

MICROCOF.

CHART

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53705

March 1986

(Received February 25, 1986)

Approved for public release Distribution unlimited

Sponsored by

U. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709

UNIVERSITY OF WISCONSIN-MADISON MATHEMATICS RESEARCH CENTER

ITERATIVE REFINEMENT OF THE METHOD OF MOMENTS

George Miel

Technical Summary Report #2923 March 1986

ABSTRACT

It is observed that Vorobyev's method of moments, because it is a specialized form of Galerkin's method, is easily accelerated by the use of Sloan's trick of taking first iterates. The improvement, which is nearly costless since it requires no new quantities, is illustrated in a numerical example.

AMS (MOS) Subject Classifications: 65J10, 65B99

Key Words: Method of moments, Iterative refinement

Work Unit Number 3 (Numerical Analysis and Scientific Computing)

	Accesion For			-
	NTIS DTIC Unann Justific	ounced		
QUALITY INSPLICTED	By			 :
3	Availability Codes			
	Dist	Avail a	and / or coaf	
ey, CA 90295.	A-1			

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

^{*}Address: P. O. Box 9208, Marina del Rey, CA 90295.

SIGNIFICANCE AND EXPLANATION

Operator equations have countless realizations in miscellaneous engineering and scientific applications. The language of functional analysis provides a powerful and unifying tool for the study of phenomena associated with the computational solution of such equations. The functional analytic approach avoids tedious details and allows the analyst to focus on major issues. This methodology, though it may not produce actual software, can provide invaluable conceptual understanding.

We deal with the approximate solution of the equation

$$(J - K)u = V,$$

where the operators J-K and J are assumed invertible, by the use of Vorobyev's method. This technique uses the n+1 "moments"

$$z_0 = J^{-1}v$$
, $z_i = J^{-1}Kz_{i-1}$, $1 \le i \le n$,

in order to get an approximate solution of the form

$$y_n = \xi_0 z_0 + \xi_1 z_1 + \cdots + \xi_{n-1} z_{n-1}$$

Under proper conditions, the sequence $\{y_n\}$ converges to the true solution $u^* = (J - K)^{-1}v$.

Sloan has shown that, given an approximate solution \mathbf{u}_n to the equation, the first iterate

$$\vec{\mathbf{u}}_{\mathbf{n}} = \mathbf{J}^{-1} \mathbf{K} \mathbf{u}_{\mathbf{n}} + \mathbf{z}_{\mathbf{0}}$$

is usually more accurate than u_n itself. Specifically, under adequate conditions, the sequence of first iterates $\{\bar{u}_n\}$ converges to u^* faster than the sequence $\{u_n\}$. The aim of our note is to report the simple but useful observation that Sloan's iterative refinement is applicable to Vorobyev's method and that the computation of the first iterate,

$$\bar{y}_n = z_0 + \xi_0 z_1 + \cdots + \xi_{n-1} z_n$$

involves only known quantities. A numerical example involving an integral equation illustrates this nearly costless improvement.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the author of this report.

ITERATIVE REFINEMENT OF THE METHOD OF MOMENTS

George Miel*

Let E and F denote Hilbert spaces. Given bounded linear operators J,K:E + F and an element $v \in F$, consider the split equation of the first kind

$$(J - K)u = v . (1)$$

Assume that J has a bounded inverse on F and that K is a compact operator. Equation (1) is equivalent to the equation of the second kind,

$$u = Mu + w , (2)$$

where $M = J^{-1}K$ is a compact operator and $w = J^{-1}v$. The aim of this note is to report the observation that Vorobyev's method of moments [8] can be advantageously improved by Sloan's iterative refinement [6]. Since the quantities needed for the latter procedure are conveniently computed in the former method, the cost of the improvement is insignificant. After a brief description of the pertinent procedures, we illustrate the effect of the iterative refinement on a Fredholm integral equation with a Green's kernel.

Sloan's Iterative Refinement

We first need to describe Galerkin's method for equation (1). Let $F_n = JE_n$, where E_n is a finite-dimensional subspace of E, and let P_n be the orthogonal projection of E onto E. The Galerkin method consists of solving the approximate equation

$$(J - P_n K)u_n = P_n v, \quad u_n \in E_n$$
.

This equation is equivalent to the equation

$$u_n = \rho_n M u_n + \rho_n w , \qquad (3)$$

where $\rho_n = J^{-1}P_nJ$ is the orthogonal projection of E onto E_n . A standard result

^{*}Address: P. O. Box 9208, Marina del Rey, CA 90295.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

states that if J-K has a bounded inverse and Q_nx+x for every $x \in E$ as $n+\infty$ then, for large enough n, the operator $I-Q_nM$ has a bounded inverse on E_n , the approximate solutions $u_n=(I-Q_nM)^{-1}Q_nw$ converge to the true solution $u^*=(J-K)^{-1}v$, and the error bounds

$$\|\mathbf{u}^* - \mathbf{u}_n\| \le \|(\mathbf{I} - \mathbf{Q}_n^{\mathsf{M}})^{-1}\| \cdot \|\mathbf{u}^* - \mathbf{Q}_n^{\mathsf{M}}\|$$
 (4)

are valid. We refer to Krasnosel'skii et al. [4] for a proof.

. Sloam [6] has shown that the sequence of first iterates

$$\overline{\mathbf{u}}_{\mathbf{n}} = \mathbf{M}\mathbf{u}_{\mathbf{n}} + \mathbf{w} \tag{5}$$

converges more rapidly to the true solution. Moreover, once u_n is known, the iterate \bar{u}_n can be computed with little cost. Indeed, letting ϕ_1,\dots,ϕ_n constitute a basis for E_n , since the Galerkin method requires the quantities $\bar{\phi_1} = M_{\hat{p}_1}$ in the setting-up of the $n \times n$ linear system needed to find $u_n = \sum\limits_{i=1}^n \xi_i \phi_i$, the iterate $\bar{u}_n = \sum\limits_{i=1}^n \xi_i \bar{\phi_i} + w$ is easily obtained.

To see the improvement of $\bar{\mathbf{u}}_n$ over \mathbf{u}_n , we proceed as follows. Define an operator by

$$M_n = MQ_n$$
.

Then, (3) and (5) imply that $\bar{\mathbf{u}}_{\mathbf{n}}$ is a solution of the equation

$$\bar{\mathbf{u}}_{\mathbf{n}} = \mathbf{M}_{\mathbf{n}} \bar{\mathbf{u}}_{\mathbf{n}} + \mathbf{w} .$$

Verify now that

$$(I - M_n)(u^* - \bar{u}_n) = (M - M_n)(u^* - Q_n u^*)$$
.

From this expression, we get the error bound,

$${{1\!\!1}}u^* - \bar{u}_n{1\!\!1} < {1\!\!1}({1\!\!1} - {M}_n)^{-1}{1\!\!1} + {1\!\!1}M - {M}_n{1\!\!1} + {1\!\!1}u^* - {\varrho}_n{u}^*{1\!\!1} \ ,$$

which shows improvement over the error bound in (4). See Sloan [6] for details.

Recent applications of the iterative refinement to integral equations can be found in Chandler [1], Graham [3], and Spence and Thomas [7]. A functional analytic overview of the iterated Galerkin procedure is given in Chatelin and Lebbar [2] and in Schock [5].

Vorobyev's Method of Moments

We turn our attention back to equation (1) and its equivalent formulation (2). Consider the n+1 "moments"

$$z_0 = w$$
, $z_1 = Mz_0$, ..., $z_n = Mz_{n-1}$. (6)

The usual Neumann iterates $x_n = Mx_{n-1} + w$, starting with $x_0 = w$, are given by

$$x_n = z_0 + z_1 + \cdots + z_n .$$

In Vorobyev's method, one uses the n+1 moments (6) in order to find a linear combination of the first n moments,

$$y_{n} = \xi_{0}z_{0} + \xi_{1}z_{1} + \cdots + \xi_{n-1}z_{n-1}. \tag{7}$$

The algorithm proceeds like this:

1. Set-up and solve the n x n linear system

$$\sum_{j=0}^{n-1} \langle z_{i}, z_{j} \rangle \alpha_{j} = -\langle z_{i}, z_{n} \rangle, \quad 0 \leq i \leq n-1,$$
(8)

for $\alpha_0, \dots, \alpha_{n-1}$.

2. Evaluate recursively the coefficients

$$\xi_0 = 1 - c\alpha_0, \quad \xi_1 = \xi_{i-1} - c\alpha_i, \qquad 1 \le i \le n-1 \ ,$$
 where $c = 1/(\alpha_0 + \cdots + \alpha_{n-1} + 1)$.

3. Evaluate y using (7).

It turns out that the algorithm is equivalent to Galerkin's method

$$y_n = Q_n M y_n + w, \quad y_n \in E_n$$
, (9)

where Q_n is the orthogonal projection of E onto $E_n = \operatorname{span}(z_0, \dots, z_{n-1})$. The elements of E_n are of the form $y_n = q(M)z_0$, where

$$q(t) = \xi_0 + \xi_1 t + \cdots + \xi_{n-1} t^{n-1}$$
 (10)

is an arbitrary polynomial of degree $\leq n-1$. The residual is given by

$$z_0 - y_n + My_n = p(M)z_0 ,$$

where

$$p(t) = 1 - (1 - t)q(t) = c(\alpha_0 + \alpha_1 t + \cdots + \alpha_{n-1} t^{n-1} + t^n) . \tag{11}$$

To see that the approximate operator equation (9) represents Vorobyev's method, take t=1 in (11), thereby showing that $c=1/(\alpha_0+\cdots+\alpha_{n-1}+1)$, and then substitute (10) and (11) and compare coefficients of like powers of t to get the recurrence relation for ξ_1 .

If the elements z_0, \dots, z_n are linearly independent then the linear system (8) is uniquely solvable. Otherwise, the operators M and Q_n M coincide on the subspace E_n and there is then no gain to be made by using the method. If the operator J-K has a bounded inverse then, for sufficiently large n, equation (9) has a unique solution y_n and the sequence $\{y_n\}$ converges to the solution $(J-K)^{-1}v$ faster than any geometric progression. We refer to Vorobyev [8] for details. Miscellaneous applications of the method can be found in Chapters V and VII of the cited text.

Refinement of the Method of Moment

Since Vorobyev's method is a Galerkin method on the subspace $E_n = \mathrm{span}(z_0, \mathrm{M} z_0, \ldots, \mathrm{M}^{n-1} z_0)$, Sloan's iterative procedure can be applied. In view of (6) and (7), the desired iterate is given by

$$\bar{y}_n = \xi_0 z_1 + \xi_1 z_2 + \cdots + \xi_{n-1} z_n + w$$
 (12)

The refinement is particularly advantageous since the computation of (12) requires only already known quantities.

Example. Let $E = F = L^2[0,1]$ and J = I. Consider the Fredholm integral equation of the second kind

$$u(s) = Ku(s) + s/2 ,$$

$$K: E \rightarrow E$$
, $Ku(s) = \int_{0}^{1} k(s,t)u(t)dt$,

where the kernel is given by

$$k(s,t) = \begin{cases} \frac{\beta}{2} (2-t)s, & s < t \\ \frac{\beta}{2} (2-s)t, & s > t \end{cases}, \quad \beta = \frac{\pi^2}{4}.$$

The exact solution is $u^{*}(s) = \sin \frac{\pi}{2} s$. We apply Vorobyev's method with three moments (n = 2):

$$z_0(s) = \frac{s}{2}$$
,
 $z_1(s) = Kz_0(s) = \frac{\beta}{12} (2s - s^3)$,
 $z_2(s) = Kz_1(s) = \frac{\beta^2}{720} (3s^5 - 20s^3 + 31s)$.

We find that:

$$\langle z_0, z_0 \rangle = \frac{1}{12} , \qquad \langle z_0, z_1 \rangle = \frac{\beta}{12} \cdot \frac{7}{30} ,$$

$$\langle z_0, z_2 \rangle = \langle z_1, z_1 \rangle = \frac{\beta^2}{12} \cdot \frac{71}{1260} , \qquad \langle z_1, z_2 \rangle = \frac{\beta^3}{12} \cdot \frac{517}{37800} ,$$

$$\begin{cases} \alpha_0 + \frac{78}{30} \alpha_1 = \frac{71}{1260} \beta^2 \\ \\ 76\alpha_0 + \frac{71\beta^2}{42} \alpha_1 = \frac{517}{1260} \beta^3 \end{cases}$$

$$\xi_0 = \frac{7560 - 525\pi^2}{7560 - 525\pi^2 + 4\pi^4} , \qquad \xi_1 = \frac{7560}{7560 - 525\pi^2 + 4\pi^4} .$$

Consequently, the desired approximation is

$$y_2(s) = \xi_0 z_0(s) + \xi_1 z_1(s) = as - bs^3$$
,

where

$$\mathbf{a} = \frac{\xi_0}{2} + \frac{\xi_1^{\pi^2}}{24} \approx 1.552749 ,$$

$$\mathbf{b} = \frac{\xi_1^{\pi^2}}{48} \approx 0.561564 .$$

Sloan's refinement,

$$\bar{y}_2(s) = Ky_2(s) + v(s) ,$$

requires the quantities $Kz_0 = z_1$ and $Kz_1 = z_2$ which are already known. We find that

$$\bar{y}_2(s) = \xi_0 z_1(s) + \xi_1 z_2(s) + v(s)$$

= $cs - ds^3 + es^5$,

whare

$$c = \frac{\xi_0 \pi^2}{24} + \frac{31\xi_1 \pi^4}{11520} + \frac{1}{2} \approx 1.569244$$

$$d = \frac{\xi_0 \pi^2}{48} + \frac{\xi_1 \pi^4}{576} \approx 0.6385423$$

$$e = \frac{\xi_1 \pi^4}{3840} \approx 0.06928021$$

TABLE

8	u*(s)	y ₂ (s)	Ÿ2(s)	u* - y ₂	u* - \vec{y}_2
0.00	0.00000	0.00000	0.00000	0.00000	0.00000
0.20	0.30902	0.30606	0.30876	0.00296	0.00026
0.40	0.58779	0.58516	0.58754	0.00263	0.00025
0.60	0.80902	0.81035	0.80901	-0.00133	0.00001
0.80	0.95106	0.95468	0.95116	-0.00362	-0.00010
1.00	1.00000	0.99118	0.99998	0.00882	0.00002

The above table illustrates the nearly free improvement of the iterate \vec{y}_2 over y_2 .

REFERENCES

- G. A. CHANDLER, Superconvergence for second kind integral equations, in Application and Numerical Solution of Integral Equations, R. S. Anderssen, F. R. de Hoog, and M. A. Lukas, eds., Sijthoff and Noordhoff, Alphen aan den Rijn, 1980.
- 2. F. CHATELIN and R. LEBBAR, The iterated projection solution for the Fredholm integral equation of second kind, J. Austral. Math. Soc. Ser. B, v. 22, 1981, pp. 439-451.
- G. GRAHAM, Galerkin methods for second kind integral equations with singularities, Math. Comp., v. 39, 1982, pp. 519-533.
- 4. M. A. KRASNOSEL'SKII et al., Approximate Solution of Operator Equations, translated from Russian by D. Louvish, Wolters-Noordhoff, 1972.
- 5. E. SCHOCK, Arbitrarily slow convergence, uniform convergence and superconvergence of Galerkin-like methods, IMA J. Numer. Anal. (to appear).
- I. H. SLOAN, Improvement by iteration for compact operator equations, <u>Math. Comp.</u>, v.
 30, 1976, pp. 758-764.
- A. SPENCE and K. S. THOMAS, On superconvergence properties of Galerkin's method for compact operator equations, <u>IMA J. Numer. Anal.</u>, v. 3, 1983, pp. 253-271.
- Yu V. VOROBYEV, Method of Moments in Applied Mathematics, translated from Russian by
 Seckler, Gordon and Breach, New York, 1965.

GM:scr

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
2923	(
4. TITLE (and Subtitle)	<u> </u>	5. TYPE OF REPORT & PERIOD COVERED			
- 11.50 (min continut)		Summary Report - no specific			
ITERATIVE REFINEMENT OF THE METHOD	OF MOMENTS	reporting period			
		6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(a)			
George Miel		D11 C20 00 C 00 41			
George wier		DAAG29-80-C-0041			
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10 BROGRAM EL EMENT BROJECT TASK			
Mathematics Research Center, Univ		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
610 Walnut Street Wisconsin		Work Unit Number 3 -			
010 11 011 011 011		Numerical Analysis and			
Madison, Wisconsin 53705		Scientific Computing 12. REPORT DATE			
U. S. Army Research Office		March 1986			
P. O. Box 12211		13. NUMBER OF PAGES			
Research Triangle Park, North Caro	lina 27709	7			
14. MONITORING AGENCY NAME & ADDRESS(II different	t from Controlling Office)	15. SECURITY CLASS. (of this report)			
		UNCLASSIFIED			
		15a. DECLASSIFICATION/DOWNGRADING			
		SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report)					
Approved for public release; distrib	ution unlimited				
Approved for public release, distrib	ation unitimited.	i			
		ľ			
·					
17. DISTRIBUTION STATEMENT (of the abetract entered	in Block 20, if different from	n Report)			
		į			
		j			
		[
18. SUPPLEMENTARY NOTES					
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)					
Method of moments					
Thomatimo wofinoment					
Iterative refinement					
Iterative refinement					
Iterative refinement					
	d identify by block number)				
20. ABSTRACT (Continue on reverse side if necessary an		ts, because it is a			
20. ABSTRACT (Continue on reverse elde il necessary and It is observed that Vorobyev's	s method of momen				
20. ABSTRACT (Continue on reverse side if necessary an	s method of momen hod, is easily ac	celerated by the use of			
20. ABSTRACT (Continue on reverse elde if necessary an It is observed that Vorobyev's specialized form of Galerkin's meth	s method of momen hod, is easily ac ates. The improv	celerated by the use of ement, which is nearly			
20. ABSTRACT (Continue on reverse elde II necessary and It is observed that Vorobyev's specialized form of Galerkin's metly Sloan's trick of taking first itera	s method of momen hod, is easily ac ates. The improv	celerated by the use of ement, which is nearly			
20. ABSTRACT (Continue on reverse elde il necessary am It is observed that Vorobyev's specialized form of Galerkin's met) Sloan's trick of taking first itera costless since it requires no new o	s method of momen hod, is easily ac ates. The improv	celerated by the use of ement, which is nearly			

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

E/MED

6-86