

Real Estate: Data Integration, Cleaning API & Modeling Project

Important Notes (Read Carefully)

- **Individual Project** This is strictly an individual assignment. Collaboration is not allowed.
- **Internet Use** You may search for concepts or documentation online. However, copying code directly from external sources is prohibited.
- **Evaluation Format** You will participate in a one-on-one review, where you must explain your process, decisions, and code functionality.
- Timeline
 - Start: Wednesday morning
 - Deadline: End of day Thursday
- **Early Submission** If you complete and push your project to GitHub early, you're free to leave the workspace.

Project Objective

This project simulates a real-world data science task. You will **collect property data from two real estate APIs**, **clean and integrate the data**, and then **build a robust predictive model** based on pricing. The final deliverable will be a GitHub repository containing all project artifacts. The primary challenges in this project are to implement the data cleaning process and the predictive model as separate APIs.

Assigned APIs

You'll be assigned two real estate APIs. Each API provides listings for properties for rent and properties for sale.

- API 1 Endpoint: https://www.rentcast.io/api
- API 2 Endpoint: https://www.datafiniti.co/data/property-data

Your task is to collect data relevant to the pricing and characteristics of listed properties.

Project Requirements

1. Data Collection from APIs

- Fetch relevant data (e.g., property title, location, number of rooms, price, size, listing type) from both APIs.
- Handle API authentication, rate limiting, and error handling as necessary.
- Save the raw data from each API in a structured format (e.g., JSON or CSV) before cleaning.

2. Data Cleaning & Integration (Mandatory, API is Challenge)

- **Implement data cleaning functions** in Python to address issues such as missing values, inconsistent formatting, and duplicates.
- **Combine data from both sources** into a single, cleaned dataset.
- Ensure consistency in column naming and data types.
- **Challenge:** Design and implement a RESTful API (e.g., using Flask or FastAPI) that exposes an endpoint for data cleaning.
 - The API should accept raw property data (e.g., as a JSON payload or a file upload).
 - It should apply your cleaning and integration logic.
 - The API should return the cleaned and integrated data in a structured format (e.g., JSON or a downloadable CSV).

3. Predictive Modeling (Mandatory, API is Challenge)

- Define a clear modeling objective, such as predicting property price.
- Prepare your dataset accordingly (split features/target, handle categorical variables, etc.).
- Implement and evaluate suitable Scikit-learn models for the task (e.g., Linear Regression, Decision Tree, Random Forest, Gradient Boosting).
- Justify your choice of models and evaluation metrics, and demonstrate the model's performance on unseen data.
- **Challenge:** Design and implement a RESTful API (e.g., using Flask or FastAPI) that exposes an endpoint for making predictions.
 - o The API should accept new, unseen property data (e.g., as a JSON payload).
 - o It should use your trained model to generate predictions.
 - The API should return the predicted values.

4. GitHub Repository

Each student must create a public GitHub repository with the following:

- Data collection scripts or notebooks (for fetching from APIs)
- Data cleaning scripts/functions (the core cleaning logic)
- **Data Cleaning API code** (if attempting the challenge, including requirements.txt and clear instructions to run)
- Final cleaned & combined dataset (output from the cleaning process, or from the cleaning API if implemented)
- Modeling code and trained model artifacts (if applicable)
- **Predictive Modeling API code** (if attempting the challenge, including requirements.txt and clear instructions to run)
- A brief README.md file explaining:
 - o Your objectives
 - APIs used for data collection
 - Steps taken in data collection and cleaning
 - How to run and interact with the cleaning API (if implemented)
 - Modeling approach and results
 - How to run and interact with the predictive modeling API (if implemented)

Deliverables Summary

Deliverable	Format
Raw API data (from each API)	JSON or CSV
Data Cleaning code (core logic)	.py script or notebook
Data Cleaning API code (Challenge)	.py scripts, Dockerfile (optional)
Final cleaned & combined dataset	CSV or JSON
Modeling code	Notebook or script
Predictive Modeling API code (Challenge)	.py scripts, Dockerfile (optional)
GitHub repository with all files	Public URL

Evaluation Criteria

	Component	Weight
٠	Data Collection from APIs	30%
	Data Cleaning & Integration (Mandatory)	30%
	Predictive Modeling (Mandatory)	25%
	Data Cleaning API & Predictive Modeling API (Challenge)	+15% Bonus
	Code Quality & GitHub Setup	15%

The bonus challenges will not affect your core score but can significantly boost your final evaluation if completed thoughtfully and correctly.

Final Reminders

- Structure your code professionally and document your functions.
- Keep your GitHub repo clean and organized, providing clear instructions for running your APIs (if implemented) and modeling code.
- Be prepared to explain your choices in the evaluation interview.