CSC 261/461 Introduction to Databases

Eustrat Zhupa

Constraints

Constraints determine valid values in a database.

- Inherent or Implicit Constraints: These are based on the data model itself.
- Schema-based or Explicit Constraints: Expressed in the schema with the facilities provided by the model.
- Application-based or semantic constraints: Beyond the expressive power of the model and must be specified and enforced by the application.

Implicit Constraints

- All values are considered atomic (indivisible).
 - no composite attributes
 - no multivalued attributes
- Each value in a tuple must be from the domain of the attribute for that column.

Mgr_ssn char(9)

A special NULL value is used to represent values that are unknown/inapplicable in certain tuples.

Explicit Constraints

The main types of constraints expressed in the relational model:

- **Domain** constraints
- Key constraints
- Entity integrity constraints
- Referential integrity constraints

Key Constraint

- **Superkey** of R: Is a set of attributes SK of R such that:
 - No two tuples in any valid relation state r(R) will have the same value for SK
- ► **Key** of R: A "minimal" superkey
 - a key is a superkey K such that removal of any attribute from K results in a set of attributes that is not a superkey

Question: Is the key a superkey? Is the superkey a key?

Example

	STUDENT		<i>y</i>	` `	•	_	_
	Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
,	Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21
,	Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
-	Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
•	Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
	Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25

Candidate Keys

CAR

License_number	Engine_serial_number	Make	Model	Year
Texas ABC-739	A69352	Ford	Mustang	02
Florida TVP-347	B43696	Oldsmobile	Cutlass	05
New York MPO-22	X83554	Oldsmobile	Delta	01
California 432-TFY	C43742	Mercedes	190-D	99
California RSK-629	Y82935	Toyota	Camry	04
Texas RSK-629	U028365	Jaguar	XJS	04

Entity Integrity

- ► The primary key attributes PK cannot have NULL values.
 - This is because primary key values are used to identify the individual tuples.
 - ▶ If PK has several attributes, NULL is not allowed in any of the attributes
- Other attributes of R may be constrained to disallow NULL values.

Referential Integrity

- A constraint involving two relations
- ▶ Used to specify a relationship among tuples in two relations:
 - ► The **referencing** relation and the **referenced** relation.
- ▶ attributes in the **foreign key** (FK) of R_1 have the same domain(s) as the attributes primary key (PK) of R_2 .
- Attributes FK in R₁ reference the attributes PK in R2.
 - A tuple t_1 in R_1 is said to reference a tuple t_2 in R_2 if $t_1[FK] = t_2[PK]$.

Example

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation	
1	Houston	
4	Stafford	
5	Bellaire	

Example

EMPLOYEE

Atribute and Tuple Constraints

In a CREATE TABLE statement, we can declare two kinds of constraints:

1. A constraint on a single attribute.

2. A constraint on a tuple as a whole.

```
CHECK (answer = 'F'OR name LIKE 'Mr.%')
```


Declaring Keys

- ► There are two declarations that may be used to indicate keys
 - 1. PRIMARY KEY
 - 2. UNIQUE
- the effect of declaring a set of attributes S to be a key is:
 - two tuples in R cannot agree on all of the attributes in set S, unless one of them is NULL.
 - any attempt to insert or update a tuple that violates this rule is rejected.
 - if PRIMARY KEY is used, then attributes in S do not allow NULL as value.

Referential Integrity

- Referential integrity is specified via FOREIGN KEY.
- referential integrity can be violated
 - when tuples are inserted or deleted, or
 - when a foreign key or primary key attribute value is modified.
- Default action that for an integrity violation is to reject the operation

Update Operations on Relations

- ► INSERT a tuple.
- DELETE a tuple.
- MODIFY a tuple.
- ▶ Integrity constraints *should not* be violated by the update operations.

Potential Violations

INSERT

- ► Domain constraint:
 - attribute values of new tuple not of the specified attribute domain
- ► Key constraint:
 - ▶ if the value of a key attribute in the new tuple already exists in another tuple in the relation
- ► Referential integrity:
 - if a foreign key value in the new tuple references a primary key value that does not exist in the referenced relation
- Entity integrity:
 - ▶ if the primary key value is NULL in the new tuple ▶

Possible Violations

DELETE

- ▶ DELETE may violate only referential integrity:
 - ► If the primary key value of the tuple being deleted is referenced from other tuples in the database
 - ► RESTRICT option: reject the deletion
 - ► CASCADE option: attempt to cascade the deletion by deleting tuples that reference the deleted tuple
 - SET NULL option: set the foreign keys of the referencing tuples to NULL

Possible Violations

UPDATE

- ► UPDATE may violate domain or NOT NULL constraint
- Any of the other constraints may also be violated:
 - Updating the primary key (PK):
 - Similar to a DELETE followed by an INSERT
 - Need to specify similar options to DELETE
 - Updating a foreign key (FK):
 - May violate referential integrity
 - Updating an ordinary attribute (neither PK nor FK):
 - Can only violate domain constraints

