

Tratamiento de Señales

Version 2022-2

Operaciones Aritméticas y Lógicas

[Capítulo 3]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Introducción

- La operación entre imágenes consiste en determinar el valor de un píxel P[i,j] a partir de los píxeles P'[i,j] y P''[i,j], donde P' y P'' son dos imágenes diferentes
- Consideraciones
 - Imágenes de la misma dimensión
 - Imágenes de dimensión diferente
 - Inscripción de imágenes

Imágenes de la Misma Dimensión

Operación directa píxel a píxel

I[i][j] = A[i][j] OP B[i][j];

Imágenes de Dimensión Diferente

 Es necesario definir el área común entre las imágenes a trabajar (con alineación superior)

Se determinan las dimensiones comunes entre las imágenes:

- $-N = min\{N1, N2\}$
- $-M = min\{M1, M2\}$

Operación general entre imágenes

 La operación entre imágenes se resume de forma general en el siguiente esquema

Operaciones Aritméticas y Lógicas

Operación suma

- La operación suma y resta entre imágenes consiste en fusionar los valores de 2 imágenes de entrada
 - □ Sea x, y los pixeles de 2 imágenes A y B respectivamente

$$f_1(x,y) = \begin{cases} x+y & x+y \le 255 \\ 255 & otro \ caso \end{cases}$$

Suma (ponderada) $\mathbf{Y} = a_1 \mathbf{X}_1 + a_2 \mathbf{X}_2$

Suma (ponderada) $\mathbf{Y} = a_1 \mathbf{X}_1 + a_2 \mathbf{X}_2$

Suma (ponderada) $\mathbf{Y} = a_1 \mathbf{X}_1 + a_2 \mathbf{X}_2$

Operación entre imágenes

 Otra forma de fusionar los valores de los pixeles es a través de la operación

$$f_2(x, y) = (x + y)/2$$

Suma - Promedio $\mathbf{Y} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i$

Suma - Promedio
$$\mathbf{Y} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i$$

Suma - Promedio
$$\mathbf{Y} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i$$

Suma - Promedio
$$\mathbf{Y} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i$$

Si cada imagen tiene un ruido aditivo con media cero, entonces al promediar las imágenes, el ruido tiende a desaparecer.

La relación señal a ruido se incrementa en \sqrt{n} .

Otros ejemplos adicionales

Fusión por combinación lineal

 Otra forma de fusionar imágenes es establecer un peso" a cada una de las imágenes a fusionar

$$f_3(x, y) = \alpha x + \beta y, \alpha + \beta = 1$$

Resta entre imágenes

- La resta entre imágenes es una operación similar a la suma, con la diferencia de evitar valores negativos en el resultado
- Existen varios tipos de modelos

$$f_4(x, y) = |x - y|$$

$$f_5(x, y) = 255/2 + (x - y)/2$$

$$f_6(x, y) = \begin{cases} x - y, & x - y \ge 0 \\ 0, & otro \ caso \end{cases}$$

Resta entre Imágenes

Resta entre Imágenes

 La resta de imágenes tiene aplicaciones importantes (detección de variaciones entre imágenes de un mismo campo)

Resta $\mathbf{Y} = \mathbf{X}_1 - \mathbf{X}_2$

Resta $\mathbf{Y} = \mathbf{X}_1 - \mathbf{X}_2$

Resta $\mathbf{Y} = \mathbf{X}_1 - \mathbf{X}_2$

$$= \begin{bmatrix} X_1 & X_2 \\ \hline \\ \hline \\ \hline \end{bmatrix}$$

 $\mathbf{D} = |\mathbf{X}_t - \mathbf{X}_0| > \theta$

Multiplicación

- La multiplicación entre imágenes da como resultado la fusión de dos imágenes en donde
- Función:

$$f_7(x, y) = k * x * y$$

- x, y píxeles de las imágenes A y B de entrada
- k, factor multiplicativo (k = 1/255)

Multiplicación

 $=\frac{1}{2}\times$

 \mathbf{X}_1

 $=2\times$

 \mathbf{X}_1

 $=3\times$

 \mathbf{X}_1

