F.E. Semester - I (RC 2007-08) Examination, May/June 2018 APPLIED MATHEMATICS - I

Duration: 3 Hours

Total Marks: 100

Instructions:

- 1) Attempt any five questions atleast one from each Module.
- 2) Assume suitable data, if necessary.

MODULE - I

1. a) State and prove duplication formula for gamma function.

b) Evaluate: $\int_{0}^{a} \frac{1}{\sqrt[n]{a^n - x^n}} dx$ support each notional physical section of the property of t

c) Evaluate : $\int_{0}^{\infty} \frac{x^4}{4^x} dx$

- d) Prove that : $erf_{c}(x) + erf_{c}(-x) = 2$.

5

2. a) Test the convergence of the following series :

i)
$$\sum_{n=1}^{\infty} \frac{n^3}{e^n}$$

ii) $\sum_{n=1}^{\infty} \left(\sqrt{n^2 + 1} - n \right)$

iii) $1 + \frac{2^2}{3^2} + \frac{2^2 \cdot 4^2}{3^2 \cdot 5^2} + \frac{2^2 \cdot 4^2 \cdot 6^2}{3^2 \cdot 5^2 \cdot 7^2} + \dots$

b) Define absolutely convergent and conditionally convergent series. Test whether the following series is absolutely convergent or conditionally convergent series.

8

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$$

E. Semester - 1 (RC 2017 3JUDOMnination, May/June 2018

3. a) Use DeMoivre's theorem and solve $x^3 + 8 = 0$.

6

b) Prove that :

i)
$$sinh^{-1}x = log\left(x + \sqrt{x^2 + 1}\right)$$

ii) $\cosh^{-1} x = \log \left(x + \sqrt{x^2 - 1} \right)$.

c) If $\frac{(a+ib)^{x+iy}}{(a-ib)^{x-iy}} = \alpha + i\beta$ find α and β .

6

4. a) Determine the analytic function whose imaginary part is tan-1 (y/x).

6

b) Show that the function $u = e^{-2xy}\sin(x^2 - y^2)$ is harmonic. Find the conjugate harmonic function.

6

c) If $u - v = \frac{\cos x + \sin x - e^{-y}}{2\cos x - 2\cosh y}$ and f(z) = u + iv is an analytic function of

z = x + iy, find f(z) in terms of z.

8

MODULE - III

5. a) If
$$\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n$$
, prove that, $x^2y_{n+2} + (2n+1)xy_{n+1} + 2n^2y_n = 0$.

7

b) Expand : $\cos^{-1}\left(\frac{x^2-1}{x^2+1}\right)$ in powers of x. Find the first 4 terms.

6

c) Calculate the approximate value of $\sqrt{10}$ to four decimal places by taking the first four terms of an appropriate Taylor's expansion.

7

6. a) Evaluate: 10 Insprevnos vietulosos el señes privoltot ent rentienwise.

12

i) $\lim_{x\to 0} \frac{\log x^2}{\cot x^2}$

ii) $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$

iii)
$$\lim_{x\to 0} (5^x + x)^{\frac{1}{x}}$$

b) If z = f(x, y) where u = lx + my, v = ly - mx then show that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (l^2 + m^2) \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} \right)$$

8

MODULE - IV

7. a) Form the partial differential equations by eliminating constants:

6

- i) $2z = (ax + y)^2 + b$
- ii) $(x h)^2 + (y k)^2 + z^2 = a^2$.
- b) Form the partial differential equations by eliminating functions $f(x^2 + y^2, z xy) = 0$.

6

c) Solve $x^2p^2 + y^2q^2 = z^2$.

8

8. a) If $u = tan^{-1} \left[\frac{y^2}{x} \right]$, find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$

6

b) Find the extreme values of the function $x^3y^2(1-x-y)$.

6

c) Find the largest product of the numbers x, y, z when $x^2 + y^2 + z^2 = 9$.

8

