МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВО «АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

КАФЕДРА ВТиЭ

Лабораторный практикум по курсу «Схемотехника ЭВМ»

Лабораторная работа №2

Лабораторная работа №2

Тема: Проектирование цифровых счетчиков.

Цель работы:

Получение навыков проектирования счетчиков на базе ПЛИС.

Задачи:

Синтезировать счетчик с заданными параметрами в САПР Altera Max+plus II в режиме графического редактора (Graphic Editor) и на языке AHDL с помощью текстового редактора (Text Editor). Произвести проверку работоспособности на отладочной плате.

Теоретические сведения:

Цифровые счетчики являются простейшей формой последовательных схем. На практике счетчики, так же как и другие последовательные схемы, формируют на элементах памяти, таких, как триггеры, и элементов комбинационной логики.

Все последовательные схемы подразделяются на два класса: синхронные (управляемые временем) и асинхронные (управляемые событиями). В синхронных схемах все изменения согласуются по времени с подачей синхронизирующих импульсов, а в асинхронных схемах все изменения состояния схемы инициируются определенными событиями.

Каждый счетчик относится к одному из описанных выше классов. Схемы, управляемые временем, называются синхронными счетчиками, а схемы, управляемые событиями, асинхронными счетчиками или счетчиками со сквозным переносом. Схему синхронного счетчика используют для подсчета импульсов синхронизации (тактовых импульсов); это число хранится в нескольких элементах памяти. Асинхронные счетчики применяют для определения количества нерегулярных событий, например, для определения числа людей, входящих в банк. Как и в случае синхронного счетчика, это число хранится в нескольких элементах памяти.

Счетчики являются основными компонентами цифровых систем и могут использоваться для целей управления и синхронизации. Они применяются в вычислительных системах и системах связи, используются для деления и умножения (ФАПЧ) частот.

В одних случаях счетчики могут быть чисто двоичными, в других ведут счет в коде Грея или в десятичном-десятичном коде.

Литература:

- 1. Altera MAX+PLUS® II ver. 10.2 Help
- 2. Р.И.Грушвицкий, А.Х.Мурсаев, Е.П.Угрюмов Проектирование систем на микросхемах с программируемой структурой. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2006. 736с.
- 3. В.Б.Стешенко ПЛИС фирмы ALTERA: проектирование устройств обработки сигналов.- М.: ДОДЭКА, 2000. 128с.

Выполнение работы:

Выполнение лабораторной работы можно разделить на следующие этапы:

- 1. По заданному преподавателем варианту определяется модуль счетчика и тип триггера, на котором счетчик должен быть реализован;
- 2. Проектируется устройство;

- 3. С помощью графического редактора (Graphic Editor) устройство реализуется;
- 4. Выполняется компиляция проекта;
- 5. С помощью редактора диаграмм (Waveform Editor) проверяется работа схемы;
- 6. Функционирование схемы проверяется на отладочной плате;
- 7. Устройство реализуется на языке AHDL с помощью текстового редактора (Text Editor);
- 8. Проект компилируется и проверяется его работа в симуляторе;
- 9. Функционирование проекта проверяется на отладочной плате.

Требования к защите работы:

- 1. Демонстрация схемы счетчика и результатов моделирования на компьютере и на отладочной плате;
- 2. Отчет по лабораторной работе (оформленный в соответствии с Приложением 2);
- 3. Правильные ответы на вопросы преподавателя по теме работы.

Пример выполнения лабораторной работы.

Задание:

Вариант № 0. Разработать счетчик по модулю 0xC при помощи графического редактора на триггерах 0x1 и текстового редактора с помощью языка AHDL.

Выполнение работы:

Получаем данные необходимые для создания схемы счетчика. Вариант расшифровываем следующим образом:

0хС=12 – модуль счетчика;

0x1=1 - JK-триггер.

Код	Вид триггера
1	ЈК-триггер
2	D -триггер
3	RS-триггер

Необходимо разработать счетчик по модулю 12 при помощи графического редактора на JKтриггерах и текстового редактора с помощью языка AHDL.

Один из методов проектирования счетчиков заключается в построении таблицы состояний, в первом столбце которой будут отражены текущие состояния счетчика, а во втором следующие за ними состояния. Счетчик по модулю 12 имеет двенадцать состояний и поэтому для его реализации достаточно четырех триггеров. На рис.2.1 показана таблица состояний счетчика. Для того чтобы заполнить столбцы J_A , J_B , J_C , J_D , K_A , K_B , K_C , и K_D , сначала определяем те переходы, которые должны быть сделаны, а затем с помощью

управляющей таблицы ЈК-триггера находим позволяющие осуществить эти переходы значения входов триггеров.

D	C	В	Α	D^*	C^*	B^*	A*	J_{D}	K_{D}	J_{C}	Kc	J_{B}	K _B	J_A	KA
0	0	0	0	0	0	0	1	0	*	0	*	0	*	1	*
0	0	0	1	0	0	1	0	0	*	0	*	1	*	*	1
0	0	1	0	0	0	1	1	0	*	0	*	*	0	1	*
0	0	1	1	0	1	0	0	0	*	1	*	*	1	*	1
0	1	0	0	0	1	0	1	0	*	*	0	0	*	1	*
0	1	0	1	0	1	1	0	0	*	*	0	1	*	*	1
0	1	1	0	0	1	1	1	0	*	*	0	*	0	1	*
0	1	1	1	1	0	0	0	1	*	*	1	*	1	*	1
1	0	0	0	1	0	0	1	*	0	0	*	0	*	1	*
1	0	0	1	1	0	1	0	*	0	0	*	1	*	*	1
1	0	1	0	1	0	1	1	*	0	0	*	*	0	1	*
1	0	1	1	0	0	0	0	*	1	0	*	*	1	*	1

Рис.2.1 Таблица состояний счетчика. Для определения значении J_A , J_B , J_C , J_D , K_A , K_B , K_C , и K_D используем карты Карно:

	00	01	11	10
00			_	
01			(1)	
11	d	d	$\left(\mathbf{d}\right)$	d
10	*	*	*	*

J_D=CBA

	00	01	11	10
00	*	*	*	*
01	*	*	*	*
11	d	d	\ d /	d
10			$\sqrt{1}$	

K_D=BA

	00	01	11	10
00			\bigcap	
01	*	*	*	*
11	d	d	d	d
10				

 $J_C = \overline{D} BA$

	00	01	11	10
00	*	*	*	*
01			1	
11	d	d	d	d
10			*	

 $K_C = AB$

	00	01	11	10	
00		1	¥	*	
01		1	* \	*	
11	d	d	D	d	
10		Y	*	*	
		$J_B=A$			
	00	01	11	10	
00	*	/*			
01	*	*	1		
11	d	\d	d/	d	
10	*	*	\nearrow		
]	$K_B=A$	1		
	00	01	11	10	
00	X	*	*	X	
01	1	*	*	1	
11	\d	d	d	d /	
10	1	*	*	\langle	
	$J_A=1$				
	00	01_	11	10	
00	*	1	1	*	
01	*	1	1	* \	
11	þ	d	d	d /	
10	*	1	1	*	
		$K_A=1$			

По получившимся результатам строим схему счетчика с помощью редактора Graphic Editor в Altera Max+PlusII. Схема счетчика приведена на рис.2.2.

Рис.2.2 Схема счетчика в редакторе Graphic Editor.

Проверяем работу схемы в редакторе Waveform Editor. Результат работы схемы приведен на рис.2.3.

Рис.2.3 Результат работы схемы в редакторе Waveform Editor.

Для решения поставленной задачи в текстовом редакторе с помощью языка AHDL существует несколько способов:

- 1. использование макрофункции «7492» из библиотеки AHDL;
- 2. использование общей метафункции счетчика «lpm counter»;
- 3. использование компонента «JKFF».

Для данной задачи выбираем первый способ:

```
INCLUDE ''7492''; % подключение библиотеки%
SUBDESIGN schetchik
(
qd[3..0]:OUTPUT; % определяем выходы%
clr, clk: INPUT; % определяем входы%
)
BEGIN
qd = 7492 (clr,clr, clk, clk); % вызов функции счетчика%
END;
```


Рис.2.4 Счетчик по модулю 12.

Проверяем работу схемы в редакторе Waveform Editor. Результат работы схемы приведен на рис.2.5.

Рис. 2.5 Результат работы схемы в редакторе Waveform Editor.

Вопросы к работе:

- 1. Что такое счетчик?
- 2. Что такое модуль счетчика?
- 3. Чем отличается синхронный счетчик от асинхронного счетчика?
- 4. Что такое состояния счетчика?
- 5. Как организован сброс счетчика?

Приложение 1

Варианты для лабораторной работы №2:

Разработать счетчик при помощи графического редакторе (на триггерах, указанных в задание) и текстового редактора на языке AHDL.

No	Модуль	Вид триггера	No	Модуль	Вид триггера
1	0x11	0x1	28	0x19	0x1
2	0x11	0x2	29	0x19	0x2
3	0x11	0x3	30	0x19	0x3
4	0x12	0x1	31	0x1A	0x1
5	0x12	0x2	32	0x1A	0x2
6	0x12	0x3	33	0x1A	0x3
7	0x13	0x1	34	0x1B	0x1
8	0x13	0x2	35	0x1B	0x2
9	0x13	0x3	36	0x1B	0x3
10	0x14	0x1	37	0x1C	0x1
11	0x14	0x2	38	0x1C	0x2
12	0x14	0x3	39	0x1C	0x3
13	0x15	0x1	40	0x1D	0x1
14	0x15	0x2	41	0x1D	0x2
15	0x15	0x3	42	0x1D	0x3
16	0x16	0x1	43	0x1E	0x1
17	0x16	0x2	44	0x1E	0x2
18	0x16	0x3	45	0x1E	0x3
19	0x17	0x1	46	0x1F	0x1
20	0x17	0x2	47	0x1F	0x2
21	0x17	0x3	48	0x1F	0x3
22	0x18	0x1	49	0xD	0x1
23	0x18	0x2	50	0xD	0x2
24	0x18	0x3	51	0xD	0x3
25	0xE	0x1	52	0xF	0x1
26	0xE	0x2	53	0xF	0x2
27	0xE	0x3	54	0xF	0x3

Правила оформления отчетов к лабораторным работам

Отчет, является документом, отражающим результаты и ход выполнения лабораторной работы. Отчет должен содержать следующие пункты:

- 1. Титульный лист содержащий тему и номер лабораторной работы, фамилии выполнявшего студента и проверявшего преподавателя (пример в конце приложения).
- 2. Цель работы указывается цели выполняемой работы.
- 3. Задачи указываются задачи, решаемые в ходе выполнения лабораторной работы, приводится и расшифровывается собственный вариант задания.
- 4. Выполнение работы указываются расчеты, проведенные в ходе работы, а также результаты этих расчетов.
- 5. Результаты работы прикладывается распечатка, полученных в результате работы схем, модулей, временных диаграмм и результаты замеров временных задержек, возникающих при работе схемы, на каждом переключении с указанием кода переключения.
- 6. Выводы пункт содержит перечень решенных в ходе работы задач и достигнутых целей, а также проблемы, возникшие в ходе работы.

Обратить внимание:

- 1. Отчет принимается только в бумажном виде. Т.е. отчет должен быть полностью набран на компьютере и распечатан. Отчеты в электронном виде рассматриваться не будут.
- 2. Листы отчета должны быть пронумерованы и скреплены между собой.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВО «АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

КАФЕДРА ВТиЭ

Отчет по лабораторной работе №_ по курсу «Схемотехника ЭВМ»

« Тема лабораторной работы »

Выполнил:	
студент	группы
]	Иванов И.И.
Проверил:	доцент
]	Шмилт В В