Homework 2 solution

Max marks: 110

Due on September 17, 2021, 9 AM, before class.

Row	$ x_1 $	x_2	x_3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

Table 1: Truth table for a 3-way light switch

1 Sept 10th Lecture

Problem 1 If the SOP form for $\bar{f} = A\bar{B}\bar{C} + \bar{A}\bar{B}$, then give the POS form for f. [10 marks]

Solution

Take inversion on both sides

$$\begin{split} \overline{f} &= \overline{A\bar{B}\bar{C} + \bar{A}\bar{B}} \\ f &= \overline{A\bar{B}\bar{C}} \cdot \overline{A\bar{B}} \\ &= (\bar{A} + B + C)(A + B) \end{split} \quad \text{by DeMorgan's} \end{split}$$

Problem 2 Use DeMorgan's Theorem to find f if $\bar{f} = (A + BC)D + EF$. [10 marks]

Solution

Take inversion on both sides

$$\begin{split} \overline{f} &= \overline{(A+BC)D+EF} \\ f &= \overline{((A+BC)D)} \cdot \overline{EF} \qquad \text{by DeMorgan's} \\ &= (\overline{(A+BC)} + \bar{D})(\bar{E} + \bar{F}) \qquad \text{by DeMorgan's} \\ &= (\bar{A}\overline{(BC)} + \bar{D})(\bar{E} + \bar{F}) \qquad \text{by DeMorgan's} \\ &= (\bar{A}(\bar{B} + \bar{C}) + \bar{D})(\bar{E} + \bar{F}) \qquad \text{by DeMorgan's} \end{split}$$

Problem 3 Implement the function in Table 1 using only NAND gates. [10 marks]

Solution

$$f = \overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$$

$$= \overline{\overline{x}_1 \overline{x}_2 x_3} + \overline{\overline{x}_1 x_2 \overline{x}_3} + \overline{x_1 \overline{x}_2 \overline{x}_3} + \overline{\overline{x}_1 x_2 x_3}$$

$$= \overline{\overline{x}_1 \overline{x}_2 x_3} \cdot \overline{x}_1 x_2 \overline{x}_3 \cdot \overline{x}_1 \overline{x}_2 \overline{x}_3 \cdot \overline{x}_1 \overline{x}_2 \overline{x}_3}$$

Problem 4 Implement the function in Table 1 using only NOR gates. [10 marks]

Solution

$$\begin{split} f &= (x_1 + x_2 + x_3)(x_1 + \bar{x}_2 + \bar{x}_3)(\bar{x}_1 + x_2 + \bar{x}_3)(\bar{x}_1 + \bar{x}_2 + x_3) \\ &= \overline{(x_1 + x_2 + x_3)(x_1 + \bar{x}_2 + \bar{x}_3)(\bar{x}_1 + x_2 + \bar{x}_3)(\bar{x}_1 + \bar{x}_2 + x_3)} \\ &= \overline{(x_1 + x_2 + x_3) + (\bar{x}_1 + \bar{x}_2 + \bar{x}_3) + (\bar{x}_1 + \bar{x}_2 + \bar{x}_3)} + (\bar{x}_1 + \bar{x}_2 + \bar{x}_3)} \end{split}$$

2 Sept 13th Lecture

Problem 5 Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3) = m(1, 2, 3, 5)$. [1, Prob 2.37] [10 marks]

Solution

Minimum cost SOP

$$f = \bar{x}_1 x_2 + \bar{x}_2 x_3 \tag{1}$$

Cost = 2 AND + 1 OR + (2*2 + 2) inputs = 9<u>Minimum cost POS</u>

$$\bar{f} = \bar{x}_2 \bar{x}_3 + x_1 x_2 \tag{2}$$

$$\implies f = (x_2 + x_3)(\bar{x}_1 + \bar{x}_2) \tag{3}$$

Cost = 2 OR + 1 AND + (2*2+2) inputs = 9

Problem 6 Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3) = \sum m(1, 4, 7) + D(2, 5)$. [1, Prob 2.38] [10 marks]

Solution

Minimum cost SOP

	\bar{x}_1		x_1		
	\bar{x}_2	x_2		$ar{x}_2$	
\bar{x}_3	0	d	0	1	
x_3	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	0	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	d + d + d	

$$f = x_1 \bar{x}_2 + x_1 x_3 + \bar{x}_2 x_3 \tag{4}$$

Cost = 3 AND + 1 OR + (3*2 + 3) inputs = 13<u>Minimum cost POS</u>

$$\bar{f} = \bar{x}_2 \bar{x}_3 + x_1 x_2 \tag{5}$$

$$\implies f = (x_2 + x_3)(\bar{x}_1 + \bar{x}_2)$$
 (6)

Cost = 2 OR + 1 AND + (2*2+2) inputs = 9

Problem 7 Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3, x_4) = \prod M(0, 1, 2, 4, 5, 7, 8, 9, 10, 12, 14, 15)$. [1, Prob 2.39] [10 marks]

Problem 8 Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3, x_4) = \sum m(0, 2, 8, 9, 12, 15) + D(1, 3, 6, 7)$. [1, Prob 2.40] [10 marks]

Problem 9 Derive a minimum-cost realization of the four-variable function that is equal to 1 if exactly two or exactly three of its variables are equal to 1; otherwise it is equal to 0. [1, Prob 2.46] [10 marks]

Problem 10 Find the minimum-cost SOP and POS forms for the function $f(x_1,...,x_5) = \sum m(0,1,3,4,6,8,9,11,13,14,16,19,20,21,22,24,25) + D(5,7,12,15,17,23). [1, Prob 2.42] [10 marks]$

References

[1] S. Brown and Z. Vranesic. Fundamentals of Digital Logic with Verilog Design: Third Edition. McGraw-Hill Higher Education, 2013.