PCS3438 – Tarefa 4 – Gabarito do exercício de Algoritmo Genético

Considere o problema de se colocar um conjunto de objetos em uma mochila de capacidade C. Cada objeto i (i=1,...,n) tem um valor vi e um tamanho ti. Infelizmente, a mochila não é capaz de comportar todos os objetos e, portanto, devo escolher os objetos a colocar na mochila em função do seu valor. Este problema é uma instância clássica do famoso "Problema da Mochila" (Knapsack Problem), e pode ser formalmente descrito como:

Maximizar
$$z = \sum_{j=1}^{n} v_j x_j$$
 Sujeito a $\sum_{j=1}^{n} t_j x_j \le C$

onde $x_j = 1$, se o objeto j está na mochila; e $x_j = 0$, se o objeto j não está na mochila, sendo que z indica o valor dos objetos na mochila. Assim, pode-se definir uma representação cromossômica binária adequada para um indivíduo da população, para uma solução baseada em algoritmos genéticos para este problema, composta por n bits: $x_1 x_2 x_3 \dots x_n$

a) Considere a seguinte função de *fitness* adequada para verificar a aptidão de cada indivíduo da população descrita pela representação binária.

$$F(a) = \left[1 - H\left(-\sum_{j=1}^{n} t_j x_j + C\right)\right] \sum_{j=1}^{n} v_j x_j \qquad \text{com} \quad H(y) = \begin{cases} 0 \text{ se } y \ge 0 \\ 1 \text{ se } y < 0 \end{cases}$$

Considere ainda a seguinte definição para os objetos, um indivíduo representado por 5 bits (x_1 a x_5) e capacidade da mochila C=7:

	X ₁	X ₂	X 3	X 4	X 5
t _i	4	1	4	3	1
Vi	5	1	4	2	3

Apresente o indivíduo que você escolheria como mais apto para solucionar este problema. Justifique com explicações e os cálculos necessários.

O melhor indivíduo para este problema seria o 11001, com t=6 < 7 e v=9. É o indivíduo de maior valor ainda menor ou igual a C de tamanho.

b) Dada a seguinte população, avalie a aptidão de cada indivíduo:

indivíduo	X ₁ X ₂ X ₃ X ₄ X ₅	F(a _i)
a ₁	01110	0
a ₂	0 0 1 1 0	6
a ₃	01100	5

c) Selecionando os dois indivíduos mais aptos do item anterior, na ordem decrescente, faça a recombinação (crossover) após o segundo gene, gerando dois filhos (na ordem). Mantenha a população com 3 indivíduos, preservando na nova geração, além dos dois filhos gerados, o indivíduo mais apto da geração anterior. Coloque-os em ordem decrescente em função dos seus respectivos novos valores de aptidão calculados:

indivíduo	X1 X2 X3 X4 X5	F(a _i)
a ₁	0 0 1 1 0	6
a ₂	00100	4
a ₃	01110	0

Solução:

Mais aptos do item anterior - 0 0 1 1 0 (v=6) e 0 1 1 0 0 (v=5).

Dois filhos gerados após crossover após 20. gene: 0 0 1 0 0 (v=4) e 0 1 1 1 0 (v=0).

Nova população, em ordem:

1) Melhor do item anterior: 0 0 1 1 0 (v=6)

2) Melhor filho Gerado: 0 0 1 0 0 (v=4)

3) Segundo filho Gerado: 0 1 1 1 0 (v=0)