Disclaimer

These opinions and thoughts are my own, and may or may not reflect the opinions of the company that I work for.

Agenda

- Introduction
- Data Analysis with Pandas
- Data Visualization with Matplotlib
- Machine Learning with Scikit-learn
- Bonus: Power AI Vision

About me

- Open Source
- Big Data Analytics
- Data and AI
- High Performance Computing

"We have lots of information technology. We just don't have any information."

Part One - Introduction

Future of Technologies

- 1. Cloud
- 2. Data
- 3. Artificial Intelligence

Why are enterprises struggling to capture the value of Data and AI?

Data

- Data resides in silos& difficult to access
- Unstructured and external data wasn't considered

Governance

- If the data isn't secure, self-service isn't a reality
- Challenge understanding data lineage and getting to a system of truth

Skills

- Data Science skills are in low supply and high demand
- Nurturing new data professionals is challenging

Tools & Infrastructure

- Need an environment that enables a "fail fast" approach
- Discrete tools
 present barriers to
 productivity

- 7

Data Analytics Magic Quadrant 2018

Part Two Python Data Analytics

What is the most popular programming language nowadays?

Introducing Python

Introducing Python

"Python is **powerful**... and fast; plays well with others; runs everywhere; is **friendly** & easy to learn; is **Open**."

pandas

https://www.python.org/

Data Analysis

pandas

$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$

- A fast and efficient **DataFrame** object for data manipulation
- Reading and writing data: CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5 format
- Data alignment and handling of missing data
- Reshaping and pivoting of data sets
- Slicing, indexing, and subsetting of large data sets
- Group by, merging and joining of data sets;
- Python with *pandas* is in use in a wide variety of **academic and commercial** domains, including Finance, Neuroscience, Economics, Statistics, Advertising, Web Analytics, and more.

https://pandas.pydata.org/

Data Visualization

- Python 2D plotting library which produces **publication quality** figures
- Interactive environments with Python shell, IPython, Jupyter notebook, and web application servers
- Generate plots, histograms, bar charts, scatter plots, etc., with just a few lines of code
- Simple plotting pyplot module provides a MATLAB-like interface
- Full control of line styles, font properties, axes properties

https://matplotlib.org/

Machine Learning

Play Video

- Most popular machine learning library in Python
- Built on NumPy, SciPy, and matplotlib
- Classification: Identifying to which category an object belongs to such as spam detection, image recognition
- **Regression:** Predicting a **continuous-valued attribute** associated with an object such as energy consupmption, stock price
- **Clustering:** Automatic **grouping** of similar objects into sets such as customer segmentation and grouping experiment outcome
- Dimensionality reduction: Reducing the number of random variables to consider such as visualization, increased efficiency

https://scikit-learn.org/stable/

Lab Setup

Download & Install Anaconda

https://www.anaconda.com/distribution/

Jupyter Notebook

Introduction

Data Acquisition

Download and Import Notebooks

https://github.com/a9zhang/RBS

Lab Exercises

Lab Exercises (3 hours)

Lab 1: Data Analysis with Pandas

Lunch

Lab 2: Data Visualization with Matplotlib

Lab3: Machine Learning with Scikit-learn

Bonus

https://www.youtube.com/watch?v=CkVZRMG6pc4&feature=youtu.be

Why Data and AI, Why Now?

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Machine Learning vs Deep Learning

Machine Learning

- Traditional ML requires manual feature extraction/engineering
- Feature extraction for unstructured data is very difficult

Deep Learning

- Deep learning can automatically learn features in data
- Deep learning is largely a "black box" technique, updating learned weights at each layer

Diabetic Retinopathy Detection using IBM Power AI Vision

Total items in new data set: 5682

35,000 + images of various classes

- 0 No DR
- 1 Mild
- 2 Moderate
- 3 Severe
- 4 Proliferative DR

Data Augmentation – create more data

Resize, Crop, Rotate, Flip, Translation...

Diabetic Retinopathy Detection using Power AI Vision

Train machine learning model with high accuracy **without coding**

Detect new images – DR vs No_DR images with a trained model

Diabetic Retinopathy Detection using Python

- Exploratory Data Analysis
- Crop and Resize Images on cloud
- Rotate and Mirror Images
- Neural Network Architecture

Metric	Value
Accuracy (Train)	82%
Accuracy (Test)	80%
Precision	88%
Recall	77%

Takeaways

Play Video

Bar Chart Racing in Python ~In roughly less than 50 lines of code

Questions?

Backup Slides