In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [24]: |td=pd.read_csv("QVI_data.csv")

In [25]: td.head()

Out[25]: LYLTY_CARD_NBR DATE STORE_NBR TXN_ID PROD_NBR PROD_NAME PROD QTY Natural Chip 2018-0 1000 1 1 5 2 Compny 10-17 SeaSalt175g Red Rock Deli 2018-1002 2 1 1 58 Chikn&Garlic 1 09-16 Aioli 150g **Grain Waves** 2019-Sour 2 1003 3 1 1 Cream&Chives 03-07 210G Natural ChipCo Hony 2019-1003 106 3 1 4 1 03-08 Soy Chckn175g WW Original 2018-1004 1 5 96 Stacked Chips 1 11-02 160g

In [26]: td.describe()

max

Out[26]: TO LYLTY_CARD_NBR STORE_NBR TXN_ID PROD_NBR PROD_QTY 264834.000000 2.648340e+05 264834.000000 264834.000000 26483 count 2.648340e+05 1.355488e+05 135.079423 1.351576e+05 56.583554 mean 1.905813

8.057990e+04 std 76.784063 7.813292e+04 32.826444 0.343436 min 1.000000e+03 1.000000 1.000000e+00 1.000000 1.000000 25% 7.002100e+04 70.000000 6.760050e+04 28.000000 2.000000 50% 1.303570e+05 130.000000 56.000000 1.351365e+05 2.000000 2.026998e+05 75% 2.030940e+05 203.000000 85.000000 2.000000

114.000000

5.000000

→

272.000000 2.415841e+06

2.373711e+06

```
In [27]: |td.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 264834 entries, 0 to 264833
         Data columns (total 12 columns):
              Column
                               Non-Null Count
                                                Dtype
                               -----
                                                ----
          0
              LYLTY_CARD_NBR
                               264834 non-null int64
                               264834 non-null object
          1
              DATE
          2
              STORE NBR
                              264834 non-null int64
          3
              TXN_ID
                              264834 non-null int64
                               264834 non-null int64
          4
              PROD NBR
          5
                              264834 non-null object
              PROD_NAME
          6
              PROD_QTY
                              264834 non-null int64
                               264834 non-null float64
          7
              TOT_SALES
                               264834 non-null int64
          8
              PACK SIZE
          9
              BRAND
                               264834 non-null object
          10 LIFESTAGE
                               264834 non-null object
          11 PREMIUM_CUSTOMER 264834 non-null object
         dtypes: float64(1), int64(6), object(5)
         memory usage: 24.2+ MB
```

CHANGING THE DATA TYPE

```
td.DATE=pd.to datetime(td.DATE)
         td["YEARMONTH"] = td["DATE"].dt.strftime("%Y%m").astype("int")
In [58]: |td.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 264834 entries, 0 to 264833
         Data columns (total 13 columns):
          #
              Column
                                Non-Null Count
                                                 Dtype
          0
              LYLTY_CARD_NBR
                                264834 non-null int64
          1
              DATE
                                264834 non-null datetime64[ns]
          2
              STORE NBR
                                264834 non-null int64
          3
              TXN ID
                                264834 non-null int64
          4
              PROD NBR
                               264834 non-null int64
          5
              PROD_NAME
                                264834 non-null object
          6
              PROD_QTY
                                264834 non-null int64
          7
              TOT SALES
                                264834 non-null float64
          8
              PACK SIZE
                                264834 non-null int64
          9
                                264834 non-null object
              BRAND
          10
             LIFESTAGE
                                264834 non-null object
          11 PREMIUM_CUSTOMER 264834 non-null object
          12 YEARMONTH
                                264834 non-null int32
         dtypes: datetime64[ns](1), float64(1), int32(1), int64(6), object(4)
         memory usage: 25.3+ MB
         df1=td[td.STORE NBR==77]
In [31]:
```

```
In [32]: df2=td[td.STORE_NBR==88]
In [33]: df3=td[td.STORE_NBR==86]
```

ANALYSIS FOR STORE NUMBER 77

In [34]:	df1.de	escribe()					
Out[34]:		LYLTY_CARD_NBR	STORE_NBR	TXN_ID	PROD_NBR	PROD_QTY	TOT_SALES
	count	5.630000e+02	563.0	563.000000	563.000000	563.000000	563.000000
	mean	1.572879e+05	77.0	80924.701599	57.481350	1.548845	5.39964
	std	4.173978e+05	0.0	29931.642675	32.618701	0.532580	2.61997
	min	7.700000e+04	77.0	74910.000000	1.000000	1.000000	1.500000
	25%	7.712750e+04	77.0	75053.500000	29.000000	1.000000	3.400000
	50%	7.726300e+04	77.0	75196.000000	59.000000	2.000000	5.200000
	75%	7.739450e+04	77.0	75337.500000	86.000000	2.000000	7.200000
	max	2.330501e+06	77.0	236780.000000	114.000000	5.000000	25.500000
	4						•
In [35]:	Total_	_Sales_77=sum(df1	.TOT_SALES)				
In [36]:	Total_	Sales_77					
Out[36]:	3040.0	0000000000005					
In [37]:	Total_	Cust_77=df1.TXN_	_ID.count()				
In [38]:	Total_	Cust_77					
Out[38]:	563						
In [39]:	Avg_Tr	x_77=Total_Sales	s_77/Total_C	Cust_77			
In [40]:	Avg_Tr	-x_77					
Out[40]:	5.3996	544760213144					

ANALYSIS FOR STORE NUMBER 88

In [41]:	df2.de	escribe()					
Out[41]:		LYLTY_CARD_NBR	STORE_NBR	TXN_ID	PROD_NBR	PROD_QTY	TOT_SALE
	count	1.873000e+03	1873.0	1.873000e+03	1873.000000	1873.000000	1873.00000
	mean	1.016763e+05	88.0	8.931120e+04	53.515216	1.985051	8.72036
	std	1.744924e+05	0.0	5.505014e+04	32.668791	0.203576	1.76394
	min	8.800000e+04	88.0	8.622000e+04	2.000000	1.000000	3.25000
	25%	8.809600e+04	88.0	8.669600e+04	26.000000	2.000000	7.40000
	50%	8.819300e+04	88.0	8.717700e+04	49.000000	2.000000	8.60000
	75%	8.828500e+04	88.0	8.765000e+04	78.000000	2.000000	10.20000
	max	2.373711e+06	88.0	2.415841e+06	114.000000	5.000000	22.80000
	4						>
In [42]:	Total_	Sales_88=sum(df2	.TOT_SALES)				
In [43]:	Total_	Sales_88					
Out[43]:	16333.	249999999965					
In [45]:	Total_	Cust_88=df2.TXN_	_ID.count()				
In [46]:	Total_	Cust_88					
Out[46]:	1873						
In [47]:	Avg_Tr	x_88=Total_Sales	_88/Total_C	ust_88			
In [48]:	Avg_Trx_88						
Out[48]:	8.7203	68392952464					

ANALYSIS FOR STORE NUMBER 86

```
In [49]:
          df3.describe()
Out[49]:
                 LYLTY CARD NBR STORE NBR
                                                     TXN ID
                                                             PROD NBR
                                                                         PROD QTY TOT SALE
                       1538.000000
                                        1538.0
                                                 1538.000000
                                                             1538.000000
                                                                                     1538.00000
           count
                                                                         1538.000000
                      87561.135891
                                          86.0
                                                86368.061769
                                                               56.516905
                                                                            1.993498
                                                                                        6.9150
           mean
                       9864.423642
                                           0.0
                                                10047.016520
                                                               33.248048
                                                                            0.239190
                                                                                        2.3035
             std
            min
                      86000.000000
                                          86.0
                                                84137.000000
                                                                1.000000
                                                                            1.000000
                                                                                        1.80000
            25%
                      86063.000000
                                          86.0
                                                84533.250000
                                                               28.000000
                                                                            2.000000
                                                                                        5.4000
            50%
                      86126.000000
                                          86.0
                                                84918.500000
                                                               56.000000
                                                                            2.000000
                                                                                        6.60000
                                          86.0
            75%
                      86189.000000
                                                85313.750000
                                                               85.000000
                                                                            2.000000
                                                                                        8.8000
                     155510.000000
                                          86.0 155718.000000
                                                              114.000000
                                                                            5.000000
                                                                                       16.80000
            max
          Total_Sales_86=sum(df3.TOT_SALES)
In [51]:
In [52]:
          Total Sales 86
Out[52]: 10635.349999999973
          Total_Cust_86=df3.TXN_ID.count()
In [53]:
         Total_Cust_86
In [54]:
Out[54]: 1538
In [55]: Avg_Trx_86=Total_Sales_86/Total_Cust_86
In [56]: Avg_Trx_86
Out[56]: 6.9150520156046635
          metrics=td.groupby(['STORE_NBR','YEARMONTH']).agg({'TOT_SALES':'sum','LYLTY
In [77]:
          metrics['PRICE_PER_UNIT']=metrics['TOT_SALES']/metrics['PROD_QTY']
          metrics['CHIP_PER_TXN']=metrics['PROD_QTY']/metrics['TXN_ID']
          metrics=metrics.rename(columns={'LYLTY_CARD_NBR':'CUSTOMERS'})
          metrics['TXN_PER_CUST']=metrics['TXN_ID']/metrics['CUSTOMERS']
          metrics.drop(['TXN ID'],axis=1,inplace=True)
In [78]:
         full=metrics.copy()
```

```
In [79]: |trial=[]
          for i in metrics.index:
              if(i[1]>=201902):
                   if(i[1]<=201904):</pre>
                       trial.append(metrics.loc[i])
                  metrics.drop(i,inplace=True)
          trial=pd.DataFrame(trial)
In [83]:
         metrics
Out[83]:
                                    TOT_SALES CUSTOMERS PROD_QTY PRICE_PER_UNIT CHIP_
           STORE_NBR YEARMONTH
                            201807
                                         206.9
                                                                              3.337097
                                                        49
                                                                   62
                            201808
                                         176.1
                                                        42
                                                                   54
                                                                               3.261111
                    1
                            201809
                                         278.8
                                                        59
                                                                   75
                                                                               3.717333
                            201810
                                         188.1
                                                        44
                                                                   58
                                                                              3.243103
                            201811
                                         192.6
                                                        46
                                                                   57
                                                                              3.378947
                    ...
                            201809
                                         304.7
                                                        32
                                                                   71
                                                                               4.291549
                            201810
                                         430.6
                                                        44
                                                                   99
                                                                              4.349495
                  272
                            201811
                                         376.2
                                                                               4.324138
                                                        41
                                                                   87
                            201812
                                         403.9
                                                                               4.538202
                            201901
                                         423.0
                                                        46
                                                                   96
                                                                               4.406250
          1848 rows × 6 columns
In [84]:
         def calcCorr(store):
              metrix=metrics[['TOT_SALES','CUSTOMERS']]#add metrics as required e.g.
              for i in metrix.index:
                   a.append(metrix.loc[store].corrwith(metrix.loc[i[0]]))
              df= pd.DataFrame(a)
              df.index=metrix.index
              df=df.drop_duplicates()
              df.index=[s[0] for s in df.index]
              df.index.name="STORE NBR"
              return df
In [85]: def standardizer(df):
              df=df.abs()
              df['MAGNITUDE']=df.mean(axis=1)
              return df
```

FINDING CONTROL STORE FOR 77

```
In [86]: corr77=calcCorr(77)
```

In [87]: corr77

Out[87]:

TOT_SALES CUSTOMERS

STORE_NBR		
1	0.075218	0.322168
2	-0.263079	-0.572051
3	0.806644	0.834207
4	-0.263300	-0.295639
5	-0.110652	0.370659
268	0.344757	0.369517
269	-0.315730	-0.474293
270	0.315430	-0.131259
271	0.355487	0.019629
272	0.117622	0.223217

266 rows × 2 columns

In [89]: corr77=standardizer(corr77)
 corr77

Out[89]:

TOT_SALES CUSTOMERS MAGNITUDE

STORE_NBR			
1	0.075218	0.322168	0.198693
2	0.263079	0.572051	0.417565
3	0.806644	0.834207	0.820426
4	0.263300	0.295639	0.279469
5	0.110652	0.370659	0.240655
268	0.344757	0.369517	0.357137
269	0.315730	0.474293	0.395011
270	0.315430	0.131259	0.223345
271	0.355487	0.019629	0.187558
272	0.117622	0.223217	0.170420

266 rows × 3 columns

In [90]: corr77=corr77.sort_values(['MAGNITUDE'],ascending=False).dropna()

In [91]: corr77

Out[91]:

TOT_SALES CUSTOMERS MAGNITUDE

STORE_NBR			
77	1.000000	1.000000	1.000000
233	0.903774	0.990358	0.947066
119	0.867664	0.983267	0.925466
71	0.914106	0.754817	0.834461
3	0.806644	0.834207	0.820426
256	0.014245	0.047863	0.031054
159	0.001655	0.054404	0.028030
260	0.016618	0.027446	0.022032
194	0.010182	0.032053	0.021117
166	0.005875	0.012896	0.009386

In [113]: from scipy.stats import ks_2samp,ttest_ind,ttest_rel,t

263 rows × 3 columns

LET US ASSUME THAT STORE 233 IS CONTROL STORE OF 77

```
In [116]: a=[]
    for x in metrics.columns:
        a.append(ks_2samp(metrics.loc[77][x], metrics.loc[233][x]))
    a=pd.DataFrame(a,index=metrics.columns)

C:\Users\Gaurang\AppData\Local\Temp\ipykernel_4176\2415427399.py:3: Runtim
    eWarning: ks_2samp: Exact calculation unsuccessful. Switching to method=as
    ymp.
        a.append(ks_2samp(metrics.loc[77][x], metrics.loc[233][x]))
```

In [117]:

Out[117]:

	statistic	pvalue
TOT_SALES	0.285714	0.962704
CUSTOMERS	0.142857	0.999961
PROD_QTY	0.285714	0.962704
PRICE_PER_UNIT	0.285714	0.962704
CHIP_PER_TXN	0.285714	0.962704
TXN PER CUST	0.428571	0.575175

SINCE P-VALUE IS GREATER THAN 0.05. THEREFORE, STORE 233 CAN BE TERMED AS CONTROL STORE FOR STORE 77

In []:	

FINDING CONTROL STORE FOR 88

In [99]:	corr88=calcCorr(88)
In [100]:	corr88

Out[100]:

TOT	SALES	CUSTOM	ERS

STORE_NBR		
1	0.813636	0.305334
2	-0.067927	-0.452379
3	-0.507847	0.522884
4	-0.745566	-0.361503
5	0.190330	-0.025320
268	-0.021429	0.672672
269	-0.172578	-0.274781
270	-0.723272	-0.103032
271	-0.103037	-0.018831
272	-0.772772	0.026909

265 rows × 2 columns

In [101]: corr88=standardizer(corr88) corr88

Out[101]:

	TOT_SALES	CUSTOMERS	MAGNITUDE
STORE_NBR			
1	0.813636	0.305334	0.559485
2	0.067927	0.452379	0.260153
3	0.507847	0.522884	0.515365
4	0.745566	0.361503	0.553534
5	0.190330	0.025320	0.107825
268	0.021429	0.672672	0.347050
269	0.172578	0.274781	0.223679
270	0.723272	0.103032	0.413152
271	0.103037	0.018831	0.060934
272	0.772772	0.026909	0.399841

265 rows × 3 columns

In [102]: corr88

Out[102]:

STORE_NBR			
1	0.813636	0.305334	0.559485
2	0.067927	0.452379	0.260153
3	0.507847	0.522884	0.515365
4	0.745566	0.361503	0.553534
5	0.190330	0.025320	0.107825
268	0.021429	0.672672	0.347050
269	0.172578	0.274781	0.223679
270	0.723272	0.103032	0.413152
271	0.103037	0.018831	0.060934
272	0.772772	0.026909	0.399841

TOT_SALES CUSTOMERS MAGNITUDE

265 rows × 3 columns

In [103]: corr88=corr88.sort_values(['MAGNITUDE'],ascending=False).dropna()

In [104]: corr88

Out[104]:

TOT_SALES CUSTOMERS MAGNITUDE

STORE_NBR			
88	1.000000	1.000000	1.000000
178	0.731857	0.939466	0.835661
14	0.698557	0.942976	0.820767
133	0.735407	0.835426	0.785417
204	0.885774	0.550263	0.718018
271	0.103037	0.018831	0.060934
177	0.084074	0.005568	0.044821
170	0.027262	0.028583	0.027923
137	0.005058	0.039985	0.022521
194	0.008321	0.009504	0.008912

263 rows × 3 columns

LET US ASSUME THAT STORE 178 IS CONTROL STORE OF 88

```
In [124]: b=[]
for x in metrics.columns:
    b.append(ks_2samp(metrics.loc[88][x], metrics.loc[178][x]))
b=pd.DataFrame(c,index=metrics.columns)
```

In [122]: b

Out[122]:

	statistic	pvalue
TOT_SALES	0.285714	0.962704
CUSTOMERS	0.285714	0.962704
PROD_QTY	0.285714	0.962704
PRICE_PER_UNIT	0.428571	0.575175
CHIP_PER_TXN	0.428571	0.575175
TXN PER CUST	0.428571	0.575175

SINCE P-VALUE IS GREATER THAN 0.05. THEREFORE, STORE 178 CAN BE TERMED AS CONTROL STORE FOR STORE 88

```
In [ ]:
```

FINDING CONTROL STORE FOR 86

```
In [108]:
            corr86=calcCorr(86)
            corr86
In [109]:
Out[109]:
                          TOT_SALES CUSTOMERS
             STORE_NBR
                       1
                             0.445632
                                           0.485831
                       2
                             -0.403835
                                          -0.086161
                       3
                             -0.261284
                                          -0.353786
                       4
                             -0.039035
                                          -0.169608
                       5
                             0.235159
                                          -0.253229
                     268
                             -0.452182
                                          -0.034273
                     269
                             0.697055
                                          -0.098587
                     270
                             -0.730679
                                          -0.767267
                     271
                             0.527637
                                           0.267393
                     272
                             0.004926
                                          -0.353815
            266 rows × 2 columns
In [110]:
            corr86=standardizer(corr86)
            corr86
Out[110]:
                          TOT_SALES CUSTOMERS MAGNITUDE
             STORE_NBR
                       1
                             0.445632
                                           0.485831
                                                        0.465731
                       2
                             0.403835
                                           0.086161
                                                        0.244998
                       3
                             0.261284
                                           0.353786
                                                        0.307535
                       4
                             0.039035
                                           0.169608
                                                        0.104322
                       5
                             0.235159
                                           0.253229
                                                        0.244194
```

266 rows × 3 columns

268

269

270

271

272

0.452182

0.697055

0.730679

0.527637

0.004926

0.034273

0.098587

0.767267

0.267393

0.353815

0.243228

0.397821

0.748973

0.397515

0.179371

TOT_SALES CUSTOMERS MAGNITUDE

Out[111]:

	_		
STORE_NBR			
86	1.000000	1.000000	1.000000
155	0.877882	0.942876	0.910379
23	0.784698	0.943559	0.864128
120	0.872693	0.815097	0.843895
114	0.734415	0.855339	0.794877
91	0.019027	0.041271	0.030149
17	0.029793	0.030039	0.029916
131	0.028487	0.031142	0.029815
219	0.046653	0.004999	0.025826

0.010509

263 rows × 3 columns

234

LET US ASSUME THAT STORE 155 IS CONTROL STORE OF 86

0.025407

0.040306

SINCE P-VALUE IS GREATER THAN 0.05. THEREFORE, STORE 155 CAN BE TERMED AS CONTROL STORE FOR STORE 86