Ep. 7: Determinant

LetsSolveMathProblems: Navigating Linear Algebra

Problem 1. Find the determinant of the following real matrices, and try to come up with a geometric reason for why the determinant equals the value you found.

(a)
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 for some fixed $\theta \in \mathbb{R}$.

(Hint: Show that A represents the rotation about the origin by θ radians counter-clockwise.)

$$(b) \ B = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix}$$

$$(d) \ D = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Problem 2. Given a 4×4 real matrix A, Bob applied the following elementary row operations to

$$A \ (in \ order \ from \ (i) \ to \ (v)) \ to \ obtain \ B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 6 & 5 & -10 \\ 0 & 0 & -5 & -20 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

- (i) Scale the first row by 2
- (ii) Add the first row to the second row
- (iii) Switch the first and the fourth rows
- (iv) Add -15 times the first row to the third row
- (v) Scale the third row by 15

Find det B and det A. (Hint: To find det B, try finding det B^T by expanding along its first row.)

1

Problem 3. Let A and B be $n \times n$ matrices (whose entries are elements of a field F). Prove that det(AB) = det(A) det(B).

Hint: Review this episode's proof that A is invertible if and only if $det(A) \neq 0$.

Problem 4. Preferably using determinant, compute the area of the parallelogram with vertices at (-2, -2), (-3, 3), (-1, 2), and (0, -3).

Problem 5. Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
.

(a) (Expanding along second row.) Prove the following equality:

$$\det A = -a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{22} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} - a_{23} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}.$$

(b) (Expanding along third column.) Prove the following equality:

$$\det A = a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{23} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + a_{33} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}.$$

(c) Generalize parts (a) and (b) for the expansion along any kth row or column.

Problem 6. Let $V = F^n$ (where F is a field), where $n < \infty$. Consider a pair $(\bigwedge^n V, \pi)$, in which $\bigwedge^n V$ is a vector space over F and $\pi : V^n \to \bigwedge^n V$ is an alternating multilinear map, such that the following is met:

For any vector space U over F and any alternating multilinear map $\phi: V^n \to U$, there exists the unique linear map $\psi: \bigwedge^n V \to U$ such that $\phi = \psi \circ \pi$. See the following diagram:

$$V^n \xrightarrow{\pi} \bigwedge^n V$$

$$\downarrow^{\phi} \downarrow^{\psi}$$

$$U$$

Show that (F, \det) satisfies the above universal property. Moreover, show that if a pair $(\bigwedge^n V, \pi)$ satisfies the above universal property, then $\bigwedge^n V$ and F are isomorphic.