ANÁLISIS DE FUNCIONES DE VARIABLE COMPLEJA CURSO 2020-2021

HOJA 4

- **1.** Calcula $\int_{\gamma} f(z)dz$ si:
 - a) $f(z) = e^z$ para γ el segmento orientado de 1 + i a 2 + 1.
 - b) $f(z) = \frac{1}{z-2} \text{ para } \gamma \equiv \{ z \in \mathbb{C} : |z-2| = 1; \ 0 \le \arg z \le \pi \}.$
 - c) $f(z) = \bar{z}$ siendo γ el borde del triangulo de vértices 0, 2 y 1 + i.
 - d) $f(z) = \frac{\bar{z}}{z+6}$, y γ el rectángulo de vértices $\pm 9 \pm i$, orientado positivamente.
 - e) $f(z) = \frac{z^2 + 3}{z(z^2 + 9)}$, $\gamma \equiv \{z \in \mathbb{C} : |z| = R\}$, $(R \neq 3)$.
- **2.** Demuestra que si f(z) es una función continua en el conjunto $S = \{z \in \mathbb{C} : |z| \ge R_0, \ 0 \le \arg z \le \alpha\}$, $(0 < \alpha \le 2\pi)$, y si $\lim_{z \to \infty} z f(z) = A$ entonces $\lim_{R \to \infty} \int_{\Gamma_R} f(z) dz = i A \alpha$, donde Γ_R es el arco del círculo $\{z \in \mathbb{C} : |z| = R\}$ que está en S, recorrido en sentido directo.
- 3. Demuestra que:

a)
$$\left| \int_{\gamma} \frac{e^z}{z-1} dz \right| \le 2\pi e^2$$
, donde $\gamma \equiv \{z \in \mathbb{C} : |z-1| = 1\}$.

b)
$$\left| \int_{\gamma} \frac{\sin z}{z+i} dz \right| \le \frac{\pi \sinh 1}{\sqrt{2}}$$
, donde $\gamma \equiv \{z \in \mathbb{C} : |z| = 1, \ 0 \le \arg z \le \pi\}$.

c)
$$\left| \int_{\gamma} \frac{z-2}{z-3} dz \right| \le 4\sqrt{10}$$
 donde γ es el cuadrado de vértices $\pm 1 \pm i$.

$$\mathrm{d}) \ \frac{2}{\pi} \left| \int_{\gamma_R} \frac{dz}{z^2 - 4} \right| \leqslant \begin{cases} \frac{R}{R^2 - 4} & \text{si } R > 2\\ \frac{R}{4 - R^2} & \text{si } 0 < R < 2 \end{cases} \right| donde \ \gamma_R \equiv \left\{ z \in \mathbb{C} : |z| = R, \ -\frac{\pi}{4} \leqslant \arg z \leqslant \frac{\pi}{4} \right\}.$$

4. Sea γ un camino en \mathbb{C} , y sea $(f_n)_n$ una sucesión de funciones continuas en la traza de γ , $\{\gamma\}$, tales que $(f_n)_n$ converge uniformemente en $\{\gamma\}$ a una función f. Demuestra que

$$\lim_{n \to \infty} \int_{\gamma} f_n = \int_{\gamma} f.$$

5. Sean Ω un abierto de \mathbb{C} , $f:\Omega\to\mathbb{C}$ una función continua, $\gamma:[a,b]\to\Omega$ un camino, y $(\gamma_n)_n$ una sucesión de caminos, $\gamma_n:[a,b]\to\Omega$, tales que $\lim_{n\to\infty}\gamma_n(t)=\gamma(t)$ y $\lim_{n\to\infty}\gamma_n'(t)=\gamma'(t)$ uniformemente en $t\in[a,b]$. Demuestra que

$$\lim_{n\to\infty} \int_{\gamma_n} f = \int_{\gamma} f.$$

- **6.** Sea $F:[0,1]\times\Omega\to\mathbb{C}$ una función continua, donde Ω es un abierto de \mathbb{C} , y sea $\gamma:[a,b]\to\Omega$ un camino. Demuestra que la función $\varphi:[0,1]\to\mathbb{C}$ definida por $\varphi(t)=\int_{\gamma}F(t,z)\,dz$ es continua.
- 7. Calcula las siguientes integrales para un camino γ que vaya de $-\pi i$ a πi en el semiplano derecho: $\int_{\gamma} z^4 dz$; $\int_{\gamma} e^z dz$; $\int_{\gamma} \cos z \, dz$; $\int_{\gamma} \sinh z \, dz$.

8. Calcula

$$\int_{|z|=2} \frac{|z|e^z}{z^2} dz.$$

- **9.** Sea P un polinomio de grado m, que no se anula en la región $\{z \in \mathbb{C} : |z| \ge R\}$. Calcula $\int_{\gamma} \frac{P'(z)}{P(z)} dz$, siendo $\gamma \equiv \{z \in \mathbb{C} : |z| = R\}$ recorrido en sentido directo.
- **10.** Sea γ un camino cerrado contenido en $\mathbb{C} \setminus \{z \in \mathbb{C} : \text{Im}\, z = 0 \text{ y } \text{Re}\, z \leq 0\}$. Demuestra que $\int_{\gamma} \frac{1}{z} dz = 0$.
- **11.** Demuestra que no existe una función holomorfa f definida en $\mathbb{C} \setminus \{0\}$ tal que $f'(z) = \frac{1}{z}$. Concluye que en $\mathbb{C} \setminus \{0\}$ no se puede definir una determinación del logaritmo.
- **12.** Sea $\alpha \in \mathbb{C}$, $|\alpha| \neq 1$, calcula

$$\int_0^{2\pi} \frac{d\theta}{1 - 2\alpha\cos\theta + \alpha^2}.$$

