The shortest experiment for linear system identification

Henk van Waarde

Bernoulli Institute for Mathematics, CS and AI and
Jan C. Willems Center for Systems and Control
University of Groningen

Workshop "Data-driven control: theory and applications" CDC 2024, Milan

Joint work with Kanat Camlibel and Paolo Rapisarda

1/26

Contents

- 1 The problem of experiment design
 - ▶ fundamental lemma
 - ► online experiment design
- 2 Informativity for system identification
- 3 The shortest experiment

The problem of experiment design

Experiment design

True system:

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t)$$

 $y(t) = C_{\text{true}}x(t) + D_{\text{true}}u(t)$

$$\begin{bmatrix} A_{\text{true}} & B_{\text{true}} \\ C_{\text{true}} & D_{\text{true}} \end{bmatrix} \in \mathbb{R}^{(n_{\text{true}} + p) \times (n_{\text{true}} + m)} \text{ and } n_{\text{true}} \text{ are } \text{unknown}$$

Observability matrix and lag:

For $k \ge 0$ we define

$$oldsymbol{\Omega_k} = \left\{ egin{array}{ll} O_{0,n} & ext{if } k = 0 \ C_{ ext{true}} C_{ ext{true}} \\ C_{ ext{true}} A_{ ext{true}} \\ dots \\ C_{ ext{true}} A_{ ext{true}}^{k-1} \end{array}
ight.$$
 if $k \geqslant 1$

The lag is defined as the smallest integer $\ell \geqslant 0$ such that rank $\Omega_{\ell} = \operatorname{rank} \Omega_{\ell+1}$ and denoted by $\ell_{\mathrm{true}} = \ell(C_{\mathrm{true}}, A_{\mathrm{true}}) \leqslant n_{\mathrm{true}}$.

Experiment design

True system:

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t)$$

$$y(t) = C_{\text{true}}x(t) + D_{\text{true}}u(t)$$
(1)

$$\begin{bmatrix} A_{\text{true}} & B_{\text{true}} \\ C_{\text{true}} & D_{\text{true}} \end{bmatrix} \in \mathbb{R}^{(n_{\text{true}} + p) \times (n_{\text{true}} + m)} \text{ and } n_{\text{true}} \text{ are } \text{unknown}$$

Prior knowledge: (1) is **controllable** and **observable**, $\ell_{\text{true}} \leq L$ and $n_{\text{true}} \leq N$

Fundamental question: How to find $T \in \mathbb{N}$ and

$$u_{[0,T-1]} := \begin{bmatrix} u(0) & u(1) & \cdots & u(T-1) \end{bmatrix}$$

such that the resulting data $(u_{[0,T-1]},y_{[0,T-1]})$ enable system identification?

I.e., such that we can **identify** n_{true} and matrices A, B, C and D satisfying

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} S & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} A_{\text{true}} & B_{\text{true}} \\ C_{\text{true}} & D_{\text{true}} \end{bmatrix} \begin{bmatrix} S^{-1} & 0 \\ 0 & I \end{bmatrix} \text{ for some invertible } S$$

fundamental lemma

A note on persistency of excitation

Jan C. Willems^a, Paolo Rapisarda^b, Ivan Markovsky^a,*, Bart L.M. De Moor^a

⁸ESAT, SCD/SISTA, K.U. Leuven, Kasteelpark Arenberg 10, B 3001 Leuven, Heverlee, Belgium ^bDepartment of Mathematics, University of Maastricht, 6200 MD Maastricht, The Netherlands

> Received 3 June 2004; accepted 7 September 2004 Available online 30 November 2004

Abstract

We prove that if a component of the response signal of a controllable linear time-invariant system is persistently exciting of sufficiently high order, then the windows of the signal span the full system behavior. This is then applied to obtain conditions

Definition: The input $u_{[0,T-1]}$ is called **persistently exciting** of order k if

$$\operatorname{rank} H_k(u_{[0,T-1]}) = \operatorname{rank} \begin{bmatrix} u(0) & u(1) & \cdots & u(T-k) \\ \vdots & \vdots & & \vdots \\ u(k-1) & u(k) & \cdots & u(T-1) \end{bmatrix} = km$$

fundamental lemma

Possible solution:

- Choose T := (N + L + 1)m + N + L
- Design $u_{[0,T-1]}$ to be persistently exciting of order N+L+1
- Then by the **fundamental lemma**,

$$\operatorname{rank}\left[\frac{H_{L+1}(u_{[0,T-1]})}{H_{L+1}(y_{[0,T-1]})}\right] = \begin{bmatrix} u(0) & \cdots & u(T-L-1) \\ \vdots & & \vdots \\ \frac{u(L) & \cdots & u(T-1)}{y(0) & \cdots & y(T-L-1)} \\ \vdots & & \vdots \\ y(L) & \cdots & y(T-1) \end{bmatrix} = (L+1)m + n_{\operatorname{true}}$$

■ Apply subspace identification to obtain *A*, *B*, *C* and *D*

We will now consider a simple example...

example

True system and initial state:

$$A_{\mathrm{true}} = egin{bmatrix} 0 & 1 \ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = egin{bmatrix} 0 \ 1 \end{bmatrix}, \ C_{\mathrm{true}} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = egin{bmatrix} 0 \ 2 \end{bmatrix}, \ x(0) = egin{bmatrix} -1 \ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take N = L = 2.

Define
$$T=9$$
 and $u_{[0,8]}:=\begin{bmatrix}1&1&0&0&0&1&0&0\end{bmatrix}$ (PE of order 5)

fundamental lemma

Possible solution:

- Choose T := (N + L + 1)m + N + L
- Design $u_{[0,T-1]}$ to be persistently exciting of order N+L+1
- Then by the fundamental lemma,

$$\operatorname{rank} \begin{bmatrix} H_{L+1}(u_{[0,T-1]}) \\ H_{L+1}(y_{[0,T-1]}) \end{bmatrix} = \begin{bmatrix} u(0) & \cdots & u(T-L-1) \\ \vdots & & \vdots \\ u(L) & \cdots & u(T-1) \\ y(0) & \cdots & y(T-L-1) \\ \vdots & & \vdots \\ y(L) & \cdots & y(T-1) \end{bmatrix} = (L+1)m + n_{\operatorname{true}}$$

 \blacksquare Apply subspace identification to obtain A, B, C and D

Question: Is this the smallest possible T?

Answer: no!

9 / 26

Henk van Waarde Online experiment design Milan, 15-12-2024

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

319

Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control

Henk J. van Waarde

Abstract—This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In rank property is important, since it guarantees that *all* trajectories of the system can be parameterized in terms of the measured trajectory. Essentially, the Hankel matrix of measured inputs and outputs serves as a non-parametric model of

Possible solution:

- Design the input u(t) online based on $(u_{[0,t-1]},y_{[0,t-1]})$
- T is not specified a priori, but procedure terminates after $T = (L+1)m + n_{\text{true}} + L$ steps
- \blacksquare Apply subspace identification to obtain A, B, C and D

We again consider an example...

example

True system and initial state:

$$A_{\mathrm{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\mathrm{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \varkappa(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define
$$u_{[0,2]} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \neq 0$$
, measure $y_{[0,2]} = \begin{bmatrix} -1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$;

$$\operatorname{rank} \left[\frac{H_3(u_{[0,2]})}{H_2(y_{[0,1]})} \right] = \operatorname{rank} \left[\begin{array}{c} 1\\0\\-1\\2\\0\\0 \end{array} \right] = 1$$

example

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \varkappa(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define
$$u_{[0,2]} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \neq 0$$
, measure $y_{[0,2]} = \begin{bmatrix} -1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$;

$$\operatorname{rank}\left[\frac{H_3(u_{[0,3]})}{H_2(y_{[0,2]})}\right] = \operatorname{rank}\left[\begin{array}{ccc} 1 & 0 \\ 0 & 0 \\ 0 & \boldsymbol{u(3)} \\ -1 & 0 \\ 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right] = 2 \text{ for } \boldsymbol{u(3)} = 1$$

Measure
$$y(3) = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

example

True system and initial state:

$$A_{\mathrm{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\mathrm{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \neq 0$ and design the rest of the inputs online

$$\operatorname{rank}\left[\frac{H_{3}(u_{[0,4]})}{H_{2}(y_{[0,3]})}\right] = \operatorname{rank}\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & u(4) \\ \hline -1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{array}\right] = 3 \text{ for any } u(4)$$

Take u(4) = 0

example

True system and initial state:

$$A_{\mathrm{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\mathrm{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \neq 0$ and design the rest of the inputs online

$$\operatorname{rank}\left[\frac{H_{3}(u_{[0,5]})}{H_{2}(y_{[0,4]})}\right] = \operatorname{rank}\left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & u(5) \\ \hline -1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 \end{array}\right] = 4 \text{ for any } u(5)$$

Take u(5) = 0

example

True system and initial state:

$$A_{\mathrm{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\mathrm{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \neq 0$ and design the rest of the inputs online

$$\operatorname{rank}\left[\frac{H_{3}(u_{[0,6]})}{H_{2}(y_{[0,5]})}\right] = \operatorname{rank}\left[\begin{array}{ccccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & u(6) \\ -1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 1 & 1 \end{array}\right] = 5 \text{ for any } u(6)$$

So we take u(6) = 0.

example

True system and initial state:

$$A_{\mathrm{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\mathrm{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \neq 0$ and design the rest of the inputs online

$$\operatorname{rank}\left[\frac{H_{3}(u_{[0,7]})}{H_{2}(y_{[0,6]})}\right] = \operatorname{rank}\left[\begin{array}{ccccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & u(7) \\ \hline -1 & 0 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 1 & 1 & 2 \end{array}\right] = 5 \neq 6 \text{ for any } u(7)$$

So we do not apply u(7) and **stop the procedure**.

example

True system and initial state:

$$A_{\mathrm{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\mathrm{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \varkappa(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \neq 0$ and design the rest of the inputs online

It follows that

$$\operatorname{rank}\left[\frac{H_{3}(u_{[0,6]})}{H_{3}(y_{[0,6]})}\right] = \operatorname{rank}\left[\begin{array}{cccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 2 & 1 & 1 & 2 \end{array}\right] = (L+1)m + n_{\text{true}} = 5 \implies n_{\text{true}} = 2$$

Reduction # of samples: from T = 9 to T = 7

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

319

Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control

Henk J. van Waarde

Abstract—This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs online (using past input/output data), leading to desirable rank properties of data Hankel matrices. In rank property is important, since it guarantees that *all* trajectories of the system can be parameterized in terms of the measured trajectory. Essentially, the Hankel matrix of measured inputs and outputs serves as a non-parametric model of

Possible solution:

- Design the input u(t) online based on $(u_{[0,t-1]},y_{[0,t-1]})$
- T is not specified a priori, but procedure terminates after $T = (L+1)m + n_{\text{true}} + L$ steps
- \blacksquare Apply subspace identification to obtain A, B, C and D

Question: Is this the smallest possible *T*?

Answer: it's a secret!

Informativity for system identification

Informativity for system identification

Beyond the fundamental lemma: from finite time series to linear system

M. Kanat Camlibel¹ and Paolo Rapisarda²

¹Bernoulli Institute, University of Groningen ²School of Electronics and Computer Science, University of Southampton

Abstract

We state necessary and sufficient conditions to uniquely identify (modulo state isomorphism) a linear timeinvariant minimal input-state-output system from finite input-output data and upper- and lower bounds on lag and state space dimension.

Data: Let $(u_{[0,T-1]}, y_{[0,T-1]})$ be generated by the true system (no assumptions on the input for now!)

Question: Under what conditions on $(u_{[0,T-1]},y_{[0,T-1]})$ can we **uniquely identify** the true system (up to state-space transformations)?

System classes

$$x(t+1) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathbb{R}^{(n+p)\times(n+m)}$$

$$\mathbf{S} = \{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathbb{R}^{(n+\mathbf{p}) \times (n+\mathbf{m})} \mid n \geqslant 0 \}$$

systems with m inputs and p outputs

$$\mathcal{O} = \{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathcal{S} \mid (C, A) \text{ is observable} \}$$

observable systems

$$\mathcal{M} = \{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathcal{O} \mid (A, B) \text{ is controllable} \}$$

minimal systems

$$\mathbf{S}(\mathbf{n}) = \{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathcal{S} \mid A \in \mathbb{R}^{\mathbf{n} \times \mathbf{n}} \}$$

systems with *n* states

$$\mathcal{S}(\ell, \mathbf{n}) = \{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathcal{S}(\mathbf{n}) \mid \ell(C, A) = \ell \}$$

systems with lag ℓ and n states

Explaining systems

Definition: A system $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathbb{R}^{(n+p)\times(n+m)}$ explains the data $(u_{[0,T-1]},y_{[0,T-1]})$ if

$$\begin{bmatrix} \mathbf{x}_{[1,\tau]} \\ y_{[0,\tau-1]} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \mathbf{x}_{[0,\tau-1]} \\ u_{[0,\tau-1]} \end{bmatrix}$$

for some $\mathbf{x}_{[0,T]} \in \mathbb{R}^{n \times (T+1)}$.

$$\boldsymbol{\mathcal{E}} = \{ \left[\begin{smallmatrix} A & B \\ C & D \end{smallmatrix} \right] \in \mathcal{S} \mid \left[\begin{smallmatrix} A & B \\ C & D \end{smallmatrix} \right] \text{ explains the data } \left(u_{[0,T-1]}, y_{[0,T-1]} \right) \} \quad \text{explaining systems}$$

$$\mathcal{E}(n) = \mathcal{E} \cap \mathcal{S}(n)$$

explaining systems with *n* states

$$\mathcal{E}(\ell, n) = \mathcal{E} \cap \mathcal{S}(\ell, n)$$

explaining systems with lag ℓ and n states

True system:

$$\begin{bmatrix} A_{\text{true}} & B_{\text{true}} \\ C_{\text{true}} & D_{\text{true}} \end{bmatrix} \in \mathcal{E}(\ell_{\text{true}}, n_{\text{true}}) \subseteq \mathcal{E}(n_{\text{true}}) \subseteq \mathcal{E}$$

System identification

$$\begin{array}{ll} \textbf{Prior knowledge: } \boldsymbol{\mathcal{S}_{pk}} \subseteq \mathcal{S} \text{ with } \begin{bmatrix} A_{\text{true}} & B_{\text{true}} \\ C_{\text{true}} & D_{\text{true}} \end{bmatrix} \in \mathcal{S}_{pk} \end{array}$$

Upper bounds on the lag and state dimension:

■ Recall that

$$\ell_{\mathrm{true}} \leqslant \textit{L} \quad \text{and} \quad \textit{n}_{\mathrm{true}} \leqslant \textit{N}$$

Define

$$\mathcal{S}_{L,N} := \{ \left[egin{array}{c} A & B \\ C & D \end{array}
ight] \in \mathcal{S}(\ell,n) \mid \ell \leqslant L \text{ and } n \leqslant N \}$$

Our prior knowledge is thus:

$${\mathcal S}_{
m pk}={\mathcal S}_{{\it L},{\it N}}\cap {\mathcal M}$$

Definition: The data $(u_{[0,T-1]}, y_{[0,T-1]})$ are informative for Sysld if

lacksquare $\mathcal{E} \cap \mathcal{S}_{\mathrm{pk}} = \mathcal{E}(n_{\mathrm{true}}) \cap \mathcal{S}_{\mathrm{pk}}$

- (data determine state dimension)
- \blacksquare Any pair of systems in $\mathcal{E}\cap\mathcal{S}_{pk}$ is isomorphic

Necessary and sufficient conditions

$$\ell_{\min} = \min\{\ell \geqslant 0 \mid \exists n \geqslant 0 \text{ s.t. } \mathcal{E}(\ell, n) \neq \emptyset\}$$

minimum lag to explain the data

$$n_{\min} = \min\{n \geqslant 0 \mid \mathcal{E}(n) \neq \emptyset\}$$

minimum state dimension to explain the data

Theorem:
$$\mathcal{E}(\ell, n) \neq \emptyset \implies n - \ell \geqslant n_{\min} - \ell_{\min}$$

$$\implies \ell \leqslant \textit{n} - \textit{n}_{\min} + \ell_{\min}$$

Observation:
$$L_{\rm d} := N - n_{\rm min} + \ell_{\rm min}$$

data-guided bound on lag

 $L_{\rm a} := \min(L, L_{\rm d})$

actual upper bound

18 / 26

Theorem (Camlibel and Rapisarda, 2024): The data $(u_{[0,T-1]}, y_{[0,T-1]})$ are informative for Sysld if and only if

$$T\geqslant L_{\mathrm{a}}+(L_{\mathrm{a}}+1)m+n_{\mathrm{min}}$$

and

rank
$$\begin{bmatrix} H_{L_{\mathbf{a}}+1}(u_{[0,T-1]}) \\ H_{L_{\mathbf{a}}+1}(y_{[0,T-1]}) \end{bmatrix} = (L_{\mathbf{a}}+1)m + n_{\min}.$$

Moreover, if these conditions are satisfied then $\ell_{\rm true} = \ell_{\rm min}$ and $n_{\rm true} = n_{\rm min}$.

Necessary conditions for informativity

Recall: $L_a := \min(L, N - n_{\min} + \ell_{\min})$

Theorem: The data $(u_{[0,T-1]},y_{[0,T-1]})$ are informative for Sysld if and only if

$$T\geqslant L_{
m a}+(L_{
m a}+1)m+n_{
m min} \quad ext{ and } \quad ext{rank}egin{bmatrix} H_{L_{
m a}+1}(u_{[0,T-1]})\ H_{L_{
m a}+1}(y_{[0,T-1]}) \end{bmatrix}=(L_{
m a}+1)m+n_{
m min}.$$

Moreover, if these conditions are satisfied, then $\ell_{\text{true}} = \ell_{\text{min}}$ and $n_{\text{true}} = n_{\text{min}}$.

Observation: The shortest possible informative data length is

$$extbf{ extit{T}} := extbf{ extit{L}} + (extbf{ extit{L}} + 1) extit{m} + extit{n}_{ ext{true}} \quad ext{where} \quad extbf{ extit{L}} := \min(extit{L}, extit{N} - extit{n}_{ ext{true}} + extit{\extit{t}}_{ ext{true}})$$

Question: Is it possible to **generate** informative data $(u_{[0,T-1]},y_{[0,T-1]})$, i.e,

$$\mathsf{rank}\begin{bmatrix} H_{\boldsymbol{L}+1}(u_{[0,\mathcal{T}-1]}) \\ H_{\boldsymbol{L}+1}(y_{[0,\mathcal{T}-1]}) \end{bmatrix} = (\boldsymbol{L}+1)m + n_{\mathrm{true}}$$

without knowing ℓ_{true} and n_{true} ?

Preparation

For the data $(u_{[0,t-1]}, y_{[0,t-1]})$, define

$$H_{k}^{t} = \begin{bmatrix} u(0) & \cdots & u(t-k) \\ \vdots & & \vdots \\ u(k-1) & \cdots & u(t-1) \\ \hline y(0) & \cdots & y(t-k) \\ \vdots & & \vdots \\ y(k-1) & \cdots & y(t-1) \end{bmatrix}, \qquad G_{k}^{t} = \begin{bmatrix} u(0) & \cdots & u(t-k) \\ \vdots & & \vdots \\ u(k-1) & \cdots & u(t-1) \\ \hline y(0) & \cdots & y(t-k) \\ \vdots & & \vdots \\ y(k-2) & \cdots & y(t-2) \end{bmatrix},$$

$$\ell_{\min}^t$$
, n_{\min}^t , and $\ell_{\min}^t := \min(\ell, N - n_{\min}^t + \ell_{\min}^t)$.

Main idea: start with k = 1 and iterate between the following steps: :

- \blacksquare increase the rank of G_k^t until no progress can be made
- increase the depth **k** by one

Important question: when to stop?

Stopping criteria

Simple observation: We have that

$$\operatorname{rank} \mathbf{G}_k^t \leqslant m + \operatorname{rank} \mathbf{H}_{k-1}^t$$

Lemma: If

$$\operatorname{rank} \boldsymbol{G_k^t} < m + \operatorname{rank} \boldsymbol{H_{k-1}^t},$$

then there exists an m-1 dimensional affine set $\mathcal{A}^t \subseteq \mathbb{R}^m$ such that

$$\operatorname{\mathsf{rank}} \boldsymbol{G_k^{t+1}} = \operatorname{\mathsf{rank}} \boldsymbol{G_k^t} + \boldsymbol{1} \quad \text{ whenever } \quad \boldsymbol{u}(t) \not \in \boldsymbol{\mathcal{A}}^t.$$

Theorem: Suppose that $(u_{[0,t-1]}, y_{[0,t-1]})$ is such that

- \blacksquare H_k^t has full column rank, and

Then, $k = L_a^t + 1$ implies that

- 1 k = L + 1.
- t = T, and
- 3 $(u_{[0,T-1]}, y_{[0,T-1]})$ are informative for SysId.

algorithm

```
1: procedure OnlineExperiment(L, N)
          choose u_{[0,m-1]} nonsingular
 2:
 3:
          measure outputs y_{[0,m-1]}
          t \leftarrow m, k \leftarrow 1
 4.
          while k \neq L_0^t + 1 do

▷ stopping criteria

 5:
 6.
               k \leftarrow k + 1
               if t = k - 1 then
 7.
                                                                                   \triangleright G_{\iota}^{t} has (full) rank 1
                    choose u(t) arbitrarily
 8.
                    measure output y(t)
 9:
                    t \leftarrow t + 1
10.
               end if
11.
               while rank G_k^t < m + \text{rank } H_{k-1}^t do
12:
                    choose u(t) \notin \mathcal{A}^t
                                                                            \triangleright rank \boldsymbol{G}_{\boldsymbol{\nu}}^{t+1} = \operatorname{rank} \boldsymbol{G}_{\boldsymbol{\nu}}^{t} + 1
13.
                    measure output y(t)
14.
                    t \leftarrow t + 1
15.
               end while
16.
          end while
17:
          return (u_{[0,t-1]},y_{[0,t-1]}) \rightarrow (k,t) = (L+1,T) and data are informative
18:
19: end procedure
```

example

True system and initial state:

$$A_{\mathrm{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\mathrm{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \varkappa(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take N = L = 2.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
. Let $t = 1$ and $k = 1$.

$$n_{\min}^1 = 0 \text{ and } \ell_{\min}^1 = 0 \implies L_{\mathrm{a}}^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1) = 2 \implies k \neq L_{\mathrm{a}}^1 + 1$$

Set
$$k = 2$$
. Since $t = k - 1$, let $u(1) = 0$ (arbitrary) $\implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$G_2^3 = \begin{bmatrix} 1 & 0 \\ 0 & u(2) \\ -1 & 0 \\ 2 & 0 \end{bmatrix}$$

example

True system and initial state:

$$A_{\mathrm{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\mathrm{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \varkappa(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take N = L = 2.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
. Let $t = 1$ and $k = 1$.

$$n_{\min}^1 = 0 \text{ and } \ell_{\min}^1 = 0 \implies L_{\mathrm{a}}^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1) = 2 \implies k \neq L_{\mathrm{a}}^1 + 1$$

Set
$$k = 2$$
. Since $t = k - 1$, let $u(1) = 0$ (arbitrary) $\implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$G_2^3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 2 & 0 \end{bmatrix}$$

example

True system and initial state:

$$A_{\mathrm{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\mathrm{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \varkappa(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take N = L = 2.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
. Let $t = 1$ and $k = 1$.

$$n_{\min}^1 = 0 \text{ and } \ell_{\min}^1 = 0 \implies L_{\mathrm{a}}^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1) = 2 \implies k \neq L_{\mathrm{a}}^1 + 1$$

Set
$$k = 2$$
. Since $t = k - 1$, let $u(1) = 0$ (arbitrary) $\implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$G_2^4 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & u(3) \\ -1 & 0 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

example

True system and initial state:

$$A_{\mathrm{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\mathrm{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \varkappa(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take N = L = 2.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
. Let $t = 1$ and $k = 1$.

$$n_{\min}^1 = 0 \text{ and } \ell_{\min}^1 = 0 \implies L_{\mathrm{a}}^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1) = 2 \implies k \neq L_{\mathrm{a}}^1 + 1$$

Set
$$k = 2$$
. Since $t = k - 1$, let $u(1) = 0$ (arbitrary) $\implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$G_2^4 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

example

True system and initial state:

$$A_{\mathrm{true}} = egin{bmatrix} 0 & 1 \ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = egin{bmatrix} 0 \ 1 \end{bmatrix}, \ C_{\mathrm{true}} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = egin{bmatrix} 0 \ 2 \end{bmatrix}, \ x(0) = egin{bmatrix} -1 \ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take N = L = 2.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
. Let $t = 1$ and $k = 1$.

$$n_{\min}^1 = 0 \text{ and } \ell_{\min}^1 = 0 \implies L_{\mathrm{a}}^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1) = 2 \implies \textit{k} \neq L_{\mathrm{a}}^1 + 1$$

Set
$$k = 2$$
. Since $t = k - 1$, let $u(1) = 0$ (arbitrary) $\implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$G_2^5 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & u(4) \\ -1 & 0 & 0 & 0 \\ 2 & 0 & 2 & 1 \end{bmatrix}$$

example

True system and initial state:

$$A_{\mathrm{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\mathrm{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \varkappa(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take N = L = 2.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
. Let $t = 1$ and $k = 1$.

$$n_{\min}^1 = 0 \text{ and } \ell_{\min}^1 = 0 \implies L_{\mathrm{a}}^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1) = 2 \implies \textit{k} \neq L_{\mathrm{a}}^1 + 1$$

Set
$$k = 2$$
. Since $t = k - 1$, let $u(1) = 0$ (arbitrary) $\implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$G_2^5 = egin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ -1 & 0 & 0 & 0 \ 2 & 0 & 2 & 1 \end{bmatrix}$$

example

True system and initial state:

$$A_{\mathrm{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ B_{\mathrm{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C_{\mathrm{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_{\mathrm{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \varkappa(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take N = L = 2.

$$\operatorname{rank} H_1^5 = \operatorname{rank} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 2 & 0 & 2 & 1 & 1 \end{bmatrix} = 3 \implies \frac{\operatorname{rank} G_2^5 = 1 + \operatorname{rank} H_1^5}{\operatorname{rank} G_2^5}$$

$$\ell_{\min}^5 = 1 \text{ and } n_{\min}^5 = 2 \implies \ell_{\mathrm{a}}^5 = \min(2, 2-2+1) = 1 \implies k = \ell_{\mathrm{a}}^5 + 1.$$

Conclusion: The data $(u_{[0,4]}, y_{[0,4]})$ are informative for SysId

Reduction in # samples: from T = 9 to T = 7 to T = 5

Conclusions

The shortest experiments for system identification require:

- 1 Online design of the inputs
- 2 Online adaptation of the depth of the Hankel matrix

Online design using depth-(L+1) Hankel matrix is shortest only if

$$L = N - n_{\rm true} + \ell_{\rm true}$$

Final example: For a system with

$$m = 80$$
, $p = 10$, $\ell_{\text{true}} = 20$, $n_{\text{true}} = 100$,

and

$$L = 100, N = 150,$$

- fundamental lemma requires: T = 20330
- online design (fixed depth) requires: T = 8280
- the shortest experiment requires: T = 5850

Thank you!

Minimum lag and state dimension

$$\ell_{\min} = \min\{\ell \geqslant 0 \mid \exists n \geqslant 0 \text{ s.t. } \mathcal{E}(\ell, n) \neq \varnothing\}$$
 minimum lag to explain the data

 $n_{\min} = \min\{n \geq 0 \mid \mathcal{E}(n) \neq \emptyset\}$ minimum state dimension to explain the data

Question: How can we obtain ℓ_{\min} and n_{\min} from the data?

Important role played by the **Hankel matrices**:

$$H_{\mathbf{k}} = \begin{bmatrix} u(0) & \cdots & u(T-k) \\ \vdots & & \vdots \\ \frac{u(\mathbf{k}-\mathbf{1}) & \cdots & u(T-1)}{y(0) & \cdots & y(T-k)} \\ \vdots & & \vdots \\ y(\mathbf{k}-\mathbf{1}) & \cdots & y(T-1) \end{bmatrix}$$

$$H_{\mathbf{k}} = \begin{bmatrix} u(0) & \cdots & u(T-k) \\ \vdots & & \vdots \\ u(\mathbf{k}-\mathbf{1}) & \cdots & u(T-1) \\ \hline y(0) & \cdots & y(T-k) \\ \vdots & & \vdots \\ y(\mathbf{k}-\mathbf{1}) & \cdots & y(T-1) \end{bmatrix} \quad \text{and} \quad G_{\mathbf{k}} = \begin{bmatrix} u(0) & \cdots & u(T-k) \\ \vdots & & \vdots \\ u(\mathbf{k}-\mathbf{1}) & \cdots & u(T-1) \\ \hline y(0) & \cdots & y(T-k) \\ \vdots & & \vdots \\ y(\mathbf{k}-\mathbf{2}) & \cdots & y(T-2) \end{bmatrix}$$

Minimum lag and state dimension

$$\ell_{\min} = \min\{\ell \geqslant 0 \mid \exists n \geqslant 0 \text{ s.t. } \mathcal{E}(\ell, n) \neq \emptyset\}$$

minimum lag to explain the data

$$n_{\min} = \min\{n \geqslant 0 \mid \mathcal{E}(n) \neq \emptyset\}$$

minimum state dimension to explain the data

Assumption

$$u_{[0,T-1]} \neq 0_{m,T}$$

(necessary for SysId)

We define for $k \in [0, T-1]$:

$$\delta_k = \operatorname{rank} H_{k+1} - \operatorname{rank} G_{k+1}$$

Then $p \geqslant \delta_0 \geqslant \cdots \geqslant \delta_{T-1} = 0$

 ${m q}:=$ the smallest integer such that $\delta_{m q}$ is zero.

$$q \in [0, T-1]$$

Theorem:
$$\ell_{\min} = q$$
 and $n_{\min} = \sum_{i=0}^{\ell_{\min}} \delta_i$.

Theorem:
$$\mathcal{E}(\ell, n) \neq \varnothing \implies n - \ell \geqslant n_{\min} - \ell_{\min}$$
.