

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME												
CENTRE NUMBER							CANDI NUMBI					
MATHEMATICS											97	709/33
Paper 3 Pure M	athemati	ics 3 (P :	3)					0	ctobe	r/Nov	embe	er 2019
									1	hour	45 m	inutes
Candidates answ	ver on th	e Quest	ion Pa	aper.								
Additional Mater	als:	List of F	ormu	lae (MF9))							

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 19 printed pages and 1 blank page.

Cambridge Assessment International Education

[Turn over

BLANK PAGE

values of a and b .	of $p(x)$ and that when $p(x)$ is divided by $(x + 2)$ the remainder is -24 . Fi	ina tn [5
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

Showing all necessary working, solve the e 3 decimal places.	equation	$\frac{3^{2x} + 3^{-x}}{3^{2x} - 3^{-x}} = 4.$. Give your	answer correct to [4]
1				
		•••••		
	•••••			
	•••••	•••••		
	•••••	•••••		
		•••••		
		•••••		
		•••••		

1	By first expanding $\tan(2x + x)$, show that the equation $\tan 3x = 3 \cot x$ can be written in that $\tan^4 x - 12 \tan^2 x + 3 = 0$.
•	
•	
•	
•	

(ii)	Hence solve the equation $\tan 3x = 3 \cot x$ for $0^{\circ} < x < 90^{\circ}$. [3]

real root.

(i) By sketching a suitable pair of graphs, show that the equation $ln(x+2) = 4e^{-x}$ has exactly one

(**) O	01111111	1 1.5
(ii) S	Show by calculation that this root lies between $x = 1$ and	d x = 1.5.
(ii) S	Show by calculation that this root lies between $x = 1$ and	
(ii) S	Show by calculation that this root lies between $x = 1$ and	
(ii) S		

	Use the iterative formula $x_{n+1} = \ln \left(\text{Give the result of each iteration to } 2 \right)$	decimal pla	aces.			
•				•••••	•••••	
•						
•			•••••		•••••	
•			•••••		•••••	
•						
•						
•						
•						
•						
•						
•						
•						
•						
•						
•			•••••			
•			•••••			

6	Throughout this	question the	use of a calc	ulator is not	permitted.
•		9			P

 $\arg v = \arg u + \frac{1}{3}\pi.$

The complex number with modulus 1 and argument $\frac{1}{3}\pi$ is denoted by w.

Expr	ess w in t	the form <i>x</i>	+ iy, where	ex and y and	re real and	exact.		
	,							
				••••	•••••		•••••	
	••••••				•••••	••••••		
	•••••				•••••	••••••		
	•••••				••••••	••••••		
		•••••						
				•••••			•••••	

Explain why v can be expressed as $2uw$. Hence find v , giving your answer in the form $a + ib$ where a and b are real and exact. [4]

•••••
 •••••
•••••
 •••••
•••••
• • • • • • • • • • • • • • • • • • • •

ι	the origin. Find a vector equation for l .
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

The diagram shows the graph of $y = \sec x$ for $0 \le x < \frac{1}{2}\pi$.

(i)	Use the trapezium rule with 2 intervals to estimate the value of $\int_0^{1.2}$ correct to 2 decimal places.	sec x d x , giving your answer [3]
(ii)	Explain, with reference to the diagram, whether the trapezium rule underestimate of the true value of the integral in part (i).	e gives an overestimate or an [1]

Ċ	If is the point on the part of the curve $y = \sec x$ for $0 \le x < \frac{1}{2}\pi$ at which the gradient is 2. By find the first $\frac{1}{\cos x}$, find the x-coordinate of P, giving your answer correct to 3 decimal place.
	·
•	
_	
•	
•	
•	
•	
•	
•	
•	
•	

1	Using partial fractions, solve the differential equation, obtaining an expression for x in terms of
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

(ii)	State what happens to the value of x when t becomes large. [1]

The diagram shows the graph of $y = e^{\cos x} \sin^3 x$ for $0 \le x \le \pi$, and its maximum point M. The shaded region R is bounded by the curve and the x-axis.

)	Find the x-coordinate of M. Show all necessary working and give your answer correct to 2 decimal places. [5]

By first using the substitution $u = \cos x$, find the exact value of the area of R .	[7]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.				
	••••••			
	••••••			
	•			
	•••••			
	•••••			
	•			
	•••••			
	••••••			

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.