Classification And Regression Trees (CART) & Random Forest

Richard Alligier, David Gianazza & Pascal Lezaud

ENAC

Plan

- 1 Classification And Regression Trees (CART) [Breiman et al., 1984]
- 2 Bagging [Breiman, 1996]
- 3 Random Forest [Breiman, 2001]

Plan

- 1 Classification And Regression Trees (CART) [Breiman et al., 1984]
- 2 Bagging [Breiman, 1996]
- 3 Random Forest [Breiman, 2001]

A decision tree is a "cascade" of questions. At the bottom end, there is the predicted value.

A decision tree encodes a partition of the input space into regions.

Building a tree minimizing $\sum\limits_{i=1}^N\!\ell(y_i,h(x_i))$ is a highly combinatorial problem

A Greedy Algorithm that Grows the Tree

Computationaly efficient, but do not produce the optimal partitionning

Data: A set of examples $\{(x_i, y_i) | \forall i \in [1, N] \}$

Result: Decision tree

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region, split it: replace the leaf by a node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

end

[36, 24]

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf; while there is a splittable region do Using examples in the region, split it: replace the leaf by a node: $x_2 \le -0.17$ end samples = 60False True $x_1 \le 1.04$ $x_2 \le 1.28$ samples = 29samples = 31True False 2 · False True $[12 \ 12]$ -2 -4

7/38

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,

split it: replace the leaf by a

node;

[20 0]

How the Tree is Built?

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;
end

Considered Conditions

The considered conditions use only one variable

- Numerical variable: $X_i \le t$, where t is a threshold value
- Categorical variable: $X_j = \text{Category}_{j,k}$

How to choose variable j (and threshold t)?

We want to split the region R, we define:

$$R^{(l)}(j,t) = \{ y_i \mid \forall i \in [1;N] / x_i \in R \text{ and } x_{i,j} \le t \}$$

$$R^{(r)}(j,t) = \{ y_i \mid \forall i \in [1;N] / x_i \in R \text{ and } x_{i,j} > t \}$$

We use a function H measuring the "heterogeneity"

Choose j and t minimizing the "heterogeneity" inside the new regions:

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)_{\text{8/38}}$$

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

Choice of H quantifying the "heterogeneity"

- For regression, we use $H(Y) = \min_{c} \frac{1}{|Y|} \sum_{y \in Y} \ell(y, c)$
 - L2-loss: $H(Y) = \frac{1}{|Y|} \sum_{y \in Y} (y \text{mean}(Y))^2$
- For classification, we note $p_k = \frac{1}{|Y|} \sum_{y \in Y} \mathbb{1}(y = k)$
 - Cross-entropy: $H(Y) = -\sum_{k=1}^{K} p_k \log p_k$ Gini impurity: $H(Y) = \sum_{k=1}^{K} p_k (1 p_k)$

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

How to find (j,t) minimizing ${\cal G}$?

$$j, t = \underset{i,t}{\operatorname{argmin}} G(j, t)$$

Generate and test all the possibilities!

- $j \in [1; p]$, with p input features
- $t \in \mathbb{R} \leftarrow \text{hard to enumerate}$

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

How to find (j,t) minimizing G?

$$j, t = \underset{i,t}{\operatorname{argmin}} G(j, t)$$

Generate and test all the possibilities!

- $j \in [1; p],$ with p input features
- $t \in \mathbb{R} \leftarrow \text{hard to enumerate}$

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

How to find (j,t) minimizing G ?

$$j, t = \underset{i,t}{\operatorname{argmin}} G(j, t)$$

Generate and test all the possibilities !

- $j \in [1; p]$, with p input features
- $t \in \mathbb{R} \leftarrow \text{hard to enumerate}$

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

How to find (j,t) minimizing G?

$$j, t = \underset{j,t}{\operatorname{argmin}} G(j, t)$$

Generate and test all the possibilities!

- $j \in [1; p]$, with p input features
- $t \in \mathbb{R} \leftarrow \text{hard to enumerate}$

Choose the Condition in the Node Replacing the Leaf

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

How to find (j,t) minimizing G?

$$j, t = \underset{j, t}{\operatorname{argmin}} G(j, t)$$

Generate and test all the possibilities!

- $j \in [1; p],$ with p input features
- For a fixed j, we sort the values of the feature j: $x_{(1),j} \leq \ldots \leq x_{(|R|),j}$ Then, we only have to test: $t \in \{\frac{x_{(i-1),j} + x_{(i),j}}{2} \mid \forall i \in [2;|R|]\}$

Choose the Condition in the Node Replacing the Leaf

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

How to find (j,t) minimizing G ?

$$j, t = \underset{i,t}{\operatorname{argmin}} G(j, t)$$

Generate and test all the possibilities !

- $j \in [1; p],$ with p input features
- For a fixed j, we sort the values of the feature j: $x_{(1),j} \leq \ldots \leq x_{(|R|),j}$ Then, we only have to test: $t \in \{\frac{x_{(i-1),j} + x_{(i),j}}{2} \mid \forall i \in [2;|R|]\}$

(|R|-1)p possibilities for (j,t)

Which Value is Predicted inside Each Region?

Our data consists of N observations $\{(x_i, y_i) | \forall i \in [1; N] \}$ In region $R^{(\text{new})}$ we predict:

$$c = \underset{c}{\operatorname{argmin}} \sum_{i/x_i \in R^{(\text{new})}} \ell(y_i, c)$$

Classification

misclassification loss: $\ell(y, \hat{y}) = 0$ if $y = \hat{y}$ else 1 $c = \text{Majority}(\{y_i | \forall i \in [1; N] | x_i \in R^{(\text{new})}\})$

Regression

- quadratic loss: $\ell(y, \hat{y}) = (y \hat{y})^2$ $c = \text{Avg}(\{y_i | \forall i \in [1; N]/x_i \in R^{(\text{new})}\})$
- L1-loss: $\ell(y, \hat{y}) = |y \hat{y}|$ $c = \text{Median}(\{y_i | \forall i \in [1; N] / x_i \in R^{(\text{new})}\})$

When a Region is Splittable?

If we consider that a region is splittable till it contains only 1 example then we obtain a very a large tree with a null training error \Rightarrow Setting a splittability criteria is a way to control the model complexity

Strategies to control the complexity of the model

- Set n_{\min} , the minimum number of examples in each leaf $\Rightarrow R$ must contain at least $2n_{\min}$
- Set a threshold mindecrease, split is allowed iff it reduces "heterogeneity" by at least mindecrease
- CART (Classification and Regression Trees): a two steps strategy [Breiman et al., 1984]
 - **1** Grow a large tree T_0
 - 2 Prune T_0 using weakest link pruning

Pruning

Pruning

Pruning

Pruning

Pruning

Pruning

Replace some nodes by leaves

A Lot of Possibilities!

Let us note P(h) the number of trees we can obtain by pruning one full binary tree of height $h\colon$

$$P(h) = P(h-1)^2 + 1$$
 with $P(0) = 0$; $\rightarrow P(10) \simeq 3.8 \times 10^{90}$

Weakest Link Pruning

- \blacksquare Let us note $E(T) = \sum\limits_{m=1}^{|T|} \sum\limits_{y \in R_m} \ell(y, c_m)$
- lacksquare we define the cost complexity criterion with $\alpha \geq 0$,

$$C_{\alpha}(T) = E(T) + \alpha |T|.$$

$$T_{\alpha} = \underset{T \subset T_0}{\operatorname{argmin}} C_{\alpha}(T)$$

 $lue{C}_{lpha}$ expresses a compromise, set by the hyperparameter lpha, between the tree cost E(T) and its complexity |T| (number of leaves)

end

return T

The choice of the node to replace is based on this criteria:

$$g(u) = \frac{E(f_u) - E(T_u)}{|T_u| - 1}$$

Why this criteria:

$$g(u) \le \alpha \Leftrightarrow C_{\alpha}(f_u) \le C_{\alpha}(T_u) \Leftrightarrow C_{\alpha}("T - T_u + f_u") \le C_{\alpha}(T)$$

 $T=T_0$:

True

1.52

samples = 48

False

4.14

samples = 41

1.10

samples = 105

```
\quad \text{while} \ \min_{u \in T} \, g(u) \leq \alpha \, \operatorname{do}
       u_{\min} = \operatorname{argmin} g(u);
                           u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                                      samples = 500
                                                                      g(u) = 330.40
                                                            True
                                                                                          False
                                                                                             x_1 \le 2.31
                                                     x_2 \le 0.96
                                                   samples = 241
                                                                                           samples = 259
                                                    g(u) = 2.71
                                                                                           g(u) = 12.86
                                  True
                                                        False
                                                                                                                       False
                                                                                            True
                                                                                            x_2 \le -4.79
                      samples = 153
                                                   samples = 88
                                                                                           samples = 122
                                                                                                                          samples = 137
                       g(u) = 0.04
                                                   g(u) = 0.18
                                                                                           g(u) = 0.09
                                                                                                                           g(u) = 0.06
```

4.98

samples = 47

39.86

samples = 2

False

35.37

samples = 4

True

34.83

samples = 96

42.18

samples = 120

 $T=T_0$:

True

1.10

samples = 105

4.14

samples = 41

1.52

samples = 48

```
\quad \text{while} \ \min_{u \in T} \, g(u) \leq \alpha \, \operatorname{do}
       u_{\min} = \operatorname{argmin} g(u);
                           u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                                      samples = 500
                                                                      g(u) = 330.40
                                                            True
                                                                                          False
                                                                                             x_1 \le 2.31
                                                     x_2 \le 0.96
                                                   samples = 241
                                                                                           samples = 259
                                                    g(u) = 2.71
                                                                                            g(u) = 12.86
                                  True
                                                        False
                                                                                                                       False
                                                                                             True
                       x_1 \le -3.83
                                                                                            x_2 \le -4.79
                      samples = 153
                                                                                           samples = 122
                                                   samples = 88
                                                                                                                           samples = 137
                       g(u) = 0.04
                                                   g(u) = 0.18
                                                                                            g(u) = 0.09
                                                                                                                            g(u) = 0.06
                             False
```

4.98

samples = 47

39.86

samples = 2

False

35.37

samples = 4

True

34.83

samples = 96

42.18

samples = 120

```
T=T_0:
\quad \text{while} \ \min_{u \in T} \, g(u) \leq \alpha \, \operatorname{do}
       u_{\min} = \operatorname{argmin} g(u);
                           u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                  x_1 \le -0.01
                                                 samples = 500
                                                 g(u) = 330.39
                                             True
                                                                     False
                                         x_2 \le 0.96
                                                                        x_1 \le 2.31
                                       samples = 241
                                                                      samples = 259
                                                                       g(u) = 12.86
                                        g(u) = 2.68
                              True
                                                                                                   False
                                             False
                                        x_1 \le -2.83
                                                                       x_2 \le -4.79
                                                                                                        x_2 \le 1.26
                          1.23
                                       samples = 88
                                                                      samples = 122
                                                                                                       samples = 137
                     samples = 153
                                                                                                       g(\hat{u}) = 0.06
                                        g(u) = 0.18
                                                                       g(u) = 0.09
                                                                  True
                                                                                   False
                                              False
                                                                                                        True
                                                                                                                           False
                        4.14
                                                                                                          34.83
                                           4.98
                                                               39.86
                                                                                     42.18
                                                                                                                                35.37
                   samples = 41
                                       samples = 47
                                                            samples = 2
                                                                                 samples = 120
                                                                                                       samples = 96
                                                                                                                            samples = 41
```

```
T=T_0:
\quad \text{while} \ \min_{u \in T} \, g(u) \leq \alpha \, \operatorname{do}
       u_{\min} = \operatorname{argmin} g(u);
                           u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                  x_1 \le -0.01
                                                 samples = 500
                                                 g(u) = 330.39
                                            True
                                                                     False
                                         x_2 \le 0.96
                                                                        x_1 \le 2.31
                                       samples = 241
                                                                      samples = 259
                                                                       g(u) = 12.86
                                        g(u) = 2.68
                              True
                                                                                                   False
                                             False
                                        x_1 \le -2.83
                                                                       x_2 \le -4.79
                                                                                                        x_2 \le 1.26
                          1.23
                                       samples = 88
                                                                      samples = 122
                                                                                                      samples = 137
                     samples = 153
                                                                                                       g(\hat{u}) = 0.06
                                        g(u) = 0.18
                                                                       g(u) = 0.09
                                                                  True
                                                                                   False
                                              False
                                                                                                        True
                                                                                                                           False
                        4.14
                                                                                                          34.83
                                           4.98
                                                               39.86
                                                                                     42.18
                                                                                                                                35.37
                   samples = 41
                                       samples = 47
                                                            samples = 2
                                                                                 samples = 120
                                                                                                       samples = 96
                                                                                                                            samples = 41
```

```
T=T_0:
\quad \text{while} \ \min_{u \in T} \, g(u) \leq \alpha \, \operatorname{do}
       u_{\min} = \operatorname{argmin} g(u);
                           u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                                      x_1 \le -0.01
                                                                     samples = 500
                                                                     g(u) = 330.37
                                                                 True
                                                                                 False
                                                             x_2 \le 0.96
                                                                                 x_1 \le 2.31
                                                           samples = 241
                                                                               samples = 259
                                                            g(u) = 2.68
                                                                               g(u) = 12.83
                                                   True
                                                                                                False
                                                                 False
                                                                                True
                                                            x_1 \le -2.83
                                                                                x_2 \le -4.79
                                              1.23
                                                                                                     34.99
                                                           samples = 88
                                                                               samples = 122
                                         samples = 153
                                                                                                samples = 137
                                                            g(u) = 0.18
                                                                                g(\hat{u}) = 0.09
                                                 True
                                                                 False
                                                                                True
                                                                                                   False
                                            4.14
                                                               4.98
                                                                                   39.86
                                                                                                        42.18
                                        samples = 41
                                                                                samples = 2
                                                                                                    samples = 120
                                                           samples = 47
```

```
T=T_0:
\quad \text{while} \ \min_{u \in T} \, g(u) \leq \alpha \, \operatorname{do}
       u_{\min} = \operatorname{argmin} g(u);
                           u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                                      x_1 \le -0.01
                                                                     samples = 500
                                                                     g(u) = 330.37
                                                                 True
                                                                                 False
                                                             x_2 \le 0.96
                                                                                 x_1 \le 2.31
                                                           samples = 241
                                                                               samples = 259
                                                            g(u) = 2.68
                                                                               g(u) = 12.83
                                                   True
                                                                                                False
                                                                                True
                                                                 False
                                                            x_1 \le -2.83
                                                                                x_2 \le -4.79
                                              1.23
                                                                                                     34.99
                                                           samples = 88
                                                                               samples = 122
                                         samples = 153
                                                                                                samples = 137
                                                            g(u) = 0.18
                                                                                g(\hat{u}) = 0.09
                                                 True
                                                                 False
                                                                                True
                                                                                                   False
                                            4.14
                                                               4.98
                                                                                   39.86
                                                                                                        42.18
                                        samples = 41
                                                                                samples = 2
                                                                                                    samples = 120
                                                           samples = 47
```

```
T=T_0:
while \min_{u \in T} g(u) \leq \alpha do
      u_{\min} = \operatorname{argmin} g(u);
                        u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                              x_1 \le -0.01
                                                             samples = 500
                                                             g(u) = 330.35
                                                       x_2 \le 0.96
                                                     samples = 241
                                                                    samples = 259
                                                      g(u) = 2.68
                                                                     g(u) = 12.79
                                              True
                                                                                     False
                                                           False
                                                                      True
                                          1.23
                                                                        42.14
                                                                                          34.99
                                                      samples = 88
                                      samples = 153
                                                                    samples = 122
                                                                                      samples = 137
                                                      g(u) = 0.18
                                                  True
                                                                False
                                                 4.14
                                                                  4.98
                                             samples = 41
                                                              samples = 47
```

```
T=T_0:
while \min_{u \in T} g(u) \leq \alpha do
      u_{\min} = \operatorname{argmin} q(u);
                       u \in T
      replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                           g(u) = 330.35
                                                     x_2 \le 0.96
                                                    samples = 241
                                                                  samples = 259
                                                    g(u) = 2.68
                                                                  g(u) = 12.79
                                            True
                                                                                  False
                                                                   True
                                                         False
                                        1.23
                                                                     42.14
                                                                                       34.99
                                                    samples = 88
                                    samples = 153
                                                                  samples = 122
                                                                                   samples = 137
                                                    g(u) = 0.18
                                                True
```

4.14

samples = 41

4.98

samples = 47

$$T_0 \supset T_{\alpha_1} \supset \ldots \supset T_{\alpha_k}$$
, with $0 < \alpha_1 < \ldots < \alpha_k$

Advantages and Disadvantages of Decision Trees

Advantages

- No variable scaling/normalization required
- Can handle numerical and categorical variable without pre-processing
- Can easily manage missing variable
- Relatively undisturbed by outliers (they are isolated in small nodes)
- Embeds a feature selection
- Interpretability: the feature space partition is fully described by a single tree

Advantages and Disadvantages of Decision Trees

Advantages

- No variable scaling/normalization required
- Can handle numerical and categorical variable without pre-processing
- Can easily manage missing variable
- Relatively undisturbed by outliers (they are isolated in small nodes)
- Embeds a feature selection
- Interpretability: the feature space partition is fully described by a single tree

Advantages and Disadvantages of Decision Trees

Advantages

- No variable scaling/normalization required
- Can handle numerical and categorical variable without pre-processing
- Can easily manage missing variable
- Relatively undisturbed by outliers (they are isolated in small nodes)
- Embeds a feature selection
- Interpretability: the feature space partition is fully described by a single tree

Disadvantages

- Lack of smoothness (rectangular regions) with a constant prediction
- There are concepts that are hard to learn because decision trees do not express them easily
- Instability of Trees: a small change in the data can result in a very different series of splits.

Plan

- 1 Classification And Regression Trees (CART) [Breiman et al., 1984]
- 2 Bagging [Breiman, 1996]
- 3 Random Forest [Breiman, 2001]

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Use a training set S drawn from an unknown law (X,Y) and a learning algorithm $\mathcal A$ to build a model $\mathcal A[S]$ that predicts y from x

Remember bias-variance decomposition at a given point x_0 :

$$\mathbb{E}_{S} \left[\mathbb{E}_{Y|X=x_{0}} \left[(Y - \mathcal{A}[S](x_{0}))^{2} \right] \right] = \mathbb{E}_{Y|X=x_{0}} \left[(Y - \mathbb{E}_{S}[\mathcal{A}[S](x_{0})])^{2} \right] + \operatorname{Var}_{S} \left(\mathcal{A}[S](x_{0}) \right)$$

Supervised Machine Learning

Use a training set S drawn from an unknown law (X,Y) and a learning algorithm $\mathcal A$ to build a model $\mathcal A[S]$ that predicts y from x

Remember bias-variance decomposition at a given point x_0 :

$$\mathbb{E}_{S} \left[\mathbb{E}_{Y|X=x_{0}} \left[(Y - \mathcal{A}[S](x_{0}))^{2} \right] \right] = \mathbb{E}_{Y|X=x_{0}} \left[(Y - \mathbb{E}_{S}[\mathcal{A}[S](x_{0})])^{2} \right] + \operatorname{Var}_{S} \left(\mathcal{A}[S](x_{0}) \right)^{2}$$

$$\Rightarrow \mathbb{E}_{S} \left[\mathbb{E}_{Y|X=x_{0}} \left[(Y - \mathcal{A}[S](x_{0}))^{2} \right] \right] \geq \mathbb{E}_{Y|X=x_{0}} \left[(Y - \mathbb{E}_{S}[\mathcal{A}[S](x_{0})])^{2} \right]^{19/38}$$

Bagging (Bootstrap Aggregating)[Breiman, 1996]

Idea

Try to approximate $\mathbb{E}_S[\mathcal{A}[S]]$ by averaging several models trained by \mathcal{A} If y is numeric: $f_S(x) = \frac{1}{B}\sum\limits_{b=1}^{B}\mathcal{A}[S_b](x)$ If y is a class: $f_S(x) = \text{Majority}\left(\{\mathcal{A}[S_1](x),\ldots,\mathcal{A}[S_B](x)\}\right)$

Bagging (Bootstrap Aggregating)[Breiman, 1996]

Idea

Try to approximate $\mathbb{E}_S[\mathcal{A}[S]]$ by averaging several models trained by \mathcal{A} If y is numeric: $f_S(x) = \frac{1}{B}\sum\limits_{b=1}^B \mathcal{A}[S_b](x)$ If y is a class: $f_S(x) = \text{Majority}\left(\{\mathcal{A}[S_1](x), \ldots, \mathcal{A}[S_B](x)\}\right)$

Intuition About the Choice of the Learning Algorithm ${\mathcal A}$

If we succeed then $f_S(x_0) \simeq \mathbb{E}_S[\mathcal{A}[S](x_0)]$ $\Rightarrow \mathbb{E}_{Y|X=x_0}[(Y-f_S(x_0))^2] \simeq \mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[\mathcal{A}[S](x_0)])^2]$ \Rightarrow Better choose a low bias (and high variance) learning algorithm \mathcal{A}

The Ideal Case: We Can Freely Draw From (X,Y) Law

Why it is not a practical solution?

Problem

We want to build a surrogate of the distribution generating Z To do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^{\ast} , we draw equiprobably one index i and z_{i} will be the sample drawn

Properties

Mean of Z^* :

Problem

We want to build a surrogate of the distribution generating Z To do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^{\ast} , we draw equiprobably one index i and z_{i} will be the sample drawn

Mean of
$$Z^*:\mathbb{E}[Z^*]=\sum\limits_{i=1}^n z_i\mathbb{P}(I=i)=\frac{1}{n}\sum\limits_{i=1}^n z_i$$

Problem

We want to build a surrogate of the distribution generating Z To do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^{\ast} , we draw equiprobably one index i and z_{i} will be the sample drawn

Mean of
$$Z^*: \mathbb{E}[Z^*] = \sum_{i=1}^n z_i \mathbb{P}(I=i) = \frac{1}{n} \sum_{i=1}^n z_i \Rightarrow \mathbb{E}[Z^*] \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}[Z]$$

Problem

We want to build a surrogate of the distribution generating Z To do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^{\ast} , we draw equiprobably one index i and z_{i} will be the sample drawn

Mean of
$$Z^*:\mathbb{E}[Z^*]=\sum\limits_{i=1}^n z_i\mathbb{P}(I=i)=\frac{1}{n}\sum\limits_{i=1}^n z_i\Rightarrow \mathbb{E}[Z^*] \xrightarrow[n\to+\infty]{\mathrm{p.s.}} \mathbb{E}[Z]$$
 CDF of $Z^*:$
$$F_{Z^*}(z)=\frac{1}{n}\sum\limits_{i=1}^n \mathbb{1}_{]-\infty;z_i]}(z)$$

Problem

We want to build a surrogate of the distribution generating Z To do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^{\ast} , we draw equiprobably one index i and z_i will be the sample drawn

Properties

Mean of
$$Z^*:\mathbb{E}[Z^*]=\sum\limits_{i=1}^n z_i\mathbb{P}(I=i)=\frac{1}{n}\sum\limits_{i=1}^n z_i\Rightarrow \mathbb{E}[Z^*] \xrightarrow[n\to+\infty]{\mathrm{p.s.}} \mathbb{E}[Z]$$
 CDF of $Z^*:$
$$F_{Z^*}(z)=\frac{1}{n}\sum\limits_{i=1}^n \mathbb{1}_{]-\infty;z_i]}(z)$$

One can show that:

$$\sup_{z} |F_{Z^*}(z) - F_Z(z)| \xrightarrow[n \to +\infty]{\text{p.s.}} 0$$

Problem

We want to build a surrogate of the distribution generating ZTo do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^* , we draw equiprobably one index i and z_i will be the sample drawn

Mean of
$$Z^*:\mathbb{E}[Z^*] = \sum\limits_{i=1}^n z_i \mathbb{P}(I=i) = \frac{1}{n} \sum\limits_{i=1}^n z_i \Rightarrow \mathbb{E}[Z^*] \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}[Z]$$

CDF of $Z^*:$

$$F_{Z^*}(z) = \frac{1}{n} \sum\limits_{i=1}^n \mathbb{1}_{]-\infty;z_i]}(z)$$
One can show that:
$$\sup_{z} |F_{Z^*}(z) - F_{Z}(z)| \xrightarrow[n \to +\infty]{\text{p.s.}} 0$$

Problem

We want to build a surrogate of the distribution generating ZTo do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^* , we draw equiprobably one index i and z_i will be the sample drawn

Mean of
$$Z^*:\mathbb{E}[Z^*] = \sum\limits_{i=1}^n z_i \mathbb{P}(I=i) = \frac{1}{n} \sum\limits_{i=1}^n z_i \Rightarrow \mathbb{E}[Z^*] \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}[Z]$$

CDF of $Z^*:$

$$F_{Z^*}(z) = \frac{1}{n} \sum\limits_{i=1}^n \mathbb{1}_{]-\infty;z_i]}(z)$$
One can show that:
$$\sup_{z} |F_{Z^*}(z) - F_{Z}(z)| \xrightarrow[n \to +\infty]{\text{p.s.}} 0$$

Problem

We want to build a surrogate of the distribution generating ZTo do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^* , we draw equiprobably one index i and z_i will be the sample drawn

Mean of
$$Z^*:\mathbb{E}[Z^*] = \sum\limits_{i=1}^n z_i \mathbb{P}(I=i) = \frac{1}{n} \sum\limits_{i=1}^n z_i \Rightarrow \mathbb{E}[Z^*] \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}[Z]$$

CDF of $Z^*:$

$$F_{Z^*}(z) = \frac{1}{n} \sum\limits_{i=1}^n \mathbb{1}_{]-\infty;z_i]}(z)$$
One can show that:
$$\sup_{z} |F_{Z^*}(z) - F_{Z}(z)| \xrightarrow[n \to +\infty]{\text{p.s.}} 0$$

Bagging (I)

Bootstrap Come to the Rescue!

Draw from S with a uniform probability approximates drawing from (X,Y)

Bagging (II)

Algorithm 1: Bagging

Data: Dataset $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$

Result: A set of models $A[S_b]$

 $BaggedModels = \{\};$

for b = 1 to B do

Draw a bootstrap set S_b of size n from the training data;

Train the model using the bootstrap training set $A[S_b]$;

Add $A[S_b]$ to BaggedModels;

end

return BaggedModels containing $\{A[S_1], \dots, A[S_B]\}$

Prediction Using $\{A[S_1], \dots, A[S_B]\}$

- For regression: $f_S(x) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}[S_B](x)$
- For classification: $f_S(x) = \text{Majority}(\{\mathcal{A}[S_1](x)\})$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

1 Bias term:

$$\mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[\mathcal{A}[S_1](x_0)])^2]$$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Bias term:

$$\mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[\mathcal{A}[S_1](x_0)])^2]$$

- 2 Variance term:
 - Let us assume that $Var_S[A[S_b](x_0)] = \sigma^2$
 - And $\forall i \neq j$, $\operatorname{corr}_S(A[S_i](x_0), A[S_j](x_0)) = \rho$, then:

$$Var_S[f_S(x_0)] = \rho \sigma^2 + \frac{1 - \rho}{B} \sigma^2$$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Bias term:

$$\mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[\mathcal{A}[S_1](x_0)])^2]$$

- 2 Variance term:
 - Let us assume that $Var_S[A[S_b](x_0)] = \sigma^2$
 - And $\forall i \neq j$, $\operatorname{corr}_S(\mathcal{A}[S_i](x_0), \mathcal{A}[S_j](x_0)) = \rho$, then:

$$Var_S[f_S(x_0)] = \rho \sigma^2 + \frac{1 - \rho}{B} \sigma^2$$

If S_1, \ldots, S_B were actual draws from (X, Y), then $\rho = 0$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Bias term:

$$\mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[\mathcal{A}[S_1](x_0)])^2]$$

- 2 Variance term:
 - Let us assume that $Var_S[A[S_b](x_0)] = \sigma^2$
 - And $\forall i \neq j$, $\operatorname{corr}_S(\mathcal{A}[S_i](x_0), \mathcal{A}[S_j](x_0)) = \rho$, then:

$$Var_S[f_S(x_0)] = \rho \sigma^2 + \frac{1 - \rho}{B} \sigma^2$$

If S_1,\ldots,S_B were actual draws from (X,Y), then $\rho=0$ But they are boostrap sets, so is $\rho=0$?

Simulate draws of $(\mathcal{A}[S_i](x_0), \mathcal{A}[S_j](x_0))$, and compute correlation !

With this simulation $\rho \simeq 0.56$

Simulate draws of $(A[S_i](x_0), A[S_j](x_0))$, and compute correlation!

With this simulation $\rho \simeq 0.56$

$$Var_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$$

As B increases, the 2^{nd} term decreases, but the 1^{st} term remains, and hence the correlation of pairs limits the benefits of averaging $_{26/38}$

Conclusion on Bagging

Advantage

- lacksquare No hypothesis on the learning algorithm ${\cal A}$
- lacktriangle Especially useful when ${\cal A}$ has a low bias and large variance

Disadvantage

- Needs to compute several models
- The variance term reduction is limited by the correlation caused by bootstrap

Plan

- 1 Classification And Regression Trees (CART) [Breiman et al., 1984]
- 2 Bagging [Breiman, 1996]
- 3 Random Forest [Breiman, 2001]

Random Forest [Breiman, 2001]

Idea

Use Bagging with $\mathcal{A}=$ "modified CART" to reduce correlation between $\mathcal{A}[S_i](x_0)$ and $\mathcal{A}[S_j](x_0)$.

This correlation reduction is here to further reduce the variance of f_{S}

Tree Growth Modified

```
Data: A set of examples \{(x_i, y_i) | \forall i \in [1, N]\}; m \in [1, \dots, p]
```

Result: Decision tree

initialize a tree as one leaf;

while there is a splittable region do

Choose randomly a set of m variables among the p input variables; Using examples in the region, considering the m variables, split it: replace the leaf by the "best" node;

end

 $m=p \rightarrow$ "vanilla" CART; $m=1 \rightarrow$ random split variable j

Does it Actually Reduce the Correlation Between Trees?

Let us perform simulations on a regression problem with 50 variables, and compute correlation for each m using draws of $(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

■ Variance $\operatorname{Var}_S[f_S(x_0)]$: $\operatorname{Var}_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ with $\rho = \operatorname{corr}_S(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$ and $\sigma^2 = \operatorname{Var}_S[\mathcal{A}_m[S_b](x_0)]$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Variance $\operatorname{Var}_S[f_S(x_0)]$: $\operatorname{Var}_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ with $\rho = \operatorname{corr}_S(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$ and $\sigma^2 = \operatorname{Var}_S[\mathcal{A}_m[S_b](x_0)]$ When $m \searrow \rho \searrow \rho$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Variance $\operatorname{Var}_S[f_S(x_0)]$: $\operatorname{Var}_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ with $\rho = \operatorname{corr}_S(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$ and $\sigma^2 = \operatorname{Var}_S[\mathcal{A}_m[S_b](x_0)]$ When $m \searrow : \rho \searrow_{\sigma} \sigma^2 \leadsto \rho\sigma^2 \searrow_{\sigma} \sigma^2 \bowtie_{\sigma} \rho\sigma^2 \bowtie_{\sigma} \rho\sigma^2 \bowtie_{\sigma} \rho\sigma^2 \bigvee_{\sigma} \sigma^2 \bowtie_{\sigma} \rho\sigma^2 \bigvee_{\sigma} \sigma^2 \bowtie_{\sigma} \rho\sigma^2 \bigvee_{\sigma} \sigma^2 \bowtie_{\sigma} \rho\sigma^2 \bigvee_{\sigma} \sigma^2 \wp_{\sigma} \rho\sigma^2 \bigvee_{\sigma} \sigma^2 \wp_{\sigma} \sigma^2 \wp_{\sigma} \rho\sigma^2 \bigvee_{\sigma} \sigma^2 \wp_{\sigma} \rho\sigma^2 \bigvee_{\sigma}$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Variance $\operatorname{Var}_S[f_S(x_0)]$: $\operatorname{Var}_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ with $\rho = \operatorname{corr}_S(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$ and $\sigma^2 = \operatorname{Var}_S[\mathcal{A}_m[S_b](x_0)]$ When $m \searrow$: $\rho \searrow$, $\sigma^2 \leadsto \Rightarrow \rho\sigma^2 \searrow$

■ Sq. Bias
$$\mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[f_S(x_0)])^2]$$
: $\mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[\mathcal{A}_m[S_b](x_0)])^2]$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Variance $\operatorname{Var}_S[f_S(x_0)]$: $\operatorname{Var}_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ with $\rho = \operatorname{corr}_S(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$ and $\sigma^2 = \operatorname{Var}_S[\mathcal{A}_m[S_b](x_0)]$ When $m \searrow : \rho \searrow, \sigma^2 \leadsto \rho\sigma^2 \searrow$

■ Sq. Bias $\mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[f_S(x_0)])^2]$: $\mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[\mathcal{A}_m[S_b](x_0)])^2]$ When $m \searrow$: Squared Bias \nearrow

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathrm{Var}_{S}[f_{S}(x_{0})]$$

- Variance $\operatorname{Var}_S[f_S(x_0)]$: $\operatorname{Var}_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ with $\rho = \operatorname{corr}_S(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$ and $\sigma^2 = \operatorname{Var}_S[\mathcal{A}_m[S_b](x_0)]$ When $m \searrow : \rho \searrow, \sigma^2 \leadsto \rho\sigma^2 \searrow$
- Sq. Bias $\mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[f_S(x_0)])^2]$: $\mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[\mathcal{A}_m[S_b](x_0)])^2]$ When $m \searrow$: Squared Bias \nearrow

 $$\rm{m}$$ Source: "The Elements of Statistical Learning

Choice for the A_m 's hyper-parameters and B

Choice for the A_m 's hyper-parameters

- The inventors of the algorithm make the following recommendations:
 - For classification, the default value for m is $\lfloor \sqrt{p} \rfloor$, and the minimum number examples in leaf is 1 (cf HTF),
 - For regression, the default value for $m = \lfloor p/3 \rfloor$, and the minimum number examples in leaf is 5 (cf HTF).
- In practice the best values for these parameters will depend on the problem and they should be tuned

Choice of B

- The expected risk $\mathbb{E}_S\left[\mathbb{E}_{Y|X=x_0}[(Y-f_S(x_0))^2]\right]$ decreases as $B\nearrow$
- As B increases, the computational cost increases

Be careful, Random Forest can overfit even with a large B:

- $\bullet f_S(x_0) \xrightarrow[B \to +\infty]{} \mathbb{E}_{S_b|S}[\mathcal{A}_m[S_b](x_0)]$

Out-Of-Bag (OOB) Samples/Error

Out-Of-Bag (OOB) Samples

- lacktriangle We note $S_b^{
 m OOB}=S\setminus S_b$, these examples were not used to train $\mathcal{A}[S_b]$
- lacksquare $S_b^{
 m OOB}$ is called the *Out-Of-Bag (OOB) samples*
- $\blacksquare \ S_b^{\rm OOB}$ contains on average $(1-\frac{1}{n})^n \underset{n \to +\infty}{\longrightarrow} \simeq 37\%$ of the samples of S

Out-Of-Bag Error

The Out-Of-Bag Error is defined as: $OOB_{error} = \frac{1}{N} \sum_{i=1}^{N} \ell\left(y_i, h^{(-i)}(x_i)\right)$

Variable Importance For One Tree

Remember How we Choose the Node Condition

We want to split the region R, we define:

$$R^{(l)}(j,t) = \{ y_i \mid \forall i \in [1;N] \mid x_i \in R \text{ and } x_{i,j} \le t \}$$

$$R^{(r)}(j,t) = \{ y_i \mid \forall i \in [1;N] \mid x_i \in R \text{ and } x_{i,j} > t \}$$

We use a function H measuring the "heterogeneity" (impurity) Choose j and t minimizing the "heterogeneity" inside the new regions:

$$G(R,j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

Variable Importance for One Tree [Breiman et al., 1984]

We can compute the *impurity* decrease: $\Delta H(R,j,t) = H(R) - G(R,j,t)$ For one tree T, we use:

$$VI(j,T) = \sum_{u \in Node(T)/var(u)=j} \frac{|Region(u)|}{N} \Delta H(Region(u), var(u), thresh(u))$$

Variable Importance: Mean Decrease Impurity

Mean Decrease Impurity [Breiman, 2001]

For an ensemble of trees T_1, \ldots, T_b in a Random Forest, we use:

$$VI^{MDI}(j) = \frac{1}{B} \sum_{b=1}^{B} VI(j, T_b)$$

Advantages/Drawbacks

- Computationally cheap as it is computed along the training process
- Biased towards high cardinality features
- It quantifies the usefulness of a feature to reduce the training error, not the usefulness to make an actual prediction

Variable Importance: Permutation Importance and Mean Decrease Accuracy

Permutation Importance [Breiman, 2001]

Idea: Quantify the impact of the permutation of variable j on predictive

$$\text{Shuffle}(S,j) = \begin{pmatrix} x_{1,1} & \dots & x_{1,j-1} & x_{\pi(1),j} & x_{1,j+1} & \dots & x_{1,p} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_{i,1} & \dots & x_{i,j-1} & x_{\pi(i),j} & x_{i,j+1} & \dots & x_{i,p} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_{n,1} & \dots & x_{n,j-1} & x_{\pi(n),j} & x_{n,j+1} & \dots & x_{n,p} \end{pmatrix}$$

Importance of variable j in a model h is measured on a test set $test_{set}$: "VI^{PI} $(h, test_{set}, j) = error(h, Shuffle(test_{set}, j)) - error(h, test_{set})$ "

Variable Importance: Permutation Importance and Mean Decrease Accuracy

Permutation Importance [Breiman, 2001]

Idea: Quantify the impact of the permutation of variable j on predictive

$$\text{Shuffle}(S,j) = \begin{pmatrix} x_{1,1} & \dots & x_{1,j-1} & x_{\pi(1),j} & x_{1,j+1} & \dots & x_{1,p} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_{i,1} & \dots & x_{i,j-1} & x_{\pi(i),j} & x_{i,j+1} & \dots & x_{i,p} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_{n,1} & \dots & x_{n,j-1} & x_{\pi(n),j} & x_{n,j+1} & \dots & x_{n,p} \end{pmatrix}$$

Importance of variable j in a model h is measured on a test set test_{set}: "VI^{PI} $(h, \text{test}_{\text{set}}, j) = \text{error}(h, \text{Shuffle}(\text{test}_{\text{set}}, j)) - \text{error}(h, \text{test}_{\text{set}})$ "

Mean Decrease Accuracy [Breiman, 2001]

Idea: Compute the average VI^{PI} over the trees T_1, \ldots, T_h in the Random Forest using Out-Of-Bag samples $S_1^{\text{OOB}}, \dots, S_R^{\text{OOB}}$

$$\Rightarrow$$
 Importance of variable j : $VI^{MDA}(j) = \frac{1}{B} \sum_{b=1}^{B} VI^{PI}(T_b, S_b^{OOB}, j)$

Advantages and Disadvantages of Random Forest

Advantages

- No variable scaling/normalization required
- Can handle numerical and categorical variable without pre-processing
- Can easily manage missing variable
- Relatively undisturbed by outliers (they are isolated in small nodes)
- Trees can be trained in parallel
- Easy to tune and powerful
- Can be used for feature selection

Disadvantages

- Interpretability
- Uses deep trees, if a large number of trees is used then prediction can be slow

```
[Breiman, 1996] Breiman, L. (1996).
Bagging predictors.
Machine learning, 24(2):123–140.
```

[Breiman, 2001] Breiman, L. (2001).

Machine learning, 45(1):5-32.

[Breiman et al., 1984] Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984).

Classification and regression trees.

CRC press.