Richiami di algebra lineare e geometria di \mathbb{R}^n

- combinazione lineare, conica e convessa
- spazi lineari
- ▶ insiemi convessi, funzioni convesse

rif. BT 1.5

Combinazione lineare

Definizione

Un vettore $\mathbf{y} \in \mathbb{R}^n$ si dice *combinazione lineare* dei vettori $\mathbf{x}^1,\dots,\mathbf{x}^k$ se esistono k moltiplicatori reali $\lambda_1,\dots,\lambda_k$ tali che

$$\mathbf{y} = \lambda_1 \mathbf{x}^1 + \ldots + \lambda_k \mathbf{x}^k$$

$$\begin{pmatrix} -3 \\ 1 \end{pmatrix} = \lambda_1 \begin{pmatrix} -1 \\ 3 \end{pmatrix} + \lambda_2 \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

$$\operatorname{con} \lambda_1 = \frac{5}{7}, \lambda_2 = -\frac{4}{7}$$

Involucro lineare

Definizione

Sia $S\subseteq\mathbb{R}^n$. Si dice involucro lineare di S o sottospazio generato da S l'insieme lin(S) di tutte le combinazioni lineari di elementi di S

$$S = \{ \mathbf{x}^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{x}^2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}$$

$$S = \{ \mathbf{x}^1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{x}^2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \}$$

$$\mathbf{y} = \lambda_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$$

$$\mathbf{y} = \lambda_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} \lambda_1 + 2\lambda_2 \\ \lambda_1 + 2\lambda_2 \end{pmatrix}$$

$$\Rightarrow lin(S) = \mathbb{R}^2$$

$$\mathbb{R}^2$$
 $\Rightarrow lin(S)$ retta per $(0,0),\mathbf{x}^1,\mathbf{x}^2$

Indipendenza lineare

Definizione

Un insieme $S = \{\mathbf{x}^1, \dots, \mathbf{x}^k\}$ di punti di \mathbb{R}^n si dice *linearmente indipendente* se non esistono k numeri reali $\lambda_1, \dots, \lambda_k$ non tutti nulli tali che $\sum_{i=1}^k \lambda_i \mathbf{x}^i = \mathbf{0}_n$

Un insieme $S=\{\mathbf{x}^1,\dots,\mathbf{x}^k\}$ di punti di \mathbb{R}^n non linearmente indipendente si dice *dipendente*

Proprietà

- ▶ Se $S \subseteq \mathbb{R}^n$ è linearmente indipendente, ogni suo sottoinsieme è linearmente indipendente (cioè, S non contiene alcun sottoinsieme linearmente dipendente)
- L'insieme $\{\mathbf{0}_n\}$ è linearmente dipendente. Quindi, il vettore $\mathbf{0}_n$ non appartiene ad alcun insieme linearmente indipendente

Esempi (continua)

$$S = \{x^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, x^2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$$

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\lambda_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} \lambda_1 + 2\lambda_2 \\ \lambda_1 + 2\lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\iff \lambda_1 = \lambda_2 = 0$$
 S lin. indipendente

$$\iff \lambda_1 = -2\lambda_2$$
 S lin. dipendente

Spazi lineari

Definizione

Un insieme $L\subseteq\mathbb{R}^n$ è uno *spazio lineare* (o *sottospazio* di \mathbb{R}^n) se qualsiasi combinazione lineare di ogni sottoinsieme finito di elementi di L appartiene a L, cioè lin(L)=L

Proprietà Ogni spazio lineare contiene il vettore nullo.

Basi

Definizione

Dato un sottospazio $L\subseteq\mathbb{R}^n$, si definisce base di L una collezione B di vettori linearmente indipendenti tale che L=lin(B)

Proprietà Tutte le basi di un dato sottospazio $L\subseteq\mathbb{R}^n$ hanno lo stesso numero di elementi

Definizione

Il numero di elementi di una base di un sottospazio $L\subseteq\mathbb{R}^n$ è detto dimensione del sottospazio, indicato con dim(L)

Nota

- $dim(\mathbb{R}^n) = n$
- ▶ i sottospazi 1-dimensionali sono rette per l'origine, 2-dimensionali piani per l'origine, ...

Proprietà delle basi

- lacktriangle ogni sottospazio proprio $L \subset \mathbb{R}^n$ ha dim(L) < n
- ▶ Se L è un sottospazio proprio di \mathbb{R}^n allora $\exists \mathbf{a} \in \mathbb{R}^n$ ortogonale a tutti gli elementi di L (diciamo $\bot L$)
- lacktriangleright se dim(L)=m < n allora esistono n-m vettori linearmente indipendenti ortogonali a L

Teorema

Dati i vettori ${\bf x}^1,\ldots,{\bf x}^K$, sia $L=lin(\{{\bf x}^1,\ldots,{\bf x}^K\})$ tale che dim(L)=m. Allora:

- (i) esiste una base di L composta da m fra i vettori di $\mathbf{x}^1,\dots,\mathbf{x}^K$
- (ii) se $k \leq m$ e $\mathbf{x}^1, \dots, \mathbf{x}^k$ sono linearmente indipendenti, possiamo formare una base di L scegliendo m-k fra i vettori $\mathbf{x}^{k+1}, \dots, \mathbf{x}^K$ e aggiungendoli a $\mathbf{x}^1, \dots, \mathbf{x}^k$

Funzioni lineari

Definizione

Dati due spazi lineari $S\subseteq\mathbb{R}^n$ e $T\subseteq\mathbb{R}^m$, si dice funzione lineare un funzione $f:S\to T$ tale che, per ogni coppia $\mathbf{x},\mathbf{y}\in S$ ed un qualunque scalare $k\in\mathbb{R}$, soddisfi:

(i)
$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$

(ii) $f(k\mathbf{x}) = kf(\mathbf{x})$

Ogni funzione lineare f da \mathbb{R}^n a \mathbb{R}^m si può rappresentare con una matrice A di dimensioni $m \times n$, cioè, $\mathbf{y} = A\mathbf{x}, \mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^m$.

Nel caso m=1: $f(\mathbf{x})=c^T\mathbf{x}$, con c vettore di \mathbb{R}^n

Combinazione conica

Definizione

Un vettore $\mathbf{y} \in \mathbb{R}^n$ si dice *combinazione conica* dei vettori $\mathbf{x}^1, \dots, \mathbf{x}^k$ se esistono k moltiplicatori reali **non-negativi** $\lambda_1, \dots, \lambda_k$ tali che

$$\mathbf{y} = \lambda_1 \mathbf{x}^1 + \ldots + \lambda_k \mathbf{x}^k$$

$$\begin{pmatrix} 1\\4 \end{pmatrix} = \lambda_1 \begin{pmatrix} -1\\3 \end{pmatrix} + \lambda_2 \begin{pmatrix} 4\\2 \end{pmatrix}$$

$$\text{con } \lambda_1 = 1, \lambda_2 = \frac{1}{2}$$

Combinazione affine

Definizione

Un vettore $\mathbf{y} \in \mathbb{R}^n$ si dice *combinazione affine* dei vettori $\mathbf{x}^1, \dots, \mathbf{x}^k$ se esistono k moltiplicatori reali $\lambda_1, \dots, \lambda_k$, con $\sum_{i=1}^k \lambda_i = 1$, tali che

$$\mathbf{y} = \lambda_1 \mathbf{x}^1 + \ldots + \lambda_k \mathbf{x}^k$$

$$\begin{pmatrix} -7/2 \\ 7/2 \end{pmatrix} = \lambda_1 \begin{pmatrix} -1 \\ 3 \end{pmatrix} + \lambda_2 \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

con
$$\lambda_1=\frac{3}{2},\lambda_2=-\frac{1}{2}$$

Combinazione convessa

Definizione

Un vettore $\mathbf{y} \in \mathbb{R}^n$ si dice *combinazione convessa* dei vettori $\mathbf{x}^1, \dots, \mathbf{x}^k$ se esistono k moltiplicatori reali **non negativi** $\lambda_1, \dots, \lambda_k$, con $\sum_{i=1}^k \lambda_i = 1$, tali che

$$\mathbf{y} = \lambda_1 \mathbf{x}^1 + \ldots + \lambda_k \mathbf{x}^k$$

$$\binom{3/2}{5/2} = \lambda_1 \begin{pmatrix} -1\\3 \end{pmatrix} + \lambda_2 \begin{pmatrix} 4\\2 \end{pmatrix}$$

con
$$\lambda_1=\frac{1}{2},\lambda_2=\frac{1}{2}$$

Riassumendo

Definizione

Un vettore $\mathbf{y} \in \mathbb{R}^n$ si dice *combinazione lineare* dei vettori $\mathbf{x}^1, \dots, \mathbf{x}^k$ se esistono k moltiplicatori reali $\lambda_1, \dots, \lambda_k$ tali che

$$\mathbf{y} = \lambda_1 \mathbf{x}^1 + \ldots + \lambda_k \mathbf{x}^k$$

Se $\lambda_i \geq 0$, $i = 1, \ldots, k$ la combinazione è detta *conica*

Se $\sum_{i=1}^{k} \lambda_i = 1$ la combinazione è detta *affine*

Una combinazione conica ed affine si dice convessa

Involucro conico, affine, convesso

Ricordiamo che, dato un insieme $S\subseteq \mathbb{R}^n$, si dice *involucro lineare* di S l'insieme lin(S) di tutte le combinazioni lineari di elementi di S

Analogamente, definiamo:

- involucro conico di S l'insieme cone(S) di tutte le combinazioni coniche di elementi di S
- ▶ involucro affine di S l'insieme aff(S) di tutte le combinazioni affini di elementi di S
- involucro convesso di S l'insieme conv(S) di tutte le combinazioni convesse di elementi di S

$$\mathbf{x}^1 = \begin{pmatrix} -1 \\ 3 \end{pmatrix}, \mathbf{x}^2 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}, S = \{\mathbf{x}^1, \mathbf{x}^2\}$$

$$lin(S) = \mathbb{R}^2$$

Insiemi convessi

Definizione

Siano \mathbf{x}, \mathbf{y} due punti di \mathbb{R}^n . L'insieme dei punti \mathbf{z} ottenuti come

$$\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y}$$

per $\lambda \in [0,1]$, si dice segmento (chiuso) di estremi $\mathbf{x},\mathbf{y}.$

Definizione

Un insieme $S \subseteq \mathbb{R}^n$ si dice *convesso* se, per ogni $\mathbf{x}, \mathbf{y} \in S$ il segmento di estremi \mathbf{x}, \mathbf{y} appartiene interamente ad S, cioè

$$\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in S, \qquad \lambda \in [0, 1]$$

l'insieme vuoto, \mathbb{R}^n e l'insieme costituito da un solo elemento sono insiemi convessi (banali)

Intersezione di insiemi convessi

Teorema

Siano $S,T\subset\mathbb{R}^n$ insiemi convessi. Allora $S\cap T$ un insieme convesso.

Dimostrazione Siano $\mathbf{x}, \mathbf{y} \in S \cap T$. Comunque scelto un $\lambda \in [0,1]$ si ha che:

$$\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in S$$
, in quanto S convesso

$$\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in T$$
, in quanto T convesso

Quindi, $\mathbf{z} \in S \cap T$, ovvero $S \cap T$ convesso.

Funzioni convesse

Definizione

Sia $S\subseteq\mathbb{R}^n$ un insieme convesso. Una funzione $f:S\to\mathbb{R}$ si dice convessa su S se per ogni coppia di punti $\mathbf{x},\mathbf{y}\in S$ ed ogni $\lambda\in[0,1]$ si ha

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

se la disuguaglianza è stretta, cioè se

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) < \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

con $\lambda \in (0,1)$, allora la funzione si dice strettamente convessa

La definizione è ben posta in quanto $\lambda \mathbf{x}+(1-\lambda)\mathbf{y}\in S$ per $\lambda\in[0,1]$, grazie alla convessità di S

Graficamente

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

Quindi, una funzione convessa "giace al di sotto delle sue corde" (vale anche se n>1)

Graficamente

f(x) strettamente convessa su S

f(x) convessa su S ma non strettamente

Esempi di funzioni convesse

- $\rightarrow x^2$
- ▶ x
- $ightharpoonup e^x$
- $-\log x$
- $ightharpoonup \max\{-x,2x\}$
- ightharpoonup

Consideriamo una funzione lineare $f(\mathbf{x}) = c^T \mathbf{x}$. Dati $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, si ha

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = c^{T}(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) =$$
$$= \lambda c^{T} \mathbf{x} + (1 - \lambda)c^{T} \mathbf{y} = \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

quindi, una funzione lineare è convessa (ma non strettamente) su \mathbb{R}^n

Epigrafico

Data una funzione $f:S\to\mathbb{R}$ definita sull'insieme $S\subseteq\mathbb{R}^n$ si definisce epigrafico di f il sottoinsieme di \mathbb{R}^{n+1}

$$\operatorname{epi} f = \{(x,\mu) \, : \, x \in S, \, \mu \in \mathbb{R}, \mu \geq \ f(x)\} \subseteq S \times \mathbb{R}$$

una funzione f è convessa su S se e solo se il suo epigrafico è convesso

Funzioni concave

Definizione

Sia $S\subseteq\mathbb{R}^n$ un insieme convesso. Una funzione $f:S\to\mathbb{R}$ si dice concava su S se -f è convessa su S. In altre parole, f è concava se per ogni coppia di punti $\mathbf{x},\mathbf{y}\in S$ ed ogni $\lambda\in[0,1]$ si ha

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$