The Power of CRCW – Minima

- Two points of interest
 - Illustrate the power of CRCW models
 - Illustrate another optimality technique.
- Find the minima of n elements.
 - Input: An array A of n elements
 - Output: The minimum element in A.
- From what we already know:
 - Standard sequential algorithm not good enough
 - Can use an upward traversal, with min as the operator at each internal node. Time = O(log n), work = O(n).

The Power of CRCW – Minima

- Our solution steps:
 - Design a $O(n^2)$ work, O(1) time algorithm.
 - Gain optimality by sacrificing runtime to O(log log n).

An O(1) Time Algorithm

	12	17	8	18	26
12		1	0	1	1
17	0		0	1	1
8	1	1		1	1
18	0	0	0		1
26	0	0	0	0	

- Use n² processors.
- Compare A[i] with A[j] for each i and j.
- Now can identify the minimum.

n2 process

An O(1) Time Algorithm

	12	17	8	18	26
12		1	0	1	1
17	0		0	1	1
8	1	1		1	1
18	0	0	0		1
26	0	0	0	0	

- Use n² processors.
- Compare A[i] with A[j] for each i and j.
- Now can identify the <u>minimum</u>
 - How?

An O(1) Time Algorithm

	12	17	8	18	26
12		1	0	1	1
17	0		0	1	1
8	1	1		1	1
18	0	0	0		1
26	0	0	0	0	

- Use n² processors.
- Compare A[i] with A[j] for each i and j.
- Now can identify the minimum.
 - How?
- Where did we need the CRCW model?

Towards Optimality

- The earlier algorithm is heavy on work.
- To reduce the work, we proceed as follows.
- We derive an O(nlog log n) work algorithm running in O(log log n) time.
- For this, use a doubly logarithmic tree.

Defined in the following.

Work:

Noglight not optimal

(loglogh)

Time:

O(1) -> O(loglogh)

Start with a smaller

ordinal rise

Doubly Logarithmic Tree

- Let there be $n = 2^{2^k}$ leaves, the root is level 0. The root has $\sqrt{n} = 2^{2^{k-1}}$ children.
- In general, a node at level i has 2^{2^{k-i-1}} children, for 0≤ i ≤
 k.
- Each node at level k has two leaf nodes as children.

Doubly Logarithmic Tree

- Some claims:
 - Number of nodes at level i is 2<sup>2^k 2^{k-i}.
 </sup>
 - Number of nodes at the kth level is n/2.
 - Depth of a doubly logarithmic tree of n nodes is k+1 = log log n + 1.
- To compute the minimum using a doubly logarithmic tree:
 - Each internal node performs the min operation does not suffice.
 - Why?

Minima Using the Doubly Logarithmic Tree

• Intuition:

- Should spend only O(1) time at each internal node.
- Use the O(1) time algorithm at each internal node.
- At each internal node of level i, if there are c_i children, use c_i² processors.
 - Minima takes O(1) time at each level.
 - Also, No. of nodes at level i x No. of processors used = $2^{2^{k}-2^{k-i}} \cdot (2^{2^{k-i-1}})^2 = 2^{2^k} = n$.

depur = Time for therois = C,2 minima # Proc's at level i = n vi x c; 2 Processors

Minima Using a Doubly Logarithmic Tree

- Second, slightly improved result:
 - With n processors, can find the minima of n numbers in O(log log n) time.
 - Total work = O(n log log n).
- Still suboptimal by a factor of O(log log n).
- We now introduce a technique to achieve optimality.

Accelerated Cascading

- Our two algorithms:
 - Algorithm 1: A slow but optimal algorithm.
 - Binary tree based: O(log n) time, O(n) work.
 - Algorithm 2: A fast but non-optimal algorithm
 - Doubly Logarithmic tree based: O(log log n) time, O(nlog log n) work.
- The accelerated cascading technique suggests combining two such algorithms to arrive at an optimal algorithm
 - Start with the slow but optimal algorithm till the problem is small enough
 - Switch over to the fast but non-optimal algorithm.

Accelerated Cascading

- The binary tree based algorithm starts with an input of size n.
- Each level up the tree reduces the size of the input by a factor of 2.
- In log log log n levels, the size of the input reduces to $n/2^{\log\log\log n} = n/\log\log n$.

 Now switch over to the fast algorithm with n/loglog n processors, needing O(log log (n/log log n)) time.

Final Result

- Total time = O(log log log n) + O(log log n).
- Total work = O(n).
- Need CRCW model.
- Where did we need the CRCW model?