

Figure 1B Single Precision Number

Figure 2 Floating Point Number

Figure 3B

Conventional Subtraction Routine

Conventional Addition Routine

Figure 3A

405	$T = a \times b \times c$
410	$T_0 = a \times b$
415	$T_1 = T_0 \times c$
420	$T_2 = unpack(a)$
425	$T_3 = unpack(b)$
430	$T_4 = unpack _mult(T_2, T_3)$
435	$T_0 = pack(T_4)$

 $445 T_6 = unpack(c)$

440

450 $T_7 = unpack _mult(T_5, T_6)$

 $T_5 = unpack(T_0)$

 $455 T_1 = pack(T_7)$

Figure 4

Calculation Using Conventional Floating Point Emulation

Operand Conversion Optimization

Exemplary System Including Operand Conversion Optimization

..... 410 1/14/1/1 1/14/1/1

Optimization of Floating Point Emulation

805	$T = a \times b \times c$
810	$T_0 = a \times b$
815	$T_1 = T_0 \times c$
820	$T_2 = unpack(a)$
825	$T_3 = unpack(b)$
830	$T_4 = unpack _mult(T_2, T_3)$
835	$T_5 = unpack(c)$
840	$T_6 = unpack _mult(T_4, T_5)$
845	$T_1 = pack(T_6)$

Calculation Using Emulation Optimization

r