18-100 Introduction to Electrical and Computer Engineering

Lecture 09

Boolean Logic, Logic Gates, and Latches

Learning Objectives for This Lecture

- What is Boolean logic and what are logic gates.
- How to use logic gates to build logic functions.
- How computer uses binary numbers to control "things".
- How computer uses logic gates to do "computation".
- Latches and maintaining state

A Simple Truth of "1" and "0"

Each transistor only controls a "1" and a "0", however,

8,500,000,000 Transistors can carry out very complex functions!

Binary Logic:

"True" = "1"

"False" = "0"

Binary bit operation: Simplest decision making

NOT Gate: Inverter

Truth Table $P = \overline{A}$

Input	Output
1	0
0	1

AND Gate

Truth Table $P = A \cdot B$

Input A	Input B	Output P
0	0	0
1	0	0
0	1	0
1	1	1

$$\begin{cases} 0 \cdot 0 = 0 \\ 1 \cdot 0 = 0 \\ 0 \cdot 1 = 0 \\ 1 \cdot 1 = 1 \end{cases}$$

n-bit Input Controlling/Selecting 2ⁿ Different Actions

A *n*-bit number has 2^n different values: Can be used to control 2^n different actions!

Example: 4-bit number controlling/selecting 16 lines

n-bit Input Controlling/Selecting 2ⁿ Different Actions

4-bit Decode

4-bit binary number

This is how machine(computer) uses binary numbers to perform different actions!

n-bit Input Controlling/Selecting 2ⁿ Different Actions

4-bit Decode

4-bit binary number: 1011

A 4-bit binary number selects a single line (out of the 16 lines) to be "HIGH". (The rest all remain "LOW")

4-bit Input Controlling/Selecting 2⁴ Different Actions

4-bit binary number **0111**

A 4-bit binary number selects a single line (out of the 16 lines) to be "HIGH". (The rest all remain "LOW")

Does This Look Familiar?

3-bit decoder

NAND Gate:

Truth Table

$$P = \overline{A \cdot B}$$

"1"		"4"
"0"		1

Input A	Input B	Output P
0	0	1
1	0	1
0	1	1
1	1	0

$$\overline{0 \cdot 0} = \overline{0} = 1$$

$$\overline{1 \cdot 0} = \overline{0} = 1$$

$$\overline{0 \cdot 1} = \overline{0} = 1$$

$$\overline{1 \cdot 1} = \overline{1} = 0$$

Α	В	Out
0	0	1
1	0	1
0	1	1
1	1	0

Α	В	Out
0	0	1
1	0	1
0	1	1
1	1	0

Α	В	Out
0	0	1
1	0	1
0	1	1
1	1	0

Α	В	Out
0	0	1
1	0	1
0	1	1
1	1	0

Α	В	Out
0	0	1
1	0	1
0	1	1
1	1	0

OR Gate

Truth	Table	C = A + B
Huu	Iabic	C - H + D

Input A	Input B	Output C
0	0	0
1	0	1
0	1	1
1	1	1

$$\begin{cases} 0+0=0\\ 1+0=1\\ 0+1=1\\ 1+1=1 \end{cases}$$

Exclusive OR Gate: XOR

	Truth	Table	$C = A \oplus B$
--	-------	-------	------------------

Input A	Input B	Output C	
0	0	0	$ 0 \oplus 0 = 0$
0	1	1	
1	0	1	$\bigcirc 0 \oplus 1 = 1$
1	1	0	

Adding Binary Numbers for the Rightest Digit (No Input Carry)

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Adding Binary Numbers for the Rightest Digit (No Input Carry)

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Adding Binary Numbers for the Rightest Digit (No Input Carry)

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Adding Binary Numbers for the Rightest Digit (No Input Carry)

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Adding Binary Numbers for the Rightest Digit (No Input Carry)

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Addition

Addition with input carry:

Full Adder (with input carry)

Full Adder

8-bit Adder

Deriving 2s Complement Signed Representation

(Kesden draws here during lecture)

Boolean Algebra

Rules

$$\begin{cases} X = 1 \implies Z = 0 \\ X = 0 \implies Z = 1 \end{cases}$$

$$X$$
 and \overline{X} are complements $\overline{\overline{X}} = X$

$$X \longrightarrow Z = X \cdot Y \qquad \begin{cases} 0 \cdot 0 = 0 \\ 1 \cdot 0 = 0 \\ 0 \cdot 1 = 0 \end{cases}$$

$$\begin{cases} 0 \cdot 0 = 0 \\ 1 \cdot 0 = 0 \\ 0 \cdot 1 = 0 \\ 1 \cdot 1 = 1 \end{cases}$$

$$0 \cdot X = 0$$
$$X \cdot \overline{X} = 0$$
$$1 \cdot X = X$$

$$X \longrightarrow Z = X + Y$$

$$Y \longrightarrow Z = X + Y$$

$$- Z = X + Y$$

$$\begin{cases} 0 + 0 = 0 \\ 1 + 0 = 1 \\ 0 + 1 = 1 \\ 1 + 1 = 1 \end{cases}$$

$$0 + X = X$$
$$1 + X = 1$$
$$X + \overline{X} = 1$$
$$X + Y = Y + X$$

Boolean Algebra

$$Z = \overline{X \cdot Y}$$

$$Z = \overline{X \cdot Y}$$

$$\overline{0 \cdot 1} = \overline{0} = 1$$

$$\overline{1 \cdot 0} = \overline{0} = 1$$

$$\overline{1 \cdot 1} = \overline{1} = 0$$

$$Z = \overline{X + Y}$$

$$Z = \overline{X + Y}$$

$$\overline{0 + 0} = \overline{0} = 1$$

$$\overline{1 + 0} = \overline{1} = 0$$

$$\overline{0 + 1} = \overline{1} = 0$$

$$\overline{1 + 1} = \overline{1} = 0$$

 $\overline{0\cdot 0} = \overline{0} = 1$

Rules for Boolean Algebra

1.
$$0 + X = X$$

2.
$$1+X=1$$

3.
$$X + X = X$$

4.
$$X + \overline{X} = 1$$

5.
$$0 \cdot X = 0$$

6.
$$1 \cdot X = X$$

7.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

9.
$$\overline{\overline{X}} = X$$

10.
$$X + Y = Y + X$$

11.
$$X \cdot Y = Y \cdot X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

13.
$$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$$

14.
$$X \cdot (Y + Z) = X \cdot Y + X \cdot Z$$

15.
$$X + X \cdot Z = X$$

Commutative Law

Commutative Law

Distributive Law

Absorption Law

De Morgan's Laws

$$\overline{(X+Y)} = \overline{X} \cdot \overline{Y}$$

$$\overline{(X\cdot Y)} = \overline{X} + \overline{Y}$$

- Any logic function can be implemented using only OR and NOT gates.
- Any logic function can be implemented using only AND and NOT gates.

Boolean Algebra Example

Fail-Safe Autopilot Logic

Prior to takeoff or landing maneuver, a commercial aircraft requires the following check:

2 of the possible 3 pilots must be available: the pilot, the copilot and the autopilot

Set Logic Variables:

X – State of the pilot: 1= Present, 0=Absent

Y – State of the copilot: 1= Present, 0=Absent

Z – State of the autopilot: 1= Functioning, 0=Not Functioning

Logic function corresponding to "System Ready" is

$$f = X$$
 and Y
 $f = X \cdot Y + X \cdot Z + Y \cdot Z$

f = 1: System Ready; f = 0: System Not Ready

Boolean Algebra Example

Fail-Safe Autopilot Logic

Positive check

$$f = X \cdot Y + X \cdot Z + Y \cdot Z$$

sum-of-product

System Not Ready Condition:

$$\overline{f} = \overline{X \cdot Y + X \cdot Z + Y \cdot Z}$$

$$= \overline{(X \cdot Y)} \cdot \overline{(X \cdot Z)} \cdot \overline{(Y \cdot Z)}$$

$$= \left(\overline{X} + \overline{Y}\right) \cdot \left(\overline{X} + \overline{Z}\right) \cdot \left(\overline{Y} + \overline{Z}\right)$$

$$\overline{(X+Y)} = \overline{X} \cdot \overline{Y}$$

$$\overline{(X \cdot Y)} = \overline{X} + \overline{Y}$$

$$\overline{f} = (\overline{X} + \overline{Y}) \cdot (\overline{X} + \overline{Z}) \cdot (\overline{Y} + \overline{Z})$$

Maintaining State w/ Logic Gates: Latches that Never Forget

Logic Gates + Feedback:

Logic Gates + Feedback:

Making a Memory

It stores/memorizes "1"

Store "1"

After a "1" is stored, the state cannot be changed.

Unless the power is turned-off to reset.

RS Latches: Latches that can Reset

NOR Gate

Truth Table

Input A	Input B	Output P
0	0	1
0	1	0
1	0	0
1	1	0

Set Q to "1"

Set Q to "1"

Set Q to "1"

Reset Q to "0"

Latch with NOR Gates: Reset Q to "0"

Latch with NOR Gates: Reset Q to "0"

Latch with NOR Gates: Reset Q to "0"

RS Latch

S — Set

R — Reset

R	S	Q
0	0	no change
0	1	1
1	0	0
1	1	illegal

18-100 Introduction to Electrical and Computer Engineering

RS Latch

Using Latch to Memorize/Store "Request"

The Use of Latch

Gated SR Latch (with Enable)

E — Enable

D Latches and 1-Bit Memories

D-Latch

Е	D	Q
0	0	Latched/Stored
0	1	Latched/Stored
1	0	0
1	1	1

1-Bit Memory: D-Latch

$$\begin{array}{c|cccc} \mathbf{0} & \mathbf{0} & \mathcal{Q} & \mathbf{0} \\ \mathbf{1} & E & \overline{\mathcal{Q}} & \end{array}$$

Coming Attractions

- Next class: Building Memory
- Monday: Building a Computer!

