שיעור *7* רדוקציה

7.1 טבלה של רדוקציות

טבלה של רדוקציות

עמוד	רדוקציה
72 דוגמה 7.6 עמוד	$L_{ ext{HALT}} \leqslant L_{ ext{acc}}$
76 דוגמה 7.11 עמוד	$ar{L}_{ m acc} \leqslant L_{ m NOTREG}$
77 עמוד 77	$L_{ m acc} \leqslant L_{ m NOTREG}$
78 דוגמה 7.13 עמוד	$L_{ ext{HALT}} \leqslant L_{ ext{NOTREG}}$
דוגמה 7.15 עמוד 80	$L_{ m acc} \leqslant L_{ m REG}$
79 דוגמה 7.14 עמוד	$ar{L}_{ m acc} \leqslant L_{ m REG}$
דוגמה 7.16 עמוד 81	$ar{L}_{ m acc}\leqslant L_{M_1 eg M_2}$ כאשר $L_{M_1 eg M_2}=\{\langle M_1,M_2,w angle\ \ w\in L\left(M_1 ight)\land w otin L\left(M_2 ight)\}$
דוגמה 7.17 עמוד 81	$ar{L}_{ m acc}\leqslant L_{M_1\subset M_2}$ כאשר $L_{M_1\subset M_2}=\{\langle M_1,M_2 angle\ \ L\left(M_1 ight)\subset L\left(M_2 ight)\}$

7.2 מ"ט המחשבת את פונקציה

הגדרה 7.1 מ"ט המחשבת פונקציה

 $x \in \Sigma^*$ אם לכל את מחשבת מ"ט מ"ט $f: \Sigma^* \to \Sigma^*$ אם לכל בהינתן בהינתן בהינתן אומרים אומרים אומרים אומרים בהינתן

- וגם f(x) או בסוף בסוף בסוף בסוף ל- מגיעה ל- $q_{
 m acc}$
 - f(x) על סרט הפלט של M רשום •

7.1 הערה

מ"ט שמחשבת פונקציה עוצרת תמיד.

הגדרה 7.2 מ"ט המחשבת פונקציה

f את המחשבת מ"ט חשיבה הם כי חשיבה $f:\Sigma^*\to\Sigma^*$ המחשבת בהינתן בהינתן בהינתן ה

דוגמה 7.1

$$f_1(x) = xx . (7.1)$$

. חשיבה $f_1(x)$

דוגמה 7.2

$$f_2(x) = \begin{cases} x & |x| \text{ in } \\ xx & |x| \text{ in } \end{cases}$$
 (7.2)

.חשיבה $f_2(x)$

דוגמה 7.3

$$f_3(x) = \begin{cases} \langle M' \rangle & x = \langle M \rangle \\ \langle M^* \rangle & x \neq \langle M \rangle \end{cases}$$
 (7.3)

כאשר

- .ט שמקבלת כל קלט M^*
- מ"ט המקבלת את השפה M' ullet

$$L(M') = \left\{ w \in \Sigma^* \mid ww \in L(M) \right. .$$

ואם כן, $\langle M^* \rangle$ חשיבה כי ניתן לבנות מ"ט שבודקת האם $x=\langle M \rangle$ אם אם שבודקת מ"ט שבודקת האם $f_3(x)$ מחזירה קידוד $\langle M \rangle$ ע"י הוספת מעברים המשכפלים את הקלט בתחילת הקידוד $\langle M' \rangle$ ע"י הוספת

דוגמה 7.4

$$f_4(x) = \begin{cases} 1 & x = \langle M \rangle \land \langle M \rangle \in L(M) \\ 0 & \text{אחרת} \end{cases}$$
 (7.4)

 $.\langle M \rangle$ לא עוצרת לM -ו $x = \langle M \rangle$ קלטים קלטים כי ייתכנו לא $f_4(x)$

7.3 רדוקציות

הגדרה 7.3 רדוקציות

ומסמנים , L_2 -ל ניתנת לרדוקציה כי אומרים בהינתן אומרים בהינת ב

$$L_1 \leqslant L_2$$
,

אם $f:\Sigma^* o \Sigma^*$ המקיימת:

- חשיבה f (1
- $x \in \Sigma^*$ לכל (2

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2 \ .$$

דוגמה 7.5

נתונות השפות

$$L_1 = ig\{x \in \{0,1\}^* \mid \mathsf{vic} \mid x|ig\} \ ,$$
 $L_2 = ig\{x \in \{0,1\}^* \mid \mathsf{vic} \mid x|ig\} \ .$

הוכיחו כי

$$L_1 \leqslant L_2$$
.

נגדיר את הפונקציה

$$f(x) = egin{cases} 1 & \text{iik} \ |x|, \ 10 & \text{iik} \ |x| \end{cases}$$

הוכחת הנכונות:

$$f(x) \in L_2$$
 אי-אוגי $|f(x)| \Leftarrow f(x) = 1 \Leftarrow x$ אוגי $|x| \Leftarrow x \in L_1$

$$f(x) \notin L_2$$
 אני $|f(x)| \Leftarrow f(x) = 10 \Leftarrow x$ אי-זוגי $|x| \Leftarrow x \notin L_1$

משפט 7.1 משפט הרדוקציה

לכל שתי שפות $L_1,L_2\subseteq \Sigma^*$ אם קיימת רדוקציה

$$L_1 \leqslant L_2$$

אזי התנאים הבאים מתקיימים:

$$L_1 \in R \quad \Leftarrow \quad L_2 \in R \quad \text{(1)}$$

$$L_1 \in RE \iff L_2 \in RE$$
 (2)

$$L_1 \notin R \implies L_2 \notin R$$
 (3)

$$L_1 \notin RE \implies L_2 \notin RE$$
 (4)

הוכחה: מכיוון ש-

$$L_1 \leqslant L_2$$

:קיימת פונקציה f חשיבה המקיימת

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2$$

 $x \in \Sigma^*$ לכל

f מ"ט המחשבת את M_f

 $L_1 \in R \Leftarrow L_2 \in R$ נוכיח (1)

 $.L_2$ את המכריעה את מ"ט M_2 תהי $.L_1$ המכריעה את המכריעה את נבנה מ"ט

 M_1 של התאור

x על קלט $= M_1$

 M_f בעזרת f(x) את מחשבת . 1

. מריצה את M_2 על f(x) ועונה כמוה . 2

 $.L_1$ את מכריעה M_1 נוכיח כי

x את את מקבלת את $M_1 \iff f(x)$ אם $M_2 \iff f(x) \in L_2 \iff x \in L_1$ אם •

 A_1 את את M_1 \in f(x) אם M_2 \in $f(x)
otin L_2$ \in $x
otin L_1$ אם •

$L_1 \in RE \Leftarrow L_2 \in RE$ נוכיח (2)

 $.L_2$ את המקבלת מ"ט מ"ט תהי $.L_1$ את המקבלת את המקבלת מ"ט מ"ט נבנה מ"ט אונ

M_1 התאור של

x על קלט $= M_1$

- M_f בעזרת f(x) את מחשבת.1
- . ועונה כמוה. f(x) על M_2 את מריצה .2

 $:\!L_1$ את מקבלת M_1 נוכיח כי

- $M_1 \quad \Leftarrow \quad f(x)$ אם $M_2 \quad \Leftarrow \quad f(x) \in L_2 \quad \Leftarrow \quad x \in L_1$ אם •

(3)

(4)

כלל 7.1

אם רדוקציה שקיימת פי
 $L' \in RE$ אחרת שפה אחרת בוחרים אבה כלשהי שקיימת רדוקציה
 • $L \leqslant L' \; .$

לדוגמה:

$$L \leqslant L_{\rm acc}$$

(R' כנ"ל לגבי)

אם רדוקציה שקיימת כלשהי בוחרים שפה אחרת בוחרים שקיימת רדוקציה אם רוצים להוכיח כי שפה כלשהי בוחרים שפה $L'\notin RE$

$$L' \leqslant L$$
.

לדוגמה

$$L_{\rm d} \leqslant L$$

(R') (כנ"ל לגבי

דוגמה 7.6

$$L_{
m halt}=\left\{\langle M,w
angle\ \mid\ w$$
 נתונות השפות M ו- $L_{
m acc}=\left\{\langle M,w
angle\ \mid\ w\in L(M)
ight\}$ נתונות השפות $L_{
m acc}\leqslant L_{
m halt}$ ע"י רדוקציה $L_{
m acc}\leqslant L_{
m halt}$

פתרון:

נבנה פונקציה f חשיבה ומקיימת

$$x \in L_{\mathrm{acc}} \iff f(x) \in L_{\mathrm{halt}}$$
.

w' מקבלת את $M' \iff w$ מקבלת M

w' את את לא תעצור על $M' \Leftarrow w$ את דוחה את M

w' לא תעצור על $M' \Leftarrow w$ לא תעצור על M

$$f(x) = \begin{cases} \langle M', w \rangle & : x = \langle M, w \rangle \\ \langle M_{\text{loop}}, \varepsilon \rangle & : x \neq \langle M, w \rangle \end{cases}$$

כאשר

- .ט שלא עוצרת על מ"ט שלא עוצרת אף קלט. $M_{
 m loop}$
- . עצרה תיכנס ללולאה אינסופית. M מ"ט המתנהגת כמו M פרט למקומות בהם M עצרה ודחתה, M'

נכונות הרדוקציה

 $x = \langle M, w \rangle$ חשיבה כי ניתן לבנות מ"ט שתבדוק האם f

 $\langle M_{
m loop}, w
angle$ אם לא, תחזיר קידוד קבוע

M ע:י ביצוע שינויים לוקלים בקידוד של ע:י ביצוע ע:י קידוד אינו על עידוד או ואם כן, תחזיר אינו של

 $x \in L_{\mathrm{acc}} \quad \Leftrightarrow \quad f(x) \in L_{\mathrm{halt}}$ נוכיח כי

 $x \in L_{\mathrm{acc}}$ אם

$$w \in L(M)$$
 -1 $x = \langle M, w \rangle \Leftarrow$

$$w$$
 את ומקבלת אוצרת M' -ו $f(x) = \langle M', w \rangle \Leftarrow$

$$f(x) \in L_{\text{halt}} \Leftarrow$$

:אם מקרים אז שני $x \notin L_{\mathrm{acc}}$

מקרה 1:

$$f(x)
otin L_{
m halt} \quad \Leftarrow \quad arepsilon$$
 לא עוצרת על $M_{
m loop}$ ו- $f(x) = \langle M_{
m loop}, arepsilon
angle \quad \Leftarrow \quad x
otin \langle M, w
angle$

:2 מקרה

שני מקרים:
$$\Leftarrow f(x) = \langle M', w \rangle \quad \Leftarrow \quad w \notin L(M)$$
 - ו $x = \langle M, w \rangle$

$$f(x)
otin L_{ ext{halt}} \quad \Leftarrow \quad w$$
 לא עוצרת על $M' \quad \Leftarrow \quad w$ לא עוצרת על M

$$f(x)
otin L_{ ext{halt}} \quad \Leftarrow \quad w$$
 לא עוצרת על $M' \quad \Leftarrow \quad w$ דוחה את מקרה ב:

לסיכום, הוכחנו רדוקציה 2.1, ומכיוון ש- במשט $L_{\rm acc} \notin R$ ומכיוון ש- הרדוקציה 1.5, מתקיים . $L_{\rm acc} \leqslant L_{\rm halt}$ משפט הרדוקציה 1.5, מתקיים . $L_{\rm halt} \notin R$

דוגמה 7.7

נתונה השפה

$$L_{\Sigma^*} = \{ \langle M \rangle \mid L(M) = \Sigma^* \}$$

ונתונה השפה

$$\bar{L}_{\Sigma^*} = \{ \langle M \rangle \mid L(M) \neq \Sigma^* \} \cup \{ x \neq \langle M \rangle \} .$$

הוכיחו כי:

$$L_{\Sigma^*} \notin RE$$
 (x

$$L_{\Sigma^*}
otin R$$
 (ع

$$ar{L}_{\Sigma^*}
otin RE$$
 (2

פתרון:

נוכיח כי $L_{\Sigma^*} \notin R$ ע"י רדוקציה

$$L_{\rm acc} \leqslant L_{\Sigma^*}$$
 .

נבנה פונקציה חשיבה f המקיימת

$$x \in L_{\mathrm{acc}} \quad \Leftrightarrow \quad f(x) \in L_{\Sigma^*} .$$

$$L(M') = \Sigma^* \quad \Longleftarrow \quad w \in L(M)$$

$$L(M') \neq \Sigma^* \quad \Longleftarrow \quad w \notin L(M)$$

$$f(x) = \begin{cases} \langle M' \rangle & : x = \langle M, w \rangle \\ \langle M_{\varnothing} \rangle & : x \neq \langle M, w \rangle \end{cases}$$

- מ"ט שדוחה כל קלט. M_{\varnothing}
- . ועונה על w על את את מ"ט מריצה מ-x מתעלמת מ-x מתעלמת כל פלט שעל מ"ט שעל אוועונה מ"ט שעל מ"ט M'

אבחנה:

$$L(M') = \begin{cases} \Sigma^* & : w \in L(M) \\ \emptyset & : w \notin L(M) \end{cases}$$

נכונות הרדוקציה:

 $x = \langle M, w \rangle$ חשיבה כי ניתן לבנות מ"ט שתבדוק האם f

 $\langle M_{arnothing}
angle$ אם לא תחזיר קידוד קבוע

. אם כן, תחזיר קידוד $\langle M'
angle$ הוספת קוג ל- M שמוחק את הקלט מהסרט וכותב איי הוספת אם כן, תחזיר קידוד

נוכיח כי

$$x\in L_{
m acc}$$
 \Leftrightarrow $f(x)\in L_{\Sigma^*}$ \Leftrightarrow $L(M')=\Sigma^*$ ולפי האבחנה $f(x)=\langle M'
angle$ \Leftrightarrow $w\in L(M)$ -1 $x=\langle M,w
angle$ \Leftrightarrow $x\in L_{
m acc}$ אם $f(x)\in L_{\Sigma^*}$

אם שני מקרים: $x \in L_{\mathrm{acc}}$

$$f(x)
otin L_{\Sigma^*}$$
 \iff $L\left(M_{\varnothing}
ight)=arnothing f(x)=\left\langle M_{\varnothing}
ight
angle$ \iff $x
eq \left\langle M,w
ight
angle$ \Rightarrow $x\in$

$$f(x)
otin L_{\Sigma^*} \quad \Leftarrow \quad L\left(M'
ight) = arnothing$$
 ולפי האבחנה $f(x) = \langle M'
angle \quad \Leftarrow \quad w
otin L(M) - 1 \ x = \langle M, w
angle \quad$ מקרה 2):

לסיכום, הוכחנו רדוקציה 2.1, ומכיוון ש- במשט $L_{\rm acc} \notin R$ ומכיוון ש- הרדוקציה 1.7, מתקיים . $L_{\rm acc} \leqslant L_{\Sigma^*}$ משפט הרדוקציה 1. $L_{\rm acc} \leqslant R$

דוגמה 7.8

נתונה השפה

$$L_{d} = \{ \langle M \rangle \mid \langle M \rangle \notin L(M) \}$$

ונתונה השפה

$$\bar{L}_{\rm acc} = \{ \langle M, w \rangle \mid w \notin L(M) \} \cup \{ x \neq \langle M, w \rangle \} .$$

הוכיחו כי

ע"י רדוקציה $ar{L}_{
m acc}
otin RE$

$$L_{\rm d} \leqslant \bar{L}_{\rm acc}$$
 .

פתרון:

נבנה פונקציה חשיבה f המקיימת

$$x \in L_{\mathrm{d}} \quad \Leftrightarrow \quad f(x) \in L_{\mathrm{acc}} .$$

$$w' \not\in L(M') \quad \Leftarrow \quad \langle M \rangle \not\in L(M)$$

$$w' \in L(M') \iff \langle M \rangle \in L(M)$$

$$f(x) = \begin{cases} \langle M, \langle M \rangle \rangle & : x = \langle M \rangle \\ \langle M^*, \varepsilon \rangle & : x \neq \langle M \rangle \end{cases}$$

.כאשר M^* המ"ט שמקבלת כל קלט

נכונות הרדוקציה:

 $x = \langle M, w
angle$ חשיבה כי ניתן לבנות מ"ט שתבדוק האם f

 $.\langle M^*, arepsilon
angle$ אם לא תחזיר קידוד קבוע

 $\langle M,\langle M \rangle
angle$ אם כן, תחשב

נוכיח כי

$$x \in L_{\mathsf{d}} \quad \Leftrightarrow \quad f(x) \in \bar{L}_{\mathsf{acc}}$$

$$\Leftarrow$$
 $\langle M \rangle \notin L(M)$ -1 $f(x) = \langle M, \langle M \rangle \rangle$ \Leftarrow $\langle M \rangle \notin L(M)$ -1 $x = \langle M \rangle$ \Leftarrow $x \in L_{\mathrm{d}}$ acc $f(x) \in \bar{L}_{\mathrm{acc}}$

אם אפני מקרים: $x \notin L_{\mathsf{d}}$

$$f(x)
otin ar{L}_{
m acc} \quad \Leftarrow \quad arepsilon \in L\left(M^*
ight)$$
 ר- $f(x) = \left\langle M^*, arepsilon
ight
angle \quad \Leftarrow \quad x
otin \left\langle M
ight
angle \quad = 0$ מקרה ני

$$f(x)
otin ar{L}_{
m acc} \quad \Leftarrow \quad \langle M
angle \in L(M)$$
 -ו $f(x) = \langle M, \langle M
angle
angle \quad \Leftarrow \quad \langle M
angle \in L(M)$ -ו $x = \langle M
angle \quad \Leftrightarrow \quad \langle M
angle \in L(M)$ מקרה 2):

לסיכום, הוכחנו רדוקציה 7.1, ממשט הרדוקציה (6.3 משפט הוכחנו ש- $L_{
m d} \notin RE$, ומכיוון ש- גוון אז ממשט הרדוקציה ($L_{
m d} \notin RE$

משפט 7.2 משפט הרדוקציה בין שפות משלימות

 $ar{L}_1\leqslantar{L}_2$ אם קיימת רדוקציה $L_1\leqslant L_2$, אזי קיימת רדוקציה

הוכחה:

אם ∃ רדוקציה

$$L_1 \leqslant L_2$$

אזי \exists פונקציה חשיבה f המקיימת

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2$$

ולכן עבור אותה פונקציה f היא גם חשיבה וגם מקיימת

$$x \in \bar{L}_1 \quad \Leftrightarrow \quad f(x) \in \bar{L}_2$$

ולכן

$$\bar{L}_1 \leqslant \bar{L}_2$$
.

7.4 דוגמאות בשימוש של משפט הרדוקציה בין שפות משלימות (משפט 7.2)

דוגמה 7.9

הוכחנו בדוגמה 7.7 רדוקציה

 $L_{\rm acc} \leqslant L_{\Sigma^*}$.

לכן לפי משפט 7.2 קיימת רדוקציה

 $\bar{L}_{\rm acc} \leqslant \bar{L}_{\Sigma^*}$.

 $ar{L}_{\Sigma^*}
otin RE$ מתקיים 7.1 מתשפט הרדוקציה, ל $ar{L}_{
m acc}
otin RE$ מכיוון ש

דוגמה 7.10

הוכחנו בדוגמה 7.8 רדוקציה

 $L_{\rm d} \leqslant \bar{L}_{\rm acc}$.

לכן לפי משפט 7.2 קיימת רדוקציה

 $\bar{L}_{\rm d} \leqslant L_{\rm acc}$.

 $ar{L}_{ extsf{d}} \in RE$ מכיוון ש- 7.1 ממשט האי ממשט הרדוקציה לאזי ממשט , $L_{ extsf{acc}} \in RE$

7.5 דוגמאות בשימוש של משפט הרדוקציה (משפט 7.5

 $ar{L}_{
m acc} \leqslant L_{
m NOTREG}$ 7.11 דוגמה

תהי $L_{ ext{NOTREG}}$ השפה

 $L_{ ext{NOTREG}} = \left\{ \langle M \rangle \ \middle| \ \text{ גולרית} \ L(M)
ight\} \ .$

. $ar{L}_{
m acc}$ -הוכיחו כי השפה לא כריעה לא כריעה לא ברוקציה מ-

פתרון:

השפה $ar{L}_{
m acc}$ מוגדרת

 $ar{L}_{
m acc} = ig\{\langle M, w
angle \ | \ w$ לא מקבלת $M ig\} \cup \{x
eq \langle M, w
angle \}$.

והשפה $L_{ ext{NOTREG}}$ מוגדרת

 $L_{ ext{NOTREG}} = \left\{ \langle M
angle \; \middle| \; n$ לא רגולרית $L(M)
ight\}$.

נגדיר הפונקציה הבאה:

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ w' \in PAL & x \neq \langle M, w \rangle \end{cases}$$

:כאשר M' מ"ט הבאה

y על כל קלט =M'

. אם $y \in PAL$ אם (1

על w ועונה כמוה. M אחרת מריצה M

הוכחת נכונות הרדוקציה

אם שני מקרים:
$$x \in \bar{L}_{\mathrm{acc}}$$

$$x = \langle M, w \rangle$$
 :1 מקרה

$$w$$
 לא מקבלת $M \Leftarrow$

$$L(M') \in PAL \Leftarrow$$

$$\langle M' \rangle \in PAL \Leftarrow$$

$$f(x) \in PAL \Leftarrow$$

$$f(x) \in L_{\text{NOTREG}} \Leftarrow$$

$$f(x) \in L_{ ext{NOTREG}} \Leftarrow f(x) \in PAL \Leftarrow x \neq \langle M, w \rangle$$
 :2 מקרה 2

$$f(x) \in L_{ ext{NOTREG}} \quad \Leftarrow \quad f(x) \in \Sigma^* \quad \Leftarrow \quad L\left(M'
ight) = \Sigma^* \quad \Leftarrow \quad w$$
 מקבלת אם $M \quad \Leftarrow \quad x \notin \bar{L}_{ ext{acc}}$

 $L_{ ext{NOTREG}}$ ל-כן הוכחנו כי $L_{ ext{acc}}$ ל-ג $L_{ ext{acc}}$ היא רדוקציה מ-f(x) ז"א א"ג, $x\in ar{L}_{ ext{acc}}\Leftrightarrow f(x)\in NOTERG$

. לא כריעה. לפיכך, לפי משפט הרדוקציה לא בריעה. לא לא לא לא בריעה. השפה לא $\bar{L}_{\rm acc}$

$$L_{
m acc} \leqslant L_{
m NOTREG}$$
 7.12 דוגמה

תהי $L_{ ext{NOTREG}}$ השפה

$$L_{ ext{NOTREG}} = \left\{ \langle M \rangle \; \middle| \;$$
לא רגולרית $L(M) \right\} \; .$

 $.L_{
m acc}$ -ם ידי רדוקציה על א כריעה לא בריעה תוכיחו כי השפה הוכיחו לא בריעה לא ל

פתרון:

השפה $L_{
m acc}$ מוגדרת

$$L_{
m acc} = \left\{ \langle M, w
angle \; \middle| \; w$$
 מקבלת $M
ight\}$.

והשפה מוגדרת בחשפה $L_{
m NOTREG}$

$$L_{\text{NOTREG}} = \big\{ \langle M \rangle \ \big| \ \text{therefore} \ L(M) \big\}$$
 .

נגדיר הפונקציה הבאה:

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \langle M_{\varnothing} \rangle & x \neq \langle M, w \rangle \end{cases}$$

:כאשר M' מ"ט הבאה

$$y$$
 על כל קלט $=M'$

- .w על M מריצה M' (1
- . אם M דוחה \Rightarrow דוחה \bullet

- . פלינדרום y בודקת אם $M' \Leftarrow M'$ פלינדרום
 - * אם כן \Rightarrow מקבלת.
 - * אם לא \Rightarrow דוחה.

הוכחת נכונות הרדוקציה

$$f(x) \in L_{ ext{NOTREG}} \quad \Leftarrow \quad f(x) \in PAL \quad \Leftarrow \quad L\left(M'\right) = PAL \quad \Leftarrow \quad w$$
 מקבלת $M \quad \Leftarrow \quad x \in L_{ ext{acc}}$

שני מקרים. $\Leftarrow x \notin L_{\mathrm{acc}}$

$$\langle M_\varnothing
angle
otin L_{
m NOTREG} \quad \Leftarrow \quad L\left(M_\varnothing
ight) = \varnothing \,$$
 ר- $f(x) = \langle M_\varnothing
angle \, \leftarrow \quad x \neq \langle M, w
angle \quad \underline{:1}$ מקרה $f(x) \notin L_{
m NOTREG} \quad \Leftarrow \quad \underline{:1}$

$$\langle M'
angle \notin L_{ ext{NOTREG}} \quad \Leftarrow \quad L\left(M'
ight) = \varnothing \quad \Leftarrow \quad w$$
 א מקבלת ש בי $x = \langle M, w
angle \quad : f(x) \notin L_{ ext{NOTREG}} \quad \Leftarrow$

$L_{ ext{HALT}} \leqslant L_{ ext{NOTREG}}$ 7.13 דוגמה

תהי $L_{ ext{NOTREG}}$ השפה

$$L_{ ext{NOTREG}} = \{ \langle M \rangle \mid L(M) \}$$
 .

 $L_{
m HALT}$ -א ידי רדוקציה מ- לא כריעה לא ל $L_{
m NOTREG}$ הוכיחו כי השפה

פתרון:

השפה L_{HALT} מוגדרת

$$L_{ ext{HALT}} = \left\{ \langle M, w
angle \mid w$$
 עוצרת על $M
ight\} \ .$

והשפה מוגדרת $L_{ ext{NOTREG}}$

$$L_{ ext{NOTREG}} = \{ \langle M \rangle \mid L(M) \}$$
 .

נגדיר הפונקציה הבאה:

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \langle M_{\varnothing} \rangle & x \neq \langle M, w \rangle \end{cases}.$$

:כאשר M' מ"ט הבאה

:y כל קלט =M'

- .w על M מריצה M' (1
- אם M דוחה \Rightarrow דוחה. (2
- אם M מקבלת שלב 3). \bullet
 - $y \in PAL$ בודקת אם M' (3
 - \bullet אם כן \Rightarrow מקבלת.
 - אם לא \Rightarrow דוחה.

הוכחת הנכונות

$$.L\left(M^{\prime}\right) \in L_{ ext{NOTREG}} \quad \Leftarrow \quad L\left(M^{\prime}\right) \in PAL \quad \Leftarrow \quad x \in L_{ ext{HALT}}$$

שני מקרים: $\Leftarrow x \notin L_{\text{HALT}}$

$$\langle M_\varnothing \rangle \notin L_{\mathrm{NOTREG}} \quad \Leftarrow \quad L\left(M_\varnothing\right) = \varnothing \text{ -1 } f(x) = \langle M_\varnothing \rangle \quad \Leftarrow \quad x \neq \langle M, w \rangle \quad \underline{:1} \text{ agree } f(x) \notin L_{\mathrm{NOTREG}} \quad \Leftarrow \quad \underline{} f(x) \notin L_{\mathrm{NOTREG}} \quad \Leftrightarrow \quad \underline{:1} \text{ agree } f(x) \notin L_{\mathrm{NOTREG}} \quad \Leftrightarrow \quad \underline{} f(x)$$

$$\langle M_\varnothing
angle
otin L_{ ext{NOTREG}} \quad \Leftarrow \quad L\left(M_\varnothing
ight) = \varnothing \quad \Leftarrow \quad w$$
 א עוצרת על ש M - ו- $x = \langle M, w
angle \quad \underline{:}$ מקרה ביי $f(x)
otin L_{ ext{NOTREG}} \quad \Leftarrow \quad \underline{:}$

$$ar{L}_{
m acc} \leqslant L_{
m REG}$$
 7.14 דוגמה

תהי $L_{ ext{REG}}$ השפה

$$L_{ ext{REG}} = \left\{ \left\langle M \right
angle \; \middle| \; n$$
רגולרית $L(M) \right\}$.

. $ar{L}_{
m acc}$ -מ כריעה על ידי בדוקציה מ- הוכיחו כי השפה לא לא בריעה על לא

פתרון:

השפה $ar{L}_{
m acc}$ מוגדרת

$$ar{L}_{
m acc} = ig\{ \langle M, w
angle \mid w$$
 לא מקבלת $M ig\} \cup \{ x \mid x
eq \langle M, w
angle \}$.

והשפה $L_{ exttt{REG}}$ מוגדרת

$$L_{ ext{REG}} = \{ \langle M \rangle \mid \text{ רגולרית } L(M) \}$$
 .

נגדיר הפונקציה הבאה:

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \langle M_{\varnothing} \rangle & x \neq \langle M, w \rangle \end{cases}$$

:כאשר מ"ט מ"ט הבאה כל קלט אדוחה מ"ט הבאה מאכר מ"ט המ"ט אדוחה כל המ"ט באה

:y כל קלט =M'

- .w על M מריצה (1
- אם M דוחה \Rightarrow דוחה. (2
- אם y פלינדרום: ϕ מקבלת ϕ מקבלת ϕ
 - אם כן \Rightarrow מקבלת.
 - אם לא ⇒ דוחה.

<u>אבחנה</u>

$$L(M') = \begin{cases} PAL & w \in L(M) \\ \emptyset & w \notin L(M) \end{cases}$$

אם מקרים: $x \in \bar{L}_{\mathrm{acc}}$ אם

$$f(x) \in L_{\mathrm{REG}} \quad \Leftarrow \quad \langle M_{\varnothing} \rangle \in L_{\mathrm{REG}} \quad \Leftarrow \quad L\left(M_{\varnothing}\right) = \varnothing$$
 ר- $f(x) = \langle M_{\varnothing} \rangle \quad \Leftarrow \quad x \neq \langle M, w \rangle$ בקרה ב-

$$\langle M_\varnothing
angle \in L_{\mathrm{REG}} \quad \Leftarrow \quad L\left(M'
ight) = \varnothing$$
 ולפי האבחנה $f(x) = \langle M'
angle \quad \Leftarrow \quad x \notin L(M)$ ולפי האבחנה $f(x) \in L_{\mathrm{REG}} \Leftarrow \dots \cap f(x) \in L_{\mathrm{REG}} \Leftrightarrow \dots \cap f(x) \in L_{\mathrm{REG}} \Leftrightarrow \dots \cap f(x)$

$$f(x) \in PAL \quad \Leftarrow \quad L\left(M'\right) \in PAL \quad \text{ idea in a part } f(x) = \left\langle M'\right\rangle \quad \Leftarrow \quad w \in L\left(M\right) \quad \Leftarrow \quad x \notin \bar{L}_{\mathrm{acc}} \quad \Rightarrow \quad f(x) \notin L_{\mathrm{REG}} \Leftarrow \quad f(x) \notin L_{\mathrm{REG}} \Leftrightarrow \int_{-\infty}^{\infty} \left| \int_{-\infty}$$

$L_{ m acc} \leqslant L_{ m REG}$ 7.15 דוגמה

תהי $L_{\mathtt{REG}}$ השפה

$$L_{ ext{REG}} = \{ \langle M \rangle \mid \text{ רגולרית } L(M) \}$$
 .

 $.L_{
m acc}$ -הוכיחו כי השפה לא כריעה על בריעה על $L_{
m REG}$

פתרון:

השפה $L_{
m acc}$ מוגדרת

$$L_{
m acc} = \left\{ \langle M, w
angle \; \middle| \; w$$
 מקבלת $M
ight\}$.

והשפה $L_{ ext{REG}}$ מוגדרת

$$L_{ ext{REG}} = \{ \langle M \rangle \mid \text{ רגולרית } L(M) \}$$
 .

נגדיר הפונקציה הבאה:

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \langle M_{PAL} \rangle & x \neq \langle M, w \rangle \end{cases}$$

כאשר א"ט שמכריעה את השפה של פלינדרומים, ו- M' מ"ט הבאה: משר את המ"ט שמכריעה את השפה אונדרומים, ו

y על כל קלט =M'

:בודקת אם y בודקת M' (1

- אם כן \Rightarrow מקבלת.
- . אם לא מריצה M על w ועונה כמוה.

הוכחת נכונות הרדוקציה

$$f(x) \in REG \quad \Leftarrow \quad L\left(M'
ight) = \Sigma^* \quad \Leftarrow \quad w$$
 מקבלת $M \quad \Leftarrow \quad x \in L_{\mathrm{acc}}$ אם

:שני מקרים $\Leftarrow x \notin L_{\mathrm{acc}}$

$$\langle M_{PAL}\rangle\notin L_{\mathrm{REG}}\quad \Leftarrow\quad L\left(M_{PAL}\right)=PAL\text{ -1 }f(x)=\langle M_{PAL}\rangle \quad \Leftarrow\quad x\neq\langle M,w\rangle \quad \underline{:1}$$
 מקרה בי

$$\langle M'
angle \notin L_{\mathrm{REG}} \quad \Leftarrow \quad L\left(M'
ight) = PAL \quad \Leftarrow \quad w$$
 א מקרה ב: $x = \langle M, w
angle \quad x = \langle M, w
a$

$$ar{L}_{
m acc}\leqslant L_{M_1
eg M_2}$$
 7.16 דוגמה

נתונה השפה הבאה:

$$L = \{ \langle M_1, M_2, w \rangle \mid w \in L(M_1) \land w \notin L(M_2) \}.$$

 $ar{L}_{
m acc}$ -הוכיחו כי L
otin RE ע"י רדוקציה מ

פתרון:

פונקצית הרדוקציה:

$$f(x) = \begin{cases} \langle M^*, M, w \rangle & x = \langle M, w \rangle \\ \langle M^*, M_{\varnothing}, \varepsilon \rangle & x \neq \langle M, w \rangle \end{cases}$$

כאשר

- היא מ"ט שמקבלת כל קלט M^*
- . היא מ"ט שדוחה כל קלט M_{\varnothing} •

נכונת הרדוקציה:

 $\langle M^*, M_\varnothing, \varepsilon \rangle$ אם לא, תחזיר קידוד קבוע מ"ט שתבדוק האם $x = \langle M, w \rangle$ אם לא, מ"ט שתבדוק מ"ט שתבדוק האם האט מיט אם לא, תחזיר קידוד קבוע מ"ט שתבדוק האט כן, תחזיר קידוד $\langle M^*, M, w \rangle$.

נוכיח כי

$$x \in \bar{L}_{\mathrm{acc}} \quad \Leftrightarrow \quad f(x) \in L_{M_1 \neg M_2} .$$

אם $x\in ar{L}_{
m acc}$ שני מקרים:

$$w \notin L\left(M
ight)$$
 -1 $w \in L\left(M^*
ight)$ -1 $f(x) = \langle M^*, M, w \rangle \quad \Leftarrow \quad w \notin L(M)$ -1 $x = \langle M, w \rangle$: \underline{c} מקרה \underline{c} \underline{c}

$$w\notin L\left(M
ight)$$
 -1 $w\in L\left(M^*
ight)$ -1 $f(x)=\left\langle M^*,M,w
ight
angle$ \Leftrightarrow $w\in L(M)$ -1 $x=\left\langle M,w
ight
angle$ \Leftrightarrow $x\notin \bar{L}_{\mathrm{acc}}$ $f(x)\notin L_{M_1-M_2}$ \Leftrightarrow $f(x)\notin L_{M_1-M_2}$

 $L_{M_1 op M_2} \notin RE$ ממשפט הרדוקציה מתקיים, הוכחנו רדוקציה לסיכום, הוכחנו $ar{L}_{
m acc} \notin RE$ ממשפט הרדוקציה ומכיוון ש

$$L_{
m acc}\leqslant L_{M_1\subset M_2}$$
 7.17 דוגמה

נתונה השפה הבאה:

$$L = \{ \langle M_1, M_2, w \rangle \mid w \in L(M_1) \land w \notin L(M_2) \}.$$

 $.L_{
m acc}$ -ם ע"י רדוקציה מ $L \notin RE$ הוכיחו

פתרון:

פונקצית הרדוקציה:

$$f(x) = \begin{cases} \langle M_{\varnothing}, M' \rangle & x = \langle M, w \rangle \\ \langle M_{\varnothing}, M_{\varnothing} \rangle & x \neq \langle M, w \rangle \end{cases}$$

כאשר

- . היא מ"ט שדוחה כל קלט. M_{\varnothing}
- . ועונה על על w על M ומריצה y מתעלמת y מתעלמת שעל קלט y ועונה כמוה. M'

אבחנה:

$$L(M') = \begin{cases} \Sigma^* & w \in L(M) \\ \varnothing & w \notin L(M) \end{cases}.$$

נכונת הרדוקציה:

ראשית, f חשיבה כי ניתן לבנות מ"ט שתבדוק האם $x=\langle M,w\rangle$ אם לא, תחזיר קידוד קבוע M_\varnothing ואם לא, תחזיר קידוד ל M_\varnothing כאשר M_\varnothing המוחק את הקלט M_\varnothing נוצר ע"י הוספת קוד ל- M_\varnothing המוחק את הקלט M_\varnothing ורושם M_\varnothing במקומו.

נוכיח כי

$$x \in L_{acc} \Leftrightarrow f(x) \in L_{M_1 \subset M_2}$$
.

$$L\left(M'
ight)=\Sigma^*$$
 אם $f(x)=\left\langle M_\varnothing,M'
ight
angle$ \Leftrightarrow $w\in L(M)$ -1 $x=\left\langle M,w
ight
angle$ \Leftrightarrow $x\in L_{\mathrm{acc}}$ אם $f(x)\in L_{M_1\subset M_2}$ \Leftrightarrow $L\left(M_\varnothing
ight)\subset L\left(M'
ight)$

:שני מקרים $\Leftarrow x \notin L_{\mathrm{acc}}$

$$.f(x)
otin L_{M_1 \subset M_2} \quad \Leftarrow \quad L\left(M_{\varnothing}
ight) = L\left(M_{\varnothing}
ight) - 1 \quad f(x) = \left\langle M_{\varnothing}, M_{\varnothing}
ight
angle \quad \Leftarrow \quad x
otin \left\langle M, w
ight
angle \quad : 1$$
 מקרה ב

$$L\left(M'
ight)=\varnothing$$
 ולפי האבחנה $f(x)=\langle M_\varnothing,M'
angle \iff w\notin L(M)$ - ו $f(x)\notin L_{M_1\subset M_2}$ ב $f(x)\notin L_{M_1\subset M_2}$ ולפי האבחנה $f(x)\notin L_{M_1\subset M_2}$ ב $f(x)\notin L_{M_1\subset M_2}$ ולפי האבחנה $f(x)\notin L_{M_1\subset M_2}$

 $.L_{M_1\subset M_2}
otin R$ ממשפט הרדוקציה מתקיים, ומכיוון ש- גומכיוון ש- גומרים, ומכיוון הדוקציה ומכינו רדוקציה ומכיוון ש- גומכיוון ש-