Лабораторная работа 2.2.1 Исследование взаимной диффузии газов

1 Цель работы:

1) регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов; 2) определение коэффициента диффузии по результатам измерений.

2 Оборудование:

измерительная установка; форвакуумный насос; баллон с газом (гелий); манометр; источник питания; магазин сопротивлений; гальванометр; секундомер.

3 Теоретические сведения:

Диффузией называется самопроизвольное перемешивание молекул, происходящее вследствие их теплового движения. В жидкости диффузия происходит быстрее, чем в твердых телах, а в газах — быстрее, чем в жидкостях. В тех случаях, когда изучается перемешивание молекул одного сорта, говорят о самодиффузии, а если перемешиваются разные молекулы — о взаимной (или концентрационной) диффузии.

Для исследования взаимной диффузии газов и определения коэффициента диффузии используется установка, изображенная на рис. 1. Два сосуда с объемами V1 и V2 соединены трубкой длины l и сечения S. Сосуды заполнены смесью двух газов при одинаковом давлении, но с различной концентрацией компонентов. Вследствие взаимной диффузии концентрации каждого из компонентов в обоих сосудах с течением времени выравниваются.

Рассмотрим процесс выравнивания концентрации. Пусть концентрации одного из компонентов смеси в сосудах V1 и V2 равны n1 и n2. Плотность диффузионного потока любого компонента (т. е. количество вещества, проходящее в единицу времени через единичную поверхность) определяется законом Фика (2.5):

$$j = -D\frac{\partial n}{\partial x} \tag{1}$$

где D — коэффициент взаимной диффузии газов, а j — плотность потока частиц Расчеты упрощается благодаря тому, что объём соединительной трубки мал по сравнению с объемами сосудов и концентрацию газов внутри каждого сосуда можно считать постоянной по всему объему.

Диффузионный поток в любом сечении трубки одинаков. Поэтому $J=-DS\frac{\partial n}{\partial x}$ не меняется вдоль трубки. Следовательно,

$$J = -DS \frac{n_1 - n_2}{l} \tag{2}$$

Обозначим через $\Delta n_1 \Delta n_2$ изменения концентрации в объемах V1 и V2 за время Δt . Тогда $V_1 \Delta n_1$ равно изменению количества компонента в объеме V_1 , а $Deltan_2$ — изменению количества этого компонента в V2. Из закона сохранения вещества следует, что $V_1 n_1 + V_2 n_2 = \text{const}$, откуда $V_1 n_1 = -V_2 n_2$. Эти изменения происходят вследствие диффузии, поэтому

$$V_1 \Delta n_1 = -V_2 \Delta n_2 = J \Delta t = -DS \frac{n_1 - n_2}{l} \Delta t.$$
 (3)

Деля это равенство на Δt , получим

$$V_1 \frac{dn_1}{dt} = -DS \frac{n_1 - n_2}{l}, V_2 \frac{dn_2}{dt} = DS \frac{n_1 - n_2}{l}, \tag{4}$$

Разделив первое из этих уравнений на V1, а второе на V2 и вычтя эти равенства друг из друга получим:

$$\frac{dn_1}{dt} - \frac{dn_2}{dt} = -\frac{n_1 - n_2}{l} DS(\frac{1}{V_1} - \frac{1}{V_2}) \tag{5}$$

Введем $n_1 - n_2$ и проинтегрируем:

$$(n_1 - n_2) = (n_1 - n_2)_0 e^{-t/\tau}$$
(6)

где $(n1-n2)_0$ — разность концентраций в начальный момент времени,

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD} = \frac{c}{D} \tag{7}$$

Формула показывает, что разность концентраций убывает по экспоненциальному закону, и тем быстрее, чем меньше τ (постоянная времени процесса). Величина τ определяется геометрическими размерами установки (l, S, V1, V2) и величиной коэффициента диффузии D Для измерения коцентраций в данной установке применяются датчики теплопроводности D1 и D2 и используется зависимость теплопроводности газовой смеси от ее состава. Танкая проволочка радиуса $r_{\rm пр}$, протяянутая вдоль оси стеклянного цилиндра радиуса $R_{\rm ц}$, нагреется током. Тепло от проволочки к стенке цилиндра переходит главным образом в следсвтие теплопроводности газа, находящегося внутри цилиндра. Количествр тепоами, передающееся стенке в единицу времени:

$$Q = \kappa \frac{2\pi L}{\ln(\frac{R_{\rm u}}{r_{\rm np}})} (T_1 - T_2), \tag{8}$$

где κ - теплопроводность, L - длина нити, T_1, T_2 - температуры проволочки и стенки. При заданном режиме нагревания температура проволочки соотвественно ее сопротивление определяются теплопроводностью газа и, следовательно, его составом.

Для измерения разности концентраций газов используется мостовая схема (см. рис. 2).

В процессе диффузии разность крнцентраций убывает по экспоненциальному закону. По тому же закону изменя тся показатели гальванометра во времени:

$$N = N_0 e^{-\frac{t}{\tau}},\tag{9}$$

где N_0 - показатель в начальный момент времени.

4 Экспериментальная установка

Общий вид конструкции приведен на рис. 1. Схема моста приведена на рис. 2. На рис. 3 показана конструкция многоходового крана K6.

Установка состоит из двух сосудов V1 и V2, соединенных краном K3 форвакуумного насоса Ф.Н. с выключателем Т, манометра М и системы напуска гелия, включающей в себя краны K6 и K7. Кран K5 позволяет соединять форвакуумный насос либо с установкой, либо с атмосферой. Между форвакуумным насосом и краном K5 вставлен предохранительный баллон П.Б., защищающий кран K5 и установку при неправильной

эксплуатации ее от попадания форвакуумного масла из насоса Ф.Н. Сосуды V1 и V2 и порознь и вместе можно соединятькак с системой напуска гелия, так и с форвакуумным насосом. Для этого служат краны K1, K2, K4 и K5. Манометр М регистрирует давление газа, до котороого заполняют тот или другой сосуды.

5 Ход работы:

- Включим питание электрической схемы установки. Откроем краны K1, K2, K3. Очистим установку от всех газов, открыв кран K4 и включив Ф.Н: для этого ждем 3 минуты.
- Запустим воздух до рабочего давления P раб. Сбалансируем мост. Заполним установку рабочей смесью и приступим к измерению: откроем K3 и снимем зависимость показания гальванометра от времени:

Р, торр	-	1	2	3	4	5	6	7	8	9	10
40	t, c	0	15,61	31,22	46,83	62,43	78,04	93,65	109,26	124,87	140,48
	U, мВ	255	236,4	219,8	203,3	189,6	176	163,3	152	142	132,5
	ln U	0	0,076	0,149	0,226	0,297	0,371	0,445	0,517	0,585	0,655
Р, торр	-	1	2	3	4	5	6	7	8	9	10
78	t, c	0	15,7	31,39	47,09	62,78	78,48	94,17	109,87	125,57	141,26
	U, мВ	255	245,3	235	225	216	206,5	198	190,1	182	175
	ln U	0	0,039	0,082	0,125	0,166	0,211	0,253	0,294	0,337	0,376
										•	
Р, торр	-	1	2	3	4	5	6	7	8	9	10
		-									

г, торр	-	1	'	9	4	9	0	1	0	9	10
152	t, c	0	12,96	25,91	25,91	38,87	51,83	64,78	77,74	90,7	103,65
	U, мВ	255	235	217,1	202,1	189,2	178,2	169,3	161	154	148
	ln U	0	0,081	0,161	0,232	0,299	0,358	0,41	0,46	0,504	0,544
									•		

Р, торр	-	1	2	3	4	5	6	7	8	9	10
302	t, c	0	14,26	28,52	42,78	57,04	71,3	85,57	99,83	114,09	128,35
	U, мВ	255	251	245,5	240	235	229	224	219	214	209,7
	ln U	0	0,016	0,038	0,061	0,082	0,108	0,13	0,152	0,175	0,196

$$\sigma_p = 2$$
Topp $\sigma_t = 2c$

• Убедимся, что процесс диффузии подчиняется экспоненциальному закону. Для этого построим график зависимости логарифма показаний гальванометра от времени.

• Рассчитаем угловые коэффициенты каждой прямой. С помощью полученных значений рассчитаем коэффициенты взаимной диффузии при выбранных давлениях. Параметры установки: $V_1=800\pm5cm^3$ $V_2=800\pm5cm^3$ $S/L=11.0\pm0.11/cm$ $c=4400cm^2$

Давление	Угл коэффициент $= a * 10^-3$	ΔlnP	Δt	σ_a
40, торр	0,0045	-16,6	15,61	0,132928
78, торр	0,0026	0,043	15,69	0,175947
152, торр	0,0031	0,08	12,95	0,196775
302, торр	0,0015	0,022	14,26	0,185175

• Построим график зависимости коэффициента диффузии от давления в координатах $D,\,1/P$ - он имеет вид прямой линии.

Р, торр	40	78	152	302
1/P, ropp^-1	0,025	0,012821	0,006579	0,003311
$a * 10^3, c^ 1$	4,5	2,6	3,1	1,55
с, см^2	4400	4400	4400	4400
D см^2/с	19,8	11,44	9,64	6,82
σ_a	0,132927829	0,175947	0,196775	0,185175
σ_t	2			
σ_D	0,265855657	0,351894	0,39355	0,370351

Атмосферное давление в нашем случае было равно 99,4 к $\Pi a=745,5$ торр. При значении 0,00134 торр $^{-1}$ коэф. диффузии равен = 5,8 см*см/с

• Оценим длину свободного пробега и размер молекулы:

$$\lambda = \frac{3D}{v} == 3D * (\frac{\mu}{3RT})^0.5 = 1,27 \pm 0.0510^{-6} M$$

$$d = \sqrt{\frac{KT}{P\lambda}} = 18 \pm 0,7 \text{HM}$$