Guaranteeing Correctness of LLVM RISC-V Machine Code with Fuzzing

Jocelyn Wei – University of California, San Diego Mandeep Singh Grang, Ana Pazos – Qualcomm Innovation Center, Inc.

Generic Random Mutator treats

The Machine Code (MC) Layer is the foundation of LLVM. Several tools targeting various architectures are built upon it.

This project seeks to validate the RISC-V MC Layer by using state-of-the-art fuzzing technology.

1. RISC-V and LLVM MC Layer

- · Free and open ISA and chip design
- 32-bit, 64-bit, and 128-bit variants
- · Modular specification

 Need to validate MC layer functionality with individual RISC-V extensions and extension combos.

 Applies a single random mutation to a Protobuf message.

 Protobuf messages can describe the grammar for a language. E.g.: this has been done for a subset of the C++ language in clang-proto-fuzzer.

Tools Examples:

clang-proto-fuzzer, llvm-isel-fuzzer, llvm-opt-fuzzer, llvm-mc-assemble-proto-fuzzer, llvm-mc-disassemble-proto-fuzzer

3. RISC-V ASM and Encoding Protobuf Types and Convertors

Fuzz Target (Library to test)

4. Driver for Testing Fuzz Targets (Assembler)

5. Fuzzer Versions

6. Results

Area	Bugs
Assembler Parser (target independent)	1
RISC-V Assembler Parser RISC-V Assembler Parser / Encoder (symbol refs)	5 7
RISC-V Disassembler / Decoder	4
GNU Assembler and Disassembler	4
LLVM MC compatibility issues with GNU	4