

Department: Computer Science and Engineering	
Course title: Discrete Mathematical Structures	Course Code: CS320
Credits(L:T:P): 3:0:0	Core/Elective: Core
Type of Course: Lecture	Total Contact Hours:39
CIE Marks: 50	SEE Marks: 100

Pre-requisite: Previous basic mathematics

Course Outcomes: After completing this course, students should be able to:

CO1: Knowledge of the concepts needed to test the logic of the program.

CO2: Demonstrate the understanding of relations and able to determine the properties.

CO3: Perceive, construct and decode group codes based on the various methods.

CO4: Demonstrate different traversal methods for trees and graphs.

Unit No.	Course Content	No. of Hours
1.	Fundamental of Logic: Basic Connectives and Truth Tables, Logical	08
	Equivalence: The Laws of Logic, Logical Implication: Rules of Inference, The	
	Use of Quantifiers, Quantifiers, Definitions and the Proofs of Theorems.	
2.	Relations: Properties of relations, Computer Recognition: Zeros- One Matrices	08
	and Directed Graphs, Partial; orders: Hasse diagrams, Equivalence Relations and	
	Partitions , Lattices.	
3	Elements of coding theory and Hamming Metric, generation of codes using Parity check and Generator matrices.	
4.	Graph theory: Definitions and Examples, Subgraphs, Complements, and Graph	08
	Isomorphism, Vertex degree, Euler trail and circuits, Planar Graphs, Hamiltonian	
	Paths and cycles.	
5.	Trees: Definitions, Properties and Examples, Rooted trees, trees and sorting	07
	weighted trees and prefix Codes.	

Text Book:

1. Ralph.P.Grimaldi, B.V.Ramana, "Discrete and Combinatorial Mathematics", 5th Edition, Pearson Education -2009.

Reference Books:

- 1. Kenneth. H.Rosen, "Discrete Mathematical Structures Theory and Application", V Edition, PHI/Pearson, Education, 2004.
- 2. Kolman, Busby and Ross, "Discrete Mathematical Structures", Fourth Edition, Prentice –Hall of India Pvt Ltd-2009.

Note:

Students are informed to visit NPTEL website (http://nptel.ac.in) for additional information on the course.