Lecture 09-10: Chapter 1 Review & Sets

Jingjin Yu | Computer Science @ Rutgers

Outline

- Lectures 07-08 review
- Chapter 1 review
 - Logic & proofs
 - Definitions, axioms, theorems
 - Propositional logic: syntax & semantics
 - Extension to predicate logic
 - Rules of inference
 - Informal proofs & proof strategies
- Sets [2.1-2.2]
- ► A repeating note: make sure you read the textbook

L07-08: What was Covered

- Exhaustive proofs
 - Exclusive enumeration
 - Non-exclusive cases
- Existence proofs
 - Providing an example
 - Proving existence without an example <=</p>
- Uniqueness proof
- Strategies
 - Reasoning backwards
 - Adapting existing proofs
 - Finding counterexamples

L07-08: Exhaustive Proof

Copyrighted Material – Do Not Distribute

► Ex: You have a drawer filled with red or blue socks. Show that if you pick three socks, you will have a pair of socks of the same color.

► Ex: Show that $((x > 4) \lor (y > 2)) \rightarrow (|x| + y^2 > 4)$.

L07-08: Existence Proof

Copyrighted Material – Do Not Distribute

▶ **Ex:** Show that there are positive integers that can be written as the sum of cubes of integers in two different ways.

Ex: Prove the existence of irrational numbers x and y such that x^y is rational.

L07-08: Uniqueness & Proof Strategies

- ▶ Uniqueness proofs: $\exists x \ (P(x) \land \forall y ((y \neq x) \rightarrow \neg P(y)))$
- Strategies
 - Reasoning backwards: stone removal

- Adapting existing proofs
 - **Ex:** Show that $\sqrt{3}$ is irrational.
 - (Generalization) If p is prime, then \sqrt{p} is irrational.
 - (Further generalization) If n is not a perfect square, then \sqrt{n} is irrational.

CH01: Logic and Proofs

Copyrighted Material – Do Not Distribute

- Whenever we talk about proofs, we need to specify a logic
 - Syntax: how to form sentences (definitions, axioms, propositions)
 - Semantics: how to interpret meaning and reason (with rules of inference)

- Chapter 1 covered:
 - Propositional logic
 - Predicate logic
 - Rules of inference, formal
- **\$**

> Informal proofs, methods and strategies

CH01: Definitions, Axioms, Theorems

- We work mostly with definition and theorems
 - A definition defines what an entity is
 - A theorem relates different definitions
- Axiom: a proposition that is assumed to be true
- Theorems have many "variants"
 - Observation: an obvious (provable) statement
 - Theorem: a reasonably important result
 - Lemma: intermediate theorems for proving a concluding result
 - Proposition: a standalone, not very important theorem
 - Corollary: a derivative result that is worth stating and follows other theorems
 - Theorem: the sum of internal angles of a non-self-intersecting n-gon is (n-2)*180
 - \Box Corollary: the sum of the internal angles of a triangle is 180.
 - A derivative but very useful result worth knowing

CH01: Propositional Logic: the Syntax

- A sentence(proposition) can be an atomic sentence or a complex sentence
- $\blacktriangleright \quad \mathsf{E.g.} \ (p \lor q) \to (r \lor s)$
 - \triangleright Propositions p, q, r, s are atomic sentences
 - $(p \lor q)$ is a complex sentence
 - \triangleright So are $(r \lor s)$ and $(p \lor q) \rightarrow (r \lor s)$

CH01: Propositional Logic Semantics

Copyrighted Material – Do Not Distribute

CONVORCO

invorce contranacitive

Truth table

					_		converse	iliverse (Lontrapositive
p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$	$\neg p \rightarrow \neg q$	$q \rightarrow p$	$\neg q \rightarrow \neg p$
T	T	F	T	T	T	T	T	T	Т
T	F	F	F	T	F	F	T	T	F
\overline{F}	T	T	F	T	T	F	F	F	Т
\overline{F}	F	T	F	F	T	T	T	T	T

- ▶ A note on $p \rightarrow q$
 - Many equivalent statements

- ▶ E.g., "You can graduate only if you have 150 credits"
 - If you graduated, then you must already have 150 credits
 - 150 credits is necessary for graduation (but may not be sufficient, e.g., maybe you decide to use the credit toward degree at another school)
 - Graduation sufficiently implies that you have at least 150 credits

CH01: Propositional Logic Semantics Cont.

Name	Equivalence		
Identity laws	$p \wedge T \equiv p, \\ p \vee F \equiv p$		
Domination laws	$p \lor T \equiv T,$ $p \land F \equiv F$		
Idempotent laws	$p \lor p \equiv p,$ $p \land p \equiv p$		
Double negation law	$\neg(\neg p) \equiv p$		
Commutative laws	$p \lor q \equiv q \lor p,$ $p \land q \equiv q \land p$		
Associative laws	$(p \lor q) \lor r \equiv p \lor (q \lor r),$ $(p \land q) \land r \equiv p \land (q \land r)$		
Distributive laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$		
De Morgan's laws	$\neg (p \lor q) \equiv \neg p \land \neg q,$ $\neg (p \land q) \equiv \neg p \lor \neg q$		
Absorption laws	$p \lor (p \land q) \equiv p,$ $p \land (p \lor q) \equiv p$		
Negation laws	$p \lor \neg p \equiv T,$ $p \land \neg p \equiv F$		

Con	vrighter	Materia	-DoN	Lot D	ictribute
CUP	yngnici	liviatella		101D	121110016

Equivalence Containing Conditionals				
$p \to q \equiv \neg p \lor q$				
$p \to q \equiv \neg q \to \neg p$				
$p \lor q \equiv \neg p \to q$				
$p \land q \equiv \neg(p \to \neg q)$				
$\neg(p \to q) \equiv p \land \neg q$				
$(p \to q) \land (p \to r) \equiv p \to (q \land r)$				
$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$				
$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$				
$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$				

Equivalence Containing Bidirectionals
$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
$\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

CH01: Extension to Predicate Logic

- Predicate: a property that objects may or may not satisfy
 - \triangleright E.g. StarTrekFan(x): whether student x is a Star Trek fan
 - Can be viewed as a partial proposition
 - Possible to have multiple variables: Larger(x, y) = (x > y)
- Quantifiers
 - ▷ Universal: $\forall x P(x), P(x)$ is true for all x
 - Existential: $\exists x \ P(x), P(x)$ is true for at least one x
 - \triangleright Note that in general, $\exists x \forall y P(x,y) \neq \forall y \exists x P(x,y)$
- ▶ Binding: a variable is bound in a predicate when a quantifier of that variable is applied to the predicate, e.g. $\forall x \exists y \ (P(x,y) \lor Q(y))$
 - If all variables are bound, then the statement must be either true or false
- ▶ Negation: $\neg(\forall x P(x)) = \exists x (\neg P(x)), \neg(\exists x P(x)) = \forall x (\neg P(x)).$
 - Recursive application for multiple quantifiers
 - $\neg \forall x \exists y (P(x,y) \lor Q(y)) = \exists x \forall y (\neg P(x,y) \land \neg Q(y))$

CH01: Rules of Inference

Copyrighted Material – Do Not Distribute

Propositional

Modus ponens

$$p \to q$$

$$p$$

$$q$$

Modus tollens

$$p \to q$$

$$\neg q$$

$$\neg p$$

Rule	Tautology	Name	
$ \begin{array}{c} p \to q \\ q \to r \\ \hline p \to r \end{array} $	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism	
$ \begin{array}{c c} p \lor q \\ \neg p \\ \hline q \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism	
$p \over p \lor q$	$p \to (p \lor q)$	Addition	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$(p \land q) \rightarrow p$	Simplification	
$ \begin{array}{c c} p \\ q \\ \hline p \land q \end{array} $	$((p) \land (q)) \to (p \land q)$	Conjunction	
$ \begin{array}{c c} p \lor q \\ \neg p \lor r \\ \hline q \lor r \end{array} $	$((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$	Resolution	

With quantifiers

 \Rightarrow Universal instantiation: $\forall x P(x) \rightarrow P(c)$ for any c

 \Rightarrow Existential instantiation: $\exists x P(x) \rightarrow P(c)$ for at least one c

 \Rightarrow Universal generalization: P(c) for arbitrary $c \to \forall x P(x)$

 \Rightarrow Existential generalization: $P(c) \rightarrow \exists x P(x)$

CH01: 1.6 Exercise 28

Copyrighted Material – Do Not Distribute

▶ If $\forall x (P(x) \lor Q(x))$ and $\forall x ((\neg P(x) \land Q(x)) \rightarrow R(x))$ are true, then $\forall x (\neg R(x) \rightarrow P(x))$ is also true.

CH01: Informal Proofs

Copyrighted Material – Do Not Distribute

How to approach proofs?

- Requires creativity in general, but there are some rules to follow
- First, pick how you will attack
 - Direct proof: prove $(p \rightarrow q) = T$ by assuming p=T and derive q=T
 - Proving contrapositive: prove $p \rightarrow q$ by proving $\neg q \rightarrow \neg p$
 - Proof via contradiction: to prove p=T, assume $\neg p$ and derive a contradiction
- Next, examine the scope
 - \Box Exhaustive proof must show $\forall x P(x)$
 - Existence proof only needs to establish $\exists x P(x)$
 - Can be constructive or non-constructive
 - □ Uniqueness proof requires showing $\exists !xP(x)$
- Then, try to get the details
 - Working from the start and/or from the goal try to connect
 - Adapting or generalizing existing proofs
 - This means that one may look at some simple cases first

- ▶ Defⁿ: A set is an unordered collection of objects (or elements, members).
- ▶ Membership: $a \in A$, $b \notin A$
- Roster representation
 - \triangleright **Ex**: The set of all vowels: $V = \{a, e, i, o, u\}$.
 - \triangleright **Ex**: The set of positive odd integers less than 10: $O = \{1,3,5,7,9\}$.
 - Ex: Elements do not need to be of the same type: $A = \{1, 3.4, ball, tree\}$.
 - \triangleright **Ex**: The set of natural numbers: $N = \{0,1,2,...\}$.
 - A word about the number 0...
- Frequently seen sets: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Builder Notation, Equivalence, Empty Set

- Set builder notation: $A = \{x \mid \text{property satisfied by } x\}$
 - $► Ex: 0 = \{x | (0 \le x \le 10) \land (x \text{ is odd}) \}.$
 - Ex: Intervals on a line:
 - $a(a,b) = \{x \mid a < x < b\}$
 - $(a, b] = \{x \mid a < x \le b\}$
 - a $[a,b) = \{x \mid a \le x < b\}$
 - $[a, b] = \{x \mid a \le x \le b\}$
 - \triangleright **Ex**: $A = \{x \mid x \text{ is a student at Rutgers}\}$
- ▶ \mathbf{Def}^n : Two sets A and B are equal if they contains the same elements.
 - $\vdash \quad \text{Equivalently, } A = B \text{ if and only if } \forall x (x \in A \leftrightarrow x \in B).$
- ▶ The empty set: $\emptyset = \{\}$, the set that contains zero elements.

 - $\triangleright \{\emptyset\}$ is a set with one element, which is the empty set (as an element)

Subsets

- ▶ \mathbf{Def}^n : A is a subset (⊆) of B if every element of A is also an element of B.
- ightharpoonup Ex: $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{R} \subseteq \mathbb{C}$.
- ► **Ex**: $A = \{1, 3, 5, ...\}, A \subseteq \mathbb{N}$
- ▶ **Ex**: $A = \{CS \ 205 \ students\}, B = \{Rutgers \ students\}, A \subseteq B$
- ▶ Equivalently, $A \subseteq B$ if and only if $\forall x (x \in A \rightarrow x \in B)$.
 - \triangleright The symbols \subset and \subseteq generally bear the same meaning.
 - \triangleright For **proper** subset, we generally use $A \subsetneq B$
 - \Box Ex: $\mathbb{Z} \subsetneq \mathbb{R}$
 - Note that it is possible that $A \subseteq B$ and $A \subseteq B$ both hold
- ▶ To prove $A \subseteq B$, can show $c \in A \rightarrow c \in B$ for arbitrary $c \in A$.
- ▶ To prove $A \subsetneq B$, show $A \subseteq B$ and there is a c s.t. $c \in B$ and $c \notin A$.
- ▶ To prove A = B, show $A \subseteq B$ and $B \subseteq A$.
- ▶ Fact: for every set S, $\emptyset \subseteq S$ and $S \subseteq S$.

Cardinality (Size) of Sets

- ▶ **Def**ⁿ: For a set S, if there are exactly n distinct elements in S for some positive integer n, then S is a **finite set** of **cardinality** n, denoted |S| = n. A set is **infinite** if it is not finite.
 - \triangleright **Ex**: $|\{1, 3, 5\}| = 3$
 - \triangleright **Ex**: | English alphabet | = 26
 - \triangleright **Ex**: $|\emptyset| = 0$
 - \triangleright **Ex**: $|\{\emptyset\}| = 1$
- Infinite sets have interesting structures on cardinality
 - Size of the set of integers?
 - What about odd numbers?
 - Real numbers?
 - Need "functions" to make this more precise
 - Infinity is weird (and may or may not be real at all!)

Power Set

Copyrighted Material – Do Not Distribute

- ▶ **Def**ⁿ: The power set of a set S is the set of all subsets of S, denoted P(S)
 - \triangleright **Ex**: $P(\{1,2\}) = ?$

- \triangleright **Ex**: $P(\emptyset) = ?$
- \triangleright **Ex**: $P(P(\emptyset)) = ?$

⊳ For a finite set S, $|P(S)| = 2^{|S|}$

Cartesian Products

Copyrighted Material – Do Not Distribute

- ▶ **Def**ⁿ: The ordered n-tuple $(a_1, ..., a_n)$ is the ordered collection with a_i being the i-th element.
- ▶ **Def**ⁿ: The Cartesian product of the sets $A_1, ..., A_n$, is the set

$$A_1 \times \dots \times A_n = \{(a_1, \dots, a_n) \mid a_i \in A_i \text{ for } 1 \le i \le n\}.$$

Ex: $A = \{1, 2\}, B = \{2, 3\}$. What is $A \times B$?

- Note that $|A_1 \times \cdots \times A_n| = |A_1| \times \cdots \times |A_n|$
- \blacktriangleright Can be infinite, e.g., the x-y coordinate system

Potential Issues with "Naïve" Set Theory

- ▶ Consider $A = \{x \mid x \notin x\}$.
 - \triangleright That is, set A contains elements that are sets which do not contain themselves.
 - \triangleright Question: $A \in A$?

Set Operations

- ▶ Let *U* be the "universe"

 - ▷ Intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$
 - $\triangleright A$ and B are disjoint if $A \cap B = \emptyset$
 - Difference: $A \setminus B = A B = \{x \mid x \in A \land x \notin B\}$
 - ▷ Complement: $\bar{A} = U A = \{x \in U \mid x \notin A\}$
 - \triangleright Symmetric difference: $A \oplus B = (A \cup B) (A \cap B)$

Set Operations, Cont.

Copyrighted Material – Do Not Distribute

Ex: $U = \{1, ..., 10\}, A = \{2, 3, 6, 8, 9\}, B = \{3, 4, 8, 10\}$

Set Identities

- Set identities are somewhat like logical operations
- $\mathbf{E} \mathbf{x} : \overline{A \cap B} = \overline{A} \cup \overline{B}$

TABLE 1 Set Identities.				
Identity	Name			
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws			
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws			
$A \cup A = A$ $A \cap A = A$	Idempotent laws			
$\overline{(\overline{A})} = A$	Complementation law			
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws			
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws			
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws			
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws			
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws			
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws			

Set Identities, Cont.

Copyrighted Material – Do Not Distribute

 $Ex: A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Set Identities: Proof using Identities

Copyrighted Material – Do Not Distribute

 $\mathbf{Ex} : \overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B} \cup \overline{C})$

