Joint Embedding Methods

Self-Supervised Visual Representation Learning

Visual representation learning

Overview

Visual Representation Learning

Self-supervised visual representation learning

DsTH: downstream task head

DsTH DsTH Encoder Encoder

fine-tuning

feature extraction

Step 1: pretraining

Use a large amount of unlabeled data to train a backbone network different methods will produce the backbone network differently

Step 2: evaluation

Use a small amount of labeled data to train a downstream task head network

Generative Models- Autoencoder

Pretext Tasks

 \boldsymbol{x}

Joint embedding methods

Siamese nets & co.

Joint Embedding Methods

Good backbone network should be robust to certain distortions (invariant to data augmentation)

BB: backbone

JEM

We add extra loss to prevent the trivial solution (constant embeddings)

JEM

- 1. Data augmentation
- 2. Backbone network
- 3. Energy function
- 4. Loss functional

JEM

- 1. Contrastive methods
- 2. Non-contrastive methods
- 3. Clustering methods
- 4. Other methods

JEM loss functions

- A term that pushes the positive pair closer
- An (implicit) term that prevents the trivial solution (constant output)

To make the training stable, people usually normalize the embeddings or put a hinge on the loss function to prevent the norm of embeddings becoming too large or too small

Contrastive methods

Pull up on contrastive samples

Contrastive Methods

The loss function should push

1. the positive pairs closer

$$(oldsymbol{h_{x}^{i}},oldsymbol{h_{y}^{i}})$$

2. the negative pairs away

$$(\boldsymbol{h}_{oldsymbol{x}}^{i}, \boldsymbol{h}_{oldsymbol{x}}^{j}), (\boldsymbol{h}_{oldsymbol{x}}^{i}, \boldsymbol{h}_{oldsymbol{y}}^{j}), (\boldsymbol{h}_{oldsymbol{y}}^{i}, \boldsymbol{h}_{oldsymbol{y}}^{j})$$

How to find a good negative pairs? hard negative mining?

Contrastive Methods SimCLR and MoCo

- $A \longrightarrow B \longrightarrow A$
- How to find a good negative pairs?
- Use large batch size!

 Both SimCLR and MoCo use the InfoNCE loss function:

Goldberger, Hinton, Roweis & Salakhutdinov (2004). Neighbourhood components analysis.

Salakhutdinov & Hinton (2007, March). Learning a nonlinear embedding by preserving class neighbourhood structure.

Van den Oord, Li & Vinyals (2018). Representation learning with contrastive predictive coding. Chen, Kornblith, Norouzi & Hinton (2020, November). A simple framework for contrastive learning of visual representations. He, Fan, Wu, Xie & Girshick (2020). Momentum contrast for unsupervised visual representation learning.

The InfoNCE cost function

$$\begin{split} &D(\boldsymbol{h}_{x}, \boldsymbol{h}_{y}) = \\ &= -\log \frac{\exp(\beta \sin(\boldsymbol{h}_{x}, \boldsymbol{h}_{y}))}{\sum_{j}^{N} \exp(\beta \sin(\boldsymbol{h}_{x}, \boldsymbol{h}_{x}^{j})) + \sum_{j}^{N} \exp(\beta \sin(\boldsymbol{h}_{x}, \boldsymbol{h}_{y}^{j}))} \\ &= -\beta \sin(\boldsymbol{h}_{x}, \boldsymbol{h}_{y}) + \log \left[\sum_{j}^{N} \exp(\beta \sin(\boldsymbol{h}_{x}, \boldsymbol{h}_{x}^{j})) + \sum_{j}^{N} \exp(\beta \sin(\boldsymbol{h}_{x}, \boldsymbol{h}_{y}^{j})) \right] \\ &= -\beta \sin(\boldsymbol{h}_{x}, \boldsymbol{h}_{y}) + \operatorname{softmax}_{\beta} \left[\sin(\boldsymbol{h}_{x}, \boldsymbol{h}_{x}^{j}), \sin(\boldsymbol{h}_{x}, \boldsymbol{h}_{y}^{j}) \right] \\ &= -\beta \sin(\boldsymbol{h}_{x}, \boldsymbol{h}_{y}) + \frac{\boldsymbol{h}_{x}^{\top} \boldsymbol{h}_{y}}{\|\boldsymbol{h}_{x}\| \|\boldsymbol{h}_{y}\|} \end{split}$$

Batch size

Very large!
SimCLR N = 8192

Contrastive Methods – MoCo

MoCon = 256

Recap

What we've learnt so far

Quick Recap

- 1. Visual representation learning: pretraining + evaluation
- 2. Generative vs. pretext task vs. joint-embedding methods
- 3. Joint-embedding methods:
 - 1. Invariant to data augmentation
 - 2. Prevent trivial solution
- 4. Contrastive methods
 - 1. Hard negative mining
 - 2. Large negative sample pool (SimCLR vs. MoCo)

Non-contrastive methods

Prevent trivial solution without negative samples

The Disadvantages of Contrastive Methods

Contrastive methods require techniques such as:

- 1. weight sharing between the branches
- 2. batch normalization
- 3. feature-wise normalization
- 4. output quantization
- 5. stop gradient
- 6. memory banks
- **7.** ...

Non-contrastive methods and information theory

Most of non-contrastive methods

- based on information theory
 - Redundancy reduction (Barlow Twins)
 - Information maximization (VICReg)
- Don't require special architectures

Non-Contrastive Methods – VICReg

The Information maximization:

- 1. to maximize the information content of the embeddings
- 2. produce embedding variables that are decorrelated from each other
- 3. prevent an informational collapse in which the variables carry redundant information

Non-Contrastive Methods – VICReg

The loss function is pushing

- 1. the positive pairs closer $(\boldsymbol{h}_{\boldsymbol{x}}^i, \boldsymbol{h}_{\boldsymbol{y}}^i)$
- 2. the variance of the embeddings large
- 3. The covariance of the embeddings small

$$egin{aligned} oldsymbol{L}(oldsymbol{w},oldsymbol{x},oldsymbol{y}) &= & |oldsymbol{h}_{oldsymbol{x}} - oldsymbol{h}_{oldsymbol{y}}|^2 & |oldsymbol{C} - oldsymbol{H}_{oldsymbol{x}} - oldsymbol{h}_{oldsymbol{y}}|^2 & |oldsymbol{H}_{oldsymbol{x}} - oldsymbol{H}_{oldsymbol{y}}|^2 & |oldsymbol{H}_{oldsymbol{y}} - oldsymbol{H}_{oldsymbol{y}}|^2 & |oldsymbol{H}_{oldsymbol{y}}|^2 & | oldsymbol{H}_{oldsymbol{y}} - oldsymbol{H}_{oldsymbol{y}}|^2 & | oldsymbol{H}_{oldsymbol{y}} - oldsymbol{H}_{oldsymbol{y}} - oldsymbol{H}_{oldsymbol{y}} - oldsymbol{H}_{oldsymbol{y}} - oldsymbol{H$$

$$+ \frac{1}{d} \left[\sum_{i}^{d} (\gamma - \boldsymbol{x} \boldsymbol{C}_{ii})^{+} + (\gamma - \boldsymbol{y} \boldsymbol{C}_{ii})^{+} \right]$$

$$+\frac{1}{d}\left[\sum_{i}^{d}\sum_{j\neq i}^{d}{_{\boldsymbol{x}}\boldsymbol{C}_{ij}^{2}}+_{\boldsymbol{y}}\boldsymbol{C}_{ij}^{2}\right]$$

Clustering Methods-SwAV

Prevent trivial solution by quantizing the embedding space

SwAV (II)

$$egin{aligned} oldsymbol{Q}_{oldsymbol{x}} &= \operatorname{sinkhorn}_{oldsymbol{W}}(oldsymbol{H}_{oldsymbol{x}}) \in \mathbb{R}^{N imes K} \ oldsymbol{Q}_{oldsymbol{x}} &= [oldsymbol{q}_{oldsymbol{x}}^1, \ldots, oldsymbol{q}_{oldsymbol{x}}^N]^{ op} \ oldsymbol{W} &\in \mathbb{R}^{K imes d} : \operatorname{dictionary} \ & ilde{oldsymbol{q}}_{oldsymbol{x}} &= \operatorname{softargmax}_{eta}(oldsymbol{W} oldsymbol{h}_{oldsymbol{y}}) \in \mathbb{R}^{K} \ oldsymbol{F}(oldsymbol{x}, oldsymbol{y}) &= C(oldsymbol{q}_{oldsymbol{x}}, oldsymbol{q}_{oldsymbol{x}}) + C(oldsymbol{q}_{oldsymbol{y}}, oldsymbol{q}_{oldsymbol{y}}) \end{aligned}$$

Other methods

Other Methods – BYOL, SimSiam, Dino, Data2Vec

Grill, Strub, Altché, Tallec, Richemond, Buchatskaya, ... & Valko (2020). Bootstrap your own latent-a new approach to self-supervised learning. Chen, X., & He, K. (2021). Exploring simple siamese representation learning.

Caron, Touvron, Misra, Jégou, Mairal, Bojanowski & Joulin (2021). Emerging properties in self-supervised vision transformers.

Baevski, Hsu, Xu, Babu, Gu & Auli (2022). Data2vec: A general framework for self-supervised learning in speech, vision and language.

Data augmentation and network architecture

Data augmentation

The SimCLR/BYOL data augmentation:

- 1. Random Crop (the most critical one)
- 2. Flip
- 3. Color Jitter
- 4. Gaussian Blur

For traditional augmentation to masking augmentation

Network architecture

It is always better to add a two/three-layer projector/expander

Even without memory bank, momentum encoder usually helps the performance of the downstream tasks, especially with weak data augmentation

