

Introduction to Verifiable Public Registry

Fabrice Rochette

https://www.linkedin.com/in/fabricerochette/

What is a Verifiable Public Registry?

A VPR is a public Registry of Trust Registries

Any Ecosystem can create a Trust Registry in a VPR.

Trust Registries

Each Ecosystem **Trust Registry** is identified by a **resolvable DID**, and provides, at least:

- Governance Framework document(s).
- Zero or more Credential Schemas.

Trust Registry

did
schemas
governance framework docs

A VPR doesn't care about the DID methods used because trust resolution is performed outside the VPR.

In a VPR, you can use any DID method.

Credential Schemas

Credential Schemas

They are created and controlled by Trust Registries.

Credential Schemas include:

- Configuration information;
- A Json Schema of the Credential Schema.

A **Credential Schema** is immutable.

Credential Schema Permissions (CSPs) define who can perform actions related to the **Credential Schema**, such as onboarding **issuers** and **verifiers**, **issue** or **verify** credentials. CSPs define optional business rules.


```
"$id": "vpr-mainnet:/vpr/v1/cs/js/VPR_CREDENTIAL_SCHEMA_ID".
"$schema": "https://json-schema.org/draft/2020-12/schema",
"title": "SimpleExampleCredential",
"description": "SimpleExampleCredential using JsonSchema",
"type": "object",
"properties": {
  "credentialSubject": {
    "type": "object",
    "properties": {
      "id": {
        "type": "string",
        "format": "uri"
      "firstName": {
        "type": "string",
        "minLength": 0,
        "maxLength": 256
      "lastName": {
        "type": "string",
        "minLength": 1,
        "maxLength": 256
      "expirationDate": {
        "type": "string",
        "format": "date"
      "countryOfResidence": {
        "type": "string",
        "minLength": 2,
        "maxLength": 2
    "required": [
      "id",
      "lastName",
      "birthDate".
      "expirationDate",
      "countryOfResidence"
```

Credential Schema Permissions

Each Credential Schema has its own Permission tree

Credential Schema defines which Permission Types are allowed

Permission Type	Description
Trust Registry	Create and control Credential Schemas. Grant other roles.
Issuer Grantor	Grant Issuer permissions to candidate issuers
Verifier Grantor	Grant Verifier permissions to candidate verifiers
Issuer	Can issue credentials of this schema
Verifier	Can request presentation of credentials of this schema

Validation Process: to create new CSPs and/or issue VCs

To get granted a CSP, an Applicant must run a Validation process

Applicant starts the Validation Process by selecting a Validator CSP. Validator CSP defines required fees.

In this example:

- An Applicant will need to pay 1,000 * (1 + TD) = 1,200 TUs to run a validation process with **Issuer Grantor B** and get granted an **ISSUER** CSP **Issuer C** for this **Credential Schema** of **Trust Registry A**

Validation Process: to create new CSPs and/or issue VCs

Validation Process runs, and optional fees are distributed.

- Validation is started, fees paid by Applicant are escrowed
- Applicant connects to the DT-Service (DTS) provided by Validator (the DID registered in the Validator's CSP). They
 exchange information for completing the Validation process.
- When **Validation** process completes, Applicant CSP is created (and/or a credential is issued), then fees are distributed.

Validation Process: to create new CSPs and/or issue VCs

Validation Process example

Pay per issuance/verification: applying CSP rules

CSPs provide a flexible pay per issuance/verification model

Code	Description	Rate
UAR	User Agent Rate, for rewarding Apps and Browser and Services that enforce the trust layer	10%
WUAR	Wallet User Agent Rate, for rewarding Wallets and Services that enforce the trust layer	10%
TD	Trust Deposit	20%

In this example:

- Total paid by Issuer C for issuing a credential: (10 + 5) * (1 + UAR + WUAR + TD) = 21 TUs
- Total paid by Verifier E for verifying a credential: (20 + 5 + 2 + 30) * (1 + UAR + WUAR + TD) = 79.8 TUs

Pay per issuance/verification: applying CSP rules

A flexible pay per issuance/verification model that rewards all participants

- If fees>0, Issuer must create a transaction else DT compliant wallet will not accept the credential
- Fee distribution is automatically handled by VPR
- Privacy Preserving for Holder

Fees distribution:

Pay per issuance/verification: applying CSP rules

A flexible pay per issuance/verification model that rewards all participants

- If fees>0, Verifier must create a transaction else **DT compliant wallet** will not accept the presentation request
- Fee distribution is automatically handled by DTR network
- Privacy Preserving for Holder

Credential Verification

Credential Schema Permissions: Summary

A decentralized way of controlling permissions

- All participants must comply with the Trust Registry Governance Framework
- Validation processes are needed for creating and maintaining CSPs
- For issuing (resp. verifying) credentials, **Issuer** (resp. **Verifier**) may have to **pay fees**.

Trust Resolution

VUAs and VS query the VPR to verify authorizations

- Is **Issuer** did:example:issuerabc authorized to issue credentials of schema 1234? If payment is required, did the issuer pay?
- Is **Verifier** did:example:issuerabc authorized to verify credentials of schema 1234? If payment is required, did the verifier pay?

If payment is required, a token is sent to the peer and the payer execute a transaction in the VPR, linked to this token, to pay.

DID Directory

A Directory of verifiable services

The DID directory is a **public database of DIDs** that can be used by **crawlers** to build an index of Decentralized Trust - Services (DTSs). Crawlers simply need to iterate over the DID Directory, and for each DID, try to resolve its DID Document, and dereference all interesting information as explained in the **Verifiable Trust Specification**.

Any participant can register a DID in the DID directory.

DID Directory

Used by search engines, apps...

By using the index built by crawlers, a search engine can be provided to users and they can search for **verifiable services** by querying **verifiable metadata**.

Apps can use an index to let user search only for content/services they support. **Example**: a **Social Network App** could work by indexing **Social Channel Verifiable Services** that present a specific credential only, ie a credential issued by the social network app owner. That's another business model: purchase a credential to appear in a service.

Verifiable Public Registry - Spec

Contributions? Discussions?

https://verana-labs.github.io/verifiable-trust-vpr-spec/

Verana Foundation

2050

Building The Missing Trust Layer

Location

- Ahtri tn 1210151 Tallinn, Estonia
- © Cra. 13A #86A-42 Bogotá DC, Colombia
- Paseo de Recoletos 27-41
 Madrid, 28004, Spain

