Definition 34.7. The operator * from $\bigwedge^k V$ to $\bigwedge^{n-k} V$ defined by Proposition 34.15 is called the *Hodge* *-operator.

Obseve that the Hodge *-operator is linear.

The Hodge *-operator is defined in terms of the orthonormal basis elements of $\bigwedge V$ as follows: For any increasing sequence (i_1, \ldots, i_k) of elements $i_p \in \{1, \ldots, n\}$, if (j_1, \ldots, j_{n-k}) is the increasing sequence of elements $j_q \in \{1, \ldots, n\}$ such that

$$\{i_1,\ldots,i_k\}\cup\{j_1,\ldots,j_{n-k}\}=\{1,\ldots,n\},\$$

then

$$*(e_{i_1} \wedge \cdots \wedge e_{i_k}) = \operatorname{sign}(i_1, \dots, i_k, j_1, \dots, j_{n-k}) e_{j_1} \wedge \cdots \wedge e_{j_{n-k}}.$$

In particular, for k = 0 and k = n, we have

$$*(1) = e_1 \wedge \cdots \wedge e_n$$
$$*(e_1 \wedge \cdots \wedge e_n) = 1.$$

For example, if n = 3, we have

$$*e_1 = e_2 \wedge e_3$$

$$*e_2 = -e_1 \wedge e_3$$

$$*e_3 = e_1 \wedge e_2$$

$$*(e_1 \wedge e_2) = e_3$$

$$*(e_1 \wedge e_3) = -e_2$$

$$*(e_2 \wedge e_3) = e_1.$$

The Hodge *-operators *: $\bigwedge^k V \to \bigwedge^{n-k} V$ induce a linear map *: $\bigwedge(V) \to \bigwedge(V)$. We also have Hodge *-operators *: $\bigwedge^k V^* \to \bigwedge^{n-k} V^*$.

The following proposition shows that the linear map $*: \Lambda(V) \to \Lambda(V)$ is an isomorphism.

Proposition 34.16. If V is any oriented vector space of dimension n, for every k with $0 \le k \le n$, we have

(i) ** =
$$(-id)^{k(n-k)}$$
.

(ii)
$$\langle x, y \rangle_{\wedge} = *(x \wedge *y) = *(y \wedge *x)$$
, for all $x, y \in \bigwedge^k V$.

Proof. (1) Let $(e_i)_{i=1}^n$ is an orthonormal basis of V. It is enough to check the identity on basis elements. We have

$$*(e_{i_1} \wedge \cdots \wedge e_{i_k}) = \operatorname{sign}(i_1, \dots, i_k, j_1, \dots, j_{n-k}) e_{j_1} \wedge \cdots \wedge e_{j_{n-k}}$$