Representing abelian varieties

Stefano Marseglia

Utrecht University

Welcome Home 2019 - Universitá di Torino

Stefano Marseglia

• An abelian variety A over a field k is a projective geometrically connected group variety over k.

 An abelian variety A over a field k is a projective geometrically connected group variety over k.

We have morphisms $\oplus: A \times A \to A$, $\ominus: A \to A$ and a k-rational point $e \in A(k)$ such that (A, \oplus, \ominus, e) is a group object in the category of projective geom. connected varieties over k.

- An abelian variety A over a field k is a projective geometrically connected group variety over k.
 We have morphisms ⊕: A × A → A, ⊕: A → A and a k-rational point e ∈ A(k) such that (A, ⊕, ⊕, e) is a group object in the category of projective geom. connected varieties over k.
- In practice, we have diagrams \rightsquigarrow "natural" group structure on $A(\overline{k})$.

- An abelian variety A over a field k is a projective geometrically connected group variety over k.
 We have morphisms ⊕: A × A → A, ⊕: A → A and a k-rational point e ∈ A(k) such that (A, ⊕, ⊕, e) is a group object in the category of projective geom. connected varieties over k.
- In practice, we have diagrams \rightsquigarrow "natural" group structure on A(k).
- eg. (⊖ is the "inverse" morphism)

- An abelian variety A over a field k is a projective geometrically connected group variety over k.
 We have morphisms ⊕: A × A → A, ⊕: A → A and a k-rational point e ∈ A(k) such that (A, ⊕, ⊕, e) is a group object in the category of projective geom. connected varieties over k.
- In practice, we have diagrams \leadsto "natural" group structure on $A(\overline{k})$.
- eg. (⊖ is the "inverse" morphism)

Stefano Marseglia

• AVs of dimension 1 are called Elliptic Curves.

- AVs of dimension 1 are called Elliptic Curves.
- They admit a plane model: if char $k \neq 2,3$

$$Y^2Z = X^3 + AXZ^2 + BZ^3$$
 $A, B \in k \text{ and } e = [0:1:0]$

- AVs of dimension 1 are called Elliptic Curves.
- They admit a plane model: if char $k \neq 2,3$

$$Y^2Z = X^3 + AXZ^2 + BZ^3$$
 $A, B \in k \text{ and } e = [0:1:0]$

• The groups law is explicit: if $P = (x_P, y_P)$ then $-P = (x_P, -y_P)$ and

- AVs of dimension 1 are called Elliptic Curves.
- They admit a plane model: if char $k \neq 2,3$

$$Y^2Z = X^3 + AXZ^2 + BZ^3$$
 $A, B \in k \text{ and } e = [0:1:0]$

• The groups law is explicit:

if
$$P = (x_P, y_P)$$
 then $-P = (x_P, -y_P)$ and
if $Q = (x_Q, y_Q) \neq -P$ then $P + Q = (x_R, y_R)$ where

$$x_R = \lambda^2 - x_P - x_Q$$
, $y_R = y_P + \lambda(x_R - x_P)$,

where

$$\lambda = \begin{cases} \frac{3x_P^2 + B}{2A} & \text{if } P = Q\\ \frac{y_P - y_Q}{x_P - x_Q} & \text{if } P \neq Q \end{cases}.$$

 ♦ □ ▷ ♦ □ ▷ ♦ □ ▷ ♦ □ ▷ ♥ ○ ○

 Stefano Marseglia
 19 December 2019
 3 / 16

In pictures, over $k = \mathbb{R}$:

source: https://commons.wikimedia.org/wiki/File:ECClines-3.svg

licence: https://creativecommons.org/licenses/by-sa/3.0/legalcode, no changes were made.

Group law in pictures, over $k = \mathbb{R}$:

source: https://commons.wikimedia.org/wiki/File:ECClines.svg

licence: https://creativecommons.org/licenses/by-sa/3.0/legalcode, no changes were made.

• If $\dim A > 1$ we have equations (A is projective!)...

- If $\dim A > 1$ we have equations (A is projective!)...
- ...but in general they are really complicated.

- If $\dim A > 1$ we have equations (A is projective!)...
- ...but in general they are really complicated.
- In 1990 Flynn: equations for a "general" abelian surface (in $char(k) \neq 2,3,5$).

- If $\dim A > 1$ we have equations (A is projective!)...
- ...but in general they are really complicated.
- In 1990 Flynn: equations for a "general" abelian surface (in $char(k) \neq 2,3,5$).
- they look like this:

###	This file is available by anon. ftp from ftp.liv.ac.uk as ~ftp/pub/genus2/jacobian.variety/defining.equations
#	The following 72 quadratic forms eqn(1),,eqn(72) give a set of defining equations for the jacobian variety of the
	curve of genus 2: Y**2 = f6*X**6 + f5*X**5 + f4*X**4 + f3*X**3 + f2*X**2 + f1*X + f8
	using the embedding into projective 15-space give by
##	the following functions on the divisor $\{(x,y),(u,v)\} = (x,y) + (u,v) - infty - infty$
#	Note that a0,a3,a4,a5,a10,a11,a12,a13,a14,a15 are even
	and a1,a2,a6,a7,a8,a9 are odd. The defining equations have been organised so that
#	eqn(1)eqn(21) are purely even*even terms
	eqn(22)eqn(42) have odd*odd and even*even terms and eqn(43)eqn(72) have purely odd*even terms.
#	
#	a15 := (x-u)**2; a14 := 1; a13 := x + u; a12 := x*u; a11 := x*u*(x+u); a10 := (x*u)**2; a9 := (y-v)/(x-u);
#	a8 := (u*y-x*v)/(x-u); a7 := (u**2*y-x**2*v)/(x-u); a6 := (u**3*y-x**3*v)/(x-u); a5 := (f0xu-2*y*v)/((x-u)**2);
#	a4 := (f1xu-(x+u)*y*v)/((x-u)**2); a3 := (x*u)*a5;
#	## where f0xu, f1xu are f0xu := 2*f0+f1*(x+u)+2*f2*(x*u)+f3*(x+u)*(x*u)
#	+2*f4*(x*u)**2+f5*(x+u)*(x*u)**2+2*f6*(x*u)**3;
##	f1xu := f0*(x+u)+2*f1*(x*u)+f2*(x+u)*(x*u)+2*f3*(x*u)**2 +f4*(x+u)*(x*u)**2+2*f5*(x*u)**3+f6*(x+u)*(x*u)**3;
	a2:=(gxu*y-gux*v)/((x-u)**3); a1:=(hxu*y-hux*v)/((x-u)**3);
	where gxu, gux, hxu, hux are qxu := f0*4+f1*(x+3*u)+f2*(2*x*u+2*u**2)+f3*(3*x*u**2+u**3)
#	+f4*(4*x*u**3)+f5*x*(x*u**3+3*u**4)+f6*2*x*(x*u**4+u**5); qux := f0*4+f1*(u+3*x)+f2*(2*u*x+2*x**2)+f3*(3*u*x**2+x**3)
#	+f4*(4*u*x**3)+f5*u*(u*x**3+3*x**4)+f6*2*u*(u*x**4+x**5);
#	hxu := f0*2*(x+u)+f1*u*(3*x+u)+f2*4*x*u**2+f3*x*u**2*(x+3*u) +f4*2*x*u**3*(x+u)+f5*x*u**4*(3*x+u)+f6*4*x**2*u**5;
#	hux := f0*2*(u+x)+f1*x*(3*u+x)+f2*4*u*x**2+f3*u*x**2*(u+3*x)
#	+f4*2*u*x**3*(u+x)+f5*u*x**4*(3*u+x)+f6*4*u**2*x**5; a0 :=a5**2;
01	n(1) := -a0*a11+f1*a14*a3+f3*a10*a5+f5*a3*a10+2*a4*a3:
eqn(2) := -a0*a10+a3**2;	
eqn(3) := -a0*a12*a3*a5; eqn(4) := -f0*f2*a14**2-f0*a14*a5-8*f0*f6*a12**2-f3*f5*a12*a10-	
fixf6* a13*a10-f2*f5*a13*a10-f1*f5*a13*a11-3*f5*f0*a13*a12-f1*f3*a14*a12-	
f3*f0*a14*a13	
-f0*f6*a14*a10-f2*f4*a14*a10+a4**2-a0*a12-6*f0*f6*a12*a15- f2*f6*a10*a15-f1*f6*	
a11*a15-f5*f0*a13*a15-f1*f4*a14*a11-f2*a12*a5-f4*f0*a13**2-	
	h+f6+a15++2-f4+f6+

a10**2-f6*a10*a3-f4*a10*a5-

eqn(6) := -a0*a14+a5**2:

f3*f6*a10*a11-4*f2*f6*a10*a12-2*f1*f6*a11*a12:

eqn(5) := -a0*a13+f1*a14*a5+f3*a14*a3+f5*a10*a5+2*a5*a4;

```
-4*f0*f2*a14**2-4*f0*a14*a5+a0*a15-36*f0*f6*a12**2-4*f3*f5*
a12*a10-4*f1*f6*a13*a10-4*f2*f5*a13*a10-12*f5*f0*a13*a12-2*f1*f3*a14
+a12-4+f3+
f0*a14*a13-4*f2*f4*a14*a10-4*f5*a10*a4-
f5**2*a10**2-24*f0*f6*a12*a15-4*f2*f6*
a10*a15-4*f1*f6*a11*a15-4*f5*f0*a13*a15-4*f1*f4*a14*a11+f3**2*a14*a1
0-2*f3*a11*
a5-16*f1*f5*a12**2-2*f1*a13*a5-4*f2*a12*a5-4*f0*f6*a15**2-4*f4*f6*a1
0++2-4+f6+
a10+a2_4+f4+a10+a5_4+f3+f6+a10+a11_16+f2+f6+a10+a12_8+f1+f6+a11+a12+
f1**2*a14**
2-16*f0*f4*a14*a12-4*f1*f5*a12*a15-4*f0*f4*a14*a15:
egn(8) := -f1*a14**2-f3*a14*a12+2*f4*a13*a12-
f5*a12**2-2*a4*a14-2*f4*
a14*a11+a5*a13:
eqn(9) := -f1*a14*a12-f3*a14*a10-f5*a12*a10-2*a4*a12+a5*a11;
eqn(10) := 2*f4*a14*a10+2*f5*a12*a11-4*a5*a12-2*f4*a12**2-a5*a15+f1*
a14*a13+f3*a14*a11-f5*a13*a10+2*a4*a13;
egn(11) := -f5*a10**2-f3*a10*a12+2*f2*a11*a12-
f1*a12**2-2*a4*a10-2*f2*
a13*a10+a3*a11:
enn(12) := f2*a12**2+f1*a13*a12-a5*a10-f1*a14*a11-f2*a10*a14+a3*a12:
eqn(13) := f5*a13*a10+f4*a14*a10-a5*a12-f4*a12**2-f5*a12*a11+a3*a14;
eqn(14) := -f1*a14*a12-f3*a14*a10-f5*a12*a10-2*a4*a12+a3*a13;
egn(15) := 4*f1*a13*a12-2*a5*a10-3*f1*a14*a11-
a3*a15-2*a3*a12+f5*a10*
a11+f3*a10*a13+2*a4*a11:
egn(16) := -a14*a15-4*a12*a14+a13**2;
eqn(17) := -a10*a14+a12**2;
eqn(18) := -a10*a15-4*a10*a12+a11**2;
egn(19) := -a11*a13+2*a10*a14+a12*a15+2*a12**2;
egn(20) := -a12*a13+a11*a14:
eqn(21) := -a11*a12+a10*a13;
egn(22) := -a10**2*f2*f5**2-a11**2*f0*f5**2+a1**2-
a0*a3+8*f0*f6*a4*a11
-a10**2*f3**2*f6-f4*a3**2-
f0*a5**2+4*a10**2*f1*f5*f6+4*a10**2*f2*f4*f6-a10*a3*
f3*f5+4*a10*a3*f2*f6+8*f1*f6*a10*a4+f1*f5*a10*a5+4*a11**2*f0*f4*f6-
a10*a11*f1*
f5**2+4*a10*a11*f0*f5*f6+4*a10*a11*f1*f4*f6+4*f0*f5*a12*a4+2*a12*a10
*f0*f5**2+6
*a12*a10*f1*f3*f6+8*f0*f3*f6*a12*a11+4*a14*a10*f0*f2*f6+2*a14*a10*f0
+f3+f5+3+
a14*a10*f1**2*f6+4*f0*f1*f6*a14*a11+2*f0*f1*f5*a14*a12;
enn(23) := a1*a2-
a0*a4+3*a13*a10*f0*f5**2+a13*a10*f1*f3*f6+2*a10**2*f2
*f5*f6+f3*f6*a10*a3+4*f2*f6*a10*a4+a10*a5*f2*f5+5*a10*a5*f1*f6+4*f1*
```

20*f0*f6*a12*a4+10*f0*f5*f6*a10*a12+2*a12**2*f1*f3*f5+28*a12**2*f0*f

**2*f1*f2*f6+3*f1*f5*a12*a4+2*a12*a10*f1*f4*f6+2*a12*a10*f2*f3*f6+a1

2-4*f0*f52*a12*a11-4*f0*f6*f4*a12*a11+2*f0*f4*a13*a5+8*a10*a13*f

ean(7) :=

f6+a12+a3+

3+f6+4+=12

2*a10*f1*f5

```
0*f4*f6+8*
a13*a12*f0*f2*f6+3*a13*a12*f0*f3*f5-
213+212+f1++2+f6+0+214+23+f8+f5+214+23+f1+
f4+f0*f3*a14*a5-2*f1*f6*f2*a14*a10-8*f0*f6*f3*a14*a10-2*f0*f5*f3*a14
+211_4+f0+
f6*f2*a14*a11+10*f1*f6*f0*a14*a12+2*a14*a12*f0*f2*f5+a14*a12*f1**2*f
5+2*f1*f6*
a3*a15+4*f0*f6*a4*a15+2*f0*f5*a5*a15+2*f0*f5*f6*a10*a15+4*f0*f3*f6*a
12*a15+2*f1
*f6*f0*a14*a15:
egn(24) := -a14**2*f0*f3**2-a14**2*f1**2*f4+a2**2-a0*a5-f6*a3**2-
**2+8*a13*a4*f0*f6+4*f0*f5*a13*a5+4*a13*a10*f0*f5*f6-4*a13*a10*f1*f4
+f6+4+f0+f4
*a14*a5+4*a10*a14*f0*f4*f6-
a10*a14*f0*f5**2+4*a10*a14*f1*f3*f6+8*f1*f6*a12*a4+4
*f1*f5*f6*a12*a10+4*f1*f6*f4*a12*a11-2*f1*f6*a13*a3+4*a14*a13*f0*f1*
f6+4*a14*
a13*f0*f2*f5-a14*a13*f1**2*f5+4*a14**2*f0*f2*f4+f1*f5*a14*a3-
214+25+f1+f3+8+214
*a11*f0*f3*f6+16*a14*a12*f0*f2*f6+2*a14*a12*f0*f3*f5+4*a14*f0*f2*f6*
a15-a14+f1
```

com(25): = -a00414-(22414495-f39214404-26f44014493-34f54044012f56038 a15-54f56034012-f14f34014482-f14f40144013f14f540140415-54f14f540124014-f14f64 a124015-34f14f540318012-24f24f440144012-24f24f540134012-24f24f640134 a12415-34f12-f14f640124012-44f4601420146-f5482401240104202401

f5×a10*a5-2*f6×a11*a3*2*f0*f3* a14**24*f0*f4*a14*a13*4*f5*f0*a14*a15+14*f5*f0*a14*a12*4*f0*f6*a13* a15*08*f0*f6 *a13*a12*4*f0*f6*f0*a14*a11*2*f1*f4*a14*a174*2*f1*f5*a13*a1742*f1*f5*a13*a1742*f1*f6*a13*a1742*f1

*a15+8*f1* f6*a12**2+2*a2*a8; egn(27) := 2*f2*a3*a14-

eqn(26) := -a0*a13+f1*a14*a5+f3*a5*a12-

**2*f6*a15:

a0*a15+40*f0*f6*a12**2+6*f3*f5*a12*a10+4*f2*f5* a13*a10+8*f5*f0*a13*a12+3*f1*f3*a14*a12+2*f3*f0*a14*a13+8*f0*f6*a14*

a10+4*f2*f4 *a14*a10-2*a0*a12+4*f5*a10*a4+f5**2*a10**2+4*f3*a12*a4+28*f0*f6*a12* a15-4*f1*f6

a15+4*11*f5 *a11*a15+4*f5*f0*a13*a15+4*f1*f4*a14*a11+f3**2*a14*a10+4*f2*f6*a11** 2+16*f1*f5* a17**2+f1*a13*a5*2*a7*a7+d*f6*f6*a15**2*44*f6*f6*a10**2+7*f6*a10*3*4

*f4*a10*a5+ 4*f3*f6*a10*a11+14*f1*f6*a11*a12+16*f0*f4*a14*a12+4*f1*f5*a12*a15+4* f0*f4*a14*

T0#1744-14* al5+f1*f5%al4*al0+6*al4*al1*f0*f5; eqn(28) := -a0*al1-4*f0*al3*a5-f1*al5*a5-5*f1*al2*a5-2*f2*al1*a5-f3* al0*a5*f5*a3*al0-4*f0*f2*al4*al3-2*f3*f0*al5*al4-10*f0*f3*al4*al2-4* f0*f4*al4*al4*

a11-2*a15*a12*f0*f5-6*f0*f5*a12**2+f1**2*a14*a13-

f1*f3*a14*a11-2*f1*f4*a12**2f1*f5*a13*a10+2*a2*a6;

eqn(29) := -a0*a10-f4*a3*a10-f3*a4*a10-2*f2*a10*a5-3*f1*a12*a4f0*a15*

a5-5*f0*a12*a5-f5*f3*a10**2-f5*f2*a10*a11f1*f5*a15*a10-5*f1*f5*a10*a12-a15*a11

11*13*413*410*-3*11*13*410*412-413*411 *f0*f5-3*f5*f0*a11*a12-2*f4*f2*a10*a12-2*f4*f1*a11*a12-2*f0*f4*a13*a 11-3*a14*

11-3*414* a10*f1*f3-2*f3*f0*a13*a12-2*f0*f2*a14*a12-f1**2*a14*a12+a6*a1; egn(30) := -a0*a11+f5*a3*a10+f3*a3*a12-

f1#a14#a3-2#f0#a13#a5+2#f0#f3# a10##2+4#f2#f0#a10#a11+4#a10#f1#f0#a15+14#a10#a12#f1#f6+4#f0#f0#a15# a11#8#f0#f0

*a12*a11+4*f0*f6*a13*a10+2*f2*f5*a12*a10+2*f1*f5*a12*a11+2*a15*a12*f 0*f5+8*f0*

f5*a12**2+2*a1*a7; eqn(31) := 4*f0*f2*a14**2+2*f0*a14*a5+f5*a3*a11-

a0*a15+40*f0*f6*a12**2 +3*f3*f5*a12*a10+6*f1*f6*a13*a10+14*f5*f0*a13*a12+6*f1*f3*a14*a12+4*

f3*f0*a14* a13*8*f0*f6*a14*a10-2*a0*a12+4*f3*a12*a4+28*f0*f6*a12*a15+4*f2*f6*a1 0*a15+44*f1*

0*a17***112**
f6*a11*a15*4*f5*f0*a13*a15*4*f1*f4*a14*a11+f3**2*a14*a10+2*a1*a8+16*
f1*f5*a12**
-2*44*72*12**
-2*44*72*12**5*5*6*f4*f0*a13**2*44*f0*f6*a15**2*2*4*f4*10*a5*2*f6*a10*a

a11+16*f2* f6*a10*a12+8*f1*f6*a11*a12+f1**2*a14**2+4*f1*f5*a12*a15+f1*f5*a14*a1

0+4*f2*f4* a12*e2+44*f1*a14*a4+2*a12*a11*f3*f4+4*f2*f5*a12*a11-2*a10*a13*f3*f4-2 *a13*a12*f2

*f3+2*a14*a11*f2*f3;

eqn(32) := -a0*a13-4*f6*a11*a3-f5*a3*a15-5*f5*a3*a12-2*f4*a13*a3-f3* a14*a3+f1*a14*a5-4*f6*f4*a10*a11-2*f6*f3*a10*a15-10*f6*f3*a10*a12-4* f7*f6*a13*

a10-2*f1*f6*a12*a15-6*f1*f6*a12**2+f5**2*a10*a11f3*f5*a13*a10-2*f5*f2*a12**2-

f1*f5*a14*a11+2*a1*a9; eqn(33) := -a5*a14-f2*a14**2-f3*a14*a13-f4*a13**2-3*f5*a13*a12-

a15-f6*a14*a10-6*f6*a12*a15-8*f6*a12**2-f6*a15**2+a9**2; eqn(34) := a9*a8-a4*a14-f3*a14*a12-f4*a14*a11-

f5*a12*a15-4*f5*a12**2f6*a11*a15-2*f6*a11*a12-f6*a13*a10;

eqn(35) := 2*a9*a7a5*a15-2*a5*a12+f1*a14*a13+2*f2*a14*a12+f3*a14*a11-

f5*a13*a10-2*f6*a15*a10-6*f6*a10*a12; eqn(36) := a6*a9-a4*a15-

a4*a12+f2*a14*a11+2*f3*a14*a10+f4*a12*a11+f1* a14*a12+f5*a12*a10;

eqn(37) := a8**2-a5*a12-f0*a14**2-f4*a12**2-f5*a12*a11f6*a15*a10-4*f6

*a10*a12;

eqn(38) := a7*a8-a4*a12-f0*a14*a13-f1*a14*a12-f5*a12*a10-f6*a10*a11; eqn(39) := 2*a6*a8-

◆ロト ◆厨 → ◆豆 → ◆豆 → りへで

a3*a15-2*a3*a12+f5*a10*a11+2*f4*a12*a10+f3*a10*a13f1*a14*a11-2*f0*a15*a14-6*f0*a14*a12; egn(40) := a7**2-a5*a10-f0*a15*a14-4*f0*a14*a12-f1*a14*a11f2+a10+a14f6*a10**2: enn(41) := a6*a7-a4*a10-f3*a10*a12-f2*a13*a10f1*a12*a15-4*f1*a12**2f0*a15*a13-2*f0*a13*a12-f0*a11*a14; egn(42) := -a3*a10-f4*a10**2-f3*a11*a10-f2*a11**2-3*f1*a11*a12f1+a15+ a11-f0*a14*a10-6*f0*a15*a12-8*f0*a12**2-f0*a15**2+a6**2; eqn(43) := -f1*a9*a3+a14*a8*f1**2+4*f1*a8*a4+2*f3*a3*a7+a3*a1-f3*a2* a10+4*f0*a8*a5a6*a0+2*f2*a8*a3-2*f0*f5*a10*a9+3*f1*f5*a10*a8+2*f1*f6*a11*a6+12 *f0*f5*a12*a7+12*f0*f6*a12*a6+4*a12*a8*f0*f4+2*a12*a8*f1*f3+2*a12*a7 *f1*f4+2* a12*a6*f1*f5+4*a14*a8*f0*f2+4*f0*f3*a14*a7+4*f0*f4*a14*a6+4*f0*f5*a7 *a15+4*f0* f6*a6*a15; egn(44) := -a7*a0+2*f0*a9*a5+f1*a8*a5+a2*a3: egn(45) := f5*a10*a2+a2*a4+a14*a8*f2**2-a0*a8+f6*a6*a3-f2*a9*a4f2+f4+ a11*a9+a11*a8*f1*f6a11*a8*f2*f5+4*f2*f4*a12*a8+4*a12*a7*f2*f5-4*a12*a7*f1*f6+3 *f2*f6*a12*a6+f8*f5*a12*a9-f8*f3*a14*a9-a14*a8*f1*f3+a14*a7*f2*f3-214+27+f1+f4f1*f5*a14*a6+f2*f4*a8*a15+a7*f2*f5*a15-a7*f1*f6*a15+f2*f6*a6*a15; ean(46) := f3**2*a14*a7-2*a10*a7*f5**2+4*f6*a7*a3+a2*a5+4*f1*f6*a11* a0*a9+f3*a9*a4+3*f5*a3*a8+2*f4*a7*a5+4*f0*f5*a13*a9-2*f5*f6*a10*a6+4 +210+27+ f4*f6+4*f3*f6*a10*a8+4*f2*f6*a10*a9+12*f0*f6*a12*a9f3*f6*a12*a6+4*a12*a8*f2*f5 +4*a12*a9*f1*f5+4*a12*a7*f2*f6+2*a12*a7*f3*f5-a12*a8*f3*f4f3*f5*a13*a6+2*f1*f5 *a14*a7-a14*a6*f3*f4-a14*a8*f2*f3+2*a14*a6*f1*f6+4*f0*f6*a9*a15f3*f6*a6*a15: egn(47) := -a0*a8+2*f6*a6*a3+f5*a3*a7+a5*a1: enn(48) := f0*a9*a5+a1*a4-f4*f2*a13*a6+a10*a7*f4**2+f1*a14*a1f4*a6*a4 +f6*f1*a12*a6-a7*a0+a13*a7*f0*f5-a13*a7*f1*f4-f6*f3*a10*a6-218+27+f3+f5+218+28+ f3+f4-a10+a8+f2+f5f5*f1*a10*a9+4*f2*f4*a12*a7+4*a12*a8*f1*f4-4*f0*f5*a12*a8+3* f4*f8*a12*a9+f2*f4*a7*a15+a8*f1*f4*a15-f8*f5*a8*a15+f4*f8*a9*a15: ean(49) := a9*a5+f3*a14*a8+2*f4*a14*a7+2*f5*a14*a6+2*f6*a13*a6+f5*a8* a12+a2*a14:

eqn(50) := -2*a5*a8-f1*a14*a9-2*f2*a14*a8f3*a14*a7+f5*a7*a12+2*f6*a12 *a6+a2*a13:

eqn(51) := -a5*a7+2*f0*a14*a9+f1*a14*a8+a2*a12; eqn(52) := -a3*a7+2*f0*a12*a9+f1*a12*a8+a2*a10; f3*a12*a7+f5*a10*a7+2*f6*a10 *a6+a2*a11: egn(54) := -2*a5*a7-f1*a13*a9-2*f2*a14*a7-2*f2*a12*a9f3*a14*a6-3*f3* a8*a12-4*f4*a12*a7-3*f5*a12*a6f5*a10*a8-2*f6*a11*a6+a2*a15+2*a2*a12; eqn(55) := a3*a6+f3*a10*a7+2*f2*a10*a8+2*f1*a10*a9+2*f0*a11*a9+f1*a12 *a7+a1*a10: egn(56) := -2*a3*a7-f5*a10*a6-2*f4*a10*a7f3*a10*a8+f1*a12*a8+2*f0*a12 *a9+a1*a11: egn(57) := -a8*a3+2*f6*a10*a6+f5*a10*a7+a1*a12: egn(58) := -a5*a8+2*f6*a12*a6+f5*a7*a12+a1*a14; egn(59) := -2*a5*a7-f5*a12*a6-2*f4*a12*a7f3*a8*a12+f1*a14*a8+2*f0*a14 *a9+a1*a13: eqn(60) := -2*a8*a3-f5*a11*a6-2*f4*a8*a10-2*f4*a12*a6f3+=10+=0_3+f3+ a12*a7-4*f2*a12*a8-3*f1*a12*a9f1*a14*a7-2*f0*a13*a9+a1*a15+2*a1*a12: a9*a4+f2*a14*a8+f3*a14*a7+f4*a14*a6+f4*a12*a8+f5*a13*a6+f6 *a6*a15+3*f6*a12*a6+a5*a8: egn(62) := -a4*a8-f0*a14*a9f1*a14*a8+f4*a12*a7+f5*a12*a6+f6*a11*a6+a5 eqn(63) := -a4*a7-f0*a13*a9-f1*a14*a7-f1*a12*a9-f2*a12*a8f3*a12*a7+f6 *a10*a6+a6*a5; ean(64) :- a4*a6+f4*a10*a7+f3*a10*a8+f2*a10*a9+f2*a7*a12+f1*a11*a9+f0 *a15*a9+3*f0*a12*a9+a3*a7: egn(65) := -a4*a7-f6*a10*a6f5*a10*a7+f2*a12*a8+f1*a12*a9+f0*a13*a9+a8 egn(66) := -a4*a8-f6*a11*a6-f5*a10*a8-f5*a12*a6-f4*a12*a7f3*a8*a12+f0 *a14*a9+a9*a3: ean(67) := -4*a7*a12-a7*a15+a8*a11+a6*a13; egn(68) := -4*a8*a12-a8*a15+a7*a13+a9*a11: egn(69) := -a8*a13+a7*a14+a9*a12: egn(70) := -a7*a13+a6*a14+a8*a12; egn(71) := -a8*a11+a9*a10+a7*a12; egn(72) := -a7*a11+a8*a10+a6*a12:

enn(53) := -2*a8*a3-f1*a12*a9-2*f2*a12*a8-

• 72 equations in 16 variables.....

• (reference: Flynn-Cassels "Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2")

• Jacobian of curves (up to g = 3):

• Jacobian of curves (up to g = 3):

Also:

• Jacobian of curves (up to g = 3):

Also:

• Prym varieties (up to g = 5)

• Jacobian of curves (up to g = 3):

Also:

- Prym varieties (up to g = 5)
- Kummer varieties (more compact representation)

Over $k = \mathbb{C}$

ullet An abelian variety over ${\mathbb C}$ of dimension g is a complex torus.

$$A(\mathbb{C}) \simeq \mathbb{C}^g / L$$

where L is a lattice, that is, a free sub- \mathbb{Z} -module of \mathbb{C}^g of rank 2g.

Stefano Marseglia

Over $k = \mathbb{C}$

ullet An abelian variety over ${\mathbb C}$ of dimension g is a complex torus.

$$A(\mathbb{C}) \simeq \mathbb{C}^g/L$$

where L is a lattice, that is, a free sub- \mathbb{Z} -module of \mathbb{C}^g of rank 2g.

• Tori (coming from AVs) admit a Riemann form.

Stefano Marseglia

Over $k = \mathbb{C}$

ullet An abelian variety over ${\mathbb C}$ of dimension g is a complex torus.

$$A(\mathbb{C}) \simeq \mathbb{C}^g/I$$

where L is a lattice, that is, a free sub- \mathbb{Z} -module of \mathbb{C}^g of rank 2g.

- Tori (coming from AVs) admit a Riemann form.
- We have an equivalence of categories:

$$\left\{ \text{abelian varieties } / \mathbb{C} \right\} \longleftrightarrow \left\{ \begin{matrix} \mathbb{C}^g / L \text{ with } L \simeq \mathbb{Z}^{2g} \text{ with } \\ \text{eq.cl. of Riemann form} \end{matrix} \right\}$$

9 / 16

Stefano Marseglia 19 December 2019

Over \mathbb{F}_q

- In char(k) = p such an equivalence cannot hold.
- There are supersingular elliptic curves with quaternionic endomorphism algebra.
- In particular over \mathbb{F}_q , we need to restrict ourselves to sub-categories.
- There are various functors:
 - Deligne : ordinary AVs over any \mathbb{F}_q
 - ullet Centeleghe-Stix : AVs with no real primes over prime fields \mathbb{F}_p
 - "Serre": AVs isogenous to power of "some" elliptic curves.

• Fix an **ordinary squarefree** q-Weil polynomial h:

- Fix an **ordinary squarefree** q-Weil polynomial h:
- by Honda-Tate theory \rightsquigarrow an isogeny class \mathscr{C}_h .

- Fix an **ordinary squarefree** q-Weil polynomial h:
- by Honda-Tate theory \rightsquigarrow an isogeny class \mathscr{C}_h .
- Put $K := \mathbb{Q}[x]/(h) = \mathbb{Q}[F]$.

- Fix an ordinary squarefree q-Weil polynomial h :
- by Honda-Tate theory \rightsquigarrow an isogeny class \mathscr{C}_h .
- Put $K := \mathbb{Q}[x]/(h) = \mathbb{Q}[F]$.
- Deligne's equivalence induces:

- Fix an **ordinary squarefree** q-Weil polynomial h:
- by Honda-Tate theory \rightsquigarrow an isogeny class \mathscr{C}_h .
- Put $K := \mathbb{Q}[x]/(h) = \mathbb{Q}[F]$.
- Deligne's equivalence induces:

- Fix an ordinary squarefree q-Weil polynomial h :
- by Honda-Tate theory \rightsquigarrow an isogeny class \mathscr{C}_h .
- Put $K := \mathbb{Q}[x]/(h) = \mathbb{Q}[F]$.
- Deligne's equivalence induces:

Stefano Marseglia

Example

• Let
$$h(x) = x^8 - 5x^7 + 13x^6 - 25x^5 + 44x^4 - 75x^3 + 117x^2 - 135x + 81$$
.

Stefano Marseglia

Example

- Let $h(x) = x^8 5x^7 + 13x^6 25x^5 + 44x^4 75x^3 + 117x^2 135x + 81$.
- \rightsquigarrow isogeny class of an simple ordinary abelian varieties over \mathbb{F}_3 of dimension 4.

12 / 16

Stefano Marseglia 19 December 2019

Example

- Let $h(x) = x^8 5x^7 + 13x^6 25x^5 + 44x^4 75x^3 + 117x^2 135x + 81$.
- → isogeny class of an simple ordinary abelian varieties over F₃ of dimension 4.
- Let F be a root of h(x) and put $R := \mathbb{Z}[F, 3/F] \subset \mathbb{Q}(F)$.
- $\#ICM(R) = 18 \rightsquigarrow 18$ isom. classes of AV in the isogeny class.

(□ ▶ ◀∰ ▶ ◀불 ▶ ◀불 ▶ ○ 불 · • ♡ Q (~)

Example

Concretely:

$$\begin{split} I_1 = & 2645633792595191\mathbb{Z} \oplus (F + 836920075614551)\mathbb{Z} \oplus (F^2 + 1474295643839839)\mathbb{Z} \oplus \\ & \oplus (F^3 + 1372829830503387)\mathbb{Z} \oplus (F^4 + 1072904687510)\mathbb{Z} \oplus \\ & \oplus \frac{1}{3}(F^5 + F^4 + F^3 + 2F^2 + 2F + 6704806986143610)\mathbb{Z} \oplus \\ & \oplus \frac{1}{9}(F^6 + F^5 + F^4 + 8F^3 + 2F^2 + 2991665243621169)\mathbb{Z} \oplus \\ & \oplus \frac{1}{27}(F^7 + F^6 + F^5 + 17F^4 + 20F^3 + 9F^2 + 68015312518722201)\mathbb{Z} \\ I_7 = & 2\mathbb{Z} \oplus (F + 1)\mathbb{Z} \oplus (F^2 + 1)\mathbb{Z} \oplus (F^3 + 1)\mathbb{Z} \oplus (F^4 + 1)\mathbb{Z} \oplus \frac{1}{3}(F^5 + F^4 + F^3 + 2F^2 + 2F + 3)\mathbb{Z} \oplus \\ & \oplus \frac{1}{36}(F^6 + F^5 + 10F^4 + 26F^3 + 2F^2 + 27F + 45)\mathbb{Z} \oplus \\ & \oplus \frac{1}{216}(F^7 + 4F^6 + 49F^5 + 200F^4 + 116F^3 + 105F^2 + 198F + 351)\mathbb{Z} \end{split}$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Example

Concretely:

$$\begin{split} I_1 = & 2645633792595191\mathbb{Z} \oplus (F + 836920075614551)\mathbb{Z} \oplus (F^2 + 1474295643839839)\mathbb{Z} \oplus \\ & \oplus (F^3 + 1372829830503387)\mathbb{Z} \oplus (F^4 + 1072904687510)\mathbb{Z} \oplus \\ & \oplus \frac{1}{3}(F^5 + F^4 + F^3 + 2F^2 + 2F + 6704806986143610)\mathbb{Z} \oplus \\ & \oplus \frac{1}{9}(F^6 + F^5 + F^4 + 8F^3 + 2F^2 + 2991665243621169)\mathbb{Z} \oplus \\ & \oplus \frac{1}{27}(F^7 + F^6 + F^5 + 17F^4 + 20F^3 + 9F^2 + 68015312518722201)\mathbb{Z} \\ I_7 = & 2\mathbb{Z} \oplus (F + 1)\mathbb{Z} \oplus (F^2 + 1)\mathbb{Z} \oplus (F^3 + 1)\mathbb{Z} \oplus (F^4 + 1)\mathbb{Z} \oplus \frac{1}{3}(F^5 + F^4 + F^3 + 2F^2 + 2F + 3)\mathbb{Z} \oplus \\ & \oplus \frac{1}{36}(F^6 + F^5 + 10F^4 + 26F^3 + 2F^2 + 27F + 45)\mathbb{Z} \oplus \\ & \oplus \frac{1}{216}(F^7 + 4F^6 + 49F^5 + 200F^4 + 116F^3 + 105F^2 + 198F + 351)\mathbb{Z} \end{split}$$

 I_1 is invertible in R, but I_7 is not invertible in $\operatorname{End}(I_7)$.

Stefano Marseglia

 With "Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation"

- With "Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation"
- computing on a server computer at the MIT.

- With "Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation"
- computing on a server computer at the MIT.
- Data for ~ 700.000 isogeny classes for various g and \mathbb{F}_q .

- With "Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation"
- computing on a server computer at the MIT.
- Data for ~ 700.000 isogeny classes for various g and \mathbb{F}_q .
- Some are pretty big: (> 5 millions isomorphism classes).

- With "Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation"
- computing on a server computer at the MIT.
- Data for ~ 700.000 isogeny classes for various g and \mathbb{F}_q .
- Some are pretty big: (> 5 millions isomorphism classes).
- Coming soon on the LMFDB
 (https://www.lmfdb.org/Variety/Abelian/Fq/)

Non-Math Commercials: Where have I been?

Non-Math Commercials: Where have I been?

- Bachelor: Universitá di Torino.
- Master: ALGANT (Universitá di Padova, Leiden University).
- PhD at Stockholm University (with Jonas Bergström).
- postdoc at the Max Planck Institute for Mathemamatics in Bonn.
- now: postdoc at Utrecht University (with Carel Faber).

Non-Math Commercials: Where have I been?

- Bachelor: Universitá di Torino.
- Master: ALGANT (Universitá di Padova, Leiden University).
- PhD at Stockholm University (with Jonas Bergström).
- postdoc at the Max Planck Institute for Mathemamatics in Bonn.
- now: postdoc at Utrecht University (with Carel Faber).

If you have any question about any of these places: ask away!

Thank you!