PRACTICE PROBLEMS ON RECTIFICATI

TYPE – I

- 1. Find the circumference of the circle of radius a.
- 2. Find the length of the arc of the parabola $y^2 = 8x$ cut off by the latus rectum.
- **3.** Find the arc length of $x^2 = 4y$ cut off by its latus rectum.
- 4. Show that the length of the parabola $y^2 = 4ax$ from the vertex to the end of the latus rectum is $a[\sqrt{2} + log(1 + \sqrt{2})]$. Find the length of arc cut off by the line 3y = 8x
- **5.** Find the arc length of $y^2 = 4x$ cut off by the line y = 2x.
- **6.** Find the length of arc of parabola $y^2 = 4a(a x)$ cut off by the y-axis.
- 7. Draw the curve y = x(2 x) and find the length of an arc from x = 0 to x = 2.
- 8. Find the length of the parabola $x^2 = 4y$ which lies inside the circle $x^2 + y^2 = 6y$
- 9. Find the length of the arc of parabola $y^2 = 4x$ which lies inside the curve $x^2 + y^2 = 5$
- **10.** Show that the length of the arc of the curve $ay^2 = x^3$ from the origin to the point whose abscissa is b is $\frac{8a}{27} \left[\left(1 + \frac{9b}{4a} \right)^{3/2} 1 \right]$
- **11.** Find the arc length of $ay^2 = x^3$ from (0,0) to (a,a)
- **12.** Find the length of the arc of $y = e^x$ from (0, 1) to (1, e)
- **13.** Prove that the length of the arc of the curve $y = log\left(\frac{e^x 1}{e^x + 1}\right)$ from x = 1 and x = 2 is $log\left(e + \frac{1}{e}\right)$
- **14.** Find the length of the arc of the curve $y = log(tan h \frac{x}{2})$ from x = 1 to x = 2
- **15.** Find the total length of the curve $x^{2/3} + y^{2/3} = a^{2/3}$
- 16. For the astroid $x^{2/3} + y^{2/3} = a^{2/3}$, show that $s^3 \propto x^2$ where s is the length of the arc, measured from the cusp which lies on y axis to any point (x, y)
- **17.** Show that if s is the arc of the curve $9y^2 = x(3-x)^2$ measured from the origin to the point P(x,y) then $3S^2 = 3y^2 + 4x^2$
- **18.** Prove that the length of the arc of the curve $y^2 = x \left(1 \frac{1}{3}x\right)^2$ from the origin to the point P(x,y) is given by $S^2 = y^2 + \frac{4}{3}x^2$. Hence, rectify the loop
- 19. If S is the length of the curve $y^2 = x \left(1 \frac{x}{3}\right)^2$ measured from the origin to the point whose abscissa is a then prove that $9s^2 = a(a+3)^2$. Hence, find the perimeter (0 < a < 3)
- **20.** Find the length of the loop of the curve $3ay^2 = x(x-a)^2$
- **21.** Show that the length of the loop $3ay^2 = x^2(a-x)is \ 4a/\sqrt{3}$
- **22.** Show that the length of the loop $9ay^2 = x(x 3a)^2$ is $4\sqrt{3}$. a
- 23. Find the total length of the loop of the curve $9y^2 = (x+7)(x+4)^2$
- **24**. Find the perimeter of the loop of the curve $9ay^2 = (x 2a)(x 5a)^2$

- 25. For the catenary $y = c \cos h \frac{x}{c}$, prove that If S is arc length measured from the vertex to (x, y) then (i) $S = c \sin h \frac{x}{c}$ (ii) $y^2 = c^2 + s^2$ (iii) $s = c \tan \Psi$ where Ψ is the angle between x axis and tangents drawn at point (x, y).
- **26.** Show that the length of the arc of the curve $4ax = y^2 2a^2 \log \frac{y}{a} a^2$ from O(0, a) to any point P(x, y) is $\frac{y^2}{2a} \frac{a}{2} x$

ANSWERS

1.
$$2\pi \ a$$
 2. $4\left[\sqrt{2} + log(1 + \sqrt{2})\right]$ 3. $2\sqrt{2} + 2log(\sqrt{2} + 1)$
4. $a\left[\log 2 + \frac{15}{16}\right]$ 5. $\sqrt{2} + log(1 + \sqrt{2})$ 6. $2a\left[\sqrt{2} + log(1 + \sqrt{2})\right]$
7. $\sqrt{5} + \frac{1}{2}\log(2 + \sqrt{5})$ 8. $2\left[\sqrt{6} + log(\sqrt{2} + \sqrt{3})\right]$ 9. $2\sqrt{2} + 2log(1 + \sqrt{2})$
11. $\frac{a}{27}(13\sqrt{13} - 8)$ 12. $\sqrt{1 + e^2} - \sqrt{2} - log\left[\frac{1 + \sqrt{1 + e^2}}{e(1 + \sqrt{2})}\right]$ 14. $log\left(e + \frac{1}{e}\right)$
15. $6a$ 18. $4\sqrt{3}$ 19. $4\sqrt{3}$
20. $\frac{4a}{\sqrt{3}}$ 23. $4\sqrt{3}$ 24. $4\sqrt{3}a$

TYPE - II

- 1. For the curve $x=(a+b)\cos\theta-b\cos\left(\frac{a+b}{b}.\theta\right)$, $y=(a+b)\sin\theta-b\sin\left(\frac{a+b}{b}.\theta\right)$, show that $s=\frac{4b}{a}(a+b)\cos\left(\frac{a\theta}{2b}\right)$ where s is measured from $\theta=\pi b/a$ to θ .
- 2. Find the length of one arc of the cycloid $x = a(\theta \sin\theta)$, $y = a(1 + \cos\theta)$.
- 3. Find the length of the cycloid $x = a(\theta + sin\theta)$, $y = a(1 cos\theta)$ from one cusp to another cusp. If s is the length of the arc from the origin to a point P(x, y) show that $s^2 = 8ay$
- **5.** Trace the curve $x = a (\theta sin\theta)$, $y = a(1 cos\theta)$ as θ varies from 0 to 2π . Show that the line $\theta = 2\pi/3$ divides it in ratio 1:3.
- 6. For the curve $x=a(2\cos t-\cos 2t), y=a(2\sin t-\sin 2t)$, show that the length of the arc of the curve measured from t=0 to the point where the tangent makes an angle ψ with the tangent at t=0 is given by $s=16a\sin^2\frac{\Psi}{6}$.
- 7. Prove that the length of the arc of the curve $x = a \sin 2\theta (1 + \cos 2\theta)$, $y = a \cos 2\theta (1 \cos 2\theta)$ measured from the origin to (x, y) is $\frac{4}{3}a \sin 3\theta$.
- **8.** Find the length of the loop of the curve. $x = t^2$, $y = t\left(1 \frac{t^2}{3}\right)$
- 9. Show that the length of the tractrix $x = a[\cos t + \log \tan(t/2)]$, $y = a \sin t$ from $t = \pi/2$ to any

point t is a log(sin t)

- Show that in the curve $8a^2y^2 = x^2(a^2 x^2)$, $s = \frac{a}{2\sqrt{2}}(2\theta + \sin\theta \cos\theta)$. where, $x = a\sin\theta$, and that the perimeter of one loop is $\pi \alpha/\sqrt{2}$
 - **OR** Prove that the entire length of the curve $8a^2y^2 = x^2(a^2 x^2)$ is $\pi a\sqrt{2}$
- Prove that the length of the curve $x = e^{\theta} \left[\sin \frac{\theta}{2} + 2 \cos \frac{\theta}{2} \right]$, $y = e^{\theta} \left[\cos \frac{\theta}{2} 2 \sin \frac{\theta}{2} \right]$ measured from $\theta = 0$ to $\theta = \pi$ is $\frac{5}{2}[e^{\pi} - 1]$
- Find the length of the astroid $x = a \cos^3 t$, $y = a \sin^3 t$
- Find the total length of the curve $(x/a)^{2/3} + (y/b)^{2/3} = 1$. Hence, deduce the total length of the **13**. curve $x^{2/3} + y^{2/3} = a^{2/3}$. Also show that the line $\theta = \pi/3$ divides the length of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ in the first quadrant in the ratio 1: 3
- Find the length of the following curves: 14.
 - $x = a(2\cos\theta + \cos 2\theta), y = a(2\sin\theta + \sin 2\theta)$ from $\theta = 0$ to any point θ . (i)
 - $x = a(\theta \sin\theta), y = a(1 \cos\theta)$ from $\theta = 0$ to $\theta = 2\pi$ (ii)
 - (iii) $x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta \theta \cos \theta)$ from $\theta = 0$ to $\theta = 2\pi$
 - $x = ae^{\theta} \sin\theta$, $y = ae^{\theta} \cos\theta$ from $\theta = 0$ to $\theta = 2\pi$
 - $x = a(3\cos\theta \cos3\theta), y = a(3\sin\theta \sin3\theta)$ from $\theta = \pi/2$ to any point θ (v)
 - (vi) $x = a(\theta + \sin \theta), y = a(1 + \cos \theta)$ between two consecutive cusps.
 - (vii) $x = log(sec\theta + tan\theta) sin\theta, y = cos\theta$ from $\theta = 0$ to any point θ
 - (viii) $x = a(t \tan ht), y = a \sec ht$ from t = 0 to any point t.
 - $x = 1 \cos t + (3/5)t$, $y = (4/5)\sin t$ from t = 0 to $t = \pi$ (ix)
 - $x = a \cos t + at \sin t$, $y = a \sin t at \cos t$ from t = 0 to $t = \pi/2$ (x)

ANSWERS

2. 8a 3.

- 8a

- **12**. 6a
- **13.** $\frac{4(a^2+ab+b^2)}{(a+b)}$, 6a
- (i) $8a \sin\left(\frac{\theta}{2}\right)$ 14.
- (ii) 8a

- (iii) $2\pi^2a$
- (iv) $\sqrt{2}(e^{\pi/2}-1)a$

- (v) $6a\cos\theta$
- (vi) 8a

- (vii) $logsec\theta$ (viii) alog cos h t

- (ix) $\pi + (\frac{6}{5})$
- (x) $\pi^2 a/8$

TYPE – III

- 1. Find the length of the cardioide $r = a(1 + \sin \theta)$
- Find the length of the perimeter $r = a(1 + \cos \theta)$. Prove also that the upper half of cardiode is 2. bisected by the line $\theta = \pi/3$.
- Show that upper half of $r=2a\cos^2\left(\frac{\theta}{2}\right)$ is bisected by the line $\theta=\pi/3$. 3.

APPLIED MATHEMATICS-II

- Find the perimeter of the cardioide $r = a(1 \cos \theta)$ and prove that the line $\theta = 2\pi/3$ bisects 4. the upper half of the cardioide.
- Find the length of the arc of the curve $r = a \sin^2 \left(\frac{\theta}{2}\right)$ from $\theta = 0$ to any point $P(\theta)$ 5.
- Find the length of the cardioide $r = a(1 \cos \theta)$ lying outside the circle $r = a \cos \theta$ 6.
- Find the length of the cardioide $r = a(1 + \cos \theta)$ which lies outside the circle $r + a \cos \theta = 0$ 7.
- 8. Find the length of the cardioide $r = a(1 - \cos \theta)$ lying inside the circle $r = a \cos \theta$
- Show that the length of the arc of that part of cardioide $r = a(1 + \cos \theta)$ which lies on the side of 9. the line 4r = 3 asec θ away from the pole is 4a
 - **OR** Show that the perimeter of cardioid $r = a(1 + \cos \theta)$ is bisected by the line $4r = 3a \sec \theta$
- Show that for the parabola $\frac{2a}{r} = 1 + \cos\theta$, the arc intercepted between the vertex and the 10. extremity of the latus rectum is $a[\sqrt{2} + log(1 + \sqrt{2})]$
- Find the length of the arc of the parabola $r = \frac{6}{1+\cos\theta}$ from $\theta = 0$ to $\theta = \pi/2$ 11.
- Find the length of the Cissoid $r = 2a \tan \theta \sin \theta$ from $\theta = 0$ to $\theta = \pi/4$ **12.**
- Find the length of the upper arc of one loop of Lemniscate $r^2 = a^2 \cos 2\theta$ 13.
- Show that the total perimeter of $r^2 = a^2 \cos 2\theta$ is $\frac{a}{\sqrt{2\pi}} \left(|\overline{1/4}|^2 \right)^2$ 14.
- Find the total length of the curve $r = a \sin^3(\theta/3)$ **15.**
- Prove that the length of the spiral $r = a e^{\theta \cot \alpha}$ as r increases from r_1 to r_2 is given by **16.** $(r_2 - r_1) \sec \alpha$
 - **OR** Prove that the length of arc of equi-angular spiral $r = ae^{\theta \cot \alpha}$ varies as difference of radii vectors of extremities of the arc.
- Taking s=0 at $\theta=0$, find the length of the arc OP of the spiral $r=ae^{\theta\cot\alpha}$ from 0 to $P(\theta)$ **17**.
- Find the length of the spiral $r = a^{m\theta}$ lying inside the circle r = a. 18.

ANSWERS

1.

2. 8a

5. $4asin^2\left(\frac{\theta}{4}\right)$

8. $8a\left(1-\frac{\sqrt{3}}{2}\right)$

15. $\frac{3}{2}\pi a$

12. $2a(\sqrt{5}-2) + a\sqrt{3}log(\frac{4-\sqrt{15}}{7-4\sqrt{3}})$ 13. $\frac{a}{4\sqrt{2\pi}}(|\overline{1/4}|^2)$ 17. $a\sec\alpha(e^{\theta cot\alpha}-1)$ 18. $\frac{a}{m}\sqrt{1+m^2(\log a)^2}$