

Data-driven Strategies for Trading Renewable Energy Production

Miguel Á. Muñoz, Juan M. Morales and Salvador Pineda

Universidad de Malaga, Málaga, Spain

Objective

Develop a mathematical optimization approach to:

- Improve renewable energy forecast and trading.
- Able to leverage contextual information.
- Simple, but effective and computationally efficient.

Market Framework

Spot Electricity Market:

Optimal offer E^D of **stochastic** producer?

Optimal day-ahead offer

Problem of interest:

$$\min_{E^D \in [0,\overline{E}]} \ \mathbb{E} \left[\frac{\psi^-(E^D-E)^+ + \psi^+(E-E^D)^+}{\frac{\text{underproduction}}{\text{overproduction}}} \right]$$

where:

 $(x)^+ := \max(x,0)$

 E^D : day-ahead offer \bar{E} : generation capacity

E: uncertain production $\bar{\psi}^+, \bar{\psi}^-$: upward /downward penalty

Analytical solution:

$$E^{D*} = F_{\mathbb{P}}^{-1} \left(\frac{\bar{\psi}^+}{\bar{\psi}^+ + \bar{\psi}^-} \right)$$

If $\bar{\psi}^+ = \bar{\psi}^- = 1$ then E^{D*} is the median of E Only the empirical distribution is available.

Poor solution Do not leverage side information!

Exploiting Side Information

Linear Decision Rule on the features:

$$Q = \left\{ E^D : \mathcal{X} \to \mathbb{R} : E^D(x) = \mathbf{q} \cdot \mathbf{x} = \sum_{j=1}^p q^j x^j \right\},$$
(*)

Sample Average Approximation + Linear Decision Rule:

$$\min_{\mathbf{q}} \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \psi_t^- \left(\sum_{j=1}^p q^j x_t^j - E_t \right)^+ + \psi_t^+ \left(E_t - \sum_{j=1}^p q^j x_t^j \right)^+$$

s. t.
$$0 \le \sum_{j=1}^{p} q^{j} x_{t}^{j} \le \overline{E}, \ \forall t \in \mathcal{T}$$

Can be reformulated as an inexpensive LP!

Recall: If
$$\psi_t^+ = \psi_t^- = 1, \forall t$$
 , \rightarrow *median* of E

^(*) G.-Y. Ban and C. Rudin, "The big data newsvendor: Practical insights from machine learning", *Operation Research*, vol. 67, no. 1, pp. 90-108, 2019.

Performance Metrics

1. Better wind power prediction (quality improvement)

$$MAE := \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} |E_t - E_t^D|$$

RMSE :=
$$\frac{1}{|\mathcal{T}|} \sqrt{\sum_{t \in \mathcal{T}} (E_t - E_t^D)^2}$$

2. Better day-ahead offer (value improvement)

AOL :=
$$\frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \psi_t^- (E_t - E_t^D)^+ + \psi_t^+ (E_t^D - E_t)^+$$

AOL: Average opportunity loss

Case Study

We can use **forecasts** or **categorical variables** as features.

Case Study Data

Data from Jan. 2015 to April 2019

Prices: Energinet.dk

Energy Forecasts: ENTSO-e T. P.

Objective: Improve the DK1-onshore wind power forecast of the Danish TSO for **forecasting** and **trading** leveraging contextual information (neighbouring forecast).

Case Study Models (I)

- a) Energinet.dk's DK1-onshore wind power forecast
- b) Forecasts issued by neighboring TSOs
- c) Categorical info

Case Study Models (II)

(Benchmark)

no.	DK1		Extra DK1			Surrounding bidding areas							
	DK1	DK1	DK1	DK1	DK1	C.F.	DK2	NO2	NO2	SE3	SE4	DAL	DAL
MO	•												
M1	•	•											
M2	•	•	•	•	•	•							
M3	•	•					•	•	•	•	•	•	•
M4	•	•	•	•	•	•	•	•	•	•	•	•	•

- wind p.p. on-shore day-ahead
- wind p.p. off-shore day-ahead
- Solar p.p. day-ahead
- Generation forecast
- Total Load forecast
- Categorical features

p.p.: power production

- Categorical features
 - Month of the year
 - Day of the month
 - Day of the week
 - Hour of the day

	Day of the week									
	x_{d1}	x_{d2}	x_{d3}	x_{d4}	x_{d5}	x_{d6}	x_{d7}			
Monday	1	0	0	0	0	0	0			
Tuesday	0	1	0	0	0	0	0			

Numerical Results

a) Forecasting:

Metric	M1	M2	M3	M4	
MAE	7.03%	7.03%	8.55%	8.53%	
RMSE	6.04%	6.22%	7.33%	7.46%	

b) Trading:

2.26% AOL improvement

Concluding remarks

- Computationally inexpensive easy to train model.
- ✓ Leverage extra contextual information.
- Tested on a realistic case study.
- ✓ Improving TSO energy forecast (8.55%) and bidding (2.26%).

Data-driven Strategies for Trading Renewable Energy Production

Miguel Á. Muñoz, Juan M. Morales and Salvador Pineda

Universidad de Malaga, Málaga, Spain

M. A. Muñoz, J. M. Morales, and S. Pineda, "Feature-driven Improvement of Renewable Energy Forecasting and Trading", *IEEE Transactions on Power Systems*, vol. 35, no. 5, pp. 3753 - 3763, February 2020.

