UFRGS - INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 2023/2 Prova da área IIb

1	2	3	4	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- $\bullet\,$ Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.

Propri	edades das transformadas de	Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}.$
1.	Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$
2.	Transformada da derivada	Se $\lim_{t \to \pm \infty} f(t) = 0$, então $\mathcal{F} \{f'(t)\} = iw\mathcal{F} \{f(t)\}$
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$
7.	Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{ onde } (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$
8.	Conjugação	$\overline{F(w)} = F(-w)$
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$
11.	Mudança de escala	$\mathcal{F}\left\{f(at) ight\} = rac{1}{ a }F\left(rac{w}{a} ight), \qquad a eq 0$
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$

	Forma trigonométrica	Forma exponencial
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(w_n t) + b_n \sin(w_n t) \right]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$
	onde $w_n = \frac{2\pi n}{T}, T$ é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$	
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$	
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$	
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real},$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw$
de Pouriei	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt} dt$

Integrais definidas

111	tegrais definidas		
1.	$\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2.	$\int_0^\infty e^{-ax} \operatorname{sen}(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3.	$\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{- m a} \qquad (a > 0)$	4.	$\int_0^\infty \frac{x \sin(mx)}{a^2 + x^2} dx = \begin{cases} \frac{\pi}{2} e^{-ma}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2} e^{ma}, & m < 0 \end{cases}$
5.	$\int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ n > 0) \\ 0, & n > m \end{cases}$	6.	$\int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2}, & m < 0 \end{cases}$
7.	$\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8.	$\int_0^\infty e^{-a^2 x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9.	$\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10.	$\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$
			$=\frac{m(a^2+m^2-n^2)}{(a^2+(m-n)^2)(a^2+(m+n)^2)} (a>0)$
11.	$\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12.	$\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13.	$\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14.	$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15.	$\int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases}$	16.	$\int_0^\infty \frac{\operatorname{sen}(mx)\operatorname{sen}(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases}$
17.	$\int_0^\infty x^2 e^{-ax} \sin(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18.	$\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19.	$\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20.	$\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21.	$\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma)e^{-ma} \begin{array}{l} (a > 0, \\ m \ge 0) \end{array}$	22.	$\int_0^\infty x e^{-a^2 x^2} \sin(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}} (a > 0)$

Identidades Trigonométricas:

$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$	$\operatorname{sen}(x)\operatorname{sen}(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$	$sen(x)cos(y) = \frac{sen(x+y) + sen(x-y)}{2}$

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó #	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá #	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Integrais:

• Questão 1 (3.0 pontos) Considere as funções periódicas

$$f(t) = 4 \operatorname{sen}(2t) + \operatorname{sen}(4t)$$
 e $g(t) = 8 \cos^4(t)$

Responda os itens abaixo:

a) (1.0) Preencha a tabela abaixo com os períodos fundamentais e as frequências angulares fundamentais das funções f(t) e g(t) e de f(t) + g(t).

	Período	Frequência
f(t)		
g(t)		
f(t) + g(t)		

b) (1.0) Preencha a tabela abaixo com os coeficientes a_0 , C_0 e a_n , b_n e C_n , n = 1, 2, 3, da função f(t) + g(t).

n	a_n	b_n	C_n
0			
1			
2			
3			

c) (1.0) Esboce o diagrama de espectro da função f(t)+g(t) nos espaços abaixo.

Solução:a) As frequências que aparecem na função f(t) são 2 e 4, sendo 2 a frequência fundamental e π o período fundamental. Para calcular a frequência da função g(t), fazemos a seguinte expansão:

$$g(t) = 8\cos^{4}(t)$$

$$= 8\left(\frac{e^{it} + e^{-it}}{2}\right)^{4}$$

$$= \frac{e^{4it} + 4e^{3it}e^{-it} + 6e^{2it}e^{-2it} + 4e^{it}e^{-3it} + e^{-4it}}{2}$$

$$= 3 + \frac{e^{4it} + e^{-4it}}{2} + \frac{4e^{2it} + 4e^{-2it}}{2}$$

$$= 3 + 4\cos(2t) + \cos(4t)$$

Como as frequências que aparecem na função g(t) são 2 e 4, a frequência fundamental é 2, fazendo o período fundamental ser π . Observe que

$$f(t) + g(t) = 4\sin(2t) + \sin(4t) + 3 + 4\cos(2t) + \cos(4t) = 3 + 4\cos(2t) + 4\sin(2t) + \cos(4t) + \sin(4t) + \cos(4t) + \cos($$

também possui frequência fundamental 2 e período fundamental ser $\pi.$

	Período	Frequência
f(t)	π	2
g(t)	π	2
f(t) + g(t)	π	2

b) Podemos coletar os coeficientes de Fourier da expressão de f(t) + g(t).

n	a_n	b_n	C_n
0	6		$C_0 = \frac{a_0}{2} = 3$
1	4	4	$C_1 = \frac{a_1 - ib_1}{2} = 2 - 2i$
2	1	1	$C_2 = \frac{a_2 - ib_2}{2} = \frac{1 - i}{2}$
3	0	0	$C_3 = 0$

c) Escrevemos $C_n = |C_n|e^{i\phi_n}$ para fazer as diagramas de módulo e fase:

$$C_0 = 3$$

$$C_1 = 2\sqrt{2}e^{-i\pi/4}$$

$$C_2 = \frac{\sqrt{2}}{2}e^{-i\pi/4}$$

Lembremos que $C_{-n} = \overline{C_n}$, isto é,

$$C_1 = 2\sqrt{2}e^{i\pi/4}$$

$$C_2 = \frac{\sqrt{2}}{2}e^{i\pi/4}$$

Os gráficos tomam a forma:

• Questão 2 (2.0 pontos) Calcule a série de Fourier da função periódica dada no gráfico abaixo.

Solução: A função não é par nem ímpar. Mas observe que g(t)=f(t)-1 é ímpar. Então, vamos calcular os coeficientes de g(t) e depois fazer f(t)=g(t)+1. Como a função g(t) é ímpar, $a_n=0$. Vamos calcular b_n . Observe que o período é T=5 e $w_n=\frac{2\pi n}{5}$.

$$b_{n} = \frac{2}{5} \int_{-5/2}^{5/2} f(t) \sin(w_{n}t) dt$$

$$= \frac{4}{5} \int_{0}^{5/2} f(t) \sin(w_{n}t) dt$$

$$= \frac{4}{5} \left[\int_{0}^{1} 2 \sin\left(\frac{2\pi nt}{5}\right) dt + \int_{1}^{2} \sin\left(\frac{2\pi nt}{5}\right) dt \right]$$

$$= \frac{4}{5} \left(\left[-2 \frac{\cos\left(\frac{2\pi nt}{5}\right)}{\frac{2\pi n}{5}} \right]_{0}^{1} + \left[-\frac{\cos\left(\frac{2\pi nt}{5}\right)}{\frac{2\pi n}{5}} \right]_{1}^{2} \right)$$

$$= \frac{2}{\pi n} \left(-2 \cos\left(\frac{2\pi n}{5}\right) + 2 + \cos\left(\frac{2\pi n}{5}\right) - \cos\left(\frac{4\pi n}{5}\right) \right)$$

$$= \frac{2}{\pi n} \left(2 - \cos\left(\frac{2\pi n}{5}\right) - \cos\left(\frac{4\pi n}{5}\right) \right)$$

Agora, observe que os coeficientes a_n e b_n , $n \ge 1$, de f(t) são os mesmos de g(t). Somente o a_0 é diferente. O coeficientes a_0 da função $f(t) \stackrel{\circ}{\text{e}} 2$.

- Questão 3 (2.0 pontos) Resolva os itens abaixo.
 - a) (1.0 ponto) Use a definição de transformadas de Fourier para calcular $F(w) = \mathcal{F}\{e^{-16t^2}\}$.
 - b) (1.0 ponto) Escolhe uma estratégia para calcular $g(t) = \mathcal{F}^{-1}\{e^{-(2w-3)^2/64} + e^{-(2w+3)^2/64}\}$. Solução: a)

$$\begin{split} \mathcal{F}\{e^{-16t^2}\} &= \int_{-\infty}^{\infty} e^{-16t^2} e^{iwt} dt \\ &= 2 \int_{0}^{\infty} e^{-16t^2} \cos(wt) dt \\ &= 2 \frac{\sqrt{\pi}}{8} e^{-w^2/64} \\ &= \frac{\sqrt{\pi}}{4} e^{-w^2/64}. \end{split}$$

Solução: b) Pelo item a), sabemos que

$$\mathcal{F}^{-1}\{e^{-w^2/64}\} = \frac{4}{\sqrt{\pi}}e^{-16t^2}$$

Assim, pela usando a propriedade da mudança de escala, temos que

$$\mathcal{F}^{-1}\{e^{-(2w)^2/64}\} = \frac{1}{2}\frac{4}{\sqrt{\pi}}e^{-16(t/2)^2} = \frac{2}{\sqrt{\pi}}e^{-4t^2}.$$

Pela propriedade da modulação, temos

$$\mathcal{F}^{-1}\{e^{-(2w+3)^2/64}+e^{-(2w-3)^2/64}\}=2\frac{2}{\sqrt{\pi}}e^{-4t^2}\cos(3t)=\frac{4}{\sqrt{\pi}}e^{-4t^2}\cos(3t).$$

• Questão 4 (3.0 pontos) Seja f(t) uma função que possui transformada de Fourier e $F(w) = \mathcal{F}\{f(t)\}$. O gráfico abaixo apresenta o diagrama de espectro de magnitudes.

a) (0.5 ponto) Calcule a energia total do sinal f(t) dado pela expressão

$$\int_{-\infty}^{\infty} |f(t)|^2 dt.$$

b) (0.5 ponto) Calcule o módulo do valor médio do sinal f(t) dado pela expressão

$$\left| \int_{-\infty}^{\infty} f(t)dt \right|.$$

c) (1.0 ponto) Esboce o diagrama de magnitudes de $h(t) = f'(t)\cos(5t)$.

d) (1.0 ponto) Esboce o diagrama de magnitudes de $p(t) = \frac{d}{dt} (f(t) \cos(5t))$.

Solução:a) Pelo Teorema de Parseval

$$\begin{split} \int_{-\infty}^{\infty} |f(t)|^2 dt &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(w)|^2 dw \\ &= \frac{1}{2\pi} \int_{-4}^{4} |F(w)|^2 dw \\ &= \frac{2}{2\pi} \int_{0}^{4} |F(w)|^2 dw \\ &= \frac{1}{\pi} \left(\int_{0}^{2} |F(w)|^2 dw + \int_{2}^{3} |F(w)|^2 dw + \int_{3}^{4} |F(w)|^2 dw \right) \\ &= \frac{1}{\pi} \left(\int_{0}^{2} (2-w)^2 dw + \int_{2}^{3} (w-2)^2 dw + \int_{3}^{4} (4-w)^2 dw \right) \\ &= \frac{1}{\pi} \left(\left[-\frac{(2-w)^3}{3} \right]_{0}^{2} + \left[\frac{(w-2)^3}{3} \right]_{2}^{3} + \left[-\frac{(4-w)^3}{3} \right]_{3}^{4} \right) \\ &= \frac{1}{\pi} \left(\frac{8}{3} + \frac{1}{3} + \frac{1}{3} \right) = \frac{10}{3\pi} \end{split}$$

b) Pela definição de transformada de Fourier, temos

$$F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt.$$

Logo,

$$F(0) = \int_{-\infty}^{\infty} f(t)dt$$

е

$$|F(0)| = \left| \int_{-\infty}^{\infty} f(t)dt \right| = 2.$$

c) Definimos r(t) = f'(t) e $h(t) = r(t)\cos(5t)$. Primeiro esboçamos |R(w)| = |w||F(w)| e depois $|H(w)| = \frac{|R(w+5)| + |R(w-5)|}{2}$ onde usamos as propriedades da derivada e da modulação, além do fato de R(w-5) e R(w+5) não ter sobreposição espectral.

|P(w)| = |w||Q(w)|.

