Automi e Linguaggi Formali

Parte 2 – Automi a Stati Finiti Non Deterministici

Sommario

1 Automi a Stati Finiti Non Deterministici

2 Automi a Stati Finiti con epsilon-transizioni

Automi a stati finiti non deterministici (NFA) UNIVERSITA DEGLI STUDI DI PADOVA

■ Cosa fa questo automa?

Automi a stati finiti non deterministici (NFA)

■ Cosa fa questo automa?

- È un esempio di automa a stati finiti non deterministico:
 - può trovarsi contemporaneamente in più stati diversi
 - le transizioni non sono necessariamente complete:
 - \blacksquare da q_1 si esce solo leggendo 1
 - q₂ non ha transizioni uscenti

in questi casi il percorso si blocca, ma può proseguire lungo gli altri percorsi

Definizione formale di NFA

Un Automa a Stati Finiti Non Deterministico (NFA) è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q è un insieme finito di stati
- \blacksquare Σ è un alfabeto finito (= simboli in input)
- δ è una funzione di transizione che prende in input (q, a) e restituisce un sottoinsieme di Q
- $q_0 \in Q$ è lo stato iniziale
- \blacksquare $F \subseteq Q$ è un insieme di stati finali

Tabella delle transizioni per l'esempio

L'NFA che riconosce le parole che terminano con 01 è

$$A = (Q, \{0, 1\}, \delta, q_0, \{q_2\})$$

dove δ è la funzione di transizione

	0	1
$ ightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	$\{q_2\}$
* q 2	Ø	Ø

Computazione di un NFA

- Data una parola $w = w_1 w_2 \dots w_n$, una computazione di un NFA A con input w è una sequenza di stati $r_0 r_1 \dots r_n$ che rispetta due condizioni:
 - 1 $r_0 = q_0$ (inizia dallo stato iniziale)
 - 2 $\delta(r_i, w_{i+1}) = r_{i+1}$ per ogni i = 0, ..., n-1 (rispetta la funzione di transizione)
- Diciamo che una computazione accetta la parola w se:
 - 3 $r_n \in F$ (la computazione termina in uno stato finale)
- A causa del nondeterminismo, ci può essere più di una computazione per ogni parola!

Linguaggio accettato da un NFA

- Un NFA A accetta la parola w se esiste una computazione che accetta w
- Un NFA A rifiuta la parola w se tutte le computazioni la rifiutano
- Formalmente, il linguaggio accettato da A è

$$L(A) = \{ w \in \Sigma^* \mid A \text{ accetta } w \}$$

Definire degli automi a stati finiti non deterministici che accettino i seguenti linguaggi:

- L'insieme delle parole sull'alfabeto $\{0,1,\ldots,9\}$ tali che la cifra finale sia comparsa in precedenza
- L'insieme delle parole sull'alfabeto $\{0,1,\ldots,9\}$ tali che la cifra finale *non* sia comparsa in precedenza
- L'insieme delle parole di 0 e 1 tali che esistono due 0 separati da un numero di posizioni multiplo di 4 (0 è un multiplo di 4)

Consideriamo l'alfabeto $\Sigma = \{a, b, c, d\}$ e costruiamo un automa non deterministico che riconosce il linguaggio di tutte le parole tali che uno dei simboli dell'alfabeto non compare mai:

- tutte le parole che non contengono a
- lacktriangle + tutte le parole che non contengono b
- + tutte le parole che non contengono c
- \blacksquare + tutte le parole che non contengono d

Dopo aver costruito l'NFA, trasform

Equivalenza di DFA e NFA

- Sorprendentemente, NFA e DFA sono in grado di riconoscere gli stessi linugaggi
- Per ogni NFA N c'è un DFA D tale che L(D) = L(N), e viceversa
- L'equivalenza di dimostra mediante una costruzione a sottoinsiemi:

Equivalenza di DFA e NFA

- Sorprendentemente, NFA e DFA sono in grado di riconoscere gli stessi linugaggi
- Per ogni NFA N c'è un DFA D tale che L(D) = L(N), e viceversa
- L'equivalenza di dimostra mediante una costruzione a sottoinsiemi:

Dato un NFA

$$N = (Q_N, \Sigma, q_0, \delta_N, F_N)$$

costruiremo un DFA

$$D = (Q_D, \Sigma, \{q_0\}, \delta_D, F_D)$$

tale che

$$L(D) = L(N)$$

La costruzione a sottoinsiemi

- $Q_D = \{S : S \subseteq Q_N\}$ Ogni stato del DFA corrisponde ad un insieme di stati dell'NFA
- $F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale corrispondente nell'NFA
- lacksquare Per ogni $S\subseteq Q_N$ e per ogni $a\in \Sigma$

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

La funzione di transizione "percorre tutte le possibili strade"

La costruzione a sottoinsiemi

- $Q_D = \{S : S \subseteq Q_N\}$ Ogni stato del DFA corrisponde ad un insieme di stati dell'NFA
- $F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale corrispondente nell'NFA
- lacksquare Per ogni $S\subseteq Q_N$ e per ogni $a\in \Sigma$

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

La funzione di transizione "percorre tutte le possibili strade"

Nota: $|Q_D| = 2^{|Q_N|}$, anche se spesso la maggior parte degli stati in Q_D sono "inutili", cioè non raggiungibili dallo stato iniziale.

Esempio di costruzione a sottoinsiemi

Costruiamo δ_D per l'NFA qui sopra:

Esempio di costruzione a sottoinsiemi

Costruiamo δ_D per l'NFA qui sopra:

	0	1
Ø	Ø	Ø
$ ightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_2\}$
$*\{q_2\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0, q_2\}$
$*\{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_0\}$
$*\{q_1,q_2\}$	Ø	$\{q_2\}$
$*\{q_0, q_1, q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$

Diagramma degli stati

La tabella di transizione per D ci permette di ottenere il diagramma di transizione

Per semplificare il disegno, ho omesso gli stati non raggiungibili

Determinare il DFA equivalente all'NFA con la seguente tabella di transizione:

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q_0 & \{q_0\} & \{q_0, q_1\} \\ q_1 & \{q_1\} & \{q_0, q_2\} \\ *q_2 & \{q_1, q_2\} & \{q_0, q_1, q_2\} \end{array}$$

2 Qual è il linguaggio accettato dall'automa?

Teorema di equivalenza tra DFA e NFA

Theorem

Un linguaggio L è accettato da un DFA se e solo se è accettato da un NFA.

Dimostrazione:

- La parte "se" è data dalla costruzione per sottoinsiemi
- La parte "solo se" si dimostra osservando che ogni DFA può essere trasformato in un NFA modificando δ_D in δ_N con la seguente regola:

Se
$$\delta_D(q, a) = p$$
 allora $\delta_N(q, a) = \{p\}$

Determinare il DFA equivalente all'NFA con la seguente tabella di transizione:

$$\begin{array}{c|cc} & 0 & 1 \\ \hline \rightarrow q_0 & \{q_0\} & \{q_0, q_1\} \\ q_1 & \{q_1\} & \{q_0, q_2\} \\ *q_2 & \{q_1, q_2\} & \{q_0, q_1, q_2\} \\ \end{array}$$

Qual è il linguaggio accettato dall'automa?

Trasformare il seguente NFA in DFA

Dato il seguente NFA

- 1 determinare il linguaggio riconosciuto dall'automa
- 2 costruire un DFA equivalente

Convertire il seguente NFA in DFA:

	0	1
$\rightarrow A$	{ <i>A</i> , <i>C</i> }	{ <i>B</i> }
*B	{ <i>C</i> }	{ <i>B</i> }
C	{ <i>B</i> }	{ <i>D</i> }
D	Ø	Ø

Convertire il seguente NFA in DFA:

Sommario

1 Automi a Stati Finiti Non Deterministici

2 Automi a Stati Finiti con epsilon-transizioni

NFA con epsilon-transizioni

Esercizio: costruiamo un NFA che accetta numeri decimali:

- 1 Un segno + o -, opzionale
- **2** Una stringa di cifre decimali $\{0,\ldots,9\}$
- 3 un punto decimale .
- 4 un'altra stringa di cifre decimali

Una delle stringhe (2) e (4) può essere vuota, ma non entrambe

NFA con epsilon-transizioni

Esercizio: costruiamo un NFA che accetta numeri decimali:

- 1 Un segno + o -, opzionale
- **2** Una stringa di cifre decimali $\{0, \dots, 9\}$
- 3 un punto decimale .
- 4 un'altra stringa di cifre decimali

Una delle stringhe (2) e (4) può essere vuota, ma non entrambe

ε -NFA: definizione

Un Automa a Stati Finiti Non Deterministico con ε -transizioni (ε -NFA) è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

dove:

- \blacksquare Q, Σ, q_0, F sono definiti come al solito
- lacksquare δ è una funzione di transizione che prende in input:
 - uno stato in Q
 - un simbolo nell'alfabeto $\Sigma \cup \{\varepsilon\}$

e restituisce un sottoinsieme di Q

Esempio di ε -NFA

L'automa che riconosce le cifre decimali è definito come

$$A = (\{q_0, q_1, \dots, q_5\}, \{+, -, ., 0, \dots, 9\}, \delta, q_0, \{q_5\})$$

dove δ è definita dalla tabella di transizione

Esempio di ε -NFA

L'automa che riconosce le cifre decimali è definito come

$$A = (\{q_0, q_1, \dots, q_5\}, \{+, -, ., 0, \dots, 9\}, \delta, q_0, \{q_5\})$$

dove δ è definita dalla tabella di transizione

	ε	+,-		$0, \ldots, 9$
$ o q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_1	Ø	Ø	$\{q_2\}$	$\{q_1,q_4\}$
q_2	Ø	Ø	Ø	$\{q_3\}$
9 3	$\{q_5\}$	Ø	Ø	$\{q_3\}$
94	Ø	Ø	$\{q_3\}$	Ø
* q 5	Ø	Ø	Ø	Ø

Epsilon chiusura: definizione

L'eliminazione delle ε -transizioni procede per ε -chiusura degli stati:

 \blacksquare tutti gli stati raggiungibili da q con una sequenza $\varepsilon\varepsilon\ldots\varepsilon$

La definizione di ECLOSE(q) è per induzione:

Caso base:

$$q \in \text{ECLOSE}(q)$$

Caso induttivo:

se
$$p \in \text{ECLOSE}(q)$$
 e $r \in \delta(p, \varepsilon)$ allora $r \in \text{ECLOSE}(q)$

$$ECLOSE(q_0) = \{$$

$$\mathrm{ECLOSE}(q_0) = \{q_0\}$$

$$\mathrm{ECLOSE}(q_0) = \{q_0, q_1, q_4$$

$$ECLOSE(q_0) = \{q_0, q_1, q_4, q_2\}$$

$$\mathrm{ECLOSE}(q_0) = \{q_0, q_1, q_4, q_2, \textcolor{red}{q_3}$$

Epsilon chiusura: esempio

$$ECLOSE(q_0) = \{q_0, q_1, q_4, q_2, q_3\}$$

Equivalenza di DFA e ε -NFA

- Anche in questo caso abbiamo definito una classe di automi che è equivalente ai DFA
- Per ogni ε -NFA E c'è un DFA D tale che L(E) = L(D), e viceversa
- Lo si dimostra modificando la costruzione a sottoinsiemi:

Equivalenza di DFA e ε -NFA

- Anche in questo caso abbiamo definito una classe di automi che è equivalente ai DFA
- Per ogni ε -NFA E c'è un DFA D tale che L(E) = L(D), e viceversa
- $lue{}$ Lo si dimostra modificando la costruzione a sottoinsiemi: Dato un arepsilon-NFA

$$E = (Q_E, \Sigma, q_0, \delta_E, F_E)$$

costruiremo un DFA

$$D = (Q_D, \Sigma, S_0, \delta_D, F_D)$$

tale che

$$L(D) = L(E)$$

La costruzione a sottoinsiemi modificata

- $Q_D = \{S \subseteq Q_E : S = \text{ECLOSE}(S)\}$ Ogni stato è un insieme di stati chiuso per ε -transizioni
- $S_0 = \text{ECLOSE}(q_0)$ Lo stato iniziale è la ε -chiusura dello stato iniziale di E
- $F_D = \{S \in Q_D : S \cap F_E \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale di E
- Per ogni $S \in Q_D$ e per ogni $a \in \Sigma$:

$$\delta_D(S, a) = \text{ECLOSE}\Big(\bigcup_{p \in S} \delta_E(p, a)\Big)$$

La funzione di transizione "percorre tutte le possibili strade" (comprese quelle con ε -transizioni)

La costruzione a sottoinsiemi modificata

- $Q_D = \{S \subseteq Q_E : S = \text{ECLOSE}(S)\}$ Ogni stato è un insieme di stati chiuso per ε -transizioni
- $S_0 = \text{ECLOSE}(q_0)$ Lo stato iniziale è la ε -chiusura dello stato iniziale di E
- $F_D = \{S \in Q_D : S \cap F_E \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale di E
- Per ogni $S \in Q_D$ e per ogni $a \in \Sigma$:

$$\delta_D(S, a) = \text{ECLOSE}\left(\bigcup_{p \in S} \delta_E(p, a)\right)$$

La funzione di transizione "percorre tutte le possibili strade" (comprese quelle con ε -transizioni)

Nota: anche in questo caso $|Q_D| = 2^{|Q_E|}$

Esempio di costruzione a sottoinsiemi (1)

Costruiamo un DFA D equivalente all' ε -NFA E che riconosce i numeri decimali:

Esempio di costruzione a sottoinsiemi (2)

■ Come prima cosa costruiamo la ε -chiusura di ogni stato:

ECLOSE
$$(q_0) = \{q_0, q_1\}$$
 ECLOSE $(q_1) = \{q_1\}$
ECLOSE $(q_2) = \{q_2\}$ ECLOSE $(q_3) = \{q_3, q_5\}$
ECLOSE $(q_4) = \{q_4\}$ ECLOSE $(q_5) = \{q_5\}$

■ Lo stato iniziale di D è $\{q_0, q_1\}$

Esempio di costruzione a sottoinsiemi (1)

■ Applicando le regole otteniamo il diagramma di transizione:

Teorema di equivalenza tra DFA e NFA

Theorem

Un linguaggio L è accettato da un DFA se e solo se è accettato da un ε -NFA.

Dimostrazione:

- La parte "se" è data dalla costruzione per sottoinsiemi modificata
- La parte "solo se" si dimostra osservando che ogni DFA può essere trasformato in un ε -NFA modificando δ_D in δ_E con la seguente regola:

Se
$$\delta_D(q, a) = p$$
 allora $\delta_E(q, a) = \{p\}$

- **1** Costruiamo un ε -NFA che riconosce le parole costituite da
 - zero o più *a*
 - seguite da zero o più *b*
 - seguite da zero o più *c*
- 2 Calcolare ECLOSE di ogni stato dell'automa
- **3** Convertire I' ε -NFA in DFA

1 Costruiamo un ε -NFA che riconosce le parole costituite da zero o più a, seguite da zero o più b, seguite da zero o più c

2 Calcolare la ε -chiusura di ogni stato

3 Convertire l' ε -NFA in DFA

1 Costruiamo un ε -NFA che riconosce le parole costituite da zero o più a, seguite da zero o più b, seguite da zero o più c

2 Calcolare la ε -chiusura di ogni stato

3 Convertire I' ε -NFA in DFA

1 Costruiamo un ε -NFA che riconosce le parole costituite da zero o più a, seguite da zero o più b, seguite da zero o più c

2 Calcolare la ε -chiusura di ogni stato

ECLOSE
$$(q_0) = \{q_0, q_1, q_2\}$$

ECLOSE $(q_1) = \{q_1, q_2\}$
ECLOSE $(q_2) = \{q_2\}$

3 Convertire I' ε -NFA in DFA

Esercizio – continua

- **1** Costruiamo un ε -NFA che riconosce le parole costituite da zero o più a, seguite da zero o più b, seguite da zero o più c
- **2** Calcolare la ε -chiusura di ogni stato
- **3** Convertire l' ε -NFA in DFA

