Introducción a las cadenas de Markov

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

 El mundo que nos rodea es dinámico, va cambiando con el tiempo:

- El mundo que nos rodea es dinámico, va cambiando con el tiempo:
 - la temperatura,

- El mundo que nos rodea es dinámico, va cambiando con el tiempo:
 - la temperatura,
 - los precios de las acciones,

- El mundo que nos rodea es dinámico, va cambiando con el tiempo:
 - la temperatura,
 - los precios de las acciones,
 - popularidad de los políticos,

- El mundo que nos rodea es dinámico, va cambiando con el tiempo:
 - la temperatura,
 - los precios de las acciones,
 - popularidad de los políticos,
 - el uso de la CPU de un ordenador,

- El mundo que nos rodea es dinámico, va cambiando con el tiempo:
 - la temperatura,
 - los precios de las acciones,
 - popularidad de los políticos,
 - el uso de la CPU de un ordenador,
 - la velocidad de una determinada conexión a internet,

- El mundo que nos rodea es dinámico, va cambiando con el tiempo:
 - la temperatura,
 - los precios de las acciones,
 - popularidad de los políticos,
 - el uso de la CPU de un ordenador,
 - la velocidad de una determinada conexión a internet,
 - etc.

- El mundo que nos rodea es dinámico, va cambiando con el tiempo:
 - la temperatura,
 - los precios de las acciones,
 - popularidad de los políticos,
 - el uso de la CPU de un ordenador,
 - la velocidad de una determinada conexión a internet,
 - etc.
- De cara a modelar una determinada situación, necesitamos que las variables aleatorias cambien con el tiempo.

- El mundo que nos rodea es dinámico, va cambiando con el tiempo:
 - la temperatura,
 - los precios de las acciones,
 - popularidad de los políticos,
 - el uso de la CPU de un ordenador.
 - la velocidad de una determinada conexión a internet,
 - etc.
- De cara a modelar una determinada situación, necesitamos que las variables aleatorias cambien con el tiempo.
- Por dicho motivo, vamos a introducir los procesos estocásticos, que son variables aleatorias que además de depender de los elementos del espacio muestral, dependen del tiempo.

Procesos estocásticos

Un proceso estocástico es una variable aleatoria X(w, t) que depende de dos argumentos:

- un elemento del espacio muestral $w \in \Omega$,
- ullet el tiempo $t\in\mathcal{T}$, donde el conjunto \mathcal{T} puede ser
 - discreto: $\mathcal{T} = \{0, 1, 2, ...\}$, o $\mathcal{T} = \{..., -2, -1, 0, 1, 2, ...\}$,
 - continuo: $\mathcal{T} = [0, \infty)$ o $\mathcal{T} = [-\infty, \infty)$.
- Si fijamos el tiempo t, la variable aleatoria $X(w,t) = X_t(w)$ sería una variable aleatoria que modelizaría lo que pasa en el sistema en el instante t.

Procesos estocásticos

Un proceso estocástico es una variable aleatoria X(w,t) que depende de dos argumentos:

- un elemento del espacio muestral $w \in \Omega$,
- ullet el tiempo $t \in \mathcal{T}$, donde el conjunto \mathcal{T} puede ser
 - discreto: $\mathcal{T} = \{0, 1, 2, \ldots\}$, o $\mathcal{T} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$,
 - continuo: $\mathcal{T} = [0, \infty)$ o $\mathcal{T} = [-\infty, \infty)$.
- Si fijamos el tiempo t, la variable aleatoria $X(w,t) = X_t(w)$ sería una variable aleatoria que modelizaría lo que pasa en el sistema en el instante t.
- Si fijamos el elemento w del espacio muestral Ω , tenemos la función dependiendo del tiempo $X(w,t) = X_w(t)$. Dicha función se denomina trayectoria del proceso estocástico.

Ejemplo: lanzamiento de una moneda

Un proceso estocástico sencillo es considerar lanzar una moneda cada cierto espacio de tiempo, por ejemplo cada minuto, y observar el resultado.

En este caso $\Omega = \{c, +\}$ y $\mathcal{T} = \{0, 1, 2, \ldots\}$.

X(w,t) sería la variable aleatoria que nos dice el comportamiento de la moneda en el lanzamiento t-ésimo.

La distribución de dicha variable será de Bernoulli de parámetro p para cualquier instante t donde p es la probabilidad de sacar cara.

Tipos de procesos estocásticos

Diremos que el proceso estocástico es de estado discreto si la variable aleatoria $X_t(w)$ es discreta y es de estado continuo si la variable aleatoria $X_t(w)$ es continua para todo valor del tiempo t. Diremos que el proceso estocástico es de tiempo discreto si el conjunto $\mathcal T$ de valores del tiempo es discreto y es de tiempo continuo si $\mathcal T$ es continuo.

Ejemplo anterior del lanzamiento de una moneda de parámetro
 p: estado discreto y tiempo discreto.

- Ejemplo anterior del lanzamiento de una moneda de parámetro
 p: estado discreto y tiempo discreto.
- Número de infectados diarios por una pandemia: estado discreto y tiempo discreto.

- Ejemplo anterior del lanzamiento de una moneda de parámetro
 p: estado discreto y tiempo discreto.
- Número de infectados diarios por una pandemia: estado discreto y tiempo discreto.
- Temperatura en un lugar determinado: estado continuo y tiempo continuo.

- Ejemplo anterior del lanzamiento de una moneda de parámetro
 p: estado discreto y tiempo discreto.
- Número de infectados diarios por una pandemia: estado discreto y tiempo discreto.
- Temperatura en un lugar determinado: estado continuo y tiempo continuo.
- Tiempo de espera del n-ésimo cliente de una cola en el supermercado modelado como X(n, w). Este ejemplo es "lioso" ya que el tiempo sería el número del cliente y el espacio muestral sería precisamente el tiempo. Pensar que la variable aleatoria "tiempo" dependerá del número de cliente n: estado continuo y tiempo discreto.

Cadena de Markov

Un proceso estocástico X(t) es un proceso de Markov si para cualquier secuencia de valores $t_1 < \cdots < t_n < t$ y para cualquier secuencia de sucesos A, A_1, \ldots, A_n ,

$$P(X(t) \in A|X(t_1) \in A_1, \dots, X(t_n) \in A_n)$$

= $P(X(t) \in A|X(t_n) \in A_n)$.

Es decir, que la distribución condicionada de la variable X(t) condicionada a los valores del proceso estocástico en n instantes cualesquiera del pasado sólo depende de la distribución condicionada de la variable X(t) condicionada al proceso correspondiente al último instante de la secuencia.

• Esquemáticamente, podemos escribir:

P(FUTURO|PASADO, PRESENTE)= P(FUTURO|PRESENTE).

• Esquemáticamente, podemos escribir:

$$P(\text{FUTURO}|\text{PASADO}, \text{ PRESENTE})$$

= $P(\text{FUTURO}|\text{PRESENTE}).$

• Esquemáticamente, podemos escribir:

$$P(\text{FUTURO}|\text{PASADO}, \text{ PRESENTE})$$

= $P(\text{FUTURO}|\text{PRESENTE}).$

- Ejemplos:
 - Temperatura en un día determinado: no es un proceso de Markov.

• Esquemáticamente, podemos escribir:

$$P(FUTURO|PASADO, PRESENTE)$$

= $P(FUTURO|PRESENTE)$.

- Temperatura en un día determinado: no es un proceso de Markov.
- Número de conexiones registradas en un router de internet en un instante determinado: sí es un proceso de Markov ya que la gente se conecta aleatoriamente.

• Esquemáticamente, podemos escribir:

$$P(\text{FUTURO}|\text{PASADO}, \text{ PRESENTE})$$

= $P(\text{FUTURO}|\text{PRESENTE})$.

- Temperatura en un día determinado: no es un proceso de Markov.
- Número de conexiones registradas en un router de internet en un instante determinado: sí es un proceso de Markov ya que la gente se conecta aleatoriamente.
- Precio de un stock en la bolsa en un día determinado: no es un proceso de Markov.

• Esquemáticamente, podemos escribir:

$$P(FUTURO|PASADO, PRESENTE)$$

= $P(FUTURO|PRESENTE)$.

- Temperatura en un día determinado: no es un proceso de Markov.
- Número de conexiones registradas en un router de internet en un instante determinado: sí es un proceso de Markov ya que la gente se conecta aleatoriamente.
- Precio de un stock en la bolsa en un día determinado: no es un proceso de Markov.
- Ejemplo del lanzamiento de la moneda: sí es un proceso de Markov.

 Dentro de los procesos de Markov están las denominadas cadenas de Markov:

Cadenas de Markov

 Dentro de los procesos de Markov están las denominadas cadenas de Markov:

Cadenas de Markov

Una cadena de Markov es un proceso de Markov de estado discreto y de tiempo discreto.

• Las cadenas de Markov se aplican a:

 Dentro de los procesos de Markov están las denominadas cadenas de Markov:

Cadenas de Markov

- Las cadenas de Markov se aplican a:
 - Meteorología: modelización de modelos meteorológicos básicos.

 Dentro de los procesos de Markov están las denominadas cadenas de Markov:

Cadenas de Markov

- Las cadenas de Markov se aplican a:
 - Meteorología: modelización de modelos meteorológicos básicos.
 - Modelos epidemiológicos: modelización de una epidemia.

 Dentro de los procesos de Markov están las denominadas cadenas de Markov:

Cadenas de Markov

- Las cadenas de Markov se aplican a:
 - Meteorología: modelización de modelos meteorológicos básicos.
 - Modelos epidemiológicos: modelización de una epidemia.
 - Internet: el pagerank usado por Google para dar un peso a las páginas web.

 Dentro de los procesos de Markov están las denominadas cadenas de Markov:

Cadenas de Markov

- Las cadenas de Markov se aplican a:
 - Meteorología: modelización de modelos meteorológicos básicos.
 - Modelos epidemiológicos: modelización de una epidemia.
 - Internet: el pagerank usado por Google para dar un peso a las páginas web.
 - Economía y finanzas: modelización del colapso de una bolsa de valores.

 Dentro de los procesos de Markov están las denominadas cadenas de Markov:

Cadenas de Markov

- Las cadenas de Markov se aplican a:
 - Meteorología: modelización de modelos meteorológicos básicos.
 - Modelos epidemiológicos: modelización de una epidemia.
 - Internet: el pagerank usado por Google para dar un peso a las páginas web.
 - Economía y finanzas: modelización del colapso de una bolsa de valores
 - Genética: teoría genética de poblaciones.

 Dentro de los procesos de Markov están las denominadas cadenas de Markov:

Cadenas de Markov

- Las cadenas de Markov se aplican a:
 - Meteorología: modelización de modelos meteorológicos básicos.
 - Modelos epidemiológicos: modelización de una epidemia.
 - Internet: el pagerank usado por Google para dar un peso a las páginas web.
 - Economía y finanzas: modelización del colapso de una bolsa de valores
 - Genética: teoría genética de poblaciones.
 - Redes neuronales: se utilizan en las máquinas de Boltzmann.

• Vamos a introducir algunas simplificaciones:

- Vamos a introducir algunas simplificaciones:
 - Definiremos $\mathcal{T} = \{0, 1, 2...\}$. Entonces la cadena de Markov sería una secuencia aleatoria de variables aleatorias $X(0), X(1), X(2), \ldots$

Cadenas de Markov. Introducción

- Vamos a introducir algunas simplificaciones:
 - Definiremos $\mathcal{T} = \{0, 1, 2...\}$. Entonces la cadena de Markov sería una secuencia aleatoria de variables aleatorias $X(0), X(1), X(2), \ldots$
 - Llamaremos al conjunto Ω conjunto de estados. Como es discreto, lo enumeraremos de la forma siguiente $\Omega = \{1, 2, \dots, n\}.$

Cadenas de Markov. Introducción

• Por ser una cadena de Markov, un proceso de Markov, tenemos la denominada propiedad de Markov que nos dice que la variable aleatoria en un instante t+1 sólo depende de los valores que toma la variable aleatoria X(t) o el proceso en el instante t.

Cadenas de Markov. Introducción

- Por ser una cadena de Markov, un proceso de Markov, tenemos la denominada propiedad de Markov que nos dice que la variable aleatoria en un instante t+1 sólo depende de los valores que toma la variable aleatoria X(t) o el proceso en el instante t.
- Es decir, $p_{ij}(t) = P(X(t+1) = j | X(t) = i)$ vale:

$$p_{ij}(t) = P(X(t+1) = j | X(t) = i)$$

= $P(X(t+1) = j | X(t) = i, X(t-1) = h, X(t-2) = g,...)$

Cadenas de Markov. Probabilidades de transición

Probabilidades de transición

Las probabilidades $p_{ij}(t)$ se llaman probabilidades de transición. La probabilidad

$$p_{ij}^{(h)}(t) = P(X(t+h) = j|X(t) = i),$$

es la probabilidad de ir desde el estado i hasta el estado j usando h transiciones. Dicha probabilidad se llama probabilidad de transición de h pasos.

Cadenas de Markov homogéneas

Una cadena de Markov es homogénea cuando las probabilidades de transición no dependen del tiempo t.

Es decir:

$$p_{ij}(t) = p_{ij}, \quad p_{ij}^{(h)} = p_{ij}^{(h)}.$$

Notación:

Cadenas de Markov homogéneas

Una cadena de Markov es homogénea cuando las probabilidades de transición no dependen del tiempo t.

$$p_{ij}(t) = p_{ij}, \quad p_{ij}^{(h)} = p_{ij}^{(h)}.$$

- Notación:
 - $p_{ij} = P(X(t+1) = j | X(t) = i)$: probabilidad de transición.

Cadenas de Markov homogéneas

Una cadena de Markov es homogénea cuando las probabilidades de transición no dependen del tiempo t.

$$p_{ij}(t) = p_{ij}, \quad p_{ij}^{(h)} = p_{ij}^{(h)}.$$

- Notación:
 - $p_{ij} = P(X(t+1) = j | X(t) = i)$: probabilidad de transición.
 - $p_{ij}^{(h)} = P(X(t+h) = j|X(t) = i)$: probabilidad de transición en h pasos.

Cadenas de Markov homogéneas

Una cadena de Markov es homogénea cuando las probabilidades de transición no dependen del tiempo t.

$$p_{ij}(t) = p_{ij}, \quad p_{ij}^{(h)} = p_{ij}^{(h)}.$$

- Notación:
 - $p_{ij} = P(X(t+1) = j | X(t) = i)$: probabilidad de transición.
 - $p_{ij}^{(h)} = P(X(t+h) = j|X(t) = i)$: probabilidad de transición en h pasos.
 - $P_t(x) = P(X(t) = x)$: distribución de la variable aleatoria X(t).

Cadenas de Markov homogéneas

Una cadena de Markov es homogénea cuando las probabilidades de transición no dependen del tiempo t.

$$p_{ij}(t) = p_{ij}, \quad p_{ij}^{(h)} = p_{ij}^{(h)}.$$

Notación:

- $p_{ij} = P(X(t+1) = j | X(t) = i)$: probabilidad de transición.
- $p_{ij}^{(h)} = P(X(t+h) = j|X(t) = i)$: probabilidad de transición en h pasos.
- $P_t(x) = P(X(t) = x)$: distribución de la variable aleatoria X(t).
- $P_0(t) = P(X(0) = x)$: distribución inicial o en el tiempo 0.

Ejemplo

Un ordenador es compartido por dos usuarios. Estudiamos cuantos usuarios hay conectados cada minuto. Nos dicen que un usuario puede desconectarse con probabilidad 0.3 y se puede conectar con probabilidad 0.4.

Modelizamos la situación anterior con una cadena de Markov X(t) que nos da el número de usuarios conectados al cabo de t minutos. Los valores de X(t) pueden ser 0,1 y 2. Por tanto, el conjunto de estados será: $\Omega = \{0,1,2\}$.

A continuación, calculemos las probabilidad de transición:

Ejemplo

Si X(0) = 0, o no hay ningún usuario conectado, el número de usuarios que habrá en el siguiente minuto es una variable aleatoria binomial de parámetros n = 2 y p = 0.4:

$$p_{00} = {2 \choose 0} \cdot 0.4^{0} \cdot 0.6^{2} = 0.36,$$

$$p_{01} = {2 \choose 1} \cdot 0.4^{1} \cdot 0.6^{1} = 0.48,$$

$$p_{02} = {2 \choose 2} \cdot 0.4^{2} \cdot 0.6^{0} = 0.16.$$

Ejemplo

Si X(0)=1, o hay un usuario conectado, el número de usuarios nuevos que habrá en el siguiente minuto es una variable aleatoria binomial de parámetros n=1 y p=0.4 y el número de desconexiones en el minuto siguiente será una variable aleatoria binomial de parámetros n=1 y p=0.3:

$$p_{10} = 0.6 \cdot 0.3 = 0.18,$$

 $p_{11} = 0.3 \cdot 0.4 + 0.7 \cdot 0.6 = 0.54,$
 $p_{12} = 0.7 \cdot 0.4 = 0.28.$

Ejemplo

Si X(0) = 2, o hay los dos usuarios conectados, el número de usuarios desconectados que habrá en el siguiente minuto es una variable aleatoria binomial de parámetros n = 2 y p = 0.3.

$$\rho_{20} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \cdot 0.7^0 \cdot 0.3^2 = 0.09,
\rho_{21} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \cdot 0.7^1 \cdot 0.3^1 = 0.42,
\rho_{22} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \cdot 0.7^2 \cdot 0.3^0 = 0.49.$$

Cadenas de Markov. Diagrama de transición

Diagrama de transición del ejemplo.

Ejemplo en R

Las probabilidades anteriores se almacenarían en R de la forma siguiente.

Vemos que la suma de las filas vale 1:

```
P=\text{matrix}(c(0.36,0.48,0.16,0.18,0.54,0.28,0.09,0.42,0.49),
         3.3.bvrow=T)
P
## [,1] [,2] [,3]
## [1.] 0.36 0.48 0.16
## [2.] 0.18 0.54 0.28
## [3.] 0.09 0.42 0.49
apply(P,1,sum)
## [1] 1 1 1
```

Cadenas de Markov. Ejemplo en python

Ejemplo en python

```
import numpy as np
P=np.matrix([[0.36,0.48,0.16],[0.18,0.54,0.28],
[0.09.0.42.0.49]]
Ρ
   matrix([[0.36, 0.48, 0.16],
           [0.18, 0.54, 0.28],
##
           [0.09, 0.42, 0.49]])
##
np.sum(P, axis = 1)
## matrix([[1.].
           ſ1.].
##
##
           [1.]])
```

 Las probabilidades de transición se pueden escribir en forma de matriz de la forma siguiente:

$$\mathbf{P} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix},$$

donde P se llama matriz de probabilidades de transición.

 Las probabilidades de transición se pueden escribir en forma de matriz de la forma siguiente:

$$\mathbf{P} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix},$$

donde P se llama matriz de probabilidades de transición.

 El valor p_{ij} es la probabilidad de transición desde el estado i al estado j.

 La matriz de probabilidades de transición es una matriz estocástica, es decir la suma de las filas vale 1:

$$p_{i1} + p_{i2} + \cdots + p_{in} = 1.$$

 La matriz de probabilidades de transición es una matriz estocástica, es decir la suma de las filas vale 1:

$$p_{i1} + p_{i2} + \cdots + p_{in} = 1.$$

• Recordemos que $p_{ij} = P(X(1) = j | X(0) = i)$. Por tanto el vector (p_{i1}, \dots, p_{in}) representaría la función de masa de probabilidad de la variable aleatoria discreta X(1)|X(0) = i.

Ejemplo anterior

La matriz de probabilidades de transición sería la siguiente:

$$\mathbf{P} = \begin{pmatrix} 0.36 & 0.48 & 0.16 \\ 0.18 & 0.54 & 0.28 \\ 0.09 & 0.42 & 0.49 \end{pmatrix}.$$

Cadenas de Markov. Matriz de transición de h pasos

• La matriz de probabilidades de transición de *h* pasos para la transición de *h* pasos sería la siguiente:

$$\mathbf{P}^{(h)} = \begin{pmatrix} p_{11}^{(h)} & p_{12}^{(h)} & \cdots & p_{1n}^{(h)} \\ p_{21}^{(h)} & p_{22}^{(h)} & \cdots & p_{2n}^{(h)} \\ \vdots & \vdots & \vdots & \vdots \\ p_{n1}^{(h)} & p_{n2}^{(h)} & \cdots & p_{nn}^{(h)} \end{pmatrix},$$

donde recordemos que $p_{ij}^{(h)} = P(X(h) = j | X(0) = i)$.

Cadenas de Markov. Matriz de transición de h pasos

 La matriz de probabilidades de transición de h pasos es también una matriz estocástica:

$$p_{i1}^{(h)} + p_{i2}^{(h)} + \cdots + p_{in}^{(h)} = 1.$$

Cadenas de Markov. Matriz de transición de h pasos

 La matriz de probabilidades de transición de h pasos es también una matriz estocástica:

$$p_{i1}^{(h)} + p_{i2}^{(h)} + \cdots + p_{in}^{(h)} = 1.$$

• Por tanto el vector $(p_{i1}^{(h)}, \dots, p_{in}^{(h)})$ representaría la función de masa de probabilidad de la variable aleatoria discreta X(h)|X(0) = i.

Cadenas de Markov. Cálculo de $\mathbf{P}^{(h)}$

• Empecemos con el cálculo de $\mathbf{P}^{(2)}$, es decir $p_{ij}^{(2)}$, las probabilidades de transición de 2 pasos:

$$p_{ij}^{(2)} = P(X(2) = j | X(0) = i)$$

$$= \sum_{k=1}^{n} P(X(1) = k | X(0) = i) \cdot P(X(2) = j | X(1) = k)$$

$$= \sum_{k=1}^{n} p_{ik} \cdot p_{kj} = (p_{i1}, \dots, p_{in}) \cdot \begin{pmatrix} p_{1j} \\ \vdots \\ p_{nj} \end{pmatrix}.$$

Cadenas de Markov. Cálculo de **P**^(h)

• La probabilidad $p_{ij}^{(2)}$ se calcula como la suma de probabilidades de ir del estado i a j pasando por el estado k, para k desde 1 hasta n:

$$i \longrightarrow k \longrightarrow j$$
.

Cadenas de Markov. Cálculo de $\mathbf{P}^{(h)}$

• La probabilidad $p_{ij}^{(2)}$ se calcula como la suma de probabilidades de ir del estado i a j pasando por el estado k, para k desde 1 hasta n:

$$i \longrightarrow k \longrightarrow j$$
.

• En resumen $\mathbf{P}^{(2)} = \mathbf{P} \cdot \mathbf{P} = \mathbf{P}^2$.

Cadenas de Markov. Cálculo de $P^{(h)}$

• En general, las probabilidades de transición de h pasos se pueden calcular en función de las probabilidades de transición de h-1 pasos razonando de forma similar:

$$\begin{aligned} p_{ij}^{(h)} &= P(X(h) = j | X(0) = i) \\ &= \sum_{k=1}^{n} P(X(h-1) = k | X(0) = i) \cdot P(X(h) = j | X(1) = k) \\ &= \sum_{k=1}^{n} p_{ik}^{(h-1)} \cdot p_{kj} = (p_{i1}^{(h-1)}, \dots, p_{in}^{(h-1)}) \cdot \begin{pmatrix} p_{1j} \\ \vdots \\ p_{nj} \end{pmatrix}. \end{aligned}$$

Cadenas de Markov. Cálculo de $\mathbf{P}^{(h)}$

• En general, las probabilidades de transición de h pasos se pueden calcular en función de las probabilidades de transición de h-1 pasos razonando de forma similar:

$$p_{ij}^{(h)} = P(X(h) = j | X(0) = i)$$

$$= \sum_{k=1}^{n} P(X(h-1) = k | X(0) = i) \cdot P(X(h) = j | X(1) = k)$$

$$= \sum_{k=1}^{n} p_{ik}^{(h-1)} \cdot p_{kj} = (p_{i1}^{(h-1)}, \dots, p_{in}^{(h-1)}) \cdot \begin{pmatrix} p_{1j} \\ \vdots \\ p_{nj} \end{pmatrix}.$$

• En conclusión,

$$\mathbf{P}^{(h)} = \mathbf{P}^{(h-1)} \cdot \mathbf{P} = \mathbf{P}^{h-1} \cdot \mathbf{P} = \mathbf{P}^h$$

Ejemplo

Calculemos las probabilidades de transición de 2 y 3 pasos:

$$\begin{split} \mathbf{P}^{(2)} = & \mathbf{P} \cdot \mathbf{P} = \begin{pmatrix} 0.36 & 0.48 & 0.16 \\ 0.18 & 0.54 & 0.28 \\ 0.09 & 0.42 & 0.49 \end{pmatrix} \cdot \begin{pmatrix} 0.36 & 0.48 & 0.16 \\ 0.18 & 0.54 & 0.28 \\ 0.09 & 0.42 & 0.49 \end{pmatrix} \\ = \begin{pmatrix} 0.2304 & 0.4992 & 0.2704 \\ 0.1872 & 0.4956 & 0.3172 \\ 0.1521 & 0.4758 & 0.3721 \end{pmatrix}, \\ \mathbf{P}^{(3)} = & \mathbf{P}^{(2)} \cdot \mathbf{P} = \begin{pmatrix} 0.2304 & 0.4992 & 0.2704 \\ 0.1872 & 0.4956 & 0.3172 \\ 0.1521 & 0.4758 & 0.3721 \end{pmatrix} \cdot \begin{pmatrix} 0.36 & 0.48 & 0.16 \\ 0.18 & 0.54 & 0.28 \\ 0.09 & 0.42 & 0.49 \end{pmatrix} \\ = \begin{pmatrix} 0.197136 & 0.493728 & 0.309136 \\ 0.185148 & 0.490704 & 0.324148 \\ 0.173889 & 0.486222 & 0.339889 \end{pmatrix} \end{split}$$

```
P2=P%*%P
P2
##
         [,1] [,2] [,3]
## [1,] 0.2304 0.4992 0.2704
## [2.] 0.1872 0.4956 0.3172
## [3,] 0.1521 0.4758 0.3721
P3=P2%*%P
P3
           [,1] [,2] [,3]
##
## [1,] 0.197136 0.493728 0.309136
## [2,] 0.185148 0.490704 0.324148
## [3,] 0.173889 0.486222 0.339889
```

Cadenas de Markov. Ejemplo en python

```
P2 = np.dot(P,P)
P2
   matrix([[0.2304, 0.4992, 0.2704],
##
           [0.1872, 0.4956, 0.3172],
##
            [0.1521, 0.4758, 0.3721])
P3 = np.dot(P2,P)
P3
   matrix([[0.197136, 0.493728, 0.309136],
##
            [0.185148, 0.490704, 0.324148],
##
            [0.173889, 0.486222, 0.339889]])
```

 Dar la distribución de la variable aleatoria X(h), es decir, la distribución de la transición al cabo de h pasos sería equivalente a dar la función de probabilidad que sería una tabla del tipo:

X(h)	1	2	 n
	$P_{h}(1)$	$P_{h}(2)$	 $P_h(n)$

•

 Dar la distribución de la variable aleatoria X(h), es decir, la distribución de la transición al cabo de h pasos sería equivalente a dar la función de probabilidad que sería una tabla del tipo:

X(h)	1	2	 n
	$P_h(1)$	$P_{h}(2)$	 $P_h(n)$

$$P_h(j) = P(X(h) = j) = \sum_{k=1}^n P(X(0) = k) \cdot P(X(j) = j | X(0) = k)$$

$$= \sum_{k=1}^n P_0(k) \cdot p_{kj}^{(h)} = (P_0(1), \dots, P_0(n)) \cdot \begin{pmatrix} p_{1j}^{(h)} \\ \vdots \\ p_{nj}^{(h)} \end{pmatrix}$$

 La expresión nos da la función de probabilidad de X(h) en función de la función de probabilidad de X(0) y de las probabilidades de transición P(h).

- La expresión nos da la función de probabilidad de X(h) en función de la función de probabilidad de X(0) y de las probabilidades de transición $\mathbf{P}^{(h)}$.
- Matricialmente $\mathbf{P}_h = \mathbf{P}_0 \cdot \mathbf{P}^h$.

Ejemplo anterior

Vamos a calcular la distribución de los usuarios conectados al cabo de 2 y 3 minutos en dos casos:

- Suponiendo que inicialmente hay un usuario conectado.
- Suponiendo que el número de usuarios conectados inicialmente es equiprobable.

Ejemplo anterior

En el primer caso, la función de probabilidad de X(0) será X(0) = (0, 1, 0).

La función de probabilidad de los usuarios conectados al cabo de 2 y 3 minutos será:

$$\begin{split} \mathbf{P}_2 = & (0,1,0) \cdot \mathbf{P}^{(2)} = (0,1,0) \cdot \begin{pmatrix} 0.2304 & 0.4992 & 0.2704 \\ 0.1872 & 0.4956 & 0.3172 \\ 0.1521 & 0.4758 & 0.3721 \end{pmatrix} \\ = & \begin{pmatrix} 0.1872 \\ 0.4956 \\ 0.3172 \end{pmatrix}, \end{split}$$

Ejemplo anterior

$$\begin{split} \mathbf{P}_3 = & (0,1,0) \cdot \mathbf{P}^{(3)} = (0,1,0) \cdot \begin{pmatrix} 0.197136 & 0.493728 & 0.309136 \\ 0.185148 & 0.490704 & 0.324148 \\ 0.173889 & 0.486222 & 0.339889 \end{pmatrix} \\ = & \begin{pmatrix} 0.185148 \\ 0.490704 \\ 0.324148 \end{pmatrix}. \end{split}$$

Ejemplo anterior

En el segundo caso, la función de probabilidad de X(0) será

$$X(0) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}).$$

La función de probabilidad de los usuarios conectados al cabo de 2 y 3 minutos será:

$$\begin{split} \mathbf{P}_2 &= \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \cdot \mathbf{P}^{(2)} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \cdot \begin{pmatrix} 0.2304 & 0.4992 & 0.2704 \\ 0.1872 & 0.4956 & 0.3172 \\ 0.1521 & 0.4758 & 0.3721 \end{pmatrix} \\ &= \begin{pmatrix} 0.1899 \\ 0.4902 \\ 0.3199 \end{pmatrix}, \end{split}$$

Ejemplo anterior

$$\begin{aligned} \mathbf{P}_3 &= \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \cdot \mathbf{P}^{(3)} \\ &= \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \cdot \begin{pmatrix} 0.197136 & 0.493728 & 0.309136 \\ 0.185148 & 0.490704 & 0.324148 \\ 0.173889 & 0.486222 & 0.339889 \end{pmatrix} \\ &= \begin{pmatrix} 0.185391 \\ 0.490218 \\ 0.324391 \end{pmatrix}. \end{aligned}$$

Cadenas de Markov. Ejemplo en R

```
X01=c(0,1,0)
(dist.X21 = t(X01)%*%P2)

## [,1] [,2] [,3]
## [1,] 0.1872 0.4956 0.3172
(dist.X31 = t(X01)%*%P3)

## [,1] [,2] [,3]
## [1,] 0.185148 0.490704 0.324148
```

Cadenas de Markov. Ejemplo en python

```
X01= np.matrix([0,1,0])
dist_X21 = X01*P2
dist_X21

## matrix([[0.1872, 0.4956, 0.3172]])
dist_X31 = X01*P3
dist_X31
## matrix([[0.185148, 0.490704, 0.324148]])
```

Cadenas de Markov. Ejemplo en R

```
X02=c(1/3,1/3,1/3)
(dist.X22 = t(X02)%*%P2)

## [,1] [,2] [,3]
## [1,] 0.1899 0.4902 0.3199
(dist.X32 = t(X02)%*%P3)

## [,1] [,2] [,3]
## [1,] 0.185391 0.490218 0.324391
```

Cadenas de Markov. Ejemplo en python

```
X02= np.matrix([1/3,1/3,1/3])
dist_X22 = X02*P2
dist_X22

## matrix([[0.1899, 0.4902, 0.3199]])
dist_X32 = X02*P3
dist_X32

## matrix([[0.185391, 0.490218, 0.324391]])
```

• La distribución de la cadena de Markov en el equilibrio nos dice cuál es la distribución de X(h), \mathbf{P}_h , al cabo de un número muy grande de transiciones h.

- La distribución de la cadena de Markov en el equilibrio nos dice cuál es la distribución de X(h), P_h , al cabo de un número muy grande de transiciones h.
- Es decir, definimos la distribución de la cadena de Markov en el equilibrio $\pi(x)$ de la forma siguiente:

$$\pi(x) = \lim_{h\to\infty} \mathbf{P}_h(x), \ x = 1,\ldots,n.$$

- La distribución de la cadena de Markov en el equilibrio nos dice cuál es la distribución de X(h), P_h , al cabo de un número muy grande de transiciones h.
- Es decir, definimos la distribución de la cadena de Markov en el equilibrio $\pi(x)$ de la forma siguiente:

$$\pi(x) = \lim_{h \to \infty} \mathbf{P}_h(x), \ x = 1, \dots, n.$$

 La distribución de la cadena de Markov en el equilibrio puede interpretarse como el porcentaje de "tiempo" que una persona pasa en cada estado x suponiendo que realiza un camino aleatorio por la cadena según la matriz de transición de probabilidades.

• Vamos a dar una forma de calcular $\pi(x)$ la distribución de la cadena de Markov en el equilibrio.

- Vamos a dar una forma de calcular $\pi(x)$ la distribución de la cadena de Markov en el equilibrio.
- Podemos escribir que la función de probabilidad de X(h+1), \mathbf{P}_{h+1} puede escribirse como:

$$\mathbf{P}_h = \mathbf{P}_h \cdot \mathbf{P}$$
.

- Vamos a dar una forma de calcular $\pi(x)$ la distribución de la cadena de Markov en el equilibrio.
- Podemos escribir que la función de probabilidad de X(h+1), \mathbf{P}_{h+1} puede escribirse como:

$$\mathbf{P}_h = \mathbf{P}_h \cdot \mathbf{P}$$
.

• Si hacemos $h \to \infty$ en la expresión anterior, obtenemos:

$$\pi = \pi \cdot \mathbf{P}$$
.

- Vamos a dar una forma de calcular $\pi(x)$ la distribución de la cadena de Markov en el equilibrio.
- Podemos escribir que la función de probabilidad de X(h+1), \mathbf{P}_{h+1} puede escribirse como:

$$\mathbf{P}_h = \mathbf{P}_h \cdot \mathbf{P}$$
.

• Si hacemos $h \to \infty$ en la expresión anterior, obtenemos:

$$\pi = \pi \cdot \mathbf{P}$$
.

• Entonces se dice que la distribución de la cadena de Markov en el equilibrio $\pi(x)$ es un vector propio de valor propio 1 por la izquierda de la matriz de transición de probabilidades **P**.

• En resumen, para calcular la distribución de la cadena de Markov en el equilibrio $\pi(x)$, hay que resolver:

$$\pi \mathbf{P} = \pi,$$

$$\sum_{k=1}^{n} \pi = 1.$$

• En resumen, para calcular la distribución de la cadena de Markov en el equilibrio $\pi(x)$, hay que resolver:

$$\pi \mathbf{P} = \pi,$$

$$\sum_{k=1}^{n} \pi = 1.$$

 Hallar un vector propio por la izquierda de la matriz P es equivalente a hallar un vector propio por la derecha de la matriz P^T ya que si:

$$\pi \mathbf{P} = \pi. \Rightarrow \mathbf{P}^{\top} \cdot \pi^{\top} = \pi^{\top}.$$

Ejemplo

El vector propio de valor propio 1 de la matriz \mathbf{P}^{\top} cuyas componentes suman 1 y son positivas vale:

(0.1836735, 0.4897959, 0.3265306).

El vector anterior sería la distribución de probabilidad en el equilibrio de la cadena de Markov considerada.

Ejemplo

Para hallar la distribución de probabilidad en el equilibrio en R haríamos lo siguiente:

```
(vectores.propios = eigen(t(P))$vectors)
## [,1] [,2] [,3]
## [1,] -0.2978565 -0.5883484  0.4082483
## [2,] -0.7942841 -0.1961161 -0.8164966
## [3,] -0.5295227  0.7844645  0.4082483
```

```
(vector.propio.vap.1=vectores.propios[,1])
## [1] -0.2978565 -0.7942841 -0.5295227
(equilibrio =
    vector.propio.vap.1/sum(vector.propio.vap.1))
## [1] 0.1836735 0.4897959 0.3265306
```

Distribución en el equilibrio en python

```
from numpy import linalg as LA
vap, vep = LA.eig(P.T)
vep
## matrix([[-0.29785653, -0.58834841, 0.40824829],
##
           [-0.79428407, -0.19611614, -0.81649658],
           [-0.52952271, 0.78446454, 0.40824829]])
##
equilibrio = vep[:,0]/vep[:,0].sum()
equilibrio
## matrix([[0.18367347].
##
           [0.48979592].
##
           [0.32653061]])
```