Unit 3: Foundations for inference

3. Decision errors, significance levels, sample size & power

Sta 101 - Spring 2015

Duke University, Department of Statistical Science

February 16, 2015

1. Housekeeping

2. Main ideas

- Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree
- Results that are statistically significant are not necessarily practically significant
- 3. Calculate the sample size a priori to achieve desired margin of error
 - 4. Hypothesis tests are prone to decision errors
 - 5. Power depends on the effect size, α , n, and s

Summary

Announcements

- ► PA3 due tonight
- ► Midterm review: ?

1. Housekeeping

2. Main ideas

- Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree
- Results that are statistically significant are not necessarily practically significant
- 3. Calculate the sample size a priori to achieve desired margin of error
 - 4. Hypothesis tests are prone to decision errors
 - 5. Power depends on the effect size, α , n, and s

3. Summary

1. Housekeeping

2. Main ideas

- 1. Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree
- Results that are statistically significant are not necessarily practically significant
- 3. Calculate the sample size a priori to achieve desired margin of error
 - 4. Hypothesis tests are prone to decision errors
 - 5. Power depends on the effect size, α , n, and s

3. Summary

1. Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree

95% confidence level is equivalent to two sided HT with $\alpha=0.05$

1. Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree

95% confidence level is equivalent to two sided HT with $\alpha=0.05$

95% confidence level is equivalent to one sided HT with $\alpha=0.025$

What is the significance level of a two-sided hypothesis test that is equivalent to a 90% confidence interval? *Hint: Draw a picture and mark the confidence level in the center.*

- (a) 0.001
- (b) 0.01
- (c) 0.025
- (d) 0.05
- (e) 0.10

What is the significance level of a two-sided hypothesis test that is equivalent to a 90% confidence interval? *Hint: Draw a picture and mark the confidence level in the center.*

- (a) 0.001
- (b) 0.01
- (c) 0.025
- (d) 0.05
- (e) 0.10

What is the significance level of a one-sided hypothesis test that is equivalent to a 90% confidence interval? *Hint: Draw a picture and mark the confidence level in the center.*

- (a) 0.001
- (b) 0.01
- (c) 0.025
- (d) 0.05
- (e) 0.10

What is the significance level of a one-sided hypothesis test that is equivalent to a 90% confidence interval? *Hint: Draw a picture and mark the confidence level in the center.*

- (a) 0.001
- (b) 0.01
- (c) 0.025
- (d) 0.05
- (e) 0.10

What is the confidence level of a confidence interval that is equivalent to a two-sided hypothesis test with $\alpha=0.01$. Hint: Draw a picture and mark the confidence level in the center.

- (a) 0.80
- (b) 0.90
- (c) 0.95
- (d) 0.98
- (e) 0.99

What is the confidence level of a confidence interval that is equivalent to a two-sided hypothesis test with $\alpha=0.01$. Hint: Draw a picture and mark the confidence level in the center.

- (a) 0.80
- (b) 0.90
- (c) 0.95
- (d) 0.98
- (e) 0.99

What is the confidence level of a confidence interval that is equivalent to a one-sided hypothesis test with $\alpha=0.01$. Hint: Draw a picture and mark the confidence level in the center.

- (a) 0.80
- (b) 0.90
- (c) 0.95
- (d) 0.98
- (e) 0.99

What is the confidence level of a confidence interval that is equivalent to a one-sided hypothesis test with $\alpha=0.01$. Hint: Draw a picture and mark the confidence level in the center.

- (a) 0.80
- (b) 0.90
- (c) 0.95
- (d) 0.98
- (e) 0.99

A 95% confidence interval for the average normal body temperature of humans is found to be (98.1 F, 98.4 F). Which of the following is <u>true</u>?

- (a) The hypothesis H_A : $\mu = 98.2$ would be rejected at $\alpha = 0.05$ in favor of H_A : $\mu \neq 98.2$.
- (b) The hypothesis $H_A: \mu = 98.2$ would be rejected at $\alpha = 0.025$ in favor of $H_A: \mu > 98.2$.
- (c) The hypothesis H_A : $\mu = 98$ would be rejected using a 90% confidence interval.
- (d) The hypothesis $H_A: \mu=98.2$ would not be rejected using a 99% confidence interval.

A 95% confidence interval for the average normal body temperature of humans is found to be (98.1 F, 98.4 F). Which of the following is <u>true</u>?

- (a) The hypothesis H_A : $\mu = 98.2$ would be rejected at $\alpha = 0.05$ in favor of H_A : $\mu \neq 98.2$.
- (b) The hypothesis $H_A: \mu = 98.2$ would be rejected at $\alpha = 0.025$ in favor of $H_A: \mu > 98.2$.
- (c) The hypothesis H_A : $\mu = 98$ would be rejected using a 90% confidence interval.
- (d) The hypothesis $H_A: \mu=98.2$ would not be rejected using a 99% confidence interval.

1. Housekeeping

2. Main ideas

- 1. Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree
- 2. Results that are statistically significant are not necessarily practically significant
- 3. Calculate the sample size a priori to achieve desired margin of error
 - 4. Hypothesis tests are prone to decision errors
 - 5. Power depends on the effect size, α , n, and s

3. Summary

Clicker question

All else held equal, will p-value be lower if n=100 or n=10,000?

(a)
$$n = 100$$

(b)
$$n = 10,000$$

Clicker question

All else held equal, will p-value be lower if $n=100\ {\rm or}$ n=10,000?

- (a) n = 100
- (b) n = 10,000

Clicker question

All else held equal, will p-value be lower if n=100 or n=10,000?

- (a) n = 100
- (b) n = 10,000

Clicker question

All else held equal, will p-value be lower if n=100 or n=10,000?

- (a) n = 100
- (b) n = 10,000

$$Z_{n=100} = \frac{5 - 4.5}{\frac{2}{\sqrt{100}}}$$

Clicker question

All else held equal, will p-value be lower if n=100 or n=10,000?

- (a) n = 100
- (b) n = 10,000

$$Z_{n=100} = \frac{5-4.5}{\frac{2}{\sqrt{100}}} = \frac{5-4.5}{\frac{2}{10}} = \frac{0.5}{0.2} = 2.5, \quad p\text{-value} = 0.0062$$

Clicker question

All else held equal, will p-value be lower if n=100 or n=10,000?

(a)
$$n = 100$$

(b)
$$n = 10,000$$

$$Z_{n=100} = \frac{5-4.5}{\frac{2}{\sqrt{100}}} = \frac{5-4.5}{\frac{2}{10}} = \frac{0.5}{0.2} = 2.5, \quad p\text{-value} = 0.0062$$
 $Z_{n=10000} = \frac{5-4.5}{\frac{2}{\sqrt{10000}}}$

Clicker question

All else held equal, will p-value be lower if n=100 or n=10,000?

- (a) n = 100
- (b) n = 10,000

$$Z_{n=100} = \frac{5-4.5}{\frac{2}{\sqrt{100}}} = \frac{5-4.5}{\frac{2}{10}} = \frac{0.5}{0.2} = 2.5, \quad p\text{-value} = 0.0062$$

$$Z_{n=10000} = \frac{5-4.5}{\frac{2}{\sqrt{10000}}} = \frac{5-4.5}{\frac{2}{100}} = \frac{0.5}{0.02} = 25, \quad p\text{-value} \approx 0$$

Clicker question

All else held equal, will p-value be lower if n=100 or n=10,000?

(a)
$$n = 100$$

(b)
$$n = 10,000$$

Suppose $\bar{x} = 5$, s = 2, $H_0: \mu = 4.5$, and $H_A: \mu \ge 4.5$.

$$Z_{n=100} = \frac{5-4.5}{\frac{2}{\sqrt{100}}} = \frac{5-4.5}{\frac{2}{10}} = \frac{0.5}{0.2} = 2.5, \quad p\text{-value} = 0.0062$$
 $Z_{n=10000} = \frac{5-4.5}{\frac{2}{\sqrt{10000}}} = \frac{5-4.5}{\frac{2}{100}} = \frac{0.5}{0.02} = 25, \quad p\text{-value} \approx 0$

As n increases - $SE \downarrow$, $Z \uparrow$, p-value \downarrow

1. Housekeeping

2. Main ideas

- Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree
- Results that are statistically significant are not necessarily practically significant
- 3. Calculate the sample size a priori to achieve desired margin of error
 - 4. Hypothesis tests are prone to decision errors
 - 5. Power depends on the effect size, α , n, and s

3. Summary

3. Calculate the sample size a priori to achieve desired margin of error

Application exercise: 3.3 Sample size

See course website for details.

1. Housekeeping

2. Main ideas

- Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree
- Results that are statistically significant are not necessarily practically significant
- 3. Calculate the sample size a priori to achieve desired margin of error

4. Hypothesis tests are prone to decision errors

5. Power depends on the effect size, α , n, and s

3. Summary

		Decision		
		fail to reject H_0	reject H_0	
T 41.	H_0 true			
Truth	H_A true			

		Decision		
		fail to reject H_0	reject H_0	
T 41.	H_0 true			
Truth	H_A true			

		Decision		
		fail to reject H_0	reject H_0	
	H_0 true	√		
Truth	H_A true			

		Decision	
		fail to reject H_0	reject H_0
T415	H_0 true	√	Type 1 Error, α
Truth	H_A true		

- ▶ A *Type 1 Error* is rejecting the null hypothesis when H_0 is true: α
 - For those cases where H_0 is actually true, we do not want to incorrectly reject it more than 5% of those times
 - Increasing α increases the Type 1 error rate, hence we prefer to small values of α

		Decision	
		fail to reject H_0	reject H_0
T41a	H_0 true	√	Type 1 Error, α
Truth	H_A true	<i>Type 2 Error,</i> β	

- A Type 1 Error is rejecting the null hypothesis when H_0 is true: α
 - For those cases where H_0 is actually true, we do not want to incorrectly reject it more than 5% of those times
 - Increasing α increases the Type 1 error rate, hence we prefer to small values of α
- ▶ A *Type 2 Error* is failing to reject the null hypothesis when H_A is true: β

		Decision	
		fail to reject H_0	reject H_0
Turrella	H_0 true	√	Type 1 Error, α
Truth	H_A true	<i>Type 2 Error,</i> β	Power, $1 - \beta$

- A Type 1 Error is rejecting the null hypothesis when H_0 is true: α
 - For those cases where H_0 is actually true, we do not want to incorrectly reject it more than 5% of those times
 - Increasing α increases the Type 1 error rate, hence we prefer to small values of α
- A *Type 2 Error* is failing to reject the null hypothesis when H_A is true: β
- ▶ *Power* is the probability of correctly rejecting H_0 , and hence the complement of the probability of a Type 2 Error: 1β

1. Housekeeping

2. Main ideas

- Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree
- Results that are statistically significant are not necessarily practically significant
- 3. Calculate the sample size a priori to achieve desired margin of error
 - 4. Hypothesis tests are prone to decision errors
 - 5. Power depends on the effect size, α , n, and s

3. Summary

Power can be increased (and hence Type 2 error rate can be decreased) by

increasing the sample size

- increasing the sample size
- decreasing the standard deviation of the sample (difficult to ensure but cautious measurement process and limiting the population so that it is more homogenous may help)

- increasing the sample size
- decreasing the standard deviation of the sample (difficult to ensure but cautious measurement process and limiting the population so that it is more homogenous may help)
- ightharpoonup increasing α

- ▶ increasing the sample size
- decreasing the standard deviation of the sample (difficult to ensure but cautious measurement process and limiting the population so that it is more homogenous may help)
- ightharpoonup increasing α
- ▶ increasing the effect size

1. Housekeeping

2 Main ideas

- Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree
- Results that are statistically significant are not necessarily practically significant
- 3. Calculate the sample size a priori to achieve desired margin of error
 - 4. Hypothesis tests are prone to decision errors
 - 5. Power depends on the effect size, α , n, and s

3. Summary

Summary of main ideas

- 1. Hypothesis tests and confidence intervals at equivalent significance/confidence levels should agree
- 2. Results that are statistically significant are not necessarily practically significant
- Calculate the sample size a priori to achieve desired margin of error
- 4. Hypothesis tests are prone to decision errors
- 5. Power depends on the effect size, α , n, and s