Glasses Classification

VERI MADENCILIĞI DERSI HANDE GÜLMEN 02205076013

CLASSES CLASSIFICATION

- Gözlük sınıflandırılması projesi, seçilen resimde gözlük olup olmadığını söyler.
- Gözlük takıyor musun ? Takmıyor musun?

Valide Dosyasındaki Bazı Resimler

no glasses

no glasses

Train Dosyasındaki Bazı resimler

KULLANILAN SINIFLANDIRMA :CNN

- CNN genellikle görüntü işlemede kullanılan ve girdi olarak görselleri alan bir derin öğrenme algoritmasıdır.
- Gözlük sınıflandırılmasında girdilerim görsel(image)olduğu için CNN kullanılmıştır.

MODEL YAPISI

2 x evrişim katmanı 64 kanallı 3x3 çekirdek ve aynı dolgu

- .1 x 2x2 havuz boyutunda ve 2x2 adımlı maxpool katmanı
- 3x3 çekirdekli 128 kanallı 2 x evrişim katmanı ve aynı dolgu
- 1 x 2x2 havuz boyutunda ve 2x2 adımlı maxpool katmanı
- 3x3 çekirdek ve aynı dolgulu 256 kanaldan oluşan 3 x evrişim katmanı
- 1 x 2x2 havuz boyutunda ve 2x2 adımlı maxpool katmanı
- 3x3 çekirdekli 512 kanallı 3 x evrişim katmanı ve aynı dolgu
- 1 x 2x2 havuz boyutunda ve 2x2 adımlı maxpool katmanı
- 3x3 çekirdekli 512 kanallı 3 x evrişim katmanı ve aynı dolgu
- 1 x 2x2 havuz boyutunda ve 2x2 adımlı maxpool katmanı

-Ayrıca tüm negatif değerlerin bir sonraki katmana aktarılmaması için her katmana ReLU aktivasyonu ekledik.

- Tüm evrişimi oluşturduktan sonra verileri yoğun katmana aktarıyoruz:
- 1 x 4096 birimlik yoğun katman
- 1 x 4096 birimlik yoğun katman
- 1 x 2 üniteden oluşan Yoğun Softmax katmanı

Modeli eğitirken global minimuma ulaşmak için Adam optimizasyonunu kullandık.

Model UYGULANMASI

Model Kontrol Noktası Kaydı

ModelCheckpoint, modelin belirli bir parametresini izleyerek modeli kaydetmemize yardımcı olur.

Erken Durdurma

EarlyStopping, EarlyStopping'te izlemeyi ayarladığımız parametrede herhangi bir artış olmadığı takdirde modelin eğitimini erken durdurmamıza yardımcı olur . patience 20'ye ayarlı, bu, 20 çağda doğrulama doğruluğunda herhangi bir artış görmezse modelin eğitimi durduracağı anlamına gelir.

Fit Jeneratör

Verileri modele aktarmak için **ImageDataGenerator'a** sahip olduğumuz için *model.fit_generator'ı* kullanıyoruz . *Eğitim ve test verilerini fit_generator'a* aktaracağız . fit_generator'da , *steps_per_epoch*, eğitim verilerini modele iletmek için toplu iş boyutunu ayarlayacak ve validation_steps, test verileri için aynısını yapacak . Sistem spesifikasyonlarımıza göre istediğimiz zaman ince ayar yapabiliriz.