到多多电流设(英文版)

试题编号: P378

重庆邮电大学 2013-2014 学年第一学期

电磁场与电磁波(英)课程试卷(期末)(A卷)(闭卷)

题	号	 =	111	四	五,	六	· 七	八	总分
得	分								
评	卷人					•			

—、	判断题	(本大题共5小题,	每小题 2 分,	共10分

- (1) An irrotational field can be expressed as the gradient of a continuously differentiable scalar function. (
- (2) The tangential components of the electric field intensity are always continuous at the interface. ()
- (3) In a simple medium, the magnetostatics vector potential $\bar{\mathbf{A}}$ satisfy the equation: $\nabla^2 \vec{A} = -\mu \vec{J}$.
- (4) $\vec{J} = \sigma \vec{E}$ is hold in every medium. (
- (5) A material may be a good conductor at low frequencies but may have the properties of a lossy dielectric at very high frequencies. (
- 二、选择题(本大题共 10 小题,每小题 2 分,共 20 分)
 - (1) Gradient of a Scalar Field $v = x^2 + 2y^2 + 5z^2$ at the point p(-1,2,1) is (

(A)
$$-\vec{a}_x 2 + \vec{a}_y 8 + \vec{a}_z 10$$
 (B) $-\vec{a}_x 8$ (C) $\sqrt{168}$ (D) $-\vec{a}_x 8$

- (2) In simple medium, if $B_x = x$, $B_y = y$. then $B_z = ($).
 - (B) -2z (C) -2 (A)2(D) 2z

学 묵

级

专 业

> 班 级

姓

名

ž

DIRIC	35	说	Ġ
(3) the curl of a vector field $\vec{F} = \vec{a}_x xy$	$-\vec{a}_y^2 2x$ is ().	

(A	l)	1

(B)
$$-\vec{a}_{x}(2+x)$$

$$(C) - y$$

(4) A parallel-plate capacitor is filled with a dielectric with permittivity ε , then the capacitance is C. If remove the dielectric material, the capacitance will ().

- (A) increase
- (B) fall
- (C) no change
- (D) unknown

(5) The physical bases for the method of images is (

- (A) Gauss's Law
- (B) Helmholtz's Theorem
- (C) Uniqueness Theorem
- (D) Poynting's Theorem

(6) The mathematical expression for magnetostatic energy density in terms of Band \vec{H} is (

(A)
$$\frac{1}{2}\vec{B}\cdot\vec{H}$$

(B)
$$\frac{\vec{B}^2}{2\mu}$$

(C)
$$\frac{\mu \vec{B}^2}{2}$$

(A)
$$\frac{1}{2}\vec{B}\cdot\vec{H}$$
 (B) $\frac{\vec{B}^2}{2\mu}$ (C) $\frac{\mu\vec{B}^2}{2}$ (D) $\frac{1}{2}\vec{B}\times\vec{H}$

(7) The Lorentz's force acting on a point charge q due to electromagnetics fields is

(A)
$$\vec{F} = q\vec{E}$$

(B)
$$\vec{F} = q\vec{E} + q\vec{u} \cdot \vec{B}$$

(C)
$$\vec{F} = q\vec{E} + q\vec{u} \times \vec{B}$$

(D)
$$\vec{F} = q\vec{u} \times \vec{B}$$

(8) Given the boundary conditions of time-varying electromagnetic fields between two lossless simple media, which of the following is not true ().

(A)
$$\vec{a}_n \cdot (\vec{D}_1 - \vec{D}_2) = 0$$
 (B) $\vec{a}_n \times (\vec{E}_1 - \vec{E}_2) = 0$

(B)
$$\vec{a}_n \times (\vec{E}_1 - \vec{E}_2) = 0$$

(C)
$$\vec{a}_n \times (\vec{H}_1 - \vec{H}_2) = \vec{J}_s$$
 (D) $\vec{a}_n \cdot (\vec{B}_1 - \vec{B}_2) = 0$

(D)
$$\vec{a}_n \cdot (\vec{B}_1 - \vec{B}_2) = 0$$

(9) The uniform plane wave is $\vec{E} = \vec{a}_x E_m e^{jkz} - j\vec{a}_y E_m e^{jkz}$, It's polarization is (

- (A) elliptically
- (B) right hand circularly
- (C) left hand circularly
- (D) linearly

电磁场与电磁波(英)试卷第2页(共8页)

- (10) In free space, the incident wave is $\vec{E} = \vec{a}_x E_m \cos(\omega t kz)$, then the displacement current density is (

 - (A) $-\vec{a}_x \varepsilon_0 \omega E_m \sin(\omega t kz)$ (B) $-\vec{a}_y \varepsilon_0 \omega E_m \sin(\omega t kz) / \eta$

 - (C) $\vec{a}_x \varepsilon_0 E_m \cos(\omega t kz)$ (D) $\vec{a}_y \varepsilon_0 E_m \cos(\omega t kz) / \eta$
- 三、计算题(本大题共5小题,共70分)

7

1.(10ps) Writing the Maxwell Equation in phasor form and show the two divergence equations can be derived from the two curl equations.

1

- (1) The instantaneous value of the electric field intensity $\vec{E}(r,t)$
- (2) The phasor representation of magnetic field intensity. $\vec{H}(r)$
- (3) The instantaneous value of the electric field intensity. $\vec{H}(r,t)$
- (4) the average power density in the medium. \vec{S}_{av}
- (5) Poynting vector. $\vec{S}(r,t)$

3. (15ps) A wave propagates in a lossless medium characterized by $\mu_r = 1$ $\varepsilon_r = 4$. The electric field intensity in the region is given by

$$\vec{E} = \vec{a}_x 3\cos(10^7 t - ky) - \vec{a}_z 3\cos(10^7 t - ky + \frac{\pi}{2})$$
 (V/m)

- (1) The frequency of the wave f.
- (2) The phase constant of the wave k.
- (3)The phase velocity of the wave \vec{v}_p .
- (4) The intrinsic impedance of the wave η .
- (5) The polarization of the wave.

4.(15ps) A uniform sinusoidal plane wave in air with the following phasor expression for electric intensity $\vec{E}^i(x,z) = \vec{a}_y 10e^{-j(6x+8z)}$ is incident on a perfectly conducting plane

at z = 0

- (1) Find the frequency and wavelength of the wave;
- (2) Determine the angle of incidence;
- (3) Find $\vec{E}^r(x,z)$ of the reflected wave;
- (4) Find $\vec{H}^r(x,z)$ of the reflected wave;
- (5) Find the surface current.

- 5. (15ps) A TE10 wave at 10GHz propagates in a rectangular waveguide with inner dimensions a=1.5cm and b=0.6cm, which is filled with a dielectric medium characterized by $\mu_r = 1$ $\varepsilon_r = 2.25$ Determine
- (1) The cutoff frequency;
- (2) the phase constant;
- (3)the guide wavelength;
- (4) the phase velocity;
- (5) the wave impedance;

年级

中年

Ž.

. b

线

学号

线

重庆邮电大学 2010-2011 学年第 一 学期 《FIELD AND WAVE ELECTROMAGNETICS》 考试题 (A卷)

题号		 Ξ	四	五	六	七	八	九	+	总分
分数					•					
评卷 人	4									

考生必读(如果不读,后果自负):

- (1) 考生务必遵守考试纪律。
- (2) 判断题答案写在题目括号内, 其它题目答案全部写到答题 纸上, 并标明相应题号。
- (3) 试卷中字母上方带箭头代表矢量,例如A: 试卷中

 $\hat{a}_{x},\hat{a}_{y},\hat{a}_{z},\hat{a}_{r},\hat{a}_{o},\hat{a}_{o}$ 为坐标系的单位矢量:A表示相量。

- (4) 试卷正卷共 2 页,附带白纸 4 张 (答题纸、草稿纸)。
- (5) 交卷时,请将正卷和答卷一同交上,且保持试卷整洁。

Problem 1 (10 points)

In the following descriptions, some are correct while others are incorrect. Please filling the correct mark " \checkmark " or incorrect mark " \times " in the bracket ending each paragraph. (1 point per item)

- (1) If the divergence of a vector field is zero, the vector field is said to be irrotational or conservative.
- (2) The boundary conditions for time-varying electromagnetic fields between two lossless simple media interface are:

$$\hat{a}_{n2} \times (\bar{E}_1 - \bar{E}_2) = 0; \hat{a}_{n2} \times (\bar{H}_1 - \bar{H}_2) = \bar{J}_s;$$

$$\hat{a}_{n2} \cdot (\bar{D}_1 - \bar{D}_2) = 0; \hat{a}_{n2} \cdot (\bar{B}_1 - \bar{B}_2) = 0;$$

$$\hat{a}_{n2} : \text{from dielectric 2 to dielectric 1}$$

- (3) If a vector field is solenoidal(or divergenceless), then it can be expressed as the curl of another vector field. (
- (4) In a charge-free region and simple medium, if $E_x = x$; $E_y = y$, then $E_x = -2z$. (
- (5) $\bar{J} = \sigma \bar{E}$ is hold in every medium . (
- (6) The instantaneous magnetic energy density is $w_m = \frac{1}{2}\bar{B}(t)\cdot\bar{H}(t)$ ()
- (7) In a simple medium, the magnetostatics vector potential \vec{A} satisfy the equation: $\nabla^2 \vec{A} = -\mu \vec{J}$ ()
- (8) A uniform plane wave with the complex electric field intensity in a medium is $\tilde{H} = \hat{a}_x 3 e^{-\sqrt{\frac{\omega \mu \sigma}{2}}z} e^{-j\sqrt{\frac{\omega \mu \sigma}{2}}z}$ (wrangular frequency).then the medium is dispersive.()
 - (9) in a conductor medium, the skin depth is independent of the dimensions of the conductor. ()
- (10)Rectangular wave-guide can support TE mode. ()

Priolem 2 (15 points)

The magnetic field intensity in a lossless, source free dielectric medium is given as $\bar{H} = \hat{a}_{y}H_{0}\cos(\omega t + \beta x) \quad \text{(A/m), where } \omega, \beta, \text{ and } H_{0} \text{ all are constants. Find:}$

- (1) The phasor representation of magnetic field intensity $\tilde{\tilde{H}}(r)$.
- (2) The electric field intensity $\bar{E}(\mathbf{r}, \mathbf{t})$ in time domain.
- (3) The phasor representation of electric field intensity $\tilde{ar{E}}(r)$.
- (4) The instantaneous power density, or Poynting vector \bar{S} .
- (5) The average power density, $<\bar{S}>$ or represented as $\bar{S}_{\sigma v}$.

Problem 3 (10 points)

A uniform plane electromagnetic wave in a region have the following component of electric field intensity:

$$\vec{E} = (3j\hat{a}_z - 8\hat{a}_y)e^{-x}e^{-j0.2x}_{V/m}$$

Determine:

- (1) The propagation direction of the wave.
- (2) The polarization of the wave.
- (3) The propagation constant γ .

Problem 4 (15 points)

A wave propagates in a dielectric medium characterized by $\mu_r = 1, \epsilon_r$ = 2.25. The electric field intensity in the region is given by

$$\bar{E} = \hat{a}_y 50 \cos\left(10^2 t - \beta x\right) \text{ (V/m)}$$

Find:

ij

线

- (1) The frequency of the wave f.
- (2) The phase constant β .
- (3) The phase velocity \bar{u}_p .
- (4) The intrinsic impedance η .
- (5) The wavelength λ .

Problem 5 (20 points)

A uniform plane wave propagating in free space impinges at the plane surface of a perfect conductor. If the interface is at z=0, and the magnetic field intensity of the incident wave is given by $\bar{H}_i = \hat{a}_x H_0 e^{-j8(\sqrt{3}\nu+z)}, \text{ where } H_0 \text{ is a constant}.$

Find:

(1) the reflected angle ϑ_r .

(2) $\tilde{\bar{E}}_r(y,z)$ and $\tilde{\bar{H}}_r(y,z)$ of the reflected wave.

Problem 6(15 points)

A rectangular wave-guide with b=1cm is filled with a dielectric of $\varepsilon_r = 4$, and is operated at 12GHz. If the only mode of propagation is TE_{10} , and the phase constant of the TE_{10} mode is 450rad/m, calculate the length a of the wave-guide.

Problem 7 (15 points)

The electric field intensity in the far zone from an antenna is given in terms of its maximum input current I_0 as $\bar{E}_\theta = \frac{15}{5}I_0\sin\theta$.

- (1) Obtain the corresponding expression for the magnetic field \tilde{H}_{φ} .
- (2) What is the total power radiated by the antenna \hat{P} .
- (3) What is the radiation resistance R_r .

重庆邮电大学 2010-2011 学年第 一 学期 《FIELD AND WAVE ELECTROMAGNETICS》 考试题(A卷)参考答案

Problem 1 (Each question with 1 point, total: 10 points)

Decide whether the following statements are true or false. Write "T" for true and "F" for false

Problem 2 (15 points)

The magnetic field intensity in lossless, source free dielectric medium is given as $\bar{H} = \hat{a}_{v}H_{v}\cos(\omega t + \beta x) \quad \text{(A/m),and} \quad \omega, \beta, H_{v} \quad \text{are constant. Find}$

- (1) the phasor representation of magnetic field intensity $\tilde{H}(r)$
- (2) the electric field intensity $\bar{E}(r,t)$ in time domain
- (3) the phasor representation of electric field intensity $\tilde{\tilde{E}}(r)$
- (4) the instantaneous power density, or Poynting vector, \bar{S}
- (5) the average power density, $\langle \bar{S} \rangle$ or represented as \bar{S}_{av} . Solution:
- (1) the phasor representation of magnetic field intensity $\tilde{ar{H}}(r)$

$$\tilde{\tilde{H}}(r) = \hat{a}_v H_0 e^{j\theta x}$$
 (A/m) 3 \Re

(2) the electric field intensity $\bar{E}(r,t)$ in time domain

$$\nabla \times \tilde{H} = \frac{\partial \tilde{D}}{\partial t}$$
 2 \mathcal{D}

$$\bar{E} = \hat{a}_z \frac{\beta}{\omega \varepsilon} H_0 \cos(\omega t + \beta x) \quad (V/m) \qquad 1 \, \text{filt}$$

Let us check to see if the given electric field intensity can exist in the dielectric medium.

$$\rho_{\nu} = \nabla \Omega \bar{D} = \frac{\partial}{\partial z} \left[\frac{\beta}{\omega} H_{0} \cos(\omega t + \beta x) \right] = 0$$

So \bar{D} can exist

$$\nabla \bar{\mathcal{B}} = \frac{\partial}{\partial y} \left[\mu H_0 \cos \left(\omega t + \beta x \right) \right] = 0$$

So \bar{B} also can exist

From
$$\nabla \times \tilde{E} = -\frac{\partial \tilde{B}}{\partial t}$$
, we get

 $\beta^2 = \omega^2 \mu \varepsilon$, this is the condition that the field exist.

(3) the phasor representation of electric field intensity $\tilde{\bar{E}}(r)$

$$\tilde{E}(r) = \hat{a}_{z} \frac{\beta}{\omega \varepsilon} H_{0} e^{j\theta z} \quad (V/m)$$
 3 \(\frac{\partial}{2}{2} \)

(4) the instantaneous power density, or Poynting vector, \bar{S}

$$\bar{S} = \bar{E} \times \bar{H} = \hat{a}_z \frac{\beta}{\omega \varepsilon} H_0 \cos(\omega t + \beta x)$$

$$\times \hat{a}_y H_0 \cos(\omega t + \beta x)$$

$$= -\hat{a}_x \frac{\beta}{\omega \varepsilon} H_0^2 \cos^2(\omega t + \beta x) \left(W/m^2 \right)$$
1 \(\frac{\partial}{2} \)

 ϕ the average power density, $<\bar{S}>$ or represented as \bar{S}_{av}

$$\bar{S}_{av} = \langle \bar{S} \rangle = \frac{1}{2} \text{Re} \left(\bar{E} \times \bar{H}^{*} \right) \qquad 25$$

$$= -\bar{a}_{x} \frac{\beta H_{0}^{2}}{2ms} \left(W/m^{2} \right) \qquad 15$$

Problem 3 (15 points)

A uniform electric field intensity in a region have the following component of electric field intensity:

$$\bar{E} = (3j\hat{a}_z - 8\hat{a}_y)e^{-x}e^{-j0.2x}$$
_{V/m}

Determine:

- (1) The propagation direction of the wave.
- (2) The polarization of the wave.
- (3) The propagation constant y.

Solution:

(1) The propagation direction of the wave is in the x direction. . $5 \, \%$

(2) The polarization of the wave is a right-handed elliptically polarized wave. 5 %

(3) The propagation constant $\gamma = \alpha + j\beta = 1 + j0.2$. 5 分

Problem 4 (15 points)

A wave propagates in a dielectric medium characterized by $\mu_r = 1$, $\epsilon_r = 2.25$. The electric field intensity in the region is given by

$$\bar{E} = \hat{a}, 50 \cos \left(10^7 t - \beta x\right) \text{ (V/m)}$$

Find the following:

- (1) the wave frequency f.
- (2) the phase constant B
- (3) the phase velocity of propagation \tilde{u}_n
- (4) the intrinsic impedance η
- (5) the wavelength λ slution:

(1)
$$f = \frac{\omega}{2\pi} = \frac{10^7}{2\pi} (Hz)$$

(2)
$$\beta = \omega \sqrt{\mu \varepsilon} = \omega \sqrt{\mu_r \varepsilon_r} \sqrt{\mu_0 \varepsilon_0} = \frac{10^7 \sqrt{2.25}}{3 \times 10^8} = 0.05$$
 (rad/m) 3 $\%$

(3)
$$u_p = \frac{\omega}{\beta} = \frac{10^7}{0.05} = 2 \times 10^8 \bar{a}_x \ (m/s)$$

(4)
$$\eta = \sqrt{\frac{\mu}{\varepsilon}} = \eta_0 \sqrt{\frac{\mu_r}{\varepsilon}} = \frac{120\pi}{1.5} = 80\pi \quad (\Omega)$$

(5)
$$\lambda = \frac{2\pi}{\beta} = \frac{2\pi}{0.05} = 40\pi \quad (m)$$

Problem 5 (15 points)

A uniform plane wave propagating in free space impinges at the plane surface of a perfect

conductor. If the interface is at z=0, and the magnetic field intensity of the incident wave is given

by
$$\bar{H}_i = \hat{a}_x H_0 e^{-j8(\sqrt{3}y+z)}$$
, where H_0 is a constant.

Find:

- (1) the reflected angle ϑ_r .
- (2) $\tilde{E}_r(y,z)$ and $\tilde{H}_r(y,z)$ of the reflected wave.

(1)
$$\tilde{H}_{i} = \hat{a}_{x}H_{0}e^{-\tilde{y}_{1}z^{2}}$$

$$= \hat{a}_{x}H_{0}e^{-j\theta(z\cos\theta_{i}+y\sin\theta_{i})}$$

$$= \hat{a}_{x}H_{0}e^{-j16(\frac{\sqrt{3}}{2}y+\frac{1}{2}z)}$$

So the incidence angle $\vartheta_i = 60^{\circ}$

form Snell's law of reflection, we obtain

$$\vartheta_c = \vartheta_c = 60^0$$

(2) as the medium 2 is a perfect conductorm, the fields exist only in free space. The reflection coefficient is $\rho = 1$. The magnetic field intensity of the reflected wave

5 4

$$\begin{split} \ddot{\bar{H}}_r &= \hat{a}_x \rho H_0 e^{-j8(\sqrt{3}y-z)} \\ &= \hat{a}_x H_0 e^{-j8(\sqrt{3}y-z)} \end{split}$$
 5 %

The electric field intensity of the reflected wave $\hat{\bar{E}}_r$

$$\begin{split} &\bar{\bar{E}}_r = \eta_0 \bar{H}_r \times \hat{a}_n \\ &= \eta_0 H_0 e^{-j8(\sqrt{3}y - z)} \hat{a}_x \times \left(\bar{a}_y \sin \vartheta_r - \bar{a}_z \cos \vartheta_r \right) \\ &= \eta_0 H_0 e^{-j8(\sqrt{3}y - z)} \left(\bar{a}_z \sin \vartheta_r + \bar{a}_y \cos \vartheta_r \right) \\ &= \eta_0 H_0 e^{-j8(\sqrt{3}y - z)} \left(\bar{a}_z \frac{\sqrt{3}}{2} - \bar{a}_y \frac{1}{2} \right) \end{split}$$

Problem 5 (15 points)

A rectangular wave-guide with b=1cm is filled with a dielectric of $\varepsilon_r = 4$, and is operated at 12GHz. If the only mode of propagation is TE_{10} and the phase constant of the TE_{10} mode is 102.65rad/m, calculate the length α of the wave-guide.

Solution: Form
$$\beta_{10} = \frac{\omega}{u_p} \sqrt{1 - \left(\frac{f_{c10}}{f}\right)^2}$$
 the cutoff frequency is
$$f_{c10} = \sqrt{f^2 - \left(\frac{\beta_{10}u_p}{2\pi}\right)^2}$$

At the same time
$$f_{c10} = \frac{u_p}{2a}$$

where
$$b = 0.01m$$
, $\beta_{10} = 450 rad / m$, $\mu = \mu_0$, $\varepsilon = 4\varepsilon_0$, $f = 12 \times 10^9 GHz$
From above two equation, we get $a = 1.4 (cm)$

Problem 6 (15 points)

The electric field intensity in the far zone form an antenna is given in terms of its maximum input current I_0 as $\tilde{E}_n = \frac{15}{r} I_0 \sin \theta$, Find the following:

- (1) obtain the corresponding expression for the magnetic field \tilde{H}_{θ}
- (2) what is the total power radiated by the antenna P.
- (3) what is the radiation resistance R_{\star}

solution:

(1) expression for the electric field field

$$\bar{\bar{E}}_{\sigma} = \frac{15}{r} I_{\alpha} \sin \theta e^{-j\theta r} \bar{a}_{\sigma}$$

expression for the magnetic field

$$\bar{\bar{H}}_{e} = \bar{\bar{E}}_{\theta} / \eta = \frac{15}{r\eta} I_{0} \sin \theta e^{-j\theta r} \bar{a}_{\varphi} \left(\eta = \sqrt{\frac{\mu}{\varepsilon}} \right)$$
5 \(\text{if}\)

(2) the power density radiated by the antenna

$$\vec{S} = \frac{1}{2} \left[\vec{\tilde{E}} \times \vec{\tilde{H}}' \right] = \frac{\vec{\tilde{E}}_{\sigma}^2}{2n} \vec{a}_r = \frac{15^2}{2nr^2} I_0^2 \sin^2 \vartheta \vec{a}_r$$

the total power radiated by the antenna

$$P_{r} = \iint_{0} \left\langle \bar{S} \right\rangle \bar{U} d\bar{s}$$

$$= \int_{0}^{\pi} \int_{0}^{2\pi} \frac{225 I_{0}^{2} \sin^{2} \vartheta}{2\eta r^{2}} r^{2} \sin \vartheta d\vartheta d\varphi$$

$$= \frac{225 I_{0}^{2}}{2\eta} \int_{0}^{\pi} \sin^{3} \vartheta d\vartheta \int_{0}^{2\pi} d\varphi$$

$$= \frac{300\pi I_{0}^{2}}{\eta}$$

(3) the radiation resistance

$$R_r = \frac{2P_r}{I_o^2} = \frac{600\pi}{\eta}$$

重庆邮电大学 2007-2008 学年第 一 学期 《FIELD AND WAVE ELECTROMAGNETICS》考试题 (B卷)

Ŧ

六

-

1

九.

+

总分

题号

分数

评卷 人

考生必读(如果不读,后果自负):

M

- (1) 考生务必遵守考试纪律。
- (2) 判断题答案写在题目括号内; 其它题目答案全部写到答题 纸上, 并标明相应题号。
- 试卷中字母上方带箭头代表矢量,例如A: 试卷中 (3)

 $\hat{a}_x,\hat{a}_y,\hat{a}_z,\hat{a}_r,\hat{a}_\theta,\hat{a}_\phi$ 为坐标系的单位矢量: A 表示相量。

- (4) 试卷正卷共 4 页, 附带草稿纸 2 张
- (5) 交卷时,请将正卷和答卷一同交上,且保持试卷整洁。

班级

ij

對

线

Problem 1 (10 points)

In the following descriptions, some are correct while others are incorrect. Please filling the correct mark " \sqrt " or incorrect mark " \times " in the bracket ending each paragraph. (1 point per item)

- (1) If the curl of a vector field is zero, the vector field is said to be irrotational of conservative. (
- (2) The boundary conditions for time-varying electromagnetic fields between a dielectric and a perfect conductor interface are:

$$\hat{a}_{n2} \times \bar{E}_1 = 0; \hat{a}_{n2} \bar{H}_1 \times = \bar{J}_s;$$

$$\hat{a}_{n2} \cdot \bar{D}_1 = 0; \hat{a}_{n2} \cdot \bar{B}_1 = 0;$$
()

 \hat{a}_{n2} : from perfect conductor to dielectric

姓名

线

- (3) The curl of the gradient of any scalar field is everywhere equal to zero. ()
- (4) In simple medium, if $B_x = x$; $B_y = y$, then $B_z = 2z$ ()
- (5) $\bar{J} = \sigma \bar{E}$ is hold in every medium (
- (6) The instantaneous energy density of electric field is $w_{\epsilon} = \frac{1}{2} \varepsilon \bar{D}(r,t) \cdot \bar{E}(r,t)$
- (7) In a simple medium, the scalar potential V satisfy the equation in electrostatics: $\nabla^2 V = -\frac{\rho}{\varepsilon}$ (
- (8) A uniform plane wave with the complex electric field intensity in a medium is $\tilde{E} = \hat{a}_x 3e^{-\sqrt{\frac{\omega\mu\sigma}{2}}z}e^{-j\sqrt{\frac{\omega\mu\sigma}{2}}z} \ (\omega: angular frequecy) \ , then the medium is dispersive ()$
- (9) In a conductor medium, the skin depth is the half of the depth of the conductor
- (10) Rectangular wave-guide can support TEM mode()

Problem 2 (15 points)

The electric field intensity in air is given as $\vec{E} = \hat{a}_x E_0 \cos\left(\omega t - \beta z\right) \text{ (V/m),and } \omega, \beta, E_0 \text{ all are constants.}$

Find:

- (1) The phasor representation of electric field intensity. $\bar{\tilde{E}}(r)$?
- (2) The magnetic field intensity $\bar{H}(r,t)$ in time domain?
- (3) The phasor representation of magnetic field intensity, $\tilde{\tilde{H}}(r)$?
- (4) The instantaneous power density, or Poynting vector, \bar{S} ?
- (5) The average power density, $\langle \bar{S} \rangle$ or represented as \bar{S}_{av} ?

班级

卦

姓名

线 丝

学号:

Problem 3 (15 points)

A uniform plane electromagnetic wave in a region have the following component of electric field intensity:

$$\bar{E} = \left(5 \ \hat{a}_x + 5j \ \hat{a}_y\right) e^{-0.2z} e^{-j0.2z} \text{ V/m}$$

Determine:

- (1) The propagation direction of the wave
- (2) The polarization of the wave
- (3) The propagation constant γ

	Problem 4 (15 points)
	A wave propagates in a dielectric medium characterized by $\mu_r = 1, \epsilon_r$
年	= 9. The electric field intensity in the region is given by
级:	$\bar{E} = \hat{a}_z 377 \cos\left(10^9 t + \beta x\right) \text{ (V/m)}$
	Find:
	(1) The wave frequency f.
专	歪 (2) The phase constant B
;	(3) The phase velocity of propagation \vec{u}_p
	(4) The intrinsic impedance η
	(5) The wavelength λ
班	
级:	
	封
hel-	
名:	
	年级: 专业" 班级" 姓名"

线

线

学号:

Problem 5 (15 points)

A uniform plane wave propagating in free space impinges at the plane surface of a perfect conductor. If the interface is at z=0, and the electric field intensity of the incident wave is given by $\bar{E}_i = \hat{a}_x E_0 e^{-j10(y+z)}$ where E_0 is a constant

(1) The incidence angle ϑ_i

Find:

- (2) The reflected angle ϑ_r
- (3) The electric field intensity of the reflected wave $\tilde{\tilde{E}}_r$ (phasor form)
- (4) The magnetic field intensity of the reflected wave \tilde{H}_{r} (phasor form)

實?而 共兵而

Problem 6 (15 points)

The phase constant of the TE_{10} mode of an air-filled wave-guide with b=1cm is 102.65rad/m. If the operating frequency of the wave-guide is 12GHz, and the only mode of propagation is TE_{10} , calculate the length a of the wave-guide

班级

ij

姓名:

线

11

Problem 7 (15 points)

The magnetic field intensity in the far zone from an antenna is given in terms of its maximum input current I_0 as $\tilde{H}_\varphi = \frac{1}{120\pi} \frac{15}{r} I_0$,

- (1) Obtain the corresponding expression for the electric field \tilde{E}_{ϑ}
- (2) What is the total power radiated by the antenna P_r
- (3) What is the radiation resistance R_r

第4页,共6页

重庆邮电大学 2007-2008 学年第 一 学期

《FIELD AND WAVE ELECTROMAGNETICS》考试题(B 卷答案)

Problem 1 (10 points)

In the following descriptions, some are correct while others are incorrect. Please filling the correct mark " \(\sigma \)" or incorrect mark " \(\sigma \)" in the bracket ending each paragraph. (1 point per item)

- If the curl of a vector field is zero, the vector field is said to be irrotational of conservative. (\(\forall \))
- (2) The boundary conditions for time-varying electromagnetic fields between a dielectric and a perfect conductor interface are:

$$\begin{split} \hat{a}_{n2} \times \bar{E}_1 &= 0; \hat{a}_{n2} \bar{H}_1 \times = \bar{J}_s; \\ \hat{a}_{n2} \cdot \bar{D}_1 &= 0; \hat{a}_{n2} \cdot \bar{B}_1 = 0; \\ \hat{a}_{n3} \cdot \text{from perfect conductor to dielectric} \end{split}$$

- (3) The curl of the gradient of any scalar field is everywhere equal to zero. (<
- (4) In simple medium, if $B_x = x$; $B_y = y$, then $B_z = 2z$ (\times)
- (5) $\bar{J} = \sigma \bar{E}$ is hold in every medium (\times)
- (6) The instantaneous energy density of electric field is $w_c = \frac{1}{2} \varepsilon \bar{D}(r,t) \cdot \bar{E}(r,t)$
- (7) In a simple medium, the scalar potential V satisfy the equation in electrostatics: $\nabla^2 V = -\frac{\rho}{\varepsilon}$ (J)
- (8) A uniform plane wave with the complex electric field intensity in a medium is $\tilde{E} = \hat{a}_x 3e^{-\sqrt{\frac{\omega\mu\sigma}{2}}z}e^{-j\sqrt{\frac{\omega\mu\sigma}{2}}z}$ (ω :angular frequency), then the medium is dispersive ($\sqrt{}$)
- (9) In a conductor medium, the skin depth is the half of the depth of the conductor (×)
- (10) Rectangular wave-guide can support TEM mode(×)

Problem 2 (15 points)

The electric field intensity in air is given as $\bar{E} = \hat{a}_x E_y \cos(\omega t - \beta z)$ (V/m), and ω, β, E_y all are constants. Find:

(1) The phasor representation of electric field intensity, $\tilde{\bar{E}}(r)$ $?\tilde{\bar{E}}(r) = \hat{a}_x E_n e^{-j\beta \hat{z}}$ (3 points)

(2) The magnetic field intensity $\bar{H}(r,t)$ in time domain?

$$\vec{H}(z,t) = \operatorname{Re} \vec{\bar{H}}(r) e^{j\omega t} = \operatorname{Re} \hat{a}_y \frac{E_0}{n} e^{-j\beta z} e^{j\omega t} = \hat{a}_y \frac{E_0}{n} \cos(\omega t - \beta z)$$
 (3 points)

(3) The phasor representation of magnetic field intensity, $\tilde{\tilde{H}}(r)$?

$$\tilde{\bar{H}}(r) = \frac{1}{\eta} \left[\hat{a}_z \times \tilde{\bar{E}}(r) \right] = \frac{1}{\eta} \left[\hat{a}_z \times \hat{a}_x E_0 e^{-j\beta z} \right] = \hat{a}_x \frac{E_0}{\eta} e^{-j\beta z}$$
(3 points)

(4) the instantaneous power density, or Poynting vector, \bar{S} ?

$$\bar{S}(z,t) = \bar{E}(z,t) \times \bar{H}(z,t)$$

$$= \left[\hat{a}_z E_0 \cos(\omega t - \beta z)\right] \times \left[\hat{a}_y \frac{1}{\eta} E_0 \cos(\omega t - \beta z)\right] (3 \text{ points})$$

$$= \hat{a}_z \frac{E_0^2}{\eta} \cos^2(\omega t - \beta z)$$

(5) The average power density, $<\bar{S}>$ or represented as $\tilde{S}_{a\nu}$?

$$\tilde{S}_{av} = \frac{1}{2} \operatorname{Re}(\tilde{E} \times \tilde{H}^*) = \frac{1}{2} \operatorname{Re}(\hat{a}_x E_0 e^{-j\theta z} \times \hat{a}_y \frac{E_0}{\eta} e^{j\theta z}) = \hat{a}_z \frac{E_0^2}{2\eta} (3 \text{ points})$$

Problem 3 (15 points)

A uniform plane electromagnetic wave in a region have the following component of electric field intensity:

$$\bar{E} = (5 \ \hat{a}_x + 5j \ \hat{a}_y)e^{-0.2z}e^{-j0.2z} \text{ V/m}$$

Determine:

- (1) The propagation direction of the wave: z direction (5points)
- (2) The polarization of the wave

$$E_{v}(z,t) = 5e^{-0.2z}\cos(\omega t - 0.2z + \frac{\pi}{2}) = -5e^{-0.2z}\sin(\omega t - 0.2z)$$

$$E_x(0,t) = 5\cos\omega t$$
: $E_y(0,t) = -5\sin\omega t$

$$\frac{E_x^2(0,t)}{25} + \frac{E_y^2(0,t)}{25} = 1$$

$$t=0, \ \tilde{E}=\tilde{a}_x5: \ t=\frac{T}{4}, \ \tilde{E}=-\tilde{a}_x5$$

. The polarization of the wave is left-handed circularly polarized (5 points)

(3) The propagation constant y: y = 0.2 + 0.2j (5 points)

Problem 4 (15 points)

A wave propagates in a dielectric medium characterized by $\mu_1 = 1, \epsilon_1 = 9$. The electric field intensity in the region is given by $\bar{E} = \hat{a}_z 377 \cos\left(10^9 t + \beta x\right)$ (V/m)

Find:

- (1) The wave frequency f. $\omega = 10^9$; $\omega = 2\pi f$; $f = \frac{\omega}{2\pi} = \frac{10^9}{2\pi}$ Hz (3 points)
- (2) The phase constant $\beta: \beta = \omega \sqrt{\mu \varepsilon} = \omega \sqrt{\mu_0 \varepsilon_0} \sqrt{\mu_\varepsilon \varepsilon_0} = \frac{\omega}{c} \sqrt{\mu_\varepsilon \varepsilon_0} = 10$ (rad/m) (3 points)
- (3) The phase velocity of propagation $\bar{u}_p: \bar{u}_p = \frac{1}{\sqrt{\mu \varepsilon}} = \frac{c}{\sqrt{\mu, \varepsilon}} = \frac{c}{3} = 10^s (-a_s)$ (3 points)
- (4) The intrinsic impedance $\eta: \eta = \sqrt{\frac{\mu}{\varepsilon}} = \sqrt{\frac{\mu_0}{\varepsilon_0}} \sqrt{\frac{\mu_c}{\varepsilon_c}} = \frac{\eta_0}{3} = 40\pi$ (3 points)
- (5) The wavelength $\lambda = \frac{2\pi}{\beta} = \frac{\pi}{5}$ (3 points)

Problem 5 (15 points)

A uniform plane wave propagating in free space impinges at the plane surface of a perfect conductor. If the interface is at z=0, and the electric field intensity of the incident wave is given by

$$\vec{E}_i = \hat{a}_x E_0 e^{-j10(y+z)}$$
 where E_0 is a constant

Find:

(1) The incidence angle of

$$\begin{split} \bar{E}_{i} &= \hat{a}_{x} E_{0} e^{-j10(y+z)} = \hat{a}_{x} E_{0} e^{-j(k_{ix}x + k_{iy}y + k_{iz}z)} \\ \therefore k_{ix} &= 0; k_{iy} = 10; k_{iz} = 10 \\ \bar{k}_{i} &= k_{ix} \hat{a}_{x} + k_{iy} \hat{a}_{y} + k_{iz} \hat{a}_{z} = 10 \hat{a}_{y} + 10 \hat{a}_{z} \end{split}$$

$$\begin{split} & \bar{k}_i = 10\hat{a}_y + 10\hat{a}_z = \left| \bar{k}_i \right| \left(\sin \vartheta_i \hat{a}_y + \cos \vartheta_i \hat{a}_z \right) \\ &= 10\sqrt{2} \left(\sin \vartheta_i \hat{a}_y + \cos \vartheta_i \hat{a}_z \right) \therefore \sin \vartheta_i = \frac{\sqrt{2}}{2}; \cos \vartheta_i = \frac{\sqrt{2}}{2} \\ &\therefore \vartheta_i = 45^0 \end{split}$$

(2) The reflected angle $\vartheta_r : \vartheta_r = \vartheta_i = 45^{\circ}$ (3 points)

(3)The electric field intensity of the reflected wave \tilde{E}_r (phasor form)

$$\vec{E}_r = k_{ry}\hat{a}_x + k_{ry}\hat{a}_y + k_{rz}\hat{a}_z = 10\hat{a}_y - 10\hat{a}_z;$$

$$\rho = -1;$$

$$\tilde{\bar{E}}_r = \hat{a}_x \left(-E_0 \right) e^{-j10(y-z)};$$

$$(4 \text{ points})$$

(4)The magnetic field intensity of the reflected wave \tilde{H}_i (phasor form)

$$\begin{split} \tilde{H}_r &= \frac{1}{\eta_0} \hat{a}_r \times \tilde{E}_r \\ &= \frac{1}{\eta_0} \left(\sin \vartheta_r \hat{a}_y - \cos \vartheta_r \hat{a}_z \right) \times \left(\hat{a}_z \left(-E_0 \right) e^{-j10(y-z)} \right) \\ &= \frac{1}{120\pi} \left(\frac{\sqrt{2}}{2} \hat{a}_y - \frac{\sqrt{2}}{2} \hat{a}_z \right) \times \left(\hat{a}_x \left(-E_0 \right) e^{-j10(y-z)} \right) \quad (4points) \\ &= \frac{\sqrt{2}}{204\pi} \left(\hat{a}_z + \hat{a}_y \right) E_0 e^{-j10(y-z)} \end{split}$$

Problem 6 (15 points)

The phase constant of the TE₁₀ mode of an air-filled wave-guide with b=1cm is 102.65rad/m. If the operating frequency of the wave-guide is 12GHz, and the only mode of propagation is TE₁₀, calculate the length a of the wave-guide

$$\beta_{10} = \beta \sqrt{1 - (\frac{f_{e10}}{f})^2} = \omega \sqrt{\mu_0 \varepsilon_0} = 251.44 (rad/m)$$
 (5 points)
$$102.65 = 251.44 \sqrt{1 - (\frac{f_{e10}}{12 \times 10^9})^2}; f_{e10} = 10.95$$
 GHz

$$f_{c10} = \frac{u_p}{2a}$$
; (5 points)

$$a = \frac{u_p}{2f_{ato}} = 0.0136$$
 m; $a = 1.36$ cm (5points)

Problem 7 (15 points)

The magnetic field intensity in the far zone from an antenna is given in terms of its maximum

input current
$$I_n$$
 as $\bar{H}_r = \frac{1}{120\pi} \frac{15}{r} I_0$,

(1) Obtain the corresponding expression for the electric field

$$\begin{split} \bar{H}_{\phi} &= \frac{1}{120\pi} \frac{15}{r} I_{\text{u}}; \quad \bar{E}_{\phi} / \bar{H}_{\phi} = 120\pi \\ \therefore \bar{E}_{\phi} &= \frac{15}{r} I_{\text{u}} \end{split} \tag{5 points}$$

(2) What is the total power radiated by the antenna P_r

$$\bar{S}_{av} = \hat{a}_r \frac{E_o^2}{2\eta_0} = \hat{a}_r \frac{E_o^2}{240\pi} = \hat{a}_r \frac{15*15I_0^2}{240\pi r^2} = \hat{a}_r \frac{15I_0^2}{16\pi r^2}$$

$$P_r = 4\pi r^2 * |\bar{S}_{av}| = \frac{15}{4}I_0^2$$
(5 points)

(3) What is the radiation resistance R_{r}

$$P_r = \frac{15}{4}I_0^2 = \frac{1}{2}R_rI_0^2$$
(5 points)
 $R_t = \frac{15}{2}$

重庆邮电大学 2005—2006 学年第 一 学期 《FIELD AND WAVE ELECTROMAGNETICS》考试题 (A 卷)

						(A:	(金)						
年级		题号			Ξ	四	五	六	七	八	ル	+	总分
•	; ;	分数	and the second	and and the state of the state		AND THE PROPERTY OF THE PROPER							
		评卷		Perhamble union of CLUCK VANDAGE									
**************************************	· 密	a _x , a _y ,	az表		卡尔	系的差	、矢量	, 黑	.斜体	字符	表示: ·	约	总分
	i i i	Problem	1 (E	ach c	uesti	on wit	h 1 po	oint, to	otal: 1	0 poi	nts)		
	1	Decide v	vheth	er the	e follo	wing	state	ments	are	true c	or fals	e.	
		Write "T"	for to	ue an	id "F"	for fal	se					v	
班级	# # * *	Carton Company	,		***						-		
	封	(2)	The	curi c	of the	gra			·				
姓名	*	(3)	f D i	s the	elec	tric fl	ux de	ensity,	. ∇- D	will	alway	/S	
;	* • • • • • • • • • • • • • • • • • • •		epres	sent ti	ne fre	e chai	rge de	ensity	in an	y med	lium.		•
	. 线			-									
学 号:	* * * * * * * * * * * * * * * * * * * *	` ′					ity of	f sim	ple n	nediui	m is	а	
•	* * * * * * * * * * * * * * * * * * * *								will s	upply	energ	iy	
	姓名:	·	安 ・	安 ・ 大 ・ 大 ・ 大 ・ 大 ・ 大 ・ 大 ・ 大 ・ 大	安地 で	大数 で	年级:	要号 ー 二 三 四 五 分数 评卷 人 考生须知: ax, ay, az表示笛卡尔系的基矢量 物理量为矢量。 Problem 1 (Each question with 1 por Decide whether the following states Write "T" for true and "F" for false (1) "V-" and "V×" should be operator followed with a dot operator followed with a dot (2) The curl of the gradient identically zero 姓名: (3) If D is the electric flux decrepresent the free charge decrepresent the free	要場 一 二 三 四 五 六 分数	要している。 一世の表示のでは、 を表生の知: を表生の知: を表生の知: を表生の知: を表生の知: 「Problem 1 (Each question with 1 point, total: 1 Decide whether the following statements are Write "T" for true and "F" for false (1) "V" and "VX" should be regarded operator followed with a dot or cross properator followed	要号 ー 二 三 四 五 六 七 八 分数	要し、	要号 ー 二 三 四 五 六 七 八 九 十 分数

,		Single-conductor			1	· · - L
ŧ	71	Single conductor	DADIIIDAVEIL	are dicharcive	tranemiecion c	vetame
	5 E	SHUIE-COHUUGIO	Waveuulues	are maneraise	HallalliaalOH a	VOLUTIO.

- (8) The normal component of current densities J has to be discontinuous across the boundary between two different media under electrostatic conditions. _____
- (9) The phase velocity and the wave impedance for TEM waves are independent of the frequency of the waves.
- (10) TM₁₁ has the lowest cutoff frequency of all TM modes in a rectangular waveguide. _____

Problem 2 (15 points)

The upper and lower conducting plates of a large parallel-plate capacitor are separated by a distance d and maintained at potentials V_0 and 0 respectively, as shown in Fig.1. A dielectric slab of dielectric constant ε_r and uniform thickness placed 0.8d is over the lower plate. Assuming negligible fringing effect, determine (a) the potential and electric field distribution in the dielectric slab, (b) the potential and electric field distribution in the air space between the dielectric slab and the upper plate. (c) the surface charge densities on the upper and lower plates.

Fig.1

Fig.2

第1页,共3页

Problem 3 (15 points)

Determine the mutual inductance between a very long straight wire and a conducting rectangular loop, as shown in Fig.2.

Problem 4 (15 points)

The electric field intensity of a uniform plane wave in free space is given by

$$E = a_x 94.25\cos(\omega t + 6z)$$
 (V/m)

Determine (a) the velocity of propagation, (b) the wave frequency, (c) the wavelength, (d) the magnetic field intensity, and (e) the average power density in the medium.

Problem 5 (15 points)

A plane wave represented by the phasor

$$E_i(z) = 4 (a_x + ja_y) e^{-j\beta z}$$
 (V/m)

impinges normally on a perfectly conducting wall at z = 0.

Determine (a) the polarization of the reflected wave. (b) the induced current on the conducting wall. (c) the instantaneous expression of the total electric field intensity based on a cosine time reference.

专业

级

封

ij

. 1.

学号.

Problem 6 (15 points)

An air-filled waveguide operates at 7GHz. The dimensions of the waveguide are a = 3 cm and b = 2 cm. Calculate (a) the cutoff frequency of TE_{10} , (b) the phase constant of TE_{10} , (c) the wave impedance of TE_{10} , (d) the maximum average power transmitted along the waveguide without causing any breakdown inside the waveguide at the TE_{10} mode. The dielectric strength of air is 30 kV /cm. Use a safety factor of 10.

Problem 7 (15 points)

An electric dipole of length 50 cm is situated in free space. If the maximum value of the current is 25 A and its frequency is 10 MHz, determine (a) the electric and magnetic fields in the far zone, (b) the average power density, and (c) the radiation resistance.

Problem 4

Solution (a) The wave propagates in free space with the speed of light. Because the wave is traveling in the negative 3 direction, the phase velocity is $\bar{u}_p = -3 \times 10^8 \, \bar{u}_s^2 \, m/s$ (3 points)

(b) $\beta_0 = 6 \text{ rad/m}$, so the angular frequency of the wave is

 $\omega = \beta_0 U_p = 6x3 \times 10^8 = 1.8 \times 10^9 \text{ rad/s (3 points)}$

(c) The wavelength of the wave in free space is $\lambda_0 = \frac{2\pi}{\beta_0} = \frac{2\pi}{\delta} = 1.047 \, \text{m} \quad (3 \, \text{points})$

(d) The electric field intensity in phasor form

 $\vec{E} = 94.25 e^{j\beta \hat{x}} \vec{a}_{x} V/m$

The corresponding H field for the backward-

traveling wave, is

 $\frac{1}{H} = -\frac{q_{4.25}}{377} e^{j63} \vec{q}_{x} A/m \quad (3 points)$

07

 $\vec{H}(3,t) = -0.25 \cos(1.8 \times 10^9 t + 63) \vec{q} A/m$

(e) The average power density in the medium is

$$\widehat{\mathcal{P}}_{av} = \frac{1}{2} Re \left[\vec{E} \times \vec{H}^* \right]
= -\frac{1}{2} \times 94.25 \times 0.25 \ \vec{a}_{z} = -11.78 \ \vec{a}_{z} \ W/m^{2}.
(3 Points)$$

Problem 5

Solution: (a)
$$\overrightarrow{E}_{i}(\xi) = 4(\overrightarrow{a}_{x} + j\overrightarrow{a}_{y}) e^{-j\beta} (V/m)$$
 $\overrightarrow{F}_{r}(\xi) = [\overrightarrow{E}_{i}(\xi) = (-1) 4(\overrightarrow{a}_{x} + j\overrightarrow{a}_{y}) e^{j\beta} (V/m)$
 $\overrightarrow{F}_{r}(\xi) = [\overrightarrow{E}_{i}(\xi) = (-1) 4(\overrightarrow{a}_{x} + j\overrightarrow{a}_{y}) e^{j\beta} (V/m)$

the reflected wave is a Right-hand circularly polarized wave. (RHC 5-points).

(b) $\overrightarrow{J}_{s} = (\overrightarrow{a}_{j}) \times \overrightarrow{H}_{l} \Big|_{\xi=0} 3$ points

due to $\overrightarrow{H}_{r}(\xi) = \overrightarrow{a}_{3} \times \frac{1}{l} \overrightarrow{E}_{i} = \frac{1}{l} \overrightarrow{a}_{3} \times 4(\overrightarrow{a}_{3} + j\overrightarrow{a}_{y}) e^{-j\beta}$
 $= \frac{4}{l} (\overrightarrow{a}_{y} - j\overrightarrow{a}_{x}) e^{-j\beta}$
 $\overrightarrow{H}_{r}(\xi) = (-\overrightarrow{a}_{3}) \times \frac{1}{l} \overrightarrow{E}_{r}$
 $= \frac{4}{l} (\overrightarrow{a}_{y} - j\overrightarrow{a}_{x}) e^{-j\beta}$
 $\overrightarrow{H}_{r}(\xi) = (-\overrightarrow{a}_{3}) \times \overrightarrow{H}_{r}(\xi) = \frac{8}{l} (\overrightarrow{a}_{y} - j\overrightarrow{a}_{y}) \cos^{2}\theta$

Hence $\overrightarrow{J}_{s}(\xi) \Big|_{\xi=0} = (-\widehat{a}_{3}) \times \overrightarrow{H}_{r}(\xi)\Big|_{\xi=0} = \frac{8}{l} (\overrightarrow{a}_{x} + j\overrightarrow{a}_{y}) e^{-j\beta}$
 $\overrightarrow{J}_{s}(\xi, t)\Big|_{\xi=0} = Re \Big[\overrightarrow{J}_{s}(\xi) e^{j\omega t}\Big]\Big|_{\xi=0} = Re \Big[\frac{8}{l} (\overrightarrow{a}_{x} + j\overrightarrow{a}_{y}) e^{j\omega t}\Big]$
 $= \frac{1}{l} (\overrightarrow{l}_{x} \cos \omega t - \overrightarrow{l}_{x} \sin \omega t) 2$ points

(1) $\overrightarrow{E}_{r}(y) = \overrightarrow{E}_{s} + \overrightarrow{E}_{r} = 8(\overrightarrow{a}_{y} - j\overrightarrow{a}_{x}) \sin \beta \xi$
 $\overrightarrow{E}_{r}(\xi, t) = Re \Big[\overrightarrow{E}_{r}(\xi) e^{j\omega t}\Big] = 8[\sin \beta t] \widehat{a}_{y} \cos \omega t + \widehat{a}_{y} \sin \omega t$

Where $\gamma_{i} = \sqrt{\frac{l}{l}} i$ is the intrinsic impedance in Medium 1

Problem

Solution (8) The cutoff frequency of TE10 is
$$f_{c10} = \frac{u_P}{2a} = \frac{3 \times 10^8 \text{ m/s}}{2 \times 0.03 \text{ m}} = 5 \times 10^9 \text{ Hz} \quad (6 \text{ points})$$

$$\beta = \frac{\omega}{u_p} \sqrt{1 - (f_c/f)^2} = \frac{2\pi 7 \times 10^6 \text{Hz}}{3 \times 10^8 \text{ m/s}} \sqrt{1 - (5 \times 10^6 / 1 \times 10^6)^2}$$

$$= 102.67 \text{ rad/m} = 32.66 \pi \text{ rad/m} (3 \text{ points})$$

$$Z_{TE_{10}} = \frac{\sqrt{\frac{4}{5}}}{\sqrt{1 - (f_c/f)^2}} = \frac{120\pi}{\sqrt{1 - (5\times10^9/7\times10^9)^2}} = \frac{120\pi}{\sqrt{1 - (5/4)^2}}$$

(d) The existing component of the electric field for TEIC,

$$E_y = E_{ym} \sin(\frac{\pi}{a}x) e^{-j\beta_{10}x}$$

The dielectric strength of Gir is given as 30kV/cm or 3MV/m, so the maximum value of Ey is 0.3 MV/m with a safety factor of 10. Thus

$$E_y = 3 \times 10^5 \sin(\frac{\pi}{4}\chi) e^{-j\beta_{10}3}$$

the maximum average power density is

$$\widehat{\mathcal{T}}_{10} = \frac{1}{2} \left[\frac{(3 \times 10^5)^2 \sin^2(\frac{\pi}{a} x)}{536.68} \right] \widehat{a}_{3}^{2}$$

the maximum power that can be safely transmitted along the waveguide is

Problem 7

Solution Since the dipole is radiating in free space, the fields propagate with the speed of light, $C = 3 \times 10^8 \, \text{m/s}$.

 $\omega = 2\pi f = 6.283 \times 10^7 \text{ rad/s}$

The phase constant: $\beta = \frac{\omega}{c} = 0.209 \text{ rad/m}$. 3 points

from the given data, we have I = 25/0° A and L=0.5m

Substituting in the far-field components, we obtain

 $\overrightarrow{H} = \frac{\int 0.208}{r} \sin\theta \ e^{-j0.2087} \ \overrightarrow{a_0} \ A/m \ 3 \ Points$

 $\overrightarrow{E} = \frac{j78.416}{r} \sin\theta \ e^{-j0.209r} \ \overrightarrow{a_0} \ V/m. \ 3Points$

Thus, the average power density in the radial

direction, is

 $\widehat{\mathcal{T}} = \frac{8.15}{r^2} \sin^2 \theta \widehat{\mathbf{h}} \quad \mathbb{W}/m^2 \qquad 3points$ and the total power crossing a spherical surface

et Y, is

Prod = 68.25 W/m²

Finally, the radiation resistance, is $R_{rad} = \frac{2}{25^2} \times 68.25 = 0.22 \Omega$ 3 fronts

Solution (d)
$$V_0 = V_1 + V_2$$
, $V_1 = E_1 d_1$, $V_2 = E_2 d_2$

At the interface between two media,

We have

$$D_1 = D_2, \Rightarrow \mathcal{E}_1 E_1 = \mathcal{E}_2 E_2 \cdot (1 \text{ points})$$

$$E_2 = \frac{1}{4} \frac{1}{4$$

Problem 3

Solution By cylindrical coordinate, we have

$$\overline{B_i} = \frac{M_0 I_1}{2\pi r} \cdot \overline{R_0} \quad 2 \text{ points}$$

$$\psi = \int_{S} \vec{B}_{l} \cdot d\vec{s}$$

$$= \frac{\mu_0 I_1 R}{2\pi} \int_0^{D+el} \frac{1}{r} dr$$

$$= \frac{\mathcal{U}_0 I_1 R}{2 \pi} \int_{\mathcal{D}} \left(\frac{D+b}{\mathcal{D}} \right) \qquad 6$$

6 Points

Hence the mutual inductance is

$$M_{2l} = \frac{\gamma_{2l}}{I_l} = \frac{\mu_0 \ell}{2\pi} \ln \left(\frac{D + \ell^2}{D} \right) \quad 7 \quad P^{cints}$$

ntS

To \$45

重庆邮电学院 2004—2005 学年第 一 学期 《Field and Wave of Electromegnatics》 考试题

					,	. *						. *			
				版设 ald an										. 300 	
•			,		•	fr =			٠.,					X.	
	年級		題号	T 1		Ξ	四	五	六	七	八	ル	-!-	Asser	
	•		分数												
			评卷				3			`		-			
**************************************	小.			知: 矢量明 考验明							则, 试	老无效	k.		(
1			I. 选择填	经歷:	(毎	應13	∂ , ∮	共10分	分)						
		*	i. Ave	ctor fie	ilci (vo	ector	point	functi	on), A	t, is d	etern	ilned:	to	` :	2.
		1	uddsin on	additi	ve co	nslar	n n	is	pecif	ied a	ALIYW	hurc.			,
	班 樂:		دُ) ٧٧٤		∰¥.	b) 7	rk.		c) b	oth V	.v su	ıd ∜sız	Š.		₹/ 4+•
ij		封 i	2. Und	lor sta	afic (condi	iions	the j	e fie	ld or	î L	perfe	ct ·	.:	
			conducto	surfa	ce is	over	when	e		in '		,	, již		
	一维名:		a) nom	nal to t	lhe sı	urface	.							14 32 4	· (1)
		b) parallel to the surface.												Service Services	(40g)
			3. தகள்ள	ple me	dium	nea	ins							and the second	2) i
Ř.	ALL.	续	a) a lii	ear n	nedju	įmi.	b) a	linea	r, an	d ho	moge	ntou	i.	Steel also	u. 7
	**************************************		medium.	c) a li	near,	home	ogene	0U5, 8	ınd is	otrop	ic me	dium,	, ,	1	aisiie
		•	4. The of	fiect of	f the	magr	etizati	ion ve	etor,	M, is	equi	valen	t ?	The Control line in the Control	s) sin
														Ĭ	

	, are	
a VXIV, and MXQ	a: b) mixta andvikini	6) 7.7.1, 3 m cov(H1-H2)
The electric field	intensity in a region of th	me-venng magnetic film donsi
s ,	* * * * * * * * * * * * * * * * * * * *	
Production control of		• • •
() conservative.	b) nonconservative.	e) vectorial.
5. The term i	s called displacement our	rent density.
1) pa	b) ap/at	0 SE
A uned conductor	r is a medium for which	· :
A good conducto	(40 to 0 to district for years)	and the second s
n) c/m.>>1.	i.) oloskal.	v) er = 05,
		,
The dietance k	flurated which the exacts	tivle of a travelino place way
. The distance δ	through which the amplif	tude of a traveling plant way
The second of the second	A TO STATE OF THE PARTY OF THE SECOND	tude of a traveling plane way the skin depth or the depth o
docreases by a	fector of is called	Consideration of the State of the State of the same of
The second of the second	fector of is called	Consideration of the State of the State of the same of
docreases by a	fector of is called	Consideration of the State of the State of the same of
decreases by a penetration of a	fector of is nating conductor.	the skin depth or the depth of
decreases by a penetration of a	fector of is called conductor.	the skin depth or the depth of
decreases by a penetration of a	fector of is nating conductor.	the skin depth or the depth of
observation of a penetration of a f) exp(-az) Waves that conta	fector of is natined conductor. It) az L) TI wave	the skin depth or the depth of c) cap(-1) f), are c) This wave:
observation of a penetration of a f) exp(-az) Waves that conta	fector of is natined conductor. It) az L) TI wave	the skin depth or the depth of c) cap(-1)
observation of a penetration of a f) exp(-az) Waves that conta	fector of is natined conductor. It) az L) TI wave	the skin depth or the depth of c) cap(-1) f), are c) This wave:
peneuration of a a) exp(-az) Waves that conta a) TEM wave. The angle 6, for absites	fector of is called conductor. b) c.z in a nonzero E _z , but H _z =	the skin depth or the depth of c) cap(-1) f), are c) Thi weve: reflection, as indicated in Fig.1.
peneuration of a a) exp(-az) Waves that conta a) TEM wave. The angle 6, for absites	fector of is natined conductor. It) az L) TI wave	the skin depth or the depth of c) cap(-1) f), are c) This wave:

ij

Fig. 1

II. 计算歷: (每應 15分, 共 90分)

- An emf V is applied across a cylindrical capacitor of length L, as shown in Fig.2. The radii of the inner and outer conductors are z and b respectively. The space between the conductors is filled with two different lossy dislectrics having, respectively, permittivity s₁ and conductivity o₁ in the region a < r < c, and permittivity s₂ and conductivity o₂ in the region c < r < b. Determine
 - ti) the current density in each region.
 - b) the surface charge densities on the inner and outer conductors and at the interface between the two dielectrics.
- Determine the mutual inductance between a very long straight wire and a conducting equilateral trangular loop, as shown in Fig.3

13g 3

The instantaneous expression for the magnetic field intensity of a uniform
plane wave propagating in the +y direction in air is given by

$$FI(y, t) = x_0 \ln 10^{-6} \cos (10^7 m - k_0 v + n/4)$$
 (1.160)

- a) Determine the ke.
- b) Write the complex vector (i.e. the vector phasor) H(y), E(y).
- c) Write the instantaneous expression for E(y, t),
- d) Find the firms average Poynting vector p.
- 4. A right hand circularly polarized plane wave represented by the phasor

$$E(z) = E_0(a_x \cdot ja_y)e^{-j\beta z} \qquad (v/m)$$

propagates in air and impinges normally on a perfectly conducing wall at z=0.

- a) Determine the polarization of the reflected wave.
- b) Find the induced current on the conducting well.

kilki, Kak

c) Obtain the instantaneous expression of the total electric field intensity based on a cosine time reference. be constructed to operate at 3 (GHz) in the dominant mode. We desire the operating frequency to be at least 20% higher than the cutoff frequency of the dominant mode and also at least 20% below the cutoff frequency of the next higherorder mode. a) Given a typical design for the dimensions a and b. b) Calculate for your design β , u_p , λ_p , and the wave impedance at the operating frequency. 6. The current distribution on a center - fed short dipole anienna of length 2h (h << 1) can be approximated by a triangular function

- c) Obtain the instantaneous expression of the total electric field intensity based on a cosine time reference.
- 5. A air-filled axb (b < a < 2b) rectangular waveguide is to be constructed to operate at 3 (GHz) in the dominant mode.

 We desire the operating frequency to be at least 20% higher than the cutoff frequency of the dominant mode and also at least 20% below the cutoff frequency of the next higher-order mode.
 - a) Given a typical design for the dimensions a and b.
 - b) Calculate for your design β , u_p , λ_p , and the wave impedance at the operating frequency.
- 6. The current distribution on a center fed short dipole antenna of length 2h ($h << \lambda$) can be approximated by a triangular function

$$I(z) = I_0 (1 - |z|/b)$$
 (A)

- Find (a) the far-zone electric and magnetic field intensities
- (b) the radiation resistance, and (c) the directivity

Solution, 一题起 1, C. 2.8. 3. C. . 4. G. 上. b. [I.1]. 6. b. 7. a. 8. c. 9. c. 10. a - u, due $V = (R_1 + R_2) I = (R_1 + R_2) J S$ and $J_1 = J_2 = J_3 = S = 2\pi r \cdot L$ where $R_1 = \int_0^c \frac{dr}{\sigma_1(2\pi r.L)}$ $\frac{\rho_2}{\eta_2} = \int_c^b \frac{dr}{\sigma_2 (2\pi r \cdot L)}$ Rith = = 1 ln c + 1 ln b. Therefore $J = \frac{\sqrt{(R_1 + R_2)S}}{(S_1 f_n \frac{b}{c} + S_2 f_n \frac{c}{c})r}$ (4/mr) (8 mests) $\vec{E}_{i} = \hat{i} \frac{J_{i}}{\sigma_{i}} = \hat{i} \frac{\sigma_{2} V}{(\sigma_{i} f_{n} \frac{b}{c} + \sigma_{2} f_{n} \frac{c}{a}) \gamma} \quad (V/m) \quad (a < r < c)$ $\frac{\overline{f}_{2}}{f_{2}} = \hat{f} \frac{\overline{J}_{2}}{\overline{\sigma_{2}}} = \hat{f} \frac{\overline{\sigma_{1}} V}{(\overline{\sigma_{1}} l_{n} l_{n} + \overline{\sigma_{2}} l_{n} l_{n})} (c < r < b)$ $\frac{\overline{f}_{2}}{f_{2}} = \hat{f} \frac{\overline{J}_{2}}{(\overline{\sigma_{1}} l_{n} l_{n} + \overline{\sigma_{2}} l_{n} l_{n})} (c < r < b)$ $\frac{\overline{f}_{2}}{f_{2}} = \hat{f} \frac{\overline{J}_{2}}{(\overline{\sigma_{1}} l_{n} l_{n} l_{n} + \overline{\sigma_{2}} l_{n} l_{n})} (c < r < b)$ $\frac{\overline{f}_{2}}{f_{2}} = \hat{f} \frac{\overline{J}_{2}}{(\overline{\sigma_{1}} l_{n} l_{n} l_{n} + \overline{\sigma_{2}} l_{n} l_{n})} (c < r < b)$ $\frac{\overline{f}_{2}}{f_{2}} = \hat{f} \frac{\overline{J}_{2}}{(\overline{\sigma_{1}} l_{n} l_{n} l_{n} + \overline{\sigma_{2}} l_{n} l_{n} l_{n})} (c < r < b)$ $\frac{\overline{f}_{2}}{f_{2}} = \hat{f} \frac{\overline{J}_{2}}{(\overline{\sigma_{1}} l_{n} l$ $\begin{aligned}
\alpha f & r = b & \int_{Sb} = \hat{n}_{1} \cdot \vec{D}_{2} \Big|_{r=b} = -\hat{r} \cdot (\hat{r} \cdot \xi_{2} \xi_{2}) \Big|_{r=b} = -\frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{b}{c} + \sigma_{2} \int_{R} \frac{c}{c}) r} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
\alpha f & r = c & \int_{Sc} = (D_{2} - D_{1}) \Big|_{r=c} = \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{b}{c} + \sigma_{2} \int_{R} \frac{c}{c}) r} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
r = c & \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{b}{c} + \sigma_{2} \int_{R} \frac{c}{c}) r} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
r = c & \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{b}{c} + \sigma_{2} \int_{R} \frac{c}{c}) r} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
r = c & \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{b}{c} + \sigma_{2} \int_{R} \frac{c}{c}) r} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
r = c & \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{b}{c} + \sigma_{2} \int_{R} \frac{c}{c}) r} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
r = c & \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{b}{c} + \sigma_{2} \int_{R} \frac{c}{c}) r} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
r = c & \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{b}{c} + \sigma_{2} \int_{R} \frac{c}{c}) r} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
r = c & \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{b}{c} + \sigma_{2} \int_{R} \frac{c}{c}) r} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
r = c & \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{b}{c} + \sigma_{2} \int_{R} \frac{c}{c}) r} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
r = c & \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{b}{c} + \sigma_{2} \int_{R} \frac{c}{c}) r} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
r = c & \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{b}{c} + \sigma_{2} \int_{R} \frac{c}{c} dr} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
r = c & \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{c}{c}) r} & (\frac{c_{2} \sigma_{2} k_{2}}{c_{2}}) \\
r = c & \frac{\xi_{2} \sigma_{1} V}{(\sigma_{1} \int_{R} \frac{c}{c}) r} & \frac{c_{2} \sigma_{2} V}{(\sigma_{1} \int_{R} \frac{c}{c}) r} & \frac{c_{2} \sigma_{2} k_{2}}{c_{2}} & \frac{c_{2} \sigma_$ $=\frac{1}{(\sigma_1 \ln \frac{b}{c} + \sigma_2 \ln \frac{c}{a})c} \qquad (c/m^2)$ is due to $\vec{J} = \hat{f} \vec{J} (2\pi r) L \left(A/m^2 \right)$. $E_{ij} = J_r/\sigma_i = I/(2\pi r) L_{\sigma_i} \qquad (a < r < c)$ $E_{2r} = \frac{7r}{5_2} = \frac{1}{(2\pi r).1.5_2}$ (v/m) (C< 15b)

2 47 - 1 - 4 - 4 - 4 - 5 / V for the contract of 2 more ()

$$V = -\int_{b}^{c} \vec{E} \cdot d\vec{l} - \int_{c}^{a} \vec{E} \cdot d\vec{l} = -\int_{b}^{c} \hat{r} E_{r_{2}} (r^{2} dr) - \int_{c}^{a} \hat{r} E_{r_{1}} (r^{2} dr)$$

$$= -\int_{b}^{c} E_{r_{2}} dr - \int_{c}^{a} E_{r_{1}} dr = -\int_{b}^{a} \frac{1}{(2\pi r)^{2} \cdot \sigma_{2}} dr - \int_{c}^{a} \frac{1}{(2\pi r)^{2} \cdot \sigma_{1}} dr$$

$$= \frac{1}{2\pi L \sigma_{2}} \int_{a}^{a} \frac{b}{c} + \frac{1}{2\pi L \sigma_{1}} \int_{a}^{a} \frac{c}{a} \qquad (V)$$

Hence
$$\vec{l} = \frac{2\pi\sigma_1\sigma_2 V L}{\sigma_1 f_n f_n + \sigma_2 f_n f_n} \qquad (A)$$

$$\vec{E}_1 = \hat{I} \frac{1}{(\pi \pi) \cdot L \cdot \sigma_1} = \frac{\sigma_2 V}{(\sigma_1 f_n f_n + \sigma_2 f_n f_n)} \qquad (Q < I < C)$$

$$\widetilde{E}_{2} = \widehat{I} \frac{1}{(2\pi r) \cdot L \sigma_{2}} = \frac{\sigma_{1} V}{(\sigma_{1} I_{h} \frac{b}{c} + \sigma_{2} I_{h} \frac{c}{a}) r} \frac{(V/m) (c < r < b)}{(v/m) (c < r < b)}$$
b) at $r = a$ $f_{5a} = \widehat{n}_{1} \cdot \widehat{D}_{1} \Big|_{r=a} = \widehat{r} \cdot (\widehat{r} \cdot \mathcal{E}_{1} \mathcal{E}_{1}) \Big|_{r=a} = \frac{\varepsilon_{1} \sigma_{2} V}{(\overline{\sigma}_{1} I_{h} \frac{b}{c} + \overline{\sigma}_{2} I_{h} \frac{c}{a}) a} \frac{(V/m) (c < r < b)}{(\sigma_{1} I_{h} \frac{b}{c} + \overline{\sigma}_{2} I_{h} \frac{c}{a}) a}$

$$\alpha f r = b \quad \int_{Sb} = \widehat{n}_{1} \cdot \widehat{D}_{2} \Big|_{r=b} = \widehat{r} \cdot (\widehat{r} \cdot \mathcal{E}_{1} \mathcal{E}_{2}) \Big|_{r=b} = \underbrace{\varepsilon_{2} \overline{\sigma}_{1} V}_{(\overline{\sigma}_{1} I_{h} \frac{b}{c} + \overline{\sigma}_{2} I_{h} \frac{c}{a}) b}_{(\overline{\sigma}_{1} I_{h} \frac{b}{c} + \overline{\sigma}_{2} I_{h} \frac{c}{a}) c} (C/m^{2})$$

$$\alpha f r = b \quad \int_{Sb} = \widehat{n}_{1} \cdot \widehat{D}_{2} \Big|_{r=b} = \widehat{r} \cdot (\widehat{r} \cdot \mathcal{E}_{1} \mathcal{E}_{2}) \Big|_{r=b} = \underbrace{\varepsilon_{2} \overline{\sigma}_{1} V}_{(\overline{\sigma}_{1} I_{h} \frac{b}{c} + \overline{\sigma}_{2} I_{h} \frac{c}{a}) b}_{(\overline{\sigma}_{1} I_{h} \frac{b}{c} + \overline{\sigma}_{2} I_{h} \frac{c}{a}) c} (C/m^{2})$$

$$\alpha f r = b \quad \int_{Sb} = \widehat{n}_{1} \cdot \widehat{D}_{2} \Big|_{r=b} = \widehat{r} \cdot (\widehat{r} \cdot \mathcal{E}_{1} \mathcal{E}_{2}) \Big|_{r=b} = \underbrace{\varepsilon_{2} \overline{\sigma}_{1} V}_{(\overline{\sigma}_{1} I_{h} \frac{b}{c} + \overline{\sigma}_{2} I_{h} \frac{c}{a}) b}_{(\overline{\sigma}_{1} I_{h} \frac{b}{c} + \overline{\sigma}_{2} I_{h} \frac{c}{a}) c} (C/m^{2})$$

$$\alpha f r = b \quad \int_{Sb} = \widehat{n}_{1} \cdot \widehat{D}_{2} \Big|_{r=b} = \widehat{r} \cdot (\widehat{r} \cdot \mathcal{E}_{1} \mathcal{E}_{2}) \Big|_{r=b} = \underbrace{\varepsilon_{2} \overline{\sigma}_{1} V}_{(\overline{\sigma}_{1} I_{h} \frac{b}{c} + \overline{\sigma}_{2} I_{h} \frac{c}{a}) b}_{(\overline{\sigma}_{1} I_{h} \frac{b}{c} + \overline{\sigma}_{2} I_{h} \frac{c}{a}) b}_{(\overline{\sigma}_{1} I_{h} \frac{c}{a})} C$$

$$= \underbrace{(\varepsilon_{1} \mathcal{F}_{1} - \varepsilon_{1} \mathcal{F}_{2})}_{(\overline{\sigma}_{1} I_{h} \frac{c}{a}) c}_{(\overline{\sigma}_{1} I_{h} \frac{c}{a}) c}_{(\overline{\sigma}$$

Assume the innerse conductor rea (a < c < b) carry uniform

density t, and the interface between mediums, r=c carry

charge density to using Crayss's Law, we have

b

$$\vec{E}_{1} = I \frac{1}{2\pi E_{1}} I$$

$$\vec{E}_{2} = I \frac{1}{2\pi E_{1}} I$$

$$\vec{E}_{3} = I \frac{1}{2\pi E_{1}} I$$

$$\vec{E}_{4} = I \frac{1}{2\pi E_{1}} I$$

$$\vec{E}_{5} = I \frac{1}{2\pi E_{1}} I$$

$$\vec{E}_{1} = I \frac{1}{2\pi E_{1}} I$$

$$\vec{E}_{2} = I \frac{1}{2\pi E_{1}} I$$

$$\vec{E}_{3} = I \frac{1}{2\pi E_{2}} I$$

$$\vec{E}_{4} = I \frac{1}{2\pi E_{1}} I$$

$$\vec{E}_{5} = I \frac{1}{2\pi E_{1}} I$$

$$\vec{E}_{6} = I \frac{1}{2\pi E_{1}} I$$

$$\vec{E}_{7} = I \frac{1}{2\pi E_{1}} I$$

$$\vec{E$$

$$de to \vec{B} = \vec{q} \frac{M_{1}}{J_{1}}$$

$$de to \vec{B} = \vec{q} \frac{M_{1}}{J_{2}}$$

$$de to \vec{B$$

$$\frac{\Pi}{A} = \frac{1}{4}$$
(1) $E_{r}(3) = rE_{r}(3) = (-1)E_{0}(\hat{x} - j\hat{y}) e^{j\beta}$

The reflected wave is a left-hand circularly polarised wave.

(5 marks)

$$\frac{1}{4} = \frac{1}{4}$$
(6 marks)

$$\frac{1}{4} = \frac{1}{4}$$
(9 marks)

$$\frac{1}{4} = \frac{1}{4}$$
(1) $\frac{1}{4} = \frac{1}{4}$
(2) $\frac{1}{4} = \frac{1}{4}$
(2) $\frac{1}{4} = \frac{1}{4}$
(3) $\frac{1}{4} = \frac{1}{4}$
(4) $\frac{1}{4} = \frac{1}{4}$
(6) $\frac{1}{4} = \frac{1}{4}$
(6) $\frac{1}{4} = \frac{1}{4}$
(7) $\frac{1}{4} = \frac{1}{4}$
(8) $\frac{1}{4} = \frac{1}{4}$
(9) $\frac{1}{4} = \frac{1}{4}$
(9) $\frac{1}{4} = \frac{1}{4}$
(9) $\frac{1}{4} = \frac{1}{4}$
(1) $\frac{1}{4} = \frac{1}{4}$
(1) $\frac{1}{4} = \frac{1}{4}$
(1) $\frac{1}{4} = \frac{1}{4}$
(1) $\frac{1}{4} = \frac{1}{4}$
(2) $\frac{1}{4} = \frac{1}{4}$
(3) $\frac{1}{4} = \frac{1}{4}$
(4) $\frac{1}{4} = \frac{1}{4}$
(5) $\frac{1}{4} = \frac{1}{4}$
(7) $\frac{1}{4} = \frac{1}{4}$
(8) $\frac{1}{4} = \frac{1}{4}$
(9) $\frac{1}{4} = \frac{1}{4}$
(1) $\frac{1}{4} = \frac{1}{4}$
(1) $\frac{1}{4} = \frac{1}{4}$
(1) $\frac{1}{4} = \frac{1}{4}$
(2) $\frac{1}{4} = \frac{1}{4}$
(3) $\frac{1}{4} = \frac{1}{4}$
(4) $\frac{1}{4} = \frac{1}{4}$
(5) $\frac{1}{4} = \frac{1}{4}$
(7) $\frac{1}{4} = \frac{1}{4}$
(8) $\frac{1}{4} = \frac{1}{4}$
(9) $\frac{1}{4} = \frac{1}{4}$
(1) $\frac{1}{4} = \frac{1}{4}$
(1