Języki Formalne i Złożoność Obliczeniowa Rozwiązanie zadania 77

Aleksander Czeszejko-Sochacki

4 kwietnia 2020

Zadanie 77. Niech $L \subseteq \Sigma^*$ będzie CFL. Czy wynika z tego, że $L_{3/4}$ jest CFL?

1 Definicje

Przyjmiemy że $\Sigma=\{a,b,c,d\}$. Niech $P\subseteq\Sigma^*\times\Sigma^*$ będzie określona jako najmniejsza symetryczna relacja taka, że:

- dla każdego $w \in \Sigma^*$ zachodzi $P(w, \epsilon)$
- dla każdego $a \in \Sigma$ i każdych $w, v \in \Sigma^*$ jeśli P(w, v), to P(aw, av);

Przez $L_{p/q}$ gdzie $L\subseteq \Sigma^*$ oznaczać będziemy język:

$$\{w \in \Sigma^* : \exists v \ v \in L \land P(w, v) \land |w|/|v| = p/q\}$$

2 Kontrprzykład

Odpowiedź na pytanie postawione w treści zadania brzmi: nie. Kontrprzykładem jest następujący język $L\colon$

$$L = \{a^n b^m c^m a^n \ dla \ n \in \mathbb{N}\}$$

3 Uzasadnienie

Udowodnimy, że Ljest CFL oraz że $L_{3/4}$ nie jest CFL.

Twierdzenie 1 (L jest CFL). Pokażemy, że istnieje CFG, która generuje L.

Dowód. Rozważmy następującą gramatykę:

$$\langle S \rangle \models aSa \mid M$$

$$\langle M \rangle = bMc \mid \varepsilon$$

Krótkie uzasadnienie: weźmy symbol S. Produkuje on ciągi a^nMa^n . Z kolei produkcje z M generują ciągi b^mc^m . Stąd $L_{\{S,M\}}=L$.

Twierdzenie 2 ($L_{3/4}$ zawiera wyrazy postaci $a^n b^m c^{(m+n)/2}$).

Dowód. Weźmy dowolne $v=a^nb^mc^ma^n.$ Oczywiście $v\in L.$ Wtedy $w=a^nb^mc^{(n+m)/2}\in L_{3/4},$ ponieważ:

1. P(w,v)

Dowód. Z definicji relacji P mamy $P(c^{(m-n)/2}a^n, \epsilon)$, stąd z przemienności P mamy $P(\epsilon, c^{(m-n)/2}a^n)$, stąd - na mocy reguły postawania nowych elementów relacji P:

$$P(a^n b^m c^{(m+n)/2}, a^n b^m c^{(m+n)/2} c^{(m-n)/2} a^n)$$

czyli
$$P(w,v)$$
.

2. |w|/|v| = 3/4

Twierdzenie 3 (Jeśli $w \in L_{3/4}$ i $w = a^n b^m c^l$, to l = (n+m)/2).

Dowód. Wynika to z faktu, że P jest najmniejszą relacją spełniającą warunki definicji, a to znaczy, że jeśli P(w, v), to w jest prefiksem v bądź odwrotnie. \square

Twierdzenie 4 ($L_{3/4}$ nie jest CFL).

 $Dow \acute{o}d.$ Niech $L_{3/4}$ będzie CFL, N- stała z lematu o pompowaniu dla CFL, dla języka $L_{3/4}.$ Weźmy $z=a^Nb^Nc^N.$ Na mocy twierdzenia 2 $z\in L_{3/4}.$ Niech

- 1. z = uvwxy
- 2. |vwx| < N
- 3. Dla jasności: pompujemy v oraz x. Wykładnikiem jest k.
- 4. A wykładnik przy a, B wykładnik przy b, C wykładnik przy c; przyjęliśmy A=B=C=N.

Rozpatrzmy przypadki:

• vwx całkowicie w a^Nb^N . Wtedy (dla k=0):

$$C > (A - |v| + B - |x|)/2$$

Czyli nie zachodzi twierdzenie 3.

• niepuste $v \le b^N$ i x niepuste w c^N Musi być (dla k=2):

$$C + |x| = (A + B + |v|)/2$$

Czyli |x|=|v|/2. Jednak wtedy (dla $k=3)\colon$

$$C + 2|x| < (A + B + 2|v|)/2$$

Nie zachodzi zatem twierdzenie 3.

• vwx całkowicie w c^N . Wtedy (dla k=0):

$$C - |v| - |x| < (A + B)/2$$

I znów nie zachodzi twierdzenie 3.

Powyższe przypadki wyczerpują możliwości dobrania wyrazów spełniających lemat o pompowaniu dla CFL. Sprzeczność. $\hfill\Box$