Import Libraries

import os import joblib import numpy as np import face_recognition import ipywidgets as widgets

Load the Trained BMI Model

from IPython.display import display

rf_model = 'rf_bmi_model_tuned' model = joblib.load(rf_model)

Code Explanation

This model is trained on Illinois Prisoner dataset, which includes a full-frontal face image of prisoners alongside their weight and height, which makes it possible to calculate their BMI.

Define Helper Functions

return face_encoding[0].tolist()

In [3]: def face_into_encoding(path): image = face_recognition.load_image_file(path) face_encoding = face_recognition.face_encodings(image) if not face_encoding: print("skipped" + path) return np.zeros(128).tolist()

def predict_bmi(X_images, model): X = np.expand_dims(np.array(face_into_encoding(X_images)), axis=0) log_value = model.predict(X) bmi = np.exp(log_value) return bmi.tolist()

Code Explanation

The face_into_encoding function is responsible for capturing the face inside the image, similar to extract_face function defined in the facial recognition test case, except that this one also turn the face image into face encodings in a form of numpy array. The predict_bmi function is using the face_into_encoding function to get the face encoding of the input image, before passing it to the model's predict function. The output of the predict function is a logarithm, so we want to get the exponential of the value to get the BMI by using numpy's exp function.

Test Case (Tested on Obese and Skinny People)

images = os.listdir('bmitrial') for img in images: img_location = 'bmitrial/' + img img = open(img_location, 'rb') test_img = img.read() preds = predict_bmi(img_location, model) display(widgets.Image(value=test_img, format='jpg', width=200, height=200)) print("Your BMI is " + str(round(preds[0], 2)) + " kg/m2")

Your BMI is 22.23 kg/m2

Your BMI is 31.02 kg/m2

Your BMI is 29.0 kg/m2

Your BMI is 33.06 kg/m2

Your BMI is 32.62 kg/m2

Your BMI is 30.61 kg/m2

Code Explanation Here, we loop through every images inside bmitrial folder and use the predict_bmi function to get their BMI.