Name: _____ Math 40, Section ____ HW07 3/2/18

4.3 #10 Compute (a) the characteristic polynomial of A, (b) the eigenvalues of A, (c) the basis for each eigenspace of A, and (d) the algebraic and geometric multiplicity of each eigenvalue.

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & 4 & 5 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

4.3.#22 If \vec{v} is an eigenvector of A with corresponding eigenvalue λ and c is a scalar, show that \vec{v} is an eigenvector of A-cI with a corresponding eigenvalue $\lambda-c$.

4.3 #25 If *A* and *B* are two row equivalent matrices, do they necessarily have the same eigenvalues? Either prove that they do or give a counterexample.

4.3 #33 Verify the Cayley-Hamilton Theorem for $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$. That is, find the characteristic polynomial $c_A(\lambda)$ of A and show that $c_A(A) = O$

4.3 #37 For the matrix A in Exercise 33, use the Cayley-Hamilton Theorem to compute A^{-1} by expressing it as a linear combination of I and A.

5

4.4 #7 A diagonalization of the matrix A is given in the form $P^{-1}AP = D$. List the eigenvalues of A and bases for the corresponding matrices.

$$\begin{bmatrix} \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\ -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ \frac{5}{8} & -\frac{5}{8} & -\frac{3}{8} \end{bmatrix}$$

4.4 #19 Give A^k as a product of three matrices.

$$\begin{bmatrix} 0 & 3 \\ 1 & 2 \end{bmatrix}^k$$

4.4 #42 Prove that if A is similar to B, then A^T is similar to B^T .

8

4.4 #49 Prove that if A is a diagonalizable matrix such that every eigenvalue of A is either 0 or 1, then A is idempotent (that is, $A^2 = A$).

9

4.4 #51 Suppose that A is a 6×6 matrix with characteristic polynomial

$$c_A(\lambda) = (l + \lambda)(1 - \lambda)^2(2 - \lambda)^3$$

- (a) Prove that it is not possible to find linearly independent vectors $\vec{v_1}$, $\vec{v_2}$, and $\vec{v_3}$ in \mathbb{R}^6 such that $A\vec{v_1} = \vec{v_1}$, $A\vec{v_2} = \vec{v_2}$, and $A\vec{v_3} = \vec{v_3}$.
- (b) If A is diagonalizable, what are the dimensions of the eigenspaces E_{-1} , E_{1} , and E_{2} ?