# My notes while reading: An Introduction To Computational Learning Theory

Mohammed D. Belgoumri

April 18, 2022

## Contents

| $\mathbf{T}^{\mathrm{i}}$ | itle page                                         | 1 |
|---------------------------|---------------------------------------------------|---|
| 1                         | The Probably Approximately Correct Learning Model | 2 |
|                           | 1.1 A Rectangle Learning Game                     | 2 |

### Chapter 1

# The Probably Approximately Correct Learning Model

### 1.1 A Rectangle Learning Game

The objective of this game is to learn an unknown target (axis-aligned) rectangle  $\mathcal{R} = [a, b] \times [c, d] \subset \mathbb{R}^2$ .

The player can gain information about  $\mathcal{R}$  only by chosing random points according to some distribution  $\mathcal{D}$ , and asking the game whether they are inside  $\mathcal{R}$ . By convention, points inside  $\mathcal{R}$  are considered positive.

Figure 1.1 shows an example of a possible target rectangle  $\mathcal{R}$  along with some points labeled using it.

The player's goal is to find a hypothesis rectangle  $\mathcal{R}'$  that "approximates"  $\mathcal{R}$  "as closely as possible". To measure the quality of this approximation, we will consider the region  $\mathcal{R}\Delta\mathcal{R}'$  of points that  $\mathcal{R}$  and  $\mathcal{R}'$  label differently. More precisely, we will consider the probability  $\mathbb{P}(\mathcal{R}\Delta\mathcal{R}')$  of falling with this region according to  $\mathcal{D}$  and try to minimize this quantity.

Since  $\mathcal{R}$  is unknown in practice,  $\mathcal{R}'$  is evaluated by sampling a number of points from  $\mathcal{D}$ , labeling them using  $\mathcal{R}'$  and comparing to their true labels by asking the game. We then take the number of falsely labeled points devided by the total of chosen points as an estimation of  $\mathbb{P}(\mathcal{R}\Delta\mathcal{R}')$ . Note that this score is the same as 1- accuracy.



Figure 1.1: The target rectangle  $\mathcal{R}$  along with a labeled sample of points

A simple strategy for the player is to sample a sufficiently large number m of points form  $\mathcal{D}$  and request their labels, then chose as hypothesis  $\mathcal{R}'$  the smallest rectangle containing all positive examples and no negative ones<sup>1</sup>. If all m points are negative, we chose  $\mathcal{R}' = \emptyset$ . Figure 1.2 ilustrates this for one example.

We will now prove that this strategy works, more specifically, we will show the following theorem:

#### Theorem 1.1.

Let  $\mathcal{D}$  be a distribution over  $\mathbb{R}^2$ ,  $\mathcal{R}$  a rectangle, and  $\varepsilon, \delta > 0$  be positive real numbers. There exists an integer  $m \in \mathbb{N}$ , such that the hypothesis rectangle  $\mathcal{R}'$  generated by m sampled points has with probability  $\geq 1 - \delta$  an error  $\leq \varepsilon$ .

Proof.

 $<sup>\</sup>overline{\phantom{a}}^1$ Note that such at least one rectangle with this property is garenteed to exist, because  $\mathcal{R}$  is one such a rectangle



Figure 1.2: The tightest fit rectangle for the example of Figure 1.1