

DEPARTAMENTO DE QUÍMICA

DEPARTMENT OF CHEMISTRY

	Nº:	
1º Teste de Química Física 2 e	Nome:	
Química Física 2A, 2021/04/19, 18:00 H	Curso: LQA	□ міеQв

1. Seguiu-se (*se o seu número de aluno for par*) a adsorção de N₂ sobre 4,6274 g de dióxido de titânio anatase a 77 K no laboratório de QF. A esta temperatura, a pressão de saturação do nitrogénio é de 1021 mbar.

P/mbar	52	130	208	286	354
n /mmol	160	174	191	212	236

Seguiu-se (*se o seu número de aluno for ímpar*) a adsorção de N₂ sobre 3,8624 g de dióxido de titânio anatase a 77K no laboratório de QF. A esta temperatura, a pressão de saturação do nitrogénio é de 1021 mbar.

P/mbar	47	117	187	257	319
n /mmol	160	174	191	212	236

1.1. Se a área de uma molécula de N₂ for 16,2 Å², qual a área disponível para a adsorção do nitrogénio por grama de adsorvente prevista pela Teoria de B.E.T.?

DEPARTAMENTO DE QUÍMICA

DEPARTMENT OF CHEMISTRY

1.2. Calcule a área disponível para a adsorção do nitrogénio por grama de adsorvente prevista pela Teoria de Langmuir. Continue a usar a área de uma molécula de N_2 como 16,2 \mathring{A}^2 e os valores referentes ao caso de ter n^2 de aluno **par** ou **ímpar**.

1.3 Compare os valores obtidos em 1.1 e 1.2 e dê uma explicação para a semelhança ou diferença entre eles.

DEPARTMENT OF CHEMISTRY

1.4. Sabendo que **o seu número de aluno é par** e considerando que Nm=0,04 mol g⁻¹, e que para se obter 94,2% de cobertura do adsorvente a 79,5 K a pressão é de 240 mbar, calcule a entalpia de adsorção para este processo.

Caso o **seu número de aluno seja ímpar** e considerando que Nm=0,05 mol g⁻¹, sabendo que para se obter 98,9% de cobertura do adsorvente a 80 K é necessário uma pressão de 310 mbar, calcule a entalpia de adsorção para este processo.

2. A partir de 250 cm³ de uma solução-mãe de ácido valérico (C₄H₉COOH) (M=102,13 gmol⁻¹) 0,15 mol dm⁻³, prepararam-se as seguintes soluções aquosas em balões volumétricos de 25 ou 500 ou 10 cm³, e mediu-se a tensão superficial de cada uma delas a 45°C.

	1	2	3
V _{C₄H₉COOH} /cm ³	15	125	1,5
V _{Total} /cm ³	25	500	10
γ/mN m ⁻¹	43,1	60,2	64,9

2.1. Calcule a área superficial ocupada por uma molécula de ácido valérico para uma concentração de 0,06 mol dm⁻³ (*isto se o seu número de aluno for par*) ou de 0,03 mol dm⁻³ (*isto se o seu número de aluno for ímpar*).

DEPARTAMENTO DE QUÍMICA

DEPARTMENT OF CHEMISTRY

2.2. Compare o valor obtido com o ponto de Pockels, que é de 20 Ų, e dê uma hipótese da forma como uma molécula de ácido valérico se situa nesta interface.

Se o seu número de aluno for par, responda à 3.1.: Um tubo capilar de diâmetro interno de 0,90 mm foi revestido com um polímero de modo a se obter um diâmetro interno do capilar revestido de 0,67 mm. Observou-se uma ascensão capilar de 32 mm com água destilada a 20ºC e mediu-se uma tensão superficial da água de 72,7 mN m⁻¹ e uma densidade 0,9982 kg dm⁻³, à mesma temperatura.

Sabendo que se pode considerar o trabalho de adesão como a média geométrica dos trabalhos de coesão do sólido e do líquido, calcule a energia superficial do polímero

Se o seu número de aluno for ímpar, responda à 3.2.: Dois tubos capilares com diâmetros internos de 1,4 mm e 1,0 mm, respetivamente, são inseridos num líquido de densidade 0,95 gcm⁻³. Calcule a tensão superficial do líquido se a diferença entre as ascensões capilares nos tubos for de 1,2 cm. Assuma a molhabilidade total do líquido na parede do tubo.

4. A figura seguinte representa a variação da pressão superficial de uma interface ar/água para duas soluções de duas moléculas anfifílicas presentes nessa interface: uma solução contém o ácido palmítico e a outra solução contém lecitina de di-palmitoílo.

Use até 15 linhas para explicar detalhadamente i) o que é a pressão superficial; ii) o tipo de andamento das curvas apresentadas; iii) e calcule a área ocupada por uma molécula de lecitina e de ácido palmítico numa monocamada saturada. iv) Discuta os valores calculados relacionando com a estrutura das moléculas.

lecitina

ácido palmítico

OF CHEMISTRY

- **5.** Explique **detalhadamente** as seguintes frases, deduzindo a expressão e avançando um mecanismo:
- ${\bf 5.1}$. A decomposição de NO em N_2 e O_2 catalisada por Pt obedece à lei de velocidade

$$\frac{dp_{NO}}{dt} = -k \frac{p_{NO}}{p_{O_2}}$$

DEPARTMENT OF CHEMISTRY

5.2. A cinética da reação entre NO e CO sobre Rh(100) para dar N_2 e CO_2 é dada por

$$\frac{dp_{CO_2}}{dt} = k \frac{p_{NO}p_{CO}}{p_{CO_2}}$$

5.3. A cinética da reação entre NO e CO sobre dióxido de titânio anatase para dar N_2 e CO_2 é dada por

$$\frac{dp_{NO}}{dt} = -k \frac{p_{NO}}{p_{CO}}$$

5.4. Quando a reação

$$H_{2}O\left(g\right)+H_{2}CO\left(g\right)\rightarrow2\;H_{2}\left(g\right)+CO_{2}\left(g\right)$$

se processa sobre platina, a velocidade é dada por:

$$v = k' \frac{p_{H_2O}p_{H_2CO}}{p_{H_2}}$$

6. O diagrama seguinte é um diagrama de fases concentração em função da temperatura, para um tensioativo em água. Explique o que cada **linha** significa, o que cada **área** do gráfico representa e o que pode retirar deste gráfico.

Auxiliar de memória

Constantes

 $h=6,625 \times 10^{-34} \text{ Js}$ $k_B=1,38x10^{-23} \text{ JK}^{-1}$ $c=2,998x10^8 \text{ ms}^{-1}$ $m_p=1,673x10^{-27} \text{ Kg}$ $m_e=9,11x10^{-31} \text{ Kg}$ $R=8,314 \text{ J mol}^{-1} \text{K}^{-1}=1,987 \text{ cal mol}^{-1} \text{K}^{-1}=$ =0.082 atm dm³mol⁻¹K⁻¹=0.083 bar dm³mol⁻¹K⁻¹ $N_A=6,023x10^{23} \text{ mol}^{-1}$ $u=1,66x10^{-27} \text{ Kg}$ 1bar=10⁵ Pa g=9,8 ms⁻¹

C: 12.01 u.m.a. H: 1.0079 u.m.a. N: 14.01 u.m.a. O: 16.00 u.m.a. Cl: 35.5 u.m.a.

$$h = \frac{2\gamma \cos \theta}{(\rho_1 - \rho_2)gr_t}$$

$$P = \frac{5.6234 \times 10^{6} \text{ x MM x } \gamma^{1/4}}{10^{6} \rho}$$
 Parácor

$$\Gamma_{2,1} = -\frac{c}{K} \frac{d\gamma}{dc}$$
 Isotérmica de Gibbs
$$\theta = \frac{V}{V_m} = \frac{cz}{(1-z)[1+(c-1)z]}$$
 Isotérmica de BET
$$\theta_A = \frac{N}{N_m} = \frac{K_A p_A}{1+K_A p_A}$$
 Isotérmica de Langmuir

$$\gamma_{SV} - \gamma_{SL} = \gamma_{LV} \cos \theta \quad \text{Equação de Young}$$

$$\ln \frac{P}{P_0} = \frac{V_i}{RT} \frac{2\gamma}{r} \quad \text{Equação de Kelvin}$$

Equação de 1 reta com 2 pontos (x_1, y_1) e (x_2, y_2) : $y - y_1 = \frac{(y_2 - y_1)}{(x_2 - x_1)}(x - x_1)$

$$y - y_1 = \frac{(y_2 - y_1)}{(x_2 - x_1)} (x - x_1)$$