

MODUL KONSTRUKSI ALAT UKUR PSIKOLOGI SOFTWARE SPSS

Hardiansyah, S.Psi

KATA PENGANTAR

Assalamaulaikum wr wb.

Alhamdulillahirobbil alamin, pada kesempatan kali ini, sampailah pada selesainya saya membuat modul ini dengan judul "modul konstruksi Alat Ukur untuk software SPSS. Pembuatan modul ini cukup lama, namun akhirnya bisa selesai juga. Sebenarnya saya membuat modul ini dengan beberapa alasan, alasan pertama adalah dengan melihat beberapa teman-teman serta adek tingkat khususnya di program studi Psikologi Universitas Mulawarman yang dimana sedikit kesulitan dalam menganalisis data. Alasan kedua adalah untuk mempermudah tugas adik-adik di program studi psiklogi terutama dibidang mata kuliah konstruksi Alat Ukur serta membantu dalam menganalisis data untuk Skripsi, jika mengambil jenis penelitian kuantitatif tehnik analisis regresi. Sebenarnya menganalisis data itu tidak sulit, dan tidak mudah juga, artinya berada di tengah-tengah. Namun jika kita fokus dan mau belajar, insyallah bisa dikuasi.

Berbicara tentang modul ini. Insyallah jika memang umur panjang, saya akan mengembangkan modul ini menjadi sebuah karya tulis yaitu Buku. Rasulullah *Shallallahu'alaihi Wasallam* bersabda "*Sebaik Baik Manusia Adalah Yang Paling Bermanfaat Bagi Orang Lain*". Semoga dengan hadirnya modul ini, dapat berguna dan bermanfaat bagi menggunakannya.

Yogyakarta, 11 September 2019

Hardiansyah

DAFTAR ISI

CoverKata Pengantar	i ii
Daftar Isi	iii
Cara Merubah Var Menjad Nama/Nomor Aitem	1
Cara Menghitung Karakteristik Responden	3
Uji Validitas Dan Realibilitas	15
Cara Pelaporan Hasil Uji Validitas	16
Cara Pelaporan Uji Realibilitas	20
Uji Deskriptif Dan Kategorisasi	21
Cara Pelaporan Uji Deskriptif	25
Cara Mencari Kategorisasi Skor	26
Cara Pelaporan Uji Kategorisasi	37
Uji Asumsi	38
Uji Normalitas	39
Pelaporan Uji Normalitas	41
Uji Linlieritas	44
Pelaporan Uji Linieritas	47
Uji Multikolinieritas	48
Pelaporan Uji Multikolinieritas	50
Uji Heteroskedasitas	52
Pelaporan Uji Heteroskedasitas	61
Uji Autokorelasi	63
Tabel Durbin-Watson	65
Cara Pelaporan Uji Autokorelasi	72
Hasil Uji Hipotesis (Regresi Linier Berganda Dan Sederhana	
Model Penuh Dan Bertahap	73
Cara Pelaporan Hipotesis Model Penuh Dan Bertahap	75

Hipotesis Tambahan	77
Multivariate Model Penuh Dan Parsial	78
Cara Pelaporan Multivariate Model Penuh	82
Cara Pelaporan Parsial	84
Hipotesis Model Stepwise Dan Model Akhir	85
Cara Pelaporan Stepwise	87
Cara Pelaporan Model Akhir	90

CARA MERUBAH VAR MENJADI NAMA/NOMOR AITEM

Terkadang sulit sekali bahkan ribet sekali untuk merubah tulisan VAR menjadi nomor aitem, berikut ini saya jelaskan melalui software SPSS.

1. Silahkan buka sebaran data dalam bentuk microsoft exel. Kemudian silahkan copy lalu paste di Software di SPSS.

2. Silahkan klik file – New - Syntax

3. Maka akan muncul seperti ini, langkah selanjutnya adalah silahkan ketikan RENAME VARIABELS(VAR00001 TO VAR00028= Aitem1 TO Aitem28)

CARA MENGHITUNG KARAKTERISTIK RESPONDEN MELALUI SOFTWARE SPSS

Pada bagian ini sering kali kita jumpai untuk menghitung karekteristik responden menggunakan cara manual, yaitu menghitung satu persatu dst..., sebenarnya sih ada cara yang mudah yaitu menggunakan software SPSS. Sebelum dimulai cara analisisnya. Mari kita kenali apa itu karakteristik responden. Jadi karakteristik responden merupakan suatu karakteristik/identitas dari sampel penelitian yang pada umumnya terdiri atas jenis kelamin, usia, kelas, angkatan, dst..Letak untuk karakteristik responden biasanya dapat kita jumpai di Skala (penelitian psikologi) yaitu pada bagian identitas pribadi. Hal yang perlu dipersiapkan adalah:

1. Kenali karakteristik apa saja yang terdapat pada skala anda contohnya seperti ini: Usia, Jenis Kelamin, Angkatan (kuliah), jika punya kalian ada penambahan misalnya skala yang mengisi adalah siswa maka ditambahkan Kelas, jika yang mengisi adalah karyawan silahkan ditambahkan jabatan/divisi, namun pada umumnya seperti ini,

IDENTITAS DIRI

(identitas ini hanya untuk data, bukan untuk disebarluaskan)

Nama :

Usia :

Jenis Kelamin: Laki-laki / Perempuan

Angkatan :

- 2. Penyebaran skala seperti yang kita ketahui bahwa ada dua cara, yaitu pertama secara manual artinya di print/copy kemudian disebar, cara kedua secara *online*
- 3. Setelah data disebar, langkah selanjutnya adalah kita akan *mengcoding*. Caranya seperti ini

4. Contohnya pada **usia** yaitu angka 1 itu adalah koding maksudnya atau makna nya adalah usia 17-20 tahun, jika umur subjek 18 tahun maka diberi angka 1 (sebagai koding), di *microsoft exel* jika umur subjek 27 tahun, maka diberi angka 3 sebagai koding di *microsoft exel*, dst....Namun seperti yang saya katakan sebelumnya bahwa kode koding terserah peneliti. Di atas hanya contoh saja. Artinya peneliti bisa bebas menentukan angka koding beserta makna nya.

5. Berikut contohnya

Subjek	Usia	Jenis Kelamin	Angkatan
1	17	Laki-laki	2017
2	18	Laki-laki	2018
3	20	Laki-laki	2018
4	21	Perempuan	2019
5	25	Perempuan	2019
6	27	Laki-laki	2017
7	28	Perempuan	2019
8	30	Perempuan	2017
9	21	Laki-laki	2018
10	22	Laki-laki	2019
11	28	Laki-laki	2017
12	26	Laki-laki	2018
13	18	Laki-laki	2018
14	17	Perempuan	2019
15	17	Perempuan	2019

Subjek	Usia	Jenis Kelamin	Angkatan
1	1	1	1
2	1	1	2
3	1	1	2
4	2	2	3
5	3	2	3
6	3	1	1
7	3	2	3
8	3	2	1
9	2	1	2
10	2	1	3
11	3	1	1
12	3	1	2
13	1	1	2
14	1	2	3
15	1	2	3

6. Selanjutnya silahkan copy data exel (microsoft exel yang sudah di koding) kemudian paste di *software* di SPSS

- 7. Silahkan ganti tulisan VAR dengan cara klik *Variabel View*, kemudian ganti tulisan VAR.... menyesuiakan dengan nama karakteristik responden
- 8. Langkah selanjutnya klik *Variabel View*, kemudian pada bagian usia, silahkan klik *None* bagian *Values*, setelah itu akan muncul kemudian klik

Nai	me	Type	Width	Decimals	Label	Values		
Usia		Numeric	6	0		None	N	
Jenis_K	ela	Numeric	6	0		None	N	
Angkatan Numeric		6	0		None	N		
							\top	

9. Maka akan muncul seperti ini:

10. Langkah selanjutnya adalah kita akan mengkoding lagi, norma kodingnya masih sama yaitu

```
Usia: 1 = 17-20 Tahun
2 = 21-24 Tahun
3 = > 25 Tahun
```

11. pada bagian value silahkan masukan angka 1, kemudian label ketik 17-20

12. Pada bagian value silahkan masukan angka 2, kemudian label ketik 21-24 tahun

13. Pada bagian value silahkan masukan angka 3, kemudian label ketik > 24 tahun

14. kemudian pada bagian Jenis Kelamin, silahkan klik None bagian Values,

15. Maka akan muncul seperti ini

16. Langkah selanjutnya adalah kita akan mengkoding lagi untuk jenis kelamin, norma kodingnya masih sama yaitu

17. Pada bagian value silahkan masukan angka 1, kemudian label ketik Laki-laki

18. Pada bagian value silahkan masukan angka 2, kemudian label ketik Perempuan

19. kemudian pada bagian Angkatan, silahkan klik *None* bagian *Values*, setelah itu akan muncul kemudian klik

Name	Ty/pe	Width	Decimals	Label	Values
Usia	Numeric	6	0		{1, 17-20 Ta
Jenis_Kela	Numeric	6	0		(1, Laki-Laki
Angkatan	Numeric	6	0		None

20. Maka akan muncul seperti ini

21. Langkah selanjutnya adalah kita akan mengkoding lagi untuk angkatan, norma kodingnya masih sama yaitu

22. Pada bagian value silahkan masukan angka 1, kemudian label ketik 2017

23. Pada bagian value silahkan masukan angka 2, kemudian label ketik 2018

24. Pada bagian value silahkan masukan angka 3, kemudian label ketik 2019

25. Langkah selanjutnya adalah silahkan klik *Analyze – Descriptive statistic - frequencies*

26. Kemudian masukan usia, jenis kelamin, dan angkatan ke bagian kolom

27. Maka akan muncul output SPSS seperti dibawah ini

Chanel Yotube: Hardiansyah Bj https://bit.lv/2kc4845

Jenis_Kelamin

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Laki-Laki	64	60.4	60.4	60.4
	Perempuan	42	39.6	39.6	100.0
	rotar		100.0	100.0	

No.	Jenis Kelamin	Jumlah	Persentase
1	Laki-laki	64	60.4
2	Perempuan	42	39.6
	Jumlah	106	100

Angkatan

		Frequency	Percent	√alid Percent	Cumulative Percent
Valid	2017	32	30.2	30.2	30.2
	2018	32	30.2	30.2	60.4
	2019	42	39.6	39.6	100.0
	Total	106	100.0	100.0	

No.	Angkatan	Jumlah	Persentase
1	2017	32	30.2
2	2018	32	30.2
3	2019	42	39.6
	Jumlah	106	100

UJI VALIDITAS DAN REALIBILITAS

SPSS

SPSS merupakan salah satu *software* yang popular untuk digunakan dalam analisis data, tujuan pengunaan analisis data statistik ini adalah untuk mengetahui validitas, realibilitas, uji *descriptive* dan kategorisasi pada data skala. Berikut langkah-langkah cara analisisnya beserta pelaporannya:

1. Klik Analyze – Correlate - Bivariate

2. Masukan **Aitem** sesuai dengan *Blue Print* dan jangan lupa Total di Setiap Aspek, kemudian centang *pearson*, lalu centang two-tailed, dan *flag significant correlations*, lalu klik **ok**

Chanel Yotube: Hardiansyah Bj https://bit.lv/2kc4845

3. Maka Akan Muncul Output Spss Seperti Ini, Silahkan Lanjutkan Analisis Selanjutnya Menyesuaikan Dengan Blue Print

	Correlations													
		Aitem1	Aitem3	Aitem5	Aitem7	Aitem9	Aitem10	Aitem11	Aitem12	Aitem14	Aitem16	Aitem18	Aitem20	Aspek A
Aitem1	Pearson Correlation	1	.146	.495**	.275**	.032	.226*	.054	.303**	.316**	.330**	.205	011	.572**
	Sig. (2-tailed)		.134	.000	.004	.744	.020	.585	.002	.001	.001	.035	.908	.000
	N	106	106	106	106	106	106	106	106	106	106	106	106	106
Aitem3	Pearson Correlation	.146	1	.145	.099	.232*	.301**	.273**	.210*	.223*	036	.057	.382**	.497**
	Sig. (2-tailed)	.134		.138	.311	.017	.002	.005	.031	.022	.711	.563	.000	.000
	N	106	106	106	106	106	106	106	106	106	106	106	106	106
Aitem5	Pearson Correlation	.495**	.145	1	.324**	.083	.216	.263**	.301**	.455**	.285**	.047	092	.585**
	Sig. (2-tailed)	.000	.138		.001	.399	.026	.006	.002	.000	.003	.629	.346	.000
	N	106	106	106	106	106	106	106	106	106	106	106	106	106
Aitem7	Pearson Correlation	.275**	.099	.324**	1	140	.348**	.285**	.165	.095	.415**	.329***	107	.530**
	Sig. (2-tailed)	.004	.311	.001		.154	.000	.003	.091	.334	.000	.001	.274	.000
	N	106	106	106	106	106	106	106	106	106	106	106	106	106
Aitem9	Pearson Correlation	.032	.232"	.083	140	1	.085	.287**	.112	.098	158	057	.102	.272**
	Sig. (2-tailed)	.744	.017	.399	.154		.389	.003	.254	.318	.106	.561	.296	.005
	N	106	106	106	106	106	106	106	106	106	106	106	106	106
Aitem10	Pearson Correlation	.226	.301**	.216	.348**	.085	1	.063	.532**	.225	.353	.281**	.133	.641**
	Sig. (2-tailed)	.020	.002	.026	.000	.389		.523	.000	.020	.000	.004	.175	.000
	N	106	106	106	106	106	106	106	106	106	106	106	106	106
Aitem11	Pearson Correlation	.054	.273**	.263**	.285**	.287**	.063	1	.119	.053	.073	136	.026	.373**
	Sig. (2-tailed)	.585	.005	.006	.003	.003	.523		.223	.590	.455	.165	.791	.000
	N	106	106	106	106	106	106	106	106	106	106	106	106	106
Aitem12	Pearson Correlation	.303**	.210*	.301**	.165	.112	.532**	.119	1	.273**	.360**	.284**	.209*	.662**
	Sig. (2-tailed)	.002	.031	.002	.091	.254	.000	.223		.005	.000	.003	.031	.000

Aitem yang memenuhi hasil validitas yang baik sesuai dengan konsep atau kaidah yang dikemukakan oleh Azwar (2014) yaitu Jika nilai **r pearson** > **0,300** maka aitem di nyatakan **Valid**, sebaliknya jika nilai **r pearson** < **0.300** maka aitem dinyatakan **tidak Valid**

Cara Pelaporan Hasil Uji Validitas

Skala Konsep Diri

Skala konsep diri terdiri dari 28 butir dan terbagi atas tiga aspek. Berdasarkan data hasil analisis butir didapatkan dari r hitung > 0.300 (Azwar, 2014). Sehingga berdasarkan hasil uji validitas terdapat 2 aitem yang gugur atau dinyatakan tidak valid

Nama Konstrak: Konsep diri

Nama Aspek 1: Kondisi yang disadari

Nama Aspek 2: Aku Sosial atau Aku menurut Orang lain

Nama Aspek 3: Aku ideal

Tabel. Sebaran Aitem Skala Konsep diri

		Jumlah				
Aspek	Favo	orable Unfavorable			Juilliai	L
	Valid	Gugur	Valid	Gugur	Valid	Gugur
1	1,3,5,7,11	9	10,12,14,16,18	20	10	2
2	2,4,6,8	-	13,15,17,19	-	8	-
3	21,23,25,27	-	22,24,26,28	-	8	-
Total	13	1	13	1	26	2

Tabel. Rangkuman Analisis Kesahihan Butir Skala Konsep diri (N = 106)

_			Jumlah bu	tir	r terendah –	Sig terendah –
	Aspek	Awal	Gugur	Sahih	tertinggi	tertinggi
	1	12	2	10	0.373 - 0.622	0.005 - 0.000
	2	8	-	8	0.322 - 0.660	0.000 - 0.000
	3	8	-	8	0.411 - 0.734	0.000 - 0.000

Uji Realibilitas Per Aspek/Indikator

1. Klik Analyze – Sclae – Realibility Analysis

Masukan aitem menyesuaikan dengan BluPrint per aspek, hanya aitem yang valid saja, serta nilai total tidak dimasukan, kemudian klik OK

Aitem Jumlah Favorable Unfavorable Aspek Valid Valid Gugur Valid Gugur Gugur 1,3,5,7,11 0,12,14,16,18 20 10 2 1 13,15,17,19 2,4,6,8 8 2 21,23,25,27 22,24,26,28 8 Total 13 13 26 1 1 2 taliability Analysis × Statistics... Aitem23 გ Aitem1 Aitem24 გ Aitem3 Aitem25 გ Aitem5 Aitem 26 გ Aitem7 Aitem27 备 Aitem10 Aitem28 გ Aitem11 🔗 Aspek_A 🔏 Aitem12 Aspek_B 船 Aitem14 🖋 Aspek_C Model: Alpha Scale label: OK Paste | Reset Cancel Help

Tabel 1. Sebaran Aitem Skala Konsep diri

3. Maka Akan muncul Output seperti ini

Reliability Statistics

Uji Realibilitas keseluruhan Aitem / Per Variabel

1. Klik analyze – Sclae – Realibility Analysis

2. Masukan aitem keseluruhan aitem, hanya aitem yang valid saja, serta nilai total tidak dimasukan, kemudian klik OK

Chanel Yotube: Hardiansyah Bj https://bit.lv/2kc4845

3. Maka Akan muncul Output seperti ini

Reliability Statistics

Cronbach's Alpha	N of Items
.857	26

Menurut Azwar (2014) jika nilai Cronbach`s Alpha > 0.600 maka dinyatakan reliable/andal, sebaliknya jika nilai Cronbach`S Alhpa < 0.600 maka dinyatakan tidak reliable/andal

Cara Pelaporan Uji Reliabilitas

Kaidah yang digunakan dalam uji reliabilitas adalah alat ukur dinyatakan *reliable* apabila nilai alpha > 0.600 (Azwar, 2014). Adapun penjelasan hasil uji reliabilitas pada masing-masing skala diuraikan sebagai berikut:

Tabel. Rangkuman Keandalan Variabel (N=106)

No	Aspek	Alpha
1	Kondisi yang disadari	0.753
2	Aku sosial atau aku menurut orang lain	0.793
3	Aku ideal	0.584
	Total	0.857

Berdasarkan tabel di atas, diketahui bahwa variabel konsep diri menghasilkan nilai alpha > 0.600, dengan nilai alpha untuk variabel konsep diri = 0.857. Hal ini menunjukkan bahwa variabel konsep diri dalam penelitian ini dinyatakan andal atau reliable.

Sugiyono (2009), menyatakan bahwa: Teknik analisis data penelitian secara deskriptif dilakukan melalui statistik deskriptif, yaitu statistik yang digunakan untuk menganalisis data dengan cara mendeskripsikan atau menggambarkan data yang telah terkumpul sebagaimana adanya tanpa bermaksud membuat kesimpulan yang berlaku untuk umum atau generalisasi. Berikut ini langkah-langkahnya:

Uji Deskriptif

 Siapkan data exel, dengan cara copy data exel hanya nilai total keseluruhan saja kemudian paste di SPSS, kemudian silahkan mengganti tulisan VAR, menyesuaikan dengan nama variabel dengan cara

Catatan : nilai total keseluruhan tiap variabel/ skala = jumlah seluruh aitem yang valid saja*

b. Kemudian silahkan **ganti tulisan VAR**, **menyesuaikan dengan nama variabel** (ex nama variabel: konsep diri dan motivasi berprestasi

2. Klik Analize-Descriptive statistics-Descriptives

- 3. Masukan nilai total variabel 1 dan Variabel 2 atau skala 1 dan skala
 - 2 (Example: konsep diri dan motivasi berprestasi) kemudian Klik OK

4. Maka akan muncul outputnya seperti ini

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Konsep_Diri	106	51	99	79.75	7.775
Motivasi_Berprestasi	106	55	93	78.41	8.160
Valid N (listwise)	106				

Tabel. Mean Empiris dan Mean Hipotetik

Variabel	Mean Empirik	SD Empirik	Mean Hipotetik	SD Hipotetik	Status
Konsep Diri	79.75	7.775	?	?	?
Motivasi Berprestasi	78.41	8.160	?	?	?

Untuk mencari SD hipotetik dan mean hipotetik, cara nya seperti dibawah ini:

Cara mencari mean Hipotetik dan SD hipotetik, berikut caranya

a. Mean Hipotetik

$$\mu = \frac{1}{2}(I_{max} + I_{min})\sum k$$

Keterangan: - μ : Rerata Hipotetik

- Ima : skor maksimal aitem

- Imis : skor minimal aitem

$$\sigma = \frac{1}{6}(X_{\text{min}} - X_{\text{min}})$$

Keterangan: - σ : SD Hipotetik

X : Skor maksimal Subjek

Xmin : Skor minimal Subjek

Catatan:

*Skor maksimal subjek adalah nilai yang didapat jika subjek menjawab pada rentang tertinggi semua. (contoh: menjawab SANGAT SETUJU semua, pada skala yang aitemnya Favourable).

Tabel. Mean Empiris dan Mean Hipotetik

Variabel	Mean Empirik			SD Hipotetik	Status
Konsep Diri	79.75	7.775	65	13	?
Motivasi Berprestasi	78.41	8.160	62.5	12.5	?

- Kaidah untuk mendapatkan Status pada mean empiric dan hipotetik adalah sebagai berikut
 - Apabila nilai **Mean Empirik** > **Mean Hipotetik** maka statusnya Tinggi
 - Sebaliknya Apabila nilai Mean Empirik < Mean Hipotetik maka statusnya Rendah

^{**}Skor minimal subjek adalah nilai yang didapat jika menjawab pada rentang terendah semua.

Berikut cara pelaporanya

Deskriptif data digunakan untuk menggambarkan kondisi sebaran data pada SMA N 2 Samarinda. Mean empiris dan mean hipotesis diperoleh dari respon sampel penelitian melalui dua skala penelitian yaitu skala konsep diri.

Kategori berdasarkan perbandingan mean hipotetik dan mean empirik dapat langsung dilakukan dengan melihat deskriptif data penelitian. Menurut Azwar (2014) nilai mean hipotetis dapat dianggap sebagai mean populasi yang diartikan sebagai kategori sedang atau menengah kondisi kelompok subjek pada variabel yang diteliti. Setiap skor mean empirik yang lebih tinggi secara signifikan dari mean hipotetik dapat dianggap sebagai indikator tingginya keadaan kelompok subjek pada variabel yang diteliti. Sebaliknya setiap skor mean empirik yang lebih rendah dari mean hipotetik dapat dikatakan sebagai indikator rendahnya kelompok subjek pada variabel yang diteliti. Berikut mean empirik dan mean hipotesis penelitian ini:

Variabel	Mean Empirik	SD Empirik	Mean Hipotetik	SD Hipotetik	Status
Konsep Diri	79.75	7.775	<mark>65</mark>	13	Tinggi
Motivasi Berprestasi	78.41	8.160	62.5	12.5	Tinggi

Melalui tabel di atas diketahui gambaran sebaran data pada subjek penelitian secara umum pada siswa SMA N 2 Samarinda. Berdasarkan hasil pengukuran melalui Konsep diri yang telah terisi diperoleh mean empirik 79.75 lebih tinggi dari mean hipotetik 65 dengan kategori tinggi. Hal ini membuktikan bahwa subjek berada pada kategori tingkat konsep diri tinggi.

Cara mencari kategorisasi skor

Interval Kecenderungan	Skor	Kategori	F	Persentase
$X \ge M + 1.5 SD$	≥ 84.5	Sangat Tinggi	?	?
M + 0.5 SD < X < M + 1.5 SD	71.5 – 83.5	Tinggi	?	?
M - 0.5 SD < X < M + 0.5 SD	58.5 – 70.5	Sedang	?	?
M - 1.5 SD < X < M - 0.5 SD	45.5 – 57.5	Rendah	?	?
$X \le M - 1.5 SD$	≤ 45.5	Sangat Rendah	?	?

Untuk mencari **skor,** silahkan hitung dengan rumus **interval kecenderungan** atau dengan cara menggunakan *software* **otomatis kategorisasi**. Berikut langkah-langka mencari kategorisasi skor dengan menggunakan software SPSS:

1. Klik Transfrom-Record into Different Variables

2. Masukan salah satu variabel yang ingin kita cari ke kolom sebelah kanan, kemudian pada tabel output variabel, berikan dengan nama (kategorisasi1) dan Label *nama variabel* (ex Konsep_Diri), kemudian klik "Change". Setelah itu klik old and new values

*Catatan: untuk variabel berikutnya menjadi kategorisasi 2, 3, dst.

- 3. Langkah pertama, klik "Range, value through HIGHEST" kemudian masukan angka yang terdapat pada skor kategori sangat tinggi, lalu klik pada tabel New Value, dan masukan angka 5, lalu klik "Add"
 - *catatan nilai angka pada value through HIGHEST didapatkan dari perhitungan menggunakan rumus interval kecenderungan/software kategorisasi otomatis

4. klik "Range, kemudian masukan angka yang terdapat pada skor kategori **Tinggi**, lalu klik pada tabel New Value, dan masukan angka 4, lalu klik "**Add**"

*catatan nilai angka pada Range didapatkan dari perhitungan menggunakan rumus interval kecenderungan/software kategorisasi otomatis

5. klik "Range, kemudian masukan angka yang terdapat pada skor kategori Sedang, lalu klik pada tabel New Value, dan masukan angka 3, lalu klik "Add" *catatan nilai angka pada Range didapatkan dari perhitungan menggunakan rumus interval kecenderungan/software kategorisasi otomatis

6. klik "Range, kemudian masukan angka yang terdapat pada skor kategori **Rendah**, lalu klik pada tabel New Value, dan masukan angka 2, lalu klik "**Add**"

*catatan nilai angka pada Range didapatkan dari perhitungan menggunakan rumus interval kecenderungan/software kategorisasi otomatis

7. klik "Range, LOWEST through value, kemudian masukan anngka yang terdapat pada skor kategori Sangat Rendah, lalu klik pada tabel New Value, dan masukan angka 1, lalu klik "Add"

*catatan nilai angka pada LOWEST through value didapatkan dari perhitungan menggunakan rumus interval kecenderungan/software kategorisasi otomatis

8. lalu klik continue, sehingga kembali muncul tampilan seperti dibawah ini, kemudian **klik OK**

Chanel Yotube: Hardiansyah Bj https://bit.lv/2kc4845

10. Kemudian **Klik value** bagian **none** pada kategorisasi1, sehingga muncul tampilan seperti dibawah ini

12. Pada Value ketik 4, lalu pada Label ketik Tinggi, kemudian Klik Add

13. Pada Value ketik 3, lalu pada Label ketik Sedang, kemudian Klik Add

14. Pada Value ketik 2, lalu pada Label ketik Rendah, kemudian Klik Add

15. Pada Value ketik 1, lalu pada Label ketik Sangat Rendah, kemudian Klik Add

16. Langkah selanjutnya, klik Analyze-Descriptive-klik frequencies

17. Masukan Konsep diri (kategorisasi 1), kemudian klik format, lalu centang Descending values, kemudian klik continue, lalu klik ok

18. Maka akan muncul output Spss seperti ini:

Kons	ep_	Diri
------	-----	------

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Sangat Tinggi	27	25.5	25.5	25.5
	Tinggi	64	60.4	60.4	85.8
	Sedang	14	13.2	13.2	99.1
	Rendah	1	.9	.9	100.0
	Total	126	100.0	100.0	

Interval Kecenderungan	Skor	Kategori	F	Persentase
$X \ge M + 1.5 SD$	≥ 84.5	Sangat Tinggi	27	25.5
M + 0.5 SD < X < M + 1.5 SD	71.5 - 83.5	Tinggi	64	60.4
M - 0.5 SD < X < M + 0.5 SD	58.5 - 70.5	Sedang	14	13.2
M - 1.5 SD < X < M - 0.5 SD	45.5 - 57.5	Rendah	1	0.9
$X \le M - 1.5 SD$	≤ 45.5	Sangat Rendah	0	0

37

Berikut Cara Pelaporannya

Berdasarkan kategorisasi pada tabel tersebut, maka dapat dilihat siswa SMA N

2 Samarinda cenderung memiliki rentang nilai skala konsep diri yang berada pada

kategori tinggi dengan rentang nilai 71.5 – 83.5 dan frekuensi sebanyak 64 siswa atau

sekitar 60.4 persen. Hal ini menunjukkan siswa SMA N 2 Samarinda memiliki konsep

diri yang tinggi.

38

Uji Asumsi

Sebelum dilakukan pengujian analisis regresi linier berganda terhadap

hipotesis penelitian, maka terlebih dahulu perlu dilakukan suatu pengujian uji

asumsi atas data yang akan diolah sebagai berikut :

1. Uji normalitas

Uji normalitas bertujuan untuk melihat residu atau selisih antara data

aktual dengan data hasil peramalan. Residu yang ada seharusnya berdistribusi

normal. Seperti diketahui bahwa uji t dan F mengasumsikan bahwa nilai residual

mengikuti distribusi normal. Kalau asumsi ini dilanggar maka uji statistik

menjadi tidak valid untuk jumlah sampel kecil (Ghozali, 2011). Ada dua cara

untuk mendeteksi apakah residual berdistribusi normal atau tidak yaitu dengan

analisis grafik dan uji statistik. Adapun uji normalitas ada dua yaitu

menggunakan Kolmogorov-Smirnov jika sampel penelitian lebih dari 50,

sedangkan jika sampel penelitian kurang dari 50 maka menggunakan Shapiro

Wilk dengan taraf signifikansi alpha sebesar 5% atau 0.05. Kaidah yang

digunakan adalah jika nilai Sig atau p > 0.05 maka data berdistribusi normal,

sebaliknya jika p < 0.05 maka data berdistribusi tidak normal (Santoso, 2012).

Berikut ini langkah-langkah dalam menganalisis Uji Normalitas

 Siapkan data di exel (hanya data nilai total keseluruhan tiap variabel), kemudian copy-paste di spss

2. Silahkan tulisan Var diganti menjadi nama menyesuaikan nama variabel (ex: perilaku keselamatan, sikap kerja, peran pengawas) -> *tanpa spasi*

3. Klik Descriptives Statistics-Eksplore

4. Masukan data kemudian klik Plots

Maka akan muncul outputs spss seperti dibawah ini

Tests of Normality Kolmogorov-Smirnov^a Shapiro-Wilk Statistic df Sig. Statistic df Sig. Perilaku_Keselamatan 109 .983 109 .194 .073 .194 Sikap_Kerja .074 109 .179 .983 109 .175 200 Peran Pengawas .066 109 .982 109 .153 *. This is a lower pound of the true significance. a. Lilliefors Signif cance Correction Tabel Hasil Uji Normalitas Variabel ►Kolmogrov-Smirnov Z P Keterangan 0.073 Perilaku Keselamatan 0.194 Normal Sikap Kerja 0.074 Normal 0.179 Peran Pengawas 0.066 0.200 Normal

- ➤ Kaidah yang digunakan adalah jika nilai Sig atau p > 0.05 maka data berdistribusi normal, sebaliknya jika p < 0.05 maka data berdistribusi tidak normal (Santoso, 2012).
- ➤ Catatan uji normalitas ada dua yaitu menggunakan Kolmogorov-Smirnov jika sampel penelitian lebih dari 50, sedangkan jika sampel penelitian kurang dari 50 maka menggunakan Shapiro Wilk

Untuk pelaporan Normalitas seperti ini

Uji normalitas untuk melihat penyimpangan frekuensi observasi yang diteliti dari frekuensi teoritik. Uji Normalitas data antara lain dapat dilakukan dengan membandingkan probabilitas nilai Kolmogorov-Smirnov dengan sebesar 0.05 (5%). Kaidah yang digunakan adalah jika p > 0.05 maka sebarannya normal, sebaliknya jika p < 0.05 maka sebarannya tidak normal (Santoso, 2012).

Tabel Hasil Uji Normalitas

Variabel	Kolmogrov-Smirnov Z	P	Keterangan
Perilaku Keselamatan	0.073	0.194	Normal
Sikap Kerja	0.074	0.179	Normal
Peran Pengawas	0.066	0.200	Normal

1) Q-Q Plot

a) Perilaku Keselamatan

Gambar 1. Q-Q Plot Perilaku Keselamatan

b) Sikap Kerja

Gambar 2 Q-Q Plot Sikap Kerja

Chanel Yotube: Hardiansyah Bj https://bit.lv/2kc4845

c) Peran Pengawas

Gambar 3. Q-Q Plot Peran Pengawas

Tabel dapat ditafsirkan sebagai berikut:

- 1) Hasil uji asumsi normalitas sebaran terhadap variabel perilaku keselamatan menghasilkan nilai Z=0.073 dan p=0.194 (p>0.05). Hasil uji berdasarkan kaidah menunjukkan sebaran butir-butir perilaku keselamatan adalah normal.
- 2) Hasil uji asumsi normalitas sebaran terhadap variabel sikap kerja menghasilkan nilai Z=0.074 dan p=0.179 (p>0.05). Hasil uji berdasarkan kaidah menunjukkan sebaran butir-butir sikap kerja adalah normal.
- 3) Hasil uji asumsi normalitas sebaran terhadap variabel peran pengawas menghasilkan nilai Z=0.066 dan p=0.200 (p>0.05). Hasil uji berdasarkan kaidah menunjukkan sebaran butir-butir peran pengawas adalah normal.

Berdasarakan tabel... maka dapat disimpulkan bahwa ketiga variabel perilaku keselamatan, sikap kerja dan peran pengawas memiliki sebaran data yang normal, dengan demikian analisis data secara parametrik dapat dilakukan karena telah memenuhi syarat atas asumsi normalitas sebaran data penelitian.

2. Uji Linieritas

Uji asumsi linearitas dilakukan untuk mengetahui linearitas hubungan antara variabel dependen dengan variabel independen. Linearitas adalah keadaan di mana hubungan antara variabel dependen dengan variabel independen bersifat linear (garis lurus) dalam range variabel independen tertentu (Santoso, 2012). Adapun kaidah yang digunakan dalam uji linearitas adalah apabila nilai deviant from linearity p > 0.05 dan nilai F hitung < F tabel pada taraf signifikansi 5% atau 0.05, maka hubungan dinyatakan linear (Gunawan, 2013). Berikut langkah-langkah analisis uji linieritas pada software SPSS

1. Klik analyze-compare means-means

2. Masukan data ke dependent list untuk variabel terikat (Y), independent untuk variabel bebas (X) kemudian klik options

3. Klik test form linearity, kemudian klik continue lalu klik ok

Maka akan muncul output SPSS seperti dibawah ini

Perilaku Keselamatan – Sikap Kerja

ANOVA Table Sum of F Mean Square Sig. Squares Perilaku Keselamatan Between Groups (Combined) 3116.843 30 103.895 2.642 .000 Sikap_Kerja 1864.695 1864.695 47.419 000 1 Deviation from Linearity 1252.149 43.178 1.098 .363 29 Within Groups 39.324 3067.267 78 Total 6184.110 108 Perilaku keselamatan - Peran Pengawas ANOVA Table F Mean Square Sig. Squares Perilaku_Keselamatan Between Goups (Combined) 1832.940 29 63.205 1.148 .309 Peran Pengawas Linearity 663.642 663.642 12.049 .001 Deviation from Linearity 1169.298 41.761 .758 .793 55.078 Within Groups 4351.170 79 Total 6184.110 108 Tabel Hasil Uji Linearitas Hubungan Variable F Hitung F Tabel P Keterangan Perilaku keselamatan Sikap ? 1.098 0.363Linear kerja Perilaku keselamatan Peran 0.758 ? 0.793Linear pengawas

- ➤ Kaidah apabila nilai *deviant from linearity* p > 0.05 dan nilai F hitung < F tabel pada taraf signifikansi 5% atau 0.05, maka hubungan dinyatakan linear (Gunawan, 2013).
- > Untuk F tabel silahkan cari di F tabel

F Tabel Kode = DN1 (Jumlah variabel - 1) DN2(Jumlah sampel – jumlah variabel-1)

Cara pelaporan Uji Linieritas

Uji asumsi linearitas dilakukan untuk mengetahui linearitas hubungan antara variabel bebas dengan variabel terikat. Uji linearitas dapat pula untuk mengetahui taraf penyimpangan dari linearitas hubungan tersebut. Adapun kaidah yang digunakan dalam uji linearitas hubungan adalah bila nilai linearity p < 0.05 maka hubungan dinyatakan linear, atau bila nilai *deviant from linierity* p > 0.05 maka hubungan dinyatakan lineaer.

Tabel Hasil Uji Linearitas Hubungan

Variable	F Hitung	F Tabel	P	Keterangan
Perilaku keselamatan – Sikap kerja	1.098	3.08	0.363	Linear
Perilaku keselamatan – Peran pengawas	0.758	3.08	0.793	Linear

Pada tabel di atas didapatkan hasil bahwa:

- 1) Hasil uji asumsi linearitas antara variabel perilaku keselamatan dengan sikap kerja menunjukkan nilai F hitung < F tabel yang artinya terdapat pengaruh antara perilaku keselamatan dengan sikap kerja yang mempunyai nilai *deviant from linierity* F hitung = 1.098 dan p = 0.363 > 0.05 yang berarti pengaruhnya dinyatakan linear.
- 2) Hasil uji asumsi linieritas antara variabel perilaku keselamatan dengan peran pengawas menunjukkan nilai F hitung < F tabel yang artinya terdapat pengaruh antara prilaku Keselamatan dengan peran pengawas yang mempunyai nilai *deviant from linierity* F = 0.758 dan p = 0.793 > 0.05 yang berarti pengaruhnya dinyatakan linear.

3. Uji Multikolinieritas

Uji multikolinearitas bertujuan untuk mengetahui ada tidaknya hubungan (korelasi) yang signifikan antar variabel bebas. Jika terdapat hubungan yang cukup tinggi (signifikan), berarti ada aspek yang sama diukur pada variabel bebas. Hal ini tidak layak digunakan untuk menentukan kontribusi secara bersama-sama variabel bebas terhadap variabel terikat. Multikolinearitas terjadi apabila dua atau lebih variabel bebas saling berkorelasi kuat satu sama lain. Uji multikolinearitas dapat dilakukan menggunakan uji regresi dengan kaidah jika nilai VIF (variance inflation factor) di sekitar angka 1 atau memiliki tolerance mendekati 1, maka dikatakan tidak terdapat masalah multikolinearitas dalam model regresi (Gunawan, 2013). Berikut ini langkahlangkah analisis uji multikolinieritas pada software SPSS

1. Klik Analyze-Regression-Linier

2. Masukan data ke dependent untuk variabel terikat (Y), dan variable bebas (X) ke indepent, kemudian klik statistic

3. Klik collinearity diagnostic, kemudian klik continue lalu klik ok

Maka akan muncul output SPSS seperti ini, perhatikan bagian coefficients

			Coeff	icients ^a					
		Unstandardized Coefficie		Standardized Coefficients			Collinearity Statistics		Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance		VIF
1	(Constant)	30.879	9.884		3.124	.002			
	Sikap_Kerja	.519	.087	.496	5.965	.000		.913	1.095
	Peran_Pengawas	.187	.085	.182	2.186	.031		.913	1.095

a. Dependent Variable: Perilaku_Keselamatan

Tabel Hasil Uji Multikolipieritas

Variable	Tolerance	VIF	Keterangan
Perilaku Keselamatan – Sikap kerja	0.913	1.095	Tidak multikolinear
Perilaku Keselamatan–Peran pengawas	0.913	1.095	Tidak multikolinear

Kaidah

- 1. Jika nilai Tolerance < 1 maka dikatakan UnMultikol/Tidak Multikolinier
- 2. Atau Nilai VIF < 10 maka dikatakan UnMultikol/Tidak Multikolinier

Berikut ini cara pelaporan uji Multikolinieritas

Multikolinieritas merupakan suatu gejala yang terjadi pada sampel, pada salah satu asumsi regresi liner berganda adalah bahwa tidak terjadi korelasi yang signifikan antar variabel bebasnya (Umar, 2003). Penyimpangan asumsi klasik ini karena adanya Multikolinieritas dalam model regresi yang dihasilkan. Artinya antar variabel independen yang terdapat dalam model memiliki hubungan yang sempurna atau mendekati sempurna. Cara untuk menguji tidak adanya Multikolinieritas dapat dilihat

pada *Variance Inflantion Faktor (VIF)*. Berdasarkan hasil uji multikolinieritas diperoleh hasil sebagai berikut :

Tabel Hasil Uji Multikolinieritas

Variable	Tolerance	VIF	Keterangan
Perilaku Keselamatan – Sikap kerja	0.913	1.095	Tidak multikolinear
Perilaku Keselamatan–Peran pengawas	0.913	1.095	Tidak multikolinear

Tabel di atas menunjukkan bahwa nilai koefisiensi tolerance variabel kurang dari nilai 1 dan nilai VIF variable kurang dari nilai 10. Dengan demikian pada model regresi yang digunakan ini tidak terjadi multikolinieritas.

52

UJI Heteroskedastitas

4. Uji Heteroskedastitas

Uji heteroskedastitas adalah uji yang menilai apakah ada ketidaksamaan varian

dari residual untuk semua pengamatan pada model regresi linier. Model regresi yang

baik adalah tidak terjadi heteroskedastisitas. Uji ini merumakan salah satu satu dari uji

asumsi yang harus dilakukan pada regresi linier. Apabila asumi heteroskedastitas tidak

terpenuhi, maka model regresi dinyatakan tidak valid. Mengapa melakukan uji

heteroskedastitas? Jawabannya adalah untuk mengetahui adanya penyimpangan dari

syarat-syarat uji asumsi, dimana dalam model regresi harus dipenuhi syarat yaitu tidak

adanya heteroskedastitas. Adapun jenis jenis uji heteroskedastitas yaitu:

a. Uji Glejser

Uji Glejser dilakukan dengan cara meregresikan antara variable indenden

dengan nilai absolut residualnya. Jika nilai sig antar variabel independen

dengan absolut > 0.05 maka tidak terjadi masalah heteroskedastitas atau nilai t

hitung < t tabel, sehingga variabel independen layak digunakan untuk

memprediksi variabel dependen yang ada.

b. Grafik Plot

Adanya heteroskedastisitas dapat dideteksi dengan scatterplot khusus. Adapun

kaidah yang digunakan dalam uji heteroskedastisitas adalah jika pada grafik

scatterplot titik-titik menyebar di atas maupun di bawah angka nol pada sumbu

Y atau tidak memperlihatkan pola tertentu, misalnya pola menaik ke kanan atas

53

atau menurun ke kiri atas atau pola lainnya, maka dapat dikatakan model regresi

bebas dari heteroskedastisitas (Santoso, 2012).

c. Korelasi spearman's rho

Menurut Gujarati (2012) untuk menguji ada tidaknya heteroskedastisitas

digunakan uji-rank Spearman yaitu dengan mengkorelasikan variabel

independen terhadap nilai absolut dari residual (error). Untuk mendeteksi gejala

uji heteroskedastisitas, maka dibuat persamaan regresi dengan asumsi tidak ada

heteroskedastisitas kemudian menentukan nilai absolut residual, selanjutnya

meeregresikan nilai absolute residual diperoleh sebagai variabel dependen serta

dilakukan regresi dari yariabel independen. Jika nilai koefisien korelasi antara

variabel independen dengan nilai absolut dari residual signifikan, maka

kesimpulannya terdapat heteroskedastisitas (varian dari residual tidak

homogen).

d. Uji park

Uji Park merupakan uji heteroskedastisitas yang lakukan dengan cara

melakukan pemangkatan terhadap residual lalu di logaritma natural (di Ln-kan)

baru kemudian dilakukan regresi terhadap variabel bebasnya

Dalam analisis kali ini, akan ditunjukan salah satu uji heteroskedasitas yaitu uji glejser

Adapun langkah-langkah dalam uji ini adalah sebagai berikut:

1. Klik Analyze-Regression-Linier

2. Masukan data ke dependent untuk variabel terikat (Y), dan variable bebas (X) ke indepent, kemudian klik statistic

3. Pastikan yang di centang hanya model fit dan estimate, kemudian klik continue

4. Klik Save

5. Pada bagian residual, pastikan *unstandardized* di klik/di centang, kemudian klik continue lalu klik ok

7. Klik Transform-Computer Variabel

8. Pada bagian target variabel ketikan abres1 kemudian pada bagian numeric expression ketikan abs(masukan unstandardized residual) kemudian klik ok

Jika sudah berhasil maka akan muncul seperti ini dibagian inputan data
 *Untitled1 [DataSet0] - IBM SPSS Statistics Data Editor

10. Keluarkan perilaku keselamatan di bagian dependent, kemudian masukan abres 1 di dependent, kemudian klik save

11. Pastikan yang tercentang HANYA include the covariance matrix, kemudian klik

Maka akan muncul output SPSS, fokus di coefficient dibawah ini

➤ Kaidah jika nilai sig > 0.05 atau nilai t hitung < t tabel maka tidak heteroskedastitas

Berikut cara pelaporan Uji Heteroskedasitas

Uji heteroskedasitas bertujuan untuk menguji apakah dalam model regresi terjadi ketidaksamaan varian dari residual satu pengamatan ke pengamatan yang lain. jika varian atau residual satu pengamatan lainnya tetap, maka disebut homoskedastisitas. Namun jika varian atau residual satu pengamatan ke pengamatan lainnya berbeda, maka disebut heteroskedastisitas. Model regresi yang baik adalah tidak terjadi heteroskedastisitas.

Tabel Hasil Uji Heteroskedasitas

Variable	T Hitung	T Tabel	P	Keterangan
Sikap kerja	-1.667	1.989	0.099	Tidak
Зікар кегја	1.007	1.707	0.077	Heteroskedasitas
Doron nongoweg	-0.053	1.989	0.958	Tidak
Peran pengawas	-0.033	1.909	0.936	Heteroskedasitas

Hasil uji heteroskedasitas pada tabel di atas didapatkan hasil bahwa tidak terdapat gejala heteroskedastisitas model regresi dalam penelitian ini, karena seluruh nilai signifikansi yang diperoleh dari pengujian dengan metode *Glejser* diperoleh nilai α lebih dari 0.05 terhadap absolute residual (Abs_Res) secara parsial dan nilai t hitung < t tabel, sehingga variabel independen layak digunakan untuk memprediksi variabel dependen yang ada.

5. Uji Autokotrlasi

Uji autokorelasi dilakukan untuk mengetahui ada tidaknya gejala autokorelasi antara variabel-variabel independen yang berasal dari data *time series*. Uji autokorelasi dapat dilakukan dengan Uji Durbin-Watson. Berikut ini langkah-langkah uji autokorelasi pada software SPSS. Adapun langkah-langkah dalam uji ini adalah sebagai berikut:

1. Klik Analyze-Regression-Linier

2. Masukan data ke dependent untuk variabel terikat (Y), dan variable bebas (X) ke indepent, kemudian klik statistic

3. Klik Durbin-Watson, lalu klik continue, kemudian klik OK

Maka akan muncul output SPSS seperti ini, perhatikan model summary

- a. Predictors: (Constant), Peran_Pengawas, Sikap_Kerja
- b. Dependent Variable: Perilaku_Keselamatan

Tabel Hasil Uji Autokorelasi

Durbin-Watson	Durbin-Watson dL		Keterangan
2.008	?	?	?

Untuk nilai dL dan dU silahakan liat pada tabel Durbin Watson di bawah ini

Tabel Durbin-Watson (DW), $\alpha = 5\%$

Catatan-Catatan Reproduksi dan Cara Membaca Tabel:

- 1. Tabel DW ini direproduksi dengan merubah format tabel mengikuti format tabel DW yang umumnya dilampirkan pada buku-buku teks statistik/ekonometrik di Indonesia, agar lebih mudah dibaca dan diperbandingkan
- 2. Simbol 'k' pada tabel menunjukkan banyaknya variabel bebas (penjelas), tidak termasuk variabel terikat.
- 3. Simbol 'n' pada tabel menunjukkan banyaknya jumlah sampel

Chanel Yotube: Hardiansyah B https://bit.lv/2kc4845

	k=	=1	k=	2	k	=3	k:	=4	k:	=5
n	dL	dU								
6	0.6102	1.4002								
7	0.6996	1.3564	0.4672	1.8964						
8	0.7629	1.3324	0.5591	1.7771	0.3674	2.2866				
9	0.8243	1.3199	0.6291	1.6993	0.4548	2.1282	0.2957	2.5881		
10	0.8791	1.3197	0.6972	1.6413	0.5253	2.0163	0.3760	2.4137	0.2427	2.8217
11	0.9273	1.3241	0.7580	1.6044	0.5948	1.9280	0.4441	2.2833	0.3155	2.6446
12	0.9708	1.3314	0.8122	1.5794	0.6577	1.8640	0.5120	2.1766	0.3796	2.5061
13	1.0097	1.3404	0.8612	1.5621	0.7147	1.8159	0.5745	2.0943	0.4445	2.3897
14	1.0450	1.3503	0.9054	1.5507	0.7667	1.7788	0.6321	2.0296	0.5052	2.2959
15	1.0770	1.3605	0.9455	1.5432	0.8140	1.7501	0.6852	1.9774	0.5620	2.2198
16	1.1062	1.3709	0.9820	1.5386	0.8572	1.7277	0.7340	1.9351	0.6150	2.1567
17	1.1330	1.3812	1.0154	1.5361	0.8968	1.7101	0.7790	1.9005	0.6641	2.1041
18	1.1576	1.3913	1.0461	1.5353	0.9331	1.6961	0.8204	1.8719	0.7098	2.0600
19	1.1804	1.4012	1.0743	1.5355	0.9666	1.6851	0.8588	1.8482	0.7523	2.0226
20	1.2015	1.4107	1.1004	1.5367	0.9976	1.6763	0.8943	1.8283	0.7918	1.9908
21	1.2212	1.4200	1.1246	1.5385	1.0262	1.6694	0.9272	1.8116	0.8286	1.9635
22	1.2395	1.4289	1.1471	1.5408	1.0529	1.6640	0.9578	1.7974	0.8629	1.9400
23	1.2567	1.4375	1.1682	1.5435	1.0778	1.6597	0.9864	1.7855	0.8949	1.9196
24	1.2728	1.4458	1.1878	1.5464	1.1010	1.6565	1.0131	1.7753	0.9249	1.9018
25	1.2879	1.4537	1.2063	1.5495	1.1228	1.6540	1.0381	1.7666	0.9530	1.8863
26	1.3022	1.4614	1.2236	1.5528	1.1432	1.6523	1.0616	1.7591	0.9794	1.8727
27	1.3157	1.4688	1.2399	1.5562	1.1624	1.6510	1.0836	1.7527	1.0042	1.8608
28	1.3284	1.4759	1.2553	1.5596	1.1805	1.6503	1.1044	1.7473	1.0276	1.8502
29	1.3405	1.4828	1.2699	1.5631	1.1976	1.6499	1.1241	1.7426	1.0497	1.8409
30	1.3520	1.4894	1.2837	1.5666	1.2138	1.6498	1.1426	1.7386	1.0706	1.8326
31	1.3630	1.4957	1.2969	1.5701	1.2292	1.6500	1.1602	1.7352	1.0904	1.8252
32	1.3734	1.5019	1.3093	1.5736	1.2437	1.6505	1.1769	1.7323	1.1092	1.8187
33	1.3834	1.5078	1.3212	1.5770	1.2576	1.6511	1.1927	1.7298	1.1270	1.8128
34	1.3929	1.5136	1.3325	1.5805	1.2707	1.6519	1.2078	1.7277	1.1439	1.8076
35	1.4019	1.5191	1.3433	1.5838	1.2833	1.6528	1.2221	1.7259	1.1601	1.8029
36	1.4107	1.5245	1.3537	1.5872	1.2953	1.6539	1.2358	1.7245	1.1755	1.7987
37	1.4190	1.5297	1.3635	1.5904	1.3068	1.6550	1.2489	1.7233	1.1901	1.7950
38	1.4270	1.5348	1.3730	1.5937	1.3177	1.6563	1.2614	1.7223	1.2042	1.7916
39	1.4347	1.5396	1.3821	1.5969	1.3283	1.6575	1.2734	1.7215	1.2176	1.7886
40	1.4421	1.5444	1.3908	1.6000	1.3384	1.6589	1.2848	1.7209	1.2305	1.7859
41	1.4493	1.5490	1.3992	1.6031	1.3480	1.6603	1.2958	1.7205	1.2428	1.7835
42	1.4562	1.5534	1.4073	1.6061	1.3573	1.6617 1.6632	1.3064	1.7202	1.2546	1.7814
43	1.4628	1.5577 1.5619	1.4151	1.6091 1.6120	1.3663	1.6632	1.3166 1.3263	1.7200	1.2660	1.7794
44	1.4692		1.4226 1.4298	1.6148	1.3749			1.7200	1.2769	1.7777
45 46	1.4754 1.4814	1.5660 1.5700	1.4298	1.6148	1.3832 1.3912	1.6662 1.6677	1.3357 1.3448	1.7200 1.7201	1.2874 1.2976	1.7762 1.7748
47	1.4814	1.5739	1.4308	1.6204	1.3912	1.6692	1.3535	1.7201	1.3073	1.7748
48	1.4928	1.5776	1.4433	1.6204	1.3989	1.6708	1.3619	1.7203	1.3073	1.7725
46	1.4928	1.3770	1.4300	1.0231	1.4004	1.0708	1.3019	1.7200	1.310/	1.//25

49	1.4982	1.5813	1.4564	1.6257	1.4136	1.6723	1.3701	1.7210	1.3258	1.7716
50	1.5035	1.5849	1.4625	1.6283	1.4206	1.6739	1.3779	1.7214	1.3346	1.7708
51	1.5086	1.5884	1.4684	1.6309	1.4273	1.6754	1.3855	1.7218	1.3431	1.7701
52	1.5135	1.5917	1.4741	1.6334	1.4339	1.6769	1.3929	1.7223	1.3512	1.7694
53	1.5183	1.5951	1.4797	1.6359	1.4402	1.6785	1.4000	1.7228	1.3592	1.7689
54	1.5230	1.5983	1.4851	1.6383	1.4464	1.6800	1.4069	1.7234	1.3669	1.7684
55	1.5276	1.6014	1.4903	1.6406	1.4523	1.6815	1.4136	1.7240	1.3743	1.7681
56	1.5320	1.6045	1.4954	1.6430	1.4581	1.6830	1.4201	1.7246	1.3815	1.7678
57	1.5363	1.6075	1.5004	1.6452	1.4637	1.6845	1.4264	1.7253	1.3885	1.7675
58	1.5405	1.6105	1.5052	1.6475	1.4692	1.6860	1.4325	1.7259	1.3953	1.7673
59	1.5446	1.6134	1.5099	1.6497	1.4745	1.6875	1.4385	1.7266	1.4019	1.7672
60	1.5485	1.6162	1.5144	1.6518	1.4797	1.6889	1.4443	1.7274	1.4083	1.7671
61	1.5524	1.6189	1.5189	1.6540	1.4847	1.6904	1.4499	1.7281	1.4146	1.7671
62	1.5562	1.6216	1.5232	1.6561	1.4896	1.6918	1.4554	1.7288	1.4206	1.7671
63	1.5599	1.6243	1.5274	1.6581	1.4943	1.6932	1.4607	1.7296	1.4265	1.7671
64	1.5635	1.6268	1.5315	1.6601	1.4990	1.6946	1.4659	1.7303	1.4322	1.7672
65	1.5670	1.6294	1.5355	1.6621	1.5035	1.6960	1.4709	1.7311	1.4378	1.7673
66	1.5704	1.6318	1.5395	1.6640	1.5079	1.6974	1.4758	1.7319	1.4433	1.7675
67	1.5738	1.6343	1.5433	1.6660	1.5122	1.6988	1.4806	1.7327	1.4486	1.7676
68	1.5771	1.6367	1.5470	1.6678	1.5164	1.7001	1.4853	1.7335	1.4537	1.7678
69	1.5803	1.6390	1.5507	1.6697	1.5205	1.7015	1.4899	1.7343	1.4588	1.7680
70	1.5834	1.6413	1.5542	1.6715	1.5245	1.7028	1.4943	1.7351	1.4637	1.7683

Tabel Durbin-Watson (DW), $\alpha = 5\%$

	k=1		k=2		k=3		k=4		k=5	
n	dL	dU								
71	1.5865	1.6435	1.5577	1.6733	1.5284	1.7041	1.4987	1.7358	1.4685	1.7685
72	1.5895	1.6457	1.5611	1.6751	1.5323	1.7054	1.5029	1.7366	1.4732	1.7688
73	1.5924	1.6479	1.5645	1.6768	1.5360	1.7067	1.5071	1.7375	1.4778	1.7691
74	1.5953	1.6500	1.5677	1.6785	1.5397	1.7079	1.5112	1.7383	1.4822	1.7694
75	1.5981	1.6521	1.5709	1.6802	1.5432	1.7092	1.5151	1.7390	1.4866	1.7698
76	1.6009	1.6541	1.5740	1.6819	1.5467	1.7104	1.5190	1.7399	1.4909	1.7701
77	1.6036	1.6561	1.5771	1.6835	1.5502	1.7117	1.5228	1.7407	1.4950	1.7704
78	1.6063	1.6581	1.5801	1.6851	1.5535	1.7129	1.5265	1.7415	1.4991	1.7708
79	1.6089	1.6601	1.5830	1.6867	1.5568	1.7141	1.5302	1.7423	1.5031	1.7712
80	1.6114	1.6620	1.5859	1.6882	1.5600	1.7153	1.5337	1.7430	1.5070	1.7716
81	1.6139	1.6639	1.5888	1.6898	1.5632	1.7164	1.5372	1.7438	1.5109	1.7720
82	1.6164	1.6657	1.5915	1.6913	1.5663	1.7176	1.5406	1.7446	1.5146	1.7724
83	1.6188	1.6675	1.5942	1.6928	1.5693	1.7187	1.5440	1.7454	1.5183	1.7728
84	1.6212	1.6693	1.5969	1.6942	1.5723	1.7199	1.5472	1.7462	1.5219	1.7732
85	1.6235	1.6711	1.5995	1.6957	1.5752	1.7210	1.5505	1.7470	1.5254	1.7736
86	1.6258	1.6728	1.6021	1.6971	1.5780	1.7221	1.5536	1.7478	1.5289	1.7740
87	1.6280	1.6745	1.6046	1.6985	1.5808	1.7232	1.5567	1.7485	1.5322	1.7745
88	1.6302	1.6762	1.6071	1.6999	1.5836	1.7243	1.5597	1.7493	1.5356	1.7749
89	1.6324	1.6778	1.6095	1.7013	1.5863	1.7254	1.5627	1.7501	1.5388	1.7754
90	1.6345	1.6794	1.6119	1.7026	1.5889	1.7264	1.5656	1.7508	1.5420	1.7758
91	1.6366	1.6810	1.6143	1.7040	1.5915	1.7275	1.5685	1.7516	1.5452	1.7763
92	1.6387	1.6826	1.6166	1.7053	1.5941	1.7285	1.5713	1.7523	1.5482	1.7767
93	1.6407	1.6841	1.6188	1.7066	1.5966	1.7295	1.5741	1.7531	1.5513	1.7772
94	1.6427	1.6857	1.6211	1.7078	1.5991	1.7306	1.5768	1.7538	1.5542	1.7776
95	1.6447	1.6872	1.6233	1.7091	1.6015	1.7316	1.5795	1.7546	1.5572	1.7781
96	1.6466	1.6887	1.6254	1.7103	1.6039	1.7326	1.5821	1.7553	1.5600	1.7785
97	1.6485	1.6901	1.6275	1.7116	1.6063	1.7335	1.5847	1.7560	1.5628	1.7790
98	1.6504	1.6916	1.6296	1.7128	1.6086	1.7345	1.5872	1.7567	1.5656	1.7795
99	1.6522	1.6930	1.6317	1.7140	1.6108	1.7355	1.5897	1.7575	1.5683	1.7799
100	1.6540	1.6944	1.6337	1.7152	1.6131	1.7364	1.5922	1.7582	1.5710	1.7804
101	1.6558	1.6958	1.6357	1.7163	1.6153	1.7374	1.5946	1.7589	1.5736	1.7809
102	1.6576	1.6971	1.6376	1.7175	1.6174	1.7383	1.5969	1.7596	1.5762	1.7813
103	1.6593	1.6985	1.6396	1.7186	1.6196	1.7392	1.5993	1.7603	1.5788	1.7818
104	1.6610	1.6998	1.6415	1.7198	1.6217	1.7402	1.6016	1.7610	1.5813	1.7823
105	1.6627	1.7011	1.6433	1.7209	1.6237	1.7411	1.6038	1.7617	1.5837	1.7827
106	1.6644	1.7024	1.6452	1.7220	1.6258	1.7420	1.6061	1.7624	1.5861	1.7832
107	1.6660	1.7037	1.6470	1.7231	1.6277	1.7428	1.6083	1.7631	1.5885	1.7837
108	1.6676	1.7050	1.6488	1.7241	1.6297	1.7437	1.6104	1.7637	1.5909	1.7841
109	1.6692	1.7062	1.6505	1.7252	1.6317	1.7446	1.6125	1.7644	1.5932	1.7846

110 1.6708 1.7074 1.6523 1.7262 1.6336 1.7455 1.6146 1.7651 1.5955 1.7851 111 1.6723 1.7086 1.6540 1.7273 1.6355 1.7463 1.6167 1.7657 1.5977 1.7855 112 1.6738 1.7098 1.6557 1.7283 1.6373 1.7472 1.6187 1.7664 1.5999 1.7860 113 1.6763 1.7110 1.6574 1.7293 1.6391 1.7480 1.6207 1.7670 1.6021 1.7864 114 1.6768 1.7112 1.6590 1.7303 1.6410 1.7488 1.6227 1.7677 1.6042 1.7869 115 1.6783 1.7133 1.6606 1.7313 1.6427 1.7496 1.6246 1.7683 1.6063 1.7874 116 1.6797 1.7145 1.6622 1.7323 1.6445 1.7512 1.6284 1.7690 1.6084 1.7878 117 1.6812 1.7156											
112 1.6738 1.7098 1.6557 1.7283 1.6373 1.7472 1.6187 1.7664 1.5999 1.7860 113 1.6753 1.7110 1.6574 1.7293 1.6391 1.7480 1.6207 1.7670 1.6021 1.7864 114 1.6768 1.7122 1.6590 1.7303 1.6410 1.7488 1.6227 1.7677 1.6042 1.7869 115 1.6783 1.7133 1.6606 1.7313 1.6427 1.7496 1.6246 1.7683 1.6063 1.7874 116 1.6797 1.7145 1.6622 1.7323 1.6445 1.7504 1.6265 1.7690 1.6084 1.7878 117 1.6812 1.7156 1.6638 1.7332 1.6462 1.7512 1.6284 1.7696 1.6105 1.7883 118 1.6826 1.7167 1.6653 1.7342 1.6479 1.7520 1.6303 1.7702 1.6125 1.7887 119 1.6863 1.7178	110	1.6708	1.7074	1.6523	1.7262	1.6336	1.7455	1.6146	1.7651	1.5955	1.7851
113 1.6753 1.7110 1.6574 1.7293 1.6391 1.7480 1.6207 1.7670 1.6021 1.7864 114 1.6768 1.7122 1.6590 1.7303 1.6410 1.7488 1.6227 1.7677 1.6042 1.7869 115 1.6783 1.7133 1.6606 1.7313 1.6427 1.7496 1.6246 1.7683 1.6063 1.7874 116 1.6797 1.7145 1.6622 1.7323 1.6445 1.7504 1.6265 1.7690 1.6084 1.7878 117 1.6812 1.7156 1.6638 1.7332 1.6462 1.7512 1.6284 1.7696 1.6105 1.7883 118 1.6826 1.7167 1.6653 1.7342 1.6479 1.7520 1.6303 1.7702 1.6125 1.7887 119 1.6839 1.7178 1.6669 1.7352 1.6496 1.7528 1.6321 1.7709 1.6145 1.7892 120 1.6853 1.7210	111	1.6723	1.7086	1.6540	1.7273	1.6355	1.7463	1.6167	1.7657	1.5977	1.7855
114 1.6768 1.7122 1.6590 1.7303 1.6410 1.7488 1.6227 1.7677 1.6042 1.7869 115 1.6783 1.7133 1.6606 1.7313 1.6427 1.7496 1.6246 1.7683 1.6063 1.7874 116 1.6797 1.7145 1.6622 1.7323 1.6445 1.7504 1.6265 1.7690 1.6084 1.7878 117 1.6812 1.7156 1.6638 1.7332 1.6462 1.7512 1.6284 1.7696 1.6105 1.7883 118 1.6826 1.7167 1.6653 1.7342 1.6479 1.7520 1.6303 1.7702 1.6125 1.7887 119 1.6839 1.7178 1.6669 1.7352 1.6496 1.7528 1.6321 1.7709 1.6145 1.7892 120 1.6887 1.7200 1.6699 1.7370 1.6529 1.7544 1.6357 1.7721 1.6184 1.7901 122 1.6880 1.7210	112	1.6738	1.7098	1.6557	1.7283	1.6373	1.7472	1.6187	1.7664	1.5999	1.7860
115 1.6783 1.7133 1.6606 1.7313 1.6427 1.7496 1.6246 1.7683 1.6063 1.7874 116 1.6797 1.7145 1.6622 1.7323 1.6445 1.7504 1.6265 1.7690 1.6084 1.7878 117 1.6812 1.7156 1.6638 1.7332 1.6462 1.7512 1.6284 1.7696 1.6105 1.7883 118 1.6826 1.7167 1.6653 1.7342 1.6479 1.7520 1.6303 1.7702 1.6125 1.7887 119 1.6839 1.7178 1.6669 1.7352 1.6496 1.7528 1.6321 1.7709 1.6145 1.7892 120 1.6853 1.7189 1.6684 1.7361 1.6513 1.7536 1.6339 1.7715 1.6164 1.7896 121 1.6867 1.7200 1.6699 1.7370 1.6529 1.7544 1.6357 1.7721 1.6184 1.7901 122 1.6880 1.7210	113	1.6753	1.7110	1.6574	1.7293	1.6391	1.7480	1.6207	1.7670	1.6021	1.7864
116 1.6797 1.7145 1.6622 1.7323 1.6445 1.7504 1.6265 1.7690 1.6084 1.7878 117 1.6812 1.7156 1.6638 1.7332 1.6462 1.7512 1.6284 1.7696 1.6105 1.7883 118 1.6826 1.7167 1.6653 1.7342 1.6479 1.7520 1.6303 1.7702 1.6125 1.7887 119 1.6839 1.7178 1.6669 1.7352 1.6496 1.7528 1.6321 1.7709 1.6145 1.7892 120 1.6853 1.7189 1.6684 1.7361 1.6513 1.7536 1.6339 1.7715 1.6164 1.7896 121 1.6867 1.7200 1.6699 1.7370 1.6529 1.7544 1.6357 1.7721 1.6184 1.7901 122 1.6880 1.7210 1.6714 1.7379 1.6545 1.7552 1.6375 1.7727 1.6203 1.7905 123 1.6893 1.7221	114	1.6768	1.7122	1.6590	1.7303	1.6410	1.7488	1.6227	1.7677	1.6042	1.7869
117 1.6812 1.7156 1.6638 1.7332 1.6462 1.7512 1.6284 1.7696 1.6105 1.7883 118 1.6826 1.7167 1.6653 1.7342 1.6479 1.7520 1.6303 1.7702 1.6125 1.7887 119 1.6839 1.7178 1.6669 1.7352 1.6496 1.7528 1.6321 1.7709 1.6145 1.7892 120 1.6853 1.7189 1.66684 1.7361 1.6513 1.7536 1.6339 1.7715 1.6164 1.7892 121 1.6867 1.7200 1.6699 1.7370 1.6529 1.7544 1.6357 1.7721 1.6184 1.7901 122 1.6880 1.7210 1.6714 1.7379 1.6545 1.7552 1.6375 1.7727 1.6203 1.7905 123 1.6893 1.7221 1.6728 1.7388 1.6561 1.7559 1.6392 1.7733 1.6222 1.7910 124 1.6906 1.7231	115	1.6783	1.7133	1.6606	1.7313	1.6427	1.7496	1.6246	1.7683	1.6063	1.7874
118 1.6826 1.7167 1.6653 1.7342 1.6479 1.7520 1.6303 1.7702 1.6125 1.7887 119 1.6839 1.7178 1.6669 1.7352 1.6496 1.7528 1.6321 1.7709 1.6145 1.7892 120 1.6853 1.7189 1.6684 1.7361 1.6513 1.7536 1.6339 1.7715 1.6164 1.7896 121 1.6867 1.7200 1.6699 1.7370 1.6529 1.7544 1.6357 1.7721 1.6184 1.7901 122 1.6880 1.7210 1.6714 1.7379 1.6545 1.7552 1.6375 1.7727 1.6203 1.7905 123 1.6893 1.7221 1.6728 1.7388 1.6561 1.7559 1.6392 1.7733 1.6222 1.7910 124 1.6906 1.7231 1.6743 1.7397 1.6577 1.7567 1.6409 1.7733 1.6224 1.7914 125 1.6919 1.7241	116	1.6797	1.7145	1.6622	1.7323	1.6445	1.7504	1.6265	1.7690	1.6084	1.7878
119 1.6839 1.7178 1.6669 1.7352 1.6496 1.7528 1.6321 1.7709 1.6145 1.7892 120 1.6853 1.7189 1.6684 1.7361 1.6513 1.7536 1.6339 1.7715 1.6164 1.7896 121 1.6867 1.7200 1.6699 1.7370 1.6529 1.7544 1.6357 1.7721 1.6184 1.7901 122 1.6880 1.7210 1.6714 1.7379 1.6545 1.7552 1.6375 1.7727 1.6203 1.7905 123 1.6893 1.7221 1.6728 1.7388 1.6561 1.7559 1.6392 1.7733 1.6222 1.7910 124 1.6906 1.7231 1.6743 1.7397 1.6577 1.7567 1.6409 1.7739 1.6240 1.7914 125 1.6919 1.7241 1.6757 1.7406 1.6592 1.7574 1.6426 1.7745 1.6258 1.7919 126 1.6932 1.7252	117	1.6812	1.7156	1.6638	1.7332	1.6462	1.7512	1.6284	1.7696	1.6105	1.7883
120 1.6853 1.7189 1.6684 1.7361 1.6513 1.7536 1.6339 1.7715 1.6164 1.7896 121 1.6867 1.7200 1.6699 1.7370 1.6529 1.7544 1.6357 1.7721 1.6184 1.7901 122 1.6880 1.7210 1.6714 1.7379 1.6545 1.7552 1.6375 1.7727 1.6203 1.7905 123 1.6893 1.7221 1.6728 1.7388 1.6561 1.7559 1.6392 1.7733 1.6222 1.7910 124 1.6906 1.7231 1.6743 1.7397 1.6577 1.7567 1.6409 1.7739 1.6240 1.7914 125 1.6919 1.7241 1.6757 1.7406 1.6592 1.7574 1.6426 1.7745 1.6258 1.7919 126 1.6932 1.7252 1.6771 1.7415 1.6608 1.7582 1.6443 1.7751 1.6276 1.7923 127 1.6944 1.7261	118	1.6826	1.7167	1.6653	1.7342	1.6479	1.7520	1.6303	1.7702	1.6125	1.7887
121 1.6867 1.7200 1.6699 1.7370 1.6529 1.7544 1.6357 1.7721 1.6184 1.7901 122 1.6880 1.7210 1.6714 1.7379 1.6545 1.7552 1.6375 1.7727 1.6203 1.7905 123 1.6893 1.7221 1.6728 1.7388 1.6561 1.7559 1.6392 1.7733 1.6222 1.7910 124 1.6906 1.7231 1.6743 1.7397 1.6577 1.7567 1.6409 1.7739 1.6240 1.7914 125 1.6919 1.7241 1.6757 1.7406 1.6592 1.7574 1.6426 1.7745 1.6258 1.7919 126 1.6932 1.7252 1.6771 1.7415 1.6608 1.7582 1.6443 1.7751 1.6276 1.7923 127 1.6944 1.7261 1.6785 1.7424 1.6623 1.7589 1.6460 1.77757 1.6294 1.7928 128 1.6957 1.7271	119	1.6839	1.7178	1.6669	1.7352	1.6496	1.7528	1.6321	1.7709	1.6145	1.7892
122 1.6880 1.7210 1.6714 1.7379 1.6545 1.7552 1.6375 1.7727 1.6203 1.7905 123 1.6893 1.7221 1.6728 1.7388 1.6561 1.7559 1.6392 1.7733 1.6222 1.7910 124 1.6906 1.7231 1.6743 1.7397 1.6577 1.7567 1.6409 1.7739 1.6240 1.7914 125 1.6919 1.7241 1.6757 1.7406 1.6592 1.7574 1.6426 1.7745 1.6258 1.7919 126 1.6932 1.7252 1.6771 1.7415 1.6608 1.7582 1.6443 1.7751 1.6276 1.7923 127 1.6944 1.7261 1.6785 1.7424 1.6623 1.7589 1.6460 1.7757 1.6294 1.7928 128 1.6957 1.7271 1.6798 1.7432 1.6638 1.7596 1.6476 1.7763 1.6312 1.7932 129 1.6969 1.7281	120	1.6853	1.7189	1.6684	1.7361	1.6513	1.7536	1.6339	1.7715	1.6164	1.7896
123 1.6893 1.7221 1.6728 1.7388 1.6561 1.7559 1.6392 1.7733 1.6222 1.7910 124 1.6906 1.7231 1.6743 1.7397 1.6577 1.7567 1.6409 1.7739 1.6240 1.7914 125 1.6919 1.7241 1.6757 1.7406 1.6592 1.7574 1.6426 1.7745 1.6258 1.7919 126 1.6932 1.7252 1.6771 1.7415 1.6608 1.7582 1.6443 1.7751 1.6276 1.7923 127 1.6944 1.7261 1.6785 1.7424 1.6623 1.7589 1.6460 1.7757 1.6294 1.7928 128 1.6957 1.7271 1.6798 1.7432 1.6638 1.7596 1.6476 1.7763 1.6312 1.7932 129 1.6969 1.7281 1.6812 1.7441 1.6653 1.7603 1.6492 1.7769 1.6329 1.7937 130 1.6981 1.7291	121	1.6867	1.7200	1.6699	1.7370	1.6529	1.7544	1.6357	1.7721	1.6184	1.7901
124 1.6906 1.7231 1.6743 1.7397 1.6577 1.7567 1.6409 1.7739 1.6240 1.7914 125 1.6919 1.7241 1.6757 1.7406 1.6592 1.7574 1.6426 1.7745 1.6258 1.7919 126 1.6932 1.7252 1.6771 1.7415 1.6608 1.7582 1.6443 1.7751 1.6276 1.7923 127 1.6944 1.7261 1.6785 1.7424 1.6623 1.7589 1.6460 1.7757 1.6294 1.7928 128 1.6957 1.7271 1.6798 1.7432 1.6638 1.7596 1.6476 1.7763 1.6312 1.7932 129 1.6969 1.7281 1.6812 1.7441 1.6653 1.7603 1.6492 1.7769 1.6329 1.7937 130 1.6981 1.7291 1.6825 1.7449 1.6667 1.7610 1.6508 1.7774 1.6346 1.7941 131 1.6993 1.7310	122	1.6880	1.7210	1.6714	1.7379	1.6545	1.7552	1.6375	1.7727	1.6203	1.7905
125 1.6919 1.7241 1.6757 1.7406 1.6592 1.7574 1.6426 1.7745 1.6258 1.7919 126 1.6932 1.7252 1.6771 1.7415 1.6608 1.7582 1.6443 1.7751 1.6276 1.7923 127 1.6944 1.7261 1.6785 1.7424 1.6623 1.7589 1.6460 1.7757 1.6294 1.7928 128 1.6957 1.7271 1.6798 1.7432 1.6638 1.7596 1.6476 1.7763 1.6312 1.7932 129 1.6969 1.7281 1.6812 1.7441 1.6653 1.7603 1.6492 1.7769 1.6329 1.7937 130 1.6981 1.7291 1.6825 1.7449 1.6667 1.7610 1.6508 1.7774 1.6346 1.7941 131 1.6993 1.7301 1.6838 1.7458 1.6682 1.7617 1.6523 1.7780 1.6363 1.7945 132 1.7005 1.7310	123	1.6893	1.7221	1.6728	1.7388	1.6561	1.7559	1.6392	1.7733	1.6222	1.7910
126 1.6932 1.7252 1.6771 1.7415 1.6608 1.7582 1.6443 1.7751 1.6276 1.7923 127 1.6944 1.7261 1.6785 1.7424 1.6623 1.7589 1.6460 1.7757 1.6294 1.7928 128 1.6957 1.7271 1.6798 1.7432 1.6638 1.7596 1.6476 1.7763 1.6312 1.7932 129 1.6969 1.7281 1.6812 1.7441 1.6653 1.7603 1.6492 1.7769 1.6329 1.7937 130 1.6981 1.7291 1.6825 1.7449 1.6667 1.7610 1.6508 1.7774 1.6346 1.7941 131 1.6993 1.7301 1.6838 1.7458 1.6682 1.7617 1.6523 1.7780 1.6363 1.7945 132 1.7005 1.7310 1.6851 1.7466 1.6696 1.7624 1.6539 1.7786 1.6380 1.7950 133 1.7017 1.7319	124	1.6906	1.7231	1.6743	1.7397	1.6577	1.7567	1.6409	1.7739	1.6240	1.7914
127 1.6944 1.7261 1.6785 1.7424 1.6623 1.7589 1.6460 1.7757 1.6294 1.7928 128 1.6957 1.7271 1.6798 1.7432 1.6638 1.7596 1.6476 1.7763 1.6312 1.7932 129 1.6969 1.7281 1.6812 1.7441 1.6653 1.7603 1.6492 1.7769 1.6329 1.7937 130 1.6981 1.7291 1.6825 1.7449 1.6667 1.7610 1.6508 1.7774 1.6346 1.7941 131 1.6993 1.7301 1.6838 1.7458 1.6682 1.7617 1.6523 1.7780 1.6363 1.7945 132 1.7005 1.7310 1.6851 1.7466 1.6696 1.7624 1.6539 1.7786 1.6380 1.7950 133 1.7017 1.7319 1.6864 1.7474 1.6710 1.7631 1.6554 1.7791 1.6397 1.7954 134 1.7028 1.7329	125	1.6919	1.7241	1.6757	1.7406	1.6592	1.7574	1.6426	1.7745	1.6258	1.7919
128 1.6957 1.7271 1.6798 1.7432 1.6638 1.7596 1.6476 1.7763 1.6312 1.7932 129 1.6969 1.7281 1.6812 1.7441 1.6653 1.7603 1.6492 1.7769 1.6329 1.7937 130 1.6981 1.7291 1.6825 1.7449 1.6667 1.7610 1.6508 1.7774 1.6346 1.7941 131 1.6993 1.7301 1.6838 1.7458 1.6682 1.7617 1.6523 1.7780 1.6363 1.7945 132 1.7005 1.7310 1.6851 1.7466 1.6696 1.7624 1.6539 1.7786 1.6380 1.7950 133 1.7017 1.7319 1.6864 1.7474 1.6710 1.7631 1.6554 1.7791 1.6397 1.7954 134 1.7028 1.7329 1.6877 1.7482 1.6724 1.7638 1.6569 1.7797 1.6413 1.7958 135 1.7040 1.7338	126	1.6932	1.7252	1.6771	1.7415	1.6608	1.7582	1.6443	1.7751	1.6276	1.7923
129 1.6969 1.7281 1.6812 1.7441 1.6653 1.7603 1.6492 1.7769 1.6329 1.7937 130 1.6981 1.7291 1.6825 1.7449 1.6667 1.7610 1.6508 1.7774 1.6346 1.7941 131 1.6993 1.7301 1.6838 1.7458 1.6682 1.7617 1.6523 1.7780 1.6363 1.7945 132 1.7005 1.7310 1.6851 1.7466 1.6696 1.7624 1.6539 1.7786 1.6380 1.7950 133 1.7017 1.7319 1.6864 1.7474 1.6710 1.7631 1.6554 1.7791 1.6397 1.7954 134 1.7028 1.7329 1.6877 1.7482 1.6724 1.7638 1.6569 1.7797 1.6413 1.7958 135 1.7040 1.7338 1.6889 1.7490 1.6738 1.7645 1.6584 1.7802 1.6429 1.7962	127	1.6944	1.7261	1.6785	1.7424	1.6623	1.7589	1.6460	1.7757	1.6294	1.7928
130 1.6981 1.7291 1.6825 1.7449 1.6667 1.7610 1.6508 1.7774 1.6346 1.7941 131 1.6993 1.7301 1.6838 1.7458 1.6682 1.7617 1.6523 1.7780 1.6363 1.7945 132 1.7005 1.7310 1.6851 1.7466 1.6696 1.7624 1.6539 1.7786 1.6380 1.7950 133 1.7017 1.7319 1.6864 1.7474 1.6710 1.7631 1.6554 1.7791 1.6397 1.7954 134 1.7028 1.7329 1.6877 1.7482 1.6724 1.7638 1.6569 1.7797 1.6413 1.7958 135 1.7040 1.7338 1.6889 1.7490 1.6738 1.7645 1.6584 1.7802 1.6429 1.7962	128	1.6957	1.7271	1.6798	1.7432	1.6638	1.7596	1.6476	1.7763	1.6312	1.7932
131 1.6993 1.7301 1.6838 1.7458 1.6682 1.7617 1.6523 1.7780 1.6363 1.7945 132 1.7005 1.7310 1.6851 1.7466 1.6696 1.7624 1.6539 1.7786 1.6380 1.7950 133 1.7017 1.7319 1.6864 1.7474 1.6710 1.7631 1.6554 1.7791 1.6397 1.7954 134 1.7028 1.7329 1.6877 1.7482 1.6724 1.7638 1.6569 1.7797 1.6413 1.7958 135 1.7040 1.7338 1.6889 1.7490 1.6738 1.7645 1.6584 1.7802 1.6429 1.7962	129	1.6969	1.7281	1.6812	1.7441	1.6653	1.7603	1.6492	1.7769	1.6329	1.7937
132 1.7005 1.7310 1.6851 1.7466 1.6696 1.7624 1.6539 1.7786 1.6380 1.7950 133 1.7017 1.7319 1.6864 1.7474 1.6710 1.7631 1.6554 1.7791 1.6397 1.7954 134 1.7028 1.7329 1.6877 1.7482 1.6724 1.7638 1.6569 1.7797 1.6413 1.7958 135 1.7040 1.7338 1.6889 1.7490 1.6738 1.7645 1.6584 1.7802 1.6429 1.7962	130	1.6981	1.7291	1.6825	1.7449	1.6667	1.7610	1.6508	1.7774	1.6346	1.7941
133 1.7017 1.7319 1.6864 1.7474 1.6710 1.7631 1.6554 1.7791 1.6397 1.7954 134 1.7028 1.7329 1.6877 1.7482 1.6724 1.7638 1.6569 1.7797 1.6413 1.7958 135 1.7040 1.7338 1.6889 1.7490 1.6738 1.7645 1.6584 1.7802 1.6429 1.7962	131	1.6993	1.7301	1.6838	1.7458	1.6682	1.7617	1.6523	1.7780	1.6363	1.7945
134 1.7028 1.7329 1.6877 1.7482 1.6724 1.7638 1.6569 1.7797 1.6413 1.7958 135 1.7040 1.7338 1.6889 1.7490 1.6738 1.7645 1.6584 1.7802 1.6429 1.7962	132	1.7005	1.7310	1.6851	1.7466	1.6696	1.7624	1.6539	1.7786	1.6380	1.7950
135 1.7040 1.7338 1.6889 1.7490 1.6738 1.7645 1.6584 1.7802 1.6429 1.7962	133	1.7017	1.7319	1.6864	1.7474	1.6710	1.7631	1.6554	1.7791	1.6397	1.7954
	134	1.7028	1.7329	1.6877	1.7482	1.6724	1.7638	1.6569	1.7797	1.6413	1.7958
136 1.7051 1.7347 1.6902 1.7498 1.6751 1.7652 1.6599 1.7808 1.6445 1.7967	135	1.7040	1.7338	1.6889	1.7490	1.6738	1.7645	1.6584	1.7802	1.6429	1.7962
	136	1.7051	1.7347	1.6902	1.7498	1.6751	1.7652	1.6599	1.7808	1.6445	1.7967

	k=	=1	k=	=2	k:	=3	k=	=4	k=	=5
n	dL	dU								
137	1.7062	1.7356	1.6914	1.7506	1.6765	1.7659	1.6613	1.7813	1.6461	1.7971
138	1.7073	1.7365	1.6926	1.7514	1.6778	1.7665	1.6628	1.7819	1.6476	1.7975
139	1.7084	1.7374	1.6938	1.7521	1.6791	1.7672	1.6642	1.7824	1.6491	1.7979
140	1.7095	1.7382	1.6950	1.7529	1.6804	1.7678	1.6656	1.7830	1.6507	1.7984
141	1.7106	1.7391	1.6962	1.7537	1.6817	1.7685	1.6670	1.7835	1.6522	1.7988
142	1.7116	1.7400	1.6974	1.7544	1.6829	1.7691	1.6684	1.7840	1.6536	1.7992
143	1.7127	1.7408	1.6985	1.7552	1.6842	1.7697	1.6697	1.7846	1.6551	1.7996
144	1.7137	1.7417	1.6996	1.7559	1.6854	1.7704	1.6710	1.7851	1.6565	1.8000
145	1.7147	1.7425	1.7008	1.7566	1.6866	1.7710	1.6724	1.7856	1.6580	1.8004
146	1.7157	1.7433	1.7019	1.7574	1.6878	1.7716	1.6737	1.7861	1.6594	1.8008
147	1.7167	1.7441	1.7030	1.7581	1.6890	1.7722	1.6750	1.7866	1.6608	1.8012
148	1.7177	1.7449	1.7041	1.7588	1.6902	1.7729	1.6762	1.7871	1.6622	1.8016
149	1.7187	1.7457	1.7051	1.7595	1.6914	1.7735	1.6775	1.7876	1.6635	1.8020
150	1.7197	1.7465	1.7062	1.7602	1.6926	1.7741	1.6788	1.7881	1.6649	1.8024
151	1.7207	1.7473	1.7072	1.7609	1.6937	1.7747	1.6800	1.7886	1.6662	1.8028
152	1.7216	1.7481	1.7083	1.7616	1.6948	1.7752	1.6812	1.7891	1.6675	1.8032
153	1.7226	1.7488	1.7093	1.7622	1.6959	1.7758	1.6824	1.7896	1.6688	1.8036
154	1.7235	1.7496	1.7103	1.7629	1.6971	1.7764	1.6836	1.7901	1.6701	1.8040
155	1.7244	1.7504	1.7114	1.7636	1.6982	1.7770	1.6848	1.7906	1.6714	1.8044
156	1.7253	1.7511	1.7123	1.7642	1.6992	1.7776	1.6860	1.7911	1.6727	1.8048
157	1.7262	1.7519	1.7133	1.7649	1.7003	1.7781	1.6872	1.7915	1.6739	1.8052
158	1.7271	1.7526	1.7143	1.7656	1.7014	1.7787	1.6883	1.7920	1.6751	1.8055
159	1.7280	1.7533	1.7153	1.7662	1.7024	1.7792	1.6895	1.7925	1.6764	1.8059
160	1.7289	1.7541	1.7163	1.7668	1.7035	1.7798	1.6906	1.7930	1.6776	1.8063
161	1.7298	1.7548	1.7172	1.7675	1.7045	1.7804	1.6917	1.7934	1.6788	1.8067
162	1.7306	1.7555	1.7182	1.7681	1.7055	1.7809	1.6928	1.7939	1.6800	1.8070
163	1.7315	1.7562	1.7191	1.7687	1.7066	1.7814	1.6939	1.7943	1.6811	1.8074
164	1.7324	1.7569	1.7200	1.7693	1.7075	1.7820	1.6950	1.7948	1.6823	1.8078
165	1.7332	1.7576	1.7209	1.7700	1.7085	1.7825	1.6960	1.7953	1.6834	1.8082
166	1.7340	1.7582	1.7218	1.7706	1.7095	1.7831	1.6971	1.7957	1.6846	1.8085
167	1.7348	1.7589	1.7227	1.7712	1.7105	1.7836	1.6982	1.7961	1.6857	1.8089
168	1.7357	1.7596	1.7236	1.7718	1.7115	1.7841	1.6992	1.7966	1.6868	1.8092
169	1.7365	1.7603	1.7245	1.7724	1.7124	1.7846	1.7002	1.7970	1.6879	1.8096
170	1.7373	1.7609	1.7254	1.7730	1.7134	1.7851	1.7012	1.7975	1.6890	1.8100
171	1.7381	1.7616 1.7622	1.7262	1.7735	1.7143	1.7856	1.7023	1.7979	1.6901	1.8103
172 173	1.7389 1.7396	1.7622	1.7271 1.7279	1.7741 1.7747	1.7152 1.7162	1.7861 1.7866	1.7033 1.7042	1.7983 1.7988	1.6912 1.6922	1.8107 1.8110
173	1.7396	1.7629	1.7279	1.7747	1.7162	1.7866	1.7042	1.7988	1.6922	1.8110
174	1.7404	1.7642	1.7296	1.7758	1.7171	1.7872	1.7062	1.7992	1.6943	1.8117
175	1.7412	1.7648	1.7290	1.7764	1.7189	1.7881	1.7002	1.7990	1.6954	1.8117
177	1.7427	1.7654	1.7303	1.7769	1.7197	1.7886	1.7072	1.8005	1.6964	1.8124
178	1.7435	1.7660	1.7313	1.7775	1.7206	1.7891	1.7091	1.8009	1.6974	1.8124
1/0	1./433	1.7000	1./341	1.1113	1.7200	1./0/1	1./0/1	1.0007	1.07/4	1.0120

179	1.7442	1.7667	1.7329	1.7780	1.7215	1.7896	1.7100	1.8013	1.6984	1.8131
180	1.7449	1.7673	1.7337	1.7786	1.7224	1.7901	1.7109	1.8017	1.6994	1.8135
181	1.7457	1.7679	1.7345	1.7791	1.7232	1.7906	1.7118	1.8021	1.7004	1.8138
182	1.7464	1.7685	1.7353	1.7797	1.7241	1.7910	1.7128	1.8025	1.7014	1.8141
183	1.7471	1.7691	1.7360	1.7802	1.7249	1.7915	1.7137	1.8029	1.7023	1.8145
184	1.7478	1.7697	1.7368	1.7807	1.7257	1.7920	1.7146	1.8033	1.7033	1.8148
185	1.7485	1.7702	1.7376	1.7813	1.7266	1.7924	1.7155	1.8037	1.7042	1.8151
186	1.7492	1.7708	1.7384	1.7818	1.7274	1.7929	1.7163	1.8041	1.7052	1.8155
187	1.7499	1.7714	1.7391	1.7823	1.7282	1.7933	1.7172	1.8045	1.7061	1.8158
188	1.7506	1.7720	1.7398	1.7828	1.7290	1.7938	1.7181	1.8049	1.7070	1.8161
189	1.7513	1.7725	1.7406	1.7833	1.7298	1.7942	1.7189	1.8053	1.7080	1.8165
190	1.7520	1.7731	1.7413	1.7838	1.7306	1.7947	1.7198	1.8057	1.7089	1.8168
191	1.7526	1.7737	1.7420	1.7843	1.7314	1.7951	1.7206	1.8061	1.7098	1.8171
192	1.7533	1.7742	1.7428	1.7848	1.7322	1.7956	1.7215	1.8064	1.7107	1.8174
193	1.7540	1.7748	1.7435	1.7853	1.7329	1.7960	1.7223	1.8068	1.7116	1.8178
194	1.7546	1.7753	1.7442	1.7858	1.7337	1.7965	1.7231	1.8072	1.7124	1.8181
195	1.7553	1.7759	1.7449	1.7863	1.7345	1.7969	1.7239	1.8076	1.7133	1.8184
196	1.7559	1.7764	1.7456	1.7868	1.7352	1.7973	1.7247	1.8079	1.7142	1.8187
197	1.7566	1.7769	1.7463	1.7873	1.7360	1.7977	1.7255	1.8083	1.7150	1.8190
198	1.7572	1.7775	1.7470	1.7878	1.7367	1.7982	1.7263	1.8087	1.7159	1.8193
199	1.7578	1.7780	1.7477	1.7882	1.7374	1.7986	1.7271	1.8091	1.7167	1.8196
200	1.7584	1.7785	1.7483	1.7887	1.7382	1.7990	1.7279	1.8094	1.7176	1.8199

Kaidah:

```
-jika nilai du < d < 4-du , maka sebaran data tersebut tidak terdapat autokorelasi.

-jika nilai d < dl atau d > 4-dl , maka sebaran data tersebut terdapat autokorelasi.
```

-jika nilai dl < d < du atau 4-du < d < 4-dl , maka tidak ada kesimpulan.

Berikut cara pelaporan uji autokorelasi

Tabel Hasil Uji Autokorelasi

Durbin-Watson	dL	dU	Keterangan
2.008	1.651	1.725	Tidak Terdapat Autokorelasi

Uji autokorelasi dilakukan untuk mengetahui ada tidaknya gejala autokorelasi antara variabel-variabel independen yang berasal dari data *time series*. Uji autokorelasi dapat dilakukan dengan Uji Durbin-Watson. Nilai yang terdapat tabel Durbin Watson yaitu $\alpha=5\%$; n=109; k-2 adalah dL = 1.651 dan dU = 1.725. Hasil pengolahan data menunjukan nilai Durbin Watson sebesar 2.008 dan nilai tersebut berada di antara dU dan (4-dU), yakni dU < d < 4-dU (1.725 < 2.275 < 2.008). Maka dapat disimpulkan bahwa dalam model regresi linear tersebut tidak terdapat autokorelasi atau tidak terjadi korelasi di antara kesalahan penggangu.

Hasil Uji Hipotesis (Regresi Linier Berganda dan Sederhana) Model penuh dan bertahap

Hasil Uji Hipotesis (Regresi Linier Berganda) Model penuh dan bertahap Berikut ini langkah-langkah analisis Regresi (Hipotesis) pada software SPSS

1. Klik Analyze-Regression-Linier

2. Masukan data ke dependent untuk variabel terikat (Y), dan variable bebas (X) ke indepent, kemudian klik OK

Maka akan muncul Output seperti ini

Hipotesis model penuh

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	.576ª	.332	.319	6.244	2.008

- a. Predictors: (Constant), Peran_Pengawas, Sikap_Kerja
- b. Dependent Variable: Perilaku_Keselamatan

ANOVA^a

	Model		Sum of Squares	df	Mean Square	F	Sig.
ſ	1	Regression	2051.043	2	1025.521	26.301	.000 ^b
I		Residual	4133.067	106	38.991		
l		Total	6184.110	108			

- a. Dependent Variable: Perilaku_Keselamatan
- b. Predictors: (Constant), Peran_Pengawas, Sikap\Kerja

Tabel Hasil Uji Analisis Regresi Model Penuh

Variable	F Hitung	F Tabel	\mathbb{R}^2	P
Perilaku Keselamatan (Y)	26.201		0.222	0.000
Sikap kerja (X1)	26.301	?	0.332	0.000
Peran pengawas (X2)				

Hipotesis model Bertahap

Coefficients^d Standardized Unstandardized Coefficients Coefficients Std. Error Sig. Beta Model (Constant) 30.879 9.884 3.124 .002 Sikap_Kerja .519 .087 .496 5.965 .000 Peran_Pengawas .187 .085 .182 2.186 .031 a. Dependent Variable: Perilaku_Keselamatan Tabel Hasil Analisis Model Bertahap P Variabel T hitung T tabel Beta Sikap kerja (X_1) 0.496 ? 5.965 0.000 Perilaku Keselamatan (Y) Peran pengawas (X_2) 0.182 2.186 ? 0.031 Perilaku Keselamatan (Y)

Catatan: untuk mencari F tabel dan T Tabel, silahkan cari di bagian F tabel dan Tabel

Berikut ini cara Pelaporan Hipotesis model penuh dan bertahap

Hipotesis dalam penelitian adalah untuk mengetahui pengaruh antara sikap kerja dan peran pengawas terhadap perilaku keselamatan pada Karyawan PT. BUMA site *KJA* Kab Paser. Tehnik analisis yang digunakan adalah analisis regresi linier berganda.

Berdasarkan hasil pengujian regresi model penuh atas variabel-variabel sikap kerja dan peran pengawas terhadap perilaku keselamatan secara bersama-sama didapatkan hasil sebagai berikut:

Tabel Hasil Uji Analisis Regresi Model Penuh

Variable	F Hitung	F Tabel	\mathbb{R}^2	P
Perilaku Keselamatan (Y)				_
Sikap kerja (X1)	26.301	3.08	0.332	0.000
Peran pengawas (X2)				

Berdasarkan tabel...., menunjukkan F hitung > F tabel yang artinya bahwa sikap kerja dan peran pengawas terhadap perilaku keselamatan memiliki pengaruh yang sangat signifikan dengan nilai F = 26.301, R² = 0.332, dan p = 0.000. Hal tersebut bermakna bahwa hipotesis mayor dalam penelitian ini diterima. Kemudian dari hasil analisi regresi secara bertahap dapat diketahui sebagai berikut:

Tabel Hasil Analisis Model Bertahap

Variabel	Beta	T hitung	T tabel	P
Sikap kerja (X ₁) Perilaku Keselamatan (Y)	0.496	5.965	1.982	0.000
Peran pengawas (X ₂) Perilaku Keselamatan (Y)	0.182	2.186	1.982	0.031

Berdasarkan tabel...., dapat diketahui bahwa t hitung > t tabel yang artinya terdapat pengaruh yang signifikan antara sikap kerja dengan perilaku keselamatan nilai beta = 0.496, t hitung = 5.965, dan p = 0.000 (p < 0.005). Kemudian pada peran pengawas dengan perilaku keselamatan menunjukkan t hitung > t tabel yang artinya terdapat pengaruh yang signifikan dengan nilai beta = 0.182, t hitung = 2.186, dan p = 0.031 (p < 0.05).

Hasil Uji Hipotesis Tambahan

Uji hipotesis tambahan dalam penelitian ini bertujuan untuk mengetahui secara lebih rinci dan mendalam mengenai keterikatan baik pengaruh ataupun hubungan antara aspek-aspek variabel bebas dengan aspek-aspek variabel terikat dengan menggunakan analisis regresi multivariat, korelasi parsial, model *stepwise* dan model akhir. Analisis multivariat merupakan metode statistik yang dikembangkan untuk mengetahui apakah rata-rata kelompok berbeda secara signifikan atau tidak, selanjutnya untuk mengetahui variabel bebas apa saja yang mempengaruhi perbedaan antar kelompok tersebut (Widarjono, 2015). Sementara itu, uji analisis regresi model akhir bertujuan untuk mengetahui hasil akhir signifikansi tertinggi pengaruh aspekaspek variabel bebas dengan masing-masing aspek variabel terikat. Kaidah yang digunakan pada analisis multivariat dan model akhir adalah jika nilai f hitung > f tabel pada taraf signifikansi 0.05, dan nilai p < 0.05, maka memiliki hubungan sangat signifikan. Sebaliknya, jika nilai f hitung < f tabel dan nilai p > 0.05, maka tidak memiliki hubungan yang signifikan (Gunawan, 2013).

Selanjutnya uji analisis korelasi parsial bertujuan untuk mengukur korelasi antara dua variabel dengan mengeluarkan pengaruh dari satu atau beberapa variabel lain (Santoso, 2012). Sementara itu, uji analisis regresi model *stepwise* bertujuan untuk mendapatkan variabel diskriminan yang terbaik sehingga mampu melakukan diskriminasi antar kelompok yaitu dengan variabel dimasukkan satu per satu ke dalam variabel dan kemungkinan variabel bebas dibuang dari model, syarat pada metode

stepwise ini yaitu tidak ada masalah multikolinieritas (Widarjono, 2015). Adapun kaidah yang digunakan untuk uji analisis korelasi parsial dan model *stepwise* adalah jika nilai t hitung > t tabel pada taraf signifikansi 0.05, dan nilai p < 0.05, maka memiliki hubungan positif dan signifikan. Jika memenuhi kedua kaidah, namun terdapat tanda negatif (-) di depan angka, maka memiliki hubungan negatif dan signifikan. Sementara itu, jika nilai t hitung < t tabel dan nilai p > 0.05, maka tidak memiliki hubungan yang signifikan. Adapun masing-masing hasil uji hipotesis tambahan tersebut diuraikan sebagai beriku

➤ Multivariate Model Penuh dan Parsial

Berikut ini langkah-langkah analisisnya:

 Siapkan data terlebih dahulu yaitu data nilai total tiap aspek dari setiap variabel, berikan kode Y1 (untuk nilai total aspek pertama dari variabel terikat), Y2 (untuk nilai total aspek kedua dari variabel terikat), dst...., kemudian copy-paste di software SPSS

1	Sebaran Data	Perilaku I			Sikap Kerja			Peran Pengawas	
2	Sebaran Data	Tot A	Tot B	Tot A	Tot B	Tot C	Tot A	Tot B	Tot C
3	Subjek	Y1	Y2	X1	X2	X3	X4	X5	X6
4	1	51	59	48	32	29	37	34	35
5	2	44	42	43	31	25	29	31	34
6	3	51	42	44	25	25	31	30	30
7	4	52	47	44	32	26	31	36	36
8	5	52	39	41	31	25	33	30	37
9	6	48	50	40	26	24	30	28	31
10	7	44	40	43	30	26	26	25	26
11	8	56	56	48	34	29	30	32	30
12	9	52	44	46	31	23	34	31	35
13	10	44	41	45	29	25	28	29	31
14	11	54	53	49	35	29	34	39	33
15	12	58	45	40	31	25	26	29	28
16	13	48	49	45	30	28	29	30	28
17	14	53	39	40	27	23	36	36	36
18	15	51	44	43	30	26	28	27	27
19	16	51	50	38	28	25	31	33	33
20	17	50	44	41	30	25	34	31	34
21	18	55	44	42	32	26	33	30	36
22	19	49	44	40	27	22	30	28	29
	22				^ •	20	**	22	2.5

2. Ganti nama var, menyesuaikan dengan kode per aspek dari tiap variabel

				-		1100											
		<u> </u>				-											
	Y1	Y2	X1	X2	Х3	X4	X5	X6									
1	51	59	48	32	29	3/	34	35	_								
2	44	42	43	31	25	29	31	34									
3	51	42	44	25	25	31	30	30									
4	52	47	44	32	26	31	36	36									
5	52	39	41	31	25	33	30	37									
6	48	50	40	26	24	30	28	31									
7	44	40	43	30	26	26	25	26									
8	56	56	48	34	29	30	32	30									
9	52	44	46	31	23	34	31	35									
10	44	41	45	29	25	28	29	31									
11	54	53	49	35	29	34	39	33									
12	58	45	40	31	25	26	29	28									
13	48	49	45	30	28	29	30	28									
14	53	39	40	27	23	36	36	36									
15	51	44	43	30	26	28	27	27									
16	51	50	38	28	25	31	33	33									
17	50	44	41	30	25	34	31	34									
18	55	44	42	32	26	33	30	36									
19	49	44	40	27	22	30	28	29									
20	56	53	46	35	28	31	32	35									
21	55	44	35	29	20	37	34	36									
22	58	58	51	34	32	30	36	39									
23	45	40	40	29	26	28	28	26									
	4																
Data View	Variable Vie	w															

3. Klik Analyze-Regression-Linier

4. Masukan Y1 (Aspek pertama variabel terikat) ke Dependent, kemudian seluruh aspek variabel bebas ke independent, kemudian klik OK

Silahkan lanjutkan untuk aspek kedua pada varibel terikat terhadap seluruh aspek variabel bebas

Catatan untuk F tabel, silahkan cari di F tabel

Berikut ini cara pelaporan hasil uji hipotesis multivariate model penuh

Tabel Hasil Uji Analisis Regresi Multivariat Model Penuh
Aspek-Aspek Variabel Bebas dengan Aspek-Aspek Variabel Tergantung

Aspek	F hitung	F tabel	\mathbb{R}^2	P
Kepuasan kerja (X_1) , keterlibatan				
pekerjaan (X ₂), komitmen				
organisasional (X ₃), kepemimpinan				
keselamatan (X_4) , manajemen	5.476	3.08	0.243	0.000
perilkau (X_5) , standar peraturan dan				
kepatuhan (X_6) , terhadap kepatuhan				
keselamatan (Y_1) .				
Terhadap partisipasi keselamatan	<mark>8 518</mark>	3.08	0.334	0.000
(Y_2)	0.510	5.00	0.33Т	0.000

Berdasarkan tabel..... dapat diketahui bahwa aspek-aspek dalam variabel X yaitu: Kepuasan kerja (X_1) , keterlibatan pekerjaan (X_2) , komitmen organisasional (X_3) , kepemimpinan keselamatan (X_4) , manajemen perilkau (X_5) , standar peraturan dan kepatuhan (X_6) , memiliki pengaruh yang sangat signifikan terhadap aspek-aspek dalam variabel Y yaitu kepatuhan keselamatan (Y_1) , dibuktikan dengan nilai $R^2 = 0.243$ $(24,3 \, \text{Persen})$ F hitung = 5.476 > 3.08 (f hitung > f tabel) dan nilai f pengaruh yang sangat signifikan, dibuktikan dengan nilai f pengaruh yang sangat signifikan yang sangat signifi

Hipotesis model Parsial

Coefficients^a

a. Dependent Variable Y1

Tabel Hasil Uji Analisis Korelasi Parsial Terhadap Kepatuhan keselamatan (Y1)/

Faktor	Beta	T Hitung	T Tabel	P •
Kepuasan kerja (X ₁)	0.274	2.070	1.982	0.041
Keterlibatan pekerjaan (X ₂)	0.293	2.285	1.982	0.024
Komitmen organisasional (X ₃)	-0.142	-1.190	1.982	0.237
Kepemimpinan keselmatan (X ₄)	0.109	1.019	1.982	0.311
Manajemen perilaku (X ₅)	0.008	0.078	1.982	0.938
Standar peraturan dan kepatuhan (X_6)	0.043	0.370	1.982	0.712

Berikut ini cara pelaporan hasil uji hipotesis parsial

Tabel Hasil Uji Analisis Korelasi Parsial Terhadap Kepatuhan keselamatan (Y₁)

Faktor	Beta	T Hitung	T Tabel	P
Kepuasan kerja (X ₁)	0.374	2.070	1.982	0.041
Keterlibatan pekerjaan (X ₂)	0.293	2.285	1.982	0.024
Komitmen organisasional (X ₃)	-0.142	-1.190	1.982	0.237
Kepemimpinan keselmatan (X ₄)	0.109	1.019	1.982	0.311
Manajemen perilaku (X ₅)	0.008	0.078	1.982	0.938
Standar peraturan dan kepatuhan (X ₆)	0.043	0.370	1.982	0.712

Pada tabel.....dapat disimpulkan bahwa aspek kepuasaan kerja (X_1) terhadap kepatuhan keselamatan (Y1) menghasilkan nilai koefisien beta $(\beta) = 0.374$, t hitung - 2.070 > t tabel 1.982 dan nilai p =0.041 (p<0.05), sedangkan aspek keterlibatan pekerjaan (X_2) terhadap kepatuhan keselamatan (Y1) menghasilkan nilai koefisien beta $(\beta) = 0.293$, t hitung 2.285> t tabel 1.982 dan nilai p =0.024 (p<0.05), hal ini menunjukan aspek komitmen organisasional (X_3) , kepemimpinan keselamatan (X_4) , manajemen perilkau (X_5) , standar peraturan dan kepatuhan (X_6) ,tidak memiliki hubungan yang signifikan terhadap kepatuhan keselamatan (Y_1) .

Hipotesis model stepwise dan model akhir

Berikut ini langkah-langkah analisis pada software SPSS

1. Klik Analyze-Regression-Linier

2. Masukan Y1 (Aspek pertama variabel terikat) ke Dependent, kemudian seluruh aspek variabel bebas ke independent, kemudian bagian method pilih *stepwise*,

Maka akan muncul Output SPSS seperti dibawah ini

Hipotesis model Stepwise (fokuskan di bagian coefficients dan exclude variabels)

			Coefficients ^a].				Perha	itikar	n bagia	an akhir	
		Unstandardize	d Coefficients	Standar						$\overline{}$		
Model		B	Std. Error	Bet		l t	Sig.	1,	$\overline{}$	+		_
1	(Constant)	3.632	.992	200	·u	3.660	.000	┨ /		_ \		
l .	X2	.591	.049		.710	12.105	.000		Model	\perp	Beta In	
2	(Constant)	1.002	1.056			.949	.344	<i>-</i> 4	1	X1	.347 ^b	
	X2	.343	.067		.412	5.137	000			X3 X4	.404 ^b 018 ^b	
	Х3	.352	.070		.404	5.030	.000			Λ4 Χ5	018 225 ^b	
3	(Constant)	7.092	2.212			3.206	.002	.		X6	175 ^b	
	X2	.276	.068		.331	4.030	.000		2	X1	188°	
	X3	.329	.068		.378	4,819	.000			X4	001°	
	X5	201	.065		193	3.107	.002	!		X5	193°	
4	(Constant)	5.931	2.234			2.655	.009		_	X6	107	
Ш	X2	.284	.068		.341	4.212	.000		3	X1	.095 ^d	
Ш	Х3	.328	.067		.376	4.872	.000			X4 X6	.165 ^d .062 ^d	٨
Ш	X5	313	.080		300	-3.930	.000		4	.X1	.062	
	X4	.166	.071		.165	2.342	.021		,	X6	035 ^e	

	\		Exclude	d Variables ^a			
	\mathcal{T}				Partial	Collinearity Statistics	
Model		Beta In	t	Sig.	Correlation	Tolerance	
1	X1	.347 ^b	4.592	.000	.358	.529	
	Х3	.404 ^b	5.030	.000	.388	.457	
	X4	018 ^b	278	.781	023	.847	
	X5	225 ^b	-3.388	.001	273	.729	
	X6	175 ^b	-2.658	.009	217	.760	
2	X1	188°	2.018	.046	.167	.332	
	X4	001°	017	.987	001	.844	
	X5	193°	-3.107	.002	252	.721	
	X6	107°	-1.684	.094	140	.717	
3	X1	.095 ^d	.964	.337	.081	.286	
	X4	.165 ^d	2.342	.021	.193	.541	
	X6	.062 ^d	.699	.486	.059	.353	
4	X1	.085 ^e	.872	.384	.074	.285	
	X6	035 ^e	362	.718	031	.284	
a. D	benden	t Variable: Y1					

a. Dependent Variable; Y1

Tabel Rangkuman Hasil Uji Analisis Regresi Model *Stepwise* dengan Kepatuhan keselamatan (Y1)

1120del Step wise deligan 113 petantan nel ciamatan (11)										
Faktor	Beta	T Hitung	T Tabel	P						
Dikeluarkan X ₂ (Keterlibatan pekerjaan)	0.341	4.212	1.982	0.000						
Dikeluarkan X ₃ (Komitmen organisasional)	0.376	4.872	1.982	0.000						
Dikeluarkan X ₅ (Komitmen organisasional)	-0.300	-3.930	1.982	0.000						
Dikeluarkan X ₄ (Kepemimpinan keselmatan)	0.165	2.342	1.982	0.021						
Dikeluarkan X ₁ (kepuasan kerja)	0.085	0.872	1.982	0.384						
Dikeluarkan X ₆ (Standar peraturan dan kepatuhan)	-0.035	-0.362	1.982	0.718						

Untuk T tabel, silahkan cari di T tabel

Selalu perhatikan bagian akhir

Berikut ini cara pelporan uji hipotesis stepwise

Tabel Rangkuman Hasil Uji Analisis Regresi Model *Stepwise* dengan Kepatuhan keselamatan (Y₁)

Faktor	Beta	T Hitung	T Tabel	P
Dikeluarkan X ₂ (Keterlibatan pekerjaan)	0.341	4.212	1.982	0.000
Dikeluarkan X ₃ (Komitmen organisasional)	0.376	4.872	1.982	0.000
Dikeluarkan X ₅ (Komitmen organisasional)	-0.300	-3.930	1.982	0.000
Dikeluarkan X ₄ (Kepemimpinan keselmatan)	0.165	2.342	1.982	0.021
Dikeluarkan X ₁ (kepuasan kerja)	0.085	0.872	1.982	0.384
Dikeluarkan X ₆ (Standar peraturan dan kepatuhan)	-0.035	-0.362	1.982	0.718

Pada tabel.....dapat diketahui ada 2 aspek yang tidak memiliki pengaruh signifikan dengan aspek kepatuhan keselamatan (Y1) yaitu disimpulkan bahwa aspek kepuasaan kerja (X_1), dan aspek standar peraturan dan kepatuhan (X_6). Sementara itu aspek yang memiliki pengaruh dan signifikan terhadap aspek kepatuhan keselamatan (Y_1) yaitu aspek keterlibatan kerja (X_2) dengan nilai koefisien beta (β) = 0.341, t hitung 4.212 > t tabel 1.982 dan nilai p =0.000 (p<0.05).

Kemudian X_3 memiliki pengaruh dan signifikan terhadap aspek kepatuhan keselamatan (Y_1) dengan nilai koefisien beta $(\beta) = 0.376$, t hitung 4.872 > t tabel 1.982 dan nilai p = 0.000 (p < 0.05). Setelah itu X_5 memiliki pengaruh dan signifikan terhadap aspek kepatuhan keselamatan (Y_1) dengan nilai koefisien beta $(\beta) = -0.300$, t hitung -3.930 > t tabel 1.982 dan nilai p = 0.000 (p < 0.05), dan X_4 memiliki pengaruh dan

signifikan terhadap aspek kepatuhan keselamatan (Y_1) dengan nilai koefisien beta (β) = 0.165, t hitung 2.342 > t tabel 1.982 dan nilai p =0.000 (p<0.05).

Signifikansi dari aspek keterlibatan kerja (X_2) , aspek komitmen organisasional (X_3) , manajemen perilkau (X_5) , dan kepemimpinan keselamatan (X_4) , tersebut disajikan dalam analisa regresi model akhir pada tabel dibawah ini:

Hipotesis model akhir

P

Perh	Perhatikan <i>model summary dan Anova <mark>(Bagian Akhir)</mark></i>										
	Model Summary										
Г		Adjusted R Std. Error of									
_	odel	R	R Square	Sguar		theE		${}^{-}$			
1		.710ª	.504		.501	' \	2.9	927			
2		.761 ^b	.579		.573	3 '	2.7	708			
3		.778°	.608		.597	7	2.6	329			
4		.788 ^d	.620		.610		2.5	89			
	ANOVA										
Мо	del		Sum of Squares	df		Mean Squ	are	F		Sig.	
1	F	Regression	1255.63	0	1	1255.0	630	46.	541	.000	
	F	Residual	1233.85	6 1	44	8.9	568	\			
		otal	2489.48	6 1	45			\Box			
2		Regression	1441.12	4	2	720.	562	98	287	.000°	
1		Residual	1048.36	3 1	43	7.3	331		\		
\vdash		otal	2489.48	6 1	45				\bot		
3		Regression	1507.85		3	502.		72.	707	.000 ^d	
1		Residual	981.63		42	6.9	913				
<u> </u>		otal	2489.48		45			<u> </u>	222	2228	
4		Regression Residual	1544.60		4	386.1	- 1	57.	623	.000 ^e	
		otal	944.88 2489.48		41 45	о.	701			\	
<u> </u>		endent Varial		0 1	45					- 	J
		endent vanal lictors: (Cons								\	
										\	
	c. Predictors: (Constant), X2, X3										
	d. Predictors: (Constant), X2, X3, X5 e. Predictors: (Constant), X2, X3, X5, X4										
L	e. Fredictors. (Constant), AZ, A3, A5, A4										
	Tabel, Hasil Uji Analisis Regresi Model Akhir (Y1)										
	Sum	ber Varia	si F l	Hitung	F	Tabel		R	2		P
Reg X ₄)	resi X	$X(X_2, X_3, X_4)$	$X_{5,}$ 5	7.623		<mark>?</mark>		0.6	20	0.	000

<mark>F tabel silahkan cari pada F tabel</mark>

Berikut cara pelaporan hipotesis model akhir

Sumber Variasi	F Hitung	F Tabel	\mathbb{R}^2	P
Regresi X (X ₂ , X ₃ , X ₅ , X ₄)	57.623	3.08	0.620	0.000

Berdasarkan tabel......, diketahui bahwa aspek keterlibatan kerja (X_2) aspek komitmen organisasional (X_3), manajemen perilkau (X_5), dan kepemimpinan keselamatan (X_4), memiliki pengaruh yang sangat signifikan terhadap aspek kepatuhan keselamatan (Y_1) karyawan PT BUMA *Site* KJA Kab. Paser, dibuktikan dengan nilai $R^2 = 0.620$ (62 persen), F hitung = 57.623 > 3.08 (F hitung > F tabel) dan p = 0.000 (p < 0.05).

*Silahkan lanjutkan analisis Y2 dst