18	Feb	2025
----	-----	------

Coyptographic Hash Fuctions:

Main secent properties:

Pre image resistance:
a random
Given y, it should be computationally hard to find an x s.t.

h(x) = }

2) Second Premape Revistance

Given x, it should be comp. hard to find an a sit. $\alpha \neq \alpha'$, $h(\alpha) = h(\alpha')$

3 Collisión registance:

find n, x' s.t. x = x', h(n) = h(n')

Genenic attacks;

2 m 4 calls to h(.)

1 Birthday Paradox"

In reality, back functions are "swiss army brufe"

eg. near collision resistance.

it should be hand to find a, x'

S.t. $\alpha \neq \pi'$ (h(n) $\bigoplus h(\alpha')$)

has bee Hamming x= 10 100

5 = 11010 $h\omega(^{2}, ^{2}) = 3$

 $h(\cdot): \{0,1\}^{\stackrel{*}{\longrightarrow}} \{0,1\}^{n}$ Syntax 1 _ produces an n-bit depart of an arbitrary output looks "random" & cunpredictable"
Random Oracle even if you have made q quence to Pr [h(x*)=y*) random
where a* has
not been grenied = 1/n mq-> Jq the only way to Romow The response on a guer is to compute h(.) on that -> no "hort outs" are pacable How do we design such hoch function? fixet problem. How to handle arbitroum leyth (i) Ensure by pre-proceeding that the input is multiple of some block length > podding (m) = 10 11 knoph (m) how many bits?

typically. block size = 512 bits
m 1 (0,,,0) (len(m)) 64 bits
64 bit
this padding permit only 64 bits for
the length of the message.
=> the largest nor which can be
The largest nor which can be written in 64 bits $=(2^{64}-1)$
We can handle mescaper of known (2 ⁶⁴)
bits or less-
Not a posectical restriction
1
Merkle Damgard (MD) padding scheme
Bad example of decrepating a havel function.
- Clear Strong - 1-184 Janes
padded m= m1 m2 m3 m4, [me
$h(m) = m_1 \oplus m_2 \oplus m_3 \oplus \cdots \oplus m_k$
D : all-ali e autoto to a v
Premaje attack: outpt = y $ x x 2 x $
τνρος - Ο ποτιστή ποτιστή
Orghy =7
input = y
Inpm = J

MD Design: Compression 128 bits 128 5 512 bib MD theorem: if $h(\omega) = h(\omega)$ for two different is put on, & one then there must be a collision for Compression function d'amenhere This call, y (n.)

if compression function is collision resistant that the hash function is collision resistant Example functions No. on output size Rivert - MD+ 128 48 64 128 MD5 NIST order SHA-O -160 80 160 SHA-1 50 64 256 SHA-256 SHA-512 8/2 80 Secure Hash Algorithm = SHA SHA-1 Collisions - Marc Stevens. SHA-3 competition: Keccak - Bertoni,... Daemen Sponge stoncture
As of today NLT -> SHA-3 find an n sit h(n)=

What about IV in MD Deligin
what if allow IV to be chosen like in block ciphers?
h(m) = Iv 11 val.
X Bad
10 - My contact
Afteck: N = CN M M M M M M M M M M M M M
Solution: Do not allow IV to be charen
make IV to be fixed.