1. Let G be a Lie group. Show that there exists a nontrivial left-invariant Borel measure μ on G. That is show that there exists a measure μ such that for any measurable subset A of G

$$\mu(L_q(A)) = \mu(A)$$

where $L_g(x)=gx$ for all $g,x\in G$. Show that μ is unique up to multiplication by a constant.

- 2. Prove the properties (iv)-(vi) of Lie derivative (Section 1.19 in the lecture notes).
- 3. Consider a manifold \mathcal{M} and a coordinate chart (U,ϕ) such that U is open, bounded and simply connected. Let ω be a 1-form supported in $\phi(U)$ and such that $d\omega=0$. Show that there exists a function f such that $\omega=df$.
- 4. A k-form ω is called *exact* if there exists a k-1 form α such that $\omega=d\alpha$. A form ω is *closed* if $d\omega=0$. Note that every exact form is closed. Show that if $\mathcal M$ is a compact manifold and ω a exact form then $\int_{\mathcal M} \omega=0$. Show that there exists a manifold $\mathcal M$ and a 1-form ω such that there is no function f for which $\omega=df$.
- 5. Consider the *catenoid* and *helicoid* surfaces in \mathbb{R}^3 . The catenoid surface is the surface of revolution obtained by rotating around the z-axis the graph of the function $x = \cosh z$. Helicoid is the surface obtained as the union of straight lines passing through the points (0,0,z) and $(\cos z,\sin z,z)$ with $z\in\mathbb{R}$. Show that the two surfaces are locally isometric. Find an explicit local isometry and check in the local charts that it is indeed a local isometry. Are the surfaces globally isometric?

Hint 1. Express both of the surfaces in local coordinates. Note that both surfaces have a natural angular coordinate. Try to find a natural matching of the other coordinate.

Hint 2. Go on www.youtube.com and search for catenoid, helicoid. Google catenoid, helicoid.

6. Consider the quadratic form G on \mathbb{R}^{n+1} defined as follows:

$$G(x,x) = -x_0^2 + x_1^2 + \dots + x_n^2.$$

Let H be the hypersurface

$$H = \{x \in \mathbb{R}^{n+1} : G(x,x) = -1 \text{ and } x_0 > 0\}.$$

Note that at any $p \in H$ the tangent space can be considered a hyperplane of \mathbb{R}^{n+1} and so we define $g: T_pH \times T_pH \to \mathbb{R}$ by g(x,x) = G(x,x). Show that (H,g) is a Riemannian manifold.

On H we define a mapping

$$f(x) = \Pi_n \left(s - \frac{2(x-s)}{G(x-s, x-s)} \right)$$

where we fix $s=(-1,0,\ldots,0)$ and Π_n is the projection to last n coordinates (i.e. $\Pi_n(x_0,x_1,\ldots,x_n)=(x_1,\ldots,x_n)$). Show that f is a diffeomorphism from H to unit disk B(0,1) in \mathbb{R}^n . Furthermore show that the pull-back of g to B(0,1), $\tilde{g}=f^*g$ is given as follows: at $g\in B(0,1)$ and for tangent vector $g\in \mathbb{R}^n$,

$$\tilde{g}(v,v) = \frac{1}{1 - |y|^2} v \cdot v.$$