Classical Encryption Techniques

Prepared By T. Sree Sharmila

Classical encryption techniques

- As opposed to modern cryptography
- Goals:
 - to introduce basic concepts & terminology of encryption
 - to prepare us for studying modern cryptography

Basic terminology

- Plaintext: original message to be encrypted
- Ciphertext: the encrypted message
- Enciphering or encryption: the process of converting plaintext into ciphertext
- Encryption algorithm: performs encryption
 - Two inputs: a plaintext and a secret key

Symmetric Cipher Model

- Deciphering or decryption: recovering plaintext from ciphertext
- Decryption algorithm: performs decryption
 - Two inputs: ciphertext and secret key
- Secret key: same key used for encryption and decryption
 - Also referred to as a symmetric key

- Cipher or cryptographic system: a scheme for encryption and decryption
- Cryptography: science of studying ciphers
- Cryptanalysis: science of studying attacks against cryptographic systems
- Cryptology: cryptography + cryptanalysis

Ciphers

- Symmetric cipher: same key used for encryption and decryption
 - Block cipher: encrypts a block of plaintext at a time (typically 64 or 128 bits)
 - Stream cipher: encrypts data one bit or one byte at a time
- Asymmetric cipher: different keys used for encryption and decryption

Symmetric Encryption

- or conventional / secret-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are symmetric
- The only type of ciphers prior to the invention of asymmetric-key ciphers in 1970's
- by far most widely used

Symmetric Encryption

Mathematically:

$$Y = E_K(X)$$
 or $Y = E(K, X)$
 $X = D_K(Y)$ or $X = D(K, Y)$

- X = plaintext
- Y = ciphertext
- K =secret key
- E = encryption algorithm
- D = decryption algorithm
- Both E and D are known to public

Cryptanalysis

- Objective: to recover the plaintext of a ciphertext or, more typically, to recover the secret key.
- Kerkhoff's principle: the adversary knows all details about a cryptosystem except the secret key.
- Two general approaches:
 - brute-force attack
 - non-brute-force attack (cryptanalytic attack)

Brute-Force Attack

- Try every key to decipher the ciphertext.
- On average, need to try half of all possible keys
- Time needed proportional to size of key space

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs	Time required at 10 ⁶ decryptions/µs
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ μs = 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24}$ years	5.4 × 10 ¹⁸ years
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36}$ years	5.9 × 10 ³⁰ years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s = 6.4 \times 10^{12}$ years	6.4 × 10° years

Cryptanalytic Attacks

- May be classified by how much information needed by the attacker:
 - Ciphertext-only attack
 - Known-plaintext attack
 - Chosen-plaintext attack
 - Chosen-ciphertext attack

Ciphertext-only attack

- Given: a ciphertext c
- Q: what is the plaintext m?
- An encryption scheme is completely insecure if it cannot resist ciphertext-only attacks.

Known-plaintext attack

Given: (m₁,c₁), (m₂,c₂), ..., (m_k,c_k) and a new ciphertext c.

- Q: what is the plaintext of c?
- Q: what is the secret key in use?

Chosen-plaintext attack

• Given: (m_1,c_1) , (m_2,c_2) , ..., (m_k,c_k) , where $m_1, m_2, ..., m_k$ are chosen by the adversary; and a new ciphertext c.

 Q: what is the plaintext of c, or what is the secret key?

Example: chosen-plaintext attack

- In 1942, US Navy cryptanalysts discovered that Japan was planning an attack on "AF".
- They believed that "AF" means Midway island.
- Pentagon didn't think so.
- US forces in Midway sent a plain message that their freshwater supplies were low.
- Shortly, US intercepted a Japanese ciphertext saying that "AF" was low on water.
- This proved that "AF" is Midway.

Chosen-ciphertext attack

• Given: (m_1,c_1) , (m_2,c_2) , ..., (m_k,c_k) , where $c_1, c_2, ..., c_k$ are chosen by the adversary; and a new ciphertext c.

 Q: what is the plaintext of c, or what is the secret key?

