UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC CCT PROGRAMA DE GRADUAÇÃO EM ENGENHARIA MECÂNICA

ANDRÉ LUIZ MENDES FLORIANO ANTONIO VINÍCIUS SOUZA MENEZES

PROJETO DE UM SISTEMA DE REFRIGERAÇÃO

JOINVILLE 2025

SUMÁRIO

1	INTRODUÇÃO	2
2	INTRODUÇÃO	3
3	DESENVOLVIMENTO	4
3.1	ESCOLHA DO PRODUTO E REFRIGERANTE	4
3.2	ESTIMATIVA DA TAXA DE CALOR NECESSÁRIO DE RESFRIA-	
	MENTO	4
3.3	CICLO DE REFRIGERAÇÃO PADRÃO:	5
	REFERÊNCIAS	10

1 INTRODUÇÃO

2 INTRODUÇÃO

A refrigeração industrial desempenha papel fundamental na cadeia de alimentos, garantindo a preservação da qualidade e segurança de produtos perecíveis durante o armazenamento e transporte. No setor pesqueiro, câmaras frigoríficas são essenciais para manter as características organolépticas do pescado, retardando processos de deterioração microbiológica e enzimática através do controle rigoroso de temperatura.

O dimensionamento adequado de sistemas de refrigeração para câmaras frigoríficas requer a determinação precisa da carga térmica total e a seleção criteriosa do compressor, componente responsável pela maior parcela do consumo energético do sistema. A escolha inadequada pode resultar em superdimensionamento, com custos de investimento e operação elevados, ou subdimensionamento, comprometendo a capacidade de refrigeração e a qualidade do produto armazenado.

Este projeto visa ao dimensionamento de um sistema de refrigeração por compressão de vapor para câmaras frigoríficas destinadas ao armazenamento de pescado. A partir das especificações de temperatura de armazenamento, volume interno da câmara e tempo de resfriamento requerido, será determinada a carga térmica total do sistema com o objetivo de selecionar o compressor com melhor desempenho termodinâmico e eficiência energética para a aplicação definida.

A metodologia adotada inicia-se com o levantamento das propriedades termofísicas do pescado, incluindo calor específico e densidade, permitindo quantificar os requisitos de resfriamento do produto. Em seguida, foi elaborado um banco de dados com compressores candidatos utilizando informações técnicas disponibilizadas pelo Product Selector da Embraco. A análise comparativa foi realizada em três etapas progressivas: primeiramente, considerou-se um ciclo de refrigeração ideal baseado no coeficiente de performance (COP) de Carnot para estabelecer um referencial teórico; posteriormente, desenvolveu-se um modelo de ciclo real incorporando dados operacionais dos compressores selecionados, avaliando diferentes condições de evaporação e condensação conforme os catálogos técnicos; finalmente, implementou-se um procedimento de otimização que permite a iteração simultânea das temperaturas de evaporação e condensação, identificando o ponto ótimo de operação que minimiza o consumo energético do sistema.

Este trabalho apresenta, portanto, uma abordagem sistemática para o projeto de sistemas de refrigeração, integrando análise termodinâmica, dados de fabricantes e técnicas de otimização para a tomada de decisão fundamentada na seleção de compressores.

3 DESENVOLVIMENTO

3.1 ESCOLHA DO PRODUTO E REFRIGERANTE

Para o início do projeto, decidiu-se que o produto a ser resfriado seria o peixe, transportado e armazenado em temperatura comercial. As propriedades do produto, bem como as temperaturas de operação estão de acordo com 1.

Com o produto definido, partiu-se para a definição do fluido refrigerante, em virtude do seu baixo custo e disponibilidade, o fluido refrigerante R-134A se mostrou o mais apto para a realização da operação proposta.

3.2 ESTIMATIVA DA TAXA DE CALOR NECESSÁRIO DE RESFRIAMENTO

Para a escolha do compressor a ser utilizado, primeiramente foi estimado a taxa de calor a ser retirada do sistema, a partir da Equação 2. Como temos o volume, o tempo de pulldown e o material a ser refigerado, podemos calcular a carga térmica mínima necessária.

$$m_{peixe} = \rho V_{refrigerador} \tag{1}$$

$$\dot{Q} = mc\Delta T/\Delta t \tag{2}$$

$\rho [\mathrm{kg/m^3}]$	972
$V_{refrigerador}$ [m ³]	0.14
c [J/kgK]	1.71
$\Delta T [K]$	25
Δt [s]	$2.88 \cdot 10^4$

Tabela 1 – Valores utilizados.

Obtemos:

$$\dot{Q} = 202.6W \tag{3}$$

Com a carga térmica definida, é necessário selecionar um compressor adequado para a operação. Para isso, será utilizado o seletor de produtos disponível no site do fabricante Embraco ©. Para a aplicação em questão, que envolve baixas temperaturas, recomendase a utilização de compressores do tipo LBP. Uma vez selecionados os compressores que atendiam aos requisitos, os dados de operação individuais foram obtidos no site do fabricante.

Figura 1 – Seletor de produtos.

O documento contém as temperaturas de condensação e evaporação empregadas nos testes de desempenho, além de parâmetros como capacidade de refrigeração, consumo de energia, corrente elétrica, entre outros. Dessa maneina, foram selecionas os compressores descritos na Tabela 2.

Modelo	Potencia [W]	Custo [R\$}
EGAS80HLR	240	650
EGZS60HLP	180	1340
EGZS70HLC	202	1130
FFU70HAK	221	600

Tabela 2 – Compressores escolhidos.

3.3 $\,$ CICLO DE REFRIGERAÇÃO PADRÃO:

Com os dados preliminares obtidos, foi desenvolvida uma rotina em Python para calcular as propriedades do sistema, de acordo com o ciclo descrito na Figura 2.

Figura 2 – Ciclo padrão.

O programa utiliza um método iterativo para determinar a mínima temperatura operacional possível, com o objetivo de reduzir custos ao evitar o superdimensionamento do compressor, utilizando como base os parâmetros descritos a seguir:

$$\dot{Q_L} = \dot{m}(h_1 - h_4) \tag{4}$$

$$\dot{Q}_H = \dot{m}(h_2 - h_3) \tag{5}$$

Onde \dot{Q}_L e \dot{Q}_H , são a taxa com que sai e que entra calor no sistema, respectivamente. O trabalho do compressor pode ser calculado apartir da equação 6, utilizando as propriedades do fluido antes e depois da compresão.

$$\dot{W_{comp}} = \dot{m}(h_2 - h_1) \tag{6}$$

$$\Delta h_{1-2} \simeq c_p(T_2 - T_1) \tag{7}$$

E a eficiência do sistema é dada como:

$$COP = \frac{T_H}{T_H - T_L} \tag{8}$$

Simultaneamente, são calculadas as propriedades do fluido refrigerante em cada estado do ciclo de refrigeração. Para efeito de comparação com o ciclo real, também é realizado o cálculo do ciclo ideal de Carnot, a fim de se obter a eficiência máxima possível e as temperaturas mínimas requeridas pelo sistema.

Depois de uma rodada de anállises, dois compressores destacaram-se, o desempenho de ambos nos ciclos pode ser visto nas figuras 3 e 4.

Figura 3 – Ciclo para o EGZS70HLC.

Figura 4 – Ciclo para o FFU70HAK.

É possivél notar uma grande diferença entre o ciclo real e o ótimo, causada pelas perdar do sistema real, que aparecem em forma de calor. A rotina desenvolvida também calcula outros parâmetros de desempenho do sistema, tais como fluxo mássico, potência, COP e Q_L .

Figura 5 – Compração do \dot{m} .

Figura 6 – Compração da potência.

Figura 7 – Compração do COP.

Figura 8 – Compração do Q_L .

Os resultados obtidos e mostrados nas Figuras 5 a 8 demonstram a fidelidade do modelo computacional calculado com a base teórica, com cada propriedade apresentando um comportamento esperado em cada situação.

- \dot{m} : O ciclo ideal apresentou o menor valor para o fluxo mássico, enquanto os ciclos reais e ótimos aparecem com valores ligeiramente maiores, isso acontece pela necessidade de uma maior retirada de calor no sistema.
- COP: A máxima eficiência possível é determinada pelo ciclo de Carnot de refrigeração. A discrepância entre esse valor teórico e o desempenho no sistema real indica o quanto ele se afasta do ideal.

REFERÊNCIAS