08.03.22

Monday, 28 February 2022 12:27 PM Mecaoxnuacious Fourier

 $g(t) \Longrightarrow G(f) \triangleq \int_{-\infty}^{+\infty} g(t) e^{-j2\pi ft} dt$

g (+) = (+00 G(+) e+j2 11 ft dt

1) [pappines to the transfer of the transfer

Konoimon M/F $e^{-at}u(t) \Longrightarrow \underline{L}$ atilns

 e^{at} $u(-t) \Rightarrow 1$

GIOXVII Y LA TIZTIEPA GUEVO TIAN DOS ON LIE ZUV

g(+)=e-alt, a elt saprio, monsparico $\begin{cases}
(+) = \begin{cases}
e^{-a+}, & t > 0 \\
e^{-a+}, & t > 0
\end{cases}$

 \Rightarrow g(t) = $e^{-at}u(t) + e^{at}u(-t)$ $\Rightarrow G(t) = \frac{1}{a+i2\pi} + \frac{1}{a-i2\pi} \Rightarrow$

=> G(5)= 20 = april , Traspariko

 $g(t) = e^{-aHt} sgn(t)$ \Longrightarrow $\pi spiteo, \pi pospiazino$ $=)(f(f))=\frac{1}{\alpha+i2\pi f}-\frac{1}{\alpha-i2\pi f}=\frac{-i4\pi f}{\alpha+i\pi^2f^2}\rightarrow\pi\epsilon\rho\eta\sigma,\rho\rho\rho\eta\eta\sigma\eta\nu$

2) Khipakwon: $F \neq g(at) \neq = \frac{1}{101} G(\frac{4}{9})$

 $7 = \frac{4\pi 6}{5}$ $7 = \frac{1}{5}$ $7 = \frac{1}{5}$ • 0.70 : (1) => FEq (at) $\frac{x=at}{a}$ $\int_{a}^{+\infty} g(x) e^{-j2\pi t} \frac{x}{a} dx =$

 $= \int_{\alpha} G\left(\frac{\xi}{a}\right)$ • 0 60:

3) Dudikotnen: G(+) => g(-5)
Sapyt cou duïque

Mapadeirea A rect $\left(\frac{1}{T}\right) \rightleftharpoons Tsinc (fT) = AT sin (\pi fT)$

=> ATSINC (+T) = Kreet (-5) T=9W => 2w sinc (+2w) => rect (f

4) Olí60non ozo koóvo: g (+- to) = e-32 T+ to G(f) $\frac{4\pi e^2}{g(t-to)} = \frac{1}{2\pi f} \int_{-\infty}^{\infty} f(x) e^{-\frac{1}{2\pi f}} e^{-\frac{1}{2\pi f}} dx = e^{-\frac{1}{2\pi f}} \int_{-\infty}^{\infty} f(x) e^{-\frac{1}{2\pi f}} dx$

5) Oli60non ou ouxvornea: $G(f-50) \stackrel{}{=}= e^{j2\pi j0}q(t)$

 $g(t) = A \operatorname{rect}\left(\frac{t}{T}\right) \cdot \cos\left(2\pi f_c t\right) = A \operatorname{rect}\left(\frac{t}{T}\right) \cdot \frac{1}{2} \left[e^{j2\pi f_c t} + e^{-j2\pi f_c t}\right]$ (1) $(4) (5) Gr(+) = AI \left[Sinc(ST - S_cT) + Sinc(ST + S_cT) \right]$

 $6) \int_{-\infty}^{+\infty} f(t) = G(0)$

 $\frac{7}{5-\infty} \begin{cases} f^{20} G(5) df = g(0) \end{cases}$ 8) d g(f) = G(f) (; 2 n f)

· d" }(t) = G(5) (2715)"

 $\frac{d}{dt}g(t) = \frac{d}{dt}\int_{-\infty}^{+\infty}G(s)e^{j2\pi st}ds = \int_{-\infty}^{+\infty}G(s)(j2\pi s)e^{j2\pi st}ds = \int_{-\infty}^{+\infty}G(s)(j2\pi s)e^{j2\pi st}ds = \int_{-\infty}^{+\infty}G(s)(j2\pi s)e^{j2\pi st}ds = \int_{-\infty}^{+\infty}G(s)(j2\pi s)e^{j2\pi st}ds$ $= \int_{-\infty}^{+\infty} X(t) e^{j2\pi st} ds \Rightarrow x(t) = \frac{d}{dt} g(t)$ Apa d g H) = G(5)(32715)

9) · d G(5) = (-; 2 \pi t) g (+) · dn G(5) = (-j2nt)ng(t) AV G(0)=0, 257E anho moistrai, Sev

(10) $\int_{-\infty}^{t} g(z) dz \stackrel{2}{=} \frac{1}{3^{2\pi 5}} G(s) + \frac{1}{3} G(s) S(t)$ 11) g*(+) == G*(-5)

12) · g.(+) · g.(+) == G,(+) * G.(+)

g, (+) * g, (+) == G, (F) - G, (S) B)-Pe Zg (+) Z = [G(5) + G*(-5)]

= [q(+) + g*(+)] · Im \(\frac{5}{2} \) (+)\(\frac{5}{2} \) = \(\frac{1}{2} \) [G(5) - G*(-5)] 1 [g (+) -g *(+)]

14) $\int_{-\infty}^{\infty} |g(t)|^{2} dt = \int_{-\infty}^{\infty} |G(t)|^{2} dt$