Зміст

1	Hai	іпростіші геометричні фігури, їхні властивості	2
	1.1	Точки та прямі	2
		Відрізок, довжина	3
		Промінь, кут, вимірювання кутів	4
	1.4	Суміжні та вертикальні кути	7
	1.5	Перпендикулярні прямі	7
2 Трикутники		икутники	10
	2.1	Основні означення. Висота, медіана, бісектриса	10
	2.2	Ознаки рівності трикутників	11

1 Найпростіші геометричні фігури, їхні властивості

1.1 Точки та прямі

Definition 1.1.1 Точкою назвемо найпростішу геометричну фігуру, яку не можна розбити на частини

Позначення: A, B, C, \dots

 $A \bullet$

Definition 1.1.2 Прямою назвемо геометричну фігуру, що має таку аксіому:

Axiom. Через будь-які дві точки можна провести лише одну пряму Позначення: a, b, \dots

В цьому малюнку маємо пряму a або ще називають пряму AB, яка була проведена через точки A,B

Точка, яка належить прямій, позначатимемо так: $A \in a, B \in a$

Точка, яка належить прямій, позначатимемо так: $C \not\in a$

Definition 1.1.3 Дві прямі називають такими, що **перетинаються**, якщо вони мають спільну точку

Theorem 1.1.4 Будь-які дві прямі, що перетинаються, мають лише одну спільну точку

Proof.

Задано дві прямі a,b, що перетинаються в спільній точці O_1

!Припустимо, що O_2 - ще одна спільна точка

Але тоді через ці дві точки проведені дві різні прямі, саме a,b, коли за

означенням, лише єдина пряма можлива. Суперечність! (малюнку не буде, бо неможливо її уявити) ■

1.2 Відрізок, довжина

Definition 1.2.1 Задана пряма a, що проходить через т. A, B **Відрізком** назвемо частину прямої, що обмежена двома точками, які називають **кінцями**

Позначення: АВ

Зрозуміло, що для кожних двох точок буде існувати єдиний відрізок, тому що між ними існує єдина пряма

Definition 1.2.2 Задано відрізок AB

Точку X назвемо **внутрішньою**, якщо вона лежить між кінцями відрізка

$$A \qquad X \quad B$$

Тоді відрізок AB містить всі точки, що лежать між A,B, а також самі т. A,B

Definition 1.2.3 Задані відрізки A_1B_1, A_2B_2

Їх назвемо **рівними**, якщо їх можна сумістити накладанням Позначення: $A_1B_1=A_2B_2$

$$\begin{array}{ccc}
A_1 & B_1 \\
A_2 & B_2
\end{array}$$

У разі, якщо вони не рівні, то може виникнути один із двох випадків:

- відрізок A_1B_1 більший за A_2B_2 : $A_1B_1 > A_2B_2$
- відрізок A_1B_1 менший за A_2B_2 : $A_1B_1 < A_2B_2$

Для того щоб виміряти **довжину** відрізка, треба буде задати **відрізки одиничної довжини**

Зазвичай це: 1см, 1м, 1дм

Corollary 1.2.4 Відрізки рівні тоді й тільки тоді, коли їхні довжини рівні

Axiom. Якщо точка C - внутіршня точка відрізка AB, то відрізок

$$AB = AC + CB$$

$$A \qquad C \quad B$$

Definition 1.2.5 Відстанню між точками A,B називають довжину відрізка AB

Якщо ці точки збігаються, то відстань = 0

Definition 1.2.6 Серединою відрізка AB називають таку внутрішню точку C, що

$$AC = CB$$

$$A \qquad C \qquad B$$

1.3 Промінь, кут, вимірювання кутів

Definition 1.3.1 Задано пряму AB. Позначимо деяку точку O **Променем** або **півпрямою** називають частину прямої, де точка O називається **початком** променя

На першому малюнку два промені: OA та OB На другому один промінь: OA або OB, два імені

Definition 1.3.2 Два промені називаються **доповняльними**, якщо вони мають спільний початок і лежать на одній прямій

В попередньому малюнку, першому, промені AO, OB - доповняльні. Тому що спільний початок O та, об'єднавши, отримаємо пряму AB

Definition 1.3.3 Задано два промені зі спільним початком O **Кутом** будемо називати фігуру, що утворена двома променями Позначення: $\angle BOA$, $\angle AOB$ або $\angle O$

Промені OA, OB назвемо **сторонами кута**, а точку O назвемо **вершиною кута**

Кут можна розглядати або всередині двох променів, або зовні. Зазвичай розглядається перший варіант

Definition 1.3.4 Кут назвемо **розгорнутим**, якщо сторони кутів - доповняльні промені

Definition 1.3.5 Задані два кута $\angle A_1O_1B_1, \angle A_2O_2B_2$ Їх назвемо **рівними**, якщо їх можна сумістити накладанням Позначення: $\angle A_1O_1B_1 = \angle A_2O_2B_2$

У разі, якщо вони не рівні, то може виникнути один із двох випадків:

- кут $\angle A_1O_1B_1$ більший за $\angle A_2O_2B_2$: $\angle A_1O_1B_1 > \angle A_2O_2B_2$
- кут $\angle A_1O_1B_1$ менший за $\angle A_2O_2B_2$: $\angle A_1O_1B_1<\angle A_2O_2B_2$

Axiom. Для кута ABC та променя B_1C_1 існує єдиний кут $A_1B_1C_1$, який дорівнює куту ABC. Причому т. C_1 лежить у заданій півплощині відносно прямої B_1C_1

Definition 1.3.6 Бісектрисою кута називають промінь з початком у вершині кута, що ділить цей кут на два рівних кути

OD - бісектриса кута AOB. Також $\angle AOD = \angle BOD$

Для того щоб виміряти **величину** кута, треба буде задати **одиничний кут**

Зазвичай це 1° - це можна отримати, якщо розгорнутий кут розділити на 180 рівних кутів

 ε ще $1' = \frac{1}{60}^{\circ}$ - одна мінута (не хвилина)

Corollary 1.3.7 Розгорнутий кут дорівнює 180°

Corollary 1.3.8 Кути рівні тоді й тільки тоді, коли їхні величини рівні

Definition 1.3.9 Задано кут $\angle AOB$ Кут називається **прямим**, якщо $\angle AOB = 90^\circ$

Кут називається **гострим**, якщо $\angle AOB < 90^{\circ}$ Кут називається **тупим**, якщо $\angle AOB > 90^{\circ}$

Axiom. Якщо промінь OC ділить кут $\angle AOB$ на два інших кути $\angle AOC$, $\angle COD$, то то кут

$$\angle AOB = \angle AOC + \angle COB$$

1.4 Суміжні та вертикальні кути

Definition 1.4.1 Два кути називають **суміжними**, якщо одна сторона спільна, а також два інших промені є доповняльними

Тут кути $\angle AOB$, $\angle COB$ - суміжні

Theorem 1.4.2 Сума суміжних кутів = 180°

Proof.

Повернімось до малюнку. Хочемо: $\angle AOB + \angle COB = 180^{\circ}$

Ці кути - суміжні. Отже, OA, OB - доповняльні. А тому $\angle AOC = 180^\circ,$ бо він - розгорнутий

A також $\angle AOC = \angle AOB + \angle COB$

Остаточно, $∠AOB + ∠COB = 180^{\circ}$ ■

Definition 1.4.3 Два кути називають **вертикальними**, якщо сторони одного кута - доповняльні промени других сторін

Тут кути $\angle AOD$, $\angle COB$ - вертикальні. Також кути $\angle AOB$, $\angle COD$ - вертикальні

Theorem 1.4.4 Вертикальні кути рівні

Proof.

Повернімось до малюнку. Хочемо: $\angle AOD = \angle COB$

 $\angle AOD$, $\angle AOB$ - суміжні, а тому $\angle AOD + \angle AOB = 180^\circ$

 $\Rightarrow \angle AOB = 180^{\circ} - \angle AOD$

 $\angle AOB$, $\angle BOC$ - суміжні, а тому $\angle AOB + \angle COB = 180^\circ$

 $\Rightarrow \angle{COB} = 180^{\circ} - \angle{AOB} = 180^{\circ} - (180^{\circ} - \angle{AOD}) = \angle{AOD} \blacksquare$

1.5 Перпендикулярні прямі

Definition 1.5.1 Задані прямі a, b

Дві прямі називають **перпендикулярними**, якщо при їхньому перетині

утвориться прямий кут Позначення: $a \perp b$

Definition 1.5.2 Кутом між прямими AD, BC будемо називати величину гострого кута, що утворився в результаті перетину

Тобто $\angle AOC$ або $\angle BOD$ - кут між прямими AD,BC

Definition 1.5.3 Задані відрізки AB, CD

Вони називаються **перпендикулярними**, якщо вони лежать на перпендикулярних прямих

Можна також розглядати перпендикулярність двох променів, променя та відрізка, прямої та променя, відрізка та прямої

Definition 1.5.4 Задана пряма a та точка $A \not\in a$

Із точки A на пряму a можна **опустити перпендикуляр** AB. Тоді точка B називається **основою перпендикуляра**

Довжина AB називається відстанню від т. A до прямої a

Можна довжину AB ще називати відстанню від т. A до променя BR; або відстанюю від т. A до відрізка SG, якщо $SG \in a$

Theorem 1.5.5 Через кожну точку прямої можна провести єдину пряму, що перпендикулярна до даної

Proof.

Нехай є пряма AB, на якій я позначу точку M Відкладемо від промення AB кут CMB, який буде прямим Отже, $CM \perp AB$

! Припустимо, що існує ще одна пряма, якась пряма DM, що перпендикулярна AB

Нехай т. D лежить у тій самій півплощині відносно прямої AB, що й точка C. Тоді ми маємо два кути: $\angle CMB$, $\angle DMB$, що є прямими. Але такий кут має бути єдиним. Суперечність!

9

2 Трикутники

2.1 Основні означення. Висота, медіана, бісектриса

Definition 2.1.1 Задано три точки A, B, C

Трикутником назвемо геометричну фігуру, що була зроблена в результаті проведення відрізків AB, BC, CA

Позначення: ΔABC

Точки трикутника називаються **вершинами**, а відрізки трикутника називаються **сторонами**

Definition 2.1.2 Задано трикутник ΔABC

Периметром трикутника назвемо таку величину

$$P_{\Delta ABC} = AB + BC + CA$$

Definition 2.1.3 Задано два трикутника $\Delta A_1B_1C_1$, $\Delta A_2B_2C_2$

Ці трикутники називаються **рівними**, якщо їх можна сумістити накладанням Позначення: $\Delta A_1 B_1 C_1 = \Delta A_2 B_2 C_2$

Corollary 2.1.4 $\Delta A_1 B_1 C_1 = \Delta A_2 B_2 C_2 \iff$ кожний кут та кожна сторона першого трикутника дорівнює кожному куту та кожній стороні другого трикутника

Axiom. Для заданого трикутника ABC та заданого променя A_1M існує трикутник $A_1B_1C_1$, який дорівнює ABC. Причому сторона A_1B_1 належить променю A_1M

Theorem 2.1.5 Через точку, що не належить прямій, можна провести іншу єдину пряму, що перпендикулярна першій прямій

Proof.

Розглянемо пряму MN та точку $O \not\in MN$. Покажемо, що ми можемо провести пряму через т. O, перпендикулярна MN

Відкладемо від променя MN кут O_1MN так, щоб $\angle OMN = \angle O_1MN$ Нехай точка O_2 така, що $MO_1 = MO_2$

Проведемо пряму через т. O, O_1 . Позначимо точкою A точку перетину

MN та OO_1 Від променя MA відкладемо трикутник $O_2MA,$ причому $\Delta O_2MA = \Delta O_1MA$ (TODO) \blacksquare

Definition 2.1.6 Висотою трикутника називають перпендикуляр, що опущений із вершини трикутника на пряму, яка містить протилежну сторону

Definition 2.1.7 Медіаною трикутника називають відрізок, що сполучає вершину трикутника з серединою протилежної сторони

Definition 2.1.8 Бісектрисою трикутника називають бісектрису трикутника, що сполучає вершину трикутника з точкою протилежної сторони

2.2 Ознаки рівності трикутників

Theorem 2.2.1 Перша ознака

Нехай дві сторони та кут між ними одного трикутника дорівнює відповідно двом сторонам та куту між ними другого трикутника. Тоді ці трикутники рівні

Proof.

Задані $\Delta A_1B_1C_1$, $\Delta A_2B_2C_2$. Нехай буде $A_1B_1=A_2B_2$, $B_1C_1=B_2C_2$, $\angle B_1=\angle B_2$

Оскільки $\angle B_1 = \angle B_2$, то ми накладемо промені $\Delta A_1B_1C_1$ на $\Delta A_2B_2C_2$ таким чином, щоб B_1A_1 сумістився з B_2A_2 та B_1C_1 сумістився з B_2C_2 Оскільки $A_1B_1 = A_2B_2$, $B_1C_1 = B_2C_2$, то тоді сторони теж сумістяться. Отже, трикутники повністю сумістяться $\Rightarrow \Delta A_1B_1C_1 = \Delta A_2B_2C_2$

Definition 2.2.2 Серединним перпендикуляром називають пряму, що перпендикулярна до відрізка та проходить через його середину

