

Graph Denoising for Molecular Imaging

Cédric Mendelin <cedric.mendelin@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel

26.06.2022

Outline

- Molecular Imaging Methods
- 2 Graphs & Manifolds
- 3 GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

Signal-to-noise-ration (SNR)

Reconstruction

SNR is a measure, which compares the power of an input signal to the power of the undesired noise.

Outline

- Molecular Imaging Methods
- Graphs & Manifolds
- GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

Cryo-Electron Microscopy (Cryo-EM)

- Enables observation of molecules in near atomic resolution.
- > Major motivation for Thesis.
- During freezing, molecules rotate randomly.
- > Frozen molecules are fragile, electron microscope needs to work with low power.
- Observations can be reconstructed to 3D model.

Cryo-Electron Microscopy (Cryo-EM)

- > Enables observation of molecules in near atomic resolution.
- > Major motivation for Thesis.
- > During freezing, molecules rotate randomly.
- > Frozen molecules are fragile, electron microscope needs to work with low power.
- Observations can be reconstructed to 3D model.

Only single particle cryo-EM is considered.

Cryo-EM

Cryo-EM

Figure: Cryo-EM overview

Molecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Questions Reference

Cryo-EM challenges

- > High-noise level
- Unknown rotation during freezing
- > (Structural variety of observations)

(b) Noisy micrograph

Molecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Questions Reference

Computed Tomography (CT)

- Related to cryo-EM
- Can be seen as a simpler version in 2D
- Good to start with towards a cryo-EM algorithm

(a) Biological sampel

(b) clean Sinogram

Observation

Observation

$$y = p + \eta$$

$$y_i = (A(x, \theta_i))$$

$$y_i[j] = p_i[j] + \eta_i[j] \quad \text{with } 1 \le i \le N, 1 \le j \le M$$

$$(1)$$

- > v: noisy observation
- > p: noiseless observation
- η : noise, assumed $\eta_i \sim \mathcal{N}(0, \sigma^2)$
- θ_i : observation angle

- > N: number of observations
- > M: observation dimension
- $A: L^2(\Omega) \to \mathbb{R}^M, x \mapsto A(x; \theta_i)$:
 - a non-linear operator

Molecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Questions Reference

Observation - Computed Tomography

(a) Biological Sample

(b) CT Observation - sinogram

Molecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Questions Reference

Observation - Cryo-EM

(a) Biological Sample

(b) Cryo-EM Observation - micrographs

Reconstruction

Reconstruction

Recon:
$$\mathbb{R}^{M \times N} \to \mathbb{R}^{M \times M}$$

 $y \mapsto Recon(y; \theta)$ (2)

 $Recon(p, \theta) \approx x$ $Recon(p, \theta) \not\approx x$

(a) Reconstruction clean: (b) Reconstruction noisy:

Problem and Goal

Problem

p not observable directly only y is observable.

Problem and Goal

Problem

p not observable directly only y is observable.

Goal

$$denoiser: (p_i + \eta) \mapsto y_i^* \approx y_i$$

Problem and Goal

Problem

p not observable directly only y is observable.

Goal

denoiser :
$$(p_i + \eta) \mapsto y_i^* \approx y_i$$

$$Recon(denoiser(y; \theta)) \approx x$$

Outline

- Molecular Imaging Methods
- 2 Graphs & Manifolds
- GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

Graph - Definitions

Graph Definition

A graph is defined as $G = \langle V, E \rangle$, where V is a set of nodes and E is a set of edges.

Molecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Questions Reference

Graph - Definitions

Graph Definition

A graph is defined as $G = \langle V, E \rangle$, where V is a set of nodes and E is a set of edges.

Nodes

 $(n_1, n_2, \dots) \in \mathbb{R}^F$, with F as node feature dimensions.

Edges

Edges are defined as a set of tuples (i, j), where i and j determine the index of the nodes.

Figure: Sample graph

Graph - Definitions - Adjacency Matrix

Adjacency Matrix

The binary adjacency matrix of graph $G = \langle V, E \rangle$ is defined as:

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0, & \text{otherwise} \end{cases}$$
 (3)

Graph - Definitions - Adjacency Matrix

Adjacency Matrix

The binary adjacency matrix of graph $G = \langle V, E \rangle$ is defined as:

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0, & \text{otherwise} \end{cases}$$
 (3)

Figure: Sample graph

Graph - Definitions - Degree

Degree of a node

The *degree* of a node is defined as the number of (incoming) edges.

Degree Matrix of Graph G

Is a diagonal matrix with degree of nodes as entries.

$$D_{ii} = degree(n_i)$$

Graph - Definitions - Degree

Degree of a node

The *degree* of a node is defined as the number of (incoming) edges.

Degree Matrix of Graph G

Is a diagonal matrix with degree of nodes as entries.

$$D_{ii} = degree(n_i)$$

Figure: Sample graph

Graph for Molecular Imaging Observation

- > Nodes: Single observation y_i
- Edges: Use k-nearest neighbours (k-NN) to construct a graph
- > Define similarity measure:

Graph for Molecular Imaging Observation

- > Nodes: Single observation v_i
- Edges: Use k-nearest neighbours (k-NN) to construct a graph
- Define similarity measure:

Figure: Sample graph for cryo-EM observation

Graph Laplacian (GL)

- > What can we use this graph for?
- Coifman, Shkolnisky, et al. 2008 used it to approximate angles:

Low-dimensional Embedding

- 1. Construct a k-NN graph from observations.
- 2. Calculate L = D A
- 3. Get 2nd and 3rd smallest eigenvalue with corresponding eigenvectors.

Lowdimensional Embedding

some notes and show clean embedding

Unknown angles

Show reconstruction with calculated angles

High-noise domain

Show graph Show embedding Show reconstruction

Graph Denoising

Graph denoising is the task, to estimate a denoised graph \tilde{G} from a given noisy graph G_0 , with underlying original graph G:

Definition (Graph Denoising)

$$GD: G_0 \mapsto \tilde{G} \approx G,$$

where G_0 , \tilde{G} , G denotes noisy, estimated denoised and original graph respectively.

Traditional Denoising

BM3D Non-local means

Our Approach

BM3D Non-local means

Outline

- Molecular Imaging Methods
- 2 Graphs & Manifolds
- GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

Recap

Recap what we saw so far, define fixed angles

Big Picture

GAT-Denoiser: GNN Pipeline

Input Graph

how we defined our input graph.

Graph Attention Network - GAT

GAT, straight to the point

Expectation from components

expections from convolution,

Outline

- Molecular Imaging Methods
- Graphs & Manifolds
- GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

Some result testing

Outline

- Molecular Imaging Methods
- Graphs & Manifolds
- GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

Molecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Questions Reference

Outline

- Molecular Imaging Methods
- Graphs & Manifolds
- GAT-Denoiser
- 4 Results on LoDoPaB-CT dataset
- 5 Summary & Future Work
- 6 Questions

Molecular Imaging Methods Graphs & Manifolds GAT-Denoiser Results on LoDoPaB-CT dataset Summary & Future Work Questions References

References

- Basu, Samit and Yoram Bresler (2000). "Feasibility of tomography with unknown view angles". In: IEEE Transactions on Image Processing 9.6, pp. 1107–1122. DOI: 10.1109/83.846252.
- Bendory, Tamir, Alberto Bartesaghi, and Amit Singer (2020). "Single-particle cryo-electron microscopy: Mathematical theory, computational challenges, and opportunities". In: IEEE Signal Processing Magazine 37.2, pp. 58–76. DOI: 10.1109/MSP.2019.2957822.
- Biewald, Lukas (2020). Experiment Tracking with Weights and Biases. Software available from wandb.com. URL: https://www.wandb.com/.
- Brenner, David J and Eric J Hall (2007). "Computed tomography—an increasing source of radiation exposure". In: New England journal of medicine 357.22, pp. 2277–2284. DOI: 10.1056/NEJMra072149.
- Buades, Antoni, Bartomeu Coll, and J-M Morel (2005). "A non-local algorithm for image denoising".
 In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Vol. 2. IEEE, pp. 60–65. DOI: 10.1109/CVPR.2005.38.
- Cayton, Lawrence (2005). "Algorithms for manifold learning". In: Univ. of California at San Diego Tech. Rep 12.1-17, p. 1.
- Clackdoyle, Rolf and Michel Defrise (2010). "Tomographic reconstruction in the 21st century". In: