Ejemplos resueltos de FMC.

18 de septiembre de 2008

Licencia

All text is available under the terms of the GNU Free Documentation License

Copyright © 2008 Santa, FeR, Onizuka (QueGrande.org)

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is avaliable at http://www.gnu.org/licenses/fdl.html

Índice

Ι	Co	nceptos de física vectorial.	4
1.	Aná	lisis vectorial	4
II	\mathbf{E}^{2}	lectrostática. Campo eléctrico.	4
2.	Can	apo eléctrico.	4
		Anillo cargado.	
		Disco cargado	
		Hilo recto cargado	
		Plano indefinido cargado	
	2.5.	Lámina indefinida cargada de espesor a	Ć
3.	Ley	de Gauss.	11
	3.1.	Carga puntual	11
	3.2.	Hilo recto de carga	11
	3.3.	Plano indefinido de carga	12
	3.4.	Esfera uniformemente cargada	13
	3.5.	Lámina indefinida cargada de espesor a	14
	3.6.	Esferas metálicas, (mal) numerado en los apuntes como ejemplo 1	15

4 .	El p	otencial eléctrico.	6
	4.1.	Sistema de cargas puntuales	16
	4.2.	Anillo cargado.	16
	4.3.	Disco cargado	17
	4.4.		18
	4.5.	Campo eléctrico a partir del potencial en el anillo cargado	19
	4.6.		19
	4.7.		20
5.	Cap	acidad y energía eléctrica.	21
	5.1.	Capacidad equivalente de un sistema de cuatro placas	21
	5.2.	Condensador de placas rectangulares con ε variable	22
	5.3.	Condensador de placas rectangulares con ε variable	23
		•	23
		Fuerza entre placas de un condensador plano (mal) numerado en los apuntes	
		- , , , , , , , , , , , , , , , , , , ,	24
Η	I	Electrocinética. Corriente eléctrica.	5
6.	Cor	riente y resistencia eléctricas.	25
		•	25
	6.2.		26
			27
		1	- · 28
		,	28
		~	26
	0.0.	on curve pairs aprical filterion, filterionn, filterio	
IJ	/ (Campo magnético. Inducción	2
7.	Can	apo magnético.	33
	7.1.	De un hilo conductor con forma de semicircunferencia en un campo magnético	33
8.	Fue	ntes de campo magnético.	33
	8.1.	De un segmento de corriente	33
	8.2.	De una espira circular	34
	8.3.	De un hilo muy largo de corriente	35
	8.4.	De un solenoide recto muy largo	37
9.	Ind	acción electromagnética y energía.	37
	9.1.	De una fem inducida en una barra conductora	37
			38
			39
			40
	9.5.		40
	9.6.		11
		De la inducción mutua entre un hilo recto y una espira rectangular	

\mathbf{V}	Sistemas	42
10.	Régimen transitorio en sistemas lineales.	42
11.]	Régimen sinusoidal permanente.	42

Parte I

Conceptos de física vectorial.

1. Análisis vectorial

De este tema no hay ejemplos en los apuntes, mire los boletines.

Parte II

Electrostática. Campo eléctrico.

2. Campo eléctrico.

Sistema de cargas puntuales, ejemplo sin numerar en los apuntes.

En un sistema formado por 3 cargas puntuales $q_a = 3\mu C$. $q_b = -6\mu C$ y $q_c = -2\mu C$, referenciado sobre unos ejes cartesianos con escala en cm, a través de los puntos a (0,0,0), b (0,4,0), c(0,0,3), respectivamente. Determinar la fuerza que se ejerce sobre la carga q_c .

- a) Directamente a través de la ley de Coulomb.
- b) Utilizando el campo eléctrico.

a)
$$F_c = \overrightarrow{F_{ac}} + \overrightarrow{F_{bc}}$$

$$\overrightarrow{F_{ac}} = K \frac{q_a \cdot q_b}{r_{ac}^2} \widehat{r_{ac}}$$

$$\overrightarrow{F_{ac}} = 9 \cdot 10^9 \cdot \frac{3 \cdot 10^{-6} \cdot (-2) \cdot 10^{-6}}{3^2 \cdot 10^{-4}} \widehat{k} = -60 \widehat{k} \ (N)$$

$$F_{bc} = K \frac{q_b \cdot q_c}{r_{bc}^2} \widehat{r_{bc}}$$

$$\begin{split} r_{bc} &= \sqrt{3^2 + 4^2} = 5 \ cm \\ \widehat{r_{bc}} &= -\cos\alpha \cdot \hat{j} + \sin\alpha \cdot \hat{k} = -\frac{4}{5} \cdot \hat{j} + \frac{3}{5} \cdot \hat{k} \\ F_{bc} &= 9 \cdot 10^9 \frac{(-6)10^{-6} \cdot (-2)10^{-6}}{5^2 \cdot 10^{-4}} \left(-\frac{4}{5} \cdot \hat{j} + \frac{3}{5} \cdot \hat{k} \right) = -34,56 \cdot \hat{j} + 25,92 \cdot \hat{k} \ (N) \\ F_c &= \overrightarrow{F_{ac}} + \overrightarrow{F_{bc}} = -34,56 \cdot \hat{j} + (25,92 + (-60)) \cdot \hat{k} = -34,56 \cdot \hat{j} - 34,08 \cdot \hat{k} \ (N) \\ |\overrightarrow{F_c}| &= F_c = 48,53 \ N \\ b) \overrightarrow{E_c} &= \overrightarrow{E_{ac}} + \overrightarrow{E_{bc}} \\ \overrightarrow{E_{ac}} &= K \frac{q_a}{r_{ac}} \widehat{r_{ac}} \\ \overrightarrow{E_{ac}} &= 9 \cdot 10^9 \frac{3 \cdot 10^{-6}}{9 \cdot 10^{-4}} \hat{k} \\ \overrightarrow{E_{ac}} &= 30 \cdot 10^6 \hat{k} \ (N/C) \\ \overrightarrow{E_{bc}} &= K \frac{q_b}{r_{bc}} \widehat{r_{bc}} \\ \overrightarrow{E_{bc}} &= 9 \cdot 10^9 \frac{-6 \cdot 10^{-6}}{25 \cdot 10^{-4}} \\ \overrightarrow{E_{bc}} &= 17,28 \cdot 10^6 \hat{j} - 12,96 \cdot 10^6 \hat{k} \ (N/C) \\ \overrightarrow{E_c} &= 30 \cdot 10^6 \hat{k} + 17,28 \cdot 10^6 \hat{j} - 12,96 \cdot 10^6 \hat{k} = 17,28 \cdot 10^6 \hat{j} + 17,04 \cdot 10^6 \hat{k} \ (N/C) \\ \overrightarrow{F_c} &= \overrightarrow{E_c} \cdot q_c = (17,28 \hat{j} + 17,04 \hat{k}) \cdot 10^6 \cdot (-2) \cdot 10^{-6} = -34,56 \hat{j} - 34,08 \hat{k} \ (N) \\ |\overrightarrow{F_c}| &= F_c = 48,53 \ N \end{split}$$

2.1. Anillo cargado.

Determinar el campo eléctrico creado por un anillo circular de radio a, cargado con carga Q uniformemente distribuida, en los puntos del eje de simetría que pasa por su centro y es perpendicular al plano que lo contiene.

$$\lambda = \frac{Q}{2\pi a} \Rightarrow Q = \lambda 2\pi a$$

$$d\overrightarrow{E} = K \frac{dq}{r^2} \widehat{r}$$

$$dE = K \frac{dq}{r^2}$$

$$dE_x = dE \cdot \sin \theta = dE \cdot \frac{x}{r}$$

$$dE_\perp = dE \cdot \cos \theta = dE \cdot \frac{a}{r}$$

$$dE_x = \frac{K \cdot dq \cdot x}{r^2 r} = K \cdot \frac{x}{(x^2 + a^2)^{\frac{3}{2}}} \cdot dq$$

$$dE_\perp = K \cdot \frac{dq \cdot a}{r^2 \cdot r} = K \cdot \frac{a}{(x^2 + a^2)^{\frac{3}{2}}} \cdot dq$$

$$\int d\overrightarrow{E}_\perp = 0 = \overrightarrow{E}_\perp$$

$$E_x = \int dE_x = K \cdot \frac{x}{(x^2 + a^2)^{\frac{3}{2}}} \cdot \int dq = K \cdot \frac{Q \cdot x}{(x^2 + a^2)^{\frac{3}{2}}}$$

2.2. Disco cargado.

Determinar el campo eléctrico d terminado por un disco de radio R, cargado con densidad superficial de carga uniforme σ , en un punto del eje de simetría que pasa por su centro y es perpendicular a su plano.

Solución:

Vamos a plantear el problema como la suma de los campos diferenciales (dE_x) que crean infinitos anillos de espesor diferencial (da). En la siguiente figura observamos uno de estos anillos:

El campo creado por un anillo lo calculamos en el ejemplo anterior, y como la carga del anillo es en este caso dq:

$$dE_x = K \frac{dq \cdot x}{(x^2 + a^2)^{\frac{3}{2}}}$$

El área dS de ese anillo de espesor da sería: $dS = 2\pi a \cdot da$

$$dq = \sigma dS$$

$$dq = \sigma dS = \sigma 2\pi a \cdot da$$

$$dE_{x} = K \frac{dq \cdot x}{(x^{2} + a^{2})^{\frac{3}{2}}} = \frac{1}{4\pi\varepsilon} \frac{\sigma 2\pi a \ da \ x}{(x^{2} + a^{2})^{\frac{3}{2}}} = \frac{\sigma \cdot a \cdot da \cdot x}{2\varepsilon_{0}(x^{2} + a^{2})^{\frac{3}{2}}} = \frac{\sigma x}{2\varepsilon_{0}} \cdot \frac{a \ da}{(x^{2} + a^{2})^{\frac{3}{2}}}$$

$$E_{x} = \int_{DIST} dE_{x} = \frac{\sigma x}{2\varepsilon_{0}} \int_{0}^{R} \frac{a \ da}{(x^{2} + a^{2})^{\frac{3}{2}}} = \frac{\sigma x}{2\varepsilon_{0}} \left[\frac{-1}{(x^{2} + a^{2})^{\frac{3}{2}}} \right]_{0}^{R} = \frac{\sigma}{2\varepsilon_{0}} \left[\frac{x}{(x^{2} + a^{2})^{\frac{1}{2}}} \right]_{0}^{R}$$

$$E_{x} = \frac{\sigma}{2\varepsilon_{0}} \left[1 - \frac{x}{(x^{2} + R^{2})^{\frac{1}{2}}} \right]$$

2.3. Hilo recto cargado.

Determinar el campo eléctrico creado por un hilo recto cargado con densidad lineal de carga uniforme λ , en un punto a distancia a del eje x que contiene al hilo.

$$dE = K \frac{dq}{r^2} = K \frac{\lambda \cdot dx}{r^2}$$

$$dE_y = dE \cos \theta = K \cdot \frac{\lambda dx}{r^2} \cdot \cos \theta$$

$$dE_x = -dE \sin \theta = -K \cdot \frac{\lambda dx}{r^2} \cdot \sin \theta$$

$$x = a \tan \theta$$

$$dx = \frac{a}{\cos^2 \theta} d\theta$$

$$r = \frac{a}{\cos \theta}$$

$$E_y = \int_{DIST} dE_y = \int K \frac{\lambda dx}{r^2} \cdot \cos \theta = K\lambda \int \frac{\frac{a}{\cos^2 \theta} d\theta \cos \theta}{\frac{a^2}{\cos^2 \theta}} = \frac{K\lambda}{a} \int_{-\theta_1}^{\theta_2} \cos \theta d\theta$$

$$E_y = \frac{K\lambda}{a} [\sin \theta]_{-\theta_1}^{\theta_2} = \frac{K\lambda}{a} [\sin \theta_2 - (\sin -\theta_1)] = \frac{K\lambda}{a} [\sin \theta_2 + \sin \theta_1]$$

$$E_x = \int_{DIST} dE_x = \int -\frac{K\lambda dx}{r^2} \cdot \sin \theta = \frac{K\lambda}{a} \int_{-\theta_1}^{\theta_2} -\sin \theta d\theta = \frac{K\lambda}{a} [\cos \theta]_{-\theta_1}^{\theta_2}$$

$$E_x = \frac{K\lambda}{a} [\cos \theta_2 - \cos \theta_1]$$

El problema ya está resuelto, aún así vamos a ver que ocurre si el punto donde calculamos el campo está centrado y si la longitud del hilo es indefinidamente grande.

Centrado
$$\theta_1=\theta_2=\theta \Rightarrow \left\{ \begin{array}{l} E_y=\frac{2K\lambda}{a}\sin\theta\\ \\ E_x=0, \text{ se anula con el otro } E_x \end{array} \right.$$

Hilo indefinido
$$\theta_1 = \theta_2 = \frac{\pi}{2} \Rightarrow \left\{ \begin{array}{l} E_y = \frac{2K\lambda}{a} = \frac{\lambda}{2\pi\varepsilon_0 a} \\ E_x = 0, \ \cos\frac{\pi}{2} = 0 \end{array} \right.$$

2.4. Plano indefinido cargado.

Determinar el campo eléctrico creado por un plano indefinido, cargado con densidad superficial de carga uniforme σ .

Solución:

$$dE = \frac{\lambda}{2\pi\varepsilon_0 r} = \frac{\sigma dz}{2\pi\varepsilon_0 r}$$

$$dq = \sigma dS = \sigma dS = \sigma \cdot dz \cdot dy$$

$$dq = \lambda \cdot dy$$

$$\lambda = \sigma dz$$

$$E_x = \int_{DIST} dE_x = \int \frac{\sigma dz}{2\pi\varepsilon_0 r} \cdot \cos\theta$$

Como
$$z = x \cdot \tan \theta \Rightarrow dz = \frac{x}{\cos^2 \theta} d\theta$$
$$r = \frac{x}{\cos \theta}$$

$$E_{x} = \frac{\sigma}{2\pi\varepsilon_{0}} \int \frac{\frac{x}{\cos^{2}\theta} \cdot d\theta}{\frac{x}{\cos\theta}} \cdot \cos\theta = \frac{\sigma}{2\varepsilon_{0}\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta = \frac{\sigma}{2\pi\varepsilon_{0}} \left[\theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\sigma}{2\pi\varepsilon_{0}} \left[\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)\right]$$

$$E_{x} = \frac{\sigma}{2\varepsilon_{0}}$$

2.5. Lámina indefinida cargada de espesor a.

Determinar el campo eléctrico en el interior y en el exterior de una lámina indefinida de espesor a, con permisividad dieléctrica ε y cargada con densidad volumétrica de carga uniforme ρ .

• Interior:
$$-\frac{a}{2} \le x \le \frac{a}{2}$$

$$dE_i = \frac{\sigma}{2\varepsilon}$$

$$\begin{cases} dq = \sigma dS \\ dq = \rho dv = \rho \cdot dx \cdot dS \end{cases}$$

$$\sigma \cdot dS = \rho \cdot dx \cdot dS \Rightarrow \sigma = \rho \cdot dx$$

Como $\sigma = \rho dx$

$$dE_i = \frac{\sigma}{2\varepsilon} = \frac{\rho}{2\varepsilon} dx$$

$$E_{i} = \int_{-\frac{a}{2}}^{x} dE_{i} - \int_{x}^{\frac{a}{2}} dE_{i} = \int_{-\frac{a}{2}}^{x} \frac{\rho}{2\varepsilon} dx - \int_{x}^{\frac{a}{2}} \frac{\rho}{2\varepsilon} dx = \frac{\rho}{2\varepsilon} \left[x \right]_{-\frac{a}{2}}^{x} - \frac{\rho}{2\varepsilon} \left[x \right]_{x}^{\frac{a}{2}} = \frac{\rho}{2\varepsilon} \left[\left(x - \left(-\frac{a}{2} \right) \right) - \left(\frac{a}{2} - x \right) \right] = \frac{\rho}{2\varepsilon} \left(x \frac{a}{2} - \frac{a}{2} + x \right) = \frac{\rho}{2\varepsilon} 2x = \frac{\rho x}{\varepsilon}$$

• Exterior:
$$|x| > \frac{a}{2} \begin{cases} x > \frac{a}{2} \\ x < -\frac{a}{2} \end{cases}$$

$$\begin{bmatrix} \text{Interior} \to \varepsilon \\ \text{Exterior} \to \varepsilon_0 \end{bmatrix}$$

$$dE_e = \frac{\rho}{2\varepsilon_0} dx$$

$$E_e = \int_{-\frac{a}{2}}^{\frac{a}{2}} dE_e = \int_{-\frac{a}{2}}^{\frac{a}{2}} \frac{\rho}{2\varepsilon_0} dx = \frac{\rho}{2\varepsilon} \int_{-\frac{a}{2}}^{\frac{a}{2}} dx = \frac{\rho}{2\varepsilon_0} \left[\frac{a}{2} - \left(-\frac{a}{2} \right) \right] = \frac{\rho}{2\varepsilon_0} \left[\frac{2a}{2} \right] = \frac{\rho a}{2\varepsilon_0}$$

3. Ley de Gauss.

3.1. Carga puntual.

Campo eléctrico producido por una carga puntual.

Solución:

$$\Phi = \oint_{SUP} \overrightarrow{E} \, \overrightarrow{dS}$$
 Como $\overrightarrow{E} || \overrightarrow{dS} \Rightarrow \overrightarrow{E} \cdot \overrightarrow{dS} = E \cdot dS$

$$\Phi = \oint_{SUP} \overrightarrow{E} \, \overrightarrow{dS} = \oint_{SUP} E \cdot dS = E \oint_{SUP} dS = E \cdot S = E \cdot 4\pi r^2 = \frac{q}{\varepsilon_0}$$

$$\left[E = \frac{q}{4\pi r^2 \varepsilon_0} \right]$$

3.2. Hilo recto de carga.

Campo eléctrico en las proximidades de una distribución de carga lineal, recta e indefinida (hilo recto de carga).

$$\Phi = \oint_{SUP} \overrightarrow{E} \overrightarrow{dS} = \int_{SUP.LAT.} \overrightarrow{E} \overrightarrow{dS} + 2 \oint_{SUP.BASE} \overrightarrow{E} \overrightarrow{dS}$$

- Sobre la superficie de las bases: $\overrightarrow{E} \perp \overrightarrow{dS} \Rightarrow \overrightarrow{E} \cdot \overrightarrow{dS} = 0$
- Sobre la superficie lateral: $\overrightarrow{E} \mid\mid \overrightarrow{dS} \Rightarrow \overrightarrow{E} \cdot \overrightarrow{dS} = E \cdot dS, \ E \ cte.$

$$\Phi = \oint_{SUP.LAT.} \overrightarrow{E} \, d\overrightarrow{S} = \overrightarrow{E} \oint_{SUP.LAT.} \overrightarrow{dS} = E \cdot S_{LAT.} = E2\pi rh = \frac{\lambda \cdot h}{\varepsilon_0}$$

$$\left[E = \frac{\lambda}{2\pi\varepsilon_0 r}\right]$$

Obsérvese que el resultado, como era de esperar, coincide con el campo que obtuvimos para un hilo indefinidamente largo al final del ejemplo 2.3 y que utilizamos para calcular el campo del plano indefinido de carga en el siguiente problema.

3.3. Plano indefinido de carga.

Campo eléctrico en las proximidades de una distribución superficial de carga (plano indefinido de carga).

$$\Phi = \oint \overrightarrow{E} \cdot \overrightarrow{dS} = \frac{\sum q}{\varepsilon_0}$$

$$\Phi = \int_{S.BASES} \overrightarrow{E} \cdot \overrightarrow{dS} = \int_{S.BASES} E \cdot dS = E \int_{S.BASES} dS = E \cdot 2 \cdot S$$

$$\sum_{\Phi = E \cdot 2 \cdot S} q = \sigma \cdot S
\Phi = E \cdot 2 \cdot S$$
 Ley de Gauss $\Rightarrow E \cdot 2 \cdot S = \frac{\sigma \cdot S}{\varepsilon_0}$

$$E = \frac{\sigma}{2 \cdot \varepsilon_0}$$
 $E = \text{cte. (uniforme)}$

3.4. Esfera uniformemente cargada.

Campo eléctrico creado por una esfera uniformemente cargada.

Solución:

NOTA: Ahí arriba, lo que hay dibujado son tres esferas concéntricas; una es la esfera cargada (coloreada en gris), y las otras dos son las superficies de Gauss para calcular el campo eléctrico en el interior y exterior de la esfera cargada.

$$\rho = \frac{Q}{Vol._{esf.}} = \frac{Q}{\frac{4}{3}\pi R^3}$$

$$r \le R$$
 (interior) $(\overrightarrow{r_1})$

$$\Phi = \oint_S \overrightarrow{E} \, \overrightarrow{dS}$$

Como
$$\begin{vmatrix} \overrightarrow{E} & || \overrightarrow{dS} \Rightarrow \overrightarrow{E} \cdot \overrightarrow{dS} = E \cdot dS \\ \overrightarrow{E} = \text{cte.} \end{vmatrix}$$

$$\Phi = \oint_{SUP} \overrightarrow{E} \overrightarrow{dS} = E \oint_{S} dS = E \cdot S = E \cdot 4\pi r^{2}$$

$$\sum q = \rho \cdot \frac{4}{3}\pi r^3 = \frac{Q}{\frac{4}{3}\pi R^3} \cdot \frac{4}{3}\pi r^3 = \frac{Qr^3}{R^3}$$

$$Como \ \Phi = \frac{\sum q}{\varepsilon}$$

$$E \cdot 4\pi r^2 = \frac{\frac{Qr^3}{R^3}}{\varepsilon_0} \Rightarrow E = \frac{Qr}{\varepsilon_0 4\pi R^3}$$

•
$$r \ge R$$
 (exterior) $(\overrightarrow{r_2})$

 $\Phi=\operatorname{idem}$ en el anterior

$$\Phi = E \cdot 4\pi r^{2}$$

$$\sum q = Q$$

$$E = \frac{Q}{4\pi r^{2} \varepsilon_{0}} = K \frac{Q}{r^{2}}$$

3.5. Lámina indefinida cargada de espesor a.

Campo eléctrico debido a una lámina indefinida cargada uniformemente de espesor a.

Solución:

NOTA: Se entiende que S es la superficie de una base del cilindro que tomamos como superficie de Gauss.

$$-\frac{a}{2} \le x \le \frac{a}{2}$$
 (interior)

$$\Phi = \oint_{SUP} \overrightarrow{E_i} \overrightarrow{dS} = E_i S + E_i S = 2E_i S$$

$$\sum q = \rho \cdot Vol = \rho \cdot S \cdot 2x$$

$$2E_i S = \frac{\rho S 2x}{\varepsilon} \Rightarrow E_i = \frac{\rho x}{\varepsilon}$$

$$-\frac{a}{2} \ge x \ge \frac{a}{2}$$
 (exterior)

$$\Phi = 2E_e S$$

$$\sum q = \rho \cdot Vol = \rho Sa$$

$$2E_e S = \frac{\rho Sa}{\varepsilon_0} \Rightarrow E_e = \frac{\rho a}{2\varepsilon_0}$$

3.6. Esferas metálicas, (mal) numerado en los apuntes como ejemplo 1.

Determinar las densidades de carga de dos esferas metálicas conductoras concéntricas con cargas q_1 y q_2 , con radios según la figura:

Solución:

NOTA: SG1 es la primera superficie de Gauss, y SG2 la segunda, que son esferas y que están dispuestas de la siguiente manera:

NOTA2: Conviene recordar que las esferas dibujadas en las figuras son metálicas, es decir, conductoras y además están en equlibrio, por lo tanto, dentro del metal (las zonas sombreadas en la figura) el campo eléctrico es igual a cero.

$$\Phi_{SG1} = \oint_{SG1} \overrightarrow{E} d\overrightarrow{S} = 0 \Rightarrow \sum q_{SG1} = 0 \Rightarrow q_{1e} = q_1 \Rightarrow \sigma_1 = \frac{q_1}{4\pi R_1^2}$$

$$\Phi_{SG2} = 0 \Rightarrow \sum q_{SG2} = 0 \Rightarrow q_{1e} + q_{2i} = q_1 + q_{2i} = 0 \Rightarrow q_{2i} = -q_1 \Rightarrow \sigma_{2i} = \frac{-q_1}{4\pi R_2^2}$$

$$q_2 = q_{2i} + q_{2e} = -q_1 + q_{2e} \Rightarrow q_{2e} = q_1 + q_2 \Rightarrow \sigma_{2e} = \frac{q_1 + q_2}{4\pi R_{2e}^2}$$

4. El potencial eléctrico.

4.1. Sistema de cargas puntuales.

En un sistema formado por tres cargas puntuales $q_a = 33nC$, $q_b = -51nC$, $q_c = 47nC$, referenciado sobre unos ejes cartesianos con escala en mm, a través de los puntos a (93,0), b(0,0), c(0,93), respectivamente. Determinar el potencial en el punto(93,93).

Solución:

4.2. Anillo cargado.

Determinar el potencial eléctrico en un punto P situado sobre el eje de un anillo de radio a cargado uniformemente con carga total Q, si el punto se encuentra a una distancia x de su centro.

a) A partir directamente de la distribución de carga.

b) A partir del campo eléctrico
$$E_x = K \frac{Q \cdot x}{(x^2 + a^2)^{\frac{3}{2}}}$$

a)
$$dV = \frac{dq}{4\pi \cdot \varepsilon_0 \cdot r}$$

$$r = (x^2 + a^2)^{\frac{1}{2}}$$

$$V = \int_{Dist} dV = K \int_{Dist} \frac{dq}{r} = \frac{1}{4\pi\varepsilon_0 r} \int_{Dist} dq = \frac{Q}{4\pi \cdot \varepsilon (x^2 + a^2)^{\frac{1}{2}}}$$
b)
$$E_x = K \frac{Q \cdot x}{(x^2 + a^2)^{\frac{3}{2}}}$$

$$V = -\int_{\infty}^x \overrightarrow{E} \, d\overrightarrow{l} = -\int_{\infty}^x E_x dx = -\frac{Q}{4\pi\varepsilon_0} \int_{\infty}^x \frac{x \cdot dx}{(x^2 + a^2)^{\frac{3}{2}}} = -\frac{Q}{4\pi\varepsilon_0} \left[\frac{1}{(x^2 + a^2)^{\frac{1}{2}}} \right]_{\infty}^x = \frac{Q}{4\pi\varepsilon_0} \cdot \frac{1}{(x^2 + a^2)^{\frac{1}{2}}}$$

4.3. Disco cargado.

Determinar el potencial eléctrico en un punto P situado sobre el eje de un disco de radio R cargado uniformemente con densidad superficial de carga σ , si el punto se encuentra a una distancia x de su centro.

a) A partir directamente de la distribución de carga.

b) A partir del campo eléctrico
$$E_x = \frac{\sigma}{2\varepsilon_0} \left[1 - \frac{x}{\sqrt{x^2 + R^2}} \right]$$

a)
$$dV = K \frac{dq}{r}$$

$$dq = \sigma \cdot 2\pi a \cdot da$$

$$r = \sqrt{a^2 + x^2}$$

$$V = \int K \frac{\sigma \cdot 2\pi a \cdot da}{r} = K \cdot \sigma \cdot 2\pi \int \frac{dr}{r} = \frac{\sigma}{2\varepsilon_0} \int_0^R \frac{a \cdot da}{\sqrt{a^2 + x^2}} = \frac{\sigma}{2\varepsilon_0} \left[\sqrt{R^2 + x^2} - x \right]$$
b)
$$E_x = \frac{\sigma}{2\varepsilon_0} \left[1 - \frac{x}{\sqrt{x^2 + R^2}} \right]$$

$$V = \int_\infty^x \overrightarrow{E} \, d\overrightarrow{l} = \int_\infty^x E_x dx = -\frac{\sigma}{2\varepsilon_0} \int_\infty^x \left[1 - \frac{x}{\sqrt{x^2 + R^2}} \right] dx = -\frac{\sigma}{2\varepsilon_0} \left[x - \sqrt{x^2 + R^2} \right]_\infty^x$$

$$V = \frac{\sigma}{2\varepsilon_0} \left[\sqrt{R^2 + x^2} - x \right]$$

4.4. Esfera cargada.

Determinar el potencial eléctrico producido por una esfera dieléctrica de permitividad ε y radio R uniformemente cargada en todo su volumen, con carga total Q.

Solución:

$$\rho = \frac{Q}{\frac{4}{3}\pi R^2}$$

$$E_e = \frac{Q}{4\pi\varepsilon_0 r^2}$$

$$E_i = \frac{Qr}{4\pi\varepsilon R^3}$$

• V para r > R:

$$V_e = -\int_{\infty}^r \overrightarrow{E_e} \cdot \overrightarrow{dl} = -\int_{\infty}^r E_r \cdot dr = -\int_{\infty}^r E_e \cdot dr = -\frac{Q}{4\pi\varepsilon_0} \int_{\infty}^r \frac{dr}{r^2} = -\frac{Q}{4\pi\varepsilon_0} \left[\frac{-1}{r} \right]_{\infty}^r$$

$$V_e = \frac{Q}{4\pi\varepsilon_0 r}$$

• V para r < R:

$$\begin{split} V_i &= -\int_{\infty}^r E_e \cdot dr = -\left[\int_{\infty}^R E_e \cdot dr + \int_R^r E_i \cdot dr\right] \\ V_i &= -\frac{Q}{4\pi\varepsilon_0} \int_{\infty}^R \frac{dr}{r^2} - \frac{Q}{4\pi\varepsilon R^3} \int_R^r r \cdot dr = \frac{Q}{4\pi\varepsilon_0} \cdot \frac{1}{r} + \frac{Q}{4\pi\varepsilon R^3} \left(\frac{R^2 - r^2}{2}\right) \\ V_i &= \frac{Q}{8\pi R^3} \left[R^2 \left(\frac{2}{\varepsilon_0} + \frac{1}{\varepsilon}\right) - \frac{r^2}{\varepsilon}\right] \end{split}$$

4.5. Campo eléctrico a partir del potencial en el anillo cargado.

Determinar el campo eléctrico en un punto P situado sobre ele eje de un anillo de radio a cargado uniformemente con carga total Q, si el punto se enecuentra a una distancia x de su centro. A partir del potencial eléctrico: $V = \frac{Q}{4\pi\varepsilon_0\sqrt{x^2+a^2}}$

Solución:

$$E_x = -\frac{\partial V}{\partial x} = -\frac{\partial}{\partial x} \left[\frac{Q}{4\pi\varepsilon_0 \sqrt{x^2 + a^2}} \right]$$

$$E_x = -\frac{Q}{4\pi\varepsilon_0} \left[-\frac{1}{2} (x^2 + a^2)^{-\frac{3}{2}} \cdot 2x \right] = \frac{Qx}{4\pi\varepsilon_0 (x^2 + a^2)^{\frac{3}{2}}}$$

4.6. Campo eléctrico a partir del potencial en el disco cargado.

Determinar el campo eléctrico en un punto P situado sobre el eje de un disco de radio R cargado uniformemente con densidad superficial de carga σ , si el punto se encuentra a una distancia x de su centro. A partir del potencial eléctrico: $V = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{x^2 + R^2} - x \right)$

$$\overrightarrow{E} = -grad V$$

$$\overrightarrow{E_r} = -\frac{\partial V}{\partial r} \cdot \widehat{r}$$

$$V = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{x^2 + R^2} - x \right)$$

$$E_x = -\frac{\partial}{\partial x} \left[\frac{\sigma}{2\varepsilon_0} \left(\sqrt{x^2 + R^2} - x \right) \right] = -\frac{\sigma}{2\varepsilon_0} \left(\frac{2x}{2\sqrt{x^2 + R^2}} - 1 \right)$$

$$E_x = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{x}{\sqrt{x^2 + R^2}} \right)$$

4.7. Campo eléctrico a partir del potencial en la esfera cargada.

Determinar el campo eléctrico producido por una esfera dieléctrica de permitividad ε y radio R uniformemente cargada en todo su volumen, con carga total Q. A partir del potencial eléctrico:

Punto exterior: (r > R): $V = \frac{Q}{4\pi\varepsilon_0 r}$

Punto interior: (r < R): $V = \frac{Q}{8\pi R^3}$

Solución:

$$\overrightarrow{E_r} = E_r \cdot \widehat{r}$$

• Exterior (r > R):

$$E_r = -\frac{\partial}{\partial r} \left[\frac{Q}{4\pi\varepsilon_0} \cdot \frac{1}{r} \right] = -\frac{Q}{4\pi\varepsilon_0} \left(-\frac{1}{r^2} \right) = \frac{Q}{4\pi\varepsilon_0 r^2}$$

■ Interior (r < R):

$$E_r = -\frac{\partial}{\partial r} \left[\frac{Q}{8\pi R^3} \left[R^2 \left(\frac{2}{\varepsilon_0} + \frac{1}{\varepsilon} \right) - \frac{r^2}{\varepsilon} \right] \right] = \frac{Q}{8\pi R^3} \cdot \frac{2r}{\varepsilon} = \frac{Qr}{4\pi \varepsilon R^3}$$

5. Capacidad y energía eléctrica.

5.1. Capacidad equivalente de un sistema de cuatro placas.

Determinar la capacidad equivalente entre los terminales A y B del sistema de la figura formado por cuatro placas conductoras paralelas, de superficie S y espesor despreciable, situadas en el vacío con una separación entre placas igual a d.

Solución:

El montaje de la figura del enunciado es equivalente a estos:

$$\begin{array}{c|c}
 & C \\
 & C \\$$

$$C_{eq} = \frac{1}{\frac{1}{C} + \frac{1}{C}} + C = \frac{C}{2} + C = \frac{3}{2}C$$

$$C = \frac{Q}{V}$$

$$V = E \cdot d$$

El campo elétrico entre las placas del condensador: $E = \frac{\sigma}{\varepsilon}$

$$V = \frac{Q}{S \cdot \varepsilon} \cdot d$$

$$C = \frac{Q}{\frac{Q}{S \cdot \varepsilon} \cdot d} = \frac{S\varepsilon}{d}$$

$$C_{eq} = \frac{3}{2}C = \frac{3}{2}\frac{S\varepsilon}{d}$$

5.2. Condensador de placas rectangulares con ε variable.

- Determinar la capacidad del condensador plano de placas rectangulares de longitud a y anchura b, separadas a una distancia d mediante un dieléctrico de permitividad $\varepsilon = \varepsilon_0 (1 + K \cdot x)$ siendo x la distancia a uno de sus extremos.
- b) Determinar la expresión de la densidad de carga en cada placa, si se aplica una d.d.p. V entre ellas.

Solución:

a)
$$dS = b \cdot dx$$

$$dq = \sigma \cdot dS = \sigma \cdot b \cdot dx$$

$$dC = \varepsilon \frac{dS}{d} = \varepsilon_0 (1 + kx) \frac{b \cdot dx}{d}$$

$$C = \int dC = \frac{\varepsilon_0 \cdot a \cdot b}{d} \int_0^a (1 + kx) dx = \frac{\varepsilon_0 \cdot b}{d} \left[x + \frac{kx^2}{2} \right]_0^a = \frac{\varepsilon_0 ab}{d} \left[1 + \frac{ka}{2} \right]$$

Otra manera de hacer este aparatado:

$$Q = \int dq = \int \sigma \cdot b \cdot dx = \frac{V \varepsilon_0 b}{d} \int_0^a (1 + kx) dx$$

$$Q = \frac{V \cdot \varepsilon_0 \cdot b \cdot a}{d} \left(1 + \frac{ka}{2} \right)$$

$$C = \frac{Q}{V} = \frac{\varepsilon_0 ba}{d} \left(1 + \frac{ka}{2} \right)$$

b)
$$E = \frac{\sigma}{\varepsilon}$$

QueGrande.org

$$V = E \cdot d = \frac{\sigma}{\varepsilon} \cdot d$$

$$\sigma = \frac{V\varepsilon_0}{d}(1+kx)$$

5.3. Condensador de placas rectangulares con ε variable.

Repetir el ejercicio anterior en el caso de que $\varepsilon = \varepsilon_0(1 + K \cdot y)$ siendo y la distancia a una placa.

Solución:

a)
$$C_{dy} = \varepsilon \frac{S}{dy}$$

$$\frac{1}{C_{dy}} = \frac{dy}{a \cdot b \cdot \varepsilon_0 (1 + ky)}$$

$$\frac{1}{C} = \int \frac{1}{C_{dy}} = \frac{1}{ab\varepsilon_0} \int_0^d \frac{dy}{1 + ky} = \frac{1}{ab\varepsilon_0} \left[\frac{\ln(1 + ky)}{k} \right]_0^d = \frac{\ln(1 + kd)}{ab\varepsilon_0 k}$$

$$C = \frac{ab\varepsilon_0 k}{\ln(1 + kd)}$$

b)
$$V = -\int \overrightarrow{E} \cdot \overrightarrow{dl} = -\int_0^d E \cdot dy = -\frac{\sigma}{\varepsilon_0} \int_0^d \frac{dy}{1+ky} = -\frac{\sigma}{\varepsilon_0} \left[\frac{\ln(1+ky)}{k} \right]_0^d$$

$$\sigma = \frac{Vk\varepsilon_0}{\ln(1+kd)}$$

5.4. Energía almacenada por una esfera conductora cargada.

Calcular la energía total almacenada por una esfera conductora de radio R con carga Q.

- a) Utilizando la densidad de energía.
- b) A partir de la capacidad de la esfera.

c) Usando la definición de energía almacenada como la necesaria para reunir la distribución.

Solución:

a)
$$r > R \Rightarrow E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

$$U = \frac{1}{2}\varepsilon_0 \cdot E^2$$

$$U = \frac{1}{2}\varepsilon_0 \cdot \frac{Q^2}{(4\pi\varepsilon_0 r^2)^2}$$

$$dU = U \cdot dVol = \frac{1}{2}\varepsilon_0 \frac{Q^2}{(4\pi\varepsilon_0 r^2)^2} 4\pi r^2 \cdot dr = \frac{Q^2 dr}{8r^2\varepsilon_0 \pi}$$

$$U = \int dU = \frac{Q^2}{8\pi\varepsilon_0} \int_R^\infty \frac{dr}{r^2} = \frac{Q^2}{8\pi\varepsilon_0} \left[-\frac{1}{r} \right]_R^\infty = \frac{Q^2}{8\pi\varepsilon_0 R}$$

b)
$$V = \frac{Q}{4\pi\varepsilon_0 R}$$

 $C = \frac{Q}{V} = 4\pi\varepsilon_0 R$
 $U = \frac{1}{2} \frac{Q^2}{C} = \frac{Q^2}{8\pi\varepsilon_0 R}$

c)
$$0 < q < Q \Rightarrow V = \frac{q}{4\pi\varepsilon_0 R}$$

 $dU = V \cdot dq$

$$U = \int_{Dist} dU = \int_{Dist} V \cdot dq = \int_{0}^{Q} \frac{q \cdot dq}{4\pi\varepsilon_{0}R} = \left[\frac{q^{2}}{8\pi\varepsilon_{0}R}\right]_{0}^{Q} = \frac{Q^{2}}{8\pi\varepsilon_{0}R}$$

5.5. Fuerza entre placas de un condensador plano (mal) numerado en los apuntes como ejemplo 4.

Determinar la fuerza que se ejerce entre las armaduras de un condensador plano.

a) A carga constante.

b) A potencial constante.

Solución:

a)
$$C = \varepsilon_0 \frac{S}{x}$$

$$F_x = \frac{\partial}{\partial x} \left[\frac{1}{2} \frac{Q^2}{C} \right] = -\frac{Q^2}{2} \frac{\partial}{\partial x} \left[\frac{x}{\varepsilon_0 S} \right] = -\frac{Q^2}{2\varepsilon_0 S}$$

b)
$$F_x = \frac{\partial}{\partial x} \left[\frac{1}{2} V^2 C \right] = \frac{V^2}{2} \frac{\partial}{\partial x} \left[\frac{\varepsilon_0 S}{x} \right] = -\frac{V^2 \varepsilon_0 S}{2x^2}$$

Vamos a comprobar como el resultado de ambos aparatados son equivalentes:

$$Q^2 = V^2 \cdot C^2 = \frac{\varepsilon_0^2 S^2}{x^2} V^2$$
$$-\frac{Q^2}{2\varepsilon_0 S} = \frac{-V^2}{2} \frac{\varepsilon_0^2 S^2}{\varepsilon_0 S x^2} = -\frac{V^2 \varepsilon_0 S}{2x^2}$$

Parte III

Electrocinética. Corriente eléctrica.

6. Corriente y resistencia eléctricas.

6.1. Resistencia de un tronco de cono.

Comprobar que la expresión de la resistencia medida entre las bases de un tronco de cono macizo de material de conductividad uniforme σ , de radios de las bases R_1 y R_2 $(R_1 < R_2)$ y altura h, viene dada por:

$$R = \frac{h}{\pi \sigma R_1 R_2}$$

6.2. Conductancia de un cable coaxial.

Comprobar que la espresión de la conductancia radial por unidad de longitud de cable coaxial (G medida entre los conductores) de radios R_a y R_b ($R_a < R_b$)y con dieléctrico de conductividad uniforme σ (imperfecto), viene dada por:

$$\frac{G}{l} = \frac{2\pi\sigma}{ln(\frac{R_b}{R_a})}$$

$$G = \frac{I}{V_A - V_B}$$

$$J = \frac{I}{S} = \frac{I}{S} = \frac{I}{2\pi r l} = \sigma E$$

$$E = \frac{I}{2\pi \sigma r l}$$

$$V_A - V_B = -\int_B^A E \cdot dr = -\frac{I}{2\pi \sigma l} \int_{R_b}^{R_a} \frac{dr}{r} = \frac{I}{2\pi \sigma l} \cdot \ln\left(\frac{R_b}{R_a}\right)$$

$$R = \frac{V_A - V_B}{I} = \frac{\ln(R_b/R_a)}{2\pi \sigma l}$$

$$G = \frac{I}{V_A - V_B} = \frac{2\pi \sigma l}{\ln(R_b/R_a)}$$

$$\frac{G}{l} = \frac{2\pi \sigma}{\ln(\frac{R_b}{R_a})}$$

6.3. Resistencia equivalente de un circuito.

Comprobar que la resistencia equivalente del circuito de la figura vale: $R_{eq} = \frac{11}{13}R$

$$R_{eq} = \frac{V}{I}$$

$$\begin{cases}
\text{Nodo 1: } 0 = I - I_1 - I_2 \Rightarrow I_2 = I - I_1 \\
\text{Nodo 2: } 0 = I_1 + I_3 - I_4 \Rightarrow I_4 = I_1 - I_3 \\
\text{Nodo 3: } 0 = I_2 + I_3 - I_5 \Rightarrow I_5 = I_2 + I_3 = I - I_1 + I_3
\end{cases}$$

$$\begin{cases}
\text{Rama 1: } 0 = -V + I_1 \cdot 2R + I_4 \cdot R = -V + 2I_1 + I_4 \\
\text{Rama 2: } 0 = -I_1 \cdot 2R + I_2 \cdot R - I_3 \cdot R = -2I_1 + I_2 - I_3 \\
\text{Rama 3: } 0 = +I_3 \cdot R + I_5 \cdot R - I_4 \cdot R = I_3 + I_5 - I_4
\end{cases}$$

$$\begin{cases}
V = 2I_1 + I_4 = 2I_1 + (I_1 - I_3) \\
0 = -2I_1 + (I - I_1) - I_3 \\
0 = I_3 + (I - I_1 - I_3) - (I_1 - I_3)
\end{cases}$$

$$\begin{cases}
V = 3I_1 + I_3 \\
0 = I - 3I_1 - I_3 \\
0 = I - 2I_1 + 3I_3
\end{cases}$$

$$I = \begin{vmatrix} V & 3 & -1 \\ 0 & -3 & -1 \\ 0 & -2 & 3 \end{vmatrix} = \frac{V \cdot \begin{vmatrix} -3 & -1 \\ -2 & 3 \end{vmatrix}}{\begin{vmatrix} 0 & 3 & -1 \\ 1 & -3 & -1 \\ 1 & -2 & 3 \end{vmatrix}} = \frac{V \cdot \begin{vmatrix} -3 & -1 \\ -2 & 3 \end{vmatrix}}{\begin{vmatrix} 0 & 3 & -1 \\ 1 & -3 & -1 \\ 1 & -2 & 3 \end{vmatrix}}$$

$$R_{eq} = \frac{V}{I} = \frac{\begin{vmatrix} 0 & 3 & -1 \\ 1 & -3 & -1 \\ 1 & -2 & 3 \end{vmatrix}}{\begin{vmatrix} -3 & -1 \\ -2 & 3 \end{vmatrix}} = \frac{-11}{-13} = \frac{11}{13}R$$

6.4. Resistencia de un conductor cilíndrico con ρ variable.

Comprobar que la resistencia de un conductor cilíndrico de longitud l y sección S, de resistividad $\rho = a + kx$, siendo x la distancia entre un punto de la sección y uno de los extremos viene dada por:

$$R = R\frac{1}{S}\left(a + \frac{1}{2}kl\right)$$

Solución:

$$R = \rho \frac{l}{S}$$

$$dR = \rho \frac{dx}{S} = (k + ax) \frac{dx}{S}$$

$$R_{eq} = \int_{H_{slo}} dR = \frac{1}{S} \int_{0}^{l} (k + ax) dx = \frac{1}{S} \left[kx + \frac{ax^{2}}{2} \right]_{0}^{l} = \frac{l}{S} \left(k + \frac{al}{2} \right)$$

6.5. Resistencia de un semianillo de sección rectangular.

Comprobar que la resistencia entre los extremos de un semianillo de sección rectangular de radios R_a y R_b ($R_a < R_b$), altura h y resistividad ρ , vale:

$$R = \frac{\pi \rho}{h \cdot ln\left(\frac{R_b}{R_a}\right)}$$

Solución:

$$R = \rho \frac{l}{S}$$

$$dR = \rho \frac{\pi x}{h \cdot dx}$$

$$\frac{1}{R} = \int_{S} \frac{1}{dR} = \int_{R_a}^{R_b} \frac{h \cdot dx}{\pi \rho x} = \frac{h}{\pi \rho} \int_{R_a}^{R_b} \frac{dx}{x} = \frac{h}{\pi \rho} ln\left(\frac{R_b}{R_a}\right)$$

$$R = \frac{\pi \rho}{h \cdot ln\left(\frac{R_b}{R_a}\right)}$$

6.6. Circuito para aplicar Kirchoff, Thévenin, Norton y superposición.

En el circuito de la figura, determinar aplicando Kirchoff, Thévenin, Norton y superposición:

- a) Potencia en la resitencia R_4
- b) Carga almacenada en el condensador C.

Solución:

En corriente continua, a efectos de análisis, podemos quitar los condensadores.

• (Directamente) Kirchoff:

a)
$$I \cdot R_4 - 12 + (2 + I) \cdot R_3 + (3 + I) - R_1 = 0$$

$$I \cdot 4 - 12 + 2 \cdot 3 + 3I + 3 \cdot 1 + I = 0$$

$$8I = 3$$

$$I = \frac{2}{8}A = 0,375A$$

$$PR_4 = I_{R_4}^2 \cdot R_4 = 0,375^2 \cdot 4 = 0,5625W$$
b) $V_{cd} = (I + 3) \cdot R_1 + 3 \cdot R_5 + R_2 \cdot I_2 = (3 + 0,375) \cdot 1 + 3 \cdot 5 + 2 \cdot 2 = 22,375V$

$$Q = C \cdot V$$

■ Por Thévenin:

 $Q = C \cdot V_{cd} = 1\mu F \cdot 22,375V = 22,375\mu C$

$$E_{TH} = V_{ab} = -3 \cdot 1 - 2 \cdot 3 + 12 = 3V$$

$$R_{eq} = R_{TH} = R_1 + R_3 = 1 + 3 = 4\Omega$$

$$I = \frac{E_{TH}}{R_A + R_{TH}} = \frac{3}{4+4} = 0.375A$$

Y seguiría como en la solución anterior.

■ Por Norton:

$$-(3+I_N)\cdot 1 + -(2+I_N)\cdot 3 + 12 = 0$$

$$I_N = \frac{3}{4} = 0.75A$$

Se calula como en la solución anterior: $R_N=R_{eq}=4\Omega$

$$V_{ab} = I_N \cdot \frac{1}{\frac{1}{R_N} + \frac{1}{R_4}} = I \cdot R_4$$

$$I = I_N \cdot \frac{R_4}{R_4 + R_N} = 0.75 \cdot \frac{4}{4 + 4} = 0.75 \cdot \frac{1}{2} = 0.375A$$

Y seguiría como en las soluciones anteriores.

■ Por superposición:

$$I_E = \frac{E}{R_1 + R_4 + R_3} = \frac{12}{8} = \frac{3}{2}A = 1,5A$$

$$V_{cdE} = I_E \cdot R_1 + 0 + 0 = 1,5V$$

Y seguiría como en las soluciones anteriores.

Parte IV

Campo magnético. Inducción

NOTA: En los ejemplos de campo magnético usaremos frecuentemente esta notación para los vectores perpendiculares al papel:

- \otimes Entra en el papel.
- ⊙ Sale del papel.

7. Campo magnético.

7.1. De un hilo conductor con forma de semicircunferencia en un campo magnético

Compruebe que la fuerza sobre un hilo conductor en forma de semicircunferencia de radio R con corriente I situado en un campo magnético uniforme B perpendicular al plano que lo contiene viene dado por $F_x = 0$, $F_y = 2IRB$.

$$dl = R \cdot d\theta$$

$$dF_m = I \cdot B \cdot R \cdot d\theta$$

$$dF_{mx} = I \cdot B \cdot R \cdot \cos \theta \cdot d\theta$$

$$dF_{my} = I \cdot B \cdot R \cdot \sin \theta \cdot d\theta$$

$$F_{mx} = I \cdot B \cdot R \cdot \int_0^{\pi} \cos \theta \cdot d\theta = 0$$
$$F_{my} = I \cdot B \cdot R \cdot \int_0^{\pi} \sin \theta \cdot d\theta = 2 \cdot I \cdot B \cdot R$$

8. Fuentes de campo magnético.

8.1. De un segmento de corriente.

Compruebe que el campo magnético producido en un punto P situado a una distancia R de un hilo rectilíneo (segmento) de corriente I, siendo θ_1 y θ_2 los ángulos que forman las rectas que unen P con los extremos del hilo con la perpendicular al hilo que pasa por P, vale:

$$B = \frac{\mu_0 I}{4\pi R} \left(\sin \theta_1 + \sin \theta_2 \right)$$

$$\begin{aligned} \overrightarrow{dl} &= dx \cdot \widehat{l} \\ \overrightarrow{dB} &= \frac{\mu_0}{4\pi} \cdot \frac{I \overrightarrow{dl} \times \widehat{r}}{r^2} \\ |\overrightarrow{dl} \times \widehat{r}| &= |dx \cdot \widehat{i} \times \widehat{r}| = dx \sin \alpha \\ \overrightarrow{dB} &= \frac{\mu_0}{4\pi} \cdot \frac{I \cdot dx \cdot \sin \alpha}{r^2} \\ B &= \frac{\mu_0 I}{4\pi} \int_{hilo} \frac{dx \sin \alpha}{r^2} \\ \sin \alpha &= \sin \left(\theta + \frac{\pi}{2}\right) = \cos \left[\left(\theta + \frac{\pi}{2}\right) - \frac{\pi}{2}\right] = \cos \theta \\ x &= R \cdot \tan \theta \Rightarrow dx = \frac{R}{\cos^2 \theta} d\theta \\ r &= \frac{R}{\cos \theta} \\ B &= \frac{\mu_0}{4\pi} \int_{-\theta_1}^{\theta_2} \frac{\frac{R}{\cos^2 \theta} \cdot d\theta \cdot \cos \theta}{\frac{R^2}{\cos^2 \theta}} = \frac{\mu_0}{4\pi} \int_{-\theta_1}^{\theta_2} \frac{\cos \theta \cdot d\theta}{R} = \frac{\mu_0 I}{4\pi R} \int_{-\theta_1}^{\theta_2} \cos \theta \cdot d\theta \end{aligned}$$

Aunque el problema ya está resuelto, vamos a ver que ocurriría si el hilo fuese indefinido:

$$\theta_1 = \theta_2 = \frac{\pi}{2}$$

$$B = \frac{\mu_0 I}{2\pi R}$$

8.2. De una espira circular.

 $B = \frac{\mu_0 I}{4\pi R} (\sin \theta_2 - \sin(-\theta_1)) = \frac{\mu_0 I}{4\pi R} (\sin \theta_2 + \sin \theta_1)$

Compruebe que un campo magnñetico producido por una espira circular de radio a por el que pasa una corriente I, en un punto de su eje perpendicular a su plano a una distancia x de su centro, vale:

$$B_x = \frac{\mu I a^2}{2(x^2 + a^2)^{\frac{3}{2}}}$$

Solución:

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \cdot \overrightarrow{dl} \times r}{r^2}$$

Como
$$\overrightarrow{dl} \perp \widehat{r}: |\overrightarrow{dl} \times \widehat{r}| = |\overrightarrow{dl}| \cdot |\widehat{r}| = \overrightarrow{dl} \cdot 1 = dl$$

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \cdot dl}{r^2} \begin{cases} dB_x = dB \cdot \cos \alpha = \frac{\mu_0}{4\pi} \frac{I \cdot dl}{r^2} \cos \alpha \\ dB_\perp = dB \cdot \sin \alpha \text{ pero } B_\perp = 0 \end{cases}$$

$$B_x = \int_{espira} dB_x = \frac{\mu_0}{4\pi} \frac{I \cos \alpha}{r^2} \int_0^{l=2\pi a} dl = \frac{\mu_0 \cdot I \cdot \cos \alpha \cdot 2\pi a}{4\pi r^2}$$

$$\cos \alpha = \frac{a}{r}$$

$$r = \sqrt{a^2 + x^2}$$

$$B_x = \frac{\mu_0 I \frac{a}{\sqrt{a^2 + x^2}} a}{2\left(\sqrt{a^2 + x^2}\right)^2} = \frac{\mu_0 a^2 I}{(x^2 + a^2)^{\frac{3}{2}}}$$

8.3. De un hilo muy largo de corriente.

Compruebe que el campo magnético en el interior y exterior de un hilo conductor recto y muy largo, de forma cilíndrica de radio a, que transporta una corriente I vale:

$$B = \frac{\mu_0 I}{2\pi r} \qquad r \ge a$$

$$B = \frac{\mu_0 Ir}{2\pi a^2} \qquad r \le a$$

■ En el exterior $(r \ge a)$:

$$\oint_C \overrightarrow{B} \, d\overrightarrow{l} = B \int dl = B \cdot 2\pi r = \mu_0 \cdot \sum I = \mu_0 \cdot I$$

$$B = \frac{\mu_0 I}{2\pi r}$$

■ En el interior $(r \le a)$:

$$\oint_C \overrightarrow{B} \cdot \overrightarrow{dl} = \oint_C B \cdot dl = B \oint_C dl = B \cdot 2\pi r = \mu_0 \cdot \sum I$$

$$J = \frac{I}{\pi a^2} = \frac{\sum I}{\pi r^2} \Rightarrow \sum I = I \frac{r^2}{a^2}$$

$$B \cdot 2\pi r = \mu_0 I \frac{r^2}{a^2}$$

$$B = \frac{\mu_0 I r}{2\pi a^2}$$

■ Gráfica del campo magnético;

8.4. De un solenoide recto muy largo.

Compruebe el campo magnético en en interior de un solenoide recto muy largo, con n espiras por unidad de longitud y recorrido por una corriente I, viene dado por:

$$B = \mu_0 nI$$

Solución:

Si el solenoide es indefinido, el campo magnético es nulo en el exterior y en \overline{ab} y \overline{cd} el producto escalar $\overrightarrow{B} \cdot \overrightarrow{dl}$ también es nulo, por lo tanto llega con integrar en el segmento \overline{ab} .

$$\oint_C \overrightarrow{B} \cdot \overrightarrow{dl} = B \int_{\overline{ab}} dl = B \cdot l = \mu_0 \sum I$$
Siendo $n = \frac{\text{número de espiras}}{\text{longitud}} : \sum I = n \cdot l \cdot I$

$$B = \frac{\mu_0 \sum I}{l} = \frac{\mu_0 \cdot n \cdot l \cdot I}{l} = \mu_0 \cdot n \cdot I$$

9. Inducción electromagnética y energía.

9.1. De una fem inducida en una barra conductora.

Compruebe que la fem inducida en una barra conductora de longitud l que gira con velocidad angular ω constante alrededor de uno de sus extremos, en un campo magnético uniforme ${\bf B}$ dirigido perpendicularmente al plano de giro vale:

$$\varepsilon = \frac{1}{2}B\omega l^2$$

$$\overrightarrow{F_B} = q \cdot \overrightarrow{V} \times \overrightarrow{B} = q \cdot V \cdot B$$

Equilibrio:
$$F_e = q \cdot E \Rightarrow F_B = q \cdot V \cdot B \Rightarrow E = V \cdot B$$

$$V = \omega \cdot R \Rightarrow E = B \cdot \omega \cdot r$$

$$V_{ab} = -\int_{b}^{a} \overrightarrow{E} \cdot \overrightarrow{dr} = -\int_{b}^{a} E \cdot dr = \int_{a}^{b} B \cdot \omega \cdot r \cdot dr = \int_{0}^{l} B \cdot \omega \cdot r \cdot dr = B \cdot \omega \cdot \frac{l^{2}}{2} = \frac{1}{2} B \omega l^{2}$$

Otra forma de resolver el problema es pensando en en diferencial de flujo que hay en el área barrida por la barra en un diferencial de tiempo.

$$d\theta = \omega \cdot dt$$

$$d\Phi = B \cdot dS$$

Podemos ver d S como un triángulo: $dS = \frac{d\theta \cdot l \cdot l}{2}$

$$d\Phi = B \cdot \frac{1}{2} l^2 d\theta = \frac{1}{2} B\omega l^2 dt$$

$$|\varepsilon| = \frac{d\Phi}{dt} = \frac{1}{2}B\omega l^2$$

9.2. De un solenoide largo y recto.

Compruebe que el coeficiente de autoinducción o inductancia de un solenoide largo y recto, de longitud l, sección S y n vueltas por unidad de longitud, vale:

$$L = \mu_0 n^2 l S$$

38

Se entiende que n es el número de espiras por unidad de longitud y N el número de espiras.

$$B = \mu_0 \cdot n \cdot i$$

$$N = n \cdot l$$

$$\Phi_{esp} = BS = \mu_0 niS$$

$$\Phi_{total} = N\Phi_{esp} = N\mu_0 niS$$

$$\frac{\Phi_r}{i} = L$$

$$L = N \cdot n \cdot \mu_0 \cdot S = n^2 \cdot \mu_0 \cdot S \cdot l = \frac{\mu_0 N^2 S}{l}$$

9.3. De un cable coaxial.

Compruebe que el coeficiente de autoinducción o inductancia por unidad de longitud de un cable coaxial compuesto de dos cilindros conductores de paredes muy delgadas de radios R_1 y R_2 ($R_2 > R_1$), vale:

$$L/l = \frac{\mu_0}{2\pi} \ln \frac{R_2}{R_1}$$

$$\oint_{C} \overrightarrow{B} \cdot \overrightarrow{dl} = B \cdot 2\pi r = \mu_{0} \sum I$$

$$d\Phi = B \cdot dS = B \cdot l \cdot dr = \frac{\mu_{0} \cdot I \cdot l \cdot dr}{2\pi r}$$

$$\Phi = \int_{S} d\Phi = \frac{\mu_{0} \cdot I \cdot l}{2\pi} \int_{R_{1}}^{R_{2}} \frac{dr}{r} = \frac{\mu_{0} \cdot I \cdot l}{2\pi} \cdot \ln\left(\frac{R_{2}}{R_{1}}\right) = L \cdot I$$

$$L = \frac{\mu_{0}l}{2\pi} \ln\left(\frac{R_{2}}{R_{1}}\right)$$

$$\frac{L}{l} = \frac{\mu_{0}}{2\pi} \ln\left(\frac{R_{2}}{R_{1}}\right)$$

9.4. De un conductor cilíndrico recto.

Compruebe que la inductancia interna por unidad de longitud de un hilo conductor cilíndrico recto macizo vale:

$$L/l = \frac{\mu_0}{8\pi} = 0,05\mu H/m$$

Solución:

$$B \cdot dl = B \cdot 2\pi r = \mu_0 I \frac{r^2}{R^2} \Rightarrow B = \frac{\mu_0 I r}{2\pi R^2}$$

$$U = \frac{1}{2} \frac{B^2}{\mu_0} = \frac{1}{2} \frac{\frac{\mu_0^2 I^2 r^2}{4\pi^2 R^4}}{\mu_0} = \frac{\mu_0 I^2 r^2}{8\pi^2 R^4}$$

$$dU = u \cdot dV$$

$$dV = l \cdot 2\pi r \cdot dr$$

$$dU = u \cdot dV = \frac{\mu_0 I^2 r^3 l}{4\pi R^4} dr$$

$$U = \int_{hilo} du = \frac{\mu_0 I^2 l}{4\pi R^4} \int_0^R r^3 \cdot dr = \frac{\mu_0 I^2 l}{4\pi R^4} \cdot \frac{R^4}{4} = \frac{\mu_0 I^2 l}{16\pi} = \frac{1}{2} L I^2$$

$$L = \frac{\mu_0 l}{8\pi}$$

$$L/l = \frac{\mu_0}{8\pi} = 0,05\mu H/m$$

9.5. De la fuerza magnética a partir de la energía en un solenoide.

Compruebe que la fuerza que actúa sobre el núcleo de permeabilidad $\mu>\mu_0$ de un solenoide largo y recto de sección transversal S y n espiras por unidad de longitud recorridas por una corriente I constante, vale:

$$F = \frac{1}{2} (\mu - \mu_0) I^2 n^2 S$$

$$\frac{\underline{\mu}}{B} = \mu \cdot n \cdot I
\Phi_{esp} = BS = \mu n I S \begin{vmatrix} \underline{\mu_0} \\ \overline{B_0} = \mu_0 \cdot n \cdot I \\ \Phi_{esp0} = B_0 S = \mu_0 n I S \end{vmatrix}$$

$$\Phi_T = \Phi_{esp} \cdot nx + \Phi_{esp0} \cdot n(l-x) = \mu nIS \cdot nx + \mu_o nIS \cdot n(l-x) = n^2 SI \left[\mu x + \mu_0 (l-x) \right]$$

$$L = \frac{\Phi_T}{I} = n^2 S[\mu x + \mu_0 (l - x)]$$

$$U = \frac{1}{2} L I^2 = \frac{1}{2} \Phi I = \frac{1}{2} n^2 S I^2 [\mu x + n(l - x)]$$

$$F_x = \frac{\partial U}{\partial x} = \frac{1}{2} n^2 S I^2 (\mu - \mu_0)$$

De esta última ecuación deducimos que el solenoide tiende a absorber corriente si tiene menor permeabilidad que el aire, si en cambio es mayor, tiende a proporcionarla.

9.6. De la inducción mutua en un solenoide.

Compruebe que la inductancia mutua entre un solenoide recto muy largo de n vueltas por unidad de longitud y una espira de radio a centrada en su mismo eje vale:

$$M = \mu_0 n \pi a^2$$

$$B = \mu_0 nI$$

$$\Phi = BS = \mu_0 nI \cdot \pi a^2$$

$$M = \frac{\Phi}{I} = \mu_0 n \pi a^2$$

9.7. De la inducción mutua entre un hilo recto y una espira rectangular.

Compruebe que el coeficiente de inducción mutua entre un hilo de corriente recto e indefinido y una espira rectangular coplanaria de lados a y b, situada a una distancia d del hilo, vale:

$$M = \frac{\mu_0 b}{2\pi} \ln \frac{d+a}{d}$$

Solución:

El campo magnético producido por el hilo a distancia x de él: $B = \frac{\mu_0 I}{2\pi x}$

$$d\Phi = B \cdot dS = B \cdot b \cdot dx = \frac{\mu_0 I}{2\pi x} \cdot b \cdot dx$$

$$\Phi = \int_S d\Phi = \frac{\mu_0 I b}{2\pi} \int_d^{d+a} \frac{dx}{x} = \frac{\mu_0 I b}{2\pi} \ln\left(\frac{d+a}{d}\right)$$

$$M = \frac{\Phi}{I} = \frac{\mu_0 b}{2\pi} \ln\left(\frac{d+a}{d}\right)$$

Parte V

Sistemas

10. Régimen transitorio en sistemas lineales.

De este tema no hay ejemplos en los apuntes, mire los boletines.

11. Régimen sinusoidal permanente.

En este tema no hay ejemplos de teoría, sin embargo hay ejercicios.