ANÁLISIS VECTORIAL

SUMA DE VECTORES PARALELOS Y/O COLINEALES

Ejemplo:

Hallar el vector resultante para el sistema de vectores.

Sol.: En este caso procedemos del siguiente modo:

 Los que tienen el mismo sentido se suman, es decir:

$$\overline{A}$$
, \overline{C} y \overline{F} : \overline{A} + \overline{C} + \overline{F} = 2+1+5=8(\rightarrow)
 \overline{B} , \overline{D} y \overline{E} : \overline{B} + \overline{D} + \overline{E} = 3+1+3=7(\leftarrow)

Luego $\overline{R} = 8 - 7 = 1(\rightarrow)$ (Sentidos opuestos se restan).

Resuelve:

Hallar el V. Resultante.

🥸 <u>Método del Paralelogramo</u>

Este método se usa cuando dos vectores forman un ángulo diferente de cero entre sí.

Ejemplo:

Solución:

 En este caso vamos a trasladar a uno de los vectores en forma paralela para que su punto inicial concuerde con el otro.

 Ahora trazaremos paralelas a cada vector a partir de los extremos (punto final del vector) y la figura formada se llama:

• Con ayuda de tu profesor encuentra el vector resultante (\overline{R}) .

Si deseamos obtener el módulo del vector resultante usaremos:

Ejemplo: Hallar el módulo del V. Resultante Si: $\cos 60^{\circ} = \frac{1}{2}$

Solución:

Obs.:

Si: $\theta = 0^{\circ} \Rightarrow \frac{\overline{A}}{\overline{B}}$

A la resultante obtenida se le conoce como:

• Si: $\theta = 180^{\circ} \Rightarrow \overline{B} \overline{A}$

A la resultante obtenida se le conoce como: _____

• Si: θ = 90° (Vectores Perpendiculares)

Teorema de:

Ejemplo: Si: $R_{m\acute{a}x} = 7$ y $R_{m\'{i}n} = 1$ para dos vectores.

Hallar el módulo del vector resultante cuando dichos vectores son perpendiculares.

Solución:

Si dos vectores tienen módulos iguales:

En este caso,
R divide al
ángulo en dos
iguales, es
decir, es una
bisectriz.

Hallar el módulo de \overline{R} en función de x.

♦ DIFERENCIA DE VECTORES (D)

$$abla = \sqrt{
abla = \sqrt{
abl$$

EJERCICIOS DE APLICACIÓN

- > Hallar el módulo del vector resultante en los siguientes casos:
- 1. Hallar el módulo del V. Resultante: $\cos 60^{\circ} = \frac{1}{2} \; ; \; \cos 120^{\circ} = -\frac{1}{2} \; .$
 - a) 10
 - b) 11
 - c) 12
 - d) 13
 - e) 14
- 2. Hallar el módulo del V. Resultante:
 - a) 8
 - b) 2
 - c) 7
 - d) 15
 - e) 14

3. Hallar el módulo del V. Resultante:

- - a) √13
 - b) √31c) √46
 - 15.44
 - d) 11
 - e) √93

4.

- a) √65
- b) √71
- c) √83
- d) √79
- e) √76

5.

- b) 4
- c) 4√3
- d) 8
- e) 3

6.

- b) 12
- c) 5√3
- d) 4√3
- e) 8

- a) 17
- b) 13
- c) 4√3
- d) 12
- e) 14
- 8. Hallar el módulo de la resultante.

4√3

- b) 4
- c) 4√3
- d) 2√3
- e) 4√2

e) 4√3

60°

60°

60°

3

 $4\sqrt{3} + 3$

TAREA DOMICILIARIA Nº 1

1. Hallar el módulo del V. Resultante.

2.

e) 30

d) 3

4. $\cos \theta = \frac{5}{16}$

e)8

- 5.
- a) 2√3
- b) 3√3
- c) 6√3
- d) 9
- e) 12

6.

7.

8.
$$\cos \theta = \frac{11}{24}$$

9.

I BIM - FÍSICA - 4 to. AÑO

