

Maplesoft

Algorithms for multivariate Laurent series

ORCCA
Ontario Research Centre for Computer Algebra

Mitacs

Matt Calder¹, Juan Pablo González Trochez², Marc Moreno Maza² and Erik Postma¹

¹Maplesoft, ²University of Western Ontario

Overview

A Laurent series is a generalization of a power series in which negative degrees are allowed. Following the ideas of Monforte and Kauers in [2], we present a first implementation of multivariate Laurent series in Maple. Since we rely on Maple's Multitivariate-PowerSeries package [1] and its lazy evaluation scheme, the minimal element of the support of a given Laurent series object may not be known when we compute with that object. We show how to deal with this challenge when performing arithmetic operations on Laurent series.

Construction

Let \mathbb{K} be a field, $\mathbf{x} = x_1, \dots, x_p$ and $\mathbf{u} = u_1, \dots, u_m$ be **ordered indeterminates** with $m \geq p$. The elements $g(\mathbf{u})$ of the ring $\mathbb{K}[[\mathbf{u}]]$ of **multivariate formal power series** look like

$$g(\mathbf{u}) = \sum_{\mathbf{k} \in \mathbb{N}^m} a_{\mathbf{k}} \mathbf{u}^{\mathbf{k}},$$

for $a_{\mathbf{k}}$ in \mathbb{K} , and $\mathbf{u}^{\mathbf{k}}$ is a notation for $u_1^{k_1} \cdots u_p^{k_p}$ where k_1, \ldots, k_p are nonnegative integers.

The elements $f(\mathbf{x})$ of the field $\mathbb{K}(\mathbf{x})$ of multivariate formal Laurent series look like:

$$f(\mathbf{x}) := \sum_{\mathbf{k} \in \mathbb{Z}^p} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}},$$

where the $a_{\mathbf{k}}$ are elements of \mathbb{K} . Let $C \subseteq \mathbb{R}^p$ be a cone. All cones here are **line-free**, polyhedral and generated by integer vectors. The set of the **Laurent series** $f(\mathbf{x}) \in \mathbb{K}((\mathbf{x}))$ with $\sup (f(\mathbf{x})) \subseteq C$ is an integral domain denoted by $\mathbb{K}_C[[\mathbf{x}]]$, where:

$$\operatorname{supp}(f(\mathbf{x})) := \{\mathbf{k} \in \mathbb{Z}^p \mid a_{\mathbf{k}} \neq 0\}.$$
Note that, there exists $g(\mathbf{x}) \in \mathbb{K}_C[[\mathbf{x}]]$

with $f(\mathbf{x})g(\mathbf{x}) = 1$, if and only if $a_0 \neq 0$.

Let \preceq be an **additive order** in \mathbb{Z}^p and let \mathcal{C} be the set of all cones $C \subseteq \mathbb{R}^p$ which are **compatible** with \preceq . Define:

$$\mathbb{K}_{\preceq}[[\mathbf{x}]] := \cup_{C \in \mathcal{C}} \mathbb{K}_C[[\mathbf{x}]]$$
 and

$$\mathbb{K}_{\prec}((\mathbf{x})) := \cup_{\mathbf{e} \in \mathbb{Z}^p} \mathbf{x}^{\mathbf{e}} \mathbb{K}_{\prec}[[\mathbf{x}]],$$

Then, $\mathbb{K}_{\preceq}[[\mathbf{x}]]$ is a **ring** and $\mathbb{K}_{\preceq}((\mathbf{x}))$ is a **field**. Our goal is to implement $\mathbb{K}_{\preceq}((\mathbf{x}))$, where \preceq is $<_{glex}$.

Graded reverse lexicographic order

The graded reverse lexicographic order or grevlex denoted by $<_{qlex}$, for two vectors of \mathbb{Z}^p :

- first compares their **total degrees** and
- then uses a reverse
 lexicographic order as
 tie-breaker.

Example

Set
$$\mathbf{v}_1 = (1, 0, -1)$$
, $\mathbf{v}_2 = (0, 0, 0)$, $\mathbf{v}_3 = (1, 1, -1)$, and $\mathbf{v}_4 = (2, -1, -1)$. Then, we have:

$$\mathbf{v}_2 <_{glex} \mathbf{v}_1 <_{glex} \mathbf{v}_4 <_{glex} \mathbf{v}_3.$$

The Laurent series object

Our implementation **encodes** multivariate Laurent series as a *Laurent* series object, LSO for short, that is, **quintuple** $(\mathbf{x}, \mathbf{u}, \mathbf{e}, \mathbf{R}, g)$, based on the proposition below.

Example

Consider $f := x^{-4}y^5 \sum_{i=0}^{\infty} x^{2i}y^{-i}$. To encode f as an LSO, one can choose:

$$\mathbf{x} = [x, y], \ \mathbf{u} = [u, v],$$
 $g = \text{Inverse}(\text{PowerSeries}(1 + uv)),$
 $\mathbf{R} = [[1, 0], [1, -1]],$
 $\mathbf{e} = [x = -4, y = 5].$

Figure 2: Creation of Laurent series

Maple overview

Add, ApproximatelyEqual, ApproximatelyZero, Copy, Degree, Divide, EvaluateAtOrigin, Exponentiate, GeometricSeries

LaurentSeries := MultivariatePowerSeries:-LaurentSeriesObject

> X := [x, y] : U := [u, v] : $g_1 := Inverse(PowerSeries(1 + u*v)) :$

> $f_1 := LaurentSeries(g1, X, U, R, e);$

> LaurentSeries:-Truncate(f_1 , 8);

 $\stackrel{ extstyle -}{>} LaurentSeries:-Truncate(f_2, 8);$

e := [x = -5, y = 3]:

R := [[1, 0], [1, -1]]:

GetAnalyticExpression, GetCoefficient, HenselFactorize, HomogeneousPart, Inverse, IsUnit, MainVariable, Multiply, Negate

Figure 1: Laurent series object

 $y^{3} \left(\frac{x^{8}}{y^{4}} - \frac{x^{6}}{y^{3}} + \frac{x^{4}}{y^{2}} - \frac{x^{2}}{y} + 1 \right)$

 $f_2 \coloneqq \left[\text{LaurentSeries of } \frac{x^3}{\left(1 + \frac{y^2}{x}\right)y^4} : \frac{x^3}{y^4} + \dots \right]$

 $\frac{x^{3}\left(\frac{y^{16}}{x^{8}} - \frac{y^{14}}{x^{7}} + \frac{y^{12}}{x^{6}} - \frac{y^{10}}{x^{5}} + \frac{y^{8}}{x^{4}} - \frac{y^{6}}{x^{3}} + \frac{y^{4}}{x^{2}} - \frac{y^{2}}{x} + 1\right)}{x^{4}}$

PowerSeries, Precision, SetDefaultDisplayStyle, SetDisplayStyle, Substitute, Subtract, SumOfAllMonomials, TaylorShift

Figure 3: Multiplication of Laurent series

Figure 4: Addition of Laurent series

Figure 5: Inversion of a Laurent series

Proposition: the Laurent series object

Let $g \in \mathbb{K}[[\mathbf{u}]]$ be a power series, $\mathbf{e} \in \mathbb{Z}^p$ be a point, and $\mathbf{R} := \{\mathbf{r}_1, \dots, \mathbf{r}_m\} \subset \mathbb{Z}^p$ be a set of **grevlex non-negative** rays. Then,

$$f = \mathbf{x}^{\mathbf{e}} g(\mathbf{x}^{\mathbf{r}_1}, \dots, \mathbf{x}^{\mathbf{r}_m}),$$

is a **Laurent series** living in $\mathbf{x}^{\mathbf{e}}\mathbb{K}_{C}[[\mathbf{x}]]$, where C is the cone generated by \mathbf{R} .

Addition and multiplication

Let $C_1, C_2 \subseteq \mathbb{Z}^p$ be two cones generated, respectively, by two sets of **grevlex non-negative** rays, $\mathbf{R}_1 := \{\mathbf{r}'_1, \dots, \mathbf{r}'_m\} \subset \mathbb{Z}^p$ and $\mathbf{R}_2 := \{\mathbf{r}''_1, \dots, \mathbf{r}''_m\} \subset \mathbb{Z}^p$, with $m \geq p$. Consider two Laurent series in $\mathbb{K}_{\leq}((\mathbf{x}))$, namely:

 $f_1 = \mathbf{x}^{\mathbf{e}_1} g_1(\mathbf{x}^{\mathbf{R}_1})$ and $f_2 = \mathbf{x}^{\mathbf{e}_2} g_2(\mathbf{x}^{\mathbf{R}_2})$, with $g_1, g_2 \in \mathbb{K}[[\mathbf{u}]]$ and $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{Z}^p$. Then, we have:

$$f_1f_2=\mathbf{x}^{\mathbf{e}_1+\mathbf{e}_2}ig(g_1(\mathbf{x}^{\mathbf{R}_1})g_2(\mathbf{x}^{\mathbf{R}_2})ig)$$
 .

Assume $\mathbf{e} = \mathbf{e}_1$ is the **grevlex- minimum** of \mathbf{e}_1 and \mathbf{e}_2 . Then, we have:

 $f_1 + f_2 = \mathbf{x}^{\mathbf{e}} \left(g_1(\mathbf{x}^{\mathbf{R}_1}) + \mathbf{x}^{\mathbf{e}_2 - \mathbf{e}} g_2(\mathbf{x}^{\mathbf{R}_2}) \right).$ To make $f_1 f_2$ (resp. $f_1 + f_2$) an LSO object, we need to find a cone containing supp $(f_1 f_2)$ (resp. supp $(f_1 + f_2)$). To this end, we developed an algorithm which takes as input a number of cones C_1, C_2, \ldots all generated by grevlex non-negative rays and returns a cone C generated by p grevlex nonnegative rays and such that C contains the union of C_1, C_2, \ldots

Inversion

For an LSO $f = (\mathbf{x}, \mathbf{u}, \mathbf{e}, \mathbf{R}, g)$, knowing min(supp(g)) would not guarantee finding the **grevlex-minimum** element of supp(f), if \mathbf{R} has rays with null total degree. However, if \mathbf{R} is a set of **grevlex-positive** rays, min supp($g(\mathbf{x}^{\mathbf{R}})$) equals

$$\min \left\{ \overline{\mathbf{R}} \cdot \mathbf{k}^T \mid \mathbf{k} \in \text{supp}(g) \text{ with } \right.$$
$$\left. \left| \overline{\mathbf{R}} \cdot \mathbf{k}^T \right| \leq \left| \overline{\mathbf{R}} \cdot \overline{\mathbf{k}}^T \right| \right\},$$

where $\mathbf{k} = \min(\text{supp}(\mathbf{g}))$ and $\mathbf{R} = (\mathbf{r}_1^T, \dots, \mathbf{r}_m^T)$. When \mathbf{R} has rays with null total degree, we replace $|\mathbf{R} \cdot \mathbf{k}^T|$ by a guess bound B and carry computations until the guess is proved to be wrong, in which case B is increased. As an optimization, if g has a known analytic form G, see [1], and if G is a rational function, then min supp $(g(\mathbf{x}^R))$ is always computable, even if \mathbf{R} has rays with null total degree.

Algorithm 1 Inverse

Require: Laurent series $f(\mathbf{x}) = \mathbf{x}^{\mathbf{e}} g(\mathbf{x}^{\mathbf{R}})$. Ensure: The inverse f^{-1} of f.

- 1: if AnalyticExpression(f) =Undefined or non-rational then
- 2: **return** $\mathbf{x}^{-\mathbf{e}} \text{InverseOfUndefinedAnalyticExpression}(g(\mathbf{x^R}))$
- 3: **else**4: q := AnalyticExpression(f) > The analytic
- expression of f. 5: return \mathbf{x}^{-e} InverseOfAnalyticExpression $(q, \mathbf{x}^{\mathbf{R}})$

References

- [1] Mohammadali Asadi, Alexander Brandt, Mahsa Kazemi, Marc Moreno-Maza, and Erik Postma.
 Multivariate power series in Maple.
 Springer International Publishing, 2021.
- [2] Ainhoa Aparicio Monforte and Manuel Kauers.Formal laurent series in several variables.

Expositiones Mathematicae, 31(4):350-367, 2013.