Recurrent Neural Networks

LATEST SUBMISSION GRADE

100%

1.

Question 1

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

1 / 1 point

(

 $X^{(i)} \le j \ge X(i) \le j \ge X(i) \le j \ge 1$

0

 $x^{(i)}(i)$

 \bigcirc

 $x^{\wedge}\{(j) < i >\} x(j) < i >$

C

 $x^{(i)}(j)x(i)$

Correct

We index into the $i^{th}ith$ row first to get the $i^{th}ith$ training example (represented by parentheses), then the $j^{th}ith$ column to get the $j^{th}ith$ word (represented by the brackets).

2.

Question 2

Consider this RNN:

This specific type of architecture is appropriate when:

1 / 1 point

 \circ

T_xT_yTx T_yTx

O

T_x<T_yTx T_yTx

(•)

T_x=T_yTx =ty

O

 $T_x=1\\T_x=1$

Correct

It is appropriate when every input should be matched to an output.

3.

Question 3

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1 / 1 point

Image classification (input an image and output a label)

Speech recognition (input an audio clip and output a transcript)

V

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

Correct

Correct!

V

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

Correct

Correct!

4.

Question 4

You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

1 / 1 point

◉

Estimating $P(y^{<t>} \mid y^{<t>}, y^{<t>})$, $y^{<t-1>}$, $y^{<t-1>}$)

 \bigcirc

Estimating $P(y^{<t>} \mid y^{<t>})$, $y^{<t>}$, $y^{<t>}$) $P(y<t> \mid y<1>, y<2>,..., y<t>)$

 \bigcirc

Estimating $P(y^{< t>})P(y< t>)$

 \circ

Estimating $P(y^{<1>}, y^{<2>}, ..., y^{<t-1>}) P(y<1>,y<2>,...,y<t-1>)$

Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

5.

Question 5

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step tt?

1 / 1 point

◉

(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\frac{y}^{< t>} y^{< t}$.(ii) Then pass this selected word to the next time-step.

 \circ

(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\frac{y}^{< t>}{y^{< t>}}$.(ii) Then pass this selected word to the next time-step.

Ö

(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\frac{y}^{< t>}{y^{< t>}}$. (ii) Then pass the ground-truth word from the training set to the next time-step.

O

(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\frac{y}^{< t>} y^{< t}$. (ii) Then pass the ground-truth word from the training set to the next time-step.

Correct

6.

Question 6

You are training an RNN and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

1 / 1 point

0

ReLU activation function g(.) used to compute g(z), where z is too large.

 \circ

Sigmoid activation function g(.) used to compute g(z), where z is too large.

0
Vanishing gradient problem.
\odot
Exploding gradient problem.
Correct
7.
Question 7 Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{<}$ { <t>} a<t>. What is the dimension of $Gamma_u\Gamma_u$ at each time step?</t></t>
1 / 1 point
1
c
10000
ullet
100
300
Correct
Correct, $\backslash Gamma_u\Gamma u$ is a vector of dimension equal to the number of hidden units in the LSTM.
8. Question 8 Here're the update equations for the GRU.

GRU

$$\tilde{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{}, x^{}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$a^{} = c^{}$$

Alice proposes to simplify the GRU by always removing the $\Gamma_u\Gamma u$. I.e., setting $\Gamma_u\Gamma u = 1$. Betty proposes to simplify the GRU by removing the $\Gamma_r\Gamma r$. I. e., setting $\Gamma_r\Gamma r = 1$ always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

1 / 1 point

(•)

Betty's model (removing \Gamma_r\Gamma_r), because if \Gamma_u \approx $0\Gamma u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Ö

Betty's model (removing \Gamma_r\Gamma_r), because if \Gamma_u \approx $1\Gamma u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

 \bigcirc

Alice's model (removing \Gamma_u\Gu), because if \Gamma_r \approx $1\Gamma r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

 \circ

Alice's model (removing \Gamma_u\Gu), because if \Gamma_r \approx $0\Gamma r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{<}(< t>)c< t>$ to be highly dependent on $c^{<}(< t-1>)c< t-1>$.

9.

Question 9

Here are the equations for the GRU and the LSTM:

GRU

LSTM

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the blanks?

1 / 1 point

•

 $\Gamma_u\Gamma_u$ and $1-\Gamma_u1-\Gamma_u$

 \circ

 $\Gamma \Gamma r$ and $\Gamma u \Gamma u$

 \circ

 $1\text{-}\backslash Gamma_u1\text{-}\Gamma u \text{ and } \backslash Gamma_u\Gamma u$

O

 $\Gamma u \Gamma u$ and $\Gamma u \Gamma u$

Correct

Yes, correct!

10.

Question 10

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>}, ..., x^{<365>}x_{1>}, ..., x_{365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>}, ..., y^{<365>}y_{1>}, ..., y_{365>}$. You'd like to build a model to map from $x \rightarrow y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

1 / 1 point

	-	ı
- 31	•	7
		þ

Unidirectional RNN, because the value of $y^{<}(<)y_{<}t>$ depends only on $x^{<}(<)z>, ..., x^{<}(<)x_{<}t>$, but not on $x^{<}(<)t+1>, ..., x^{<}(<)x_{<}t+1>, ..., x_{<}(<)x_{<}t+1>, ..., x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<)x_{<}(<$

\bigcirc

Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.

\circ

Unidirectional RNN, because the value of $y^{<}\{< t>\}y_{< t>}$ depends only on $x^{<}\{< t>\}x_{< t>}$, and not other days' weather.

\circ

Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.

Correct

Yes!