$X_n \stackrel{d}{\to} X$ iff

 $F_n(x) \to F(x), \ \forall x \ \text{where } F \text{ is continuous}$

 $X_n \stackrel{d}{\to} X$ iff

$$F_n(x) \to F(x), \ \forall x \ \text{where } F \text{ is continuous}$$

 $X_n \stackrel{P}{\to} X iff$

$$\lim_{n \to \infty} P[|X_n - X| > \epsilon] = 0, \ \forall \epsilon > 0$$

 $ightharpoonup X_n \stackrel{d}{\to} X$ iff

$$F_n(x) \to F(x), \ \forall x \ \text{where } F \text{ is continuous}$$

 $ightharpoonup X_n \stackrel{P}{\to} X$ iff

$$\lim_{n \to \infty} P[|X_n - X| > \epsilon] = 0, \ \forall \epsilon > 0$$

 $X_n \stackrel{r}{\to} X$ iff

$$E[|X_n - X|^r] \to 0$$
 as $n \to \infty$

 $X_n \stackrel{d}{\to} X$ iff

$$F_n(x) \to F(x), \ \forall x \ \text{where } F \text{ is continuous}$$

 $X_n \stackrel{P}{\to} X iff$

$$\lim_{n \to \infty} P[|X_n - X| > \epsilon] = 0, \ \forall \epsilon > 0$$

 $X_n \stackrel{r}{\to} X$ iff

$$E[|X_n - X|^r] \to 0$$
 as $n \to \infty$

 $X_n \stackrel{a.s}{\to} X$ iff

$$P[X_n \to X] = 1$$
 or $P[\limsup |X_n - X| > \epsilon] = 0$

$$X_n \xrightarrow{r} X \Rightarrow X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$$

$$X_n \xrightarrow{r} X \quad \Rightarrow \quad X_n \xrightarrow{P} X \quad \Rightarrow \quad X_n \xrightarrow{d} X$$

$$X_n \stackrel{a.s.}{\to} X \Rightarrow X_n \stackrel{P}{\to} X \Rightarrow X_n \stackrel{d}{\to} X$$

We have the following relations among different modes of convergence

$$X_n \xrightarrow{r} X \Rightarrow X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$$

$$X_n \stackrel{a.s.}{\to} X \implies X_n \stackrel{P}{\to} X \implies X_n \stackrel{d}{\to} X$$

All the implications are one-way and we have seen counter examples

$$X_n \xrightarrow{r} X \Rightarrow X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$$

$$X_n \stackrel{a.s.}{\to} X \Rightarrow X_n \stackrel{P}{\to} X \Rightarrow X_n \stackrel{d}{\to} X$$

- All the implications are one-way and we have seen counter examples
- ▶ In general, almost sure convergence does not imply convergence in r^{th} mean and vice versa

▶ Given X_i are iid, $EX_i = \mu$, $\mathrm{Var}(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$

- ullet Given X_i are iid, $EX_i=\mu$, $\mathrm{Var}(X_i)=\sigma^2$, $S_n=\sum_{i=1}^n X_i$
- $lackbox{Weak law of large numbers: } \frac{S_n}{n} \stackrel{P}{
 ightarrow} \mu$

- ▶ Given X_i are iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Weak law of large numbers: $\frac{S_n}{n} \stackrel{P}{\rightarrow} \mu$
- strong law of large numbers: $\frac{S_n}{n} \stackrel{a.s.}{\to} \mu$

- ▶ Given X_i are iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Weak law of large numbers: $\frac{S_n}{n} \stackrel{P}{\rightarrow} \mu$
- ightharpoonup strong law of large numbers: $rac{S_n}{n} \stackrel{a.s.}{\longrightarrow} \mu$
- ▶ Central Limit Theorem: $\frac{S_n n\mu}{\sigma\sqrt{n}} \stackrel{d}{\to} \mathcal{N}(0,1)$

▶ Take X_i iid, $EX_i = 0$, $Var(X_i) = 1$, $n = 1, 2, \cdots$

- ▶ Take X_i iid, $EX_i = 0$, $Var(X_i) = 1$, $n = 1, 2, \cdots$
- $S_n = \sum_{i=1}^n X_i$

- ► Take X_i iid, $EX_i = 0$, $Var(X_i) = 1$, $n = 1, 2, \cdots$
- \triangleright $S_n = \sum_{i=1}^n X_i$
- Strong law of large numbers implies

$$\frac{S_n}{n} \stackrel{a.s.}{\to} 0$$

- ▶ Take X_i iid, $EX_i = 0$, $Var(X_i) = 1$, $n = 1, 2, \cdots$
- \triangleright $S_n = \sum_{i=1}^n X_i$
- Strong law of large numbers implies

$$\frac{S_n}{n} \stackrel{a.s.}{\to} 0$$

Central Limit Theorem implies

$$\frac{S_n}{\sqrt{n}} \stackrel{a.s.}{\to} \mathcal{N}(0,1)$$

$$\phi_X(u) = E\left[e^{iuX}\right] = \int e^{iux} dF_X(x) \quad (i = \sqrt{-1})$$

▶ Given rv X, its characteristic function, ϕ_X , is defined by

$$\phi_X(u) = E\left[e^{iuX}\right] = \int e^{iux} dF_X(x) \quad (i = \sqrt{-1})$$

▶ Since $|e^{iux}| \le 1$, ϕ_X exists for all random variables

$$\phi_X(u) = E\left[e^{iuX}\right] = \int e^{iux} dF_X(x) \quad (i = \sqrt{-1})$$

- ▶ Since $|e^{iux}| \le 1$, ϕ_X exists for all random variables
 - ϕ is continuous; $|\phi(u)| \le \phi(0) = 1$; $\phi(-u) = \phi^*(u)$

$$\phi_X(u) = E\left[e^{iuX}\right] = \int e^{iux} dF_X(x) \quad (i = \sqrt{-1})$$

- ▶ Since $|e^{iux}| \le 1$, ϕ_X exists for all random variables
 - ϕ is continuous; $|\phi(u)| \le \phi(0) = 1$; $\phi(-u) = \phi^*(u)$
 - If Y = aX + b, $\phi_Y(u) = e^{iub}\phi_X(ua)$

$$\phi_X(u) = E\left[e^{iuX}\right] = \int e^{iux} dF_X(x) \quad (i = \sqrt{-1})$$

- ▶ Since $|e^{iux}| \le 1$, ϕ_X exists for all random variables
 - ϕ is continuous; $|\phi(u)| \le \phi(0) = 1$; $\phi(-u) = \phi^*(u)$
 - If Y = aX + b, $\phi_Y(u) = e^{iub}\phi_X(ua)$
 - If $E|X|^r < \infty$, ϕ would be differentiable r times and

$$\phi^{(r)}(u) = E[(iX)^r e^{iuX}]$$

• Let $\mu_r = E[X^r]$ and let $\nu_r = E[|X|^r]$

- Let $\mu_r = E[X^r]$ and let $\nu_r = E[|X|^r]$
- If ν_r is finite, then

$$\phi_X(u) = \sum_{s=0}^{r-1} \mu_s \, \frac{(iu)^s}{s!} + \rho(u) \, \mu_r \, \frac{(iu)^r}{r!}$$

where $|\rho(u)| \le 1$ and $\rho(u) \to 1$ as $u \to 0$

- Let $\mu_r = E[X^r]$ and let $\nu_r = E[|X|^r]$
- If ν_r is finite, then

$$\phi_X(u) = \sum_{s=0}^{r-1} \mu_s \, \frac{(iu)^s}{s!} + \rho(u) \, \mu_r \, \frac{(iu)^r}{r!}$$

where $|\rho(u)| \leq 1$ and $\rho(u) \to 1$ as $u \to 0$

▶ If all moments exist, then

$$\phi_X(u) = \sum_{s=0}^{\infty} \mu_s \, \frac{(iu)^s}{s!}$$

• We denote by ϕ_F characteristic function of df F

- We denote by ϕ_F characteristic function of df F
- ▶ Let F_n be a sequence of distribution functions

- We denote by ϕ_F characteristic function of df F
- Let F_n be a sequence of distribution functions
- Continuity theorem

- We denote by ϕ_F characteristic function of df F
- Let F_n be a sequence of distribution functions
- Continuity theorem
 - If $F_n \to F$ then $\phi_{F_n} \to \phi_F$

- We denote by ϕ_F characteristic function of df F
- Let F_n be a sequence of distribution functions
- Continuity theorem
 - If $F_n \to F$ then $\phi_{F_n} \to \phi_F$
 - ▶ If $\phi_{F_n} \to \psi$ and ψ is continuous at zero, then ψ would be characteristic function of some df, say, F, and $F_n \to F$

▶ Given X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$

- ▶ Given X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Let $\tilde{S}_n = \frac{S_n ES_n}{\sqrt{\mathsf{var}(S_n)}} = \frac{S_n n\mu}{\sigma\sqrt{n}}$

- ▶ Given X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Let $\tilde{S}_n = \frac{S_n ES_n}{\sqrt{\text{Var}(S_n)}} = \frac{S_n n\mu}{\sigma\sqrt{n}}$
- ▶ (Lindberg-Levy) Central Limit Theorem

$$\lim_{n \to \infty} P\left[\tilde{S}_n \le x\right] = \lim_{n \to \infty} P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt, \ \forall x$$

- ▶ Given X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Let $\tilde{S}_n = \frac{S_n ES_n}{\sqrt{\text{Var}(S_n)}} = \frac{S_n n\mu}{\sigma\sqrt{n}}$
- ▶ (Lindberg-Levy) Central Limit Theorem

$$\lim_{n \to \infty} P\left[\tilde{S}_n \le x\right] = \lim_{n \to \infty} P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt, \ \forall x$$

Proof:

- ▶ Given X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Let $\tilde{S}_n = \frac{S_n ES_n}{\sqrt{\mathsf{Var}(S_n)}} = \frac{S_n n\mu}{\sigma\sqrt{n}}$
- ▶ (Lindberg-Levy) Central Limit Theorem

$$\lim_{n \to \infty} P\left[\tilde{S}_n \le x\right] = \lim_{n \to \infty} P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt, \quad \forall x$$

• Without loss of generality let us assume $\mu = 0$.

- ▶ Given X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Let $\tilde{S}_n = \frac{S_n ES_n}{\sqrt{\mathsf{Var}(S_n)}} = \frac{S_n n\mu}{\sigma\sqrt{n}}$
- (Lindberg-Levy) Central Limit Theorem

$$\lim_{n\to\infty} P\left[\tilde{S}_n \le x\right] = \lim_{n\to\infty} P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt, \ \forall x$$

- Without loss of generality let us assume $\mu = 0$.
- We use characteristic function of \tilde{S}_n for the proof.

- ▶ Given X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Let $\tilde{S}_n = \frac{S_n ES_n}{\sqrt{\mathsf{Var}(S_n)}} = \frac{S_n n\mu}{\sigma\sqrt{n}}$
- (Lindberg-Levy) Central Limit Theorem

$$\lim_{n\to\infty} P\left[\tilde{S}_n \leq x\right] = \lim_{n\to\infty} P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \leq x\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt, \ \forall x$$

- Without loss of generality let us assume $\mu = 0$.
- We use characteristic function of \tilde{S}_n for the proof.
- Let ϕ be the characteristic function of X_i .

- ▶ Given X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Let $\tilde{S}_n = \frac{S_n ES_n}{\sqrt{\mathsf{Var}(S_n)}} = \frac{S_n n\mu}{\sigma\sqrt{n}}$
- ▶ (Lindberg-Levy) Central Limit Theorem

$$\lim_{n \to \infty} P\left[\tilde{S}_n \le x\right] = \lim_{n \to \infty} P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt, \ \forall x$$

- Without loss of generality let us assume $\mu = 0$.
- We use characteristic function of \tilde{S}_n for the proof.
- Let ϕ be the characteristic function of X_i . Then

$$\phi_{S_n}(t) = (\phi(t))^n$$
 and $\phi_{\tilde{S}_n}(t) = \left(\phi\left(\frac{t}{\sigma\sqrt{n}}\right)\right)^n$

 \blacktriangleright Recall that we can expand ϕ in a Taylor series

$$\phi(u) = \sum_{s=0}^{r-1} \mu_s \frac{(iu)^s}{s!} + \rho(u) \mu_r \frac{(iu)^r}{r!}, \quad \rho(u) \to 1, \text{ as } u \to 0$$

$$\phi(u) = \sum_{s=0}^{r-1} \mu_s \, \frac{(iu)^s}{s!} + \rho(u) \, \mu_r \, \frac{(iu)^r}{r!}, \quad \rho(u) \to 1, \text{ as } u \to 0$$

$$\phi(t) = 1 + 0 - \frac{1}{2} \rho(t) \sigma^2 t^2$$

$$\phi(u) = \sum_{s=0}^{r-1} \mu_s \, \frac{(iu)^s}{s!} + \rho(u) \, \mu_r \, \frac{(iu)^r}{r!}, \quad \rho(u) \to 1, \text{ as } u \to 0$$

$$\phi(t) = 1 + 0 - \frac{1}{2} \rho(t) \sigma^2 t^2$$

$$\phi\left(\frac{t}{\sigma\sqrt{n}}\right) = 1 - \frac{1}{2} \rho\left(\frac{t}{\sigma\sqrt{n}}\right) \sigma^2 \frac{t^2}{\sigma^2 n}$$

$$\phi(u) = \sum_{s=0}^{r-1} \mu_s \frac{(iu)^s}{s!} + \rho(u) \ \mu_r \frac{(iu)^r}{r!}, \ \rho(u) \to 1, \text{ as } u \to 0$$

$$\phi(t) = 1 + 0 - \frac{1}{2} \rho(t) \sigma^2 t^2$$

$$\phi\left(\frac{t}{\sigma\sqrt{n}}\right) = 1 - \frac{1}{2}\rho\left(\frac{t}{\sigma\sqrt{n}}\right)\sigma^2\frac{t^2}{\sigma^2n}$$
$$= 1 - \frac{1}{2}\frac{t^2}{n} + \frac{1}{2}\frac{t^2}{n}\left(1 - \rho\left(\frac{t}{\sigma\sqrt{n}}\right)\right)$$

$$\phi(u) = \sum_{s=0}^{r-1} \mu_s \, \frac{(iu)^s}{s!} + \rho(u) \, \mu_r \, \frac{(iu)^r}{r!}, \quad \rho(u) \to 1, \text{ as } u \to 0$$

$$\phi(t) = 1 + 0 - \frac{1}{2} \rho(t) \sigma^2 t^2$$

$$\begin{split} \phi\left(\frac{t}{\sigma\sqrt{n}}\right) &= 1 - \frac{1}{2}\,\rho\left(\frac{t}{\sigma\sqrt{n}}\right)\,\sigma^2\,\frac{t^2}{\sigma^2 n} \\ &= 1 - \frac{1}{2}\,\frac{t^2}{n} \,+\,\frac{1}{2}\,\frac{t^2}{n}\,\left(1 - \rho\left(\frac{t}{\sigma\sqrt{n}}\right)\right) \\ &= 1 - \frac{1}{2}\,\frac{t^2}{n} \,+\,o\left(\frac{1}{n}\right) \end{split}$$

$$\lim_{n \to \infty} \phi_{\tilde{S}_n}(t) = \lim_{n \to \infty} \left(\phi \left(\frac{t}{\sigma \sqrt{n}} \right) \right)^n$$

$$\lim_{n \to \infty} \phi_{\tilde{S}_n}(t) = \lim_{n \to \infty} \left(\phi \left(\frac{t}{\sigma \sqrt{n}} \right) \right)^n$$
$$= \lim_{n \to \infty} \left(1 - \frac{1}{2} \frac{t^2}{n} + o \left(\frac{1}{n} \right) \right)^n$$

$$\lim_{n \to \infty} \phi_{\tilde{S}_n}(t) = \lim_{n \to \infty} \left(\phi \left(\frac{t}{\sigma \sqrt{n}} \right) \right)^n$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{2} \frac{t^2}{n} + o \left(\frac{1}{n} \right) \right)^n$$

$$= e^{-\frac{t^2}{2}}$$

which is the characteristic function of standard normal

$$\lim_{n \to \infty} \phi_{\tilde{S}_n}(t) = \lim_{n \to \infty} \left(\phi \left(\frac{t}{\sigma \sqrt{n}} \right) \right)^n$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{2} \frac{t^2}{n} + o \left(\frac{1}{n} \right) \right)^n$$

$$= e^{-\frac{t^2}{2}}$$

which is the characteristic function of standard normal

▶ By Continuity theorem, distribution function of \tilde{S}_n converges to that of standard Normal rv

$$\lim_{n \to \infty} P\left[\tilde{S}_n \le x\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt, \ \forall x$$

What CLT says is that sums of iid random variables, when appropriately normalized, would always approach the Gaussian distribution.

- What CLT says is that sums of iid random variables, when appropriately normalized, would always approach the Gaussian distribution.
- It allows one to approximate distribution of sums of independent rv's

- What CLT says is that sums of iid random variables, when appropriately normalized, would always approach the Gaussian distribution.
- It allows one to approximate distribution of sums of independent rv's
- ▶ Let X_i be iid and $S_n = \sum_{i=1}^n X_i$

- What CLT says is that sums of iid random variables, when appropriately normalized, would always approach the Gaussian distribution.
- It allows one to approximate distribution of sums of independent rv's
- ▶ Let X_i be iid and $S_n = \sum_{i=1}^n X_i$

$$P[S_n \le x] =$$

- What CLT says is that sums of iid random variables, when appropriately normalized, would always approach the Gaussian distribution.
- It allows one to approximate distribution of sums of independent rv's
- Let X_i be iid and $S_n = \sum_{i=1}^n X_i$

$$P[S_n \le x] = P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le \frac{x - n\mu}{\sigma\sqrt{n}}\right]$$

- What CLT says is that sums of iid random variables, when appropriately normalized, would always approach the Gaussian distribution.
- It allows one to approximate distribution of sums of independent rv's
- Let X_i be iid and $S_n = \sum_{i=1}^n X_i$

$$P[S_n \le x] = P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le \frac{x - n\mu}{\sigma\sqrt{n}}\right] \approx \Phi\left(\frac{x - n\mu}{\sigma\sqrt{n}}\right)$$

- What CLT says is that sums of iid random variables, when appropriately normalized, would always approach the Gaussian distribution.
- It allows one to approximate distribution of sums of independent rv's
- ▶ Let X_i be iid and $S_n = \sum_{i=1}^n X_i$

$$P[S_n \le x] = P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le \frac{x - n\mu}{\sigma\sqrt{n}}\right] \approx \Phi\left(\frac{x - n\mu}{\sigma\sqrt{n}}\right)$$

► Thus, S_n is well approximated by a normal rv with mean $n\mu$ and variance $n\sigma^2$, if n is large

► Twenty numbers are rounded off to the nearest integer and added. What is the probability that the sum obtained differs from true sum by more than 3.

- ► Twenty numbers are rounded off to the nearest integer and added. What is the probability that the sum obtained differs from true sum by more than 3.
- ► A reasonable assumption is round-off errors are independent and uniform over [-0.5, 0.5]

- Twenty numbers are rounded off to the nearest integer and added. What is the probability that the sum obtained differs from true sum by more than 3.
- ► A reasonable assumption is round-off errors are independent and uniform over [-0.5, 0.5]
- ▶ Take $Z = \sum_{i=1}^{20} X_i$, $X_i \sim U[-0.5, 0.5]$, X_i iid.

- Twenty numbers are rounded off to the nearest integer and added. What is the probability that the sum obtained differs from true sum by more than 3.
- ► A reasonable assumption is round-off errors are independent and uniform over [-0.5, 0.5]
- ► Take $Z = \sum_{i=1}^{20} X_i$, $X_i \sim U[-0.5, 0.5]$, X_i iid.
- ▶ Then Z represents the error in the sum.

 $ullet Z = \sum_{i=1}^{20} X_i$, $X_i \sim U[-0.5, \ 0.5]$, X_i iid

- $ightharpoonup Z = \sum_{i=1}^{20} X_i$, $X_i \sim U[-0.5, 0.5]$, X_i iid
- $\blacktriangleright EX_i = 0$ and $Var(X_i) = \frac{1}{12}$.

- $ightharpoonup Z = \sum_{i=1}^{20} X_i, X_i \sim U[-0.5, 0.5], X_i \text{ iid}$
- $EX_i = 0$ and $Var(X_i) = \frac{1}{12}$.
- ► Hence, EZ = 0 and $Var(Z) = \frac{20}{12} = \frac{5}{3}$

- $Z = \sum_{i=1}^{20} X_i$, $X_i \sim U[-0.5, 0.5]$, X_i iid
- $EX_i = 0$ and $Var(X_i) = \frac{1}{12}$.
- ▶ Hence, EZ = 0 and $Var(Z) = \frac{20}{12} = \frac{5}{3}$

$$P[|Z| \le 3] = P[-3 \le Z \le 3]$$

- $Z = \sum_{i=1}^{20} X_i, X_i \sim U[-0.5, 0.5], X_i \text{ iid}$
- $EX_i = 0$ and $Var(X_i) = \frac{1}{12}$.
- ▶ Hence, EZ = 0 and $Var(Z) = \frac{20}{12} = \frac{5}{3}$

$$\begin{split} P[|Z| \leq 3] &= P[-3 \leq Z \leq 3] \\ &= P\left[\frac{-3}{\sqrt{\frac{5}{3}}} \leq \frac{Z - EZ}{\sqrt{\mathsf{Var}(Z)}} \leq \frac{3}{\sqrt{\frac{5}{3}}}\right] \end{split}$$

- $Z = \sum_{i=1}^{20} X_i, X_i \sim U[-0.5, 0.5], X_i \text{ iid}$
- $EX_i = 0$ and $Var(X_i) = \frac{1}{12}$.
- ▶ Hence, EZ = 0 and $Var(Z) = \frac{20}{12} = \frac{5}{3}$

$$\begin{split} P[|Z| \leq 3] &= P[-3 \leq Z \leq 3] \\ &= P\left[\frac{-3}{\sqrt{\frac{5}{3}}} \leq \frac{Z - EZ}{\sqrt{\mathsf{Var}(Z)}} \leq \frac{3}{\sqrt{\frac{5}{3}}}\right] \\ &\approx \Phi\left(\frac{3}{\sqrt{\frac{5}{2}}}\right) - \Phi\left(\frac{-3}{\sqrt{\frac{5}{2}}}\right) \end{split}$$

- $ightharpoonup Z = \sum_{i=1}^{20} X_i, X_i \sim U[-0.5, 0.5], X_i \text{ iid}$
- $EX_i = 0$ and $Var(X_i) = \frac{1}{12}$.
- Hence, EZ = 0 and $Var(Z) = \frac{20}{12} = \frac{5}{3}$

$$\begin{split} P[|Z| \leq 3] &= P[-3 \leq Z \leq 3] \\ &= P\left[\frac{-3}{\sqrt{\frac{5}{3}}} \leq \frac{Z - EZ}{\sqrt{\mathsf{Var}(Z)}} \leq \frac{3}{\sqrt{\frac{5}{3}}}\right] \\ &\approx \Phi\left(\frac{3}{\sqrt{\frac{5}{3}}}\right) - \Phi\left(\frac{-3}{\sqrt{\frac{5}{3}}}\right) \\ &\approx \Phi(2.3) - \Phi(-2.3) \end{split}$$

- $ightharpoonup Z = \sum_{i=1}^{20} X_i, X_i \sim U[-0.5, 0.5], X_i \text{ iid}$
- $EX_i = 0$ and $Var(X_i) = \frac{1}{12}$.
- ▶ Hence, EZ = 0 and $Var(Z) = \frac{20}{12} = \frac{5}{3}$

$$\begin{split} P[|Z| \leq 3] &= P[-3 \leq Z \leq 3] \\ &= P\left[\frac{-3}{\sqrt{\frac{5}{3}}} \leq \frac{Z - EZ}{\sqrt{\mathsf{Var}(Z)}} \leq \frac{3}{\sqrt{\frac{5}{3}}}\right] \\ &\approx \Phi\left(\frac{3}{\sqrt{\frac{5}{3}}}\right) - \Phi\left(\frac{-3}{\sqrt{\frac{5}{3}}}\right) \\ &\approx \Phi(2.3) - \Phi(-2.3) \\ &= 0.9893 - 0.0107 \approx 0.98 \end{split}$$

$$ightharpoonup Z = \sum_{i=1}^{20} X_i, X_i \sim U[-0.5, 0.5], X_i \text{ iid}$$

•
$$EX_i = 0$$
 and $Var(X_i) = \frac{1}{12}$.

▶ Hence,
$$EZ = 0$$
 and $Var(Z) = \frac{20}{12} = \frac{5}{3}$

$$\begin{split} P[|Z| \leq 3] &= P[-3 \leq Z \leq 3] \\ &= P\left[\frac{-3}{\sqrt{\frac{5}{3}}} \leq \frac{Z - EZ}{\sqrt{\mathsf{Var}(Z)}} \leq \frac{3}{\sqrt{\frac{5}{3}}}\right] \\ &\approx \Phi\left(\frac{3}{\sqrt{\frac{5}{3}}}\right) - \Phi\left(\frac{-3}{\sqrt{\frac{5}{3}}}\right) \\ &\approx \Phi(2.3) - \Phi(-2.3) \\ &= 0.9893 - 0.0107 \approx 0.98 \end{split}$$

► Hence probability that the sum differs from true sum by more than 3 is 0.02

lacktriangle We can approximate binomial rv with Gaussian for large n

- ightharpoonup We can approximate binomial rv with Gaussian for large n
- ▶ Binomial random variable with parameters n, p is a sum of n independent Bernoulli variables:

$$S_n = \sum_{i=1}^n X_i$$
; $X_i \in \{0, 1\}$, $P[X_i = 1] = p$, X_i ind

- lacktriangle We can approximate binomial rv with Gaussian for large n
- ightharpoonup Binomial random variable with parameters n,p is a sum of n independent Bernoulli variables:

$$S_n = \sum_{i=1}^n X_i$$
; $X_i \in \{0, 1\}$, $P[X_i = 1] = p$, X_i ind

 \blacktriangleright Hence we can approximate distribution of S_n by

- ightharpoonup We can approximate binomial rv with Gaussian for large n
- ▶ Binomial random variable with parameters n, p is a sum of n independent Bernoulli variables:

$$S_n = \sum_{i=1}^n X_i$$
; $X_i \in \{0, 1\}$, $P[X_i = 1] = p$, X_i ind

• Hence we can approximate distribution of S_n by

$$P[S_n \le x] = P\left[\frac{S_n - np}{\sqrt{np(1-p)}} \le \frac{x - np}{\sqrt{np(1-p)}}\right]$$

- ightharpoonup We can approximate binomial rv with Gaussian for large n
- ▶ Binomial random variable with parameters n, p is a sum of n independent Bernoulli variables:

$$S_n = \sum_{i=1}^n X_i$$
; $X_i \in \{0, 1\}$, $P[X_i = 1] = p$, X_i ind

 \blacktriangleright Hence we can approximate distribution of S_n by

$$P[S_n \le x] = P\left[\frac{S_n - np}{\sqrt{np(1-p)}} \le \frac{x - np}{\sqrt{np(1-p)}}\right]$$

$$\approx \Phi\left(\frac{x - np}{\sqrt{np(1-p)}}\right)$$

- lacktriangle We can approximate binomial rv with Gaussian for large n
- ▶ Binomial random variable with parameters n, p is a sum of n independent Bernoulli variables:

$$S_n = \sum_{i=1}^n X_i$$
; $X_i \in \{0, 1\}$, $P[X_i = 1] = p$, X_i ind

 \blacktriangleright Hence we can approximate distribution of S_n by

$$P[S_n \le x] = P\left[\frac{S_n - np}{\sqrt{np(1-p)}} \le \frac{x - np}{\sqrt{np(1-p)}}\right]$$

$$\approx \Phi\left(\frac{x - np}{\sqrt{np(1-p)}}\right)$$

For large n, binomial rv is like a Gaussian rv with mean np and variance np(1-p)

- lacktriangle We can approximate binomial rv with Gaussian for large n
- ▶ Binomial random variable with parameters n, p is a sum of n independent Bernoulli variables:

$$S_n = \sum_{i=1}^n X_i$$
; $X_i \in \{0, 1\}$, $P[X_i = 1] = p$, X_i ind

ightharpoonup Hence we can approximate distribution of S_n by

$$P[S_n \le x] = P\left[\frac{S_n - np}{\sqrt{np(1-p)}} \le \frac{x - np}{\sqrt{np(1-p)}}\right]$$

$$\approx \Phi\left(\frac{x - np}{\sqrt{np(1-p)}}\right)$$

- For large n, binomial rv is like a Gaussian rv with mean np and variance np(1-p)
- ▶ The approximation is quite good in practice

• S_n be binomial with parameters n, p

• S_n be binomial with parameters n, p

$$P[S_n \le x] \approx \Phi\left(\frac{x - np}{\sqrt{np(1 - p)}}\right)$$

 $ightharpoonup S_n$ be binomial with parameters n, p

$$P[S_n \le x] \approx \Phi\left(\frac{x - np}{\sqrt{np(1 - p)}}\right)$$

• For example, with p = 0.95

$$P[S_{110} \le 100] \approx \Phi\left(\frac{100 - 110 * 0.95}{\sqrt{110 * 0.05 * 0.95}}\right)$$

 $ightharpoonup S_n$ be binomial with parameters n, p

$$P[S_n \le x] \approx \Phi\left(\frac{x - np}{\sqrt{np(1 - p)}}\right)$$

• For example, with p = 0.95

$$P[S_{110} \le 100] \approx \Phi\left(\frac{100 - 110 * 0.95}{\sqrt{110 * 0.05 * 0.95}}\right) \approx \Phi(-1.97) = 0.025$$

▶ S_n be binomial with parameters n, p

$$P[S_n \le x] \approx \Phi\left(\frac{x - np}{\sqrt{np(1 - p)}}\right)$$

▶ For example, with p = 0.95

$$P[S_{110} \le 100] \approx \Phi\left(\frac{100 - 110 * 0.95}{\sqrt{110 * 0.05 * 0.95}}\right) \approx \Phi(-1.97) = 0.025$$

▶ Since S_n is integer-valued, the LHS above is same for all x between two consecutive integers; but RHS changes

▶ S_n be binomial with parameters n, p

$$P[S_n \le x] \approx \Phi\left(\frac{x - np}{\sqrt{np(1 - p)}}\right)$$

• For example, with p = 0.95

$$P[S_{110} \le 100] \approx \Phi\left(\frac{100 - 110 * 0.95}{\sqrt{110 * 0.05 * 0.95}}\right) \approx \Phi(-1.97) = 0.025$$

- ▶ Since S_n is integer-valued, the LHS above is same for all x between two consecutive integers; but RHS changes
- ▶ To get a good approximation, to calculate $P[S_n \le m]$ one uses $P[S_n \le m + 0.5]$ in the above approximation formula

► CLT allows one to get rate of convergence of law of large numbers

- ► CLT allows one to get rate of convergence of law of large numbers
- ▶ Let X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$

- ► CLT allows one to get rate of convergence of law of large numbers
- ▶ Let X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ By Law of large numbers, $\frac{S_n}{n} \to \mu$.

- ► CLT allows one to get rate of convergence of law of large numbers
- ▶ Let X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ By Law of large numbers, $\frac{S_n}{n} \to \mu$.
- ► Now, by CLT

- CLT allows one to get rate of convergence of law of large numbers
- ▶ Let X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ By Law of large numbers, $\frac{S_n}{n} \to \mu$.
- ► Now, by CLT

$$P\left[\left|\frac{S_n}{n} - \mu\right| > \epsilon\right] = P\left[\left|S_n - n\mu\right| > n\epsilon\right]$$

- CLT allows one to get rate of convergence of law of large numbers
- ▶ Let X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ By Law of large numbers, $\frac{S_n}{n} \to \mu$.
- ► Now, by CLT

$$P\left[\left|\frac{S_n}{n} - \mu\right| > \epsilon\right] = P\left[\left|S_n - n\mu\right| > n\epsilon\right]$$
$$= P\left[\left|\frac{S_n - n\mu}{\sigma\sqrt{n}}\right| > \frac{n\epsilon}{\sigma\sqrt{n}}\right]$$

- CLT allows one to get rate of convergence of law of large numbers
- ▶ Let X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ By Law of large numbers, $\frac{S_n}{n} \to \mu$.
- ► Now, by CLT

$$P\left[\left|\frac{S_n}{n} - \mu\right| > \epsilon\right] = P\left[\left|S_n - n\mu\right| > n\epsilon\right]$$

$$= P\left[\left|\frac{S_n - n\mu}{\sigma\sqrt{n}}\right| > \frac{n\epsilon}{\sigma\sqrt{n}}\right]$$

$$\approx 1 - \left(\Phi\left(\frac{n\epsilon}{\sigma\sqrt{n}}\right) - \Phi\left(-\frac{n\epsilon}{\sigma\sqrt{n}}\right)\right)$$

- CLT allows one to get rate of convergence of law of large numbers
- ▶ Let X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ By Law of large numbers, $\frac{S_n}{n} \to \mu$.
- ► Now, by CLT

$$P\left[\left|\frac{S_n}{n} - \mu\right| > \epsilon\right] = P\left[\left|S_n - n\mu\right| > n\epsilon\right]$$

$$= P\left[\left|\frac{S_n - n\mu}{\sigma\sqrt{n}}\right| > \frac{n\epsilon}{\sigma\sqrt{n}}\right]$$

$$\approx 1 - \left(\Phi\left(\frac{n\epsilon}{\sigma\sqrt{n}}\right) - \Phi\left(-\frac{n\epsilon}{\sigma\sqrt{n}}\right)\right)$$

$$= 2\left(1 - \Phi\left(\frac{n\epsilon}{\sigma\sqrt{n}}\right)\right)$$

(because
$$\Phi(-x) = (1 - \Phi(x))$$
)

▶ let p denote the fraction of population that prefers product A to product B

- let p denote the fraction of population that prefers product A to product B
- ▶ We want to estimate *p*

- ▶ let p denote the fraction of population that prefers product A to product B
- We want to estimate p
- ightharpoonup We conduct a sample survey by asking n people

- ▶ let p denote the fraction of population that prefers product A to product B
- We want to estimate p
- We conduct a sample survey by asking n people
- ▶ We want to make a statement such as

$$p=0.34\pm0.07$$
 with a confidence of 95%

- lacktriangleright let p denote the fraction of population that prefers product A to product B
- We want to estimate p
- We conduct a sample survey by asking n people
- ▶ We want to make a statement such as $p = 0.34 \pm 0.07 \ \textit{with a confidence of} \ 95\%$
- \blacktriangleright Here, the 0.34 would be the sample mean. The other two numbers can be fixed using CLT

• $X_i \in \{0, 1\}$ iid, $EX_i = p$, $S_n = \sum_{i=1}^n X_i$

- $X_i \in \{0, 1\}$ iid, $EX_i = p$, $S_n = \sum_{i=1}^n X_i$
- ▶ Now, by CLT, we have

- $X_i \in \{0, 1\}$ iid, $EX_i = p$, $S_n = \sum_{i=1}^n X_i$
- Now, by CLT, we have

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = P\left[\left|S_n - np\right| > n\epsilon\right]$$

- $X_i \in \{0, 1\} \text{ iid, } EX_i = p, S_n = \sum_{i=1}^n X_i$
- ▶ Now, by CLT, we have

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = P\left[\left|S_n - np\right| > n\epsilon\right]$$
$$= 2\left(1 - \Phi\left(\frac{n\epsilon}{\sqrt{np(1-p)}}\right)\right)$$

- $X_i \in \{0, 1\}$ iid, $EX_i = p$, $S_n = \sum_{i=1}^n X_i$
- ▶ Now, by CLT, we have

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = P\left[\left|S_n - np\right| > n\epsilon\right]$$
$$= 2\left(1 - \Phi\left(\frac{n\epsilon}{\sqrt{np(1-p)}}\right)\right)$$

Suppose we want to satisfy

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = \delta$$

- $lacksquare X_i \in \{0, 1\}$ iid, $EX_i = p$, $S_n = \sum_{i=1}^n X_i$
- ► Now, by CLT, we have

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = P\left[\left|S_n - np\right| > n\epsilon\right]$$
$$= 2\left(1 - \Phi\left(\frac{n\epsilon}{\sqrt{np(1-p)}}\right)\right)$$

Suppose we want to satisfy

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = \delta$$

▶ We can calculate any one of ϵ , δ or n given the other two using the earlier equation.

•
$$X_i \in \{0, 1\}$$
 iid, $EX_i = p$, $S_n = \sum_{i=1}^n X_i$

► Now, by CLT, we have

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = P\left[\left|S_n - np\right| > n\epsilon\right]$$
$$= 2\left(1 - \Phi\left(\frac{n\epsilon}{\sqrt{np(1-p)}}\right)\right)$$

Suppose we want to satisfy

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = \delta$$

- We can calculate any one of ϵ , δ or n given the other two using the earlier equation.
- ▶ But we need value of p for it!

Fortunately, $\sqrt{p(1-p)}$ does not change too much with p

- Fortunately, $\sqrt{p(1-p)}$ does not change too much with p
- ▶ It attains its maximum value of 0.5 at p = 0.5

- ▶ Fortunately, $\sqrt{p(1-p)}$ does not change too much with p
- ▶ It attains its maximum value of 0.5 at p = 0.5
- ▶ It is 0.458 at p = 0.3 and is 0.4 at p = 0.2

- Fortunately, $\sqrt{p(1-p)}$ does not change too much with p
- ▶ It attains its maximum value of 0.5 at p = 0.5
- ▶ It is 0.458 at p = 0.3 and is 0.4 at p = 0.2
- ▶ One normally fixes this variance as 0.5 or 0.45 to calculate the sample size, n.

- Fortunately, $\sqrt{p(1-p)}$ does not change too much with p
- ▶ It attains its maximum value of 0.5 at p = 0.5
- ▶ It is 0.458 at p = 0.3 and is 0.4 at p = 0.2
- ▶ One normally fixes this variance as 0.5 or 0.45 to calculate the sample size, n.
- ▶ There are other ways of handling it

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = 2\left(1 - \Phi\left(\frac{\epsilon\sqrt{n}}{\sqrt{p(1-p)}}\right)\right)$$

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = 2\left(1 - \Phi\left(\frac{\epsilon\sqrt{n}}{\sqrt{p(1-p)}}\right)\right)$$

▶ Suppose n = 900 and $\epsilon = 0.025$.

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = 2\left(1 - \Phi\left(\frac{\epsilon\sqrt{n}}{\sqrt{p(1-p)}}\right)\right)$$

▶ Suppose n=900 and $\epsilon=0.025$. Let us approximate $\sqrt{p(1-p)}=0.45$.

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = 2\left(1 - \Phi\left(\frac{\epsilon\sqrt{n}}{\sqrt{p(1-p)}}\right)\right)$$

▶ Suppose n=900 and $\epsilon=0.025$. Let us approximate $\sqrt{p(1-p)}=0.45$. Then

$$2\left(1-\Phi\left(\frac{0.025*30}{0.45}\right)\right) = 2(1-\Phi(1.66)) \approx 0.1$$

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = 2\left(1 - \Phi\left(\frac{\epsilon\sqrt{n}}{\sqrt{p(1-p)}}\right)\right)$$

▶ Suppose n=900 and $\epsilon=0.025$. Let us approximate $\sqrt{p(1-p)}=0.45$. Then

$$2\left(1 - \Phi\left(\frac{0.025 * 30}{0.45}\right)\right) = 2(1 - \Phi(1.66)) \approx 0.1$$

▶ If we took $\sqrt{p(1-p)} = 0.5$ we get the value as 0.14

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = 2\left(1 - \Phi\left(\frac{\epsilon\sqrt{n}}{\sqrt{p(1-p)}}\right)\right)$$

▶ Suppose n=900 and $\epsilon=0.025$. Let us approximate $\sqrt{p(1-p)}=0.45$. Then

$$2\left(1 - \Phi\left(\frac{0.025 * 30}{0.45}\right)\right) = 2(1 - \Phi(1.66)) \approx 0.1$$

- ▶ If we took $\sqrt{p(1-p)} = 0.5$ we get the value as 0.14
- ▶ If we use Chebyshev inequality with variance as 0.5 we get the bound as 0.8

$$P\left[\left|\frac{S_n}{n} - p\right| > \epsilon\right] = 2\left(1 - \Phi\left(\frac{\epsilon\sqrt{n}}{\sqrt{p(1-p)}}\right)\right)$$

▶ Suppose n=900 and $\epsilon=0.025$. Let us approximate $\sqrt{p(1-p)}=0.45$. Then

$$2\left(1 - \Phi\left(\frac{0.025 * 30}{0.45}\right)\right) = 2(1 - \Phi(1.66)) \approx 0.1$$

- ▶ If we took $\sqrt{p(1-p)} = 0.5$ we get the value as 0.14
- ▶ If we use Chebyshev inequality with variance as 0.5 we get the bound as 0.8
- If we change ϵ to 0.05, then at variance equal to 0.5 the probability becomes about 0.02 while the Chebyshev bound would be about 0.2

▶ Let X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$.

- ▶ Let X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$.
- ▶ Using CLT, we get

$$P\left[\left|\frac{S_n}{n} - \mu\right| > c\right] = 2\left(1 - \Phi\left(\frac{c\sqrt{n}}{\sigma}\right)\right)$$

- ▶ Let X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$.
- Using CLT, we get

$$P\left[\left|\frac{S_n}{n} - \mu\right| > c\right] = 2\left(1 - \Phi\left(\frac{c\sqrt{n}}{\sigma}\right)\right)$$

▶ If the RHS above is δ , then we can say that $\frac{S_n}{n} \in [\mu - c, \ \mu + c]$ with probability $(1 - \delta)$

- ▶ Let X_i iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$.
- Using CLT, we get

$$P\left[\left|\frac{S_n}{n} - \mu\right| > c\right] = 2\left(1 - \Phi\left(\frac{c\sqrt{n}}{\sigma}\right)\right)$$

- ▶ If the RHS above is δ , then we can say that $\frac{S_n}{n} \in [\mu c, \ \mu + c]$ with probability (1δ)
- ▶ This interval is called the $100(1-\delta)\%$ confidence interval.

$$P\left[\left|\frac{S_n}{n} - \mu\right| > c\right] = 2\left(1 - \Phi\left(\frac{c\sqrt{n}}{\sigma}\right)\right)$$

$$P\left[\left|\frac{S_n}{n} - \mu\right| > c\right] = 2\left(1 - \Phi\left(\frac{c\sqrt{n}}{\sigma}\right)\right)$$

▶ Suppose $c = \frac{1.96\sigma}{\sqrt{n}}$

$$P\left[\left|\frac{S_n}{n} - \mu\right| > c\right] = 2\left(1 - \Phi\left(\frac{c\sqrt{n}}{\sigma}\right)\right)$$

- ▶ Suppose $c = \frac{1.96\sigma}{\sqrt{n}}$
- ► Then

$$P\left[\left|\frac{S_n}{n} - \mu\right| > \frac{1.96\sigma}{\sqrt{n}}\right] = 2(1 - \Phi(1.96)) = 0.05$$

$$P\left[\left|\frac{S_n}{n} - \mu\right| > c\right] = 2\left(1 - \Phi\left(\frac{c\sqrt{n}}{\sigma}\right)\right)$$

- ▶ Suppose $c = \frac{1.96\sigma}{\sqrt{n}}$
- ► Then

$$P\left[\left|\frac{S_n}{n} - \mu\right| > \frac{1.96\sigma}{\sqrt{n}}\right] = 2(1 - \Phi(1.96)) = 0.05$$

▶ Denoting $\bar{X} = \frac{S_n}{n}$, the 95% confidence interval is

$$\left[\bar{X} - \frac{1.96\sigma}{\sqrt{n}}, \ \bar{X} + \frac{1.96\sigma}{\sqrt{n}}\right]$$

$$P\left[\left|\frac{S_n}{n} - \mu\right| > c\right] = 2\left(1 - \Phi\left(\frac{c\sqrt{n}}{\sigma}\right)\right)$$

- ▶ Suppose $c = \frac{1.96\sigma}{\sqrt{n}}$
- ► Then

$$P\left[\left|\frac{S_n}{n} - \mu\right| > \frac{1.96\sigma}{\sqrt{n}}\right] = 2(1 - \Phi(1.96)) = 0.05$$

- ▶ Denoting $\bar{X} = \frac{S_n}{n}$, the 95% confidence interval is $\left[\bar{X} \frac{1.96\sigma}{\sqrt{n}}, \; \bar{X} + \frac{1.96\sigma}{\sqrt{n}}\right]$
- lacktriangle One generally uses an estimate for σ obtained from X_i

$$P\left[\left|\frac{S_n}{n} - \mu\right| > c\right] = 2\left(1 - \Phi\left(\frac{c\sqrt{n}}{\sigma}\right)\right)$$

- Suppose $c = \frac{1.96\sigma}{\sqrt{n}}$
- Then

$$P\left[\left|\frac{S_n}{n} - \mu\right| > \frac{1.96\sigma}{\sqrt{n}}\right] = 2(1 - \Phi(1.96)) = 0.05$$

- ▶ Denoting $\bar{X}=\frac{S_n}{n}$, the 95% confidence interval is $\left[\bar{X}-\frac{1.96\sigma}{\sqrt{n}},\; \bar{X}+\frac{1.96\sigma}{\sqrt{n}}\right]$
- \blacktriangleright One generally uses an estimate for σ obtained from X_i
- ► In analyzing any experimental data the confidence intervals or the variance term is important

► CLT essentially states that sum of many independent random variables behaves like a Gaussian random variable

- CLT essentially states that sum of many independent random variables behaves like a Gaussian random variable
- It is very useful in many statistics applications.

- CLT essentially states that sum of many independent random variables behaves like a Gaussian random variable
- ▶ It is very useful in many statistics applications.
- We stated CLT for iid random variables.

- CLT essentially states that sum of many independent random variables behaves like a Gaussian random variable
- It is very useful in many statistics applications.
- We stated CLT for iid random variables.
- ▶ While independence is important, all rv need not have the same distribution.

- CLT essentially states that sum of many independent random variables behaves like a Gaussian random variable
- It is very useful in many statistics applications.
- We stated CLT for iid random variables.
- ▶ While independence is important, all rv need not have the same distribution.
- Essentially, the variances should not die out.

• We have been considering sequences: X_n , $n = 1, 2, \cdots$

- ▶ We have been considering sequences: X_n , $n = 1, 2, \cdots$
- ► We have so far considered only the asymptotic properties or limits of such sequences.

- ▶ We have been considering sequences: X_n , $n = 1, 2, \cdots$
- ▶ We have so far considered only the asymptotic properties or limits of such sequences.
- ► Any such sequence is an example of what is called a random process or stochastic process

- ▶ We have been considering sequences: X_n , $n = 1, 2, \cdots$
- ▶ We have so far considered only the asymptotic properties or limits of such sequences.
- Any such sequence is an example of what is called a random process or stochastic process
- ► Given *n* rv, they are completely characterized by their joint distribution.

- ▶ We have been considering sequences: X_n , $n = 1, 2, \cdots$
- ▶ We have so far considered only the asymptotic properties or limits of such sequences.
- Any such sequence is an example of what is called a random process or stochastic process
- ► Given *n* rv, they are completely characterized by their joint distribution.
- How doe we specify or characterize an infinite collection of random variables?

- ▶ We have been considering sequences: X_n , $n = 1, 2, \cdots$
- ▶ We have so far considered only the asymptotic properties or limits of such sequences.
- Any such sequence is an example of what is called a random process or stochastic process
- ► Given *n* rv, they are completely characterized by their joint distribution.
- ► How doe we specify or characterize an infinite collection of random variables?
- We need the joint distribution of every finite subcollection of them.

Let X_n , $n = 0, 1, \cdots$ be a sequence of discrete random variables taking values in S.

Let X_n , $n=0,1,\cdots$ be a sequence of discrete random variables taking values in S. Note that S would be countable

- Let X_n , $n = 0, 1, \cdots$ be a sequence of discrete random variables taking values in S. Note that S would be countable
- ▶ We say it is a Markov chain if

$$P[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1} \cdots X_0 = x_0] = P[X_{n+1} = x_{n+1} | X_n = x_n], \forall x_n \in X_n$$

- Let X_n , $n=0,1,\cdots$ be a sequence of discrete random variables taking values in S. Note that S would be countable
- ▶ We say it is a Markov chain if

$$P[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1} \cdots X_0 = x_0] = P[X_{n+1} = x_{n+1} | X_n = x_n], \forall x_n \in X_n$$

We can write it as

$$P[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} \cdots X_0] = P[X_{n+1} = x_{n+1} | X_n = x_n], \forall x_i$$

- Let X_n , $n=0,1,\cdots$ be a sequence of discrete random variables taking values in S. Note that S would be countable
- ▶ We say it is a Markov chain if

$$P[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1} \cdots X_0 = x_0] = P[X_{n+1} = x_{n+1} | X_n = x_n], \forall x_n \in \mathbb{R}$$

We can write it as

$$P[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} \cdots X_0] = P[X_{n+1} = x_{n+1} | X_n = x_n], \forall x_i$$

▶ Conditioned on X_n , X_{n+1} is independent of X_{n-1}, X_{n-2}, \cdots

- Let X_n , $n = 0, 1, \cdots$ be a sequence of discrete random variables taking values in S. Note that S would be countable
- ▶ We say it is a Markov chain if

$$P[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1} \cdots X_0 = x_0] = P[X_{n+1} = x_{n+1} | X_n = x_n], \forall x_n \in \mathbb{R}$$

We can write it as

$$P[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} \cdots X_0] = P[X_{n+1} = x_{n+1} | X_n = x_n], \forall x_i$$

- ▶ Conditioned on X_n , X_{n+1} is independent of X_{n-1}, X_{n-2}, \cdots
- We think of X_n as state at n

- Let X_n , $n = 0, 1, \cdots$ be a sequence of discrete random variables taking values in S. Note that S would be countable
- ▶ We say it is a Markov chain if

$$P[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1} \cdots X_0 = x_0] = P[X_{n+1} = x_{n+1} | X_n = x_n], \forall x_n \in \mathbb{R}$$

We can write it as

$$P[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} \cdots X_0] = P[X_{n+1} = x_{n+1} | X_n = x_n], \forall x_i$$

- ▶ Conditioned on X_n , X_{n+1} is independent of X_{n-1}, X_{n-2}, \cdots
- ▶ We think of X_n as state at n
- ► For a Markov chain, given the current state, the future evolution is independent of the history of how you reached the current state

▶ Let X_i be iid discrete rv taking integer values.

- Let X_i be iid discrete rv taking integer values.
- Let $Y_0 = 0$ and $Y_n = \sum_{i=1}^n X_i$

- Let X_i be iid discrete rv taking integer values.
- Let $Y_0 = 0$ and $Y_n = \sum_{i=1}^n X_i$
- $Y_n, n = 0, 1, \cdots$ is a Markov chain with state space as integers

- Let X_i be iid discrete rv taking integer values.
- Let $Y_0 = 0$ and $Y_n = \sum_{i=1}^n X_i$
- $Y_n, n = 0, 1, \cdots$ is a Markov chain with state space as integers
- Note that $Y_{n+1} = Y_n + X_{n+1}$ and X_{n+1} is independent of Y_0, \dots, Y_n .

- Let X_i be iid discrete rv taking integer values.
- Let $Y_0 = 0$ and $Y_n = \sum_{i=1}^n X_i$
- $Y_n, n = 0, 1, \cdots$ is a Markov chain with state space as integers
- Note that $Y_{n+1} = Y_n + X_{n+1}$ and X_{n+1} is independent of Y_0, \dots, Y_n .

$$P[Y_{n+1} = y | Y_n = x, Y_{n-1}, \cdots] = P[X_{n+1} = y - x]$$

- ▶ Let *X_i* be iid discrete rv taking integer values.
- Let $Y_0 = 0$ and $Y_n = \sum_{i=1}^n X_i$
- $Y_n, n = 0, 1, \cdots$ is a Markov chain with state space as integers
- Note that $Y_{n+1} = Y_n + X_{n+1}$ and X_{n+1} is independent of Y_0, \dots, Y_n .

$$P[Y_{n+1} = y | Y_n = x, Y_{n-1}, \cdots] = P[X_{n+1} = y - x]$$

▶ Thus, Y_{n+1} is conditionally independent of Y_{n-1}, \cdots conditioned on Y_n

▶ In this example, we can think of X_n as the number of people or things arriving at a facility in the n^{th} time interval.

- ▶ In this example, we can think of X_n as the number of people or things arriving at a facility in the n^{th} time interval.
- ▶ Then Y_n would be total arrivals till end of n^{th} time interval.

- ▶ In this example, we can think of X_n as the number of people or things arriving at a facility in the n^{th} time interval.
- ▶ Then Y_n would be total arrivals till end of n^{th} time interval.
- Number of packets coming into a network switch, number people joining the queue in a bank, number of infections till date are all Markov chains.

- ▶ In this example, we can think of X_n as the number of people or things arriving at a facility in the n^{th} time interval.
- ▶ Then Y_n would be total arrivals till end of n^{th} time interval.
- Number of packets coming into a network switch, number people joining the queue in a bank, number of infections till date are all Markov chains.
- ► This is a useful model for many dynamic systems or processes

► The Markov property is: given current state, the future evolution is independent of the history of how we came to current state.

- ► The Markov property is: given current state, the future evolution is independent of the history of how we came to current state.
- It essentially means the current state contains all needed information about history

- ► The Markov property is: given current state, the future evolution is independent of the history of how we came to current state.
- ► It essentially means the current state contains all needed information about history
- ► We are considering the case where states as well as time are discrete.

- ► The Markov property is: given current state, the future evolution is independent of the history of how we came to current state.
- It essentially means the current state contains all needed information about history
- ► We are considering the case where states as well as time are discrete.
- ▶ It can be more general and we discuss some of them

Let $\{X_n, n = 0, 1, \dots\}$ be a Markov Chain with (countable) state space S

Let $\{X_n, n = 0, 1, \dots\}$ be a Markov Chain with (countable) state space S

$$Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} \cdots X_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n], \forall x$$

Let $\{X_n, n = 0, 1, \dots\}$ be a Markov Chain with (countable) state space S

$$Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} \cdots X_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n], \forall x$$

(Notice change of notation)

Let $\{X_n, n = 0, 1, \dots\}$ be a Markov Chain with (countable) state space S

$$Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} \cdots X_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n], \forall x$$

(Notice change of notation)

$$P(x,y) = Pr[X_{n+1} = y | X_n = x]$$

Let $\{X_n, n = 0, 1, \dots\}$ be a Markov Chain with (countable) state space S

$$Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} \cdots X_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n], \forall x$$

(Notice change of notation)

▶ Define function $P: S \times S \rightarrow [0, 1]$ by

$$P(x,y) = Pr[X_{n+1} = y | X_n = x]$$

► *P* is called the state transition probability function. It satisfies

Let $\{X_n, n = 0, 1, \dots\}$ be a Markov Chain with (countable) state space S

$$Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} \cdots X_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n], \forall x$$

(Notice change of notation)

$$P(x,y) = Pr[X_{n+1} = y | X_n = x]$$

- ► *P* is called the state transition probability function. It satisfies
 - $P(x,y) \ge 0, \ \forall x,y \in S$

Let $\{X_n, n = 0, 1, \dots\}$ be a Markov Chain with (countable) state space S

$$Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} \cdots X_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n], \forall x$$

(Notice change of notation)

$$P(x,y) = Pr[X_{n+1} = y | X_n = x]$$

- ► *P* is called the state transition probability function. It satisfies
 - $P(x,y) > 0, \ \forall x,y \in S$

Let $\{X_n, n=0,1,\cdots\}$ be a Markov Chain with (countable) state space S

$$Pr[X_{n+1} = x_{n+1}|X_n = x_n, X_{n-1} \cdots X_0] = Pr[X_{n+1} = x_{n+1}|X_n = x_n], \forall x_n \in \mathbb{R}$$

(Notice change of notation)

$$P(x,y) = Pr[X_{n+1} = y | X_n = x]$$

- ▶ P is called the state transition probability function. It satisfies
 - $P(x,y) > 0, \ \forall x,y \in S$
 - $\sum_{y \in S} P(x, y) = 1, \forall x \in S$
- ▶ If S is finite then P can be represented as a matrix

▶ The state transition probability function is given by

$$P(x,y) = Pr[X_{n+1} = y | X_n = x]$$

▶ The state transition probability function is given by

$$P(x,y) = Pr[X_{n+1} = y | X_n = x]$$

▶ In general, this can depend on *n* though our notation does not show it

▶ The state transition probability function is given by

$$P(x,y) = Pr[X_{n+1} = y | X_n = x]$$

- ▶ In general, this can depend on *n* though our notation does not show it
- ▶ If the value of that probability does not depend on *n* then the chain is called homogeneous

The state transition probability function is given by

$$P(x,y) = Pr[X_{n+1} = y | X_n = x]$$

- ▶ In general, this can depend on *n* though our notation does not show it
- ▶ If the value of that probability does not depend on *n* then the chain is called homogeneous
- ► For a homogeneous chain we have

$$Pr[X_{n+1} = y | X_n = x] = Pr[X_1 = y | X_0 = x], \ \forall n$$

The state transition probability function is given by

$$P(x,y) = Pr[X_{n+1} = y | X_n = x]$$

- ▶ In general, this can depend on *n* though our notation does not show it
- ▶ If the value of that probability does not depend on *n* then the chain is called homogeneous
- ► For a homogeneous chain we have

$$Pr[X_{n+1} = y | X_n = x] = Pr[X_1 = y | X_0 = x], \ \forall n$$

In this course we will consider only homogeneous chains

Let $\{X_n\}$ be a Markov Chain with state space S

- ▶ Let $\{X_n\}$ be a Markov Chain with state space S
- ▶ Define function $\pi_0: S \to [0, 1]$ by

$$\pi_0(x) = \Pr[X_0 = x]$$

- ▶ Let $\{X_n\}$ be a Markov Chain with state space S
- ▶ Define function $\pi_0: S \to [0, 1]$ by

$$\pi_0(x) = \Pr[X_0 = x]$$

• It is the pmf of the rv X_0

- ▶ Let $\{X_n\}$ be a Markov Chain with state space S
- ▶ Define function $\pi_0: S \to [0, 1]$ by

$$\pi_0(x) = \Pr[X_0 = x]$$

- It is the pmf of the rv X_0
- Hence it satisfies

- ▶ Let $\{X_n\}$ be a Markov Chain with state space S
- ▶ Define function $\pi_0: S \to [0, 1]$ by

$$\pi_0(x) = \Pr[X_0 = x]$$

- It is the pmf of the rv X_0
- Hence it satisfies
 - \bullet $\pi_0(x) \ge 0, \ \forall x \in S$

- ▶ Let $\{X_n\}$ be a Markov Chain with state space S
- ▶ Define function $\pi_0: S \to [0, 1]$ by

$$\pi_0(x) = Pr[X_0 = x]$$

- It is the pmf of the rv X_0
- Hence it satisfies
 - \bullet $\pi_0(x) \geq 0, \ \forall x \in S$
 - $\sum_{x \in S} \pi_0(x) = 1$

- ▶ Let $\{X_n\}$ be a Markov Chain with state space S
- ▶ Define function $\pi_0: S \to [0, 1]$ by

$$\pi_0(x) = Pr[X_0 = x]$$

- It is the pmf of the rv X_0
- Hence it satisfies
 - \bullet $\pi_0(x) > 0, \forall x \in S$
 - $\sum_{x \in S} \pi_0(x) = 1$
- From now on, without loss of generality, we take $S = \{0, 1, \cdots\}$

Let X_n be a (homogeneous) Markov chain

- Let X_n be a (homogeneous) Markov chain
- ► Then we have

- Let X_n be a (homogeneous) Markov chain
- ► Then we have

$$Pr[X_0 = x_0, X_1 = x_1] = Pr[X_1 = x_1 | X_0 = x_0] Pr[X_0 = x_0], \forall x_0, x_1$$

- Let X_n be a (homogeneous) Markov chain
- ► Then we have

$$Pr[X_0 = x_0, X_1 = x_1] = Pr[X_1 = x_1 | X_0 = x_0] Pr[X_0 = x_0], \forall x_0, x_1$$

= $P(x_0, x_1)\pi_0(x_0)$

- Let X_n be a (homogeneous) Markov chain
- ▶ Then we have

$$Pr[X_0 = x_0, X_1 = x_1] = Pr[X_1 = x_1 | X_0 = x_0] Pr[X_0 = x_0], \forall x_0, x_1$$

= $P(x_0, x_1)\pi_0(x_0) = \pi_0(x_0)P(x_0, x_1)$

- Let X_n be a (homogeneous) Markov chain
- ► Then we have

$$Pr[X_0 = x_0, X_1 = x_1] = Pr[X_1 = x_1 | X_0 = x_0] Pr[X_0 = x_0], \forall x_0, x_1$$

= $P(x_0, x_1)\pi_0(x_0) = \pi_0(x_0)P(x_0, x_1)$

- Let X_n be a (homogeneous) Markov chain
- ► Then we have

$$Pr[X_0 = x_0, X_1 = x_1] = Pr[X_1 = x_1 | X_0 = x_0] Pr[X_0 = x_0], \forall x_0, x_1$$

= $P(x_0, x_1)\pi_0(x_0) = \pi_0(x_0)P(x_0, x_1)$

$$Pr[X_0 = x_0, X_1 = x_1, X_2 = x_2] = Pr[X_2 = x_2 | X_1 = x_1, X_0 = x_0] \cdot Pr[X_0 = x_0, X_1 = x_1]$$

- Let X_n be a (homogeneous) Markov chain
- ► Then we have

$$Pr[X_0 = x_0, X_1 = x_1] = Pr[X_1 = x_1 | X_0 = x_0] Pr[X_0 = x_0], \forall x_0, x_1$$
$$= P(x_0, x_1) \pi_0(x_0) = \pi_0(x_0) P(x_0, x_1)$$

$$Pr[X_0 = x_0, X_1 = x_1, X_2 = x_2] = Pr[X_2 = x_2 | X_1 = x_1, X_0 = x_0] \cdot$$

$$Pr[X_0 = x_0, X_1 = x_1]$$

$$= Pr[X_2 = x_2 | X_1 = x_1] \cdot$$

$$Pr[X_0 = x_0, X_1 = x_1]$$

- Let X_n be a (homogeneous) Markov chain
- ▶ Then we have

$$Pr[X_0 = x_0, X_1 = x_1] = Pr[X_1 = x_1 | X_0 = x_0] Pr[X_0 = x_0], \forall x_0, x_1$$
$$= P(x_0, x_1) \pi_0(x_0) = \pi_0(x_0) P(x_0, x_1)$$

$$Pr[X_0 = x_0, X_1 = x_1, X_2 = x_2] = Pr[X_2 = x_2 | X_1 = x_1, X_0 = x_0] \cdot$$

$$Pr[X_0 = x_0, X_1 = x_1]$$

$$= Pr[X_2 = x_2 | X_1 = x_1] \cdot$$

$$Pr[X_0 = x_0, X_1 = x_1]$$

$$= P(x_1, x_2) P(x_0, x_1) \pi_0(x_0)$$

- Let X_n be a (homogeneous) Markov chain
- ► Then we have

$$Pr[X_0 = x_0, X_1 = x_1] = Pr[X_1 = x_1 | X_0 = x_0] Pr[X_0 = x_0], \forall x_0, x_1$$
$$= P(x_0, x_1) \pi_0(x_0) = \pi_0(x_0) P(x_0, x_1)$$

$$Pr[X_0 = x_0, X_1 = x_1, X_2 = x_2] = Pr[X_2 = x_2 | X_1 = x_1, X_0 = x_0] \cdot Pr[X_0 = x_0, X_1 = x_1]$$

$$= Pr[X_2 = x_2 | X_1 = x_1] \cdot Pr[X_0 = x_0, X_1 = x_1]$$

$$= P(x_1, x_2) P(x_0, x_1) \pi_0(x_0)$$

$$= \pi_0(x_0) P(x_0, x_1) P(x_1, x_2)$$

$$Pr[X_0 = x_0, \dots X_n = x_n] = Pr[X_n = x_n | X_{n-1} = x_{n-1}, \dots X_0 = x_0] \cdot Pr[X_{n-1} = x_{n-1}, \dots X_0 = x_0]$$

$$Pr[X_0 = x_0, \dots X_n = x_n] = Pr[X_n = x_n | X_{n-1} = x_{n-1}, \dots X_0 = x_0] \cdot Pr[X_{n-1} = x_{n-1}, \dots X_0 = x_0]$$

$$= Pr[X_n = x_n | X_{n-1} = x_{n-1}] \cdot Pr[X_{n-1} = x_{n-1}, \dots X_0 = x_0]$$

$$Pr[X_0 = x_0, \dots X_n = x_n] = Pr[X_n = x_n | X_{n-1} = x_{n-1}, \dots X_0 = x_0] \cdot Pr[X_{n-1} = x_{n-1}, \dots X_0 = x_0]$$

$$= Pr[X_n = x_n | X_{n-1} = x_{n-1}] \cdot Pr[X_{n-1} = x_{n-1}, \dots X_0 = x_0]$$

$$= P(x_{n-1}, x_n) Pr[X_{n-1} = x_{n-1}, \dots X_0 = x_0]$$

$$Pr[X_{0} = x_{0}, \cdots X_{n} = x_{n}] = Pr[X_{n} = x_{n} | X_{n-1} = x_{n-1}, \cdots X_{0} = x_{0}] \cdot Pr[X_{n-1} = x_{n-1}, \cdots X_{0} = x_{0}]$$

$$= Pr[X_{n} = x_{n} | X_{n-1} = x_{n-1}] \cdot Pr[X_{n-1} = x_{n-1}, \cdots X_{0} = x_{0}]$$

$$= P(x_{n-1}, x_{n}) Pr[X_{n-1} = x_{n-1}, \cdots X_{0} = x_{0}]$$

$$= P(x_{n-1}, x_{n}) Pr[X_{n-1} = x_{n-1} | X_{n-2} = x_{n-2}] \cdot Pr[X_{n-2} = x_{n-2}, \cdots X_{0} = x_{0}]$$

$$Pr[X_0 = x_0, \cdots X_n = x_n] = Pr[X_n = x_n | X_{n-1} = x_{n-1}, \cdots X_0 = x_0] \cdot Pr[X_{n-1} = x_{n-1}, \cdots X_0 = x_0]$$

$$= Pr[X_n = x_n | X_{n-1} = x_{n-1}] \cdot Pr[X_{n-1} = x_{n-1}, \cdots X_0 = x_0]$$

$$= P(x_{n-1}, x_n) Pr[X_{n-1} = x_{n-1}, \cdots X_0 = x_0]$$

$$= P(x_{n-1}, x_n) Pr[X_{n-1} = x_{n-1} | X_{n-2} = x_{n-2}] \cdot Pr[X_{n-2} = x_{n-2}, \cdots X_0 = x_0]$$

$$\vdots$$

 $= \pi_0(x_0)P(x_0,x_1)\cdots P(x_{n-1},x_n)$

▶ We showed

$$Pr[X_0 = x_0, \dots X_n = x_n] = \pi_0(x_0)P(x_0, x_1) \dots P(x_{n-1}, x_n)$$

▶ We showed

$$Pr[X_0 = x_0, \dots X_n = x_n] = \pi_0(x_0)P(x_0, x_1)\dots P(x_{n-1}, x_n)$$

▶ This shows that the transition probabilities, P, and initial state probabilities, π_0 , completely specify the chain.

$$Pr[X_0 = x_0, \dots X_n = x_n] = \pi_0(x_0)P(x_0, x_1)\dots P(x_{n-1}, x_n)$$

- ► This shows that the transition probabilities, P, and initial state probabilities, π_0 , completely specify the chain.
- They give us the joint distribution of any finite subcollection of the rv's

$$Pr[X_0 = x_0, \dots X_n = x_n] = \pi_0(x_0)P(x_0, x_1)\dots P(x_{n-1}, x_n)$$

- ► This shows that the transition probabilities, P, and initial state probabilities, π_0 , completely specify the chain.
- ► They give us the joint distribution of any finite subcollection of the rv's
- ▶ Suppose you want joint distribution of $X_{i_1}, \dots X_{i_k}$

$$Pr[X_0 = x_0, \dots X_n = x_n] = \pi_0(x_0)P(x_0, x_1)\dots P(x_{n-1}, x_n)$$

- ► This shows that the transition probabilities, P, and initial state probabilities, π_0 , completely specify the chain.
- They give us the joint distribution of any finite subcollection of the rv's
- Suppose you want joint distribution of $X_{i_1}, \cdots X_{i_k}$
- $Let m = \max(i_1, \cdots, i_k)$

$$Pr[X_0 = x_0, \dots X_n = x_n] = \pi_0(x_0)P(x_0, x_1)\dots P(x_{n-1}, x_n)$$

- ▶ This shows that the transition probabilities, P, and initial state probabilities, π_0 , completely specify the chain.
- They give us the joint distribution of any finite subcollection of the rv's
- Suppose you want joint distribution of $X_{i_1}, \cdots X_{i_k}$
- $Let m = \max(i_1, \cdots, i_k)$
- We know how to get joint distribution of X_0, \dots, X_m .

$$Pr[X_0 = x_0, \dots X_n = x_n] = \pi_0(x_0)P(x_0, x_1)\dots P(x_{n-1}, x_n)$$

- ► This shows that the transition probabilities, P, and initial state probabilities, π_0 , completely specify the chain.
- They give us the joint distribution of any finite subcollection of the rv's
- Suppose you want joint distribution of $X_{i_1}, \cdots X_{i_k}$
- We know how to get joint distribution of X_0, \dots, X_m .
- ▶ The joint distribution of $X_{i_1}, \dots X_{i_k}$ is now calculated as a marginal distribution from the joint distribution of X_0, \dots, X_m