1. Opposé d'un vecteur

Définition. – On a représenté ci-dessous un vecteur \overrightarrow{u} et son opposé, noté $-\overrightarrow{u}$.

Remarque. – De façon intuitive, le vecteur \overrightarrow{u} donne l'idée d'un déplacement. Le vecteur $-\overrightarrow{u}$ donne l'idée du déplacement « contraire » : il a la même direction et la même longueur que le vecteur \overrightarrow{u} mais est de sens contraire.

Exemple. – Sur la figure ci-dessous, un vecteur \overrightarrow{AB} est représenté. Représenter le vecteur opposé au vecteur \overrightarrow{AB} (c'est-à-dire le vecteur $-\overrightarrow{AB}$).

Remarque. – L'opposé du vecteur \overrightarrow{AB} est le vecteur \overrightarrow{BA} .

Exemple. – Sur la figure ci-dessous, représenter les vecteurs $-\overrightarrow{u}$ $et - \overrightarrow{V}$:

2. PRODUIT D'UN VECTEUR PAR UN NOMBRE (RÉEL)

Définition. – Soient \overrightarrow{u} un vecteur et k un nombre (réel).

- Si $\overrightarrow{u} = \overrightarrow{0}$ ou k = 0, alors le vecteur $k \overrightarrow{u}$ est le vecteur nul.
- Sinon, le vecteur $k \overrightarrow{u}$ est le vecteur ayant :
 - la même direction que \overrightarrow{u} ;
 - le même sens que \overrightarrow{u} si k > 0 (le sens contraire si k < 0);
 - une longueur égale à |k| fois la longueur de \overrightarrow{u} .

Exemple. – Sur la figure suivante, deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont représentés. Représenter les vecteurs $2\overrightarrow{u}$ et $-3\overrightarrow{v}$.

3. MILIEU D'UN SEGMENT

Proposition. – Le point M est le milieu du segment [AB] si, et seulement si, $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{O}$.

Exercice. – Réaliser une figure pour illustrer la proposition précédente.

6 / 6