University of South Bohemia

Faculty of Science

Praktika IV

Rutherfordův experiment

Datum: 24.10.2023 Jmeno: Martin Skok

Obor: Fyzika Hodnoceni:

1 Úkoly

Změřte závislost počtu rozptýlených α částic na úhlu rozptylu

2 Pomůcky

Experimentální komora, zdroj α částic ²⁴¹ A_m , pumpa na vysátí vzduchu, hadičky, čítač.

3 Teorie

Rutherfordův experiment potvrdil, že v atomu existuje jádro a vyvrátil Thompsonovu teorii. Rutherfordův rozptyl popisuje interakci mezi nabitými částicemi a jejich rozptylem, většinou se bavíme o alfa částici a jádru. Když alfa částice přiletí k jádru atomu, bude na ní působit coloumbovská síla, která způsobí, že částice bude odpuzováná a rozptýlena pod nějakým úhlem. Ná částici působí i další síly, ale ty zanedbáváme, protože jsou velmi malé. Pro detektor pod určitým úhlem vzhledem k dopadajícímu paprsku je počet částic na jednotku plochy dopadajících na detektor dán Rutherfordovým vzorcem:

$$N(\theta) = \frac{N_i n L Z^2 k^2 e^4}{4r^2 K E^2 sin^4(\frac{\theta}{2})}$$
 (1)

Kde N_i je počet dopadajících alfa částic, n je atom na jednotku objemu v destičce, L je šířka destičky, Z je atomové číslo destičky, e je náboj elektronu, k je coloumbova konstanta, r je vzdálenost mezi detektorem a destičkou, KE je kinetická energie alfa částice, θ je úhel rozptylu

Figure 1: Rutherfordův rozptyl

4 Postup měření

Můj vedoucí praktik zapnul měřák dávkového příkonu Radigem. Do komory jsem vložil vzorek. Měřící komoru jsem připojil k pumpě, aby jsem z ní mohl vysát vzduch a vytvořit vakuum. Ke komoře jsem připojil k čítači, který ukazoval počet detekovaných částic. Zapnul jsem čítač a nastavil ho do polohy N_{A_E} . Rameno se vzorkem jsem otočil do polohy 30° , aby na detektor dopadalo minimální množství částic. Zapnul jsem čítač a postupně zvyšoval diskriminační napětí, kdy šum klesl na nulovou hodnotu. Zaznamenal jsem si hodnotu. To samé jsem udělal pro úhel 0° a zaznamenal jsem si hodnotu. Diskriminační napětí jsem potom nastavil na střed těchto hodnot. Pomocí tlačítka GATE jsem nastavil čas na 100 sekund a měřil jsem četnost částic pro úhly 0° 5° -5° 10° - 10° 15° - 15° . Podobně jsem měřil pro úhly 20° - 20° (200s), 25° - 25° (600s) a 30° - 30° (900s).

Zpracování dat

Tal	hul	ka	1

1 abulka 1			
Úhel θ	počet částic n	čas $t[s]$	četnost částic N
0	1258	100	12.58
5	1339	100	13.39
-5	806	100	8.06
10	975	100	9.75
-10	311	100	3.11
15	437	100	4.37
-15	109	100	1.09
20	203	200	1.015
-20	78	200	0.39
25	186	600	0.31
-25	39	600	0.065
30	104	900	0.116
-30	300	900	0.333

Nje počítáno jako $\frac{n}{t}.$ Data jsem vynesl na graf spolu se křivkou následujícího tvaru, kterou pojmenuju $f(\theta)$

$$f(\theta) = \frac{A}{\sin^4(\frac{\theta - B}{2})}$$

jedná se o rovnici 1, ale všechny konstanty jsem nahradil jednou a pojmenoval jsem ji A.Konstanta B je pak vertikální posun.

Figure 2: Závislost četnosti částic $N(\theta)$ na úhlu θ

6 Diskuse

Při zpracování dat, jsem hledal konstanty A a B od oka. Mohl jsem možná použít jiné matematické metody, jako Lagrangeovi multiplikátory, ale na tuhle úlohu by to bylo až moc zbytečné složité. Když budu vycházet z rovnice 1, znamená to, že naměřená konstanta A je

$$A=\frac{N_i n L Z^2 k^2 e^4}{4 r^2 K E^2}$$

7 Závěr

$$A = 56 \cdot 10^{-6}$$
$$B = 55 \cdot 10^{-3}$$

8 Zdroje

http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html