May 25, 2015

Stephanie Lund (2555914) Aljoscha Dietrich(2557976)

Exercise 1

a)
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{-1} x[n]e^{-j\omega n} + \sum_{n=0}^{3} x[n]e^{-j\omega n} + \sum_{n=4}^{\infty} x[n]e^{-j\omega n}$$

$$= \sum_{n=0}^{3} x[n]e^{-j\omega n}$$

$$= 1 + e^{-j\omega} + e^{-j2\omega} + e^{-j3\omega}$$

b)
$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$

$$= \sum_{n=0}^{N-1} x[n] (e^{-j\frac{2\pi}{N}})^{kn}$$

$$= \sum_{n=0}^{3} x[n] (e^{-j\frac{2\pi}{N}})^{kn}$$

$$= 1 + (e^{-j\frac{2\pi}{N}})^k + (e^{-j\frac{2\pi}{N}})^{2k} + (e^{-j\frac{2\pi}{N}})^{3k}$$

c) If we take N samples from the formula in part a), then $\omega = \frac{2\pi}{N}k$

$$X(e^{j\omega}) = 1 + e^{-j\omega} + e^{-j2\omega} + e^{-j3\omega}$$
$$= 1 + (e^{-j\frac{2\pi}{N}})^k + (e^{-j\frac{2\pi}{N}})^{2k} + (e^{-j\frac{2\pi}{N}})^{3k}$$

Exercise 2

a) The highest frequency, given by $5\cos(50\pi t)$, is 25. The minimum sampling rate must be at least twice the highest frequency, so it would need to be greater

than 50.

b) $f_s = 25$. Then $t = \frac{k}{25}$ (where k is an integer), and:

$$\begin{split} y(t) &= 10cos(20\pi t - \frac{\pi}{4}) - 5cos(50\pi t) \\ &= 10cos(20\pi t - \frac{\pi}{4}) - 5cos(50\pi \frac{k}{25}) \\ &= 10cos(20\pi t - \frac{\pi}{4}) - 5cos(2\pi k) \\ &= 10cos(20\pi t - \frac{\pi}{4}) - 5 \end{split}$$

c) As shown above, A = -5

Exercise 3

W_2^0				W_2^1			
W_4^0		W_4^1		W_4^2		W_4^3	
W_8^0	W_{8}^{1}	W_8^2	W_8^3	W_8^4	W_8^5	W_{8}^{6}	W_8^7
1	$\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$	-i	$-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$	-1	$-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$	i	$\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
2	0	2	0	2	0	2	0

p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
4	0	0	0	4	0	0	0

S_0	S_1	S_2	S_3	S_4	S_5	S_6	S_7
8	0	0	0	0	0	0	0

Exercise 4

a)
$$y[0] = h[0]x[0] = 0.5 \cdot 1.0 = 0.5$$

 $y[1] = h[0]x[1] + h[1]x[0] = 0.5 \cdot 2.0 + 0.5 \cdot 1.0 = 1.5$
 $y[2] = h[0]x[2] + h[1]x[1] + h[2]x[0] = 0.5 \cdot 2.0 = 1.0$
 $y[n] = [0.5 \quad 1.5 \quad 1.0]$

b)
$$H(e^{-j\omega}) = \sum_{n=-\infty}^{\infty} h(n) \cdot e^{-i\omega n} = h(0) + h(1) \cdot e^{-i\omega} = \frac{1}{2} \cdot [1 + e^{-j\omega}]$$

$$\begin{split} c) \quad A(\omega) &= |H(e^{-j\omega})| \\ &= |\frac{1}{2} \cdot [1 + e^{-j\omega}]| \\ &= \frac{1}{2} |1 + \cos(-\omega) + i\sin(-\omega)| \\ &= \frac{1}{2} \sqrt{(1 + \cos(\omega))^2 + \sin(\omega)^2} \\ &= \frac{1}{2} \sqrt{1 + \cos^2(\omega) + 2\cos(\omega) + \sin^2(\omega)} \\ &= \frac{1}{2} \sqrt{2 + 2\cos(\omega)} \\ &= \frac{1}{2} \sqrt{4(\frac{1 + \cos(\omega)}{2})} \\ &= \cos(\frac{\omega}{2}) \end{split}$$

Then, for $\omega = 2\pi f$, the amplitude response as a function of f is $\cos(\frac{2\pi f}{2})$ and looks as follows:

