- Задание 1. Годограф Найквиста. В соответствии с вариантом задания (см. таблицу 1) придумайте три такие передаточных функции, которые имеют 5 полюсов, p из которых вещественные, а q комплексно сопряженные. При этом первая передаточная функция должна иметь n неустойчивых полюсов у разомкнутой системы и m неустойчивых полюсов у замкнутой. Вторая передаточная функция должна иметь n неустойчивых полюсов у замкнутой системы и 0 у разомкнутой, а третья m неустойчивых у разомкнутой системы и 0 у замкнутой. Для полученных систем:
- 1.1. Опишите алгоритм, который вы использовали для составления передаточных функций с необходимыми параметрами.
- 1.2. Выполните моделирование и постройте переходные функции замкнутой и разомкнутой систем.
- 1.3. Постройте годограф Найквиста ($\Lambda\Phi$ ЧX) разомкнутой системы. Определите число оборотов годографа по часовой стрелке вокруг точки (-1,0). Проверьте выполнение критерия Найквиста.

Примечание: для составления передаточных функций удобно использовать следующий сервис. (https://web.mit.edu/jorloff/www/jmoapplets/nyquist/nyquistCrit.html).

- Задание 2. Коэффициент усиления. В соответствии с вариантом задания возьмите значение i (см. таблицу 1) и соответствующие ему передаточные функции $W_1(s)$ и $W_2(s)$ (см. таблицу 2). Добавьте к каждой функции коэффициент усиления k. Для полученных систем:
 - 2.1. Постройте годограф Найквиста для значения коэффициента усиления k=1.
 - 2.2. Рассмотрите, как влияет коэффициент усиления k на кривую годографа.
- 2.3. Найдите зависимость числа неустойчивых полюсов замкнутой системы от значения коэффициента k. Определите значение запаса устойчивости по амплитуде. Найдите пределы значений коэффициента k, при которых система устойчива.
- 2.4. Выполните моделирование и постройте графики переходной функции замкнутой системы при значениях коэффициента k, соответствующих устойчивому и неустойчивому случаям.
- Задание 3. Запаздывание. В соответствии с вариантом задания возьмите значение j (см. таблицу 1) и соответствующие ему передаточные функции $W_3(s)$ и $W_4(s)$ (см. таблицу 3). Добавьте к каждой функции звено чистого запаздывания $e^{-\tau s}$. Для полученных систем:
 - 3.1. Постройте годограф Найквиста для значений запаздывания $\tau=0$ и $\tau=0.5$.
 - 3.2. Рассмотрите, как влияет величина запаздывания τ на кривую годографа.
- 3.3. Исследуйте зависимость неустойчивости замкнутой системы от величины запаздывания τ . Определите значение запаса устойчивости по фазе. Найдите пределы значений запаздывания τ , при которых система устойчива.

3.4. Выполните моделирование и постройте графики переходной функции замкнутой системы при значениях коэффициента τ , соответствующих устойчивому и неустойчивому случаям.

Задание 4. Ещё немножко креатива. Придумайте системы, которые будут удовлетворять следующим условиям:

- 4.1. Система, имеющая бесконечный запас устойчивости по амплитуде.
- 4.2. Система, имеющая бесконечный запас устойчивости по фазе.
- 4.3. Система, которая теряет устойчивость при появлении любого запаздывания.
- 4.4. *Необязательное*. Система, которая теряет асимптотическую устойчивость при появлении любого запаздывания, но остаётся устойчивой по Ляпунову.

Для каждой придуманной системы постройте годограф Найквиста и проведите моделирование.

Таблица 1: Исходные данные для заданий 1, 2, 3

Номер варианта	p	q	n	m	i	j	Номер варианта	p	q	n	m	i	j
Вариант 1	3	2	3	3	1	1	Вариант 11	3	2	3	1	11	5
Вариант 2	1	4	4	1	2	2	Вариант 12	5	0	3	2	12	6
Вариант 3	3	2	2	1	3	3	Вариант 13	3	2	1	4	13	1
Вариант 4	3	2	4	2	4	4	Вариант 14	5	0	4	2	14	2
Вариант 5	5	0	1	3	5	5	Вариант 15	5	0	3	1	1	3
Вариант 6	3	2	4	3	6	6	Вариант 16	5	0	4	1	2	4
Вариант 7	1	4	4	4	7	1	Вариант 17	1	4	4	3	3	5
Вариант 8	3	2	4	1	8	2	Вариант 18	1	4	1	3	4	6
Вариант 9	3	2	2	3	9	3	Вариант 19	1	4	3	3	5	1
Вариант 10	3	2	2	4	10	4	Вариант 20	1	4	2	3	6	2

Номер варианта	p	q	n	m	i	j	Номер варианта	p	q	n	m	i	j
Вариант 21	1	4	1	1	7	3	Вариант 31	1	4	3	4	3	1
Вариант 22	1	4	2	4	8	4	Вариант 32	1	4	4	2	4	2
Вариант 23	3	2	3	4	9	5	Вариант 33	1	4	2	1	5	3
Вариант 24	5	0	3	3	10	6	Вариант 34	1	4	3	1	6	4
Вариант 25	5	0	2	3	11	1	Вариант 35	3	2	4	4	7	5
Вариант 26	5	0	1	4	12	2	Вариант 36	1	4	1	2	8	6
Вариант 27	3	2	2	2	13	3	Вариант 37	5	0	3	4	9	1
Вариант 28	3	2	1	2	14	4	Вариант 38	3	2	3	2	10	2
Вариант 29	5	0	2	4	1	5	Вариант 39	5	0	4	3	11	3
Вариант 30	3	2	1	3	2	6	Вариант 40	5	0	4	4	12	4

Таблица 2: Исходные данные для задания 2

i	$W_1(s)$	$W_2(s)$
1	$\frac{s-3}{s^2+7s+4}$	$\frac{100s^2 + 40s + 4}{100s^3 - 15s^2 - 8s - 0.6}$
2	$\frac{s-2}{s^2+6s+5}$	$\frac{-9s^3 + 16s^2 - 6s}{10s^3 + 12s^2 + 5s + 1}$
3	$\frac{s-4}{s^2+8s+2}$	$\frac{10s^2 + 9s - 1}{10s^3 - 12s^2 - s + 4}$
4	$\frac{s-3}{s^2+9s+3}$	$\frac{10s^2 - 2s + 0.1}{10s^3 - 20s^2 + 8s}$
5	$\frac{s-9}{s^2+s+8}$	$\frac{-80s^3 + 80s^2 + 3s - 0.04}{100s^3 - 20s^2 - 2s + 0.3}$
6	$\frac{s-2}{s^2+3s+9}$	$\frac{10s^2 + 10s + 3}{10s^3 + s^2}$
7	$\frac{s-1}{s^2+6s+7}$	$\frac{10s^3 + 15s^2 + 18s + 6}{10s^3 - 10s^2}$
8	$\frac{s-3}{s^2+2s+6}$	$\frac{10s^3 - 13s^2 + 10s - 2}{10s^3 + 14s^2 + 5s + 0.5}$
9	$\frac{s-1}{s^2+4s+5}$	$\frac{10s^3 + 5s^2 + s - 7}{10s^3 + 2s^2 + 8s + 6}$

i	$W_1(s)$	$W_2(s)$
10	$\frac{s-4}{s^2+5s+4}$	$\frac{10s^3 - 10s^2 + 50s - 38}{10s^3 + 3s^2 + 12s + 8}$
11	$\frac{s-2}{s^2+2s+s}$	$\frac{10s^3 - 2s^2 + 15s - 23}{10s^3 + 12s^2 + 20s + 58}$
12	$\frac{s-3}{s^2+3s+1}$	$\frac{100s^3 + 110s^2 + 10s + 0.3}{100s^3 - 60s^2 + 6s - 1}$
13	$\frac{s-1}{s^2+3s+1}$	$\frac{10s^3 - 3s^2 + 13s - 2}{10s^3 + 8s^2 + 5s + 4}$
14	$\frac{s-0.5}{s^2+s+1}$	$\frac{10s^3 + 0.6s^2 + s - 1}{10s^3 + 7.5s^2 + 5s + 4}$

Таблица 3: Исходные данные для задания 3

j	$W_3(s)$	$W_4(s)$
1	$\frac{s+7}{s^2+2s+10}$	$\frac{10s^2 - 5s - 15}{10s^3 + 5s^2 + 10s + 38}$
2	$\frac{7s+5}{s^2+4s}$	$\frac{20s^2 + 1.6s + 2}{10s^3 - 10s^2 - 0.1s + 0.1}$
3	$\frac{2s+9}{s^2+s+9}$	$\frac{10s^2 - 10s + 13}{10s^3 + 37s + 25}$
4	$\frac{5s+10}{s^2+4}$	$\frac{8s^2 + 4s - 12}{10s^2 - 10s + 18}$
5	$\frac{9s+2}{s^2+6s+1}$	$\frac{8s^2 + 4s + 2.4}{10s^2 - 5s + 11}$
6	$\frac{9s+3}{s^2+3s+5}$	$\frac{10s^2 - 6s + 11}{10s^3 - s^2 + 38s + 20}$