Complex Analysis David Cardozo

Nombre del curso: Complex Analysis

CÓDIGO DEL CURSO: MATE2211

Unidad académica: Departamento de Matemáticas

PERIODO ACADÉMICO: 201510 HORARIO: Lu y Ju, 8:00 a 9:50

Nombre Profesor(a) Principal: Paul Bressler

HORARIO Y LUGAR DE ATENCIÓN: Mo y 17:00 a 18:00, Office H-409

1 Organization of the course

• 3 Exams

• regular-weekly homework

Sometimes we will use the following alternative book: Complex Analysis, Gamelin

2 Complex Numbers

We want to solve a quadratic equation:

$$ax^2 + bx + c = 0$$

so we first calculate the discriminant:

$$D = b^2 - 4ac$$

it is called that, because it differentiate solution types. We then compute:

$$r_{\pm} \frac{-b \pm \sqrt{D}}{2a}$$

In R squares are positives, but this poses a problem when D < 0. Meanwhile, let us observe that when D > 0 we get two solutions, and when we get D = 0

there is only one solution. So the main question is what to do when D<0. Without loss of generality we can assume that a=1

$$r_+ = -\frac{b}{2} + \sqrt{2}$$
$$r_- = -\frac{b}{2} - \sqrt{2}$$

the reason is that we want to be able write

$$p(x) = (x - r_+)(x - r_-)$$

expanding the product above

$$p(x) = x^2 - (r_+ + r_-)x + r_= r_-$$

so that D can be written as:

$$D = \operatorname{Sign}(D)|D|$$

Observe that we can take the definition of sign as above. But then, this give a suspect idea that there can exist a **not real number** that:

$$\pm(\sqrt{-1})^2 = -1$$

which is also a solution of the following equation:

$$x^2 + 1 = 0$$

This then motivate the following concept, does arithmetic follows natural with the inclusion:

$$z = a + b\sqrt{-1}$$

Observe the symmetry on choosing $\sqrt{-1}$ or $-\sqrt{-1}$. Which again motivates

$$\bar{z} = a - b\sqrt{-1}$$

As in the textbook i^n maps to 1, i, -1, -i with the trick mod 4 Let us define then that addition comes naturally:

$$(a + b\sqrt{-1}) + (c + d\sqrt{-1}) = (a + d) + (b + d)\sqrt{-1}$$

Multiplication is a little bit tricky:

$$(a + b\sqrt{-1}) \times (c + d\sqrt{-1}) = (ac - bd) + (ad + bc)\sqrt{-1}$$

which comes natural by considering $(\sqrt{-1})^2$. Observe that the reals are embedded as:

$$a+0\sqrt{-1}$$

The operation of taking $z \to \bar{z}$ is called *Complex conjugation*, observe that it complies $\bar{z} \to z$, which will allow us to extract a, b as:

$$\frac{1}{2}(z+\bar{z}) := \operatorname{Re}(z) = a$$

and also

$$\frac{1}{2\sqrt{-1}}(z-\bar{z}) := \operatorname{Im}(z) = b$$

our definition above can be then replaced by:

$$z = \operatorname{Re}(z) + \operatorname{Im}(z)\sqrt{-1}$$

The preceding equation proposes a big problem, since we have found another "strange" number:

$$\frac{1}{\sqrt{-1}} = x$$

or equivalently,

$$\sqrt{-1}x = 1$$

from which it can be solved by inspecting the table of exponentiation and we find:

$$x = -\sqrt{-1}$$

In literature we often define that $\sqrt{-1} = i$ A big question is that if $z \neq 0$, then there exist ω such that $w \cdot z = 1$, the answer is positive and it even has a stronger statement: with complex numbers we can solve any polynomial equation.

$$z = a + bi$$

$$w = x + iy$$

and we are looking $z \cdot w = 1$ so we get the system of equations

$$ax - by = 1$$

$$bx + ay = 0$$

and we can get information about the solution, via the determinant det $= a^2 + b^2$, and this is only zero if only if a = 0 and b = 0. Solution can be found for any method

Observe that if we have a complex number and its conjugate, the following relation holds:

$$z \cdot \bar{z} = a^2 + b^2$$

$$\frac{1}{z} = \frac{1}{a^2 + b^2} \cdot \bar{z}$$

$$\frac{1}{2+3i} = \frac{1}{13}(2-3i)$$

Observe that this recall Cramer's rule, since it has the form of $\frac{1}{det}$

The following problem that we are facing is the existence of:

$$z = a + bi$$
 $\exists w$ $w^2 = z$

if we let w = x + iy, and $w^2 = (x^2 - y^2) + i(2xy)$, we get the following system of equations.

$$a = x^2 - y^2$$
$$b = 2xy$$

Observe that 0 has a unique root. We denote the set of all complex numbers with \mathbb{C} and observe that we can take bijection beetwen C and \mathbb{R}^2

$$z \longrightarrow (Re(z), Im(z))$$
$$a + ib \longleftarrow (a, b)$$

Observe then that \mathbb{C} is a vector space over \mathbb{R} . Basis: 1, i. Now observe that we can take a geometric interpretation, given this two bijections, to the multiplication of a complex numbers. Side note: A linear map is a map that plays nice with arithmetic. an important characterization of linear maps, is that:

$$f(a) = a \cdot f(1)$$

and also

$$f\left(\binom{a}{b}\right) = a\binom{1}{0} + b\binom{0}{1}$$

and it can be easy characterized via:

$$\begin{pmatrix} v_{11} & v_{22} \\ v_{21} & v_{22} \end{pmatrix}$$

Now consider the following map:

$$\mathbb{C} \to \mathbb{C}$$
$$w \rightarrowtail zw$$

where z = a + ib Again observe that we are only taking care of the values on the basis.

Example Suppose $A^2 = -I$, and det > 0, then there is an invertible matrix B such that $A = BJB^{-1}$. Returning to our previous point, we see that complex

numbers are embedded nicely on 2×2 matrices with real coefficients. So that the span 1 and j is a 4 dimensional vector space over R. Finally, we conclude that multiplication on \mathbb{C} is a matrix multiplication.

When we look a close view on \mathbb{R}^2 along with the normal dot product, we have the **Cauchy-Schwarz Inequality**: Let us then define:

$$|\vec{a}|^2 = \vec{a} \cdot \vec{a}$$

and proof is left to the reader:

$$|\vec{a} \cdot \vec{b}| \le |\vec{a}| |\vec{b}|$$

3 Remarks from last time

$$\mathbb{C} \to \operatorname{Mat}_{2 \times 2}(\mathbb{R})$$

$$A + IB \to a + bJ$$

$$J^2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

so that:

$$Z = a + ib \leftrightarrow \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Let us observe that in $\mathbb{R}2$ we have the dot product for which:

$$\vec{a} \cdot \vec{a} > 0$$

it is good as concept of measure of distance. Let us observe the analogue on complex numbers:

$$z = a + ib$$

$$w = c + id \implies \bar{w} = c - id$$

so that

$$z\bar{w} = (ac + bd) + (bc - ad)$$

for which the left parenthesis of the RHS is real and the other imaginary. Observe also:

$$|z|^2 = a^2 + b^2 \ge 0$$

and if $z \neq 0$ we define:

$$z"-1 = \frac{1}{|z|}\bar{z}$$

Cauchy-Schawrz

Suppose we know the properties of the dot product:

$$\left| \vec{a} \cdot \vec{b} \right| \leq \left| \vec{a} \right| \left| \vec{b} \right|$$

Example

In \mathbb{R}^n :

$$\langle a_1, \dots, a_n \rangle \cdot \langle b_1, \dots b_n$$

$$= \sum_{n=1}^n a_i b_i$$

$$\leq (\sum a_i)^{/frac12} (\sum b_j)^{\frac{1}{2}}$$

Example The functions that are square integrables on I = [0, 1] for which we have:

$$\left| \int_0^1 fg dx \right| \le \left| \int f dx \right| \left| \int g dx \right|$$

Proof Let recall that for parameterizing the line in beetwen \vec{a} and \vec{b} we could use the convex combination.

$$t\vec{b} + (1-t)\vec{a} \quad 0 \le t \le 1$$
$$\left| t\vec{b} + (1-t)\vec{a} \right|^2 > 0$$

We expand and we get: It is the same trick of consider a quadratic without root $a + \lambda b$. Geometrical Consideration: For two independent vectors, the line that pass through them do not pass on the origin.

4 C-S Consequences

The triangle inequality

$$\left| \vec{a + b} \right| \le |\vec{a}| + \left| \vec{b} \right|$$

the proof is given by considering the expansion of:

$$\left| \vec{a} + \vec{b} \right|$$

and the inequality: (Check!)

Definition of Angles

$$\cos(\theta) := \frac{\left| \vec{a} \cdot \vec{b} \right|}{\left| \vec{a} \right| \left| \vec{b} \right|}$$

5 Special (2×2) matrices