Assume that each brown bear b_i has a territory with a midpoint $\mu_i = (\mu_{lat}, \mu_{lon})$. Let $\mathcal S$ be the four regions of Sweden we are interested in and let $\mathcal T$ be the region of land within ℓ kilometers from the border of $\mathcal S$. There are n bears with territory midpoint in $\mathcal S$ and m bears with midpoint in $\mathcal T$.

For each bear b_i , $Y_i \sim Poisson(\lambda)$ number of spills are expelled in their territory with locations $\mu_i + X_{ij}$, $j=1,\ldots,n_i$. A bear's territory is a circle with midpoint μ_i and radius $r=Max\mid\mid |X_{ij}-\mu_i|$. $X_{ij}=(R,\Phi)$ where $R\sim U$ (0,r) and $\Phi\sim U$ $(0,2\pi)$. The number of spills that are found is $N_i\sim B(Y_i,p_i)$ where $p_i=m\omega_i$ where ω_i is the ratio of the territory of b_i contained inside $\mathcal S$ (Or the probability that μ_i+X_{ij} lies in $\mathcal S$) and m is constant and $0\leq m\leq 1$. Since we cannot observe Y_i but know that it is poisson distributed with parameter λ and that $N_i\sim B(Y_i,p_i)$ we conclude that the distribution for the number of spills found by b_i is $N_i\sim Poisson(\lambda m\omega_i)$ or if we are not specifically interested in exactly what λ or m is, $N_i\sim Poisson(\nu\omega_i)$.

The Midpoints μ_i are distributed uniformly across the integer coordinates $(S \cup T)/C$ where C is the area that is l coordinate units west from the edge of the Baltic Sea. $\mu_i = (\mu_{lat}, \mu_{lon})$ where $\mu_{lat} \sim U(S, N)$ and $\mu_{lon} \sim U(W_{lat}, E_{lat})$ where S is the southernmost relevant coordinate, N the northern, W_{lat} is the westernmost coordinate at the corresponding lateral coordinate and E_{lat} the same for easternmost.