Chapter 1

Vector Spaces

1.1 Groups and Abelian Groups

Definition 1.1. A binary operation on a set G is a mapping from $G \times G$ to G.

Definition 1.2. A binary operation \star on a set G is called *associative* if for all $a, b, c \in G$, $(a \star b) \star c = a \star (b \star c)$ holds.

Definition 1.3. Let G be a set and \star be a binary operation on G. An *identity* of G with respect to \star is an element $e \in G$ such that $a \star e = a$ and $e \star a = a$ for all $a \in G$.

Theorem 1.4. The identity of G with respect to \star is unique if it exists.

Proof. If e and e' are identity of G with respect to \star , then $e = e \star e' = e'$.

Notation. The identity of G is denoted by 1_G . However, if the binary operation is written additively, the identity is denoted by 0_G instead.

Definition 1.5. Let \star be a binary operation on G with identity e. Let a be an element of G. An element $b \in G$ is called an *inverse* of a if $a \star b = e$ and $b \star a = e$.

Theorem 1.6. For all $a \in G$, the inverse of $a \in G$ is unique if it exists.

Proof. If both b and b' are inverses of a, then

$$b = b \star 1_G = b \star (a \star b') = (b \star a) \star b' = 1_G \star b' = b'.$$

Notation. The inverse of a in G is denoted by a^{-1} . However, if the binary operation is written additively, the inverse of a is denoted by -a instead.

Definition 1.7. A set G and a binary operation \star on G form a group (G, \star) if the following conditions hold.

- (a) The operation \star is associative.
- (b) 1_G exists.
- (c) For all $a \in G$, a^{-1} exists.

Example. Let S denote the set of permutations of $\{1, 2, 3\}$ and \circ denote the composition of permutations. Then (S, \circ) is a group.

Definition 1.8. A binary operation \star on a set G is called *commutative* if for all $a, b, \in G$, $a \star b = b \star a$ holds.

Definition 1.9. A group (G, \star) is called an *Abelian group* if \star is commutative.

Example. $(\mathbb{Z}, +)$ and $(\mathbb{Q} \setminus \{0\}, \cdot)$ are Abelian groups.

Theorem 1.10. Let (G, \star) be a group. Then for all $a \in G$, $(a^{-1})^{-1} = a$.

Proof. Since $a \star a^{-1} = 1_G$, a is the inverse of a^{-1} in G. Thus, $(a^{-1})^{-1} = a$.

Theorem 1.11 (Cancellation Law). Let (G, \star) be a group. Then the following statements are true.

- (a) For all $a, b, c \in G$, if $c \star a = c \star b$, then a = b.
- (b) For all $a, b, c \in G$, if $a \star c = b \star c$, then a = b.

Proof.

(a) We have

$$a = 1_G \star a = (c^{-1} \star c) \star a = c^{-1} \star (c \star a)$$

and

$$b = 1_G \star b = (c^{-1} \star c) \star b = c^{-1} \star (c \star b).$$

Because $c \star a = c \star b$, we have a = b.

(b) The proof is similar to (a).

1.2 Fields

Definition 1.12. Let F be a set. Let + and \cdot be binary operations on F.

- (a) The operation \cdot is called *left-distributive* over + if $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$.
- (b) The operation \cdot is called *right-distributive* over + if $(a+b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in F$.
- (c) The operation \cdot is called *distributive* over + if it is both left-distributive and right-distributive.

Definition 1.13. A set F and two binary operations + and \cdot on F form a field $(F, +, \cdot)$ if the following conditions hold.

- (F, +) is an Abelian group.
- $(F \setminus \{0_F\}, \cdot)$ is an Abelian group.
- The operation \cdot is distributive over the operation +.

Example. $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, and $(\mathbb{C}, +, \cdot)$ are fields.

Example. $(\mathbb{Q}[\sqrt{2}], +, \cdot)$ is a field, where

$$\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$$

Theorem 1.14. Let $(F, +, \cdot)$ be a field. Then the following statements are true.

- (a) For all $a \in F$, $a \cdot 0_F = 0_F = 0_F \cdot a$.
- (b) For all $a, b \in F$, $(-a) \cdot b = -(a \cdot b) = a \cdot (-b)$.
- (c) For all $a, b \in F$, $(-a) \cdot (-b) = a \cdot b$.

Proof.

(a) We have

$$a \cdot 0_F + a \cdot 0_F = a \cdot (0_F + 0_F) = a \cdot 0_F = a \cdot 0_F + 0_F.$$

Thus, $a \cdot 0_F = 0_F$ by cancelltaion law (Theorem 1.11). The proof of $0_F \cdot a = 0_F$ is similar.

(b) By (a), we have

$$a \cdot b + (-a) \cdot b = (a + (-a)) \cdot b = 0_F \cdot b = 0_F.$$

Thus, $(-a) \cdot b = -(a \cdot b)$. The proof of $a \cdot (-b) = -(a \cdot b)$ is similar.

(c) We have

$$(-a) \cdot (-b) = -(a \cdot (-b)) = -(-(a \cdot b)) = a \cdot b$$

by applying (b) twice.

Remark. Let $G = F \setminus \{0_F\}$ and 1_G be the multiplicative identity of G. By Theorem 1.14 (a), we have $1_G \cdot 0_F = 0_F = 0_F \cdot 1_G$. Therefore, 1_G is also the multiplicative identity of F, and thus we denote it by 1_F .

Remark. Subtraction and division are defined in terms of addition and multiplication by using additive and multiplicative inverses.

1.3 Vector Spaces

Definition 1.15. Let F be a field. A set V and two operations $+: V \times V \to V$, $\cdot: F \times V \to V$ form a *vector space* over F if the following conditions hold.

- (a) (V, +) is an Abelian group.
- (b) For all $x \in V$, $1_F \cdot x = x$.
- (c) For all $a, b \in F$ and for all $x \in V$, $(a \cdot b) \cdot x = a \cdot (b \cdot x)$.
- (d) For all $a, b \in F$ and for all $x \in V$, $(a + b) \cdot x = a \cdot x + b \cdot x$.
- (e) For all $a \in F$ and for all $x, y \in V$, $a \cdot (x + y) = a \cdot x + a \cdot y$.

Example. $(F^n, +, \cdot)$ is a vector space over F.

Example. Let $\mathcal{P}(F)$ denote the set of polynomials with coefficients in F. Then $(\mathcal{P}(F), +, \cdot)$ is a vector space over F.

Example. Let $\mathcal{F}(S, F)$ denote the set of functions from S to F. Then $(\mathcal{F}(S, F), +, \cdot)$ is a vector space over F.

Theorem 1.16. Let $(V, +, \cdot)$ be a vector space over F. Then the following statements are true.

- (a) For all $x \in V$, $0_F \cdot x = 0_V$.
- (b) For all $a \in F$, $a \cdot 0_V = 0_V$.
- (c) For all $a \in F$ and $x \in V$, $(-a) \cdot x = -(a \cdot x) = a \cdot (-x)$.

Proof.

(a) We have

$$0_F \cdot x + 0_F \cdot x = (0_F + 0_F) \cdot x = 0_F \cdot x = 0_F \cdot x + 0_V.$$

Thus, $0_F \cdot x = 0_V$ by cancelltaion law (Theorem 1.11).

- (b) It is similar to the proof of (a).
- (c) By (a), we have

$$a \cdot x + (-a) \cdot x = (a + (-a)) \cdot x = 0_F \cdot x = 0_V.$$

Thus, $(-a) \cdot x = -(a \cdot x)$. By (b), we have

$$a \cdot x + a \cdot (-x) = a \cdot (x + (-x)) = a \cdot 0_V = 0_V.$$

Thus,
$$a \cdot (-x) = -(a \cdot x)$$
.

1.4 Subspaces

Definition 1.17. Let $(V, +_V, \cdot_V)$ be a vector space over a field F. Let W be a subset of V. If $+_W : W \times W \to W$ and $\cdot_W : F \times W \to W$ satisfy

$$x +_W y = x +_V y$$
 and $a \cdot_W x = a \cdot_V x$

for all $a \in F$ and $x, y \in W$, then we say that $+_W$ and \cdot_W inherit $+_V$ and \cdot_V , respectively.

Definition 1.18. Let $(V, +_V, \cdot_V)$ be a vector space over F. A subset W of V is called a *subspace* of V if $(W, +_W, \cdot_W)$ is a vector space over F, where $+_W$ and \cdot_W inherit $+_V$ and \cdot_V , respectively.

Theorem 1.19. Let $(V, +_V, \cdot_V)$ be a vector space over F. Let W be a subset of V. Then W is a subspace of V if the following conditions hold.

- (a) For all $x, y \in W$, $x +_V y \in W$.
- (b) For all $a \in F$ and $x \in W$, $a \cdot_V x \in W$.
- (c) $0_V \in W$.

Proof. We can define operations $+_W: W \times W \to W$ and $\cdot_W: F \times W \to W$ such that

$$x +_W y = x +_V y$$
 and $a \cdot_W x = a \cdot_V x$

for all $a \in F$ and $x, y \in W$ due to (a) and (b). Then according to Definition 1.17, $+_W$ and \cdot_W inherit $+_V$ and \cdot_V , respectively.

Now we prove that $(W, +_W, \cdot_W)$ is a vector space over F. Since a vector in W is also in V, properties (b), (c), (d), and (e) in Definition 1.18 hold trivially. Thus, one only needs to check property (a) in Definition 1.18, i.e., $(W, +_W)$ is an Abelian group.

Since $+_W$ inherits $+_V$, $+_V$ is associative implies that $+_W$ is associative. Furthermore, since

$$0_V \in W$$
 and $-x = -(1_F \cdot x) = (-1_F) \cdot x \in W$

hold for all $x \in W$, we have

$$0_V +_W x = x = x +_W 0_V$$
 and $x +_W (-x) = 0_V = (-x) +_W x$

hold for all $x \in W$. Thus, $0_V \in W$ is an additive identity of W, and each vector in W also has an additive inverse in W, which complete the proof.

Example. Let $\mathcal{P}_n(F)$ denote the set of polynomials in $\mathcal{P}(F)$ with degree less than or equal to n, where $n \geq -1$ is an integer. Then it follows from Theorem 1.19 that $\mathcal{P}_n(F)$ is a subspace of $\mathcal{P}(F)$.

Theorem 1.20. Let $(V, +_V, \cdot_V)$ be a vector space over F. Let I be an index set such that W_i is a subspace of V for all $i \in I$. Then the intersection

$$W = \bigcap_{i \in I} W_i$$

is a subspace of V.

Proof. For all $a \in F$ and for all $x, y \in W$, since

$$x +_V y \in W_i$$
 and $a \cdot_V x \in W_i$ and $0_V \in W_i$

hold for all indices $i \in I$, we have

$$x +_V y \in W$$
 and $a \cdot_V x \in W$ and $0_V \in W$.

Thus, W is a subspace of V.

Definition 1.21. Let $(V, +_V, \cdot_V)$ be a vector space over F. Let S_1 and S_2 be subsets of V. Then the *sum* of S_1 and S_2 , denoted $S_1 + S_2$, is the set $\{x + y : x \in S_1 \text{ and } y \in S_2\}$.

Theorem 1.22. Let $(V, +_V, \cdot_V)$ be a vector space over F. If W_1 and W_2 be subspaces of V, then the following statements are true.

- (a) $W_1 + W_2$ is a subspace of V.
- (b) If W is a subspace of V with $W_1 \cup W_2 \subseteq W$, then $W_1 + W_2 \subseteq W$.

Proof.

(a) Suppose that $a \in F$ and $x, y \in W_1 + W_2$. Then there exists $x_1, y_1 \in W_1$ and $x_2, y_2 \in W_2$ such that

$$x = x_1 +_V x_2$$
 and $y = y_1 +_V y_2$.

Thus,

$$a \cdot_V x = a \cdot_V (x_1 + x_2) = a \cdot_V x_1 + a \cdot_V x_2 \in W_1 + W_2$$

and

$$x +_V y = (x_1 +_V x_2) + (y_1 +_V y_2) = (x_1 +_V y_1) + (x_2 +_V y_2) \in W_1 + W_2.$$

We also have $0_V = 0_V +_V 0_V \in W_1 + W_2$. Hence, $W_1 + W_2$ is a subspace of V.

(b) If $x \in W_1 + W_2$, then there exists $x_1 \in W_1$ and $x_2 \in W_2$ such that $x = x_1 + x_2$. Since $W_1 \subseteq W$ and $W_2 \subseteq W$, we have $x_1 \in W$ and $x_2 \in W$, which implies $x \in W$.

1.5 Spanning Sets

Definition 1.23. Let (G, +) be an Abelian group. Then we define

$$\sum_{i=m}^{n} a_i = \begin{cases} \sum_{i=m}^{n-1} a_i + a_n & \text{if } m \leq n \\ 0_G & \text{if } m > n, \end{cases}$$

where $a_i \in G$ for each integer i with $m \leq i \leq n$.

Definition 1.24. Let $(V, +, \cdot)$ be a vector space over F. Let S be a subset of V. Then a vector $x \in V$ is called a *linear combination* of S if there exists some nonnegative integer n such that

$$x = \sum_{i=1}^{n} a_i x_i,$$

where $a_i \in F$ and $x_i \in S$ for each integer i with $1 \le i \le n$.

Remark. Since n can be zero, 0_V is a linear combination for all $S \subseteq V$.

Definition 1.25. Let $(V, +, \cdot)$ is a vector space over F. The *span* of S, denoted span(S), is the set that consists of all linear combinations of S.

Theorem 1.26. Let $(V, +, \cdot)$ be a vector space over F. Let $S \subseteq V$. Then the following statements are true.

- (a) $\operatorname{span}(S)$ is a subspace of V.
- (b) If W is a subspace of V such that $S \subseteq W$, then $\operatorname{span}(S) \subseteq W$.

Proof.

(a) If $c \in F$ and $x, y \in \text{span}(S)$, then there exist nonnegative integers m, n, scalars $a_1, \ldots, a_m, b_1, \ldots, b_n \in F$ and vectors $x_1, \ldots, x_m, y_1, \ldots, y_n \in S$ such that

$$x = \sum_{i=1}^{m} a_i x_i$$
 and $y = \sum_{j=1}^{n} b_j y_j$.

Thus, we have

$$cx = c(a_1x_1 + \dots + a_mx_m)$$

= $c(a_1x_1) + \dots + c(a_mx_m)$
= $(ca_1)x_1 + \dots + (ca_m)x_m \in \text{span}(S)$

and

$$x + y = a_1x_1 + \dots + a_mx_m + b_1y_1 + \dots + b_ny_n \in \operatorname{span}(S).$$

Also, $0_V \in \text{span}(S)$. Hence, span(S) is a subspace of V.

(b) If $x \in \text{span}(S)$, then there exists an nonnegative integer n, scalars $a_1, \ldots, a_n \in F$ and vectors $x_1, \ldots, x_n \in S$ such that

$$x = \sum_{i=1}^{m} a_i x_i.$$

Thus, since $x_1, \ldots, x_n \in W$, we have $x = a_1 x_1 + \cdots + a_n x_n \in W$.

Definition 1.27. A subset S of a vector space $(V, +, \cdot)$ spans V if $\operatorname{span}(S) = V$. In this case, we also say that S is a spanning set of V.

Example. $\{(1,1,0),(0,1,1),(1,0,1)\}$ is a spanning set of \mathbb{R}^3 since for all $x,y,z\in\mathbb{R}$,

$$(x,y,z) = \frac{x+y-z}{2} \cdot (1,1,0) + \frac{-x+y+z}{2} \cdot (0,1,1) + \frac{x-y+z}{2} \cdot (1,0,1).$$