

"SAPIENZA" UNIVERSITÀ DI ROMA INGEGNERIA DELL'INFORMAZIONE, INFORMATICA E STATISTICA DIPARTIMENTO DI INFORMATICA

Automi, Calcolabilità e Complessità

Appunti integrati con il libro "Introduzione alla teoria della computazione", Michael Sipser

Author Simone Bianco

Indice

Informazioni e Contatti	1
1 Automi e Linguaggi	2

Informazioni e Contatti

Appunti e riassunti personali raccolti in ambito del corso di *Automi, Calcolabilità e Complessità* offerto dal corso di laurea in Informatica dell'Università degli Studi di Roma "La Sapienza".

Ulteriori informazioni ed appunti possono essere trovati al seguente link: https://github.com/Exyss/university-notes. Chiunque si senta libero di segnalare incorrettezze, migliorie o richieste tramite il sistema di Issues fornito da GitHub stesso o contattando in privato l'autore:

• Email: bianco.simone@outlook.it

• LinkedIn: Simone Bianco

Gli appunti sono in continuo aggiornamento, pertanto, previa segnalazione, si prega di controllare se le modifiche siano già state apportate nella versione più recente.

Prerequisiti consigliati per lo studio:

Apprendimento del materiale relativo al corso Progettazione di Algoritmi.

Licence:

These documents are distributed under the **GNU Free Documentation License**, a form of copyleft intended for use on a manual, textbook or other documents. Material licensed under the current version of the license can be used for any purpose, as long as the use meets certain conditions:

- All previous authors of the work must be **attributed**.
- All changes to the work must be **logged**.
- All derivative works must be licensed under the same license.
- The full text of the license, unmodified invariant sections as defined by the author if any, and any other added warranty disclaimers (such as a general disclaimer alerting readers that the document may not be accurate for example) and copyright notices from previous versions must be maintained.
- Technical measures such as DRM may not be used to control or obstruct distribution or editing of the document.

1

Automi e Linguaggi

Definizione 1: Alfabeto

Definiamo come alfabeto un insieme finito di elementi detti caratteri

Esempio:

- L'insieme $\Sigma = \{0, 1, x, y, z\}$ è un alfabeto
- L'insieme $\Sigma = \{0, 1\}$ è un alfabeto. In particolare, tale alfabeto viene detto **alfabeto** binario

Definizione 2: Stringa

Dato un alfabeto Σ , definiamo come **stringa di** Σ una sequenza di caratteri $x_1x_2...x_n$ dove $x_1,...,x_n \in \Sigma$ e $n \in \mathbb{N}$.

In particolare, indichiamo come ε la stringa vuota

Esempio:

• Dato l'alfabeto $\Sigma = \{0, 1, x, y, z\}$, una stringa di Σ è 0x1yyy0

Definizione 3: Linguaggio

Dato un alfabeto Σ , definiamo come **linguaggio di** Σ , indicato come Σ^* , l'insieme delle stringhe di Σ .

In particolare, notiamo che $\varepsilon \in \Sigma^*$ per qualsiasi linguaggio Σ^*

Definizione 4: Automa

Un **automa** è un meccanismo di controllo (o macchina) progettato per seguire automaticamente una sequenza di operazioni o rispondere a istruzioni predeterminate, mantenendo informazioni relative allo **stato** attuale dell'automa stesso ed agendo di conseguenza, **passando da uno stato all'altro**.

Esempio:

- Un sensore che apre e chiude una porta può essere descritto tramite il seguente automa, dove Chiuso e Aperto sono gli stati dell'automa e N, F, R e E sono le operazioni di transizione tra i due stati indicanti rispettivamente:
 - N: il sensore non rileva alcuna persona da entrambi i lati della porta
 - F: il sensore rileva qualcuno nel lato frontale della porta
 - R: il sensore rileva qualcuno nel lato retrostante della porta
 - E: il sensore rileva qualcuno da entrambi i lati della porta

- L'automa appena descritto è in grado di interpretare una **stringa in input** che ne descriva la sequenza di operazioni da svolgere
- Ad esempio, la stringa NFNNNFRR terminerà l'esecuzione dell'automa sullo stato Aperto

Definizione 5: Deterministic Finite Automaton (DFA)

Un **Deterministic Finite Automaton (DFA)** (o Automa Deterministico a Stati Finiti) è una quintupla $(Q, \Sigma, \delta, q_0, F)$ dove:

- Q è l'insieme finito degli stati dell'automa, ossia l'insieme
- Σ è l'alfabeto dell'automa
- $\delta: Q \times \Sigma \to Q$ è la funzione di transizione degli stati dell'automa
- $q_0 \in Q$ è lo **stato iniziale** dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa, ossia l'insieme degli stati su cui, a seguito della lettura di una stringa in input, l'automa accetta la corretta terminazione

Esempio:

• Consideriamo il seguente DFA

dove:

- $-Q = \{q_1, q_2, q_3\}$ è l'insieme degli stati dell'automa
- $\Sigma = \{0,1\}$ è l'alfabeto dell'automa
- $-\delta: Q \times \Sigma \to Q$ definita come

è la funzione di transizione degli stati dell'automa

- $-q_0 := q_1 \in Q$ è lo stato iniziale dell'automa
- $F=\{q_2\}$ è l'insieme degli stati accettanti

Definizione 6: Funzione di transizione estesa

Sia $M:=(Q,\Sigma,\delta,q_0,F)$ un DFA. Definiamo $\delta^*:Q\times\Sigma^*\to Q$ come funzione di transizione estesa di M la funzione definita ricorsivamente come:

- $\delta^*(q,\varepsilon) = \delta(q,\varepsilon) = q$
- $\delta^*(q, ax) = \delta^*(\delta(q, a), x)$, dove $a \in \Sigma, x \in \Sigma^*$

Definizione 7: Stringa accettata

Sia $M := (Q, \Sigma, \delta, q_0, F)$ un DFA. Data una stringa $x \in \Sigma^*$, diciamo che x è accettata da M se $\delta^*(q_0, x) \in F$, ossia l'interpretazione di tale stringa termina su uno stato accettante

Esempio:

- Consideriamo ancora il DFA dell'esempio precedente.
- La stringa 0101 è accettata da tale DFA, poiché:

$$\delta^*(q_1, 0101) = \delta^*(\delta(q_1, 0), 101) = \delta^*(q_2, 101) = \delta^*(\delta(q_2, 1), 01) = \delta^*(q_2, 01) =$$
$$= \delta^*(\delta(q_2, 0), 1) = \delta^*(q_3, 1) = \delta^*(\delta(q_3, 1), \varepsilon) = \delta^*(q_2, \varepsilon) = q_2 \in F$$

• La stringa 1010, invece, non è accettata dal DFA, poiché:

$$\delta^*(q_1, 1010) = \delta^*(q_2, 010) = \delta^*(q_3, 10) = \delta^*(q_2, 0) = \delta^*(q_3, \varepsilon) = q_3 \notin F$$

Definizione 8: Linguaggio di un DFA

Sia $M := (Q, \Sigma, \delta, q_0, F)$ un DFA. Definiamo come **linguaggio di** M, indicato come L(M), l'insieme di stringhe accettate da M

$$L(M) = \{ x \in \Sigma^* \mid \delta^*(q_0, x) \in F \}$$

Inoltre, diciamo che M riconosce L(M)

Esempi:

1. • Consideriamo il seguente DFA M

• Il linguaggio riconosciuto da tale DFA corrisponde a

$$L(M) = \{x \in \{0,1\}^* \mid x := y1, \exists y \in \{0,1\}^*\}$$

ossia al linguaggio composto da tutte le stringhe terminanti con 1

2. • Consideriamo il seguente linguaggio

$$L = \{x \in \{0, 1\}^* \mid 1y, \exists y \in \{0, 1\}^*\}$$

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

3. • Consideriamo il seguente linguaggio

$$L = \{x \in \{0, 1\}^* \mid w_H(x) \ge 3\}$$

dove w_H è il **peso di Hamming** (ossia $w_H(x) =$ numero di "1" in x)

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

4. • Consideriamo il seguente linguaggio

$$L = \{x \in \{0, 1\}^* \mid 0^n 1, n \in \mathbb{N} - \{0\}\}\$$

• Un DFA in grado di riconoscere tale linguaggio corrisponde a

Definizione 9: Linguaggi regolare

Dato un linguaggio Σ^* , definiamo come **insieme dei linguaggi regolari di** Σ^* , indicato con REG, l'insieme dei sottolinguaggi per cui esiste un DFA che riconosce tale linguaggi

$$REG = \{L \subseteq \Sigma^* \mid \exists \mathsf{DFA}\ M \text{ tale che } L = L(M)\}$$

Definizione 10: Configurazione di un DFA

Sia $M:=(Q,\Sigma,\delta,q_0,F)$ un DFA. Definiamo la coppia $(q,x)\in Q\times \Sigma^*$ come configurazione di M

Definizione 11: Passo di computazione

Definiamo come passo di computazione la relazione binaria definita come

$$(p, ax) \vdash_M (q, x) \iff \delta(p, a) = q$$

Proposizione 1: Chiusura del passo di computazione

Sia $M:=(Q,\Sigma,\delta,q_0,F)$ un DFA. La chiusura riflessiva e transitiva di \vdash_M , indicata come \vdash_M^* , gode delle seguenti proprietà:

- $\bullet \ p,ax) \vdash_M (q,x) \implies (p,ax) \vdash_M^* (q,x)$
- $\forall q \in Q, x \in \Sigma^* \ (q, x) \vdash_M^* (q, x)$
- $(p, aby) \vdash_M (q, by) \land (q, by) \vdash (r, y) \implies (p, aby) \vdash_M^* (r, y)$

Osservazione 1

Sia $M:=(Q,\Sigma,\delta,q_0,F)$ un DFA. Dati $q_i,q_f\in Qx\in\Sigma^*,$ si ha che

$$\delta^*(q_i, x) = q_f \iff (q_i, x) \vdash_M^* (q_f, \varepsilon)$$

(dimostrazione omessa)