CS61B Lecture #31

Today:

• More balanced search structures (DS(IJ), Chapter 9

Really Efficient Use of Keys: the Trie

- We haven't said much about the cost of comparisons, generally treating the cost as constant.
- For strings, the worst case is the length of string.
- ullet Therefore we should throw an extra factor of the key length, L, into costs:
 - $\Theta(M)$ comparisons really means $\Theta(ML)$ operations.
 - So to look for key X, we keep looking at same chars of $X \ M$ times.
- ullet Can we do better? Can we get search cost to be O(L)?

Make a *multi-way decision tree*, with one decision per character Idea: of key.

The Trie: Example

Set of keys

{a, abase, abash, abate, abbas, axolotl, axe, fabric, facet}

- Ticked lines show paths followed for "abash" and "fabric"
- Each internal node corresponds to a possible prefix.
- Characters in path to node = that prefix.

Adding Item to a Trie

- Result of adding bat and faceplate.
- New edges ticked.

A Side-Trip: Scrunching

- For speed, obvious implementation for internal nodes is array indexed by character.
- ullet Gives O(L) performance, L length of search key.
- ullet [Looks as if independent of N, number of keys. Is there a dependence?]
- **Problem**: arrays are *sparsely populated* by non-null values—waste of space.

Idea: Put the arrays on top of each other!

- Use null (0, empty) entries of one array to hold non-null elements of another.
- Use extra markers to tell which entries belong to which array.

Scrunching Example

(unrelated to Tries on preceding slides) Small example:

Three arrays, each indexed 0..9

Now overlay them, but keep track of the original index of each item:

Scrunching Example (contd.)

Practicum

- The scrunching idea is cute, but
 - Not so good if we want to expand our trie.
 - A bit complicated.
 - Actually more useful for representing large, sparse, fixed tables with many rows and columns.
- Furthermore, number of children in trie tends to drop drastically when one gets a few levels down from the root.
- So in practice, might as well use linked lists to represent set of node's children
- ...but use arrays for the first few levels, which are likely to have more children

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are > k high as there are that are k high.
- Makes searches fast with high probability.

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are > k high as there are that are k high.
- Makes searches fast with high probability.

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are > k high as there are that are k high.
- Makes searches fast with high probability.

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are > k high as there are that are k high.
- Makes searches fast with high probability.

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are > k high as there are that are k high.
- Makes searches fast with high probability.

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
 - Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are > k high as there are that are k high.
 - Makes searches fast with high probability.

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are > k high as there are that are k high.
- Makes searches fast with high probability.

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:
 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
 - Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are > k high as there are that are k high.
 - Makes searches fast with high probability.

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- ullet Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are >k high as there are that are k high.
- Makes searches fast with high probability.

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are > k high as there are that are k high.
- Makes searches fast with high probability.

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:
 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
 - Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are > k high as there are that are k high.
 - Makes searches fast with high probability.

Example: Adding and deleting

Starting from initial list:

• In any order, we add 126 and 127 (choosing random heights for them), and remove 20 and 40:

Shaded nodes here have been modified.

Summary

- ullet Balance in search trees allows us to realize $\Theta(\lg N)$ performance.
- B-trees, red-black trees:
 - Give $\Theta(\lg N)$ performance for searches, insertions, deletions.
 - B-trees good for external storage. Large nodes minimize # of I/O operations

• Tries:

- Give $\Theta(B)$ performance for searches, insertions, and deletions, where B is length of key being processed.
- But hard to manage space efficiently.
- Interesting idea: scrunched arrays share space.
- Skip lists:
 - Give probable $\Theta(\lg N)$ performace for searches, insertions, deletions
 - Easy to implement.
 - Presented for interesting ideas: probabilistic balance, randomized data structures.

Summary of Collection Abstractions

Data Structures that Implement Abstractions

Multiset

- List: arrays, linked lists, circular buffers
- Set
 - OrderedSet
 - * Priority Queue: heaps
 - * Sorted Set: binary search trees, red-black trees, B-trees, sorted arrays or linked lists
 - Unordered Set: hash table

Map

- Unordered Map: hash table
- Ordered Map: red-black trees, B-trees, sorted arrays or linked lists

Corresponding Classes in Java

Multiset (Collection)

- List: ArrayList, LinkedList, Stack, ArrayBlockingQueue, ArrayDeque
- Set
 - OrderedSet
 - * Priority Queue: PriorityQueue
 - * Sorted Set (SortedSet): TreeSet
 - Unordered Set: HashSet

Map

- Unordered Map: HashMap
- Ordered Map (SortedMap): TreeMap