

= \langle D, B, E, S\rightarrow \forall \tau \text{ in D'}

= \langle R, B, E, S\rightarrow \forall \text{ if it } R'

Now since \pm is a hit Q his to be in the complement set of state

Afor \pm (i.e. some as \forall). So Q will be one of \langle A, \forall R' \times \forall \text{ if } \pm (c)

and {4, c, e} 6 # 6 D' and {A, c, 0} } # L'R'.

issue, execution, MEM-access, CDB winte and commit for 2 steretions of levels of code given below.

We assume that ROB size = 6, and detencies of diff. functional aims as given in the question.

Iter.		Isme	- Execute	ME M access	CDB write	Commit
1.	LD F1, 8(RO)	1_	2	3	4	5
7 .	LO F2, O(Px)	\$ 2	3	4	5	6
٠١,	MUL, D F3, F2, F1	3	(F1 5 ())	_	10	\1
	ADD.D FS, FS, F3	4	refused)	_	13	14
1,	2 - ()	5	6	15	~	15
		6	4	_	8	16
1-	SUB Ry, Ry, #8	7	8	_	9	17
1.	SUB Rn, Rn, #8		10		11	18
1.	BNEZ Rx, loop	8		14.	_ 15	19
2.	L.D f2, O(Pn)	12	13	14		ч
۷,	MUL. D F3, F2, F1	15	16		20	29
2,	ADD.D F5, F5, F3	16	21		23	
2.	s. D F5, O(R5)	17	18	VS	- (-)	VS 26
2.	SUB Ry, Ry, #8	18	19	_	5 21/20 COR COM)
2.	SUB Rn, Rn, # 8	3 19	21	_	22	27
2.	BNEZ Rx, loop	20	29 €	_ /	24	28
	·		2			1

Fre columns op I and op 2 are included in next base

Here intered of 20, we have CDO with at CC 21 because of clash of 2 COO write at some time.

NAME: RISHAU MONDAL

ROLL NO: 190161072

3) Now the columns operand 1 and operand 2 would look as follows; in order:
1. Iter .--- operand 1 operand 2

1. Imm RF

1. ---- Imm RF

1. ---- RF

ROB

RF

NOW RF

ROLL: 150101072

4) So we have been asked to consider two different cache organizations X and Y.

X:- 16KB IC, and 16KB D.C.

Min rate of IC = Dette, and numerate of DC

0.0064

Now AMAT = HT + (Miss rate) \times (Miss lenally). Now we need to calculate the avg. miss rate of (\times) and. So miss rate of (\times) = (0.0064 + 0.33 \times 0.0647) = 0.0277

Now let colubete the AMAT for both X and Y. $(AMAT)_{X} = HT + (MR_{X}X MP)$ $= 1 + (0.0277 \times 50) = 2.385 CC$

 $(AMAT)_{y} = AT+ (MR_{y} \times MP)$ $= 1 + (0.0199 \times 58) = 1.995 CC$ So organization Y & better than X.