My Data Science Notes

Michael Foley 2020-01-22

Contents

Intro						
1 Probability						
	1.1	Principles	7			
	1.2	Discrete Distributions	9			
	1.3	Continuous Distributions	14			
2	Inference 2					
3	Experiments					
	3.1	Example one	27			
	3.2	Example two	27			
4	Regression 2					
5	Classification					
6	Regularization 3					
7	Nor	Non-linear Models				
	7.1	Splines	35			
	7.2	MARS	36			
	7.3	GAM	38			

4		CONTENTS

8	Decision Trees						
	8.1	Classification Tree	42				
	8.2	Regression Trees	67				
	8.3	Bagging	82				
	8.4	Random Forests	82				
	8.5	Gradient Boosting	96				
	8.6	Summary	159				
9	Refe	erence	163				
10 Support Vector Machines							
11 Principal Components Analysis							
12	12 Clustering						
13	13 Text Mining						
ΑĮ	Appendix						
Pι	Publishing to BookDown						
Shiny Apps							

Intro

These notes are pulled from various classes, tutorials, books, etc. and are intended for my own consumption. If you are finding this on the internet, I hope it is useful to you, but you should know that I am just a student and there's a good chance whatever you're reading here is mistaken. In fact, that should probably be your null hypothesis... or your prior. Whatever.

6 CONTENTS

Probability

1.1 Principles

Here are three rules that come up all the time.

- $Pr(A \cup B) = Pr(A) + Pr(B) Pr(AB)$. This rule generalizes to $Pr(A \cup B \cup C) = Pr(A) + Pr(B) + Pr(C) Pr(AB) Pr(AC) Pr(BC) + Pr(ABC)$.
- $Pr(A|B) = \frac{P(AB)}{P(B)}$
- If A and B are independent, $Pr(A \cap B) = Pr(A)Pr(B)$, and Pr(A|B) = Pr(A).

Uniform distributions on finite sample spaces often reduce to counting the elements of A and the sample space S, a process called combinatorics. Here are three important combinatorial rules.

Multiplication Rule. $|S| = |S_1||S_k|$.

How many outcomes are possible from a sequence of 4 coin flips and 2 rolls of a die? $|S| = |S_1| \cdot |S_2| \dots |S_6| = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 6 \cdot 6 = 288$.

How many subsets are possible from a set of n=10 elements? In each subset, each element is either included or not, so there are $2^n = 1024$ subsets.

How many subsets are possible from a set of n=10 elements taken k at a time with replacement? Each experiment has n possible outcomes and is repeated k times, so there are n^k subsets.

Permutations. The number of *ordered* arrangements (permutations) of a set of |S| = n items taken k at a time *without* replacement has $n(n-1) \dots (n-k+1)$

subsets because each draw is one of k experiments with decreasing number of possible outcomes.

$$_{n}P_{k} = \frac{n!}{(n-k)!}$$

Notice that if k = 0 then there is 1 permutation; if k = 1 then there are n permutations; if k = n then there are n! permutations.

How many ways can you distribute 4 jackets among 4 people? $_{n}P_{k} = \frac{4!}{(4-4)!} = 4! = 24$

How many ways can you distribute 4 jackets among 2 people? $_{n}P_{k} = \frac{4!}{(4-2)!} = 12$

Subsets. The number of *unordered* arrangements (combinations) of a set of |S| = n items taken k at a time *without* replacement has

$$_{n}C_{k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

combinations and is called the binomial coefficient. The binomial coefficient is the number of different subsets. Notice that if k=0 then there is 1 subset; if k=1 then there are n subsets; if k=n then there is 1 subset. The connection with the permutation rule is that there are n!/(n-k)! permutations and each permutation has k! permutations.

How many subsets of 7 people can be taken from a set of 12 persons? $_{12}C_7=\binom{12}{7}=\frac{12!}{7!(12-7)!}=792$

If you are dealt five cards, what is the probability of getting a "full-house" hand containing three kings and two aces (KKKAA)?

$$P(F) = \frac{\binom{4}{3}\binom{4}{2}}{\binom{52}{5}}$$

Distinguishable permutations. The number of *unordered* arrangements (distinguishable permutations) of a set of |S| = n items in which n_1 are of one type, n_2 are of another type, etc., is

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \dots n_k!}$$

How many ordered arrangements are there of the letters in the word PHILIP-PINES? There are n=11 objects. $|P|=n_1=3$; $|H|=n_2=1$; $|I|=n_3=3$; $|L|=n_4=1$; $|N|=n_5=1$; $|E|=n_6=1$; $|S|=n_7=1$.

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{11!}{3!1!3!1!1!1!} = 1,108,800$$

How many ways can a research pool of 15 subjects be divided into three equally sized test groups?

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{15!}{5!5!5!} = 756, 756$$

1.2 Discrete Distributions

1.2.1 Binomial

If X is the count of successful events in n identical and independent Bernoulli trials of success probability p, then X is a random variable with a binomial distribution $X \sim b(n, p)$ with mean $\mu = np$ and variance $\sigma^2 = np(1 - p)$. The probability of X = x successes in n trials is

$$P(X = x) = \frac{n!}{x!(n-x)!}p^{x}(1-p)^{n-x}.$$

What is the probability 2 out of 10 coin flips are heads if the probability of heads is 0.3?

Function dbinom() calculates the binomial probability.

```
dbinom(x = 2, size = 10, prob = 0.3)
```

[1] 0.2334744

A simulation of n = 10,000 random samples of size 10 gives a similar result. rbinom() generates a random sample of numbers from the binomial distribution.

```
labs(title = "Binomial Distribution",
    subtitle = paste0("P(X=2) successes in 10 trials when p = 0.3 is ", round(dbinomial successes",
    y = "Count",
    caption = "Simulation from n = 10,000 binomial random samples.")
```

Binomial Distribution

P(X=2) successes in 10 trials when p = 0.3 is 0.2335.

Simulation from n = 10,000 binomial random samples.

What is the probability of <=2 heads in 10 coin flips where probability of heads is 0.3?

The cumulative probability is the sum of the first three bars in the simulation above. Function pbinom() calculates the *cumulative* binomial probability.

```
pbinom(q = 2, size = 10, prob = 0.3, lower.tail = TRUE)
```

[1] 0.3827828

What is the expected number of heads in 25 coin flips if the probability of heads is 0.3?

The expected value, $\mu = np$, is 7.5. Here's an empirical test from 10,000 samples.

```
mean(rbinom(n = 10000, size = 25, prob = .3))
```

[1] 7.5227

The variance, $\sigma^2 = np(1-p)$, is 5.25. Here's an empirical test.

```
var(rbinom(n = 10000, size = 25, prob = .3))
```

[1] 5.411055

Suppose X and Y are independen random variables distributed $X \sim b(10, .6)$ and $Y \sim b(10, .7)$. What is the probability that either variable is <=4?

Let $P(A) = P(X \le 4)$ and $P(B) = P(Y \le 4)$. Then P(A|B) = P(A) + P(B) - P(AB), and because the events are independent, P(AB) = P(A)P(B).

```
p_a <- pbinom(q = 4, size = 10, prob = 0.6, lower.tail = TRUE)
p_b <- pbinom(q = 4, size = 10, prob = 0.7, lower.tail = TRUE)
p_a + p_b - (p_a * p_b)</pre>
```

[1] 0.2057164

Here's an empirical test.

```
df <- data.frame(
    x = rbinom(10000, 10, 0.6),
    y = rbinom(10000, 10, 0.7)
    )
mean(if_else(df$x <= 4 | df$y <= 4, 1, 0))</pre>
```

[1] 0.2045

1.2.2 Negative-Binomial

If X is the count of trials required to reach a target number r of successful events in identical and independent Bernoulli trials of success probability p, then X is a random variable with a negative-binomial distribution $X \sim nb(r,p)$ with mean $\mu = r/p$ and variance $\sigma^2 = r(1-p)/p^2$. The probability of X = x trials prior to r successes is

$$P(X = x) = {x - 1 \choose r - 1} p^r (1 - p)^{x - r}.$$

An oil company has a p = 0.20 chance of striking oil when drilling a well. What is the probability the company drills x = 7 wells to strike oil r = 3 times?

$$P(X=7) = {7-1 \choose 3-1} (0.2)^3 (1-0.2)^{(7-3)} = 0.049.$$

Function dnbinom() calculates the negative-binomial probability. Parameter x equals the number of failures, x - r.

```
dnbinom(x = 4, size = 3, prob = 0.2)
```

[1] 0.049152

Here is a simulation of n = 10,000 random samples. rnbinom() generates a random sample of numbers from the negative-binomial distribution.

```
data.frame(cnt = rnbinom(n = 10000, size = 3, prob = 0.2)) %>%
  count(cnt) %>%
  ungroup() %>%
 mutate(pct = n / sum(n),
        X_{eq} = cnt = 7-3,
         cnt = cnt + 3) \%
  filter(cnt < 15) %>%
  ggplot(aes(x = as.factor(cnt), y = n, fill = X_eq_x, label = pct)) +
  geom_col(alpha = 0.8) +
  scale_fill_manual(values = c(my_colors$grey, my_colors$red)) +
  geom_label(aes(label = round(pct, 2)), size = 3, alpha = .6, check_overlap = TRUE) +
  theme_minimal() +
  theme(legend.position = "none") +
  labs(title = "Negative-Binomial Distribution",
       subtitle = pasteO("P(X=7)") trials to reach 3 successes when p = 0.2 is ", round()
       x = "Trials",
       y = "Count",
       caption = "Simulation from n = 10,000 negative-binomial random samples.")
```

Negative-Binomial Distribution

P(X=7) trials to reach 3 successes when p = 0.2 is 0.0492.

Simulation from n = 10,000 negative—binomial random samples.

1.2.3 Geometric

If X is the count of independent Bernoulli trials of success probability p required to achieve the first successful trial, then X is a random variable with a geometric distribution $X \sim G(p)$ with mean $\mu = \frac{n}{p}$ and variance $\sigma^2 = \frac{(1-p)}{p^2}$. The probability of X = n trials is

$$f(X = n) = p(1 - p)^{n-1}$$
.

The probability of $X \le n$ trials is

$$F(X = n) = 1 - (1 - p)^n$$
.

Example. A sports marketer randomly selects persons on the street until he encounters someone who attended a game last season. What is the probability the marketer encounters x = 3 people who did not attend a game before the first success if p = 0.20 of the population attended a game?

Function pgeom() calculates the geometric distribution probability.

```
dgeom(x = 3, prob = 0.20)
```

[1] 0.1024

```
data.frame(cnt = rgeom(n = 10000, prob = 0.20)) \%
  count(cnt) %>%
  top_n(n = 15, wt = n) \%
  ungroup() %>%
  mutate(pct = round(n / sum(n), 2),
         X_{eq} = cnt = 3) \%
  ggplot(aes(x = as.factor(cnt), y = n, fill = X_eq_x, label = pct)) +
  geom_col(alpha = 0.8) +
  scale_fill_manual(values = c(my_colors$grey, my_colors$red)) +
  geom text(size = 3) +
  theme minimal() +
  theme(legend.position = "none") +
  labs(title = "Distribution of trials prior to first success",
       subtitle = paste("P(X = 3) \mid X \sim G(.2) = ", round(dgeom(3, .2), 4)),
       x = "Unsuccessful trials",
       y = "Count",
       caption = "simulation of n = 10,000 samples from geometric dist.")
```

Distribution of trials prior to first success

simulation of n = 10,000 samples from geometric dist.

1.3 Continuous Distributions

1.3.1 Normal

Random variable X is distributed $X \sim N(\mu, \sigma^2)$ if

$$f(X) = \frac{1}{\sigma\sqrt{2\pi}}e^{-.5(\frac{x-\mu}{\sigma})^2}$$

.

Example

IQ scores are distributed $X \sim N(100, 16^2)$. What is the probability a randomly selected person's IQ is <90?

```
my_mean = 100
my_sd = 16
my_x = 90
# exact
pnorm(q = my_x, mean = my_mean, sd = my_sd, lower.tail = TRUE)
```

[1] 0.2659855

```
# simulated
mean(rnorm(n = 10000, mean = my_mean, sd = my_sd) <= my_x)</pre>
```

[1] 0.2693

$$X \sim N(\mu = 100, \sigma^2 = 16^2)$$

 $P(X \le 90)$ when mean is 100 and variance is 16^2 .

1.3.2 Example

IQ scores are distributed $X \sim N(100, 16^2)$. What is the probability a randomly selected person's IQ is >140?

```
my_mean = 100
my_sd = 16
my_x = 140
# exact
pnorm(q = my_x, mean = my_mean, sd = my_sd, lower.tail = FALSE)
```

[1] 0.006209665

```
# simulated
mean(rnorm(n = 10000, mean = my_mean, sd = my_sd) > my_x)
```

[1] 0.0061

X~N(
$$\mu = 100$$
 , $\sigma^2 = 16^2$)

 $P(X \le 140)$ when mean is 100 and variance is 16^2 .

1.3.3 Example

IQ scores are distributed $X \sim N(100, 16^2)$. What is the probability a randomly selected person's IQ is between 92 and 114?

sd = my_sd,

lower.tail = TRUE)) %>%

```
mutate(cdf = ifelse(x > my_x_l & x <= my_x_h, prob, 0)) %>%
ggplot() +
geom_line(aes(x = x, y = prob)) +
geom_area(aes(x = x, y = cdf), alpha = 0.3) +
labs(title = bquote('X~N('~mu==.(my_mean)~','~sigma^{2}==.(my_sd)^{2}~')'),
    subtitle = bquote('P(X<='~.(my_x)~') when mean is'~.(my_mean)~' and variance is
    x = "x",
    y = "Probability")</pre>
```

$$X \sim N(\mu = 100, \sigma^2 = 16^2)$$

 $P(X \le 140)$ when mean is 100 and variance is 16^2 .

1.3.4 Example

Class scores are distributed $X \sim N(70, 10^2)$. If the instructor wants to give A's to >=85th percentile and B's to 75th-85th percentile, what are the cutoffs?

```
my_mean = 70
my_sd = 10
my_pct_1 = .75
my_pct_h = .85

qnorm(p = my_pct_1, mean = my_mean, sd = my_sd, lower.tail = TRUE)
```

[1] 76.7449

```
qnorm(p = my_pct_h, mean = my_mean, sd = my_sd, lower.tail = TRUE)
```

```
## [1] 80.36433
```

$$X \sim N(\mu = 70, \sigma^2 = 10^2)$$

 $P(X \le x) = [0.75, 0.85]$ when mean is 70 and variance is 10^2 .

1.3.5 Normal Approximation to Binomial

The CLT implies that certain distributions can be approximated by the normal distribution.

The binomial distribution $X \sim B(n, p)$ is approximately normal with mean $\mu = np$ and variance $\sigma^2 = np(1-p)$. The approximation is useful when the expected number of successes and failures is at least 5: np >= 5 and n(1-p) >= 5.

1.3.6 Example

A measure requires p>=50% popular to pass. A sample of n=1,000 yields x=460 approvals. What is the probability that the overall population approves, P(X)>0.5?

```
my_x = 460
my_p = 0.50
my_n = 1000
my_mean = my_p * my_n
my_sd = round(sqrt(my_n * my_p * (1 - my_p)), 1)
 # Exact binomial
pbinom(q = my_x, size = my_n, prob = my_p, lower.tail = TRUE)
## [1] 0.006222073
 # Normal approximation
pnorm(q = my_x, mean = my_p * my_n, sd = sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_n * my_p * (1 - my_p)), lower.tail = 'sqrt(my_p * my_p * (1 - my_p)), lower.tail = 'sqrt(my_p * my_p * (1 - my_p)), lower.tail = 'sqrt(my_p * my_p * (1 - my_p)), lower.tail = 'sqrt(my_p * my_p * (1 - my_p)), lower.tail = 'sqrt(my_p * my_p * (1 - my_p)), lower.tail = 'sqrt(my_p * my_p * my_p * (1 - my_p)), lower.tail = 'sqrt(my_p * my_p * 
## [1] 0.005706018
library(dplyr)
library(ggplot2)
library(tidyr)
data.frame(x = 400:600,
                                                        Normal = pnorm(q = 400:600,
                                                                                                                          mean = my_p * my_n,
                                                                                                                           sd = sqrt(my_n * my_p * (1 - my_p)),
```

lower.tail = TRUE),

size = my_n,
prob = my_p,

Binomial = pbinom(q = 400:600,

```
X \sim B(n=1000 , p=0.5 ), X \sim N( \mu = 500 , \sigma^2 = 15.8^2 )
```


The Poisson distribution $x P(\lambda)$ is approximately normal with mean $\mu = \lambda$ and variance $\sigma^2 = \lambda$, for large values of λ .

1.3.7 Example

The annual number of earthquakes registering at least 2.5 on the Richter Scale and having an epicenter within 40 miles of downtown Memphis follows a Poisson distribution with mean $\lambda = 6.5$. What is the probability that at least $x >= 9^*$ such earthquakes will strike next year?*

```
my_x = 9
my_lambda = 6.5
my_sd = round(sqrt(my_lambda), 2)
```

```
# Exact Poisson
ppois(q = my_x - 1, lambda = my_lambda, lower.tail = FALSE)
```

[1] 0.208427

```
# Normal approximation
pnorm(q = my_x - 0.5, mean = my_lambda, sd = my_sd, lower.tail = FALSE)
```

[1] 0.216428

```
library(dplyr)
library(ggplot2)
library(tidyr)
data.frame(x = 0:200 / 10,
          Normal = pnorm(q = 0:200 / 10,
                        mean = my_lambda,
                        sd = my_sd,
                        lower.tail = TRUE),
           Poisson = ppois(q = 0:200 / 10,
                        lambda = my_lambda,
                        lower.tail = TRUE)) %>%
  gather(key = "Distribution", value = "cdf", c(-x)) %>%
  ggplot(aes(x = x, y = cdf, color = Distribution)) +
  geom_line() +
  labs(title = bquote('X~P('~lambda~'='~.(my_lambda)~'), '~'X~N('~mu==.(my_lambda)~',
      subtitle = "Normal approximation to the Poisson",
      x = "x",
      y = "Probability")
```


1.3.8 From Sample to Population

Suppose a person's blood pressure typically measures 160?20 mm. If one takes n=5 blood pressure readings, what is the probability the average will be <=150?

```
lower.tail = TRUE)) %>%
mutate(cdf = ifelse(x > 0 & x <= my_x, prob, 0)) %>%
ggplot() +
geom_line(aes(x = x, y = prob)) +
geom_area(aes(x = x, y = cdf), alpha = 0.3) +
labs(title = bquote('X~N('~mu==.(my_mu)~','~sigma^{2}==.(my_se)^{2}~')'),
subtitle = bquote('P(X<='~.(my_x)~') when mean is'~.(my_mu)~' and variance is'~x = "x",
y = "Probability")</pre>
```

$$X \sim N(\mu = 160, \sigma^2 = 8.9^2)$$

 $P(X \le 150)$ when mean is 160 and variance is $\sigma / sqrt(n) 8.9^2$.

knitr::include_app("https://mpfoley73.shinyapps.io/shiny_dist/",
height = "600px")

Inference

Experiments

Some significant applications are demonstrated in this chapter.

- 3.1 Example one
- 3.2 Example two

Regression

Classification

Regularization

Non-linear Models

Linear methods can model nonlinear relationships by including polynomial terms, interaction effects, and variable transformations. However, it is often difficult to identify how to formulate the model. Nonlinear models may be preferable because you do not need to know the the exact form of the nonlinearity prior to model training.

7.1 Splines

A regression spline fits a piecewise polynomial to the range of X partitioned by knots (K knots produce K+1 piecewise polynomials) **James et al** (James et al., 2013). The polynomials can be of any degree d, but are usually in the range [0, 3], most commonly 3 (a cubic spline). To avoid discontinuities in the fit, a degree-d spline is constrained to have continuity in derivatives up to degree d-1 at each knot.

A cubic spline fit to a data set with K knots, performs least squares regression with an intercept and 3+K predictors, of the form

$$y_i = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_4 h(X, \xi_1) + \beta_5 h(X, \xi_2) + \dots + \beta_{K+3} h(X, \xi_K)$$

where ξ_1, \ldots, ξ_K are the knots are truncated power basis functions $h(X, \xi) = (X - \xi)^3$ if $X > \xi$, else 0.

Splines can have high variance at the outer range of the predictors. A **natural spline** is a regression spline additionally constrained to be linear at the boundaries.

How many knots should there be, and Where should the knots be placed? It is common to place knots in a uniform fashion, with equal numbers of points

between each knot. The number of knots is typically chosen by trial and error using cross-validation to minimize the RSS. The number of knots is usually expressed in terms of degrees of freedom. A cubic spline will have K+3+1 degrees of freedom. A natural spline has K+3+1-5 degrees of freedom due to the constraints at the endpoints.

A further constraint can be added to reduce overfitting by enforcing smoothness in the spline. Instead of minimizing the loss function $\sum (y - g(x))^2$ where g(x) is a natural spline, minimize a loss function with an additional penalty for variability:

$$L = \sum (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt.$$

The function g(x) that minimizes the loss function is a natural cubic spline with knots at each x_1, \ldots, x_n . This is called a **smoothing spline**. The larger g is, the greater the penalty on variation in the spline. In a smoothing spline, you do not optimize the number or location of the knots – there is a knot at each training observation. Instead, you optimize λ . One way to optimize λ is cross-validation to minimize RSS. Leave-one-out cross-validation (LOOCV) can be computed efficiently for smoothing splines.

7.2 MARS

Multivariate adaptive regression splines (MARS) is a non-parametric algorithm that creates a piecewise linear model to capture nonlinearities and interactions effects. The resulting model is a weighted sum of *basis* functions $B_i(X)$:

$$\hat{y} = \sum_{i=1}^{k} w_i B_i(x)$$

The basis functions are either a constant (for the intercept), a hinge function of the form $\max(0, x - x_0)$ or $\max(0, x_0 - x)$ (a more concise representation is $[\pm(x - x_0)]_+$), or products of two or more hinge functions (for interactions). MARS automatically selects which predictors to use and what predictor values to serve as the *knots* of the hinge functions.

MARS builds a model in two phases: the forward pass and the backward pass, similar to growing and pruning of tree models. MARS starts with a model consisting of just the intercept term equaling the mean of the response values. It then assesses every predictor to find a basis function pair consisting of opposing sides of a mirrored hinge function which produces the maximum improvement in the model error. MARS repeats the process until either it reaches a predefined limit of terms or the error improvement reaches a predefined limit.

7.2. MARS 37

MARS generalizes the model by removing terms according to the generalized cross validation (GCV) criterion. GCV is a form of regularization: it trades off goodness-of-fit against model complexity.

The earth::earth() function (documentation) performs the MARS algorithm (the term "MARS" is trademarked, so open-source implementations use "Earth" instead). The caret implementation tunes two parameters: nprune and degree. nprune is the maximum number of terms in the pruned model. degree is the maximum degree of interaction (default is 1 (no interactions)). However, there are other hyperparameters in the model that may improve performance, including minspan which regulates the number of knots in the predictors.

Here is an example using the Ames housing data set (following this tutorial.

```
library(tidyverse)
library(earth)
library(caret)
# set up
ames <- AmesHousing::make_ames()</pre>
set.seed(12345)
idx <- createDataPartition(ames$Sale_Price, p = 0.80, list = FALSE)
ames_train <- ames[idx, ] %>% as.data.frame()
ames_test <- ames[-idx, ]</pre>
m <- train(
  x = subset(ames_train, select = -Sale_Price),
  y = ames_train$Sale_Price,
 method = "earth",
 metric = "RMSE",
 minspan = -15,
  trControl = trainControl(method = "cv", number = 10),
  tuneGrid = expand.grid(
    degree = 1:3,
    nprune = seq(2, 100, length.out = 10) %>% floor()
  )
)
```

The model plot shows the best tuning parameter combination.

```
plot(m, main = "MARS Parameter Tuning")
```

MARS Parameter Tuning

m\$bestTune

```
## nprune degree
## 25 45 3
```

How does this model perform against the holdout data?

```
caret::postResample(
  pred = log(predict(m, newdata = ames_test)),
  obs = log(ames_test$Sale_Price)
)
```

```
## RMSE Rsquared MAE
## 0.16515620 0.85470300 0.09319503
```

7.3 GAM

Generalized additive models (GAM) allow for non-linear relationships between each feature and the response by replacing each linear component $\beta_j x_{ij}$ with a nonlinear function $f_j(x_{ij})$. The GAM model is of the form

7.3. *GAM* 39

$$y_i = \beta_0 + \sum f_j(x_{ij}) + \epsilon_i.$$

It is called an additive model because we calculate a separate f_j for each X_j , and then add together all of their contributions.

The advantage of GAMs is that they automatically model non-linear relationships so you do not need to manually try out many different transformations on each variable individually. And because the model is additive, you can still examine the effect of each X_j on Y individually while holding all of the other variables fixed. The main limitation of GAMs is that the model is restricted to be additive, so important interactions can be missed unless you explicitly add them.

Chapter 8

Decision Trees

Decision trees, also known as classification and regression tree (CART) models, are tree-based methods for supervised machine learning. Simple *classification trees* and *regression trees* are easy to use and interpret, but are not competitive with the best machine learning methods. However, they form the foundation for **bagged trees**, **random forests**, and **boosted trees** models, which although less interpretable, are very accurate.

CART models segment the predictor space into K non-overlapping terminal nodes (leaves), A_1, A_2, \ldots, A_K . Each node is described by a set of rules which can be used to predict new responses. The predicted value \hat{y} for each node is the mode (classification), or mean (regression).

CART models define the nodes through a top-down greedy process called recursive binary splitting. The process is top-down because it begins at the top of the tree with all observations in a single region and successively splits the predictor space. It is greedy because at each splitting step, the best split is made at that particular step without consideration to subsequent splits.

The best split is the predictor variable and cutpoint that minimizes a cost function. For a regression tree, the most common cost function is the sum of squared residuals,

$$RSS = \sum_{k=1}^{K} \sum_{i \in A_k} (y_i - \hat{y}_{A_k})^2.$$

For a classification tree, the most common cost functions are the Gini index,

$$G = \sum_{c=1}^{C} \hat{p}_{kc} (1 - \hat{p}_{kc}),$$

or the entropy

$$D = -\sum_{c=1}^{C} \hat{p}_{kc} \log \hat{p}_{kc}$$

where \hat{p}_{kc} is the proportion of training observations in node k node that are class c. A completely *pure* node in a binary tree will have $\hat{p} \in [0, 1]$ and G = D = 0. A completely impure node in a binary tree will have $\hat{p} = 0.5$ and $G = 0.5^2 \cdot 2 = 0.25$ and $D = -(0.5 \log(0.5)) \cdot 2 = 0.69$.

CART repeats the splitting process for each of the child nodes until a *stopping* criterion is satisfied, usually when no node size surpasses a predefined maximum, or continued splitting does not improve the model significantly. CART may also impose a minimum number of observations in each node.

The resulting tree likely over-fits the training data and therefore does not generalize well to test data, so CART prunes the tree, minimizing the cross-validated prediction error. Rather than cross-validating every possible subtree to find the one with minimum error, CART uses cost-complexity pruning. Cost-complexity is the tradeoff between error (cost) and tree size (complexity) where the tradeoff is quantified with cost-complexity parameter c_p . In the equation below, the cost complexity of the tree $R_{c_p}(T)$ is the sum of its risk (error) plus a "cost complexity" factor c_p multiple of the tree size |T|.

$$R_{c_n}(T) = R(T) + c_p|T|$$

 c_p can take on any value from $[0..\infty]$, but it turns out there is an optimal tree for ranges of c_p values, so there are only a finite set of interesting values for c_p (James et al., 2013) (Therneau and Atkinson, 2019) (Kuhn and Johnson, 2016). A parametric algorithm identifies the interesting c_p values and their associated pruned trees, T_{c_p} .

CART uses cross-validation to determine which c_p is optimal.

8.1 Classification Tree

A simple classification tree is rarely performed on its own; the bagged, random forest, and gradient boosting methods build on this logic. However, it is good to start here to build understanding. I'll learn by example. Using the ISLR::OJ data set, I will predict which brand of orange juice, Citrus Hill (CH) or Minute Maid = (MM), customers Purchase using from the 17 feature variables. Load the libraries and data.

```
library(ISLR) # OJ dataset
library(rpart) # classification and regression trees
library(caret) # modeling workflow
library(rpart.plot) # better formatted plots than the ones in rpart
library(plotROC) # ROC curves
library(ROCR)
library(tidyverse)
library(skimr) # neat alternative to glance & summary
oj_dat <- OJ
skim_with(numeric = list(p0 = NULL, p25 = NULL, p50 = NULL, p75 = NULL,
                          p100 = NULL, hist = NULL))
skim(oj_dat)
## Skim summary statistics
## n obs: 1070
## n variables: 18
##
## -- Variable type:factor -------
top_counts ordered
                     1070 1070 2 CH: 653, MM: 417, NA: 0
## Purchase
               0
                                                          FALSE
##
     Store7
                    1070 1070
                                  2 No: 714, Yes: 356, NA: 0 FALSE
##
## -- Variable type:numeric -------
##
        variable missing complete n mean
                                            sd
          DiscCH 0 1070 1070 0.052 0.12
##
                   0
                        1070 1070 0.12 0.21
##
         {\tt DiscMM}
   ListPriceDiff
                   0
                       1070 1070 0.22 0.11
##
##
        LoyalCH
                   0 1070 1070 0.57 0.31
##
       PctDiscCH
                   0 1070 1070 0.027 0.062
                       1070 1070
1070 1070
##
       PctDiscMM
                    0
                                   0.059 0.1
                    0
##
         PriceCH
                                   1.87
                                         0.1
##
                   0 1070 1070
                                  0.15 0.27
       PriceDiff
##
         PriceMM
                   0 1070 1070
                                   2.09 0.13
                   0 1070 1070
0 1070 1070
##
     SalePriceCH
                                   1.82 0.14
##
     {\tt SalePriceMM}
                                   1.96 0.25
##
       SpecialCH
                   0 1070 1070
                                   0.15 0.35
##
       SpecialMM
                    0
                         1070 1070
                                    0.16 0.37
##
          STORE
                    0
                         1070 1070
                                    1.63
                                         1.43
                   0
##
                                    3.96
         StoreID
                         1070 1070
                                        2.31
## WeekofPurchase
                    0
                         1070 1070 254.38 15.56
```

I'll split oj_dat (n = 1,070) into oj_train (80%, n = 857) and oj_test (20%, n = 213). I'll fit a simple decision tree with oj_train, then later a bagged tree,

a random forest, and a gradient boosting tree. I'll compare their predictive performance with oj_test.

```
set.seed(12345)
partition <- createDataPartition(y = oj_dat$Purchase, p = 0.8, list = FALSE)
oj_train <- oj_dat[partition, ]
oj_test <- oj_dat[-partition, ]</pre>
```

Function rpart::rpart() builds a full tree, minimizing the Gini index G by default (parms = list(split = "gini")), until the stopping criterion is satisfied. The default stopping criterion is

- only attempt a split if the current node as at least minsplit = 20 observations,
- only accept a split if each of the two resulting nodes have at least minbucket = round(minsplit/3) observations, and
- only accept a split if the resulting overall fit improves by cp = 0.01 (i.e., $\Delta G <= 0.01).$

```
set.seed(123)
oj model 1 <- rpart(
   formula = Purchase ~ .,
   data = oj_train,
   method = "class" # "class" for classification, "anova" for regression
print(oj_model_1)
## n= 857
##
## node), split, n, loss, yval, (yprob)
##
         * denotes terminal node
##
    1) root 857 334 CH (0.61026838 0.38973162)
##
##
      2) LoyalCH>=0.48285 537 94 CH (0.82495345 0.17504655)
##
        4) LoyalCH>=0.7648795 271 13 CH (0.95202952 0.04797048) *
##
        5) LoyalCH< 0.7648795 266 81 CH (0.69548872 0.30451128)
         10) PriceDiff>=-0.165 226 50 CH (0.77876106 0.22123894) *
##
##
         11) PriceDiff< -0.165 40
                                   9 MM (0.22500000 0.77500000) *
##
      3) LoyalCH< 0.48285 320 80 MM (0.25000000 0.75000000)
##
        6) LoyalCH>=0.2761415 146 58 MM (0.39726027 0.60273973)
##
         12) SalePriceMM>=2.04 71 31 CH (0.56338028 0.43661972) *
##
         13) SalePriceMM< 2.04 75  18 MM (0.24000000 0.76000000) *
       7) LoyalCH< 0.2761415 174 22 MM (0.12643678 0.87356322) *
##
```

The output starts with the root node. The predicted class at the root is CH and this prediction produces 334 errors on the 857 observations for a success rate of 0.61026838 and an error rate of 0.38973162. The child nodes of node "x" are labeled 2x) and 2x+1), so the child nodes of 1) are 2) and 3), and the child nodes of 2) are 4) and 5). Terminal nodes are labeled with an asterisk (*).

Surprisingly, only 3 of the 17 features were used the in full tree: LoyalCH (Customer brand loyalty for CH), PriceDiff (relative price of MM over CH), and SalePriceMM (absolute price of MM). The first split is at LoyalCH = 0.48285. Here is what the full (unpruned) tree looks like.

rpart.plot(oj_model_1, yesno = TRUE)

The boxes show the node classification (based on mode), the proportion of observations that are *not* CH, and the proportion of observations included in the node.

rpart() not only grew the full tree, it identified the set of cost complexity parameters, and measured the model performance of each corresponding tree using cross-validation. printcp() displays the candidate c_p values. You can use this table to decide how to prune the tree.

```
printcp(oj_model_1)
```

```
## Classification tree:
## rpart(formula = Purchase ~ ., data = oj_train, method = "class")
##
## Variables actually used in tree construction:
## [1] LoyalCH
                   PriceDiff
                               SalePriceMM
## Root node error: 334/857 = 0.38973
##
## n = 857
##
##
           CP nsplit rel error xerror
## 1 0.479042
                   0
                       1.00000 1.00000 0.042745
## 2 0.032934
                   1
                       0.52096 0.54192 0.035775
## 3 0.013473
                   3
                       0.45509 0.47006 0.033905
## 4 0.010000
                   5
                       0.42814 0.46407 0.033736
```

There are 4 c_p values in this model. The model with the smallest complexity parameter allows the most splits (nsplit). The highest complexity parameter corresponds to a tree with just a root node. rel error is the error rate relative to the root node. The root node absolute error is 0.38973162 (the proportion of MM), so its rel error is 0.38973162/0.38973162 = 1.0. That means the absolute error of the full tree (at CP = 0.01) is 0.42814 * 0.38973162 = 0.1669. You can verify that by calculating the error rate of the predicted values:

```
## mean_err
## 1 0.1668611
```

Finishing the CP table tour, **xerror** is the relative cross-validated error rate and **xstd** is its standard error. If you want the lowest possible error, then prune to the tree with the smallest relative CV error (**xerror**) ($c_p = 0.01$, CV error = 0.1809). If you want to balance predictive power with simplicity, prune to the smallest tree within 1 SE of the one with the smallest relative error. The CP table is not super-helpful for finding that tree. I'll add a column to find it.

```
oj_model_1$cptable %>%
  data.frame() %>%
  mutate(min_xerror_idx = which.min(oj_model_1$cptable[, "xerror"]),
        rownum = row_number(),
        xerror_cap = oj_model_1$cptable[min_xerror_idx, "xerror"] +
```

```
##
             CP nsplit rel.error
                                                  xstd xerror_cap
                                                                         eval
                                     xerror
## 1 0.47904192
                     0 1.0000000 1.0000000 0.04274518
                                                        0.4978082
## 2 0.03293413
                     1 0.5209581 0.5419162 0.03577468
                                                        0.4978082
                     3 0.4550898 0.4700599 0.03390486
## 3 0.01347305
                                                        0.4978082
                                                                   under cap
## 4 0.0100000
                     5 0.4281437 0.4640719 0.03373631
                                                        0.4978082 min xerror
```

The simplest tree using the 1-SE rule is $c_p = 0.01347305$, CV error = 0.1832. Fortunately, plotcp() presents a nice graphical representation of the relationship between xerror and cp.

```
plotcp(oj_model_1, upper = "splits")
```


The dashed line is set at the minimum $\mathtt{xerror} + \mathtt{xstd}$. The top axis shows the number of splits in the tree. I'm not sure why the CP values are not the same as in the table (they are close, but not the same). The figure suggests I should prune to 5 or 3 splits. I see this curve never really hits a minimum - it is still decreasing at 5 splits. The default tuning parameter value $\mathtt{cp} = 0.01$ may be too small, so I'll set it to $\mathtt{cp} = 0.001$ and start over.

##

```
set.seed(123)
oj_model_1b <- rpart(
  formula = Purchase ~ .,
  data = oj_train,
  method = "class",
  cp = 0.001
print(oj_model_1b)
## n = 857
##
## node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
##
    1) root 857 334 CH (0.61026838 0.38973162)
##
##
       2) LoyalCH>=0.48285 537 94 CH (0.82495345 0.17504655)
##
         4) LoyalCH>=0.7648795 271 13 CH (0.95202952 0.04797048) *
         5) LoyalCH< 0.7648795 266 81 CH (0.69548872 0.30451128)
##
##
         10) PriceDiff>=-0.165 226 50 CH (0.77876106 0.22123894)
##
           ##
           21) ListPriceDiff< 0.255 111 39 CH (0.64864865 0.35135135)
##
             42) PriceMM>=2.155 19
                                    2 CH (0.89473684 0.10526316) *
             43) PriceMM< 2.155 92 37 CH (0.59782609 0.40217391)
##
##
               86) DiscCH>=0.115 7
                                     0 CH (1.00000000 0.00000000) *
##
               87) DiscCH< 0.115 85 37 CH (0.56470588 0.43529412)
##
                174) ListPriceDiff>=0.215 45 15 CH (0.66666667 0.333333333) *
                175) ListPriceDiff< 0.215 40    18 MM (0.45000000 0.55000000)
##
                  350) LoyalCH>=0.527571 28 13 CH (0.53571429 0.46428571)
##
##
                    700) WeekofPurchase< 266.5 21
                                                    8 CH (0.61904762 0.38095238) *
##
                    701) WeekofPurchase>=266.5 7
                                                   2 MM (0.28571429 0.71428571) *
##
                  351) LoyalCH< 0.527571 12
                                              3 MM (0.25000000 0.75000000) *
##
         11) PriceDiff< -0.165 40
                                    9 MM (0.22500000 0.77500000) *
       3) LoyalCH< 0.48285 320 80 MM (0.25000000 0.75000000)
##
##
         6) LoyalCH>=0.2761415 146 58 MM (0.39726027 0.60273973)
         12) SalePriceMM>=2.04 71 31 CH (0.56338028 0.43661972)
##
##
           24) LoyalCH< 0.303104 7
                                     0 CH (1.00000000 0.00000000) *
           25) LoyalCH>=0.303104 64 31 CH (0.51562500 0.48437500)
##
             50) WeekofPurchase>=246.5 52 22 CH (0.57692308 0.42307692)
##
              100) PriceCH< 1.94 35 11 CH (0.68571429 0.31428571)
##
                200) StoreID< 1.5 9 1 CH (0.88888889 0.111111111) *
##
##
                201) StoreID>=1.5 26 10 CH (0.61538462 0.38461538)
##
                  402) LoyalCH< 0.410969 17
                                              4 CH (0.76470588 0.23529412) *
##
                  403) LoyalCH>=0.410969 9
                                             3 MM (0.33333333 0.66666667) *
##
              101) PriceCH>=1.94 17
                                      6 MM (0.35294118 0.64705882) *
```

```
##
          13) SalePriceMM< 2.04 75  18 MM (0.24000000 0.76000000)
##
            26) SpecialCH>=0.5 14
                                    6 CH (0.57142857 0.42857143) *
##
            27) SpecialCH< 0.5 61 10 MM (0.16393443 0.83606557) *
##
         7) LoyalCH< 0.2761415 174 22 MM (0.12643678 0.87356322)
##
          14) LoyalCH>=0.035047 117
                                    21 MM (0.17948718 0.82051282)
##
            28) WeekofPurchase< 273.5 104 21 MM (0.20192308 0.79807692)
##
              56) PriceCH>=1.875 20
                                      9 MM (0.45000000 0.55000000)
##
               112) WeekofPurchase>=252.5 12
                                               5 CH (0.58333333 0.41666667) *
               113) WeekofPurchase< 252.5 8
                                              2 MM (0.25000000 0.75000000) *
##
##
              57) PriceCH< 1.875 84
                                    12 MM (0.14285714 0.85714286) *
##
            29) WeekofPurchase>=273.5 13
                                           0 MM (0.00000000 1.00000000) *
##
          15) LoyalCH< 0.035047 57
                                     1 MM (0.01754386 0.98245614) *
```

This is a much larger tree. Did I find a cp value that produces a local min?

```
plotcp(oj_model_1b, upper = "splits")
```


Yes, the min is at CP = 0.011 with 5 splits. The min + 1 SE is at CP = 0.021 with 3 splits. I'll prune the tree to 3 splits.

```
oj_model_1b_pruned <- prune(
   oj_model_1b,
   cp = oj_model_1b$cptable[oj_model_1b$cptable[, 2] == 3, "CP"]
)
rpart.plot(oj_model_1b_pruned, yesno = TRUE)</pre>
```


The most "important" indicator of Purchase appears to be LoyalCH. From the rpart vignette (page 12),

"An overall measure of variable importance is the sum of the goodness of split measures for each split for which it was the primary variable, plus goodness (adjusted agreement) for all splits in which it was a surrogate."

Surrogates refer to alternative features for a node to handle missing data. For each split, CART evaluates a variety of alternative "surrogate" splits to use when the feature value for the primary split is NA. Surrogate splits are splits that produce results similar to the original split.

A variable's importance is the sum of the improvement in the overall Gini (or RMSE) measure produced by the nodes in which it appears. Here is the variable importance for this model.

oj_model_1b_pruned\$variable.importance

##	LoyalCH	PriceDiff	${\tt SalePriceMM}$	StoreID	${\tt WeekofPurchase}$
##	150.237336	20.843067	11.567443	9.965419	8.386282
##	${\tt DiscMM}$	${\tt PriceMM}$	${\tt PctDiscMM}$	PriceCH	SalePriceCH
##	7.081470	7.065493	6.252920	3.055594	1.042153

##

```
oj_model_1b_pruned$variable.importance %>%
  data.frame() %>%
  rownames_to_column(var = "Feature") %>%
  rename(Overall = '.') %>%
  ggplot(aes(x = fct_reorder(Feature, Overall), y = Overall)) +
  geom_pointrange(aes(ymin = 0, ymax = Overall), color = "cadetblue", size = .3) +
  theme_minimal() +
  coord_flip() +
  labs(x = "", y = "", title = "Variable Importance with Simple Classication")
```

Variable Importance with Simple Classication

LoyalCH is by far the most important variable, as expected from its position at the top of the tree, and one level down.

You can see how the surrogates appear in the model with the summary() function.

```
summary(oj_model_1b_pruned)

## Call:
## rpart(formula = Purchase ~ ., data = oj_train, method = "class",
## cp = 0.001)
## n= 857
##
```

xerror

xstd

CP nsplit rel error

```
## 1 0.47904192
                     0 1.0000000 1.0000000 0.04274518
## 2 0.03293413
                     1 0.5209581 0.5419162 0.03577468
## 3 0.01347305
                     3 0.4550898 0.4700599 0.03390486
## Variable importance
##
          LoyalCH
                       PriceDiff
                                     SalePriceMM
                                                         StoreID WeekofPurchase
##
               67
                               9
                                               5
                                                               4
##
           DiscMM
                         PriceMM
                                       PctDiscMM
                                                        PriceCH
##
                3
                                3
                                               3
##
## Node number 1: 857 observations,
                                        complexity param=0.4790419
     predicted class=CH expected loss=0.3897316 P(node) =1
##
##
       class counts:
                       523
                              334
##
      probabilities: 0.610 0.390
##
     left son=2 (537 obs) right son=3 (320 obs)
##
     Primary splits:
##
         LovalCH
                       < 0.48285
                                    to the right, improve=132.56800, (0 missing)
##
         StoreID
                       < 3.5
                                    to the right, improve= 40.12097, (0 missing)
##
                       < 0.015
                                    to the right, improve= 24.26552, (0 missing)
         PriceDiff
                                    to the right, improve= 22.79117, (0 missing)
##
         ListPriceDiff < 0.255
##
         SalePriceMM
                       < 1.84
                                    to the right, improve= 20.16447, (0 missing)
##
     Surrogate splits:
##
         StoreID
                        < 3.5
                                     to the right, agree=0.646, adj=0.053, (0 split)
##
         PriceMM
                        < 1.89
                                     to the right, agree=0.638, adj=0.031, (0 split)
##
         WeekofPurchase < 229.5
                                     to the right, agree=0.632, adj=0.016, (0 split)
                                     to the left, agree=0.629, adj=0.006, (0 split)
##
         {\tt DiscMM}
                        < 0.77
##
         SalePriceMM
                        < 1.385
                                     to the right, agree=0.629, adj=0.006, (0 split)
##
                                        complexity param=0.03293413
## Node number 2: 537 observations,
     predicted class=CH expected loss=0.1750466 P(node) =0.6266044
##
##
                       443
                               94
       class counts:
##
      probabilities: 0.825 0.175
##
     left son=4 (271 obs) right son=5 (266 obs)
##
     Primary splits:
                       < 0.7648795 to the right, improve=17.669310, (0 missing)
##
         LoyalCH
                                    to the right, improve=15.475200, (0 missing)
##
         PriceDiff
                       < 0.015
##
         SalePriceMM
                       < 1.84
                                    to the right, improve=13.951730, (0 missing)
##
         ListPriceDiff < 0.255
                                    to the right, improve=11.407560, (0 missing)
##
         {\tt DiscMM}
                        < 0.15
                                    to the left, improve= 7.795122, (0 missing)
##
     Surrogate splits:
##
         WeekofPurchase < 257.5
                                     to the right, agree=0.594, adj=0.180, (0 split)
##
         PriceCH
                        < 1.775
                                     to the right, agree=0.590, adj=0.173, (0 split)
                                     to the right, agree=0.587, adj=0.165, (0 split)
##
         StoreID
                        < 3.5
##
         PriceMM
                        < 2.04
                                     to the right, agree=0.587, adj=0.165, (0 split)
##
         SalePriceMM
                        < 2.04
                                     to the right, agree=0.587, adj=0.165, (0 split)
##
```

```
## Node number 3: 320 observations
##
     predicted class=MM expected loss=0.25 P(node) =0.3733956
##
       class counts:
                        80
                             240
##
      probabilities: 0.250 0.750
##
## Node number 4: 271 observations
     predicted class=CH expected loss=0.04797048 P(node) =0.3162194
##
       class counts:
                       258
                              13
##
      probabilities: 0.952 0.048
##
## Node number 5: 266 observations,
                                       complexity param=0.03293413
     predicted class=CH expected loss=0.3045113 P(node) =0.3103851
##
##
       class counts:
                       185
                              81
##
      probabilities: 0.695 0.305
##
     left son=10 (226 obs) right son=11 (40 obs)
##
     Primary splits:
         PriceDiff
                       < -0.165
                                   to the right, improve=20.84307, (0 missing)
##
##
         ListPriceDiff < 0.235
                                   to the right, improve=20.82404, (0 missing)
##
         SalePriceMM
                       < 1.84
                                   to the right, improve=16.80587, (0 missing)
##
                                   to the left, improve=10.05120, (0 missing)
         DiscMM
                       < 0.15
##
         PctDiscMM
                       < 0.0729725 to the left, improve=10.05120, (0 missing)
##
     Surrogate splits:
##
         SalePriceMM
                        < 1.585
                                    to the right, agree=0.906, adj=0.375, (0 split)
##
                                    to the left, agree=0.895, adj=0.300, (0 split)
         DiscMM
                        < 0.57
##
         PctDiscMM
                        < 0.264375 to the left, agree=0.895, adj=0.300, (0 split)
##
         WeekofPurchase < 274.5
                                    to the left, agree=0.872, adj=0.150, (0 split)
##
         SalePriceCH
                        < 2.075
                                    to the left, agree=0.857, adj=0.050, (0 split)
##
## Node number 10: 226 observations
##
     predicted class=CH expected loss=0.2212389 P(node) =0.2637106
##
       class counts:
                       176
                              50
##
      probabilities: 0.779 0.221
##
## Node number 11: 40 observations
##
     predicted class=MM expected loss=0.225 P(node) =0.04667445
##
       class counts:
##
      probabilities: 0.225 0.775
```

The last step is to make predictions on the validation data set. For a classification tree, set argument type = "class".

```
oj_model_1b_preds <- predict(oj_model_1b_pruned, oj_test, type = "class")
```

I'll evaluate the predictions and record the accuracy (correct classification percentage) for comparison to other models. Two ways to evaluate the model are the confusion matrix, and the ROC curve.

8.1.1 Confusion Matrix

Print the confusion matrix with caret::confusionMatrix() to see how well does this model performs against the test data set.

```
oj_model_1b_cm <- confusionMatrix(data = oj_model_1b_preds, reference = oj_test$Purcha
oj_model_1b_cm
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction CH MM
           CH 113
                   13
##
          MM 17 70
##
                  Accuracy : 0.8592
##
                    95% CI : (0.8051, 0.9029)
##
##
       No Information Rate: 0.6103
##
       P-Value [Acc > NIR] : 1.265e-15
##
                     Kappa : 0.7064
##
##
##
   Mcnemar's Test P-Value: 0.5839
##
               Sensitivity: 0.8692
##
               Specificity: 0.8434
##
            Pos Pred Value: 0.8968
##
##
            Neg Pred Value: 0.8046
##
                Prevalence: 0.6103
##
            Detection Rate: 0.5305
##
      Detection Prevalence : 0.5915
##
         Balanced Accuracy: 0.8563
##
##
          'Positive' Class : CH
##
```

The confusion matrix is at the top. It also includes a lot of statistics. It's worth getting familiar with the stats. The model accuracy and 95% CI are calculated from the binomial test.

```
binom.test(x = 113 + 70, n = 213)
##
## Exact binomial test
```

```
##
## data: 113 + 70 and 213
## number of successes = 183, number of trials = 213, p-value <
## 2.2e-16
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.8050785 0.9029123
## sample estimates:
## probability of success
## 0.8591549</pre>
```

The "No Information Rate" (NIR) statistic is the class rate for the largest class. In this case CH is the largest class, so NIR = 130/213 = 0.6103. "P-Value [Acc > NIR]" is the binomial test that the model accuracy is significantly better than the NIR (i.e., significantly better than just always guessing CH).

```
binom.test(x = 113 + 70, n = 213, p = 130/213, alternative = "greater")
```

```
##
## Exact binomial test
##
## data: 113 + 70 and 213
## number of successes = 183, number of trials = 213, p-value =
## 1.265e-15
## alternative hypothesis: true probability of success is greater than 0.6103286
## 95 percent confidence interval:
## 0.8138446 1.0000000
## sample estimates:
## probability of success
## 0.8591549
```

The "Accuracy" statistic indicates the model predicts 0.8590 of the observations correctly. That's good, but less impressive when you consider the prevalence of CH is 0.6103 - you could achieve 61% accuracy just by predicting CH every time. A measure that controls for the prevalence is Cohen's kappa statistic. The kappa statistic is explained here. It compares the accuracy to the accuracy of a "random system". It is defined as

$$\kappa = \frac{Acc - RA}{1 - RA}$$

where

$$RA = \frac{ActFalse \times PredFalse + ActTrue \times PredTrue}{Total \times Total}$$

is the hypotheical probability of a chance agreement. ActFalse will be the number of "MM" (13 + 70 = 83) and actual true will be the number of "CH" (113 + 17 = 130). The predicted counts are

```
table(oj_model_1b_preds)
```

```
## oj_model_1b_preds
## CH MM
## 126 87
```

So, $RA = (83*87 + 130*126)/213^2 = 0.5202$ and $\kappa = (0.8592 - 0.5202)/(1 - 0.5202) = 0.7064$. The kappa statistic varies from 0 to 1 where 0 means accurate predictions occur merely by chance, and 1 means the predictions are in perfect agreement with the observations. In this case, a kappa statistic of 0.7064 is "substantial". See chart here.

The other measures from the confusionMatrix() output are various proportions and you can remind yourself of their definitions in the documentation with ?confusionMatrix.

Visuals are almost always helpful. Here is a plot of the confusion matrix.

```
plot(oj_test$Purchase, oj_model_1b_preds,
    main = "Simple Classification: Predicted vs. Actual",
    xlab = "Actual",
    ylab = "Predicted")
```

Simple Classification: Predicted vs. Actual

By the way, how does the validation set accuracy ()

```
oj_model_1b_train_preds <- predict(oj_model_1b_pruned, oj_train, type = "class")
oj_model_1b_train_cm <- confusionMatrix(data = oj_model_1b_train_preds, reference = oj_train$Purc
oj_model_1b_train_cm$overall</pre>
```

```
## Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
## 8.226371e-01 6.323113e-01 7.953840e-01 8.476497e-01 6.102684e-01
## AccuracyPValue McnemarPValue
## 1.859617e-41 4.258396e-02
```

The accuracy on the training data set was a little lower than on the test data set. I though it would be higher, not lower.

8.1.2 ROC Curve

Another measure of accuracy is the ROC (receiver operating characteristics) curve (Fawcett, 2005). The ROC curve is a plot of the true positive rate (TPR, sensitivity) versus the false positive rate (FPR, 1 - specificity) for a set of thresholds. By default, the threshold for predicting the default classification is 0.50, but it could be any threshold. The ROC curves varies the thresholds. (I'll use the geom_roc geom from plotROC.

You can also use ${\tt prediction()}$ and ${\tt plot.prediction()}$ from the ${\tt ROCR}$ package.

```
pred <- prediction(predict(oj_model_1b_pruned, newdata = oj_test, type = "prob")[, 2],
plot(performance(pred, "tpr", "fpr"))
abline(0, 1, lty = 2)</pre>
```


Hmm, not quite the same...

A few points on the ROC space are helpful for understanding how to use it.

- The lower left point (0, 0) is the result of *always* predicting "negative" or in this case "MM" if "CH" is taken as the default class. Sure, your false positive rate is zero, but since you never predict a positive, your true positive rate is also zero.
- The upper right point (1, 1) is the results of *always* predicting "positive" (or "CH" here). You catch all the positives, but you miss all the negatives.
- The upper left point (0, 1) is the result of perfect accuracy. You catch all the positives and all the negatives.
- The lower right point (1, 0) is the result of perfect imbecility. You made the exact wrong prediction every time.
- The 45 degree diagonal is the result of randomly guessing positive (CH) X percent of the time. If you guess positive 90% of the time and the prevalence is 50%, your TPR will be 90% and your FPR will also be 90%, etc.

From the last bullet, it is evident that any point below and to the right of the 45 degree diagonal represents an instance where the model would have been better off just predicting entirely one way or the other. The goal is for all nodes to bunch up in the upper left.

Points to the left of the diagonal with a low TPR can be thought of as "conservative" predicters - they only make positive (CH) predictions with strong

evidence. Points to the left of the diagnonal with a high TPR can be thought of as "liberal" predicters - they make positive (CH) predictions with weak evidence.

8.1.3 Caret Approach

I can also fit the model with caret::train(). There are two ways to tune hyperparameters in train():

- set the number of tuning parameter values to consider by setting tuneLength, or
- set particular values to consider for each parameter by defining a tuneGrid.

I'll build the model using 10-fold cross-validation to optimize the hyperparameter CP. If you don't have any idea what the tuning parameter ought to look like, use tuneLength to get close, then fine-tune with tuneGrid. That's what I'll do. I'll create a training control object that I can re-use in other model builds.

```
oj_trControl = trainControl(
  method = "cv",  # k-fold cross validation
  number = 10,  # 10 folds
  savePredictions = "final",  # save predictions for the optimal tuning paramete
  classProbs = TRUE  # return class probabilities in addition to predicted values
# summaryFunction = twoClassSummary  # computes sensitivity, specificity and the are
  )
```

Now fit the model.

```
set.seed(1234)
oj_model_2 = train(
  Purchase ~ .,
  data = oj_train,
  method = "rpart",
  tuneLength = 5,
  metric = "Accuracy",
  trControl = oj_trControl
)
```

caret built a full tree using rpart's default parameters: gini splitting index, at least 20 observations in a node in order to consider splitting it, and at least 6 observations in each node. Caret then calculated the accuracy for each candidate value of α . Here is the results.

```
print(oj_model_2)
## CART
##
## 857 samples
## 17 predictor
    2 classes: 'CH', 'MM'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 772, 772, 771, 770, 771, 771, ...
## Resampling results across tuning parameters:
##
##
                Accuracy
                           Kappa
    ср
##
    0.005988024 0.8085999 0.5931149
    ##
##
    0.013473054 0.8051657 0.5885521
##
    0.032934132 0.7841798 0.5371171
    0.479041916 0.6603904 0.1774773
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.008982036.
```

The second cp (0.008982036) produced the highest accuracy. I can drill into the best value of cp using a tuning grid. I'll try that now.

```
set.seed(1234)
oj_model_3 = train(
   Purchase ~ .,
  data = oj_train,
  method = "rpart",
  tuneGrid = expand.grid(cp = seq(from = 0.001, to = 0.010, length = 11)),
  metric='Accuracy',
  trControl = oj_trControl
   )
print(oj_model_3)
## CART
##
## 857 samples
## 17 predictor
##
   2 classes: 'CH', 'MM'
##
## No pre-processing
```

```
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 772, 772, 771, 770, 771, 771, ...
## Resampling results across tuning parameters:
##
##
    ср
            Accuracy
                       Kappa
##
    0.0010 0.8004874 0.5753480
    0.0019 0.8016502 0.5785232
##
##
    0.0028 0.8039758 0.5845653
##
    0.0037
            0.8085999 0.5955198
##
    0.0046 0.8039351 0.5851273
##
    0.0055 0.8085863 0.5937949
##
    0.0064 0.8085999 0.5931149
##
    0.0073
            0.8120883 0.6011446
##
    0.0082 0.8120883 0.6011446
    0.0091 0.8086267 0.5943277
##
    0.0100 0.8086540 0.5953150
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.0082.
```

The beset model is at cp = 0.009. Here are the rules in the final model.

```
oj_model_3<mark>$</mark>finalModel
```

```
## n = 857
## node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
##
##
     1) root 857 334 CH (0.61026838 0.38973162)
##
       2) LoyalCH>=0.48285 537 94 CH (0.82495345 0.17504655)
##
         4) LoyalCH>=0.7648795 271 13 CH (0.95202952 0.04797048) *
##
         5) LoyalCH< 0.7648795 266 81 CH (0.69548872 0.30451128)
##
          10) PriceDiff>=-0.165 226 50 CH (0.77876106 0.22123894) *
##
          11) PriceDiff< -0.165 40
                                     9 MM (0.22500000 0.77500000) *
##
       3) LoyalCH< 0.48285 320 80 MM (0.25000000 0.75000000)
##
         6) LoyalCH>=0.2761415 146 58 MM (0.39726027 0.60273973)
          12) SalePriceMM>=2.04 71 31 CH (0.56338028 0.43661972)
##
##
            24) LoyalCH< 0.303104 7
                                      0 CH (1.00000000 0.00000000) *
            25) LoyalCH>=0.303104 64 31 CH (0.51562500 0.48437500)
##
##
              50) WeekofPurchase>=246.5 52 22 CH (0.57692308 0.42307692)
##
               100) PriceCH< 1.94 35 11 CH (0.68571429 0.31428571) *
##
               101) PriceCH>=1.94 17
                                       6 MM (0.35294118 0.64705882) *
##
              51) WeekofPurchase< 246.5 12
                                             3 MM (0.25000000 0.75000000) *
          13) SalePriceMM< 2.04 75  18 MM (0.24000000 0.76000000) *
##
```

7) LoyalCH< 0.2761415 174 22 MM (0.12643678 0.87356322) *

Here is the tree.

```
rpart.plot(oj_model_3$finalModel)
```


Here is the ROC curve.

```
library(plotROC)
ggplot(oj_model_3$pred) +
    geom_roc(
    aes(
        m = MM,
        d = factor(obs, levels = c("CH", "MM"))
    ),
    hjust = -0.4, vjust = 1.5
    ) +
    coord_equal()
```

Warning in verify_d(data\$d): D not labeled 0/1, assuming CH = 0 and MM = 1!

Here are the cross-validated Accuracy for each candidate cp value.

plot(oj_model_3)

Evaluate the model by making predictions with the test data set.

```
oj_model_3_preds <- predict(oj_model_3, oj_test, type = "raw")
```

The confusion matrix shows the true positives and true negatives.

```
oj_model_3_cm <- confusionMatrix(</pre>
   data = oj_model_3_preds,
   reference = oj_test$Purchase
)
oj_model_3_cm
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction CH MM
##
           CH 115 18
           MM 15 65
##
##
##
                  Accuracy : 0.8451
##
                    95% CI: (0.7894, 0.8909)
##
       No Information Rate: 0.6103
       P-Value [Acc > NIR] : 6.311e-14
##
##
##
                     Kappa: 0.6721
##
##
   Mcnemar's Test P-Value: 0.7277
##
##
               Sensitivity: 0.8846
               Specificity: 0.7831
##
##
            Pos Pred Value: 0.8647
            Neg Pred Value: 0.8125
##
                Prevalence: 0.6103
##
            Detection Rate: 0.5399
##
##
      Detection Prevalence : 0.6244
##
         Balanced Accuracy: 0.8339
##
##
          'Positive' Class : CH
##
```

The accuracy metric is the slightly worse than in my previous model. Here is a graphical representation of the confusion matrix.

```
plot(oj_test$Purchase, oj_model_3_preds,
     main = "Simple Classification: Predicted vs. Actual",
     xlab = "Actual",
     ylab = "Predicted")
```


Finally, here is the variable importance plot.

plot(varImp(oj_model_3), main="Variable Importance with Simple Classication")

Variable Importance with Simple Classication

Looks like the manual effort faired best. Here is a summary the accuracy rates of the three models.

8.2 Regression Trees

A simple regression tree is built in a manner similar to a simple classification tree, and like the simple classification tree, it is rarely invoked on its own; the bagged, random forest, and gradient boosting methods build on this logic. I'll learn by example again. Using the ISLR::Carseats data set, I will predict Sales using from the 10 feature variables. Load the data.

```
carseats_dat <- Carseats
skim_with(numeric = list(p0 = NULL, p25 = NULL, p50 = NULL, p75 = NULL,
                            p100 = NULL, hist = NULL))
skim(carseats_dat)
## Skim summary statistics
## n obs: 400
##
   n variables: 11
##
  -- Variable type:factor -----
##
    top_counts
##
   ShelveLoc
                 0
                        400 400 3 Med: 219, Bad: 96, Goo: 85, NA: 0
##
       Urban
                 0
                        400 400
                                     2
                                               Yes: 282, No: 118, NA: 0
         US
                        400 400
                                     2
                                               Yes: 258, No: 142, NA: 0
##
##
   ordered
##
     FALSE
##
     FALSE
##
     FALSE
##
## -- Variable type:numeric ------
##
      variable missing complete
                                           sd
##
                   0
                          400 400
                                   6.63
                                         6.65
   Advertising
##
          Age
                   0
                          400 400 53.32 16.2
     CompPrice
                          400 400 124.97 15.33
##
                   0
```

```
##
      Education
                       0
                              400 400 13.9
                                                2.62
                              400 400 68.66
                                               27.99
##
         Income
##
     Population
                       0
                              400 400 264.84 147.38
##
          Price
                       0
                              400 400 115.8
                                               23.68
                              400 400
                                                2.82
##
          Sales
                       0
                                        7.5
```

I'll split careseats_dat (n = 400) into carseats_train (80%, n = 321) and carseats_test (20%, n = 79). I'll fit a simple decision tree with carseats_train, then later a bagged tree, a random forest, and a gradient boosting tree. I'll compare their predictive performance with carseats_test.

```
set.seed(12345)
partition <- createDataPartition(y = carseats_dat$Sales, p = 0.8, list = FALSE)
carseats_train <- carseats_dat[partition, ]
carseats_test <- carseats_dat[-partition, ]</pre>
```

The first step is to build a full tree, then perform k-fold cross-validation to help select the optimal cost complexity (cp). The only difference here is the rpart() parameter method = "anova" to produce a regression tree.

```
set.seed(1234)
carseats_model_1 <- rpart(
   formula = Sales ~ .,
   data = carseats_train,
   method = "anova",
   xval = 10,
   model = TRUE # to plot splits with factor variables.
)
print(carseats_model_1)

## n= 321
##
## node) split n deviance yval</pre>
```

```
## node), split, n, deviance, yval
         * denotes terminal node
##
##
   1) root 321 2567.76800 7.535950
      2) ShelveLoc=Bad, Medium 251 1474.14100 6.770359
##
        4) Price>=105.5 168 719.70630 5.987024
##
##
          8) ShelveLoc=Bad 50 165.70160 4.693600
##
           16) Population< 201.5 20
                                     48.35505 3.646500 *
##
           17) Population>=201.5 30
                                     80.79922 5.391667 *
##
          9) ShelveLoc=Medium 118 434.91370 6.535085
##
           18) Advertising< 11.5 88 290.05490 6.113068
             36) CompPrice< 142 69 193.86340 5.769420
##
```

```
##
               72) Price>=132.5 16
                                     50.75440
                                                4.455000 *
##
               73) Price< 132.5 53
                                    107.12060
                                                6.166226 *
##
             37) CompPrice>=142 19
                                      58.45118
                                                7.361053 *
##
           19) Advertising>=11.5 30
                                      83.21323
                                                 7.773000 *
        5) Price< 105.5 83 442.68920 8.355904
##
##
         10) Age>=63.5 32 153.42300
                                      6.922500
           20) Price>=85 25
##
                              66.89398 6.160800
##
             40) ShelveLoc=Bad 9
                                   18.39396 4.772222 *
##
             41) ShelveLoc=Medium 16
                                        21.38544 6.941875 *
##
           21) Price< 85 7
                             20.22194 9.642857 *
##
         11) Age< 63.5 51 182.26350
                                      9.255294
##
           22) Income< 57.5 12
                                           7.707500 *
                                 28.03042
##
           23) Income>=57.5 39
                                116.63950
                                           9.731538
##
             46) Age>=50.5 14
                                21.32597 8.451429 *
##
             47) Age< 50.5 25
                                59.52474 10.448400 *
##
      3) ShelveLoc=Good 70 418.98290 10.281140
        6) Price>=107.5 49 242.58730 9.441633
##
##
         12) Advertising< 13.5 41 162.47820 8.926098
##
           24) Age>=61 17
                            53.37051
                                      7.757647 *
##
           25) Age< 61 24
                            69.45776
                                      9.753750 *
##
         13) Advertising>=13.5 8
                                   13.36599 12.083750 *
##
        7) Price< 107.5 21
                             61.28200 12.240000 *
```

The output starts with the root node. The predicted Sales at the root is the mean Sales for the training data set, 7.535950 (values are \$000s). The deviance at the root is the SSE, 2567.768. The child nodes of node "x" are labeled 2x) and 2x+1), so the child nodes of 1) are 2) and 3), and the child nodes of 2) are 4) and 5). Terminal nodes are labeled with an asterisk (*).

The first split is at ShelveLoc = [Bad, Medium] vs Good. Here is what the full (unpruned) tree looks like.

```
rpart.plot(carseats_model_1, yesno = TRUE)
```


The boxes show the node predicted value (mean) and the proportion of observations that are in the node (or child nodes).

rpart() not only grew the full tree, it also used cross-validation to test the performance of the possible complexity hyperparameters. printcp() displays the candidate cp values. You can use this table to decide how to prune the tree.

```
printcp(carseats_model_1)
```

```
##
## Regression tree:
## rpart(formula = Sales ~ ., data = carseats_train, method = "anova",
##
       model = TRUE, xval = 10)
##
## Variables actually used in tree construction:
## [1] Advertising Age
                               CompPrice
                                            Income
                                                        Population Price
## [7] ShelveLoc
##
## Root node error: 2567.8/321 = 7.9993
##
## n= 321
##
##
            CP nsplit rel error xerror
## 1
      0.262736
                    0
                        1.00000 1.00635 0.076664
## 2 0.121407
                    1
                        0.73726 0.74888 0.058981
```

```
## 3 0.046379
                        0.61586 0.65278 0.050839
     0.044830
                    3
## 4
                        0.56948 0.67245 0.051638
## 5 0.041671
                        0.52465 0.66230 0.051065
## 6 0.025993
                    5
                        0.48298 0.62345 0.049368
## 7 0.025823
                    6
                        0.45698 0.61980 0.048026
## 8 0.024007
                    7
                        0.43116 0.62058 0.048213
## 9 0.015441
                    8
                        0.40715 0.58061 0.041738
## 10 0.014698
                    9
                        0.39171 0.56413 0.041368
## 11 0.014641
                   10
                        0.37701 0.56277 0.041271
## 12 0.014233
                   11
                        0.36237 0.56081 0.041097
## 13 0.014015
                   12
                        0.34814 0.55647 0.038308
## 14 0.013938
                   13
                        0.33413 0.55647 0.038308
## 15 0.010560
                   14
                        0.32019 0.57110 0.038872
## 16 0.010000
                   15
                        0.30963 0.56676 0.038090
```

There are 16 possible cp values in this model. The model with the smallest complexity parameter allows the most splits (nsplit). The highest complexity parameter corresponds to a tree with just a root node. rel error is the SSE relative to the root node. The root node SSE is 2567.76800, so its rel error is 2567.76800/2567.76800 = 1.0. That means the absolute error of the full tree (at CP = 0.01) is 0.30963 * 2567.76800 = 795.058. You can verify that by calculating the SSE of the model predicted values:

Finishing the CP table tour, xerror is the cross-validated SSE and xstd is its standard error. If you want the lowest possible error, then prune to the tree with the smallest relative SSE (xerror). If you want to balance predictive power with simplicity, prune to the smallest tree within 1 SE of the one with the smallest relative SSE. The CP table is not super-helpful for finding that tree. I'll add a column to find it.

```
##
              CP nsplit rel.error
                                     xerror
                                                  xstd xerror_cap
                                                                        eval
## 1
     0.26273578
                      0 1.0000000 1.0063530 0.07666355
                                                       0.5947744
## 2 0.12140705
                      1 0.7372642 0.7488767 0.05898146
                                                        0.5947744
## 3 0.04637919
                      2 0.6158572 0.6527823 0.05083938
                                                       0.5947744
## 4 0.04483023
                      3 0.5694780 0.6724529 0.05163819
                                                        0.5947744
     0.04167149
                      4 0.5246478 0.6623028 0.05106530
## 5
                                                        0.5947744
## 6 0.02599265
                      5 0.4829763 0.6234457 0.04936799
                                                        0.5947744
## 7 0.02582284
                      6 0.4569836 0.6198034 0.04802643
                                                       0.5947744
## 8 0.02400748
                      7 0.4311608 0.6205756 0.04821332
                                                       0.5947744
## 9 0.01544139
                      8 0.4071533 0.5806072 0.04173785
                                                       0.5947744
                                                                   under cap
## 10 0.01469771
                      9 0.3917119 0.5641331 0.04136793 0.5947744
                                                                   under cap
## 11 0.01464055
                     10 0.3770142 0.5627713 0.04127139 0.5947744
                                                                   under cap
## 12 0.01423309
                     11 0.3623736 0.5608073 0.04109662
                                                        0.5947744
                                                                   under cap
## 13 0.01401541
                     12 0.3481405 0.5564663 0.03830810 0.5947744 min xerror
## 14 0.01393771
                     13 0.3341251 0.5564663 0.03830810
                                                        0.5947744
                                                                   under cap
## 15 0.01055959
                     14 0.3201874 0.5710951 0.03887227
                                                        0.5947744
                                                                   under cap
## 16 0.01000000
                     15 0.3096278 0.5667561 0.03808991 0.5947744
                                                                   under cap
```

Okay, so the simplest tree is the one with CP = 0.01544139 (8 splits). Fortunately, plotcp() presents a nice graphical representation of the relationship between xerror and cp.

```
plotcp(carseats_model_1, upper = "splits")
```


The dashed line is set at the minimum $\mathtt{xerror} + \mathtt{xstd}$. The top axis shows the number of splits in the tree. I'm not sure why the CP values are not the same as in the table (they are close, but not the same). The smallest relative error is at 0.0140154, but the maximum CP below the dashed line (one standard deviation above the minimum error) is at CP = .019 (8 splits). Use the prune() function to prune the tree by specifying the associated cost-complexity cp.

```
carseats_model_1_pruned <- prune(
   carseats_model_1,
   cp = carseats_model_1$cptable[carseats_model_1$cptable[, 2] == 8, "CP"]
)
rpart.plot(carseats_model_1_pruned, yesno = TRUE)</pre>
```


The most "important" indicator of Sales is ShelveLoc. Here are the importance values from the model.

```
carseats_model_1_pruned$variable.importance %>%
  data.frame() %>%
  rownames_to_column(var = "Feature") %>%
  rename(Overall = '.') %>%
  ggplot(aes(x = fct_reorder(Feature, Overall), y = Overall)) +
  geom_pointrange(aes(ymin = 0, ymax = Overall), color = "cadetblue", size = .3) +
  theme_minimal() +
  coord_flip() +
  labs(x = "", y = "", title = "Variable Importance with Simple Regression")
```


The most important indicator of Sales is ShelveLoc, then Price, then Age, all of which appear in the final model. CompPrice was also important.

The last step is to make predictions on the validation data set. The root mean squared error $(RMSE = \sqrt{(1/2)\sum(actual-pred)^2})$ and mean absolute error $(MAE = (1/n)\sum|actual-pred|)$ are the two most common measures of predictive accuracy. The key difference is that RMSE punishes large errors more harshly. For a regression tree, set argument type = "vector" (or do not specify at all).

```
carseats_model_1_preds <- predict(
    carseats_model_1_pruned,
    carseats_test,
    type = "vector"
)

carseats_model_1_pruned_rmse <- RMSE(
    pred = carseats_model_1_preds,
    obs = carseats_test$Sales
)
carseats_model_1_pruned_rmse</pre>
```

[1] 2.388059

The pruning process leads to an average prediction error of 2.388 in the test

data set. Not too bad considering the standard deviation of Sales is 2.801. Here is a predicted vs actual plot.

```
plot(carseats_test$Sales, carseats_model_1_preds,
    main = "Simple Regression: Predicted vs. Actual",
    xlab = "Actual",
    ylab = "Predicted")
abline(0, 1)
```

Simple Regression: Predicted vs. Actual

The 6 possible predicted values do a decent job of binning the observations.

8.2.1 Caret Approach

I can also fit the model with caret::train(), specifying method = "rpart".

I'll build the model using 10-fold cross-validation to optimize the hyperparameter CP.

```
carseats_trControl = trainControl(
  method = "cv",  # k-fold cross validation
  number = 10,  # 10 folds
  savePredictions = "final"  # save predictions for the optimal tuning parameter
)
```

I'll let the model look for the best CP tuning parameter with tuneLength to get close, then fine-tune with tuneGrid.

```
set.seed(1234)
carseats_model_2 = train(
   Sales ~ .,
   data = carseats_train,
   method = "rpart", # for classification tree
   tuneLength = 5, # choose up to 5 combinations of tuning parameters (cp)
  metric = "RMSE", # evaluate hyperparamter combinations with RMSE
   trControl = carseats_trControl
)
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info =
## trainInfo, : There were missing values in resampled performance measures.
print(carseats_model_2)
## CART
##
## 321 samples
## 10 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 289, 289, 289, 289, 289, 289, ...
## Resampling results across tuning parameters:
##
                 RMSE
##
     ср
                           Rsquared
                                      MAE
##
     0.04167149 2.209383 0.4065251 1.778797
     0.04483023 2.243618 0.3849728 1.805027
##
##
     0.04637919 2.275563 0.3684309 1.808814
     0.12140705 2.400455 0.2942663 1.936927
##
     0.26273578 2.692867 0.1898998 2.192774
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was cp = 0.04167149.
The first cp (0.04167149) produced the smallest RMSE. I can drill into the best
myGrid <- expand.grid(cp = seq(from = 0, to = 0.1, by = 0.01))
```

value of cp using a tuning grid. I'll try that now.

```
carseats_model_3 = train(
   Sales ~ .,
```

```
data = carseats_train,
  method = "rpart", # for classification tree
  tuneGrid = myGrid, # choose up to 5 combinations of tuning parameters (cp)
  metric = "RMSE", # evaluate hyperparamter combinations with RMSE
  trControl = carseats_trControl
)
print(carseats_model_3)
```

```
## CART
##
## 321 samples
## 10 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 289, 289, 289, 289, 288, 289, ...
## Resampling results across tuning parameters:
##
##
    ср
          RMSE
                   Rsquared
                              MAE
    0.00 2.131814 0.4578761 1.725960
##
##
    0.01 2.203111 0.4294647 1.790050
##
   0.02 2.240209 0.3948080 1.834786
##
   0.03 2.206168 0.4139717 1.762170
##
    0.04 2.274313 0.3686176 1.795154
##
   0.05 2.309746 0.3405228 1.830556
   0.06 2.246757 0.3703977 1.780266
   0.07 2.253725 0.3679986 1.794485
##
    0.08 2.253725 0.3679986 1.794485
##
##
   0.09 2.253725 0.3679986 1.794485
    0.10 2.253725 0.3679986 1.794485
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was cp = 0.
```

It looks like the best performing tree is the unpruned one.

```
plot(carseats_model_3)
```


Lets's see the final model.

rpart.plot(carseats_model_3\$finalModel)

What were the most important variables?

plot(varImp(carseats_model_3), main="Variable Importance with Simple Regression")

Variable Importance with Simple Regression

Evaluate the model by making predictions with the test data set.

```
carseats_model_3_preds <- predict(carseats_model_3, carseats_test, type = "raw")
data.frame(Actual = carseats_test$Sales, Predicted = carseats_model_3_preds) %>%
ggplot(aes(x = Actual, y = Predicted)) +
    geom_point() +
    geom_smooth() +
    geom_abline(slope = 1, intercept = 0) +
    scale_y_continuous(limits = c(0, 15)) +
    labs(title = "Simple Regression: Predicted vs. Actual")
```

```
## geom_smooth() using method = 'loess' and formula 'y ~ x'
```


Looks like the model over-estimates at the low end and undestimates at the high end. Calculate the test data set RMSE.

```
carseats_model_3_pruned_rmse <- RMSE(
   pred = carseats_model_3_preds,
   obs = carseats_test$Sales
)
carseats_model_3_pruned_rmse</pre>
```

[1] 2.298331

Caret faired better in this model. Here is a summary the RMSE values of the two models.

```
## 1 Manual ANOVA 2.38806
## 2 Caret 2.29833
```

8.3 Bagging

Bootstrap aggregation, or bagging, is a general-purpose procedure for reducing the variance of a statistical learning method. The algorithm constructs B regression trees using B bootstrapped training sets, and averages the resulting predictions. These trees are grown deep, and are not pruned. Hence each individual tree has high variance, but low bias. Averaging these B trees reduces the variance. For classification trees, bagging takes the "majority vote" for the prediction. Use a value of B sufficiently large that the error has settled down.

To test the model accuracy, the out-of-bag observations are predicted from the models that do not use them. If B/3 of observations are in-bag, there are B/3 predictions per observation. These predictions are averaged for the test prediction. Again, for classification trees, a majority vote is taken.

The downside to bagging is that it improves accuracy at the expense of interpretability. There is no longer a single tree to interpret, so it is no longer clear which variables are more important than others.

Bagged trees are a special case of random forests, so see the next section for an example.

8.4 Random Forests

Random forests improve bagged trees by way of a small tweak that de-correlates the trees. As in bagging, the algorithm builds a number of decision trees on bootstrapped training samples. But when building these decision trees, each time a split in a tree is considered, a random sample of mtry predictors is chosen as split candidates from the full set of p predictors. A fresh sample of mtry predictors is taken at each split. Typically $mtry \sim \sqrt{b}$. Bagged trees are thus a special case of random forests where mtry = p.

8.4.0.1 Bagging Classification Example

Again using the OJ data set to predict Purchase, this time I'll use the bagging method by specifying method = "treebag". I'll use tuneLength = 5 and not worry about tuneGrid anymore. Caret has no hyperparameters to tune with this model.

```
trControl = trainControl(
    method = "cv", # k-fold cross validation
    number = 10, # k=10 folds
    savePredictions = "final", # save predictions for the optimal tuning parameters of the continuous classProbs = TRUE, # return class probabilities in addition to predicted summaryFunction = twoClassSummary # for binary response variable
    )
    oj.bag
```

```
## Bagged CART
##
## 857 samples
## 17 predictor
##
   2 classes: 'CH', 'MM'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 771, 772, 771, 771, 771, 772, ...
## Resampling results:
##
##
    ROC
               Sens
                          Spec
##
    0.8524038 0.8165094 0.7217469
```

Bagging Classification: Predicted vs. Actual


```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction CH MM
##
           CH 110 17
##
          MM 20 66
##
##
                  Accuracy : 0.8263
                    95% CI: (0.7686, 0.8746)
##
##
      No Information Rate : 0.6103
      P-Value [Acc > NIR] : 7.121e-12
##
##
                     Kappa : 0.6372
##
##
##
   Mcnemar's Test P-Value: 0.7423
##
##
               Sensitivity: 0.8462
               Specificity: 0.7952
##
##
            Pos Pred Value : 0.8661
            Neg Pred Value: 0.7674
##
                Prevalence : 0.6103
##
```

```
## Detection Rate : 0.5164
## Detection Prevalence : 0.5962
## Balanced Accuracy : 0.8207
##
## 'Positive' Class : CH
##

oj.bag.acc <- as.numeric(oj.conf$overall[1])
rm(oj.pred)
rm(oj.conf)
#plot(oj.bag$, oj.bag$finalModel$y)
plot(varImp(oj.bag), main="Variable Importance with Simple Classication")</pre>
```

Variable Importance with Simple Classication

8.4.0.2 Random Forest Classification Example

Now I'll try it with the random forest method by specifying method = "ranger". I'll stick with tuneLength = 5. Caret tunes three hyperparameters:

- mtry: number of randomly selected predictors. Default is sqrt(p).
- splitrule: splitting rule. For classification, options are "gini" (default) and "extratrees".
- min.node.size: minimal node size. Default is 1 for classification.

```
oj.frst = train(Purchase ~ .,
              data = oj_train,
              method = "ranger", # for random forest
              tuneLength = 5, # choose up to 5 combinations of tuning parameters
              metric = "ROC", # evaluate hyperparamter combinations with ROC
             trControl = trainControl(
               method = "cv", # k-fold cross validation
               number = 10, # 10 folds
               savePredictions = "final",
                                              # save predictions for the optimal t
                classProbs = TRUE, # return class probabilities in addition to predi
                summaryFunction = twoClassSummary # for binary response variable
             )
oj.frst
## Random Forest
##
## 857 samples
##
  17 predictor
##
    2 classes: 'CH', 'MM'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 772, 771, 772, 770, 772, 772, ...
## Resampling results across tuning parameters:
##
##
                     ROC
    mtry splitrule
                               Sens
                                          Spec
##
     2
                     0.8603930 0.8719158 0.6946524
          gini
##
     2
          extratrees 0.8499806 0.8814586 0.6287879
##
     5
                     0.8683505 0.8470247 0.7246881
          gini
##
     5
          extratrees 0.8642275 0.8584543 0.6886809
##
     9
                     gini
##
     9
          extratrees 0.8670702 0.8451379 0.6858289
##
    13
          gini
                     ##
    13
          extratrees 0.8680705 0.8298258 0.7064171
##
    17
                     gini
##
    17
          extratrees 0.8634162 0.8260160 0.7093583
##
## Tuning parameter 'min.node.size' was held constant at a value of 1
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were mtry = 9, splitrule = gini
## and min.node.size = 1.
```

```
plot(oj.frst)
```



```
oj.pred <- predict(oj.frst, oj_test, type = "raw")
plot(oj_test$Purchase, oj.pred,
    main = "Random Forest Classification: Predicted vs. Actual",
    xlab = "Actual",
    ylab = "Predicted")</pre>
```

Random Forest Classification: Predicted vs. Actual


```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction CH MM
##
          CH 109 16
##
          MM 21 67
##
                  Accuracy : 0.8263
##
                    95% CI: (0.7686, 0.8746)
##
##
      No Information Rate : 0.6103
      P-Value [Acc > NIR] : 7.121e-12
##
##
                    Kappa: 0.6387
##
##
##
   Mcnemar's Test P-Value: 0.5108
##
##
               Sensitivity: 0.8385
               Specificity: 0.8072
##
##
           Pos Pred Value : 0.8720
           Neg Pred Value: 0.7614
##
               Prevalence: 0.6103
##
```

```
## Detection Rate : 0.5117
## Detection Prevalence : 0.5869
## Balanced Accuracy : 0.8228
##
## 'Positive' Class : CH
##

oj.frst.acc <- as.numeric(oj.conf$overall[1])
rm(oj.pred)
rm(oj.conf)
#plot(oj.bag$, oj.bag$finalModel$y)
#plot(varImp(oj.frst), main="Variable Importance with Simple Classication")</pre>
```

The model algorithm explains "ROC was used to select the optimal model using the largest value. The final values used for the model were mtry = 9, splittule = extratrees and min.node.size = 1." You can see the results of tuning grid combinations in the associated plot of ROC AUC vs mtry grouped by splitting rule.

The bagging (accuracy = 0.80751) and random forest (accuracy = 0.81690) models faired pretty well, but the manual classification tree is still in first place. There's still gradient boosting to investigate!

8.4.0.3 Bagging Regression Example

Random Forest 0.82629

4

Again using the Carseats data set to predict Sales, this time I'll use the bagging method by specifying method = "treebag". I'll use tuneLength = 5 and not worry about tuneGrid anymore. Caret has no hyperparameters to tune with this model.

```
method = "treebag", # for bagging
tuneLength = 5, # choose up to 5 combinations of tuning parameters
metric = "RMSE", # evaluate hyperparameter combinations with RMSE
trControl = trainControl(
    method = "cv", # k-fold cross validation
    number = 10, # 10 folds
    savePredictions = "final" # save predictions for the optimal tu
    )
)
carseats.bag
```

```
## Bagged CART
##
## 321 samples
## 10 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 289, 289, 289, 289, 289, 289, ...
## Resampling results:
##
##
     RMSE
               Rsquared
                         MAE
    1.709371 0.6532837 1.374155
##
```

```
#plot(carseats.bag$finalModel)
carseats.pred <- predict(carseats.bag, carseats_test, type = "raw")
plot(carseats_test$Sales, carseats.pred,
    main = "Bagging Regression: Predicted vs. Actual",
    xlab = "Actual",
    ylab = "Predicted")
abline(0, 1)</pre>
```

Bagging Regression: Predicted vs. Actual

[1] 1.932792

```
rm(carseats.pred)
plot(varImp(carseats.bag), main="Variable Importance with Regression Bagging")
```


8.4.0.4 Random Forest Regression Example

Now I'll try it with the random forest method by specifying method = "ranger". I'll stick with tuneLength = 5. Caret tunes three hyperparameters:

- mtry: number of randomly selected predictors
- splitrule: splitting rule. For regression, options are "variance" (default), "extratrees", and "maxstat".
- min.node.size: minimal node size

Random Forest

```
##
## 321 samples
## 10 predictor
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 289, 289, 289, 289, 289, 289, ...
## Resampling results across tuning parameters:
##
##
    mtry splitrule
                     RMSE
                               Rsquared
                                         MAE
##
          variance
                     1.806943 0.6957452 1.446420
##
     2
          extratrees 1.905011 0.6466527 1.539096
                      1.600763 0.7288625 1.266868
##
     4
          variance
##
     4
          extratrees 1.702009 0.6862545 1.357981
##
          variance 1.541675 0.7336448 1.217061
##
     6
          extratrees 1.639248 0.6966549 1.302159
##
     8
          variance
                      1.542806 0.7236085 1.221671
##
     8
          extratrees 1.601484 0.7053834 1.269484
##
    11
                     1.555271 0.7168108 1.230252
          variance
##
          extratrees 1.589152 0.7058982 1.255090
    11
## Tuning parameter 'min.node.size' was held constant at a value of 5
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were mtry = 6, splitrule =
## variance and min.node.size = 5.
```



```
carseats.pred <- predict(carseats.frst, carseats_test, type = "raw")
plot(carseats_test$Sales, carseats.pred,
    main = "Random Forest Regression: Predicted vs. Actual",
    xlab = "Actual",
    ylab = "Predicted")
abline(0, 1)</pre>
```

Random Forest Regression: Predicted vs. Actual

[1] 1.758112

```
rm(carseats.pred)
#plot(varImp(carseats.frst), main="Variable Importance with Regression Random Forest")
```

The model algorithm explains "RMSE was used to select the optimal model using the smallest value. The final values used for the model were mtry=11, splittule = variance and min.node.size=5." You can see the results of tuning grid combinations in the associated plot of ROC AUC vs mtry grouped by splitting rule.

The bagging and random forest models faired very well - they took over the first and second place!

model RMSE

```
## 1 Random Forest 1.75811
## 2 Bagging 1.93279
## 3 ANOVA w.tuneGrid 2.29833
## 4 Manual ANOVA 2.38806
```

8.5 Gradient Boosting

Boosting is a method to improve (boost) the week learners sequentially and increase the model accuracy with a combined model. There are several boosting algorithms. One of the earliest was AdaBoost (adaptive boost). A more recent innovation is gradient boosting.

Adaboost creates a single split tree (decision stump) then weights the observations by how well the initial tree performed, putting more weight on the difficult observations. It then creates a second tree using the weights so that it focuses on the difficult observations. Observations that are difficult to classify receive increasing larger weights until the algorithm identifies a model that correctly classifies them. The final model returns predictions that are a majority vode. (I think Adaboost applies only to classification problems, not regressions).

Gradient boosting generalizes the AdaBoost method, so that the object is to minimize a loss function. In the case of classification problems, the loss function is the log-loss; for regression problems, the loss function is mean squared error. The regression trees are addative, so that the successive models can be added together to correct the residuals in the earlier models. Gradient boosting constructs its trees in a "greedy" manner, meaning it chooses the best splits based on purity scores like Gini or minimizing the loss. It is common to constrain the weak learners by setting maximum tree size parameters. Gradient boosting continues until it reaches maximum number of trees or an acceptible error level. This can result in overfitting, so it is common to employ regularization methods that penalize aspects of the model.

Tree Constraints. In general the more constrained the tree, the more trees need to be grown. Parameters to optimize include number of trees, tree depth, number of nodes, minimum observations per split, and minimum improvement to loss.

Learning Rate. Each successive tree can be weighted to slow down the learning rate. Decreasing the learning rate increases the number of required trees. Common growth rates are 0.1 to 0.3.

The gradient boosting algorithm fits a shallow tree T_1 to the data, $M_1 = T_1$. Then it fits a tree T_2 to the residuals and adds a weighted sum of the tree to the original tree as $M_2 = M_1 + \gamma T_2$. For regularized boosting, include a learning rate factor $\eta \in (0..1)$, $M_2 = M_1 + \eta \gamma T_2$. A larger η produces faster learning, but risks overfitting. The process repeats until the residuals are small enough, or until it reaches the maximum iterations. Because overfitting is a risk, use

cross-validation to select the appropriate number of trees (the number of trees producing the lowest RMSE).

8.5.0.1 Gradient Boosting Classification Example

Again using the OJ data set to predict Purchase, this time I'll use the gradient boosting method by specifying method = "gbm". I'll use tuneLength = 5 and not worry about tuneGrid anymore. Caret tunes the following hyperparameters (see modelLookup("gbm")).

- n.trees: number of boosting iterations
- interaction.depth: maximum tree depth
- shrinkage: shrinkage
- n.minobsinnode: mimimum terminal node size

##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2789	nan	0.1000	0.0273
##	2	1.2286	nan	0.1000	0.0245
##	3	1.1929	nan	0.1000	0.0175
##	4	1.1613	nan	0.1000	0.0148
##	5	1.1263	nan	0.1000	0.0146
##	6	1.0991	nan	0.1000	0.0105
##	7	1.0752	nan	0.1000	0.0102
##	8	1.0579	nan	0.1000	0.0087
##	9	1.0433	nan	0.1000	0.0047
##	10	1.0280	nan	0.1000	0.0082
##	20	0.9233	nan	0.1000	0.0026
##	40	0.8226	nan	0.1000	0.0010
##	60	0.7809	nan	0.1000	-0.0001
##	80	0.7595	nan	0.1000	-0.0002

##	100	0.7506	nan	0.1000	-0.0008
##	120	0.7407	nan	0.1000	-0.0005
##	140	0.7317	nan	0.1000	-0.0005
##	160	0.7277	nan	0.1000	-0.0009
##	180	0.7232	nan	0.1000	-0.0004
##	200	0.7181	nan	0.1000	-0.0007
##	220	0.7115	nan	0.1000	-0.0008
##	240	0.7096	nan	0.1000	-0.0010
##	250	0.7081	nan	0.1000	-0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2695	nan	0.1000	0.0319
##	2	1.2150	nan	0.1000	0.0260
##	3	1.1702	nan	0.1000	0.0225
##	4	1.1260	nan	0.1000	0.0186
##	5	1.0913	nan	0.1000	0.0147
##	6	1.0586	nan	0.1000	0.0160
##	7	1.0276	nan	0.1000	0.0146
##	8	1.0045	nan	0.1000	0.0109
##	9	0.9836	nan	0.1000	0.0099
##	10	0.9624	nan	0.1000	0.0068
##	20	0.8337	nan	0.1000	0.0027
##	40	0.7525	nan	0.1000	-0.0005
##	60	0.7240	nan	0.1000	-0.0005
##	80	0.7063	nan	0.1000	-0.0006
##	100	0.6879	nan	0.1000	-0.0011
##	120	0.6751	nan	0.1000	-0.0018
##	140	0.6605	nan	0.1000	-0.0012
##	160	0.6477	nan	0.1000	-0.0013
##	180	0.6359	nan	0.1000	-0.0010
##	200	0.6274	nan	0.1000	-0.0018
##	220	0.6166	nan	0.1000	-0.0005
##	240	0.6078	nan	0.1000	-0.0011
##	250	0.6014	nan	0.1000	-0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2548	nan	0.1000	0.0377
##	2	1.1905	nan	0.1000	0.0294
##	3	1.1343	nan	0.1000	0.0258
##	4	1.0935	nan	0.1000	0.0180
##	5	1.0529	nan	0.1000	0.0168
##	6	1.0172	nan	0.1000	0.0159
##	7	0.9824	nan	0.1000	0.0151
##	8	0.9534	nan	0.1000	0.0127
##	9	0.9277	nan	0.1000	0.0109
##	10	0.9066	nan	0.1000	0.0088

##	20	0.7870	nan	0.1000	0.0023
##	40	0.7150	nan	0.1000	-0.0008
##	60	0.6799	nan	0.1000	-0.0023
##	80	0.6520	nan	0.1000	-0.0012
##	100	0.6298	nan	0.1000	-0.0005
##	120	0.6117	nan	0.1000	-0.0024
##	140	0.5973	nan	0.1000	-0.0016
##	160	0.5849	nan	0.1000	-0.0023
##	180	0.5670	nan	0.1000	-0.0015
##	200	0.5548	nan	0.1000	-0.0006
##	220	0.5440	nan	0.1000	-0.0024
##	240	0.5290	nan	0.1000	-0.0020
##	250	0.5228	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2554	nan	0.1000	0.0399
##	2	1.1847	nan	0.1000	0.0346
##	3	1.1321	nan	0.1000	0.0199
##	4	1.0823	nan	0.1000	0.0224
##	5	1.0392	nan	0.1000	0.0208
##	6	1.0067	nan	0.1000	0.0145
##	7	0.9768	nan	0.1000	0.0139
##	8	0.9462	nan	0.1000	0.0123
##	9	0.9238	nan	0.1000	0.0095
##	10	0.8966	nan	0.1000	0.0090
##	20	0.7681	nan	0.1000	0.0007
##	40	0.6937	nan	0.1000	-0.0004
##	60	0.6552	nan	0.1000	-0.0017
##	80	0.6202	nan	0.1000	-0.0018
##	100	0.5887	nan	0.1000	-0.0027
##	120	0.5653	nan	0.1000	-0.0012
##	140	0.5434	nan	0.1000	-0.0017
##	160	0.5275	nan	0.1000	-0.0008
##	180	0.5068	nan	0.1000	-0.0012
##	200	0.4935	nan	0.1000	-0.0016
##	220	0.4801	nan	0.1000	-0.0018
##	240	0.4665	nan	0.1000	-0.0010
##	250	0.4603	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2513	nan	0.1000	0.0375
##	2	1.1795	nan	0.1000	0.0320
##	3	1.1264	nan	0.1000	0.0254
##	4	1.0742	nan	0.1000	0.0225
##	5	1.0282	nan	0.1000	0.0196
##	6	0.9888	nan	0.1000	0.0177

##	7	0.9547	nan	0.1000	0.0136
##	8	0.9303	nan	0.1000	0.0103
##	9	0.9008	nan	0.1000	0.0121
##	10	0.8803	nan	0.1000	0.0073
##	20	0.7563	nan	0.1000	0.0003
##	40	0.6715	nan	0.1000	-0.0012
##	60	0.6253	nan	0.1000	-0.0016
##	80	0.5868	nan	0.1000	-0.0021
##	100	0.5538	nan	0.1000	-0.0015
##	120	0.5285	nan	0.1000	-0.0034
##	140	0.5070	nan	0.1000	-0.0025
##	160	0.4872	nan	0.1000	-0.0012
##	180	0.4736	nan	0.1000	-0.0023
##	200	0.4566	nan	0.1000	-0.0015
##	220	0.4407	nan	0.1000	-0.0011
##	240	0.4262	nan	0.1000	-0.0013
##	250	0.4186	nan	0.1000	-0.0024
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2743	nan	0.1000	0.0307
##	2	1.2220	nan	0.1000	0.0240
##	3	1.1885	nan	0.1000	0.0165
##	4	1.1522	nan	0.1000	0.0177
##	5	1.1186	nan	0.1000	0.0136
##	6	1.0912	nan	0.1000	0.0111
##	7	1.0693	nan	0.1000	0.0106
##	8	1.0492	nan	0.1000	0.0089
##	9	1.0309	nan	0.1000	0.0093
##	10	1.0172	nan	0.1000	0.0069
##	20	0.9206	nan	0.1000	0.0030
##	40	0.8357	nan	0.1000	-0.0002
##	60	0.7936	nan	0.1000	-0.0000
##	80	0.7764	nan	0.1000	-0.0009
##	100	0.7682	nan	0.1000	-0.0004
##	120	0.7620	nan	0.1000	-0.0008
##	140	0.7582	nan	0.1000	-0.0011
##	160	0.7536	nan	0.1000	-0.0005
##	180	0.7501	nan	0.1000	-0.0006
##	200	0.7448	nan	0.1000	-0.0008
##	220	0.7409	nan	0.1000	-0.0006
##	240	0.7385	nan	0.1000	-0.0011
##	250	0.7368	nan	0.1000	-0.0007
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2697	nan	0.1000	0.0323
##	2	1.2121	nan	0.1000	0.0276

##	3	1.1636	nan	0.1000	0.0251
##	4	1.1220	nan	0.1000	0.0166
##	5	1.0826	nan	0.1000	0.0131
##	6	1.0537	nan	0.1000	0.0134
##	7	1.0269	nan	0.1000	0.0104
##	8	1.0061	nan	0.1000	0.0084
##	9	0.9858	nan	0.1000	0.0082
##	10	0.9678	nan	0.1000	0.0066
##	20	0.8429	nan	0.1000	0.0024
##	40	0.7685	nan	0.1000	-0.0010
##	60	0.7422	nan	0.1000	-0.0006
##	80	0.7228	nan	0.1000	-0.0009
##	100	0.7073	nan	0.1000	-0.0013
##	120	0.6937	nan	0.1000	-0.0024
##	140	0.6836	nan	0.1000	-0.0014
##	160	0.6703	nan	0.1000	-0.0022
##	180	0.6607	nan	0.1000	-0.0009
##	200	0.6529	nan	0.1000	-0.0011
##	220	0.6438	nan	0.1000	-0.0017
##	240	0.6370	nan	0.1000	-0.0015
##	250	0.6311	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2569	nan	0.1000	0.0361
##	2	1.1946	nan	0.1000	0.0301
##	3	1.1386	nan	0.1000	0.0266
##	4	1.0954	nan	0.1000	0.0205
##	5	1.0524	nan	0.1000	0.0204
##	6	1.0186	nan	0.1000	0.0149
##	7	0.9847	nan	0.1000	0.0126
##	8	0.9618	nan	0.1000	0.0086
##	9	0.9344	nan	0.1000	0.0114
##	10	0.9135	nan	0.1000	0.0095
##	20	0.8003	nan	0.1000	0.0027
##	40	0.7353	nan	0.1000	-0.0011
##	60	0.7042	nan	0.1000	-0.0027
##	80	0.6800	nan	0.1000	-0.0017
##	100	0.6602	nan	0.1000	-0.0008
##	120	0.6393	nan	0.1000	-0.0017
##	140	0.6231	nan	0.1000	-0.0016
##	160	0.6077	nan	0.1000	-0.0028
##	180	0.5977	nan	0.1000	-0.0012
##	200	0.5863	nan	0.1000	-0.0014
##	220	0.5749	nan	0.1000	-0.0013
##	240	0.5618	nan	0.1000	-0.0022
##	250	0.5577	nan	0.1000	-0.0022

##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2495	nan	0.1000	0.0419
##	2	1.1884	nan	0.1000	0.0265
##	3	1.1279	nan	0.1000	0.0248
##	4	1.0820	nan	0.1000	0.0208
##	5	1.0426	nan	0.1000	0.0166
##	6	1.0089	nan	0.1000	0.0146
##	7	0.9799	nan	0.1000	0.0126
##	8	0.9474	nan	0.1000	0.0140
##	9	0.9225	nan	0.1000	0.0079
##	10	0.9066	nan	0.1000	0.0048
##	20	0.7815	nan	0.1000	0.0014
##	40	0.7028	nan	0.1000	-0.0019
##	60	0.6661	nan	0.1000	-0.0011
##	80	0.6386	nan	0.1000	-0.0006
##	100	0.6075	nan	0.1000	-0.0005
##	120	0.5861	nan	0.1000	-0.0019
##	140	0.5674	nan	0.1000	-0.0020
##	160	0.5467	nan	0.1000	-0.0016
##	180	0.5318	nan	0.1000	-0.0020
##	200	0.5200	nan	0.1000	-0.0025
##	220	0.5050	nan	0.1000	-0.0009
##	240	0.4930	nan	0.1000	-0.0020
##	250	0.4883	nan	0.1000	-0.0016
##				a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2558	nan	0.1000	0.0336
##	2	1.1856	nan	0.1000	0.0326
##	3	1.1172	nan	0.1000	0.0305
##	4 5	1.0713	nan	0.1000	0.0222
##	6	1.0313 0.9965	nan	0.1000	0.0171
## ##	7	0.9613	nan	0.1000 0.1000	0.0164 0.0156
##	8	0.9354	nan	0.1000	0.0130
##	9	0.9089	nan	0.1000	0.0103
##	10	0.8859	nan	0.1000	0.0059
##	20	0.7690	nan nan	0.1000	0.0009
##	40	0.6889	nan	0.1000	-0.0004
##	60	0.6452	nan	0.1000	-0.0021
##	80	0.6127	nan	0.1000	-0.0021
##	100	0.5811	nan	0.1000	-0.0032
##	120	0.5557	nan	0.1000	-0.0011
##	140	0.5332	nan	0.1000	-0.0011
##	160	0.5118	nan	0.1000	-0.0012
##	180	0.4879	nan	0.1000	-0.0012
		2.25.0			

##	200	0.4737	nan	0.1000	-0.0020
##	220	0.4591	nan	0.1000	-0.0024
##	240	0.4460	nan	0.1000	-0.0030
##	250	0.4386	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2717	nan	0.1000	0.0320
##	2	1.2209	nan	0.1000	0.0250
##	3	1.1751	nan	0.1000	0.0208
##	4	1.1404	nan	0.1000	0.0149
##	5	1.1056	nan	0.1000	0.0119
##	6	1.0782	nan	0.1000	0.0125
##	7	1.0569	nan	0.1000	0.0081
##	8	1.0356	nan	0.1000	0.0098
##	9	1.0176	nan	0.1000	0.0080
##	10	1.0042	nan	0.1000	0.0066
##	20	0.9023	nan	0.1000	0.0021
##	40	0.8156	nan	0.1000	0.0006
##	60	0.7793	nan	0.1000	0.0004
##	80	0.7609	nan	0.1000	-0.0014
##	100	0.7514	nan	0.1000	-0.0006
##	120	0.7448	nan	0.1000	-0.0005
##	140	0.7406	nan	0.1000	-0.0008
##	160	0.7353	nan	0.1000	-0.0007
##	180	0.7329	nan	0.1000	-0.0008
##	200	0.7281	nan	0.1000	-0.0014
##	220	0.7239	nan	0.1000	-0.0008
##	240	0.7211	nan	0.1000	-0.0011
##	250	0.7203	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2647	nan	0.1000	0.0368
##	2	1.2060	nan	0.1000	0.0275
##	3	1.1558	nan	0.1000	0.0232
##	4	1.1207	nan	0.1000	0.0178
##	5	1.0787	nan	0.1000	0.0172
##	6	1.0478	nan	0.1000	0.0141
##	7	1.0178	nan	0.1000	0.0117
##	8	0.9963	nan	0.1000	0.0099
##	9	0.9749	nan	0.1000	0.0107
##	10	0.9514	nan	0.1000	0.0095
##	20	0.8341	nan	0.1000	0.0029
##	40	0.7601	nan	0.1000	-0.0015
##	60	0.7335	nan	0.1000	-0.0010
##	80	0.7131	nan	0.1000	-0.0011
##	100	0.7006	nan	0.1000	-0.0018

##	120	0.6886	nan	0.1000	-0.0008
##	140	0.6740	nan	0.1000	-0.0014
##	160	0.6628	nan	0.1000	-0.0017
##	180	0.6522	nan	0.1000	-0.0010
##	200	0.6423	nan	0.1000	-0.0005
##	220	0.6353	nan	0.1000	-0.0020
##	240	0.6251	nan	0.1000	-0.0017
##	250	0.6211	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2533	nan	0.1000	0.0369
##	2	1.1914	nan	0.1000	0.0304
##	3	1.1304	nan	0.1000	0.0280
##	4	1.0808	nan	0.1000	0.0214
##	5	1.0411	nan	0.1000	0.0177
##	6	1.0095	nan	0.1000	0.0131
##	7	0.9791	nan	0.1000	0.0118
##	8	0.9487	nan	0.1000	0.0146
##	9	0.9234	nan	0.1000	0.0114
##	10	0.9050	nan	0.1000	0.0081
##	20	0.7868	nan	0.1000	-0.0018
##	40	0.7190	nan	0.1000	-0.0002
##	60	0.6929	nan	0.1000	-0.0013
##	80	0.6706	nan	0.1000	-0.0012
##	100	0.6511	nan	0.1000	-0.0008
##	120	0.6313	nan	0.1000	-0.0028
##	140	0.6161	nan	0.1000	-0.0010
##	160	0.6016	nan	0.1000	-0.0019
##	180	0.5875	nan	0.1000	-0.0013
##	200	0.5754	nan	0.1000	-0.0021
##	220	0.5613	nan	0.1000	-0.0011
##	240	0.5456	nan	0.1000	-0.0014
##	250	0.5423	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2526	nan	0.1000	0.0406
##	2	1.1845	nan	0.1000	0.0346
##	3	1.1309	nan	0.1000	0.0246
##	4	1.0809	nan	0.1000	0.0250
##	5	1.0380	nan	0.1000	0.0205
##	6	1.0017	nan	0.1000	0.0164
##	7	0.9661	nan	0.1000	0.0146
##	8	0.9372	nan	0.1000	0.0130
##	9	0.9115	nan	0.1000	0.0105
##	10	0.8921	nan	0.1000	0.0084
##	20	0.7698	nan	0.1000	0.0014
	20	0.1000	11411	0.1000	0.0011

##	40	0.6902	nan	0.1000	-0.0016
##	60	0.6501	nan	0.1000	-0.0019
##	80	0.6200	nan	0.1000	-0.0006
##	100	0.5995	nan	0.1000	-0.0026
##	120	0.5766	nan	0.1000	-0.0019
##	140	0.5576	nan	0.1000	-0.0020
##	160	0.5428	nan	0.1000	-0.0027
##	180	0.5276	nan	0.1000	-0.0026
##	200	0.5091	nan	0.1000	-0.0011
##	220	0.4954	nan	0.1000	-0.0014
##	240	0.4801	nan	0.1000	-0.0028
##	250	0.4748	nan	0.1000	-0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2578	nan	0.1000	0.0379
##	2	1.1876	nan	0.1000	0.0342
##	3	1.1214	nan	0.1000	0.0297
##	4	1.0650	nan	0.1000	0.0254
##	5	1.0182	nan	0.1000	0.0188
##	6	0.9812	nan	0.1000	0.0172
##	7	0.9484	nan	0.1000	0.0116
##	8	0.9182	nan	0.1000	0.0116
##	9	0.8929	nan	0.1000	0.0068
##	10	0.8704	nan	0.1000	0.0085
##	20	0.7522	nan	0.1000	0.0002
##	40	0.6778	nan	0.1000	-0.0019
##	60	0.6318	nan	0.1000	-0.0015
##	80	0.5982	nan	0.1000	-0.0011
##	100	0.5669	nan	0.1000	-0.0032
##	120	0.5451	nan	0.1000	-0.0012
##	140	0.5224	nan	0.1000	-0.0002
##	160	0.5005	nan	0.1000	-0.0027
##	180	0.4834	nan	0.1000	-0.0015
##	200	0.4693	nan	0.1000	-0.0009
##	220	0.4530	nan	0.1000	-0.0016
##	240	0.4419	nan	0.1000	-0.0035
##	250	0.4324	nan	0.1000	-0.0016
##	- .			a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2761	nan	0.1000	0.0283
##	2	1.2243	nan	0.1000	0.0231
##	3	1.1816	nan	0.1000	0.0192
##	4	1.1477	nan	0.1000	0.0158
##	5	1.1174	nan	0.1000	0.0122
##	6	1.0930	nan	0.1000	0.0116
##	7	1.0704	nan	0.1000	0.0102

##	8	1.0499	nan	0.1000	0.0083
##	9	1.0340	nan	0.1000	0.0078
##	10	1.0167	nan	0.1000	0.0082
##	20	0.9152	nan	0.1000	0.0021
##	40	0.8226	nan	0.1000	0.0007
##	60	0.7895	nan	0.1000	0.0000
##	80	0.7690	nan	0.1000	-0.0008
##	100	0.7612	nan	0.1000	-0.0010
##	120	0.7541	nan	0.1000	-0.0004
##	140	0.7491	nan	0.1000	-0.0012
##	160	0.7443	nan	0.1000	-0.0006
##	180	0.7405	nan	0.1000	-0.0009
##	200	0.7369	nan	0.1000	-0.0009
##	220	0.7329	nan	0.1000	-0.0007
##	240	0.7287	nan	0.1000	-0.0014
##	250	0.7268	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2642	nan	0.1000	0.0359
##	2	1.2066	nan	0.1000	0.0279
##	3	1.1624	nan	0.1000	0.0237
##	4	1.1213	nan	0.1000	0.0202
##	5	1.0853	nan	0.1000	0.0162
##	6	1.0560	nan	0.1000	0.0116
##	7	1.0275	nan	0.1000	0.0125
##	8	1.0040	nan	0.1000	0.0109
##	9	0.9823	nan	0.1000	0.0077
##	10	0.9612	nan	0.1000	0.0105
##	20	0.8409	nan	0.1000	0.0026
##	40	0.7578	nan	0.1000	-0.0007
##	60	0.7294	nan	0.1000	-0.0007
##	80	0.7095	nan	0.1000	-0.0026
##	100	0.6965	nan	0.1000	-0.0012
##	120	0.6857	nan	0.1000	-0.0022
##	140	0.6751	nan	0.1000	-0.0004
##	160	0.6650	nan	0.1000	-0.0018
##	180	0.6581	nan	0.1000	-0.0017
##	200	0.6520	nan	0.1000	-0.0009
##	220	0.6436	nan	0.1000	-0.0011
##	240	0.6351	nan	0.1000	-0.0009
##	250	0.6312	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2577	nan	0.1000	0.0367
##	2	1.1908	nan	0.1000	0.0288
##	3	1.1314	nan	0.1000	0.0257

##	4	1.0832	nan	0.1000	0.0231
##	5	1.0473	nan	0.1000	0.0147
##	6	1.0104	nan	0.1000	0.0174
##	7	0.9743	nan	0.1000	0.0139
##	8	0.9460	nan	0.1000	0.0113
##	9	0.9236	nan	0.1000	0.0105
##	10	0.9026	nan	0.1000	0.0077
##	20	0.7942	nan	0.1000	0.0009
##	40	0.7292	nan	0.1000	-0.0018
##	60	0.6933	nan	0.1000	-0.0013
##	80	0.6650	nan	0.1000	-0.0008
##	100	0.6458	nan	0.1000	-0.0020
##	120	0.6252	nan	0.1000	-0.0018
##	140	0.6106	nan	0.1000	-0.0010
##	160	0.5953	nan	0.1000	-0.0009
##	180	0.5810	nan	0.1000	-0.0014
##	200	0.5683	nan	0.1000	-0.0016
##	220	0.5544	nan	0.1000	-0.0009
##	240	0.5425	nan	0.1000	-0.0010
##	250	0.5367	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2542	nan	0.1000	0.0373
##	2	1.1874	nan	0.1000	0.0310
##	3	1.1277	nan	0.1000	0.0279
##	4 5	1.0765 1.0393	nan	0.1000	0.0231
## ##	6	1.0012	nan	0.1000	0.0179
##	7	0.9658	nan nan	0.1000	
##				Λ 1ΛΛΛ	
	Ω			0.1000	0.0139
##	8	0.9421	nan	0.1000	0.0101
##	9	0.9421 0.9187	nan nan	0.1000 0.1000	0.0101 0.0088
##	9 10	0.9421 0.9187 0.8966	nan nan nan	0.1000 0.1000 0.1000	0.0101 0.0088 0.0095
	9 10 20	0.9421 0.9187	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0101 0.0088 0.0095 0.0019
## ##	9 10 20 40	0.9421 0.9187 0.8966 0.7715 0.6966	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0101 0.0088 0.0095 0.0019 -0.0017
## ## ##	9 10 20	0.9421 0.9187 0.8966 0.7715 0.6966 0.6516	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010
## ## ## ##	9 10 20 40 60 80	0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0015
## ## ## ##	9 10 20 40 60	0.9421 0.9187 0.8966 0.7715 0.6966 0.6516	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010
## ## ## ## ##	9 10 20 40 60 80 100	0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0015 -0.0028
## ## ## ## ##	9 10 20 40 60 80 100 120	0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0015 -0.0028 -0.0019
## ## ## ## ## ##	9 10 20 40 60 80 100 120 140	0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0028 -0.0019 -0.0018
## ## ## ## ## ##	9 10 20 40 60 80 100 120 140	0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818 0.5644	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0028 -0.0019 -0.0018 -0.0016
## ## ## ## ## ## ##	9 10 20 40 60 80 100 120 140 160 180	0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818 0.5644 0.5476 0.5329 0.5212	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0015 -0.0028 -0.0019 -0.0016 -0.0016 -0.0016 -0.0032
## ## ## ## ## ## ##	9 10 20 40 60 80 100 120 140 160 180 200	0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818 0.5644 0.5476 0.5329 0.5212	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0015 -0.0028 -0.0019 -0.0016 -0.0016
## ## ## ## ## ## ## ## ## ## ## ## ##	9 10 20 40 60 80 100 120 140 160 180 200 220	0.9421 0.9187 0.8966 0.7715 0.6966 0.6516 0.6206 0.5991 0.5818 0.5644 0.5476 0.5329 0.5212	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0101 0.0088 0.0095 0.0019 -0.0017 -0.0010 -0.0015 -0.0028 -0.0019 -0.0016 -0.0016 -0.0016 -0.0032

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2523	nan	0.1000	0.0397
##	2	1.1844	nan	0.1000	0.0301
##	3	1.1269	nan	0.1000	0.0263
##	4	1.0773	nan	0.1000	0.0216
##	5	1.0310	nan	0.1000	0.0211
##	6	0.9902	nan	0.1000	0.0176
##	7	0.9582	nan	0.1000	0.0119
##	8	0.9338	nan	0.1000	0.0106
##	9	0.9054	nan	0.1000	0.0120
##	10	0.8869	nan	0.1000	0.0083
##	20	0.7620	nan	0.1000	-0.0001
##	40	0.6734	nan	0.1000	-0.0010
##	60	0.6333	nan	0.1000	-0.0004
##	80	0.5982	nan	0.1000	-0.0023
##	100	0.5685	nan	0.1000	-0.0013
##	120	0.5436	nan	0.1000	-0.0024
##	140	0.5196	nan	0.1000	-0.0012
##	160	0.5010	nan	0.1000	-0.0031
##	180	0.4832	nan	0.1000	-0.0032
##	200	0.4677	nan	0.1000	-0.0014
##	220	0.4504	nan	0.1000	-0.0016
##	240	0.4333	nan	0.1000	-0.0013
##	250	0.4273	nan	0.1000	-0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2726	nan	0.1000	0.0321
##	2	1.2186	nan	0.1000	0.0259
##	3	1.1770	nan	0.1000	0.0190
##	4	1.1350	nan	0.1000	0.0186
##	5	1.1017	nan	0.1000	0.0147
##	6	1.0810	nan	0.1000	0.0096
##	7	1.0570	nan	0.1000	0.0105
##	8	1.0375	nan	0.1000	0.0098
##	9	1.0188	nan	0.1000	0.0081
##	10	1.0020	nan	0.1000	0.0072
##	20	0.9034	nan	0.1000	0.0023
##	40	0.8070	nan	0.1000	-0.0001
##	60	0.7671	nan	0.1000	-0.0003
##	80	0.7500	nan	0.1000	-0.0007
##	100	0.7415	nan	0.1000	-0.0008
##	120	0.7349	nan	0.1000	-0.0008
##	140	0.7282	nan	0.1000	-0.0006
##	160	0.7222	nan	0.1000	-0.0006
##	180	0.7190	nan	0.1000	-0.0003
##	200	0.7160	nan	0.1000	-0.0013

шш	220	0.7100		0 1000	0 0000
##		0.7128	nan	0.1000	-0.0008
##	240	0.7092	nan	0.1000	-0.0012
##	250	0.7066	nan	0.1000	-0.0005
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2597	nan	0.1000	0.0362
##	2	1.2019	nan	0.1000	0.0279
##	3	1.1504	nan	0.1000	0.0230
##	4	1.1084	nan	0.1000	0.0168
##	5	1.0702	nan	0.1000	0.0184
##	6	1.0378	nan	0.1000	0.0136
##	7	1.0090	nan	0.1000	0.0131
##	8	0.9848	nan	0.1000	0.0115
##	9	0.9632	nan	0.1000	0.0078
##	10	0.9410	nan	0.1000	0.0094
##	20	0.8215	nan	0.1000	0.0037
##	40	0.7478	nan	0.1000	-0.0001
##	60	0.7184	nan	0.1000	-0.0008
##	80	0.6985	nan	0.1000	-0.0007
##	100	0.6799	nan	0.1000	-0.0013
##	120	0.6660	nan	0.1000	0.0002
##	140	0.6534	nan	0.1000	-0.0009
##	160	0.6423	nan	0.1000	-0.0016
##	180	0.6325	nan	0.1000	-0.0016
##	200	0.6226	nan	0.1000	-0.0011
##	220	0.6139	nan	0.1000	-0.0010
##	240	0.6043	nan	0.1000	-0.0017
##	250	0.6016	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2549	nan	0.1000	0.0413
##	2	1.1843	nan	0.1000	0.0345
##	3	1.1274	nan	0.1000	0.0245
##	4	1.0809	nan	0.1000	0.0213
##	5	1.0418	nan	0.1000	0.0178
##	6	1.0056	nan	0.1000	0.0128
##	7	0.9797	nan	0.1000	0.0122
##	8	0.9562	nan	0.1000	0.0083
##	9	0.9288	nan	0.1000	0.0116
##	10	0.9070	nan	0.1000	0.0088
##	20	0.7819	nan	0.1000	0.0013
##	40	0.7119	nan	0.1000	-0.0008
##	60	0.6706	nan	0.1000	-0.0013
##	80	0.6482	nan	0.1000	-0.0018
##	100	0.6271	nan	0.1000	-0.0027
##	120	0.6065	nan	0.1000	-0.0013
** **					

##	140	0.5901	nan	0.1000	-0.0021
##	160	0.5709	nan	0.1000	-0.0009
##	180	0.5563	nan	0.1000	-0.0005
##	200	0.5427	nan	0.1000	-0.0025
##	220	0.5333	nan	0.1000	-0.0012
##	240	0.5239	nan	0.1000	-0.0015
##	250	0.5186	nan	0.1000	-0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2503	nan	0.1000	0.0405
##	2	1.1806	nan	0.1000	0.0343
##	3	1.1211	nan	0.1000	0.0276
##	4	1.0676	nan	0.1000	0.0242
##	5	1.0226	nan	0.1000	0.0193
##	6	0.9842	nan	0.1000	0.0164
##	7	0.9549	nan	0.1000	0.0120
##	8	0.9274	nan	0.1000	0.0125
##	9	0.8994	nan	0.1000	0.0100
##	10	0.8810	nan	0.1000	0.0068
##	20	0.7641	nan	0.1000	0.0015
##	40	0.6902	nan	0.1000	-0.0013
##	60	0.6497	nan	0.1000	-0.0026
##	80	0.6225	nan	0.1000	-0.0020
##	100	0.5898	nan	0.1000	-0.0009
##	120	0.5662	nan	0.1000	-0.0014
##	140	0.5460	nan	0.1000	-0.0015
##	160	0.5293	nan	0.1000	-0.0029
##	180	0.5142	nan	0.1000	-0.0018
##	200	0.5021	nan	0.1000	-0.0021
##	220	0.4850	nan	0.1000	-0.0025
##	240	0.4738	nan	0.1000	-0.0010
##	250	0.4697	nan	0.1000	-0.0025
##				a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2510	nan	0.1000	0.0400
##	2	1.1788	nan	0.1000	0.0356
##	3	1.1185	nan	0.1000	0.0284
##	4	1.0652	nan	0.1000	0.0255
##	5	1.0228	nan	0.1000	0.0209
##	6 7	0.9819	nan	0.1000	0.0175
##		0.9467 0.9149	nan	0.1000	0.0146
##	8 9	0.8872	nan nan	0.1000 0.1000	0.0133 0.0105
##	10	0.8681	nan	0.1000	0.0103
##	20	0.7435	nan	0.1000	0.0013
##	40	0.6620	nan	0.1000	-0.0013
11	-10	0.0020	nan	0.1000	0.0012

##	60	0.6096	nan	0.1000	-0.0011
##	80	0.5775	nan	0.1000	-0.0017
##	100	0.5491	nan	0.1000	-0.0016
##	120	0.5248	nan	0.1000	-0.0030
##	140	0.5082	nan	0.1000	-0.0016
##	160	0.4873	nan	0.1000	-0.0022
##	180	0.4700	nan	0.1000	-0.0020
##	200	0.4543	nan	0.1000	-0.0013
##	220	0.4388	nan	0.1000	-0.0031
##	240	0.4269	nan	0.1000	-0.0013
##	250	0.4237	nan	0.1000	-0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2737	nan	0.1000	0.0306
##	2	1.2188	nan	0.1000	0.0241
##	3	1.1752	nan	0.1000	0.0184
##	4	1.1384	nan	0.1000	0.0168
##	5	1.1052	nan	0.1000	0.0134
##	6	1.0800	nan	0.1000	0.0103
##	7	1.0601	nan	0.1000	0.0106
##	8	1.0416	nan	0.1000	0.0097
##	9	1.0234	nan	0.1000	0.0070
##	10	1.0079	nan	0.1000	0.0055
##	20	0.9090	nan	0.1000	0.0034
##	40	0.8145	nan	0.1000	0.0004
##	60	0.7708	nan	0.1000	0.0003
##	80	0.7528	nan	0.1000	-0.0009
##	100	0.7433	nan	0.1000	-0.0010
##	120	0.7366	nan	0.1000	-0.0002
##	140	0.7317	nan	0.1000	-0.0007
##	160	0.7262	nan	0.1000	-0.0009
##	180	0.7217	nan	0.1000	-0.0005
##	200	0.7172	nan	0.1000	-0.0013
##	220	0.7141	nan	0.1000	-0.0012
##	240	0.7102	nan	0.1000	-0.0002
##	250	0.7086	nan	0.1000	-0.0012
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2660	nan	0.1000	0.0361
##	2	1.2076	nan	0.1000	0.0275
##	3	1.1575	nan	0.1000	0.0247
##	4	1.1197	nan	0.1000	0.0178
##	5	1.0845	nan	0.1000	0.0173
##	6	1.0529	nan	0.1000	0.0131
##	7	1.0259	nan	0.1000	0.0123
##	8	0.9969	nan	0.1000	0.0117

##	9	0.9748	nan	0.1000	0.0082
##	10	0.9535	nan	0.1000	0.0076
##	20	0.8305	nan	0.1000	0.0033
##	40	0.7475	nan	0.1000	-0.0002
##	60	0.7207	nan	0.1000	-0.0018
##	80	0.7037	nan	0.1000	-0.0017
##	100	0.6882	nan	0.1000	-0.0014
##	120	0.6802	nan	0.1000	-0.0010
##	140	0.6709	nan	0.1000	-0.0015
##	160	0.6613	nan	0.1000	-0.0014
##	180	0.6523	nan	0.1000	-0.0004
##	200	0.6449	nan	0.1000	-0.0011
##	220	0.6367	nan	0.1000	-0.0014
##	240	0.6286	nan	0.1000	-0.0013
##	250	0.6233	nan	0.1000	-0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2551	nan	0.1000	0.0346
##	2	1.1931	nan	0.1000	0.0315
##	3	1.1316	nan	0.1000	0.0272
##	4	1.0872	nan	0.1000	0.0204
##	5	1.0437	nan	0.1000	0.0187
##	6	1.0098	nan	0.1000	0.0139
##	7	0.9818	nan	0.1000	0.0107
##	8	0.9579	nan	0.1000	0.0111
##	9	0.9321	nan	0.1000	0.0129
##	10	0.9121	nan	0.1000	0.0066
##	20	0.7838	nan	0.1000	0.0022
##	40	0.7153	nan	0.1000	-0.0001
##	60	0.6832	nan	0.1000	-0.0011
##	80	0.6612	nan	0.1000	-0.0019
##	100	0.6415	nan	0.1000	-0.0020
##	120	0.6252	nan	0.1000	-0.0020
##	140	0.6084	nan	0.1000	-0.0017
##	160	0.5936	nan	0.1000	-0.0009
##	180	0.5834	nan	0.1000	-0.0021
##	200	0.5669	nan	0.1000	-0.0009
##	220	0.5568	nan	0.1000	-0.0011
##	240	0.5467	nan	0.1000	-0.0027
##	250	0.5422	nan	0.1000	-0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2574	nan	0.1000	0.0391
##	2	1.1858	nan	0.1000	0.0330
##	3	1.1308	nan	0.1000	0.0237
##	4	1.0768	nan	0.1000	0.0205

##	5	1.0311	nan	0.1000	0.0203
##	6	0.9934	nan	0.1000	0.0175
##	7	0.9643	nan	0.1000	0.0121
##	8	0.9342	nan	0.1000	0.0118
##	9	0.9061	nan	0.1000	0.0104
##	10	0.8869	nan	0.1000	0.0078
##	20	0.7608	nan	0.1000	0.0000
##	40	0.6861	nan	0.1000	-0.0012
##	60	0.6452	nan	0.1000	-0.0007
##	80	0.6147	nan	0.1000	-0.0020
##	100	0.5919	nan	0.1000	-0.0015
##	120	0.5685	nan	0.1000	-0.0015
##	140	0.5516	nan	0.1000	-0.0007
##	160	0.5322	nan	0.1000	-0.0024
##	180	0.5188	nan	0.1000	-0.0013
##	200	0.5045	nan	0.1000	-0.0011
##	220	0.4913	nan	0.1000	-0.0012
##	240	0.4791	nan	0.1000	-0.0021
##	250	0.4735	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2526	nan	0.1000	0.0413
##	2	1.1759	nan	0.1000	0.0342
##	3	1.1130	nan	0.1000	0.0286
##	4	1.0692	nan	0.1000	0.0198
##	5	1.0244	nan	0.1000	0.0208
##	6	0.9858	nan	0.1000	0.0160
##	7	0.9512	nan	0.1000	0.0156
##	8	0.9230	nan	0.1000	0.0086
##	9	0.8945	nan	0.1000	0.0128
##	10	0.8741	nan	0.1000	0.0071
##	20	0.7489	nan	0.1000	0.0012
##	40	0.6645	nan	0.1000	-0.0017
##	60	0.6174	nan	0.1000	-0.0018
##	80	0.5875	nan	0.1000	-0.0022
##	100	0.5620	nan	0.1000	-0.0009
##	120	0.5374	nan	0.1000	-0.0026
##	140	0.5202	nan	0.1000	-0.0017
##	160	0.5003	nan	0.1000	-0.0014
##	180	0.4829	nan	0.1000	-0.0021
##	200	0.4660	nan	0.1000	-0.0024
##	220	0.4560	nan	0.1000	-0.0024
##	240	0.4425	nan	0.1000	-0.0020
##	250	0.4349	nan	0.1000	-0.0021
##	.			a. a.	-
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve

##	1	1.2722	nan	0.1000	0.0322
##	2	1.2256	nan	0.1000	0.0203
##	3	1.1806	nan	0.1000	0.0216
##	4	1.1444	nan	0.1000	0.0179
##	5	1.1141	nan	0.1000	0.0147
##	6	1.0890	nan	0.1000	0.0118
##	7	1.0707	nan	0.1000	0.0085
##	8	1.0493	nan	0.1000	0.0108
##	9	1.0332	nan	0.1000	0.0069
##	10	1.0157	nan	0.1000	0.0086
##	20	0.9131	nan	0.1000	0.0039
##	40	0.8200	nan	0.1000	0.0010
##	60	0.7820	nan	0.1000	0.0004
##	80	0.7654	nan	0.1000	-0.0014
##	100	0.7561	nan	0.1000	-0.0009
##	120	0.7476	nan	0.1000	-0.0011
##	140	0.7412	nan	0.1000	-0.0003
##	160	0.7365	nan	0.1000	-0.0004
##	180	0.7340	nan	0.1000	-0.0005
##	200	0.7299	nan	0.1000	-0.0007
##	220	0.7266	nan	0.1000	-0.0008
##	240	0.7237	nan	0.1000	-0.0008
##	250	0.7234	nan	0.1000	-0.0005
##	250		nan	0.1000	-0.0005
	Iter	TrainDeviance	nan ValidDeviance	StepSize	Improve
##	Iter 1	TrainDeviance 1.2651		StepSize 0.1000	Improve 0.0334
## ##	Iter 1 2	TrainDeviance 1.2651 1.2070	ValidDeviance	StepSize 0.1000 0.1000	Improve 0.0334 0.0269
## ## ##	Iter 1	TrainDeviance 1.2651 1.2070 1.1557	ValidDeviance nan	StepSize 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231
## ## ## ## ##	Iter 1 2 3 4	TrainDeviance 1.2651 1.2070 1.1557 1.1153	ValidDeviance nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171
## ## ## ##	Iter 1 2 3 4 5	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815	ValidDeviance nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155
## ## ## ## ## ##	Iter	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152
## ## ## ## ## ##	Iter	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922	ValidDeviance nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735	ValidDeviance nan nan nan nan nan nan nan	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735 0.9545	ValidDeviance nan nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083
## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735 0.9545 0.8345	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033
## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735 0.9545 0.8345 0.7573	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735 0.9545 0.8345 0.7573 0.7333	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011
######################################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735 0.9545 0.8345 0.7573 0.7333 0.7105	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011 -0.0006 -0.0011
# # # # # # # # # # # # # # # # # # #	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011 -0.0016 -0.0011
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011 -0.0006 -0.0011 -0.0012 -0.0008
# # # # # # # # # # # # # # # # # # #	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735 0.9545 0.8345 0.7573 0.7333 0.7105 0.6966 0.6815 0.6641 0.6482	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 -0.0001 -0.0011 -0.0006 -0.0011 -0.0012 -0.0008 -0.0016
# # # # # # # # # # # # # # # # # # #	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 0.0033 -0.0001 -0.0011 -0.0006 -0.0011 -0.0012 -0.0008 -0.0016 -0.0012
# # # # # # # # # # # # # # # # # # #	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	TrainDeviance 1.2651 1.2070 1.1557 1.1153 1.0815 1.0482 1.0172 0.9922 0.9735 0.9545 0.8345 0.7573 0.7333 0.7105 0.6966 0.6815 0.6641 0.6482	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0334 0.0269 0.0231 0.0171 0.0155 0.0152 0.0130 0.0112 0.0078 0.0083 -0.0001 -0.0011 -0.0006 -0.0011 -0.0012 -0.0008 -0.0016

## 1ter TrainDeviance ValidDeviance StepSize Improve ## 1 1.2637	##	240	0.6160	nan	0.1000	-0.0011
## Iter	##	250		nan	0.1000	
## 1 1.2637	##					
## 2 1.1913	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## 3 1.1333	##	1	1.2637	nan	0.1000	0.0352
## 4 1.0844 nan 0.1000 0.0231 ## 5 1.0391 nan 0.1000 0.0195 ## 6 1.0021 nan 0.1000 0.0152 ## 7 0.9729 nan 0.1000 0.0118 ## 8 0.9513 nan 0.1000 0.0086 ## 9 0.9272 nan 0.1000 0.0085 ## 10 0.9064 nan 0.1000 0.0085 ## 20 0.7931 nan 0.1000 0.0041 ## 40 0.7237 nan 0.1000 -0.0041 ## 80 0.66718 nan 0.1000 -0.0012 ## 80 0.66718 nan 0.1000 -0.0016 ## 120 0.6396 nan 0.1000 -0.0016 ## 140 0.6529 nan 0.1000 -0.0016 ## 140 0.6233 nan 0.1000 -0.0013 ## 180 0.5932 nan 0.1000 -0.0013 ## 180 0.5932 nan 0.1000 -0.0011 ## 220 0.5645 nan 0.1000 -0.0011 ## 220 0.5645 nan 0.1000 -0.0011 ## 240 0.5498 nan 0.1000 -0.0011 ## 240 0.5498 nan 0.1000 -0.0012 ## 3 1.1231 nan 0.1000 -0.0012 ## 4 4 1.0730 nan 0.1000 -0.0012 ## 5 1.0329 nan 0.1000 0.0345 ## 3 1.1231 nan 0.1000 0.0345 ## 4 1.0730 nan 0.1000 0.0345 ## 5 1.0329 nan 0.1000 0.0268 ## 9 0.9109 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0218 ## 9 0.9109 nan 0.1000 0.0113 ## 10 0.8940 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0009 ## 40 0.6915 nan 0.1000 -0.0012 ## 80 0.6232 nan 0.1000 0.0008 ## 10 0.8940 nan 0.1000 0.0008 ## 10 0.8940 nan 0.1000 0.0009 ## 40 0.6915 nan 0.1000 -0.0011 ## 10 0.8940 nan 0.1000 -0.0012 ## 10 0.6008 nan 0.1000 -0.0011 ## 10 0.6008 nan 0.1000 -0.0011 ## 10 0.6008 nan 0.1000 -0.0011	##	2	1.1913	nan	0.1000	0.0330
## 5 1.0391	##	3	1.1333	nan	0.1000	0.0254
## 6 1.0021	##	4	1.0844	nan	0.1000	0.0231
## 7 0.9729	##	5	1.0391	nan	0.1000	0.0195
## 8 0.9513	##	6	1.0021	nan	0.1000	0.0152
## 9 0.9272	##	7	0.9729	nan	0.1000	0.0118
## 10 0.9064 nan 0.1000 0.0085 ## 20 0.7931 nan 0.1000 0.0041 ## 40 0.7237 nan 0.1000 -0.0004 ## 60 0.6981 nan 0.1000 -0.0012 ## 80 0.6718 nan 0.1000 -0.0016 ## 120 0.6529 nan 0.1000 -0.0016 ## 140 0.6233 nan 0.1000 -0.0013 ## 160 0.6101 nan 0.1000 -0.0015 ## 200 0.5794 nan 0.1000 -0.0015 ## 220 0.5645 nan 0.1000 -0.0016 ## 240 0.5448 nan 0.1000 -0.0011 ## 350 0.5448 nan 0.1000 -0.0012 ## 3 1.1231 nan 0.1000 -0.0012 ## 3 1.1231 nan 0.1000 0.0380 ## 3 1.1231 nan 0.1000 0.0385 ## 4 1.0730 nan 0.1000 0.0385 ## 5 1.0329 nan 0.1000 0.0268 ## 5 1.0329 nan 0.1000 0.0268 ## 6 0.9952 nan 0.1000 0.0173 ## 8 0.9348 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0166 ## 9 0.9109 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0126 ## 10 0.8840 nan 0.1000 0.0128 ## 20 0.7714 nan 0.1000 0.0058 ## 30 0.6232 nan 0.1000 -0.0011 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0011	##	8	0.9513	nan	0.1000	0.0086
## 20 0.7931	##	9	0.9272	nan	0.1000	0.0096
## 40 0.7237	##	10	0.9064	nan	0.1000	0.0085
## 60 0.6981 nan 0.1000 -0.0012 ## 80 0.6718 nan 0.1000 -0.0026 ## 100 0.6529 nan 0.1000 -0.0016 ## 120 0.6396 nan 0.1000 -0.0010 ## 140 0.6233 nan 0.1000 -0.0013 ## 160 0.6101 nan 0.1000 -0.0011 ## 200 0.5794 nan 0.1000 -0.0015 ## 220 0.5645 nan 0.1000 -0.0011 ## 240 0.5498 nan 0.1000 -0.0011 ## 250 0.5448 nan 0.1000 -0.0012 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.2583 nan 0.1000 0.0380 ## 2 1.1835 nan 0.1000 0.0380 ## 3 1.1231 nan 0.1000 0.0345 ## 3 1.1231 nan 0.1000 0.0268 ## 4 1.0730 nan 0.1000 0.0268 ## 5 1.0329 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0173 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0126 ## 10 0.8940 nan 0.1000 0.0126 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.66232 nan 0.1000 -0.0006 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 100 0.6008 nan 0.1000 -0.0018 ## 100 0.6008 nan 0.1000 -0.0018	##	20	0.7931	nan	0.1000	0.0041
## 80 0.6718	##	40	0.7237	nan	0.1000	-0.0004
## 100 0.6529 nan 0.1000 -0.0016 ## 120 0.6396 nan 0.1000 -0.0010 ## 140 0.6233 nan 0.1000 -0.0013 ## 160 0.6101 nan 0.1000 -0.0015 ## 200 0.5794 nan 0.1000 -0.0016 ## 220 0.5645 nan 0.1000 -0.0011 ## 240 0.5498 nan 0.1000 -0.0012 ## 1 1 1.2583 nan 0.1000 -0.0012 ## 2 1 1.835 nan 0.1000 0.0386 ## 2 1.1835 nan 0.1000 0.0386 ## 3 1.1231 nan 0.1000 0.0345 ## 3 1.0730 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0173 ## 8 0.9348 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0166 ## 9 0.9109 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0188 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0099 ## 40 0.6915 nan 0.1000 -0.0006 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 100 0.6008 nan 0.1000 -0.0018 ## 100 0.6008 nan 0.1000 -0.0018	##	60	0.6981	nan	0.1000	-0.0012
## 120 0.6396	##	80		nan	0.1000	-0.0026
## 140	##			nan	0.1000	-0.0016
## 160 0.6101 nan 0.1000 -0.0011 ## 180 0.5932 nan 0.1000 -0.0015 ## 200 0.5794 nan 0.1000 -0.0010 ## 220 0.5645 nan 0.1000 -0.0011 ## 240 0.5498 nan 0.1000 -0.0012 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.2583 nan 0.1000 0.0380 ## 2 1.1835 nan 0.1000 0.0345 ## 3 1.1231 nan 0.1000 0.0268 ## 4 1.0730 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0218 ## 6 0.9952 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.6527 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0006 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 100 0.6008 nan 0.1000 -0.0018	##	120	0.6396	nan	0.1000	-0.0010
## 180	##			nan		
## 200 0.5794 nan 0.1000 -0.0010 ## 220 0.5645 nan 0.1000 -0.0011 ## 240 0.5498 nan 0.1000 -0.0012 ## ## 250 0.5448 nan 0.1000 -0.0012 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.2583 nan 0.1000 0.0380 ## 2 1.1835 nan 0.1000 0.0345 ## 3 1.1231 nan 0.1000 0.0268 ## 4 1.0730 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.6915 nan 0.1000 0.0009 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 100 0.6008 nan 0.1000 -0.0018	##			nan		
## 220 0.5645 nan 0.1000 -0.0011 ## 240 0.5498 nan 0.1000 -0.0018 ## 250 0.5448 nan 0.1000 -0.0012 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.2583 nan 0.1000 0.0380 ## 2 1.1835 nan 0.1000 0.0345 ## 3 1.1231 nan 0.1000 0.0268 ## 4 1.0730 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0098 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0099 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0022 ## 60 0.6632 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017	##			nan		
## 240 0.5498 nan 0.1000 -0.0018 ## 250 0.5448 nan 0.1000 -0.0012 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.2583 nan 0.1000 0.0380 ## 2 1.1835 nan 0.1000 0.0345 ## 3 1.1231 nan 0.1000 0.0268 ## 4 1.0730 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.6527 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0022 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017				nan		
## Z50 0.5448 nan 0.1000 -0.0012 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.2583 nan 0.1000 0.0380 ## 2 1.1835 nan 0.1000 0.0345 ## 3 1.1231 nan 0.1000 0.0268 ## 4 1.0730 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 -0.0058 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 110 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017				nan		
## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.2583 nan 0.1000 0.0380 ## 2 1.1835 nan 0.1000 0.0345 ## 3 1.1231 nan 0.1000 0.0268 ## 4 1.0730 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.6527 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0011 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018				nan		
## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.2583 nan 0.1000 0.0380 ## 2 1.1835 nan 0.1000 0.0345 ## 3 1.1231 nan 0.1000 0.0268 ## 4 1.0730 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.6527 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 100 0.6008 nan 0.1000 -0.0018		250	0.5448	nan	0.1000	-0.0012
## 1 1.2583 nan 0.1000 0.0380 ## 2 1.1835 nan 0.1000 0.0345 ## 3 1.1231 nan 0.1000 0.0268 ## 4 1.0730 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0099 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018		- .			a. a.	_
## 2 1.1835 nan 0.1000 0.0345 ## 3 1.1231 nan 0.1000 0.0268 ## 4 1.0730 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0009 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0022 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018					_	_
## 3 1.1231 nan 0.1000 0.0268 ## 4 1.0730 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0058 ## 20 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0022 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018						
## 4 1.0730 nan 0.1000 0.0218 ## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0009 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0022 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017						
## 5 1.0329 nan 0.1000 0.0173 ## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0009 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0022 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017						
## 6 0.9952 nan 0.1000 0.0161 ## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0009 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0026 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017						
## 7 0.9630 nan 0.1000 0.0130 ## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0009 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0026 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017						
## 8 0.9348 nan 0.1000 0.0126 ## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0009 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0026 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017						
## 9 0.9109 nan 0.1000 0.0108 ## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0009 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0006 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017						
## 10 0.8940 nan 0.1000 0.0058 ## 20 0.7714 nan 0.1000 0.0009 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0006 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017						
## 20 0.7714 nan 0.1000 0.0009 ## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0006 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017						
## 40 0.6915 nan 0.1000 -0.0022 ## 60 0.6527 nan 0.1000 -0.0006 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017						
## 60 0.6527 nan 0.1000 -0.0006 ## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017						
## 80 0.6232 nan 0.1000 -0.0011 ## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017						
## 100 0.6008 nan 0.1000 -0.0018 ## 120 0.5783 nan 0.1000 -0.0017						
## 120 0.5783 nan 0.1000 -0.0017						
## 140 0.0002 Hall 0.1000 -0.0025						
	##	140	0.5502	IIdli	0.1000	0.0025

##	160	0.5375	nan	0.1000	-0.0014
##	180	0.5165	nan	0.1000	-0.0019
##	200	0.5043	nan	0.1000	-0.0021
##	220	0.4907	nan	0.1000	-0.0022
##	240	0.4783	nan	0.1000	-0.0019
##	250	0.4728	nan	0.1000	-0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2435	nan	0.1000	0.0421
##	2	1.1748	nan	0.1000	0.0315
##	3	1.1147	nan	0.1000	0.0294
##	4	1.0672	nan	0.1000	0.0236
##	5	1.0265	nan	0.1000	0.0188
##	6	0.9873	nan	0.1000	0.0165
##	7	0.9555	nan	0.1000	0.0151
##	8	0.9289	nan	0.1000	0.0100
##	9	0.9030	nan	0.1000	0.0085
##	10	0.8836	nan	0.1000	0.0077
##	20	0.7615	nan	0.1000	0.0016
##	40	0.6861	nan	0.1000	-0.0016
##	60	0.6393	nan	0.1000	-0.0017
##	80	0.6022	nan	0.1000	-0.0021
##	100	0.5787	nan	0.1000	-0.0023
##	120	0.5532	nan	0.1000	-0.0024
##	140	0.5303	nan	0.1000	-0.0017
##	160	0.5079	nan	0.1000	-0.0015
##	180	0.4894	nan	0.1000	-0.0017
##	200	0.4716	nan	0.1000	-0.0019
##	220	0.4537	nan	0.1000	-0.0017
##	240	0.4389	nan	0.1000	-0.0007
##	250	0.4327	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2786	nan	0.1000	0.0297
##	2	1.2244	nan	0.1000	0.0249
##	3	1.1873	nan	0.1000	0.0203
##	4	1.1524	nan	0.1000	0.0140
##	5	1.1216	nan	0.1000	0.0141
##	6	1.0961	nan	0.1000	0.0125
##	7	1.0730	nan	0.1000	0.0103
##	8	1.0536	nan	0.1000	0.0086
##	9	1.0376	nan	0.1000	0.0067
##	10	1.0208	nan	0.1000	0.0083
##	20	0.9191	nan	0.1000	0.0025
##	40	0.8304	nan	0.1000	0.0006
##	60	0.7967	nan	0.1000	-0.0009

##	80	0.7809	nan	0.1000	-0.0007
##	100	0.7724	nan	0.1000	-0.0012
##	120	0.7661	nan	0.1000	-0.0004
##	140	0.7613	nan	0.1000	-0.0012
##	160	0.7558	nan	0.1000	-0.0004
##	180	0.7511	nan	0.1000	-0.0004
##	200	0.7460	nan	0.1000	-0.0006
##	220	0.7421	nan	0.1000	-0.0013
##	240	0.7388	nan	0.1000	-0.0007
##	250	0.7365	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2662	nan	0.1000	0.0324
##	2	1.2096	nan	0.1000	0.0223
##	3	1.1565	nan	0.1000	0.0234
##	4	1.1199	nan	0.1000	0.0184
##	5	1.0844	nan	0.1000	0.0144
##	6	1.0520	nan	0.1000	0.0153
##	7	1.0254	nan	0.1000	0.0130
##	8	1.0023	nan	0.1000	0.0091
##	9	0.9789	nan	0.1000	0.0100
##	10	0.9608	nan	0.1000	0.0074
##	20	0.8450	nan	0.1000	0.0015
##	40	0.7728	nan	0.1000	-0.0010
##	60	0.7478	nan	0.1000	-0.0011
##	80	0.7312	nan	0.1000	-0.0005
##	100	0.7193	nan	0.1000	-0.0008
##	120	0.7053	nan	0.1000	-0.0015
##	140	0.6952	nan	0.1000	-0.0006
##	160	0.6855	nan	0.1000	-0.0007
##	180	0.6758	nan	0.1000	-0.0013
##	200	0.6663	nan	0.1000	-0.0011
##	220	0.6599	nan	0.1000	-0.0008
##	240	0.6511	nan	0.1000	-0.0015
##	250	0.6471	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2605	nan	0.1000	0.0359
##	2	1.1990	nan	0.1000	0.0295
##	3	1.1393	nan	0.1000	0.0250
##	4	1.0933	nan	0.1000	0.0198
##	5	1.0564	nan	0.1000	0.0142
##	6	1.0189	nan	0.1000	0.0153
##	7	0.9922	nan	0.1000	0.0114
##	8	0.9677	nan	0.1000	0.0095
##	9	0.9451	nan	0.1000	0.0105

##	10	0.9247	nan	0.1000	0.0070
##	20	0.8103	nan	0.1000	0.0028
##	40	0.7386	nan	0.1000	-0.0008
##	60	0.7043	nan	0.1000	-0.0029
##	80	0.6768	nan	0.1000	-0.0006
##	100	0.6509	nan	0.1000	-0.0012
##	120	0.6340	nan	0.1000	-0.0015
##	140	0.6159	nan	0.1000	-0.0020
##	160	0.6042	nan	0.1000	-0.0015
##	180	0.5892	nan	0.1000	-0.0009
##	200	0.5800	nan	0.1000	-0.0015
##	220	0.5693	nan	0.1000	-0.0015
##	240	0.5583	nan	0.1000	-0.0014
##	250	0.5545	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2535	nan	0.1000	0.0373
##	2	1.1854	nan	0.1000	0.0315
##	3	1.1321	nan	0.1000	0.0243
##	4	1.0809	nan	0.1000	0.0232
##	5	1.0425	nan	0.1000	0.0193
##	6	1.0039	nan	0.1000	0.0155
##	7	0.9741	nan	0.1000	0.0124
##	8	0.9470	nan	0.1000	0.0120
##	9	0.9198	nan	0.1000	0.0119
##	10	0.9026	nan	0.1000	0.0068
##	20	0.7913	nan	0.1000	0.0012
##	40	0.7186	nan	0.1000	-0.0003
##	60	0.6837	nan	0.1000	-0.0016
##	80	0.6483	nan	0.1000	-0.0009
##	100	0.6236	nan	0.1000	-0.0014
##	120	0.5982	nan	0.1000	-0.0024
##	140	0.5790	nan	0.1000	-0.0015
##	160	0.5596	nan	0.1000	-0.0035
##	180	0.5411	nan	0.1000	-0.0007
##	200	0.5267	nan	0.1000	-0.0020
##	220	0.5139	nan	0.1000	-0.0012
##	240	0.4973	nan	0.1000	-0.0021
##	250	0.4919	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2535	nan	0.1000	0.0388
##	2	1.1840	nan	0.1000	0.0318
##	3	1.1232	nan	0.1000	0.0262
##	4	1.0698	nan	0.1000	0.0244
##	5	1.0285	nan	0.1000	0.0185

##	6	0.9955	nan	0.1000	0.0134
##	7	0.9661	nan	0.1000	0.0146
##	8	0.9362	nan	0.1000	0.0139
##	9	0.9138	nan	0.1000	0.0090
##	10	0.8958	nan	0.1000	0.0069
##	20	0.7770	nan	0.1000	0.0004
##	40	0.7015	nan	0.1000	-0.0011
##	60	0.6610	nan	0.1000	-0.0024
##	80	0.6300	nan	0.1000	-0.0035
##	100	0.5995	nan	0.1000	-0.0016
##	120	0.5673	nan	0.1000	-0.0024
##	140	0.5459	nan	0.1000	-0.0038
##	160	0.5245	nan	0.1000	-0.0029
##	180	0.5053	nan	0.1000	-0.0016
##	200	0.4902	nan	0.1000	-0.0012
##	220	0.4748	nan	0.1000	-0.0026
##	240	0.4577	nan	0.1000	-0.0022
##	250	0.4513	nan	0.1000	-0.0027
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2725	nan	0.1000	0.0315
##	2	1.2219	nan	0.1000	0.0246
##	3	1.1809	nan	0.1000	0.0195
##	4	1.1501	nan	0.1000	0.0136
##	5	1.1172	nan	0.1000	0.0151
##	6	1.0930	nan	0.1000	0.0122
##	7	1.0669	nan	0.1000	0.0116
##	8	1.0449	nan	0.1000	0.0093
##	9	1.0285	nan	0.1000	0.0066
##	10	1.0180	nan	0.1000	0.0038
##	20	0.9148	nan	0.1000	0.0024
##	40	0.8255	nan	0.1000	-0.0002
##	60	0.7874	nan	0.1000	0.0005
##	80	0.7699	nan	0.1000	-0.0002
##	100	0.7627	nan	0.1000	-0.0013
##	120	0.7552	nan	0.1000	-0.0003
##	140	0.7490	nan	0.1000	-0.0009
##	160	0.7430	nan	0.1000	-0.0010
##	180	0.7382	nan	0.1000	-0.0008
##	200	0.7349	nan	0.1000	-0.0005
##	220	0.7314	nan	0.1000	-0.0013
##	240	0.7268	nan	0.1000	-0.0007
##	250	0.7253	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2623	nan	0.1000	0.0345

##	2	1.2026	nan	0.1000	0.0294
##	3	1.1548	nan	0.1000	0.0218
##	4	1.1129	nan	0.1000	0.0177
##	5	1.0812	nan	0.1000	0.0157
##	6	1.0509	nan	0.1000	0.0147
##	7	1.0280	nan	0.1000	0.0099
##	8	1.0037	nan	0.1000	0.0104
##	9	0.9810	nan	0.1000	0.0097
##	10	0.9609	nan	0.1000	0.0089
##	20	0.8459	nan	0.1000	0.0019
##	40	0.7693	nan	0.1000	-0.0002
##	60	0.7363	nan	0.1000	-0.0008
##	80	0.7162	nan	0.1000	-0.0023
##	100	0.7052	nan	0.1000	-0.0015
##	120	0.6917	nan	0.1000	-0.0028
##	140	0.6756	nan	0.1000	-0.0020
##	160	0.6652	nan	0.1000	-0.0003
##	180	0.6557	nan	0.1000	-0.0014
##	200	0.6468	nan	0.1000	-0.0006
##	220	0.6353	nan	0.1000	-0.0006
##	240	0.6277	nan	0.1000	-0.0007
##	250	0.6244	nan	0.1000	-0.0011
##					
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	1	1.2566	ValidDeviance nan	0.1000	0.0386
## ## ##	1 2	1.2566 1.1937		0.1000 0.1000	0.0386 0.0297
## ## ## ##	1 2 3	1.2566 1.1937 1.1355	nan	0.1000 0.1000 0.1000	0.0386 0.0297 0.0258
## ## ## ##	1 2 3 4	1.2566 1.1937 1.1355 1.0909	nan nan	0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201
## ## ## ## ##	1 2 3 4 5	1.2566 1.1937 1.1355 1.0909 1.0509	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179
## ## ## ## ##	1 2 3 4 5	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162
## ## ## ## ## ##	1 2 3 4 5 6 7	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504 0.6325	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008 -0.0011 -0.0013
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504 0.6325 0.6140	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008 -0.0011 -0.0013 -0.0013
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504 0.6325 0.6140 0.5974	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008 -0.0011 -0.0013 -0.0002
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504 0.6325 0.6140 0.5974 0.5833	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008 -0.0011 -0.0013 -0.0002 -0.0002 -0.0002
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504 0.6325 0.6140 0.5974 0.5833 0.5666	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008 -0.0011 -0.0013 -0.0013 -0.0010 -0.0011
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	1.2566 1.1937 1.1355 1.0909 1.0509 1.0145 0.9840 0.9551 0.9369 0.9164 0.8017 0.7255 0.6940 0.6684 0.6504 0.6325 0.6140 0.5974 0.5833	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0386 0.0297 0.0258 0.0201 0.0179 0.0162 0.0123 0.0122 0.0088 0.0072 0.0007 -0.0002 -0.0009 -0.0008 -0.0011 -0.0013 -0.0002 -0.0002 -0.0002

## ##	250	0.5372	nan	0.1000	-0.0015
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2498	nan	0.1000	0.0417
##	2	1.1832	nan	0.1000	0.0281
##	3	1.1271	nan	0.1000	0.0244
##	4	1.0777	nan	0.1000	0.0218
##	5	1.0407	nan	0.1000	0.0151
##	6	1.0058	nan	0.1000	0.0141
##	7	0.9753	nan	0.1000	0.0148
##	8	0.9445	nan	0.1000	0.0133
##	9	0.9192	nan	0.1000	0.0115
##	10	0.9036	nan	0.1000	0.0060
##	20	0.7800	nan	0.1000	0.0017
##	40	0.7027	nan	0.1000	-0.0018
##	60	0.6571	nan	0.1000	-0.0015
##	80	0.6285	nan	0.1000	-0.0028
##	100	0.6088	nan	0.1000	-0.0028
##	120	0.5816	nan	0.1000	-0.0033
##	140	0.5649	nan	0.1000	-0.0020
##	160	0.5430	nan	0.1000	-0.0012
##	180	0.5294	nan	0.1000	-0.0016
##	200	0.5109	nan	0.1000	-0.0021
##	220	0.4943	nan	0.1000	-0.0027
##	240	0.4793	nan	0.1000	-0.0010
##	250	0.4732	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2514	nan	0.1000	0.0374
##	2	1.1825	nan	0.1000	0.0323
##	3	1.1249	nan	0.1000	0.0244
##	4	1.0758	nan	0.1000	0.0248
##	5	1.0288	nan	0.1000	0.0205
##	6	0.9950	nan	0.1000	0.0151
##	7	0.9607	nan	0.1000	0.0120
##	8	0.9307	nan	0.1000	0.0132
##	9	0.9071	nan	0.1000	0.0100
##	10	0.8828	nan	0.1000	0.0094
##	20	0.7598	nan	0.1000	0.0013
##	40	0.6744	nan	0.1000	-0.0017
##	60	0.6343	nan	0.1000	-0.0018
##	80	0.5947	nan	0.1000	-0.0013
##	100	0.5667	nan	0.1000	-0.0019
##	120	0.5457	nan	0.1000	-0.0029
##	140	0.5235	nan	0.1000	-0.0024
##	160	0.5036	nan	0.1000	-0.0019

##	180	0.4856	nan	0.1000	-0.0030
##	200	0.4678	nan	0.1000	-0.0020
##	220	0.4534	nan	0.1000	-0.0023
##	240	0.4412	nan	0.1000	-0.0018
##	250	0.4336	nan	0.1000	-0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2803	nan	0.1000	0.0300
##	2	1.2282	nan	0.1000	0.0252
##	3	1.1859	nan	0.1000	0.0212
##	4	1.1515	nan	0.1000	0.0150
##	5	1.1195	nan	0.1000	0.0146
##	6	1.0928	nan	0.1000	0.0127
##	7	1.0679	nan	0.1000	0.0107
##	8	1.0480	nan	0.1000	0.0092
##	9	1.0320	nan	0.1000	0.0078
##	10	1.0185	nan	0.1000	0.0060
##	20	0.9144	nan	0.1000	0.0035
##	40	0.8227	nan	0.1000	0.0009
##	60	0.7776	nan	0.1000	-0.0003
##	80	0.7595	nan	0.1000	-0.0005
##	100	0.7498	nan	0.1000	-0.0002
##	120	0.7441	nan	0.1000	-0.0002
##	140	0.7392	nan	0.1000	-0.0006
##	160	0.7347	nan	0.1000	-0.0004
##	180	0.7323	nan	0.1000	-0.0013
##	200	0.7259	nan	0.1000	-0.0003
##	220	0.7226	nan	0.1000	-0.0003
##	240	0.7204	nan	0.1000	-0.0004
## ##	250	0.7180	nan	0.1000	-0.0010
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2639	nan	0.1000	0.0365
##	2	1.2041	nan	0.1000	0.0277
##	3	1.1555	nan	0.1000	0.0224
##	4	1.1135	nan	0.1000	0.0190
##	5	1.0741	nan	0.1000	0.0174
##	6	1.0444	nan	0.1000	0.0128
##	7	1.0172	nan	0.1000	0.0120
##	8	0.9928	nan	0.1000	0.0114
##	9	0.9698	nan	0.1000	0.0105
##	10	0.9523	nan	0.1000	0.0071
##	20	0.8290	nan	0.1000	0.0023
##	40	0.7563	nan	0.1000	-0.0012
##	60	0.7274	nan	0.1000	-0.0011
##	80	0.7078	nan	0.1000	-0.0014

##	100	0.6940	nan	0.1000	-0.0008
##	120	0.6795	nan	0.1000	-0.0015
##	140	0.6698	nan	0.1000	-0.0008
##	160	0.6585	nan	0.1000	-0.0011
##	180	0.6453	nan	0.1000	-0.0002
##	200	0.6358	nan	0.1000	-0.0007
##	220	0.6313	nan	0.1000	-0.0019
##	240	0.6263	nan	0.1000	-0.0020
##	250	0.6222	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2566	nan	0.1000	0.0352
##	2	1.1939	nan	0.1000	0.0309
##	3	1.1369	nan	0.1000	0.0252
##	4	1.0871	nan	0.1000	0.0217
##	5	1.0427	nan	0.1000	0.0188
##	6	1.0083	nan	0.1000	0.0132
##	7	0.9772	nan	0.1000	0.0138
##	8	0.9496	nan	0.1000	0.0146
##	9	0.9264	nan	0.1000	0.0140
##	10	0.9027	nan	0.1000	0.0097
##	20	0.7804	nan	0.1000	0.0026
##	40	0.7150	nan	0.1000	-0.0014
##	60	0.6814	nan	0.1000	-0.0023
##	80	0.6575	nan	0.1000	-0.0023
##	100	0.6395	nan	0.1000	-0.0021
##	120	0.6198	nan	0.1000	-0.0021
##	140	0.6030	nan	0.1000	-0.0014
##	160	0.5852		0.1000	-0.0010
##	180	0.5747	nan	0.1000	-0.0013
##	200	0.5616	nan	0.1000	-0.0017
##	220	0.5461	nan	0.1000	-0.0014
##	240	0.5350	nan	0.1000	-0.0015
	250		nan	0.1000	
##	250	0.5289	nan	0.1000	-0.0008
##	Ttor	TrainDaviance	ValidDeviance	C+onCiro	Tmnrotto
	Iter 1	TrainDeviance 1.2508		StepSize 0.1000	Improve 0.0399
##		1.1799	nan	0.1000	0.0399
##	2		nan	0.1000	
##	3	1.1202	nan		0.0267
##	4	1.0681	nan	0.1000	0.0230
##	5	1.0267	nan	0.1000	0.0188
##	6	0.9903	nan	0.1000	0.0144
##	7	0.9579	nan	0.1000	0.0146
##	8	0.9311	nan	0.1000	0.0122
##	9	0.9093	nan	0.1000	0.0100
##	10	0.8920	nan	0.1000	0.0071

##	20	0.7669	nan	0.1000	0.0027
##	40	0.6912	nan	0.1000	-0.0021
##	60	0.6458	nan	0.1000	-0.0026
##	80	0.6124	nan	0.1000	-0.0004
##	100	0.5870	nan	0.1000	-0.0014
##	120	0.5656	nan	0.1000	-0.0013
##	140	0.5518	nan	0.1000	-0.0023
##	160	0.5341	nan	0.1000	-0.0011
##	180	0.5194	nan	0.1000	-0.0010
##	200	0.5076	nan	0.1000	-0.0026
##	220	0.4978	nan	0.1000	-0.0018
##	240	0.4803	nan	0.1000	-0.0012
##	250	0.4720	nan	0.1000	-0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2479	nan	0.1000	0.0415
##	2	1.1762	nan	0.1000	0.0296
##	3	1.1123	nan	0.1000	0.0268
##	4	1.0657	nan	0.1000	0.0197
##	5	1.0210	nan	0.1000	0.0199
##	6	0.9815	nan	0.1000	0.0159
##	7	0.9479	nan	0.1000	0.0105
##	8	0.9197	nan	0.1000	0.0126
##	9	0.8955	nan	0.1000	0.0088
##	10	0.8742	nan	0.1000	0.0090
##	20	0.7586	nan	0.1000	0.0012
##	40	0.6843	nan	0.1000	-0.0018
##	60	0.6355	nan	0.1000	-0.0027
##	80	0.5939	nan	0.1000	-0.0014
##	100	0.5648	nan	0.1000	-0.0014
##	120	0.5434	nan	0.1000	-0.0016
##	140	0.5223	nan	0.1000	-0.0021
##	160	0.5026	nan	0.1000	-0.0021
##	180	0.4889	nan	0.1000	-0.0021
##	200	0.4758	nan	0.1000	-0.0012
##	220	0.4520	nan	0.1000	-0.0008
##	240	0.4417	nan	0.1000	-0.0027
##	250	0.4358	nan	0.1000	-0.0023
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2643	nan	0.1000	0.0332
##	2	1.2100	nan	0.1000	0.0272
##	3	1.1593	nan	0.1000	0.0240
##	4	1.1180	nan	0.1000	0.0196
##	5	1.0825	nan	0.1000	0.0170
##	6	1.0508	nan	0.1000	0.0135

```
##
        7
                  1.0219
                                                0.1000
                                                           0.0112
                                       nan
##
        8
                  0.9984
                                                0.1000
                                                           0.0118
                                       nan
##
         9
                  0.9778
                                       nan
                                                0.1000
                                                           0.0072
##
       10
                  0.9565
                                                0.1000
                                                           0.0096
                                       nan
##
       20
                  0.8389
                                       nan
                                                0.1000
                                                           0.0025
##
       40
                  0.7624
                                       nan
                                                0.1000
                                                          -0.0009
##
                                                          -0.0006
       50
                  0.7453
                                       nan
                                                0.1000
```

oj.gbm

```
## Stochastic Gradient Boosting
##
## 857 samples
   17 predictor
     2 classes: 'CH', 'MM'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 772, 770, 771, 771, 772, 771, ...
## Resampling results across tuning parameters:
##
##
     interaction.depth n.trees ROC
                                            Sens
                                                       Spec
##
     1
                         50
                                 0.8869715 0.8720247
                                                       0.7245098
##
     1
                        100
                                 0.8889466 0.8738389
                                                       0.7302139
##
     1
                        150
                                 0.8850612 0.8680697
                                                       0.7303030
##
     1
                        200
                                 0.8838868 0.8738026 0.7213012
##
     1
                        250
                                 0.8805090 0.8622642
                                                       0.7275401
##
     2
                                 0.8895139 0.8719521
                                                       0.7451872
                         50
     2
##
                        100
                                 0.8832208 0.8623367
                                                       0.7334225
##
     2
                        150
                                 0.8838687 0.8679971
                                                       0.7394831
     2
##
                        200
                                 0.8811028
                                            0.8642598
                                                       0.7245989
##
     2
                        250
                                 0.8780432 0.8489840
                                                       0.7336898
##
     3
                         50
                                 0.8833620 0.8700290
                                                       0.7245989
##
     3
                        100
                                 0.8785063 0.8604862
                                                       0.7454545
##
     3
                        150
                                 0.8744782 0.8470972
                                                       0.7156863
##
     3
                        200
                                 0.8723217 0.8414731
                                                       0.7246881
##
     3
                        250
                                 0.8722653 0.8337446
                                                       0.7217469
##
     4
                         50
                                 0.8854180 0.8604862
                                                       0.7605169
##
     4
                        100
                                 0.8794721 0.8413280
                                                       0.7336898
##
     4
                        150
                                 0.8741609 0.8432511
                                                      0.7308378
##
     4
                        200
                                 0.8710638 0.8470972
                                                       0.7249554
##
     4
                        250
                                 0.8674771 0.8490203
                                                       0.7218360
##
     5
                         50
                                 0.8868076 0.8585994
                                                      0.7574866
##
     5
                        100
                                 0.8786285 0.8471698
                                                       0.7486631
                                 0.8708328 0.8395138 0.7458111
##
                        150
     5
```

```
plot(oj.gbm)
```



```
oj.pred <- predict(oj.gbm, oj_test, type = "raw")
plot(oj_test$Purchase, oj.pred,
    main = "Gradient Boosing Classification: Predicted vs. Actual",
    xlab = "Actual",
    ylab = "Predicted")</pre>
```

Gradient Boosing Classification: Predicted vs. Actual


```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction CH MM
##
          CH 117 18
##
          MM 13 65
##
##
                  Accuracy : 0.8545
                    95% CI: (0.7998, 0.8989)
##
##
       No Information Rate: 0.6103
##
       P-Value [Acc > NIR] : 4.83e-15
##
##
                     Kappa: 0.6907
##
##
   Mcnemar's Test P-Value: 0.4725
##
##
              Sensitivity: 0.9000
##
              Specificity: 0.7831
##
           Pos Pred Value: 0.8667
            Neg Pred Value: 0.8333
##
               Prevalence : 0.6103
##
```

```
## Detection Rate : 0.5493
## Detection Prevalence : 0.6338
## Balanced Accuracy : 0.8416
##
## 'Positive' Class : CH
##

oj.gbm.acc <- as.numeric(oj.conf$overall[1])
rm(oj.pred)
rm(oj.conf)
#plot(oj.bag$, oj.bag$finalModel$y)
#plot(varImp(oj.gbm), main="Variable Importance with Gradient Boosting")</pre>
```

8.5.0.2 Gradient Boosting Regression Example

Again using the Carseats data set to predict Sales, this time I'll use the gradient boosting method by specifying method = "gbm". I'll use tuneLength = 5 and not worry about tuneGrid anymore. Caret tunes the following hyperparameters.

- n.trees: number of boosting iterations (increasing n.trees reduces the error on training set, but may lead to over-fitting)
- interaction.depth: maximum tree depth (the default six node tree appears to do an excellent job)
- shrinkage: learning rate (reduces the impact of each additional fitted base-learner (tree) by reducing the size of incremental steps and thus penalizes the importance of each consecutive iteration. The intuition is that it is better to improve a model by taking many small steps than by taking fewer large steps. If one of the boosting iterations turns out to be erroneous, its negative impact can be easily corrected in subsequent steps.)
- n.minobsinnode: mimimum terminal node size

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.6155	nan	0.1000	0.3126
##	2	7.3677	nan	0.1000	0.2471
##	3	7.1383	nan	0.1000	0.1559
##	4	6.8796	nan	0.1000	0.3000
##	5	6.6084	nan	0.1000	0.2696
##	6	6.3846	nan	0.1000	0.1575
##	7	6.1551	nan	0.1000	0.2016
##	8	5.9837	nan	0.1000	0.1171
##	9	5.7969	nan	0.1000	0.1558
##	10	5.6503	nan	0.1000	0.1243
##	20	4.5758	nan	0.1000	0.0472
##	40	3.3276	nan	0.1000	0.0043
##	60	2.6161	nan	0.1000	0.0154
##	80	2.1215	nan	0.1000	-0.0029
##	100	1.7822	nan	0.1000	-0.0166
##	120	1.5354	nan	0.1000	-0.0016
##	140	1.3313	nan	0.1000	0.0067
##	160	1.2074	nan	0.1000	-0.0030
##	180	1.0966	nan	0.1000	0.0005
##	200	1.0083	nan	0.1000	-0.0019
##	220	0.9572	nan	0.1000	-0.0008
##	240	0.9048	nan	0.1000	-0.0052
##	250	0.8922		0.1000	0 0051
ππ	200	0.0322	nan	0.1000	-0.0051
##	200	0.0322	nan	0.1000	-0.0051
	Iter	TrainDeviance	NalidDeviance	StepSize	Improve
##	Iter 1	TrainDeviance 7.4939		StepSize 0.1000	Improve 0.5303
## ##	Iter	TrainDeviance 7.4939 6.9609	ValidDeviance	StepSize 0.1000 0.1000	Improve 0.5303 0.4503
## ## ## ##	Iter	TrainDeviance 7.4939 6.9609 6.5646	ValidDeviance nan	StepSize 0.1000 0.1000 0.1000	Improve 0.5303 0.4503 0.3312
## ## ## ## ##	Iter 1 2 3 4	TrainDeviance 7.4939 6.9609 6.5646 6.2135	ValidDeviance nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.5303 0.4503 0.3312 0.2836
## ## ## ## ##	Iter 1 2 3 4 5	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347	ValidDeviance nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.5303 0.4503 0.3312 0.2836 0.2472
## ## ## ## ## ##	Iter	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757 5.1883	ValidDeviance nan nan nan nan nan nan	StepSize	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134 0.1810
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757 5.1883 5.0431	ValidDeviance nan nan nan nan nan nan nan	StepSize	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134 0.1810 0.1205
## ### ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440	ValidDeviance nan nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246
## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003
## ## ## ## ## ## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136 1.0839	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003 0.0003
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136 1.0839 0.9011	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003 0.0003 0.0003
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136 1.0839 0.9011 0.8195	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003 0.0003 0.00052 -0.0075
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136 1.0839 0.9011 0.8195 0.7664	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003 0.0003 0.00052 -0.0075 -0.0036
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136 1.0839 0.9011 0.8195 0.7664 0.7243	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003 0.0003 0.00052 -0.0075 -0.0036 -0.0010
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 7.4939 6.9609 6.5646 6.2135 5.9347 5.6654 5.3757 5.1883 5.0431 4.8440 3.4421 2.0285 1.4136 1.0839 0.9011 0.8195 0.7664	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.5303 0.4503 0.3312 0.2836 0.2472 0.2045 0.2134 0.1810 0.1205 0.0749 0.1291 0.0246 0.0003 0.0003 0.00052 -0.0075 -0.0036

##	220	0.6123	nan	0.1000	-0.0035
##	240	0.5897	nan	0.1000	-0.0038
##	250	0.5767	nan	0.1000	-0.0050
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.3122	nan	0.1000	0.5956
##	2	6.7737	nan	0.1000	0.4295
##	3	6.3033	nan	0.1000	0.4215
##	4	5.9081	nan	0.1000	0.2966
##	5	5.5342	nan	0.1000	0.3320
##	6	5.1666	nan	0.1000	0.2748
##	7	4.9365	nan	0.1000	0.1688
##	8	4.6557	nan	0.1000	0.2144
##	9	4.4412	nan	0.1000	0.1072
##	10	4.2075	nan	0.1000	0.1861
##	20	2.7722	nan	0.1000	0.0107
##	40	1.4659	nan	0.1000	0.0203
##	60	1.0163	nan	0.1000	-0.0055
##	80	0.8430	nan	0.1000	-0.0074
##	100	0.7427	nan	0.1000	-0.0031
##	120	0.6731	nan	0.1000	-0.0078
##	140	0.6151	nan	0.1000	-0.0080
##	160	0.5814	nan	0.1000	-0.0074
##	180	0.5452	nan	0.1000	-0.0054
##	200	0.5023	nan	0.1000	-0.0071
##	220	0.4697	nan	0.1000	-0.0058
##	240	0.4340	nan	0.1000	-0.0022
##	250	0.4207	nan	0.1000	-0.0088
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.3508	nan	0.1000	0.7012
##	2	6.7011	nan	0.1000	0.5533
##	3	6.1585	nan	0.1000	0.5138
##	4	5.7274	nan	0.1000	0.3542
##	5	5.2438	nan	0.1000	0.3597
##	6	4.9357	nan	0.1000	0.2545
##	7	4.6359	nan	0.1000	0.2195
##	8	4.3960	nan	0.1000	0.2294
##	9	4.1786	nan	0.1000	0.1539
##	10	3.9850	nan	0.1000	0.1414
##	20	2.4927	nan	0.1000	0.0532
##	40	1.2882	nan	0.1000	0.0112
##	60	0.8551	nan	0.1000	-0.0074
##	80	0.6752	nan	0.1000	-0.0044
##	100	0.5795	nan	0.1000	-0.0097
##	120	0.4983	nan	0.1000	-0.0038

##	140	0.4440	nan	0.1000	-0.0032
##	160	0.4044	nan	0.1000	-0.0056
##	180	0.3666	nan	0.1000	-0.0076
##	200	0.3337	nan	0.1000	-0.0065
##	220	0.3066	nan	0.1000	-0.0022
##	240	0.2736	nan	0.1000	-0.0039
##	250	0.2608	nan	0.1000	-0.0038
##					
##	Iter	${\tt TrainDeviance}$	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.2719	nan	0.1000	0.7029
##	2	6.5623	nan	0.1000	0.5180
##	3	6.0426	nan	0.1000	0.4144
##	4	5.5613	nan	0.1000	0.4419
##	5	5.1070	nan	0.1000	0.2878
##	6	4.7641	nan	0.1000	0.2383
##	7	4.4677	nan	0.1000	0.2141
##	8	4.2399	nan	0.1000	0.0706
##	9	3.9751	nan	0.1000	0.1927
##	10	3.7100	nan	0.1000	0.1701
##	20	2.2565	nan	0.1000	0.0859
##	40	1.1000	nan	0.1000	-0.0080
##	60	0.7464	nan	0.1000	-0.0020
##	80	0.5790	nan	0.1000	-0.0024
##	100	0.4941	nan	0.1000	-0.0054
##	120	0.4290	nan	0.1000	-0.0030
##	140	0.3723	nan	0.1000	-0.0052
##	160	0.3330	nan	0.1000	-0.0042
##	180	0.2951	nan	0.1000	-0.0056
##	200	0.2627	nan	0.1000	-0.0038
##	220	0.2336	nan	0.1000	-0.0018
##	240	0.2089	nan	0.1000	-0.0017
##	250	0.1964	nan	0.1000	-0.0029
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.8758	nan	0.1000	0.1611
##	2	7.4638	nan	0.1000	0.4117
##	3	7.1509	nan	0.1000	0.2868
##	4	6.8550	nan	0.1000	0.2921
##	5	6.6144	nan	0.1000	0.2482
##	6	6.4519	nan	0.1000	0.1654
##	7	6.3108	nan	0.1000	0.0792
##	8	6.1631	nan	0.1000	0.1260
##	9	6.0160	nan	0.1000	0.1119
##	10	5.8043	nan	0.1000	0.1567
##	20	4.6275	nan	0.1000	0.0715
##	40	3.4435	nan	0.1000	-0.0080

##	60	2.6905	nan	0.1000	0.0048
##	80	2.1544	nan	0.1000	0.0127
##	100	1.7772	nan	0.1000	-0.0062
##	120	1.4927	nan	0.1000	-0.0058
##	140	1.3013	nan	0.1000	0.0010
##	160	1.1609	nan	0.1000	0.0023
##	180	1.0670	nan	0.1000	-0.0058
##	200	0.9890	nan	0.1000	-0.0088
##	220	0.9407	nan	0.1000	0.0000
##	240	0.9016	nan	0.1000	-0.0042
##	250	0.8853	nan	0.1000	-0.0037
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.6412	nan	0.1000	0.5298
##	2	7.0819	nan	0.1000	0.4917
##	3	6.5521	nan	0.1000	0.3297
##	4	6.1791	nan	0.1000	0.2744
##	5	5.9412	nan	0.1000	0.1842
##	6	5.6434	nan	0.1000	0.2504
##	7	5.3703	nan	0.1000	0.2167
##	8	5.1224	nan	0.1000	0.1739
##	9	4.9715	nan	0.1000	0.1184
##	10	4.7654	nan	0.1000	0.1615
##	20	3.3795	nan	0.1000	0.0636
##	40	2.0395	nan	0.1000	0.0080
##	60	1.4605	nan	0.1000	-0.0029
##	80	1.1344	nan	0.1000	-0.0025
##	100	0.9495	nan	0.1000	-0.0087
##	120	0.8562	nan	0.1000	-0.0037
##	140	0.7855	nan	0.1000	-0.0043
##	160	0.7298	nan	0.1000	-0.0057
##	180	0.6813	nan	0.1000	-0.0010
##	200	0.6441	nan	0.1000	-0.0027
##	220	0.6118	nan	0.1000	-0.0040
##	240	0.5838	nan	0.1000	-0.0071
##	250	0.5734	nan	0.1000	-0.0007
##					
	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.4922	nan	0.1000	0.6088
##	2	6.9029	nan	0.1000	0.5644
##	3	6.4669	nan	0.1000	0.4526
##	4	5.9980	nan	0.1000	0.4160
##	5	5.5505	nan	0.1000	0.2603
##	6	5.2643	nan	0.1000	0.2640
##	7	5.0169	nan	0.1000	0.1944
##	8	4.8024	nan	0.1000	0.1732

##	9	4.5720	nan	0.1000	0.1124
##	10	4.3508	nan	0.1000	0.1700
##	20	2.8015	nan	0.1000	0.0839
##	40	1.5058	nan	0.1000	0.0041
##	60	1.0433	nan	0.1000	-0.0028
##	80	0.8409	nan	0.1000	-0.0038
##	100	0.7262	nan	0.1000	-0.0091
##	120	0.6504	nan	0.1000	-0.0011
##	140	0.5944	nan	0.1000	-0.0082
##	160	0.5390	nan	0.1000	-0.0053
##	180	0.5004	nan	0.1000	-0.0058
##	200	0.4655	nan	0.1000	-0.0034
##	220	0.4306	nan	0.1000	-0.0051
##	240	0.4014	nan	0.1000	-0.0052
##	250	0.3922	nan	0.1000	-0.0045
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.5384	nan	0.1000	0.6216
##	2	6.8492	nan	0.1000	0.5668
##	3	6.2425	nan	0.1000	0.4236
##	4	5.7761	nan	0.1000	0.4459
##	5	5.3374	nan	0.1000	0.3815
##	6	5.0229	nan	0.1000	0.2852
##	7	4.7392	nan	0.1000	0.2818
##	8	4.4323	nan	0.1000	0.1682
##	9	4.2010	nan	0.1000	0.2173
##	10	3.9190	nan	0.1000	0.1539
##	20	2.3973	nan	0.1000	0.0126
##	40	1.2163	nan	0.1000	0.0078
##	60	0.8634	nan	0.1000	-0.0088
##	80	0.7010	nan	0.1000	-0.0174
##	100	0.6125	nan	0.1000	-0.0047
##	120	0.5409	nan	0.1000	-0.0043
##	140	0.4880	nan	0.1000	-0.0087
##	160	0.4416	nan	0.1000	-0.0077
##	180	0.4022	nan	0.1000	-0.0087
##	200	0.3700	nan	0.1000	-0.0066
##	220	0.3326	nan	0.1000	-0.0048
##	240	0.3010	nan	0.1000	-0.0020
##	250	0.2897	nan	0.1000	-0.0057
##	T+	T : D :	V-1:4D	Q+ Q÷	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.4641	nan	0.1000	0.6228
##	2	6.7842	nan	0.1000	0.6612
##	3	6.2574	nan	0.1000	0.5100
##	4	5.6693	nan	0.1000	0.5417

5	5.2506	nan	0.1000	0.3664
6	4.8195	nan	0.1000	0.3499
7	4.4803	nan	0.1000	0.2959
8	4.1807	nan	0.1000	0.1964
9	3.9058	nan	0.1000	0.1460
10	3.6831	nan	0.1000	0.1246
20	2.1373	nan	0.1000	0.0659
40	1.0923	nan	0.1000	0.0073
60	0.7575	nan	0.1000	-0.0129
80	0.6127	nan	0.1000	-0.0132
100	0.5130	nan	0.1000	-0.0123
120	0.4313	nan	0.1000	-0.0060
140	0.3732	nan	0.1000	-0.0102
160	0.3229	nan	0.1000	-0.0040
180	0.2862	nan	0.1000	-0.0015
200	0.2556	nan	0.1000	-0.0035
220	0.2289	nan	0.1000	-0.0049
240	0.2066	nan	0.1000	-0.0024
250	0.1957	nan	0.1000	-0.0030
Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
1	8.0133	nan	0.1000	0.2136
2	7.6170	nan	0.1000	0.3813
3	7.2757	nan	0.1000	0.3566
4	6.9741	nan	0.1000	0.2780
5	6.7490	nan	0.1000	0.2272
6	6.6030	nan	0.1000	0.0955
7	6.3914	nan	0.1000	0.1949
8	6.2217	nan	0.1000	0.1345
9	6.0156	nan	0.1000	0.1629
		nan	0.1000	0.1217
20		nan	0.1000	0.0084
40		nan	0.1000	0.0072
		nan		0.0204
		nan		0.0177
		nan		-0.0056
120		nan		-0.0006
140		nan		-0.0059
		nan		-0.0029
		nan		0.0053
		nan		-0.0018
		nan		-0.0014
				-0.0089
250	0.9073	nan	0.1000	-0.0005
- .			a. ~.	-
lter	irainDeviance	ValidDeviance	StepSize	${\tt Improve}$
	6 7 8 9 10 20 40 160 180 250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 120 140 160 180 100 120	6 4.8195 7 4.4803 8 4.1807 9 3.9058 10 3.6831 20 2.1373 40 1.0923 60 0.7575 80 0.6127 100 0.5130 120 0.4313 140 0.3732 160 0.3229 180 0.2862 200 0.2556 220 0.2289 240 0.2066 250 0.1957 Iter TrainDeviance 1 8.0133 2 7.6170 3 7.2757 4 6.9741 5 6.7490 6 6.6030 7 6.3914 8 6.2217 9 6.0156 10 5.8483 20 4.7672 40 3.5325 60 2.7373 80 2.2393 100 1.8533 120 1.5588 140 1.3684 160 1.2137 180 1.0929 200 1.0225 220 0.9612 240 0.9268 250 0.9073	6 4.8195 nan 7 4.4803 nan 8 4.1807 nan 9 3.9058 nan 10 3.6831 nan 20 2.1373 nan 40 1.0923 nan 60 0.7575 nan 80 0.6127 nan 100 0.5130 nan 120 0.4313 nan 140 0.3732 nan 160 0.3229 nan 180 0.2862 nan 200 0.2556 nan 220 0.2289 nan 240 0.2066 nan 250 0.1957 nan Iter TrainDeviance ValidDeviance 1 8.0133 nan 2 7.6170 nan 3 7.2757 nan 4 6.9741 nan 5 6.7490 nan 6 6.6030 nan 7 6.3914 nan 8 6.2217 nan 9 6.0156 nan 10 5.8483 nan 20 4.7672 nan 40 3.5325 nan 60 2.7373 nan 80 2.2393 nan 100 1.8533 nan 120 1.5588 nan 140 1.3684 nan 160 1.2137 nan 180 1.0929 nan 180 1.0929 nan 200 1.0225 nan 220 0.9612 nan 250 0.9073 nan	6 4.8195 nan 0.1000 7 4.4803 nan 0.1000 8 4.1807 nan 0.1000 9 3.9058 nan 0.1000 10 3.6831 nan 0.1000 20 2.1373 nan 0.1000 60 0.7575 nan 0.1000 100 0.5130 nan 0.1000 120 0.4313 nan 0.1000 120 0.4313 nan 0.1000 140 0.3732 nan 0.1000 180 0.2862 nan 0.1000 200 0.2556 nan 0.1000 200 0.2556 nan 0.1000 240 0.2066 nan 0.1000 250 0.1957 nan 0.1000 1

##	1	7.6769	nan	0.1000	0.4910
##	2	7.1336	nan	0.1000	0.4624
##	3	6.7130	nan	0.1000	0.3977
##	4	6.3914	nan	0.1000	0.2512
##	5	6.0813	nan	0.1000	0.3267
##	6	5.8205	nan	0.1000	0.1912
##	7	5.5575	nan	0.1000	0.1760
##	8	5.3300	nan	0.1000	0.1566
##	9	5.1406	nan	0.1000	0.0895
##	10	4.9999	nan	0.1000	0.0993
##	20	3.4990	nan	0.1000	0.1416
##	40	2.1301	nan	0.1000	0.0205
##	60	1.4553	nan	0.1000	-0.0010
##	80	1.1386	nan	0.1000	-0.0129
##	100	0.9532	nan	0.1000	-0.0062
##	120	0.8461	nan	0.1000	-0.0020
##	140	0.7941	nan	0.1000	-0.0103
##	160	0.7479	nan	0.1000	-0.0069
##	180	0.7076	nan	0.1000	-0.0046
##	200	0.6764	nan	0.1000	-0.0034
##	220	0.6375	nan	0.1000	-0.0039
##	240	0.6118	nan	0.1000	-0.0084
##	250	0.5967	nan	0.1000	-0.0038
##					
## ##	Iter	TrainDeviance	nan ValidDeviance	StepSize	Improve
## ## ##	Iter 1	TrainDeviance 7.5573		StepSize 0.1000	Improve 0.6889
## ## ## ##	Iter	TrainDeviance 7.5573 6.9522	ValidDeviance	StepSize 0.1000 0.1000	Improve 0.6889 0.5641
## ## ## ##	Iter 1 2 3	TrainDeviance 7.5573 6.9522 6.4789	ValidDeviance nan	StepSize 0.1000 0.1000 0.1000	Improve 0.6889 0.5641 0.3647
## ## ## ## ##	Iter 1 2 3 4	TrainDeviance 7.5573 6.9522 6.4789 6.1178	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.6889 0.5641 0.3647 0.1990
## ## ## ## ##	Iter 1 2 3 4 5	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.6889 0.5641 0.3647 0.1990 0.3137
## ## ## ## ## ##	Iter	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295	ValidDeviance nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791	ValidDeviance nan nan nan nan nan nan nan	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212	ValidDeviance nan nan nan nan nan nan nan nan	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779
## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099
## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061
## ## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896 0.7621	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082 -0.0069
## ###################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896 0.7621 0.6690	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082 -0.0069 -0.0080
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896 0.7621 0.6690 0.6158	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082 -0.0069 -0.0080 -0.0050
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896 0.7621 0.6690 0.6158 0.5707	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082 -0.0069 -0.0050 -0.0019
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896 0.7621 0.6690 0.6158 0.5707 0.5336	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082 -0.0069 -0.0080 -0.0050 -0.0019 -0.0046
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	TrainDeviance 7.5573 6.9522 6.4789 6.1178 5.7289 5.4295 5.0791 4.8212 4.5435 4.3324 2.8598 1.5947 1.0802 0.8896 0.7621 0.6690 0.6158 0.5707	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.6889 0.5641 0.3647 0.1990 0.3137 0.1935 0.2922 0.2147 0.1970 0.1800 0.0779 0.0099 -0.0061 -0.0082 -0.0069 -0.0050 -0.0019

##	240	0.4323	nan	0.1000	-0.0052
##	250	0.4196	nan	0.1000	-0.0041
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.4906	nan	0.1000	0.6789
##	2	6.9506	nan	0.1000	0.3624
##	3	6.3953	nan	0.1000	0.4020
##	4	5.9823	nan	0.1000	0.3891
##	5	5.5966	nan	0.1000	0.2061
##	6	5.1879	nan	0.1000	0.2865
##	7	4.8319	nan	0.1000	0.2808
##	8	4.5432	nan	0.1000	0.2153
##	9	4.2635	nan	0.1000	0.2355
##	10	3.9960	nan	0.1000	0.1091
##	20	2.4108	nan	0.1000	0.1056
##	40	1.2650	nan	0.1000	0.0002
##	60	0.8721	nan	0.1000	0.0013
##	80	0.6979	nan	0.1000	-0.0035
##	100	0.5984	nan	0.1000	-0.0062
##	120	0.5296	nan	0.1000	-0.0059
##	140	0.4772	nan	0.1000	-0.0068
##	160	0.4300	nan	0.1000	-0.0125
##	180	0.3866	nan	0.1000	-0.0057
##	200	0.3463	nan	0.1000	-0.0064
##	220	0.3136	nan	0.1000	-0.0027
##	240	0.2853	nan	0.1000	-0.0041
##	250	0.2719	nan	0.1000	-0.0052
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.4823	nan	0.1000	0.6726
##	2	6.8225	nan	0.1000	0.6054
##	3	6.2303	nan	0.1000	0.4431
##	4	5.7262	nan	0.1000	0.3136
##	5	5.2917	nan	0.1000	0.3020
##	6	4.9481	nan	0.1000	0.2905
##	7	4.5620	nan	0.1000	0.2910
##	8	4.3225	nan	0.1000	0.1791
##	9	4.0699	nan	0.1000	0.2349
##	10	3.8179	nan	0.1000	0.1849
##	20	2.3059	nan	0.1000	0.0418
##	40	1.1688	nan	0.1000	-0.0035
##	60	0.7851	nan	0.1000	0.0072
##	80	0.6170	nan	0.1000	-0.0038
##	100	0.5177	nan	0.1000	-0.0026
##	120	0.4381	nan	0.1000	-0.0056
##	140	0.3801	nan	0.1000	-0.0035

##	160	0.3340	nan	0.1000	-0.0031
##	180	0.2933	nan	0.1000	-0.0080
##	200	0.2558	nan	0.1000	-0.0058
##	220	0.2289	nan	0.1000	-0.0028
##	240	0.2021	nan	0.1000	-0.0050
##	250	0.1882	nan	0.1000	-0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.4102	nan	0.1000	0.3839
##	2	7.0494	nan	0.1000	0.3040
##	3	6.8614	nan	0.1000	0.1707
##	4	6.6267	nan	0.1000	0.2365
##	5	6.4159	nan	0.1000	0.2192
##	6	6.2072	nan	0.1000	0.1818
##	7	5.9995	nan	0.1000	0.1441
##	8	5.8238	nan	0.1000	0.1470
##	9	5.6784	nan	0.1000	0.0881
##	10	5.5111	nan	0.1000	0.1191
##	20	4.4453	nan	0.1000	0.0629
##	40	3.2797	nan	0.1000	0.0303
##	60	2.5893	nan	0.1000	0.0080
##	80	2.1025	nan	0.1000	-0.0054
##	100	1.7328	nan	0.1000	0.0016
##	120	1.5056	nan	0.1000	0.0039
##	140	1.3304	nan	0.1000	-0.0021
##	160	1.2081	nan	0.1000	-0.0085
##	180	1.1043	nan	0.1000	0.0002
##	200	1.0182	nan	0.1000	0.0011
##	220	0.9519	nan	0.1000	-0.0138
##	240	0.9161	nan	0.1000	-0.0036
##	250	0.9019	nan	0.1000	-0.0080
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.3296	nan	0.1000	0.5238
##	2	6.8236	nan	0.1000	0.4935
##	3	6.4024	nan	0.1000	0.3814
##	4	6.0460	nan	0.1000	0.3352
##	5	5.7799	nan	0.1000	0.2079
##	6	5.5073	nan	0.1000	0.2249
##	7	5.2509	nan	0.1000	0.1626
##	8	5.0841	nan	0.1000	0.0927
##	9	4.8799	nan	0.1000	0.1436
##	10	4.7477	nan	0.1000	0.0329
##	20	3.3287	nan	0.1000	0.0705
##	40	2.0283	nan	0.1000	0.0048
##	60	1.3816	nan	0.1000	0.0072

##	80	1.0728	nan	0.1000	-0.0016
##	100	0.9094	nan	0.1000	0.0076
##	120	0.8114	nan	0.1000	-0.0058
##	140	0.7446	nan	0.1000	-0.0069
##	160	0.7042	nan	0.1000	-0.0008
##	180	0.6679	nan	0.1000	-0.0038
##	200	0.6315	nan	0.1000	-0.0026
##	220	0.6063	nan	0.1000	-0.0076
##	240	0.5797	nan	0.1000	-0.0034
##	250	0.5662	nan	0.1000	-0.0046
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.2648	nan	0.1000	0.6118
##	2	6.7163	nan	0.1000	0.5338
##	3	6.2474	nan	0.1000	0.4288
##	4	5.8703	nan	0.1000	0.2640
##	5	5.5532	nan	0.1000	0.3193
##	6	5.2463	nan	0.1000	0.3198
##	7	4.9416	nan	0.1000	0.1943
##	8	4.6990	nan	0.1000	0.1722
##	9	4.4949	nan	0.1000	0.1469
##	10	4.2995	nan	0.1000	0.1804
##	20	2.7721	nan	0.1000	0.0861
##	40	1.4803	nan	0.1000	0.0123
##	60	1.0423	nan	0.1000	-0.0095
##	80	0.8424	nan	0.1000	0.0072
##	100	0.7137	nan	0.1000	-0.0079
##	120	0.6440	nan	0.1000	-0.0074
##	140	0.5827	nan	0.1000	-0.0044
##	160	0.5432	nan	0.1000	-0.0097
##	180	0.5079	nan	0.1000	-0.0044
##	200	0.4749	nan	0.1000	-0.0006
##	220	0.4448	nan	0.1000	-0.0068
##	240	0.4197	nan	0.1000	-0.0041
##	250	0.4073	nan	0.1000	-0.0040
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.1301	nan	0.1000	0.6518
##	2	6.4611	nan	0.1000	0.5540
##	3	5.8979	nan	0.1000	0.4264
##	4	5.4531	nan	0.1000	0.3997
##	5	5.0649	nan	0.1000	0.2551
##	6	4.7495	nan	0.1000	0.2099
##	7	4.4799	nan	0.1000	0.2317
##	8	4.1899	nan	0.1000	0.2269
##	9	4.0084	nan	0.1000	0.0679

##	10	3.8183	nan	0.1000	0.0965
##	20	2.3118	nan	0.1000	0.0409
##	40	1.2467	nan	0.1000	0.0054
##	60	0.8880	nan	0.1000	-0.0007
##	80	0.7226	nan	0.1000	-0.0048
##	100	0.6209	nan	0.1000	-0.0051
##	120	0.5444	nan	0.1000	-0.0087
##	140	0.4935	nan	0.1000	-0.0049
##	160	0.4445	nan	0.1000	-0.0053
##	180	0.3989	nan	0.1000	-0.0063
##	200	0.3638	nan	0.1000	-0.0079
##	220	0.3337	nan	0.1000	-0.0052
##	240	0.3055	nan	0.1000	-0.0048
##	250	0.2926	nan	0.1000	-0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.1126	nan	0.1000	0.7800
##	2	6.4349	nan	0.1000	0.5736
##	3	5.8711	nan	0.1000	0.5557
##	4	5.4355	nan	0.1000	0.3727
##	5	5.0058	nan	0.1000	0.2490
##	6	4.5813	nan	0.1000	0.2892
##	7	4.2200	nan	0.1000	0.3013
##	8	3.8990	nan	0.1000	0.2893
##	9	3.6677	nan	0.1000	0.1964
##	10	3.4290	nan	0.1000	0.1762
##	20	2.1135	nan	0.1000	0.0418
##	40	1.0761	nan	0.1000	-0.0015
##	60	0.7465	nan	0.1000	-0.0119
##	80	0.6002	nan	0.1000	-0.0082
##	100	0.4915	nan	0.1000	-0.0042
##	120	0.4217	nan	0.1000	-0.0055
##	140	0.3558	nan	0.1000	-0.0027
##	160	0.3103	nan	0.1000	-0.0039
##	180	0.2649	nan	0.1000	-0.0052
##	200	0.2323	nan	0.1000	-0.0017
##	220	0.2076	nan	0.1000	-0.0018
##	240	0.1858	nan	0.1000	-0.0025
##	250	0.1740	nan	0.1000	-0.0033
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.3456	nan	0.1000	0.2909
##	2	7.1114	nan	0.1000	0.1263
##	3	6.7570	nan	0.1000	0.2751
##	4	6.5482	nan	0.1000	0.1337
##	5	6.3257	nan	0.1000	0.2345

##	6	6.1206	nan	0.1000	0.1383
##	7	5.9301	nan	0.1000	0.1914
##	8	5.7797	nan	0.1000	0.1295
##	9	5.6019	nan	0.1000	0.1135
##	10	5.4685	nan	0.1000	0.0847
##	20	4.4722	nan	0.1000	0.0460
##	40	3.3338	nan	0.1000	0.0101
##	60	2.6477	nan	0.1000	0.0048
##	80	2.1648	nan	0.1000	0.0153
##	100	1.7916	nan	0.1000	-0.0011
##	120	1.5267	nan	0.1000	0.0018
##	140	1.3281	nan	0.1000	-0.0029
##	160	1.1995	nan	0.1000	-0.0011
##	180	1.1018	nan	0.1000	0.0001
##	200	1.0288	nan	0.1000	-0.0059
##	220	0.9667	nan	0.1000	-0.0033
##	240	0.9174	nan	0.1000	-0.0045
##	250	0.8974	nan	0.1000	-0.0025
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.1892	nan	0.1000	0.5473
##	2	6.7512	nan	0.1000	0.4586
##	3	6.4426	nan	0.1000	0.2760
##	4	6.1358	nan	0.1000	0.2140
##	5	5.8079	nan	0.1000	0.2639
##	6	5.5512	nan	0.1000	0.2127
##	7	5.3613	nan	0.1000	0.1317
##	8	5.0590	nan	0.1000	0.2354
##	9	4.9117	nan	0.1000	0.1361
##	10	4.7130	nan	0.1000	0.1626
##	20	3.4020	nan	0.1000	0.0257
##	40	2.0751	nan	0.1000	0.0224
##	60	1.4101	nan	0.1000	-0.0005
##	80	1.1014	nan	0.1000	0.0065
##	100	0.9405	nan	0.1000	-0.0067
##	120	0.8391	nan	0.1000	-0.0066
##	140	0.7718	nan	0.1000	-0.0054
##	160	0.7291	nan	0.1000	-0.0095
##	180	0.6810	nan	0.1000	-0.0036
##	200	0.6457	nan	0.1000	-0.0071
##	220	0.6189	nan	0.1000	-0.0034
##	240	0.5895	nan	0.1000	-0.0023
##	250	0.5794	nan	0.1000	-0.0084
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.1359	nan	0.1000	0.6309

##	2	6.5967	nan	0.1000	0.4591
##	3	6.1698	nan	0.1000	0.4132
##	4	5.7599	nan	0.1000	0.3928
##	5	5.4519	nan	0.1000	0.3237
##	6	5.1401	nan	0.1000	0.2872
##	7	4.9050	nan	0.1000	0.1392
##	8	4.6196	nan	0.1000	0.2846
##	9	4.3738	nan	0.1000	0.1828
##	10	4.1835	nan	0.1000	0.1700
##	20	2.8099	nan	0.1000	0.0580
##	40	1.6151	nan	0.1000	-0.0065
##	60	1.1301	nan	0.1000	0.0002
##	80	0.8944	nan	0.1000	-0.0077
##	100	0.7517	nan	0.1000	-0.0139
##	120	0.6730	nan	0.1000	-0.0085
##	140	0.6057	nan	0.1000	-0.0038
##	160	0.5547	nan	0.1000	-0.0097
##	180	0.5094	nan	0.1000	-0.0103
##	200	0.4766	nan	0.1000	-0.0066
##	220	0.4450	nan	0.1000	-0.0040
##	240	0.4151	nan	0.1000	-0.0027
##	250	0.4013	nan	0.1000	-0.0047
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
## ##	Iter 1	TrainDeviance 7.0294	ValidDeviance nan	StepSize 0.1000	Improve 0.7373
				_	_
##	1	7.0294	nan	0.1000	0.7373
## ##	1 2	7.0294 6.4316	nan nan	0.1000 0.1000	0.7373 0.6149
## ## ##	1 2 3	7.0294 6.4316 5.9113	nan nan nan	0.1000 0.1000 0.1000	0.7373 0.6149 0.3359
## ## ## ##	1 2 3 4	7.0294 6.4316 5.9113 5.5546	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535
## ## ## ##	1 2 3 4 5	7.0294 6.4316 5.9113 5.5546 5.1917	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802
## ## ## ## ##	1 2 3 4 5 6	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563
## ## ## ## ##	1 2 3 4 5 6 7	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089
## ## ## ## ## ##	1 2 3 4 5 6 7 8	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893
## ## ## ## ## ##	1 2 3 4 5 6 7 8	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058
## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128
## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737 0.5934	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097
## # # # # # # # # # # # # # # # # # #	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737 0.5934 0.5242	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097 -0.0050
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737 0.5934 0.5242 0.4705	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097 -0.0050 -0.0050
## ###################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737 0.5934 0.5242 0.4705 0.4233	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097 -0.0050 -0.0050 -0.0078
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737 0.5934 0.5242 0.4705 0.4233 0.3867	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097 -0.0050 -0.0078 -0.0076
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	7.0294 6.4316 5.9113 5.5546 5.1917 4.8371 4.5468 4.3248 4.0651 3.8138 2.3320 1.2332 0.8464 0.6737 0.5934 0.5242 0.4705 0.4233 0.3867 0.3531	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.7373 0.6149 0.3359 0.3535 0.2802 0.3563 0.2089 0.1893 0.1052 0.1666 0.0422 0.0086 0.0058 -0.0128 -0.0097 -0.0050 -0.0078 -0.0076 -0.0040

## ##	250	0.2843	nan	0.1000	-0.0029
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.0098	nan	0.1000	0.5845
##	2	6.3343	nan	0.1000	0.4158
##	3	5.8514	nan	0.1000	0.3832
##	4	5.3437	nan	0.1000	0.4617
##	5	4.9793	nan	0.1000	0.3545
##	6	4.6111	nan	0.1000	0.3660
##	7	4.2957	nan	0.1000	0.2518
##	8	3.9570	nan	0.1000	0.2273
##	9	3.7320	nan	0.1000	0.1854
##	10	3.5140	nan	0.1000	0.1503
##	20	2.1057	nan	0.1000	0.0764
##	40	1.0592	nan	0.1000	0.0046
##	60	0.7323	nan	0.1000	-0.0010
##	80	0.5881	nan	0.1000	-0.0058
##	100	0.4956	nan	0.1000	-0.0051
##	120	0.4248	nan	0.1000	-0.0025
##	140	0.3718	nan	0.1000	-0.0073
##	160	0.3294	nan	0.1000	-0.0062
##	180	0.2819	nan	0.1000	-0.0026
##	200	0.2497	nan	0.1000	-0.0034
##	220	0.2233	nan	0.1000	-0.0058
##	240	0.1990	nan	0.1000	-0.0018
##	250	0.1871	nan	0.1000	-0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.5868	nan	0.1000	0.4115
##	2	7.2833	nan	0.1000	0.2331
##	3	7.0345	nan	0.1000	0.2570
##	4	6.8101	nan	0.1000	0.1071
##	5	6.5893	nan	0.1000	0.1563
##	6	6.3092	nan	0.1000	0.1664
##	7	6.1025	nan	0.1000	0.1476
##	8	5.9663	nan	0.1000	0.0749
##	9	5.7474	nan	0.1000	0.1445
##	10	5.5960	nan	0.1000	0.0876
##	20	4.4901	nan	0.1000	0.0532
##	40	3.2925	nan	0.1000	0.0364
##	60	2.6190	nan	0.1000	0.0090
##	80	2.1208	nan	0.1000	0.0132
##	100	1.7732	nan	0.1000	-0.0007
##	120	1.5132	nan	0.1000	0.0046
##	140	1.3283	nan	0.1000	0.0031
##	160	1.1925	nan	0.1000	-0.0002

##	180	1.0847	nan	0.1000	-0.0013
##	200	0.9981	nan	0.1000	-0.0003
##	220	0.9475	nan	0.1000	-0.0035
##	240	0.9021	nan	0.1000	-0.0047
##	250	0.8843	nan	0.1000	-0.0029
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.3282	nan	0.1000	0.5172
##	2	6.9512	nan	0.1000	0.3872
##	3	6.5318	nan	0.1000	0.3539
##	4	6.1978	nan	0.1000	0.2757
##	5	5.9066	nan	0.1000	0.2460
##	6	5.6366	nan	0.1000	0.2517
##	7	5.3731	nan	0.1000	0.1878
##	8	5.1982	nan	0.1000	0.1405
##	9	5.0115	nan	0.1000	0.1659
##	10	4.8495	nan	0.1000	0.1095
##	20	3.3891	nan	0.1000	0.1033
##	40	2.0749	nan	0.1000	0.0310
##	60	1.4400	nan	0.1000	0.0118
##	80	1.1141	nan	0.1000	0.0030
##	100	0.9360	nan	0.1000	0.0034
##	120	0.8234	nan	0.1000	-0.0051
##	140	0.7648	nan	0.1000	-0.0025
##	160	0.7108	nan	0.1000	-0.0075
##	180	0.6698	nan	0.1000	-0.0052
##	200	0.6366	nan	0.1000	-0.0069
##	220	0.6020	nan	0.1000	-0.0060
##	240	0.5770	nan	0.1000	-0.0049
##	250	0.5640	nan	0.1000	-0.0035
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.2616	nan	0.1000	0.6773
##	2	6.8094	nan	0.1000	0.2167
##	3	6.3219	nan	0.1000	0.4713
##	4	5.9148	nan	0.1000	0.3566
##	5	5.5959	nan	0.1000	0.2337
##	6	5.2724	nan	0.1000	0.3200
##	7	4.9638	nan	0.1000	0.1900
##	8	4.7283	nan	0.1000	0.1678
##	9	4.5198	nan	0.1000	0.1260
##	10	4.3024	nan	0.1000	0.1451
##	20	2.7404	nan	0.1000	0.0379
##	40	1.5392	nan	0.1000	-0.0055
##	60	1.0399	nan	0.1000	0.0123
##	80	0.8192	nan	0.1000	0.0004

##	100	0.7016	nan	0.1000	-0.0083
##	120	0.6325	nan	0.1000	-0.0080
##	140	0.5744	nan	0.1000	-0.0063
##	160	0.5259	nan	0.1000	-0.0054
##	180	0.4819	nan	0.1000	-0.0111
##	200	0.4502	nan	0.1000	-0.0055
##	220	0.4164	nan	0.1000	-0.0031
##	240	0.3874	nan	0.1000	-0.0056
##	250	0.3749	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.4180	nan	0.1000	0.3827
##	2	6.7805	nan	0.1000	0.4994
##	3	6.2576	nan	0.1000	0.4550
##	4	5.8389	nan	0.1000	0.2288
##	5	5.4627	nan	0.1000	0.3687
##	6	5.1119	nan	0.1000	0.3303
##	7	4.7963	nan	0.1000	0.3248
##	8	4.5143	nan	0.1000	0.2401
##	9	4.2403	nan	0.1000	0.1986
##	10	4.0630	nan	0.1000	0.1325
##	20	2.4827	nan	0.1000	0.0652
##	40	1.2766	nan	0.1000	0.0153
##	60	0.8585	nan	0.1000	-0.0103
##	80	0.6931	nan	0.1000	-0.0009
##	100	0.5966	nan	0.1000	-0.0085
##	120	0.5283	nan	0.1000	-0.0111
##	140	0.4718	nan	0.1000	-0.0106
##	160	0.4263	nan	0.1000	-0.0058
##	180	0.3870	nan	0.1000	-0.0051
##	200	0.3533	nan	0.1000	-0.0027
##	220	0.3194	nan	0.1000	-0.0032
##	240	0.2922	nan	0.1000	-0.0019
##	250	0.2785	nan	0.1000	-0.0040
##	Ttom	TwoinDowinnes	ValidDeviance	C+onCiao	Tmnmarra
##	Iter 1	TrainDeviance 7.1462		StepSize	Improve 0.6854
##	2	6.5338	nan	0.1000 0.1000	0.3961
##	3	6.0020	nan	0.1000	0.4159
##	4	5.5196	nan	0.1000	0.4139
##	5	5.0940	nan	0.1000	0.3601
##	6	4.7927	nan	0.1000	0.2963
##	7	4.4249	nan	0.1000	0.2827
##	8	4.1084	nan	0.1000	0.2027
##	9	3.8253	nan	0.1000	0.2133
##	10	3.6343	nan	0.1000	0.1233
##	10	3.0343	nan	0.1000	0.1233

##	20	2.1522	nan	0.1000	0.0354
##	40	1.0580	nan	0.1000	0.0161
##	60	0.7191	nan	0.1000	0.0018
##	80	0.5670	nan	0.1000	-0.0057
##	100	0.4832	nan	0.1000	-0.0050
##	120	0.4124	nan	0.1000	-0.0054
##	140	0.3602	nan	0.1000	-0.0078
##	160	0.3179	nan	0.1000	-0.0036
##	180	0.2778	nan	0.1000	-0.0047
##	200	0.2450	nan	0.1000	-0.0059
##	220	0.2183	nan	0.1000	-0.0040
##	240	0.1929	nan	0.1000	-0.0048
##	250	0.1839	nan	0.1000	-0.0040
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.4540	nan	0.1000	0.3641
##	2	7.1373	nan	0.1000	0.3291
##	3	6.8416	nan	0.1000	0.2730
##	4	6.5864	nan	0.1000	0.1830
##	5	6.3867	nan	0.1000	0.1603
##	6	6.1413	nan	0.1000	0.2019
##	7	5.9610	nan	0.1000	0.1395
##	8	5.8194	nan	0.1000	0.1027
##	9	5.6546	nan	0.1000	0.0827
##	10	5.4631	nan	0.1000	0.0971
##	20	4.3922	nan	0.1000	0.0188
##	40	3.2426	nan	0.1000	0.0345
##	60	2.5668	nan	0.1000	0.0223
##	80	2.0713	nan	0.1000	0.0088
##	100	1.7438	nan	0.1000	-0.0065
##	120	1.4921	nan	0.1000	0.0043
##	140	1.3219	nan	0.1000	0.0085
##	160	1.1951	nan	0.1000	0.0011
##	180	1.1011	nan	0.1000	-0.0045
##	200	1.0331	nan	0.1000	-0.0013
##	220	0.9765	nan	0.1000	-0.0020
##	240	0.9362	nan	0.1000	-0.0053
##	250	0.9130	nan	0.1000	0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.2752	nan	0.1000	0.5651
##	2	6.7895	nan	0.1000	0.4457
##	3	6.4533	nan	0.1000	0.2484
##	4	6.1292	nan	0.1000	0.3299
##	5	5.8643	nan	0.1000	0.2757
##	6	5.6456	nan	0.1000	0.1455

##	7	5.3780	nan	0.1000	0.2465
##	8	5.1363	nan	0.1000	0.1833
##	9	4.9400	nan	0.1000	0.1011
##	10	4.7344	nan	0.1000	0.1801
##	20	3.2834	nan	0.1000	0.0459
##	40	2.0454	nan	0.1000	0.0186
##	60	1.4428	nan	0.1000	0.0008
##	80	1.0931	nan	0.1000	0.0050
##	100	0.9245	nan	0.1000	-0.0066
##	120	0.8152	nan	0.1000	-0.0040
##	140	0.7456	nan	0.1000	-0.0028
##	160	0.6979	nan	0.1000	-0.0052
##	180	0.6573	nan	0.1000	-0.0035
##	200	0.6239	nan	0.1000	-0.0037
##	220	0.5949	nan	0.1000	-0.0042
##	240	0.5695	nan	0.1000	-0.0039
##	250	0.5578	nan	0.1000	-0.0039
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.2004	nan	0.1000	0.5575
##	2	6.6875	nan	0.1000	0.5080
##	3	6.1988	nan	0.1000	0.4364
##	4	5.7727	nan	0.1000	0.3191
##	5	5.4082	nan	0.1000	0.3497
##	6	5.1722	nan	0.1000	0.1589
##	7	4.8592	nan	0.1000	0.1847
##	8	4.6133	nan	0.1000	0.2159
##	9	4.3824	nan	0.1000	0.2002
##	10	4.1895	nan	0.1000	0.1182
##	20	2.7390	nan	0.1000	0.0733
##	40	1.5162	nan	0.1000	-0.0008
##	60	1.0207	nan	0.1000	0.0026
##	80	0.8292	nan	0.1000	-0.0016
##	100	0.7057	nan	0.1000	-0.0089
##	120	0.6346	nan	0.1000	-0.0085
##	140	0.5675	nan	0.1000	-0.0056
##	160	0.5176	nan	0.1000	-0.0074
##	180	0.4752	nan	0.1000	-0.0050
##	200	0.4333	nan	0.1000	-0.0054
##	220	0.4032	nan	0.1000	-0.0070
##	240	0.3743	nan	0.1000	-0.0022
##	250	0.3642	nan	0.1000	-0.0062
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.1706	nan	0.1000	0.6334
##	2	6.5472	nan	0.1000	0.5452

##	3	5.9610	nan	0.1000	0.4332
##	4	5.5223	nan	0.1000	0.3950
##	5	5.1475	nan	0.1000	0.2716
##	6	4.8185	nan	0.1000	0.2069
##	7	4.5333	nan	0.1000	0.2125
##	8	4.2886	nan	0.1000	0.2125
##	9	4.0286	nan	0.1000	0.1507
##	10	3.8317	nan	0.1000	0.1457
##	20	2.3895	nan	0.1000	0.0665
##	40	1.2552	nan	0.1000	0.0223
##	60	0.8795	nan	0.1000	0.0039
##	80	0.7069	nan	0.1000	-0.0107
##	100	0.6120	nan	0.1000	-0.0067
##	120	0.5331	nan	0.1000	-0.0065
##	140	0.4731	nan	0.1000	-0.0091
##	160	0.4256	nan	0.1000	-0.0038
##	180	0.3789	nan	0.1000	-0.0053
##	200	0.3447	nan	0.1000	-0.0045
##	220	0.3123	nan	0.1000	-0.0067
##	240	0.2807	nan	0.1000	-0.0018
##	250	0.2696	nan	0.1000	-0.0060
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.1181	nan	0.1000	0.6333
##	2	6.4637	nan	0.1000	0.5209
##	3	5.8982	nan	0.1000	0.5202
##	4	5.4003	nan	0.1000	0.3026
##	5	4.9882	nan	0.1000	0.2926
##	6	4.6393	nan	0.1000	0.2601
##	7	4.3294	nan	0.1000	0.2207
##	8	4.0488	nan		
##			nan	0.1000	0.2276
	9	3.7542	nan	0.1000	0.2489
##	10	3.5442		0.1000 0.1000	0.2489 0.1313
## ##	10 20	3.5442 2.0640	nan	0.1000 0.1000 0.1000	0.2489 0.1313 0.0561
	10 20 40	3.5442 2.0640 1.0503	nan nan	0.1000 0.1000 0.1000 0.1000	0.2489 0.1313 0.0561 0.0116
## ## ##	10 20 40 60	3.5442 2.0640	nan nan nan	0.1000 0.1000 0.1000	0.2489 0.1313 0.0561 0.0116 -0.0011
## ## ## ##	10 20 40 60 80	3.5442 2.0640 1.0503 0.7338 0.5913	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046
## ## ## ##	10 20 40 60 80 100	3.5442 2.0640 1.0503 0.7338 0.5913 0.4891	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047
## ## ## ## ##	10 20 40 60 80 100 120	3.5442 2.0640 1.0503 0.7338 0.5913 0.4891 0.4050	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047 -0.0044
## ## ## ## ## ##	10 20 40 60 80 100 120 140	3.5442 2.0640 1.0503 0.7338 0.5913 0.4891 0.4050 0.3428	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047 -0.0044 -0.0083
## ## ## ## ## ##	10 20 40 60 80 100 120 140	3.5442 2.0640 1.0503 0.7338 0.5913 0.4891 0.4050 0.3428 0.2935	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047 -0.0083 -0.0027
## ## ## ## ## ##	10 20 40 60 80 100 120 140 160	3.5442 2.0640 1.0503 0.7338 0.5913 0.4891 0.4050 0.3428 0.2935 0.2561	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047 -0.0083 -0.0027 0.0005
## ## ## ## ## ## ##	10 20 40 60 80 100 120 140 160 180 200	3.5442 2.0640 1.0503 0.7338 0.5913 0.4891 0.4050 0.3428 0.2935 0.2561 0.2280	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047 -0.0044 -0.0083 -0.0027 0.0005 -0.0051
## ## ## ## ## ## ##	10 20 40 60 80 100 120 140 160 180 200 220	3.5442 2.0640 1.0503 0.7338 0.5913 0.4891 0.4050 0.3428 0.2935 0.2561 0.2280 0.1969	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047 -0.0044 -0.0083 -0.0027 0.0005 -0.0051 -0.0034
## ## ## ## ## ## ##	10 20 40 60 80 100 120 140 160 180 200	3.5442 2.0640 1.0503 0.7338 0.5913 0.4891 0.4050 0.3428 0.2935 0.2561 0.2280	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.2489 0.1313 0.0561 0.0116 -0.0011 -0.0046 -0.0047 -0.0044 -0.0083 -0.0027 0.0005 -0.0051

##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.9913	nan	0.1000	0.3761
##	2	7.7852	nan	0.1000	0.1808
##	3	7.4353	nan	0.1000	0.3342
##	4	7.2002	nan	0.1000	0.1743
##	5	6.8764	nan	0.1000	0.3014
##	6	6.7249	nan	0.1000	0.1377
##	7	6.5608	nan	0.1000	0.0969
##	8	6.3857	nan	0.1000	0.1119
##	9	6.2081	nan	0.1000	0.2099
##	10	6.0676	nan	0.1000	0.0350
##	20	4.8481	nan	0.1000	0.0326
##	40	3.5311	nan	0.1000	0.0243
##	60	2.7637	nan	0.1000	-0.0042
##	80	2.2298	nan	0.1000	0.0035
##	100	1.8541	nan	0.1000	0.0040
##	120	1.5720	nan	0.1000	-0.0142
##	140	1.3723	nan	0.1000	0.0089
##	160	1.2296	nan	0.1000	-0.0073
##	180	1.1206	nan	0.1000	-0.0095
##	200	1.0353	nan	0.1000	-0.0009
##	220	0.9629	nan	0.1000	-0.0014
##	240	0.9290	nan	0.1000	-0.0011
##	250	0.9156	nan	0.1000	-0.0036
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.7709	nan	0.1000	0.4607
##	2	7.2930	nan	0.1000	0.4519
##	3	6.7154	nan	0.1000	0.2983
##	4	6.4052	nan	0.1000	0.2385
##	5	6.0937	nan	0.1000	0.2545
##	6	5.7996	nan	0.1000	0.2344
##	7	5.6159	nan	0.1000	0.1053
##	8	5.4356	nan	0.1000	0.1415
##	9	5.2146	nan	0.1000	0.1220
##	10	5.0671	nan	0.1000	0.1222
##	20	3.5111	nan	0.1000	0.0306
##	40	2.0860	nan	0.1000	0.0249
##	60	1.4474	nan	0.1000	0.0088
##	80	1.1308	nan	0.1000	-0.0062
##	100	0.9648	nan	0.1000	0.0020
##	120	0.8736	nan	0.1000	-0.0089
##	140	0.8043	nan	0.1000	-0.0064
##	160	0.7498	nan	0.1000	-0.0083
##	180	0.7018	nan	0.1000	0.0001

##	200	0.6598	nan	0.1000	-0.0037
##	220	0.6329	nan	0.1000	-0.0035
##	240	0.6049	nan	0.1000	-0.0068
##	250	0.5905	nan	0.1000	-0.0046
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.5947	nan	0.1000	0.5713
##	2	6.9919	nan	0.1000	0.5903
##	3	6.5417	nan	0.1000	0.4225
##	4	6.0968	nan	0.1000	0.3213
##	5	5.7124	nan	0.1000	0.3371
##	6	5.3694	nan	0.1000	0.2772
##	7	5.0464	nan	0.1000	0.2062
##	8	4.7692	nan	0.1000	0.2608
##	9	4.6153	nan	0.1000	0.0811
##	10	4.4195	nan	0.1000	0.0977
##	20	2.9502	nan	0.1000	0.1132
##	40	1.5511	nan	0.1000	0.0204
##	60	1.0570	nan	0.1000	0.0142
##	80	0.8503	nan	0.1000	-0.0047
##	100	0.7300	nan	0.1000	-0.0177
##	120	0.6452	nan	0.1000	-0.0077
##	140	0.5915	nan	0.1000	-0.0082
##	160	0.5400	nan	0.1000	-0.0058
##	180	0.5009	nan	0.1000	-0.0040
##	200	0.4669	nan	0.1000	-0.0059
##	220	0.4400	nan	0.1000	-0.0040
##	240	0.4131	nan	0.1000	-0.0079
##	250	0.4039	nan	0.1000	-0.0059
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.6580	nan	0.1000	0.6541
##	2	7.0177	nan	0.1000	0.5653
##	3	6.4657	nan	0.1000	0.5278
##	4	5.9869	nan	0.1000	0.4523
##	5	5.5715	nan	0.1000	0.3559
##	6	5.1874	nan	0.1000	0.2871
##	7	4.8558	nan	0.1000	0.2317
##	8	4.5402	nan	0.1000	0.2236
##	9	4.3011	nan	0.1000	0.1610
##	10	4.0022	nan	0.1000	0.2235
##	20	2.4352	nan	0.1000	0.0364
##	40	1.2432	nan	0.1000	0.0032
##	60	0.8629	nan	0.1000	-0.0036
##	80	0.7137	nan	0.1000	-0.0020
##	100	0.6171	nan	0.1000	-0.0102

##	120	0.5389	nan	0.1000	-0.0066
##	140	0.4772	nan	0.1000	-0.0067
##	160	0.4290	nan	0.1000	-0.0091
##	180	0.3873	nan	0.1000	-0.0116
##	200	0.3411	nan	0.1000	-0.0052
##	220	0.3122	nan	0.1000	-0.0030
##	240	0.2868	nan	0.1000	-0.0020
##	250	0.2726	nan	0.1000	-0.0027
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.4799	nan	0.1000	0.8543
##	2	6.8255	nan	0.1000	0.5990
##	3	6.2454	nan	0.1000	0.4987
##	4	5.7558	nan	0.1000	0.3832
##	5	5.3790	nan	0.1000	0.3350
##	6	5.0578	nan	0.1000	0.2406
##	7	4.7324	nan	0.1000	0.1941
##	8	4.3901	nan	0.1000	0.2642
##	9	4.0528	nan	0.1000	0.2389
##	10	3.7874	nan	0.1000	0.2426
##	20	2.1952	nan	0.1000	0.0768
##	40	1.1025	nan	0.1000	-0.0081
##	60	0.7689	nan	0.1000	-0.0002
##	80	0.6122	nan	0.1000	-0.0061
##	100	0.5200	nan	0.1000	-0.0109
##	120	0.4400	nan	0.1000	-0.0069
##	140	0.3837	nan	0.1000	-0.0055
##	160	0.3328	nan	0.1000	-0.0034
##	180	0.2920	nan	0.1000	-0.0077
##	200	0.2544	nan	0.1000	-0.0035
##	220	0.2241	nan	0.1000	-0.0036
##	240	0.1988	nan	0.1000	-0.0047
##	250	0.1865	nan	0.1000	-0.0028
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.2748	nan	0.1000	0.3849
##	2	6.9549	nan	0.1000	0.3086
##	3	6.6188	nan	0.1000	0.2131
##	4	6.3662	nan	0.1000	0.2414
##	5	6.1655	nan	0.1000	0.1744
##	6	5.9621	nan	0.1000	0.1800
##	7	5.7756	nan	0.1000	0.1729
##	8	5.6347	nan	0.1000	0.1348
##	9	5.5429	nan	0.1000	0.0634
##	10	5.3761	nan	0.1000	0.0928
##	20	4.3688	nan	0.1000	0.0591

##	40	3.2068	nan	0.1000	0.0402
##	60	2.5475	nan	0.1000	0.0114
##	80	2.0354	nan	0.1000	0.0023
##	100	1.7011	nan	0.1000	-0.0072
##	120	1.4362	nan	0.1000	-0.0015
##	140	1.2570	nan	0.1000	-0.0034
##	160	1.1369	nan	0.1000	0.0021
##	180	1.0223	nan	0.1000	-0.0062
##	200	0.9563	nan	0.1000	-0.0038
##	220	0.8991	nan	0.1000	-0.0058
##	240	0.8598	nan	0.1000	-0.0059
##	250	0.8460	nan	0.1000	-0.0086
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.1432	nan	0.1000	0.5851
##	2	6.7241	nan	0.1000	0.4090
##	3	6.2802	nan	0.1000	0.3640
##	4	5.9965	nan	0.1000	0.1559
##	5	5.7218	nan	0.1000	0.2864
##	6	5.4669	nan	0.1000	0.2326
##	7	5.1666	nan	0.1000	0.2190
##	8	4.9344	nan	0.1000	0.2265
##	9	4.7538	nan	0.1000	0.1466
##	10	4.5570	nan	0.1000	0.1311
##	20	3.2524	nan	0.1000	0.1132
##	40	1.9609	nan	0.1000	0.0491
##	60	1.3733	nan	0.1000	-0.0028
##	80	1.0764	nan	0.1000	-0.0083
##	100	0.8912	nan	0.1000	-0.0043
##	120	0.7917	nan	0.1000	-0.0084
##	140	0.7298	nan	0.1000	-0.0027
##	160	0.6894	nan	0.1000	-0.0061
##	180	0.6543	nan	0.1000	-0.0077
##	200	0.6175	nan	0.1000	-0.0009
##	220	0.5885	nan	0.1000	-0.0089
##	240	0.5540	nan	0.1000	-0.0036
##	250	0.5386	nan	0.1000	-0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	7.0286	nan	0.1000	0.5874
##	2	6.5422	nan	0.1000	0.4614
##	3	6.0807	nan	0.1000	0.4788
##	4	5.6220	nan	0.1000	0.3139
##	5	5.3339	nan	0.1000	0.1849
##	6	4.9990	nan	0.1000	0.2584
##	7	4.7023	nan	0.1000	0.2324

##	8	4.4521	nan	0.1000	0.2002
##	9	4.2254	nan	0.1000	0.1721
##	10	4.0158	nan	0.1000	0.1061
##	20	2.5603	nan	0.1000	0.0649
##	40	1.4633	nan	0.1000	0.0221
##	60	1.0126	nan	0.1000	0.0040
##	80	0.8089	nan	0.1000	-0.0011
##	100	0.6913	nan	0.1000	-0.0016
##	120	0.6212	nan	0.1000	-0.0039
##	140	0.5555	nan	0.1000	0.0013
##	160	0.5178	nan	0.1000	-0.0070
##	180	0.4779	nan	0.1000	-0.0062
##	200	0.4357	nan	0.1000	-0.0056
##	220	0.4076	nan	0.1000	-0.0034
##	240	0.3838	nan	0.1000	-0.0051
##	250	0.3724	nan	0.1000	-0.0045
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.0052	nan	0.1000	0.7357
##	2	6.3136	nan	0.1000	0.6391
##	3	5.8579	nan	0.1000	0.3395
##	4	5.4261	nan	0.1000	0.4118
##	5	5.0380	nan	0.1000	0.2541
##	6	4.7502	nan	0.1000	0.2364
##	7	4.5107	nan	0.1000	0.1393
##	8	4.2559	nan	0.1000	0.2325
##	9	4.0139	nan	0.1000	0.1431
##	10	3.7788	nan	0.1000	0.1690
##	20	2.2976	nan	0.1000	0.0670
##	40	1.1641	nan	0.1000	0.0258
##	60	0.7945	nan	0.1000	-0.0042
##	80	0.6385	nan	0.1000	-0.0010
##	100	0.5468	nan	0.1000	-0.0065
##	120	0.4711	nan	0.1000	-0.0070
##	140	0.4186	nan	0.1000	-0.0051
##	160	0.3792	nan	0.1000	-0.0062
##	180	0.3426	nan	0.1000	-0.0072
##	200	0.3149	nan	0.1000	-0.0066
##	220	0.2897	nan	0.1000	-0.0081
##	240	0.2642	nan	0.1000	-0.0020
##	250	0.2526	nan	0.1000	-0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.0074	nan	0.1000	0.6779
##	2	6.3049	nan	0.1000	0.6277
##	3	5.7428	nan	0.1000	0.5037

##	4	5.3843	nan	0.1000	0.2738
##	5	4.9412	nan	0.1000	0.4013
##	6	4.5370	nan	0.1000	0.2175
##	7	4.2296	nan	0.1000	0.2194
##	8	3.9306	nan	0.1000	0.2566
##	9	3.6976	nan	0.1000	0.1642
##	10	3.4742	nan	0.1000	0.1155
##	20	2.0717	nan	0.1000	0.0554
##	40	1.0961	nan	0.1000	0.0158
##	60	0.7387	nan	0.1000	-0.0071
##	80	0.5947	nan	0.1000	-0.0086
##	100	0.4878	nan	0.1000	-0.0035
##	120	0.4191	nan	0.1000	-0.0069
##	140	0.3558	nan	0.1000	-0.0047
##	160	0.3193	nan	0.1000	-0.0029
##	180	0.2757	nan	0.1000	-0.0060
##	200	0.2412	nan	0.1000	-0.0011
##	220	0.2154	nan	0.1000	-0.0022
##	240	0.1911	nan	0.1000	-0.0019
##	250	0.1798	nan	0.1000	-0.0025
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.5373	nan	0.1000	0.3255
##	2	7.2302	nan	0.1000	0.3081
##	3	7.0287	nan	0.1000	0.0792
##	4	6.8235	nan	0.1000	0.1648
##	5	6.5846	nan	0.1000	0.2528
##	6	6.3572	nan	0.1000	0.2142
##	7	6.2170	nan	0.1000	0.0731
##	8	6.0241	nan	0.1000	0.1693
##	9	5.8911	nan	0.1000	0.1379
##	10	5.7890	nan	0.1000	0.0396
##	20	4.6672	nan	0.1000	0.0610
##	40	3.3823	nan	0.1000	0.0241
##					
##	60	2.6081	nan	0.1000	0.0076
##	60 80	2.6081 2.1083	nan nan	0.1000 0.1000	0.0076 0.0027
## ##	60 80 100	2.6081 2.1083 1.7823	nan nan nan	0.1000 0.1000 0.1000	0.0076 0.0027 -0.0038
## ## ##	60 80 100 120	2.6081 2.1083 1.7823 1.5329	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0076 0.0027 -0.0038 0.0083
## ## ## ##	60 80 100 120 140	2.6081 2.1083 1.7823 1.5329 1.3371	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0076 0.0027 -0.0038 0.0083 -0.0004
## ## ## ##	60 80 100 120 140 160	2.6081 2.1083 1.7823 1.5329 1.3371 1.1999	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0076 0.0027 -0.0038 0.0083 -0.0004 -0.0035
## ## ## ## ##	60 80 100 120 140 160 180	2.6081 2.1083 1.7823 1.5329 1.3371 1.1999	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0076 0.0027 -0.0038 0.0083 -0.0004 -0.0035 -0.0001
## ## ## ## ## ##	60 80 100 120 140 160 180 200	2.6081 2.1083 1.7823 1.5329 1.3371 1.1999 1.0969	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0076 0.0027 -0.0038 0.0083 -0.0004 -0.0035 -0.0001 -0.0020
## ## ## ## ## ##	60 80 100 120 140 160 180 200 220	2.6081 2.1083 1.7823 1.5329 1.3371 1.1999 1.0969 1.0178 0.9601	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0076 0.0027 -0.0038 0.0083 -0.0004 -0.0035 -0.0001 -0.0020 -0.0065
## ## ## ## ## ##	60 80 100 120 140 160 180 200 220 240	2.6081 2.1083 1.7823 1.5329 1.3371 1.1999 1.0969 1.0178 0.9601 0.9259	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0076 0.0027 -0.0038 0.0083 -0.0004 -0.0035 -0.0001 -0.0020 -0.0065 -0.0059
## ## ## ## ## ##	60 80 100 120 140 160 180 200 220	2.6081 2.1083 1.7823 1.5329 1.3371 1.1999 1.0969 1.0178 0.9601	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0076 0.0027 -0.0038 0.0083 -0.0004 -0.0035 -0.0001 -0.0020 -0.0065

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.3367	nan	0.1000	0.5068
##	2	6.8403	nan	0.1000	0.4133
##	3	6.4575	nan	0.1000	0.3430
##	4	6.1040	nan	0.1000	0.2802
##	5	5.9071	nan	0.1000	0.1333
##	6	5.6534	nan	0.1000	0.2078
##	7	5.4050	nan	0.1000	0.2252
##	8	5.2113	nan	0.1000	0.1294
##	9	4.9828	nan	0.1000	0.1934
##	10	4.8171	nan	0.1000	0.1146
##	20	3.3732	nan	0.1000	0.0232
##	40	2.0529	nan	0.1000	0.0254
##	60	1.4630	nan	0.1000	0.0107
##	80	1.1301	nan	0.1000	-0.0184
##	100	0.9347	nan	0.1000	-0.0020
##	120	0.8346	nan	0.1000	-0.0053
##	140	0.7561	nan	0.1000	-0.0116
##	160	0.7038	nan	0.1000	-0.0083
##	180	0.6608	nan	0.1000	-0.0050
##	200	0.6231	nan	0.1000	-0.0062
##	220	0.5885	nan	0.1000	-0.0053
##	240	0.5666	nan	0.1000	-0.0073
##	250	0.5537	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.3914	nan	0.1000	0.5561
##	2	6.7379	nan	0.1000	0.5924
##	3	6.1931	nan	0.1000	0.3638
##	4	5.7353	nan	0.1000	0.2706
##	5	5.4272	nan	0.1000	0.2604
##	6	5.1269	nan	0.1000	0.1462
##	7	4.9406	nan	0.1000	0.0649
##	8	4.7122	nan	0.1000	0.1369
##	9	4.5181	nan	0.1000	0.1104
##	10	4.3030	nan	0.1000	0.1313
##	20	2.8485	nan	0.1000	0.0934
##	40	1.6130	nan	0.1000	-0.0081
##	60	1.1086	nan	0.1000	-0.0165
##	×()	0.8744	nan	0.1000	-0.0020
	80				
##	100	0.7519	nan	0.1000	-0.0066
##	100 120	0.7519 0.6638	nan nan	0.1000 0.1000	-0.0066 -0.0039
## ##	100 120 140	0.7519 0.6638 0.5997	nan nan nan	0.1000 0.1000 0.1000	-0.0066 -0.0039 -0.0044
## ## ##	100 120 140 160	0.7519 0.6638 0.5997 0.5553	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	-0.0066 -0.0039 -0.0044 -0.0082
## ##	100 120 140	0.7519 0.6638 0.5997	nan nan nan	0.1000 0.1000 0.1000	-0.0066 -0.0039 -0.0044

	000	0.4500		0.4000	0 0054
##	220	0.4566	nan	0.1000	-0.0051
##	240	0.4234	nan	0.1000	-0.0047
##	250	0.4103	nan	0.1000	-0.0062
##	.			a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.3959	nan	0.1000	0.5344
##	2	6.7840	nan	0.1000	0.6032
##	3	6.2042	nan	0.1000	0.5214
##	4	5.7561	nan	0.1000	0.3567
##	5	5.3542	nan	0.1000	0.3154
##	6	5.0748	nan	0.1000	0.2697
##	7	4.6856	nan	0.1000	0.3381
##	8	4.4209	nan	0.1000	0.2125
##	9	4.1834	nan	0.1000	0.1959
##	10	3.9558	nan	0.1000	0.1757
##	20	2.5107	nan	0.1000	0.0757
##	40	1.3385	nan	0.1000	0.0197
##	60	0.9193	nan	0.1000	0.0067
##	80	0.7247	nan	0.1000	-0.0105
##	100	0.6080	nan	0.1000	-0.0060
##	120	0.5370	nan	0.1000	-0.0086
##	140	0.4808	nan	0.1000	-0.0094
##	160	0.4331	nan	0.1000	-0.0018
##	180	0.3896	nan	0.1000	-0.0076
##	200	0.3487	nan	0.1000	-0.0060
##	220	0.3156	nan	0.1000	-0.0044
##	240	0.2857	nan	0.1000	-0.0023
##	250	0.2735	nan	0.1000	-0.0045
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	7.2002	nan	0.1000	0.7128
##	2	6.5508	nan	0.1000	0.5996
##	3	5.9803	nan	0.1000	0.5293
##	4	5.5269	nan	0.1000	0.4154
##	5	5.1301	nan	0.1000	0.3923
##	6	4.7897	nan	0.1000	0.2007
##	7	4.4224	nan	0.1000	0.2482
##	8	4.1528	nan	0.1000	0.1840
##	9	3.8740	nan	0.1000	0.1938
##	10	3.6367	nan	0.1000	0.1894
##	20	2.1725	nan	0.1000	0.0933
##	40	1.0934	nan	0.1000	0.0063
##	60	0.7734	nan	0.1000	-0.0003
##	80	0.6267	nan	0.1000	-0.0113
##	100	0.5248	nan	0.1000	-0.0115
##	120	0.4509	nan	0.1000	-0.0086
	120	0.1000	nan	0.1000	0.0000

##	140	0.3909	nan	0.1000	-0.0042
##	160	0.3417	nan	0.1000	-0.0095
##	180	0.2979	nan	0.1000	-0.0010
##	200	0.2641	nan	0.1000	-0.0051
##	220	0.2324	nan	0.1000	-0.0048
##	240	0.2065	nan	0.1000	-0.0029
##	250	0.1944	nan	0.1000	-0.0033
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	7.5853	nan	0.1000	0.4622
##	2	7.2268	nan	0.1000	0.2276
##	3	6.9725	nan	0.1000	0.2317
##	4	6.7255	nan	0.1000	0.1945
##	5	6.5310	nan	0.1000	0.1967
##	6	6.3548	nan	0.1000	0.1452
##	7	6.1331	nan	0.1000	0.1877
##	8	6.0205	nan	0.1000	0.0816
##	9	5.8651	nan	0.1000	0.1151
##	10	5.7272	nan	0.1000	0.0983
##	20	4.5797	nan	0.1000	0.0457
##	40	3.3805	nan	0.1000	0.0281
##	60	2.6821	nan	0.1000	-0.0024
##	80	2.1887	nan	0.1000	0.0083
##	100	1.8328	nan	0.1000	0.0108
##	120	1.5572	nan	0.1000	-0.0039
##	140	1.3454	nan	0.1000	0.0011
##	160	1.2090	nan	0.1000	-0.0017
##	180	1.0998	nan	0.1000	0.0009
##	200	1.0155	nan	0.1000	-0.0061
##	220	0.9510	nan	0.1000	-0.0040
##	240	0.9159	nan	0.1000	-0.0058
##	250	0.8952	nan	0.1000	-0.0036

carseats.gbm

```
## Stochastic Gradient Boosting
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 289, 289, 289, 289, 289, 289, ...
## Resampling results across tuning parameters:
##
## interaction.depth n.trees RMSE Rsquared MAE
## 1 50 1.853439 0.6550573 1.4985804
## 1 100 1.547356 0.7484921 1.2635775
```

```
##
     1
                        150
                                 1.359464 0.7941783 1.1116649
##
     1
                        200
                                 1.263360 0.8152576 1.0273078
                        250
##
     1
                                 1.216972 0.8238354 0.9842987
##
     2
                        50
                                 1.559349 0.7549692
                                                     1.2703898
##
     2
                        100
                                 1.295349 0.8121515
                                                     1.0550231
##
     2
                       150
                                 1.225522 0.8259530 0.9949898
##
     2
                       200
                                 1.219263 0.8282347 0.9847772
##
     2
                       250
                                 1.222610 0.8269006 0.9882843
     3
                                 1.434103 0.7828979
##
                        50
                                                     1.1618345
##
     3
                       100
                                 1.265869 0.8154077 1.0207212
##
     3
                       150
                                 1.242808 0.8187860 0.9946575
##
     3
                       200
                                 1.263512 0.8139170
                                                     1.0132197
                       250
##
     3
                                 1.266998 0.8123660
                                                     1.0169904
##
     4
                        50
                                 1.387541 0.7897254 1.1230060
##
     4
                       100
                                 1.279528
                                         0.8095927
                                                     1.0299009
                        150
##
     4
                                 1.297827
                                          0.8045587 1.0399179
##
     4
                        200
                                 1.316687
                                          0.7979882
                                                     1.0556691
                        250
##
     4
                                 1.321038 0.7972775 1.0621347
##
     5
                        50
                                          0.7980728
                                 1.348922
                                                     1.0974910
##
     5
                        100
                                 1.277990
                                          0.8108521
                                                     1.0389748
                                          0.8066147
##
     5
                        150
                                 1.286355
                                                     1.0393349
##
     5
                        200
                                 1.292184 0.8042104 1.0372671
##
                                 1.314433 0.7973539 1.0572041
                        250
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were n.trees = 250,
## interaction.depth = 1, shrinkage = 0.1 and n.minobsinnode = 10.
```


8.6. SUMMARY 159

Gradient Boosing Regression: Predicted vs. Actual


```
## [1] 1.402428
```

```
rm(carseats.pred)
#plot(varImp(carseats.gbm), main="Variable Importance with Gradient Boosting")
```

8.6 Summary

Okay, I'm going to tally up the results! For the classification division, the winner is the manual classification tree! Gradient boosting made a valiant run at it, but came up just a little short.

```
## model Acc
## 1 Manual Class 0.85915
## 2 Gradient Boosting 0.85446
## 3 Class w.tuneGrid 0.84507
## 4 Bagging 0.82629
## 5 Random Forest 0.82629
```

And now for the regression division, the winnner is... gradient boosting!

```
## model RMSE
## 1 Gradient Boosting 1.40243
## 2 Random Forest 1.75811
## 3 Bagging 1.93279
## 4 ANOVA w.tuneGrid 2.29833
## 5 Manual ANOVA 2.38806
```

Here are plots of the ROC curves for all the models (one from each chapter) on the same graph. The ROCR package provides the prediction() and performance() functions which generate the data required for plotting the ROC curve, given a set of predictions and actual (true) values. The more "up and to the left" the ROC curve of a model is, the better the model. The AUC performance metric is literally the "Area Under the ROC Curve", so the greater the area under this curve, the higher the AUC, and the better-performing the model is.

```
library(ROCR)
# List of predictions
oj.class.pred <- predict(oj_model_3, oj_test, type = "prob")[,2]
oj.bag.pred <- predict(oj.bag, oj_test, type = "prob")[,2]
oj.frst.pred <- predict(oj.frst, oj_test, type = "prob")[,2]
oj.gbm.pred <- predict(oj.gbm, oj_test, type = "prob")[,2]
preds_list <- list(oj.class.pred, oj.bag.pred, oj.frst.pred, oj.gbm.pred)
#preds_list <- list(oj.class.pred)

# List of actual values (same for all)
m <- length(preds_list)
actuals_list <- rep(list(oj_test$Purchase), m)</pre>
```

8.6. SUMMARY 161

Test Set ROC Curves

Reference

Penn State University, STAT 508: Applied Data Mining and Statistical Learning, "Lesson 11: Tree-based Methods". https://newonlinecourses.science.psu.edu/stat508/lesson/11.

Brownlee, Jason. "Classification And Regression Trees for Machine Learning", Machine Learning Mastery. https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/.

Brownlee, Jason. "A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning", Machine Learning Mastery. https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/.

DataCamp: Machine Learning with Tree-Based Models in R

An Introduction to Statistical Learning by Gareth James, et al.

SAS Documentation

StatMethods: Tree-Based Models

Machine Learning Plus

GBM (Boosted Models) Tuning Parameters from Listen Data

Harry Southworth on GitHub

Gradient Boosting Classification with GBM in R in DataTechNotes

Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Explainable", 2019. https://christophm.github.io/interpretable-ml-book/.

Support Vector Machines

Principal Components Analysis

Clustering

Text Mining

Appendix

Here are miscellaneous skills, knowledge, and technologies I should know.

Publishing to BookDown

The **bookdown** package, written by Yihui Xie, is built on top of R Markdown and the **knitr** package. Use it to publish a book or long manuscript where each chapter is a separate file. There are instructions for how to author a book in his bookdown book (Xie, 2019). The main advantage of **bookdown** over R Markdown is that you can produce multi-page HTML output with numbered headers, equations, figures, etc., just like in a book. I'm using **bookdown** to create a compendium of all my data science notes.

The first step to using **bookdown** is installing the **bookdown* package with install.packages("bookdown").

Next, create an account at bookdown.org, and connect the account to RStudio. Follow the instructions at https://bookdown.org/home/about/.

Finally, create a project in R Studio by creating a new project of type *Book Project using Bookdown*.

After creating all of your Markdown pages, knit the book or click the **Build Book** button in the Build panel.

Shiny Apps

Bibliography

- Fawcett, T. (2005). An introduction to ROC analysis. ELSEVIER.
- James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning: with applications in R. Springer, New York, NY, 1st edition. ISBN 978-1461471370.
- Kuhn, M. and Johnson, K. (2016). Applied Predictive Modeling. Springer, New York, NY, 1st edition. ISBN 978-1-4614-6848-6.
- Therneau, T. and Atkinson, E. (2019). An Introduction to Recursive Partitioning Using the RPART Routines. Chapman and Hall/CRC, Boca Raton, Florida.
- Xie, Y. (2019). bookdown: Authoring Books and Technical Documents with R Markdown. Chapman and Hall/CRC, Boca Raton, Florida, 1st edition. ISBN 978113870010.