1 Regularita jazyků

1.1 $L_1 = \{a^{2i} | i \in N_0\}$

Mějme následující automat:

Tento automat očividně přijímá právě slova sudé délky. Jazyk L_1 je tedy regulární.

1.2
$$L_2 = \{a^{i^2} | i \in N_0\}$$

Mějme sporem n z pumping lemmatu. Začneme se slovem $w=a^{n^2}$. Z lemmatu $w=xyz, |y|=s\geq 1, |xy|\leq n$. Definujme si pro $k\geq 0$ posloupnost $l_k=n^2+(k-1)s$.

Kdyby jazyk L_2 byl regulární, musela by v něm být i slova všech délek l_k . Všimněme si, že l_k tvoří rostoucí aritmetickou posloupnost s konstantní diferencí s. Délky slov ale musí být druhé mocniny, které aritmetickou řadu netvoří, neboť vzdálenost mezi nimi se lineárně zvětšuje $((n+1)^2 - n^2 = 2n + 1)$.

Od určitého n_0 platí 2n+1>s a tedy pro dostatečně velké k najdeme l_k, l_{k+1} příliš blízko u sebe na to, aby byla obě druhými mocninami. Alespoň jeden z členů tedy nepatří do jazyka, čímž máme spor s pumping lemmatem a důkaz, že L_2 není regulární.

1.3
$$L_3 = \{a^{2^i} | i \in N_0\}$$

Mějme sporem n z pumping lemmatu. Vezměme $w=a^{2^n}=xyz, |xy|\leq n, |y|=s\geq 1$. Opět z lemmatu musí jazyku náležet všechna slova délek $l_k=2^n+(k-1)s$, což je opět rostoucí aritmetická posloupnost s diferencí s.

Stejně jako v předchozím případě pak vidíme, že rozdíl mezi délkami sousesdních slov roste s rostoucí délkou slova, jelikož $2^{n+1}-2^n=2^n$. Můžeme tedy opět najít dostatečně velké k takové, že jedna z dvojice l_k, l_{k+1} nemůže být mocninou dvojky, což nám dává spor s pumping lemmatem. Ani tento jazyk tedy není regulární.