ECO-AI HACKATHON TASK 1

Auto-Encoders for molecules representation and property prediction

AUTOBOTS TEAM Abu Abu, Thomas Bernet, Rohit Murali, Minghui Ye, Amin Zarei

INTRODUCTION

- Developments in molecule representation, property prediction, and descriptor-based molecular generation enhance CO2 solvent screening and design with machine learning.
- Refined representation aids in estimating CO2 absorption capacity in regression settings, particularly useful with scarce training data.

PROBLEM STATEMENT

- It is time consuming and costly to synthesize chemicals (energy, solvents, materials)
- Limited experimental data availability poses challenges, leading to exploration of alternative strategies like using molecule databases and combinatorial-based approaches for pre-training and transfer learning.
- Software for chemical generation can improve learning efficacy with limited datasets.

APPROACH: PROCESS DESCRIPTION

- Train VAEs with a dataset of 20,938 amines from ZINC and QM9 databases for molecular design.
- Objective: Develop encoderdecoder models with continuous representation akin to architecture in Figure 1.
- Carry out tasks like molecule reconstruction and predicting CO2 absorption capacity descriptors.

Fig. 1: (a) A diagram of the autoencoder used for molecular design, including the joint property prediction model (b) Gradient-based optimization in continuous latent space. [Gómez-Bombarelli et al., 2018]

DATASETS

zinc_small.txt (723.95 kB)

(<u>1</u>)

This preview is truncated due to the large file size. Create a Notebook or download this file to see the full content.

Download

20938 unique values

idx, smiles

- 1, N[C@H](Cc1ccc(C1)cc1)C(=0)0
- 2,N[C@@H](Cc1ccc(0)c(I)c1)C(=0)0
- 3,N[C@H](Cc1cccc1)C(=0)0
- 4, N[C@H](Cc1ccc(0)cc1)C(=0)0
- 5,CC(=0)NCCc1c(Cc2cccc2)[nH]c2cccc12
- 6,N[C@@H](Cc1ccc(Br)cc1)C(=0)0
- 7,N[C@H](Cc1ccc(Br)cc1)C(=0)0
- 8,CC(C)[C@H](N)C(=0)Nc1ccc2cccc2c1
- 9,N[C@H](C(=0)0)[C@H](0)c1ccccc1
- 10 0-C(0)[C@U]1Co2o([pU]o2oooo22)CN1

132040 unique values

OSelectedSMILES_QM9.csv (3.07 MB)					₹.	
Detail	etail Compact Column		Column		2 of 2 column	
# idx	=	A smile	es	=		
1	1					
2	2					
3		0				
4		C#C				
5		C#N				
6		C=0				

RESULTS

Dataset 1 – Zinc_small	Validity	Diversity	Reconstruction Accuracy
SMILES	17.1%	4.6%	84.9%
SELFIES	72.1%	37.1%	85.2%

Dataset 1 – QM9 Dataset	Validity	"	Reconstruction Accuracy
SMILES	20.7%	3.0%	74.8%
SELFIES	89%	25%	90%

Challenges: Sampled molecules from latent space

- 'Br/Br',

Opportunities for Future Work

Predict CO2 absorption capacity descriptors of regenerated molecules

Compare other VAE approaches such as CGVAE, Grammar VAE