浙江水学

本科实验报告

课程名称:		数字逻辑设计				
姓	名:	沈一芃				
学	院:	计算机学院				
	系:	计算机系				
专	业:	计算机科学与技术				
学	号:	3220101827				
指导教师:		马德				

2023年11月13日

浙江大学实验报告

课程名称: 数字逻辑设计	实验类型: _ ISE 电路设计
实验项目名称: 多路选择器设计与应用	
学生姓名: 沈一芃 专业: 计算机科学与技术	学号: 322010827
同组学生姓名: <u>无</u> 指导	老师: _马德
实验地点: 东 4 509 实验	日期: 2023 年 11 月 13 日

一、 实验目的和要求:

- 掌握一位全加器的工作原理和逻辑功能
- 掌握串行进位加法器的工作原理和进位延迟
- 掌握减法器的实现原理
- 掌握加减法器的设计方法
- 掌握 ALU 基本原理及在 CPU 中的作用
- 掌握 ALU 的设计方法

二、实验内容和原理

- 1. 实验内容:
- 原理图方式设计 4 位加减法器
- 实现 4 位 ALU 及应用设计

2. 实验原理:

- 1位全加器
 - 三个输入位: 数据位 Ai 和 Bi, 低位进位输入 Ci
 - 二个输出位: 全加和 Si, 进位输出 Ci+1

A_i	\boldsymbol{B}_{i}	C_i	S_i	C 1+1		X CICIC CALC
0	0	0	0	0		Adder ib
0	0	1	1	0		² :::::
0	1	0	1	0		A
0	1	1	0	1		
1	0	0	1	0		:
1	0	1	0	1		s ::::::::::::::::::::::::::::::::::::
1	1	0	0	1	- Tale -	
1	1	1	1	1		

• 多位串行进位加法器 由一位全加器将进位串接构成 低位进位 CO 为 O, Ci 为高位进位输出

• 1位加减法器

用负数补码加法实现,减数当作负数求补码 用"异或"门控制求反,低位进位C0为1 其余用正常加法器实现

多位串行进位全减器 用负数补码加法实现,减数当作负数求补码 用"异或"门控制求反,低位进位 CO 为 1 其余共用加法器实现

• ALU 设计

两个 4 位操作数 A(3:0), B(3:0)

S(1:0) 是 ALU 的功能选择引脚,分别选择选择加、减、与、或操作

- S(1:0) = 00: C = A + B S(1:0) = 01: C = A B
- \blacksquare S(1:0) = 10: C = A & B
- \blacksquare S(1:0) = 11: C = A | B

ALU 计算得到进位 Co 和结果 C(3:0)

三、 主要仪器设备

实验设备:

• 装有 Xilinx ISE 14.7 的计算机 1台

1 套

• SWORD 开发板

四、操作方法与实验步骤

1. 数据选择器设计

- 工程名称用 MyAdder。

 Top Level Source Type 用 Schametic
- 新建源文件
 类型是 Schematic,文件名称用 AddSub1b。
 原理图方式进行设计

- 创建 symbol
- 新建源文件
 类型是 Schematic, 文件名称用 AddSub4b
 右键设为 "Set as Top Module"
- 原理图方式进行设计,调用前面设计的 AddSub1b

2. 计分板设计

• 新建工程

工程名称用 MyALU。Top Level Source Type 用 HDL

• 新建源文件

类型是 Verilog, 文件名 Top。右键设为"Set as Top Module"

• 设计顶层模块

• 设计 CreateNumber 模块

• 设计时钟计数分频器,并建立 DispNum 模块

• 建立按键防抖模块

```
21 module pbdebounce(
22    input wire clk_lms,
23    input wire button,
24    output reg pbreg
25    );
26
27    reg [7:0] pbshift;
28
29    always@(posedge clk_lms) begin
30    pbshift=pbshift<<1;
31    pbshift[0]=button;
32    if(pbshift==8'b0)
33         pbreg=0;
34    if(pbshift==8'hFF)
35         pbreg=1;
36    end
37
38    endmodule</pre>
```

• 建立 andb4 模块与 orb4 模块

· ALU 模块如下:

• ALU 波形仿真如下:

Name	Value	0 ns	20 ns	1,,,,,	40 ns		60 ns	80 ns	100 ns	120 ns	140 ns	liiii	160 ns	180 ns	200 ns	220 ns	240 ns
C[3:0]	0000		0000				1101			0111			0010			10	!!
¼ o	0																
▶ 💐 S[1:0]	00				0	0				01			10			1	
▶ 😽 B[3:0]	0000		0000										0011				
▶ 📉 A[3:0]	0000		0000										1010				

• 总体文件结构如下:

- 建立约束文件, 生成执行文件
- 下载 bit 文件至 sword 板,根据真值表进行功能验证。

五、 实验数据记录和处理

1. ALU 设计如下:

实验截图如下:

六、 实验结果与分析

1. 数据选择器设计

0000	0000	0000	0000
按动 btnl	B+1	0101	正确
按动 btn0	A+1	1102	正确
00加	0100+0111	1011	B 正确
01 减	0100-0111	1101	D 正确
10 与	0100&0111	0100	4 正确
11 或	0100 0111	0111	7 正确

功能正确。设计正确。

七、讨论、心得

本次实验我理解了一位全加器的工作原理和逻辑功能,并就此搭建四位全加器。并在此基础上搭建了一位减法器和四位减法器。最终用上述模块搭建出自己的 ALU。

全加器是数字电路中的基本组件,它能够实现两个二进制数的加法运算,并 考虑到进位的影响。全加器不仅可以用于加法运算,还可以通过一些简单的修改 用于实现减法、乘法等其他运算。

通过对全加器的简单修改,我实现一个减法器,即:将减数取反并加1(即求其二进制补码),然后将其与被减数输入到全加器中,从而实现减法运算。这种方法不仅简化了减法器的设计,还使得我们可以使用同样的硬件来实现加法和减法运算。

最后,我还学习了 ALU (算术逻辑单元) 的基本原理及在 CPU 中的作用,以及 ALU 的设计方法。ALU 是计算机中的核心组件,它负责执行所有的算术运算和逻辑运算。在这个部分的实验中,我设计并实现了一个 4 位的 ALU。这个 ALU 可以执行加法、减法、与运算、或运算。

总的来说,这次实验让我深入理解了数字电路的基本原理和设计方法,对我 今后的学习和研究将会有很大的帮助。我期待着在未来的实验中,能够设计和实 现更为复杂的数字电路。

实验日期: 2023.11.13