Course: B. Tech. Computer Science and Engineering (AI and ML)

Subject: Deep Learning Subject Code: ETCS-303 Semester: V

Time: 03 Hours Max Marks: 70

Instructions to the Students:

- 1. This Question paper consists of two Sections. All sections are compulsory.
- 2. Section A comprises 10 questions of short answer type. All questions are compulsory. Each question carries 02 mark.
- 3. Section B comprises 8 long answer type questions out of which students must attempt any 5. Each question carries 10 marks.
- 4. Do not write anything on the question paper.

Q. No.	SECTION – A (SHORT ANSWER TYPE QUESTIONS)	Marks
1. a De	1. a Define linear separability.	
b. Wh	nat is a McCulloch-Pitts unit?	(2)
	nat is the saddle point problem in neural networks?	(2)
	nat do you understand about the Bias - Variance trade-off?	(2)
	plain underfitting and overfitting with a diagram.	(2)
	nat is backpropagation through time (BPTT) in Recurrent Neural Networks?	(2)
g. Explain the terms strides and padding. Write a formula to calculate the number		(2)
	parameters in a hidden unit of a neural network.	
	ferentiate between artificial and biological neurons.	(2)
i. What is Gibbs sampling?		(2)
	fine variational autoencoders.	(2)
	SECTION – B (SHORT ANSWER TYPE QUESTIONS)	
	plain the architecture of a multilayer perceptron and its learning mechanism ng backpropagation.	(10)

3.	a.	Describe empirical risk minimization and the role of regularization in neural	(5)
		networks. Also explain the types of regularisation in detail with examples.	
	b.	Explain the working of autoencoders with a diagram.	(5)
4.		Investigate the theoretical foundation and implementation of Adagrad and	(10)
		Adam optimization algorithm in the context of training deep neural networks.	
		Also compare Adagrad and Adam optimization methods.	
5		Explain the working of convolutional neural networks (CNNs) using LeNet as	(10)
		an example in detail with diagrams.	
6.	a.	Explain the architecture of AlexNet.	(5)
	b.	What is gradient descent algorithm and discuss its various types. Also explain	(5)
		the vanishing gradient problem in detail.	
2		Discuss the generative adversarial networks (GANs) and their components.	(10)
8,	a.	What are the key differences between Restricted Boltzmann Machines (RBMs)	(5)
//		and Deep Boltzmann Machines (DBM)?	
	b.	Compare and contrast LSTM (Long Short Term Memory) and Gated Recurrent	(5)
		Units (GRU).	
9/	a.,	Explain the challenges and innovations in applying neural networks to multi-	(5)
	1	task and multi-view deep learning.	
	b.	What are the key differences in the application of neural networks in vision and	(5)
	/	NLP?	

===END OF PAPER===