

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO PROGRAMA DE DISCIPLINA

_			
Nome do Componente Curricular em português:			Código:
Controle Aplicado a Sistemas Térmicos e Fluidomecânicos			
Nome do Componente Curricular em inglês:			
Control Applied to Thermal and Fluid Systems			
Nome e sigla do departamento:			Unidade Acadêmica:
DECAT			Escola de Minas
			Escola de Milias
Modalidade de oferta:	[x] presencial	[] a distância	
Carga horária	a semestral	Carga horária semanal	
Total	Extensionista	Teórica	Prática
60 horas	00 horas	2 horas/aula	2 horas/aula
		,	1
Ementa: modelagem de sistemas térmicos e fluidomecânicos. Instrumentação para			
sistemas térmicos e fluidomecânicos. Estratégias de controle e técnicas de projeto de			
controladores aplicados a sistemas térmicos e fluidomecânicos.			
Conteúdo programático:			
1. Introdução a modelagem matemática:			
(a) Técnicas;			
(b) Conceitos;			
(c) Exemplos			
2. Modelagem de sistemas mecânicos rotacionais			
3. Modelagem de sistemas fluídicos			
4. Modelagem de sistemas térmicos			
5. Pontos de operação			
6. Simulação de processos			
(a) modelo linear;			
(b) modelo não-linear.			
7. Controlador PID			
8. Projeto de controladores por métodos empíricos (Ziegler-Nichols e Cohen-Coon)			
(a) Método da curva de reação;			
(b) Método da curva de oscilação.			
9. Projeto de controladores por métodos analíticos			
(a) Método do Lugar das Raízes;			
(b) Deadbeat.			
10. Sistemas monovariáveis (SISO):			
(a) sem acoplamento;			
(b) com acoplamento.			
11. Práticas com sistemas de controle:			
(a) de nível; (b) de velocidade de meter de corrente contínue;			
(b) de velocidade de motor de corrente contínua;			
(c) de servomecanismo;			
(d) do pêndulo invertido;			
(e) de temperatura.			
Bibliografia básica:			
[1] Ogata, Katsuhiko, Engenharia de Controle Moderno, Pearson Education - Br			

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO PROGRAMA DE DISCIPLINA

- [2] Dorf, Richard C., Sistemas de Controle Modernos, 11ª ed., 2009, LTC
- [3] Nise, Norman S., Engenharia de Sistemas de Controle, 6ª ed., 2012, LTC

Bibliografia complementar:

- [1] Kuo, Benjamin C.; Golnaraghi, Farid, Automatic Control Systems (Sistemas de Controle Automático)
- [2] Goodwin, G. C., Graebe, S. F., Salgado, M. E., Control System Design, Prentice Hall
- [3] Burns, R. S., Advanced Control Engineering, 1st ed., 2001, Butterworth-Heinemann
- [4] Franklin, G. F., Powell, J. D., Emami-Naeini, A., Feedback Control of Dynamic Systems, 6th ed., 2009, Prentice Hall
- [5] D'Azzo, J. J., Houpis, C. H., Sheldon, S. N., Linear Control System Analysis and Design, 5th ed., 2003, CRC Press.