Dawid Lipiński Informatyka III 238186

Grzybobranie Algorytmy 3

Zadanie

Napisany został program, którt oblicza prawdopodobieństwo wygrania gry przez gracza G1, mając dane wejściowe podane w kojenych wierszach: rozmiar planszy, liczę grzybów oraz ich rozmieszczenie, pola startowe obu graczy, liczbę ścian kostki, wartości na ścianach kostki, rozkład kostki.

Implementacja

Implementacja opiera się o klasę MyMatrix z zadania drugiego, do której strzworzone zostały implmentacje metody Gaussa dla macierzy rzadkich, metody iteracyjne Gaussa-Seidela I Jacobiego.

Do tworzenia macierzy prawdopodobieńst stworzone zostały klasa Generator, która za argument przyjmuje nazwę pliku wejściowego oraz klasa State implementująca stan.

Do symulacji gry (Metoda Monte-Carlo) stworzone zostały klasy MonteCarlo, Dice, Field oraz Player.

Czasy wykonania

Oś y – cykle procesora, oś x – rozmiar planszy.

Obliczenia

Stworzyłem możliwość eksport macierzy prawdopodobieństw do tabeli HTML (załączona), która to dla małych obliczeń (takich, których macierz da się zbudować ręcznie na kartce), pozwalała w poczatkowym stadium kontrolować poprawność generowania.

Nastepnie, przeprowadzone zostały obliczenia I symulacje dla różnych rozmiarów plansz, a wyniki zostały porównane.

Jak widać, wyniki obliczeń (metod) pokrywają się ze sobą, natomiast wyniki obliczeń I symulacją sa bardzo zbliżone, co sugeruje poprawną implementację metod.

Wnioski

Zgodnie z oczekiwaniami, najszybszą metodą obliczeniową jest zastosowanie Eigen::SparseMatrix, która jest implementacją macierzy rzadkich.