# TP7-LC Digital Controller

## PROGRAMMER GUIDE

#### **Ethernet Interface:**

The ethernet interface is based on standard UDP protocol.

### Data Frame (Packet):

All the communication with the software will done using a standard data frame:



SOF: Start of frame is always equal to 2

Len: Total frame length

CMD: Command

D: Data

LRC: LRC value for error handling (refer to LCR formula)

\*Each box is represented of one byte.

By sending a frame device at the first step calculate the LRC and check the equality with received LRC to be sure that the data is not corrupted. then recognize the required action by frame command value and send specified answer. there is two type of frame, the frame for an action for example start test, in this case device send back the received frame as an answer so software can check the received frame which should be as same as sent one. The other type of frame is for reading or writing data and settings value so for reading frame, device send back specific answer according to the received command. In all condition it is better to calculate the LRC and checked with received LRC to be sure that data is not corrupted.

#### **LRC Formula:**

It is a standard method for determine the data corruption. For calculate LRC, you have to XOR bytes of the frame and the final result will be LRC. Note that BG and LRC should not use in LRC calculation.

LRC=Len(XOR)CMD(XOR)D0(XOR)Dn

For example, in test frame LRC is equal to 52:

LRC=4(XOR)48=52

#### **Data Structures:**

• Channel: 56 Byte in total: for read channel value and system status.

```
Byte Event**
o Float CH[0]
o Float CH[1]
Float CH[2]
Float CH[3]
Read: 02 04 0x22 LRC
* enum status
{
    Stop,
    Ramp_Up,
    Ramp_Down,
    Jog_Up,
    Jog_Down,
    PID_Mode,
    PID_Ramp,
};
** enum ev
{
    Stop,
    Run,
    PID,
    Up_Limit,
    Down_Limit,
    Load_Limit
};
```

Byte Status\*

• System: 44 Byte in total:

```
byte Inverse;
0
0
   byte Monitor;
   reserve one byte
0
   uint32 ACC_Time;
0
   uint32 Pulse_rev;
0
   uint32 Max_Disp;
0
   uint32 Auto_Off;
0
   float Gear_Ratio;
0
```

byte Out\_Type;

- float Pitch;
- uint32 Max\_Speed;
- uint32 Jog\_Speed;
- float Disp\_Coff;

#### uint32 Max\_Load;

Read: 02 04 0x34 LRC

Write: 02 48 0x35 DT0...DT44 LRC

- PID: 45 Byte in total:
  - float SP;
  - float PV;
  - float kP;
  - float kl;
  - float kD;
  - float FF;
  - float Err\_Band;
  - signed int Max;
  - o signed int Min;
  - unsigned int Ts;
  - signed int Out;
  - unsigned char Mode=0;

Read: 02 04 0x3A

Write: 02 49 0x3B Dt0...Dt44 LRC

- Sensor: 36 Byte in total for each channel: send and receive 4 channel in one 148 byte frame:
  - o char Name[10]: hold channel name (10 character)
  - char SUnit[6]: hold channel unit (6 character)
  - o unsigned char DecPoint: Channel decimal point value
  - o unsigned char Log: Channel log enable (0: Disable, 255: Enable)
  - o unsigned char H\_Alarm: High value alarm
  - o unsigned char L\_Alarm: Low alarm value
  - o **float H\_limit:** Maximum value of the channel
  - o **float L\_limit:** Minimum value of the channel
  - o unsigned char Filter: Filter degree
  - o unsigned char Gain: Gain of input amplifier (1X, 2X, 4X, 8X, 16X, 32X, 64X, 128X)
  - unsigned char reserved\_1
  - unsigned char reserved\_2
  - enum calib\_list CalType: Calibration method (4byte, uint32)\*

Read: 02 04 0x3C LRC

Write: 02 148 0x3D Dt0...Dt143 LRC

```
* enum calib_list
    {
        CTI_RAW,
        CTI_mVolt,
        CTI_Equation,
        CTI_Strain,
        CTI_K_Type,
        CTI_T_Type,
        CTI_RTD,
        CTI_Table,
};
```

## • Test: 16 Byte in total:

float Target[2];float Speed[2];

Read: 02 04 0x30 LRC

Write: 02 20 0x31 LRC

## • ADC: 120 Byte in total: one for each device:

char ActiveCH[8]: Active/De-active channel (0: De Active , 255: Active)
 char FilterType;
 char PostFilter[8];

o char Gain[8];

uint16\_t FS;

char IntOC;

char IntFC;

char SysOC;

double Cofficient[8];

o double K1;

o double K2;

o int Max;

Read: 02 04 0x38 LRC

Write: 02 124 0x39 LRC

## **Command Table:**

| Command | Function               | Packet | Answer | Description                             |  |
|---------|------------------------|--------|--------|-----------------------------------------|--|
|         |                        | Length | Length |                                         |  |
| 0x22    | Read Channel Data      | 4      | 4+18   | value of all channel + status + Event   |  |
| 0x20    | Set Channel to Zero    | 5      | 5      | Answer same as sent packet              |  |
| 0x21    | Set Pulse to Zero      | 4      | 4      | Answer same as sent packet              |  |
| 0x3C    | Read Sensor Structure  | 4      | 4+144  | Sensor Structure X4                     |  |
| 0x3D    | Write Sensor Structure | 4+144  | 4+144  | Write Sensor Structure                  |  |
| 0x38    | Read ADC Structure     | 4      | 4+116  | ADC Structure                           |  |
| 0x39    | Write ADC Structure    | 4+116  | 4+116  | Write ADC Structure                     |  |
| 0x3A    | Read PID Structure     | 4      | 4+45   | PID Structure                           |  |
| 0x3B    | Write PID Structure    | 4+45   | 4+45   | Write PID Structure                     |  |
| 0x30    | Read Test Structure    | 4      | 4+16   | ADC Structure                           |  |
| Ox31    | Write Test Structure   | 4+16   | 4+16   | Write ADC Structure                     |  |
| 0x10    | Motor Stop             | 4      | 4      | Stop Actuator (PID or Pulse)            |  |
| 0x11    | Jog Up                 | 4      | 4      | Moving Up with System.Jog Speed         |  |
| 0x12    | Jog Down               | 4      | 4      | Moving Down with System.Jog Speed       |  |
| 0x13    | Ramp Up                | 4      | 4      | Moving Up with Test.Speed[1]            |  |
| 0x14    | Ramp Down              | 4      | 4      | Moving Down with Test.Speed[1]          |  |
| 0x15    | PID Target             | 4      | 4      | Constant Load Control (SP= Target[0])   |  |
| 0x16    | PID Ramp               | 4      | 4      | Load Ramp Up (SP=Target[0],             |  |
|         |                        |        |        | Rate=Speed[0])                          |  |
| 0x17    | Displacement Run       | 4      | 4      | Displacement control Run (SP=Target[1], |  |
|         |                        |        |        | Rate=Speed[1])                          |  |
| 0x34    | Read System Structure  | 4      | 4+44   | System structure                        |  |
| 0x35    | Write System Structure | 4+44   | 4+44   | Write System Structure                  |  |