Foundations of data science, summer 2020

JONATHAN LENNARTZ, MICHAEL NÜSKEN, ANNIKA TARNOWSKI

12. Exercise sheet Hand in solutions until Thursday, 9 July 2020, 12:00

The estimated time to work out a solution should be about 15 minutes. Award credit points to the parts of your exercise reflecting the estimated

(8 points)

8

Exercise 12.1 (Exam exercise).

Design an exam exercise.

working time. Make sure that exercise solutions allow to differentiate between a very good student, a good student and a weak student. *Hint*: Asking for mere knowledge is not university level. **Exercise 12.2** (Play with the Perceptron algorithm). (10 points) (i) Pick a vector $w^* \in \mathbb{R}^2$. Pick 1 000 random points x_i uniformly distributed in $[-100, 100]^2 \subset \mathbb{R}^2$ with $|\langle w^* | x \rangle| \geq 1$ and compute labels $\ell_i \leftarrow \operatorname{sign}(\langle w^* \mid x_i \rangle) \in \{-1, +1\}.$ (a) Run the perceptron algorithm (with the kernel function k(x, y) = $x \cdot y$). (b) Report about your experiences. (c) How does its runtime compare to the lecture's bound on it? (ii) Pick $1\,000$ random points $\left[{r\cos \varphi \over r\sin \varphi} \right]$ with $r \in [0.8, 1.2] \cup [1.6, 2.4]$ uniformly chosen and $\varphi \in [0, 2\pi]$ uniformly chosen and label -1 for r < 1.2 and label +1 for r > 1.6. (a) Run the perceptron algorithm with the Gaussian kernel. 3 (b) Report about your experiences. (iii) Pick $1\,000$ random points $\begin{bmatrix} 1+r\cos\varphi\\1+r\sin\varphi \end{bmatrix}$ with $r\in[0.8,1.2]\cup[1.6,2.4]$ uniformly chosen and $\varphi \in [0, 2\pi]$ uniformly chosen and label -1 for $r \leq 1.2$ and label +1 for $r \geq 1.6$. (a) Run the perceptron algorithm with the Gaussian kernel. 2 (b) Report about your experiences.

Exercise 12.3 (VC dimension).

(6+3 points)

A hypercuboid in \mathbb{R}^d is a generalized rectangle, ie. subset of the form

$$[a_0, b_0] \times [a_1, b_1] \times \cdots \times [a_{d-1}, b_{d-1}].$$

In \mathbb{R}^3 this is called a cuboid.

[3] (i) If $\Omega = \mathbb{R}^3$ and $\mathcal{H} = \{\text{cuboid} \subset \mathbb{R}^3\}$, prove that

$$VCdim(\mathcal{H}) = 6.$$

(ii) Consider $\Omega = \mathbb{R}^d$ and $\mathcal{H} = \{\text{hypercuboid} \subset \mathbb{R}^d\}$. With methods similar to those seen in class, prove that

$$VCdim(\mathcal{H}) < 2d + 1.$$

+3 (iii) Can you find a set with 2d points in \mathbb{R}^d that shatters? Explain why it does.