Project Management

Lecture 2a

Network Planning
Techniques: CPM-PERT

Instructor

Carmi Bogot

Agenda

- PM methods and tools
- CPM
- Critical Paths, Slack
- Probabilistic Task Times
- Task "Crashing" and Cost
- Conclusions and Discussion
- HW 1

History of project management

- Big Projects
 - Pyramids (we built them)
 - Great Wall
 - Large workforce but no documented project management
- Formal Project Management
 - Henry Gantt (1861-1919) bar chart
 - 1957 Sputnik Crisis "Scientific Management"
 - Project Evaluation and Review Technique (PERT)
 - DuPont 1960 : Critical Path Method (CPM)
 - 1960 NASA: Mercury, Gemini, Apollo
 - Work breakdown Schedules (WBS)
 - Cost and Schedule tracking, configuration management

Early Project Management

- Project Decomposition due to complexity
- Resource allocation and workload smoothing
- Schedule urgency ("within next 10 years JFK")
- Causes
 - Complex relations between Government and Contractors
 - Cold war pressures for Nuclear Power, Space Race
- Other innovations
 - Project Manager as a central figure
 - Beginnings of Matrix Organization
- Professionalization since 1969
 - Other industries: computer, automotive
 - Project Management Institute (PMI)
 - ISO 10006: 1997 Quality in Project Management

Fundamental Approaches

- How to represent task relationships
- Network Based methods
 - CPM, PERT
 - Task is a node or an arc
- Matrix Based
 - DSM (design Structure Matrix)
- System Dynamics
 - Feedback loops, causal relationships
 - Stock and flows simulation
 - Tasks that are done or waiting are "stocks"
 - Doing project work causes a "flow"

Gantt Charts

- Attributed to Henry Gantt
 - most popular tool (80%)
- Used to plan big shipbuilding projects (cargo ships WWI)
- Graphical way of showing task durations, project schedule
- Graphical way of showing task durations, and schedule
- Does not explicitly show relationships between tasks
- Limited use for project tracking
- Easy to understand

Critical Path Mapping

- Represent a project (set of tasks) as a network using graph theory
 - Capture durations
 - Capture dependencies

CPM Assumptions

- Project consists of well defined tasks
- Project ends when all tasks are done
- Jobs may be started and stopped independently
- Jobs are ordered "technological sequence"

Graph representations

- Tasks as Nodes
 - Contain Resources and Duration
- Tasks as Arcs
 - Tasks are uni-directional arrows
 - Nodes are the "states"
 - Kelly-Walker form

Work Breakdown Structure

- Used to create the task list
- Tree-decomposition of project tasks
- Identifies "terminal elements"
- Required by Government as part of SOW
- Use "stick-notes" method early on
- Carl L Pritchard "Nuts and Bolts Series 1: how to Build a Work Breakdown Structure"

WBS Painting a Room

WBS Guidelines

- No more than 100 200 elements
 - If needed make separate sub-project
- Up to 3 or 4 levels deep
- Not more than 5 9 jobs at one level
 - Human cognition
 - Dilution of attention
 - Too many dependencies
- Jobs should be a similar size
- Level of detail
 - Unclear?

Task List

- List all tasks in a table with
 - Identifying symbol
 - Task description
 - Immediate prerequisite jobs
 - Expected duration
- Arrange in "technological order"
 - No job appears before predecessors
 - No Iterations
 - Job A precedes B precedes C precedes A

Example Task list

ID		Task Name	% Complete	Duration	Start	Finish	Predecessors
	Ð						
1		Project "XYZ"	7%	42 days	Mon 16-11-09	Tue 12-01-10	
2		Marketing Study	30%	14 days	Mon 16-11-09	Thu 03-12-09	
3		Requirements Definition	0%	7 days	Mon 23-11-09	Tue 01-12-09	
4		System Design	0%	7 days	Fri 04-12-09	Mon 14-12-09	2
5		Component A	0%	14 days	Tue 15-12-09	Fri 01-01-10	4
6		Component B	0%	14 days	Tue 15-12-09	Fri 01-01-10	4
7		Integration and test	0%	7 days	Mon 04-01-10	Tue 12-01-10	6,5
8		Product Release	0%	0 days	Tue 12-01-10	Tue 12-01-10	7

Critical Path Algorithm

- For large projects there are many paths
- An algorithm is needed to identify the CP efficiently
- Develop information about each task in the context of the project
- Times
 - Start time (S)
 - For each job: earliest start (ES)
 - When all predecessors are completed
 - Job duration t
 - Earliest Finish (EF) = (ES)+t
- Show algorithm using project graph

HW1 Introduction

- You are Project Manager for a project to develop a corporate web site
- Plan the project
 - Task list
 - Project graph
 - Critical path
 - Slack times
 - "managerial" issues

