I-BERT: Integer-only BERT Quantization

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer (UC Berkeley) ICML 2021

DL Compiler Study (2021-11-11)

Summary

- I-BERT, a novel integer-only quantization scheme for Transformers, where the entire inference is performed with <u>pure integer arithmetic</u>.
- Key elements of I-BERT are <u>approximation methods for nonlinear</u> <u>operations</u> such as GELU, Softmax, and LayerNorm, which enable their approximation with integer computation.
- Empirically evaluated <u>I-BERT on RoBERTa-Base/Large models</u>, where our quantization method improves the average GLUE score by 0.3/0.5 points as compared to baseline.
- Furthermore, we directly deployed the quantized models and measured the end-to-end inference latency, showing that I-BERT can achieve up to 4.00× speedup on a Tesla T4 GPU as compared to floating point baseline.

Problems

- Pre-trained Transformer models are generally orders of magnitude larger than prior models
 - Huge number of parameters

 \circ

- Resources (energy, memory footprint, compute)
 - o real-time inference
 - edge devices

Challenges

Quantization

- compresses NN models into smaller size by representing parameters and/or activations with low bit precision (reducing memory footprint, faster inference time)
- Drawbacks: simulated quantization
 - (Bhandare et al., 2019; Shen et al., 2020; Zafrir et al., 2019)
 - GELU, Soft-max, Layer Normalization requires FP calcs.
 - Cannot be deployed to neural accelerators or edge processors

Integer-only inference

- Simple CNN layers, Batch-Norm, ReLU -> all linear, piece-wise linear operators
- Transformer architecture: GELU, Softmax, LayerNorm -> non-linear

Solution

- New kernel for **GELU and Softmax** (second-order polynomials)
 - o maximum error of 1.8×10-2 for GELU, and 1.9×10-3 for Softmax.
- For LayerNorm, integer-only computation by a known algorithm for integer calculation of square root (Crandall & Pomerance, 2006).
- New design for integer-only quantization for Transormer based models.
 - Processed Embedding and matrix multiplication (MatMul) with INT8 multiplication and INT32 accumulation.
 - The following non-linear operations (GELU, Softmax, and LayerNorm) are then calculated on the INT32 accumulated result and then requantized back to INT8.
 - Represent parameters and activations in the entire computational graph with integers, and never cast them into floating point.

Evaluation

- Apply to RoBERTa-Base/Large, and we evaluate their accuracy on the GLUE (Wang et al., 2018) downstream tasks.
- 0.3 and 0.5 on the GLUE downstream tasks for RoBERTa-Base and RoBERTaLarge, respectively.
- INT8 inference achieves up to 4× speedup as compared to FP32 inference.

Integer-only GELU (1) - Previous approaches

GELU (Hendrycks & Gimpel,2016)

$$\begin{aligned} & \text{GELU}(x) := x \cdot \frac{1}{2} \left[1 + \text{erf}(\frac{x}{\sqrt{2}}) \right], \\ & \text{where } \text{erf}(x) := \frac{2}{\sqrt{\pi}} \int_0^x \exp\left(-t^2\right) dt. \\ & \text{GELU}(x) \approx x \sigma(1.702x), \end{aligned}$$

h-GELU (Howardetal.,2019)

h-GELU(x) :=
$$x \frac{\text{ReLU6}(1.702x + 3)}{6} \approx \text{GELU}(x)$$
.

huge accuracy drop

Sigmoid is another non-linear func.

Integer-only GELU (2) - Proposed solution

- Solution: use polynomials to approximate GELU by solving optimization problem
 - only optimize L(x) in a limited range since erf approaches to 1(-1) for large values of x.

$$\min_{a,b,c} \frac{1}{2} \left\| \operatorname{GELU}(x) - x \cdot \frac{1}{2} \left[1 + \operatorname{L}(\frac{x}{\sqrt{2}}) \right] \right\|_{2}^{2},$$
s.t. $L(x) = a(x+b)^{2} + c,$

• After finding the best interpolating points, i.e., $L(x) = \sum_{i=0}^{n} f_i l_i(x)$ where $l_i(x) = \prod_{\substack{0 \le j \le n \\ j \ne i}} \frac{x - x_j}{x_i - x_j}$.

$$i\text{-GELU}(x) := x \cdot \frac{1}{2} \left[1 + L\left(\frac{x}{\sqrt{2}}\right) \right] \quad L(x) = \operatorname{sgn}(x) \left[a(\operatorname{clip}(|x|, \max = -b) + b)^2 + 1 \right],$$

Integer-only GELU (3)

Algorithm 2 Integer-only GELU

end function

```
Input: q, S: quantized input and scaling factor
Output: q_{out}, S_{out}: quantized output and scaling factor
function I-Erf(q, S)
                                                                            \triangleright qS = x
   a, b, c \leftarrow -0.2888, -1.769, 1
   q_{\text{sgn}}, q \leftarrow \text{sgn}(q), \text{clip}(|q|, \text{max} = -b/S)
   q_L, S_L \leftarrow \text{I-Poly}(q, S) \text{ with } a, b, c
                                                                                  ⊳ Eq. 8
   q_{out}, S_{out} \leftarrow q_{sgn}q_L, S_L
   return q_{out}, S_{out}
                                                           \triangleright q_{out}S_{out} \approx \operatorname{erf}(x)
end function
function I-GELU(q, S)
                                                                            \triangleright qS = x
   q_{\text{erf}}, S_{\text{erf}} \leftarrow \text{I-Erf}(q, S/\sqrt{2})
   q_1 \leftarrow |1/S_{\text{erf}}|
   q_{out}, S_{out} \leftarrow q(q_{erf} + q_1), SS_{erf}/2
                                                     \triangleright q_{out}S_{out} \approx GELU(x)
   return q_{out}, S_{out}
```


Table 1. Comparison of different approximation methods for GELU. The second column (Int-only) indicates whether each approximation method can be computed with integer-only arithmetic. As metrics for approximation error, we report L^2 and L^∞ distance from GELU across the range of [-4, 4].

	Int-only	L ² dist	L^{∞} dist
$x\sigma(1.702x)$	X	0.012	0.020
h-GELU	<i></i>	0.031	0.068
i-GELU (Ours)	/	0.0082	0.018

Integer-only Softmax (1)

Softmax normalized an input vector and maps it to a probability distribution.

Softmax(
$$\mathbf{x}$$
)_i := $\frac{\exp x_i}{\sum_{j=1}^k \exp x_j}$, where $\mathbf{x} = [x_1, \dots, x_k]$.

Appx the Softmax layer with integer arithmetic is challenging: exp func.

Solution

Softmax(
$$\mathbf{x}$$
)_i = $\frac{\exp(x_i - x_{\text{max}})}{\sum_{j=1}^k \exp(x_j - x_{\text{max}})}$,

- Limiting approx. range: subs max value
- Decompose non-positive value: $\exp(\tilde{x}) = 2^{-z} \exp(p) = \exp(p) >> z$, $\tilde{x} = (-\ln 2)z + p$, \circ Already used in Itanium 2 machine in 2004 (but with LUT)
- Find coeff of polynomial $L(p) = 0.3585(p + 1.353)^2 + 0.344 \approx \exp(p)$.
- Results: (largest gap 1.9e-3)

$$i$$
-exp $(\tilde{x}) := L(p) >> z$

Integer-only Softmax (2)

```
Algorithm 3 Integer-only Exponential and Softmax
  Input: q, S: quantized input and scaling factor
  Output: q_{out}, S_{out}: quantized output and scaling factor
  function I-Exp(q, S)
                                                                           \triangleright qS = x
      a, b, c \leftarrow 0.3585, 1.353, 0.344
      q_{\ln 2} \leftarrow |\ln 2/S|
      z \leftarrow |-q/q_{\ln 2}|
                                                                          \triangleright q_p S = p
      q_p \leftarrow q + zq_{\ln 2}
      q_L, S_L \leftarrow \text{I-Poly}(q_p, S) \text{ with } a, b, c
                                                                             ⊳ Eq. 13
      q_{out}, S_{out} \leftarrow q_L >> z, S_L
                                                          \triangleright q_{out}S_{out} \approx \exp(x)
      return q_{out}, S_{out}
  end function
  function I-SOFTMAX(q, S)
                                                                          \triangleright qS = x
      \tilde{q} \leftarrow q - \max(q)
      q_{\text{exp}}, S_{\text{exp}} \leftarrow \text{I-Exp}(\tilde{q}, S)
      q_{out}, S_{out} \leftarrow q_{exp} / sum(q_{exp}), S_{exp}
      return q_{out}, S_{out}
                                                  \triangleright q_{out}S_{out} \approx \text{Softmax}(x)
  end function
```


Integer-only LayerNorm

LayerNorm: for normalizing the input activation across the channel dimension

$$\tilde{x} = \frac{x - \mu}{\sigma}$$
 where $\mu = \frac{1}{C} \sum_{i=1}^{C} x_i$ and $\sigma = \sqrt{\frac{1}{C} \sum_{i=1}^{C} (x_i - \mu)^2}$.

For NLP, mean and std are calculated dynamically during runtime

std dev requires the square-root function.

Alg4

Lightweight, converges at most 4 steps

Algorithm 4 Integer-only Square Root

```
Input: n: input integer
Output: integer square root of n, i.e., \lfloor \sqrt{n} \rfloor
function I-SQRT(n)
if n=0 then return 0
Intialize x_0 to 2^{\lceil Bits(n)/2 \rceil} and i to 0
repeat
x_{i+1} \leftarrow \lfloor (x_i + \lfloor n/x_i \rfloor)/2 \rfloor
if x_{i+1} \geq x_i then return x_i
else i \leftarrow i+1
```

New design for integer-only quantization for Transormer

Results

Integer-only quantization result for Roberta-Base and Robert-Large

(a) RoBERTa-Base

	Precision	Int-only	MNLI-m	MNLI-mm	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg.
Baseline	FP32	X	87.8	87.4	90.4	92.8	94.6	61.2	91.1	90.9	78.0	86.0
I-BERT	INT8	1	87.5	87.4	90.2	92.8	95.2	62.5	90.8	91.1	79.4	86.3
Diff			-0.3	0.0	-0.2	0.0	+0.6	+1.3	-0.3	+0.2	+1.4	+0.3

(b) RoBERTa-Large

	Precision	Int-only	MNLI-m	MNLI-mm	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg.
Baseline	FP32	X	90.0	89.9	92.8	94.1	96.3	68.0	92.2	91.8	86.3	89.0
I-BERT	INT8	1	90.4	90.3	93.0	94.5	96.4	69.0	92.2	93.0	87.0	89.5
Diff			+0.4	+0.4	+0.2	+0.4	+0.1	+1.0	0.0	+1.2	+0.7	+0.5

Resutls

Inference latency speedup of INT8 inference with respect to FP32 inference

BERT-base, BERT-Large

SL		12	28	256					
BS	1	2	4	8	1	2	4	8	Avg.
Base	2.42	3.36	3.39	3.31	3.11	2.96	2.94	3.15	3.08
Base Large	3.20	4.00	3.98	3.81	3.19	3.51	3.37	3.40	3.56

Results

Accuracy of models that use GELU, h-GELU and i-GELU for GELU computation

	Int-only	QNLI	SST-2	MRPC	RTE	Avg.
GELU	×	94.4	96.3	92.6	85.9	92.3
h-GELU	1	94.3	96.0	92.8	84.8	92.0
i-GELU	1	94.5	96.4	93.0	87.0	92.7

Links

Paper: https://arxiv.org/pdf/2101.01321

Code: https://github.com/kssteven418/l-BERT