AI Application for 2030: *AetherSynth*—AI-Powered Atmospheric Carbon Sculptor

Problem It Solves

By 2030, mitigating climate change will hinge on reversing atmospheric carbon levels—not just reducing emissions. Traditional carbon capture methods are costly, passive, and slow to scale. *AetherSynth* introduces an autonomous, AI-powered system that actively sculpts local atmospheres to extract CO₂ and convert it into usable synthetic fuel, integrating seamlessly with smart cities and industrial zones.

AI Workflow

Stage

Description

Data Inputs - Real-time atmospheric sensor data (CO₂, temp, humidity, pollutants)
str>- Satellite

imaging

- Energy grid loads

- Local industrial activity metrics

Model Type - Reinforcement Learning for environmental response optimization

- Graph Neural Networks for spatial modeling of urban carbon flux

- Generative Models

(GANs) for predicting low-energy conversion methods

Output

- Optimal CO₂ extraction and conversion pathways

- Predictive deployment schedules for aerial drones and nanofiber filters

- Visualizations for city planners and environmental engineers

Societal Risks and Benefits

Risks

- Energy overuse if misaligned with grid availability
- Potential ecological imbalance from hyper-local atmospheric changes
br>- Dependence on proprietary tech infrastructure

Benefits

- Accelerated carbon reduction at a city scale

scale

br>- Creation of synthetic fuels reduces fossil dependency

br>- Enhanced urban air quality

br>- Aligns with sustainable development goals (SDGs 7, 11, 13)

<u>Marson Service Serv</u>

Concept

Using **IBM Quantum Experience**, we build a basic quantum circuit to demonstrate **Grover's algorithm** for accelerating molecule property search in a synthetic drug discovery pipeline.

Circuit Summary

python

```
from qiskit import QuantumCircuit
qc = QuantumCircuit(2)
qc.h([0, 1])  # Initialize superposition
qc.cz(0, 1)  # Oracle to mark the desired state
qc.h([0, 1])  # Diffusion
qc.draw('mpl')
```

AI Optimization Use Case

In AI-assisted drug discovery, models often screen billions of molecular structures. A quantum search algorithm like Grover's can reduce search complexity from O(N) to $O(\sqrt{N})$. For instance, combining this with a generative AI model (e.g. variational autoencoder) enables quantum-accelerated identification of drug candidates that target rare diseases—potentially shaving months off the development cycle.