Sentence-level Multilingual Multi-modal Embedding for Natural Language Processing

lacer Calixto, Qun Liu August 14, 2018

ADAPT Centre
School of Computing
Dublin City University
{ FirstName.LastName}@adaptcentre.ie

Outline

Introduction

Our Model

Results

Introduction

Introduction

 Distributional semantic models (DSMs): compute word (sentence, paragraph) vector representations from text based on word co-occurrence patterns.

- The meaning of a word depends on the "company it keeps" (Harris, 1954):
 - word2vec (Mikolov et al., 2013);
 - skip-thought vectors (Kiros et al., 2015);

Introduction

 Distributional semantic models (DSMs): compute word (sentence, paragraph) vector representations from text based on word co-occurrence patterns.

- The meaning of a word depends on the "company it keeps" (Harris, 1954):
 - word2vec (Mikolov et al., 2013);
 - skip-thought vectors (Kiros et al., 2015);

Our Model

Multilingual Multi-modal Embedding

Model Formulation and Training

Language encoder(s):

for each language k (e.g., English, German):

- $X^k = (X_1^k, X_2^k, \cdots, X_{N_k}^k);$
- $\mathbf{v}^k \in \mathbb{R}^{1024} = \mathsf{RNN}(\mathbf{X}^k);$

Visual encoder(s):

for each image *i*:

- $q \in \mathbb{R}^{4096} = \text{CNN}(i);$
- $\mathbf{d} \in \mathbb{R}^{1024} = W_I \cdot \mathbf{q}$;

Multi-modal ranking

$$R_{\text{MM}} = \sum_{d} \sum_{r} \max \{0, \alpha - \boldsymbol{d}^{T} \cdot \boldsymbol{v}^{k} + \boldsymbol{d}^{T} \cdot \boldsymbol{v}^{k}_{r}\} + \sum_{r} \sum_{r} \max \{0, \alpha - (\boldsymbol{v}^{k})^{T} \cdot \boldsymbol{d} + (\boldsymbol{v}^{k})^{T} \cdot \boldsymbol{d}_{r}\},$$

$$k \in K, \tag{1}$$

- d: correct image;
- **v**^k: correct sentence in language k;
- \mathbf{v}_r^k : random sentence in language k;
- d_r: random image;
- α : margin;

Multilingual ranking

$$R_{ML} = \sum_{\mathbf{v}^k} \sum_{r} \max \{0, \alpha - (\mathbf{v}^k)^T \cdot \mathbf{v}^l + (\mathbf{v}^k)^T \cdot \mathbf{v}_r^l\} + \sum_{\mathbf{v}^l} \sum_{r} \max \{0, \alpha - (\mathbf{v}^l)^T \cdot \mathbf{v}^k + (\mathbf{v}^l)^T \cdot \mathbf{v}_r^k\},$$

$$k \in K, l \in K, l \neq k,$$
(2)

- \mathbf{v}^k : correct sentence in language k;
- v^I: correct sentence in language I;
- v_r^k: random sentence in language k;
- v_r^l: random sentence in language l;
- α : margin;

Final optimisation function

$$\min_{\theta_k, W_l} \beta \mathsf{R}_{\mathsf{MM}} + (1 - \beta) \mathsf{R}_{\mathsf{ML}}, \forall k \in K,$$

$$0 \ge \beta \ge 1, \tag{3}$$

Results

Image-sentence ranking

English								German				
	Skip-T.	VSE		Ours				VSE	Ours			
		paper	current	β=1	β=.75	$\beta = 0.5$	$\beta = 0.25$	current	β=1	β=.75	$\beta = 0.5$	$\beta = 0.25$
Sentence to image												
r@1	18.2	16.8	16.5	23.0 (+6.2)	24.9 (+8.1)	22.3 (+5.5)	21.3 (+4.5)	13.5	21.6 (+8.1)	20.3 (+6.8)	20.3 (+6.8)	19.5 (+6.0)
r@5	41.9	42.0	41.9	49.3 (+7.3)	52.3 (+10.3)	48.3 (+6.3)	45.5 (+3.5)	36.6	48.8 (+12.2)	45.0 (+8.4)	43.7 (+7.1)	43.0 (+6.4)
r@10	53.5	56.5	54.4	61.1 (+4.6)	63.6 (+7.1)	58.4 (+1.9)	56.7 (+0.2)	49.0	59.5 (+10.5)	56.6 (+7.6)	55.4 (+6.4)	54.4 (+5.4)
mrank	9	8	9	6	5	6	7	11	6	7	8	8
Image to sentence												
r@1	26.8	23.0	30.7	33.1 (+2.4)	30.7 (+0.0)	27.4 (-3.3)	26.7 (-4.0)	30.5	32.3 (+1.7)	24.9 (-5.6)	23.0 (-7.5)	21.8 (-8.7)
r@5	54.9	50.7	57.8	57.2 (-0.6)	55.4 (-2.4)	54.5 (-3.3)	51.4 (-6.4)	56.0	58.6 (+2.6)	52.3 (-3.7)	48.4 (-7.6)	49.8 (-6.2)
r@10	67.5	62.9	70.6	68.7 (-1.9)	65.6 (-5.0)	64.0 (-6.6)	61.9 (-8.7)	68.9	68.1 (-0.8)	63.6 (-5.3)	62.8 (-6.1)	61.3 (-7.6)
mrank	5	5	4	4	4	4	5	4	4	5	6	6

- Skip-T.: skip-thought vectors (Kiros et al., 2015);
- VSE: visual-semantic embeddings (Kiros et al., 2014);
- r@{1,5,10}: recall-at-{1,5,10};
- mrank: median rank;

Semantic textual similarity

 We use our model to compute the distance between a pair of sentences (equivalent to cosine similarity and therefore lie in the [0, 1] interval), where 0 means complete dissimilarity and 5 complete similarity.

Test set	VSE	Our model β =1 β =.75 β =.5 β =.25	SemEval best						
in-domain data									
Image descriptions (2014)	.791	.797 .819 .826 .817	.821						
Image descriptions (2015)	.834	.880 .882 .885 .886	.864						

Table 1: Pearson rank correlation scores for semantic textual similarities in two different SemEval test sets.

Neural Machine Translation

- We train one weak model, one regular model and one optimised NMT model on the translated Multi30k training data set (without images) to translate from English into German.
 - · weak: no regularisation;
 - regular: L2 = 1e-8, dropout = 0.5;
 - **optimised**: L2 = 0.0, dropout = 0.2;

Re-ranking n-best lists (n=20)

	BLEU		MET	EOR	TER			
Weak NMT model								
baseline	25.7		43.1		56.1			
+ VSE	25.8	(+0.1)	43.2	(+0.1)	56.1	(-0.0)		
+ MLMME, $\beta = 1$	26.1	(+0.4)	44.4 ^{†‡}	(+1.3)	55.5	(-0.6)		
+ MLMME, $\beta = 0.75$	26.1	(+0.4)	$44.3^{\dagger \ddagger}$	(+1.2)	55.9	(-0.2)		
+ MLMME, $\beta = 0.5$	26.0	(+0.3)	43.9 ^{†‡}	(+0.8)	55.9	(-0.2)		
+ MLMME, $\beta = 0.25$	26.3 ^{†‡}	(+0.6)	44.3 ^{†‡}	(+1.2)	55.2 ^{†‡}	(-0.9)		
oracle	33.1		51.4		46.5			
Regular NMT model								
baseline	32.4		50.7		51.9			
+ VSE	32.2	(-0.2)	50.7	(+0.0)	52.6	(+0.7)		
+ MLMME, $\beta = 1$	33.8 ^{†‡}	(+1.4)	51.4 ^{†‡}	(+0.7)	49.0 [‡]	(-2.9)		
+ MLMME, $\beta = 0.75$	33.5 [‡]	(+1.1)	51.3 ^{†‡}	(+0.6)	49.0 [‡]	(-2.9)		
+ MLMME, $\beta = 0.5$	33.8 ^{†‡}	(+1.4)	51.4 ^{†‡}	(+0.7)	48.6 ^{†‡}	(-3.3)		
! + MLMME, $\beta = 0.25$	33.7^{\ddagger}	(+1.3)	51.4 ^{†‡}	(+0.7)	49.4 [‡]	(-2.5)		
oracle	41.9		59.3		41.2			
Optimised NMT model								
baseline	35.3		52.3		44.9			
+ VSE	32.3	(-3.0)	49.8	(-2.5)	46.5	(+1.6)		
+ MLMME, $\beta = 1$	35.3 [‡]	(+0.0)	52.7 ^{†‡}	(+0.4)	44.5 [‡]	(-0.4)		
+ MLMME, $\beta = 0.75$	35.2 [‡]	(-0.1)	52.6 [‡]	(+0.3)	44.6 [‡]	(-0.3)		
+ MLMME, $\beta = 0.5$	35.1‡	(-0.2)	52.3 [‡]	(+0.0)	44.9 [‡]	(-0.0)		
+ MLMME, $\beta = 0.25$	35.7 [‡]	(+0.4)	52.7 [‡]	(+0.4)	44.5 [‡]	(-0.4)		
oracle	43.2		59.7		37.8			

Table 2: Results improve significantly over the corresponding 1-best baseline (†) or over the translations obtained with the VSE re-ranker (‡) with p=0.05.

Re-ranking n-best lists (n=50)

	BLEU		METEOR		TER			
Weak NMT model								
baseline	25.7		43.1		56.1			
+ VSE	25.8	(+0.1)	43.5 [†]	(+0.4)	56.1	(-0.0)		
+ MLMME, $\beta = 1$	26.2	(+0.5)	44.6 ^{†‡}	(+1.5)	55.4	(-0.7)		
+ MLMME, $\beta = 0.75$	26.4 [†]	(+0.7)	44.5 ^{†‡}	(+1.4)	55.6	(-0.5)		
+ MLMME, $\beta = 0.5$	25.9	(+0.2)	43.9 [†]	(+0.8)	55.9	(-0.0)		
+ MLMME, $\beta = 0.25$	26.4 ^{†‡}	(+0.7)	44.5 ^{†‡}	(+1.4)	55.0 ^{†‡}	(-1.1)		
oracle	36.2		53.8		43.4			
Regular NMT model								
baseline	32.4		50.7		51.9			
+ VSE	32.7	(-0.3)	50.8	(+0.1)	51.4	(-0.5)		
+ MLMME, $\beta = 1$	34.2 ^{†‡}	(+1.8)	51.6 ^{†‡}	(+0.9)	48.3 [‡]	(-3.6)		
+ MLMME, $\beta = 0.75$	34.1†‡	(+1.7)	51.6 ^{†‡}	(+0.9)	47.6 ^{†‡}	(-4.3)		
+ MLMME, $\beta = 0.5$	34.0 ^{†‡}	(+1.6)	51.4 ^{†‡}	(+0.7)	47.3 ^{†‡}	(-4.6)		
+ MLMME, $\beta = 0.25$	34.1†‡	(+1.7)	51.6 ^{†‡}	(+0.9)	48.5 [‡]	(-3.4)		
oracle	46.6		61.8		34.1			
Optimised NMT model								
baseline	35.3		52.3		44.9			
+ VSE	30.7	(-4.6)	47.9	(-4.4)	48.6	(+3.7)		
+ MLMME, $\beta = 1$	35.4 [‡]	(+0.1)	52.7 ^{†‡}	(+0.4)	44.4 ^{†‡}	(-0.5)		
+ MLMME, $\beta = 0.75$	35.2 [‡]	(-0.1)	52.5‡	(+0.2)	44.7 [‡]	(-0.2)		
+ MLMME, $\beta = 0.5$	35.1‡	(-0.2)	52.3 [‡]	(+0.0)	44.7 [‡]	(-0.2)		
+ MLMME, $\beta = 0.25$	35.6 [‡]	(+0.3)	52.6 [‡]	(+0.3)	44.4 ^{†‡}	(-0.5)		
oracle	46.3		61.9		34.9			

 Table 3: Results improve significantly over the corresponding 1-best baseline

(†) or over the translations obtained with the VSE re-ranker (‡) with p = 0.05. _{17/25}

- multilingual multimodal embedding model trained with a modified pairwise ranking loss objective;
- promising results in three downstream NLP tasks:
- ISR:
 - consistent improvements in image

 sentence ranking;
 - sentence image ranking;
- STS:
 - consistent improvements in in-domain tasks;
 - out-of-domain tasks
- NMT:
 - significant improvements in METEOR in n-best re-ranking
 - 20-best lists and 50-best lists
 - weak, regular, and optimised NMT baselines

- multilingual multimodal embedding model trained with a modified pairwise ranking loss objective;
- promising results in three downstream NLP tasks:
- ISR:
 - consistent improvements in image—sentence ranking;
 - sentence image ranking;
- STS:
 - consistent improvements in in-domain tasks:
 - out-of-domain tasks:
- NMT:
 - significant improvements in METEOR in n-best re-ranking
 - 20-best lists and 50-best lists
 - weak, regular, and optimised NMT baselines

- multilingual multimodal embedding model trained with a modified pairwise ranking loss objective;
- promising results in three downstream NLP tasks:
- ISR:
 - consistent improvements in image

 sentence ranking;
 - sentence→image ranking;
- STS:
 - consistent improvements in in-domain tasks:
 - out-of-domain tasks
- NMT:
 - significant improvements in METEOR in n-best re-ranking
 - 20-best lists and 50-best lists
 - weak, regular, and optimised NMT baselines

- multilingual multimodal embedding model trained with a modified pairwise ranking loss objective;
- promising results in three downstream NLP tasks:
- ISR:
 - consistent improvements in image

 sentence ranking;
 - sentence—image ranking;
- STS:
 - consistent improvements in in-domain tasks;
 - out-of-domain tasks;
- NMT:
 - significant improvements in METEOR in n-best re-ranking;
 - 20-best lists and 50-best lists
 - weak, regular, and optimised NMT baselines

- multilingual multimodal embedding model trained with a modified pairwise ranking loss objective;
- promising results in three downstream NLP tasks:
- ISR:
 - consistent improvements in image

 sentence ranking;
 - sentence image ranking;
- STS:
 - consistent improvements in in-domain tasks:
 - out-of-domain tasks:
- NMT:
 - significant improvements in METEOR in n-best re-ranking;
 - 20-best lists and 50-best lists;
 - weak, regular, and optimised NMT baselines;

References I

References

- Harris, Z. (1954). Distributional structure. Word, 10(23):146-162.
- Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014). Unifying visual-semantic embeddings with multimodal neural language models. *CoRR*, abs/1411.2539.
- Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R. S., Torralba, A., Urtasun, R., and Fidler, S. (2015). Skip-thought vectors. *CoRR*, abs/1506.06726.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. *CoRR*, abs/1310.4546.

Thank you! Questions?