

















## Activity scheduling - The algorithm

Activity scheduling Activity scheduling

#### Activity schedule(S)

- ① Sort S to  $(a_1,a_2,...,a_n)$  according to the finishing times such that  $f_1 \le f_2 \le ... \le f_n$ .
  ② Initialize B to  $\{a_1\}$  and k=1.
  ③ For m=2 to n  if  $f_k \le s_m$ ②  $B=B \cup \{a_m\}$ ③ k=m③ return B

- ullet The sorting step takes  $O(n\log n)$  time. The rest of the

#### Activity scheduling - The algorithm Activity schedule(S) Activity scheduling Activity scheduling

Sort S to (a<sub>1</sub>, à<sub>2</sub>, ..., a<sub>n</sub>) according to the finishing times such that f<sub>1</sub> ≤ f<sub>2</sub> ≤ ... ≤ f<sub>n</sub>.
 Initialize B to {a<sub>1</sub>} and k = 1.
 For m = 2 to n
 if f<sub>k</sub> ≤ s<sub>m</sub>
 B = B ∪ {a<sub>m</sub>}
 k = m
 return B

• The sorting step takes  $O(n \log n)$  time. The rest of the

## Activity scheduling - The algorithm

 Sort S to (a<sub>1</sub>, à<sub>2</sub>, ..., a<sub>n</sub>) according to the finishing times such that f<sub>1</sub> ≤ f<sub>2</sub> ≤ ... ≤ f<sub>n</sub>.
 Initialize B to {a<sub>1</sub>} and k = 1.
 For m = 2 to n
 if f<sub>k</sub> ≤ s<sub>m</sub>
 B = B ∪ {a<sub>m</sub>}
 return B ullet The sorting step takes  $O(n\log n)$  time. The rest of the steps takes O(n) time. Overall we get  $O(n \log n)$ . Activity schedule(S) Activity scheduling Activity scheduling

# Activity scheduling - Correctness of the algorithm

Activity scheduling

Activity scheduling

• Lemma: Let  $(b_1,b_2,...,b_k)$  be the sequence of intervals that the algorithm returns. For each i such that  $0 \le i \le k$ , the intervals  $(b_1,...,b_i)$  are disjoint intervals that are the prefix of an optimal solution for the problem.

## Activity scheduling - Correctness of the algorithm

Activity scheduling

Activity scheduling

We prove by induction on i.

For i = 0 there is nothing to show.

We assume that  $(b_1,...,b_i)$  (i < k) is a prefix of an optimal solution and we show that  $(b_1,...,b_i,b_{i+1})$  is also a prefix of an optimal solution.

Let  $(b_1, ..., b_i, c_{i+1}, ..., c_k)$  be an optimal solution. It follows that there exists an interval that starts after  $b_i$  finishes. Therefore the algorithm must have some  $b_{i+1}$  in the output sequence.

By the definition of the algorithm, the interval  $b_{i+1}$  will have the smallest finishing time possible. In particular:

finishing time of  $b_{i+1} \leq ext{ finishing time of } c_{i+1}$ 

It follows that  $(b_1, ..., b_i, b_{i+1}, c_{i+2}, ..., c_k)$  is an optimal solution.  $\blacksquare$ 

>>>> = 4= × 4= × 4□ × 4□ ×