

The University of Georgia

Programming for Computational & Systems Biology

Instructor: Paul Xie

Tue. & Thr. 9:35~10:50

Overview of Course

 Introduction to programming skills in computational and systems biology. Topics include real world examples, such as processing genome or proteome data, and analyzing large-scale data. The idea of "big data" will be emphasized to help students with their coding skills to discovering new knowledge in biomedical sciences and solving biomedical problems.

Course Format

- Computer labs + lectures (3 hours/week)
- Coding concepts (some knowledge about biological data)
- 6-8 assignments, published on eLC, (30-40%)
 - Please upload them by the due days
- Paper review (10-20%)
- 1 term paper (50-60%)

Topics

- Omics data, e.g. Genomics, Proteomics...
- Basic Programming, e.g. I/O, variables, string, loop, regular express, array...etc.
- Data retrieval & processing
- Data analysis
- Model & building model
- Clustering and Classification
- Prediction

Logic & Loops DNA, RNA, & Protein

Instructor: Paul Xie (3)

Open PyCharm

- Go to UGA CENGR Mylab
 - mylab.engr.uga.edu
- Login Citrix
 - Apps
 - PyCharm
 - New project

Code


```
def main():
         age = int(input("How old are you?"))
         if age < 16:
                   print("You cannot drive")
         elif age < 21:
                   print("You can drive but cannot drink")
         else:
                   print("You can drink and drive")
         elif (DNA == 'G'):
                   pair = 'C'
         print("%s\n|\n%s" %(DNA,pair))
main()
```

Code


```
def main():
  a = 'Hello '
  b = 'World'
  print(a+b)
  DNA = input('please input a nucleotide: ')
  pair = "
  if (DNA == 'A'):
     pair = 'T'
  elif (DNA == 'T'):
     pair = 'A'
  elif (DNA == 'C'):
     pair = 'G'
  elif (DNA == 'G'):
     pair = 'C'
  print("%s\n|\n%s" %(DNA,pair))
main()
```

Iterations

- Loop
 - While loop
 - For loop

- While loop
 - Count or count down
 - Factorial
 - e.g. 3!, 5!, 12!, x!....

Iterations

- Loop
 - While loop
 - Do-while loop
 - For loop
- Fibonacci number
- $(f_0 = 0)$, $f_1 = 1$, $f_2 = 1$, $f_n = f_{n-1} + f_{n-2}$
- 1,1,2,3,5,8,13,21,34,55,....
- Given a number N, how can we find all the factors (e.g. n = 120) f = 2,3,4,6,12,15,
- $y = ax^2+bx+c$; y = x1, x2 (y = -b+/-

The University Newton's Method Georgia

The University (Newton's Method Georgia

Newton's Method

THE GOAL: We want to find c such that f(c) = 0

THE STEPS:

Step 1 Make a guess that should be close to $c = x_0$

Step 2 Repeat this iterative formula until 2 consecutive steps have the same values for the desired number of decimal place

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Step 3 Your answer is the values with the desired number of decimal places. You are now done.

Newton-Raphson Methodof Georgia

- Taylor expansion
- $f(x) = f(c) + f'(c) (x c) + \frac{f''(c)}{2!} (x c)^2 + \dots + \frac{f^n(c)}{n!} (x c)^n$

- The first-degree Taylor Polynomial
- $f(x) = f(c) + f'(c) (x c) + O(h^2)$
- When f(x) = 0, $f(x) = f(x_0) + f'(x_0)(x - x_0) = 0$

$$\rightarrow x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Random Number

- Loop
 - While loop
 - For loop

Iterations

- Loop
 - While loop
 - For loop
- Another input method open file
 - F = open("file path","r")
 - Read and write
 - F.readline()
- Function : len()

Iterations

- String
 - String is a series of characters

Random Number

- Import random
- random.randint()
- random.randrange()
- random.random()
- random.uniform
- random.choice()
- random.choices
- random.sample

Syntax

- random.randint(begin,end) → to generate a random integer begin ≤ v ≤ end
- random.randrange(begin,end(,skip)) → to generate a random integer begin ≤ v < end (and skip by)
- random.sample(range(begin,end),n)
- random.random() → to generate a random float
- random.uniform(begin,end) → float begin ≤ v <
 end
- random.choice() > randomly choose a character from a list

- Guess number
 - 1. Generate random number
 - 2. Input a guess number
 - 3. Check if the guess is correct
 - 4. iterate

- Turtle and Rabbit race
 - 1. Dice (random number generator: 1~6)
 - 2. Record (the updated positions of turtle and rabbit)
 - 3. demonstrate track and current positions (visualized positions)
 - 4. The unfinished track (visualized track)
 - 5. The finish line
 - 6. The loop (iteration of dice rolling and run forward)
 - 7. Clean the previous line (system("cls")

- Secret message (encryption) t→ 7→#
 - 1. Input a message to deliver
 - 2. (secret code)
 - 3. Split the message and put into a random code
 - 4. Decoder

```
ex: I/|u;#\+|DNgi+
9(5uF!Ivsncof#O_w{JJaF6A6imX<h-D(
7 NgL#*|Fr5p{(3\LQd-0Pfv8 +s\T
```

Assignment

- Self-assessment
 - Do and submit your assignment onto eLC
 - Grade your own assignment based on the rubric
 - I will grade your assignment too
 - Download and compare the two assessment
- Peer-assessment
 - Download the assignment done by classmates
 - Grade those assignments based on the rubric
 - Submit your grading
- Getting scores on doing and grading the assignment

Weakness & Solutions

- Q: How can we get all the factors (prime) of an integer?
 - Exercise
- Possible weakness:
 - Empty spaces → leaking key1
 - 2. Total length → leaking key2
- Possible solutions?
 - Exercise

- Random sequences/proteins?
 - 1. Randomly generate sequences
 - 2. Find (and record) the starting code 'ATG'
 - 3. Count/Translate each 3 codes
 - 4. Calculate the length
 - 5. Find the stop code 'TGA'
 - 6. Record the length

Central Dogma

- DNA→RNA→
 Protein
- Transcription & Translation (&Replication)

DNA & RNA

 H_2N

- <u>Deoxy</u>ribonucleic acid
- Ribonucleic acid
 - Base: A, T/U, C, G
 - Adenine
 - Thymine
 - Uracil
 - Guanine
 - Cytosine
 - Purines & Pyrimidines A
 - Ribose
 - Phosphate

$$G \qquad H \qquad C$$

Double Helix!

- Double helix
 - Chromosomes
- Replication
 - DNA-polymerase
- Transcription
- Translation

Sequencing

- Restriction
 Enzyme
- Gel & Electrophoresis

Replication

- Double helix
- Replication
 - DNA-polymerase
- Transcription
- Translation

Transcription

- Double helix
- Replication
- Transcription
 - RNA Polymerase
 - Transcription Factors
 - Expression control
- Translation

Translation

- Double helix
- Replication
- Transcription
- Translation
 - Ribosome
 - mRNA
 - tRNA
 - Nucleic acid to Amino acid

Peptide Synthesis

DNA -> AA

Second Codon Letter

		Т	С	Α	G	
	Т	TTT – phe TTC – phe TTA – leu TTG – leu	TCT – ser TCC – ser TCA – ser TCG – ser	TAT – tyr TAC – tyr TAA – stop TAG – stop	TGT – cys TGC – cys TGA – stop TGG – trp	⊤∪AG
rirst Codon Letter	O	CTT - leu CTC - leu CTA - leu CTG - leu	CCT – pro CCC – pro CCA – pro CCG – pro	CAT – his CAC – his CAA – gln CAG – gln	CGT – arg CGC – arg CGA – arg CGG – arg	TOAG
	4	ATT – ile ATC – ile ATA – ile ATG – start/met	ACU - thr ACC - thr ACA - thr ACG - thr	AAT – asn AAC – asn AAA – Iys AAG – Iys	AGT – ser AGC – ser AGA – arg AGG – arg	TOAG
	O	GTT – val GTC – val GTA – val GTG – val	GCT - ala GCC - ala GCA - ala GCG - ala	GAT – asp GAC – asp GAA – glu GAG – glu	GGT – gly GGC – gly GGA – gly GGG – gly	⊢∪∢G

First Codon Letter

Third Codon Letter

20 AAs

The University	
of Georgia	
1 letter code	

Amino Acid	3 letter code	1 letter code
<u>Alanine</u>	Ala	Α
<u>Arginine</u>	Arg	R
<u>Asparagine</u>	Asn	N
Aspartic acid	Asp	D
<u>Cysteine</u>	Cys	С
Glutamic acid	Glu	E
<u>Glutamine</u>	Gln	Q
<u>Glycine</u>	Gly	G
<u>Histidine</u>	His	Н
<u>Isoleucine</u>	lle	1
<u>Leucine</u>	Leu	L
<u>Lysine</u>	Lys	K
<u>Methionine</u>	Met	M
<u>Phenylalanine</u>	Phe	F
<u>Proline</u>	Pro	Р
<u>Serine</u>	Ser	S
<u>Threonine</u>	Thr	Т
<u>Tryptophan</u>	Trp	W
<u>Tyrosine</u>	Tyr	Υ
V/ II	\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

-Omics & Online Databases

Sequence Data

- NCBI
- RefSeq
- FASTA format
 - Single letter code
 - Sequence names and comments preceding the sequences
 - FASTA

;LCBO - Prolactin precursor - Bovine

; a sample sequence in FASTA format

MDSKGSSQKGSRLLLLLVVSNLLLCQGVVSTPVCPNGPGNCQVSLRDLFDRAVMVSHYIHDLSS EMFNEFDKRYAQGKGFITMALNSCHTSSLPTPEDKEQAQQTHHEVLMSLILGLLRSWNDPLYHL VTEVRGMKGAPDAILSRAIEIEEENKRLLEGMEMIFGQVIPGAKETEPYPVWSGLPSLQTKDED ARYSAFYNLLHCLRRDSSKIDTYLKLLNCRIIYNNNC*

>MCHU - Calmodulin - Human, rabbit, bovine, rat, and chicken

ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTID FPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREA DIDGDGQVNYEEFVQMMTAK*

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus maximus]
LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLFSAIPYIGTNLV
EWIWGGFSVDKATLNRFFAFHFILPFTMVALAGVHLTFLHETGSNNPLGLTSDSDKIPFHPYYTIKDFLG
LLILILLLLLALLSPDMLGDPDNHMPADPLNTPLHIKPEWYFLFAYAILRSVPNKLGGVLALFLSIVIL
GLMPFLHTSKHRSMMLRPLSQALFWTLTMDLLTLTWIGSQPVEYPYTIIGQMASILYFSIILAFLPIAGX
IENY

Summary

- DNA→RNA→Protein
- NCBI & RefSeq
- FASTA format
- Pycharm
- The first program of Python
- Input/Output
- Variables

