2146. K Highest Ranked Items Within a Price Range

You are given a **0-indexed** 2D integer array grid of size $m \times n$ that represents a map of the items in a shop. The integers in the grid represent the following:

- o represents a wall that you cannot pass through.
- 1 represents an empty cell that you can freely move to and from.
- All other positive integers represent the price of an item in that cell. You may also freely move to and from these item cells.

It takes 1 step to travel between adjacent grid cells.

You are also given integer arrays pricing and start where pricing = [low, high] and start = [row, col] indicates that you start at the position (row, col) and are interested only in items with a price in the range of [low, high] (inclusive). You are further given an integer k.

My Submissions	Back to Contest	
User Accepted:	1463	
User Tried:	2194	
Total Accepted:	1527	
Total Submissions:	5139	
Difficulty:	Medium	

You are interested in the **positions** of the k highest-ranked items whose prices are within the given price range. The rank is determined by the first of these criteria that is different:

- 1. Distance, defined as the length of the shortest path from the start (shorter distance has a higher rank).
- 2. Price (lower price has a higher rank, but it must be in the price range).
- 3. The row number (smaller row number has a higher rank).
- 4. The column number (smaller column number has a higher rank).

Return the k highest-ranked items within the price range sorted by their rank (highest to lowest). If there are fewer than k reachable items within the price range, return all of them.

	0)	2	9
0	Start 1	1	1	7_
(0	0	1	4
2	2	3	4	6
)	0	0	6	9.

Input: grid = [[1,1,1],[0,0,1],[2,3,4]], pricing = [2,3], start = [0,0], k = 3
Output: [[2,1],[2,0]]

Explanation: You start at (0,0).

With a price range of [2,3], we can take items from (2,0) and (2,1).

The ranks of these items are:

- (2,1) with distance 5

- (2,0) with distance 6

Thus, the 2 highest ranked items in the price range are (2,1) and (2,0). Note that k=3 but there are only 2 reachable items within the price range.

