CSE 5526: Introduction to Neural Networks

Hopfield Network for Associative Memory

The next few units cover unsupervised models

- Goal: learn the distribution of a set of observations
- Some observations are a better "fit" than others
- Hopfield networks store a set of observations
 - Deterministic, non-linear dynamical system
- Boltzmann machines can behave similarly
 - Stochastic, non-linear dynamical system
- Boltzmann machines with hidden units have a much greater capacity for learning the data distribution

Content-addressable memory basic task

- Store a set of "fundamental memories" $\{\xi_1, \xi_2, ..., \xi_M\}$
- So that when presented with a new pattern **x**
- The system outputs the stored memory that is most similar to \mathbf{x}
- The first content-addressable memory we will consider is the Hopfield network
 - Introduced in the influential (14,000 citations) paper Hopfield (1982). "Neural networks and physical systems with emergent collective computational abilities." PNAS.

Is this possible? How good can it be?

- Is this possible to implement as a neural network?
 - For a single pattern?
- Does it work equally well for any pattern?
- How many patterns can such a system store?
 - How do its storage requirements compare to other sys's?
- How much corruption can it tolerate?
 - And still retrieve the correct pattern?
 - Corruption of noise or of partial information

Hopfield (1982) describes the problem

• "Any physical system whose dynamics in phase space is dominated by a substantial number of locally stable states to which it is attracted can therefore be regarded as a general content-addressable memory. The physical system will be a potentially **useful** memory if, in addition, **any** prescribed set of states can readily be made the stable states of the system."

One associative memory: the Hopfield network

• The Hopfield net consists of *N* McCulloch-Pitts neurons, recurrently connected among themselves

• The network is initialized with a (corrupted) pattern

One associative memory: the Hopfield network

• The Hopfield net consists of *N* McCulloch-Pitts neurons, recurrently connected among themselves

• Then runs recurrently until it reaches a fixed point

State of each neuron defines the "state space"

- The network is in state x_t at time t
- The state of the network evolves according to $x_{t+1} = \varphi(Wx_t + b)$
 - Where we set b = 0 without loss of generality
 - Meaning that each state leads to at most one next state
- $\{x_1, x_2, ..., x_t\}$ is called a state trajectory
- Goal: set W so that state trajectory of corrupted memory $\xi_i + \Delta$ converges to true memory ξ_i

One-shot storage phase uses Hebbian learning

• Hopfield nets set W using the outer-product rule, one choice for doing so.

$$W = \frac{1}{N} \sum_{\mu=1}^{M} \xi_{\mu} \xi_{\mu}^{T} - I$$

Where *N* is the number of bits. Or, equivalently

$$w_{ji} = \frac{1}{N} \sum_{\mu=1}^{M} \xi_{\mu,j} \, \xi_{\mu,i} - \delta_{ij}$$

- The -I and $-\delta_{ij}$ terms enforce $W_{ii} = 0$
 - no self-feedback

Hebbian learning

- "Neurons that fire together, wire together"
- In the Hopfield network, increase the weights of neurons that receive correlated inputs
- This notion is symmetric between neurons
 - And since $w_{ii} = w_{ij}$, the weight matrix is symmetric

Retrieval phase

- Play out dynamics $x_{t+1} = \varphi(Wx_t)$
 - Until reaching a stable state $x_{t+1} = x_t$
 - If argument to $\varphi(\cdot)$ is 0, neuron stays in previous state
 - Leads to symmetric flow diagrams
- Can also use "asynchronous" updates
 - Pick one neuron at random
 - Update it based on the others
 - Repeat

With one memory, that memory is stable

• Let the input \mathbf{x}_0 be the same as the single memory $\boldsymbol{\xi}$

$$x_{1} = \varphi(Wx_{0}) = \varphi\left(\frac{1}{N}(\xi\xi^{T} - I)\xi\right)$$

$$= \varphi\left(\frac{1}{N}\xi(\xi^{T}\xi - 1)\right)$$

$$= \varphi\left(\frac{\|\xi\|^{2} - 1}{N}\xi\right)$$

$$= \varphi\left(\frac{N-1}{N}\xi\right) = \xi$$

Therefore the memory is stable

Aside: Hamming distance is the number of differing bits between two patterns

- Hamming distance of 1 from $\{+1, +1, +1\}$
 - $\{+1, +1, -1\}, \{+1, -1, +1\}, \{-1, +1, +1\}$
- Hamming distance of 2 from $\{+1, +1, +1\}$
 - $\{+1, -1, -1\}, \{-1, +1, -1\}, \{-1, -1, +1\}$
- Hamming distance of 3 from $\{+1, +1, +1\}$
 - $\{-1, -1, -1\}$
- For $x_1, x_2 \in \{\pm 1\}^N$, $x_1^T x_2 = N 2d_H(x_1, x_2)$
 - So $-N \le x_1^T x_2 \le N$

With one memory, Hopfield net converges to the closer of ξ or $-\xi$

• For input of x_0

$$\begin{aligned} \boldsymbol{x}_1 &= \varphi \left(\frac{1}{N} W \boldsymbol{x}_0 \right) = \varphi \left(\frac{1}{N} (\boldsymbol{\xi} \boldsymbol{\xi}^T - I) \boldsymbol{x}_0 \right) \\ &= \varphi \left(\frac{1}{N} (\boldsymbol{\xi} \boldsymbol{\xi}^T \boldsymbol{x}_0 - \boldsymbol{x}_0) \right) \\ &= \pm \boldsymbol{\xi} \end{aligned}$$

- Assuming that $|\boldsymbol{\xi}^T \boldsymbol{x}_0| > 1$
- Closer is measured by inner product
 - Or equivalently in this case, by Hamming distance

Example: Hopfield net with one memory

• Let's use
$$\xi = [-1, +1, -1]^T$$
, then
$$W = \frac{1}{3} \begin{bmatrix} 0 & -1 & +1 \\ -1 & 0 & -1 \\ +1 & -1 & 0 \end{bmatrix}$$

Test memory stability

$$W\xi = \frac{1}{3} \begin{bmatrix} 0 & -1 & +1 \\ -1 & 0 & -1 \\ +1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ +1 \\ -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -2 \\ +2 \\ -2 \end{bmatrix}$$

• So $\varphi(W\xi) = \xi$

Example: Hopfield net with one memory

• Follow state trajectory from $x_1 = [-1, -1, +1]^T$

$$Wx_1 = \frac{1}{3} \begin{bmatrix} 0 & -1 & +1 \\ -1 & 0 & -1 \\ +1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

- So $\varphi(Wx_1) = [+1, -1, +1]^T = -\xi$
- Follow state trajectory from $x_2 = [+1, +1, -1]^T$

$$Wx_2 = \frac{1}{3} \begin{bmatrix} 0 & -1 & +1 \\ -1 & 0 & -1 \\ +1 & -1 & 0 \end{bmatrix} \begin{bmatrix} +1 \\ +1 \\ -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

• So $\varphi(Wx_2) = [-1, +1, -1]^T = \xi$

For a Hopfield net with multiple memories

• The stability condition for any memory ξ_{ϑ} is

$$\xi_{\vartheta} = \varphi(W\xi_{\vartheta})$$

$$= \varphi\left(\left(\frac{1}{N}\sum_{\mu} \xi_{\mu}\xi_{\mu}^{T} - I\right)\xi_{\vartheta}\right)$$

$$= \varphi\left(\frac{N-1}{N}\xi_{\vartheta} + \frac{1}{N}\sum_{\mu\neq\vartheta} \xi_{\mu}(\xi_{\mu}^{T}\xi_{\vartheta} - 1)\right)$$
crosstalk

Multiple memories can be stored if $M \ll N$

- Crosstalk is a weighted sum of the memories
- If memories are random variables (i.e., uncorrelated with each other)
 - Then this is a sum of N(M-1) random ± 1 variables
 - Which is asymptotically Gaussian
- If the crosstalk is small, compared to the ξ_{ϑ} term
 - Then the memory system is stable
 - In general, fewer memories are more likely stable
- More on this shortly

Example 2 from textbook

 Consider the Hopfield network with

$$W = \frac{1}{3} \begin{bmatrix} 0 & -2 & +2 \\ -2 & 0 & -2 \\ +2 & -2 & 0 \end{bmatrix}$$

- 8 possible states
 - See where each goes

Two states are stable

Two states are stable

•
$$\xi_1 = [+1, -1, +1]^T$$
 and $\xi_2 = [-1, +1, -1]^T = -\xi_1$

$$W\xi_1 = \frac{1}{3} \begin{bmatrix} 0 & -2 & +2 \\ -2 & 0 & -2 \\ +2 & -2 & 0 \end{bmatrix} \begin{bmatrix} +1 \\ -1 \\ +1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} +4 \\ -4 \\ +4 \end{bmatrix}$$

• So $\varphi(W\xi_1) = \xi_1$

$$W\xi_2 = \frac{1}{3} \begin{bmatrix} 0 & -2 & +2 \\ -2 & 0 & -2 \\ +2 & -2 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ +1 \\ -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -4 \\ +4 \\ -4 \end{bmatrix}$$

• So $\varphi(W\xi_2) = \xi_2$

Weight matrix agrees with the one calculated from the two stable states

$$W = \frac{1}{3}\xi_{1}\xi_{1}^{T} + \frac{1}{3}\xi_{2}\xi_{2}^{T} - \frac{2}{3}I$$

$$= \frac{1}{3}\begin{bmatrix} +1\\ -1\\ +1 \end{bmatrix}[+1, -1, +1] + \frac{1}{3}\begin{bmatrix} -1\\ +1\\ -1 \end{bmatrix}[-1, +1, -1] - \frac{2}{3}I$$

$$= \frac{1}{3}\begin{bmatrix} 3 & -1 & +1\\ -1 & 3 & -1\\ +1 & -1 & 3 \end{bmatrix} + \frac{1}{3}\begin{bmatrix} 3 & -1 & +1\\ -1 & 3 & -1\\ +1 & -1 & 3 \end{bmatrix} - \frac{2}{3}I$$

$$= \frac{1}{3}\begin{bmatrix} 0 & -2 & +2\\ -2 & 0 & -2\\ +2 & -2 & 0 \end{bmatrix}$$

Asynchronous updates follow this flow diagram

Memory capacity for a single bit: Prob of error is defined by amount of cross-talk

Define

$$C_j^{\vartheta} = -\xi_{\vartheta,j} \sum_{i} \sum_{\mu \neq \vartheta} \xi_{\mu,j} \xi_{\mu,i} \xi_{\vartheta,i}$$

• Amount cross-talk pushes bit *j* in the wrong direction

$$C_j^{\vartheta} < 0 \implies \text{stable}$$
 $0 \le C_j^{\vartheta} < N \implies \text{stable}$
 $C_j^{\vartheta} > N \implies \text{unstable}$

Capacity: Crosstalk is approximately Gaussian

- Consider random memories where each element takes +1 or -1 with equal probability.
- For random patterns, C_j^{ϑ} is proportional to a sum of N(M-1) random numbers of +1 or -1
- For large *NM*, it can be approximated by a Gaussian distribution (central limit theorem)
 - With zero mean and variance $\sigma^2 = NM$
- Capacity M_{max} is defined by an error criterion
 - Acceptable level of $P_{\text{error}} = \text{Prob}(C_i^{\vartheta} > N)$

Capacity: Prob of error is a function of N/M

• So

$$P_{\text{error}} = \frac{1}{\sqrt{2\pi}\sigma} \int_{N}^{\infty} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx$$

$$= \frac{1}{2} - \frac{1}{\sqrt{2\pi}\sigma} \int_0^N \exp\left(-\frac{x^2}{2\sigma^2}\right) dx$$

define
$$\mu = \frac{x}{\sigma\sqrt{2}}$$

$$= \frac{1}{2} \left(1 - \frac{2}{\sqrt{\pi}} \int_{0}^{\sqrt{N/(2M)}} \exp(-\mu^2) d\mu \right)$$
error function

CSE 5526: Hopfield Nets

Capacity: Visualizing prob of error

• So
$$P_{\text{error}} = \frac{1}{2} \left(1 - \text{erf} \left(\sqrt{\frac{N}{2M}} \right) \right)$$

Capacity: Lower error prob requires smaller M

P _{error}	$M_{ m max}/N$
0.001	0.105
0.0036	0.138
0.01	0.185
0.05	0.37
0.1	0.61

- So $P_{\text{error}} < 0.01 \Rightarrow M_{\text{max}} = 0.185N$, an upper bound
- Or 0.138N just to be safe

To get all N bits correct requires smaller M

- The above analysis is for one bit
- If we want perfect retrieval for ξ^{ϑ} with prob 0.99 $(1 P_{\text{error}})^N > 0.99$
 - Approximately $P_{\text{error}} < \frac{0.01}{N}$
- For this case $M_{\text{max}} = \frac{N}{2 \log N}$
 - See (McEliece, Posner, Rodemich, and Venkatesh, 1987)
- This is a bit disappointing compared to various error correction codes

Non-random memories modify capacity

- Real patterns are not random
 - Although they could be encoded to be almost random
 - The capacity is worse for correlated patterns
- At the favorable extreme, for orthogonal memories

$$\sum_{i} \xi_{\mu,i} \xi_{\vartheta,i} = 0 \quad \text{for } \vartheta \neq \mu$$

then
$$C_i^{\vartheta} = 0$$
 and $M_{\text{max}} = N$

- This is the maximum number of orthogonal patterns
- Use fewer memories to allow some evolution, otherwise, why bother?

Coding illustration

Energy function (Lyapunov function)

- The existence of an energy (Lyapunov) function for a dynamical system ensures its stability
- The energy function for the Hopfield net is

$$E(\mathbf{x}) = -\frac{1}{2} \sum_{i} \sum_{j} w_{ji} x_i x_j = -\frac{1}{2} \mathbf{x}^T W \mathbf{x}$$

• **Theorem**: Given symmetric weights, $w_{ji} = w_{ij}$, the energy function does not increase as the Hopfield net evolves asynchronously

Energy function (cont.)

• Let x_j be the new value of x_j after an update

$$x_{j}' = \varphi\left(\sum_{i} w_{ji} x_{i}\right)$$

• If $x'_i = x_j$, E remains the same

Energy function (cont.)

- Otherwise, $x'_j = -x_j$:
 - Let s be a vector of 1s except for $s_i = -1$

$$E(x') - E(x) = -\frac{1}{2} \sum_{i} \sum_{k} w_{ki} x_{i} x_{k} s_{i} s_{k} + \frac{1}{2} \sum_{i} \sum_{k} w_{ki} x_{i} x_{k}$$

$$= -\sum_{i \neq j} w_{ji} x_{i} x_{j} s_{j} + \sum_{k \neq j} w_{kj} x_{j} x_{k} s_{j}$$

$$= -2x_{j} s_{j} \sum_{i \neq j} w_{ji} x_{i}$$

$$= 2x_{j} \sum_{i \neq j} w_{ji} x_{i} < 0$$
different signs by assumption

Energy function (cont.)

• Thus, $E(\mathbf{x})$ decreases every time x_j flips. Since E is bounded, the Hopfield net is always stable

• Remarks:

• Useful concepts from dynamical systems: attractors, basins of attraction, energy (Lyapunov) surface or landscape

Energy contour map

2-D energy surface

Memory recall illustration

Hertz, Krogh, and Palmer (1991), Ch 2

Remarks (cont.)

- Bipolar neurons can be extended to continuousvalued neurons by using hyperbolic tangent activation function, and discrete update can be extended to continuous-time dynamics (good for analog VLSI implementation)
- The concept of energy minimization has been applied to optimization problems (neural optimization)

Spurious states

- Not all local minima (stable states) correspond to fundamental memories.
- Other attractors:
 - $-\xi_{\mu}$
 - linear combination of odd number of memories
 - other uncorrelated patterns
- Such attractors are called spurious states

Spurious states (cont.)

 Spurious states tend to have smaller basins and occur higher on the energy surface

Kinds of associative memory

Autoassociative (e.g. Hopfieled net)

Heteroassociative: store pairs $\langle x_{\mu}, y_{\mu} \rangle$ explicitly

matrix memory (Anderson 1972)

holographic memory (van Heerden, 1963)