Advanced Microeconomics for Policy Analysis I

Fall 2021

Problem Set 1

Problem 1. Consider a set of k elements, $A = \{a_1, a_2, \ldots, a_k\}$, with $a_i \in \mathbb{R}_+^L$ for each $i = 1, 2, \ldots, k$. Show that a consumer with complete and transitive preferences over A is able to rank all the elements in A according to her preferences, from the most to the least preferred one. (Do not worry about indifference.)

Problem 2. Assume that A, the set of alternatives, is finite, that \succeq is rational, and that there is no pair of alternatives $x \neq y$ with $x \sim y$.

- a. Show that $C^*(\cdot, \succsim)$ is resolute.
- b. Show that $C^*(\cdot, \succsim)$ is contraction consistent.

Problem 3. Show that, if \succeq is transitive, then both \succ and \sim are transitive as well.

Problem 4. Suppose \succeq is transitive. Show that, if $x \succ y$ and $y \succeq z$, then $x \succ z$.

Problem 5. Consider the set of alternatives $A = \{an \ orange, an \ apple, a \ peach\}$, and the following preference relation over the elements of A:

$$\succeq = \{(orange, orange), (orange, apple), (apple, apple), (apple, peach), (peach, orange), (peach, peach) \}.$$

- a. Is this preference relation complete?
- b. Is it transitive?

Problem 6. Let X be a finite set. For a set S, we write |S| to denote the number of elements in S.

Let $V: X \to \mathbb{R}$ be some real-valued function on X. Check whether the following choice correspondences satisfy contraction consistency.

[Keep in mind: In order to prove contraction consistency, consider two sets $A, B \in X$, with $A \subset B$. If $x \in A$ and $x \in C(B)$, you want to check that $x \in C(A)$.]

- a. $C(A) = \{x \in A : \text{the number of } y \in X \text{ with } V(x) \ge V(y) \text{ is at least } |X|/2\}.$ If this set is empty, then C(A) = A.
- b. $D(A) = \{x \in A : \text{the number of } y \in A \text{ with } V(x) \ge V(y) \text{ is at least } |A|/2\}$

c. $E(A) = \{x \in A : y \succsim x \text{ for all } y \in A\}$, where \succsim is complete.

Problem 7. Consider the set of integers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$, and the following preference relation over \mathbb{Z} : for any two elements $a, b \in \mathbb{Z}$, $a \succeq b$ if, and only if, $a \geq b$.

- a. Is \succeq rational?
- b. Does $u(x) = x^2$ represent \gtrsim ?
- c. Does v(x) = x represent \gtrsim ?
- d. Briefly discuss (b) and (c), in light of the fact that "any strictly increasing transformation of a function that represents a preference relation still represents the same preference relation."