

Ressources naturelles Canada

RELATING SENTINEL-1 TIME-SERIES TO BOREAL FOREST ATTRIBUTES USING CONVOLUTIONAL AUTOENCODERS

<u>Thomas Di Martino</u>^{1,2}, André Beaudoin³, Régis Guinvarc'h¹, Lætitia Thirion-Lefevre¹, Elise Colin²

¹SONDRA, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

²ONERA, Traitement de l'information et systèmes, Université Paris-Saclay, 91123 Palaiseau, France

³Natural Resources Canada, Canadian Forest Service – Laurentian Forestry Centre, Québec, QC, Canada, G1V 4C7

43rd Canadian Symposium on Remote Sensing

Québec City, Canada 11 to 14 of July, 2022

C-Band temporal modelling of forests

Seasonal variations of σ_0 [1,2]

Seasonal variations of σ_0 [1,2]

Seasonal variations of σ_0 [1,2]

Stem Volume, Canopy cover.. [2]

Study Site: located near Hay River town, NWT, Canada

Source: Castilla, G.; Hall, R.J.; Skakun, R.; Filiatrault, M.; Beaudoin, A.; Gartrell, M.; Smith, L.; Groenewegen, K.; Hopkinson, C.; van der Sluijs, J. The Multisource Vegetation Inventory (MVI): A Satellite-Based Forest Inventory for the Northwest Territories Taiga Plains. Remote Sens. 2022, 14, 1108. https://doi.org/10.3390/rs14051108

Study Site: located near Hay River town, NWT, Canada

 Dominated by upland coniferous forests, treed/nontreed wetlands, water bodies and burned areas

Source: Castilla, G.; Hall, R.J.; Skakun, R.; Filiatrault, M.; Beaudoin, A.; Gartrell, M.; Smith, L.; Groenewegen, K.; Hopkinson, C.; van der Sluijs, J. The Multisource Vegetation Inventory (MVI): A Satellite-Based Forest Inventory for the Northwest Territories Taiga Plains. Remote Sens. 2022, 14, 1108. https://doi.org/10.3390/rs14051108

- Study Site: located near Hay River town, NWT, Canada
- Dominated by upland coniferous forests, treed/nontreed wetlands, water bodies and burned areas
- 39 400-m2 forest inventory (FI) ground plots with a suite of plot-level forest structural attributes derived from tree-level measurements

Source: Castilla, G.; Hall, R.J.; Skakun, R.; Filiatrault, M.; Beaudoin, A.; Gartrell, M.; Smith, L.; Groenewegen, K.; Hopkinson, C.; van der Sluijs, J. The Multisource Vegetation Inventory (MVI): A Satellite-Based Forest Inventory for the Northwest Territories Taiga Plains. Remote Sens. 2022. 14, 1108. https://doi.org/10.3390/rs14051108

- Study Site: located near Hay River town, NWT, Canada
- Dominated by upland coniferous forests, treed/nontreed wetlands, water bodies and burned areas
- 39 400-m2 forest inventory (FI) ground plots with a suite of plot-level forest structural attributes derived from tree-level measurements
- Plot-level attributes include:

Source: Castilla, G.; Hall, R.J.; Skakun, R.; Filiatrault, M.; Beaudoin, A.; Gartrell, M.; Smith, L.; Groenewegen, K.; Hopkinson, C.; van der Sluijs, J. The Multisource Vegetation Inventory (MVI): A Satellite-Based Forest Inventory for the Northwest Territories Taiga Plains. Remote Sens. 2022, 14, 1108. https://doi.org/10.3390/rs14051108

- Study Site: located near Hay River town, NWT, Canada
- Dominated by upland coniferous forests, treed/nontreed wetlands, water bodies and burned areas
- 39 400-m2 forest inventory (FI) ground plots with a suite of plot-level forest structural attributes derived from tree-level measurements
- Plot-level attributes include:
 - Stand Height (StH, m)

Source: Castilla, G.; Hall, R.J.; Skakun, R.; Filiatrault, M.; Beaudoin, A.; Gartrell, M.; Smith, L.; Groenewegen, K.; Hopkinson, C.; van der Sluijs, J. The Multisource Vegetation Inventory (MVI): A Satellite-Based Forest Inventory for the Northwest Territories Taiga Plains. Remote Sens. 2022. 14, 1108. https://doi.org/10.3390/rs14051108

- Study Site: located near Hay River town, NWT, Canada
- Dominated by upland coniferous forests, treed/nontreed wetlands, water bodies and burned areas
- 39 400-m2 forest inventory (FI) ground plots with a suite of plot-level forest structural attributes derived from tree-level measurements
- Plot-level attributes include:
 - Stand Height (StH, m)
 - Quadratic Mean Diameter (QMD, cm)

Source: Castilla, G.; Hall, R.J.; Skakun, R.; Filiatrault, M.; Beaudoin, A.; Gartrell, M.; Smith, L.; Groenewegen, K.; Hopkinson, C.; van der Sluijs, J. The Multisource Vegetation Inventory (MVI): A Satellite-Based Forest Inventory for the Northwest Territories Taiga Plains. Remote Sens. 2022, 14, 1108. https://doi.org/10.3390/rs14051108

- Study Site: located near Hay River town, NWT, Canada
- Dominated by upland coniferous forests, treed/nontreed wetlands, water bodies and burned areas
- 39 400-m2 forest inventory (FI) ground plots with a suite of plot-level forest structural attributes derived from tree-level measurements
- Plot-level attributes include:
 - Stand Height (StH, m)
 - Quadratic Mean Diameter (QMD, cm)
 - Above Ground Biomass (AGB, t/ha)

Source: Castilla, G.; Hall, R.J.; Skakun, R.; Filiatrault, M.; Beaudoin, A.; Gartrell, M.; Smith, L.; Groenewegen, K.; Hopkinson, C.; van der Sluijs, J. The Multisource Vegetation Inventory (MVI): A Satellite-Based Forest Inventory for the Northwest Territories Taiga Plains. Remote Sens. 2022. 14, 1108. https://doi.org/10.3390/rs14051108

Source: Castilla, G.; Hall, R.J.; Skakun, R.; Filiatrault, M.; Beaudoin, A.; Gartrell, M.; Smith, L.; Groenewegen, K.; Hopkinson, C.; van der Sluijs, J. The Multisource Vegetation Inventory (MVI): A Satellite-Based Forest Inventory for the Northwest Territories Taiga Plains. Remote Sens. 2022, 14, 1108. https://doi.org/10.3390/rs14051108

Sentinel-1 Acquisitions over the Hay River region

- 111 Sentinel-1 acquisitions between May 2017 and Dec. 2020
- Orbit number: 42
- Orbit mode: Descending
- Polarizations: VV, VH
- Approx 15M pixels
- 150,000 Ha

Gather σ_0 time series

Gather σ_0 time series

For each time series, supply a **ground truth** measurement

If a physiological parameter plays a role in C-Band temporal profile of vegetation

[3] Thomas Di Martino, Régis Guinvarc'h, Laetitia Thirion-Lefevre and Élise Colin, "Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SARSignatures," IEEE Transactions on Geoscience and Rem ote Sensing, vol. 60, pp. 1-18, 2022.

If a physiological parameter plays a role in C-Band temporal profile of vegetation

They should be picked on by unsupervised learning

[3] Thomas Di Martino, Régis Guinvarc'h, Laetitia Thirion-Lefevre and Élise Colin, "Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SARSignatures," IEEE Transactions on Geoscience and Rem ote Sensing, vol. 60, pp. 1-18, 2022.

If a physiological parameter plays a role in C-Band temporal profile of vegetation

Unsupervised learning retrieval of agricultural classes for Sentinel-1 time series [3]

They should be picked on by unsupervised learning

S1 agricultural Autoencoder + Clustering

Class 1

Class 1

Class 2

Class 2

[3] Thomas Di Martino, Régis Guinvarc'h, Laetitia Thirion-Lefevre and Élise Colin, "Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SARSignatures," IEEE Transactions on Geoscience and Rem ote Sensing, vol. 60, pp. 1-18, 2022.

Unsupervised modelling of SAR Time Series Multitemporal SAR Image Flattened list of time series Convolutional Encoder $e(X)_1$ $e(X)_2$ $e(X)_3$ Decoder Reconstructed flattened list of time series

Tree Measurement Statistics		Cluster 0	Cluster 7
	Mean	18.94	10.33
Quadratic	Median	19.25	10.61
Mean	Min	9.84	7.28
Diameter	Max	25.75	12.75
(cm)	10th percentile	13.85	8.52
	90th percentile	24.47	11.87
Stem Height (m)	Mean	21.296	12.09
	Median	22.13	13.01
	Min	11.12	8.84
	Max	28.85	13.82
	10th percentile	16.10	9.53
	90th percentile	26.32	13.75
	Mean	143.27	49.89
Above	Median	136.34	46.54
Ground	Min	74.69	30.47
Biomass	Max	223.87	71.59
(tonnes/ha)	10th percentile	97.8	33.88
	90th percentile	199.83	69.26

Tree Measurement Statistics		Cluster 0	Cluster 7
	Mean	18.94	10.33
Quadratic	Median	19.25	10.61
Mean	Min	9.84	7.28
Diameter	Max	25.75	12.75
(cm)	10th percentile	13.85	8.52
	90th percentile	24.47	11.87
	Mean	21.296	12.09
C+	Median	22.13	13.01
Stem Height (m)	Min	11.12	8.84
	Max	28.85	13.82
	10th percentile	16.10	9.53
	90th percentile	26.32	13.75
	Mean	143.27	49.89
Above	Median	136.34	46.54
Ground	Min	74.69	30.47
Biomass	Max	223.87	71.59
(tonnes/ha)	10th percentile	97.8	33.88
	90th percentile	199.83	69.26

Main difference: **larger trees** in Cluster 0 than in Cluster 7

Automatic tree differentiation through the processing of S1 time series with autoencoders

Relating 3rd embedding with forest attributes

Relating 3rd embedding with forest attributes

Relating 3rd embedding with forest attributes

Applicative potentials of embeddings & Sentinel-1 data

Use embeddings of Sentinel-1 time series as input features for height mapping models

Unlabelled

 σ_0 time

series

Applicative potentials of embeddings & Sentinel-1 data

Use embeddings of Sentinel-1 time series as input features for height mapping models

Use embeddings for anomaly detection within a forested environments

Applicative potentials of embeddings & Sentinel-1 data

- Use embeddings of Sentinel-1 time series as input features for height mapping models
- Use embeddings for anomaly detection within a forested environments
- And many more..

Conclusion

Successful application of an autoencoder to σ_0 time series of boreal forests:

- Generation of homogeneous clusters of σ_0 time series
- Separation of forest into two clusters with trees of various physiologies
- Direct correlation of the embedding space with tree physiology

Contacts

Thank your for listening!

For contact purposes:

thomas.di-martino@centralesupelec.fr

https://dimartinot.github.io

@DimartinotFR

Thomas Di Martino

