Dokument dizajna računarske mreže

Organizacija: Harper-Collins

Pripremljen od strane: Veljko Pernar

Sadržaj

 Aplikacije	
3. Tehnički zahtevi i tehnička ograničenja	
4. High – level diagram / dizajn	
1. Dizajn i redizajn	
3. Poboljšanja sistema	
5. System deployment	

1. Aplikacije

Tip aplikacije	Aplikacija	Bitnost (Veoma bitna, bitna, nebitna)	Postojaća/nova
Biznis aplikacija	Prime printing	bitna	postojaća
E-mail	Microsoft Outlook	bitna	nova
Web browsing	Microsoft Edge	bitna	nova
Baza podataka	Oracle	veoma bitna	nova
Customer support	HC Support	veoma bitna	nova
Groupware	Zoom	bitna	nova
Client/server	HINT	veoma bitna	nova

Tabela 1

Prime printing je aplikacija koja se koristila u starom sistemu kompanije, još uvek mora biti instalirana dok se sistem ne prebaci na novu verziju. Slabije se koristi jer ne može da podrži zahteve kompanije.

Instalirane su nove aplikacije za lakše korišćenje e-maila i internet pretraživača.

Predložena je nova aplikacija HC Support koju će koristiti korisnici ukoliko im je potrebna pomoć.

Zoom će biti instaliran kako bi se omogućila komunikacija između različitih kancelarija i zgrada.

Po zahtevu korisnika instalirana je nova client/server aplikacija HINT (Harper-Collins INvenTory).

Serveri koriste Oracle-based softver.

2. Poslovna ograničenja i poslovni zahtevi

Tabela 2

Poslovni zahtevi	Poslovna ogranicenja
Dizajnirati novu računarsku mrežu koja ce moći da ispuni zahteve firme	Rok 3 meseca da se projekat završi
Novi dizajn mora da podrži nove aplikacije	Ograničen budžet na mogućnosti firme
E-commerce platforma za online kupovinu	Manji broj zaposlenih
Povećanje broja zaposlenih	

3. Tehnički zahtevi i tehnička ograničenja

Tehnicki zahtevi	Tehnicka ogranicenja
Skalabilnost mreže (30%)	Prime sistem ne može da podrži zahteve biznisa
Osposobiti mrežu da radi za veći broj kupaca	Serveri ne mogu da procesiraju zahteve efikasno
E-commerce platforma	Koristi se samo jedan internet gateway
Prebaciti se na klijent-server tehnologiju	Bežina point-to-point između zgrada (1Mb/s)
koristeći Oracle softver	
Novi sistem mora da smanji trenutno	Spora mreža i loša povezanost
procesiranje na pola	
Instalirati WiFi mrežu u sve tri zgrade	
Instalirati IP Video kamere	
Obezbediti pristup za zaposlene od kuće	
Instalirati novu client/server aplikaciju HINT	
Poboljšati sigurnost mreže	
Paralelan sistem	
Napraviti bržu mrežu	

Tabela 3

4. High – level diagram / dizajn

1. Dizajn i redizajn

Slika 1

Slika 2

Na slici 1 je predstavljen stari dizajn mreže. Obzirom da je dizajn loš i da sistem ne funkcioniše optimalno predložen je novi dizajn (Slika 2) koji treba da poboljša performanse. Novim sistemom posižemo bezbednost ubacivanjem firewall-a iza rutera. Implementiramo core sloj koji omogućava svičovanje paketa velikim brzinama i visok stepen pouzdanosti i redundanse. Ovde se izbegavaju funkcije koje traže veće procesiranje kao što su inspekcija paketa, QoS i slični procesi. Time se prevazilazi problem sporog procesiranja u kompaniji. Predloženo je da se konekcija između zgrada umesto WiFi linkova (1Mb/s) zameni sa optičkim kablovima veće brzine, čime smo poboljšali komunikaciju između zgrada. Distribucioni sloj u svakoj zgradi nam omogućava lako dodavanje novih spratova/svičeva, takođe ovom implementacijom se prevazilazi single point of failure. Ovakva mreža je skalabilna. U pristupnom sloju smo na svakom access sviču na zgradi podesili LAN. Po zahtevu korisnika instalirani su access point-i za wifi mrežu i IP kamere, u sve tri zgrade. Serverska farma je locirana u Administration building, ali je prikačena za core sloj radi bržeg prenosa podataka i manjeg zagušenja i radi zaštite od neautentifikovanog pristupa serverima. Ovako implementirani serveri mogu da obezbede siguran i brz rad novog kompanijskog softvera. VPN i ostali javni serveri su izolovani od "unutrašnje/privatne mreže", kako neko ko pristupa njima ne bi mogao da upadne u sistem komapnije. Za internet rutere (gateway) se više ne koristi jedan, već dva zbog veće otpornosti na otkaz.

Svi uređaji u distribucionom i core sloju (L3 svičevi) su udvostručeni i duplo povezani iz istog razloga. Implementacija posebnog VPN servera omogućuje efikasniji i sigurniji pristup za zaposlene od kuće. Takođe je implementiran E-commerce server za online kupovinu.

2. IP adresiranje, VLAN konfiguracija i rutiranje

Public addresses		
Ruter 1 – Firewall	20.20.1.0/30	
Ruter 2 – Firewall	20.20.2.0/30	
Firewall – MLS-ovi prema	20.20.3.0/16	
javnim serverima i javni serveri	20.20.3.0/10	

Administration Building VLANS		
Ground		
VLAN Wifi1	10.1.1.0/24	
VLAN Logistics	10.1.2.0/24	
VLAN IT Support and Server	10.1.3.0/24	
room		
VLAN IPCamera1	10.1.5.0/24	
VLAN Call center	10.1.4.0/24	
First Floor		
VLAN Wifi2	10.2.2.0/24	
VLAN Marketing	10.2.1.0/24	
VLAN Sales	10.2.3.0/24	
VLAN IPCamera2	10.2.4.0/24	
Second floor		
VLAN Wifi3	10.3.4.0/24	
VLAN Managers	10.3.1.0/24	
VLAN Accounting and Finance	10.3.2.0/24	
VLAN Administration	10.3.3.0/24	
VLAN IPCamera3	10.3.5.0/24	
Production Plant VLANS		
VLAN Wifi4	10.4.2.0/24	
VLAN Production Manager	10.4.1.0/24	
VLAN Administration	10.4.3.0/24	
VLAN IPCamera4	10.4.4.0/24	
Warehouse VLANS		
VLAN Wifi5	10.5.1.0/24	
VLAN IPCamera3	10.5.3.0/24	
VLAN Operations and Logistics	10.5.2.0/24	

Tabela 6

Tabela 4

Tabela 5

Private addresses	
Firewall – Core 1	10.0.1.0/30
Firewall – Core 2	10.0.2.0/30
Core 1 – MLS SF (1,2)	10.0.10.0/28
Core 2 – MLS SF (1,2)	10.0.20.0/28
MLS SF (1,2)- Serveri u	10.100.0.0/24
serverskoj farmi	10.100.0.0/24
Core 1 – DL2/1,2	10.0.30.0/28
Core 2 – DL2/1,2	10.0.40.0/28
Core 1 – DL3/1,2	10.0.50.0/28
Core 2 – DL3/1,2	10.0.60.0/28
Core 1 – DL1/1,2	10.0.0.16/28
Core 2 – DL1/1,2	10.0.0.32/28
DL1/1,2 – Ground	10.1.0.0/16
(Administration)	10.1.0.0, 10
DL1/1,2 – First floor	10.2.0.0/16
(Administration)	
DL1/1,2 – Second floor	10.3.0.0/16
(Administration)	
DL2/1,2 – Ground	10.4.0.0/16
(Production plant)	, -
DL3/1,2 – Ground	10.5.0.0/16
(Warehouse)	•

Javni serveri kao i ruteri dobijaju javne IP adrese. U tabeli 4 su predstavljene podmreže za svaki link između uređaja. Svim javnim serverima su statički dodeljene IP adrese. Javni serveri su zaštićeni preko firewall-a. Za rutiranje prema internetu se koristi BGP protokol.

Sa druge strane imamo privatnu mrežu, gde firewall koristi PAT da pretvori javne u privatnu adresu. Podmrežavanje privatne adrese je prikazanu u tabeli 5. Za rutiranje u LAN-u i WAN-u se koristi OSPF protokol. IP adrese mrežnim uređajima u kompaniji se dodeljuju dinamicki preko DHCP servera, svaki uređaj dobija pool adresa, dok su L2 I L3 svičevima statički dodeljene IP adrese (prve iz subnet-a)

Za svaki sprat, u sve tri zgrade konfigurisan je VLAN (Tabela 6). VLAN-ovi su implementirani da bi se razdvojio protok saobraćaja npr. administracije i marketinga (da se saobraćaj ne bi mesao). U svakom VLAN-u imamo dovoljan broj adresa za već povezane uređaje, ali imamo i neiskorišćene adrese u pool-u kako bi se dodavali novi uređaji.

U ovom redizajniranom sistemu će se koristiti cisco mrežni uređaji i oracle-based serveri. U nižim slojevima se koriste bežični i koaksijalni linkovi dok se u višim koriste optički. Porpusni opseg nije svuda isti.

Slika 3

3. Poboljšanja sistema

Zahtevi	Komentar
Brzina svičovanja podataka između spratova.	Implementiranjem L3 svičeva (2 sviča) u distribucionom sloju i njihova dvostruka povezanost, se postiže veći prenos podataka između svičeva na različitim spratovima.
Efikasnija komunikacija između zgrada.	Efikasnost je postignuta zamenom 1Mb/s Wifi konekcije sa optičkim kablom, čime se postiže veća brzina.
Skalabilnost mreže	Implementacijom core i distributivnog sloja, sa odgovarajućim subnet IP adresama omogućava lako dodavanje novih mrežnih uređaja kao i korisničkih uređaja čime se postiže skalabilnost.
Dostupnost sistema	Sistem mora da bude dostupan u 99.99% vremena.
Redundantnost sistema	Redundantnost sistema predstavlja njegovu otpornost na otkaz, što smo postigli dupliranjem uređaja u CL i DL i njihovom duplom vezom.
Sigurnost sistema	Sigurnost sistema se postiže implementacijom firewall-a, odvajanjem javnih od privatnih servera u DMZ i implementacija VLAN-ova kako bi se zaobišlo mešanje saobraćaja.

Tabela 7

5. System deployment

Za ovaj projekat je korišćen Top-Down Network Design.

1. Analiza zahteva

Analizirati tehnicke i poslovne zahteve i ograničenja, analizirati postojaću mrežu i protok saobraćaja.

2. Logički dizajn mreže

Dizajnirati mrežu, podesiti adresiranje, imena, izabrati svičing i ruting protokole i razviti bezbednost

3. Fizički dizajn

Izabrati tehnologiju i uređaje za campus i enterprise mrežu

4. Testiranje, optimizacija i dokumentacija