Matematyka 2 Elementy logiki i teorii mnogości

Informatyka Stosowana, I rok*

Tomasz Połacik

Spis treści

1	Pierwsze zajęcia											٠,				/.	2
2	Drugie zajęcia .											(3
3	Trzecie zajęcia													,			6
4	Czwarte zajęcia								./								9
5	Piąte zajęcia .								V								12
6	Szóste zajęcia .						,					!					16
7	Siódme zajęcia						٠.				١.						18

^{*}Semestr letni 2021

1 Pierwsze zajęcia

2

Pierwsze zajęcia

Równoliczność

- 1.1. Przypomnienie. Funkcja różnowartościowa, na, bijekcja, złożenie funkcji, funkcja odwrotna.
- 1.2 Definicja (Równoliczność). Mówimy, że zbiory A i B są równoliczne (lub że mają tę samą moc), gdy istnieje bijekcja ze zbioru A na zbiór B. Piszemy wówczas $A \sim B$ lub |A| = |B|.
- 1.3 Twierdzenie ([GZ1], Twierdzenie 5.1). Dla dowolnych zbiorów A i B;
 - 1. $A \sim A$,
 - 2. $A \sim B \rightarrow B \sim A$
 - 3. $A \sim B \wedge B \sim C \rightarrow A \sim C$.

Dowód. 1. Funkcja identycznościowa jest bijekcją. 2. Funkcja odwrotna do bijekcji jest bijekcją. 3. Złożenie bijekcji jest bijekcją.

- 1.4 Przykład ([GZ1, Wykład 5, Przykłady]).
 - 1. $A \sim \emptyset \iff A = \emptyset$.
 - 2. $\mathbb{N} \sim \mathbb{N} \setminus \{0\}$.
 - 3. $\mathbb{N} \sim 2\mathbb{N}$, $\mathbb{N} \sim \mathbb{N} \setminus 2\mathbb{N}$.
 - 4. $\mathbb{N} \sim \mathbb{Z}$.

$$f(n) = \begin{cases} \frac{n}{2}, & \text{dla } n \in 2\mathbb{N}, \\ -\frac{n+1}{2}, & \text{dla } n \in \mathbb{N} \setminus 2\mathbb{N}, \end{cases}$$
$$f(m,n) = \frac{(m+n)(m+n+1)}{2} + m.$$

5. $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$.

$$f(m,n) = \frac{(m+n)(m+n+1)}{2} + m.$$

Dowód, że f jest bijekcją, [GZ1, Tw. 7.27, str. 129–130].

6. Dla dowolnych $a, b, c, d \in \mathbb{R}$ takich, że a < b i c < d, mamy $[a, b] \sim [c, d]$.

$$f(x) = \frac{(d-c)x + bc - ad}{b-a}.$$

$$f(x) = \frac{x}{1 - |x|}.$$

8. $(0,1] \sim (0,1)$.

$$f(x) = \begin{cases} \frac{1}{n+1}, & \text{dla } x = \frac{1}{n}, n \in \mathbb{N} \setminus \{0\}, \\ x, & \text{else.} \end{cases}$$

9. $[-1,1] \sim (-1,1)$

$$[-1,0] \sim (-1,0]$$
 & $(0,1] \sim (0,1)$

Skad $[-1,1] \sim (-1,1)$.

10. $[0,1] \sim \mathbb{R}$.

$$[0,1] \sim [-1,1] \sim (-1,1) \sim (0,1) \sim \mathbb{R}.$$

2 Drugie zajęcia 3

Ćwiczenia

[GZ2, Wykład 5] Wybór zadań spośród 5.1—5.6.

2 Drugie zajęcia

 $|\mathbb{N}|$ vs $|\mathbb{R}|$

2.1 Lemat ([GZ1, Lemat 6.2]). $[0,1] \nsim \mathbb{N}$.

Idea dowodu. Niech dana będzie dowolna funkcja $f: \mathbb{N} \to [0,1]$. Pokażemy, że f nie może być "na". $Krok\ \theta$. Dzielimy odcinek [0,1] na trzy części:

- (a) $[0,\frac{1}{3}],$
- (b) $\left[\frac{1}{3}, \frac{2}{3}\right]$,
- (c) $\left[\frac{2}{3}, 1\right]$

i wybieramy przedział

- (a) gdy $f(0) > \frac{1}{3}$,
- (b) gdy $f(0) < \frac{1}{3}$,
- (c) gdy $f(0) = \frac{1}{3}$.

Procedurę tę powtarzamy biorąc w roli przedziału [0,1] wybrany przez nas przedział. Iterując tę procedurę otrzymujemy zstępującą rodzinę przedziałów domkniętych. Rodzina taka ma przekrój P będący zbiorem niepustym. Można udowodnić, że P jest jednopunktowy. Zauważmy, że dla każdego $n \in \mathbb{N}$, wartość f(n) nie należy do P. A więc P nie jest zawarty w $\operatorname{rng}(f)$, czyli f nie jest na [0,1].

2.2 Twierdzenie ([GZ1, Twierdzenie 6.3]). $\mathbb{R} \not\sim \mathbb{N}$.

Dowód. Jeżeli istniałaby funkcja $f z \mathbb{N}$ na \mathbb{R} , to funkcja

$$g(x) = \begin{cases} f(x), & \text{gdy } f(x) \in [0, 1] \\ 0, & \text{else} \end{cases}$$

 \dashv

 \dashv

 \dashv

byłaby funkcją z \mathbb{N} na [0,1], co przeczy Lematowi 2.1.

Metoda przekątniowa

2.3 Twierdzenie ([GZ1, Przykład 6.4]). $\mathbb{N}^{\mathbb{N}} \not\sim \mathbb{N}$.

Dowód. Metoda przekatniowa.

Analogicznie dowodzimy, że

2.4 Twierdzenie ([GZ1, Przykład 6.5]). $\{0,1\}^{\mathbb{N}} \not\sim \mathbb{N}$.

Dowód. Metoda przekątniowa.

2 Drugie zajęcia 4

Twierdzenie Cantora

2.5. Twierdzenie Cantora. [GZ1, Twierdzenie 6.6] $A \nsim \mathcal{P}(A)$, dla dowolnego zbioru A.

Dowód. Niech f będzie dowolna iniekcja

$$f: A \xrightarrow{1-1} \mathcal{P}(A).$$

Pokażemy, że f nie może być suriekcją. Definiujemy:

$$Z := \{ x \in A : x \notin f(x) \} \in \mathcal{P}(A).$$

Wówczas, dla dowolnego $x \in A$ mamy

$$x \in Z \iff x \notin f(x)$$

czyli

$$x \in [Z \setminus f(x)] \cup [f(x) \setminus Z].$$

Zatem, dla każdego $x \in A$,

$$Z \neq f(x)$$
.

2.6 Wniosek ([GZ1, Wniosek 6.8]). $A \nsim \mathcal{P}(\mathcal{P}(A))$.

Dowód. Przypuśćmy, że $A \sim \mathcal{P}(\mathcal{P}(A))$. Rozważmy zbiór $B \subseteq \mathcal{P}(A)$:

$$B = \{ \{a\} : a \in A \}$$

Mamy

$$B \sim A$$

wtedy

$$\mathcal{P}(A) \supset B \sim A \sim \mathcal{P}(\mathcal{P}(A))$$

Oznaczałoby to, że zbiór $\mathcal{P}(\mathcal{P}(A))$ jest równoliczny z (pewnym podzbiorem zbioru) $\mathcal{P}(A)$. Sprzeczność z Twierdzeniem Cantora.

Twierdzenie Cantora-Bersteina

- **2.7 Definicja** (Porównywanie mocy). Mówimy, że moc zbioru A jest niewiększa od mocy zbioru B i piszemy $|A| \leq |B|$, gdy istnieje zbiór $C \subseteq B$ taki, że $A \sim C$. Ponadto, |A| < |B| wtedy i tylko wtedy, gdy $|A| \leq |B|$ oraz $|A| \neq |B|$.
- 2.8. Powtórzenie. Obraz i przeciwobraz.
- **2.9 Twierdzenie** ([GZ1, Twierdzenie 6.10, Twierdzenie 6.11]). Dla dowolnych zbiorów A i B,
 - (i) $|A| \leq |B| \iff \text{istnieje injekcja } f: A \to B.$

Ponadto, gdy zbiory A i B są niepuste,

(ii) $|A| \leq |B| \iff$ istnieje surjekcja $g: B \to A$.

2 Drugie zajęcia 5

Dowód. (i) Z definicji. (ii) ⇒ Załóżmy, że |A| ≤ |B|. Wtedy z (i) istnieje $f:A \xrightarrow{1-1} B$. Dla ustalonego $a \in A$ definiujemy

$$g(x) = \begin{cases} f^{-1}(x), & \text{gdy } x \in \text{rng}(f); \\ a, & \text{gdy } x \notin \text{rng}(f). \end{cases}$$

Wówczas $g: B \xrightarrow{\text{na}} A$. \Leftarrow Niech $g: B \xrightarrow{\text{na}} A$, wtedy $g^{-1}[\{a\}] \neq \emptyset$ dla wszystkich $a \in A$. Stosujemy AC do $\{g^{-1}[\{a\}]: a \in A\}$ otrzymując selektor S. Oczywiście, $S \subseteq B$ oraz $g \upharpoonright S: S \xrightarrow{\text{na}, 1-1} A$. Zatem $|A| \leqslant |B|$.

- **2.10 Uwaga.** Jeżeli $A \subseteq B$, to $|A| \le |B|$, ponieważ $\mathrm{id}_A : A \xrightarrow{1-1} \mathrm{rng}(A) \subseteq B$.
- **2.11 Twierdzenie** ([GZ1, Twierdzenie 6.12]). Dla dowlonych zbiorów A, B, C:
 - 1. $|A| \leq |A|$,
 - 2. $|A| \leqslant |B| \land |B| \leqslant |C| \rightarrow |A| \leqslant |C|$,
 - 3. $|A| = |B| \rightarrow |A| \le |B| \land |B| \le |A|$.

2.12. Twierdzenie Cantora-Bernsteina. Dla dowolnych zbiorów A i B:

jeżeli
$$|A|\leqslant |B|$$
oraz $|B|\leqslant |A|$ to $|A|=|B|.$

Bez dowodu.

2.13 Przykład ([GZ1, Przykład 16]). Wiadomo z Przykładu 1.4¹, że $(a,b) \sim (c,d)$ dla dowolnych $a,b,c,d \in \mathbb{R}$ takich, że a < b oraz c < d oraz, że $(-1,1) \sim \mathbb{R}$. Stosując Twierdzenie Cantora-Bernsteina, pokazujemy, że dla dowolnego zbioru A takiego, że

$$(0,1) \subseteq A \text{ oraz } A \subseteq (0,2),$$

mamy $|A| = |\mathbb{R}|$.

- **2.14 Przykład** (Hotel Hilberta, [GZ1, Przykład 18]). $\mathbb{N} \cup \{-1\} \sim \mathbb{N}$.
- **2.15** Przykład (Hotel Hilberta, [GZ1, Przykład 19]). $(0,1) \cup \{-1\} \sim (0,1)$.
- **2.16 Przykład** ([GZ1, Przykład 25]). Dla każdego zbioru A,

$$|A| < |\mathcal{P}(A)|.$$

Dowód. Z Twierdzenie Cantora, $A \not\sim \mathcal{P}(A)$. Ponadto $|A| \leq |\mathcal{P}(A)|$, bo $f: A \xrightarrow{1-1} \mathcal{P}(A)$, dla funkcji f takiej, że $f(x) = \{x\}$.

Ćwiczenia

[GZ2, Wykład 6]. Wybór zadań spośród 6.1—6.7.

 $^{^1~[\}mathrm{GZ1},~\mathrm{Przykład}~5.17,~\mathrm{Przykład}~5.20]$

3 Trzecie zajęcia 6

3 Trzecie zajęcia

Zbiory co najwyżej przeliczalne

 ${\bf 3.1~Definicja}$ (Zbiory skończone, co najwyżej przeliczalne i przeliczalne). Zbiór A nazywamy

- 1. skończonym, gdy $A=\emptyset$ lub istnieje liczba $0< n\in \mathbb{N}$ taka, że $A\sim \{1,\ldots,n\}$;
- 2. przeliczalnym, gdy $A \sim \mathbb{N}$;
- 3. co najwyżej przeliczalnym, gdy A jest zbiorem skończonym lub przeliczalnym;
- 4. nieskończonym, gdy A nie jest zbiorem skończonym;
- 5. nieprzeliczalnym, gdy A nie jest zbiorem co najwyżej przeliczalnym.
- **3.2 Twierdzenie** ([GZ1, Twierdzenie 7.16, Dowód 3]). Każdy nieskończony podzbiór zbioru $\mathbb N$ jest zbiorem przeliczalnym.

Dowód. Niech $X\subseteq \mathbb{N}$ będzie zbiorem nieskończonym (w szczególności Xjest niepusty). Zasada Indukcji pociąga następującą Zasadę Minimum

Każdy niepusty podzbiór zbioru ℕ ma element najmniejszy.²

Definiujemy $g: \mathbb{N} \to X$

$$g(0) = \min X$$

 $g(n) = \min(X \setminus \{g(0), \dots, g(n-1)\}), \text{ dla } n > 0.$

Funkcja gjest iniekcją — wprost z definicji. Żeby wykazać, że gjest suriekcją wystarczy pokazać, że dla każdego $n\in\mathbb{N}$

$$n \in X \to \exists k (k \leqslant n \land g(k) = n).$$

Indukcja względem n. Baza jest oczywista, bo 0 jest najmniejszym elementem, więc 0=g(0). Krok indukcyjny. Założenie dla $m\leqslant n$. Przypadek 1: $m+1\notin X$ jest pusto spełniony. Przypadek 2: $m\in X$. Podprzypadek 2a: $n+1\in\{g(0),\ldots,g(n)\}$ jest oczywisty. Podprzypadek 2b: $n+1\notin\{g(0),\ldots,g(n)\}$. Wtedy $n+1=\min(\{X\setminus\{g(0),\ldots,g(n)\}\})$, zatem n+1=g(n+1).

3.3 Twierdzenie ([GZ1, Twierdzenie 7.21, Dowód 1]). Niech $X \neq \emptyset$. Zbiór X jest zbiorem co najwyżej przeliczalnym wtedy i tylko wtedy, gdy elementy zbioru X można ustawić w ciąg.

Dowód. Zbiór X jest co najwyżej przeliczalny wtedy i tylko wtedy, gdy $|X| \leq |\mathbb{N}|$. Oraz $|X| \leq |\mathbb{N}|$ wtedy i tylko wtedy, gdy istnieje $f: \mathbb{N} \xrightarrow{\mathrm{na}} X$.

3.4 Twierdzenie ([GZ1, Twierdzenie 7.23]). Suma dwóch zbiorów przeliczalnych jest zbiorem przeliczalnym.

 $^{^2}$ Ćwiczenie.

7 3 Trzecie zajęcia

Dowód. Jeżeli $A = \emptyset$ lub $B = \emptyset$, to twierdzenie jest oczywiste. Załóżmy, że A i B są niepuste oraz co najwyżej przeliczalne, wtedy elementy zbiorów A i Bmożna ustawić w ciągi

$$(x_n)_{n\in\mathbb{N}}, \quad (y_n)_{n\in\mathbb{N}}.$$

Wówczas elementy zbioru $A \cup B$ tworza ciąg

$$x_0, y_0, x_1, y_1, \dots$$

Zatem $X \cup Y$ jest zbiorem co najwyżej przeliczalnym.

3.5 Wniosek ([GZ1, Wniosek 7.25]). Suma skończenie wielu zbiorów co najwyżej przeliczalnych jest zbiorem co najwyżej przeliczalnym.

3.6 Wniosek ([GZ1, Wniosek 7.26]). Z jest zbiorem przeliczalnym.

$$Dow \acute{o}d. \ \mathbb{Z} = \mathbb{N} \cup \{-n : n \in \mathbb{N}\}.$$

3.7 Twierdzenie ([GZ1, Twierdzenie 7.27, Twierdzenie 7.28]). Produkt kartezjański dwóch zbiorów przeliczalnych jest zbiorem przeliczalnym.

Dowód. Niech $p: \mathbb{N} \times \mathbb{N} \xrightarrow{\operatorname{na}, 1-1} \mathbb{N}$ będzie dowolną funkcją pary, np.

$$p(m,n) = \frac{(m+n)(m+n+1)}{2} + m,$$

 $p(m,n) = 2^m(2n+1) - 1.$

lub

$$p(m,n) = 2^m(2n+1) - 1$$

Niech X i Y będą zbiorami przeliczalnymi oraz niech

$$g: \mathbb{N} \xrightarrow{\operatorname{na}, 1-1} X \text{ oraz } h: \mathbb{N} \xrightarrow{\operatorname{na}, 1-1} Y.$$

Wówczas funkcja $f: X \times Y \to \mathbb{N}$ określona jako

$$f(x,y) = p(g(x), h(y))$$
 dla $x \in X, y \in Y$

 \dashv

 \dashv

jest bijekcją.

3.8 Wniosek. Q jest zbiorem przeliczalnym.

Dowód. Z faktu, że $\mathbb{N} \subseteq \mathbb{Q} \subseteq \mathbb{Z} \times (\mathbb{N} \setminus \{0\})$ i Twierdzenia Cantora-Bernsteina.

3.9 Wniosek. $\mathbb{R} \setminus \mathbb{Q}$ jest zbiorem nieprzeliczalnym.

Dowód. W przeciwnym przypadku zbiór \mathbb{R} byłby przeliczalny, gdyż $\mathbb{R} = \mathbb{Q} \cup \mathbb{R}$ $(\mathbb{R} \setminus \mathbb{Q})$. Sprzeczność z Twierdzeniem 2.2.

3.10 Twierdzenie ([GZ1, Twierdzenie 7.32]). Suma przeliczalnej rodziny zbiorów przeliczalnych jest zbiorem przeliczalnym.

Dowód. Niech $\mathcal{R} = \{X_n : n \in \mathbb{N}\}$ i załóżmy, że $X_n \neq \emptyset$ dla $n \in \mathbb{N}$, oraz niech $f_n: \mathbb{N} \xrightarrow{\mathrm{na}} X_n$. Definiujemy:

$$f: \mathbb{N} \times \mathbb{N} \xrightarrow{\mathrm{na}} \bigcup_{n \in \mathbb{N}} X_n, \qquad f(n, k) = f_n(k).$$

Pokazujemy, że f jest surjekcją.

3 Trzecie zajęcia 8

3.11 Twierdzenie ([GZ1, Twierdzenie 7.33]). Zbiór X^* wszystkich skończonych ciągów o wartościach w niepustym co najwyżej przeliczalnym zbiorze X jest zbiorem przeliczalnym.

Dowód.Dla $n\in\mathbb{N}$ niech $X^{[n]}$ oznacza zbiór wszystkich ciągów o długości no elementach z X. Indukcyjnie dowodzimy, że

$$X^{[n]}$$
 jest zbiorem cnp.

Baza. Dla n=0: $X^{[0]}=X^{\emptyset}=\emptyset$. Dla n=1: $X^{[1]}\sim X$. Krok indukcyjny. Zauważyć, że

$$X^{[n+1]} \sim X^{[n]} \times X.$$

Oczywiście,

$$X^* = \bigcup_{n \in \mathbb{N}} X^{[n]},$$

więc X^* jest przeliczalną sumą zbiorów co najwyżej przeliczalnych.

3.12 Wniosek ([GZ1, Wniosek 7.35]). Zbiór wszystkich skończonych podzbiorów zbioru przeliczalnego jest przeliczalny.

 $Dow \acute{o}d.$ Funkcja $f: X^* \stackrel{\mathrm{na}}{\longrightarrow} \mathcal{P}_{\mathrm{fin}}(X)$ taka, że

$$f((x_n)_{n\in\mathbb{N}}) = \{x_n : n\in\mathbb{N}\}\$$

jest suriekcją. Ponadto $\mathcal{P}_{\text{fin}}(X)$ jest nieskończony bo zawiera rodzinę $\{\{x\}:x\in X\}.$

3.13 Wniosek. Zbiór wszystkich wielomianów o współczynnikach z \mathbb{Z} jest przeliczalny. Zbiór liczb algebraicznych jest przeliczalny. Zbiór liczb przestępnych jest nieprzeliczalny.

Zbiory mocy kontinuum

- **3.14 Twierdzenie** ([GZ1, Twierdzenia 8.16]). $|\mathbb{R}| = |\{0,1\}^{\mathbb{N}}| = |\mathbb{N}^{\mathbb{N}}| = |\mathcal{P}(\mathbb{N})|$. Bez dowodu.
- **3.15 Definicja** (Zbiory mocy kontinuum). Dowolny zbiór równoliczny z \mathbb{R} nazywamy *zbiorem mocy kontinuum*.
- **3.16 Twierdzenie.** Zbiory *wszystkich skończonych* ciągów oraz wszystkich skończonych podzbiorów zbioru przeliczalnego są przeliczalne. Zbiory *wszystkich* ciągów oraz wszystkich podzbiorów zbioru przeliczalnego są zbiorami mocy kontinuum.

Bez dowodu.

3.17 Twierdzenie. Zbiory liczb naturalnych, całkowitych i wymiernych są przeliczalne. Zbiory liczb rzeczywistych i niewymiernych są mocy kontinuum.

Ćwiczenia

[GZ2, Wykład 7]. Wybór zadań spośród 7.1—7.9.

4 Czwarte zajęcia

9

4 Czwarte zajęcia

Częściowe porządki

4.1 Definicja (Częściowy porządek, liniowy porządek, łańcuch). Relację \leq na zbiorze A nazywamy relacją częściowego porządku, gdy

- 1. \leq jest zwrotna: $\forall x \in X \ x \leq x$,
- 2. \leq jest słabo-symetryczna: $\forall x, y \in A \ (x \leq y \land y \leq x \rightarrow x = y),$
- 3. \leq jest przechodnia: $\forall x, y, z \in X \ (x \leq y \land y \leq z \rightarrow x \leq z)$.

Jeżeli \leq jest częściowym porządkiem na A, to parę $\langle A, \leq \rangle$ nazywamy zbiorem częściowo uporządkowanym. Relację częściowego porządku \leq nazywamy relacją liniowego porządku, gdy dodatkowo

4. \leq jest spójna: $\forall x, y \in A \ (x \leq y \lor y \leq x)$.

Niech A będzie zbiorem częściowo uporządkowanym przez relację \preceq . Podzbiór B zbioru A taki, że $\preceq \upharpoonright B$ jest relacją liniowego porządku nazywamy lańcuchem.

4.2 Przykład. Przykłady zbiorów częściowo uporządkowanych:

- 1. $\langle X, \subseteq \rangle$, dla dowolnego zbioru X,
- $2. \langle \mathbb{R}, \leqslant \rangle,$
- $3. \langle \mathbb{R}, \geqslant \rangle,$
- $4. \ \langle \mathbb{N} \setminus \{0\}, | \rangle,$
- 5. $\langle \mathbb{R}^{\mathbb{N}}, \preceq \rangle$, gdzie $f \preceq g \iff \forall n \cdot f(n) \leqslant g(n)$,
- 6. $\langle X, \preceq \rangle$, gdzie X jest dowolnym zbiorem funkcji oraz $f \preceq g$ wtedy i tylko wtedy, gdy $f = g \upharpoonright \text{dom}(f)$,
- 7. Porządek prefiksowy. Ustalmy dowolny niepusty zbiór A. Zbiór ten będziemy nazywać alfabetem. Niech A^* będzie zbiorem wszystkich skończonych ciągów elementów ze zbioru A. Zbiór A^* nazywać będziemy zbiorem słów nad alfabetem A. Do zbioru A^* należy słowo puste, czyli słowo o długości 0, które będziemy oznaczać przez ϵ . Na zbiorze słów definiujemy binarną operację konkatenacji oznaczaną symbolem *: dla dowolnych $a,b\in A^*$, takich że $a=a_1,\ldots,a_m$ oraz $b=b_1,\ldots,b_n$, definiujemy

$$a * b = c$$
,

gdzie

$$c_i = \begin{cases} a_i & \text{dla } 1 \leqslant i \leqslant m \\ b_j & \text{dla } i = m + j. \end{cases}$$

Na zbiorze słów A^* definiujemy relację
 \preceq porządku prefiksowego w następujący sposób:

$$a \prec b \iff \exists c . (b = a * c).$$

Wówczas \leq jest relacją częściowego porządku na A^* .

4 Czwarte zajęcia 10

8. Porządek leksykograficzny. Ustalmy zbiór częściowo uporządkowany (A, \leq) . Rozważmy zbiór słów A^* oraz relację \leq zwaną porządkiem leksykograficznym nad $(A \leq)$) zdefiniowaną następująco: dla $a, b \in A^*$,

$$a \leq b \leftrightarrow a \leq b \lor \exists i (a_i < b_i \land \forall j < i (a_j < b_j)).$$

Porządek leksykograficzny \leq nad (A, \leqslant) jest częściowym porządkiem. Ponadto, gdy (A, \leqslant) jest zbiorem liniowo uporządkowanym, to (A^*, \leq) jest również zbiorem liniowo uporządkowanym.

4.3 Przykład. Przykłady łańcuchów w zbiorach częściowo uporządkowanych z Przykładu 4.2.

Diagramy Hassego

4.4 Przykład. Diagramy Hassego dla zbiorów częściowo uporządkowanych z Przykładu 4.2 oraz [GZ1, Przykład 10.8].

Elementy wyróżnione

- **4.5 Definicja** (Elementy minimalny, maksymalny, największy, najmniejszy, kresy). Niech X będzie zbiorem częściowo uporządkowanym przez relację \preceq . Ponadto, niech $a \in X$ oraz $A \subseteq X$. Mówimy, że element a jest
 - 1. minimalnym w A, gdy $a \in A$ oraz $x \leq a \rightarrow x = a$ dla każdego $x \in A$;
 - 2. $maksymalnym \ w \ A$, gdy $a \in A$ oraz $a \leq x \rightarrow x = a$ dla każdego $x \in A$;
 - 3. najmniejszym w A, gdy $a \in A$ oraz $a \leq x$ dla każdego $x \in A$;
 - 4. największym w A, gdy $a \in A$ oraz $x \leq a$ dla każdego $x \in A$;
 - 5. ograniczeniem dolnym zbioru A, gdy $a \leq x$ dla każdego $x \in A$;
 - 6. ograniczeniem górnym zbioru A, gdy $x \leq a$ dla każdego $x \in A$;
 - 7. $kresem\ dolnym\ (infimum)\ zbioru\ A,\ gdy\ a\ jest\ największym\ ograniczeniem\ dolnym\ zbioru\ A,\ co\ zapisujemy\ a=\inf A;$
 - 8. kresem górnym (supremum) zbioru A, gdy a jest najmniejszym ograniczeniem górnym zbioru A, co zapisujemy $a = \sup A$.
- **4.6 Przykład.** Przykłady elementów wyróżnionych na podstawie Przykładu 4.2 i Przykładu 4.2 oraz [GZ1, Przykład 10.8].
- **4.7 Twierdzenie** ([GZ1, Twierdzenie 10.7]). Niech X będzie zbiorem częściowo uporządkowanym przez relację \preceq oraz niech $A \subseteq X$. Wtedy
 - 1. W A istnieje co najwyżej jeden element największy i co najwyżej jeden element najmniejszy.
 - 2. Zbiór A ma co najwyżej jeden kres górny i co najwyżej jeden kres dolny.
 - 3. Jeżeli $a \in A$ jest elementem największym w A, to a jest
 - (i) jedynym elementem maksymalnym w A,

4 Czwarte zajęcia 11

- (ii) kresem górnym zbioru A.
- 4. Jeżeli $a \in A$ jest elementem najmniejszym w A, to a jest
 - (i) jedynym elementem minimalnym w A,
 - (ii) kresem dolnym zbioru A.

Dowód. 1. Słaba antysymetria.

- 2. Definicja kresów.
- 3. Maksymalność oczywista. Element a jest ograniczeniem górnym zbioru A. Niech $x \in X$ będzie ograniczeniem górnym zbioru A, wtedy w szczególności $a \leq x$; zatem a jest najmniejszym ograniczeniem górnym zbioru A.
 - 4. j.w.

4.8 Twierdzenie. Niech X będzie zbiorem częściowo uporządkowanym przez relację \preceq oraz niech $A\subseteq X$ będzie łańcuchem. Wtedy

- 1. W A istnieje co najwyżej jeden element minimalny i jest on jednocześnie elementem najmniejszym w A.
- 2. W A istnieje co najwyżej jeden element maksymalny i jest on jednocześnie elementem największym w A.

Dowód. Łatwo.

- **4.9 Twierdzenie.** Niech X będzie zbiorem częściowo uporządkowanym przez relację \preceq oraz niech $\emptyset \neq A \subseteq X$ będzie zbiorem skończonym. Wtedy
 - 1. W A istnieje element maksymalny i element minimalny.
 - 2. Jeżeli w A istnieje dokładnie jeden element maksymalny, to jest on jednocześnie elementem największym w A.
 - 3. Jeżeli w A istnieje dokładnie jeden element minimalny, to jest on jednocześnie elementem najmniejszym w A.

 $Dow \acute{o}d$. 1. Indukcja względem |A|.

2. Niech a będzie jedynym elementem maksymalnym w A i przypuśćmy, że a nie jest największym w A. Wówczas istnieje $b \in A$ taki, że $a \neq b$ oraz $b \not\prec a$. Niech

$$B=\{x\in A: b\preceq x\}.$$

Ponieważ $B\subseteq A$, to zbiór B jest skończony, a zatem na mocy pierwszego punktu twierdzenia, w B istnieje element maksymalny c.

Pokażemy, że c jest również elementem maksymalnym w A. Przypuśćmy dla dowodu nie wprost, że $c \prec x$ dla pewnego $x \in A$. Ponieważ $c \in B$, mamy wtedy $b \preceq c \prec x$, skąd $x \in B$. Ponieważ $c \prec x$, element c nie jest maksymalny w B, wbrew założeniu.

Z drugiej strony, $a \notin B$, bo w przeciwnym razie mielibyśmy $b \leq a$ — sprzeczność z założeniem, że $b \not\prec a$. Zatem $a \neq c$. Sprzeczność z założeniem, że a jest jedynym elementem maksymalnym w A.

Lemat Kuratowskiego-Zorna

4.10. W skończonych zbiorach częściowo uporządkowanych zawsze istnieję elementy maksymalne i minimalne. Na ogół nieskończony zbiór częściowo uporządkowany nie musi zawierać elementów maksymalnych ani minimalnych. Warunek dostateczny na istnienie elementów maksymalnych podany jest w następującym twierdzenie zwanym Lematem Kuratowskiego-Zorna. Twierdzenie to jest bardzo często stosowane w celu dowodzenie istnienia elementów o z góry określonych własnościach.

4.11. Lemat Kuratowskiego-Zorna. Niech X będzie zbiorem częściowo uporządkowanym przez relację \leq . Wówczas, jeżeli każdy łańcuch ma ograniczenie górne w X, to w X istnieje element maksymalny.

Ćwiczenia

[GZ2, Wykład 10]. Wybór zadań spośród 10.1—10.4, 10.7, 10.8.

5 Piąte zajęcia

Izomorfizmy zbiorów częściowo uporządkowanych

- **5.1 Definicja.** Niech (X, \leq_X) i (Y, \leq_Y) będą zbiorami częściowo uporządkowanymi. Funkcję $f: X \to Y$ nazywamy *izomorfizmem* zbiorów częściowo uporządkowanych (X, \leq_X) i (Y, \leq_Y) , gdy
 - 1. f jest bijekcją,
 - 2. f zachowuje porządek, czyli

$$\forall a, b \in X \ (a \leqslant_X b \leftrightarrow f(a) \leqslant_Y f(b))$$

5.2 Przykład. Przykłady z [GZ1, Przykład 10.16, Przykład 10.17].

Drzewa

5.3 Definicja. Niech A będzie zbiorem niepustym i niech \leq będzie prefiksowym porządkiem na A^* . $Drzewem\ nad\ A$ nazywamy dowolny niepusty podzbiór T zbioru A^* spełniający warunek

$$u \in T \land v \leqslant u \rightarrow v \in T$$
,

dla dowolnych $u, v \in T$.

- **5.4.** Jeżeli nie prowadzi to do niejednoznaczności symbol konkatenacji * będziemy pomijać, dla słowa u i elementu a pisząc ua zamiast u*a.
- **5.5.** Ponieważ słowo puste ϵ jest elementem najmniejszym w (A^*, \leq) , z Definicji 5.3 wynika bezpośrednio, że ϵ należy do każdego drzewa. Element ten nazywamy korzeniem drzewa. Dowolny element drzewa nazywamy wierzchołkiem. Jeśli w drzewie T nad A, dla pewnych $u \in T$ oraz $a \in A$ mamy $ua \in T$, to wierzchołek ua nazywamy a-następnikiem wierzchołka u. Wierzchołki nie mające następników nazywamy liśćmi drzewa. Rzędem wierzchołka u nazywamy moc zbioru wszystkich następników tego wierzchołka. Galęziq drzewa T nazywamy dowolny maksymalny łańcuch w T.

- **5.6 Przykład.** Przykłady drzew:
 - 1. $\{\epsilon\}$
 - 2. Niech $A = \{a\}$ oraz niech

$$a^n = \underbrace{a * \cdots * a}_{n\text{-razy}}.$$

Wówczas $\{a^n : n \in \mathbb{N}\}$ jest drzewem. Poniżej przedstawiamy jego diagram.

3. Niech A będzie dowolnym alfabetem. Wówczas A^* nazywamy pełnym drzewem nad A. W szczególności, $\{0,1\}^*$ nazywamy pełnym drzewem binarnym.

4. Niech k>0. Dowolne drzewo T zawarte w zbiorze $\{0,1,\ldots,k-1\}$ nazywamy $drzewem\ k$ -argumentowym, gdy każdy wierzchołek drzewa T niebędący liściem ma rząd równy k. Przykład drzewa 2-argumentowego:

$$T_1 = \{0^n : n \in \mathbb{N}\} \cup \{0^n 1 : n \in \mathbb{N}\} \cup \{0^{2n+1} 10 : n \in \mathbb{N}\} \cup \{0^{2n+1} 11 : n \in \mathbb{N}\}.$$

- **5.7.** Drzewem etykietowanym nazywamy dowolne drzewo, w którym każdemu wierzchołkowi przyporządkowana jest dokładnie jeden element z ustalonego zbioru Σ , zwany etykietą.
- **5.8 Przykład.** Przykłady drzew etykietowanych:

1. Niech $\Sigma = \{\neg, \lor, \land, \rightarrow, \leftrightarrow\} \cup \{p_i : i \in \mathbb{N}\}$. Drzewem struktury formuły $(p_1 \rightarrow p_2) \leftrightarrow (\neg p_1 \lor p_2)$ jest struktura postaci

Na diagramie przedstawiono etykiety przyporządkowane do odpowiednich wierzchołków drzewa.

2. Drzewo wyrażeń arytmetycznych. Wyrażenie arytmetyczne 3*(2+1) jest reprezentowane przez następujące drzewo:

3. Rozważmy następujący program:

$$x:=1;$$
 while $y \neq 0$ do $x:=2x$; $y:=y-1$ end

Program ten możemy reprezentować za pomocą nieskończonego drzewa

etykietowanego zwanego jego $\mathit{drzewem}\ formalnych\ oblicze\'n.$

4. Rozważmy następujący dokument HTML:

6 Szóste zajęcia 16

</BODY>

Kod w HTML ma strukturę drzewa:

5.9 Twierdzenie (Lemat Königa). Niech $T \subseteq A^*$ będzie drzewem nieskończonym, w którym każdy wierzchołek jest skończonego rzędu. Wówczas T zawiera ścieżkę nieskończoną.

Dowód. Nieskończoną gałąź x_0, x_1, x_2, \ldots drzewa T definiujemy indukcyjnie:

- (i) Jako x_0 przyjmujemy korzeń drzewa T. Ponieważ drzewo T jest nieskończone, wierzchołek x_0 ma nieskończenie wiele następników.
- (ii) Załóżmy, że wierzchołki $x_0, x_1, \ldots, x_{n-1}$ wybrane zostały w ten sposób, że x_{i+1} jest bezpośrednim następnikiem x_i oraz tak, że x_{i+1} ma nieskończenie wiele następników. Z założenia, wierzchołek x_{n-1} jest skończonego rzędu, czyli ma tylko skończenie wiele bezpośrednich następników. Zatem, ponieważ x_{n-1} ma nieskończenie wiele następników, co najmniej jeden z bezpośrednich następników wierzchołka x_{n-1} ma nieskończenie wiele następników.

Ponieważ krok(ii) jest wykonalny dla każdego x_n , dla $n \in \mathbb{N}$, otrzymujemy nieskończoną gałąź x_0, x_1, \ldots drzewa T.

Ćwiczenia

[GZ2, Wykład 10], 10.10, 10.15 (a), (b), (c).

 ${f 5.10}$ Ćwiczenie. Niech T będzie drzewem skończonym. W tym przypadku mówimy, ze T jest pełnym drzewem binarnym gdy każdy jego wierzchołek poza liśćmi jest stopnia 2. Pokazać, że każde skończone pełne drzewo binarne ma nieparzystą liczbę wierzchołków.

6 Szóste zajęcia

Kraty i algebry Boole'a

Kraty

6.1 Definicja. Zbiór częściowo uporządkowany $(A \leq)$ nazywamy kratq, gdy każdy dwuelementowy podzbiór zbioru A ma kresy. Kres dolny elementów x i

6 Szóste zajęcia 17

yoznaczać będziemy przez $x\cap y,$ a kres górny przez $x\cup y.$ Największy element kraty (o ile istnieje) oznaczać będziemy przez 1, a element najmniejszy (o ile istnieje) przez 0. Kratę nazywamy zupelnqgdy każdy podzbiór zbioru Ama kresy.

Kratę $(A\leqslant)$ nazywamy $\mathit{dystrybutywnq},$ gdy dla dowolnych $x,y,z\in A$ zachodzą równości:

$$((x \cup y) \cap z) = (x \cap z) \cup (y \cap z),$$

$$((x \cap y) \cup z) = (x \cup z) \cap (y \cup z).$$

6.2 Przykład. Przykłady krat.

- 1. Dla dowolnego niepustego zbioru A zbiór częściowo uporządkowany $(\mathcal{P}(A),\subseteq)$ jest kratą zupełną. Krata ta jest dystrybutywna.
- 2. (\mathbb{N}, \leq) jest kratą. Nie jest to krata zupełna, ale każdy niepusty podzbiór ma kres dolny. Krata ta jest dystrybutywna.
- 3. $(\mathbb{N}, |)$ jest kratą. Nie jest to krata zupełna. Krata ta jest dystrybutywna.
- 4. Każdy zbiór liniowo uporządkowany jest kratą dystrybutywną.
- **6.3 Twierdzenie.** W dowolnej kracie zachodzą równości:

$$x \cup y = y \cup x, \qquad x \cap y = y \cap x$$
 (1)

$$x \cup (y \cup z) = (x \cup y) \cup z, \qquad x \cap (y \cap z) = (x \cap y) \cap z$$
 (2)

$$(x \cap y) \cup y = y, \qquad x \cap (x \cup y) = y.$$
 (3)

6.4 Twierdzenie (Knaster-Tarski). Niech (K, \leq) będzie kratą zupełną oraz niech $f: K \to K$ będzie funkcją monotoniczną, czyli spełniającą warunek

$$\forall x, y \in K \ (x \leqslant y \to f(x) \leqslant f(y)).$$

Wtedy f ma najmniejszy punkt stały, to znaczy istnieje element $a \in K$ taki, że f(a) = a oraz dla każdego $x \in K$, jeżeli f(x) = x, to $a \le x$.

Dowód. Rozważmy zbiór $X=\{x\in K: f(x)\leqslant x\}$. Oczywiście $1\in X,$ zatem $X\neq\emptyset.$ Niech

$$a := \inf(X)$$
.

Niech x będzie dowolnym elementem zbioru X. Wówczas $a \le x$, skąd otrzymujemy $f(a) \le f(x)$, gdyż f jest funkcją monotoniczną. Ponieważ $x \in X$, mamy również $f(x) \le x$, skąd dostajemy

$$\forall x \in X . f(a) \leq x.$$

Zatem f(a) jest ograniczeniem dolnym zbioru X, w szczególności,

$$f(a) \leqslant a. \tag{*}$$

Stąd, na mocy monotoniczności funkcji f,

$$f(f(a)) \leqslant f(a),$$

czyli $f(a) \in X$. Zatem

$$a \leqslant f(a). \tag{**}$$

Z (*) oraz (**) dostajemy f(a) = a, czyli a jest punktem stałym funkcji f.

Pokażemy, że a jest najmniejszym punktem stałym. Załóżmy, że b jest dowolnym punktem stałym funkcji f. Wtedy, w szczególności, $f(b) \leq b$ czyli $b \in X$. Ponieważ $a = \inf(X)$, otrzymujemy $a \leq b$.

6.5 Przykład. Niech A będzie dowolnym alfabetem zawierającym 0 i 1. Definiujemy funkcję $f: \mathcal{P}(A^*) \to \mathcal{P}(A^*)$ w następujący sposób: dla dowolnego zbioru $X \subseteq A^*$,

$$f(X) = \{\epsilon\} \cup \{0w : w \in X\} \cup \{1w : w \in X\}.$$

Wówczas f jest funkcją monotoniczną i zbiór $\{0,1\}^*$ jest najmniejszym punktem stałym funkcji f.

Algebry Boole'a

6.6 Definicja. Kratę dystrybutywną $(A \leq)$ nazywamy algebrą Boole'a, gdy ma element największy 1 i element najmniejszy 0 oraz dla każdego elementu $x \in A$ istnieje element $-x \in A$, zwany dopełnieniem elementu x, taki że

$$x \cap -x = 0$$
 oraz $x \cup -x = 1$.

Algebrę Boole'a nazywamy zupełną, gdy jest kratą zupełną.

- **6.7 Przykład.** Przykłady algebr Boole'a.
 - 1. $(\{0,1\}, \leq)$, gdzie $0 \leq 1$, jest algebrą Boole'a.
 - 2. Dla dowolnego zbioru X, $(\mathcal{P}(X), \subseteq)$ jest zupełną algebrą Boole'a.
 - 3. Skończone algebry Boole'a dwu-, cztero- i ośmioelementowe: diagramy Hassego.
- **6.8 Twierdzenie.** Każda skończona algebra Boole'a jest izomorficzna z algebrą $(\mathcal{P}(X), \subseteq)$ dla pewnego skończonego zbioru X. W szczególności, każda skończona algebra Boole'a ma 2^n elementów, dla pewnego $n \in \mathbb{N}$.

Ćwiczenia

[LM]: 56, 57, 58.

7 Siódme zajęcia

7.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu kartezjańskiego dwóch zbiorów. Dziedziną lewostronną relacji R nazywamy zbiór $D_l(R) = \{x : \langle x, y \rangle \in R \text{ dla pewnego } y\}$, a dziedziną prawostronną relacji R nazywamy zbiór $D_r(R) = \{y : \langle x, y \rangle \in R \text{ dla pewnego } x\}$. Zbiór $D_l(R) \cup D_r(R)$ nazywamy polem relacji R.

 $\bf 7.2~ \bf Definicja~ (Złożenie relacji, relacja odwrotna). <math display="inline">\it Złożeniem~relacji~ R$ i S $\it nazywamy~ relację$

$$S \circ R = \{\langle x, z \rangle : \text{dla pewnego } y, \langle x, y \rangle \in R \text{ oraz } \langle y, z \rangle \in S\}.$$

Relacją odwrotną do R nazywamy relację

$$\mathsf{R}^{-1} = \{ \langle y, x \rangle : \langle x, y \rangle \in \mathsf{R} \}.$$

7.3 Twierdzenie. Dla dowolnych relacji R i S mamy

$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}.$$

Dowód. Mamy

$$\begin{split} \langle a,b\rangle \in \left(S \circ R\right)^{-1} &\iff \langle b,a\rangle \in \left(S \circ R\right) \\ &\iff \exists c \ . \ \langle b,c\rangle \in R \land \langle c,a\rangle \in S \\ &\iff \exists c \ . \ \langle c,b\rangle \in R^{-1} \land \langle a,c\rangle \in S^{-1} \\ &\iff \langle a,b\rangle \in R^{-1} \circ S^{-1}. \end{split}$$

A zatem $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

- 7.4 Definicja (Relacja równoważności). Relację
R $\subseteq X\times X$ nazywamy relacją równoważności, gdy
 - 1. R jest zwrotna: $\forall x \in X \ x R x$,
 - 2. R jest symetryczna: $\forall x, y \in X \ (xRy \to yRx)$,
 - 3. R jest przechodnia: $\forall x, y, z \in X \ (x Ry \land y Rz \rightarrow x Rz)$.
- 7.5 Przykład. Następujące relacje są relacjami równoważności:
 - 1. $A = \mathcal{P}(\{1, ..., n\})$ oraz $X R_A Y \iff X \sim Y$.
 - 2. $B = \mathbb{Z} \text{ oraz } k \mathsf{R}_B l \iff k \equiv l \pmod{3}$.
 - 3. $C = \mathbb{N} \times \mathbb{N}$ oraz

$$\langle m_1, n_1 \rangle R_C \langle m_2, n_2 \rangle \iff m_1 + n_2 = m_2 + n_2.$$

4. $D = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\} \text{ oraz})$

$$\langle k, l \rangle R_D \langle p, q \rangle \iff kq = lp.$$

7.6 Definicja (Klasa abstrakcji, zbiór ilorazowy). Niech R będzie relacją równoważności w zbiorze $X \neq \emptyset$. Klasą abstrakcji elementu $a \in X$ względem relacji R nazywamy zbiór

$$[a]_{\mathsf{R}} = \{ x \in A : x \mathsf{R} a \}.$$

Zbiorem ilorazowym zbioru A względem relacji R nazywamy zbiór

$$A/\mathsf{R} = \{ [x]_\mathsf{R} : x \in A \}.$$

7.7 Przykład. Zbiory ilorazowe:

- 1. $A/R_A = .$
- 2. $B/R_B = .$
- 3. $C/R_C = .$
- 4. $D/R_D = .$

7.8 Definicja (Podział zbioru). Rodzinę $\mathcal P$ podzbiorów zbioru A nazywamy podziałem zbioru A gdy

- 1. $X \neq \emptyset$, dla każdego $X \in \mathcal{P}$;
- 2. $X \neq Y \rightarrow X \cap Y = \emptyset$, dla dowolnych $X, Y \in \mathcal{P}$;
- 3. $\mathcal{P} = A$.

7.9 Przykład. Podziały:

- 1. $A/R_A = .$
- 2. $B/R_B = .$
- 3. $C/R_C = .$
- 4. $D/R_D = .$

7.10 Lemat. Niech R będzie relacją równoważności na zbiorze A. Wówczas, dla dowolnych $a,b\in A$ mamy $a\mathsf{R}b\iff [a]_\mathsf{R}=[b]_\mathsf{R}.$

Dowód. Łatwo. ⊢

 ${\bf 7.11}$ Twierdzenie (Zasada abstrakcji). Niech Abędzie dowolnym niepustym zbiorem. Wówczas

- 1. Jeżeli R jest relacją równoważności na A, to A/R jest podziałem zbioru A.
- 2. Jeżeli rodzina $\mathcal P$ jest podziałem zbioru A, to relacja R zdefiniowana jako

$$x R y \iff x, y \in Z$$
, dla pewnego $Z \in \mathcal{P}$

jest relacją równoważności na A.

3. Funkcja Fokreślona na zbiorze wszystkich relacji równoważności R na Ataka, że

$$F(R) = A/R$$

przekształca ten zbiór wzajemnie jednoznacznie na zbiór wszystkich podziałów zbioru ${\cal A}.$

 \dashv

Dowód. [GZ1, Twierdzenie 9.6].

- 1. Mamy: $[a]_{\mathsf{R}} \neq \emptyset$ (przechodniość R); dla $a \neq b$, $[a]_{\mathsf{R}}$ i $[b]_{\mathsf{R}}$ są rozłączne (przechodniość R); $\bigcup_{a \in A} [a]_{\mathsf{R}} = A$ (zwrotność R).
 - 2. Łatwo.
 - 3. Opuszczam.

Literatura

[GZ1] W. Guzicki, P. Zakrzewski. Wykłady ze wstępu do matematyki. PWN 2005.

[GZ2] W. Guzicki, P. Zakrzewski. Wstęp do matematyki. Zbiór zadań. PWN 2005.

[LM] I. Ławrow, L. Maksimowa. Zadania z teorii mnogości, logiki matematycznej i teorii algorytmów. PWN 2004.

tp. 18 lutego 2021