Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT)

First In Semester Examination

CT314 (Statistical Communication Theory)

Date of Examination: Feb 05, 2011

Duration: 2 Hours Maximum Marks: 20

Instructions:

- 1. Attempt all questions.
- 2. Use of scientific non programmable calculator is permitted.
- 3. Figures in brackets indicate full marks.
- 4. All the acronyms carry their usual meaning.
- 5. A one page hand written formula sheet allowed (to be submitted).
- Q1. Let two honest (fair) coins marked 1 and 2, be tossed together. The four possible outcomes are T_1T_2 , H_1T_2 , T_1H_2 , H_1H_2 . (T_1 indicates toss of coin 1 resulting in tails; similarly T_2 etc.) All these outcomes are equally likely and mutually exclusive. Let the event A be 'not H_1H_2 ' and B be the event 'match'. (match comprises of two outcomes T_1T_2 , H_1H_2). Find P(B/A), P(B). Are A and B independent? (3 marks)
- Q2. A random variable X takes only positive integer values $\{k=1,2,3...\}$. Show that $E(X) = \sum_{k} P\{X \ge k\}$ (3 marks)
- Q3. Consider a random variable X with probability density function (pdf) $f_X(x) = e^{-x}, x \ge 0$. Using the concept of function of a random variable find the pdf of the transformed random variable $Y = g(X) = \frac{3}{(X+1)^2}$ (4 marks)

Q4. If
$$f_X(x) = 0$$
 for $x < 0$, show that $P\{X > \sqrt{m_X}\} \le \sqrt{m_X}$ (5 marks)

Q5. Which of the following (2 by 2) matrices are valid covariance matrices and why?

a.
$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 b. $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ c. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ d. $\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ (2 marks)

- Q6. Consider a 2 by 2 covariance matrix for random variables X and Y. Using a property of the matrix prove that $|\varsigma_{XY}| \le 1$, ς_{XY} being correlation coefficient (2 marks)
- Q7. Write an example 2 by 2 covariance matrix for which $Var(X_1+X_2) = Var(X_1)$, (X_2 is not a constant.). You need to write the entries like the one given in Q5. (1 mark)

$$Q.1$$
 $P(B|A) = \frac{P(AB)}{P(B)}$

Q.2.

AB is the event not
$$H_1H_2'$$
 and I metch it is the outcome T_1T_2

i. $P(AB) = \frac{1}{4}$, Event A her outcome $P(AB) = \frac{1}{4}$, $P(A) = \frac{3}{4}$
 $P(B|A) = \frac{1}{4} = \frac{1}{4}$
 $P(B) = \frac{1}{2}$
 $P(B|A) = \frac{1}{4}$
 $P(B) = \frac{1}{4}$
 $P(B|A)$

here they are dependent $P(B) = \frac{1}{4}$

$$E[x] = 1.P[x=1] + 2P[x=2] + 3.P[x=3] + ...$$

$$= \frac{1.P[X=1]}{2} + \frac{1}{2} + \frac{1}$$

Q3. We have $f(x) = e^{-x}$, x = 0values no in fr(n). Since square turn in the denominative x7,0 No U $g(n) = \frac{3}{(n+1)} = Z$ and it has two roots $n_1 = \sqrt{\frac{3}{2}} - 1 \quad \text{and} \quad n_2 = -\sqrt{\frac{3}{2}} - 1$ $f(z) = \frac{-6}{(2+1)^3}$ $f(z) = \frac{-6}{(2+1)^3}$ $f(z) = \frac{-6}{(2+1)^3}$ $g'(x_1) = (-\frac{6}{(2+1)^3})^3$ $f(x_2) = \frac{-6}{(2+1)^3}$ $f(x_1) = (-\frac{6}{(2+1)^3})^3$ $f_z(z) = \frac{1}{\sqrt{3}} f_x \left(\sqrt{\frac{3}{2}} - 1 \right) + f_x \left(\sqrt{\frac{3}{2}} - 1 \right)$ The first ft. in the square brackets dues not exist as it makes organisment of fx(x) is n as -ve for z 70 which is not possible The first for crists only when $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{71}{2}$ $\frac{3}{2}$ $\frac{71}{2}$ $\frac{3}{2}$.. S. f₂(2) = 2/5 z³/2 f_x (\(\frac{3}{2} - 1\)) for 0 \(\frac{2}{2}\).

$$f_{x}(0) = 0 \quad \text{for} \quad n(0)$$

$$m_{x} = E(x) = \int x f_{x}(x) dx$$

$$= \int x f_{x}(x) dx \quad \text{for} \quad f_{x}(x) dx - \int x f_{x}(x) dx$$

$$= \int x f_{x}(x) dx \quad \text{for} \quad f_{x}(x) dx - \int x f_{x}(x) dx - \int x$$

or $m_{\chi} > \int_{m_{\chi}}^{m_{\chi}} x f_{\chi}(n) dn \rightarrow K_{1}$ $m_{\chi} > \int_{m_{\chi}}^{m_{\chi}} f_{\chi}(n) dn \rightarrow K_{1}$ because $\int_{m_{\chi}}^{m_{\chi}} f_{\chi}(n) dn < \int_{m_{\chi}}^{\infty} x f_{\chi}(n) dn$.

 $\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \int_{$

k, < 1<2

det <0 US. No a. diagonal elements -Ve set she all propulin of a metric No b. not symmetrical motrix. c. - yes d. - No det (6xy must be 70. 1= 6x cov(xi7) >,0

cov(xi7) 6y ox oy - (cov(x; y)) >,0 or $(cov(x,y))^2 \leq 6x^6y^2$ $\frac{\left(\operatorname{cov}(x,Y)\right)}{\operatorname{6x}^{2}\operatorname{6y}^{2}}\leq1$ $\frac{CN(x,y)}{6x6y} \leq 1$ 1 (xy) { Considu The lovariance metris

 $C_{X} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$ This gives $Var(X_1 + X_2) = [1 + 2 - 2 - 1]$ $= Var(X_1)$ $= Var(X_1)$ = [1 & 2] $= Var(X_1)$ = [2 & 2] $= Var(X_1)$ = [2 & 2] $= Var(X_1)$ = [3 & 2] $= Var(X_1)$ = [3 & 2] $= Var(X_1)$ = [4 & 2 & 3] $= Var(X_1)$ $= Var(X_1$