Homework #0: Numerical Simulations*

ELEN E6880: RMT with Applications

- 1. Gaussian random matrices and Wigner's semi-circle law: Consider an ensemble of K realizations of $N \times N$ Gaussian matrices, \mathbf{A} , with (symmetric) entries $a_{i \leq j} \sim \mathcal{N}(0, 1/N)$.
 - (a) Plot the averaged histograms of the eigenvalues of **A** for: K = 10000, N = 5, 20.
 - (b) Plot the averaged histograms of the eigenvalues of $\bf A$ for: K=1, N=10,100,1000,4000.
 - (c) Plot, on top of your simulated histograms, the analytical curve (a.k.a. Wigner's semi-circle law of the limiting distribution):

$$p(\lambda) = \begin{cases} \frac{1}{2\pi} \sqrt{4 - \lambda^2} & |\lambda| < 2\\ 0 & \text{else} \end{cases}$$
 (1)

- (d) How can you characterize the difference between these two types of convergence ((a) and (b))?
- 2. Wishart random matrices and Marčenko-Pastur law: Consider an ensemble of K realizations of $N \times N$ Wishart matrices of the form $\mathbf{A} \triangleq \frac{1}{N} \mathbf{X} \mathbf{X}^H$, where the $N \times M$ matrix $\mathbf{X} \sim \mathcal{N}(0,1)$.
 - (a) Plot the averaged histograms of the eigenvalues of ${\bf A}$ for: M=2N, $K=3000,\ N=100.$
 - (b) Plot the averaged histograms of the eigenvalues of $\bf A$ for: M=2N, $K=1, \ N=2000.$

^{*}Use a numerical SW/language of choice (Matlab, Octave, Python, R,...). Source code for generating the plots should be also provided. DUE: 09/27/19

(c) Plot, on top of your simulated histograms, the analytical curve (a.k.a. Marčenko-Pastur law of the limiting distribution):

$$p(\lambda) = \begin{cases} \frac{\sqrt{4\alpha - (\lambda - 1 - \alpha)^2}}{2\pi\lambda} & (1 - \sqrt{\alpha})^2 \le \lambda \le (1 + \sqrt{\alpha})^2 \\ 0 & \text{else} \end{cases}$$
 (2)

and $\alpha \triangleq \frac{M}{N}$.

(d) Again, how can you characterize the difference between these two types of convergence ((a) and (b))?