Testfille		
Addition!		
	$C_2 = 1 - Z_i$	
	Emarkles Ergling:	
	(3+4,7) + (7-2;) = [9,2;)	
Sustante lion.	$c_0 = S_1 \delta_i$	
	$c_{c} = Z_{+}S_{i}$	
	Tuna dela Engelosi.	
	(5+6) = (2+3i) = 5+3;	
	cn= 2+3; = 0+6;	
	$C_{T} = \begin{pmatrix} G_{-1} \\ & & \end{pmatrix} = c \cdot J \cdot$	
	twen to les Egyphis;	
	2, 2 = (a.c - 5.d) 3(a.d+ 6.c); = (2-4-3-(-7)) 3(2-(-7) + 3.4); = (8+3) 3(-2+72) = 17+10;	
División;	cn= 6+8, = a+5;	
	$C_2 = 344 = c_1 d_1$	
	$\frac{1}{2a} \frac{(6.2 + 6.4)}{(2a + 6.4)} = \frac{(6.3 + 9.4)}{(5.2 + 6.4)} = \frac{(9.3 - 6.4)}{3^2 + 6^2} = \frac{19 + 32}{9 \cdot 16} + \frac{(24 - 24)}{9 \cdot 16} = \frac{50}{25} + \frac{5}{25} = 2$	