SFWR ENG 3DX4 Summary

Instructor: Dr. Lawford Course: SFWR ENG 3DX4

Math objects made using MathType; graphs made using Winplot.

Table of Contents

Introduction to Systems	2
Laplace	2
Transfer Functions	3
Electrical	3
Component stuff	3
Mesh Analysis	4
Cramer's Rule	4
OP-Amps	4
Mechanical	4
Translational Systems	4
Rotational Systems	<i>6</i>
Signals	7
Final Value Theorem	8
Graph Stuff	9
Non-/Linear Systems	10
Block Diagrams	10
State Space Equations	11
Transfer Function -> State Space	11

Note: the following summaries may be useful:

- SFWR ENG 2MX3
- ENGINEER 3N03
- TRON 3TA4

I may review to clarify or correct, but mostly I will omit those things.

Introduction to Systems

Systems can be represented by **block diagrams** to make it easier to marginalize the different parts of the systems.

Transducer: converts any form of energy to electrical signals

Laplace

Useful for...

Time begins when your signal begins

$$h(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

Initial conditions:

• *c*(0)

Time domain (t): variables are <u>lower case</u>, e.g. f(t)

Frequency domain (s): variables are upper case, e.g. F(s)

Transfer function:

When doing the inverse Laplace, it's useful to break your fractions up so that you can

Strictly Stable: it will eventually get back to the initial position

Marginally Stable:

Unstable: it will progressively get worse

Figure 2.5 from Dorf and Bishop, Modern Control Systems (10th Edition), Prentice-Hall, 2004.

Transfer Functions

Electrical

Component stuff

Impedence: $Z = \frac{V(s)}{I(s)}$

$$Z_R = R$$

$$Z_L = sL = j\omega L$$

$$Z_C = \frac{1}{sC} = \frac{-j}{\omega C}$$

Current

$$i_R = \frac{1}{R}$$

$$i_L = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$i_C = C \frac{\mathrm{d}v}{\mathrm{d}t}$$

Voltage

$$v_R = Ri(t)$$

$$v_L = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$v_C = \frac{1}{C} \int_0^1 i(\tau) d\tau$$

Polarized capacitors: Z is positive when current is going from - to +, but negative from + to -

Fixed Capacitor Polarized Capacitor Variable Capacitor **admittance**:

$$Y(s) = \frac{I(s)}{V(s)} = \frac{1}{R} = G$$

$$V_c(s) = I(s) \frac{1}{Cs}$$

$$I(s) = \frac{V(s)}{L_s + R + \frac{1}{Cs}}$$

Mesh Analysis

Add the voltages, where V = IZ

Cramer's Rule

$$x_1 = \frac{\det(A_1)}{\det(A)}, x_2 = \frac{\det(A_2)}{\det(A)}, \dots, x_n = \frac{\det(A_n)}{\det(A)}$$

$$V_{C}(s) = H(s) \frac{1}{Cs}$$

OP-Amps

Mechanical

Translational systems:

Rotational Systems:

Newton's Second Law of Motion: $\Sigma f = Ma$

$$Z_{m}(s) = \frac{F(s)}{X(x)}$$
$$f(t) = Ma(t)$$

$$= M \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$$

Translational Systems

For sure make a free-body diagram

Also, include "inertial force in it" = $m \frac{d^2x}{dt}$, which is in the opposite direction of the applied force

e.g.

$$d_{1} + 7v_{1} + 2x_{1} + 5v_{1} = 2x_{2} + 5v_{2}$$

$$d_{2} + 2x_{2} + 5v_{2} = 2x_{1} + 5v_{1} + F(t)$$

$$v_{1} = \frac{dx_{1}}{dt}$$

$$d_{1} = \frac{dv_{1}}{dt}$$

$$\dot{x}_{1} = v_{1}$$

$$\dot{v}_{1} = d_{1}$$

$$\dot{x}_{2} = v_{2}$$

$$\dot{v}_{2} = d_{2}$$

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{v}_{1} \\ \dot{x}_{2} \\ \dot{v}_{2} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -2 & -12 & 2 & 5 \\ 0 & 0 & 0 & 1 \\ 2 & 5 & -2 & -5 \end{bmatrix} \begin{bmatrix} x_{1} \\ v_{1} \\ x_{2} \\ v_{2} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} f(t)$$

$$Output = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ v_{1} \\ x_{2} \\ v_{2} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$$

Spring

Spring is like a capacitor

Force displacement: f(t) = Kx(t)

Viscous Damper

Using viscous fluid to slow something down

Viscous Damper is like a resistor

Force displacement: $f(t) = f_v \frac{dx(t)}{dt}$

Mass

Mass is like a inductor

Force displacement: $f(t) = M \frac{d^2x(t)}{dt^2}$

Rotational Systems

Impedence:
$$Z_m(s) = \frac{T(s)}{\theta(s)}$$

	Component	Torque- angular velocity	Torque- angular displacement	Impedance $Z_{M}(s) = T(s)/\theta(s)$
	$ \begin{array}{c} \text{Spring} \\ \text{O000} \\ K \end{array} $	$T(t) = K \int_0^t \omega(\tau) d\tau$	$T(t) = K\theta(t)$	K
	Viscous $T(t)$ $\theta(t)$ damper D	$T(t) = D\omega(t)$	$T(t) = D\frac{d\theta(t)}{dt}$	Ds
	Inertia $\int_{J}^{T(t)} \frac{\theta(t)}{t}$	$T(t) = J\frac{d\omega(t)}{dt}$	$T(t) = J \frac{d^2 \theta(t)}{dt^2}$	Js^2

- Each θ is on an inertia block. The impedences connected to the motion at θ include the impedences directly to the left and right of the inertia block.
- When finding the sum of impedences between 2 θ 's only count the impedences on wires that don't go through other θ 's, i.e. 0 if no direct connection

$$\begin{bmatrix} \operatorname{Sum} \operatorname{of} & \operatorname{impedances} & \operatorname{connected} & \operatorname{to the motion} & \operatorname{at} \theta_1 & \operatorname{of} & \operatorname{impedances} & \operatorname{between} & \operatorname{h}_1 \operatorname{and} \theta_2 & \operatorname{of} & \operatorname{impedances} & \operatorname{between} & \operatorname{h}_2(s) & \operatorname{of} & \operatorname{impedances} & \operatorname{between} & \operatorname{h}_2(s) & \operatorname{of} & \operatorname{impedances} & \operatorname{between} & \operatorname{h}_2(s) & \operatorname{of} & \operatorname{impedances} & \operatorname{of} & \operatorname{impedances} & \operatorname{otherween} & \operatorname{h}_2(s) & \operatorname{of} & \operatorname{impedances} & \operatorname{otherween} & \operatorname{h}_2(s) & \operatorname{otherween} & \operatorname{otherween} & \operatorname{h}_2(s) & \operatorname{otherween} & \operatorname{o$$

Motors

Meshing Gears:

[N]: number of teeth

When gears are lined up $\frac{T_2}{T_1} = \frac{\theta_1}{\theta_2} = \frac{N_2}{N_1}$

Applied Armature Voltage [e_a]:

Armature Resistance [R_a]:

Motor Torque Constant $[K_t]$:

Back EMF Constant [K_b]:

No load speed [$\omega_{\text{no-load}}$]: when the voltage line touches the x-axis

$$\omega_{\text{no-load}} = \frac{e_a}{K_b}$$

Stall torque[T_{stall}]: when angular velocity reaches 0

$$T_{\text{stall}} = \frac{K_t}{R_a} e_a$$

[J_a]: motor J [J_L]: load J

$$[J_{\rm m}]: J_{\rm m} = J_{\rm a} + J_{\rm L} \left(\frac{N_1}{N_2} \times \frac{N_3}{N_4}\right)^2 g$$

[D_m]: coefficient of viscous dampening $D_m = D_a + D_L \left(\frac{N_1}{N_2} \times \frac{N_3}{N_4}\right)^2$

Signals

Transducer: anything that converts energy to electrical energy

Transmitter: long distances

Unstable systems have ∞ steady state error

Steady-state error $[e_{\infty}]$:

$$e_{\infty} = \lim_{t \to \infty} e(t)$$

Final Value Theorem

Final value theorem: finds steady state error

$$\lim_{t\to\infty}f\left(t\right) = \lim_{s\to 0}sF\left(s\right)$$

So $e_{\infty} = \lim_{s \to 0} sF(s)$ and you're given F(s), so just multiply by s and find the limit.

There are limitations as to where you can use this theorem. It is dependent on the location of the poles.

1) Right half plane

System is unstable: $e^+ \rightarrow \infty$

2) Imaginary Axis - Origin

Unstable: $e^i \rightarrow O$ scillatory system, so limit will be average, i.e. midpoint

3) Left Half Plane

Stable: e converges to 0, but makes transfer function 0 for every single pole

4) Origin

Stable: integrator, i.e. 1/s, so $\lim_{s\to 0} \frac{s}{s} = 1$

Don't use this theorem if any poles are 1 or 2.

Graph Stuff

Rise time [T_r]: time between 10% and 90% of final value (c_{final})

Peak time $[T_p]$: time it takes to get to highest peak (c_{max})

Settling time [T_s]: how long it takes to get to the steady state within $\pm 2\%$

Percent overshoot [%OS]: how much further is the peak from the final

$$\% OS = \frac{c_{\text{max}} - c_{\text{final}}}{c_{\text{final}}} \times 100\%$$

Time Constant [τ]: the time it takes the system's step response to reach 1 - 1/e = 63.2% of c_{final}

Figure 2.5 from Dorf and Bishop, Modern Control Systems (10th Edition), Prentice-Hall, 2004.

$$K = c_{\text{final}} \times a$$

For each pole,

$$G(s) = \frac{K_1}{s + a_1} + \frac{K_2}{s + a_2} + \text{etc}, a = \frac{1}{\tau}$$

Forced response: when a = 0**Natural response**: when a > 0

Non-/Linear Systems

- Op Amps are linear
- If you don't have enough voltage, your motor magnets won't have enough power to switch poles, so they require a minimum voltage

You can't model non-linear systems, until you linearize it. To do this, we find the slope and approximate the equation of the line, using y=mx+b

Proportional-Integral-Derivative (PID):

If your gears are vibrating, your PID is probably too high

Block Diagrams

A way of representing a system

Summing junction: could be an X or +, but usually an X in this course

Cascade: subsystems in series are multiplied

Parallel: parallel subsystems have a summing junction at the end, so you just add everything

together

Feedback: positive feedback is bad

Positive:
$$\frac{G(s)}{1 - G(s)H(s)}$$

Negative:
$$\frac{G(s)}{1+G(s)H(s)}$$

Simplification:

Unity Feedback: when the feedback path has multiplicative value of 1

State Space Equations

Yeah, you think you know them from 2MX3, but you don't really know them. Apparently the ABCD variables actually have names.

- System Matrix [A]:
- Input Matrix [B]:
- Output Matrix [C]:
- Feedforward Matrix [D]:

Transfer Function -> State Space

Phase Variable Approach:

The n state variables will consist of:

- y
- the derivatives of y