1. Basic Statistics

1.1 What is Statistics?

Statistics is the study of data. It involves:

- Collecting data (e.g., survey results).
- Analyzing data (e.g., finding averages).
- Summarizing data (e.g., creating graphs).

1.2 Measures of Central Tendency

These measures show where the "center" of the data lies.

- 1. Mean (Average):
 - Formula:

- Example:
 - Data: 5, 10, 15.
 - Mean = $\frac{5+10+15}{3}$ = 10.

2. Median:

- Steps:
 - 1. Arrange data in ascending order.
 - 2. If the number of values is:
 - Odd: Take the middle value.
 - Even: Take the average of the two middle values.
- Example:
 - Data: 3, 1, 4 → Arrange: 1, 3, 4.

- Median = 3.
- Data: 6, 2, 8, 4 \rightarrow Arrange: 2, 4, 6, 8 \rightarrow Median = $\frac{4+6}{2}$ = 5.
- 3. **Mode**:
 - Most frequently occurring value(s) in the data.
 - Example:
 - Data: 2, 3, 3, 5 → Mode = 3.
 - Data: 1, 2, 2, 3, 3 → Modes = 2 and 3 (bimodal).

1.3 Measures of Spread

- 1. Range:
 - Formula:

Range = Maximum value – Minimum value

- Example:
 - Data: 4, 8, 15, 16 \rightarrow Range = 16 4 = 12.
- 2. Variance (σ^2):
 - Measures how far data points are from the mean.
 - Formula:

$$\sigma^2 = \frac{\sum (x - \mu)^2}{n}$$

- Steps:
 - 1. Find the mean (μ).
 - 2. Subtract the mean from each value and square the result.
 - 3. Take the average of these squared differences.
- Example:
 - Data: 2, 4, 6.

- Mean = 4.
- Differences: $(2-4)^2 = 4$, $(4-4)^2 = 0$, $(6-4)^2 = 4$.
- Variance = $\frac{4+0+4}{3}$ = 2.67.
- 3. Standard Deviation (σ):
 - Formula:

$$\sigma = \sqrt{\sigma^2}$$

- Example:
 - Variance = 2.67 \rightarrow Standard deviation = $\sqrt{2.67} \approx 1.63$.

2. Probability of Events and Axioms

2.1 What is Probability?

Probability is the likelihood that an event will happen.

• Formula:

$$P(E) = \frac{\text{Favorable outcomes}}{\text{Total outcomes}}$$

2.2 Key Terms

- 1. **Experiment**: An activity with uncertain outcomes (e.g., tossing a coin).
- 2. **Sample Space** (*S*): All possible outcomes.
 - Example: Tossing a coin $\rightarrow S = \{H, T\}$.
- 3. Event: A subset of the sample space.
 - Example: Getting heads $\rightarrow E = \{H\}$.

2.3 Probability Rules

- 1. Non-Negativity:
 - Probability is always ≥ 0 .
- 2. Normalization:
 - Probability of all outcomes = 1.
 - Example: Tossing a coin $\rightarrow P(H) + P(T) = 1$.
- 3. Addition Rule:
 - For mutually exclusive events:

$$P(A \cup B) = P(A) + P(B)$$

2.4 Example

- Roll a die. Find the probability of rolling:
 - A 4 $\rightarrow P(4) = \frac{1}{6}$.
 - An even number $\rightarrow P(2,4,6) = \frac{3}{6} = 0.5$.

3. Conditional Probability and Bayes' Theorem

3.1 Conditional Probability

- Probability of A, given B has occurred.
- Formula:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

3.2 Example

- A bag contains 3 red and 2 green balls. One ball is drawn. What is P(red|ball is drawn)?
 - Total outcomes = 5.
 - $P(\text{red}) = \frac{3}{5}$.

3.3 Bayes' Theorem

• Formula:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

- Example:
 - Disease test:
 - P(disease) = 0.01,
 - P(positive|disease) = 0.99,
 - P(positive|no disease) = 0.05,
 - P(no disease) = 0.99.
 - $P(\text{disease}|\text{positive}) = \frac{0.99 \cdot 0.01}{(0.99 \cdot 0.01) + (0.05 \cdot 0.99)} \approx 0.167.$

4. Random Variables (Single)

4.1 What is a Random Variable?

- A random variable assigns a numerical value to each outcome in a sample space.
- 4.2 Types
- 1. Discrete:

- Takes specific values (e.g., 0, 1, 2).
- Example: Number of heads in 3 coin tosses.

2. Continuous:

• Takes any value within a range (e.g., height, time).

4.3 Probability Distribution

- 1. Discrete:
 - Probability Mass Function (PMF): P(X = x).
 - Example: Rolling a die $\rightarrow P(X=3) = \frac{1}{6}$.
- 2. Continuous:
 - Probability Density Function (PDF): f(x).
 - Total area under the curve = 1.

4.4 Expected Value

• Formula:

$$E[X] = \sum x \cdot P(x)$$
 (Discrete)

- Example: Tossing a coin 3 times:
 - P(X = 0) = 0.125, P(X = 1) = 0.375, etc.
 - $E[X] = 0 \cdot 0.125 + 1 \cdot 0.375 + \dots = 1.5.$

4.5 Variance

• Formula:

$$Var(X) = E[X^2] - (E[X])^2$$

- Example: Die roll:
 - $E[X] = 3.5, E[X^2] = 15.17.$
 - $Var(X) = 15.17 (3.5)^2 = 2.92$.

27/12/2024, 11:39 ChatGPT

Summary Table

Topic	Key Concept	Example
Basic Statistics	Mean, Median, Mode	Data: [5, 10, 15] → Mean = 10
Probability	Events, Rules, Addition/Multiplication	Rolling a die, $P(4) = 1/6$
Conditional Probability	(P(A	$B) = P(A \setminus B)/P(B))$
Random Variables	PMF, Expected Value, Variance	Tossing 3 coins: $E[X] = 1.5$