Friday 3rd May, 2019

Definition 1. Let S be the program states in program P. A path is a sequence $\pi = s_1 s_2 s_3...$ permitted by P. A variable v a function $v: S \mapsto \mathbb{R}$. Every nonempty finite path $\pi = s_1...s_i$ determines a probe state p_{π} such that we take $v(p_{\pi}) = v(s_i)$ for any v. Henceforth a path is taken to contain a mix of normal program states and probe states. Write p instead of p_{π} since there can be no confusion. For example, let

$$\pi = s_1 \cdot p_{s_1} \cdot s_2 \cdot s_3 \cdot p_{s_1 p_{s_1} s_2 s_3} \cdot p_{s_1 p_{s_1} s_2 s_3 p_{s_1 p_{s_1} s_2 s_3}}$$

write

$$\pi = s_1 \cdot p \cdot s_2 \cdot s_3 \cdot p \cdot p$$

Definition 2. The probed value $\mathbb{P}[v \mid \pi]$ of variable v regarding path π is:

- -v(p) where p is the last(?) probe state in π and
- undefined if there is no probe state in π .

Definition 3. The expected probed value $\mathbb{EP}[v \mid \Pi]$ of variable v regarding paths Π is:

$$\sum_{\pi \in \Pi} \Pr(\pi) \, \mathbb{P}[\![v \mid \pi]\!]$$

Generality

For a program P without probe states and variable v, insert probe states immediately after init and just before sink:

$$\begin{split} \mathbb{ER}[\![\mathsf{F} \, \mathsf{sink} \mid P^v]\!] &= \sum_{\pi \in \mathsf{F} \, \mathsf{sink}} \mathsf{Pr}(\pi) \, \mathsf{R}(\pi) \\ &= \sum_{\pi \in \mathsf{F} \, \mathsf{sink}} \mathsf{Pr}(\pi) \, \mathbb{P}[\![v \mid \pi]\!] = \mathbb{EP}[\![v \mid \mathsf{F} \, \mathsf{sink}]\!] \end{split}$$

and

$$\begin{split} \mathbb{LER}[\![\mathsf{F} \operatorname{sink} \mid P^v]\!] &= \mathbb{ER}[\![\mathsf{F} \operatorname{sink} \mid P^v]\!] + \mathsf{Pr}(\neg \mathsf{F} \operatorname{sink} \mid P^v) \\ &= \mathbb{ER}[\![\mathsf{F} \operatorname{sink} \mid P^v]\!] + \sum_{\pi \in \neg \mathsf{F} \operatorname{sink}} \mathsf{Pr}(\pi) \\ &= \mathbb{ER}[\![\mathsf{F} \operatorname{sink} \mid P^v]\!] + \sum_{\pi \in \neg \mathsf{F} \operatorname{sink}} \mathsf{Pr}(\pi) \, \mathbb{P}[\![1 \mid \pi]\!] \\ &= \mathbb{EP}[\![v \mid \mathsf{F} \operatorname{sink}]\!] + \mathbb{EP}[\![1 \mid \neg \mathsf{F} \operatorname{sink}]\!] \end{split}$$

What should $\mathbb{EP}[x \mid \top]$ be for:

```
x = 1
Probe
x = 2
Probe
x = 3
x = 3
```

Listing 1: We'd want $\mathbb{EP}[x \mid \top] = 2$ and that compels the definition of \mathbb{P} to take the *last* probe state.

```
while true:
x = 1
Probe
```

Listing 2: We'd want $\mathbb{EP}[x \mid \top] = 1$ but the probe state occurs infinitely often so there is no *last* probe state.

```
while true:

x = 1 [0.5] x = 2

Probe
```

Listing 3: We'd want $\mathbb{EP}[x \mid \top] = 1.5$ and even if we take not the last probe state but every probed value weighted by its path's probability, we would count in too much: $0.5 \cdot 1 + 0.5 \cdot 2 + 0.25 \cdot 1 + 0.25 \cdot 2 + 0.25 \cdot 1 + 0.25 \cdot 2 + \dots$

Listing 4: We'd want $\mathbb{EP}[x \mid T] = 0$ but I have no idea how would this work since $\sum_{i} 0.5^{i} = \frac{0.5}{1-0.5} = 1$. For these two I don't think I know enough to properly handle them in a meaningful way. I'm still reading on semantics.