Digital Logic Design

Lecture 13

Buffer

• A buffer is a gate with the function F = X:

- In terms of Boolean function, a buffer is the same as a connection!
- So why use it?
 - A buffer is an electronic amplifier used to improve circuit voltage levels and increase the speed of circuit operation.

Design a circuit that accepts 3-bit number and generates a 6 bit binary number equal to square of the given number

A	В	C
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

S5	S4	S3	S2	S1	S0
0	0	0	0	0	0
0	0	0	0	0	1
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	1	0	0
1	1	0	0	0	1

K-map for S0:

0	1	1	0
0	1	1	0

S0 = C

	A BC					
K-map for S2:		0	0	0	1	ca po
		0	0	0	1	S2 = BC'
	A BC					
K-map for S3:		0	0	1	0	S3 = AB'C + A'BC
		0	1	0	0	
	A BC					
K-map for S4:		0	0	0	0	S4 = AB' + AC
		1	1	1	0	
	A BC					
K-map for S5:		0	0	0	0	
		0	0	1	1	S5 = AB

- The design of a combinational circuit starts from the verbal specifications of a required function and ends with a set of output Boolean functions or a logic diagram.
- The analysis of a combinational circuit is somewhat the reverse process.
- It starts with a given logic diagram and ends with a set of Boolean functions, a truth table or a verbal explanation of the circuit operation.

• Boolean Expression Approach

A B C	F_1	F_2
0 0 0	0	0
	·	

A B C	F_1	F_2
0 0 0	0	0
0 0 1	1	0

A B C	F_1	F_2
0 0 0	0	0
0 0 1	1	0
0 1 0	1	0

A B C	F_1	F_2
0 0 0	0	0
0 0 1	1	0
0 1 0	1	0
0 1 1	0	1

\boldsymbol{A}	В	<i>C</i>	F_1	F_2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
			·	

\boldsymbol{A}	B	\boldsymbol{C}	F_1	$\boldsymbol{F_2}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1

A B C	F_1	F_2
0 0 0	0	0
0 0 1	1	0
0 1 0	1	0
0 1 1	0	1
1 0 0	1	0
1 0 1	0	1
1 1 0	0	1

$$F_1 = AB'C' + A'BC' + A'B'C + ABC$$

$$F_2 = AB + AC + BC$$

Code Converter

- The availability of a large variety of codes for the same discrete elements of information results in the use of different codes by different digital systems.
- It is sometimes necessary to use the output of one system as the input to another.
- A code conversion circuit must be inserted between the two systems if each uses different codes for the same information.
- Thus, a code converter is a circuit that makes the two systems compatible even though each uses a different binary code.

Contd.

- To convert from binary code A to binary code B, the input lines must supply the bit combination of elements as specified by code A and the output line must generate the corresponding bit combination of code B.
- A combinational circuit perform this transformation by means of logic gates.
- The design procedure of code converters will be illustrated by means of a specific example of conversion from the BCD to the excess-3 code.

Design Procedure:

Given a problem statement:

- Determine the number of inputs and outputs
- Derive the truth table
- Simplify the Boolean expression for each output
- Produce the required circuit

Example:

Design a circuit to convert a "BCD" code to "Excess 3" code

BCD-to-Excess 3 Converter

A B C D	w x y z
0 0 0 0	0 0 1 1
0 0 0 1	0 1 0 0
0 0 1 0	0 1 0 1
0 0 1 1	0 1 1 0
0 1 0 0	0 1 1 1
0 1 0 1	1 0 0 0
0 1 1 0	1 0 0 1
0 1 1 1	1 0 1 0
1 0 0 0	1 0 1 1
1 0 0 1	1 1 0 0
1 0 1 0	X X X X
1 0 1 1	X X X X
1 1 0 0	X X X X
1 1 0 1	X X X X
1 1 1 0	X X X X
1111	X X X X

BCD-to-Excess 3 Converter

A B C D	w x y z
0 0 0 0	0 0 1 1
0 0 0 1	0 1 0 0
0 0 1 0	0 1 0 1
0 0 1 1	0 1 1 0
0 1 0 0	0 1 1 1
0 1 0 1	1 0 0 0
0 1 1 0	1 0 0 1
0 1 1 1	1 0 1 0
1 0 0 0	1 0 1 1
1 0 0 1	1 1 0 0
1 0 1 0	X X X X
1 0 1 1	X X X X
1 1 0 0	X X X X
1 1 0 1	X X X X
1 1 1 0	X X X X
1111	X X X X

$$w = A + B(C+D)$$
 $y = (C+D)' + CD$
 $x = B'(C+D) + B(C+D)'$ $z = D'$

Gray to Binary Code

- Design a circuit to convert a 3-bit Gray code to a binary code
- The formulation gives the truth table on the right
- It is obvious from this table that X = A and the Y and Z are more complex

Gray A B C	Binary X Y Z
0 0 0	0 0 0
0 0 1	001
011	010
010	011
110	100
111	101
101	110
100	111

Seven-Segment Decoder

- A digital or binary decoder is a digital combinational logic circuit which can convert one form of digital code into another form.
- BCD to 7-segment display decoder is a special decoder which can convert binary coded decimals into another form which can be easily displayed through a 7-segment display.

BCD

- BCD stands for binary coded decimal.
- It is a digital numbering system in which we can represent each decimal number using 4 bits of binary numbers.
- There are 10 digits in the decimal system. To represent all 10 digits we need 10 combinations of 4 binary bits.

7-Segment Display

- It is a digital device that can be used for displaying decimal number, alphabets, and characters.
- 7-Segment display contains 7 LED segments arranged in a shape given in figure.
- Generally, there are 8 input pins in a 7-Segment display.
- 7 input pins for each of the 7 LEDs and one pin for the common terminal.

Seven-Segment Decoder

w x y z	abcdefg
0 0 0 0	1111110
0 0 0 1	0110000
0 0 1 0	1101101
0 0 1 1	1111001
0 1 0 0	0110011
0 1 0 1	1011011
0 1 1 0	1011111
0 1 1 1	1110000
1 0 0 0	1111111
1 0 0 1	1111011
1 0 1 0	XXXXXXX
1 0 1 1	XXXXXXX
1 1 0 0	XXXXXXX
1 1 0 1	XXXXXXX
1 1 1 0	XXXXXXX
1111	XXXXXXX

Why we need this decoder?

- A digital system like a computer can understand and easily read a large number in binary format.
- However, a human cannot read large binary numbers.
- To solve this problem we need to display it as a decimal digit using 7segment display.