Aplicaciones IoT: LoRa WAN & MQTT

Asignatura: Redes de Datos

Estudiantes: Allegrini, Tomás; Ortiz, Joaquín; Vazquez,

Leonardo

Profesores: Carnagui, Marco; Cebedio, Celeste; Copolillo,

Leonardo; Liberatori, Mónica

Fecha: 24/11/2022

ÍNDICE

- 1. Introducción a IoT: Caso PulverizAR
- 2. LoRa/LoRa WAN: Fundamentos, Seguridad, Implementaciones
- 3. Comparación de Tecnologías
- 4. Protocolo MQTT
- 5. Aplicación PulverizAR
- 6. Conclusiones

Introducción a Internet de las Cosas (IoT)

Definición:

"loT describe la red de objetos físicos que llevan incorporados tecnología de hardware y software con el fin de conectarse e intercambiar datos con otros dispositivos y sistemas a través de internet"

Casos de aplicaciones loT

- Ganadería: Control de temperatura de carne vacuna, monitoreo de ganado
- Conservación de animales: seguimiento de especies en peligro de extinción
- Granjas inteligentes: información en tiempo real de cultivos, optimización de riego y uso del agua, control en pulverización
- Seguimiento en aeropuertos: monitoreo de vehículos, personal y equipaje
- Espacios de trabajo eficientes: disponibilidad de estacionamiento, uso de la energía

Caso PulverizAR

LoRa/LoRa Wan - Fundamentos

LoRa:

Técnica de modulación inalámbrica basada en dispersión de frecuencia.

LoRa WAN:

Protocolo de la capa de acceso al medio (MAC) para aplicaciones IoT. Establece el formato de mensajes para la modulación LoRa.

Arquitectura

Arquitectura

Dispositivos finales (Nodos):

Reciben/transmiten los mensajes desde/hacía las puertas de enlace o Gateways.

Puertas de enlace (Gateways):

Reciben/trànsmiten los mensajes a los nodos y los reenvían al servidor de red.

Servidor de red:

Ejecuta el software que administra toda la red.

Servidor de aplicaciones:

Ejecuta el software que procesa los datos en la aplicación.

Modelo de Capas

Figura 3: Modelo de red OSI de siete capas

Capa física: características

- Modulación inalámbrica basada en CSS (Chirp Spread Spectrum)
- Alta sensibilidad
- Redes de área amplia (5 a 15 km)
- Baja potencia
- Bandas ISM: 915, 868, 433 MHz
- BW: 125, 250, 500 kHz

Capa física: parámetros

- Bandwidth
- Spreading Factor
- Coding Rate (FEC)
- Bit Rate
- SNR
- Air Rate

Espectrograma

Capa MAC: características

- Establece conexión virtual entre servidor de red y Nodos LoRa WAN (enlaces descendente y ascendente)
- Consulta y define el estado de los nodos finales
- Posee opciones para configurar parámetros de la capa física, tanto en transmisión como en recepción
- Recibe parámetros de Windows desde el servidor de red para modificar la velocidad de los datos
- Emplea método ALOHA

Formato de Mensajes

CID	Command	Transn End- device	Gateway	Short Description			
0x02	LinkCheckReq	×		Used by an end-device to validate its connectivity to a network.			
0x02	LinkCheckAns		x	Answer to LinkCheckReq command. Contains the received signal power estimation indicating to the end-device the quality of reception (link margin).			
0x03	LinkADRReq		×	Requests the end-device to change data rate, transmit power, repetition rate or channel.			
0x03	LinkADRAns	X		Acknowledges the LinkRateReg.			
0x04	DutyCycleReq		X	Sets the maximum aggregated transmit duty-cycle of a device			
0x04	DutyCycleAns	x		Acknowledges a DutyCycleReg command			
0x05	RXParamSetupReq		x	Sets the reception slots parameters			
0x05	RXParamSetupAns	х		Acknowledges a RXSetupReg command			
0x06	DevStatusReg	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	x	Requests the status of the end-device			
0x06	DevStatusAns	×		Returns the status of the end-device, namel- its battery level and its demodulation margin			
0x07	NewChannelReq		×	Creates or modifies the definition of a radi			
0x07	NewChannelAns	х		Acknowledges a NewChannelReg command			
0x08	RXTimingSetupReq		x	Sets the timing of the of the reception slot			
0x08	RXTimingSetupAns	×		Acknowledges RXTimingSetupReq command			
0x09	TxParamSetupReq		x	Used by the network server to set the maximum allowed dwell time and Max EIRF of end-device, based on local regulations			
0x09	TxParamSetupAns	×		Acknowledges TxParamSetupReq command			
0x0A	DiChannelReq		×	Modifies the definition of a downlink RX1 radio channel by shifting the downlink frequency from the uplink frequencies (i.e. creating an asymmetric channel)			
0x0A	DIChannelAns	x		Acknowledges DIChannelReq command			
0x0B to 0x0C		RFU					
0x0D	DeviceTimeReq	x		Used by an end-device to request the current date and time			
0x0D	DeviceTimeAns		x	Sent by the network, answer to the DeviceTimeReg request			
0X0E to 0x7F			R	FU			

Reserved for proprietary network command

extensions

0x80

to

0xFF

Proprietary

X

X

Seguridad

Temas a tratar:

- Activación/vinculación de un Nodo a una Red LoRa Wan
 - ABP
 - OTAA
- Aspectos de seguridad en el protocolo

Incorporación de Nodo a una red LoRa Wan OTAA vs ABP

- Existen 2 metodos de activación de un "nodo" o "end-device":
 - OTAA Over-The-Air-Activation
 - ABP Activation-By-Personalization
- En LoRa Wan contamos con 1 llave y 2 ID "unívocos":
 - DevEUI: identifica de forma unívoca al nodo (análogo a una MAC). Los dispositivos se programan con una determinada llave.
 - AppEUI: identifica al Aplication Server (podemos pensarlo como un número de puerto).
 - AppKey: llave AES de 128 bits (llave simétrica, implica que tanto el nodo como el network server deben conocerla). Es utilizada además para asegurar integridad en el mensaje a través del mecanismo MIC (Message Integrity Code).
- OTAA es el método de activación más utilizado, debido a la flexibilidad de poder migrar un nodo de una red a otra, y además de proveer mayor seguridad durante el proceso de "conexión" a la red.

- 1) Se envía un JoinRequest compuesto por Nonce/AppEui/DevEui + MIC (3 valores anteriores encriptados con la AppKey)
- NetworkServer chequea si el nonce no fue utilizadó anteriormente usando su AppKey (Replay-Attack). Auténtica además usando el MIC. Generamos 2 llaves (AppSKey, NwkSKey).
- 3) Enviamos cómo Join-Accept el mensaje

	3 bytes	3 bytes	4 bytes	1 bytes	1 bytes	16 bytes (optional)
	AppNonce	NetID	DevAddr	DLSettings	RXDelay	CFList

- Nonce generado por Network Server
- Nuevo DeviceAddress generado por NetworkServer
- Opciones

Estos parámetros son encriptados y enviados en el campo MIC para que el End-Device autentique el mensaje.

- 4) El network Server distribuye la AppSKey al Aplication-Server.
- 5) El End-Device desencripta el Join-Accept que recibio con la AppKey y el AppNonce para obtener la Network-Session-Key y la Application-Session-Key.

Luego de la activación, el end-device usa la Network-Session-Key para calcular y verificar el MIC de todos los mensajes que reciba (**integridad**).

AppSKey es usada como la nueva llave para encriptar/desencriptar los payloads de los mensajes.

- Esquema que provee mayor seguridad que el anterior.
- Se hace uso de 2 llaves AES, y se agrega un nuevo actor, el Join-Server.
- JoinEUI identifica al JoinServer.
- 1) Análogo a v1.0.2, se envía un Join-Request con **JoinEUI/DevEUI/DevNonce + MIC.**
- 2) NetworkServer forwarded el mensaje al Join-Server
- Procesa el mensaje, y genera las llaves AppSKey, FNwkSIntKey,
 SNwkIntKey y NwkSEncKey si se verificó correctamente el Join-request.
- 4) El Network-Server genera el Join-Accept enviando

1 byte	3 bytes	4 bytes	1 bytes	1 bytes	16 bytes
JoinNonce	NetID	DevAddr	DLSettings	RXDelay	CFList

- 5) El Join Server envia el AppSKEy al **Application-Server** y las otras 3 llaves de sesion (FWwkSIntKey, SNwkSIntKey y NwkSEncKey) al **Network-Server**
- 6) El End-device verifica el JoinAccept, y si es valido deriva el AppSKey usando el AppKey, y las llaves FNwkSIntKey, SNwkIntKey y NwkSEncKey de la NwkKey.

Estas llaves se usan para:

- FNwkSIntKey: usada para calcular el MIC parcial de los mensajes de UpLink.
- **SNwkSIntKey:** Calcular parcialmente el MIC de los mensajes de uplink y downlink.
- **NwkSEncKey:** encriptar/desencriptar payloads con comandos MAC para garantizar confidencialidad.
- **AppSKey:** Usado para desencriptar los payloads que recibe, aportando a la confidencialidad

ABP (Activation by Personalization)

Tanto para el estandar v1.0.2 y v1.1, todas las llaves son hardcodeadas en el dispositivo. Esto impide que sea reutilizable en otra red.

Figure: Pre-sharing DevAddr and session keys for ABP in LoRaWAN 1.0

Figure: Pre-sharing DevAddr and session keys for ABP in LoRaWAN 1.1

¿Cómo podemos implementar una red LoRa Wan?

- HWD mínimo necesario:
 - o Gateway LoRa Wan
 - Sistema de computación para alojar el servidor (puede ser montado localmente, o alguna solución en la nube).

Outdoor Gateway

Indoor Gateway

¿Cómo podemos implementar una red LoRa Wan?

- Montar un gateway propio
 - o Tiene la ventaja de asegurar una zona con conectividad
 - Tiene la desventaja del costo de compra del equipo, sumado al costo operativo (instalación, roturas, soporte, plan de datos para conexión a internet).
- Usar una Red LoRa Wan Pública de un tercero
 - Suele haber para fines educativos.
- Usar una Red LoRa Wan Privada de un tercero
 - Hay un proyecto de "democratizar" y escalar LoRa Wan a través de sistema de pago por mensaje, llamado Helium-Network

Montando una red... TTN (The things Network)

 Server más utilizado (planes libre de costo, o con mayores prestaciones para uso industrial). Basado en Cloud o con opción local para linux.

Learn

Hardware

Forum

Community

Conference

Enterprise

Login

n Sign up

We are a global collaborative Internet of Things ecosystem that creates networks, devices and solutions using LoRaWAN®.

Start building

Learn more

60.5M Messages today 152 Countries

ries Certified developers

1.2K

180.5K Members 20.8K Gateways 1.4M YouTube views 15.8K YouTube subscribers 763 GitHub stars 14.7

ChirpStack ChirpStack

Chirpstack v4 is out and brings many improvements! Read the announcement on the forum.

ChirpStack, open-source LoRaWAN® Network Server

ChirpStack is an open-source LoRaWAN Network Server which can be used to to setup LoRaWAN networks. ChirpStack provides a web-interface for the management of gateways, devices and tenants as well to setup data integrations with the major cloud providers, databases and services commonly used for handling device data. ChirpStack provides a gRPC based API that can be used to integrate or extend ChirpStack,

Documentation

Nodos / End-Devices LoRa Wan

- Nodos de uso industrial, certificados y listos para ser incorporados en una red LoRaWan como los SenseCap de seedstudio.
- Nodos DIY creados para cumplir con algún uso específico.
- Estos nodos se clasifican en 3 tipos, donde se define su comportamiento y escenario de uso:
 - Clase A
 - Clase B
 - Clase C

Nodo LoRa Wan - Clase A

Características principales:

 Puede enviar un mensaje de Uplink en cualquier momento, luego de cada TX, abre 2 ventanas de escucha para recibir un downlink. El server puede responder en RX1 o RX2.

Nodo LoRa Wan - Clase A

Características principales:

- Pensado para dispositivos a batería (se busca minimizar el consumo al apagar el transceptor y reducir el tiempo en modo RX).
- Permite que el sensor pase mayor parte del tiempo en modo sleep.
- Generalmente, usado para sensores que envían datos con poca frecuencia.

Nodo LoRa Wan - Clase B

Características Principales:

- Similar al Clase A, pero abre de forma periódica ventanas de escucha. Esto requiere de mayor sincronismo con el Network-Server.
- El Gateway envía periódicamente beacons, que son usados por el Nodo para sincronizarse cuando esté en una ventana de escucha.
- El nodo abre ventanas de escucha llamadas "ping slots" en tiempos determinados para poder escuchar estos mensajes de downlink y sincronizarse.
- Al igual que en Clase A, también abrirá ventanas RX1 y RX2 luego de un uplink.
- Mayor consumo que Clase A.
- Común para sensores que deban enviar datos de forma periódica con mayor precisión

Nodo LoRa Wan - Clase B

Nodo LoRa Wan - Clase C

Característica Principal:

- Si no está transmitiendo, siempre está en modo RX.
- Consumo elevado de batería
- Pensado para sensores que cuentan con alimentación externa.

Comparación de Tecnologías: LoRa WAN vs WiFi

Las diferencias radican en tres fundamentales:

- Rango de cobertura
- Potencia utilizada
- Ancho de banda

RANGE

Power vs. bandwidth vs. range for wireless communication

Rango de cobertura:

LoRa Wan:

- Extenso rango de cobertura con un gateway.
- Hasta 10/15 km de distancia en zonas rurales.
- Hasta ~5km en zonas urbanas.

WiFi:

- Poco rango de cobertura.
- Menos de 100 metros.

Potencia

LoRaWan:

- Bajo consumo de potencia.
- Larga duración de baterías (5-10 años).
- Modulación de espectro esparcido Chirp (CSS), permite SNR de hasta -20dB(según SF).

WiFi:

- Alto consumo de potencia.
- Poca duración de batería.
- No es un problema.

Ancho de banda

LoRa Wan:

- Banda de frecuencias libre (433MHz hasta los 928MHz segun el pais).
- Ancho de banda de 125 kHz, 250 kHz o 500 kHz.
- Según la frecuencia central, cada gateway opera hasta 8 canales simultáneamente.
- Velocidad de transferencia <50kbits/s.
- Capacidad máxima de carga de 242 bytes.

WiFi:

- Banda ISM 2.4GHz y banda no licenciada (U-NII) 5GHz.
- Canales de 20 a 160MHz.
- En 2.4GHz existen hasta 13 canales disponibles (solo 3 simultáneamente).
- Velocidades desde 1Mbit/s hasta +10Gbits/s.

Modelo OSI

Arquitectura de 7 capas en la cual se modela la comunicación de una red.

LA PILA OSI

Nivel de Aplicación

Servicios de red a aplicaciones

Nivel de Presentación

Representación de los datos

Nivel de Sesión

Comunicación entre dispositivos de la red

Nivel de Transporte

Conexión extremo-a-extremo y fiabilidad de los datos

Nivel de Red

Determinación de ruta e IP (Direccionamiento lógico)

Nivel de Enlace de Datos

Direccionamiento físico (MAC y LLC)

Nivel Físico

Señal y transmisión binaria

Beacon

WiFi: los routers avisan la existencia y parámetros de la red mediante esta trama periódica. Mediante ellos, los dispositivos pueden saber de la existencia de la red, sus características, y decidir si ingresar a ella o no.

LoRa: los gateway envían esta trama hacia todos los dispositivos clase B de la red periódicamente. Los nodos usan los beacon para alinear su reloj interno con la red y abrir ventanas de recepción periódicamente.

Método de Acceso al Medio

¿Qué pasa si varios nodos envían datos al mismo tiempo? Colisión=Error

Solución: se plantea un modelo para disminuir la probabilidad de colisión.

LoRa Wan utiliza Aloha

- Cuando se tienen datos para enviar, se envían directamente.
- El dispositivo cambia de canal de manera pseudoaleatoria.
- Se debe respetar el ciclo de trabajo del 1%.

WiFi: utiliza CSMA/CA

- Detecta el medio antes de transmitir¿Ocupado? Difiere.
- ¿Libre? Algoritmo back-off aleatorio

Beneficios

- Bajo consumo y largo alcance
- Bandas sin licencia
- Alta capacidad
- Geolocalización sin GPS (3 gateways)
- Bajo costo y gran ecosistema
- Actualizaciones inalámbricas
- Seguridad de extremo a extremo

Protocolo MQTT

Definición:

"Es un protocolo de transporte de mensajería (de la capa de aplicación) de publicación/suscripción del servidor del cliente. Es liviano, abierto, simple y diseñado para que sea fácil de implementar. Ideal para aplicaciones loT donde se requiere código de tamaño reducido y/o donde el ancho de banda de la red es un bien escaso "

ISC/OSI Layer 5-7	MOTT						
ISO/OSI Layer 4	TCP						
ISO/OSI Layer 3	IP						

Arquitectura MQTT: publicación y suscripción

- Broker MQTT: Este servidor se encarga de desacoplar la comunicación y distribuir la información entre los clientes
- Cliente: Es quien publica o se suscribe a un Topic (tópico) pidiéndole al Broker
- Topic: Identificación de la información

Jerarquía de Tópicos

El uso de jerarquía permite que el cliente pueda suscribirse a la información de interés.

Tipos y estructura del paquete

- ACK (cliente/servidor)
- Publicación del mensaje (contiene el payload) (cliente hacia servidor)
- Suscripción o dada de baja a tópico (cliente hacia servidor)
- Ping request/response (cliente/servidor)
- Desconexión (cliente hacia servidor)

Figure 2.1 – Structure of an MQTT Control Packet

Fixed header, present in all MQTT Control Packets	
Variable header, present in some MQTT Control Packets	
Payload, present in some MQTT Control Packets	

Table 2.1 - Control packet types

Name	Value	Direction of flow	Description
Reserved	0	Forbidden	Reserved
CONNECT	1	Client to Server	Client request to connect to Server
CONNACK	2	Server to Client	Connect acknowledgment
PUBLISH	3	Client to Server or Server to Client	Publish message
PUBACK	4	Client to Server or Server to Client	Publish acknowledgment
PUBREC	5	Client to Server or Server to Client	Publish received (assured delivery part 1)
PUBREL	6	Client to Server or Server to Client	Publish release (assured delivery part 2)
PUBCOMP	7	Client to Server or Server to Client	Publish complete (assured delivery part 3)
SUBSCRIBE	8	Client to Server	Client subscribe request
SUBACK	9	Server to Client	Subscribe acknowledgment
UNSUBSCRIBE	10	Client to Server	Unsubscribe request
UNSUBACK	11	Server to Client	Unsubscribe acknowledgment
PINGREQ	12	Client to Server	PING request
PINGRESP	13	Server to Client	PING response
DISCONNECT	14	Client to Server	Client is disconnecting
Reserved	15	Forbidden	Reserved

Tipos de paquete de control

Figure 2.1 - Structure of an MQTT Control Packet

Fixed header, present in all MQTT Control Packets			
Variable header, present in some MQTT Control Packets			
Payload, present in some MQTT Control Packets			

Implementación de sistema IoT con broker MQTT

MQTT Explorer es un software que se utiliza como cliente para realizar pruebas de un sistema loT

Solución PulverizAR

Solución PulverizAR

PulverizAR: Dashboard - WebAPP (LoRa WAN + MQTT)

Conclusiones

- Revisión de conceptos de redes en LoRa WAN
- Comparación de WiFi vs LoRa WAN
- Aplicaciones MQTT en IoT

Links de Referencia

- https://www.oracle.com/ar/internet-of-things/what-is-iot/
- https://www.thethingsnetwork.org/docs/lorawan/
- https://lora-developers.semtech.com/documentation/te ch-papers-and-guides/lora-and-lorawan/
- https://www.rfwireless-world.com/Tutorials/LoRaWAN-MA C-layer-inside.html
- https://www.thethingsnetwork.org/docs/lorawan/securit
 Y
- https://www.mokolora.com/es/lora-and-wireless-thecnologies/
- https://lora-alliance.org/
- http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.
 1.1-os.html
- https://www.helium.com/lorawan

MUCHAS GRACIAS

Tomás Allegrini

tallegrini74@gmail.com

Joaquín Ortíz

joaco.ortiz00@gmail.com

Leonardo David Vazquez

vazquezleonardodavid@outlook.com

