Sieci Komputerowe Wykład 3 — Ethernet, IP

Szymon Acedański

Instytut Informatyki Uniwersytet Warszawski

15 marca 2017

Warstwa łącza danych

- Organizacja bitów danych w ramki
- Adresacja fizyczna urządzeń (w przypadku Ethernetu: adres MAC)
- Wykrywanie błędów
- Multipleksacja (dostarczanie danych do odpowiedniego protokołu warstwy wyższej)
- Sposób dostęp do medium

Warstwa łącza danych — adresacja w Ethernecie

- Ethernet korzysta z adresów tzw. sprzętowych, zwanych adresami MAC (MAC – Media Access Control)
- Adres jest przypisany na stałe do karty sieciowej
- Adresy są 48-bitowe
- Przykład: 00:0d:61:b0:14:79
- Pierwsze 3 bajty określają producenta urządzenia
- Adres ff:ff:ff:ff:ff jest adresem rozgłoszeniowym (ang. broadcast)

Warstwa łącza danych — ramka Ethernet

- Ramki Ethernet II (DIX, powyżej) są najczęściej używane.
- ▶ Dla pakietów IP typ to 0x0800.
- Ramki WiFi są troszkę inne. Jakie? Zaraz zobaczymy.

Warstwa łącza danych — inne protokoły

- PPP
 - Autentykacja (PAP, CHAP)
 - Kompresja
- ► ATM
 - QoS
 - Kanały wirtualne
- ► IEEE 802.15.4
 - Komunikacja bezprzewodowa
 - Niskie zużycie energii, prosta logika
 - Używany w świecie Internetu Rzeczy

Struktura Internetu

- ▶ Internet zbudowany jest z sieci fizycznych.
- Sieć fizyczna składa się z węzłów.
- Sieci fizyczne są połączone za pomocą ruterów.
- Ruter posiada co najmniej dwa interfejsy sieciowe, po jednym dla każdej z łączonych sieci.
- ► Zatem ruter jest węzłem każdej z łączonych sieci.

Struktura Internetu

- Dlaczego Internet nie jest jedną wielką siecią fizyczną?
 - ▶ Nie wszyscy używają Ethernetu.
 - Ramki rozgłaszane na całą sieć...
 - Adresy sprzętowe ściśle związane z konkretną kartą sieciową.
 - Kwestie organizacyjne.
- Które urządzenia łączą różne sieci fizyczne?
 - Przełącznik (switch)?
 - Punkt dostępowy Wifi (access point)?
 - Domowy ruter od dostawcy Internetu podpinany do kabla antenowego, np. Thomson TWG870U?
 - Domowy ruter Wifi, np. TP-LINK TL-WR841N?

Warstwa sieciowa

- Adresacja logiczna
- Trasowanie (ang. routing)
- ► Fragmentacja i defragmentacja danych (w razie potrzeby)

Implementacje:

- IPv4 (na niniejszym wykładzie)
- IPv6 (będzie później)
- ▶ IPX, ...

IP — Adresacja

- Adres IPv4 składa się z czterech oktetów.
- Dla wygody stosuje się zapis dziesiętny, oktety oddziela się kropkami:
 - ▶ 193.0.96.129
 - **▶** 10.2.6.1
- Adres składa się z dwóch pól, identyfikujących odpowiednio:
 - ▶ sieć (podsieć),
 - węzeł w sieci (podsieci).

Pola te są wyznaczone przez maskę podsieci.

IP — Adresacja

adres 178.71.131.22 maska 255.255.240.0

adres/maska 178.71.131.22/20

adres 10110010 01000111 10000011 00010110 maska 1111111 1111111 11110000 00000000

adres sieci 10110010 01000111 10000000 00000000

adres sieci 178.71.128.0

IP — Adresacja

- Adres IP jest przypisany do interfejsu sieciowego komputera, można to zrobić np. poleceniem:
 - ifconfig eth0 10.2.6.1 netmask 255.255.255.0 ip addr add 10.2.6.1/24 dev eth0 (Linux)
- ► Zapis /24 definiuje 24-bitową maskę podsieci.
- Urządzenia należące do różnych podsieci mogą się komunikować ze sobą jedynie za pośrednictwem ruterów.

IP — Adresy specjalne

- Adres ograniczonego rozgłaszania w bieżącej sieci
 - **255.255.255.255**
- Adres ukierunkowanego rozgłaszania
 - same jedynki w polu węzła
- Adres podsieci
 - same zera w polu węzła

Nie powinien być przypisywany żadnemu interfejsowi.

- Adres bieżącego węzła
 - ▶ 0.0.0.0

Używany, gdy nadawca nie zna (jeszcze) swojego adresu. Nie jest poprawnym adresem odbiorcy.

IP — Adresy specjalne

- Adresy rozgłaszania grupowego 224.0.0.0 do 239.255.255.255
- Adresy prywatne
 10.0.0.0 do 10.255.255.255
 172.16.0.0 do 172.31.255.255
 192.168.0.0 do 192.168.255.255
- Adresy reprezentujące bieżący węzeł 127.0.0.0 do 127.255.255.255
 zwykle 127.0.0.1

IP — Obliczanie adresu podsieci

Obliczmy adres podsieci adresu 150.150.2.1/24.

Bitwise Boolean AND Example

Decimal		Binary			
Address	150.150.2.1	1001 0110 1001 0110 0000 0010 0000 0001			
Mask	255.255.255.0	1111 1111 1111 1111 1111 1111 0000 0000			
Result of AND	150.150.2.0	1001 0110 1001 0110 0000 0010 0000 0000			

Wynikiem iloczynu jest adres podsieci.

IP — Obliczanie adresu rozgłoszeniowego

Obliczmy adres rozgłoszeniowy dla podsieci, do których należą adresy 130.4.102.1/24 oraz 199.1.1.100/24.

Table 4-16 Calculating the Broadcast Address: Address 130.4.102.1, Mask 255.255.255.0

Address	130.4.102.1	1000 0010 0000 0100 0110 0110 0000 0001
Mask	255.255.255.0	1111 1111 1111 1111 1111 1111 0000 0000
AND Result	130.4.102.0	1000 0010 0000 0100 0110 0110 0000 0000
Broadcast	130.4.102.255	1000 0010 0000 0100 0110 0110 1111 1111

Table 4-17 Calculating the Broadcast Address: Address 199.1.1.100, Mask 255.255.255.0

Address	199.1.1.100	1100 0111 0000 0001 0000 0001 0110 0100
Mask	255.255.255.0	1111 1111 1111 1111 1111 1111 0000 0000
AND Result	199.1.1.0	1100 0111 0000 0001 0000 0001 0000 0000
Broadcast	199.1.1.255	1100 0111 0000 0001 0000 0001 1111 1111

IP — Trudniejsze maski

Decimal and Binary Values in a Single Octet of a Valid Subnet Mask

Decimal	Binary
0	0000 0000
128	1000 0000
192	1100 0000
224	1110 0000
240	1111 0000
248	1111 1000
252	1111 1100
254	1111 1110
255	1111 1111

Maska /26 ma np. postać 255.255.255.192, ale głupie maski nie istnieją, np. 255.0.255.0 czy 255.255.111.0.

IP — Program ipcalc

Przy pomocy programu ipcalc możemy łatwo obliczać poszczególne adresy pochodne.

IP — Routing

Routing (rutowanie, trasowanie) to decyzja dotycząca skierowania pakietu IP do routera lub komputera podejmowana zazwyczaj w oparciu o docelowy adres IP.

Jądro systemu operacyjnego podejmuje ww. decyzję na podstawie wpisu do tablicy FIB (ang. Forwarding Information Base).

Można także wpływać na trasy uwzględniając m.in. źródłowy adres IP (tzw. policy routing).

► W Linuksie – pakiet iproute2 (polecenie ip)

IP — Routing — Przykład

IP — Routing statyczny

Ruter podejmuje decyzję o skierowaniu pakietu na podstawie ręcznego (statycznego) wpisu do tablicy rutingu

Dodawanie statyczne wpisu do tablicy rutingu:

```
$ route add -net 192.168.0.0/24 gw cob.mimuw.edu.pl
```

\$ ip r add 192.168.0.0/24 via cob.mimuw.edu.pl

Wynik polecenia route:

Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
192.168.0.0	cob.mimuw.edu.p	255.255.255.0	UG	0	0	0	eth0
10.1.20.0	*	255.255.255.0	U	0	0	0	eth1
localnet	*	255.255.255.0	U	0	0	0	eth0
default	spider1.mimuw.e	0.0.0.0	UG	0	0	0	eth0

IP — Routing statyczny

Ruter podejmuje decyzję o skierowaniu pakietu na podstawie ręcznego (statycznego) wpisu do tablicy rutingu

Dodawanie statyczne wpisu do tablicy rutingu:

```
$ route add -net 192.168.0.0/24 gw cob.mimuw.edu.pl
```

\$ ip r add 192.168.0.0/24 via cob.mimuw.edu.pl

Wynik polecenia route -n:

Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
192.168.0.0	10.1.1.9	255.255.255.0	UG	0	0	0	eth0
10.1.20.0	0.0.0.0	255.255.255.0	U	0	0	0	eth1
10.1.1.0	0.0.0.0	255.255.255.0	U	0	0	0	eth0
0.0.0.0	10.1.1.31	0.0.0.0	UG	0	0	0	eth0

IP — Routing dynamiczny

Router A Advertising Routes Learned from Router C

- Nie trzeba dodawać wpisów ręcznie
- Informacje o dostępnych podsieciach są rozgłaszane (służą do tego odpowiednie protokoły)

IP — Nagłówek IP

+	Bity 0 - 3	4 - 7	8 - 15	16 - 18	19 - 31	
0	Wersja	Długość nagłówka	Typ usługi (ToS)	Całkowita długość		
32	Numer identyfikacyjny		Znaczniki Przesunięcie fragmentacji			
64		ia pakietu TL)	Protokół warstwy wyższej	Suma kontrolna nagłówka		
96	Adres źródłowy					
128	Adres przeznaczenia					
160	Opcje					
192	Dane					

Niech póki co jego szczegóły pozostaną zagadką. Przejdźmy teraz do zabawy.

IP — jak to wygląda

Demo.