Christopher Lum lum@uw.edu

Lecture03f Introduction to the Matrix Exponential

Lecture is on YouTube

The YouTube video entitled 'Introduction to the Matrix Exponential' that covers this lecture is located at https://youtu.be/e_guF0dwwA4.

Outline

- -Definition of the Matrix Exponential
- -Properties of the Matrix Exponential

Definition of the Matrix Exponential

Recall the definition of the exponential function (the standard exponent with no matrices)

$$e^{x} = \exp(x) = \sum_{k=0}^{\infty} \frac{1}{k!} x^{k}$$

where x = scalar

Writing out several terms of this expression yields

$$e^x = \frac{1}{0!} x^0 + \frac{1}{1!} x^1 + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \dots$$

$$=1+\frac{1}{1!}x^1+\frac{1}{2!}x^2+\frac{1}{3!}x^3+...$$

 $ln[*]:= Plot[Exp[x], \{x, -3, 3\}]$

Before we explore the solution to a state space system, it is appropriate to investigate the matrix exponential. This is a matrix function on square matrices which is analogous to the ordinary exponential function.

$$e^{X} = \exp(X) = \sum_{k=0}^{\infty} \frac{1}{k!} X^{k}$$
 (Eq.1)

where X = n - by - n square matrix

Writing out several terms of this expression yields

$$e^{X} = \frac{1}{0!} X^{0} + \frac{1}{1!} X^{1} + \frac{1}{2!} X^{2} + \frac{1}{3!} X^{3} + \dots$$
$$= I + \frac{1}{1!} X^{1} + \frac{1}{2!} X^{2} + \frac{1}{3!} X^{3} + \dots$$

We note that this is the same definition as the scalar exponential but we note that terms such as X^2 , X^3 , are shorthand for matrix multiplication of XX and XXX, respectively. They <u>do not</u> mean element-wise multiplication.

Example: Diagonal Matrix

Consider the special case of a diagonal matrix

$$X = \begin{pmatrix} 2t & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \cos(t) \end{pmatrix}$$

We can compute the matrix exponential by applying Eq.1

$$e^{X} = \sum_{k=0}^{\infty} \frac{1}{k!} X^{k}$$
$$= I + \frac{1}{1!} X + \frac{1}{2!} X^{2} + \frac{1}{3!} X^{3} + \dots$$

We now make the observation that because X is diagonal, then matrix multiplication becomes elementwise multiplication. Please be careful to note that this is only because X is diagonal, this is not true in general.

$$X^{k} = \begin{pmatrix} (2t)^{k} & 0 & 0 \\ 0 & 3^{k} & 0 \\ 0 & 0 & \cos^{k}(t) \end{pmatrix}$$

Substituting this into our expression yields

$$e^{X} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{1}{1!} \begin{pmatrix} (2t)^{1} & 0 & 0 \\ 0 & 3^{1} & 0 \\ 0 & 0 & \cos^{1}(t) \end{pmatrix} + \frac{1}{2!} \begin{pmatrix} (2t)^{2} & 0 & 0 \\ 0 & 3^{2} & 0 \\ 0 & 0 & \cos^{2}(t) \end{pmatrix} + \frac{1}{3!} \begin{pmatrix} (2t)^{3} & 0 & 0 \\ 0 & 3^{3} & 0 \\ 0 & 0 & \cos^{3}(t) \end{pmatrix} + \dots$$

$$\begin{pmatrix} 1 + \frac{1}{1!} (2t)^1 + \frac{1}{2!} (2t)^2 + \frac{1}{3!} (2t)^3 + \dots & 0 & 0 \\ 0 & 1 + \frac{1}{1!} 3^1 + \frac{1}{2!} 3^2 + \frac{1}{3!} 3^3 + \dots & 0 \\ 0 & 0 & 1 + \frac{1}{1!} \cos^1(t) + \frac{1}{2!} \cos^2(t) + \frac{1}{3!} \cos^3(t) + \dots \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{k=0}^{\infty} \frac{1}{k!} (2t)^k & 0 & 0 \\ 0 & \sum_{k=0}^{\infty} \frac{1}{k!} (3)^k & 0 \\ 0 & 0 & \sum_{k=0}^{\infty} \frac{1}{k!} (\cos(t))^k \end{pmatrix}$$

$$e^{X} = \begin{pmatrix} e^{2t} & 0 & 0 \\ 0 & e^{3} & 0 \\ 0 & 0 & e^{\cos(t)} \end{pmatrix}$$

So we see that for a case of a diagonal X matrix, we can computing the matrix exponential by simply exponentiating each element on the main diagonal.

Mathematica provides the 'MatrixExp' function to compute the matrix exponent

$$X = \begin{pmatrix} 2t & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & Cos[t] \end{pmatrix};$$

MatrixExp[X] // MatrixForm

Clear[X]

$$\begin{pmatrix}
e^{2t} & 0 & 0 \\
0 & e^{3} & 0 \\
0 & 0 & e^{\cos[t]}
\end{pmatrix}$$

If we consider a general X matrix (not diagonal), we see that computing the matrix exponential is significantly more difficult (but Mathematica's MatrixExp still calculates it correctly).

$$ln[\circ]:= A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix};$$

MatrixExp[A] // MatrixForm

Out[@]//MatrixForm=

$$\left(\begin{array}{ccc} \mathbb{e} \operatorname{Cos} \left[\sqrt{2} \right] & \sqrt{2} \, \mathbb{e} \operatorname{Sin} \left[\sqrt{2} \right] \\ - \frac{\mathbb{e} \operatorname{Sin} \left[\sqrt{2} \right]}{\sqrt{2}} & \mathbb{e} \operatorname{Cos} \left[\sqrt{2} \right] \end{array} \right)$$

Properties of the Matrix Exponential

From the definition of the matrix exponential (Eq.1), we can show several properties of the matrix exponential

Standard Properties of the Matrix Exponential

$$e^{0} = I$$
 (0 = zero matrix, $I = identify matrix$)
 $e^{X^{T}} = (e^{X})^{T}$
 $e^{aX} e^{bX} = e^{(a+b)X}$
 $e^{X} e^{-X} = I$

if
$$XY = YX$$
 then $e^X e^Y = e^Y e^X = e^{(X+Y)}$

Derivatives of the Matrix Exponential

One of the most interesting properties is once again related to derivatives of the matrix exponential. Consider the matrix exponential e^{At} . We now take the derivative of this with respect to t

$$\frac{d}{dt} \left[e^{At} \right] = \frac{d}{dt} \left[\sum_{k=0}^{\infty} \frac{1}{k!} (At)^k \right]
= \frac{d}{dt} \left[I + \frac{1}{1!} At + \frac{1}{2!} (At)^2 + \frac{1}{3!} (At)^3 + \frac{1}{4!} (At)^4 + \dots \right]
= 0 + \frac{1}{1!} A + \frac{1}{2!} 2 (At) A + \frac{1}{3!} 3 (At)^2 A + \frac{1}{4!} 4 (At)^3 A + \dots$$

$$\operatorname{note:} \frac{2}{2!} = \frac{1}{1!}, \ \frac{3}{3!} = \frac{1}{2!}, \text{ etc.}$$

$$= A + \frac{1}{1!} (At) A + \frac{1}{2!} (At)^2 A + \frac{1}{3!} (At)^3 A + \dots$$

$$= A \left[I + \frac{1}{1!} (At) + \frac{1}{2!} (At)^2 + \frac{1}{3!} (At)^3 + \dots \right] \quad \text{or} = \left[I + \frac{1}{1!} (At) + \frac{1}{2!} (At)^2 + \frac{1}{3!} (At)^3 + \dots \right] A$$

$$= A \left[\sum_{k=0}^{\infty} \frac{1}{k!} (At)^k \right] \quad \text{or} = \left[\sum_{k=0}^{\infty} \frac{1}{k!} (At)^k \right] A$$

$$\frac{d}{dt} \left[e^{At} \right] = A e^{At} = e^{At} A \qquad \text{(Eq. 2)}$$

Example

Consider the matrix

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix};$$

We can compute e^{At}

We can now take the derivative of this. Note that we can take the derivative element-wise.

We can now use the Eq.2 to check the calculation of the derivative.

check1 = A.eAt; check2 = eAt.A; check1 == deAtdt check2 == deAtdt True

True

Similarity Transformation and the Matrix Exponential

Another extremely useful property of the matrix exponential is related to similarity transformations (see YouTube video entitled 'Similarity Transformation and Diagonalization' https://youtu.be/wvRlvDY-DIgw). Consider a matrix which is a similar to another (ie $\tilde{A} = P^{-1} A P$ for some invertible P).

$$e^{\tilde{A}} = e^{P^{-1}AP}$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!} (P^{-1}AP)^k$$

$$= I + \frac{1}{1!} P^{-1}AP + \frac{1}{2!} (P^{-1}AP)^2 + \frac{1}{3!} (P^{-1}AP)^3 + \dots \qquad \text{note: } P^{-1}P = I$$

$$= P^{-1} P + \frac{1}{1!} P^{-1} A P + \frac{1}{2!} (P^{-1} A P) (P^{-1} A P) + \frac{1}{3!} (P^{-1} A P) (P^{-1} A P) (P^{-1} A P) + \dots$$

$$= P^{-1} P + \frac{1}{1!} P^{-1} A P + \frac{1}{2!} (P^{-1} A P P^{-1} A P) + \frac{1}{3!} (P^{-1} A P P^{-1} A P P^{-1} A P) + \dots$$

$$= P^{-1} P + \frac{1}{1!} P^{-1} A P + \frac{1}{2!} P^{-1} A^{2} P + \frac{1}{3!} P^{-1} A^{3} P + \dots$$

$$= P^{-1} (I + \frac{1}{1!} A + \frac{1}{2!} A^{2} + \frac{1}{3!} A^{3} + \dots) P$$

$$= P^{-1} (\sum_{k=0}^{\infty} \frac{1}{k!} (A)^{k}) P$$

$$= P^{-1} e^{A} P$$

So we obtain

$$e^{P^{-1}AP} = P^{-1}e^{A}P$$
 (Eq.3)

for P non-singular

Example

Once again consider the matrix

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix};$$

Now consider a similarity transformation of

$$P = \begin{pmatrix} 3 & 2 \\ -2 & -6 \end{pmatrix};$$

We can quickly check that $e^{P^{-1}AP} = P^{-1}e^{A}P$

MatrixExp[Inverse[P].A.P] == Inverse[P].MatrixExp[A].P

True

With this framework in place, we will now investigate how the matrix exponential plays a role in solving state space systems (AKA systems of linear ordinary differential equations)

-Lecture03g: Solutions to State Space Systems

As a corollary, we will then investigate how to compute the matrix exponential using various techniques in

- -Lecture03h: Computing the Matrix Exponential Using the Laplace Technique
- -Lecture03i: Computing the Matrix Exponential Using the Modal Technique