

Introduksjon

Legg bort skilpaddene dine, i dag skal vi lære hvordan vi kan sende hemmelige beskjeder!

Kodeklubb-koden

Et chiffer er et system for å gjøre om vanlig tekst til kode som ikke andre skal kunne lese. Vi skal bruke et av de eldste og mest berømte chifferene, Cæsar-chifferet eller Cæsars kode - oppkalt etter Gaius Julius Cæsar som sannsynligvis brukte det til å sende hemmelige beskjeder. Det er neppe den beste måten å hindre andre i å lese beskjedene dine, men det kommer vi tilbake til. Det finnes ferdige moduler til Python du kan bruke hvis du vil lage noe som skal være vanskelig å knekke, men nå skal vi forsøke å lage Cæsar-chifferet selv.

Start med å tegne alle bokstavene i en sirkel.

For å lage en hemmelig bokstav fra en vanlig bokstav, trenger vi et tall vi kan bruke som hemmelig nøkkel. Jeg liker tallet 3, det er et magisk tall, så vi bruker det.

A + 3 = D T + 3 = W A + 3 = C

Vi begynner med A og teller fremover 3 bokstaver: B, C, D. Så bokstaven A blir til bokstaven D. For å dekode gjør vi det samme, men baklengs. Vi begynner med D og teller bakover for å få A.

Steg 1: Alfabetet

Her kan du få trøbbel med norske bokstaver om du ikke har Python 3. Du har Python 2 dersom det står 2.6 eller 2.7 i IDLE. I så fall må du legge en u foran tekst som er inni "" . For eksempel blir alfabetet under u"abcdefghijklmnopqrstuvwxyzæøå" . u -en betyr at teksten er av typen *Unicode* som støtter alle norske bokstaver.

Først må vi lære python alfabetet. Åpne IDLE og lag en ny fil med koden under:

alphabet = "abcdefghijklmnopqrstuvwxyzæøå"	
<pre>print(len(alphabet))</pre>	

Når du kjører dette programmet skal det skrive ut 29. Pass på at du har med alle bokstavene, ellers kommer ikke den hemmelige koden din til å virke.

Hvis du er fornøyd med alfabetet ditt kan vi begynne å kode en bokstav.

Steg 2: Kode en bokstav

Akkurat som vi gjorde med hjulet ovenfor kan vi finne posisjonen til en bokstav ved å telle forover, og så bruke bokstaven vi ender opp med.

Skriv inn koden under og kjør den:

```
alphabet = "abcdefghijklmnopqrstuvwxyzæøå"

letter = "a"
secret = 3

pos = alphabet.find(letter)

newpos = (pos + secret)

if newpos >= 29:
    newpos = newpos - 29

secretletter = alphabet[newpos]

print(secretletter)
```

Vi slår opp hvor "a" er i alfabetet og legger til det hemmelige tallet vårt for å telle fremover. Vi sjekker om vi har gått rundt, hvis vi har det må vi gå en hel runde tilbake igjen ved å trekke fra 29 (dette er litt som med gradene, å trekke fra 360 gjør at vi er akkurat der vi var). Så slår vi opp i alfabetet igjen for å se hvilken hemmelige bokstav vi fikk.

Kjør koden og se hva som skjer.

La oss ta en titt på koden igjen, men vi tar det sakte.

Du trenger ikke å skrive dette! Alt som står bak firkant-tegnet bryr python seg vanligvis ikke om, det er bare kommentarer til mennesker som skal lese koden.

```
# alphabet er navnet på teksten fra a til å
alphabet = "abcdefghijklmnopqrstuvwxyz"
# Den hemmelige bokstaven (letter) og det hemmelige tallet
# (secret) vi bruker for å kode det
letter = "a"
secret = 3
# Finn posisjonen til bokstaven. Python vil gi oss et
# tall fra 0 til 28 (python teller fra 0)
pos = alphabet.find(letter)
# Gå like langt fremover som det hemmelige tallet sier
newpos = (pos + secret)
# Hvis vi har telt for langt, må vi gå en runde tilbake
# for å få et tall mellom 0 og 28
if newpos >= 29:
   newpos = newpos - 29
# Slå opp denne posisjonen for å se hvilken bokstav
# i alfabetet som står der
secretletter = alphabet[newpos]
# Skriv denne bokstaven ut på skjermen
print(secretletter)
```

Det er mye python-ting som skjer her, men ikke bli skremt om du ikke forstår alt til å begynne med. Mye av dette er akkurat som i scratch. if newpos >= 29 er bare en if-setning, en ting som bare kjører koden under hvis det som står etter if er sant. En if-setning bruker en innrykksblokk, akkurat som for og def som vi har sett tidligere.

Nå som vi kan kode en bokstav, hva med å dekode en?

Steg 3: Finne tilbake bokstavene

Akkurat som i koden fra den forrige oppgaven skal vi finne posisjonen til bokstaven, men denne gangen skal vi gå bakover i alfabetet for å dekode.

Forsøk å skriv inn denne koden og kjør den:

```
alphabet = "abcdefghijklmnopqrstuvwxyzæøå"

secret = 17
secretletter = "r"

pos = alphabet.find(secretletter)

newpos = pos - secret

if newpos < 0:
    newpos = newpos + 29

letter = alphabet[newpos]

print(letter)</pre>
```

Steg 4: Bygge funksjoner

La oss ta koden som lager og leser Cæsar-koder og gjøre den om til to *funksjoner*. Gi den ene funksjonen navnet encode og den andre funksjonen navnet decode . **Tips:** Dersom du aldri har hørt om funksjoner, kan du lese mer om de i Skilpaddeskolen.

For å få en funksjon til å sende tilbake en verdi bruker vi **return**. Dette gjør at vi kan lagre funksjonens resultat til en variabel og deretter bruke variabelen.

Lag en fil som ser slik ut:

```
alphabet = "abcdefghijklnnopqrstuvwxyzæda"

def encode(letter, secret):
    pos = alphabet.find(letter)

    newpos = (pos + secret)

    if newpos >= 29:
        newpos = newpos - 29

    return alphabet[newpos]

def decode(letter, secret):
    pos = alphabet.find(letter)

    newpos = (pos - secret)

    if newpos < 0:
        newpos = newpos + 29

    return alphabet[newpos]

print(encode("a", 17))

print(decode("r", 17))</pre>
```

Husk at du kan bruke 'Tab' i IDLE for å få innrykk. Du kan også merke deler av koden og rykke alt inn på en gang.

Prøv å kode og dekode noen bokstaver!

Steg 5: Send et hemmelig ord eller to, og finn dem tilbake igjen

Nå har vi noen funksjoner, la oss bruke dem til å kode ord. Vi kommer til å gå igjennom hver bokstav i ordet og kode det hvis det finnes i alfabetet (vi hopper over tegn som punktum og mellomrom).

Under de nye funksjonene fra forrige oppgave kan du skrive inn koden under (med andre ord: behold det du gjorde i oppgave 4, og legg til koden under).

```
secret = 17
message = "hello world"
output = ""
for character in message:
   if character in alphabet:
       output = output + encode(character, secret)
       output = output + character
print(output)
secret = 17
message = "yvååc kcfåu"
output = ""
for character in message:
   if character in alphabet:
       output = output + decode(character, secret)
       output = output + character
print(output)
```

Kjør programmet og se hva som skjer.

Den første delen av koden burde skrive ut "yvååc kcfåu", som er den hemmelige versjonen av "hello world". Den andre delen dekoder det igjen og skriver ut "hello world"

Steg 6: Dekoding av noen hemmelige beskjeder

Her er noen hemmelige beskjeder, forsøk å dekode dem!

- daczj ym cgyzcdmwwzf?, hemmeligheten er 21.
- æxkxånwn næ bnwwnwn mrwn , hemmeligheten er 9.

Prøv å sende noen beskjeder til vennene dine! Hva med å lage et Python-program som forsøker seg på alle mulige hemmelige tall og forsøker å knekke koder selv om du ikke kan det hemmelige tallet?

Lisens: Code Club World Limited Terms of Service Forfatter: Oversatt fra Code Club UK Oversetter: Bjørn Einar Bjartnes