Mohammed A. Al Farhan

Postdoctoral Research Associate, Innovative Computing Laboratory University of Tennessee, Knoxville

farhan@icl.utk.edu (+1) (865) 801-4488 modafarhan.com github.com/farhanma

Aug 2014 - May 2019

Education

King Abdullah University of Science and Technology, Saudi Arabia

Ph.D., Computer Science. Advisor: David E. Keyes

Dissertation – Unstructured Computations on Emerging Architectures

King Abdullah University of Science and Technology, Saudi Arabia Aug 2012 – Dec 2013

M.Sc., Computer Science

King Faisal University, Saudi Arabia Aug 2007 – Feb 2012

B.Sc., Computer Science

Experience University of Tennessee, Knoxville, US. Postdoctoral Research Associate

Jun 2019 - Present

Director: Jack Dongarra

Research on developing numerical software libraries for solving linear algebra problems at scale

Saudi Electricity Company, Saudi Arabia. Software Engineer May 2012 - Aug 2012

Developed distributed systems to monitor and detect anomalies in the reading meters

Saudi Aramco, Saudi Arabia. Software Engineer Intern Summer 2011

Developed a distributed key-value store system to monitor IT incidents and infrastructure change requests

Saudi Aramco, Saudi Arabia. Software Engineer Intern Summer 2010

Developed a database system to collect and log reports on IT problems for further processing with ease

Books

1. High Performance Computing

Mohammed A. Al Farhan and David E. Keyes

Under preparation, SIAM Press 2022 https://ecrc.github.io/hpc-book/

Research

1. MAGMA Templates for Scalable Linear Algebra on Emerging Architectures

Mohammed A. Al Farhan, Ahmad Abdelfattah, Stanimire Tomov, and Jack Dongarra

To be submitted, IPDPS 2020

https://icl.cs.utk.edu/magmatemplates/

2. ExaBEM: Exascale Boundary Element Method Solver for Acoustic Simulation

Mohammed A. Al Farhan, Mustafa Abduljabbar, Noha Al-Harthi, Rui Chen, Rio Yokota, Hakan

Bagci, David E. Keyes, and Jack Dongarra

To be submitted, SC 2020

https://ecrc.github.io/ExaBEM/

3. Optimizing Unstructured Grid Computations for Emerging Architectures

Mohammed A. Al Farhan, David E. Keyes, and Jack J. Dongarra

To be submitted, TPDS 2020

https://ecrc.github.io/KFUN3D/

4. Extreme Scale FMM-accelerated Boundary Integral Equation Solver for Wave Scattering

Mustafa Abduljabbar, **Mohammed A. Al Farhan**, Noha Al-Harthi, Rui Chen, Rio Yokota, Hakan Bagci, and David E. Keyes

SIAM Journal on Scientific Computing (SISC), 2019

https://ecrc.github.io/BEMFMM/

5. Optimizations of Unstructured Aerodynamics Computations for Many-core Architectures

Mohammed A. Al Farhan and David E. Keyes

IEEE Transactions on Parallel and Distributed Systems (TPDS), 2018

- 6. Performance Evaluation of Computation and Communication Kernels of the Fast Multipole Method on Intel Manycore Architecture
 - Mustafa Abduljabbar, Mohammed A. Al Farhan, Rio Yokota, and David E. Keyes International European Conference on Parallel and Distributed Computing (Euro-Par), 2017
- Unstructured Computational Aerodynamics on Many Integrated Core Architecture Mohammed A. Al Farhan, Dinesh K. Kaushik, and David E. Keyes Elsevier Parallel Computing Journal (PARCO), 2016
- 8. An Algorithm for Reduct Cardinality Minimization
 Hassan AbouEisha, Mohammed A. Al Farhan, Igor Chikalov, and Mikhail Moshkov
 IEEE International Conference on Granular Computing (GrC), 2013
 https://modafarhan.com/reduct/

Services

Served as a peer reviewer for the ACM Transactions on Parallel Computing (TOPC) 2019, PLOS One 2018, International Journal of High Performance Computing Applications (IJHPCA) 2018, IEEE Cluster 2016, and IEEE International Parallel & Distributed Processing Symposium (IPDSPS) 2019

Teaching

AMCS 312: High Performance Computing. Teaching Assistant (TA) for David E. Keyes

- King Abdullah University of Science and Technology, Saudi Arabia
 - Fall 2014, Fall 2015, Fall 2016, Fall 2017, and Fall 2018
- Saudi Aramco, Saudi Arabia
 - Fall 2018
- Blue Waters Online Courses
 - Fall 2016 [Introduction to High Performance Computing]
- KAUST Visualization and Supercomputing Summer School, Saudi Arabia
 - Summer 2016 [Introduction to Portable, Extensible Toolkit for Scientific Computation (PETSc)]

Talks

Slides available at https://speakerdeck.com/farhanma

- 1. Unstructured Computations on Emerging Architectures
 - (a) SIAM Conference on Computational Science and Engineering, 2019. Spokane, Washington, USA
- 2. BEMFMM: An Extreme Scale FMM-Accelerated BIE Solver for Wave Scattering
 - (a) SIAM Conference on Computational Science and Engineering, 2019. Spokane, Washington, USA
 - (b) Intel eXtreme Computing User Group (IXPUG) Meeting, 2018. KAUST, KSA
 - (c) SIAM Conference on Parallel Processing for Scientific Computing, 2018. Tokyo, Japan
- 3. Optimizations of Unstructured Aerodynamics Computations for Intel Knights Landing Architecture
 - (a) Intel eXtreme Computing User Group (IXPUG) Meeting, 2018. KAUST, KSA
 - (b) SIAM Conference on Parallel Processing for Scientific Computing, 2018. Tokyo, Japan
 - (c) Intel HPC Developer Conference, 2017. Denver, Colorado, USA
 - (d) Fully Predictive Complex Computational Fluid Dynamics Workshop, 2017. KAUST, KSA
 - (e) High Performance Computing Saudi Arabia (HPC Saudi) Conference, 2017. KAUST, KSA Received best poster award
 - (f) SIAM Conference on Computational Science and Engineering, 2017. Atlanta, Georgia, USA
 - (g) Scalable Hierarchical Algorithms for eXtreme Computing Workshop, 2017. KAUST, KSA
- 4. Performance Evaluation of Fast Multipole Method on Intel Manycore Architecture
 - (a) International European Conference on Parallel and Distributed Computing (Euro-Par), 2017
 - (b) HPC in Asia Poster Competition, International Supercomputing Conference (ISC), 2017
- 5. Implicit Unstructured Computational Aerodynamics on Many-Integrated Core Architecture
 - (a) International Conference on Parallel Computational Fluid Dynamics, 2014. Trondheim, Norway
 - (b) Scalable Hierarchical Algorithms for eXtreme Computing workshop, 2014. KAUST, KSA

Programming

 $\label{lambda} Languages-C/C++, Python, Java, Shell Script, MATLAB, and LaTeX Models-x86 Compiler Intrinsics, OpenMP, pThreads, TBB, CUDA, and MPI Tools-Make, CMake, Autotools, perf tools, Valgrind, and Git$