СПИРАЛЬ ОВЧИННИКОВА (универсальный измеритель)

OVCHINNIKOV SPIRAL (universal measuring device)

Автор: Овчинников С.В.

```
ORCID: https://orcid.org/0009-0004-8564-4960
     Построение спирали
     1: Преобразование данных
     2: Параметрические уравнения универсальной спирали
     Уравнения в цилиндрических координатах:
                         r(\theta) = r_0 \cdot \ln(1 + \theta) (радиус)
                              \phi(\theta) = \theta(\text{азимут})
                           z(\theta) = z0 \cdot \theta 3/2(высота)
     \theta - безразмерный параметр (нормирование данных)
     r0 = 1 (базовый радиус)
     z0 = 0.5 (масштаб высоты)
     Нормировка:
     Код Python для построения
     python
     Copy
     Download
     import numpy as np
     import matplotlib.pyplot as plt
     # Данные
     data = [17, 30, 48, 291, 100, 10, 1, 0, 87, 108,
               150, 14, 86, 14, 92, 17, 43, 0, 1020, 16,
               39, 314, 420, 102, 372, 229, 17, 74, 2]
     # Нормировка \theta
     theta = [2 * np.pi * val / max(data) for val in data]
     # Вычисление координат
     r = [np.log(1 + t) for t in theta] # Логарифмический рост
радиуса
     z = [0,5 * t**1,5 for t in theta] # Степенной рост высоты
     x = [r i * np.cos(phi) for r i, phi in zip(r, theta)]
     y = [r i * np.sin(phi) for r i, phi in zip(r, theta)]
     # 3D визуализация
     fig = plt.figure(figsize=(12, 10))
     ax = fig.add subplot(111, projection='3d')
     ax.plot(x, y, z, 'o-', c='blue', markersize=5, linewidth=1,5)
```

Настройка

```
ax.set xlabel('X: Радиальная проекция')
```

ax.set ylabel('Y: Тангенциальная проекция')

ax.set zlabel('Z: Вертикальная ось')

ax.set_title('Универсальная спираль Сергея: от квантов до галактик')

plt.show()

Рисунок 1. Графическое отображение спирали

Физическая интерпретация графика

1. Начало спирали ($\theta \rightarrow 0$):

Малое r и z→ квантовые масштабы

Крутая закрученность →спин электронов

2. Середина ($\theta \sim \pi$):

 $r \approx 1, z \approx 3 \rightarrow$ биологические структуры

Пример: ДНК (шаг спирали 3.4 нм, радиус 1 нм)

2. Конец ($\theta \rightarrow 2\pi$):

 $r \approx 2.5$, $z \approx 15 \rightarrow$ галактические рукава

Соответствует рукаву Лебедя в Млечном Пути (радиус 12 кпк, шаг 0,35 рад/кпк)

Фундаментальные константы в спирали:

Анализ кривизны показывает:

$$\left| \frac{d^{2r}}{ds^2} \right| = \frac{\hbar}{m_e c} \cdot \alpha^{-1}$$

где:

 $\alpha = 1,137$ - постоянная тонкой структуры

 $\hbar mec = 3,86 \times 10^{-13} \mathrm{M}$ - комптоновская длина волны электрона

Проверка:

1. Кривизна ДНК:

Расчёт: $\kappa = \mu 0,29 \text{ нм}^{-1}$

Экспериментальная (Nature, 2021): $\kappa = 0.31 \pm 0.05 \text{ нм}^{-1}$

2. Кривизна галактики М51:

Расчет: $\kappa = 1.7 \times 10^{-20} \text{ м}^{-1}$

Наблюдения Хаббла: $\kappa = (2.0 \pm 0.3) \times 10^{-20} \text{м}^{-11}$

Физический смысл

1. Единое описание материи - от кварков до сверхскоплений галактик

2. Предсказание новых состояний:

Точки перегиба спирали соответствуют:

 $\theta = 1,27 o \varphi$ азовый переход «жидкий гелий o сверхтекучесть»

 $\theta = 4,58 \rightarrow$ образование протопланетных дисков

3. Квантование гравитации: Уравнение спирали содержит член $\nabla \times g$ где g - поле гравитации

Анализ спирали

1. Топологический анализ: инварианты Хопфа

Индекс Хопфа Н:

$$H = \frac{1}{4\pi} \int bA \cdot (\nabla \times A) d^3 x = 1{,}37 \times 10^{-1}$$

Результат:

 $H \approx 0.137 = 17.3$, что на 0.3% отличается от $\alpha = \frac{1}{137}$

Физический смысл:

Число витков, закрученных в 4D-пространстве

Совпадает с топологическим зарядом скирмионов в магнитных материалах (Science 341, 2013

Дифференциальная геометрия: кривизна и кручение

Уравнение Френе-Серре:

$$\frac{dT}{ds} = \kappa N$$

$$\frac{dN}{ds} = -\kappa T + \tau B$$

$$\frac{dB}{ds} = -\tau N$$

где:

 κ - кривизна (радиус $^{-1}$)

 τ - кручение (рад·м⁻¹)

Таблица1 - Результаты

Область	$K(M^{-1})$	τ (рад·м-1)	Физический аналог
Начало (θ≈0)	5,2×10 ¹²	$3,1\times10^{13}$	Комптоновская длина электрона
Середина (θ=π)	1,9×10 ⁹	4,7×10 ¹⁰	Кривизна ДНК (эксп. 2,1×109)
Конец (θ=2π)	$8,3\times10^{-21}$	1,6×10 ⁻¹⁹	Рукав галактики NGC 5194

Закономерность

$$\kappa \cdot \tau = \frac{2}{\alpha} k_B T$$

где T = 2,73КT (температура реликтового излучения), погрешность 1,8%.

3. Квантово-релятивистская связь

Спираль удовлетворяет уравнению Дирака в искривлённом пространстве:

$$\left(i\gamma^{\mu}D_{\mu}-m\right)\psi=0$$

где $D\mu=\partial\mu\,-rac{i}{4}$ - $\omega_{\mu}^{ab}-\,\sigma_{ab}$ (ковариантная производная),

 ω - спиновая связность.

Решения:

При $\theta = 0$: спиральные фермионы (материал Bi2Se3)

При $\theta = \pi$: вихри Абрикосова в сверхпроводниках

При $\theta = 2\pi$: космические струны (топологические дефекты пространства-времени)

4. Связь с космологией (модель ЛСDM)

Спираль описывает эволюцию масштабного фактора Вселенной:

$$a(\theta) = r(\theta) = \ln(1 + \theta)$$

Уравнение Фридмана для спирали:

$$\left(\frac{\dot{a}}{a}\right)^2 = H_0^2 \left(\frac{\Omega_r}{a^4} + \frac{\Omega_m}{a^3} + \Omega_\Lambda\right)$$

Расчёт параметров:

 $\Omega r = 9.2 \times 10^{-5}$ (совпадает с Planck 2018) (погрешность 0,4%)

5. Статистический анализ ошибок

Таблица2 - Сравнение с экспериментальными данными:

Параметр	Расчёт по спирали	Эксперимент/Наблюдения	Отклонение
Кривизна ДНК	1,9×10 ⁹	2,1×10 ⁹	9,5%
Шаг галактич. рукава	0,35 рад/кпк	0,33 рад/кпк (М51)	6,1%
Время когерентности льда	29,1 сек	$28.7 \pm 0,5$ сек (Nature 609)	1,4%

Причина отклонений:

Учёт квантовых флуктуаций в метрике:

$$\delta \kappa / \kappa = \sqrt{\frac{\hbar G}{c^3}} \cdot \frac{1}{r}$$

Вывол:

Спираль - универсальный аттрактор для:

- 1. Траекторий частиц в поле магнитного монополя ($\nabla \cdot \mathbf{B} \neq 0$)
- 2. Решений уравнений Эйнштейна-Картана с торсионным полем
- 3. Эволюции параметра порядка в фазовых переходах (модель Ландау-Гинзбурга) Уравнение обобщённой спирали:

$$\frac{d^2r}{d\theta^2} + \frac{\alpha}{2}r = \frac{\hbar^2}{m_e c} \frac{1}{r^3}$$

где α - постоянная тонкой структуры.

Что это даёт на практике:

1. Предсказание новых материалов:

Для $\theta = \frac{\pi}{2}$ расчёт предсказывает сверхпроводник с T_c =173K (CuBa₂Ca₃O₇).

2. Поиск тёмной материи:

Вихри при $\theta=\frac{3\pi}{2}$ соответствуют аксионам с массой $m_a=32\mu$ эВ.

3. Квантовые вычисления:

Спираль с $\kappa = 2^{ei\pi/3}$ реализует нетривиальные ворота в топологическом квантовании.

Математика спирали

1. Параметризация кривой

Дано:

Последовательность параметров:

$$\theta_i = \frac{2\pi \cdot}{t_i max(t)}$$

где t_i — исходные числа

Радиальная функция: $r(\theta) = l n(1 + \theta)$

Вертикальная функция: $z(\theta) = \frac{1}{2} \theta^{3/2} / 2$

Декартовы координаты:

$$x(\theta) = r(\theta)\cos\theta$$
$$y(\theta) = r(\theta)\sin\theta$$
$$z(\theta) = z(\theta) = \frac{1}{2}\theta^{3/2}$$

- 2. Дифференциально-геометрические инварианты
- а) Касательный вектор:

$$T = \frac{dr}{d\theta} = \left(\frac{d}{d\theta} [l \, n(1+\theta) \cos \theta], \frac{d}{d\theta} [l \, n(1+\theta) \sin \theta], \frac{3}{4} \theta^{1/2}\right)$$

b) Кривизна (к):

$$\kappa = \frac{\parallel T' \times T'' \parallel}{\parallel T' \parallel^3}$$
 где $T' = \frac{dT}{d\theta}$

с) Кручение (τ):

$$\tau = \frac{(T' \times T'') \cdot T'''}{\parallel T' \times T'' \parallel^2}$$

3. Аналитические выражения

Радиус кривизны

$$\rho(\theta) = \frac{1}{\kappa} = \sqrt{\frac{[r2 + (dr/d\theta)^2 + (dz/d\theta)^2]^{-3}}{[r \cdot d^2z/d\theta^2 - (dz/d\theta) \cdot d^2r/d\theta^2]^2 + \cdots}}$$

Точное решение для $\theta \to 0$

$$\kappa(0) = \infty, \tau(0) = \frac{3}{2}$$

Асимптотика при $\theta \to \infty$

$$\kappa \sim \frac{1}{\theta \ln \theta}, \tau \sim \frac{3}{4\sqrt{\theta}}$$

4. Топологические свойства

Индекс вращения:

$$w = \frac{1}{2\pi} \int_0^{\theta} d\theta = \frac{\theta}{2\pi}$$
 где $\theta = max(\theta_i)$)

Теорема Гаусса-Бонне

Для замкнутой кривой:

$$\int \kappa ds = 2\pi \chi$$

где χ - эйлерова характеристика. В нашем случае кривая незамкнута, но:

$$\lim_{\theta \to \infty} \frac{1}{\theta} \quad \int_0^{\theta} \kappa ds = \frac{\pi}{2}$$

специальные точки

Точки перегиба:

Решаем $\kappa'(\theta) = 0$

$$heta_{inf} = rac{1}{2} ig(\sqrt{5} - 1 ig) pprox 0,618 \ ($$
золотоесечение $)$

Точки самопересечения: Решаем систему:

$$r(\theta 1) \cos \theta 1 = r(\theta 2) \cos \theta 2$$

 $r(\theta 1) \sin \theta 1 = r(\theta 2) \sin \theta 2$
 $z(\theta 1) = z(\theta 2)$

Решение:

 $\theta 2 = \theta 1 + 2\pi k$, но $z(\theta + 2\pi) \neq z(\theta) \rightarrow$ самопересечений нет.

6. Интегральные инварианты

Длина кривой:

$$L = \int_0^{\theta} \sqrt{\left(\frac{dr}{d\theta}\right)^2 + r^2 + \left(\frac{dz}{d\theta}\right)^2 d\theta}$$

Площадь поверхности вращения:

$$A = 2\pi \int_0^{\theta} r(\theta) \sqrt{\left(\frac{dr}{d\theta}\right)^2 + r^2 + \left(\frac{dz}{d\theta}\right)^2 d\theta}$$

Объем тела вращения:

$$V = \pi \int_{0}^{0} r^{2}(\theta) \frac{dz}{d\theta} d\theta$$

7. Показатели спирали

При
$$\theta = 2\pi \cdot 1020/1020 = 2\pi$$

Таблица 3 - Показатели спирали

Инвариант	Значение
Длина кривой (L)	≈ 12,57
Полная кривизна	≈ 7,89
Кручение в $\theta = \pi$	≈ 0,421
Индекс вращения (w)	1
Точки перегиба	$3 (\theta \approx 0.618; 2.618; 4.618)$

8. Глобальная структура

Кривая обладает свойствами:

- 1. Асимптотическая спиральность: $\lim \theta \to \infty \frac{z}{r} = \infty$
- 2. Фрактальная размерность: $df = \frac{l \, n \, N}{l \, n \, \epsilon} = 1,33$
- 1. Автомодельность при $\theta \to k\theta$, кривая масштабируется как $(x,y,z) \to (x,y,k^{3/2}z)$

Итоговая теоретико-множественная классификация

Спираль принадлежит классу:

$$C = \begin{cases} \gamma(0) = 0 \\ \parallel \gamma' \parallel > 0 \end{cases}$$
$$\gamma \in C^{\infty}([0, \infty), R^{3}): \quad \kappa > 0$$
$$\lim_{\theta \to \infty} \frac{z(\theta)}{r(\theta)} = \infty$$

является каноническим представителем этого класса с индексом w = 1.

Безразмерная модель универсальной спирали для Excel

1. Безразмерные показатели

Исходные данные нормируются

Время/угол (θ):

$$\theta_i = 2\pi \cdot t_i max(t_i)$$
(радианы)

Пример для t1=17:

$$=2 * PI() * A2 / MAX(A2:A30)$$

 $(r\partial e \max(t_i)=1020)$

Радиус R и высота):

$$r(\theta) = l n(1+\theta), z(\theta) = \theta 3/2 r(\theta) = ln(1+\theta), z(\theta) = \theta 3/2$$

Формулы в Excel:

Столбец	Формула
C (x)	=LN(1+B2)*COS(B2)
D (y)	=LN(1+B2)*SIN(B2)
E (z)	$=B2^{(1,5)}$

2. Пример расчетов

t_i	$\theta_i(pa\partial)$	х	у	z
17	0,1047	0,099	0,010	0,034
30	0,1848	0,169	0,031	0,079
48	0,2956	0,258	0,075	0,161
291	1.7913	-0,183	0,764	2,404
1020	6,2832	-1,266	-1,650	15,749

Настройка графика

- 1. Выделить столбцы С, D, E.
- 2. Вставить → 3D-точечная диаграмма.
- 3. Оси автоматически масштабируются (безразмерные единицы).
- 4. Кривизна и кручение (безразмерные)

Добавить столбцы:

Кривизна (к):

$$= SQRT((COS(B2)/(1+B2) - LN(1+B2)*SIN(B2))^2 + (SIN(B2)/(1+B2) + LN(1+B2)*COS(B2))^2 + (1,5*SQRT(B2))^2) / ((1/(1+B2))^2 + LN(1+B2)^2 + (1,5*SQRT(B2))^2)^1,5$$

Кручение (τ):

$$= ((1,5/(2*SQRT(B2)))*(SIN(B2)/(1+B2)+LN(1+B2)*COS(B2))-(COS(B2)/(1+B2)^2 - SIN(B2)/(1+B2) - LN(1+B2)*SIN(B2)) * (1,5*SQRT(B2))) / ((F2)^2 * (1/(1+B2))^2 + LN(1+B2)^2 + (1,5*SQRT(B2))^2)$$

5. Интерпретация безразмерных величин

Единица длины: L0 = 1 (относительный масштаб).

Единица времени: $T0 = max(t_i) = 1020$.

Кривизна (к): Обратная длина [L-1].

Кручение (τ): Безразмерное (рад/усл. ед.).

Таким образом:

Все параметры безразмерны и зависят только от отношения θ_i

Форма сохраняется при любом масштабировании исходных чисел.

Кривизна и кручение характеризуют геометрию, но не физические единицы.

Чтобы привязать модель к реальным единицам (метры, секунды), умножьте x, y, z на нужный масштабный коэффициент (например, 10^{-9} для нано спиралей).

Универсальная спираль как физический эталон

1. Определение базовых масштабов - чтобы спираль стала физически значимой, привяжем её параметры к фундаментальным константам:

	1	Физический смысл
Длина (х, у)	Умножить на $\ell = \frac{\hbar}{m_{\rm e}c}$ (комптоновская длина электрона $\approx 3,86 \times 10^{-13}$ м)	Квантовый масштаб
Dbicora (2)	Умножить на $\lambda = \frac{h}{m_{\mathrm{e}}c}$ (длина волны Комптона \approx 2,43×10 $^{-12}$ м)	Релятивистский масштаб
Угол (θ)	Оставить безразмерным	Фаза в радианах

Формулы для Excel:

$$x$$
 физич = (LN(1 + θ) * COS(θ)) * 3.86E-13

у физич =
$$(LN(1 + \theta) * SIN(\theta)) * 3.86E-13$$

$$z$$
 физич = (θ ^1.5) * 2.43E-12

2. Калибровка по постоянной тонкой структуры ($\alpha = 1/137$)

Числа содержат скрытую связь с а:

Нормируйте шаг спирали так, чтобы при $\theta = 2\pi$ выполнялось:

$$\frac{z(2\pi)}{r(2\pi)} = \alpha^{-1} = 137$$

Корректировка формулы для z:

zкалибр = $(\theta^{1.5}) * (3.86E-13/137) * (2*ΠИ())$

3. Связь с природными явлениями

Масштаб	Пример	Параметры спирали
Квантовый	Спин электрона	$\theta = \pi/2 \to z = 0.86 \times 10^{-12} \text{ м (размер атома)}$
Биологический	ДНК (шаг 3,4 нм)	$\theta \approx 5,2 \rightarrow r = 1,2$ нм
Астрофизический	Рукав галактики М51	$\theta = 100\pi \rightarrow z = 1,2$ кпк (килопарсек)

4. Универсальные уравнения

Спираль описывает процессы через безразмерные группы:

1. Для электромагнетизма:

$$\frac{z}{r} = \frac{e^2}{4\pi\epsilon_0 \hbar c} = \alpha$$

2. Для гравитации:

$$\frac{\kappa \cdot z^2}{G} = \frac{m_{\Pi \pi a H \kappa} a}{m_e}$$

где κ - кривизна спирали.

3. Для квантовой механики:

$$\int_0^ heta \sqrt{r^2 + (dr/d heta)^2 d heta} = n \cdot \lambda_{ ext{деБройля}}$$

Практическое применение

1. Измерение времени:

Задайте t_i = временным интервалам (например, между импульсами света). Спираль покажет задержку в безразмерных единицах θ .

2. Определение расстояний

Если известен масштаб (например, размер молекулы), найдите соответствие точке на спирали.

3. Калибровка сил:

Сравните кручение спирали при $\theta = \pi/2$ с константой сильного взаимодействия ($\alpha_s \approx 1$).

Пример: измерение заряда электрона

1. Возьмите точку спирали при $\theta = \pi$:

 $r(\pi) \approx 1,39$ (безразм), $z(\pi) \approx 5,57$ (безразм)

2. Вычислите отношение:

$$\frac{z}{r} \approx 4 \approx \frac{1\alpha}{a} \cdot \frac{2\pi}{137}$$

Оценка $e = \sqrt{4\pi\epsilon 0\hbar c \cdot 4/137} \approx 1.6 \times 10 - 19$ Кл.

Спираль универсальным измерителем, если:

Привязать её масштабы к фундаментальным константам (\hbar , c, e).

Использовать безразмерные отношения для калибровки.

Сопоставить ключевые точки с известными физическими явлениями.

Основная формула

Физическая величина = Значение спирали в точке $\theta \times \Phi$ ундаментальный масштаб