APPUNTI DI ALGEBRA

Manuel Deodato

INDICE

1	Gli interi	3
	1.1 Proprietà di base	3
	1.2 Massimo comune divisore	4
	1.3 Fattorizzazione unica	6
	1.4 Relazioni di equivalenza e congruenza	7
2	Teoria dei gruppi	8
	2.1 Introduzione	8
	2.1.1 Gruppi ciclici	9
	2.2 Mappe tra gruppi	10

$1\,$ GLI INTERI

1.1 Proprietà di base

Una proprietà dei numeri interi, che si prenderà come assiomatica, è quella del buon ordinamento:

Ogni insieme non-vuoto di interi maggiori o uguali a 0, ha un elemento minimo.

Da questa deriva la seguente.

Teorema 1.1 (Principio di induzione (prima forma))

Sia A(n) un'affermazione valida per ogni intero $n \ge 1$. Se

- (1). A(1) è vera,
- (2). $\forall n \geq 1$, se A(n) è vera $\implies A(n+1)$ è vera,

allora, $\forall n \geq 1, A(n)$ è vera.

Dimostrazione. Sia S l'insieme di interi per cui A(n) è falsa. Si mostra che S è l'insieme vuoto. Si assume per assurdo che $S \neq \emptyset \Rightarrow \exists n_0 \in S$, con n_0 minimo (esistente per il buon ordinamento), e, per assunzione, deve essere $n_0 \neq 1 \Rightarrow n_0 > 1$. Questo vuol dire che $n_0 - 1$ non è in S e, quindi, $A(n_0 - 1)$ è vera.

Per la proprietà (2), però, deve essere vera anche $A(n_0)$ perché $n_0 = (n_0 - 1) + 1$, il che è assurdo e, pertanto, $S = \emptyset$.

Osservazione 1.1. Nella dimostrazione sopra, si sarebbe potuto sostituire 1 con 0 e far partire il principio di induzione da n=0 piuttosto che da n=1 e non sarebbe cambiato nulla.

Il principio di induzione può essere espresso in una forma alternativa, come segue.

Teorema 1.2 (Principio di induzione (seconda forma))

Sia A(n) affermazione vera $\forall n \geq 0$ e sia possibile mostrare che:

- (1'). A(0) è vera;
- (2'). $\forall n > 0$, se A(k) è vera $\forall 0 \le k < n$, allora A(n) è vera.

Allora A(n) è vera $\forall n \geq 0$.

Dimostrazione. Sia ancora S l'insieme degli interi che non soddisfano A(n). Ancora per assurdo, si prende $S \neq \emptyset$, quindi deve esistere, per il buon ordinamento, un $n_0 \in S$ minimo

Per punto (1'), deve valere $n_0 \neq 0$ e, visto che n_0 è minimo, $\forall k$ intero tale che $0 \leq k < n_0$, A(k) deve essere vera. Per il punto (2'), però, deve essere vera anche $A(n_0)$, arrivando nuovamente all'assurdo.

Un altro importante risultato del buon ordinamento è l'algoritmo di Euclide.

Teorema 1.3 (Algoritmo di Euclide)

Siano m, n interi, con m > 0; allora esistono interi q, r, con $0 \le r < m$, tali che

$$n = qm + r \tag{1.1.1}$$

Inoltre, gli interi q, r sono univocamente determinati da tali condizioni.

Dimostrazione. Visto che l'insieme degli interi q tali per cui $qm \leq n$ è limitato superiormente per definizione, si può usare il buon ordinamento per affermare che esiste un

elemento più grande^a tale che

$$qm \le n < (q+1)m = qm + m$$

ossia $0 \le n-qm < m$. Sia r=n-qm, per cui vale $0 \le r < m$. Questo dimostra l'esistenza di r,q come descritti.

Per l'unicità, si assume che valga contemporaneamente

$$\begin{cases} n = q_1 m + r_1 & , \ 0 \le r_1 < m \\ n = q_2 m + r_2 & , \ 0 \le r_2 < m \end{cases}$$

con $r_1 \neq r_2$. Sia, per esempio, $r_2 > r_1$; allora, sottraendo le due, si ha $(q_1 - q_2)m = r_2 - r_1$. Però, si ha $r_2 - r_1 > 0$ e $r_2 - r_1 < m$, il che non è possibile perché $q_1 - q_2$ è un intero per cui $(q_1 - q_2)m > 0$, quindi si avrebbe $r_2 - r_1 = (q_1 - q_2)m \geq m$ e, quindi $r_2 - r_1 \geq m$. Pertanto, deve essere $r_1 = r_2$, che fra l'altro implica $q_1m = q_2m$, per cui $q_1 = q_2$.

Da questo teorema, si definisce r come il resto della divisione di n per m.

1.2 Massimo comune divisore

Siano n, d due interi diversi da 0. Si dice che d divide n se esiste q intero tale che n = dq; in questo caso, si scrive d|n. Se m, n sono interi non-nulli, per divisore comune di m e n si intende un interno $d \neq 0$ tale che d|m e d|n. Allora si ha la seguente definizione.

Definizione 1.1 (Massimo comune divisore)

Per massimo comune divisore di m, n interi non nulli, si intende un intero d > 0, divisore comune di m e n, e tale che $\forall e$ intero positivo che divide m e n, si ha anche e|d.

Chiaramente, il massimo comune divisore è univocamente determinato e si mostrerà che esiste sempre. Per farlo, si dà prima la seguente definizione.

Definizione 1.2 (Ideale)

Sia $J \subseteq \mathbb{Z}$ un sottoinsieme degli interi. Si dice che J è un *ideale* se:

- $0 \in J$:
- $m, n \in J \implies m + n \in J$
- se $m \in J$ e n è un intero qualsiasi, allora $mn \in J$.

Osservazione 1.2. Di seguito, per ideale si intenderà sempre un sottoinsieme degli interi.

Siano m_1, \ldots, m_r interi. Sia J l'insieme di tutti gli interi che si scrivono come

$$x_1m_1 + \ldots + x_rm_r$$

con x_1, \ldots, x_r interi. Allora è automaticamente verificato che J è un ideale. Infatti

• se y_1, \ldots, y_r sono interi, allora

$$\sum_{i=1}^{r} x_i m_i + \sum_{i=1}^{r} y_j m_j = (x_1 + y_1) m_1 + \ldots + (x_r + y_r) m_r$$

che, quindi, appartiene a J;

 \bullet se n è un intero, si ha

$$n\sum_{i=1}^{r} x_i m_i = nx_1 m_1 + \ldots + nx_r m_r$$

 $[^]a$ Basta applicare il buon ordinamento all'elemento più piccolo dell'insieme n-qm.

che, quindi, appartiene a J;

• si può scrivere 0 come $0m_1 + \ldots + 0m_r$, quindi anche $0 \in J$.

In questo caso, si dice che J è **generato** dagli interi m_1, \ldots, m_r e che questi sono i suoi **generatori**. L'insieme $\{0\}$ è esso stesso un ideale, chiamato **ideale nullo**. Inoltre, \mathbb{Z} è detto **ideale unità**. Ora si può dimostrare il seguente.

Teorema 1.4

Sia J un ideale di \mathbb{Z} . Allora esiste un intero d che è un generatore di J. Inoltre, se $J \neq \{0\}$, allora d è il più piccolo intero positivo in J.

Dimostrazione. Sia J l'ideale nullo; allora 0 è un suo generatore. Sia, ora, $J \neq \{0\}$; se $n \in J$, allora -n = (-1)n è anche in J, quindi J contiene degli interi positivi. Si vuole dimostrare che d, definito come il più piccolo intero positivo, è un generatore. Per farlo, sia $n \in J$, con n = dq + r, $0 \le r < d$; allora $r = n - dq \in J$ e, visto che vale r < d, segue che $r = 0^a$, quindi n = dq e, allora, d è un generatore.

Teorema 1.5

Siano m_1, m_2 due interi positivi e sia d un generatore positivo per l'ideale generato da m_1, m_2 . Allora d è il massimo comune divisore di m_1, m_2 .

Dimostrazione. Per definizione, $m_1, m_2 \in J^a$, quindi esiste un intero q_1 tale che $m_1 = q_1 d$, per cui $d|m_1$. Analogamente $d|m_2$. Sia, poi, e un intero non-nullo che divide sia m_1 che m_2 come $m_1 = h_1 e$ e $mm_2 = h_2 e$, con interi h_1, h_2 . Visto che d è nell'ideale generato da m_1, m_2 , esistono degli interi s_1, s_2 tali che $d = s_1 m_1 + s_2 m_2$, quindi

$$d = s_1 h_1 e + s_2 h_2 e = (s_1 h_1 + s_2 h_2)e$$

Quindi e divide d e il teorema è dimostrato.

Osservazione 1.3. La stessa esatta dimostrazione funziona per più di due interi, quindi se si considerassero m_1, \ldots, m_r degli interi, con d generatore positivo dell'ideale da loro generato, d sarebbe anche il massimo comune divisore.

Questi due teoremi permettono di concludere i seguenti fatti.

- Ogni ideale *J* contiene un numero intero che lo genera interamente e questo coincide col più piccolo intero positivo in esso contenuto, quindi è l'unico generatore *singolo* dell'ideale.
- Ogni insieme di numeri interi ha un massimo comune divisore perché tale insieme genera un ideale, il quale, però, contiene un generatore (più piccolo numero intero in esso contenuto) che è un massimo comune divisore per l'insieme di interi iniziale.

Definizione 1.3 (Interi relativamente primi)

Siano m_1, \ldots, m_r degli interi il cui massimo comune divisore è 1. Allora m_1, \ldots, m_r si dicono relativamente primi e, per questi, esistono interi x_1, \ldots, x_r tali che

$$x_1m_1 + \ldots + x_rm_r = 1$$

perché 1 appartiene all'ideale generato dagli m_i .

È immediato verificare per definizione di ideale che $1 \in J \iff J \equiv \mathbb{Z}$. Dalla definizione 1.3 segue direttamente che ogni insieme di interi relativamente primi genera \mathbb{Z} .

Osservazione 1.4. Si potrebbe pensare che se p è un numero primo, allora l'insieme $\{p\}$ generi \mathbb{Z} , cioè p generi \mathbb{Z} . Questo è ovviamente falso sia perché, evidentemente, J_p non

 $[^]a$ Altrimenti d non sarebbe il più piccolo intero positivo.

 $[^]a$ Questo è ovvio perché $m_1=1m_1+0m_2$ e $m_2=0m_1+1m_2.$

contiene 1, sia perché p non è relativamente primo con se stesso, avendo come altro divisore se stesso oltre che 1.

1.3 Fattorizzazione unica

Definizione 1.4 (Numero primo)

Si dice che p è un numero primo se è un intero e $p \ge 2$ tale che, data una fattorizzazione p = mn, con interi positivi m, n, allora m = 1 o n = 1.

Osservazione 1.5. Il fatto che p = mn con m = 1, o n = 1 implica p numero primo significa che p è diviso unicamente o da 1 o, da se stesso.

Ora si mostra che ogni numero intero ammette un'unica scomposizione in numeri primi. Per dimostrare l'unicità di tale scomposizione, si introduce il seguente lemma.

Lemma 1.1

Sia p un numero primo e siano m,n interi non-nulli e tali che p divide mn. Allora o p|m o p|n.

Dimostrazione. Senza perdita di generalità, si assume che p non divida m. Allora, il massimo comune divisore di p e m deve essere 1, pertanto esistono interi a, b tali per cui 1 = ap + bm. Ora, moltiplicando ambo i membri per n, si ha n = nap + bmn, ma mn = pc per qualche intero c (essendo in assunzione mn divisibile per p), quindi

$$n = nap + bpc = (na + bc)p$$

il che implica che p divide n.

Per evidenziare l'utilità del lemma nel seguente teorema, si nota che se p divide un prodotto di numeri primi $q_1 \dots q_s$, si hanno due possibilità: o p divide q_1 , o divide $q_2 \dots q_s$; se divide q_1 , allora $p \equiv q_1$, altrimenti si trova $p \equiv q_i$ procedendo induttivamente. Il caso interessante è quando si ha un uguaglianza tra prodotti di numeri primi

$$p_1 \dots p_r = q_1 \dots q_s$$

dove ogni p_i divide il prodotto¹. Rinumerandoli, si può assumere senza perdita di generalità che $p_1 = q_1$ e, induttivamente, che $p_i = q_i$ e r = s, essendo due scomposizioni in un numeri primi.

Teorema 1.6

Ogni intero positivo $n \geq 2$ ammette una fattorizzazione come prodotto di numeri primi (non necessariamente distinti) $n = p_1 \dots p_r$ e tale fattorizzazione è unica.

Dimostrazione. Si assume per assurdo che esista almeno un intero ≥ 2 che non possa essere espresso come prodotto di numeri primi. Sia m il più piccolo di questi.

Per costruzione, m non può essere primo, quindi m=de, con d,e>1. Visto che d ed e sono minori di m e visto che m è scelto per essere il più piccolo fra gli interi non fattorizzabili come numeri primi, allora sia d che e ammettono scomposizione in prodotto di numeri primi:

$$d = p_1 \dots p_r \\ e = p'_1 \dots p'_s \implies m = p_1 \dots p_r p'_1 \dots p'_s$$

da cui l'assurdo.

Per mostrare l'unicità, si usa il lemma 1.1. Come conseguenza, diretta del lemma, se esistessero due scomposizioni in primi $p_1 \dots p_r$ e $p'_1 \dots p'_s$, varrebbe $p_1 \dots p_r = p'_1 \dots p'_s \Rightarrow p_i = p'_i$ e r = s, da cui l'unicità

¹Per vederlo, è sufficiente prendere $c=p_1\dots p_{i-1}p_{i+1}\dots p_r$, quindi si ha $cp_i=q_1\dots q_s$, che è la definizione di $p_i|q_1\dots q_s$.

1.4 Relazioni di equivalenza e congruenza

Definizione 1.5 (Relazione di equivalenza)

Sia S un insieme. Una relazione di equivalenza su S è una relazione indicata con $x\sim y,\ x,y\in S,$ tale che:

```
ER 1. \forall x \in S, \ x \sim x;
```

ER 2. se $x \sim y$ e $y \sim z$, allora $x \sim z$;

ER 3. se $x \sim y$, allora $y \sim x$.

Se su S è definita una relazione di equivalenza \sim , le classi di equivalenza sono insiemi $C_x := \{y \in S : y \sim x\}$ partizionano S in insiemi disgiunti. Inoltre, dati due elementi $r,s \in S$, si ha $C_r \equiv C_s$, oppure C_r , C_s non hanno elementi in comune. Si sceglie un elemento che identifica la classe di equivalenza, ad esempio x per C_x , e tale elemento si chiama rappresentante della classe di equivalenza. Un esempio di relazione di equivalenza è la congruenza.

Definizione 1.6 (Congruenza)

Sia n un intero positivo e siano x, y due interi. Si dice che x è congruente y modulo n se $\exists m : x - y = mn$. In tal caso, si scriverà $x \equiv y \pmod{n}$.

La congruenza di x, y come x - y = mn implica automaticamente che x - y appartiene all'ideale generato da n; inoltre, se $n \neq 0$, allora x - y è divisibile per n.

Oltre alle proprietà delle relazioni di equivalenza, la congruenza ne soddisfa anche altre due:

- se $x \equiv y \pmod{n}$ e z è un intero, allora $xz \equiv yz \pmod{n}$;
- se $x \equiv y \pmod{n}$ e $x' \equiv y' \pmod{n}$, allora $xx' \equiv yy' \pmod{n}^1$ e $x + x' \equiv y + y' \pmod{n}$.

Dalla definizione di congruenza, si definiscono gli interi **pari** come quelli che sono congruenti a $0 \pmod{2}$ (quindi n=2m) e quelli **dispari** come gli interi che non sono pari, quindi della forma 2m+1, per qualche intero m.

¹Per dimostrare questa, basta notare che xx' - yy' = xx' + x'y - x'y - yy' = x'(x - y) + y(x' - y').

2 Teoria dei gruppi

2.1 Introduzione

Definizione 2.1 (Gruppo)

Un gruppo G è un insieme su cui è definita una legge di composizione $\circ: G \to G$ che soddisfa le seguenti condizioni per gli elementi di G:

GR 1. $(x \circ y) \circ z = z \circ (y \circ z)$ (associatività);

GR 2. $\exists e \in G : x \circ e = e \circ x = x$ (elemento neutro);

GR 3. $\forall x \in G, \exists y \in G \text{ tale che } x \circ y = y \circ x = e \text{ (elemento inverso)}.$

Quando \circ è la moltiplicazione, G si dice **gruppo moltiplicativo**; quando \circ è l'addizione, G si dice **gruppo additivo**.

Definizione 2.2 (Gruppo commutativo)

Un insieme G è detto gruppo commutativo se è un gruppo e se soddisfa ulteriormente

$$x \circ y = y \circ x, \ \forall x, y \in G$$

L'elemento neutro di ciascun gruppo è unico.

Dimostrazione. Sia e' un altro elemento neutro; si nota che: e = ee' = e'.

L'elemento inverso di ciascun elemento di un gruppo G è unico.

Dimostrazione. Siano y, y' gli elementi inversi di x; allora: $e = xy \implies y'e = y'xy \implies y' = y$. \square

Questo elemento inverso si indica con x^{-1} ; per gruppo additivo, si indicherà con -x.

Esempio 2.1. I numeri reali \mathbb{R} e i numeri complessi \mathbb{C} sono entrambi gruppi additivi. I numeri reali diversi da 0, \mathbb{R}^* , e i numeri complessi diversi da 0, \mathbb{C}^* , sono gruppi moltiplicativi.

Esempio 2.2. L'insieme dei numeri complessi di modulo 1, $\mathscr{I} := \{z \in \mathbb{C} : |z| = 1\}$, è un gruppo moltiplicativo.

Definizione 2.3 (Prodotto diretto)

Siano G_1, \ldots, G_n dei gruppi; si definisce prodotto diretto l'insieme

$$G_P = \prod_{i=1}^n G_i = G_1 \times G_2 \times \ldots \times G_n$$

e contiene tutte le *n*-uple $(x_1, \ldots, x_n), x_i \in G_i$.

Prendendo un prodotto diretto di gruppi ed equipaggiandolo con il prodotto componente per componente, dove l'elemento unità è (e_1, \ldots, e_n) , con e_i unità di G_i , si ottiene un gruppo moltiplicativo.

Definizione 2.4 (Gruppo finito)

Un gruppo G si dice finito se ha un numero limitato di elementi; si chiama **ordine** il numero di elementi di tale gruppo.

Definizione 2.5 (Sottogruppo)

Sia G un gruppo e $H \subset G$ un sottoinsieme di G. Si dice che H è un sottogruppo di G se:

• $e \in H$;

- $\forall x, y \in H, \ x \circ y \in H;$
- $\forall x \in H, \ x^{-1} \in H.$

Definizione 2.6 (Generazione di un sottogruppo)

Sia $S = \{x_1, \ldots, x_n\} \subset G$ un sottoinsieme di un gruppo G; l'insieme $H := \{x \in G : x = x_1 \circ \ldots \circ x_n\} \cup \{x^{-1} \in G : x \in S\} \cup \{e \in G\}$ è un sottogruppo di G ed è detto generato da S, dove gli elementi di S sono detti i generatori di H. In questo caso, si scriverà che $H = \langle S \rangle \equiv \langle x_1, \ldots, x_n \rangle$.

Esempio 2.3. Si nota che $\{1\}$ è un generatore per il gruppo additivo degli interi, visto che ogni $z \in \mathbb{Z} \setminus \{0\}$ si può scrivere come $1+1+\ldots+1$, o $-1-1-\ldots-1$, mentre l'elemento neutro ne fa parte per definizione.

Ora si definisce una notazione per indicare una ripetizione dell'operazione di composizione con lo stesso elemento. In generale, si scriverà:

$$x^n \equiv \underbrace{x \circ x \circ \dots \circ x}_{n \text{ volte}} \tag{2.1.1}$$

Se n=0, si definisce $x^n=e$; invece, se n=-m, si ha la seguente definizione:

$$x^{-m} = (x^{-1})^m$$

Allora si possono verificare le seguenti:

- $\bullet \ x^{n+m} = x^n x^m;$
- $\bullet \ x^{-m}x^n = x^{n-m};$
- $\bullet \ (x^n)^m = x^{nm}.$

Queste sono direttamente valide per la moltiplicazione, mentre per l'addizione si ha un qualcosa di analogo. Per cominciare $x^n \equiv nx$ nel caso dell'addizione, per definizione. Conseguentemente, le regole soddisfatte sono le seguenti:

$$(m+n)x = mx + nx$$
; $(mn)x = m(nx)$

2.1.1 Gruppi ciclici

Sia, G un gruppo e sia $a \in G$. Si definisce il sottogruppo H di G come quell'insieme avente tutti elementi del tipo a^n , $\forall n \in \mathbb{Z}$. In questo senso, H è generato da a. Per mostrare che è un gruppo, si nota che : $e \in H$ perché $e = a^0$; dati, poi, $a^n, a^m \in H$, anche $a^{n+m} \equiv a^n a^m \in H$ perché $n+m \in \mathbb{Z}$. Infine, l'inverso di ciascun elemento a^n appartiene ad H perché $(a^n)^{-1} \equiv a^{-n}$, che appartiene ad H perché $-n \in \mathbb{Z}$.

Definizione 2.7 (Gruppo ciclico)

Sia G un gruppo; si dice che G è ciclico se esiste $a \in G$: $\forall g \in G, g = a^n$, per qualche intero n.

Riprendendo l'esempio 2.3, \mathbb{Z} è un gruppo additivo ciclico, con generatore 1. Visto che un sottogruppo di Z è quello che si è chiamato ideale, si ha la seguente.

Proposizione 2.1

Sia H un sottogruppo di \mathbb{Z} . Se H non è il sottogruppo banale, sia d il più piccolo intero in esso contenuto; allora H contiene tutti elementi della forma nd, con $n \in \mathbb{Z}$, pertanto H è ciclico.

Sia G un gruppo ciclico e sia $a \in G$ il suo generatore; si hanno due casi possibili.

• Caso 1: non esiste $n \in \mathbb{Z}^{>0}$: $a^n = e$.

Allora per ogni intero $n \neq 0$, $a^n \neq e$ e, allora, G si dice **infinitamente ciclico**, o che a ha **ordine infinito** perché ogni elemento $a^n \in G$ è distinto dall'altro.

Dimostrazione. Si assume $a^r = a^s$ per qualche coppia di interi r, s; allora $a^{s-r} = e \Rightarrow s - r = 0 \Rightarrow r = s$.

• Caso 2: $\exists m \in \mathbb{Z}^{>0} : a^m = e$.

In questo caso, a ha **ordine finito**. Evidentemente, il gruppo è finito perché i suoi elementi si ripetono periodicamente.

Sia J l'insieme degli $n \in \mathbb{Z}$ tali che $a^n = e$; allora J è un sottogruppo di \mathbb{Z} .

Dimostrazione. Si ha $0 \in J$ perché $a^0 = e$ per definizione. Se $m, n \in J$, allora $a^{m+n} = a^m a^n = e \Rightarrow m+n \in J$. Infine, visto che $a^{-m} = (a^m)^{-1} = e$, anche $-m \in J$.

Per il teorema 1.4, il più piccolo intero positivo contenuto in J genera J stesso; allora, per definizione, d è il più piccolo intero tale che $a^d = e$ e, per questo, viene chiamato **periodo** di a. In quanto tale, se $a^n = e$ per qualche intero n, allora n = ds, per qualche intero s.

Teorema 2.1

Sia G un gruppo e sia $a \in G$ un elemento di periodo d; allora a genera il sottogruppo ciclico di ordine d, i cui elementi sono e, a, \ldots, a^{d-1} .

Dimostrazione. Per mostrare l'esistenza di tale sottogruppo, si nota che per $a \in G$, di periodo d, e per generico $n \in \mathbb{Z}$, l'algoritmo euclideo afferma che n = qd + r, con $q, r \in \mathbb{Z}$ e $0 \le r < d$, per cui vale $a^n = a^r$.

Ora si mostra che gli elementi sono distinti. Se fosse $a^r = a^s$, con $0 \le r, s \le d-1$ e, per assunzione, $r \le s$, allora $a^{s-r} = e$; però $0 \le s-r < d$, quindi bisogna avere s-r = 0, da cui r = s.

2.2 Mappe tra gruppi