Ain Shams University
Faculty of Engineering
Electronics and Communications Department
4th year – Fall 2018

ECE 451 – Communication Systems (2)

Course Mini-Project Implementation of a Digital Modulation

Project Objectives:

- 1. Apply experimentally the theoretical concepts studied in the course.
- 2. Simulate the performance of modulation schemes
- 3. Get familiar with MATLAB as a fundamental tool for communications and signal processing engineering

Project Description:

It is required to implement the following system:

One of the digital modulation techniques will be used in the Mapper design. The channel is modeled as a simple AWGN channel.MATLAB (<u>not SIMULINK</u>) will be used for implementation, without the use of the built-in functions of the communications toolbox.

Requirements

- 1. Generate a random stream of bits and pass it through your modulation scheme. The Signal to Noise ratio (SNR) in dB takes the values {30, 10, 5, 0,-3 dB}.
- 2. Sketch the constellation diagram of the signals at the input and output of the AWGN channel (at the predefined SNR vales).
- 3. Comment on the resultant noisy constellation in part 2.
- 4. Plot the relation between the BER vs. E_b/N_o in dB where E_b is the bit energy and N_o is the noise spectral density. Assume E_b/N_o takes values from -10 dB to 20 dB with step 5 dB, **note:** the BER is measured by comparing the bits detected at the output of the demapper with the transmitted bits.
- 5. Plot the theoretical relation between BER and E_b/N_o in dB for your modulation scheme vs. the simulated one in part 4 and comment.

Deliverables

- 1. All the M-files you used in your simulations.
- 2. A document describing your work and containing the plots mentioned above. You should include any formulas you have used while working and the formulas for the theoretical BER curve.
- 3. Include a cover page with your full name.
- 4. Please note that the document will only be accepted in **PDF** format.

Rules:

- 1. It is not allowed to copy codes from other groups, or from the internet. Otherwise, you will not get a zero, but you will get negative marks.
- 2. Every student in the group should have an equal contribution in the project, and at the same time be aware of the work of all other members.
- 3. Groups will be formed of 5 students, and each groups will randomly be selected to implement on the following techniques:

Group	Modulation Technique
1	QPSK
2	Offset QPSK
3	8-PSK
4	16-PSK
5	32-PSK
6	64-PSK
7	128-PSK
8	256-PSK
9	512-PSK
10	8-QAM
11	16-QAM
12	32-QAM
13	64-QAM
14	128-QAM
15	256-QAM
16	512-QAM
17	BFSK
18	MSK

- 4. The deliverables should be put together in one RAR archive.
- 5. Send your RAR archive to "Rawda.Osama@hotmail.com", The subject must be Dig.Comm.Project and the body of your e-mail should mention your group number.
- 6. The deadline for this assignment is 20/12/2017. Late project will not be accepted.