

# Aspects combinatoires, algébriques et ergodiques de la dynamique symbolique

Université de Moncton

Herman Goulet-Ouellet

4 avril 2025

### Vue d'ensemble



# **Dynamique symbolique**

Partie 1

# Dynamique symbolique

Espaces symboliques: espaces de mots infinis vus comme systèmes dynamiques.

- Origine dans l'approximation discrète de systèmes dynamiques continus (Morse et Hedlund, 1938, 1940).
- Liens avec la combinatoire, l'algèbre, la théorie des probabilités, la géométrie, la logique, la théorie des nombres, etc.

#### **Chaînes de Markov**

Les **chaînes de Markov** définissent des mesures de probabilité sur les espaces symboliques.

Par exemple, la chaîne de Markov suivante définit une mesure de probabilité sur l'espace symbolique X formé des mots infinis sur  $\{a,b\}$  qui évitent le facteur bb.



### Mots automatiques

Les **mots automatiques** sont des mots infinis obtenus en lisant les représentations d'entiers (e.g. binaires) dans des automates.



Mot de Thue-Morse. Parité du nombre de 1 dans les représentations binaires des entiers naturels.

4

#### **Mots sturmiens**

Let **mots sturmiens** sont des mots infinis obtenus par certains codages discrets de rotations apériodiques du cercle.



Mot de Fibonacci. Codage de l'orbite de 0 sous la rotation de longueur  $\frac{-1+\sqrt{5}}{2}$  par les intervalles  $[0,\frac{3-\sqrt{5}}{2}),[\frac{3-\sqrt{5}}{2},0)$ .

#### **Combinatoire des mots**



#### Problème fondamental

Comprendre les espaces symboliques grâce aux propriétés **combinatoires** et **algébriques** de leurs facteurs finis.

- 1. Analyser la **complexité en facteurs**.
- 2. Étudier le comportement des facteurs à l'intérieur de différentes **structures algébriques** (monoïdes ou groupes, par exemple).
- 3. Se prête bien à une approche expérimentale (Python, SageMath, Gap, etc.).

#### Mots de retour

**Mots de retour**: séparations entre les occurrences d'un facteur donné dans les éléments d'un espace symbolique.

- Notion centrale en dynamique symbolique, utilisée comme outil de classification.
- Liée à plusieurs questions combinatoires (complexité en facteurs, palindromes).

#### Théorème (Vuillon, 2001)

Un espace symbolique est sturmien  $\iff \#\mathcal{R}_x(w) = 2$  pour tout facteur w.

7

#### Problèmes de classification

**Problème fondamental.** Comprendre les espaces symboliques grâce aux propriétés combinatoires et algébriques de leurs facteurs finis.



**1** Les **espaces dendriques** sont une généralisation combinatoire importante des espaces sturmiens (Berthé et al., 2015). Ils sont disjoints des espaces automatiques.

# Caractérisation des dendriques

F. Gheeraert, H. Goulet-Ouellet, J. Leroy, et P. Stas (2025). Algebraic characterization of dendricity. Electron. J. Comb. 32.1



#### **Théorème**

Un espace symbolique X est dendrique  $\iff$  tous les  $\mathcal{R}_X(w)$  forment des bases du groupe libre.

- ⇒ : "Théorème du retour" de Berthé et al., 2015.
- $\Leftarrow$ : Gheeraert, Goulet-Ouellet, Leroy, et Stas, 2025.

# Récapitulatif



- Espaces symboliques, liens avec les chaînes de Markov.
- Familles d'espaces (sturmiens, automatiques, etc.).
- Combinatoire des mots, mots de retour (approche expérimentale).
- Caractérisation des espaces dendriques.

Partie 2

# Aspects algébriques

# Semigroupes et monoïdes

#### **Définition**

- Un semigroupe est un ensemble muni d'une opération associative.
- Un monoïde est un semigroupe avec un élément neutre.

Par exemple, l'ensemble des mots finis sur un alphabet A, dénoté  $A^*$ , forme un monoïde pour la concaténation (monoïde libre).



- Les langages réguliers (regex) sont décrits par des machines finies appelées automates.
- Il y a une correspondance naturelle entre les monoïdes finis et les automates.
- Les monoïdes finis sont intimement liés aux automates et aux langages réguliers.

## Monoïdes finis et profinis

**Monoïdes profinis**: structures **algébriques-topologiques** qui permettent d'encoder le comportement des familles de monoïdes finis.

- Apparaissent dans des contextes très variés, comme les algèbres de Boole, la théorie des modèles, la théorie de Galois, et l'analyse p-adique.
- Permettent d'utiliser des outils topologiques pour étudier les langages réguliers et la combinatoire des mots.



# Groupes de Schützenberger

**Groupes de Schützenberger**: groupes profinis naturellement associés à certains espaces symboliques.



- Étude dynamique des monoïdes profinis (Almeida, 2005).
- La construction de G(X) est liée aux facteurs finis de X.
- G(X) est invariant à isomorphisme près (Costa, 2006).
- Permet de distinguer algébriquement certaines familles (sturmiens, automatiques, etc.)

# **Invariants nilpotents**

H. Goulet-Ouellet (2022). Pronilpotent quotients associated with primitive substitutions. J. Algebra 606.



Extraction d'invariants simplifiés (**empreinte nilpotente**) par des méthodes algébriques utilisant les mots de retour  $\mathcal{R}_X(w)$ .

#### **Théorème**

L'empreinte nilpotente suffit à distinguer les espaces dendriques et automatiques.

- L'empreinte nilpotente est encodé par une suite d'entiers simple à calculer.
- Pour Thue–Morse: 1, 2, 2, . . . .
- Pour Fibonacci: 2, 2, 2, . . . .

# Récapitulatif



- · Monoïdes finis et profinis.
- Liens avec les langages réguliers (regex) et automates.
- Construction d'invariants profinis (groupe de Schützenberger).
- Extraction d'invariants simplifiés (empreinte nilpotente).

Partie 3

# **Aspects ergodiques**

# Densité des langages

#### **Définition**

Soit  $\mu$  une mesure de probabilité sur un espace symbolique. La **densité** d'un langage  $L\subseteq A^*$  relativement à  $\mu$  est la limite

$$\delta_{\mu}(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mu(\{x \in X \mid x_0 \dots x_k \in L\}).$$

**Interprétation probabiliste**: pour les langages réguliers, la densité correspond à la fréquence moyenne de visites par les marches infinies sur un monoïde fini.

"mots avec un nombre pair de a"  $L = \{ w \in A^* \mid \#_a w \equiv 0 \mod 2 \}$   $b^*(ab^*ab^*)^*$ 



### Un peu d'histoire

$$\delta_{\mu}(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mu(\{x \in X \mid x_0 \dots x_k \in L\}).$$

La densité des langages peut être vue comme une généralisation de la densité naturelle en théorie des nombres. Elle a été étudié dans plusieurs contextes.

- 1951 Travaux de **Kakutani** sur les chaînes de Markov (liés indirectement).
- 1969 Travaux de **Veech** sur une variante du théorème de Kronecker–Weyl.
- 1972 **Berstel** étudie les densités pour les mesures de Bernoulli.
- 1989 **Hansel et Perrin** étudient les densités pour les chaînes de Markov.
- 1993 **Lynch** étudie les densités en lien avec la logique du premier ordre.
- 2015 Travaux de **Sin'ya** sur une loi zéro-un pour les langages réguliers.

#### **Existence**

$$\delta_{\mu}(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mu(\{x \in X \mid x_0 \dots x_k \in L\}).$$

$$L_1 = \{ w \in A^* \mid |w| \equiv 0 \mod 2 \},$$
  

$$L_2 = \{ w \in A^* \mid |w| \equiv \lfloor \log_2(|w|) \rfloor \mod 2 \}.$$



Dans cet exemple,  $\delta_{\mu}(L_1) = \delta_{\mu}(L_2) = 1/2$ , mais la densité  $\delta_{\mu}(L_1 \cap L_2)$  n'existe pas.

# Mesures ergodiques

#### **Définition**

Soit S la fonction de décalage,  $Sx_n = x_{n+1}$ . Une mesure de probabilité  $\mu$  sur un espace symbolique est **ergodique** si

$$\forall B, C, \quad \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(B \cap S^{-n}C) = \mu(B)\mu(C).$$

(Tous les évènements sont deux-à-deux asymptotiquement indépendants.)

La **théorie ergodique** est une branche importante de la théorie des systèmes dynamiques, initialement motivée par la physique statistique.

- 1. Toute les mesures de **Bernoulli** sont ergodiques.
- 2. Les mesures de **Markov** irréductibles sont ergodiques.

#### Mesure de Fibonacci

**1** Les espaces symboliques engendrés par les mots de **Fibonacci** et de **Thue-Morse**, par exemple, admettent une unique mesure de probabilité ergodique (Michel, 1974).



Mesure de Fibonacci. Unique mesure ergodique supportée par l'espace symbolique engendré par le mot de Fibonacci abaababa  $\cdots$  ( $\lambda = \frac{1+\sqrt{5}}{2}$ ).

# Densité des langages à groupe

V. Berthé, H. Goulet-Ouellet, C.-F. Nyberg-Brodda, D. Perrin, et K. Petersen (2024). *Density of group languages in shift spaces*. Preprint.

$$\delta_{\mu}(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mu(\{x \in X \mid x_0 \dots x_k \in L\}).$$

#### **Théorème**

Pour tout langage à groupe L et toute mesure ergodique  $\mu$ , la densité  $\delta_{\mu}(L)$  existe.

- Formules closes dans plusieurs cas importants.
- Équidistribution pour les mesures supportées par les espaces dendriques.



<sup>&</sup>lt;sup>1</sup>Sous-famille des langages réguliers

# Récapitulatif



- · Notion de densité.
- Interprétation probabiliste (marches infinis sur des monoïdes).
- · Problème de l'existence.
- Ergodicité.
- Théorème d'existence pour les langages à groupes.

Partie 4

# **Conclusion**

# Projets de recherche

#### 1. Volet combinatoire

Approfondir l'utilisation des mots de retour comme outil de classfication.

#### 2. Volet profini

Poursuivre l'étude des groupes de Schützenberger.

#### 3. Volet ergodique

Étudier les densités au-delà des langages à groupe.



- Espaces symboliques (sturmiens, automatiques, dendriques, etc.)
- · Mots de retour.
- · Monoïdes finis et profinis.
- · Groupes de Schützenberger.
- Mesures ergodiques.
- Densités des langages réguliers.





Extra

# Pistes de recherche

#### **Volet combinatoire**

Bispécial: facteur prolongeable par plusieurs lettres dans un espace symbolique.

#### **Objectifs**

- 1. Concevoir et implémenter un algorithme pour calculer les facteurs bispéciaux.
  - Premiers résultats soumis récemment (avec K. Klouda et Š. Starosta).
  - Implémentation en SageMath et/ou Python.
- 2. Développer une approche systématique au calcul des mots de retour.
  - Applications aux deux autres volets.
  - Liens vers d'autres problèmes combinatoire (complexité en facteurs, répétitions).

# Volet profini

**Substitution.** Morphisme  $\sigma \colon A^* \to A^*$ . L'itération de substitutions permet de construire des mots infinis et des espaces symboliques (Thue-Morse, Fibonacci, etc.).

Substitutif 
$$A^* \stackrel{\sigma}{\leftarrow} A^* \stackrel{\sigma}{\leftarrow} A^* \stackrel{\sigma}{\leftarrow} A^* \leftarrow \cdots$$
 itération d'une seule substitution   
S-adique  $A_0^* \stackrel{\sigma_0}{\leftarrow} A_1^* \stackrel{\sigma_1}{\leftarrow} A_2^* \stackrel{\sigma_2}{\leftarrow} A_3^* \leftarrow \cdots$  itération de plusieurs substitutions

#### **Objectifs**

- 1. Établir une théorie S-adique profinie.
  - Les groupes G(X) demeurent mal compris en dehors du cadre substitutif.
  - Le cadre S-adique offre un degré de généralité beaucoup plus large.
- 2. Étudier les quotients résolubles des groupes de Schützenberger.
  - Étendre l'idée d'empreinte nilpotente pour obtenir des invariants plus forts.

# Volet ergodique

Monoïde de transition: défini par l'action des lettres sur les états d'un automate.



#### **Objectifs**

- 1. Calculer les densités pour les langages réguliers quelconques.
  - Étude fine de la structure des monoïdes de transition.
  - Premiers résultats soumis récemment (avec V. Berthé et D. Perrin).
- 2. Étudier les probabilités induites par les densités sur les monoïdes profinis.
  - Pont entre les aspects ergodiques et profinis des espaces symboliques.

# **Autres projets futurs**

- 1. Formalisation de la combinatoire des mots (Isabelle/HOL), avec Š. Starosta.
- 2. Semigroupes d'Ellis des mots substitutifs, avec R. Yassawi.