EECE322-01: 자동제어공학개론

Introduction to Automatic Control

Chapter 6: Frequency Response Analysis

Kim, Jung Hoon

◆ The main objectives of this chapter are

1. Frequency response

2. Bode plots

3. Nyquist plot and Nyquist stability criterion

4. Stability margins

5. Effect of time-delay

1. Frequency response

Re-analysis of frequency response

• Frequency response: Linear system's response to sinusoidal inputs. Assume zero initial condition!!

$$A\sin(\omega t)$$
 \longrightarrow LTI system \longrightarrow $AM(\omega)\sin(\omega t + \phi)$ at steady state!!

System:
$$G(s) = \frac{Y(s)}{U(s)}$$

Input:
$$u(t) = A \sin(\omega_0 t) 1(t) \to U(s) = \frac{A\omega_0}{s^2 + \omega_0^2}$$

 $(y(0) = 0) \to Y(s) = G(s) \frac{A\omega_0}{s^2 + \omega_0^2}$

e.g.,
$$\ddot{y} + 3\dot{y} + 2y = A\sin\omega t$$

$$y_p = p_1\sin\omega t + p_2\cos\omega t$$

$$y_h = h_1e^{-t} + h_2e^{-2t}$$

$$y = y_p + y_h \rightarrow y_p \ (t \rightarrow \infty)$$

Output: compute y(t)

Assuming the poles of G(s) are distinct:

$$Y(s) = \frac{\alpha_1}{s - p_1} + \frac{\alpha_2}{s - p_2} + \dots + \frac{\alpha_n}{s - p_n} + \frac{\alpha_0}{s + j\omega_0} + \frac{\alpha_0^*}{s - j\omega_0}$$

$$\to y(t) = \alpha_1 e^{p_1 t} + \alpha_2 e^{p_2 t} + \dots + \alpha_n e^{p_n t} + \alpha_0 e^{-j\omega_0 t} + \alpha_0^* e^{j\omega_0 t}$$

$$Y(s) = \frac{\alpha_1}{s - p_1} + \frac{\alpha_2}{s - p_2} + \dots + \frac{\alpha_n}{s - p_n} + \frac{\alpha_0}{s + j\omega_0} + \frac{\alpha_0^*}{s - j\omega_0}$$

$$\to y(t) = \alpha_1 e^{p_1 t} + \alpha_2 e^{p_2 t} + \dots + \alpha_n e^{p_n t} + 2|\alpha_0|\sin(\omega_0 t + \phi)$$

• Let $G(j\omega_0) = M(\omega_0)e^{j\phi(\omega_0)}$

$$(M(\omega_0) = |G(j\omega_0)| = |G(s)|_{s=j\omega_0}, \ \phi(\omega_0) = \tan^{-1} \frac{\operatorname{Im}[G(j\omega_0)]}{\operatorname{Re}[G(j\omega_0)]} = \angle G(j\omega_0).)$$

• Then,

$$\alpha_{0}^{*} = \left[G(s) \frac{A\omega_{0}}{s^{2} + \omega_{0}^{2}} (s - j\omega_{0}) \right]_{s = j\omega_{0}} = \left[G(s) \frac{A\omega_{0}}{s + j\omega_{0}} \right]_{s = j\omega_{0}} = G(j\omega_{0}) \frac{A}{2j}$$

$$\alpha_{0}^{*} = (\alpha_{0}^{*})^{*} = \left[G(s) \frac{A\omega_{0}}{s^{2} + \omega_{0}^{2}} (s + j\omega_{0}) \right]_{s = -j\omega_{0}} = \left[G(s) \frac{A\omega_{0}}{s - j\omega_{0}} \right]_{s = -j\omega_{0}} = G(-j\omega_{0}) \frac{A}{-2j}$$

$$\frac{\alpha_0}{s+j\omega_0} + \frac{\alpha_0^*}{s-j\omega_0} \longrightarrow G(-j\omega_0) \frac{A}{-2j} e^{-j\omega_0 t} + G(j\omega_0) \frac{A}{2j} e^{j\omega_0 t}$$

$$= \frac{jAM(\omega_0)}{2} e^{-j(\phi(\omega_0) + \omega_0 t)} - \frac{jAM(\omega_0)}{2} e^{j(\phi(\omega_0) + \omega t)}$$

$$= AM(\omega_0) \sin(\omega_0 t + \phi(\omega_0))$$

Example of frequency response

• Recall Example 3.5:

$$G(s) = \frac{1}{s+1}, \ u(t) = A\sin(\omega_0 t)1(t)$$

- The natural response e^{-t} decays to zero as time grows.

• If the system is stable, the natural response disappears after several time constants.

Magnitude and phase

• Frequency response for a stable system with G(s):

$$A\sin(\omega t)$$
 \longrightarrow LTI system \longrightarrow $AM(\omega)\sin(\omega t + \phi)$ at steady state!!

Response to sinusoid (SS):
$$y(t) = AM \sin(\omega_0 t + \phi)$$
,
$$M = |G(j\omega_0)| = |G(s)|_{s=j\omega_0}, \qquad \text{Magnitude of } G(jw_0)$$

$$\phi = \tan^{-1} \frac{\text{Im}[G(j\omega_0)]}{\text{Re}[G(j\omega_0)]} = \angle G(j\omega_0). \qquad \text{Phase of } G(jw_0)$$

- Polar form: $G(j\omega) = M(\omega)e^{j\phi(\omega)}$ $(M(\omega) = \text{magnitude}, \phi(\omega) = \text{phase})$
- The steady-state response w.r.t. sinusoidal function is the sinusoidal with the same frequency, magnitude multiplied by M, phase shift ϕ .
- Nonlinear or time-varying systems might contain other frequencies.

Example

• Example 6.2: Frequency-Response Characteristics of a Lead

$$D(s) = K \frac{Ts+1}{\alpha Ts+1}$$
, $\alpha < 1 \text{ (zero: } -1/T, \text{ pole: } -1/\alpha T\text{)}$

$$K = 1, T = 1, \alpha = 0.1$$

$$D(j\omega) = K \frac{Tj\omega + 1}{\alpha Tj\omega + 1}$$

$$M(\omega) = |D(j\omega)| = |K| \frac{\sqrt{1 + (\omega T)^2}}{\sqrt{1 + (\alpha \omega T)^2}}$$

$$\phi(\omega) = \angle (1 + j\omega T) - \angle (1 + j\alpha \omega T)$$
$$= \tan^{-1}(\omega T) - \tan^{-1}(\alpha \omega T)$$

$$\begin{cases} \omega << 1 \Rightarrow M(\omega) \cong |K| = 1 \\ \omega >> 1 \Rightarrow M(\omega) \cong |K/\alpha| = 10 \end{cases}$$

$$\begin{cases} \omega <<1 \text{ or } \omega >>1 \Rightarrow \phi(\omega) \cong 0, \\ \omega \geq 0 \end{cases}$$

Characteristics of frequency response

- Experimental determination of frequency response:
 - · Excite the system with a sinusoid (e.g., $u(t) = \sin \omega t$) varying in frequency.
 - · Measure $M(\omega)$ and $\phi(\omega)$ in the steady state at each frequency.
- The dynamic response of the system can be determined from the knowledge of $M(\omega)$ and $\phi(\omega)$ of its transfer function.
 - · Use Fourier series to compute the steady-state response for periodic input.
 - · Is there a realtion between $(M(\omega), \phi(\omega))$ and the transient response?

Characteristics of frequency response

- There is some relation between the frequency response $(M(\omega), \phi(\omega))$ and the transient response.
 - Damping can be determined from
 - * the transient response overshoot
 - * the peak in the magnitude of frequency response
 - The natural frequency ω_n is approx. equal to the bandwidth.
 - → the rise time can be determined from the bandwidth.
- The peak overshoot in frequency response $\approx 1/2\zeta$ for $\zeta < 0.5$
 - → the peak overshoot in the step response can be determined from the peak overshoot in the freq. resp.

Example

• Frequency response of $G(s) = \frac{1}{(s/\omega_n)^2 + 2\zeta(s/\omega_n) + 1}$

Magnitude $M(\omega)$

Phase $\phi(\omega)$

$$|G(j\omega_n)| = \frac{1}{\left|\left(\frac{j\omega_n}{\omega_n}\right)^2 + 2\zeta\left(\frac{j\omega_n}{\omega_n}\right) + 1\right|} = \left|\frac{1}{2j\zeta}\right| = \frac{1}{2\zeta}$$

Interpretation from frequency response

• Frequency response vs Step response of $G(s) = \frac{1}{(s/\omega_n)^2 + 2\zeta(s/\omega_n) + 1}$

- Peak overshoot in frequency response: $\frac{1}{2\zeta}$, $\zeta < 0.5$
- Damping can be determined from the overshoot in the step response or from the peak in the magnitude on the frequency response. 12

Frequency response for closed-loop systems

- Bandwidth and resonance peak
 - Closed-loop transfer function

$$\frac{Y(s)}{R(s)} := T(s) = \frac{KG(s)}{1 + KG(s)}$$

Typically, $\begin{cases} |T| \cong 1 \text{ for low frequencies} \\ |T| < 1 \text{ for high frequencies} \end{cases}$

- Resonance peak M_r : Max value of frequency response magnitude
- Bandwidth ω_{BW} : maximum frequency at which the output of the system tracks an input sinusoid in a satisfactory manner
 - \rightarrow Frequency of the sinusoidal input r at which the output y is attenuated by a factor of $0.707(=1/\sqrt{2})$ times the input r. (valid for low-pass filter)

Frequency response for closed-loop systems

Second order system with closed-loop transfer function

$$T(s) = \frac{1}{\left(s/\omega_n\right)^2 + 2\zeta\left(s/\omega_n\right) + 1}$$

- the bandwidth is equal to the natural frequency (i.e., $\omega_n = \omega_{BW}$) for $\zeta = 0.7$.
- For other damping ratios, the bandwidth is approximately equal to the natural frequency with an error typically less than a factor of 2.

(i.e.,
$$\omega_{BW} \leq 2\omega_n$$
)

Closed-loop frequency response

2. Bode plots

Bode plots

• Bode plot of G(s): plots of magnitude $|G(j\omega)|$ and phase $\angle G(j\omega)$

Basic properties of complex numbers

- Polar form:
$$G(j\omega) = \frac{\vec{s}_1 \vec{s}_2}{\vec{s}_3 \vec{s}_4 \vec{s}_5} = \frac{r_1 e^{j\theta_1} r_2 e^{j\theta_2}}{r_3 e^{j\theta_3} r_4 e^{j\theta_4} r_5 e^{j\theta_5}} = \left(\frac{r_1 r_2}{r_3 r_4 r_5}\right) e^{j(\theta_1 + \theta_2 - \theta_3 - \theta_4 - \theta_5)}$$

$$\rightarrow \log_{10} G(j\omega) = \log_{10} M(\omega) e^{j\phi(\omega)} = \log_{10} M(\omega) + j\phi(\omega) \log_{10} e$$

$$\rightarrow \log_{10} |G(j\omega)| = \log_{10} r_1 + \log_{10} r_2 - \log_{10} r_3 - \log_{10} r_4 - \log_{10} r_5$$

$$\rightarrow \angle G(j\omega) = \phi(\omega) = \theta_1 + \theta_2 - \theta_3 - \theta_4 - \theta_5$$

Characteristics of Bode plots

- Decibel(db):
 - -usually used in communications.
 - -to measure the power gain in decibels.

$$|G|_{db} = 10 \log_{10} \frac{P_2}{P_1}$$

$$|G|_{db} = 20 \log_{10} \frac{V_2}{V_1} \quad (P_1 \propto V_1^2, P_2 \propto V_2^2)$$

- Advantages of Bode plots
 - 1. Dynamic compensator design can be done by using Bode plots
 - 2. Bode plots can be determined experimentally.
 - 3. Bode plots of systems in series simply add.
 - 4. Log scale permits a much wider range of frequencies to be displayed.

Sketching method of Bode plots

- Plotting Bode plots
 - it is convenient to write the transfer functions in Bode form:

$$KG(s) = K \frac{(s - z_1)(s - z_2) \cdots}{(s - p_1)(s - p_2) \cdots} \longrightarrow KG(j\omega) = K_0 \frac{(j\omega\tau_1 + 1)(j\omega\tau_2 + 1) \cdots}{(j\omega\tau_a + 1)(j\omega\tau_b + 1) \cdots}$$

$$\angle (KG(j\omega)) = \angle (j\omega\tau_1 + 1) + \angle (j\omega\tau_2 + 1) + \dots - \angle (j\omega\tau_a + 1) - \angle (j\omega\tau_b + 1) - \dots$$
$$\left| KG(j\omega) \right|_{db} = \left| (j\omega\tau_1 + 1) \right|_{db} + \left| (j\omega\tau_2 + 1) \right|_{db} + \dots - \left| (j\omega\tau_a + 1) \right|_{db} - \left| (j\omega\tau_b + 1) \right|_{db} - \dots$$

$$|KG(j\omega)| = |K_0| \frac{|j\omega\tau_1 + 1||j\omega\tau_2 + 1| \cdots}{|j\omega\tau_a + 1||j\omega\tau_b + 1| \cdots}$$

Example

• Example:
$$KG(j\omega) = K_0 \frac{j\omega\tau_1 + 1}{(j\omega)^2(j\omega\tau_a + 1)}$$
.

$$KG(j\omega) = K_0 \frac{j\omega\tau_1 + 1}{(j\omega)^2 (j\omega\tau_a + 1)}$$

$$\angle KG(j\omega) = \angle K_0 + \angle (j\omega\tau_1 + 1) - \angle (j\omega)^2 - \angle (j\omega\tau_a + 1)$$

$$\log |KG(j\omega)| = \log_{10} |K_0| + \log_{10} |j\omega\tau_1 + 1| - \log_{10} |(j\omega)^2| - \log_{10} |j\omega\tau_a + 1|$$

$$\left| KG(j\omega) \right|_{db} = 20(\log_{10}|K_0| + \log_{10}|j\omega\tau_1 + 1| - \log_{10}|(j\omega)^2| - \log_{10}|j\omega\tau_a + 1|)$$

Fundamentals for Bode plots

• Elements of Bode plots (three classes)

1.
$$K_0(j\omega)^n$$

$$K_0s^n$$

2.
$$(j\omega\tau + 1)^{\pm 1}$$

$$(\tau s + 1)^{\pm 1}$$

3.
$$\left[\left(\frac{j\omega}{\omega_n} \right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]^{\pm 1} \qquad \left[\left(\frac{s}{\omega_n} \right)^2 + 2\zeta \left(\frac{s}{\omega_n} \right) + 1 \right]^{\pm 1}$$

$$\left[\left(\frac{s}{\omega_n} \right)^2 + 2\zeta \left(\frac{s}{\omega_n} \right) + 1 \right]^{\pm 1}$$

→ Draw Bode plots of each components and combine them (just add).

Case study for Bode plots

• Class 1: $K_0(j\omega)^n$, Singularities at the origin

$$\log |K_0(j\omega)^n| = \log |K_0| + n \log |j\omega|$$

$$(Y = K + n\Omega, K = \log |K_0|, \Omega = \log \omega)$$

$$\to 20 \log |K_0(j\omega)^n| = 20 \log |K_0| + 20n \log \omega \text{ (slope of } 20n \text{ db per decade)}$$

$$\angle (j\omega)^n = n \times 90^\circ$$

 $(= \pm 90^\circ, \pm 180^\circ, \cdots \text{ for } n = \pm 1, \pm 2, \cdots)$

Case study for Bode plots

• Class 2: $(j\omega\tau+1)$, First-order term

$$\begin{cases} \omega \tau <<1 \Rightarrow j\omega \tau + 1 \cong 1 \Rightarrow \log |j\omega \tau + 1| \cong 0 \\ \omega \tau >> 1 \Rightarrow j\omega \tau + 1 \cong j\omega \tau \Rightarrow \log |j\omega \tau + 1| \cong \log |j\omega \tau| = \log |\tau| + \log |j\omega| \end{cases}$$

$$(\omega = 1/\tau = \text{break point} \leftarrow \log |\tau| + \log |j(1/\tau)| = 0)$$

- 2 asymptotes crosses at the break point, and the actual magnitude lies above that point by a factor of 1.4 (or +3db).

$$\begin{cases} \omega \tau << 1 \Rightarrow \angle (j\omega \tau + 1) \cong \angle 1 = 0^{\circ} \\ \omega \tau >> 1 \Rightarrow \angle (j\omega \tau + 1) \cong \angle j\omega \tau = 90^{\circ} \\ \omega \tau \cong 1 \Rightarrow \angle (j\omega \tau + 1) \cong 45^{\circ} \ (\omega = 1/\tau = \text{break point}) \end{cases}$$

- For $\omega \tau \cong 1$, the $\angle (j\omega \tau + 1)$ curve is tangent to an asymptote going from 90° at $\omega \tau = 0.2 \left(\omega = 0.2 \frac{1}{\tau} = \frac{1}{5} \frac{1}{\tau}\right)$ to 90° at $\omega \tau = 5 \left(\omega = 5 \frac{1}{\tau}\right)$.
- Actual phase curve deviates from the asymptotes by 11° at their intersections.

Example

• Example 6.3: Bode plot for real poles and zeros

$$KG(s) = \frac{2000(s+0.5)}{s(s+10)(s+50)} \to KG(j\omega) = \frac{2000 \cdot 0.5 \left(1 + \frac{j\omega}{0.5}\right)}{(j\omega) \cdot 10 \left(1 + \frac{j\omega}{10}\right) \cdot 50 \left(1 + \frac{j\omega}{50}\right)}$$

$$KG(j\omega) = \frac{2[(j\omega/0.5) + 1]}{j\omega[(j\omega/10) + 1][(j\omega/50) + 1]} = \frac{2}{j\omega} \cdot \frac{\left(1 + \frac{j\omega}{0.5}\right)}{\left(1 + \frac{j\omega}{10}\right) \cdot \left(1 + \frac{j\omega}{50}\right)}$$

Low-frequency asymptote: n = -1,

$$|G(j\omega)| \cong 2/\omega$$

1st-order zero: $\omega = 0.5$

1st-order pole: $\omega = 10$

1st-order pole: $\omega = 50$

$$\phi = -90^{\circ} \rightarrow \cong 0^{\circ} \rightarrow \cong -90^{\circ} \rightarrow -180^{\circ}$$

$$\left(1 + \frac{j\omega}{10}\right)^{-1}$$

Case study for Bode plots

• Class 3: $\left[\left(\frac{j\omega}{\omega_n} \right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]^{\pm 1}$, Second-order term

$$\begin{cases} \omega << \omega_n \Rightarrow G(j\omega) \cong 1 \Rightarrow \log |G(j\omega)| \cong 0 \\ \omega >> \omega_n \Rightarrow G(j\omega) \cong (j\omega/\omega_n)^{\pm 2} \Rightarrow \log |G(j\omega)| \cong \pm 2\log |1/\omega_n| \pm 2\log |(j\omega)| \end{cases}$$

- Break point: $\omega = \omega_n$
- The magnitude changes slope by a factor of ± 2 (or ± 40 db/ decade)

$$\left(\left| G(j\omega) \right| = \frac{1}{2\zeta} \text{ at } \omega = \omega_n \text{ for } n = -1 \right)$$

- The phase changes by $\pm 180^{\circ}$, and the transition through the break point region varies with the damping ratio ζ .

Example

• Example 6.4: Bode plot with complex poles

$$KG(s) = \frac{10}{s(s^2 + 0.4s + 4)}$$

$$KG(s) = \frac{10}{4} \frac{1}{s(s^2/4 + 2(0.1)s/2 + 1)}$$
Low-frequency asymptote: $n = -1$,
$$|G(j\omega)| \cong 2.5/\omega$$
2nd-order pole: $\omega_n = 2$, $\zeta = 0.1$

$$\rightarrow 1/2\zeta = 1/0.2 = 5$$

 $\phi = -90^{\circ} \rightarrow -180^{\circ} \rightarrow -270^{\circ}$

Example

• Example 6.5: Bode plot with complex poles and zeros

$$KG(s) = \frac{0.01(s^2 + 0.01s + 1)}{s^2[(s^2/4) + 0.02(s/2) + 1]}$$

Low-frequency asymptote: n = -2,

$$|G(j\omega)| \cong 0.01/\omega^2$$

2nd-order zero: $\omega_n = 1$, $2\zeta = 0.01$

$$\rightarrow 1/2\zeta = 1/0.01 = 100$$

2nd-order pole: $\omega_n = 2$, $2\zeta = 0.02$

$$\rightarrow 1/2\zeta = 1/0.02 = 50$$

$$\phi = -180^{\circ} \rightarrow \cong 0^{\circ} \rightarrow -180^{\circ}$$

Summary for sketching Bode plots

- 1. Manipulate the transfer function into the Bode form.
- 2. Plot the lowest frequency portion of the asymptote using $K_0(j\omega)^n$: asymptote through the point K_0 at $\omega = 1$ with a slope of n.
- 3. Complete the composite magnitude asymptotes: Extend the low-frequency asymptote untill the first break point. Then step the slope at each break point frequency: ± 1 for a first order term and ± 2 for a second order term.
- 4. Increase [Decrease] the asymptote value by +3 db [-3 db] at the first-order numerator [denominator] break points.

 At the second-order break points, sketch the resonant peak [valley] using the relation $|G(j\omega)| = \frac{1}{2\zeta}$ at $\omega = \omega_n$ at denominator $|G(j\omega)| = 2\zeta$ at $\omega = \omega_n$ at numerator] break points.
- 5. Plot the low-frequency asymptotes of the phase curve: $\phi = n \times 90^{\circ}$.
- 6. Sketch the approximate phase curve at each break point in order of ascending frequency: $\pm 90^{\circ}$ for a first order term and $\pm 180^{\circ}$ for a second order term.
- 7. Sketch in each individual phase curve.
- 8. Graphically add each phase curve.

Minimum phase and nonminimum phase

- Minimum phase versus nonminimum phase
- Minimum phase systems: Systems with all zeros in LHP
- Nonminimum phase systems: Systems with some zeros in RHP

· minimum-phase:
$$G_1(s) = 10 \frac{s+1}{s+10}$$

· nonminimum-phase: $G_2(s) = 10 \frac{s-1}{s+10}$

$$|G_1(j\omega)| = |G_2(j\omega)|$$

- net change in phase of nonminimum phase systems is greater than that of minimum phase systems

3. Nyquist plot and Nyquist stability criterion

Neutral stability

• Can we determine the stability of the closed-loop system from the Bode plot of the open-loop transfer function?

† Im(s)

Example:

K = 2 K < 2 K < 2 K > 2 Re(s) K = 2 -2

- For all points s on the root locus,

$$1 + KG(s) = 0 \rightarrow |KG(s)| = 1$$
 and $\angle G(s) = 180^{\circ} (G(s) = -1/K)$

- At the point of neutral stability $(K = 2, s = j1 = j\omega_0)$,

$$|KG(j\omega_0)| = 1$$
 and $\angle G(j\omega_0) = 180^{\circ}$ Neutral stability condition

There is some relation between the stability of closed loop system and the frequency response of the plant.

Stability using Bode plots – specific case

Close-loop stability from Bode plot

$$\frac{K}{s(s+1)^2} \to \frac{K}{(j\omega)(j\omega+1)^2}$$

- For K = 2 (neutrally stable),

$$|KG(j\omega)| = 1$$
 at ω where $\angle G(j\omega) = -180^{\circ}$

- $|KG(j\omega)| < 1$ at ω where $\angle G(j\omega) = -180^{\circ}$
- $\Leftrightarrow K < 2 \rightarrow \text{ stable}$
- $-|KG(j\omega)| > 1$ at ω where $\angle G(j\omega) = -180^{\circ}$
- $\Leftrightarrow K > 2 \rightarrow \text{unstable}$
- → Stability criterion:

$$|KG(j\omega)| < 1$$
 at $\angle G(j\omega) = -180^{\circ}$

- Note: In this example, increasing the gain makes the system unstable.

Limitations of Bode plots in stability analysis

- Does increasing the gain (from the gain of neutral stability) increases or decreases the system's stability?
 - Usually increasing gain makes the system less stable.
- There are systems where increasing gain leads from instability to stability.
 - → Stability criterion:

$$|KG(j\omega)| > 1$$
 at ω where $\angle G(j\omega) = -180^{\circ}$

- There are systems where $|KG(j\omega)|$ crosses magnitude=1 more than once.
 - → Perform a rough sketch of the root locus.
 - → Use Nyquist stability criterion.

Motivations of the Nyquist stability criterion

- In most cases, increasing gain results in instability.
- There are some cases when the system is unstable with decreased gains.
- Nyquist stability criterion provides the complete answer.
 - It relates the open-loop frequency response to the number of RHP poles of the closed-loop system.
 - You should be able to draw a complex valued function on the complex plane.
- Nyquist stability criterion is based on the argument principle.

The Argument Principle

Key concept to understand the Nyquist Stability Criterion.

Contour evaluation

Given a transfer function H(s) (with poles and zeros), evaluate H(s) for values of s on the clockwise contour C.

- For some test point s_0 , compute $H(s_0)$ and draw it on the complex plane and do this for various s_0 on the contour C.

- Encirclement of the origin when C contains no pole/zero
- Case 1: One zero at -1, H(s) = s+1

- Encirclement of the origin when C contains no pole/zero
- Case 2: One pole at -1, $H(s) = \frac{1}{s+1}$

- Encirclement of the origin when C contains pole or zero
- Case 1: One zero at -1, H(s) = s-1

The Argument Principle - C contains no pole/zero

• Encirclement of the origin when C contains no pole/zero.

- α increases and decreases and return to the original value.
- As s traverses C_1 , the angle α will not undergo a net change of 360° as long as there are no poles or zeros within C_1 .
- \rightarrow The plot of $H_1(s)$ will not encircle the origin.

The Argument Principle - C contains pole or zero

• Encirclement of the origin when C contains pole or zero.

- As s traverses C_1 , the angle ϕ_2 will undergo a net change of -360° .
- \rightarrow As s traverses C_1 , the angle α will undergo a net change of $+360^{\circ}$.
- \rightarrow The plot of $H_2(s)$ will encircle the origin in counterclockwise direction.

 - · $Z > P \rightarrow (Z P)$ clockwise encirclements around the origin · $Z < P \rightarrow (P Z)$ counterclockwise encirclements around the origin

Summary of The Argument Principle

A contour map of a complex function will encircle the origin **Z-P** times clockwise.

Z is the number of zeros and P is the number of poles of the function inside the contour.

From the Argument Principle to stability analysis

• Application of the argument principle to the basic closed-loop system.

$$\frac{Y(s)}{R(s)} = T(s) = \frac{KG(s)}{1 + KG(s)}.$$

- A contour map of a complex function H(s) will encircle the origin **Z-P times**, where Z is the number of zeros and P is the number of poles of H(s) inside the contour.
 - \rightarrow A contour map of 1+KG(s) will encircle the origin **Z-P times**, where Z is the number of zeros and P is the number of poles of 1+KG(s) inside the contour.

Contour selecting and the Nyquist plot

Contour representing RHP and the Nyquist plot

- Closed-loop poles are the solutions of

$$1 + KG(s) = 0 \rightarrow KG(s) = -1.$$

- Encirclements of 0 + j0 by C_1 contour evaluation of (1 + KG(s))
- \leftrightarrow Encirclements of -1+j0 by C_1 contour evaluation of KG(s)

Closed-loop poles in RHP

- Consider a contour representing RHP:
- → A contour map of 1+KG(s) will encircle the **origin** N=Z-P times, where Z: the number of RHP zeros of 1+KG(s), P: the number of RHP poles of 1+KG(s)
- → A contour map of KG(s) will encircle -1 N=Z-P times, where Z: the number of RHP zeros of 1+KG(s), P: the number of RHP poles of 1+KG(s)
- → A contour map of KG(s) will encircle -1 N=Z-P times, where Z: the number of RHP zeros of 1+KG(s), P: the number of RHP poles of KG(s)

Complement

$$1+KG(s)=1+K\frac{b(s)}{a(s)}=\frac{a(s)+Kb(s)}{a(s)}$$

$$\Rightarrow \begin{cases} \text{poles of } G(s)(=b(s)/a(s))=\text{poles of } (1+KG(s)) \\ \text{closed-loop poles}=\text{zeros of } (1+KG(s)) \end{cases}$$

$$\Rightarrow \begin{cases} \text{poles of } G(s) \text{ in RHP}=\text{poles of } (1+KG(s)) \text{ in RHP} \\ \text{closed-loop poles in RHP}=\text{zeros of } (1+KG(s)) \text{ in RHP} \end{cases}$$

Nyquist Stability Criterion

For the basic feedback system

with
$$\frac{Y(s)}{R(s)} = T(s) = \frac{KG(s)}{1 + KG(s)}$$
, we have

$$Z=N+P$$

Z: the number of RHP poles of closed-loop system.

N: the number of **clockwise encirclement** of KG(s) about -1.

P: the number of RHP poles of open-loop system.

- Stability of the closed-loop system can be determined in terms of the number of RHP poles of the open-loop system, and the Nyquist plot.
- If G(s) has P unstable poles, then Nquist plot should encircle the point -1 N times counterclockwise so that the closed loop system is stable (Z=0).
- Usually, we draw the plot with K=1.

Nyquist plot

- Procedure of plotting the Nyquist plot
 - 1. Plot KG(s) for the contour C_1 .
 - Plot KG(s) for $-j\infty \le s \le +j\infty$.
 - The magnitude of $KG(j\omega)$ will be small at high frequencies.
 - The Nyquist plot will always be symmetric with respect to real axis.
 - 2. Evaluate the number of clockwise encirclement of -1 and call that N.
 - -If encirclements are in the counterclockwise direction, then N is negative
 - 3. Determine *P*.
 - 4. Z = N + P

 $Z = 0 \rightarrow$ The closed loop system is stable

Otherwise, the closed loop system is unstable

• Example 6.8: Nyquist plot for a second order system

- Root locus

- Nyquist plot
$$KG(s) = \frac{1}{(s+1)^2}$$
 for $K = 1$

$$P = 0, N = 0$$

$$Z = N + P = 0$$

- \rightarrow stable
- No positive value of K causes the polar plot to encircle -1.
- \rightarrow Stable for all K > 0.

Remark

- Remark:
 - Encirclement of -1 by KG(s) = Encirclement of -1/K by G(s)
 - \rightarrow Count the number of encirclement of -1/K by G(s).

• Example 6.9: Nyquist plot for a third order system

$$G(s) = \frac{1}{s(s+1)^2}$$

- Root locus

Stable for small *K*, unstable for large *K*

- Poles of KG(s) at $s = 0 \rightarrow Modify$ the contour C_1 .

For s on small arc, $s = re^{j\theta}$, r << 1, $-90^{\circ} \le \theta \le 90^{\circ}$ $(\theta = -90^{\circ} \rightarrow 0^{\circ} \rightarrow 90^{\circ})$

$$\Rightarrow G(s) = \frac{1}{s(s+1)^2} \cong \frac{1}{s} = \frac{1}{re^{j\theta}} = \frac{1}{r}e^{j(-\theta)},$$

$$\frac{1}{r} >> 1, -90^{\circ} \le -\theta \le 90^{\circ} (-\theta = 90^{\circ} \to 0^{\circ} \to -90^{\circ})$$

- The Nyquist plot of $G(j\omega)$ crosses the real axis at $\omega = 1$ with |G(j1)| = 0.5.

$$1 + KG(s) = 0$$
, $G(s) = -1/K$
 $-0.5 < -1/K < 0 \rightarrow N = 2$,
 $\rightarrow Z = N + P = 2 + 0 = 2 \rightarrow \text{unstable}$
 $-1/K < -0.5 \rightarrow N = 0$,
 $\rightarrow Z = N + P = 0 + 0 = 0 \rightarrow \text{stable}$

<Extension> Case where $G(s) = \frac{1}{s^k (s+1)^2}, k \ge 1$

For s on small arc, $s = re^{j\theta}$, r << 1, $-90^{\circ} \le \theta \le 90^{\circ}$ $(\theta = -90^{\circ} \rightarrow 0^{\circ} \rightarrow 90^{\circ})$

$$\Rightarrow G(s) = \frac{1}{s^k (s+1)^2} \cong \frac{1}{s^k} = \frac{1}{r^k e^{jk\theta}} = \frac{1}{r^k} e^{j(-k\theta)},$$

$$\frac{1}{r^k} >> 1, -k90^\circ \le -k\theta \le k90^\circ \ (-k\theta = k90^\circ \to 0^\circ \to -k90^\circ)$$

 \rightarrow Nyquist plot at infinity executes k/2 clockwise rotations.

• Example 6.10: Nyquist plot for an open-loop unstable system

- Root locus

- Unstable → Impossible to determine its frequency response experimentally.

$$G(s) = \frac{s+1}{s\left(\frac{s}{10} - 1\right)} \to P = 1$$

- The Nyquist plot crosses the real axis at $\omega \cong 3$ with $|G(j\omega)| = 1$. $-1 < -1/K < 0 \rightarrow K > 1 \rightarrow N = -1$, $Z = N + P = -1 + 1 = 0 \rightarrow$ stable $-1/K < -1 \rightarrow 0 < K < 1 \rightarrow N = 1$, $Z = 1 + 1 = 2 \rightarrow$ unstable

• Example 6.11: Draw the Nyquist plot for $G(s) = \frac{s^2 + 3}{(s+1)^2}$. Determine the stability for positive K.

4. Stability margins

Gain margin and phase margin

• In many cases, the system is stable for all small gain values and becomes unstable if the gain increases past a certain critical point.

- Gain Margin (GM): **the factor** by which the gain can be raised before instability results.
- Phase Margin (PM): the amount by which the phase of $G(j\omega)$ exceeds -180 deg when $|KG(j\omega)| = 1$.

Note:

- only applicable for systems for which 'the system is stable for small gains'.
- the stability is for the feedback systems.

GM and PM from Nyquist plot and Bode plot

• Gain/phase margin from Nyquist plot and Bode plot

GM and PM from Nyquist plot and Bode plot

Crossover frequency

- Crossover frequency (ω_c) :

Frequency at which the gain is unity (0 db)

- Bode plots for $KG(s) = K \frac{1}{s(s+1)^2}$

for K = 1

Computing phase margin

- Find PM for different values of *K*.

$$K = 5 \rightarrow PM = -22^{\circ}$$

 $K = 0.5 \rightarrow PM = +45^{\circ}$

- Find K for a desired PM

$$PM = +70^{\circ} \rightarrow \omega = 0.2$$
$$\rightarrow 1/K = |G(j0.2)| = 5$$
$$\rightarrow K = 0.2$$

Phase margin and damping ratio

• Relation between PM and damping ratio.

Open-loop 2nd-order system:
$$G(s) = \frac{\omega_n^2}{s(s+2\zeta\omega_n)}$$

Closed-loop system (with unity feedback): $T(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

$$PM = \tan^{-1} \left[\frac{2\zeta}{\sqrt{\sqrt{1+4\zeta^4} - 2\zeta^2}} \right]$$

Approximately a straight line up to about $PM = 60^{\circ}$

- A straight line approximation:

$$\zeta \cong \frac{PM}{100}$$
 (below $PM = 70^{\circ}$)

1.0
3.5 0.8
induced 0.6
induced 0.2
0.0° 10° 20° 30° 40° 50° 60° 70° 80°

Phase margin

- The gain margin for the 2nd-order system is infinite.

Resonant peak, overshoot

• Resonant peak vs PM, Overshoot vs PM (or damping ratio)

0.05

Summary of stability margins

Summary

- Design guideline for stability: $PM \ge 30^{\circ}$
- The crossover frequency describes the system's speed of response.
- For 1st and 2nd-order systems, the phase never crosses the 180° line.
- \rightarrow GM is always ∞
- For higher-order systems, it is possible to have more than one frequency where $|KG(j\omega)| = 1$ or where $\angle KG(j\omega) = 180^{\circ}$.
- Conservative assessment: use the crossover freq. with mim. value of PM.

5. Effect of time-delay

Time-delay, network-delay

Examples of time-delay

Time-delay is often occurred in feedback loops with wireless network control systems

Mathematical description of time-delay

• Time-delay

Time-delay in open-loop systems

Open-loop control system with time-delay

Poles of system with time-delay

$$G(s) = \frac{b(s)}{a(s)} \Rightarrow \frac{b(s)e^{-sT}}{a(s)}$$

- → Poles are independent of time-delay in open-loop systems
- → Time-delay does not affect the stability of open-loop systems

Time-delay in closed-loop systems

Closed-loop system with time-delay

Poles of system with time-delay

$$G(s) = \frac{b(s)}{a(s)} \Rightarrow 1 + G(s)e^{-sT} = 1 + \frac{b(s)}{a(s)}e^{-sT} = 0$$
$$\Rightarrow a(s) + b(s)e^{-sT} = 0$$

- → Poles are dependent on time-delay in closed-loop systems
- → Time-delay do affect the stability of closed-loop systems

Stability of time-delay feedback systems

Necessary and sufficient condition for stability

All the roots of $a(s) + b(s)e^{-sT} = 0$ are in OLHP

The closed-loop system is stable

• There are generally an infinite number of roots