PCS224 - Solid State Physics - Useful Formulas

$$\begin{split} \vec{F} &= q\vec{E} \\ \vec{F} &= q(\vec{v} \times \vec{B}) \\ |\vec{F}| &= |q||\vec{v}||\vec{B}| \sin \theta \\ |\vec{E}|_{\text{plate}} &= \frac{Q}{2A\epsilon_0} = \frac{\sigma}{2\epsilon_0} \\ K &= mv^2/2 \\ \Delta K + \Delta U &= 0 \\ \Delta U &= q\Delta V \\ \Delta V &= -\vec{E} \cdot \Delta \vec{x} \text{ or } -\vec{E} \cdot \Delta \vec{y} \\ |\Delta V| &= |\vec{E}|_{\text{plate}} = \frac{\Delta V^2}{R} \\ \Delta V &= |\vec{E}|_{\text{Dav}} = |\vec{E}|_{\text{Dav}}$$

$$\begin{aligned} x_{\mathrm{I}}N_{\mathrm{d}} &= x_{p}N_{A} \\ x_{\mathrm{n}} &= \sqrt{\frac{2\varepsilon_{s}(V_{\mathrm{in}}+V_{R})}{e}} \left(\frac{N_{\mathrm{d}}}{N_{\mathrm{d}}} \right) \left(\frac{1}{N_{\mathrm{d}}+N_{\mathrm{d}}} \right) \\ x_{\mathrm{p}} &= \sqrt{\frac{2\varepsilon_{s}(V_{\mathrm{in}}+V_{R})}{e}} \left(\frac{N_{\mathrm{d}}}{N_{\mathrm{d}}} \right) \left(\frac{1}{N_{\mathrm{d}}+N_{\mathrm{d}}} \right) \\ W &= \left[\frac{2\varepsilon_{s}(V_{\mathrm{in}}+V_{R})}{e} \left(\frac{N_{\mathrm{d}}}{N_{\mathrm{d}}} \right) \left(\frac{1}{N_{\mathrm{d}}+N_{\mathrm{d}}} \right) \right]^{1/2} \\ V_{TN} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} - \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} - \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SS}}^{\prime}}{\epsilon_{co}} + 2 \left| \phi_{Fp} \right| \\ V_{TP} &= \phi_{ms} + \frac{t_{cc}(\left| Q_{\mathrm{SD,mas}}^{\prime} \right| - Q_{\mathrm{SD}}^{\prime}}{\epsilon_{co}} + V_{TD}^{\prime}} \\ V_{D} &= \frac{t_{D}}{t_{D}} + \frac{t_{D}}{t_{D}} + \frac{t_{D}}{t_{D}}}{t_{D}} \\ V_{D} &= \frac{t_{D}}{t_{D}} + \frac{t_{D}}{t_{D}} + \frac{t_{D}}{t_{D}} + \frac{t_{D}}{t_{D}}}{t_{D}} \\ V_{D} &= \frac{t_{D}}{t_{D}} + \frac{t_{D}}{t_{D}} + \frac{t_{D}}{t_{D}} + \frac{t_{D}}{t_{D}}}{t_{D}} \\ V_{D}$$

If necessary, Figure 4.20 (Hall Effect) and Figure 6.21 (Metal-Semiconductor work functions) will be provided along with relevant equations.

FUNDAMENTAL CONSTANTS AND UNITS

$$e = 1.6 \times 10^{-19} \text{C}$$

$$m_e = 9.1 \times 10^{-31} \text{ kg}$$

$$h = 6.64 \times 10^{-34} \text{ J} \cdot \text{sec}$$

$$c = 3.0 \times 10^8 \frac{\text{m}}{\text{sec}}$$

$$hc = 1240 \text{eV} \cdot \text{nm}$$

$$k_B = 1.38 \times 10^{-23} \text{ J/K} = 8.617 \times 10^{-5} \text{eV/K}$$

$$k_B T = 0.026 \text{eV} \left(\frac{T}{300 \text{ K}} \right)$$

$$k_c = 9.0 \times 10^{9} \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \frac{F}{m} = 552000 \frac{e}{V \cdot cm}$$

The dielectric constant of silicon dioxide $\epsilon_{ox}=3.9\epsilon_0$

$$a_0 = 0.53 \times 10^{-10} \text{ m}$$

$$1 \mathrm{eV} = 1.6 \times 10^{-19} \; \mathrm{J}$$

$$1 \text{ N} = 1 \text{ kg} \frac{\text{m}}{\text{sec}^2}$$

$$1~J=1~N\cdot m=1~kg\frac{m^2}{sec^2}$$

$$1 \text{ W} = 1 \text{ J/s}$$

$$1 \text{ V} = 1 \text{ J/C}$$

$$1 A = 1C/sec$$

$$1~T = 1~kg/(C \cdot sec) = 1~V \cdot sec/m^2$$

$$1 \text{ F} = 1\text{C/V}$$

$$1 \text{Å} = 10^{-8} \text{ cm}$$

Table B.4 | Silicon, gallium arsenide, and germanium properties $(T = 300 \, \mathrm{K})$

Property	Si	GaAs	Ge
Atoms (cm ⁻³)	5.0×10^{22}	4.42×10^{22}	4.42×10^{22}
Atomic weight	28.09	144.63	72.60
Crystal structure	Diamond	Zincblende	Diamond
Density (g/cm ⁻³)	2.33	5.32	5.33
Lattice constant (Å)	5.43	5.65	5.65
Melting point (°C)	1415	1238	937
Dielectric constant	11.7	13.1	16.0
Bandgap energy (eV)	1.12	1.42	99.0
Electron affinity, χ (V)	4.01	4.07	4.13
Effective density of states in conduction band, N_c (cm ⁻³)	2.8×10^{19}	4.7×10^{17}	1.04×10^{19}
Effective density of states in valence band, N_v (cm ⁻³)	1.04×10^{19}	7.0×10^{18}	6.0×10^{18}
Intrinsic carrier concentration (cm ⁻³) Mobility (cm ² /V-s)	1.5×10^{10}	1.8×10^{6}	2.4×10^{13}
Electron, μ_n	1350	8500	3900
Hole, μ_p	480	400	1900
Effective mass $\left(\frac{m^*}{m_0}\right)$			
Electrons	$m_I^* = 0.98$	0.067	1.64
	$m_t^* = 0.19$		0.082
Holes	$m_{lh}^* = 0.16$	0.082	0.044
	$m_{hh}^* = 0.49$	0.45	0.28
Effective mass (density of states)			
Electrons $\left(\frac{m_n^*}{m_0}\right)$	1.08	0.067	0.55
Holes $\left(\frac{m_p^*}{m_0}\right)$	0.56	0.48	0.37

