微机原理与接口技术

MIPS微处理器控制器设计

华中科技大学 左冬红

回顾——数据通路

需要哪些控制信号?

- 1.ALU执行哪些运算
- 2.复用器通道选择信号
- 3.写入使能信号

ALU控制信号

1.ALU执行哪些运算

指令	add	sub	and	or	slt	lw	sw	beq
运算	to	减	与	或	小于设置	加	加	减

5种运算需要多少位编码表示?

3位二进制码

为便于MIPS指令集扩展,直接采用统一编码 产生依据?

ALUCtr[3:0]	0000	0001	0010	0110	0111
操作类型	与	或	to	减	小于设置

ALU控制信号

1.ALU执行哪些运算

指令	add	sub	and	or	slt	lw	sw	beq
运算	to	减	与	或	小于设置	to	加	减

Instr[31 26]	Instr[25 21]	Instr[2016]	Instr[15 11]	Instr[10 6]	Instr[5 0]
111511 3120	111511 [2321]	111511 [2010]	111511 1511	111211 100	111511 [30]

Op	Rs	Rt	Rd	Shamt	Funct
Op	Rs	Rt		Imm	

产生依据?

R型 Op: 000000

操作码和功能码共同决定ALUCtr[3:0]的取值

ALU控制信号

指令	add	sub	and	or	slt	lw	SW	beq
运算	to	减	与	或	小于设置	to	to	减

R型 Op: 000000

I型无Funct[5:0],由Op直接决定运算类型

根据Op分为三种类型,由2位编码ALUOp[1:0]表示

ALU控制信号两级译码

ALU控制信号译码功能表

指令类型	运算类型	第一级输入	第一级输出 (第二级输入)	第二级输入	第二级输出
		Op[5:0]	ALUOp[1:0]	Funct[5:0]	ALUCtr[3:0]
lw	加	100011	00	xxxxx	0010
SW	加	101011	00	xxxxx	0010
beq	减	000100	01	xxxxx	0110
add	加	000000	10	10 0000	0010
sub	减	000000	10	10 0010	0110
and	与	000000	10	10 0110	0000
or	或	000000	10	10 0111	0001
slt	小于设置	000000	10	10 1010	0111

R型指令的控制信号取值

控制信号	取值
J	0
В	0
RegDst	1
RegWr	1
ALUSrc	0
MemWr	0
Mem2Reg	0
ALUOp[1:0]	10

W指令的控制信号取值

控制信号	取值
J	0
В	0
RegDst	0
RegWr	1
ALUSrc	1
MemWr	0
Mem2Reg	1
ALUOp[1:0]	00

SW指令的控制信号取值。

32 32 32 32 32 32 32 32 32 32 32 32 32 3	
26	
Rs编号 Rs值 32 ALU	
Instr[15:0] 16	

控制信号	取值
J	0
В	0
RegDst	X
RegWr	0
ALUSrc	1
MemWr	1
Mem2Reg	X
ALUOp[1:0]	00

beq指令的控制信号取值___

控制信号	取值
J	0
В	1
RegDst	X
RegWr	0
ALUSrc	0
MemWr	0
Mem2Reg	X
ALUOp[1:0]	01

j指令的控制信号取值

控制信号	取值	
J	1	
В	X	
RegDst	X	
RegWr	0	
ALUSrc	X	
MemWr	0	
Mem2Reg	X	
ALUOp[1:0]	XX	

主控制器功能表

	R	1w	SW	beq	j
控制信号	000000	100011	101011	000100	000010
J	0	0	0	0	1
В	0	0	0	1	X
RegDst	1	0	X	X	X
RegWr	1	1	0	0	0
ALUSrc	0	1	1	0	X
MemWr	0	0	1	0	0
Mem2Reg	0	1	X	X	X
ALUOp[1:0]	10	00	00	01	XX

指令译码电路框图 第 ALUOp[1:0] >ALUCtr[3:0] 级 Op[5:0] 译 第 Funct[5:0] 码 级 译 码 RegDst 器 RegWr **ALUSrc** MemWr Mem2Reg

数据通路与控制器合成的微处理器

小结

- •分析指令译码功能表
 - ·ALU控制信号
 - ·MUX通道选择信号
 - •写使能信号
- •两级译码,公用部分电路,简化电路

下一讲:指令执行过程示例