NPFL114, Lecture 01

Introduction to Deep Learning

Milan Straka

Notation

- $a, \mathbf{a}, \mathbf{A}$, A: scalar (integer or real), vector, matrix, tensor
- a, **a**, **A**: scalar, vector, matrix random variable

Notation

- $a, \mathbf{a}, \mathbf{A}, \mathbf{A}$: scalar (integer or real), vector, matrix, tensor
- a, **a**, **A**: scalar, vector, matrix random variable
- $\frac{df}{dx}$: derivative of f with respect to x
- $\frac{\partial f}{\partial x}$: partial derivative of f with respect to x

Notation

- a, a, A, A: scalar (integer or real), vector, matrix, tensor
- a, **a**, **A**: scalar, vector, matrix random variable
- $\frac{df}{dx}$: derivative of f with respect to x
- $\frac{\partial f}{\partial x}$: partial derivative of f with respect to x
- $\nabla_{\boldsymbol{x}} f$: gradient of f with respect to \boldsymbol{x} , i.e., $\left(\frac{\partial f(\boldsymbol{x})}{\partial x_1}, \frac{\partial f(\boldsymbol{x})}{\partial x_2}, \dots, \frac{\partial f(\boldsymbol{x})}{\partial x_n}\right)$

A random variable ${\bf x}$ is a result of a random process. It can be discrete or continuous.

A random variable ${\bf x}$ is a result of a random process. It can be discrete or continuous.

Probability Distribution

Probability distribution describes how likely are individual values a random variable can take.

The $x \sim P$ denotes a random variable x has distribution P.

For discrete variables, probability that x takes a value x is denoted as P(x) or explicitly as $P(\mathbf{x}=x)$.

For discrete variables, probability that value of x lies in the interval [a,b] is given by $\int_a^b p(x) \, \mathrm{d}x$.

Expectation

An expectation of a function f(x) with respect to discrete probability distribution P(x) is defined as:

$$\mathbb{E}_{\mathrm{x}\sim P}[f(x)] \stackrel{ ext{ iny def}}{=} \sum_x P(x) f(x)$$

For continuous variables it is computed as:

$$\mathbb{E}_{\mathrm{x}\sim p}[f(x)] \stackrel{ ext{ iny def}}{=} \int_x p(x) f(x) \, \mathrm{d}x$$

Expectation is linear, i.e.,

$$\mathbb{E}_{ ext{x}}[lpha f(x) + eta g(x)] = lpha \mathbb{E}_{ ext{x}}[f(x)] + eta \mathbb{E}_{ ext{x}}[g(x)]$$

Variance

Variance measures how much the values of a random variable differ from the expectation.

$$\operatorname{Var}(f(x)) \stackrel{ ext{ iny def}}{=} \mathbb{E}\left[f(x) - \mathbb{E}[f(x)]^2
ight]$$

Common Probability Distributions

Bernoulli Distribution

Bernoulli distribution is a distribution over a binary random variable. It has one parameter $\varphi\in[0,1]$, which specifies the probability of the random variable being equal to 1.

Common Probability Distributions

Bernoulli Distribution

Bernoulli distribution is a distribution over a binary random variable. It has one parameter $\varphi \in [0,1]$, which specifies the probability of the random variable being equal to 1.

Categorical Distribution

Extension of Bernoulli distribution to random variables taking k different variables. It is parametrized by a $p \in [0,1]^k$, such that $\sum p(i) = 1$.

ÚFAL

Self Information

Amount of when a random variable is sampled.

- Should be zero for events with probability 1.
- Less likely events are more surprising.
- Independent events should have additive information.

$$I(x) \stackrel{ ext{ iny def}}{=} -\log P(x) = \log rac{1}{P(x)}$$

Self Information

Amount of when a random variable is sampled.

- Should be zero for events with probability 1.
- Less likely events are more surprising.
- Independent events should have additive information.

$$I(x) \stackrel{ ext{def}}{=} -\log P(x) = \log rac{1}{P(x)}$$

Entropy

Amount of

in the whole distribution.

$$H(P) \stackrel{ ext{def}}{=} \mathbb{E}_{ ext{x} \sim P}[I(x)] = -\mathbb{E}_{ ext{x} \sim P}[\log P(x)]$$

- ullet for discrete $P{:}H(P) = -\sum_x P(x) \log P(x)$
- for continuous $P: H(P) = -\int P(x) \log P(x) dx$

ÚFAL

Cross-Entropy

$$H(P,Q) \stackrel{ ext{ iny def}}{=} - \mathbb{E}_{ ext{x} \sim P}[\log Q(x)]$$

- Gibbs inequality
 - $\circ \ H(P,Q) \geq H(P)$
 - $\circ \ H(P) = H(P,Q) \Leftrightarrow P = Q$
- ullet generally H(P,Q)
 eq H(Q,P)

ÚFAL

Cross-Entropy

$$H(P,Q) \stackrel{ ext{ iny def}}{=} - \mathbb{E}_{\mathrm{x} \sim P}[\log Q(x)]$$

- Gibbs inequality
 - $\circ H(P,Q) \geq H(P)$
 - $\circ H(P) = H(P,Q) \Leftrightarrow P = Q$
- generally H(P,Q)
 eq H(Q,P)

Kullback-Leibler Divergence (KL Divergence)

Sometimes also called

$$D_{\mathrm{KL}}(P||Q) \stackrel{ ext{ iny def}}{=} H(P,Q) - H(P) = \mathbb{E}_{\mathrm{x} \sim P}[\log P(x) - \log Q(x)]$$

- ullet consequence of Gibbs inequality: $D_{\mathrm{KL}}(P||Q) \geq 0$
- ullet generally $D_{\mathrm{KL}}(P||Q)
 eq D_{\mathrm{KL}}(Q||P)$

Nonsymmetry of KL Divergence

Common Probability Distributions

Normal (or Gaussian) Distribution

Distribution over real numbers, parametrized by a mean μ and variance σ^2 :

$$\mathcal{N}(x;\mu,\sigma^2) = \sqrt{rac{1}{2\pi\sigma^2}} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight)$$

For standard values $\mu=0$ and $\sigma^2=1$ we get $\mathcal{N}(x;0,1)=\sqrt{rac{1}{2\pi}}e^{-rac{x^2}{2}}.$

Why Normal Distribution

Central Limit Theorem

A sum of independent identically distributed random variables with a limited variance converges to normal distribution.

Why Normal Distribution

Central Limit Theorem

A sum of independent identically distributed random variables with a limited variance converges to normal distribution.

Distribution with Maximal Entropy

Consider distributions with a given mean and variance. It can be proven (using variational inference) that such distribution with is exactly the normal distribution.

A distribution with maximal entropy can be considered the most general one, containing as little additional assumptions as possible.

Machine Learning

A possible definition of learning from Mitchell (1997):

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Machine Learning

A possible definition of learning from Mitchell (1997):

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

```
Task T
                   : assigning one of k categories to a given input
                : producing a number x \in \mathbb{R} for a given input
  Experience E
                 : usually a dataset with desired outcomes (
                                                                    or
                   : usually data without any annotation (raw text, raw
      images, ...)
 Measure P
```

Well-known Datasets

MNIST	Images (28x28, grayscale) of handwritten digits.	60k
CIFAR-10	Images (32x32, color) of 10 classes of objects.	50k
CIFAR-100	Images (32x32, color) of 100 classes of objects (with 20 defined superclasses).	50k
<u>ImageNet</u>	Labeled object image database (labeled objects, some with bounding boxes).	14.2M
ImageNet- ILSVRC	Subset of ImageNet for Large Scale Visual Recognition Challenge, annotated with 1000 object classes and their bounding boxes.	1.2M
COCO	: Complex everyday scenes with descriptions (5) and highlighting of objects (91 types).	2.5M

Well-known Datasets

ImageNet-ILSVRC

COCO

Well-known Datasets

IAM-OnDB	Pen tip movements of handwritten English from 221 writers.	86k words
TIMIT	Recordings of 630 speakers (10 sentences each) of 8 major dialects of American English.	6.3k sentences
CommonVoice	Nearly 400,000 recordings from 20,000 different people, around 500 hours of speech.	400k
PTB	: 2500 stories from Wall Street Journal, with POS tags and parsed into trees.	1M words
<u>PDT</u>	: Czech sentences annotated on 4 layers (word, morphological, analytical, tectogrammatical).	1.9M words
<u>UD</u>	: Treebanks of 60 languages with consistent annotation of lemmas, POS tags, morphology and syntax.	102 treebanks
WMT	Aligned parallel sentences for machine translation.	gigawords

ILSVRC Image Recognition Accuracies

ILSVRC Image Recognition Accuracies

Recently (summer 2017), a paper came out describing automatic generation of neural architectures using reinforcement learning.

Introduction to Machine Learning History

Curse of Dimensionality

Machine and Representation Learning

Neural Network Architecture à la '80s

Input layer Hidden layer

Output layer

Neural Network Architecture

There is a weight on each edge, and an activation function f is performed on the hidden layers, and optionally also on output layer.

$$h_i = f\left(\sum_j w_{i,j} x_j
ight)$$

If the network is composed of layers, we can use matrix notation and write:

$$m{h} = f\left(m{W} m{x}
ight)$$

Neural Network Activation Functions

Output Layers

- none (linear regression if there are no hidden layers)
- σ (sigmoid; logistic regression if there are no hidden layers)

$$\sigma(x) \stackrel{ ext{def}}{=} rac{1}{1+e^{-x}}$$

• softmax (maximum entropy markov model if there are no hidden layers)

$$\operatorname{softmax}(\boldsymbol{x}) \propto e^{\boldsymbol{x}}$$

$$\operatorname{softmax}(oldsymbol{x})_i \stackrel{ ext{def}}{=} rac{e^{x_i}}{\sum_j e^{x_j}}$$

Neural Network Activation Functions

Hidden Layers

- none (does not help, composition of linear mapping is a linear mapping)
- ullet σ (but works badly nonsymmetrical, $rac{d\sigma}{dx}(0)=1/4$)
- tanh
 - \circ result of making σ symmetrical and making derivation in zero 1
 - $\circ \tanh(x) = 2\sigma(2x) 1$
- ReLU
 - $\circ \max(0,x)$

Universal Approximation Theorem '89

Let $\varphi(x)$ be nonconstant, bounded and monotonically increasing continuous function.

Then for any arepsilon>0 and any continuous function f on $[0,1]^m$ there exists an $N\in\mathbb{N},v_i\in\mathbb{R},b_i\in\mathbb{R}$ and $\pmb{w_i}\in\mathbb{R}^m$, such that if we denote

$$F(oldsymbol{x}) = \sum_{i=1}^N v_i arphi(oldsymbol{w_i} \cdot oldsymbol{x} + b_i)$$

then for all $x \in [0,1]^m$

$$|F(\boldsymbol{x}) - f(\boldsymbol{x})| < \varepsilon.$$

Evolving ReLU Approximation

