点集拓扑作业 (2)

Problem 1 证明有理数集是可数集.

我们证明存在一个满射 $\varphi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$, 由于 $\mathbb{Z} \times \mathbb{Z}$ 是可数集, 进而 \mathbb{Q} 是可数集.

$$orall (m,n)\in \mathbb{Z} imes \mathbb{Z}, arphi(m,n)=egin{cases} 0, & n=0 \ rac{m}{n}, & n
eq 0 \end{cases}$$
,对 $orall q\in \mathbb{Q}$,可以写成 $rac{a}{b}=arphi(a,b), (a\in \mathbb{Z},b\in \mathbb{N}, (a,b)=1)$

因此 φ 是满射, 命题得证.

Problem 2 设 A 是不可数集, B 是 A 的可数子集, 证明存在 A 到 $A \setminus B$ 的 1-1 映射.

不妨设 B 是无限集. 首先, $A \setminus B$ 是不可数集 (否则 A 可数). 于是取 $C \subset A \setminus B$ 满足 C 是可数集. 记 $B = \{b_n\}_{n=0}^{+\infty}, C = \{c_n\}_{n=0}^{+\infty}, \ \ \, \text{其中 } b_n, c_n$ 各自互不相同.

则映射
$$\varphi(x) = \begin{cases} c_{2n+1} & x = b_n \in B \\ c_{2n} & x = c_n \in C \ \not\equiv A \to A \backslash B \ \text{的 1-1 映射}. \\ x & \text{others} \end{cases}$$

Problem 3 设 \sim 是 X 上的等价关系, 定义 $[a] = \{x \in X | x \sim a\}$. 设 $[a] \cap [b] \neq \phi$, 证明 [a] = [b].

设 $x_0 \in [a] \cap [b]$, 则 $x_0 \sim a$, $x_0 \sim b$. $\forall x \in [a]$, $x \sim a \sim x_0 \sim b \Rightarrow x \in [b]$, 因此 $[a] \subset [b]$. 同理 $[b] \subset [a]$, 进而 [a] = [b].

Problem 4 称 X 的子集族 F 是 X 的划分, 如果满足如下条件:

(1) $\forall A \in \mathcal{F}, A \neq \phi$. (2) $\forall A, B \in \mathcal{F}, A \neq B$ 都有 $A \cap B = \phi$. (3) $\forall x \in X, \exists A \in \mathcal{F}, x \in A$. 证明: 任意 X 的划分 \mathcal{F} , 都存在 X 的等价关系 \sim 使得 $X/\sim = \mathcal{F}$.

定义关系 \sim = $\{(a,b) \in X \times X | \exists A \in \mathcal{F}, a,b \in A\}$ 满足自反性和对称性. 如果 $a \sim b,b \sim c$, 则 $\exists A,B \subset \mathcal{F}, a,b \in A,b,c \in B$. 由于 $b \in A \cap B$, 所以 $A \cap B \neq \phi,A = B$. 于是 $a,c \in A,a \sim c$. 所以 \sim 是等价关系. 接下来证明 $X/\sim = \mathcal{F}$.

 $orall [a] \in X/\sim, \exists M \in \mathcal{F}, a \in M. \ \forall b \in [a], \exists N \in \mathbb{F}, a, b \in N. \ M \cap N
eq \phi \Rightarrow M = N \Rightarrow b \in M \Rightarrow [a] \subset M. \ \forall x \in M, a \sim x \Rightarrow x \in [a] \Rightarrow M \subset [a] \Rightarrow [a] = M \Rightarrow X/\sim \subset \mathcal{F}.$

 $\forall F \in \mathbb{F}, f \in F, [f] = \{x \in X | \exists A \in \mathbb{F}, x, f \in A\} = \{x \in X | x \in F\} = F.\ F = [f] \in X/\sim \Rightarrow \mathbb{F} \subset X/\sim A$

这样我们就证明了 $X/\sim = \mathcal{F}$.

Problem 5 给出向量的严格定义.

设 \mathcal{F} 是标量域, $n \in \mathbb{N}_+, I_n = \{1, 2, \cdots, n\}$. n 维向量 $v := \{(i, a_i) | i \in I_n, a_i \in \mathcal{F}\}$, (a, b) 是有序对. 通常简记为 $v = (a_1, a_2, \cdots, a_n)$.