

Введение в экономико-математическое моделирование

Лекция 19. Проверка гипотез

канд. физ.-матем. наук, доцент Д. В. Чупраков usr10381@vyatsu.ru

A (2 20/24 + 44)

Структура лекции

- 1 Понятие статистической гипотезы
- 2 Статистический критерий
- 3 Алгоритм проверки гипотез
- Проверка гипотезы о законе распределения генеральной совокупности
- 5 Гипотеза об однородности выборки
- 6 Исключение грубых ошибок

Статистическая гипотеза

Определеине

Статистическая гипотеза это предположение

- о виде распределения генеральной совокупности или
- о величинах неизвестных параметров известного распределения генеральной совокупности,

которое может быть проверено на основании выборочных показателей.

По количеству предположений гипотезы делятся на:

- простые это гипотезы, содержащие только одно предположение;
- сложные гипотезы, состоящие из конечного или бесконечного числа простых гипотез.

Mortal Combat

Нулевая гипотеза H_0 — гипотеза, подлежащая проверке.

Конкурирующая (альтернативная) гипотеза H_1 — любое утверждение, которое противоречит нулевой гипотезе.

Нулевая гипотеза — утверждение, принимаемое по умолчанию.

Проверяя статистическую гипотезу исследователь пытается показать несостоятельность нулевой гипотезы, несогласованность её с имеющимися опытными данными, то есть отвергнуть гипотезу.

При этом подразумевается, что должна быть принята другая, альтернативная (конкурирующая), исключающая нулевую гипотезу.

Отвергнуть нулевую гипотезу — значит сделать вывод, что конкурирующая гипотеза H_1 лучше описывает реальность, чем нулевая гипотеза H_0

Для нулевой гипотезы действует своеобразная "презумпция невиновности":

Нулевая гипотеза считается верной, пока не будет доказано обратное (нулевая гипотеза отвергнута) сверх необходимых сомнений (т. е. в статистически значимой степени).

Истинность нулевой гипотезы невозможно доказать, но можно показать, что в данный момент нет причин сомневаться в ней.

Статистический критерий

Статистический критерий — правило, которое позволяет на основе имеющихся данных отвергнуть нулевую гипотезу.

- Параметрические критерии, которые служат для проверки гипотез о параметрах распределений генеральной совокупности (чаще всего нормального распределения).
- Непараметрические критерии, которые для проверки гипотез не используют предположений о распределении генеральной совокупности. Эти критерии не требуют знания параметров распределений.
- Критерии согласия служат для проверки гипотез о согласии распределения генеральной совокупности, из которой получена выборка, с ранее принятой теоретической моделью (чаще всего нормальным распределением).

Статистика критерия

В основе критерия лежит статистика критерия — искусственно сконструированная функция

$$T_n = T(X_1, X_2, \ldots, X_n)$$

от выборки $X_1, X_2, ..., X_n$.

- Статистика критерия является случайной величиной.
- ▶ Закон распределения статистики критерия должен быть известнен!

Обозначение статистики

В зависимости от закона распределения статистику обозначают через:

- \triangleright *U* или *Z*, если она имеет нормальное распределение;
- \triangleright *F* или v^2 распределение Фишера;
- $\triangleright \chi^2$ распределение «хи квадрат»;
- ▶ t распределение Стьюдента.

Критическая область

Множество всех значений статистики критерия разбивается на два непересекающихся подмножества:

- Критическую область включает значения статистики, появление которых при справедливости Н₀ практически невозможно.
- Область допустимых значений (область принятия гипотезы) — значения которые может принимать статистика при условии справедливости нулевой гипотезы H₀;

- Статистика подбирается так, чтобы область допустимых значений и критическая область были интервалами.
- Вид критической области зависит от типа альтернативной гипотезы.

Отвержение и принятие гипотезы

Условие отвержения гипотезы

Если значение статистики попадает в критическую область, то гипотеза H_0 отвергается в пользу альтернативной.

Условие согласия гипотезы

Если значение статистики попадает в область допустимых значений, то гипотеза H_0 не противоречит наблюдаемым значениям, поэтому нет оснований отвергать ее.

Нулевая гипотеза принимается только волевым решением исследователя.

Матрица ошибок

	<i>H</i> 0 верна	<i>H</i> 0 неверна
H_0 принята	Верное решение	Ошибка II рода
<i>H</i> ₀ отвергнута	Ошибка I рода	Верное решение

- ▶ Ошибка первого рода отвержение верной гипотезы H₀.
- ▶ Ошибка второго рода принятие ошибочной гипотезы H₀.

Определеине

Вероятность ошибки первого рода называется уровнем значимости α .

Уровень значимости α устанавливается из значений следующего ряда:

события с такими вероятностями считаются практически невозможными.

Допустимая величина уровня значимости определяется теми последствиями, которые наступают после совершения ошибки.

Критическое значение

Так как область допустимых значений и критическая область являются интервалами, то существует граничная точка, разделяющая их

Критическое значение статистики — граница области допустимых значений статистики, при условии, что нулевая гипотеза H_0 верна.

Типы критической области

Односторонняя:

▶ Левосторонняя — определяется $P(T < T_{\kappa p}) = \alpha$

▶ Правосторонняя — определяется $P(T > T_{\kappa p}) = \alpha$

Двухсторонняя — определяется $P(T>|T_{\text{кр}}|)=rac{lpha}{2}$ — $T_{\text{кр.}}$ — $T_{\text{кр.}}$

Мощность критерия

Определеине

Мощность критерия — вероятность попадания критерия в критическую область при условии, что верна конкурирующая гипотеза.

Если β — вероятность ошибки второго рода, то мощность критерия равна $1 - \beta$.

Чем больше мощность критерия, тем меньше вероятность совершить ошибку второго рода.

После выбора уровня значимости α следует строить критическую область так, чтобы мощность критерия была максимальной.

Алгоритм проверки гипотез

- 1. Формулируются гипотезы H_0 и H_1 .
- 2. По виду гипотезы выбирается статистический критерий T;
- 3. Выбирается уровень значимости критерия α . Он равен вероятности допустить ошибку первого рода.
- 4. По выборочным данным вычисляется вычисляется наблюдаемое значение сатистики $T_{\rm Ha6D.}$
- 5. По уровню значимости α вычисляется критическое значение $T_{\kappa p}$, разделяющее критическую область и область допустимых значений.
- 6. Определяется неравенство, задающее критическую область.
- ► Если *Т*_{набл.} попадает в критическую область, то нулевая гипотеза отвергается.
- ► Если *T*_{набл.} попадает в область допустимых значений, то нулевая гипотеза не противоречит наблюдаемым данным.

Бросаются две игральные кости. Задайте случайную величину "Число выпавших очков".

Пусть было совершено 144 броска двух игральных костей: И получен следующий статистический ряд числа очков

Как Вы считаете, кости утяжелены или нет?

Подсчитаем Каково было ожидаемое число выпадений каждого количества очков при n=144 бросках

Значение <i>s</i> ;	2	3	4	5	6	7	8	9	10	11	12
Вероятность рі	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	<u>5</u> 36	$\frac{1}{6}$	<u>5</u> 36	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$
Ожид. число <i>прі</i>	4	8	12	16	20	24	20	116	12	8	4
Наблюд. число <i>п</i> ;	2	4	10	12	22	29	21	15	14	9	6

Насколько вероятно, что кости утяжелены?

Критерий согласия I

Оценим, как велико суммарное отклонение наблюдаемых значений от теоретических.

$$V = (n_1 - np_1) + (n_2 - np_2) + \ldots + (n_{11} - np_{11}).$$

Подставим значения и получим V = 0. Отклонения скомпенсировали друг друга!

Возьмем квадраты отклонений:

$$V = (n_1 - np_1)^2 + (n_2 - np_2)^2 + \ldots + (n_{11} - np_{11})^2$$

Подставим значения и получим V=.

Плохие кости приведедут к невероятно большому значению \emph{V} .

Критерий согласия II

Проблема: Отклонения в разности $(n_7 - np_7)^2$ будут встречаться чаще, чем в разности $(n_1 - np_1)^2$ так как вероятность выпадения 7 очков в шесть раз больше, чем выпапение 2 очков.

Скомпенсируем вклад каждого слагаемого:

$$\chi^2 = \frac{(n_1 - np_1)^2}{np_1} + \frac{(n_2 - np_2)^2}{np_2} + \ldots + \frac{(n_{11} - np_{11})^2}{np_{11}}$$

Подсчитаем:

$$\chi^2 = \frac{(2-4)^2}{4} + \frac{(4-8)^2}{8} + \ldots + \frac{(6-4)^2}{4} = 7\frac{7}{48}$$

Теперь вопрос: $7\frac{7}{48}$ — это "невероятно большое число" или все же нет?

Критерий согласия χ^2 Пирсона

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

- ▶ n объем выборки;
- ▶ k число интервалов разбиения выборки;
- ightharpoonup п_i число значений выборки, попавших в i-й интервал;
- np_i теоретическая частота попадания значений случайной величины X в i-й интервал.

Замечание

При использовании критерия согласия χ^2 достаточно большими должны быть как общее число опытов n > 100, так и значения в отдельных интервалах $n_i \geqslant 5$.

Если для некоторых интервалов условие $n_i \geqslant 5$ нарушается, то соседние интервалы объединяются в один.

Применение критерия χ^2 Пирсона

Для проверки гипотезы о законе распределения генеральной совокупности

- 1. По гистограмме выбирается наиболее подходящее гипотетическое распределение.
- 2. Формулируется гипотеза *H*₀ "генеральная совокупность подчинена выбранному закону распределения".
- 3. Находятся теоретические вероятности наблюдаемых значений.
- 4. По формуле $\chi^2 = \sum_{i=1}^k \frac{(n_i np_i)^2}{np_i}$ вычисляют наблюдаемое значение критерия $\chi^2_{\text{набл.}}$
- 5. По известному уровню значимости α и числу степеней свободы k в таблице значений χ^2 находят теоретическое значение $\chi_{\alpha,k}$.
- 6. Если $\chi^2_{\text{набл.}} > \chi_{\alpha,k}$, то гипотеза H_0 отвергается.

По данным выборки выдвинуть гипотезу о распределении генеральной совокупности и проверить ее при уровне

	x_i	n _i
	0.2-0.4	6
	0.4 - 0.6	8
	0.6-0.8	27
	0.8 - 1.0	26
значимости 0.05.	1.0-1.2	30
значимости 0.05.	1.2-1.4	26
	1.4-1.6	21
	1.6–1.8	24
	1.8-2.0	21
	2.0-2.2	8
	2.2-2.4	4

Решение. Выдвижение гипотезы I

Для определения типа закона распределения построим гистограммц: $\Delta x_i = 0.1$

x_i	x_i^*	n_i	w_i	$\frac{w_i}{\delta x_i}$
0.2-0.4	0.3	6	0.03	0.003
0.4 - 0.6	0.5	8	0.04	0.004
0.6 - 0.8	0.7	27	0.135	0.0135
0.8 - 1.0	0.9	26	0.13	0.013
1.0-1.2	1.1	30	0.15	0.015
1.2-1.4	1.3	26	0.13	0.013
1.4-1.6	1.5	21	0.105	0.0105
1.6–1.8	1.7	24	0.12	0.012
1.8-2.0	1.9	21	0.105	0.0105
2.0-2.2	2.1	8	0.04	0.004
2.2–2.4	2.3	4	0.02	0.002

Решение. Выдвижение гипотезы II

Предположим, что закон распределения нормальный.

Решение. Параметры распределения I

Для проверки гипотезы склеим два последних столюца, так как в последнем число измерений меньше 5.

Вычислим среднее выборочное и выборочную дисперсию

x_i	X_i^*	n_i	Wi	$X_i^*W_i$	$(x_i^*)^2 w_i$
0.2–0.4	0.3	6	0.03	0.009	0.0027
0.4 - 0.6	0.5	8	0.04	0.02	0.01
0.6 - 0.8	0.7	27	0.135	0.0945	0.06615
0.8 - 1.0	0.9	26	0.13	0.117	0.1053
1.0-1.2	1.1	30	0.15	0.165	0.1815
1.2-1.4	1.3	26	0.13	0.169	0.2197
1.4–1.6	1.5	21	0.105	0.1575	0.23625
1.6–1.8	1.7	24	0.12	0.204	0.3468
1.8-2.0	1.9	20	0.10	0.19	0.361
2.0-2.4	2.2	12	0.06	0.132	0.2904
Σ		200	1	1.258	1.8198

Решение. Параметры распределения II

- ightharpoonup Выборочное среднее $\bar{x} = 1.258$
- ightharpoonup Выборочная дисперсия $s^2 = 1.8198 1.258^2 \approx 0.237$
- ightharpoonup Исправленная выборочная дисперсия $\hat{s}^2 = \frac{n}{n-1} s^2 = \frac{200}{199} 0.237 = 0.238$
- ightharpoons Исправленное квадратичное отклонение $\hat{s} = \sqrt{\hat{s}^2} = 0.488$

Итак, гипотеза:

$$H_0: X \sim N(1.258, 0.488)$$

Решение. Проверка гипотезы I

По критерию согласия χ^2 Пирсона проверим гипотезу:

$$H_0: X \sim N(1.258, 0.488)$$

Расчитаем теоретические вероятности попадения в промежуток

$$P(x_i \leqslant x \leqslant x_{i-1}) = \Phi\left(\frac{x_{i+1} - \bar{x}}{s}\right) - \Phi\left(\frac{x_i - \bar{x}}{s}\right)$$

Вычисление функции Φ проведем с помощью функции Excel: =ГАУСС().

Решение. Проверка гипотезы II

Xi	x_i^*	n _i	p_i	$\frac{(n_i - np_i)^2}{np_i}$
0.2-0.4	0.3	6	0.024	0.270
0.4 - 0.6	0.5	8	0.049	0.359
0.6 - 0.8	0.7	27	0.085	5.817
0.8 - 1.0	0.9	26	0.125	0.048
1.0-1.2	1.1	30	0.154	0.023
1.2-1.4	1.3	26	0.162	1.248
1.4-1.6	1.5	21	0.144	2.096
1.6-1.8	1.7	24	0.108	0.251
1.8 - 2.0	1.9	20	0.069	2.749
2.0-2.4	2.2	12	0.055	0.109
Σ		200	0.975	12.969

Вычислим наблюдаемое значение χ^2

Решение. Проверка гипотезы III

$$\chi^2_{\text{набл.}} = \sum_{i=1}^{10} \frac{(n_i - np_i)^2}{np_i} =$$

$$= 0.270 + 0.359 + 5.817 + 0.048 + 0.023 +$$

$$+ 1.248 + 2.096 + 0.251 + 2.749 + 0.109 =$$

$$= 12.969$$

Вычислим критическое значение χ^2 по уровню значимости $\alpha=0.05$ и числу степеней свободы k=10-1=9 Воспользуемся функцией Excel: =XИ20БР(0,05; 9).

$$\chi^2 \kappa p. = \chi^2_{0.05;9} = 16.919.$$

Решение. Проверка гипотезы IV

Сравним значения

$$\chi^2$$
набл. = 12.969 < 16.919 = χ^2 кр.

Таким образом, наблюдаемые данные не противоречат гипотезе о нормальном распределении N(1.258, 0.488) генеральной совокупности.

Гипотеза об однородности выборки

Пусть есть две независимые выборки с неизвестными функциями распределения $F_1(x)$ и $F_2(x)$.

Гипотеза H_0 — эти выборки из одной и той же генеральной совокупности:

$$H_0: F_1(x) = F_2(x).$$

Альтернативная гипотеза *H*₁ — эти выборки из разных генеральных совокупностей:

$$H_1: F_1(x) \neq F_2(x).$$

Критерий Колмогорова—Смирнова

1. Наблюдаемое значение вычисляется по формуле

$$\lambda'_{\text{набл.}} = \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \max |F_{n_1}^*(x) - F_{n_2}^*(x)|$$

где

- **№** n_1 , n_2 объемы выборок
- $ightharpoonup F_{n_1}(x), F_{n_2}(x)$ выборочные функции
- 2. Критическое значение λ'_{α} вычисляется на основе уровня значимости α
 - ▶ по таблицам Колмогорова—Смирнова при $n_1, n_2 \leq 20$;
 - ▶ по таблицам распределения Колмогорова при $n_1, n_2 \geqslant 50$.
- 3. Гипотеза отвергается, если $\lambda'_{\text{набл}} > \lambda_{\alpha}$.

В течение месяца выборочно осуществлялась проверка торговых точек города по продаже овощей. Результаты двух проверок по недовесам покупателям одного вида овощей приведены в таблице:

									80; 90
			15						
n_2	5	12	8	25	10	8	20	7	5

Можно ли считать при уровне значимости 0,05, что недовесы овощей являются устойчивым и закономерным процессом при продаже овощей в данном городе (т.е. описываются одной и той же функцией распределения)?

Решение

Используем критерий Колмогорова—Смирнова для проверки гипотезы H_0 : $F_1(x) = F_2(x)$

$$\lambda'_{\text{набл.}} = \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \max |F_{n_1}(x) - F_{n_2}(x)| = \sqrt{\frac{11000}{210}} 0.089 \approx 0.644.$$

- $\lambda'_{
 m kp.} = \lambda_{0.05} = 1.36$ τακ κακ $\alpha = 0.05$, n_1 , $n_2 \geqslant 50$.
- ► Так как $\lambda'_{\text{набл.}} < \lambda_{0.05}$, то наблюдаемые данные не противоречат гипотезе.

Ответ: нет оснований считать недовесы овощей системными.

Исключение грубых ошибок наблюдения

Грубые ошибки могут возникнуть из-за ошибок показаний измерительных приборов, ошибок регистрации, случайного сдвига запятой в десятичной записи числа и т. д.

Пусть x^* , x_1 , x_2 , ..., x_n совокупность наблюдений, причем x^* резко выделяется.

Необходимо решить вопрос принадлежности резко выделяющегося значения \mathbf{x}^* к остальным, т.е. проверить гипотезу

$$H_0: x^* = \bar{x}.$$

В качестве конкурирующей гипотезы берется

- ► H_1 : $x^* < \bar{x}$ если значение x^* слишком маленькое.
- ► H_2 : $x^* > \bar{x}$ если x^* слишком большое.

Проверка гипотезы о грубой ошибке

Если гипотеза H_0 : $x^* = \bar{x}$ справедлива, то статистика

$$t = \frac{\bar{x} - x^*}{\hat{s}}$$

имеет t-распределение Стьюдента с n-1 степенью свободы.

Алгоритм:

- 1. Наблюдаемое значение: $t_{\text{набл.}} = \frac{\bar{x} x^*}{\hat{z}}$
- 2. Критическое значение $t_{\alpha,n-1}$ берется из таблицы Стьюдента по уровню значимости α и n-1 степеням свободы.
- 3. Гипотеза H_0 : $x^* = \bar{x}$ отвергается, если $|t_{\mathsf{Ha6n.}}| > t_{\alpha,n-1}$

Минимальный уровень значимости

- В случае, когда в задаче не дан уровень значимости, возникает естественный вопрос. Какой уровень значимости всё-таки лучше 0.01, 0.02, 0.05 или 0.1? А может другой?
- ▶ Кроме того, получается, что ответ зависит от того, какой уровень значимости взяли.
- Допустим, мы не отвергли гипотезу при 0.05 уровне значимости. Но нам хочется знать, с какой вероятностью ошибки первого рода мы её можем отвергнуть. Ошибка в 0.06 может быть вполне допустимой, а ошибка в 0.25 это уж слишком много.
- Нужна величина, которая позволит указать пороговое значение уровня значимости.

Определение

Минимальный уровень значимости p-value - это минимальное значение α , при котором основная гипотеза ещё отвергается.