

## The Vapor Pressure, Orthobaric Liquid Density, and Critical Constants of Isobutane

James A. Beattie, David G. Edwards, and Stanley Marple

Citation: J. Chem. Phys. 17, 576 (1949); doi: 10.1063/1.1747323

View online: http://dx.doi.org/10.1063/1.1747323

View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v17/i6

Published by the AIP Publishing LLC.

## Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/

Journal Information: http://jcp.aip.org/about/about\_the\_journal Top downloads: http://jcp.aip.org/features/most\_downloaded

Information for Authors: http://jcp.aip.org/authors

## **ADVERTISEMENT**



It should not be concluded from Eq. (17), in conjunction with Eq. (18), that Eq. (17) is a general law which applies to any mixture, irrespective of the form of G. For example, in a perfect solution of polymers, where

$$G/RT = \sum_{i} n_{i} \ln(n_{i}/\sum_{i} n_{i}), \tag{19}$$

one finds the following relation between turbidity

and osmotic pressure,

$$\tau_c/Kc - \partial c/\partial P = \varphi_0^2(M_w - M_n)/RT.$$

This shows that it is essential, for Eq. (17) to be applicable, that the molar fractions in Eq. (19) are replaced by volume fractions. Conversely, Eq. (17) may be used to check the statistical theory of polymer solutions.

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 17, NUMBER 6

JUNE, 1949

## The Vapor Pressure, Orthobaric Liquid Density, and Critical Constants of Isobutane

JAMES A. BEATTIE, DAVID G. EDWARDS, AND STANLEY MARPLE, JR. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received December 16, 1948)

The vapor pressures and orthobaric liquid densities of isobutane (propane-2-methyl) were measured from 30° to 125°C. The equation

 $\log_{10}p$  (normal atmos.)=4.31269-1126.71/T ( $T=t^{\circ}C$  (Int.)+273.13)

gives a fair representation of the vapor pressures.

The critical constants of isobutane are determined by the compressibility method. They are:  $t_c = 134.98 \pm 0.05$ °C (Int.),  $p_c = 36.00 \pm 0.05$  normal atmos.,  $v_c = 0.263$  liters per mole (4.53 ml per g),  $d_c = 3.80$  moles per liter (0.221 g per ml). The uncertainty in the critical volume and density is 2 percent.

N recent years the vapor pressure and critical constants of a number of hydrocarbons have been determined.1 The vapor pressures and orthobaric densities of isobutane have been studied over various temperature ranges by several investigators<sup>2-6</sup> and the critical constants determined<sup>3,7</sup> by the disappearance of the meniscus method.

TABLE I. Vapor pressures and orthobaric liquid densities of isobutane.

| Temp. °C (Int.) |     | and smallest<br>volumes<br>mi | Increase<br>in vapor<br>pressure<br>atmos. | Vapor pressure normal atmos. | Orthobaric<br>liquid<br>density<br>g/ml |  |  |
|-----------------|-----|-------------------------------|--------------------------------------------|------------------------------|-----------------------------------------|--|--|
|                 | 77  | 41                            | 0.005                                      | 3.941                        | 0.549                                   |  |  |
| 50              | 96  | 4                             | 0.002                                      | 6.701                        | 0.518                                   |  |  |
| 75              | 98  | 2                             | 0.004                                      | 11.932                       | 0.480                                   |  |  |
| 100             | 103 | 0.01                          | 0.004                                      | 19.573                       | 0.428                                   |  |  |
| 125             | 46  | 20                            | 0.008                                      | 30.440                       | 0.353                                   |  |  |

<sup>1</sup> For the last report on this work see J. A. Beattie and D. G. Edwards, J. Am. Chem. Soc. 70, 3382 (1948).

<sup>2</sup> G. A. Burrell and L. W. Robertson, J. Am. Chem. Soc. 37, 2482 (1915).

F. M. Sibert and G. A. Burrell, J. Am. Chem. Soc. 37,

2683 (1915). Dana, Jenkins, Burdick, and Timm, Refrig. Eng. 12, 387

(1926).
<sup>5</sup> B. H. Sage and W. N. Lacey, Ind. Eng. Chem. 30, 673

<sup>6</sup> W. M. Morris, B. H. Sage, and W. N. Lacey, Am. Inst. Mining and Met. Eng., Tech. Pub. 1128, Petroleum 2 (Nov. 1939).

7 J. Harand, Monats. F. Chem. 65, 153 (1935).

Recently several compilations of the vapor pressure and critical constants have been published. 8, 9

The isobutane used in the present investigation was furnished by the Linde Air Products Company through the courtesy of Dr. L. I. Dana.

The method of procedure for the determination of vapor pressure and compressibility has been described elsewhere. 10 The bomb with the glass liner was used. No attempt at further fractionation of the isobutane was made but it was distilled, frozen, and pumped several times in the process of loading the weighing bomb in order to remove any non-condensible gas.

The mass of the isobutane sample used was about 7 grams. In the determination of vapor pressure the volume of the sample was varied at each tem-

TABLE II. Comparison of calculated with observed vapor pressures of isobutane.  $\log_{10} p$  (calcd.) = 4.31269 - 1126.71/T.

| Temp. °C (Int.) | Vapor pressure normal atmos. | Obscalc.<br>atmos. |
|-----------------|------------------------------|--------------------|
| 30              | 3.941                        | -0.001             |
| 50              | 6.701                        | +0.005             |
| 75              | 11.932                       | +0.013             |
| 100             | 19.573                       | -0.064             |
| 125             | 30.440                       | +0.073             |

<sup>8</sup> Anon., Oil and Gas J. 44, No. 23, 115 (Oct. 1945). <sup>9</sup> K. Hochmuth, G. H. Hanson, and M. L. Smith, Trans. Am. Inst. Chem. Eng. 42, 975 (1946). <sup>10</sup> J. A. Beattie, Proc. Am. Acad. 69, 389 (1934).

| Temp. °C       | (Int.)           | 134.60           | 134.70           | 134.80           | 134.85           | 134.88           | 134.90           | 134.95           | 134.97           | 134.98           | 134.99           | 135.00           | 135.05 | 135.15 |
|----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------|--------|
| density        | volume           |                  |                  |                  |                  |                  |                  | normal atı       |                  |                  |                  |                  |        |        |
| 3.108          | 0.3218           | 35.705           | 35.769           | 35.823           | 35.847           | 35.861           | 35.870           | 35.895           | 35.907           |                  |                  | 35.923           | 35.946 | 35.997 |
| 3.227<br>3.291 | 0.3099<br>0.3039 | 35.733<br>35.753 | 35.801<br>35.809 | 35.852<br>35.868 | 35.882           | 35.899           | 35.908           | 35.931           | 35.939           |                  |                  | 35.961           | 35.986 | 36.038 |
| 3.356          | 0.2980           | 35.773           | 35.816           | 35.874           | 35.904           | 35.919           | 35.928           | 35.955           | 35.966           | 35.970           | 35.977           | 35.981           | 36.010 | 36.065 |
| 3.423<br>3.495 | 0.2921<br>0.2861 | 35.770<br>35.771 | 35.823<br>35.828 | 35.882<br>35.886 | 35.910<br>35.915 | 35.926<br>35.932 | 35.934<br>35.940 | 35.973           | 35.978           | 35.988           | 35.993           | 35.998           | 36.024 | 36.084 |
| 3.569<br>3.647 | 0.2802<br>0.2742 | 35.769           | 35.829<br>35.828 | 35.889<br>35.887 | 35.922<br>35.922 | 35.939           | 35.946<br>35.952 | 35.974<br>35.979 | 35.983<br>35.990 | 35.993<br>35.994 | 35.998<br>36.004 | 36.004<br>36.007 | 36.034 | 36.092 |
| 3.686          | 0.2713           |                  |                  |                  |                  |                  |                  | 35.982           | 35.990           |                  |                  |                  | 00.001 | 00.072 |
| 3.727<br>3.768 | 0.2683<br>0.2654 | 35,773           | 35.831           | 35.890           | 35.921           | 35.946           | 35.953           | 35.983<br>35.983 | 35.992<br>35.994 | 36.000<br>35.997 | 36.005           | 36.009           |        |        |
| 3.811          | 0.2624           |                  | 35.825           | 35.889           | 35.922           | 35.944           | 35.953           | 35.983<br>35.983 | 35.994<br>35.996 | 35.999           | 36.008           | 36.012           | 36.042 | 36.100 |
| 3.855<br>3.899 | 0.2594<br>0.2565 | 35.770           | 35.832           | 35.892           |                  | 35.944           | 35.954           | 35.984           | 35.996           | 36.002           | 36.008           | 36.013           |        |        |
| 3.992<br>4.088 | 0.2505<br>0.2446 | 35.769<br>35.769 | 35.826<br>35.833 | 35.894<br>35.893 | 35.925           | 35.945<br>35.945 | 35.956           | 35.988<br>35.990 | 36.000<br>36.002 | 36.003           | 36.011           | 36.018<br>36.020 | 36.048 | 36.110 |
| 4.189          | 0.2387           | 35.770           | 35.832           | 35.895           | 35.927           | 35.947           | 35.960           | 35.995           | 36.005           | 36.013           | 36.019           | 36.026           | 36.054 | 36.117 |
| 4.297<br>4.409 | 0.2327<br>0.2268 | 35,776           | 35.838           | 35.907           | 35.943           | 35.965           | 35.978           | 36.015           | 36.024           |                  |                  | 36.046           | 36.080 | 36.144 |
| 4.653          | 0.2149           | 35.799           | 35.890           | 35.967           | 36.010           | 36.028           | 36.045           | 36.084           | 36.092           |                  |                  | 36.119           | 36.153 | 36.226 |

TABLE III. Isotherms of isobutane in the critical region Molecular Weight, 58.077.

perature from about 90 ml to a value less than the orthobaric liquid volume. The change of vapor pressure with vapor volume gives an indication of the purity of the sample. The orthobaric liquid density was determined at each temperature from the break in the curve of pressure *versus* volume.

The measured vapor pressures are listed in Table I. The small increase in pressure with decrease in vapor volume indicates that the sample was of exceptional purity. The vapor pressures were represented by the equation:

$$\log_{10}p$$
 (normal atmos.) = 4.31269 - (1126.71/ $T$ ),  $(T=t^{\circ}\text{C (Int.)}+273.13)$ ,

and the representation of the measurements by this equation is given in Table II. Our vapor pressures are in fair agreement with those of Dana and coworkers<sup>4</sup> and of Sage and Lacey,<sup>5</sup> and are in even better agreement with the two values published by Morris, Sage, and Lacey.<sup>6</sup>

Our measured orthobaric liquid densities are listed in Table I. The estimated uncertainty is 0.001 g per ml. Our measured densities are on the average 0.002 g per ml lower than those of Sage and Lacey, <sup>5, 6</sup> and are higher than the values of Dana and co-workers <sup>4</sup> at 30° by 0.003 g per ml and lower at 50° by 0.001.

The measurements of the compressibility of iso-



Fig. 1. Isotherms of isobutane in the critical region. The isotherms immediately above 134.97 are 134.98 and 134.99.

butane in the critical region are given in Table III and plotted in Fig. 1. From the plot we find for the critical point:  $t_c=134.98\pm0.05^{\circ}$ C (Int.),  $p_c=36.00\pm0.05$  normal atmospheres,  $v_c=0.263$  liter per mole (4.53 ml per g),  $d_c=3.80$  moles per liter (0.221 g per ml). The uncertainty in the critical volume and density is 2 percent. Sibert and Burrell³ give  $t_c=133.7^{\circ}$ C,  $p_c=36.54$  atmos., and Harand¬ gives  $t_c=133.8^{\circ}$ C.