Propagacja fal w próżni:

h_b – wysokość anteny w stacji bazowej (BS)

h_m – wysokość anteny w stacji mobilnej (MS)

d – odległość między antenami stacji bazowej i mobilnej

<u>Moc sygnału</u> odbieranego przez MS odległej o \emph{d} od BS: $P_r = \frac{G_r G_t P_t}{\left(\frac{4\pi d}{\lambda}\right)^2}$,

gdzie: **G**_r – zysk anteny odbierającej (z MS),

 G_t – zysk anteny transmitującej (z BS),

 P_t – moc transmitowana przez antenę BS (jednostka: W),

 λ – długość fali elektromagnetycznej (jednostka: m).

Zysk anteny: $G = \eta \frac{4\pi A_e}{\lambda^2}$, w przypadku **anteny kołowej zysk** wynosi: $G = \eta \left(\frac{\pi D}{\lambda}\right)^2$,

gdzie: η – współczynnik efektywności (zależy od rozkładu pola elektrycznego, strat, itp., zwykle 0.55),

A_e – efektywny obszar pokryty przez nadawcę (antenę BS),

D - średnica anteny (jednostka: m),

 λ – długość fali (jednostka: m),

f – częstotliwość (jednostka: GHz).

Zysk anteny w dB: $G = 20 \log_{10} \eta + 20 \log_{10} D + 20 \log_{10} f + 20,4$

Strata sygnału w próżni: $L_f = \frac{P_t}{P_r} = \frac{1}{G_r G_t} \left(\frac{4\pi d}{\lambda}\right)^2$,

jeśli $G_r = G_t = 1$, zatem: $L_f = \left(\frac{4\pi f_c d}{\lambda}\right)^2$,

gdzie: f_c – jest częstotliwością nośną (jednostka: GHz),

c – prędkość światła (=2.998×10⁸ m/s).

 $L_f(dB) = 32,45 + 20\log_{10} f_c(MHz) + 20\log_{10} d(km)$ – strata sygnału w modelu próżni

Naziemna propagacja fal:

$$extit{Moc sygnatu} ext{ odbieranego przez MS: } P_r = rac{G_r G_t P_t}{L}$$
 ,

gdzie: strata L propagacji w kanale wznosi: $L=L_P*L_S*L_F$

L_P – strata drogi,

*L*_S – powolne tłumienie,

L_F – szybkie tłumienie.

<u>Współczynnik przekraczania progu</u> (level crossing rate): $N(R_S) = \frac{\sqrt{\pi}}{\sigma} R_S f_m e^{-\frac{R_S^2}{2\sigma^2}}$

gdzie: $f_m = \frac{v}{\lambda}$ – maksymalna częstotliwość Dopplera,

v – prędkość obiektu,

λ – długość fali,

 $\rho = \frac{R_{\rm S}}{\sqrt{2}\sigma} - {\rm stosunek\ pomiędzy\ określonym\ progiem\ } ({\it R_{\rm S}}) \ {\rm a\ s\'redniq\ kwadratowq}$ amplitudy tłumienia sygnału w określonym obszarze ($\sqrt{2}\sigma$),

Współczynnik tłumienia sygnału: $N(r_m) = \frac{2v}{\lambda}$

<u>Czas trwania tłumienia</u>: $\tau(Rs) = \frac{e^{\rho^2}}{\sqrt{2}\pi f_m \rho}$

Efekt Dopplera:

$$f_r = f_c - f_d$$

gdzie: f_r – częstotliwość sygnału docierającego do odbiornika

f_c – częstotliwość wysyłanego sygnału

f_d − częstotliwość Dopplera (lub przesunięcie Dopplera)

$$f_d = \frac{v}{\lambda} \cos \theta$$
 – częstotliwość Dopplera,

gdzie: v – prędkość obiektu,

 λ – długość fali (długość fali w metrach = 300/częstotliwość w MHz),

 θ – kąt między wektorem kierunku sygnału nadawcy a wektorem kierunku poruszania się odbiorcy sygnału.

Zadanie 1.

Bezprzewodowy odbiornik o średnicy 250cm odbiera sygnał z częstotliwością 20GHz, z nadajnika o mocy 30mW i zysku anteny transmitującej 30dB. Policzyć: zysk anteny odbiornika oraz moc odbiornika jeśli jest on oddalony od nadajnika o 5km.

Zadanie 2.

W modelu próżni, antena transmituje sygnał o mocy 5W i częstotliwości 900MHz. Oblicz moc sygnału odebranego przez odbiornik znajdujący się w odległości 2km.

Zadanie 3.

W sieci komórkowej sygnał dociera do odbiornika w różnym czasie z powodu odbicia, rozproszenia i załamania. Wyjaśnij w jaki sposób można rozróżnić i przetwarzać przychodzące sygnały. Oblicz współczynnik przekraczania progu zakładając, że wartość progu wynosi 1, a średnia kwadratowa amplitudy wynosi 1,02. Odbiornik porusza się z predkościa 20km/h, czestotliwość sygnału wynosi 800MHz.

Zadanie 4.

Dla danych z zadania 3 oblicz współczynnik tłumienia sygnału.

Zadanie 5.

Moc transmisji w modelu wolnej przestrzeni wynosi 40W, odległość pomiędzy nadajnikiem a odbiornikiem wynosi 1km, częstotliwość 900MHz, a zysk obu anten 1 dB. Oblicz: moc odebranego sygnału wartość średnią straty sygnału w jednostce dB.

Zadanie 6.

Nadawany jest sygnał o częstotliwości 5MHz, ρ wynosi 0,1. Oblicz czas trwania tłumienia sygnału.

Zadanie 7.

Jaka jest różnica propagacji sygnału w przestrzeni bez przeszkód oraz pomiędzy przeszkodami?

Zadanie 8.

Jaka jest różnica pomiędzy szybkim i wolnym tłumieniem sygnału (fast and slow fading)?

Zadanie 9.

Odbiornik nie znajduje się w polu widzenia stacji bazowej. Wyjaśnij, dlaczego mimo to odbiera sygnał.

Zadanie 10.

Antena transmituje sygnał o częstotliwości 900MHz. Odbiornik porusza się z prędkością 40km/h. Oblicz częstotliwość (przesunięcie) Dopplera.

Zadanie 11.

Stacja bazowa wysyła sygnał o częstotliwości 900MHz a odbiornik porusza się z prędkością 50km/h. Oblicz częstotliwość odbieranego sygnału jeśli:

- a) odbiornik porusza się w kierunku stacji bazowej,
- b) odbiornik porusza się w kierunku przeciwnym do położenia stacji bazowej,
- c) odbiornik porusza się pod katem 60° do kierunku, z którego odbierane sa fale.