

Page 1 of 47

APPLICATION CERTIFICATION FCC Part 22&24 On Behalf of IMC INTERNATIONAL INC.

7 inch 3G TABLET Model No.: ROAD XT-71BG

FCC ID: 2ACI7-ROADXT-71BG

Prepared for : IMC INTERNATIONAL INC.

Address : 28E Jingang, xixiang, Bao an District, Shenzhen,

Guangdong Province, China

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan

Rd. Science & Industry Park, Nanshan, Shenzhen,

Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20140924

Date of Test : Jun 04, 2014- Jun 25, 2014

Date of Report: Jun 25, 2014

Page 2 of 47

TABLE OF CONTENTS

Descri	ption	Page
Test R	eport Certification	
	ENERAL INFORMATION	5
1.1.	Description of Device (EUT)	
1.2.	Carrier Frequency of Channels	
1.3.	Description of Test Facility	
1.4.	Measurement Uncertainty	
2. MI	EASURING DEVICE AND TEST EQUIPMENT	8
3. SY	STEM TEST CONFIGURATION	9
3.1.	Justification	
3.2.	Configuration of Test Setup	
3.3.	Block Diagram of Test Setup	
4. TE	EST PROCEDURES AND RESULTS	10
5. PC	OWER LINE CONDUCTED MEASUREMENT	11
5.1.	Block Diagram of Test Setup	11
5.2.	Power Line Conducted Emission Measurement Limits	
5.3.	Configuration of EUT on Measurement	
5.4.	Operating Condition of EUT	
5.5.	Test Procedure	
5.6.	Power Line Conducted Emission Measurement Results	
6. BA	ANDWIDTH MEASUREMENT	
6.1.	Block Diagram of Test Setup	
6.2.	Applicable Standard	
6.3.	Operating Condition of EUT	
6.4.	Test Procedure	
6.5.	Test Result	
	F OUTPUT POWER	
7.1.	Block Diagram of Test Setup	
7.2.	The Requirement For FCC Section §2.1046 and §22.913 (a) & §24.232 (C)	
7.3.	Operating Condition of EUT	
7.4. 7.5.	Test Procedure Test Result	
	PURIOUS EMISSIONS AT ANTENNA TERMINALS	
8.1.	Block Diagram of Test Setup	
8.2. 8.3.	Applicable Standard	
8.3. 8.4.	EUT Configuration on Measurement	
8.5.	Test Procedure	
8.6.	Test Result	
	AND EDGE TEST	
9.1.	Block Diagram of Test Setup.	
9.1. 9.2.	The Requirement For Section § 22.917(a), §24.238(a)	
9.3.	Operating Condition of EUT	
9.4.	Test Procedure	

9.5.	Test Result	36
10. RA	DIATED SPURIOUS EMISSION TEST	39
10.1.	Block Diagram of Test Setup	39
10.2.	Applicable Standard	39
10.3.	Restricted bands of operation	
10.4.	Configuration of EUT on Measurement	
10.5.	Operating Condition of EUT	
10.6.	Test Procedure	41
10.7.	The Field Strength of Radiation Emission Measurement Results	41
11. FR	EQUENCY STABILITY	45
11.1.	Block Diagram of Test Setup	45
11.2.	The Requirement For Section CFR47 § 2.1055 (a), § 2.1055 (d), §22.355, §24.235	
11.3.	Operating Condition of EUT	
11.4.	Test Procedure	45
11.5.	Test Result	
12. AN	TENNA REQUIREMENT	47
12.1.	The Requirement	47
12.1.	Antenna Construction	
	1 111C1111C CO110C CC1C1	· · · · · · · · · · · · · · · · · · ·

Page 4 of 47

Test Report Certification

Applicant : IMC INTERNATIONAL INC.

Manufacturer : IMC INTERNATIONAL INC.

EUT Description : 7 inch 3G TABLET

(A) MODEL NO.: ROAD XT-71BG

(B) Trade Name.: LOGIC

(C) POWER SUPPLY: DC 3.7V (Powered by battery) or AC 120V/60Hz

(Powered by adapter)

Measurement Procedure Used:

FCC Rules and Regulations Part 22 Subpart H - Public Mobile Services Part 24 Subpart E - Personal Communication Services TIA 603-D

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 22H&24E limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	Jun 04, 2014-Jun 25, 2014
Prepared by :	7 im 2harg (Tim.zhang, Engineer)
	(Timizhang, Engineer)
Approved & Authorized Signer :	Lemb
_	(Sean Liu, Manager)

Page 5 of 47

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : 7 inch 3G TABLET

Model Number : ROAD XT-71BG

Type of Modulation : GSM/GPRS:GMSK

Number of channels : GSM 850: 824.2-848.8 MHz 125 Channels

GSM 1900: 1850.2-1909.8 MHz 300 Channels

Frequency : GSM 850/1900

Antenna Gain : 1.5dBi GSM Release Version : R99 GPRS Multislot Class : 12

Type of Antenna : Integral Antenna

Power Supply : DC 3.7V (Powered by Battery)

AC 120V/60Hz (Powered by Adapter)

Adapter : Model:DY-050150

Input: AC 100-240V 50/60Hz

Output: 5.0V 1.5A

Applicant : IMC INTERNATIONAL INC.

Address : 28E Jingang, xixiang,Bao an District, Shenzhen,

Guangdong Province, China

Manufacturer : IMC INTERNATIONAL INC.

Address : 28E Jingang, xixiang,Bao an District, Shenzhen,

Guangdong Province, China

Date of sample received: Jun 04, 2014

Date of Test : Jun 04, 2014-Jun 25, 2014

1.2. Carrier Frequency of Channels

Frequency Range:

Cellular Band: 824-849 MHz (TX), 869-894 MHz (RX) PCS Band: 1850-1910 MHz (TX), 1930-1990 MHz (RX)

Modulation Mode: GMSK

Manufacturing tolerance

GSM Speech

	GSM 850								
Channel	Channel 251	Channel 190	Channel 190						
Target (dBm)	31.50	31.50	31.50						
Tolerance $\pm (dB)$	1	1	1						
	GSM	1900							
Channel	Channel 810	Channel 661	Channel 512						
Target (dBm)	29.0	29.0	29.0						
Tolerance $\pm (dB)$	1	1	1						

GPRS (GMSK Modulation)

Of No (Ohion Hiounium)							
GSM 850 GPRS							
Channel		251	190	128			
1 Txslot	Target (dBm)	31.5	31.5	31.5			
1 1 XSIOt	Tolerance ±(dB)	1	1	1			
2 Txslot	Target (dBm)	31.5	31.5	31.5			
2 1 XSIOt	Tolerance ±(dB)	1	1	1			
3 Txslot	Target (dBm)	28.5	28.5	28.5			
3 1 XSIOt	Tolerance $\pm(dB)$	1	1	1			
4 Txslot	Target (dBm)	27.5	27.5	27.5			
4 1 XSIOt	Tolerance ±(dB)	1	1	1			
	GSI	M 1900 GPRS					
Channel		810	661	512			
1 Txslot	Target (dBm)	29.0	29.0	29.0			
1 1 XSIOt	Tolerance ±(dB)	1	1	1			
2 Twolet	Target (dBm)	28.0	28.0	28.0			
2 Txslot	Tolerance ±(dB)	1	1	1			
3 Txslot	Target (dBm)	26.0	26.0	26.0			
	Tolerance ±(dB)	1	1	1			
4 Treales	Target (dBm)	25.0	25.0	25.0			
4 Txslot	Tolerance $\pm (dB)$	1	1	1			

Page 7 of 47

1.3.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

Page 8 of 47

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2014	Jan. 10, 2015
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2014	Jan. 10, 2015
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2014	Jan. 10, 2015
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2014	Jan. 10, 2015
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2014	Jan. 14, 2015
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 15, 2014	Jan. 14, 2015
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2014	Jan. 10, 2015
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2014	Jan. 10, 2015
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 11, 2014	Jan. 10, 2015
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 11, 2014	Jan. 10, 2015
Universal radio communication tester	Rohde&Schwarz	CMU200	100308	Jan. 11, 2014	Jan. 10, 2015

3. SYSTEM TEST CONFIGURATION

3.1.Justification

The EUT was configured for testing according to TIA/EIA-603-D. The final qualification test was performed with the EUT operating at normal mode.

EUT.

3.2. Configuration of Test Setup

3.3.Block Diagram of Test Setup

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	Compliant
§2.1046; § 22.913 (a); § 24.232 (c)	RF Output Power	Compliant
§ 2.1047	Modulation Characteristics	N/A
§ 2.1049; § 22.905 § 22.917; § 24.238	99% & -26 dB Occupied Bandwidth	Compliant
§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliant
§ 2.1053 § 22.917 (a); § 24.238 (a)	Field Strength of Spurious Radiation	Compliant
§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	Compliant
§ 2.1055 § 22.355; § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant

Page 11 of 47

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test Setup

(EUT: 7 inch 3G TABLET)

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit dB(μV)			
(MHz)	Quasi-peak Level	Average Level		
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *		
0.50 - 5.00	56.0	46.0		
5.00 - 30.00	60.0	50.0		

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

5.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

Page 12 of 47

5.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Test mode : Charging&GSM communicating(Worst case)								
MEASUREMENT	RESULT	"IMC-	2G-V01	_fin"				
6/7/2014 8:50 Frequency MHz	_		Limit dBµV	Margin dB	Detector	Line	PE	
0.519130 0.933537 13.065195	35.20 37.70 33.10	10.7 10.8 11.3	56	18.3	QP QP QP	L1 L1 L1	GND GND GND	
MEASUREMENT	RESULT	"IMC-	2G-V01	_fin2"				
6/7/2014 8:50 Frequency MHz			Limit dBµV	Margin dB	Detector	Line	PE	
0.192124 1.048116 26.910261	35.20 26.20 22.50	10.5 10.9 11.5			AV AV AV	L1 L1 L1	GND GND GND	
MEASUREMENT	RESULT	: "IMC-	2G-V00	2_fin"				
6/7/2014 8:55								
Frequency MHz	Level dBµV		Limit dBµV	_	Detector	Line	PE	
0.517062 0.933537 13.328598	36.10 37.70 35.60	10.7 10.8 11.3			QР	N N N	GND GND GND	
MEASUREMENT RESULT: "IMC-2G-V002_fin2"								
6/7/2014 8:55 Frequency MHz	AM Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE	
0.193664 0.933537 25.044426	36.00 26.90 25.00	10.5 10.8 11.5	54 46 50	17.9 19.1 25.0	AV AV AV	N N N	GND GND GND	

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 B

7" 3G TABLET M/N:ROAD XT-71BG EUT:

Manufacturer: IMC

Operating Condition: GSM/Charging Test Site: 1#Shielding Room

Operator: Alen

Test Specification: L 120V/60Hz

Comment: Report No:ATE20140924 Start of Test: 6/7/2014 / 8:39:30AM

SCAN TABLE: "V 150K-30MHz fin"

__SUB_STD_VTERM2 1.70 Short Description:

Detector Meas. Start Stop Step ΙF Transducer

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kHz Time Bandw.

QuasiPeak 1.0 s 9 kHz 4.5 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "IMC-2G-V01 fin"

6/	7/2014 8	:50AM						
	Frequenc	y Level	Transd	Limit	Margin	Detector	Line	PΕ
	MH	z dBµV	dB	dΒμV	dB			
	0.51913	0 35.20	10.7	56	20.8	QP	L1	GND
	0.93353	7 37.70	10.8	56	18.3	QP	L1	GND
	13.06519	5 33.10	11.3	60	26.9	QP	L1	GND

MEASUREMENT RESULT: "IMC-2G-V01 fin2"

6/7/2014	8:50A1	P						
Freque	ncy	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
0.192	124	35.20	10.5	54	18.7	AV	L1	GND
1.048	116	26.20	10.9	46	19.8	AV	L1	GND
26.910	261	22.50	11.5	50	27.5	AV	L1	GND

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 B

7" 3G TABLET M/N:ROAD XT-71BG

Manufacturer: IMC

Operating Condition: GSM/Charging Test Site: 1#Shielding Room

Operator: Alen

Test Specification: N 120V/60Hz

Report No:ATE20140924 Comment: Start of Test: 6/7/2014 / 8:53:17AM

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Detector Meas. IF
Time Ban Start Stop Step Transducer

Mea. Time Bandw.

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kH 4.5 kHz QuasiPeak 1.0 s NSLK8126 2008 9 kHz

Average

MEASUREMENT RESULT: "IMC-2G-V002 fin"

6/7/2014	8:55AM						
Freque	ncy Le	vel Transd	Limit	Margin	Detector	Line	PE
-	MHz d	BµV dB	dBuV	dB			
0.517	062 36	.10 10.7	56	19.9	QP	N	GND
0.933	537 37	.70 10.8	56	18.3	QP	N	GND
13.328	598 35	.60 11.3	60	24.4	QP	N	GND

MEASUREMENT RESULT: "IMC-2G-V002 fin2"

6/7/2014 8:5	5AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.193664	36.00	10.5	54	17.9	AV	N	GND
0.933537	26.90	10.8	46	19.1	AV	N	GND
25.044426	25.00	11.5	50	25.0	AV	N	GND

Page 16 of 47

6. BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

6.2. Applicable Standard

FCC § 2.1049, § 22.917, § 22.905 and § 24.238.

6.3. Operating Condition of EUT

- 6.3.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.3.2. Turn on the power of all equipment.
- 6.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 824-849MHz and 1850-1910MHz. We select 824.2MHz, 836.6MHz, 848.8MHz and 1850.2MHz, 1880.0MHz, 1909.8MHz TX frequency to transmit.

6.4. Test Procedure

99% occupied bandwidth&-26dB occupied bandwidth test:

- 1. Set resolution bandwidth (RBW) = 30 kHz.
- 2. Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

6.5. Test Result

	Cellular Band (Part 22H)									
Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	-26dB occupied bandwidth (kHz)							
128	824.2	250	338							
190	836.6	250	340							
251	848.8	252	340							

	PCS Band (Part 24E)									
Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	-26dB occupied bandwidth (kHz)							
512	1850.2	252	338							
661	1880.0	252	334							
810	1909.8	252	338							

The spectrum analyzer plots are attached as below.

Cellular Band (Part 22H)

26 dB Occupied Bandwidth, Low Channel

99% Occupied Bandwidth, Middle Channel

26 dB Occupied Bandwidth, Middle Channel

99% Occupied Bandwidth, High Channel

26 dB Occupied Bandwidth, High Channel

PCS Band (Part 24E)

99% Occupied Bandwidth, Low Channel

26 dB Occupied Bandwidth, Low Channel

99% Occupied Bandwidth, Middle Channel

26 dB Occupied Bandwidth, Middle Channel

99% Occupied Bandwidth, High Channel

26 dB Occupied Bandwidth, High Channel

Page 24 of 47

7. RF OUTPUT POWER

7.1.Block Diagram of Test Setup

Conducted method:

Radiated method:

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

7.2. The Requirement For FCC Section §2.1046 and §22.913 (a) & §24.232 (C)

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

Page 25 of 47

7.3. Operating Condition of EUT

- 7.3.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.3.2. Turn on the power of all equipment.
- 7.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 824-849MHz and 1850-1910MHz. We select 824.2MHz, 836.6MHz, 848.8MHz and 1850.2MHz, 1880.0MHz, 1909.8MHz TX frequency to transmit.

7.4. Test Procedure

Conducted method:

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.

Radiated method(For ERP&EIRP):

- 1. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Page 26 of 47

7.5.Test Result

Cellular Band (Part 22H)

Mode	Channel	Frequency (MHz)	Output Power (dBm)		
	128	824.2	32.16		
GSM	190	836.6	32.17		
	251	848.8	32.23		

Mode	Channel No	Frequenc	Output Power (dBm)						
Wiode	Chainlei No	y (MHz)	1 slot	2 slots	3 slots	4 slots			
	128	824.2	32.12	31.13	29.26	27.02			
GPRS	190	836.6	32.13	31.14	29.27	27.03			
	251	848.8	32.19	31.20	29.21	27.01			

PCS Band (Part 24E)

Mode	Channel	Frequency (MHz)	Output Power (dBm)		
	512	1850.2	29.14		
GSM	661	1880.0	29.38		
	810	1909.8	29.64		

Mode	Channel No	Frequenc	Frequenc Output Power (dBm)					
Mode	Chamilei No	y (MHz)	1 slot	2 slots	3 slots	4 slots		
	512	1850.2	29.08	28.25	26.52	24.12		
GPRS	661	1880.0	29.30	28.50	26.74	24.17		
	810	1909.8	29.55	28.24	26.47	24.10		

ERP & EIRP

ERP for GSM900 (Part 22H)

GSM:

Indic	cated	Test Antenna			Su	bstituted	d	Antenna Gain	Cabl	Absolut	Part 22H
Frequen cy (MHz)	S.A. Reading (dBµV/ m)	Table Angle Degree	Heigh t (m)	Polar (H/V)	CV	Level	Polar (H/V)	Correctio	e Loss (dB)	e Level (dBm)	Limit (dBm)
Low Channel											
824.2	98.26	29	1.0	V	824.2	30.7	V	0	0.9	29.8	38.45
824.2	84.54	207	1.5	Н	824.2	20.2	Н	0	0.9	19.3	38.45
					Middle	Channel	[
836.6	99.38	35	1.2	V	836.6	31.2	V	0	0.9	30.3	38.45
836.6	85.22	211	1.6	Н	836.6	21.3	Н	0	0.9	20.4	38.45
	High Channel										
848.8	98.46	214	1.0	V	848.8	30.8	V	0	0.9	29.9	38.45
848.8	85.68	209	1.5	Н	848.8	21.1	Н	0	0.9	20.2	38.45

GPRS:

Indic	cated	Tabla	Test Antenna		Su	Substituted			Cabl	Absolut	Part 22H
Frequen cy (MHz)	S.A. Reading (dBµV/ m)	Table Angle Degree	t	Polar (H/V)	Frequen cy (MHz)	Level	Polar (H/V)	Gain Correctio n (dBi)	e Loss (dB)	e Level (dBm)	Limit (dBm)
Low Channel											
824.2	98.41	31	1.1	V	824.2	30.9	V	0	0.9	30.0	38.45
824.2	91.53	205	1.2	Н	824.2	22.2	Н	0	0.9	21.3	38.45
					Middle	Channel					
836.6	97.65	38	1.0	V	836.6	30.1	V	0	0.9	29.2	38.45
836.6	90.23	210	1.2	Н	836.6	23.3	Н	0	0.9	22.4	38.45
	High Channel										
848.8	97.70	215	1.1	V	848.8	30.1	V	0	0.9	29.2	38.45
848.8	90.07	211	1.5	Н	848.8	22.2	Н	0	0.9	21.3	38.45

Page 28 of 47

EIRP for PCS1800 Band (Part 24E)

GSM:

Indio	cated	Test Antenna		Su	bstitute	d	Antenna Gain	Cabl	Absolut	Part 24E	
Frequen cy (MHz)	S.A. Reading (dBµV/ m)	Table Angle Degree	t t	Polar (H/V)	Frequen cy (MHz)	S.G. Level (dBm)	Polar (H/V)	Correctio n (dBi)	e Loss (dB)	e Level (dBm)	Limit (dBm)
Low Channel											
1850.2	93.25	225	1.1	V	1850.2	22.1	V	6.2	1.1	27.2	33
1850.2	85.89	113	1.5	Н	1850.2	17.1	Н	6.2	1.1	22.2	33
					Middle	Channel	_				
1880.0	93.27	56	1.7	V	1880.0	22.2	V	6.2	1.1	27.3	33
1880.0	85.37	120	1.6	Н	1880.0	16.6	Н	6.2	1.1	21.7	33
High Channel											
1909.8	92.40	332	2.0	V	1909.8	21.2	V	6.2	1.1	26.3	33
1909.8	84.52	89	2.0	Н	1909.8	16.0	Н	6.2	1.1	21.1	33

GPRS:

Indic	cated	Test Antenna		Su	bstitute	d	Antenna Gain	Cabl	Absolut	Part 24E	
Frequen cy (MHz)	$S.A. \\ Reading \\ (dB\mu V/ \\ m)$	Table Angle Degree	Heigh t (m)	Polar (H/V)	cv	Level	Polar (H/V)	Correction	e Loss (dB)	e Level (dBm)	Limit (dBm)
Low Channel											
1850.2	94.23	358	1.1	V	1850.2	23.1	V	6.2	1.1	28.2	33
1850.2	84.72	20	1.4	Н	1850.2	16.1	Н	6.2	1.1	21.2	33
					Middle	Channel	-				
1880.0	93.18	32	1.1	V	1880.0	22.1	V	6.2	1.1	27.2	33
1880.0	84.55	17	1.4	Н	1880.0	16.0	Н	6.2	1.1	21.1	33
High Channel											
1909.8	93.10	323	1.1	V	1909.8	22.1	V	6.2	1.1	27.2	33
1909.8	84.95	15	1.5	Н	1909.8	16.5	Н	6.2	1.1	21.6	33

Page 29 of 47

The spectrum analyzer plots are attached as below.

Cellular Band (Part 22H)

Low Channel (GSM)

Middle Channel (GSM)

Page 30 of 47

High Channel (GSM)

PCS Band (Part 24E)

Low Channel (GSM)

Page 31 of 47

Middle Channel (GSM)

High Channel (GSM)

Page 32 of 47

8. SPURIOUS EMISSIONS AT ANTENNA TERMINALS

8.1.Block Diagram of Test Setup

8.2. Applicable Standard

FCC §2.1051, §22.917(a) and §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in §2.1051

8.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 824-849MHz and 1850-1910MHz. We select 836.6MHz and 1880.0MHz, TX frequency to transmit.

8.5.Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

8.6.Test Result

Cellular Band (Part 22H)

30 - 1000 MHz - Middle Channel

1 - 10 GHz - Middle Channel

Page 34 of 47

PCS Band (Part24E)

30 - 20000 MHz - Middle Channel

Page 35 of 47

9. BAND EDGE TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section § 22.917(a), §24.238(a)

According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

According to $\S24.238(a)$, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

9.3. Operating Condition of EUT

- 9.3.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.3.2. Turn on the power of all equipment.
- 9.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 823.980, 849.020 MHz, 1849.996MHz and 1910.016MHz.

9.4. Test Procedure

Conducted Band Edge:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency, RBW set to 5 kHz, RBW set to 10 kHz.

Page 36 of 47

9.5.Test Result

Cellular Band (Part 22H)

Mode	Frequency (MHz)	Emission (dBm)	Limit (dBm)
GSM850	823.982	-14.15	-13
	849.022	-14.51	-13

PCS Band (Part 24E)

Mode	Frequency (MHz)	Emission (dBm)	Limit (dBm)	
PCS1900	1849.978	-16.80	-13	
	1910.022	-16.89	-13	

Note: The offset on the picture below =The loss of test cable+Splitter.

Cellular Band, Low Channel

Cellular Band, High Channel

DCC D - - 1 I ---- - + Cl- - - - - 1

PCS Band, Highest Channel

Page 39 of 47

10. RADIATED SPURIOUS EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Semi-Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS - 3 METERS -**EUT** Cable 0.8 METER **GROUND PLANE**

10.2. Applicable Standard

FCC §2.1053, §22.917 and §24.238

Page 40 of 47

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{2}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.5. Operating Condition of EUT

10.5.1. Setup the EUT and simulator as shown as Section 10.1.

²Above 38.6

Page 41 of 47

10.5.2. Turn on the power of all equipment.

10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 824-849MHz and 1850-1910MHz. We select 824.2MHz, 836.6MHz, 848.8MHz and 1850.2MHz, 1880.0MHz, 1909.8MHz TX frequency to transmit.

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to TIA 603-D on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Sample Calculation:

EUT Field Strength (dBm)= Reading(Signal generator)+ Antenna Gain(substitution antenna)-Cable loss(From signal Generator to substitution antenna)

The bandwidth of test receiver is set at 9kHz in below 30MHz. and set at 120kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9KHz to 20GHz is checked.

The final measurement in band 9-90KHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

10.7.Standard Requirement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power(P)by a factor of at least 43 + 10Log $_{10}$ (power out in Watts). The spectrum is scanned from 30MHz up to a frequency including its 10^{th} harmonic.

10.8. The Field Strength of Radiation Emission Measurement Results

PASS

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The EUT is tested radiation emission at each test mode in three axes. The worst

Page 42 of 47

emissions are reported in all test mode and channels.

3. Absolute Level=SG Level- Cable loss + Antenna Gain Margin=Limit- Absolute Level

Cellular Band (GSM850)

Indicated		Table	Test Antenna		Substituted				Absolute	Limit	Margi
Frequenc y (MHz)	S.A. Reading (dBµV/ m)	Angle	Heigh	Polar (H/V)	Frequenc y (MHz)	Level (dBm	Gain	Cable Loss (dB)		(dBm)	n (dB)
	Low Channel(824.2MHz)										
1648.4	53.47	322	1.7	V	1648.2	-48.6	9.4	0.95	-40.15	-13	27.15
1648.4	44.74	121	1.4	Н	1648.2	-58.8	9.4	0.95	-50.35	-13	37.35
3296.8	44.32	226	1.6	V	3296.8	-49.2	10.1	2.08	-40.48	-13	27.48
3296.8	40.77	155	1.7	Н	3296.8	-53.7	10.1	2.08	-44.98	-13	31.98
36.27	54.86	183	1.0	V	36.27	-40.7	0	0.32	-41.02	-13	28.02
324.86	57.47	72	1.0	Н	324.86	-37.5	0	0.53	-38.03	-13	25.03

Indicated Table			Te Ante		Substituted				Absoluto	Limit	Margi
Frequenc y (MHz)	S.A. Reading (dBµV/ m)	Angle	Heigh	Polar (H/V)	Frequenc y (MHz)	Level (dBm)			Absolute Level (dBm)	(dBm)	n
	Middle Channel (836.6MHz)										
1673.2	54.04	146	1.6	V	1673.2	-48.0	9.4	0.98	-39.58	-13	26.58
1673.2	45.31	269	1.5	Н	1673.2	-58.2	9.4	0.98	-49.78	-13	36.78
3346.4	44.89	22	1.5	V	3346.4	-48.6	10.2	2.10	-40.50	-13	27.50
3346.4	41.34	55	1.8	Н	3346.4	-53.1	10.2	2.10	-45.00	-13	32.00
36.27	55.43	280	1.0	V	36.27	-40.1	0	0.32	-40.42	-13	27.42
324.86	58.04	12	1.0	Н	324.86	-36.9	0	0.53	-37.43	-13	24.43

Test Indicated Substituted Table Antenna Limit Absolute Margi Angle S.A. Reading Degre Heigh Level n Frequenc Frequenc Level Ant. Cable Polar (dBm (dBm) (dB) (dBm | Gain | Loss $(dB\mu V/$ (H/V)(MHz) (m) (dB) (MHz) (dBi) m) High Channel(848.8MHz) 52.20 228 V 1697.6 -49.9 9.4 1.00 -41.50 1697.6 1.9 -13 28.50 1697.6 43.47 21 1.8 Η 1697.6 -60.1 9.4 1.00 -51.70 -13 38.70 3395.2 43.05 128 1.4 V 3395.2 -50.5 10.2 2.10 -42.40 -13 29.40 3395.2 39.5 304 1.7 Η 3395.2 -55.0 10.2 2.10 -46.90 -13 33.90 V -13 29.32 36.27 53.59 283 1.0 36.27 -42.0 0 0.32 -42.32 324.86 56.20 76 1.0 Η 324.86 -38.8 0 0.53 -39.33 -13 26.33

PCS Band (GSM1900)

Indica	Indicated Table Ant			est enna	Substituted				A 1 14 -	T ::4	M :
Frequenc y (MHz)	S.A. Reading (dBµV/ m)	Angle	Height	Polar (H/V)	Frequenc y (MHz)	Level (dBm		Cable Loss (dB)	Absolute Level (dBm)	(dBm)	n
	Low Channel(1850.2MHz)										
3700.4	50.88	57	1.5	V	3700.4	-45.63	10.3	2.58	-37.91	-13	24.91
3700.4	46.02	109	1.8	Н	3700.4	-51.23	10.3	2.58	-43.51	-13	30.51
5550.6	38.35	266	1.7	V	5550.6	-52.83	11.6	3.93	-45.16	-13	32.16
5550.6	38.67	75	1.9	Н	5550.6	-53.73	11.6	3.93	-46.06	-13	33.06
36.27	54.29	83	1.0	V	36.27	-41.23	0	0.32	-41.55	-13	28.55
330.62	56.38	282	1.0	Н	330.62	-39.03	0	0.53	-39.56	-13	26.56

Indicated Tab		Table	Test Antenna		Substituted				Absolute	Limit	Margi
Frequenc y (MHz)	S.A. Reading (dBµV/ m)	Angle Degre e	Height	Polar (H/V)	V	Level (dBm		Cable Loss (dB)		(dBm)	n
	Middle Channel(1880.0MHz)										
3760	50.31	360	1.9	V	3760	-46.2	10.3	2.59	-38.39	-13	25.39
3760	45.45	110	2.0	Н	3760	-51.8	10.3	2.59	-43.99	-13	30.99
5640	37.78	360	1.9	V	5640	-53.4	11.7	3.94	-45.64	-13	32.64
5640	38.10	175	1.8	Н	5640	-54.3	11.7	3.94	-46.54	-13	33.54
36.27	53.72	183	1.0	V	36.27	-41.8	0	0.32	-41.48	-13	28.48
330.62	55.81	98	1.0	Н	330.62	-39.6	0	0.53	-40.13	-13	27.13

Page 44 of 47

Indica	ated	Table	Test Table Antenna		S	Substituted				T ::4	Manai
Frequenc y (MHz)	S.A. Reading (dBµV/ m)	Angle	Height	Polar (H/V)	Frequenc y (MHz)	Level (dBm		Cable Loss (dB)	Absolute Level (dBm)	(dBm)	n
	High Channel(1909.8MHz)										
3819.6	49.04	127	2.0	V	3819.6	-47.47	10.4	2.60	-39.67	-13	26.67
3819.6	44.18	312	1.7	Н	3819.6	-53.07	10.4	2.60	-45.27	-13	32.27
5729.4	36.51	86	1.8	V	5729.4	-54.67	11.8	3.95	-46.82	-13	33.82
5729.4	36.83	75	1.5	Н	5729.4	-55.57	11.8	3.95	-47.72	-13	34.72
36.27	52.45	83	1.0	V	36.27	-43.07	0	0.32	-43.39	-13	30.39
330.62	54.54	21	1.0	Н	330.62	-40.87	0	0.53	-41.40	-13	28.40

Page 45 of 47

11.FREQUENCY STABILITY

11.1.Block Diagram of Test Setup

11.2. The Requirement For Section CFR47 § 2.1055 (a), § 2.1055 (d), §22.355,

§24.235

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below: Frequency Tolerance for Transmitters in the Public Mobile Services

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

11.3. Operating Condition of EUT

- 11.3.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.3.2. Turn on the power of all equipment.
- 11.3.3.Let the EUT work in Test modes measure it. The test frequency are 836.6MHz and 1880MHz.

11.4.Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set

Page 46 of 47

via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

11.5.Test Result

Pass.

Cellular Band (Part 22H)

Central Band (Fart 2211)									
	Middle	Channel, fo $= 836.6$	MHz						
Temperature (OC)	Power Supplied (VDC)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)					
-30		14	0.016734	2.5					
-20		11	0.013148	2.5					
-10		12	0.014344	2.5					
0		6	0.007172	2.5					
10	3.7	7	0.008367	2.5					
20		11	0.013148	2.5					
30		13	0.015539	2.5					
40		7	0.008367	2.5					
50		8		2.5					
25	3.5	11	0.013148	2.5					
23	4.2	6	0.007172	2.5					

PCS Band (Part 24E)

	Middle Channel, fo = 1880 MHz									
Temperature (OC)	Power Supplied (VDC)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)						
-30		15	0.007979	2.5						
-20		15	0.007979	2.5						
-10		27	0.014362	2.5						
0		29	0.015426	2.5						
10	3.7	13	0.006915	2.5						
20		16	0.008511	2.5						
30		22	0.011702	2.5						
40		28	0.014894	2.5						
50		14	0.007447	2.5						
25	3.5	17	0.009043	2.5						
23	4.2	17	0.009043	2.5						

Page 47 of 47

12.ANTENNA REQUIREMENT

12.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2.Antenna Construction

Device is equipped with Ceramic antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

