Instrumental Variables

Prof. Jacob M. Montgomery

Quantitative Political Methodology (L32 363)

November 20, 2017

(QPM 2017)

Road map

Where we have been:

- What is regression?
- How to interpret coefficients?
- Interactions/Dummies
- Regression assumptions
- Using regression for causal inference
- Using difference-in-differences to make causal claims
- Regression discontinuity

Today:

Instrumental variables

• How to handle non-compliance in experiments

- How to handle non-compliance in experiments
 - What do you do if some people in an experiment don't do what they are told?

- How to handle non-compliance in experiments
 - What do you do if some people in an experiment don't do what they are told?
- How to make causal inference in the presence of endogenous regressors

- How to handle non-compliance in experiments
 - What do you do if some people in an experiment don't do what they are told?
- How to make causal inference in the presence of endogenous regressors
 - ▶ An approach that can sometimes work when you can't do anything else

Framework 1: Who get's the milk?

4 / 24

A non-hypothetical example: The setup

Let's imagine a nutrition intervention:

- Randomly assign schools to get extra provisions of school milk at lunch
- At all schools teachers allocate milk and keep track of who gets it
- After one year, follow up and measure weights of all children

Two-sided noncompliance

• People in the treatment condition failed to receive the treatment

Two-sided noncompliance

- People in the treatment condition failed to receive the treatment
 - ► Some kids don't like milk

Two-sided noncompliance

- People in the treatment condition failed to receive the treatment
 - ► Some kids don't like milk
 - More importantly, who would you give milk to?

Two-sided noncompliance

- People in the treatment condition failed to receive the treatment
 - ► Some kids don't like milk
 - ▶ More importantly, who would you give milk to?
- People in the control condition receive the treatment

6 / 24

(QPM 2017) IV Analysis November 20, 2017

Two-sided noncompliance

- People in the treatment condition failed to receive the treatment
 - ► Some kids don't like milk
 - ▶ More importantly, who would you give milk to?
- People in the control condition receive the treatment
 - ► Some people have cows

Two-sided noncompliance

- People in the treatment condition failed to receive the treatment
 - ► Some kids don't like milk
 - ▶ More importantly, who would you give milk to?
- People in the control condition receive the treatment
 - Some people have cows
 - Rich people

Hypothetical experimental results

7 / 24

(QPM 2017) IV Analysis November 20, 2017

Instrumental variables

We are going to solve two equations at the same time:

$$x_i = \tau + T_i \gamma + \epsilon_{i1} \tag{1}$$

$$y_i = \alpha + x_i \beta + \epsilon_{i2} \tag{2}$$

$$\begin{pmatrix} \epsilon_{i1} \\ \epsilon_{i2} \end{pmatrix} \sim N(\mathbf{0}, \Sigma)$$

How does this work? In the abstract

- We have an endogenous regressor x and we want to know how it affect y.
- $oldsymbol{0}$ We have a randomly assigned variable T that has a strong effect on x
- \bullet T only affects y through x (exclusion restriction)
- No one does the opposite on purpose (no defiers)

If we have all of these, we can correctly estimate β ...

How does this work? In the abstract

- We have an endogenous regressor x and we want to know how it affect y.
- $oldsymbol{0}$ We have a randomly assigned variable T that has a strong effect on x
- \bullet T only affects y through x (exclusion restriction)
- No one does the opposite on purpose (no defiers)

If we have all of these, we can correctly estimate $\beta\dots$... but only for the subset of observations that are compliers.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

How does this work? In our example

- We have an endogenous regressor x (milk consumption) and we want to know how it affect y (weight).
- We have a randomly assigned variable T (which schools get lunch) that has a strong effect on x (milk consumption)
- T only affects y through x (assignment not related to weight except through milk)
- No one does the opposite on purpose (no one drinks extra milk because their school was added to the control)

If we have all of these, we can correctly estimate β .

IV Analysis

How does this work? In our example

- We have an endogenous regressor x (milk consumption) and we want to know how it affect y (weight).
- We have a randomly assigned variable T (which schools get lunch) that has a strong effect on x (milk consumption)
- T only affects y through x (assignment not related to weight except through milk)
- No one does the opposite on purpose (no one drinks extra milk because their school was added to the control)

If we have all of these, we can correctly estimate β .

... but only for the subset of observations that are compliers.

10 / 24

Framework 2: Guns and money

Some things can't be randomized

ullet Bad economy o more war

(QPM 2017) IV Analysis

12 / 24

Some things can't be randomized

- ullet Bad economy o more war
- ullet More war o bad economy

Some things can't be randomized

- ullet Bad economy o more war
- ullet More war o bad economy
- ullet Bad government o more war, bad economy

(QPM 2017)

Instrumental variables

We are going to solve two equations at the same time:

$$x_i = \tau + T_i \gamma + \epsilon_{i1} \tag{3}$$

$$y_i = \alpha + x_i \beta + \epsilon_{i2} \tag{4}$$

$$\begin{pmatrix} \epsilon_{i1} \\ \epsilon_{i2} \end{pmatrix} \sim N(\mathbf{0}, \Sigma)$$

13 / 24

(QPM 2017) IV Analysis November 20, 2017

How does this work? In the abstract

- We have an endogenous regressor x and we want to know how it affect v.
- ② We have a randomly assigned variable T that has a strong effect on x
- T only affects y through x (exclusion restriction)
- No one does the opposite on purpose (no defiers)

If we have all of these, we can correctly estimate β ...

IV Analysis

How does this work? In the abstract

- We have an endogenous regressor x and we want to know how it affect y.
- $oldsymbol{0}$ We have a randomly assigned variable T that has a strong effect on x
- \bullet T only affects y through x (exclusion restriction)
- No one does the opposite on purpose (no defiers)

If we have all of these, we can correctly estimate $\beta\dots$... but only for the subset of observations that are compliers.

Using rainfall as an instrument

Using rainfall as an instrument

How does this work? In our example

- We have an endogenous regressor x (economy) and we want to know how it affect y (civil war).
- ② We have a randomly assigned variable T (rainfall in the previous year) that has a strong effect on x (economic growth)
- \bullet T only affects y through x (rain does not directly affect civil war)
- No one does the opposite on purpose (countries do not have negative economic growth as a consequence of lot's of rain)

If we have all of these, we can correctly estimate β .

How does this work? In our example

- We have an endogenous regressor x (economy) and we want to know how it affect y (civil war).
- \bigcirc We have a randomly assigned variable T (rainfall in the previous year) that has a strong effect on x (economic growth)
- T only affects y through x (rain does not directly affect civil war)
- No one does the opposite on purpose (countries do not have negative economic growth as a consequence of lot's of rain)

If we have all of these, we can correctly estimate β .

... but only for the subset of observations that are compliers.

R code for two staged least squares

```
library(AER)
ivreg(y ~ x| T, data = myData)
```

(QPM 2017)

Negative ads and turnout

Ansolabehere, Iyengar, and Simon (1999), "Replicating Experiments Using Aggregate and Survey Data: The Case of Negative Advertising and Turnout," *American Political Science Review*.

The basic approach

Using survey data from the 1992 election

• y: Self-reported probability of voting

20 / 24

(QPM 2017) IV Analysis November 20, 2017

The basic approach

Using survey data from the 1992 election

- y: Self-reported probability of voting
- x: Self-reported ad tone

20 / 24

(QPM 2017) IV Analysis November 20, 2017

The basic approach

Using survey data from the 1992 election

- y: Self-reported probability of voting
- x: Self-reported ad tone
- T: Date of the interview

(QPM 2017)

Check our assumptions

Assumption 1: We have a randomly assigned variable ${\cal T}$ that has a strong effect on ${\it x}$

Check our assumptions

- T only affects y through x
- No one does the opposite on purpose

22 / 24

(QPM 2017) IV Analysis November 20, 2017

2SLS Results

	2SLS Instrumental Variables for	
	Pos & Neg	Neg Only
Recall of positive ad	.527	.017
·	(.496)	(.022)
	184	090
Recall of negative ad	(.093)	(.049)

2SLS Results

	2SLS Instrumental Variables for	
	Pos & Neg	Neg Only
Recall of positive ad	.527	.017
	(.496)	(.022)
	− <i>.</i> 184	090
Recall of negative ad	(.093)	(.049)

Remember, this is the effect of the treatment on compliers.

