Predicting Fertility Rates in the United States

ISABELLA M., MAIA P., ELIZA G., PETER P.

We chose to examine 15 predictors across 5 categories for 5 years (2018-2022).

US Census + the ARDA + Cook Political + Law Atlas

[15x250]

RELIGIOUSNESS RATE

COVID YEAR

% WHITE

% BLACK

% HISPANIC

% ASIAN

% MIXED RACE

% FOREIGN BORN

POVERTY MEASURE

% HIGH SCHOOL OR SOME COLLEGE

% LESS THAN HIGH SCHOOL

% BACHELORS OR HIGHER

POLITICAL RANKING

LATES ABORTION

NO ABORTION LAW

Diversity-related variables show clustering patterns influenced by contextual factors.

Certain relationships, such as political ranking vs. fertility rate, exhibit linear patterns.

Which predictors correlate with fertility rate most strongly?

How does the fertility rate vary across states?

(94% variance)

Principal Component Value

Interaction effects likely play a significant role in determining fertility rates.

we only care about certain predictors

Cross Validation on 5 Folds

Model 1: Linear Regression with Interaction Terms

CV Mean MSE: 0.946

R2 CV Mean: -0.149

We decided to use lasso and cross validation to identify specifc predictors.

TEST MSE: 0.115 R2 MSE: 0.888

Cross Validation on 5 Folds and StandardScaler

Model 2: Lasso Regression with Interaction Terms

CV Mean MSE: 0.147

R2 CV Mean: 0.829

Both the MSE and R2 values, are similarly good, implying that the model is robust.

Two of the top five predictors are interaction terms: percent Black x poverty and political leaning x poverty

Of the 50 significant predictors, predictive powers concentrated in the top 24.

Political Ranking

% Mixed Race

% Asian

Poverty Measure x Political Ranking

% Black x Political Ranking

% Bachelors or higher percent high school or some college

% Asian x Poverty Measure

% Less than high school X % Percent high school or some college

Poverty measure X % high school or some college

Religiousness Rate X % White

% White X Political Ranking

% Hispanic X % Bachelors or Higher

Foreign Born X No Abortion Law

Religiousness Rate X Political Ranking

% Mixed Race X % Less than High School

Religiousness Rate X Poverty Measure

Poverty Measure

Religiousness Rate X % Less than High School

Political Rank X No Abortion Law

Religiousness Rate X % Black

Focused on top 24 Predictors

Model 3: Causal Inference Analysis

Linear Regression, MinMax scaler,
Propensity Score weighted Ordinary Least Squares

Presence of these effects in the United States

religousness_rate percent_white

percent_white political_ranking

percent_mixed_race percent_less_than_high_school

percent_asian poverty_measure

poverty_measure political_ranking

religousness_rate poverty_measure

percent_hispanic percent_bachelors_or_higher

religousness_rate percent_white

AREAS FOR IMPROVEMENT

While examining things on the state level was useful, we would use additional time to look at the county or zip-code level.

Our dataset is limited in size, both in number of observations (rows) and number of predictors (columns).

This scarcity of predictors may mean we are missing out on significant confounding variables, important for causal inference.