Tableau Method for Modal Logic

Yudai Kubono

JAIST

September 10, 2022

Yudai Kubono (JAIST) September 10, 2022 1/15

Tableau Method / System

- Tableau method is a type of proof procedure that defines proof.
- ➤ A tree (a connected acyclic directed graph) generated by a procedure is called a tableau.
- A closed tableau for $\neg A$ is a proof of A.

2 / 15

Yudai Kubono (JAIST) September 10, 2022

Prefixed Tableau Method

Definition 1

- \triangleright A prefix σ is a finite sequence of positive integers.
- ▶ A prefixed formula is an expression of the form $\sigma \varphi$.
- ▶ A prefixed tableau method is a tableau method for prefixed formulas.
- ▶ We write prefixes using periods to separate integers.
- ▶ If σ is a prefix, and n is a positive integer, $\sigma.n$ is a concatenation of them (e.g. if $\sigma=1.2.3$, and n=4, $\sigma.n=1.2.3.4$).

Yudai Kubono (JAIST) September 10, 2022 3/15

Definition of Branch

Definition 2

- A path of a tableau T is a finite sequence (v_1, \dots, v_n) of nodes (i.e. formulas) where there are edges $\langle v_i, v_{i+1} \rangle$ in T for $i = 1, \dots, n-1$.
- ▶ A branch (maximal path) is a path satisfying the following conditions:
 - (1) If a prefixed formula other than a possibility or necessity formula ($\Diamond A$ or $\neg \Box A$, $\Box A$ or $\neg \Diamond A$, respectively) appears on it, the applicable rules has been applied to it.
 - (2) If a possibility formula appears on it, the possibility rule has been applied to it once.
 - (3) If a necessity formula with σ or $\sigma.n$ appears on it, the applicable necessity rules have been applied to it once for each prefix σ or $\sigma.n$ that appears on it.

Yudai Kubono (JAIST) September 10, 2022 4/15

Closed Tableau and Open Tableau

Definition 3

- A tableau is saturated if there is a branch that includes the path for all paths.
- ▶ A branch is closed if it contains σ A and σ ¬A for some formulas A.
- A tableau is closed if all branchs are closed, and a tableau is open if it retains an open branch.
- ightharpoonup A closed tableau for $1 \neg A$ is a proof of A.

Yudai Kubono (JAIST) September 10, 2022 5/15

Branch Extention Rules for Connectives

Conjunctive Rules

Double Negation Rule

$$\begin{array}{ccc}
\sigma \neg \neg A \\
\vdots \\
\sigma A
\end{array}$$

Disjunctive Rules

Branch Extention Rules for Modal Operators

Possibility Rules : If the prefix $\sigma.n$ is new to the path,

$$\begin{array}{cccc}
\sigma \lozenge A & \sigma \neg \sqcup A \\
\vdots & \vdots \\
\sigma.n & A & \sigma.n \neg A
\end{array}$$

Basic Necessity Rules : If the prefix $\sigma.n$ is already occur in the path,

$$\begin{array}{ccc}
\sigma \Box A & \sigma \neg \Diamond A \\
\vdots & \vdots \\
\sigma . n A & \sigma . n \neg A
\end{array}$$

Yudai Kubono (JAIST) September 10, 2022

Example

$$C: (\Box A \wedge \Box B) \rightarrow \Box (A \wedge B)$$

$$1 \neg (\Box A \wedge \Box B) \rightarrow \Box (A \wedge B)$$

$$1 \neg \Box A \wedge \Box B$$

$$1 \neg \Box (A \wedge B)$$

$$1 \Box A$$

$$1 \Box B$$

$$1.1 \neg (A \wedge B)$$

$$1.1 \neg A \quad 1.1 \neg B$$

$$1.1 A \quad 1.1 B$$

$$\otimes \qquad \otimes$$

Yudai Kubono (JAIST) September 10, 2022

Soundness and Completeness

Definition 4

Suppose S is a set of prefixed formulas. We say S is satisfiable, if there are some models $M=\langle W,R,V\rangle$, and there is a function θ of assigning each prefix that appears in S to a possible world in W such that:

If σ and $\sigma.n$ appear in S, $(\theta(\sigma), \theta(\sigma.n)) \in R$;

If $\sigma \varphi$ appears in S, M, $\theta(\sigma) \vDash \varphi$.

Theorem 1

There is a closed tableau for $1 \neg A$ ($\vdash A$) iff A is valid ($\models A$).

Yudai Kubono (JAIST) September 10, 2022

Strategies to Prove : Soundness

Soundness ($\vdash A \Rightarrow \vdash A$)

- $1. \not\vdash A \Rightarrow \not\vdash A.$
- 2. $\{1 \neg A\}$ is satisfiable, since there are some worlds v in some models M at which $M, v \vDash \neg A$.
- 3. Every tableau for $\{1 \neg \varphi\}$ has at least one branch on which a set of prefixed formulas is satisfiable, since all rules preserve satisfiablity from a path before application to a path after application.
- 3. It is an open branch.
- 4. Every tableau for $1 \neg A$ is not closed.

Yudai Kubono (JAIST) September 10, 2022

Strategies to Prove: Completeness

Completeness $(\models A \Rightarrow \vdash A)$

- 1. $\forall A \Rightarrow \not\models A$.
- 2. There is a open saturated tableau, since every tableau for $\neg A$ is open.
- 3. Let $\mathcal P$ be a set of atomic propositions. We can create a model $M=\langle W,R,V\rangle$ where:
 - W is a collection of prefixes that appears on the open branch;
 - \blacktriangleright $(\sigma, \sigma.n) \in R :\Leftrightarrow$ both of σ and $\sigma.n$ are in W;
 - $ightharpoonup V(p):\Leftrightarrow \sigma\ p$ appears in the branch for each $p\in\mathcal{P}$.
- 4. The above model satisfies the property: For each formula A, if σ A appears on the branch, then $M, \sigma \vDash A$.
- 5. $M, 1 \models \neg A$, since $1 \neg A$ is a root.

Yudai Kubono (JAIST) September 10, 2022

More Tableau Methods

For prefixes σ and σ .n already appears on the path,

Special Necessity Rule T: Special Necessity Rule D: Special Necessity Rule B:

$$\begin{array}{ccc} \sigma \ \Box A & \sigma \ \neg \Diamond A \\ \vdots & \vdots \\ \end{array}$$

$$\begin{array}{ccc}
\sigma \square A & \sigma \neg \lozenge A \\
\vdots & \vdots \\
\sigma \lozenge A & \sigma \neg \square A
\end{array}$$

Special Necessity Rule 4: Special Necessity Rule 4r:

$$\begin{array}{ccc}
\sigma \square A & \sigma \neg \Diamond A \\
\vdots & \vdots \\
\end{array}$$

Soundness and Completeness to Extention

Definition 5

Suppose S is a set of prefixed formulas. We say S is $\mathbf{L} \in \{\mathbf{T}, \mathbf{D}, \mathbf{B}, \mathbf{K4}, \mathbf{S5}\}$ -satisfiable, if there are some $\mathbf{L} \in \{\mathbf{T}, \mathbf{D}, \mathbf{B}, \mathbf{K4}, \mathbf{S4}, \mathbf{S5}\}$ -models $M = \langle W, R, V \rangle$, and there is a function θ of assigning each prefix that appears in S to a possible world in W such that:

If σ and $\sigma.n$ appear in S, $(\theta(\sigma), \theta(\sigma.n)) \in R$; If $\sigma \varphi$ appears in S, M, $\theta(\sigma) \models \varphi$.

- \blacktriangleright Soundness : To prove to preserve the $L \in \{T, D, B, K4, S4, S5\}$ -satisfiablity of the added rules.
- ightharpoonup Completeness : To create a $L \in \{T, D, B, K4, S4, S5\}$ -model satisfying 4's property.

Yudai Kubono (JAIST) September 10, 2022 13/15

Next Presentation

- ► As for K4, a length of branches (i.e. the number of nodes on it) may be infinite.
- ▶ But there is a way to make it decidable.

A branch in $\mathbf{K4}$ -tableaus (Takagi (2019))

14 / 15

Yudai Kubono (JAIST) September 10, 2022

- [1] M. Fitting. *Proof Methods for Modal and Intuitionistic Logics*. D. Reide1 Publishing Company, 1983.
- [2] M. Fitting and R.L. Mendelsohn. *First-order modal logic*. Kluwer Academic Publishers, 1998.
- [3] T. Takagi. K4 タブローによる妥当性判定と濾過法. *Journal of Science and Philosophy*, 2(1), 4-23, 2019.

Yudai Kubono (JAIST) September 10, 2022