

Housekeeping

- Homework 7 due tonight!
- Last problem set is assigned today! Atypical due date: Wednesday 11/13

Linear regression

Crash course; take STAT 211 for more depth!

Fitting a line to data

- Hopefully we are all familiar with the equation of a line: y = mx + b
 - Intercept *b* and slope *m* determine specific line
 - This function is *deterministic*: as long as we know x, we know value of y exactly
- **Linear regression**: statistical method where the relationship between variable *x* and variable *y* is modeled as a **line + error**:

$$y = \underbrace{\beta_0 + \beta_1 x}_{\text{line}} + \underbrace{\epsilon}_{\text{error}}$$

Linear regression model

$$y = \beta_0 + \beta_1 x + \epsilon$$

- We have two variables:
 - 1. y is response variable. Must be continuous numerical.
 - 2. x is explanatory variable, also called the **predictor** variable
 - Can be numerical or categorical
- β_0 and β_1 are the model **parameters** (intercept and slope)
 - lacktriangle Estimated using the data, with point estimates b_0 and b_1
- ϵ (epsilon) represents the **error**
 - Accounts for variability: we do not expect all data to fall perfectly on the line!
 - lacksquare Sometimes we drop the ϵ term for convenience

Linear relationship

Suppose we have the following data:

• Observations won't fall exactly on a line, but do fall around a straight line, so maybe a linear relationship makes sense!

Fitted values

Suppose we have some specific estimates b_0 and b_1 . We could fit the linear relationship using these values as:

$$\hat{y} = b_0 + b_1 x$$

- The hat on y signifies that this is an estimate: the estimated/**fitted** value of y given these specific values of x, b_0 and b_1
 - We observe y, but can obtain a corresponding estimate \hat{y}
- Note that the fitted value is obtained without the error

Fitted values (cont.)

- Suppose our estimated line is the yellow one
- Every observed value y_i has a corresponding fitted value \hat{y}_i ; the above plot just shows three specific examples

Residual

Residuals are the remaining variation in the data after fitting a model.

$$data = fit + residual$$

• For each observation i, we obtain residual e_i via:

$$y_i = \hat{y}_i + e_i \quad \Rightarrow \quad e_i = \hat{y}_i - y_i$$

- Residual = difference between observed and expected
- Since each observation has a fitted value, each observation has a residual
 - In the linear regression case, the residual is indicated by the vertical dashed line
 - What is the ideal value for a residual?

Residual (cont.)

Residual values for the three highlighted observations:

Х	У	y_hat	residual
-2.991	2.481	-0.130	-2.611
-1.005	-1.302	0.691	1.994
3.990	3.929	2.757	-1.172

Residual plot

- Residuals are very helpful in evaluating how well a model fits a set of data
- Residual plot: original x values plotted against their corresponding residuals on y -axis

Red dots = specific points from previous plot

Residual plot (cont.)

Residual plots can be useful for identifying characteristics/patterns that remain in the data even after fitting a model.

• Just because you fit a model to data, does not mean the model is a good fit!

Can you identify any patterns remaining in the residuals?

Describing linear relationships

Different data may exhibit different strength of linear relationships:

• Can we quantify the strength of the linear relationship?

Correlation

- Correlation is describes the strength of a linear relationship between two variables
 - lacktriangle The observed sample correlation is denoted by R
 - Formula (not important): $R = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i \bar{x}}{s_x} \right) \left(\frac{y_i \bar{y}}{s_y} \right)$
- Always takes a value between -1 and 1
 - -1 = perfectly linear and negative
 - 1 = perfectly linear and positive
 - 0 = no linear relationship
- Nonlinear trends, even when strong, sometimes produce correlations that do not reflect the strength of the relationship

Least squares regression

In Algebra class, there exists a single (intercept, slope) pair because the (x, y) points had no error; all points landed on the line.

- Now, we assume there is error
- How do we choose a single "best" (b_0, b_1) pair?

Different lines

The following display the same set of 50 observations.

Which line would you say fits the data the best?

- There are infinitely many choices of (b_0, b_1) that could be used to create a line
- We want the BEST choice (i.e. the one that gives us the "line of best fit")
 - How to define "best"?

Line of best fit

One way to define a "best" is to choose the specific values of (b_0, b_1) that minimize the total residuals across all n data points. Results in following possible criterion:

1. Least absolute criterion: minimize sum of residual magnitudes:

$$|\epsilon_1| + |\epsilon_2| + \ldots + |\epsilon_n|$$

2. Least squares criterion: minimize sum of squared residuals:

$$e_1^2 + e_2^2 + \dots + e_n^2$$

- The choice of (b_0, b_1) that satisfy least squares criterion yields the **least squares** line, and will be our criterion for "best"
- On previous slide, yellow line is the least squares line, whereas pink line is the least absolute line

Linear regression model

Remember, our linear regression model is:

$$y = \beta_0 + \beta_1 x + \epsilon$$

While not wrong, it can be good practice to be specific about an observation i:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, \dots, n$$

- Here, we are stating that each observation i has a specific:
 - explanatory variable value x_i
 - \blacksquare response variable value y_i
 - error/randomness ϵ_i

Conditions for the least squares line (LINE)

Like when using CLT, we should check some conditions before saying a linear regression model is appropriate!

Assume for now that x is continuous numerical.

- 1. **Linearity**: data should show a linear trend between x and y
- 2. Independence: the observations i are independent of each other
 - e.g. random sample
 - Non-example: time-series data
- 3. **Normality/nearly normal residuals**: the residuals should appear approximately Normal
 - Possible violations: outliers, influential points (more on this later)
- 4. **Equal variability**: variability of points around the least squares line remains roughly constant

Running example

We will see how to check for these four LINE conditions using the cherry data from openintro.

diam	n volume	
8.3	10.3	
8.6	10.3	
8.8	10.2	
10.5	16.4	
10.7	18.8	

- Explanatory variable x: diam
- Response variable y: volume

1. Linearity

Assess *before* fitting the linear regression model by making a scatterplot of x vs. y:

Does there appear to be a linear relationship between diameter and volume?

I would say yes

2. Independence

Assess *before* fitting the linear regression model by understanding how your data were sampled.

• The cherry data do not explicitly say that the trees were randomly sampled, but it might be a reasonable assumption

An example where independence is violated:

Here, the data are a time series, where observation at time point i depends on the observation at time i-1.

 Successive/consecutive observations are highly correlated

Fitting the model

At this point, it is time to actually fit our model

volume =
$$\beta_0 + \beta_1$$
diameter + ϵ

• After fitting the model, we get the following estimates: $b_0 = -36.94$ and $b_1 = 5.07$. So our **fitted model** is:

$$\widehat{\text{volume}} = -36.94 + 5.07 \times \text{diameter}$$

Remember: the "hat" denotes an estimated/fitted value!

- We will soon see how b_0 and b_1 are calculated and how to interpret them
- The next two checks can only occur *after* fitting the model.

3. Nearly normal residuals

Assess after fitting the model by obtaining residuals and making a histogram.

• Remember, residuals are $\hat{y}_i - y_i$

```
cherry |>
mutate(volume_hat = -36.94 + 5.07*diam)
mutate(residual = volume_hat - volume)
```

diam	volume	volume_hat	residual
8.3	10.3	5.108	-5.192
8.6	10.3	6.628	-3.672
8.8	10.2	7.641	-2.559
10.5	16.4	16.253	-0.147
10.7	18.8	17.266	-1.534

- Do the residuals appear approximately Normal?
 - I think so!

4. Equal variance

Assess after fitting the model by examining a residual plot and looking for patterns.

A good residual plot:

A bad residual plot:

We usually have a horizontal line at 0 to compare residuals to

4. Equal variance (cont.)

Let's examine the residual plot of our fitted model for the cherry data:

- Based on this plot, I would say the equal variance condition is not perfectly met.
 - Some of the variability in the errors appear related to diameter

Fitting the least-squares line

Parameter estimates

- Like in previous topics, we have to estimate the parameters using data
- We want to estimate β_0 and β_1 using the (x_i, y_i)
 - In practice, we let software do this for us
- However, we *can* derive the least-squares estimates using properties of the least-squares line

Estimating slope and intercept

First obtain b_1 :

$$b_1 = \frac{s_y}{s_x} R$$

where:

- s_x and s_y are the sample standard deviations of the explanatory and response variables
- R is the correlation between x and y

Then obtain b_0 :

$$b_0 = \bar{y} - b_1 \bar{x}$$

where

- \bar{y} is the sample mean of the response variable
- *x* is the sample mean of the explanatory variable

• Take STAT 0211 or 0311 to see where these formulas come from!

Fitting cherry model (by hand)

Verify estimates $b_0 = -36.94$ and $b_1 = 5.07$ from our model for the cherry data:

```
cherry |>
pivot_longer(cols = c(diam, volume), names_to = "variable", values_to = "val") |>
select(-height) |>
group_by(variable) |>
summarise(mean = mean(val), s = sd(val))
```

variable	mean	S	
diam	13.248	3.138	
volume	30.171	16.438	

```
1 R <- cor(cherry$diam, cherry$volume)
2 R
```

[1] 0.9671194

• Set-up the calculations:

$$\bullet b_1 = \frac{s_y}{s_x} R$$

■
$$b_0 = \bar{y} - b_1 \bar{x}$$

- $b_1 = \frac{16.438}{3.138} \times 0.967 = 5.07$
- $b_0 = 30.171 5.07 \times 13.248 = -36.94$