Sprawozdanie Metody Numeryczne 2, laboratorium 3

Grzegorz Rozdzialik (D4, grupa lab. 2)

14 listopada 2016

1 Zadanie

Temat 3, zadanie 33:

Obliczanie całek

$$\iint_D f(x,y) \, dx \, dy$$

na obszarze

$$D = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$$

przez podział D na $4n^2$ trójkątów przystających, i zastosowanie na każdym z nich kwadratury rzędu 4-go.

ObszarDzostał przedstawiony na rysunku n
r1,jest to romb o środku $P_0=(0,0)$ i wierzchołkach

$$P_1 = (1,0)$$

$$P_2 = (0,1)$$

$$P_3 = (-1,0)$$

$$P_4 = (0, -1)$$

Rysunek 1: Obszar ${\cal D}$

2 Opis metody

2.1 Podział rombu na $4n^2$ trójkątów

W celu podzielenia obszaru D na $4n^2$ trójkątów użyto podział na 4 ćwiartki D_1,D_2,D_3,D_4 na podstawie osi układu współrzędnych. Podział ten został przedstawiony na rysunku nr 2.

Rysunek 2: Podział D na ćwiartki

Następnie każdą z ćwiartek podzielono na n^2 trójkątów według następującej reguły:

- 1. Każdy bok podzielono na n równych części (punkty podziału nazwijmy węzłami).
- 2. Węzły leżące na dwóch różnych bokach trójkąta i równoodległe od trzeciego z boków łączymy prostymi. Proste te będą wtedy równoległe do jednego z boków.

Przykładowy schemat podziału ćwiartki D_1 z n=3 (D_1 podzielono na 9 trójkątów przystających) został umieszczony na rysunku nr 3.

Rysunek 3: Podział D_1 na 9 (= 3^2) trójkątów

Wszystkie n^2 trójkątów po podziale mają takie samo pole, równe $p=\frac{P}{n^2}$, gdzie $P=|D_1|=|D_2|=|D_3|=|D_4|$.

Na każdym z tych trójkatów obliczamy wartość kwadratury 4-go rzedu:

$$S(f) = \frac{p}{60} \left[27f(P_{012}) + 3\left(f(P_{01}) + f(P_{02}) + f(P_{12})\right) + 8\left(f(P_{0}) + f(P_{1}) + f(P_{2})\right) \right]$$

$$(1)$$

gdzie f jest zadaną funkcją podcałkową, p zdefiniowane jak poprzednio, P_0, P_1, P_2 są wierzchołkami trójkąta po podziale, $P_{i,j} = \frac{P_i + P_j}{2}$ są środkami boków trójkąta, $P_{012} = \frac{P_0 + P_1 + P_2}{3}$ jest środkiem ciężkości trójkąta.

2.2 Wyznaczanie współrzędnych wierzchołków trójkątów po podziale

Aby zastosować kwadraturę (1) należy znać współrzędne wierzchołków. Zauważmy, że trójkąty po podziale można pogrupować w wiersze tak, że w pierwszym wierszu znajduje się jeden trójkąt, a w każdym kolejnym są o 2 więcej. Ostatni wiersz (n-ty) posiada 2n-1 trójkątów.

W i-tym wierszu jest 2i-1 trójkątów. Podział i-tego wiersza wraz z numerami kolejnych trójkątów został pokazany na rysunku nr 4.

Rysunek 4: Podział *i*-tego wiersza

Niech P_0 , P_1 , P_2 będą współrzędnymi wierzchołków trójkąta przed podziałem zdefiniowanym analogicznie jak na rysunku 1. Podział na wiersze rozpoczynamy od P_2 , zatem trójkąt po podziale, którego jednym z wierzchołków będzie P_2 znajdzie się w pierwszym wierszu.

Zdefiniujmy następujące zmienne:

$$h_x = \frac{P_1 - P_0}{n}$$

$$h_y = \frac{P_0 - P_2}{n}$$

Wtedy h_x będzie wektorem, o jaki należy się przesunąć, aby uzyskać współrzędne kolejnej kolumny, natomiast h_y będzie wektorem, o jaki należy się przesunąć, aby uzyskać współrzędne kolejnego wiersza. Zakładam, że każda kolumna oprócz ostatniej w danym wierszu posiada 2 trójkąty.

Zatem jeżeli trójkąt ma nieparzysty indeks, to znajduje się bliżej kolejnego wiersza ("na dole"), a te z indeksem parzystym są bliżej poprzedniego wiersza ("na górze"), jak na rysunku 4.

Aby wyznaczyć współrzędne trójkąta o indeksach (i,j), gdzie $i\in\{1,2,\ldots,n\}$, $j\in\{1,2,\ldots,2i-1\}$, w oparciu o współrzędne wierzchołka P_2 należy rozważyć dwa przypadki:

$\mathbf{I} \ 2 \mid j$

Rysunek 5: Trójkąt po podziale, gdy j - parzyste

Wtedy

$$P_2^{(i,j)} = P_2 + (i-1)h_y + \frac{j-2}{2}h_x$$

$$P_1^{(i,j)} = P_2^{(i,j)} + h_x$$

$$P_0^{(i,j)} = P_1^{(i,j)} + h_y$$

II 2∤j

Rysunek 6: Trójkąt po podziale, gdy j - nieparzyste

Wtedy

$$P_2^{(i,j)} = P_2 + (i-1)h_y + \frac{j-1}{2}h_x$$

$$P_0^{(i,j)} = P_2^{(i,j)} + h_y$$

$$P_1^{(i,j)} = P_0^{(i,j)} + h_x$$

gdzie $P_k^{(i,j)}$ oznacza współrzędne k-tego wierzchołka trójkąta o indeksach (i,j) po podziale (analogicznie do rysunków w podpunktach).

3 Implementacja metody

Metoda zaimplementowana jest na podstawie czterech funkcji oraz jednego skryptu pozwalającego na łatwe jej wykorzystanie i porównanie z funkcją integral2 z MATLABa:

- $[h_x, h_y, P] = compute Division Properties(P_0, P_1, P_2, n)$ Funkcja oblicza własności podziału trójkąta o wierzchołkach P_0, P_1, P_2 na n^2 trójkątów przystających (zgodnie z powyższym opisem metody). Zwraca wektory h_x, h_y oraz pole trójkąta P po podziale.
- $[P_0^{(i,j)}, P_1^{(i,j)}, P_2(i,j)] = computeSingleTriangleCoordinates(P_2, h_x, h_y, i, j)$ Funkcja oblicza współrzędne trójkąta o indeksie (i,j) po podziale na podstawie współrzędnej P_2 trójkąta przed podziałem oraz wektorów h_x, h_j .
- $nodeValues = tabulateIntegrationNodeValues(f, P_2, n, h_x, h_y)$ Funkcja tablicuje wartości w wierzchołkach oraz środkach boków trójkątów w celu późniejszego wielokrotnego wykorzystania. Jest to rozwiązanie bardziej efektywne niż obliczanie tych wartości każdorazowo dla poszczególnych trójkątów. Korzysta z wcześniej obliczonych parametrów h_x , h_y , ilości podziałów n oraz współrzędnej P_2 trójkąta, na którym stosowana jest kwadratura. Zwraca macierz rozmiaru $2n + 1 \times 2n + 1$.

Powiązanie wartości z tej macierzy z współrzędnymi trójkąta zostało zilustrowane na rysunku 7.

Rysunek 7: Indeksy w stablicowanej macierzy dla trójkąta o indeksach $(i,\,j)$

• $S = integrateSingleTriangle(f, P_0, P_1, P_2, P, i, j, nodeValues)$ Funkcja przybliża wartość całki z funkcji podcałkowej f na trójkącie o polu P i wierzchołkach P_0, P_1, P_2 , używając do tego kwadratury (1). Trójkąt znajduje się na j-tej pozycji w i-tym wierszu podziału. Stablicowane wartości funkcji są przekazane w macierzy nodeValues (jest to macierz zwrócona przez funkcję tabulateIntegrationNodeValues).

S = numericalIntegrationTriangle(f, P₀, P₁, P₂, n)
Funkcja przybliża wartość całki z funkcji podcałkowej f na trójkącie o wierzchołkach P₀, P₁, P₂, dzieląc go na n² trójkątów przystających.
Funkcja używa computeDivisionProperties do uzyskania własności podziału (h_x, h_y, P), a następnie wykonuje przybliżenie całki na każdym z trójkątów po podziale używając funkcji computeSingleTriangleCoordinates do uzyskania współrzędnych tego trójkąta, oraz integrateSingleTriangle do uzyskania wartości kwadratury.

• integrateDiamond

Skrypt pozwalający określić funkcję podcałkową f oraz parametr n określający liczbę podziałów. Wykonuje zadanie - przybliża całkę na obszarze D (rysunek 1).

Skrypt dodatkowo podaje informacje o szybkości działania metody oraz porównuje ją z funkcją integral2 dostępną w MATLABie.

Funkcji można używać do przybliżania całki na dowolnym trójkącie, zatem nie musi być to romb podzielony na 4 trójkąty. Wystarczy zmodyfikować skrypt *integrateDiamond*.

Nie jest to jednak tematem zadania, więc postanowiono zostawić to jako zadanie dla ciekawego czytelnika.

4 Poprawność metody

Kwadratura (1) jest rzędu 4, zatem dla wielomianów stopnia co najwyżej 3 metoda daje poprawne wyniki, nawet z n=1. Dla wielomianów stop-

nia wyższego przybliżenie nie jest dokładne, ale dokładność wzrasta wraz ze wzrostem parametru n.

5 Przykłady

W przykładach najpierw została obliczona prawdziwa wartość całki, a następnie porównane w tabeli wyniki metody z zadania oraz funkcji *integral2*.

Przykład 1 Całka z wielomianu stopnia 3.

$$\iint_D f(x,y) dx dy = \iint_D x^3 dx dy = 0$$

n = 1

	metoda z zadania	0 0
przybliżenie całki	0	1.47451×10^{-17}
czas obliczania	$0.76 \mathrm{\ ms}$	4.13 ms

Metoda z zadania jest dokładna (i powinna być, gdyż rząd kwadratury jest równy 4, a funkcja podcałkowa jest wielomianem stopnia 3), a także szybsza.

Przykład 2 Całka z wielomianu stopnia 4.

$$\iint_D f(x,y) \, dx \, dy = \iint_D x^4 \, dx \, dy = \frac{2}{15} \approx 0.133333$$

n = 1

	metoda z zadania	funkcja integral2
przybliżenie całki	0.144444	0.133333
czas obliczania	$0.71 \mathrm{\ ms}$	$4.7~\mathrm{ms}$

W tym przypadku metoda z zadania okazała się gorsza od funkcji dostępnej w MATLABie, zarówno pod względem dokładności, jak i szybkości działania.

 \mathbf{Przyk} ład 3 Zwiększenie parametru n w stosunku do poprzedniego przykładu.

$$\iint_D f(x,y) \, dx \, dy = \iint_D x^4 \, dx \, dy = \frac{2}{15} \approx 0.133333$$

$$n = 10$$

	metoda z zadania	funkcja integral2
przybliżenie całki	0.133334	0.133333
czas obliczania	$12.45 \; \text{ms}$	$6.06~\mathrm{ms}$

Przy zwiększeniu ilości podziałów metoda osiąga lepsza dokładność, jednakże zmniejsza się jej szybkość. W tym przypadku nadal jest gorsza od funkcji *integral2*.

Podobną dokładność osiąga dopiero dla n=17, jednakże wtedy jej czas działania około dziesięciokrotnie większy od MATLABowej alternatywy.

Przykład 4 Funkcja podcałkowa nie będąca wielomianem.

$$\iint_D f(x,y) \, dx \, dy = \iint_D (\sin x + \cos y) \, dx \, dy = 4 - 4\cos 1 \approx 1.83879$$

$$n = 1$$

	metoda z zadania	funkcja integral2
przybliżenie całki	1.8392	1.83879
czas obliczania	1.06 ms	2.9 ms

Po raz kolejny funkcja dostępna w MATLABie jest dokładniejsza, ale przy małej wartości parametru n metoda z zadania jest szybsza.

Dla n=4 metoda z zadania osiąga podobną dokładność.

	metoda z zadania	funkcja integral2
przybliżenie całki	1.83879	1.83879
czas obliczania	2.96 ms	3.13 ms

Przykład 5 Wielomian stopnia 7.

$$\iint_D f(x,y) dx dy = \iint_D (x^7 + x^6 + y^4 + y^3) dx dy = \frac{43}{210} \approx 0.204762$$

$$n = 1$$

	metoda z zadania	funkcja integral2
przybliżenie całki	0.254012	0.204762
czas obliczania	$0.65~\mathrm{ms}$	6.96 ms

W tym przypadku metoda z zadania okazała się być szybsza, ale nie dokładniejsza. Podobną dokładność osiąga dla n=16:

	metoda z zadania	funkcja integral2
przybliżenie całki	0.204762	0.204762
czas obliczania	27.04 ms	$7.05~\mathrm{ms}$

6 Wnioski

- 1. Czas działania wzrasta kwadratowo wraz ze wzrostem parametru n.
- 2. Metoda z zadania osiąga gorsze wyniki od funkcji *integral2* dostępnej w MATLABie. Jest w stanie osiągnąć podobną dokładność, jednak kosztem znacznego zwiększenia się czasu potrzebnego na obliczenia.
- 3. Jeżeli nie zależy nam na dokładności, można użyć metody z zadania z n=1, wtedy jest bardzo prawdopodobnym, że będzie ona szybsza od funkcji integral2.

7 Skrypt do testowania

Skrypt integrate Diamond pozwala na ustalanie funkcji podcałkowej f oraz parametru n określającego ilość podziałów obszaru D. Wyświetla on także

czas przybliżania całki tą metodą oraz porównuje wyniki z funkcją *integral2* dostępną w MATLABie.

Skrypt zgodnie z opisem metody dzieli obszar D na 4 trójkąty przystające, a następnie każdy z nich na n^2 trójkątów przystających i na nich stosuje kwadraturę.

Pokazuje on także jak używać funkcji stworzonych na potrzeby tej metody do przybliżania całki na dowolnym trójkącie.

```
% Parametry:
           % Funkcja podcalkowa
2
           f = @(x, y)(x.^2 + y.^2);
3
           % Liczba okreslajaca ilosc podzialow
           n = 1;
5
6
           % Srodek rombu
           P0 = [0 \ 0];
8
           % Wierzcholki rombu
9
           P1 = [1 \ 0];
10
           P2 = [0 \ 1];
11
           P3 = [-1 \ 0];
           P4 = [0 -1];
13
14
           % Kwadratura dla trojkatow w poszczegolnych
15
              cwiartkach ukladu wspolrzednych
           S1 = numericalIntegrationTriangle(f, P0, P1, P2
16
              , n); % I cwiartka
           S2 = numericalIntegrationTriangle(f, P0, P2, P3
17
              , n); % II cwiartka
           S3 = numericalIntegrationTriangle(f, P0, P3, P4
18
              , n); % III cwiartka
           S4 = numericalIntegrationTriangle(f, P0, P4, P1)
19
              , n); % IV cwiartka
20
           S = S1 + S2 + S3 + S4;
21
```

8 Bibliografia

1. Informacje z wykładu *Metod numerycznych 2* (wydział MiNI PW, dr Iwona Wróbel) (w szczególności wzór na kwadraturę rzędu 4 na trójkącie)