Compendio Lezioni del Corso: Algebra $_1/$

Federico De Sisti March 12, 2025

0.1 Ideali primi e massimali

Sia $(R, +, \cdot)$ un anello. Un ideale $I \subseteq R$ si dice primo se

- $I \neq R$
- $\forall a, b \in R \text{ se } a \cdot b \in I \Rightarrow a \in I \lor b \in I$

(R,+,) anello $I\subseteq R$ ideale (bilatero). Allora l'anello quoziente R/I è dominio d'integrità $\Leftrightarrow I$ è ideale primo Per ogni $a,b\in I$, la proprietà :

$$[a] \cdot [b] = [a \cdot b] = [0]$$
 in $R/I \Rightarrow [a] = [0] \vee [b] = [0]$ in R/I .

è equivalente a richiedere $a\cdot b\in I\Rightarrow a\in B\vee b\in I$ Esempio $R=[x]/(x^2)$

Osserviamo che spazio vettoriale $[x]/(x^2) = \oplus [x]$

Ricorda

Gli ideali di $[x]/(x^2)$ sono in corrispondenza biunivoca con gli ideali di [x] che contengono (x^2)

L'ideale $(x) \in [x]$ contiene (x^2) e $(x)/(x^2)$ in $[x]/(x^2)$ è un ideale primo Infatti:

 $C[x]/(x^2)/x/(x^2) \Rightarrow$ è un corpo \Rightarrow è un dominio d'integrità

Osserviamo che l'ideale banalae in $C[x]/(x^2)$ è $(x^2)/(x^2)$

il quale non è primo infatti $x \cdot x = x^2$

$$\Rightarrow$$
 $[x] \cdot [x] = [x^2] = [0]$ in $C[x]/(x^2)$

Osservazione

 $[x]/(x^2)$ si chiama

- "algebra dei numeri duali"
- "fat point" (Geometricamente è un punto)

 $(R, +, \cdot)$ anello, $I \subseteq R$ si dice ideale massimale se:

- $I \neq R$
- Dato un ideale $J\subseteq R$ tale che $I\subseteq J,$ si ha $I=J \ \lor \ J=R$

 $(R, +, \cdot)$ anello commutativo, $I \subseteq R$ ideale

Iè massimale se e solo se R/Iè un campo – Ricordo che esiste una corrispondenza biunivoca tra { Ideali di R che contengono $I\}\leftrightarrow$ { ideali di $R/I\}$ J->J/I

- $\Rightarrow I$ massimale se e solo se R/I contiene solo ideali banali
- \Rightarrow Sappiamo inoltre che (data la commutatività per ipotesi), R/I contiene solo ideali banali $\Leftrightarrow R/I$ è banale $\,$ Esercizio
- $n \ge 1$ intero, $(n) \subseteq$ ideale in $(,+,\cdot)$

dimostra che sono equivalenti

- \bullet (n) è ideale primo
- \bullet *n* è numero primo

0.2 Polinomi

In questa sezione lavoriamo con anelli commutativi. Problema S anello commutativo, $R\subseteq S$ sottoanello, $t\in S$ Vogliamo costruire il più piccolo sottoanello B di S che contenga R e t Osservazione

Ogni sottoanello è chiuso rispetto alle operazioni.

- $t \in B \Rightarrow t^n = t \cdot \ldots \cdot t \in B \ (n \text{ volte}) \quad \forall n \ge 1 \text{ intero}$
- $r \in R \Rightarrow r \cdot t^n \in B$
- $r_1, \ldots, r_k \in R \subseteq B \Rightarrow r_0 + r_1 t + \ldots r_k t^k \in B$

Deduciamo che $R[t] \subseteq B$ dove $R[i] = \{r_0, +r_1t + \ldots + r_kt^k \mid k \in r_0, \ldots, r_l \in R\}$ R[t] = B La dimostrazione è lasciata al lettore (basta verificare che R[t] è sottoanello di S **Esempi**

1)
$$R = S = t = i$$

$$R[t] = R[i] = \{r_0 + r_1 i + r_2 i^2 + \dots + r_k i^k \mid r_1, \dots, r_k \in \}$$
$$= \{c_0 + c_1 i \mid c_0, c_1 \in \} = .$$

Qual'è il problema? La scrittura $r_0 + r_1t + \ldots + r_kt^k$ non è unica. $R \subseteq S$ sottoanello (commutativo), $t \in S$, allora t è trascendente su R se la scrittura $r_0 + \ldots + r_kt^k$ è unica t è trascendente su R se e solo se $r_0 + r_1t + \ldots + r_kt^k = 0 \Leftrightarrow r_0 = r_1 = \ldots = r_k = 0 \quad (\Rightarrow)$ Se t è trascendente $\Rightarrow 0 \in R$ ammette scrittura unica \Rightarrow vale la proprietà

(⇐) Se vale tale proprietà

P.A.

$$a_0 + a_1 t + \ldots + a_k t^k = b_0 + b_1 t + \ldots + b_h t^h$$

Assumo $k \geq h$ senza perdita di generalità

Porto tutto a sinistra

$$(a_0 - b_0) + (a_1 - b_1)t + (a_h - b_h)t^h + \dots + a_kt^k = 0$$

Dove tutti i termini sono gli r_i nella struttura precedente

Per ipotesi $\Rightarrow a_i = b_i \ \forall i \leq h, a_j = 0 \ \forall h < j \leq k$

 \Rightarrow la scrittura è unica

0.3 Ricordo

S anello commutativo $R \subseteq S$ sottoanello $t \in S$ Abbiamo dimostrato che $R[t] = \{\sum_{i=0}^k r_i t_i \mid k \in_{>0}, \ t_i \in \}$ è il più piccolo sottoanello si S contenente e t $t \in S$ si dice trascendente su se per ogni $a \in [t]$ la scrittura

$$s = \sum_{i=0}^{k} r_i t^i.$$

è unica Esercizio:

Dimostrare che $i \in S$ è trascendente su se e solo se vale la seguente condizione

(*)
$$r_0 + r_1 t + \ldots + r_k t^k = 0 \Rightarrow r_0 = r_1 = \ldots = r_k = 0.$$

Soluzione

Se t è trascendente allora $0 \in$ ammette struttura polinomiale unica \Rightarrow vale la proprietà.

Viceversa suppongo che valga (*). Se

$$a_0 + a_1 t + \ldots + a_k t^k = b_0 + b_1 t + \ldots + b_h t^h.$$

Assumo $k \ge k$

$$(a_0 - b_0) + (a_1 - b_1)t + \ldots + (a_h - b_h)t^h + \ldots + a_kt^k = 0.$$

$$(*) \Rightarrow a_0 = b_0, \dots, a_i = b_i \quad \forall i \le h, \ a_j = 0 \quad \forall h < j \le k$$

Idea

R anello commutativo x simbolo

$$R[x] = \{ \sum_{i=0}^{k} r_i a^i \mid k \in \{0, r_i \in \} \}.$$

Operazioni:

$$\left(\sum_{i=1}^{k} a_i x^i\right) + \left(\sum_{i=0}^{h} b_i x^i\right) = \sum_{i=0}^{\max(h,k)} (a_i + b_i) x^i$$
$$\left(\sum_{i=0}^{h} a_i x^i\right) \cdot \left(\sum_{i=0}^{k} b_i x^i\right) = \sum_{j=0}^{h+k} \left(\sum_{p+q=j} (a_p \cdot b_q)\right)$$

Osservazion

Su [x] è definita la funzione grado

$$deg:[\mathbf{x}] \to_{\geq 0} \\ p \to deg(p)$$

Se $p = \sum_{i=0}^k a_i x^i$ $a_k \neq 0$ allora deg(p) = k e p si dice **monico** se $a_k = 1$ dove k = deg(p) [Divisione Euclidea] R anello commutativo $f, g \in R[x], g$ monico Allora esistono $g, r \in [x]$ tali che

$$f = q \cdot q + r$$
.

 $\begin{array}{l} \operatorname{con}\, deg(r) < def(g) \\ \operatorname{Tali}\, q \in r \, \operatorname{sono} \, \operatorname{unici} & \operatorname{Procediamo} \, \operatorname{per} \, \operatorname{induzione} \, \operatorname{su} \, deg(f) \\ \operatorname{Se}\, deg(f) < deg(g) \\ \operatorname{scelgo} \, q = 0 \, \operatorname{e} \, f = r \\ \operatorname{Altrimenti} \\ deg(f) \geq deg(g) \\ \operatorname{scriviamo} \, f = \sum_{i=0}^h a_i x^i \\ g = \left(\sum_{i=0}^{k-1} b_i x^i\right) + x^k \\ \operatorname{Considero} \end{array}$

$$\hat{f} := f - a_k x^{h+k} \cdot g.$$

 $\begin{array}{l} \Rightarrow deg(\hat{f}) < deg(f) \\ \text{Per ipotesi induttiva} \\ \exists \hat{q}, \hat{r} \in R[x] \text{ tali che} \\ \hat{f} = \hat{q} \cdot g + \hat{r} \quad \text{ con } deg(\hat{r}) < deg(g) \\ \text{Allora} \end{array}$

$$f - a_k x^{h-k} \cdot g = \hat{q} \cdot g + \hat{r} \Rightarrow g = (a_h x^{h-k} + \hat{q}) \cdot g + \hat{r}.$$

 $\begin{array}{l} \operatorname{con}\, deg(r) = deg(\hat{r}) < deg(g) \\ \operatorname{Supponiamo} \end{array}$

$$f = q_1 \cdot g + r_1 = q_2 \cdot g + r_2.$$

 $\Rightarrow (q_1 - q_2) \cdot g = (r_2 - r_1).$

 $deg(q_1-q_2)\cdot g)\geq deg(g)>deg(r_2r_1)$

 \Rightarrow Assurdo

 $\Rightarrow q_1 = q_2 \quad \Rightarrow r_2 = r_1 \quad R$ anello commutativo

 $\phi:R\to S$ omomorfismo di anelli $r\in S$

Allora esiste un unico omomorfismo di anelli $\bar{\phi}: R[x] \to S$ tale che

1.
$$\bar{\phi}(x) = t$$

2.
$$\bar{\phi}|_{R} = 0$$

Le richieste danno ϕ :

$$\bar{\phi}\left(\sum_{i=0}^k r_i x^i\right) = \sum_{i=0}^k \phi(r^i) t^i.$$

Osservazione

Stiamo dicendo che esiste l'omomorfismo $R \to R[x]$ dato dall'inclusione

$$R[r, "\phi"][d, "i"]SR[x][ru, "\exists \bar{\phi}", dashed]$$

Esercizio

R anello commutativo R[x] anello commutativo R[x][y] anello commutativo

$$\sum_{j=0}^{k} \left(\sum_{i=0}^{m_i} a_{ij} x^i \right) y^j.$$

E se procediamo al contrario? R[y][x] è uguale a quello precedente?

$$\sum_{j=0}^{k} \left(\sum_{i=0}^{m_i} a_{ij} y^i \right) x^j.$$

Dimostrare che esiste un isomorfismo di anelli

$$\psi: R[x][y] \to R[y][x].$$

che soddisfa

- 1. $\psi(r) = r_1$
- 2. $\psi(x) = x$
- 3. $\psi(y) = y$

Soluzione

(R) at (0,4)
$$R$$
; (Ryx) at (2,4) $R[y][x]$; (Rx) at (0,2) $R[x]$; (Rxy) at (0,0) $R[x][y]$; [-¿] (R) – (Rx) node[midway, left]; [-¿] (R) – (Ryx); [down hook, -¿] (Rx) – (Rxy); [dotted,thick, ;-] (Ryx) to [hook] (Rxy); [red, dotted,thick, -¿] (Rx) to (Ryx);

esiste un omomorfismo ψ con le proprietà cercate.

Per dimostrare che ψ è un <u>iso</u>morfismo basta costruire l'inverso in modo analogo. R anello commutativo R dominio d'integrità se e solo se R[x] dominio d'integrità Chiaramente se R[x] è dominio d'integrità allora lo è anche R

Viceversa siano $f,g \in R[x] \setminus \{0\}$ allora il coefficiente di grado massimo di fg è il prodotto dei coefficienti di grado massimo di f e di g. Quindi se R dominio $\Rightarrow f \cdot g \neq 0$

1 Domini Euclidei

R anello commutativo

 $\nu: R \to_{>0}$ funzione tale che.

- 1. $P(r) = 0 \Leftrightarrow r = 0$
- 2. dati $a,b,c\in$ tali che $b\neq 0$ e $c=a\cdot b$ allora

$$\nu(c) > \nu(a)$$
.

3. $\forall f, g \in R$ con $g \neq 0$ esistono $q, r \in R$ tali che

$$g = q \cdot g + r.$$

dove
$$\nu(r) < \nu(q)$$

Tale ν si chiama si valutazione e (R,ν) si chiama dominio Euclideo **Esempio** \mathbb{K} campo $(\mathbb{K}[x],\nu)$ è un dominio euclideo dove $\nu(p)=deg(p)+1$ e $\nu(0)=0$ $(,\nu)$ è un domino euclideo dove $\nu(n)=|n|$

 \mathbb{K} campo (\mathbb{K}, ν) dominio euclideo dove $\nu(0) = 0$ e $\nu(r) = 1 \ \forall r \in \mathbb{K} \setminus \{0\}$

Esercizio

Dimostrare che $([i],\nu)$ è domino euclideo dove $\nu[a+ib]=a^2+b^2$

Esempio

 $f=4+3i, \;\; g=3+2i\neq 0$ Cerco $q,r\in [i]$ tale che $f=q\cdot g+r$ e $\nu(e)<\nu(g)=13$ Idea generale

$$\frac{a+ib}{c=id} = \alpha + i\beta \quad \alpha, \beta \in .$$

R anello commutativo.

Definiamo gli insiemi U_i iterativamente

$$U_0 = \{0\} \subseteq$$

$$U_{i+1} = \{p \in |U_i \to /(p) \ \text{è suriettivo}\} \cup \{0\}$$

Osservazione 1

L'omomorfismo $U_i \to R/(p)$ è la composizione

$$U_i \xrightarrow{inc} R \xrightarrow{\pi} R/(p)$$
.

Osservazione 2

La suriettività di $U_i \to R/(p)$ significa

$$\forall f \in R \ \exists q \in R, \ r \in U_i \quad \text{tali che } f - q \cdot p = r.$$

ovvero $f = q \cdot p + r$

Osservazione 3/esercizio

 $U_i \subseteq U_{i+1} \ \forall i \ge 0$

Osservazione 4

Chi è U_1 ?

 $U_1 = \{ p \in R | \{0\} \rightarrow R/(p) \text{ è suriettiva} \}$

 $\{q \in R \mid (p) = R\}$

 $\{p \in R \mid p \text{ invertibile}\}\$

 ${\cal R}$ dominio d'integrità, Allora ${\cal R}$ è un dominio euclideo se e solo se

$$R = \bigcup_{i=0}^{+\infty} U_i.$$

Supponiamo che (R, ν) sia un dominio Euclideo.

 $Im(\nu) = \{0, a_0, a_1, \dots, a_n, \dots\} \subseteq \geq 0$

con $\{a_k\}$ successione strettamente crescente.

Definiamo

$$V_i = \{ p \in R \mid \nu(p) \le a \}.$$

In particolare $V_0 = \{0\}$

$$R = \bigcup_{i=0}^{+\infty} V_i.$$

La tesi segue verificando che $V_i = U_i \ \forall i \geq 0$ (esercizio)

Viceversa: Se $R = \bigcup_{i=0}^{+\infty} U_i$

vogliamo definire $\nu: R \to_{>0}$

tale che (R, ν) dominio Euclideo, Dato $r \in \exists i \geq 0$ tale che $r \in U_{i+1} \setminus U_o$

Definiamo $\nu(t) = i + 1$

Si possono verificare le 3 proprietà di ν .

Vediamo (2): dati $a, b, c \in R$ con $b \neq 0$ tali che c = a + b

vogliamo misurare $\nu(c) \ge \nu(a)$

 $(c) \subseteq (a)$

 $\Rightarrow R/(a) \Rightarrow R/(a)/(a)/(c) \cong R/(a)$

Se $U_i \to R/(c)$ è suriettiva

allora $U_i \to R/(c) \to R/(a)$ è suriettiva

Ovvero

$$c \in U_{i+1} \Rightarrow a \in U_{i+1}$$
.

quindi

$$\nu(c) = i + 1 \Rightarrow c \in U_{i+1} \Rightarrow a \in U_{i+1} \Rightarrow \nu(a) \le i + 1 = \nu(c).$$

1.1 Seconda parte della lezione

Domanda:

Cosa cambia in [2] quando è un campo?

 $u_1 =$

Chi è u_2 ?

 $p \in u_2$ se e solo se

$$\rightarrow [x]/(p)$$
 è suriettiva.

se e solo se $deg(p) = 1 \lor deg(p) = 0$

In generale

 $\forall i \geq 1 \quad u_{i+1} \setminus u_i$ è l'insieme dei polinomi di grado i **Attenzione** [x, y] non è domino euclideo.

 $u_1 =$

 $u_2 = ?$

R anello commutativo, Dati $r_1, \ldots, r_k \in R$ chiamiamo

$$(r_1, \dots, r_k) = \{ \sum_{i=1}^k a_i r_i \mid k \in \mathbb{Z}_{\geq 1} \ a_i \in \mathbb{R} \}.$$

Ideale generato da r_1, \ldots, r_k in R

Osservazione

 (r_1,\ldots,r_k) è il più piccolo ideale di R contenente r_1,\ldots,r_k [Ideale principale] R anello commutativo $I\subseteq R$ ideale, si dice principale se $\exists\ r\in R$ tale che I=(r) R anello commutativo.

- $\bullet\,$ R si dice Anello a ideali principali se tutti i suoi ideali sono principali.
- R si dice dominio a ideali principali se è un dominio d'integrità e un anello a ideali principali.

Esempio

R = (+, +) è un dominio a ideali principali.

Esercizio

Trovare un anello a ideali principali che non sia un dominio $n \in n$ composto

 \Rightarrow /(n) è un anello a ideali principali che non è un dominio campo. R = [x] è un dominio a ideali principali [x] è dominio d'integrità poiché lo è.

Sia $I \subseteq R[x]$ ideale, $I \neq \{0\}$

Sia $f \in I \setminus \{0\}$ di grado minimo in I

Vogliamo dimostrare che I = (f)

- $(f) \subseteq I$, infatti se $f \in I$ allora $q \cdot f \in I \ \forall q \in [x]$
- $I \subseteq (f)$, infatti $g \in I$ usiamo la divisione per f $\Rightarrow g = q \cdot f + r$ con $deg(r) < deg(f) \Rightarrow r = g - q \cdot f \in I$ $\Rightarrow r = 0 \Rightarrow g = q \cdot f \in (f)$

Esercizio

Dimostrare che se

- R dominio d'integrità
- \bullet R[x] dominio a ideali principali

Allora R è un campo

Soluzione

Dobbiamo verificare che dato $a \in R \setminus \{0\}$ esiste l'inverso moltiplicativo. Consideriamo l'ideale $(a,x) \subseteq R[x]$ a ideali principali $\Rightarrow \exists p \in R[x]$ tale che (p) = (a,x) Quindi:

$$\Rightarrow a = q_1 \cdot p$$
$$\Rightarrow x = q_2 \cdot p \rightarrow ax = \tilde{q}_2 \cdot p$$

Deduciamo che q_1 e p sono entrambi costanti.

Infatti il termine di grado più alto del prodotto $q_1 \cdot p$ è il prodotto dei termini direttivi di p e di q_1 (Stiamo usando il fatto che R sia dominio d'integrità) Se p costante

$$\Rightarrow q_2 = hx \text{ con } h \cdot p = 1$$

 $\begin{array}{l} p \text{ invertibile} \Rightarrow (p) = R[x] \\ 1 \in (a,x) \Rightarrow \text{esistono } s,t \in R[x]: \end{array}$

$$1 = a \cdot s + t \cdot x \Rightarrow s = \sum_{i>0} s_i x^i \Rightarrow as_0 = 1.$$

Esercizio/Proposizione

R dominio a ideali principali. I ideale, Se I è primo, allora I è massimale.

Soluzione

 $I = (p) \subseteq R$

I primo. Supponiamo che esista un ideale $J=(q)\subseteq R$ tale che $I\subseteq J$ $I\subseteq J\Rightarrow (p)\subseteq (q)\Rightarrow p=a\cdot q$ per qualche $a\in R$ I primo $\Rightarrow a\in I$ oppure $q\in I$

$$\begin{aligned} \mathbf{q} &\in I \Rightarrow q \in (p) \\ &\Rightarrow (q) \subseteq (p) \\ &\Rightarrow J = I \end{aligned}$$

$$\begin{aligned} a &\in I \Rightarrow a \in (p) \\ \Rightarrow a &= k \cdot p \text{ per qualche } k \in R \\ \Rightarrow p &= a \cdot q = p \cdot k \cdot q \\ \Rightarrow p \cdot (1 - k \cdot q) &= 0 \\ \Rightarrow 1 + k \cdot q &= 0 \Rightarrow q \text{ invertibile} \\ J &= R \end{aligned}$$

Rdominio a ideali principali (PID) allora un ideale è primo se e solo se è massimale. Resta da verificare che I massimale $\Rightarrow I$ primo I massimale $\Rightarrow R/I$ campo $\Rightarrow R/I$ dominio integrità $\Rightarrow I$ primo