Coordination Chemistry

Tm complex: Variable valence

Sc			+3				
Ti	+1	+2	+3	+4			
V	+1	+2	+3	+4	+5		
Cr	+1	+2	+3	+4	+5	+6	
Mn	+1	+2	+3	+4	+5	+6	+7
Fe	+1	+2	+3	+4	+5	+6	
Co	+1	+2	+3	+4	+5		
Ni	+1	+2	+3	+4			
Cu	+1	+2	+3				
Zn		+2					

Cu is the only element which affords Cu^I compounds without π -acceptor ligands

Complexes: Have metal ion (can be zero oxidation state) bonded to number of ligands.

Complex contains central metal ion bonded to one or more molecules or anions

Lewis acid = metal = center of coordination

Transition metals can act as Lewis acid

Lewis base = ligand = molecules/ions covalently bonded to metal in complex

The term ligand (ligare [Latin], to bind) was first used by Alfred Stock in 1916 in relation to silicon chemistry. The first use of the term in a British journal was by H. Irving and R.J.P. Williams in *Nature*, 1948, 162, 746.

For a fascinating review on 'ligand' in chemistry - *Polyhedron*, 2, 1983, 1-7.

Ligand: Lewis base – contain at least one nonbonding pair of electrons

$$Ni^{2+}(aq) + 6NH_3(aq) \rightarrow Ni(NH_3)_6^{2+}(aq)$$

Lewis acid

Lewis base

Complex ion

- Coordination compound
 - ▲ Compound that contains 1 or more complexes
 - **▲**Example
 - $*[Co(NH_3)_6]Cl_3$
 - $*[Cu(NH_3)_4][PtCl_4]$
 - $*[Pt(NH_3)_2Cl_2]$

Ligands

classified according to the number of donor atoms

monodentate, bidentate, tridentate etc. where the concept of teeth (dent) is introduced, hence the idea of bite angle etc.

Table 22.4	Some	Common	Ligands
-------------------	------	--------	---------

Name as Ligand^b

Ammine

Fluoro

Chloro

Bromo

Inda

Methylamine

Formula^a

CH₃NH₂

Anions

 F^-

 $C1^{-}$

 Br^{-}

 NH_3

Neutral Molecules

1	1000	CN	Cyano	55 0 ₃ ⁻	Iniosuitato	
POLYDENTATE						
Name (of Ligand ^b	Abbrevi	ation	Formula ^a		
Ethyler	nediamine	en		H ₂ NCH ₂ CH ₂ NH ₂		
Oxalate	0	OX		$[OOCCOO]^{2-}$		
Ethyler	nediaminetetraacetato	EDTA		[(OOCCH ₂) ₂ NCH ₂ O	$\text{CH}_2\text{N}(\text{CH}_2\text{COO})_2]^{4-}$	
^a Donor atoms are shown in red.						
^b Most neutral ligands carry the unmodified name, except for aqua, ammine, carbonyl, and nitrosyl. Anion ligand names						

MONODENTATE

Nitrosyl

Carbonyl

Hydroxo

Nitrito-*N*

Nitrito-O

Criona

Formula^a

NO

CO

 OH^-

 NO_2^-

ONO⁻

CNI

Name as Ligand^b

Formula^a

 H_2O

 C_5H_5N

NCS⁻

SCN⁻

 OSO_3^{2-}

CCO 2-

Name as Ligand^b

Aqua

Pyridine

Sulfato

Thiogulfato

Thiocyanato-*N*

Thiocyanato-S

Copyright © 2005 Pearson Prentice Hall, Inc.

end in "o," which requires changing the terminal -e to -o (for example, sulfate \longrightarrow sulfato). With many common anions, an entire -ide ending is changed to -o (for example, cyanide \longrightarrow cyano).

oxalate ion

ethylenediamine

$$CH_2$$
- CH_2
 H_2N
 NH_2

Macrocylic Ligands

Large ring compounds most commonly containing or O, N and/or S atoms

crown ether:

thia-crown ether:

aza-thia-crown:

cryptand:

Coordination Numbers and Geometries:

Coordination Equilibria & Chelate effect

$$[Fe(H_2O)_6]^{3+} + NCS^- \rightarrow [Fe(H_2O)_5(NCS)]^{2+} + H_2O$$

 $K_f = [Fe(H_2O)_5(NCS)]^{2+} / [Fe(H_2O)_6]^{3+}[NCS^-]$

Equilibrium constant $K_f \Rightarrow$ formation constant

$$M + L \rightarrow ML \quad K_1 = [ML]/[M][L]$$

$$ML + L \rightarrow ML_2$$
 $K_2 = [ML_2]/[ML][L]$

$$ML_2 + L \rightarrow ML_3$$
 $K_3 = [ML_3]/[ML_2][L]$

$$ML_{n-1} + L \rightarrow ML_n \quad K_n = [ML_n]/[ML_{n-1}][L]$$

Coordination Equilibria and Chelate effect

- $K_1, K_2.... \Rightarrow$ Stepwise formation constant.
- To calculate concentration of the final product, use overall formation constant β_n :
 - $\beta_n = [ML_n]/[M][L]^n$
 - $\bullet = \mathbf{K}_1 \times \mathbf{K}_2 \times \mathbf{K}_3 \times \dots \times \mathbf{K}_n$

Kinetic stability

Inert and labile complexes

The term inert and labile are relative

"A good rule of thumb is that those complexes that react completely within 1 min at 25° should be considered labile and those that take longer should be considered inert."

Thermodynamically stable complexes can be labile or inert

$$[Hg(CN)_4]^{2-}$$

$$K_f = 10^{42}$$

 $K_f = 10^{42}$ thermodynamically stable

$$[Hg(CN)_4]^{2-} + 4^{14}CN^{-} = [Hg(^{14}CN)_4]^{2-} + CN^{-}$$

Very fast reaction

Labile

Stepwise formation constant of complexes of M^{2+} generally increases steadily from Mn^{2+} to Cu^{2+} - Irving-William series

$$Ba^{2+} < Sr^{2+} < Ca^{2+} < Mg^{2+} < Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} < Zn^{2+}$$

Radius

Electrostatic effect

0.91>0.83>.82>0.78>0.69 Å

Example: $[Cd(NH_3)_4]^{2+}$

$$Cd^{2+} + NH_3 \leftrightarrow [CdNH_3]^{2+} K_1 = 10^{2.65}$$

$$CdNH_3]^{2+} + NH_3 \leftrightarrow [Cd(NH_3)_2]^{2+} K_2 = 10^{2.10}$$

$$[Cd(NH_3)_2]^{2+} + NH_3 \leftrightarrow [Cd(NH_3)_3]^{2+} K_3 = 10^{1.44}$$

$$[Cd(NH_3)_3]^{2+} + NH_3 \leftrightarrow [Cd(NH_3)_4]^{2+} K_4 = 10^{0.93}$$

Overall:
$$Cd^{2+} + 4 NH_3 \leftrightarrow [Cd(NH_3)_4]^{2+}$$

 $\beta_4 = K1 \times K2 \times K3 \times K4 = 10^{(2.65 + 2.10 + 1.44 + 0.93)}$
 $= 10^{7.12}$

What are the implications of the following results?

$$NiCl2 + 6H2O$$

$$\rightarrow [Ni(H2O)6]+2$$

$$[Ni(H_2O)_6]^{+2} + 6NH_3$$

 $\rightarrow [Ni(NH_3)_6]^{2+} + 6H_2O$

$$[Ni(NH_3)_6]^{2+} + 3 NH_2CH_2CH_2NH_2 (en)$$

 $\rightarrow [Ni(en)_3]^{2+} + 6NH_3$

Complex Formation: Major Factors

$$[Ni(H2O)6] + 6NH3$$

$$\rightarrow [Ni(NH3)6]2+ + 6H2O$$

- > NH₃ is a stronger (better) ligand than H₂O
- $\rightarrow \Delta_0 NH_3 > \Delta_0 H_2O$
- > [Ni(NH₃)₆]²⁺ is more stable
- $ightharpoonup \Delta G = \Delta H T\Delta S$ $(\Delta H ve, \Delta S \approx 0)$
- \triangleright ΔG for the reaction is negative

Complex Formation: Chelate Effect

•
$$[Ni(NH_3)_6]^{2+} + 3 NH_2CH_2CH_2NH_2$$
 (en)
 $\rightarrow [Ni(en)_3]^{2+} + 6NH_3$

- en is bidentate ligand
- forms a 5 member ring known as chelate ring
- the complex is known as a *chelate*

Complex Formation: Chelate Effect

Coordination Equilibria & Chelate effect

"The adjective chelate, derived from the great claw or chela (chely - Greek) of the lobster, is suggested for the groups which function as two units and fasten to the central atom so as to produce heterocyclic rings."

The chelate effect or chelation is one of the most important ligand effects in transition metal coordination chemistry.

Complex Formation: Chelate Effect

$$[Ni(NH_3)_6]^{2+} + 3 (en) \rightarrow [Ni(en)_3]^{2+} + 6NH_3$$

 Formation of chelate ring ⇒ reaction proceeds in forward direction & the product is stable. This stability is purely kinetic in nature. This is known as chelate effect.

•
$$\Delta G = \Delta H - T\Delta S$$
 $(\Delta H - ve, \Delta S + + ve)$

Compare the β for $[Ni(NH_3)_6]^{2+}$ vs. $[Ni(en)_3]^{2+}$

hexa amine: $\beta_6 = 10^9$

Tris en: $\beta_3 = 10^{18}$ (Favored product)

Examine: $[Ni(NH_3)_6]^{2+} + 3 \text{ en } \leftrightarrow 6 \text{ NH}_3 + [Ni(en)_3]^{2+}$ $\beta_3 = 10^{9.7}$

Greater number of amine molecules enhances the disorder of the product, even though the metal complex is more ordered. (larger ΔS , more negative ΔG) For this process, ΔH is small, only -12 KJ; ΔG is -67 KJ, leaving -55 kJ for -T ΔS .

$$Cd^{2+} + 4 NH_3 \leftrightarrow [Cd(NH_3)_4]^{2+}$$

Reaction of ammonia and en with Cd2+

# of ligands	ΔG / kJmol ⁻¹	ΔH / kJmol ⁻¹	ΔS / JK- ¹ mol ⁻¹	log β
2 NH ₃ (1 en)	-28.24	-29.79	-5.19	4.95
	(-33.30)	(-29.41)	(+13.05)	(5.84)
4 NH ₃ (2 en)	-42.51	-53.14	-35.50	7.44
	(-60.67)	(-56.48)	(+13.75)	(10.62)

Reaction of ammonia and en with Cu²⁺

$$[Cu(H_2O)_6]^{2+} + en = [Cu(en)(H_2O)_4]^{2+} + 2 H_2O$$

 $Log K_1 = 10.6$ $\Delta H = -54 \text{ kJ/mol}$ $\Delta S = 23 \text{ J/K/mol}$

$$[Cu(H_2O)_6]^{2+} + 2NH_3 = [Cu(NH_3)_2(H_2O)_2]^{2+} + 2H_2O$$

Log
$$\beta_2 = 7.7$$

$$\Delta H = -46 \text{ kJ/mo}$$

$$\Delta H = -46 \text{ kJ/mol}$$
 $\Delta S = -8.4 \text{ J/K/mol}$

Chelating agents:

- (1) Used to remove unwanted metal ions in water.
- (2) Selective removal of Hg²⁺ and Pb²⁺ from body when poisoned.
- (3) Prevent blood clots.
- (4) Solubilize iron in plant fertilizer.

2,3-dimercapto-1-propanesulfonic acid sodium (DMPS)

DMPS is a effective chelator with two groups thiols not only especially for mercury but also for lead, tin, arsenic, silver and cadmium.

EDTA Anticoagulant

Copyright © 2005 Pearson Prentice Hall, Inc.

Factors affecting the thermodynamic stability

(a) Charge on the metal

mplex

(b) Steric effect

$$K(R=H) \gg K(R=Me)$$

Chelating agents:

- (1) Used to remove unwanted metal ions in water.
- (2) Selective removal of Hg²⁺ and Pb²⁺ from body when poisoned.
- (3) Prevent blood clots.
- (4) Solubilize iron in plant fertilizer.

iminodiacetic acid

$$^{\mathsf{H}_2\mathsf{N}} \hspace{-2pt} \stackrel{\mathsf{NH}}{\longleftarrow} \hspace{-2pt} ^{\mathsf{NH}}_{\mathsf{NH}_2}$$

TETA

triethylenetetraatnine

desferrioxamine