#### TEMA №22

# Фрактали





# Съдържание

### Тема 22: Фрактали

- Увод във фракталите
- Геометрични методи
- Алгебрични методи

# Увод във фракталите



# Какво са фракталите?

### Обикновени обекти в геометрията

Точка (0D), отсечка (1D), квадрат (2D), куб (3D), тесеракт (4D), ...

### Фракталът има дробна размерност

- Множество на Кантор (≈0.63D)
- Крива на Кох (≈1.26D)
- Драконова крива (≈1.52D)
- Гъба на Менгер (≈2.73D)



## Кошмарът за интуицията

### Обиколка на Великобритания

- Беноа Манделброт (Benoît Mandelbrot) описва парадокса на крайбрежната ивица
- Интуицията казва, че колкото с по-малка мярка мерим, толкова по-точен е резултатът
- Фракталите казват: Цъ!



# Да проверим

### Започваме с разкрач 1



### Да сметнем с разкрач 1/2

– Очакваме (с основание) измерването да е по-точно



### Сега с разкрач 1/4

- Трето измерване, трети резултат
- Дали изобщо е сходящ?



### **А с разкрач 1/8?**

– Четвърто измерване

Нямам нерви за него

#### Оказва се, че

- Колкото по-точно измерваме, толкова по-голям резултат ще получаваме
- Практически нито един от резултатите не е верен
- Може да получим каквато си поискаме обиколка,
   стига да подберем подходящ разкрач



### Пак за кошмара

### За 2D фракталите е нормално

- Да имат крайно лице
- Безкраен периметър

### Аналогично за 3D фракталите

- Да имат краен обем
- С безкрайно лице на повърхнината

### Не може да се боядиса фрактално яйце

– Но може да се изяде



# Архангел Гавраил

### Тръбата на Архангел Гавраил

- Изследвана от Торичели ученик на Галилео
- Ротационно тяло с профил на хипербола  $y(x) = \frac{1}{x}$
- Има краен обем, но...
   има и безкрайно лице





### Светът около нас

### Всичко около нас е фрактали

- Всъщност приближения на фрактали, доколкото позволява физическата структура
- Облаци, земя, дървета, светкавица
- Рояк мушици около гнила кайсия (или смокиня)
- Броколи (2.66D), човешки бял дроб (2.97D) и разклонения на кръвоносната система



### Динамични системи

### Светът около нас и фракталите

- Динамични системи
- Краен брой примитивни обекти, най-често един
- Прости правила, повтарящи се многократно



## Характеристики

### Характеристики на фракталите

- Безкрайна вложеност на детайли (ама наистина безкрайна)
- Самоподобие на всички нива
- Силна връзка между класическата геометрия и теорията на хаоса
- Използват се за генериране на "естествени" обекти и за компресиране на изображения



# Генериране на фрактали

### Два основни подхода

- Геометрични методи с рекурсивни форми и безкрайно вложени деформации
- Алгебрични методи с многократни итерации на комплексни числа

# Геометрични методи



### Геометрични методи

### Чрез "раздробяващи" деформации

- Снежинка на Кох (Koch)
- Драконова крива
- Планински масив

### Чрез размножаване и наслагване

- Питагорово дърво
- Папратово листо



### Снежинка на Кох

### Процедура на получаване

– Крива на Кох



#### – Снежинка на Кох



### Примери

- Снежинка на Кох
- Анимация със снежинки на Кох
- Мълния на Кох









### Драконова крива

### Процедура на получаване

- Заменя се отсечка-хипотенуза с отсечки-катети



– Драконовата крива запълва 1/4 от равнината

### Демонстрация

- Драконова крива
- Драконов лабиринт
   (правите ъгли са скосени леко, за да има проходимост)







### Планински масив

### Генериране на случаен терен

- Планински терен, естествен на вид
- Четириъгълник за начален примитив
- Разделяме го на 4 четириъгълника



- Издигаме (или спускаме) върховете на случайно разстояние
- Актуализираме новите "четириъгълници"
- Повтаряме същата процедура с тях





### Пример с планина

### Основни идеи

- Раздробяваме по квадрат
- Оцветяваме според височината
- Осветяваме според ориентацията







# Питагорово дърво

#### Основни елементи

- Правоъгълни триъгълници
- Квадрати



### Според ъгъла в триъгълника

- При константен ъгъл дървото е наклонено
- При случаен ъгъл то приема коралова структура







### Папратово листо

#### Рекурсивна фигура

- Частите на листото наподобяват цялото
- Огъване чрез ъгъл между два сегмента





### Примери

- Папратово листо с едни и същи междинни ъгли във всеки възел
- Широколистно дърво със случайни ъгли (иначе структурата си е на папратово листо)





# Алгебрични методи



# Алгебрични методи

### Основна идея

- Проста рекурентна връзка описваща някаква динамична система  $z_i = f(z_{i-1})$
- Прилага се многократно  $\{z_0, z_1, ... z_n, ... z_{\infty}, ... \}$
- Изследва се поведението ѝ
- Често резултатите са непредсказуеми



# Беноа Манделброт

### История

- За първи път в света използва компютър за визуализиране на поведението на динамична система
- Въвежда думата фрактал (от латински fractus счупен)
- Открива фрактал, наречен по-късно Множество на Манделброт





# Себеподобие

### Фракталът се самосъдържа

– Безкраен брой минибротчета



















## Генериране

#### Начална конфигурация

- Разглеждаме комплексната равнина С
- На всеки пиксел съответства някаква точка  $c \in \mathbb{C}$  с координати (x,y) и формула c(x,y) = x + iy
- Започваме от точка  $z_0 \in \mathbb{C}$
- T.e.  $z_0 = (0,0) = 0 + 0i$



## Процес

#### Процес

— Повтаряме многократно стъпката  $z_i = z_{i-1}^2 + c$ 

#### Наблюдаваме поведението на $z_i$

- На пръв поглед  $z_i$  скача хаотично из  $\mathbb C$
- На втори може да гравитира около някоя точка (т.е.  $z_i$  е ограничена)
- Или да се отдалечава неустоимо и неутешимо  $(\text{т.e. } z_i \text{ е неограничена})$

#### Накратко, пресмятаме

$$z_{0} = 0$$

$$z_{1} = z_{0}^{2} + c = c$$

$$z_{2} = z_{1}^{2} + c = c^{2} + c$$

$$z_{3} = z_{2}^{2} + c = (c^{2} + c)^{2} + c$$

$$z_{4} = z_{3}^{2} + c = ((c^{2} + c)^{2} + c)^{2} + c$$



## Дефиниция

#### Множеството на Манделброт

- Това е множеството М от всички точки  $c \in \mathbb{C}$ , за които траекторията на 0 след безкрайната итерация
    $z \leftarrow z^2 + c$  е ограничена
- При  $f:\mathbb{C}\to\mathbb{C}$   $f(z)=z^2+c$   $f^n=f\cdot f^{n-1}$  можем да запишем на един ред:  $\mathbb{M}=\{c\!\in\!\mathbb{C}\!:\!sup\;|f^n(0)|<\infty\}$



## Докога наблюдаваме?

#### Доказано е, че

- Ако по някое време  $|z_i| > 2$ , точката  $z_i$  е разходяща
- Докато  $|z_i| \le 2$  нищо не може да се каже
- Понякога се налагат милиони и дори милиарди итерации, за да излезе  $z_i$
- Понякога дори и след тях нищо не се знае



## Цветове

#### Определяне на цвета

- Зависи от скоростта, с която  $z_i$  избягва
- Слагаме лимит от n итерации и броим след колко итерации  $z_i$  излиза извън кръга с радиус 2
- Този брой определя цвета
- Ако стигнем n без да сме излезли, приемаме, че имаме ограничена точка



#### Голямата илюзия

#### Множеството на Манделброт

- Е това черното в средата
- Красивата цветна част е околността му





## Фракталът в 3D

# Досега никой не е открил 3D вариант на множеството на Манделброт

- Много опити, различна степен на успешност
- Най-близки са Будаброт (*Buddhabrot*) и Манделбълб (*Mandelbulb*)

### Будаброт



### Манделбълб



## Самостоятелна работа



## Самостоятелна работа

#### Намерете, вижте и разпознавайте

- Множество на Кантор
- Прах на Кантор
- Крива на Госпер
- Остров на Госпер
- Гъба на Менгер
- Крива на Кох

- Снежинка на Кох
- Триъгълник на Шерпински
- Килим на Шерпински
- Тетрахедрон на Шерпински
- Крива на Хилберт
- Крива на дракона
- Множество на Манделброт
- Дърво на Питагор
- Уплътнение на Аполон

## Въпроси?



## Повече информация

```
[AGO2] стр. 188-190, 797-810 [ZHDA] стр. 423-428
```

[ALZH] гл. 8 [FALC] стр. хііі-ххіі, 197-199,

[BAGL] ctp. 56-70 204-205

[LENG] ctp. 499-503 [PARE] ctp. 271-283

#### А също и:

FractalForums
 <a href="http://www.fractalforums.com/">http://www.fractalforums.com/</a> и <a href="http://www.fractalforums.com/">http://www.fractalforums.com/</a>

# Край