Time series decomposition

Contents

MOVING AVERAGES TO EXTRACT THE SEASONALITY

DISCUSS LIMITATIONS

How can we extract the seasonality?

How can we extract the seasonality?

Additive

Multiplicative

$$y(t) = trend(t) + seasonal(t) + residual(t)$$

seasonal(t) =
$$y(t)$$
 - trend(t) - residual(t)

y(t) = trend(t) x seasonal(t) x residual(t)

seasonal(t) = y(t) x residual(t) / trend(t)

Remove impact of residuals by averaging over multiple seasonal periods Estimate trend using moving averages

- Identify order of seasonality T
- Compute trend using T-MA (if odd) or 2 x
 T-MA (if even)

- Monthly granularity
- Yearly seasonality
- Therefore, T = 12

- 1. Identify order of seasonality T
- 2. Compute trend using T-MA (if odd) or 2 x T-MA (if even)
- 3. De-trend the data:
 - 1. If additive: $y_t trend_t$
 - 2. If multiplicative: y_t / $trend_t$
- Average the de-trended data over each seasonal index to remove noise (e.g., for monthly data average all the May months)

- 1. Identify order of seasonality T
- Compute trend using T-MA (if odd) or 2 x
 T-MA (if even)
- 3. De-trend the data:
 - 1. If additive: $y_t trend_t$
 - 2. If multiplicative: y_t / $trend_t$
- Average the de-trended data over each seasonal index to remove noise (e.g., for monthly data average all the May months)

- The seasonal pattern is fixed each year
- We can repeat the seasonal pattern each year to get $seasonal_t$
- We can plot $seasonal_t$ alongside $trend_t$ and y_t


```
seasonality
```

```
month
    -34017.155556
     -37090.133333
      4371.583333
     -2827.122222
     16630.911111
     4424.891667
      5860.566667
     12867.078125
    -14751.338542
10
     -4875.880208
11
     -2136.195313
      51604.936111
12
Name: y_detrended, dtype: float64
```



```
(
    df.merge(right=seasonality, left_on='month', right_index=True) # Join on the month to repeat seasonal pattern
        .sort_index() # Need to re-sort by index after joining
        .iloc[12:26] # Subsample to show example
)
```

	у	trend	y_detrended	month	seasonality
ds					
2001-02-01	247772	278563.041667	-30791.041667	2	-37090.133333
2001-03-01	280449	278712.541667	1736.458333	3	4371.583333
2001-04-01	274925	279273.625000	-4348.625000	4	-2827.122222
2001-05-01	296013	280595.583333	15417.416667	5	16630.911111
2001-06-01	287881	281315.333333	6565.666667	6	4424.891667
2001-07-01	279098	281777.666667	-2679.666667	7	5860.566667
2001-08-01	294763	282201.250000	12561.750000	8	12867.078125
2001-09-01	261924	282623.166667	-20699.166667	9	-14751.338542
2001-10-01	291596	283232.916667	8363.083333	10	-4875.880208
2001-11-01	287537	283825.041667	3711.958333	11	-2136.195313
2001-12-01	326202	284048.458333	42153.541667	12	51604.936111
2002-01-01	255598	284769.625000	-29171.625000	1	-34017.155556
2002-02-01	253086	285970.791667	-32884.791667	2	-37090.133333
2002-03-01	285261	286960.708333	-1699.708333	3	4371.583333

statsmodels.tsa.seasonal.seasonal_decompose

statsmodels.tsa.seasonal.seasonal_decompose(x, model='additive', filt=None, period=None, two_sided=True, extrapolate_trend=0) [source]

Seasonal decomposition using moving averages.

Parameters

x : array_like

Time series. If 2d, individual series are in columns. x must contain 2 complete cycles.

model: {"additive", "multiplicative"}, optional

Type of seasonal component. Abbreviations are accepted.

filt: array_like, optional

The filter coefficients for filtering out the seasonal component. The concrete moving average method used in filtering is determined by two_sided.

period : int, optional

Period of the series. Must be used if x is not a pandas object or if the index of x does not have a frequency. Overrides default periodicity of x if x is a pandas object with a timeseries index.

```
from statsmodels.tsa.seasonal import seasonal_decompose
```

```
ds

2000-02-01 -37095.311820

2000-03-01 4366.404847

2000-04-01 -2832.300709

2000-05-01 16625.732624

2000-06-01 4419.713180

Name: seasonal, dtype: float64
```

statsmodels.tsa.seasonal.seasonal_decompose

 $statsmodels.tsa.seasonal.seasonal_decompose(x, model='additive', filt=None, period=None, two_sided=True, extrapolate_trend=0)$ [source]

Seasonal decomposition using moving averages.

Parameters

x : array_like

Time series. If 2d, individual series are in columns. x must contain 2 complete cycles.

model: {"additive", "multiplicative"}, optional

Type of seasonal component. Abbreviations are accepted.

filt: array_like, optional

The filter coefficients for filtering out the seasonal component. The concrete moving average method used in filtering is determined by two_sided.

period : int, optional

Period of the series. Must be used if x is not a pandas object or if the index of x does not have a frequency. Overrides default periodicity of x if x is a pandas object with a timeseries index.

Outliers will distort seasonal component

Discussion

 The seasonal component is a useful feature for forecasting as we will see later in the course

 Outliers can distort the trend and hence also the estimated seasonal component

 The classical approach assumes the seasonal component is fixed and does not change with time

Summary

Seasonality can be extracted by de-trending and averaging over a known seasonal index

This method is not robust to outliers and also assumes a fixed seasonal pattern