Today:
Of EM Recap
I Markov Chains: Basics
- The markov Property
- Markov Chains
- Definitions
- Examples and Visualizations
- Characterizing Markov Chains

Next week.
- Time-evolution of Markov Charles
- Stationary Behaviors
M M
No Homework this week.

I Markov Chains

{Ax3kz1 I = N

- (a) Dependent: $P(\hat{n}_{A_K}) = P(A_1) \cdot P(A_2|A_1) \cdot \cdots \cdot P(A_n|\{A_k\}_{k=1}^{n-1})$
- (b) Independent: $\Rightarrow P(A_1) \cdot P(A_2) \cdot P(A_n)$

In between (9) and (6), we have:

(G) Markov Property:

 $P(\hat{N} A_k) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_2) \cdots P(A_n|A_{n-1})$

- Models "Local" dependence between events
with locality defined in terms of the index set.

- Greneral term for local neighborhood of dependence:

T = NXN

Extend this to random variables.

Definition: Markov Chain
Given
y an index set: I
ii a state space (or phase space): 1
ij a sequence of random variables (indexed)
$X_k: \Omega \longrightarrow \Lambda$
EXXX JKET is a Markor Chain (mc)
$P(x_{k+1} \{x_i\}_{i=1}^k) = P(x_{k+1} x_k)$

		Stark	, time
Typical ty	pes of MCs	· (M,	1 1 1)
	DTFS : Disc	crebe Time	Finite State
mcmc > -	DTIS : Disc	rete Time	Infinite State
	CTIS : Cont	invovs Time	Intimite State
	Assumption) Pather: I=N,		
P	(Xx+1= 1 Xx = 5	$= \rho_{s\rightarrow s}$	-
P	(XK+ = 5 XK=1	·) = Pr->s	·
P	(XKH = 5 XK = 5	$= \rho_{s \rightarrow s}$	<u> </u>
	(XK+1 = r XK = 1	,	

Ex Ehrenfesti Model	A	В	
N = A + B	0000	900	
	0000	000	
- @step K, pick 1			
-> transfor it to	other bin	@ step K+1	
$X_K = \# \text{ of } E$	palls in uri	A @ step 1	K
$\int P(X_{k+1} = m+1 \mid X_{k} = m)$ $\int P(X_{k+1} = m-1 \mid X_{k} = m)$	$= \frac{N-m}{N}$ $= \frac{m}{N}$	(picked for A uro	(m)

	@ Step t, the pro	
transitioning	between states a	and $b(b=a\pm 1)$
changes with	the time t.	and $b(b=a\pm 1)$
		e atomstiz model
		Usion across a barrier
The relative	transition probabil	ityes (N-M, M)
reflect "osmotic	· pressure.	
- Converges to	the Max entropy	distribution (uniform)

	General, if we have a process EXX
	$X_{k+1} = g(X_k, Z_k)$ here Z_k is an independent improve time
=)	here Zk is an independent immovation {Xk} is an MC.
	(Zx)x) iid => homogeneous mc

Markov Chain Repr	esentations
The Markov assumption	
dimension reduction assu	metion
PCDI	AK)
Defendenté	Maskov
P(A,).P(A21A,)P(A218A3")	P(A,) . P(A2/A,) P(An/An-1)
track of 1 Pobabilities	track of 12 transition probabilities

For DTFS MCs, representation:
in The Transition Matrix 1:
eg $\Lambda = \{r, s\}$ i.e. every row is
eg 1 = Er, s3 i.e. every row is
s a pmf vector
$P = \begin{pmatrix} P_{r \rightarrow r} & P_{r \rightarrow s} \end{pmatrix}, P = \begin{pmatrix} P_{ij} \end{pmatrix}_{ij} \in A$ $P_{s \rightarrow r} & P_{s \rightarrow s} \end{pmatrix}$
S Pror Pros
$P_{r\rightarrow s} = P(X_{k+1} = s \mid X_{k} = r)$
[note assumption of homogeneity"]

ij Transition Graph: States as nodes Transition probabilities as edges.
Pras Springer
P is the (directed) adjacency matrix of the the transition graph.

