Linear Algebra 2 – Lecture Notes

Lukas Prokop

summer term 2016

3

3

Contents

1	Linear maps (cont.)		3	
	1.1	Addition to chapter 5.2.4	3	
	1.2	Example	3	
	1.3	More general	3	
	1.4	Remark and a definition for bilinearity	5	
	1.5	Example	5	
	1.6	Example	5	
2	Determinants			
	2.1	Properties of determinants	9	
	2.2	Geometric interpretation of the determinant	1	
Τŀ	nis lec	ture took place on 29th of Feb 2016 (Prof. Franz Lehner).		
Ex	am:	written and orally		
Τυ	toria	l session:		
	• Eve	ery Monday, 18:30-20:00, SR 11.34		
	• Co	ntact: gernot.holler@edu.uni-graz.at		
Ko	nvers	satorium:		

• Every Monday, 10:00–10:45, SR 11.33

Topics, wie already discussed:

- Vector spaces
- Linear maps and their equivalence with matrices
- We introduced equivalence of matrices (PAQ = B)
- We defined the following techniques:
 - Rank
 - Linear equation system
 - Inverse matrices
 - Basis transformation

In this semester, we will discuss:

• PAP^{-1} , which is related to eigenvalues and diagonalization, hence $\bigvee_{P}^{?} PAP^{-1} = D$.

1 Linear maps (cont.)

1.1 Addition to chapter 5.2.4

 $\operatorname{Hom}(V, W)$ in special case $W = \mathbb{K}$. We define,

$$V^* := \operatorname{Hom}(V, \mathbb{K})$$

also denoted V' is called *dual space* of vector space V. The elements $v* \in V*$ is called *linear forms* or *linear functionals*.

We denote,

$$v^*(v) =: \langle v*, v \rangle$$

1.2 Example

$$V = \mathbb{K}^n$$

 $v^*: V \to \mathbb{K}$ is uniquely defined with values $v^*(e_i) =: a_i$.

$$\langle v^*, v \rangle = \left\langle v^*, \sum_{i=1}^n v_i e_i \right\rangle = \sum_{i=1}^n v_i \left\langle v^*, e_i \right\rangle$$

$$\left(v^* \left(\sum_{i=1}^n v_i e_i\right) = \sum_{i=1}^n v_i v^*(e_i) = \sum_{i=1}^n a_i v_i\right)$$

1.3 More general

We know, $\dim \operatorname{Hom}(V, W) = \dim V \cdot \dim W$.

Theorem 1. Let V be a vector space over \mathbb{K} .

• $\dim V =: n < \infty \Rightarrow \dim V^* = n$ More precisely: Let (b_1, \ldots, b_n) be a basis of V. Then

$$b_k^*: b_i \mapsto \delta_{ik} = \begin{cases} 1 & i = k \\ 0 & else \end{cases}$$

is a basis of V^* and is called dual basis.

- For $v^* \in V^*$ it holds that $v^* = \sum_{k=1}^n \langle v^*, b_k \rangle \cdot b_k^*$.
- If dim $V = \infty$, $(b_i)_{i \in I}$ bass, then it holds that

$$(b_k^*)_{k\in I}, \langle b_k^*, b_i \rangle = \delta_{ik}$$

is not a basis of V^* .

Proof. • Special case of 5.18

 (b_k^*) is linear independent, hence in $\sum_{i=1}^n \lambda_i b_i^* = 0$ all $\lambda_i = 0$.

$$0 = \left\langle \sum_{i=1}^{n} \lambda_i b_i^*, b_k \right\rangle = \sum_{i=1}^{n} \lambda_i \left\langle \underbrace{b_i^*, b_k}_{\delta_{ik}} \right\rangle = \lambda_k \forall k$$

• Let $v \in V$ with $v = \sum_{i=1}^{n} v_i b_i$. We need to show

$$\langle v^*, v \rangle \stackrel{!}{=} \left\langle \sum_{k=1}^n \langle v^*, b_w \rangle b_n^*, v \right\rangle$$

$$\left\langle \sum_{k=1}^n \langle v^*, b_k \rangle b_k^*, v \right\rangle = \sum_{k=1}^n \langle v^*, b_k \rangle \langle b_k^*, v \rangle$$

$$= \sum_{k=1}^n \left\langle v^*, b_k \right\rangle \left\langle b_k^*, \sum_{i=1}^n v_i b_i \right\rangle$$

$$= \sum_{k=1}^n \sum_{i=1}^n \langle v^*, b_k \rangle \langle b_k^*, b_i \rangle \cdot v_i$$

$$= \sum_{k=1}^n \langle v^*, b_k \rangle \langle v^*, b_k \rangle \cdot v_k$$

$$= \left\langle v^*, \sum_{k=1}^n v_k b_k \right\rangle$$

$$= \langle v^*, v \rangle$$

• (To be done in the practicals) Consider the functional

$$\langle v^*, b_i \rangle = 1 \Rightarrow v^* \notin L((v_i^*)_{i \in I})$$

1.4 Remark and a definition for bilinearity

The mapping $V^* \times V \to \mathbb{K}$ is linear in v (with fixed v^*) with $(v^*, v) \mapsto \langle v^*, v \rangle$ is linear in v^* (with fixed v). Such a mapping is called *bilinear*.

A mapping $F: V_1 \times ... \times V_n \to W$ is called *multilinear* (n-linear) if it is linear in every component. Formally:

$$F(v_1, \dots, v_{k-1}, \lambda v_k' + \mu v_k'', v_{k+1}, \dots, v_n)$$

$$= \lambda F(v_1, \dots, v_{k-1}, v_k', v_{k+1}, \dots, v_n) + \mu F(v_1, \dots, v_k'', v_{k+1}, \dots, v_n)$$

1.5 Example

 $V = \mathbb{K}[x]$ polynomials

Basis: $\{x^k \mid k \in \mathbb{N}_0\}$ and dim $V = \aleph_0$

Every $v^* \in V^*$ is uniquely defined by $a_k := \langle v^*, x^k \rangle$

$$(a_k)_{k\in\mathbb{N}_0}$$

 $V^* \cong \mathbb{K}[[t]]$ are the formal power series

$$= \left\{ \sum_{k=0}^{\infty} a_k t^k \, \middle| \, a_k \in \mathbb{K} \right\}$$

$$\lambda \sum_{k=0}^{\infty} a_k t^k + \mu \sum_{k=0}^{\infty} b_k t^k = \sum_{k=0}^{\infty} (\lambda a_k + \mu b_k) t^k$$

(Compare with Taylor series $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$))

$$\left\langle \sum_{k=0}^{\infty} a_k t^k, \sum_{k=0}^{n} b_k x^k \right\rangle =: \sum_{k=0}^{n} a_k b_k \text{ is well-defined}$$

$$\to \mathbb{K}[x]^* \cong \mathbb{K}[[t]]$$

1.6 Example

C[0,1] continuous functions

Example:

Example 1.

$$x \in [0,1] \qquad \delta_x : C[0,1] \to \mathbb{R}$$

$$f \mapsto f(x)$$

$$\langle \delta_x, f \rangle = f(x)$$

$$\langle \delta_x, f \rangle = f(x)$$

$$I(f) = \int_0^1 f(x) \, dx \text{ is linear}$$

$$\langle I_g, f \rangle = \int_0^1 f(x)g(x) \, \mathrm{d}x$$

$$g \in C[0, 1] \text{ is fixed}$$

$$\Rightarrow I_g \in C[0, 1]$$

$$\langle I_g, \lambda f_1 + \mu f_2 \rangle' = \int_0^1 (\lambda f_1(x) + \mu f_2(x))g(x) \, \mathrm{d}x$$

$$= \lambda \int_0^1 f_1(x)g(x) \, \mathrm{d}x + \mu \int_0^1 f_2(x)g(x) \, \mathrm{d}x$$

This also works with non-continuous g (it suffices to have g integratable). (Compare with measure theory and Riesz' theorem)

Does there exist some g such that $f(x) = \langle \delta_x, f \rangle = \int_0^1 f(t)g(t) dt$. (Compare with Dirac's δ function and Schwartz/Sobder theory)

$$V^{**} = (V^*)^* \cong V \text{ if } \dim V < \infty$$

Lemma 1. Let V be a vector space over \mathbb{K} . It requires that dim $V < \infty$ and the Axiom of Choice holds.

•
$$v \in V \setminus \{0\} \Leftrightarrow \bigvee_{v^* \in V^*} \langle v^*, v \rangle \neq 0$$

• $\bigwedge_{v \in V} v = 0 \Leftrightarrow \bigwedge_{v^* \in V^*} \langle v^*, v \rangle = 0$

Proof. Addition v to a basis B of V: Define $v^* \in V^*$ by

$$\langle v^*, b \rangle = \begin{cases} 1 & b = v \\ 0 & b \neq v \end{cases} \text{ for } b \in B$$

Theorem 2. Let V be a vector space over \mathbb{K} .

• The map $\iota: V \to V^{**} := (V^*)^*$ is called bidual space.

$$\langle \iota(v), v^* \rangle \coloneqq \langle v^*, v \rangle$$

is linear and injective.

• if dim $V < \infty$, then isomorphism.

Proof. • Linearity

$$\iota(\lambda v + \mu w) \stackrel{!}{=} \lambda \iota(v) + \mu \iota(w)$$

must hold in every point $v^* \in V^*$:

$$\langle \iota(\lambda v + \mu w), v^* \rangle = \langle v^*, \lambda v + \mu w \rangle$$

$$= \lambda \langle v^*, v \rangle + \mu \langle v^*, w \rangle$$

$$= \lambda \langle \iota(v), v^* \rangle + \mu \langle \iota(w), v^* \rangle$$

$$= \langle \lambda \iota(v) + \mu \iota(w), v^* \rangle$$

Is it injective? Let $v \in \ker \iota$.

$$\langle \iota(v), v^* \rangle = 0 \quad \forall v^* \in V^*$$

 $\Rightarrow \langle v^*, v \rangle = 0 \quad \forall v^* \in V^*$
 $\xrightarrow{\text{Lemma 1}} v = 0$

• Follows immediately, because the dimension is equal.

Definition 1. Let V, W be vector spaces over \mathbb{K} . $f \in \text{Hom}(V, W)$. We define $f^T \in \text{Hom}(W^*, V^*)$ using $f^T(w^*) \in V^*$ via

$$\langle f^T(w^*), v \rangle = \langle w^*, f(v) \rangle = w^*(f(v)) = w^* \circ f(v)$$

 $f^T(w^*) = w^* \circ f \text{ is linear} \Rightarrow f^T(w^*) \in V^*$

V to W (with f) and W to \mathbb{K} (with w^*).

 $\int_{0}^{T} f^{T}$ is called transposed map.

Example 2. (See practicals) Let dim V = n and dim W = m with $B \subseteq V$ and $C \subseteq W$ as bases and dual bases $B^* \subseteq V^*$ and $C^* \subseteq W^*$

$$\Phi_{B^*}^{C^*}(f^T) = \Phi_C^B(f)^T$$
 transposition of matrices

This lecture took place on 2nd of March 2016 (Franz Lehner).

2 Determinants

Leibnitz 1693 (3 × 3 matrices) Seki Takukazu 1685 (most general version) Gauß 1801 ("determinant") Cayley 1845 (on matrices)

n=2

$$ax + by = e$$

$$cx + dy = f$$

$$a \quad b \mid e$$

$$c \quad d \mid f$$

1. Case 1: $a \neq 0$ (multiply first row $-\frac{a}{b}$ times second row)

$$\begin{array}{ccc}
a & b \\
c & d \\
\hline
a & b \\
0 & d - \frac{bc}{a}
\end{array}$$

Unique solution:

$$d - \frac{bc}{a} \neq 0$$

2. Case 2: $c \neq 0$ (multiple second row $-\frac{a}{c}$ times first row)

$$\begin{array}{ccc}
a & b \\
c & d \\
\hline
0 & b - \frac{ad}{c} \\
c & d
\end{array}$$

Unique solution:

$$b - \frac{ad}{c} \neq 0$$

This gives us

$$ad - bc \neq 0$$

Definition 2.

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

is called determinant of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

2.1 Properties of determinants

• The determinant is bilinear in the columns and rows.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (v, w)$$

where v and w are column vectors of A.

$$\det(\lambda v_1 + \mu v_2, w) = \lambda \det(v_1, w) + \mu \det(v_2, w)$$

$$\det(v, \lambda w + \mu w_2) = \lambda \det(v, w_1) + \mu \det(v, w_2)$$

$$\det(\lambda v_1 + \mu v_2, w) = \begin{vmatrix} \lambda a_1 + \mu a_2 & b \\ \lambda c_1 + \mu c_2 & d \end{vmatrix}$$

$$= (\lambda a_1 + \mu a_2)d - (\lambda c_1 + \mu c_2)b$$

$$= \lambda (a_1 d - c_1 b) + \mu (a_2 d - c_2 b)$$

$$= \lambda \begin{vmatrix} a_1 & b \\ c_1 & d \end{vmatrix} + \mu \begin{vmatrix} a_2 & b \\ c_2 & d \end{vmatrix}$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & c \\ b & d \end{vmatrix}$$

 $\bullet \det(v, v) = 0.$

$$\begin{vmatrix} a & a \\ c & c \end{vmatrix} = ac - ac = 0$$

•

$$\det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \det(e_1, e_2) = 1$$

Theorem 3. The properties 1–3 of determinants (see above) characterize the determinant.

Let $\varphi: \mathbb{K}^2 \times \mathbb{K}^2 \to \mathbb{K}$

- bilinear
- $\bigwedge_{v \in \mathbb{K}^2} \varphi(v, v) = 0$
- $\varphi(e_1, e_2) = 1$. Then it holds that $\varphi = \det$.

Proof. To show: $\varphi(v, w) = \det(v, w) \forall v, w \in \mathbb{K}^2$

$$v = \underbrace{ae_1 + ce_2}_{\begin{pmatrix} a \\ c \end{pmatrix}} \qquad w = \underbrace{be_1 + de_2}_{\begin{pmatrix} b \\ d \end{pmatrix}}$$

$$\varphi(v, w) = \varphi(ae_1 + ce_2, be_1 + de_2)$$

$$= a\varphi(e_1, be_1 + de_2) + c \cdot \varphi(e_2, be_1 + de_2)$$

$$= ad \underbrace{\varphi(e_1, e_2)}_{=1} + \underbrace{ab\varphi(e_1, e_1)}_{=0} + cb\varphi(e_2, e_1) + cd\underbrace{\varphi(e_2, e_2)}_{=0}$$

Lemma 2. From (i) bilinearity and (ii) $\bigwedge_{v \in \mathbb{R}^2} \varphi(v, v) = 0$ it follows that

$$\bigwedge_{v,w \in \mathbb{K}^2} \varphi(v,w) = -\varphi(w,v)$$

$$0 \stackrel{(ii)}{=} \varphi(v+w,v+w) \stackrel{(i)}{=} \varphi(v,v) + \varphi(v,w) + \varphi(w,v) + \varphi(w,w)$$

$$\stackrel{(ii)}{=} \varphi(v,w) + \varphi(w,v)$$

2.2 Geometric interpretation of the determinant

Consider an area with w defining its breath and v its depth (hence the area spanning vectors). Let e_1 and e_2 be the spanning vectors of a rectangle corresponding to the parallelogram. det(v, w) is the surface of the spanned parallelogram. The sign defines the orientation of the pair (v, w).

$$\det(e_1, e_2) = 1$$
 $\det(e_2, e_1) = -1$

There are surfaces where the surface is infinite if you follow a vector in some direction:

- Möbius strip
- Klein's bottle (named after Felix Klein)

$$A = |v| \cdot h$$

Consider Figure 1. h is the length of the projection of w to v^{\perp} .

$$v = \begin{pmatrix} a \\ b \end{pmatrix} \to \vec{n} = \begin{pmatrix} -b \\ a \end{pmatrix}$$

$$\langle \begin{pmatrix} c \\ d \end{pmatrix}, \begin{pmatrix} -b \\ a \end{pmatrix} \rangle = ad - bc$$

Second proof. A(v, w) satisfies properties (i)—(iii).

Figure 1: Parallelogram

- Property (iii) follows immediately (the area of unit vectors in two dimensions is 1).
- Property (ii) follows immediately (the area of two vectors in the same direction is 0).

Property (i) defines the linearity in v

- 1. If v, w are linear dependent, then A(v, w) = 0 (one is a multiple of the other)
- 2. $n \in \mathbb{N}$ with A(nv, w) = nA(v, w)

3. For $\tilde{v} = n \cdot v$:

$$A(\tilde{v}, w) = n \cdot A(\frac{\tilde{v}}{n}, w)$$

$$\Rightarrow A(\frac{\tilde{v}}{n}, w) = \frac{1}{n} A(\tilde{v}, w)$$

$$A(nv, w) = nA(v, w)$$

$$A(\frac{1}{n}v, w) = \frac{1}{n} A(v, w)$$

$$A(\frac{m}{n}v, w) = \frac{m}{n} A(v, w)$$

$$A(-v, w) = -A(v, w)$$

From continuity it follows that $A(\lambda u, w) = \lambda A(v, w)$ for $\lambda \in \mathbb{R}$. Analogously $A(v, \lambda w) = \lambda A(v, w)$.

4. The sum is given with

$$A(v+w,w) = A(v,w)$$

Compare with Figure 2, where area(2) + area(3) = area(2) + area(1).

$$A(\lambda v + \mu w, w) = A(\lambda v + \mu w, \frac{1}{\mu} \mu w)$$
$$= \frac{1}{\mu} A(\lambda v + \mu w, \mu w)$$
$$= \frac{1}{\mu} A(\lambda v, \mu w)$$
$$= A(\lambda v, w)$$

General case: v, w are linear independent and therefore basis of \mathbb{R}^2 . Besides that, v_1 and v_2 are arbitrary.

$$v_1 = \lambda_1 v + \mu_1 w$$
$$v_2 = \lambda_2 v + \mu_2 w$$

Figure 2: Translation of area 1 to area 3.

$$A(v_1 + v_2, w) = A(\lambda_1 v + \mu_1 w + \lambda_2 v + \mu_2 w, w)$$

$$= A((\lambda_1 + \lambda_2) v + (\mu_1 + \mu_2) w, w)$$

$$= A((\lambda_1 + \lambda_2) v, w)$$

$$= (\lambda_1 + \lambda_2) A(v, w)$$

$$= A(\lambda_1 v, w) + A(\lambda_2 v, w)$$

$$A(\lambda_1 v + \mu_1 w, w) + A(\lambda_2 v + \mu_2 w, w) = A(v_1, w) + A(v_2, w)$$

Additivity follows.

Definition 3. Let dim V = n. A determinant form is a map

$$\triangle: V^n \to \mathbb{K}$$

with properties:

1.

$$\bigwedge_{\lambda} \bigwedge_{k} \bigwedge_{a_1, \dots, a_n \in V} \triangle(a_1, \dots, a_{k-1}, \lambda a_k, a_{k+1}, \dots, a_n) = \lambda \triangle(a_1, \dots, a_k, \dots, a_n)$$

2.

$$\bigwedge_{k} \bigwedge_{\substack{a_{1}, \dots, a_{n} \\ a'_{k}, a''_{k}}} \triangle(a_{1}, \dots, a_{k-1}, a'_{k} + a''_{k}, a_{k+1}, \dots, a_{n})$$

$$:= \triangle(a_1, \dots, a_{k-1}, a'_k + a''_k, a_{k+1}, \dots, a_n)$$

3.

$$\triangle(a_1,\ldots,a_n)=0$$

if $\bigvee_{k\neq l} a_k = e_l$ if $\triangle \neq 0$, i.e. \triangle is non-trivial.

Multilinearity is defined by the first two properties. Multilinearity means linearity in a_k if $a_1, \ldots, a_{k-1}, a_{k+1}, \ldots, a_n$ get fixed.

Theorem 4.

$$\dim V = n$$

 $\triangle: V^n \to \mathbb{K}$ is determinant form

Then,

4.

$$\bigwedge_{\lambda \in \mathbb{K}} \bigwedge_{i \neq j} \triangle(a_1, \dots, a_{i-1}, a_i + \lambda a_j, a_{i+1}, \dots, a_n) = \triangle(a_1, \dots, a_i, \dots, a_n)$$

"Addition of λa_i to a_i does not change \triangle "

5.

$$\bigwedge_{i>j} \triangle(a_1, \dots, a_{j-1}, a_i, a_{j+1}, \dots, a_{i-1}, a_j, a_{i+1}, \dots, a_n)
= -\triangle(a_1, \dots, a_j, \dots, a_i, \dots, a_n)$$

"Exchanging a_i with a_i inverts the sign"

Proof. 4.

$$\triangle(a_1,\ldots,a_i+\lambda a_j,\ldots,a_n)$$

Without loss of generality: i < j. From properties 1 and 2 it follows that:

$$= \triangle(a_1, \dots, a_i, a_j, a_n) + \lambda \triangle(a_1, \dots, a_j, a_j, \dots, a_k)$$

Oh, a_i occurs twice! Once at index i and once at index j.

$$=0$$

due to property 3.

5.

$$0 \stackrel{\text{property } 3}{=} \triangle(a_1, \dots, a_{i-1}, a_i + a_j, \dots, a_{j-1}, a_i + a_j, \dots, a_n)$$

$$= \triangle(a_1, \dots, a_{i-1}, \mathbf{a_i}, \dots, a_{j-1}, \mathbf{a_i}, \dots, a_n) = \mathbf{0}$$

$$+ \triangle(a_1, \dots, a_{i-1}, \mathbf{a_i}, \dots, a_{j-1}, \mathbf{a_j}, \dots, a_n)$$

$$+ \triangle(a_1, \dots, a_{i-1}, \mathbf{a_j}, \dots, a_{j-1}, \mathbf{a_i}, \dots, a_n)$$

$$+ \triangle(a_1, \dots, a_{i-1}, \mathbf{a_j}, \dots, a_{j-1}, \mathbf{a_j}, \dots, a_n) = \mathbf{0}$$

$$\Rightarrow \delta$$

Definition 4. A permutation of order n is a bijective mapping $\pi : \{1, ..., n\} \rightarrow \{1, ..., n\}$.

$$\sigma_n = set of all permutations$$

Remark 1. Notation: We write the elements in the first row and their images in the second row.

Definition 5. σ_n constitutes (in terms of composition) a group with neutral element id, the so-called symmetric group.

In the previous course (Theorem 1.40) we have proven: Compositions of bijective functions are bijective.

Remark 2. For $n \geq 3$, σ_n is non-commutative

Theorem 5.

$$|\sigma_n| = n!$$

Remark 3. These are "a lot"!

Example 3.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$$

Definition 6. A transposition is a permutation of the structure

$$\tau = \tau_{ij} : \begin{array}{c} i \mapsto j \\ j \mapsto i \quad \text{if } k \notin \{i, j\} \\ k \mapsto h \end{array}$$

Then $\tau_{ij}^{-1} = \tau_{ij}$, hence $\tau_{ij}^2 = id$.

Theorem 6. σ_n is generated by transpositions. With other words, every permutation π can be represented as composition of transpositions

$$\pi = \tau_1 \circ \ldots \circ \tau_k$$

Proof.

$$\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix}$$

If $\pi = id$,

$$\pi = \pi \quad \tau := id$$

If $\pi \neq id$,

$$k_1 = \min \left\{ k \,|\, k \neq \pi(k) \right\}$$

1.

2.

$$\tau_1 = \tau_{k_1 \pi(k_1)}$$

$$\pi_1 = \tau_1 \circ \pi = \begin{pmatrix} 1 & \dots & k-1 & k_1 & \dots \\ 1 & \dots & k-1 & k_1 & \dots \end{pmatrix}$$

Example: Consider $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 5 & 4 & 7 & 6 & 2 \end{pmatrix}$.

$$k_1 = 2$$

$$\tau_1 = \tau_{23}$$

$$\pi_1 = \tau_1 \circ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 5 & 4 & 7 & 6 & 3 \end{pmatrix}$$

$$k_2 = \min \{ k \mid k \neq \pi_1(k) \} > k_1$$

 $\tau_2 = \tau_{k_2, \pi(k_2)}$

And so on and so forth. $k_i > k_{i-1}$ ends after $\leq n$ steps.

$$\tau_k \circ \tau_{k-1} \circ \ldots \circ \tau_1 \circ \pi = \mathrm{id}$$

$$\Rightarrow \pi = \tau_1 \circ \tau_2 \circ \ldots \circ \tau_k$$

Regarding the example:

$$k_2 = 3$$

$$\tau_2 = \tau_{35}$$

$$\pi_2 = \tau_2 \circ \pi_1 = \tau_2 \circ \tau_1 \circ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 7 & 6 & 5 \end{pmatrix}$$

$$k_3 = 5$$
 $\tau_3 = \tau_{57}$

$$\Rightarrow \pi = \tau_{23} \circ \tau_{35} \circ \tau_{57}$$

Definition 7. A malposition of π is a pair (i, j) such that i < j with $\pi(i) > \pi(j)$. Let F_{π} be the set of malpositions of π .

$$f_{\pi} := |F_{\pi}|$$
$$\operatorname{sign}(\pi) := (-1)^{f_{\pi}} =: (-1)^{\pi}$$

Example 4.

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 5 & 4 & 7 & 6 & 2 \end{pmatrix}$$

$$F_{\pi} = \{(2,7), (3,4), (3,7), (4,7), (5,6), (5,7), (6,7)\}$$

$$f_{\pi} = 7 \qquad \operatorname{sign}(\pi) = -1$$

This lecture took place on 7th of March 2016 (Franz Lehner).

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Recall: Determinant form:

1.
$$\triangle(a_1,\ldots,\lambda a_k,\ldots,a_n)=\lambda\triangle(a_1,\ldots,a_n)$$

2.
$$\triangle(a_1, \ldots, a'_k + a''_k, \ldots, a_n) = \triangle(a_1, \ldots, a'_k, \ldots, a_n) + \triangle(a_1, \ldots, a''_k, \ldots, a_n)$$

3.
$$\triangle(a_1, ..., a_k, ..., a_l, ..., a_n) = 0$$
 if $a_k = a_l$

Conclusions:

4.
$$\triangle(a_1,\ldots,a_k+\lambda a_l,\ldots,a_n)=\triangle(a_1,\ldots,a_n)$$
 if $k\neq l$

5.
$$\triangle(a_1,\ldots,a_k,\ldots,a_l,\ldots,a_n) = -\triangle(a_1,\ldots,a_l,\ldots,a_k,\ldots,a_n)$$

$$\triangle(a_{\pi(1)},\ldots,a_{\pi(n)}) = (-1)^k \triangle(a_1,\ldots,a_n)$$

Decompose $\pi = \tau_1 \circ \ldots \circ \tau_k \circ \tau_{12} \circ \tau_{12}$. This decomposition is not distinct (k is distinct mod 2)

$$\pi \in \sigma_n$$
 permutation

$$F_{\pi} = \{(i, j) \mid i < j, \pi(i) > \pi(j), \text{ malpositions } \}$$

$$f_{\pi} = \mid F_{\pi} \mid$$

$$\operatorname{sign}(\pi) := (-1)^{f_{\pi}} =: (-1)^{\pi}$$

Theorem 7. • $\bigwedge_{\pi \in \sigma_n} \operatorname{sign}(\pi) = \prod_{1 \le i < j \le n} \frac{\pi(j) - \pi(i)}{j - i}$

• For transposition τ it holds that $sign(\tau) = -1$

Proof. • Every pair $\{i, j\}$ occurs in the enumerator exactly once.

$$\frac{\prod_{i < j} \pi(j) - \pi(i)}{\prod_{i < j} (j - i)}$$

Denominator: j > i, positive. Enumerator: positive if $\pi(j) > \pi(i)$, negative if $\pi(i) > \pi(j)$.

$$\tau = \begin{pmatrix} 1 & \dots & k & \dots & l & \dots & n \\ 1 & \dots & l & \dots & k & \dots & n \end{pmatrix}$$

$$F_{\tau}(\underbrace{(k, k+1), (k, k+2), \dots, (k, l-1)}_{\text{malpositions with } k, l-k \text{ times}}, (k, l), \underbrace{(k+1, l), \dots, (l-1, l)}_{l-k-1 \text{ times}})$$

Example:

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 2 & 3 & 8 & 5 & 6 & 7 & 4 & 9 & 10
\end{pmatrix}$$

Yields 7 malpositions (8 needs to be repositioned with 3 transpositions, 4 needs to be repositions with 4 transpositions).

$$\operatorname{sign}(\pi) = \prod_{i < j} \frac{\pi(j) - \pi(i)}{j - i} \qquad \binom{n}{2} \text{ factors}$$
$$\operatorname{sign}(\tau) = -1$$

Theorem 8. $1. \operatorname{sign}(id) = 1$

2. $sign(\pi \circ \sigma) = sign(\pi) \cdot sign(\sigma)$, hence

$$\operatorname{sign} \sigma_n \to (\{+1, -1\}, \cdot)$$

is a group homomorphism. (In general: A group homomorphism $h: G \to (\mathcal{T}, \cdot)$ is called character)

3. $\operatorname{sign}(\pi^{-1}) = \operatorname{sign}(\pi)$

Remark 4.

$$\mathcal{T} = \{ z \in \mathbb{C} \mid |z| = 1 \}$$

Torus with multiplication is a group.

$$|z_1 \cdot z_2| = |z_1| \cdot |z_2| = 1$$

Proof. 1. trivial

2.

$$\operatorname{sign}(\pi \cdot \sigma) = \prod_{i < j} \frac{\pi \circ \sigma(j) - \pi \circ \sigma(i)}{j - i}$$

$$= \prod_{i < j} \frac{\pi(\sigma(j)) - \pi(\sigma(i))}{\sigma(j) - \sigma(i)} \cdot \prod_{i < j} \frac{\sigma(j) - \sigma(i)}{j - i}$$

$$= \operatorname{sign}(\pi) \underbrace{\prod_{i < j} \frac{\sigma(j) - \sigma(i)}{j - i}}_{\operatorname{sign}(\sigma)}$$

3. Group homomorphism!

Corollary 1. • If $\pi = \tau_1 \circ \tau_2 \circ \dots \circ \tau_k$, product of transpositions $\Rightarrow \operatorname{sign}(\pi) = (-1)^k$

• $\mathfrak{a}_n := \ker(\operatorname{sign}) = \{\pi \in \sigma_n \mid \operatorname{sign}(\pi) = 1\}$

"even permutations", "alternating group"

$$|\mathfrak{a}_n| = \frac{n!}{2}$$

Corollary 2.

 $\triangle: V^k \to \mathbb{K} \ determinant \ form$

then it holds that

$$\bigwedge_{\pi \in \sigma_n} \bigwedge_{a_1, \dots, a_n \in V} \triangle(a_{\pi(1)}, \dots, a_{\pi(n)}) = \operatorname{sign}(\pi) \cdot \triangle(a_1, \dots, a_n)$$

Proof. • If $\pi = \tau_{kl}$ transposition $\xrightarrow{\text{Theorem 4}} \triangle(a_{\tau(1)}, \dots, a_{\pi(n)}) = -\triangle(a_1, \dots, a_n) = \text{sign}(\tau_{kl}) \cdot \triangle(a_1, \dots, a_n)$

• If $\pi = \tau_1 \circ \ldots \circ \tau_k = \tau_1 \circ \tilde{\pi}, \tilde{\pi} = \tau_2 \circ \ldots \circ \tau_k$

$$\triangle(a_{\tau_1 \circ \tilde{\pi}(1)}, \dots, a_{\tau_1 \circ \tilde{\pi}(n)}) = -\triangle(a_{\tilde{\pi}(1)}, \dots, a_{\tilde{\pi}(n)}) = (-1)^2 \cdot \triangle(a_{\tilde{\pi}(1)}, a_{\tilde{\pi}(n)}) \to (-1)^k \cdot \triangle(a_1, \dots, a_{\tilde{\pi}(n)})$$

Theorem 9 (Leibnitz' definition of det(A)). Let $B = (b_1, \ldots, b_n)$ be the basis of V. $a_1, \ldots, a_n \in V$ with coordinates

$$\Phi_B(a_j) = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{bmatrix}$$

$$A := [a_{ij}]_{i,j=1,...,n} = [\Phi_B(a_1), \Phi_B(a_2), ..., \Phi_B(a_n)]$$

Then it holds that for every determinant form $\triangle: V^k \to \mathbb{K}$:

$$\triangle(a_1,\ldots,a_n) = \det(A) \cdot \triangle(b_1,\ldots,b_n)$$

where

П

$$\det(A) := \sum_{\pi \in \sigma_n} \operatorname{sign}_{\mathbb{K}} \pi a_{\pi(1), 1} a_{\pi(2), 2} \dots a_{\pi(n), n}$$

is the determinant of A

Example 5. Example (n = 2):

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

$$sign\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = 1$$
$$sign\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = -1$$

Proof.

$$a_j = \sum_{j=1}^n a_{ij} b_i$$

$$\triangle(a_1, \dots, a_n) = \triangle\left(\sum_{i=1}^n a_{i,1}b_i, \sum_{i_2=1}^n a_{i_2,2}b_i, \dots, \sum_{i_n=1}^n a_{i_n,n}b_i\right)$$

$$= \sum_{i_1=1}^n a_{i,1} \sum_{i_2=1}^n a_{i_2,2} \dots \sum_{i_n=1}^n a_{i_n,n} \underbrace{\triangle(b_i, b_{i_2}, \dots, b_{i_n})}_{=0 \text{ if some } i_k=i_l}$$

So summands with equal indices disappear. It holds that $\sum_{i_1,...,i_n}$ such that $i_1,...,i_n$ are different. Hence every value from $\{1,...,n\}$ occurs exactly once. This is the set of all permutations π $(i_j = \pi(j))$

$$= \sum_{\pi \in \sigma_n} a_{\pi(1)1} a_{\pi(2)2} \dots a_{\pi(n)n} \underbrace{\triangle(b_{\pi(1)}, \dots, b_{\pi(n)})}_{\operatorname{sign}(\pi) \cdot \triangle(b_1, \dots, b_n)}$$

Corollary 3. A determinant form is uniquely defined on a basis (b_1, \ldots, b_n) by the value $\triangle(b_1, \ldots, b_n)$. Especially \triangle is nontrivial,

 $\Leftrightarrow \triangle(b_1,\ldots,b_n) \neq 0$ on some basis.

 $\Leftrightarrow \triangle(b_1,\ldots,b_n) \neq 0 \text{ in every basis } b_1,\ldots,b_n.$

Let $\triangle(b'_1,\ldots,b'_n)=0$ for some other basis, represent b_1,\ldots,b_n in basis b'_1,\ldots,b'_n

$$b_j = \sum a_{ij}b'_i \Rightarrow \triangle(b_1, \dots, b_n) = \det(A) \cdot \triangle(b'_1, \dots, b'_n) = 0$$
$$\triangle(a_1, \dots, a_n) = \det(A) \cdot \triangle(b_1, \dots, b_n)$$

Theorem 10. Let $B = (b_1, \ldots, b_n)$ be a basis of V over \mathbb{K} . $c \in \mathbb{K}$. For $a_1, \ldots, a_n \in V$, let $A = [\Phi_B(a_1), \ldots, \Phi_B(a_n)]$. Then

$$\triangle(a_1,\ldots,a_n)=c\cdot\det(A)$$

defines a determinant form, specifically the unique determinant form with value

$$\triangle(b_1,\ldots,b_n)=c$$

Proof. The 3 properties of a determinant form:

1.

$$\Delta(a_1, \dots, \lambda a_k, \dots, a_n) = c \cdot \det \left[\Phi_B(a_1), \dots, \lambda \cdot \Phi_B(a_k), \dots, \Phi_B(a_n) \right]$$

$$= c \cdot \sum_{\pi \in \sigma_n} \operatorname{sign} \pi \cdot a_{\pi(1), 1} a_{\pi(2), 2} \dots - \lambda a_{\pi(k), k} \dots a_{\pi(n), n}$$

$$= \lambda \cdot c \cdot \sum_{\pi \in \sigma_n} \operatorname{sign} \pi \cdot a_{\pi(1), 1} a_{\pi(2), 2} \dots a_{\pi(n), n}$$

$$= \lambda \cdot \Delta(a_1, \dots, a_n)$$

2.

П

$$= \triangle(a_1, \dots, a'_k + a''_k, \dots, a_n)$$

$$= c \cdot \det \left[\Phi_B(a_1), \dots, \Phi_B(a'_k) + \Phi_B(a''_k), \dots, \Phi_B(a_n) \right]$$

$$= c \cdot \sum_{\pi \in \sigma_n} \operatorname{sign} \pi \cdot a_{\pi(1), 1} \cdot a_{\pi(2), 2} \cdot \dots \left(a'_{\pi(k), k} + a''_{\pi(k), k} \right), \dots, a_{\pi(n), n}$$

$$= c \cdot \sum_{\pi \in \sigma_n} \operatorname{sign} \pi \cdot a_{\pi(1), 1} \cdot a'_{\pi(k), k} \dots a_{\pi(n), n} + c \cdot \sum_{\pi \in \sigma_n} \operatorname{sign}(\pi) a_{\pi(1), 1} \dots a''_{\pi(k), k} \dots a_{\pi(n), n}$$

$$= \triangle(a_1, \dots, a'_k, \dots, a_n) + \triangle(a_1, \dots, a''_k, \dots, a_n)$$

3. Let $a_k = a_l$ for k <. Show that $\triangle(a_1, \ldots, a_n) = 0$

 τ_{kl} = transposition exchanging k and l

$$\sigma_n = \mathfrak{a}_n \dot{\cup} \left(\mathfrak{a}_n \cdot \tau_{kl} \right)$$

Claim: $\{\pi \mid \text{sign } \pi = -1\} = \{\pi \circ \tau_{kl} \mid \text{sign } \pi = +1\}$

$$\supseteq \text{ If } \operatorname{sign} \pi = +1 \Rightarrow \operatorname{sign}(\pi \circ \tau_{kl}) = \underbrace{\operatorname{sign} \pi}_{+1} \cdot \underbrace{\operatorname{sign} \tau_{kl}}_{-1} = -1$$

$$\subseteq \text{ If } \operatorname{sign} \pi = -1 \Rightarrow \operatorname{sign}(\pi \circ \tau_{kl}) = +1 \Rightarrow \pi = \underbrace{(\pi \circ \tau_{kl})}_{\in \mathfrak{a}_n} \circ \tau_{kl} \in \mathfrak{a}_n \cdot \tau_{kl}$$

$$\triangle(a_1, \dots, a_n) = c \cdot \sum_{\pi \in \sigma_n = \mathfrak{a}_n \cup \mathfrak{a}_n \cdot \tau_{kl}} \operatorname{sign}(\pi) a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$= c \cdot \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

$$- \sum_{\pi \in \mathfrak{a}_n} a_{\pi \circ \tau_{kl}(1), 1} \dots a_{\pi \circ \tau_{kl}(k), k} \dots a_{\pi \circ \tau_{ul}(l), l} \dots a_{\pi \circ \tau_{kl}(n), n}$$

$$= c \cdot \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1), 1} \dots a_{\pi(n), n}$$

What we did:

- (a) $a_{\pi(l),k} = a_{\pi(l),l}$ and $a_{\pi(k),l} = a_{\pi(k),k}$ because $a_k = a_l$
- (b) exchange factors

$$= c \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1),1} \dots a_{\pi(k),k} \dots a_{\pi(l),l} \dots a_{\pi(n),n}$$
$$- c \sum_{\pi \in \mathfrak{a}_n} a_{\pi(1),1} \dots a_{\pi(k),k} \dots a_{\pi(l),l} \dots a_{\pi(n),n}$$
$$= 0$$

Value for (b_1, \ldots, b_n)

$$a_{ij} = \delta_{ij} \Rightarrow A = I$$
$$\det(I) = \sum_{\pi \in \sigma_n} \operatorname{sign} \pi \cdot \delta_{\pi(1),1} \dots \delta_{\pi(n),n} = +1$$

for all $\pi(j) = j$ otherwise 0.

 $\Rightarrow \pi = id$ is the only summand

$$\triangle(b_1,\ldots,b_n) = \det(I) \cdot c = c$$

Remark 5. " \mathfrak{a}_n is the subgroup of index 2" $[\sigma_n : \mathfrak{a}_n] = 2$

You might be familiar with:

$$\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$$

$$[\mathbb{Z}:n\mathbb{Z}]=n$$

Theorem 11 (Summary). • The set of determinant forms $\triangle: V^n \to \mathbb{K}$ constructs a one-dimensional vector space, $\Lambda^n V$

• There exists a non-trivial determinant form with $\triangle(b_1,\ldots,b_n)=1$

$$-\sum_{\pi\in\mathfrak{a}_n}a_{\pi(1),1}\dots a_{\pi(l),k}\dots a_{\pi(k)l}\dots a_{\pi(n),n}$$

German keywords

Bidualraum, 7
Bilineare Abbildung, 5
Charakter, 19
Determinantenform, 13
Determinante, 9
Dualbasis eines Vektorraums, 3
Dualraum des Vektorraums, 3
Fehlstand (Permutation), 17
Lineare Funktionale, 3
Linearformen, 3
Multilineare Abbildung, 5
Multilinearität, 13
Transponierte Abbildung, 7
Vertauschung, 17

English keywords

```
Bidual space, 7
Bilinear map, 5

Character, 19

Determinant, 9
determinant form, 13
Dual basis of a vector space, 3
Dual space of a vector space, 3

Linear forms, 3
Linear functionals, 3

Malposition, 17
Multilinear map, 5
Multilinearity, 13

Transposed map, 7
transposition, 17
```