Modelling Memory Across Scale

Aditya Gilra, Aviral Goel, Dilawar Singh, Harsha Rani, Sahil Moza, Subhasis Ray, Upinder Bhalla

Introduction

- Memory and plasticity involve brain mechanisms from molecular scale to enormous networks.
- We have developed MOOSE
 The Multiscale Object Oriented Simulation Environment, to model plasticity across scales.

Why multiscale?

- 10^{11} cells
- 10^{15} synapses
- 10000? reactions per synapse
- . Electrical events: < 1 ms
- . Chemical events: $1 \sec \rightarrow 1000 \sec$
- Structural events: $100 \sec \rightarrow \mathrm{months}$
- Lifetime of a protein: days
- Lifetime of a neuron: 100 years
- Lifetime of a memory: 100 years

We use models to

- Integrate many scales of neuronal data with basic physical/chemical principles.
- Explain phenomenon of plasticity, activity and neuronal coding.
- Predict circuit mechanisms, plasticity rules, and emergent phenomena such as decorrelation, robustness, and memory decay.

We have developed MOOSE to carry out these simulations.