EECS 376: Foundations of Computer Science

Chris Peikert 22 March 2023

Agenda

- * Approximation algorithms for NP-hard problems
 - * Cute, clever, surprising!
- * Analysis strategy: bound value of optimum solution

Approximating Min Vertex-Cover

- * Starbucks Executive: "I'm ok with building at most twice as many stores as is optimal."
- * A vertex cover S is an α -approximation if S contains $\underline{at\ most}\ \alpha$ times as many vertices as a smallest one: $|S| \leq \alpha \cdot |C|$ for any VC C.
 - * α is called the *approximation ratio* (smaller is better here)

A 2-approximate min-VC (optimum = 2)

Attempt #3: Double Cover

* Weird Idea: Choose edges and delete both endpoints!

double-cover(G):

- 1. $C \leftarrow \emptyset$
- 2. while *G* has an edge:
- 3. choose any edge e = (u, v)
- 4. $G \leftarrow G \{u, v\}$; $C \leftarrow C \cup \{u, v\}$ // delete/add both endpoints
- 5. return *C*

Theorem: double-cover obtains a 2-approx to min-vertex-cover.

Example and Kev Fact

double-cover(G):

- 1. $C \leftarrow \emptyset$
- 2. while G has an edge:
- 3. choose any edge e = (u, v)
- 4. $G \leftarrow G \{u, v\}$; $C \leftarrow C \cup \{u, v\}$ // delete/add both endpoints
- 5. return *C*
- * **Key Fact:** chosen edges are (vertex-)<u>disjoint</u>; output cover has 2 (# chosen edges) vertices.
- * Q: How many vertices are needed to cover a set of <u>disjoint</u> edges?
- * Observe: Any cover C^* has <u>at least</u> (# chosen edges) vertices.

Proof of 2-Approx

double-cover(G):

- 1. $C \leftarrow \emptyset$
- 2. while G has an edge:
- 3. choose any edge e = (u, v)
- 4. $G \leftarrow G \{u, v\}; C \leftarrow C \cup \{u, v\}$ // delete/add both endpoints
- 5. return C
- * Theorem: double-cover outputs a 2-approx of min-vertex-cover.
 - * Let M be the set of chosen edges and C be the set of vertices of M (i.e., output cover): |C| = 2|M|.
 - * Consider any arbitrary vertex cover C^* .
 - * Since M is disjoint and C^* covers it, $|M| \leq |C^*|$.
 - * Therefore, $|C| = 2|M| \le 2|C^*|$.
- * Observe: we lower-bounded the size of any cover by the number of selected edges

Cuts

- * A cut of a graph is a partition (S, \overline{S}) of its vertices.
- * An edge *crosses* the cut (S, \overline{S}) if one of its endpoints is in S and the other is in \overline{S} .
- * The *size* of a cut (*S*, *S*) is the number of edges crossing it.

Max-Cut Problem

- * Problem: Given a graph G, find a cut of G with the *largest* possible size, i.e., a *max-cut*.
- * Fact: The max-cut problem is NP-Hard.
- * Applications: network/circuit design, physics, ...

Approximate Max-Cut

- * A cut of a graph G is an α -approximation ($\alpha \leq 1$) of a max-cut if its size is <u>at least</u> α times the size of any (optimal) cut of G.
 - * α is the approximation ratio (larger is better here)

is a $\frac{5}{6}$ -approx. of optimum:

Local-Move Heuristic

- * Q: What happens to the cut size if we <u>flip</u> the color of the circled vertex in the example below?
- * Q: Are there other vertices like this?

Observation: If we flip the color of a vertex with <u>majority same-color</u> neighbors, the cut size <u>increases</u>.

Local Search: Algorithm

- * Initially color each vertex red $(S = \emptyset, \overline{S} = V)$
- * Repeat: find a vertex v with <u>majority same-color</u> neighbors and <u>flip</u> its color.

(I.e., if
$$v$$
 is red, $S \leftarrow S \cup \{v\}$, $\overline{S} \leftarrow \overline{S} - \{v\}$; else, $S \leftarrow S - \{v\}$, $\overline{S} \leftarrow \overline{S} \cup \{v\}$.)

* If none found, return current cut

Local Search: Efficiency

- * Initially color each vertex red $(S = \emptyset, S = V)$
- * Repeat: find a vertex v with <u>majority same-color</u> neighbors and <u>flip</u> its color.
 - * If none found, return current cut
- * Claim: The algorithm is efficient.
- * Q: How many flips can occur?
 - * At most |E|.
 - * Potential argument (blast from the past!): each flip increases the cut size, which cannot exceed |E|.

Local Search: Approximation

- * Initially color each vertex red ($S = \emptyset$, S = V)
- * Repeat: find a vertex v with <u>majority same-color</u> neighbors and <u>flip</u> its color.
 - * If none found, return current cut
- * Claim: a ½-approximation of a max-cut is output.
- * Q: How many <u>same-color</u> neighbors can each vertex end up with?
 - * At least <u>half</u> the edges touching each vertex cross the cut, so the total number of cut edges is at least $\frac{1}{2}|E|$.
 - * No cut can have more than |E| edges, so the algorithm produces a ½-approximation of a max cut.

Knapsack

- * n items; item i is worth $\$v_i$ and weighs w_i lbs
- st Your knapsack can hold at most Wlbs.
- * Problem: Find a subset S of items having maximum value $\sum v_i$ such that $\sum w_i \leq W$.

i∈*S*105\$,
100lb

5\$, 5lb

Approximate Knapsack

- * Exact knapsack is NP-hard.
- * A set of items is an α -approximation ($\alpha \leq 1$) if its value is at least α times that of an optimal set.

Relatively Greedy Algorithm

- * Approach I: Relatively-Greedy Algorithm
- * Consider items in non-increasing order by **relative** value v_i/w_i :
 - * Greedily select the item *if* it fits w/in remaining capacity.
- * Example: What's the approximation ratio here?

Dumb Greedy Algorithm

- * Approach II: Dumb-Greedy Algorithm
- * Take a \underline{single} item of largest value v_i
- * Example: What's the approximation ratio here?

Smart-Greedy Algorithm

- * Approach III: Smart-Greedy Algorithm
- * Run Relatively-Greedy and Dumb-Greedy
- * Take the best of the two solutions
- * Homework: Smart-Greedy ½-approximates knapsack!

More Ways to Cope (w/NP-hardness)

- * Idea: Concentrate on an "interesting" subset of inputs.
- * A graphs is *planar* if it can be drawn on the plane in such a way that no two edges cross each other.
 - * Example:

- * However, no efficient algorithm is known for vertex-cover on such graphs!
- * Fact: Knapsack has an efficient (dynamic programmin algorithm for instances with "small" numbers.

Goodbye Complexity...

- * It's a jungle out there (495 complexity classes and counting)
 - * See "Complexity Zoo"
- * EECS 574
- * Open problems:
 - * Nearly everything
 - * We prove things like: "If pigs can fly, then horses can whistle."

Next Up: Randomness

- * Next we will begin studying *randomized algorithms*.
 - * Often simple and efficient, but analysis can be tricky.
- * It is possible that randomization yields <u>strictly</u> faster algorithms than any deterministic ones.
- * Most experts believe that any efficient randomized algorithm with one-sided error can be "derandomized" to an efficient deterministic algorithm (w/ worse running time).
 - * Example: primality testing, max-cut, max 3SAT

