ecture A. M. 12

Magnitude Scale and Some Numbers

Optical antronomy has a very well defined, yet be withering so whe for hearing bryhtnesses, which is logarithmine I am going to let you work through it bonk keeping. However, I do want you to know that it is all baned on Vega (8 pc a ray).

W=B=V=0 for Yega

 $=) f_{V} = 3.5 \times 10^{-20} \frac{erga}{cm^{2} \cdot sec_{A}Hz}$

at 5500 Å or about

What I am Sec. A what of the sec. A what is a sec. A what

U 3650 B 4400 VR 7000 T 9000 2200 T 9000 2400

1450 610 380 Lets Start with the Data

from rearby Stars on the

HR Diagram: One can also view

this Plot as a Teff US.

L Plot, in which care the

Thus only a factor of 10,

whereas L glestrom has

15 magnitudes and 5 magn = factor

of 100, 50 we have a alguanic

range in L of 2 106. So we

would like to understand to

explain

Defined sequence

Why is the dynamic range 12 Teff so large? White sets

density of stan along the plot of the # the things

J OT'ME'- 9x103 Town = 5800K

Out down the My=16 or so gives

Nx = II axx3 0.05 pc

ra 1.7 pe is along separation

1995A&A...304

Fig. 8. a The Hertzsprung-Russell diagram for objects listed in the CNS3 and observed by Hig of M_V and B-V given in that catalogue (i.e., for the 2095 entries observed by Hipparcos at corresponding HR diagram for the 1052 stars from CNS3 for which $\pi > 40$ mas (i.e., d < 25 constructed on the basis of the V magnitudes given in the Hipparcos Input Catalogue and the Hig is taken from the Hipparcos Input Catalogue. c as for b, but for the 718 stars from CNS3 for wh

-0.5

B-V (mag)

Fig. 6. a The observational HR diagram constructed from the preliminary Hipparcos catalogue H30, for the 8784 stars with $\sigma_{\pi}/\pi < 0.1$ and $\sigma_{B-V} < 0.025$ mag, and supplemented by six white dwarfs as described in the text. The ordinate gives the absolute magnitude, M_{Hp} , derived from the satellite-determined parallaxes and the median satellite-derived Hp magnitudes. The abscissa gives the colour index (B-V), derived from the ground-based observations compiled in the Hipparcos Input Catalogue. b as for a, but based on the 11 125 stars from H30 satisfying $0.1 \le \sigma_{\pi}/\pi < 0.2$ and $\sigma_{B-V} < 0.025$ mag.

-0.5

B-V (mag)

Fig. 9–CMDs for 47 Tuc derived from three independent studies. (a) photoelectrically calibrated photographic photometry (Hesser and Hartwick 1977), obtained with the CTIO 1.5-m telescope and traditional ris photometry; (b) photometry with a SIT Vidicon camera (Harris et al. 1983a,b), obtained with the CTIO 4-m and reduced through RICHFLD; (c) the present CCD+DAOPHOT photometry. In all three cases the giant and horizontal branches are the same (photographic) data, only the main-sequence data (V > 17.2) are different, to illustrate the progression in depth and internal precision that has been achieved

19.9 MASS DENSITY IN THE SOLAR NEIGHBORHOOD [25-32]

Observed volume mass density

Interstellar matter (ISM)	0.04 ± 0.02	$\mathcal{M}_{\odot} \mathrm{pc}^{-3}$
Main Sequence Stars:		O F-
$0.08 \le \mathcal{M}/\mathcal{M}_{\odot} < 1.0$	0.036	$\mathcal{M}_{\odot}~\mathrm{pc}^{-3}$
$1.0 \le \mathcal{M}/\mathcal{M}_{\odot} < 100$	0.014	$M_{\odot} \mathrm{pc}^{-3}$
Halo stars	0.0001	$M_{\odot} \mathrm{pc}^{-3}$
Evolved stars:		
White dwarfs	0.005	$\mathcal{M}_{\odot} \mathrm{pc}^{-3}$
Dark extended halo, local density	0.01	$\mathcal{M}_{\odot} \mathrm{pc^{-3}}$ $\mathcal{M}_{\odot} \mathrm{pc^{-3}}$
Total	0.10 ± 0.03	$M_{\odot} pc^{-3}$
N - 4 - 0 01 1 4 - 3 - 0 0 0		0.000

Note that $0.01 \mathcal{M}_{\odot} \text{ pc}^{-3}$ is 0.3 GeV cm^{-3} .

Observed column mass densities, to |z| = 1.1 kpc

8	$M_{\odot} \mathrm{pc}^{-2}$
2	$M_{\odot} \mathrm{pc}^{-2}$
3	$M_{\odot} \mathrm{pc}^{-2}$
13 ± 3	M_{\odot} pc ⁻²
30	$\mathcal{M}_{\odot} \mathrm{pc}^{-2}$
3	$\mathcal{M}_{\odot} \text{ pc}^{-2}$ $\mathcal{M}_{\odot} \text{ pc}^{-2}$
2	$\mathcal{M}_{\odot} \mathrm{pc}^{-2}$
< 1	$\mathcal{M}_{\odot} \mathrm{pc}^{-2}$
35 ± 5	$\mathcal{M}_{\odot}~\mathrm{pc}^{-2}$
48 ± 8	$\mathcal{M}_{\odot} \mathrm{pc}^{-2}$
23	$M_{\odot} \mathrm{pc}^{-2}$
71 ± 6	$\mathcal{M}_{\odot} \mathrm{pc}^{-2}$ $\mathcal{M}_{\odot} \mathrm{pc}^{-2}$
	$ \begin{array}{c} 2 \\ 3 \\ 13 \pm 3 \end{array} $ $ \begin{array}{c} 30 \\ 3 \\ 2 \\ < 1 \\ 35 \pm 5 \\ 48 \pm 8 \end{array} $

All determinations are consistent with each other and with zero local unidentified matter at the $\sim 1.5~\sigma$ level.

K dwarfs ($z \lesssim 160 \text{ pc}$) $\rho_0 = 0.10 \pm 0.03 \mathcal{M}_{\odot} \text{ pc}^{-3}$.

Dynamical analysis of the column mass density, M_☉ pc⁻²

K dwarfs (300 $\lesssim z \lesssim$ 2000 pc)

$$\begin{array}{ll} \sum_{\text{tot}} (z \leq 1.1 \text{ kpc}) & = 71 \pm 6 \mathcal{M}_{\odot} \text{ pc}^{-2}, \\ \sum_{\text{disk}} & = 48 \pm 9 \mathcal{M}_{\odot} \text{ pc}^{-2}, \\ \sum_{\text{dark halo}} & = 23 \mathcal{M}_{\odot} \text{ pc}^{-2}, \end{array}$$

Unidentified disk dark matter $= 0 \pm 12 M_{\odot} \text{ pc}^{-2}$.

The outcome of star formation is construction of stars that only occupy certain regions of this diagram.

- · What do they become?

Fig. 3.—Same as Fig. 1, except that the CMD of NGC 5053 is shown, containing 15,618 stars and extending to about 30% of the tidal radius of 14^\prime ($Harris\ 1996$).

Fig. 5.—Same as Fig. 1, except that the CMD of Palomar 2 is shown, containing 43,242 stars and extending to about 60% of the tidal radius of 6.8' (Harris 1996). The arrow is the reddening vector for E(F606W - F814W) = 0.3.

Ftg. 4.—Same as Fig. 1, except that the CMD of NGC 6144 is shown, containing 19,442 stars and extending to about 13% of the tidal radius of 33' (Harris 1996).

Fig. 6.—Same as Fig. 1, except that the CMD of E3 is shown, containing 852 stars and extending to about 40% of the tidal radius of 11' (Harris 1996).

19.9 MASS DENSITY IN THE SOLAR NEIGHBORHOOD [25-32]

Observed volume mass density

Interstellar matter (ISM)	0.04 ± 0.02	$\mathcal{M}_{\odot}~\mathrm{pc}^{-3}$
Main Sequence Stars:	-10.12	2010 pc
$0.08 \le \mathcal{M}/\mathcal{M}_{\odot} < 1.0$	0.036	$\mathcal{M}_{\odot} \mathrm{pc}^{-3}$
$1.0 \le \mathcal{M}/\mathcal{M}_{\odot} < 100$	0.014	$\mathcal{M}_{\odot} \text{ pc}^{-3}$ $\mathcal{M}_{\odot} \text{ pc}^{-3}$
Halo stars	0.0001	$M_{\odot} pc^{-3}$
Evolved stars:		O P
White dwarfs	0.005	$M_{\odot} \mathrm{pc}^{-3}$
Dark extended halo, local density	0.01	$\mathcal{M}_{\odot} \ \mathrm{pc^{-3}}$ $\mathcal{M}_{\odot} \ \mathrm{pc^{-3}}$
Total	0.10 ± 0.03	$M_{\odot} pc^{-3}$
Note that $0.01 M_{\odot} \text{ pc}^{-3}$ is 0.3 GeV c	m^{-3} .	

Observed column mass densities, to |z| = 1.1 kpc

Neutral ISM	8	$\mathcal{M}_{\odot}~\mathrm{pc}^{-2}$
Ionized ISM	2	\mathcal{M}_{\odot} pc ⁻²
Molecular ISM	3	\mathcal{M}_{\odot} pc ⁻²
ISM total	13 ± 3	$\mathcal{M}_{\odot} \text{ pc}^{-2}$
Stars:		3.10 pc
Disk main sequence	30	\mathcal{M}_{\odot} pc ²
Disk white dwarfs	3	$\mathcal{M}_{\odot} \mathrm{pc}^{-2}$
Thick disk	3 2	$\mathcal{M}_{\odot} \mathrm{pc}^{-2}$
Halo subdwarfs	< 1	$\mathcal{M}_{\odot} \text{ pc}^{-2}$
Stellar total	35 ± 5	$\mathcal{M}_{\odot} \mathrm{pc}^{-2}$
Observed total	48 ± 8	\mathcal{M}_{\odot} pc ⁻²
Extended dark halo		2010 pc
z < 1.1 kpc	23	$\mathcal{M}_{\odot}~\mathrm{pc}^{-2}$
Total	71 ± 6	$M_{\odot} \text{ pc}^{-2}$
VI CI CICO		CONTRACTOR OF THE PROPERTY OF

K dwarfs ($z \lesssim 160 \text{ pc}$) $\rho_0 = 0.10 \pm 0.03 \mathcal{M}_{\odot} \text{ pc}^{-3}$.

All determinations are consistent with each other and with zero local unidentified matter at the $\sim 1.5~\sigma$ level.

Dynamical analysis of the column mass density, \mathcal{M}_{\odot} pc $^{-2}$

K dwarfs (300 $\lesssim z \lesssim 2000 \text{ pc}$)

$$\begin{array}{ll} \sum_{\text{tot}} (z \leq 1.1 \text{ kpc}) & = 71 \pm 6 \mathcal{M}_{\odot} \text{ pc}^{-2}, \\ \sum_{\text{disk}} & = 48 \pm 9 \mathcal{M}_{\odot} \text{ pc}^{-2}, \\ \sum_{\text{dark halo}} & = 23 \mathcal{M}_{\odot} \text{ pc}^{-2}, \end{array}$$

Unidentified disk dark matter $= 0 \pm 12 M_{\odot} \ pc^{-2}$.

Solar

TABLE II. Element abundances.

Bahcall, Pinsonneaut

RMP

67 781

Species	Grevesse and Noels (1993a)	Anders and Grevesse (1989)	Grevesse (1984)	Ross and Aller (1976)	Lambert and Warner (1971)
C	8.55 ± 0.05	8.56	8.69	8.62±0.12	8.55
N	7.97 ± 0.07	8.05	7.99	7.94 ± 0.15	7.93
O	8.87 ± 0.07	8.93	8.92 ± 0.02	8.84 ± 0.07	8.77
Ne	8.08 ± 0.06	8.09 ± 0.10	8.08	7.57 ± 0.12	7.88
Na	6.33 ± 0.03	6.31 ± 0.03	6.33 ± 0.03	6.28±0.15	7.00
Mg	7.58 ± 0.05	7.58 ± 0.02	7.58 ± 0.05	7.60 ± 0.15	7.48
Al	6.47 ± 0.07	6.48 ± 0.02	6.47	6.52±0.12	7.40
Si	7.55 ± 0.05	7.55 ± 0.02	7.55 ± 0.05	7.65 ± 0.08	7.55
P	5.45 ± 0.04	5.57 ± 0.04	5.45	5.50±0.15	(1000)
S	7.21 ± 0.06	7.27 ± 0.05	7.21 ± 0.06	7.2 ± 0.15	7.28
Cl	5.5 ± 0.3	5.27 ± 0.06	5.5		7.20
Ar	6.52 ± 0.10	6.56 ± 0.10	6.65	6.0	6.6
Ca	6.36 ± 0.02	6.34 ± 0.03	6.36 ± 0.02	6.35 ± 0.10	0.0
Γi	5.02 ± 0.06	4.93 ± 0.02	5.02	5.05 ± 0.12	
Cr	5.67 ± 0.03	5.68 ± 0.03	5.67 ± 0.03	5.71 ± 0.14	
Мn	5.39 ± 0.03	5.53 ± 0.04	5.53 ± 0.04	5.42 ± 0.16	
Pe .	7.50 ± 0.04	7.51 ± 0.01	7.51 ± 0.01	7.50 ± 0.08	7.56
Vi	6.25 ± 0.04	6.25 ± 0.02	6.25 ± 0.02	6.28	7.50
Z/X	0.0245	0.0267	0.0277	0.0288	

^aThe numerical entries are the logarithms of the number abundances, normalized to log N = 12 for hydrogen.

Sun / = 0.24

Y (interior, Primordial) = 0.278
(Bakeall et al),

BBN, expect

Y = 0.23 - 0.24 (Olive et N ApJ 483, 788)

to hote about the distribution of star (my I refer you to Mihalar & Binney for more discursions).

Object 8 1/03 pc3

O-B
A-F
G-M
WD'S

We want to
whish

wherefore this

Crucle Galactic Disk

+ Spherood.

1 100pc,

8.5kpc

Withforditt

ges

Local & Denvity

= 0.04 Mo

= 0.04

	Baade (1944).	6.
	Properties of the Disk Component	
	- In a thin region about the gal plane all nearly circular	٠
	- Active Star Formation, Many Young Star Formation, Many	
	- Very Metal-Rich, Like O	
	Mostly O Nefec, N where	and the second s
	and we will discum this later. Fe = 3×10-5 exponential in refer kpc Abundance Gradian. = few loops	
Modert	Abundance Gradier : } r= fren kpc 2= fen 100pc	k mantan 2017
	Properties of the Spheroidal Con - Old population. No Yng. Stans - Metal Poor - > 1000 or len	
	- Kinematically have small net rotative and move on mostly radial orbits. - Globulan Clusters	

Isothermal/Plane parallel atmosphere Before launching into stars I find it helpful the first derive the simplent possible model that of a plane-parallel iso thermal but mosphere. We start with hydrostatic balance $\frac{19}{\sqrt{12}} = -99$

and presume $g = court ant / in = \frac{GM}{R^2}$ other words a the atmosphere T = countral.

$$P = n \quad K_B T = \frac{S}{m\mu} K_B T$$

 $\frac{dP}{dZ} = \frac{k_BT}{m} \frac{dS}{dZ} = -SS$

=> dlng = - d= (mg) Lets define the "scale height" an this length scale

h= KBT = countaint for our care.

川梅厚

 $\int dlng = \int \frac{-dz}{h}$ lns2-lns, = - 1 (22-21) $\ln \frac{S_2}{S_1} = -\frac{1}{h} (2_2 - 2_1)$ $\Rightarrow \left| S_2 = S_1 \exp \left[-\frac{(Z_2 - Z_1)}{h} \right] \right|$ So (2) = So exp (-2)/

For our approximation to be Validiente we munt have heek so lets check that that means.

 $\frac{h}{R} = \frac{k_B T}{m_g R} = \frac{k_B T}{m_i \left(\frac{GM}{R}\right)}$

2 Vere <<1 > Particles we Very well bound comply me steep work

沙性盛 The other interpetuation of the scale height is that it is the distance the Particle mover to guin Phrom gravity) the thermal everyy as: hx mpg = gravity = kBT Alternatively, what if I ask a diff guestion: For a gen at temp T what is the probability that a particle will be at deignt 7? C - EZ/KBT and $E_2 = m_p g = \frac{m_p g^2}{k_B T}$ =) e^{-2/h} (some on the oil) The concept of a "scale height is tremendownly metal in this course and you should be sure you teally anderstand Now the falling off of most density means that we so most of the pressure is the comment

13 0 Ba

depth is also exponential

$$P = \frac{s}{m} k_B T$$

but we want to get a diff feel for what sets the pressure. Rewrite:

for a real atmosphere. The Now we want to integrate from $Z = +\infty$ to $Z = +\infty$ get $Z = +\infty$ $Z = +\infty$ Z

(2) but
$$(dP = -P/2)$$

 $\int_{\overline{Z}} P(z) \qquad \text{but} \qquad \int_{\overline{Z}} dP = -P(z)$ $= \sum_{SO} P(z) = g \int_{\overline{Z}} g dz'$

$$P(Z) = g \int_{Z}^{\infty} dZ'$$

"column density" y(z) = (Solz' [definition!

& Da

in which case

P=gy | The column density has units and you should think of it is a constant of stuff first down the amount of stuff as first down y(z)= [sdz'=[soe-2/hdz' $y(z) = -30h \left[e^{-z^2/h} \right]_2^{\infty} = -30h e^{-z^2/h}$ but $6e^{-2/h} = g(2)$ so we have:

and hence the exponential full of means that you get tall of the column density in scale height up to 50

P = 94(2) =

Mean Molecular Weights

but we write
$$n_i = \frac{X_i S}{A_i m_p}$$

so $X_i = m$ and fraction

Commence of the Commence of th

 $\frac{1}{\sqrt{A}} = \frac{1}{\sqrt{A}} + \frac{1}{\sqrt{A}} = \frac{1$

=> M= 0,64

You can think, of this are you want to but I have but I he average weight out or pressure parties pressure fin the Interpolical property and its evolution, I plays a found its evolution, I plays a found in the nature of tellar

Since fusion tends to decreme the prontune support the start must constructly readjust its structure so as Its hold itself

Imp!