《离散数学》历年题

- (3) 如 G,H 是公式,则 (G∧H)、(G→H) 也是公式;
- (4) 仅由有限步使用规则(1)、(2)、(3)后所得到的包含命题变元、联结词和括号的符号的 才是命题公式。
- 2、【解析】设 f 是从集合 A 到 B 的函数,对任意 x1、 $x2 \in A$,如果 $x1 \neq x2$,有 $f(x1) \neq f(x2)$,则称 为从 A 到 B 的单射。
- 3、【解析】设有图 G=<V,E>和图 G1=< V1,E1 >, 若 V1=V, E1⊆E,则称 G1 是 G 的生成子图。
- 4、【解析】设<A,*>和<B, 。>为两个二元代数系统,ψ是 A 到 B 的双射。对任意 $x,y \in A$,都有ψ(x*y) =ψ(x) οψ(y),则称ψ是从<A,*>到<B,。>的同构映射,此时称<A,*>与<B,。>同构。
- 四、判断分析改错题(如果正确,说明理由,如果不正确,举例说明)(16分)
- 1、【解析】不正确。正确的推到应该是:
 - $(1) (\exists x) Q(x) \qquad \qquad P$
 - (2) Q(c) ES (1)
 - (3) $(\forall x) P(x)$ P
 - (4) P(c) US (2)
 - (5) $P(c) \land Q(c)$ T (2) (4) I
 - (6) $(\exists x)$ $(P(x) \land Q(x))$ EG (5)
- 2、【解析】不一定。例如, $A=\{1,2\}$, $R=\{<1,2>\}$, $S=\{<2,1>\}$,则 R 和 S 都是 A 上的反对称关系 但 $R\cup S=\{<1,2>,<2,1>\}$,不是 A 上的反对称关系。
- 3、【解析】不是, 因为存在一条长度为奇数的回路 v₁v₂v₃v₁。
- 4、【解析】<R,*>是半群。因为二元运算*满足结合律。因为∀a.b,c∈R,
- (a*b)*c=(a+b-ab)*c=a+b-ab+c-(a+b-ab)c=a+b+c-ab-ac-bc+abc,

a*(b*c)=a+(b*c)-a(b*c)=a+(b+c-bc)-a(b+c-bc)=a+b+c-ab-ac-bc+abc

所以, (a*b) *c=a*(b*c)。

五、计算题 (35分)

1、【解析】

该公式真值表如下:

P	Q	R	$(P \rightarrow Q) \land (\neg P \rightarrow R)$
)	0	0	0
)	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

该公式的主析取范式为:

 $(\neg P \land \neg Q \land R) \lor (\neg P \land Q \land R) \lor (P \land Q \land \neg R) \lor (P \land Q \land R)$

分该公式的主合取范式为:

 $(P \lor Q \lor R) \ \land \ (P \lor \neg Q \lor R) \ \land \ (\neg P \lor Q \lor R) \ \land \ (\neg P \lor Q \lor \neg R)$

2、【解析】A 的最大元: h, 最小元: a

B 的特殊元素如下表:

	最大元	最小元	极大元	极小元	上确界	下确界
В	无	a	b,c,d	a	h	a

3、【解析】该图的最小生成树为

3) $(\forall x)(Q(x)\lor I(x)\to R(x))$

4) $Q(x) \lor I(x) \rightarrow R(x)$ US,3)

5) $\neg R(x) \rightarrow (Q(x) \lor I(x))$ T,4),E

6) $C(x) \rightarrow \neg (Q(x) \lor I(x))$ T,2),5),1

7) $C(x) \rightarrow \neg Q(x) \land \neg I(x)$ T,6),E

8) $(\forall x)(C(x) \rightarrow \neg Q(x) \land \neg I(x))$ UG,7)

2、【解析】

用数学归纳法证明,当 n=1 时,显然有 $R^1 \subseteq R$ 成立。 假设当 n=k 时成立,即 $R^k \subseteq R$ 。

当 n=k+1 时,有 $R^{k+1}=R^k o R$,

有复合的定义,可知对任意的 $\langle x, y \rangle \in R^{k+1} = R^k oR$,

存在 $z \in A$, 有 $\langle x, z \rangle \in R^k, \langle z, y \rangle \in R$,

由归纳假设 $R^k \subseteq R$ 及 $\langle x,z \rangle \in R^k$ 可得, $\langle x,z \rangle \in R$,

即 $<x,z>\in R$, $<z,y>\in R$, R 传递,则 $<x,y>\in R$ 。故 $R^{k+1}\subseteq R$.即 n=k+1 时, $R_{k+1}\subseteq R$ 。

故得正。

3、【解析】

1) $\forall x, y \in G$,若 f(x)=f(y),则有 $a \circ x \circ a - 1 = a \circ y \circ a - 1$,因此有 x=y,即 f 是单射;

 $\forall y \in G$, $\exists x = a - 1 \circ y \circ a \in G$,使得 f(x) = y,因此 f 是满射。故 f 是双射。

2) $\forall x, y \in G$,

$$\begin{split} f(x \circ y) &= a \circ (x \circ y) \circ a - 1 = (a \circ x) \circ e \circ (y \circ a - 1) \\ &= (a \circ x) \circ (a - 1 \circ a) \circ (y \circ a - 1) = (a \circ x \circ a - 1) \circ (a \circ y \circ a - 1) = f(x) \circ f(y) \end{split}$$

因此, f是 G上的自同态映射。

由 1) ,2) 知, f是 G上的自同构映射。

4.	试述循环群的定义。	(2.5	分》
41	MYCHIEN AT IN YE YO	1200	13 1

四、判断分析改错题(如果正确,说明理由,如果不正确,举例说明)(16分)

1、公式 $(P \rightarrow Q)$ $(Q \rightarrow P)$ 是永真公式吗?为什么? (4分)

2、A ⊆ C 且A ∈ C 可能同时成立吗?为什么? (4分)

《离散数学》历年题 《禽散数学》历年题

3、【解析】该图的邻接矩阵 A = (0 0 1 1) 0 0 1 0 2 分	六、证明题(3×8=24 分)		
(0 1 1 0)	1、【解析】证明:		
(0 1 2 0) (1 0 2 1) (0 1 4 1)	设论域为人的集合, $H(x)$: x 参加会议:	D(x): x 是大学生	
$A^{2} = \begin{pmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ $A^{3} = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ $A^{4} = \begin{pmatrix} 0 & 1 & 4 & 1 \\ 1 & 1 & 5 & 2 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ 3%	C(x): x 是研究生	a: 表示张三	
(1 0 1 1) (0 1 3 1) (1 1 4 1)	则题中语句可符号化为:		
图中6到c长度为3的通路数为3、长度为4的通路数为5。	$(\forall x) (H(x) \rightarrow D(x) \lor C(x)), H(a)$	$\neg C(a), \Rightarrow D(a)$	3分
图中长度为 3 的回路总数为 4、长度为 4 的回路总数为 3。	证明:		
4、【解析】运算表为对称的、则 * 运算可交换:	1) $(\forall x) (H(x) \rightarrow D(x) \lor C(x))$	P	
元素 a 所在的行和列都与行列表头相同,因而 a 为幺元:2 分	2) $H(a) o (D(a) \lor C(a))$	US 2)	1分
$a^{-1}=a$, $b^{-1}=d$, $d^{-1}=b$, $c^{-1}=c$	3) $H(a) \wedge -C(a)$	P	
5、【解析】改画成偶图如下,	4) H(a)	T, 3), I	1分
v, v, v,	5) $-C(a)$	T, 3), I	1分
	6) $D(a) \vee C(a)$	T 2), 4) I	1分
V ₄ V ₅ V ₆	7) D(a)	T, 5), 6)	1分
3 / 3	2、【解析】证明:		
互补结点子集为 $V1 = \{v_1, v_2, v_3\}$ $V2 = \{v_4, v_5, v_6\}$ 。 ————————————————————————————————————	根据等价关系定义,需证明 R 是自反,对称	和传递的,已知 R 对称和传	传递,因此,只需证明 R
存在匹配如下:	自反。		3分
1 3 2	$\forall x \in A$, 由已知存在 $y \in A$, 使得 $\langle x, y \rangle \in B$	₹,	1分
l X	又 R 对称,所以 $\langle y,x\rangle \in R$,		——————————————————————————————————————
ν _α ν _θ ν _θ 2 2 	即 $\langle x,y \rangle \in R$, $\langle y,x \rangle \in R$, 又 R 传递, 所以	$\langle x,x \rangle \in R$,故 R 是自反的	2分
24			

《腐散数学》历年题

3、【解析】证明:

任意a, $b\in Z$,a*b=a+b-2并且是Z中惟一的整数,于是*是Z上的二元运算;-1分对任意a,b, $c\in Z$,有

$$(a*b)*c=(a+b-2)*c=(a+b-2)+c-2=a+b+c-4$$
,

$$a * (b * c) = a * (b + c - 2) = a + (b + c - 2) - 2 = a + b + c - 4$$
.

即有(a*b)*c=a*(b*c), 从而结合律成立;

-----1 分

存在 $2 \in \mathbb{Z}$, 使得对任意 $a \in \mathbb{Z}$, 有

$$a * 2 = a + 2 - 2 = a$$
, $2 * a = 2 + a - 2 = a$

故2是 $\langle Z, * \rangle$ 的幺元;

-----3 ⁵

对任意 $a \in Z$,存在 $4-a \in Z$,使得

$$a*(4-a)=a+4-a-2=2$$
, $(4-a)*a=4-a+a-2=2$

故a的逆元是4-a。由a的任意性知,Z中没有元素都有逆元。 -------3

于是根据群的定义, $\langle Z, * \rangle$ 是群。

反馈有奖|最先纠错得红包!

本资料编者是历届学长学姐,虽然仔细核对了很多遍,但可能会有一些疏漏,诚恳希望学弟学妹们积极纠错!方式①联系微信号 F20pct,或联系官号反馈(见页脚)方式②扫二维码登记纠错详情,我们会尽快核查

《离散数学》历年题

2017-2018 学年第一学期期末考试 A 卷参考答案

- 一、单选题 (10×1=10分)
- 1、【正解】2)
- 2. 【正解】4)
- 3. 【正解】3)
- 4. 【正解】1)
- 5. 【正解】3)
- 6. 【正解】2)
- 7. 【正解】4)
- 8. 【正解】4)
- 9. 【正解】1)
- 10. 【正解】2)
- 二、 多项选择题 (5×1 =5 分)
- 1.【正解】1)3)4)
- 2. 【正解】2)4)
- 3. 【正解】1)2)3)
- 4. 【正解】2)3)4)
- 5.【正解】3)4)
- 三、 简答题(4×2=8 分)评分标准: 答对大意给2分。
- 1. 【解析】 $(\forall x)G(x) \Rightarrow G(y)$,其中G(x)对y是自由的。推广形式: $(\forall x)G(x) \Rightarrow G(c)$,其中c 为任意量。
- 2. 【解析】设f是从集合A到集合B的函数,如果f的值域ranf=B(或:对 $\forall y \in B$,一定存在 $x \in A$,得f(x)=y),则f为从A到B的满射。
- 3.【解析】设G是一个有向图,若G中任何一对结点之间至少有一个结点到另一个结点是可达的,称G是单向连通图。
- 4.【解析】设〈A,*〉是一个二元代数系统。若存在 $\theta \in A$,使得对任意 $a \in A$,都有 $a * \theta = \theta * a = \theta$,则 $\theta \in A$ 中关于运算"*"的一个零元。
- 四、 判断分析改错题(如果正确,说明理由,如果不正确,举例说明)(3×5=15 分)评分标准判断正确给2分,理由正确给3分。判断错误则不给分。

1.【解析】不一定是等价关系。

设 $A=\{1,2,3\}$, R、S 为 A 上 的 关 系 , $R=\{<1,1>,<2,2>,<3,3>,<1,2>,<2,1>\}$, $S=\{<1,1>,<2,2>,<3,3>,<1,3>,<3,1>\}$,可见R、S 均满足自反性,对称性和传递性,因而是等价关系但 $R\cup S=\{<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>\}$ 满足自反和对称性,但不满足传递性,当然不是等价关系。所以不成立。

2. 【解析】表达式成立。

由于: $(P \to R) \land (Q \to R) = (-P \lor R) \land (-Q \lor R) = (-P \land -Q) \lor R = -(P \lor Q) \lor R = (P \lor Q) \to R$ 故表达式成立。

- 3.【解析】这种说法正确。因为树中不存在回路,当然不会存在长度为奇数的回路,因而是偶图。 五、 计算题 (5×7 =35 分)
- 1.【解析】 $G=(P\vee Q)\to (R\wedge \neg Q)$, 真值表如下: —————————————————3 分 (错2个扣1分)

Q	R	G
0	0	1
0	1	1
1	0	0
1	1	0
0	0	0
1	0	0
0	1	1
1	1	0
	0 0 1 1 0 1 0	0 0 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1

主析取范式为:

$(\neg P \land \neg Q \land \neg R) \lor (\neg P \land \neg Q \land R) \lor (P \land \neg Q \land R)$	2分
主合取范式为: $(P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R) \land (\neg P \lor \neg Q \lor \neg R)$	$Q \lor R) \land (\neg P \lor \neg Q \lor R) (\neg P \lor \neg Q \lor \neg R)$
	—————2分

2.【解析】根据已知,可得

$$[a] = \{a, b\},$$
 — 2分
$$[c] = \{c, d\},$$
 — 2分
$$[e] = \{e, f\},$$
 — 2分

		《离散数学》历年			
因此, 商集A/R={{a,b},{c,d},{e,f}}1 分		- 0			
3.【解析】该图的邻接矩阵	结论: $(\exists x)(E(x) \land D(x))$ 。	-2分			
$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $	即证明				
A = 1 1 0 1 -27 , A = 2 1 1 1	$(\forall x)(A(x) \rightarrow B(x)), (\forall x)(\forall y)(C(x,y) \land B(x) \rightarrow D(x)), (\exists x)(\exists y)(E(x) \land C(x,y) \land A(y))$				
(1 1 1 0) (2 1 0 2) (2 1 0 2) (3 2 2 2)	$\Rightarrow (\exists x)(E(x) \land D(x))$				
$A^{3} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 3 & 2 & 2 & 3 \end{bmatrix} - 1 \cancel{f}, A^{4} = \begin{bmatrix} 2 & 1 & 0 & 2 \\ 6 & 4 & 3 & 4 \end{bmatrix} 1 \cancel{f}$	证明: $(1) (\exists x)(\exists y)(E(x) \land C(x,y) \land A(y))$ P				
$\begin{pmatrix} 3 & 2 & 2 & 3 \\ 3 & 2 & 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 6 & 4 & 3 & 4 \\ 6 & 4 & 3 & 5 \end{pmatrix}$	(2) $E(a) \wedge C(a,b) \wedge A(b)$	35, (1) ———————————————————————————————————			
a到e长度为3的通路条数6。 —————2分	(3) E(a) T _r (2) I				
4.【解析】有图可知共4个面, ————2 分	(3) B(6)				
其中无限面边界: abcbda, 长度为5: ————2分	(4) C(a,b)	T, (2) I			
	(5) A(b)	T, (2) I ———————————————————————————————————			
面边界: abda, 长度3: ————————————————————————————————————	(6) $(\forall x)(A(x) \rightarrow B(x))$	P			
面边界: adea, 长度为3; ————————————————————————————————————	(7) $A(b) \rightarrow B(b)$	US (6)			
面边界: aeda, 长度为3: ————————————————————————————————————					
 5.【解析】设e是幺元,则根据定义,对∀a∈Z,可知 	(8) B(b)	T, (4), (7), I————————————————————————————————————			
	(9) $(\forall x)(\forall y)(C(x,y) \land B(y) \rightarrow D(x))$ P				
$a*\epsilon=a+\epsilon+5=a$,可得 $\epsilon=-5$ 。 ————————————————————————————————————	(10) $C(a,b) \land B(b) \rightarrow D(a)$	US, (9)			
显然对 $\forall a \in \mathbb{Z}$,有 $a*(-5)=(-5)*a=a$,故 $e=-5$ 为幺元;—————————————2 分	(11) D(a)	T, (4), (8), (10), I———1 分			
设 a 是幂等元,根据定义有 $a*a=a+a+5=a$,可得 $a=-5$ 。另一方面,显然 $a=-5$ 是幂等元,	(12) $E(a) \wedge D(a)$	T, (3), (11), I ———————————————————————————————————			
有惟一幂等元a=-5; ————————————————2 分	(13) $(\exists x)(E(x) \land D(x))$	EG, (14) ————————————————————————————————————			
设a的可逆元是b。则		20, (11)			
	2.【解析】证明:				
a*b=a+b+5=e=-5, 得, $b=-a-10$ 。另一方面,显然,	(1) S是自反的: ————————————————————————————————————				
a*(-a-10) = (-a-10) *a = -5 = e, 故a的逆元是-a-10。————2 分	对任意 $f \in F$,任意 $x \in R$,显然有 $f(x) - f(x) \ge 0$	。根据已知得 $< f, f> \in S$ 。即 S 是自反的。—1 分			
六、证明 题 (3×9=27分)	(2) S是反对称的: ————————————————————————————————————				
1.【解析】设 A(x): x是桌上的书; B(x): x是杰作;	对任意 $f,g \in F$,若 $< f,g > \in S$, $< g,f > \in S$, ‡	艮据已知有,对任意 $x \in R$, $f(x) - g(x) \ge 0$ 且			
C(x,y): x 写出了 y ; $D(x)$: x 是天才; $E(x)$: x 是不出名的人。————————————————————————————————————	$g(x) - f(x) \gg 0$ 。从而有 $f(x) = g(x)$ 。即 S 是反及	1 称的。2分			
则上述语句可符号化为:	(3) 8是传递的: ————————————————————————————————————				
前提: $(\forall x)(A(x) \rightarrow B(x))$, $(\forall x)(\forall y)(C(x,y) \land B(y) \rightarrow D(x))$, $(\exists x)(\exists x)(E(x) \land C(x,y) \lor A(y))$	- 7				
		7			

《画散数学》历年题

3.【解析】证明:

(a) 因为e是左幺元, 所以有

$$b = e * b = (a^{-1} * a) * b = a^{-1} * (a * b)$$
 — 2 分
$$= a^{-1} * (a * c) = (a^{-1} * a) * c = e * c = c$$
 — 2 分

(b) 对任意 $x \in A$,

因为
$$x^{-1}*(x*e)=(x^{-1}*x)*e=e*e=e=x^{-1}*x(e$$
是左幺元),所以 $x*e=x$,即 e 是右幺元,因是幺元。 ——————2分

2011-2012 学年第二学期期末考试 A 卷参考答案

- 一、填空题(20分,每题2分,共10题)
- 1.【正解】2ⁿ

【解析】n元集合A的子集个数应该有2ⁿ个。

【考点延伸】集合的子集个数

2、【正解】4

【解析】 $|\bar{A} \cap \bar{B}| = |\overline{A \cup B}| = |S| - (|A| + |B| - |A \cap B|) = 4$

【考点延伸】集合论

3、【正解】如果小王不是通信专业的学生,那么小李不是数学学院学生

【解析】本题考查命题逻辑。题中用到了蕴涵联结词,在转换成自然语言时需要使用"如果…… 那么……"。

【考点延伸】命题逻辑

4、【正解】 $(\forall x) (F(x) \to (\forall y) (G(y) \land L(x,y)))$

【解析】本题考查谓词逻辑的符号化。"火车都比汽车快"中隐含了量词"任意",在符号化的时候要记得加上。

【考点延伸】谓词逻辑

5、【正解】 $(\forall x)P(x,y) \land R(z) \lor B$

【解析】本题考查量词辖域的收缩。需要使用到量词辖域的收缩律。

【考点延伸】量词辖域的扩张和收缩

6、【正解】6;7

【解析】本题考查序偶。由两个元素按照一定的次序组成的二元组称为序偶,两个序偶<a, b> = <c, d>当且仅当 \mathbf{a} = \mathbf{c} , \mathbf{b} = \mathbf{d} 。因而可得 \mathbf{x} = \mathbf{y} - $\mathbf{1}$ ①; \mathbf{y} + $\mathbf{5}$ = $\mathbf{2}$ x②。由①②两式可得 \mathbf{x} = $\mathbf{6}$, \mathbf{y} = $\mathbf{7}$ 。

【考点延伸】序偶

- 7、【正解】2^{n²}
 - 【解析】本题考查有限集合的二元关系数量。当集合 A,B 都是有限集时, $A \times B$ 共有 $|A| \times |B|$ 个不同的元素,这些元素将会产生 $2^{|A| \times |B|}$ 个不同的子集。即从 A 到 B 的不同的关系共有 $2^{|A| \times |B|}$ 个。

【考点延伸】有限集合的二元关系的数量

2019-2020 学年第二学期期末考试 B 卷参考答案 一、单选额 (10×1=10分) 评分标准: 对1个给1分 4、【解析】在群 $\langle G, * \rangle$ 中,若存在一个元素 $g \in G$,使得对 $\forall a \in G$,都有;a = gi($i \in Z$,Z1、【正解】(3) 为整数集合),则称 $\langle G, * \rangle$ 为循环群。 2、【正解】(1) 3、【正解】(1) 四、判断分析改镥题(如果正确,说明理由,如果不正确,举例说明)(4×4=16分)评分标准: 判 4、【正解】(1) 断正确给2分,理由正确给2分。判断错误则不给分。 5、【正解】(2) 1、【解析】不是。因为当P和Q的真值不同时,公式 $(P \rightarrow Q) \leftrightarrow (Q \rightarrow P)$ 的值为假,所以不是永真 6、【正解】(1) 7、【正解】(4) 2、【解析】可能。例如: A={a}, C={{a}, a}。 8、【正解】(4) 9、【正解】(3) 3、【解析】不是。因为删除节点 f 后有 2 个连通分支 10、【正解】(2) 4、【解析】不是,因为不满足式。例如: f(1+2)=f(3)=2*3-1=5,而 二、多项选择题(5×1=5 分)评分标准:完全正确 1 个给 1 分,否则不给分 $f(1)+f(2)=2*1-1+2*2-1=4\;,\;\; \mbox{th}\, f(1+2)\neq f(1)+f(2)\;.$ 1、【正解】(3、4、5) 2、【正解】(1、3) 1、【解析】 $(\exists x) (\forall y) (P(x,y) \rightarrow P(y,x))$ 3、【正解】(1、2、3、4、5) 4、【正解】(2、3、4、5) 5、【正解】(1、4、5) $= \big(\big(P(a,a) \rightarrow P(a,a) \big) \land \big(P(a,b) \rightarrow P(b,b) \big) \big) \lor \big(\big(P(b,a) \rightarrow P(a,b) \big) \land \big(P(b,b) \rightarrow P(b,b) \big) \big)$ 三、简答题(4×2.5=10 分)评分标准: 答对大意给 2.5 分 1、【解析】给定一个合适公式G,若变元 \mathbf{x} 出现在使用变元的量词的辖域之内,则称变元 \mathbf{x} 的出 $=((0 \to 0) \land (1 \to 1)) \lor ((0 \to 1) \land (1 \to 1))$ 现为约束出现,此时的变元x称为约束变元。 =1 2、【解析】设R是集合A上的关系。对任意的z, y, z \in A, 如果 $\langle x$, $y \rangle$ \in R且 $\langle y$, $z \rangle$ \in R, 那么 $\langle x, z \rangle \in R$,则称关系R是传递的,或称R具有传递性。 3、【解析】者无向限 $G=\langle V,\ E \rangle$ 的结点集V 能够划分为两个子集 $V_1,\ V_2$,满是 $V_1\cap V_2=\phi$,且 2、【解析】 $P(A)=P(\langle \phi,\ 1,\ \{2\}\})$ _____对一个元素给1分 $= \big\{\varPhi\,,\ \{\varPhi\}\,,\ \{1\}\,,\ \{\{2\}\,\}\,,\ \{\varPhi,1\}\,,\ \{\varPhi,\{2\}\,\}\,,\ \{1,\{2\}\,\rangle,\{\varPhi,1,\{2\}\,\}\big\}$ $V_1 \cup V_2 = V$,使得G中任意一条边的两个端点,一个属于 V_1 ,另一个属于 V_2 ,则称G 为偶图或二

《离散数学》历年题

生成树的权值 W(T)=10+50+20+45+30+40=195。

4、【解析】

根据群的性质: 8 阶剩余类加群的生成元为1

 $G=<1>=\{0,1,2,...,7\}$

对任意的 $y=1^x\in G$,只要 (n, x)=1,则 y 一定是生成元,因此,G 的所有生成元为 $\{1, 3, 5, 7\}$ 而 8 的一切因子 d 都可对应产生一个 d 阶子群,并且其生成元为 $1^{8/d}$ 。8 的因子为 1, 2, 4, 8,因此 G 有四个子群,分别如下:

G1={0},生成元为0;

G2={0,4},生成元为 4;

G3={0,2,4,6},生成元为2;

G4=G={0,1,2,..., 7},生成元为1;

5、【解析】

强分图: 由 $\{v_1,v_2,v_3,v_4\}$, $\{v_5\}$, $\{v_6\}$, $\{v_7\}$, $\{v_8\}$ 导出的子图

单向分图: 由 $\{v_1,v_2,v_3,v_4,v_5\}$, $\{v_5,v_6,v_7\}$, $\{v_6,v_8\}$ 导出的子图

弱分图: 该图本身,即由{v₁,v₂,v₃,v₄,v₅,v₆,v₇,v₈}导出的子图

六、证明题(24分)

1、【解析】

设 Q(x): x 是有理数; I(x): x 是无理数; R(x): x 是实数; C(x): x 是虚数; 则题中语句可符号化为:

 $(\forall x)(Q(x)\lor I(x)\to R(x)), (\forall x)(C(x)\to \neg R(x))$

 \Rightarrow (\forall x)($C(x)\rightarrow \neg Q(x)\land \neg I(x)$)

证明:

1)
$$(\forall x) (C(x) \rightarrow \neg R(x))$$

2)
$$C(x) \rightarrow \neg R(x)$$
 US,1)

2019-2020 学年第二学期期末考试 A 卷参考答案

一、	单选题(共10分,	共10题,	每题 1 分)		

- 1、【正解】(1)
- 2、【正解】(2)
- 3、【正解】(3)
- 4、【正解】(4)
- 5、【正解】(3)
- 6、【正解】(4)
- 7、【正解】(2)
- 8、【正解】(2)
- 9、【正解】(3)
- 10、【正解】(2)
- 二、多项选择题(共5分,共5题,每题1分)
- 1、【正解】(2、3、5)
- 2、【正解】(1、4、5)
- 3、【正解】(2、3)
- 4、【正解】(2、3、4)
- 5、【正解】(3、4)
- 三、简答题(10分)
- 1、【解析】

命题演算的合式公式,又称命题公式(简称公式),可按如下规则生成:

- (1) 命题变元本身是一个公式;
- (2) 如 G 是公式,则(¬G)也是一个公式;

(高敦数学) 历年期

哈密顿回路的问题,得到 abdfgec。

【考点延伸】哈密顿回路

```
【考点延伸】推理证明
```

2、【解析】

证明:要证 T 为 $A \times B$ 上得偏序关系,只需证 T 是自反的、反对称的、传递的:

(1) 任取< $a_1, b_1 > \in A \times B$,

由 R 和 S 为偏序集, 故a₁Ra₁, b₁Sb₁,

由条件知 $a_1Ra_1 \wedge b_1Sb_1 \iff a_1, b_1 > T < a_1, b_1 >$,

由自反性的定义知丁是自反的。

(2) 任取< $a_1, b_1 >$, $< a_2, b_2 > \in A \times B$,

若 $< a_1, b_1 > T < a_2, b_2 > 且 < a_2, b_2 > T < a_1, b_1 >$,则有,

 $a_1Ra_2 \wedge b_1Sb_2$,

 $a_2Ra_1 \wedge b_2Sb_1$.

 $\therefore a_1Ra_2 \wedge a_2Ra_1$,又R是偏序关系,具有反对称性, $\therefore a_1 = a_2$,

同理可得 $b_1 = b_2$,

< a₁, b₁ >=< a₂, b₂ >,

由反对称的定义知T是反对称的。

(3) 任取 $< a_1, b_1 >$, $< a_2, b_2 >$, $< a_3, b_3 >$ ∈ $A \times B$,

若 $< a_1, b_1 > T < a_2, b_2 > 且 < a_2, b_2 > T < a_3, b_3 >$,则有,

 $< a_1, b_1 > \mathsf{T} < a_2, b_2 > \Leftrightarrow a_1 R a_2 \wedge b_1 S b_2,$

 $< a_2, b_2 > \mathsf{T} < a_3, b_3 > \Leftrightarrow a_2 R a_3 \wedge b_2 S b_3,$

 $\therefore a_1Ra_2 \wedge a_2Ra_3$,又 R 是偏序关系,具有传递性, $\therefore a_1Ra_3$,

同理可得 b_1Sb_3 ,

 $a_1Ra_3 \wedge b_1Sb_3 \Leftrightarrow < a_1,b_1 > \mathsf{T} < a_3,b_3 >$

由传递的定义知T是传递的。

综上所述,由偏序关系的定义知 T 为A×B上得偏序关系。

【考点延伸】偏序关系的证明

五、应用题 (6分)

1、【解析】

68

《高散数学》历年题

用语言的集合来表示结点,边表示两个结点有相同的语言元素,因此问题可以转化为求该图的

《寓飲歌学》历年题

(2) $r(R) = \{<0,0>, <0,1>, <0,2>, <0,3>, <1,1>, <1,2>, <1,3>, <2,2> <2,3>, <$

 $s(R) = \{<0.1>, <0.2>, <0.3>, <1.0>, <1.2>, <1.3>, <2.0>, <2.1>, <2.3>, <$

3,0 >, < 3,1 >, < 3,2 >)

【考点延伸】关系的运算

3、【解析】

(2)

极大元: e.f:

极小元: a.f: 最大元: 无:

【考点延伸】偏序关系

4、【解析】 (1)

注: v,处有自环。

(2)题目所给邻接矩阵为权图的邻接矩阵,在计算可达性时应当先将矩阵中正数置为 1,再进运运算。重新建立邻接矩阵:

 $f(D) = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

 $\mathbb{P}(D) = A^{t} \vee A^{t(2)} \vee A^{t(3)} \vee A^{t(4)}$

$$= \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

【考点延伸】可达性

5、【解析】

【考点延伸】最小生成树

四、证明题 (共14分)

1、【解析】

证明: 应当指出,该问题默认论域是人,否则无意义。故可以有如下推理:

 $\bigcirc \neg \forall x \big(F(x) \to H(x) \big)$

 $\ \ \, \ \, \Im F(c) \to \neg H(c)$

 $\textcircled{4}\forall x\big(F(x)\to G(x)\big)$

 $\widehat{\bigcirc} F(c) \to G(c)$ $\widehat{\bigcirc} F(c) \land G(c) \land \neg H(c)$

67

66

、【正解】kn/2 【解析】本题考查 n 阶 k-正则图的边数。k-正则图即每个顶点 k 个部点,所以所有项点的总度数 【解析】本题考查 n 阶 k-正则图的边数。k-正则图即每个顶点 k 个部点,所以所有项点的总度数 【解析】本题考查 g 合运算。若 f 和 g 都是满射,则 f · g 是满射。若 f 和 g 都是单射,则 f · g 8. [IES] kn/2 为 kn, 又因为一条边关联两个点, 所以边数为 kn/2。 是单射。由函数复合运算的保守性可知。 【考点延伸】函数的复合运算 【考点延伸】正则图 9、【正解】D 【解析】本题考查点连通度。求点连通度需要找出把 G 变成不连通图成者平凡图所需去掉的编 【解析】本题考查点连通度。求点连通度需要找出把 G 变成不连通图成者平凡图所需去掉的编 少顶点数,这里图已经不连通所以答案为0 图中只有 D 符合。 【考点延伸】图的点连通度 【考点延伸】欧拉图 10、【正解】7 。,【正解】B 【解析】本题专查两结点间距离。两结点间的短程线的长度称为两结点间的距离。由观察法可知, 【解析】本题考查哈密顿图。含有一条哈密顿回路的图称为哈密顿图。图中只有 B 不是哈密顿 10、【正解】7 a、b 两点间距离为 7。即 1+1+3+2=7。 图。 【考点延伸】线图中两点间距离 【考点延伸】哈密顿图 9.【正解】B 二、选择题(20分, 每题 2分, 共 10题) 1、【正解】C 【解析】本题考查平面图。任何两边都不会在非结点处交叉的图称为平面图。图中只有 B 满足平 【解析】本题考查蕴涵联结词。 $P \rightarrow Q$ 可用除非 Q,否则 $\neg P$ 表示。 面图的条件。 【考点延伸】平面图 10、【正解】B 【解析】本题考查合取范式。题中PV-Q 可以看作子句,有限个子句的合取式称为合取范式。 【解析】本顯考查偶图。根据偶图的定义。图中只有 B 不是偶图。 【考点延伸】合取范式 【考点延伸】偶图 三、计算题 (共40分) 3、【正解】A 价,应改为¬ $(\forall x)A(x) = (\exists x)¬A(x)$; C 选项存在量词不满足对合取的分配律; D 选项 量词有明显错误。故该题选 A。 $= \left(P \wedge (Q \vee \neg Q) \wedge (R \vee \neg R)\right) \vee \left((P \vee \neg P) \wedge Q \wedge (R \vee \neg R)\right) \vee (\neg P \wedge (Q \vee \neg Q) \wedge R)$ 【考点延伸】公式等价 $= (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (P \land \neg Q \land \neg R) \lor (P \land \neg Q \land R) \lor (P \land Q \land R$ 4、【正解】B $\neg R) \lor (P \land O \land R) \cdots$ ……主析取范式 【解析】本题考查集合间关系。题中 A 是 B 的子集,所以 A 选项 B-A 不一定为空集; B 选项 从而, 主合取范式为(¬P V ¬O V ¬R)。 正确; C 选项, A∩B=A; D 选项, A∪B=B。故该题选 B。 【考点延伸】主范式 【考点延伸】集合之间的关系 2、【解析】 5、【正解】D 【解析】本题考查关系的闭包。D 选项应该改为 $s(R_1 \cup R_2) = s(R_1) \cup s(R_2)$ 。 $R \circ R = \{ < 0.2 > < 0.3 > < 1.3 > \}$ 【考点延伸】关系的闭包 $R^{-1} = \{<1,0>,<2,0>,<3,0>,<2,1>,<3,1>,<3,2>\}$