

Markov jokes:

Once you've heard the latest one, you've heard them all.

CS 2731 Introduction to Natural Language Processing

Session 19: HMMs part 2, Viterbi algorithm, neural sequence labeling

Michael Miller Yoder March 20, 2024

Course logistics: homeworks

- Homework 3 grades released
- Homework 4 is due Mon Mar 25
 - o Part 1: Do part-of-speech tagging manually with the Viterbi algorithm
 - Part 2: Fine-tune BERT-based models for part-of-speech tagging in English and Norwegian
 - Copy and fill in a skeleton Colab notebook

Course logistics: project

- Project peer review due Wed Mar 27
 - Was released today
 - Form where you will review your own and your teammates' contributions so far
 - Will not be used for grading, just for addressing any issues
- Basic working system due Thu Apr 4

Overview: HMMs part 2, Viterbi alg, neural sequence labeling

- HMMs review
- Training HMMs
- Decoding HMMs: Viterbi algorithm
- Sequence labeling with RNNs and transformers

HMMs review

HMM review

With a partner, review:

- 1. What are the 2 key assumptions that HMMs make?
- 2. What are the 2 key tables of probabilities in HMMs and what do they mean?

A formal definition of the Hidden Markov Model (HMM)

$$Q=q_1,\ldots,q_N$$
 a set of N states $A=a_{1,1},a_{1,2},\ldots$ a transitional probability matrix of cells a_{ij} , where each cell is a probability of moving from state i to state j . $\sum_{j=1}^N a_{ij} = 1 \ \forall i$

$$O = o_1, \dots, o_T$$
 a sequence of T observations, each drawn from a vocabulary V .

$$B = b_1, \dots, b_n$$
 a sequence of observation likelihoods (or emission probabilities). The probability that observation o_t is generated by state q_i .

an initial probability distribution over states (the probability that the Markov chain will start in state
$$q_i$$
. Some states q_j may have $p_j = 0$ (meaning they cannot be initial states). $\sum_{i=1}^{N} \pi_i = 1 \ \forall i$

 $\pi = \pi_1, \ldots, \pi_N$

The Coke Zero Example

Since I do not drink coffee, I must drink Coke Zero to remain caffeinated. My consumption is related to my exhaustion. Could you build a model to infer my exhaustion from the number of Coke Zero bottles added to my wastebasket each day?

$$\pi = [0.7, 0.3]$$

An example HMM sequence

Training HMMs

Training an HMM

How do we learn the transition and emission probabilities?

- If we have (enough) data labeled with hidden and observed events, can just use MLE/relative frequencies with or without smoothing
- If we don't have (enough) labeled data, can use the Forward-Backward Algorithm, a special case of the Expectation Maximization (EM) algorithm
 - We won't go into the details of this algorithm, but the overview is that you start with an initial estimate and use that estimate to compute a better one iteratively

Training HMMs with labeled data

Suppose we knew both the sequence of days in which a grad student is tired or rested and the number of Cokes Zero that she consumes each day:

rested tired rested 1 2 2 tired tired tired tired 0 0 2 rested rested rested	0	3	1	
tired tired tired 0 0 2	rested	tired	rested	
0 0 2	1	2	2	
	tired	tired	tired	
rested rested rested				
	0	0	2	

How would you train an HMM?

Using MLE to train HMMs

First, compute π from the initial states:

$$\pi_t = 1/3 \; \pi_r = 2/3$$

The we can compute the matrix A:

$$p(tired|tired) = 1/2$$
 $p(tired|rested) = 1/6$
 $p(rested|tired) = 1/3$ $p(rested|rested) = 2/3$

and then the matrix B:

$$p(0|tired) = 0$$
 $p(0|rested) = 2/5$
 $p(1|tired) = 1/4$ $p(1|rested) = 1/5$
 $p(2|tired) = 1/2$ $p(2|rested) = 1/5$

Parameters of an HMM for POS

transition probabilities

emission probabilities

		1	m	gonna	make	him	an	offer	he	can	t	refuse
B =	N	0.1	0.00001	0.00001	0.2	0.1	0.00001	0.2	0.1	0.1	0.00001	0.19996
Б —	V	0.00001	0.1	0.2	0.2	0.00001	0.00001	0.05	0.00001	0.19995	0.00001	0.25
	0	0.00001	0.00001	0.00001	0.00001	0.00001	0.5	0.00001	0.00001	0.00001	0.49991	0.00001

Decoding HMMs: Viterbi algorithm

Often, we want to decode HMMs

Input: A trained HMM and a series of observations

Output: A series of labels, corresponding to hidden states of the HMM

This task shows up many times:

- · Labeling words according to their parts of speech
- Labeling words according to whether they are at the beginning, otherwise inside of, or outside of a name
- Inferring the sequence of tired and not tired days in the month of your instructor based on his Coke Zero consumption

More formally, given as input an HMM λ = (A, B) and a sequence of observations O = o_1 , o_2 , . . . , o_T , find the most probable sequence of states Q = q_1 , q_2 , . . . , q_T

Dynamic programming

- Solves a larger problem by combining solutions to smaller subproblems
- Fills in a table for those subproblems
- Often used in NLP to compute optimal paths through sequences

Computing a Forward Trellis

Computing a Forward Trellis

20

Can we do better than the Forward Algorithm for decoding?

- Computing the probability for all possible sequences of states with the forward trellis is computationally infeasible
- The set of possible state sequences (e.g. TTT, TRT, TRR, RRR, ...) grows exponentially as the number of states N grows!

That's where dynamic programming comes in!

- Skip the repeated computation by recording the best probabilities for subsequences along the way
- Viterbi algorithm

The Viterbi Algorithm Can Be Used to Decode HMMs

```
1: function VITERBI(observations O = o_1, o_2, \dots, o_T, state-graph of length N)
         V[N,T] \leftarrow empty path probability matrix
         B[N,T] \leftarrow \text{empty backpointer matrix}
 3:
         for each s \in 1..N do
             V[s,1] \leftarrow \pi_s \cdot b_s(o_1)
 5:
             B[s,1] \leftarrow 0
 6:
         for each t \in 2...T do
 7.
              for each s \in 1...N do
 8.
                  V[s,t] \leftarrow \max_{s'=1}^N V[s',t-1] \cdot a_{s',s} \cdot b_s(o_t)
 9:
                  B[s,t] \leftarrow \operatorname{argmax}_{s'-1}^{N} V[s',t-1] \cdot a_{s',s} \cdot b_{s}(o_{t})
10:
         bestpathprob \leftarrow \max_{s=1}^{N} V[s, T]
11:
         bestpathpointer \leftarrow \max_{s=1}^{N} V[s, T]
12:
         bestpath \leftarrow path starting at bestpathpointer that follows b to states back in time.
13:
         return bestpath, bestpathprob
14:
```

Using Viterbi to Decode an HMM

23

Using Viterbi to Decode an HMM

24

	В	I	0
В	0	0.5	0.5
I	.1	0	0.9
0	0.2	0	0.8

	United	States	live	in
В	0.8	0.3	0	0
1	0.1	0.6	0.1	0.1
0	0.1	0.1	0.9	0.9

	π
В	0.2
I	0
0	0.8

To decode: live in United States

Neural sequence labeling

RNNs can be used for sequence labeling

BERT can be used for sequence labeling

Figure 11.9 Sequence labeling for part-of-speech tagging with a bidirectional transformer encoder. The output vector for each input token is passed to a simple k-way classifier.

An alternative to BIO: span-based NER

Figure 11.10 A span-oriented approach to named entity classification. The figure only illustrates the computation for 2 spans corresponding to ground truth named entities. In reality, the network scores all of the $\frac{T(T-1)}{2}$ spans in the text. That is, all the unigrams, bigrams, trigrams, etc. up to the length limit.

Wrapping up

- If enough annotated training data is available, HMMs can be trained with MLE
- The Viterbi algorithm is used for decoding HMMs.
- RNNs and transformers can be trained to do sequence labeling

Questions?