Data Challenge

Tejas Kulkarni

tejasvijaykulkarni@gmail.com

February 7, 2022

Problem statement.

- Due to the huge variance in treatment response, characterizing a recently diagnosed patient into high/low risk group can help allocate resources efficiently.
- Wigh risk: Very likely that patient will not respond to treatment, or relapse quickly.
- Low risk: Not high risk, cancer is not likely worsen quickly.
- Can be treated as a binary classification problem.

First thoughts.

- Merging clinical notes and gene expression data leads to a high dimensional data set (583×24172) .
- Classification with lower false negative rate is more important than just accuracy related metrics.
- Providing some measure of uncertainty quantification is also crucial.
- Mnowing the most important top-k features will be useful.

Exploration.

- There are no high risk patients with D_OS or D_PFS values \geq 18, or low risk patients with values < 18.
- ② It seems that these labels completely determine the patient risk class, and all patients with CENSORED flag are high risk patients.
- A small number of patients have disease stage (D₋ISS) as nan.
- Several gene ids have zero-rows for all patients.
- Fortunately, we have enough training examples for both classes, hence no class imbalance.

Essential pre-processing.

- Gene expression file.
 - Indexed the file with Entrez id.
 - 2 Deleted the gene expression records with zero-rows for all patients.
 - Applied min-max scaling to deal with varying scales across gene ids.
- Olinical annotation file.
 - Deleted features with no information content (e.g. same value through out the column).
 - Replacing rare nans in column D₋ISS with 0 (not sure about the implications though).
 - 3 Converted days in the columns D_OS and D_PFS to months.
 - Removed one feature from the most correlated feature pairs.
 - **3** Reduced the number of labels from 3 to 2 using the hint.
 - **6** Removed D_OS and D_PFS to avoid model leakage.
 - Applied min-max scaling to deal with varying scales across columns.

Model choices.

- We preferred simpler models due to familiarity/ scalability/interpretability reasons.
- We treat the classifier probabilities as a measure of uncertainty.
- Models used.
 - Logistic regression (easily scalable to high dimensional data but sensitive to outliers.)
 - Support vector machines with RBF kernel (more robust to outliers).
 - **3** Ensamble decision tree with bagging (reducing model variance with data set bootstrapping).
 - Random forest (additional randomness with feature sub-sampling).
 - Multi-layer perceptron with Relu activation (universal approximators).
 - 6 K-nearest neighbors (easily overfits for higher dimensionality.)

Model performance.

- We decided to retain 90% of the variance in the original data set, and used PCA to reduce the dimensionality.
- The dimensionality is reduced from 23119 to 266.
- Average model performances after stratified 10-fold cross-validation are presented below.
- We weigh classifiers by avg. recall (fraction of true high risk patients correctly classified high risk), and AUC scores.
- Poor performance of ensamble classifiers, 5-NN, and MLP could be due to bad hyper-parameters, curse of dimensionality.

Metric Classifier	test accuracy	test precision	test recall	f1	auc
Multi-layer perceptron Support vector machine Logistic regression Decision trees with bagging Random forest 5-Nearest neighbors	$\begin{array}{c} 0.65 \pm 0.07 \\ \textbf{0.69} \pm \textbf{0.06} \\ \textbf{0.68} \pm \textbf{0.05} \\ 0.58 \pm 0.05 \\ 0.58 \pm 0.08 \\ 0.53 \pm 0.05 \end{array}$	$\begin{array}{c} 0.69 \pm 0.06 \\ \textbf{0.72} \pm \textbf{0.06} \\ \textbf{0.71} \pm \textbf{0.06} \\ 0.6 \pm 0.03 \\ 0.59 \pm 0.05 \\ 0.59 \pm 0.06 \end{array}$	$\begin{array}{c} 0.69 \pm 0.09 \\ \textbf{0.72} \pm \textbf{0.08} \\ \textbf{0.7} \pm \textbf{0.06} \\ \textbf{0.74} \pm 0.07 \\ \textbf{0.8} \pm \textbf{0.1} \\ \textbf{0.51} \pm \textbf{0.06} \end{array}$	$\begin{array}{c} 0.69 \pm 0.06 \\ \textbf{0.72} \pm \textbf{0.06} \\ \textbf{0.71} \pm \textbf{0.04} \\ 0.66 \pm 0.04 \\ 0.68 \pm 0.06 \\ 0.55 \pm 0.06 \end{array}$	$\begin{array}{c} 0.65 \pm 0.07 \\ \textbf{0.68} \pm \textbf{0.06} \\ \textbf{0.67} \pm \textbf{0.06} \\ 0.56 \pm 0.05 \\ 0.56 \pm 0.08 \\ 0.54 \pm 0.05 \end{array}$

Uncertainty measure.

- For stratified 10-fold cross-validation, we split and average classifier prediction probabilities on test data into 8 bins.
- For each average predicted probability bin on the x-axis, we plot the fraction of positively predicted test points on the y-axis.
- Ideally, we want classifiers to predict higher number of positives at higher probabilities than at lower probabilities, and vice versa.
- SVM and LR once again stand out as better calibrated models.

Differentially private prediction.

- **1** In a very preliminary exploration using IBM's *diffprivlib* library, we tried to fit the logistic regression for several ϵ values.
- ② Surprisingly, performance was bad, nearly invariant of ϵ , and L_2 norm of the each input vector.
- It seems the library uses an old objective function perturbation method [1].
- Several studies including [2] confirm that summary statistics and gradient perturbation based methods are more accurate for linear models.

Next steps for further explorations.

- Understand if we can treat this problem as a survival analysis task.
- Understand more about data/domain to make more educated pre-processing/modeling decisions.
- Measure performance without dimensionality reduction (currently prohibitively time consuming on our machine), and estimate the top-k most important features.
- Try to check the possibility of improving on the metrics.
- Perform hyper-parameter tuning.
- Implement DP summary statistics or a gradient based (e.g. DP-SGD) methods for binary classification.
- Simulate this study in a federated environment.

Bibliography.

K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially private empirical risk minimization. Journal of Machine Learning Research, 2011.

Y. Wang.

Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain.

In Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018.