WE CLAIM:

1	1.	A microsphere comprising hyaluronan functionalized with a crosslinker at glucuronic acid sites of
2		the hyaluronan, wherein the derivitized hyaluronan is crosslinked intramolecularly and
3		intermolecularly.
1	2.	The microsphere of claim 1, wherein the crosslinker is a dihydrazide having the formula:
2		H ₂ N-NH-CO-A-CO-NH-NH ₂
3		wherein A is a substituted hydrocarbyl, unsubstituted hydrocarbyl, substituted heterocarbyl or
4		unsubstituted heterocarbyl moiety, said moiety having one to twenty carbons or heteroatoms.
1	3.	The microsphere of claim 2, wherein A is a heterocarbyl having heteroatoms selected from the
2		group consisting of nitrogen, oxygen, and sulfur.
1	4.	The microsphere of claim 2, wherein the carboxyl groups of the glucuronic acid residues have been
2		activated with a carbodiimide.
1	5.	The microsphere of claim 4, wherein the carbodiimide is 1-ethyl-dimethylaminopropyl
2		carbodiimide.
1	6.	The microsphere of claim 1, wherein the microsphere is formed by mixing hyaluronan and a
2		dihydrazide in an aqueous solution, adding a substantially non-water miscible liquid and an
3		emulsifying agent to form a water in oil type-emulsion, and lowering the pH of the emulsion.
1	7.	The microsphere of claim 1, further comprising a component that is incorporated into the
2		microsphere.

· 1 8. A method of making a functionalized hyaluronic acid microsphere comprising mixing hyaluronic 2 acid and a dihydrazide with a crosslinking activator in an aqueous solution, adding a substantially 3 non-water miscible liquid and an emulsifying agent to form an oil in water-type emulsion, and 4 lowering the pH of the emulsion to allow intramolecular and intermolecular crosslinking to occur. 1 9. The method of claim 8, wherein the pH of the emulsion is lowered to the range from about pH 7 2 to about pH 4. 1 10. The method of claim 8, further comprising dehydrating the microspheres after they have formed. 1 11. The method of claim 8, wherein the crosslinking activator is a carbodiimide. 1 12. The method of claim 8, wherein at least one molar equivalent of a dihydrazide is added per molar 2 equivalent of glucuronic acid groups on the hyaluronic acid. 1 13. The method of claim 8, wherein at least one molar equivalent of a carbodiimide is added per molar 2 equivalent of glucuronic acid groups on the hyaluronic acid. 1 14. The method of claim 8, wherein the dihydrazide has the formula: 2 H₂N-NH-CO-A-CO-NH-NH₂ 3 wherein A is a substituted hydrocarbyl, unsubstituted hydrocarbyl, substituted heterocarbyl or 4 unsubstituted heterocarbyl moiety, said moiety having one to twenty carbons or heteroatoms. 1 15. The method of claim 8, wherein A is a substituted heterocarbyl or an unsubstituted heterocarbyl 2 having heteroatoms selected from the group consisting of nitrogen, oxygen, or sulfur. 1 16. A pharmaceutical or cosmetic formulation comprising a pharmacologically effective amount of the 2 microsphere of claim 7 and an acceptable carrier, excipient, or diluent.

1 17. A method of administering microspheres to a human or animal comprising administering a
2 pharmacologically effective amount of the pharmaceutical or cosmetic formulation of claim 16.