CT561: Systems Modelling & Simulation

Lecture 6: Information Delays and the Stock Management Structure

Dr. Jim Duggan,

School of Engineering & Informatics

National University of Ireland Galway.

https://github.com/JimDuggan/SDMR

https://twitter.com/ jimduggan

Information Delays

- Many delays exist in channels of information feedback (Sterman 2000)
 - Measurement or perception of a variable
 - Updating beliefs or forecasts
- For example:
 - How many orders might our company receive next week?
 - Can we build this into our stock and flow model?

Structure of information delays

- Cannot be modeled with the same structure as material delays (where material is conserved)
- Simplest information delay and one of the most widely used models of belief adjustment and forecasting is exponential smoothing or adaptive expectations
- Key idea: the belief gradually adjusts to the most recent value of the variable (negative feedback)

Exponential Smoothing

- A raw data sequence is often represented by $\{x_t\}$ beginning at time t = 0.
- The output of the exponential smoothing algorithm is commonly written as $\{s_t\}$, which may be regarded as the best estimate of what the next value of x will be.
- When the sequence of observations begins at time t = 0, the simplest form of exponential smoothing is given by the equations:

$$s_o = x_0$$

 $s_t = \alpha x_t + (1 - \alpha) s_{t-1}$ $0 \le \alpha \le 1$
where α is a smoothing constant

https://en.wikipedia.org/wiki/Exponential smoothing

$$s_o = x_0$$

$$s_t = \alpha x_t + (1 - \alpha) s_{t-1} \quad 0 \le \alpha \le 1$$

In System Dynamics Models

- What can we expect the future value of a key flow to be?
 - Expected quit rate (software company)
 - Expected customer demand (retailer)
- Can exponential smoothing be represented as a stock and flow structure?

Exploring the exponential smoothing equation: *The forecast value is a stock*.

$$s_{t} = \alpha x_{t} + (1 - \alpha) s_{t-1}$$

$$s_{t} = \alpha x_{t} + s_{t-1} - \alpha s_{t-1}$$

$$s_t = s_{t-1} + \alpha (x_t - s_{t-1})$$

Alpha = 0.5

Net Flow = (X - S) * Alpha

S = INTEG(Net Flow, 100)

Results of Stock and Flow

Information Delay Stock and Flow Model (D = $1/\alpha$)

Sterman 2000 Business Dynamics \widehat{X} = INTEGRAL(Change in Perceived Value, $\widehat{X}(0)$) Change in Perceived Value = Error/D = $(X - \widehat{X})/D$

Challenge 6.1

- Construct a stock and flow model of students progressing through a University (one stock).
- Extend this to formulate an expectation of how many students will enrol in the future

The Stock Management Structure

http://www.brightonsbm.com/news/sup ply-chain/

http://supply-chain-data-mgmt.blogspot.ie/2012/10/the-size-of-boeings-supply.html

Rules for managing a stock

- (1) Managers should replace expected losses from the stock (the anchor)
- (2) Managers should <u>reduce the discrepancy</u> between the desired and actual stock (the Adjustment). Acquire:
 - more than the expected losses when the stock is less that the desired,
 - less than the expected losses when there is a surplus.

The Stock and Flow Model

Stock Management: The anchor

Anchor=Expected Demand

Expected Demand= INTEG (CED, 100)

CED=Error/Smoothing Constant

Error=Demand-Expected Demand

Smoothing Constant= 2

Demand=100+Step(100,10)-Step(150,20)

Managers should replace expected losses from the stock

Stock Management: The adjustment

Adjustment = (Target Stock-Stock)/AT

Target Stock=400

AT=1

Stock= INTEG (Orders-Shipments, 400)

Orders=max(0,Anchor+Adjustment)

Managers should reduce the discrepancy between the

Inventory Management: The adjustment

Adjustment=(Target Stock-Stock)/AT

Shipments=min(Demand,Stock)

AT=3

Stock= INTEG (Orders-Shipments, 50)

Demand=10+Step(10,20)

Target Stock=50

Equilibrium

Stock : Current
Target Stock : Current
Anchor : Current
Adjustment : Current

Orders : Current Shipments : Current

Demand = 100 + Step(100,10)

Demand = 100+Step(100,10) - Step(150,20)

Challenge 6.2

For a software organization, the desired number of programmers is one per €100,000 of expected revenue per year. Based on this, construct a stock and flow model of staff recruitment (using the Stock Management Structure) that takes the following into consideration:

There are three kinds of programmer: Rookie, Experienced and Expert.

All hires are done at the Rookie level, and programmers progress from there with an average delay of 50 weeks for rookies, and a delay of 150 weeks before experienced become expert.

On average, there is attrition from each programmer category. This is 5% for Rookies, 2% for Experienced and 1% for Expert.

