On the Modularity of Industrial SAT Instances

Carlos Ansótegui

DIEI, UdL, Lleida, Spain

Jordi Levy

IIIA, CSIC, Barcelona, Spain

CCIA'11, Lleida, Spain

SAT

- SAT is a central problem in computer science and AI with theoretical and practical applications
- The problem is NP-complete
- State-of-the-art solvers (heuristics, backjumping, learning, restarts, . . .) are of practical use with real-world SAT instances
- SAT competitions: good solvers for random SAT inst. are bad for industrial inst. and vice versa
- Objective: Design solvers that perform well on real-world SAT instances

SAT

- SAT is a central problem in computer science and AI with theoretical and practical applications
- The problem is NP-complete
- State-of-the-art solvers (heuristics, backjumping, learning, restarts, . . .) are of practical use with real-world SAT instances
- SAT competitions: good solvers for random SAT inst. are bad for industrial inst. and vice versa
- Objective: Design solvers that perform well on real-world SAT instances

What is a "real-world" SAT instance?

SAT Formulas as Graphs

Clause-Variable Incidence Graph:

Nodes: are variables **v** and clauses **c**

Edges: \mathbf{v} — \mathbf{c} if clause \mathbf{c} contains variable \mathbf{v}

with weight w=1

SAT Formulas as Graphs

Clause-Variable Incidence Graph:

Nodes: are variables **v** and clauses **c**

Edges: **v**—**c** if clause **c** contains variable **v**

with weight w = 1

Arity of nodes: \mathbf{v} number of occurrences of \mathbf{v}

c size of c

SAT Formulas as Graphs

Clause-Variable Incidence Graph:

Nodes: are variables **v** and clauses **c**

Edges: **v**—**c** if clause **c** contains variable **v**

with weight w = 1

Variable Incidence Graph:

Nodes: are variables •

Edges: $v_1 - v_2$ if some clause c contains variables v_1 and v_2

with weight $w = \frac{1}{\binom{|c|}{2}}$

the sum of the weights of the edges generated by a clause is one

What is the Structure of Industrial Instances?

 $\begin{array}{c} {\sf Random~3\text{-}CNF}\\ {\sf (in~the~fase~transition~point)} \end{array}$

Variables have close to 4.25*3=12.75 occurrences

Real-World Instance

What is the Structure of Industrial Instances?

- Analyzed 100 instances of the SAT Race 2008
- n = 25.693.792 variables
- $\sum_{i=1}^{n} N(i) = 349.760.681$ occurrences
- $E[N(i)] = \sum_{i=1}^{n} N(i)/n = 13.6$ average number of occurrences

- Analyzed 100 instances of the SAT Race 2008
- n = 25.693.792 variables
- $\sum_{i=1}^{n} N(i) = 349.760.681$ occurrences
- $E[N(i)] = \sum_{i=1}^{n} N(i)/n = 13.6$ average number of occurrences
- 90% of variables have less than this number of occurrences
 60% have 6 or less occurrences

- Analyzed 100 instances of the SAT Race 2008
- n = 25.693.792 variables
- $\sum_{i=1}^{n} N(i) = 349.760.681$ occurrences
- $E[N(i)] = \sum_{i=1}^{n} N(i)/n = 13.6$ average number of occurrences
- 90% of variables have less than this number of occurrences
 60% have 6 or less occurrences
- Let N(i) = number of occurrences of the ith most frequent variable $(N(i) \ge N(i+1))$
- Estimate

$$\phi^{ind}(i/n) = \frac{n}{\sum_{j=1}^{n} N(j)} N(i)$$

Estimate

$$\phi^{ind}(i/n) = \frac{n}{\sum_{j=1}^{n} N(j)} N(i)$$

Estimate

$$\phi^{ind}(i/n) = \frac{n}{\sum_{j=1}^{n} N(j)} N(i)$$

We have $\phi^{ind}(x) \sim x^{-\beta}$ for $\beta \approx 0.82$

 $P(ocurrences = k) \sim k^{-\alpha}$, where $\alpha = 1/\beta + 1 = 2.22$

Conclusions

"Everything should be made as simple as possible, but no simpler"

Aha! (over-simplification)

 We may think that variable hubs are backdoors, solvers instantiate them and solve the problem...

But, it is not so easy...

- Variable selection heuristics are not so simple, the consider how many times variables participate in conflicts (activity), and even some randomness...
- Given a random formula, added learned clauses make it scalefree!!!
- Scalefree structure is not lost by instantiations!!!

$$Q = \frac{\textit{inner edges}}{\textit{total edges}} - \frac{\textit{expected inner edges}}{\textit{total edges}}$$

$$Q = \frac{\textit{inner edges}}{\textit{total edges}} - \frac{\textit{expected inner edges}}{\textit{total edges}}$$

$$Q = \frac{10}{12} - \frac{7 \cdot \frac{7}{24} + 8 \cdot \frac{8}{24} + 9 \cdot \frac{9}{24}}{12} \approx 0.8333 - 0.3368 = 0.4965$$

Modularity

Modularity $Q \in [-1 \ 1]$ measures **how good** is partition $P = \{P_i\}$

$$Q = \frac{\textit{inner edges}}{\textit{total edges}} - \frac{\textit{expected inner edges}}{\textit{total edges}}$$

For w-weighted graphs:

$$Q = \sum_{P_i \in P} \frac{\sum_{x,y \in P_i} w(x,y)}{\sum_{x,y \in V} w(x,y)} - \sum_{P_i \in P} \left(\frac{\sum_{x \in P_i} \deg(x)}{\sum_{x \in V} \deg(x)} \right)^2$$

where $\deg(x) = \sum_{y \in V} w(x, y)$

Modularity

Modularity $Q \in [-1 \ 1]$ measures **how good** is partition $P = \{P_i\}$ For *w*-weighted graphs:

$$Q = \sum_{P_i \in P} \frac{\sum_{x,y \in P_i} w(x,y)}{\sum_{x,y \in V} w(x,y)} - \sum_{P_i \in P} \left(\frac{\sum_{x \in P_i} \deg(x)}{\sum_{x \in V} \deg(x)} \right)^2$$

where $deg(x) = \sum_{y \in V} w(x, y)$ For (V_1, V_2) -bi-partite graphs:

$$Q = \sum_{P_i \in P} \frac{\displaystyle\sum_{\substack{x \in P_i \cap V_1 \\ y \in P_i \cap V_2}} w(x,y)}{\displaystyle\sum_{\substack{x \in V_1 \\ v \in V_2}} w(x,y)} - \sum_{P_i \in P} \frac{\displaystyle\sum_{x \in P_i \cap V_1} \deg(x)}{\displaystyle\sum_{x \in V_1} \deg(x)} \cdot \frac{\displaystyle\sum_{y \in P_i \cap V_2} \deg(y)}{\displaystyle\sum_{y \in V_2} \deg(y)}$$

Modularity

Modularity $Q \in [-1 \ 1]$ measures **how good** is partition $P = \{P_i\}$ For w-weighted graphs:

$$Q = \sum_{P_i \in P} \frac{\sum_{x,y \in P_i} w(x,y)}{\sum_{x,y \in V} w(x,y)} - \sum_{P_i \in P} \left(\frac{\sum_{x \in P_i} \deg(x)}{\sum_{x \in V} \deg(x)} \right)^2$$

where $deg(x) = \sum_{y \in V} w(x, y)$ For (V_1, V_2) -bi-partite graphs:

$$Q = \sum_{P_i \in P} \frac{\displaystyle\sum_{\substack{x \in P_i \cap V_1 \\ y \in P_i \cap V_2}} w(x, y)}{\displaystyle\sum_{\substack{x \in V_1 \\ y \in V_2}} w(x, y)} - \sum_{P_i \in P} \frac{\displaystyle\sum_{\substack{x \in P_i \cap V_1 \\ x \in V_1}} \deg(x)}{\displaystyle\sum_{\substack{x \in P_i \cap V_2 \\ x \in V_1}} \deg(x)} \cdot \frac{\displaystyle\sum_{\substack{y \in P_i \cap V_2 \\ y \in V_2}} \deg(y)}{\displaystyle\sum_{\substack{y \in P_i \cap V_2 \\ y \in V_2}} \deg(y)}$$

Maximaxing modularity is NP-complete

A Clustering Algorithm

```
Input: G = (X, w)
Output: a labelling for X
for x \in X do label[x] := x endfor
do
     changes := false
     for i \in |X| in random order do
           l := most\_freq\_label(i, neighbors(i))
           if l \neq label[i] then
                 changes := true
                 label[i] := I
     endfor
while changes
return label
```

Modularity of SAT Race 2010

		Variable Incid. Graph (VIG)								Clause-Variable Incid. Graph (CVIG)						
Family (#inst.)		time	IEF		Q Q	P		iter.			IEF ^e		<i>P</i>	larg.	iter	
cripto.	desgen(4)	7	0.89	0.01	0.88	517	0.01	34	15	0.77	0.00	0.77	2752	0.01	28	
	md5gen(3)	6	0.61	0.00	0.61	7151	0.00	15	43	0.78	0.00	0.78	6934	0.00	32	
	mizh(8)	2	1.00	1.00	0.00	21	1.00	4	52	0.78	0.10	0.69	4505	0.30	33	
ver.	ibm(4)	13	0.80	0.00	0.80	2681	0.01	10	51	0.79	0.00	0.79	8839	0.00	18	
	manolios(16)	10	0.97	0.71	0.26	44	0.82	9	100	0.76	0.00	0.76	5115	0.01	35	
ard.	velev (10)	(1)	0.90	0.52	0.38	70	0.65	10								
۲	anbulagan(8)	31	0.56	0.00	0.56	36745	0.00	11	88	0.87	0.00	0.87	13875	0.00	18	
	bioinf(6)	8	0.80	0.18	0.62	172	0.38	4	37	0.82	0.37	0.46	2147	0.43	30	
mixed	diagnosis(4)	62	0.63	0.00	0.63	16372	0.02	14	198	0.74	0.00	0.74	31999	0.00	25	
ij	grieu(3)	0	1.00	1.00	0.00	1.0	1.00	2	9	0.97	0.92	0.05	1.7	0.96	13	
	jarvisalo(1)	0	0.59	0.01	0.57	260	0.05	8	0	0.73	0.00	0.72	294	0.01	12	
	palacios(3)	134	0.96	0.62	0.34	2117	0.66	66	269	0.81	0.10	0.72	2853	0.17	49	
soft. ver.	babic(2)	61	0.70	0.02	0.68	34033	0.08	54	379	0.72	0.01	0.71	61577	0.05	86	
	bitverif(5)	78	0.97	0.58	0.39	83	0.64	96	363	0.82	0.02	0.80	9145	0.05	199	
	fuhs(4)	8	0.93	0.76	0.17	379	0.79	25	5	0.71	0.06	0.64	5747	0.13	13	
	nec(10)	207	0.99	0.87	0.12	372	0.93	22	882	0.80	0.02	0.78	31914	0.02	114	

Modularity of Learned Clauses

		V	ariable	Incid	. Gra	ph		Claus	e-Vari	able Ir	ncid.	Graph	0.09 0.02 0.29 0.09 0.04 0.15 0.00 0.33			
Family	orig.	g. first 100 learned				all learned			first	100 le	all learned					
	Q	IEF	IEF ^e	Q	IEF	IEF ^e	Q	Q	IEF	IEF ^e	Q	IEF	IEF ^e	Q		
desgen(1)	0.89	0.77	0.03	0.74	0.12	0.04	0.08	0.77	0.33	0.05	0.28	0.14	0.04	0.09		
md5gen(1)	0.61	0.76	0.02	0.74	0.03	0.01	0.02	0.78	0.99	0.03	0.96	0.03	0.01	0.02		
ibm(2)	0.84	0.70	0.11	0.60	0.48	0.01	0.47	0.81	0.70	0.11	0.58	0.29	0.00	0.29		
manolios(10)	0.21	0.87	0.84	0.04	0.80	0.71	0.10	0.76	0.13	0.02	0.11	0.10	0.01	0.09		
anbulagan(2)	0.56	0.18	0.02	0.16	0.02	0.01	0.01	0.87	0.10	0.01	0.10	0.06	0.02	0.04		
bioinf(4)	0.62	0.57	0.12	0.46	0.42	0.36	0.06	0.68	0.77	0.08	0.69	0.24	0.09	0.15		
grieu(1)	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00		
babic(2)	0.68	0.84	0.48	0.36	0.84	0.48	0.36	0.71	0.55	0.22	0.33	0.55	0.22	0.33		
fuhs(1)	0.66	0.67	0.08	0.59	0.24	0.10	0.14	0.71	0.80	0.02	0.78	0.09	0.01	0.07		
nec(10)	0.12	0.89	0.88	0.01	0.96	0.84	0.12	0.78	0.73	0.24	0.49	0.70	0.46	0.24		

Other Clustering Algorithms

- methods based on simulated annealing
- based on spectral analysis of graphs
- Gready algorithms:
 - [Newman'04] [Clauset,Newman, Moore'04] Start with every node in a singleton partition Join two partitions maximizing ΔQ Stop when all joining decrease Q
 - [Raghavan, Albert, Kumara'07]
 Start with every node in a singleton partition
 Move a node to the partition where it has more neighbors
 Stop when every node is with most of its neighbors
 - [Blondel et al.'08] Start with every node in a singleton partition Move a node to the partition where ΔQ is maximized Stop when no movement improves Q