Introduction to Machine Learning

Advanced Regression Losses

Learning goals

- Know the Huber loss
- Know the log-cosh loss
- Know the Cauchy loss
- Know the log-barrier loss
- Know the ϵ -insensitive loss
- Know the quantile loss

ADVANCED LOSS FUNCTIONS

Special loss functions can be used to estimate non-standard posterior components, to measure errors in a custom way or are designed to have special properties like robustness.

Examples:

- Quantile loss: Overestimating a clinical parameter might not be as bad as underestimating it.
- Log-barrier loss: Extremely under- or overestimating demand in production would put company profit at risk.
- \bullet ϵ -insensitive loss: A certain amount of deviation in production does no harm, larger deviations do.

HUBER LOSS

$$L(y, f) = egin{cases} rac{1}{2}(y - f)^2 & ext{if } |y - f| \leq \epsilon \\ \epsilon |y - f| - rac{1}{2}\epsilon^2 & ext{otherwise} \end{cases}, \quad \epsilon > 0$$

- Piece-wise combination of L1/L2 to have robustness/smoothness
- Analytic properties: convex, differentiable (once)

- Risk minimizer and optimal constant do not have a closed-form solution. To fit a model numerical optimization is necessary.
- Solution behaves like trimmed mean: a (conditional) mean of two (conditional) quantiles.

LOG-COSH LOSS

$$L(y, f) = \log\left(\cosh(|y - f|)\right)$$

- Logarithm of the hyperbolic cosine of the residual.
- Approximately equal to $0.5(|y-f|)^2$ for small f and to $|y-f|-\log 2$ for large f, meaning it works mostly like L2 loss but is less outlier-sensitive.
- Has all the advantages of Huber loss and is, moreover, twice differentiable everywhere.

CAUCHY LOSS

$$L(y, f) = \frac{c^2}{2} \log \left(1 + \left(\frac{|y - f|}{c}\right)^2\right), \quad c \in \mathbb{R}$$

- Particularly robust toward outliers (controllable via *c*).
- Analytic properties: differentiable, but not convex!

LOG-BARRIER LOSS

$$L(y, f) = \begin{cases} -\epsilon^2 \cdot \log\left(1 - \left(\frac{|y - f|}{\epsilon}\right)^2\right) & \text{if } |y - f| \le \epsilon \\ \infty & \text{if } |y - f| > \epsilon \end{cases}$$

- Behaves like L2 loss for small residuals.
- ullet We use this if we don't want residuals larger than ϵ at all.
- No guarantee that the risk minimization problem has a solution.
- Plot shows log-barrier loss for $\epsilon=2$:

LOG-BARRIER LOSS

• Note that the optimization problem has no (finite) solution if there is no way to fit a constant where all residuals are smaller than ϵ .

ϵ -INSENSITIVE LOSS

$$L(y, f) = egin{cases} 0 & ext{if } |y - f| \leq \epsilon \ |y - f| - \epsilon & ext{otherwise} \end{cases}, \quad \epsilon \in \mathbb{R}_+$$

- Modification of *L*1 loss, errors below ϵ accepted without penalty.
- Used in SVM regression.
- Properties: convex and not differentiable for $y f \in \{-\epsilon, \epsilon\}$.

QUANTILE LOSS / PINBALL LOSS

$$L(y, f) = \begin{cases} (1 - \alpha)(f - y) & \text{if } y < f \\ \alpha(y - f) & \text{if } y \ge f \end{cases}, \quad \alpha \in (0, 1)$$

- Extension of *L*1 loss (equal to *L*1 for $\alpha = 0.5$).
- Weights either positive or negative residuals more strongly.
- α < 0.5 (α > 0.5) penalty to over-estimation (under-estimation)
- Risk minimizer is (conditional) α -quantile (median for $\alpha = 0.5$).

