

⁽¹⁹⁾ SU ⁽¹¹⁾ 1 724 922 ⁽¹³⁾ A1

(51) M∏K

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ СССР

- (21), (22) Заявка: 4745912, 22.08.1989
- (46) Дата публикации: 07.04.1992
- (56) Ссылки: Авторское свидетельство СССР Mr 4570, кл. F 03 D 1 /00, 1924.
- (98) Адрес для переписки: 11 198217 ЛЕНИНГРАД, Б-Р НОВАТОРОВ 73-13
- (71) Заявитель: В.М.Швыркунов
- (72) Изобретатель: ШВЫРКУНОВ ВЛАДИМИР МАРКИАНОВИЧ₁₁ 198217 ¤åfkfāðàä, á-ð filálðiðiå 73-13

(54) Ветродвигатель

9

(19) SU (11) 1 724 922 (13) A1

(51) Int. CI.

STATE COMMITTEE FOR INVENTIONS AND DISCOVERIES

(12) ABSTRACT OF INVENTION

(71) Applicant: V.M.SHvyrkunov

(72) Inventor: SHVYRKUNOV VLADIMIR **MARKIANOVICH**

(54) WIND MOTOR

Изобретение позволяет эффективность использования энергии ветра ветродвигателем С роторами, выполненными в виде усеченных конусов. Торцовые шайбы 6 уменьшают концевые аэродинамические потери, а лопатки 7 обеспечивают раскрутку роторов 5 и запуск ветродвигателя в работу при незначительных скоростях ветра Перемещаясь, роторы 5 приводят во вращение вал 4 отбора мощности, размещенный в поворотной головке 3. Выполнение флюгера 2 в виде кронштейна и расположение оси поворота головки и роторов в общей вертикальной позволяет уменьшить гироскопические нагрузки и повысить надежность. 1 з.п. ф-лы, 2 ил.

ветрознергетике и касается ветродвигателей, использующих при работе эффект Магнуса.

Известна ветроустановка, лопасти вет- роколеса которой выполнены в виде цилин- дрических тел.

Такое выполнение лопастей снижает эффективность ветроколеса.

Известен ветродвигатель, содержащий опору, установленный на ней флюгер с по- воротной головкой, вал отбора мощности и связанные с валом роторы, имеющие форму усеченных конусов, расширяющихся к периферии

Однако эффективность такого ветрод- вигателя также невысока.

Цель изобретения - повышение эффективности использования энергии ветра.

На фиг. 1 представлен ветродвигатель, общий вид; на фиг. 2 - вид А на фиг. 1.

Ветродвигатель содержит опору установленный на ней флюгер 2 с поворотной головкой 3, размещенный в последней вал 4 отбора мощности и связанные с валом роторы 5, имеющие форму усеченных конусов, расширяющихся к периферии. Роторы 5 снабжены периферийными торцовыми шайбами 6 с закрепленными на них лопатками 7 и кинематически связаны с поворотной головкой 3. Для повышения надежности пу- тем уменьшения гироскопических нагрузок оси поворота головки 3 и роторов 5 расположены в общей вертикальной плоскости, а флюгер выполнен в виде кронштейна. Ки

поворотной головкой 3 выполнена в виде фрикционных дисков 8 и 9, закрепленных соответственно на головке 3 и роторах 5.

При наличии ветра благодаря лопаткам 7 начинают вращаться роторы 5 и за счет соприкосновения дисков 8 и 9 обеспечивается вращение вала 4 отбора мощности. Обегание роторов 5 вокруг диска 8 увеличивает скорость вращения роторов 5 вокруг собственных осей, что вызывает возрастание эффекта Магнуса и дальнейшую раскрутку ветродвигателя до оптимальной скорости и получения максимально возможной для данной скорости ветра мощности.

Формула изобретения

1. Ветродвигатель, содержащий опору, установленный на ней флюгер с поворотной головкой, размещенный в последней вал отбора мощности и связанные с валом роторы, имеющие форму усеченных конусов, расширяющихся к периферии, отличающийся тем, что, с целью повышения эффективности использования энергии ветра, роторы снабжены периферийными торцовыми шайбами с закрепленными на них лопастями и кинематически связаны с поворотной головкой.

2.Ветродвигатель по п. 1, о т л и ч а ю- щ и и с я тем, что, с целью повышения надежности путем уменьшения гироскопических нагрузок, оси поворота головки и роторов расположены в общей вертикальной плоскости, а флюгер выполнен в виде кронштейна.

Вид-А

35

15

45

40

50

55

60

-3-

3

1724922

Изобретение относится к ветроэнергетике и касается ветродвигателей, использующих при работе эффект Магнуса.

Известна ветроустановка, лопасти ветроколеса которой выполнены в виде цилин- 5 дрических тел.

Такое выполнение лопастей снижает эффективность ветроколеса.

Известен ветродвигатель, содержащий опору, установленный на ней флюгер с по- 10 воротной головкой, вал отбора мощности и связанные с валом роторы, имеющие форму усеченных конусов, расширяющихся к периферии.

вигателя также невысока.

Цель изобретения - повышение эффективности использования энергии ветра.

На фиг. 1 представлен ветродвигатель, общий вид: на фиг. 2 - вид А на фиг. 1.

Ветродвигатель содержит опору 1, установленный на ней флюгер 2 с поворотной головкой 3, размещенный в последней вал 4 отбора мощности и связанные с валом роторы 5, имеющие форму усеченных конусов, 25 расширяющихся к периферии. Роторы 5 снабжены периферийными торцовыми шайбами 6 с закрепленными на них лопатками 7 и кинематически связаны с поворотной тем уменьшения гироскопических нагрузок оси поворота головки 3 и роторов 5 расположены в общей вертикальной плоскости, а флюгер 2 выполнен в виде кронштейна. Ки-

нематическая связь роторов 5 с поворотной головкой 3 выполнена в виде фрикционных дисков 8 и 9, закрепленных соответственно на головке 3 и роторах 5.

При наличии ветра благодаря лопаткам: 7 начинают вращаться роторы 5 и за счет соприкосновения дисков 8 и 9 обеспечивается вращение вала 4 отбора мощности. Обегание роторов 5 вокруг диска 8 увеличивает скорость вращения роторов 5 вокруг собственных осей, что вызывает возрастание эффекта Магнуса и дальнейшую раскрутку ветродвигателя до оптимальной скорости и получения максимально возмож-Однако эффективность такого ветрод- 15 ной для данной скорости ветра мощности.

Формула изобретения

1. Ветродвигатель, содержащий опору, установленный на ней флюгер с поворотной головкой, размещенный в последней вал от-20 бора мощности и связанные с валом роторы, имеющие форму усеченных конусов, расширяющихся к периферии, отличающийся тем, что, с целью повышения эффективности использования энергии ветра, роторы снабжены периферийными торцовыми шайбами с закрепленными на них лопастями и кинематически связаны с поворотной головкой.

2. Ветродвигатель по п. 1, отличающ и й с я тем, что, с целью повышения головкой 3. Для повышения надежности пу- 30 надежности путем уменьшения гироскопических нагрузок, оси поворота головки и роторов расположены в общей вертикальной плоскости, а флюгер выполнен в виде кронштейна.

35

40

45

50

55

Pagaritop H, Tyreup Coctementes O, Sylenness Ropperrop B, Fishers
Sees 1152 Trapes Memory Technical Memory T

SU

24922

\~15~

DERWENT-ACC-NO:

1993-124372

DERWENT-WEEK:

199315

COPYRIGHT 2007 DERWENT INFORMATION LTD

TITLE:

Windmill e.g. for power generation - has conical

rotors

with peripheral end-plates egipped with vanes and

connected to rotary head

INVENTOR: SHVYRKUNOV, V M

PATENT-ASSIGNEE: SHVYRKUNOV V M[SHVYI]

PRIORITY-DATA: 1989SU-4745912 (August 22, 1989)

PATENT-FAMILY:

PUB-NO

PUB-DATE LANGI

LANGUAGE PAGES

MAIN-IPC

SU 1724922 A1

F03D 001/00

April 7, 1992

N/A

003

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR

APPL-NO

APPL-DATE

SU 1724922A1

N/A

1989SU-4745912

August

22, 1989

INT-CL (IPC): F03D001/00

RELATED-ACC-NO: 1993-084650

ABSTRACTED-PUB-NO: SU 1724922A

BASIC-ABSTRACT:

The windmill, e.g. for power generation using the <u>Magnus effect</u>, consists of a

wind vane (2) with a rotary head (3) containing a pto shaft (4) with rotors (5)

in the shape of truncated cones, diverging towards the periphery of the **rotors**.

The <u>rotors</u> have peripheral end plates (6) equipped with vanes (7) and are

linked kinematically to the rotary head.

The axes of rotation of the head and <u>rotors</u> lie in a common vertical plane,

while the <u>wind</u> vane (2) is in the form of a bracket connecting the head to a

support (1). A <u>wind</u> impinging on the vanes (7) causes the <u>rotors</u> to turn and

rotate the pto shaft through discs (8,9). As the <u>rotors</u> turn relative to the

disc (8) their speed of rotation about their axes rises and creates an increasing **Magnus effect**.

ADVANTAGE - More efficient use of wind energy. Bul.13/7.4.92

CHOSEN-DRAWING: Dwg.1/2

TITLE-TERMS: WINDMILL POWER GENERATE CONICAL <u>ROTOR</u>
PERIPHERAL END PLATE VANE
CONNECT ROTATING HEAD

DERWENT-CLASS: Q55

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N1993-094932