### Logic and Computer Design Fundamentals

# Chapter 2 – Combinational Logic Circuits

Part 1 – Gate Circuits and Boolean Equations

### **Overview**

- Part 1 Gate Circuits and Boolean Equations
  - Binary Logic and Gates
  - Boolean Algebra
  - Standard Forms
- Part 2 Circuit Optimization
  - Two-Level Optimization
  - Map Manipulation
  - Practical Optimization
  - Multi-Level Circuit Optimization
- Part 3 Additional Gates and Circuits
  - Other Gate Types
  - Exclusive-OR Operator and Gates
  - High-Impedance Outputs

### **Binary Logic and Gates**

- Binary variables take on one of two values.
- Logical operators operate on binary values and binary variables.

Basic logical operators are the <u>logic functions</u> AND, OR and NOT.

- Logic gates implement logic functions.
- Boolean Algebra: a useful mathematical system for specifying and transforming logic functions.

We study Boolean algebra as a foundation for designing and analyzing digital systems!

### **Binary Variables**

- Recall that the two binary values have different names:
  - True/False
  - On/Off
  - Yes/No
  - **1/0**
- We use 1 and 0 to denote the two values.
- Variable identifier examples:
  - A, B, y, z, or X<sub>1</sub> (Single Letter)
  - RESET, START\_IT, or ADD, etc

### **Logical Operations**

- The three basic logical operations are:
  - AND
  - OR
  - NOT
- AND is denoted by a dot (·).
- OR is denoted by a plus (+).
- NOT is denoted by an overbar (¯), a single quote mark (') after, or (~) before the variable.

### **Logical Operation Examples**

#### Examples:

- $Y = A \cdot B$  is read "Y is equal to A AND B."
- z = x + y is read "z is equal to x OR y."
- X = A is read "X is equal to NOT A."

#### Note: The statement:

1 + 1 = 2 (read "one plus one equals two")

#### is not the same as

1 + 1 = 1 (read "1 or 1 equals 1").

### **Operator Definitions**

Operations are defined on the values"0" and "1" for each operator:

#### **AND**

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

#### OR

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

#### **NOT**

$$\overline{0} = 1$$

$$\bar{1} = 0$$

### **Truth Tables**

- Truth table a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

| AND                                                              |       |   |  |  |  |
|------------------------------------------------------------------|-------|---|--|--|--|
| $\mathbf{X} \mathbf{Y} \mathbf{Z} = \mathbf{X} \cdot \mathbf{Y}$ |       |   |  |  |  |
| 0                                                                | 0     | 0 |  |  |  |
| 0                                                                | 0 1 0 |   |  |  |  |
| 1                                                                | 0     | 0 |  |  |  |
| 1                                                                | 1     | 1 |  |  |  |

| OR                                                           |   |   |  |  |
|--------------------------------------------------------------|---|---|--|--|
| $\mathbf{X} \mathbf{Y} \mathbf{Z} = \mathbf{X} + \mathbf{Y}$ |   |   |  |  |
| 0                                                            | 0 | 0 |  |  |
| 0                                                            | 1 | 1 |  |  |
| 1                                                            | 0 | 1 |  |  |
| 1                                                            | 1 | 1 |  |  |

| NOT |                    |  |  |  |
|-----|--------------------|--|--|--|
| X   | $Z = \overline{X}$ |  |  |  |
| 0   | 1                  |  |  |  |
| 1 0 |                    |  |  |  |

### **Construction of Truth Table**

- Determine the number of Inputs (n) and the number of outputs (m) according to the design requirement.
- There should be  $2^n$  rows and m output column in the Truth

Table.

| Input | T.       |  |                  | <b>A</b> <sub>1</sub> | ••• | An | Z <sub>1</sub> | ••• | Zm |
|-------|----------|--|------------------|-----------------------|-----|----|----------------|-----|----|
| A B   | ⊢ Output |  |                  | 0                     |     | o  |                |     |    |
| 0 0   | 0 1      |  | 2 <sup>n-1</sup> | 0                     |     | 1  |                |     |    |
| 0 0   | 1 0      |  |                  | 0                     |     | 0  |                |     |    |
| 0 1   | 0 1      |  |                  | 0                     |     | 1  |                |     |    |
| 0 1   | 1 0      |  |                  |                       |     |    |                |     |    |
| 1 0   | 0 0      |  |                  | 1                     |     | 0  |                |     |    |
| 1 0   | 1 1      |  | 2 <sup>n-1</sup> | 1                     |     | 1  |                |     |    |
| 1 1   | 0 0      |  |                  | 1                     |     | o  |                |     |    |
| 1 1   | 1 1      |  |                  | 1                     |     | 1  |                | 2   |    |

### Logic Function Implementation

In 1938, Claude E. Shannon, A Symbolic Analysis of Relay and Switching Circuits.

(He suggested that using relays to implement the logic circuits)

 Switches were opened and closed by magnetic fields produced by energizing coils in *relays*.



### Logic Function Implementation

- Using Switches
  - For inputs:
    - logic 1 is switch closed
    - logic 0 is switch open
  - For outputs:
    - logic 1 is <u>light on</u>
    - logic 0 is <u>light off</u>.
  - NOT uses a switch such
    - that:
      - logic 1 is switch open
      - logic 0 is switch closed

Switches in parallel => OR



**Switches in series => AND** 



**Normally-closed switch => NOT** 



#### **Logic Function Implementation** (Continued)

Example: Logic Using Switches



• Light is on (L = 1) for

$$L(A, B, C, D) = A((BC') + D) = ABC' + AD$$
  
and off (L = 0), otherwise.

### Logic Gates

- In the earliest computers, The magnetic—control switches (*relays*) in turn opened and closed the current paths.
- Later, vacuum tubes that open and close current paths electronically replaced relays.
- Today, transistors are used as electronic switches that open and close current paths.



#### Logic Gate Symbols and waveform Behavior

Logic gates have special symbols and waveforms as

follows: Inputs Output  $XY X+Y \overline{X}$ Y 0 0 (AND) X·Y 0 AND gate  $Z = X \cdot Y$ -Z = X + Y (OR) X+Y OR gate NOT gate or (NOT) X  $Z = \overline{X}$ inverter (b) Timing diagram (a) Graphic symbols

### **Basic Gates in TTL74 Series**



### **Gate Delay**

- In actual physical gates, if one or more input changes causes the output to change, the output change does not occur instantaneously.
- The delay between an input change(s) and the resulting output change is the gate delay denoted by t<sub>G</sub>:



### TTL Logic Series

- 74S Series
- 74LS Series
- 74AS Series
- 74ALS Series
- 74F Series



|                                 |        | Family      |              |              |               |     |
|---------------------------------|--------|-------------|--------------|--------------|---------------|-----|
| Description                     | Symbol | 74 <b>S</b> | 74L <b>S</b> | 74A <b>S</b> | 74AL <b>S</b> | 74F |
| Maximum propagation delay (ns)  |        | 3           | 9            | 1.7          | 4             | 3   |
| Power consumption per gate (mW) |        | 19          | 2            | 8            | 1.2           | 4   |
| Speed-power product (pJ)        |        | 57          | 18           | 13.6         | 4.8           | 12  |
|                                 |        |             |              | 1535830      | 6838          | 200 |

#### Truth Table, Boolean Equation and Logic Diagram

|      | 4 1 |       | 1  |   |
|------|-----|-------|----|---|
| Tru  | Th  | ี   Я | bl | P |
| II U |     |       |    |   |

| Truth Table |                                                                     |  |  |  |  |  |
|-------------|---------------------------------------------------------------------|--|--|--|--|--|
| XYZ         | $\mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \times \mathbf{Z}$ |  |  |  |  |  |
| 000         | 0                                                                   |  |  |  |  |  |
| 001         | 1                                                                   |  |  |  |  |  |
| 010         | 0                                                                   |  |  |  |  |  |
| 011         | 0                                                                   |  |  |  |  |  |
| 100         | 1                                                                   |  |  |  |  |  |
| 101         | 1                                                                   |  |  |  |  |  |
| 110         | 1                                                                   |  |  |  |  |  |
| 111         | 1                                                                   |  |  |  |  |  |

#### **Boolean Equation**

$$F = X + \overline{Y} Z$$

#### Logic Diagram



- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; Boolean equations and logic diagrams are not. This gives flexibility in implementing functions.

### **Boolean Algebra**

In 1854, George Boole, An Investigation of the Laws of Thought, on which are Founded the Mathematical **Theories of Logic and Probabilities** (Idea=>0,1 symbols) Boolean Algebra is an algebraic structure defined on a set of at least two elements, together with three binary operators (denoted +, · and -) For example, AB(C+D)+E,  $F = \overline{AB}+C\overline{D}$ are Boolean Expressions. F=AB(C+D)+E is called **Boolean Equation** 

### **Boolean Operator Precedence**

- The order of evaluation in a Boolean Expression is:
  - 1. Parentheses (bracket)
  - 2. NOT
  - 3. AND
  - 4. **OR**
- NOTE: Parentheses appear around OR expressions
- Example: F = A(B + C)(C + D)

20

### **Examples of Boolean Expression**

- Determine the values of A, B, and C that make the sum term of the expression  $\overline{A} + B + \overline{C} = 0$ ?
- Each literal must = 0; therefore A = 1, B = 0 and C = 1.
- What are the values of the A, B and C if the product term of  $A.\overline{B}.\overline{C} = 1$ ?
- Each literal must = 1; therefore A = 1, B = 0 and C = 0.

### **Basic Identities in Boolean Algebra**

1. 
$$A + 0 = A$$

2. 
$$A + 1 = 1$$

3. 
$$A + A = A$$

4. 
$$A + \bar{A} = 1$$

9. 
$$\overline{\overline{A}} = A$$

5. 
$$A \cdot 1 = A$$

6. 
$$A \cdot 0 = 0$$

7. 
$$A \cdot A = A$$

8. 
$$A \cdot \bar{A} = 0$$

### The Dual of an algebraic expression

- The <u>Dual</u> of an algebraic expression is obtained by interchanging + and · and interchanging 0's and 1's.
- The identities appear in dual pairs.

1. 
$$A + 0 = A$$
 5.  $A \cdot 1 = A$  =>self-dual  
2.  $A + 1 = 1$  6.  $A \cdot 0 = 0$ 

3. 
$$A + A = A$$
 7.  $A \cdot A = A$  =>self-dual 4.  $A + \bar{A} = 1$  8.  $A \cdot \bar{A} = 0$ 

• If the dual expression = the original expression, then we call them *self-dual*.

### **Examples of the Dual Expression**

Usually, the dual of an expression does not equal the expression itself.

Example 1: 
$$\mathbf{F} = (\mathbf{A} + \overline{\mathbf{C}}) \cdot \mathbf{B} + \mathbf{0}$$
  
dual  $\mathbf{F} = (\mathbf{A} \cdot \overline{\mathbf{C}} + \mathbf{B}) \cdot \mathbf{1} = \mathbf{A} \cdot \overline{\mathbf{C}} + \mathbf{B}$ 

Example 2: 
$$G = X \cdot Y + (\overline{W + Z})$$
  
dual  $G = ((X + Y) \cdot (\overline{W} \cdot \overline{Z}))$ 

Example 3: 
$$H = A \cdot B + A \cdot C + B \cdot C$$
  
dual  $H = (A + B)(A + C)(B + C)$ .

### Useful Theorem in Boolean Algebra

#### 1. Absorption Theorem

$$A + AB = A$$
,  $A + \overline{AB} = A + B$ 

2. Commutative Law

$$A+B=B+A$$
,  $AB=BA$ 

3. Associative Law

$$A + (B + C) = (A + B) + C, \quad A(BC) = (AB)C$$

4. Distributive Law

$$A(B+C) = AB+AC, A+BC=(A+B)(A+C)$$

5. DeMorgan Law

$$\overline{AB} = \overline{A} + \overline{B}$$
  $\overline{A+B} = \overline{AB}$ 

### Application of DeMorgan Law

$$\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$$

$$\overline{\overline{ABC}} = A + B + C$$

$$\overline{\overline{A} + B\overline{C}} + D(\overline{E} + \overline{F})$$

$$= (A + B\overline{C})D(\overline{E} + \overline{F})$$

$$= (A + B\overline{C})(\overline{D} + E + \overline{F})$$

26

### **Boolean Algebraic Proof**

- There are two ways to do the Proof for Boolean Identity:
- 1. Use Truth Table, draw out the truth tables for expressions at left and right side.
  - If all terms of both truth tables are equal, then the expressions are identical.
- 2. Use Algebraic Manipulation, that is to use the identities and theorems of Boolean algebra to make two sides equal.

### **Expression to Truth Table**

F1 = 
$$xy\overline{z}$$
  
F2 =  $x + \overline{y}z$   
F3 =  $\overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}$   
F4 =  $x\overline{y} + \overline{x}z$ 



28

### **Proof Example of Using Truth Table**

1. Demonstrate by means of truth table the validity of the identity:  $A + \overline{AB} = A + B$ 

#### Proof:

Write the truth tables for two sides of the Expression.

| A | В | $A + \overline{A}B$ | A + B |
|---|---|---------------------|-------|
| 0 | 0 | 0                   | 0     |
| 0 | 1 | 1                   | 1     |
| 1 | 0 | 1                   | 1     |
| 1 | 1 | 1                   | 1     |

### **Proof Example of Using Truth Table**

2. Demonstrate by means of truth table the validity of the identity:  $A + B + C = \overline{ABC}$ 

**Proof:** Write the truth tables for two sides of the Expression.

| $\boldsymbol{A}$ | В | <i>C</i> | A+B+C | $\overline{ABC}$ |
|------------------|---|----------|-------|------------------|
| 0                | 0 | 0        | 1     | 1                |
| 0                | 0 | 1        | 0     | 0                |
| 0                | 1 | 0        | 0     | 0                |
| 0                | 1 | 1        | 0     | 0                |
| 1                | 0 | 0        | 0     | 0                |
| 1                | 0 | 1        | 0     | 0                |
| 1                | 1 | 0        | 0     | 0                |
| 1                | 1 | 1        | 0     | 0                |

#### **Proof Example of Using Algebraic Manipulation**

1. Prove the identity of the Boolean equations, using algebraic manipulation:  $A+A\cdot B=A$ 

#### **Proof:**

$$L = A \cdot 1 + A \cdot B$$

$$= A \cdot (1 + B)$$

$$= A \cdot 1$$

$$= A \cdot 1$$

$$= A$$

$$= A$$

$$= A$$

$$= R$$

$$(X = X \cdot 1)$$

$$(X \cdot Y + X \cdot Z = X \cdot (Y + Z))$$

$$(1 + X = 1)$$

$$(X \cdot 1 = X)$$

#### **Proof Example of Using Algebraic Manipulation**

## 2. Prove the identity of the Boolean equations, using algebraic manipulation:

$$(A+B)(A+C) = A+BC$$

#### **Proof:**

$$\mathbf{L} = AA + AC + AB + BC$$

$$= A + AC + AB + BC$$

$$= A(1 + C + B) + BC$$

$$= A \cdot 1 + BC$$

$$= A + BC$$

$$= \mathbf{R}$$

(Distributive Law)

$$(X \cdot X=1)$$

(Distributive Law)

$$(X+1=1)$$

$$(X \cdot 1 = X)$$

32

#### **Proof Example of Using Algebraic Manipulation**

# 3. Prove the identity of the Boolean equations, using algebraic manipulation:

$$(\overline{AB}(C + BD) + \overline{AB})C = \overline{BC}$$
**Proof:** 
$$(A\overline{B}(C + BD) + \overline{AB})C$$

$$= (A\overline{B}C + \overline{AB})C$$

$$= (AC + \overline{A})\overline{B}C$$

$$= (\overline{A} + C)\overline{B}C$$

$$= \overline{AB}C + C\overline{B}C$$

$$= \overline{B}C(\overline{A} + 1)$$

$$= \overline{B}C$$

### Exercise 1

1. Demonstrate by means of truth tables the validity of the following identities:

(a) 
$$\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$$
 (b)  $X + YZ = (X + Y)(X + Z)$ 

2. Prove the identity of each of the following Boolean equations, using algebraic manipulation:

(a) 
$$\overline{XY} + \overline{XY} + XY = \overline{X} + Y$$
 (b)  $\overline{AB} + \overline{BC} + AB + \overline{BC} = 1$ 

3. Given that AB = 0 and A+B = 1, use algebraic manipulation to prove that :  $(A + C)(\overline{A} + B) = BC$ 

Do it manually and fill the answers in

EIE130\_Chapter2Part1\_Exercise1 via 電子作業 on examcoo.com

### Assignment 2

2-1, 2-2, 2-4

Due date:

D1:Next Wednesday

D2:Next Friday

During the class

### Assignment 2

- 2-1. Demonstrate by means of truth tables the validity of the following identities:
  - (a)  $\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$  (b) X + YZ = (X + Y)(X + Z)
  - (c)  $\overline{X}Y + \overline{Y}Z + X\overline{Z} = X\overline{Y} + Y\overline{Z} + \overline{X}Z$
- 2-2. Prove the identity of each of the following Boolean equations, using algebraic manipulation:
  - (a)  $\overline{X} \cdot \overline{Y} + \overline{X}Y + XY = \overline{X} + Y$  (b)  $\overline{A}B + \overline{B} \cdot \overline{C} + AB + \overline{B}C = 1$
  - (c)  $Y + \overline{X}Z + X\overline{Y} = X + Y + Z(d)$   $\overline{X} \cdot \overline{Y} + \overline{Y}Z + XZ + XY + Y\overline{Z} = \overline{X} \cdot \overline{Y} + XZ + Y\overline{Z}$
- 2-4 Given that AB = 0 and A+B = 1, use algebraic manipulation to prove that  $(A+C)(\overline{A}+B)(B+C) = BC$

Do it manually and fill the answers in EIE130\_Chapter2Part1\_Assignment2 via 斑級考試 on examcoo.com

## **Expression Simplification**

- The reasons for Expression Simplification:
- 1. Reduce the Judgement and Program Switching if using the software to implement the logic.
- 2. Reduce the number of Gates and Wiring when using the hardware to implement the logic
- Methods of Simplification
- 1. Using the Identities and Theorem in Boolean Algebra
- 2. Using the K-map

In this section, we only use the first method.

## **Expression Simplification**

 $\blacksquare$  AB+A(B+C)+B(B+C)=B+AC



### **Example of Expression Simplification**

1. Simplify the Boolean expression to the expression containing a minimum number of <u>literals</u> (letter or variable)

$$AB + \overline{A}CD + \overline{A}BD + \overline{A}C\overline{D} + ABCD$$

$$= AB + ABCD + \overline{A}CD + \overline{A}CD + \overline{A}BD$$

$$= AB + AB(CD) + \overline{A}C(D + \overline{D}) + \overline{A}BD$$

$$= AB + \overline{A}C + \overline{A}BD = B(A + \overline{A}D) + \overline{A}C$$

$$= B(A + D) + \overline{A}C$$
5 literals

### **Example of Expression Simplification**

2. Simplify the Boolean expression to the expression containing a minimum number of literals

$$AB+A(B+C)+B(B+C)$$

$$=AB+AB+AC+BB+BC$$

$$=AB+AC+B+BC$$

$$=B(A+1+C)+AC$$

$$=B+AC$$

3 literals

# **Complementing Functions**

Use DeMorgan's Theorem to complement a function:

$$\overline{AB} = \overline{A} + \overline{B}$$

$$\overline{A+B} = \overline{AB}$$

- 1. Interchange AND and OR operators
- 2. Complement each constant value and literal

### **Example of Complementing Functions**

# Example 1: Complement $F = \overline{xyz} + x\overline{yz}$ $\overline{F} = (x + \overline{y} + z)(\overline{x} + y + z)$

**Example 2:** Complement 
$$G = (\overline{a} + bc)\overline{d} + e$$

$$\overline{G} = (\overline{a} + bc)\overline{d} + e$$

$$=\overline{(a+bc)\overline{d}}\cdot\overline{e}$$

$$=(a+bc+d)\cdot e$$

$$=(a\cdot \overline{bc}+d)\cdot \overline{e}$$

$$=(a\cdot(\overline{b}+\overline{c})+\overline{d})\cdot\overline{e}$$

By KinTak U

### Exercise 2

- 1. Simplify the following Boolean expressions to expressions containing a minimum number of literals:
  - (a)  $\overline{AC} + \overline{ABC} + \overline{BC}$  (b)  $(\overline{A+B+C}) \cdot \overline{ABC}$
- 2. Using DeMorgan's theorem, express the function

$$F = ABC + AC + AB$$

with only OR and complement operation

Do it manually and fill the answers in

EIE130\_Chapter2Part1\_Exercise2 via 電子作業 on examcoo.com

### Overview - Canonical Forms

- What are Canonical Forms?
- Minterms and Maxterms
- Index Representation of Minterms and Maxterms
- Sum-of-Minterm (SOM) Representations
- Product-of-Maxterm (POM) Representations
- Representation of Complements of Functions
- Conversions between Representations

#### **Canonical Forms**

- It is useful to specify Boolean functions in a form that:
  - Allows comparison for equality.
  - Has a correspondence to the truth tables
- Canonical Forms in common usage:
  - Sum of Minterms (SOM), normally use.
  - Product of Maxterms (POM)

#### **Minterms**

- Minterms are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g.,  $\overline{x}$ ), there are  $2^n$  minterms for n variables.
- **Example:** Two variables (X and Y) produce  $2 \times 2 = 4$  combinations:
  - **XY** (both normal)
  - **X Y** (**X** normal, **Y** complemented)
  - X Y (X complemented, Y normal)
  - **X Y** (both complemented)
- Thus there are four minterms of two variables.

#### **Maxterms**

- Maxterms are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g.,  $\overline{x}$ ), there are  $2^n$  maxterms for n variables.
- **Example:** Two variables (X and Y) produce  $2 \times 2 = 4$  combinations:

```
X + Y (both normal)
```

$$x + \overline{y}$$
 (x normal, y complemented)

$$\overline{x}$$
 +  $y$  (x complemented, y normal)

$$\overline{\mathbf{X}}$$
 +  $\overline{\mathbf{Y}}$  (both complemented)

#### **Maxterms and Minterms**

Examples: Two variable minterms and maxterms.

| Index | Minterm                                      | Maxterm                                         |
|-------|----------------------------------------------|-------------------------------------------------|
| 0     | $\overline{\mathbf{x}}\overline{\mathbf{y}}$ | x + y                                           |
| 1     | $\overline{\mathbf{x}} \mathbf{y}$           | $\mathbf{x} + \overline{\mathbf{y}}$            |
| 2     | хŢ                                           | $\overline{\mathbf{x}} + \mathbf{y}$            |
| 3     | ху                                           | $\overline{\mathbf{x}} + \overline{\mathbf{y}}$ |

The index above is important for describing which variables in the terms are true and which are complemented.

### **Standard Order**

- All variables will be present in a minterm or maxterm and will be listed in the <u>same order</u> (usually alphabetically)
- Example: For variables a, b, c:
  - Maxterms:  $(a + b + \bar{c})$ , (a + b + c)
  - Terms: (b + a + c), a c
     b, and (c + b + a) are
     NOT in standard order.
  - Minterms: abc, a b c, ab c
  - Terms:  $(\bar{a} + c)$ ,  $\bar{b}$  c, and  $(a + \bar{b})$  do not contain all variables

## **Purpose of the Index**

The <u>index</u> for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.

#### For Minterms:

- "1" means the variable is "Not Complemented" and
- "0" means the variable is "Complemented".

#### For Maxterms:

- "0" means the variable is "Not Complemented" and
- "1" means the variable is "Complemented".

## Index Example in Three Variables

#### Example for three variables:

- Assume the variables are called X, Y, and Z.
- The standard order is X, then Y, then Z.
- The Index 0 (base 10) = 000 (base 2) for three variables). All three variables are complemented for minterm 0 ( $\overline{X}$ ,  $\overline{Y}$ ,  $\overline{Z}$ ) and no variables are complemented for Maxterm 0 (X, Y,Z).
  - Minterm 0, called  $m_0$  is XYZ.
  - Maxterm 0, called  $M_0$  is (X + Y + Z).
  - Minterm 6 ? =>  $m_6 = m_{110} => (XYZ)$
  - Maxterm 6? =>  $M_6 = M_{110} => (X + Y + Z)$

# Index Examples in Four Variables

| Index Dinary Minician Maxician | <b>Index</b> | Binary | Minterm | Maxterm |
|--------------------------------|--------------|--------|---------|---------|
|--------------------------------|--------------|--------|---------|---------|

| i         | <b>Pattern</b> | $\mathbf{m_i}$ | $\mathbf{M_{i}}$                                            |
|-----------|----------------|----------------|-------------------------------------------------------------|
| 0         | 0000           | abcd           | a+b+c+d                                                     |
| 1         | 0001           | abcd           | ?                                                           |
| 3         | 0011           | ?              | $a+b+\overline{c}+\overline{d}$                             |
| 5         | 0101           | abcd           | $a+\overline{b}+c+\overline{d}$                             |
| 7         | 0111           | ?              | $a+\overline{b}+\overline{c}+\overline{d}$                  |
| <b>10</b> | 1010           | abcd           | $\bar{a} + b + \bar{c} + d$                                 |
| 13        | 1101           | abēd           | ?                                                           |
| <b>15</b> | 1111           | abcd           | $\overline{a} + \overline{b} + \overline{c} + \overline{d}$ |

## Minterm and Maxterm Relationship

• Review: DeMorgan's Theorem xy = x + y and  $x + y = x \cdot y$ 

• Two-variable example (x,y) :

$$M_2 = x + y$$
 and  $m_2 = x \cdot y$   
 $m_2 = x \cdot y = x + y = M_2$   
Thus M<sub>2</sub> is the complement of m<sub>2</sub> and vice-versa.

- Since DeMorgan's Theorem holds for n variables, the above holds for terms of n variables
- giving:

$$\mathbf{M}_{i} = \mathbf{m}_{i} \quad \mathbf{and} \quad \mathbf{m}_{i} = \mathbf{M}_{i}$$

Thus  $M_i$  is the complement of  $m_i$ .

### **Function Tables for Both**

Minterms of

#### 2 variables

| ху  | $\mathbf{m_0}$ | $\mathbf{m}_1$ | $m_2$ | $m_3$ |  |  |
|-----|----------------|----------------|-------|-------|--|--|
| 0 0 | 1              | 0              | 0     | 0     |  |  |
| 01  | 0              | 1              | 1 0   |       |  |  |
| 10  | 0              | 0              | 1     | 0     |  |  |
| 11  | 0              | 0              | 0     | 1     |  |  |

#### **Maxterms of**

#### 2 variables

| хy  | $\mathbf{M_0}$ | $\mathbf{M}_1$ | $M_2$ | $M_3$ |  |  |
|-----|----------------|----------------|-------|-------|--|--|
| 0 0 | 0              | 1              | 1 1   |       |  |  |
| 0 1 | 1              | 0              | 1     | 1     |  |  |
| 10  | 1              | 1              | 0     | 1     |  |  |
| 11  | 1              | 1              | 1     | 0     |  |  |

**Complemented** 

- **Each minterm has one and only one 1** present in the 2<sup>n</sup> terms (a minimum of 1s). All other entries are 0.
- **Each** maxterm has one and only one 0 present in the 2<sup>n</sup> terms All other entries are 1 (a maximum of 1s).

### All functions formed by two variables

| X | y | F0 | F1 | <b>F2</b> | F3 | F4 | F5 | <b>F6</b> | <b>F7</b> | F8 | <b>F9</b> | F10 | F11 | F12 | F13 | F14 | F15 |
|---|---|----|----|-----------|----|----|----|-----------|-----------|----|-----------|-----|-----|-----|-----|-----|-----|
| 0 | 0 | 0  | 1  | 0         | 1  | 0  | 1  | 0         | 1         | 0  | 1         | 0   | 1   | 0   | 1   | 0   | 1   |
| 0 | 1 | 0  | 0  | 1         | 1  | 0  | 0  | 1         | 1         | 0  | 0         | 1   | 1   | 0   | 0   | 1   | 1   |
| 1 | 0 | 0  | 0  | 0         | 0  | 1  | 1  | 1         | 1         | 0  | 0         | 0   | 0   | 1   | 1   | 1   | 1   |
| 1 | 1 | 0  | 0  | 0         | 0  | 0  | 0  | 0         | 0         | 1  | 1         | 1   | 1   | 1   | 1   | 1   | 1   |

$$F0=0$$

$$F1=m0=M1xM2xM3$$

$$F2=m1=M0xM2xM3$$

$$F3=m0+m1=M2xM3$$

$$F4=m2=M0xM1xM3$$

• • • • • •

$$F15=1$$

#### **Observations**

#### According to the function tables, we find that

- We can implement any function by "ORing" the minterms corresponding to "1" entries in the function table. These are called the minterms of the function.
- We can implement any function by "ANDing" the maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function.
- This gives us two <u>canonical forms</u>:
  - Sum of Minterms (SOM)
  - Product of Maxterms (POM)

for stating any Boolean function.

# **Minterm Function Example**

Given the truth table for  $F_1$  below

**EIE130 Digital Circuits** 

We can prove that  $F_1 = m_1 + m_4 + m_7$  by substituting all the 0 and 1 in it as in the right table!

| хух | $\mathbf{F_1}$                                                          | хуz | index | m1 | + | m4 | + | <b>m7</b> | $= \mathbf{F1}$ |
|-----|-------------------------------------------------------------------------|-----|-------|----|---|----|---|-----------|-----------------|
| 000 | 0                                                                       | 000 | 0     | 0  | + | 0  | + | 0         | = 0             |
| 001 | 1                                                                       | 001 | 1     | 1  | + | 0  | + | 0         | = 1             |
| 010 | $\mathbf{F_1} = \mathbf{m_1} + \mathbf{m_4} + \mathbf{m_7}$             | 010 | 2     | 0  | + | 0  | + | 0         | = 0             |
| 011 | $0 = \overline{x} \overline{y} z + x \overline{y} \overline{z} + x y z$ | 011 | 3     | 0  | + | 0  | + | 0         | = 0             |
| 100 | 1                                                                       | 100 | 4     | 0  | + | 1  | + | 0         | = 1             |
| 101 | 0                                                                       | 101 | 5     | 0  | + | 0  | + | 0         | = 0             |
| 110 | 0                                                                       | 110 | 6     | 0  | + | 0  | + | 0         | = 0             |
| 111 | 1                                                                       | 111 | 7     | 0  | + | 0  | + | 1         | = 1             |

By Kin Tak U

Chapter 2 - Part 1

## Minterm Function Example

Find F(A, B, C, D, E) =  $m_2 + m_9 + m_{17} + m_{23}$ Solution:

$$F(A, B, C, D, E) =$$

$$\overline{ABCDE} + \overline{ABCDE} + \overline{ABCDE} + \overline{ABCDE}$$

## **Maxterm Function Example**

#### Given the truth table for $\mathbf{F}_1$ below

We can prove that  $F_1 = M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$ 

by substituting all the 0 and 1 in it as in the right table!

| x y z | $\mathbf{F_1}$ $\mathbf{x} \mathbf{y} \mathbf{z}$                                                                                 | i | $\mathbf{M0} \cdot \mathbf{M2} \cdot \mathbf{M3} \cdot \mathbf{M5} \cdot \mathbf{M6} = \mathbf{F1}$ |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------|
| 000   | 0 0 0                                                                                                                             | 0 | $0 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$                                                             |
| 001   | 001                                                                                                                               | 1 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                              |
| 010   | $0 \; \mathbf{F}_1 = \mathbf{M}_0 \cdot \mathbf{M}_2 \cdot \mathbf{M}_3 \cdot \mathbf{M}_5 \cdot \mathbf{M}_6 \qquad 0 \; 1 \; 0$ | 2 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                |
| 011   | $0 = (x+y+z) \cdot (x+\bar{y}+z) \cdot (x+\bar{y}+\bar{z}) \cdot (x+\bar{y}+\bar{z}) \cdot 2 \cdot 0 \cdot 1 \cdot 1$             | 3 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                |
| 100   | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                            | 4 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                              |
| 101   | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                            | 5 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                |
| 110   | 110                                                                                                                               | 6 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                |
| 111   | 111                                                                                                                               | 7 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                              |

# **Maxterm Function Example**

 $\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}) = \mathbf{M}_3 \times \mathbf{M}_8 \times \mathbf{M}_{11} \times \mathbf{M}_{14}$ 

#### **Solution:**

$$F(A, B,C,D) =$$

$$(A+B+\overline{C}+\overline{D})\cdot(\overline{A}+B+C+D)\cdot(\overline{A}+B+\overline{C}+\overline{D})\cdot(\overline{A}+\overline{B}+\overline{C}+D)$$

### Canonical Sum of Minterms

- Any Boolean function can be expressed as a Sum of Minterms (SOM).
- To change an expression to Canonical Sum of Minterms, we can expand it by "ANDing" any term missing a variable v with a term  $(v + \overline{v})$ .
- Example: Expand  $f = x + \overline{x} \overline{y}$  as a sum of minterms.

First expand terms:  $f = x(y + \overline{y}) + \overline{x} \overline{y}$ 

Then distribute terms:  $f = xy + x\overline{y} + \overline{x} \overline{y}$ 

Express as sum of minterms:  $f = m_3 + m_2 + m_0$ 

### **Canonical Product of Maxterms**

- Any Boolean Function can be expressed as a Product of Maxterms (POM).
- To change an expression to Canonical Sum of Maxterms, we can expand it by "ORing" terms missing variable v with a term (v ×v) and then applying the distributive law again.
- Example: Convert to product of maxterms:

$$f(x,y,z) = x + \overline{x} \overline{y}$$

Apply the distributive law:

$$x + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \times (x + \overline{y}) = x + \overline{y}$$
  
Add missing variable z:

$$x + \overline{y} + z \times \overline{z} = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$$
  
Express as POM:  $f = M_2 \cdot M_3$ 

## **Shorthand SOM & POM Form**

- To simplify the writing of the SOM and POM, we can use the Shorthand Form of them.
- Shorthand SOM Form

$$F(X_1,...,X_n) = \sum_{m} (a_{1,}...,a_{n})$$

If  $F = m_1 + m_4 + m_5 + m_6 + m_7$ 

Then 
$$F(A,B,C) = \Sigma_m(1,4,5,6,7)$$

Shorthand POM Form

$$F(X_1,...,X_n) = \prod_M (a_1,...,a_n)$$
  
If  $F = M_2M_3M_5M_7$ 

Then 
$$F(x, y, z) = \Pi_M(2,3,5,7)$$

# **Function Complements**

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.
- Alternatively, the complement of a function expressed by a Sum of Minterms form is simply the Product of Maxterms with the same indices.
- Example: Given  $F(x, y, z) = \Sigma_m(1, 3, 5, 7)$   $\overline{F}(x, y, z) = \Sigma_m(0, 2, 4, 6)$  $\overline{F}(x, y, z) = \Pi_M(1, 3, 5, 7)$

### **Conversion Between Forms**

- To convert between sum-of-minterms and product-of-maxterms form (or vice-versa) we follow these steps:
  - Find the function complement by swapping terms in the list with terms not in the list.
  - Change from products to sums, or vice versa.
- Example: Given F as before:  $F(x, y, z) = \Sigma_m(1, 3, 5, 7)$
- Form the Complement:  $\overline{F}(x,y,z) = \Sigma_m(0,2,4,6)$
- Then use the other form with the same indices this forms the complement again, giving the other form of the original function:  $F(x,y,z) = \prod_{M}(0,2,4,6)$

#### **Standard Forms**

- Standard Sum-of-Products (SOP) form: equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form:
   equations are written as an AND of OR terms
- Examples:
  - SOP:  $ABC + \overline{A}\overline{B}C + B$
  - POS:  $(A+B)\cdot (A+\overline{B}+\overline{C})\cdot C$
- These "mixed" forms are neither SOP nor POS
  - $\bullet (A B + C) (A + C)$
  - $\bullet$  ABC+AC(A+B)

# Standard Sum-of-Products (SOP)

- A sum of minterms form for *n* variables can be written down directly from a truth table.
  - Implementation of this form is a two-level network of gates such that:
  - The first level consists of *n*-input AND gates, and
  - The second level is a single OR gate (with fewer than  $2^n$  inputs).
- This form often can be simplified so that the corresponding circuit is simpler.

## Truth Table to Standard SOP(SOM)

Truth Table  $\rightarrow$  Standard SOP(SOM)



#### AND/OR Two-level Implementation of SOP Expression

The two level implementations for F are shown below – it is quite apparent which is simpler!



69

### Exercise 3

- 1. Expand  $\mathbf{F} = \mathbf{A} + \overline{\mathbf{B}} \mathbf{C}$  as a Sum of Minterms
- 2. Expand  $f(A, B, C) = A \overline{C} + BC + \overline{A} \overline{B}$  as a Product of Maxterms
- 3. Simplify the expression given by  $F(A,B,C) = \Sigma m(1,4,5,6,7)$

Do it manually and fill the answers in EIE130\_Chapter2Part1\_Exercise3 via 電子作業 on examcoo.com

# Assignment 3

- 2-6 Simplify the following Boolean expressions to expressions containing a minimum number of literals:
  - (a)  $\overline{A} \cdot \overline{C} + \overline{ABC} + \overline{BC}$  (b)  $(\overline{A+B+C}) \cdot \overline{ABC}$  (c)  $AB\overline{C} + AC$  $(d)\overline{A} \cdot \overline{B}D + \overline{A} \cdot \overline{C}D + BD$  (e)  $(\overline{A} + \overline{B})(\overline{A} + \overline{C})(\overline{A}\overline{B}C)$
- 2-8 Using DeMorgan's theorem, express the function  $F = A\overline{B}C + \overline{A} \cdot \overline{C} + AB$ 
  - (a) with only OR and complement operations.
  - (b) with only AND and complement operations.
- 2-9 Find the complement of the following expressions:
  - (b)  $(\overline{VW} + X)Y + \overline{Z}$ (a) AB + AB(c)  $WX(\overline{YZ} + Y\overline{Z}) + \overline{W} \cdot \overline{X}(\overline{Y} + Z)(Y + \overline{Z})$  (d)  $(A + \overline{B} + C)(\overline{A} \cdot \overline{B} + C)(A + \overline{B} \cdot \overline{C})$

# Assignment 3

- 2-11 For the Boolean functions E and F, as given in the following truth table:
- (a) List the minterms and maxterms of each functions.
- (b) List the minterms of E and  $\overline{F}$
- (c) List the minterms of E+F and EF
- (d) Express E and F in sum-of-minterms algebraic form.
- (e) Simplify E and F to expressions with a minimum of literals.

Due date:

D1:Next Wednesday D2:Next Friday
Do it manually and fill the answers in

| X | Y | Z | E | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 1 |

EIE130\_Chapter2Part1\_Assignment3 via 班級考試 on examcoo.com