#### Random variables

- A random variable is a numeric quantity whose value depends on the outcome of a random event
  - ► We use a capital letter, like X, to denote a random variable
  - ► The values of a random variable are denoted with a lowercase letter, in this case *x*
  - ► For example, P(X = x)
- ► There are two types of random variables:
  - Discrete random variables often take only integer values
    - Example: Number of credit hours, Difference in number of credit hours this term vs last
  - Continuous random variables take real (decimal) values
    - Example: Cost of books this term, Difference in cost of books this term vs last

#### Expectation

- We are often interested in the average outcome of a random variable.
- ► We call this the *expected value* (mean), and it is a weighted average of the possible outcomes

$$\mu = E(X) = \sum_{i=1}^k x_i P(X = x_i)$$

#### Expected value of a discrete random variable

In a game of cards you win \$1 if you draw a heart, \$5 if you draw an ace (including the ace of hearts), \$10 if you draw the king of spades and nothing for any other card you draw. Write the probability model for your winnings, and calculate your expected winning.

| Event           | X  | P(X)            | X P(X)                              |
|-----------------|----|-----------------|-------------------------------------|
| Heart (not ace) | 1  | <u>12</u><br>52 | <u>12</u><br>52                     |
| Ace             | 5  | <u>4</u><br>52  | <u>20</u><br>52                     |
| King of spades  | 10 | <u>1</u><br>52  | <u>10</u><br>52                     |
| All else        | 0  | 35<br>52        | 0                                   |
| Total           |    |                 | $E(X) = \frac{42}{52} \approx 0.81$ |

## Expected value of a discrete random variable (cont.)

Below is a visual representation of the probability distribution of winnings from this game:



## Variability

We are also often interested in the variability in the values of a random variable.

$$\sigma^{2} = Var(X) = \sum_{i=1}^{k} (x_{i} - E(X))^{2} P(X = x_{i})$$
$$\sigma = SD(X) = \sqrt{Var(X)}$$

# Variability of a discrete random variable

For the previous card game example, how much would you expect the winnings to vary from game to game?

| X  | P(X)            | X P(X)                                   | $(X-E(X))^2$              | $P(X) (X - E(X))^2$                    |
|----|-----------------|------------------------------------------|---------------------------|----------------------------------------|
| 1  | 12<br>52        | $1 \times \frac{12}{52} = \frac{12}{52}$ | $(1-0.81)^2 = 0.0361$     | $\frac{12}{52} \times 0.0361 = 0.0083$ |
| 5  | <u>4</u><br>52  | $5 \times \frac{4}{52} = \frac{20}{52}$  | $(5-0.81)^2 = 17.5561$    | $\frac{4}{52} \times 17.5561 = 1.3505$ |
| 10 | <u>1</u><br>52  | $10 \times \frac{1}{52} = \frac{10}{52}$ | $(10 - 0.81)^2 = 84.4561$ | $\frac{1}{52} \times 84.0889 = 1.6242$ |
| 0  | <u>35</u><br>52 | $0 \times \frac{35}{52} = 0$             | $(0-0.81)^2=0.6561$       | $\frac{35}{52} \times 0.6561 = 0.4416$ |
|    |                 | E(X) = 0.81                              |                           |                                        |
|    |                 |                                          |                           |                                        |

#### Linear combinations

► A *linear combination* of random variables *X* and *Y* is given by

$$aX + bY$$

where a and b are some fixed numbers.

► The average value of a linear combination of random variables is given by

$$E(aX + bY) = a \times E(X) + b \times E(Y)$$

## Calculating the expectation of a linear combination

On average you take 10 minutes for each statistics homework problem and 15 minutes for each chemistry homework problem. This week you have 5 statistics and 4 chemistry homework problems assigned. What is the total time you expect to spend on statistics and physics homework for the week?

#### Linear combinations

 The variability of a linear combination of two independent random variables is calculated as

$$V(aX + bY) = a^2 \times V(X) + b^2 \times V(Y)$$

► The standard deviation of the linear combination is the square root of the variance.

Note: If the random variables are not independent, the variance calculation gets a little more complicated and is beyond the scope of this course.

# Calculating the variance of a linear combination

The standard deviation of the time you take for each statistics homework problem is 1.5 minutes, and it is 2 minutes for each chemistry problem. What is the standard deviation of the time you expect to spend on statistics and physics homework for the week if you have 5 statistics and 4 chemistry homework problems assigned? Suppose that the time it takes to complete each problem is independent of another.

#### **Practice**

A casino game costs \$5 to play. If the first card you draw is red, then you get to draw a second card (without replacement). If the second card is the ace of clubs, you win \$500. If not, you don't win anything, i.e. lose your \$5. What is your expected profits/losses from playing this game? Remember: profit/loss = winnings - cost.

(a) A profit of 5¢

(c) A loss of 25¢

(b) A loss of 10¢

(d) A loss of 30¢

#### Fair game

A fair game is defined as a game that costs as much as its expected payout, i.e. expected profit is 0.

Do you think casino games in Vegas cost more or less than their expected payouts?

# Simplifying random variables

Random variables do not work like normal algebraic variables:

$$X + X \neq 2X$$

$$E(X+X)=E(X)+E(X)$$
  $Var(X+X)=Var(X)+Var(X)$  (assuming independence  $=2E(X)$   $=2$   $Var(X)$   $Var(2X)=2^2$   $Var(X)$ 

$$Var(ZX) = Z Var(X)$$

$$= 4 Var(X)$$

$$E(X + X) = E(2X)$$
, but  $Var(X + X) \neq Var(2X)$ .

## Adding or multiplying?

A company has 5 Lincoln Town Cars in its fleet. Historical data show that annual maintenance cost for each car is on average \$2,154 with a standard deviation of \$132. What is the mean and the standard deviation of the total annual maintenance cost for this fleet?

Note that we have 5 cars each with the given annual maintenance cost  $(X_1 + X_2 + X_3 + X_4 + X_5)$ , not one car that had 5 times the given annual maintenance cost (5X).

$$E(X_1 + X_2 + X_3 + X_4 + X_5) = E(X_1) + E(X_2) + E(X_3) + E(X_4) + E(X_5)$$

$$= 5 \times E(X) = 5 \times 2,154 = \$10,770$$

$$Var(X_1 + X_2 + X_3 + X_4 + X_5) = Var(X_1) + Var(X_2) + Var(X_3) + Var(X_4) + Var(X_5)$$

$$= 5 \times V(X) = 5 \times 132^2 = \$87,120$$

$$SD(X_1 + X_2 + X_3 + X_4 + X_5) = \sqrt{87,120} = 295.16$$