Activité 6.1 - Propriétés de l'eau

Objectifs:

- Comprendre la modélisation de de la dissolution des composés ioniques.
- Comprendre le lien entre présence d'ions et conductivité électrique.

Contexte: L'eau sous forme liquide est un très bon solvant pour les entités chimiques polaires ou ioniques. Les solutions aqueuses avec des espèces chimiques ioniques sont de bonnes conductrices électriques.

→ Comment expliquer les propriétés des solutions aqueuses?

Document 1 – La molécule H₂O

L'eau est une molécule **polaire**. C'est comme si elle était composé de charges séparées δ^- et δ^+ (δ est un nombre compris entre 0 et 1).

Document 2 - Un peu de vocabulaire

- Liaison ionique : liaison entre un cation (positif) et un anion (négatif).
- Solvatation : dissolution d'une espèce ionique dans le solvant.
- Solubilité : masse maximale d'une espèce chimique que l'on peut dissoudre dans un liquide, exprimée en $g \cdot L^{-1}$.

Document 3 - Solubilité des espèces ioniques dans l'eau

Une espèce ionique et composé d'un **cation** et d'un **anion**, relié par une **liaison ionique**. En contact avec de l'eau liquide, l'espèce ionique se sépare en deux espèces chimiques. Les anions et les cations sont entourés par des molécules d'eau à cause de leur polarité, les charges + sont attirées par les charges -.

Cette modélisation s'appelle la **solvatation**. Ce modèle permet d'expliquer la **solubilité** de certaines espèces ioniques dans l'eau.

Interaction entre les molécules d'eau et les ions d'une espèce ionique, le sel Na⁺Cl⁻.

1	L -	_	Ε	Cx;	pl	iq	ue	er	a	VE	ec	V	OS	S :	m	Ю	ts	3]	la	S	Ю	lu	ιb	il	lit	é	C	le	es	ϵ	es]	p	èc	е	S	ic	n	iq	Įu	es	3 (da	n	S	l'e	ea	u							
 							•			•						•		•				•			•			•		•	•		•		•		•				•			•					 	•	 	 		
 							•			•								•				•						•			•				•														 		 	 	•	
 							•											•				•								•	•				•														 		 	 		

Document 4 - Lien entre conductivité et ions dissous

Les solutions aqueuses avec des espèces ioniques sont de bons conducteurs électriques.

La conductivité électrique σ (sigma) se mesure avec un conductimètre. Son unité est le siemens par mètre $\mathbf{S} \cdot \mathbf{m}^{-1}$.

La conductivité électrique dépend de la composition de la solution aqueuse.

Concentration en ion (mg/L)	Ca ⁺	SO_4^{2-}	Mg ²⁺	HCO ₃	K ⁺	Cl-	Conductivité σ à 25 °C
Eau distillée	0	0	0	0	0	0	0
Eau 1	202	306	36	402	0	0	0,1567
Eau 2	78	10	24	357	1	4,5	0,0640
Eau saturée en KCl	0	0	0	0	391	355	0,1502

2 — Donner le nom de la grandeur Donner aussi l'unité et l'appareil qui per		r si une solution conduit bien l'électricit se grandeur.
3 – Expliquer la conductivité des	4 solutions présentée	es dans le tableau du document 4.
Document 5 – Eau déminéralisée	ou distillée	
	Eau déminéralisée	Eau distillée
Description	Eau sans ions	Eau pure avec quelques gaz dissous
Utilisation	Chimie, ménage	Chimie, médical
Conductivité	faible	faible
Micro-organismes (dont bactéries)	Présents	Absents

	1 1	la différences				
	1 1	pourquoi on	•			