A Randomized Rounding Algorithm for Sparse PCA

Eugenia-Maria Kontopoulou

in collaboration with

K. Fountoulakis, A. Kundu & P. Drineas

Department of Computer Science Purdue University

PUNLAG Seminars

Purdue, April 2017

Principal Component Analysis (PCA)

Definition

Given a centered matrix $X \in \mathbb{R}^{m \times n}$ and the matrix $A = X^{\top}X$, we seek to find the vector w_{opt} that solves:

Principal Component Analysis (PCA)

Definition

Given a centered matrix $X \in \mathbb{R}^{m \times n}$ and the matrix $A = X^{\top}X$, we seek to find the vector w_{opt} that solves:

The objective function of Problem (1) is the Rayleigh Quotient, R, and for a Symmetric Positive Semidefinite matrix like A the maximum value of R is the dominant eigenvalue while w_{opt} is the corresponding eigenvector.

Why not satisfied?

PCA Computation

- Singular Value Decomposition
- Eigenvalue Decomposition
- Krylov Methods (Lanczos etc)

Why not satisfied?

PCA Computation

- Singular Value Decomposition
- Eigenvalue Decomposition
- Krylov Methods (Lanczos etc)

But what happens in the case of Big Data?

Memory Issues

- entire matrix in RAM
- sparsity is not preserved

Data Interpretation Issues

difficult direct interpretation

Why not satisfied?

PCA Computation

- Singular Value Decomposition
- Eigenvalue Decomposition
- Krylov Methods (Lanczos etc)

But what happens in the case of Big Data?

Memory Issues

- entire matrix in RAM
- sparsity is not preserved

Data Interpretation Issues

difficult direct interpretation

Solution: Add a sparsity constraint in Problem 1!!!

Definition

Given a centered data matrix $X \in \mathbb{R}^{m \times n}$, the matrix $A = X^{\top}X$ and a parameter k, we seek to find the vector w_{opt} that solves:

- \checkmark k enforces the sparsity of w_{opt} , (at most k non-zero entries).
- \checkmark NP-hard if k grows with n.
- √ Non-convex constraints.
- Common approaches: thresholding the top singular vector, convex relaxations of the constraints, semi-definite programming, . . .

Fountoulakis, Kontopoulou, Kundu, Drineas, ACM TKDD (2017)

Definition

Given a centered data matrix $X \in \mathbb{R}^{m \times n}$, the matrix $A = X^{\top}X$ and a parameter k, we seek to find the vector w_{opt} that solves:

- \checkmark (convex) I_1 relaxation of the sparsity constraint.
- √ convex relaxation of the 2-norm constraint.

Algorithm

Two-step algorithm:

- 1 Compute a stationary point \tilde{w}_{opt} .
- 2 Invoke a randomized rounding strategy to compute \hat{w}_{opt} .

How we find the stationary point:

- Compute the gradient and make a gradient step.
- 2 Project onto the l_1 ball with radius \sqrt{k} .
- 3 Repeat until a relative error threshold is reached.

Randomized rounding strategy:

Given \tilde{w}_{opt} , define each element of \hat{w}_{opt} as follows (opt subscript is dropped):

$$\hat{w_i} = \left\{ egin{array}{ll} rac{1}{p_i} \widetilde{w_i} & ext{with } p_i = \min \left\{ rac{s |\widetilde{w_i}|}{\|\widetilde{w}\|_1}, 1
ight\} \ 0, & ext{otherwise} \end{array}
ight.$$

In (1) we prove the following Theorem

Theorem

Let w_{opt} be the optimal solution of the Sparse PCA problem (2) satisfying $\|w_{\text{opt}}\|_2 = 1$ and $\|w_{\text{opt}}\|_0 \le k$. Let \hat{w}_{opt} be the vector returned when the rounding sparsification strategy is applied on the optimal solution \tilde{w}_{opt} of the optimization problem (3), with $s = 200 k/\epsilon^2$, where $\epsilon \in (0,1]$ is an accuracy parameter. Then, \hat{w}_{opt} has the following properties:

- With probability at least 3/4,

$$\|\hat{w}_{opt}\|_2 \le 1 + 0.15\epsilon$$
.

3 With probability at least 3/4,

$$\hat{w}_{opt}^{\top} A \hat{w}_{opt} \ge w_{opt}^{\top} A w_{opt} - \epsilon.$$

Theorem II

Proofs

Experiments

The Datasets and Evaluation

Datasets

- Synthetic: $m = 2^7$, $n = 2^{12}$
- Classic-2: m = 2,858 documents , n = 12,427 terms
 - CISI collection (1,460 information retrieval abstracts)
 - 2 CRANFIELD collection (1,398 aeronautical systems abstracts)

Evaluation

- $||w||_0/n$ vs $f(w) = w^T Aw/||A||_2$
- Pattern Captured
- Sparsity Captured
- Variance Captured

Experiments I

We test our algorithm (Naive & SVD-based) with other SPCA software like MaxComp (Naive & SVD-based) and Spasm.

Pattern capture

Sparsity ratio vs Eigenvalue capture

cvx refers to the solution of the optimization problem and ${\tt Alg}$. I to the randomized rounding technique.

Real Data Application

Table 1: Variance and sparsity captured by the principal components. PCA results in dense principal components, while Spasm and MaxComp share the same sparsity with rspca.

	k	pca	cvx	rspca	MaxComp	Spasm
Top Principal Comp.	100	0.4351	0.3077 (99%)	0.2942 (99%)	0.1955	0.2768
Top two Principal Comp.		0.6802	0.4897 (99%)	0.4680 (99%)	0.3391	0.4227
Top Principal Comp.	500	0.4351	0.3880 (95%)	0.3728 (98%)	0.3353	0.3601
Top two Principal Comp.		0.6802	0.6073 (95%)	0.5864 (98%)	0.5399	0.5701
Top Principal Comp.	1000	0.4351	0.4136 (90%)	0.4005 (95%)	0.3825	0.3912
Top two Principal Comp.		0.6802	0.6486 (90%)	0.6294 (95%)	0.6074	0.6163
Top Principal Comp.	1500	0.4351	0.4242 (84%)	0.4120 (93%)	0.4013	0.4039
Top two Principal Comp.		0.6802	0.6649 (82%)	0.6470 (93%)	0.6342	0.6361
Top Principal Comp.	2000	0.4351	0.4295 (75%)	0.4190 (91%)	0.4133	0.4131
Top two Principal Comp.		0.6802	0.6730 (70%)	0.6572 (91%)	0.6503	0.6491
Top Principal Comp.	4000	0.4351	0.4350 (6%)	0.4278 (81%)	0.4284	0.4271
Top two Principal Comp.		0.6802	0.6801 (3%)	0.6700 (81%)	0.6710	0.6690
Top Principal Comp.	8000	0.4351	0.4351 (0%)	0.4324 (68%)	0.4326	0.4316
Top two Principal Comp.		0.6802	0.6802 (0%)	0.6764 (69%)	0.6768	0.6752
Top Principal Comp.	10500	0.4351	0.4351 (0%)	0.4332 (63%)	0.4333	0.4324
Top two Principal Comp.		0.6802	0.6802 (0%)	0.6776 (64%)	0.6778	0.6764

More principal components can be obtained with a simple deflation method. However, it is much complicated to guarantee orthogonality. It boils down to a different harder problem.

Future Work

- Our experimental evaluation is mostly numerical; we don't have detailed evaluations on real data (e.g., on population genetics data).
- √ How about lower-order sparse singular vectors?
- Can we come up with a convex relaxation (e.g., an PSD relaxation) and use randomized rounding to give provable bounds for the sparsity vs. accuracy tradeoff for the top (or top few) singular vectors?
- √ How robust is sparse PCA to input noise?

Thank you!

Questions?

Bibliography

Kimon Fountoulakis, Abhisek Kundu, Eugenia-Maria Kontopoulou and Petros Drineas (2016), *A Randomized Rounding Algorithm for Sparse PCA*, accepted for publication in ACM TKDD, ArXiv link.