Chapitre 1

Espaces de Banach

1.1 Rappel sur les espaces vectoriels normés

1.1.1 Norme sur un espace vectoriel

Définition 1.1. (Rappel) Soit X un espace vectoriel sur \mathbb{C} .

Une application $\|.\|: X \to \mathbb{R}_+$ *est dite norme sur* X *si* :

- 1. $\forall x \in X : ||x|| = 0 \Leftrightarrow x = 0$ (Séparation)
- 2. $\forall x \in X, \forall \lambda \in \mathbb{C} : ||\lambda x|| = |\lambda| ||x||$ (Homogénéité)
- 3. $\forall x, y \in X : ||x + y|| \le ||x|| + ||y||$ (Inégalité triangulaire)

Définition 1.2. Un espace vectoriel muni d'une norme est dit espace vectoriel normé.

Exemples 1. Les applications $\|.\|_p$, $(1 \le p < \infty)$ et $\|.\|_\infty$ sont des normes sur \mathbb{C}^n où

$$||x||_p = (\sum_{n=1}^{+\infty} |x_n|^p)^{\frac{1}{p}}$$

et

$$||x||_{\infty} = \max_{n \ge 1} |x_n|, \quad x = (x_k)_{k=1}^n \in \mathbb{C}^n$$

2. L'application $\|.\|_{\infty}$ sur l'espace vectoriel $X = \mathcal{C}([a,b],\mathbb{R})$ des fonctions continues sur un segment compact [a,b] de \mathbb{R} et définie par

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|, f \in X$$

est une norme sur X.

1.2 Espaces de Banach

Définition 1.3. Une suite $(x_n)_n$ d'un espace vectoriel normé (X, ||.||) est dite de Cauchy dans X si

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}/\forall n, m \in \mathbb{N} : (n > N \text{ et } m > N) \Rightarrow (\|x_n - x_m\| < \varepsilon)$$

Définition 1.4. La suite $(x_n)_n$ est dite convergente vers un élément $x \in X$, si

$$\lim_{n \to +\infty} ||x_n - x|| = 0$$

i.e.,

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}/\forall n \in \mathbb{N} : (n \ge N) \Rightarrow (\|x_n - x\| < \varepsilon)$$

et l'on écrit

$$\lim_{n \to +\infty} x_n = x$$

Définition 1.5. Soit X un espace vectoriel normé. Si toute suite de Cauchy dans X est convergente dans X, l'espace X est dit complet.

Définition 1.6. Un espace vectoriel normé complet est appelé espace de Banach. ¹

^{1.} Stefan Banach (1892-1945) est un grand mathématicien polonais. Ses travaux ont surtout porté sur l'analyse fonctionnelle dont il est l'un des fondateurs.

A. Nasli Bakir

Exemples 1. Les espaces \mathbb{C}^n , $n \geq 1$ et $L_2([a,b],\mathbb{C})$ sont des espaces de Banach.

2. Les espaces

$$\ell_p := \left\{ x = (x_n)_n \subset \mathbb{C} : \sum_{n=1}^{+\infty} |x_n|^p < +\infty \right\}, 1 \le p < \infty$$

et

$$\ell_{\infty} := \left\{ x = (x_n)_{n \ge 1} \subset \mathbb{C} : \sup_{n \ge 1} |x_n| < +\infty \right\}$$

munis de normes

$$||x||_p = \sum_{n=1}^{+\infty} |x_n|^p)^{\frac{1}{p}}$$
 et $||x||_{\infty} = \sup_{n \ge 1} |x_n|$

respectivement où $x = (x_n)_{n \ge 1}$, sont des espaces de Banach.

Proposition 1.1. L'espace ℓ_2 est complet.

Preuve. Soit donc

$$x_n = (\xi_1^{(n)}, \xi_2^{(n)}, \xi_3^{(n)}, \dots, \xi_n^{(n)}, \dots) \in \ell_2$$

une suite de Cauchy. Pour k fixé, on a

$$\left|\xi_k^{(n)} - \xi_k^{(m)}\right| \le \|x_n - x_m\| \to 0$$
 (1)

quand $n, m \to +\infty$. La suite $\left(\xi_k^{(n)}\right)_{n\geq 1}$ est donc de Cauchy dans $\mathbb C$. Elle est donc convergente. Soit $\xi_k = \lim_{n \to +\infty} \xi_k^{(n)}$, et posons $x = (\xi_1, \xi_2, ..., \xi_n, ...)$. Montrons que $x \in \ell_2$, et que $\lim_{n \to +\infty} x_n = x$.

Pour tout entier $j, j \ge 1$, on a

$$\sum_{k=1}^{j} |\xi_k|^2 = \lim_{n \to +\infty} \sum_{k=1}^{j} |\xi_k^{(n)}|^2$$
 (2)

et

$$\sum_{k=1}^{j} \left| \xi_k^{(n)} \right|^2 \le \|x_n\|^2 \tag{3}$$

De plus, $\sup_{n\geq 1} ||x_n|| = M < +\infty$ car

$$|||x_n|| - ||x_m||| \le ||x_n - x_m|| \to 0, n, m \to +\infty$$

Il s'ensuit donc de (2) et (3) que

$$\sum_{k=1}^{+\infty} \left| \xi_k^{(n)} \right|^2 \le M^2$$

, i.e., $x \in \ell_2$. D'autre part, pour $\epsilon > 0$, il existe $N_{\epsilon} \in \mathbb{N}$ tel que pour tous n, m, n > N et $m > N_{\epsilon}$, et tout $p \in \mathbb{N}$:

$$\sum_{k=1}^{p} \left| \xi_k^{(n)} - \xi_k^{(m)} \right|^2 \le \|x_n - x_m\|^2 < \epsilon \tag{4}$$

Fixons $n \geq N_{\epsilon}$ et faisons tendre m vers $+\infty$. De (1) et (4), on obtiendra pour tout p

$$\sum_{k=1}^{p} \left| \xi_k^{(n)} - \xi_k \right|^2 = \lim_{m \to +\infty} \sum_{k=1}^{p} \left| \xi_k^{(n)} - \xi_k^{(m)} \right|^2 \le \epsilon$$

Par conséquent,

$$||x_n - x||^2 = \sum_{k=1}^{+\infty} |\xi_k^{(n)} - \xi_k|^2 \le \epsilon$$

4

Remarque On verra plus tard que les espaces $\ell_p, (1 \le p \le +\infty)$ sont tous complets.

1.2.1 Normes équivalentes

Définition 1.7. Deux normes $\|.\|_1$ et $\|.\|_2$ sur un espace vectoriel normé X sont dites équivalentes sur X s'il existe des constantes $c_1, c_2 > 0$ telles que

$$||x||_1 \le c_1 ||x||_2 \le c_2 ||x||_1$$

pour tout $x, x \in X$.

10 A. Nasli Bakir

Remarque Il est clair que si $\|.\|_1$ et $\|.\|_2$ sont des normes équivalentes sur X, alors toute suite de Cauchy $(x_n)_n$ qui converge dans $(X, \|.\|_1)$, converge également dans $(X, \|.\|_2)$ et l'inverse. De même, toute suite de Cauchy dans $(X, \|.\|_1)$ est une suite de Cauchy dans $(X, \|.\|_2)$.

On a donc le résultat important suivant

Théorème 1.1. [?] Deux normes sur un espace vectoriel de dimension finie sont équivalentes.

Remarque Ce résultat est généralement faux si le corps de l'espace X n'est pas complet. En effet, soit $X=\mathbb{Q}[\sqrt{2}]=\{a+b\sqrt{2},a,b\in\mathbb{Q}\}.$

On vérifie aisément que X est un \mathbb{Q} -sous-espace vectoriel de \mathbb{R}^2 . De plus, X est isomorphe à \mathbb{Q}^2 . D'où, $\dim X=2$.

On définit les applications $\|.\|_1, \|.\|_2: X \to \mathbb{R}$ par

$$||a + b\sqrt{2}||_1 = |a| + |b|$$
 et $||a + b\sqrt{2}||_2 = |a + b\sqrt{2}|$

On vérifie facilement que ces applications sont des normes sur X.

Considérons les suites $(u_n)_n$ et $(v_n)_n$ où

$$u_n = (1 - \sqrt{2})^n \text{ et } v_n = (1 + \sqrt{2})^n, n \in \mathbb{N}$$

Les termes u_n et v_n peuvent être écrits sous la forme

$$u_n = a_n - b_n \sqrt{2}$$
 et $v_n = a_n + b_n \sqrt{2}$

où $a_n, b_n \in \mathbb{N}, n \in \mathbb{N}$. Par conséquent,

$$a_n = \frac{u_n + v_n}{2}$$

Comme $\lim_{n\to+\infty}u_n=0$ et $\lim_{n\to+\infty}v_n=+\infty$, la suite $(a_n)_n$ est divergente et

$$\lim_{n \to +\infty} a_n = +\infty$$

D'où,

$$\lim_{n \to +\infty} ||u_n||_1 = +\infty$$

et

$$\lim_{n \to +\infty} ||u_n||_2 = 0$$

La suite $(\frac{\|u_n\|_1}{\|u_n\|_2})_n$ n'est donc pas bornée, et par suite, les normes $\|.\|_1$ et $\|.\|_2$ ne sont pas équivalentes sur X.

1.3 Espaces de Banach séparables

Définition 1.8. Un espace vectoriel normé X est dit séparable si X contient un ensemble dénombrable et dense dans X.

Exemple L'espace $(\mathbb{R}, |.|)$ est séparable. L'ensemble \mathbb{Q} des nombres rationnels est dénombrable et dense dans \mathbb{R} .

Proposition 1.2. Les espaces ℓ_p , $(1 \le p < \infty)$ cités ci-dessus, sont séparables. Toutefois, l'espace ℓ_∞ ne l'est pas.

Remarque Si X est de Hilbert séparable, alors X admet une base orthonormale dénombrable $\{\varphi_n\}_{n\geq 1}$, et tout élément x de X s'écrit

$$x = \sum_{n=1}^{+\infty} \lambda_n \varphi_n$$

où $\lambda_n \in \mathbb{C}, n \geq 1$. Or, pour un espace de Banach, on a la définition suivante

Définition 1.9. Une suite $(x_n)_n$ dans un epace de Banach X est dite base de Schauder pour X si pour tout $x \in X$, il existe une suite unique $(\alpha_k)_{k>1}$ dans \mathbb{C} , telle que

$$x = \sum_{n=1}^{+\infty} \alpha_n x_n$$

12 A. Nasli Bakir

Exemple La base standard $(e_n)_{n\geq 1}$ où $e_n=(0,0,...,1,0,0,...)$ est une base de Schauder de l'espace $\ell_p, 1\leq p<\infty.$

Remarque On verra plus tard qu'il existe des espaces de Hilbert non séparables.