INFORMATICS INSTITUTE OF TECHNOLOGY

In Collaboration with

ROBERT GORDON UNIVERSITY ABERDEEN

Disease and Pest detection of Crops and Agricultural community forum using image processing techniques

Group 22 literature review document by

Runisi Nikoya Samaranayake – 20221247

Damitha Udara Weerasinghe – 20210669

Seth Nimthaka Rajarathne – 20211344

Yasini Mandara Karunanayake - 20221151

Supervised by

Ms. Kalhari Walawage

Submitted in partial fulfilment of the requirements for the BEng/BSc in <Insert the nomenclature of the degree> degree at the Robert Gordon University.

October 2023

© The copyright for this project and all its associated products resides with Informatics
Institute of Technology

CONTENTS

NTRODUCTION	1
RELEVANT WORK	2
DISEASE AND PESTS' DETECTION OF CROPS	2
COMMUNITY FORUM	5
COMPARISON TABLE OF RELEVANT WORK	<i>6</i>
SUMMARY	13
REFERENCES	14

INTRODUCTION

In recent years, the agricultural industry has faced a major challenge - the rising threat of diseases and pests to our crops. This menace- has grown significantly, putting food security and agricultural sustainability at risk. Our project aims to tackle this issue- by utilizing advanced image processing techniques. We envision a future-where our innovative approach re-volutionizes the detection of crop diseases and pests. Through this endeavour, we strive to safe-guard our agricultural resources and ensure- a sustainable future for everyone involved in farming.

RELEVANT WORK

DISEASE AND PESTS' DETECTION OF CROPS

There have been several researches done to identify diseases and pests of crops. With the automated leaf and pest detection. (Ngugi, Abelwahab and Abo-Zahhad, 2020) which tells about the development of efficient and accurate methods for plant disease recognition using Image Processing Technologies (IPTs) and Deep Learning Techniques.

Have used Support Vector Machines (SVM), Random Forest and Artificial Neural Networks (<u>Domingues</u>, <u>Brandão and Ferreira</u>, <u>2022</u>) to automatically detect, identify, and predict pests and diseases, ultimately contributing to the goals of smart farming, precision agriculture, reduced pesticide usage, and improved crop quality and production.

Another research was conducted by (Miguel Ángel Rodríguez-García, García-Sánchez and Valencia-García, 2021). This work presents a novel solution that combines language technology and semantic concepts to assess the likelihood of specific pests based on reported symptoms, eliminating the need for human experts. The paper then showed an accuracy of 98.8% was obtained by using a natural language processing model to automatically populate the ontology from unstructured documents, also A rule-based model to classify symptoms into crop pests and diseases and developed their own ontology model called CropPestO to represent the crop pest domain and integrate data from heterogeneous sources.

This paper (Liu and Wang, 2021) summarizes recent research in plant disease and pest detection based on deep learning, a branch of artificial intelligence that can automatically learn features from data and uses convolutional Neural networks for classifying plant diseases and pest images. The authors utilized mature network structures prevalent in computer vision. They highlight the challenges of small dataset sizes and propose solutions such as data amplification, transfer learning, and designing reasonable network structures.

This paper (Francisco et al., 2023) which aims to find studies on automating processes in detecting, identifying, and classifying diseases and pests in agricultural crops. The review found that Convolutional Neural Networks (CNN) models were the most commonly used, with 54.2% of the studies referring to them and others were used to train the datasets, classify the diseases and pests.

The paper (<u>Tiwari and Richmond, 2019</u>) uses Deep Neural Networks and Transfer Learning techniques for the identification of pests and diseases in tea leaves. They use deep learning framework(Resnet34) retrained on a dataset of tea leaf images and Convolutional Neural Network(CaffeNet) develop an Image Classification model which has achieved an overall accuracy of 98.4%.

The paper (Suresh et al., 2020) by employs a Convolutional Neural Network (CNN) for image classification and uses TensorFlow Lite (TFLite) for model deployment on mobile devices. The research problem in this paper is to develop an automatic and accurate plant disease detection system using image processing techniques.

The paper (Lathusha Sritharan, Manikavasagar Anjanan and Gamage, 2022) by uses image processing and deep learning techniques to detect and classify plant diseases and suggest pesticides and management methods. The authors have created an image recognition system based on multiple linear regression, and uses Convolutional Neural Networks (CNN) to extract features from plant leaf images and classify them, and an accuracy of 98% obtained detecting plant diseases.

The paper (Pest Detection using Image Processing, 2019) proposes a method to detect pests on plant leaves using image processing and machine learning techniques such as nucleus counter to classify and count the pests. The paper claims that their method can help farmers to detect the pests early and take appropriate measures to protect the crops.

The paper by (Mohammed and Yusoff, 2023) have reviewed and compared various techniques and algorithms that have been used in previous studies, such as k-means clustering, SVM, ANN, CNN, etc, and in this paper it proves that using CNN are superior to other methods in terms of accuracy and performance. The paper aims to help researchers and farmers in improving crop production and quality by using image processing techniques.

In this research paper (Miranda, Gerardo and Tanguilig III, 2014) discusses an automated pest detection and extraction system for rice fields, which uses image processing techniques to estimate pest densities. The system uses background modeling, median filtering, and coordinate scanning to detect and extract insect pests. The system aims to help crop technicians and farmers monitor and manage pest infestations, reducing human effort and errors.

The paper (Xin and Wang, 2021) The paper presents a DCNN-G model for image recognition of crop diseases and insect pests, combining DCNN and Google data analysis. The model achieves high accuracy, speed, and cost, while also addressing data imbalance and image degradation. The improved network YOLO-V4 is used for verification.

The paper (Pooja, Das and Kanchana, 2017) uses Support Vector Machines (SVM) as the classifier to identify and label the diseases based on the extracted features. the K-Means technique is used for image segmentation. The paper uses various image processing techniques such as K-Means Clustering, Otsu's method, and boundary and spot detection algorithms to refine the injected regions of the plant leaves. The proposed methodology achieves a high recognition rate of 98.67%.

In this research (Itnal et al., 2019) proposes a methodology that uses image processing techniques to detect pests on plant leaves. The authors have applied several models such as Gaussian blur to reduce noise, and using segmentation techniques to separate the pests from the background. The paper claims that the method can help farmers to identify pests early and take preventive measures to avoid crop losses.

This paper (Mohanty, Hughes and Salathé, 2016) This paper explores the use of deep learning for image-based plant disease detection, aiming to identify 14 crop species and 26 diseases from plant leaf images. The authors also test the feasibility of smartphone-assisted diagnosis in real-world scenarios.

The paper (Nagar and Sharma, 2021) The main approach is to use wavelet transformation and oriented FAST and rotated BRIEF (ORB) to extract features from leaf images and classify them as with or without pest. The models they have used are Dynamic Time Warping (DTW) for feature comparison and Support Vector Machine (SVM) for classification.

This paper (Li and Chao, 2021) The study explores the use of semi-supervised few-shot learning for improving plant disease recognition accuracy in images with limited labeled and unlabeled samples. It also discusses adaptive selection of pseudo-labeled samples and verification of the methods' correctness and generalization under various domain splits and parameters.

The paper (Ferentinos, 2018) This paper aims to develop deep learning models for plant disease detection and diagnosis using simple leaves images of healthy and diseased plants. Challenges include the complexity of plant diseases, lack of representative data for training and testing, and the feasibility of the models for practical applications like mobile devices or autonomous agricultural vehicles.

COMMUNITY FORUM

The paper(Sivakumar et al., 2023) proposes an Android application that can help farmers and transport service providers to pool their resources and optimize their logistics and tells by using AI systems it enables early detection of plant diseases and pest's infestations. They have used Natural Language Processing (NLP) for chatbot and machine learning model for virtual assistant.

This paper (Poonkuzhali Ramadoss et al., 2023) The paper proposes an AI chatbot for pest detection and guidance in smart agriculture, along with a deep learning crop disease detection model and a soil sensor-based fertilizer recommendation system. It highlights the potential of AI in meeting food demand and improving farming productivity and sustainability.

This paper (Jain et al., 2022) user-friendly and real-time mobile application that can provide accurate detection and suggestions for rice disease control.

This paper (S, S and C, 2022) design and implement a conversational AI bot for smart agriculture that can assist farmers with various information and advice related to farming and crops.

This paper (Omara et al., 2023) develop a mobile application that can diagnose crop diseases and provide real-time feedback and recommendations to smallholder farmers in sub-Saharan Africa. Uses Convolutional Neural Network (CNN) model trained on cassava leaf images to classify five types of diseases and pests.

In this paper (<u>Lacasta et al., 2018</u>) creates an ontology and a recommendation system for agricultural crop protection, using heterogeneous and unstructured data sources and facilitates the identification of pests and the selection of suitable treatments for different crops and regions.

The paper(V Rajeshram et al., 2023) they proposed in this paper is to develop a deep learning technique for leaf diseases prediction, pest detection and pesticides recommendation using plant leaf images. They have used Deep neural networks for pesticide recommendation and pre-processing of leaf images.

COMPARISON TABLE OF RELEVANT WORK

Research	Author	Year	Dataset	Model used	Metric			
DISEASE AND PESTS' DETECTION								
Recent advances in	Lawrence C.	2021	300 potato leaves drawn	SVM,	Over 98.5%			
image processing	Ngugi a, Moataz		from the Plant Village					
techniques for	Abelwahab a,		dataset					
automated leaf pest	Mohammed Abo-							
and disease	Zahhad							
recognition - A								
review								
Machine Learning for	Tiago Domingues,	2022	Plant Village, Plant Doc,	SVM, Random	Does not			
Detection and	Tomás Brandão		IP102, Flavia and	Forest, ANN	specifically			
Prediction of Crop	and João C.		MalayaKew Leaf.		mention the			
Diseases and Pests: A	Ferreira				accuracy			
Comprehensive								
Survey								
Plant diseases	Jun Liu and	2021	1)Northern Leaf Blight -		does not			
and pests' detection	Xuewei Wang*		maize dataset		report a single			
based on deep			2) IP102: Insect Pest	CNN	accuracy			
learning: a review			Recognition Database:		metric			
			contains 75,000 images					
			of 8 common tomato					
			pests					

TECHNOLOGY						
Algorithms and	Mauro Francisco,	2023	Not mentioned	Not specified but	Accuracy for	
Models for Automatic	Fernando Ribeiro,			CNN commonly	tomato crops -	
Detection and	José Metrôlho and			used	90.3% to	
Classification of	Rogério Dionísio				99.89%	
Diseases and Pests in					88.96% to	
Agricultural Crops: A					98% for citrus	
Systematic Review					crops, and	
					89% to 97%	
					for potato	
					crops.	
Knowledge-Based	Miguel Ángel	2021	The dataset for	A natural	98.8%	
System for Crop Pests	Rodríguez-García,		preliminary validation	language		
and	Francisco García-		contains 212 symptoms,	processing model		
Diseases Recognition	Sánchez, and		linked to 75 pests and	and a rule-based		
	Rafael Valencia-		diseases in three crops:	model		
	García		almond tree, olive tree,			
			and grape vine.			
The development of	N. S. Tiwari, J. W.	2019	Dataset containing 500	Deep learning	The model	
methodology and	Richmond		images	(Resnet34) and	trained on the	
techniques for crop				CNN(CaffeNet)	original data	
disease identification					set achieved	
					accuracy -	
					98.4%.	
					modifying the	
					original	
					dataset –	
					98.3%	
Plant Disease	Mr.V Suresh, D	2020	Plant Village dataset –	CNN	93%	
Detection using Image	Gopinath, M		54,305 images of			
Processing	Hemavarthini, K		diseased and healthy			
	Jayanthan,		plant leaves			
	Mohana Krishnan					

					TECHNOLOGY
Plant Diseases	Lathusha	2022	Used Kaggle dataset –	CNN	98%
Detection Using	Sritharan;		containing more than		
Image Processing	Manikavasagar		20,000 images		
and Suggest Pesticides	Anjanan; Anjalie				
and Managements	Gamage				
Pest Detection using	Shilpa Itnal,	2019	Not specified	machine learning	accuracy not
Image Processing	Mathena Akhila,			techniques such	clearly
	Syed Sha Noorulla			as nucleus	defined
	Khadri, Vanukuri			counter	
	Meher Sreemaiee				
Detection and		2023	Not specified	Not mentioned as	All the
classification of plant	Lele Mohammed,			compared various	techniques
leaf diseases using	Yusliza Yusoff			techniques and	used in
image processing				algorithms that	previous
methods: review				have been used in	studies has
				previous studies	achieved
					accuracy over
					80%
Pest Detection and	Johnny L.	2014	Images were collected but	image processing	Not
Extraction Using	Miranda, Bobby		not specified	techniques –	mentioned
Image Processing	D. Gerardo, and			background	
Techniques	Bartolome T.			modelling.	
	Tanguilig III				
Image Recognition of	Mingyuan Xin and	2021	train 640 data samples,	DCNN-G	95%
Crop Diseases and	Yong Wang		and then using 5000 test	model and	
Insect Pests Based on			samples for testing	YOLO-V4	
Deep Learning					
Identification of Plant	Pooja V, Rahul	2017	For which a training set	SVM	92.4%
Leaf Diseases Using	Das, and Kanchana		of 227 images and a		
Image Processing	V		testing set of 121 images		
Techniques			is constructed. The		
			training and test set		
L	<u> </u>		1	l .	<u> </u>

					TECHNOLOGI
			consists of a combination		
			of 5 diseases and pests		
Pest Detection using	Shilpa Itnal,	2019	Images were acquired but	Gaussian blur	Not
Image Processing	Mathena Akhila,		dataset not mentioned		mentioned
	Syed Sha Noorulla				
	Khadri, Vanukuri				
	Meher Sreemaiee				
Using deep learning	Sharada P.	2016	Used 54,306 images of	CNN	99.35%
for image-based plant	Mohanty, David P.		diseased and healthy leaf		
disease detection	Hughes, and		images.		
	Marcel Salathé				
Pest Detection on Leaf	Harshita Nagar,	2021	Dataset of 47 images – 15	DTW, SVM	Precision
using Image	R.S. Sharma		leaf images and 32 pests		score – 0.96
Processing			images		
Semi-supervised few-	Yang Li1 and	2021	Plant Village Dataset	CNN	Not
shot learning approach	Xuewei Chao				mentioned
for plant diseases					average
recognition					improvement
					by the single
					semi-
					supervised
					method
					is 2.8% , and
					iterative semi-
					supervised
					method
					is 4.6% .

RGU UNIVERSITY ABERDEEN TECHNOLOGY								
Deep learning models	Konstantinos P.	2018	87,848 images - 25	CNN	99.53%			
for plant disease	Ferentinos		different plants having 58	architectures:				
detection and			unique classes including	AlexNet,				
diagnosis			healthy leaves.	AlexNetOWTBn,				
				GoogLeNet,				
				Overfeat, and				
				VGG.				
	I			<u> </u>				
		COMM	IUNITY FORUM					
	T							
Farmer's Friend:	Venkata Reddy P	2022	SASI IOT system,	NLP	96.1%			
Conversational AI	S, Nandini Prasad		Conversational AI					
BoT for Smart	K S, Puttamadappa							
Agriculture	С							
Artificial Intelligence	Dr. S. A.	2023	-	NLP for chatbot	-			
based Agricultural	Sivakumar, Dr. B.			and Machine				
Chatbot and Virtual	Maruthi Shankar,			learning model				
Assistant for Delivery	Ms. B. Anuradha,			for virtual				
of Harvested Crops	Mr. K. A. Karan,			assitant				
	Mr. A. Karthik,							
	Mr. R. Karthik, Dr.							
	Jambi Ratna Raja							
	Kumar7							

					TECHNOLOGY
E - Xpert Bot -	Poonkuzhali	2023	-	Google	-
Guidance and Pest	Ramadoss,			dialogflow	
Detection for Smart	Vasanth Ananth,				
Agriculture using AI	Navaneetha M,				
	Oviya U				
Automatic Rice	Siddhi Jain, Rahul	2022	The dataset consists of	1. CNN -	91%
Disease Detection and	Sahni, Tuneer		762 images	VGG 16	
Assistance Framework	Khargonkar,			2. VGG 19	
Using Deep Learning	Himanshu Gupta,			3. MobileNe	
and a Chatbot	Om Prakash			t	
	Verma, Tarun			4. LeNet5	
	Kumar Sharma,			5. ResNet	
	Tushar Bhardwaj,			50	
	Saurabh Agarwal,			These are to	
	and Hyunsung			identify the	
	Kim			diseases.	
A field-based	Jonathan Omara,	2023	AgroQA dataset	(CNN) model	Not
recommender system	Estefania Talavera,			trained on	mentioned
for crop disease	Daniel Otim, Dan			cassava leaf	
detection using	Turcza,			images to classify	
machine learning	Emmanuel Ofumbi			five types of	
	and Godliver			diseases and	
	Owomugisha			pests.	
Agricultural	Javier Lacasta, F.	2018	Not mentioned	OWL, Spring	Not
recommendation	Javier Lopez-			Batch, Apache	mentioned
system for crop	Pellicer, Borja			Jena	
protection	Espejo-García,				
	Javier Nogueras-				
	L	<u> </u>	l	l	

	Iso, F. Javier				
	Zarazaga-Soria				
Leaf Diseases	Rajeshram V,	2023	Plant Village Dataset	DNN	100%
Prediction Pest	Karthikeyan S,				
Detection and	Prathab S, Rithish				
Pesticides	В				
Recommendation					
using Deep Learning					
Techniques					

SUMMARY

Our core objective is to develop an advanced system for the accurate and timely identification of diseases and posts in agricultural crops. Central to our approach is the utilization of cutting-edge technologies, including Convolutional Neural Networks (CNNs) and computer vision, to create a powerful AI model. This model will be capable of analysing images of crops and pinpointing the presence of diseases or posts with remarkable precision. we plan to establish an agricultural community forum where farmers, researchers, and experts can collaborate and share their insights. This forum will serve as a platform for knowledge exchange, enabling farmers to access valuable information, receive timely advice, and contribute their observations to further improve our disease and posts detection system. Our overarching goal is to provide a comprehensive and accessible tool that empowers farmers to make informed decisions and safeguard their crops effectively.

REFERENCES

 Ngugi, L.C., Abelwahab, M. and Abo-Zahhad, M. (2020). Recent advances in image processing techniques for automated leaf pest and disease recognition – A review. *Information Processing in Agriculture*.

doi:https://doi.org/10.1016/j.inpa.2020.04.004.

- Domingues, T., Brandão, T. and Ferreira, J.C. (2022) 'Machine Learning for Detection and Prediction of Crop Diseases and Pests: A Comprehensive Survey', Agriculture, 12(9), pp. 1350-1376. doi: https://www.mdpi.com/2077-0472/12/9/1350
- 3. Liu, J. and Wang, X. (2021). Plant diseases and pests' detection based on deep learning: a review. Plant Methods, 17(1).

doi:https://doi.org/10.1186/s13007-021-00722-9.

4. Francisco, M., Ribeiro, F., Metrôlho, J. and Dionísio, R. (2023). Algorithms and Models for Automatic Detection and Classification of Diseases and Pests in Agricultural Crops: A Systematic Review. *Applied Sciences*, [online] 13(8), p.4720.

doi:https://doi.org/10.3390/app13084720

5. Miguel Ángel Rodríguez-García, García-SánchezF. and Valencia-García, R. (2021). Knowledge-Based System for Crop Pests and Diseases Recognition. *Electronics*, 10(8), pp.905–905.

doi: https://doi.org/10.3390/electronics10080905

6. Tiwari, N. and Richmond, J. (2019). The development of methodology and techniques for crop disease identification.

doi: https://doi.org/10.1101/702621

7. Suresh, V., Krishnan, M., Hemavarthini, M., Jayanthan, K. and Gopinath, D. (2020). Plant Disease Detection using Image Processing. *International Journal of Engineering Research & Technology*, [online] 9(3). doi: https://doi.org/10.17577/IJERTV9IS030114

- 8. Lathusha Sritharan, Manikavasagar Anjanan and Gamage, A. (2022). Plant Diseases Detection Using Image Processing and Suggest Pesticides and Managements. 2022 IEEE 7th International conference for Convergence in Technology (I2CT).

 doi:https://doi.org/10.1109/i2ct54291.2022.9825082
- 9. Itnal S., Akhila M., Khadri S.S.N. and Sreemaiee, V.M. (2019) 'Pest Detection using Image Processing', International Journal of Innovative Technology and Exploring Engineering, 9(2), pp. 1496-1498. Available at: JITEE.
- Mohammed L. and Yusoff, Y. (2023). DETECTION AND CLASSIFICATION OF PLANT LEAF DISEASES USING DIGTAL IMAGE PROCESSING METHODS: A REVIEW. ASEAN Engineering Journal, 13(1), pp.1–9. doi:https://doi.org/10.11113/aej.v13.17460
- Miranda, J.L., Gerardo, B.D. and Tanguilig III, B.T. (2014). Pest Detection and Extraction Using Image Processing Techniques. *International Journal of Computer and Communication Engineering*, 3(3), pp.189–192. doi:https://doi.org/10.7763/ijcce.2014.v3.317
- 12. Xin, M. and Wang, Y. (2021). Image Recognition of Crop Diseases and Insect Pests Based on Deep Learning. *Wireless Communications and Mobile Computing*, 2021, pp.1–15. doi:https://doi.org/10.1155/2021/5511676
- 13. Pooja, V., Das, R. and Kanchana, V. (2017). *Identification of plant leaf diseases using image processing techniques*. [online] IEEE Xplore. doi:https://doi.org/10.1109/TIAR.2017.8273700.
- 14. Mohanty, S.P., Hughes, D.P. and Salathé, M. (2016). Using Deep Learning for Image-Based Plant Disease Detection. *Frontiers in Plant Science*, 7. doi:https://doi.org/10.3389/fpls.2016.01419
- 15. Nagar H. and Sharma R.S. (2021). Pest Detection on Leaf using Image Processing. 2021 International Conference on Computer Communication and Informatics (ICCCI). IEEE, pp.1-5. doi:https://doi.org/10.1109/ICCCI50826.2021.9402606

- 16. Li, Y. and Chao, X. (2021). Semi-supervised few-shot learning approach for plant diseases recognition. Plant Methods, 17(1).
 - doi:https://doi.org/10.1186/s13007-021-00770-1.
- 17. Ferentinos K.P. (2018). Deep learning models for plant disease detection and diagnosis. *Computers and Electronics in Aggriculture*, 145, pp.311–318. doi:https://doi.org/10.1016/j.compag.2018.01.009.
- 18. Sivakumar, S.A., Shankar, B.M., Anuradha, B., Karan, K.A., Karthik, A., Karthik, R. and Kumar, J.R.R. (2023). Artificial Intelligence based Agricultural Chatbot and Virtual Assistant for Delivery of Harvested Crops. *International Journal of Intelligent Systems and Applications in Engineering*, [online] 11(8s), pp.576–583. Available at: https://ijisae.org/index.php/IJISAE/article/view/3200 [Accessed 11 Oct. 2023].
- 19. Poonkuzhali Ramadoss, V. G. Ritesh Ananth, M Navaneetha and U Oviya (2023). E -Xpert Bot Guidance and Pest Detection for Smart Agriculture using AI. doi:https://doi.org/10.1109/csnt57126.2023.10134588.
- 20. Jain, S., Sahni, R., Tuneer Khargonkar, Gupta, H., Om Prakash Verma, Tarun Kumar Sharma, Bhardwaj, T., Agarwal, S. and Kim, H. (2022). Automatic Rice Disease Detection and Assistance Framework Using Deep Learning and a Chatbot. *Electronics*, 11(14), pp.2110–2110. doi:https://doi.org/10.3390/electronics11142110.
- 21. S V.R.P., S N.P.K. and C P. (2022). Farmer's Friend: Conversational AI BoT for Smart Agriculture. *Journal of Positive School Psychology*, [online] 6(2), pp.2541–2549. Available at: https://journalppw.com/index.php/jpsp/article/view/1833 [Accessed 5 Oct. 2023].
- 22. Omara, J., Talavera, E., Otim, D., Turcza, D., Ofumbi, E. and Godliver Owomugisha (2023). A field-based recommender system for crop disease detection using machine learning. *Frontiers in artificial intelligence*, 6. doi:https://doi.org/10.3389/frai.2023.1010804.
- 23. Lacasta, J., Lopez-Pellicer, F.J., Espejo-García, B., Nogueras-Iso, J. and Zarazaga-Soria, F.J. (2018). Agricultural recommendation system for crop protection. *Computers and Electronics in Agriculture*, 152, pp.82–89. doi:https://doi.org/10.1016/j.compag.2018.06.049.

24. V Rajeshram, B Rithish, Karthikeyan, S. and S Prathab (2023). Leaf Diseases Prediction Pest Detection and Pesticides Recommendation using Deep Learning Techniques. doi:https://doi.org/10.1109/icscds56580.2023.10104652.