UVIN, anotace témat semestrálních projektů

Zimní semestr, 2024/25

1. Výpočet počtu znaků, slov, vět v textu

Pro vstupní text zahrnující písmena "A-Ž", "a-ž", číslovky "0-9", speciální znaky ",.?!;" oddělené mezerami, určete celkový počet znaků (včetně mezer, bez mezer), počet slov a počet vět. Výslednou statistiku vytiskněte. Pokud budou v textu nepodporované znaky, ignorujete je.

2. Výpis počtu samohlásek a souhlásek v textu.

Pro vstupní text zahrnující písmena "A-Ž", "a-ž", číslovky "0-9", speciální znaky ",.?!;" oddělené mezerami, určete počet samohlásek a souhlásek. Spočtěte, jaké procento textu tvoří samohlásky a jaké souhlásky. Výslednou statistiku vytiskněte. Pokud budou v textu nepodporované znaky, ignorujete je.

3. Nalezení nejkratšího a nejdelšího slova v textu.

Pro vstupní text zahrnující písmena "A-Ž", "a-ž", číslovky "0-9", speciální znaky ",.?!;" oddělené mezerami, nalezněte nejkratší a nejdelší slovo v textu, určete počet jejich znaků. Pokud takových slov bude více, vypište je všechny v pořadí, v jakém se v textu vyskytují. Pokud budou v textu nepodporované znaky, ignorujete je.

4. Výpočet četností znaků v textu.

Pro vstupní text zahrnující písmena "A-Ž", "a-ž", číslovky "0-9", speciální znaky ",.?!;" oddělené mezerami vypočítejte absolutní a relativní četnost jednotlivých znaků. Výsledek znak-absolutní četnost-relativní četnost vypište sestupně dle hodnot absolutních četností. Pokud budou v textu nepodporované znaky, ignorujete je.

5. Nalezení samohlásek v zadaném textu a jejich zvýraznění umístěním do závorek.

Ve vstupním textu zahrnujícím písmena "A-Ž", "a-ž", číslovky "0-9", speciální znaky ",.?!;" oddělené mezerami, nalezněte samohlásky. Každou samohlásku zvýrazněte umístěním do závorek a výsledný text vypište. Pokud budou v textu nepodporované znaky, ignorujete je.

6. Výpis zadaného textu po slovech v opačném pořadí.

Ve vstupním textu zahrnujícím písmena "A-Ž", "a-ž", číslovky "0-9", speciální znaky ",.?!;" oddělené mezerami, identifikujte jednotlivá slova a sdělte jejich počet. Jednotlivá slova následně vypište v opačném pořadí. Řešte i případy, kdy uživatel oddělí slova více než jednou mezerou. Pokud budou v textu nepodporované znaky, ignorujete je.

7. Seznam všech řádků, na kterých se vyskytují zadaná slova v textu.

Ve vstupním textu zahrnujícím písmena "A-Ž", "a-ž", číslovky "0-9", speciální znaky ",.?!;" oddělené mezerami, nalezněte zadaná slova. Výstupem pro bude pro každé slovo uspořádaná dvojice "slovo:[řádky]". Pokud se v textu slovo nevyskytuje, uvedeme jako výstup pomlčku. Pokud budou v textu nepodporované znaky, ignorujete je.

9. Nalezení slova s největším součtem ASCII kódů znaků.

Ve vstupním textu zahrnujícím písmena "A-Ž", "a-ž", číslovky "0-9", speciální znaky ",.?!;" oddělené mezerami, identifikujte jednotlivá slova. Nalezněte slovo s největším součtem ASCII kódů jednotlivých znaků. Pokud takových slov bude více, vypište je všechny v pořadí, v jakém se v textu vyskytují. Pokud budou v textu nepodporované znaky, ignorujete je.

10. Výpis čísla v opačném pořadí číslic doplněný ciferným součinem.

Zadané celé číslo vypište v opačném pořadí bez toho, aniž byste jednotlivé cifry/celé převáděli na

textovou reprezentaci. Určete ciferný součin takto vzniklého čísla. Případné nuly na začátku čísla ignorujte. Příklad: -12345600 ->-654321.

11. Převod čísla ze dvojkové soustavy do desítkové a naopak.

Zadané kladné reálné číslo převed'te z desítkové soustavy do soustavy dvojkové a zpět. Určete chybu takového převodu (rozdíl mezi hodnotou původního čísla a výsledkem zpětného převodu v desítkové soustavě). Pro reprezentaci desetinné části použijte n bitů (hodnotu si volí uživatel).

12. Převod čísla ze dvojkové soustavy do šestnáctkové a naopak

Zadané kladné reálné číslo převed'te z dvojkové (binární) soustavy do soustavy šestnáctkové (hexadecimální) a zpět.

13. Výpočet součinu matic.

Nechť A(m,n) a B(m,n) jsou obdélníkovými maticemi. Spočtěte jejich součin C=AB. Pokud není možné z důvodu nekompatibilních rozměrů výpočet provést, informujte o tom uživatele. Matice reprezentujte 2D listem, nepoužívejte vestavěné knihovny pro řešení maticových operací.

17. Rozklad čísla na součin prvočísel.

Pro zadané celé číslo a nalezněte jeho rozklad na součin prvočísel. Výsledek vypište v následujícím tvaru, např. pro a = 72: "72 = 2 * 2 * 2 * 3 * 3".

18. *Výpočet $(x+y)^k$ s použitím binomické věty.

Pro zadané hodnoty x, y a exponent k určete hodnotu funkce $y = (x + y)^k$. K výpočtu použijte binomickou větu, výsledná hodnota vznikne součtem jednotlivých členů binomického rozvoje. Pokud bude hodnota k popř. výsledek menší/větší než prahová hodnota ε , informujte uživatele.

19. Generování Pascalova trojúhelníku.

Pro zadanou hodnotu n vygenerujte Pascalův trojúhelník, jehož prvky budou hodnoty $\binom{n}{k}$, a vypište ho v textové formě. Pokud bude hodnota n větší než maximální hodnota ε , informujte uživatele.

20. Nalezení periody při dělení dvojice čísel.

Spočítejte podíl c=a/b na předem zadaný počet desetinných míst n. V desetinné části části c nalezněte periodu a zvýrazněte ji v závorkách. Příklad výstupu pro a=7 a b=9: "c =0.(428571)". Pokud perioda neexistuje, informujte o tom uživatele.

21. Operace se zlomky: součet, součin, podíl, krácení.

Pro zadané zlomky $\frac{a}{b}$ a $\frac{c}{d}$ spočtěte jejich součet, součin, podíl. Pro výsledky těchto operací realizujte také krácení zlomků. Příklad výstupu: $\frac{7}{6} + \frac{11}{4} = 3\frac{1}{12}$.

23. Numerická derivace funkce jedné proměnné, implementace některé z metod.

Pro zadanou funkci y = f(x) určete hodnotu první derivace $f'(x_0)$ v bodě x_0 , použijte zvolenou numerickou metodu. Porovnáním se skutečnou hodnotou určete chybu aproximace ε . Velikost kroku h volí uživatel.

32. Setřídění posloupnosti metodou Insertion Sort.

Na vstupu je neuspořádaná posloupnost reálných čísel. Metodou Insertion Sort tuto posloupnost setřiď te vzestupně nebo sestupně, volbu provede uživatel. Setříděnou posloupnost vypište spolu s časem, jaký byl pro setřídění posloupnosti potřeba.

33. Setřídění posloupnosti metodou Bubble Sort.

Na vstupu je neuspořádaná posloupnost reálných čísel. Metodou Bubble Sort tuto posloupnost setřiď te

vzestupně nebo sestupně, volbu provede uživatel. Setříděnou posloupnost vypište spolu s časem, jaký byl pro setřídění posloupnosti potřeba.

34. Setřídění posloupnosti metodou Select Sort.

Na vstupu je neuspořádaná posloupnost n reálných čísel. Metodou Bubble Sort tuto posloupnost setřiď te vzestupně nebo sestupně, volbu provede uživatel. Setříděnou posloupnost vypište spolu s časem, jaký byl pro setřídění posloupnosti potřeba.

37. Nalezení k-tého nejmenšího/největšího prvku v posloupnosti.

Na vstupu je neuspořádaná posloupnost n reálných čísel. Nalezněte k-tý nejmenší prvek v této posloupnosti a jeho pozici, hodnotu k zadá uživatel ($k \le n$).

39. Odstranění duplicitních prvků z posloupnosti a sdělení jejich počtu.

Na vstupu je neuspořádaná posloupnost n reálných čísel. Posloupnost setřiďte, naleznete duplicitní prvky, z posloupnosti je následně odstraňte. Uveďte také počet nalezených duplicitních prvků.

41. Analýza vzájemné polohy dvojice úseček (2D).

Na vstupu jsou dvě úsečky p(A, B) a q(C, D). Určete, zda jsou p, q rovnoběžné, identické, různoběžné, či se protínají v bodě. Pro poslední případ určete také jejich průsečík.

43. Detekce kolizí dvou obdélníků.

Pro dva obdélníky P, Q zadané souřadnicemi levého horního a pravého dolního roku určete, zda se tyto protínají. Pokud ano, určete souřadnice průsečíku(ů).

44. Analýza vzájemné polohy přímky a kružnice.

Určete vzájemnou polohu přímky p(A, B) a kružnice k(S, r). Pokud se p, k protínají, určete souřadnice průsečíku(ů).

57. Vizualizace n-cípé hvězdy.

S využitím želví grafiky vykreslete n-cípou hvězdu. Vstupní parametry představují počet cípů n, poloměr r_1 opsané její kružnice k_1 , poloměr r_2 kružnice k_2 procházející místem napojení sousedních cípů.

58. Vizualizace Kochovy vločky.

S využitím želví grafiky vykreslete Kochovu vločku. Vstupní parametry představují délka strany vločky a její stupeň. Pro výpočet nepoužívejte rekurzivní metodu.

59. *Vizualizace Hilbertovy křivky.

S využitím želví grafiky vykreslete Hilbertovu křivku. Vstupní parametry představují délka strany čtverce a stupeň křivky.

65. Výpočet mediánu pro nesetříděnou posloupnost tvořenou n prvky.

Na vstupu je neuspořádaná posloupnost n celočíselných prvků. Spočtěte medián této posloupnosti, pro setřídění množiny nepoužívejte vestavěný třídící algoritmus.

66. Výpočet modu pro nesetříděnou posloupnost tvořenou n prvky.

Na vstupu je neuspořádaná posloupnost n celočíselných prvků. Spočtěte modus této posloupnosti. Pokud je výsledkem více prvků, uveď te všechny.

67. Výpočet absolutní, relativní, kumulativní četnosti prvků v posloupnosti n prvků.

Na vstupu je neuspořádaná posloupnost n celočíselných prvků. Spočtěte absolutní, relativní, kumulativní četnosti jednotlivých měření. Výsledky zobrazte v přehledném tvaru.

69. Převod textu do Morseovy abecedy a zpět.

Vstupní text zahrnující písmena "A-Z", číslovky "0-9", speciální znaky ",.?!;" oddělené mezerami převeď do Morseovy abecedy a zpět. Pokud budou v textu nepodporované znaky, ignorujete je. Zkonvertovaný text vytiskněte.71

71. Dány dvě posloupnosti čísel, nalezení jejich průniku.

Na vstupu jsou dvě neuspořádané posloupnosti s různým počtem celočíselných prvků. Napište funkci, která nalezne jejich průnik, tj. prvky nacházející se v obou posloupnostech, vytvoří z nich novou posloupnost a vytiskněte ji. Obě vstupní posloupnosti bude nutné setřídit. Pro nalezení duplicit nepoužívejte kontejnery typu set ani další knihovny podporující vestavěné množinové operace.

72. Dány dvě posloupnosti čísel, nalezení jejich sjednocení.

Na vstupu jsou dvě neuspořádané posloupnosti s různým počtem celočíselných prvků. Napište funkci, která nalezne jejich sjednocení, tj. unikátní prvky v obou posloupnostech, vytvoří z nich novou posloupnost a vytiskněte ji. Obě posloupnosti bude nutné setřídit. Pro nalezení duplicit nepoužívejte kontejnery typu set ani další knihovny podporující vestavěné množinové operace.

73. *Výpočet SUDOKU.

Vstupní data jsou představována čtvercovou maticí rozměru $n \times n$ s předvyplněnými známými hodnotami. Doplňované číslice reprezentujte symbolem 0. Program pro vstupní matici vygeneruje některé z možných řešení SUDOKU. Bonusem je funkcionalita, kdy by byla vygenerována všechna řešení.

74. Převod čísla na římské číslice a zpět.

Vstupní hodnotou je celé číslo v desítkové soustavě zadané uživatelem. Nalezněte jeho reprezentaci římskými číslicemi tak, aby respektovala pravidla použitá pro zápis v této nepoziční soustavě. Reprezentaci římskými číslicemi následně převeď te zpět do desítkové soustavy.

76. Šifrování a dešifrování textu: Caesarova šifra.

Vstupní text zadaný uživatelem zahrnující písmena "A-Z" zašifrujte a dešifrujte Caesarovou šifrou se zvoleným posunem. Před šifrování, ověřte, zda je posun smysluplný, např. abychom se neposunuli o celou abecedu. Ve výsledném textu ponechte mezery a diakritická znaménka.

77. *Šifrování a dešifrování textu: Vigenerova šifra.

Vstupní text zadaný uživatelem zahrnující písmena "A-Z" zašifrujte a dešifrujte Caesarovou šifrou s předem zvoleným klíčem. Ve výsledném textu ponechte mezery a diakritická znaménka.

81. *Hra piškvorky.

Vstupní pole je představováno čtvercovou maticí rozměru $n \times n$ s očíslovanými hodnotami jednotlivých políček oddělených znakem "|". Program umožňovat hru člověka proti počítači s volbou toho, kdo začíná. Pro prohledávání řádků, sloupců a diagonál použijte samostatné funkce. Navrhněte jednoduchou strategii, které v každém kroku za počítač vybere "nejvhodnější" tah. Program umožní detekovat výhru, prohru a nerozhodný stav.

85. Výpočet první geodetické úlohy na sféře.

Na jednotkové sféře je zadán bod $P_1 = [\varphi_1, \lambda_1]$, délka ortodromy s a startovní azimut A_1 . V příslušném sférickém trojúhelníku určete souřadnice koncového bodu ortodromy $P_2 = [\varphi_2, \lambda_2]$, a její koncový azimut A_2 . Před výpočtem zkontrolujte vstupní data a neumožněte nekorektní vstup. Zajistěte, aby úloha měla řešení pro startovní azimut A_1 zadaný v libovolném kvadrantu.

87. Výpočet kladu mapových listů ve zvoleném systému.

Pro zvolený systém kladu mapových listů, zadané souřadnice a zvolené měřítko mapy vygenerujte nomenklaturu mapového listu, ve kterém leží zadaný bod.

96. Výpočet rajónu

Pro zadané body $A = [y_A, x_A], B = [y_B, x_B]$, délku s a úhel ω určete souřadnice bodu P. Výpočet směrníku realizujte vlastní metodou tak, aby hodnota respektovala vstupní datav libovolném kvadrantu. Konfiguraci bodů znázorněte s využitím želví grafiky.

97. Výpočet protínání vpřed z délek.

Pro zadané body $A = [y_A, x_A], B = [y_B, x_B],$ délky s_1 a s_2 určete souřadnice bodu P. Úlohu řešte jako nalezení průsečíku dvou kružnic. Konfiguraci bodů znázorněte s využitím želví grafiky.

98. Výpočet protínání vpřed z úhlů/směrů.

Pro zadané body $A = [y_A, x_A], B = [y_B, x_B]$, úhly α a β určete souřadnice bodu P. Úlohu řešte jako určení neznámého bodu na kolmici. Konfiguraci bodů znázorněte s využitím želví grafiky.

99. Výpočet protínání zpět.

Pro zadané body $A = [y_A, x_A]$, $B = [y_B, x_B]$, $C = [y_C, x_C]$, úhly α a β určete souřadnice bodu P, pro řešení zvolte Cassiniho metodu. Pokud by se konfigurace bodů blížila nebezpečné kružnici, informujte o tomto faktu uživatele. Konfiguraci bodů znázorněte s využitím želví grafiky.

100. Výpočet souřadnicových bodů polygonového pořadu (volný, vetknutý)

Pro zadané body $A = [y_A, x_A]$, $B = [y_B, x_B]$, měřené levostranné vrcholové úhly ω a délky stran s, představující volný polygonový pořad, určete souřadnice bodů P_i . Pro řešení zvolte metodu podobnostní transformace. Konfiguraci bodů znázorněte s využitím želví grafiky.

101. Redukce měřených délek.

Zadanou šikmou délku měřenou mezi dvěma body A,B převed'te s využitím zenitového úhlu na délku vodorovnou. Tuto délku následně přepočtěte do nulového horizontu při známé nadmořské výšce h. Délku poté převed'te do roviny Křovákova zobrazení, hodnoty [y,x] se vztahují ke středu spojnice mezi měřenými body. Opravu z vlivu Křovákova zobrazení spočtěte řadou.