[544] Cassandra Storage Engine

Tyler Caraza-Harter

Binary Search Trees, B-trees

Binary Search Tree

https://en.wikipedia.org/wiki/Binary_search_tree

B-Tree

https://en.wikipedia.org/wiki/B-tree

MySQL example:

CREATE INDEX Ioan_amount_idx
USING BTREE ON Ioans(Ioan_amount)

B-Trees:

- most popular DB index data structure
- fast reads, slower for writes
- more in CS 564

Log Structured Merge Trees (LSMs)

Performance:

- faster writes (ALWAYS sequential)
- writes create background work to complete later
- slower reads (for single value, at least)

Single-node DBs and K/V stores:

- LevelDB
- RocksDB
- SQLite4

Distributed DBs:

- BigTable
- HBase
- Cassandra

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

- in general
- Cassandra

Storing Data: SSTables

Reading Data

Compacting Data

writes: block[I] = X, block[4] = B

storage blocks:	Α	В	С	D	Α	Α	В	В
	0		2	3	4	5	6	7

waiting for the write would be slow: storage is slow in general (these writes would be random)

writes: block[1] = X, block[4] = B

buffer in RAM:

X B (4)

storage blocks:

return from write now, buffer work for later...

writes: block[1] = X, block[4] = B, block[2] = Y, block[3] = Z

buffer in RAM:

X	В	Y	Z
(1)	(4)	(2)	(3)

storage blocks:

if we're lucky, we'll get more writes that we can do efficiently together

writes:

buffer in RAM:

storage blocks:

sync to disk eventually

Crashing at a bad time

writes: block[0] = W

buffer in RAM:

storage blocks:

what will happen to the last written data?

Logging Writes

writes: block[0] = W, block[3]=D

buffer	W	D	
in RAM:	(0)	(3)	

log storage

sequentially write it to the log now; write to the correct place later

Recovery

normally a log is never read, just after restarting from a crash

Durability in a Distributed System

Durability means your data isn't lost when certain bad things happen. Stronger durability means tolerance for more kinds of faults.

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

- in general
- Cassandra

Storing Data: SSTables

Reading Data

Compacting Data

Memtables

each Cassandra table will have its own in-memory memtable

Memtables

occasionally there are multiple memtables for the same table (one can be flushed to disk while another receives new writes)

Memtables, Memory Layout

Cassandra worker: virtual address space

remember, JVM memory management is notoriously inneficient and prone to garbage collection pauses

Memtables, Memory Layout

remember, JVM memory management is notoriously inneficient and prone to garbage collection pauses

latest Cassandra versions can store most memtable data off heap

https://www.datastax.com/blog/heap-memtables-cassandra-21

a single log per worker is shared between all tables and written sequentially

keyspaces can be tuned for either performance (log off) or durability (log on)

CREATE KEYSPACE ???? WITH REPLICATION={...} AND DURABLE_WRITES=true

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data

SSTables (Sorted String Tables)

Cassandra Worker

it is sorted because Data.db contains key/value pairs sorted by key (which actually is not required to be a string)

Data.db

sorting makes
"range queries" (lookups
of consecutive keys)
efficient/sequential

SSTables (Sorted String Tables)

Cassandra Worker

problem: even though Data.db is sorted, we wouldn't want to do binary search on it to find an entry, because the disk I/O would be random

Index.db

SSTables (Sorted String Tables)

Cassandra Worker

can we guess whether a key is in the data without actually looking?

Filter.db contains a bloom filter, a very space efficient structure for helping with this. Like Index.db, it is generally loaded to memory.

Filter.db: bloom filter construction

Step I: compute two different hash functions for every key (mod N)

key	hash I (key)%N	hash2(key)%N
Α	2	8
В	4	8
•••		

0	0	0	0	0	0	0	0	0	0	N=10 bits of bloom filter
0	I	2	3	4	5	6	7	8	9	-

Filter.db: bloom filter construction

Step I: compute two different hash functions for every key (mod N)

Step 2: flip zeros to ones at each position corresponding to a hash%N

Filter.db: bloom filter lookup: no case

Was C inserted in the bloom filter?

Assume hash I(C)
$$\%$$
 N = 2
AND hash2(C) $\%$ N = 5

Filter.db: bloom filter lookup: no case

Was C inserted in the bloom filter?

Assume hash I(C)
$$\%$$
 N = 2
AND hash2(C) $\%$ N = 5

It definitely was NOT inserted. Otherwise we would have flipped position 5 to a one.

Filter.db: bloom filter lookup: maybe case

Was D inserted in the bloom filter?

Assume hash I(D)
$$\%$$
 N = 4
AND hash2(D) $\%$ N = 8

Filter.db: bloom filter lookup: maybe case

Was D inserted in the bloom filter?

Assume hash I(D)
$$\%$$
 N = 4
AND hash2(D) $\%$ N = 8

Maybe it was, as both spots are I's. Or it could be a false positive (remember that A and B together flipped these positions).

Bloom filters

False positive rate depends on

- number of inserts
- number of bits
- number of hash functions

It can be tuned to achieve any desirable rate (but a lower rate means more memory).

```
# if it were a Python
# data structure:
my_set = {...}
my_bloom = ...
```

https://en.wikipedia.org/wiki/Bloom_filter

The false positive probability p as a function of number of elements n in the filter and the filter size m. An optimal number of hash functions $k=(m/n)\ln 2$ has been assumed.

```
x in my_set # True or False
x in my bloom # Maybe or False (NEVER True)
```

TopHat

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data

Example: lookup value for K

Example: lookup value for K

where should we look for K?

lookup[K] = v2

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data

- merge sort
- performance considerations
- HBase vs. Cassadra

Controlling Read Cost

Only dumping out large, immutable SSTables is good for writes (everything is sequential).

Over time, read cost grows with number of SSTables.

Bloom filters help, but have limitations:

- false positives
- same key might be any many SSTables
- sometimes want to read values between K1 and K2 (a "range query") instead of for a single K value (a "point lookup")

We can reduce the number SSTables by "merge sorting" multiple small ones into one bigger one. This is called "compaction".

Compaction: Merge Sorting SSTables

newer

 key	value
Α	(1,4)
 G	(8,9)
 М	tombstone

older

 key	value
С	(9,3)
D	(2,8)
G	(5,4)
 M	(3,4)
 Q	(2,4)

compacted

key	value

newer

key	value
Α	(1,4)
G	(8,9)
 M	tombstone

older

key	value
С	(9,3)
D	(2,8)
G	(5,4)
M	(3,4)
Q	(2,4)

compacted

key	value
Α	(1,4)

newer

 key	value
 Α	(1,4)
G	(8,9)
 M	tombstone

older

_	key	value
_	С	(9,3)
	D	(2,8)
	G	(5,4)
	М	(3,4)
	Q	(2,4)

compacted

key	value
Α	(1,4)
С	(9,3)
D	(2,8)

if both have same value, use newer

newer

key	value
Α	(1,4)
G	(8,9)
M	tombstone

older

key	value
С	(9,3)
D	(2,8)
G	(5,4)
M	(3,4)
Q	(2,4)

compacted

key	value
Α	(1,4)
С	(9,3)
D	(2,8)
G	(8,9)

do we write a new tombstone, or delete the entry?

the key might appear in older SSTables: write tombstone the key cannot appear in older SSTables: delete it

newer

key	value
Α	(1,4)
G	(8,9)
M	tombstone

older

key	value
С	(9,3)
D	(2,8)
G	(5,4)
М	(3,4)
Q	(2,4)

compacted

key	value
Α	(1,4)
С	(9,3)
D	(2,8)
G	(8,9)
M	tombstone

once we get to the end of one input, we just work from the others

compacted

key	value
Α	(1,4)
С	(9,3)
D	(2,8)
G	(8,9)
M	tombstone
Q	(2,4)

delete old SSTables

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data

- merge sort
- performance considerations
- HBase vs. Cassadra

Write Overheads

Compactions make reads faster but create write overheads.

Most written data gets re-written many times after the initial write (this is called "write amplification").

For example, in Facebook messages on HBase: "Compaction causes about 17x more writes than flushing does, indicating that a typical piece of data is relocated 17 times."

~ Analysis of HDFS Under HBase: A Facebook Messages Case Study, Harter et al.

Background vs. Foreground Work

Compaction is background work, making LSM-based storage systems ideal for "bursty" workloads:

Compaction Policies

SizeTieredCompactionStrategy

- optimized for write-heavy workloads
- try to compact SSTables of similar size together
- DEFAULT

LeveledCompactionStrategy

- optimized for read-heavy workloads
- SSTables are assigned levels
- A key can appear in at most SSTable per level (except level 0)

There are other strategies not covered in 544...

Compaction Policies

Reading a Key

leveled approach can avoid most SSTables during read

Compacting SSTables

WINNER

size-tiered can compact similarly sized SSTables together (more efficient than compacting very small files with very large files)

Outline: Cassandra Storage Engine

Writing Data: Buffering and Logging

Storing Data: SSTables

Reading Data

Compacting Data

- merge sort
- performance considerations
- HBase vs. Cassadra

HBase vs. Cassandra

HBase	Cassandra
LSM	Replication
Replication	LSM

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

note: this shows all 3 Cassandra LSMs in the same state, but they don't need to be in sync.

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

compute: HBase merges 1x, Cassandra merges 3x. Winner: HBase

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

disk reads: HBase uses ???? MB, Cassandra uses ???? MB. Winner: ????

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

disk reads: HBase uses 2 MB, Cassandra uses 6 MB. Winner: HBase

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

disk writes: HBase uses ???? MB, Cassandra uses ???? MB. Winner: ????

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

disk writes: HBase uses 6 MB, Cassandra uses 6 MB. Winner: Tie

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

network I/O: HBase uses ???? MB, Cassandra uses ???? MB. Winner: ????

Scenario: compact T1 and T2 (both 1 MB) to produce T3 (2 MB)

network I/O: HBase uses 4-8 MB, Cassandra uses 0 MB. Winner: Cassandra

Architecture: HBase vs. Cassandra

LSM Replication LSM

- disk read efficient
- compute efficient

- network efficient
- flexible (different nodes can compact differently)