

Machine learning for finance

Nathan George
Data Science Professor

Machine Learning in Finance

source: https://www.zacks.com/stock/quote/AMD

JPM report: http://valuesimplex.com/articles/JPM.pdf

Understanding the data

```
print(amd_df.head())
            Adj_Close Adj_Volume
Date
1999-03-10
                8.690
                        4871800.0
1999-03-11
                8.500
                        3566600.0
1999-03-12
                8.250
                        4126800.0
1999-03-15
                8.155
                        3006400.0
1999-03-16
                8.500
                        3511400.0
```


EDA plots

```
amd_df['Adj_Close'].plot()
plt.show()
```



```
plt.clf() # clears the plot area
vol = amd_df['Adj_Volume']
vol.plot.hist(bins=50)
plt.show()
```


Price changes

```
amd_df['10d_close_pct'] = amd_df['Adj_Close'].pct_change(10)
amd_df['10d_close_pct'].plot.hist(bins=50)
plt.show()
```


Shift data

```
amd_df['10d_future_close'] = amd_df['Adj_Close'].shift(-10)
amd_df['10d_future_close_pct'] = amd_df['10d_future_close'].pct_change(10)
```


Correlations

```
corr = amd df.corr()
print(corr)
                      10d_future_close_pct 10d_future_close 10d_close_pct \
10d future close pct
                                  1.000000
                                                    0.070742
                                                                   0.030402
10d future close
                                  0.070742
                                                    1.000000
                                                                   0.082828
10d close pct
                                  0.030402
                                                    0.082828
                                                                   1.000000
Adj Close
                                 -0.083982
                                                    0.979345
                                                                   0.073843
Adj Volume
                                                   -0.122473
                                 -0.024456
                                                                   0.044537
                      Adj Close Adj Volume
10d_future_close_pct
                      -0.083982
                                  -0.024456
10d future close
                      0.979345
                                -0.122473
10d close pct
                      0.073843
                                   0.044537
Adj Close
                      1.000000
                                  -0.119437
Adj Volume
                                   1.000000
                      -0.119437
```


Let's do some EDA!

Data transforms, features, and targets

Nathan George
Data Science Professor

Making features and targets

```
features = amd_df[['10d_close_pct', 'Adj_Volume']]
targets = amd_df['10d_future_close_pct']
print(type(features))

pandas.core.series.DataFrame

print(type(targets))

pandas.core.series.Series
```


Moving averages

Moving averages:

- use *n* past days to get average
- common values for *n*: 14, 50, 200

RSI equation

$$RSI = 100 - \frac{100}{1 + RS}$$

$$RS = \frac{\text{Average gain over } n \text{ periods}}{\text{Average loss over } n \text{ periods}}$$

Calculating SMA and RSI

```
import talib
amd_df['ma200'] = talib.SMA(amd_df['Adj_Close'].values, timeperiod=200)
amd_df['rsi200'] = talib.RSI(amd_df['Adj_Close'].values, timeperiod=200)
```


Finally, our features

```
feature_names = ['10d_close_pct', 'ma200', 'rsi200']
features = amd_df[feature_names]
targets = amd_df['10d_future_close_pct']

feature_target_df = amd_df[feature_names + '10d_future_close_pct']
```


Check correlations

```
import seaborn as sns
corr = feature_target_df.corr()
sns.heatmap(corr, annot=True)
```


Let's create features and targets!

Linear modeling with financial data

Nathan George
Data Science Professor

Make train and test sets

```
import statsmodels.api as sm
linear_features = sm.add_constant(features)
train_size = int(0.85 * targets.shape[0])
train_features = linear_features[:train_size]
train_targets = targets[:train_size]
test_features = linear_features[train_size:]
test_targets = targets[train_size:]
```

```
some_list[start:stop:step]
```


Linear modeling

```
model = sm.OLS(train_targets, train_features)
results = model.fit()
```


Linear modeling

print(results.summary())

Linear modeling

		OLS Reg	ression R	esults		
Dep. Variable: Model: Method: Date: Time: No. Observatio Df Residuals: Df Model: Covariance Typ	Thu ns:	Least Squar , 19 Apr 20 11:41: 4	OLS Adj. Tes F-sta 18 Prob 05 Log- 125 AIC: 19 BIC:	uared: R-squared: atistic: (F-statisti	c):	0.157 0.146 15.55 4.79e-14 336.53 -661.1 -636.8
	coef	std err	t	P> t	[0.025	0.975]
const 10d_close_pct ma14 rsi14 ma200 rsi200	1.3305 0.0906 0.3313 -0.0013 -0.4090 -0.0224	0.323 0.098 0.209 0.001 0.053 0.003	4.117 0.927 1.585 -1.044 -7.712 -6.610	0.000 0.355 0.114 0.297 0.000 0.000	0.695 -0.102 -0.080 -0.004 -0.513 -0.029	1.966 0.283 0.742 0.001 -0.305 -0.016
Omnibus: Prob(Omnibus): Skew: Kurtosis:		3.571 0.168 0.202 3.159	Jarque Prob(J	*		0.209 3.323 0.190 5.47e+03

p-values

Time to fit a linear model!