}$	44	
$y \colon \mathtt{Male}$	∀-rule	
$\langle CLASH \rangle$		

Tableaux Proof:

Source: http://www.cs.man.ac.uk/~franconi/dl/course/slides/prop-DL/propositional-dl.pdf

• Intensional Approach:

- Avoid model theoretic semantics, reason directly using recursive application of subsumption rule to normalized concept structure:
 - Conjunctive Subsumption: A *subsumes* B iff every conjunctive constituent of A *subsumes* some conjunctive constituent of B
 - Existential Restriction Subsumption: ∃R.C subsumes ∃R'.C' iff R subsumes R' and C subsumes C'
 - **Definitions for other restrictions** (Woods, 1991), **disjunction** (Sanner, 2003); various ways to handle **complement**
- Note the recursive use of the term subsumes
 - Base cases: axiomatic and definitional (e.g. conj.) subsumptions
 - Recursive cases: structural subsumptions

- Sample application of intensional (structural) subsumption algorithm:
 - General rule covers single subsumption test but can be incorporated into an efficient algorithm for taxonomic classification (Woods, 1991)

Link Key:

Asserted links:

- a axiom
- c conj. def
- o restriction object

<u>Inferred links:</u>

s-structural subsumption

- Intuition: Structural subsumption akin to a constrained second-order search for first-order logic proofs:
 - Previous structural inference can be recast as FOL proof:

```
Skolemized INF Def
[1] Large-dog-that-has-a-dark-spot(x) \Rightarrow Dog(x)
                                                                Skolemized INF Def
[2] Large-dog-that-has-a-dark-spot(x) \Rightarrow has(x, f(x))
                                                                Skolemized INF Def
[3] Large-dog-that-has-a-dark-spot(x) \Rightarrow Spot(f(x))
                                                                Skolemized INF Def
[4] Dog(x)^(has(x,y)^Spot(y)) \Rightarrow Dog-that-has-a-spot(x)
[5.1] Large-dog-that-has-a-dark-spot(x)
                                                                Assumption
[5.2] Doq(x)
                                                                MP [5.1],[1]
[5.3] has (x, f(x))
                                                                MP [5.1], [2]
[5.4] Spot(f(x))
                                                                MP [5.1], [3]
[5.5] Dog-that-has-a-spot (x)
                                                                MP [4], [5.2-5.4]
                                                                Deduction Theorem
[6] Large-dog-that-has-a-dark-spot(x) \Rightarrow
                                                                [5.1], [5.5]
    Dog-that-has-a-spot(x)
O.E.D.
```

• How do extensional and intensional (i.e. structural) approaches/algorithms compare?

Intensional (Structural)

- Sound but incomplete for very expressive languages, however incompleteness often benign
- Efficient (poly-time) taxonomy building
- Expressiveness no longer an issue with recent research
- Captures important subsumptions

Ex: Nova (Sun)
JTP (KSL)

Extensional

- Can be extensionally sound
 & complete using structural algorithm
- ⇒ Polynomial inference, but limited expressiveness
- Ex: Classic (AT&T)

- Complete inference for expressive languages
- Intractable (EXP-TIME) subsumption & taxonomy building
- •Ex: FaCT (Horrocks)

Applications to IR and NLP

- Nova Conceptual Search Engine (Sun Microsystems Research Labs)
 - Converts phrases parsed from natural language documents into conceptual logic descriptions
 - Organizes these descriptions in a taxonomy using *highly* optimized structural classification algorithms
 - Answers queries by returning all concepts equivalent to or more specific than query, e.g.
 - Given query: 'wash an automobile', will return a document containing the phrase: 'washing a car with a hose'
 - Given query: 'run a farm', will return a document containing the phrase: 'operating a large dairy'

Applications to IR and NLP

Example Nova taxonomy generated from Sun catalog:

```
(ADD MEMORY)
  -k- (ADDITIONAL MEMORY)
    -k- (ADDITIONAL A MEMORY)
    -k- (ADDITIONAL G MEMORY)
    -k- (ADDITIONAL K MEMORY)
    -k- (ADDITIONAL STORAGE)
      -k- (ADDITIONAL DISK)
         |-k- (ADDITIONAL DISKS)
         | |-k- (TWO ADDITIONAL HARD DISKS)
         -k- (ADDITIONAL MULTI-DISK)
           -k- (ADDITIONAL 4.2-GB MULTI-DISK)
           |-k- (ADDITIONAL SMCC MULTI-DISK)
    -k- (PURCHASE ADDITIONAL MEMORY)
  -k- (ECONOMICALLY ADDING LOCAL STORAGE)
  -k- (SOLDERED-IN MEMORY)
```

Source: http://research.sun.com/knowledge/examples.html

Applications to IR and NLP

For More Information...

- Core algorithms are proprietary but publicly available research information can be found at:
 - Nova Project Home Page:
 - http://research.sun.com/knowledge/index.html
 - Sub Labs Tech Report:
 - William A. Woods (1997). "Conceptual Indexing: A Better Way to Organize Knowledge." SMLI-TR-97-61.

Applications to the Semantic Web

- JTP DAML+OIL Reasoner (Knowledge Systems Lab, Stanford University)
 - Taxonomic reasoning extremely useful for determining relationships between concepts in distributed kb's
 - Problem: Have a general purpose theorem prover in the form of JTP (Java Theorem Prover)
 - Capable of loading DAML+OIL knowledge bases from Semantic Web
 - However, inference of a taxonomy by theorem proving is too inefficient
 - Solution: Build in a special purpose reasoner for DAML+OIL taxonomic classification
 - Use structural subsumption techniques augmented with rules for for expressive languages (e.g. since disjunction important)

Applications to the Semantic Web

 Example taxonomy built by JTP special purpose reasoner for a DAML+OIL kb:

```
- TOP
         |- http://.../dogs.daml#::Thing
          - http://.../dogs.daml#::AnimalOrDarkFur
     |- http://.../dogs.daml#::Animal
            |- http://.../dogs.daml#::AnimalOrDarkFur [*]
         |- http://.../dogs.daml#::DogOrBrownFurOrBlackFur
     - http://.../doqs.daml#::DoqOrBrownFur
     - http://.../dogs.daml#::DogOrBrownFurOrBlackFur [*]
 |- http://.../dogs.daml#::Dog
   - [ GEN < MOD >]
 - [ EXISTS <http://.../dogs.daml#::mod,
               http://.../dogs.daml#::Big,1>]
     - http://.../dogs.daml#::DogOrBrownFur [*]
 - http://.../dogs.daml#::BigDogOrBrownFur
http://.../dogs.daml#::BigDog
 |- http://.../dogs.daml#::BigDogWithDarkFur
     |- http://.../dogs.daml#::BigDogWithBrownFur
         - BOTTOM
```

Source: http://www.cs.toronto.edu/~ssanner/papers/ksl0301.pdf

Applications to the Semantic Web

• For More Information...

- JTP and the DAML+OIL special purpose reasoner are freely available, see the following web page and extensive technical report:
 - JTP Project Home Page:
 - http://www.ksl.stanford.edu/software/JTP/
 - KSL Tech Report:
 - Scott P. Sanner (2003). "Towards Practical Taxonomic Classification for Description Logics on the Semantic Web." KSL-03-01.

Frontiers of Description Logics

• Extensional / Description Logics

- Can the average case for subsumption be competitive with structural approaches (depends on algorithms /distributions of concept constructors used)?
- Can taxonomic classification be performed more efficiently by reusing subsumption information?

• Intensional / Structural Logics

- How to characterize incomplete subsumption?
- Are we sure these missed subsumptions don't matter?
 (e.g. is inconsistency useful for some applications?)
- Further research in efficient subsumption, algorithms and data structures (disk-based) for scalable tax. construction

References

- Ronald J. Brachman (1977). "A Structural Paradigm for Representing Knowledge". Ph.D. Thesis, Harvard University. Note: Structured inheritance networks proposed here.
- Hector J. Levesque and Ronald J. Brachman (1985). "A Fundamental Tradeoff in Knowledge Representation and Reasoning". In R. J. Brachman and H. J. Levesque, editors, *Readings in Knowledge Representation*, pages 41-70. Morgan Kaufmann, Inc. 1985.
- Scott P. Sanner (2003). "Towards Practical Taxonomic Classification for Description Logics on the Semantic Web". Stanford University Knowledge Systems Lab Techical Report: KSL-03-01.
- William A. Woods (1975). "What's in a Link: Foundations for Semantic Networks". In R. J. Brachman and H. J. Levesque, editors, *Readings in Knowledge Representation*, pages 41-70. Morgan Kaufmann, Inc. 1985.
- William A. Woods and Ronald J. Brachman (1977). "Research in Natural Language Understanding, Quartly Technical Progress Report No. 1". Bolt, Beranek, and Newman Techical Report: 3742. Cambridge, MA. Note: Initial KL-ONE proposal.
- William A. Woods (1991). "Understanding Subsumption and Taxonomy: A framework for progress". In John Sowa (editor) *Principles of Semantic Networks: Explorations in the Representation of Knowledge*. San Mateo, US.
- William A. Woods (1997). "Conceptual Indexing: A Better Way to Organize Knowledge". Sun Microsystems Research Labs Technical Report: SMLI-TR-97-61.