Inteligencia Artificial

Representación Razonamiento y Lógica

Dr. Edgar Casasola Murillo edgar.casasola@ucr.ac.cr

Presentación en clase con fines académicos, del material de lectura de (Russell & Norvig) Artificial Intelligence A Moder Aproach, Capítulo 6. (Fair use according to Copyright Act Section 107.)

Objetivo: Construir Agentes Con Conocimiento

function KB-AGENT(percept) returns an action **persistent**: KB, a knowledge base t, a counter, initially 0, indicating time t, dice Base lo que Tell(KB, Make-Percept-Sentence(percept, t))percibió $action \leftarrow Ask(KB, Make-Action-Query(t))$ de Tell(KB, Make-Action-Sentence(action, t))Conocimiento $t \leftarrow t + 1$ return action t, pregunta que acción tomar 0 0 t, percibe t_dice que acción tomó Realidad Tiempo t++ Agente y repite

Niveles de conocimiento

- Nivel epistemológico: Representación de los conceptos o conocimiento.
- Nivel lógico: Sentencias sobre la realidad que se representa
- 1. Lenguaje de Representación de Conocimiento.
- Base de Conocimiento (Knowledge-Base), afirmaciones u oraciones (sentences). *
- 3. Mecanismo de Inferencia
 - (*) Si una afirmación no es derivada de otras se le llama "axioma"

¿Cómo represento el significado de algo? Triángulo Semiótico

Significante o Término: Forma sensible y meramente percibida del signo lingüístico.

Significado, o concepto ideal y abstracto asociado a dicho significante (y que puede serlo de forma natural, de forma convencional o por relaciones de semejanza, según sea indicador -**indicio**-, simbólico -**símbolo**- o icónico -**icono**-)

Referente u objeto real del mundo al que se asocian tanto significado como significante.

(Charles Kay Ogden e Ivor Armstrong Richards) El significado del significado (The Meaning of Meaning, 1923).

Representación del conocimiento

Procedimiento de inferencia

1) Generación de nuevas afirmaciones

2) Verificación de una nueva afirmación

Lógica Proposicional - Sintáxis

```
Sentence → AtomicSentence | ComplexSentence
          AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid R \mid \dots
        ComplexSentence \rightarrow (Sentence) \mid [Sentence]
                                     ¬ Sentence
                                     Sentence \wedge Sentence
                                     Sentence \lor Sentence
                                     Sentence \Rightarrow Sentence
                                     Sentence \Leftrightarrow Sentence
OPERATOR PRECEDENCE : \neg, \land, \lor, \Rightarrow, \Leftrightarrow
```

Lógica Proposicional - Reglas

- ¬P is true iff P is false in m.
- P ∧ Q is true iff both P and Q are true in m.
- P ∨ Q is true iff either P or Q is true in m.
- P ⇒ Q is true unless P is true and Q is false in m.
- P ⇔ Q is true iff P and Q are both true or both false in m.

Equivalencias Lógicas

$$(\alpha \land \beta) \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\ (\alpha \lor \beta) \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\ ((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\ ((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) \quad \text{De Morgan} \\ (\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\ (\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land \\ \end{pmatrix}$$

Lógica de Predicados de Primer Orden

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts facts facts with degree of truth ∈ [0, 1]	true/false/unknown true/false/unknown true/false/unknown degree of belief ∈ [0, 1] known interval value