date: wednesday, january 17, 2024

Fundamental Theorem of Finite Abelian Groups III

Lemma 1: Suppose G is an abelian group with $|G| = p^{\alpha_{i}} \cdots p^{\alpha_{r}}$ (p. distinct) For i=1,...,r, set $G_{i} = \{g \in G \mid |g| = p^{\alpha_{i}} \text{ for some } \alpha_{i}\}\}.$ Then each G_{i} is a p_{i} -group and G_{i} is the internal direct product of $G_{i},...,G_{r}$.

Recall: Internal direct product definition: ① G=G...G.

t product definition: $G = G_i$ G_i $G_i \cap (U_{G_i}) = \{e\}$ free since G is abelian $\longrightarrow 3$ $g_i g_j = g_j g_i$ for all $g_i \in G_i$ and $g_j \in G_j$ Proof First show each G_i is a p_i -group. They are subgroups because eeG_i since $|e|=1=p_i^*$

Let a, b \in G_i. So $|a| = p_i^t$ and $|b| = p_i^s$. Then |ab| = |cm(|a|, |b|) $= |CM(p_i^t, p_i^s)|$ $= p_i^{\max(t,s)}.$

So abeGi. · Let aeGi. So lal=la"l=p: So a"eGi.

This is a pi-group since every element has order prime power. We now check conditions ① and ② of direct product. We do ②. Let $g \in G_i \cap (U_i G_j)$. So $g \in G_i = |g| = p_i^s$. But $g \in (U_i G_j)$ so $g \in G_j$ for some j. So $|g| = p_i^s$. So $p_i^s = p_i^s$ <=> s = t = 0 <=> |g| = 1 <=> g = e. To show $G = G_i \cdots G_r = (G_i \cdots G_r) = (G_i \cdots G_r)$ with $0 \le b_i \le a_i$. Let $\alpha_i = \frac{|g|}{p_i^s}$. So $g \in G(\alpha_i, \alpha_2, \dots, \alpha_r) = 1$. There exists C_i, \dots, C_r such that

 $C_1\alpha_1+\cdots+C_r\alpha_r=1$. So

Consider $(g^{c_i\alpha_i})$. Then, $(g^{c_i\alpha_i})^{p_{i_i}} = g^{c_i\alpha_i} + \cdots + c_r\alpha_r = g^{c_i\alpha_i} g^{c_i\alpha_i} \cdots g^{c_r\alpha_r}$ $(g^{c_i\alpha_i})^{p_{i_i}} = g^{c_i\alpha_i} p_i^{b_i} = g^{c_i\beta_i} = g^{c_$

Lemma 2: Let G be a finite abelian p-group and let geG with maximal order (ie. Igl=p™, and Ihl≤p™ for all other h). Then, $G\simeq\langle a\rangle\times K\simeq \mathbb{Z}_{p^m}\times K$ where K is also a p-group. Proof

Assume $|G|=p^{\alpha}$ and let $|a|=p^n$ be the element of largest order. Let K be the largest subgroup of G such that $\langle \alpha \rangle \cap K = \{0\}$ (there is at least one, $K = \{0\}$ so K exists).

Goal is to prove $G=\langle a \rangle + K$ (this then implies G is the internal direct product of $\langle a \rangle$ and K). Suppose $b \in G \setminus (\langle a \rangle + K)$. Let k be the smallest integer such that $p^k b = b + \cdots + b \in \langle a \rangle + K$ (since $p^{\alpha} b = 0$ for some α

since beG and G is a p-group, $p^{\alpha}b=0$ e(a)+K, so such a k exists). So $c=p^{k-1}b\notin\langle\alpha\rangle+K$ but $pc=p^kb\in\langle\alpha\rangle+K$. So pc=ta+k (*) for some teZ, keK. Since $|a|=p^n$, $p^nx=0$ for all $x\in G$ since a has the largest order.

 $0 = p^{n}c = p^{n-1}(pc) = p^{n-1}(ta+k) = p^{n-1}ta+p^{n-1}k$ 80

Thus,

 $p^{n-1}ta = -p^{n-1}k \in \langle a \rangle \cap K = \{0\} = > p^{n-1}ta = 0.$ Since $|a| = p^n$ and $(p^{n-1}t)a = 0$, $p^n|p^{n-1}t = > p|t = > t = mp$. Hence,

pc=ta+k=mpa+k <=>k=pc-mpa=p(c-ma). Set d=c-ma (**). So pd=keK on the other hand, d&K because that would give c=ma+de(a)+K. Fact: Let $H=\{x+zd|xeK,zeZ\}$. Then H is a subgroup of G that

Let 0' = we(a)nH. Hence, w=sa=k,+rd (***) with k,ek, reZ

properly contains K.

Claim: ptr. If plr, we have r=py and since pdeK, we have $0 \neq w = 8a = k + y(pd) \in (a) \cap K = \{0\}$ (contradiction). Since ptr, gcd(p,r) = 1 = > 1pu+rv=1 for some u,v.

