Let
$$K/F$$
 be Galois field extension with $gp G$.

Saw:

Gal(K/F) Aut($V \not P K$)

Source $P \not P = P \not P = P$

Prop 2.7.1 (Short exact sequence (SES) induce long exact sequence (LES)).

Let G be a gp.

Let $I o A \stackrel{\checkmark}{\longleftrightarrow} B \stackrel{\checkmark}{\longleftrightarrow} C o I$ be SES of gps with G-equivariant maps.

Then get LES of pointed sets $I o A \stackrel{\checkmark}{\longleftrightarrow} B \stackrel{\checkmark}{\longleftrightarrow} C \stackrel{\checkmark}{\longleftrightarrow} C \stackrel{\checkmark}{\longleftrightarrow} C \stackrel{\checkmark}{\longleftrightarrow} H'(G,A) \to H'(G,B) \longrightarrow H'(G,C)$ $(G \to A) \mapsto (G \to A \stackrel{\checkmark}{\hookrightarrow} B)$

What do the words in This Prop mean?

- · Group homos A + B + C IS exact at B if im (f) = ker(q).
- $AG = \{a \in A \mid g \cdot a = \alpha \}$.
- A pointed set is just a set with a distinguished element : $1_A \in A$, $1_A \in A^G$, $G \mapsto 1_A = G$, $G \mapsto 1_A = G$
- A map of pointed sets between (A, a) and (B, b) is a map of sets f: A→B: a→b.
- Maps of pointed sets $(A, a) \xrightarrow{f} (B, b) \xrightarrow{g} (C, c)$ is exact at B if $\lim(f)$ equals the set $\ker(g) := \{b \in B \mid g(b) = c\}$.

$$\frac{\text{What is } \S?}{\text{D Let } ce CG}. \quad \forall \text{ surjects} \Rightarrow \exists b \mapsto C.$$

(2) For $\sigma \in G$, $\beta \longrightarrow C$ $C \in CG$ $\Rightarrow b \sigma(b)^{-1} \in \ker(\mathcal{A}) = \lim_{b \to (b)^{-1}} (e^{b}) \in A^{"}$. 3 Define &: CG - H'(G,A) $C \longmapsto \left[\begin{array}{c} a \longmapsto b \cdot a(p)_{-1} \end{array} \right]$

Thm 2.7.2 (Skolen-Noether) All automorphisms of a CSA are conjugation maps. (Saw this for Mn(F) in Lemma 2.4.1).

bf, A := degree N, CSAIF K := a splitting field of A, so A&K = Mn(K).

Lemma 2.4.1 gives SES

$$1 \longrightarrow K^{\times} \longrightarrow (A \otimes K)^{\times} \longrightarrow Aut_{K-alg}(A \otimes K) \longrightarrow 1$$

$$\xrightarrow{M_{N}(K)} \qquad PG L_{N}(K)$$

G = Gal(K/F) acts on this sequence via K, so by SES => LES, get

$$I \rightarrow (K^{\times})^{G} \rightarrow (A \otimes_{F} K)^{\times})^{G} \rightarrow (A ut_{K-alg}(A \otimes_{K}))^{G} \xrightarrow{S} H^{1}(G, K^{\times})$$

$$= \star \text{ by Hilbert thin } 90$$

 \Rightarrow $1 \rightarrow F^{\times} \rightarrow A^{\times} \rightarrow Aut_{F-alg}(A) \rightarrow 1$ is exact as pointed sets. Surperts, so any automorphism of A/F is conjugation

Can generalize above:

Lemma 2.7.4 For A, K, G as above, $H'(G, (A \otimes_{k} K)^{\times}) = 1$. (\approx Hilbert thm 90)

Let SL, (A) := { ac A | Nrd (a) = 1 A } Get SES $1 \to SL'(\forall \& K) \to (\forall \& K)_X \xrightarrow{\mathsf{NA}} K_X \to I$

Apply cohomology & Lemma 2.7.4, get

 $\underline{\text{Prop 2.7.3}} \quad H'(G, SL_1(A \otimes_{K})) \cong F^{\times} / \text{Nrd}(A^{\times}).$

 $\underline{\text{Prop 2.7.3}} \quad \text{H'(G, SL_1(A \otimes_F K))} \cong F^{\times} / \text{Nrd(A^{\times})}.$