Linear and Discrete Optimization

Matthew Cocci

1 Introduction to Linear Optimization

1.1 Definition of a Linear Program

Linear optimization, also known as *linear programming*, consists of a linear *objective* function and *linear inequalities*:

$$\max c_1 x_1 + \dots + c_n x_n$$
s.t.
$$a_{11} x_1 + \dots + a_{1n} x_n \le b_n$$

$$\vdots$$

$$a_{m1} x_1 + \dots + a_{mn} x_n \le b_m$$

So we want to find the values of the variables $x_1, \ldots, x_n \in \mathbb{R}$ such that the objective function is maximized while still satisfying the linear inequalities. Using more convenient matrix notation, our linear program above can be rewritten more compactly as

$$\max\{c^T x : x \in \mathbb{R}^n, Ax \le b\}$$
 (1)

If we want to find the minimum instead of the max, we can easily use the fact that the minimum of some set S (min S) is equivalent to $-\max S$.

1.2 Feasability, Optimality, Boundedness

We call a solution $x \in \mathbb{R}^n$ feasible if x satisfies all the linear inequalities. We call a linear program feasible if it has a feasible solution.

A feasible solution $s \in \mathbb{R}^n$ is an *optimal* solution of a linear program if $c^T x \geq c^T y$ for all $y \in \mathbb{R}^n$.

A linear program is bounded if there exists a constant $M \in \mathbb{R}$ such that $c^T x \leq \mathbb{R}$ for all feasible $x \in \mathbb{R}^n$.

1.3 Linear Algebra Defintions

Recall that for $A \in \mathbb{R}^{m \times n}$, the kernel of A, the image of A, and the rowspace of A are defined

$$\ker(A) = \{x \in \mathbb{R}^n \mid Ax = 0\} \subset \mathbb{R}^n$$
$$\operatorname{im}(A) = \{Ax \mid x \in \mathbb{R}^n\} \subset \mathbb{R}^m$$
$$\operatorname{rowspace}(A) = \{y \in \mathbb{R}^n \mid \exists \lambda \in \mathbb{R}^m \text{ s.t. } A^T \lambda = y\}$$

Note, the rowspace is just the set of all linear combinations of the rows of A.

Result: With these definitions in hand, we can show that a solution to the linear program in Equation 1 is feasible and unbounded if $b \in \text{im}(A)$ and if $c \in \text{ker} A \setminus \{0\}$.

Proof. First, $b \in \text{im}(A)$ proves feasibility. It also implies that $\exists x^* \in \mathbb{R}^n$ such that $Ax^* = b$. This and the fact that $c \in \text{ker}(A) \setminus \{0\}$ allows us to write

$$A(x^* + \lambda c) = Ax^* + \lambda Ac$$
$$= b + 0 = b$$

which proves $x^* + \lambda c$ is a feasible solution, satisfying all of the linear inequalities.

So to finish up the unboundedness proof, we suppose the opposite: that the linear program is bounded:

$$c^T y \le M \qquad \forall y \in \mathbb{R}^n$$

Since $x^* + \lambda c$ is feasible, then it should also be bounded:

$$\Rightarrow c^T(x^* + \lambda c) \le M$$
$$c^T x^* + \lambda c^T c \le M$$

Now since $c \neq 0$, we know that $c^T c$ will be greater than 0. Now let's rearrange and choose

$$\lambda \ge \frac{M - c^T x^*}{c^T c}$$

in which case $c^T(x^* + \lambda c) > M$.

2 The Geometry of Linear Programming

2.1 General Definitions

Polyhedron: A set P of vectors in \mathbb{R}^n is a polyhedron if $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ for some matrix A and some vector b. By our definition of a linear program in Equation 1, we see that the set of feasible solutions is a polyhedron.

Half space: This is defined as $\{x \in \mathbb{R}^n \mid a^T x \leq \beta\}$, where $a \in \mathbb{R}^n \setminus \mathbf{0}$.

Hyperplane: This is defined as $\{x \in \mathbb{R}^n \mid a^T x = \beta\}$, where $a \in \mathbb{R}^n \setminus \mathbf{0}$.

Valid: An inequality $a^Tx \leq \beta$ is valid for a polyhedron, P, if each $x^* \in P$ satisfies $a^Tx^* \leq \beta$.

Active: An inequality $a^T x \leq \beta$ is active at $x^* \in \mathbb{R}^n$ if $a^T x^* = \beta$.

2.2 Vertices

We'll offer three equivalent definitions, each of which offers some different intuition or an additional operational advantage:

- 1. A point $x^* \in P$ is a vertex of P if there exists an inequality $a^T x \leq \beta$ such that
 - a) $a^T x < \beta$ is valid for P.
 - b) $a^T x \leq \beta$ is active at x^* and not active at any other point in P.
- 2. There's also an equivalent definition which says $x^* \in P$ is a vertex if and only if there exists a vector $c \in \mathbb{R}^n$ such that x^* is the unique optimal solution of the linear program $\max\{c^T x \mid x \in P\}$.
- 3. Suppose we have $x^* \in P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ as a vertex of P. Then this vertex satisfies a smaller number of active contraints (relative to all of the constraints that define the linear program and P). Therefore, we express those active constraints that we want to enforce with $\bar{A}x \leq \bar{b}$.

Now since x^* is a vertex satisfying those certain active constraints, that means x^* is the unique solution of $\bar{A}x = \bar{b}$. That's equivalent to the statement that $\operatorname{rank}(\bar{A}) = n$, which is equivalent to the columns of \bar{A} being linearly independent.

So if we suspect that x^* is a vertex of our linear program, then we examine the subsystem, $\bar{A}x \leq \bar{b}$, of our LP that x^* satisfies with equality, and we look at the rank of \bar{A} . If x^* really is a vertex of P, the the rank of \bar{A} equals n and the columns will be linearly independent.

¹Just one quick note for generality: The empty set, \emptyset , is also a polyhedron as $\emptyset = \{x \in \mathbb{R}^n \mid \mathbf{0}^T x \le -1\}$, satisfying the definition of a polyhedron.