

ELEMENTOS DISTINO	GUIDOS DE UN	I CONJUNTO O	RDENADO	
Soa A un conjur	nto ordena	do con una	relación de a	den <
			1	
dinde < es	le relacion	n de preced	eler	
es decir.	a < b	(=) 0 0	recede a b	
			receive a c	
donde < es	reflexiva,	Antisiméti	nica, Transitiva	a y lineal.
Reflexiva.	V a∈A	⇒ a <	a	
Antisim.	0 < b	n b < a	→ a = b	
	W \ 3	1 0 2 4		
Trans.	a < b	, b < c	=> a < c	
linealidad	a ≠ b	=> a < !	b v b <	a
Primar alamanta	110 010 1	0 0 0 0		r elemento sii
Primer elemento	UN Clemento	CEFI SE	Herma prime	r elemento si
	precede a	todos los de	e más.	
Es elecir. a	e A es pri	mer elem.	$\Rightarrow \forall x \in A \Rightarrow$	a < x
151.1			1. 711	
Último elemento	El elemento	<u>b∈fl</u> . se	llama Oltim	o elemento sii
	ods olomen	to de A pre	ce de a b	
Es decer,	DEA es 6	Himo dem.	<>> ∀xcA =>	x < b
Elementos minimales	s El elemen	to m de A	es un elem.	minima (sii
	no out	+- 1		
	110 64/2	ie un elem	ento aistinto	que la preceda
Es decir, m	ne A es mi	nima (<=>	VxeA.x.	< m => m = x
Elementos maximale	es El elem	ento M de	A es un elem	. maximal siii
	no ex	ista luz de	2000 100 100 1	gue la siga
	Y PI	is in all 616)	mento distint	5 1908 10 5 199

2	5 2	de	Ġт	1	n	1 e A	a e	s m	QY î v	nal	<	(=	W>	ce A	· .	m ~	(χ	_	χ	-	M		