振动与波 波动光学

振动,机械波 光的干涉、衍射和偏振

狭义相 对论 狭义相对论运动学 狭义相对论动力学

量子力学

量子物理基本原理、精细观测光电器件、量子信息

01 自然界和工程中的振动现象 振动现象在生活中无处不在, 你能想到哪些现象与振动有关?

无人机颤振解体

振动 —— 一个物理量在某一个值的附近作周期性变化

傅科摆——1851年在巴黎伟人祠用长67米的摆做了实验 摆的周期T=16.5 秒,相对地球摆面转过0.05° 经过32小时,摆面转动一周——**地球在自转**!

机械振动

—— 物体在稳定平衡位置作往返运动

思考题

上图中横轴和纵轴代表的是什么?

机械振动

—— 物体在稳定平衡位置作往返运动

简谐振动

—— 物体运动的**位置与时间**关系按**余弦规律**变化 物体运动方程 $x = A\cos(\omega t + \varphi)$

02 简谐振动

一维弹簧振子 —— 物体m做一维运动

弹性力

$$F = -kx$$

弹性力 F = -kx 动力学方程 $m\frac{d^2x}{dt^2} = -kx$

$$\ddot{x} + \omega^2 x = 0$$

$$\ddot{x} + \omega^2 x = 0 \qquad \omega^2 = \frac{k}{m} \quad ----- \quad 圆频率$$

质点的位移

$$x = A\cos(\omega t + \varphi)$$
 —— 简谐运动方程

简谐振动的运动学方程

$$\frac{d^2x}{dt^2} + W^2x = 0$$

$$x = A\cos(\omega t + \varphi)$$
—— 质点的位移

质点的速度

$$U = \frac{dx}{dt} = -WA\sin(Wt + j)$$

$$\upsilon = -\upsilon_{\max} \sin(\omega t + \varphi)$$

质点的加速度

$$a = \frac{d^2x}{dt^2} = -W^2A\cos(Wt + j')$$
$$= -\omega^2 x$$

$$a = -a_{\text{max}} \cos(\omega t + \varphi)$$

描述简谐振动的物理量

简谐振动的运动方程 $x = A\cos(\omega t + \varphi)$

振幅A —— 位移最大值___恒为正

周期7——完成一次全振动所需的时间

$$v = \frac{1}{T} = \frac{\omega}{2\pi}$$

对弹簧振子
$$\omega = \sqrt{\frac{k}{m}}$$

$$T = 2\pi \sqrt{\frac{m}{k}}$$

角频率
$$\omega = 2\pi v$$

$$x = A\cos(\omega t + \varphi)$$

φ — 简谐运动的初相__决定开始运动的状态

 $\omega t + \varphi$ —— 决定任一时刻简谐运动的状态

——简谐运动的相__相位

旋转矢量表示法

任一时刻在X轴上的投影 $x = A\cos(\omega t + \varphi)$

简谐振动的能量

—— 弹簧原长处势能为零

运动方程 $x = A\cos(\omega t + \varphi)$

动能
$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}mA^2\omega^2\sin^2(\omega t + \varphi)$$

势能 $E_p = \frac{1}{2}kx^2 = \frac{1}{2}kA^2\cos^2(\omega t + \varphi)$

机械能 $E = E_k + E_p = \frac{1}{2}kA^2$ 简谐振动系统的总机械能守恒

简谐振动 —— 动能、势能和机械能变化曲线

$$\begin{cases} E_k = \frac{1}{2}mA^2\omega^2 \sin^2(\omega t + \varphi) \\ E_p = \frac{1}{2}kA^2\cos^2(\omega t + \varphi) \end{cases}$$

$$E = E_k + E_p = \frac{1}{2}kA^2$$

常见的简谐振动

▶ 単摆

转过角度6时受到切向力

$$f_t = -mg \sin \theta$$
 角位移很小时 $\theta < 5^0$

$$f_t = -mgq \quad \sin\theta = \theta - \frac{1}{3!}\theta^3 - \dots \approx \theta$$

切向运动方程

$$-mg\theta = m\frac{d\upsilon}{dt} = m\frac{d(l\omega)}{dt} = ml\frac{d^2\theta}{dt^2}$$
$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\theta = 0$$

$$\Rightarrow \omega = \sqrt{\frac{g}{l}}$$

$$\ddot{\theta} + \omega^2 \theta = 0$$

$$\ddot{\theta} + \omega^2 \theta = 0$$

简谐运动的微分方程

例题7-1. 根据下图所示的质点振动曲线,写出振动方程

简谐振动方程 $x = A\cos(Wt + j)$

$$T = 20s$$

$$2\rho \quad \rho$$

$$W = \frac{2p}{T} = \frac{p}{10} rad / s$$

试用旋转矢量法解题

【例题7-2】一物体沿x轴作简谐振动,其速度最大值 $U_m = 3 \cdot 10^{-2} m/s$,

振幅 $A = 2 (10^{-2})$ m,若 t = 2s 时,物体处于平衡位置且向x轴的负方向运动。

求 1)振动周期T; 2)加速度的最大值; 3)振动方程

$$U_{m} = AW$$

$$\langle W = 1.5rad/s \qquad \qquad X_{t=2} = 0.02\cos(1.5 \cdot 2 + j) = 0$$

$$U_{0} = -0.03\sin(1.5 \cdot 2 + j) < 0$$

$$T = \frac{2p}{W} = \frac{4p}{3} = 4.19s$$

$$\cos(3+j) = 0$$

$$\sin \varphi > 0$$

$$\langle a_{m} = AW^{2} = 4.5 \cdot 10^{-2} \text{ m/s}^{2}$$

$$\langle x = 0.02\cos(1.5t + \frac{p}{2} - 3)(SI) \qquad \langle j = \frac{p}{2} - 3 \rangle$$

03 振动的合成

- ——> 同方向、同频率的简谐振动的合成 ★
- ——> 同方向、不同频率的简谐振动的合成
- ——>相互垂直、同频率的简谐振动的合成
- ——>相互垂直、不同频率的简谐振动的合成

1 同方向同频率的两个简谐振动的合成

质点同时参与两个沿水方向独立的同频率的简谐运动

振动 1
$$x_1 = A_1 \cos(\omega t + \varphi_1)$$

振动 2
$$x_2 = A_2 \cos(\omega t + \varphi_2)$$

合成运动
$$x = x_1 + x_2$$

= $A_1 \cos(\omega t + \varphi_1) + A_2 \cos(\omega t + \varphi_2)$

旋转矢量的表示

$$\begin{cases} x_1 = A_1 \cos(\omega t + \varphi_1) \\ x_2 = A_2 \cos(\omega t + \varphi_2) \\ x = A \cos(\omega t + \varphi) \end{cases}$$

$$\begin{cases} A\cos\varphi = A_1\cos\varphi_1 + A_2\cos\varphi_2 \\ A\sin\varphi = A_1\sin\varphi_1 + A_2\sin\varphi_2 \end{cases}$$

振动振幅
$$A = A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)$$

初相
$$\varphi = \arctan \frac{A_1 \sin \varphi_1 + A_2 \sin \varphi_2}{A_1 \cos \varphi_1 + A_2 \cos \varphi_2}$$

振幅
$$A = A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)$$

什么时候振幅最大?

$$\cos(\varphi_2 - \varphi_1) = 1$$
$$\varphi_2 - \varphi_1 = 2k\pi$$

$$A = A_1 + A_2$$

什么时候振幅最小?

$$\cos(\varphi_2 - \varphi_1) = -1$$
$$\varphi_2 - \varphi_1 = (2k+1)\pi$$

$$A = |A_1 - A_2|$$

一质点同时参与了三个简谐振动,它们的振动方程分别为:

$$x_{1} = A\cos(Wt + \frac{p}{3})$$

$$x_{2} = A\cos(Wt + \frac{5p}{3})$$

$$x_{3} = A\cos(Wt + p)$$

—— 合成运动的运动方程为

$$x = 0$$

2 同方向不同频率的两个简谐振动的合成

两个同方向频率不同简谐运动 $\begin{cases} x_1 = A_1 \cos(W_1 t + j_{10}) \\ x_2 = A_2 \cos(W_2 t + j_{20}) \end{cases}$

假设
$$j_{10} = j_{20} = 0$$

$$x = x_1 + x_2$$

$$= A_1 \cos \omega_1 t + A_2 \cos \omega_2 t$$

$$A = \int A_1^2 + A_2^2 + 2A_1A_2\cos(\omega_2 t - \omega_1 t)$$

—— 合成运动振幅随时间变化

—— 不是简谐运动

令
$$A_1 = A_2 = A_0$$

$$x = A_0 \cos \omega_1 t + A_0 \cos \omega_2 t$$

$$= 2A_0 \cos \frac{(\omega_2 - \omega_1)t}{2} \times \cos \frac{(\omega_2 + \omega_1)t}{2}$$
令
$$\omega_2 + \omega_1 \ge |\omega_2 - \omega_1|$$

$$A = 2A_0 \left|\cos \frac{(\omega_2 - \omega_1)t}{2}\right|$$
— 缓慢变化

—— 合成振动近似为谐振动__产生"拍"效应

$$\begin{cases} x_1 = A_0 \cos(W_1 t + j_{10}) \\ x_2 = A_0 \cos(W_2 t + j_{20}) \\ |W_2 - W_1| << W_1, W_2 \end{cases} \begin{cases} x = A \cos(\frac{W_2 + W_1}{2} t + \frac{j_{20} + j_{10}}{2}) \\ A = 2A_0 \left| \cos(\frac{W_2 - W_1}{2} t + \frac{j_{20} - j_{10}}{2}) \right| \end{cases}$$

$$\omega_{\dot{\mathsf{H}}} = |\omega_2 - \omega_1|$$

$$v_{\dot{\mathsf{H}}} = |v_2 - v_1|$$

$$v_{\dot{\mathsf{H}}} = |v_2 - v_1|$$

$$v_{\dot{\mathsf{H}}} = |v_2 - v_1|$$

XCH004 014

合成振动近似为谐振动 —— 产生"拍"效应

Formation of Beats

作业: W1 简谐振动

- 3 相互垂直的简谐振动的合成
 - 1 同频率相互垂直的两个简谐振动的合成

$$\mathbf{x}$$
 轴方向 $x = A_1 \cos(\omega t + \varphi_1)$ 消去时间 \mathbf{y} 轴方向 $y = A_2 \cos(\omega t + \varphi_2)$

$$\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} - \frac{2xy}{A_1A_1}\cos(\varphi_2 - \varphi_1) = \sin^2(\varphi_2 - \varphi_1)$$

- —— 合成运动轨迹方程
- ——椭圆方程

$$\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} - \frac{2xy}{A_1 A_1} \cos(\varphi_2 - \varphi_1) = \sin^2(\varphi_2 - \varphi_1)$$

1)
$$\triangleq \varphi_2 - \varphi_1 = 0$$
 $y = \frac{A_2}{A_1}x$

2)
$$\Rightarrow \varphi_2 - \varphi_1 = \pi$$

$$y = -\frac{A_2}{A_1}x$$

—— 24象限

$$\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} - \frac{2xy}{A_1 A_1} \cos(\varphi_2 - \varphi_1) = \sin^2(\varphi_2 - \varphi_1)$$

3)
$$\triangleq \varphi_2 - \varphi_1 = \frac{\pi}{2}$$

4)
$$\triangleq \varphi_2 - \varphi_1 = \frac{3\pi}{2}$$

$$\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} = 1$$
 — 逆时针 — 运动被限制在一个矩形范围内

$$\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} - \frac{2xy}{A_1 A_1} \cos(\varphi_2 - \varphi_1) = \sin^2(\varphi_2 - \varphi_1)$$

5) 初相差/₂ - /₁ 为任意值

—— 轨迹为斜椭圆

4 不同频率相互垂直的两个简谐振动的合成

—— 合成运动轨迹与两个频率 及初相差均有关

$$\begin{cases} x = A_1 \cos(\omega_1 t + \varphi_1) \\ y = A_2 \cos(\omega_2 t + \varphi_2) \end{cases}$$

$$\begin{cases} \omega_1 : \omega_2 = 2 : 1 \\ \varphi_1 = 0 \end{cases}$$
$$\varphi_2 = \frac{\pi}{4}$$

——运动轨迹为李萨如图形

$$\begin{cases} x = A_1 \cos(\omega_1 t + \varphi_1) \\ y = A_2 \cos(\omega_2 t + \varphi_2) \end{cases}$$

$$\begin{cases} \omega_1 : \omega_2 = 2 : 1 \\ \varphi_1 = 0 \\ \varphi_2 = \pi / 4 \end{cases}$$

$$\begin{cases} \omega_1 : \omega_2 = 2 : 1 \\ \varphi_1 = 0 \\ \varphi_2 = 7\pi / 4 \end{cases}$$

$$\begin{cases} \omega_1 : \omega_2 = 3:1 \\ \varphi_1 = 0 \end{cases}$$
$$\varphi_2 = \frac{1}{4}\pi$$

$$\begin{cases} x = A_1 \cos(\omega_1 t + \varphi_1) \\ y = A_2 \cos(\omega_2 t + \varphi_2) \end{cases}$$

两个频率不同__相互垂直简谐振动的合成 —— 李萨如图形

$$\begin{cases} x = A_1 \cos(\omega_1 t + \varphi_1) \\ y = A_2 \cos(\omega_2 t + \varphi_2) \end{cases}$$

$$\begin{cases} \omega_1 : \omega_2 = 2 : 1 \\ \omega_1 : \omega_2 = 3 : 1 \\ \omega_1 : \omega_2 = 3 : 2 \end{cases}$$

