CS23336-Introduction to Python Programming

Started on Monday, 21 October 2024, 11:29 PM

Finished

Completed on Tuesday, 22 October 2024, 12:02 AM

Time taken 33 mins 29 secs Marks 10.00/10.00

Grade 100.00 out of 100.00

Question 1

Correct Mark 1.00 out of 1.00 Flag guestion

Question text

There is a malfunctioning keyboard where some letter keys do not work. All other keys on the keyboard work properly.

Given a string text of words separated by a single space (no leading or trailing spaces) and a string brokenLetters of all distinct letter keys that are broken, return the number of words in text you can fully type using this keyboard.

Example 1:

Input: text = "hello world", brokenLetters = "ad"

Output:

Explanation: We cannot type "world" because the 'd' key is broken.

For example:

	Input	Result			
hello world ad		1			

Faculty Upskilling in Python Programming 2

Answer:(penalty regime: 0 %)

```
def function(a:str,b:str)->int:
         a=a.lower()
         b=b.lower()
        w=a.split()
        b1=set(b)
11 a=input()
12 b=input()
    b=input()
13 print(function(a,b))
```

Input	Expected	Got
hello world ad	1	1
Welcome to REC e	1	1
Faculty Upskilling in Python Programming ak	2	2

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 2

Correct
Mark 1.00 out of 1.00

Flag question

Question text

The **DNA sequence** is composed of a series of nucleotides abbreviated as 'A', 'C', 'G', and 'T'.

• For example, "ACGAATTCCG" is a **DNA sequence**.

When studying DNA, it is useful to identify repeated sequences within the DNA.

Given a string s that represents a **DNA sequence**, return all the **10-letter-long** sequences (substrings) that occur more than once in a DNA molecule. You may return the answer in **any order**.

Example 1:

```
Input: s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT"
Output: ["AAAAACCCCC","CCCCCAAAAA"]
```

Example 2:

Input: s = "AAAAAAAAAAA"
Output: ["AAAAAAAAAA"]

For example:

Input Result

AAAAACCCCCAAAAAGGGTTT AAAAACCCCCC

Answer:(penalty regime: 0 %)

```
1 s=input()
2 n=set()
3 p=set()
4 for i in range(len(s)-9):
5 c=s[i:i+10]
6 if c in n:
7 p.add(c)
8 else:
9 n.add(c)
10 s=list(p)
11 for i in range(len(s)-1,-1,-1):
12 print(s[i])
```

Input Expected Got

AAAAAAAA AAAAAAAA AAAAAAAAA

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 3

Correct
Mark 1.00 out of 1.00

Flag question

Question text

Write a program to eliminate the common elements in the given 2 arrays and print only the non-repeating elements and the total number of such non-repeating elements.

Input Format:

The first line contains space-separated values, denoting the size of the two arrays in integer format respectively.

The next two lines contain the space-separated integer arrays to be compared.

Sample Input:

5 4

12865

26810

Sample Output:

1 5 10

Sample Input:

5 5

12345

12345

Sample Output:

NO SUCH ELEMENTS

For example:

Input Result

```
5 4
1 2 8 6 5 3
2 6 8 10
```

```
5 5
1 2 3 4 5 NO SUCH ELEMENTS
1 2 3 4 5
```

Answer:(penalty regime: 0 %)

Feedback

Input	Expected	Got
5 4 1 2 8 6 5 2 6 8 10	1 5 10 3	1 5 10 3
3 3 10 10 10 10 11 12	11 12 2	11 12 2
5 5 1 2 3 4 5 1 2 3 4 5	NO SUCH ELEMENTS	NO SUCH ELEMENTS

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 4

Correct

Mark 1.00 out of 1.00

Question text

Program to print all the distinct elements in an array. Distinct elements are nothing but the unique (non-duplicate) elements present in the given array.

Input Format:

First line take an Integer input from stdin which is array length n.

Second line take n Integers which is inputs of array.

Output Format:

Print the Distinct Elements in Array in single line which is space Separated

Example Input:

5

12234

Output: 1 2 3 4

Example Input:

For example:

Input Result

Output:

1 2 3

 1 2 3 4 1 2 3 4

1 2 3 1 2 3

11 22

11 22

```
10
1
2
3
4
5
1 2 3 4 5 1 2 3 4 5
1
2
3
4
5
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 5

Correct
Mark 1.00 out of 1.00

Flag question

Question text

Given an array of integers nums containing n+1 integers where each integer is in the range [1, n] inclusive. There is only **one repeated number** in nums, return this repeated number. Solve the problem using set.

Example 1:

```
Input: nums = [1,3,4,2,2]
Output: 2
Example 2:
Input: nums = [3,1,3,4,2]
Output: 3
```

For example:

Input Result

1 3 4 4 2 4

Feedback

Input Expected Got

```
1 3 4 4 2
1 2 2 3 4 5 6 7 2
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 6

Correct

Mark 1.00 out of 1.00

Flag guestion

Question text

Given a tuple and a positive integer k, the task is to find the count of distinct pairs in the tuple whose sum is equal to K.

Examples:

```
Input: t = (5, 6, 5, 7, 7, 8), K = 13
Output: 2
Explanation:
Pairs with sum K(=13) are \{(5, 8), (6, 7), (6, 7)\}.
Therefore, distinct pairs with sum K(=13) are \{(5, 8), (6, 7)\}.
Therefore, the required output is 2.
```

For example:

Input Result

```
1,2,1,2,5
1,2
```

Answer:(penalty regime: 0 %)

```
1 def fun(t,k):
      p=set()
```

Feedback

Input Expected Got

```
5,6,5,7,7,8 2
                       2
1,2,1,2,5
```

```
1,2 0 0
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

1

Question 7

Correct

Mark 1.00 out of 1.00

Flag guestion

Question text

You are given an integer tuple nums containing distinct numbers. Your task is to perform a sequence of operations on this tuple until it becomes empty. The operations are defined as follows:

- 1. If the first element of the tuple has the smallest value in the entire tuple, remove it.
- 2. Otherwise, move the first element to the end of the tuple.

You need to return an integer denoting the number of operations required to make the tuple empty.

Constraints

- The input tuple nums contains distinct integers.
- The operations must be performed using tuples and sets to maintain immutability and efficiency.
- Your function should accept the tuple nums as input and return the total number of operations as an integer.

Example:

```
Input: nums = (3, 4, -1) Output: 5

Explanation:
Operation 1: [3, 4, -1] -> First element is not the smallest, move to the end -> [4, -1, 3] Operation 2: [4, -1, 3] -> First element is not the smallest, move to the end -> [-1, 3, 4] Operation 3: [-1, 3, 4] -> First element is the smallest, remove it -> [3, 4] Operation 4: [3, 4] -> First element is the smallest, remove it -> [4] Operation 5: [4] -> First element is the smallest, remove it -> [3, 4] Total operations: 5
```

For example:

Test Result

```
print(count_operations((3, 4, -1))) 5
```

Answer:(penalty regime: 0 %)

Reset answer

Test	Expected	l Got
<pre>print(count_operations((3, 4, -1)))</pre>	5	5
<pre>print(count_operations((1, 2, 3, 4, 5)))</pre>	5	5
<pre>print(count_operations((5, 4, 3, 2, 1)))</pre>	15	15
<pre>print(count_operations((42,)))</pre>	1	1
<pre>print(count_operations((-2, 3, -5, 4, 1)))</pre>) 11	11

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 8

Correct

Mark 1.00 out of 1.00

Flag question

Question text

Coders here is a simple task for you, Given string str. Your task is to check whether it is a binary string or not by using python set.

Examples:

Input: str = "01010101010"

Output: Yes

Input: str = "REC101"

Output: No

For example:

Input Result

01010101010 Yes

010101 10101 No

```
Answer:(penalty regime: 0 %)
   1 def bin1(s):
```

Input Expected Got

01010101010 Yes Yes

REC123 No No

010101 10101 No No

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 9

Correct
Mark 1.00 out of 1.00

Flag question

Question text

Given an array of strings words, return the words that can be typed using letters of the alphabet on only one row of American keyboard like the image below.

In the American keyboard:

- the first row consists of the characters "gwertyuiop",
- the second row consists of the characters "asdfghjkl", and
- the third row consists of the characters "zxcvbnm".

Example 1:

```
Input: words = ["Hello","Alaska","Dad","Peace"]
Output: ["Alaska","Dad"]
Example 2:
```

Input: words = ["omk"]
Output: []

Example 3:

Input: words = ["adsdf","sfd"]
Output: ["adsdf","sfd"]

For example:

Input Result

```
4
Hello Alaska
Dad Dad
Peace
```

afd

Answer:(penalty regime: 0 %)

Input Expected Got

```
4
Hello
Alaska
Dad
Peace

No words

Alaska
Dad
Peace

Alaska
Dad
Dad

Alaska
Dad
Dad

Alaska
Dad
Dad

Alaska
Dad
Dad

Alaska
Dad
Dad
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 10

Correct
Mark 1.00 out of 1.00

Flag question

Question text

Check if a set is a subset of another set.

Example:

Sample Input1:

mango apple

mango orange

mango

output1:

yes

set3 is subset of set1 and set2

input2:

mango orange banana orange grapes output2: no

For example:

Test Input Result

mango apple
mango orange
mango orange
mango orange

mango orange
banana orange No
grapes

Answer:(penalty regime: 0 %)

```
1 sl=set(input().strip().split())
2 s2=set(input().strip().split())
3 s3=set(input().strip().split())
4- if s3.issubset(s1) and s3.issubset(s2):
5     print('yes')
6     print('set3 is subset of set1 and set2')
7- else:
8     print('No')
```

Feedback

Test	t Input		Expec	ted			(Got	;		
1	mango apple mango orange mango	yes set3 is	subset of	set1	and	ye set2 se	subset	of	set1	and	set2
2	mango orange banana orange grapes	e No				No					

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Finish review

Skip Quiz navigation

Quiz navigation

Question 1 This page Question 2 This page Question 3 This page Question 4 This page Question 5 This page Question 6 This page Question 7 This page Question 8 This page Question 9 This page Question 10 This page Show one page at a timeFinish review