S.NO	TITLE	JOURNAL	AUTHOR	CHALLENGES/FUTURE SCOPE
1	Comparison of learning algorithms for Handwritten digit recognition.	International Conference on Artificial neural networks -1995	Y. LeCun, L. Jackel, L. Bottou, A. Brunot.	This paper compares the performance of several classier algorithms on a standard database of handwritten digits. We consider not only raw accuracy, but also rejection, training time, recognition time, and memory requirements.
2	Learning algorithms for classification: A Comparison on Handwritten digit recognition.	Neural networks: The statistical mechanics perspective - 1995	Corinna Cortes, John S. Denker, Harris Drucker, Isabelle Guyon.	This paper compares the performance of several classier algorithms on a standard database of handwritten digits. We consider not only raw accuracy, but also training time, recognition time, and memory requirements. When available, we report measurements of the fraction of patterns that must be rejected so that the remaining patterns have misclassication rates less than a given threshold.
3	Handwritten digit recognition: Application of neural network chips and automatic learning.	IEEE Communication Magazine - 1989	L.D.Jackel,B.Boser, J.S.Denker.	Two novel methods for achieving handwritten digit recognition are described. The first method is based on a neural network chip that performs line thinning and feature extraction using local template matching. The second method is implemented on a digital signal processor and makes extensive use of constrained automatic learning. Experimental results obtained using isolated handwritten digits taken from postal zip codes, a rather difficult

				data set, are reported and
	Immessed	Cong. 2020	Cavita	
4	Improved Handwritten digit recognition using convolutional neural networks.	Sensors -2020	Savita Ahlawat,Amit Choudhary.	data set, are reported and discussed. Traditional systems of handwriting recognition have relied on handcrafted features and a large amount of prior knowledge. Training an Optical character recognition (OCR) system based on these prerequisites is a challenging task. Research in the handwriting recognition field is focused around deep learning techniques and has achieved breakthrough performance in the last few years. Still, the rapid growth in the amount of handwritten data and the availability of massive processing power demands improvement in recognition accuracy and deserves further investigation. Convolutional neural networks (CNNs) are very effective in perceiving the structure of handwritten characters/words in ways that help in automatic extraction of distinct features and make CNN the most suitable approach for solving handwriting recognition problems. Our aim in the proposed work
				is to explore the various design options like
				number of layers, stride size, receptive field, kernel size, padding and
				dilution for CNN-based

	T	T	I	7
				handwritten digit
				recognition. In addition,
				we aim to evaluate various
				SGD optimization
				algorithms in improving
				the performance of
				handwritten digit
				recognition. A network's
				recognition accuracy
				increases by incorporating
				ensemble architecture.
				Here, our objective is to
				achieve comparable
				accuracy by using a pure
				CNN architecture without
				ensemble architecture, as
				ensemble architectures
				introduce increased
				computational cost and
				high testing complexity.
				Thus, a CNN architecture
				is proposed in order to
				achieve accuracy even
				better than that of
				ensemble architectures,
				along with reduced
				operational complexity
				and cost. Moreover, we
				also present an
				appropriate combination
				of learning parameters in
				designing a CNN that
				leads us to reach a new
				absolute record in
				classifying MNIST
				handwritten digits. We
				carried out extensive
				experiments and achieved
				a recognition accuracy of
				99.87% for a MNIST
				dataset.
5	Handwritten	International	Haider A	Recently handwritten
	digit	Journal of	Alwzwazy,Hayder	digit recognition becomes
	recognition	Innovative	M Albehadili.	vital scope and it is
	using	Reasearch in		appealing many
	Conolutional	Computer and		researchers because of its
	Conordionar	Computer and		researchers occause of its

	Neural	Communication		using in variety of
	Networks.	Engineering.		machine learning and
				computer vision
				applications. However, there are deficient works
				accomplished on Arabic
				pattern digits because
				Arabic digits are more
				challenging than English
				patterns. Hence, the
				lacking research of using
				Arabic digits endeavours
				us to dig deeper by
				creating our challenge
				Arabic Handwritten Digits
				which consists of more
				than 45,000 samples. As a challenging dataset is used
				for evaluation, a robust
				deep convolutional neural
				network is used for
				classification and superior
				results are achieved.
6	Handwritten	Global Journal	SM	Handwritten character
	digit	of Computer	Shamim, Mohammad	recognition is one of the
	recognition using machine	Science and Technology.	Badrul Alam Miah.	practically important issues in pattern
	learning	reciniology.		recognition applications.
	algorithms.			The applications of digit
	wigorium.			recognition includes in
				postal mail sorting,
				bank check processing,
				form data entry, etc.
				The heart of the
				problem lies within the
				ability to develop an
				efficient algorithm that
				can recognize hand written digits and which
				is submitted by
				users by the way of a
				scanner, tablet, and other
				digital devices. This paper
				presents an approach
				to off-line handwritten
				digit recognition based on

				different machine learning technique. The main objective of this paper is to ensure effective and reliable approaches for recognition of handwritten digits. Several machines learning algorithm namely, Multilayer Perceptron, Support Vector Machine, Naïve Bayes, Bayes Net, Random Forest, J48 and Random Tree has been used for the recognition of digits using WEKA.
7	Automatic feature generation for Handwritten digit recognition.	IEEE Transaction on Pattern Analysis and Machine Intelligence - 1996.	Paul D Gader, Mohammed A,Khabou.	An automatic feature generation method for handwritten digit recognition is described. Two different evaluation measures, orthogonality and information, are used to guide the search for features. The features are used in a backpropagation trained neural network. Classification rates compare favorably with results published in a survey of high-performance handwritten digit recognition systems. This classifier is combined with several other high performance classifiers. Recognition rates of around 98% are obtained using two classifiers on a test set with 1000 digits per class.
8	Handwritten digits recognition	International Journal of Electrical and	Tsehay Admassu Assegie,Pramod Sekharan Nair.	Handwritten digits recognition is an area of machine learning, in

	with decision	Computer		which a machine is trained
		Computer		
	tree	Engineering -		to identify handwritten
	classification : a	2019.		digits. One method of
	machine			achieving this is with
	learning			decision tree classification
	approach.			model. A decision tree
				classification is a machine
				learning approach that
				uses the predefined labels
				from the past known sets
				to determine or predict the
				classes of the future data
				sets where the class labels
				are unknown. In this paper
				we have used the standard
				kaggle digits dataset for
				recognition of handwritten
				digits using a decision tree
				classification approach.
				And we have evaluated
				the accuracy of the model
				against each digit from 0
				to 9.
9	Digits – a	Austrian	Alexander K	In this paper we describe
	dataset for	Reasearch	Seewald.	the preprocessing steps for
	Handwritten	Institute for		a contributed digit dataset,
	digit	Artificial		going all the way from a
	recognition.	Intelligence		physical page of paper –
		Technical		filled out by students –
		Report -2005		past digital scanning to
				computerized
				segmentation, resizing,
				and blurring. Surprisingly,
				very little expertise can be
				transferred from other
				datasets to our new dataset
				for a state-of-the-art SVM
				classifier, although the
				performance for each
				separate dataset is
				acceptable. This may
				indicate that at least SVM,
				,
				and possibly also other
				learners, are sensitive to
				small changes in
1	I			preprocessing,

				emphasizing the need not only to create benchmark datasets for handwritten digit recognition, but also to document their preprocessing as detailed as possible and aim to replicate that as well. Our work is a small step in that direction.
10	Cloud bades efficient scheme for Handwritten digit recognition.	Multimedia Tools and Applications - 2020.	Zeeshan Shaukat,Saqib Ali,Allah Ditta.	Handwritten character recognition has been acknowledged and achieved more prominent attention in pattern recognition research community due to enormous applications & vagueness in application methods, while cloud computing delivers appropriate, on-demand access of network to a joint tarn of configurable computing resource & digital devices. Principally two steps, feature extraction & character recognition, are required for Handwritten Digit Recognition (HDR), which are primarily based on some classification algorithms. Previous studies show the nonexistence of higher precision and truncated computational swiftness for HDR procedure. "The projected research aimed to make the trail towards digitalization clearer by providing high accuracy and faster cloud-based computational for handwritten digits

recognition. The current study utilized a cloud-based neural network (CNN) as a classifier, suitable parameters of dataset MNIST for testing and training purposes as a framework called DL4J for cloud-based handwritten digit recognition. The said system magnificently managed to obtained precision up to 99.41%, which is higher than	_
previously projected systems. Additionally, the proposed method	•
decreases cost and computational time	
significantly as using cloud-based architecture	
for testing and training; as a result, the algorithm	S
becomes more efficient.	