TANVI MANKU

Impact-Driven Explorer and Engineering Student

ENGINEERING DESIGN PORTFOLIO

TABLE OF CONTENTS

- (1) About Me
- $(\underline{2})$ Autonomous Mail Delivery Robot
- (3) Adjustable DC Power Supply
- (1) Automated Waste Collection and Storage: Eco-Sort Compressor

ABOUT ME

I'm **Tanvi**, an **explorer** of all sorts!

I'm a third-year Engineering Science student at the University of Toronto (UofT), majoring in **Robotics Engineering** and minoring in **Al**.

I'm also a research student in UofT's Department of Electrical and Computer Engineering, currently developing tools to build better **brain-computer interfaces**.

I am always seeking opportunities to leverage my interests in **software** and **embedded systems** to make a positive impact on the world.

I'm looking to embark on my next adventure and use my skills to make meaningful contributions!

AUTONOMOUS MAIL DELIVERY ROBOT

MOTIVATION

Design a robot to simulate mail delivery on a topological map, where colored paper represents offices.

KEY OBJECTIVES

- Follow the line, stop at each office to mimic a delivery, and traverse the full route
- Successfully localize the robot, given a random map and starting point

SOLUTION

TurtleBot3 Waffle Pi. Applied:

- Color sensing and line detection on camera input
- Bayesian localization
- PID control-based navigation

RESULTS

- 100% accuracy in localization
- Navigated full course
- Detected and stopped at each 'office'

TECHNICAL DETAILS

- Python: ROS, OOP
- State estimation with Bayesian localization
- Visual odometry
- PID control
- Trajectory planning and navigation

Code available here.

ADJUSTABLE DC POWER SUPPLY

MOTIVATION

Build low-cost power supply for common circuit loads.

KEY OBJECTIVES

- 19 V, 3.42 A input
- 0 15 V, 0 3 A output
- $\leq 250 \text{ mV of noise}$

SOLUTION

Circuit contains:

- Non-inverting summing amplifier to scale input as per *user-set target
- Buffer amplifier to reduce interstage loading
- Low-pass filter to reduce high-frequency noise

Target output adjusted with custom firmware loaded onto a microcontroller.

RESULTS

- Output voltage deviates by ≤100 mV from target
- Output current deviates by
 ≤20 mA from target

TECHNICAL DETAILS

- Circuit design
- EAGLE: PCB fabrication
- SuperSpice: circuit simulation
- Soldering
- Electronic testing (oscilloscope, multimeter, etc.)

Schematic of circuit with buffer, scaling, and filter stages.

Left: Trace of solder + component layers.

Right:
Assembled
and
soldered
PCB.

Testing accuracy of user-set target to measured output of completed power supply.

AUTOMATED WASTE COLLECTION AND STORAGE: ECO-SORT COMPRESSOR

MOTIVATION

Increase efficiency in waste segregation and storage.

KEY OBJECTIVES

Rapid prototyping (two months) with six-person team:

- ≥85% waste classification accuracy
- Intake waste ≤ average soda can's size & weight

SOLUTION

Automated waste collection system. Uses computer vision (CV) to sort into appropriate bins. Maximizes storage through compression.

KEY CONTRIBUTIONS

 Designed embedded systems to facilitate communication between components Built intake box with automated opening and depositing mechanism

RESULTS

- CV algorithm classified waste with 77% accuracy
- Deposited waste landed in bin 80% of the time
- Embedded system enabled CV algorithm to run without Internet connectivity

TECHNICAL DETAILS

- Python, C
- Mechanical fabrication & assembly (power & hand tools)

embedded systems components

Left: Initial sketch of prototype design.

Right: Finished prototype.

THANK YOU!

Please feel free to reach out!