Insert here your thesis' task.

Bachelor's thesis

Probabilistic algorithms for computing the LTS estimate

Martin Jenč

Department of Applied Mathematics Supervisor: Ing. Karel Klouda, Ph.D.

March 14, 2019

Acknowledgements THANKS to everybody

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of information in accordance with the Guideline for adhering to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical University in Prague has the right to conclude a license agreement on the utilization of this thesis as school work under the provisions of Article 60(1) of the Act.

In Prague on March 14, 2019

Czech Technical University in Prague Faculty of Information Technology © 2019 Martin Jenč. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the Copyright Act and its usage without author's permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis

Jenč, Martin. Probabilistic algorithms for computing the LTS estimate. Bachelor's thesis. Czech Technical University in Prague, Faculty of Information Technology, 2019.

Abstrakt

V několika větách shrňte obsah a přínos této práce v českém jazyce.

Klíčová slova LTS odhad, lineÃarnÃŋ regrese, optimalizace, nejmenÅaÃŋ usekanÃľ ÄDtvrece, metoda nejmenÅaÃŋch ÄDtvercÅŕ, outliers

Abstract

The least trimmed squares (LTS) method is a robust version of the classical method of least squares used to find an estimate of coefficients in the linear regression model. Computing the LTS estimate is known to be NP-hard, and hence suboptimal probabilistic algorithms are used in practice.

Keywords LTS, linear regressin, robust estimator, least trimmed squares, ordinary least squares, outliers, outliers detection

Contents

In	trodi	uction	Т
1	Line	ear Regression	3
	1.1	Linear regression model	3
	1.2	Ordinary least squares	4
	1.3	Downfalls	5
2	The	Least trimmed squares	7
3	Alg	orithms	9
	3.1	FAST-LTS	9
	3.2	Exact algorithm	16
	3.3	Feasible solution	16
	3.4	MMEA	16
	3.5	Branch and bound	16
	3.6	Adding row	16
4	Exp	periments	17
	4.1	Data	17
	4.2	Results	17
	4.3	Outlier detection	17
Co	onclu	sion	19
Bi	bliog	graphy	21
\mathbf{A}	Dat	asets	23
В	Con	tents of enclosed CD	25

List of Figures

Introduction

Linear Regression

In this chapter will be introduced one of the most common regression analysis models which is linear regression model as well as ordinary least squares method for estimating is variables. This model tries to model relationship between one variable which is considered dependent and one or more variables which are considered to be explanatory. Relationship is based on model function with parameters which are not known in advance and are estimated from data. We will also introduce one of the most commons methods of finding those parameters of this model, namely ordinary least squares.

1.1 Linear regression model

Definition 1. Linear regression model is

$$y_i = \boldsymbol{x_i}^T \boldsymbol{w} + \varepsilon_i, \quad i = 1, 2, \dots, n$$
 (1.1)

where $y_i \in \mathbb{R}$ is random variable which we denote as **dependent variable**, vector $\mathbf{x}_i^T = (x_1, x_2, \dots, x_p)$ is column vector of **explanatory variables** and $\varepsilon \in \mathbb{R}$ random variable called **noise** or **error**. Vector $\mathbf{w} = (w_1, w_2, \dots, w_p)$ is vector of parameters called **regression coefficients**. It is common to write whole model in matrix form.

$$y = Xw + \varepsilon \tag{1.2}$$

where

$$oldsymbol{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}, oldsymbol{X} = egin{bmatrix} oldsymbol{x_1}^T \ oldsymbol{x_2}^T \ dots \ oldsymbol{x_{n1}} \ oldsymbol{x_{n2}} \ oldsymbol{x_{n2}} \ oldsymbol{x_{n2}} \ oldsymbol{x_{n2}} \ oldsymbol{x_{n3}} \ oldsymbol{x_{n3}} \ oldsymbol{x_{n3}} \ oldsymbol{x_{n3}} \ oldsymbol{x_{n3}} \ oldsymbol{x_{n3}} \ oldsymbol{x_{n4}} \ oldsymbol{x_{n5}} \ oldsymbol{x_{n5}$$

We consider $x_{i1} = 1$ to be a constant. Corresponding w_1 we call *intercept*. We refer this model as *model with intercept*. It is possible to have model without intercept but then hyperplane generated by this model goes through origin. That is usually rare case so we'll always use intercept unless we'll explicitly mention it. Due to this we can assume that in model with intercept expected value $\mathbb{E}(\varepsilon_i) = 0$.

1.1.1 Prediction with linear regression model

Linear regression model contains vector of real regression coefficients which we don't know and which we need to estimate in order to be able to use model for prediction. So let us assume that we already have estimated regression coefficients which we'll mark $\hat{\boldsymbol{w}}$. Then we're able to predict value of y by

$$\hat{y} = \hat{\boldsymbol{w}}^T \boldsymbol{x} \tag{1.3}$$

 \hat{y} denotes that it is predicted value. Real value of y is given by

$$y = \boldsymbol{w}^T \boldsymbol{x} + \varepsilon \tag{1.4}$$

Because we assume linear dependence between dependent variable y and explanatory variables x then what makes y random variable is actually random variable ε . Because we use model with intercept thus with $\mathbb{E}(e) = 0$ we can see that

$$\mathbb{E}(y) = \mathbb{E}(\boldsymbol{x}^T \boldsymbol{w}) + \mathbb{E}(\varepsilon) = \mathbb{E}(\boldsymbol{x}^T \boldsymbol{w})$$
(1.5)

so \hat{y} is actually a point estimation of expected value of y.

1.2 Ordinary least squares

We want to estimate w so that error of the model will be minimal. Measurement of this error is most often done by $loss\ function$

$$L: \mathbb{R}^2 \to \mathbb{R} \tag{1.6}$$

Which in case of ordinary least squares is quadratic loss function $L(y, \hat{y}) := (y - \hat{y})^2$. We refer to $r(\hat{\boldsymbol{w}}) = y - \hat{\boldsymbol{y}} = y - \hat{\boldsymbol{w}}^T \boldsymbol{x}$ as to residual.

So the idea of this method lies in fact that we want to minimize error given by sum of squared residuals commonly known as residual sum of squares RSS

$$RSS = \sum_{i=1}^{n} r_i^2 = (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
 (1.7)

So the $\hat{\boldsymbol{w}}$ we can give by

$$\hat{\boldsymbol{w}} = \arg\min ab \sum_{i=1}^{n} r_i^2 = (y_i - \boldsymbol{w}^T \boldsymbol{x}_i)^2$$
(1.8)

dsfdsafdsafdsafadfdsa

1.2.1 Problems

Main problem with OLS is that we assume all measurements

1.3 Downfalls

Note 2. When discussing following algorithms, we'll refer to given X and y as to data set and to y_i with corresponding x_i as to data sample or observation. Sometimes it's also useful to refer to multiple observations as to subset of observations. When we want to mark subset of observations y_i , x_i

 $i \in H, H \subset \{1, 2, \dots, n\}$ we can simply refer to it as to subset of observations H. Sometimes it's also useful to mark matrix X with only some subset of observations which we'll do by X_H .

The Least trimmed squares

2.0.1 Objective function

2.0.1.1 Problems

Algorithms

In this chapter we'll introduce currently popular algorithms of computing FAST-LTS estimate.

3.1 FAST-LTS

In this section we will introduce FAST-LTS algorithm[1]. It is, as well as in other cases, iterative algorithm. We will discuss all main components of the algorithm starting with its core idea called concentration step which 'authors simply call C-step.

3.1.1 C-step

We will show that from existing LTS estimate \hat{w}_{old} we can construct new LTS estimate \hat{w}_{new} which objective function is less or equal to the old one. Based on this property we will be able to create sequence of LTS estimates which will lead to better results.

Theorem 3. Consider dataset consisting of x_1, x_2, \ldots, x_n explanatory variables where $x_i \in \mathbb{R}^p$, $\forall x_i = (fx_1^i, x_2^i, \ldots, x_p^i)$ where $x_1^i = 1$ and its corresponding y_1, y_2, \ldots, y_n response variables. Let's also have $\hat{\boldsymbol{w}}_0 \in \mathbb{R}^p$ any p-dimensional vector and $H_0 = \{h_i; h_i \in \mathbb{Z}, 1 \leq h_i \leq n\}, |H_0| = h$. Let's now mark $RSS(\hat{\boldsymbol{w}}_0) = \sum_{i \in H_0} (r_0(i))^2$ where $r_0(i) = y_i - (w_1^0 x_1^i + w_2^0 x_2^i + \ldots + w_p^0 x_p^i)$. Let's take $\hat{n} = \{1, 2, \ldots, n\}$ and mark $\pi : \hat{n} \to \hat{n}$ permutation of \hat{n} such that $|r_0(\pi(1))| \leq |r_0(\pi(2))| \leq \ldots \leq |r_0(\pi(n))|$ and mark $H_1 = \{\pi(1), \pi(2), \ldots \pi(h)\}$ set of h indexes corresponding to h smallest absolute residuals $r_0(i)$. Finally take $\hat{\boldsymbol{w}}_1^{OLS(H_1)}$ ordinary least squares fit on H_1 subset of observations and its corresponding $RSS(\hat{\boldsymbol{w}}_1) = \sum_{i \in H_1} (r_1(i))^2$ sum of least squares. Then

$$RSS(\hat{\boldsymbol{w}}_1) \le RSS(\hat{\boldsymbol{w}}_0) \tag{3.1}$$

Proof. Because we take h observations with smallest absolute residuals r_0 , then for sure $\sum_{i \in H_1} (r_0(i))^2 \leq \sum_{i \in H_0} (r_0(i))^2 = RSS(\hat{\boldsymbol{w}}_0)$. When we take into

account that Ordinary least squares fit OLS_{H_1} minimize objective function of H_1 subset of observations, then for sure $RSS(\hat{\boldsymbol{w}}_1) = \sum_{i \in H_1} (r_1(i))^2 \leq \sum_{i \in H_1} (r_0(i))^2$. Together we get

$$RSS(\hat{\boldsymbol{w}}_1) = \sum_{i \in H_1} (r_1(i))^2 \le \sum_{i \in H_1} (r_0(i))^2 \le \sum_{i \in H_0} (r_0(i))^2 = RSS(\hat{\boldsymbol{w}}_0)$$

Corollary 4. Based on previous theorem, using some $\hat{\boldsymbol{w}}^{OLS(H_{old})}$ on H_{old} subset of observations we can construct H_new subset with corresponding $\hat{\boldsymbol{w}}^{OLS(H_{new})}$ such that $RSS(\hat{\boldsymbol{w}}^{OLS(H_{new})}) \leq RSS(\hat{\boldsymbol{w}}^{OLS(H_{old})})$. With this we can apply above theorem again on $\hat{\boldsymbol{w}}^{OLS(H_{new})}$ with H_{new} . This will lead to the iterative sequence of $RSS(\hat{\boldsymbol{w}}_{old}) \leq RSS(\hat{\boldsymbol{w}}_{new}) \leq \ldots$ One step of this process is described by following pseudocode. Note that for C-step we actually need only $\hat{\boldsymbol{w}}$ without need of passing H.

Algorithm 1: C-step

```
Input: dataset consiting of X \in \mathbb{R}^{n \times p} and y \in \mathbb{R}^{n \times 1}, \hat{w}_{old} \in \mathbb{R}^{p \times 1}

Output: \hat{w}_{new}, H_{new}

1 R \leftarrow \emptyset;

2 for i \leftarrow 1 to n do

3 | R \leftarrow R \cup \{|y_i - \hat{w}_{old} x_i^T|\};

4 end

5 H_{new} \leftarrow select set of h smallest absolute residuals from R;

6 \hat{w}_{new} \leftarrow OLS(H_{new});

7 return \hat{w}_{new}, H_{new};
```

Observation 5. Time complexity of algorithm C-step 1 is the same as time complexity as OLS. Thus $O(p^2n)$ **TODO**

Lemma 6. Time complexity of OLS on $X^{n \times p}$ and $Y^{n \times 1}$ is $O(p^2n)$.

Proof. Normal equation of OLS is $\hat{\boldsymbol{w}} = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{Y}$. Time complexity of matrix multiplication $\boldsymbol{A}^{m\times n}$ and $\boldsymbol{B}^{n\times p}$ is $\sim \mathcal{O}(mnp)$. Time complexity of matrix $\boldsymbol{C}^{m\times m}$ is $\sim \mathcal{O}(m^3)$ So we need to compute $\boldsymbol{A} = \boldsymbol{X}^T\boldsymbol{X} \sim \mathcal{O}(p^2n)$ and $\boldsymbol{B} = \boldsymbol{X}^T\boldsymbol{Y} \sim \mathcal{O}(pn)$ and $\boldsymbol{C} = \boldsymbol{A}^{-1} \sim \mathcal{O}(p^3)$ and finally $\boldsymbol{C}\boldsymbol{B} \sim \mathcal{O}(p^2)$. That gives us $\mathcal{O}(p^2n + pn + p^3 + p^2)$. Because $\mathcal{O}(p^2n)$ and $\mathcal{O}(p^3)$ asymptotically dominates over $\mathcal{O}(p^2)$ and $\mathcal{O}(pn)$ we can write $\mathcal{O}(p^2n + p^3)$.

TODOCO zo toho je vic? Neni casove narocnejsi vynasobeni X^TX nez inverze, kdyz bereme v uvahu n>>p???

Proof. In C-step we must compute n absolute residuals. Computation of one absolute residual consists of matrix multiplication of shapes $1 \times p$ and $p \times 1$ that gives us $\mathcal{O}(p)$. Rest is in constant time. So time of computation n residuals is $\mathcal{O}(np)$. Next we must select set of h smallest residuals which can be done in $\mathcal{O}(n)$ using modification of algorithm QuickSelect. reference: TODO Finally

we must compute \hat{w} OLS estimate on h subset of data. Because h is linearly dependent on n, we can say that it is $\mathcal{O}(p^2n + p^3)$ which is asymptotically dominant against previous steps which are $\mathcal{O}(np+n)$.

As we stated above, repeating algorithm C-step will lead to sequence of $\hat{\boldsymbol{w}}_1, \hat{\boldsymbol{w}}_2 \dots$ on subsets $H_1, H_2 \dots$ with corresponding residual sum of squares $RSS(\hat{\boldsymbol{w}}_1) \geq RSS(\hat{\boldsymbol{w}}_2) \geq \dots$ One could ask if this sequence will converge, so that $RSS(\hat{\boldsymbol{w}}_i) == RSS(\hat{\boldsymbol{w}}_{i+1})$. Answer to this question will be presented by the following theorem.

Theorem 7. Sequence of C-step will converge to $\hat{\boldsymbol{w}}_{m}$ after maximum of $m = \binom{n}{h}$ so that $RSS(\hat{\boldsymbol{w}}_{m}) == RSS(\hat{\boldsymbol{w}}_{n}), \forall n \geq m$ where n is number of data samples and h is size of subset H_{i} .

Proof. Since $RSS(\hat{w}_i)$ is non-negative and $RSS(\hat{w}_i) \leq RSS(\hat{w}_{i+i})$ the sequence will converge. \hat{w}_i is computed out of subset $H_i \subset \{1, 2, ..., n\}$. When there is finite number of subsets of size h out of n samples, namely $\binom{n}{h}$, the sequence will converge at the latest after this number of steps.

Above theorem gives us clue to create algorithm described by following pseudocode.

Algorithm 2: Repeat-C-step

```
Input: dataset consiting of X \in \mathbb{R}^{n \times p} and y \in \mathbb{R}^{n \times 1}, \hat{w}_{old} \in \mathbb{R}^{p \times 1}, H_0
       Output: \hat{\boldsymbol{w}}_{final}, H_{final}
  1 \hat{w}_{new} \leftarrow \emptyset;
  2 H_{new} \leftarrow \emptyset;
  3 RSS_{new} \leftarrow \infty;
  4 while True do
               RSS_{old} \leftarrow RSS(\hat{\boldsymbol{w}}_{old});
  \mathbf{5}
              \hat{\boldsymbol{w}}_{new}, H_{new} \leftarrow \boldsymbol{X}, \boldsymbol{y}, \hat{\boldsymbol{w}}_{old};
  6
               RSS_{new} \leftarrow RSS(\hat{\boldsymbol{w}}_{new});
              if RSS_{old} == RSS_{new} then
  8
                     break
  9
10
              end
              \boldsymbol{\hat{w}_{old}} \leftarrow \boldsymbol{\hat{w}_{new}}
11
12 end
13 return \hat{\boldsymbol{w}}_{new}, H_{new};
```

It is important to note, that although maximum number of steps of this algorithm is $\binom{n}{h}$ in practice it is very low, most often under 20 steps. TODO nejaky hezky grafik ktery to ukazuje.... That is not enough for the algorithm Repeat-C-step to converge to global minimum, but it is necessary condition. That gives us an idea how to create the final algorithm. [1]

Choose a lot of initial subsets H_1 and on each of them apply algorithm Repeat-C-step. From all converged subsets with corresponding \hat{w} estimates choose that which has lowest $RSS(\hat{w})$. Before we can construct final algorithm we must decide how to choose initial subset H_1 and how many of them mean "a lot of". First let's focus on how to choose initial subset H_1 .

3.1.2 Choosing initial H_1 subset

It is important to note, that when we choose H_1 subset such that it contains outliers, then iteration of C-steps usually won't converge to good results, so we should focus on methods with non zero probability of selecting H_1 such that it won't contain outliers. There are a lot of possibilities how to create initial hH_1 subset. Lets start with most trivial one.

3.1.2.1 Random selection

Most basic way of creating H_1 subset is simply to choose random $H_1 \subset \{1, 2, ..., n\}$. Following observation will show that it not the best way.

Observation 8. With increasing number of data samples, thus with increasing n, the probability of choosing among m random selections of H_{1_1}, \ldots, H_{1_m} the probability of selecting at least one H_{1_i} such that its corresponding data samples does not contains outliers, goes to 0.

Proof. Consider dataset of n containing $\epsilon > 0$ relative amount of outliers. Let h = (n+p+1)/2 and m is number of selections random |H| = h subsets. Then

 $P(one \ random \ data \ sample \ not \ outliers) = (1-\epsilon)$ $P(one \ subset \ without \ outliers) = (1-\epsilon)^h$ $P(one \ subset \ with \ at \ least \ one \ outlier) = 1-(1-\epsilon)^h$ $P(m \ subsets \ with \ at \ least \ one \ outlier \ in \ each) = (1-(1-\epsilon)^h)^m$ $P(m \ subsets \ with \ at \ least \ one \ subset \ without \ outliers) = 1-(1-(1-\epsilon)^h)^m$

Because
$$n \to \infty \Rightarrow (1 - \epsilon)^h \to 0 \Rightarrow 1 - (1 - \epsilon)^h \to 1 \Rightarrow (1 - (1 - \epsilon)^h)^m \to 1 \Rightarrow 1 - (1 - (1 - \epsilon)^h)^m \to 0$$

That means that we should consider other options of selecting H_1 subset. Actually if we would like to continue with selecting some random subsets, previous observation gives us clue, that we should choose it independent of n. Authors of algorithm came with such solution and it goes as follows.

3.1.2.2 P-subset selection

Let's choose subset $J \subset \{1, 2, ..., n\}$, |J| = p. Next compute rank of matrix $X_{J:}$. If $rank(X_{J:}) < p$ add randomly selected rows to $X_{J:}$ without repetition until $rank(X_{J:}) = p$. Let's from now on suppose that $rank(X_{J:}) = p$.

Next let us mark $\hat{\boldsymbol{w}}_0 = OLS(J)$ and corresponding $(r_0(1)), (r_0(2)), \ldots, (r_0(n))$ residuals. Now mark $\hat{n} = \{1, 2, \ldots, n\}$ and let $\pi : \hat{n} \to \hat{n}$ be permutation of \hat{n} such that $|r(\pi(1))| \leq |r(\pi(2))| \leq \ldots \leq |r(\pi(n))|$. Finally put $H_1 = \{\pi(1), \pi(2), \ldots, \pi(h)\}$ set of h indexes corresponding to h smallest absolute residuals $r_0(i)$.

Observation 9. With increasing number of data samples, thus with increasing n, the probability of choosing among m random selections of J_{1_1}, \ldots, J_{1_m} the probability of selecting at least one J_{1_i} such that its corresponding data samples does not contains outliers, goes toho

$$1 - (1 - (1 - \epsilon)^h)^m > 0$$

Proof. Similarly as in previous observation.

Note that there are other possibilities of choosing H_1 subset other than these presented in [1]. We'll properly discuss them in chapter **TODO**.

Last missing piece of the algorithm is determining number of m initial H_1 subsets, which will maximize probability to at least one of them will converge to good solution. Simply put, the more the better. So before we will answer this question properly, let's discuss some key observations about algorithm.

3.1.3 Speed-up of the algorithm

In this section we will describe important observations which will help us to formulate final algorithm. In two subsections we'll briefly describe how to optimize current algorithm.

3.1.3.1 Selective iteration

The most computationally demanding part of one C-step is computation of OLS on H_i subset and then calculation of n absolute residuals. How we stated above, convergence is usually achieved under 20 steps. So for fast algorithm run we would like to repeat C-step as little as possible and in the same time didn't loose performance of algorithm.

Due to that convergence of repeating C-step is very fast, it turns out, that we are able to distinguish between starts that will lead to good solutions and those who won't even after very little C-steps iterations. ;based on empiric observation, we can distinguish good or bad solution already after two or three iterations of C-steps based on $RSS(\hat{w}_3)$ or $RSS(\hat{w}_4)$ respectively.

So even though authors don't specify size of m explicitly, they propose that after a few C-steps we can choose (say 10) best solutions among all H_1 starts and continue C-steps till convergence only on those best solutions. This process is called Selective iteration.

We can choose m with respect to observation 9. In ideal case we would like to have probability of existence at least one initial H_1 subset close to 1. As we see m is exponentially dependent on p and at the same time in practice we don't know percentage of outliers in dataset. So it is difficult to mention exact value. Specific values of m in respect to data size is visible in table TODO. So we can say that with p < 10 choosing m = 500 is usually safe starting point.

3.1.3.2 Nested extension

C-step computation is usually very fast for small n. Problem starts with very high n say $n > 10^3$ because we need to compute OLS on H_i subset of size h which is dependent on n. And then calculate n absolute residuals.

Authors came up with solution they call Nested extension. We will describe it briefly now.

- If n is greater than limit l, we'll create subset of data samples L, |L| = l and divide this subset into s disjunctive sets P_1, P_2, \ldots, P_s , $|P_i| = \frac{l}{s}$, $P_i \cap P_i = \emptyset$, $\bigcup_{i=1}^s P_i = L$.
- For every P_i we'll set number of starts $m_{P_i} = \frac{m}{l}$.
- Next in every P_i we'll create m_{P_i} number of initial $H_{P_{i_1}}$ subsets and iterate C-steps for two iterations.
- Then we'll choose 10 best results from each subsets and merge them together. We'll get family of sets F_{merged} containing 10 best $H_{P_{i_3}}$ subsets from each P_i .
- On each subset from F_{merged} family of subsets we'll again iterate 2 C-steps and then choose 10 best results.
- Finally we'll use these best 10 subsets and use them to iterate C-steps till convergence.
- As a result we'll choose best of those 10 converged results.

3.1.3.3 Putting all together

We've described all major parts of the algorithm FAST-LTS. One last thing we need to mention is that even though C-steps iteration usually converge under 20 steps it is appropriate to introduce two parameters $max_iteration$ and threshold which will limit number of C-steps iterations in some rare cases when convergence is too slow. Parameter $max_iteration$ denotes maximum number of iterations in final C-step iteration till convergence. Parameter threshold denotes stopping criterion such that $|RSS(\hat{w}_i) - RSS(\hat{w}_{i+1})| \leq$

threshold instead of $RSS_i == RSS_{i+1}$. When we put all together, we'll get FAST-LTS algorithm which is described by following pseudocode.

Algorithm 3: FAST-LTS

```
Input: X \in \mathbb{R}^{n \times p}, y \in \mathbb{R}^{n \times 1}, m, l, s, max_i teration, threshold
     Output: w_{final}, H_{final}
  1 \hat{w}_{final} \leftarrow \emptyset;
  2 H_{final} \leftarrow \emptyset;
  3 F_{best} \leftarrow \emptyset;
  4 if n \ge l then
           F_{merged} \leftarrow \emptyset;
  5
  6
           for i \leftarrow 0 to s do
                 F_{selected} \leftarrow \emptyset;
  7
                 for j \leftarrow 0 to \frac{l}{s} do
 8
                      F_{initial} \leftarrow Selective\ iteration(\frac{m}{T});
 9
                      for H_i in F_{initial} do
10
                            H_i \leftarrow Iterate\ C\ step\ few\ times(H_i);
11
                            F_{selected} \leftarrow F_{selected} \cup \{H_i\};
12
                      end
13
                 end
14
                 F_{merged} \leftarrow F_{merged} \cup Select \ 10 \ best \ subsets \ from \ F_{selected};
15
16
           end
           for H_i in F_{merged} do
17
                 H_i \leftarrow Iterate\ C\ step\ few\ times(H_i);
18
                 F_{best} \leftarrow F_{best} \cup \{H_i\};
19
           end
20
           F_{best} \leftarrow Select \ 10 \ best \ subsets \ from \ F_{best};
\mathbf{21}
22 else
           F_{initial} \leftarrow Selective\ iteration(m);
\mathbf{23}
           F_{best} \leftarrow Select \ 10 \ best \ subsets \ from \ F_{initial};
\mathbf{24}
25 end
26 F_{final} \leftarrow \emptyset;
27 W_{final} \leftarrow \emptyset;
28 for H_i in F_{best} do
           H_i, \hat{\boldsymbol{w}}_i \leftarrow
29
             Iterate C step till convergence(H_i, max_i teration, threshold);
           F_{final} \leftarrow F_{final} \cup \{H_i\};
30
31
           W_{final} \leftarrow W_{final} \cup \{\hat{\boldsymbol{w}_i}\};
33 \hat{w}_{final}, H_{final} \leftarrow select \ what \ with \ best \ RSS(F_{final}, W_{final});
34 return \hat{w}_{final}, H_{final};
```

3. Algorithms

- 3.2 Exact algorithm
- 3.3 Feasible solution
- **3.4** MMEA
- 3.5 Branch and bound
- 3.6 Adding row

CHAPTER 4

Experiments

- 4.1 Data
- 4.2 Results
- 4.3 Outlier detection

Conclusion

Bibliography

[1] Rousseeuw, P. J.; Driessen, K. V. An Algorithm for Positive-Breakdown Regression Based on Concentration Steps. In *Data Analysis: Scientific Modeling and Practical Application*, edited by M. S. W. Gaul, O. Opitz, Springer-Verlag Berlin Heidelberg, 2000, pp. 335–346.

APPENDIX **A**

Datasets

 ${\bf GUI}$ Graphical user interface

XML Extensible markup language

APPENDIX B

Contents of enclosed CD

readme.txt	the me with CD contents description
_ exe	the directory with executables
_src	the directory of source codes
wbdcm	implementation sources
thesis	. the directory of LATEX source codes of the thesis
_text	the thesis text directory
thesis.pdf	the thesis text in PDF format
thesis.ps	the thesis text in PS format