Aprendizaje en redes de Bayes

Verónica E. Arriola-Rios

Facultad de Ciencias, UNAM

10 de agosto de 2021

Introducción

- Introducción
- Máxima Verosimilitud

- Introducción
 - Planteamiento
 - Tipos de problemas de aprendizaje

Verónica E. Arriola-Rios Planteamiento Facultad de Ciencias, UNAM

00000000

• Se considera que existe un distribución de probabilidad verdadera P*.

Verónica E. Arriola-Rios Planteamiento Facultad de Ciencias, UNAM

Aprendizaje

- Se considera que existe un distribución de probabilidad verdadera P*.
- Se aprenderá un Modelo Gráfico Probabilístico (MGP) M*, que podría modelar la distribución.

000000000

- Se considera que existe un distribución de probabilidad verdadera P*.
- Se aprenderá un Modelo Gráfico Probabilístico (MGP) M*, que podría modelar la distribución.

- Para ello se utilizan:
 - **1** Un conjunto de muestras $D = \{d[1], ..., d[M]\}$ obtenidas de P^* .
 - ② El conocimiento de algún experto.

Verónica E. Arriola-Rios Planteamiento Facultad de Ciencias, UNAM

¿Por qué usar aprendizaje sobre MGP?

- Realiza predicciones sobre *objetos estructurados* (secuencias, gráficas, árboles). Permite explotar correlaciones entre varias variables predichas.
- Permite incorporar *conocimiento previo* en el modelo.
- Se puede aprender un solo modelo para varias tareas.
- Es un marco de trabajo para el descubrimiento de conocimiento.

Verónica E. Arriola-Rios Planteamiento Facultad de Ciencias, UNAM

Conjuntos para el entrenamiento

El conjunto de muestras $D = \{d[1], ..., d[M]\}$ para el entrenamiento debe ser dividido en subconjuntos:

- Entrenamiento.
- Pruebas.
- (Opcionalmente) Validación.

Verónica E. Arriola-Rios Planteamiento Facultad de Ciencias, UNAM

000000000 **Temas**

Introducción

- Introducción
 - Planteamiento
 - Tipos de problemas de aprendizaje

Tipos de problemas de aprendizaje

Máxima Verosimilitud

• Estructura conocida, datos completos.

	Muestras				
	X ₁	X ₂	Υ	1	
d[0]	x ₁ 0	χ_2^0	yo	1 _	
d[1]	χ_1^1	$\chi_2^{\overline{1}}$	y^1	-	
d[M]	χ_1^M	χ_2^M	y^{M}		

X_1	$P(X_1)$	X_2	$P(X_2)$	X_1	X_2	Y	$P(Y X_1,X_2)$
x ₁ x' ₁		x_2		χ_1	χ_2	y	
x_1'		χ_2'		χ_1	x_2	y′	
x_1^n		χ_2^n		$ x_1'$	χ_2'	y′	

• Estructura desconocida, datos completos.

Muestras					
	X_1	X_2	Υ		
d[0]	x ₁ 0	χ_2^0	y ⁰		
d[1]	x_1^1	$\chi_2^{\bar{1}}$	y ¹		
LIMIP	$_{\nu}M$	$_{\star}M$	$_{11}M$		

X	P(X ₁)	X ₂	P(X ₂)	X ₁	X ₂	Υ	$P(Y X_1, X_2)$
x x		x ₂		x ₁ x ₁	x ₂ x ₂	y y'	
	. I	 xn	 	 x' ₁	x' ₂	ง น'	l I

Tipos de problemas de aprendizaje

• Estructura conocida, datos incompletos.

Muestras				
	X ₁	X ₂	Y	
d[0]	?	x ₂ ⁰	yº	
d[1]	χ_1^1	?	y ¹	
d[2]	?	χ^2_2	y^2	
		_		
d[M]	χ_1^M	χ_2^M	?	

• Estructura desconocida, datos incompletos.

Muestras					
	X ₁	X_2	Y		
d[0]	?	χ_2^0	y ⁰		
d[1]	χ_1^1	?	y ¹		
d[2]	?	χ_2^2	y ²		
	'	_			

d[M]	χ_1^M	χ_2^M	?

X ₁	P(X ₁)	X ₂	P(X ₂)	X ₁	X ₂	Y	$P(Y X_1, X_2)$
x ₁ x' ₁		x ₂ x' ₂		x ₁ x ₁	x ₂ x ₂	у у′	
 x ₁ ⁿ		 x ₂ ⁿ		 x ₁ '	x_2'	y′	

Tipos de problemas de aprendizaje

• Variables latentes, datos incompletos.

Introducción

00000000

Muestras					
	X ₁	X ₂	Y		
d[0]	?	x_2^0	yo		
d[1]	χ_1^1	?	y ¹		
d[2]	?	χ_2^2	y^2		
d[M]	χ_1^M	χ_2^M	?		

X ₁	P(X ₁)	X ₂	$P(X_2)$
x ₁ x ₁ '		x ₂	
~1		1 ~2	

x_1^n			x_2^n
X_1	X ₂	Y	$P(Y X_1,X_2)$
x_1	x_2	y	
x_1	x_2	y′	

$$x_1'$$
 x_2' y'

Referencias

Datos incompletos

Máxima Verosimilitud

- Introducción
- Máxima Verosimilitud
- 3 Estimación Bayesiana
- 4 Aprendizaje de la estructura
- Datos incompleto

Estimación Bayesiana

Temas

Introducción

- Máxima Verosimilitud
 - Verosimilitud
 - Distribución de Bernoulli.
 - Distribución Gaussiana
 - En redes Bayesianas

Verosimilitud

Introducción

Definición

La *verosimilitud* es la probabilidad de haber observado un conjunto de datos, dado un modelo.

$$L(\mathcal{M}:D) = P(D|\mathcal{M}) = \prod_{M} P(d[m]:\mathcal{M})$$
(1)

Referencias

• La forma de aprendizaje que busca encontrar los parámetros para el modelo que maximicen esta cantidad se conoce como *máxima verosimilitud*.

Verónica E. Arriola-Rios Verosimilitud <u>Facultad de Ciencias, UNAM</u>

Máxima Verosimilitud

- Verosimilitud
- Distribución de Bernoulli
- Distribución Gaussiana
- En redes Bayesianas

Ejemplo: Distribución de Bernoulli

Para una moneda cargada:

Introducción

$$P(X[m]|\theta) = \begin{cases} \theta & \text{si } X[m] = Sol^{1} \\ 1 - \theta & \text{si } X[m] = Aguila^{0} \end{cases}$$

Meta: encontrar θ tal que *prediga bien* los resultados de futuros experimentos D.

Se busca maximizar la verosimilitud de las muestras obtenidas:

$$L(\theta:D) = P(D|\theta) = \prod_{m=1}^{M} P(X[m]:\theta)$$
 (2)

Por ejemplo:

Introducción

$$L(\theta :< S, A, A, S, S >) = P(S|\theta)P(A|\theta)P(A|\theta)P(S|\theta)P(S|\theta)$$

$$= \theta(1 - \theta)(1 - \theta)\theta\theta$$

$$= \theta^{3}(1 - \theta)^{2}$$
(3)

Verónica E. Arriola-Rios Distribución de Bernoulli Facultad de Ciencias, UNAM

La máxima verosimilitud está dada por:

$$\max(L(\theta : < S, A, A, S, S >)) = \theta^{3}(1 - \theta)^{2}$$
(4)

Referencias

En general:

Introducción

$$\max(L(\theta:D)) = \theta^{NS}(1-\theta)^{NA}$$
 (5)

El máximo de la verosimilitud es también el máximo del *logaritmo de la verosimilitud* llamada, por comodidad, *log-verosimilitud*:

$$\max(\log(L(\theta:D))) = NS\log\theta + NA\log(1-\theta)$$
 (6)

Utilizando cálculo se obtiene:

$$\theta = \frac{NS}{NS + NA} = \frac{NS}{N} \tag{7}$$

Máxima verosimilitud para una distribución multivaluada

• Si la variable X puede tomar k valores distintos y M_i representa el número de muestras donde $X = x_i$:

$$L(\theta:D) = \prod_{i=1}^{k} \theta_i^{M_i}$$
 (8)

con θ_i la probabilidad de obtener el i-ésimo valor y $\sum \theta_i = 1$.

• Entonces la probabilidad aprendida para cada valor posible de X es:

$$\theta_{i} = \frac{M_{i}}{M} \tag{9}$$

con M el número total de muestras.

Verónica E. Arriola-Rios Distribución de Bernoulli Facultad de Ciencias, UNAM

Temas

Introducción

- Máxima Verosimilitud
 - Verosimilitud
 - Distribución de Bernoulli.
 - Distribución Gaussiana

Máxima Verosimilitud

En redes Bayesianas

Máxima verosimilitud para una distribución Gaussiana

Si la distribución de probabilidad se describe con la función normal:

$$P(x) \sim N(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}}$$
(10)

Entonces la verosimilitud viene dada por:

$$L(\mu, \sigma^2; x_1, ..., x_n) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\frac{1}{2\sigma^2} \sum_{j=1}^n (x_j - \mu)^2}$$
(11)

El máximo de la verosimilitud es también el máximo del logaritmo de la verosimilitud:

$$l(\mu, \sigma^2; x_1, ..., x_n) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{j=1}^{n} (x_j - \mu)^2$$
 (12)

Verónica E. Arriola-Rios Distribución Gaussiana Facultad de Ciencias, UNAM

Temas

- Máxima Verosimilitud
 - Verosimilitud
 - Distribución de Bernoulli.
 - Distribución Gaussiana
 - En redes Bayesianas

Máxima verosimilitud para Redes Bayesianas

Con dos variables

Datos incompletos

$$L(\Theta: D) = \prod_{m=1}^{M} P(x[m], y[m] : \Theta)$$

$$= \left(\prod_{m=1}^{M} P(x[m] : \theta_x)\right) \left(\prod_{m=1}^{M} P(y[m]|x[m] : \theta_{y|x})\right)$$

$$\begin{split} L(\Theta:D) &= \prod_{m} P(X[m]:\Theta) \\ &= \prod_{m} \prod_{i} P(x_{i}[m]|Padres_{x_{i}}[m]:\theta_{x_{i}|Padres_{x_{i}}}) \\ &= \prod_{i} \underbrace{\prod_{m} P(x_{i}[m]|Padres_{x_{i}}[m]:\theta_{x_{i}|Padres_{x_{i}}})}_{L_{i}(\theta_{x_{i}|Padres_{x_{i}}}:D)} \\ &= \prod_{i} L_{i}(\theta_{x_{i}|Padres_{x_{i}}}:D) \end{split}$$

• La máxima verosimilitud de la red se puede maximizar considerando cada probabilidad condicional por separado.

Con variables discretas

$$\theta_{x_i|padres_{x_i}} = \frac{N(x, padres_x)}{N(padres_x)}$$
 (13)

Introducción

Máxima Verosimilitud

000000000000000

- Estimación Bayesiana

Estimación Bavesiana

Cualquier valor sobre el que haya incertidumbre debería ser una variable aleatoria cuva distribución de probabilidad es actualizada conforme reunimos datos.

- ullet Para realizar inferencia se trata a los parámetros Θ como a cualquier otra variable.
- Para realizar una consulta, se marginaliza la variable aleatoria correspondiente al(los) parámetro(s) desconocido(s).
- Para realizar la marginalización se suma la distribución de probabilidad sobre todos los posibles valores (se integra cuando ésta es continua).

00000000000000

Temas

Introducción

- Estimación Bayesiana
 - Un parámetro
 - Consultas
 - Distribución a priori del parámetro

Verónica E. Arriola-Rios Un parámetro Facultad de Ciencias, UNAM

Estimación de parámetros como un MGP

- Para una moneda cargada sea:
 - 0 una variable aleatoria continua en [0, 1].
- Dado que el valor de θ es desconocido, fluye información entre los resultados de cada volado X[i].

Verónica E. Arriola-Rios Un parámetro Facultad de Ciencias, UNAM Estimación Bayesiana

000000000000000

Temas

Introducción

- Estimación Bayesiana
 - Un parámetro
 - Consultas
 - Distribución a priori del parámetro

Ejemplo

• Distribución de probabilidad conjunta:

$$P(x[1], ..., x[m], \theta) = P(x[1], ..., x[M]|\theta)P(\theta)$$
(14)

$$= P(\theta) \prod_{i=1}^{M} P(X[i]|\theta)$$
 (15)

$$= P(\theta)\theta^{NS}(1-\theta)^{NA}$$
 (16)

Consultas

Introducción

A partir del planteamiento:

$$P(X[1], ..., X[m], \theta) = P(\theta)\theta^{NS}(1-\theta)^{NA}$$
 (17)

se pueden realizar las preguntas siguientes:

Distribución de probabilidad a posteriori para el parámetro θ:

$$P(\theta|X[1],...,X[M]) = \frac{P(X[1],...,X[M]|\theta)P(\theta)}{P(X[1],...,X[M])} = \frac{P(\theta)\prod_{i=1}^{M}P(X[i]|\theta)}{Z}$$
(18)

 Probabilidad de obtener un cierto valor en el volado siguiente, dados los volados anteriores:

$$P(X[M+1]|X[1],...,X[m]) = \frac{P(X[M+1],X[1],...,X[M])}{Z}$$
(19)

Estimación Bayesiana

000000000000000

$$P(X[M+1]|X[1],...,X[M])$$

$$= \int_{\theta} P(X[M+1],\theta|X[1],...,X[M])d\theta$$

$$= \int_{\theta} P(X[M+1]|X[1],...,X[m],\theta)P(\theta|X[1],...,X[M])d\theta$$

$$= \int_{\theta} P(X[M+1]|\theta)P(\theta|X[1],...,X[M])d\theta$$

Estimación Bayesiana

Introducción

- Estimación Bayesiana
 - Un parámetro
 - Consultas
 - Distribución a priori del parámetro

• Sin embargo todas las consultas anteriores han dejado un pendiente:

$$P(\theta) = ? \tag{20}$$

Distribución de Dirichlet

Introducción

- Aplica cuando el parámetro θ describe una distribución multinomial sobre k valores posibles de la variable aleatoria x.
- La Distribución de Dirichlet es una distribución continua dada por:

$$P(\theta) = Dirichlet(\alpha_1, ..., \alpha_k) = \frac{1}{Z} \prod_{i=1}^k \theta_i^{\alpha_i - 1}$$

con la constante de normalización

$$Z = \frac{\prod_{i=1}^{k} \Gamma(\alpha_i)}{\Gamma\left(\sum_{t=1}^{k} \alpha_t\right)} \qquad \Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt$$

donde $\Gamma(x)$ es considerada la generalización de la función factorial para números reales.

Figura: Caso con dos valores posibles para la variable x.

ullet Intuitivamente los hiperparámetros lpha corresponden al número de muestras vistas.

Ejemplo volados

Introducción

- Se utiliza la distribución Dirichlet $(\alpha_S, \alpha_A)^{[1]}$ para representar la creencia inicial $P(\theta)$ que se tiene sobre la posibilidad de que la moneda esté cargada.
- Esa posibilidad se puede interpretar como los conteos simulados α de unos volados virtuales lanzados antes de iniciar los experimentos reales.
- La distribución a posteriori toma la forma Dirichlet($\alpha_S + NS, \alpha_A + NA$)

$$P(x|D) = \frac{\alpha_x + M[x]}{\alpha + M}$$
 (21)

En el ejemplo equivalente con dados se tendría un conteo simulado por cada cara del dado Dirichlet($\alpha_1,...,\alpha_6$), posteriormente Dirichlet($\alpha_1+N_1,...,\alpha_6+N_6$), contando cuántas veces N_i ha salido cada número.

Verónica E. Arriola-Rios Distribución a priori del parámetro Facultad de Ciencias, UNAM

^[1]En el caso particular de dos variables, también se le llama función betα. 🕨 🗸 🗗 🔻 📚

- Aprendizaje de la estructura

Aprendizaje de la estructura

Se asume una distribución verdadera P*.

Omitir una arista

- Las independencias son incorrectas.
- No se puede aprender P*.
- Generaliza mejor.

Añadir una arista

- Introduce dependencias falsas.
- Puede aprender P*.
- Hay más parámetros qué aprender.
- Peor para generalizar.

Función de evaluación

Introducción

- Se utiliza una función para decidir qué gráfica 9 es mejor.
- Por ejemplo, se usa la verosimilitud.
- Sin embargo, la verosimilitud siempre aumenta con el número de aristas, por lo tanto:
 - Se añade un peso que castiga la inclusión de aristas:

$$eva_{BIC} = l(Theta_{\mathcal{G}} : D) - \frac{\log M}{2}Dim[\mathcal{G}]$$
 (22)

donde M es el número de ejemplares de entrenamiento y $Dim[\mathcal{G}]$ es el número de parámetros independientes en el modelo.

Referencias

Datos incompletos

•0

Datos incompletos

Máxima Verosimilitud

Datos incompletos

Datos incompletos

Máxima Verosimilitud

Introducción

Χ	У
?	y=0
x=0	y=1
?	y=0

$$L(D:\Theta) = P(y = 0)P(x = 0, y = 1)P(y = 0)$$

$$= \left(\sum_{x = Val(X)} P(X, y = 0)\right)^{2}$$

$$P(x = 0, y = 1)$$

$$= (\theta_{x = 0}\theta_{y = 0|x = 0} + \theta_{x = 1}\theta_{y = 0|x = 0})^{2}$$

$$\theta_{x = 0}\theta_{y = 1|x = 0}$$
(25)

Referencias

No es posible descomponer esta ecuación ni por *variables*, *distribución de probabilidad condicional* y requiere realizar *inferencia*.

Referencias I

Introducción

//www.coursera.org/specializations/probabilistic-graphical-models.

Koller, Daphne y Nir Friedman (2009). *Probabilistic Graphical Models, Principles and Techniques*. MIT Press Cambridge.

Referencias

Creative Commons Atribución-No Comercial-Compartir Igual

