Öğrenci Numarası : ______ Adı Soyadı : _____

Soru	1	2	3	4	5	6	Toplam
Puan	10	15	20	25	30	30	130
Not							

 \mathbf{UYARI} : 5 ve 6. sorulardan sadece birini çözünüz çözmediğiniz soruyu puan tablosunda çarpı ile işaretleyiniz!

$$\sum_{i=0}^{n} a^{i} = 1 + a + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1} \ (a \neq 1); \quad \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

1. Aşağıdaki önermelerin doğru olup olmadığını açıklayarak belirleyiniz.

- (a) (2P) $n(n+1) \notin O(n^4)$
- (b) $(2P) 2^{n-1} + n \in \Omega(2^n)$
- (c) (2P) $n(n+1) \in \Theta(n^3)$
- (d) $(2P) 9n^4 7n^3 + 3 \in \Theta(n^4)$
- (e) (2P) $\Theta(\alpha g(n)) \in \Theta(g(n)), \alpha \in \mathbb{N}^+$

2. Aşağıda verilen fonksiyonların orderlarını (verimlilik sınıflarını) Θ cinsinden veriniz (En basit verimlilik sınıfı fonksiyonunu veriniz.)

(a) $(3P) 2lg(n+65)^6$

- 1	
ı	
١	
-	
-	
- 1	
١	
- 1	

(h)	(3D)	$\frac{n(n-1)(2n+5)}{6}$
(0)	(31)	6

(c)
$$(3P) \sqrt{8n^8 + 8n^2 + \sqrt{n}}$$

(d) $(3P) \ 2nlg(2n+2)^3 + (n^2+2)^2lgn$

(e) $(3P) 8^n + 9^{2^n}$

3. Aşağıda verilen tekrar etme ilişkilerini çözün.

(a) (10P)
$$T(n) = 2T(n/2) - 2, T(1) = 8$$

(b)
$$(10P)$$
 $T(n) = 2T(n-3) + n, T(1) = 1$

- 4. Algoritma 1'i inceleyiniz.
 - (a) (15P) Aşağıda verilen Algoritma 1'in çalışma zamanını bulunuz.
 - (b) (10P) Bu algoritmadaki verimsizlik nerden kaynaklanmaktadır? Nasıl düzeltilebilir?

Algorithm 1 Gaussian Elimination

```
1: function GE(A[0..n-1,0..n])
```

Giriş olarak n x (n+1) boyutunda reel elemanlı bir matris veriliyor

 $\mathbf{for} \quad i \leftarrow 0 \ \mathbf{to} \ n-2 \ \mathbf{do}$ 3:

4:

for $j \leftarrow i+1$ to n-1 do

 $\textbf{for} \quad k \leftarrow i \ \textbf{to} \ n \ \textbf{do} \ A[j,k] \leftarrow A[j,k] - A[i,k] * A[j,i]/A[i,i]$ 5:

	_	
5.		et evin düz bir yolda sırasıyla $x_1 < x_2 < < x_n$, $x_i \in \mathbb{R}^+$ koordinatında bulunduğununlar. Bu evlerden birine postane açılması istenmektedir.
	(a)	(20P) Postanenin nereye açılması gerektiğini bulmak için diğer evler ve açılacak postandarasındaki ortalama uzaklığı en aza indirecek bir algoritma yazınız.

(b) (10P) Postanenin nereye açılması gerektiğini bulmak postane ile en uzak ev arasındaki mesafeyi minimize eden bir algoritma tasarlayınız.

6. (30P) Bir çizge (graph) iki ayrık X ve Y kümesine ayrılabiliyorsa **bipartite** çizge olarak adlandırılmaktadır, öyle ki X kümesine ait her bir düğümün tüm komşuları Y kümesine ait, benzer şekilde Y kümesine ait her bir düğümün tüm komşuları X kümesinden olmalıdır. Örneğin (i) deki çizge **bipartite** iken (ii)'deki değildir.

Bir çizgenin bipartite olup olmadığını bulan DFS ya da BFS tabanlı bir algoritma tasarlayınız. Algoritmanın zaman karmaşıklığını belirleyiniz.