Fasit til utvalgte oppgaver MAT1110, uka 6/4-9/4

Øyvind Ryan (oyvindry@ifi.uio.no)

April 7, 2010

Oppgave 4.4.1

a)

Den utvidede matrisen er

$$\begin{pmatrix} 2 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 2 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 4 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -4 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -4 \end{pmatrix}.$$

Vi ser dermed at eneste løsning av likningssystemet er $\mathbf{x} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$.

b)

Den utvidede matrisen er

$$\begin{pmatrix} 1 & 1 & 1 & 2 \\ -1 & 2 & -1 & 2 \\ 2 & -2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 3 & 0 & 4 \\ 0 & -4 & -1 & -4 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & \frac{4}{3} \\ 0 & 0 & -1 & \frac{4}{3} \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & \frac{4}{3} \\ 0 & 0 & 1 & -\frac{4}{3} \end{pmatrix}$$

Vi ser dermed at eneste løsning av likningssystemet er $\mathbf{x} = \begin{pmatrix} 2\\ \frac{4}{3}\\ -\frac{1}{3} \end{pmatrix}$.

c)

Den utvidede matrisen er

$$\left(\begin{array}{ccccc} 2 & 1 & -1 & 2 & 3 \\ 1 & 1 & -1 & 2 & -1 \\ -1 & 1 & 2 & 1 & -2 \end{array} \right) \stackrel{I \leftrightarrow II}{\sim} \left(\begin{array}{ccccc} 1 & 1 & -1 & 2 & -1 \\ 2 & 1 & -1 & 2 & 3 \\ -1 & 1 & 2 & 1 & -2 \end{array} \right)$$

$$\begin{array}{c}
II-2I,III+I \\
\sim \\
\end{array}
\begin{pmatrix}
1 & 1 & -1 & 2 & -1 \\
0 & -1 & 1 & -2 & 5 \\
0 & 2 & 1 & 3 & -3
\end{pmatrix}
III+2II,(-1)II \\
\begin{pmatrix}
1 & 1 & -1 & 2 & -1 \\
0 & 1 & -1 & 2 & -5 \\
0 & 0 & 3 & -1 & 7
\end{pmatrix}$$

$$\begin{array}{c}
\frac{1}{3}III \\
\sim \\
\end{array}
\begin{pmatrix}
1 & 1 & -1 & 2 & -1 \\
0 & 1 & -1 & 2 & -5 \\
0 & 0 & 1 & -\frac{1}{3} & \frac{7}{3}
\end{array}
\end{pmatrix}
III+III,I+III \\
\begin{pmatrix}
1 & 1 & 0 & \frac{5}{3} & \frac{4}{3} \\
0 & 1 & 0 & \frac{5}{3} & -\frac{8}{3} \\
0 & 0 & 1 & -\frac{1}{3} & \frac{7}{3}
\end{pmatrix}$$

$$\begin{array}{c}
I-II \\
\sim \\
\end{array}
\begin{pmatrix}
1 & 0 & 0 & 0 & 4 \\
0 & 1 & 0 & \frac{5}{3} & -\frac{8}{3} \\
0 & 0 & 1 & -\frac{1}{3} & \frac{7}{3}
\end{pmatrix}$$

Løsningene er derfor på formen $x_1=4,\ x_2=-\frac{5}{3}x_4-\frac{8}{3},\ x_3=\frac{1}{3}x_4+\frac{7}{3}.$ Dette kan også skrives

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = u \begin{pmatrix} 0 \\ -\frac{5}{3} \\ \frac{1}{3} \end{pmatrix} + \begin{pmatrix} 4 \\ -\frac{8}{3} \\ \frac{7}{3} \end{pmatrix}$$

Oppgave 4.4.3

Vi kan løse $A\mathbf{x}_1=\mathbf{b}_1$ og $A\mathbf{x}_2=\mathbf{b}_2$ samtidig ved å radredusere den utvidede matrisen

$$\begin{pmatrix} -2 & 1 & 3 & 1 & 2 \\ 1 & 2 & -1 & 0 & 2 \\ 0 & 2 & 1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 & 0 & 2 \\ -2 & 1 & 3 & 1 & 2 \\ 0 & 2 & 1 & -1 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 & 2 \\ 0 & 5 & 1 & 1 & 6 \\ 0 & 2 & 1 & -1 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 & 2 \\ 0 & 5 & 1 & 1 & 6 \\ 0 & 2 & 1 & -1 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 & 2 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 5 & 1 & 1 & 6 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 & 2 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & -\frac{3}{2} & \frac{7}{2} & \frac{7}{2} \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 & 2 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{7}{3} & -\frac{7}{3} \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 & 2 \\ 0 & 1 & 0 & \frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 1 & -\frac{7}{3} & -\frac{7}{3} \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & -1 & -\frac{11}{3} & -\frac{11}{3} \\ 0 & 1 & 0 & \frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 1 & -\frac{7}{3} & -\frac{7}{3} \end{pmatrix}$$

Vi ser dermed at løsningene av systemene er $\mathbf{x}_1 = \begin{pmatrix} -\frac{11}{3} \\ \frac{2}{3} \\ -\frac{7}{3} \end{pmatrix}$ og $\mathbf{x}_2 = \begin{pmatrix} -\frac{11}{3} \\ \frac{5}{3} \\ -\frac{7}{3} \end{pmatrix}$.

Oppgave 4.4.4

$$\begin{pmatrix}
0 & 1 & 2 & 0 & 0 \\
1 & 0 & -1 & 1 & 1 \\
6 & 0 & -6 & 7 & h \\
2 & 1 & 0 & 0 & 0
\end{pmatrix} \xrightarrow{I \leftrightarrow II} \begin{pmatrix}
1 & 0 & -1 & 1 & 1 \\
0 & 1 & 2 & 0 & 0 \\
6 & 0 & -6 & 7 & h \\
2 & 1 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{array}{c}
III - 6I, IV - 2I \\
\sim
\end{array}
\begin{pmatrix}
1 & 0 & -1 & 1 & 1 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & h - 6 \\
0 & 1 & 2 & -2 & -2
\end{pmatrix}
IV - II \\
\begin{pmatrix}
1 & 0 & -1 & 1 & 1 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & h - 6 \\
0 & 0 & 0 & -2 & -2
\end{pmatrix}$$

$$IV + 2III \\
\begin{pmatrix}
1 & 0 & -1 & 1 & 1 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & h - 6 \\
0 & 0 & 0 & 0 & 2h - 14
\end{pmatrix}.$$

Vi ser at hvis $h \neq 7$ så blir siste søyle en pivotsøyle, og systemet har da ingen løsninger. Hvis h = 7 har systemet uendelig mange løsninger, siden søyle 3 ikke er en pivotsøyle. Løsningene kan finnes ved å sette inn h = 7 i trappematrisen ovenfor, og bringe den på redusert trappeform:

$$\left(\begin{array}{ccccc} 1 & 0 & -1 & 1 & 1 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)_{I-III} \left(\begin{array}{ccccc} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

Løsningene er da gitt ved $x_1 = x_3$, $x_2 = -2x_3$, $x_4 = 1$, der x_3 kan velges fritt. Det er også vanlig å skrive løsningen

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_3 \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Oppgave 4.4.5

a)

Vi radreduserer først:

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & a^2 - a & 3 \\ -1 & 1 & -3 & a \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & a^2 - a - 2 & 1 \\ 0 & 1 & -2 & a + 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & a^2 - a - 2 & 1 \\ 0 & 0 & -a^2 + a & a \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & a^2 - a - 2 & 1 \\ 0 & 0 & -a(a - 1) & a \end{pmatrix}$$

Den videre radreduseringen avhenger av hvilken verdi a har:

 $\bullet\,$ Hvis a er forskjellig fra 0 og 1 blir trappeformen

$$\left(\begin{array}{ccccc}
1 & 0 & & 1 & & 1 \\
0 & 1 & a^2 - a - 2 & & 1 \\
0 & 0 & & 1 & -\frac{1}{a-1}
\end{array}\right).$$

- Hvis a = 0 blir trappeformen $\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.
- Hvis a = 1 blir trappeformen $\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

b)

- Vi ser fra a) at alle søylene unntatt den siste er pivot-søyler hvis og bare hvis a er forskjellige fra 0 og 1, slik at likningssystemet har en entydig løsning hvis og bare hvis a er forskjellige fra 0 og 1.
- \bullet Hvis a=0 ser vi at tredje søyle ikke er en pivotsøyle, slik at systemet har uendelig mange løsninger.
- Hvis a=1 er siste søyle en pivot-søyle, og da har ikke systemet noen løsninger.

Oppgave 4.5.1

a)

Vi radreduserer

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & -1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -7 & -3 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & \frac{3}{7} & -\frac{1}{7} \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & \frac{1}{7} & \frac{2}{7} \\ 0 & 1 & \frac{3}{7} & -\frac{1}{7} \end{pmatrix}.$$

Vi ser derfor at

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & -1 \end{array}\right)^{-1} = \left(\begin{array}{cc} \frac{1}{7} & \frac{2}{7} \\ \frac{3}{7} & -\frac{1}{7} \end{array}\right).$$

b)

$$\begin{pmatrix} B & I_2 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \stackrel{I \leftrightarrow II}{\sim} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & -1 & 1 & 0 \end{pmatrix} \stackrel{II-2I}{\sim} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -3 & 1 & -2 \end{pmatrix}$$

$$\stackrel{-\frac{1}{3}II}{\sim} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -\frac{1}{3} & \frac{2}{3} \end{pmatrix} \stackrel{I-II}{\sim} \begin{pmatrix} 1 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 1 & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

Vi ser derfor at

$$B^{-1} = \left(\begin{array}{cc} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{array} \right).$$

Oppgave 4.5.2

a)

Vi radreduserer

$$\begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 3 & 3 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 2 & 3 & 1 & 1 & 0 \\ 0 & 1 & -1 & -2 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -2 & 0 & 1 \\ 0 & 0 & 5 & 5 & 1 & -2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -2 & 0 & 1 \\ 0 & 0 & 5 & 5 & 1 & -2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -2 & 0 & 1 \\ 0 & 0 & 1 & 1 & \frac{1}{5} & -\frac{2}{5} \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 0 & -1 & -\frac{2}{5} & \frac{4}{5} \\ 0 & 1 & 0 & -1 & \frac{1}{5} & \frac{3}{5} \\ 0 & 0 & 1 & 1 & \frac{1}{5} & -\frac{2}{5} \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 0 & -\frac{3}{5} & \frac{1}{5} \\ 0 & 1 & 0 & -1 & \frac{1}{5} & \frac{3}{5} \\ 0 & 0 & 1 & 1 & \frac{1}{5} & -\frac{2}{5} \end{pmatrix}.$$

Vi ser derfor at

$$\left(\begin{array}{ccc} 1 & 1 & 2 \\ -1 & 1 & 1 \\ 2 & 3 & 3 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 0 & -\frac{3}{5} & \frac{1}{5} \\ -1 & \frac{1}{5} & \frac{3}{5} \\ 1 & \frac{1}{5} & -\frac{2}{5} \end{array}\right).$$

b)

$$\begin{pmatrix} 1 & -2 & 3 & 1 & 0 & 0 \\ 2 & 4 & 0 & 0 & 1 & 0 \\ 4 & 16 & -6 & 0 & 0 & 1 \end{pmatrix} \stackrel{II-2I,III-4I}{\sim} \begin{pmatrix} 1 & -2 & 3 & 1 & 0 & 0 \\ 0 & 8 & -6 & -2 & 1 & 0 \\ 0 & 24 & -18 & -4 & 0 & 1 \end{pmatrix}$$

$$\stackrel{III-3II}{\sim} \begin{pmatrix} 1 & -2 & 3 & 1 & 0 & 0 \\ 0 & 8 & -6 & -2 & 1 & 0 \\ 0 & 0 & 0 & 2 & -3 & 1 \end{pmatrix}.$$

Vi ser at denne matrisen ikke kan radreduseres til identitetsmatrisen. Fra setning 4.5.4 følger det da at matrisen ikke er inverterbar.

Oppgave 4.5.6

Vi kan faktisk løse a) og b) samtidig slik:

$$\begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 & 5 \\ 0 & 1 & 1 & 0 & 1 & 0 & 3 \\ 0 & -2 & 1 & 0 & 0 & 1 & 3 \end{pmatrix}^{III+2II} \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 & 5 \\ 0 & 1 & 1 & 0 & 1 & 0 & 3 \\ 0 & 0 & 3 & 0 & 2 & 1 & 9 \end{pmatrix}$$

$$\stackrel{\frac{1}{3}III}{\sim} \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 & 5 \\ 0 & 1 & 1 & 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 & \frac{2}{3} & \frac{1}{3} & 3 \end{pmatrix}^{II-III} \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 & \frac{1}{3} & -\frac{1}{3} & 0 \\ 0 & 0 & 1 & 0 & \frac{2}{3} & \frac{1}{3} & 3 \end{pmatrix}.$$

$$\stackrel{I-2II}{\sim} \begin{pmatrix} 1 & 0 & 0 & 1 & -\frac{2}{3} & \frac{2}{3} & 5 \\ 0 & 1 & 0 & 0 & \frac{1}{3} & -\frac{1}{3} & 0 \\ 0 & 0 & 1 & 0 & \frac{2}{3} & \frac{1}{3} & 3 \end{pmatrix}.$$

Vi ser at

$$B^{-1} = \begin{pmatrix} 1 & -\frac{2}{3} & \frac{2}{3} \\ 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix},$$

og at løsningen på likningssystemet er x = 5, y = 0, z = 3.

c)

$$\begin{pmatrix} 1 & 2 & 0 & 5 \\ 0 & 1 & 1 & 3 \\ 0 & -2 & a+1 & b^2-10 \end{pmatrix} \stackrel{III+2II}{\sim} \begin{pmatrix} 1 & 2 & 0 & 5 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & a+3 & b^2-4 \end{pmatrix}.$$

Vi ser nå at likningssystemet har nøyaktig en løsning når $a \neq -3$. Hvis a = -3 får vi matrisen

$$\left(\begin{array}{cccc} 1 & 2 & 0 & 5 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & b^2 - 4 \end{array}\right).$$

Hvis b=2 eller b=-2 har vi uendelig mange løsninger, siden siste søyle nå ikke er en pivoysøyle, og siden tredje søyle ikke er en pivotsøyle. Hvis $b \neq 2$ og $b \neq -2$ blir siste søyle en pivotsøyle, og vi har derfor ingen løsninger.

Oppgave 4.5.9

a)

Nabopunktene til X er A,Z,Y. Nabopunktene til Y er X,Z,B. Nabopunktene til Z er X,Y,C. Siden Spenningene i X,Y,Z er gjennomsnittet av spenningene i nabopunktene får vi likningene

$$x = \frac{1}{3}(a+z+y)$$

$$y = \frac{1}{3}(x+z+b)$$

$$z = \frac{1}{3}(x+y+c).$$

Ganger vi opp og samler a, b, c på høyre side får vi

$$3x - y - z = a$$

$$-x + 3y - z = b$$

$$-x - y + 3z = c.$$

Det er klart at dette likningssystemet også kan skrives $A\mathbf{x} = \mathbf{b}$, med $A, \mathbf{x}, \mathbf{b}$ som i oppgaven.

b)

$$\begin{pmatrix} 3 & -1 & -1 & 1 & 0 & 0 \\ -1 & 3 & -1 & 0 & 1 & 0 \\ -1 & -1 & 3 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 1 & 0 & -1 & 0 \\ 0 & 8 & -4 & 1 & 3 & 0 \\ 0 & -4 & 4 & 0 & -1 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & -3 & 1 & 0 & -1 & 0 \\ 0 & -4 & 4 & 0 & -1 & 1 \\ 0 & 0 & 4 & 1 & 1 & 2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & -3 & 1 & 0 & -1 & 0 \\ 0 & -4 & 4 & 0 & -1 & 1 \\ 0 & 0 & 4 & 1 & 1 & 2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & -3 & 1 & 0 & -1 & 0 \\ 0 & -4 & 0 & -1 & -2 & -1 \\ 0 & 0 & 4 & 1 & 1 & 2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & -3 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & 0 & 1 & \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & 1 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}.$$

Vi ser fra dette at $A^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}$.

c)

Vi kan her gange med den inverse matrisen for å finne x, y, z:

$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{7}{4} \\ 2 \\ \frac{9}{4} \end{pmatrix},$$

som gir oss de indre spenningene x, y, z.

d)

Vi regner ut

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 6 \end{pmatrix}.$$

som gir oss de ytre spenningene a, b, c.

Oppgave 4.6.2

Vi skal finne verdier x_1, x_2, x_3 slik at

$$x_1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + x_2 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + x_3 \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 5 \\ 1 \end{pmatrix}.$$

Vi danner oss den utvidede matrisen til likningssystemet og radreduserer:

$$\begin{pmatrix} 1 & 1 & 3 & -2 \\ 0 & 2 & -1 & 5 \\ -1 & 1 & 2 & 1 \end{pmatrix} \stackrel{III+I}{\sim} \begin{pmatrix} 1 & 1 & 3 & -2 \\ 0 & 2 & -1 & 5 \\ 0 & 2 & 5 & -1 \end{pmatrix} \stackrel{III-II}{\sim} \begin{pmatrix} 1 & 1 & 3 & -2 \\ 0 & 2 & -1 & 5 \\ 0 & 0 & 6 & -6 \end{pmatrix}$$

$$\begin{array}{c}
\frac{1}{6}III \\
\sim \\
\begin{pmatrix}
1 & 1 & 3 & -2 \\
0 & 2 & -1 & 5 \\
0 & 0 & 1 & -1
\end{pmatrix}
II+III,I-3III \\
\sim \\
\begin{pmatrix}
1 & 1 & 0 & 1 \\
0 & 2 & 0 & 4 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\begin{array}{c}
\frac{1}{2}II \\
\sim \\
\sim \\
\begin{pmatrix}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -1
\end{pmatrix}
I-II \\
\sim \\
\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -1
\end{pmatrix}.$$

Vi ser at $x_1 = -1, x_2 = 2, x_3 = -1$, slik at

$$(-1)\begin{pmatrix} 1\\0\\-1 \end{pmatrix} + 2\begin{pmatrix} 1\\2\\1 \end{pmatrix}(-1)\begin{pmatrix} 3\\-1\\2 \end{pmatrix} = \begin{pmatrix} -2\\5\\1 \end{pmatrix}.$$

Oppgave 4.6.3

a)

De to vektorene ser vi fort at er lineært uavhengige. Fra setning 4.6.10 skjønner vi da at vektorene er en basis for \mathbb{R}^2 .

c)

Vi radreduserer:

$$\begin{pmatrix} 2 & 1 & -6 \\ -1 & 1 & 0 \\ 3 & 1 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & -6 \\ 3 & 1 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & -6 \\ 0 & 4 & 7 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 4 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

Fra setning 4.6.2 følger det da at de tre vektorene utsepenner \mathbb{R}^3 , siden alle radene inneholder pivotelementer.

Oppgave 4.6.7

a)

Vi radreduserer og får

$$\left(\begin{array}{cc} 1 & 3 \\ 1 & 4 \end{array}\right) \sim \left(\begin{array}{cc} 1 & 3 \\ 0 & 1 \end{array}\right)$$

Det er klart at alle søylene er pivotsøyler, slik at vektorene er lineært uavhengige.

c)

Vi radreduserer og får

$$\left(\begin{array}{rrr} 1 & 0 & 2 \\ -2 & 1 & -3 \\ 3 & 3 & 9 \end{array}\right) \sim \left(\begin{array}{rrr} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 3 & 3 \end{array}\right) \sim \left(\begin{array}{rrr} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

Det er klart at tredje søyle ikke er en pivotsøyle, slik at vektorene ikke er lineært uavhengige.

d)

I denne oppgaven trenger vi bare å bruke radreduksjon samt setning 4.6.6: Vektorene er lineært uavhengige hvis og bare hvis alle søylene er pivotsøyler.

$$\left(\begin{array}{ccc} 1 & 2 & -1 \\ 0 & -1 & 2 \\ 1 & 3 & 5 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 2 & -1 \\ 0 & -1 & 2 \\ 0 & 1 & 6 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array}\right)$$

Vektorene er lineært uavhengige, alle søyler er pivotsøyler.

Oppgave 4.6.8

a)

Vi radreduserer:

$$\left(\begin{array}{ccc} 2 & -4 & 1 \\ -1 & 2 & 3 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & -2 & -3 \\ 2 & -4 & 1 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & -2 & -3 \\ 0 & 0 & 7 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & -2 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Første og tredje søyle er pivotsøyler, og utgjør derfor en lineært uavhengig delmengde.

b)

Vi radreduserer:

$$\begin{pmatrix} 1 & 0 & 2 & 2 \\ 3 & 2 & 8 & 3 \\ -1 & 1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 2 & 2 & -3 \\ 0 & 1 & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 2 & -3 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & -2 & -9 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & \frac{9}{2} \end{pmatrix}$$

Alle søyler unntatt søyle 4 er pivotsøyler. Derfor er de tre første vektorene lineært uavhengige.

Oppgave 4.6.9

a)

tre vektorer i \mathbb{R}^2 kan ikke være lineært uavhengige på grunn av korollar 4.6.7. De tre vektrene er derfor ikke en basis.

b)

En basis for \mathbb{R}^3 har nøyaktig tre elementer, så de to vektorene danner ikke en basis.

c)

Vi ser fort at de to vektorene er lineært uavhengige. Da følger det fra setning 4.6.10 at de danner en basis.

d)

Her må vi gjøre radreduksjon:

$$\begin{pmatrix} -1 & 2 & -1 \\ 3 & 0 & 3 \\ -2 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 6 & 0 \\ 0 & -3 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Alle søyler er pivotsøyler, slik at vektorene er lineært uavhengige.

Oppgave 4.6.12

```
Anta c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k = \mathbf{0}. Da er 0 = (c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k) \cdot \mathbf{v}_i = c_1(\mathbf{v}_1 \cdot \mathbf{v}_i) + \dots + c_k(\mathbf{v}_k \cdot \mathbf{v}_i) = c_i(\mathbf{v}_i \cdot \mathbf{v}_i) = c_i|\mathbf{v}_i|^2.
```

Dermed er $c_i = 0$ (siden $\mathbf{v}_i \neq 0$ ved antagelse, og derfor $|\mathbf{v}_i|^2 \neq 0$). Siden dette gjelder for alle i følger det av definisjonen av lineær uavhengighet at $\mathbf{v}_1, ..., \mathbf{v}_k$ er lineært uavhengige.

Matlab-kode

```
% Oppgave 4.5.4 a)

[2 -1 3; 0 -1 2; -4 3 1]\[-1; 2; 3]

% Oppgave 4.5.4 b)

[3 2 -1 3; 1 -1 -1 -1; 2 -1 2 -3; 2 -2 1 0]\[4; -3; 0; 1]
```

```
% Oppgave 4.6.5
rref([0.75 4 -1 4 1; 0.3 0.1 3 -1 0.25; -1 -2 -4 3 0; 2 0.25 0.2 2 3])
```

```
% Oppgave 4.6.6
rref([1 0 2 -1 0; -2 -3 -7 3 2; 3 4 10 -1 1; 2 1 5 2 0])
```

Python-kode

```
# Oppgave 4.5.3 a)
print linalg.inv(array([[1,-2,3,-1],[2,3,-1,3],[0,-1,2,-2],[-2,2,-1,3]]))

# Oppgave 4.5.3 b)
print linalg.inv(array([[0.1,2.5,1.3,1.1],[0.2,3.3,1.1,0.3],[1.2,-1.2,2.4,-3.2],[-2.2,0.2,-1.1,0.2]]))

# Oppgave 4.5.3 c)
print linalg.inv(array([[1.1,-2.3,4.3,-0.05,1],[3.4,0.7,-1,3.2,4.1],[3,-1.2,4.2,-3.3,0.2],[-2,2.3,3.1,1.3])
```

```
from numpy import *
from MAT1120lib import *

# Oppgave 4.5.4 a)
print linalg.solve(array([[2,-1,3],[0,-1,2],[-4,3,1]]) , array([[-1],[2],[3]]))

# Oppgave 4.5.4 b)
print linalg.solve(array([[3,2,-1,3],[1,-1,-1,-1],[2,-1,2,-3],[2,-2,1,0]]) , array([[4],[-3],[0],[1]]))
```

```
from numpy import *
from MAT1120lib import *

# Oppgave 4.6.5
print rref(array([[0.75,4,-1,4,1],[0.3,0.1,3,-1,0.25],[-1,-2,-4,3,0],[2,0.25,0.2,2,3]]))
```

```
from numpy import *
from MAT1120lib import *

# Oppgave 4.6.6
print rref(array([[1,0,2,-1,0],[-2,-3,-7,3,2],[3,4,10,-1,1],[2,1,5,2,0]]))
```