Introductory Electronics

Peter Beens
pbeens@gmail.com

Overview

- What's an Electrical Circuit?
- Invisible Quantities (V, I, R)
- Safety
- Basic Components
 - Resistors, Batteries, Light Emitting Diodes (LEDs), ICs, Voltage Regulator
- Ohm's & Kirchhoff's Laws
- Simple Circuits
- Integrating to the Parallel Port (basics only)
- Software
- Suppliers
- Textbook & Web References

What's an Electrical Circuit?

- Every circuit requires these three things:
 - Power Source
 - Load
 - Conductor

 Optionally, a circuit may include a "control device" such as a switch

Three Main Invisible Quantities

- Voltage, symbol: V, units: Volts
 - Provides the "push"
- Current, symbol: I, units: Amperes (Amps)
 - Flow of Electrons
 - Amount of Current is dependent on Voltage and Resistance
- Resistance, symbol: R, units: Ohms (Ω)
 - Limits the amount of current
 - Represents the "load" of the circuit

Safe Voltage and Current Levels

- Voltage: 30 V
 - Voltages inside a computer do not exceed 12 V, except at the power supply and power switch (on old computers) Be careful in these areas!

Current: 5 mA (0.005 Amperes)

Voltage Can Be Provided From...

A battery

(cont'd)

A conventional power supply

A computer power supply

• Red: 5V

• Yellow: 12V

• Black: Ground

Voltage Can Be Provided From... (cont'd)

A logic trainer

(cont'd)

The computer parallel port (aka printer port)

Diagram from http://www.doc.ic.ac.uk/~ih/doc/par/

Current

- ...is simply the flow of electrons
- The "direction" depends on convention

- Electron flow is from to + (flow of electrons)
- Conventional flow is from + to - (hole flow)

Resistors – Basic Specs

- Can be rated by...
 - Resistance (Ohms, □)
 - Tolerance (% of nominal value)
 - Power Rating (Watts)

Schematic Symbol...

Resistors – Types

Fixed

Variable (Potentiometer, Rheostat)

Resistors - Colour Code

Reproduced by permission of Tony van Roon, 2002 http://www.uoguelph.ca/~antoon

Resistors - Colour Code

Javascript Resistance Calculator available at http://www.beens.org/misc/resCalc/resistor.ht

Resistors – Colour Code Example

- 1st band: orange = 3
- 2nd band: orange = 3
- 3^{rd} band: red = 2 (i.e. 10^2)
- 4th band: gold = 5%

 33×10^2

 $= 3300 \Omega$

 $= 3.3 k\Omega$

Resistors – 5 Band Colour Code

Standard EIA Color Code Table 5 Band: ±.1%, ±.25%, ±.5%, ±1%

Color	1st Band (1st figure)	2nd Band (2nd figure)	3rd Band (3rd figure)	4th Band (multiplier)	5th Band (tolerance)
Black	0	0	0	10 ⁰	
Brown	1	1	1	10 ¹	±1%
Red	2	2	2	10 ²	
Orange	3	3	3	10 ³	
Yellow	4	4	4	104	
Green	5	5	5	10 ⁵	±.5%
Blue	6	6	6	10 ⁶	±.25%
Violet	7	7	7	10 ⁷	±.1%
Gray	8	8	8	10 ⁸	
White	9	9	9	10 ⁹	
Gold				10-1	

Resistors – Typical Power Ratings

Ohm's Law

"Current (I) is proportional to Voltage (V) and inversely proportional to Resistance (R)"

$$I = V / R$$
 $V = I \times R$ $R = V / I$

Ohm's Law and Power

Kirchhoff's Voltage Law

- Used in series circuits (such as LED circuit)
- "The sum of the voltage drops equals the applied voltage", or...
- "The sum of the voltage drops around a closed loop equals zero"

(cont'd)

Kirchhoff's Current Law

- Use in parallel circuits.
- "The current entering a junction must equal the current leaving the junction"

Series Circuits

 One current path, therefore the current is the same everywhere

 Total resistance is the sum of the individual resistances

$$R_{T} = R_{1} + R_{2} + ...$$

Parallel Circuits

More than one current path

 Total current is the sum of the individual currents

$$I_{T} = I_{1} + I_{2} + ...$$

Parallel Circuits (cont'd)

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots}$$

$$R_T = \frac{R_{1} \times R_2}{R_{1} + R_2} (if \ 2 \ only)$$

$$R_T = \frac{R}{n}$$
 (if the same value)

Light Emitting Diodes

- A type of diode designed to emit light
- Can be visible or IR
- 2 V voltage drop
- Typically draws 20 mA (0.020 A)
- Schematic Symbol...

A Simple LED Circuit

Analyzing a LED Circuit with KVL and Ohm's Law

Interfacing LEDs to the Parallel Port

Protecting the Parallel Port

 Use a 74LS245 "Octal Bus Transceiver" to protect the computer parallel port

Interfacing a Motor to the Parallel Port

(A stepper motor would require more outputs)

Integrated Circuits

- 7400 series typically used for logic gate experiments (AND, OR, etc.)
- Very susceptible to voltage variations and static discharge
- Note pin 1 on diagram
- Refer to applicable datasheet for pinouts

7805 Voltage Regulator

- Part of the 78xx series of voltage regulators
- Can be used to convert 9 V to 5 V for digital circuits

Reproduced with permission; see http://ohmslaw.com/Steps.htm

Electronics Software - ETCAI

\$229 US per module.

Modules: Basic Circuits, DC Circuits, Ohmmeter, AC Circuits, Solid State, Op Amps, Power Supplies, Digital

Available from www.etcai.com/

Electronics Software – Edison (Ministry-licensed)

Electronics Software – Tina (Ministry-licensed)

Textbook References

- Computer Engineering:
 An Activity-Based
 Approach (Holt)
- Networks, Interfaces
 and Integrated Circuits (Holt)
- Essentials of Election(Petruzella)

Suppliers

- Abra Electronics
 - http://www.abra-electronics.com/
 - o (800) 361-5237
- Digi-Key
 - http://dkc1.digikey.com/ca/digihome.html
 - o (800) 344-4539

Web References

- All About Circuits
 - http://www.allaboutcircuits.com/
- Electronics Tutorials
 - http://www.electronics-tutorials.com/
- Jones on Stepper Motors
 - http://www.cs.uiowa.edu/~jones/step/
- Tony's Website (Tony van Roon)
 - http://www.sentex.ca/~mec1995/
 - Many excellent tutorials, example circuits
- Electronics Wiki (Wikipedia)
 - http://en.wikipedia.org/wiki/Electronics

Credits

- Parallel Pinout Diagram
 - o lan Harries < ih@doc.ic.ac.uk >
 - http://www.doc.ic.ac.uk/~ih/doc/par/
 - Used with permission
- Trainer Picture
 - o classic@classictech.on.ca (London, ON)
 - http://www.classictech.on.ca/
 - Used with permission
- Resistor Power Ratings Diagram
 - Quality RF Services, Inc.
 - http://www.qrf.com/

Credits (cont'd)

- Holt Software Pictures
 - http://www.holtsoft.com/
 - Used with permission
- Ohm's Law & Colour Code Pictures
 - http://www.uoguelph.ca/~antoon/
 - Used with permission
- 7805 with 9V Battery Diagram
 - "Floppy the Robot"
 - http://ohmslaw.com/Steps.htm
 - Used with permission

Contact Info...

Peter Beens

Web: http://www2.beens.org

Email: <u>pbeens@gmail.com</u>

Final Thoughts...

2 = 1

Start with				
multiply both sides by a	 	 		. aa = ab
reducing aa to a ²				
subtract b2 from both sides	 	 	$a^2 - b^2$	$a^2 = ab - b^2$
factoring, we get				
divide both sides by (a - b)				
remember that $a = b \dots$				
reduces to				
divide both sides by b				