HACETTEPE UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING BBM231 LOGIC DESIGN

Homework 4 (For all sections)

Assigned : 12.12.2018

Due : 17.12.2018

QUESTIONS:

Q1. For the sequential circuit given at right, find:

- a. Input equations and state table.
- b. State equations and output equation.
- c. State diagram.

Q2. For the sequential circuit below:

- a. Find flip-flop input equations (J $_{\!A},\,K_{\!A},\,J_{\!B},\,K_{\!B})$ and fill the state table.
- b. Write state equations and output equation.
- c. Draw its state diagram.

(A4)	a)	JA=X·B
		KA= X
		JB = A'X
		KB=A+x'
		Z = A13

0	n	γ	1 A*	13*	7	JA	KA	J_B	Ks_
_	13	^	10		6	0	ľ	O	1
0	0	0	10		0	()	0	1	0
0	0	- 1	0	1	0	0	1	0	1
D	1	0	10	0	0	1	n	1	0
0	1	١	1		U		1	0	1
1	0	0	0	0	(0	(0	1
i	0	١	1	0	1	0	0	0	
1	1	1)	0	0	0	0	1	0	1
i	١	Ĭ	1	()	0	1	0	0	
,			-						

Q3. A Mealy type state diagram is given in the figure below. Using JK type flip-flops and gates, design and draw the circuit for this sequential system. (In the diagram X(input) / Y(output))

Q_AQ_BX	Q _A +	Q _B +	J_{A}	K_A	J_{B}	K_{B}	Z
000	0	1	0	Х	1	Х	1
001	1	1	1	Х	1	Χ	0
010	0	1	0	Х	Х	0	0
011	1	1	1	Х	Х	0	0
100	1	1	Х	0	1	Χ	0
101	1	1	Х	0	1	Χ	0
110	0	0	Х	1	Х	1	0
111	0	0	Х	1	х	1	1

Q4. Design a <u>Mealy type state machine</u> with input X and output Y. Y should be 1 whenever the sequence <u>110 or 101</u> has been detected on X on the last 3 consecutive rising clock edges (or ticks). Otherwise, Y=0. <u>Use at most two D flipflops</u>. An example input—output combination is given below:

Х	0	0	1	1	0	0	1	0	1	0	0	1	1	1	0	1	0	0	1	0	1	1	0	0	1	1	0	0	1	1
Υ	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	0	0	0

You should show: a) State diagram. b) State table. c) Flip flop input equations and output equation.

Q5. A PN flip-flop has four functions given below:

PN	Functions
00	Reset to 0
01	No change
10	Complement
11	Set to 1

- a) Derive the characteristic equation for PN flip-flop. Show your work.
- b) Draw the Mealy type state diagram of a sequence detector that detects the sequence 1101. You must have at most four states. When the sequence 1101 is detected, the output Z becomes 1.
- c) Design the sequence detector usin two PN flip-flops. (Hint: You should determine the flip-flop input equations, P_A, N_A, P_B, N_B, and the output equation.)

