1 Syllabus Subsections

- 1. Systems of Linear Equations
- 2. RREF, Rank
- 3. Vectors, Dot, Cross Products
- 4. Inverses
- 5. Linear Transformations
- 6. Projection, Reflection, Rotation
- 7. Determinant and Cofactors
- 8. Eigenvalues, Eigenvectors
- 9. Diagonalization
- 10. Subspaces
- 11. Span
- 12. Linear Independence
- 13. Basis
- 14. Dimension
- 15. Orthogonality
- 16. Gram-Schmidt Algorithm
- 17. Orthogonal Diagonalization

Not all of these will be covered in this document, only the following sections:

- Gram-Schmidt
- Subspaces
- Span
- Orthogonality
- Basis

2 Subspaces

A set U is a subspace if:

- The zero vector is in U $(\vec{0} \in \mathbb{R})$
- U is closed under vector addition
- U is closed under scalar multiplication

The **image space** of A $(im(A)) = \{A\vec{x}|\vec{x} \in \mathbb{R}^n\} = col(A)$

The **column space** of A is the set of all linear combinations of the columns of A, or the span of the columns of A.

We can verify that the image space is a subspace by checking it against the subspace conditions.

$$im(A) = 0$$

$$\vec{x}, \vec{y} \in im(A) \Rightarrow A\vec{b} = \vec{x}, A\vec{c} = \vec{y}, A(x+y) = k \Rightarrow Ab + Ac = x+y$$

Recall that we need to prove that there exists a vector d such that $A\vec{d}=x+y$. So, we factor to get $A(b+c)=\vec{x}+\vec{y}$

2.1 General Procedure to Prove something is a Vector Space or Linear Transformation etc.

Define the variables:

$$\lambda \in \mathbb{R}, x \in im(A)$$

Define the boundary conditions:

$$\vec{x} = A\vec{b} \Rightarrow \lambda \vec{x} = \lambda A\vec{b}$$

Find what we need to satisfy:

$$\lambda x = A(\lambda b)$$

Rearrange, algebraically: (just switch A, λ in boundary condition step).

2.2 Linear Independence

Linear Independence for a set of vectors V_1 to V_k occurs when $a_1V_1...a_kV_k=0$ only if $a_1...a_k=0$. That is, there is no vector in the set that is a linear combination of the others.

3 GSA

The purpose of GSA is to turn a set of bases into a set of orthogonal bases.

Say we have some basis vectors x_1, x_2, x_3 and we want to turn them into some f_1, f_2, f_3 such that all $f_i \cdot f_j = 0$ for all $f_i \neq f_j$.

We subtract the projection onto all previously orthogonal vectors onto each of the next vectors, iteratively - we project x_1 onto x_1 and get it back, we get $f_2 = x_2 - proj_{x_1}x_2$. Then, we take $f_3 = x_3 - proj_{x_1}x_3 - proj_{f_2}x_3$

A general formula for GSA of some basis vectors x_i into an orthogonal set f_i

$$f_n = x_n - \sum_{i=1}^{n} \operatorname{proj}_{f_i} x_n$$

Do not try this on a set of vectors that is linearly dependent, as one of the vectors (redundant) end up going to zero.

To check, put the vectors as columns in a matrix A, reduce A to REF, and take the columns in A corresponding to the columns in A_{REF} with leading ones as the independent bases.

4 Orthogonal Diagonalization

Spectral Theorem: If A is a real symmetric matrix $A^T = A$, then A has an orthogonal diagonalization.

A general procedure for orthogonally diagonalizing a symmetric matrix A is as follows:

- 1. Find the eigenvalues λ_i of A by finding solutions to the characteristic polynomial $C_{\lambda}A = det(A \lambda I)$.
- 2. Find the eigenvectors for each lambda by finding $null(A \lambda I)$ for all λ_i .
- 3. For the eigenspaces $E_{\lambda_i}A$ with dimension greater than 1 (eg. the multiplicity of $\lambda i \geq 2$, there are two or more eigenvectors for λ_i), use GSA on

- the two vectors if they're not already orthogonal to make them orthogonal. Different eigenspaces will be orthogonal to each other already.
- 4. Write the diagonalizing matrix P with eigenvectors as cols and diagonal D (positioned with respective eigenvalues multiples of I for the eigenvectors in P), and normalize all values in P by dividing each eigenvector by its magnitude to get an orthogonal matrix for P.