Untitled

Marcelo

November 16, 2016

Introduction

Linear Models for the Quantile Autoregression

Next steps

Introduction

- Wind Firm Energy Certificate (FEC) (Porrua, 2010) estimation imposes several challenges.
- First, it is a quantile function of an aleatory quantity, named here on wind capacity factor (WP). Due to its non-dispachable profile, accurate scenario generation models could reproduce a fairly dependence structure in order to the estimation of FEC.
- Second, as it is a quantile functions, the more close to the extremes of the interval, the more sensitive to sampling error.

Introduction

- ► The main frameworks we investigate are parametric linear models and a non-parametric regression.
- ▶ In all approaches we use the time series lags as the regression covariates.
- To study our methods performance, we use the mean power monthly data of Icaraizinho, a wind farm located in the Brazilian northeast.

The Icaraizinho dataset

► The Icaraizinho dataset consists of monthly observations from 1981 to 2011 of mean power measured in Megawatts.

Quantile Regression

A Quantile Regression for the α -quantile is the solution of the following optimization problem:

$$\min_{q} \sum_{t=1}^{n} \alpha |y_t - q(x_t)|^+ + (1 - \alpha)|y_t - q(x_t)|^-,$$

where $q(x_t)$ is the estimated quantile value at a given time t and $|x|^+ = \max\{0,x\}$ and $|x|^- = -\min\{0,x\}$. To model this problem as a Linear Programming problem, thus being able to use a modern solver to fit our model, we can create variables ε_t^+ e ε_t^- to represent $|y-q(x_t)|^+$ and $|y-q(x_t)|^-$, respectively. So we have:

$$\min_{q,\varepsilon_t^+,\varepsilon_t^-} \sum_{t=1}^n \left(\lambda \varepsilon_t^+ + (1-\lambda)\varepsilon_t^- \right)
\text{s.t. } \varepsilon_t^+ - \varepsilon_t^- = y_t - q(x_t), \qquad \forall t \in \{1,\dots,n\},
\varepsilon_t^+, \varepsilon_t^- \ge 0, \qquad \forall t \in \{1,\dots,n\}.$$

Relationship between y_t and some lags

Linear Models for the Quantile Autoregression

Best subset selection with Mixed Integer Programming

We investigate the usage of Mixed Integer Programming to select which variables are included in the model, up to a limit of inclusions imposed a priori. The optimization problem is described below:

$$\min_{\beta_0, \beta, z, \varepsilon_t^+, \varepsilon_t^-} \qquad \sum_{t=1}^n \left(\alpha \varepsilon_t^+ + (1 - \alpha) \varepsilon_t^- \right) \\
\text{s.t} \quad \varepsilon_t^+ - \varepsilon_t^- = y_t - \beta_0 - \sum_{p=1}^P \beta_p x_{t,p}, \qquad \forall t \in \{1, \dots, n\}, \\
\varepsilon_t^+, \varepsilon_t^- \ge 0, \qquad \forall t \in \{1, \dots, n\}, \\
-M_U z_p \le \beta_p \le M_U z_p, \qquad \forall p \in \{1, \dots, P\}, \\
\sum_{p=1}^P z_p \le K, \\
z_p \in \{0, 1\}, \qquad \forall p \in \{1, \dots, P\}.$$

Best subset selection with Mixed Integer Programming

Figure 3: Linear Quantile Regression when only y_{t-1} is used

Best subset selection with Mixed Integer Programming

	K=1	K=2	K=3	K=4	K=5	K=6	K=7	K=8
β_0	-15.33	9.38	1.48	1.34	8.72	-1.68	4.94	0.65
β_1	-0.00	0.79	0.66	0.58	0.46	0.40	0.48	0.46
eta_2	-0.00	-0.00	-0.00	-0.00	-0.00	0.33	-0.00	-0.00
β_3	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	0.20
β_4	-0.00	-0.47	-0.28	-0.27	-0.29	-0.35	-0.31	-0.40
eta_5	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
eta_6	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	0.11	0.08
β_7	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
β_8	-0.00	-0.00	-0.00	-0.00	-0.15	-0.00	-0.31	-0.26
eta_9	-0.00	-0.00	-0.00	-0.00	-0.00	0.14	0.16	0.20
β_{10}	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
β_{11}	-0.00	-0.00	0.26	0.17	0.21	0.08	0.16	0.19
β_{12}	1.17	-0.00	-0.00	0.18	0.15	0.19	0.22	0.20

Table 1: Coefficients for quantile $\alpha=0.05$

- ▶ Another way of doing regularization is including the ℓ_1 -norm of the coefficients on the objective function.
- ▶ By lowering the penalty we impose on the ℓ_1 -norm, more variables are being added to the model.
- ▶ This is the same strategy of the LASSO, and its usage for the quantile regression is discussed in Li and Zhu (2012).
- ▶ The proposed optimization problem to be solved is:

$$\min_{\beta_0,\beta} \sum_{t=1}^n \alpha |y_t - q(x_t)|^+ + (1 - \alpha)|y_t - q(x_t)|^- + \lambda ||\beta||_1$$
$$q(x_t) = \beta_0 - \sum_{p=1}^P \beta_p x_{t,p},$$

In order to represent the above problem to be solved with linear programming solver, we restructure the problem as below:

$$\beta_{\lambda}^{*LASSO} = argmin_{\beta_0, \beta, \varepsilon_t^+, \varepsilon_t^-} \sum_{i=1}^n \left(\alpha \varepsilon_t^+ + (1 - \alpha) \varepsilon_t^- \right) + \lambda \sum_{p=1}^P \xi_p$$

$$\varepsilon_t^+, \varepsilon_t^- \ge 0, \quad \forall t \in \{1, \dots, n\},$$

$$\varepsilon_t^+, \varepsilon_t^- \ge 0, \quad \forall t \in \{1, \dots, n\},$$

$$\xi_p \ge \beta_p, \quad \forall p \in \{1, \dots, P\},$$

$$\xi_p \ge -\beta_p, \quad \forall p \in \{1, \dots, P\},$$

For low values of λ , the penalty is small and thus we have a model where all coefficients have a nonzero value. - When λ is increased, the coefficients shrink towards zero (as an extreme case we have a constant model) - The linear coefficient β_0 is not penalized. - We make this experiment For the same quantiles values of α we experimented on the previous section ($\alpha \in \{0.05, 0.1, 0.5, 0.9, 0.95\}$).

• We propose simulating an AR(1) model

$$y_t = \phi_0 + \phi y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2),$$
 (1)

and test two approaches to predict the one-step ahead quantile.

- On the first one, we consider known this process true model, thus estimating values for $\hat{\phi}_0$, $\hat{\phi}$ and $\hat{\sigma}^2_{\epsilon}$. - On the second approach, we use the quantile regression to make a direct estimation of the quantiles.

Testing methods with high-frequency data

All methods already discussed

Local Quantile Regression

▶ Based on Bremmes (2004). Being the estimation of the θ quantile $q_{\theta}()$:

$$q_{\theta}(x; \alpha_0, \alpha) = \alpha_0 + \alpha^T x$$

we define the local quantile regression by solving the following optimization problem:

$$argmin_{(\alpha_0,\alpha)} \sum_{i=1}^{n} \rho_{\theta}(e_{\rho,i} - q_{\theta}(x_i - x; \alpha_0, \alpha)) w\left(\frac{\|x_i - x\|_2}{h_{\lambda}(x)}\right)$$

where the loss function is defined by

$$\rho_{\theta}(u) = \begin{cases} u\theta & \text{if } u \geq 0 \\ u(\theta - 1) & \text{otherwise} \end{cases}$$

and the weight function

$$w(u) = \begin{cases} (1 - u^3)^3 & \text{if } u \in [0, 1) \\ 0 & \text{otherwise} \end{cases}$$

Generating Scenarios of Wind Power Prediction

- ▶ Following recommendation of Pinson and Madsen (2009). This method was employed for short term monte carlon simulation.
- 1. One must have a different model for each horizon $k \in \{1,\ldots,K\}$. Residuals \boldsymbol{X} comes from a multivariate Gaussian distribution $\boldsymbol{X} \sim N(\mu_0,\Sigma_{t-k})$.
- 2. By applying the inverse probit function Φ to each component of $\boldsymbol{X}^{(i)}$, we obtain the random variable $Y_k^{(t)} = \hat{F}_{t+k|t}(p_{t+k}), \forall t$. must be estimated for each desired value of k. As we want to generate d different scenarios, we have to sample

3.