NUME:	
NOME:	
PRENUME:	
GRUPA:	

INSTRUCŢIUNI

- 1. Toate problemele sunt obligatorii.
- 2. Problemele vor fi rezolvate pe coli de hârtie numerotate corespunzător, menţionându-se explicit numărul problemei şi subpunctul acesteia.
- 3. Pe prima pagină a rezolvării fiecarei probleme, vor fi scrise **cu litere de tipar** numele şi prenumele studentului, precum şi grupa acestuia.
- 4. Fiecare problemă trebuie să aibă cel puţin o pagină alocată rezolvării sale chiar dacă respectiva problemă nu se poate rezolva.
- 5. TIMP DE LUCRU: 150 minute, i.e. 16:00-18:30.
- 6. Rezolvările problemelor corespunzătoare acestui examen vor fi trimise prin email:
 - ca fișier PDF, împreună cu fișierul cu subiectele examenului;
 - atât titularului de curs (Prof. dr. Liviu MARIN: liviu.marin@fmi.unibuc.ro), cât şi titularului de laborator (Drd. Andreea GRECU: andreea.grecu@my.fmi.unibuc.ro);
 - vor avea următoarea linie de subiect:
 Restanţă AnNumMetNum Nume si prenume student, Grupa 3XX
- 7. Termenul limită de trimitere prin email a rezolvărilor problemelor: miercuri, 13 mai 2020, orele 19:00.

Analiză Numerică & Metode Numerice Restanță – Anul III – Subiectul#22

I. Presupunem că șirul $\{x_n\}_{n\geq 0}\subset \mathbb{R}$ converge către $x^\star\in \mathbb{R}$ cu ordin/viteză de convergență supraliniară. Arătați că

$$\lim_{n \to \infty} \frac{|x_{n+1} - x_n|}{|x_n - x^\star|} = 1.$$

II. Fie $f:[a,b] \longrightarrow \mathbb{R}$ şi nodurile de interpolare $a \le x_0 < x_1 < \ldots < x_n \le b$. Fie $P_{0,1,\ldots,n-1}(x)$ şi $P_{1,2,\ldots,n}(x)$ polinoamele de interpolare Lagrange asociate funcției f şi nodurilor de interpolare $x_0, x_1, \ldots, x_{n-1}$, respectiv x_1, x_2, \ldots, x_n .

Arătați că

$$P(x) = \frac{1}{x_n - x_0} \left[(x - x_0) P_{1,2,\dots,n}(x) - (x - x_n) P_{0,1,\dots,n-1}(x) \right], \quad x \in [a, b],$$
 (1)

este polinomul de interpolare Lagrange asociat funcției f și nodurilor de interpolare $x_0, x_1, \ldots, x_{n-1}, x_n$.

- III. Fie $f \in C^2[a,b]$, h > 0 suficient de mic şi $x \in (a,b)$ fixat.
 - (a) Determinați formula de aproximare cu diferențe finite ascendente pentru f'(x) și eroarea de trunchiere asociată, $e_t(x)$.
 - (b) Estimați eroarea de trunchiere asociată, $e_t(x)$.
 - (c) Pentru orice $x \in (a, b)$, f(x) prin reprezentarea sa în calculator în virgulă mobilă, $\tilde{f}(x)$, astfel încât această evaluare conține o eroare de rotunjire, $e_r(x)$, i.e.

$$\widetilde{f}(x) = f(x) + e_r(x)$$
, unde $|e_r(x)| \le \epsilon$, $\forall x \in (a, b)$, (2)

unde $\epsilon > 0$ este precizia mașinii și este cunoscută.

Determinați eroarea totală, i.e. $e(x) := e_t(x) + e_r(x)$, indusă ca urmare a aproximării cu diferențe finite ascendente pentru f'(x) și a reprezentării în calculator a numerelor în virgulă mobilă.

- (d) Determinați valoarea optimă a lui h > 0 care minimizează eroarea totală, e(x), obținută la punctul (c).
- IV. Fie funcția pondere $w:(0,1) \longrightarrow \mathbb{R}$, $w(x)=x^{\alpha}$, $\alpha>0$, și $\{\varphi_0,\varphi_1,\ldots,\varphi_n\} \subset \mathbb{P}_n$ un sistem de polinoamele ortogonale în raport cu produsul scalar din $L^2_w(0,1)$.

Determinați un sistem de polinoamele ortogonale în raport cu produsul scalar din $L_w^2(0,b)$, b>0, unde $w:(0,b)\longrightarrow \mathbb{R}, \ w(x)=x^{\alpha},\ \alpha>0$.