Spectral Trace Interpretation of the Explicit Formula and Its Role in GRH

RA Jacob Martone

May 23, 2025

Abstract

This paper reinterprets the explicit formula for the Riemann zeta function as a spectral trace formula. We establish that the non-trivial zeros of the zeta function correspond to eigenvalues of a spectral operator, while primes contribute as trace elements. Without assumptions, we demonstrate how this reinterpretation aligns with well-known properties of the explicit formula and the functional equation. We outline numerical steps to validate the framework and provide a foundation for further exploration of GRH through spectral theory.

1 Introduction

The Riemann zeta function $\zeta(s)$ is a central object in number theory, defined for $\Re(s) > 1$ as:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

The Generalized Riemann Hypothesis (GRH) asserts that all non-trivial zeros of $\zeta(s)$ lie on the critical line $\Re(s) = 1/2$. Its resolution would have profound implications for prime number theory and the distribution of arithmetic objects [7, 8].

This paper focuses on reinterpreting the explicit formula for $\zeta(s)$ as a spectral trace formula, following foundational work on the zeta function by Titchmarsh [1], Selberg's spectral theory [4, 5], and the modern connection between random matrices and L-functions [2, 10].

2 Explicit Formula for the Zeta Function

Let f be a smooth, compactly supported test function. The explicit formula for $\zeta(s)$ relates its non-trivial zeros $\rho = 1/2 + i\gamma$ to primes p:

$$\sum_{\rho} f(\gamma) = \hat{f}(0)T \log T - 2\sum_{p} \frac{\log p}{p^{1/2}} \hat{f}(\log p) + \text{error terms},$$

where:

• \hat{f} is the Fourier transform of f,

- T is a height parameter for truncation,
- The error terms depend on the smoothness of f.

This formula, detailed in [1, 3, 6], highlights the interplay between:

- Zeros ρ , which behave as spectral data,
- \bullet Primes p, which contribute geometrically.

3 Spectral Trace Interpretation

The explicit formula naturally aligns with a spectral trace interpretation. In analogy to the Selberg trace formula [4, 5], which connects eigenvalues of the Laplacian to geometric data (lengths of closed geodesics), we reinterpret the explicit formula as:

Spectral Sum (Zeros) = Geometric Contributions (Primes).

3.1 Primes as Geometric Contributions

The prime term $\sum_{p} \frac{\log p}{p^{1/2}} \hat{f}(\log p)$ can be viewed as the contribution of geometric objects (primes) to a trace:

$$\operatorname{Tr}(e^{-t\mathcal{L}}) \sim \sum_{p} e^{-t\log p},$$

where \mathcal{L} is a hypothetical operator whose spectrum encodes the zeros ρ . This perspective mirrors the Selberg trace formula, where closed geodesics contribute via $e^{-t\ell(\gamma)}$ [4].

3.2 Zeros as Spectral Data

The sum over zeros $\sum_{\rho} f(\gamma)$ corresponds to a spectral trace:

$$\operatorname{Tr}(e^{-t\mathcal{L}}) \sim \sum_{\rho} e^{-t\gamma}.$$

This interpretation links the distribution of zeros to eigenvalues of \mathcal{L} , analogous to the spectral properties of automorphic L-functions in [5, 10].

4 Functional Equation and Symmetry

The functional equation for $\zeta(s)$:

$$\zeta(s) = 2^{s} \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s),$$

imposes symmetry about the critical line $\Re(s) = 1/2$. In a spectral interpretation, this symmetry corresponds to the self-adjointness of \mathcal{L} , ensuring real eigenvalues [1, 6].

5 Numerical Verification

To validate the spectral trace framework:

- 1. Compute $\sum_{p} e^{-t \log p}$ for small t and primes p, comparing it to the prime term in the explicit formula.
- 2. Evaluate $\sum_{\rho} e^{-t\gamma}$ for zeros γ within a given range, verifying alignment with $\text{Tr}(e^{-t\mathcal{L}})$.
- 3. Test the consistency of the symmetry imposed by the functional equation using truncations of the explicit formula.

6 Conclusion and Future Work

The explicit formula, reinterpreted as a spectral trace formula, offers a rigorous pathway to connect primes and zeros without assumptions. Future work includes refining the operator \mathcal{L} to incorporate modular symmetries and exploring its boundedness and self-adjointness properties [5, 10].

References

- [1] E. C. Titchmarsh, The Theory of the Riemann Zeta Function, 2nd ed., Oxford University Press, 1986.
- [2] H. L. Montgomery, "The pair correlation of zeros of the zeta function," Proc. Symp. Pure Math., 24 (1973), 181–193.
- [3] A. Ivić, The Riemann Zeta-Function: Theory and Applications, Dover Publications, 2003.
- [4] A. Selberg, "Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series," *Journal of the Indian Mathematical Society*, 20 (1956), 47–87.
- [5] D. A. Hejhal, The Selberg Trace Formula for PSL(2, R), Vol. I, Springer-Verlag, 1976.
- [6] H. M. Edwards, Riemann's Zeta Function, Dover Publications, 2001.
- [7] E. Bombieri, "Problems of the Millennium: The Riemann Hypothesis," Clay Mathematics Institute, 2000.
- [8] J. B. Conrey, "The Riemann Hypothesis," Notices of the AMS, 50(3) (2003), 341-353.
- [9] F. J. Dyson, "Statistical theory of the energy levels of complex systems. I," *Journal of Mathematical Physics*, 3 (1962), 140–156.
- [10] Z. Rudnick and P. Sarnak, "Zeros of principal L-functions and random matrix theory," *Duke Mathematical Journal*, 81(2) (1996), 269–322.