风险计量分析与工具 R 语言期末作业

——简单的交互式网页

小组成员:

李 情 2019100424

李 想 2019100425

许沐明 2019102487

目录

1.	综述.		3
	1.1.	作业思路	3
	1.2.	数据来源	3
2. 功	功能到	实现	4
	2.1.复	ē合 K 线图	4
	2.2.	树状图	7
	2.3.	横向条形图	9
	2.4.	价格变化密度图	.14
	2.5.	个股日行情表	.15
	2.6.	个股财务信息表	.16
3.	网页图	实现	.17
4.	总结.		.23

1. 综述

1.1. 作业思路

我们的目的是为了实现一个简单的交互式网页,我们将 Finviz 网站上的具体功能写成一个个函数,再利用 shiny 包写成一个多页面式的交互式网页,涉及到具体功能时则调用这些创建的函数,尽量将代码更具有可读性。

压缩包文件解释:

表1R 文档解释

R 文档	作用
runshiny.R	简单交互式网站的实现,运行可调用所有的函数
final_barchart.R	函数的创建,用来实现上证指数的成分股的四种横向条形图
density.R	函数的创建,用来实现商业指数的五分钟的价格变化密度图
treemap.R	函数的创建,用来实现上证行业涨跌幅的树状图
StockCandlestick.R	函数的创建,用来实现包含成交量柱状图与成交量均线及价格移动均线的复
Stock Candlestick. N	合 K 线图

表 2 数据文档解释

csv/xlsx 文档	作用
bar_figure1.csv	用来制作 final_barchart.R 中的横向条形图一
bar_figure2.csv	用来制作 final_barchart.R 中的横向条形图二
bar_figure3.csv	用来制作 final_barchart.R 中的横向条形图三
bar_figure4.csv	用来制作 final_barchart.R 中的横向条形图四
density.csv	用来制作 density.R 中的价格变化密度图
C.xlsx	用来制作 treemap.R 中的树状图
DRESSTK.csv	用来制作 StockCandlestick.R 中的复合 K 线图
table1.xlsx	用来制作 runshiny.R 中的个股日行情 DT 表
table1.xlsx	用来制作 runshiny.R 中的个股财务信息表

1.2. 数据来源

由于实验室的数据库不稳定,我们的数据都来自于 Resset 金融研究数据库,下载成 csv 或 xts 文件。R 语言的 shiny 运行速度较慢,因此复合 K 线图、个股行情 DT 表、个股财务信息的数据都只选取了一部分上证个股。

表 3 数据选择解释

数据文档	股票池	数据特征	时间范围
bar_figure1.csv	上证成分股	当日收盘价与前一天收盘价对比	2019年9月30日
bar_figure2.csv	上证成分股	当日当日开盘价与今年以来的成交均价 对比	2019年9月30日
bar_figure3.csv	上证成分股	当日涨跌幅与60日移动平均对比	2019年9月30日
bar_figure4.csv	上证成分股	当日涨跌幅与 120 日移动平均对比	2019年9月30日
density.csv	商业指数	每五分钟的价格变化	2017年9月30日,
C.xlsx	上证成分股	行业分类、市值及当日涨跌幅	2019年9月30日
DRESSTK.csv	600000-	每日开盘价、收盘价、最高价、最低	2018年10月1日-
DRESSI K.CSV	600100	价、成交量	2019年9月30日
table1.xlsx	600000-	复见收费人 沙叶帕及比克曼物块	2010年0日20日
table1.xisx	600202	每日收盘价、涨跌幅及成交量数据	2019年9月30日
table1 vlev	600000-	22. 压叶发 松仁	2010年0日20日
table1.xlsx	600202	22 项财务指标	2019年9月30日

注: 商业指数的数据最新只有 2017 年 9 月 30 日

表 4 财务信息指标的选取

指标类别	指标名称		
	总市值	自由流通市值	
市值指标	市盈率 PE	市净率 PB	
	市销率 PS		
每股指标	股息率	每股收益 EPS	
油油壶地井	波动率:100 周	波动率:24 个月	
波动率指标	波动率:60 个月		
	年化净资产收益率	年化总资产报酬率	
成长指标	年化总资产净利率	营业总收入	
	营业收入	净利润	
	权益乘数	流动比率	
财务指标	速动比率	现金比率	
	现金流量利息保障倍数	现金净流量	

2. 功能实现

2.1.复合 K 线图

文字说明:

复合 K 线图由 K 线图和成交量图两部分构成,本文都用 ggplot()函数创建这两幅图,再 用 grid.arrange()函数将两幅图组合起来。

K 线图:由每日的开盘价、收盘价、最高价、最低价构成的蜡烛图,在包含三条移动平均曲线,其中红线为 20 日移动平均曲线,黄色为 50 日移动平均曲线,蓝色为 200 日移动平均曲线。

成交量图:成交量绿柱表示收盘价低于开盘价,红柱表示收盘价高于开盘价。即日 K 线收绿,则成交量也收绿,反之也成立。蓝线表示成交量五日均线,红线表示成交量十日均线。

代码:

```
StockCandlestick.R

stockplot <- function(x) {

fulldata <- read.csv("DRESSTK.csv", header=TRUE)

data<-fulldata[fulldata$Stkcd == x,3:8]

data<- na.omit(data)

class(data)

data$date<-as.Date(data$date)

class(data$date)

# 为了解决日期作为横坐标会出现休市日的情况,需要以下的变量辅助

row_len <- nrow(data)

breaks <- seq(1, row_len, 30)
```

#作K线图

labels <- data\$date[breaks]

```
p1 <- data %>%
arrange(data$date) %>%
mutate(ma20 = SMA(close, n = 20, align = "right"),
ma50 = SMA(close, n = 50, align = "right"),
ma200 = SMA(close, n = 200, align = "right"),
date_axis = row_number()) %>%
ggplot(aes(x = date_axis)) +
geom_boxplot(aes(lower = pmin(close, open),
middle = close,
upper = pmax(close, open),
ymin = low,
ymax = high,
group = date_axis,
```

作成交量图

```
p2 <- data %>%
  arrange(date) %>%
  mutate(vol ma5 = SMA(volume, n = 5, align = "right"),
          vol ma10 = SMA(volume, n = 10, align = "right"),
          date axis = row number()) %>%
  ggplot(aes(x = date axis, y = volume)) +
  geom bar(stat = "identity",
             aes(fill = open > close),
             show.legend = FALSE) +
  geom line(aes(y = vol ma5), color = "blue3") +
  geom line(aes(y = vol ma10), color = "red") +
  scale x continuous(breaks = breaks,
                        labels = format(labels, "%Y-%m"),
                        expand = c(0, 0) +
  scale y continuous(expand = c(0, 0.5)) +
  theme(axis.title = element blank())
```

组合

```
grid.arrange(p1, p2, nrow = 2, heights = 2:1)
}
```

结果:

图1复合K线图

2.2.树状图

文字说明:

本文利用 treemap()函数来创建树状图,分为全行业树状图及分行业树状图,构建树状图的代码一致,只是在构建行业树状图是进行了数据筛选工作。

树状图中,股票面积的大小对应股票市值的大小,股票颜色的变化对应股票当日涨跌幅的变化。

代码:

treemap.R

#全行业树状图

```
type="value",
                 #palette.HCL.options=palette.HCL.options, #设置颜色
                 palette=(values=color),
                 #palette="-RdGy",
                 format.legend = list(scientific = FALSE, big.mark = " "),
                 fontsize.title=0, #去掉标题
                 fontsize.legend=0, #去掉图例
                 fontcolor.labels="white",fontface.labels=2,fontsize.labels = c(12,20), #标签
颜色,加粗
                 #fontfamily.labels="STSong", #解决中文乱码
                 bg.labels=0, #聚类标签的背景颜色
                 align.labels=list(c("left", "top"), c("center", "center")), #改变标签位置, 前面
为聚类标签,后面为每个 stock 标签
                 overlap.labels=0, #0-1, 确定标签之间重叠程度, 0表示如果较高级别的标签重
叠,则不打印较低级别的标签
        )
#各行业树状图
TreeMap2<-function(x){
data <- read.xlsx("C.xlsx",1,encoding = "UTF-8")
data\stcok<- as.integer(data\stcok)
data<-data[data$class==x,]
data$color <- rainbow(nlevels(data$stock))[data$stock] #更改颜色
color <- c( "#9E3649", "#FF0017", "#008B4F", "#00AE51")
palette.HCL.options <- list(hue start=270, hue end=360+150)
treemap(data,
        index=c("class", "stock1"),
        vSize="market cap",
        vColor="percent",
        type="value",
        #palette.HCL.options=palette.HCL.options, #设置颜色
        palette=(values=color),
        #palette="-RdGy",
        format.legend = list(scientific = FALSE, big.mark = " "),
        fontsize.title=0, #去掉标题
        fontsize.legend=0, #去掉图例
        fontcolor.labels="white",fontface.labels=2,fontsize.labels = c(12,20), #标签颜色, 加粗
        #fontfamily.labels="STSong", #解决中文乱码
        bg.labels=0, #聚类标签的背景颜色
        align.labels=list(c("left", "top"), c("center", "center")), #改变标签位置, 前面为聚类标签,
后面为每个 stock 标签
        overlap.labels=0, #0-1, 确定标签之间重叠程度, 0表示如果较高级别的标签重叠,则不打
```

```
印较低级别的标签
)
}
```

图 2 全行业树状图

全行业树状图

图 3 各行业树状图

各行业树状图

2.3.横向条形图

文字说明:

本文四张条形图都是用 ggplot()函数完成的

创建的 Barchart1()函数: 是衡量上证指数成分股中当天的收盘价和前一天的收盘价相比,

绿色的表示高于前一天收盘价的股票数,红色的表示低于前一天收盘价的股票数,灰色表示不变。

创建的 Barchart2()函数: 衡量上证指数成分股中当日开盘价和 2019 年以来的成交均价相比,绿色的表示高于 2019 年以来的成交均价,红色的表示低于 2019 年以来的成交均价。创建的 Barchart3()函数:衡量上证指数成分股中当日涨跌幅和 60 日移动平均变化相比,绿色的表示高于 60 日移动平均变化,红色的表示低于 60 日移动平均变化。

创建的 Barchart4()函数: 衡量上证指数成分股中当日涨跌幅和 120 日移动平均变化相比, 绿色的表示高于 120 日移动平均变化, 红色的表示低于 120 日移动平均变化。

```
final barchart.R
Barchart1 <- function(){
##### figure1
#上涨、不变、下降的股票比例
data1 <- read.csv('bar figure1.csv',header=T)
data1$trend = factor(data1$trend, levels=c('declining','stay','advancing'))
ggplot(data1,aes('',stock,fill=trend))+
  geom bar(stat="identity",position="stack",width=0.05)+#stack:堆积柱状图, width:柱状图
宽度
  theme bw()+
  #scale fill brewer(palette='Set1')+ #柱状图颜色,使用 RColorBrewer
  scale fill manual(values=c("#FF6666","#CCCCCC","#66CC33"))+
  guides(fill=guide legend(title=NULL))+ #不显示标题
  guides(fill=F) + #不显示图例
  #不显示各种图标
  theme(panel.grid = element_blank(),panel.border = element_blank(),
```

```
axis.text = element blank(),axis.ticks = element blank(),
         text = element blank())+
         #显示数字
         geom text(aes(y=position,label=paste(stock,'%',sep = ")),size=3,col='white')+
         geom text(aes(y=position num,label=number),size=3,
                    col=c('#66CC33',",'#FF6666'),
                    viust=-1.5)+
         geom text(aes(y=position trend,label=trend1),size=3,col='black',vjust=-1.5)+
  coord flip()#将图形横纵坐标互换
Barchart2<-function(){
#### figure2
#总发行创下新高/新低的股票比例
data2 <- read.csv('bar figure2.csv',header=T)
data2$trend = factor(data2$trend, levels=c('low','high'))
ggplot(data2,aes(' ',stock,fill=trend))+
  geom bar(stat="identity",position="stack",width=0.05)+#stack:堆积柱状图, width:柱状图
宽度
  theme bw()+
  scale fill manual(values=c("#FF6666","#66CC33"))+
  guides(fill=guide legend(title=NULL))+ #不显示标题
  guides(fill=F) + #不显示图例
  #不显示各种图标
  theme(panel.grid = element blank(),panel.border = element blank(),
         axis.text = element blank(),axis.ticks = element blank(),
         text = element blank())+
  #显示数字
  geom text(aes(y=position,label=paste(stock,'%',sep = ")),size=3,col='white')+
  geom text(aes(y=position num,label=number),size=3,
             col=c('#66CC33','#FF6666'),
             viust=-1.5)+
  geom text(aes(y=position trend,label=trend1),size=3,col='black',vjust=-1.5)+
  coord flip()#将图形横纵坐标互换
```

```
Barchart3<-function(){
#### figure3
#日振幅高于/低于60天移动平均的股票数比例
data3 <- read.csv('bar figure3.csv',header=T)
data3$trend = factor(data3$trend, levels=c('below','above'))
ggplot(data3,aes(' ',stock,fill=trend))+
  geom bar(stat="identity",position="stack",width=0.05)+#stack:堆积柱状图, width:柱状图
宽度
  theme bw()+
  scale fill manual(values=c("#FF6666","#66CC33"))+
  guides(fill=guide legend(title=NULL))+ #不显示标题
  guides(fill=F) + #不显示图例
  #不显示各种图标
  theme(panel.grid = element blank(),panel.border = element blank(),
        axis.text = element blank(),axis.ticks = element blank(),
        text = element_blank())+
  #显示数字
  geom text(aes(y=position,label=paste(stock,'%',sep = ")),size=3,col='white')+
  geom text(aes(y=position num,label=number),size=3,
             col=c('#66CC33','#FF6666'),
             viust=-1.5)+
  geom_text(aes(y=position_trend,label=trend1),size=3,col='black',vjust=-1.5)+
  coord flip()#将图形横纵坐标互换
Barchart4<-function(){
#### figure4
#日振幅高于/低于 120 天移动平均的股票数比例
data4 <- read.csv('bar figure4.csv',header=T)
data3$trend = factor(data4$trend, levels=c('below','above'))
ggplot(data4,aes('',stock,fill=trend))+
  geom_bar(stat="identity",position="stack",width=0.05)+#stack:堆积柱状图, width:柱状图
```

```
宽度
```

```
theme_bw()+
  scale fill manual(values=c("#FF6666","#66CC33"))+
  guides(fill=guide_legend(title=NULL))+ #不显示标题
  guides(fill=F) + #不显示图例
  #不显示各种图标
  theme(panel.grid = element blank(),panel.border = element blank(),
        axis.text = element_blank(),axis.ticks = element_blank(),
        text = element blank())+
  #显示数字
  geom text(aes(y=position,label=paste(stock,'%',sep = ")),size=3,col='white')+
  geom_text(aes(y=position_num,label=number),size=3,
             col=c('#66CC33','#FF6666'),
             viust=-1.5)+
  geom text(aes(y=position trend,label=trend1),size=3,col='black',vjust=-1.5)+
  coord_flip()#将图形横纵坐标互换
}
```

图 4 横向条形图一

图 5 横向条形图二

图 6 横向条形图三

图 7 横向条形图四

1560 Above	SMA120	Below 2071
43%		57%

2.4.价格变化密度图

文字说明:

本文的价格变化密度图是用 ggplot()函数完成的,是对于商业指数 (SH.000005)于 2017年9月30日 (由于 Resset 数据库最新一天的数据只有这天)每五分钟的价格变化图,绿色代表增长,红色代表下跌。

代码:

 $a2 \le rbind(a,b)$

density.R

mytheme<-theme(panel.grid.major=element_line(),

axis.ticks = element_blank(),
axis.text = element_blank(),
axis.title=element_blank())

```
ggplot(a2,aes(x,y)) +
  geom_area(data=subset(a2, y<=0), fill="#FF6666") +
  geom_area(data=subset(a2, y>=0), fill="#66CC33") +
  scale_y_continuous(breaks=NULL)+
  labs(fill="")+
  mytheme+
  ggtitle("Where will Shanghai composite index be in the next 5 minutes?")+
```

```
theme(plot.title = element_text(lineheight=.8, face="bold",hjust = 0.5))
```

图 8 商业指数价格变化密度图

2.5.个股日行情表

文字说明:

本文的个股日行情表,是用 shiny 包中的 DT 函数完成的,这一部分的代码直接写在了 runshiny.R 中的 server 部分。该表格可以对所有变量进行升序或降序排列,也可以根据每个 变量进行筛选查找。

```
table 1 <- read.xlsx("C:\Users\Irene\Desktop\last homework\table 1.xlsx", 1, encoding = "UTF-8") \\ table 1 <- table 1 [1:170,] \\ output $overview <- render Data Table(table 1) $
```

图 9 上证个股日行情表

iow 25 ▼ enti	ries			Search:	
证券代码	- 证券简称	⇒ 收盘价。	- 涨跌幅。	⇒ 成交量。	
00000	浦发银行	11.99	0.2508	29531099	
00004	自云机场	16.71	-2.3378	19955213	
00006	东风汽车	4.34	-0.4587	5420184	
00007	中国国贸	16.72	-2.7341	1298202	
80000	首创股份	3.24	0.0000	8561200	
00009	上海机场	74.77	-1.6184	7784250	
00010	包钢股份	1.30	0.7752	243821532	
00011	华能国际	5.87	0.3419	22015797	
00012	皖通高速	5.55	0.3617	1291064	
600022	山水钢铁	1.36	0.7407	76021193	
600023	渐能电力	3.80	1.0638	15438203	
600025	华能水电	4.19	-0.2381	18481412	
600026	中远海能	5.85	0.6885	17321622	
600027	华电国际	3.64	1.9608	29833762	
600028	中国石化	4.94	0.0000	67022030	
600029	南方航空	6.55	-0.4559	30829495	
600030	中信证券	21.49	-0.6932	65110057	
600031	三一煮工	14.47	-0.8904	49216262	
证券代码	证券简称	收盘价.	殊跌幅.	成交粒.	

2.6.个股财务信息表

文字说明:

本文的个股财务信息表,是用 shiny 包中的 table 函数完成的,这一部分的代码直接写在了 runshiny.R 中的 server 部分。根据交互式网页输入的股票代码,返回该股票的财务信息表。

```
table 2 <- read.xlsx("C:\Users\Irene\Desktop\last homework\table 2.xlsx", 1, encoding = "UTF-8") \\ table 2 <- table 2[1:170,] \\ stock factor <- event Reactive (input $go, { } ) \\ table 2 <- table 2[1:170,] \\ table 3 <- table 4 <- table 4 <- table 5 <- table 5 <- table 6 <- table 6 <- table 7 <- table 7 <- table 8 <- table 9 <-
```

```
#等待按钮被点击,得到股票代码
stocktable <- table2[table2[,1]==input$stockcode,]
stock <- cbind(colnames(stocktable),t(stocktable))
showstock <- cbind(stock[1:8,],stock[9:16,],stock[17:24,])
})
output$stockview <- renderTable(
stockfactor(),colnames = FALSE
)
```

证券代码	600000	权益乘数.	13.1477	每股收益EPS	2.0802
证券简称	浦发银行	流动比率.	NA	现金净流量	-6.0281e+10
总市值	351931443960	速动比率.	NA	年化净资产收益率.	12.4674
自由流通市值.	183983251395	现金比率.	NA	年化总资产报酬率.	NA
市盈率PE	5.764	现金流量利息保障倍数.	NA	年化总资产净利率.	0.9096
市净率PB	0.7329	营业总收入	1.90819e+11	波动率.100周	20.6613
市销率PS	1.8443	营业收入	1.90819e+11	波动率.24个月	21.1996
股息率	2.9191	净利润	6.1715e+10	波动率.60个月	25.6905

3. 网页实现

文字说明:

本文的交互式页面,分别利用 ui 和 server 定义 shiny 的页面形式和内置交互式函数。
ui 中,利用 navbarPage()函数创建导航栏,分三个页面进行战术,其中 Home 页面输出 K 线图、四个横向条形图、价格变化密度图、个股日行情表及全行业树状图; Maps 页面,设置单选栏,用户可选择行业名称,输出该行业的树状图; Elite 页面,设置文本框,用户可输入想要查询的股票代码,输出该股票的复合 K 线图及该股的财务信息表。

```
runshiny.R
#设置环境
setwd('/Users/Irene/Desktop/last homework')
```

```
library(shiny)
source("density.R")
source("final barchart.R")
source("treemap.R")
source("StockCandlestick.R")
library(shiny)
library("xlsx")
library(ggplot2)
library(dplyr)
library(purrr)
#install.packages("treemap")
library(treemap)
#install.packages("treemapify")
library(treemapify)
library(RColorBrewer)
library(ggplot2)
#library(tidyverse)
library(gridExtra)
library(quantmod)
library(zoo)
library(dplyr)
#定义 ui 展示
ui <- navbarPage('FINVIZ',
                   tabPanel('Home',
                             #定义第一个页面: Home 页面
                             fluidPage(
                                h1("上证指数 K 线图",align="center"),
                                fluidRow(
                                  column(12,plotOutput("szindex"))
                                ),
                                h1("横向条形图",align="center"),
                                #条形图
                                h3("图一及图二"),
                                fluidRow(
                                  column(6,plotOutput("barchart1")),
                                  column(6,plotOutput("barchart2"))),
                                h3("图三及图四"),
                                fluidRow(
                                  column(6,plotOutput("barchart3")),
                                  column(6,plotOutput("barchart4"))),
                                h3("图五"),
                                fluidRow(
                                  column(6,plotOutput("BBplot"))
                                ),
                                #输出表格与树状图
```

```
h1("上证个股行情表",align="center"),
                           fluidRow(
                            column(12,dataTableOutput("overview"))
                          ),
                          h1("全行业树状图",align="center"),
                           fluidRow(
                            column(12,plotOutput("treeMap"))
                          )),
                tabPanel('Maps',
                        #定义第二个页面, 树状图页面
                         fluidPage(
                          #树状图
                          p("选择想要查看的行业的树状图"),
                           fluidRow(
                            column(6,selectInput("industryclass", "行业分类",
                                                 c("农副食品加工业","食品制
造业","酒、饮料和精制茶制造业",
                                                   "纺织业","纺织服装、服饰
业","家具制造业","造纸及纸制品业",
                                                   "医药制造业")))),
                          h1("各行业树状图",align="center"),
                           fluidRow(
                            column(12,plotOutput("industrytreeMap"))
                          )
                        )),
                tabPanel('Elite',
                        #定义第三个页面, Elite 页面
                        tab4 <- fluidPage(
                          #查找个股信息
                           p("选择想要查看的个股的 K 线图及财务信息数据"),
                           fluidRow(
                            column(3,textInput("stockcode", "证券代码", "600000")),
                            column(3,actionButton("go", "确定"))
                          ),
                          h1("个股 K 线图",align="center"),
                           #日线图
                           fluidRow(
                            column(12,plotOutput("stockcandlestick"))
                          h1("个股财务信息表格",align="center"),
                           #财务信息表格
                           fluidRow(
                            column(12,tableOutput("stockview"))
```

```
))
#读取数据
table1 <- read.xlsx("C:\\Users\\Irene\\Desktop\\last homework\\table1.xlsx",1,encoding = "UTF-
8")
table2 <- read.xlsx("C:\\Users\\Irene\\Desktop\\last homework\\table2.xlsx",1,encoding = "UTF-
8")
table1<-table1[1:170,]
table2<-table2[1:170,]
#定义 server 内置交互式
server <- function(input, output) {</pre>
  stockfactor <- eventReactive(input$go, {
     #等待按钮被点击,得到股票代码
    stocktable <- table2[table2[,1]==input$stockcode,]
    stock <- cbind(colnames(stocktable),t(stocktable))</pre>
    showstock <- cbind(stock[1:8,],stock[9:16,],stock[17:24,])
  })
  output$overview <- renderDataTable(table1)</pre>
  output$stockview <- renderTable(
     stockfactor(),colnames = FALSE
  )
  output$BBplot <- renderPlot(densityplot())
  output$barchart1 <- renderPlot(Barchart1())
  output$barchart2 <- renderPlot(Barchart2())
  output$barchart3 <- renderPlot(Barchart3())
  output$barchart4 <- renderPlot(Barchart4())
  output$treeMap <- renderPlot(TreeMap1())
  Xstock <- eventReactive(input$go, {
    #等待按钮被点击,得到股票代码
    input$stockcode
  })
  output$stockcandlestick <- renderPlot(stockplot(Xstock()))
  output\szindex <- renderPlot(stockplot("600000"))
  output$industrytreeMap <-renderPlot(TreeMap2(input$industryclass))
#运行 shiny 页面
shinyApp(ui, server)
```

图 11 页面—(Home 页面)

全行业树状图

图 13 页面三(Elite 页面)

个股财务信息表格

证券代码	600000	权益乘数.	13.1477	每股收益EPS	2.0802
证券简称	消发银行	流动比率,	NA	现金净流量	-6.0281e+10
总市值	351931443960	速动比率,	NA	年化净资产收益率。	12.4674
自由流通市值。	183983251395	現金比率,	NA	年化总资产报酬率。	NA
市似率PE	5.764	现金流量利息保障倍数。	NA	年化总资产净利率.	0.9096
市净率PB	0.7329	营业总收入	1.90819e+11	波动率.100周	20.6613
市销率PS	1.8443	营业收入	1.90819e+11	波动率.24个月	21.1996
股息率	2.9191	净利润	6.1715e+10	波动率.60个月	25.6905

4. 总结

从这份期末作业来说,我们可以改进的地方还有许多,首先,利用数据接口的方法而不是读取数据的方法会使得 shiny 交互式页面的运行速度更快,也可以将可以查询的股票池真正意义上扩大到上证甚至是深证等全 A 股,真正实现数据的可视化。其次,Finviz 网站上还有更多的功能值得我们去学习去挖掘,该网站上的自定义数据处理服务是个非常有效的功能,可能仅仅利用 shiny 包在交互式页面的实现上会有局限,我们应再自我研究型学习其他R语言中制作网站更全面的包和函数方法。然后,在交互式页面的排版和外观上,我们也还有改进的空间,jsp语言是非常好的实现展示页面排版的语句,R语言中也有应用 jsp语言的接口。最后,在金融方面,本次作业我们更多的是实现数据的可视化,未来应将我们所学习到的金融知识、大数据方法也可以应用到交互式页面中。

经过一个学期的 R 语言学习,我们从各个角度学习了如何使用 R 语言的基础语句、如何创建函数、如何进行数据的可视化、如何创建一个交互式网站、如何利用 R 语言成为金融分析工具等等,收益匪浅,未来真正在实际工作中应用 R 语言提高工作效率提高工作能力是我们需要不断去思考、改进的方向。

最后非常感谢王老师一学期以来的教学!!!