Campus Pérez Zeledón

Programación I Tema: Punteros

1. Ejercicios

1.1. Buscar carácter

Realice una función que devuelve la posición de un carácter dentro de una cadena (char). La función recibe un puntero con la cadena y el carácter a buscar. Devuelve un entero con la posición en la que fue encontrado el carácter o -1 si no se encontró.

1.2. Vector con multiplos de un valor

Debe crear un método que retorne un vector dinámico de enteros, a partir de recibir como parámetro un solo número entero X y un tamaño entero n.

Para cargar el resto del vector partir del número X, en los campos contenidos, sus valores serán múltiplos siguientes del número recibido colocado en la primera posición.

1.3. Descarte de elementos

Dado un vector de numero enteros, descartar los elementos que se repiten. Debe devolver un vector con los elementos que se encuentran, y manteniendo el orden con que estaban.

1.4. Números primos

Escriba una aplicación que rellene un array con los números primos comprendidos entre 1 y 100 y los muestre en pantalla en orden ascendente.

1.5. Matriz dinamica con valores triples

Crear una matriz dinámica, que recibe el vector generado en el ejercicio 1, que formaría parte como columna. Y posterior, según cada fila, se carga con el triple del valor anterior dentro de su misma fila.

Vector

$$\begin{pmatrix} 3 & 6 & 9 \end{pmatrix}$$

Matriz

$$\begin{pmatrix}
3 & 9 & 27 \\
6 & 18 & 54 \\
9 & 27 & 81
\end{pmatrix}$$

1.6. Vector diagonal

Realice una función en C++ que mueva los datos de un vector de n elementos a una matriz de nxn (**m) elementos. Como la matriz es más grande coloque los valores del vector en la diagonal principal y complete la matriz de la siguiente forma: Espacios a la izquierda de la diagonal se le resta 1 sucesivamente y valores a la derecha de la diagonal se multiplica por 2 sucesivamente.

Nota. Pueden incluir el tamaño de manera fija, incluir valores iniciales en el vector. La matriz debe de ser hecha dinámicamente y calcular los valores de esta

$$\begin{bmatrix} 2 & 9 & 3 & 7 & 5 \end{bmatrix} \tag{1}$$

$$\begin{vmatrix}
2 & 4 & 8 & 16 & 32 \\
8 & 9 & 18 & 36 & 72 \\
1 & 2 & 3 & 6 & 12 \\
4 & 5 & 6 & 7 & 14 \\
1 & 2 & 3 & 4 & 5
\end{vmatrix}$$
(2)

1.7. Calcular Pitagoras

Dada una matrix nxm dinamica tipo double como parametro. El cual su primera y segunda columna representan el valor de los catetos, debe crear una tercera columna donde almacene el resultado de calcular la hipotenusa, con la siguiente formula;

$$h = \sqrt{a^2 + b^2}$$

• Ejemplo:

$$\begin{vmatrix} 3 & 4 & 5 \\ 5 & 8 & 9, 43 \\ 6 & 8 & 10 \end{vmatrix}$$
 (3)