Tuning Parameters

(based on tmwr.org)

Matthew McDonald

Hyperparamters

- Some parameters required for prediction can be estimated directly from the training data,
- Other parameters, called tuning parameters or hyperparameters, must be specified ahead of time and can't be directly found from training data.
- These are unknown structural or other kind of values that have significant impact on the model.

OLS Model Parameters

In ordinary linear regression, there are two parameters β_0 and β_1 of the model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

When we have the outcome (y) and predictor (x) data, we can estimate the two parameters β_0 and β_1 :

$$\hat{\beta_1} = \frac{\sum_i (y_i - \bar{y})(x_i - \bar{x})}{\sum_i (x_i - \bar{x})^2}$$

and

$$\hat{\beta_0} = \bar{y} - \hat{\beta_1}\bar{x}.$$

K-Nearest Neighbor Model

K-nearest neighbors stores the training set (including the outcome).

When a new sample is predicted, K training set points are found that are most similar to the new sample being predicted.

The predicted value for the new sample is some summary statistic of the neighbors, usually:

- the mean for regression, or
- the mode for classification.

KNN Model Parameters

For the KNN model, the prediction equation for a new value x_0 is

$$\hat{y} = \frac{1}{K} \sum_{\ell=1}^{K} x_{\ell}^*$$

- K is the number of neighbors and the x_{ℓ}^* are the K closest values to x_0 in the training set.
- The model itself is not defined by a model equation
- The number of neighbors has a profound impact on the model; it governs the flexibility of the class boundary.
- For small values of K, the boundary is very elaborate while for large values, it might be quite smooth.

Note on KNN Model

Since the model is measuring distance, we typically should add a pre-processing step to center and scale all numeric parameters to ensure they're on the same scale.

Fitting a KNN Model to Ames

```
1 \text{ knn mod } < -
      nearest neighbor(neighbors = 5) %>%
      set engine("kknn") %>%
      set mode("regression")
  6 # since Longitude and Latitude are already on the same scale,
    # we can get away without centering and scaling
 8 knn wflow <-
      workflow() %>%
 10
      add formula(Sale Price ~ Longitude + Latitude) %>%
 11
      add model(knn mod)
12
    set.seed(1001)
    ames folds <- vfold_cv(ames_train, v = 10)</pre>
15
 16 knn fit <- knn wflow %>% fit resamples(resamples = ames folds)
    collect metrics(knn fit)
# A tibble: 2 \times 6
  .metric .estimator mean
                                n std err .config
                                    <dbl> <chr>
  <chr> <chr>
                    <dbl> <int>
         standard 0.0987
                               10 0.00352 Preprocessor1 Model1
1 rmse
         standard 0.686
                               10 0.0179 Preprocessor1_Model1
2 rsq
```

Setting K = 100

```
1 \text{ knn mod } < -
 2
      nearest neighbor(neighbors = 100) %>%
     set_engine("kknn") %>%
     set mode("regression")
 6 knn wflow <-
     knn wflow %>%
    remove model() %>%
     add model(knn mod)
10
11 knn fit <- knn wflow %>% fit resamples(resamples = ames folds)
12 collect metrics(knn fit)
# A tibble: 2 \times 6
  .metric .estimator mean
                              n std err .config
                                  <dbl> <chr>
 <chr>
         <chr> <dbl> <int>
1 rmse
         standard 0.115
                            10 0.00335 Preprocessor1 Model1
         standard 0.574
                             10 0.0151 Preprocessor1 Model1
2 rsq
```

What is the Best Choice for K?

The tune() Function

How can we signal to tidymodels functions which arguments should be optimized? Parameters are marked for tuning by assigning them a value of tune ().

The tune() function doesn't execute any particular parameter value; it only returns an expression:

```
1 tune()
tune()
```

Embedding this tune() value in an argument will tag the parameter for optimization.

Tuning our KNN Model

```
knn mod <-
     nearest neighbor(neighbors = tune('K')) %>%
     set engine("kknn") %>%
     set mode("regression")
   knn wflow <-
     knn wflow %>%
     remove model() %>%
     add model(knn mod)
10
11
   knn tune <- knn wflow %>% tune grid(resamples = ames folds,
12
                                       grid = tibble(K=1:20),
13
                                       metrics=metric set(rmse))
   collect metrics(knn tune)
```

Tuning our KNN Model

```
# A tibble: 20 \times 7
       K .metric .estimator
                                         n std err .config
                               mean
                              <dbl> <int>
                                             <dbl> <chr>
   <int> <chr>
                 <chr>
                  standard
                             0.119
                                        10 0.00417 Preprocessor1 Model01
 1
       1 rmse
                             0.109
                                        10 0.00393 Preprocessor1 Model02
 2
                 standard
       2 rmse
                             0.103
                                        10 0.00371 Preprocessor1 Model03
 3
                 standard
       3 rmse
 4
                 standard
                             0.100
                                        10 0.00360 Preprocessor1 Model04
       4 rmse
 5
                             0.0987
                                        10 0.00352 Preprocessor1 Model05
                  standard
       5 rmse
                                        10 0.00347 Preprocessor1 Model06
 6
                  standard
                             0.0975
       6 rmse
                             0.0969
                                        10 0.00344 Preprocessor1 Model07
       7 rmse
                  standard
                             0.0965
                                        10 0.00342 Preprocessor1 Model08
 8
                  standard
       8 rmse
                  standard
                             0.0963
 9
                                        10 0.00338 Preprocessor1 Model09
       9 rmse
10
                  standard
                             0.0962
                                        10 0.00333 Preprocessor1 Model10
      10 rmse
                             0.0962
                                        10 0.00329 Preprocessor1 Model11
11
                  standard
      11 rmse
                                        10 0.00328 Preprocessor1 Model12
12
                  standard
                             0.0963
      12 rmse
                                        10 0 00327 Drangaggari Madalia
                  c+andard
                              0 0065
12
      13 rmco
```

Plotting the Results

1 autoplot(knn_tune)

Selecting the Best Parameters

```
1 knn_best <- select_best(knn_tune)
2 knn_best

# A tibble: 1 × 2
    K .config
    <int> <chr>
1    10 Preprocessor1_Model10
```

Getting the Best Model for Prediction

Note: Once we have this "final" model, we would still need to fit it with the **entire** training data set in order to then use it for prediction.

Other Tuning Parameters

- Boosting is an ensemble method that combines a series of base models, each of which
 is created sequentially and depends on the previous models
 - The number of boosting iterations is a tuning parameter
- In single-layer artificial neural network, the predictors are combined using two or more hidden units. The hidden units are linear combinations of the predictors that are captured in an *activation function* (typically a nonlinear function, such as a sigmoid).
 - The number of hidden units and the type of activation are tuning parameters.
- Modern gradient descent methods are improved by finding the right optimization parameters.
 - Examples of such hyperparameters are learning rates, momentum, and the number of optimization iterations/epochs.
 - Neural networks and some ensemble models use gradient descent to estimate the model parameters.

Tuning Preprocessing Steps

- In principal component analysis, the predictors are replaced with new, artificial features that have better properties related to collinearity.
 - The number of extracted components can be tuned.
- Imputation methods estimate missing predictor values using the complete values of one or more predictors. One effective imputation tool uses *K*-nearest neighbors of the complete columns to predict the missing value.
 - The number of neighbors can be tuned.

Tuning Structural Parameters

- In binary regression, the logit link is commonly used (i.e., logistic regression). Other link functions, such as the probit and complementary log-log, are also available and can be tuned.
- Non-Bayesian longitudinal and repeated measures models require a specification for the covariance or correlation structure of the data. Options include compound symmetric (a.k.a. exchangeable), autoregressive, Toeplitz, and others, which can be tuned.

Two general strategies for optimization

Tuning parameter optimization usually falls into one of two categories: *grid search* and *iterative search*.

Grid Search

- Grid search is when we predefine a set of parameter values to evaluate
- The main choices involved in grid search are how to make the grid and how many parameter combinations to evaluate
- Grid search is often judged as inefficient since the number of grid points required to cover the parameter space can become unmanageable with the curse of dimensionality
- Lots of times it gets the job done

Iterative Search

- Iterative search or sequential search is when we sequentially discover new parameter combinations based on previous results
- Almost any nonlinear optimization method is appropriate, although some are more efficient than others.
- In some cases, an initial set of results for one or more parameter combinations is required to start the optimization process.

Visualizing the Two Approaches

Examples of pre-defined grid tuning and an iterative search method. The lines represent contours of a performance metric; it is best in the upper-right-hand side of the plot.