WHAT IS CLAIMED IS:

1. A compound of formula I:

 $P-M-M_1$

I

5 or a stereoisomer or pharmaceutically acceptable salt thereof, wherein;

one of P and M_1 is -G and the other -A-B;

G is a group of formula IIa or IIb:

ring D, including the two atoms of Ring E to which it is attached, is a 5-6 membered ring consisting of: carbon atoms and 0-3 heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

ring D is substituted with 0-2 R, 0-2 carbonyls, and there are 0-3 ring double bonds;

E is selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, and pyridazinyl, and is substituted with 1-2 R;

alternatively, ring D is absent and ring E is selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, triazolyl, thienyl, and thiazolyl, and ring E is substituted with 1-2 R;

25

30

15

20

alternatively, ring D is absent and ring E is selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, triazolyl, thienyl, and thiazolyl, and ring E is substituted with 1 R and with a 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, wherein the 5-6 membered heterocycle is substituted with 0-1 carbonyls and 1-2 R and there are 0-3 ring double bonds;

```
R is selected from H, C<sub>1-4</sub> alkyl, F, Cl, Br, I, OH, OCH<sub>3</sub>, OCH<sub>2</sub>CH<sub>3</sub>, OCH(CH<sub>3</sub>)<sub>2</sub>,

OCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CN, C(=NR<sup>8</sup>)NR<sup>7</sup>R<sup>9</sup>, NHC(=NR<sup>8</sup>)NR<sup>7</sup>R<sup>9</sup>,

ONHC(=NR<sup>8</sup>)NR<sup>7</sup>R<sup>9</sup>, NR<sup>8</sup>CH(=NR<sup>7</sup>), NH<sub>2</sub>, NH(C<sub>1-3</sub> alkyl), N(C<sub>1-3</sub> alkyl)<sub>2</sub>,

C(=NH)NH<sub>2</sub>, CH<sub>2</sub>NH<sub>2</sub>, CH<sub>2</sub>NH(C<sub>1-3</sub> alkyl), CH<sub>2</sub>N(C<sub>1-3</sub> alkyl)<sub>2</sub>,

CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub>NH(C<sub>1-3</sub> alkyl), CH<sub>2</sub>CH<sub>2</sub>N(C<sub>1-3</sub> alkyl)<sub>2</sub>,

(CR<sup>8</sup>R<sup>9</sup>)<sub>t</sub>C(O)H, (CR<sup>8</sup>R<sup>9</sup>)<sub>t</sub>C(O)R<sup>2c</sup>, (CR<sup>8</sup>R<sup>9</sup>)<sub>t</sub>NR<sup>7</sup>R<sup>8</sup>, (CR<sup>8</sup>R<sup>9</sup>)<sub>t</sub>C(O)NR<sup>7</sup>R<sup>8</sup>,

(CR<sup>8</sup>R<sup>9</sup>)<sub>t</sub>NR<sup>7</sup>C(O)R<sup>7</sup>, (CR<sup>8</sup>R<sup>9</sup>)<sub>t</sub>OR<sup>3</sup>, (CR<sup>8</sup>R<sup>9</sup>)<sub>t</sub>S(O)<sub>p</sub>NR<sup>7</sup>R<sup>8</sup>,

(CR<sup>8</sup>R<sup>9</sup>)<sub>t</sub>NR<sup>7</sup>S(O)<sub>p</sub>R<sup>7</sup>, (CR<sup>8</sup>R<sup>9</sup>)<sub>t</sub>SR<sup>3</sup>, (CR<sup>8</sup>R<sup>9</sup>)<sub>t</sub>S(O)R<sup>3</sup>, (CR<sup>8</sup>R<sup>9</sup>)<sub>t</sub>S(O)<sub>2</sub>R<sup>3</sup>,

and OCF<sub>3</sub>;
```

alternatively, when 2 R groups are attached to adjacent atoms, they combine to form methylenedioxy or ethylenedioxy;

M is 3-8 membered linear chain consisting of: carbon atoms, 0-3 carbonyl groups, 0-1 thiocarbonyl groups, and 1-3 heteroatoms selected from O, N, and S(O)_p, and M is substituted with 0-3 R^{1a} and 0-2 R², and there are 0-2 double bonds and 0-1 triple bond; provided that other than an S-S, S-O, or O-O bond is present in M;

20

25

provided that linker M comprises other than a N-C(O)-C(O)-N group;

further provided that one or more of the following apply:

- (a) if linker M comprises a ureido-methylene-carbonyl-amino or carbamoyloxy-methylene-carbonyl-amino group, then ring D is present or ring E is other than phenyl or pyridyl;
 - (b) there is at least one S(O)_p group present in linker M;
 - (c) there are at least two carbonyl groups present in linker M;
 - (d) ring D is present in group G;
- 30 (e) ring E is other than phenyl; and

(f) if ring D is absent and ring E is phenyl, then R is other than CN, C(=NR⁸)NR⁷R⁹, NR⁸CH(=NR⁷), NH₂, NH(C₁₋₃ alkyl), N(C₁₋₃ alkyl)₂, C(=NH)NH₂, CH₂NH₂, CH₂NH(C₁₋₃ alkyl), CH₂N(C₁₋₃ alkyl)₂, CH₂CH₂NH₂, CH₂CH₂NH(C₁₋₃ alkyl), CH₂CH₂N(C₁₋₃ alkyl)₂, (CR⁸R⁹)_tNR⁷R⁸, and (CR⁸R⁹)_tC(O)NR⁷R⁸;

A is selected from:

5

30

C₃₋₁₀ carbocycle substituted with 0-2 R⁴, and

5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R⁴;

B is ; provided that Z and B are attached to different atoms on A and that the A-X-N moiety forms other than a N-N-N group;

15 Q_1 is selected from C=O and SO₂;

ring Q is a 4-8 membered monocyclic or bicyclic ring consisting of, in addition to the $N-Q_1$ group shown, carbon atoms and 0-2 heteroatoms selected from NR^{4c} , O, S, S(O), and S(O)₂, wherein:

20 0-2 double bonds are present within the ring and the ring is substituted with 0-2 R^{4a};

alternatively, ring Q is a 4-8 membered monocyclic or bicyclic ring to which another ring is fused, wherein:

the 4-7 membered ring consists of, in addition to the shown amide group, carbon atoms and 0-2 heteroatoms selected from NR^{4c}, O, S, S(O), and $S(O)_2$ and 0-2 double bonds are present within the ring;

the fusion ring is phenyl or a 5-6 membered heteroaromatic consisting of carbon atoms and 1-2 heteroatoms selected from NR^{4c}, O, S, S(O), and $S(O)_2$;

ring Q, which includes the 4-7 membered ring and the fusion ring, is substituted with 0-3 R^{4a} ;

alternatively, two non-adjacent atoms of one of the rings of ring Q are bridged with 1-2 atoms selected from: carbon atoms, NR^{4c}, O, S, S(O), and S(O)₂, provided bonds other than O-O, S(O)_p-O, S(O)_p-S(O)_p, N-O, and N-S(O)_p are present;

X is absent or is selected from –(CR²R^{2a})₁₋₄-, -CR²(CR²R^{2b})(CH₂)_t-, -C(O)-,

-C(=NR^{1c})-, -CR²(NR^{1c}R²)-, -CR²(OR²)-, -CR²(SR²)-, -C(O)CR²R^{2a}-,

-CR²R^{2a}C(O), -S(O)-, -S(O)₂-, -SCR²R^{2a}-, -S(O)CR²R^{2a}-, -S(O)₂CR²R^{2a}-,

-CR²R^{2a}S(O)-, -CR²R^{2a}S(O)₂-, -S(O)₂NR²CR²R^{2a}-, -NR²S(O)₂-,

-CR²R^{2a}NR²S(O)₂-, -NR²S(O)₂CR²R^{2a}-, -NR²C(O)-, -C(O)NR²CR²R^{2a}-,

-NR²C(O)CR²R^{2a}-, -CR²R^{2a}NR²C(O)-, -NR²CR²R^{2a}-, and -OCR²R^{2a}-;

- 15 R^{1a}, at each occurrence, is selected from H, -(CR³R^{3a})_r-R^{1b}, -(CR³R^{3a})_r-CR³R^{1b}R^{1b},
 -(CR³R^{3a})_r-O-(CR³R^{3a})_r-R^{1b}, -C₂₋₆ alkenylene-R^{1b}, -C₂₋₆ alkynylene-R^{1b},
 -(CR³R^{3a})_r-C(=NR^{1b})NR³R^{1b}, NR³(CR³R^{3a})_tR^{1c}, O(CR³R^{3a})_tR^{1c},
 (CR³R^{3a})_rSCR³R^{3a}R^{1c}, (CR³R^{3a})_rNR³(CR³R^{3a})_rR^{1b},
 (CR³R^{3a})_rC(O)NR²(CR³R^{3a})_rR^{1b}, CO₂(CR³R^{3a})_tR^{1b}, O(CR³R^{3a})_tR^{1b},
 (CR³R^{3a})_rS(CR³R^{3a})_rR^{1b}, S(O)_p(CR³R^{3a})_rR^{1d}, O(CR³R^{3a})_rR^{1d},
 NR³(CR³R^{3a})_rR^{1d}, OC(O)NR³(CR³R^{3a})_rR^{1d}, NR³C(O)NR³(CR³R^{3a})_rR^{1d},
 NR³C(O)O(CR³R^{3a})_rR^{1d}, and NR³C(O)(CR³R^{3a})_rR^{1d}, provided that R^{1a}
 forms other than an N-halo, N-S, O-O, or N-CN bond;
- alternatively, when two R^{1a} groups are attached to the same carbon atom, together with the carbon atom to which they are attached they form a 3-10 membered carbocyclic or heterocyclic ring consisting of: carbon atoms and 0-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, this ring being substituted with 0-2 R⁴ and 0-3 ring double bonds;

- R^{1b} is selected from H, C₁₋₃ alkyl, F, Cl, Br, I, -CN, -NO₂, -CHO, (CF₂)_rCF₃,

 (CR³R^{3a})_rOR², NR²R^{2a}, C(O)R^{2b}, CO₂R^{2b}, OC(O)R², (CF₂)_rCO₂R^{2a},

 S(O)_pR^{2b}, NR²(CH₂)_rOR², C(=NR^{2c})NR²R^{2a}, NR²C(O)R^{2b},

 NR²C(O)NR²R^{2a}, NR²C(O)₂R^{2a}, OC(O)NR²R^{2a}, C(O)NR²R^{2a},

 C(O)NR²(CH₂)_rOR², SO₂NR²R^{2a}, NR²SO₂NR²R^{2a}, NR²SO₂R²,

 C(O)NR²SO₂R², SO₂R²C(O)NR², SO₂NR²C(O)R², C₃₋₁₀ carbocycle

 substituted with 0-2 R⁴, and 4-10 membered heterocycle consisting of carbon atoms and from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R⁴, provided that R^{1b} forms other than an

 O-O, N-halo, N-S, or N-CN bond;
 - R^{1c} is selected from H, $CH(CH_2OR^2)_2$, $C(O)R^{2c}$, $C(O)NR^2R^{2a}$, $S(O)R^2$, $S(O)_2R^2$, and $SO_2NR^2R^{2a}$;
- 15 R^{1d} is selected from C₃₋₆ carbocycle substituted with 0-2 R^{4b} and 5-10 membered heterocycle consisting of carbon atoms and from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b}, provided that R^{1d} forms other than an N-S bond;
- 20 R², at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl, benzyl, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-2 R^{4b}, and -(CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};
- R^{2a}, at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl, benzyl, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-2 R^{4b}, and -(CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};

alternatively, R² and R^{2a}, together with the atom to which they are attached, combine to form a 5-8 membered saturated, partially saturated or unsaturated ring substituted with 0-2 R^{4b} and consisting of: 0-1 additional heteroatoms selected from the group consisting of N, O, and S(O)_n;

5

 R^{2b} , at each occurrence, is selected from CF₃, $C_{1\text{-}4}$ alkoxy substituted with 0-2 R^{4b} , C₁₋₆ alkyl substituted with 0-2 R^{4b}, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-2 R^{4b}, and -(CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_n and substituted with 0-2 R^{4b};

10

 R^{2c} , at each occurrence, is selected from CF_3 , OH, C_{1-4} alkoxy, C_{1-6} alkyl, $-(CH_2)_{r-1}$ C₃₋₁₀ carbocycle substituted with 0-2 R^{4b}, and -(CH₂)_r-5-10 membered heterocycle containing from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};

15

R³, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃, benzyl, and phenyl;

20

R^{3a}, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃, benzyl, and phenyl;

25

alternatively, R³ and R^{3a}, together with the nitrogen atom to which they are attached, combine to form a 5 or 6 membered saturated, partially unsaturated, or unsaturated ring consisting of: carbon atoms, the nitrogen atom to which R³ and R^{3a} are attached, and 0-1 additional heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

- R^{3c} , at each occurrence, is selected from CH_3 , CH_2CH_3 , $CH_2CH_2CH_3$, $CH(CH_3)_2$, $CH_2CH_2CH_3$, $CH_2CH_2CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $CH(CH_3)_2$, $CH(CH_3)_2$, $CH(CH_3)_3$, benzyl, and phenyl;
- 5 R^{3d}, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C₁₋₄ alkyl-phenyl, and C(=O)R^{3c};
- R^4 , at each occurrence, is selected from H, =O, $(CR^3R^{3a})_rOR^2$, F, Cl, Br, I, C_{1-4} alkyl, 10 $(CR^3R^{3a})_rCN$, $(CR^3R^{3a})_rNO_2$, $(CR^3R^{3a})_rNR^2R^{2a}$, $(CR^3R^{3a})_rC(O)R^{2c}$. $(CR^3R^{3a})_rNR^2C(O)R^{2b}$, $(CR^3R^{3a})_rC(O)NR^2R^{2a}$. $(CR^3R^{3a})_rNR^3(CR^3R^{3a})_rC(O)NR^3R^{3a}, (CR^3R^{3a})_rNR^3(CR^3R^{3a})_rC(O)OR^3,$ $(CR^3R^{3a})_rNR^3(CR^3R^{3a})_rNR^3R^{3a}, (CR^3R^{3a})_rNR^3(CR^3R^{3a})_rNR^3C(O)R^{3a}, (CR^3R^{3a})_rNR^3(CR^3R^{3a})_rNR^3(O)R^{3a}, (CR^3R^{3a})_rNR^3(O)R^{3a}, (CR^3R^{3a})_rNR^3(O)R^{3a}, (CR^3R^{3a})_rNR^3(O)R^{3a}, (CR^3R^{3a})_rNR^3(O)R^{3a}, (CR^3R^{3a})_rNR^3(O)R^{3a}, (CR^3R^{3a})_rNR^3(O)R^{3a}, (CR^3R^{3a})_rNR^3(O)R^{3a}, (CR^3R^{3a})_rNR^3(O)R^{3a}, (CR^3R^{3a})_rNR^3(O)R^{3a}, (CR^3R^{3a})_rNR^3(O)R^3(O)R^{3a}, (CR^3R^{3a})_rNR^3(O)R^3$ $(CR^3R^{3a})_rNR^3(CR^3R^{3a})_rNR^3SO_2R^{3a}, (CR^3R^{3a})_rNR^2C(O)NR^2R^{2a},$ 15 $(CR^3R^{3a})_rC(=NR^2)NR^2R^{2a}, (CR^3R^{3a})_rC(=NS(O)_2R^5)NR^2R^{2a},$ $(CR^3R^{3a})_rNHC(=NR^2)NR^2R^{2a}, (CR^3R^{3a})_rC(O)NHC(=NR^2)NR^2R^{2a}, (CR^3R^{3a})_rC(O)NR^2R^{2a}, (CR^3R^{$ $(CR^3R^{3a})_rSO_2NR^2R^{2a}, (CR^3R^{3a})_rNR^2SO_2NR^2R^{2a}, (CR^3R^{3a})_rNR^2SO_2-C_{1-4}$ alkyl, $(CR^3R^{3a})_rNR^2SO_2R^5$, $(CR^3R^{3a})_rS(O)_pR^{5a}$, $(CR^3R^{3a})_r(CF_2)_rCF_3$, $NHCH_{2}R^{1c}, OCH_{2}R^{1c}, SCH_{2}R^{1c}, NH(CH_{2})_{2}(CH_{2})_{t}R^{1b}, O(CH_{2})_{2}(CH_{2})_{t}R^{1b},\\$ $S(CH_2)_2(CH_2)_tR^{1b}$, $(CR^3R^{3a})_r$ -3-10 membered carbocycle substituted with 0-20 1 R^5 , and a $(CR^3R^{3a})_{r}$ -5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-1 R⁵;
- 25 R^{4a} , at each occurrence, is selected from H, =O, $(CR^3R^{3a})_rOR^2$, $(CR^3R^{3a})_rF$, $(CR^3R^{3a})_rBr$, $(CR^3R^{3a})_rCl$, C_{1-4} alkyl, $(CR^3R^{3a})_rCN$, $(CR^3R^{3a})_rNO_2$, $(CR^3R^{3a})_rNR^2R^{2a}$, $(CR^3R^{3a})_rC(O)R^{2c}$, $(CR^3R^{3a})_rNR^2C(O)R^{2b}$, $(CR^3R^{3a})_rC(O)NR^2R^{2a}$, $(CR^3R^{3a})_rN=CHOR^3$, $(CR^3R^{3a})_rC(O)NH(CH_2)_2NR^2R^{2a}$, $(CR^3R^{3a})_rNR^2C(O)NR^2R^{2a}$, $(CR^3R^{3a})_rNR^2C(O)NR^2R^{2a}$, $(CR^3R^{3a})_rNR^2C(O)NR^2R^{2a}$, $(CR^3R^{3a})_rNHC(=NR^2)NR^2R^{2a}$, $(CR^3R^{3a})_rNHC(=NR^2)NR^2R^{2a}$, $(CR^3R^{3a})_rNHC(=NR^2)NR^2R^{2a}$, $(CR^3R^{3a})_rNHC(=NR^2)NR^2R^{2a}$,

(CR³R^{3a})_rSO₂NR²R^{2a}, (CR³R^{3a})_rNR²SO₂NR²R^{2a}, (CR³R^{3a})_rNR²SO₂-C₁₋₄ alkyl, (CR³R^{3a})_rC(O)NHSO₂-C₁₋₄ alkyl, (CR³R^{3a})NR²SO₂R⁵, (CR³R^{3a})_rS(O)_pR^{5a}, (CR³R^{3a})_r(CF₂)_rCF₃, (CR³R^{3a})_r-5-6 membered carbocycle substituted with 0-1 R⁵, and a (CR³R^{3a})_r-5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R⁵;

- R^{4b}, at each occurrence, is selected from H, =O, (CH₂)_rOR³, (CH₂)_rF, (CH₂)_rCl,

 (CH₂)_rBr, (CH₂)_rI, C₁₋₄ alkyl, (CH₂)_rCN, (CH₂)_rNO₂, (CH₂)_rNR³R^{3a},

 (CH₂)_rC(O)R³, (CH₂)_rC(O)OR^{3c}, (CH₂)_rNR³C(O)R^{3a}, (CH₂)_r-C(O)NR³R^{3a},

 (CH₂)_rNR³C(O)NR³R^{3a}, (CH₂)_rC(=NR³)NR³R^{3a},

 (CH₂)_rNR³C(=NR³)NR³R^{3a}, (CH₂)_rSO₂NR³R^{3a}, (CH₂)_rNR³SO₂NR³R^{3a},

 (CH₂)_rNR³SO₂-C₁₋₄ alkyl, (CH₂)_rNR³SO₂CF₃, (CH₂)_rNR³SO₂-phenyl,

 (CH₂)_rS(O)_pCF₃, (CH₂)_rS(O)_p-C₁₋₄ alkyl, (CH₂)_rS(O)_p-phenyl,

 (CH₂)_r(CF₂)_rCF₃, (CH₂)_r-3-10 membered carbocycle substituted with 0-1 R³, and a (CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R³:
- 20 R^{4c}, at each occurrence, is selected from H, C₁₋₄ alkyl (CR³R^{3a})_{r1}OR², (CR³R^{3a})_{r1}F, (CR³R^{3a})_{r1}Br, (CR³R^{3a})_{r1}Cl, (CR³R^{3a})_{r1}CN, (CR³R^{3a})_{r1}NO₂, (CR³R^{3a})_{r1}NR²R^{2a}, (CR³R^{3a})_rC(O)R^{2c}, (CR³R^{3a})_{r1}NR²C(O)R^{2b}, (CR³R^{3a})_rC(O)NR²R^{2a}, (CR³R^{3a})_{r1}N=CHOR³, (CR³R^{3a})_rC(O)NH(CH₂)₂NR²R^{2a}, (CR³R^{3a})_{r1}NR²C(O)NR²R^{2a}, (CR³R^{3a})_{r1}NHC(=NR²)NR²R^{2a}, (CR³R^{3a})_{r1}NHC(=NR²)NR²R^{2a}, (CR³R^{3a})_rNSO₂NR²R^{2a}, (CR³R^{3a})_{r1}NR²SO₂NR²R^{2a}, (CR³R^{3a})_{r1}NR²SO₂Cl₁₋₄ alkyl, (CR³R^{3a})_rC(O)NHSO₂-Cl₁₋₄ alkyl, (CR³R^{3a})_{r1}NR²SO₂R⁵, (CR³R^{3a})_rS(O)_pR^{5a}, (CR³R^{3a})_r(CF₂)_rCF₃, (CR³R^{3a})_rS-6 membered carbocycle substituted with 0-1 R⁵, and a (CR³R^{3a})_r-5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms

selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-1 R^5 ;

- R⁵, at each occurrence, is selected from H, C_{1-6} alkyl, =O, $(CH_2)_rOR^3$, F, Cl, Br, I, CN, NO_2 , $(CH_2)_rNR^3R^{3a}$, $(CH_2)_rC(O)R^3$, $(CH_2)_rC(O)OR^{3c}$, $(CH_2)_rNR^3C(O)R^{3a}$, $(CH_2)_rC(O)NR^3R^{3a}$, $(CH_2)_rNR^3C(O)NR^3R^{3a}$, $(CH_2)_rCH(=NOR^{3d})$, $(CH_2)_rC(=NR^3)NR^3R^{3a}$, $(CH_2)_rNR^3C(=NR^3)NR^3R^{3a}$, $(CH_2)_rSO_2NR^3R^{3a}$, $(CH_2)_rNR^3SO_2NR^3R^{3a}$, $(CH_2)_rNR^3SO_2-C_{1-4}$ alkyl, $(CH_2)_rNR^3SO_2CF_3$, $(CH_2)_rNR^3SO_2-Phenyl$, $(CH_2)_rS(O)_pCF_3$, $(CH_2)_rS(O)_p-C_{1-4}$ alkyl, $(CH_2)_rS(O)_p-Phenyl$, $(CF_2)_rCF_3$, phenyl substituted with 0-2 R^6 , naphthyl substituted with 0-2 R^6 , and benzyl substituted with 0-2 R^6 ;
- R^{5a}, at each occurrence, is selected from C₁₋₆ alkyl, (CH₂)_rOR³, (CH₂)_rNR³R^{3a},

 (CH₂)_rC(O)R³, (CH₂)_rC(O)OR^{3c}, (CH₂)_rNR³C(O)R^{3a}, (CH₂)_rC(O)NR³R^{3a},

 (CF₂)_rCF₃, phenyl substituted with 0-2 R⁶, naphthyl substituted with 0-2 R⁶,

 and benzyl substituted with 0-2 R⁶, provided that R^{5a} does not form a S-N or S(O)_p-C(O) bond;
- 20 R^6 , at each occurrence, is selected from H, OH, $(CH_2)_rOR^2$, halo, C_{1-4} alkyl, CN, NO_2 , $(CH_2)_rNR^2R^{2a}$, $(CH_2)_rC(O)R^{2b}$, $NR^2C(O)R^{2b}$, $NR^2C(O)NR^2R^{2a}$, $C(=NH)NH_2$, $NHC(=NH)NH_2$, $SO_2NR^2R^{2a}$, $NR^2SO_2NR^2R^{2a}$, and $NR^2SO_2-C_{1-4}$ alkyl;
- 25 R⁷, at each occurrence, is selected from H, OH, C_{1-6} alkyl, C_{1-6} alkyl-C(O)-, C_{1-6} alkyl-C(O)-, C_{1-6} alkyl-C(O)-, C_{1-6} alkyl-C(O)-, C_{1-6} aryl-C(O)-, C_{1-6} aryl-C(O)-, C_{1-6} alkyl-C(O)-, C_{1-6} alkyl-C(O)-, C_{1-6} alkyl-C(O)-, C_{1-6} alkyl-C(O)-, phenyl-C(O)-, and phenyl C_{0-4} alkyl-C(O)-;

 R^8 , at each occurrence, is selected from H, $C_{1\text{-}6}$ alkyl, and $(CH_2)_n$ -phenyl;

alternatively, R⁷ and R⁸, when attached to the same nitrogen, combine to form a 5-10 membered heterocyclic ring consisting of carbon atoms and 0-2 additional heteroatoms selected from the group consisting of N, O, and S(O)_p;

 R^9 , at each occurrence, is selected from H, $C_{1\text{-}6}$ alkyl, and $(CH_2)_n$ -phenyl;

n, at each occurrence, is selected from 0, 1, 2, and 3;

10

20

5

p, at each occurrence, is selected from 0, 1, and 2;

r, at each occurrence, is selected from 0, 1, 2, 3, 4, 5, and 6;

15 r1, at each occurrence, is selected from 1, 2, 3, 4, 5, and 6; and

t, at each occurrence, is selected from 0, 1, 2, and 3.

2. A compound according to Claim 1, wherein:

one of P and M₁ is -G and the other -A-B;

M is 3-8 membered linear chain consisting of: carbon atoms, 1-3 carbonyl groups, 0-1
thiocarbonyl groups, and 1-3 heteroatoms selected from O, S(O)_p, and N, and
M is substituted with 0-3 R^{1a} and 0-2 R² and there are 0-1 double bonds,
provided that other than an S-S, S-O, or O-O bond is present in M;

G is a group of formula IIa or IIb:

$$\begin{array}{c|cccc}
\hline
D & E & \hline
 & D & E
\end{array}$$
IIa IIb

ring D, including the two atoms of Ring E to which it is attached, is a 5-6 membered ring consisting of: carbon atoms and 0-2 heteroatoms selected from the group consisting of N, O, and S(O)_p;

5

ring D is substituted with 0-2 R and there are 0-3 ring double bonds;

E is selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, and pyridazinyl, and is substituted with 1-2 R;

10

alternatively, ring D is absent, and ring E is selected from phenyl, pyridyl, pyridazinyl, pyrimidyl, and thienyl, and ring E is substituted with 1-2 R;

alternatively, ring D is absent, ring E is selected from phenyl, pyridyl, and thienyl, and ring E is substituted with 1 R and with a 5 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, wherein the 5 membered heterocycle is substituted with 0-1 carbonyls and 1-2 R and there are 0-3 ring double bonds;

20

R is selected from H, C_{1-4} alkyl, F, Cl, OH, OCH₃, OCH₂CH₃, OCH(CH₃)₂, CN, C(=NH)NH₂, C(=NH)NHOH, C(=NH)NHOCH₃, NH₂, NH(C_{1-3} alkyl), N(C_{1-3} alkyl)₂, C(=NH)NH₂, CH₂NH₂, CH₂NH(C_{1-3} alkyl), CH₂N(C_{1-3} alkyl)₂, (CR⁸R⁹)_tNR⁷R⁸, C(O)NR⁷R⁸, CH₂C(O)NR⁷R⁸, S(O)₂R³, S(O)_pNR⁷R⁸, CH₂S(O)_pNR⁷R⁸, and OCF₃;

25

alternatively, when 2 R groups are attached to adjacent atoms, they combine to form methylenedioxy or ethylenedioxy;

A is selected from:

30

C₅₋₁₀ carbocycle substituted with 0-2 R⁴, and

5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-2 R^4 ;

5 ring Q is a 4-7 membered monocyclic or tricyclic ring consisting of, in addition to the N-Q₁ group shown, carbon atoms and 0-2 heteroatoms selected from NR^{4c}, O, S, S(O), and S(O)₂, wherein:

0-2 double bonds are present within the ring and the ring is substituted with 0-2 R^{4a};

10

alternatively, ring Q is a 4-7 membered ring to which another ring is fused, wherein: the 4-7 membered ring consists of, in addition to the shown amide group, carbon atoms and 0-2 heteroatoms selected from NR^{4c}, O, S, S(O), and S(O)₂ and 0-1 double bonds are present within the ring;

15

the fusion ring is phenyl or a 5-6 membered heteroaromatic consisting of carbon atoms and 1-2 heteroatoms selected from NR^{4c}, O, and S;

ring Q, which includes the 4-7 membered ring and the fusion ring, is substituted with 0-3 R^{4a} ;

20 X is absent or is selected from $-(CR^2R^{2a})_{1-4}$, -C(O)-, $-C(O)CR^2R^{2a}$ -, $-CR^2R^{2a}C(O)$, $-S(O)_2$ -, $-S(O)_2CR^2R^{2a}$ -, $-CR^2R^{2a}S(O)_2$ -, $-NR^2S(O)_2$ -, $-NR^2CR^2R^{2a}$ -, and $-OCR^2R^{2a}$ -:

 R^{1a} , at each occurrence, is selected from H, -(CR^3R^{3a})_r- R^{1b} ,

 $\begin{array}{lll} 25 & -(CR^3R^{3a})_r - O - (CR^3R^{3a})_r - R^{1b}, \ -C_{2\cdot6} \ alkenylene - R^{1b}, \ -C_{2\cdot6} \ alkynylene - R^{1b}, \\ & -(CR^3R^{3a})_r - C (=NR^{1b})NR^3R^{1b}, \ NR^3(CR^3R^{3a})_tR^{1c}, \ O(CR^3R^{3a})_tR^{1c}, \\ & (CR^3R^{3a})_r SCR^3R^{3a}R^{1c}, \ (CR^3R^{3a})_rNR^3(CR^3R^{3a})_rR^{1b}, \\ & (CR^3R^{3a})_rC(O)NR^2(CR^3R^{3a})_rR^{1b}, \ CO_2(CR^3R^{3a})_tR^{1b}, \ O(CR^3R^{3a})_tR^{1b}, \\ & S(O)_p(CR^3R^{3a})_rR^{1d}, \ O(CR^3R^{3a})_rR^{1d}, \ NR^3(CR^3R^{3a})_rR^{1d}, \end{array}$

 $OC(O)NR^3(CR^3R^{3a})_rR^{1d},\ NR^3C(O)NR^3(CR^3R^{3a})_rR^{1d},$ $NR^3C(O)O(CR^3R^{3a})_rR^{1d},\ and\ NR^3C(O)(CR^3R^{3a})_rR^{1d},\ provided\ that\ R^{1a}$ forms other than an N-halo, N-S, O-O, or N-CN bond;

alternatively, when two R^{1a} groups are attached to the same carbon atom, together with the carbon atom to which they are attached they form a 3-10 membered carbocyclic or heterocyclic ring consisting of: carbon atoms and 0-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, this ring being substituted with 0-2 R⁴ and 0-3 ring double bonds:

10

$$\begin{split} R^{1b} \text{ is selected from H, CH}_3, & \text{CH}_2\text{CH}_3, \text{CH}_2\text{CH}_2\text{CH}_3, \text{CH}(\text{CH}_3)_2, \text{F, Cl, Br, I, -CN, -CHO, CF}_3, & (\text{CR}^3\text{R}^{3a})_r\text{OR}^2, \text{NR}^2\text{R}^{2a}, \text{C(O)R}^{2b}, \text{CO}_2\text{R}^{2b}, \text{OC(O)R}^2, \text{CO}_2\text{R}^{2a}, \\ & \text{S(O)}_p\text{R}^2, \text{NR}^2(\text{CH}_2)_r\text{OR}^2, \text{NR}^2\text{C(O)R}^{2b}, \text{NR}^2\text{C(O)NR}^2\text{R}^{2a}, \text{NR}^2\text{C(O)}_2\text{R}^{2a}, \\ & \text{OC(O)NR}^2\text{R}^{2a}, \text{C(O)NR}^2\text{R}^{2a}, \text{C(O)NR}^2(\text{CH}_2)_r\text{OR}^2, \text{SO}_2\text{NR}^2\text{R}^{2a}, \\ & \text{OC(O)NR}^2\text{R}^{2a}, \text{C(O)NR}^2\text{R}^{2a}, \text{C(O)NR}^2\text{R}^{2a}, \\ & \text{OC(O)NR}^2\text{R}^{2a}, \text{C(O)NR}^2\text{R}^{2a}, \text{C(O)NR}^2\text{R}^{2a}, \\ & \text{OC(O)NR}^2\text{R}^{2a}, \text{C(O)NR}^2\text{R}^{2a}, \\ & \text{OC(O)NR}^2\text{R}^{2a}, \text{C(O)NR}^2\text{R}^{2a}, \\ & \text{C(O)NR}^2\text{R}^{2a}$$

NR²SO₂NR²R^{2a}, NR²SO₂R², C(O)NR²SO₂R², SO₂NR²C(O)R², C₃₋₁₀ carbocycle substituted with 0-2 R⁴, and 4-10 membered heterocycle consisting of carbon atoms and from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R⁴, provided that R^{1b} forms other than an O-O, N-halo, N-S, or N-CN bond;

20

 R^{1c} is selected from H, CH(CH₂OR²)₂, C(O)R^{2c}, C(O)NR²R^{2a}, S(O)R², S(O)₂R², and SO₂NR²R^{2a};

R², at each occurrence, is selected from H, CF₃, CH₃, CH₂CH₃, CH₂CH₂CH₃,

CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃,

benzyl, C₅₋₆ carbocycle substituted with 0-2 R^{4b}, a C₅₋₆ carbocyclic-CH₂
group substituted with 0-2 R^{4b}, and 5-6 membered heterocycle consisting of:

carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O,

and S(O)_p and substituted with 0-2 R^{4b};

- R^{2a}, at each occurrence, is selected from H, CF₃, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃, benzyl, C₅₋₆ carbocycle substituted with 0-2 R^{4b}, and 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};
- alternatively, R² and R^{2a}, together with the atom to which they are attached, combine to form a 5 or 6 membered saturated, partially saturated or unsaturated ring substituted with 0-2 R^{4b} and consisting of: 0-1 additional heteroatoms selected from the group consisting of N, O, and S(O)_p;
- R^{2b}, at each occurrence, is selected from CF₃, C₁₋₄ alkoxy, CH₃, CH₂CH₃,

 CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂;

 CH(CH₃)CH₂CH₃, C(CH₃)₃, benzyl, C₅₋₆ carbocycle substituted with 0-2

 R^{4b}, and 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};
- R^{2c}, at each occurrence, is selected from CF₃, OH, C₁₋₄ alkoxy, CH₃, CH₂CH₃,

 CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂,

 CH(CH₃)CH₂CH₃, C(CH₃)₃, benzyl, C₅₋₆ carbocycle substituted with 0-2

 R^{4b}, and 5-6 membered heterocycle containing from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};
- 25 R³, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, benzyl, and phenyl;
 - R^{3a}, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₃, CH(CH₃)₂, benzyl, and phenyl;

alternatively, R³ and R^{3a}, together with the nitrogen atom to which they are attached, combine to form a 5 or 6 membered saturated, partially unsaturated, or unsaturated ring consisting of: carbon atoms and the nitrogen atom to which R³ and R^{3a} are attached;

5

10

 R^{3c} , at each occurrence, is selected from CH_3 , CH_2CH_3 , $CH_2CH_2CH_3$, $CH(CH_3)_2$, benzyl, and phenyl;

R^{3d}, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂-phenyl, CH₂CH₂-phenyl, and C(=O)R^{3c};

R⁴, at each occurrence, is selected from H, =O, (CH₂)_rOR², F, Cl, Br, I, CH₃,

CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂,

CH(CH₃)CH₂CH₃, C(CH₃)₃, -CN, NO₂, (CH₂)_rNR²R^{2a}, (CH₂)_rC(O)R^{2c},

(CH₂)_rNR²C(O)R^{2b}, (CH₂)_rC(O)NR²R^{2a}, (CH₂)_rNR³(CH₂)₁₋₄C(O)NR³R^{3a},

(CH₂)_rNR³(CH₂)₁₋₄C(O)OR³, (CH₂)_rNR³(CH₂)₁₋₄NR³R^{3a},

(CH₂)_rNR³(CH₂)₁₋₄NR³C(O)R^{3a}, (CH₂)_rNR³(CH₂)₁₋₄NR³SO₂R^{3a},

(CH₂)_rNR²C(O)NR²R^{2a}, (CH₂)_rC(=NR²)NR²R^{2a},

(CH₂)_rNHC(=NR²)NR²R^{2a}, (CH₂)_rSO₂NR²R^{2a}, (CH₂)_rNR²SO₂NR²R^{2a},

(CH₂)_rNR²SO₂-C₁₋₄ alkyl, (CH₂)_rNR²SO₂R⁵, (CH₂)_rS(O)_pR^{5a}, (CH₂)_rCF₃,

(CH₂)_r-3-7 membered carbocycle substituted with 0-1 R⁵, and a (CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1

25

30

R⁵;

 $R^{4a}, \ at \ each \ occurrence, \ is \ selected \ from \ H, =O, \ CH_2OR^2, \ OR^2, \ CH_2F, \ F, \ CH_2Br, \ Br, \\ CH_2Cl, \ Cl, \ C_{1-4} \ alkyl, \ CH_2-CN, \ -CN, \ CH_2NO_2, \ NO_2, \ CH_2NR^2R^{2a}, \ NR^2R^{2a}, \\ CH_2-C(O)R^{2c}, \ C(O)R^{2c}, \ NR^2C(O)R^{2b}, \ (CH_2)_rC(O)NR^2R^{2a}, \\ NR^2C(O)NR^2R^{2a}, \ (CH_2)_rSO_2NR^2R^{2a}, \ NR^2SO_2NR^2R^{2a}, \ NR^2SO_2-C_{1-4} \ alkyl, \\ NR^2SO_2R^5, \ (CH_2)_rS(O)_pR^{5a}, \ CH_2CF_3, \ CF_3, \ CH_2-5-6 \ membered \ carbocycle$

substituted with 0-1 R⁵, 5-6 membered carbocycle substituted with 0-1 R⁵, and a CH₂-5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R⁵, and 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R⁵;

5

R^{4b}, at each occurrence, is selected from H, =O, OR³, (CH₂)_rOR³, F, Cl, CH₃,

CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂,

CH(CH₃)CH₂CH₃, C(CH₃)₃, -CN, NO₂, (CH₂)_rNR³R^{3a}, (CH₂)_rC(O)R³,

(CH₂)_rC(O)OR^{3c}, (CH₂)_rNR³C(O)R^{3a}, (CH₂)_rC(O)NR³R^{3a},

(CH₂)_rNR³C(O)NR³R^{3a}, (CH₂)_rC(=NR³)NR³R^{3a},

(CH₂)_rNR³C(=NR³)NR³R^{3a}, (CH₂)_rSO₂NR³R^{3a}, (CH₂)_rNR³SO₂NR³R^{3a},

(CH₂)_rNR³SO₂-C₁₋₄ alkyl, (CH₂)_rNR³SO₂CF₃, (CH₂)_rNR³SO₂-phenyl,

(CH₂)_rS(O)_pCF₃, (CH₂)_rS(O)_p-C₁₋₄ alkyl, (CH₂)_rS(O)_p-phenyl, and

(CH₂)_rCF₃;

R^{4c}, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂,

CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃, CH₂OR²,

CH₂F, CH₂Br, CH₂Cl, CH₂CN, CH₂NO₂, CH₂NR²R^{2a}, C(O)R^{2c},

CH₂C(O)R^{2c}, CH₂NR²C(O)R^{2b}, C(O)NR²R^{2a}, CH₂C(O)NR²R^{2a},

CH₂NR²C(O)NR²R^{2a}, SO₂NR²R^{2a}, CH₂SO₂NR²R^{2a}, CH₂NR²SO₂NR²R^{2a},

CH₂NR²SO₂-C₁₋₄ alkyl, C(O)NHSO₂-C₁₋₄ alkyl, CH₂C(O)NHSO₂-C₁₋₄

alkyl, CH₂NR²SO₂R⁵, S(O)_pR^{5a}, CH₂S(O)_pR^{5a}, CF₃, CH₂CF₃, 5-6

membered carbocycle substituted with 0-1 R⁵, CH₂5-6 membered carbocycle substituted with 0-1 R⁵, 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R⁵, and a CH₂5-6 membered heterocycle

consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-1 R^5 ;

- R⁵, at each occurrence, is selected from H, =O, CH₃, CH₂CH₃, CH₂CH₂CH₃,

 CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃,

 OR³, CH₂OR³, F, Cl, -CN, NO₂, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³,

 CH₂C(O)R³, C(O)OR^{3c}, CH₂C(O)OR^{3c}, NR³C(O)R^{3a}, C(O)NR³R^{3a},

 NR³C(O)NR³R^{3a}, CH(=NOR^{3d}), C(=NR³)NR³R^{3a}, NR³C(=NR³)NR³R^{3a},

 SO₂NR³R^{3a}, NR³SO₂NR³R^{3a}, NR³SO₂-C₁₋₄ alkyl, NR³SO₂CF₃, NR³SO₂
 phenyl, S(O)_pCF₃, S(O)_p-C₁₋₄ alkyl, S(O)_p-phenyl, CF₃, phenyl substituted with 0-2 R⁶, naphthyl substituted with 0-2 R⁶, and benzyl substituted with 0-2 R⁶;
- R⁶, at each occurrence, is selected from H, OH, OR², F, Cl, CH₃, CH₂CH₃,

 CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂,

 CH(CH₃)CH₂CH₃, C(CH₃)₃, -CN, NO₂, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2b},

 CH₂C(O)R^{2b}, NR²C(O)R^{2b}, NR²C(O)NR²R^{2a}, C(=NH)NH₂,

 NHC(=NH)NH₂, SO₂NR²R^{2a}, NR²SO₂NR²R^{2a}, and NR²SO₂C₁₋₄ alkyl;
- 20 r, at each occurrence, is selected from 0, 1, 2, and 3;
 - r1, at each occurrence, is selected from 1, 2, and 3; and
 - t, at each occurrence, is selected from 0, 1, and 2.

25

3. A compound according to Claim 2, wherein the compound is selected from compounds a-ff:

5 wherein:

one of P and M₁ is -G and the other -A-B;

G is selected from the group:

A is selected from one of the following carbocyclic and heterocyclic groups which are substituted with 0-2 R⁴;

cyclohexyl, phenyl, piperidinyl, piperazinyl, pyridyl, pyrimidyl, furanyl, morpholinyl, thienyl, pyrrolyl, pyrrolidinyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, imidazolyl, 1,2,3-oxadiazolyl,

10 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,3-triazolyl,

1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, benzofuranyl, benzothiofuranyl, indolinyl, indolyl, benzimidazolyl, benzoxazolyl, benzthiazolyl, indazolyl, benzisoxazolyl, benzisothiazolyl, and isoindazolyl;

5 B is; provided that Z and B are attached to different atoms on A;

Q₁ is selected from C=O and SO₂;

20

ring Q is a 5-7 membered ring consisting of, in addition to the amide group shown,

carbon atoms and 0-2 heteroatoms selected from NR^{4c}, O, S, S(O), and S(O)₂,

wherein:

0-2 double bonds are present within the ring and the ring is substituted with 0-2 R^{4a} ;

alternatively, ring Q is a 5-7 membered ring to which another ring is fused, wherein:
the 5-7 membered ring consists of, in addition to the shown amide
group, carbon atoms and 0-2 heteroatoms selected from NR^{4c}, O, S, S(O), and
S(O)₂ and 0-1 double bonds are present within the ring;

the fusion ring is phenyl or a 5-6 membered heteroaromatic consisting of carbon atoms and 1-2 heteroatoms selected from NR^{4c}, O, and S;

ring Q, which includes the 5-7 membered ring and the fusion ring, is substituted with 0-3 R^{4a} ;

 $R^{1a}, \text{ at each occurrence, is selected from } H, -(CH_2)_r - R^{1b}, -(CH_2)_r - O - (CH_2)_r - R^{1b},$ $-(CH_2)_r - C(=NR^{1b})NR^3R^{1b}, NR^3(CR^3R^{3a})_tR^{1c}, O(CR^3R^{3a})_tR^{1c},$ $(CH_2)_rNR^3(CH_2)_rR^{1b}, (CH_2)_rC(O)NR^2(CH_2)_rR^{1b}, CO_2(CH_2)_tR^{1b},$ $O(CH_2)_tR^{1b}, S(O)_p(CH_2)_rR^{1d}, O(CH_2)_rR^{1d}, NR^3(CH_2)_rR^{1d},$ $OC(O)NR^3(CH_2)_rR^{1d}, NR^3C(O)NR^3(CH_2)_rR^{1d}, NR^3C(O)O(CH_2)_rR^{1d}, \text{ and }$

 $NR^3C(O)(CH_2)_rR^{1d}$, provided that R^{1a} forms other than an N-halo, N-S, O-O, or N-CN bond;

- alternatively, when two R^{1a} groups are attached to the same carbon atom, together
 with the carbon atom to which they are attached they form a 3-6 membered
 carbocyclic or heterocyclic ring consisting of: carbon atoms and 0-4
 heteroatoms selected from the group consisting of N, O, and S(O)_p, this ring
 being substituted with 0-2 R⁴ and 0-3 ring double bonds;
- R^{1b} is selected from H, CH₃, CH₂CH₃, F, Cl, Br, -CN, -CHO, CF₃, (CH₂)_rOR², NR²R^{2a}, C(O)R^{2b}, CO₂R^{2b}, OC(O)R², CO₂R^{2a}, S(O)_pR², NR²(CH₂)_rOR², NR²C(O)R^{2b}, NR²C(O)NR²R^{2a}, C(O)NR²R^{2a}, SO₂NR²R^{2a}, NR²SO₂NR²R^{2a}, NR²SO₂R², C(O)NR²SO₂R², SO₂NR²C(O)R², C₃₋₁₀ carbocycle substituted with 0-2 R⁴, and 4-10 membered heterocycle consisting of carbon atoms and from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R⁴, provided that R^{1b} forms other than an O-O, N-halo, N-S, or N-CN bond;
- R², at each occurrence, is selected from H, CF₃, CH₃, CH₂CH₃, CH₂CH₂CH₃,

 CH(CH₃)₂, phenyl substituted with 0-2 R^{4b}, a benzyl substituted with 0-2 R^{4b},

 and 5-6 membered aromatic heterocycle consisting of: carbon atoms and 1-4

 heteroatoms selected from the group consisting of N, O, and S(O)_p and

 substituted with 0-2 R^{4b};
- R^{2a}, at each occurrence, is selected from H, CF₃, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, benzyl, phenyl substituted with 0-2 R^{4b}, and 5-6 membered aromatic heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};

alternatively, R² and R^{2a}, together with the atom to which they are attached, combine to form a 5 or 6 membered saturated, partially saturated or unsaturated ring substituted with 0-2 R^{4b} and consisting of: 0-1 additional heteroatoms selected from the group consisting of N, O, and S(O)_D;

5

10

15

- R^{2b}, at each occurrence, is selected from CF₃, C₁₋₄ alkoxy, CH₃, CH₂CH₃,

 CH₂CH₂CH₃, CH(CH₃)₂, benzyl, phenyl substituted with 0-2 R^{4b}, and 5-6

 membered aromatic heterocycle consisting of: carbon atoms and 1-4

 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};
- R^{2c}, at each occurrence, is selected from CF₃, OH, OCH₃, OCH₂CH₃,
 OCH₂CH₂CH₃, OCH(CH₃)₂, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂,
 benzyl, phenyl substituted with 0-2 R^{4b}, and 5-6 membered aromatic
 heterocycle containing from 1-4 heteroatoms selected from the group
 consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};
- R⁴, at each occurrence, is selected from H, =O, (CH₂)_rOR², F, Cl, CH₃, CH₂CH₃,

 CH₂CH₂CH₃, CH(CH₃)₂, -CN, NO₂, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2c},

 CH₂C(O)R^{2c}, NR²C(O)R^{2b}, CH₂NR²C(O)R^{2b}, C(O)NR²R^{2a},

 CH₂C(O)NR²R^{2a}, (CH₂)_rNR³(CH₂)₁₋₂C(O)OR³, (CH₂)_rNR³(CH₂)₂₋

 4NR³R^{3a}, (CH₂)_rNR³(CH₂)₂₋₄NR³C(O)R^{3a}, (CH₂)_rNR³(CH₂)₂₋₄NR³SO₂R^{3a},

 SO₂NR²R^{2a}, CH₂SO₂NR²R^{2a}, NR²SO₂-C₁₋₄ alkyl, CH₂NR²SO₂-C₁₋₄ alkyl,

 NR²SO₂R⁵, CH₂NR²SO₂R⁵, S(O)_pR^{5a}, CH₂S(O)_pR^{5a}, CF₃, (CH₂)_r-3-7

 membered carbocycle substituted with 0-1 R⁵, and a (CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R⁵;

CH(CH₃)CH₂CH₃, C(CH₃)₃, -CN, NO₂, CH₂NR²R^{2a}, NR²R^{2a}, C(O)R^{2c}, NR²C(O)R^{2b}, C(O)NR²R^{2a}, NR²C(O)NR²R^{2a}, SO₂NR²R^{2a}, and -CF₃;

R^{4b}, at each occurrence, is selected from H, =O, (CH₂)_rOR³, F, Cl, CH₃, CH₂CH₃,

CH₂CH₂CH₃, CH(CH₃)₂, -CN, NO₂, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³,

CH₂C(O)R³, C(O)OR^{3c}, CH₂C(O)OR^{3c}, NR³C(O)R^{3a}, CH₂NR³C(O)R^{3a},

C(O)NR³R^{3a}, CH₂C(O)NR³R^{3a}, SO₂NR³R^{3a}, CH₂SO₂NR³R^{3a},

NR³SO₂-C₁₋₄ alkyl, CH₂NR³SO₂-C₁₋₄ alkyl, NR³SO₂-phenyl,

CH₂NR³SO₂-phenyl, S(O)_pCF₃, CH₂S(O)_pCF₃, S(O)_p-C₁₋₄ alkyl,

CH₂S(O)_p-C₁₋₄ alkyl, S(O)_p-phenyl, CH₂S(O)_p-phenyl, and CF₃;

R^{4c}, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂,

CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃, CH₂OR²,

CH₂F, CH₂Br, CH₂Cl, CH₂CN, CH₂NO₂, CH₂NR²R^{2a}, C(O)R^{2c},

CH₂C(O)R^{2c}, CH₂NR²C(O)R^{2b}, C(O)NR²R^{2a}, CH₂C(O)NR²R^{2a},

SO₂NR²R^{2a}, CH₂SO₂NR²R^{2a}, S(O)_pR^{5a}, CH₂S(O)_pR^{5a}, CF₃, phenyl substituted with 0-1 R⁵, and benzyl substituted with 0-1 R⁵;

R⁵, at each occurrence, is selected from H, =O, CH₃, CH₂CH₃, CH₂CH₂CH₃,

CH(CH₃)₂, OR³, CH₂OR³, F, Cl, -CN, NO₂, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³,

CH₂C(O)R³, C(O)OR^{3c}, CH₂C(O)OR^{3c}, NR³C(O)R^{3a}, C(O)NR³R^{3a},

SO₂NR³R^{3a}, NR³SO₂-C₁₋₄ alkyl, NR³SO₂CF₃, NR³SO₂-phenyl, S(O)_pCF₃,

S(O)_p-C₁₋₄ alkyl, S(O)_p-phenyl, CF₃, phenyl substituted with 0-2 R⁶, naphthyl substituted with 0-2 R⁶, and benzyl substituted with 0-2 R⁶;

 R^6 , at each occurrence, is selected from H, OH, OR², F, Cl, CH₃, CH₂CH₃, CH₂CH₃, CH(CH₃)₂, -CN, NO₂, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2b}, CH₂C(O)R^{2b}, NR²C(O)R^{2b}, SO₂NR²R^{2a}, and NR²SO₂C₁₋₄ alkyl; and

r, at each occurrence, is selected from 0, 1, and 2.

4. A compound according to Claim 3, wherein the compound is selected from
5 compounds b₁-f₁, i₁-aa₁, cc₁, ee₁, and ff₁:

wherein:

G is selected from the group:

A is selected from cyclohexyl, piperidinyl, indolinyl, phenyl, pyridyl, thienyl, and pyrimidyl, and is substituted with 0-2 R^4 ;

B is ; provided that Z and B are attached to different atoms on A;

Q₁ is selected from C=O and SO₂;

ring Q is a 5-6 membered ring consisting of, in addition to the amide group shown, carbon atoms and 0-1 heteroatoms selected from NR^{4c}, O, S, S(O), and S(O)₂, wherein:

0-2 double bonds are present within the ring and the ring is substituted with 0-2 R^{4a};

alternatively, ring Q is a 5-7 membered ring to which another ring is fused, wherein: the 5-7 membered ring consists of, in addition to the shown amide group, carbon atoms and 0-1 heteroatoms selected from NR^{4c}, O, S, S(O), and S(O)₂ and 0-1 double bonds are present within the ring;

the fusion ring is phenyl;

10

25

ring Q, which includes the 5-7 membered ring and the fusion ring, is substituted with $0-2R^{4a}$;

- 15 R^{1a} is selected from H, R^{1b}, C(CH₃)₂R^{1b}, CH(CH₃)R^{1b}, CH₂R^{1b}, CH₂CH₂R^{1b}, CH₂CH₂R^{1b}, CH₂OCH₂CH₂R^{1b}, OCH₂CH₂R^{1b}, (CH₂)_rNR³CH₂CH₂R^{1b}, NR³(CR³R^{3a})_tR^{1c}, O(CR³R^{3a})_tR^{1c}, (CH₂)_rC(O)NR²(CH₂)_rR^{1b}, S(O)_p(CH₂)_rR^{1d}, O(CH₂)_rR^{1d}, NR³(CH₂)_rR^{1d}, OC(O)NR³(CH₂)_rR^{1d}, NR³C(O)O(CH₂)_rR^{1d}, and NR³C(O)(CH₂)_rR^{1d}, provided that R^{1a} forms other than an N-halo, N-S, O-O, or N-CN bond;
 - alternatively, when two R^{1a} groups are attached to the same carbon atom, together with the carbon atom to which they are attached they form a 3-10 membered carbocyclic or heterocyclic ring consisting of: carbon atoms and 0-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, this ring being substituted with 0-2 R⁴ and 0-2 ring double bonds;
- R^{1b} is selected from H, CH₃, CH₂CH₃, F, Cl, Br, -CN, -CHO, CF₃, (CH₂)_rOR²,

 NR²R^{2a}, C(O)R^{2b}, CO₂R^{2b}, OC(O)R², CO₂R^{2a}, S(O)_pR², NR²(CH₂)_rOR²,

 NR²C(O)R^{2b}, NR²C(O)NR²R^{2a}, C(O)NR²R^{2a}, SO₂NR²R^{2a},

 NR²SO₂NR²R^{2a}, NR²SO₂R², C(O)NR²SO₂R², SO₂NR²C(O)R², C₃₋₆

carbocycle substituted with 0-2 R⁴, and 4-10 membered heterocycle consisting of carbon atoms and from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R⁴, provided that R^{1b} forms other than an O-O, N-halo, N-S, or N-CN bond;

5

10

15

20

25

- R², at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, phenyl substituted with 0-1 R^{4b}, benzyl substituted with 0-1 R^{4b}, and 5-6 membered aromatic heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R^{4b};
- R^{2a}, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₃, CH(CH₃)₂, benzyl, phenyl substituted with 0-1 R^{4b}, and 5-6 membered aromatic heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R^{4b};
 - alternatively, R² and R^{2a}, together with the atom to which they are attached, combine to form a 5 or 6 membered saturated, partially saturated or unsaturated ring substituted with 0-1 R^{4b} and consisting of: 0-1 additional heteroatoms selected from the group consisting of N, O, and S(O)_D;
 - R^{2b}, at each occurrence, is selected from OCH₃, OCH₂CH₃, OCH₂CH₂CH₃,
 OCH(CH₃)₂, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, benzyl, phenyl
 substituted with 0-1 R^{4b}, and 5-6 membered aromatic heterocycle consisting
 of: carbon atoms and 1-4 heteroatoms selected from the group consisting of
 N, O, and S(O)_p and substituted with 0-1 R^{4b};
- R^{2c}, at each occurrence, is selected from OH, OCH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH(CH₃)₂, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, benzyl, phenyl substituted with 0-1 R^{4b}, and 5-6 membered aromatic heterocycle containing

from 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-1 R^{4b} ;

- R⁴, at each occurrence, is selected from H, =O, OR², CH₂OR², F, Cl, CH₃, CH₂CH₃,

 CH₂CH₂CH₃, CH(CH₃)₂, -CN, NO₂, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2c},

 CH₂C(O)R^{2c}, NR²C(O)R^{2b}, C(O)NR²R^{2a}, CH₂C(O)NR²R^{2a},

 NR³(CH₂)₁₋₂C(O)OR³, NR³(CH₂)₂NR³R^{3a}, NR³(CH₂)₂NR³C(O)R^{3a},

 NR³(CH₂)₂NR³SO₂R^{3a}, SO₂NR²R^{2a}, NR²SO₂-C₁₋₄ alkyl, NR²SO₂R⁵,

 S(O)_pR^{5a}, CF₃, (CH₂)_r-3-7 membered carbocycle substituted with 0-1 R⁵, and

 a (CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R⁵;
- R^{4a}, at each occurrence, is selected from H, =O, CH₂OR², OR², F, Br, Cl, CH₃,

 CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂,

 CH(CH₃)CH₂CH₃, C(CH₃)₃, CH₂NR²R^{2a}, NR²R^{2a}, C(O)R^{2c}, NR²C(O)R^{2b},

 C(O)NR²R^{2a}, SO₂NR²R^{2a}, and CF₃;
- R^{4b}, at each occurrence, is selected from H, =O, OR³, CH₂OR³, F, Cl, CH₃, CH₂CH₃,

 CH₂CH₂CH₃, CH(CH₃)₂, -CN, NO₂, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³,

 C(O)OR^{3c}, CH₂C(O)OR^{3c}, NR³C(O)R^{3a}, C(O)NR³R^{3a}, CH₂C(O)NR³R^{3a},

 SO₂NR³R^{3a}, NR³SO₂-C₁₋₄ alkyl, NR³SO₂-phenyl, S(O)_p-C₁₋₄ alkyl, S(O)_p-phenyl, and CF₃;
- 25 R^{4c}, at each occurrence, is selected from H, CH₃, CH₂CH₃, phenyl substituted with 0-1 R⁵, and benzyl substituted with 0-1 R⁵;
 - R⁵, at each occurrence, is selected from H, =O, CH₃, CH₂CH₃, CH₂CH₂CH₃,

 CH(CH₃)₂, OR³, CH₂OR³, F, Cl, -CN, NO₂, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³,

 $C(O)OR^{3c}, NR^3C(O)R^{3a}, C(O)NR^3R^{3a}, SO_2NR^3R^{3a}, NR^3SO_2\text{-}C_{1\text{-}4} \text{ alkyl}, \\ NR^3SO_2\text{-phenyl}, S(O)_p\text{-}C_{1\text{-}4} \text{ alkyl}, S(O)_p\text{-phenyl}, CF_3, phenyl substituted with } 0\text{-}2 \text{ R}^6, \text{ naphthyl substituted with } 0\text{-}2 \text{ R}^6, \text{ and benzyl substituted with } 0\text{-}2 \text{ R}^6; \\ \text{and}$

5

 $R^6,$ at each occurrence, is selected from H, OH, OR², F, Cl, CH₃, CH₂CH₃, $CH_2CH_2CH_3, CH(CH₃)_2, -CN, NO₂, NR²R²a, CH₂NR²R²a, C(O)R²b, \\ CH₂C(O)R²b, NR²C(O)R²b, and SO₂NR²R²a.$

10

15

5. A compound according to Claim 4, wherein:

M is 4-7 membered linear chain consisting of: carbon atoms, 1-2 carbonyl groups, and 1-3 heteroatoms selected from O, S(O)_p, and N, and M is substituted with 0-3 R^{1a} and 0-1 R², provided that other than an S-S, S-O, or O-O bond is present in M;

G is selected from:

A is selected from the group: cyclohexyl, piperidinyl, indolinyl, phenyl, 2-pyridyl, 3-pyridyl, 2-pyrimidyl, 2-Cl-phenyl, 3-Cl-phenyl, 2-F-phenyl, 3-F-phenyl, 2-methylphenyl, 2-aminophenyl, and 2-methoxyphenyl;

B is attached to a different atom on A than Z and is selected from the group:

R^{1a} is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂(CH₃)₂, CF₃, CH₂CF₃, 5 OCH₃, CH₂OH, C(CH₃)₂OH, CH₂OCH₃, NH₂, CH₂NH₂, NHCH₃, CH₂NHCH₃, N(CH₃)₂, CH₂N(CH₃)₂, CO₂H, COCH₃, CO₂CH₃, CH₂CO₂CH₃, NHCOCH₃, S(O)CH₃, CH₂S(O)CH₃, S(O)₂CH₃, CH₂S(O)₂CH₃, C(O)NH₂, CH₂C(O)NH₂, SO₂NH₂, CH₂SO₂NH₂, NHSO₂CH₃, CH₂NHSO₂CH₃, NHSO₂NHCH₃, NHSO₂N(CH₃)₂, $NHCO_2R^{2a},\,NHC(O)NHR^{2a},\,CH_2OCH_2CH_2NR^2R^{2a},\,C(O)NR^2R^{2a},\\$ 10 $\mathrm{CH_2CH_2OR^2,\,CH_2C(O)NR^2CH_2CH_2OR^2,\,C(O)NHCH_2CH_2NR^2R^{2a},}$ CH₂C(O)NHCH₂CH₂NR²R^{2a}, C(O)NCH₃CH₂CH₂NR²R^{2a}, CH₂C(O)NCH₃CH₂CH₂NR²R^{2a}, CH₂NHCH₂CH₂NR²R^{2a}. CH₂N(CH₃)CH₂CH₂NR²R^{2a}, phenyl substituted with 0-2 R^{4b}, -CH₂-phenyl substituted with 0-2 R^{4b}, 5-10 membered aromatic heterocycle consisting of 15 carbon atoms and from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b}, and -CH₂-5-10 membered aromatic heterocycle consisting of carbon atoms and from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b} , provided that R^{1a} forms other than an N-halo, N-S, O-O, or N-CN bond; 20

R², at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, phenyl substituted with 0-1 R^{4b}, benzyl substituted with 0-1 R^{4b}, and 5 membered aromatic heterocycle consisting of: carbon atoms and 1-4

heteroatoms selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-1 R^{4b} ;

R^{2a}, at each occurrence, is selected from H, CH₃, and CH₂CH₃;

5

alternatively, R^2 and R^{2a} , together with the atom to which they are attached, combine to form a 5 or 6 membered saturated, partially saturated or unsaturated ring substituted with 0-1 R^{4b} and consisting of: 0-1 additional heteroatoms selected from the group consisting of N, O, and $S(O)_D$;

10

- R^{2b}, at each occurrence, is selected from OH, OCH₃, OCH₂CH₃, CH₃, and CH₂CH₃;
- R^{2c}, at each occurrence, is selected from OH, OCH₃, OCH₂CH₃, CH₃, and CH₂CH₃;
- R⁴, at each occurrence, is selected from H, =O, OR², CH₂OR², F, Cl, CH₃, CH₂CH₃, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2c}, NR²C(O)R^{2b}, C(O)NR²R^{2a}, CH₂C(O)NR²R^{2a}, NR³CH₂C(O)OR³, NR³CH₂CH₂C(O)OR³, NR³(CH₂)₂NR³R^{3a}, NR³(CH₂)₂NR³C(O)R^{3a}, NR³(CH₂)₂NR³SO₂R^{3a}, NR²SO₂R⁵, S(O)₂CH₃, S(O)₂-phenyl, CF₃, (CH₂)_r-3-7 membered carbocycle substituted with 0-1 R⁵, and a (CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R⁵;
- R^{4a}, at each occurrence, is selected from H, =O, CH₃, CH₂CH₃, CH₂CH₂CH₃,

 CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, and

 C(CH₃)₃;
 - R^{4b} , at each occurrence, is selected from H, =O, OR³, CH₂OR³, F, Cl, CH₃, CH₂CH₃, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³, C(O)OR^{3c}, NR³C(O)R^{3a}, C(O)NR³R^{3a}, CH₂C(O)NR³R^{3a}, NR³SO₂-phenyl, S(O)₂CH₃, S(O)₂-phenyl, and CF₃;

R⁵, at each occurrence, is selected from H, =O, CH₃, CH₂CH₃, OR³, CH₂OR³, F, Cl, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³, C(O)OR^{3c}, NR³C(O)R^{3a}, C(O)NR³R^{3a}, SO₂NR³R^{3a}, NR³SO₂-Cl₋₄ alkyl, NR³SO₂-phenyl, S(O)₂-CH₃, S(O)₂-phenyl, CF₃, phenyl substituted with 0-2 R⁶, naphthyl substituted with 0-2 R⁶, and benzyl substituted with 0-2 R⁶; and

 R^6 , at each occurrence, is selected from H, OH, OR², F, Cl, CH₃, CH₂CH₃, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2b}, CH₂C(O)R^{2b}, NR²C(O)R^{2b}, and SO₂NR²R^{2a}.

10

5

6. A compound according to Claim 5, wherein:

G is selected from:

$$CH_{2}NH_{2}$$

$$CH_{$$

5 A-B is selected from:

5

7. A compound according to Claim 6, wherein the compound is selected from:

10 A-B is selected from:

- 8. A compound according to Claim 1, wherein the compound is selected from5 the group:
 - $2\hbox{-}(5\hbox{-}Chloro-thiophene-}2\hbox{-}sulfonylamino})\hbox{-}N\hbox{-}[4\hbox{-}(2\hbox{-}oxo-}2H\hbox{-}pyridin-}1\hbox{-}yl)\hbox{-}phenyl]\hbox{-}2-phenyl-acetamide};$
- 2-(6-Chloro-naphthalene-2-sulfonylamino)-*N*-[4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-2-phenyl-acetamide;
 - 5-Chloro-thiophene-2-carboxylic acid {[4-(2-oxo-2*H*-pyridin-1-yl)-phenylcarbamoyl]-phenyl-methyl}-amide;

5-Chloro-1*H*-indole-2-carboxylic acid {[4-(2-oxo-2*H*-pyridin-1-yl)-phenylcarbamoyl]-phenyl-methyl}-amide;

```
3-Chloro-1H-indole-6-carboxylic acid {[4-(2-oxo-2H-pyridin-1-yl)-
                                                                                                                  phenylcarbamoyl]-phenyl-methyl}-amide;
                                                        1H-Indole-6-carboxylic acid {[4-(2-oxo-2H-pyridin-1-yl)-phenylcarbamoyl]-phenyl-
                  5
                                                                                                                 methyl \}-amide;
                                                      2-R-(6-Chloro-naphthalene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-
                                                                                                                2-phenyl-acetamide;
                                                    2-S-(6-Chloro-naphthalene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-
         10
                                                                                                              2-phenyl-acetamide;
                                                    2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-2-(5-Chloro-thiophene-2-sulfonylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-pyridin-1-yl)-phenylamino)-N-[4-(2-oxo-2H-py
                                                                                                             phenyl-acetamide;
     15
                                                  N-\beta-(6-chloro-naphthalene-2-sulfonylamino)-3-oxo-propyl]-4-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-piperidin-1-yl)-1-(2-oxo-pip
                                                                                                            benzamide;
                                                  N\hbox{-}[\beta\hbox{-}(4\hbox{-methoxyl-benzenesulfonylamino})\hbox{-} 3\hbox{-}oxo\hbox{-propyl}]\hbox{-} 4\hbox{-}(2\hbox{-}oxo\hbox{-piperidin-}1\hbox{-} 1\hbox{-} 1\hbox{-} 2\hbox{-}oxo\hbox{-piperidin-}1\hbox{-} 1\hbox{-} 2\hbox{-} 2\hbox{-}oxo\hbox{-piperidin-}1\hbox{-} 2\hbox{-} 
   20
                                                                                                           yl)benzamide;
                                               N-[2-(5-Chloro-pyridin-2-ylcarbamoyl)ethyl]-4-(2-oxo-2H-pyridin-1-yl)benzamide;
                                                  3-Chloro-1H-indole-6-carboxylic acid {2-[4-(2-oxo-2H-pyridin-1-
 25
                                                                                                         yl)benzoylamino]ethyl}amide;
                                               5-Chloro-thiophene-2-carboxylic acid {2-[4-(2-oxo-2H-pyridin-1-
                                                                                                       yl)benzoylamino]ethyl}amide;
30
                                              5-Chloro-1H-indole-2-carboxylic acid {2-[4-(2-oxo-2H-pyridin-1-
```

yl)benzoylaminolethyl}amide;

- N-{4-[(4-Chloro-phenylcarbamoyl)-methyl]-tetrahydro-pyran-4-yl}-4-(2-oxo-2H-pyridin-1-yl)-benzamide; and
- 2-[(5-Chloro-thiophene-2-carbonyl)-amino]-3-[4-(2-oxo-2H-pyridin-1-yl)-5 benzoylamino]-propionic acid methyl ester;

or a pharmaceutically acceptable salt form thereof.

- 9. A compound according to Claim 1, wherein the compound is selected from Examples 19-454 of Table 1.
- 10. A pharmaceutical composition, comprising: a pharmaceutically acceptable
 15 carrier and a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt form thereof.
- 11. A method for treating a thromboembolic disorder, comprising:
 20 administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt form thereof.
- 12. A method according to Claim 11, wherein the thromboembolic disorder is selected from arterial cardiovascular thromboembolic disorders, venous cardiovascular thromboembolic disorders, and thromboembolic disorders in the chambers of the heart.
- 30 13. A method according to Claim 11, wherein the thromboembolic disorder is selected from unstable angina, an acute coronary syndrome, first myocardial infarction, recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, peripheral occlusive arterial disease, venous

thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary arterial thrombosis, cerebral arterial thrombosis, cerebral embolism, kidney embolism, pulmonary embolism, and thrombosis resulting from (a) prosthetic valves or other implants, (b) indwelling catheters, (c) stents, (d) cardiopulmonary bypass, (e)

5 hemodialysis, or (f) other procedures in which blood is exposed to an artificial surface that promotes thrombosis.

14. A method for treating a thromboembolic disorder, comprising:

administering to a patient in need thereof a therapeutically effective amount of a first and second therapeutic agent, wherein the first therapeutic agent is compound of Claim 1 or a pharmaceutically acceptable salt thereof and the second therapeutic agent is at least one agent selected from a second factor Xa inhibitor, an anti-coagulant agent, an anti-platelet agent, a thrombin inhibiting agent, a thrombolytic agent, and a fibrinolytic agent.