MIR - HWo -Report

彭麒任

cloud drive link:

https://drive.google.com/drive/u/4/folders/1Di79YIJdo6KXicygmjk8I8uyP9Skp3xn

Agenda

- Task 1
- Task 2
- Task 3

- Selected pitch: 27, 51, 23
- Selected instrument: brass, synth_lead, reed

- Selected .wav file:
 - brass_acoustic_000-027-075
 - synth_lead_synthetic_007-027-100
 - reed_acoustic_026-027-100
 - brass_acoustic_008-051-075
 - synth_lead_synthetic_005-051-050
 - reed_acoustic_059-051-025
 - brass_acoustic_030-023-050
 - synth_lead_synthetic_010-023-100
 - reed_acoustic_021-023-050

- use *librosa.feature.melspectrogram* to generate Mel Spectrogram and use *matplotlib.pyplot* to plot it

- Using *librosa.feature* to extract two features:
 - Spectral_contrast: It accentuate the frequency difference between each instrument, I think it's a great way to differentiate between different instruments
 - **MFCC**: According to Wikipedia, it approximates the human auditory system's response more closely
- After extract the two features, they're normalized using **StandardScaler()**. After that, I flatten them and concat them, creating a [1, 4671] vector for each .wav file. For validation data and test data, the same pre-processing is appied

- Model: using knn, with k = 3
- **Top 1** accuracy: **0.626953125**
- Top 3 accuracy: Null
 - It runs for 25 minutes but still not finished
 - It is likely because KNN is a lazy learner, and predicting the test data takes a long time, especially for labels that are far from the true label

- What I found:
 - The model can distinguish vocals and guitar from other instruments very well
- Inprovements that can be done:
 - Try different model, such as SVM and random forest
 - Try larger **k** value in **knn**, to whether it perform better or not

- use *librosa.feature.melspectrogram* to extract Mel Spectrogram feature and use *librosa.power_to_db* to extract feature with log scaling
- Encode the .wav file into integer encoding, label from 0 to 10, imply different instruments
- Reference the suggested Short Chunk CNN model(<u>Here</u>), and modify some parts
 - Change the loss function from binary cross entropy loss to cross entropy loss
 - Modify the input, calculate the mel-spectrogram beforehand, instead of calculating in the the model

Task 3 (Mel Spectrogram, without log scaling)

- Top-1 Accuracy: 6.57%
- Top-3 Accuracy: 26.29%
- The perform is **POOR**,

 There must be something wrong with the model, or the input
- Same error happened with
 Mel Spectrogram with log
 scaling

Confusion				Matrix:								
]]	0	0	0	0	0	0	0	0	0	0	843]
]	0	0	0	0	0	0	0	0	0	0	269]
]	0	0	0	0	0	0	0	0	0	0	180]
	1	0	0	0	0	0	0	0	0	0	0	652]
	1	0	0	0	0	0	0	0	0	0	0	766]
]	0	0	0	0	0	0	0	0	0	0	202]
	1	0	0	0	0	0	0	0	0	0	0	502]
	1	0	0	0	0	0	0	0	0	0	0	235]
	1	0	0	0	0	0	0	0	0	0	0	306]
]	0	0	0	0	0	0	0	0	0	0	141]
	I	0	0	0	0	0	0	0	0	0	0	0]]

- Inprovements that can be done:
 - Implement the model **properly**