Ensemble Complex | CM: 7

Par Lorenzo

18 octobre 2024

Définition 0.1. Soient E et F deux ensembles arbitraires On dit que E et F ont même cardinal s'il existe une bijection entre E et F.

Soit E un ensemble. On dit que E est dénombrable s'il existe une injection de E dans $\mathbb N$

Proposition 0.1.

 $\mathbb{N}^*, \mathbb{Z}, \mathbb{N}^2, \mathbb{Q}, \mathbb{N}^n$ sont dénombrables. $\mathbb{R}, P(\mathbb{N})$ ne sont pas dénombrables $P(\mathbb{N})$ et \mathbb{R} ont même cardinal.

1 Relation et permutations

Définition 1.1. Soit E un ensemble non vide. Une relation binaire R sur E est la donnée d'une application $E \times E \to Vrai$, Faux.

On dit que x est en relation avec y lorsque l'image de (x, y) par l'application est "Vrai" et on note alors xRy

Remarques 1.1.

Définition 1.2. Soit E un ensemble non vide et R une relation binaire sur E. On dit que R est

réflexive lorsque $\forall x \in E, xRx$

 $sym\acute{e}trique\ lorsque\ \forall (x,y)\in E^2, xRy\iff yRx$

antisymétrique lorsque $\forall (x,y) \in E^2, (xRy \land yRx) \implies x = y$

transitive lorsque $\forall (x, y, z) \in E^3, xRy \land yRz \implies xRz$

Définition 1.3. Soit R une relation sur un ensemble E. On dit que R est une relation d'équivalence si elle est réflexive, symétrique et transitive.

Définition 1.4. Soit $E \neq \emptyset$ un ensemble muni d'une rel. d'équivalence R.

Soit $x \in E$.

On appelle classe d'équivalence modulo R de x et on note \overline{x} l'ensemble $\{x \in E, xRy\}$.

Théorème 1.1. L'ensemble des classes d'équivalence de E modulo R forme une partition de E.

Démonstration 1.1.

Définition 1.5. L'ensemble des classes d'équivalence de E modulo R s'appelle l'ensemble quotient de E par R. On le note E/R.

Définition 1.6. Soit R une relation sur un ensemble E.

On dit que R est une relation d'ordre si elle est réflexive, antisymétrique et transitive. Notée souvent \leq cursif. On dit que (E, \leq) est un ensemble ordonné.

Relation d'ordre totale lorsque R est complète $(\forall x, y \in E, (xRy \lor yRx))$

Définition 1.7. Soit (E, \preceq) ensemble ordonné. Soit $A \in P(E)$. On dit que

A admet un minimum lorsque

$$\exists a_0 \in A, \forall A, a_0 \leq a \ On \ note \ min(A) := a_0$$

A admet un maximum lorsque

$$\exists a_0 \in A, \forall a \in A, a \leq a_0 \ On \ note \ max(A) := a_0$$

A est minoré lorsque

$$\exists m \in E, \forall a \in A, m \preccurlyeq a$$

Remarques 1.2. Si A admet un minimum (resp. un maximum) alors A est minoré (resp. majoré)

Remarques 1.3. Si A admet un minimum (resp. maximum), il est unique.

Proposition 1.1.

Soit E un ensemble muni d'une relation d'ordre totale \leq . Soit $A \in P(E)$ un ensemble fini non-vide. Alors A admet un minimum et un maximum.