DISCRETE RANDOM VARIABLES

DISCRETE RANDOM VARIABLES

Learning Intentions:

- To define discrete random variables.
- To define the probability distribution of a discrete random variable.

The outcomes of probability events can be listed as word descriptions or numbers. In this topic only numbers will be investigated.

A **random variable** uses numbers to describe the possible outcomes which could result from a random experiment.

We often use capital letters such as X to represent random variables.

Random variables can be either discrete or continuous.

A discrete random variable X has a set of distinct possible values.

For example, X could be:

- the number of wickets a bowler takes in an innings of cricket, so X could take the values 0, 1, 2, ..., 10
- the number of defective light bulbs in a purchase order of 50, so X could take the values 0, 1, 2,, 50.

To determine the value of a discrete random variable, we need to **count**.

A **continuous random variable** X can take any value within some interval on the number line.

For example, X could be:

- the heights of men, which would all lie in the interval 50 cm < X < 250 cm
- the volume of water in a rainwater tank, which could lie in the interval $0 \text{ m}^3 < X < 100 \text{ m}^3$.

To determine the value of a continuous random variable, we need to **measure**.

This topic will only consider **discrete** random variables with a finite number of outcomes.

The outcomes are labelled $x_1, x_2, x_3, \dots, x_n$.

A supermarket has three checkouts A, B, and C. A government inspector checks the weighing scales for accuracy at each checkout. The random variable X is the number of accurate weighing scales at the supermarket.

- **a** List the possible outcomes and the corresponding values of X.
- **b** What value(s) of X correspond to there being:
 - i one accurate scale

ii at least one accurate scale?

a Possible outcomes:

A	В	C	X
×	x	×	0
1	×	×	1
×	✓	×	1
×	×	\	1
×	1	1	2
1	×	\	2
1	\	×	2
1	1	\	3

b i
$$X = 1$$
 ii $X = 1, 2, \text{ or } 3$

For each scenario:

- i Identify the random variable being considered.
- ii State whether the variable is continuous or discrete.
- iii Give possible values for the random variable.
- **a** To measure the rainfall over a 24-hour period in Singapore, water is collected in a rain gauge.
- **b** To investigate the stopping distance for a tyre with a new tread pattern, a braking experiment is carried out.
- To check the reliability of a new type of light switch, switches are repeatedly turned off and on until they fail.
- 2 a i X = the height of water in the rain gauge
 - iii continuous iii $0 \le X \le 400 \text{ mm}$
 - **b** i X = stopping distance ii continuous
 - iii $0 \leqslant X \leqslant 50 \text{ m}$
 - c i number of switches until failure
 - ii discrete iii any integer $\geqslant 1$

- A supermarket has four checkouts A, B, C, and D. Management checks the weighing devices at each checkout. The random variable X is the number of weighing devices which are accurate.
 - **a** What values can X have?
 - **b** List the possible outcomes and the corresponding values of X.
 - **c** What value(s) of *X* correspond to:
 - i exactly two devices being accurate
- ii at least two devices being accurate?
- **6** Suppose three coins are tossed simultaneously. The random variable X is the number of heads that result.
 - **a** State the possible values of X.
 - **b** List the possible outcomes and the corresponding values of X.
 - Are the possible values of X equally likely to occur? Explain your answer.

Discrete probability distrubutions.

For any random variable, there is a corresponding **probability distribution** which describes the probability that the variable will take a particular value.

The probability that the variable X takes value x is denoted P(X = x).

If X is a random variable with possible values $\{x_1, x_2, x_3, ..., x_n\}$ and corresponding probabilities $\{p_1, p_2, p_3, ..., p_n\}$ such that $P(X = x_i) = p_i$, i = 1, ..., n, then:

- $0 \leqslant p_i \leqslant 1$ for all i = 1, ..., n
- $\sum_{i=1}^{n} p_i = p_1 + p_2 + p_3 + \dots + p_n = 1$
- $\{p_1, ..., p_n\}$ describes the **probability distribution** of X.

Suppose X is the number of heads obtained when two coins are tossed.

The possible values of X are $\{0, 1, 2\}$.

The corresponding probabilities are $\left\{\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right\}$.

Note that $0 \le p_i \le 1$ for each value of i and the probabilities sum to 1.

The probability distribution can be displayed in a table or graph.

x	0	1	2
P(X=x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Let *X* be the number of heads showing when a fair coin is tossed three times.

- **a** Find the probability distribution of *X* and show that all the probabilities sum to 1.
- **b** Find the probability that one or more heads show.
- Find the probability that more than one head shows.

$$p(0) = \Pr(X = 0) = \Pr(\{TTT\}) = \frac{1}{8}$$

$$p(1) = \Pr(X = 1) = \Pr(\{HTT, THT, TTH\}) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8}$$

$$p(2) = \Pr(X = 2) = \Pr(\{HHT, HTH, THH\}) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8}$$

$$p(3) = \Pr(X = 3) = \Pr(\{HHH\}) = \frac{1}{8}$$

b The probability that one or more heads shows is

$$Pr(X \ge 1) = p(1) + p(2) + p(3) = \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = \frac{7}{8}$$

c The probability that more than one head shows is

$$Pr(X > 1) = Pr(X \ge 2) = p(2) + p(3) = \frac{3}{8} + \frac{1}{8} = \frac{4}{8} = \frac{1}{2}$$

Thus the probability distribution of *X* is:

х	0	1	2	3
p(x)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

The random variable X represents the number of chocolate chips in a certain brand of biscuit, and is known to have the following probability distribution.

х	2	3	4	5	6	7
p(x)	0.01	0.25	0.40	0.30	0.02	0.02

Find:

a
$$Pr(X \ge 4)$$

b
$$Pr(X \ge 4 | X > 2)$$

a
$$Pr(X \ge 4)$$
 b $Pr(X \ge 4 | X > 2)$ **c** $Pr(X < 5 | X > 2)$

a
$$Pr(X \ge 4) = Pr(X = 4) + Pr(X = 5) + Pr(X = 6) + Pr(X = 7)$$

= $0.4 + 0.3 + 0.02 + 0.02$
= 0.74

b
$$Pr(X \ge 4 \mid X > 2) = \frac{Pr(X \ge 4)}{Pr(X > 2)}$$

= $\frac{0.74}{0.99}$ since $Pr(X > 2) = 1 - 0.01 = 0.99$
= $\frac{74}{90}$

c
$$Pr(X < 5 | X > 2) = \frac{Pr(2 < X < 5)}{Pr(X > 2)}$$

$$= \frac{Pr(X = 3) + Pr(X = 4)}{Pr(X > 2)}$$

$$= \frac{0.65}{0.99}$$

$$= \frac{65}{99}$$

A discrete probability function is defined by the following table.

a Find the value of *p*.

b Hence calculate P(X > 2).

x	0	1	2	3	4
P(X=x)	0.2	0.3	2 <i>p</i>	p	0.05

$$0.2 + 0.3 + 2p + p + 0.05 = 1$$

 $3p + 0.55 = 1$
 $p = 0.15$

$$P(X > 2) = P(X = 3) + P(X = 4)$$
$$= 0.15 + 0.05$$
$$P(X > 2) = 0.2$$

EXERCISE 2.02 (PAGE 58)

Question I-7