LISTA 7

- 1) Să se arate că vectorii (1,2,-1), (3,2,4), (-1,2,-6) din \mathbb{R}^3 sunt liniar dependenți și să se găsească o relație de dependență între ei.
- 2) a) Să se dea o condiție necesară și suficientă pentru ca vectorii $v_1 = (a_1, b_1), v_2 = (a_2, b_2)$ să formeze o bază a lui \mathbb{R}^2 . Să se interpreteze geometric această condiție. Folosind condiția stabilită, găsiți o infinitate de baze ale lui \mathbb{R}^2 . Există o bază a lui \mathbb{R}^2 în care coordonatele unui vector v = (x, y) să coincidă cu x și y? Să se arate că $v_1 = (1, 0)$ și $v_2 = (1, 1)$ formează o bază a lui \mathbb{R}^2 și să se găsească coordonatele lui v = (x, y) în această bază.
- b) Formulați și rezolvați o problemă similară celei de mai sus pentru \mathbb{R} -spațiul vectorial \mathbb{R}^3 .
- 3) Fie V un \mathbb{R} -spaţiu vectorial şi $v_1, v_2, v_3 \in V$. Să se arate că $\langle v_1, v_2, v_3 \rangle = \langle v_2 + v_3, v_3 + v_1, v_1 + v_2 \rangle$ şi că vectorii v_1, v_2, v_3 sunt liniar independenți dacă şi numai dacă vectorii $v_2 + v_3, v_3 + v_1, v_1 + v_2$ sunt liniar independenți. Este această proprietate adevărată într-un spaţiu vectorial peste un corp oarecare K?
- 4) Să se arate că în \mathbb{R} -spațiul vectorial $M_2(\mathbb{R})$ matricele

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

formează o bază și să se determine coordonatele matricei $A=\begin{pmatrix} -2 & 3 \\ 4 & -2 \end{pmatrix}$ în această bază.

- 5) a) Fie $a, b, c \in \mathbb{R}$ şi polinoamele $f_1 = (X b)(X c)$, $f_2 = (X c)(X a)$, $f_3 = (X a)(X b)$. Să se arate că:
- i) f_1, f_2, f_3 sunt liniar independenți în \mathbb{R} -spațiul $\mathbb{R}[X]$ dacă și numai dacă $(a-b)(b-c)(c-a) \neq 0$;
- ii) dacă $(a-b)(b-c)(c-a) \neq 0$ atunci pentru orice $f \in \mathbb{R}[X]$ cu grad $f \leq 2$ există $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$, unic determinate, astfel încât $f = \lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3$.
- b) Să se determine $\lambda_1, \lambda_2, \lambda_3$ când $f = 1 + 2X X^2, a = 1, b = 2$ și c = 3.
- 6) Fie $n \in \mathbb{N}$ şi $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = \sin^n x$. Să se arate că $L = \{f_n \mid n \in \mathbb{N}\}$ este o submulțime liberă a \mathbb{R} -spațiului vectorial $\mathbb{R}^{\mathbb{R}}$.
- 7) Fie $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^*$ $(n \in \mathbb{N}^*)$ cu $|\lambda_i| \neq |\lambda_j|$ pentru orice $i, j \in \{1, \ldots, n\}, i \neq j$ şi funcţiile $f_i : \mathbb{R} \to \mathbb{R}, f_i(x) = \sin(\lambda_i x), i \in \{1, \ldots, n\}$. Să se arate că f_1, \ldots, f_n sunt vectori liniar independenți ai \mathbb{R} -spațiului vectorial $\mathbb{R}^{\mathbb{R}}$.
- 8) Să se determine $a \in \mathbb{R}$ astfel încât vectorii $v_1 = (a, 1, 1), v_2 = (1, a, 1), v_3 = (1, 1, a)$ să formeze o bază a lui \mathbb{R}^3 .
- 9) Care dintre următoarele submulțimi ale lui \mathbb{R}^3 :
- a) $\{(1,0,-1),(2,5,1),(0,-4,3)\};$
- b) $\{(2, -4, 1), (0, 3, -1), (6, 0, 1)\};$
- c) $\{(1,2,-1),(1,0,3),(2,1,1)\};$
- d) $\{(-1,3,1),(2,-4,-3),(-3,8,2)\};$
- e) $\{(1, -3, -2), (-3, 1, 3), (-2, -10, -2)\}$

sunt baze ale \mathbb{R} -spațiului vectorial \mathbb{R}^3 ?

10) Fie V un spațiu vectorial, V_1 , V_2 subspații ale lui V și $X_1 \subseteq V_1$, $X_2 \subseteq V_2$. Să se arate că:

1

- i) dacă $V=V_1\oplus V_2$ și X_i este bază a lui V_i (i=1,2) atunci $X_1\cap X_2=\emptyset$ și $X_1\cup X_2$ este o bază a lui V;
- ii) dacă $X_1 \cap X_2 = \emptyset$, X_i generează pe V_i (i=1,2) și $X_1 \cup X_2$ este o bază a lui V atunci X_i este bază a lui V_i (i=1,2) și $V=V_1 \oplus V_2$.