Kaggle Task: Digit Recognizer Presentation

Xia Rui

Resources

- Stanford University cs231n Convolutional Neural Networks for Visual Recognition
- Python / Jupyter Notebook / Keras
- Research Articles on Batch Normalization / softmax + crossentropy
- Other's kernel

Basic Models

Idea:

- 1. Leaky ReLU
- 2. Add more Conv2D layers
- 3. Batch Normalization
- 4. Increase epochs
- 5. Data argumentation

Data Preparation

label	-	pixe I1	pixel 2	pixel 3	pixel 4	pixel 5	pixel 6	pixel 7	-	•••	pixel 773	pixel 774	pixel 775	pixel 776	pixel 777	pixel 778	pixel 779	pixel 780	pixel 781	pixel 782	pixel 783
1	0	0	0	0	0	0	0	0	0	0	•••	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	•••	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	•••	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	•••	0	0	0	0	0	0	0	0	0	0

784 Pixels = 28x28 Pixels integer 0-255 10 digits: from 0-9

Data Preparation

- Data Distribution
- Checking for Missing Values
- Normalization /255
- To reduce the illumination's influence
- Gradient Descent will converge faster on input range (0,1) than (0,255)

$$\frac{x - x_{min}}{x_{max} - x_{min}}$$

- Data reshape 1x784 to 28x28
- Encode labels to one hot vectors 9 -> (0,0,0,0,0,0,0,0,0,1)
- Convert a class vector (integers) to binary class matrix
- Split the training set to training set and validation set for fitting

Convolutional Layers

FC: 28x28x1 too large

32x5x5x1 parameters

Conv: connected to a small region of the layer

5x5x1 parameters

Convolutional Layers

32x5x5 overall features, more large-scale features 64x3x3 local features, more detailed features, more filters

Convolutional Layers

Training curves are closer to the validation curves --- more Convolutional layers tend to overfit more

Data Argumentation

Reason for why validation loss curve is lower Training harder to identify

Not to overfit, artificially expand the dataset

Someone will write bigger/smaller numbers, scale Rotate
Shift horizontally/vertically

```
datagen = ImageDataGenerator(
    rotation_range=10,
    zoom_range = 0.1,
    width_shift_range=0.1,
    height_shift_range=0.1)
```

Activation Layers Add non-linearity to the models

Sigmoid & Tanh

- Gradient vanishing (derivative = g(x)(1-g(x)))
- Not zero-centred (always greater than 0, zig-zagging dynamics)
- Time-consuming to calculate

ReLU max(0,x)

- Not zero-centred
- Simply thresholding
- Can 'die': Every input x put ReLU zero → die
 At least one x activate ReLU (fixed by small Ir)

Leaky ReLU $\max(0.01x, x)$

- Should be better since solved not zero-centred problem
- Accuracy decrease from 0.9926 to 0.9864
- Error raise from 0.0226 to 0.0431

MaxPooling Layers

Down-sampling, pick maximum value in a 2x2 square Reduce computation cost, reduce overfitting (reduce dimension) $28x28 \rightarrow 14x14$

Dropout Layers

Randomly ignore some nodes in layer (Making new nns) Forces network to learn in a distributed way

≈ training different neural network and then take average

Batch Normalization Layers

- Internal covariance shift
- Change in the distribution of network activations due to the change in network parameters during training
- $F_2(F_1(x, \theta_1), \theta_2)$, θ_2 does not have to readjust to compensate for the change in the distribution of x

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean • Normalize each scalar feature independently

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance • Mini-batch estimate mean & variance

$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift representation power of the network

Batch Normalization Layers

4Conv2D + BN + ReLU

Accuracy: 0.9926 Error: 0.0226

4Con2D + ReLU

Accuracy: 0.9905 Error: 0.0323

Flatten + FC + Softmax Layers

- After Flatten: 1D vector
- After Last FC layer: 1D vector: 10x1x1 (10 categories)

•
$$\sigma(x) = \text{Softmax}(x) = \text{normalized}(\exp(x)) = \frac{\exp(x_i)}{\sum_{j} \exp(x_j)}$$

- Endow score with meaning(probability distribution), Sum up to be 1
- Softmax + categorical_crossentropy (loss function, categorical classification >2)
- When calculating gradient descent, derivative of softmax(x) = $\sigma(x)$ (1- $\sigma(x)$)
- Get eliminated by the derivative of cross-entropy loss

Optimizer

Functions to iteratively improve parameters

- SGD (slow), mini-batch Gradient Descent (partial)
 - Every time different batch of inputs (not stable)
- Momentum
 - Consider previous gradients

$$v_t = \gamma \cdot v_{t-1} + \alpha \cdot \nabla_{\Theta} J(\Theta)$$

$$\Theta = \Theta - v_t$$

Adagrad

$$n_t = n_{t-1} + g_t^2$$

$$\Delta heta_t = -rac{\eta}{\sqrt{n_t + \epsilon}} * g_t$$

RMSprop

4Conv2D + ReLU + RMSprop Accuracy: 0.9905 Error: 0.0323

$$E[g^2]_t = 0.9 E[g^2]_{t-1} + 0.1 g_t^2$$

$$\Theta_{t+1} = \Theta_t - rac{lpha}{\sqrt{E[g^2]_t + \epsilon}} \cdot g_t$$

Adam Accuracy: 0.9933 Error: 0.0232

$$egin{aligned} m_t &= eta_1 m_{t-1} + (1-eta_1) g_t \ v_t &= eta_1 v_{t-1} + (1-eta_1) g_t^2 \ \hat{m}_t &= rac{m_t}{1-eta_1^t} \ \hat{v}_t &= rac{v_t}{1-eta_2^t} \ \Theta_{t+1} &= \Theta_t - rac{lpha}{\sqrt{\hat{v}_t} + \epsilon} \, \hat{m}_t \end{aligned}$$

Result Evaluation: Confusion Matrix & Classification Report

[Conv2D + ReLU + BN] x2 + MaxPooling + DropOut + [Conv2D + ReLU + BN] x2 + MaxPooling + DropOut + FC + DropOut + FC + Softmax Epochs → 30

Final loss: 0.013653, final accuracy: 0.995000 precision recall f1-score support 0 1.00 0.99 1.00 408 0.99 0.99 0.99 471 1.00 1.00 1.00 420 1.00 1.00 1.00 506 0.99 0.99 0.99 397 4 0.99 0.99 0.99 339 0.99 0.99 402 6 1.00 1.00 1.00 438 1.00 8 0.99 0.99 0.99 403 9 1.00 1.00 1.00 416 avg / total 1.00 0.99 0.99 4200

Result Evaluation: Training & Validation Curves

[Conv2D + ReLU + BN] x2 + MaxPooling + DropOut + [Conv2D + ReLU + BN] x2 + MaxPooling + DropOut + Flatten + FC + DropOut + FC + Softmax Epochs → 30

Result Evaluation: Top 6 Errors

[Conv2D + ReLU + BN] x2 + MaxPooling + DropOut + [Conv2D + ReLU + BN] x2 + MaxPooling + DropOut + Flatten + FC + DropOut + FC + Softmax Epochs → 30

