CS 70 Discussion 4A

September 25, 2024

Extended Euclid's Algorithm

Finds values $x, y \in \mathbb{Z}$ for some given $a, b \in \mathbb{N}$ such that:

$$ax + by = \gcd(a, b)$$

```
The efficient algorithm is as follows (return value is of form (x,y,\gcd(a,b))):

function E\_GCD(a,b)

if b=0 then return (1,0,a)

else

(x,y,z) \leftarrow E\_GCD(b,a \bmod b)

return (y,x-\lfloor \frac{a}{b} \rfloor y,z)

end if
```

end function

You can use EGCD to get inverses iff (if and only if) gcd(a, b) = 1:

$$a^{-1} \equiv x \pmod{b}$$
$$b^{-1} \equiv y \pmod{a}$$

Fermat's Little Theorem

Following is true for any prime p and $a \not\equiv 0 \pmod{p}$:

$$a^{p-1} \equiv 1 \pmod{p}$$

The following general variant is true for any prime p and any $a \in \mathbb{Z}$:

$$a^p \equiv a \pmod{p}$$

Chinese Remainder Theorem

Problem Setup: You're given variables $m_1, m_2, ..., m_n \in \mathbb{N}^+$ and $a_1, a_2, ..., a_n \in \mathbb{Z}$ where $(\forall i \neq j)(\gcd(m_i, m_j) = 1)$ (the set of m_i 's is pairwise *coprime*). We want to find a $x \in \mathbb{Z}$ where:

$$x \equiv a_1 \pmod{m_1}$$
 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_n \pmod{m_n}$

Conclusion: There always exists a *unique* solution $x \pmod{M}$ where $M = \prod_{i=1}^{n} m_i$.

Chinese Remainder Theorem (Cont.)

Solution: For the system $(\forall i \in \{1, 2, ..., n\})(x \equiv a_i \pmod{m_i})$ where $(\forall i \neq j)(\gcd(m_i, m_j) = 1)$:

$$x \equiv \sum_{i=1}^{n} a_{i} b_{i} \pmod{M}$$

$$b_{i} = \frac{M}{m_{i}} \left[\left(\frac{M}{m_{i}} \right)^{-1} \pmod{m_{i}} \right]$$

$$M = \prod_{i=1}^{n} m_{i}$$