Artificial Neural Network Approach for Credit Risk Management

Carlos Manuel de Oliveira Alves, Dr Nikolay Nikolaev

INTRODUCTION

- Financial solution to minimize loan decision risks
- > Implement various algorithms in artificial neural networks
- > Compare algorithm performances and efficiencies
- Create a model assess reasonableness lending to customers
- Estimate probability customer defaulting on loans
- Use customer information, application data, and historical information

Employ binary classification

Image 1: Credit Application Process with Artificial Neural Networks

to predict loan repayment success or failure

METHODS

- Get the Data
 - ✓ Simulate dataset using Python's random function
 - ✓ Various financial features for loan analysis
- Discover and Visualize the Data
 - ✓ Analyse the covariance matrix
 - ✓ Identify key relationships and limitations
 - ✓ Conclude the need for further research
- Prepare the Data for Algorithms
 - ✓ Create dataframe with highly correlated features
 - ✓ Select features and targets, standardize features
 - ✓ Split dataset into training and test sets
- Select and Train Models
 - ✓ Compare Logistic Regression, Random Forest Classifier, Support Vector Machine (SVM), and Artificial Neural Networks (ANN)
 - \checkmark Choose Logistic Regression as the primary model
- Models Parameters Configuration
 - ✓ Configure parameters with scikit-learn library
 - ✓ Develop a customized ANN model from scratch
- Make Predictions and Evaluate Models
 - ✓ Use performance metrics to assess models
 - ✓ Employ confusion matrix and classification report for further insights

RESULTS

- Logistic Regression, Random Forest, SVM, ANN
- Assess accuracy, TP, TN, FP, and false negatives
- Logistic Regression, Random Forest, and SVM exhibit similar accuracies but struggle with class imbalance
- ANN has slightly lower overall accuracy but performs better in identifying true positives and true negatives
- ANN is the most suitable model for this binary classification task, as it handles class imbalances better

Figure 1 - Confusion Matrix Results

	Precision	Recall	F1-Score	Support
Rejected	0.89	0.97	0.92	176
Approved	0.25	0.08	0.12	24
Accuracy			0.86	200
Macro avg.	0.57	0.52	0.52	200
Weighted avg.	0.81	0.86	0.83	200

Figure 2 – Artificial Neural Networks Reports

LIMITATIONS

- Only evaluates four algorithms for binary classification
- > It uses only one dataset
- > The dataset suffers from class imbalance
- Focuses on the accuracy, precision, recall, and f1-score metrics only
- Uses default hyperparameters
- Interpretability not explored

FUTURE RESEARCH

- > Explore more algorithms
- > Evaluate performance on various datasets
- Mitigate class imbalance issues
- Use alternative evaluation metrics
- > Tune hyperparameters
- Develop interpretable models

References: https://github.com/carlos-alves-one/NeuroCredit/CS_Thesis_FinalProject_2023.pdf Image 1 created with Microsoft Designer. Figure 1 highlights the model's accuracy and precision, and Figure 2 explores the performance metrics from the artificial neural networks algorithm. **Contact:** cdeol003@gold.ac.uk