# Identification and Estimation of Demand Models with Endogenous Product Entry & Exit

Victor Aguirregabiria (University of Toronto) Alessandro Iaria (University of Bristol) Senay Sokullu (University of Bristol)

## DSE CONFERENCE ON POLICY EVALUATION & HETEROGENEITY MEASUREMENT

Madison, August 7, 2024



#### Context - Selection Problem in Demand Estimation

- Demand estimation is usually based on data from multiple geographic regions and/or time periods (markets).
- Often, not all products are offered in all markets.
  - Airlines; Retail Markets; Radios; Computers; ...
- This can create an Endogenous Selection Problem because:
  - A product is offered when expected demand is larger.
  - Firms' information about expected demand may include variables that are unobserved to the researcher.
- However, most applications assume product availability is exogenous.



#### Context - Non-standard Selection Problem

- The reason why most applications have not dealt with this selection problem is that it is non-standard, and in fact quite challenging.
- A key feature creating this non-standard selection problem is that the selection equation depends nonlinearly on multiple unobservables:

$$a_j = 1 \Longleftrightarrow \pi_j(x, \xi_1, \xi_2, ..., \xi_J) \ge 0$$

where  $\xi_1$ ,  $\xi_2$ , ...,  $\xi_J$  are unobservables affecting demand.

This structure implies that the propensity score (entry probability)
 cannot control for the selection bias in the demand equation:

$$P(a_j = 1 | x)$$
 is not sufficient to control for  $\mathbb{E}\left(\xi_j \mid x, a_j = 1\right)$ 

⇒ Lack of identification of demand parameters using well-known two-step, "Heckman-like," semiparametric control-function methods.

#### Context – Full Solution Estimation Methods

- This issue has motivated the development of recent full-solution methods: to deal with endogenous product selection:
  - Ciliberto, Murry, & Tamer (JPE, 2021).
  - Li, Mazur, Roberts, & Sweeting (RAND, 2022).
- Despite the great merit of these full-solution methods, they have limitations in terms of computational cost and robustness:
  - Nested fixed point algorithms are computationally demanding, especially given multiple equilibria.
  - Strong parametric assumptions for all the structural functions and the distribution of unobservables.

#### THIS PAPER

- 1. We establish identification of demand using a two-step approach.
- 2. We propose a **simple two-step estimator** that builds on and extends traditional methods to address endogenous selection.
- 3. Our approach emphasizes robustness, flexibility, and computational simpicity:
  - Nonparametric specification of the unobservables and expected profit.
  - Flexible information structure including complete information, private information, and multiple equilibria unobservables as particular cases.
  - The method and its computational advantages apply both to static and dynamic games of market entry & exit.
- 4. We illustrate the proposed method with an application.

#### Outline – Rest of this Presentation

- 1. Model
- 2. Identification & Estimation
- 3. Empirical Application

## 1. MODEL

#### DEMAND: BLP with Selection

- ullet J products indexed by  $j\in\mathcal{J}=\{1,2,...,J\}$  can be offered in market t.
- $a_{jt} \in \{0,1\}$ : indicator that product j is available in market t.
- Market shares:

$$s_{jt} = d_j(\delta_t, \sigma) = \int \frac{a_{jt} \exp \{\delta_{jt} + v(p_{jt}, x_{jt}, v)\}}{1 + \sum_{i=1}^{J} a_{it} \exp \{\delta_{it} + v(p_{it}, x_{it}, v)\}} dF_v(v|\sigma).$$

**LEMMA.** If the outside option j = 0 is available, then Berry (1994)'s demand invertibility applies to the sub-system of available products:

$$\delta_{jt} = d_j^{-1}(\boldsymbol{s}_t, \sigma) = \alpha \ p_{jt} + \boldsymbol{\chi}_{jt}' \ \boldsymbol{\beta} + \boldsymbol{\xi}_{jt} \ \text{ if and only if } a_{jt} = 1.$$



#### DEMAND: BLP with Selection

• This Lemma implies that the selection/censoring condition in the regression equation for product j depends on whether this product is offered but on the offering of the other products,  $a_k$  for  $k \neq j$ :

$$\delta_{jt} = \begin{cases} \alpha \ p_{jt} + x'_{jt} \ \beta + \xi_{jt} & \text{if } a_{jt} = 1\\ \text{unobserved} & \text{if } a_{jt} = 0 \end{cases}$$

• Therefore, the selection bias term in this regression equation is:

$$\mathbb{E}\left[\xi_{jt} \mid \boldsymbol{x}_t, a_{jt} = 1\right]$$

 In contrast, in Almost Ideal Demand Systems (Deaton and Muellbauer, 1980) product j's selection term would depend on the availability profile of the other products:

$$\mathbb{E}\left[\xi_{jt}\mid x_t, a_{jt}=1, a_{-jt}=a_{-j}\right]$$

## SUPPLY: Dynamic Entry-Exit & Static Price Competition

- Standard model in IO: BLP + Ericson-Pakes.
- Exogenous state variables: Product characteristics affecting demand and marginal costs,  $x_t \equiv (x_{1t},...,x_{Jt})$ ,  $\xi_t \equiv (\xi_{1t},...,\xi_{Jt})$ ,  $\omega_t \equiv (\omega_{1t},...,\omega_{It})$  follow Markov processes.
- Endogenous state variables:  $a_{t-1} \equiv (a_{1,t-1},...,a_{J,t-1})$ , as  $a_{j,t-1}$  determines whether the firm needs to pay an entry cost or not.
- **Product entry / exit decisions:** Every period t, firms decide which products to offer in the market:  $a_t \equiv (a_{1t},...,a_{Jt})$  to maximize their intertemporal profit in a dynamic game of product entry/exit.
- **Price competition:** Given the products offered at period t, firms compete in prices:  $p_{jt}$  and  $s_{jt}$  for products with  $a_{jt} = 1$  are determined in a static Bertrand-Nash equilibrium.

## MODEL: Entry/Exit Game & Information Structure

 When making product entry/exit decision at time t, firm j's information set is:

$$\mathcal{I}_{jt} = \{a_{t-1}, x_t, \kappa_t, \eta_{jt}\}\$$

- (i)  $a_{t-1}$  and  $x_t$  are common knowledge to firms and observable to the researcher.
- (ii)  $\kappa_t$  is common knowledge to firms & unobservable to the researcher.
  - ullet We do not restrict what is included in  $\kappa_t$ .
  - A case included in our model is:  $\kappa_t = (\xi_t, \omega_t)$ .
  - But firms might have uncertainty about  $(\xi_t, \omega_t)$  at the moment of product entry decision.
- (iii)  $\eta_{jt}$  is private information shock in firm j's entry cost, independent of  $(\kappa_t, \kappa_t)$ , and i.i.d. over firms with CDF  $F_n$ .

## MODEL: MARKOV PERFECT EQUILIBRIUM

 A Markov Perfect Equilibrium (MPE) of the product entry/exit game is a *J*-tuple of probability functions (CCPs):

$$P_j(a_{t-1}, x_t, \kappa_t) = Prob(a_{jt} = 1 \mid a_{t-1}, x_t, \kappa_t)$$

• Equilibrium CCPs are based on the best-reply conditions:

$$a_{jt} = 1 \iff V_j^P(a_{t-1}, x_t, \kappa_t) - \eta_{jt} \geq 0$$

• Implying the equilibrium conditions:

$$P_{j}\left(\boldsymbol{a}_{t-1},\boldsymbol{x}_{t},\boldsymbol{\kappa}_{t}\right) = F_{\eta}\left(V_{j}^{P}\left(\boldsymbol{a}_{t-1},\boldsymbol{x}_{t},\boldsymbol{\kappa}_{t}\right)\right)$$



## 2. IDENTIFICATION & ESTIMATION

#### STRUCTURE OF SELECTION BIAS IN DEMAND

- For notational simplicity, here I use  $x_t$  to represent  $(a_{t-1}, x_t)$
- If the researcher could observe  $\kappa_t$ , the selection bias term in the demand equation would have a standard structure:

$$\mathbb{E}\left[\xi_{jt} \mid \mathbf{x}_{t}, \mathbf{\kappa}_{t}, a_{jt} = 1\right] = \mathbb{E}\left[\xi_{jt} \mid \mathbf{x}_{t}, \mathbf{\kappa}_{t}, \eta_{jt} \leq V_{j}^{P}\left(\mathbf{x}_{t}, \mathbf{\kappa}_{t}\right)\right]$$

$$= \mathbb{E}\left[\xi_{jt} \mid \mathbf{x}_{t}, \mathbf{\kappa}_{t}, \eta_{jt} \leq F_{\eta}^{-1}\left(P_{j}\left(\mathbf{x}_{t}, \mathbf{\kappa}_{t}\right)\right)\right]$$

$$= \psi_{j}\left(P_{j}\left(\mathbf{x}_{t}, \mathbf{\kappa}_{t}\right), \mathbf{\kappa}_{t}\right)$$

Regression equation for demand is:

$$d_{j}^{-1}(\mathbf{s}_{t},\sigma) = \alpha \ p_{jt} + x_{jt}' \ \boldsymbol{\beta} + \psi_{j} \left( P_{j}\left(\boldsymbol{x}_{t},\boldsymbol{\kappa}_{t}\right),\boldsymbol{\kappa}_{t} \right) + \widetilde{\boldsymbol{\xi}}_{jt},$$

that provides identification of demand parameters.

## STRUCTURE OF SELECTION BIAS IN DEMAND (2)

• Since  $\kappa_t$  is unobservable, the selection bias term is:

$$\mathbb{E}\left[\xi_{jt} \mid \mathbf{x}_{t}, a_{jt} = 1\right] = \int \psi_{j}\left(P_{j}\left(\mathbf{x}_{t}, \mathbf{\kappa}_{t}\right), \mathbf{\kappa}_{t}\right) f\left(\mathbf{\kappa}_{t} | \mathbf{x}_{t}, a_{jt} = 1\right) d\mathbf{\kappa}_{t}$$

$$= \int \psi_{j}\left(P_{j}\left(\mathbf{x}_{t}, \mathbf{\kappa}_{t}\right), \mathbf{\kappa}_{t}\right) \frac{P_{j}\left(\mathbf{x}_{t}, \mathbf{\kappa}_{t}\right)}{\bar{P}_{j}\left(\mathbf{x}_{t}\right)} f_{\kappa}(\mathbf{\kappa}_{t}) d\mathbf{\kappa}_{t}$$

where  $\bar{P}_{j}(x_{t})$  is the Propensity Score.

• It seems that, without further restrictions we cannot identify this selection term / control function.

#### A USEFUL REPRESENTATION RESULT

 Kargas & Sidiropoulos (IEEE, 2019) establish this convenient nonparametric finite mixture representation.

**LEMMA** For any  $(a,x) \in \{0,1\}^J \times \mathcal{X}$  with  $J \geq 3$ , any arbitrary probability mass function  $\Pr(a_t = a \mid x_t = x)$  admits the nonparametric finite mixture representation:

$$\Pr\left(a_t = a \mid x_t = x\right) =$$

$$\sum_{\kappa^* \in \mathcal{K}(\mathbf{x})} f_{\kappa^*}(\kappa^* \mid \mathbf{x}) \left[ \prod_{j=1}^J \left[ P_j(\mathbf{x}, \kappa^*) \right]^{a_j} \left[ 1 - P_j(\mathbf{x}, \kappa^*) \right]^{1 - a_j} \right] \textit{with}$$

 $\mathcal{K}(x)$  a discrete and finite collection of latent classes with at most  $|\mathcal{K}(x)| \leq 2^{J-1}$  components.



## Identification and Estimation: Sequential Approach

- Step 1: Given  $\Pr(a_t \mid x_t)$ , non-parametric identification of  $f_t \equiv (f_{\kappa}(\kappa \mid x_t) : \kappa \in \mathcal{K})$  and  $P_{jt} \equiv (P_j(x_t, \kappa) : \kappa \in \mathcal{K})$ .
- Step 2: Given  $(f_t, P_{jt})$ , identification of  $\theta = (\alpha, \beta, \sigma)$  from partially linear model:

$$d_j^{-1}(\mathbf{s}_t, \boldsymbol{\sigma}) = \alpha \ p_{jt} + x_{jt}' \ \boldsymbol{\beta} + f_t' \ \boldsymbol{\psi}_j(\boldsymbol{P}_{jt}) + \widetilde{\xi}_{jt},$$

where 
$$\psi_{i}(P_{it}) \equiv (\psi_{i}(P_{i}(x_{t},\kappa),\kappa) : \kappa \in \mathcal{K}).$$

## Identification and Estimation: Step 1

• Step 1 identifies the non-parametric finite mixture model:

$$\Pr\left(a_t = a | x_t = x\right) = \sum_{\kappa \in \mathcal{K}} f_{\kappa}(\kappa | x) \left[ \prod_{j=1}^{J} \left[ P_j(x, \kappa) \right]^{a_j} \left[ 1 - P_j(x, \kappa) \right]^{1-a_j} \right].$$

- We follow Bonhome et al. (2016) and Aguirregabiria and Mira (2019).
  - Identification based on independence among firms' entry decisions for given  $(x, \kappa)$ .
  - Number of equations  $2^J$  "large enough" relative to number of components  $|\mathcal{K}|$ .
  - $f_{\kappa}(\kappa \mid x) > 0$  and linear independence of  $P_j(x,\kappa)$  across  $\kappa \in \mathcal{K}$ .
- Extend existing procedures to inclusion of continuous regressors in  $x_t$ , preserving  $\sqrt{T}$  consistence and asymptotic normality.

## Identification and Estimation: Step 2

ullet Given  $(f_t, {m P}_{jt})$ , we can difference out  $f_t' \ {m \psi}_j({m P}_{jt})$ :

$$\delta_{jt} - \mathbb{E}\left[\delta_{jt} \mid f_t, P_{jt}\right] = \alpha \left(p_{jt} - \mathbb{E}\left[p_{jt} \mid f_t, P_{jt}\right]\right) + \left(x'_{jt} - \mathbb{E}\left[x'_{jt} \mid f_t, P_{jt}\right]\right) \beta + \widetilde{\xi}_{jt},$$

- ullet The remaining problem is the endogeneity of  $(p_{jt} \mathbb{E}\left[p_{jt} \mid f_t, P_{jt}\right])$ .
- ullet Given an instrument for price, we can then identify  $oldsymbol{ heta}=(lpha,oldsymbol{eta})$  by IV.
  - ullet We require instruments  $z_{jt}$  such that  $\mathbb{E}\left[\widetilde{\xi}_{jt}(oldsymbol{ heta})\;z_{jt}oldsymbol{ heta}'
    ight]$  has rank  $\dim(oldsymbol{ heta}).$
- We follow the literature on estimation of partially linear models.
  - Either pairwise differencing as in Aradillas-Lopez et al. (2007).
  - ullet Or direct estimation of  $\psi_i(\cdot)$  by **sieves** as in Newey (2009).

## 3. EMPIRICAL APPLICATION

## Empirical Application: US Airline Markets

- US airlines. Quarterly data from 2012-Q1 to 2013-Q4.
- 7 players: American Airlines (AA), Delta Airlines (DL), United Airlines (UA), US Airways (US), Southwest Airlines (WN), Other Low Cost (LCC), and Rest of carriers.
- Demand: Directional routes between the airports at the 100 largest Metropolitan Statistical Areas (MSA) in US.
- For entry: Market defined as non-directional airport pair.
- We include in our sample only markets with at least 1 incumbent airline in 1 year over 40 years covered in the USDOT database. This accounts for 2,230 non-directional markets.

## Distribution of Markets by Number of Entrants

|                    | Frequency        | Market size    | Market distance |  |
|--------------------|------------------|----------------|-----------------|--|
| Number of airlines | Markets-quarters | million people | in miles        |  |
|                    |                  |                |                 |  |
| 0 airlines         | 5,583 (31.8%)    | 2.88           | 737             |  |
| 1 airline          | 8,204 (46.7%)    | 3.42           | 916             |  |
| 2 airlines         | 2,614 (14.9%)    | 4.44           | 955             |  |
| 3 airlines         | 844 (4.8%)       | 5.36           | 1,112           |  |
| 4 airlines         | 221 (1.2%)       | 5.44           | 1,136           |  |
| 5 airlines         | 68 (0.4%)        | 8.61           | 1,185           |  |
| $\geq$ 6 airlines  | 7 (0.1%)         | 6.95           | 314             |  |
|                    |                  |                |                 |  |
| Total              | 17,541 (100.0%)  | 3.54           | 881             |  |

## Entry Frequencies/Probabilities by Airline

|         | Frequency                | Avg. market size  | Avg. market distance |
|---------|--------------------------|-------------------|----------------------|
| Airline | # markets-quarters $(%)$ | in million people | in miles             |
|         |                          |                   |                      |
| WN      | 4,602 (26.23%)           | 3.63              | 981                  |
| DL      | 3,257 (18.56%)           | 4.07              | 876                  |
| UA      | 3,221 (18.36%)           | 4.50              | 968                  |
| LCC     | 2,382 (13.57%)           | 4.61              | 1,171                |
| US      | 1,933 (11.02%)           | 3.98              | 879                  |
| AA      | 1,815 (10.34%)           | 5.32              | 962                  |
|         |                          |                   |                      |

## Estimation of the model for market entry

- Sieve finite mixture Logit.
- Vector of explanatory variables  $x_t$  includes:
  - Market size (msize), as measured by the sum of populations in the MSAs of the two airports.
  - Market distance (mktdistance), as the geodesic distance between the two airports.
  - Airline's own hub-size in the market (ownhub-size), as measured by the sum of the airline's hub-size in the two airports.
  - Average hub-size of the other airlines (comphub-size).
  - Airline × Time dummies.



## Estimation Market Entry Model — Goodness-of-Fit

|                   | Logit   | Mixture Logit | Mixture Logit | Mixture Logit |
|-------------------|---------|---------------|---------------|---------------|
| Statistics        | 1 type  | 2 types       | 3 types       | 4 types       |
|                   |         |               |               |               |
| # Obs.            | 17, 155 | 17, 155       | 17, 155       | 17, 155       |
| <b>Parameters</b> | 72      | 145           | 218           | 287           |
| Log-like.         | -20,378 | -18,985       | -18,022       | -17,621       |
| AIC               | 40,900  | 38, 261       | 36,481        | 35,817        |
| BIC               | 41,458  | 39,385        | 38, 170       | 38,041        |
|                   |         |               |               |               |

#### Estimation of Demand Parameters

 Nested logit demand as in Ciliberto et al. (JPE, 2021) but controlling for selection bias using control function method.

$$\ln\left(\frac{s_{jt}}{s_{0t}}\right) = \alpha p_{jt} + x'_{jt}\beta + \sigma \ln\left(\frac{s_{jt}}{1 - s_{0t}}\right) + h'_{jt} \gamma_j^{\psi} + \widetilde{\xi}_{jt}.$$

- We present different estimators according to the specification of the control function:
  - 1. Parametric Nested Logit.
  - 2. Semiparametric Nested Logit without  $\kappa_t$ .
  - 3. Semiparametric mixture Nested Logit.
- To deal with endogenous prices, we use as IVs: number of competitors in the market and average *hub-size* of the rest of the airlines.

#### Estimation of Demand Parameters

|                            | Not contr          | ol. for sel.        | Controlling for endogenous selection |                      |                                        |                                        |
|----------------------------|--------------------|---------------------|--------------------------------------|----------------------|----------------------------------------|----------------------------------------|
|                            | OLS                | 2SLS                | 2SLS<br>Heckman                      | 2SLS<br>Semi-P.      | 2SLS<br>Fin-Mix<br>$ \mathcal{K}  = 2$ | 2SLS<br>Fin-Mix<br>$ \mathcal{K}  = 3$ |
| Price (100 <b>\$</b> ) (α) | -0.643<br>(0.0105) | -2.180<br>(0.1378)  | -2.193<br>(0.1348)                   | -2.261<br>(0.1298)   | -2.574 $(0.1549)$                      | -2.708<br>(0.1662)                     |
| Within Share $(\sigma)$    | 0.371              | 0.409               | 0.413                                | 0.431                | 0.547                                  | 0.570                                  |
|                            | (0.0058)           | (0.0351)            | (0.0389)                             | (0.0372)             | (0.0509)                               | (0.0565)                               |
| Distance (1000mi)          | 0.729              | 2.130               | 2.196                                | 2.264                | 2.497                                  | 2.472                                  |
|                            | (0.0306)           | (0.1372)            | (0.1365)                             | (0.1310)             | (0.1524)                               | (0.1572)                               |
| Distance <sup>2</sup>      | -0.216<br>(0.0112) | $-0.424 \ (0.0244)$ | -0.453<br>(0.0252)                   | $-0.462 \\ (0.0250)$ | $-0.496 \ (0.0276)$                    | -0.511 $(0.0289)$                      |
| hub-size orig. (100s)      | 1.637              | 2.272               | 1.999                                | 1.320                | 1.593                                  | 1.383                                  |
|                            | (0.0263)           | (0.0382)            | (0.0593)                             | (0.0625)             | (0.0869)                               | (0.0989)                               |
| hub-size dest. (100s)      | 1.613              | 2.242               | 1.995                                | 1.310                | 1.587                                  | 1.377                                  |
|                            | (0.0267)           | (0.0385)            | (0.0595)                             | (0.0633)             | (0.0872)                               | (0.0994)                               |
| Airline×Quarter FE         | Y                  | Y                   | Y                                    | Y                    | Y                                      | Y                                      |
| # control var. entry       | 0                  | 0                   | 6                                    | 18                   | 36                                     | 54                                     |
| Observations               | 35,763             | 35,763              | 35,763                               | 35,763               | 35,763                                 | 35,763                                 |



## Average Own-Price Elasticities and Lerner Indexes

|                      | Not cont.<br>OLS | rol. for sel.<br>2SLS | Contr<br>2SLS<br>Heckman | ollin for end<br>2SLS<br>Semi-P. | ogenous selection $2$ SLS Fin-Mix $ \mathcal{K} =2$ | ction 2SLS Fin-Mix $ \mathcal{K}  = 3$ |
|----------------------|------------------|-----------------------|--------------------------|----------------------------------|-----------------------------------------------------|----------------------------------------|
| Own-Price Elasticity | -1.596           | -5.549                | -5.601                   | -5.849                           | -7.406                                              | -8.000                                 |
| AA                   | -1.722           | -6.013                | -6.071                   | -6.363                           | -8.169                                              | -8.857                                 |
| DL                   | -1.761           | -6.082                | -6.133                   | -6.382                           | -7.871                                              | -8.450                                 |
| UA                   | -1.887           | -6.573                | -6.636                   | -6.936                           | -8.847                                              | -9.573                                 |
| US                   | -1.665           | -5.801                | -5.856                   | -6.122                           | -7.809                                              | -8.450                                 |
| WN                   | -1.354           | -4.680                | -4.719                   | -4.913                           | -6.068                                              | -6.517                                 |
| LCC                  | -1.370           | -4.808                | -4.857                   | -5.095                           | -6.674                                              | -7.265                                 |
| Others               | -1.332           | -4.705                | -4.757                   | -5.006                           | -6.706                                              | -7.337                                 |
| Lerner Index         | 68.8%            | 19.9%                 | 19.7%                    | 18.9%                            | 15.4%                                               | 14.4%                                  |
| AA                   | 62.7%            | 18.0%                 | 17.9%                    | 17.1%                            | 13.8%                                               | 12.8%                                  |
| DL                   | 60.4%            | 17.5%                 | 17.3%                    | 16.7%                            | 13.7%                                               | 12.8%                                  |
| UA                   | 56.9%            | 16.4%                 | 16.2%                    | 15.6%                            | 12.6%                                               | 11.7%                                  |
| US                   | 65.9%            | 19.0%                 | 18.9%                    | 18.1%                            | 14.8%                                               | 13.8%                                  |
| WN                   | 78.4%            | 22.8%                 | 22.6%                    | 21.8%                            | 18.2%                                               | 17.1%                                  |
| LCC                  | 82.1%            | 23.5%                 | 23.3%                    | 22.2%                            | 17.5%                                               | 16.3%                                  |
| Others               | 79.2%            | 22.5%                 | 22.3%                    | 21.3%                            | 16.4%                                               | 15.2%                                  |
| Observations         | 35,763           | 35,763                | 35,763                   | 35,763                           | 35,763                                              | 35,763                                 |

## Empirical Distribution of Estimated Elasticities

