

Midterm: Mar 6, 12:30pm Same classroom PS6 due Mar 21, 10pm

Class 14: Limitations of Regular Expression

University of Virginia cs3120: DMT2 Wei-Kai Lin

Definition 6.7 (Matching a regular expression)

Let e be a regular expression over the alphabet Σ . The function $\Phi_e:\Sigma^* o\{0,1\}$ is defined as follows:

- 1. If $e = \sigma$ then $\Phi_e(x) = 1$ iff $x = \sigma$.
- 2. If e=(e'|e'') then $\Phi_e(x)=\Phi_{e'}(x)\vee\Phi_{e''}(x)$ where \vee is the OR operator.
- 3. If e=(e')(e'') then $\Phi_e(x)=1$ iff there is some $x',x''\in\Sigma^*$ such that x is the concatenation of x' and x'' and $\Phi_{e'}(x')=\Phi_{e''}(x'')=1$.
- 4. If e=(e')* then $\Phi_e(x)=1$ iff there is some $k\in\mathbb{N}$ and some $x_0,\ldots,x_{k-1}\in\Sigma^*$ such that x is the concatenation $x_0\cdots x_{k-1}$ and $\Phi_{e'}(x_i)=1$ for every $i\in[k]$.
- 5. Finally, for the edge cases Φ_{\emptyset} is the constant zero function, and $\Phi_{""}$ is the function that only outputs 1 on the empty string "".

We say that a regular expression e over Σ matches a string $x \in \Sigma^*$ if $\Phi_e(x) = 1$.

Theorem: Reg-Fun = DFA-Comp

Theorem 6.17 (DFA and regular expression equivalency)

Let $F:\{0,1\}^* \to \{0,1\}$. Then F is regular if and only if there exists a DFA (T,\mathcal{S}) that computes F.

Recap: Regular Expressions ≡ Finite Automata

Definitions:

Reg-Fun: the set of all regular functions.

DFA-Comp: the set $\{f \mid f \text{ is computed by some DFA } M\}$

Theorem:

Reg-Fun = DFA-Comp

Recap: Regular Expressions ≡ Finite Automata

Interpretation:

For any $L \subseteq \{0,1\}^*$, we have a regular expression e such that matches L iff we have a DFA M such that matches L.

- Negate any regular expression
- OR any DFA

Limits of finite state computation

There is at least one non-regular function

- Set of all functions (All-Fun) is uncountable (why?) J: {0,1}* ~ 50,13
- If All-Fun \subseteq Reg-Fun, then All-Fun would have been countable

Any "natural" languages that is not regular?

- By Reg-Fun = DFA-Comp,
 Any regular function must be computable by a DFA
- Any DFA has constant "memory", ie, num of states

Find a function needs more than const mem

Example A = $\{0^k 1^k : k \in \mathbb{N}\}$

Theorem: A is not regular

Proof: Assume for contrad.

$$\chi = 111 \dots 1$$

$$y = 0$$

$$\times$$
 $y \in A$
 $\Rightarrow M$ acc

contra D

Example A = $\{0^k 1^k : k \in \mathbb{N}\}$

Theorem: A is not regular

Proof:

Give it $00 \dots 0 \dots$ as inputs till a state q is repeated.

Let $x = 0^i$, $y = 0^j$ such that j > 0 and both x and $x \mid\mid y$ on q.

Consider $0^i 1^i$ and $0^{i+j} 1^i$.

Either both will be accepted,

Or both will be rejected.

Pumping Lemma

Let e be a regular expression over the alphabet of bits, $\{0,1\}$. There is some number n_0 such that for every $w \in \{0,1\}^*$ with $|w| > n_0$ and $\Phi_e(w) = 1$, we can write w = xyz for strings $x, y, z \in \{0,1\}^*$

- $|y| \ge 1$
- $|xy| \leq n_0$
- $\Phi_e(x \ y^k \ z) = 1$ for every natural number k

satisfying the following conditions:

Proof

PRR6: Q1.1

What is asked?

Notation:
$$n_0 = p$$
 and $w = s$

For every DFA M, there exists a length p and a string s=xyz of length at least p such that satisfy the following.

- $|xy| \leq p$
- Yes
- No

Consider M that accepts only the string "11011000".

What's n_0 and w?

PRR7: Q1.1

What is asked?

Q1.1 5 Points

Let S be the set of binary strings such that S consists of strings that are exactly repeating 1s for 2n times for some natural number n. Namely, empty_string, 11, 1111, 1111111, 11111111, ..., are the shortest strings in S for $n=0,1,2,3,4,\ldots$ Equivalently and formally,

$$S = \{x \in \{0,1\}^* : x = 1^{2n} \text{ for some natural number } n\}$$

Is S a regular language? Equivalently, is there a regular expression that matches strings in S?

- Yes
- O No

Regular expression: (11)* (Exercise: draw a DFA)

Intuition: this is just "counting to 2" (which is finite)

Q1.2 5 Points

$$S = \{x \in \{0,1\}^* : x = 1^{2^n} \text{ for some natural number } n\}$$

Is S a regular language? Equivalently, is there a regular expression that matches strings in S?

NO. How to prove it?

Not Regular: $S = \{x \in \{0,1\}^* : x = 1^{2^n} \}$ for some natural number n

Proof: Assume for contra,
$$\exists e \in X$$
, natches S $\exists n_0 + w \in X$, $\exists n_0 + w \in X$.

Let e be a regular expression over the alphabet of bits, $\{0,1\}$. $\exists n_0 \in X$ $\exists n_0 \in X$ $\exists n_0 \in X$.

There is some number n_0 such that for every $w \in \{0,1\}^*$ with $|w| > n_0$ and $\Phi_e(w) = 1$,

we can write w = xyz for strings $x, y, z \in \{0,1\}^*$ satisfying the following conditions: • $|y| \ge 1$

• $|xy| \le n_0$

• $\Phi_e(x \ y^k \ z) = 1$ for every natural number k

Midterm: this Thursday, 12:30pm Rice 130

XOR is not Universal

Problem 2 XOR is not universal.

Prove that for every n-bit input circuit C that contains only XOR gates, as well as gates that compute the constant functions ZERO and ONE, C is affine or linear modulo two, in the sense that there exists some $a \in \{0,1\}^n$ and $b \in \{0,1\}$ such that for every $x \in \{0,1\}^n$, $C(x) = \sum_{i=0}^{n-1} a_i x_i + b \mod 2$.

Conclude that the set {XOR, ZERO, ONE} is not universal.

Two sub-questions:

- 1. Any XOR-circuit computes a linear function (mod 2)
- 2. Any linear function cannot compute NAND

Any XOR-circuit computes a linear function

Induction on circuit depth d.

Predicate, P(d):

Any XOR-circuit of depth d computes a linear function

Base case: P(0) holds by

Inductive case: P(d) holds, want P(d+1)

1. Let K(x) be a (d+1)-depth XOR circuit

$$<(x) = XDR(f_1(x), f_2(x))$$

Any linear function cannot compute NAND

Let
$$f(x_1, x_2) = a_1 x_1 + a_2 x_2 \mod 2$$

Want NAND
$$(x_1, x_2) = f(x_1, x_2)$$
 for all $x_1, x_2 \in \{0, 1\}$

Charge

Regular Expressions
Limitations
Pumping Lemma

Midterm this Thursday, 12:30pm PS6: due Mar 21, 10pm