150* Показать, что число перестановок чисел $1,2,\ldots,n$, содержащих k инверсий, равно числу перестановок тех же чисел, содержащих C_n^2-k инверсий.

Следующие подстановки разложить в произведение независимых циклов и по декременту (т.е. разности между числом действительно перемещаемых элементов и числом циклов) определить их четность. Для удобства подсчета декремента можно для чисел, остающихся на месте, ввести в разложение одночленные циклы.

151.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 5 & 2 & 3 \end{pmatrix}$$
.

152. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 1 & 4 & 2 & 3 \end{pmatrix}$.

153. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 3 & 6 & 5 & 7 & 4 & 2 \end{pmatrix}$.

154. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 8 & 9 & 2 & 1 & 4 & 3 & 6 & 7 \end{pmatrix}$.

155. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 1 \end{pmatrix}$.

156. $\begin{pmatrix} 1 & 2 & 3 & 4 & \dots & 2n-1 & 2n \\ 2 & 1 & 4 & 3 & \dots & 2n & 2n-1 \end{pmatrix}$.

158. $\begin{pmatrix} 1 & 2 & 3 & 4 & \dots & 2n-1 & 2n \\ 3 & 2 & 1 & 6 & 5 & 4 & \dots & 3n & 3n-1 & 3n & 2 \end{pmatrix}$.

159. $\begin{pmatrix} 1 & 2 & 3 & 4 & \dots & 2n-3 & 2n-2 & 2n-1 & 2n \\ 3 & 4 & 5 & 6 & \dots & 2n-1 & 2n & 1 & 2 \end{pmatrix}$.

160. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & \dots & 3n-2 & 3n-1 & 3n \\ 2 & 3 & 1 & 5 & 6 & 4 & \dots & 3n-1 & 3n & 3n-2 \end{pmatrix}$.

161. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & \dots & 3n-2 & 3n-1 & 3n \\ 4 & 5 & 6 & 7 & 8 & 9 & \dots & 1 & 2 & 3 \end{pmatrix}$.

162. $\begin{pmatrix} 1 & 2 & \dots & k & \dots & nk-k+1 & nk-k+2 & \dots & nk \\ k+1 & k+2 & \dots & 2k & \dots & 1 & 2 & \dots & k \end{pmatrix}$.

В следующих подстановках перейти от записи в циклах к записи двумя строками:

163.
$$(15)(234)$$
.164. $(13)(25)(4)$.165. $(7531)(246)(8)(9)$.166. $(12)(34) \dots (2n-1,2n)$.167. $(1,2,3,4,\dots,2n-1,2n)$.168. $(321)(654)\dots(3n,3n-1,3n-2)$.

Перемножить подстановки:

169.
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$
. **170.** $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 1 & 2 \end{pmatrix}$.

171.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}$$
.

172.
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}^2$$
. 173. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix}^3$.

- **174.** Доказать, что если некоторая степень цикла равна единице, то показатель степени делится на длину цикла. (Длиной цикла называется число его элементов.)
- **175.** Доказать, что среди всех степеней подстановки, равных единице, наименьший показатель равен наименьшему общему кратному длин циклов, входящих в разложение подстановки.

176* Найти
$$A^{100}$$
, где $A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 5 & 4 & 1 & 7 & 10 & 2 & 6 & 9 & 8 \end{pmatrix}$.

178. Найти подстановку X из равенства AXB = C, где

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 2 & 1 & 6 & 5 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 7 & 4 & 5 & 6 \end{pmatrix},$$

$$C = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 3 & 6 & 4 & 7 & 2 \end{pmatrix}.$$

- 179. Доказать, что умножение подстановки на транспозицию (т. е. двучленный цикл) (α, β) слева равносильно транспозиции (т. е. перемене местами) чисел α и β в верхней строке подстановки, а умножение на ту же транспозицию справа равносильно транспозиции α и β в нижней строке подстановки.
- 180. Доказать, что если числа α и β входят в один цикл подстановки, то при умножении этой подстановки на транспозицию (α, β) (слева или справа) данный цикл распадается на два цикла, а если числа α и β входят в различные циклы, то при указанном умножении эти циклы сливаются в один.
- 181. Пользуясь двумя предыдущими задачами, доказать, что число инверсий и декремент любой подстановки имеют одинаковую четность.
- 182* Доказать, что наименьшее число транспозиций, на произведение которых разлагается данная подстановка, равно ее декременту.
- **183*** Доказать, что наименьшее число транспозиций, переводящих перестановку a_1, a_2, \ldots, a_n в перестановку b_1, b_2, \ldots, b_n тех же элементов, равно декременту подстановки

$$P = \left(\begin{array}{ccc} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{array}\right).$$