### **MAIN FEATURES**

- ✓ Eco-friendly: low power consumption, easily reparable
- √ Easy to use
- √ Thin and light
- √ Flexible and portable



Fig. 1: Sensor illustration

### **GENERAL DESCRIPTION**

The strain sensor was developed in the Engineering Physics Department at INSA Toulouse. It is based on the article "Pencil Drawn Strain Gauges and Chemiresistors on Paper" by Cheng-Wei Lin, Zhibo Zhao, Jaemyung Kim, and Jiaxing Huang, published in 2014. This sensor consists of a small piece of paper coated with a graphite layer from a pencil.

When the paper is deformed, the number of connected graphite particles in the thin layer changes. This variation is directly related to the type of deformation, resulting in a change in resistance and conductance. This allows us to measure deformation, like a traditional strain gauge.

The structure of the graphite layer varies depending on the type of pencil used. We conducted tests with two types of pencils: HB (medium hardness) and 2B (softer). To achieve this, our sensors were coupled with a transimpedance amplifier and an Arduino Uno, all mounted on a PCB.

#### PIN CONFIGURATION

| Pin number | Usage                     |  |
|------------|---------------------------|--|
| 1          | $V_{in}$                  |  |
| 2          | + <i>V<sub>CC</sub></i> * |  |

\*Typically, a +5 V voltage



Fig. 2: Top view dimensions (in mm)





# STANDARD USE CONDITIONS

| Pin number  | Unit                            | Typical value |  |
|-------------|---------------------------------|---------------|--|
| Temperature | °C                              | 20 ± 10       |  |
| Humidity    | %                               | 45 ± 15       |  |
| Air quality | %N <sub>2</sub> /O <sub>2</sub> | 80/20         |  |

# **TECHNICAL SPECIFICATIONS**

| Туре                    | Strain sensor                                        |  |  |
|-------------------------|------------------------------------------------------|--|--|
| Materials               | Graphite (4B to 2H pencils)                          |  |  |
| Sensor type             | Passive: power supply required                       |  |  |
| Power supply            | +5 V                                                 |  |  |
| Nature of output signal | Analog                                               |  |  |
| Nature of measurand     | Voltage                                              |  |  |
| Typical response time   | Less than 50 ms                                      |  |  |
| Typical use             | Evaluation of a compression or a tension deformation |  |  |

# **ELECTRICAL CHARACTERISTICS**

| Pencil type | Unit      | Value   |         |         |
|-------------|-----------|---------|---------|---------|
|             |           | Minimum | Typical | Maximum |
| НВ          | $M\Omega$ | 200     | 220     | 380     |
| 2B          | $M\Omega$ | 2       | 2,3     | 3       |

## **TYPICAL PERFORMANCE CHARACTERISTICS**



Fig. 3: Characteristics in tension



Fig. 4: Characteristics in compression

#### **TYPICAL APPLICATION**



Fig. 5: Transimpedance amplifier circuit in order to use the sensor

The strain sensor is connected to a transimpedance amplifier circuit (in order to collect a readable signal for the Arduino Uno). The latter is composed by low- and high-pass filters to cancel the different noises (amplification, current and the "50 Hz component" due to the electric network).

The component B represents a variable resistor. It is used to match amplification of circuit for each type of pencil.

Finally, it is possible to know the value of the resistance of our *GazouTech™ GT-LTGSJ24* with the following formula:

$$R_{sensor} = R_1 \left( 1 + \frac{R_3}{R_{variable}} \right) \frac{V_{cc}}{V_{adc}} - R_1 - R_5$$

\_\_\_\_\_