Coursera - Reproducible Research

Peer Assessment 1

June 14, 2014

Cleanup

rm(list=ls(all=TRUE))

Set up environment

setwd("C:/R/Code/repdata/PA1")
library(ggplot2)

Read source data

activity_data_raw <- read.csv("activity.csv", header =
TRUE)</pre>

Remove NA's

```
activity_data <-
activity_data_raw[!is.na(activity_data_raw$steps),]</pre>
```

Summarize the data

```
summary(activity_data_raw)
```

```
interval
##
                               date
         steps
##
    Min.
               0.0
                      2012-10-01:
                                     288
                                           Min.
##
    1st Qu.:
               0.0
                      2012-10-02:
                                     288
                                           1st Qu.:
                                                     589
                                           Median:1178
##
    Median
                      2012-10-03:
               0.0
                                     288
##
    Mean
              37.4
                      2012-10-04:
                                     288
                                           Mean
                                                    :1178
                                           3rd Qu.:1766
##
    3rd Qu.: 12.0
                      2012-10-05:
                                     288
##
            :806.0
                      2012-10-06:
                                     288
                                                   :2355
    Max.
                                           Max.
##
    NA's
            :2304
                      (Other)
                                 :15840
```

```
summary(activity_data) # NA's removed
```

```
##
                                               interval
                               date
        steps
##
                      2012-10-02:
    Min.
               0.0
                                     288
                                           Min.
##
               0.0
                      2012-10-03:
                                     288
                                           1st Qu.: 589
    1st Qu.:
##
    Median:
                      2012-10-04:
                                           Median:1178
               0.0
                                     288
##
                      2012-10-05:
    Mean
            : 37.4
                                    288
                                           Mean
                                                   :1178
                                           3rd Qu.:1766
                      2012-10-06:
##
    3rd Qu.: 12.0
                                     288
##
            :806.0
                      2012-10-07:
                                    288
                                           Max.
                                                   :2355
    Max.
##
                      (Other)
                                 :13536
```

Total steps taken per day analysis (missing data removed)

steps_per_day <- data.frame(xtabs(steps ~ date,
data=activity_data))
hist (steps_per_day\$Freq, col="red", main="Steps Taken per
Day", xlab="Total Steps", ylab= "Frequency (Days)",
breaks=10)</pre>

Steps Taken per Day

The **mean** and **median** total number of steps taken per day is shown below:

summary(steps_per_day\$Freq)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 6780 10400 9350 12800 21200

Average steps taken per time interval analysis (missing data removed)

```
steps_per_interval <- data.frame(xtabs(steps ~ interval,
    aggregate(steps ~ interval,data=activity_data,mean)))
steps_per_interval$time_interval <-
    as.numeric(levels(steps_per_interval$interval))
[steps_per_interval$interval] # numeric <- factor

plot(Freq ~ time_interval,
    data=steps_per_interval,
    type="l",
    pch=22,
    col = "red",
    main="Average Number of Steps Taken By Time Interval",
    xlab="Time Interval",
    ylab="Average Number of Steps Taken")</pre>
```

Average Number of Steps Taken By Time Interval

The **5-minute interval**, that on average across all the days in the dataset, contains the **maximum number of steps** is shown below:

```
max_steps <- max(steps_per_interval$Freq)
steps_per_interval_max <-
steps_per_interval[steps_per_interval$Freq == max_steps,]
max_interval <- steps_per_interval_max$time_interval
paste("5-minute interval:",max_interval)</pre>
```

```
## [1] "5-minute interval: 835"
```

Imputing missing values

Imputing Strategy - It was decided to impute the missing data using the average number of steps for the same time interval (across all dates), based on available data.

```
activity_data_missing <-
activity_data_raw[is.na(activity_data_raw$steps),]
impute_missing <- merge(activity_data_missing,
steps_per_interval) # impute missing values using average
interval steps
impute_missing$steps <- impute_missing$Freq
activity_data_imputed <-
impute_missing[,c('steps','date','interval')]
activity_data_full <- rbind(activity_data,
activity_data_imputed)
paste("Data has been imputed for **",
nrow(activity_data_missing), "** missing rows.")</pre>
```

```
## [1] "Data has been imputed for ** 2304 ** missing rows."
```

Total steps taken per day analysis (using imputed data)

steps_per_day_imputed <- data.frame(xtabs(steps ~ date,
data=activity_data_full))
hist (steps_per_day_imputed\$Freq, col="red", main="Steps
Taken per Day", xlab="Total Steps", ylab= "Frequency
(Days)", breaks=10)</pre>

The **mean** and **median** total number of steps taken per day (**including imputed data**) is shown below:

summary(steps_per_day_imputed\$Freq)

Compare these statistics to the same statistics derived from the dataset with **missing data removed**:

Imputing the missing data had a significant affect on both the first quartile and the mean, with little to no effect on the third quartile. In both cases, the first quartile and median were significantly increased.

Are there differences in activity patterns - weekdays vs weekends?

```
activity_data_full$date2 <-
as.Date(activity_data_full$date, format="%Y-%m-%d")
activity_data_full$weekday <-</pre>
weekdays(activity_data_full$date2)
activity_data_full$day_category <-
ifelse(activity_data_full$weekday == "Saturday"
activity_data_full$weekday == "Sunday" , c("weekend"),
c("weekday"))
steps_per_interval <- data.frame(xtabs(steps ~</pre>
interval+day_category, aggregate(steps ~
interval+day_category,data=activity_data_full,mean)))
steps_per_interval$time_interval <-</pre>
as.numeric(levels(steps_per_interval$interval))
[steps_per_interval$interval] # numeric <- factor</pre>
qplot(data=steps_per_interval,
      y=Freq,
      x=time_interval.
      facets=day_category~.,
      color=day_category,
      geom="line",
      main="Average Number of Steps Taken By Time
Interval"
      xlab="Time Interval",
      ylab="Average Number of Steps Taken"
```


In order to more easily compare activity patterns between weekdays and weekends, both factors were plotted on the same chart.

When comparing the activity patterns between weekdays and weekends, a couple of interesting facts appear:

- 1. Activity levels during weekend morning hours is less than those on the weekday.
- 2. Activity levels during weekend afternoon hours is greater than hose on the weekday.
- 3. Peak activity for both the weekends and weekdays occurs around the noon hour.