Considere-se o seguinte problema de transportes, com m origens e n destinos.

Sejam $a_1, a_2, ..., a_m$ as quantidades nas origens e $b_1, b_2, ..., b_n$ as quantidades nos destinos, de um produto homogéneo.

 $c_{ij} \equiv$ custo unitário de transporte da origem i para o destino j; i=1,...,m; j=1,...,n

Minimize
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$a_1 \quad 1 \quad b_1$$

$$a_2 \quad 2 \quad b_2$$
sujeito a
$$\sum_{j=1}^{m} x_{ij} = a_i \qquad i = 1, ..., m$$

$$\sum_{i=1}^{m} x_{ij} = b_j \qquad j = 1, ..., n$$

$$\sum_{i=1}^{m} a_i \quad \sum_{i=1}^{m} b_i$$

$$x_{ij} \ge 0$$
(assumindo que oferta = procura)

 $x_{ij} \equiv$ quantidade de mercadoria transportada da origem i para o destino j; i=1,...,m; j=1,...,n

Teorema: O problema de transportes tem sempre solução ótima (finita).

Propriedade: O problema de transportes tem sempre uma solução admissível.

sendo
$$\sum_{i} a_i = \sum_{j} b_j = Q \quad \Longrightarrow \quad x_{ij} = \frac{a_i b_j}{Q} \quad i=1,...,m \quad ; \quad j=1,...,n$$

Propriedade: $0 \le x_{ij} \le \min(a_i, b_j)$, para todo $i \in j$. \Longrightarrow o prob. de transp. tem sempre solução ótima finita

Teorema: Qualquer solução básica admissível do problema de transportes tem (m+n-1) variáveis básicas.

$$\leftarrow$$
 car(A) = $m + n - 1$

Formulação dual

Primal:

$$\mathbf{Min} \quad \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.a
$$\sum_{i=1}^{n} x_{ij} = a_i$$
 $i = 1, ..., m$ u_i

$$\sum_{i=1}^{m} x_{ij} = b_j \qquad j = 1, ..., n \qquad \longleftarrow V_j$$

$$x_{ij} \ge 0$$

Dual:

$$\mathbf{Max} \qquad \sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j$$

s.a
$$u_i + v_j \le c_{ij}$$
 $\longleftarrow x_{ij}$ $i = 1, ..., m; j = 1, ..., n$

 u_i, v_j com sinal qualquer

Pelas condições de complementaridade:

se
$$x_{ij}$$
 é básica \Rightarrow $u_i + v_j = c_{ij}$

A matriz A do sistema associado às restrições do problema de transportes tem m+n linhas (restrições do sistema) e $m \times n$ colunas. Como car(A) = m + n - 1, então qualquer solução básica e admissível do problema tem (m+n-1) variáveis básicas, ou seja, qualquer solução básica do problema de transportes terá no máximo (m+n-1) variáveis não-nulas, em particular a solução ótima. Isto significa que qualquer solução ótima do problema recorrerá no máximo a (m+n-1) ligações com fluxo de mercadoria e que todas as restantes ligações (das $m \times n$ ligações totais) terão fluxo nulo. Assim, qualquer solução admissível com fluxo não-nulo em mais de (m+n-1) ligações não pode ser melhor do que a solução ótima do problema.

Algoritmo de Dantzig para o problema de transportes

Algoritmo de Dantzig Objetivo: determinar um par de soluções primal/dual que verifiquem as condições de complementaridade. Essas soluções serão ótimas.

- 1. Determinar uma solução básica admissível inicial x.
- 2. Construir um vector (u,v) que verifique as condições de complementaridade.
- 3. Se a solução (u,v) for admissível para o dual \Rightarrow Terminar

x é solução ótima do problema de transportes

- **4.** Escolher a variável x_{kl} a entrar na base: $u_k + v_l c_{kl} = \max_{x_{ij} \text{ não básica}} \{u_i + v_j c_{ij}\}$ correspondente à maior violação
- 5. Escolher a variável que sai da base, garantindo que a nova solução é básica e admissível.
- **6.** Construir a nova solução básica admissível, atribuindo a x_{kl} o maior valor possível. O novo valor da função objectivo é $z = z x_{kl} (u_k + v_l c_{kl})$
- 7. Voltar ao passo 2.

Determinação de uma solução básica admissível inicial:

Método do canto noroeste (NW):

Em cada iteração a variável escolhida para tornar básica é, entre as que ainda admitem valor, a que se localiza no canto superior esquerdo.

Método do mínimo da matriz de custos, ou de custo mínimo:

Em cada iteração a variável escolhida para tornar básica é, entre as que ainda admitem valor, a que apresenta menor custo (c_{ii}) . Em caso de empate a escolha é arbitrária.

Método do Vogel, ou das penalidades:

Em cada iteração a variável escolhida para tornar básica é, entre as que ainda admitem valor, determinado da seguinte forma:

- calculam-se penalização para todas as linhas e todas as colunas, sendo o valor dessas penalizações igual à diferença entre os dois menores custos, entre os elementos da linha ou da coluna em questão;
- escolhe-se a linha ou a coluna com a maior penalização;
- a variável a tornar básica é a que apresenta menor custo, entre as variáveis da linha ou coluna seleccionadas.

Problema de Transportes (maximização)

Problema primal de <u>maximização</u>:

Primal:

 $x_{ii} \ge 0$

Max
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s.a
$$\sum_{j=1}^{n} x_{ij} = a_{i} \quad i = 1, ..., m \quad \longleftarrow u_{i}$$

$$\sum_{i=1}^{m} x_{ij} = b_{j} \quad j = 1, ..., n \quad \longleftarrow v_{j}$$

Dual:

Min
$$\sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j$$
s.a
$$u_i + v_j \ge c_{ij} \qquad \longleftarrow x_i$$

$$i = 1, ..., m; \quad j = 1, ..., n$$

 u_i, v_j com sinal qualquer

Pelas condições de complementaridade:

se
$$x_{ij}$$
 é básica $\Rightarrow u_i + v_j = c_{ij}$

Problema de Transportes (maximização)

Algoritmo de Dantzig Objectivo: determinar um par de soluções primal/dual que verifiquem as condições de complementaridade. Essas soluções serão óptimas.

- 1. Determinar uma solução básica admissível inicial x.
- 2. Construir um vector (u,v) que verifique as condições de complementaridade.
- 3. Se a solução (u,v) for admissível para o dual \Rightarrow Terminar

x é solução óptima do problema de transportes.

- **4.** Escolher a variável x_{kl} a entrar na base: $u_k + v_l c_{kl} = \min_{x_{ij} \text{ não básica}} \{u_i + v_j c_{ij}\}$ correspondente à maior violação
- 5. Escolher a variável que sai da base, garantindo que a nova solução é básica e admissível.
- **6.** Construir a nova solução básica admissível, atribuindo a x_{kl} o maior valor possível. O novo valor da função objectivo é $z = z x_{kl} (u_k + v_l c_{kl})$
- 7. Voltar ao passo 2.

Problema de Transportes (maximização)

Determinação de uma solução básica admissível inicial:

Método do canto noroeste (NW):

Em cada iteração a variável escolhida para tornar básica é, entre as que ainda admitem valor, a que se localiza no canto superior esquerdo.

Método do máximo da matriz de custos, ou de custo máximo:

Em cada iteração a variável escolhida para tornar básica é, entre as que ainda admitem valor, a que apresenta maior custo (c_{ii}) . Em caso de empate a escolha é arbitrária.

Método do Vogel, ou das penalidades:

Em cada iteração a variável escolhida para tornar básica é, entre as que ainda admitem valor, determinado da seguinte forma:

- calculam-se penalização para todas as linhas e todas as colunas, sendo o valor dessas penalizações igual à diferença entre os dois <u>maiores</u> custos, entre os elementos da linha ou da coluna em questão;
- escolhe-se a linha ou a coluna com a maior penalização;
- a variável a tornar básica é a que apresenta <u>maior</u> custo, entre as variáveis da linha ou coluna seleccionadas.

Análise de exemplo e análise de sensibilidade

Exemplo:

Queremos transportar paletes de leite de 3 armazéns para 3 hipermercados. A matriz *C* descreve os custos unitários (em €) de transporte entre cada par (origem, destino). Pretende-se determinar o transporte das paletes dos armazéns para os hipermercados, respeitando as existências e as encomendas, respetivamente, minimizando o custo total de transporte. Para este efeito, e para equilibrar oferta/procura, acrescentámos um hipermercado fictício (4) ao qual associamos uma encomenda fictícia de 200 paletes. O custo unitário de transporte para este hipermercado fictício é nulo.

hipermercados
$$c_{ij}(\cite{E})$$
 1 2 3 4 1 8 3 5 0 2 1 7 4 0 3 3 8 2 0

m = 3, n = 4

Problema de Transportes

$$a_1 = 200 \ 1$$

$$a_2 = 700$$
 2

$$a_3 = 100 \ 3$$

$$(1) b_1 = 250$$

$$b_2 = 350$$

$$\bigcirc 3$$
 $b_3 = 200$

$$(4) b_4 = 200$$

permercado

Exemplo: m = 3, n = 4

$$m = 3$$
, $n = 4$

c_{ij}		2	3	4
1	8	3	5	0
2	1	7	4	0
3	3	8	2	0

matriz de incidência do sistema (primal):

matriz totalmente unimodular: qualquer submatriz quadrada tem determinante 0, 1, ou -1

se todos os a_i e b_i forem inteiros, então a solução ótima é inteira

 $car(A) = m + n - 1 \implies há(m + n - 1)$ variáveis básicas (uma linha (qualquer) é combinação linear das restantes)

Exemplo:

$$m = 3$$
, $n = 4$

Dual:

C_{ij}	1	2	3	4
1	8	3	5	0
2	1	7	4	0
3	3	8	2	0

$$\max \quad w = 200.u_1 + 700.u_2 + 100.u_3 + 250.v_1 + 350.v_2 + 200.v_3 + 200.v_4$$

s. a
$$u_1 + v_1 \le 8 \leftarrow x_{11}$$

$$u_1 + v_2 \le 3 \quad \longleftarrow \quad x_{12}$$

$$u_1 + v_3 \le 5$$
 \leftarrow x_{13}

$$u_1 + v_4 \le 0 \quad \longleftarrow \quad x_{14}$$

$$u_3 + v_1 \le 3$$
 \leftarrow x_{31}

$$u_3 + v_2 \le 8 \quad \longleftarrow \quad x_{32}$$

$$u_3 + v_3 \le 2$$
 \sim x_{33}

$$u_3 + v_4 \le 0$$
 \leftarrow x_{34}

$$u_2 + v_1 \le 1 \quad \longleftarrow \quad x_{21}$$

$$u_2 + v_2 \le 7 \quad \longleftarrow \quad x_{22}$$

$$u_2 + v_3 \le 4 \quad \longleftarrow \quad x_{23}$$

$$u_2 + v_4 \le 0$$
 \longleftarrow x_{24}

$$u_i$$
, v_j com sinal qualquer, $i = 1,2,3$; $j = 1,2,3,4$

Exemplo:	c_{ij}	1	2	3	4
m=3, $n=4$	1	8	3	5	0
	2	1	7	4	0
Dalas as a dis 2 as de segundamento di de de c	3	3	8	2	0

Pelas condições de complementaridade:

dada uma solução primal admissível (x_{ij}) e uma solução dual admissível (u_i, v_j) , se $x_{ij} \times (u_i + v_j - c_{ij}) = 0$ para todo i=1,2,3, j=1,...,4, então a solução é ótima

Os valores das variáveis u_i (i=1,2,3) e v_j (j=1,...,4) representam preços sombra associados às origens e aos destinos, respetivamente (obter o relatório de sensibilidade a partir da versão da formulação com desigualdades)

Os valores de $(u_i + v_j - c_{ij})$ representam <u>custos de oportunidade (ou reduzidos)</u> associados a cada ligação origem/destino (variáveis x_{ij}), para todo i=1,2,3; j=1,...,4

Utilização das condições de complementaridade para determinar a solução ótima do dual: se x_{ij} é básica $\rightarrow u_i + v_j = c_{ij}$

Exemplo:	c_{ij}					
m=3, $n=4$	1 2 3	8	3	5	0	
	2	1	7	4	0	
Pelas condições de complementaridade:	3	3	8	2	0	
dada uma solução primal admissível (x_{ij}) e uma solução dua	al adm	issív	el (ι	(ι_i, V_i) .	, se	

	$x_{ij} \times (u_i +$	$-v_j-c_{ij})=0$	para todo $i=1,2,3$,	<i>i</i> =1,,4, então a soluçã	o é ótima
(x)	_{ij}):	(u_i,v_j) :	$(u_i + v_j - c_{ij})$:	cond. de complem.:	logo, é ótima!
x_1	$_{1} = 0$	$u_1 = -4$	$(u_1 + v_1 - c_{11}) = -11$		$0 \times (-11) = 0 \checkmark$
x_1	$_2 = 200$	$u_2 = 0 \rightarrow$	$(u_1 + v_2 - c_{12}) = 0$	$x_{12} \times (u_1 + v_2 - c_{12}) = 0 \rightarrow$	$200 \times 0 = 0 \checkmark$
x_1	$_{3} = 0$	$u_3 = -2$	$(u_1+v_3-c_{13}) = -5$	$x_{13} \times (u_1 + v_3 - c_{13}) = 0$	$0\times(-5)=0 \checkmark$
x_1	$_{4} = 0$	$v_1 = 1$	$(u_1 + v_4 - c_{14}) = -4$	$x_{14} \times (u_1 + v_4 - c_{14}) = 0$	$0\times(-4)=0 \checkmark$
x_2	$_1 = 250$	$v_2 = 7$	$(u_2 + v_1 - c_{21}) = 0$	$x_{21} \times (u_2 + v_1 - c_{21}) = 0$	$250 \times 0 = 0 \checkmark$
x_2	$_2 = 150$	$v_3 = 4$	$(u_2+v_2-c_{22})=0$	$x_{22} \times (u_2 + v_2 - c_{22}) = 0$	$150 \times 0 = 0 \checkmark$
x_2	$_{3} = 100$	$v_4 = 0$	$(u_2+v_3-c_{23})=0$	$\int x_{23} \times (u_2 + v_3 - c_{23}) = 0$	$100 \times 0 = 0 \checkmark$
x_2	$_{4} = 200$		$(u_2+v_4-c_{24})=0$	$x_{24} \times (u_2 + v_4 - c_{24}) = 0$	$200 \times 0 = 0 \checkmark$
x_3	$_{1} = 0$		$(u_3+v_1-c_{31})=-4$	$x_{31} \times (u_3 + v_1 - c_{31}) = 0$	$0 \times (-4) = 0 \checkmark$
x_3	$_{2} = 0$		$(u_3+v_2-c_{32})=-3$	$x_{32} \times (u_3 + v_2 - c_{32}) = 0$	$0 \times (-3) = 0 \checkmark$
x_3	$_{3} = 100$		$(u_3+v_3-c_{33})=0$	$x_{33} \times (u_3 + v_3 - c_{33}) = 0$	$100 \times 0 = 0 \checkmark$
x_3	4 = 0		$(u_3 + v_4 - c_{34}) = -2$	$x_{34} \times (u_3 + v_4 - c_{34}) = 0$	$0\times(-2)=0 \checkmark$

Exemplo:

$$m = 3$$
, $n = 4$

Utilização das condições de complementaridade para determinar a solução ótima do dual:

c_{ij}	1	2	3	4
1	8	3	5	0
2	1	7	4	0
3	3	8	2	0

se
$$x_{ij}$$
 é básica $\rightarrow u_i + v_j = c_{ij}$

solução básica e adm.

para o primal (x_{ij}) :

$$x_{11} = 0$$

$$x_{12} = 200$$

$$x_{13} = 0$$

$$x_{14} = 0$$

$$x_{21} = 250$$

$$x_{22} = 150$$

$$x_{23} = 100$$

$$x_{24} = 200$$

$$x_{31} = 0$$

$$x_{32} = 0$$

$$x_{33} = 100$$

$$x_{34} = 0$$

variáveis básicas
$$\rightarrow u_i + v_j = c_{ij}$$
 $x_{12} = 200 \rightarrow u_1 + v_2 = 3$
 $x_{21} = 250 \rightarrow u_2 + v_1 = 1$
 $x_{22} = 150 \rightarrow u_2 + v_2 = 7 \Rightarrow u_2 + v_3 = 4$
 $x_{23} = 100 \rightarrow u_2 + v_4 = 0$
 $x_{24} = 200 \rightarrow u_3 + v_3 = 2$
 $u_1 = 0$
 $v_2 = 3$
 $u_2 = 4$
 $v_1 = -3$
 $v_3 = 0$
 $v_4 = -4$
 $v_4 = -4$
 $v_4 = 0$

Sistema possível e indeterminado com 1 grau de indeterminação (1 grau de liberdade). Se fixarmos 1 das variáveis obtemos uma solução única nas restantes.

Exemplo:

$$m = 3$$
, $n = 4$

Utilização das condições de complementaridade para determinar (uma outra) solução ótima do dual:

se
$$x_{ij}$$
 é básica $\rightarrow u_i + v_j = c_{ij}$

solução básica e adm. para o primal (x_{ij}) :

$$x_{11} = 0$$

$$x_{12} = 200$$

$$x_{13} = 0$$

$$x_{14} = 0$$

$$x_{21} = 250$$

$$x_{22} = 150$$

$$x_{23} = 100$$

$$x_{24} = 200$$

$$x_{31} = 0$$

$$x_{32} = 0$$

$$x_{33} = 100$$

 $x_{34} =$

variáveis básicas
$$\rightarrow u_i + v_j = c_{ij}$$
 $x_{12} = 200 \rightarrow u_1 + v_2 = 3$
 $x_{21} = 250 \rightarrow u_2 + v_1 = 1$
 $x_{22} = 150 \rightarrow u_2 + v_2 = 7 \Rightarrow u_2 + v_3 = 4$
 $x_{23} = 100 \rightarrow u_2 + v_4 = 0$
 $x_{33} = 100 \rightarrow u_3 + v_3 = 2$

3 3 8 2 0

se tivéssemos antes começado com $u_2 = 0$ (nodo origem com maior a_i), a solução viria:

$$\begin{bmatrix}
 u_2 = 0 \\
 v_1 = 1 \\
 v_2 = 7
 \end{bmatrix}$$
 corresponde aos

$$\begin{aligned}
 v_2 = 7 \\
 v_3 = 4
 \end{bmatrix}$$
 valores dos
 preços sombra
 que se obtêm na

$$\begin{aligned}
 v_4 = 0 \\
 v_4 = 0
 \end{bmatrix}$$
 resolução pelo

$$\begin{aligned}
 u_1 = -4 \\
 u_3 = -2
 \end{bmatrix}$$

Exemplo:

$$m = 3$$
, $n = 4$

Solução ótima:

c_{ij}	1	2	3	4
1	8	3	5	0
2	1	7	4	0
3	3	8	2	0

Esta solução:

- é admissível porque satisfaz oferta e procura;
- é **básica** porque define uma árvore de suporte no grafo bipartido, ou seja, usa exatamente m+n-1=6 ligações (variáveis básicas) caracterizando um grafo conexo;
- é ótima porque satisfaz as condições de complementaridade.

Exemplo:

Solução ótima:

Se x_{ij} for não básica e $(u_i + v_j - c_{ij}) = 0$, então existem <u>soluções ótimas alternativas</u>.

Exemplo:

assumindo, sem perda de generalidade, que $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$

Considere a formulação primal definida com desigualdades, da seguinte forma:

min
$$z = 8x_{11} + 3x_{12} + 5x_{13} + 0x_{14} + 1x_{21} + 7x_{22} + 4x_{23} + 0x_{24} + 3x_{31} + 8x_{32} + 2x_{33} + 0x_{34}$$

s. a $x_{11} + x_{12} + x_{13} + x_{14}$ ≤ 200

$$x_{21} + x_{22} + x_{23} + x_{24}$$
 ≤ 700

$$x_{31} + x_{32} + x_{33} + x_{34} \leq 100$$

$$x_{11} + x_{21} + x_{21} + x_{31} \geq 250$$

$$x_{12} + x_{22} + x_{23} + x_{32} \geq 350$$

$$x_{13} + x_{23} + x_{33} \geq 200$$

$$x_{14} + x_{24} + x_{24} + x_{34} \geq 200$$

$$x_{ij} \geq 0 , i=1,2,3; j=1,2,3,4$$

Obteríamos a seguinte solução ótima e os quadros para análise de sensibilidade:

quadro associado às variáveis, determinado pelo Excel/Solver

	Final	Reduzido	Objetivo	Permissível	Permissível
Nome	Valor	Custo	Coeficiente	Aumentar	Diminuir
x11	0	11	8	1E+30	11
x12	200	0	3	4	1E+30
x13	0	5	5	1E+30	5
x14	0	4	0	1E+30	4
x21	250	0	1	4	1
x22	150	0	7	3	4
x23	100	0	4	5	2
x24	200	0	0	2	0
x31	0	4	3	1E+30	4
x32	0	3	8	1E+30	3
x33	100	0	2	2	1E+30
x34	0	2	0	1E+30	2

O Excel/Solver define os custos reduzidos como $-(u_i + v_i - c_{ii}) = (c_{ii} - (u_i + v_i))$

A solução ótima do dual (u_i, v_j) obter-se-ia a partir das condições de complementaridade, começado com $u_2 = 0$ (nodo origem com maior a_i). $z^* = 2500 \in$

quadro associado às restrições, determinado pelo Excel/Solver

	Final	Sombra	Restrição	Permissível	Permissível
Nome	Valor	Preço	Lado Direito	Aumentar	Diminuir
armaz. 1	200	-4	200	150	0
armaz. 2	700	0	700	1E+30	0
armaz. 3	100	-2	100	100	0
hiperm. 1	250	1	250	0	250
hiperm. 2	350	7	350	0	150
hiperm. 3	200	4	200	0	100
hiperm. 4	200	0	200	0	200

quadro associado às variáveis, determinado pelo Excel/Solver

	Final	Reduzido	Objetivo	Permissível	Permissível
Nome	Valor	Custo	Coeficiente	Aumentar	Diminuir
x11	0	11	8	1E+30	11
x12	200	0	3	4	1E+30
x13	0	5	5	1E+30	5
x14	0	4	0	1E+30	4
x21	250	0	1	4	1
x22	150	0	7	3	4
x23	100	0	4	5	2
x24	200	0	0	2	0
x31	0	4	3	1E+30	4
x32	0	3	8	1E+30	3
x33	100	0	2	2	1E+30
x34	0	2	0	1E+30	2

Considere a imposição de transporte de 100 paletes do armazém 1 para o hipermercado 1. Qual deverá ser o agravamento no custo ótimo total?

Atendendo que é admissível transportar 100 paletes da origem 1 para o destino 1, a partir do quadro ótimo obtido, então, usando o valor do custo reduzido $(u_1+v_1-c_{11})=-11$ associado a x_{11} , podemos afirmar que o agravamento será de $1100 \in (=x_{11} \times (u_1+v_1-c_{11}))$, passando o novo custo total a $3600 \in$.

quadro associado às variáveis, determinado pelo Excel/Solver

	Final	Reduzido	Objetivo	Permissível	Permissível
Nome	Valor	Custo	Coeficiente	Aumentar	Diminuir
x11	0	11	8	1E+30	11
x12	200	0	3	4	1E+30
x13	0	5	5	1E+30	5
x14	0	4	0	1E+30	4
x21	250	0	1	4	1
x22	150	0	7	3	4
x23	100	0	4	5	2
x24	200	0	0	2	0
x31	0	4	3	1E+30	4
x32	0	3	8	1E+30	3
x33	100	0	2	2	1E+30
x34	0	2	0	1E+30	2

Suponhamos que se pretende que a mercadoria sobrante fique no armazém 1, em vez de no 2. Qual deverá ser o agravamento no custo ótimo total?

Atendendo que é admissível transferir as 200 paletes sobrantes da origem 2 para a origem 1, a partir do quadro ótimo obtido, então, usando o valor do custo reduzido $(u_1+v_4-c_{14})=-4$ associado a x_{14} , podemos afirmar que o agravamento será de $800 \in (=x_{14} \times (u_1+v_4-c_{14}))$, passando o novo z^* a $3300 \in$.

quadro associado às variáveis, determinado pelo Excel/Solver

	Final	Reduzido	Objetivo	Permissível	Permissível
Nome	Valor	Custo	Coeficiente	Aumentar	Diminuir
x11	0	11	8	1E+30	11
x12	200	0	3	4	1E+30
x13	0	5	5	1E+30	5
x14	0	4	0	1E+30	4
x21	250	0	1	4	1
x22	150	0	7	3	4
x23	100	0	4	5	2
x24	200	0	0	2	0
x31	0	4	3	1E+30	4
x32	0	3	8	1E+30	3
x33	100	0	2	2	1E+30
x34	0	2	0	1E+30	2

Até que valor podemos reduzir o custo unitário de transporte do armazém 1 para o hipermercado 1 com a garantia de que a solução ótima obtida continua a ser ideal?

O quadro indica que o coeficiente na função objetivo da variável x_{11} (c_{11} =11) pode variar no intervalo $[-11, +\infty[$ com a garantia de que a solução ótima não se altera, podendo, nesse caso, ser reduzido em $11 \in$, passando $c_{11} = 8$ para $c'_{11} = 8 - 11 = -3$. Assim, mesmo que cada unidade transportada nesse trajeto passasse a dar uma renda de $3 \in$, a não utilização dessa ligação continuava a ser a "melhor" opção.

quadro associado às variáveis, determinado pelo Excel/Solver

	Final	Reduzido	Objetivo	Permissível	Permissível
Nome	Valor	Custo	Coeficiente	Aumentar	Diminuir
x11	0	11	8	1E+30	11
x12	200	0	3	4	1E+30
x13	0	5	5	1E+30	5
x14	0	4	0	1E+30	4
x21	250	0	1	4	1
x22	150	0	7	3	4
x23	100	0	4	5	2
x24	200	0	0	2	0
x31	0	4	3	1E+30	4
x32	0	3	8	1E+30	3
x33	100	0	2	2	1E+30
x34	0	2	0	1E+30	2

Análise do custo unitário de transporte do armazém 2 para o hipermercado 3 ($c_{23} = 4$):

A informação no quadro mostra que qualquer variação (individual) no custo de transporte da origem 2 para o destino 3, e que respeite o intervalo [-2, 5], não altera a solução ótima (exceto soluções ótimas alternativas). Assim, esse custo unitário pode agravar-se até $5 \in$, passando de $c_{23} = 4$ para $c_{23}' = 9 \in$; ou reduzir-se até $2 \in$, passando de $c_{23} = 4$ para $c_{23}' = 2 \in$, garantindo que a solução obtida continua a ser ideal.

quadro associado às restrições, determinado pelo Excel/Solver

	Final	Sombra	Restrição	Permissível	Permissível
Nome	Valor	Preço	Lado Direito	Aumentar	Diminuir
armaz. 1	200	-4	200	150	0
armaz. 2	700	0	700	1E+30	0
armaz. 3	100	-2	100	100	0
hiperm. 1	250	1	250	0	250
hiperm. 2	350	7	350	0	150
hiperm. 3	200	4	200	0	100
hiperm. 4	200	0	200	0	200

Análise da alteração no custo total ótimo caso haja um aumento da disponibilidade de mercadoria no armazém 1:

A informação no quadro mostra que o valor marginal da disponibilidade de produto no armazém 1 $(a_1 = 200)$ é de -4 € (preço sombra $u_1 = -4$). Este valor marginal mantém-se constante para qualquer aumento na disponibilidade nesse armazém até 150 unidades. Assim, se a disponibilidade de produto no armazém 1 passar de $a_1 = 200$ paletes para $a'_1 = a_1 + \theta_1 = 300$, então haverá uma redução no custo total de transporte no valor de $(u_1 \times \theta_1) = -4 \times 100 = -400$ €, e o novo $z^* = 2500 - 400 = 2100$ €.

Análise de sensibilidade

Solução ótima:

quadro associado às restrições, determinado pelo Excel/Solver

	Final	Sombra	Restrição	Permissível	Permissível
Nome	Valor	Preço	Lado Direito	Aumentar	Diminuir
armaz. 1	200	-4	200	150	0
armaz. 2	700	0	700	1E+30	0
armaz. 3	100	-2	100	100	0
hiperm. 1	250	1	250	0	250
hiperm. 2	350	7	350	0	150
hiperm. 3	200	4	200	0	100
hiperm. 4	200	0	200	0	200

Análise da alteração no custo total ótimo caso haja uma redução na procura de mercadoria pelo hipermercado 2:

A informação no quadro mostra que o valor marginal da procura de produto pelo hipermercado 2 $(b_2 = 350)$ é de $7 \in$ (preço sombra $v_2 = 7$). Este valor marginal mantém-se constante para qualquer redução não superior a 150 unidades na procura por parte desse hipermercado. Assim, se a procura de produto pelo hipermercado 2 passar de $b_2 = 350$ paletes para $b'_2 = b_2 + \theta_2 = 250$, então haverá uma redução no custo total de transporte no valor de $(v_2 \times \theta_2) = 7 \times (-100) = -700 \in$.

Consequentemente, o novo z* = 2500 − 700 = 1800 €.

Considere-se a seguinte solução admissível:

Esta solução é admissível (porque satisfaz oferta e procura) mas não é básica porque tem apenas 5 variáveis identificadas com fluxo. De facto, o grafo da solução é desconexo.

Para obter uma solução básica (a partir da solução apresentada) precisamos de identificar a 6^a variável básica (m+n-1=6), ainda que com valor nulo.

Considere-se a seguinte solução admissível:

As variáveis candidatas ao papel de 6ª variável básica são as assinaladas nas células a amarelo. Qualquer dessas variáveis permite recuperar a conectividade do grafo.

Assim, propomos que a 6^a variável básica seja a x_{12} . Esta variável terá fluxo nulo. Obtendo-se a seguinte solução básica degenerada:

Agora sim, a solução é básica e admissível, ainda que degenerada.

Neste caso, esta solução básica não é ótima porque existem custos reduzidos com valor positivo $((u_2+v_4-c_{24})=4 \text{ e } (u_3+v_4-c_{34})=2)$, violando a admissibilidade do dual, logo não satisfazendo as condições de complementaridade.

Reformulações para o problema de transportes

Retomemos a formulação do problema de transportes com *m* origens e *n* destinos (com eventual origem ou destino fictício)

Parâmetros:

 $a_i \equiv$ quantidade de mercadoria disponível na origem i, i=1,...,m

 $b_j \equiv$ quantidade de mercadoria requerida pelo destino j, j=1,...,n

 $c_{ii} \equiv$ custo unitário de transporte da origem i para o destino j, i=1,...,m, j=1,...,n

Variáveis:

 $x_{ij} \equiv$ quantidade de mercadoria transportada da origem i para o destino j, i=1,...,m, j=1,...,n

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s. a
$$\sum_{j=1}^{n} x_{ij} = a_i , \quad i=1,...,m$$

$$\sum_{i=1}^{m} x_{ij} = b_j , \quad j=1,...,n$$

admite-se, sem perda de generalidade, que $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$

Note: se os parâmetros a_i e b_j forem todos inteiros, então as soluções ótimas deste problema são também inteiras, permitindo resolvê-lo em otimização contínua

$$x_{ij} \ge 0$$
 , $i=1,...,m$, $j=1,...,n$

Parâmetros:

 $a_i \equiv$ quantidade de mercadoria disponível na origem i, i=1,...,m

 $b_i \equiv$ quantidade de mercadoria requerida pelo destino j, j=1,...,n

 $c_{ii} \equiv$ custo unitário de transporte da origem i para o destino j, i=1,...,m, j=1,...,n

Variáveis:

 $x_{ij} \equiv$ quantidade de mercadoria transportada da origem i para o destino j, i=1,...,m, j=1,...,n

se a oferta for menor do que a procura:

$$\sum_{i=1}^m a_i < \sum_{j=1}^n b_j$$

$$\min \qquad \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s. a

$$\sum_{i=1}^{n} x_{ij} = a_i , \quad i=1,...,m$$

$$\sum_{i=1}^{m} x_{ij} \le b_j \quad , \quad j=1,\dots,n$$

$$x_{ij} \ge 0$$
 , $i=1,...,m$, $j=1,...,n$

se a oferta for maior do que a procura:

$$\sum_{i=1}^m a_i > \sum_{j=1}^n b_j$$

$$\min \qquad \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s. a

$$\sum_{i=1}^{n} x_{ij} \le a_i \quad , \quad i=1,\dots,m$$

$$\sum_{i=1}^{m} x_{ij} = b_j , \quad j=1,...,n$$

$$x_{i,j} \ge 0$$
 , $i=1,...,m$, $j=1,...,n$

Considere-se a inclusão de limites mínimos e máximos no fluxo em cada ligação

Parâmetros adicionais:

 $m_{ij} \equiv \text{limite m\'inimo no fluxo de } i \text{ para } j$, i=1,...,m, j=1,...,n (com $m_{ij} \ge 0$)

 $M_{ij} \equiv \text{limite máximo no fluxo de } i \text{ para } j, i=1,...,m, j=1,...,n$

Reformulação:

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s. a
$$\sum_{j=1}^{n} x_{ij} = a_i , i=1,...,m$$

$$\sum_{i=1}^{m} x_{ij} = b_j , j=1,...,n$$

$$m_{ij} \le x_{ij} \le M_{ij} , i=1,...,m , j=1,...,n$$

admite-se, sem perda de generalidade, que $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$

$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$$

Considere-se a inclusão de custos fixos pela utilização de fluxo em cada ligação

Parâmetros adicionais:

 $d_{ij} \equiv$ custo fixo de transporte da origem i para o destino j, i=1,...,m, j=1,...,n (com $d_{ij} > 0$)

$$y_{ij} = \begin{cases} 1 & \text{se } x_{ij} > 0 \\ 0 & \text{se } x_{ij} = 0 \end{cases}, \quad i = 1, ..., m, \quad j = 1, ..., n$$

Reformulação:

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} y_{ij}$$
s. a
$$\sum_{j=1}^{n} x_{ij} = a_i , \quad i=1,...,m$$

$$\sum_{i=1}^{m} x_{ij} = b_j , \quad j=1,...,n$$

$$x_{ij} \leq M. y_{ij} , \quad i=1,...,m , \quad j=1,...,n$$

admite-se, sem perda de generalidade, que $\sum_{i=1}^{m} a_i = \sum_{i=1}^{n} b_i$

$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$$

(com *M* uma constante suficientemente grande)

$$x_{ij} \ge 0$$
, $y_{ij} \in \{0,1\}$, $i=1,...,m$, $j=1,...,n$

Se, adicionalmente, houver capacidades máximas no fluxo em cada ligação

Parâmetros adicionais:

 $d_{ij} \equiv$ custo fixo de transporte da origem i para o destino j, i=1,...,m, j=1,...,n (com $d_{ij} > 0$) $M_{ij} \equiv$ capacidade máxima no transporte da origem i para o destino j, i=1,...,m, j=1,...,n

$$y_{ij} = \begin{cases} 1 & \text{se } x_{ij} > 0 \\ 0 & \text{se } x_{ij} = 0 \end{cases}, \quad i = 1, ..., m, \quad j = 1, ..., n$$

Reformulação:

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} y_{ij}$$
s. a
$$\sum_{j=1}^{n} x_{ij} = a_i , \quad i=1,...,m$$

$$\sum_{i=1}^{m} x_{ij} = b_j , \quad j=1,...,n$$

$$x_{ij} \leq M_{ij}. y_{ij} , \quad i=1,...,m , \quad j=1,...,n$$

$$x_{ij} \geq 0 , \quad y_{ij} \in \{0,1\} , \quad i=1,...,m , \quad j=1,...,n$$

admite-se, sem perda de generalidade, que $\sum_{i=1}^{m} a_i = \sum_{i=1}^{n} b_i$

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

Se a penalização em cada ligação puder tomar qualquer valor $(d_{ij} \in IR)$

Parâmetros adicionais:

 $d_{ij} \equiv$ custo fixo de transporte da origem i para o destino j, i=1,...,m, j=1,...,n (com $d_{ij} \in IR$) $m_{ij} \equiv$ limite mínimo para o transporte da origem i para o destino j, i=1,...,m, j=1,...,n ($m_{ij} \ge 0$) $M_{ij} \equiv$ capacidade máxima no transporte da origem i para o destino j, i=1,...,m, j=1,...,n

$$y_{ij} = \begin{cases} 1 & \text{se } x_{ij} > 0 \\ 0 & \text{se } x_{ij} = 0 \end{cases}$$
 , $i = 1,...,m$, $j = 1,...,n$

Reformulação:

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} y_{ij}$$
 admide general solution. Solution and the set of the set o

admite-se, sem perda de generalidade, que

$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$$

Se pretendermos antes maximizar o fluxo total, sujeito a uma restrição orçamental Parâmetros:

 $a_i =$ quantidade de mercadoria disponível na origem i, i=1,...,m

 $b_i \equiv$ quantidade de mercadoria requerida pelo destino j, j=1,...,n

 $c_{ij} \equiv$ custo unitário de transporte da origem i para o destino j, i=1,...,m, j=1,...,n

 $K \equiv$ limite orçamental do custo total de transporte

Variáveis:

 $x_{ij} \equiv$ quantidade de mercadoria transportada da origem i para o destino j, i=1,...,m, j=1,...,n

Reformulação:

se a mercadoria

for fracionária

$$\max \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}$$
s. a
$$\sum_{j=1}^{m} x_{ij} \le a_i , i=1,...,m$$

$$\sum_{i=1}^{m} x_{ij} \le b_j , j=1,...,n$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \le K$$

$$x_{ij} \ge 0 , i=1,...,m , j=1,...,n$$

a restrição orçamental faz perder as condições de integralidade implícitas

se a mercadoria for inteira, então considerar $x_{ij} \in IN_0$

Se a restrição orçamental incluir custos fixos

Parâmetros adicionais:

 $d_{ij} \equiv$ custo fixo de transporte da origem i para o destino j, i=1,...,m, j=1,...,n (com $d_{ij} \in IR$) $m_{ij} \equiv$ limite mínimo para o transporte da origem i para o destino j, i=1,...,m, j=1,...,n ($m_{ij} \geq 0$) $M_{ij} \equiv$ capacidade máxima no transporte da origem i para o destino j, i=1,...,m, j=1,...,n

$$y_{ij} = \begin{cases} 1 & \text{se } x_{ij} > 0 \\ 0 & \text{se } x_{ij} = 0 \end{cases}, \quad i = 1, ..., m, \quad j = 1, ..., n$$

Reformulação:

$$\max \qquad \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}$$

$$\begin{split} \sum_{j=1}^{m} x_{ij} &\leq a_i \ , \quad i=1,\dots,m \\ \sum_{j=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} y_{ij} &\leq K \\ &\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} y_{ij} &\leq K \\ &\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} &\leq M_{ij} x_{ij} &\leq K \\ &\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} &\leq M_{ij} x_{ij} &\leq K \\ &\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} &\leq M_{ij} x_{ij} &\leq K \\ &\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} &\leq K \\ &\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij$$