

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963AQUATIC DISPOSAL FIELD INVESTIGATIONS, EATONS NECK DISPOSAL SITE, LONG ISLAND SOUND

DREDGED MATERIAL RESEARCH PROGRAM

TECHNICAL REPORT D-77-6

AQUATIC DISPOSAL FIELD INVESTIGATIONS
EATONS NECK DISPOSAL SITE
LONG ISLAND SOUND

APPENDIX E: PREDISPOSAL BASELINE CONDITIONS OF ZOOPLANKTON ASSEMBLAGES

by

Ronald I. Caplan

New York Ocean Science Laboratory Montauk, New York

> September 1977 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for Office, Chief of Engineers, U. S. Army Washington, D. C. 20314

Under Contract No. DACW51-75-C-0016 (DMRP Work Unit IA06C)

Monitored by Environmental Effects Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

AQUATIC DISPOSAL FIELD INVESTIGATIONS EATONS NECK DISPOSAL SITE LONG ISLAND SOUND

Appendix A: Hydraulic Regime and Physical Characteristics of Bottom Sediment

Appendix B: Water-Quality Parameters and Physicochemical Sediment Parameters

Appendix C: Baseline Studies of Plankton, Nekton, and Benthic Invertebrate Populations

Appendix D: Predisposal Baseline Conditions of Demersal Fish Assemblages

Appendix E: Predisposal Baseline Conditions of Zooplankton Assemblages

Appendix F: Predisposal Baseline Conditions of Phytoplankton Assemblages

Destroy this report when no longer needed. Do not return it to the originator.

DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION, CORPS OF ENGINEERS P. O. BOX 631

VICKSBURG, MISSISSIPPI 39180

IN REPLY REFER TO: WESYV

7 September 1977

SUBJECT: Transmittal of Technical Report D-77-6 (Appendix E)

TO: All Report Recipients

- 1. The technical report transmitted herewith represents the results of one of several research efforts (Work Units) undertaken as part of Task 1A, Aquatic Disposal Field Investigations of the Corps of Engineers' Dredged Material Research Program. Task 1A is a part of the Environmental Impacts and Criteria Development Project (EICDP), which has as a general objective determination of the magnitude and extent of effects of disposal sites on organisms and the quality of surrounding water, and the rate, diversity, and extent such sites are recolonized by benthic flora and fauna. The study reported on herein was an integral part of a series of research contracts jointly developed to achieve the EICDP general objective at the Eatons Neck Disposal Site, one of five sites located in several geographical regions of the United States. Consequently, this report presents results and interpretations of but one of several closely interrelated efforts and should be used only in conjunction with and consideration of the other related reports for this site.
- 2. This report, Appendix E: Predisposal Baseline Conditions of Zooplankton Assemblages, is one of six contractor-prepared reports that are appended to the Waterways Experiment Station Technical Report D-77-6 entitled: Aquatic Disposal Field Investigations, Eatons Neck Disposal Site, Long Island Sound. The titles of the appendices of this series are listed on the inside front cover of this report. The technical report provides additional results, interpretations, and conclusions not found in the individual appendices and provides a comprehensive summary and synthesis overview of the entire project.
- 3. The purpose of this report, conducted as Work Unit 1A06C, was to determine the baseline conditions of the zooplankton at an established disposal site off Eatons Neck, Long Island, New York, and the surrounding area. The study was to provide a precise estimate of the distribution and abundance of zooplankton, and ichthyoplankton. The exact depth distribution of these components was of less importance than the variation associated with determinations of their absolute abundance on a seasonal and annual basis. The variation of abundance was deemed necessary and sufficient for establishing a baseline to which comparisons could be made during and subsequent to disposal operations.

WESYV 7 September 1977 SUBJECT: Transmittal of Technical Report D-77-6 (Appendix E)

- 4. This report gives the major species of zooplankton and ichthyoplankton located at Eatons Neck disposal area and a reference area. There appears to be little change in densities or type of organisms from that reported in the literature. One significant concept in the report is that of copepod resting eggs which are at present being investigated as an important reproductive strategy in marine copepods. It is possible that in future disposal operations that numbers of resting eggs in the sediments of a disposal area should be considered as to possible habitat loss prior to disposal operations.
- 5. The baseline evaluations at all of the EICDP field sites were developed to determine the base or ambient physical, chemical, and biological conditions at the respective sites from which to determine impacts due to the subsequent disposal operations. Where the dump sites had historical usage, the long-term impacts of dumping at these sites could also be ascertained. Controlled disposal operations at the Eatons Neck site, however, did not occur due to local opposition to research activities and even though the Eatons Neck project was terminated after completion of the baseline, this information will be useful in evaluating the impacts of past disposal at this site. The results of this study are particularly important in determining placement of dredged material for open-water disposal. Reference studies, as well as the ones summarized in this report, will aid in determining the optimum disposal conditions and site selection in relation to the zooplankton assemblages of the historical dump site and surrounding areas.

JOHN L. CANNON

Warm

Colonel, Corps of Engineers Commander and Director Unclassified
ECURITY CLASSIFICATION OF THIS PAGE (When Date Entered

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER	
Technical Report D-77-6	(9)	
4. TITLE (and Subtitle)	VPE OF REPORT & BERIOD COVERE	
AQUATIC DISPOSAL FIELD INVESTIGATIONS, EATONS	\ld \.	
NECK DISPOSAL SITE, LONG ISLAND SOUND, APPENDIX	E Final repart	
PREDISPOSAL BASELINE CONDITIONS OF ZOOPLANKTON	G. PERFORMING ORG. REPORT NUMBER	
ASSEMBLAGES	and the same of th	
	S. CONTRACT OR GRANT NUMBER(s)	
Ronald I./Caplan	DACW51-75-C-0016/	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
New York Ocean Science Laboratory	A Section 100 Charles and	
Montauk, New York	DMRP Work Unit No. 1A06C	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
Office, Chief of Engineers, U. S. Army	Sep tender 1977	
Washington, D. C. 20314	TS. NUMBER OF PAGES	
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office	104 15. SECURITY CLASS. (of this report)	
U. S. Army Engineer Waterways Experiment Station		
Environmental Effects Laboratory P. O. Box 631, Vicksburg, Miss. 39180	Unclassified	
P. O. Box 631, Vicksburg, Miss. 39180	154. DECLASSIFICATION/DOWNGRADING	
Approved for public release; distribution unlimi	ted. (12)110p.	
Approved for public release; distribution unlimi	it from Report)	
Approved for public release; distribution unlimi	it from Report)	
17. DISTRIBUTION STATEMENT (of the obetract entered in Block 20, if differen	it from Report)	
Approved for public release; distribution unliming 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different entered in Bloc	it from Report)	
Approved for public release; distribution unliming 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different to the abetract entered in Block 20, if different entered in Bloc	it from Report)	
Approved for public release; distribution unliming 17. DISTRIBUTION STATEMENT (of the abeliant entered in Block 20, if different to the abeliant entered in Block 20, if different to the abeliant entered in Block 20, if different to the abeliant entered in Block 20, if different to the abeliant entered in Block 20, if different to the abeliant entered in Block 20, if different to the abeliant entered in Block 20, if different to the abeliant entered in Block 20, if different ent	it from Report)	
Approved for public release; distribution unliming the statement of the obstract entered in Block 20, if different to the supplementary notes	it from Report) 6-App-E	
Approved for public release; distribution unliming 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different to the supplementary notes 19. KEY WORDS (Continue on reverse side if necessary and identify by block numbers)	nt from Report) 6-App-E mber)	
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different to the supplementary notes 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block num. Aquatic microorganisms Field investigations	it from Report) 6-App-E	
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different to the state of the	nt from Report) 6-App-E mber)	
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different to the supplementary notes are supplementary notes. 19. KEY WORDS (Continue on reverse elde if necessary and identify by block num. Aquatic microorganisms Field investigation of the proposal areas Fisheries. Dredged material disposal Fishes	nt from Report) 6-App-E mber)	
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different to the supplementary notes 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block num. Aquatic microorganisms Field inventished in the property of the supplementary in the property of the pr	nt from Report) 6-App-E mber)	
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different to the state of the	nt from Report) 6-App-E nber) estigations Zooplankton	
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different to the supplementary notes are supplementary notes. 18. KEY WORDS (Continue on reverse side if necessary and identify by block num. Aquatic microorganisms Disposal areas Dredged material disposal Eatons Neck disposal site Sampling	nber) estigations Zooplankton as initiated in October 1974 bank at the Eatons Neck dis- ouring the 9-month study	

DD FORM 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Then Data Entered)

390574

B

20. ABSTRACT (Continued).

Acartia tonsa was common throughout the first 6 months of the study with densities as high as 500,000 individuals/1000 m³ observed in March 1975. A plankton bloom occurred in populations of several copepods (including copepodids) in December 1974, e.g., Acartia clausii, Temora longicornis, and Acartia spp. copepodids. Meroplanktonic Crustacea, Caridia (shrimp), and Brachyura (crabs) became abundant (greater than 100,000 individuals/1000 m³) in March and April 1975, respectively. Meroplanktonic Mollusca, Gastropoda, and Bivalvea became abundant (greater than 1000 individuals/1000 m³) in April and May 1975, respectively. There were two blooms of Cladocera during 1975, one in February (1000 individuals/1000 m³) and one in June (1,000,000 individuals/1000 m³). Evadne sp. dominated the first bloom, and Podon sp. the second. Polychaeta larvae were not common at any time during the study.

The first fish eggs obtained in this study were collected in February 1975 at both control and disposal sites. They belonged to the four-bearded rockling, Enchelyopus cimbrius. Larvae of the winter flounder, Pseudopleuronectes americanus, and the sand lance, Ammodytes hexapterus, were also collected with the former being present at the control site only. The spring pattern of ichthyoplankton abundance included the eggs of Enchelyopus cimbrius, Scomber scombrus, and Scopthalmus aquosus. Myoxocephalus spp. and Pseudopleuronectes americanus larvae were also collected. The summer ichthyoplankton fauna included nine species of eggs and larvae with the first appearance of the butterfish, Peprilus triacanthus.

The winter patterns of copepod abundance indicated two important findings:

- $\underline{\mathbf{a}}_{\bullet}$. There was a copepod bloom in December 1974, 6 weeks before the spring diatom bloom.
- $\underline{\mathbf{b}}$. Copepod densities were maximum at depth during the November diurnal, indicating a reproductive strategy not previously reported.

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.

PREFACE

This report presents the results of an investigation designed to determine the baseline conditions of the zooplankton at an established disposal site off Eatons Neck, Long Island. The study was prepared for the Office, Chief of Engineers, and supported by the U.S. Army Engineer Waterways Experiment Station (WES), Environmental Effects Laboratory (EEL), Vicksburg, Mississippi, under Contract No. DACW51-75-C-0016 to the New York Ocean Science Laboratory, Montauk, New York. The report forms part of the EEL Dredged Material Research Program (DMRP).

Contracting was handled by the New York District (NYD); COL Thomas C. Hunter, CE, NYD, was Contracting Officer. The report was written by Ronald I. Caplan, Assistant Research Scientist. The following New York Ocean Science Laboratory personnel assisted in the study: Barbara Butler, Tullio Croce, CAPT Howard DeCastro, Gail Erskine, William Felix, Kim Larson, Bruce Mundy, Susan Perritt, and Ken Tighe.

The study was conducted under the direction of the following EEL personnel: Dr. R. M. Engler, Environmental Impacts and Criteria Development, Project Manager, and J. R. Reese, Site Manager. The contract was managed by J. R. Reese, Environmental Monitoring and Assessment Branch at EEL under the supervision of Mr. R. C. Solomon, Branch Chief, and Dr. C. J. Kirby, Chief, Environmental Resources Division, EEL. The study was under the general supervision of Dr. John Harrison, Chief, EEL. The Commanders and Directors of WES during the study and preparation of this report were COL G. H. Hilt, CE, and COL J. L. Carnon, CE. Technical Director was Mr. F. R. Brown.

CONTENTS

<u>P</u>	age
	2
PREFACE	• 2
LIST OF FIGURES	
LIST OF TABLES	.5
CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT	
PART I: INTRODUCTION	.8
Background Data Base Vertebrate and Invertebrate Taxa Previous Investigations	10
PART II: METHODS	.13
PART III: RESULTS	.21
Winter Period Spring Period Biomass	. 25
PART IV: DISCUSSION	.41
Invertebrate Holoplankton Invertebrate Meroplankton Vertebrate Meroplankton Summary	.56
REFERENCES	.64
TABLES E1 - E16	

LIST OF FIGURES

			Page
Figure	E1.	Regional Map of Eatons Neck Study Site	. 14
Figure	E2.	Study site of Eatons Neck disposal area	. 15
Figure	Е3.	Biomass levels at control and disposal area in Eatons Neck disposal site	40
Figure	E4.	Quantities of Acartia clausii collected at station ENA, middepth buoy vs. drogue	46
Figure	E5.	Quantities of Temora longicornis collected at station ENA, bottom buoy vs. drogue	47
Figure	E6.	Quantities of Acartia spp. copepodid collected at station ENA, bottom buoy vs. drogue	48
Figure	E7.	Quantities of <i>Podon</i> sp. and <i>Evadne</i> sp. at station ENA	50
Figure	E8.	Quantities of crab and shrimp larvae collected at station ENA	53
Figure	E9.	Quantities of barnacle nauplii/gastropod larvae at station ENA	54
Figure	E10.	Quantities of Polychaeta larvae/Bivalvia larvae collected at station ENA	55
Figure	E11.	Quantities of Acartia tonsa collected at station ENA, surface buoy vs. drogue	62

LIST OF TABLES

- Table El Zooplankton and Ichthyoplankton Data Base, Long Island Sound
- Table E2 Eatons Neck Sampling Program
- Table E3 Sampling Station Locations for Eatons Neck Zooplankton
- Table E4 Copepod Standing Crop Densities During Monthly Sampling Periods
- Table E5 Zooplankton Standing Crop Densities During Monthly Sampling Periods
- Table E6 Ichthyoplankton Standing Crop Densities
- Table E7 Copepod Standing Crop Densities During
 Diurnal Surveys
- Table E8 Zooplankton Standing Crop Densities
 During Diurnal Surveys
- Table E9 October Dry Weight Levels During Cruise EN1
- Table E10 November Spatial and Monthly Biomass Levels During Cruise EN2
- Table Ell November Diurnal Biomass Levels During Cruise EN3
- Table E12 December Monthly Biomass Levels During Cruise EN4
- Table E13 January Monthly Biomass Levels During Cruise EN6
- Table E14 Monthly Dry Weight Levels and Percent Ash Content

Table E15 Species Abundance of Phytoplankton
Table E16 Total Phytoplankton Abundance

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	Ву	To Obtain
miles (U. S. statute)	1.609344	kilometers
quarts (U. S. liquid)	0.0009463	cubic meters

AQUATIC DISPOSAL FIELD INVESTIGATIONS

EATONS NECK DISPOSAL SITE, LONG ISLAND SOUND

APPENDIX E: PREDISPOSAL BASELINE CONDITIONS

OF ZOOPLANKTON ASSEMBLAGES

PART I: INTRODUCTION

Background

1. The primary objective of this study was to provide the Corps of Engineers with baseline data in a region of potential impact due to the introduction of dredged material. In order to complete this task, the following question was asked as a framework for this study:

What is the distribution and abundance of zooplankton and ichthyoplankton at the Eatons Neck Disposal Site as compared to the control region?

Data Base

2. The aim of the study was to provide a precise estimate of the distribution and abundance of zooplankton and ichthyoplankton: adult copepods (the major holoplanktonic component of the region); larval invertebrates (the major group determining recruitment with which to estimate the future of benthic populations); and ichthyoplankton (fish eggs and larvae). The exact depth distribution of

these three biological components was of less importance than the variation associated with determinations of their absolute abundance on a seasonal and annual basis. The variation of abundance is necessary and sufficient for establishing a baseline to which comparisons can be made during and subsequent to disposal operations.

- 3. This report includes data and preliminary analysis of samples collected from October 1974 through June 1975. The data are expressed as standing crop (number of individuals/1000 m³) and percent standing crop (copepod fraction only).
- 4. A data base has a number of components, each of which is associated with the distribution and abundance of a natural population or subset of a population, e.g., egg, larvae, adult. The distribution of a population, which in this case is a biological population or group of actually interbreeding individuals, can be expressed in a number of dimensions including time and space but is not limited to these. The chemical and/or physical characteristics of the time and space set may be considered as subsets of the system or may define other sets of a distributional pattern. The form of the distributional pattern may be represented graphically or mathematically. Its utility, irrespective of form, lies in an understanding and potential prediction of similar patterns in adjacent regions and at a future date. The exact form of the present distributional patterns relate to the time series data of the major data set defined by space, i.e., location of stations and concomitant densities (#/1000 m³ or #/liter).

Such distributional patterns presented in this manner describe the dimensions within which the data can be expected, with defined probabilities, to vary in a time and space set. The magnitude of the natural variations observed are, however, best characterized by patterns of numerical abundance.

Vertebrate and Invertebrate Taxa

- 5. <u>Taxonomic divisions</u>. The zooplankton can be further divided into holoplankton, ichthyoplankton, and invertebrate meroplankton.
- 6. Meroplankton and Ichthyoplankton. Meroplankton are the planktonic larval stages of organisms that spend a portion of their life cycle as nonplankton, i.e., benthic. This component includes eggs and larvae of both vertebrate and invertebrate taxa; the teleostean meroplankton are termed ichthyoplankton. The ichthyoplankton are representative of both the pelagic and benthic fish populations. They are the resource from which the adult populations must draw in order to sustain future populations. The ichthyoplankton portion of the Long Island Sound (LIS) waters represents a major component of the biological community susceptible to the potential impact by the proposed disposal of dredged material. The second component of the meroplankton considered here is that dealing with the invertebrate fraction; the larval forms are most germane as they, like their vertebrate counterparts, are an indication of the available resources for colonization and maintenance of benthic populations.
- 7. Holoplankton. The component, termed the holoplankton, does not appear to

have a direct link to the benthic populations. However, it also may be potentially adversely affected by dredged material in that its eggs are in the sediments. This group provides all life stages of the plankton (eggs, larvae, and adult) and represents a possible indicator of the capacity of the physical/chemical environment to support its populations. The major taxon in LIS is the Copepoda, representing at least 90 percent of the biomass of all zooplankton. Other crustacean groups are also important components of the holoplankton, e.g., Mysidacea and Cladocera, Chaetognatha, Coelenterata (medusae), and Ctenophora also occur in Sound holoplankton.

8. The importance of the holoplankton as baseline components lies in their value in the assessment and prediction of changes in the physical/chemical environment. Most of the important indicator species found in the Sound are members of the holoplankton. They, like the abundance data, characterize the levels of production in the Sound and indicate the influence of both internal and external components of the total biota. Consequently, although they do not contribute to the recruitment of benthic populations, they do define, better than the meroplankton, those conditions which are responsible for the success or failure of meroplankton components. These components are indeed interrelated in terms which define the data base for the Sound generally and for the benthic portions of the Sound specifically. The importance of zooplankton in cycling nutrients and energy to benthic populations, though documented, will not be con-

sidered in the present report.

Previous Investigations

- 9. LIS investigations began with Deevey² (zooplankton) and Richards³ (ichthyoplankton). The periods of observation and distribution of studies are indicated in Table El. All components of the zooplankton/ichthyoplankton are indicated therein. The next study was that of Caplan and Pastalove.⁴ This 1971 investigation included only two periods, April and August, and further differed from all previous work in that a pumping system was used to collect plankton the first time such a system was used in LIS. That same year, the National Marine Fisheries Service investigated the waters around Davids Island, N.Y.⁵ This investigation included neuston as well as water column plankton.¹ Ichthyoplankton were not analyzed and remain to be analyzed. The coverage of this study included other parts of LIS as well as the Davids Island region located in the extreme western portion of the sound.
- 10. From January 1973 through June 1974, a study of LIS plankton was carried out under the direction of Dr. H. Austin (Shoreham) and Dr. R. Nuzzi (Jamesport). (The zooplankton portion has been reported elsewhere [References 6-8]). This investigation was located at the proposed sites of the Long Island Lighting Company's two nuclear generating facilities at Mattituck and Shoreham, L.I. (Table El). Both ichthyoplankton and zooplankton were investigated.

PART II: METHODS

- 11. The present investigation at Eatons Neck (EN) was begun in October 1974 (Table E2). Stations were established at several sites within the old disposal ground that was enlarged at the request of State and Federal agencies. The region is approximately 2 miles square* (Figure El and E2). The frequency of sampling was approximately monthly (Table E2). Stations were changed as marker buoys became available to facilitate sampling at the same spot each month. Station ENA was sampled during the last three cruises to provide a wider pattern of samples. Station locations are indicated in Table E3 and Figure E2. Station field routine was as follows:
 - a. A 60-cm-diameter bongo frame with 202-μ and 363-μ mesh nets (net length/opening ratio 5:1) and equiped with flow meters mounted 1 within each net and 1 externally between the nets. The nets were towed at the surface and middepth for 5-10 min in a circular pattern around a buoy and middepth drogue. Sightings utilizing a hand-held compass (Model 2030) were taken on the drogue array to determine the drift of water during the sampling. A surface drogue was deployed at the same time as the middepth drogue. Each drogue was composed of a current cross at the correct depth. The drogue study representation was that of a Lagrangian format whereas the buoy format represented an Eulerian format. The purpose of the drogue-buoy format was to determine the time relationships

^{*} A table for converting U.S. customary units to metric (SI) can be found on page 7.

Figure E2. Study site of Eatons Neck disposal area

- between fixed and moving-point planktonic distributional patterns, Eulerian vs. Lagrangian reference frame.
- b. Samples obtained in this manner were taken from washed nets and placed into quart jars to which were added sufficient 25 percent formalin to bring solution to 4 percent formalin, buffered (Sodium acetate) formalin (pH 7.2), and a station label utilizing the standard MARMAP Survey I Manual format. 15 Concomitant physical and chemical measurements were made with each sample. Hydrocasts included multidepth Nisken bottles (two depths), BT profiling, surface temperature, and salinity measurements. Salinity samples were analyzed by the Chemistry Department at the New York Ocean Science Laboratory (NYOSL) utilizing an inductive salinometer with a precision of ± 0.001°/... Temperature data on BT casts have a precision of ± 1°C whereas the Bucket Thermometer (surface water temperature only) has a similar precision.
- 12. The samples were then returned to NYOSL for biomass, displacement volume, species composition, and population analysis. Samples brought into the laboratory were first split into workable aliquots utilizing a Folsom plankton splitter. These aliquots were then used to measure biomass (displacement volume or dry weight); one aliquot was examined for fish eggs and larvae and then enumerated in terms of other invertebrate/vertebrate taxa, life history stage, and extraneous

- material (tar, debris, etc.). The National Marine Fisheries MARMAP Survey Manual \mathbf{I}^{15} has also been used as it relates to the ichthyoplankton sorting, identification, and enumeration.
- 13. Ichthyoplankton, eggs, and larvae were picked from the aliquots, counted, and placed in labeled vials. The eggs, at least 100 per sample, were then identified utilizing total diameter and oil droplet numbers and diameters. All of the invertebrate zooplankton, exclusive of copepods, were then counted. To determine the copepod density the sample was placed in a beaker and the volume brought to a constant volume, 100 or 200 milliliters. Five-milliliter aliquots were then removed with a stempel pipette. Sufficient 5-m2 stempel pipette volumes were counted to provide at least 400 individuals for each sample. Each stempel pipette volume withdrawn from the aliquot was counted completely utilizing a glass petri dish with 1-centimeter grid. The samples were analyzed with a dissecting microscope at a power of 15X. The eye pieces of the dissecting microscopes were equipped with ocular micrometers to permit measurements of copepods and thereby facilitate species identification.
- 14. Biomass determinations were made on aliquots by drying the samples in weighted pans. The samples were dried in an oven for 3 hours at a temperature of 70°C. Weighings were done on a Mettler balance (Model H2OT) with a precision of ±0.1 mg. Ash-free dry weight determinations were made by taking a subsample of the biomass and placing it in a preweighed crucible. The crucible was then placed in a

muffle furnace for 2 hours at a temperature of 500° C. The crucible was removed and cooled in a desiccator for 4 hours and then weighed on a Mettler balance (Model H2OT) with a precision of ± 0.1 mg.

- 15. The station codes used in this report include a three-part code as follows:
 - a. The first part indicates the station (see Figure E2),e.g., EN1, ENA, ENCONT.
 - <u>b.</u> The second part indicates the mesh of the net used, e.g., 363μ or 202μ .
 - c. The third part of the code indicates the depth of the sample where A=surface, B=middepth, and C=bottom. The type of station (buoy or drogue) is indicated with the numeral 1 for buoy and 2 for drogue.

The appropriate code for the tow around a buoy of a surface sample taken at station ENA with the 363μ net would be ENA-363-1A, whereas the two around a drogue of a bottom sample taken with the 202μ net at the control station was designated as ENCONT-202-2C. The only replicate tows made during this study were done during the December cruise. At that time only the surface samples were replicated, indicated by a 1 or 2 preceeding the sample depth, e.g., A only. The subsurface tows were not replicated.

16. Sampling at the Eatons Neck Disposal Site began on 30 October 1974. During this first cruise only 363μ mesh nets were available and therefore all the samples were collected with this type of gear. The

water, as would be expected for this time of the year, was full of ctenophores - gelatinous organisms which extensively clog the net and make determination of biomass and standing crop (density) difficult to assess. It was found that two methods could be employed to substantially reduce the quantity of ctenophores both obtained in the nets and retained in the fixed samples. Subsurface tows yielded a lower ctenophore fraction than surface tows; therefore, this strategy was employed during the October monthly cruise.

- 17. Further, once a sample was brought on board, it was placed in a bucket to which was added a small quantity of formalin (25 percent buffered).

 After 5 min the bucket was decanted and the ctenophore fraction (which remained at the top) was separated from the fraction containing copepods and larval invertebrates (located on the bottom).
- 18. Only two stations were sampled in October, EN1 and EN2 (Figure E2).

 Eleven of the 18 samples were retained for analysis with the remaining 7 samples being discarded due to the preponderance of ctenophores in spite of the preventive methods described above.
- 19. Zooplankton sampling at Eatons Neck in November was not hampered by the presence of ctenophores; consequently, larger quantities of material were obtained. This period marked the first diurnal sampling program at the disposal site. A diurnal sampling program is usually divided into two components, a spatial regime and a diurnal regime.

 The spatial regime is designed to establish the spatial pattern in the area of interest before the diurnal sampling begins. This spatial

- sampling program is carried out as quickly as possible to determine synoptically a baseline for the subsequent diurnal sampling.
- 20. In November, two samples (middepth and bottom) were taken at three stations: EN1 and EN2 (disposal site) and EN3 (control site). Middepth and bottom depths were sampled since the zooplankton were concentrated at these levels during the time of sampling.
- 21. The monthly cruise in December required 2 days due to weather and vessel problems. During the first day (13 December 1974), Suffolk County Marine Division boat BRAVO assisted in the sampling of stations at Buoy B and Control Buoy EN3. Only surface tows were made during this cruise. Each surface tow consisted of pulling two 202μ mesh nets side by side.
- 22. The subsurface samples were obtained several days later (18 December 1974). Due to the time difference in the collection of the samples for this month, exact comparisons of differences in spatial patterns are not possible. However, the overall pattern of distribution can be interpreted in terms of the types and relative abundance of the organisms observed. During this cruise, the two types of nets (202μ mesh and 365μ mesh) were used for the first time enabling internet comparisons as these relate to the catchability of each net type.
- 23. Density values are presented as mean number of organisms/1000 m 3 \pm one standard deviation or \pm the coefficient of variation (CV) in percent. This expresses the percent variation as a function of the mean. The number of samples which was used to determine the mean is

indicated by the letter N. No statistical tests were run to quantify the differences in densities, therefore all statements relating to densities which are "higher" or "lower" are qualitative but usually reflect major differences in densities, e.g., greater than one order of magnitude. This was done because of the high variability of data and lack of replicate samples.

PART III: RESULTS

Winter Period*

October monthly cruise

- 24. Zooplankton. During this month, six species of adult copepods were collected. The percent standing crop of the dominant species,

 Acartia tonsa, averaged 97 ± 6.51 percent (N=4) for the surface tows;

 98.46 ± 4 percent for the middepth tows; and 85 ± 36 percent (N=4) for the bottom tows. The average standing crop for this species at all depths was higher at ENI (196 x 10³ ± 10³/1000 m³; N=4) than at EN2 (34 x 10³ ± 26 x 10³/1000 m³; N=4) (Table E4). These observed densities at ENI and EN2 are similar and lower than those reported for this species at Shoreham (195 x 10³/1000 m³) in 1974⁷, respectively.
- 25. The remaining five species of adult copepods comprised less than 9

 percent of the standing crop at both stations. This group included

 (in order of decreasing numerical abundance) Pseudodiaptomus coronatus,

 Labidocera aestiva, Temora longicornis, Pseudocalanus minutus, and

 Acartia clausii. The only evidence of vertical stratification in

 this group was found for Pseudodiaptomus coronatus, which predominately

^{*} Winter period = 30 October 74 - 31 December 74.

- occurred in middepth and bottom tows at both EN1 and EN2.
- 26. Relatively few noncopepod zooplankters were obtained in October 1974 (Table E5). The dominant adult form (holoplankton) was the mysid, Neomysis americana, which occurred in greatest numbers at middepths and along the bottom at EN1 (>100/1000 m³). At EN2, the densities were low throughout the water column on the average (>100/1000 m³). The presence of this species in October was reported for Shoreham in 1973⁷ and represents the expected seasonal occurrence of mysids at depths during the day. 6,7 No other adult zooplankter (noncopepod) was obtained in October 1974.
- 27. The occurrence of invertebrate meroplankton was infrequent during the October sampling. However, there were some individuals present in the following groups: crab larvae, shrimp larvae, Polychaeta larvae, and molluscan larvae (veligers).
- 28. <u>Ichthyoplankton.</u> No fish larvae were collected and only 1 species of eggs, *Scophthalmus aquosus*, during this period.
 November spatial and diurnal cruise
- 29. Zooplankton. The spatial pattern indicated a high concentration of Acartia tonsa at all stations (EN1, EN2, and EN3), with an average percent standing crop of 97 ± 6 percent (N=7) and an average density of 6.5 x 10³ ± 5.7 x 10³/1000 m³ (N=7) (Table E4). Other species present were Pseudodiaptomus coronatus and Labidocera aestiva each representing less than 3 percent of the total number of copepods sampled.

- 30. As was the case in October, the mysid Neomysis americana was the dominant noncopepod zooplanker present at Eatons Neck Disposal Site. The presence of substantial numbers of neligers (larval molluscs) indicated a change in the meroplankton from that observed in October 1974 (Table E5), whereas there appears to be a decrease in shrimp larvae.
- 31. The diurnal sampling program (not tabulated) began at 1900 hr on 19 November 1974. The pattern of depth distribution and abundance was similar to that indicated by the spatial pattern in terms of adult copepods. Acartia tonsa was the dominant copepod throughout the water column during the entire diurnal period of study (14 hr). Further, Pseudodiaptomus coronatus and Labidocera aestiva were also present. This pattern is similar to the expected pattern as indicated by previous diurnals in LIS.
- 32. The pattern for larval invertebrates and other zooplankton (not tabulated) was similar to the pattern observed during the spatial portion of this study with mysids comprising the dominant form present throughout the water column. Veligers were the most numerous larval form during the diurnal with maximum surface densities at midnight (2300 hr) and concomitant maximum middepth densities at dusk (1900 hr) and dawn (0700 hr). This pattern indicates that the highest veliger densities vary diurnally. Consequently, sampling for this form should concentrate at middepths during the day or at the surface at night.
- 33. <u>Ichthyoplankton</u>. No fish eggs and larvae were collected during this period.

December monthly cruise

- 34. Zooplankton (copepods). The overall pattern of abundance at the surface was similar to the distribution observed in November (Table E4). Acartia tonsa was the dominant copepod, comprising more than 90 percent of the percent standing crop. In five of the nine samples in which both adults and copepodites were present, the copepodid stage was more abundant. This indicates a substantial recruitment of larval copepods. The next most numerous species at this time was Paracalanus sp., a small copepod (less than 1 mm), which was obtained in the smaller mesh net only.
- 35. Finally, several species were present that were found during the two previous months including (in order of largest percent standing crop)

 Pseudodiaptomus coronatus (1 percent), Temora longicornis (1 percent), and Centropages sp. (<1 percent).
- 36. Zooplankton (noncopepod fraction). The meroplankton component was dominated by polychaete larvae (Table E5). This group was present both as late larvae and trochophores, or early larvae. The trochophore stage is also present in other invertebrate phyla, e.g., Mollusca, and cannot be considered only as larval polychaetes. Larval polychaetes were more prevalent at the surface and at the disposal site than at depth or control stations.
- 37. Veligers were also present in December (Table E5). They were more common in surface samples than deep samples.

- 38. Crustacea and shrimp larvae, though present, were very rare. When present, however, they were more often obtained at the surface in the disposal site region (Table E5). The only other larval form present were the nauplii of barnacles. They were not found in the subsurface tows or at the control stations.
- 39. Mysids were the only holoplanktonic (noncopepod) form found during

 December 1974. They were present at substantially larger numbers at
 the disposal stations as compared with the control station. Further,
 they were less common at the surface than at depth (Table E5).
- 40. The present set of samples for October, November, and December 1974 indicate a pattern of distribution and abundance for both copepod and noncopepod fractions which is similar to that reported by Deevey² and Austin and Caplan.⁷, 8
- 41. <u>Ichthyoplankton</u>. Small quantities of 1 species of fish larvae

 Ammodytes hexapterus and the eggs of Scophthalmus aquosus were

 collected during the December cruise.

Spring Period*

42. This period as well as the previous one is defined in terms of the amount of plankton (nonichthyoplankton) in the water. The ichthyoplankton seasons are discussed later. The relatively warm surface water temperatures encountered during December 1974 (~7.0°C) were substantially reduced in January to 3.5°C and reached a seasonal low in February of 2°C. During the March monthly cruise (1 April 1975), the surface water temperature had increased to 4.0°C.

^{*} Spring period = 1 January 75 - 1 April 75.

January monthly cruise

- 43. Zooplankton. The copepod fraction of the plankton community in January consisted of three species, the dominant being Acartia tonsa, which was present at all stations and depths at an average of 58 percent standing crop (Table E4). The densities of this species were as high as was reported for December 1975, The density was over 106/1000 m³ at most of the stations. The second major species was Temora longicornis, which averaged 34 percent of the total adult copepods observed in January. Approximate equal numbers of T. longicornis were found at the disposal and control sites (Table E4). There were, however, greater numbers of this species at depth. The third major species was Acartia clausii which averaged 5 percent of the total adult populations.
- 44. The dominant meroplankton were shrimp larvae and barnacle nauplii (Table E5). The shrimp larvae were more common at depth and at the control site. The barnacle larvae were common throughout the water column and tended to be more common at the control site (Table E5).
- 45. There was a decrease in the occurrence of both polychaete and gastropod larvae. Although the densities were similar to those found in December, they were present at only half the stations (Table E5). These groups, like the barnacle nauplii were more common at the control stations.

 No crab larvae were collected in January.
- 46. <u>Ichthyoplankton</u>. No fish eggs were collected during the January monthly cruise.

February monthly cruise

- 47. Zooplankton. Acartia tonsa was the dominant copepod during February (Table E4), although its average percent composition was reduced to 40 percent (a decrease of 18 percent). The second most numerous copepod was Temora longicornis. Its percent composition increased slightly from 34 to 39 percent. The most dramatic change was in the percent composition of Acartia clausii, which increased from 5 percent in January to 16 percent in February. A. clausii is the major component in the cold-water or spring community in LIS.²
- 48. The most common larvae present during this month were the larval stages of barnacles (Table E5). Both nauplii and cyprids were present, although the nauplii were present in higher numbers. These larvae were not stratified and occurred in both surface and middepth samples.
- 49. Polychaete larvae were relatively infrequent; they were found in only five of the twenty-one samples (Table E5). There appeared to be a higher concentration of these larvae in the disposal site than in the control site; they were evenly dispersed in the water column (Table E5).
- 50. Veligers and shrimp larvae were also not common in February, both groups being obtained only in middepth and bottom samples. The occurrence of veligers was about the same at both sites, whereas shrimp larvae were found at the disposal site exclusively.
- 51. Three holoplankton groups were obtained in February: Chaetognatha, Cladocera, and Mysida. The Chaetognatha and Mysida were more common

- in subsurface samples, whereas the Cladocera were present throughout the water column. Mysida and Cladocera occurred in approximately equal numbers at both sites. Chaetognatha were more common at the disposal site, however.
- of the fourbearded rockling, Enchelyopus cimbrius (Table E6). The eggs of this species were found at all stations and depths. The average number of eggs was 475 ± 1264/1000 m³ (CV = 2.65) (N=18). Fish larvae obtained during this cruise included two species: the sculpin, Myoxocephalus spp., and the Pacific sand lance, Ammodytes hexapterus (Table E6). The former was predominant at the control station, whereas the latter was found at all stations. The average number of fish larvae was 50.33 ± 56.11/1000 m³ (CV = 1.11) (N=18).

March monthly cruise

- 53. The month of March was difficult to work in due to poor weather conditions. The monthly cruise took place on 1 April 1975.
- 54. Zooplankton. The March pattern of copepods was typical of LIS in the spring.² The dominant species was Acartia clausii. It represented 57 percent of the total copepods obtained (Table E4). Copepodids were the second most common group with an average percent composition of about 20 ± 5 percent (N=20).
- 55. Temora longicornis and Acartia tonsa decreased in abundance during March. The average percent per sample of T. longicornis was 19 ± 6 percent (N=20), a decrease of 20 percent in one month. Acartia tonsa

- comprised only 3 percent of the total copepods collected during March. There was a 20 percent decrease in the total number of copepods per sample from February to March. The average number of copepods per 1000 m^3 was $4.5 \times 10^6 \pm 3 \times 10^6$ (N=20) and $3.5 \times 10^6 \pm 2 \times 10^6$ copepods per 1000 m^3 (N=20) for February and March, respectively.
- 56. The meroplankton were dominated by barnacle larvae as all samples except one contained this larval type (Table E5). Polychaete larvae occurred in equal quantities at all depths and at both control and disposal sites.
- 57. Shrimp larvae occurred slightly more frequently than the bivalve veligers during March. They were concentrated in subsurface samples and were generally more common at the control station (Table E5). The bivalve veligers were present throughout the water column. There was no apparent difference in average occurrence between control and disposal site samples for this group.
- 58. Finally, holoplankters included Chaetognatha and Cladocera. Both groups were found in most of the samples. They were equally common at control and disposal sites. The Chaetognatha were concentrated in subsurface samples whereas the Cladocera were present throughout the water column (Table E5). Chaetognatha and Cladocera densities like copepod densities were lower in March than in February.
- 59. The observed quarterly pattern indicates a number of departures from that indicated by previous investigations. 2,7,17

- a. The Acartia clausii bloom occurred later (February-March) than previously reported.
- b. Acartia tonsa was dominant in the plankton almost 2 months longer than previously reported.
- c. Larval polychaetes and veligers appear to be more common than in previous years.
- d. Cladocera, normally a summer group, have been found in the winter samples.
- of the fourbearded rockling, Enchelyopus cimbrius. They were found at all stations and depths at densities of 2757 ± 639/1000 m³ (N=25) (CV = 0.23) (Table E6). Three species of fish larvae were found during this period: the winter flounder, Pseudopleuronectes americanus; the sculpin, Myoxocephalus spp.; and the Pacific sand lance, Ammodytes hexapterus. The flounder was present at all stations and depths, whereas the sculpin was common only at station END and the sand lance at station ENB (Table E6). The average density of fish larvae was 272 ± 281/1000 m³ (N=25) (CV = 1.03).

April monthly cruise

61. During the April cruise on 28 April, the water column was still vertically mixed; the surface-to-bottom difference was about 1°C. The water was thermally stratified, however, during the next two monthly cruises: the mean temperature gradient was 7°C in May and 5°C in June. The surface temperature was approximately 10°C higher in May

- and June (17°C) than in April (7°C). This general increase in temperature corresponded with the increase in the numbers of plankters.
- 62. Zooplankton. The copepod fraction was dominated by Acartia clausii.

 It comprised 87 percent of the standing crop for surface samples and 39 percent for middepth samples in the disposal site (Table E4).

 These percentages were slightly lower at the control station with the surface and middepth standing crop being 34 percent. Temora longicornis was the second most common adult copepod, both at the disposal site and control station. Its densities were always higher in the subsurface samples. However, Acartia clausii was usually more abundant in this middepth sample than Temora longicornis (Table E4). The third most common adult copepod was Pseudodiaptomus coronatus. Its maximum densities occurred in subsurface samples. The abundance of this species in these samples was about 1/10 that of Temora longicornis.
- 63. Of the larval copepods collected, Acartia spp. copepodids were the most numerous and represented more than 90 percent of all larval copepods collected (Table E4). These copepodids accounted for approximately 30 percent of all the copepods collected in April, adults and juveniles. However, they appeared to be equally abundant in surface and middepth samples (Table E4). Their densities were slightly higher in April than in March, an indication of potential increase in adult densities in May. Temora sp. copepodids were also collected. Their

- abundance was highest in subsurface samples, a pattern similar to the adult distribution.
- 64. The April zooplankton contained larval polychaetes and mollusks. The most common larval form was barnacle nauplii which was more prevalent in surface samples than at depth (Table E5). Gastropod larvae were found at the disposal site only and primarily at station ENDSA. Here they appeared to be equally distributed throughout the water column (Table E5).
- 65. Larval crustaceans, both crabs (Brachyura) and shrimp (Caridea), were obtained in subsurface samples at both experimental and control stations. The observed densities represent an increase of the standing crop for these larvae.
- 66. The dominant noncopepod holoplankton present in April was a hydromedusae. It was common but not present in large numbers (less than 1000/1000 m³) (Table E5). Cladocera were also present during April. Of the two species occurring, Evadne sp. was the more numerous and was taken at both surface and subsurface stations. Podon leucartia, when present, was found only in subsurface samples (Table E5). The apparent separation of these two similar species suggests a possible depth separation for their populations.
- 67. <u>Ichthyoplankton</u>. Three species of fish eggs were found during the April cruise (Table E6). The most common species was *Enchelyopus cimbrius*. It was present at all stations in the disposal site as well as the control area and represented approximately 95 percent

- of all eggs collected during this time. The second species, Scophthalmus aquosus, was present at the proposed disposal site and the control site only. Finally, Scomber scombrus was found at the proposed disposal site but not any other station. The average density of fish eggs during this monthly was 5385 ± 4645 eggs/ $1000 \, \mathrm{m}^3 \, (N=29) \, (CV=0.86)$.
- 68. Four species of fish larvae were obtained in April (Table E6); the most common species was E. cimbrius, which was present at the disposal area and the control area and represented approximately 93 percent of all the larvae collected during April. Other species present were Myoxocephalus spp., Ammodytes americanus, and Pseudopleuronectes americanus. These three larval forms were predominant at the control site and their densities averaged less than 50/1000 m³. The average number of larvae during April was 992 ± 2766/1000 m³ (N=29) (CV = 2.78).

May monthly cruise

- 69. Zooplankton. The copepod pattern for May indicates substantial numbers of Acartia clausii at all surface stations (Table E4). The densities were higher than those observed in April. A. clausii averaged 93 ± 16 percent (N=12) of the standing crop at surface stations compared to 89 ± 10 percent (N=15) of the standing crop at surface stations the previous month. The density increase in May occurred in subsurface samples as well.
- 70. T. longicornis was the second most common adult copepod in May.

 Its densities averaged 50 ± 15 percent (N=11) of the standing crop

in subsurface samples. Pseudocalanus minutus was the third most common adult present during this time period. Like T. longicornis its densities increased in subsurface samples. The sample also contained Centropages spp. and Paracalanus spp. Pseudodiaptomus coronatus was less common than in the April samples (Table E4).

- Three groups of copepodids were present in May: Acartia spp.,

 Temora longicornis, and Pseudocalanus minutus (Table E4). The

 Acartia copepodids were most numerous, averaging 27 ± 10 percent

 (N=12) of the total standing crop at surface stations (adults and copepodids) and 20.9 ± 15 percent (N=11) of the total standing crop at subsurface stations. T. longicornis were the second most common juveniles. Their densities, like the adult counterpart, were greatest in subsurface samples. In the surface samples, the copepodids were more numerous than the adult distribution, indicating a more homogeneous distribution of juvenile forms. The copepodids of Pseudocalanus minutus were found in very few samples as compared with the other species. They were present in subsurface samples only and never in densities greater than the adults of other species.
- 72. The meroplankton pattern observed in May was similar to that reported in April but differed in that higher densities for all types were observed. The most numerous meroplankters were the crustacean larvae, crab (Brachyura), and shrimp (Caridea)(Table E5). Densities of these forms were at least an order of magnitude greater in May than in April, thus indicating the bloom of these larval forms in

- the water column both at the disposal site and control areas.

 Larval gastropods and larval bivalves were also present. The

 latter pattern represented the first occurrence of larval bivalves
 in this study.
- 73. The pattern of holoplankton distribution in May was similar to that observed in April. Cladocera were present in large numbers at least an order of magnitude greater than in April further indicating the bloom of this form as well. *Podon* spp. was more numerous than *Evadne* spp. throughout this period of study (Table E5), a pattern which is indicative of LIS waters in June. 7
- 74. Ichthyoplankton. All the samples taken during May contained large numbers of both fish eggs and larvae with densities at least an order of magnitude greater than those observed in the previous month (Table E6). There were approximately seven to ten species of fish eggs and five to nine species of fish larvae present during this time including those species listed above.
- 75. The predominant fish eggs were of the following species (in order of decreasing abundance: mackerel, Scomber scombrus; weakfish, Cynoscion regalis; cunner, Tautogolabrus adspersus; blackfish, Tautoga onitis; menhaden, Brevoortia tyrannus; windowpane flounder, Scophthalmus aquosus; fourbearded rockling, Enchelyopus cimbrius; smallmouth flounder, Etropus microstomus; and scup, Stenotomus chrysops. These species of eggs were found at all stations with an average density of 371,128 ± 351,198/1000 m³ (N=23) (CV = .94).

- 76. A similar pattern of fish larvae was obtained including the same species listed above in terms of overall abundance. The average number of larvae was 128,460 ± 254,553/1000 m³ (N=23)(CV = 1.91).

 May diurnal cruise
- 77. Zooplankton. The diurnal samples were taken at station ENDSA (primary disposal site) for a period of four tidal cycles (24 hours).

 The results (Tables E7 and E8) of the diurnal study shown are summarized below:
 - a. T. longicornis densities increased at the surface at night and reached a maximum in the early morning, indicating some vertical migration.
 - b. A. clausii did not appear to migrate vertically.
 - c. C. minutus, thought common at middepth, migrated to the surface in small numbers at night.
 - d. Copepodids of Acartia spp. and T. longicornis did not appear to migrate vertically.
 - e. The increase in adult P. coronatus at depths during the night may be due to vexation and not vertical migration from the surface.
 - f. Crustaceans, Podon spp. and Evadne spp., did not appear to migrate vertically at night.
 - g. Invertebrate larvae (crustaceans, gastropods, and bivalves) did not appear to migrate vertically at night.

- 78. These patterns of vertical distribution are similar to those reported for LIS waters by a number of investigators. 2,4,6-8,18
- 79. <u>Ichthyoplankton</u>. The pattern of ichthyoplankton abundance (Table E6) during this diurnal period indicates the following:
 - a. Fish eggs of all species reported were numerous in surface samples only.
 - b. Migration of fish larvae was noted for S. scombrus and
 B. tyrannus in that surface densities for these two species
 were greatest during the night (Table E6).
- 80. The average number of fish eggs present in the water column during the May diurnal cruise was $(1.9 \pm 5.3) \times 10^9/1000 \text{ m}^3$ (N=16)(CV = 2.73). the average number of fish larvae in the water column was $(.98 \pm 3.9) \times 10^9/1000 \text{ m}^3$ (N=16)(CV = 3.99).

June monthly cruise

- 81. Zooplankton. During this cruise, adult copepod densities were greatly increased over the previous month (Table E4). In May, the average surface density of A. clausii was (8.3 ± 5.4) x 10⁶/1000 m³ (N=12) whereas in June it was (29 ± 25) x 10⁶/1000 m³ (N=12). Similar increases were observed for T. longicornis and P. minutus, although the absolute densities for these two species were approximately an order of magnitude less than A. clausii. Copepodids were also numerous during this period, although most were Acartia spp.
- 82. The copepod pattern observed in June was similar to previous investigations. $^{2,4,6-8,18}$ As in the previous 2 months, A. clausii was the

- dominant form in the water column. T. longicornis was common only at middepth at both control and disposal site stations (Table E4).
- 83. The meroplankton present during June followed a similar pattern described above for copepods. Crustacean larvae were an order of magnitude more dense in June than in May with the Brachyura (crab) three times as common as the Caridea (shrimp) (Table E5). This density pattern was exemplified in populations of Mollusca as well, including larval gastropods and bivalves. The bivalve larval abundance is particularly significant in that this abundance provides the stock by which adult populations are increased in the ensuing period. Finally, the numbers of Cladocera, Podon sp., and Evadne sp., decreased from the previous month's pattern (Table E5) indicating that a Cladocera bloom had ended by June, a pattern similar to that reported in previous work. 2,6-8
- 84. <u>Ichthyoplankton</u>. Fish eggs and larvae collected during June monthly (Table E6) represented a pattern similar to that observed in May with the following exceptions:
 - a. The most numerous fish eggs present belonged to the Anchoa mitchilli.
 - b. Stenotomus chrysops and Brevoortia tyrannus were present in approximately equal quantities and are the second most abundant fish eggs.
 - c. Two species, Brevoortia tyrannus and Scomber scombrus, represented far more eggs than in the previous month.

- <u>d.</u> The first occurrence of butterfish eggs, *Peprilus* triacanthus, was noted.
- e. The pattern of fish larvae abundance was similar to that described for eggs in terms of the most dominant species present in the water column, the most numerous larvae being Anchoa mitchilli.
- 85. The average number of fish eggs present in the water column was 123,783 \pm 74,829/1000 m³ (N=24) (CV = .60). The average numer of fish larvae present in the water column was 123,783 \pm 70,323/1000 m³ (N=24) (CV = 1.65). In general this pattern of egg and larvae distribution has been reported by other investigators of LIS.^{3,11}

Biomass

- 86. For the purpose of this study biomass (dry weight) includes mainly zooplankton, but some phytoplankton and detritus are present as well. However, it is expected that at least 95 percent of the dry weight biomass is represented by the zooplankton fraction. 2,4,6-8 The biomass pattern for the entire study period is given in Figure E3.
- 87. Low levels of biomass in October 1974 (Table E9) are indicative of LIS waters.^{2,6} There is both a relative decrease in biomass at this time due to the preponderance of Ctenophora (comb jellies) as well as an absolute decrease in the abundance of total zooplankton following the summer bloom. This typical fall pattern showed that zooplankton were found in the water in numbers greater than expected and that these zooplanktoners were present primarily in the lower portions of

Figure E3. Biomass levels at control and disposal area in Eatons Neck Disposal Site

- the water column. Separation of the Ctenophora/Copepoda fractions utilizing methods previously described indicates this pattern.
- 88. Increase in biomass throughout the winter (November 1974 through January 1975) (Tables E10-13) are indicative of zooplankton blooms which apparently occur in LIS several weeks before the phytoplankton bloom. 6,7,8 This pattern of zooplankton bloom in the Sound occurring before the classical phytoplankton bloom has taken place was first reported by Caplan and Austin. 6,8 The mean biomass (water column) for this period increased from 2.51 ± 2.26 mg/m³ (N=27) (November 1974) to 44.07 ± 37.09 mg/m³ (N=22) (January 1975). This increase in biomass was accompanied by a concomitant increase in species composition (Copepoda) and density of total zooplankton.
- 89. The spatial pattern of increase indicated that the disposal site stations had a higher biomass in December 1974 (30 mg/m³) than did the control station (5 mg/m³)(Figure E3). This is indicative of plankton distribution patterns in estuaries as influenced by tidal transport, the primary advective force in LIS. 19
- 90. The general increase in biomass from February through June (Table E14) indicates that the typical spring bloom pattern occurred during this period. The levels of biomass, reaching a maximum mean of 149 ± 132 mg/m³ (N=24) in June 1975, represent an increase over values for this period previously reported.⁶

PART IV: DISCUSSION

91. The pattern of zooplankton and ichthyoplankton distribution observed

during the 9 months of the present study is similar to patterns reported by previous authors.²,4,6 These patterns can be discussed in terms of several time periods: diurnal, seasonal, and annual. For each time period, the following taxa will be compared to previous investigations:

- a. Invertebrate holoplankton: Copepoda, Crustacea (Cladocera, Mysidacea, etc.), Chaetognatha, Ctenophora.
- <u>b.</u> Invertebrate meroplankton: Crustacea (Brachyura and Caridea), Mollusca (Gastropoda and Bivalves), Polychaeta.
- c. Vertebrate meroplankton: Teleostei.

Invertebrate Holoplankton

Copepoda

92. Migration patterns. The diurnal pattern of Copepoda during both
November 1974 and May 1975 indicated that the species which migrate
vertically to the surface at night have higher densities at depth
during the day, e.g., Temora longicornis, Pseudocalanus minutus,
and Pseudodiaptomus coronatus. Other species do not migrate, although
their distribution with depth may be stratified with higher densities
at the surface throughout a daily cycle (Acartia tonsa or Acartia
clausii) or at depth (Labidocera aestiva or Centropages typicus).
Caplan and Austin⁶ have reported the relationship between this type
of distribution and concomitant physical/chemical parameters (temperature and salinity). During the present study it did not appear that
the distribution of migrating species was correlated with either

thermal or pycnal stratification.

- 93. There appears to be a seasonal aspect to the propensity for a species to migrate. In 1974, Acartia clausii was observed to migrate to the surface at night during May at Jamesport, but did not migrate at night during February. This behavioral modification of vertical migration patterns is based on a number of factors, e.g., energy utilization, gamete production, and physiological adaptation to specific environmental conditions. All these factors characterize the adaptative strategies utilized by adult copepods to ensure reproductive success. The data which indicate that differential patterns in seasonal diurnal migration exists were first reported for Eatons Neck during the November 1975 diurnal cruise when it was noted that there was a preponderance of plankton (90 percent copepods by dry weight) at depth throughout the period of the cruise. There was no evidence of vertical migration to the surface at night as measured by the low surface densities of copepods (<104 individuals/1000 m³). This pattern was also reflected in biomass data which indicated that surface biomass was approximately one-fourth that at depth throughout the diurnal.
- 94. Copepoda blooms. The implications of the preceding adaptive strategies in describing the distribution and abundance of invertebrate holoplankton in a system like LIS are significant. They explain the patterns observed for over a 20-yr period of studies (Table El) which relate to the following:

- a. A shift in dominance of the winter species (Acartia clausii, Temora longicornis, and Pseudocalanus minutus) to the summer species (Acartia tonsa, Labidocera aestiva, and Oithona similis) as documented by a number of authors, specifically by Jeffries²¹ for East Coast estuaries and by Zimmerman²² and Johnson and Miller²³ for West Coast estuaries.
- b. The apparent spontaneous appearance of large numbers of adult copepods in Long Island Sound is explained by the hatching and subsequent development of larval stages under the cueing temperature regimes. It is ecologically wise to remain eggs until the temperature conditions portend larval success (physiologically, but also nutritionally) i.e., certain temperature regimes correlate with high phytoplankton densities.
- 95. The paradox in this approach is that for 2 yrs in a row there have been apparent blooms of copepods which have preceded the apparent phytoplankton blooms by as much as 6 to 8 weeks. Caplan and Austin⁶ first reported a bloom of adult copepods for LIS waters under conditions of low phytoplankton densities (less than 1000 cells/liter) during the 1973 winter (November-December). A similar pattern was observed at Eatons Neck in the 1974 winter (Figures E4 and E6) with a similar pattern of low phytoplankton density (Tables E15 and E16).
- 96. The number of observations is sufficient to reject the hypothesis

that overt sampling error has produced the pattern observed; the lack of sufficient samples in the winter is indeed the reason that this pattern was not reported previously. Deevey's sampling was much too restrictive to indicate a winter bloom, if one did occur in 1952-53.² In general, sampling LIS plankton in the winter is usually not feasible; the lack of a pattern, therefore, may be due to omission. It is equally probable that the bloom was due to an increase in individuals originating in the sound and stimulated by some increase in nannoplankton, a group not sampled effectively with a net with mesh greater than 100µ.

- 97. A number of authors have indicated that Copepoda feed selectively in that they filter the most numerous food available. Consequently, one would expect that if copepods were feeding on small particles (less than 100µ nannoplankton), that this might account for a bloom if it were accompanied by an increase in larval stages as well. This was the case at Eatons Neck where the use of smaller mesh nets (202µ mesh) yielded samples containing large numbers of copepodids in the winter (Figure E6). Further, the change in distributional patterns associated with seasonal warming trends also indicated more plankton in the water column.
- 98. The test is to obtain sediment samples and incubate them in the laboratory to confirm hatching of the copepodids. Further, nets with 100µ mesh or less should be used to accurately assess the phytoplankton concentrations in LIS in the winter. In any case, the fact that copepods, which may originate from eggs in the sediment, are an

Figure E4. Quantities of Acartia clausii collected at station ENA, middepth buoy vs. drogue

Figure E5. Quantities of Temora longicornis collected at station ENA, bottom buoy vs. drogue

Figure E6. Quantities of Acartia spp. copepodid collected at station ENA, bottom buoy vs. drogue

important source of planktonic food for fish and/or benthos requires that any change in sediment composition be viewed carefully in terms of the potential impact of disposal.

Other Crustacea.

- 99. The Crustacea holoplankton were represented by both Cladocera and Mysidacea. The former is a typical late spring-summer resident of LIS waters, whereas the latter is more common in the winter. Seasonal succession was noted for the two species of Cladocera (Figure E7, Podon sp. and Evadne sp., with the latter appearing first. 2,6 Podon sp. appeared from February through June 1975; whereas Evadne sp. was absent from the early May samples and appeared again the following month. Unlike the previously discussed group, Copepoda, this group appears to be an example of advected plankton. Temperature patterns also have been correlated to the distribution of Cladocera in terms of blooms and species succession. 6
- 100. The Mysicadea are basically benthic crustaceans that are obtained in plankton tows during the night (surface samples) or throughout the day (bottom samples). They were common in the Shoreham/Jamesport study⁶ and should be considered an important planktonic group to monitor during and following disposal operations. As Pericarideans, they bear their young in pouches alongside the female's carapace. The number of young/females can be used to characterize the reproductive success of the population and might be a valuable assay for determining the potential impact of disposal.

Figure E7. Quantities of Podon sp. and Evadne sp. at station ENA

Chaetognatha

101. Chaetognatha, or arrow worms, are an active plankter which migrate vertically during the night and are characteristic of both Atlantic Shelf water and Block Island Sound water. They were common in the winter at Eatons Neck and have been shown to be a dominant winter plankters in LIS. 2,7,8

Ctenophora

This group is common in the Sound in late summer^{2,7,8} and represents another group which probably does not originate in the Sound, but is advected by Block Island Sound water. Ctenophora could also be used to determine chemically the impact of disposal on planktonic communities. The effect of Ctenophora grazing on Copepoda and other invertebrate holoplankton has already been discussed.

Invertebrate Meroplankton

Crustacea

103. The Crustacea larvae of crabs (Brachyura) and shrimp (Caridea) are an important component of the zooplankton, primarily in the spring (February-March) and early summer (April-June) (Figure E8). Large numbers of crab larvae were reported by Caplan and Austin⁶ at both Jamesport and Shoreham during the spring of 1973-74 (February-April). The Caplan and Austin⁶ report and the present one for Eatons Neck represent a departure from the pattern reported for LIS waters by Deevey. Larval forms of this group (Brachyura) are probably of LIS

origin and, in representing the recruits for subsequent benthic populations, should be monitored in terms of potential impact of disposal operations. This is also true of the larval shrimps (Caridea). Also of LIS origin, the larval shrimp are one of the major foods of many of the benthic fishes collected at Eatons Neck.²⁴
Mollusca

- 104. The second most important component of the meroplankton are the molluscan larvae of snails (Gastropoda) and clams (Bivalvia) (Figures E9 and E10). They, like their crustacean counterparts, first appeared in the late spring (April) and were abundant throughout the remainder of the study. The maximum densities for the snail larvae (Gastropoda veligers) is in July, 6-8 a period which was not sampled in this study. However, Deevey² reported larval snails from plankton collected in the winter (November 1952-January 1953). The high variability associated with their distribution indicates that annual changes in population densities are very great. Therefore, there appears to be no safe time period during which larval snails will not potentially be influenced by disposal activities in LIS, based on the above annual distributional pattern.
- 105. Larval clams (Bivalvia) were present later than the larval gastropods at Eatons Neck (Figure E10). They did not appear until February 1975.

 This pattern of abundance was similar to that reported previously. 6

 They are probably recruited from local benthic populations and, like the gastropod larvae, did not show any vertical migration patterns. As

Figure E8. Quantities of crab and shrimp larvae collected at station ENA

Figure E9. Quantities of barnacle nauplii/gastropod larvae at station ENA

Figure E10. Quantities of Polychaeta larvae/Bivalvia larvae collected at station ENA

inputs to the benthos upon settling, their populations should be monitored carefully along with the other invertebrate meroplankton. Polychaeta

(Figure E10) were not found in great abundance during this study.

Although larval densities of this group began to increase in February 1975, they were not found in the abundances reported previously. 2,7,8

It is unlikely that either the sampling gear or the sampling design, which included diurnals, contributed to the observed low abundance of this taxon. One can only assume that population densities of this larval group vary greatly from year to year.

Vertebrate Meroplankton

- 107. The seasonal abundance of fish eggs and larvae has been characterized in a seasonal sense by several authors.^{3,11} The fish that spawn in LIS may be divided into two categories: resident and migratory.^{3,11} Austin also divided the spawning differences into terms of physical and faunistic characteristics although he preferred the latter.¹¹ These seasonal categories are as follows:
 - a. Winter (December to mid-March).
 - b. Early spring (mid-March to mid-May).
 - c. Late spring (mid-May to late May or early June).
 - d. Summer (early June to early September).
 - e. Fall (early or mid-September to late November or December).
- 108. Austin 11 further pointed out that

...yearly fluctuations in total egg production, larval survival, or spawning by individual species is often of such magnitude that no one year ever appears 'normal'. The seasons are based upon measurements and not the Gregorian Calendar.

109. Austin's scheme, Ichthyoplankton characteristics, and interpretation were used to evaluate the vertebrate meroplankton patterns for Eatons Neck.

Winter

- 110. Austin¹¹ has pointed out that during the winter seasonal, variation in temperature is slight (0.4°C/week) and ranges from 0.7° to 7°C. The number of eggs and larvae tend to be low (less than 50/1000 m³). This is due to the absence of spawning populations of pelagic species in LIS as well as the fact that those species which do spawn produce demersal eggs, e.g., Pseudopleuronectes americanus. When eggs are present at this time they normally belong to the cod, Gadus morhua. However, at Eatons Neck the eggs of the fourbearded rockling, Enchelyopus cimbrius, were found at all stations and depths in both February and March 1975.
- 111. Austin¹¹ also reported that larvae of the sand lance, Ammodytes

 hexapterus, the sculpin, Myoxocephalus spp., and the winter flounder,

 Pseudopleuronectes americanus, were indicative of winter ichthyoplankton patterns. This same pattern was found in the present study

 at both the disposal site and control site. However, only the larvae

of the winter flounder was common at all stations and depths. It appears that ichthyoplankton distributions in the northern portion of the Sound contain fewer larvae than was reported by Austin¹¹ for the southern portion near Shoreham and Jamesport.

Early spring

- thermal water column and rapidly increasing temperatures of approximately 1.5°C per week. 11 Austin found that at Shoreham and Jamesport there was an abundance of the pelagic eggs of the fourbearded rockling, and the appearance of the mackerel, Scomber scombrus. 11 In the present study, eggs of these two species were found in April 1975, as well as those of the windowpane flounder, Scophthalmus aquosus. This latter species was found at the control site only. Although its eggs are demersal, Austin points out that "The occurrence of these demersal eggs in the plankton is not unusual in shallow water as winter turbulence is generally sufficient to lift them from the bottom. "11 At the control site they were found in samples from both surface and subsurface tows.
- 113. The larval pattern for this early spring period at Eatons Neck (control and disposal sites) indicated an abundance of fourbearded rocklings.

 Two other species were present, the sculpin and the winter flounder.

 Whereas the winter flounder larvae reached their peak abundance

during this period in 1973-74, 11 they were found in peak abundance during the next period at the Eatons Neck disposal site (control site).

Late spring

- 114. Although the hydrographic conditions during this period are similar to the previous one, the faunistic elements tend to be more diverse. Austin reported that the eggs of the weakfish, Cynosian regalis, the windowpane flounder, Scophthalmus aquosus, and the mackerel become numerous. 11 Further, one finds for the first time, the eggs of two other species, the menhaden, Brevoortia tyrannus, and the blackfish, Tautoga onitis. This pattern for the southern Sound differs from that observed for the northern sound with respect to the following:
 - a. Nine species of fish eggs were found in May 1975 including those mentioned above as well as those of the cunner, Tautogolabrus adspersus, the small mouth flounder, Etropus microstomus, and the scup, Stenotomus chrysops.
 - $\underline{\text{b.}}$ Larvae of the species mentioned by Austin were already abundant by this time period in the northern Sound. 11

Summer

115. Although the present study included only one sampling period during this season, there were some significant differences between the pattern of egg and larval distributions at Eatons Neck disposal control sites and those reported previously. 11 In general, the northern Sound was about 6 weeks ahead of the reported patterns for 1973-74 in terms

of both eggs and larvae. Specifically, eggs of several species were still at peak abundance in June 1975, e.g., the menhaden, the mackerel, and the windowpane flounder. The eggs of the butterfish, *Peprilus triacanthus*, were noted for the Eatons Neck region, but not reported by Austin. Finally, although anchovy larvae were present in June 1975 as previously reported by Austin, the sea robin, *Prionotus* spp., was not found during this period.

Fal1

116. Insufficient ichthyoplankton were collected during this period to allow discussion.

SUMMARY

- a. Acartia tonsa was common throughout the first 6 months of the study with densities as high as 500,000 individuals/1000m³ estimated in March 1975 (Figure E11).
- b. A plankton bloom occurred in populations of several copepods (including copepodids) in December 1975, e.g., Acartia clausii, Temora longicornis, and Acartia spp. copepodids.
- c. Meroplankton Crustacea, Caridea (shrimp), and Brachyura (crabs) became abundant (greater than 100,000 individuals/1000m³) in March and April 1975, respectively.
- d. Meroplanktonic Mullusca, Gastropoda, and Bivalvia became abundant (greater than 1000 individuals/1000m³) in April and May 1975, respectively.
- e. There were two blooms of Cladocera during 1975, one in February (1000 individuals/1000m³) and one in June (1,000,000 individuals

- $/1000 \mathrm{m}^3$). Evadne sp. dominated the first bloom and Podon sp., the second.
- f. Polychaeta larvae were not common at any time during the present study.
- g. The first significant numbers of fish eggs obtained in this study were collected in February 1975 at both control and disposal sites. They belonged to the fourbearded rockling. Larvae of the winter flounder and the sand lance were also collected with the former being present at the control site only.
- h. The spring pattern of ichthyoplankton abundance included the eggs of E. cimbrius, S. scombrus, and S. aquosus. Myoxocephalus spp. and P. americanus larvae were also collected.
- 1. The summer ichthyoplankton included nine species of eggs and larvae; with the first appearance of the butterfish.
- j. The winter patterns of copepod abundance indicated two important findings as follows:
 - There was a copepod bloom in December 1975, 6 weeks before the spring diatom bloom.
 - Copepod densities were maximum at depth during the November diurnal, indicating a reproductive strategy not previously reported.
- k. Sexually mature copepods produce gametes in the winter, a common pattern for many temperate marine invertebrates.¹ This adaptative strategy permits the copepods to transform lipid material into gametes under conditions of low maintenance, i.e., little

Figure Ell. Quantities of Acartia tonsa collected at station ENA, surface buoy vs. drogue

- energy is expended for tissue growth (moulting) or searching for food or metabolism.
- 1. The near-bottom temperatures in LIS are higher than surface temperatures in winter. As poikilotherms, the assimilation efficiencies of these copepods will be greater at the intermediate temperatures (4-8°C) at depth than at the lower temperatures of surface waters (1-2°C).
- m. The gametes, when released, sink to the bottom and remain there until the temperatures increase to a level which produces hatching in the sediments. 20 This procedure maintains the resident populations by keeping the fertilized "wintering" eggs in the same region as the adults, a reproductive strategy critical for planktonic populations spawning in highly advective environments like LIS. There is insufficient evidence at this time to determine the extent of this type of reproductive strategy.
- n. Finally, there is no advantage to migrate to the surface at night in the winter as the food densities (phytoplankton) are extremely low. Also, predators (Ctenophora) are more common near the surface and any vertical migration would increase adult mortality due to predation.

REFERENCES

- Caplan, R.I., "Vertical Distribution and Reproduction on Marine Zooplankton I: Winter Patterns in Long Island Sound", in preparation, 1976, 10 pp.
- Deevey, G.G., "Oceanography of Long Island Sound, 1952-1954.
 Zooplankton", Bull. Bingham Oceanogr. Coll. Vol. 15: 1956, p 133-155.
- 3. Richards, S., "Oceanography of Long Island Sound, Part VI, Pelagic Fish Eggs and Larvae of Long Island Sound", Bull. Bingham Oceanogr. Coll. Vol. 17(1):1959, p 95-125.
- Caplan, R.I., & B.G. Pastalove, "Zooplankton Diversity in Western Long Island Sound", American Fisheries Society, N.E. Section, May 15, 1972. Proceedings of American Fisheries Society Meeting (Abstract), 1972, p 2.
- 5. National Marine Fisheries Service, "Davids Island-Phase I: A Short Term Ecological Survey", 1971, pp 1-33.
- 6. Caplan, R.I., & H.M. Austin, "Baseline Aquatic Survey of Jamesport, Long Island for the LILCO proposed 1150 MW Electrical Generating Facility. Vol. III, Zooplankton", 1974, 133 pp.
- 7. Austin, H.M., & R.I. Caplan, "Preoperational Ecological Monitoring Program of the Marine Environs at the LILCO Nuclear Power Generating Facility, Shoreham, L.I., N.Y., Vol. II: Zooplankton", 1974a, pp 50.
- 8. Austin, H.M., & R.I. Caplan, "Baseline Aquatic Survey at Shoreham West for the LILCO proposed 1150 MW Electrical Generating Facility, Shoreham, L.I., N.Y., Vol. III: Zooplankton", 1974b, pp 145.
- Austin, H.M., J. Dickinson, & C. Hickey, "An Ecological Study of the Ichthyofauna at the Northport Power Station, L.I., N.Y.", Final Report, pp 1-135.
- 10. Williams, G.C., "Studies on the Effects of a Steam Electric Generating Plant on the Marine Environment at Northport, N.Y.", M.S.R.C., State University of New York Tech. Pub. #9, 1971.
- 11. Austin, H.M., "Baseline Aquatic Survey at Shoreham West for the proposed LILCO 1150 MW Electrical Generating Facility at Shoreham, L.I., N.Y., Vol. IV, Ichthyoplankton", 1974a, p 1-92.
- 12. Austin, H.M., "Baseline Aquatic Survey at Jamesport for the Proposed LILCO 1150 MW Electrical Generating Facility at Jamesport, L.I., N.Y., Vol. IV, Ichthyoplankton", 1974b, pp 1-92.

- 13. Purdin, J., "Hart Island Zooplankton Population Density", Section HI HXVII. Equitable Environmental Health, Inc., 1975.
- Sosnow, A., "Hart Island Zooplankton Population Density", Section HI - HXVII. Equitable Environmental Health, Inc., 1975.
- 15. Marak, Robert R., & J. Jossi, "MARMAP Survey I Manual", MARMAP Program Office, N.M.F.S., NOAA, 1975, pp 1-23.
- 16. Miller, C.B., "Subsampling error of the Folsom Plankton Splitter", (Manuscript), 1970, pp 1-16.
- 17. Conover, R.J., "Oceanography of Long Island Sound, 1952-1954, VI. Biology of Acartia clausii and Acartia tonsa", Bull. Bingham. Oceanogr. Coll., Vol. 15: 1956, pp 156-233.
- 18. Pastalove, B.G., "An Analysis of the Copepod Population of the Western End of Long Island Sound", M.S. Thesis, State University of New York, 1973, pp 1-47.
- 19. Hollman, R., & G. Sandberg, "Residual Drift in Eastern Long Island Sound and Block Island Sound", N.Y.O.S.L. Technical Report #0015, 1972, pp 1-19.
- Grice, G.D., & V.R. Gibson, "Occurrence, Viability and Significance of Resting Eggs of the Calanoid Copepod Labidocera aestiva Wheeler", W.H.O.I. pub. #2992, 1975, pp 1-7.
- Jeffries, P.H., "Succession of two Acartia species in Estuaries", Limnol. & Oceanogr. Vol. 7: 1962, pp 354-364.
- Zimmerman, S.T., "Seasonal Succession of Zooplankton Populations in Two Dissimilar Marine Embayments on the Oregon Coast", Ph.D. Thesis, Corvallis, Oregon State University, 1972, pp 193.
- 23. Johnson, K.J., & C.B. Miller, "Dynamics of Isolated Plankton Populations in Yaquina Bay, Oregon", Proc. 3rd Annual Tech. Conf. Estuaries of the Pacific Northwest, O.S.U. Engineering Expt. Station Circular #46, 1973, pp 27-35.
- 24. Valenti, R.J., & S.J. Peters, "Aquatic Disposal Field Investigations Eatons Neck Disposal Site, Long Island Sound APPENDIX D: Predisposal Baseline Conditions of Demersal Fish Assemblages", 1976, pp 89.

Table El

Zooplankton and Ichthyoplankton Data Base,

Long Island Sound

Site	Year	Group	Investigator (Reference)
Mid-Sound	1951-52	Zooplankton	Deevey, 1956 (2)
Mid-Sound	1951-52	Ichthyoplankton	Richards, 1956 (3)
West Sound	1971	Zooplankton	Caplan and Pastalove, 1972 (4)
West Sound (Davids Island)	1972	Zooplankton	National Marine Fisheries Service (5)
Mid-Sound (Northport)	1972	Ichthyoplankton	Austin, et al., 1974 (9)
Mid-Sound (Northport)	1971-72	Zooplankton	Williams, et al., 1973 (10)
Mid-Sound (Shoreham)	1973-74	Zooplankton	Austin and Caplan, 1974 (7, 8)
Mid-Sound (Shoreham)	1973-74	Ichthyoplankton	Austin, 1974 (11)
Mid-Sound (Jamesport)	1973-74	Zooplankton	Caplan and Austin, 1974 (6)
Mid-Sound (Jamesport)	1973-74	Ichthyoplankton	Austin, 1974 (12)
West Sound (Hart Island)	1975	Zooplankton	Purdin, 1976 (13)
West Sound (Hart Island)	1975	Ichthyoplankton	Sosnow, 1976 (14)

Table E2 Eatons Neck Sampling Program

Cruise	Station	Month	Net*	Depth**	Reference+	Date
EN1	EN1	Oct	II	1	С	31 Oct 74
	EN2		II	1	С	
EN2	EN1	Nov	II	3	С	19 Nov 74
	EN2		II	3	C	
	ENCONT		II	3	С	
EN3	ENCONT	Nov	II	3	С	20 Nov 74
	EN2		II	3	A	
	ENA		II	3	A	
EN4	END	Dec	III	2	В	13 Dec 74
	ENCONT		III	2	В	
	ENB		III	2	В	
EN5	ENB	Dec	I	3	A	18 Dec 74
	END		I	3	A	
EN6	END	Jan	I	4	A	23 Jan 75
	ENCONT		I	4	A	
	ENB		I	4	A	
EN7	END	Feb	I	4	A	18 Feb 75
	ENCONT		I	4	A	
	ENB		I	4	A	
EN8	END	Mar	I	4	A	1 Apr 75
	ENB		I	4	A	
	ENCONT		I	4	A	
EN9	ENB	Apr	I	4	A	28 Apr 75
	ENDSA		I	4	A	
	ENCONT		I	4	A	
EN10	ENA	May	I	4	A	29 May 75
	ENCONT		I	4	A	
EN11	ENDSA	May	I	4	A	29 May 75
	ENDSA		I	4	A	30 May 75
EN12	ENDSA	June	I	4	A	17 Jun 75
	ENA		I	4	A	
	ENCONT		I	4	A	

^{*}Net, micron mesh: I = 363/202; II = 363; III = 202. **Depth: 1 = surface, middepth, and bottom; 2 = surface; 3 = middepth and bottom; and 4 = surface and middepth.

[†]Reference: A = buoy/drogue; B = buoy; C = drogue.

Table E3
Sampling Station Locations for Eatons Neck Zooplankton

Station	Depth, m	Latitude	Longitude
Control EN3	25	41°00'00"	73°22'00"
EN1	23	41°00'26"	73°27'13"
EN2	31	40°59'59"	73°25'32"
ENB	23	41°01'09"	73°26'51"
END	33	49°59'17"	73°25'56"
ENA	26	41°00'12"	73°26'30"
ENDSA	25	41°00'37"	73°28'8"

Table E4

Copepod Standing Crop Densities During Monthly Sampling Periods

				Sample			
Station	Acartia tonsa	Acartia clausii	Temora longicornis	Pseudodiaptomus coranatus October	Labidocera aestiva	Centropages sp.	Pseudocalamus minutus
EN1-363-IDA	3,898 93.1	144 3.4	0	0	0	0	29 0.7
EN1-363-IDB	117,278 99.3	0	0	660 0.6	132 0.1	0	0
IN1-363-IDC	152,554 47.0	0	139 0.04	16,241 5.0	1,666	0	0
N1-363-2DA	200,264	0	0	620 0.3	0	0	0
N1-363-2DB	2,662,322 99.9	0	0	0	1,629 0.1	0	0
EN1-363-2DC	441,205 81.3	0	0	75,876 14.0	25,292 4.7	0	0
N2-363-1BA	4,127 100.0	0	0	0	0	0	0
N2-363-1BC	584 87.5	0	0	50 7.5	17 2.5	0	0 2.5
N2-363-2BA	1,426 100.0	0	0	0	0	0	0
N2-363-2BB	13,714 96.2	183 1.3	0	366 2.6	0	0	0
N2-363-2BC	154,331 89.8	0	0	11,337	6,217 3.6	0	0
				November			
N1-363-1B	23,724	0	0	102 0.4	0	0	0
N1-363-1C	1,575,443 98.2	5,667 0.4	1,889	17,001 1.1	3,778 0.2	0	0
N2-363-1A	5,110,740 91.1	0	0	351,697 6.3	142,460 2.5	4,452 0.1	0
N2-363-1B	552,010 97.8	3,450 0.6	690 0.1	8,280 1.5	0	0	0
N2-363-1C	2,208,039 98.0	5,520 0.2	0	38,641 1.7	0	0	0
N3-363-1B	62,798 98.0	0	0	866 1.4	433 0.7	0	0
N3-363-1C	1,615,747 98.0	. 0	1,369	15,062	6,846 0.4	0	0

	Acartía tonsa	Acartia copepodite	Temora longicornis	Temora copepodite	Centropages sp.	Centropages copepodite	Paracalanus sp.	Pseudodiaptomus coranatus	Oithona sp.	Harpaticoid	Labidocero aestiva
					Dec	ember					
ENB-202-1A	272,238 34.1	510,324 63.9	5,855 0.7	0	488 0.1	0	9,270 1.2	0	976 0.1	0	0
ENB-202-1B	2,407,615 65.1	1,107,562 29.9	56,267 1.5	2,964 0.8	0	0	85,876 2.3	8,884	2,961 0.1	0	0
ENB~202-2A	2,248,605 47.3	24,179,986 50.6	19,301	0	0	0	64,338	0	12,868	0	0
ENB~202-2B	3,754,260 77.8	86,512 17.9	28,565 0.6	57,130 1.2	0	4,081 0.1	77,534 1.6	32,646 0.7	0	4,081 0.1	0
ENB~363-1B	9,641,372 98.0	135,034	47,262 0.5	0	6,752 0.1	0	0	67.517 0.7	0	0	6,752
ENB~363-2B	5,740,832 98.5	0	39,647	0	0	0	0	47,576 0.8	0	0	0
END~202-1A	308,205 17.9	1,365,908 79.3	9,807 0.6	0	11,207	0	18,212 1.1	8,406 0.5	0	0	0
END-202-18	4,326,335 64.9	1,615,732	90,353	85,039 1.3	0	5,315 0.1	255,116 3.8	287,005 4.3	0	0	0
END~202-2A	217,868 23.3	1,016,883 74.4	14,716	0	4,415 0.3	0	2,943	8,830	0	1,472 0.1	0
END~363-1B	3,688,455 97.6	0	30,163 0.8	0	4,309 0.1	0	0	56,016 1.8	0	0	0
ENCONT-202-											
14	869,024 77.0	220,290 19.5	10,317 0.9	0	5,462	0	12,744	10,317	0	0	0
ENCONT-202-											
18	91,907 19.4	1,161,130 74.9	5,817 1.2	0	1.0	0	6,980 1.5	9,307 2.0	0.1	0	0

NOTE: Upper number represents number of standing crop/106 liters, lower number represents percent standing crop.

Table E4 (Continued)

Station	Acartía tonsa	Acartía copepodite	Acartia clausii	Temora longicornie	Temora copepodite	Paracalanus sp.	Centropages sp.	Pseudodiaptomus coranatus	Oithon:
					January				
ENB-363-1A				Samp 1	e jar broken				
ENB-363-1B	1,814,311	0	112,653	495,082 20.4	0	0	5,929	0	0
ENB-363-2A	390,165 16.7	0	587,367 25.1	1,348,613 57.6	0	0	8,482 0.4	6,361 0.3	0
ENB-363-2B	1,504,507 62.5	0	137,762 5.7	746,815 31.0	0	0	7,251 0.3	9,063 0.4	0
ENB-202-1A	1,441,233 48.5	261,756 8.8	63,074	1,132,372 38.1	0	47,305 1.6	18,922 0.6	3,154 0.1	6,307
ENB-202-1B	4,285,195 68.2	210,939 3.4	23,438	1,484,388 23.6	74,219 1.2	160,158 2.5	3,906 0.1	19,531 0.3	19,531
ENB-202-2A	2,304,668	489,612 9.1	0	243,424 45.4	94,425 1.8	24,481 0.5	10,492 0.2	6,994 0.1	0
ENB-202-2B	3,023,223 58.1	324,661 6.2	29,785 0.6	1,638,200 31.5	71,485 1.4	74,464 1.4	5,058 0.1	20,850	178,713
END-363-1A	709,702 25.4	0	285,923 10.2	1,797,232 64.3	0	0	0	2,553 0.1	0
END-363-18	1,340,391	0	28,900 1.3	3,506,977 35.6	0	0	0	12,388	0
END-363-2A	2,938,170 82.2	0	56,685 1.6	524,336 14.7	0	0	0	54,323 1.5	0
END-363-2B	1,275,983 64.0	0	13,070	692,723 34.7	0	0	3,268 0.2	9,803 0.5	0
END-202-1A	2,471,894 28.0	1,756,476 21.6	118,414	4,080,352 46.3	192,423	34,537 0.4	4,934 0.1	9,868 0.1	4,934 0.1
END-202-1B	2,425,512 53.5	511,207 11.3	0	1,405,818 31.0	81,576 1.8	73,418 1.6	4,719 0.1	19,034	10,877
END-202-2A	1,238,656 19.6	1,503,047 23.8	3,622 0.1	3,393,627 53.7	159,359 2.5	7,244	0	7,244 0.1	10,865
END-202-2B	3,019,639 52.5	607,166 10.6	64,764	1,748,638 30.4	121,433	105,242	8,096 0.1	52,621 0.9	20,239
ENCONT-363-									
1A	2,867,121 59.1	0	229,209 4.7	1,713,034 35.3	0	0	16,085	28,148 0.6	0
ENCONT-363- 1B	548,568 21.9	0	85,333 3.4	1,867,568	0	0	0	2,438 0.1	0
ENCONT-363-									
2A	2,392,561 86.7	0	0	308,055 11.2	0	0	2,567 0.1	56,477	0
ENCONT-363- 2B	3,092,944 88.5	0	73,577 2.1	25,881	0	0	10,900	59,951 1.7	0
	88.5	U	2.1	7.4	0	U	0.3	1.7	0
ENCONT-202- 1A	3,417,176 67.3	972,720 19.0	43,393 0.8	437,543 8.5	47,009 0.9	54,241 1.1	7,232 0.1	94,018 1.8	21,696
ENCONT-202-									
18	4,247,061 63.1	1,025,860 15.2	0	943,791 14.0	198,333	170,977 2.5	6,839 0.1	136,781	0
ENCONT-202-									
2A	6,380,011 68.2	1,719,436	103,425	749,829 8.0	71,104	116,353	6,464 0.1	161,601	51,712 0.6
ENCONT-202-	4 402 212	700 245	24 172	556 000	05 /20	126 607	6 924	70 505	20 754
2В	4,483,317 72.3	789,365 12.7	34,172 0.6	556,998 9.0	85,429 1.4	136,687	6,834 0.1	78,595 1.3	30,754 0.5

Table E4 (Continued)

Station	Acartia tonsa	Acartia clausii	Acartia copepodite	Temora longicornis	Temora copepodite	Centropages sp.	Pseudodiaptomus coranatus	Paracalanus sp.	oithon sp.
					February				
ENB-363-1A	582,436 49.9	351,045 30.1	0	228,751 19.6	0	2,639 0.2	2,639 0.2	0	0
ENB-363-1B	839,548 19.3	1,100,741 25.3	0	2,384,317 54.8	0	3,731 0.1	18,657 0.4	0	0
ENB-363-2A	2,047,701 63.6	156,927 4.9	0	1,006,627 31.3	0	0	7,655 0.2	0	0
ENB-363-2B	1,033,513 35.8	408,054 14.1	0	1,431,533 49.6	0	3,345 0.1	10,034	0	0
ENB-202-1A	795,127 59.2	198,402 14.8	213,605 15.9	126,947 9.5	2,280 0.2	760 0.1	760 0.1	3,041 0.2	1,520 0.1
ENB-202-1B	4,364,087 46.4	898,489 9.5	786,875 8.4	3,192,146 33.9	66,968 0.7	11,161 0.1	16,742 0.2	39,065 0.4	33,484
ENB-202-2A	2,010,309 47.6	812,112 19.2	219,669 5.2	1,164,914 27.6	13,313 0.3	0	0	0	0
ENB-202-2B	4,486,823 50.4	1,225,317 13.8	495,533 5.6	2,522,712 28.3	45,048 0.5	0	90,097 1.0	27,029 0.3	2,010 0.1
ENB-363-1A	95,565	22,785	0	23,277	0	820	0	0	0
END-363-1A	67.1 1,140,545 32.1	16.0 900,431 25.2	0 0	16.3 1,493,514 42.1	0 0	0.6 2,101 0.1	0 12,610 0.6	0 0	0
END-363-2A	1,811,186 64.9	218,742 7.8	0	754,661 27.0	0	6,562 0.2	0	0	0
END-202-1A	745,706 56.5	272,891 20.7	135,716 10.3	154,687 11.7	5,837 0.4	2,919 0.2	1,459	1,459 0.1	0
END-202-1B	3,059,272 42.6	867,161 12.1	792,329 11.0	2,130,486 29.7	184,877 2.6	17,607 0.2	33,212 0.5	66,027 0.9	26,411
END-202-2A	2,105,158 63.2	542,212 16.3	222,049 6.7	433,769 13.0	12,049	10,328 0.3	0	0	6,885
ENCONT-363-									
1A	33,115 50.1	12,846 19.4	0	19,840 30.0	0	285 0.4	0	0	0
ENCONT-363- 1B	889,502 24.1	543,785 14.7	0	2,243,563 60.7	0	7,202 0.2	14,405 0.4	0	0
ENCONT-363-	2,099,517	1,193,410	0	11,889,898	0	22,100	22,100	0	0
	13.8	7.8	0	78.1	0	0.1	0.1	0	0
ENCONT-363- 2B	800,998 28.4	579,789 20.5	0	1,410,850 50.0	0	6,472 0.2	23,651 0.8	0	0
ENCONT-202-									
1A	1,114,636	604,061 23.0	462,035 17.6	420,685 16.0	7,191 0.3	8,989 0.3	1,798 0.1	3,596 0.1	3,596
ENCONT-202- 1B	3,779,186 39.4	408,764 7.1	513,129 8.9	2,348,217	156,548	8,697 0.2	21,743	8,697 0.2	21,743

Table E4 (Continued)

Station	Acartia tonsa	Acartia clausii	Acartia copepodite	Temora longicornis	Temora copepodite	Centropages	Centropages copepodite	Pseudo- diaptomus coraratus	Pseudo- diaptomus copepodite	Paracalanus	Oithona sp.	Pseudo- calanus minutus
						March						
ENB-363-1A	2,942	325,689 90.4	0	44,862 7.2	0	8,090 1.3	0	3,677 0.6	0	0	0	0
ENB-363-1B	222,155 6.7	2,498,482 75.5	0	520,390 15.2	0	9,130 0.3	0	57,821 1.7	0	0	0	0
ENB-363-2A	1,038	884,085 88.3	0	87,540 9.7	0	8,301 0.8	0	10,377	0	0	0	0
ENB-363-2B	35,412	3,776,420	0	566,590 12.7	0	10,112	0	63,235	0	0	0	0
ENB-202-1A	3,045	951,503 55.4	570,902 33.2	68,508 4.0	89,822 5.2	16,746	9.134 0.5	4,567 0.3	0	1,522	1,522	0
ENB-202-1B	56,051 0.7	4,947,250	1,601,882	887,968 10.9	492,660	2,950 0.04	17,700 0.2	103,252	47,201 0.6	5,900	2,950 0.04	0
NB-202-2A	5,291	1,760,203	504,427 20.1	102,296	109,351	12,346	0	8,819 0.4	3,527	3,527 0.1	0	0
ENB-202-2B	332,532 4.8	4,045,806 58.1	1,257,387	800,155 11.5	443,376 6.4	10,892	6,928 0.1	45,030 0.6	10,392	3,464	6,928	0
ND-363~1A	465,422 28.0	874,085 52.6	0	304,605 18.3	0	0	0	18,920 1.1	0	0	0	0
END-363-1B	215,407	4,687,675 61.2	0	2,492,571	0	20,515	0	246,180 3.2	0	0	0	0
END-363-2A	28,764	2,022,144	0	454,479 17.9	0	8,629 0.3	0	28,764	0	0	0	0
IND-363-2B	142,844	2,758,440	0	1,814,506 36.8	0	4,891 0.1	0	254,324	0	0	0	0
END-202-1A	44,804	3,598,112	2,726,156	375,365 5.2	379,111 5.3	6,893 0.1	3,446 0.04	34,465	10,339	0	0	6,893 0.1
END-202-1B	174,359	8,610,651 54.5	3,514,004	2,132,544	1,046,154	13,412	0	308,481	0	13,412	0	0
END-202-2A	152,773	3,459,851 64.6	1,162,270	362,461 6.8	164,755	11,982	0	38,942 0.7	0	0	0	0
END-202-2B	173,980	8,163,132 56.2	2,122,553	2,929,820	521,939 3.6	20,878	0	473,225	76,551 0.5	6,959	0	48,714
NCONT-363-												
14	107,794 3.0	3,399,281 94.0	0	2.5	0	0.3	0	0.2	0	0	0	0
ENCONT-363- 1B	69,770	1,979,734	0	113,186 35.4	0	0	0	17,443	0	0	0	0
ENCONT~363-		01.7		33.4				0.5		•		
2A	2,861 0.3	836,120 89.7	0	80,823 8.7	0	8,583 0.9	0	3,576 0.4	0	0	0	0
ENCONT-363- 2B	113,536	2,490,694	0	1,717,231	0	7,096	0	49,672	0	0	0	0
	2.6	56.9	0	39.2	0	0.2	0	1.1	0	0	0	0
ENCONT-202- 1A	197,338	6,817,699 60.1	3,603,004	210,069	490,161	6,366 0.1	12,731	0	0	6,366 0.1	0	0
NCONT-202-		00.1	22.0		4.5							
1B	211,939	4,841,634 45.7	2,284,234	2,157,070 20.3	923,113 8.7	14,129	14,129 0.1	23,549 0.2	65,937 0.6	61,227 0.6	4,710 0.04	0
ENCONT-202-												
2A	2,708 0.1	115,716 50.5	935,631 42.4	67,701 3.1	54,161 2.5	18,956 0.9	8,124 0.4	5,416 0.2	0	0	0	0
ENCONT-202- 2B	65,457	3,972,751	1,535,727	2,054,350	800,592	5,035	0	40,281	10,070	5,035 0.1	0	5,035

Station	Acartia tonsa	Acartia clausii	Acartia copepodid	Temora longicornis	Temora copepodid	Centropages	Centropages copepodid	Pseudo- diaptomus coranatus	Pseudo- diaptomus copepodid	Oithona sp.	Para- calamus parvus	Labidocero aestiva
						April						
ENB-363~1A	0	4,394,587 93.5	0	252,877 5.4	0	17,086 0.4	0	37,590 0.8	0	0	0	0
ENB-363-1B	40,732	4,219,825 47.8	0	3,910,262 44.3	0	24,439 0.3	0	627,271	0	0	0	0
ENB-363-2A	6,133 0.2	3,038,974 80.6	0	585,715 15.5	0	107,330 2.8	0	33,732 0.9	0	0	0	0
ENB-363-2B	6,160 0.3	1,075,900 51.1	0	907,534 43.1	0	8,213 0.4	0	108,822 5.2	0	0	0	0
EN8-202-1A	11,195 0.2	3,716,851 78.4	738,892 15.6	207,114	0	16,793 0.4	5,598 0.1	33,586 0.7	5,598 0.1	0	0	5,598 0.1
ENB-202-1B	49,181	8,557,558 33.4	6,164,065 24.0	7,393,599 28.8	11,196,747	49,181 0.2	163,938	1,442,653 5.6	639,358	0	0	0
ENB-202-2A	0	3,362,448 72.5	681,302 14.7	423,696 9.1	44,064	105,076	0	23,727 0.5	0	0	0	0
ENB-202-2B	7,009 0.2	1,422,741	879,577 23.1	1,005,731 26.4	220,770 5.8	3,504 0.1	3,504	182,223 4.8	70,086	7,009	3,504 0.1	0
ENSA-363-1A	0	2,379,931	0	193,518 7.4	0	20,370	0	23,765 0.9	0	0	0	0
ENSA-363-1B	8,332 0.3	1,222,084	0	1,247,082	0	5,555 0.2	0	305,521 11.0	0	0	0	0
ENSA-363-2A	4,331 0.1	2,706,756 89.2	0	281,403 9.3	0	8,662 0.3	0	34,646	0	0	0	0
ENSA-363-2B	51,507 1.0	2,262,034	0	2,480,940 47.8	0	8,585 0.2	0	382,013 7.4	0	0	0	0
ENSA-202-1A	17,748	3,219,523 56.9	1,916,805	312,368 5.5	138,436	10,649	0	24,847	10,649	3,550 0.1	0	0
ENSA-202-1B	14,965 0.1	4,556,896 33.5	3,352,199	3,307,303	927,841 6.8	0	0	950,289 7.0	493,851	0	0	0
ENSA-202-2A	33,408	5,703,207 48.4	3,331,245 28.3	2,018,892 17.1	300,671	42,953 0.4	9,545 0.1	243,400	95,451 0.8	0	0	0
ENSA-202-2B	52,174 0.3	4,591,304 29.1	4,617,391 29.3	4,878,261 30.9	560,870 3.6	13,043 0.1	52,174 0.3	769,565 4.9	234,783	0	13,043	0
ENCONT~363-												
1A	8,499 0.3	1,592,081 47.5	0	1,728,059 51.5	0	19,830 0.6	0	5,666	0	0	0	0
ENCONT-363- 1B	11,267	3,498,324	0	5,199,602 57.5	0	16,900 0.2	0	315,469	0	0	0	0
ENCONT-363-												
2A	0.2	2,041,080	0	5,081,501 69.8	0	0.3	0	121,132	0	0	0	0
ENCONT-363- 2B		2,975,685	0	5,141,532	0	18,833	0	420,614	0	0	0	0
	0.3	34.7	0	59.9	0	0.2	0	4.9	0	0	0	0
ENCONT-202- 1A	40,603	4,913,000 33.0	4,852,095 33.0	4,303,950	351,895 2.4	47,371 0.3	6,767 0.04	261,551 1.5	162,413	6,767 0.04	0	0
ENCONT-202~												
18	0.1	6,588,763 29.0	6,931,036 30.5	7,558,538 33.3	869,945 3.8	42,784 0.2	0	641,763 2.8	57,046 0.3	0	0	0
ENCONT-202- 2A	35,585	9.014.827	9,418,122	8,919,934	1.055.684	47.446	0	450,741	213,509	0	0	0
ENCONT-202~	0.1	30.9	32.3	30.6	3.6	0.2	0	1.5	0.7	0	0	0
2B	20,420	1,127,741	8,698,921 25.7	10,210,000	1,357,930	20,420	20,420	1,235,416	398,190	0	0	0

ENA-202-1A ENA-363-1A ENA-202-1B	378,769 5.3 0	5,811,114 81.1			copepodid	minutus	copepodid	hamatus	typicus	_sp	parvus	Harpacticoids	coronatus
ENA-363-1A	5.3		***			May							
			737,603	59,806 0.8	119,611	0	0	0	0	0	19,935	19,935 0.3	0
ENA-202-1B		2,836,879 97.5	0	0	61,982 2.0	0	0	4,768	4,768 0.2	0	0	0	0
	0	10,423,964	6,665,575 26.0	21.4	1,728,597	1,257,162	0	0	0	0	0	0	29,465
ENA-363-1B	0	1,951,775 37.4	0	3,207,417	0	45,541 0.9	0	13,012 0.2	6,502	0	0	0	0
ENA-202-2A	0	9,390,666 80.8	880,375 7.6	440,187 3.8	701,039 6.0	0	0	0	0	0	0	211,942 1.8	0
ENA-363-2A	0	2,756,315 95.4	0	81,724 2.8	0	0	0	52,006 1.8	0	0	0	0	0
ENA-202-2B	0	14,942,926 63.1	1,715,669	3,449,787	2,066,182 8.7	1,272,916	0	0	0	18,448	55,344 0.2	18,448 0.1	147,584
ENA-363-2B	8,705 0,2	3,464,824 61.0	0	2,124,163 37.4	0	78,350 1.4	0	0	0	0	0	0	0
ENDSA-202- 1-1A	0	7,802,341 74.9	2,205,462 21.2	0	395,319 3.8	0	0	0	0	0	0	20,806	0
ENDSA-363- 1-1A	0	1,964,135 99.3	0	14,442	0	0	0	0	0	0	0	0	0
ENDSA-202- 1-1B	0	13,823,814 54.8	2,652,469	4,820,910 19.1	2,749,274 10.9	696,999 2.8	329,138 1.3	77,444 0.3	0	0	0	0	96,805 0.4
ENDSA-363- 1-1B	0	22,332,168 47.5	0	2,540,736 51.7	0	37,921 0.8	0	0	0	0	0	0	0
ENDSA-202- 1-2A	0	7,687,448 62.1	4,295,927 34.7	0	385,702 3.1	0	0	0	0	0	0	13,300 0.1	0
ENDSA-363- 1-2A	156,687 4.4	3,368,774 94.8	0	22,384 0.6	0	0	0	5,596 0.2	0	0	0	0	0
ENDSA-202- 1-2B	206,452	17,909,677 47.5	9,135,484	5,109,677 13.6	3,337,634	1,273,118 3.4	447,312	0	0	68,817 0.2	34,409	0 0	172,043
ENDSA-363- 1-2B	0	2,838,365 47.6	0	3,067,648 51.5	0	55,344 0.9	0	0	0	0	0	0	0
	1,133,361 9.2	7,671,979 62.3	3,367,389	0	87,182 0.7	0	0	0	0	0	54,488	0 0	0
ENCONT-363- 1A	743,959 22.7	2,481,673 75.8	0	38,012 1.2	0	0	σ 0	10,861	0	0	0	0	0
ENCONT-202- 1B	21,993 0.1	8,511,340 44.7	4,354,639	3,452,921 18.2	2,023,368	549,828 2.9	0	0	0	0	65,979	0 0	43,986 0.2
ENCONT-363- 1B	0	860,093 25.5	0	2,472,768 73.4	0	16,976 0.5	0	16,976 0.5	0	0	0	0	0
ENCONT-202- 2A	0	11,184,644 48.2	9,419,854 40.6	229,193 1.0	2,108,580 9.1	68,758 0.3	0	68,758 0.3	0	114,597 0.5	0	22,919	0
ENCONT-363- 2A	0	2,525,140 94.8	0	135,021 5.0	0	0	0	5,587 0.2	0	0	0	0	0
ENCONT-202- 2B	0	9,273,650 41.6	7,856,022 35.2	3,086,294 13.8	1,860,638 8.3	132,903 0.5	103,369 0.5	0	0	0	0	0	0 0
ENCONT-363- 2B	3,644 0.2	1,071,282 50.6	0	1,034,844 48.9	0	0	0	7,288 0.3	0	0	0	0	0

Table E4 (Concluded)

Station	Acartia clausii	Acartia copepodid	Temora longicornis	Temora copepodid	Pseudocalanus minutus June	Pseudocalanus copepodid	Centropages hamatus	Paracalanus parvus	Pseudodiaptomus coronatus	Harpacticoda
ENA-363-1A	2,983,196 77.4	0	870,099 22.6	0	0 0	0	0	0	0	0
ENA-202-1A	27,959,483 71.6	8,988,520 23.0	1,166,779 3.0	648,210 1.6	129,642	0	0	43,214 0.1	129,642	0
ENA-363-1B	6,247,454 47.4	76,656 0.6	6,732,941 51.1	0	114,984	0	0	0	0	0
ENA-202-1B	46,506,960 67.5	13,112,094 19.0	7,375,553 10.7	1,160,968	341,461 0.5	0	0	0	341,461 0.5	68,292 0.1
ENA-363-2A	943,469	18,447 1,2	608,775 38.7	0	0	0	0	0	0	0
ENA-202-2A	11,898,189 62.9	5,838,699 30,8	956,761 5.1	0	73,597	73,597 0.4	0	0	73,597 0.4	0
ENA-363-2B	2,435,271 44.6	0	2,987,600	0	33,474	0	0	0	0	0
ENA-202-2B	56,249,656 64.3	11,564,748 13.2		2,432,648	128,034 0.1	0	0	85,356 0.1	0	0
ENDSA-363- 1A	295,023 96.3	0	11,175 3.7	0	0	0	0	0	0	0
ENDSA-202- 1A	1,883,057 97.0	0	27,159 1.4	12,070 0.6	0	0	18,106 0.9	0	0	0
ENDSA-363- 1B	1,182,851 78.4	0	314,897 20.9	0	0	0	7,938 0.5	0	2,646 0.2	0
ENDSA-202- 1B	22,546,265 63.9	11,201,783 31.9	749,164 2.1	606,465	107,023	0	0	71,349 0.2	0	0
ENDSA-363- 2A	148,075 97.9	0	2,075 1.4	0	0	0	1,038 0.7	0	0	0 0
ENDSA-202~ 2A	1,937,017 79.5	160,427 6.6	338,681 13.9	0	0	0	0	0	0	0
ENDSA-363~ 2B	1,427,191 97.9	0	29,289 2.1	0	0 0	0	0	0 0	0	0
ENDSA-202~ 2B	23,775,552 82.4	3,428,732 11.9	383,476 1.3	879,740 3.0	0	0	0	135,344	248,132 0.8	0
ENCONT-363- 1A	9,616,750	0	5,193,715 35.1	0	0	0	0	0	0	0
ENCONT-202- 1A	78,751,209 72.8	22,370,172 20.6	6,959,609	0	0	0	0	0	0	71,016 0.2
ENCONT-363- 1B	3,513,240 13.9	0	21,697,770 86.1	0	0	0	0	0	0	0
ENCONT-202- 1B	35,795,098 51.9	16,836,700 24.4	13,551,490 11.7	1,300,396	1,095,069	0 0	0 0	0	342,209 0.5	0 0
ENCONT-363- 2A	8,528,548 53.9	0	7,396,928 46.5	0	0	0	0	0	0	0
ENCONT-202- 2A	56,228,569 55.5	24,000,000	18,971,427 18.7	0	30,857,141	0	0	0	0	0
ENCONT-363- 2B	2,757,629	0	18,652,299 87.1	0	0	0	0	0	0	0
ENCONT-202- 2B	42,095,599 55.2	6,363,288 8.3	25,453,153 33.4	1,305,289	244,741 0.3	0 0	0	0	734,225	0

Table E5

Zooplankton Standing Crop Densities During Monthly Sampling Periods, #/1000 m³

			Sample		
Station	Crab larvae	Shrimp larvae	Polychaete larvae	Veligers	Mysids
		Octob			
EN1-363-1DA	0	0	0	0	58
	0	0	0	0	100.0
EN1-363-1DB	0	92	7	0	336
	0	21.2	1.6	0	77.2
EN1-363-1DC	7	69	7	0	7,808
	0.2	0.8	0.2	0	98.8
EN1-363-2DA	0	16	0	0	109
	0	12.8	0	0	87.2
EN1-363-2DB	0	0	0	0	2,688
	0	0	0	0	100.0
EN1-363-2DC	0	141	0	281	76,157
	0	0.2	0	0.4	99.4
EN2-363-1BA	0	13	0	0	13
	0	50.0	0	0	50.0
EN1-363-1BC	0	0	0	0	17
	0	0	0	0	100.0
EN2-363-2BA	0	71	0	0	18
	0	79.8	0	0	20.2
EN2-363-2BB	0	110	0	0	46
	0	70.5	0	0	29.5
EN2-363-2BC	0	37	0	0	2,706
	0	1.3	0	0	98.7

						Sample						
	Foraminifera	Hydromedusa	Polychaete Larvae	Crustacean Eggs	Mysids	Ostracoda	Veligers	Barnacle Nauplii	Shrimp Larvae	Trochophore Larvae	Turbellaria	Crab Larvae
	Totaminiters	il) at one a se			De	cember						
	2.	264	6	23	6	0	0	0	0	0	0	0
ENB-202-1A	23 7.1	82.0	1.9	7.1	1.9	o	0	0	0	0	0	0
	0	0	0	0	1,481	0	0	0	0	0	0	0
ENB-202-1B	0	0	0	0	100.0	0	0	0	0	0	0	0
ENB-202-2A	0	2,915	67	402	268	34	134	134	0	0	0	0
END-LUL-ZA	0	73.6	1.7	10.2	6.8	0.9	3.4	3.4	0	0	U	U
ENB-202-2B	0	0	45	0	1,883	0	0	0	0	0	0	0
END-202-2B	0	0	2.3	0	97.7	0	0	0	0	0	0	0
ENB-363-1B	0	0	0	0	3,591	0	0	0	0	0	0	0
END-303-10	o	0	0	0	100.0	0	0	0	0	0	0	0
ENB-363-2B	0	0	0	0	5,688	0	0	0	0	0	0	0
END 303 ED	0	0	0	0	100.0	0	0	0	0	0	0	0
END-202-1A	0	0	0	0	0	0	0	0	0	0	0	0
Line wor an	0	0	0	0	0	0	0	0	0	0		
END-202-1B	0	0	0	0	744	0	0	0	159 7.6	0	0	0
Date 444 77	0	0	0	0	82.4	0	0	0	7.6		0	
END-202-2A	0	9,764	99	159	0	0	99	179	20	119	0	0
	0	95.6	0.9	1.5	0	0	0.9			1.1		
END-363-1B	0	0	0	0	488	0	0	0	6.7	0	0	13.3
	0	0	0	0	80.0	0	0	0	6.7	U	0	13.3
ENCONT-202-							18	0	26	0	0	0
IA	0	13,940	0.05	141	0.05	0	0.1	0	0.2	0	0	C
	0	99.7	0.05		0.05							
ENCONT-202-		0	0	62	8	0	31	0	16	0	10,276	81
2A	0	0	0	0.6	0.1	0	0.3	0	0.2	0	98.0	0.8

				Sample			
	Crab Larvae	Shrimp Larvae	Veligers	Chaetognaths	Mysids	Cladocera	Euphausids
			Novemb	per			
EN1-363-1B	16	87	29	0	232	0	0
EN1-303-1B	4.4	23.9	8.0	0	63.7	0	0
EN1-363-1C	0	0	76	94	3,211	0	0
EN1-303-10	0	0	2.2	2.8	95.0	0	0
EN2-363-1A	0	223	10,462	0	14,914	0	0
2M2-303-1A	0	0.8	40.9	0	58.3	0	0
EN2-363-1B	0	0	449	0	3,381	0	0
EW5-363-1B	0	0	11.7	0	38.3	0	0
EN2-363-1C	0	0	276	0	9,384	0	0
BH2-303-10	0	0	2.9	0	97.1	0	0
EN3-363-1B	32	0	0	0	43	0	0
E43-363-18	42.7	0	0	0	57.3	0	0
EN3-363-1C	0	68	3,218	68	14,172	0	68
EN3-303-10	0	0.4	18.3 (Continued	0.4	80.5	0	0.4

NOTE: Upper number represents number of standing crop/106 liters, lower number represents percent standing crop.

(Sheet 1 of 7)

							Hydro-	Sample			Poly-		
Station	Chaetog- naths	Mysids	Shrimp Larvae	Veligers	Barnacle Nauplii	Cladocera Janu	medusa Larvae	Turbel- laría	Siphonophore	Trochophore Larvae	chaete Larvae	Bivalve Larvae	Acarina
NB-363-1B	113	38	0	0	0	0	0	0	0	0	0	0	0
NB-363-1B	74.8	25.2	0	0	0	0	0	0	0	0	0	0	0
NB-363-2A	45 50.0	45 50.0	0	0	0	0	0	0	0	0	0	0	0
NB-363-28	359 90.0	20 5.0	20 5.0	0	0	0	0	0	0	0	0	0	0
NB-202-1A	188 80.0	0	47 20.0	0	0	0	0	0	0	0	0	0	0
4B-202-1B	573 94.1	36 5.9	0	0	0	0	0	0	0	0	0	0	0
(B-202-2A	130 100.0	0	0	0	0	0	0	0	0	0	0	0	0
ND-202-28	707 27.5	0	74 2.9	0	1,675 65.2	112 4.4	0	0	0	0	0	0	0
ND-363-1A	0	0	0	0	0	0	0	0	0	0	0	0	0
ND-363-1B	0	0	0	0	0	0	0	0	0	0	0	0	0
ND-363-2A	0	0	48	0	24	0	72	337	0	0	0	0	0
(D-363-2B	72	24	120	0	5.0	0	15.0	70.0	601	168	0	0	0
ND-202-1A	6.4	0	0	0	0	0	0	12.8	63.8	0	0	0	0
ND-202-1B	80 20.0	0 40 10.0	0 200 50.0	0	80	0	0 0	0	0	0	0	0 0	0 0
ND-202-2A	0	0	46	139	4,922	46	464	13,280	0	0	0	0	0
ND-202-2B	94	0	0.2	0.7	26.0	0.2	2.5	70.4	0	0	47	0	0
	66.7	0	0	0	0	0	0	0	0	0	33.3	0	0
ICONT-363-	165 8.6	0	153 8.0	0	0	0	1,597	0	0	0	0	0	0
ICONT-363-11	3 66 3.8	155 8.9	177 10.1	22 1.3	0	22 1.3	1,130 64.5	133 7.6	0	0	2.5	0	0
ICONT-363- 2A	183 20.6	0	26 2.9	0	26 2.9	0	288 32.4	367 41.2	0	0	0	0	0
NCONT-363- 2B	173	0	130	0	43	0	865	87	0	0	0	0	0
	13.3	0	10.0	0	3.3	0	66.7	6.7	0	0	0	0	0
NCONT-202- 1A	106 1.2	0	106 1.2	53 0.5	1,010	0	6,115 68.1	744 8.3	0	798 8.8	53 0.5	0	0
CONT-202-													
18	513 6.5	0	256 3.3	0	2,223 28.3	85 1.1	1,966 25.0	30.3	0	0	256 3.3	85 1.1	85 1.1
ICONT-202-													
2A	199 0.6	0	0	199 0.6	1,889	99 0.3	696	29,237	0	0	0	0	0
NCONT-202- 2B	230	38	269	38	1,305	38	1,843	3,379	0	269	384	0	77 1.0
ENCONT-202- 2B	230 2.9	38 0.5	269 3.4	38 0.5	1,305 16.6	38 0.5	1,843 23.4	3,379 92.9	0	269 3.4	384 4.9	0	

Table E5 (Continued)

								Sam	ple				97		
Station			Barnacle cyprids		Inverte- brate eggs	chaete	Veligers	Siphonophores	Cladoc- era				Bi- valve larvae		Trochophore larvae
							F	ebruary							
ENB-363-1A	880 96.4	22 2.4	0	0	0	0	0	11 1.2	0	0	0	0	0	0	0
ENB-363-1B	1,034	74 5.3	37 2.6	148 10.5	111 7.9	0	0	0	0	0	0	0	0	0	0
ENB-363-2A	7,966 98.5	0	0	0.5	0.5	0.5	0	0	0	0	0	0	0	0	0
ENB-363-2B	1,314 82.1	0	0	171 10.7	0	0	57 3.6	57 3.6	0	0	0	0	0	0	0
ENB-202-1A	370 4.6	3,772 47.3	0	0	3,811 47.8	0	0	19 0.2	10 0.1	0	0	0	0	0	0
ENB-202-1B	6,476	36,171 78.9	0	0	2,825	69 0.2	0	69 0.2	207	0	0	0	0	0	0
ENB-202-2A		20,617	0	0	1,109	0	0	0	0	0	0	0	0	0	0
ENB-202-2B	6,607 27,8	15,977 68.2	0	0	360 1.5	0	0	120 0.5	240	120	120	120 0.5	120 0.5	0	0
END-363-1A	1,202	0	0	0	0	0	0	2 0.2	0	0	0	0	0	0	0
END-363-1B	0	0	0	167 8.4	0	0	0	1,629 90.5	0	84	42	0	0	0	63 3.2
END-363-2A	18,842	199	0	0	0	0	0	0	0	0	0	0	0	0	0
END-202-1A		28,326 40.2	0	0	1,459	19 0.005	0	0	19	0	0	0	0	0	0
END-202-1B	4,925 8.8	45,762 81.4	0	349 0.6	2,353	849 1.5	0	1,787 3.2	0	131 0.2	0	0	44 0.08	0	0
END-202-2A	67,675		0	0	2,673	0	0	45 0.05	0	0	0	0	0	0	0
ENCONT-363-	2,584		0	0	0	0	0	31	0	0	0	0	0	0	21
ENCONT-363-	98.0	0	0	0	0	0	0	1.2	0	0	0	0	0	0	0.8
18	0		0	0	0	0	48 50.0	48 50.0	0	0	0	0	0	0	0
ENCONT-363-			0		0										
2A	1,598		0	0	0	0	0	1,311	0	0	0	0	0	0	0
ENCONT-363- 2B	2,359 81.3		0	0	242 8.2	0	60 2.1	0	0	0	0	121 4.2	0	60 2.1	0
ENCONT-202- 1A	72,589	40,842 35.9	0	0	0	0	0	63 0.06	42 0.04	0	0	0	0	0	63 0.06
ENCONT-202-			0	89	2,574	133	89	0.00	399	0	44	0	0	0	0
18	44,772	50.9	0	0.1	2,7/4	1.36	0.1	0	1.8	0	0.04	0	0	0	0

Table E5 (Continued)

		Bar-	Bar-				Inverte-		Poly-		Littorina			Bi-	
Station	lafia	nacle nauplii	nacl cypods	Cladoc- era	Veligers	Shrimp larvae	brate eggs	Chaetog- naths	chaete	Siphonophora	littorea eggs	Podon leucarti	Evadne sp.	valve	Forami nifera
VI. 10 10 10 10 10 10 10 10 10 10 10 10 10							Mar								
NB-363-1A	0.6	5,523 82.6	6.4	0.5	0	0	657 9.8	0	0.1	0				0	0
NB-363-1B	197 3.6	36,455 87.1	2,959 7.1	874 2.1	0	28 0.07	1,240	85 0.2	28 0.07	0				0	0
NB-363-2A	138 1.6	5,673	1,626 18.9	86 1.0	0.1	0	968 11.3	86 1.0	9 0.1	0				0	0
NB-363-2B	391 0.6	53,691 87.2	4,537 7.4	913 1.5	0	235 0.4	1,069	78 0.1	0	0	678* 1.1			0	0
NB-202-1A	267 2.2	3,390 28.5	1,020 8.6		0	0	5,879* 49.4	0	16 0.1	0	1,036* 8.7	157* 1.3	126* 1.2	0	0
NB-202-1B	112 0.2	36,625 66.9	2,079	*	253 0.5	197	11,572* 21.1	169 0.3	281 0.5	0	1,882*	646* 1.2	899* 1.7	0	0
NB-202-2A	52 0.2	4,243 13.6	2,357 7.5	323 1.0	0	0	16,974* 54.3	17 0.05	35 0.1	17 0.05	7,264*			0	0
NB-202-2B	569 1.0	36,293 69.3	3,774 6.7	2,533	362 0.6	0	11,943	258 0.5	672 1.2	0				0	0
ND-363~1A	100	148,237 98.4	597 0.4	328 0.2	0	0	166 0.1	17 0.01	50 0.3	1,112				0	0
ND-363~1B	2,029	489,204 94.5	13,865	4,734	0	1,691	4,396 0.8	676 0.1	1,353	0				0	0
ND-363-2A	0	70,919 98.3	471 0.6	595 0.9	25 0.03	0	0	0	99	0				0	0
ND-363-2B	148	97,224 87.3	7,163 6.4	*	99	494	247* 0.2	99 0.09	445	2,717	1,680	494* 0.4	494*	0	0
ND-202-1A	18,701 6.1	276.802 90.0	1,289		180 0.05	0	0	390 0.1	2,787	o	3,416* 1.1	1,109*	2,967* 1.04	30 0.01	0
ND-202-1B	4,057	333,185 87.7	8,791 2.3	5,297	2,141 0.6	1,578	16,343	1,916 0.5	6,424	0				0	0
ND-202-2A	3,352 15.7	8,614 40.3	642 3.0	*	71 0.3	0	4,615 21.6	24 0.1	1,046	143 0.7	1,926*	499* 2.3	428* 2.0	0	24 0.1
END-202-2B	0	255,443 82.5	34,591 11.1	2,559 0.8	409 0.1	921	5,833* 1.9	102 0.03	2,968	716 0.6	6,038*			0	0
NCONT-363-															
1A	0	81,806 94.7	2,401	528 0.6	26 0.03	0	1,504	0.06	106 0.1	0				0	0
NCONT-363- 1B	0	164,037 91.5	4,956 2.6	6,458 3.6	0	262 0.1	0	143 0.08	548 0.3	2,931 1.6				0	0
NCONT-363-															
2A	186 3.0	3,469 56.7	6.8	0.3	0	0	1.2	0	0.2	291 4.7	1,658* 27.1			0	0
NCONT-363- 2B	0	254,645 94.8	6,510	3,343 1.2	0	469 0.2	0	0	977 0.5	2,522				0	0
NCONT-202- 1A	12,434	100,930 77.1	2,856 2.2	1,368	297 0.2	59 0.05	10,887	773 0.6	1,309	0				0	0
NCONT-202-															
18	1,366	30,950 26.1	1,306		2,496 2.1	471 0.4	39,421 33.2	0	3,203	3,768 3.2	26,704* 22.5	4,804* 4.1	4,097* 3.6	0	0
NCONT-202- 2A	2,997	3,408 19.1	1,278		61 0.3	0	6,390 35.9	0	213 1.2	152 0.9	2,982* 16.8	46* 0.3	274* 1.5	0	0
NCONT-202-											20.0	0.5			U
NCUN1-202-	148	41,485	17,327	54,400	938	296	4,986*	395		889	5,628*				0

(Continued)

^{*} Podon Lewcarti and Evadre sp. were later identified separately from the larger group Cladocera. * Littorina litterea eggs were later identified from the larger group Invertegrate eggs.

	Waden			Evadne	Podon	Actinula	Poly-	- 10		Cir-	Cir-			Littorin
Station	Hydro- medusae (Adult)	Chaetog- natna	Turbel- laria	sp. (Cladoc- era)	(Cladoc-	(Hydro-	(Larvae)	(Larvae)	Bivalvia (Larvae)	ripedia	ripedia	Brachyura (Zoea)		littered
INB-363-1A	363	30					60	pril			60			367 41.7
NB-202-1A	41.3 758	3.4	991				6.8				6.8			16,793
NB-363-1B	15,105	1.5	5.2	170	85		0.3				2,461	85	2,367	87.5 4,837
NB-202-1B	58.8	2.0 845	507	0.7	0.3		0.3 845	169	169		9.6 5,070	0.3	2,197	18.8
NB-363-2A	93.9	0.3	405		0.06	779	0.3	0.06	0.06		1.9		0.7	3,460
NB-202-2A	1,067		188			10.0					19.5			23,037
NB-363-2B	4.2	243	0.7				75				3.6 616	19	448	91.5
NB-202-2B	94.8	0.5 621	694	34			73				1.2	0.04	0.9	4,818
NDSA-363~	82.7	1.3	1.4	0.08			0.1				4.2		0.4	9.8
1A	4,600 58.7	110 1.4	493 6.3	54 0.7							602 7.7		54 0.7	
NDSA-202-	2,274 23.3	55 0.6	1,885				55 0.6				610 6.2			4,881 50.0
NDSA-363~ 1B	67,461 91.5	399 0.6	36 0.05								3,138	18 0.02	1,028	
NDSA-202- 1B	225,432	1,592	1,114				796	318			1,114	796 0.3	3,184 1.0	70,209
NDSA-363- 2A	74.0 8,837	0.5	761				0.3	2,575			1,580	0.3	59	
NDSA-202-	53.4	0.7	4.6				0.4	15.5			9.5		0.4	
2A	12,992 33.7	5,966 15.5		928 2.4				199 0.5			2,585 6.7			15,909 41.2
NDSA-363- 2B	248,789 80.9	1,226		82 0.03				164 0.05			21,993	327 0.1	4,742	30,086 9.8
ENDSA-202 2B	2,829	3,010	1,003	334 0.3			1,672	502 0.4			88,462 70.1	167 0.1		28,261
NCONT-363-	708	32	290				32				2,543			1,674
NCONT-202-	13.4	0.6	5.5				0.6				48.2			31.7
1A		128 0.7	3,703 21.5				255 1.5				3,447			9,704 56.3
NCONT-363- 1B	1,100	150 0.6	100 0.4	1,750 6.8	450 1.7	200 0.8	400 1.5			150 0.6	18,852 72.8	250 0.9	1,050 4.1	
NCONT-202- 1B		160 0.7	320 1.3	2,083 8.7	481 2.0						15,543 64.6		1,282	
NCONT-363- 2A	987 4.0		856 3.4	66 0.3							3,160 12.8		66 0.3	19,552 79.2
NCONT-202- 2A		1,186		132							3,031			17,002
NCONT-363-		5.5		0.6							14.3			79.6
28	3,889	234 1.6	141	375 2.6			1.0			1.0	40.0	0.6	8.5	16.6
ENCONT-202- 2B	7.054	1,392	928 2.5	5,569 14.9	464 1.2	835 2.2	1,485 3.9		278 0.7	371 1.0	14,572 40.0	93 0.2	1,578	

		Evadne	Podon			Sample				
Station	Chaetog- natha	sp. (Cladoc- era)	levcarti (Cladoc- era)	Poly- chaeta (Larvae)	Gastropoda (Larvae)	Bivalvia (Larvae)	Cirripedia (Nauplii)	Cirripedia (Cyprid)	Brachyura (Zoea)	Caridea (Larvae
ENA-363-1A		858 4.1		858 4.1	2,575 12.4				16,497 79.4	
RNA-202-1A		5,382 5.8		23,523 25.5	27,047	23,523 25.5	3,588 3.9		8,971 9.7	
NA-363-1B	65 0.07	9,230 10.4	5,655 6.4	25.5	9,945	65 0.07	5,655		44,655	13,065
NA-202-1B	4,814 0.8	29,726	8,381 1,4	11,916 2.0	345,184 57.8	103,581	9,559		69,011	14,274
NA-363-2A		5,423 18.3	669	669	1,337		2,006	669	18,201 61.4	669
NA-202-2A		9,955		35,578 13.7	104,448 40.4	73,277 28.3	9,955	2,122 0.8	22,195 8.5	979 0.3
NA-363-2B	609 0.5	20,806 17.2	12,884 10.6	174 0.1	6,877 5.7		2,960	435 0.4	60,330 49.8	15,844 13.1
ENA-202-2B	1,107 0.1	36,343 4.1	27,857 3.9	25,827 2.9	487,213 55.4	137,438 15.6	11,622	1,107	124,340 14.1	25,643 2.9
NDSA-363- 1A	48 0.3	2,648 19.4	337 2.4	385 2.8	385 2.8		626 4.6	1,974 14.5	6,932 50.8	289 2.1
NDSA-202- 1A		7,490 3.3		4,369	153,132 67.9	37,659 16.7	5,618 2.4		17,061 7.5	
ENDSA-363- 1B	853 0.8	34,507 32.8	15,452 14.7		6,920 6.5		7,774		29,293 27.8	10,332 9.8
NDSA-202~ 1B		42,207 2.8	5,227 0.3	22,846 1.5	1,101,641 75.4	179,476 12.3	8,712 0.5	1,742 0.1	25,588 1.7	73,765 5.1
ENDSA-363~ 2A		2,015 14.1						5,036 35.4	6,156 43.3	1,007 7.2
ENDSA-202- 2A		2,394 0.5		26,600 6.2	237,006 55.1	125,818 29.2	4,788 1.1	9,576 2.2	23,940 5.5	
ENDSA-363- 2B	711 0.9	6,483 8.9	4,348 6.0	711 0.9	17,235 23.7			3,558 4.9	30,201 41.6	9,329 12.8
ENDSA-202- 2B		9,462	9,462	29,591 1.4	1,747,066 84.1	195,437 9.4	14,107 0.6		54,709 2.6	17,204 0.8
ENCONT-363- 1A		47,574 44.7	9,557 8.9	109 0.1		2,064 1.9		5,321 5.0	41,597 39.1	
ENCONT-202- 1A		124,886 25.8	15,257 3.1	6,321 1.3	250,208 51.7	34,000 7.0		17,218 3.5	35,744 7.3	
ENCONT-363- 1B		20,823 20.3	5,093 4.9	283 0.2		1,358 1.3		4,018 3.9	55,736 54.6	14,769
ENCONT-202- 1B	220 0.05	102,048 26.2	15,395 3.9	1,759 0.4	146,034 37.5				115,463 29.6	8,577
ENCONT-363- 2A		140,109 53.5	20,223				7,039		93,406 3\$.6	1,005
ENCONT-202- 2A		457,012 30.0	132,474 8.7	4,125 0.2	33,004 2.1	714,625 47.0	50,881 3.3		125,827 8.2	1,145
ENCONT-363- 2B	1,968 0.7	38,408 15.4	17,200 6.9		3,280 1.3		8,600 3.4	1,312 0.5	137,160 55.0	41,104 16.5
ENCONT-202-	148 0.02	155,791	60,249	2,067	81,809 13.3	58,625 9.5		7,974	185,178 30,1	61,72

		Evadne	Podon				Sample					Homarus
Station	Chaetog- natha	sp. (Cladoc- era)		chaeta	Gastropoda (Larvae)	Bivalvia (Larvae) Jun	(Nauplii)	Cirripedia (Cyprid)	Brachyura (Zoea)	Brachyura (Megalopa)	Caridea (Larvae)	ameri- canus (Larvae)
ENA-363-1A		128,547 32.1	167,132 41.8		7,509 1.8	2.40			41,433	43,298 10.8	7,509 1.8	4,195
ENA-202-1A		5,444,969	762,296	11,667	86,428 1.3	3,889 0.05	7,778 0.1	3,889 0.05	145,199	200,513		3,889
NA-363-1B			389,028	13,925	69,629	0.03			109,106 13.6		99,908 12.4	
NA-202-1B			769,652		198,388 14.8		12,292		161,169 12.0		105,511	
NA-363-2A			153,327		4,322				81,433 21.8	33,996 9.0	796 1.3	
NA-202-2A			439,129	8,831 0.6	11,039				100,337	55,688 3.9	22,079	4,416 0.3
ENA-363-2B		182,604 20.2	474,752 52.6		114,148 12.6				76,070 8.4		54,814 6.0	
ENA-202-2B		484,823 28.2	461,349 26.8		507,868 29.5				170,172		93,038 5.4	
ENDSA-363- 1A		83,039 26.6	226,885 72.8			134 0.05	268 0.06		1,356			
ENDSA-202- 1A		377,116 30.2	497,716 39.8	1,086	31,778 2.5		13,688		325,620 26.1	1,085 0.08		
ENDSA-363- 1B	238 0.04		308,653 60.3		10,108				18,999 3.7		952 0.1	
ENDSA-202- 18			862,608 30.6		1,248,606	32,107 1.1			32,107 1.1			
ENDSA-363- 2A ENDSA-202-		203,307 50.9	193,994 48.5	124	1,010 3 0.2				375 0.09	249 0.06	124 0.00	
2A		2,314,082 74.3			137,255	2,139 0.06	12,953 0.4		2,139 0.06			
ENDSA-363- 2B		334,298 52.9	258,998 41.0		21,301 3.3				16,215 2.5		479 0.3	
ENDSA-202- 2B		498,505 32.3	276,897 17.9		697,320 45.2	22,567	18,279		28,660 1.8			
ENCONT-363- 1A		112,753 13.2	662,617		4,523 0.5				60,984		9,214	
ENCONT-202- 1A		1,163,959 48.1	1,213,670 50.1	6,391 0.2	6,391				31,957			
ENCONT-363- 1B	2,529 0.2	219,788 17.6	883,059 70.8		40,753				46,093 3.6		53,682 4.6	
ENCONT-202- 1B		360,679 27.1	821,280 61.7						93,078 6.9		49,277	
ENCONT-363- 2A	2,484	117,854 14.5	534,345 65.9						107,916 13.3		47,749 5.8	
NCONT-202 2A		1,245,714 57.7	882,286 40.8						30,857 1.5			
ENCONT-363- 2B		250,867 25.2		3,447 0.3	55,535 5.5				48,641 4.9		24,512 2.4	
ENCONT-202- 2B		1,394,213 41.8	1,809,458 54.3		51,396 1.5				36,711		36,711	

	mur A	02 14	PMD 3	62.14	PND 3	02.18	PND 3	Stati	on ENB	02-2A	PNR. 3	63-2A	ENR- 2	02-2B	ENB-3	63-2B
	ENB-2		ERB-3	Larvae	ENB-2	Larvae	Eggs	63-1B Larvae	Eggs	Larvae	Eggs	Larvae		Larvae		Larvae
EN-1*(31 Oct 74) Soophthalmus aquosus											16					
TOTAL											100.0					
IOIAL											100.0					
EN-4,5 (13,18 Dec 74) Ammodytes hexapterus														44.8 100.0		
Scophthalmus aquosus									33.5							
TOTAL									33.5 100.0					44.8		
N-6 (23 Jan 75) Pholis gunnelus									100.0			22.6 100.0				
Myoxocephalus										43.2 100.0						
TOTAL										43.2 100.0		22.6 100.0				
EN-7 (18 Feb 75) Enchelyopus cimbrius	360.6 100.0		162.9 100.0		68.8 100.0		110.8 100.0		369.8 100.0		5484.1 100.0		120.1 100.0		22.0 100.0	
Ammodytes hexapterus		68.2 87.5		119.5 100.0		68.8				184.9 100.0						
Myoxocephalus		9.7 12.5														
TOTAL	360.6 100.0	77.9 100.0	162.9 100.0	119.5 100.0	68.8	68.8	110.8	0	369.8 100.0		5484.1 100.0	0	120.1		22.0 100.0	0
EN-8 (1 Apr 75) Enchelyopus cimbrius	3,076 100.0		2,219		3,231 100.0		2,761 100.0		3,266 100.0		999 100.0		3,102 100.0		2,793 100.0	
Ammodytes hexapterus										35 25.0						
Myoxocephalus spp.										17 12.1		26 14.1				
Pseudopleuronectes americanus		63 100.0		86 100.0		759 100.0		394 100.0		88 62.9		156 85.9		931 100.0		100.
TOTAL	3,076 100.0	63 100.0		86 100.0	3,231	759 100.0	2,761	394 100.0	3,266	140 100.0		182 100.0				100
EN-9 (28 Apr 75) Enchelypus cimbrius	1,749	58 100.0		91 100.0		169 100.0	1,782 95.4	339 80.0	2,887 85.2		3,035 89.0	94 100.0	365 100.0		616 86.9	100.
Ammodytes hexapterus								85 20.0								
Scophthalmus aquosus	58 3.2		181 7.9				85 4.6		502 14.8		375 11.0				93 13.1	
TOTAL	1,807 100.0	58 100.0		91 100.0	1,521 100.0	169 100.0		100.0			3,410 100.0	100.0	365 100.0		709 100.0	100.
									ion END						PAR	063.35
	Eggs	Larvae		larvae		Larvae		363-1B Larvae		202-2A Larvae		Larvae		202-2B Larvae		Larva
N-6 (23 Jan 75) Ammodytes hexapterus		162.7 100.0		118.3						138.7		48.5 100.0				24 100
TOTAL		162.7		118.3 100.0						138.7		48.5 100.0				24 100
EN-7 (18 Feb 75)	205.8		25.0		130.7		83.5		277.1		424.6					
Statisty opus cimbrius	100.0		100.0		100.0		100.0		100.0		100.0					
Ammodytes hexapterus		37.4		20.5		43.5		83.5 100.0		158.5		74.6				

(Continued

Station B was sampled at station EN-1.

(Sheet 1 of 6)

NOTE: Upper number represents number of standing crop/106 liters, lower number represents percent standing crop.

								Stati	on END	(Continu	ied)					
	END-2	02-1A	ENB-3	63-1A	ENB-2	02-1B	ENB-3	63-1B	ENB-2	02-2A	ENB-3	63-2A	ENB-2	02-2B	ENB-3	63-2B
	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae
N-8 (1 Apr 75)																
Enchelyopus cimbrius	3,956 100.0		3,535		3,042		3,382		2,877		2,827		2,005		1,828	
Myoxocephalus spp.		68 25.2		16 50.0				112 11.0				25 16.8				
Pseudopleuronectes americanus		202 74.8		17 50.0		451 100.0		902 89.0		119 100.0		124 83.2		53 100.0		99 100.0
TOTAL	3,956 100.0	270 100.0	3,535	33 100.0	3,042	451 100.0	3,382	1,014	2,877	119 100.0	2,827	149 100.0	2,005	53 100.0	1,828	99 100.0

Control 5	Station
ENCONT-363-1B	ENCONT-202-2A
Eggs Larvae	Eggs Larvae
144.0	798.8
100.0	100.0
	49.9
	100.0
144.0 0	798.8 49.9
100.0 0	100.0 100.0
1 1	NCONT-363-1B 8gs Larvae 44.0 00.0

								ontrol S	tation	(Continu	ed)					
	ENB-20	2-1A	ENB-36	3-1A	ENB-20	2-1B	ENB-36	3-1B	ENB-20	2-2A	ENB-36	3-2A	ENB-20	2-2B	ENB-36	3-2B
	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae
EN-8 (1 Apr 75)																
Enchelyopus cimbrius	3,034		2,005		2,637		2,431		2,130		2,756		2,764		2,755	
	100.0		100.0		100.0		100.0		100.0		100.0		100.0		100.0	
Myoxocephalus spp.		60		26						46						
		14.4		50.0						33.6						
Pseudopleuronectes		356		27		188		24		91		176		247		176
americanus		85.6		50.0		100.0		100.0		66.4		100.0		100.0		100.0
TOTAL	3,034	416	2,005	53	2,637	188	2,431	24	2,130	137	2,756	176	2,764	247	2,756	176
	100.0	100.0	100.0	100.Q	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

	ENCONT-2	02-14	ENCONT-	363-14	ENCONT-		ENCONT-	10n (Co	ENCONT-	202-2A	ENCONT-	363-2A	ENCONT-	202-2B	ENCONT-	363-2B
		Larvae	Eggs	Larvae		Larvae	Eggs	Larvae	Eggs		Eggs	Larvae	Eggs	Larvae		Larvae
En-9 (28 Apr 75) Enchelyopus cimbrius	11,875		12,941		11,217	160	9,430	122	15,815	395	10,072	66	7,704	371	5,762	141
Scomber scombrus	92.1 255		93.9		97.2	25.0	96.6	23.0	96.0 264	100.0	93.3 263	100.0	278	40.0	93.9 234	25.0
Myoxocephalus spp.	2.0		32		1.4		1.3		1.6		2.4		3.4	93	3.8	
Ammodytes hexapterus			100.	0		160	7.7	286						10.0		
						25.0		53.9						10.0		
Scophthalmus aquosus	766 5.9		644 4.7		1.4		204		395 2.4		4.3		93 1.2		2.3	
Pseudopleuronectes americanus						320 50.0		82 15.4						371 40.0		75.0
TOTAL	12,896 100.0		13,778 100.0	32 100.0	11,537 100.0	640 100.0	9,756 100.0	531 100.0		395 100.0	10,796	100.0	8,075 99.64	928 100.0	6,137 100.0	563 100.0
EN-10 (29 May 75)	70 724	2,655	45,876	1 056	1 700	4 251	16.343	3,044	74,581	6.351	36,849	3,278	36,631	24,741	19.264	
Brevoortia turannus	79,726 20.0	3.0		1,056	1,789	6,255 9.0	7.0	6.7	11.6	3.10	7.2		10.9	12.1	7.9	6,062
Anchoa mitchilli					1,118		967 0.4									
Enchelyopus cimbrius	4,690		4,301	1,056			3,867		7,715		2,047		3,925		6,643	67
Cynoscion regalis					447 1.1				2,572				2,617			
Tautoga onitis	4,690		7,168		3,131 7.8	695 1.0	2,900	435		2,117	14,330	1,639	1,308	1,903	4,650	1,347
Tautogolabrus adspersus	9,380		2,867		4,249	1,390	2,900		10,287	4,234	4,093 0.8		2,617		1,993	
Scomber scombrus	298,583	85,833 97.0	296,757 82.8	101,391	25,492 63.7	60,463		41,315	527,209	190,537				176,992 86.9	209,242	111,132
Prionotus spp.								07.0		74.0	2,047		0,11	00.7	03.0	,,,,
Scophthalmus aquosus	1,563		1,434		3,801	695	3,867	870 3.0	,	2,117	4,094		2,617		1,993	3,368
TOTAL	398,632 100.0	88,488 100.0		103,503		69,498			640,366				334,916	203,636	243,785	
EN-12 (17 Jun 75)																
Brevoortia tyrannus	0.9	2,180	0.4	8,873 42.3	1,420	7,919 42.8	2,992 3.6	24,285 52.6			1,035	1,966	14,952	60,112 73.6	10,516 15.2	4,124 25.6
Anchoa mitchelli	135,641 92.7		85,870 88.0	1,242	26,985 63.3	1,759	58,847 71.9	99. 2.1	90,285 84.0		75,617 88.6		67,286 64.9		39,338 57.0	3,299
Enchelyopus cimbrius																41:
Stenotomus chrysops	710 0.4		401		2,130 5.0		2,659		4,571		2,417		4,272		2,726	
Cynocion regalis	710 0.4		1,203						3,428		1,035		5,340		3,115	
Tautoga onitis	1,420	2,840 15.3	2,406	3,727 17.7	3,550 8.3	3,519	1,994	2,478		1,142	1,035		5,340		1.5	2,474
Tautogolabrus adspersus	4,971	2,130		887 4.2	2,130 5.0	1,759	3,989	4,460	3,428	33.3	3,798	2,528	3,204	6,440		2,47
Menidia menidia			4.5	7.2	3.0	,,,	4.0	7.0	3.1		4.4	16.0	3.0	7.8		2,474
Scomber scombrus		11,362		5,856		2,639	332 0.4	10,408		1,142		8,427		6,440		15.
Peprilus triacanthus		01.3		27.9	2,130	14.2	1,662	22.5		33.3	345	53.5		7.8	1,557	
Prionotus spp.			802 0.8	5,856	2,130 5,0		1,662				0.4				1,557	
Scopthalmus aquosus	1,420		2,006	354 1.6	2,130 5.0	879 4.7	2,992	3,469 7.5	2,285	1,142		281	3,204	6,440	3,505	824
TOTAL	146,294	18,464		20,942	99,241	18,478			107,428	3,426	85,285		3.0		5.0	5.1 81,581

								on ENDSA			Parma				mma. A	
	ENDSA-20	Larvae	ENDSA-36	Larvae	ENDSA-2	Larvae	ENDSA-3	Larvae	ENDSA-20	Larvae	ENDSA-30	Larvae	ENDSA-20	Larvae	ENDSA-36	Larvae
	-460	Latvac	PANO	Car vae		Dalvae	- AA	Dat And		Darvac		Darvac	- DA	Luivae		Luttur
EN-9 (28 Apr 75) Enchelyopus cimbrius	3,272 92.2		3,505 92.7		2,388 88.2		559 96.9	36 100.0	4,640 97.2	66 100.0	3,863 98.5		2,174 100.0		1,472 100.0	
Scomber scombrus									66 1.4							
Myoxocephalus spp.																33.3
Scophthalmus aquosus	277 7.8		274 7.3		318 11.8		18 3.1		66 1.4		59 1.5					
Pseudopleuronectes americanus																166.
TOTAL	3,549 100.0		3,779 100.0		2,706 100.0		577 100.0	36 100.0	4,772 100.0	100.0	3,922 100.0		2,174 100.0		1,472 100.0	100.0
EN-10 (29 May 75) Brevoortia tyrannus	7,490 3.7		7,329 4.5	367 3.9	3,563 2.7	2,171 11.2	6,336 6.5		13,406	1,908	7,755	850 4.9	5,160 4.2	1,804	3,307 4.7	2,01
Anchoa mitchilli	1,664		1,332		1,018				2,979 0.8		1,292					
Enchelyopus cimbrius	3,329 1.7		1,999	52 0.6		181 0.9	1,584		14,896 4.0		3,877 1.2		1,407	601 2.0	827 1.2	58 3.
Cynocion regalis	15,813 7.9		7,995 4.9		1,018		2,376		4,469		7,755 2.4		1,407		827 1.2	
Tautoga onitis	11,651 5.8		6,662 4.1	420	8,145	362 1.9	3,168 3.2	487 1.9	5,958 1.6		15,510 4.8		4,222 3.5	902 3.0	1,929 2.8	1.0
Tautogolabrus adspersus	12,484		11,326 7.0	262	8,145 6.2		2,772		10,427 2.8	273 1.2	18,095 5.6		7,506 6.2	301 1.0	3,859 5.5	
Menidia menidia												170 1.0				
Scomber scombrus	143,145 71.4	10,819	118,589 73.3	8,181 87.2	106,903 81.1		80,788 82.3	22,394 89.3	305,368 82.0	19,897 90.1	263,668 82.3	16,327 94.1	100,863 82.7	25,854 86.9	57,878 83.0	14,771 79.2
Scophthalmus aquosus	4,993	208 1.9	6,662	105	3,054		1,188		14,896		2,585 0.8		1,407	301 1.0	1,102	1.0
TOTAL.	200,569	11,027	161,894	9,387	131,847			25,071	372,400 100.0	22,078 100.0	320,537	17,347	121,974	29,763	69,729	

							Diurn	al Stati	on (ENDS	, Conti	nued)					
	14		140		14		14	00	220	00	22		22		22	
	ENDSA-2		ENDSA-36		ENDSA-2		ENDSA-3		ENDSA-20		ENDSA-3		ENDSA-2		ENDAS-3	
	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae
EN-11 (29 May 75)																
Brevoortia tyrannus	7,490		7,329	367 3.9	3,563	2,171	6,336	2,191 8.7	1,520		836 0.4		5,240	7,565	2,010	
Anchoa mitchelli	1,664		1,332		1,018				844 2.4		836 0.4		524 0.4			
Enchelyopus cimbrius	3,329		1,999	52 0.5		181 0.9	1,584		844		7,524 3.6		4,192		1,005	
Stenotomus chrysops									168 0.4				1,048			
Cynocion regalis	15,813		7,995 4.9		1,018		2,376		506 1.4		2,508		4,716		1,508	
Tautogo onitis	11,651		6,662	420	8,145 6.2	362 1.9	3,168	487 1.9	4,899 14.0	284 7.2	2,508 1.2	2.842 1.0	2,096 1.6	945 1.7	1,256	
Tautogolaprus adspersus	12,484		7.0	2.8	6.2		2.772		7.602 21.7		6,688	2,842 1.0	5,240	1,418 2.6	2,010	
Scomber acombrus	143,145 71.3		118,589 73.2	8,181 87.1	106,903 81.1		80,788 82.2	22,394 89.3	17,907 51.2	3,703 92.8	179,740 87.3	272,924 95.0	99,048 78.7	43,028 81.2	52,533 84.2	18,618
Scophthalamus aquosus	4,993		6,662	105	3,054		1,188		675 1.9		5,016	8,528			2,010	
Pseudopleuronectes s	р.															1.0
TOTAL	200,569		161,894 100.0	9,387	131,847 100.0			25,071 100.0	34,725 100.0	3,987	205,657	287,163 100.0		52,958 100.0		24,180

								Statio	n ENDSA	(Continu	ed)					
	ENDSA-2	02-1A	ENDSA-36	3-1A	ENDSA-2		ENDSA-3	63-1B	ENDSA-20		ENDSA-36		ENDSA-2		ENDAS-3	
	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larvae
EN-12(17 Jun 75) Brevoortia tyrannus	838 0.3	102,510	1,516	949 27.0	4,715	20,558	351 4.0	2,984	2,812 1.6	3,507 36.0	1,587	886 9.3	4,394 3.7	4,308 16.0	2,283	7,588 33.3
Anchoa mitchelli	141,665 61.6	12,060	129,639 66.2	351 10.0	90,539 73.6	12,726 30.2	6,117	2,313 31.0	118,825 67.0	259 2.7	93,686	653 4.1	77,784 66.4	13,733	54,157 66.5	8,048 35.3
Stenotomus chrysops	1,676		2,274 1.1		2,357		105 1.2		2,812 1.6		2,117		1,318	269 1.0	1,631 2.0	
Cynocion regalis	3,353				471 0.3		105 1.2		1,406		529 0.4		1,318		652 0.8	
Tautoga onitis	31,015 13.5	18,090 5.5		316 9.0	7,544 6.1	2,937	668 7.5	597 8.0	9,843 5.5	1,169	14,820 10.2	279 6.1	10,547		7,177 8.7	1,149
Tautogolabrus adspersus	49,457 21.5	48,240 14.8		421 12.0	14,618	3,916	1,195 13.5	597 8.0	39,374	6.7			19,336 16.5	1,885	15,660 19.0	3,219
Menidia menidia											32,287 22.1	326 7.2				
Scomber scombrus		144,720		1,476 42.0	471 0.3	1,957		895 12.0		3,767		2,285		2,423		2,759
Peprilus triacanthus					943 0.7		105 1.2						439 0.4			
Prionotus spp.			758 0.3		943 0.7											
Scophthalmus aquosus	1,676				471 0.3		210 2.4	74 1.0	2,109 1.2	389 4.0	529 0.4	93 2.1	1,757	1,346	652 0.8	
TOTAL	229,683 100.0		195,597		123,077 100.0		48,346 100.0	7,462 100.0	177,184 100.0		145,558 100.0	4,525 100.0	116,897 100.0		82,542 100.0	22,765

	ENA-2	22-1A	ENA-3	63-1A	ENA-2	02-1B	Statio		ENA-20	12-2A	ENA-3	63-2A	ENA-2	02-2B	FNA-3	63-2B
	Eggs	Larvae	Eggs		Eggs	Larvae	Eggs	Larvae		Larvae	Eggs	Larvae	Eggs	Larvae	Eggs	Larva
N-10(29 May 75) Brevoortia tyrannus	20,851	1,089	5,968	535 4.1	6,211	5,469	2,672	3,455 11.3	11,576	335 2.5	5,738 3.3	306 2.1	8,427 5.1	11,609	1,961	
Anchoa mitchilli			1,085				1,136 1.2		724 0.3		1,435		3,241		1,177	
Enchelyopus cimbrius	1,955		2,170 1.6	134 1.0	1,242		445 0.4		1,447	167	2,152	306	1,296		1,177	
Stentomus chrysops	652 0.5	1,960													392 0.4	
Cynocion regalis			542 0.4		414 0.4				1,447		2,152 1.2		1,296		1,177	
Tautoga onitis	2,606 1.9		6,510 4.7		4,969 4.7	456 1.0	4,454	288 0.9	13,024 6.3		9,325 5.4	153 1.0	6,482	829 1.0	5,100 5.3	
Tautogolabrus adspersus	3,258 2.3	436 3.7	7,052 5.1		5,797 5.5		5,345 4.9	288 0.9	11,577 5.6		12,194		7,779 4.7		5,100 5.2	
Scomber scombrus	108,814 77.3	8,277 70.4	109,585 79.5	12,300 94.8	84,056 80.2	39,650 85.3	93,975 85.4	24,759 81.1	165,693 80.1	12,716 96.2	137,006	13,938 93.8	135,476 82.0	69,656 83.2	78,846 81.4	84
Poronotus tríacanthus															785 0.8	
Prionotus app.					414 0.4						717		648 0.4			
Scophthalmus aquosus	2,606 1.9		4,883 3.5		1,656	912 2.0	1,782 1.6	1,727 5.7	1,447		2,152 1.2	153 1.0	648 0.4	1,658	1,177	
Pseudo- pleuronectes americanus																5
TOTAL	140,742 100.0	11,762 100.0	137,795 100.0	12,969 100.0	104,759 100.0	46,487 100.0	110,009		206,935	13,218 100.0	172,871		165,293 100.0		96,892 100.0	
N-12(17 Jun 75) Brevoortia tyrannus	7,952 2.7	2,897 11.7	2,299	6,204 44.0	8,141 5.4	40,292 50.0	5,847 5.1	21,121 57.0	3,696 1.5	1,704 21.0	2,769	1,988	7,455 9.3	11,471 35.3	4,509	
Anchoa mitchelli	234,027 80.4		235,678 82.6	1,128	110,494 74.2	13,684 16.9	83,807 74.4	4,155 11.2	187,620 78.6		148,165 80.7	344	49,996 62.9	10,679 32.9	36,900 70.3	
Enchelyopus cimbrius		1,448										86 1.0				
Stenotomus chrysops	24,993 8.5		13,795 4.8		5,233 3.5		5,847 5.1		12,939 5.4	1,917 23.6	5, 5 38	172 2.0	3,069 3.8		2,255 4.2	
Cynocion regalis	2,272				2,326 1.5		2,923 2.5		1,848		2.076		2,631 3.3		1,229	
Tautoga onitis	9,088	3,622	4,598 1.6	987 7.0	5,233 3.5	2,280	974 0.8	1,038	12,939 5.4	1,065	9,000	860 10.0	4,824		1,639	
Tautogolabrus adspersus	6,816 2.3	4,346	17,244 6.0	1,551	4,652 3.1	10,643 13.2	4,385 3.8	4,501 12.1	11,090 4.6	1,278 15.7	9,000	1,037	2,192 2.7	3,559 10.9	1,844	3,9
Menidia menidia				423 3.0						213		86 1.0				
Scomber scombrus	2,272	5,795 23.5	3,448 1.2	2,679 19.0	2,326 1.5	12,923 16.0		4,155		1,491		3,976 46.0		1,977	205 0.3	
Sygnathus fuscus								0.9								
Peprilus triacanthus	3,408 1.1		3,448 1.2		1,163		3,410		924 0.3				2,631 3.3		1,639	
Prionotus spp.	1,136				1,163		1,949		3,696 1.5		3,461 1.8		2,631 3.3		615 1.1	
Scophthalmus aquosus	1,136	2,173 8.8	4,598 1.6	987 7.0		760 0.9	3,410	1,038	3,696 1.5	426 5.2	3,461 1.8	86 1.0	3,947 4.9		1,639	2,3
pleuronectes sp	·.	4,346 17.6														
Paralichthys oblongus								602 1.8								
TOTAL	290,830	24,632	14,139	296,610		80,584	112,556	37,050	238,448	8,096	183,476	8,644		32,435	52,471	39,5

Table E7

Copepod Standing Crop Densities

During Diurnal Surveys*

•	ENDSA-363-1A 1,964,135 99.3 899,595 36.6	<u>11,126,963</u> 38.4	18.4 1,636,812	97.0
19,991 0.8 62,342 2.1 6,369 3,998 0.2 12,738	0.7 1,527,313			1.9
3,998 0.2 12,738				0.4
3,986 0.2				« C
200 t			17,130	0.0
	7,996 0.3			

* Station EN-11, 29-30 May 75.

BEST AVAILABLE GOV

Table E7 (concluded)

Copepod Standing Crop Densities

During Diurnal Surveys*

0900 #/1000 m3 Percent			9,344,026 39.0				279,663 1.2				148,057 0.6			703,402 34.8	1,266,860 62.7	47,876 2.4		3,683 0.2			
0300 Percent			14.0	29.2	2.1	10.9				9.0	2.2			27.6	68.3	3.4		0.1			6.0
/1000 m3	ENDSA-202-1B	970 110 0	2,845,882	5,918,140	436,584	2,215,260				113,188	436,584		ENDSA-363-1B	1,725,687	4,278,267	215,711		7,190		19 761	19/'87
Sampling Time, hr 200 Percent #	ENDSA	1.2	18.7	13.3	24.5	6.7	0.5		0.2	0.2	1.0	0.1	ENDSA	29.1	63.0	8.9					11
2100 #/1000 m ³ Pe		361,083	5,757,272	4,092,277	7,542,628	2,066,199	160,481		60,181	60,181	320,963	20,060		1,252,669	2,714,116	294,187				037 17	47,450
Percent			10.5	19.1	10.9	2.8	0.3				0.4			47.5	51.7	8.0					
1400 #/1000 m ³			2,652,469	4,820,910	2,749,274	666,969	329,138				96,805			2,332,168	2,540,736	37,921					
Sample		Acartia tonsa	Acartia clausii Acartia copepodid	Temora longicornis	Temora copepodid	Pseudocalanus minutus	Pseudocalanus copepodid Centropages hamatus	Centropages typicus	Oithona sp.	Paracalanus parvus	harpacticolds Pseudodiaptomus coronatus	Nauplii		Acartia tonsa Acartia clausii	Acartia copepodid Temora longicomis	Temora copepodid Pseudocalanus minutus	Pseudocalanus copepodid	Centropages typicus	Oithona sp.	Harpacticolds	Pseudodiaptomus coronatus

^{*} Station EN-11, 29-30 May 75.

NEW YORK OCEAN SCIENCE LAB MONTAUK
AQUATIC DISPOSAL FIELD INVESTIGATIONS, EATONS NECK DISPOSAL SIT-ETC(U)
SEP 77 R I CAPLAN

WES-TR-0-77-6-ADP-F AD-A045 310 LINCI ASSTETED 20F2 AD A045310 MINE Mark END DATE 11-77 DDC

20E

AD A045310

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-4

* Station EN-11, 29-30 May 75.

Table E8

Zooplankton Standing Crop Densities

During Diurnal Surveys*

Sample	#/1000 m3	1400 Percent	210 #/1000 m3	2100 Percent	/1000 m ³	0300 Percent	#/1000 m3	0900 Percent
			1 495	0.05	WT 707			
	7,490	3.3	8,972	0.55	28,871	0.7	16,528	5.4
	698.7	1.9	21,101	0.02	16.368	4.0	4,132	1.3
	153,132	67.9	2,199,128	84.8	3,231,827	84.8	27,087	8.8
	37,659	16.7	339,674	13.1	506,280	13.3	95,954	31.1
	5,618	2.7						
	17,061	7.5	18,110	9.0	16,368	0.5	127,173	41.3
			1 405	90 0	6,138	0.2	2,066	9.6
			72.17	6:0	201-	:		
				ENDSA-	ENDSA-363-1A			
	87	0.3	2,159	4.0				
	2,648	19.4	5,117	6.0	10,454	16.9	30,379	31.0
	337	2.4			2,589	4.2	7,738	7.8
	385	2.8			863	1.4		,
	385	2.8	15,272	2.7	16,593	26.8	829	1.0
	626	4.5	45,817	8.0	1,726	2.8		
	1,974	14.4	1,439	0.3	1,726	2.8		
	6,932	8.05	428,186	75.0	24,457	39.5	59,039	60.2
	289	2.6	33,423	5.8	2,589	4.2		
			39,260	6.9	863	1.4		

Table E8 (concluded)

Zooplankton Standing Crop Densities

During Diurnal Surveys*

				Sampling Time, hr		,		00
Sample	#/1000 m ³	Percent	#/1000 m ³	00 Percent	0300 #/1000 m ³	Percent	#/1000 m ³	Percent
				ENDSA-	ENDSA-202-1B			
Chaetognatha			2,006	0.3	1,779	90.0	767	0.04
Evadne sp. (Cladocera)	42,207	2.8	78,234	6.9	51,259	2.0	81,761	7.2
Podon sp. (Cladocera)	5,227	0.3	14,443	1.3	17,787	9.0	22,209	2.0
Polychaeta (larvae)	22,846	1.5	19,057	1.7	25,549	1.0	1,316	0.1
Gastropoda (larvae)	1,101,641	75.4	506,916	45.0	2,446,198	93.2	511,297	45.26
Bivalvia (larvae)	179,476	12.3	359,275	31.9			436,281	38.6
Cirripedia (nauplii)	8,712	9.0					2,100	0.5
Cirripedia (cyprid)	1,742	0.1						
Brachyura (zoea)	24,588	1.8	100,099	8.9	72,927	2.8	57,988	5.1
Brachyura (megalopa)								
Caridea (larvae)	73,765	5.2	21,865	1.9	906'9	0.3	13,654	1.2
Mysidacea			23,705	0.1	808	0.04		
				ENDSA	ENDSA-363-1B			
Chaetognatha	853	6.0	2,315	2.7	647	0.5	516	0.7
Evadne sp. (Cladocera)	34,507	32.8	26,495	31.7	13,733	10.7	17,750	23.8
Podon sp. (Cladocera)	15,452	14.7	3,859	4.6	18,982	14.7	9,206	12.4
Polychaeta (larvae)								
Gastropoda (larvae)	6,920	9.9	4,716	5.6	31,997	8.4.8	3,333	4.9
Divalvia (larvae)	7.776	7.3	2.315	2.7	3.236	2.5		
Cirripedia (cyprid)					647	0.5		
Brachyura (zoea)	29,293	27.9	35,841	42.9	49,685	38.6	32,627	43.8
Brachyura (megalopa)	01	0	1 800		101 0		10 670	٠ ٧١
Westdaces	10,332	9.0	257	0.5	1,131	7:,	221	0.3
m) or menon			, , ,					

* Station EN-11, 29-30 May 75.

Table E9 October Dry Weight Levels During Cruise EN1*

 Station	Dry Weight mg/m ³	
EN1-363-2A-1	ND**	
EN1-363-2B-1	1.425	
EN1-363-2C-1	0.142	
EN1-363-2A-2	0.837	
EN1-363-2B-2	23.860	
EN1-363-2C-2	6.800	
EN2-363-1A-1	0.129	
EN2-363-1B-1	ND**	
EN2-363-1C-1	0.016	
EN2-363-1A-2	0.374	
EN2-363-1B-2	0.201	
EN2-363-1C-2	ND**	

^{* 30} Oct 75. ** No data.

Table E10

November Spatial and Monthly Biomass Levels

During Cruise EN2*

	18()	Displacement Volume	1002/30/23	Dry Weight
Station		m1/m ³		mg/m ³
EN1-B(363)		0.0309		3.02
EN1-C		-	1-08-186-380	12.76
EN3-B		-		0.28
EN3-C		-		22.30
EN2-B		0.0253		5.57
EN2-C		<u>-</u>		5.18

^{* 19} November 1974

Table Ell November Diurnal Biomass Levels During Cruise EN3*

Station	Displacement Volume m1/m3	Dry Weight mg/m ³
EN2-1B(363)	0.0253	5.57
EN2-1C		5.18
EN2-2B	0.1393	0.63
EN2-2C		21.98
EN2-3B	er c o. is	3.23
EN2-3C		7.30
EN2-4B	61. 5 0.8	6.85
EN2-4C		1.36
EN2-5B	NS**	NS**
EN2-5B	ND***	ND***
EN2-6A	0.0117	19.46
EN2-7A	0.0047	8.78
EN2-7B	0.0009	60.44
EN2-7C		37.09
EN2-7A(202)	0.0120	4.26
EN2-7B	0.0026	15.90
EN2-7C		33.39
ENA-8A	0.0028	1.15
ENA-8B	0.0316	31.37
ENA-8C	0.0135	17.02
ENA-8A (363)	0.0281	35.61
ENA-8B	0.0264	53.86
ENA-8C	0.0097	46.13

^{* 19} November 1974. ** Not sampled.

^{***} No data.

Table E12

December Monthly Biomass Levels

During Cruise EN4*

Station	Displacement Volume m1/m3	Dry Weight mg/m ³
ENB-1A(202)	0.0207	3.06
ENB-2A	0.1592	16.68
END-1A	0.0359	6.06
END-2A	0.0310	5.81
ENCONT-1A	0.0143	2.65
ENCONT-2A	0.0279	4.95

^{* 13} December 1974

Table E12 (concluded)

December Monthly Biomass Levels

During Cruise EN5*

Station	Displacement Volume m1/m3	Dry Weight mg/m ³
ENB-1B (363)	0.3182	36.46
ENB-2B	0.1775	55.42
ENB-1B(202)	0.1093	25.23
ENB-2B	0.0917	23.03
END-1B(363)	0.1772	65.37
END-1B(202)	0.1477	27.11

^{* 18} December 1974

Table E13

January Monthly Biomass Levels

During Cruise EN6*

	Station	new Lov pressure yell	Dry Weight mg/m ³	
	ENB-1A(363)		NS**	
	ENB-1B		5.69	
	ENB-2A		ND***	
	ENB-2B		24.88	
	ENB-1A(202)	0.1093	22.08	
	ENB-2A		34.07	
	ENB-1B	10.00	55.41	
	ENB-2B		47.41	
	END-1A(363)		66.41	
	END-2A		4.33	
15.15	END-1B			
	END-2B		21.44	
	END-1A(202)		114.83	
	END-1B		31.49	
	END-2A		180.48	
	END-2B		35.54	
	ENCONT-1A(363)		47.93	
	ENCONT-1B		41.10	
	ENCONT-2A		54.35	
	ENCONT-2B		23.02	
	ENCONT-1A(202)		96.77	
	ENCONT-1B		39.89	
	ENCONT-2A		50.24	
	ENCONT-2B		58.95	

^{* 23} January 1975 ** Not samples. *** No data.

Table E14

Monthly Dry Weight Levels

and Percent Ash Content

	Dry Weight	Ash
Sample	mg/m ³	Percent
	W1.5E1	
	February, EN7	
· \$1.	147-184	和新期
ENB-1A(363)	6.70	16.0
ENB-1B	80.00	9.8
ENB-2A	9.24	7.5
ENB-2B	80.00	8.4
ENB-1A (202)	28.04	(606) 41-137.4
ENB-1B	80.07	7.2
ENB-2A	36.30	9.3
ENB-2B	69.24	14.4
END-1A(363)	1.27	6.7
END-1B	33.92	6.7
END-2A	24.41	9.9
END-2B	NS*	NS*
END-1A(202)	33.07	7.4
END-1B	49.44	5.6
END-2A	5.29	9.0
END-2B	NS*	NS*
ENCONT-1A(363)	1.56	(638) 411.1
ENCONT-1B	50.57	14.2
ENCONT-2A	41.12	12.3
ENCONT-2B	28.16	7.6
ENCONT-1A(202)	9.32	13.2
ENCONT-1B	47.76	8.7
ENCONT-2A	NS*	NS*
ENCONT-2B	NS*	NS*
* Not sampled.		81-AUXH
	March, EN8	85-A2MS (\$05) A1-A3MS
ENB-1A(363)	8.98	5.5
ENB-1B	30.64	5.6
ENB-2A	11.66	11.4
ENB-2B	35.36	5.8
ENB-1A(202)	9.80	14.2
ENB-1B	56.60	5.7
ENB-2A	15.50	5.7
ENB-2B	44.48	5.0
		of approximation

Table El4 (continued)

Sample	Dry Weight mg/m ³	Ash Percent
	A PALADINI ARK THE COLD DOES	
	March, EN8 (continued)	
END-1A(363)	25.44	5.8
END-1B	132.16	5.4
END-2A	71.04	6.4
END-2B	99.04	5.2
END-1A(202)	44.36	6.1
END-1B	120.16	5.4
END-2A	38.88	7.1
END-2B	126.08	7.2
ENCONT-1A(363)	23.12	5.8
ENCONT-1B	36.32	4.5
ENCONT-2A	10.56	5.8
ENCONT-2B	64.0	5.5
ENCONT-1A(202)	71.44	6.6
ENCONT-1B	67.36	5.4
ENCONT-1B ENCONT-2A	17.84	5.8
ENCONT-2B	86.24	5.5
ENCON1-2B	00.24	(300332-07
93	April ENO	
	April, EN9	
ENB-1A(363)	32.17	8.88
ENB-1B	86.57	6.27
ENB-2A	17.47	10.48
ENB-2B	14.71	8.87
ENB-1A(202)	27.14	8.3
ENB-1B	65.20	7.39
ENB-2A	32.56	7.15
ENB-2B	21.09	9.93
ENSA-1A(363)	109.80	6.59
ENSA-1B	43.89	8.58
ENSA-2A	18.96	8.44
ENSA-2B	79.12	7.35
ENSA-1A(202)	92.85	9.30
ENSA-1B	82.39	6.4
ENSA-2A	50.67	7.19
ENSA-2B	101.84	7.1
ENCONT-1A(363)	37.66	6.9
ENCONT-1B	80.57	6.53
ENCONT-1B ENCONT-2A	46.80	6.79
		7.85
ENCONT-2B	145.63	
ENCONT-1A(202)	81.60	7.28
ENCONT-1B	102.41	8.83
ENCONT-2A	89.73	7.18
ENCONT-2B	146.40	6.64

Table E14 (continued)

Sample	Dry Weight mg/m ³	Ash Percent
Sample	шg/ш-	reicent
	May, EN10, EN11	
ENA-1A(363)	31.06	11.87
ENA-2A	27.88	14.90
ENA-1B	60.02	8.15
ENA-2B	57.34	12.00
ENA-1A(202)	58.33	9.55
ENA-2A	57.91	13.50
ENA-1B	122.18	15.53
ENA-2B	86.73	8.04
ENCONT-1A(363)	46.83	14.58
ENCONT-2A	53.51	18.15
ENCONT-1B	52.32	15.68
ENCONT-2B	49.49	14.42
ENCONT-1A(202)	86.65	14.54
ENCONT-2A	111.43	15.87
ENCONT-1B	111.71	11.77
ENCONT-2B	100.50	17.77
ENDSA-1-1A(363)	26.58	12.87
ENDSA-1-1B	57.75	9.15
ENDSA-1-2A	31.38	12.78
ENDSA-1-2B	62.41	9.30
ENDSA-1-1A(202)	60.02	11.81
ENDSA-1-1B	140.15	7.86
ENDSA-1-2A	79.37	18.82
ENDSA-1-2B	158.13	7.78
ENDSA-2-1A(363)	55.87	23.97
ENDSA-2-1B	61.99	6.16
ENDSA-3-1A	43.29	25.52
ENDSA-3-1B	86.61	6.42
ENDSA-4-1A	32.64	13.44
ENDSA-4-1B	37.79	8.75
ENDSA-4-1B ENDSA-2-1A(202)	112.94	7.56
ENDSA-2-1A(202)	165.88	9.77
ENDSA-2-1B ENDSA-3-1A	118.83	9.68
ENDSA-3-1R ENDSA-3-1B	135.37	6.39
ENDSA-4-1A	77.58	12.94
ENDSA-4-1A ENDSA-4-1B	86.78	6.27

Table E14 (concluded)

Sample	Dry Weight mg/m ³	Ash <u>Percent</u>
	June, EN12	
ENDSA-1A(202)	13.57	18.35
ENDSA-2A	25.10	22.16
ENDSA-1B	104.01	7.00
ENDSA-2B	96.58	4.35
ENDSA-1A(363)	4.46	19.44
ENDSA-2A	6.35	17.36
ENDSA-1B	12.60	15.31
ENDSA-2B	10.57	18.09
ENA-1A(202)	250.12	17.60
ENA-2A	145.41	17.42
ENA-1B	353.40	5.39
ENA-2B	193.78	7.81
ENA-1A(363)	44.62	16.55
ENA-2A	57.09	22.74
ENA-1B	109.07	11.50
ENA-2B	47.08	5.20
ENCONT-1A(202)	395.77	6.14
ENCONT-2A	440.63	5.47
ENCONT-1B	171.51	0.52
ENCONT-2B	344.83	4.57
ENCONT-LA(363)	153.33	8.49
ENCONT-2A	147.78	11.87
ENCONT-1B	190.24	13.33
ENCONT-2B	237.45	9.02
	172, 88	

Table E15

Species Abundance of Phytoplankton*

			Racilla	Racillariophyta	61				Others	8		
	A	& EN	2		EN3		ENI	& EN2			EN3	
	×	SD	SD CV	×	SD CV		X SD CV X	SD	CV	×	SD	C
October	0.76	1.33	1.74	0.49	0.63	1.26	.76 1.33 1.74 0.49 0.63 1.26 3.43 7.12 2.07 0.80 1.12 1.40	7.12	2.07	08.0	1.12	1.40
November	3.53	5.40	1.52	3.92	6.30	1.60	3.53 5.40 1.52 3.92 6.30 1.60 0.37 0.46 1.23 0.35 0.31 0.86	97.0	1.23	0.35	0.31	0.86
December	9.61	19.04	1.98	11.17	21.60	1.93	.61 19.04 1.98 11.17 21.60 1.93 0.36 0.51 1.40 0.31 0.42 1.35	0.51	1.40	0.31	0.42	1.35
January	8.08	13.28	1.64	8.32	12.89	1.54	.08 13.28 1.64 8.32 12.89 1.54 0.21 0.13 0.61 0.20 0.12 0.61	0.13	0.61	0.20	0.12	0.61
												-

^{*} In cells/litre.

Table E16

Total Phytoplankton Abundance

Date		Volume cells/L
29 October 1974		11.3*
19 November 1974		26.8
20 December 1974		78.7
3 January 1975		60.9
21 January 1975		84.1
20 February 1975		80.4
29 March 1975		2355.7
1 April 1975		1005.5
9 April 1975		622.0
22 April 1975		716.8
6 May 1975		113.0
10 June 1975		1157.0

^{*} Average of all stations/depths.

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Caplan, Ronald I
Aquatic disposal field investigations, Eatons Neck disposal site, Long Island Sound; Appendix E: Predisposal baseline conditions of zooplankton assemblages / by Ronald I. Caplan, New York Ocean Science Laboratory, Montauk, New York. Vicksburg, Miss.: U. S. Waterways Experiment Station, 1977.
68, z36jp.: ill.; 27 cm. (Technical report - U. S. Army Engineer Waterways Experiment Station; D-77-6, Appendix E)
Prepared for Office, Chief of Engineers, U. S. Army, Washington, D. C., under Contract No. DACW51-75-C-0016 (DMRP Work Unit 1A06C)
References: p.64-65.

1. Aquatic microorganisms. 2. Disposal areas. 3. Dredged material disposal. 4. Eatons Neck disposal site. 5. Field investigations. 6. Fisheries. 7. Fishes. 8. Sampling. 9. Zooplankton. I. New York Ocean Science Laboratory. II. United States. Army. Corps of Engineers. III. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Technical report; D-77-6, Appendix E. TA7.W34 no.D-77-6 Appendix E