

Resultados Proyecto Final Deep

GUILLERMO FURLAN ALEJANDRO PALLAIS

Objetivo

Comparar la capacidad de tres modelos para clasificar el tipo de relación entre entidades biomédicas en un abstract.

Los datos

UNA BASE DE 13,500 ENTIDADES CON 400+ ABSTRACTS DIFERENTES LA RELACION ENTRE LAS ENTIDDES

Los datos

Modelos utilizados

RNN (RED NEURONAL RECURRENTE)

LSTM (MEMORIA A LARGO CORTO PLAZO)

ATTENTION-BASED CNN(RED NEURONAL CONVOLUCIONAL)

Modelos utilizados

$$ext{Loss} = -rac{1}{N}\sum_{i=1}^N \log(\hat{p}_{y_i})$$

$$w_{t+1} = w_t - \eta \cdot rac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$$

FUNCIÓN DE PERDIDA SPARSE CATEGORICAL CROSSENTROPY

OPTIMIZADOR ADAM

RNN

- SON MÁS RÁPIDAS DE ENTRENAR QUE LOS MODELOS MÁS AVANZADOS
- PROCESAN EL TEXTO PALABRA POR PALABRA, MANTENIENDO UN ESTADO QUE RESUME EL CONTEXTO ANTERIOR.

LTSM

- IDEALES PARA CAPTURAR DEPENDENCIAS LARGAS.
- SON ADECUADAS PARA PROBLEMAS DONDE LAS RELACIONES NO SON OBVIAS O ESTÁN INFLUENCIADAS POR PALABRAS EN DIFERENTES PARTES DEL TEXTO.

Attention-Based CNN

- EXTRACCIÓN DE PATRONES LOCALES LAS CNN IDENTIFICAN COMBINACIONES DE PALABRAS RELEVANTES
- LA ATENCIÓN PERMITE QUE EL MODELO IDENTIFIQUE LAS PALABRAS CLAVE IGNORANDO INFORMACIÓN IRRELEVANTE
- ROBUSTEZ EN CLASES MINORITARIAS ESTE MODELO PUEDE ENFOCARSE EN RELACIONES MENOS FRECUENTES

Resultados

Resultados

Precision

RECALL

F1-SCORE

DISTRIBUCION DE CONFIANZA

Concluciones

- El mejor model fue CNN comose espeaba
- El desbvalnce emporo el rendimiento de LTSM
- La clase 4 debe definirse pro relaciones combinadas