results

1. plot the input data after the normalization using Z-scoring in blue

2. plot the first principal component in red and the second

principal components in green on the normalized data in blue

principal directions

3. plot the first principal axis in red on the normalized data in blue

4. plot the second principal axis in red on the normalized data in blue

second principle axis

5. plot the projection of data in green onto the first principal axis in red

projection to the first principle axis

6. plot the projection of data in green onto the second principal axis in red

projection to the second principle axis

7. plot the projection line in grey onto the first principal axis

```
In [ ]:
plt.figure(figsize=(8,8))
plt.title('projection to the first principle axis')
# fill up the blank
plt.scatter(zx, zy, color='blue')
plt.axline(np.array([0,0]),S[:,0], color='red',zorder = 1)
DP = compute_projection_onto_line(feature,S[:,0])
#plt.plot(zx[0],zy[0],DP[0,0],DP[0,1],'-', color='black'
#print(DP)
#plt.plot([zx,zy],np.transpose(DP),color='black',linestyle='--')
for i in range(number_data):
    plt.plot([zx[i],DP[i,0]],[zy[i],DP[i,1]], color='black',zorder = 2)
    #pIt.contour(DP[i,:],Df[i,:])
plt.scatter([DP[:,0]],[DP[:,1]],color='green',zorder = 3)
plt.tight_layout()
plt.show()
```

projection to the first principle axis

8. plot the projection line in grey onto the second principal axis

```
In [ ]:
plt.figure(figsize=(8,8))
plt.title('projection to the second principle axis')
# -----
plt.scatter(zx, zy, color='blue')
plt.axline(np.array([0,0]),S[:,1], color='red',zorder = 1)
DP = compute_projection_onto_line(feature,S[:,1])
#plt.plot(zx[0],zy[0],DP[0,0],DP[0,1],'-', color='black'
#print(DP)
#plt.plot([zx,zy],np.transpose(DP),color='black',linestyle='--')
for i in range(number_data):
   plt.plot([zx[i],DP[i,0]],[zy[i],DP[i,1]], color='black',zorder = 2)
   #plt.contour(DP[i,:],Df[i,:])
plt.scatter([DP[:,0]],[DP[:,1]],color='green',zorder = 3)
plt.tight_layout()
plt.show()
```

projection to the second principle axis

