Régime permanent dans un circuit d'ordre 1

I Le condensateur

I.1 Présentation

Le **condensateur** est un dipôle *linéaire* composé de deux armatures séparées par un milieu isolant (**diélectrique**). C'est l'un des composant de base en électronique. Il est schématisé comme ci dessous :

Figure 1: Schématisation du condensateur

On a +Q la charge algébrique portée par l'armature de gauche. Puisque le *condensateur est* globalement neutre, -Q est la charge portée par l'armature de droite.

On a le rapport Q = CU avec C la **capacité du condensateur** en fahrad (F).

I.2 Caractéristique U/I

En convention récepteur on a $i=c\frac{dU}{dt}$.

Preuve On a
$$\frac{dQ}{dt}=\frac{\delta Q}{dt}=i$$
 et $Q=CU$ donc $i=\frac{dQ}{dt}=\frac{dCU}{dt}=c\frac{dU}{dt}$

I.3 Approche énergétique

On a E l'énergie stockée dans un condensateur tel que $E=\frac{1}{2}CU^2.$

$$\textbf{Preuve} \quad P_{\text{reçue}} = Ui = UC\frac{dU}{dt} = \frac{d}{dt}\big(\frac{1}{2}CU^2\big) \text{ et } P_{\text{reçue}} = \frac{dE}{dt} \text{ d'où } E = \frac{1}{2}CU^2 + A \text{ avec } A = 0$$

Aux bornes d'une condensateur U est une fonction continue par le temps.

Preuve On suppose U discontinue donc E aussi. $P = \frac{dE}{dt}$, ainsi on a une puissance infinie ce qui n'est possible.

I.4 Association série et parallèle de condensateurs

I.4.a Association parallèle

Dans le schéma suivant, on a ${\cal C}={\cal C}_1+{\cal C}_2$:

Figure 2: Association parallèle de condensateurs

 $\begin{array}{l} \textbf{Preuve} \quad \text{Loi des noeuds, } i=i_1+i_2 \text{, d'après la caractéristique } UI \text{ du condensateur, } i_1=C_1\frac{dU}{dt} \text{ et } i_2=C_2\frac{dU}{dt} \text{ soit } i=C_1\frac{dU}{dt}+C_2\frac{dU}{dt}=(C_1+C_2)\frac{dU}{dt} \end{array}$

I.4.b Association série

Dans le schéma suivant, on a $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$:

Figure 3: Association série de condensateurs

II Étude de la charge d'un condensateur

II.1 Mise en équation

Figure 4: Circuit RC (Résistance/Condensateur)

On a la loi des mailles $E=U_R+U_C$, la loi d'Ohm $U_R=Ri$ et la caractéristique UI du condensateur $i=c\frac{dU_c}{dt}$.

Ainsi on a $E=Ri+U_C=RC\frac{dU_c}{dt}+U_C$ avec $\tau=RC$ le temps caractéristique.

On en déduit une équation différentielle pour la charge $EC = RC\frac{dq}{dt} + q$.

Pour résoudre une équation différentielle linéaire d'ordre 1 :

- Si il y a un second membre, on cherche une solution particulière s_p de l'équation avec second membre (ici $s_p=E$).
- Chercher la forme générale des solutions générales sans second membre $s_g(t)$. Il y a apparition de constantes (ici $s_g(t)=Ae^{-\frac{t}{\tau}}$)
- La solution est $s_p^+ + s_g^-$. Il faut ensuite déterminer les constantes (ici $U_C(t) = E\left(1 e^{-\frac{t}{\tau}}\right)$)

II.2 Durée du transitoire, temps de réponse

Temps du réponse à X% : Temps au bout duquel $\frac{|U-U_0|}{|U_\infty-U_0|}$ a varié de X%.

• $63\% : \tau$

• $95\%:3\tau$

• $99\% : 5\tau$

II.3 Bilan d'énergie

 $P_{\text{fournie}} = P_{\text{joule}} + P_C$ (loi d'Ohm et loi des mailles dans le circuit RC)

$$\int_0^t Eidt' = \int_0^t Ri^2 dt' + \int_0^t \frac{d}{dt'} \bigg(\frac{1}{2}CU^2\bigg) dt'$$

II.4 Analyse graphique d'une réponse indicielle

Méthode de la tangeante (dépréciée) :

Méthode des 63%:

II.5 Dipôle équivalent à un condensateur en régime permanent

En régime permanent, un condensateur est équivalent à un **interrupteur ouvert** (I = 0A).

III La bobine

III.1 Présentation

La **bobine** est un dipôle composé d'un enroulement d'un fil sur lui-même.

Une bobine est schématisée de la manière suivante :

Figure 5: Schématisation d'une bobine

III.2 Caractéristique U/I

En convention récepteur, $U_L=L\frac{di}{dt}$ avec L l'inductance (self) en Henry (H).

Les bobines sont des dipôles linéaires (relation U/I), et ont une inductance de quelques dizaines de mA en TP. L dépend des propriétés de la bobine tels que le nombre de fils et la quantité de spires (tours).

III.3 Approche énergétique

On a l'énergie stockée dans une bobine $E=\frac{1}{2}Li^2$ en convention générateur.

Figure 6: Schématisation d'une bobine

$$\begin{array}{ll} \textbf{Preuve} & P_{\text{reque}} = -UI \text{ et } U_L = -L\frac{di}{dt} \text{ (convention générateur). Donc} \\ P_{\text{reque}} = -\Big(-L\frac{di}{dt}\Big)i = L\frac{di}{dt}i = \frac{d}{dt}\big(\frac{1}{2}Li^2\big) \text{ d'où } E = \frac{1}{2}Li^2 \end{array}$$

L'intensité est continue dans un bobine.

III.4 Associations séries et parallèles de bobines

III.4.a Association série

Figure 7: Association série de bobines

$$\mbox{\bf Preuve} \quad \mbox{On a} \ U = U_1 + U_2 = L_1 \frac{di}{dt} + L_2 \frac{di}{dt} = (L_1 + L_2) \frac{di}{dt} \label{eq:preuve}$$

III.4.b Association parallèle

Dans le schéma suivant, on a $\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}$:

Figure 8: Association parallèle de bobines

III.5 Dipôle équivalent à une bobine en régime permanent

En régime continu, la bobine se comporte comme un fil(U = 0V).