## Mini-Assignment: Supervised learning-Naive Bayes & Logistic Regression

**Due** Feb 7 at 11:59pm **Points** 4 **Questions** 4 **Available** until Feb 8 at 3am **Time Limit** None **Allowed Attempts** 2

## Instructions

Unit 3: Supervised learning- Naive Bayes & Logistic Regression

This quiz was locked Feb 8 at 3am.

## **Attempt History**

|        | Attempt   | Time      | Score      |  |
|--------|-----------|-----------|------------|--|
| LATEST | Attempt 1 | 2 minutes | 4 out of 4 |  |
|        |           |           |            |  |

Score for this attempt: **4** out of 4 Submitted Feb 5 at 10:26am This attempt took 2 minutes.

Question 1 1 / 1 pts

Let  $A_1,A_2,...,A_n$  be mutually exclusive events that exhaust the probability space Y. Which of the following conditions is true?

$$\bigcirc \sum_{i=0}^{n} P(Y|A_i) = 1$$

Correct!

$$\bigcirc \sum_{i=0}^n P(A_i|Y) = 1$$

$$\bigcirc \sum_{i=0}^{n} \sum_{j=0}^{n} P(A_i \cap A_j) = 1$$

## 1 / 1 pts **Question 2** How can logistic regression be used as a classifier? Logistic regression can be used as a classifier by expanding the range of the output of the logistic function. Logistic regression can be used as a classifier by limiting the domain of the logistic function to positive real numbers only. Correct! Logistic regression can be used as a classifier by using a threshold on the outcome of the logistic function and using this threshold to classify the inputs. Logistic regression can be used as a classifier by removing the nonlinear relationship between input and output.

| Question 3                                                                                                  | 1 / 1 pts |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| In Logistic Regression, the parameter $\eta$ is called the learning rate. What does this parameter control? |           |  |  |  |
| $lacksquare$ The size of the final $w_0$ .                                                                  |           |  |  |  |
| How quickly new features are incorporated into the model.                                                   |           |  |  |  |
| The speed of convergence of the model.                                                                      |           |  |  |  |

Correct!

The speed at which changes happen to the w parameters.

1 / 1 pts **Question 4** 

Which of the following plots shows the relationship between the error rates of logistic regression and Naive Bayes when the data size gets larger?



Figure 1



Correct!



Quiz Score: 4 out of 4