

# Sensorização: Perceção e Interpretação

SA @ Perfil SI, MEI 2° sem, 2024/2025





• An intelligent robot is a machine able to extract information from its environment and use knowledge about its world to move safely in a meaningful and purposive manner.

Ronald Arkin

 Um robô inteligente é uma máquina com capacidade para extrair informação do ambiente e utilizar conhecimento sobre o mundo para se deslocar em segurança de modo significativo e objetivo.







# Dispositivo

• An intelligent robot is a machine able to extract information from its environment and use knowledge about its world to move safely in a meaningful and purposive manner.

#### Ronald Arkin

 Um robô inteligente é uma máquina com capacidade para extrair informação do ambiente e utilizar conhecimento sobre o mundo para se deslocar em segurança de modo significativo e objetivo.







- O controlo de um sistema (autónomo) inteligente envolve um ciclo de três etapas:
  - Perceção;
  - o Processamento;
  - Ação.





# **Sensores, Processadores, Atuadores**

- Os sensores recolhem informação do ambiente;
- Os processadores tratam a informação recolhida, utilizando-a para construir planos de atuação;
- Os atuadores transformam os planos de atuação em ações sobre o ambiente.







 A capacidade de um dispositivo inteligente interpretar a informação presente no ambiente é crucial para alcançar os objetivos com sucesso;







# Perceção e Interpretação

- A capacidade de um dispositivo inteligente interpretar a informação presente no ambiente é crucial para alcançar os objetivos com sucesso;
- O "mundo real" é frequentemente dinâmico e não determinístico:
  - o 0 conhecimento do mundo é parcial;



# Perceção e Interpretação

- A capacidade de um dispositivo inteligente interpretar a informação presente no ambiente é crucial para alcançar os objetivos com sucesso;
- O "mundo real" é frequentemente dinâmico e não determinístico:
  - o 0 conhecimento do mundo é parcial;
  - Coisas mudam de lugar;
  - o Informação *a priori* pode ser:
    - Incorreta;
    - Imprecisa;
    - Obsoleta.





# Perceção e Interpretação

- A capacidade de um dispositivo inteligente interpretar a informação presente no ambiente é crucial para alcançar os objetivos com sucesso;
- O "mundo real" é frequentemente dinâmico e não determinístico:
  - O conhecimento do mundo é parcial;
  - Coisas mudam de lugar;
  - Informação a priori pode ser:
    - Incorreta;
    - · Imprecisa;
    - Obsoleta.





Perceção e Ação devem estar fortemente relacionadas:

"Perception without the context of action is meaningless"

"Behavior-Based Robotics", Ronald C. Arkin

- As necessidades de atuação "dão" contexto para a perceção;
- A perceção é simplificada por restrições de atuação
  (o conhecimento "aconselha" sobre o local do mundo onde podem aparecer "coisas"!);
- Em ambos os casos, ação e perceção são inseparáveis.





Action-Oriented Perception

"Behavior-Based Robotics", Ronald C. Arkin

- Perceção Baseada nas Ações:
  - Entendimento segundo o qual o processamento de perceções (sensorização) de um sistema (autónomo) inteligente deve ser dirigido a suprir as necessidades dos atuadores.

(inclinação no piso e energia nos motores)

 Os sensores são utilizados para recolher informação indispensável para os motores.





Expectation-Based Perception

"Behavior-Based Robotics", Ronald C. Arkin

Perceção Baseada na Expectativa:

o Entendimento segundo o qual o conhecimento sobre o mundo (capacidade sensorial) pode condicionar a interpretação sobre a

composição do mundo. (mapas e navegação por GPS)

 A informação sensorial pode conter dados que condicionem a escolha das ações.





Active Perception

"Behavior-Based Robotics", Ronald C. Arkin

#### Perceção Ativa:

 Entendimento segundo o qual um dispositivo inteligente pode usar os atuadores para melhorar o processamento de perceções (informação sensorial), posicionando-se (ou aos sensores) do modo mais adequado.

(dirigir sensor de luminosidade para fonte de luz)

 Os motores devem ser utilizados para melhorar as condições de sensorização do ambiente.





#### O Problema do Posicionamento

O problema típico de movimentação:

"Mobile robot localization by tracking geometric beacons",

Leonard & Durrant-Whyte

...descreve-se em três questões:

O Where am I?

Onde estou?

O Where am I going?

Para onde vou?

O How should I get there?

Como chegar lá?

 A primeira questão está diretamente relacionada com a capacidade de sensorização para posicionamento no ambiente.





- Métodos de Posicionamento Relativo:
  - Odometria;
  - Navegação inercial.
- Métodos de Posicionamento Absoluto:
  - Avisos ativos;
  - Reconhecimento de marcos artificiais;
  - Reconhecimento de marcos naturais;
  - Reconhecimento de modelo.





- Métodos de Posicionamento Relativo:
  - o Odometria:
    - Usa encoders para medir a rotação das rodas e/ou a orientação;
    - Tem a vantagem de fornecer sempre uma estimativa da posição;
    - Tem a desvantagem de que os erros crescem sempre e sem limite.
  - Navegação inercial.







#### Métodos de Posicionamento Relativo:

- Odometria:
  - Usa encoders para medir a rotação das rodas e/ou a orientação;
  - Tem a vantagem de fornecer sempre uma estimativa da posição;
  - Tem a desvantagem de que os erros crescem sempre e sem limite.
- Navegação inercial:
  - Usa giroscópios e acelerómetros para medir rotação e aceleração;
  - Esta informação é integrada com o tempo;
  - Tem a vantagem de fornecer estimativas sobre o posicionamento;
  - Tem a desvantagem de o erro crescer ao longo do tempo, devido à integração dos dados.





- Métodos de Posicionamento Relativo:
  - o Odometria;
  - o Navegação inercial.
- Métodos de Posicionamento Absoluto:
  - Avisos ativos;
  - o Reconhecimento de marcos artificiais;
  - Reconhecimento de marcos naturais;
  - Reconhecimento de modelo.





- Métodos de Posicionamento Absoluto:
  - Avisos ativos:
    - Calcula uma posição absoluta por medição de três ou mais feixes ativos (triangulação);
    - Os feixes podem ser luminosos, rádio, etc., mas têm de estar colocados em pontos conhecidos do ambiente.
  - Reconhecimento de marcos artificiais;
  - Reconhecimento de marcos naturais;
  - o Reconhecimento de modelo.







- Métodos de Posicionamento Absoluto:
  - Avisos ativos;
  - Reconhecimento de marcos artificiais:
    - Colocam-se marcos de identificação no ambiente (três ou mais);
    - Tem a vantagem de permitir construir os marcos para serem facilmente identificáveis;
    - Podem ser obtidas outras informações (distância ou velocidade).
  - Reconhecimento de marcos naturais;
  - o Reconhecimento de modelo.





- Métodos de Posicionamento Absoluto:
  - Avisos ativos;
  - Reconhecimento de marcos artificiais;
  - Reconhecimento de marcos naturais:
    - · Os marcos são pontos identificativos próprios do ambiente;
    - Tem a vantagem de não necessitar de preparação inicial;
    - Tem a desvantagem de ser necessário conhecer (bem) o ambiente a priori.
  - Reconhecimento de modelo.









- Métodos de Posicionamento Absoluto:
  - Avisos ativos;
  - Reconhecimento de marcos artificiais;
  - Reconhecimento de marcos naturais;
  - Reconhecimento de modelo:

• Compara-se informação recolhida através dos sensores com um mapa do ambiente;

• Quando características do mapa e do ambiente coincidem (são reconhecidas),

o posicionamento é possível;

• Os mapas podem ser geométricos ou topológicos.





- Métodos de Posicionamento Relativo:
  - Odometria;
  - Navegação inercial.
- Métodos de Posicionamento Absoluto:
  - Avisos ativos;
  - o Reconhecimento de marcos artificiais;
  - Reconhecimento de marcos naturais;
  - Reconhecimento de modelo.





- Um BOM sensor deve obedecer às seguintes condições:
  - Deve ser sensível à propriedade a medir;
  - Deve ser insensível a qualquer outra propriedade;
  - o **Não** deve **influenciar** a propriedade medida.







- A ação de um sistema inteligente dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
  - Conhecimento Espacial do Mundo;
  - Conhecimento Objeto;
  - Conhecimento Percetual;
  - Conhecimento Comportamental;
  - Conhecimento Próprio;
  - o Conhecimento Intencional.





- A ação de um sistema inteligente dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
  - Conhecimento Espacial do Mundo:
    - noção do espaço navegável e da sua estrutura (topologia e/ou obstáculos);
  - Conhecimento Objeto;
  - Conhecimento Percetual;
  - Conhecimento Comportamental;
  - Conhecimento Próprio;
  - Conhecimento Intencional.





- A ação de um sistema inteligente dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
  - Conhecimento Espacial do Mundo;
  - Conhecimento Objeto:
    - categorias ou instâncias de "coisas" que povoam o espaço;
  - Conhecimento Percetual;
  - Conhecimento Comportamental;
  - Conhecimento Próprio;
  - Conhecimento Intencional.





- A ação de um sistema inteligente dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
  - Conhecimento Espacial do Mundo;
  - Conhecimento Objeto;
  - Conhecimento Percetual:
    - informação sobre como o ambiente é sentido em diversas circunstâncias;
  - Conhecimento Comportamental;
  - Conhecimento Próprio;
  - Conhecimento Intencional.





- A ação de um sistema inteligente dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
  - Conhecimento Espacial do Mundo;
  - Conhecimento Objeto;
  - Conhecimento Percetual;
  - Conhecimento Comportamental:
    - noção sobre o modo de (re)agir em diferentes situações;
  - Conhecimento Próprio;
  - Conhecimento Intencional.





- A ação de um sistema inteligente dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
  - Conhecimento Espacial do Mundo;
  - Conhecimento Objeto;
  - Conhecimento Percetual;
  - Conhecimento Comportamental;
  - Conhecimento Próprio:
    - capacidades intrínsecas do dispositivo (velocidade, bateria, sensores, ...);
  - Conhecimento Intencional.





- A ação de um sistema inteligente dependerá dos vários tipos de conhecimento de que disponha ou que seja capaz de adquirir:
  - Conhecimento Espacial do Mundo;
  - Conhecimento Objeto;
  - Conhecimento Percetual;
  - Conhecimento Comportamental;
  - Conhecimento Próprio;
  - Conhecimento Intencional:
    - informação acerca do objetivo a alcançar (planeamento).







- A Duração é outro modo de caracterizar o conhecimento;
- Identificado pela resposta dada à questão:
  "Durante quanto tempo o conhecimento terá utilidade?"
  - Conhecimento Transitório;
  - o Conhecimento Persistente.





# **Conhecimento: Duração**

- Conhecimento Transitório:
  - o O sistema adquire conhecimento transitório dinamicamente, no decurso do desenvolvimento da tarefa;
  - o São desenvolvidos modelos do ambiente, construídos através da informação recolhida por sensores;
  - O conhecimento transitório é "esquecido" ou "retratado" à medida que o sistema vai ultrapassando os locais de onde esse conhecimento foi recolhido;
  - Short-Term Memory (STM).

Conhecimento Persistente.







- Conhecimento Transitório (Short-Term Memory STM):
  - o Reduz a necessidade de obtenção/atualização frequente de dados dos sensores;
  - o Proporciona informação "recente" para guiar o sistema em tempo-real;
  - Particularmente útil:
    - para evitar a retenção de conhecimento que já não tem utilidade;
    - quando a representação permite "alimentar" diretamente os atuadores;
    - em situações de desvio de obstáculos.
- Conhecimento Persistente.







Conhecimento Transitório (Short-Term Memory - STM);

#### Conhecimento Persistente:

- o Caracterizado por conhecimento a priori sobre o ambiente;
- o Considerado (relativamente) estático durante o desenvolvimento da tarefa;
- o Descreve os objetos, os obstáculos e o próprio ambiente (espaço livre de navegação);
- Adota a representação do conhecimento próprio (modelo do próprio sistema);
- Long-Term Memory (LTM).







- Conhecimento Transitório (Short-Term Memory STM);
- Conhecimento Persistente (Long-Term Memory LTM):
  - Permite a construção de mapas do ambiente;
  - A origem dos dados utilizados permite classificar em dois tipos:
    - tendo origem nos sensores do próprio sistema, à medida que navega no ambiente;
    - tendo origem em fonte externa, por conveniência de programação ou por necessidade de alcançar maiores amplitudes (p. ex., criação de modelos).





# **Conhecimento: Duração**







- Ronald Arkin, "Behavior Based Robotics", The MIT Press, 1998.
- Farlei Heinen, "Sistema de Controle Híbrido para Robôs Móveis Autónomos", UNISINOS, 2002.
- J. Borenstein, H.R. Everett, L. Feng, "'Where am I?' Sensors and Methods for Mobile Robot Positioning", University of Michigan, 1996.
- Leonard, Durrant-Whyte, "Robot localization using vision and odometry", University of Oxford, 1991.





# Sensorização e Ambiente

**Oportunidades, Desafios e Ameaças** 

SA @ Perfil SI, MEI 2° sem, 2024/2025