

255RC2

- 1 Transpose
- 2 Matrix as a Function
- 3 Orthogonal Matrices and Orthonormal Vectors
- 4 Kernel and Image
- 5 Projection Matrix

1. Transpose

Given $A = (a_{ii}), A^T := (a_{ii})$

Proposition

Let
$$A$$
, B be matrices, $\lambda \in \mathbb{R}$.

4 If A is invertible, so is
$$A^T$$
, and $(A^T)^{-1} = (A^{-1})^T = A^{-T}$

A matrix A is called **symmetric** if $A = A^T$ A matrix A is called **skew-symmetric** if $A^T = -A \iff A + A^T = 0$

Remark

- A symmetric or skew-symmetric matrix is necessarily square.
 - **2** For a skew-symmetric matrix, if i = j, then $a_{ij} = 0$
 - **3** Any $n \times n$ diagonal matrix is symmetric.

Example

$$A = \begin{pmatrix} 1 & -4 & -2 \\ 4 & 1 & 3 \\ 2 & -3 & 2 \end{pmatrix}$$
 is not skew-symmetric.

2. Matrix as a Function

An n imes m Matrix can be interpreted as a function $F: M_{m imes p} o M_{n imes p}$

Property

For $M \in M_{n \times m}$, $A, B \in M_{m \times p}$, $\alpha, \beta \in \mathbb{R}$

We have $M(\alpha A + \beta B) = \alpha MA + \beta MB$

Question

- 1 Do you know other function with such property?
- 2 Why we want such property?

3. Orthogonal Matrices and Orthonormal Vectors

A matrix $A \in M_n(\mathbb{R})$ is called an orthogonal matrix iff $A^T = A^{-1}$

Properties.

- I_n is an orthogonal matrix.
- If A and B are orthogonal matrices, then AB is also orthogonal.
- If A is an orthogonal matrix, then A^{-1} is also orthogonal matrix.
- If A is an orthogonal matrix, then $det(A) = \pm 1$.
- If A is an orthogonal matrix, then $AA^T = A^TA = I_n$.

Examples.

▶ Rotation Matrix.

Rotation by θ in \mathbb{R}^2 is given by

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

► Reflection Matrix.

Reflect (x_1, x_2) across $\theta/2$ in \mathbb{R}^2 is given by

$$\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}.$$

You can treat such matrix as a function $Q:\mathbb{R}^2 o \mathbb{R}^2$

You may need to distinguish these two concepts clearly ...

Definition

Let $\{v_1, \dots, v_k\} \in \mathbb{R}$ be a subset of \mathbb{R}^k with k distinct vectors, then $\{v_1, \dots, v_k\}$ is an orthogonal set of vectors if $\langle v_i, v_j \rangle = 0$ for all $1 \leq i, j \leq k, i \neq j$.

Also, $\{q_1, \dots, q_k\}$ is an orthonormal set of vectors if it is an orthogonal set and all of its vectors are unit vectors (i.e., $||q_i|| = 1$ for $i \le i \le k$).

Remark

Any set containing a single vector is orthogonal; any set containing a single unit vector is orthonormal.

Example.

$$\hat{i},\hat{j},\hat{k}\in\mathbb{R}^3$$
.

Proposition

Given vectors $q_i \in \mathbb{R}^n$, $i = 1, \dots, m$ such that

$$\langle q_i, q_j \rangle = q_i^T q_j = \delta_{ij} = \begin{cases} \mathbf{1}, & i = j, \\ 0, & i \neq j, \end{cases} (\delta_{ij} : Kronecker)$$

then we call the set of vectors $\{q_i\}$ orthonormal, and

Proof

$$Q^TQ = \left[egin{array}{cccc} -&q_1^T&-\ ‐ &\ -&q_m^T&- \end{array}
ight] \left[egin{array}{cccc} |&&&|\ q_1&...&q_m \ |&&&| \end{array}
ight] = \left[egin{array}{cccc} q_1^Tq_1&...&q_1^Tq_m \ dash &\ddots ‐ \ q_m^Tq_1&...&q_m^Tq_m \end{array}
ight] = I_m$$

Proposition

Let $Q = \begin{bmatrix} | & | & | \\ \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \\ | & | & | \end{bmatrix} \in M_n(\mathbb{R})$, where $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$ is a set of **orthonormal** vectors in \mathbb{R}^n .

Then Q is an orthogonal matrix, $Q^T = Q^{-1}$.

Proof

We verify by showing $QQ^T = I_n$ and $Q^TQ = I_n$ holds.

To show matrix B is the inverse of matrix A, we need to show **both** AB = I and BA = I.

Exercise

Determine whether the following matrices are orthogonal matrices

$$\left[\begin{array}{cc} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{array}\right].$$

$$\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right].$$

Proposition

The orthogonal matrices are precisely the matrices that preserve the inner product in \mathbb{R}^n i.e., $\forall x, y \in \mathbb{R}^n$, $\langle x, y \rangle = \langle Ax, Ay \rangle$ or $x^T y = (Ax)^T Ay$.

证明.

If A is orthogonal, i.e., $A^{-1} = A^T$, then $A^T A = I_n$, so $(Ax)^T (Ay) = x^T A^T A y = x^T I_n y = x^T y$.

定义 (Inner Product Preservation)

一个矩阵 Q 保持内积不变,意味着对任意两个向量 $\mathbf{u},\mathbf{v}\in\mathbb{R}^n$,应用 Q 变换后,它们的内积保持不变,即:

$$\langle Q\mathbf{u}, Q\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$$

几何意义

• 长度不变: 由于向量范数为

$$\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}}.$$

我们有:

$$||Q\mathbf{u}|| = \sqrt{(Q\mathbf{u}) \cdot (Q\mathbf{u})} = \sqrt{\mathbf{u} \cdot \mathbf{u}} = ||\mathbf{u}||.$$

因此, 正交矩阵保持向量的长度不变。

几何意义

保持内积不变意味着矩阵 Q 代表的线性变换保留了 \mathbb{R}^n 的几何结构,具体包括:

• **角度不变**: 内积决定了两向量夹角 θ . 因为

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta).$$

保持内积不变意味着 u 和 v 的夹角与 Qu 和 Qv 的夹角相同。

• 正交性不变: 如果 u 和 v 垂直 (即 u·v = 0), 那么

$$(Q\mathbf{u})\cdot(Q\mathbf{v})=0,$$

即Qu和Qv也垂直。

Magnitude of Determinant and Column Norms:

- $|\det(A)| = 1$, where A is an orthogonal matrix.
- Column vectors \mathbf{q}_i have unit norm: $||\mathbf{q}_i|| = 1$.
- *Implication:* The transformation represented by A is a **rotation** or a **reflection**.

Defining Property and Its Consequences:

- $A^TA = I_n$ (which means $A^{-1} = A^T$).
- The original note mentions this "has very good symmetric properties."
- Implications:
 - Preservation of inner products (hence, lengths and angles are preserved: $\langle Ax, Ay \rangle = \langle x, y \rangle$).
 - The inverse A^{-1} is easy to compute (it's just the transpose A^{T}).

3 Applications in Data Processing:

• Effective in removing redundant information from data

4. Kernel and Image

• Given matrix $A \in M_{m \times n}(\mathbb{R})$. The kernel, or nullspace of A, is defined as

$$\ker A = \mathcal{N}(A) = \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}\} \subseteq \mathbb{R}^n$$

- where $A: \mathbb{R}^n \to \mathbb{R}^m$.
- → "Those inputs s.t. the output is 'zero'."
- The image of A, or column space, is defined as

$$\operatorname{im} A = C(A) = \{ y \in \mathbb{R}^m \mid \exists x \in \mathbb{R}^n, y = Ax \}$$
$$= \{ Ax \mid x \in \mathbb{R}^n \}$$

- where $A: \mathbb{R}^n \to \mathbb{R}^m$.
- \rightarrow "The set of all possible outputs" (The image is a subspace of \mathbb{R}^m).

A function $f: A \rightarrow B$ is called **injective**, if

$$\forall x_1, x_2 \in A, f(x_1) = f(x_2) \implies x_1 = x_2$$

i.e.,
$$\forall x_1, x_2 \in A, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

• 输入与输出——对应

★ Proposition

Given $A \in M_{m \times n}(\mathbb{R})$, i.e., $A : \mathbb{R}^n \to \mathbb{R}^m$ then, A is injective $\iff \ker A = N(A) = \{0\}$

Proof

 (\Rightarrow) A is injective $\implies \forall x_1, x_2 \in \mathbb{R}^n, Ax_1 = Ax_2 \implies x_1 = x_2.$

Take $v \in \ker A$, i.e., Av = 0. We also know that A0 = 0, hence Av = A0. By injectivity of A, v = 0. Therefore $\ker A = \{0\}$.

 (\Leftarrow) Conversely, we know $\ker A = \{0\}.$

Take $v_1, v_2 \in \mathbb{R}^n$, s.t. $Av_1 = Av_2$. We want to show that $v_1 = v_2$. Indeed, we have $A(v_1 - v_2) = 0$, but ker $A = \{0\}$, hence $v_1 - v_2 = 0$. So $v_1 = v_2$.

Proposition

Given $A \in M_{m \times n}(\mathbb{R})$, $\ker(A) = \ker(A^T A)$

 $(v_1^2 + v_2^2 + \cdots + v_n^2 = 0 \implies v_i = 0)$

 $(Ax)^T Ax = ||Ax||^2 = 0$. $\Longrightarrow Ax = 0 \Longrightarrow x \in \ker A$.

 (\supset) Take $x \in \ker(A^T A)$, i.e., $A^T A x = 0$. So $x^T A^T A x = x^T 0 = 0$.

$$= \ker(A'A)$$

$$\operatorname{er}(A^TA)$$

 (\subseteq) Take $x \in \ker(A)$, i.e., Ax = 0. So $(A^TA)x = A^T(Ax) = A^T0 = 0$. So $x \in \ker(A^TA)$.

5. Projection Matrix

A matrix $P \in M_n(\mathbb{R})$ is a **projection matrix**, if $P^2 = P$. A projection matrix P is called an **orthogonal projection**, if $P = P^T$.

Example

For any orthonormal matrix Q, $QQ^T : \mathbb{R}^n \to \mathbb{R}^n$ is a projection matrix.

•
$$(QQ^T)^T = (Q^T)^T Q^T = QQ^T$$

•
$$(QQ^T)^2 = (QQ^T)(QQ^T) = Q(Q^TQ)Q^T = QI_kQ^T = QQ^T$$

Proposition

A projection matrix P is an **orthogonal projection** if

 $\ker P \perp \operatorname{im} P$

i.e., $\forall x \in \ker P$, $\forall y \in \operatorname{im} P$,

$$\langle x, y \rangle = x^T y = 0 \in \mathbb{R}$$

Exercise

Show that ker $P \perp \text{im } P$ if $P = P^T$

Example

$$\{q_1, q_2\} = \left\{ \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} \right\}$$

$$Q = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 0 \end{bmatrix}, \quad Q^T = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{bmatrix}$$

$$QQ^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

- VV255. Lecture Notes 24SU. Runze Cai
- 2 VV255 RC2, Jiayue Huang, et al
- 3 Introduction to Linear Algebra, Sixth Edition, Gilbert Strang