TELECOM Nancy (ESIAL)

Maths Numériques

feuille 4: interpolation

Exercice 1. Interpolation de Lagrange.

On dispose de trois points (x_0, y_0) , (x_1, y_1) et (x_2, y_2) définis par $x_0 = -1$, $x_1 = 0$, $x_2 = 1$ et $y_0 = -1$, $y_1 = 2$, $y_2 = 1$. Déterminer le polynôme d'interpolation de Lagrange associé aux points (x_0, y_0) , (x_1, y_1) et (x_2, y_2) . Laisser le polynôme sous la forme Lagrange : ne pas revenir à la base canonique.

Exercice 2. Evaluation du polynôme de Lagrange.

Dans cet exercice on étudie le problème de l'évaluation du polynôme d'interpolation des n+1 points $(x_i, y_i)_{0 \le i \le n}$ écrit dans la base de Lagrange associée.

- 1. Ecrire et calculer la complexité d'un algorithme de calcul de : $p(t) = \sum_{i=0}^{n} y_i \mathcal{L}_i(t)$ n'utilisant aucune astuce et/ou pré-factorisation des calculs.
- 2. Nous allons maintenant construire la formule "barycentrique de Lagrange" :
 - (a) On pose $\Phi(t) = \prod_{i=0}^{n} (t x_i)$. Montrer que : $\Phi'(x_k) = \prod_{\substack{i=0 \ i \neq k}}^{n} (x_k x_i)$.

En déduire que : $\mathcal{L}_k(t) = \begin{cases} \frac{\Phi(t)}{(t-x_k)\Phi'(x_k)} & \text{si } t \neq x_k \\ 1 & \text{si } t = x_k \end{cases}$

et finalement que pour $t \neq x_i, \forall i : p(t) = \Phi(t) \sum_{i=0}^{n} \frac{y_i}{(t-x_i)\Phi'(x_i)}$

(b) Montrer que $\forall t \in \mathbb{R} : \sum_{i=0}^{n} \mathcal{L}_i(t) = 1$. En déduire que pour $t \neq x_i, \forall i$:

$$\Phi(t) = \frac{1}{\sum_{i=0}^{n} \frac{1}{(t-x_i)\Phi'(x_i)}}$$

En remplaçant $\Phi(t)$ par cette expression dans la précédente on obtient alors la formule "barycentrique de Lagrange" :

$$p(t) = \frac{\sum_{i=0}^{n} \frac{y_i}{(t-x_i)\Phi'(x_i)}}{\sum_{i=0}^{n} \frac{1}{(t-x_i)\Phi'(x_i)}}$$

Cette formule peut sembler dangereuse lorsqu'on doit évaluer p(t) pour $t \simeq x_i$... En fait seul des problèmes d'overflow/underflow relativement rares peuvent se produire mais ces derniers peuvent être évités en utilisant un facteur d'échelle.

(c) Ecrire un algorithme qui calcule les n+1 scalaires $\omega_i := \Phi'(x_i)$, $i=0,\ldots,n$. Ecrire ensuite un algorithme qui, étant donnés les vecteurs x, y et ω et le scalaire t permet de calculer le polynôme d'interpolation avec la formule barycentrique (attention il est nécessaire de repérer si t est égal à l'une des abscisses d'interpolation x_i). Calculer le nombre d'opérations arithmétiques (sans prendre en compte le coût préalable des ω_i qui n'est effectué qu'une seule fois).

Exercice 3. Interpolation avec la relation d'Aitken

1. Soient α et β deux réels distincts. On considère les deux polynômes d'interpolation q et r de degré $\leq n$ associés respectivement à :

1

$$\{(x_0, y_0), \dots, (x_{n-1}, y_{n-1}), (\alpha, a)\}\$$
et $\{(x_0, y_0), \dots, (x_{n-1}, y_{n-1}), (\beta, b)\}\$

Montrer que le polynôme d'interpolation p de degré $\leq n+1$ associé à :

$$\{(x_0, y_0), \dots, (x_{n-1}, y_{n-1}), (\alpha, a), (\beta, b)\}$$

est donné par
$$p(x) = \frac{(\beta - x)q(x) - (\alpha - x)r(x)}{\beta - \alpha}$$
.

2. On considère n points $(x_i, y_i)_{0 \le i \le n-1}$ où les abscisses x_i sont toutes distinctes. On veut écrire une fonction qui permette d'évaluer le polynôme (de degré $\le n-1$) d'interpolation de ces points en une abscisse t par un algorithme qui utilise la relation d'Aitken.

L'algorithme se base sur le tableau (triangulaire supérieur) suivant :

$p_{0,0}$	$p_{0,1}$	 $p_{0,j-1}$	$p_{0,j}$	 $p_{0,n-1}$
$p_{1,0}$	$p_{1,1}$	 ÷	:	
$p_{2,0}$	$p_{2,1}$:	$p_{n-1-j,j}$	
$p_{3,0}$	$p_{3,1}$	 $p_{n-1-(j-1),j-1}$		
:	:			
$p_{n-2,0}$	$p_{n-2,1}$			
$p_{n-1,0}$				

qui est construit de la façon suivante :

- $p_{i,0} := y_i \text{ pour } i \in [0, n-1]$
- pour j = 1, ..., n 1:

$$p_{i,j} := \frac{(x_{i+j} - t)p_{i,j-1} - (x_i - t)p_{i+1,j-1}}{x_{i+j} - x_i}, \quad i = 0, \dots, n-1-j$$

- (a) Démontrer que pour j = 0, ..., n-1, on a la propriété $\mathcal{P}(j)$: pour i = 0, ..., n-1-j, $p_{i,j}$ est la valeur en t du polynôme de degré $\leq j$ qui interpole les point $\{(x_k, y_k), k \in [i, i+j]\}$. Cette démonstration peut se faire par récurrence finie sur j (on montre d'abord $\mathcal{P}(0)$, puis que pour $0 < j \leq n-1$, $\mathcal{P}(j-1) \Rightarrow \mathcal{P}(j)$).
- (b) Dans ce tableau quelle est la case qui nous intéresse? Expliquer.
- (c) Ecrire l'algorithme associé en pseudo-code. Aide : l'algorithme s'écrit naturellement en calculant les colonnes les unes après les autres (initialisation de la colonne 0, puis calcul de la colonne j lorsque la colonne j-1 a été calculée) même si ce n'est pas l'unique possibilité.
- (d) Expliquer pour quoi on peut se passer du tableau 2d triangulaire p et n'utiliser qu'un tableau 1d à n cases. Récrire le pseudo-code avec ce tableau.

Exercice 4. Calcul de sinus sur ordinateur

On cherche un algorithme pour calculer $\sin(x)$ sur ordinateur...

- 1. Montrer en utilisant périodicité et symétries que l'on peut ramener ce calcul à l'intervalle $[0, \pi/2]$.
- 2. Sur cet intervalle on approche la fonction sinus par un polynôme d'interpolation de degré $\leq n$ utilisant donc n+1 abscisses équidistantes :

$$x_i = \frac{\pi}{2} \frac{i}{n}, \ i = 0, \dots, n$$

Montrer que l'erreur est bornée par :

$$e_n = \frac{1}{n+1} \left(\frac{\pi}{2n}\right)^{n+1}$$

Remarques:

- on a $e_4 \simeq 1.86 \cdot 10^{-3}$, $e_7 \simeq 8 \cdot 10^{-7}$, $e_{10} \simeq 1.3 \cdot 10^{-10}$, $e_{13} \simeq 10^{-14}$. Si on utilise les abscisses de Tchébichev on obtient une convergence plus rapide (et il est possible de faire mieux).
- en pratique il faut faire attention à ne pas accumuler d'erreurs d'arrondi dans la phase de réduction ¹ et de même dans l'évaluation du polynôme.

^{1.} ce qui est très difficile étant donné que 2π n'est surement pas un nombre flottant...