TP 3

Estimation et théorème central limite

1 La méthode des moments

On modélise un phénomène par une variable aléatoire X suivant une loi uniforme sur l'intervalle [0,a] avec a entier. Afin d'estimer le paramètre a, on cherche un estimateur avec la méthode des moments. On utilisera la fonction suivante pour générer un échantillon de taille n:

```
runifa <- function(n) {
     if(!exists("param")) param <<- sample(10:20, 1)
     runif(n, min = 0, max = param)
}</pre>
```

Q1 Créer une fonction *estim* qui prend en argument un échantillon de taille quelconque de la loi de X et renvoie l'estimation du paramètre a en utilisant le moment d'ordre 1.

 $\mathbf{Q2}$ Lancer plusieurs fois la fonction *estim* avec un échantillon de taille n. Quel semble être la paramètre a.

Au lieu d'exécuter manuellement plusieurs fois l'instruction estim(runifa(n)), on va utiliser une fonction R qui le fait à notre place et accumule les différents résultats : il s'agit de la fonction replicate qu'on utilise comme suit :

```
a <- replicate(1000, estim(runifa(n)))
```

Le vecteur a stocke les 1000 résultats de l'instruction estim(runifa(n))

Q3 Faire un diagramme en boite à moustache de 1000 estimations successives de a. En déduire est le paramètre inconnu. Vérifier qu'il est en accord avec le vrai paramètre a.

On admet que les moments de *X* sont :

$$m_k = E(X^k) = \frac{a^k}{k+1}$$
 pour tout $k \in \mathbb{N}^*$

Q4 Créer la fonction *estimk* qui prend comme argument un échantillon et un ordre de moment et retourne l'estmation de a en utilisant le moment d'ordre k. Puis refaites l'étude précédente pour k=1,2,5

2 Théorème central limite

On souhaite vérifier expérimentalement le théorème central limite. Pour cela, on va choisir une variable aléatoire X de loi quelconque, d'espérance μ et d'écart-type σ . On utilisera la fonction suivante pour générer un échantillon de loi inconnue de taille n:

```
 \begin{array}{l} runknown <- \ function(n) \ \{\\ bn <- \ rbinom(n, \ 1, \ 0.5)\\ bn * \ rnorm(n, \ mean=-4, \ sd=1) + (1 - bn) * \ rnorm(n, \ mean=10, \ sd=1) \\ \} \end{array}
```

Q5 Vérifier expérimentalement que l'espérance de X vaut 3 et que l'écart type vaut $\sqrt{50}$.

Q6 Tracer l'histogramme d'un échantillon de taille 1000 de la loi inconnue.

Q7 Tracer la fonction de répartition empirique de la loi inconnue avec un échantillon de taille 1000 à l'aide de la fonction *ecdf* qui donne la fonction de répartition empirique d'un échantillon.

Le théorème central limite dit que si on a n variables aléatoires échantillons indépendantes X_1, \ldots, X_n de loi parente celle de X, alors la variable aléatoire suivante,

$$T = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

converge en loi lorsque n augmente vers une loi normale centrée réduite. On va donc vérifier que des réalisations issues de la loi de T sont distribués comme une gaussienne centrée réduite.

Q8 A partir de l'échantillon de taille n issu de la variable X, calculer une seule réalisation de T. Puis, générer un échantillon de taille 1000 issu de la variable T.

Q9 Tracer la fonction de répartition empirique de *T* et comparer la avec la fonction de répartition d'une loi normale centrée réduite.