

Data Processing, Analysis and Visualization in Python

Basic Machine Learning II -**Unsupervised Learning**

1

Unsupervised Learning in Scikit-learn

- Gaussian mixture models
- Manifold learning
- Biclustering
- Decomposing signals in components (matrix factorization problems)
- Covariance estimation
- Novelty and outlier detection
- Density estimation
- Neural network models (unsupervised)

Outline

- Introduction
- Dimensionality Reduction, Feature Extraction, and Manifold Learning
 - Principal Component Analysis (PCA)
 - Manifold Learning with t-SNE (t-distributed Stochastic Neighbor Embedding)
 - UMAP (Uniform Manifold Approximation and Projection)
- Clustering
 - K-Means Clustering

Unsupervised Learning in Scikit-learn

- Gaussian mixture models
- Manifold learning

 - Isomap
 Locally Linear Embedding
 Modified Locally Linear Embedding
 Hessian Eigenmapping
 Section Fundading

 - Spectral Embedding
- ighbor Embedding (t-SNE)
- Clustering
- Biclustering
- Decomposing signals in components (matrix factorization problems)
- Covariance estimation
- Novelty and outlier detection
- Densitý estimation
- Neural network models (unsupervised)

Unsupervised Learning in Scikit-learn

- Gaussian mixture models
- Manifold learning
- Clustering

 - Affinity PropagationMean Shift
 - Spectral clustering Hierarchical clustering

 - BIRCH
- Biclustering
- Decomposing signals in components (matrix factorization problems)
- Covariance estimation
- Novelty and outlier detection
- Density estimation
- Neural network models (unsupervised)

5

Unsupervised Learning in Scikit-learn

- Manifold learning
- Clustering
- Biclustering
- Decomposing signals in components (matrix factorization problems)

 - Principal component analysis (PCA)
 Kernel Principal Component Analysis (kPCA)
 Truncated singular value decomposition and latent semantic analysis
 - Dictionary Learning
 - Factor Analysis

 - Independent component analysis (ICA)
 Non-negative matrix factorization (NMF or NNMF)
 Latent Dirichlet Allocation (LDA)
- Covariance estimation
- Novelty and outlier detection
- Density estimation
- Neural network models (unsupervised)

Unsupervised Learning in Scikit-learn

- Gaussian mixture models
- Manifold learning
- Clustering
- Biclustering
 - Spectral Co-Clustering
 - Spectral Biclustering
 - Biclustering evaluation
- Decomposing signals in components (matrix factorization problems)
- Covariance estimation
- Novelty and outlier detection
- Density estimation
- Neural network models (unsupervised)

Unsupervised Learning in Scikit-learn

- Manifold learning
- Clustering
- Biclustering
- Decomposing signals in components (matrix factorization problems)
- Covariance estimation
 - Empirical covariance
 - Shrunk Covariance
 - Sparse inverse covariance Robust Covariance Estimation
- Novelty and outlier detection
- Density estimation
- Neural network models (unsupervised)

Unsupervised Learning in Scikit-learn

- Gaussian mixture models
- Manifold learning
- Clustering
- Biclustering
- Decomposing signals in components (matrix factorization problems)
- Covariance estimation
- Novelty and outlier detection
 - Overview of outlier detection methods
 - Novelty Detection
 - Outlier Detection
 - Novelty detection with Local Outlier Factor
- Density estimation
- Neural network models (unsupervised)

9

Unsupervised Learning in Scikit-learn

- Gaussian mixture models
- Manifold learning
- Clustering
- Biclustering
- Decomposing signals in components (matrix factorization problems)
- Covariance estimation
- Novelty and outlier detection
- Density estimation
- Neural network models (unsupervised)
 - Restricted Boltzmann machines

Unsupervised Learning in Scikit-learn

- Gaussian mixture models
- Manifold learning
- Clustering
- Biclustering
- Decomposing signals in components (matrix factorization problems)
- Covariance estimation
- Novelty and outlier detection
- Density estimation
 - Density Estimation: Histograms
 - Kernel Density Estimation
- Neural network models (unsupervised)

10

Principal Component Analysis (PCA

- The central idea of principal component analysis (PCA) is to reduce the dimensionality of a data set consisting of a large number of interrelated variables while retaining as much as possible of the variation present in the data set. This is achieved by transforming to a new set of variables, the *principal components (PCs)*, which are uncorrelated (i.e., orthogonal), and which are ordered so that the first few retain most of the variation present in all of the original variables.
- PCA can be thought of as an unsupervised learning problem.

PCA in a nutshell

- 1. Calculate the mean of each variable
- 2. Calculate the center of the data for each variable and shift to origin

Residual Sugar

14

PCA in a nutshell

1. Draw a line through the origin and then rotate until it fits the points optimally. How do we determine the optimal rotation?

PCA in a nutshell

The line orthogonal to PC₁ through the origin is PC₂.

In this case, the slope of the new line is ca. -2, so "Residual sugar" and "Alcohol" contribute as follows to the linear combination of PC2:

PC₂ = -0.33 · RS + 0.67 · A

Here, Alchol is twice as important as Residual Sugar.

PC₁

Residual Sugar

18

19

PC axes to original coordinate set

To get the projected points, we rotate back the

PCA in a nutshell

How important is each PC?

 SS_1 (distances for PC_1) = eigenvalue for PC_1 SS_2 (distances for PC_2) = eigenvalue for PC_2

Convert the eigenvalues to variation for each PC:

$$\frac{SS_1}{N-1} = Variance\ ratio\ PC_1 = \sigma_1 \quad \Rightarrow \qquad \frac{\sigma_1}{\sigma_1 + \sigma_2}$$

$$\frac{SS_2}{N-1} = Variance \ ratio \ PC_2 = \sigma_2 \quad \Rightarrow \quad \frac{\sigma_2}{\sigma_1 + \sigma_2}$$

How much does each PC contribute to the variation in the data

21

Principal Component Analysis (PCA)

- The process of obtaining principal components from a raw dataset can be simplified in 5 parts:
- Take the whole dataset consisting of n_features+1
 dimensions and ignore the labels such that our new
 dataset becomes n_features dimensional.
 Compute the mean for every dimension of the whole
 dataset.
- 2. Compute the *covariance matrix* of the whole dataset.
- 3. Compute *eigenvalues* and the corresponding *eigenvectors*.
- 4. Sort the eigenvectors by decreasing eigenvalues and choose *k* eigenvectors with the largest eigenvalues to form a **n_features** × *k* dimensional matrix **W.**
- 5. Use this **n_features** × *k* eigenvector matrix to transform the samples onto the new subspace.

The mathematics of PCA

N

• Compute the *covariance matrix* cov(X, X) = C of the whole dataset.

$$C = \frac{\sum_{i=1}^{N} (\mathbf{x}_i - \mathbf{x}) \sum_{i=1}^{N} (\mathbf{x}_i - \mathbf{x})}{N-1} \underbrace{\sum_{\text{vector of size n_features}}^{\text{n_samples}}}$$

Solve eigen-equation

Covariance matrix
$$C\nu = \lambda\nu$$
 (n_features × n_features) $C\nu = \lambda\nu$ Eigenvalue of ν (n_features × n_features) (n_features)

by solving determinant determine eigenvalues

$$\det(\mathcal{C}-\lambda I)$$
 The eigenvalues are the roots of \mathcal{C}

- Determine eigenvectors by substituting v into the eigen-equation
- Form a matrix W with the k highest eigenvectors and use W as follows:

Transformed samples onto new subspace $\chi' = W^T \cdot X$

22

PCA NumPy version


```
import numpy as np
import numpy.linalg as linalg
from sklearn.datasets import make_classification
n features = 2
X = np.array([[1, 2], [3, 4], [5, 6]])
n samples = X.shape[0]
# We center the data and compute the sample covariance matrix
X_centered = (X - np.mean(X, axis=0))
# Compute covariance matrix
cov matrix = np.dot(X centered.T, X centered) / (n samples - 1)
# Eigendecomposition of covariance matrix
eigenvalues, eigenvectors = linalg.eig(cov_matrix)
# Sort eigenvalues and associated eigenvectors using index-based sorting
idx = eigenvalues.argsort()[::-1]
eigenvalues = eigenvalues[idx]
eigenvectors = eigenvectors[:.idx]
# Eigenvectors corresponding to the k maximum eigenvalues
W = eigenvectors[:,0:2]
# Transform the samples onto the new subspace
X transformed = np.dot(W.T, X centered.T)
                                                              pca_numpy.ipynb
```

PCA NumPy version

print("Original dataset\n", X)

25

Principal Component Analysis (PCA)

pca_kmeans_wine_color.ipynb

PCA sklearn version


```
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
pca = PCA()
pca.fit(X)
# access values and vectors
eigenvalues_pca = pca.explained_variance_
eigenvectors pca = pca.components
X_transformed = pca.fit_transform(X)
print("Original dataset\n", X)
Original dataset
[[1 2]
[3 4]
[5 6]]
print("Transformed dataset\n", X transformed)
Transformed dataset
[[-2.82842712 0.
  2.82842712 0.
                      ĺπ
                                                      pca numpy.ipynb
```

26

of the initial variables.

Principal Component Analysis (PCA)

0 7.4 0.70 0.00 1.9 0.076 1 7.8 0.88 0.00 2.6 0.098 2 7.8 0.76 0.04 2.3 0.092 4 7.4 0.70 0.00 1.9 0.076 4 7.4 0.70 0.00 1.9 0.076 6492 6.2 0.21 0.29 1.8 0.039 4 6.5 0.24 0.19 1.2 0.047 6494 6.5 0.24 0.19 1.2 0.041 6495 5.5 0.29 0.30 1.1 0.022 6496 6.0 0.21 0.38 0.8 0.000	11.0 34.0 25.0 67.0 15.0 54.0 17.0 60.0 11.0 34.0 24.0 92.0 57.0 168.8	0 0.99680 0 0.99700 0 0.99800 0 0.99780 0 0.99114	3.51 3.20 3.26 3.16 3.51 	0.56 0.68 0.65 0.58 0.56 	9.4 9.8 9.8 9.8 9.4 	5 5 6 5 	red red red red red white
2 7.8 0.76 0.04 2.3 0.092 3 11.2 0.28 0.56 1.9 0.076 4 7.4 0.70 0.00 1.9 0.076	15.0 54.0 17.0 60.0 11.0 34.0 24.0 92.0	0 0.99700 0 0.99800 0 0.99780 0 0.99114	3.26 3.16 3.51	0.65 0.58 0.56	9.8 9.8 9.4	5 6 5	red red red
3 11.2 0.28 0.56 1.9 0.075 4 7.4 0.70 0.00 1.9 0.076 6492 6.2 0.21 0.29 1.6 0.039 6493 6.6 0.32 0.36 8.0 0.047 6494 6.5 0.24 0.19 1.2 0.041 6495 5.5 0.29 0.30 1.1 0.022	17.0 60.0 11.0 34.0 24.0 92.0	0 0.99800 0.99780	3.16	0.58 0.56	9.8 9.4 	6 5 	red red
1	11.0 34.0 24.0 92.0	0.99780	3.51	0.56	9.4	5	red
6493 6.6 0.32 0.36 8.0 0.047 6494 6.5 0.24 0.19 1.2 0.041 6496 5.5 0.29 0.30 1.1 0.022	24.0 92.0	0.99114					
6493 6.6 0.32 0.36 8.0 0.047 6494 6.5 0.24 0.19 1.2 0.041 6496 5.5 0.29 0.30 1.1 0.022	24.0 92.0	0.99114					
6493 6.6 0.32 0.36 8.0 0.047 6494 6.5 0.24 0.19 1.2 0.041 6496 5.5 0.29 0.30 1.1 0.022			3.27	0.50	11.2	6	white
6494 6.5 0.24 0.19 1.2 0.041 6495 5.5 0.29 0.30 1.1 0.022	57.0 168.0						wille
6495 5.5 0.29 0.30 1.1 0.022		0.99490	3.15	0.46	9.6	5	white
	30.0 111.0	0.99254	2.99	0.46	9.4	6	white
6496 6.0 0.21 0.38 0.8 0.020	20.0 110.0	0.98869	3.34	0.38	12.8	7	white
	22.0 98.0	0.98941	3.26	0.32	11.8	6	white
6497 rows $ imes$ 13 columns n_featu	es						
Principal components are new $PC_k = \sum_{i=1}^{k} \frac{1}{i}$	$v_i f_i$	$\forall k$:				

(i.e., coefficients)

Principal Component Analysis (PCA) >>> import seaborn as sns >>> ax = sns.boxplot(data=df_wine, orient='h', palette='PuBuGn') fixed acidity citric acid residual supar chorides free sulfur dioxide total sulfur dioxide density pt sulphates alcohol quality 100 200 300 400

29

30

```
Principal Component Analysis (PCA
>>> import matplotlib.pyplot as plt
>>> pca_dataset = pd.DataFrame(data = X, columns = ['component1', 'component2'])
>>> pca_dataset['hue'] = df_wine['hue']
>>> plt.figure()
>>> plt.figure(figsize=(6,6))
>>> plt.xlabel('Component 1')
>>> plt.ylabel('Component 2')
>>> plt.title('2 Component PCA')
>>> sns.scatterplot(x = pca_dataset['component1'], y = pca_dataset['component2'],
                   hue=pca_dataset['hue'], alpha=0.3,palette='PuBuGn')
                                                    Similar datapoints are closer
                                                    together, forming a cluster. For
                                                    this dataset we see that white
                                                    wine and red wine form two
                                                    separate clusters.
```


Principal Component Analysis (PCA) >>> # How much does each component explain the original dataset. >>> string = [s+1 for s in range(len(pca.explained variance ratio))] >>> variance ratio = pd.DataFrame(pca.explained variance ratio , columns=['variance_ratio'], index=string) >>> ax = sns.barplot(data=variance_ratio, y='variance_ratio', x=variance_ratio.index, palette='PuBuGn') >>> ax.set(xlabel='Principal components', ylabel='Variance ratio') 0.25 0.20 g 0.15 [™] 0.10 Try with different 0.05 number of PCs 0.00 Principal components

34

How do we cluster points in space?

37

K-means Clustering

- Step 1: Select the number of clusters. Let's try 3.
- Step 2: Select 3 random clusters
- Step 3: Measure distance between all points and all clusters
- Step 4: Assign each point to the nearest cluster

K-means Clustering

How do we cluster points in space?

38

K-means Clustering

In this case we get the following cluster:

Step 5: Calculate the centroid of each cluster

Step 6: Calculate the distance of all points relative to the centroids and re-cluster. If assignment of points doesn't change, we're done.

39

Step 7: Now we calculate the variation within each cluster:

Total variation within the clusters

This clearly isn't an optimal cluster, but K-means doesn't know this. Solution?

41

K-means Clustering

In this case we get the following cluster:

Step 5: Calculate the centroid of each cluster

Step 6: Calculate the distance of all points relative to the centroids and re-cluster. If assignment of points doesn't change, we're done.

K-means Clustering

Step 1: Select a new set of clusters. Let's try 3.

Step 2: Select 3 random clusters

Step 3: Measure distance between all points and all clusters

Step 4: Assign each point to the nearest cluster

42

K-means Clustering

In this case we get the following cluster:

Step 5: Calculate the centroid of each cluster

Step 6: Calculate the distance of all points relative to the centroids and re-cluster. If assignment of points doesn't change, we're done.

Step 7: Now we calculate the variation within each cluster:

45

K-means Clustering

What's the optimal value for K?
Start with K=1 and then increase the number of K's.
K=1:

K-means Clustering

Since K-means doesn't know which is the best solution, it will do a certain number of clusters and determine which is the optimal (best distribution of variation within clusters). Let's say we tried 3 random initial guesses:

Iteration 1:

Iteration 2:

Iteration 3:

Total variation within the clusters

Best solution!

46

K-means Clustering

What's the optimal value for K? Start with K=1 and then increase the number of K's. K=2:

K-means Clustering

What's the optimal value for K?
Comparing the variation with K:

K=1

K=2

K=3

K=4

I point per cluster, variation = 0

How do we cluster points in 2D, 3D, ..., ND space? Same idea!

53

55

54

K-means Clustering

The K-means algorithm aims to choose centroids that minimize the inertia, or within-cluster sum-of-squares

Centroid j

Sum over points in cluster, j

All points in cluster j

We have to decide how to compute the distance

between points.

criterion:

K-means example


```
from sklearn.cluster import KMeans
inertia = []
# Creating 10 K-Mean models while varying the number of clusters (k)
# An elbow in the graph indicates the right number of clusters
for k in range(1,11):
    model = KMeans(n_clusters=k, init='k-means++')
    model.fit(pca_dataset.iloc[:,:2]) # Fit model to samples
    inertia.append(model.inertia_) # Append the inertia to
                                    # the list of inertias
inertia = pd.DataFrame({'Inertia':inertia}, index=range(1,11))
ax = sns.lineplot(data=inertia, marker='o', palette='PuBuGn')
ax.set(xlabel='Number of clusters, k', ylabel='Inertia')
```

58

60

K-means example

pca kmeans wine color.ipynb

```
model = KMeans(n_clusters=3, init='k-means++')
model.fit(pca_dataset.iloc[:,:2])
labels = model.predict(pca_dataset.iloc[:,:2])
sns.scatterplot(x = pca_dataset[0], y = pca_dataset[1],
                alpha=0.3, hue=labels, palette='Set1')
ax.set(xlabel='PC1', ylabel='PC2')
            12.5
            10.0
```

