Robotics

Estimation and Learning with Dan Lee

Week 3. Robotic Mapping

3.2 Occupancy Grid Mapping 3.2.2 Log-odd Update

Posterior Map

Measurement Model

$$p(z|m_{x,y})$$

Prior Map

$$p(m_{x,y})$$

Bayes' Rule:
$$p\big(m_{x,y}|z\big) = \frac{p(z|m_{x,y})p(m_{x,y})}{p(z)}$$

$$Odd: = \frac{(X \ happens)}{(X \ not \ happens)} = \frac{p(X)}{p(X^c)}$$

More convenient when we use "Odd"

$$Odd((m_{x,y}=1) \ given \ z) = \frac{p(m_{x,y}=1|z)}{p(m_{x,y}=0|z)}$$

Odd

$$p(m_{x,y} = 1|z) = \frac{p(z|m_{x,y} = 1)p(m_{x,y} = 1)}{p(z)}$$

$$Odd = \frac{p(m_{x,y} = 1|z)}{p(m_{x,y} = 0|z)} = \frac{p(z|m_{x,y} = 1)p(m_{x,y} = 1)/p(z)}{p(m_{x,y} = 0|z)}$$

• Odd

$$Odd = \frac{p(m_{x,y} = 1|z)}{p(m_{x,y} = 0|z)} = \frac{p(z|m_{x,y} = 1)p(m_{x,y} = 1)/p(z)}{p(z|m_{x,y} = 0)p(m_{x,y} = 0)/p(z)}$$

$$p(m_{x,y} = 0|z) = \frac{p(z|m_{x,y} = 0)p(m_{x,y} = 0)}{p(z)}$$
(Bayes' Rule)

Take the log!

Odd:
$$\frac{p(m_{x,y} = 1|z)}{p(m_{x,y} = 0|z)} = \frac{p(z|m_{x,y} = 1)p(m_{x,y} = 1)}{p(z|m_{x,y} = 0)p(m_{x,y} = 0)}$$

Log-Odd:
$$\log \frac{p(m_{x,y} = 1|z)}{p(m_{x,y} = 0|z)} = \log \frac{p(z|m_{x,y} = 1)p(m_{x,y} = 1)}{p(z|m_{x,y} = 0)p(m_{x,y} = 0)}$$
$$= \log \frac{p(z|m_{x,y} = 1)}{p(z|m_{x,y} = 0)} + \log \frac{p(m_{x,y} = 1)}{p(m_{x,y} = 0)}$$

 $\log odd^+ = \log odd \ meas + \log odd^-$

Log-odd update

Posterior Map

Measurement Model

Log-odd-meas

Prior Map

 $\log odd^+ = \log odd \ meas + \log odd^-$

Log-odd update

Posterior Map

Measurement Model

Log-odd-meas

Prior Map

 $\log odd^+ = \log odd \ meas + \log odd^-$

Measurement model in log-odd form

$$\log \frac{p(z|m_{x,y}=1)}{p(z|m_{x,y}=0)}$$

Two possible measurement:

$$\log odd_occ := \log \frac{p(z = 1 | m_{x,y} = 1)}{p(z = 1 | m_{x,y} = 0)}$$

$$\log odd_free := \log \frac{p(z=0|m_{x,y}=0)}{p(z=0|m_{x,y}=1)}$$

(Trivial Case: cells not measured)

Example

Constant Measurement Model

 $\log odd_occ = 0.9$

 $\log odd_free = 0.7$

Initial Map:

 $\log odd = 0$ for all (x,y)

Update Rule:

 $\log odd += \log odd_meas$

Example

Constant Measurement Model

$$\log odd_occ = 0.9$$
$$\log odd_free = 0.7$$

<u>Update</u>

Case I : cells with z=1

$$\log odd \leftarrow 0 + \log odd_occ$$

■ Case II : cells with z=0 $\log odd \leftarrow 0 - \log odd_free$

Update Rule:

 $\log odd += \log odd_meas$

Example

Constant Measurement Model

$$\log odd_occ \coloneqq 0.9$$
$$\log odd_free \coloneqq 0.7$$

<u>Update</u>

- Case I : cells with z=1 $\log odd \leftarrow 0 + \log odd_occ$
- Case II : cells with z=0 $\log odd \leftarrow 0 \log odd free$

Update Rule:

 $\log odd += \log odd_meas$

