Tema 5-Modelos de razonamiento

La formalización del modelo categórico puede verse como:

- M={manifestaciones}
- I={interpretaciones}
- f=funcion booleana de M donde:
 - f(mi)=0 si xi no es manifestación
 - f(mi)=1 si xi es manifestación
- g=función booleana de I donde:
 - g(li)=0 si yi no es interpretación
 - g(li)=1 si yi es interpretación
- E=E(M,I)=relaciones entre manifestaciones e interpretaciones

Un problema lógico se basa en que dadas unas manifestaciones con una función f, hay que encontrar una función g que cumpla para todo par de E:

- E: f->g
- E: ¬g->¬f

Por ejemplo:

Un dominio está compuesto por M={m1, m2} e I={i1,i2}

El conocimiento incluye:

- Para que i(2) sea cierta, m(1) debe estar presente
- Para que i(1) sea cierta, e i(2) sea falsa, m(2) debe estar presente
- Para que i(2) sea cierta, e i(1) sea falsa, m(2) no debe estar presente
- Si alguna manifestación está presente es porque se puede establecer alguna interpretación
 - R1: $i(2) \rightarrow m(1)$
 - R2: $i(1) \times \neg i(2) \rightarrow m(2)$
 - R3: $\neg i(1) \times i(2) \rightarrow \neg m(2)$
 - R4: $m(1) + m(2) \rightarrow i(1) + i(2)$
 - E = { R1, R2, R3, R4 }

• R1: $i(2) \rightarrow m(1)$

Elimina de BLE: m1i2, m1i4, m2i2, m2i4

	m 1	m 2	m 3	m 4												
m (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
m (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
i (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
i (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	i1	i1	i1	i1	i2	i2	i2	i2	i3	i3	i3	i3	i4	i4	i4	i4

• R2: $i(1) \times \neg i(2) \to m(2)$

• Elimina de BLE: m1i3, m3i3

	m 1	m 2	m 3	m 4												
m (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
m (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
i (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
i (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	i1	i1	i1	i1	i2	i2	i2	i2	i3	i3	i3	i3	i4	i4	i4	i4

• R3: \neg i(1) x i(2) $\rightarrow \neg$ m(2)

Elimina de BLE: m2i2, m4i2

	m 1	m 2	m 3	m 4												
m (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
m (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
i (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
i (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	i1	i1	i1	i1	i2	i2	i2	i2	i3	i3	i3	i3	i4	i4	i4	i4

• R4: $m(1) + m(2) \rightarrow i(1) + i(2)$

Elimina de BLE: m2i1, m3i1, m4i1

	m 1	m 2	m 3	m 4												
m (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
m (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
i (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
i (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	i1	i1	i1	i1	i2	i2	i2	i2	i3	i3	i3	i3	i4	i4	i4	i4

BLR={m1i1, m3i2, m2i3, m4i3, m3i4, m4i4}

El problema era $f=\neg m(1)xm(2)=m2$.

m2i3 aparece en BLR. g vale i3=i(1)x-i(2)

Por tanto sabemos que i(1) es correcto e i(2) falso.