EMCAD: Efficient Multi-scale Convolutional Attention Decoding

Mohana Evuri - 23B1017 Gautam Siddharth K - 23B0957 The paper: https://arxiv.org/abs/2405.06880

Introduction

- EMCAD is a new efficient multi-scale convolutional attention decoder, designed to optimize both performance and computational efficiency.
- It aims to achieve a better performance, with a great reduction in the number of parameters and FLOPS (FLoating point Operations Per Second).
- It claims to have a good performance on Medical Image Segmentation tasks.

Proposed Mechanism

Multi-scale Convolutional Attention Module - MSCAM

- Performs depth-wise convolutions at multiple scales; this refines the feature maps produced by vision encoders and enables capturing multi-scale salient features by suppressing irrelevant regions.
- Channel Attention Block: Focuses on which channels (features) to amplify.
- **Spatial Attention Block:** Focuses on where (i.e., which spatial locations) are important.
- Multi-Scale Convolution Block: Captures multi-resolution spatial features efficiently.
- MSCAM(x) = MSCB(SAB(CAB(x)))

Efficient Up-Convolution Block - EUCB

- To upsample feature maps in the decoder path.
- Structure:
 - \circ Up(x): Bilinear interpolation to double size.
 - \circ Apply 3×3 depth-wise convolution \rightarrow BN \rightarrow ReLU.
 - \circ Use 1×1 convolution to reduce channels for next stage fusion.
- $EUCB(x) = C_{1x1}(ReLU(BN(DWC(Up(x)))))$
- Using depth-wise convolution instead of a standard convolution makes EUCB very efficient, as each input channel is convolved separately with its own filter, and we just need to upsample and refine features, not mix channels.

Large-kernel Grouped Attention Gate (LGAG)

• To fuse refined features with the features from skip connections. By using larger kernel (3 \times 3) group convolutions instead of point-wise convolutions in the design, we electively allow relevant spatial info from encoder to influence decoding, with minimal compute cost.

• Structure:

- \circ Apply 3×3 group convolutions separately on g (skip features) and x (upsampled decoder features).
- \circ Normalize + ReLU \rightarrow fused $\rightarrow 1 \times 1$ conv \rightarrow sigmoid \rightarrow gating map.
- Multiply gating map with decoder feature x.

• Equations:

- $\circ \quad q_{att}(g, x) = ReLU(BN(GC_g(g) + BN(GC_x(x))))$
- $\circ \quad \overset{\text{fatt}}{\text{LGAG}}(g, x) = x \circledast \sigma(BN(\overset{g}{\text{C}}(q_{\text{att}}(g, x))))$

Overall Pipeline

Overall Architecture

- Two versions (mentioned in the paper) PVT (Pyramid Vision Transformer): B0 and B2.
- We have replicated the code for **PVTv2b2**.

Aspect	PVT-EMCAD-B0	PVT-EMCAD-B2
Encoder	PVTv2-B0 (Tiny)	PVTv2-B2 (Standard)
Params	3.92M	26.76M
FLOPs	0.84G	5.6G
Use-case	Lightweight, real-time, edge	High-accuracy, server/GPU
Accuracy (Avg DICE)	Lower than B2 but better than most SOTA	Highest across all benchmarks
Speed	Faster	Slower
Best for	Mobile or limited-compute settings	High-accuracy clinical apps

Multi-stage Loss and Output Aggregation

• The loss:

$$\begin{split} L_{\text{total}} &= \alpha L_{p_1} + \beta L_{p_2} + \gamma L_{p_3} + \zeta L_{p_4} + \delta L_{p_1 + p_2 + p_3 + p_4} \\ \alpha &= \beta = \gamma = \zeta = \delta = 1.0 \end{split}$$

- Multi-stage loss encourages learning at every stage.
- Post-processing:
 - \circ Sigmoid \rightarrow for binary segmentation
 - \circ Softmax \rightarrow for multi-class segmentation

Loss Function - Cross Entropy + DICE

- Weighted Sum of cross-entropy and dice loss.
- Cross-entropy treats each pixel independently.
- Due to tumour size being small compared to the rest of the image, most pixel values are easily deduced.

```
w_ce, w_dice = 0.3, 0.7

for s in ss:
    iout = 0.0
    if(s==[]):
        continue

for idx in range(len(s)):
        iout += P[s[idx]]
    loss_ce = ce_loss(iout, label_batch[:].long())
    loss_dice = dice_loss(iout, label_batch, softmax=True)
    loss += (w_ce * loss_ce + w_dice * loss_dice)
```

Different Loss Function - Focal + Dice - Unified

- Focal Loss + Dice Loss
- Focal Loss cares a lot more about hard samples where it is unsure i.e., (1-P_t) is high.
- This aligns with our case where the model needs to decide the border of the tumor + the tumor size itself is small
- Reference https://www.sciencedirect.com/science/article/pii/S0895611121

 001750

$$L_f = -lpha_t \ (1-P_t)^{\gamma} \ log(P_t)$$
 $lpha_t = egin{cases} lpha & if \ y=1 \ 1-lpha & otherwise \end{cases}$

```
def unified_focal_loss(logits, target, smooth=1e-6, gamma=2.0):
    if logits.shape != target.shape:
        target = target.unsqueeze(1)

logits = logits.view(-1)

target = target.view(-1)

probs = torch.sigmoid(logits)
    intersection = (probs * target).sum()
    uni = (2. * intersection + smooth) / (probs.sum() + target.sum() + smooth)

bce_logits = nn.BCEWithLogitsLoss(reduction='none')(logits, target)
    focal = ((1 - torch.exp(-bce_logits)) ** gamma) * bce_logits
    focal = focal.mean()

return 0.5 * (1 - uni) + 0.5 * focal
```

Complexity of our Model

• For **DICE**:

o FLOPs: 5.28 GMac

o Params: 29.13 M

• For Unified:

> FLOPs: 5.28 GMac

• Params: 29.13 M

Parameters

- Learning Rate 5e-5
- Focal Loss
 - o Gamma 2 (quadratic, gives high weight to hard samples)
 - \circ w_fe = w_dice = 0.5
- Dice Loss
 - \circ w_dice = 0.7, w_ce = 0.3
- Batch Size 8
- Train-Test Split 80 20

Final Results

Our Implementation

- Dice
 - F1: 0.9184
 - o Dice: 0.8491
- Unified
 - o F1: 0.9230
 - o Dice: 0.8569

F1 Score: Harmonic Mean of Precision and Recall IoU: The overlap between predicted and true regions relative to their Union

Their Implementation

- PVT-EMCAD-B0 (Basic)
 - o F1: 0.9171
 - PVT-EMCAD-B2 (Complex)
 - F1: 0.9231