Learning higher-order logic programs through abstraction and invention

Andrew Cropper and Stephen Muggleton

Input	Output
ebhtuvim	dagstuhl
uvsjoh	turing
qsphsbnnjoh	?

Input	Output
ebhtuvim	dagstuhl
uvsjoh	turing
qsphsbnnjoh	programming

First-order

```
f(A,B):-
 empty(A),
 empty(B).
f(A,B):-
 head(A,Ha),
 head(B,Hb),
 char_code(Ha,Ca),
 succ(Cb,Ca),
 char_code(Hb,Cb),
 tail(A,Ta),
 tail(B,Tb),
 f(Ta,Tb).
```

First-order

Higher-order

```
f(A,B):-
 empty(A),
 empty(B).
f(A,B):-
 head(A,Ha),
 head(B,Hb),
 char_code(Ha,Ca),
 succ(Cb,Ca),
 char_code(Hb,Cb),
 tail(A,Ta),
 tail(B,Tb),
 f(Ta,Tb).
```

```
f(A,B):-
map(A,B,f1).
f1(A,B):-
char_code(A,Ca),
succ(Cb,Ca),
char_code(B,Cb).
```

Meta-interpretive learning [MLJ15]

Input

E+ = positive examples

E- = negative examples

 $\mathbf{B_c} = \text{compiled BK}$

M = higher-order metarules

Output

Program H consistent with E+ and E-

Search space: $O((B_cM)^N)$

Metarules [ILP14]

Name	Metarule
identity	P(A,B) ← Q(A,B)
inverse	P(A,B) ← Q(B,A)
chain	$P(A,B) \leftarrow Q(A,C),R(C,B)$
curry	$P(A,B) \leftarrow Q(A,B,R)$

P,Q,R are **existentially** quantified **higher-order** variables A,B,C are **universally** quantified **first-order** variables

Metagol [MLJ2015] prove([],P,P).

% delegates proof to Prolog prove([AtomlAtoms],P1,P2):-call(Atom), prove(Atoms,P1,P2).

% uses metarule to build proof prove([AtomlAtoms],P1,P2):- metarule(Name,Sub,(Atom:-Body)), prove(Body,[sub(Name,Subs)IP1],P3) prove(Atoms,P3,P2).

Metagol [MLJ2015]

```
f(A,B):-empty(A),empty(B).
f(A,B):-f1(A,B),f2(A,B).
f1(A,B):-head(A,Ha),f4(Ha,B).
f2(A,B):-tail(A,Ta),f3(Ta,B).
f3(Ta,B):-tail(B,Tb),f(Ta,Tb).
f4(Ha,B):-f5(Ha,Hb),head(B,Hb).
f5(Ha,Hb):-char_code(Ha,Ca),f6(Ca,Hb).
f6(Ca,Hb):-succ(Hb,Ca),char_code(Hb,Cb).
```

Metagol [MLJ2015]

```
f(A,B):-empty(A),empty(B).
f(A,B):-f1(A,B),f2(A,B).
f1(A,B):-head(A,Ha),f4(Ha,B).
f2(A,B):-tail(A,Ta),f3(Ta,B).
f3(Ta,B):-tail(B,Tb),f(Ta,Tb).
f4(Ha,B):-f5(Ha,Hb),head(B,Hb).
f5(Ha,Hb):-char_code(Ha,Ca),f6(Ca,Hb).
f6(Ca,Hb):-succ(Hb,Ca),char_code(Hb,Cb).
```

Search space: $O((B_c^3M)^N)$

Meta-interpretive learning [IJCAI16]

Input

E+ = positive examples

E- = negative examples

 $\mathbf{B_c} = \text{compiled BK}$

 B_i = interpreted BK

M = higher-order metarules

Output

Program H consistent with E+ and E-

Interpreted BK [IJCAI16]

```
([map,[],[],F] :- []).

([map,[AlAs],[BlBs],F]:-[[F,A,B],[map,As,Bs]).

([fold,[],Acc,Acc,F]:-[]).

([fold,[AlAs],B,Acc1,F]:-

[[F,Acc1,A,Acc2],[fold,As,B,Acc2,F]]).
```

Metagol [IJCAI16] prove([],P,P).

```
prove([AtomlAtoms],P1,P2):-
  call(Atom),
  prove(Atoms,P1,P2).
```

```
prove_aux(Atom,P1,P2):-
  interpreted((Atom:-Body)),
  prove(Body,P1,P3),
  prove(Atoms,P3,P2).
```

prove([AtomlAtoms],P1,P2): metarule(Name,Sub,(Atom:-Body)),
 prove(Body,[sub(Name,Subs)IP1],P3)
 prove(Atoms,P3,P2).

Metagol [IJCAI16]

```
f(A,B):-map(A,B,f1).
f1(A,B):-char_code(A,Ca),f2(Ca,B).
f2(Ca,B):-succ(Cb,Ca),char_code(B,Cb).
```

Robot waiter results

(a) Predictive accuracies

(b) Learning times

Chess results

(a) Predictive accuracies

(b) Learning times

Input	Output
[dagstuhl,2017]	[dagstuh,201]
[alice,bob,charlie]	[alic,bo,charli]
[1234,12,564]	[123,1,56]
[ab,abc,abcd,abcde]	[a,ab,abc,abcd]

```
f(A,B):-map(A,B,f3).
```

f3(A,B):-f2(A,C),f1(C,B).

f2(A,B):-f1(A,C),tail(C,B).

f(A,B):-map(A,B,f3).

f3(A,B):-f1(A,C),tail(C,D),f1(D,B).

Input	Output
[dagstuhl,2017]	[dagstuh]
[alice,bob,charlie]	[alic,bo]
[1234,12,564]	[123,1]
[ab,abc,abcd,abcde]	[a,ab,abc]

```
f(A,B):-f4(A,C),f3(C,B).
```

f4(A,B):-map(A,B,f3).

f3(A,B):-f2(A,C),f1(C,B).

f2(A,B):-f1(A,C),tail(C,B).

f(A,B):-map(A,C,f3),f3(C,B).

f3(A,B):-f1(A,C),tail(C,D),f1(D,B).

Problems

- What metarules do we need?
- What higher-order abstractions do we need?
- Can we invent higher-order abstractions, such as map, fold, etc?

- S.H. Muggleton et al. Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Machine Learning 100(1): 49-73 (2015).
- A. Cropper and S.H. Muggleton. Logical minimisation of meta-rules within meta-interpretive learning. ILP 2014.
- A. Cropper and S.H. Muggleton. Learning efficient logical robot strategies involving composable objects. IJCAI 2015.
- A. Cropper and S.H. Muggleton. Learning higher-order logic programs through abstraction and invention. IJCAI 2016.