# 1.3. Sonlu Otamatların İndirgenmesi

İndirgeme: Aynı kümeyi kapsayan ve daha az durumlardan oluşan makine

## 1.3. Sonlu Özdevinirlerin İndirgenmesi

- Sonlu özdevinirlerle ilgili olarak şimdiye kadar birden çok model tanımlandı. Tanımlanan modelleri aşağıdaki gibi özetlemek mümkündür:
- Tanıyıcı Otomatlar
  - DFA
  - NFA
- Çıkış Üreten Otomatlar
  - Moore Makinesi
  - Mealy Makinesi
- Gerek FA modelinde gerekse çıkış üreten sonlu özdevinir modelinde, tanımlanan sonlu özdevinirin (makinenin) karmaşıklığı durum sayısı ile doğru orantılıdır. Bu nedenle, bir sonlu özdevinir verildiğinde, bu sonlu özdevinirin indirgenmesi önem taşıyabilir.
- Bir sonlu özdevinirin indirgenmesi ya da yalınlaştırılması, bu sonlu özdevinire denk, durum sayısı en küçük sonlu özdevinirin bulunmasıdır.

# 1.3.1. Ardıl, Öncel, Denk ve Ayırdedilebilir Durum Tanımları

 DFA, Moore ve Mealy modellerinin en genişi Mealy modelidir. Çünkü tanıyıcı (FA) model, Moore modelinin çıkış alfabesi { kabul, red } olan bir alt türü olarak görülebilir.

 Moore modeli ise, Mealy modelinin, çıkış işlevi giriş alfabesinden bağımsız olan bir alt türü olarak görülebilir. Bu nedenle tanımlar verilirken Mealy modeli esas alınacaktır

## Örnek 1.11

- Mealy türü
   M<sub>1.11</sub> makinesinin giriş ve çıkış alfabeleri :
  - { **0**, **1** } alfabesidir.

Başlangıç durumu A olan makinenin geçiş ve çıkış işlevleri yandaki durum çizelgesi ile tanımlanmaktadır

| Ş.D        | x=0  | x=1  |
|------------|------|------|
| <b>→</b> A | A, 0 | D, 1 |
| В          | C, 0 | E, 1 |
| С          | G, 0 | E,1  |
| D          | G, 0 | F, 1 |
| E          | E, 1 | C, 0 |
| F          | В, О | D, 1 |
| G          | В, О | E, 1 |

#### 1.3.1.1 Ardıl

$$S_1 \xrightarrow{x} S_2$$

M makinesinin  $S_1$  durumundan x giriş simgesi ile  $S_2$  durumuna geçiliyorsa:

#### S<sub>1</sub>'in x-ardılı S<sub>2</sub>'dir.

- x bir giriş simgesi, w ise giriş simgelerinin bir dizgisi olmak üzere, deterministik modellerde, bir durumun x ve w ardılı her zaman tek bir durumdur.
- Deterministik olmayan modellerde ise x ve w ardılları, durumların birer altkümesidir. Geçiş çizeneğinde yer aldığı için bir durumun x-ardılı kolaylıkla bulunabilir.
- Bir durumun  $\mathbf{w} = \mathbf{x_1} \ \mathbf{x_2} \ \dots \mathbf{x_k}$  ardılını bulmak için ise, geçiş çizeneği kullanılarak önce  $\mathbf{x_1}$  ardılı bulunur; daha sonra  $\mathbf{x_1}$ -ardılın  $\mathbf{x_2}$ -ardılı, .. vb bulunarak  $\mathbf{w}$ -ardılı elde edilir.

#### Ardıl örnek:

**M**<sub>1.11</sub> makinesinde **A** durumunun **1**-ardılı **D**'dir.

Aynı makinenin **B** durum unun **011**-ardılı ise **C**'dır.

| Ş.D        | x=0  | x=1  |
|------------|------|------|
| <b>→</b> A | A, 0 | D, 1 |
| В          | C, 0 | E, 1 |
| С          | G, 0 | E,1  |
| D          | G, 0 | F, 1 |
| E          | E, 1 | C, 0 |
| F          | В, О | D, 1 |
| G          | В, О | E, 1 |

#### M 1.3 makinesi Ardıl



 $\mathbf{q_0}$  durumunun  $\mathbf{0}$ -ardılı  $\{\mathbf{q_0}, \mathbf{q_1}\}$ 'dir.

 $\{q_0, q_1\}$  yerine  $q_0q_1$  yazılabilir.

Buna göre  $\mathbf{q}_0$  durumunun  $\mathbf{0}$ -ardılı  $\mathbf{q}_0\mathbf{q}_1$ ,  $\mathbf{1}$ -ardılı  $\mathbf{q}_0\mathbf{q}_2$ ,  $\mathbf{100}$ -ardılı ise  $\mathbf{q}_0\mathbf{q}_1\mathbf{q}_3$ 'dür.  $\mathbf{q}_1$  durumunun  $\mathbf{1}$ -ardılı ile  $\mathbf{q}_2$  durumunun  $\mathbf{01}$ -ardılı ise yoktur (boş kümedir).

## 1.3.1.2 Öncel

• M 1.11 makinesinin  $S_1$ ,  $S_2$ , ...,  $S_i$  durumlarından, x giriş simgesi ile  $S_j$  durumuna geçiliyorsa  $S_j$  durumunun x-önceli  $\{S_1, S_2, ..., S_i\}$  dir.

| Ş.D        | x=0  | x=1  |
|------------|------|------|
| <b>→</b> A | A, 0 | D, 1 |
| В          | C, 0 | E, 1 |
| С          | G, 0 | E,1  |
| D          | G, 0 | F, 1 |
| E          | E, 1 | C, 0 |
| F          | В, О | D, 1 |
| G          | В, О | E, 1 |

| Ş.D        | Önceki<br>x=0 | Durum<br>x=1 |
|------------|---------------|--------------|
| <b>→</b> A | Α             | -            |
| В          | FG            | -            |
| С          | В             | E            |
| D          | -             | AF           |
| E          | E             | BCG          |
| F          | -             | D            |
| G          | CD            | -            |

Kullanılan model deterministik olsa bile, bir durumun x ve w öncelleri, durumların birer altkümesidir.

Örneğin  $\mathbf{M_{1.11}}$  makinesi için  $\mathbf{B}$  durumunun  $\mathbf{0}$ -önceli  $\mathbf{FG}$ ,  $\mathbf{001}$ -önceli ise  $\mathbf{AEF}$ 'dir. Aynı makine için  $\mathbf{D}$  durumunun  $\mathbf{0}$  ve  $\mathbf{110}$  öncelleri ise yoktur. Bir makinenin x-öncellerini bulmak için öncel çizelgesi adı verilen bir çizelge oluşturulabilir.  $\mathbf{M_{1.11}}$  makinesi için oluşturulan öncel çizelgesi yanda görülmektedir.

| Ş.D        | Önceki<br>x=0 | Durum<br>x=1 |
|------------|---------------|--------------|
| <b>→</b> A | Α             | -            |
| В          | FG            | -            |
| С          | В             | E            |
| D          | -             | AF           |
| E          | E             | BCG          |
| F          | -             | D            |
| G          | CD            | -            |

#### Denk Durumlar

**M**<sub>1.11</sub> makinesinin **A** ve **B** durumları 1-denktir. **C** ve **F** durumları da 1-denktir. Buna karşılık **E** ve **G** durumları 1-denk değildir.

M<sub>1.11</sub> makinesinin A ve D durumları 2-denktir. B ve C durumları 3-denktir. B ve C durumları aynı zamanda 4-denktir, 5-denktir.

Buna karşılık A ve D durumları 3-denk değildir.

| Ş.D        | x=0  | x=1  |
|------------|------|------|
| <b>→</b> A | A, 0 | D, 1 |
| В          | C, 0 | E, 1 |
| С          | G, 0 | E,1  |
| D          | G, 0 | F, 1 |
| Е          | E, 1 | C, 0 |
| F          | В, О | D, 1 |
| G          | В, О | E, 1 |

#### Denk Durum:

- M makinesi S<sub>1</sub> ve S<sub>2</sub> durumlarından herhangi birinde iken, uzunluğu n ya da daha kısa olan hangi giriş dizgisi uygulanırsa uygulansın, makine hep aynı çıkış dizgisini üretiyorsa, bu durumlara n-denk durumlar denir.
- Uygulamada, tüm n'ler için n-denk olan durumlara denk durumlar denir.
- n ve n'den küçük tüm k değerleri için k-denk olan iki duruma ise n-denk denir.
   Örneğin M<sub>1.11</sub> makinesinin A ve F durumları 2-denk durumlardır. Bu durumların 2 denk olarak nitelenmesi, 3-denk olmadıkları anlamına gelir. Ancak 2-denk olan durumlar doğal olarak 1-denktir. Ancak durum denkliği her zaman en büyük n değeri üzerinden belirtilir.

## Ayırdedebilir Durum:

M makinesin  $S_1$  ve  $S_2$  durumlarını ayırdetmek için eğer en az n uzunluğunda bir giriş dizgisi gerekli ise bu durumlara:

n-ayırdedilebilir durumlar denir.

Eğer  $S_1$  ve  $S_2$  durumları n-ayırdedilebilir ise, bu iki durum (n-1)-denk'tir.

 $M_{1.11}$ makinesinin A ve E durumları 1-ayırdedilebilirdir.

**B** ve **D** durumları ise 2 ayırdedilebilirdir.

Buna karşılık **A** ve **F** durumları 3-ayırdedilebilirdir.

**D** ve **F** durumlarını ise hiçbir giriş dizgisi ile ayırdetmek mümkün değildir.

Denk olan **D** ve **F** durumları ayırdedilemez durumlardır.

$$A \xrightarrow{X=0} A$$

$$E \xrightarrow{X=0} E$$

$$\begin{array}{c}
X=10 \\
\hline
Z=11
\end{array}$$

$$\begin{array}{c}
X=10 \\
\hline
Z=10
\end{array}$$

$$A \xrightarrow{X=010} G$$

$$\begin{array}{c}
X=010 \\
\hline
Z=011
\end{array}$$

A ve F 3-Ayırdedilebilir

| Ş.D        | x=0  | x=1  |
|------------|------|------|
| <b>→</b> A | A, 0 | D, 1 |
| В          | C, 0 | E, 1 |
| С          | G, 0 | E,1  |
| D          | G, 0 | F, 1 |
| Е          | E, 1 | C, 0 |
| F          | В, О | D, 1 |
| G          | В, О | E, 1 |

# Makine Denkliği

- $M_1$  ve  $M_2$ , giriş ve çıkış alfabeleri aynı olan iki makine olsun.  $M_1$  makinesinin durumlarını  $S_{11}$ ,  $S_{12}$ ,  $S_{13}$ , ... olarak;  $M_2$ makinesinin durumlarını ise  $S_{21}$ ,  $S_{22}$ ,  $S_{23}$ ,... olarak gösterelim.
- $VS_{1i} \in M_1 \rightarrow \exists S_{2j} \in M_2 : S_{1i} = S_{1j}$
- $VS_{2i} \in M_2 \rightarrow \exists S_{1j} \in M_1 : S_{2i} = S_{1j}$

ise  $M_1 \cong M_2$ 

Eğer  $M_1$  makinesinin her durumu için  $M_2$  makinesinde bu duruma denk bir durum varsa;  $M_2$  makinesinin her durumu için de  $M_1$  makinesinde bu duruma denk bir durum varsa,  $M_1$  ve  $M_2$  makineleri denktir.

# 1.3.1.6 Makine İndirgeme

- Bir M makinesi verildiğinde, bu makinenin indirgenmesi ya da yalınlaştırılması, bu makineye denk makinelerden durum sayısı en küçük olanın bulunması anlamına taşır.
- Bu makineyi M<sub>min</sub> ya da M\* ile gösterebiliriz.
- Bir makineye denk bir ya da birden çok makine olabilir.

# 1.3.2 İndirgeme Yöntemi

- Sonlu özdevinirlerin indirgenmesi için denklik bölümlemeleri (equivalence partitions) kullanılır.
- Bir M makinesi için, P<sub>k</sub> ile gösterilen k-denklik bölümlemesi, k-denk durumların aynı bölümde yer aldığı bir bölümlemedir.
- Örneğin bir Mealy makinesi olan M<sub>1.11</sub> için 0-denklik bölümlemesi
  - $P_0 = (ABCDEFG)$  tek bölüm içerir.

Çünkü, hiçbir giriş simgesi uygulanmadan, bir Mealy makinesinin durumlarını ayırdetmek mümkün değildir.

- M<sub>1.11</sub> için 1-denklik bölümlemesi ise:
  - P<sub>1</sub> = (ABCDFG)(E) iki bölüm içerir. Çünkü makinenin E dışındaki tüm durumları 1-denktir.

# İndirgeme yöntemi

- Makinenin denklik bölümlemesini bulmak için sırasıyla  $P_0$ ,  $P_1$ ,  $P_2$ , .... bulunur. Denklik bölümlemelerinin türetilmesi  $P_{k+1} = P_k$  elde edilinceye kadar sürdürülür.
- $P_{k+1} = P_k$  elde edildiğinde, denklik bölümlemesinin
- $P = P_k$  olduğu anlaşılır ve türetme kesilir.

 $\mathbf{P_m}$  denklik bölümlemsinden,  $\mathbf{P_{m+1}}$  denklik bölümlenmesinin türetilmesi için Teorem 1.3'den yararlanılır.

#### Teorem 1.3:

M makinesinin  $S_1$  ve  $S_2$  durumunun (m+1)-denk olması için aşağıdaki ik koşulun sağlanması gerekli ve yeterlidir.

- S<sub>1</sub>ve S<sub>2</sub> m-denk olmalı(P<sub>m</sub> denklik bölünmesinde aynı bölümde bulunmalı).
- Tüm x giriş simgeleri için  $S_1$  ve  $S_2$  durumlarının x-ardılları da m-denk olmalı ( $P_m$  denklik bölümlemesinde aynı bölüm bulunmalı).

# 1.3.2.1. Mealy Makinelerinin indirgenmesi

- Mealy makinelerinin indirgenmesi  $M_{1.11}$  makinesi örnek alınarak incelenecektir.
- Daha önce belirtildiği gibi, hiçbir giriş uygulanmadan Mealy makinesinin durumları ayırdedilemez. Başka bir deyişle Mealy makinesinin tüm durumları 0-denktir.

 $P_0 = (ABCDEFG)$ 

- P<sub>1</sub> denklik bölümlemesini bulmak için durum çizelgesinin incelenmesi yeterlidir.
- M<sub>1.11</sub>'in durum çizelgesinde, E dışındaki tüm durumlar için, x geçişi sırasında üretilen çıkış değerinin birinci kolonda O, ikinci kolonda ise 1 olduğu görülür. Buna göre E dışındaki durumlar 1-denktir.

 $P_1 = (ABCDFG)(E)$ 

| Ş.D | x=0  | x=1  |
|-----|------|------|
| →A  | A, 0 | D, 1 |
| В   | C, 0 | E, 1 |
| С   | G, 0 | E,1  |
| D   | G, 0 | F, 1 |
| E   | E, 1 | C, 0 |
| F   | В, О | D, 1 |
| G   | В, О | E, 1 |

- P<sub>2</sub> denklik bölümlemesini bulmak için Teorem 1.3'den yararlanılır.
- M<sub>1.11</sub> makinesinin iki durumunun 2-denk olabilmesi için, hem bu iki durumun, hem de bu iki durumun 0 ve 1-ardıllarının 1-denk olması; bunun için de P<sub>1</sub> denklik bölümlemesinde aynı bölümde bulunması gerekir.



| Ş.D        | x=0  | x=1  |
|------------|------|------|
| <b>→</b> A | A, 0 | D, 1 |
| В          | C, 0 | E, 1 |
| С          | G, 0 | E,1  |
| D          | G, 0 | F, 1 |
| E          | E, 1 | C, 0 |
| F          | В, О | D, 1 |
| G          | В, О | E, 1 |

P<sub>3</sub> denklik bölümlemesini bulmak için ADF ve BCG durumlarının 0 ve 1-ardılları incelenir:



| Ş.D | x=0  | x=1  |
|-----|------|------|
| →A  | A, 0 | D, 1 |
| В   | C, 0 | E, 1 |
| С   | G, 0 | E,1  |
| D   | G, 0 | F, 1 |
| E   | E, 1 | C, 0 |
| F   | В, О | D, 1 |
| G   | В, О | E, 1 |

Yapılan incemede ADF durumlarının 1 ardıllarının P<sub>2</sub>'de aynı bölümde yer aldığı, ancak 0-ardıllarının P<sub>2</sub>'de aynı bölümde yer almadığı görülür. Bu nedenle DF durumlarının 3-denk olduğu, ancak A durumunun D ve F durumlarına 3-denk olmadığı anlaşılır ve P<sub>3</sub>'de A durumu DF durumlarından ayrılır. BCG durumlarına gelince, bu durumların hem 0 hem de 1-ardılları P<sub>2</sub>'de aynı bölümde yer almaktadır. Buna göre BCG durumları 3 denk durumlardır ve P<sub>3</sub> denklik bölümlemesinde aynı bölümde yer alacaklardır. Sonuç olarak P<sub>3</sub> denklik bölümlemesi aşağıdaki gibi oluşur:

#### $P_3 = (A)(DF)(BCG)(E)$

- P<sub>4</sub> denklik bölümlemesini bulmak
   için DF ve BCG durumlarının 0 ve 1-ardıllarını incelemek gerekir.
- BCG durumlarının, daha önce incelenen ve yukarıda yer alan  $\mathbf{0}$  ve  $\mathbf{1}$  ardılları  $\mathbf{P_3}$ 'de de aynı bölümde yer almaktadır. Bu nedenle BCG durumları  $\mathbf{P_4}$ 'de de aynı bölümde yer alacaktır.



| Ş.D        | x=0  | x=1  |
|------------|------|------|
| <b>→</b> A | A, 0 | D, 1 |
| В          | C, 0 | E, 1 |
| С          | G, 0 | E,1  |
| D          | G, 0 | F, 1 |
| E          | E, 1 | C, 0 |
| F          | В, О | D, 1 |
| G          | В, О | E, 1 |

- **DF** durumlarının ardılları incelendiğinde ise, bu iki durumun **0** ve **1** ardıllarının  $P_3$ 'de aynı bölümde yer aldığı görülür. Bu nedenle **DF** durumları  $P_4$ 'de aynı bölümde yer alacaktır. Sonuç olarak,  $P_4$  denklik bölümlemesi $P_3$ 'e eşittir.  $P_4 = P_3 = (A)(DF)(BCG)(E)$
- Böylece M<sub>1 11</sub> makinesinin denklik bölümlemesi:
- P = (A)(DF)(BCG)(E)
- olarak elde edilir. Denklik bölümlemesinde 4 bölüm olduğu için, M<sub>1.11</sub>'e denk en küçük makinenin 4 durumu olacaktır. En küçük makinenin durumları:
- A için S<sub>0</sub>,
   DF için S<sub>1</sub>,
   BCG için S<sub>2</sub>,
   E için S<sub>3</sub> diye adlandırılırsa, M<sub>1.11</sub> makinesine denk en küçük makinenin durum çizelgesi yandaki gibi bulunur.



| Ş.D | x=0  | x=1  |
|-----|------|------|
| →A  | A, 0 | D, 1 |
| В   | C, 0 | E, 1 |
| С   | G, 0 | E,1  |
| D   | G, 0 | F, 1 |
| E   | E, 1 | C, 0 |
| F   | В, О | D, 1 |
| G   | В, О | E, 1 |

| Ş.D                              | x=0                | x=1                |
|----------------------------------|--------------------|--------------------|
| $\longrightarrow$ S <sub>0</sub> | S <sub>0</sub> , 0 | S <sub>1</sub> , 1 |
| $S_1$                            | S <sub>2</sub> , 0 | S <sub>1</sub> , 1 |
| S <sub>2</sub>                   | S <sub>2</sub> , 0 | S <sub>3</sub> ,1  |
| S <sub>3</sub>                   | S <sub>3</sub> , 1 | S <sub>2</sub> , 0 |

# 1.3.2.2. Moore Makinelerinin indirgenmesi

- Bilindiği gibi Moore makinelerinde çıkış işlevi, durumlar kümesinden çıkış alfabesine bir eşlemedir. Bu eşlemeyle her duruma bir çıkış simgesi eşlenir. Bir Moore makinesi belirli bir durumda iken belirli bir çıkış simgesi üretir. Bu nedenle hiçbir giriş simgesi uygulanmadan belirli durumlar ya da durum altkümeleri ayırdedilebilir. Başka bir deyişle, Moore makinesinin tüm durumları 0-denk değildir.
- Moore makinesinin  $P_0$  0-denklik bölümlemesinde, çıkış simgesi kadar bölüm bulunur.
- Mealy ve Moore makinelerinin indirgenmesindeki tek fark  $P_0$  0-denklik bölümlemesinin oluşturulmasıdır. İndirgemenin sonraki adımları benzer biçimde yürütülür.

## Örnek 1.12

Moore türü  $M_{1.12}$  makine sinin giriş ve çıkış alfabeleri

{ 0, 1 } alfabesidir.
Başlangıç durumu
A olan makinenin
geçiş ve çıkış
işlevleri yandaki
durum çizelgesi ile
tanımlanmaktadır

| ŞD         | x=0 | X=1 | Z |
|------------|-----|-----|---|
| <b>→</b> A | С   | В   | 0 |
| В          | В   | D   | 1 |
| С          | Α   | Н   | 2 |
| D          | E   | G   | 1 |
| E          | С   | D   | 2 |
| F          | С   | Н   | 2 |
| G          | G   | Н   | 1 |
| Н          | F   | В   | 1 |

### • Durumların çıkış değerlerine göre P<sub>0</sub>:

(A) (BDGH) (CEF) z=0 z=1 z=2

| ŞD | x=0 | X=1 | Z |
|----|-----|-----|---|
| →A | С   | В   | 0 |
| В  | В   | D   | 1 |
| С  | Α   | Н   | 2 |
| D  | Е   | G   | 1 |
| Е  | С   | D   | 2 |
| F  | С   | Н   | 2 |
| G  | G   | Н   | 1 |
| Н  | F   | В   | 1 |

### • 0 ve 1 ardıllarına göre P<sub>1</sub>:





| ŞD | x=0 | X=1 | Z |
|----|-----|-----|---|
| Α  | → C | В   | 0 |
| В  | В   | D   | 1 |
| С  | Α   | Н   | 2 |
| D  | Е   | G   | 1 |
| Ε  | С   | D   | 2 |
| F  | С   | Н   | 2 |
| G  | G   | Н   | 1 |
| Н  | F   | В   | 1 |

### • 0 ve 1 ardıllarına göre P<sub>2</sub>:





| ŞD | x=0 | X=1 | Z |
|----|-----|-----|---|
| →A | С   | В   | 0 |
| В  | В   | D   | 1 |
| С  | Α   | Н   | 2 |
| D  | Ε   | G   | 1 |
| Е  | С   | D   | 2 |
| F  | С   | Н   | 2 |
| G  | G   | Н   | 1 |
| Н  | F   | В   | 1 |

- Denklik bölümlemesinde 5 bölüm olduğu için,  $M_{1.12}$ 'ye denk en küçük makinenin 5 durumu olacaktır. En küçük makinenin durumları:
- A için  $S_0$ , BG için  $S_1$ , DH için  $S_2$ , C için  $S_3$  EF için  $S_4$  diye adlandırılırsa,  $M_{1.12}$  makinesine denk en küçük makinenin durum çizelgesi yandaki gibi bulunur.



| ŞD                           | x=0            | X=1   | Z |
|------------------------------|----------------|-------|---|
| $\rightarrow$ S <sub>0</sub> | $S_3$          | $S_1$ | 0 |
| $S_1$                        | $S_1$          | $S_2$ | 1 |
| $S_2$                        | S <sub>4</sub> | $S_1$ | 1 |
| $S_3$                        | $S_0$          | $S_2$ | 2 |
| $S_4$                        | $S_3$          | $S_2$ | 2 |

# 1.3.2.3. Deterministik Sonlu Özdevinirlerin (DFA) İndirgenmesi

• Bilindiği gibi DFA modeli, Moore makinesinin kısıtlı bir türüdür. Moore modelinde çıkış alfabesi { kabul, red } gibi ikili bir alfabeyle sınırlanırsa, durumlar çıkış işlevi ile "kabul eden" ve "kabul etmeyen" durumlar olmak üzere ikiye ayrılır ve DFA modeli elde edilir. Buna göre DFA'ların indirgenmesi Moore makinelerinin indirgenmesi ile aynı olacaktır.

## Örnek 1.3

- Deterministik bir özdevinir (DFA) olan M<sub>1.13</sub> yandaki durum çizeneği ile tanımlanmaktadır.
- Buna göre varsa indirgeme yapınız.

| ŞD                           | x=0            | X=1            |
|------------------------------|----------------|----------------|
| $\rightarrow$ q <sub>0</sub> | $q_0$          | $q_1$          |
| $q_1$                        | $q_2$          | $q_4$          |
| $q_2$                        | $q_4$          | q <sub>7</sub> |
| $q_3$                        | $q_6$          | $q_5$          |
| $q_4$                        | $q_5$          | $q_3$          |
| $q_5$                        | $q_5$          | $q_7$          |
| $q_6$                        | q <sub>7</sub> | $q_2$          |
| $q_7$                        | $q_7$          | $q_5$          |

## Örnek 1.3

- Durumlar ilk etapta F kümesi içerisinde olup olmamalarına göre (tanıyıcı, tanıyıcı değil) olarak ayırdedilir.
- $P_0 = (q_0q_1q_2q_3q_4q_6)(q_5q_7)$

| ŞD                | x=0                   | X=1   |
|-------------------|-----------------------|-------|
| $\rightarrow q_0$ | $q_0$                 | $q_1$ |
| $q_1$             | $q_2$                 | $q_4$ |
| $q_2$             | $q_4$                 | $q_7$ |
| $q_3$             | $q_6$                 | $q_5$ |
| $q_4$             | <b>q</b> <sub>5</sub> | $q_3$ |
| $\overline{q_5}$  | $q_5$                 | $q_7$ |
| $q_6$             | $q_7$                 | $q_2$ |
| $\overline{q_7}$  | $q_7$                 | $q_5$ |

# 0 ve 1 ardıllarına göre P<sub>1</sub>:



| $P_1 = (q_0 q_1)$ | $(q_2q_3)$ | $(q_4q_6)$ | $(q_5q_7)$ |
|-------------------|------------|------------|------------|
|-------------------|------------|------------|------------|

| ŞD                | x=0                   | X=1                   |
|-------------------|-----------------------|-----------------------|
| $\rightarrow q_0$ | $q_0$                 | $q_1$                 |
| $q_1$             | $q_2$                 | $q_4$                 |
| $q_2$             | $q_4$                 | $q_7$                 |
| $q_3$             | $q_6$                 | <b>q</b> <sub>5</sub> |
| $q_4$             | <b>q</b> <sub>5</sub> | $q_3$                 |
| $q_5$             | $q_5$                 | $q_7$                 |
| $q_6$             | $q_7$                 | $q_2$                 |
| $\overline{q_7}$  | $q_7$                 | $q_5$                 |

# 0 ve 1 ardıllarına göre P<sub>2</sub>:



| ŞD                | x=0                   | X=1   |
|-------------------|-----------------------|-------|
| $\rightarrow q_0$ | $q_0$                 | $q_1$ |
| $q_1$             | $q_2$                 | $q_4$ |
| $q_2$             | $q_4$                 | $q_7$ |
| $q_3$             | $q_6$                 | $q_5$ |
| $q_4$             | <b>q</b> <sub>5</sub> | $q_3$ |
| $q_5$             | $q_5$                 | $q_7$ |
| $q_6$             | $q_7$                 | $q_2$ |
| $\overline{q_7}$  | $q_7$                 | $q_5$ |

# 0 ve 1 ardıllarına göre P<sub>2</sub>:



| ŞD                  | x=0                   | X=1   |
|---------------------|-----------------------|-------|
| $\rightarrow$ $q_0$ | $q_0$                 | $q_1$ |
| $q_1$               | $q_2$                 | $q_4$ |
| $q_2$               | $q_4$                 | $q_7$ |
| $q_3$               | $q_6$                 | $q_5$ |
| $q_4$               | <b>q</b> <sub>5</sub> | $q_3$ |
| $q_5$               | $q_5$                 | $q_7$ |
| $q_6$               | $q_7$                 | $q_2$ |
| $q_7$               | $q_7$                 | $q_5$ |

- $P_2=(q_0)(q_1)(q_2q_3)(q_4q_6)(q_5q_7)$
- Denklik bölümlemesinde 5 bölüm olduğu için, M<sub>1.13</sub>'e denk en küçük makinenin 5 durumu olacaktır. En küçük makinenin durumları:

 $\mathbf{q_0}$  için  $\mathbf{S_0}$ ,  $\mathbf{q_1}$  için  $\mathbf{S_1}$ ,  $\mathbf{q_2}$   $\mathbf{q_3}$  için  $\mathbf{S_2}$ ,  $\mathbf{q_4}$   $\mathbf{q_6}$  için  $\mathbf{S_3}$ ,  $\mathbf{q_5}$   $\mathbf{q_7}$  için  $\mathbf{S_4}$  diye adlandırılırsa,  $\mathbf{M_{1.13}}$  makinesine denk en küçük makinenin durum çizelgesi yandaki gibi bulunur.

| ŞD                           | x=0            | X=1   |
|------------------------------|----------------|-------|
| $\rightarrow$ S <sub>0</sub> | $S_0$          | $S_1$ |
| $S_1$                        | $S_2$          | $S_3$ |
| S <sub>2</sub>               | $S_3$          | $S_4$ |
| $S_3$                        | $S_4$          | $S_2$ |
| $S_4$                        | S <sub>4</sub> | $S_4$ |

# KONU ÖRNEK SORULARI

#### Örnek 9

Aşağıda durum çizelgesi verilen Mealy makinesini indirgeyiniz.

|    | SD, z |     |
|----|-------|-----|
| ŞD | x=0   | x=1 |
| Α  | C,1   | F,0 |
| В  | H,1   | F,0 |
| С  | E,0   | F,1 |
| D  | F,1   | C,0 |
| Е  | F,1   | C,0 |
| F  | D,0   | C,1 |
| G  | H,1   | C,0 |
| Н  | E,0   | J,0 |
| J  | G,0   | J,1 |

#### Çözüm

Denklik Bölümlemesi: P = (ADE) (BG) (CF) (H) (J)

S<sub>0</sub> S<sub>1</sub> S<sub>2</sub> S<sub>3</sub> S<sub>4</sub>

En küçük makinenin Durum Çizelgesi:

|                | SD, z             |                   |
|----------------|-------------------|-------------------|
| ŞD             | x=0               | x=1               |
| S <sub>0</sub> | S <sub>2</sub> ,1 | S <sub>2</sub> ,0 |
| S <sub>1</sub> | S <sub>3</sub> ,1 | $S_{2},0$         |
| S <sub>2</sub> | S <sub>0</sub> ,0 | $S_{2},1$         |
| S <sub>3</sub> | S <sub>0</sub> ,0 | S <sub>4</sub> ,0 |
| S <sub>4</sub> | S <sub>1</sub> ,0 | S <sub>4</sub> ,1 |
|                |                   |                   |

#### Örnek 10

Aşağıdaki geçiş çizelgesi ile tanımlanan DFA'yı indirgeyiniz.

|         | SD, z |     |
|---------|-------|-----|
| ŞD      | x=0   | x=1 |
| →A<br>B | Α     | E   |
| В       | С     | E   |
| С       | D     | G   |
| D       | F     | G   |
| Е       | F     | В   |
| F       | С     | G   |
| G       | G     | D   |

#### Çözüm

Denklik Bölümlemesi: P = (A) (BE) (CDF) (G)

S<sub>0</sub> S<sub>1</sub> S<sub>2</sub> S<sub>3</sub>

En küçük DFA'nın Geçiş Çizelgesi:

|                 | SD, z          |                |
|-----------------|----------------|----------------|
| ŞD              | x=0            | x=1            |
| <del>`</del> S₀ | S <sub>0</sub> | S <sub>1</sub> |
| S <sub>1</sub>  | $S_2$          | S <sub>1</sub> |
| S <sub>2</sub>  | $S_2$          | $S_3$          |
| S₃              | S <sub>3</sub> | $S_2$          |