上海大学 计算机学院 《计算机组成原理实验》报告 2

姓名 <u>孔馨怡</u> 学号 <u>22122128</u>

时间 2023 年 12 月 23 日 机位 25 指导教师 <u>顾惠昌</u>

实验名称: 实验二 运算器实验

一、实验目的

- 1. 通过人工译码,加深对译码器基本工作原理的理解。
- 2. 理解(微)命令的顺序执行过程。

二、实验原理

1. 数据处理

CP226 实验仪的运算器由一片 CPLD 实现,包括 8 种运算功能。运算时先将数据写到寄存器 A 和寄存器 W 中,根据选择的运算方式系统产生运算结果送到直通门 D。

手动方式下,运算功能的通过信号 S1、S2、S3 选择。

S2	S1	S0	功能
0	0	0	A+W 加
0	0	1	A-W 减
0	1	0	A W 或
0	1	1	A&W ≒
1	0	0	A+W+C 带进位加
1	0	1	A-W-C 带进位减
1	1	0	~A A 取反
1	1	1	A 输出 A

带进位的加、减运算还应该另外给出进位 CyIN。

2. 向 DBUS 输出数据的寄存器

实验箱上可以向 DBUS 输出数据的寄存器有:直通门 D、左移门 L、右移门 R、程序计数器 PC、中断向量寄存器 IA、外部输入寄存器 IN 和堆栈寄存器 ST。 它们由 138 译码器的输入信号 X2, X1, X0 的编码来选择。见下方的输出寄存器选择表。

输出寄存器选择表							
X2 X1 X0			输出寄存器				
0	0	0	IN_OE 外部输入门				
0	0	1	IA_OE 中断向量				
0	1	0	ST_OE 堆栈寄存器				
0	1	1	PC_OE PC 寄存器				
1	0	0	D_OE 直通门				
1	0	1	R_OE 右移门				
1	1	0	L_OE 左移门				
1	1	1	没有输出				

三、 实验内容

- 1. 计算9CH+70H的值 (FEN分别为1和0), 计算02H-02H的值。 (FEN分别为1和0)。比较FEN为1和0时有什么不同。
- 2. 计算O7H十6AH后右移一位的值送OUT输出。
- 3. 把39H取反后同64H相与的值送入R3寄存器。

(实验提示:用外部输入IN进行数据输入,8位扁平线J1与2连接)

0. 接线及实验准备过程

- ① 用8位扁平线把J2和J1连接。
- ② 用不同颜色的导线分别把 KO 和 AEN、K1 和 WEN、K4K3K2 和 S2S1SO、K7K6K5 和 X2X1XO、K8 和 OUTEN、K10~K9 和 SA SB、K12~K11 和 RWR RRD, K13 和 FEN 相连。
- ③ K15~K0全部放在1位,k23~k16放0位。
- ④ 检查所有连线和电键位置,确信无误。
- ⑤ 注视仪器,打开电源,手不要远离电源开关,随时准备关闭电源,注意各数码管、发光管的稳定性,静待10秒,确信仪器稳定、无焦糊味。

⑥ 设置实验箱进入手动模式。按一下实验箱的复位按钮(RST),然后按小键盘的(TV/ME) 键三次,液晶屏显示"hand······"后进入手动模式。

连接	信号孔	接入孔	作用	有效电平
1	AEN	KO	选通 A	低电平有效
2	WEN	K1	选通 W	低电平有效
3	S0	K2	运算器功能选择	
4	S1	К3	运算器功能选择	
5	S2	K4	运算器功能选择	
6	XO	K5	输出寄存器选择	
7	X1	К6	输出寄存器选择	
8	Х2	К7	输出寄存器选择	
9	OUTEN	К8	OUTEN 输出控制	低电平有效
10	SA	К9	控制 RO~R3	
11	SB	K10	控制 RO~R3	
12	RRD	K11	控制 R 寄存器输出	低电平有效
13	RWD	K12	控制 R 寄存器写入	低电平有效
14	FEN	K13	考虑进位	低电平有效

(设置初始状态如上表)

1.实验任务一: 计算9CH+70H的值(FEN分别为1和0), 计算02H-02H的值。(FEN分别为1和0)。比较 FEN为1和0时有什么不同。

(—) 9CH+70H

- (1) 实验:
- a. 将 9CH 打入 A 寄存器 (按照下表设置初始状态,后续操作只列出更改部分)

连接	信号孔	接入孔	作用	有效电平	状态(1/0)
1	AEN	КО	选通 A	低电平有效	0
2	WEN	K1	选通 W	低电平有效	1
3	S0	K2	运算器功能选择		1
4	S1	К3	运算器功能选择		1
5	S2	K4	运算器功能选择		1
6	ХО	K5	输出寄存器选择		0
7	X1	К6	输出寄存器选择		0
8	X2	K7	输出寄存器选择		0
9	OUTEN	К8	OUTEN 输出控制	低电平有效	1
10	SA	К9	控制 RO~R3		1
11	SB	K10	控制 RO~R3		1
12	RRD	K11	控制R寄存器输出	低电平有效	1
13	RWD	K12	控制 R 寄存器写入	低电平有效	1
14	FEN	K13	考虑进位	低电平有效	1

K23	K22	K21	K20	K19	K18	K17	K16
1	0	0	1	1	1	0	0

b. 将 70H 打入 W 寄存器

连接	信号	接入	状态(1/0)
1	AEN	KO	1
2	WEN	K1	0

K23	K22	K21	K20	K19	K18	K17	K16
0	1	1	1	0	0	0	0

c. 将 A 和 W 相加

连接	信号孔	接入孔	状态(1/0)
1	AEN	КО	1
2	WEN	K1	1
3	S0	K2	0
4	S1	К3	0
5	S2	K4	0
6	XO	K5	1
7	X1	К6	1
8	Х2	К7	1
14	FEN	K13	1
	FEN	K13	(0)

(2) 实验现象: (为1表示亮, 0为不亮)

状态	进程	IN 旁红灯	A/W 黄灯	RCy	RZ	屏幕显示		
按下 STEP 之前		1	0	0	0	00		
按下 STEP 之中	A/W 数据打入	1	1	0	0	00		
按下 STEP 之后		1	0	0	0	9C/70		
	调整为 A+W							
FEN 置 1	A+W	0	0	0	0			
FEN 置 O		0	0	1	0			

(3) 实验结果:

计算 9CH+70H 的值,成功!

FEN 控制考虑相加进位/相减退位,低电平有效。

(二) 02H-02H

(1) 实验:

a. 将 02H 打入 A/W 寄存器 (按照下表设置初始状态,后续操作只列出更改部分)

连接	信号孔	接入孔	作用	有效电平	状态(1/0)
1	AEN	КО	选通 A	低电平有效	0
2	WEN	K1	选通 ₩	低电平有效	0
3	S0	K2	运算器功能选择		1
4	S1	К3	运算器功能选择		1
5	S2	K4	运算器功能选择		1
6	XO	K5	输出寄存器选择		0
7	X1	К6	输出寄存器选择		0
8	X2	K7	输出寄存器选择		0
9	OUTEN	K8	OUTEN 输出控制	低电平有效	1
10	SA	К9	控制 RO~R3		1
11	SB	K10	控制 RO~R3		1
12	RRD	K11	控制R寄存器输出	低电平有效	1
13	RWD	K12	控制 R 寄存器写入 低电平有效		1
14	FEN	K13	考虑进位	低电平有效	1

K23	K22	K21	K20	K19	K18	K17	K16
0	0	0	0	0	0	1	0

b. 将 A 和 W 相减

连接	信号孔	接入孔	状态(1/0)
1	AEN	КО	1
2	WEN	K1	1
3	S0	K2	1
4	S1	К3	0
5	S2	K4	0
6	XO	K5	1
7	X1	К6	1
8	Х2	К7	1
14	FEN	K13	1
	FEN	K13	(0)

(2) 实验现象: (为1表示亮,0为不亮)

状态	进程	IN 旁红灯	A/W 黄灯	RCy	RZ	屏幕显示
按下 STEP 之前		1	0	0	0	00
按下 STEP 之中	A/W 数据打入	1	1	0	0	00
按下 STEP 之后		1	0	0	0	02
			调整为 A-W			
FEN 置 1	A-W	0	0	0	0	
FEN 置 0		0	0	0	1	

(3) 实验结果:

计算 02H-02H 的值,成功!

RZ 为零标志。

2. 实验任务二: 计算 07H 十 6AH 后右移一位的值送 0UT 输出。

(1) 实验:

a. 将 07H 打入 A 寄存器 (按照下表设置初始状态,后续操作只列出更改部分)

连接	信号	接入	作用	有效电平	状态(1/0)
1	AEN	КО	选通 A	低电平有效	0
2	WEN	K1	选通 W	低电平有效	1
3	S0	K2	运算器功能选择		1
4	S1	К3	运算器功能选择		1
5	S2	K4	运算器功能选择		1
6	XO	K5	输出寄存器选择		0
7	X1	К6	输出寄存器选择		0
8	X2	K7	输出寄存器选择		0
9	OUTEN	К8	OUTEN 输出控制	低电平有效	1
10	SA	К9	控制 RO~R3		1
11	SB	K10	控制 RO~R3		1
12	RRD	K11	控制R寄存器输出	低电平有效	1
13	RWD	K12	控制 R 寄存器写入	低电平有效	1
14	FEN	K13	考虑进位	低电平有效	1

K23	K22	K21	K20	K19	K18	K17	K16
0	0	0	0	0	1	1	1

b. 将 6AH 打入 W 寄存器

连接	信号孔	接入孔	状态(1/0)
1	AEN	КО	1
2	WEN	K1	0

Ī	K23	K22	K21	K20	K19	K18	K17	K16
	0	1	1	0	1	0	1	0

c. 进行 A+W 操作,并将结果由 R 打入 OUTEN

连接	信号孔	接入孔	状态(1/0)
1	AEN	КО	1
2	WEN	K1	1
3	S0	K2	0
4	S1	К3	0
5	S2	K4	0
6	XO	К5	1
7	X1	К6	0
8	Х2	К7	1
9	OUTEN	К8	1

(2) 实验现象: (为1表示亮,0为不亮)

状态	进程	IN 旁红灯	A/W 黄灯	D 旁红灯	R_OE	OUTEN 黄灯	对应屏幕显示
按下 STEP 之前		1	0	0	0	0	00
按下 STEP 之中	A/W 数据	1	1	0	0	0	00
按下 STEP 之后	打入	1	0	0	0	0	07/6A
按下 STEP 之前		0	0	0	1	0	(R 屏幕)38
按下 STEP 之中	A+W 右移	0	0	0	1	1	(OUTEN) 00
按下 STEP 之后	打入	0	0	0	1	0	(OUTEN) 38

(3) 实验结果:

计算 07H + 6AH 后右移一位的值送 0UT 输出,成功!

3. 实验任务三: 把 39H 取反后同 64H 相与的值送入 R3 寄存器。

(1) 实验:

a. 将 39H 打入 A 寄存器 (按照下表设置初始状态,后续操作只列出更改部分)

连接	信号孔	接入孔	作用	有效电平	状态(1/0)
1	AEN	КО	选通 A	低电平有效	0
2	WEN	K1	选通 W	低电平有效	1
3	S0	K2	运算器功能选择		1
4	S1	К3	运算器功能选择		1
5	S2	K4	运算器功能选择		1
6	XO	К5	输出寄存器选择		0
7	X1	К6	输出寄存器选择		0
8	X2	К7	输出寄存器选择		0
9	OUTEN	К8	OUTEN 输出控制	低电平有效	1
10	SA	К9	控制 RO~R3		1
11	SB	K10	控制 RO~R3		1
12	RRD	K11	控制R寄存器输出	低电平有效	1
13	RWD	K12	控制 R 寄存器写入	低电平有效	1
14	FEN	K13	考虑进位	低电平有效	1

K23	K22	K21	K20	K19	K18	K17	K16
0	0	1	1	1	0	0	1

b. 将 64H 打入 W 寄存器

连接	信号孔	接入孔	状态(1/0)
1	AEN	КО	1
2	WEN	K1	0

K23	K22	K21	K20	K19	K18	K17	K16
0	1	1	0	0	1	0	0

c. 进行 A 取反操作, 并将结果由 D 打入 A

连接	信号孔	接入孔	状态(1/0)
1	AEN	КО	0
2	WEN	K1	1
3	S0	K2	0
4	S1	К3	1
5	S2	K4	1
6	XO	K5	0
7	X1	К6	0
8	Х2	K7	1
9	OUTEN	К8	1

d. 进行 A 和 W 相与操作,并将结果由 D 打入 R3

连接	信号孔	接入孔	状态(1/0)
1	AEN	КО	1
2	WEN	K1	1
3	S0	K2	1
4	S1	К3	1
5	S2	K4	0
6	XO	K5	0
7	X1	К6	0
8	Х2	К7	1
10	SA	К9	1
11	SB	K10	1
13	RWD	K12	0

(2) 实验现象: (为1表示亮,0为不亮)

状态	进程	IN 旁红灯	A/W 黄灯	D 旁红灯	R3旁黄灯	对应屏幕显示
按下 STEP 之前		1	0	0	0	00
按下 STEP 之中	A/W 数据	1	1	0	0	39/64
按下 STEP 之后	打入	1	0	0	0	39/64
按下 STEP 之前		0	0	1	0	(A 寄存器) 39 (D 寄存器)
按下 STEP 之中	A取反	0	0	1	1	(A 寄存器) 39 (D 寄存器)
按下 STEP 之后		0	0	1	0	(A 寄存器) C6(D 寄存器)
按下 STEP 之前		0	0	1	0	(D 屏幕) 44
按下 STEP 之中	AW 相与打	0	0	1	1	(R3) 00
按下 STEP 之后	入 R3	0	0	1	0	(R3) 44

(3) 实验结果:

把 39H 取反后同 64H 相与的值送入 R3 寄存器,成功!

四、建议和体会

- 1. 在实验的连线或者要控制电键变多时,一定要注意观察各器件的灯亮情况,红灯通常是输出,黄灯通常是输入,一定要养成良好的习惯:在某个数据打入寄存器之后,将该寄存器的输入关闭,以免出现不必要的错误。
- 2. 在完成"思考题:将 R2 中数据写入 A 寄存器"和上周的实验时,要用 8 位扁平线将 J2 和 J1 相连或者将 J3 和 J1 相连,这不同的数据传入方式告诉我们在做实验的时候要仔细分析读/写端的数据是通过什么通路传输,可以通过面板上画的白线来检查,数据是否能够顺利传输。
- 3. 在做实验的过程之前,要检查开关/线路等是否接触良好,如果有碰到键位置 1/置 0 结果都没有发生任何改变时,可以分析得出可能是设备接触不良导致。可以通过实验箱左下角的灯,自己接入后观察灯亮来判读器件是否正常工作。

或者还有可能是实验箱工作时间较长,导致一些器件发生形变或位移导致的接触不良,此时可以关闭电源等待冷却,或者轻轻地按一按实验箱的器件来调整。

五、思考题

如何将 R2 中的数据送至 A 寄存器中?

检查数据传输路径(试验箱上的白线),确定传输线路是否连接完成(J2和J1)相连,后控制 A 寄存器的电键打为低电平,控制 R 寄存器的输出的 RRD 打为低电平,SA/SB 打为 10 后按下 STEP 键 数据打入 A 寄存器。