

Ingenic SDK 使用说明

文档历史:

版本	作者	注释
1.0		

目录

1 GPIO	1
1.1 源码文件	1
1.2 注意事项	1
1.3 get_gpio_manager	1
1.4 gpio_init	1
1.5 gpio_deinit	1
1.6 gpio_open	2
1.7 gpio_close	2
1.8 gpio_get_direction	2
1.9 gpio_set_direction	3
1.10 gpio_get_value	3
1.11 gpio_set_value	4
1.12 gpio_set_irq_func	4
1.13 gpio_enable_irq	4
1.14 gpio_disable_irq	5
2 timer	6
2.1 源码文件	6
2.2 配置参数	6
2.3 注意事项	6
2.4 get_timer_manager	6
2.5 timer_init	6
2.6 timer_deinit	7
2.7 timer_start	7
2.8 timer_stop	8
2.9 timer_get_counter	8
3 watchdog	9
3.1 源码文件	9
3.2 get_watchdog_manager	9
3.3 watchdog_init	9
3.4 watchdog_deinit	9
3.5 watchdog_reset	10
3.6 watchdog_enable	10

3.7 watchdog_disable	10
4 power	12
4.1 源码文件	12
4.2 get_power_manager	12
4.3 pm_power_off	12
4.4 pm_reboot	12
4.5 pm_sleep	13
5 pwm	14
5.1 源码文件	14
5.2 get_pwm_manager	14
5.3 pwm_init	14
5.4 pwm_deinit	15
5.5 pwm_setup_freq	15
5.6 pwm_setup_duty	15
5.7 pwm_setup_state	15
6 uart	17
6.1 源码文件	17
6.2 配置参数	17
6.3 get_uart_manager	17
6.4 uart_init	17
6.5 uart_deinit	18
6.6 uart_flow_control	18
6.7 uart_read	19
6.8 uart_write	19
7 i2c	21
7.1 源码文件	21
7.2 配置参数	21
7.3 get_i2c_manager	21
7.4 i2c_init	21
7.5 i2c_deinit	22
7.6 i2c_read	22
7.7 i2c_write	23
0	2.4

	8.1 源码文件	24
	8.2 配置参数	24
	8.3 get_camera_manager	24
	8.4 camera_init	24
	8.5 camera_deinit	25
	8.6 camera_read	25
	8.7 set_img_param	25
	8.8 set_timing_param	26
	8.9 sensor_setup_addr	26
	8.10 sensor_setup_regs	26
	8.11 sensor_write_reg	27
	8.12 sensor_read_reg	27
9 fl	ash	28
	9.1 源码文件	28
	9.2 get_flash_manager	28
	9.3 flash_init	28
	9.4 flash_deinit	28
	9.5 flash_get_erase_unit	28
	9.6 flash_erase	29
	9.7 flash_read	29
	9.8 flash_write	29
10 €	efuse	31
	10.1 源码文件	31
	10.2 get_efuse_manager	31
	10.3 efuse_read	31
	10.4 efuse_write	31
11 1	rtc	33
	11.1 源码文件	33
	11.2 get_rtc_manager	33
	11.3 rtc_read	33
	11.4 rtc_write	34
12 s	spi	34
	12.1 源码文件	34

	12.2 get_spi_manager	35
	12.3 spi_init	35
	12.4 spi_deinit	35
	12.5 spi_read	36
	12.6 spi_write	36
	12.7 spi_transfer	36
13 t	ısb	38
	13.1 源码文件	38
	13.2 配置参数	38
	13.3 get_usb_device_manager	38
	13.4 usb_device_init	38
	13.5 usb_device_deinit	39
	13.6 usb_device_switch_func	40
	13.7 usb_device_get_max_transfer_unit	40
	13.8 usb_device_write	40
	13.9 usb_device_read	41
14 \$	Security	43
	14.1 源码文件	43
	14.2 get_security_manager	43
	14.3 security_init	43
	14.4 security_deinit	43
	14.5 simple_aes_load_key	44
	14.6 simple_aes_crypt	44
15 z	zigbee	45
	15.1 源码文件	45
	15.2 get_zigbee_manager	45
	15.3 init	45
	15.4 deinit	45
	15.5 reset	46
	15.6 ctrl	46
	15.7 get_info	46
	15.8 factory	47
	15.9 reboot	47

	15.10 set_role	47
	15.11 set_panid	47
	15.12 set_channel	48
	15.13 set_key	48
	15.14 set_join_aging	48
	15.15 set_cast_type	49
	15.16 set_group_id	49
	15.17 set_poll_rate	49
	15.18 set_tx_power	50
16	74hc595	51
	16.1 源码文件	51
	16.2 配置参数	51
	16.3 get_sn74hc595_manager	51
	16.4 sn74hc595_init	51
	16.5 sn74hc595_deinit	52
	16.6 sn74hc595_get_outbits	52
	16.7 sn74hc595_write	52
	16.8 sn74hc595_read	53
	16.9 sn74hc595_clear	53
17 (cypress	54
	17.1 源码文件	54
	17.2 get_cypress_manager	54
	17.3 cypress_init	54
	17.4 cypress_deinit	54
	17.5 cypress_ mcu_reset	55
18 1	fpc fingerprint	56
	18.1 源码文件	56
	18.2 fpc_fingerprint_init	56
	18.3 fpc_fingerprint_destroy	56
	18.4 fpc_fingerprint_reset	57
	18.5 fpc_fingerprint_enroll	57
	18.6 fpc_fingerprint_authenticate	57
	18.7 fpc_fingerprint_delete	57

18.8 fpc_fingerprint_cancel	57
18.9 fpc_fingerprint_get_template_info	58

1 GPIO

该套 GPIO 的接口实现基于 libgpio, GPIO 中断回调基于 linux 线程调度器实现(最高优先级)。

1.1 源码文件

头文件: sdk/include/gpio/gpio_manager.h

源文件:sdk/gpio/gpio_manager.c

测试程序: sdk/examples/gpio/

1.2 注意事项

请注意该接口调用非线程安全,请避免多个线程同时调用一个 API 接口。

1.3 get_gpio_manager

函数原型: struct gpio_manager *get_gpio_manager(void);

函数功能: 获取 gpio_manager 操作指针, 以操作 gpio_manager 内部方法

返回值:返回gpio_manager结构体指针

其 他: 通过该结构体指针访问 gpio_manager 内部提供的方法

1.4 gpio_init

函数原型: int32_t (*init)(void);

函数功能: GPIO 库资源初始化

返回值: 0:成功; -1:失败;

其 他: 使用 gpio_manager 内部方法必须先调用此函数先初始化资源

1.5 gpio_deinit

函数原型: void (*deinit)(void);

函数功能: GPIO 库资源释放

返回值:无

其 他: 与 gpio_init 相对应,会释放所有 GPIO 资源包括 GPIO 中断。

请确认无需使用 GPIO 后才调用,释放资源后之前操作的 GPIO 状态会恢复默认状态 (上电时状态)

1.6 gpio_open

函数原型: int32_t (*open)(uint32_t gpio);

函数功能: 打开某个 GPIO 功能

函数参数:

gpio: 需要操作的 GPIO 编号

例如: GPIO_PA(n) GPIO_PB(n) GPIO_PC(n) GPIO_PD(n)

返回值: 0:成功; -1:失败

其 他: 操作某个 GPIO 功能之前必须先打开 GPIO

1.7 gpio_close

函数原型: void (*close)(uint32_t gpio);

函数功能: 关闭某个 GPIO 功能

函数参数:

gpio: 需要操作的 GPIO 编号

例如: GPIO_PA(n) GPIO_PB(n) GPIO_PC(n) GPIO_PD(n)

返回值:无

其 他: 关闭 GPIO 后中断也会关闭, GPIO 恢复默认状态(上电时状态)

1.8 gpio_get_direction

函数原型: int32_t (*get_direction)(uint32_t gpio, gpio_direction *dir);

函数功能: 获取 GPIO 的输入输出模式

函数参数:

gpio: 需要操作的 GPIO 编号

例如: GPIO_PA(n) GPIO_PB(n) GPIO_PC(n) GPIO_PD(n)

dir: 获取功能状态 输入或输出

参数: GPIO_IN or GPIO_OUT

注意: dir 参数是 gpio_direction 指针

返回值:0:成功;-1:失败;

1.9 gpio_set_direction

函数原型: int32_t (*set_direction)(uint32_t gpio, gpio_direction dir);

函数功能: 设置 GPIO 的输入输出模式

函数参数:

gpio: 需要操作的 GPIO 编号

例如: GPIO_PA(n) GPIO_PB(n) GPIO_PC(n) GPIO_PD(n)

dir: 设置功能状态 输入或输出

参数: GPIO_IN or GPIO_OUT

返回值:0:成功;-1:失败;

1.10 gpio_get_value

函数原型: int32_t (*get_value)(uint32_t gpio, gpio_value *value);

函数功能: 获取 GPIO 的电平状态

函数参数:

gpio: 需要操作的 GPIO 编号

例如: GPIO_PA(n) GPIO_PB(n) GPIO_PC(n) GPIO_PD(n)

value: 获取电平状态 低电平或高电平

参数: GPIO_LOW or GPIO_HIGH

注意: value 参数是 gpio_vlaue 指针

返回值:0:成功;-1:失败;

1.11 gpio_set_value

函数原型: int32_t (*set_value)(uint32_t gpio, gpio_value value);

函数功能:设置 GPIO 的电平状态

函数参数:

gpio: 需要操作的 GPIO 编号

例如: GPIO_PA(n) GPIO_PB(n) GPIO_PC(n) GPIO_PD(n)

value: 设置电平状态 低电平或高电平

参数: GPIO LOW or GPIO HIGH

注意:输入模式下禁止设置电平状态

返回 值: 0:成功; -1: 失败;

1.12 gpio_set_irq_func

函数原型: void (*set_irq_func)(gpio_irq_func func);

函数功能:设置 GPIO 中断回调函数

函数参数:

func: GPIO 中断回调函数

typedef void (*irq_work_func)(int);

无返回值和整型参数(GPIO的编号)的函数

注意: 所有 GPIO 对应一个中断函数,回调函数参数为触发中断的 GPIO 编号

返回值:无

1.13 gpio_enable_irq

函数原型: uint32_t (*enable_irq)(uint32_t gpio, gpio_irq_mode mode);

函数功能: 使能某个 GPIO 中断

函数参数:

gpio: 需要操作的 GPIO 编号

例如: GPIO_PA(n) GPIO_PB(n) GPIO_PC(n) GPIO_PD(n)

mode: 设置中断触发方式

参数: GPIO_RISING, 上升沿触发

GPIO_FALLING, 下降沿触发

GPIO_BOTH, 双边沿沿触发

注意: 使能前必须设置中断回调函数 set_irq_func, GPIO 引脚必须为输入模式 返 回 值: 0:成功; -1: 失败;

1.14 gpio_disable_irq

函数原型: void (*disable_irq)(uint32_t gpio);

函数功能: 关闭某个 GPIO 中断

函数参数:

gpio: 需要操作的 GPIO 编号

例如: GPIO_PA(n) GPIO_PB(n) GPIO_PC(n) GPIO_PD(n)

返回值:无

2 timer

该套定时器的接口实现基于 linux timerfd 系统调用。timerfd 的定时精度在微秒级别,由于本定时器基于 linux 线程调度器实现,线程切换精度在几十个微秒,导致定时器的误差在 1 毫秒内,下述实现的定时器封装接口最小精度都限定在 1 毫秒。

2.1 源码文件

头文件: sdk/include/timer/timer_manager.h

源文件:sdk/timer/timer_manager.c

测试程序: sdk/examples/timer/

2.2 配置参数

TIMER_DEFAULT_MAX_CNT: 表示系统支持的最大定时器个数,默认设置为5

2.3 注意事项

请注意该接口调用非线程安全,请避免多个线程同时调用一个 API 接口。

2.4 get_timer_manager

函数原型: struct timer_manager *get_timer_manager(void);

函数功能: 获取 timer_manager 操作指针, 以操作 timer_manager 内部方法

返回值:返回timer manager结构体指针

其 他: 通过该结构体指针访问 timer manager 内部提供的方法

2.5 timer_init

函数原型: int32_t (*init)(int32_t id, uint32_t interval, uint8_t is_one_time,

func_handle routine, void *arg);

函数功能: 定时器初始化

函数参数:

id: 指定分配的 id 号,可选配置有以下两类

id=-1: 自动分配定时器 id

id>=1: 固定分配 id, 范围[1,TIMER_DEFAULT_MAX_CNT]

interval: 定时周期,单位:ms

is_one_time: 是否是一次定时, 大于 0 为一次定时, 否则周期定时

routine: 定时器处理函数

arg: 定时器处理函数参数

注意: arg 为指针,sdk 中只是传递指针, 指针指向的内容请用户注意保护

返回值: >=1:返回成功分配的 id 号; -1: 失败

其 他: 支持的最大定时器数目由宏定义 TIMER_DEFAULT_MAX_CNT 决定

2.6 timer_deinit

函数原型: int32_t (*deinit)(uint32_t id);

函数功能: 定时器释放

函数参数:

id: 定时器 id 号,可配置范围[1,TIMER_DEFAULT_MAX_CNT]

返回值: 0:成功; -1:失败

其 他:与timer init 相对应

2.7 timer start

函数原型: int32_t (*start)(uint32_t id);

函数功能: 定时器开启, 调用成功后定时器执行定时计数

函数参数:

id: 定时器 id 号,可配置范围[1,TIMER_DEFAULT_MAX_CNT]

返回值: 0:成功; -1:失败

其 他:与timer_init相对应

2.8 timer_stop

函数原型: int32_t (*stop)(uint32_t id);

函数功能: 定时器停止, 调用成功后定时器停止定时计数

函数参数:

id: 定时器 id 号,可配置范围[1,TIMER_DEFAULT_MAX_CNT]

返回值: 0:成功; -1:失败

其 他:与 timer_start 相对应,调用 stop 后定时器被终止,下次调用 start 时,定时器按照 timer_init 时设置的参数重新定时计数

2.9 timer_get_counter

函数原型: int64_t (*get_counter)(uint32_t id);

函数功能: 返回本次定时剩余时间,单位:ms

函数参数:

id: 定时器 id 号,可配置范围[1,TIMER_DEFAULT_MAX_CNT]

返回值:>=0:返回本次定时剩余时间;-1:失败

3 watchdog

该套看门狗接口是基于芯片的硬件看门狗实现的,最小的 timeout 时间为一秒,详细使用方法看API 接口的说明以及看门狗的测试代码。

3.1 源码文件

头文件: sdk/include/watchdog/watchdog_manager.h

源文件: sdk/watchdog/watchdog_manager.c

测试程序: sdk/examples/watchdog/

3.2 get_watchdog_manager

函数原型: watchdog_manager *get_watchdog_manager(void);

函数功能: 获取 watchdog_manager 句柄

函数参数: 无

返回值:返回watchdog_manager结构体指针

其 他: 通过该结构体指针访问 watchdog manager 内部提供的方法

3.3 watchdog_init

函数原型: int32_t watchdog_init(uint32_t timeout);

函数功能: 看门狗初始化

函数参数:

timeout:看门狗超时的时间,以秒为单位,其值必须大于零

返回值: 0:成功; -1:失败

其 他: 必须优先调用 init 函数初始化看门狗和设置 timeout, 可被多次调用

3.4 watchdog_deinit

函数原型: void watchdog_deinit(void);

函数功能: 看门狗释放

函数参数: 无

返回值:无

其 他: 对应 init 函数, 不再使用看门狗时调用, 该函数将关闭看门狗, 释放设备

3.5 watchdog_reset

函数原型: int32_t watchdog_reset(void);

函数功能: 看门狗喂狗

函数参数: 无

返回值: 0:成功; -1:失败

其 他: 使能看门狗后, 在 timeout 时间内不调用此函数, 系统将复位

3.6 watchdog_enable

函数原型: int32_t watchdog_enable(void);

函数功能: 看门狗使能

函数参数: 无

返回值: 0:成功; -1:失败

其 他: 在 init 函数初始化或 disable 函数关闭看门狗之后, 调用此函数启动看门狗

3.7 watchdog_disable

函数原型: int32_t watchdog_disable(void);

函数功能: 看门狗关闭

函数参数: 无

返回值: 0:成功; -1:失败

其 他: 对应 enable 函数, 区别 deinit 函数在于, 调用此函数之后, 能通过 enable 函数重新启动

4 power

该套电源管理接口是基于内核标准的接口来实现的,详细使用方法看 API 接口的说明以及 power 的测试代码。

4.1 源码文件

头文件: sdk/include/power/power_manager.h

源文件: sdk/power/power_manager.c

测试程序: sdk/examples/power/

4.2 get_power_manager

函数原型: power_manager *get_power_manager(void);

函数功能: 获取 power_manager 句柄

函数参数: 无

返回值:返回power_manager结构体指针

其 他: 通过该结构体指针访问 power_manager 内部提供的方法

4.3 pm_power_off

函数原型: int32_t pm_power_off(void);

函数功能: 关机

函数参数: 无

返回值: -1:失败;成功将关机

4.4 pm_reboot

函数原型: int32_t pm_reboot(void);

函数功能: 进入休眠

函数参数: 无

返回值: -1: 失败; 成功将重启系统

4.5 pm_sleep

函数原型: int32_t pm_sleep(void);

函数功能: 进入休眠

函数参数: 无

返回值: 0:成功; -1:失败

5 pwm

该套接口是基于 JZ PWM generic drivers 实现的,最大支持 5 路 PWM 输出,详细使用方法看 API 接口的说明以及 PWM 的测试代码。

5.1 源码文件

头文件: sdk/include/pwm/pwm_manager.h

源文件: sdk/pwm/pwm_manager.c

测试程序: sdk/examples/pwm/

5.2 get_pwm_manager

函数原型: pwm_manager *get_pwm_manager(void);

函数功能: 获取 pwm_manager 句柄

函数参数: 无

返回值:返回pwm_manager结构体指针

其 他: 通过该结构体指针访问 pwm manager 内部提供的方法

5.3 pwm_init

函数原型: int32_t pwm_init(enum pwm id, enum pwm_active level);

函数功能: PWM 通道初始化

函数参数:

id: PWM 通道 id, 其值必须小于 PWM_CHANNEL_MAX

level: PWM 通道工作的有效电平, 例如: PWM 控制 LED, 当低电平 LED 亮, 即这个参数的值是 ACTIVE_LOW

返回值: 0:成功; -1:失败

其 他: 在使用每路 PWM 通道之前,必须优先调用 pwm_init 函数进行初始化

5.4 pwm_deinit

函数原型: void pwm_deinit(enum pwm id);

函数功能: PWM 通道释放

函数参数: 无

返回值:无

其 他: 对应于 init 函数, 不再使用 PWM 某个通道时,应该调用此函数释放

5.5 pwm_setup_freq

函数原型: int32_t pwm_setup_freq(enum pwm id, uint32_t freq);

函数功能: 设置 PWM 通道的频率,实际上是设置周期

函数参数:

id: PWM 通道 id, 其值必须小于 PWM_CHANNEL_MAX

freq: 周期值, 单位为 ns, 其值在[PWM_FREQ_MIN, PWM_FREQ_MAX]之间

返回值: 0:成功; -1:失败

其 他: 此函数可以不调用, 即使用默认频率: 30000ns

5.6 pwm_setup_duty

函数原型: int32_t pwm_setup_duty(enum pwm id, uint32_t duty);

函数功能:设置 PWM 通道的占空比

函数参数:

id: PWM 通道 id, 其值必须小于 PWM_CHANNEL_MAX

duty: 占空比, 其值为 0~100 区间

返回值: 0:成功; -1:失败

其 他: 这里不用关心 IO 输出的有效电平

5.7 pwm_setup_state

函数原型: int32_t pwm_setup_state(enum pwm id, enum pwm_state state);

函数功能:设置 PWM 通道的工作状态

函数参数:

id: PWM 通道 id, 其值必须小于 PWM_CHANNEL_MAX

state: 指定 PWM 的工作状态, 为 0: disable, 非 0: enable

返回值: 0:成功; -1:失败

其 他: 此函数不需要在 setup_freq 或 setup_duty 之前调用, 主要用于暂停/开始 PWM 的工作。

再重新开始工作时, PWM 保持之前的 freq 和 duty 继续工作

6 uart

该套接口是基于内核标准的 uart 设备应用编程方法实现的,最大支持 3 个 uart 通道。

6.1 源码文件

头文件: sdk/include/uart/uart_manager.h

源文件: sdk/uart/uart_manager.c

测试程序: sdk/examples/uart/

6.2 配置参数

UART MAX CHANNELS 表示系统支持的最大 UART 通道数,默认设置为 3。

6.3 get_uart_manager

函数原型: uart_manager *get_uart_manager(void);

函数功能: 获取 uart_manager 句柄

函数参数: 无

返回值:返回uart_manager结构体指针

其 他: 通过该结构体指针访问 uart_manager 内部提供的方法

6.4 uart_init

函数原型: int32_t (*init)(char* devname, uint32_t baudrate, uint8_t date_bits,

uint8_t parity, uint8_t stop_bits);

函数功能: 串口初始化

函数参数:

devname: 串口设备名称

例如: 普通串口设备/dev/ttySX, usb 转串口/dev/ttyUSBX; X 为设备序号

baudrate: 波特率 单位:bis per second

波特率取值范围 1200~3000000

date_bits: 数据位宽

stop_bits: 停止位宽

parity_bits: 奇偶校验位

可选设置 UART_PARITY_NONE, 无校验

UART_PARITY_ODD, 奇校验 UART_PARITY_EVEN, 偶校验

UART_PARITY_MARK, 校验位总为 1 UART_PARITY_SPACE 校验位总为 0

返回值: 0:成功; -1:失败

其 他:每个通道在使用前必须优先调用 uart_init,默认流控不开启

6.5 uart_deinit

函数原型: void_t uart_deinit(char* devname);

函数功能: 串口释放

函数参数:

devname: 串口设备名称

例如: 普通串口设备/dev/ttySX, usb 转串口/dev/ttyUSBX; X 为设备序号

返回值:无

6.6 uart_flow_control

函数原型: int32_t (*flow_control)(char* devname, uint8_t flow_ctl);

函数功能: 串口流控设置

函数参数:

devname: 串口设备名称

例如: 普通串口设备/dev/ttySX, usb 转串口/dev/ttyUSBX; X 为设备序号

flow ctl: 流控选项

UART_FLOWCONTROL_NONE: 无流控

UART_FLOWCONTROL_XONXOFF: 软件流控使用 XON/XOFF 字符

UART_FLOWCONTROL_RTSCTS: 硬件流控使用 RTS/CTS 信号

UART_FLOWCONTROL_DTRDSR: 硬件流控使用 DTR/DSR 信号

返回值: 0:成功; -1:失败

6.7 uart read

函数原型: int32_t (*read)(char* devname, const void* buf, uint32_t count, uint32_t timeout ms);

函数功能: 串口读取数据

函数参数:

devname: 串口设备名称

例如: 普通串口设备/dev/ttySX, usb 转串口/dev/ttyUSBX; X 为设备序号

buf: 存储读取数据的缓存区指针, 不能是空指针

count: 读取的字节数

timeout_ms 读取超时时间,单位 ms

返回值:大于0:成功读取到的字节数;-1:失败

其 他: 无

6.8 uart write

函数原型: int32_t (*write)(char* devname, const void* buf, uint32_t count, uint32_t timeout_ms);

函数功能: 串口写入数据

函数参数:

devname: 串口设备名称

例如: 普通串口设备/dev/ttySX, usb 转串口/dev/ttyUSBX; X 为设备序号

buf: 指向存储待写入数据的缓存区指针,不能是空指针

count: 写入的字节数

timeout_ms 读取超时时间,单位 ms

返回值:大于0:成功写入的字节数;-1:失败

7 i2c

该套接口是基于内核标准的 i2c 设备应用编程方法实现的,最大支持 3 条 i2c 总线,详细使用方法看 API 接口的说明以及 i2c 的测试代码。

7.1 源码文件

头文件: sdk/include/i2c/i2c_manager.h

源文件: sdk/i2c/i2c_manager.c

测试程序: sdk/examples/i2c/

7.2 配置参数

I2C_DEV_ADDR_LENGTH: 读写 i2c 设备所发送的地址的长度, 以 BIT 为单位, 有 8BIT 或 16BIT, 根据实际使用的 i2c 设备修改此宏值, 默认是 8BIT

I2C_CHECK_READ_ADDR: 对设备的这个地址进行读操作, 以检测 i2c 总线上有没有 chip_addr 这个从设备, 可根据实际修改该宏值

I2C_ACCESS_DELAY_US: 对设备一次读写操作后, 在进行下次读写操作时的延时时间,单位:us, 值不能太小, 否则导致读写出错

7.3 get_i2c_manager

函数原型: i2c_manager *get_i2c_manager(void);

函数功能: 获取 i2c_manager 句柄

函数参数: 无

返回值:返回i2c_manager结构体指针

其 他: 通过该结构体指针访问 i2c_manager 内部提供的方法

7.4 i2c_init

函数原型: int32_t i2c_init(struct i2c_unit *i2c);

函数功能: I2C 初始化

函数参数:

i2c:每个 I2C 设备对应 struct i2c_unit 结构体指针,必须先初始化结构体的成员

其中: id 的值应大于 0, 小于 I2C_BUS_MAX; chip_addr: 为设备的 7位地址

返回值: 0:成功; 非0:失败

其 他: 必须优先调用 init 函数, 可以被多次调用, 用于初始化不同的 I2C 设备

7.5 i2c deinit

函数原型: void_t i2c_deinit(struct i2c_unit *i2c);

函数功能: I2C 设备释放

函数参数:

i2c:每个 I2C 设备对应 struct i2c_unit 结构体指针, 必须先初始化结构体的成员

其中: id 的值应大于 0, 小于 I2C_BUS_MAX; chip_addr: 为设备的 7 位地址

返回值:无

其他:无

7.6 i2c read

函数原型: int32_t i2c_read(struct i2c_unit *i2c, uint8_t *buf, int addr, int count);

函数功能: I2C 初始化

函数参数:

i2c:每个 I2C 设备对应 struct i2c unit 结构体指针, 必须先初始化结构体的成员

其中: id 的值应大于 0, 小于 I2C_BUS_MAX; chip_addr: 为设备的 7 位地址

buf: 指向存储读取数据的缓存区指针, 不能是空指针

addr: 指定从 I2C 设备的哪个地址开始读取数据

count: 读取的字节数

返回值: 0:成功; -1:失败

其他:无

7.7 i2c_write

函数原型:int32_t i2c_write(struct i2c_unit *i2c, uint8_t *buf, int addr, int count);

函数功能: I2C 初始化

函数参数:

i2c:每个 I2C 设备对应 struct i2c_unit 结构体指针,必须先初始化结构体的成员

其中: id 的值应大于 0, 小于 I2C_BUS_MAX; chip_addr: 为设备的 7 位地址

buf: 指向存储待写入数据的缓存区指针, 不能是空指针

addr: 指定从 I2C 设备的哪个地址开始写入数据

count: 写入的字节数

返回值: 0:成功; -1:失败

其 他: 无

8 camera

该套接口是基于 JZ CIM & sensor drivers 实现的,详细使用方法看 API 接口的说明以及 camera 的测试代码。

8.1 源码文件

头文件: sdk/include/camera/camera_manager.h

源文件: sdk/camera/camera_manager.c

测试程序: sdk/examples/camera/

8.2 配置参数

SENSOR_SET_REG_DELAY_US: sensor 每设置一个寄存器之后的延时时间, 单位是 us, 可以根据实际要求修改此宏值

SENSOR_ADDR_LENGTH: sensor 寄存器地址的长度, 以 BIT 为单位, 有 8BIT 或 16BIT, 应该根据实际使用的 sensor 修改此宏值, 默认是 8BIT

8.3 get_camera_manager

函数原型: camera_manager *get_camera_manager(void);

函数功能: 获取 camera_manager 句柄

函数参数: 无

返回值:返回camera_manager结构体指针

其 他: 通过该结构体指针访问 camera_manager 内部提供的方法

8.4 camera_init

函数原型: void camera init(void);

函数功能: 摄像头初始化

函数参数: 无

返回值: 0:成功; -1:失败

其 他: 必须优先调用 camera_init

8.5 camera deinit

函数原型: void camera_deinit(void);

函数功能: 摄像头释放

函数参数: 无

返回值: 0:成功; -1:失败

其 他: 对应 camera init, 不再使用 camera 时调用

8.6 camera_read

函数原型: int32_t camera_read(uint8_t *yuvbuf, uint32_t size);

函数功能: 读取摄像头采集数据, 保存在 yuvbuf 指向的缓存区中

函数参数:

yuvbuf: 图像缓存区指针, 缓存区必须大于或等于读取的大小

size: 读取数据大小,字节为单位,一般设为 image size

返回值: -1:失败;成功:返回实际读取到的字节数

其 他: 在此函数中会断言 yuvbuf 是否等于 NULL, 如果为 NULL, 将推出程序

8.7 set_img_param

函数原型: int32_t set_img_param(struct camera_img_param *img);

函数功能: 设置控制器捕捉图像的分辨率和像素深度

函数参数:

img: struct img_param_t 结构体指针, 指定图像的分辨率和像素深度

返回值: 0:成功; -1:失败

其 他: 在此函数中会断言 img 是否等于 NULL, 如果为 NULL, 将推出程序

8.8 set_timing_param

函数原型: int32_t set_timing_param(struct camera_timing_param *timing);

函数功能: 设置控制器时序,包括 mclk 频率、pclk 有效电平、hsync 有效电平、vsync 有效电平 函数参数:

timing: struct timing_param_t 结构体指针, 指定 mclk 频率、pclk 有效电平、hsync 有效电平、vsync 有效电平。 在 camera_init 函数中分别初始化为:24000000、0、1、1, 为 1 是高电平有效, 为 0 则是低电平有效

返回值: 0:成功; -1:失败

其 他: 在此函数中会断言 timing 是否等于 NULL, 如果为 NULL, 将推出程序

8.9 sensor_setup_addr

函数原型: int32_t sensor_setup_addr(int32_t chip_addr);

函数功能: 设置摄像头 sensor 的 i2c 地址, 为保证 probe sensor ID 成功, 应该调用此函数

chip_addr: 摄像头 sensor 的 I2C 地址, 不包括读写控制位

size: 读取数据大小, 字节为单位, 一般设为 image_size

返回值: 0:成功; -1:失败

其 他: 在此函数中会断言 chip addr 是否大于 0, 如果断言失败, 将推出程序

8.10 sensor_setup_regs

函数原型: int32_t sensor_setup_regs(const struct camera_regval_list *vals);

函数功能: 设置摄像头 sensor 的多个寄存器, 用于初始化 sensor

函数参数:

vals: struct regval_list 结构体指针, 通常传入 struct regval_list 结构数组

返回值: 0:成功; -1:失败

其他:无

8.11 sensor_write_reg

函数原型: int32_t sensor_write_reg(uint32_t regaddr, uint8_t regval);

函数功能: 设置摄像头 sensor 的单个寄存器

函数参数:

regaddr: 摄像头 sensor 的寄存器地址

regval: 摄像头 sensor 寄存器的值

返回值: 0:成功; -1:失败

其 他: 无

8.12 sensor_read_reg

函数原型: uint8_t sensor_read_reg(uint32_t regaddr);

函数功能: 读取摄像头 sensor 某个寄存器的值

函数参数:

regaddr: 摄像头 sensor 的寄存器地址

返回值: -1: 失败; 其他: 寄存器的值

其 他: 无

9 flash

9.1 源码文件

头文件: sdk/include/flash/flash_manager.h

源文件: sdk/flash/flash_manager.c

测试程序: sdk/examples/flash/

9.2 get_flash_manager

函数原型: struct flash_manager* get_flash_manager(void);

函数功能: 获取 flash_manager 操作指针, 以操作 flash_manager 内部方法

返回值: 返回 flash_manager 结构体指针

其 他: 通过该结构体指针访问 flash_manager 内部提供的方法

9.3 flash init

函数原型: int32_t (*init)(void);

函数功能: flash 初始化

返回值: 0:成功; -1:失败

其 他: 在 flash 的读/写/擦除操作之前,首先执行初始化

9.4 flash_deinit

函数原型: int32_t (*deinit)(void);

函数功能: flash 释放

返回值: 0:成功; -1:失败

其 他:与 flash_init 相对应

9.5 flash_get_erase_unit

函数原型: int32_t (*get_erase_unit)(void);

函数功能: 获取 flash 擦除单元, 单位: bytes

返回值: 大于 0: 成功返回擦除单元大小 等于 0: 失败

其 他:在 erase 调用之前使用

9.6 flash_erase

函数原型: int64_t (*erase)(int64_t offset, int64_t length);

函数功能: flash 擦除

函数参数:

offset: flash 片内偏移物理地址

length: 擦除大小,单位: byte,该大小必须是擦除单元大小的整数倍

返回值: 0:成功 -1:失败

9.7 flash read

函数原型: int64_t (*read)(int64_t offset, void* buf, int64_t length);

函数功能: flash 读取

函数参数:

offset: flash 片内偏移物理地址

buf: 读取缓冲区

length: 擦除大小,单位: byte

返回值: 大于等于 0: 返回成功读取的字节数 -1:失败

9.8 flash_write

函数原型: int64_t (*write)(int64_t offset, void* buf, int64_t length);

函数功能: flash 写入

函数参数:

offset: flash 片内偏移物理地址

buf: 写入缓冲区

length: 写入大小,单位: byte

返回值: 大于等于 0: 返回成功写入的字节数 -1:失败

10 efuse

该套接口提供了 efuse 的读写方法,详细使用方法看 API 接口的说明以及 camera 的测试代码。

10.1 源码文件

头文件: sdk/include/efuse/efuse_manager.h

源文件: sdk/efuse/efuse_manager.c

测试程序: sdk/examples/efuse/

10.2 get_efuse_manager

函数原型: efuse_manager *get_efuse_manager(void);

函数功能: 获取 efuse_manager 句柄

函数参数: 无

返回值:返回efuse_manager结构体指针

其 他: 通过该结构体指针访问 efuse_manager 内部提供的方法

10.3 efuse_read

函数原型: efuse_read(enum efuse_segment seg_id, uint32_t *buf, uint32_t length);

函数功能: 读 efuse 指定的段

函数参数:

seg_id: 读取 EFUSE 段的 id

buf: 存储读取数据的缓存区指针

length: 读取的长度,以字节为单位

返回值: 0:成功; -1:失败

10.4 efuse_write

函数原型: efuse_write(enum efuse_segment seg_id, uint32_t *buf, uint32_t length);

函数功能: 写数据到指定的 efuse 段

函数参数:

seg_id: 写 EFUSE 目标段的 id

buf: 存储待写入数据的缓存区指针

length: 写入的长度,以字节为单位

返回值: 0:成功; -1:失败

11 rtc

该套接口基于 kernel 的 rtc 应用设计标准实现的,提供了 rtc 设备的读写方法,详细使用方法看 API 接口的说明以及 rtc 的测试代码。

11.1 源码文件

头文件: sdk/include/rtc/rtc_manager.h

源文件: sdk/rtc/rtc_manager.c

测试程序: sdk/examples/rtc/

11.2 get_rtc_manager

函数原型: rtc_manager *get_rtc_manager(void);

函数功能: 获取 rtc_manager 句柄

函数参数: 无

返回值:返回rtc_manager结构体指针

其 他: 通过该结构体指针访问 rtc_manager 内部提供的方法

11.3 rtc_read

函数原型: int32_t rtc_read(struct rtc_time *time);

函数功能: rtc 读时间

函数参数:

time: 获取时间参数

struct rtc_time {

int tm_sec; 秒 - 取值区间为[0,59]

int tm_min; 分 - 取值区间为[0,59]

int tm_hour; 时 - 取值区间为[0,23]

int tm_mday; 一个月中的日期 - 取值区间为[1,31]

int tm_mon; 月份(从一月开始,0代表一月)-取值区间为[0,11]

int tm_year; 年份,其值等于实际年份减去 1900

int tm_wday; 星期 - 取值区间为[0,6]其中 0 代表星期天, 1 代表星期一,以此类推

int tm_yday; 从每年的 1 月 1 日开始的天数 – 取值区间为[0,365],

其中0代表1月1日,1代表1月2日,以此类推

int tm_isdst; 夏令时标识符,实行夏令时的时候,tm_isdst 为正。

不实行夏令时的进候,tm_isdst为0;不了解情况时,tm_isdst()为负。

};

返回值: 0:成功; -1:失败

11.4 rtc write

函数原型: int32_t rtc_write(const struct rtc_time *time);

函数功能: rtc 读时间

函数参数:

time: 设置时间参数(参考 rtc_read 的参数说明)

返回 值: 0: 成功: -1: 失败

12 spi

该套接口基于 kernel 的 spi 应用设计标准实现的,提供了 spi 设备的读写方法,详细使用方法看 API 接口的说明以及 spi 的测试代码。

12.1 源码文件

头文件: sdk/include/spi/spi_manager.h

源文件: sdk/spi/spi_manager.c

测试程序: sdk/examples/spi/

12.2 get_spi_manager

函数原型: spi_manager *get_spi_manager(void);

函数功能: 获取 spi_manager 句柄

函数参数: 无

返回值:返回spi_manager结构体指针

其 他: 通过该结构体指针访问 spi_manager 内部提供的方法

12.3 spi_init

函数原型: int32_t spi_init(enum spi id, uint8_t mode, uint8_t bits, uint32_t speed);

函数功能: spi 设备初始化

函数参数:

id: spi 设备 id, 其值必须小于 SPI_DEVICE_MAX

mode: spi 设备工作模式

bits: spi 读写一个 word 的位数, 其值有: 8/16/32, 通常为 8

speed: spi 读写最大速率

返回值: 0:成功; -1:失败

其 他: 在使用每个 SPI 设备之前,必须优先调用 init 函数进行初始化

12.4 spi_deinit

函数原型: void spi_deinit(enum spi id);

函数功能: spi 设备初始化

函数参数:

id: spi 设备 id, 其值必须小于 SPI_DEVICE_MAX

返回值:无

其 他: 对应于 init 函数, 不再使用某个 SPI 设备时, 应该调用此函数释放

12.5 spi_read

函数原型: int32_t spi_read(enum spi id, uint8_t *rxbuf, uint32_t length);

函数功能: spi 读设备

函数参数:

id: spi 设备 id, 其值必须小于 SPI_DEVICE_MAX

rxbuf: 存储读取数据的缓存区指针, 不能是空指针

length: 读取的字节数

返回值:大于等于0:成功返回实际读取的字节数-1:失败

12.6 spi_write

函数原型: int32_t spi_write(enum spi id, uint8_t *txbuf, uint32_t length);

函数功能: spi 读设备

函数参数:

id: spi 设备 id, 其值必须小于 SPI_DEVICE_MAX

txbuf: 存储待写入数据的缓存区指针, 不能是空指针

length: 写入的字节数

返回值: 大于等于0: 成功返回实际写入到的字节数-1: 失败

12.7 spi_transfer

函数原型: int32_t spi_transfer(enum spi id, uint8_t *txbuf, uint8_t *rxbuf, uint32_t length);

函数功能: spi 读设备

函数参数:

id: spi 设备 id, 其值必须小于 SPI_DEVICE_MAX

txbuf: 存储待写入数据的缓存区指针, 不能是空指针

rxbuf: 存储读取数据的缓存区指针, 不能是空指针

length: 读写的字节数

返回值:0:成功,-1:失败

13 usb

该套接口目前支持的 usb 设备包括 hid 和 cdc acm。

13.1 源码文件

头文件: sdk/include/usb/usb_manager.h

源文件: sdk/usb/usb_device_manager.c

测试程序: sdk/examples/usb/

13.2 配置参数

USB DEVICE MAX COUNT表示系统支持的最大USB设备数,默认值为1

13.3 get_usb_device_manager

函数原型: struct usb_device_manager* get_usb_device_manager(void);

函数功能: 获取 usb_device_manager 操作指针, 以操作 usb_device_manager 内部方法

返回值: 返回 usb_device_manager 结构体指针

其 他: 通过该结构体指针访问 usb_device_manager 内部提供的方法

13.4 usb_device_init

函数原型: int32_t (*init)(char* devname);

函数功能: usb 设备初始化

函数参数:

devname: usb 设备名称 例如: 共支持 2 类 usb 设备, 分别是 hid 设备和 cdc acm 设备

hid 设备名称是/dev/hidg, cdc acm 设备名称是/dev/ttyGS0

返回值: 0:成功; -1:失败

其 他:每个设备在使用前必须优先调用 usb device init

13.5 usb_device_deinit

函数原型: int32_t (*deinit)(char* devname);

函数功能: usb 设备释放

函数参数:

devname: usb 设备名称, 例如: 共支持 2 类 usb 设备, 分别是 hid 设备和 cdc acm 设备

hid 设备名称是/dev/hidg0, cdc acm 设备名称是/dev/ttyGS0

返回值: 0:成功; -1:失败

其 他:每个设备在使用前必须优先调用 usb_device_init,与 usb_device_deinit 函数相对应

13.6 usb_device_switch_func

函数原型: int32_t (*switch_func)(char* switch_to, char* switch_from);

函数功能: usb 功能设备切换

函数参数:

switch_to: 目标切换功能设备名称

switch_from: 当前功能设备名称

举例: 从 hid 切换到 cdc acm, switch_from 应设置为/dev/ttyhidg0, switch_to 应设置为

/dev/ttyGS0

返回值: 0:成功; -1:失败

其 他: switch_from 指定的设备必须首先 init 后,才能调用该函数。

功能设备切换的另一种方法是先 deinit 释放当前设备,再 init 初始化新设备,详细信息请参考测试程序为 test usb switch。

13.7 usb_device_get_max_transfer_unit

函数原型: uint32_t (*get_max_transfer_unit)(char* devname);

函数功能: 获取 usb 最大传输单元

函数参数:

devname: usb 设备名称

例如: 共支持 2 类 usb 设备, 分别是 hid 设备和 cdc acm 设备

hid 设备名称是/dev/hidg0

cdc acm 设备名称是/dev/ttyGS0

返回值:大于0:成功获取最大传输单元大小;0:失败

其 他: 每个设备在使用前必须优先调用 usb device init

13.8 usb_device_write

函数原型: int32_t (*write)(char* devname, void* buf, uint32_t count, uint32_t timeout_ms);

函数功能: 写数据

函数参数:

devname: usb 设备名称

例如: 共支持 2 类 usb 设备, 分别是 hid 设备和 cdc acm 设备

hid 设备名称是/dev/hidg0

cdc acm 设备名称是/dev/ttyGS0

buf: 存储写入数据的缓存区指针

count: 要写入的字节数

timeout_ms: 写入超时时间,单位 ms

返回值:大于等于0:成功读取到的字节数;-1:失败

其 他: 该函数在指定超时时间内写入 count 个字节数据,返回实际写入大小,在使用之前要调用 usb_device_init

13.9 usb_device_read

函数原型: int32_t (*read)(char* devname, void* buf, uint32_t count, uint32_t timeout_ms);

函数功能: 读数据

函数参数:

devname: usb 设备名称

例如: 共支持 2 类 usb 设备, 分别是 hid 设备和 cdc acm 设备

hid 设备名称是/dev/hidg0

cdc acm 设备名称是/dev/ttyGS0

buf: 存储读取数据的缓存区指针

count: 读取的字节数

timeout ms: 读取超时时间,单位 ms

返回值: 大于等于0:成功读取字节数;-1:失败

其 他: 该函数在指定超时时间内读取 count 个字节数据,返回实际读取大小,在使用之前要先调用 usb_device_init

14 Security

该套接口目前支持 AES128/AES192/AES256 加解密

14.1 源码文件

头文件: sdk/include/security/security_manager.h

源文件: sdk/security/security_manager.c

测试程序: sdk/examples/security/

14.2 get_security_manager

函数原型: struct security_managerr* get_security_manager(void);

函数功能: 获取 security_manager 操作指针, 以操作 security_manager 内部方法

返回值: 返回 security_manager 结构体指针

其 他: 通过该结构体指针访问 security_manager 内部提供的方法

14.3 security_init

函数原型: int32_t security_init(void);

函数功能: security 模块初始化

函数参数: 无

返回值: 0:成功; -1:失败

14.4 security_deinit

函数原型: void security_deinit(void);

函数功能: security 模块释放

函数参数: 无

返回值: 0:成功; -1:失败

14.5 simple_aes_load_key

函数原型: int32_t (*simple_aes_load_key)(struct aes_key* aes_key);

函数功能: 加载 AES key

返回值: 0:成功; -1:失败

14.6 simple_aes_crypt

函数原型: int32_t (*simple_aes_crypt)(struct aes_data* aes_data);

函数功能: AES 加/解密输入数据

返回值: 0:成功; -1:失败

15 zigbee

该套接口基于串口与从模块 TI CC2530 进行交互,结合建立在 Z-Stack 协议栈之上的应用工程 (CC2530 工程源码见附件)

以下只提供 API 说明,关于 zigbee 功能开发详细见《iLock_Zigbee_Develop_Manual__CN.pdf》

15.1 源码文件

头文件: sdk/include/zigbee/zigbee_manager.h

源文件: sdk/zigbee/zigbee/zigbee_manager.c

测试程序: sdk/examples/zigbee/

15.2 get_zigbee_manager

函数原型: uart_zigbee_manager* get_zigbee_manager(void);

函数功能: 获取 uart_zigbee_manager 句柄

函数参数: 无

返回值:返回uart_zigbee_manager结构体指针

其 他: 通过该结构体指针访问 uart_zigbee_manager 内部提供的方法

15.3 init

函数原型: int (*init)(uart_zigbee_recv_cb recv_cb);

函数功能: 初始化 zigbee 功能模块及相关组件

函数参数:

recv_cb: 处理解析到完整数据包后的回调函数,由用户编写并传入

返回值: 0:成功; <0:失败

其 他: 在使用 zigbee 模块之前,必须优先调用 init 函数进行初始化

15.4 deinit

函数原型: void (*deinit)(void);

函数功能:释放 zigbee 模块资源及相关组件

函数参数: 无

返回值:无

其 他: 对应于 init 函数, 不再使用时,应该调用此函数释放

15.5 reset

函数原型: int (*reset)(void);

函数功能: 硬件复位

函数参数: 无

返回值: 0:成功; -1:失败

其 他: 此函数操作硬件 IO 复位 CC2530, 需等待 CC2530 重启

15.6 ctrl

函数原型: int (*ctrl)(uint8_t* pl, uint16_t len);

函数功能: 控制数据透明传输

函数参数:

pl:控制数据的载荷部分

len: 载荷数据长度

返回值: 0:成功; -1:入参非法; -2 发送失败

其 他: 阻塞发送,只需要填入应用数据及长度,并关心返回值

15.7 get_info

函数原型: int (*get_info)(void);

函数功能: 获取设备当前配置信息

函数参数: 无

返回值: 0:成功; <0:失败

其 他: 阻塞发送, 此函数成功后, CC2530 随后上报设备参数, 由接收回调函数接收

15.8 factory

函数原型: int (*factory)(void);

函数功能: 令 CC2530 的 zigbee 当前参数失效,恢复默认配置

函数参数: 无

返回值: 0:成功; <0:失败

其 他: 阻塞发送, 关心返回值, 需等待 CC2530 重启。

15.9 reboot

函数原型: int (*reboot)(void);

函数功能: 软件重启 CC2530

函数参数: 无

返回值: 0:成功; <0:失败

其 他: 阻塞发送, 关心返回值, 需等待 CC2530 重启。

15.10 set role

函数原型: int (*set_role)(uint8_t role);

函数功能: 设置 zigbee 设备的角色

函数参数:

role: 00 协调器 01 路由器 02 终端节点

返回值: 0:成功; <0:失败

其 他: 阻塞发送, 关心返回值, 需等待 CC2530 重启。

15.11 set_panid

函数原型: int (*set_panid)(uint16_t panid);

函数功能: 设置 zigbee 设备的 pan id 指定个域网 ID 进行网络创建(协调器)或加入(节点)

函数参数:

panid: 0x0001~0xFFFF (0xFFFF: 随机)

返回值: 0:成功; <0:失败

其 他: 阻塞发送, 关心返回值, 需等待 CC2530 重启

15.12 set_channel

函数原型: int (*set_channel)(uint8_t channel);

函数功能: 设置 zigbee 设备工作的信道

函数参数:

channel: 0x0B~0x1A

返回值: 0:成功; <0:失败

其 他: 阻塞发送, 关心返回值, 需等待 CC2530 重启

15.13 set_key

函数原型: int (*set_key)(uint8_t* key, uint8_t keylen);

函数功能:设置 aes 加密的密钥, 16 bytes

函数参数:

key: 密钥

ketlen: 密钥长度, 固定 16

返回值: 0:成功; <0:失败

其 他: 阻塞发送, 关心返回值, 需等待 CC2530 重启

15.14 set_join_aging

函数原型: int (*set_join_aging)(uint8_t aging);

函数功能: 设置协调器和路由器角色下,允许设备加入网络的时限,终端无作用函数参数:

aging: 0x00~0xFF, 0为不可加入, 0xFF为永久可加入

返回值: 0:成功; <0:失败

其 他: 阻塞发送, 关心返回值, 不需要重启

15.15 set_cast_type

函数原型: int (*set_cast_type)(uint8_t type, uint16_t addr);

函数功能: 数据发送方式

函数参数:

type: 00 广播、01 点播、02 组播

addr: 指定 16bit 的发送目的地址,广播为 0xFFFF,组播为组 ID

返回值: 0:成功; <0:失败

其 他: 阻塞发送, 关心返回值, 不需要重启

15.16 set_group_id

函数原型: int (*set_group_id)(uint16_t id);

函数功能: 设置设备加入本地的组,用于接收相对应的组播数据,同时只加入一个组

函数参数:

id: 指定加入的组 ID

返回值: 0:成功; <0:失败

其 他: 阻塞发送, 关心返回值, 不需要重启

15.17 set_poll_rate

函数原型: int (*set_poll_rate)(uint16_t rate);

函数功能: 设置睡眠唤醒请求数据周期, 配置功耗的关键参数, 一般为睡眠唤醒周期

函数参数:

rate: 周期请求数据的时间,单位 ms 范围 0~7s

返回值: 0:成功; <0:失败

其 他: 阻塞发送, 关心返回值, 需等待 CC2530 重启, 只对终端节点有效, 协调器和路由器不睡眠

15.18 set_tx_power

函数原型: int (*set_tx_power)(int8_t power);

函数功能: 设置 zigbee 模块发射功率

函数参数:

power: $3 \sim -22 \text{ dbm}$

返回值: 0:成功; <0:失败

其 他: 阻塞发送, 关心返回值, 不需要重启

16 74hc595

该套接口用于控制 CMOS 移位寄存器 74hc595 输出的用户指定数据,详细使用方法看 API 接口的说明以及测试代码。

16.1 源码文件

头文件: sdk/include/74hc595/74hc595_manager.h

源文件: sdk/74hc595/74hc595_manager.c

测试程序: sdk/examples/74hc595

16.2 配置参数

SN74HC595_DEVICE_NUM: 该宏在 74hc595_manager.h 头文件中定义,表示 74hc595 设备的个数(注意多个 74hc595 串联算一个,目前驱动支持最多四个串联)。

16.3 get_sn74hc595_manager

函数原型: sn74hc595_manager *get_sn74hc595_manager(void);

函数功能: 获取 sn74hc595_manager 句柄

函数参数: 无

返回值:返回sn74hc595_manager结构体指针

其 他: 通过该结构体指针访问 sn74hc595 manager 内部提供的方法

16.4 sn74hc595_init

函数原型: int32_t sn74hc595_init(enum sn74hc595 id);

函数功能: 74hc595 设备初始化

函数参数:

id: 每个 74hc696 设备对应的 id 号, id 的值应大于 0, 小于 SN74HC595_DEVICE_NUM

返回值:0:成功;<0:失败

其 他: 在调用其它 API 之前, 必须先调用此函数进行初始化

16.5 sn74hc595_deinit

函数原型: void sn74hc595_deinit(enum sn74hc595 id);

函数功能: 74hc595 设备释放

函数参数:

id: 每个 74hc696 设备对应的 id 号, id 的值应大于 0, 小于 SN74HC595 DEVICE NUM

返回值:无

其 他: 对应 sn74hc595 init 函数,不再使用设备必须释放

16.6 sn74hc595_get_outbits

函数原型: uint32_t sn74hc595_get_outbits(enum sn74hc595 id, uint32_t *out_bits);

函数功能: 从内核驱动获取 74hc595 设备的输出位大小

函数参数:

id: 74hc595 设备的 id, 两个 74hc595 级联看作是一个设备

out bits: 保存 74hc595 输出数据的长度变量指针

返回值: 非0: 成功; <0: 失败

其 他: 在不清楚内核设置 74hc595 设备的输出位大小时,可通过此函数获取

16.7 sn74hc595_write

函数原型: int32_t sn74hc595_write(enum sn74hc595 id, void *data, uint32_t out_bits);

函数功能: 74hc595 写数据

函数参数:

id: 74hc595 设备的 id, 多个 74hc595 级联看作是一个设备

data: 写数据的指针

out_bits: 74hc595 输出数据的长度,单位: bits,例如,

一个 8-bit 74hc595, out_bits 为 8,两个 8-bit 74hc595 级联,out_bits 为 16,通过 sn74hc595_get_outbits 函数可以从内核驱动中获取设定的值

返回值:等于out_bits:成功; <0:失败

16.8 sn74hc595_read

函数原型: int32_t sn74hc595_read(enum sn74hc595 id, void *data, uint32_t out_bits);

函数功能: 读取 74hc595 正在输出的数据

函数参数:

id: 74hc595 设备的 id, 多个 74hc595 级联看作是一个设备

data: 存放读取数据的指针

out_bits: 74hc595 输出数据的长度,单位: bits,例如,

一个 8-bit 74hc595, out_bits 为 8,两个 8-bit 74hc595 级联,out_bits 为 16,通过 sn74hc595_get_outbits 函数可以从内核驱动中获取设定的值

返回值:等于out_bits:成功; <0:失败

16.9 sn74hc595_clear

函数原型: int32_t sn74hc595_clear(enum sn74hc595 id);

函数功能:清除 74hc595 移位寄存器,相当于写 0

函数参数:

id: 74hc595 设备的 id, 多个 74hc595 级联看作是一个设备

返回值:等于out_bits:成功; <0:

17 cypress

该套接口用于控制和处理 cypress MCU 的上报事件,详细使用方法看 API 接口的说明以及测试代码。

17.1 源码文件

头文件: sdk/include/cypress/cypress_manager.h

源文件: sdk/cypress/cypress_manager.c

测试程序: sdk/examples/cypress

17.2 get_cypress_manager

函数原型: cypress _manager *get_ cypress_manager(void);

函数功能: 获取 cypress_manager 句柄

函数参数: 无

返回值:返回cypress_manager结构体指针

其 他: 通过该结构体指针访问 cypress _manager 内部提供的方法

17.3 cypress_init

函数原型: int32_t cypress_init(deal_card_report_handler card_handler);

函数功能: cypress 设备初始化

函数参数:

card handler: 处理读卡上报事件的回调函数,有卡上报事件时自动被调用,

函数原型: void (*deal_card_report_handler)(int dev_fd)

返回值:0:成功;<0:失败

其 他: 在调用其它 API 之前, 必须先调用此函数进行初始化

17.4 cypress_deinit

函数原型: void cypress_deinit(void);

函数功能: cypress 设备

函数参数: 无

返回值:无

其 他: 对应 cypress_init 函数,不再使用设备必须释放

17.5 cypress_ mcu_reset

函数原型: void cypress_mcu_reset(void);

函数功能: 复位 cypress MCU

函数参数: 无

返回值:无

其 他: 主控判断 cypress MCU 工作异常时,可以调用此函数复位 cypress MCU

18 fpc fingerprint

该套接口用于操作 fpc 指纹传感器和获取到的指纹识别算法,详细使用方法看 API 接口的说明以及测试代码。

18.1 源码文件

头文件: sdk/include/fingerprint/fpc/fpc_fingerprint.h

源文件: sdk/fingerprint/fpc/fpc_fingerprint.c

测试程序: sdk/examples/fingerprint/fpc/test_fpc.c

18.2 fpc_fingerprint_init

```
函数原型: int fpc_fingerprint_init(notify_callback notify, void *param_config);
```

函数功能: 初始化

```
函数参数: notify:事件通知的回调函数,参数:消息类型、注册百分比、模版 ID
```

由消息类型决定第二和第三个参数的有效性

```
typedef void (*notify_callback)(int msg, int percent, int finger_id);
```

param_config: 用户配置参数

typedef struct customer_config

{

int max_enroll_finger_num; /* 指纹个数, 0~200*/

int min_enroll_count_for_one_finger; /* 模版注册需要指纹个数, 固定 3 */

int enroll_timeout; /* 注册指纹超时时间 */

int authenticate_timeout; /* 验证指纹超时时间 */

char*uart_devname; /* 算法芯片通讯串口 /dev/tty* */

char file_path[128]; /* 模版及 ID 文件保存路径 */

} customer_config_t;

返回值:0成功,一1失败

18.3 fpc_fingerprint_destroy

函数原型: int fpc_fingerprint_destroy(void);

函数功能: 关闭指纹模块及算法

函数参数: 无

返回值:0成功,一1失败

其它: 不再使用时调用此接口释放资源

18.4 fpc_fingerprint_reset

函数原型: int fpc_fingerprint_reset(void);

函数功能: 指纹传感器硬件复位

函数参数: 无

返回值:0成功,一1失败

18.5 fpc_fingerprint_enroll

函数原型: int fpc_fingerprint_enroll(void);

函数功能: 注册指纹模版,立即返回,结果从回调函数返回

函数参数: 无

返回值:0成功,一1失败

18.6 fpc_fingerprint_authenticate

函数原型: int fpc_fingerprint_authenticate(void);

函数功能: 验证指纹, 立即返回, 结果从回调函数返回

函数参数: 无

返回值:0成功,一1失败

18.7 fpc_fingerprint_delete

函数原型: fpc_fingerprint_delete(int fingerprint_id, int type);

函数功能: 删除指纹模版, 立即返回, 结果从回调函数返回

函数参数: type: 0 删除指定 ID, 1 删除所有指纹

fingerprint_id: 删除的 ID

返回值:0成功,一1失败

18.8 fpc_fingerprint_cancel

函数原型: int fpc_fingerprint_cancel(void);

函数功能: 取消当前操作

函数参数:无

返回值:0成功,一1失败

其它: 如注册过程中取消注册

18.9 fpc_fingerprint_get_template_info

函数原型: int fpc_fingerprint_get_template_info(uint32_t template_info[]);

函数功能: 获取已注册所有的指纹的 ID

函数参数: template_info: 返回所有已注册指纹 ID

返回值:0成功,一1失败