VISUAL SPATIAL REASONING OF LARGE LANGUAGE MODELS

Presentation: Jinlong Liu

LIST OF CONTENT

01.

PROJECT INTRODUCTION

A brief description of this project

04.

EXPERIMENT DESIGN

Introduction the key aspects of experiment design

02.

AIMS AND OBJECTIVES

Research aims and objectives

05.

PRPJECT PLAN

Show detailed project plan

03.

FEASIBILITY ESTIMATE

Talk about feasibility according to the martials

06.

REFERENCES

List of References

O1. PROJECT INTRODUCTION

In recent years, Large Language Models (LLMs) have transformed the field of Natural Language Processing (NLP) with their impressive achievements. Such as ChatGPT, Bert and Bard. As they updated in a raptly speed, there are a lot of test work also starting.

- The testing works are focused on the professional domain, like the ability of logic, answer test questions in various expert domain.
- This project is based on the work of testing ability of spatial reasoning, which is a subject of testing ability of commonsense reasoning.
- But it is different with existed work with adding visual input into prompt not just text input. Which used to be works of multimodels problem.

O2. AIMS AND OBJECTIVES

AIMS:

- 1. Investigate performance of Visual Question Answering (VQA) tasks.
- 2. Make comparison between different versions of LLMs.
- 3. Find challenges of LLM's on Visual Spatial Reasoning.

MAIN OBJECTIVES

- 1. Design a diverse dataset with corresponding questions.
- 2. Conduct systematic experiments by using prepared dataset.
- 3. Analyse the experimental results to identify the challenges of LLMs
- 4. Provide the insight of strong points and weakness of current LLMs.

O3. FEASIBILITY ESTIMATE

Former works

Name	Year	Source	Feature							
VSR	2022	[1]	66 distinct types of spatial relations							
GQA	2019	[2]	22M diverse reasoning questions							
AGQA	2021	[3]	Add videos paired with question							
CVR	2022	[4]	Measures of sample efficiency(Train dataset)							
VALSE	2021	[5]	Test the linguistic phenomena in visual modality							
Spatial commonsence benchmark	2022	[6]	Focus on positional relationship between people and objects							
SpartQA	SpartQA 2021 [7]		Focus on generate spatial description by limitted grammar rules							

SAME POINTS:

• The new version of GPT models now can consider as multi-models, and it can support get in visual content and text prompt at same time. It can work with this kind of tasks now.

DIFFERENT POINTS:

- This VAQ is mostly like testing dataset for the object models, LLM's are usually tested by prompt.
- All the benchmarks give specific words to describe spatial reasoning or give choice or label to select. This project is to let LLMs generate by its self.

O4. EXPERIMENT DESIGN

The detailed experiment shows as figure 1, it has three stage:

- Preparing Stage(Design Dataset): Combine existed dataset and design questions with it.
- 2. Experiment Stage: test every selected model with image paired question one by one.
- 3. Analysis Evaluation Stage: Analysis generated answer with accuracy of answers and make judgement about reasoning steps

The question prompt shows as below, it may contain 3-4 questions include objects relevant positions and explain reasoning steps.

Input Image	Question						
	 Can you describe the spatial relationship between the tea table and the sofa? Can you describe the relevant spatial relationships between the objects on the tea table? Show the Reasoning Steps. 						

Advantages:

- specific follow former works.
- 2. The test dataset can be much 2. Analysis work is low efficient in more comprehensive. Which can

contain much more situations.

3. Can find detailed differences between different models.

Disadvantages:

- Questions can be designed more 1. The experiment may cost much more time.
 - comparing with former work.

O5. PRPJECT PLAN

GANTT CHART

ID	Name	Jun, 2023					Jul, 2023				Aug, 2023	Aug, 2023				
		29 May	04 Jun	11 Jun	18 Jun	25 Jun	02 Jul	09 Jul	16 Jul	23 Jul	30 Jul	06 Aug	13 Aug	20 Aug	27 Aug	
1	Litreature Review and Experiment Design															
2	▼ Build Dataset															
3	Image Collection					→ [
4	Build Question Set						-									
5	▼ Experiment Stage															
6	Run on GPT-3.5-turbo							+	1							
7	Run On GPT-4								-	1						
8	Run On GPT-Newest									+						
9	Data Analysis										-	1				
10	Write Final report and Dessertation											+				

06. REFERENCES

PAPERS MENTIONED IN THIS SLIDES

- [1]. F. Liu, G. Emerson, and N. Collier, "Visual spatial reasoning," arXiv preprint arXiv:2205.00363, 2022.
- [2]. D. A. Hudson and C. D. Manning, "Gqa: A new dataset for real-world visual reasoning and compositional question answering," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 6700–6709.
- [3]. M. Grunde-McLaughlin, R. Krishna, and M. Agrawala, "Agqa: A benchmark for compositional spatio-temporal reasoning," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11 287–11 297.
- [4]. X. Liu, D. Yin, Y. Feng, and D. Zhao, "Things not written in text: Exploring spatial commonsense from visual signals," arXiv preprint arXiv:2203.08075, 2022.
- [5]. A. Zerroug, M. Vaishnav, J. Colin, S. Musslick, and T. Serre, "A benchmark for compositional visual reasoning," arXiv preprint arXiv:2206.05379, 2022.
- [6]. L. Parcalabescu, M. Cafagna, L. Muradjan, A. Frank, I. Calixto, and A. Gatt, "Valse: A task-independent benchmark for vision and language models centered on linguistic phenomena," arXiv preprint arXiv:2112.07566, 2021.
- [7]. R. Mirzaee, H. R. Faghihi, Q. Ning, and P. Kordjmashidi, "Spartqa:: A textual question answering benchmark for spatial reasoning," arXiv preprint arXiv:2104.05832, 2021.

