MATA54 - Estruturas de Dados e Algoritmos II Busca de Padrões em Textos

Flávio Assis Versão gerada a partir de slides do Prof. George Lima

IC - Instituto de Computação

Salvador, outubro de 2021

Motivação: Busca de Padrões em Textos

Aplicações: busca de uma subsequência de caracteres

- **Texto:** sequência de caracteres T[1..n] de tamanho n
- ► **Alfabeto:** cada caractere do texto é um elemento de um conjunto (alfabeto) ∑
- **Padrão:** sequência de caracteres P[1..m] de tamanho $m \le n$
- Quais são as posições em T onde P ocorre (se ocorrer)?

Algoritmos a serem estudados:

- ► Algoritmo baseado em Autômato
- ► KMP (Knuth-Morris-Pratt)
- ► BM (Boyer-Moore)

1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	а	b	а	b	а	b	а	a	b	а	b	b

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	а	b	а	b	а	b	а	а	b	а	b	b
а	b	а	b	b									

1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	а	b	a	b	a	b	а	а	b	а	b	b
a	b	a	b	b									
\rightarrow	a	b	a	b	b								

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	а	b	а	b	а	b	а	а	b	а	b	b
a	b	a	b	b									
\rightarrow	a	b	а	b	b								
	\rightarrow	a	b	a	b	b							

1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	а	b	а	b	а	b	a	а	b	а	b	b
a	b	a	b	b									
\rightarrow	a	b	а	b	b								
	\rightarrow	a	b	a	b	b							
		\rightarrow	a	b	a	b	b						

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	а	b	а	b	а	b	a	а	b	а	b	b
a	b	a	b	b									
\rightarrow	a	b	а	b	b								
	\rightarrow	a	b	a	b	b							
		\rightarrow	a	b	а	b	b						
			\rightarrow	a	b	a	b	b					

 Ex : $\mathsf{T} =$ "ababababababb" e $\mathsf{P} =$ "ababb"

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	а	b	а	b	а	b	а	а	b	а	b	b
а	b	a	b	b									
\rightarrow	a	b	a	b	b								
	\rightarrow	a	b	a	b	b							
		\rightarrow	a	b	а	b	b						
			\rightarrow	a	b	a	b	b					
				\rightarrow	а	b	а	b	b				

1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	а	b	а	b	а	b	a	а	b	а	b	b
а	b	a	b	b									
\rightarrow	a	b	а	b	b								
	\rightarrow	a	b	a	b	b							
		\rightarrow	a	b	а	b	b						
			\rightarrow	a	b	a	b	b					
				\rightarrow	a	b	a	b	b				
					\rightarrow	a	b	a	b	b			

 Ex : $\mathsf{T} =$ "ababababababb" e $\mathsf{P} =$ "ababb"

1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	а	b	а	b	а	b	a	a	b	а	b	b
а	b	a	b	b									
\rightarrow	a	b	а	b	b								
	\rightarrow	a	b	a	b	b							
		\rightarrow	a	b	а	b	b						
			\rightarrow	a	b	a	b	b					
				\rightarrow	a	b	а	b	b				
					\rightarrow	a	b	a	b	b			
						\rightarrow	а	b	а	b	b		

 $\mathsf{Ex:}\ \mathbf{T}=\text{``ababababababababb''}\ \mathsf{e}\ \mathbf{P}=\text{``ababb''}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	а	b	а	b	а	b	а	а	b	а	b	b
а	b	a	b	b									
\rightarrow	a	b	а	b	b								
	\rightarrow	a	b	a	b	b							
		\rightarrow	a	b	а	b	b						
			\rightarrow	a	b	a	b	b					
				\rightarrow	a	b	а	b	b				
					\rightarrow	a	b	a	b	b			
						\rightarrow	a	b	а	b	b		
							\rightarrow	а	h	а	h	h	

 $\mathsf{Ex:}\ \mathbf{T}=\text{``ababababababababb''}\ \mathsf{e}\ \mathbf{P}=\text{``ababb''}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	а	b	а	b	а	b	а	а	b	a	b	b
a	b	a	b	b									
\rightarrow	a	b	а	b	b								
	\rightarrow	a	b	a	b	b							
		\rightarrow	a	b	а	b	b						
			\rightarrow	a	b	a	b	b					
				\rightarrow	a	b	a	b	b				
					\rightarrow	a	b	a	b	b			
						\rightarrow	a	b	a	b	b		
							\rightarrow	a	b	а	b	b	
								\rightarrow	а	h	а	h	h

Algoritmo Simples

Busca de $P[1 \dots m]$ em $T[1 \dots n]$, $m \le n$.

```
int simpleStrMatcher(char T[], char P[]) {
   int i, j, m, n;

   n = strlen(T);
   m = strlen(P);
   for (i = 0; i <= n-m; i++) {
      for (j = 1; j <= m; j++) {
        if (P[j] != T[i+j]) break;
      }
   if (j == m+1) return (i+1);
   }
   return (-1);
}</pre>
```

Complexidade O(nm) – exemplo?

É possível melhorar pré-processando o padrão p

Algoritmo baseado em Autômato

Ex: T = "ababababababb" e P = "ababb"

À medida que se conhece o texto, as seguintes comparações em laranja abaixo são desnecessárias:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	а	b	а	b	а	b	а	а	b	а	b	b

Ex: T = "ababababababb" e P = "ababb"

À medida que se conhece o texto, as seguintes comparações em laranja abaixo são desnecessárias:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	a	b	а	b	а	b	а	а	b	а	b	b
а	b	a	b	b									

Ex: T = "ababababababb" e P = "ababb"

À medida que se conhece o texto, as seguintes comparações em laranja abaixo são desnecessárias:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	а	b	a	b	а	b	а	а	b	a	b	b
a	b	a	b	b									
	2												

Ex: T = "ababababababb" e P = "ababb"

À medida que se conhece o texto, as seguintes comparações em laranja abaixo são desnecessárias:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	а	b	а	b	а	b	а	а	b	а	b	b
a	b	a	b	b									
\rightarrow	a												
	\rightarrow	a	b	a	b	b							

Ex: T = "ababababababb" e P = "ababb"

À medida que se conhece o texto, as seguintes comparações em laranja abaixo são desnecessárias:

1	. 2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	a	b	а	b	а	b	a	а	b	а	b	b
a	b	a	b	b									
_	→ a												
	\rightarrow	a	b	a	b	b							
		\rightarrow	а										

Ex: T = "ababababababb" e P = "ababb"

À medida que se conhece o texto, as seguintes comparações em laranja abaixo são desnecessárias:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	a	b	а	b	а	b	a	а	b	а	b	b
a	b	a	b	b									
\rightarrow	a												
	\rightarrow	a	b	a	b	b							
		\rightarrow	a										
			\rightarrow	а	b	а	b	h					

Ex: T = "ababababababb" e P = "ababb"

À medida que se conhece o texto, as seguintes comparações em laranja abaixo são desnecessárias:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	a	b	а	b	а	b	a	а	b	а	b	b
a	b	a	b	b									
\rightarrow	a												
	\rightarrow	a	b	a	b	b							
		\rightarrow	a										
			\rightarrow	a	b	a	b	b					
					_								

Ex: T = "ababababababb" e P = "ababb"

À medida que se conhece o texto, as seguintes comparações em laranja abaixo são desnecessárias:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	a	b	а	b	а	b	a	a	b	a	b	b
a	b	a	b	b									
\rightarrow	a												
	\rightarrow	a	b	a	b	b							
		\rightarrow	a										
			\rightarrow	a	b	a	b	b					
				\rightarrow	a								
						_	h	_	h				

Ex: T = "ababababababb" e P = "ababb"

À medida que se conhece o texto, as seguintes comparações em laranja abaixo são desnecessárias:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	а	b	а	b	а	b	а	а	b	a	b	b
a	b	a	b	b									
\rightarrow	a												
	\rightarrow	a	b	a	b	b							
		\rightarrow	a										
			\rightarrow	a	b	a	b	b					
				\rightarrow	a								
					\rightarrow	a	b	a	b				
						,	_						

Ex: T = "ababababababb" e P = "ababb"

À medida que se conhece o texto, as seguintes comparações em laranja abaixo são desnecessárias:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	а	b	а	b	а	b	а	а	b	а	b	b
a	b	a	b	b									
\rightarrow	a												
	\rightarrow	a	b	a	b	b							
		\rightarrow	a										
			\rightarrow	a	b	a	b	b					
				\rightarrow	a								
					\rightarrow	a	b	a	b				
						\rightarrow	a						
							\rightarrow	а	h				

Ex: T = "ababababababb" e P = "ababb"

À medida que se conhece o texto, as seguintes comparações em laranja abaixo são desnecessárias:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	а	b	а	b	а	b	а	а	b	а	b	b
a	b	a	b	b									
\rightarrow	a												
	\rightarrow	a	b	a	b	b							
		\rightarrow	a										
			\rightarrow	a	b	a	b	b					
				\rightarrow	a								
					\rightarrow	a	b	a	b				
						\rightarrow	a						
							\rightarrow	a	b				
								\rightarrow	a	b	a	b	b

Princípio geral do Algoritmo baseado em Autômatos:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	а	b	а	b	а	b	а	а	b	а	b	b

Princípio geral do Algoritmo baseado em Autômatos:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
а	b	а	b	а	b	а	b	а	а	b	а	b	b
a	b	a	b	b									

Princípio geral do Algoritmo baseado em Autômatos:

Uma vez que se conhece o texto até uma posição *i*, com qual caractere do padrão deve-se comparar **o** próximo caractere do texto?

Procura-se o maior prefixo do padrão que é sufixo da parte do texto conhecida!

Princípio geral do Algoritmo baseado em Autômatos:

Uma vez que se conhece o texto até uma posição *i*, com qual caractere do padrão deve-se comparar **o próximo caractere do texto**?

Procura-se o maior prefixo do padrão que é sufixo da parte do texto conhecida!

Como saber qual é? Geração de um autômato a partir do padrão!

Pré-processamento do Padrão

Padrão:

P = ababaca

Conjunto de caracteres que podem ocorrer no texto: $\Sigma = \{a,b,c\}$

Pré-processamento do Padrão

Padrão:

P = ababaca

Conjunto de caracteres que podem ocorrer no texto: $\Sigma = \{a, b, c\}$

Inicialmente, criam-se estados de 0 até o tamanho do prefixo (7, para o exemplo):

- 0
- $\left(1\right)$
- 2
- 3
- 4
- **(** 5)
- 6

Pré-processamento do Padrão

Padrão:

P = a b a b a c a

Conjunto de caracteres que podem ocorrer no texto: $\Sigma = \{a, b, c\}$

Inicialmente, criam-se estados de 0 até o tamanho do prefixo (7, para o exemplo):

Cada estado do autômato indica o tamanho do prefixo do padrão que casa com o sufixo conhecido do texto

Padrão:

P = a b a b a c a

Conjunto de caracteres que podem ocorrer no texto: $\Sigma = \{a, b, c\}$

Inicialmente, criam-se estados de 0 até o tamanho do prefixo (7, para o exemplo):

Cada estado do autômato indica o tamanho do prefixo do padrão que casa com o sufixo conhecido do texto

Para cada estado, verifica-se para qual estado se vai, considerando-se cada possível caractere do texto.

Padrão:

P = ababaca

Conjunto de caracteres que podem ocorrer no texto: $\Sigma = \{a, b, c\}$

Para o caso do estado 0:

- se o caractere do texto for a: vai-se para o estado 1 (expandiu-se o prefixo)
- se o caractere do texto for b ou c: permanece-se no estado 0 (não se expandiu o prefixo)

b, c $0 \xrightarrow{a} 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7$

Padrão:

P = ababaca

Conjunto de caracteres que podem ocorrer no texto: $\Sigma = \{a, b, c\}$

Para o caso do estado 1:

- se o caractere do texto for a: permanece-se no estado 1 (não se expandiu o prefixo)
- se o caractere do texto for b: vai para estado 2 (expandiu-se o prefixo)
- se o caractere do texto for c: volta-se para o estado 0 (não há prefixo igual ao sufixo da parte conhecida do texto)

Padrão:

P = ababaca

Conjunto de caracteres que podem ocorrer no texto: $\Sigma = \{a, b, c\}$

Repetindo-se o processo para todos os estados (para clareza, transições para o estado 0 não são mostradas):

Pré-processamento do Padrão: Tabela δ

Representação do autômato na tabela δ :

		Caracteres					
		a	b	С			
Estados:	0	1	0	0			
	1	1	2	0			
	2 3	3	0	0			
	3	1	4	0			
	4 5	5	0	0			
		1	4	6			
	6	7	0	0			
	_	-	_	_			

Tabela δ :

Caracteres

Estados:

	a	D	C
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
4	5	0	0
1 2 3 4 5 6	1	4	6
	7	0	0
7	1	2	0

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
a	b	a	а	a	b	a	b	а	b	а	С	а	b	b	а	-

s: 0

Tabela δ :

Caracteres

Estados:

	a	b	С
0	1	0	0
1	1	2	0
1 2 3	3	0	0
3	1	4	0
4 5	5	0	0
	1	4	6
6	7	0	0
7	1	2	0

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
а	b	а	а	а	b	а	b	а	b	а	С	а	b	b	а	•

s: 0 1

Tabela δ :

Caracteres

Estados:

	а	U	C
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
3 4 5	5	0	0
	1	4	6
6	7	0	0
7	1	2	0

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
а	b	a	а	а	b	a	b	a	b	a	С	a	b	b	a

s: 0 1 2

Tabela δ :

()	ra	ct	Δ.	res

Estados:

	a	D	C
0	1	0	0
1	1	2	0
2	3	0	0
1 2 3 4 5	1	4	0
4	5	0	0
5	1	4	6
6	7	0	0
7	1	2	0

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
а	b	а	а	а	b	а	b	а	b	а	С	а	b	b	a

s: 0 1 2 3

Tabela δ :

Ca	ra	~ †	Δr	20
Ca	ıa	·ι	CI	CO

Estados:

	а	U	C
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
1 2 3 4 5	5	0	0
5	1	4	6
6	7	0	0
7	1	2	0

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
а	b	а	а	а	b	a	b	а	b	a	С	а	b	b	a

s: 0 1 2 3 1

Tabela δ :

Caracteres

Estados:

s:

	a	b	С
0	1	0	0
1	1	2	0
1 2 3	3	0	0
3	1	4	0
4 5	5	0	0
	1	4	6
6	7	0	0
7	1	2	0

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	а	b	а	а	а	b	а	b	а	b	а	С	а	b	b	а
0	1	2	3	1	1	2	3	4	5	4	5	6	7	2	0	1

Revendo as Comparações Desnecessárias

Ex: T = "abaaababaca" (até o padrão) e P = "ababaca"

Comparações desnecessárias em relação ao algoritmo simples (em laranja):

Algoritmo para Calcular a Função de Transição

```
P[1..m]: padrão de tamanho m
P_k: prefixo de P de tamanho k, 1 \le k \le m
P_k \cdot a: concatenação de P_k com caractere a
\Sigma: alfabeto de caracteres que podem ocorrer no texto
```

Algorithm 1: Algoritmo para calcular a função de transição δ

```
entrada : Padrão P[1..m] e alfabeto \Sigma
  saida
             : Função de transição \delta
1 m \leftarrow P.length;
2 for q = 0 to m do
       for each character a \in \Sigma do
3
           k \leftarrow \min(m+1, q+2);
4
5
           repeat
           k \leftarrow k-1:
6
           until P_k is a suffix of P_a \cdot a;
7
           \delta(q, a) \leftarrow k;
8
```

9 return δ ;

Algoritmo para Calcular a Função de Transição

```
P[1..m]: padrão de tamanho m
P_k: prefixo de P de tamanho k, 1 \le k \le m
P_k \cdot a: concatenação de P_k com caractere a
\Sigma: alfabeto de caracteres que podem ocorrer no texto
```

Algorithm 2: Algoritmo para calcular a função de transição δ

```
entrada : Padrão P[1..m] e alfabeto \Sigma
  saida : Função de transição \delta
1 m \leftarrow P.length;
2 for q = 0 to m do
       for each character a \in \Sigma do
3
           k \leftarrow \min(m+1, q+2);
4
5
          repeat
           k \leftarrow k-1:
6
      until P_k is a suffix of P_a \cdot a;
7
          \delta(q, a) \leftarrow k;
8
```

9 return δ ;

Algoritmo para Encontrar o Padrão no Texto

Algorithm 3: Algoritmo para encontrar o padrão no texto

```
entrada : Texto T[1..n], Função de Transição \delta, tamanho do padrão m

1 n \leftarrow T.length;
2 q \leftarrow 0;
3 for i=1 to n do

4 q \leftarrow \delta(q, T[i]);
5 q = m then
6 print "Padrão ocorre com deslocamento" q = m;
```

Algoritmo para Encontrar o Padrão no Texto

Algorithm 4: Algoritmo para encontrar o padrão no texto

```
entrada : Texto T[1..n], Função de Transição \delta, tamanho do padrão m

1 n \leftarrow T.length;

2 q \leftarrow 0;

3 for i=1 to n do

4 q \leftarrow \delta(q, T[i]);

5 \text{if } q = m \text{ then}

6 print "Padrão ocorre com deslocamento" i-m;
```

Complexidade: $\Theta(n)$

Exercício

Qual seria a tabela δ e quais seriam as transições de estado para se procurar o padrão P no texto T abaixo:

T = abababcbaababababcbab

P = ababcbab

Considere que o alfabeto $\Sigma = \{a, b, c\}$.

Exercício: Resposta

		δ	
	a	b	С
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
4	3	0	5
5	1	6	0
6	7	0	0
1 2 3 4 5 6 7	1	8	0
7	3	0	0

ightharpoonup A tabela δ inclui todos os elementos do alfabeto Σ

- ightharpoonup A tabela δ inclui todos os elementos do alfabeto Σ
- Para cada estado, consideram-se todos os possíveis elementos do alfabeto $\rightarrow m \cdot |\Sigma|$

- ightharpoonup A tabela δ inclui todos os elementos do alfabeto Σ
- Para cada estado, consideram-se todos os possíveis elementos do alfabeto $\rightarrow m \cdot |\Sigma|$
- ldéia para diminuir a complexidade: não considerar o caractere atual do texto ao se pré-processar o padrão \rightarrow apenas m

- ightharpoonup A tabela δ inclui todos os elementos do alfabeto Σ
- Para cada estado, consideram-se todos os possíveis elementos do alfabeto $\rightarrow m \cdot |\Sigma|$
- ldéia para diminuir a complexidade: não considerar o caractere atual do texto ao se pré-processar o padrão \rightarrow apenas m
- Essa é a idéia do KMP!

Algoritmo KMP (Knuth-Morris-Pratt)

Algoritmo KMP

Considerações:

- No algoritmo baseado em autômatos, o pré-processamento do padrão requer uma tabela de tamanho $m|\Sigma|$
- Quando um elemento do padrão difere do caractere do texto, define-se um deslocamento de acordo com o maior prefixo do padrão que é igual ao sufixo do texto conhecido

Idéia: Diminuir o custo de pré-processamento do padrão considerando apenas o próprio padrão

Seja
$$P = a b a b b$$

KMP: Ilustração

Ex: T = "ababababababb" e P = "ababb"

1	2	3	4	5	6	7	8	9	10	11	12	13	14	
а	b	а	b	а	b	а	b	а	а	b	а	b	b	
a	b	a	b	b										
	\rightarrow	a	b	a	b	b								
			\rightarrow	a	b	a	b	b						
					\rightarrow	a	b	a	b	b				
							\rightarrow	a	b	а	b	b		
								\rightarrow	а	h	а	h	h	

Objetivo

Para cada posição j de P, encontrar o tamanho do maior sufixo que é igual a um prefixo de P[1...j] (de tamanho menor que j)

Objetivo

Para cada posição j de P, encontrar o tamanho do maior sufixo que é igual a um prefixo de P[1...j] (de tamanho menor que j)

Objetivo

Para cada posição j de P, encontrar o tamanho do maior sufixo que é igual a um prefixo de P[1...j] (de tamanho menor que j)

Objetivo

Para cada posição j de P, encontrar o tamanho do maior sufixo que é igual a um prefixo de P[1...j] (de tamanho menor que j)

Objetivo

Para cada posição j de P, encontrar o tamanho do maior sufixo que é igual a um prefixo de P[1...j] (de tamanho menor que j)

Objetivo

Para cada posição j de P, encontrar o tamanho do maior sufixo que é igual a um prefixo de $P[1\dots j]$ (de tamanho menor que j)

j	1	2	3	4	5	6	7	8	9	10
Р	a	b	a	b	b	a	b	a	b	a
π	0	0	1	2	0					

Objetivo

Para cada posição j de P, encontrar o tamanho do maior sufixo que é igual a um prefixo de $P[1\dots j]$ (de tamanho menor que j)

j	1	2	3	4	5	6	7	8	9	10
Р	a	b	a	b	b	a	b	a	b	a
π	0	0	1	2	0	1				

Objetivo

Para cada posição j de P, encontrar o tamanho do maior sufixo que é igual a um prefixo de $P[1\dots j]$ (de tamanho menor que j)

j	1	2	3	4	5	6	7	8	9	10
Р	a	b	a	b	b	a	b	a	b	a
π	0	0	1	2	0	1	2			

Objetivo

Para cada posição j de P, encontrar o tamanho do maior sufixo que é igual a um prefixo de $P[1\dots j]$ (de tamanho menor que j)

j	1	2	3	4	5	6	7	8	9	10
Р	a	b	a	b	b	a	b	a	b	a
π										

Objetivo

Para cada posição j de P, encontrar o tamanho do maior sufixo que é igual a um prefixo de P[1...j] (de tamanho menor que j)

j										
Р	a	b	a	b	b	a	b	a	b	a
π										

Objetivo

Para cada posição j de P, encontrar o tamanho do maior sufixo que é igual a um prefixo de $P[1\dots j]$ (de tamanho menor que j)

j	1	2	3	4	5	6	7	8	9	10
Р	a	b	a	b	b	a	b	a	b	a
										3

KMP: Ilustração

Ex: T = "abaaababaca" e P = "ababaca"

KMP: Ilustração

Ex: T = "abaaabababaca" e P = "ababaca"

Qual é a lógica de definição da próxima comparação?

Idéia geral:

Idéia geral:

O valor de $\pi[1] = 0$. Para se determinar o valor de $\pi[i]$, i > 1:

verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$

Idéia geral:

- verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$

Idéia geral:

- lacktriangle verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$
 - > se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$

Idéia geral:

O valor de $\pi[1] = 0$. Para se determinar o valor de $\pi[i]$, i > 1:

- verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1]+1$

 π

- se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$
- repete-se o processo até ser possível "estender" um prefixo igual a sufixo ou se chegar ao fim da tabela

Idéia geral:

- verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$
 - se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$
 - repete-se o processo até ser possível "estender" um prefixo igual a sufixo ou se chegar ao fim da tabela

Idéia geral:

- verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$
 - se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$
 - repete-se o processo até ser possível "estender" um prefixo igual a sufixo ou se chegar ao fim da tabela

Idéia geral:

- lacktriangle verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$
 - > se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$
 - repete-se o processo até ser possível "estender" um prefixo igual a sufixo ou se chegar ao fim da tabela

Idéia geral:

- lacktriangle verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$
 - > se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$
 - repete-se o processo até ser possível "estender" um prefixo igual a sufixo ou se chegar ao fim da tabela

Idéia geral:

- verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$
 - > se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$
 - repete-se o processo até ser possível "estender" um prefixo igual a sufixo ou se chegar ao fim da tabela

Idéia geral:

- lacktriangle verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$
 - > se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$
 - repete-se o processo até ser possível "estender" um prefixo igual a sufixo ou se chegar ao fim da tabela

j	1	2	3	4	5	6	7	8	9	10	11
Р	a	b	a	b	a	a	b	a	b	С	a
π	0	0	1	2	3	1					

Idéia geral:

- lacktriangle verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$
 - se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$
 - repete-se o processo até ser possível "estender" um prefixo igual a sufixo ou se chegar ao fim da tabela

j	1	2	3	4	5	6	7	8	9	10	11
Р	a	b	a	b	a	a	b	a	b	С	a
π	0	0	1	2	3	1	2				

Idéia geral:

- lacktriangle verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$
 - > se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$
 - repete-se o processo até ser possível "estender" um prefixo igual a sufixo ou se chegar ao fim da tabela

j	1	2	3	4	5	6	7	8	9	10	11
Р	a	b	a	b	a	a	b	a	b	С	a
π	0	0	1	2	3	1	2	3			

Idéia geral:

- lacktriangle verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$
 - se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$
 - repete-se o processo até ser possível "estender" um prefixo igual a sufixo ou se chegar ao fim da tabela

j	1	2	3	4	5	6	7	8	9	10	11
Р	a	b	a	b	a	a	b	a	b	С	a
π	0	0	1	2	3	1	2	3	4		

Idéia geral:

- lacktriangle verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$
 - se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$
 - repete-se o processo até ser possível "estender" um prefixo igual a sufixo ou se chegar ao fim da tabela

j	1	2	3	4	5	6	7	8	9	10	11
Р	a	b	a	b	a	a	b	a	b	С	a
π	0	0	1	2	3	1	2	3	4	0	-

Idéia geral:

- lacktriangle verifica-se se é possível "estender" o maior prefixo igual a sufixo encontrado para a posição i-1, ou seja, se $P[\pi[i-1]+1]=P[i]$
 - ightharpoonup se sim, $\pi[i] \leftarrow \pi[i-1] + 1$
 - se não, verifica-se se é possível "estender" o próximo maior prefixo igual a sufixo, utilizando o valor de $\pi[\pi[i-1]]$
 - repete-se o processo até ser possível "estender" um prefixo igual a sufixo ou se chegar ao fim da tabela

j	1	2	3	4	5	6	7	8	9	10	11
Р	a	b	a	b	a	a	b	a	b	С	a
π	0	0	1	2	3	1	2	3	4	0	1

Pergunta de fixação:

i	1	2	3	4	5	6	7	8	9	10	11	12
р	c_1	<i>c</i> ₂	<i>c</i> ₃	C4	C ₅	<i>c</i> ₆	<i>C</i> ₇	<i>c</i> ₈	C 9	c ₁₀	c ₁₁	c ₁₂
π	0	0	1	2	0	1	2	3	4	5	6	0

Pergunta de fixação:

i	1	2	3	4	5	6	7	8	9	10	11	12
p	c_1	<i>c</i> ₂	<i>c</i> ₃	C4	C ₅	<i>c</i> ₆	<i>C</i> ₇	<i>c</i> ₈	<i>C</i> 9	<i>c</i> ₁₀	c ₁₁	<i>c</i> ₁₂
π	0	0	1	2	0	1	2	3	4	5	6	0

$$c_{12} \neq c_7$$

Pergunta de fixação:

i	1	2	3	4	5	6	7	8	9	10	11	12
р	c_1	<i>c</i> ₂	<i>c</i> ₃	C4	C ₅	<i>c</i> ₆	C ₇	<i>c</i> ₈	<i>C</i> 9	<i>c</i> ₁₀	c ₁₁	<i>c</i> ₁₂
π	0	0	1	2	0	1	2	3	4	5	6	0

$$c_{12} \neq c_2$$

Pergunta de fixação:

i	1	2	3	4	5	6	7	8	9	10	11	12
р	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	C4	C ₅	<i>c</i> ₆	C ₇	<i>c</i> ₈	<i>C</i> 9	c ₁₀	c ₁₁	<i>c</i> ₁₂
π	0	0	1	2	0	1	2	3	4	5	6	0

$$c_{12} \neq c_1$$
 Portanto $\pi[12] \leftarrow 0$

Algorithm 5: COMPUTE_PREFIX_FUNCTION (P)

```
entrada: Padrão P[1..m]
   saida : Tabela \pi
 1 m \leftarrow P.length;
 2 let \pi[1..m] be a new array;
3 \pi[0] \leftarrow 0
4 a \leftarrow 0:
 5 for i \leftarrow 2 to m do
        while q > 0 and P[q + 1] \neq P[i] do
      q \leftarrow \pi[q];
        if P[q + 1] = P[i] then
 8
        q \leftarrow q + 1;
 9
        \pi[i] \leftarrow q;
10
```

11 return π :

Encontre os valores da tabela π para o padrão P= "ababbababa", seguindo o algoritmo $COMPUTE_PREFIX_FUNCTION$.

Encontre os valores da tabela π para o padrão P= "ababbababa", seguindo o algoritmo $COMPUTE_PREFIX_FUNCTION$.

Encontre os valores da tabela π para o padrão P= "ababbababa", seguindo o algoritmo $COMPUTE_PREFIX_FUNCTION$.

Encontre os valores da tabela π para o padrão P= "ababbababa", seguindo o algoritmo $COMPUTE_PREFIX_FUNCTION$.

Encontre os valores da tabela π para o padrão P= "ababbababa", seguindo o algoritmo $COMPUTE_PREFIX_FUNCTION$.

Encontre os valores da tabela π para o padrão P= "ababbababa", seguindo o algoritmo $COMPUTE_PREFIX_FUNCTION$.

Encontre os valores da tabela π para o padrão P= "ababbababa", seguindo o algoritmo $COMPUTE_PREFIX_FUNCTION$.

j
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 P
 a
 b
 a
 b
 a
 b
 a
 b
 a
 b
 a

$$\pi$$
 0
 0
 1
 2
 0
 1

Encontre os valores da tabela π para o padrão P= "ababbababa", seguindo o algoritmo $COMPUTE_PREFIX_FUNCTION$.

Encontre os valores da tabela π para o padrão P= "ababbababa", seguindo o algoritmo $COMPUTE_PREFIX_FUNCTION$.

Encontre os valores da tabela π para o padrão P= "ababbababa", seguindo o algoritmo $COMPUTE_PREFIX_FUNCTION$.

Encontre os valores da tabela π para o padrão P= "ababbababa", seguindo o algoritmo $COMPUTE_PREFIX_FUNCTION$.

j										
Р	a	b	a	b	b	a	b	a	b	a
										3

KMP: Busca

Algorithm 6: $KMP_Matcher(T, P)$

```
entrada : Texto T[1..n] e Padrão P[1..m]
 1 n \leftarrow T.length;
2 m \leftarrow P.length;
3 \pi \leftarrow COMPUTE\_PREFIX\_FUNCTION(P);
 4 q \leftarrow 0;
 5 for i = 1 to n do
        while q > 0 and P[q + 1] \neq T[i] do
 7
       q \leftarrow \pi[q];
       if P[q + 1] = T[i] then
 8
 9
        q \leftarrow q + 1;
        if q = m then
10
            print "Pattern occurs with shift" i - m;
11
            q \leftarrow \pi[q];
12
```

Exercício

Para o texto e o padrão abaixo:

T="aabaaabaabaabaabaababbabaab"

P= "aabaabaa"

apresente a tabela π e as comparações realizadas para se encontrar as ocorrências de P em T.

Exercício - Resposta

i	1	2	3	4	5	6	7	8
Р	a	а	b	а	a	b	а	a
π	0	1	0	1	2	3	1	2

1	2	3	4	5	6	7	8	9	10	11	12	13	14
 a	а	b	а	а	а	b	а	а	b	а	a	b	a
 a	a	b	a	a	b								
			a	a	b								
				a	a	b	a	a	b	a	a		

15	16	17	18	19	20	21	22	23	24	25	26	27
a	b	a	а	b	а	b	b	а	b	а	а	b
a	b	a	a									
		a	a	b	a	a						
					a	a						
						a						

a a a

KMP: Complexidade

- O pré-processamento do padrão possui complexidade ⊖(m) Argumentos informais:
 - q é sempre positivo e somente se acrescenta seu valor no máximo
 m 1 vezes (COMPUTE_PREFIX_FUNCTION, linha 9)
 - para cada posição i somente se pode diminuir o valor de q até zero
 - portanto, não se fazem mais do que 2m comparações
- Por argumento análogo, o procedimento de busca é $\Theta(n)$

Idéia Básica

Ao invés de se comparar os caracteres do texto com os caracteres do padrão a partir do início do padrão ... compara-se a partir do fim!

Considere o texto abaixo e o padrão P = abacabb, tamanho m = 7.

Se compararmos o primeiro caractere do padrão com o primeiro caractere do texto, qual deslocamento podemos fazer?

Idéia Básica

Ao invés de se comparar os caracteres do texto com os caracteres do padrão a partir do início do padrão ... compara-se a partir do fim!

Considere o texto abaixo e o padrão P = abacabb, tamanho m = 7.

Se compararmos o primeiro caractere do padrão com o primeiro caractere do texto, qual deslocamento podemos fazer?

Apenas avanço de uma posição

Idéia Básica

Ao invés de se comparar os caracteres do texto com os caracteres do padrão a partir do início do padrão ... compara-se a partir do fim!

Considere o texto abaixo e o padrão P = abacabb, tamanho m = 7.

E se compararmos o sétimo elemento do padrão *b* com o sétimo caractere do texto?

Idéia Básica

Ao invés de se comparar os caracteres do texto com os caracteres do padrão a partir do início do padrão ... compara-se a partir do fim!

Considere o texto abaixo e o padrão P = abacabb, tamanho m = 7.

E se compararmos o sétimo elemento do padrão *b* com o sétimo caractere do texto?

Avanço de 7 posições, pois d não ocorre no padrão!

Idéia Básica

Ao invés de se comparar os caracteres do texto com os caracteres do padrão a partir do início do padrão ... compara-se a partir do fim!

Considere o texto abaixo e o padrão P = abacabb, tamanho m = 7.

E qual descolamento pode ser feito agora?

Idéia Básica

Ao invés de se comparar os caracteres do texto com os caracteres do padrão a partir do início do padrão ... compara-se a partir do fim!

Considere o texto abaixo e o padrão P = abacabb, tamanho m = 7.

E se compararmos o sétimo elemento do padrão *b* com o sétimo caractere do texto?

Avanço de 2 posições, para se alinhar o a do texto (posição 14) com o a mais à direita do padrão (posição 5)!

Idéia Básica

Ao invés de se comparar os caracteres do texto com os caracteres do padrão a partir do início do padrão ... compara-se a partir do fim!

Considere o texto abaixo e o padrão P = abacabb, tamanho m = 7.

Seguindo o mesmo princípio:

Observe que foram feitas 11 comparações para se encontrar o padrão na posição 14!

Ou seja, menos comparações do que o número de caracteres até a posição em que o padrão ocorre!

O deslocamento relativo a esse critério é definido pela tabela Δ_1 .

 Δ_1 tem uma entrada para cada símbolo do alfabeto.

Tabela Δ_1 :

Seja Σ um alfabeto, P[1..m] um padrão e $c \in \Sigma$:

$$\Delta_1(c) = \left\{ \begin{array}{ll} m & \text{if } c \text{ n\~ao ocorre em } P \\ m-j & \text{onde } j \text{ \'e o m\'aximo inteiro tal que } P[j] = c \end{array} \right.$$

Para o exemplo anterior:

Seja $\Sigma = \{a, b, c, d\}$ e P = abacabb (m = 7):

$$\begin{array}{lll} \Delta_1(\textbf{a}) = 7 - 5 = 2 & \quad \Delta_1(\textbf{b}) = 7 - 7 = 0 \\ \Delta_1(\textbf{c}) = 7 - 4 = 3 & \quad \Delta_1(\textit{char}) = 7 \text{, para todo } \textit{char} \notin \{\textbf{a}, \textbf{b}, \textbf{c}\} \end{array}$$

Além do critério usado para deslocamento anterior, o algoritmo também considera o deslocamento que pode ser feito considerando-se o sufixo do padrão já encontrado no texto.

Exemplo:

Além do critério usado para deslocamento anterior, o algoritmo também considera o deslocamento que pode ser feito considerando-se o sufixo do padrão já encontrado no texto.

Exemplo:

Procura-se pela próxima ocorrência de **bb** no padrão, sendo que o caractere anterior seja diferente de **c**

Além do critério usado para deslocamento anterior, o algoritmo também considera o deslocamento que pode ser feito considerando-se o sufixo do padrão já encontrado no texto.

Exemplo:

Além do critério usado para deslocamento anterior, o algoritmo também considera o deslocamento que pode ser feito considerando-se o sufixo do padrão já encontrado no texto.

Exemplo:

Procura-se pela próxima ocorrência de **bbcbb** no padrão, sendo que o caractere anterior seja diferente de **c**

Além do critério usado para deslocamento anterior, o algoritmo também considera o deslocamento que pode ser feito considerando-se o sufixo do padrão já encontrado no texto.

Exemplo:

Procura-se pela próxima ocorrência de **bbcbb** no padrão, sendo que o caractere anterior seja diferente de **c**

Além do critério usado para deslocamento anterior, o algoritmo também considera o deslocamento que pode ser feito considerando-se o sufixo do padrão já encontrado no texto.

Exemplo:

O segundo critério de deslocamento é definido na tabela Δ_2

A tabela Δ_2 possui uma entrada para cada elemento do padrão.

O segundo critério de deslocamento é definido na tabela Δ_2

A tabela Δ_2 possui uma entrada para cada elemento do padrão.

Considere:

que o padrão P seja estendido com elementos de índice 0, -1, -2, ... e que essas posições terão um caractere especial \$, que não ocorre em P

O segundo critério de deslocamento é definido na tabela Δ_2

A tabela Δ_2 possui uma entrada para cada elemento do padrão.

Considere:

- que o padrão P seja estendido com elementos de índice 0, -1, -2, ... e que essas posições terão um caractere especial \$, que não ocorre em P
- ▶ que duas sequências $[c_1, c_2, ..., c_k]$ e $[d_1, d_2, ..., d_k]$ se "unificam", se: para todo i = 1...k: ou $c_i = d_i$ ou $c_i = 0$ ou $d_i = 0$

O segundo critério de deslocamento é definido na tabela Δ_2

A tabela Δ_2 possui uma entrada para cada elemento do padrão.

Considere:

- que o padrão P seja estendido com elementos de índice 0, -1, -2, ... e que essas posições terão um caractere especial \$, que não ocorre em P
- ▶ que duas sequências $[c_1, c_2, ..., c_k]$ e $[d_1, d_2, ..., d_k]$ se "unificam", se: para todo i = 1...k: ou $c_i = d_i$ ou $c_i = 0$ ou $d_i = 0$

Por exemplo, as sequências abaixo unificam-se:

Sequência 1: \$ \$ \$ \$ a b c d Sequência 2: a b a b a b c d

Rightmost Plausible Reoccurrence (rpr)

Para a *substring* que se inicia na posição j+1, rpr(j), para $j=1\cdots m-1$, é o maior k menor que ou igual a m tal que:

$$P[j+1...m]$$
 e $P[k...k+m-j-1]$ se unificam e
$$\text{ou } k \leq 1 \text{ ou } P[k-1] \neq P[j]$$

Tabela Δ_2 :

$$\Delta_2(j) = m + 1 - rpr(j)$$

Tabela Δ_2 : Exemplo

 $\Delta_2(m)$ pode ser sempre 1

Por que
$$\Delta_2(7) = 7$$
?

rpr(7) = 3, pois a próxima ocorrência de yx no padrão em que o caractere anterior não é e é na posição 3.

Com isso,
$$\Delta_2(7) = m + 1 - rpr(7) = 9 + 1 - 3 = 7$$

Mas qual é a razão? Porque o deslocamento possível, quando a comparação com o P[7] der sem sucesso, corresponde a um deslocamento de 7:

Tabela Δ_2 : Exemplo

$$\Delta_2(8) = m + 1 - rpr(8) = 9 + 1 - 0 = 10$$

Tabela Δ_2 : Exemplo

Por que $\Delta_2(6) = 12$?

$$rpr6 = -2$$
:

\$ \$ \$ a b y x c d e y x
$$\uparrow$$
 deslocamento de 12 \uparrow

$$\Delta_2(6) = m + 1 - rpr(8) = 9 + 1 - (-2) = 12$$

Exercício

Encontre a tabela Δ_2 para o padrão:

Resposta:

Comparam-se os caracteres a partir do último caractere do padrão em direção ao primeiro. Quando o caractere do padrão em uma posição i for diferente do caractere do texto c, calcula-se o deslocamento definido por $\Delta_1(c)$ e $\Delta_2(i)$. Soma-se o maior destes valores à posição atual do texto e recomeça o processo a partir desta posição resultante.

Busca no Texto

Exemplo: Padrão: P = aababbaa e $\Sigma = \{a, b, c\}$

Tabela Δ_1 :

$$\Delta_1(a) = 8 - 8 = 0$$
 $\Delta_1(b) = 8 - 6 = 2$ $\Delta_1(c) = 8$

Tabela Δ_2 :

$$\Delta_1(c) = 8, \Delta_2(7) = 5$$
: maior: 8

aaba<mark>bbaa</mark>

$$\Delta_1(a) = 0, \Delta_2(5) = 9$$
: maior: 9

aababbaa

Apenas 14 comparações!

Complexidade

- A construção de Δ_1 pode ser feita inicializando-se um vetor do tamanho do alfabeto com o valor m e, em seguida, percorrendo o padrão linearmente. Portanto, é $O(|\Sigma| + m)$
- A construção de Δ₂ pode ser feita em O(m) (D.E. Knuth, J.H. Morris, V.R. Pratt. Fast Pattern Matching in Strings. SIAM Journal of Computing. Vol. 6, No. 2. Junho, 1977)
- ▶ O algoritmo de busca é O(n+m). O algoritmo, no entanto, tem um comportamento esperado *sublinear*, ou seja, fazem-se menos do que i comparações para se encontrar o padrão na posição i ([Boyer, Moore])