where c(x) = P/(EI(x)), where E is the Young's modulus of the material of which the beam is made and I(x) is the principal moment of inertia of the cross-section of the beam at the abcissa x, and with $\alpha = \beta = 0$. For this problem, we may assume that $c(x) \geq 0$ for all $x \in [0,1]$.

Remark: The vertical deflection w(x) of the beam and the bending moment u(x) are related by the equation

 $u(x) = -EI\frac{d^2w}{dx^2}.$

If we seek a solution $u \in C^2([0,1])$, that is, a function whose first and second derivatives exist and are continuous, then it can be shown that the problem has a unique solution (assuming c and f to be continuous functions on [0,1]).

Except in very rare situations, this problem has no closed-form solution, so we are led to seek approximations of the solutions.

One one way to proceed is to use the *finite difference method*, where we discretize the problem and replace derivatives by differences. Another way is to use a variational approach. In this approach, we follow a somewhat surprising path in which we come up with a so-called "weak formulation" of the problem, by using a trick based on integrating by parts!

First, let us observe that we can always assume that $\alpha = \beta = 0$, by looking for a solution of the form $u(x) - (\alpha(1-x) + \beta x)$. This turns out to be crucial when we integrate by parts. There are a lot of subtle mathematical details involved to make what follows rigorous, but here, we will take a "relaxed" approach.

First, we need to specify the space of "weak solutions." This will be the vector space V of continuous functions f on [0,1], with f(0) = f(1) = 0, and which are piecewise continuously differentiable on [0,1]. This means that there is a finite number of points x_0, \ldots, x_{N+1} with $x_0 = 0$ and $x_{N+1} = 1$, such that $f'(x_i)$ is undefined for $i = 1, \ldots, N$, but otherwise f' is defined and continuous on each interval (x_i, x_{i+1}) for $i = 0, \ldots, N$. The space V becomes a Euclidean vector space under the inner product

$$\langle f, g \rangle_V = \int_0^1 (f(x)g(x) + f'(x)g'(x))dx,$$

for all $f, g \in V$. The associated norm is

$$||f||_V = \left(\int_0^1 (f(x)^2 + f'(x)^2) dx\right)^{1/2}.$$

Assume that u is a solution of our original boundary problem (BP), so that

$$-u''(x) + c(x)u(x) = f(x), \quad 0 < x < 1$$

$$u(0) = 0$$

$$u(1) = 0.$$

¹We also assume that f'(x) has a limit when x tends to a boundary of (x_i, x_{i+1}) .