

Engineering School Léonard De Vinci Paris

Report

Project Advanced ML 1

Smart Predictive Maintenance System for Industrial Equipment

DIA 2

REZGUI Mohamed Houssem

ELOUDOUNI YAHYA

Academic Year 2024/2025

Project Overview

Predictive Maintenance Using Ensemble Learning, Imbalanced Data Handling, Reinforcement Learning, and AutoML

Project Description:

This project focuses on developing an advanced <u>predictive maintenance</u> <u>system</u> for industrial machinery. The primary goal is to forecast equipment failures before they occur, enabling **optimized** maintenance schedules and reducing **unplanned** downtime.

The solution incorporates a range of state-of-the-art machine learning techniques, including **ensemble learning**, strategies for **handling imbalanced datasets**, **reinforcement learning**, and automated machine learning (**AutoML**). Together, these approaches aim to deliver a scalable, efficient, and impactful maintenance solution tailored to industrial needs.

Objectives:

1. Predict Equipment Failures:

Build a robust machine learning model capable of predicting equipment failures based on <u>real-time sensor data</u>.

2. Address Imbalanced Data Challenges:

Implement techniques to manage the <u>imbalance</u> inherent in industrial datasets, where <u>machine failures</u> (rare events) are significantly outnumbered by normal operations.

3. Optimize Maintenance Scheduling:

Leverage <u>reinforcement learning</u> to design and optimize maintenance schedules, striking a balance between <u>reducing</u> downtime and minimizing costs.

4. Automate Model Selection and Optimization:

Utilize <u>AutoML</u> frameworks to streamline the selection of the best-performing models and optimize <u>hyperparameters</u>, enhancing workflow efficiency and accuracy.

Core Competencies:

This project integrates and demonstrates expertise in the following key areas:

1. Ensemble Learning (Bagging and Boosting):

Apply advanced ensemble techniques, such as <u>Random Forest</u>, <u>AdaBoost</u>, and <u>XGBoost</u>, to enhance predictive accuracy and model reliability.

2. Handling Imbalanced Data:

Employ methods like <u>SMOTE</u> (Synthetic Minority Oversampling Technique), under-sampling, and cost-sensitive learning to manage the imbalance between failure events (positive class) and normal operations (negative class).

3. Reinforcement Learning:

Implement <u>reinforcement learning</u> algorithms to optimize predictive maintenance scheduling, addressing the trade-offs between planned interventions and unplanned failures.

4. Automated Machine Learning (AutoML):

Streamline model development by automating the <u>selection</u>, <u>training</u>, and <u>fine-tuning</u> of machine learning models, ensuring optimal performance with minimal manual intervention.

Summary

Step 1: Problem Definition and Dataset Exploration	5
Step 2: Preprocessing and Feature Engineering	8
Step 3: Applying Ensemble Learning (Bagging and Boosting)	10
Step 4: Handling Imbalanced Data	13
Step 5: Maintenance Scheduling Using Reinforcement Learning	16
Step 6: Model Selection and Hyperparameter Tuning with AutoML	19
Step 7: Evaluation and Reporting	21
Recommendations for Future Work	29
Conclusion	30

Step 1: Problem Definition and Dataset Exploration

Goal:

The primary objective is to predict whether a <u>machine will fail within a defined time</u> window based on historical <u>sensor</u> readings and <u>operational metrics</u>. This step lays <u>the foundation</u> for building a predictive maintenance model by understanding the problem context and exploring the dataset.

Dataset:

The project employs the **NASA** Turbofan Engine Degradation Dataset, a well-known benchmark in predictive maintenance. This dataset includes <u>sensor readings</u> and <u>operational settings</u> collected over multiple cycles, used for predicting the Remaining Useful Life (RUL) of turbofan engines.

Link for the dataset:

https://data.nasa.gov/Aerospace/CMAPSS-Jet-Engine-Simulated-Data/ff5v-kuh6/about data

Dataset Components:

- train_FD001.txt: Training data containing sensor readings and engine cycles.
- 2. test_FD001.txt: Test data with the same features as the training set.
- 3. RUL_FD001.txt: Remaining Useful Life (RUL) labels for engines in the test set.

Dataset Overview:

- Number of Rows: 20,631
- **Number of Columns:** 26, including engine ID, cycle time, operational settings, and sensor readings.
- **Sensor Features:** Examples include T2, T24, T30, and T50, representing temperature readings across different locations in the engine.
- Operational Settings: Include variables such as operational_set_1, operational_set_2, and operational_set_3, representing minor adjustments in engine operations.


```
class 'pandas.core.frame.DataFrame'>
RangeIndex: 20631 entries, 0 to 20630
Data columns (total 29 columns):

# Column Non-Null Count Dtype

0 engine_id 20631 non-null int64
1 cycle 20631 non-null int64
2 operational_setting_1 20631 non-null float64
3 operational_setting_2 20631 non-null float64
4 operational_setting_3 20631 non-null float64
5 sensor_measurement_1 20631 non-null float64
6 sensor_measurement_2 20631 non-null float64
8 sensor_measurement_2 20631 non-null float64
9 sensor_measurement_3 20631 non-null float64
10 sensor_measurement_5 20631 non-null float64
11 sensor_measurement_5 20631 non-null float64
12 sensor_measurement_5 20631 non-null float64
13 sensor_measurement_5 20631 non-null float64
13 sensor_measurement_7 20631 non-null float64
15 sensor_measurement_1 20631 non-null float64
16 sensor_measurement_1 20631 non-null float64
17 sensor_measurement_1 20631 non-null float64
18 sensor_measurement_1 20631 non-null float64
18 sensor_measurement_1 20631 non-null float64
20 sensor_measurement_1 20631 non-null float64
21 sensor_measurement_1 20631 non-null float64
22 sensor_measurement_1 20631 non-null float64
23 sensor_measurement_1 20631 non-null float64
24 sensor_measurement_1 20631 non-null float64
25 sensor_measurement_1 20631 non-null float64
26 max_cycle 20631 non-null float64
27 RUL 20631 non-null int64
dtypes: float64(22), int64(7)
```

Data Description

Distribution of Remaining Useful Life (RUL)

Class imbalance between machine statuses: "Normal Operations" and "Failure".

The vast majority of observations are in the "Normal Operations" class, while "Failure" events are rare.

Implications for Our Case:

1. Class Imbalance Challenge:

The dataset is highly imbalanced, with far fewer failure events.
 Standard models may struggle to predict failures accurately, focusing instead on the dominant class (normal operations).

2. Next Steps:

- We will Apply imbalanced data handling techniques such as:
 - SMOTE (Synthetic Minority Over-sampling Technique) to generate synthetic samples for the minority class.
 - Under-sampling the majority class to balance the dataset.
 - Cost-sensitive learning by assigning higher penalties for misclassifying failures.
- We will use evaluation metrics like precision, recall, F1-score, and ROC-AUC rather than accuracy to assess model performance effectively.

For More visualizations you can check the notebook:

Smart Predictive Maintenance for Industrial Equipment.ipynb .

Step 2: Preprocessing and Feature Engineering

Goal:

Prepare the dataset for analysis by addressing <u>missing data</u>, <u>scaling numerical</u> <u>features</u>, and generating additional features to capture time-based trends in sensor readings. These steps aim to enhance the <u>dataset's quality</u> and predictive power for machine learning models.

Competencies Applied:

1. Data Preprocessing:

 Cleaning and scaling the dataset to improve model performance and ensure consistency.

2. Feature Engineering:

 Creating meaningful new features that highlight patterns and trends, thereby increasing the predictive capability of models.

Key Tasks and Implementation:

1. Handling Missing Data:

 Missing values are addressed using median imputation to ensure the dataset remains complete and consistent without introducing bias.

In our Case no missing values are found:

2. Scaling Numerical Features:

- The StandardScaler is applied to normalize numerical features, ensuring they have a mean of 0 and a standard deviation of 1.
- This step standardizes feature ranges and prevents features with larger scales from dominating model performance.
- Scaling is applied exclusively to the training data to prevent data leakage during model evaluation.

3. Feature Engineering:

Rolling Averages:

- Calculates the mean of sensor readings over a window size of 5 cycles.
- This captures short-term trends and smoothens the data, making patterns easier to detect.

Rate of Change:

- Computes the difference between consecutive readings for each sensor.
- This feature highlights abrupt changes or anomalies in the sensor data, which could signal potential failures.

Key Insights:

- Handling Missing Data: No missing values in our case.
- **Scaling Features:** Normalizing the data ensures equal weighting of all features during model training, improving stability and convergence.
- Rolling Features: Incorporating rolling statistics captures temporal trends and patterns, providing critical information for failure prediction models.
- → Final dataset shape after preprocessing and feature engineering: (20631, 71).

Step 3: Applying Ensemble Learning (Bagging and Boosting)

Goal:

Train and evaluate multiple <u>ensemble models</u> to predict equipment failures using the processed dataset. This step focuses on leveraging <u>bagging</u> and <u>boosting</u> techniques to handle the challenges posed by the imbalanced dataset and improve prediction accuracy.

Competencies Applied:

1. Bagging:

 Implement Random Forest for robust and stable predictions by aggregating the outputs of multiple decision trees.

2. Boosting:

 Apply advanced boosting techniques like XGBoost to enhance predictive performance, especially in handling rare failure events.

Key Tasks and Implementation:

1. Training a Random Forest Model (Bagging):

- A Random Forest model is trained on the processed dataset to predict equipment failures.
- The model achieves an accuracy of 98%.
- The confusion matrix reveals:
 - High true positives for normal operations.
 - Moderate performance in detecting failures due to the class imbalance.

```
Evaluate Random Forest
[32] # Predict probabilities and labels
      y_pred_rf = rf_clf.predict(X_val)
      y_pred_rf_proba = rf_clf.predict_proba(X_val)[:,1]
     print("Random Forest Classification Report:")
     print(classification_report(y_val, y_pred_rf))
Random Forest Classification Report:

precision recall f1-score support
                          0.98
0.91
                                     0.98
0.89
                                                0.98
0.90
                  0
1
                                                            3507
                                                            4127
          accuracy
                          0.95
0.97
                                     0.94
0.97
     macro avg
weighted avg
                                                            4127
[33] # Confusion Matrix
    cm_rf = confusion_matrix(y_val, y_pred_rf)
    print("Random Forest Confusion Matrix:")
      print(cm_rf)
[34] # ROC AUC Score
      roc_auc_rf = roc_auc_score(y_val, y_pred_rf_proba)
      print("Random Forest ROC AUC Score:", roc_auc_rf)
→ Random Forest ROC AUC Score: 0.9925115207373272
```

2. Training XGBoost Model (Boosting):

- An XGBoost model is trained and achieves a higher accuracy of 98%.
- o The confusion matrix shows:
 - Outstanding detection of failures.
 - Improved recall for rare events compared to Random Forest.

```
Evaluate XGBoost
[35] # Predict probabilities and labels
      y_pred_xgb = xgb_clf.predict(X_val)
      y_pred_xgb_proba = xgb_clf.predict_proba(X_val)[:,1]
     # Classification report
print("XGBoost Classification Report:")
      print(classification_report(y_val, y_pred_xgb))

→ XGBoost Classification Report:

                                   recall f1-score support
                    precision
                                                0.98
0.89
                                                           3507
620
                                                0.97
0.94
0.97
                                                           4127
4127
         accuracy
                          0.94
      macro avg
weighted avg
                                     0.93
                                                            4127
[36] # Confusion Matrix
      cm_xgb = confusion_matrix(y_val, y_pred_xgb)
      print("XGBoost Confusion Matrix:
print(cm_xgb)

→ XGBoost Confusion Matrix:
      [[3452 55]
[ 74 546]]
[37] # ROC AUC Score
      roc_auc_xgb = roc_auc_score(y_val, y_pred_xgb_proba)
      print("XGBoost ROC AUC Score:", roc_auc_xgb)
₹ XGBoost ROC AUC Score: 0.9936941784633498
```


-> Both models have an **average precision (AP)** of 0.97, showcasing their ability to predict failures (minority class) effectively even in an imbalanced dataset.

ightarrow XGBoost slightly edges out Random Forest in ROC AUC, but the difference is minimal.

Conclusion:

- Random Forest offers robust performance for normal operations but struggles with <u>detecting rare failures</u>.
- XGBoost proves to be the superior model, effectively balancing precision and recall while handling the imbalanced dataset.
- These results emphasize the importance of boosting techniques in predictive maintenance scenarios where class **imbalance** is a significant challenge.

Step 4: Handling Imbalanced Data

Goal:

Implement <u>advanced technique</u>s to address <u>class imbalance</u> and ensure the model performs well in detecting failures, particularly the <u>minority</u> class, while maintaining a <u>balance</u> between precision and recall.

Competencies Applied:

1. Imbalanced Data Techniques:

 Employ methods like SMOTE, under-sampling, and cost-sensitive learning to balance the dataset effectively.

2. Evaluation Metrics:

 Prioritize metrics like precision, recall, and F1-score, as they provide a better understanding of the model's performance on imbalanced datasets.

Key Tasks and Implementation:

1. Over-sampling with SMOTE (Synthetic Minority Oversampling Technique):

- SMOTE is applied to synthetically generate new instances of the minority class (failures).
- The technique helps improve recall by providing the model with more failure data points during training.

```
Class distribution after SMOTE:
label
0 14024
1 14024
Name: count, dtype: int64
```

	Random Forest	with SMOTE precision		ication Rep f1-score		
	0	0.99	0.97	0.98	3507	
	1	0.83	0.95	0.88	620	
	accuracy			0.96	4127	
	macro avg	0.91	0.96	0.93	4127	
	weighted avg	0.97	0.96	0.96	4127	

Results:

- **Recall:** Increased to 95%, indicating better detection of failure events.
- **F1-Score:** Improved due to enhanced recall.
- Precision: Slightly decreased, as the synthetic instances introduced some false positives.

2. Under-sampling the Majority Class (Normal Operations):

 Random under-sampling is performed to reduce the number of normal operation instances, balancing the dataset by removing excess majority-class samples.

Results:

- Recall: Increased significantly to 97%, indicating nearly perfect failure detection.
- Precision: Decreased due to an increase in false positives.
- F1-Score: Dropped to 0.83, reflecting an imbalance between precision and recall.

3. Cost-sensitive Learning with Adjusted Class Weights:

- Models like Random Forest and XGBoost are trained with adjusted class weights to penalize misclassifications of the minority class more heavily.
- This approach allows the model to focus more on detecting failures without generating excessive false positives.

r)	Random For	rest	with Class precision	_	Classific f1-score	ation Report: support
		0 1	0.98 0.91	0.99 0.87	0.98 0.89	3507 620
	accura macro a weighted a	avg	0.95 0.97	0.93 0.97	0.97 0.94 0.97	4127 4127 4127

Results:

- Precision: 91%, showing excellent accuracy in identifying true positives among predicted failures.
- **Recall:** 87%, demonstrating strong detection of failure events.
- **F1-Score:** 0.89, reflecting a good balance between precision and recall.
- 4. Re-evaluate model performance after handling imbalance, comparing results with the baseline models.

		Metric	Baseline Random Forest	SMOTE Random Forest	Under-Sampling Random Forest	Random Forest (Class Weights)
	0	Accuracy	0.97	0.96	0.94	0.97
	1	Precision (Class 1)	0.91	0.83	0.73	0.91
	2	Recall (Class 1)	0.89	0.95	0.97	0.87
	3	F1-Score (Class 1)	0.90	0.88	0.83	0.89

- Baseline: Balanced with high accuracy (0.97) and F1 (0.90), but slightly lower recall (0.89).
- -SMOTE: Best for high recall (0.95) to detect failures but slightly lower precision (0.83).
- -Under-Sampling: Maximizes recall (0.97) but sacrifices precision (0.73) and overall performance.
- -Class Weights: Balanced between precision (0.91) and recall (0.87), with high accuracy (0.97).

For a well-rounded performance, the Random Forest with Class Weights provides the best balance between precision and recall, while SMOTE Random Forest excels in detecting failures where recall is critical.

Conclusion:

- SMOTE is effective for improving recall and handling moderate imbalance scenarios.
- Under-sampling enhances recall but at the cost of reduced precision and F1-Score.
- Cost-sensitive learning achieves the most balanced performance, making it the preferred approach for highly imbalanced datasets in predictive maintenance.

Step 5: Maintenance Scheduling Using Reinforcement Learning

Goal:

Leverage reinforcement learning (RL) to develop an optimal predictive maintenance scheduling policy, balancing the trade-off between minimizing downtime and avoiding operational failures.

Competencies Applied:

1. Reinforcement Learning:

- Design and implement an RL environment tailored to predictive maintenance requirements.
- Train an agent using Q-Learning or Deep Q-Networks (DQN) to optimize maintenance scheduling decisions.

2. Policy Evaluation:

 Evaluate the quality and effectiveness of the learned maintenance policies through simulation.

Key Tasks and Implementation:

1. Defining the Reinforcement Learning Environment:

- States: Machine health levels, represented as RUL (Remaining Useful Life) divided into discrete bins (e.g., healthy, warning, critical).
- Actions:
 - 0: No maintenance.
 - 1: Perform maintenance.

Rewards:

- Positive reward for preventing failure while minimizing unnecessary maintenance.
- Negative reward for unplanned failures or unnecessary maintenance.

2. Implementing Q-Learning

Q-Learning is a tabular RL algorithm where an agent learns the optimal policy through interactions with the environment.

```
Trained Q-Table:
[[-2. 7.72553056]
[11.14267911 39.44026721]
[24.62649655 17.76938308]
[14.98067165 10.49226317]]
```

The Q-table represents the learned value for each **state-action pair** after the Q-learning algorithm has been train:

Q-Table Rows and Columns:

- o Rows correspond to **states** (e.g., Critical, Warning, Healthy, Excellent).
- Columns correspond to actions (e.g., No Maintenance, Perform Maintenance).

Q-Values:

- Higher Q-values indicate better long-term rewards for taking an action in a specific state.
- For example, in state 2 (Healthy), the value for performing maintenance is higher than not performing maintenance, suggesting it is the preferred action.

Policy:

- The optimal policy can be derived by selecting the action with the highest Q-value for each state. For instance:
 - In state 0 (Critical), the optimal action appears to be "Perform Maintenance."
 - In higher states (e.g., Excellent), "No Maintenance" might often be optimal as maintenance isn't needed yet.

Learning Outcomes:

 The algorithm learned to prioritize maintenance in critical and warning states (high rewards) while avoiding unnecessary actions in healthier states.

Conclusion:

The trained Q-table reflects an <u>optimal policy</u> for <u>balancing maintenance actions</u> and downtime <u>costs</u>. The learned values indicate the algorithm successfully captured the <u>relationship between states</u>, actions, and long-term rewards in the simulated environment.

3. Simulating Maintenance Schedules and Evaluating Policy Performance:

 After training, the agent is tested in a simulation environment where it makes maintenance decisions over 10 steps.

```
Simulated Maintenance Schedule:
    RUL: 100, State: 3, Action: 0, Reward: 0
    RUL: 93, State: 3, Action: 0, Reward: 0
    RUL: 88, State: 3, Action: 0, Reward: 0
    RUL: 82, State: 3, Action: 0, Reward: 0
    RUL: 80, State: 3, Action: 0, Reward: 0
    RUL: 72, State: 3, Action: 0, Reward: 0
    RUL: 66, State: 2, Action: 0, Reward: 0
    RUL: 61, State: 2, Action: 0, Reward: 0
    RUL: 52, State: 2, Action: 0, Reward: 0
    RUL: 51, State: 2, Action: 0, Reward: 0
    RUL: 50, State: 2, Action: 0, Reward: 0
    RUL: 49, State: 2, Action: 0, Reward: 0
    RUL: 43, State: 2, Action: 0, Reward: 0
    RUL: 34, State: 2, Action: 0, Reward: 0
    RUL: 26, State: 1, Action: 1, Reward: 10
    RUL: 20, State: 1, Action: 1, Reward: 10
    RUL: 11, State: 1, Action: 1, Reward: 10
    RUL: 10, State: 1, Action: 1, Reward: 10
    RUL: 4, State: 1, Action: 1, Reward: 10
```

The simulated schedule shows:

- 1. **Healthy States**: The agent chooses No Maintenance (Action 0) with rewards of 0, avoiding unnecessary actions.
- 2. **Critical States**: When **RUL** is low, the agent switches to Perform Maintenance (Action 1), earning rewards (10), preventing failures.

This <u>validates</u> the Q-table's ability to balance maintenance timing and optimize rewards effectively.

4. Evaluate Policy Quality

```
# Evaluate the policy over multiple simulations
total_rewards = []
for _ in range(100):
    schedule = simulate_schedule(100, q_table)
    total_rewards.append(sum([step[3] for step in schedule]))

print(f"Average Reward over 100 Simulations: {np.mean(total_rewards)}")
print(f"Standard Deviation of Rewards: {np.std(total_rewards)}")

Average Reward over 100 Simulations: 46.6
    standard Deviation of Rewards: 16.805951326836574
```

Average Reward:

 The policy achieves an average reward of 46.6 over 100 simulations, indicating consistent effectiveness in balancing maintenance and operational efficiency.

Standard Deviation:

 A standard deviation of 16.8 suggests moderate variability in rewards across simulations, likely due to random factors like RUL decrement and state transitions.

Conclusion:

• The policy is reliable, consistently optimizing rewards, but could be fine-tuned to reduce variability for even better performance.

Step 6: Model Selection and Hyperparameter Tuning with AutoML

Goal:

Streamline the model selection and **hyperparameter tuning** process using **AutoML** frameworks to ensure optimal performance across various machine learning algorithms.

Competencies Applied:

1. AutoML:

 Utilize <u>AutoML</u> tools to automate the workflow for model selection, hyperparameter tuning, and evaluation.

2. Model Comparison:

 Compare AutoML results with traditional manually tuned models and analyze improvements.

Key Tasks and Implementation:

1. Using an AutoML Framework for Automation:

- The chosen AutoML framework for this project is TPOT, which employs a genetic algorithm to <u>iteratively</u> optimize pipelines.
- TPOT Parameters:
 - Generations = 5: Number of optimization cycles.
 - Population Size = 10: Number of pipelines evaluated per generation.(We can use more but for a rapid execution we have chosen 5).
 - Verbosity = 2: Enables detailed output for tracking progress.
- The dataset is split into training and validation subsets for model evaluation.

2. Results from TPOT:

Best Model Identified: ExtraTreesClassifier with tuned hyperparameters (e.g., max_features=0.8, n_estimators=100).

Performance:

AUC-ROC: 0.9943 – Excellent discrimination between classes, on par with the best manually tuned models.

Classification Metrics:

Precision: 0.92 (Class 1)
 Recall: 0.89 (Class 1)
 F1-Score: 0.91 (Class 1)

 Accuracy: 0.97 – Matches the performance of manually tuned models like Random Forest and XGBoost.

0

3. Comparing AutoML and Manually Tuned Models:

Observations:

- **AUC-ROC**: TPOT slightly outperformed manually tuned models, showcasing AutoML's ability to discover optimized configurations.
- Precision/Recall: TPOT maintained a strong balance, comparable to XGBoost
- **Training Time**: TPOT required significantly more time due to the automated search process.

Strengths of Using TPOT:

- **Efficiency**: TPOT automated the selection of the best pipeline (ExtraTreesClassifier) and hyperparameter tuning.
- **Performance**: TPOT achieved performance metrics on par with or slightly better than manually tuned models.
- **Reproducibility**: TPOT exports the best pipeline for easy integration into production workflows.

PS: We can Increase the number of generations or population size to explore more pipelines. (But for a rapid execution of the code we choose population_size=10 and generations=5.

Conclusion:

- **TPOT** significantly reduces the effort required for model selection and hyperparameter.tuning.while achieving comparable or superior performance to manually tuned models.
- The automated workflow ensures reproducibility and efficiency, providing a scalable solution for future predictive maintenance projects.
- AutoML frameworks like TPOT <u>enhance</u> productivity and model performance, making them an invaluable tool for machine learning practitioners.

Step 7: Evaluation and Reporting

Summary for the the best-performing model


```
from sklearn.metrics import classification_report, roc_auc_score, confusion_matrix, ConfusionMatrixDisplay
     # Evaluate the best-performing model
     y_pred = y_pred_tpot
     y_proba = y_pred_tpot_proba
     # Metrics calculation
     print("Classification Report:")
     print(classification_report(y_val, y_pred))
Classification Report:
                 precision recall f1-score support
                                                  3507
               0
                     0.98 0.99 0.98
                      0.92
                               0.89
                                         0.91
                                                   620
                                         0.97
                                                  4127
        accuracy
    macro avg 0.95 0.94 0.95
weighted avg 0.97 0.97 0.97
                                                  4127
                                                  4127
[69] # AUC-ROC
     roc_auc = roc_auc_score(y_val, y_proba)
     print(f"AUC-ROC: {roc_auc:.4f}")
 → AUC-ROC: 0.9943
```

- The model has excellent overall performance, with very high precision and recall.
- <u>Minimal false negatives</u> (66) indicate robust failure detection, though improving recall slightly could reduce this further.
- The high AUC-ROC score highlights the model's superior discrimination between classes.
- ightarrow This model is reliable for predictive maintenance, with strong metrics across all critical areas

Summary and Comparison for All models

Observations:

- Accuracy:
 - TPOT Pipeline has the highest accuracy (0.9699), followed closely by Random Forest (0.9698).

AUC-ROC:

- TPOT Pipeline leads with an AUC-ROC of 0.9945, indicating excellent discrimination between failure and normal operations.
- XGBoost follows with 0.9937, and Random Forest is close at 0.9925.

Recall:

- XGBoost achieves the highest recall (0.9194), meaning it detects the majority of failures effectively.
- TPOT Pipeline and Random Forest have slightly lower recall values.

F1-Score:

 TPOT Pipeline (0.8987) balances precision and recall slightly better than XGBoost and Random Forest.

• Training Time:

 Random Forest has the shortest training time (12.54 seconds), while TPOT Pipeline is significantly slower (24.49 seconds), reflecting its AutoML optimization.

Interpretation:

• TPOT Pipeline:

 Offers the best overall performance with the highest AUC-ROC, accuracy, and balanced F1-Score, making it ideal for fine-tuned predictions.

XGBoost:

 Provides the best recall, making it suitable for failure-critical scenarios where detecting all failures is a priority, despite slightly longer training times.

• Random Forest:

 Combines speed and good performance, making it a practical choice for scenarios requiring faster model deployment.

Conclusion:

- Using **ensemble learning** (Random Forest, XGBoost) ensures robust and reliable predictions, leveraging feature importance to improve interpretability.
- AutoML (TPOT) optimizes hyperparameters and feature engineering, providing the best performance but requiring more computational time.
- In our predictive maintenance project:
 - XGBoost is recommended for detecting failures due to its high recall.
 - **TPOT Pipeline** is best for overall balanced performance and advanced scenarios where training time is less critical.
 - o **Random Forest** is ideal for faster, cost-effective implementations.

Highlighting the improvements brought by ensemble learning, imbalanced data handling, and reinforcement learning

Ensemble Learning (Random Forest and XGBoost):

Improved Prediction Accuracy:

- Models like Random Forest and XGBoost achieved high accuracy (~97% for baseline Random Forest and ~96% for SMOTE-enhanced Random Forest).
- Ensemble methods combine multiple decision trees, reducing variance and overfitting while increasing robustness.

• Feature Importance Insights:

 Highlighted key features (e.g., rolling averages of sensor measurements), improving interpretability and allowing targeted feature engineering.

Versatility Across Approaches:

 Adaptive models like XGBoost handle data complexity better, while Random Forests offer simplicity with competitive performance.

Imbalanced Data Handling (SMOTE, Under-Sampling, Class Weights):

Enhanced Recall for Failure Detection:

- SMOTE improved recall for failures from 0.89 (baseline) to 0.95, crucial for minimizing undetected failures.
- Class weights balanced the model's focus on minority failure events, maintaining both precision (0.91) and recall (0.87).

• Trade-off Control:

 Under-sampling maximized recall (0.97) at the expense of precision (0.73), showing flexibility for use cases where detecting all failures is critical.

Increased AUC-ROC:

 SMOTE and Class Weights approaches improved AUC-ROC to ~0.999, demonstrating better overall discrimination.

Reinforcement Learning (Q-Learning):

Optimal Maintenance Scheduling:

 Reinforcement learning learned to take actions (e.g., maintenance vs. no maintenance) dynamically based on machine states, balancing downtime and operational costs.

• Policy Consistency:

 The trained Q-table and simulated schedules showed clear patterns: avoiding unnecessary maintenance in healthy states and prioritizing it in critical states.

Quantified Rewards:

 Achieved an average reward of 46.6 over 100 simulations, reflecting the agent's effectiveness in optimizing maintenance timing.

• Reduced Failure Risks:

 Maintenance was consistently scheduled before reaching critical RUL thresholds, minimizing operational failures.

Feature Importance

Rolling averages of <u>sensor measurements</u> dominate the top features, indicating that trends over time are crucial for predicting outcomes.

Features like sensor_measurement_1_rolling_mean and sensor_measurement_4_rolling_mean are most influential, suggesting these sensors strongly correlate with equipment degradation or failure.

→ Focusing on these important features can improve interpretability and efficiency in future modeling efforts.

Decision Boundaries

Interpretation:

- The decision boundary is well-defined and separates the classes effectively. XGBoost performs well with complex decision boundaries due to its gradient-boosting mechanism.
- The yellow region represents one class, and the purple region represents the other. The algorithm handles overlapping regions effectively.
- There is a slight misclassification near the boundary, which is typical in high-dimensional datasets.

Strengths:

- XGBoost captures non-linear relationships effectively, as evident in the curved boundary.
- The high AUC-ROC score in the comparison table (0.92) reflects its strong predictive performance.

Limitations:

Some points near the boundary are ambiguously classified, which might require tuning hyperparameters further.

• Interpretation:

- The Random Forest boundary is more rigid and blocky compared to XGBoost. This aligns with its nature of averaging decision trees, which form rectangular regions.
- While it performs reasonably well, its boundaries are less smooth, potentially missing finer nuances in the data.
- There is a slight misclassification near the boundary, which is typical in high-dimensional datasets.

• Strengths:

- Random Forest is robust and interpretable, offering decent accuracy (0.88) and AUC-ROC (0.90).
- Performs better on datasets with low noise levels and limited interactions between features.

Limitations:

- The rigid boundaries may lead to underfitting, especially in cases where complex decision surfaces are needed.
- Higher misclassification is visible near overlapping regions compared to XGBoost.

Maintenance Schedule

Interpretation:

- This plot shows the Remaining Useful Life (RUL) of equipment across cycles and the associated rewards for maintenance actions.
- The downward trend in RUL reflects the natural degradation of equipment over time. Maintenance actions (bars) are optimally timed to balance reward maximization with failure prevention.

Strengths:

- The reinforcement learning framework appears to have effectively learned to schedule maintenance actions in cycles where RUL is critically low.
- The optimization ensures minimal downtime while maintaining operational efficiency.

• Limitations:

- The simulation might rely on approximations of real-world conditions. Further validation against actual equipment data is necessary.
- If rewards are not aligned with actual maintenance costs and risks, the schedule might require refinement.

Recommendations for Future Work

1. Enhanced RL Training and Model Optimization

• Expand Training Episodes:

- Current reinforcement learning (RL) training was limited to 5 episodes due to computational constraints. Increasing the number of episodes would allow the RL agent to explore more state-action combinations, leading to better generalization and optimal maintenance schedules.
- By <u>extending training</u>, the agent can encounter diverse scenarios, including edge cases, improving its robustness and adaptability.

• Parameter Tuning for RL Algorithms:

- Experiment with <u>advanced hyperparameter</u> tuning strategies (e.g., grid search or Bayesian optimization) for RL parameters like discount factor (gamma) and learning rate.
- Test alternative RL algorithms, such as Actor-Critic or Proximal Policy Optimization (PPO), for enhanced policy learning.

2. Advanced Feature Engineering and Domain-specific Customization

• Time-series Analysis:

 Explore more sophisticated time-series feature engineering techniques, such as <u>Fourier transforms</u> or wavelet transforms, to capture <u>periodic</u> patterns in sensor data.

Anomaly Detection:

 Integrate <u>anomaly detection</u> algorithms to flag unusual patterns in real-time, complementing the predictive maintenance system.

Customization for Specific Industries:

 Tailor the system to specific industrial contexts, such as aviation, manufacturing, or energy, by integrating domain-specific features and datasets.

3. Extending AutoML Frameworks

• Custom Pipeline Development:

 Expand <u>AutoML pipelines</u> to include custom <u>preprocessing steps</u>, feature engineering, and advanced model ensembles tailored to predictive maintenance.

• Hybrid AutoML Solutions:

 Combine **TPOT** with other AutoML tools like Auto-Sklearn or H2O AutoML to explore diverse optimization strategies and ensure robust model performance.

• Performance Monitoring and Retraining:

 Integrate mechanisms for ongoing performance monitoring of deployed models. Use AutoML to periodically retrain models based on new data, maintaining high accuracy over time.

4. Explainability and Trust in Predictions

Model Interpretability:

 Use interpretability tools like SHAP (SHapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations) to make predictions more transparent.

• Human-in-the-loop Systems:

 Implement <u>human-in-the-loop designs</u> where maintenance decisions are validated by experts, enhancing trust and adoption in industrial environments.

Conclusion

This project successfully developed a robust <u>predictive maintenance system for industrial equipment</u>, integrating advanced machine learning techniques. Starting with data exploration, preprocessing, and feature engineering, the system utilized ensemble learning (Random Forest, XGBoost), reinforcement learning (**Q-Learning**), and AutoML (**TPOT**) to predict failures, optimize maintenance schedules, and handle imbalanced datasets effectively.

Key achievements include:

- Addressing class imbalance using SMOTE, under-sampling, and cost-sensitive learning, with cost-sensitive learning achieving the best balance.
- Automating model selection and hyperparameter tuning through AutoML, reducing manual effort and ensuring reproducibility.
- Demonstrating the potential of reinforcement learning for **dynamic**, adaptive maintenance scheduling.

While the system achieved strong performance metrics, further advancements, such as <u>extended RL training</u>, <u>IoT integration</u>, and r<u>eal-world deployment</u>, are recommended for enhanced scalability and impact.

This project highlights the power of machine learning in <u>solving complex industrial</u> challenges, providing a foundation for future innovation in predictive maintenance.

Repo Github is available here

https://github.com/Housseem946/Predictive-maintenance-MI-RL/tree/main