开/闭卷

闭

A/B 卷 A

课程编号

22190001501-18

课程名称 高等数学 B(2)

学分 4

线

基本题 题号 四 五 六 + 附加题 七 八 九 总分 得分 评卷人

- 一. 选择题(每题 3 分,共 15分)
- ... 1. 积分 $\hat{Q}^{1} \frac{1}{1+x} dx = ($).
- ... A . 1 B . 0 C . $\frac{p}{2}$ D . ln2
- 题 ... 2. 设 f(x) = $\overset{x^3}{\mathbf{Q}}$ sin tdt, 则 f (x) = ().

 - A $.\sin x^3$ B $.3x^2 \sin x^3$ C $.x \sin x^3$
- D.0

$$\stackrel{\stackrel{\scriptstyle \bullet}{\stackrel{}}}{\stackrel{\scriptstyle \bullet}{\stackrel{}}}$$
 ... $A \cdot \stackrel{\stackrel{\scriptstyle \bullet}{\stackrel{}}}{\stackrel{}} \frac{1}{\sqrt{n^3+1}}$ $B \cdot \stackrel{\stackrel{\scriptstyle \bullet}{\stackrel{}}}{\stackrel{}} \frac{1}{\sqrt{n(n+1)}}$ $C \cdot \stackrel{\stackrel{\scriptstyle \bullet}{\stackrel{}}}{\stackrel{}} \frac{1}{n}$ $D \cdot \stackrel{\stackrel{\scriptstyle \bullet}{\stackrel{}}}{\stackrel{}} \frac{1}{\sqrt{n}}$

B.
$$\sum_{n=1}^{4} \frac{1}{\sqrt{n(n+1)}}$$

C.
$$\sum_{n=1}^{4} \frac{1}{n}$$

D.
$$\sum_{n=1}^{4} \frac{1}{\sqrt{n}}$$

- ... 乜 f(x,y) = $x^2 + y^2$,则 $f_x(x,y) + f_y(x,y) = ($).

- ... A. x + y B. 2x 2y C. 2x + 2y D. $(x y)^2$
 - 5. 二重积分 蝌 $\cos \sqrt{x^2 + y^2}$ ds ,其中 D = $\{(x, y) | x^2 + y^2 = 1\}$,在极坐标系下化为累
 - 次积分为(
 - A. ∰dq ∫1 r cos√rdr B. ∰dq ∫1 r cosrdr
 - C. 蝌 dq cosrdr D. 蝌 dq r cosrdr
 - 二. 填空题: (每题3分,共15分)
 - 1. \hat{O}_{2}^{2} x² sin xdx = _____

2.
$$\frac{d}{dx} \dot{Q}^{x} f(t)dt =$$
______.

3.幂级数
$$\frac{x^n}{3^{n-1}}$$
 的收敛半径 $R =$ _________.

- 三. 求下列积分 (每题8分,共16分)
- 1. 计算定积分 h ln xdx.
- 2. 计算二重积分 蜗 (x + 2y)ds , 其中 D 是由 y = x, y = 5x 及 x = 1所围成的区域.
- 四. 判别级数的敛散性 (每题 8 分,共 16 分)

1.
$$\sum_{n=1}^{y} \frac{n}{3^{n-1}}$$
 2. $\sum_{n=1}^{y} \frac{\sin n}{n^2 + 2}$

五. 求由曲线 $y = x^2$ 与直线 y = x + 2 所围成区域的面积 .(8分)

六. 将 $f(x) = \sin^2 x$ 展开为 x 的幂级数,并指出其收敛区间 .(8 分)

七. 求微分方程 xy ^c 2y = x³e^x 的通解 (8 分)

八.八.
$$z = \frac{y^2}{2x} + \Phi(xy), \Phi$$
 可微, 求证 $x^2 \frac{\partial z}{\partial x} - xy \frac{\partial z}{\partial y} + \frac{3}{2}y^2 = 0$ 。 (6分)

九. 现有 100 万元资金向某地区的两个项目开发投资 ,投入资金分别为 x,y (万元),并预计总收益 $R=\frac{1}{2}\ln x+\frac{1}{4}\ln y$.问如何使用这笔资金 ,使投资收益最大?(8 分)

附加题 (每题 15分,共 30分)

- 1. 求证: 若函数 f(x) 在[a,b] 上连续, $p(x) = \int_{a}^{x} f(t) dt$,则 $p'(x) = [\int_{a}^{x} f(t) dt]' = f(x)$.
- 2. 证明若正项级数

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + || + u_n + ||$$

满足条件 $\lim_{n\to\infty}\frac{u_n+}{u_n}=1$,则当 1<1时,级数收敛 .

B 档

- 一. 选择题(每题 3分,共 15分)
- 1.已知 f(x) = f(x),则 $\hat{g}(t)dt = ($
 - A. F(x)- F(a) B. F(t)- F(a) C.F(x+a)- F(2a) D. F(t+a)- F(2a)
- 2. $\frac{d}{dx} \hat{o}$ arctan xdx = ()
 - A . arctan x B . $\frac{1}{1+\sqrt{2}}$ C . arctan b arctan a D . 0
- 3.下列级数绝对收敛的为()
 - A. $? \frac{1}{\sqrt{n}}$ B. $? \frac{(-1)^n}{\sqrt{2n+1}}$ C. $? \frac{(-1)^n}{2}$ D. $? \frac{n}{3n+2}$
- 4.设 $z = e^{x^2y}$ 则 $\frac{?z}{2x} = ($
 - A. $x^{2}ye^{x^{2}y}$ B.2 $xye^{x^{2}y}$ C. $x^{2}e^{x^{2}y}$ D. $ye^{x^{2}y}$
- 5.二重积分 蚪 $sin(x^2 + y^2)dxdy$ 其中 D = $\{(x, y) | x^2 + y^2 = 1\}$,在极坐标系下化为累次
- 积分为(
 - A. $\frac{1}{1}$ dq $\frac{1}{0}$ r sin r²dr
- B. 蚊️ dq ៉sin r²dr
- C. $\oint_{0}^{2p} dq \int_{0}^{1} \sin(x^2 + y^2) dr$ D. $\oint_{0}^{2p} dq \int_{0}^{p} r \sin r^2 dr$
- 二. 填空题: (每题 3 分,共 15 分)
- 1.若 \hat{Q}^{k} (1+ x)dx = - $\frac{1}{2}$, 则 k = _______.
- 3.级数 ? (- 1)ⁿ (n + 1)3ⁿ xⁿ 的收敛半径 R = _______.
- 4. 设 $f(x, y) = x^2 \sin(2xy)$, 求 $f_y(1,0) =$ _______.
- 5.微分方程 y 2y + y= 0的通解 y= _________.
- 三. 计算题(每题8分,共32分)

1. 求
$$\hat{Q}^3 \frac{dx}{\sqrt{x}(1+x)}$$
.

- 2. 已知平面图形由 $y = x^2$, y = x 所围成,求此平面绕 x 轴旋转所生成的旋转体的体积.
- 3. 计算二重积分 蜗 $(3x^2 + 2xy)$ ds ,其中 D 是由 $y = x^2$, x = 1及 x轴所围成的区域 .
- 4. 求微分方程 $x^3 \frac{dy}{dx} + 2x^2y 1 = 0$ 的通解.
- 四.将 $f(x) = \cos^2 x$ 展开为 x的幂级数,并指出其收敛区间 . (8分)

五.证明级数
$$_{n+1}^{*}$$
 $_{n+1}^{(-1)^{n-1}}$ 为条件收敛. (8分)

六. 判别级数
$$_{n=1}^{4}$$
 $_{n2^{n}}^{9}$ 的敛散性 . (8分)

七.设
$$z = F(\frac{y}{x})$$
, F是可微函数,证明: $xz_x + yz_y = 0$ (6分)

八. 某企业生产甲乙两种产品的产量分别为 x, y (单位:吨), 其总成本为:

$$C(x, y) = 6x^2 + 10y^2 - xy + 30$$

若计划生产两种产品共 34 吨, 求两种产品的产量各为多少 , 使总成本最小 ?(8分)

附加题 (每题 15分,共 30分)

1. 证明如果交错级数

$$u_1 - u_2 + u_3 - u_4 + | | | + u_{2k-1} - u_{2k} + | | | |, (u_n > 0)$$

满足条件

(1)
$$u_n \ge u_{n+1}$$
 (n = 1,2,|||); (2) $\lim_{n\to\infty} u_n = 0$.

则级数收敛.

2. 求证:设 f(x)在[a,b]上连续, F(x)是 f(x)的一个原函数,则

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

