Protocolos de Comunicación en Sistemas Embebidos 802.15.4 LR-WPAN

Carrera de Especialización en Sistemas Embebidos - FIUBA

Ing. Patricio Bos Esp. Ing. Juan Montilla

versión: 2016-06-01 rev 1.0

Organización de la presentación

802.15.4 LR-WPAN

Introducció IEEE 802 IEEE 802.15

.R-WPAN

Dispositivos
Topología
Arquitectura
Transferencia de
datos

CSMA/CA Tramas Modulación

Mote LSE Mote TI CC2520

- 1 Introducción
 - Grupo de trabajo IEEE 802
 - IEEE 802.15.4 LR-WPAN
- 2 LR-WPAN
 - Tipos de Dispositivos
 - Topología de la red
 - Arquitectura del estándar
 - Modelo de Transferencia de datos
 - CSMA/CA
 - Estructura de las Tramas
 - Modulación
- 3 Mote LSE
 - Mote
 - TI CC2520
- 4 Referencias

Grupos de trabajo IEEE

802.15.4 LR-WPAN

IEEE 802

LR-WPA

Dispositivos
Topología
Arquitectura
Transferencia de
datos
CSMA/CA
Tramas

Mote LSE TI CC2520

Referencias

 IEEE 802: Desarrollar estándares para redes de área local y metropolitana (LAN y MAN)

■ IEEE 802.3: Ethernet

■ IEEE 802.11: Wi-fi

· ...

 IEEE 802.15: Redes inalámbricas de área personal (WPAN)

■ IEEE 802.15.1: Bluetooth

- IEEE 802.15.3: WPANs de alta tasa de transferencia de datos (HR-WPAN)
- IEEE 802.15.4: WPANs de baja tasa de transferencia de datos (LR-WPAN)

IEEE 802.15.4 LR-WPAN

802.15.4 LR-WPAN

IEEE 802 IEEE 802.15.4

_R-WPAN

Dispositivos Topología Arquitectura Transferencia de datos CSMA/CA Tramas

Mote LSE TI CC2520

- Versiones: 802.15.4:2003, 802.15.4:2006 y **802.15.4:2011**
- Define:
 - Nivel físico (PHY)
 - Control de acceso al medio (MAC)
- Características:
 - Comunicaciones simples de bajo costo.
 - Bajas tasas de transferencia (throughput).
 - Para aplicaciones con limitaciones de potencia.
 - Confiabilidad en la transferencia de datos.
 - Opera en una banda de frecuencia sin licencia.

IEEE 802.15.4 Mercado

802.15.4 LR-WPAN

IEEE 802 IEEE 802.15.4

LR-WPAN
Dispositivos
Topología

Topología Arquitectura Transferencia de datos CSMA/CA Tramas Modulación

Mote LSE Mote TI CC2520

- Uso doméstico e industrial.
- Dispositivos con fuente de alimentación autónoma.
 - Batería.
 - Panel solar.
- Extremadamente bajo consumo de potencia (Ciclo de Trabajo).
- Principales áreas:
 - Domótica y seguridad.
 - Productos electrónicos de consumo.
 - Cuidado de la salud.
 - Control y monitoreo de vehículos.
 - Agricultura.

IEEE 802.15.4 Características Generales

802.15.4 LR-WPAN

IEEE 802 IEEE 802.15.4

LR-WPAN
Dispositivos

Dispositivos Topología Arquitectura Transferencia de datos CSMA/CA Tramas Modulación

Mote LSE TI CC2520

- Área de operación: 10m
- Tasa de transferencia: 250kbs
- Adecuación a aplicaciones de tiempo real: Guaranteed Time Slots (GTSs)
- Mecanismo para evitar colisiones:
 Carrier Sense Multiple-Access / Collision Avoidance (CSMA/CA)
- Control de consumo de energía:
 - Link Quality Indicator (LQI)
 - Energy Detection (ED)

Componentes Tipos de dispositivos

802.15.4 LR-WPAN

Introducción IEEE 802 IEEE 802.15.4

LR-WPA

Dispositivos
Topología
Arquitectura
Transferencia de
datos
CSMA/CA
Tramas

Mote TI CC2520

- Full-function device (FFD):
 Capaz de ser PAN coordinator o coordinator.
- Reduced-function device (RFD):
 Sólo puede comunicarse con un FFD.
 Requerimientos mínimos de recursos.

Topología de la Red Estrella o punto a punto

802.15.4 LR-WPAN

Introducción IEEE 802 IEEE 802.15.4

Dispositivo

Topología Arquitectura Transferencia de datos CSMA/CA Tramas Modulación

Mote TI CC2520

Referencias

Estrella (Star)

- PAN coordinator.
- Comunicaciones centralizadas.
- Ej: Automatización del hogar, Periféricos de PC, Juegos,...
- Punto a punto (Peer-to-Peer)
 - PAN coorditator.
 - Permite redes más complejas.
 - Multi-Hop routing.
 - Ej: Control industrial, WSNs, Tracking de inventario,...

Topología Punto a punto Árbol de Cluster

802.15.4 LR-WPAN

Topología

- Mayoría de FFDs.
- 1 overall PAN coordinator.
- RFDs al final de una rama.
- Aumenta el área de covertura.
- Aumenta la latencia de la red.

Arquitectura del estándar

802.15.4 LR-WPAN

Introducciói IEEE 802 IEEE 802.15.

Dispositivos
Topología

Topología
Arquitectura
Transferencia de datos
CSMA/CA
Tramas
Modulación

Mote L3E TI CC2520

Referencias

MAC Sublayer

- Beacon management
- Channel access
- GTSs management
- Frame validation, ACKs
- Asociación y desasociación de dispositivos

Physical Layer (PHY):

- Activación/Desactivación de RF
- ED, LQI, Clear Channel Assessment (CCA)
- Channel selection
- Tx y Rx de paquetes a través del medio físico

MAC: Beacons, Supertramas y GTSs

802.15.4 LR-WPAN

IEEE 802 IEEE 802.15.4

LR-WPAN

Dispositivos Topología **Arquitectura** Transferencia de datos CSMA/CA Tramas Modulación

Mote LSE Mote TI CC2520

- 16 time slots.
- Contention Access Period (CAP)con CSMA/CA.
- Contention Free Period (CFP) para los GTSs, sin CSMA/CA.
- Los GTSs son opcionales y reducen el CAP.
- Tiempo inactivo → modo bajo consumo.

Transferencia de Datos

802.15.4 LR-WPAN

Introducción IEEE 802

LR-WP

Dispositivo Topología

Transferencia de

datos

CSMA/CA Tramas

Mote LSE Mote TI CC2520

Referencias

Con beacon

Transferencia de Datos

802.15.4 LR-WPAN

Introducción IEEE 802 IEEE 802.15.4

LR-WF

Dispositivos Topología Arquitectura

Transferencia de

datos

CSMA/CA Tramas

Mote LSE Mote TI CC2520

Referencias

Sin beacon

 $Device \rightarrow Coordinator$

Coordinator \rightarrow Device

Carrier Sense multiple Access with Collision Avoidance

802.15.4 LR-WPAN

Introducción IEEE 802

LR-WI

Dispositivos Topología Arquitectura Transferencia

CSMA/CA Tramas

Mote LSE Mote TI CC2520

Referencias

Slotted CSMA/CA vs Unslotted CSMA/CA

Unslotted CSMA-CA for <u>nonbeacon</u>-enabled PANs:

Slotted CSMA-CA for beacon-enabled PANs:

Estructura de las Tramas

802.15.4 LR-WPAN

IEEE 802 IEEE 802.15

LR-WI

Dispositivos Topología Arquitectura Transferencia de datos CSMA/CA Tramas

Mote LSE Mote TI CC2520

Referencias

Se definen 4 tipos de trama MAC:

- Beacon
- Data
- Acknowledgement
- MAC Command

	MAC header (MHR)	MAC payload M.		MAC footer (MFR)		
Synchronization heade (SHR)		/ header PHR)	PHY payload (PSDU)			

802.15.4 LR-WPAN

Introducción IEEE 802 IEEE 802.15.

LR-WPAN
Dispositivos
Topología
Arquitectura
Transferencia de
datos
CSMA/CA
Tramas

Modulación

Referencia

Tipo de Frame: Beacon

802.15.4 LR-WPAN

IEEE 802 IEEE 802.15.4

LK-VV

Topología Arquitectura Transferencia de datos CSMA/CA

Tramas Modulación

Mote LSE Mote TI CC2520

Referencias

Tipo de Frame: Data

802.15.4 LR-WPAN

IEEE 802 IEEE 802.15.4

LK-VVI

Dispositivos
Topología
Arquitectura
Transferencia de datos
CSMA/CA
Tramas

Mote LSE Mote TI CC2520

Referencias

Tipo de Frame: Acknowledgement (Ack)

			Octets:	2	1	2
MAC sublayer				Frame Control	Sequence Number	FCS
				MH	HR.	MFR
Octets: PHY dependent (see clause 6)			1	5		
PHY layer	Preamble Sequence	Start of Frame Delimiter	Frame Length / Reserved	PSDU		
	SHR		PHR	PHY Payload		
	(see clause 6) + 6					

802.15.4 LR-WPAN

Introducción IEEE 802 IEEE 802.15.4

LR-WF

Dispositivos Topología Arquitectura Transferencia de datos CSMA/CA **Transs**

Mote LSE Mote TI CC2520

Referencias

Tipo de Frame: MAC Command

802.15.4 LR-WPAN

Introducció: IEEE 802 IEEE 802.15.

LR-W

Dispositivos
Topología
Arquitectura
Transferencia de
datos
CSMA/CA
Tramas

Mote LSE Mote TI CC2520

Referencias

Frame Control Field

Bits: 0-2	3	4	5	6	7-9	10-11	12-13	14-15
Frame Type	Security Enabled	Frame Pending	Acknowledge request	Intra PAN	Reserved	Destination addressing mode	Reserved	Source addressing mode

Format of the Frame Control Field (FCF)

Frame type value b ₂ b ₁ b ₀	Description
000	Beacon
001	Data
010	Acknowledgment
011	MAC command
100-111	Reserved

Addressing mode value $\mathbf{b_1} \ \mathbf{b_0}$	Description
00	PAN identifier and address fields are not present.
01	Reserved.
10	Address field contains a 16-bit short address.
11	Address field contains a 64-bit extended address.

Modulación

802.15.4 LR-WPAN

IEEE 802

LK-W

Dispositivos
Topología
Arquitectura
Transferencia de datos
CSMA/CA
Tramas

Mote LSE

PHY (MHz)	Frequency band (MHz)	Spreading parameters		Data parameters			
		Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols	
780	779–787	1000	O-QPSK	250	62.5	16-ary orthogonal	
780	779-787	1000	MPSK	250	62.5	16-ary orthogonal	
868/915	868-868.6	300	BPSK	20	20	Binary	
	902-928	600	BPSK	40	40	Binary	
868/915	868-868.6	400	ASK	250	12.5	20-bit PSSS	
(optional)	902-928	1600	ASK	250	50	5-bit PSSS	
868/915	868-868.6	400	O-QPSK	100	25	16-ary orthogonal	
(optional)	902-928	1000	O-QPSK	250	62.5	16-ary orthogonal	
950	950-956	_	GFSK	100	100	Binary	
950	950-956	300	BPSK	20	20	Binary	
2450 DSSS	2400-2483.5	2000	O-QPSK	250	62.5	16-ary orthogonal	
UWB sub-gigahertz (optional)	250-750	As defined in 14.4.1					
2450 CSS (optional)	2400-2483.5	As defined in 13.2		250	167 (as defined in 13.4.2)		
		As defined in 13.2		1000	167 (as defined in 13.4.2)		
UWB low band (optional)	3244-4742	As defined in 14.4.1					
UWB high band (optional)	5944-10 234	As defined in 14.4.1					

Nodo Mote LSE-FIUBA

802.15.4 LR-WPAN

IEEE 802 IEEE 802.15.4

LK-VVI

Dispositivos
Topología
Arquitectura
Transferencia de datos
CSMA/CA
Tramas

Mote

Referencias

■ Nodo Mote desarrollado en el LSE-FIUBA

- LPC1343 ARM Cortex-M3 @72MHz
- Transceptor TI-2520
- Extensor de rango TI-2591
- 3 Pulsadores
- 3 leds
- Antena y balun en microstrip

Nodo Mote LSE-FIUBA

Circuito Esquemático

802.15.4 LR-WPAN

Introducción IEEE 802

LR-WF

Dispositivos Topología Arquitectura Transferencia de datos CSMA/CA

Mote LSI Mote

11 CC2520

Transceptor DSSS TI CC2520

802.15.4 LR-WPAN

IEEE 802 IEEE 802.15

LR-WPAN

Dispositivos
Topología
Arquitectura
Transferencia de
datos

CSMA/CA Tramas Modulación

Mote TI CC252

Referencias

- 2394-2507 MHz
- Muy bajo consumo de corriente

RX: 18.5 - 22.3 mA.

TX: 25.8 - 33.6 mA.

- Interfaz de usuario
 - SPI
 - 6 GPIOs
 - Respuestas automáticas a diferentes eventos
 - Modo de Packet Sniffer embebido

Soporte por Hardware a 802.15.4 MAC

802.15.4 LR-WPAN

IEEE 802 IEEE 802.15.4

LR-WP

Dispositivos
Topología
Arquitectura
Transferencia de datos
CSMA/CA

Mote L3

- Generador automático de preámbulo
- Inserción y detección de palabra de sincronización
- CRC-16 en el MAC payload
- Frame Filtering
- Ack automático
- Clear Channel Assessment (CCA)
- Energy Detection (ED)
- Link Quality Indication (LQI)

Circuito de Aplicación Típico

802.15.4 LR-WPAN

Introducción IEEE 802 IEEE 802 15

LR-WPAI

Dispositivos Topología Arquitectura Transferencia de datos CSMA/CA

Mote LSE

Diagrama Funcional

802.15.4 LR-WPAN

IEEE 802

I R-WPAI

Dispositivos
Topología
Arquitectura
Transferencia de
datos
CSMA/CA

CSMA/CA Tramas Modulación

Mote LSI

Procesamiento de tramas: Tx

802.15.4 LR-WPAN

IEEE 802 IEEE 802.15.

Dispositivos Topología Arquitectura Transferencia datos

CSMA/CA Tramas Modulación

Mote LSE

Procesamiento de tramas: Rx filtering

802.15.4 LR-WPAN

IEEE 802 IEEE 802.15.4

LR-W

Dispositivos
Topología
Arquitectura
Transferencia de
datos
CSMA/CA

Mote LSE Mote TI CC2520

Procesamiento de tramas: Rx matching

802.15.4 LR-WPAN

Introducción IEEE 802 IEEE 802.15.

Dispositivos
Topología
Arquitectura

datos
CSMA/CA
Tramas
Modulación

Mote LSE _{Mote}

Referencias

802.15.4 LR-WPAN

Introducción IEEE 802

LR-WP

Dispositivos Topología Arquitectura Transferencia de datos CSMA/CA

Mote LSE Mote TI CC2520

- Estándar IEEE 802.15.4:2011
- IEEE 802.15 Task Group 4 Home Page
- IEEE Get Program
- LPC1343 Datasheet
- LPC1343 User Manual
- Texas Instrument CC2520 Technical Documents
- Texas Instrument Design Note 2.4 GHz Inverted F Antenna

Protocolos de Comunicación en Sistemas Embebidos 802.15.4 LR-WPAN

Carrera de Especialización en Sistemas Embebidos - FIUBA

Ing. Patricio Bos: pbos@fi.uba.ar

Esp. Ing. Juan Montilla: juanvmontillac@gmail.com

versión: 2016-06-01 rev 1.0