# Making Decisions with Reinforcement Learning

#### **Todd Sierens**

Perimeter Institute for Theoretical Physics University of Waterloo

May 5, 2016

#### Outline

- 1 Machine Learning
- 2 Neural Networks
  - Simple Perceptron
  - Multilayer Perceptron
  - Convolutional Neural Network
- 3 Reinforcement Learning
  - Temporal Difference Method
  - Stochastic Gradient Descent
- 4 Results
- 5 Future Directions

#### Supervised Learning

Machine Learning

- Have access to a large set of data with known desired results.
- Adjust model parameters to minimize an objective function.
- Reinforcement Learning
  - Have access to an environment that can be modeled.
  - Typically a reward function is used as a signal for how to adjust model parameters.
  - Board games present a natural environment that is easily modeled and can provide a reward whenever a game completes.

# Simple Perceptron











# Simple Perceptron



## Multilayer Perceptron





### Value Network

- A value network is a neural network that evaluates an environment and determines a value to associate to it.
- In the case of board games, a value network can be used to determine the probability of winning from any given position.



#### $TD(\lambda)$ Equation:

When a terminal state occurs, the reward propagates to previous states and the targets are updated.

$$T_n = (1 - \lambda) V_n + \lambda r$$

### Reinforcement Learning

#### $\mathsf{TD}(\lambda)$ Equation:

When a terminal state occurs, the reward propagates to previous states and the targets are updated.

$$T_n = \sum_{n=0}^{N_0} (1-\lambda)\lambda^n V_n + \lambda^{N_0} r$$











### **Future Directions**

- Route finding app
- Traffic prediction analysis
- Control (robots, self-driving cars, etc.)
- Prediction (stock prices, sports betting, etc.)