CS 315.02 Components and Sequential Logic

Labor Solutions

Project 05

a, a. b. b.

f. ro fi, fi, a ($\bar{a}_1 \cdot \bar{a}_0 \cdot \bar{b}_1 \cdot \bar{b}_1$) $(0 \ 0 \ 0 \ 0)$ $(\bar{a}_1 \cdot \bar{a}_0 \cdot \bar{b}_1 \cdot \bar{b}_1)$ $(\bar{a}_1 \cdot \bar{a}_0 \cdot \bar{b}_1 \cdot \bar{b}_1)$

+ (= 1. ao · 6,· 6.) ~ (a.a. · 6,· 6.) 1 = 1, 0 0

Project of

Combinational Logic

Comparator is a == b?

1 bit comparator

	- •				
٨	6	eq	00	Xor	XNO
0	0	ţ	6	0	1
0	1	0	1	1	0
,	0	ō	1	l	0
(١)	(0	,
					·

the comp of constants

N lit comparenter

Multiplexoc (MUX) 1 bit Zinput MUX ALV 6464

1 b.t 2 input MUX

Direct implementation

Sport

a particular a language of the second a l

DAG Mow do we store a 1 b.7 relue? set /reset

undefined

RS QQ 1001 001 0010 11 XX