Slučajni procesi 1 - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Janeza Bernika

2021/22

Kazalo

1	Uvod v procese štetja	3
2	Homogeni Poissonov proces (Poissonov tok)	6
3	Nehomogeni Poissonov proces	12
4	Prenovitveni procesi	15
5	Prenovitvene enačbe	21

Oznake.

- $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor
- $\Lambda \neq \emptyset$ indeksna množica
- (E,\mathcal{E}) prostor stanj

1 Uvod v procese štetja

Definicija 1.1. *Slučajni proces*, parametriziran z Λ in prostorom stanj E, je nabor slučajnih spremenljivk $(X_{\lambda})_{\lambda \in \Lambda}$, kjer je $\Omega \to E$ \mathscr{F} -merljiva slučajna spremenljivka za vsak $\lambda \in \Lambda$.

Definicija 1.2. Trajektorija za $\omega \in \Omega$ je funkcija $t \mapsto X_t(\omega)$, si sliko $[0,\infty) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ (oz. $[0,\infty) \to (E,\mathcal{E})$).

Definicija 1.3. Naj bo $(X_t)_{t\geq 0}$ slučajni proces na $(\Omega, \mathcal{F}, \mathbb{P})$ za vrednostmi v (E, \mathcal{E}) . Za vsak nabor $0 \leq t_1 < t_2 < \ldots < t_k$ ima k-razsežni slučajni vektor $(X_{t_1}, X_{t_2}, \ldots, X_{t_k})$ skupno porazdelitev. Takim porazdelitvam pravimo končno razsežne robne porazdelitve.

Posledica. Naj bosta $(X_t)_{t\geq 0}$ in $(Y_t)_{t\geq 0}$ dva različna procesa. Če velja

$$(X_{t_1}, X_{t_2}, \dots, X_{t_k}) \stackrel{(d)}{=} (Y_{t_1}, Y_{t_2}, \dots, Y_{t_k}),$$

 $\forall 0 \leq t_1 < t_2 < \ldots < t_k, \ \forall k \geq 1$, potem za $\forall A \in \mathscr{F}_{\infty}$ in $\forall \tilde{A} \in \tilde{\mathscr{F}}_{\infty}$ $(\tilde{\mathscr{F}}_{\infty} := \sigma\{(Y_t)_{t \geq 0}\})$, ki sta določeni "na enak način", potem

$$\mathbb{P}\{A\} = \mathbb{P}\{\tilde{A}\}.$$

Rečemo $(X_t)_{t\geq 0}\stackrel{(d)}{=}(Y_t)_{t\geq 0}$. Če za enak nabor t_i velja

$$(X_{t_1}, X_{t_2}, \dots, X_{t_k}) \perp \!\!\! \perp (Y_{t_1}, Y_{t_2}, \dots, Y_{t_k}),$$

potem $\forall A \in \mathcal{F}_{\infty}, \forall B \in \tilde{\mathcal{F}}_{\infty}$ velja

$$\mathbb{P}\{A \cap B\} \ = \ \mathbb{P}\{A\}\mathbb{P}\{B\},$$

procesa sta neodvisna.

Definicija 1.4. Naj bo $(E, \mathcal{E}) = (\mathbb{R}, \mathcal{B}(\mathbb{R})), 0 \le t_1 < t_2 < \ldots < t_k$:

$$X_{t_1} - X_{t_0}, X_{t_2} - X_{t_1}, \ldots, X_{t_k} - X_{t_{k-1}}$$

so prirastki.

Definicija 1.5. Proces $(X_t)_{t\geq 0}$ ima neodvisne prirastke, če so za vsak nabor $0 \leq t_1 < t_2 < \ldots < t_k$ slučajne spremenljivke/vektorji $X_{t_1} - X_{t_0}, X_{t_2} - X_{t_1}, \ldots, X_{t_k} - X_{t_{k-1}}$ neodvisni. Prirastki prek neprekrivajočih intervalov takega procesa so neodvisni.

Definicija 1.6. Proces $(X_t)_{t\geq 0}$ ima stacionarne prirastke, če za vsak $0 \leq t_1 < t_2 < \ldots < t_k$, velja

$$(X_{t_1}-X_{t_0},\ldots,X_{t_k}-X_{t_{k-1}}) \stackrel{(d)}{=} (X_{t_1+h}-X_{t_0+h},\ldots,X_{t_k+h}-X_{t_{k-1}+h}), \quad \forall h \ge 0.$$

Definicija 1.7. *Lévyjevi procesi* so slučajni procesi z neodvisnimi, stacionarnimi ter càdlàg trajektorijami.

Definicija 1.8.

- $\mathcal{F}_t := \sigma\{X_s \mid 0 < s < t\}$
- $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \geq 0})$ filtriran verjetnostni prostor
- $T: \Omega \to [0, \infty]$ je čas ustavljanja, če $\{T \le t\} \in \mathcal{F}_t, \forall t \ge 0$
- $\mathcal{F}_T:=\{A\in\mathcal{F}\mid A\cap\{T\leq t\}\in\mathcal{F}_t, \forall t\geq 0\}$ σ -algebra zgodovine časa T

Če je proces càdlàg, je T merljiva glede na \mathcal{F}_T in X_T na $\{T < \infty\}$ merljiva glede na \mathcal{F}_T .

Definicija 1.9. Proces štetja $(N_t)_{t\geq 0}$ je slučajni proces s prostorom stanj $(\mathbb{N}_0, 2^{\mathbb{N}_0}) \subseteq (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, pri katerem so trajektorije $t \mapsto N_t(\omega)$, $t \geq 0$ nepadajoče, zvezne z desne in z vrednostmi v \mathbb{N}_0 . Iz same definicije sledi, da je proces càdlàg.

Definicija 1.10. Zaporedni časi skokov:

- $S_1 := \inf\{t \mid N_t \neq N_0\}$
- $S_{n+1} := \inf\{t > S_n \mid N_t \neq N_{S_n}\} \mathbb{1}_{\{S_n \infty\}} + \infty \mathbb{1}_{\{S_n = \infty\}}$

Časi skokov so časi ustavljanja.

Definicija 1.11. Definiramo višino n-tega skoka $\Delta(S_n) := N_{S_n} - N_{S_n^-}$, kjer je $N_{S_n^-} := \lim_{s \nearrow S_n} N_s$. Proces štetja je enostaven, če je $\Delta(S_n) = 1$, kadarkoli je definirana. V takem primeru velja

$$N_t = N_0 + \sum_{n \ge 1} \mathbb{1}_{\{S_n \le t\}}.$$

2 Homogeni Poissonov proces (Poissonov tok)

Definicija 2.1. Naj bo $\lambda > 0$ dano realno število. *Enostavni proces štetja* $(N_t)_{t\geq 0}$, za katerega je $N_0 = 0$, je HPP(λ), če zanj velja ena od naslednjih trditev:

1. Proces $t \geq 0$ ima neodvisne in stacionarne prirastke in za $\forall t \geq 0$ je

$$N_t \stackrel{(d)}{=} \operatorname{Pois}(\lambda t).$$

Če to velja, potem:

- $N_{t+s} N_t \stackrel{(d)}{=} N_s \underbrace{N_0}_{=0} = N_s \stackrel{(d)}{=} \operatorname{Pois}(\lambda s)$
- za "porazdelitev proces" potrebujemo (načeloma) pokazati

$$(N_{t_0}, N_{t_1}, \dots, N_{t_k}) \stackrel{(d)}{=} (N_{t_0}, N_{t_0} + (N_{t_1} - N_{t_0}), \dots, N_{t_0} + (N_{t_1} - N_{t_0}) + (N_{t_k} - N_{t_{k-1}})$$

$$= \varphi(N_{t_0}, N_{t_1} - N_{t_0}, \dots, N_{t_k} - N_{t_{k-1}})$$

2. Infinetzimalna karakterizacija: proces $(N_t)_{t\geq 0}$ ima neodvisne in stacionarne prirastke in velja

$$\mathbb{P}\{N_t = 1\} = \lambda t + o(t)$$

$$\mathbb{P}\{N_t > 2\} = o(t),$$

kjer je $o(t) \in \{g(t) \mid \lim_{t \searrow 0} \frac{g(t)}{t} = 0\}.$

3. Lastnost medprihodnih časov: zaporedni časi skokov S_n so končni s.g., t.j. $\mathbb{P}\{S_n<\infty\}=1\ \forall n.\ S_0=0.$ Potem je zaporedje medprihodnih časov

$$T_i := S_i - S_{i-1}, i \ge 1,$$

dobro definirano in porazdeljeno kot zaporedje n.e.p. $\operatorname{Exp}(\lambda)$ slučajnih spremenljivk. Ta pogoj nam da tudi eksistenco $\operatorname{HPP}(\lambda)$. $(\Omega, \mathcal{F}, \mathbb{P})$, $(E_i)_{i\geq 1}$ n.e.p. s $\operatorname{Exp}(\lambda)$, $W_n:=\sum_{i=1}^n E_i$. Potem je

$$N_t := \sum_{k \ge 1} \mathbb{1}_{\{W_k \le t\}}$$

 $HPP(\lambda)$.

4. Lastnost vrstilnih statistik: za $\forall t \geq 0$ je $N_t \stackrel{(d)}{=} \mathrm{Pois}(\lambda t)$ in pogojno na $\{N_t = k\}, k \geq 1$, je vektor

$$(S_1, \ldots, S_n) \mid \{N_t = k\} \stackrel{(d)}{=} (U_{(1)}, \ldots, U_{(k)}),$$

kjer je $(U_{(1)}, \ldots, U_{(k)})$ vektor vrstilnih statistik za vektor (U_1, \ldots, U_k) z n.e.p. $\mathcal{U}([0,t])$ porazdeljenimi komponentami.

Trditev 2.1 (Zakon redkih dogodkov; osnovna verzija). Naj bo $(Y_n)_{n\geq 0}$ zaporedje slučajnih $Y_n\stackrel{(d)}{=} \mathrm{Ber}(n,p_n)$ in obstaja $\lim_{n\to\infty} n\,p_n=c>0$. Potem

$$Y_n \xrightarrow{(d)} \operatorname{Pois}(c).$$

Lema 1 (Lema Slutskega). Naj bosta $(X_n)_{n\geq 0}$ in $(Y_n)_{n\geq 0}$ taka, da $X_n \xrightarrow{(d)} X$ in $Y_n \xrightarrow{\mathbb{P}} c \in \mathbb{R}$. Potem velja

$$X_n + Y_n \xrightarrow{(d)} X + c.$$

Lema 2. Dana so števila $\lambda_1, \ldots, \lambda_n > 0$, $\lambda := \sum_{i=1}^n \lambda_i$, $p_i := \frac{\lambda_i}{\lambda}$. Za nabor Z_1, \ldots, Z_n , slučajne spremenljivke z vrednostmi v \mathbb{N}_0 sta ekvivalentni trditvi:

- 1. Z_1, \ldots, Z_n so neodvisne in $Z_i \stackrel{(d)}{=} \operatorname{Pois}(\lambda_i)$
- 2. $Z:=Z_1+\ldots+Z_n\stackrel{(d)}{=}\operatorname{Pois}(\lambda)$ in, pogojno na $\{Z=k\},\ k\geq 1$, je slučajni vektor (Z_1,\ldots,Z_n) porazdeljen z $\operatorname{Mult}(k;p_1,\ldots,p_n)$, tj.

$$\mathbb{P}\{Z_1 = j_1, \dots, Z_n = j_n \mid Z = k\} = \frac{k!}{j_1! \cdots j_n!} p_1^{j_1} \cdots p_n^{j_n},$$

 $kjer j_1 + \ldots + j_n = k.$

Opomba. V literaturi bomo pogosto zasledili naslednjo definicijo $HPP(\lambda)$:

$$(\triangle) \begin{cases} N_0 = 0 \text{ s.g.} \\ \text{prirastki neodvisni, stacionarni in } N_t \stackrel{(d)}{=} \text{Pois}(\lambda t), \ \forall t \geq 0 \end{cases}$$

Ta definicija želi $N_0 = 0$ le do s.g.-enakosti in ne zahteva, da je proces štetja enostaven. Da se zlahka videti, da je proces, ki zadošča (\triangle), skoraj gotovo enostaven.

Trditev 2.2 (Enostavna lastnost Markova za HPP). Naj bo $(N_t)_{t\geq 0}$ HPP (λ) . Za t>0 definiramo

$$\tilde{N}_s := N_{t+s} - N_t, \quad s \ge 0.$$

 $(\tilde{N}_s)_{s\geq 0}$ je tudi HPP(λ) in neodvisna od $\mathscr{F}_t = \sigma\left(\{N_u \mid 0 \leq u \leq t\}\right)$.

Posledica.

- $S_2 \mid \{N_t = 1\} \stackrel{(d)}{=} t + \operatorname{Exp}(\lambda)$
- $S_{N_t+1} \stackrel{(d)}{=} t + \operatorname{Exp}(\lambda)$
- $\mathbb{E}[S_{N_t+1}] = t + \frac{1}{\lambda}$

Trditev 2.3 (Krepka lastnost Markova za HPP). Naj bo $(N_t)_{t\geq 0}$ HPP (λ) , $(\mathcal{F}_t)_{t\geq 0}$ naravna filtracija in T čas ustavljanja za $(\mathcal{F}_t)_{t\geq 0}$. Na $\{T<\infty\}$ definiramo

$$\tilde{N}_s := N_{T+s} - N_T.$$

Potem je $(\tilde{N}_s)_{s\geq 0}$, pogojno na $\{T<\infty\}$, HPP (λ) in neodvisen od

$$\mathscr{F}_T \ = \ \{A \in \mathscr{F}_\infty \mid A \cap \{T \leq t\} \in \mathscr{F}_t, \ \forall t \geq 0\}.$$

Posledica. Na dogodku $\{S_1 < \infty\}$ je $(N_{S_1+t}-N_{S_1})_{t\geq 0}$ HPP (λ) in neodvisen od \mathscr{F}_{S_1} .

Definicija 2.2 (Starost in presežek). Za $t \geq 0$ definiramo

- presežek (excess): $E_t = S_{N_t+1} t$
- \bullet starost (age): $A_t = t S_{N_t},$ ki je merljiva glede na \mathcal{F}_t

Trditev 2.4 (Enostavna lastnost Markova za $(E_t)_{t\geq 0}$ in $(A_t)_{t\geq 0}$). $E_t \stackrel{(d)}{=} \operatorname{Exp}(\lambda)$ in neodvisen od \mathscr{F}_t (torej tudi od A_t). Za U,V neodvisni $\operatorname{Exp}(\lambda)$ porazdeljeni slučajni spremenljivki je $(E_t,A_t)\stackrel{(d)}{=} (U,V\wedge t)$. Če definiramo L_t , dolžino medprihodnega časa, ki zaobjema čas t, velja

$$L_t = S_{N_t+1} - S_t$$
$$= A_t + E_t$$

Za L_t velja paradoks medprihodnega časa:

$$\lim_{t \to \infty} \mathbb{E}[L_t] = \frac{2}{\lambda},$$

med
tem ko je upanje dolžin drugih medprihodnih časov $\frac{1}{\lambda}$.

Markiranje $HPP(\lambda)$

Definicija 2.3 (Markiranje HPP). Naj bo $(N_t)_{t\geq 0}$ HPP (λ) , $(S_i)_{i\geq 1}$ zaporedje prihodov ter $(X_n)_{n\geq 1}$ zaporedje n.e.p. (d-razsežnih) slučajnih vektorjev, neodvisno od $(N_t)_{t\geq 0}$. Zaporedju $(S_i,X_i)_{i\geq 1}$ pravimo markiranje HPP (λ) z zaporedjem oznak (markacij) $(X_n)_{n\geq 1}$. Za $i\in \mathbb{N}$ je $(S_i,X_i)\in [0,\infty)\times\mathbb{R}^d$.

Oznake.

- μ ... skupni zakon $(X_n)_{n\geq 1}$ na \mathbb{R}^d
 - μ je mera na $(\mathbb{R}^d,\mathscr{B}(\mathbb{R}^d))$
 - $-X:\Omega\to\mathbb{R}^d$
 - $-B \in \mathscr{B}(\mathbb{R}^d)$: $\mu(B) = \mathbb{P}\{X \in B\}$

• ν ... produktna mera na $([0,\infty)\times\mathbb{R}^d,\mathcal{B}([0,\infty)\times\mathbb{R}^d))$, kjer je 1. faktor λ -večkratnik Lebesgueove mere na $([0,\infty),\mathcal{B}([0,\infty)))$, 2. faktor pa μ na $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$:

$$\nu(ds, dx) = \lambda \mathbb{1}_{\{s>0\}} ds \otimes d\mu(x),$$

tj. za produktno množico oblike $A = [a, b] \times C$, $0 \le a \le b$, $C \in \mathcal{B}(\mathbb{R}^d)$,

$$\nu(A) = \lambda(b-a) \cdot \mu(C).$$

Izrek 2.1. Naj bodo $A_1, \ldots, A_m \subset [0, \infty) \times \mathbb{R}^d$ Borelovo merljive paroma disjunktne množice, kjer je $\forall i \ A_i$ omejena v časovni komponentni, tj. $\exists T > 0$ tak, da $A_i \subset [0, T] \times \mathbb{R}^d$, $i \in \{1, \ldots, m\}$. Postavimo

$$N(A) = \sum_{i>1} \mathbb{1}_{\{(S_i, X_i) \in A\}}.$$

Pri teh predpostavkah so komponente $(N(A_1),\dots,N(A_m))$ neodvisne, pri čemer je

$$N(A_i) \stackrel{(d)}{=} \operatorname{Pois}(\nu(A_i)).$$

Trditev 2.5 (Redčenje HPP(λ)). Naj bo $(N_t)_{t\geq 0}$ HPP(λ) in $(X_i)_{i\geq 1}$ zaporedje Ber(p)-porazdeljenih slučajnih spremenljivk, neodvisnih od $(N_t)_{t\geq 0}$. Postavimo

$$N_t^1 = \sum_{i \ge 1} \mathbb{1}_{\{S_i \le t, X_i = 1\}},$$

$$N_t^0 = \sum_{i \ge 1} \mathbb{1}_{\{S_i \le t, X_i = 0\}}.$$

Očitno,

$$N_t^0 + N_t^1 = N_t, \quad t \ge 0.$$

Procesa $(N_t^0)_{t\geq 0}$, $(N_t^1)_{t\geq 0}$ sta neodvisna HPP, prvi z intenzivnostjo $\lambda_0 = (1-p)\lambda$, drugi pa z $\lambda_1 = p\lambda$. Tukaj je $\mu = p\delta_{\{1\}} + (1-p)\delta_{\{0\}}$.

Trditev 2.6 (Superpozicija HPP). Naj bo

$$X_i \ := \ \mathbbm{1}_{\{S_i = S_k^1, \ \mathrm{za \ nek} \ k\}} \ = \ \sum_{k \ge 1} \mathbbm{1}_{\{S_i = S_k^1\}}.$$

 X_i je Bernoullijeva slučajna spremenljivka, ki pokaže 1, če je bil i-ti prihod združenega procesa $(N_t)_{t\geq 0}$ prihod, ki je prišel oz. iz $(N_t^1)_{t\geq 0}$. $(X_i)_{i\geq 1}$ ke zaporedje n.e.p. slučajnih spremenljivk, porazdeljenih s Ber $\left(\frac{\lambda_1}{\lambda_0+\lambda_1}\right)$. Še več, to zaporedje je neodvisno od $(N_t)_{t\geq 0}$.

3 Nehomogeni Poissonov proces

Definicija 3.1 (Sprememba ure). Naj bo $R:[0,\infty)\to [0,\infty)$ nepadajoča funkcija, càdlàg (zaradi enostavnosti lahko predpostavimo $\mathbb{R}(x)=0,\ x<0$) in $(\tilde{N}_t)_{t\geq 0}$ homogen Poissonov proces na $(\Omega,\mathcal{F},\mathbb{P})$ z intenzivnostjo 1. Definirajmo

$$N_t = \tilde{N}_{R(t)}, \quad t \ge 0.$$

Zlahka se prepričamo, da velja:

- proces $(N_t)_{t\geq 0}$ ima neodvisne prirastke,
- za $0 \le s < t$ je $N_t N_s \stackrel{(d)}{=} \operatorname{Pois}(R(t) R(s)).$

Procesu $(N_t)_{t\geq 0}$ rečemo nehomogen Poissonov proces z intenzivnostno mero μ , kjer je μ σ -končna mera na $(\mathbb{R}^+, \mathcal{B}(\mathbb{R}^+))$, ki jo porodi R s predpisom

$$\mu([0, a]) = R(a), \quad a \ge 0.$$

Definicija 3.2 (Nehomogen Poissonov proces). Naj bo μ mera na $(\mathbb{R}^+, \mathscr{B}(\mathbb{R}^+))$, kjer $\mu([0,a]) < \infty$ za vse $a \geq 0$. Definirajmo $R(t) = \mu([0,t])$, $t \geq 0$, ki je nepadajoča funkcija, zvezna z desne. Procesu štetja $(N_t)_{t\geq 0}$, ki ima neodvisne prirastke in za katerega velja, da je za poljubno $0 \leq s < t$

$$N_t - N_s \stackrel{(d)}{=} \operatorname{Pois}(\mu((s,t])) = \operatorname{Pois}(R(t) - R(s))$$

rečemo nehomogeni Poissonov proces z intenzivnostno mero μ .

Definicija 3.3 (Trenutna intenzivnost). Naj bo μ absolutno zvezna glede na Lebesgueovo mero, $\mu \ll \mathcal{L}$. Po Radon-Nikodymovem izreku, $\frac{d\mu(s)}{d\mathcal{L}(s)} = \rho(s)$, kjer je $\rho \in L^1_{\text{loc}}(\mathbb{R}^+, \mathcal{L})$ lokalno integrabilna¹. Očitno je $\rho \geq 0$ s.p. V tem primeru je

$$R(t) = \int_0^t \rho(s) \, ds$$

in za $0 \le u < v$ je

$$N_v - N_u \stackrel{(d)}{=} \operatorname{Pois} \left(\int_u^v \rho(s) \, ds \right).$$

 $^{^{1}}$ absolutno integrabilna na vsakem končnem intervalu

V posebnem primeru, ko je $\rho(t) = \lambda > 0$ in $R(t) = \lambda t$ na privede nazaj do $HPP(\lambda)$.

Trditev 3.1 (Nehomogena lastnost Markova). Naj bo $\mathscr{F}_t := \sigma\left(\{N_s \mid 0 \leq s \leq t\}\right)$, $t \geq 0$, naravna filtracija za $(N_t)_{t\geq 0}$ z intenzivnostjo μ . Proces $(N_{t+s}-N_t)_{s\geq 0}$ je neodvisen od \mathscr{F}_t in je nehomogen Poissonov proces, z intezivnostno mero, porojeno z

$$R(s) = R(t+s) - R(t) = \mu((0,s]), \quad s \ge 0.$$

Če je $\frac{dR}{dt} = \rho(t)$ trenutna intenzivnost za $(N_t)_{t\geq 0}$, je za $(N_{t+s} - N_t)_{s\geq 0}$ trenutna intenzivnost $\rho_1(s) = \rho(t+s), s \geq 0$.

Trditev 3.2 (Krepka nehomogena lastnost Markova). Naj bo T čas ustavljanja glede na naravno filtracijo $(\mathcal{F}_t)_{t\geq 0}$, je na dogodku $\{T<\infty\}$ proces $(N_{T+s}-N_T)_{s\geq 0}$, pogojno na $\{T<\infty\}$ in $(\mathcal{F}_t)_{t\geq 0}$, nehomogen Poissonov proces z intenzivnostno funkcijo,

$$R_1(s) = R(T+s),$$

 $\rho_1(s) = \rho(T+s), \quad s \ge 0,$

če ρ obstaja.

Trditev 3.3. Lastnost vrstilnih statistik]Naj bo $(N_t)_{t\geq 0}$ nehomogen Poissonov proces, R(t), $0 \leq s \leq t$ taka, da je R(t) - R(s) > 0. Potem je

$$(S_{N_s+1},\ldots,S_{N_s+k}) \mid \{N_t - N_s = k\} \stackrel{(d)}{=} (Y_{(1)},\ldots,Y_{(k)}).$$

V posebnem, če obstaja trenutna intenzivnost ρ , imajo Y_1, \ldots, Y_k gostoto

$$\frac{\rho(u)}{R(t) - R(s)} \mathbb{1}_{(s,t]}(u).$$

Komentar.

• Pogojna porazdelitev za $(S_{N_s+1},\ldots,S_{N_s+k})$ in $(Y_{(1)},\ldots,Y_{(k)})$ se ujemata na družini

$$\mathcal{U} = \{(s_1, t_1] \times \ldots \times (s_k, t_k] \mid s < s_1 \le t_1 < \ldots < s_k \le t_k \le t\}.$$

 \mathcal{U} je zaprta za neskončne preseke in generira Borelovo σ -algebro

$$V = \{(x_1, \dots, x_k) \mid s < x_1 \le \dots \le x_k \le t\}.$$

Če je \mathcal{U} π -sistem, po Dynkinovem π - λ izreku sledi

$$(S_{N_s+1},\ldots,S_{N_s+k}) \stackrel{(d)}{=} (Y_{(1)},\ldots,Y_{(k)}).$$

• μ je Radonova mera na $([0,\infty), \mathcal{B}([0,\infty))) \iff R:[0,\infty) \to [0,\infty)$ je nepadajoča in zvezna z desne.

Trditev 3.4 (Infinetzimalna karakterizacija²). Imamo proces štetja $(N_t)_{t\geq 0}$, ki ima neodvisne prirastke, skoke velikosti 1 in zvezno nenegativno funkcijo $\rho:[0,\infty)\to[0,\infty)$,

- $\mathbb{P}\{N_{t+h} N_t = 1\} = \rho(t)h + o_t^1(h),$
- $\mathbb{P}\{N_{t+h} N_t \ge 2\} = o_t^2(h),$

pri čemer je $\lim_{h\searrow 0}\frac{\phi_t^i(h)}{h}=0,\ i\in\{1,2\},$ enakomerno za $t\in[0,T],\ \forall T\geq 0.$ Potem je za $\forall s< t$

$$N_t - N_s \stackrel{(d)}{=} \operatorname{Pois} (R(t) - R(s)) = \operatorname{Pois} \left(\int_s^t \rho(u) \, du \right).$$

Izrek 3.1. Naj bo $(N_t)_{t\geq 0}$ nehomogen Poissonov proces na $(\Omega, \mathcal{F}, \mathbb{P})$ z intenzivnostno mero μ . Denimo, da je $R(t) = \mu\left([0,t]\right)$ strogo naraščajoča zvezna funkcija in R(0) = 0. Potem na morda razširjenem³ verjetnostnem prostoru $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ obstaja homogen Poissonov proces $(\tilde{N}_t)_{t\geq 0}$ z intenzivnostjo 1, da velja

$$N_t = \tilde{N}_{R(t)}, \quad t \ge 0.$$

 $^{^2}$ za primer, ko je ρ zvezna

³v zapiskih piše na istem???

4 Prenovitveni procesi

Definicija 4.1 (Prenovitveni proces). Naj bo $(T_i)_{t\geq 1}$ zaporedje neodvisnih in enako porazdeljenih slučajnih spremenljivk, $T_i \sim F$. Predpostavke so:

- $F(0) = \mathbb{P}\{T_i = 0\} < 1 \ (T_i \text{ niso s.g. enake } 0),$
- $\mu = \mathbb{E}[T_i] = \int_{[0,\infty)} x \, dF(x) \leq \infty$ označuje pričakovan medprihodni čas, pri čemer dopuščamo $\mu = \infty$. Velja pa tudi $\mu > 0$.

Definiramo zaporedne čase prihodov oz. prenovitvene trenutno

$$S_0 = 0,$$

$$S_k = \sum_{i=1}^k T_i, \quad k \ge 1.$$

Potem je prenovitveni proces $(N_t)_{t\geq 0}$ definiran z

$$N_t = \sum_{k>1} \mathbb{1}_{\{S_k \le t\}} = \sup\{k \mid S_k \le t\}.$$

Komentar. Za porazdelitev N_0 velja

$$\mathbb{P}{N_0 = k} = \mathbb{P}{S_k = 0, S_{k+1} > 0}
= \mathbb{P}{T_1 = 0, \dots, T_k = 0, T_{k+1} > 0}
= F(0)^k (1 - F(0))$$

Torej $N_0 \stackrel{(d)}{=} \text{Geom} (1 - F(0)) - 1 \text{ in } \mathbb{P}\{N_0 = 0\} = 1.$

Trditev 4.1 (Lastnosti).

- Proces $(N_t)_{t\geq 0}$ je nepadajoč in zvezen z desne. Verjetnost eksplozije je enaka 0.
- $\mathbb{P}\{N_t = \infty\} = \mathbb{P}\{S_k \le t, \forall k \ge 1\} = 0$ za vsak $t \ge 0$.
- $S_k \leq t$ le za končno mnogo k s.g.
- Na $\{t \geq S_k\}$ je $N_t \geq k$.

• Ker je s.g. $S_k < \infty$ za vsak k, je torej $\lim_{t\to\infty} N_t = \infty$ s.g.

Vidimo, da na dogodku z verjetnosto 1 proces $(N_t)_{t\geq 0}$ zadošča zahtevam procesa štetja.

Definicija 4.2. Slučajn spremenljivka T je aritmetična, če $\exists a > 0$ tak, da

$$\mathbb{P}\{T \in \mathbb{Z}a\} = 1,$$

torej T s.g. pokaže le večkratnike števila a.

Definicija 4.3 (Prenovitvena mera). Na bo $(N_t)_{t\geq 0}$ prenovitveni proces. Za $t\geq 0$ definiramo prenovitveno mero

$$M(t) = \mathbb{E}[N_t].$$

Za t < 0 lahko postavimo M(t) = 0.

Definicija 4.4 (k-ta konvolucija). Za porazdelitveno funkcijo F, kjer $T_i \sim F$, definiramo k-to konvolucijo kot

$$F^{k*}(x) = \mathbb{P}\{S_k \le x\} = \mathbb{P}\{T_1 + \ldots + T_k \le x\}.$$

V posebnem je $F^{0*}=\mathbbm{1}_{[0,\infty)}(x)$ Heavisideova funkcija, tore je porazdelitev s.g. enaka konstanti 0. Ker je $S_{k+1}=S_k+T_{k+1}$ velja rekurzivna zveza

$$F^{(k+1)*}(x) = \int_{\mathbb{R}} F^{k*}(x-s) dF(s) = F^{k*} * F.$$

Komentar. Izkaže se, da za neodvisni slučajni spremenljivki $U \sim F$ in $V \sim G$ velja

$$U+V \sim F*G$$

kjer

$$F * G(t) = \begin{cases} 0; & t < 0, \\ \int_{[0,t]} F(t-s) dG(s) = \int_{[0,t]} G(t-s) dF(s); & t \ge 0. \end{cases}$$

Trditev 4.2. Vsaka nepadajoča, zvezna iz desne funkcija $H : \mathbb{R} \to \mathbb{R}$ porodi mero oz. zakon μ na $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ s predpisom

$$\mu((a,b]) = H(b) - H(a) = \int_{(a,b]} dH(x),$$

ki ga lahko enolično razširimo na celotno Borelovo σ -algebro.

Trditev 4.3 (Lastnosti). Za prenovitveni proces $(N_t)_{t\geq 0}$ z medprihodno porazdelitvijo F velja naslednje.

- Za vsak $t \geq 0$ in $r \geq 0$ je $\mathbb{E}[N_t^r] < \infty$. V posebnem je M(t) dobro definirana.
- Velja

$$M(t) = \sum_{k=1}^{\infty} F^{k*}(t).$$

Pri tem je M(t) nepadajoča in zvezna z desne. Velja še $\lim_{t\to\infty} M(t) = \infty$.

- Za Laplace-Stieltjesevo transformacijo $\hat{M}(s)$ prenovitvene mere M velia

$$\hat{M}(s) = \int_{[0,\infty)} e^{-sx} dM(x) = \frac{\hat{F}(s)}{1 - \hat{F}(s)}, \quad s \ge 0,$$

pri čemer je $\hat{F}(s) = \int_{[0,\infty)} e^{-sx} dF(x) = \mathbb{E}[e^{-sT}]$ Laplace-Stieltjesova transformacija porazdelitvene funkcije F oz. Laplaceova transformacija slučajne spremenljivke T.

Izrek 4.1 (Elementarni prenovitveni izrek). Za prenovitveno mero M velja

$$\lim_{t \to \infty} \frac{M(t)}{t} \ = \ \frac{1}{\mu} \ = \ \frac{1}{\mathbb{E}[T]} \in [0, \infty).$$

Trditev 4.4 (Asimptotske lastnosti).

• KZVŠ:

$$\lim_{t \to \infty} \frac{N_t}{t} = \frac{1}{u} \quad \text{s.g.}$$

• CLI: pod pogojem $\sigma^2 = \mathrm{Var}[T] < \infty$ velja

$$\frac{N_t - \frac{t}{\mu}}{\sigma \sqrt{\frac{t}{\mu^3}}} \xrightarrow{(d)} \mathcal{N}(0, 1).$$

Definicija 4.5 (Prenovitev z zaostankom). Naj bo zaporedje medprihodnih časov $(T_i)_{t\geq 0}$ zaporedje neodvisnih nenegativnih slučajnih spremenljivk, pri čemer

- $T_1 \sim G$,
- $T_2, T_3, \ldots \sim F$,

kjer $\mu=\mathbb{E}[T_2]=\int_{[0,\infty)}x\,dF(x),\,F(0)=\mathbb{P}\{T_2=0\}<1.$ Kot prej naj bo (za $t\geq 0$)

$$S_k = \sum_{i=1}^k T_i,$$

$$N_t = \sum_{k\geq 1} \mathbb{1}_{\{S_k \leq t\}},$$

$$M(t) = \mathbb{E}[N_t].$$

Trditev 4.5 (Lastnosti).

- Proces $(N_t)_{t\geq 0}$ ima s.g. nepadajoče, z desne zvezne trajektorije, nima eksplozije in $\lim_{t\to\infty}N_t=\infty$.
- $\mathbb{E}[N_t^r]<\infty, \ \forall \{t,r\}\subset \mathbb{R}_0^+.$ V posebnem je M(t) dobro definirana, z desne zvezna funkcija.

• Velja

$$M(t) = \sum_{k>0} G * F^{k*}(t) = \sum_{k>1} G * F^{(k-1)*}(t),$$

kjer je

$$G * F^{k*}(t) = \int_{[0,t]} G(t-s) dF^{k*}(s), \quad k \ge 0, t \ge 0.$$

- $\bullet \ \hat{M}(s) = \frac{\hat{G}(s)}{1 \hat{F}(s)}$
- $\lim_{t\to\infty} \frac{M(t)}{t} = \frac{1}{\mu} = \frac{1}{\mathbb{E}[T_2]}$
- $\lim_{t\to\infty} \frac{N_t}{t} = \frac{1}{\mu}$ s.g.

Zadnji dve lastnosti pomenita, da na dolgi rok vpliv drugačne porazdelitve T_1 izzveni.

Trditev 4.6. Naj bo $(N_t)_{t\geq 0}$ prenovitveni proces z zaostankom (ali brez). Za $t\geq 0$ definiramo

$$\tilde{N}_s := N_{t+s} - N_t, \quad s \ge 0.$$

Potem je $(\tilde{N}_s)_{s\geq 0}$ prenovitveni proces z zaostankom $\tilde{T}_1 = S_{N_t+1} - t$. $\tilde{T}_1, \tilde{T}_2, \ldots$ so neodvisni od \tilde{T}_1 , enako porazdeljene kot T_2 .

Definicija 4.6 (Porazdelitev integriranega repa). Naj bo $(N_t)_{t\geq 0}$ prenovitveni proces z zamikom tak, da

$$\mu = \mathbb{E}[T_2] = \int_{[0,\infty)} x \, dF(x) < \infty.$$

 $Porazdelitev integriranega repa G_*$ za F je potem podana z

$$G_*(x) = \frac{1}{\mu} \int_0^x (1 - F(u)) \ du \mathbb{1}_{[0,\infty)}(x).$$

Komentar. $G_*(0) = 0$, $\lim_{x \to \infty} G_*(x) = 1$

Trditev 4.7. Naj bodo $T_2, T_3, \ldots \sim F$, $\mu < \infty$ in $T_1 \sim G_*$. Potem velja

$$M(t) = \mathbb{E}[N_t] = \frac{t}{\mu}.$$

Definicija 4.7 (Stacionarnost). Za proces štetka $(N_t)_{t\geq 0}$ rečemo, da je stacionaren, če za vsak $t\geq 0$ velja

$$(N_{t+s} - N_t)_{s \ge 0} \stackrel{(d)}{=} (N_s)_{s \ge 0},$$

t.j., da statistične ne moremo ugotoviti, ali spremljamo proces od začetka, ali pa šele od nekega časa t naprej.

Trditev 4.8. Za prenovitveni proces z zaostankom $(N_t)_{t\geq 0}$ vela, da je stacionaren natanko tedaj, ko je $\mu = \mathbb{E}[T_2] < \infty$ in ima T_1 porazdelitev integriranega repa glede na T_2 .

Izrek 4.2 (Blackwellov prenovitveni izrek). Naj bo $(N_t)_{t\geq 0}$ prenovitveni proces z medprihodno porazdelitvijo F, ki ni aritmetičn, $M(t)=\mathbb{E}[N_t],$ $\mu=\mathbb{E}[T]=\int_{[0,\infty)}x\,dF(x)\leq\infty.$ Potem velja

$$\lim_{t \to \infty} \left(M(t+h) - M(t) \right) \ = \ \frac{h}{\mu}, \quad h \ge 0.$$

Opomba. Zgornji izrek velja tudi v primeru, ko je medprihodna porazdelitev aritmetična, a v tem primeru le za take h, ki so večkratniki razpona F.

5 Prenovitvene enačbe

Definicija 5.1 (Prenovitvena enačba). Naj bo $h:[0,\infty)\to\mathbb{R}$ merljiva, lokalno omejena funkcija in F porazdelitvena funkcija nenegativne slučajne spremenljivke T, ki ni s.g. enaka 0, t.j. F(0)<1. Iščemo funkcio g, ki je konstantna 0 na $(-\infty,0)$ in $g(t-\cdot)\in L^1(dF) \ \forall t\geq 0$, in za katero velja

$$g(t) = h(t) + \int_{[0,t]} g(t-s) dF(s), \quad t \ge 0,$$

oz. na krajše

$$q = h + q * F$$
.

Taki enačbi pravimo (h, F)-prenovitvena enačba.

Trditev 5.1. Prenovitvena mera M(t) prenovitvenega procesa z medprihodno porazdelitvijo F zadošča (F, F)-prenovitveni enačbi

$$M = F + M * F.$$

Trditev 5.2. Prenovitvena mera M(t) prenovitvenega procesa z zaostankom, kjer $T_1 \sim G, T_2, T_3, \ldots \sim F$, zadošča (G, F)-prenovitveni enačbi

$$M = G + M * F$$
.

Posledica.

• M = G + M * F sledi

$$\begin{split} \hat{M} &= \hat{G} + \widehat{M*F} \\ &= \hat{G} + \hat{M} \cdot \hat{F} \implies \hat{M} = \frac{\hat{G}}{1 - \hat{F}}. \end{split}$$

Definicija 5.2 (Porazdelitev starosti in presežka). Naj bosta $A_t = t - S_{N_t}$ startost in $E_t = S_{N_t+1} - t$ presežek prenovitvenega procesa $(N_t)_{t \geq 0}$ z medprehodno porazdelitvijo F ob času t. Definiramo

$$a_x(t) = \mathbb{P}\{A_t \le x\},\$$

 $e_x(t) = \mathbb{P}\{E_t \le x\}.$

Pri fiksnem t sta to točno porazdelitveni funkciji starosti in preseška, lahko pa ju gledamo tudi kot funkciji t pri fiksnem x. V tem primeru dobimo prenovitveni enačbi

$$a_x(t) = (1 - F(t)) \mathbb{1}_{\{t \le x\}} + \int_{[0,t]} a_x(t-s) dF(s),$$

$$e_x(t) = F(t+x) - F(t) + \int_{[0,t]} e_x(t-s) dF(s).$$

Funkcija $a_x(t)$ torej reši $((1-F)\mathbb{1}_{\{t\leq x\}}, F)$ -prenovitveno enačbo, $e_x(t)$ pa $(F(\cdot + x) - F(\cdot), F)$ -prenovitveno enačbo.

Izrek 5.1 (Obstoj in enoličnost rešitev prenovitvenih enačb). Naj bo $h:[0,\infty)\to\mathbb{R}$ merljiva, lokalno omejena funkcija, h(x)=0 na $(-\infty,0)$, in F porazdelitvena funkcija nenegativne slučajne spremenljivke T, ki ni s.g. enaka 0, t.j. F(0)<1. Potem obstaja ena sama merljiva in lokalno omejena funkcija $g,\ g(x)=0$ na $(-\infty,0)$, ki reši (h,F)-prenovitveno enačbo g=h+g*F in sicer je

$$g = h + h * M$$

oz.

$$g(t) = h(t) + \int_{[0,t]} h(t-s) dM(s)$$
$$= h(t) \sum_{k>1} \int_{[0,t]} h(t-s) dF^{k*}(s),$$

kjer je $M(t) = \sum_{k \geq 1} F^{k*}(t)$ prenovitvena mera procesa $(N_t)_{t \geq 0}$ z medprihodno porazdelitvijo F.

Definicija 5.3 (Direktni Riemannov integral). Naj bo $h:[0,\infty)\to[0,\infty)$ nenegativna merljiva funkcija. Pravimo, da je h direktno Riemannovo integrabilna (d.R.i.), če zadošča naslednjima pogojema:

• $\forall \Delta > 0$:

$$\sum_{k>0} \left(\sup_{t \in [k\Delta, (k+1)\Delta)} h(t) \right) < \infty,$$

•

$$\lim_{\Delta \searrow 0} \Delta \sum_{k > 0} \left(\sup_{t \in [k\Delta, (k+1)\Delta)} h(t) \right) = \lim_{\Delta \searrow 0} \Delta \sum_{k > 0} \left(\inf_{t \in [k\Delta, (k+1)\Delta)} h(t) \right).$$

Če h zadošča navedenima zahtevama, potem je limita v drugi zahtevi točno vrednost direktnega Riemannovega integrala $\int_0^\infty h(u)\,du$. Funkcija h poljubnega predznaka je d.R.i., če sta le-taki $h^+=h\wedge 0$ in $h^-=(-h)\wedge 0$, pri čemer je $\int_0^\infty h(u)\,du=\int_0^\infty h^+(u)\,du+\int_0^\infty h^-(u)\,du$.

Trditev 5.3 (Kriteriji za d.R.i.).

- Če je nenegativna funkcija $h \ge 0$ d.R.i., potem je h omejena, zvezna s.p. na $[0, \infty)$ in $\lim_{t\to\infty} h(t) = 0$.
- Če je h merljiva in omejena funkcija na $[0, \infty)$ za katero obstaja $T \ge 0$ tak, da je $h(t) = 0 \ \forall t \ge T$ in je h zvezna s.p. na $[0, \infty)$, potem je h d.R.i.
- Če je $h \ge 0$ nenaraščajoča posplošeno Riemannovo integrabilna funkcija potem je d.R.i. in je njen direktni Riemannov integral enak posplošenemu $\int_0^\infty h(u) du$.
- Če velja $0 \le h \le H$, kjer je H d.R.i., h pa merljiva in zvezna skoraj povsod, potem je h d.R.i.

Izrek 5.2 (Smithov ključni prenovitveni izrek). Naj bo $h:[0,\infty)\to\mathbb{R}$ d.R.i. funkcija in F porazdelitvena funkcija nearitmetične nenegativne slučajne spremenljivke T. Potem za edino merljivo, lokalno omejeno funkcijo g, ki reši enačbp g=h+g*F velja

$$\lim_{t \to \infty} g(t) = \frac{1}{\mu} \int_0^\infty h(u) \, du,$$

kjer je
$$\mu = \int_{[0,\infty)} x \, dF(x) = \mathbb{E}[T] \in (0,\infty].$$

Trditev 5.4 (Asimptotična porazdelitev starosti in presežka). Naj bo $(N_t)_{t\geq 0}$ prenovitveni proces in A_t, E_t starost in presežek s porazdelitvenima funkcijama $a_x(t), e_x(t)$. Smithov izrek nam pove

$$\lim_{t \to \infty} \mathbb{P}\{A_t \le x\} = \lim_{t \to \infty} a_x(t)$$

$$= \frac{\int_0^\infty (1 - F(u)) \, \mathbb{1}_{[0,x]}(u) \, du}{\mu}$$

$$= \frac{\int_0^x (1 - F(u)) \, du}{\mu}$$

in

$$\lim_{t \to \infty} \mathbb{P}\{E_t \le x\} = \lim_{t \to \infty} e_x(t)$$

$$= \frac{\int_0^\infty (1 - F(u)) \ du - \int_x^\infty (1 - F(u)) \ du}{\mu}$$

$$= \frac{\int_0^x (1 - F(u)) \ du}{\mu}.$$

Za $\mu < \infty$ torej v obeh primerih dobimo, da je asimptotična porazdelitev enaka porazdelitvi integriranega repa.

Definicija 5.4 (Prenovitev z defektom). Naj bo $(T_i)_{i\geq 1}$ zaporedje neodvisnih nenegativnih, F-porazdeljenih slučajnih spremenljivk. Pravimo, da so te defektne, če velja

$$\mathbb{P}\{T=\infty\}=1-\mathbb{P}\{T<\infty\}\ =\ 1-F(\infty)\ >\ 0.$$

Da se izognemo trivialnosti, lahko predpostavimo še $F(\infty)>0$. Za porazdelitev $N_\infty=\lim_{t\to\infty}N_t$ velja

$$\mathbb{P}\{N_{\infty} = k\} = \mathbb{P}\{S_k < \infty, S_{k+1} = \infty\}$$
$$= \mathbb{P}\{T_1 < \infty, \dots, T_k < \infty, T_{k+1} = \infty\}$$
$$= F(\infty)^k (1 - F(\infty)),$$

torej $N_{\infty} \stackrel{(d)}{=} \operatorname{Geom} (1 - F(\infty)) - 1$, torej je neizrojena. Velja tudi

$$\lim_{t \to \infty} \mathbb{E}[N_t] = \lim_{t \to \infty} M(t) = \frac{F(\infty)}{1 - F(\infty)}.$$

Komentar. V praksi imamo najpogosteje prenovitveno enačbo oblike

$$g = h + \gamma g * F,$$

kjer je F porazdelitvena funkcija neizrojene nenegativne slučajne spremenljivke $(F(\infty) = 1)$ in $\gamma \in (0, 1)$.

Izrek 5.3 (Obstoj in enoličnost rešitev). Naj bo $h:[0,\infty)\to\mathbb{R}$ merljiva in lokalno omejena, h(x)=0 na $(-\infty,0)$. Potem obstaja natanko ena merljiva in lokalno omejena funkcija $g,\ g(x)=0$ na $(-\infty,0)$, ki reši prenovitveno enačbo z defektom g=h+g*F. Dana je z

$$g = h + h * M$$

oz.

$$g(t) = h(t) + \int_{[0,\infty]} h(t-s) dM(s), \quad t \ge 0.$$

Trditev 5.5 (Asimptotika rešitev). Naj bo $h:[0,\infty)\to\mathbb{R}$ merljiva in lokalno omejena, h(x)=0 na $(-\infty,0)$ in naj obstaja $h(\infty)=\lim_{t\to\infty}h(t)$. Če je $h(\infty)\in\overline{R}$ (iz česar sledi omejenost h), potem za edino lokalno omejeno merljivo rešitev (h,F)-prenovitvene enačbe z defektom g velja

$$\lim_{t \to \infty} g(t) = \frac{h(\infty)}{1 - F(\infty)}.$$