

SEQUENCE LISTING

<110> Sang-Yup Lee
Ki-Jun Jeong

<120> ESCHERICHIA COLI STRAIN SECRETING HUMAN
GRANULOCYTE COLONY STIMULATING FACTOR (G-CSF)

<130> HYLEE60.001APC

<140> 10/009792
<141> 2001-12-13

<150> PCT/KR01/00549
<151> 2001-03-31

<150> KR 2000/17052
<151> 2000-03-31

<160> 30

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide sequence

<400> 1
Ala Gly Pro His His His His His Ile Glu Gly Arg
1 5 10

<210> 2
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Primer

<400> 2
gcgaattcat ggctggacct gccacccag 29

<210> 3
<211> 32
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 3

gcggatcctt attaggctg ggcaaggtgg cg 32

<210> 4

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 4

tcctcggtt ggcacagctt gtaggtggca cacagttct cctggagcgc 50

<210> 5

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 5

gctgtccac cccgaggagc tggtgctgct cggacactct ctgggcatcc 50

<210> 6

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 6

ctggctgggg cagctgctca ggggagccc ggggatgcc agagagtgc 50

<210> 7

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 7

agcagctgcc ccagccaggc cctgcagctg gcaggctgct tgagccaa 48

<210> 8

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 8

gaattcatat gaccccccctg ggccctgcc a gc

32

<210> 9

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 9

gaattcatat gactccgtta ggtccagcca gc

32

<210> 10

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 10

ggaattcaca tgtttaagtt taaaaagaaa ttc

33

<210> 11

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 11

ggctggacct aacggagttg cagaggcgg

29

<210> 12

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 12

gcaaccgcct ctgcaactcc gttaggtcca gcc

33

<210> 13

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 13

gcgaattctt taaagccacg ttgtgtcctc aaa

33

<210> 14

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 14

gcgaattctt taaatttagaa aaactcatcg agcatac

36

<210> 15

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 15

caccatcacc atatcgaagg ccgtactccg ttaggtcca

39

<210> 16

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 16

gatatggta tggtgatggt gcggggccagc tgcaaggcg g

41

<210> 17

<211> 507

<212> DNA

<213> Homo sapiens

<220>

<400> 17

atggctggac ctgccaccca gagccccatg aagctgatgg ccctgcagct gctgctgtgg 60
agtgcactct ggacagtgc ggaagccacc cccctgggcc ctgccagctc cctgccccag 120
agttccctgc tcaagtgc tt agagaatcc agggcgatgg cgccgcgc 180
caggagaagc tggcaggctg cttgagccaa ctccatagcg gcctttcctt ctaccagggg 240
ctccctgcagg ccctggaaagg gatctccccc gagttgggtc ccaccttggc cacactgcag 300
ctggacgtcg ccgacttgc caccaccatc tggcagcaga tggagaact gggaaatggcc 360
cctgcccgc agcccaccca gggtgccatg ccggccttcg cctctgc tt ccagcgccgg 420
gcaggagggg tccttagttgc ctcccatctg cagagcttcc tggaggtgtc gtaccgcgtt 480
ctacgccacc ttgcccagcc ctaataa 507

<210> 18
<211> 615
<212> DNA
<213> Homo sapiens

<220>

<400> 18
atggctggac ctgccaccca gagccccatg aagctgtatgg ccctgcagct gctgctgtgg 60
agtgcactct ggacagtgc a ggaaggccacc cccctgggccc ctgccagctc cctgccccag 120
agcttcctgc tcaagtgc tt agagcaagt g aggaagatcc agggcgatgg cgccagcgctc 180
caggagaagc tgtgtgccac ctacaagctg tgccaccccg aggagctggt gctgctcgg 240
cactctctgg gcatccccctg ggctccctg agcagctgcc ccagccaggc cctgcagctg 300
gcaggctgct tgagccaa ctccatagcgcc ctttcctct accaggggct cctgcaggcc 360
ctggaaggga tctccccca gttgggtccc accttgaca cactgcagct ggacgtcgcc 420
gacttgcca ccaccatctg gcagcagatg gaagaactgg gaatggcccc tgccctgcag 480
cccacccagg gtgccatgcc ggccttcggcc tctgcttcc agcgccgggc aggaggggtc 540
ctagttgcct cccatctgca gagttccctg gaggtgtcgt accgcgttct acgccacctt 600
gcccagccct aataa 615

<210> 19
<211> 174
<212> PRT
<213> Homo sapiens

<220>

<400> 19
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
1 5 10 15
Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln
20 25 30
Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val
35 40 45
Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
50 55 60
Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser
65 70 75 80
Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser
85 90 95
Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp
100 105 110
Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro
115 120 125
Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe
130 135 140
Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
145 150 155 160
Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro
165 170

<210> 20
<211> 531

<212> DNA

<213> Homo sapiens

<220>

<400> 20

atgacccccc tggccctgc cagctccctg ccccagagct tcctgctcaa gtgccttagag 60
caagtgagga agatccaggc cgatggcgca gcgcgtccagg agaagctgtg tgccacctac 120
aagctgtgcc accccgagga gctgggtctg ctggacact ctctggcat cccctggct 180
ccctgagca gctgccccag ccaggccctg cagctggcag gctgcttgc ccaactccat 240
agcggccctt tcctctacca ggggctcctg caggccctgg aaggatctc ccccgatgt 300
ggtcccacct tggacacact gcagctggac gtcggcact ttgccaccac catctggcag 360
cagatgaaag aactggaaat ggcccctgc ctgcagccca cccagggc catgcccggcc 420
ttccctctg cttccagcg ccgggcagga ggggtcctag ttgcctccca tctgcagagc 480
ttccctggagg tgtcgtaaccg cgttctacgc cacctgccc agccctaata a 531

<210> 21

<211> 175

<212> PRT

<213> Homo sapiens

<220>

<400> 21

Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu

1 5 10 15

Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu

20 25 30

Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu

35 40 45

Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser

50 55 60

Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His

65 70 75 80

Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile

85 90 95

Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala

100 105 110

Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala

115 120 125

Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala

130 135 140

Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser

145 150 155 160

Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro

165 170 175

<210> 22

<211> 45

<212> DNA

<213> Homo sapiens

<220>

<400> 22
atgactccgt taggtccagc cagctccctg ccccagagct tcctg 45

<210> 23
<211> 15
<212> PRT
<213> Homo sapiens

<220>

<400> 23
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu
1 5 10 15

<210> 24
<211> 135
<212> DNA
<213> Homo sapiens

<220>

<400> 24
atgttaagt taaaaagaa attcttagtg ggattaacgg cagcttcat gagtatcagc 60
atgttctg caaccgcctc tgcaactccg ttaggtccag ccagctccct gccccagagc 120
ttcctgctca agtgc 135

<210> 25
<211> 45
<212> PRT
<213> Homo sapiens

<220>

<400> 25
Met Phe Lys Phe Lys Lys Phe Leu Val Gly Leu Thr Ala Ala Phe
1 5 10 15
Met Ser Ile Ser Met Phe Ser Ala Thr Ala Ser Ala Thr Pro Leu Gly
20 25 30
Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys
35 40 45

<210> 26
<211> 180
<212> DNA
<213> Homo sapiens

<220>

<400> 26
atgttaagt taaaaagaa attcttagtg ggattaacgg cagcttcat gagtatcagc 60
atgttctg caaccgcctc tgcaactggc ccgcaccatc accatcacca tatcgaggga 120
aggactccgt taggtccagc cagctccctg ccccagagct tcctgctcaa gtgcttagag 180

<210> 27
<211> 60
<212> PRT
<213> Homo sapiens

<220>

<400> 27
Met Phe Lys Phe Lys Lys Phe Leu Val Gly Leu Thr Ala Ala Phe
1 5 10 15
Met Ser Ile Ser Met Phe Ser Ala Thr Ala Ser Ala Ala Gly Pro His
20 25 30
His His His His Ile Glu Gly Arg Thr Pro Leu Gly Pro Ala Ser
35 40 45
Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu
50 55 60

<210> 28
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic oligopeptide sequence

<400> 28
Ile Glu Gly Arg
1

<210> 29
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleic acid sequence

<400> 29
acccccctgg gccctactcc gtttaggtcca 30

<210> 30
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide sequence

<400> 30
Ala Gly Pro His His His His His Ile Glu Gly Arg Thr
1 5 10