Scilab Textbook Companion for Introduction To Mechanical Engineering by S. Chandra And O. Singh ¹

Created by
Suhaib Alam
B.tech
Electrical Engineering
Uttarakhand Technical University
College Teacher
Naresh Kumar
Cross-Checked by
Chaya Ravindra

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Introduction To Mechanical Engineering

Author: S. Chandra And O. Singh

Publisher: New Age International Pvt. Ltd, Delhi

Edition: 1

Year: 2001

ISBN: 81-224-1342-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
1	Fundamental concepts and definitions	5
2	Ideal and real gases	7
3	Zeroth law of thermodynamics	8
4	Torsion	10
5	Second law of thermodynamics	15
6	Entropy	18
7	Thermodynamic properties of pure substance	24
10	Compound stresses and strains	35
11	Bending stresses and strains	44
12	Torsion	48

List of Scilab Codes

Exa 1.1	Pressure Difference	5
Exa 1.2	Effort required for lifting the lid	5
Exa 1.3	Actual pressure of air	6
Exa 2.1	Determine molecular weight of gas	7
Exa 3.1	Determine human body temperature	8
Exa 3.2	Determine Celsius temperature	8
Exa 3.3	Temperature shown by thermometer	9
Exa 4.1	Work done by or on the system	10
Exa 4.2	Amount of heat required	10
Exa 4.3	Rate of heat removal	11
Exa 4.4	Work done by the air	11
Exa 4.5	Heat and wok intraction	12
Exa 4.6	Heat Work and change in energy	12
Exa 4.7	Heat transfer and direction	13
Exa 5.2	Determine heat supplied	15
Exa 5.3	Power required	15
Exa 5.4	Heat transferred to refrigerant	16
Exa 5.5	Estimate minimum power	16
Exa 5.6	Power required	17
Exa 6.1	Change in entropy	18
Exa 6.2	Change in entropy of steam	18
Exa 6.3	Change in entropy of gas	19
Exa 6.4	Change in entropy of universe	20
Exa 6.5	Change in entropy of universe	20
Exa 6.6	Entropy change of universe	21
Exa 6.8	Rate of power loss	21
Exa 6.9	Estomate maximum work	22
Exa 6.10	Change in enthalpy and entropy	22

Exa 6.11	Determine entropy change
Exa 7.2	Dryness fraction of steam
Exa 7.3	Internal energy of steam
Exa 7.4	Boiling temperature
Exa 7.5	Mass and volume of water
Exa 7.6	Slope of an isobar
Exa 7.7	Enthalpy Entropy and specific volume
Exa 7.8	Heat added
Exa 7.9	Determine pressure and temperature
Exa 7.10	Change in enthalpy
Exa 7.11	Quality of water vapour mixture
Exa 7.12	Determine work output
Exa 7.13	Mass of dry saturated steam
Exa 7.14	State of steam
Exa 7.15	Dryness fraction and workdone
Exa 7.16	Dryness fraction
Exa 2.1	Maximum shear stress
Exa 2.2	Find the stresses
Exa 2.3	Principle stresses and max shear stress
Exa 2.4	Value of shear stress
Exa 2.5	Value of shear stress
Exa 2.7	Minimum principle stress
Exa 2.8	Principles stress and shear stress
Exa 2.9	Find resultant stress
Exa 2.10	Find sigma and angle of obliquity
Exa 2.11	Find sigma and angle fi
Exa 2.12	Find sigma and angle fi
Exa 2.13	Find sigma and angle fi
Exa 3.1	CG of T section
Exa 3.2	Centroid of angle section
Exa 3.3	Centroid of area
Exa 3.4	Location of centroid
Exa 3.5	Centroid of built up section 4'
Exa 4.1	Angle of twist and shear
Exa 4.2	Power and angle of twist
Exa 4.3	Internal diameter and bolt diameter
Exa 4.4	Shear stress and twist angle
Exa. 4.5	Poisson Ratio and value of E G and K

Exa 4.6	Diameter of shaft	51
Exa 4.7	Diameter of shaft	52
Exa 4.8	Maximum torque and total rotation	52
Exa 4.9	Strength and weight ratio	53
Exa 4.10	Shear stress and angle of twist	53
Exa 4.11	Find shear stress	54
Exa 4.12	Diameter of bolt	55
Exa 4.13	Max Power	55
Exa 4.14	Safe diameter of shaft	56
Exa 4.15	Max bending and shear stress	57
Exa 4.16	Estimate angular twist	57
Exa 4.17	Fnd torque required	58
Exa 4.18	Find maximum torque	58
Exa 4.19	Diameter of hollow shaft	59
Exa 4.20	Max shear stress	59

Fundamental concepts and definitions

Scilab code Exa 1.1 Pressure Difference

```
1 //Part A Chapter 1 Example 1
2 clc;
3 clear;
4 close;
5 format('v',8);
6 rho=13550; //kg/m^3
7 g=9.78; //m/s^2
8 h=30*10^-2; //m
9 //Pressure Difference
10 P_diff=rho*g*h; //Pa
11 disp("Pressure difference = "+string(P_diff)+" pa");
```

Scilab code Exa 1.2 Effort required for lifting the lid

```
1 // Part A Chapter 1 Example 2
2 clc;
```

```
3 clear;
4 close;
5 format('v',8);
6 rho=13550;//kg/m^3;
7 g=9.78;//m/s^2
8 h=76*10^-2;//m
9 d=30*10^-2;//m
10 //Effort required
11 Effort_req=rho*g*h*3.14*d^2/4;//N
12 disp("Effort required = "+string(Effort_req)+" N");
```

Scilab code Exa 1.3 Actual pressure of air

```
1  //Part A Chapter 1 Example 3
2  clc;
3  clear;
4  close;
5  format('v',7);
6  Patm=101; //kPa
7  rho=13550; //kg/m^3
8  g=9.78; //m/s^2
9  h=30*10^-2; //m
10  //Gauge pressure
11  Pgauge=rho*g*h/1000; //kPa
12  //Actual Pressure
13  Pactual=Pgauge+Patm; //kPa
14  disp("Actual pressure of air = "+string(Pactual)+" kPa");
```

Ideal and real gases

Scilab code Exa 2.1 Determine molecular weight of gas

```
1 //Part A Chapter 2 Example 1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 cp=2.286; //kJ/kgK
7 cv=1.768; //kJ/kgK
8 Rbar=8.3143; // universal gas constant
9 R=cp-cv; //kJ/kgK
10 M=Rbar/R; //kg/kg.mol.(Molecular weight)
11 disp("Molecular weight of gas = "+string(M)+" kg/kg.mol.");
```

Zeroth law of thermodynamics

Scilab code Exa 3.1 Determine human body temperature

```
1  //Part A Chapter 3 Example 1
2  clc;
3  clear;
4  close;
5  format('v',6);
6  T_F=98.6; // degree F
7  T_C=(T_F-32)/1.8; // degree C
8  disp("Temperature in degree celsius = "+string(T_C)+" degree C");
```

Scilab code Exa 3.2 Determine Celsius temperature

```
1 //Part A Chapter 3 Example 2
2 clc;
3 clear;
4 close;
5 format('v',7);
6 t_ice=0;//degree C
```

```
7 p_ice=3;//thermometric property
8 t_steam=100;//degree C
9 p_steam=8;//thermometric property
10 //t=a*log(p)+b/2
11 //solving by matrix multiplication for a and b
12 A=[log(p_ice) 1/2;log(p_steam) 1/2];
13 B=[t_ice;t_steam];
14 X=A^-1*B;
15 a=X(1);//constant
16 b=abs(X(2));//constant
17 p=6.5;//thermometric property
18 t=a*log(p)+b/2;//degree C
19 disp("Celsius temperature corresponding to thermometric property = "+string(t)+" degree C");
```

Scilab code Exa 3.3 Temperature shown by thermometer

```
//Part A Chapter 3 Example 3
clc;
clear;
close;
format('v',6);
t_ice=0;//degree C
E0=0.003*t_ice-5*10^-7*t_ice^2+0.5*10^-3;//V
t_steam=100;//degree C
E100=0.003*t_steam-5*10^-7*t_steam^2+0.5*10^-3;//V
t=30;//degree C
E30=0.003*t-5*10^-7*t^2+0.5*10^-3;//V
t=((E30-E0)/(E100-E0))*(t_steam-t_ice);//degree C
disp("Temperature shown by thermometer = "+string(t) +" degree C");
//Answer given in the book is wrong.
```

Torsion

Scilab code Exa 4.1 Work done by or on the system

```
1 //Part A Chapter 4 Example 1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 P=689*1000;//Pa
7 V1=0.04;//m^3
8 V2=0.045;//m^3
9 Wpaddle=-4.88;//kJ
10 Wpiston=integrate('689*1000','P',V1,V2)/1000;//kJ
11 disp("Work done on piston = "+string(Wpiston)+" kJ")
;
12 Wnet=Wpiston+Wpaddle;//kJ
13 disp("Work done on system = "+string(abs(Wnet))+" kJ")
;");
```

Scilab code Exa 4.2 Amount of heat required

```
1 //Part A Chapter 4 Example 2
2 clc;
3 clear;
4 close;
5 format('v',6);
6 m=0.5; //kg
7 u1=26.6; //kJ/kg
8 u2=37.8; //kJ/kg
9 W=0; //as vessel is rigid
10 U1=m*u1; //kJ
11 U2=m*u2; //kJ
12 //Heat required
13 Q=U2-U1+W; //kJ
14 disp("Heat required = "+string(Q)+" kJ");
```

Scilab code Exa 4.3 Rate of heat removal

```
1 //Part A Chapter 4 Example 3
2 clc;
3 clear;
4 close;
5 format('v',6);
6 m=50;//kg/hr
7 T1=800;//degree C
8 T2=50;//degree C
9 Cp=1.08;//kJ/kgK
10 Q=m*Cp*(T1-T2);//kJ/hr
11 disp("Heat should be removed at the rate of "+ string(Q)+" kJ/hr");
```

Scilab code Exa 4.4 Work done by the air

```
1 // Part A Chapter 4 Example 4
```

```
2 clc;
3 clear;
4 close;
5 V=0.78; //m^3
6 Patm=101.325; //kPa
7 //W=work done by Patm
8 W=Patm*V; //kJ
9 disp("Work done by air = "+string(W)+" kJ");
```

Scilab code Exa 4.5 Heat and wok intraction

```
1 //Part A Chapter 4 Example 5
2 clc;
3 clear;
4 close;
5 \text{ m} = 5; // \text{kg}
6 p1=1; //MPa
7 V1=0.5; //\text{m}^3
8 p2=0.5; //MPa
9 / u = 1.8 * p * v + 85; / kJ/kg
10 n=1.3; //constant
11 / p1*V1^n=p2*V2^n
12 V2=(p1/p2*V1^n)^(1/n);//m^3
13 W = (p2*V2-p1*V1)*10^3/(1-n); //kJ
14 delU=(p2*V2-p1*V1)*10^3; //kJ
15 delTheta=delU+W; //kJ
16 disp("Heat Interaction = "+string(delTheta)+" kJ");
17 disp("Work Interaction = "+string(W)+" kJ");
18 disp("Change in Internal Energy = "+string(delU)+"
      kJ");
```

Scilab code Exa 4.6 Heat Work and change in energy

```
1 //Part A Chapter 4 Example 6
2 clc;
3 clear;
4 close;
5 p1=1; //MPa
6 p2=2; //MPa
7 V1=0.05; //\text{m}^3
8 n=1.4; //constant
9 /U = 7.5 * p * v - 425; / kJ/kg
10 delQ=180; //kJ
11 / p1*V1^n=p2*V2^n
12 V2=(p1/p2)^(1/n)*V1;//m^3
13 delU=7.5*10^3*(p2*V2-p1*V1); //kJ
14 W=(p2*V2-p1*V1)*10^3/(1-n);//kJ
15 delTheta=delU+W; //kJ
16 disp("Heat = "+string(delTheta)+" kJ");
17 disp("Work = "+string(W)+" kJ");
18 disp("Change in Internal Energy = "+string(delU)+"
      kJ");
19 //If heat transfer is 180 kJ
20 W=delQ-delU; //kJ
21 disp("Work = "+string(W)+" kJ");
```

Scilab code Exa 4.7 Heat transfer and direction

```
1 //Part A Chapter 4 Example 7
2 clc;
3 clear;
4 close;
5 M=16; // molecular weight
6
7 p1=101.3; //KPa
8 p2=600; //MPa
9 T1=20+273; //K
10 n=1.3; // constant
```

```
11    Cp=1.7; //KJ/KgK
12    UGC=8.3143*10^3; // Universal Gas constant
13    R=UGC/M/1000; //KJ/KgK
14    Cv=Cp-R; //KJ/KgK
15    Gamma=Cp/Cv; // constant
16    T2=T1*(p2/p1)^((n-1)/n); //K
17    W=R*(T2-T1)/(n-1); //
18    Q=W*(Gamma-n)/(Gamma-1); //Kj/Kg
19    disp("Heat = "+string(Q)+" KJ");
```

Second law of thermodynamics

Scilab code Exa 5.2 Determine heat supplied

```
1 //Part A Chapter 5 Example 2
2 clc;
3 clear;
4 close;
5 T1=400+273; //K
6 T2=15+273; //K
7 Q12=200; //kJ(Q1-Q2=200)
8 Q1BYQ2=T1/T2;
9 Q2=Q12/(Q1BYQ2-1); //kJ
10 Q1=Q1BYQ2*Q2; //kJ
11 disp("Heat to be supplied = "+string(Q1)+" kJ");
```

Scilab code Exa 5.3 Power required

```
1 // Part A Chapter 5 Example 3
2 clc;
3 clear;
4 close;
```

```
5 T1=42+273; //K
6 T2=4+273; //K
7 Q2=2; //kJ/s
8 Q1=T1/T2*Q2; //kJ/s
9 Pin=Q1-Q2; //kJ/s
10 disp("Power required = "+string(Pin)+" kJ/s");
```

Scilab code Exa 5.4 Heat transferred to refrigerant

```
1 //Part A Chapter 5 Example 4
2 clc;
3 clear;
4 close;
5 T1=827+273; //K
6 T2=27+273; //K
7 T3 = -13 + 273; //K
8 Q1=2000; //kJ
9 Q2=545.45; //kJ
10 WE=Q1-Q2; //kJ
11 Q3BYQ4=T3/T2;
12 WE_sub_WR=300; //kJ
13 WR=WE-WE_sub_WR; //kJ
14 Q43=WR; //kJ(Q4-Q3=WR)
15 Q4=WR/(1-Q3BYQ4); //kJ
16 Q3=Q4-Q43; //kJ
17 Qt = Q2 + Q4; //kJ
18 disp("Heat transferred to refrigerant = "+string(Q3)+
     " kJ");
19 disp ("Total heat transferred to low
      temperaturereservoir = "+string(Qt)+" kJ");
20 //Answer is not accurate in the book.
```

Scilab code Exa 5.5 Estimate minimum power

```
1 //Part A Chapter 5 Example 5
2 clc;
3 clear;
4 close;
5 T1=25+273; //K
6 T2=-1+273; //K
7 Q2=125; //MJ/h
8 Q1BYQ2=T1/T2;
9 COP_HP=1/(Q1BYQ2-1);
10 W=Q2/COP_HP; //MJ/h
11 W=W*10^3/3600; //kW
12 disp("Minimum power required = "+string(W)+" kW");
```

Scilab code Exa 5.6 Power required

```
1 //Part A Chapter 5 Example 6
2 clc;
3 clear;
4 close;
5 T1=35+273; //K
6 T2=-15+273; //K
7 Q2=140.8; //kW
8 Q1BYQ2=T1/T2;
9 Carnot_COP=1/(Q1BYQ2-1);
10 Actual_COP=Carnot_COP/4;
11 W=Q2/Actual_COP; //kW
12 disp("Power required = "+string(W)+" kW");
13 //Answer is not accurate in the book.
```

Entropy

Scilab code Exa 6.1 Change in entropy

```
1 //Part A Chapter 6 Example 1
2 clc;
3 clear;
4 close;
5 p1=5;//bar
6 T1=27+273;//K
7 p2=2;//bar
8 cp_air=1.004;//kJ/kgK
9 R=0.287;//kJ/kgK
10 T2=T1;//K(as cp*T1=cp*T2)
11 delta_s=cp_air*log(T2/T1)-R*log(p2/p1);//kJ/kgK
12 disp("Change in entropy = "+string(delta_s)+" kJ/kgK
");
```

Scilab code Exa 6.2 Change in entropy of steam

```
1 //Part A Chapter 6 Example 2
2 clc;
```

```
3 clear;
4 close;
5 T1=27+273; //K
6 T2=100+273; //K
7 T3=400+273; //K
8 \text{ m=5}; //\text{kg}
9 cp=4.2; //kJ/kgK
10 cp2=2260; //kJ/kg
11 delta_T=100-27; // degree C
12 Q1=m*cp*delta_T; //kJ/K
13 delta_S1=Q1/T1//kJ/K
14 Q2=m*cp2; //kJ/K
15 delta_S2=Q2/T2/kJ/K
16 R=8.314/34; //kJ/kgK
17 / \text{cp_steam} = R*(3.5+1.2*T+0.14*T^2)*10^-3; //kJ/kgK
18 / delta_S3 = m * cp_steam / T * dT
19 delta_S3=integrate('m*R*(3.5/T+1.2+0.14*T)*10^{-3}','T
      ',T2,T3);//kJ/K
20 delta_S=delta_S1+delta_S2+delta_S3; //kJ/K
21 disp("Total entropy change = "+string(delta_S)+" kJ/
      K");
22 //Answer in the book is not accurate.
```

Scilab code Exa 6.3 Change in entropy of gas

```
1 //Part A Chapter 6 Example 3
2 clc;
3 clear;
4 close;
5 R=8.314/32; //kJ/kgK
6 p1=125; //kPa
7 p2=375; //kPa
8 T1=27+273; //K
9 T2=T1; //K
10 delta_S=-R*log(p2/p1); //kJ/K; //kJ/kgK
```

```
11 disp("Change in entropy = "+string(delta_S)+" kJ/K");
```

Scilab code Exa 6.4 Change in entropy of universe

```
1 //Part A Chapter 6 Example 4
2 clc;
3 clear;
4 close;
5 T1 = 150 + 273; //K
6 T2=25+273; //K
7 m=1; //kg
8 cp=0.393; //kJ/kgK
10 deltaS_block=-m*cp*log(T1/T2); //kJ/kgK
11 HeatLost_block=-m*cp*(T1-T2); //kJ
12 deltaS_water=-HeatLost_block/T2; //kJ/K
13 deltaS_universe=deltaS_block+deltaS_water; //kJ/K
14 deltaS_universe=deltaS_universe*1000; //J/K
15 disp("Change in entropy of universe = "+string(
      deltaS_universe) + "J/K");
16 //unit of answer is wrong in the book.
```

Scilab code Exa 6.5 Change in entropy of universe

```
1 //Part A Chapter 6 Example 5
2 clc;
3 clear;
4 close;
5 m=1;//kg
6 g=9.81;//gravity constant
7 h=200;//m
8 T1=27+273;//K
```

```
9 cp=0.393; //kJ/kgK
10 deltaPE=m*g*h; //J
11 Q=deltaPE; //J
12 deltaS_SeaWater=Q/T1; //J/kgK
13 deltaS_universe=deltaS_SeaWater; //J/kgK(because of same temperature)
14 disp("Change in entropy of universe = "+string(deltaS_universe)+" J/kgK");
```

Scilab code Exa 6.6 Entropy change of universe

```
1 //Part A Chapter 6 Example 6
2 clc;
3 clear;
4 close;
5 \text{ m1=1}; //\text{kg}
6 \text{ m2=0.5}; //\text{kg}
7 T1=150+273; //K
8 T2=0+273; //K
9 cp1=0.393; //kJ/kgK
10 cp2=0.381; //kJ/kgK
11 / m1*cp1*(T1-Tf)=m2*cp2*(Tf-T2);
12 Tf = (m1*cp1*T1+m2*cp2*T2)/(m2*cp2+m1*cp1); //K
13 delta_S1=m1*cp1*\log(Tf/T1); //kJ/K
14 delta_S2=m2*cp2*log(Tf/T2); //kJ/K
15 deltaS_universe=delta_S1+delta_S2; //kJ/K
16 disp("Change in entropy of universe = "+string(
      deltaS_universe) + kJ/K);
```

Scilab code Exa 6.8 Rate of power loss

```
1 // Part A Chapter 6 Example 8
2 clc;
```

```
3 clear;
4 close;
5 T1=1800; //K
6 T2=300; //K
7 W=2; //MW
8 Q1=5; //MW
9 Q2=Q1-W; //MW
10 deltaS=(-Q1/T1+Q2/T2); //MW/K
11 W_lost=T2*deltaS; //MW
12 disp("Work lost = "+string(W_lost)+" MW");
```

Scilab code Exa 6.9 Estomate maximum work

```
1 //Part A Chapter 6 Example 9
2 clc;
3 clear;
4 close;
5 T1_HE=2000; //K
6 T2_HE=300; //K
7 T1=500; //K
8 T2=300; //K
9 Q1=integrate('0.05*T^2+0.10*T+0.085', 'T', T1, T2); //J
10 deltaS_system=integrate('0.05*T+0.10+0.085/T', 'T', T1, T2); //J/K
11 //Putting deltaS_system+deltaS_reservoir>=0
12 // deltaS_reservoir=(Q1-W)/T2
13 W=deltaS_system*T2-Q1; //J
14 disp("Maximum Work = "+string(W/1000)+" kJ");
```

Scilab code Exa 6.10 Change in enthalpy and entropy

```
1 //Part A Chapter 6 Example 10
2 clc;
```

```
3 clear;
4 close;
5 p1=3;//MPa
6 V1=0.05;//m^3
7 V2=0.3;//m^3
8 p2=p1*V1^1.4/V2^1.4;//Mpa
9 deltaS=0;//for reversible process
10 deltaH=integrate('(p1*V1^1.4/P)^(1/1.4)','P',p2,p1
);//MJ
11 disp("Enthalpy change = "+string(deltaH*1000)+" kJ")
;
12 disp("Entropy change = "+string(deltaS));
```

Scilab code Exa 6.11 Determine entropy change

```
1 //Part A Chapter 6 Example 11
2 clc;
3 clear;
4 close;
5 \text{ m} = 2; // \text{kg}
6 V1=1; //\text{m}^3
7 V2=10; //m^3
8 R=287; //consant
9 deltaS_air=m*R*log(V2/V1); //J/K
10 disp("Entropy change of air = "+string(deltaS_air)+"
       J/K");
11 deltaS_surr=0;//for free expansion
12 disp("Entropy change of surrounding = "+string(
      deltaS_surr));
13 deltaS_uni=deltaS_air+deltaS_surr;//J/K
14 disp("Entropy change of universe = "+string(
      deltaS_uni) + "J/K");
```

Thermodynamic properties of pure substance

Scilab code Exa 7.2 Dryness fraction of steam

```
1 //Part A Chapter 7 Example 2
2 clc;
3 clear;
4 close;
5 h2=2682.5; //kJ/kg(For 0.05 MPa & 100 degree C)
6 h1=h2; //kJ/kg(for throttling)
7 hf=1407.56; //kJ/kg(For 10 MPa)
8 hfg=1317.1; //kJ/kg(For 10 MPa)
9 x1=(h1-hf)/hfg; //dryness fraction
10 disp("Dryness fraction = "+string(x1));
```

Scilab code Exa 7.3 Internal energy of steam

```
1 //Part A Chapter 7 Example 3
2 clc;
3 clear;
```

Scilab code Exa 7.4 Boiling temperature

```
1 //Part A Chapter 7 Example 4
2 clc;
3 clear;
4 close;
5 T=110+273.15; //K
6 h=50; //cm
7 p=143.47; //kPa(at 110 degree C)
8 g=9.81; //ravity constant
9 p_dash=p-(1000*g*h/100)/1000; //kPa(pressure at 50 cm depth)
10 Tsat=108.866; //degree C(for pdash=138.365 kPa);
11 disp("Pressure at 50 cm depth is "+string(p_dash)+" kPa. From steam table, Boiling point = "+string(Tsat)+" degree C");
```

Scilab code Exa 7.5 Mass and volume of water

```
1 //Part A Chapter 7 Example 5
2 clc;
3 clear;
4 close;
5 V = 0.5; //m^3
6 T=100+273.15; //K
7 v2=0.003155; //m^3/kg(at critical state)
8 v1=v2; //constant volume process
9 vf=0.001044; //\text{m}^3/\text{kg} (at 100 degree C)
10 vg=1.6729; //\text{m}^3/\text{kg} (at 100 degree C)
11 x1=(v1-vf)/vg;//dryness fraction
12 m = V / v2; / kg
13 mw = m*(1-x1); //kg
14 Vw=mw*vf;//m^3
15 disp("Mass of water is "+string(mw)+" kg.");
16 disp("Volume of water is "+string(Vw)+" m^3.");
```

Scilab code Exa 7.6 Slope of an isobar

```
//Part A Chapter 7 Example 6
clc;
clear;
close;
p=2;//MPa
T=500+273.15;//K
dh_by_ds=T;//for constant pressure
disp("Slope of an isobar is "+string(dh_by_ds));
```

Scilab code Exa 7.7 Enthalpy Entropy and specific volume

```
1 // Part A Chapter 7 Example 7
2 clc;
3 clear;
```

```
4 close;
5 p=0.15; //MPa
6 x=10/100; //quality
7 hf = 467.11; //kJ/kg//at 0.15 MPa
8 hg=2693.6; //kJ/kg//at 0.15 MPa
9 vf = 0.001053; //\text{m}^3/\text{kg}//\text{at} 0.15 MPa
10 vg=1.1593; //\text{m}^3/\text{kg}//\text{at} 0.15 MPa
11 sf=1.4336; //kJ/kg.K//at 0.15 MPa
12 sg=7.2233; //kJ/kg.K//at 0.15 MPa
13 hfg=hg-hf; //kJ/kg//
14 h=hf+x*hfg; //kJ/kg
15 disp("Enthalpy is "+string(h)+" kJ/kg");
16 vfg=vg-vf; //\text{m}^3/\text{kg}//
17 v=vf+x*vfg; //m^3/kg
18 disp("Specific volume is "+string(v)+" m^3/kg");
19 sfg=sg-sf; //kJ/kg.K
20 s=sf+x*sfg; //kJ/kg.K
21 disp("Entropy is "+string(s)+" kJ/kg.K");
```

Scilab code Exa 7.8 Heat added

```
1 //Part A Chapter 7 Example 8
2 clc;
3 clear;
4 close;
5 P1=1;//MPa
6 V1=0.05;//m^3
7 x1=80/100;//dryness fraction
8 P2=1;//MPa
9 V2=0.2;//m^3
10 W=P1*1000*(V2-V1);//kJ
11 vf=0.001127;//m^3/kg//at 1 MPa
12 vg=0.19444;//m^3/kg//at 1 MPa
13 uf=761.68;//kJ/kg//at 1 MPa
14 ufg=1822;//kJ/kg//at 1 MPa
```

```
15  vfg=vg-vf;//m^3/kg
16  v1=vf+x1*vfg;//m^3/kg
17  ms=V1/v1;//kg(mass of steam)
18  v2=V2/ms;//m^3/kg
19  T1=1000;T2=1100;//degree C(as v2>vg(1MPa))
20  T=T1+(T2-T1)*(v2-0.5871)/(0.6355-0.5871);//degree C
21  u2=4209.6;//kJ/kg(at 1MPa & T degree C)
22  u1=uf+x1*ufg;//kJ/kg
23  Q=W+ms*(u2-u1);//kJ
24  disp("Heat added is "+string(Q)+" kJ");
```

Scilab code Exa 7.9 Determine pressure and temperature

```
1 //Part A Chapter 7 Example 9
2 clc;
3 clear;
4 close;
5 p=800; //kPa
6 T=200//degree C
7 Tsat=170.43; // degree C(at 800kPa)
8 v1=0.2404; //\text{m}^3/\text{kg} (at 800kPa)
9 v2=0.2404; //m^3/kg (at 800kPa)
10 vg=v2; //m^3/kg//(at 800kPa)
11 T1=175; T2=170; // \text{degree } C(vg=0.2404; //m^3/kg)
12 vg1=0.2168; //\text{m}^3/\text{kg}
13 vg2=0.2428; //m^3/kg
14 T2\_begin=T1-(T1-T2)*(v1-vg1)/(vg2-vg1); // degree C
15 p1=892; p2=791.7; //\text{kPa} (vg=0.2404; //\text{m}^3/\text{kg})
16 p2\_begin=p1-(p1-p2)*(v1-vg1)/(vg2-vg1); // degree C
17 disp("Pressure and temperature at condensation is "+
      string(p2_begin)+" kPa & "+string(T2_begin)+"
      degree C");
```

Scilab code Exa 7.10 Change in enthalpy

```
1 //Part A Chapter 7 Example 10
2 clc;
3 clear;
4 close;
5 p2=200; //kPa
6 T=30 // degree C
7 ds=0; // for isentropic process
8 // for saturated liquid at 30 degree C
9 p1=4.25; //kPa
10 vf=0.001004; //m^3/kg
11 v1=vf; //m^3/kg
12 h21=v1*(p2-p1); //kJ/kg(h21=h2-h1)
13 disp("Enthalpy change is "+string(h21)+" kJ/kg");
```

Scilab code Exa 7.11 Quality of water vapour mixture

```
1 //Part A Chapter 7 Example 11
2 clc:
3 clear;
4 close;
5 V=2; //m^3 (Volume of vessel)
6 T=150//degree C
7 vf=0.001091; //\text{m}^3/\text{kg}//\text{at} 150 degree C
8 vg=0.3928; //m^3/kg//at 150 degree C
9 v_water=V*3/5//m^3
10 v_steam = V * 2/5 / m^3
11 mf = v_water/vf; //kg
12 mg=v_steam/vg;//kg
13 m=mf+mg; //kg//Total mass
14 x=mg/m; //dryness fraction
15 disp("Total mass is "+string(m)+" kg & Quality is "+
      string(x));
16 // Answer is wrong in the book.
```

Scilab code Exa 7.12 Determine work output

```
1 //Part A Chapter 7 Example 12
2 clc;
3 clear;
4 close;
5 p=4; //MPa
6 T1=300//degree C
7 T2=50//degree C
8 h1=2886.2; //kJ/kg (at 4 MPa & 300 degree C)
9 s1=6.2285; //kJ/kg.K(at 4 MPa & 300 degree C)
10 hf = 209.33; //kJ/kg (at 50 degree C)
11 sf=0.7038; //kJ/kg.K(at 50 degree C)
12 hfg=2382.7; //kJ/kg (at 50 degree C)
13 sfg=7.3725; //kJ/kg.K(at 50 degree C)
14 x2=(s1-sf)/sfg;//dryness fraction
15 h2=hf+x2*hfg;//kJ/kg
16 W=h1-h2; //kJ/kg
17 disp("Steam turbine work is "+string(W)+" kJ/kg");
```

Scilab code Exa 7.13 Mass of dry saturated steam

```
1  //Part A Chapter 7 Example 13
2  clc;
3  clear;
4  close;
5  mg=100; //kg
6  pg=100; //kPa
7  x1=0.5; //dryness at 1000kPa
8  //At 100 kPa
9  hf=417.46; //kJ/kg
```

```
10 uf = 417.46; //kJ/kg
11 vf = 0.001043; //\text{m}^3/\text{kg}
12 hfg=2258; //kJ/kg
13 ufg=2088.7; //kJ/kg
14 vfg=1.6940; //\text{m}^3/\text{kg}
15
16 v1=vf+x1*vfg; //m^3/kg
17 h1=hf+x1*hfg;//kJ/kg
18 V = mg * x1 * v1; //m^3
19 U1=mg*(hf+x1*ufg); //kJ
20
21 //At 2000 kPa
22 vg=0.09963; //\text{m}^3/\text{kg}
23 ug=2600.3; //\text{m}^3/\text{kg}
24 hg=2799.5; //kJ/kg
25 v2=1/(1/vg+1/v1); //m^3/kg
26
27 //At 1000 kPa
28 hf = 762.81; //kJ/kg
29 hfg=2015.3; //kJ/kg
30 vf = 0.001127; //\text{m}^3/\text{kg}
31 vg=0.19444; //\text{m}^3/\text{kg}
32
33 x2=(v2-vf)/(vg-vf); //dryness at 1000 ka
34 h2=hf+x2*hfg; //kJ/kg
35 m = (mg*h1-mg*h2)/(h2-hg);//kg
36 disp("Mass of dry steam at 2000 kPa to be added is"
      +string(m)+" kg");
37 disp("Quality of final mixture is "+string(x2));
```

Scilab code Exa 7.14 State of steam

```
1 //Part A Chapter 7 Example 14
2 clc;
3 clear;
```

```
4 close;
5 rcv=71.5; //cm of Hg(Recorded condenser vaccum)
6 br=76.8; //cm of Hg(Barometer reading)
7 Tc=35; //degree C(Temperature of condensation)
8 Tw=27.6; //degree C(Temperature of hot well)
9 mc=1930; //kg (Mass of condensate/hour)
10 mw=62000; //kg (Mass of cooling water/hour)
11 T1=8.51; //degree C(Inlet temperature)
12 T2=26.24; //degree C(Outlet temperature)
13 pc=(br-rcv)/73.55*101.325; //kPa(condenser pressure)
14 p_partial=5.628; //kPa(at 35 degree C)
15 hf = 146.68; //kJ/kg
16 hfg=2418.6; //kJ/kg
17 x = (mw*(T2-T1)*4.18/mc+4.18*Tw-hf)/hfg; //dryness
     fraction
  disp("State of steam(Dryness fraction) entering
18
     condenser is "+string(x));
```

Scilab code Exa 7.15 Dryness fraction and workdone

```
1 //Part A Chapter 7 Example 15
2 clc;
3 clear;
4 close;
5 d=20/100; //m
6 h=2; //cm
7 T=150; // degree C
8 F=10; //kN
9 Q=600; //kJ
10 Patm=101.3; //kPa
11 P=F/(%pi/4*d^2)+Patm; //kPa
12 V1=%pi/4*d^2*h/100; //m^3
13 m=V1*1000; //kg
14 hf=612.1; //kJ/kg(at Pressure P)
15 hfg=2128.7; //kJ/kg(at Pressure P)
```

Scilab code Exa 7.16 Dryness fraction

```
1 //Part A Chapter 7 Example 16
2 clc;
3 clear;
4 close;
5 \text{ mg} = 40; //\text{kg}
6 mf = 2.2; //kg
7 p1=1.47; //MPa
8 T=120; // degree C
9 p2=107.88; //kPa
10 cv = 2.09; //kJ/kg.K
11 Td=T-101.8; // degree C(DegreeSuperHeat)
12 hf = 2673.95; //kJ/kg
13 h=hf+Td*cv;//kJ/kg
14 hf2=918.926; //kJ/kg
15 hfg2=1864.28; //kJ/kg
16 x2=(h-hf2)/hfg2;//dryness fraction
17 x1=(mg-mf)/mg;//dryness fraction
18 x=x1*x2; //overall dryness fraction
19 disp("Dryness fraction is "+string(x));
```

Chapter 10

Compound stresses and strains

Scilab code Exa 2.1 Maximum shear stress

```
1 //Part B Chapter 2 Example 1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 d=50; //mm(dimeter of bar)
7 F=120; //kN(Tensile force)
8 sigma_t=15; /MN/m^2 (Tensile)
9 A = \%pi*d^2/4; //mm^2
10 sigma_x=F/A*1000; //MN/m^2 (tensile)
11 sigma_t_max=sigma_x/2; //MN/m^2
12 disp(sigma_t_max, "Maximum shear stress in MN/m^2:
     ");
13 two_theta=asind(sigma_t/(sigma_x/2));//degree
14 theta=[two_theta/2 (180-two_theta)/2]; // degree
15 disp(theta, "Directions of plane in degree are: ");
16 sigma_n=sigma_x*cosd(theta)^2; //MN/m^2(Tensile)
17 disp(sigma_n, "Shear stress(tensile) in MN/m^2 for
     above angles are : ");
```

Scilab code Exa 2.2 Find the stresses

```
1 //Part B Chapter 2 Example 2
2 clc;
3 clear;
4 close;
5 format('v',6);
6 theta=25; //degree (angle with plane AB)
7 sigma_x=60; //N/mm^2
8 sigma_y=-90; //MN/m^2 or N/mm^2
9 sigma_n=(sigma_x+sigma_y)/2+(sigma_x-sigma_y)/2*cosd
      (2*theta); //N/mm^2
10 sigma_t=(sigma_x-sigma_y)/2*sind(2*theta); //N/mm^2
11 sigma=sqrt(sigma_n^2+sigma_t^2);//N/mm^2(Resultant
      stress)
12 fi=atand(sigma_n/sigma_t);//degree
13 disp(sigma_n, "Normal stress in N/mm^2 : ");
14 disp(sigma_t, "Tangential stress in N/mm^2: ");
15 disp(fi, "Angle fi in degree : ");
16 disp(theta+fi, "Angle of resultant stress with plane
     AB will be theta+fi=");
```

Scilab code Exa 2.3 Principle stresses and max shear stress

```
1 // Part B Chapter 2 Example 3
2 clc;
3 clear;
4 close;
5 format('v',6);
6 sigma_x=150; //N/m^2
7 sigma_y=100; //N/m^2
8 tau=80; //N/m^2
```

```
10 two_theta=atand(2*tau/(sigma_x-sigma_y)); // degree
11 theta=[two_theta/2 (two_theta+180)/2]; // degree
12 disp(theta," Direction of principle stresses in degree are: ");
12 sigma1=(sigma_x+sigma_y)/2+sqrt((sigma_x-sigma_y)^2/4+tau^2); // N/mm^2
13 sigma2=(sigma_x+sigma_y)/2-sqrt((sigma_x-sigma_y)^2/4+tau^2); // N/mm^2
14 disp(sigma2, sigma1, "Two principle stresses(tensile) in N/mm^2 are: ");
15 tau_max=sqrt((sigma_x-sigma_y)^2/4+tau^2); // N/mm^2
16 disp(tau_max, "Magnitude of maximum stresses(tensile) in N/mm^2: ");
17 disp("Direction of maximum stress: 45 degree to principle plane");
```

Scilab code Exa 2.4 Value of shear stress

```
//Part B Chapter 2 Example 4
clc;
clear;
close;
format('v',6);
sigma_x=120; //N/mm^2(Tensile)
sigma_y=-90; //N/mm^2(Compressive)
sigma1=150; //N/mm^2(Principle stress: major)
tau=sqrt((sigma1-(sigma_x+sigma_y)/2)^2-(sigma_x-sigma_y)^2/4); //N/mm^2(Shear stress)
disp(tau,"Value of shear stress in N/mm^2:");
```

Scilab code Exa 2.5 Value of shear stress

```
1 //Part B Chapter 2 Example 5
```

```
2 clc;
3 clear;
4 close;
5 format('v',6);
6 sigma1=100; //N/m^2
7 sigma2=-50; //N/m^2
8 tau=0; //N/mm^2
9 theta=60; // degree
10 sigma_n=(sigma1+sigma2)/2+(sigma1-sigma2)/2*cosd(2*
      theta); //N/mm^2
11 sigma_t=(sigma1-sigma2)/2*sind(2*theta); /N/mm^2
12 sigma=sqrt(sigma_n^2+sigma_t^2);//N/mm^2
13 disp(sigma_n, "Value of sigma_n (compressive) in N/mm
      ^2 : ");
14 disp(sigma_t," Value of sigma_t in N/mm^2 : ");
15 disp(sigma, "Value of resultant stress in N/mm^2 : ")
16 alfa=1/2*asind(-(sigma1+sigma2)/2/sqrt((sigma1-
      sigma2)^2/4))-45;//degree
17 disp("Plane of whole shear is "+string(alfa)+"
      degree with plane AD");
18 sigma_t_alfa=(sigma1-sigma2)/2*sind(2*alfa)-tau*cosd
      (2*alfa); //N/mm^2
19 disp(sigma_t_alfa," Value of shear stresses at this
      plane in N/mm<sup>2</sup>: ");
```

Scilab code Exa 2.7 Minimum principle stress

```
1 //Part B Chapter 2 Example 7
2 clc;
3 clear;
4 close;
5 format('v',6);
6 sigma1=600;//N/m^2(major)
7 sigma_x=450;//N/m^2
```

```
8 sigma_y=0; //N/m^2
9 tau=sqrt((sigma1-(sigma_x+sigma_y)/2)^2-(sigma_x-sigma_y)^2/4); //N/mm^2
10 disp(tau, "Maximum value of tau in N/mm^2: ");
11 sigma2=(sigma_x+sigma_y)/2-sqrt((sigma_x-sigma_y)^2/4+tau^2); //N/mm^2
12 disp(sigma2, "Minimum principle stress(compressive) in N/mm^2: ");
```

Scilab code Exa 2.8 Principles stress and shear stress

```
1 //Part B Chapter 2 Example 8
2 clc;
3 clear;
4 close;
5 format('v',6);
6 sigma_x = -150; //N/m^2
7 sigma_y=-100; //N/m^2
8 tau=-60; //N/mm^2
9 sigma1=(sigma_x+sigma_y)/2+sqrt((sigma_x-sigma_y)
      ^2/4 + tau^2); //N/mm^2
10 sigma2=(sigma_x+sigma_y)/2-sqrt((sigma_x-sigma_y)
      ^2/4 + tau^2); //N/mm^2
11 disp(sigma2, sigma1, "Two principle stresses (
      compressive) in N/mm<sup>2</sup> are : ");
12 tau_max=\operatorname{sqrt}((\operatorname{sigma_x-sigma_y})^2/4+\operatorname{tau}^2); //\operatorname{N/mm}^2
13 disp(tau_max, "Maximum shear stress in N/mm^2 : ");
14 two_theta=atand(2*tau/(sigma_x-sigma_y));//degree
15 theta=[two_theta/2 (two_theta+180)/2]; // degree
16 disp(theta," Direction of principle stresses in
      degree is : ");
17 disp("Direction of maximum stress: 45 degree to
      principle plane. ");
```

Scilab code Exa 2.9 Find resultant stress

```
1 //Part B Chapter 2 Example 9
2 clc;
3 clear;
4 close;
5 format('v',6);
6 sigma1=200; //N/m^2
7 sigma2=-80; //N/m^2
8 theta_dash=60; //degree
9 theta=90-theta_dash; //degree
10 sigma_n=(sigma1+sigma2)/2+(sigma1-sigma2)/2*cosd(2*
     theta); //N/mm^2
11 sigma_t=(sigma1-sigma2)/2*sind(2*theta); //N/mm^2
12 sigmaR=sqrt(sigma_n^2+sigma_t^2); //N/mm^2
13 disp(sigmaR, "Resultant stress in N/mm<sup>2</sup>: ");
14 fi=atand(sigma_t/sigma_n);//degree
15 disp(fi, "Direction of resultant stress in degree : "
     );
16 tau_max=(sigma1-sigma2)/2; /N/mm^2
17 disp(tau_max, "Maximum shear stress in N/mm^2: ");
```

Scilab code Exa 2.10 Find sigma and angle of obliquity

```
1 //Part B Chapter 2 Example 10
2 clc;
3 clear;
4 close;
5 format('v',6);
6 sigma_x=60;//N/mm^2
7 sigma_y=30;//N/mm^2
8 tau=25;//N/mm^2
```

Scilab code Exa 2.11 Find sigma and angle fi

```
1 //Part B Chapter 2 Example 11
   2 clc;
   3 clear;
   4 close;
   5 format('v',6);
   6 sigma1=125; //N/mm^2 (Tenslie)
   7 sigma2=65; //N/mm^2(Tensile)
   8 tau=0; //N/mm^2
   9 theta=30; // degree
10 sigma_n = (sigma1 + sigma2)/2 + (sigma1 - sigma2)/2 * cosd(2 * sigma1 - sigma2)/2 * cosd(2 * sigma2)/2 
                         theta)+tau*sind(2*theta);//N/mm^2
11 disp(sigma_n, "Value of sigma_n in N/mm^2 : ");
12 sigma_t=(sigma1-sigma2)/2*sind(2*theta)-tau*cosd(2*
                         theta); //N/mm^2
13 disp(sigma_t, "Value of sigma_t in N/mm^2 : ");
14 sigmaR=sqrt(sigma_n^2+sigma_t^2); //N/mm^2
15 disp(sigmaR, "Value of sigma_R in N/mm^2 : ");
16 fi=atand(sigma_t/sigma_n);//degree
17 disp(fi, "Angle, fi in degree: ");
```

Scilab code Exa 2.12 Find sigma and angle fi

```
1 //Part B Chapter 2 Example 12
2 clc;
3 clear;
4 close;
5 format('v',6);
6 sigma_y=0; //N/m^2
7 theta=30; // degree
8 A=450*10^-6; //m^2
9 F = -100; //kN
10 sigma_x=F/A/1000; //MN/m^2
11 sigma_n=(sigma_x+sigma_y)/2+(sigma_x-sigma_y)/2*cosd
      (2*theta); //MN/m^2
12 disp(sigma_n, "Value of sigma_n (compressive) in MN/m
      ^2 : ");
13 sigma_t=(-sigma_x-sigma_y)/2*sind(2*theta); //MN/m^2
14 disp(sigma_t, "Value of sigma_t in MN/m^2 : ");
15 sigmaR=sqrt(sigma_n^2+sigma_t^2); //N/mm^2
16 disp(sigmaR, "Value of sigma_R(compressive) in N/mm^2
17 fi=atand(sigma_t/-sigma_n);//degree
18 disp(fi, "Angle, fi in degree: ");
19 tau_max = (-sigma_x - sigma_y)/2; //MN/m^2
20 disp(tau_max,"Maximum shear stress in MN/m^2: ");
```

Scilab code Exa 2.13 Find sigma and angle fi

```
1 //Part B Chapter 2 Example 13
2 clc;
3 clear;
```

```
4 close;
5 format('v',6);
6 sigma1=70; //MN/m^2
7 sigma2=30; //MN/m^2
8 theta=20; // degree
9 sigma_n=(sigma1+sigma2)/2+(sigma1-sigma2)/2*cosd(2* theta); //MN/m^2
10 disp(sigma_n,"Value of sigma_n(tensile) in MN/m^2: ");
11 sigma_t=(sigma1-sigma2)/2*sind(2*theta); //MN/m^2
12 disp(sigma_t,"Value of sigma_t(shear) in MN/m^2: ");
13 sigmaR=sqrt(sigma_n^2+sigma_t^2); //MN/m^2
14 disp(sigmaR,"Value of sigma_R in MN/m^2: ");
15 fi=atand(sigma_t/sigma_n); // degree
16 disp(fi,"Angle, fi in degree: ");
```

Chapter 11

Bending stresses and strains

Scilab code Exa 3.1 CG of T section

```
1 //Part B Chapter 3 Example 1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 AB=160; / mm
7 AC=200; / mm
8 BF = 25; / mm
9 CD=25; /mm
10 A = AB * BF + CD * (AC - BF); //mm^2
11 // Distance of G from AB
12 ybar = (AB*BF*CD/2+CD*(AC-BF)*((AC-BF)/2+CD))/A; /mm
13 disp(ybar, "Distance of G from AB(mm)");
14 // Distance of G from CD
15 CG = AC - ybar; //mm
16 disp(CG, "Distance of G from CD(mm): ");
```

Scilab code Exa 3.2 Centroid of angle section

```
1 //Part B Chapter 3 Example 2
2 clc;
3 clear;
4 close;
5 format('v',6);
6 BC=25; /mm
7 AB=125; / mm
8 AF = 85; / mm
9 EF=25; /mm
10 A_GBCD=BC*(AB-EF); //mm^2
11 A_GEFA = AF * EF ; //mm^2
12 // Distance of CG from AF
13 ybar = ((A_GBCD*(AB-2*EF)+A_GEFA*EF/2)/(A_GBCD+A_GEFA)
      );//mm
14 // Distance of CG from AB
15 xbar = ((A_GBCD*(BC/2)+A_GEFA*AF/2)/(A_GBCD+A_GEFA));
      //\mathrm{mm}
16 disp(ybar, "From reference axes AF, centroid is (mm):
17 disp(xbar, "From reference axes AB, centroid is (mm):
         ");
```

Scilab code Exa 3.3 Centroid of area

```
1 //Part B Chapter 3 Example 3
2 clc;
3 clear;
4 close;
5 format('v',7);
6 AB=200; //mm
7 BC=300; //mm
8 CD=260; //mm
9 a1=1/2*AB*CD; //mm^2(Area of ABE)
10 a2=%pi*(BC/2)^2/2; //mm^2(Area of semicircle)
11 a3=BC*CD; //mm^2(Area of BECD)
```

Scilab code Exa 3.4 Location of centroid

```
1 //Part B Chapter 3 Example 4
2 clc;
3 clear;
4 close;
5 format('v',6);
6 AB=160; /mm
7 BC=40; /mm
8 EF=100; /mm
9 FH=40; /mm
10 CH = 120; / mm
11 a1=EF*FH; / \text{mm}^2
12 a2=20*CH; / \text{mm}^2
13 a3=AB*BC; / \text{mm}^2
14 y1bar=20+CH+FH; / mm
15 y2bar=CH/2+BC; /mm
16 y3bar=BC/2; //mm
17 // Distance of CG from AB
18 ybar=(a1*y1bar+a2*y2bar+a3*y3bar)/(a1+a2+a3); /mm
```

Scilab code Exa 3.5 Centroid of built up section

```
1 //Part B Chapter 3 Example 5
2 clc;
3 clear;
4 close;
5 format('v',6);
6 EF = 150; / mm
7 GH=150; //mm
8 CD=150; //mm
9 AB=250; / mm
10 AE=10; //mm
11 DH=10; //mm
12 CH=120; /mm
13 CD_t=10; //mm(thickness of CD section)
14 a1=AB*AE; //\text{mm}^2
15 a2=180*AE; / \text{mm}^2
16 a4=180*AE; //mm^2
17 a3=450*10; /mm<sup>2</sup>
18 a5=CD*AE; / \text{mm}^2
19 y1bar=5; y2bar=15; y3bar=225+20; y4bar=475; y5bar=485; //
20 // Distance of CG from AB
21 ybar=(a1*y1bar+a2*y2bar+a3*y3bar+a4*y4bar+a5*y5bar)
      /(a1+a2+a3+a4+a5); /mm
22 disp(ybar, "From reference axes AB, centroid ybar is (
     mm) : ");
```

Chapter 12

Torsion

Scilab code Exa 4.1 Angle of twist and shear

```
1 //Part B Chapter 4 Example 1
2 clc;
3 clear;
4 close;
5 R=75; //mm
6 G=75; //GN/m^2
7 L=3; //m
8 tau_s=75; //MN/m^2
9 theta=tau_s*L/R/G*180/%pi; //degree
10 disp("Angle of twist is "+string(theta)+" degree.");
11 r=50; //mm
12 tau=tau_s*r/R; //MN/m^2
13 disp("Shear stress at inside surface is "+string(tau )+" MN/m^2");
```

Scilab code Exa 4.2 Power and angle of twist

```
1 //Part B Chapter 4 Example 2
```

```
2 clc;
3 clear;
4 close;
5 R = 125; //mm
6 D=250/1000; //m
7 d=160/1000; /m
8 tau_s=70; / \frac{MN}{m^2}
9 IP=\%pi/32*(D^4-d^4);//m^4
10 Tmax=tau_s*10^6*IP/(R/1000);/Nm
11 Tmin=Tmax/1.40; /Nm
12 N=60; //RPM
13 P=2*\%pi*N*Tmin/60; /W
14 disp("Power transmitted by the shaft is "+string(P
      /1000) + "kW");
15 L=5; //m
16 G=80; //GN/m^2
17 theta=tau_s*L/R/G*180/%pi; // degree
18 disp("Angle of twist is "+string(theta)+" degree.");
19 // Solution is not complete in the book.
```

Scilab code Exa 4.3 Internal diameter and bolt diameter

```
1 //Part B Chapter 4 Example 3
2 clc;
3 clear;
4 close;
5 n=12;//bolts
6 PCD=300;//mm
7 D=50;//mm
8 Ddash=90;//mm
9 tau_s=60;//MN/m^2
10 T=tau_s*10^6*%pi*(D/1000)^4/(D/2*10^-3*32);//Nm
11 R=Ddash/2;//mm
12 d=(Ddash^4-T*1000*R*32/60/%pi)^(1/4);//mm
13 disp("Internal diameter of hollow shaft is "+string()
```

```
d)+" mm");

14 Tb=T/n;//Nm per bolt

15 PCrad=150;///mm

16 Fb=Tb/(PCrad/1000);//N(Force on bolt)

17 tau_sb=20;//MN/m^2

18 Ab=Fb/tau_sb/10^6;//m^2(Area of bolt)

19 db=sqrt(Ab/(%pi/4));//m

20 disp("Bolt diameter is "+string(db*1000)+" mm");
```

Scilab code Exa 4.4 Shear stress and twist angle

```
1 //Part B Chapter 4 Example 4
2 clc;
3 clear;
4 close;
5 D=50; /mm
6 1=3; /m
7 P=60; //hp
8 N = 250; //rpm
9 G=90; //GN/m^2
10 Pl=20; //hp(assumed)
11 Tl=Pl*746/2/%pi/N; /N_{\rm m}
12 Pr=Pl*2; //hp(Pr:Pl=1:2)
13 Tr = Pr * 746/2 / \%pi / N; / / Nm
14 tau_max=Tr*(D/2)*10^-3*32/(\%pi*(D/1000)^4);//MN/m^2
15 disp("Maximum shear stress is "+string(tau_max/10^6)
      +" MN/m^2.");
16 theta_l=Tl*1.5*32/(G*10^9*\%pi*(D/1000)^4); //radian
17 theta_r=Tr*1.5*32/(G*10^9*\%pi*(D/1000)^4); //radian
18 theta=theta_r-theta_l;//radian
19 disp("Angle of twist is "+string(theta)+" radian.");
```

Scilab code Exa 4.5 Poisson Ratio and value of E G and K

```
1 //Part B Chapter 4 Example 5
2 clc;
3 clear;
4 close;
5 D=25; //mm
6 L=250; //mm
7 d=0.120; //mm(stretch)
8 \text{ F=60; } //\text{kN}
9 theta=0.030; // radian
10 T = 0.5; //kNm
11 epsilon=d/L;
12 sigma=F*1000*4/(\%pi*(D/1000)^2);//GN/m^2
13 E=sigma/epsilon/10^9; //GN/m^2
14 disp("Value of E is "+string(E)+" GN/m^2");
15 G=T*1000*32*L/1000/(theta*\%pi*(D/1000)^4)/10^9;//GN/
16 disp("Value of G is "+string(G)+" GN/m^2");
17 m=2*G/E/(1-2*G/E);
18 disp("Poisson ratio is "+string(1/m));
19 K=m*E/3/(m-1); //GN/m^2
20 disp("Bulk Modulus, K is "+string(K)+" GN/m^2");
```

Scilab code Exa 4.6 Diameter of shaft

```
1 // Part B Chapter 4 Example 6
2 clc;
3 clear;
4 close;
5 L=2.5; //m
6 P=70*1000; //W
7 N=250; //rpm
8 tau_max=55*10^6; //N/m^2
9 theta=1; // degree
10 theta=theta*%pi/180; // radian
11 G=100; //GN/m^2
```

```
12 T=P*60/2/%pi/N; //Nm
13 d1=(T*16/%pi/(tau_max))^(1/3); //m
14 d2=(T*32/%pi/(G*10^9*theta/L))^(1/4); //m(Condidering twist 1 degree)
15 d=max(d1,d2)*1000; //mm
16 disp("Suitable diameter is "+string(d)+" mm");
```

Scilab code Exa 4.7 Diameter of shaft

```
1 //Part B Chapter 4 Example 7
2 clc;
3 clear;
4 close;
5 M=2.5*1000; //Nm
6 T=3.5*1000; //Nm
7 Te=sqrt(M^2+T^2)/Nm
8 Me=(M+sqrt(M^2+T^2))/2//Nm
9 tau_max=400*10^6; //N/m^2
10 d1=(Te*16/%pi/tau_max)^(1/3)*1000; //mm
11 sigma=750*10^6; //N/m^2
12 d2=(Me*32/%pi/sigma)^(1/3)*1000; //mm
13 d=max(d1,d2); //mm
14 disp("Suitable diameter is "+string(round(d))+" mm")
;
```

Scilab code Exa 4.8 Maximum torque and total rotation

```
1  // Part B Chapter 4 Example 8
2  clc;
3  clear;
4  close;
5  db=100; //m
6  ds=75; //mm
```

```
7 Lb=1.2*1000; / mm
8 Ls=1.2*1000; / mm
9 Gb=40; //kN/mm^2
10 Gs = 80; //kN/mm^2
11 tau_s_AB=100; //N/m^2
12 T_AB=tau_s_AB*\%pi*db^4/32/(db/2);/Nmm
13 tau_s_BC=120; //N/m^2
14 T_BC=tau_s_BC*\%pi*ds^4/32/(ds/2);/Nmm
15 T=min(T_AB, T_BC); //Nmm(For safety minimum value
     choosen)
16 disp("Maximum torque can be applied is "+string(T)+"
      Nmm");
  theta=T*(Lb/(Gb*1000)/(\%pi/32*db^4)+Ls/(Gs*1000)/(
17
     %pi/32*ds^4));//radian
18 disp("Rotation of free end is "+string(theta)+"
     radian");
19 //ANSWER IN THE BOOK IS WRONG.
```

Scilab code Exa 4.9 Strength and weight ratio

```
1 //Part B Chapter 4 Example 9
2 clc;
3 clear;
4 close;
5 d=120; //mm
6 D1=120; //mm
7 D2=60; //mm
8 ThBYTs=(D1^4-D2^4)/d^4;
9 WhBYWs=%pi/4*((D1^2-D2^2)/(%pi/4)/d^2);
10 disp("Strength ratio, Th/Ts is "+string(ThBYTs));
11 disp("Weight ratio, Wh/Ws is "+string(WhBYWs));
```

Scilab code Exa 4.10 Shear stress and angle of twist

```
1 //Part B Chapter 4 Example 10
2 clc;
3 clear;
4 close;
5 d=50; /mm
6 D1=110; /mm
7 D2=70; /mm
8 L=1*1000; //mm
9 T=1.5*10^6; //kNmm
10 G=10^5; //MPa
11 tauH_BY_tauS=D1/2/(d/2);
12 // tauS = T/(tauH_BY_tauS * \%pi * (D1^4 - D2^4)/32/D1 + \%pi * d
      ^4/d/32);//N/mm^2
13 tauS=T/(tauH_BY_tauS*%pi*(D1^4-D2^4)/(D1*32)+%pi*d
      ^{4}/(32*d)
14 tauH=tauH_BY_tauS*tauS; //N/mm^2
15 disp("Shear Stress in Solid shaft is "+string(tauS)+
     " N/mm^2");
16 disp("Shear Stress in hollow shaft is "+string(tauH)
     +" N/mm<sup>2</sup>");
17 thetaH=tauS/G/(d/2); // radian
18 thetaS=thetaH; // radian
19 disp("Angle of twist oh both shaft is equal and it
      is "+string(thetaS)+" radian.");
20 //ANSWER IN THE BOOK IS WRONG.
```

Scilab code Exa 4.11 Find shear stress

```
1  //Part B Chapter 4 Example 11
2  clc;
3  clear;
4  close;
5  b=25; //mm
6  L=120; //mm
7  d=60; //mm
```

```
8 P=100*1000; //W
9 N=120; //rpm
10 T=P*60/2/%pi/N; //Nm
11 tauS=(T*16/%pi/d^3)*1000; //N/mm^2
12 tauK=(T*2/b/d/L)*1000; //N/mm^2
13 disp("Shear Stress for shaft is "+string(tauS)+" N/mm^2");
14 disp("Shear Stress for key is "+string(tauK)+" N/mm^2");
```

Scilab code Exa 4.12 Diameter of bolt

```
1 //Part B Chapter 4 Example 12
2 clc;
3 clear;
4 close;
5 n=8;//no. of bolts
6 d=160;//mm
7 F=450;//kN
8 T=20;//kNm
9 tau_t=120;//N/mm^2(For tensile load)
10 tau_s=60;//N/mm^2(For shear load)
11 db1=sqrt(F*1000/n/(%pi/4)/tau_t);//mm
12 db2=sqrt(T*10^6/(n*tau_s*%pi/4*(d/2)));//mm
13 db=max(db1,db2);//mm
14 disp("Suitable bolt diameter is "+string(db)+" mm");
```

Scilab code Exa 4.13 Max Power

```
1 // Part B Chapter 4 Example 13
2 clc;
3 clear;
4 close;
```

```
5 b=30; /mm(thickness)
6 1=8; /m
7 d=260; //mm
8 D=d+2*b; //mm
9 N=300; //\text{rpm}
10 tau_s=16; //N/mm^2
11 Gs=8.5*10^4; //N/mm^2
12 Gb=4.5*10^4; //N/mm^2
13 Ips = \%pi/32*d^4; //mm^4
14 Ipb = \%pi/32*(D^4-d^4); /mm^4
15 TsByTb=Ips/Ipb*Gs/Gb;
16 Ts = \%pi/16*d^3*tau_s; //Nmm
17 Tb=Ts/TsByTb;//Nmm
18 T=Ts+Tb; /Nmm
19 P=2*\%pi*N*T/60/1000; /W
20 disp("Maximum power is "+string(P/1000)+" kW");
```

Scilab code Exa 4.14 Safe diameter of shaft

```
1 //Part B Chapter 4 Example 14
2 clc;
3 clear;
4 close;
5 tau_s=60; //N/mm^2
6 //Forces on pulley A, B & C
7 A1=3000; //N
8 A2=1000; //N
9 B1=1200; //N
10 B2=2200; //N
11 C1=1000; //N
12 C2=2250; //N
13 dA = 250; //mm
14 dB=250; / mm
15 dC=200; / mm
16 TA = (A1 - A2) * dA/2; / Nmm
```

```
17  TB=(B2-B1)*dB/2; //Nmm
18  TC=(C2-C1)*dC/2; //Nmm
19  T=max(TA,TB,TC); //Nmm(Max. Torque)
20  d=(T/tau_s/(%pi/16))^(1/3); //mm
21  disp("Safe diameter of shaft is "+string(d)+" mm");
```

Scilab code Exa 4.15 Max bending and shear stress

```
1 //Part B Chapter 4 Example 15
2 clc;
3 clear;
4 close;
5 1=3;/m
6 d1=85; / mm
7 	ext{ d2=65; //mm}
8 A = 1 * 0.5; //m^2
9 Pw = 2200; //N/mm^2
10 LG=Pw*A//N(Total Wind load at G)
11 M=LG*(3+0.25) / Nm(Max BM on pipe)
12 T=LG*(0.5+0.5); /Nm
13 I = \%pi/64*(d1^4-d2^4); //mm^4
14 Z=I/42.5; /mm^3
15 Zp = 2*Z; //mm^3
16 sigma_b=M*1000/Z; //N/mm^2
17 tau_s=T*1000/Zp; //N/mm^2
18 disp("Maximum bending stress is "+string(sigma_b)+"
      N/mm^2");
19 disp("Maximum shear stress is "+string(tau_s)+" N/mm
      ^2");
```

Scilab code Exa 4.16 Estimate angular twist

```
1 //Part B Chapter 4 Example 16
```

```
2 clc;
3 clear;
4 close;
5 d1=80; //mm
6 b=1.75; //mm
7 l=1.6; //m
8 T=80; //Nm
9 G=82; //GN/m^2
10 d2=d1-2*b; //mm
11 Ip=%pi/32*(d1^4-d2^4)*10^-12; //m^4
12 theta=T*1/Ip/(G*10^9); //radian
13 disp("Angular twist is "+string(theta)+" radian.");
```

Scilab code Exa 4.17 Fnd torque required

```
1 // Part B Chapter 4 Example 17
2 clc;
3 clear;
4 close;
5 l=25; //m
6 d=0.5; //mm
7 n=10; //no. of rounds
8 G=82; //GN/m^2
9 Ip=%pi/32*d^4*10^-12; //m^4
10 theta=2*%pi*n; // radian
11 T=G*10^9*Ip*theta/1; //Nm
12 disp("Torque required is "+string(T)+" Nm.");
```

Scilab code Exa 4.18 Find maximum torque

```
1 //Part B Chapter 4 Example 18
2 clc;
3 clear;
```

```
4 close;
5 d=3.5/1000; //m
6 tau_s=240*10^6; //N/m^2
7 Ip=%pi/32*d^4; //m^4
8 T=tau_s*Ip/(d/2); //Nm
9 disp("Maximum torque transmitted is "+string(T)+" Nm .");
```

Scilab code Exa 4.19 Diameter of hollow shaft

```
1 //Part B Chapter 4 Example 19
2 clc;
3 clear;
4 close;
5 d=16; //cm
6 As=\%pi/4*d^2;/cm
7 D1=poly(0, 'D1');
8 D2 = poly(0, 'D2');
9 deltaD=As/(\%pi/4);//(let deltaD=D1^2-D2^2)
10 //USS = 1.2*USH
11 //USS = (D1^2 + D2^2) /D1^2 *USH
12 D2BYD1 = sqrt(0.2);
13 D1=sqrt(deltaD/(1-D2BYD1^2));/cm
14 D2=D2BYD1*D1; /cm
15 disp("Outer diameter of hollow shaft is "+string(D1)
     +" cm.");
16 disp("Inner diameter of hollow shaft is "+string(D2)
     +" cm.");
```

Scilab code Exa 4.20 Max shear stress

```
1 //Part B Chapter 4 Example 20
2 clc;
```

```
3 clear;
4 close;
5 tau=82; //N/mm^2
6 M=3.5/1000; //Nm
7 T=4.5/1000; //Nm
8 DoBYDi=2;
9 Do=(16*sqrt(M^2+T^2)/%pi/tau*16/15)^(1/3); //mm
10 Di=Do/DoBYDi; //mm
11 disp("Outer diameter is "+string(Do*1000)+" m.");
12 disp("Inner diameter is "+string(Di*1000)+" m.");
```