EJERCICIO REPARACION

D A T O S

Temperatu ra	Vibracione s	Horas Funcionan do	Anterior Revisión	Fallo
55	Si	500	55	Si
23	No	30	17	No
45	No	1500	72	No
47	No	650	43	No
32	Si	700	58	No
35	Si	2500	93	Si
50	Si	150	21	Si
53	Si	550	50	Si
21	No	35	12	No
47	No	1200	75	No
43	No	750	51	No
35	Si	68o	63	No
30	Si	2300	87	Si
52	Si	180	23	Si

Entropía Inicial En La Raíz Del Árbol

```
P(Fallo) = 6 / 14
```

P(No Fallo) = 8/14

 $E(Raiz) = -6/4 \log 6/14 - 8/14 \log 8/14 = 0.5238 + 0.4613 = 0.9851$

Entropía Final Clasificando Según El Atributo Temperatura

 $E_{Temperatura}(Raiz) = P(21-38)*E(21-38)+P(38-55)*E(38-55)$

$$P(21-38) = 6/14$$

$$E(21-38) = -2/6 \log 2/6 - 4/6 \log 4/6 = 0.5283 + 0.3899 = 0.9182$$

$$P(38-55) = 8/14$$

$$E(38-55) = -4/8 \log 4/8 - 4/8 \log 4/8 = 0.5 + 0.5 = 1$$

ETemperatura (Raíz) = 6/14*0'9182 + 8/14*1 = 0'9649

Entropía Final Clasificando Según El Atributo Vibraciones

$$E_{Vibraciones}(Raiz) = P(Si)*E(Si)+P(No)*E(No)$$

$$P(Si) = 8/14$$

$$E(Si) = -6/8 \log 6/8 - 2/8 \log 2/8 = 0'3112 + 0'5 = 0'8112$$

$$P(No) = 6/14$$

$$E(No) = -6/6 \log 6/6 - 0 \log 0 = 0 + 0 = 0$$

Evibraciones (Raíz) = 8/14*0'8112 + 6/14*0 = 0'4635

Entropía Final Clasificando Según El Atributo Horas Funcionando

EhFun(Raíz) = P(30-1265)*E(30-1265)+P(1265-2500)*E(1265-2500)

P(30-1265) = 11/14

 $E(30-1265) = -4/11 \log 4/11 - 7/11 \log 7/11 = 0.5307 + 0.4149 = 0.9456$

P(1265-2500) = 3/14

 $E(1265-2500) = -2/3 \log 2/3 - 1/3 \log 1/3 = 0'3899 + 0'5283 = 0'9182$

Entropía Final Clasificando Según El Atributo Anterior Reparación

 $E_{ARep}(Raiz) = P(12-52'5)*E(12-52'5)+P(52'5-93)*E(52'5-93)$

P(12-52'5) = 7/14

 $E(12-52'5) = -3/7 \log 3/7 - 4/7 \log 4/7 = 0'5238 + 0'4613 = 0'9851$

P(52'5-93) = 7/14

 $E(52'5-93) = -3/7 \log 3/7 - 4/7 \log 4/7 = 0'5238 + 0'4613 = 0'9851$

 $E_{ARep}(Raiz) = 7/14*0'9851 + 7/14*0'9851 = 0'9881$

Valor De Las Entropías

ETemperatura(Raíz) = 0'9649

Evibraciones (Raíz) = 0'4635

Mejor Entropía

 $\mathsf{EhFun}(\mathsf{Raiz}) = 0.9397$

 $E_{ARep}(Raiz) = 0.9881$

Primer Nivel Del Árbol

Árbol que se va formando:

Nodo a desarrollar

Cuando ya hemos elegido un atributo y alguno de ellos ya da a un nodo final quitamos las filas de ese atributo

Quitamos filas que las vibraciones son No

Temperatura	Vibraciones	Horas Funcionando	Anterior Revisión	Fallo
55	Si	500	55	Si
32	Si	700	58	No
35	Si	2500	93	Si
50	Si	150	21	Si
53	Si	550	50	Si
35	Si	680	63	No
30	Si	2300	87	Si
52	Si	180	23	Si

Entropía Inicial Para Nodo X

```
P(Fallo) = 6/8
```

$$P(No Fallo) = 2/8$$

$$E(X) = -6/8 \log 6/8 - 2/8 \log 2/8 = 0.3112 + 0.5 = 0.8112$$

Entropía Final Clasificando Según El Atributo Temperatura

$$E_{Temperatura}(X) = 8/8*E(30-55)$$

$$E(30-55) = -2/4 \log 2/4 - 2/4 \log 2/4 = 0.5 + 0.5 = 1$$

$$P(38-55) = 4/8$$

$$E(38-55) = -4/4 \log 4/4 - 0 \log 0 = 0 + 0 = 0$$

ETemperatura(X) =
$$4/8*1 + 4/8*0 = 0.5$$

Entropía Final Clasificando Según El Atributo Horas Funcionando

$$E_{hFun}(X) = P(150-1325)*E(150-1325)+P(1325-2500)*E(1325-2500)$$

$$P(150-1325) = 6/8$$

 $E(150-1325) = -4/6 \log 4/6 - 2/6 \log 2/6 = 0'3899 + 0'5283 = 0'9182$

$$P(1325-2500) = 2/8$$

 $E(1325-2500) = -2/2 \log 2/2 - 0 \log 0 = 0 + 0 = 0$

$$E_{hFun}(X) = 6/8*0'9182 + 2/8*0 = 0'6886$$

Entropía Final Clasificando Según El Atributo Anterior Reparación

$$E_{ARep}(X) = P(21-57)*E(21-57)+P(57-93)*E(57-93)$$

$$P(21-57) = 4/8$$

 $E(21-57) = -4/4 \log 4/4 - 0 \log 0 = 0 + 0 = 0$

$$P(57-93) = 4/8$$

 $E(57-93) = -2/4 \log /4 - 2/4 \log 2/4 = 0.5 + 0.5 = 1$

$$E_{ARep}(X) = 3/8*0 + 5/8*0'9708 = 0'6067$$

Valor De Las Entropías

ETemperatura(X) = 0.5

Mejor Entropía

$$E_{hFun}(X) = 0.6886$$

$$E_{ARep}(X) = 0'6067$$

Segundo Nivel Del Árbol

Árbol que se va formando:

Nodo a desarrollar

Cuando ya hemos elegido un atributo y alguno de ellos ya da a un nodo final quitamos las filas de ese atributo

Quitamos filas donde la temperatura es mayor que 35

Temperatura	Vibraciones	Horas Funcionando	Anterior Revisión	Fallo
32	Si	700	58	No
35	Si	2500	93	Si
35	Si	680	63	No
30	Si	2300	87	Si

Entropía Final Clasificando Según El Atributo Horas Funcionando

$$EhFun(X) = P(30-1265)*E(30-1265)+P(1265-2500)*E(1265-2500)$$

$$P(30-1265) = 2/4$$

$$E(30-1265) = -2/2 \log 2/2 - 0 \log 0 = 0 + 0 = 0$$

$$P(1265-2500) = 2/4$$

$$E(1265-2500) = 0 \log 0 - 2/2 \log 2/2 = 0 + 0 = 0$$

$$E_{hFun}(X) = 0 + 0 = 0$$

Como la Entropía es 0 no hace falta coger otro atributo nos quedamos con este

Árbol Completo

Árbol formando:

WEKA

WEKA

Formato de archivo: texto plano ARFF

- @relation Reparacion
- @attribute temperatura real
- @attribute vibraciones{si, no}
- @attribute horasFuncionamiento real
- @attribute anteriorRevision real
- @attribute fallo{si, no}
- @data
- 55,si,500,55,si
- 23,no,30,17,no
- 45,no,1500,72,no
- 47,no,650,43,no
- 32,si,700,58,no
- 35,si,2500,93,si
- 50,si,150,21,si
- 53,si,550,50,si
- 21,no,35,12,no
- 47,no,1200,75,no
- 43,no,750,51,no
- 35,si,680,63,no
- 30,si,2300,87,si
- 52,si,180,23,si

WEKA

Datos

WEKA Árbol

