MML minor #1

Метод опорных векторов. Ядра.

Повторение: задача классификации

$$D = \{(x_i, y_i)\}_{i=1}^N$$
 — набор данных $x_i \in \mathbb{R}^n$ — признаки $y_i \in \{+1, -1\}$ — ответы

$$a(x;\mu)$$
 — алгоритм классификации μ — параметры алгоритма

$$L(D,\mu) = \frac{1}{N} \sum_{i=1}^{N} \left[a(x_i,\mu) \neq y_i \right]$$
 — ошибка алгоритма

$$\hat{\mu} = \arg\min_{\mu} L(D, \mu)$$
 — обучение алгоритма

Однозначно ли выбирается $\hat{\mu}$?

Повторение: линейный классификатор

$$h(x) = w^T x + b = w_1 x_1 + w_2 x_2 + \ldots + w_n x_n + b$$

$$h(x) = 0$$
 — гиперплоскость

$$a(x; \mu) = \begin{cases} +1, & h(x) > 0; \\ -1, & h(x) < 0. \end{cases}$$

$$\mu = (w, b)$$
 w — вектор весов
 b — смещение (bias)

Повторение: линейный классификатор

Нормаль гиперплоскости

 a_1, a_2 — две произвольные точки на гиперплоскости $h(x) = w^T x + b$.

$$h(a_1) = w^T a_1 + b = 0$$
$$h(a_2) = w^T a_2 + b = 0$$
$$w^T (a_1 - a_2) = 0$$

 $(a_1 - a_2)$ — вектор в гиперплоскости w — нормаль к гиперплоскости

Расстояние от гиперплоскости

Пусть $x \in \mathbb{R}^n$ — произвольная точка.

Обозначим x_P — ее проекция на гиперплоскость h, r — расстояние от x до гиперплоскости (со знаком)

$$x = x_P + r \frac{w}{\|w\|}$$

Как выразить r через параметры h?

Расстояние от гиперплоскости

$$x = x_P + r \frac{w}{\|w\|}$$

$$h(x) = w^{T} \left(x_{P} + r \frac{w}{\|w\|} \right) + b = w^{T} x_{P} + b + r \frac{w^{T} w}{\|w\|} =$$
$$= h(x_{P}) + r \|w\| = r \|w\|$$

$$r = \frac{h(x)}{\|w\|}$$
 $|r| = yr = \frac{yh(x)}{\|w\|}$

Отступ классификатора

$$D = \{(x_i, y_i)\}_{i=1}^N$$
 — набор данных

$$\delta^* = \min_{x_i} |r_i| = \min_{x_i} \frac{y_i h(x_i)}{\|w\|}$$

 δ^* — отступ (margin) классификатора

Вектора, на которых достигается минимальное расстояние, называются опорными.

Зачем придумали отступ?

Зачем нам отступ?

$$\delta^* = \min_{x_i} |r_i| = \min_{x_i} \frac{y_i h(x_i)}{\|w\|}$$

$$\delta^* \to \max_w$$

Почему хотим большой отступ

Здесь отступ больше. Меньше ошибка на тесте!

Каноническая гиперплоскость

$$h(x) = w^T x + b \qquad h'(x) = cw^T x + cb$$

Уравнения задают одну и ту же гиперплоскость

Пусть x_k — опорный вектор. Выберем w, b так, чтобы

$$y_k h(x_k) = 1$$

Тогда

$$r_k = \frac{y_k h(x_k)}{\|w\|} = \frac{1}{\|w\|}$$

(для всех опорных векторов)

Опорные вектора и отступ

SVM (линейная разделимость)

 $D = \{(x_i, y_i)\}_{i=1}^N$ — обучающая выборка (линейно разделимая)

Классификатор:

$$a(x; w, b) = \begin{cases} +1, & w^T x + b \ge 0; \\ -1, & w^T x + b < 0. \end{cases}$$

Задача

$$\max_{w,b} \frac{1}{\|w\|}$$
 при условии $y_i(w^T x_i + b) \geqslant 1.$ $i = 1, \dots, N.$

SVM (линейная разделимость)

 $D = \{(x_i, y_i)\}_{i=1}^N$ — обучающая выборка (линейно разделимая)

Классификатор:

$$a(x; w, b) = \begin{cases} +1, & w^T x + b \ge 0; \\ -1, & w^T x + b < 0. \end{cases}$$

Задача

$$\min_{w,b} \|w\|^2$$
 при условии $y_i(w^Tx_i+b)\geqslant 1.$ $i=1,\ldots,N.$

Отсутствие линейной разделимости

Не существует решений для

$$y_i(w^T x_i + b) \geqslant 1, \quad i = 1, \dots, N.$$

Разрешим некоторым объектам нарушать условие

$$y_i(w^T x_i + b) \geqslant 1 - \xi_i, \qquad \xi_i \geqslant 0,$$

 $i = 1, \dots, N.$

- $\xi_i = 0$ обычный объект
- $0 < \xi_i \le 1$ объект попадает в отступ, но классифицируется верно
- $\xi_i > 1$ объект классифицируется неверно

Штрафы ξ

07/09/2017

16

SVM (Общий случай)

Первая попытка:

$$\min_{w,b} \|w\|^2$$
 при условии $y_i(w^Tx_i+b)\geqslant 1-\xi_i, \quad \xi_i\geqslant 0.$ $i=1,\ldots,N.$

Проблема: будет большая ошибка классификации.

SVM (Общий случай)

$$\min_{w,b} \|w\|^2 + C \sum_{i=1}^N \xi_i$$
 при условии $y_i(w^T x_i + b) \geqslant 1 - \xi_i, \quad \xi_i \geqslant 0.$ $i = 1, \dots, N.$

C — параметр регуляризации

- $C \to 0$ сильная регуляризация, слабо учитываются данные
- $C \to \infty$ слабая регуляризация, настройка на данные

Эффект регуляризации

А как быть тут?

Как добиться линейной разделимости?

Расширение признаков

Как добиться линейной разделимости? Ответ: нужно добавить нелинейные признаки.

x — исходные признаки $\varphi(x)$ — расширенные признаки.

Примеры для $x = (x_1, x_2)$:

- $\varphi(x) = (x_1, x_2, x_1^2, x_2^2, x_1 x_2)$
- $\varphi(x) = (x_1, x_2, \ln x_1, \ln x_2)$

Проблемы при большом числе признаков:

- Вычислительная сложность
- Проклятие размерности

Преобразуем задачу SVM

Исходная задача

$$\min_{w,b} ||w||^2 + C \sum_{i=1}^{N} \xi_i$$

$$y_i(w^T x_i + b) \geqslant 1 - \xi_i, \quad i = 1, \dots, N$$

$$\xi_i \geqslant 0, \quad i = 1, \dots, N$$

Исходная решающая функция

$$h(z) = w^T z + b$$

Двойственная задача

• Будем искать решение в виде
$$\mathbf{w} = \sum_{j=1}^N lpha_j y_j \mathbf{x}_j$$

Подставим в решающую функцию

$$f(x) = \left(\sum_{j=1}^{N} \alpha_j y_j \mathbf{x}_j\right)^{\top} \mathbf{x} + b = \sum_{j=1}^{N} \alpha_j y_j \left(\mathbf{x}_j^{\top} \mathbf{x}\right) + b$$

• Выразим $||w||^2$

$$||\mathbf{w}||^2 = \left\{ \sum_j \alpha_j y_j \mathbf{x}_j \right\}^\top \left\{ \sum_k \alpha_k y_k \mathbf{x}_k \right\} = \sum_{jk} \alpha_j \alpha_k y_j y_k (\mathbf{x}_j^\top \mathbf{x}_k)$$

• Еще несколько шагов...

Двойственная задача

Преобразованная задача

$$\max_{\alpha} \left(\sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \underline{x_{i}^{T} x_{j}} \right)$$

$$0 \leqslant \alpha_{i} \leqslant C, \quad i = 1, \dots, N$$

$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

Преобразованная решающая функция

$$h(z) = \sum_{\alpha_i > 0} \alpha_i y_i \underline{x_i^T z} + \underset{i, 0 < \alpha_i < C}{\operatorname{average}} \left(y_i - \sum_{\alpha_j > 0} \alpha_j y_j \underline{x_j^T x_i} \right)$$

Двойственная задача

Преобразованная задача

$$\max_{\alpha} \left(\sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \underline{x}_{i}, \underline{x}_{j} \rangle \right)$$

$$0 \leqslant \alpha_{i} \leqslant C, \quad i = 1, \dots, N$$

$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

Преобразованная решающая функция

$$h(z) = \sum_{\alpha_i > 0} \alpha_i y_i \langle \underline{x_i, z} \rangle + \underset{i, 0 < \alpha_i < C}{\operatorname{average}} \left(y_i - \sum_{\alpha_j > 0} \alpha_j y_j \langle \underline{x_j, x_i} \rangle \right)$$

Трюк с ядром

Преобразованная задача

$$\max_{\alpha} \left(\sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\underline{x_{i}, x_{j}}) \right)$$

$$0 \leqslant \alpha_{i} \leqslant C, \quad i = 1, \dots, N$$

$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

Преобразованная решающая функция

$$h(z) = \sum_{\alpha_i > 0} \alpha_i y_i K(\underline{x_i, z}) + \underset{i, 0 < \alpha_i < C}{\operatorname{augen}} \left(y_i - \sum_{\alpha_j > 0} \alpha_j y_j K(\underline{x_j, x_i}) \right)$$

Расширение признаков и ядра

x — исходные признаки $\varphi(x)$ — расширенные признаки.

$$K(x,y) = \langle \varphi(x), \varphi(y) \rangle$$
 — ядро.

Норма

$$\|\varphi(x)\|^2 = \langle \varphi(x), \varphi(x) \rangle = K(x, x)$$

Расстояние

$$\rho(\varphi(x), \varphi(y))^{2} = \|\varphi(x) - \varphi(y)\| =$$

$$= \langle \varphi(x) - \varphi(y), \varphi(x) - \varphi(y) \rangle =$$

$$= \langle \varphi(x), \varphi(x) \rangle + \langle \varphi(y), \varphi(y) \rangle - 2\langle \varphi(x), \varphi(y) \rangle =$$

$$= K(x, x) + K(y, y) - 2K(x, y).$$

Будем работать только с ядрами

Идея: работать только с ядрами.

Пример

$$x = (x_1, x_2)$$

$$\varphi(x) = (x_1^2, x_2^2, \sqrt{2} x_1 x_2)$$

$$K(x,y) = \langle \varphi(x), \varphi(y) \rangle =$$

= $x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 y_1 x_2 y_2 = (x_1 y_1 + x_2 y_2)^2 = \langle x, y \rangle^2$

А нужно ли в явном виде задавать $\varphi(x)$?

Скорость работы

Ядра работают быстрее, чем честный расчет новых признаков $\phi(x)$ и вычисление скалярного произведения на них

Другие ядра

Другие ядра

- \bullet $K(x,y)=\langle x,y
 angle^d$ полиномиальное ядро
- \bullet $K(x,y)=(\langle x,y\rangle+1)^d$ полиномиальное ядро
- \bullet $K(x,y)=e^{-\|x-y\|^2}$ гауссовское ядро

Как составлять ядра

Стандартные ядра

- K(x,y) = 1
- $K(x,y) = \langle x,y \rangle$
- $K(x,y) = e^{-\|x-y\|^2}$
- $K(x,y) = e^{-\|x-y\|}$

Преобразование ядер

- $K(x,y) = K_1(x,y)K_2(x,y)$
- $K(x,y) = C_1K_1(x,y) + C_2K_2(x,y)$

SVM с полиномиальным ядром

SVM with a polynomial Kernel visualization

> Created by: Udi Aharoni

$$\varphi(x) = (x_1, x_2, x_1^2 + x_2^2)$$

Вернемся к примеру

Применим ядровой SVM

$$X_1 = x_1^2$$
 $X_2 = x_2^2$
 $X_3 = \sqrt{2}x_1x_2$
 $K(x, y) = \langle x, y \rangle^2$

Результат

Ядра для строк

```
S — некоторая последовательность «слов» (например, текст или последовательность ДНК)
```

Возможные признаки (например, S = «dog and cat and cow»)

- Сколько раз встретилось каждое слово (dog: 1, and: 2, cat: 1, cow: 1)
- Сколько раз встретились последовательности слов длины d («dog and»: 1, «and cat»: 1, ..., «cow and»: 0, ...)

Ядра для строк

• Ядро: скалярное произведение на счетчиках последовательностей длины 2

$$A = \text{``dog and cat and cow"}$$

 $B = \text{``cat and cat and cat"}$

• $K(A,B) = ("and cat") 1 \times 2 + ("cat and") 1 \times 2 = 4$

Преимущества и недостатки SVM

Преимущества

- Достаточно эффективное решение
- Высокая обобщающая способность

Недостатки

- Не очень высокая устойчивость к шуму Опорные вектора могут быть шумовыми
- ullet Непонятно, как выбирать C Обычно выбирается кросс-валидацией
- Нет рецепта как выбирать ядра под задачу

Ссылки

- https://github.com/esokolov/ml-course-hse/blob/master/2016-spring/lecture-notes/lecture16-kernels.pdf Вывод двойственной задачи SVM в §2.2
- http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf Хорошие слайды про SVM
- https://blog.statsbot.co/support-vector-machines-tutorial-c1618e635e93
 Блог пост про SVM с анимациями
- https://www.youtube.com/watch?v=3liCbRZPrZA Видео про полиномиальное ядро