

Module : Réseaux Informatiques 1

Série TD 10 : Couche Liaison de Données

Exercice 1 : Codes à contrôle de parité

On souhaite transmettre le message M = " Bonjour ". Les codes ASCII (codés sur 7 bits) sont donnés dans le tableau suivant :

В	j	n	0	r	u	
1000010	1101010	1101110	1101111	1110010	1110101	

- 1) Quel est le message transmis en utilisant un VRC pair ?
- 2) Quel est le message transmis en utilisant un LRC impair ?
- 3) Quel est le message transmis en utilisant un VRC pair + LRC pair ?

Réponses:

1) Quel est le message transmis en utilisant un VRC pair ?

<mark>Réponse :</mark> VRC pair

1000010	0	1101111	0	1101110	1	1101010	0	1101111	0	1110101	1	1110010	0
В	V	0	V	n	V	j	V	0	V	u	V	r	V
	R		R		R		R		R		R		R
	C		C		C		C		C		C		C

2) Quel est le message transmis en utilisant un LRC impair ?

Réponse:

Caractère	Bit 6	Bit 5	Bit 4	Bit3	Bit2	Bit 1	Bit 0
В	1	0	0	0	0	1	0
0	1	1	0	1	1	1	1
n	1	1	0	1	1	1	0
j	1	1	0	1	0	1	0
0	1	1	0	1	1	1	1
u	1	1	1	0	1	0	1
r	1	1	1	0	0	1	0
LRC impair	0	1	1	1	1	1	0

Message transmis:

1000010	1101111	1101110	1101010	1101111	1110101	1110010	0111110
В	0	n	j	0	u	r	LRC impair

3) Quel est le message transmis en utilisant un VRC pair + LRC pair ?

Module: Réseaux Informatiques 1

Réponse :

	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	VRC
								pair
В	1	0	0	0	0	1	0	0
0	1	1	0	1	1	1	1	0
n	1	1	0	1	1	1	0	1
j	1	1	0	1	0	1	0	0
0	1	1	0	1	1	1	1	0
u	1	1	1	0	1	0	1	1
r	1	1	1	0	0	1	0	0
LRC	1	0	0	0	0	0	1	0
pair								

Message transmis:

10000100	11011110	11011101	1101010 <mark>0</mark>	110111 <mark>1</mark>	11101011	1110010 <mark>0</mark>	10000010
B + VRC	o + VRC	n + VRC	j + VRC	o + VRC	u + VRC	r + VRC	LRC pair +
							VRC pair

Exercice 2: code CRC (code polynomial)

A) Soit le polynôme générateur G = 10101 et le message envoyé M = 1101101

A.1 Calculer le FCS pour le message envoyé M.

A.2 Ce message est-il correct?

Réponse :

A.1 Puisque le polynôme générateur G prend la forme G = 10101, alors le format polynômial du G est $G(x) = 1 * x^4 + 0 * x^3 + 1 * x^2 + 0 * x^1 + 1 * x^0$, autrement $G(x) = x^4 + x^2 + 1$. Donc le degré de G est 4. On déduit que la longueur de FCS 4. Rappel que la règle stipule que langueur du FCS égale au degré de polynôme générateur. On désigne G par P, et aussi CRC.

Le message effectivement émis sur la ligne :

Module: Réseaux Informatiques 1

Pour calculer le message émis sur la ligne, il faut passer par les étapes suivantes :

- a) On multiplie M par 2⁴ (ajouter 4 '0' à la suite de la séquence M. 4 est le degré du polynôme générateur). Soit M'= 1101101 0000
- b) On divise M'par G/P/CRC en utilisant le OU exclusif
- c) Le reste obtenu correspond à FCS
- d) Le message à envoyer est : M + FCS

M = 1101101

CRC/P ou G = 10101

Le reste de la division de M' / CRC est 1011. D'où, FCS = 1011.

Donc le message émis est M + FCS = 1101101 1011

A.2 Ce message est-il correct?

01011

Réception par la station destinataire d'un message composé de séquence de bits à envoyer (data + FCS). Pour s'assurer de l'intégrité du message reçu, elle divise la série binaire (M + FCS) par le code CRC/P.

Reste 0, donc pas d'erreurs. Message correct.

B) Soit l'information 11100111 à transmettre, avec le polynôme générateur $G(X) = X^4 + X^2 + X$

Module: Réseaux Informatiques 1

- B.1 Calculer le FCS.
- B.2 Refaire le calcul à la réception pour vérifier est ce que l'information est correctement transmise.

Réponse :

B.1 Puisque le polynôme générateur G prend la forme $G = X^4 + X^2 + X$, alors le format polynômial du G est $G(x) = 1 * x^4 + 0 * x^3 + 1 * x^2 + 1 * x^1 + 0 * x^0$, autrement G = 10110. Donc le degré de G est 4. On déduit que la longueur de FCS 4. Rappel que la règle stipule que langueur du FCS égale au degré de polynôme générateur. On désigne G par P, et aussi CRC.

Le message effectivement émis sur la ligne :

Pour calculer le message émis sur la ligne, il faut passer par les étapes suivantes :

- a) On multiplie M par 2⁴ (ajouter 4 '0' à la suite de la séquence M. 4 est le degré du polynôme générateur). Soit M'= **11100111** 0000
- b) On divise M'par G/P/CRC en utilisant le OU exclusif
- c) Le reste obtenu correspond à FCS
- d) Le message à envoyer est : M + FCS

$$M = 11100111$$
 $CRC/P \text{ ou } G = 10110$

Module: Réseaux Informatiques 1

11100 <mark>111 00</mark> 00
10110
01010 <mark>1</mark>
10110
00011 <mark>110</mark>
10110
01000
10110
00110 <mark>00</mark>
10110
01110

Le reste de la division de M' / CRC est 1011. D'où, FCS = 1110

Donc le message émis est M + FCS = 11100111 1110

B.2 Ce message est-il correct?

Réception par la station destinataire d'un message composé de séquence de bits à envoyer (data + FCS). Pour s'assurer de l'intégrité du message reçu, elle divise la série binaire (M + FCS) par le code CRC/P.

11100 <mark>1</mark> 11
10110
01010 <mark>1</mark>
10110
00011 <mark>1</mark>
10110
10001
10110
00111 <mark>11</mark>
10110
010011
10110
00101 <mark>10</mark>
10110
00000

Reste 0, donc pas d'erreurs. Message correct.