<u>Amendments to the Claims</u>: This listing of claims will replace all prior versions, and listings, of claims in the application

Listing of Claims:

1.-20. (Cancelled)

21. (New) A method for operating a hydraulic vehicle brake system, in which hydraulic pressure is introduced by means of a hydraulic booster,

wherein the hydraulic pressure is metered directly into a master brake cylinder by way of a preceding hydraulic booster, and wherein the hydraulic pressure is controlled in accordance with a quantity representative of the driver's braking request because the pressure in the preceding hydraulic booster is controlled by actuation of at least two analog or analogized valves.

22. (New) The method as claimed in claim 21,

wherein the hydraulic pressure in the preceding hydraulic booster is controlled by actuation of a first analog or analogized valve, which controls the conduction of pressure fluid from the hydraulic booster into a pressure fluid supply tank, and by actuation of a second analog or analogized valve, which controls the supply of the pressure fluid from an independent pressure source into the hydraulic booster.

23. (New) The method as claimed in claim 21,

wherein the pressure of the independent pressure source is generated by actuation of a motor of a motor-pump unit and is stored in a hydraulic high-pressure accumulator.

24. (New) The method as claimed in claim 21,

wherein the analog or analogized valves are actuated for the purpose of application of a defined hydraulic pressure to a booster piston of the hydraulic booster, said pressure being introduced into the wheel brakes of the vehicle by way of a master brake cylinder piston

operatively connected to the booster piston in the force output direction.

25. (New) The method as claimed in claim 21,

wherein the braking pressure is controlled or hydraulic pressure is built up in the highpressure accumulator by actuation of electronically controllable valves.

26. (New) The method as claimed in claim 21,

wherein the driver can introduce hydraulic pressure into the brake system by way of a direct operative connection between the preceding hydraulic booster and a brake pedal.

27. (New) The method as claimed in claim 21,

wherein the pedal travel of a brake pedal or a quantity derived from the pedal travel is used for detecting the driver's braking request.

28. (New) The method as claimed in claim 21,

wherein the pressure in the preceding hydraulic booster is determined or estimated on the basis of a measured hydraulic pressure in the master brake cylinder.

29. (New) The method as claimed in claim 21, the method further comprising that the pressure of the independent pressure source is generated by actuation of a motor of a motor-pump unit and is stored in a hydraulic high-

pressure accumulator,

wherein the pressure in the hydraulic high-pressure accumulator is monitored by means of a pressure sensor.

30. (New) The method as claimed in claim 21, the method further comprising that the pressure of the independent pressure source is generated by actuation of a motor of a motor-pump unit and is stored in a hydraulic high-pressure accumulator,

wherein only valve is operated for charging the hydraulic high-pressure accumulator.

31. (New) The method as claimed in claim 21, the method further comprising that the pressure of the independent pressure source is generated by actuation of a motor of a motor-pump unit and is stored in a hydraulic high-pressure accumulator,

wherein the charging operation of the hydraulic pressure accumulator starts before a bottom switch point of a pressure sensor at the high-pressure accumulator is reached.

32. (New) The method as claimed in claim 21,

the method further comprising that the pressure of the independent pressure source is generated by actuation of a motor of a motor-pump unit and is stored in a hydraulic high-pressure accumulator,

wherein the charging operation of the hydraulic high-pressure accumulator takes place in periods of rising or constant engine load of the driving engine of the vehicle.

33. (New) The method as claimed in claim 21,

the method further comprising that the pressure of the independent pressure source is generated by actuation of a motor of a motor-pump unit and is stored in a hydraulic high-pressure accumulator,

wherein the charging operation of the hydraulic high-pressure accumulator is discontinued upon brake application or in the event of an engine load of the driving engine of the vehicle.

34. (New) The method as claimed in claim 21,

the method further comprising that the pressure of the independent pressure source is generated by actuation of a motor of a motor-pump unit and is stored in a hydraulic high-

pressure accumulator,

wherein the charging operation of the hydraulic high-pressure accumulator takes place when the engine load of the driving engine of the vehicle is equal to zero or lower than zero (stalling), and/or when a generally constant speed of the vehicle prevails.

35. (New) The method as claimed in claim 21,

wherein the pressure is additionally increased by way of a pressure-increasing unit, when the point of maximum boosting of the hydraulic booster is exceeded.

36. (New) The method as claimed in claim 21,

wherein the booster is rated to achieve a relatively low booster output, and wherein the pressure is increased additionally by means of a pressure-increasing unit.

37. (New) The method as claimed in claim 35,

wherein a quantity representative of the driver's braking request is used as a command variable for the additional pressure increase.

38. (New) The method as claimed in claim 36,

wherein a quantity representative of the driver's braking request is used as a command variable for the additional pressure increase.

39.(New)The method as claimed in claim 36,

wherein the pedal travel of a brake pedal or a quantity derived from the pedal travel, in particular pedal speed or pedal acceleration, is used as a quantity representative of the driver's braking request.

40. (New) The method as claimed in claim 21,

the method further comprising that the pressure of the independent pressure source is generated by actuation of a motor of a motor-pump unit and is stored in a hydraulic high-pressure accumulator,

wherein a point of maximum boosting of the hydraulic booster is determined on the basis of a ratio between the pressure in the hydraulic accumulator and the pressure in the master brake cylinder and a constructive ratio between the surface of a hydraulic piston in the hydraulic booster and the surface of a hydraulic piston in the master brake cylinder.

41. (New) The method as claimed in claim 21,

the method further comprising that the pressure of the independent pressure source is generated by actuation of a motor of a motor-pump unit and is stored in a hydraulic highpressure accumulator,

wherein the braking pressure in the wheel brakes is controlled by way of switching two electronically actuatable valves in a closed hydraulic system.