Project 3: Generative Models

Kinga Frańczak, Mateusz Wiktorzak

2025

Outline

Introduction

Theoretical Background

Methodology

Results

Conclusion

Introduction

Generative models learn the data distribution P(x) or joint distribution P(x, y).

Generative Adversarial Networks (GANs)

- ▶ Introduced by Goodfellow et al. (2014)
- Two networks: Generator G, Discriminator D
- Minimax objective:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{\mathsf{data}}}[\log D(x)] + \mathbb{E}_{z \sim p_z}[\log(1 - D(G(z)))]$$

- Variants:
 - DCGANs Deep convolutional layers
 - WGANs Wasserstein loss for stability
 - ► Common issues: mode collapse, training instability

Variational Autoencoder

- ▶ Introduced by Diederik P. Kingma and Max Welling (2022)
- Main objective: encoder maps points to the latent space with a probabilistic distribution (Gaussian)
- Loss function:
 - Reconstruction loss
 - Kullback-Leibler Divergence measures difference between probability distributions
- Characteristics: smooth transition between to samples, blurry output images

Dataset

- ► Cat images dataset from Kaggle
- ▶ 29,843 RGB images, resolution 64 × 64

DCGAN Architecture

```
Generator, input: latent vector z \in \mathbb{R}^{\mathsf{latent}}_\mathsf{dim} \times 1 \times 1
```

- ► ConvTranspose2d(latent_dim, fm*8, 4, 1, 0)
- ConvTranspose2d(fm*8, fm*4, 4, 2, 1)
- ► ConvTranspose2d(fm*4, fm*2, 4, 2, 1)
- ConvTranspose2d(fm*2, fm, 4, 2, 1)
- ► ConvTranspose2d(fm, img_channels, 4, 2, 1)

 ${\sf BatchNorm} + {\sf ReLU} \ {\sf after} \ {\sf each} \ ({\sf except} \ {\sf output} \ {\sf layer})$

Output: $64 \times 64 \times 3$, scaled to [-1, 1] using Tanh Discriminator, input: image $64 \times 64 \times 3$

- ► Conv2d(img_channels, fm, 4, 2, 1)
 - ► Conv2d(fm, fm*2, 4, 2, 1)
 - ► Conv2d(fm*2, fm*4, 4, 2, 1)
 - ► Conv2d(fm*4, fm*8, 4, 2, 1)
 - Conv2d(fm*8, 1, 4, 1, 0)
- LeakyReLU (0.2) after each layer

BatchNorm used except for first and last layer

Output: scalar probability via Sigmoid

Training: Binary cross-entropy, Adam optimizer

Variational Autoencoders - Architecture

Encoder

- ► Input: (3, 64, 64)
- ► Hidden Layer: 512
- ► Hidden Layer: 512
- Output: 16

Decoder

- ► Input: 16
- ► Hidden Layer: 512
- ► Hidden Layer: 512
- Output: (3, 64, 64)

LeakyReLU (0.2) after each layer

Training: Adam optimizer

Training Dynamics DCGAN

▶ Batch size: 128, learning rate: 2×10^{-4} , 50 epochs

Epoch	D Loss	G Loss
1	0.3554	1.7254
2	0.8433	1.4582
3	0.9313	2.5497
4	0.7322	6.8336
5	1.3214	9.0833
(40 epochs omitted)		
46	0.0862	8.8995
47	0.1399	5.3797
48	0.1071	9.2634
49	0.9051	0.2932
50	0.1063	8.1885

Table: DCGAN training log with discriminator and generator losses

Generated Samples

Figure: Images after 10 epochs

Figure: Images after 30 epochs

Final Generated Images

Further Evaluation

- ► FID:
 - ► Calculated FID between 1000 real and 1000 generated images
 - ► Lower FID = better image quality and diversity
 - Our FID: **132.7** (164.5 after first 10 epochs)
- ► Mode colapse:
 - ▶ Pairwise cosine similarity between 1000 generated samples
 - ► A similarity above 0.9 was considered highly similar.
 - Out of 999 000 possible pairs, 2412 were found to be highly similar.
- Linear interpolation between two randomly sampled latent vectors:

Variational Autoencoders - Training

Epoch	Average Loss	
1	7686.8	
2	7326.6	
3	7226.8	
4	7189.8	
5	7157.8	
(40 epochs omitted)		
46	7039.9	
47	7038.7	
48	7037.9	
49	7037.2	
50	7036.5	

Table: Loss changes during VAE training

Variational Autoencoders - Random Sample

Figure: Images generated from random sample.

Variational Autoencoders - Interpolation

Figure: Linear Interpolation between two randomly sampled images

Conclusion

- DCGANs effectively generated realistic cat images
- Visual quality improved over epochs
- ► Training remained unstable at times
- ► VAE generates smooth-looking, blurry images

References

- ► Goodfellow et al., 2014
- Radford et al., 2015
- Arjovsky et al., 2017
- ► Heusel et al., 2018
- Diederik P. Kingma and Max Welling, 2022