

ΑΡΙΣΤΟΤΈΛΕΙΟ ΠΑΝΕΠΙΣΤΉΜΙΟ ΘΕΣΣΑΛΟΝΊΚΗΣ

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

$\ll 2^{\eta} \ \epsilon \rho \gamma \alpha \sigma i \alpha >$

Εξαμηνιαία Εργασία στο μάθημα

«Μοντελοποίηση και Προσομοίωση Δυναμικών Συστημάτων»

της φοιτήτριας

Κελέση Ελπίδας, ΑΕΜ: 9410

Email: elpidakelesi@ece.auth.gr

Διδάσκοντες : Καθ. Γ. Ροβιθάκης, Γ. Κανάκης

Υπεύθυνος εργασίας: Καθ. Γ. Ροβιθάκης

Θεσσαλονίκη, Εαρινό εξάμηνο 2020-2021

Πίνακας περιεχομένων

2η Εργαστηριακή Άσκηση	Σελ 3
1º Θέμα	Σελ 3
2º Θέμα	Σελ 9
3º Θέμα	Σελ 18

2η Εργαστηριακή Ασκηση

Στη δεύτερη εργαστηριακή άσκηση θέλουμε να εκτιμήσουμε on line τις άγνωστες παραμέτρους με τη μέθοδο της κλίσης και με τη μέθοδο Lyapunov, έχοντας το σύστημα:

$$\dot{x} = -ax + bu, \quad x(0) = 0$$

x = κατάσταση του συστήματος

u = 5sin(3t) είναι η είσοδος του συστήματος

α = 2, b = 1 είναι οι σταθερές παράμετροι που θέλουμε να εκτιμήσουμε on line

10 Θέμα

Στο 1° θέμα θέλουμε να εκτιμήσουμε τις άγνωστες παραμέτρους με τη μέθοδο κλίσης. Επομένως αρχικά θα κάνουμε έναν μετασχηματισμό στο σύστημά μας ώστε να έρθει στην γραμμικά παραμετροποιημένη μορφή : $x = \theta * \phi$.

Οπότε μέσω πράξεων έχουμε:

$$\dot{x} = -ax + bu = -ax + bu + a_{\mu}x - a_{\mu}x =>$$
 $a_{\mu}x + \dot{x} = -ax + a_{\mu}x + bu =>$
 $a_{\mu}x + \dot{x} = (a_{\mu} - a)x + bu$

Συνεχίζοντας με Μ/Σ Laplace, μετά από στοιχειώδεις πράξεις έχουμε :

$$x = \frac{a_{\mu} - a}{s + a_{\mu}} x + \frac{b}{s + a_{\mu}} u =>$$

$$x = [a_{\mu} - a \quad b] \frac{1}{s + a_{\mu}} \begin{bmatrix} x \\ u \end{bmatrix} =>$$

$$x = \theta^* \varphi$$

$$\theta^* = \begin{cases} \theta_1 = a_{\mu} - a \\ \theta_2 = b \end{cases}$$

Για να εφαρμόσουμε τη μέθοδο κλίσης θα πρέπει η είσοδος $u (y = \theta * u)$ να είναι φραγμένη, δηλαδή το φ να είναι φραγμένο (σύμφωνα με το μετασχηματισμό που κάναμε), το οποίο είναι προφανές μετά από στοιχειώδεις πράξεις.

Μετά ορίζουμε την εκτίμηση \hat{x} για την έξοδο x του πραγματικού συστήματος και την εκτίμηση $\hat{\theta}$ για το θ^* , (σύμφωνα με αυτό ξέρουμε και ότι οι εκτιμήσεις των a και b θ α είναι \hat{a} και \hat{b} αντίστοιχα) οπότε έχουμε :

$$\hat{x} = \hat{\theta} \varphi$$

Έτσι το σφάλμα αναγνώρισης που σχηματίζεται είναι:

$$e = x - \hat{x} = x - \hat{\theta} \varphi = \theta^* \varphi - \hat{\theta} \varphi = (\theta^* - \hat{\theta}) \varphi$$

Σύμφωνα και με τη θεωρία αν ορίσουμε σαν παραμετρικό σφάλμα το :

$$\tilde{\theta} = -(\theta^* - \hat{\theta})$$

Τότε μετά από αντικατάσταση της σχέσης του παραμετρικού σφάλματος στο σφάλμα αναγνώρισης θα έχω :

$$e = -\tilde{\theta} \phi$$

Η μέθοδος κλίσης στηρίζεται για την εύρεση της αναδρομικής εκτίμησης $\hat{\theta}$ του θ^* , στην ελαχιστοποίηση ως προς $\hat{\theta}$ κατάλληλα ορισμένης συνάρτησης κόστους του e. Μια τυπική συνάρτηση κόστους είναι :

$$K(\hat{\theta}) = \frac{e^2}{2} = \frac{(x - \hat{\theta} \varphi)^2}{2}$$

Θέλουμε να βρούμε το $\hat{\theta}$ στο οποίο ελαχιστοποιείται η συνάρτηση κόστους και άρα και το σφάλμα. Η $K(\hat{\theta})$ όμως όπως ορίστηκε είναι κυρτή για κάθε t>0, οπότε κάθε τοπικό ελάχιστό της θα είναι και ολικό και θα ικανοποιεί την εξίσωση :

$$\nabla K(\hat{\theta})|_{\hat{\theta}=\theta^*}=0$$

Οπότε προκύπτει:

$$\nabla K(\hat{\theta}) = -(x - \hat{\theta}\varphi)\varphi$$

Σύμφωνα με τη μέθοδο κλίσης:

$$\dot{\hat{\theta}} = -\gamma \nabla K(\hat{\theta}) = \gamma (x - \hat{\theta} \varphi) \varphi = \gamma e \varphi, \qquad \hat{\theta}(0) = \theta_0$$

Όπου $\gamma > 0$ μια σταθερά και $\hat{\theta}(0)$ η αρχική τιμή του $\hat{\theta}$.

Πρακτικά οι διαφορικές εξισώσεις που θα επιλυθούν είναι:

$$\dot{\hat{\theta}} = \gamma e \varphi = \begin{cases} \dot{\hat{\theta}}_1 = \gamma e \varphi_1 \\ \dot{\hat{\theta}}_2 = \gamma e \varphi_2 \end{cases}, \quad \varphi = \begin{cases} \varphi_1 = \frac{1}{s + a_\mu} x \\ \varphi_2 = \frac{1}{s + a_\mu} u \end{cases} \quad \text{for } \dot{\varphi} = \begin{cases} -a_\mu \varphi_1 + x \\ -a_\mu \varphi_2 + u \end{cases}$$

Τα αποτελέσματα που προκύπτουν δεδομένου ότι είχαμε μηδενικές αρχικές τιμές για τις παραμέτρους φ1, φ2 και θ1,θ2 και ότι :

step = 0.01s,
$$γ = 50$$
 και $a_μ = 3$

Τα σφάλματα μειώνονται συνεχώς, πιο συγκεκριμένα ισχύουν τα εξής για τις παραπάνω παραμέτρους:

- $| \operatorname{error}(x_{real} x_{estimated}) | < 10^{-4}$ για κάθε t > 2.02s
- $| error(a_{real} a_{estimated}) | < 10^{-3}$ για κάθε t > 2.87s
- $| error(b_{ral} b_{estimated}) | < 10^{-3}$ για κάθε t > 1.65s

Επίσης προκύπτουν τα εξής γραφήματα:

Figure 1: Η πραγματική και η εκτιμώμενη τιμή της εξόδου

Figure 2:Η απόκλιση ανάμεσα στην πραγματική και στην εκτιμώμενη τιμή της εξόδου

Figure 3: Η πραγματική και η εκτιμώμενη τιμή της παραμέτρου α

Figure 4: Η πραγματική και η εκτιμώμενη τιμή της παραμέτρου b

Σύμφωνα με τα παραπάνω γραφήματα και μετά από πολλές δοκιμές κατέληξα στα εξής :

Όσον αφορά το a_μ διαπιστώσαμε ότι όταν τείνει στο 2 που είναι και η πραγματική τιμή του a τότε όπως θα ήταν και λογικό είχαμε την πιο γρήγορη απόκριση όλων των σφαλμάτων στο 0.
 Παρακάτω παραθέτω τα σφάλματα για a_μ = 2 :

Όταν το γ ήταν πολύ μεγάλο έχουμε πιο γρήγορη σύγκλιση, ενώ όταν το γ ήταν μικρό λίγο πιο αργή, με το σφάλμα της πραγματικής με την εκτιμώμενη απόκριση να αργεί πολύ περισσότερο να γίνει 0. Ωστόσο με τόσο μεγάλο γ είχαμε αρκετά αργή σύγκλιση των α και b στις πραγματικές τιμές τους. (αριστερά γ = 500 δεξιά για γ = 3):

20 Θέμα

Στο 2° θέμα θέλουμε να εκτιμήσουμε τις παραμέτρους a και b με τη μέθοδο σχεδίασης Lyapunov μέσω παράλληλης και μικτής δομής. Επίσης θέλουμε να τις εκτιμήσουμε όταν η απόκριση x του συστήματος έχει θόρυβο:

$$\eta(t) = \eta_0 \sin(2\pi f t)$$
, $\eta_0 = 0.15$ kai $f = 20$

Το σύστημά μας στην παράλληλη δομή περιγράφεται από τη διαφορική εξίσωση της μορφής:

$$\hat{x} = -\hat{a}\hat{x} + \hat{b}u$$
, $\hat{x}(0) = \hat{x}_0$

Αν αναλύσουμε τη μέθοδο κατά Lyapunov, δεδομένου ότι $e=x-\hat{x}$, $\tilde{a}=\hat{a}-a*$ και $\tilde{b}=\hat{b}-b*$, η διαφορική εξίσωση του σφάλματος αναγνώρισης όταν χρησιμοποιείται η παράλληλη δομή είναι:

$$\dot{e} = -a * e + \tilde{a} \hat{x} - \tilde{b} u$$

Επίσης επειδή έχουμε ομοιόμορφα φραγμένη είσοδο, χρησιμοποιώντας τη συνάρτηση Lyapunov :

$$V = \frac{1}{2} e^2 + \frac{1}{2} \tilde{a}^2 + \frac{1}{2} \tilde{b}^2$$

Μετά από πράξεις καταλήγουμε στις εξής διαφορικές εξισώσεις για τις εκτιμήσεις των παραμέτρων a και b :

$$\dot{\hat{a}} = -\gamma_1 e \hat{x}$$
 και $\dot{\hat{b}} = \gamma_2 e u$

Αντίστοιχα για τη μικτή δομή ισχύουν τα εξής:

Το σύστημά μας στην μικτή δομή περιγράφεται από τη διαφορική εξίσωση της μορφής:

$$\hat{x} = -\hat{a} \hat{x} + \hat{b} u + \theta_m (x - \hat{x}), \ \hat{x}(0) = \hat{x}_0$$

Αν αναλύσουμε τη μέθοδο κατά Lyapunov, δεδομένου ότι $e=x-\hat{x}$, $\tilde{a}=\hat{a}-a*$ και $\tilde{b}=\hat{b}-b*$, η διαφορική εξίσωση του σφάλματος αναγνώρισης όταν χρησιμοποιείται η μικτή δομή είναι :

$$\dot{e} = \theta_m e + \tilde{a} \,\hat{x} - \tilde{b} \,u$$

Επίσης επειδή έχουμε ομοιόμορφα φραγμένη είσοδο, χρησιμοποιώντας τη συνάρτηση Lyapunov :

$$V = \frac{1}{2} e^2 + \frac{1}{2} \tilde{a}^2 + \frac{1}{2} \tilde{b}^2$$

Μετά από πράξεις καταλήγουμε στις εξής διαφορικές εξισώσεις για τις εκτιμήσεις των παραμέτρων a και b :

$$\dot{\hat{a}} = -\gamma_1 e \hat{x}$$
 και $\dot{\hat{b}} = \gamma_2 e u$

Τα γραφήματα που προκύπτουν είναι τα εξής : (η επιλογή των γ1,γ2,θm έγινε μετά από δοκιμές) $\Gamma \text{iα } \gamma 1 = \gamma 2 = 20, \, \text{για την } \underline{ \pi \alpha \rho \acute{\alpha} \lambda \lambda \eta \lambda \eta } \, \underline{ \delta o \mu \acute{\eta} : }$

Για $\gamma 1 = \gamma 2 = 20$, $\theta m = 3$, για την μικτή δομή:

Συμπεράσματα:

- Παρατηρούμε ότι και στην παράλληλη και στην μικτή δομή είτε οι παράμετροι α και b, είτε το error της απόκρισης συγκλίνουν σχετικά γρήγορα στις πραγματικές τους τιμές και στο 0 αντίστοιχα.
- Ωστόσο η μικτή δομή είναι ελαφρώς ταχύτερη από την παράλληλη. Κάτι το οποίο μπορεί να φανεί και από τη μεγέθυνση δύο από των παραπάνω γραφημάτων πιο ξεκάθαρα:

Πράγματι, βλέπουμε ότι στην μικτή δομή η πραγματική με την εκτιμώμενη απόκριση συγκλίνει στα 3s περίπου ενώ στην παράλληλη στα 5s.

Προσομοίωση λειτουργίας με θόρυβο:

Θεωρήσαμε αρχικά ότι f=20 και $\eta_o=0.15$. Έτσι προέκυψαν τα εξής γραφήματα :

Για γ1 = γ2 = 20, για την <u>παράλληλη δομή:</u>

 Γ ια $\gamma 1 = \gamma 2 = 20$, θ m = 3, γ ια την μικτή δομή:

Συμπεράσματα:

- Είναι προφανές, ειδικά από το τελευταίο διάγραμμα που γίνεται σύγκριση των σφαλμάτων της απόκρισης, ότι η παράλληλη δομή επηρεάζεται σε πολύ μικρότερο βαθμό από την ύπαρξη θορύβου, συγκριτικά με τη μεικτή δομή.
- Αν συγκρίνουμε όλα τα σφάλματα μαζί (όπως φαίνεται στο παρακάτω γράφημα)
 επιβεβαιώνεται πως ο θόρυβος καταστρέφει σε ένα βαθμό τις μετρήσεις κυρίως στην μικτή μέθοδο που οι ταλαντώσεις παραμένουν σημαντικές για μεγάλο χρονικό διάστημα.

- Στην παράλληλη δομή, οι παράμετροι a και b συγκλίνουν στις πραγματικές τιμές τους, καθώς
 και το σφάλμα στο 0, αλλά με αρκετές ταλαντώσεις όπως είναι λογικό, εξαιτίας του θορύβου.
- Στη μικτή δομή η παράμετρος b και το σφάλμα συγκλίνουν με περισσότερες ταλαντώσεις,
 ωστόσο η παράμετρος a φτάνει κοντά, αλλά δεν αγγίζει την πραγματική της τιμή.

Η αιτία του φαινομένου έγκειται στις εξής μαθηματικές εξισώσεις:

Στη μικτή δομή έχουμε:

$$\dot{\hat{a}} = -\gamma_1 e \hat{x} = +\gamma_1 x \hat{x} - \gamma_1 \hat{x}^2$$

Ενώ στην παράλληλη δομή έχουμε:

$$\dot{\hat{a}} = -\gamma_1 e \hat{x} = -\gamma_1 x \hat{x} + \gamma_1 \hat{x}^2$$

Επομένως επειδή στην παράλληλη δομή έχουμε το $+\hat{x}^2$, η ίδια είναι πιο ανθεκτική στο θόρυβο, συγκριτικά με τη μικτή.

Συνεχίσαμε με της μετρήσεις για αυξημένο ηο και τρέξαμε την προσομοίωση για ηο = 0.5 , 1 και βρήκαμε τα εξής γραφήματα :

Σχετικά με τη διακύμανση της συχνότητας κάναμε μετρήσεις για f=10,20,50 και βρήκαμε τα εξής γραφήματα :

Συμπεράσματα:

- ✓ Όσον αυξάνεται το πλάτος η₀ τόσο μεγαλώνει η επίδραση του θορύβου στα δεδομένα στην μικτή μέθοδο, λογικό αφού στην ουσία έχουμε «περισσότερο» θόρυβο και αυτή η μέθοδος εν αντιθέσει με την παράλληλη δεν είναι ανθεκτική στο θόρυβο.
- \checkmark Όσο αυξάνεται η συχνότητα f, η επίδραση του θορύβου κατανέμεται «καλύτερα» στα δεδομένα με αποτέλεσμα να βελτιώνεται αρκετά η ποιότητα των αποτελεσμάτων και να εμφανίζονται μικρότερα σφάλματα στην μικτή μέθοδο, ενώ στην παράλληλη δεν προσδίδει κάποια ουσιαστική διαφορά στις μετρήσεις μας.

30 Θέμα

Στο 3° θέμα θεωρούμε το σύστημα δεύτερης τάξης:

$$\dot{\mathbf{x}} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \mathbf{x} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \mathbf{u}, \quad \mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Όπου x οι καταστάσεις, $u=10\sin(2t)+5\sin(7.5t)$ είναι η είσοδος και $a_{11}=-0.25$, $a_{12}=3$, $a_{21}=-5$ $a_{22}=-1$, $b_1=1$, $b_2=2.2$ σταθερές άγνωστες παράμετροι.

Έστω:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \kappa \alpha i \quad B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Θέλουμε να σχεδιάσουμε έναν εκτιμητή Lyapunov, για τις άγνωστες παραμέτρους με τη μέθοδο παράλληλης δομής. Επομένως το σύστημα αναγνώρισης που έχουμε είναι :

$$\hat{x} = \hat{A} \hat{x} + \hat{B} u$$

Όπου \hat{x} είναι η εκτίμηση της εξόδου του πραγματικού συστήματος και \hat{A} , \hat{B} οι εκτιμήσεις των πινάκων A και B αντίστοιχα.

Ορίζουμε το σφάλμα αναγνώρισης:

$$e = x - \hat{x}$$

Και γνωρίζοντας πως το σύστημά μας είναι γραμμικό και η είσοδος είναι φραγμένη.

Οπότε μπορούμε να εκτιμήσουμε τους πίνακες A και B χρησιμοποιώντας τις εξισώσεις του 2^{ou} θέματος.

Οπότε καταλήγουμε:

$$\begin{split} \dot{\widehat{A}} \; = \; \gamma \, e \, \hat{x}^T \; = \; -\gamma \begin{pmatrix} (x_1 \text{-} \; \widehat{x_1}) \widehat{x_1} & (x_1 \text{-} \; \widehat{x_1}) \widehat{x_2} \\ (x_2 \text{-} \; \widehat{x_2}) \widehat{x_1} & (x_2 \text{-} \; \widehat{x_2}) \widehat{x_2} \end{pmatrix} \\ \\ \dot{\widehat{B}} \; = \; \gamma \, e \, u \; = \; \gamma \begin{pmatrix} (x_1 \text{-} \; \widehat{x_1}) \\ (x_2 \text{-} \; \widehat{x_2}) \end{pmatrix} u \end{split}$$

Οπότε με βάση τα παραπάνω, καταλήγουμε στα εξής γραφήματα για $\gamma = 20$ (μετά από δοκιμές) και με όλες τις αρχικές τιμές των παραμέτρων $(a_{11}, a_{12}, a_{21}, a_{22}, b_1, b_2, x_1, x_2, \widehat{x_1}, \widehat{x_2})$ να ισούνται με 0:

Για την έξοδο έχουμε:

Για τον πίνακα Α και Β έχουμε :

Συμπεράσματα :

- ✓ Όλες οι παράμετροι φτάνουν στις πραγματικές τους τιμές αλλά όχι σε τόσο μικρό χρονικό διάστημα. Το σύστημα έρχεται σε ισορροπία στα 30s περίπου.
- ✓ Οι ταλαντώσεις εξαλείφονται σε μεγάλο βαθμό μετά τα 30s.