REPUBLIQUE TUNISIENNE Ministère de l'Enseignement Supérieur

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs - Session : Juin 2000

Concours en Mathématiques – Physique et Physique – Chimie Epreuve de Sciences et Techniques de l'Ingénieur

Durée : 3 heures

Date: 8 Juin 2000

Nombre de Pages: 6

Barème: I / 6 points

II / 7 points

III / 7 points

Remarque : La partie III Automatique doit être rédigée sur des feuilles séparées

Présentation du système :

L'étude proposée concerne une partie d'une ligne de production de non-tissés fabriqués à partir de fibres synthétiques. Ces non-tissés sont utilisés dans diverses applications telles que : le revêtement de sols (moquettes), les non-tissés ménagers (chiffons, emballages, bourres,...), les non-tissés industriels (filtres, feutres, isolation), les non-tissés à usage vestimentaire (garniture chaude,...).

La ligne de production se compose d'un certain nombre de postes qui permettent :

- de PREPARER (détasser) les fibres à partir du produit brut (fibres compactées sous forme de balles);
- de PESER les fibres ;
- de CADRER pour obtenir un voile de fibre ;
- d'ETALER NAPPER pour réaliser l'épaisseur souhaitée par superposition de voiles ;
- de PRE-AIGUILLETER pour régulariser la structure de la nappe ;
- d'AIGUILLETER pour obtenir le tapis à partir de la nappe ;
- de COUPER longitudinalement (pour obtenir les lisières) et transversalement ;
- d'ENROULER le tapis.

Dans notre étude on s'intéresse à une partie du poste à aiguilleter. Celui ci doit permettre d'amener la nappe horizontalement et de piquer verticalement la nappe de telle manière que les aiguilles, dans un mouvement alternatif, accrochent et entremêlent les fibres.

Fonctionnement (Figure 1):

Le schéma cinématique en deux vues du module de piquage est donné sur la figure 1. Le tapis est obtenu par un travail à froid qui consiste à piquer la nappe à l'aide d'aiguilles munis à leurs extrémités de barbes. Ces nombreuses aiguilles sont implantées dans des supports dits « planches à aiguilles ».

Un moteur et un système de transmission par courroies crantées (non représentés ici) animent en rotation l'arbre manivelle (1). La bielle (4) en liaison rotule de centre C avec l'arbre manivelle (1) supporte à son autre extrémité P la planche à aiguilles. Les bielles de guidages (2) et (3) sont en liaison pivot avec le bâti d'axes respectifs (O_2, Z) et (O_3, Z) . Ces deux bielles de guidages permettent de conditionner la trajectoire de la planche à aiguilles par le biais de la biellette (5).

Repères et paramètres de position (figure 2) :

On considère les repères orthonormés directs suivants :

$$R_{\bullet}(O_1, \overrightarrow{X}, \overrightarrow{Y}, \overrightarrow{Z})$$
: repère galiléen lié au bâti (0) $R_{3}(O_3, \overrightarrow{X}_3, \overrightarrow{Y}_3, \overrightarrow{Z})$: lié à la bielle de guidage (3) $R_{\bullet}(O_1, \overrightarrow{X}_1, \overrightarrow{Y}_1, \overrightarrow{Z})$: lié à la bielle (4) $R_{\bullet}(O_2, \overrightarrow{X}_2, \overrightarrow{Y}_2, \overrightarrow{Z})$: lié à la bielle de guidage (2) $R_{\bullet}(G_3, \overrightarrow{X}_3, \overrightarrow{Y}_3, \overrightarrow{Z})$: lié à la bielle (4) $R_{\bullet}(G_3, \overrightarrow{X}_3, \overrightarrow{Y}_3, \overrightarrow{Z})$: lié à la bielle (5)

 $\theta_1, \theta_2, \theta_3, \theta_4, \theta_5$: paramètres angulaires de position

$$\overrightarrow{O_1O_2} = -\overrightarrow{aX} - \overrightarrow{bY} + \overrightarrow{hZ} \qquad \overrightarrow{O_2O_3} = \overrightarrow{cX} - \overrightarrow{dY} \qquad \overrightarrow{O_1C} = L_1 \overrightarrow{X_1} - \overrightarrow{hZ} \qquad \overrightarrow{O_2A} = \overrightarrow{rX_2} - \overrightarrow{hZ}$$

$$\overrightarrow{O_3B} = \overrightarrow{rX_3} - \overrightarrow{hZ} \qquad \overrightarrow{CP} = L_4 \overrightarrow{X_4} \qquad \overrightarrow{AB} = L_5 \overrightarrow{X_5} \qquad \overrightarrow{PG_5} = \overrightarrow{hZ}$$

$$\overrightarrow{a,b,c,d,h,r,L_1,L_4} \text{ et } L_5 \text{ sont des constantes}$$

Données et hypothèses :

Le moteur exerce sur l'arbre manivelle (1) un couple moteur $\overrightarrow{C}_m = C_m \overrightarrow{Z}$. L'accélération de pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{Y}$. L'action de la nappe de fibres sur la planche à aiguilles est modélisée par le torseur

$$\{T_{nappe / planche}\} = \left\{ \begin{matrix} \vec{F_1} & \vec{X} + \vec{F_2} & \vec{Y} \\ \vec{O} & \vec{O} \end{matrix} \right\}_{P}$$
 $w = c^{\frac{1}{2}}$

Toutes les liaisons sont supposées parfaites. La vitesse angulaire ω de l'arbre manivelle (1) est constante. Les solides sont supposés homogènes. Le tableau suivant résume les caractéristiques de chaque solide :

Solide	Masse	Centre d'inertie	Opérateur d'inertie
arbre manivelle (1)	m _I	$\overrightarrow{O_IG_I} = \frac{L_1}{2} \overrightarrow{X_I} - \frac{h}{2} \overrightarrow{Z}$	$\begin{bmatrix} -E_1 & 0 & C_1 \end{bmatrix}_{(G_1,X_1,Y_1,Z_1)}$
bielle de guidage (2)	<i>m</i> ₂	$O_2\overrightarrow{G}_2 = \frac{r}{2}\overrightarrow{X}_2 - \frac{h}{2}\overrightarrow{Z}$	$\begin{bmatrix} A_2 & 0 & -E_2 \\ 0 & B_2 & 0 \\ -E_2 & 0 & C_2 \end{bmatrix}_{(G_2, X_2, Y_2, Z)}$
bielle de guidage (3)	<i>m</i> ₂	$\overrightarrow{O_3G_3} = \frac{r}{2}\overrightarrow{X3} - \frac{h}{2}\overrightarrow{Z}$	$\begin{bmatrix} A_2 & 0 & -E_2 \\ 0 & B_2 & 0 \\ -E_2 & 0 & C_2 \end{bmatrix}_{(G_3, X_3, Y_3, Z)}$
bielle (4)	m ₄	$\overrightarrow{CG_4} = \frac{L_4}{2} \overrightarrow{X4}$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & A_4 & 0 \\ 0 & 0 & A_4 \end{bmatrix}_{(G_4, \overrightarrow{X}_4, \overrightarrow{Y}_4, \overrightarrow{Z})}$
biellette (5)	m ₅	$\overrightarrow{AG_5} = \frac{L_5}{2} \overrightarrow{X_5}$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & A_5 & 0 \\ 0 & 0 & A_5 \end{bmatrix}_{(G_5, X_5, Y_5, Z)}$

Figure 1 : schéma cinématique du module de piquage

Figure 2: rotations planes

Partie I : Etude Cinématique

- I.1) Ecrire les équations qui découlent de la fermeture de la chaîne cinématique relative aux vecteurs positions :
 - a) en utilisant les points $(O_1, C, P, G_5, A, O_2, O_1)$
 - **b)** en utilisant les points (O_2, A, B, O_3, O_2)
- **I.2)** Donner deux expressions du vecteur position O_1P en passant par le point O_2
- I.3) Exprimer dans le repère R_0 , en fonction de θ_2, θ_3 , de leurs dérivées par rapports au temps et des données géométriques le vecteur vitesse $\overrightarrow{V}(P/R_0)$
- I.4) Donner les éléments de réduction des torseurs cinématiques suivants :
 - a) $\{V(1/0)\}_{G_I}$ projeté dans le repère R_I
 - b) $\{V(2/\theta)\}_{G_2}$ projeté dans le repère R_2
 - c) $\{V(3/0)\}_{G_3}$ projeté dans le repère R_3
 - d) $\{V(4/0)\}_{G_4}$ (pour le calcul de $V(G_4/R_0)$, utiliser $V(P/R_0)$ de la question I.3)
 - e) $\{V(5/0)\}_{G_5}$ (pour le calcul de $V(G_5/R_0)$, utiliser $V(P/R_0)$ de la question I.3)

Partie II : Etude Energétique

- II.1) Donner les éléments de réduction des torseurs cinétiques suivants :
 - a) $\{C(I/0)\}_{G_I}$ projeté dans le repère R_I
 - b) $\{C(2/\theta)\}_{G_2}$ projeté dans le repère R_2
 - c) $\{C(3/\theta)\}_{G_3}$ projeté dans le repère R_3
 - d) $\{C(4/0)\}_{G_4}$ (pour le calcul de $V(G_4/R_0)$, utiliser $V(P/R_0)$ de la question I.3)
 - e) $\{C(5/0)\}_{G_5}$ (pour le calcul de $V(G_5/R_0)$, utiliser $V(P/R_0)$ de la question I.3)
- II.2) Calculer l'énergie cinétique du système $S=\{(1), (2), (3), (4) \text{ et } (5)\}$ par rapport au repère R_0 .
- II.3) Calculer la puissance des efforts extérieurs exercés sur S. Pour la vitesse du point P, considérer toujours $V(P/R_0)$ de la question I.3.
- II.4) Appliquer le théorème de l'énergie cinétique au système S={(1), (2), (3), (4) et (5)}. En déduire une relation entre les paramètres cinématiques, le couple moteur et l'effort résistant au niveau de la planche à aiguilles.

Partie III: Automatique

Dans cette partie, on s'intéresse à l'asservissement de vitesse du système d'entraînement de la machine étudiée.

La figure 3 représente le schéma fonctionnel d'un tel système muni d'un régulateur de vitesse.

Figure 3 : Schéma fonctionnel du système muni d'un régulateur R(p)

où:

- U : tension d'alimentation du moteur;
- C_m: couple moteur;
- C_r: couple résistant;
- Ω_c : vitesse de consigne;
- Ω : vitesse de rotation du moteur.

$$- F(p) = \frac{K}{1 + \tau p} = \frac{90}{1 + 17p}$$

- $K_c=1,35$ et $K_e=1,55$
- R(p): le régulateur

Le schéma comprend deux boucles :

- une boucle interne avec un retour de gain Ke, qui fait partie intégrante du système ;
- une boucle externe avec un retour unitaire qui constitue la boucle de régulation.
- III.1) Etablir l'expression de $\Omega(p)$ en fonction de $\Omega_c(p)$ et $C_r(p)$.
- III.2) On considère que le régulateur est une action proportionnelle : R(p)=A.
- a) A couple résistant nul, calculer la valeur de A assurant une erreur statique de position de 5 %.
- b) Pour cette valeur de A et à une vitesse de consigne égale à 157 rd/s, calculer la vitesse Ω pour un échelon de couple résistant d'amplitude 12 N.m. En déduire la précision du système. Conclure.

III.3) On se propose maintenant d'étudier l'asservissement avec un régulateur de la forme :

$$R(p) = G \frac{l + \tau_1 p}{\tau_1 p}$$

a) Le couple résistant étant nul, on donne sur la figure 4 les diagrammes de Bode de la fonction de transfert en boucle ouverte du système régulé.

Figure 4 : Diagrammes de Bode du système régulé en boucle ouverte

En déduire les paramètres du régulateur R(p).

- b) Ecrire la fonction de transfert en boucle fermée.
- c) Conclure quant aux performances du système : stabilité et précision.