OMNISCALE GRAVITY — 1-PAGE TEASER (V4.6)

Christian (Cruz) deWilde and ChatGPT-5 (Thinking & Pro) 2025-08-15

ONE POTENTIAL, CONSERVATIVE SCOPE

Identify $\Phi \equiv c^2 \chi$ and use the weak-field/1PN metric with $\beta = \gamma = 1$ as a bookkeeping device on a flat background. Use the same Φ for light and motion; GW sector is conservative (v = c, +/× only; no scalar dipole). Low-g closure A/B keeps the field scalar and curl-free in general.

STATUS OF SECTORS (MINI)		
Sector	Now	Next
χ&Ф	Map $Φ = c^2 χ$; closure A/B	Derive from action
Metric 1PN	$\beta=\gamma=1$	Derive including g_{0i}
${g}_{0i}$	Assume GR $(-4V_i/c^3)$	Predict Lense–Thirring
GWs	$v = c$, $+/\times$ only	Maintain pulsar/GW safety

DECISIVE FALSIFIERS

Frame dragging; PPN γ , β ; $v_{\rm gw} \neq c$ or extra GW polarizations; no LOS-environment correlation of H_0 after systematics.

WHY IT MATTERS

One shared Φ ties orbits, lensing, and time delays; fewer knobs \Rightarrow stronger tests.

