Problem 1.

(a) Set 2.1

13.
$$\neg (p \land q) \lor (p \lor q)$$

(P	' ' 1			
p	q	$\neg (p \land q)$	$(p \lor q)$	$\neg (p \land q) \lor (p \lor q)$
F	F	T	F	T
\overline{F}	T	T	T	T
T	F	T	T	T
\overline{T}	T	F	T	T

$$\begin{array}{c|ccc} T & T & F & \\ \hline & 17. & \neg (p \land q) \stackrel{?}{=} \neg p \land \neg q \end{array}$$

\mathcal{I})	q	$\neg (p \land q)$	$\neg p \land \neg q$
F	7	F	T	T
\overline{F}	7	T	T	F
\overline{T}	7	F	T	F
\overline{T}	7	T	F	F

 $\neg (p \land q) \not\equiv \neg p \land \neg q$ because they do not have identical truth values for all possible substitutions.

(b) Set 2.1

22.
$$p \wedge (q \vee r) \stackrel{?}{=} (p \wedge q) \vee (p \wedge r)$$

$(P \land (q \lor)) = (P \land (q) \lor (P \land ()))$										
	p	$\mid q \mid$	r	$p \wedge (q \vee r)$	$(p \land q) \lor (p \land r)$					
	\overline{F}	F	F	F	F					
	\overline{F}	F	T	F	F					
	\overline{F}	T	F	F	F					
	\overline{F}	T	T	F	F					
	\overline{T}	F	F	F	F					
	\overline{T}	\overline{F}	T	T	T					
	\overline{T}	T	F	T	T					
	\overline{T}	T	T	T	T					

 $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ because they have identical truth values for all possible substitutions

24.
$$(p \lor q) \lor (p \land r) \stackrel{?}{=} (p \lor q) \land r$$

(I.	1)	(1.		
p	q	r	$(p \lor q) \lor (p \land r)$	$(p \lor q) \land r$
F	F	F	F	F
F	F	T	F	\overline{F}
F	T	F	T	\overline{F}
\overline{F}	T	T	T	T
\overline{T}	F	F	T	F
\overline{T}	F	T	T	T
\overline{T}	T	F	T	F
\overline{T}	T	T	T	T

 $(p \lor q) \lor (p \land r) \not\equiv (p \lor q) \land r$ because they do not have identical truth values for all possible substitutions.

1

(c) Set 2.1

42.
$$((\neg p \land q) \land (q \land r)) \land \neg q$$

p	q	r	$\neg p \land q$	$q \wedge r$	$(\neg p \land q) \land (q \land r)$	$ ((\neg p \land q) \land (q \land r)) \land \neg q $
F	F	F	F	F	F	F
\overline{F}	F	T	F	F	F	F
\overline{F}	T	F	T	F	F	F
\overline{F}	T	T	T	T	T	F
\overline{T}	F	F	F	F	F	F
\overline{T}	F	T	F	F	F	F
\overline{T}	T	F	F	F	F	F
\overline{T}	T	T	F	T	F	F

Contradiction.

43. $(\neg p \lor q) \lor (p \land \neg q)$

p	q	r	$\neg p \lor q$	$p \land \neg q$	$(\neg p \lor q) \lor (p \land \neg q)$
F	F	F	T	F	T
\overline{F}	F	T	T	F	T
F	T	F	T	F	T
\overline{F}	T	T	T	T	T
\overline{T}	F	F	F	T	T
\overline{T}	F	T	F	T	T
\overline{T}	T	F	T	F	T
\overline{T}	T	T	T	T	T
Tau	tolog	gy.	,	,	•

(d) Set 2.1

46.

(a)

$$p \oplus p \equiv (p \lor p) \land \neg (p \land p)$$
$$\equiv T \land \neg T$$
$$\equiv F$$

$$(p \oplus p) \oplus p \equiv F \oplus p$$
$$\equiv (F \lor p) \land \neg (F \land p)$$
$$\equiv p \land T$$
$$\equiv p$$

(b) $(p \oplus q) \oplus r \stackrel{?}{=} p \oplus (q \oplus r)$

$(P \oplus A) \oplus \cdot = P \oplus (A \oplus \cdot)$										
p	q	r	$p \oplus q$	$(p \oplus q) \oplus r$	$q\oplus r$	$p \oplus (q \oplus r)$				
\overline{F}	F	F	F	F	F	F				
\overline{F}	F	T	F	T	T	T				
\overline{F}	T	F	T	T	T	T				
\overline{F}	T	T	T	F	T	F				
\overline{T}	F	F	T	T	F	T				
\overline{T}	F	T	T	F	T	F				
\overline{T}	T	F	F	F	T	F				
\overline{T}	T	T	F	T	F	T				

 $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$ because they have identical truth values for all possible substitutions.

(e) Set 2.2

6.
$$(p \lor q) \lor (\neg p \land q) \to q$$

p	q	$p \lor q$	$\neg p \wedge q$	$(p \lor q) \lor (\neg p \land q)$	$\mid (p \lor q) \lor (\neg p \land q) \to q$
\overline{F}	F	F	F	F	T
\overline{F}	T	T	F	T	T
\overline{T}	F	T	T	T	F
\overline{T}	T	T	F	T	T

8. $\neg p \lor q \to r$

-				
p	q	r	$\neg p \vee q$	$\neg p \lor q \to r$
F	F	F	T	F
F	F	T	T	T
F	T	F	T	F
F	T	T	T	T
T	F	F	F	T
T	F	T	F	T
T	T	F	T	F
T	T	T	T	T

- 13.
 - (a) $p \rightarrow q \equiv \neg p \lor q$ $\begin{array}{c|cccc} p & q & p \rightarrow q & \neg p \lor q \\ \hline F & F & T & T \\ \hline F & T & T & T \\ \hline T & F & F & F \\ \hline T & T & T & T \\ \hline \end{array}$

They have identical truth values for all possible substitutions.

(b) $\neg (p \rightarrow q) \equiv p \land \neg q$

\I'		1) - 1 - 1	
p	q	$\neg (p \rightarrow q)$	$p \land \neg q$
F	F	F	F
F	T	F	F
T	F	T	T
\overline{T}	T	F	F

They have identical truth values for all possible substitutions.

- (f) Set 2.2
 - 10. $(p \to r) \leftrightarrow (q \to r)$

\ -	. /	. \	. ,		
p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \to r) \leftrightarrow (q \to r)$
\overline{F}	F	F	T	T	T
\overline{F}	F	T	T	T	T
\overline{F}	T	F	T	F	F
F	T	T	T	T	T
T	F	F	F	T	F
\overline{T}	F	T	T	T	T
T	T	F	F	F	T
T	T	T	T	T	T
			•	•	

			l	ļ	l l							
11.	11. $(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$											
	p	q	r	$q \rightarrow r$	$p \to (q \to r)$	$p \wedge q$	$(p \land q) \to r$	$(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$				
	\overline{F}	F	F	T	T	F	T	T				
	\overline{F}	F	T	T	T	F	T	T				
	\overline{F}	T	F	F	T	F	T	T				
	\overline{F}	T	T	T	T	F	T	T				
	\overline{T}	F	F	T	T	F	T	T				
	\overline{T}	F	T	T	T	F	T	T				
	\overline{T}	T	F	F	F	T	F	T				
	\overline{T}	T	T	T	T	T	T	T				
								•				

- (g) Set 2.2
 - 30. $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

$$p \wedge (q \vee r) \leftrightarrow (p \wedge q) \vee (p \wedge r)$$

$$p \wedge (q \vee r) \leftrightarrow (p \wedge q) \vee (p \wedge r)$$

$$p \wedge (q \vee r) \leftrightarrow (p \wedge q) \vee (p \wedge r) \wedge (p \wedge q) \vee (p \wedge r) \wedge (p \wedge q) \vee (p \wedge q) \wedge (p$$

p	q	r	$p \wedge (q \vee r)$	$(p \land q) \lor (p \land r)$	$p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$
F	F	F	F	F	T
\overline{F}	F	T	F	F	T
F	T	F	F	F	T
\overline{F}	T	T	F	F	T
\overline{T}	F	F	F	F	T
\overline{T}	F	T	T	T	T
\overline{T}	T	F	T	T	T
\overline{T}	T	T	T	T	T

31. $p \to (q \to r) \equiv (p \land q) \to r$ $p \to (q \to r) \leftrightarrow (p \land q) \to r$

$$p \to (q \to r) \leftrightarrow (p \land q) \to r$$

p	q	r	$q \rightarrow r$	$p \to (q \to r)$	$p \wedge q$	$(p \land q) \to r$	$p \to (q \to r) \leftrightarrow (p \land q) \to r$
F	F	F	T	T	F	T	T
\overline{F}	F	T	T	T	F	T	T
\overline{F}	T	F	F	T	F	T	T
\overline{F}	T	T	T	T	F	T	T
\overline{T}	F	F	T	T	F	T	T
\overline{T}	F	T	T	T	F	T	T
\overline{T}	T	F	F	F	T	F	T
\overline{T}	T	T	T	T	T	T	T

- (h) Set 2.2
 - 25. A conditional statement is not logically equivalent to its inverse.

$$a \to b \not\equiv \neg a \to \neg b$$

C	ι	$\mid b^{'} \mid$	$a \rightarrow b$	$\neg a \rightarrow \neg b$
Ī	7	F	T	T
\overline{I}	7	T	T	\overline{F}
\overline{T}		F	F	T
$\overline{}$		T	T	T

27. The converse and inverse of a conditional statement are logically equivalent to each other.

$b \rightarrow$	$a \equiv$	$\neg a$	\rightarrow	$\neg b$
	1 7 1	7		

a	$\mid b \mid$	$b \rightarrow a$	$\neg a \rightarrow \neg b$
\overline{F}	F	T	T
\overline{F}	T	F	F
\overline{T}	F	T	T
\overline{T}	T	T	T

Problem 2.

- (a) Set 2.1
 - 26. Sam isn't an orange belt nor is Kate a red belt.
 - 28. The units digit of 4^{67} is not 4 and not 6.
 - 29. This computer program doesn't have a logical error in the first ten lines and it isn't being run with an incomplete data set.
 - 30. The dollar isn't at an all-time high nor is the stock market at a record low.
 - 31. The train isn't late and my watch isn't fast.
- (b) Set 2.1

33.
$$-10 \ge x \ge 2$$

35.
$$x < -1$$
 and $x \le 1$

- 37. $0 \le x < -7$
- 39. $(num_orders \ge 50 \text{ or } num_instock \le 300) \text{ and}$ $(50 > num_orders \ge 75 \text{ or } num_instock \le 500)$
- (c) Set 2.2

20.

- (a) P is a square and P isn't a rectangle.
- (b) Today is New Year's Eve and tomorrow isn't January.
- (c) The decimal expansion of r is terminating and r isn't rational.
- (d) n is prime and n isn't positive nor 2.
- (e) x is nonnegative and x isn't positive and not 0.
- (f) Tom is Ann's father and Jim isn't her Uncle nor is Sue her aunt.
- (g) n is divisible by 6 and n isn't divisible by 2 nor 3.

Problem 3.

- (a) Set 2.2
 - 33. If this integer is even, then it equals twice some integer; and if this integer equals twice some integer, then it is even.
 - 35. If Sam is allowed on Signe's racing boat, then he is an expert sailor. If Sam isn't an expert sailor, then he isn't allowed on Signe's racing boat.
 - 38. If it doesn't rain, then Ann will go.
 - 39. If the security code isn't entered, then the door won't open.
- (b) Set 2.2
 - 41. If this triangle has two 45° angles, then it is a right triangle.
 - 43. If Jim didn't do homework regularly, then he won't pass the course. If Jim passes the course, then he did his homework regularly.
 - 45. If this computer program isn't correct, then it produces error messages during translation. If this computer program doesn't produce error messages during translation, then it is correct.
 - 46. X is boiling \rightarrow temperature $\geq 150^{\circ}$ C
 - (a) temperature $\geq 150^{\circ}\text{C} \not\to X$ is boiling Not necessarily true.
 - (b) temperature $< 150^{\circ}\text{C} \rightarrow X$ isn't boiling Always true.
 - (c) X is boiling $\not\leftrightarrow$ temperature $\geq 150^{\circ}$ C Not necessarily true.
 - (d) X isn't boiling \rightarrow temperature $< 150^{\circ}$ C Not necessarily true.
 - (e) X is boiling $\not\leftrightarrow$ temperature $\geq 150 ^{\circ} \mathrm{C}$ Not necessarily true.
 - (f) X is boiling \rightarrow temperature $\geq 150^{\circ}$ C Always true.

Problem 4.

(a) Set 2.3

11.

$$p \to q \vee r$$
 (1)

$$\neg q \lor \neg r$$
 (2)

$$\therefore \neg p \vee \neg r \tag{3}$$

p	q	r	$p \to q \vee r$	$\neg q \vee \neg r$	$\neg p \lor \neg r$
F	F	F	T	T	T
\overline{F}	F	T	T	T	T
\overline{F}	T	F	T	T	T
\overline{F}	T	T	T	F	
\overline{T}	F	F	F	T	
\overline{T}	F	T	T	T	T
\overline{T}	T	F	T	T	\overline{F}
\overline{T}	T	T	T	F	

Invalid argument because true premises can lead to a false conclusion.

Problem 5.

(a) Set 2.3

38.

(b) Another two natives C and D approach you but only C speaks.

C says: Both of us are knaves.

What are C and D?

Suppose C is a knight.

 \therefore What C says is true

definition of knight

 $\therefore C$ and D are knaves

what C said

 $\therefore C$ is a knave

 ${\it specialization}$

 $\therefore C$ is a knight and a knave

... The supposition is false

contradiction

Suppose C is a knave.

 \therefore What C says is false

definition of knave

 $\therefore C$ is a knight or D is a knight

opposite of what C said

 $\therefore D$ is a knight

by elimination

 $\therefore C$ is a knave and D is a knight

(c) You then encounter natives E and F.

E says: F is a knave.

F says: E is a knave.

How many knaves are there?

Suppose E and F are knaves.

 $\therefore F$

 $\therefore E$ contradiction

Suppose E is a knave and F is a knight.

 $\therefore F$

∴ $\neg E$ 1 knight and 1 knave

Suppose E is a knight and F is a knave.

 $\therefore \neg F$

∴ E 1 knight and 1 knave

Suppose E and F are knights.

 $\therefore \neg F$

 $\therefore \neg E$ contradiction

There is 1 knave.

Problem 6.

(a) Set 2.3

44.

$p \to q$		(4)
$r \vee s$		(5)
$\neg s \to \neg t$		(6)
$\neg q \vee s$		(7)
$\neg s$		(8)
$\neg p \wedge r \to u$		(9)
$w \lor t$		(10)
r	elimination by (5) and (8)	(11)
$\therefore u$	specialization and modus ponens by (9) and (11)	(12)
$\therefore \neg t$	modus ponens by (6) and (8)	(13)
$\therefore w$	elimination by (10) and (11)	(14)
$\therefore u \wedge w$	by (12) and (14)	(15)

Problem 7.

(a) For the circuit corresponding to the following Boolean expression, there is an equivalent circuit with at most two logic gates. Find such a circuit.

$$(\neg P \wedge \neg Q) \vee (\neg P \wedge Q) \vee (P \wedge \neg Q)$$

Using DeMorgan's Laws to rewrite ands using only nots and ors: $\neg (P \lor Q) \lor \neg (P \lor \neg Q) \lor \neg (\neg P \lor Q)$

$$\neg (P \lor Q) \lor \neg (P \lor \neg Q) \lor \neg (\neg P \lor Q)$$