Tratamento e Análise de Dados - Vendas

Gleimon Cordeiro

Importando a biblioteca pandas

https://pandas.pydata.org/

import pandas as pd

O Dataset e o Projeto

Descrição:

Para este estudo é utilizado o dataset "base_teste" com dados referentes as operações de vendas fictícias.

É utilizado no estudo Linguagem Python, Pandas, Seaborn para gerar os gráficos.

Neste contexto o objetivo principal do nosso projeto é realizar uma análise exploratória e uma apresentação com os insights encontrados.

Esse dataset é uma amostra de dados referentes as operações de vendas fictícias. A base de dados tem alguns valores faltantes e o tamanho da base influencia para algumas analises estatisticas

No Microsoft Excel foram realizados alguns tratamentos nos dados do dataset:

- anal_data_venda Criada essa coluna para análise de vendas onde a data de concretização da venda é inferior a data de solicitação do cliente
- data_pagto_trat Criada essa coluna, pois algumas datas de pagamento estavam com data configuradas no sistema inglês.
- valor_venda Realizado tratamento nos valores que estavam formatados com (.) ao invès de (.).
- pol_comissao Realizado tratamento nos valores que estavam formatados com (.) ao invès de (,).
- valor_comissao_trat Criada essa coluna, pois alguns valores de comissão não estavam calculados conforme valor_venda e pol_comissao.

→ Leitura dos dados

dados = pd.read_excel('base_teste_ad_1 (tratado).xlsx')

Visualizar os dados

dados.head(10)

	data_solicitacao	data_venda	anal_data_venda	data_pagto	data_pagto_trat	valor _.
0	2021-01-13	2021-01-12	data_venda dúvidosa	2021-02-01 00:00:00	2021-02-01	
1	2021-02-14	2021-02-16	NaN	2021-03-01 00:00:00	2021-03-01	
2	2021-02-17	2021-02-18	NaN	2021-03-01 00:00:00	2021-03-01	
3	2021-03-21	2021-03-25	NaN	2021-04-01 00:00:00	2021-04-01	
4	2021-01-29	2021-01-31	NaN	2021-03-01 00:00:00	2021-03-01	
5	2021-03-02	2021-03-07	NaN	2021-04-01 00:00:00	2021-04-01	
6	2021-01-15	2021-01-14	data_venda dúvidosa	2021-02-01 00:00:00	2021-02-01	
7	2021-02-16	2021-02-18	NaN	2021-03-01 00:00:00	2021-03-01	
8	2021-02-02	2021-01-31	data_venda dúvidosa	2021-03-01 00:00:00	2021-03-01	
9	2021-03-06	2021-03-07	NaN	2021-04-01 00:00:00	2021-04-01	
4						•

Refinar a visualização dos dados do dataset

	data_solicitacao	data_venda	anal_data_venda	data_pagto_trat	valor_venda	pol
0	2021-01-13	2021-01-12	data_venda dúvidosa	2021-02-01	NaN	
1	2021-02-14	2021-02-16	NaN	2021-03-01	NaN	
2	2021-02-17	2021-02-18	NaN	2021-03-01	NaN	
3	2021-03-21	2021-03-25	NaN	2021-04-01	NaN	
4	2021-01-29	2021-01-31	NaN	2021-03-01	NaN	
93	2021-06-13	2021-06-23	NaN	NaT	150000.0	
94	2021-05-09	2021-05-20	NaN	2021-06-02	180000.0	
95	2021-02-12	2021-02-18	NaN	2021-03-02	180000.0	

▼ Verificando o tamanho do dataset

Análises Preliminares

Análise datas vendas dúvidosas por Vendedor

cruzamento_datas_vendas_duvidosas = pd.crosstab(colunas_filtradas.vendedor_id, colunas_fil
cruzamento_datas_vendas_duvidosas

Quantidade de vendas por produto

colunas_filtradas['produto'].value_counts()

- A 20
- F 20
- D 20
- C 18
- F 10

10

Name: produto, dtype: int64

▼ Visualização das vendas sem registro de pagamento por Vendedor

quant_vendas_sem_pagamento = colunas_filtradas['data_pagto_trat'].isnull().sum()
filtro_vendas_sem_pagamento = colunas_filtradas[colunas_filtradas['data_pagto_trat'].isnul
filtro_vendas_sem_pagamento

	data_solicitacao	data_venda	anal_data_venda	data_pagto_trat	valor_venda	pol
20	2021-04-25	2021-07-12	NaN	NaT	280000.0	
21	2021-03-24	2021-06-07	NaN	NaT	336000.0	
22	2021-03-23	2021-06-30	NaN	NaT	360000.0	
46	2021-06-02	2021-06-20	NaN	NaT	14500.0	
73	2021-05-19	2021-05-22	NaN	NaT	NaN	
79	2021-05-11	2021-05-25	NaN	NaT	NaN	
93	2021-06-13	2021-06-23	NaN	NaT	150000.0	

total = filtro_vendas_sem_pagamento.valor_venda.sum()
total

1140500.0

▼ Valor médio de (R\$) venda por Produto

valor_medio_produto = pd.crosstab(colunas_filtradas.produto, colunas_filtradas.produto, ag
valor_medio_produto

produ	to B	С	E	1
produ	to			
В	649000.0	NaN	NaN	
С	NaN	8457.777778	NaN	
Е	NaN	NaN	149600.0	

▼ Análise Vendedor por Produto

cruzamento_produtos_vendedor = pd.crosstab(colunas_filtradas.vendedor_id, colunas_filtrada
cruzamento_produtos_vendedor['Valor Total'] = cruzamento_produtos_vendedor['A'] + cruzamen
cruzamento_produtos_vendedor['D'] + cruzamento_produtos_vendedor['E'] + cruzamento_produto
cruzamento_produtos_vendedor

produto	Α	В	C	D	Ε	F	Valor Total
vendedor_id							
V_1	2	0	0	0	0	0	2
V_10	0	0	0	2	0	0	2
V_11	0	0	0	2	0	0	2
V_12	0	0	0	2	0	0	2
V_13	0	0	0	2	0	0	2
V_14	0	0	0	0	2	0	2
V_15	0	0	0	0	2	0	2
V_16	0	0	0	0	0	2	2
V_17	0	0	0	0	0	2	2
V_18	0	0	0	0	0	2	2
V_19	0	0	4	2	0	0	6
V_2	2	0	0	0	0	0	2
V_20	2	0	0	0	0	3	5

cruzamento_produtos_vendedor.describe()

produto	А	В	С	D	E	F	Valor Total
count	38.000000	38.000000	38.000000	38.000000	38.000000	38.000000	38.000000
mean	0.526316	0.263158	0.473684	0.526316	0.263158	0.526316	2.578947
std	0.892517	0.601090	1.083958	0.892517	0.723513	1.224454	1.535729
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	2.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	2.000000
75%	1.500000	0.000000	0.000000	1.500000	0.000000	0.000000	2.750000
max V 34	2.000000 0 1	2.000000	4.000000	2.000000	3.000000	6.000000	8.000000

Quantidade de Produtos Vendidos por Estado

cruzamento_produtos_valor = pd.crosstab(colunas_filtradas.estado_vendedor, colunas_filtrad

cruzamento_produtos_valor['Valor Total'] = cruzamento_produtos_valor['A'] + cruzamento_pro
cruzamento_produtos_valor['D'] + cruzamento_produtos_valor['E'] + cruzamento_produtos_valo

cruzamento_produtos_valor

produto	Α	В	C	D	Е	F	Valor Total
estado_vendedor							
AC	0	0	0	2	2	0	4
AL	0	0	0	0	2	1	3
MG	0	2	2	2	0	4	10
PE	0	1	0	0	0	2	3
PR	6	0	0	0	0	0	6
RJ	4	1	2	4	0	9	20
RS	4	2	4	6	3	0	19
SC	4	2	4	2	3	0	15
SP	2	2	6	4	0	4	18

▼ Valor médio de venda de cada Produto por Estado

cruzamento_produtos_valor_media = pd.crosstab(colunas_filtradas.produto, colunas_filtradas
cruzamento_produtos_valor_media.describe()

e	stado_vendedor	AC	AL	MG	PE	RJ	R:
	count	1.0	1.0	2.000000	1.0	2.00000	3.000000e+00
	mean	88000.0	132000.0	158812.500000	432000.0	182475.00000	3.970192e+0{
	std	NaN	NaN	210982.985837	NaN	251058.26266	5.302439e+0
	min	88000.0	132000.0	9625.000000	432000.0	4950.00000	8.057500e+00
	25%	88000.0	132000.0	84218.750000	432000.0	93712.50000	9.502875e+0 ²
	50%	88000.0	132000.0	158812.500000	432000.0	182475.00000	1.820000e+0
	75%	88000.0	132000.0	233406.250000	432000.0	271237.50000	5.915000e+0
4	max	88000.0	132000.0	308000.000000	432000.0	360000.00000	1.001000e+06

▼ Quantidade de Produtos Vendidos por Estado do Cliente

cruzamento_produtos_cliente = pd.crosstab(colunas_filtradas.estado_cliente, colunas_filtra

cruzamento_produtos_cliente['Valor Total'] = cruzamento_produtos_cliente['A'] + cruzamento_
cruzamento_produtos_cliente['D'] + cruzamento_produtos_cliente['E'] + cruzamento_produtos_

cruzamento_produtos_cliente

produto	Α	В	C	D	Ε	F	Valor Total
estado_cliente							
ВА	0	0	4	0	0	2	6
MG	0	2	0	0	2	0	4
PR	0	2	0	0	2	0	4
RS	2	0	0	2	0	0	4
sc	2	0	0	2	0	0	4
SP	4	0	2	4	0	2	12

→ Análise dos Valores de Venda e Valores de Comissão

colunas_filtradas.describe().round(2)

	valor_venda	valor_comissao_trat
count	38.00	98.00
mean	214164.21	1578.55
std	305305.62	2590.27
min	2000.00	52.00
25%	8782.50	122.85
50%	88000.00	450.00
75%	264000.00	750.00
max	1092000.00	10920.00

Análise por meio de gráficos e verificação do comportamento das váriaveis.

Importando biblioteca seaborn

https://seaborn.pydata.org/

O Seaborn é uma biblioteca Python de visualização de dados baseada no matplotlib.

[] L, 1 célula oculta

Configurações de formatação dos gráficos

```
[ ] Ļ 2 células ocultas
```

- ▼ Distribuição de Frequências
- Distribuição de frequências da variável valor_venda e valor_comissao_trat

https://seaborn.pydata.org/generated/seaborn.distplot.html?highlight=distplot#seaborn.distplot

```
ax = sns.distplot(colunas_filtradas['valor_venda'])
ax.figure.set_size_inches(10, 5)
ax.set_title('Distribuição de Frequências', fontsize=20)
ax.set_xlabel('Valor de Venda (R$)', fontsize=16)
ax
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
 warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f0fbfcd2050>

axx = sns.boxplot(colunas_filtradas.valor_venda)

axx.figure.set_size_inches(10, 5)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning


```
ax = sns.distplot(colunas_filtradas['valor_comissao_trat'])
ax.figure.set_size_inches(10, 5)
ax.set_title('Distribuição de Frequências', fontsize=20)
ax.set_xlabel('Valor de Comissão (R$)', fontsize=16)
ax
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
 warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f0fbfccd9d0>


```
axx = sns.boxplot(colunas_filtradas.valor_comissao_trat)
axx.figure.set size inches(10, 5)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

Dispersão Entre as Variáveis

Gráficos de dispersão entre as variáveis do dataset

▼ seaborn.pairplot

Plota o relacionamento entre pares de variáveis em um dataset.

```
ax = sns.pairplot(colunas_filtradas, y_vars='valor_venda', x_vars=['valor_comissao_trat',
ax.fig.suptitle('Dispersão entre as Variáveis', fontsize=10, y=1.05)
ax
```

<seaborn.axisgrid.PairGrid at 0x7f0fbc50f9d0>

Conclusão

É possível fazer as seguintes observações:

- No item "Análise datas vendas dúvidosas por Vendedor": é possível verificar que tem 5
 registros de vendas onde a data de concretização da venda é inferior a data de solicitação
 do cliente. Deve ser verificado com os respectivos Vendedores o que ocorreu.
- No item "Quantidade de Vendas por Produto": é possível verificar que os produtos A, F e D totalizaram 60 registros de venda, ou seja, esses 03 produtos representam mais de 60% das vendas.
- No item "Visualização das vendas sem registro de pagamento por Vendedor": é possível verificar que tem 07 vendas sem registro de pagamento que resultam em um valor total de R\$1.140.500,00.
- No item "Valor médio de (R\$) venda por Produto": é possível verificar que o Produto B tem um valor médio de vendas de R\$649.000, o Produto C de R\$8.457,77 e o Produto E de R\$149.600.
- No item "Análise Vendedor por Produto": é possível verificar que temos 38 vendedores cadastrados na nossa base de vendas. Na média cada vendedor vendeu 2,57 produtos.
- No item "Quantidade de Produtos Vendidos por Estado": é possível verificar que os Estados RJ, RS e SP totalizaram 57 registros de venda, ou seja, esses 03 Estados representam aproximadamente 60% das vendas.
- No item "Quantidade de Produtos Vendidos por Estado do Cliente": é possível verificar que os clientes dos Estados SP e BA totalizaram 18 registros de compra, ou seja, esses 02 Estados representam aproximadamente 50% dos registros de compra. Porém, o estado de RS é o que tem maior média de valor por venda R\$397.019,20 conforme pode ser visto no item "Valor médio de venda de cada Produto por Estado".

- No item "Análise dos Valores de Venda e Valores de Comissão": é possível verificar a média de valor por venda é de R\$214.164,21 e valor de comissão é R\$1578,55. O maior valor de venda foi R\$1.092.000,00 e o maior valor de comissão foi R\$10.920,00.
- No item "Análise por meio de gráficos e verificação do comportamento das variáveis": é possível verificar que os valores de vendas e o valores de comissões não são uma distribuição normal. É possível visualizar alguns outliers que influenciam no valor da média quando comparada com a mediana. Por meio do pairplot é possível verificar que a variável comissão tem relação com o valor da venda, estado do vendedor e produto também, porém precisa de mais dados para prosseguir com as análises.

✓ 0s conclusão: 12:32

×