Deep Learning Review, Transformers

Robin Jia USC CSCI 467, Fall 2023 October 17, 2023

Parameters & Hyperparameters

Parameters

- Numbers that directly determine the model's predictions
- Must be learned
 - Usually by choosing parameter values that minimize some loss function
- Example: w & b for logistic regression, which makes prediction

$$P(y=1 \mid x) = \sigma(\mathbf{w}^{\mathsf{T}}x + \mathbf{b})$$

Hyperparameters

- Numbers that influence which parameters are learned
 - Thus, they indirectly influence model's predictions
- Cannot be learned—must be chosen before learning starts
 - Hyperparameter tuning: Can try learning many times with different hyperparameters, then pick the one with best development accuracy
- Example: **\(\lambda\)** for L2 regularization

Deep Learning Review

- Neural Network = Many "layers" stacked on top of each other
 - Layers built from a core set of building blocks
 - Arrangement of layers is called an "architecture"
- Each layer takes in some input and computes some output

(1) Linear Layer

- Input x: Vector of dimension d_{in}
- Output y: Vector of dimension d_{out}
- Formula: y = Wx + b
- Parameters
 - W: d_{out} x d_{in} matrix
 - b: d_{out} vector
- In pytorch: nn.Linear()

(2) Non-linearity Layer

- Input x: Any number/vector/matrix
- Output y: Number/vector/matrix of same shape
- Possible formulas:
 - Sigmoid: $y = \sigma(x)$, elementwise
 - Tanh: y = tanh(x), elementwise
 - Relu: y = max(x, 0), elementwise
- Parameters: None
- In pytorch: torch.sigmoid(), nn.functional.relu(), etc.

(2) Non-linearity Layer

- Input x: Any number/vector/matrix
- Output y: Number/vector/matrix of same shape
- Possible formulas:
 - Sigmoid: $y = \sigma(x)$, elementwise
 - Tanh: y = tanh(x), elementwise
 - Relu: y = max(x, 0), elementwise
- Parameters: None
- In pytorch: torch.sigmoid(), nn.functional.relu(), etc.

(3) Loss Layer

- Inputs:
 - y_{pred}: shape depends on task
 - y_{true}: scalar (e.g., correct regression value or class index)
- Output z: scalar
- Possible formulas:
 - Squared loss: y_{pred} is scalar, $z = (y_{pred} y_{true})^2$

• Softmax regression loss:
$$\mathbf{y}_{\text{pred}}$$
 is vector of length C, $z = -\left(y_{\text{pred}}[y_{\text{true}}] - \log \sum_{i=1}^{C} \exp(y_{\text{pred}}[i])\right)$

- Parameters: None
- In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.

Building Linear Regression

- Step 1: Compute the loss on one example
 - Training example is (x, y)
 - x is vector of length d, y is scalar

Building Linear Regression

- Step 1: Compute the loss on one example
 - Training example is (x, y)
 - x is vector of length d, y is scalar
- Step 2: Compute gradient of loss with respect to all parameters
- Step 3: Update all parameters with gradient descent update rule

Building an MLP (for regression)

- Steps for training are exactly the same:
- Step 1: Compute the loss on one example
 - Training example is (x, y)
 - x is vector of length d, y is scalar
- Step 2: Compute gradient of loss with respect to all parameters
 - No matter how many/which layers we use, backpropagation can automatically compute gradient of loss with respect to parameters
- Step 3: Update all parameters with gradient descent update rule

CNN "Building Blocks"

(4) Convolutional Layer

- Input x: Tensor of dimension (width, height, n_{in})
 - n_{in}: Number of input channels (e.g. 3 for RGB images)
- Output y: Tensor of dimension (width', height', n_{out})
 - width', height': New width & height, depends on stride and padding
 - n_{out}: Number of output channels
- Formula: Convolve input with kernel
 - Recall: This is in fact a linear operation
- Parameters: Kernel params of shape (K, K, n_{in}, n_{out})
- In pytorch: nn.Conv2d()

CNN "Building Blocks"

(5) Max Pooling layer

- Input x: Tensor of dimension (width, height, n)
 - n: Number of channels
- Output y: Tensor of dimension (width/2, height/2, n)
- Formula: In each 2x2 patch, compute max
- Parameters: None
- In pytorch: nn.MaxPool2d()

Building a CNN Model

- A generic CNN architecture
 - First use conv + relu + pool to extract features
 - Then use MLP to make final prediction
- Basic steps are still all the same
 - Backpropagation still works
- Gradient descent needed to update all parameters

RNN "Building Blocks"

(6) RNN Layer

- Input: List of vectors x₁, ..., x_T, each of size d_{in}
 - E.g., x_t is word vector for t-th word in sentence
 - Equivalent to a T x d_{in} matrix
- Output: List of vectors h₁, ..., h_t, each of size d_{out}
 - d_{out}: Dimension of hidden state
 - Equivalent to a T x d_{out} matrix
- Formula (Elman RNN): $h_t = \tanh (W_h h_{t-1} + W_x x_t + b)$
- Parameters:
 - W_h: Matrix of shape (d_{out}, d_{out})
 - W_x: Matrix of shape (d_{in}, d_{out})
 - b: Vector of shape (d_{out},)
 - h0: Vector of shape (d_{out},)
- In pytorch: nn.RNN(), nn.LSTM(), etc.

Output h₁, ..., h_T, each shape d_{out}

Input x₁, ..., x_T, each shape d_{in}

RNN "Building Blocks"

(7) Word Vector Layer

- Input w: A word
 - Must be in the vocabulary
 - Can also input list of words
- Output: A vector of length d
 - If input is many words, output is list of vectors corresponding to each word
- Formula: Return word_vecs[w]
- Parameters:
 - For each word w in vocabulary, there is a word vector parameter v_w of shape d
 - Think of this as a dictionary called word_vecs, where the keys are words & values are learned parameter vectors
- In pytorch: nn.Embedding()

Building an RNN encoder model

Neural Network Model

- A generic RNN architecture
 - Map each word to a vector
 - Feed word vectors to RNN to generate list of hidden states
 - Feed final hidden state to MLP to make final prediction
- Basic steps are still all the same
 - Backpropagation still works
- Gradient descent needed to update all parameters

Review: Attention (with dot product)

- Input:
 - Encoder hidden states for each input token
 - Current decoder hidden state
- Find relevant input words
 - Dot product current decoder hidden state with all encoder hidden states
 - Normalize dot products to probability distribution with softmax
- Output: "Context" vector c = weighted average of encoder states based on the probabilities

Attention Layer as a Building Block

(8) Attention Layer

- Inputs:
 - x₁, ..., x_T: List of vectors to attend to, size d
 - h: "query" vector to decide what to attend to, size d
- Output c: Convext vector of size d
- Formula: $p_t = \frac{\exp(h^\top x_t)}{\sum_{i=1}^T \exp(h^\top x_i)} \, \forall i = \{1, \dots, T\}$ $c = \sum_{t=1}^T p_t x_t$

- Parameters: None
- In pytorch: Implement with sequence of basic operations

Summary: Neural Network Building Blocks

- Neural network components are like lego bricks
 - Can be assembled in many different ways
 - Some have parameters, some don't
- Training strategy is always the same
 - (1) Compute loss
 - (2) Take gradient of loss w.r.t. parameters
 - (3) Gradient descent
- Backpropagation works on any architecture
- So, when we discuss neural architectures, we only need to discuss the forward pass
 - Backpropagation takes care of gradients
 - Gradient descent takes care of learning parameters

Announcements

- Midterm grades released
- Project Proposal grades & feedback released
- Midterm report due October 31
 - Main goal: Obtain needed data & have a full pipeline that processes data, trains a model, and gets some results
 - Compare this model with some baseline (either an even simpler model or a non-learning method)
 - Results may or may not be "good"—just a starting point for final model
 - Analyze errors and identify possible sources of improvement

- Modeling relationships between words
 - Translation alignment

- Modeling relationships between words
 - Translation alignment
 - Syntactic dependencies

- Modeling relationships between words
 - Translation alignment
 - Syntactic dependencies
 - Coreference relationships

- Modeling relationships between words
 - Translation alignment
 - Syntactic dependencies
 - Coreference relationships
- Long range dependencies
 - E.g., consistency of characters in a novel
- Attention captures relationships
 & doesn't care about "distance"

Today: The Transformer Architecture

- Input: Sequence of words
- Output: Sequence of vectors, one per word
- Same "type signature" as RNN
- Motivation
 - Don't do explicit sequential processing
 - Instead, let attention figure out which words are relevant to each other
 - RNN assumes sequence order is what matters
 - "Attention is all you need"

Transformer internals

- One transformer consists of
 - Initial embeddings for each word of size d
 - Let T =#words, so initially we have a T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles...

Feedforward layer

- Input: T x d matrix
- Output: Another T x d matrix
- Apply the same MLP separately to each ddimensional vector
 - Linear layer from d to d_{hidden}
 - ReLU (or other nonlinearity)
 - Linear layer from d_{hidden} to d
- Note: No information moves between tokens here

Transformer internals

- One transformer consists of
 - Initial embeddings for each word of size d
 - Let T =#words, so initially we have a T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles...

Modifying Attention

- What is a multi-headed attention layer???
- Similar to attention we've seen, but need to make 3 changes...
 - Self-attention (no separate encoder & decoder)
 - Separate queries, keys, and values
 - Multi-headed

Change #1: Self-Attention

- Previously: Decoder state looks for relevant encoder states
- Self-attention: Each encoder state now looks for relevant (other) encoder states
- Why? Build better representation for word in context by capturing relationships to other words

Change #1: Self-attention

- Take x₁ and dot product it with all T inputs (including itself)
- Apply softmax to convert to probability distribution
- Compute output o₁ as weighted sum of inputs

Change #1: Self-attention

- Take x₁ and dot product it with all T inputs (including itself)
- Apply softmax to convert to probability distribution
- Compute output o₁ as weighted sum of inputs
- Repeat for t=2, 3, ..., T
- Replacement for recurrence
 - RNN only allows information to flow linearly along sequence
 - Now, information can flow from any index to any other index, as determined by attention

Change #2: Separate queries, keys, and values

- Previously: We use input vectors in three ways
 - As "query" for current index
 - As "keys" to match with query
 - As "values" when computing output
- Idea: Use separate vectors for each usage
 - What each index "looks for" different from what it "matches with"
 - What you store in output different from what you "look for"/"match with"

Change #2: Separate queries, keys, and values

- Apply 3 separate linear layers to each of $x_1, ..., x_T$ to get
 - Queries [q₁, ..., q_T]
 - Keys [k₁, ..., k_T]
 - Values [v₁, ..., v_T]
 - Note: This adds parameters W^Q, W^K, W^V
 - Each linear layer maps from dimension d to dimension d_{attn}
- Dot product q₁ with [k₁, ..., k_T]
- Apply softmax to get probability distribution
- Compute o_1 as weighted sum of $[v_1, ..., v_T]$
- Repeat for t = 2, ..., T

Matrix form

- Apply 3 separate linear layers to input matrix X to get
 - Query matrix Q
 - Keys K
 - Values V
 - Note: This adds parameters W^Q, W^K, W^V
 - Each linear layer maps from dimension d to dimension d_{attn}
- Compute Q x K^T (T x T matrix)
 - Each entry is dot product of one query vector with one key vector
- Normalize each row with softmax to get matrix of probabilities P
- Output = P x V
- Lessons
 - · Quadratic in T
 - All you need is fast matrix multiplication
 - All indices run in parallel

Change #3: Making it Multi-headed

- Instead of doing attention once, have n different "heads"
 - Each has its own parameters maps to dimension d_{attn} = d/n
 - Concatenate at end to get output of size T x d

Change #3: Making it Multi-headed

- Instead of doing attention once, have n different "heads"
 - Each has its own parameters maps to dimension d_{attn} = d/n
 - Concatenate at end to get output of size T x d
- Why? Different heads can capture different relationships between words

The Multi-headed Attention building block

(9) Multi-headed Attention Layer

- Input: List of vectors x₁, ..., x_T, each of size d
 - Equivalent to a T x d matrix
- Output: List of vectors h₁, ..., h_t, each of size d
 - Equivalent to another T x d matrix
- Formula: For each head i:
 - Compute Q, K, V matrices using W_iQ, W_iK, W_iV
 - Compute self attention output using Q, K, V to yield T x d_{attn} matrix
 - Finally, concatenate results for all heads
- Parameters:
 - For each head i, parameter matrices W_iQ, W_iK, W_iV of size d_{attn} x d
 - (# of heads n is hyperparameter, d_{attn} = d/n)
- In pytorch: nn.MultiheadAttention()

Output h_1 , ..., h_T , each shape d

Input x_1 , ..., x_T , each shape d

What do attention heads learn?

home

Bob

He

home

- This attention head seems to go from a pronoun to its antecedent (who the pronoun refers to)
- Other heads may do more boring things, like point to the previous/next word
 - In this way, can do RNN-like things as needed
 - But attention also can reach across long ranges

Transformer internals

- One transformer consists of
 - Initial embeddings for each word of size d
 - Let T =#words, so initially we have a T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles...

Embedding layer

- As before, learn a vector for each word in vocabulary
- Is this enough?
 - Both attention and feedforward layers are order invariant
 - Need the initial embeddings to also encode order of words!
- Solution: Positional embeddings
 - Learn a different vector for each index
 - Gets added to word vector at that index

Runtime comparison

• RNNs

- Linear in sequence length
- But all operations have to happen in series

Transformers

- Quadratic in sequence length (T x T matrices)
- But can be parallelized (big matrix multiplication)

Bells and whistles

- Attention: Scaled dot products
- Residual connections
- Layer Norm
- Tokenization: Byte Pair Encoding

Scaled dot product attention

- Earlier I said, "Dot product q₁ with [k₁, ..., k_T]"
- Actually, you take dot product and then divide by $\sqrt{d_{attn}}$
- Why?
 - If d large, dot product between random vectors will be large
 - This makes probabilities close to 0/1
 - Scaling dot products down encourages more even attention at beginning

Scaled dot product attention

- Earlier I said, "Dot product q₁ with [k₁, ..., k_T]"
- Actually, you take dot product and then divide by $\sqrt{d_{attn}}$
- Why?
 - If d large, dot product between random vectors will be large
 - This makes probabilities close to 0/1
 - Scaling dot products down encourages more even attention at beginning

Residual Connections & Layer Norm

- Feedforward and multi-headed attention layers
 - Take in T x d matrix X
 - Output T x d matrix O
- We add a "residual" connection: we actually use X + O as output
 - Makes it easy to copy information from input to output
 - Also reduces vanishing gradient issues
 - Think of O as how much we change the previous value
- Then, we add "Layer Normalization" to prevent very big or very small values

Byte Pair Encoding

- Normal word vectors have a problem: How to deal with super rare words?
 - Names? Typos?
 - Vocabulary can't contain literally every possible word...
- Solution: Tokenize string into "subword tokens"
 - Common words = 1 token
 - Rare words = multiple tokens

Aragorn told Frodo to mind Lothlorien 6 words

'Ar', 'ag', 'orn', 'told', 'Fro', 'do', 12 subword 'to', 'mind', 'L', 'oth', 'lor', 'ien' tokens

Putting it all together

Conclusion: Transformers

- "Attention is all you need"
 - Get rid of recurrent connections
 - Instead, all "communication" between words in sequence is handled by attention
 - Have multiple attention "heads" to learn different types of relationships between words
- Most famous modern language models (e.g., ChatGPT) are Transformers!
 - Next time: Transformers as Decoders, Pre-training
 - Later: Transformers + Reinforcement Learning = ChatGPT