Wybrane stałe fizyczne

stała	symbol	wartość	jednostka
prędkość światła w	c	299 792 458	ms ⁻¹
próżni			
przenikalność	μ_{o}	$4\pi \cdot 10^{-7} =$	Hm ⁻¹ =Nm ²
magnetyczna próżni		$12,566\ 370\cdot 10^{-7}$	
przenikalność	\mathcal{E}_{0}	8,854187817 10-12	Fm-1
elektryczna próżni			
impedancja właściwa	$Z=(\mu_o/\epsilon_o)^{1/2}$	376,730 313 461	Ω
próżni			
stała grawitacji	G	6,674 28(67)·10 ⁻¹¹	$m^3kg^{-1}s^{-2}$
ładunek elementarny	e	$1,602176487(40)\ 10^{-19}$	С
masa spoczynkowa	m_e	$9,109\ 382\ 15(45)\cdot 10^{-31}$	kg
elektronu	2	,,	
energia spoczynkowa	$m_e c^2$	8,18710438(41) 10 ⁻¹⁴	J
elektronu		27	
masa spoczynkowa	m_p	1,672621637(83)10 ⁻²⁷	kg
protonu	2		
energia spoczynkowa	$m_p c^2$	938,272 013(23)	MeV
protonu		27	
masa spoczynkowa	m_n	1,674927211(84) 10 ⁻²⁷	kg
neutronu	2		
energia spoczynkowa	$m_n c^2$	939,565 346(23)	MeV
neutronu		=26	1
magneton Bohra	μ_{B}	927,400 915(23)·10 ⁻²⁶	JT ⁻¹
magneton jądrowy	$\mu_{ m N}$	5,050 783 24(13·10 ⁻²⁷	JT ⁻¹ JT ⁻¹ JT ⁻¹
moment magnetyczny	μ_{e}	$-928,476\ 377(23)\cdot 10^{-26}$	JT ⁻¹
elektronu		26	1
moment magnetyczny	$\mu_{ m p}$	1,410606662(37) 10 ⁻²⁶	JT ⁻¹
protonu		11	1
stosunek ładunku do	-e/m _e	-1,758829150(44) 10 ¹¹	Ckg ⁻¹
masy elektronu			
stosunek masy	$\beta = m_e/m_p$	1/1836	
elektronu do masy			
protonu			

Źródło: http://physics.nist.gov/cuu/Constants/