EXO-200 Chroma Simulation Report

Zixin Chen, Yale College, Class of 2023.5

Outline

Goal:

- Constrain the optical parameters of the material of the detector, cross-checking with experimental results
- Calculate the QE of LAAPDs used in EXO-200

Outline:

- Chroma vs GEANT 4
- Geometry and other simulation set-ups
- Lightmap matching and χ^2 analysis
- Discussions and Outlook

Chroma VS GEANT 4

2D view of a surface-based modelling example

Oriented triangles, direction by right-hand rule

	CPU	GPU
Model #	Intel Core i7-920	NVIDIA GeForce GTX 580
Transistors	0.731 billion	3 billion
Clock rate	$2.66~\mathrm{GHz}$	1.544 GHz
Peak FLOPS	85 GFLOPS	1544 GFLOPS

Comparison of the same-end CPU and GPU for Chroma testing, FLOPS = single precision floating point operations per second

- Efficient modelling
- Surface-based instead of solid-based
- Oriented triangles
- Optimization of the data structures for tracking
- GPU parallelization
- Simultaneous simulation of discrete photons
- Summary
- \sim 200x faster photon propagation

S. Seibert and A. LaTorre. (2011). Fast Optical Monte Carlo Simulation With Surface-Based Geometries Using Chroma

Geometry

G. Anton et al. Phys. Rev. Lett. 123, 161802 (2019)

- Geometric details included
- Disabled detection of dead LAAPDs
- Angle-dependent reflectivity of LAAPDs (measured by Erlangen group)
- Complete cathode

Gain variation

- Estimated gain variation from channel-by-channel ROOT lightmap at z coordinates near the TPC end planes
- Good accordance between individual TPCs
- Unit of Laser Calibration: ADC counts/photon
- Added gain variation from laser calibration

Gain variation and asymmetry

Estimated gain efficiency for all channels

Channel [#]

Laser calibrated gain efficiency for all channels

Channel [#]

- Asymmetry appears when comparing 2 TPCs together
- Cannot be compensated by gain variation alone

Baseline parameters

	Re(n)	Im(n)	Absorption length [mm]	Scattering length [mm]	Density [g/cm^3]
LXe	1.6951		20000	300	2.942
Copper	0.94		100	100	8.96

	Absorption [%]	Specular reflectivity [%]	Diffusive reflectivity [%]
PTFE	5	0	95
EXO Cathode (Phosphor Bronze)	60	40	0
EXO UV Wires (Phosphor Bronze)	60	40	0
APD Plane (Al+MgF ₂)	10	90	0
Acrylic*	50	50	0

- Materials to further constrain on

- LAAPDs surface uses angle-dependent reflectivity from Erlangen group measurements

^{*} Acrylic-made connectors/insulators have small solid-angle exposure inside EXO-200

Lightmaps at baseline

- Uses averaged ROOT file (not the channel-by-channel file)
- With no absolute scale, 2D lightmaps are normalized by the overall mean, 1D lightmap normalized by the maximum in individual TPC
- Cut made: $R \le 168$ mm, $|z| \le 192$ mm
- Optical asymmetry appears in 2D lightmap
- Slightly enhanced optical asymmetry after gain addition

Residues and cuts

Residue

Calculated as the absolute error between ROOT and Chroma lightmap, i.e. ROOT — Chroma

Cut made

- $R \le 168 \text{ mm}, |z| \le 192 \text{ mm}$
- Residue $\sim 8.91\% < 10\%$

Standard FV cut

- Hexagon with apothem of 162 mm
- At least 10 mm away (±181 mm) from the anode (±191 mm) and cathode wire planes
- Aggressive residue ~ 6.38%, with ~ 20mm more cut at the anodes, ~10mm less cut at the cathode

 $R - \phi$ comparison between cuts on modeled APD Plane

Residues in 3D

χ² analysis and best fit parameter

• 3D scan of the free parameters

- PTFE, absorption VS diffusive reflectivity
- Phosphor bronze (anode and cathode wires), absorption VS specular reflectivity
- Al+MgF2 (APD Plane), absorption VS specular reflectivity
- Reduced χ^2 calculation

$$-\chi^2 = \frac{1}{N} \sum_i \frac{(O_i - C_i)^2}{\sigma_i^2}$$

- O_i , ROOT lightmap
- C_i , Chroma simulation
- N (DOF), # of non-empty bins
- σ_i , statictical error on the mean, i.e std of efficiency distribution, $\sim 0.1\% \ll \sim 10\%$ residue
- Large reduced χ^2 from ignored yet dominant systematics error

χ^2 analysis and best fit parameter

3D scan results

- Phosphor bronze property can be readily chosen as fixed
- The extended scan of PTFE VS APD Plane shows unexpected: 1. irregularity 2. correlation
- Maybe attributed to: 1. close intervals, 2. overall scaling of absorption, 3. parametrization difference between residue and χ^2 test
- Current best fit from scan:

	Absorp tion [%]	Specular reflectivity [%]	Diffusive reflectivity [%]
PTFE	8	0	92
Phosphor Bronze	60	40	0
APD Plane	65	35	0

Discussions and Outlook

- Current status & future challenges
- Found a baseline fit that yields sub-10% residue
- Constrain the parameters to find a physical best fit
- Relationship between PTFE and APD Plane parameters
- Finish the extended scan of PTFE against APD Plane
- Use channel-by-channel lightmap to gain position-dependent information between APD Plane and PTFE
- Consider optical asymmetry via TPC-independent PTFE and APD Plane
- Consider more relationships such as PTFE specular reflectivity VS APD Plane specular reflectivity
- Material independence in 3D
- Reduced χ^2 scale
- Approximate systematic error with residue from the best fit
- Convert to the standard FV cut

Anti-correlation between APD Plane and PTFE from individual TPC evaluation

Acknowledgements

- The speaker would like to thank Prof. David Moore and Ako Jamil for their tremendous help with the project,
- And everyone here for listening.

Thanks