Fakultät für Physik und Astronomie Ruprecht-Karls-Universität Heidelberg

Bachelorarbeit in Physik eingereicht von

Patrick Fahner

geboren in Mannheim (Deutschland)

August 2013

Messung von $\sin(2\beta)$ im Zerfall $B_d^0 \to J/\Psi K_s^0$ am LHCb-Experiment

Diese Bachelorarbeit wurde von Patrick Fahner am Physikalischen Institut der Universität Heidelberg unter der Aufsicht von Prof. Dr. Stephanie Hansmann-Menzemer durchgeführt.

Zusammenfassung

In dieser Arbeit wurde der CKM-Winkel $\sin(2\beta)$ bestimmt. Hierzu wurde der Zerfallskanal $B_d^0 \to J/\Psi K_s^0$ ausgewertet in Daten, die 2012 am LHCb-Detektor bei einer Schwerpunktsenergie von $\sqrt{s}=8{\rm TeV}$ aufgenommen wurden und einer integrierten Luminosität von ungefähr 2fb⁻¹ entsprechen. Als Basis diente eine LHCb-Analyse der im Jahre 2011 aufgenommenen Daten [1]. Das Ergebnis

$$\sin(2\beta) = 0.711 \pm 0.059(\text{stat.}) \pm 0.033(\text{syst.})$$

ist sowohl mit dem Resultat der 2011-Analyse $\sin(2\beta)=0.72\pm0.07(\mathrm{stat.})\pm0.04(\mathrm{syst.})$ [1] als auch mit dem aktuellen Welt-Mittelwert von $\sin(2\beta)=0.682\pm0.019$ [2] kompatibel. Ein wichtiger Punkt dieser Arbeit war die Abschätzung systematischer Effekte. Dabei wurde deutlich, dass die systematische Unsicherheit im Wesentlichen von der Kalibration der Algorithmen zur Bestimmung des Produktionsflavours bestimmt ist.

Abstract

This thesis provides a measurement of the CKM-angle $\sin(2\beta)$. It evaluates the decay channel $B_d^0 \to J/\Psi K_s^0$ of data taken by the LHCb experiment at a center of mass energy of $\sqrt{s} = 8$ TeV with an integrated luminosity of about 2fb⁻¹. The same analysis strategy as an LHCb analysis of the data taken in 2011 [1] and results

$$\sin(2\beta) = 0.711 \pm 0.059(\text{stat.}) \pm 0.033(\text{syst.})$$

which is in good agreement with the 2011 LHCb result $\sin(2\beta) = 0.72 \pm 0.07(\text{stat.}) \pm 0.04(\text{syst.})$ [1] as well as the world average $\sin(2\beta) = 0.682 \pm 0.019$ [2]. Furthermore this thesis focus on the study of systematic effects. The main contribution to the systematic uncertainty is the calibration of the flavour tagging algorithms, which determine the B production flavour.

Inhaltsverzeichnis

1 Einleitung			7	
2	Das 2.1 2.2	LHCb-Experiment Aufgaben und Ziele des Experimentes	9 10 10 13 14	
3	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8		16 16 17 18 20 22 22 24	
4	Date 4.1	Selektionskriterien 4.1.1 Trigger 4.1.2 Stripping 4.1.3 Verwendete Spurklassen 4.1.4 Zusätzliche Selektionskriterien Verfügbare Statistik	26 26 27 28 28 31	
5	Ana 5.1 5.2 5.3 5.4	Maximum Likelihood Funktion	32 33 33 34 36	

In halts verzeichn is

Li	iteraturverzeichnis 50			
7	Zus	ammenfassung	57	
	6.6	Gesamtsystematik	56	
	6.5	Eigenzeitauflösung	55	
	6.4	Korrelation zwischen Masse und Eigenzeit	55	
	6.3	Einfluss einer zeitabhängigen Akzeptanz	52	
	6.2	Kalibration der Flavour Tagging Algorithmen	48	
	6.1	Fitmethode	46	
6	Abs	schätzung systematischer Unsicherheiten	46	
	5.5	Ergebnisse	42	
		5.4.4 Fitfunktion	42	
		5.4.3 Eigenzeitauflösung und -akzeptanz	39	

Kapitel 1

Einleitung

Das Standardmodell der Teilchenphysik beschreibt erfolgreich und mit hoher Präzision die bislang beobachteten Elementarteilchen sowie drei der vier elementaren Wechselwirkungen: die starke, elektromagnetische sowie die schwache Wechselwirkung. Nur die Gravitation kann nicht beschrieben werden. Trotz dieses Erfolgs gibt es offene Fragen, die das Standardmodell nicht beantworten kann: Was ist dunkle Materie? Wie kam es zur Asymmetrie von Teilchen und Antiteilchen (Baryogenese)? Solchen Fragen hat sich das "Large Hadron Collider beauty (LHCb-)Experiment" verschrieben. Die Antwort auf diese Fragen könnte in der Existenz neuer, bislang unentdeckter Teilchen liegen. LHCb ist auf der Suche nach etwaigen Hinweisen hierfür. Um diese zu finden, ist es notwendig, das Standardmodell präzise zu vermessen. [3, 4]

Die vorliegende Arbeit soll hierzu einen Beitrag leisten. Dazu wird der CKM¹-Winkel β in der Form $\sin(2\beta)$ mit Hilfe der \mathcal{CP} -Asymmetrie des Zerfalls $B_d^0 \to J/\Psi K_s^0$ gemessen. Die Zerfälle wurden im Jahre 2012 bei Proton-Proton-Kollisionen am Large Hadron Collider (LHC) des CERN² in Genf bei einer Schwerpunktsenergie von $\sqrt{s}=8$ TeV aufgenommen. Der Zerfallskanal $B_d^0 \to J/\Psi K_s^0$ wird gewählt, weil der Endzustand $|J/\Psi K_s^0\rangle$ ein \mathcal{CP} -Eigenzustand ist und damit sowohl B_d^0 - als auch $\overline{B_d^0}$ -Mesonen in diesen Zustand zerfallen können. Des Weiteren können B_d^0 und $\overline{B_d^0}$ "mischen" d.h. sie können ineinander übergehen. Die \mathcal{CP} -Asymmetrie kommt nun dadurch zustande, dass es zu \mathcal{CP} -verletzenden Interferenzen von direktem Zerfall eines B_d^0 -/ $\overline{B_d^0}$ -Mesons und seinen Zerfall nach Mischung kommt.

Kapitel 2 bietet zunächst einen Überblick über das LHCb-Experiment und den Detektor selbst. Darauf folgt (Kapitel 3) eine Beschreibung der verschiedenen Arten der \mathcal{CP} -Verletzung und wie sie sich im Zerfall $B_d^0 \to J/\Psi K_s^0$ manifestiert, am Ende des Kapitels wird dann der Zusammenhang zum Standardmodell und dem CKM-Winkel β hergestellt. Zur Messung von $\sin(2\beta)$ müssen die Daten sorgfältig ausgewählt werden. Die hierzu nötigen Schritte werden in Kapitel 4 beschrieben. Hiernach wird dann in Kapitel 5 die eigentliche Analyse beschrieben. Um diese zu

¹Abkürzung für die drei Physiker Cabibbo, Kobayashi und Maskawa, nach denen die CKM-Matrix, auch als Quark-Mischungsmatrix bekannt, benannt wurde.

²Conseil Européen pour la Recherche Nucléaire

komplettieren, enthält Kapitel 6 systematische Studien, bevor dann noch einmal die wichtigsten Erkenntnisse zusammengefasst werden.

Kapitel 2

Das LHCb-Experiment

Der Large Hadron Collider (LHC) an der internationalen Forschungseinrichtung CERN in Genf ist der derzeit größte Ringbeschleuniger der Erde. Er hat einen Durchmesser von ca. 27km. Im Ring werden zwei geladene Teilchenstrahlen in gegenläufiger Richtung auf nahezu Lichtgeschwindigkeit beschleunigt und anschließend an vier möglichen Punkten zur Kollision gebracht. Bei den Teilchenstrahlen handelt es sich hauptsächlich um Protonenstrahlen, es werden aber auch Proton-Blei- und Blei-Blei-Kollisionen untersucht. An den vier Kollisionspunkten sind die großen Experimente positioniert: ATLAS, CMS, ALICE und LHCb. Eine der Hauptaufgaben der Multifunktionsexperimente ATLAS und CMS ist die Untersuchung der Eigenschaften des Higgs-Bosons, ALICE hingegen untersucht das Quark-Gluon-Plasma. Im folgenden soll nun aber detailliert auf das LHCb-Experiment eingegangen werden [5].

2.1 Aufgaben und Ziele des Experimentes

Während des Urknalls sind Materie und Antimaterie in gleicher Zahl entstanden. Treffen ein Teilchen und ein Antiteilchen aufeinander, so werden diese vernichtet und es wird Energie frei. Doch wenn zunächst gleich viel Materie und Antimaterie vorhanden war, verwundert es, warum das Universum nur aus Materie besteht bzw. überhaupt noch existiert.

Das Standardmodell der Teilchenphysik kann dieses Ungleichgewicht nur unzureichend erklären. Es beschreibt zwar die \mathcal{CP} -Verletzung der schwachen Wechselwirkung, die auch Bestandteil dieser Arbeit ist, und liefert damit einen potentiellen Kandidaten zur Erklärung, allerdings ist jene mehrere Größenordnungen zu schwach. Es muss also auch \mathcal{CP} -verletzende Beiträge jenseits des Standardmodells geben, die evtl. durch noch nicht beobachetete Teilchen verursacht werden. An dieser Stelle setzt LHCb an. Es untersucht Teilchen und Zerfälle, die von einem b- bzw. c-Quark ausgehen. Aus diesen bilden sich B- bzw. D-Mesonen, die sensitiv auf Hinweise für "neue Physik" sind. In diversen Zerfalls- und Mischprozessen dieser Mesonen ist es möglich, dass neben dem Standardmodell auch "neue Physik" Beiträge zu Zerfallsamplituden etc. liefert. Nach Heisenberg darf die Energieerhaltung kurzzeitig

verletzt werden, sodass virtuelle Teilchen mit einer Masse deutlich über der vorhandenen Schwerpunktsenergie zu den beobachteten Prozessen beitragen können. Man versucht also indirekt Hinweise auf neue Teilchen und Prozesse zu finden. Um dies erfolgreich zu gestalten, ist eine präzise Messung des Standardmodells unabdingbar [3, 4, 6].

2.2 Der LHCb-Detektor

Im Gegensatz zu den anderen drei Experimenten ist der LHCb-Detektor ein einarmiges Vorwärtsspektrometer, da $b\bar{b}$ -Paare hauptsächlich in oder entgegen der Protonenstrahlrichtung produziert werden. Aus Kostengründen hat man darauf verzichtet, den Detektor in Vorwärts- und Rückwärtsrichtung zu bauen. Stattdessen lag der Fokus darauf, nur einen Detektor, aber mit entsprechend besserer Präzision und Auflösung zu bauen. Abbildung 2.1 zeigt einen Schnitt durch die (y,z)-Ebene des Detektors. Es wurde ein rechtshändiges Koordinatensystem gewählt, bei dem die x-Achse zum Mittelpunkt des LHC-Rings zeigt. Er deckt in x-Richtung einen Bereich von 10-300mrad und in y-Richtung von 10-250mrad ab. Damit liegen etwa $35\%^1$ aller produzierten B-Mesonen in der Detektorakzeptanz [7]. Die Subdetektoren lassen sich nach ihrem Zweck in zwei Unterkategorien einteilen: Detektoren zur Spurrekonstruktion und zur Teilchenidentifikation.

2.2.1 Spurdetektoren

Hauptaufgabe der Spurdektektoren ist die Vertex- und Impulsbestimmung geladener Teilchen. Als Hilfsmittel dient ein Dipolmagnet, dessen Feld die Teilchen abgelenkt. Die Teilchen-Trajektorien werden mit den Stationen Vertex Locator (VELO), TT und T1-T3 gemessen, die im Folgenden detaillierter beschrieben werden. Die Ablenkung des Teilchens von seiner ursprünglichen Trajektorie gibt Aufschluss über den Impuls. Das Magnetfeld ist weitestgehend homogen mit einer dominierenden y-Komponente, sodass die Ablenkung hauptsächlich in der (x,z)-Ebene vonstattengeht. Entlang der z-Achse integriert beträgt die Feldstärke insgesamt $\int B dl = 4$ Tm. Um ladungsabhängige Detektorasymmetrien zu messen, kann die Orientierung des Magnetfeldes umgekehrt werden. [8]

Vertex Locator (VELO)

Aufgabe des Vertex Locator (VELO) ist die Detektion des Primärvertex (Proton-kollisionspunkt) sowie der Sekundärvertices (Zerfallspunkte instabiler Teilchen). Der VELO befindet sich demnach sehr nah am Kollisionspunkt und besteht insgesamt aus 21 Stationen von Siliziumstreifendetektoren. Um Schäden zu vermeiden, besteht

¹Die Zahl hängt wesentlich vom B-Flavour sowie vom betrachteten Zerfallskanal ab

Abbildung 2.1: Schnitt durch die (y,z)-Ebene des LHCb-Detektors. Die Abbildung wurde [9] entnommen.

der VELO aus zwei beweglichen Hälften, die erst zusammengeführt werden, sobald der Teilchenstrahl im Experiment stabil ist.

Trigger Tracker (TT)

Der Trigger Tracker (TT) besteht aus zwei Stationen, die sich vor dem Magneten befinden und eine Detektionsfläche von etwa $8,4\text{m}^2$ bieten. Sie sind wie der VELO aus Siliziumstreifen aufgebaut und ermöglichen durch ihre x-u-v-x-Anordnung eine dreidimensionale Spurrekonstruktion, wobei die TT-Stationen so aufgebaut sind, dass die Präzision in der horizontalen Ablenkungsebene (x,z) des Magneten am besten ist. Die Auflösung einer einzelnen Teilchenmessung beträgt etwa $50\mu\text{m}$.

Inner Tracker (IT)

Im Zentrum der drei Stationen T1-T3 nach dem Dipolmagneten ist der sogenannte Inner Tracker platziert. Er ist 120cm breit und 40cm hoch, ebenfalls ein Silikonstreifendetektor und besteht aus vier Lagen, die ähnlich wie die TT Stationen aufgebaut sind. Er deckt eine Fläche von etwa $4m^2$ ab und erzielt ebenfalls eine Ortsauflösung von $50\mu m$.

Outer Tracker (OT)

Der Outer Tracker bildet den äußeren Teil der Stationen T1-T3, der nicht vom IT abgedeckt wird. Er besteht ebenfalls aus 4 Lagen und ist aus Driftröhrchen aufgebaut, die mit einem Gasgemisch aus Argon (70%), $CO_2(28,5\%)$ und $O_2(1,5\%)$ gefüllt sind. Im Innern der Röhrchen verläuft ein mit Gold beschichteter Anodendraht aus Wolfram. Die räumliche Auflösung eines einzelnen Röhrchens liegt bei 200 μ m.

Klassifizierung von Spuren

Je nachdem, welche Detektoren an der Rekonstruktion einer Teilchenspur beteiligt sind, teilt man die Spuren in vier unterschiedliche Kategorien ein:

- VELO Spuren enthalten Treffer ausschließlich im VELO und dienen hauptsächlich der Rekonstruktion des Primärvertex. Außerdem sind sie Ausgangspunkt für die folgenden Spuralgorithmen
- Haben die Spuren Messungen im VELO und in den TT-Stationen, spricht man von **Upstream Spuren**. Hierbei handelt es sich dann um Teilchen mit kleinem Impuls, da der Magnet die Teilchen so stark ablenkt, dass jene den Akzeptanzbereich des Detektors verlassen und die anschließenden Detektoren nicht mehr passieren.

- Bei **Downstream Spuren** gibt es nur zugeordnete Treffer in den Stationen TT und T1-T3. Diese treten vor allem bei den Zerfallsprodukten langlebiger Teilchen wie dem K_s^0 auf, die den VELO vor ihrem Zerfall verlassen. In dieser Arbeit werden ausschließlich Downstream Spuren zur Rekonstruktion der K_s^0 -Mesonen verwendet (siehe dazu auch Kapitel 4.1.3)
- Gibt es zugeordnete Messungen in allen Subdetektoren (VELO, TT, T1-T3), so spricht man von **Long Spuren**. Da es hier die meisten Messpunkte gibt, haben diese Spuren die präziseste Impuls- und Ortsauflösung. [8]

2.2.2 Detektoren zur Teilchenidentifikation

Neben der Rekonstruktion der Spuren ist es natürlich essentiell, auch die Teilchensorten zu identifizieren. Hierzu werden die Informationen der Detektoren RICH1/2, SPD, PS HCAL, ECAL sowie M1-M5 verwendet, um eine Teilchenhypothese aufzustellen.

Die Ring Imaging Cherenkov Detektoren (RICH)

Die beiden RICH Detektoren nutzen die Cherenkov-Strahlung, um Teilchen voneinander zu unterscheiden, insbesondere π^{\pm} und K^{\pm} . Ähnlich dem Machschen Kegel bei Schall emittieren geladene Teilchen Photonen in Kegelform, wenn sie ein Medium mit einer Geschwindigkeit v passieren, die größer ist als die Lichtgeschwindigkeit c'=c/n in diesem Medium (n: Brechungsindex des Mediums). Für den Öffnungswinkel $\theta_{\rm C}$ des Lichtkegels gilt dann:

$$\cos \theta_{\rm C} = \frac{c}{vn}.\tag{2.1}$$

Durch Messung des Öffnungswinkels und der Impulsinformation aus den Spurdetektoren lässt sich die Teilchenmasse bestimmen und somit eine Teilchenhypothese aufstellen. RICH1 ist dabei für kleine Impulse im Bereich von 1GeV bis 60GeV zuständig und deckt den kompletten Akzeptanzbereich des Detektors ab, RICH2 arbeitet dagegen bei Impulsen von 15GeV bis 100GeV und deckt einen Winkelbereich von ca. 15mrad bis 120mrad in horizontaler und 100mrad in vertikaler Ebene ab.

Kalorimetersystem

Das Kalorimetersystem dient zur Identifikation von Elektronen, Photonen sowie Hadronen und soll deren Energie und Position bestimmen. Durch Wechselwirkung mit dem Kalorimetermaterial erzeugen jene einen kaskadenartigen Zerfall. Bei den Subdetektoren des Systems handelt es sich um Szintillationsdetektoren. Diese sind im Einzelnen:

- Der Scintillating Pad Detector (SPD) kann nur geladene Teilchen detektieren und dient damit der Unterscheidung von Photonen und Elektronen.
- Auf den SPD und eine 12mm dicke Bleiplatte folgt der **Preshower Detector** (**PS**). Die Platte löst Kaskaden von Photonen und Elektronen aus. Hadronische Kaskaden beginnen erst später und können damit unterschieden werden.
- Das **elektromagnetische Kalorimeter (ECAL)** besteht im Wechsel aus Blei- und Szintillatorplatten und detektiert Photonen- und Elektronenschauer.
- Beim hadronischen Kalorimeter (HCAL) wechseln sich Eisen- und Szintillatorplatten ab. Es ist sensitiv für hadronische Kaskaden.

Myonkammern

Der LHCb-Detektor besitzt insgesamt 5 Myonenkammern (M1-M5). Zur Verbesserung der Impulsmessung im Trigger ist M1 vor den Kalorimetern angebracht, die restlichen Kammern am Ende des Detektors. Zwischen M2-M5 befinden sich 80cm dicke Eisenplatten zur Absorption hadronischer Teilchen. Ab einem Impuls von etwa 6GeV können die Myonen alle 5 Stationen passieren. [8]

2.2.3 Trigger

Aufgabe des Triggers ist es, die Ereignisrate von 40MHz auf ein speicherbares Maß von 2-3kHz zu reduzieren. Hierzu stehen zwei Stufen zur Verfügung:

- 1. Das LO-System bildet die erste Stufe und senkt die Ereignisrate von den ursprünglichen 40MHz auf 1MHz. Es besteht aus individuell angefertigten elektronischen Bauteilen, die vollkommen synchron zu den Kollisionsereignissen arbeiten und bildet damit einen reinen Hardware-Trigger. L0 besitzt drei Subsyteme: Mit Hilfe der Kalorimeter wird versucht, die Transversalenergie von Hadronen, Elektronen und Photonen zu bestimmen, die Myonenkammern liefern Informationen über den Transversalimpuls und das "L0 pile-up"-System nutzt VELO-Informationen, um die Zahl der Proton-Proton-Kollisionen abzuschätzen. All diese Informationen laufen in der "L0 Decision Unit"zusammen, die dann anhand vorgegebener Kriterien entscheidet, welche Ereignisse an die nächste Stufe weitergeleitet werden. Im Wesentlichen nutzt man aus, dass B-Mesonen aufgrund ihrer hohen Masse überwiegend Teilchen mit hohem Transversalimpuls und hoher Transversalenergie produzieren.
- 2. Die zweite Stufe bildet der softwarebasierte **High Level Trigger (HLT)**, die abermals in zwei Stufen unterteilt ist: **HLT1** und **HLT2**. Der HLT hat Zugriff auf alle Detektorinformationen und könnte damit prinzipiell die komplette Ereignisfilterung vornehmen. Aufgrund der immer noch hohen Ereignisrate von

 $1 \mathrm{MHz}$ am Ausgang des L0-Systems muss darauf jedoch verzichtet und nur ein Teil der Informationen verwendet werden. Die Hauptaufgabe des HLT1 ist die Verifizierung der von L0 getroffenen Entscheidungen. Er ist weiterhin dafür zuständig, entsprechend der Kandidaten aus L0 die Teilchen zu rekonstruieren. Dadurch wird die Ereignisrate auf etwa $30-40 \mathrm{MHz}$ gesenkt. Bei dieser Rate ist es nun dem HLT2 möglich, eine vollständige Mustererkennung durchzuführen und somit die Zerfälle des B-Mesons zu rekonstruieren, was in einer Ereignisrate von etwa $2-3 \mathrm{kHz}$ resultiert.

Bei dieser Ereignisrate ist es nun möglich, die Informationen des Detektors zu speichern und im Anschluss je nach Bedarf die Ereignisfilterung zu verfeinern [9].

Kapitel 3

CP-Verletzungin B-Meson-Systemen

3.1 Das Standardmodell der Teilchenphysik

Im Standardmodell der Teilchenphysik gibt es 17 elementare Bausteine der Materie (siehe Abb. 3.1): 12 Fermionen, davon 6 Quarks (u, d, c, s, t, b), die sich im engeren Sinne zur Materie hadronisieren oder Mesonen bilden, und 6 Leptonen (e, μ , τ sowie die jeweiligen Neutrinos $\nu_{\rm e}$, ν_{μ} , ν_{τ}). Von diesen 12 Fermionen existieren jeweils noch Antiteilchen (gleiche Masse, aber entgegengesetzte Quantenzahlen). Das Standardmodell enthält weiterhin 4 Eichbosonen (Photon, Gluon, Z- und W[±]-Boson), die die 3 der 4 elementaren Kräfte übertragen: die elektromagnetische, starke und schwache Wechselwirkung. Die Gravitation als vierte elementare Kraft wird nicht durch das Standardmodell beschrieben. Ergänzt wird das Standardmodell durch das Higgs-Boson, welches als Teil des Higgs-Mechanismus den Elementarteilchen seine Masse verleiht und Gegenstand aktueller Forschung ist. Mit hoher Wahrscheinlichkeit gelang jüngst der Nachweis des Higgs am CERN [11].

3.2 B-Mesonen und ihre Mischung

Mesonen sind Paare aus Quarks und Antiquarks beliebigen Flavours. B-Mesonen insbesondere bestehen aus einem Anti-b-Quark (\bar{b}) mit einem u-, d-, c- oder s-Quark, Anti-B-Mesonen entsprechend aus der Kombination der jeweiligen Antiteilchen. Die in dieser Arbeit betrachteten B_d^0 -Mesonen haben demnach die Quarkzusammensetzung $|B_d^0\rangle = |\bar{b}d\rangle$ und sind elektrisch neutral. Solch neutrale Mesonen besitzen die Eigenschaft, dass sie sich in ihre Antiteilchen wandeln können und umgekehrt. Es findet folglich eine Oszillation zwischen B_d^0 und $\overline{B_d^0}$ statt, die man auch Mischung nennt. Abbildung 3.2 zeigt zwei mögliche Feynmangraphen für diesen Prozess. Innerhalb der Schleifen kann nach Heisenberg die Energieerhaltung kurzzeitig verletzt werden, sodass auch kurzerhand bspw. die deutlich schwereren top-Quarks enstehen können. Ebenso ist es vorstellbar, dass bislang unentdeckte, noch schwerere Teilchen beitragen können. Präzise Messungen der B_d^0 -Mischung erlauben Aussagen bspw. über die top-Masse und grenzen damit das Standardmodell ein. Gleichzeitig

Abbildung 3.1: Die Bausteine / Teilchen des Standardmodells. Abbildung entnommen aus [10].

erhofft man sich, durch noch präzisere Messungen Hinweise auf "neue Physik" zu finden, die sich dann, wie bereits erwähnt, in kleinsten Korrekturen innerhalb der Schleife bemerkbar machen würden.

Abbildung 3.2: Feynmangraphen zur Mischung von B_d^0 - und $\overline{B_d^0}$ -Mesonen. Dabei repräsentiert q ein d- bzw. s-Quark. Die Abbildung wurde [4] entnommen.

3.3 Der Zerfallskanal $B_d^0 o J/\Psi K_s^0$

In dieser Arbeit wird der Zerfallskanal $B_d^0 \to J/\Psi K_s^0$ betrachtet. Abbildung 3.3 zeigt entsprechende Feynmangraphen. Jener Kanal ist auch als "goldener" Zerfallskanal für die Messung der \mathcal{CP} -Verletzung bekannt. Hintergrund ist, dass der vom Baumdiagramm (Abb. 3.3, links) beschriebene Prozess dominiert und damit \mathcal{CP} -Verletzung im Zerfall vernachlässigbar ist. Des Weiteren hat dieser Zerfall ein

hohes Verzweigungsverhältnis, womit mehr Statistik als in anderen Knälen zur Verfügung steht. Der Endzustand $|J/\Psi K_s^0\rangle$ ist näherungsweise ein \mathcal{CP} -Eigenzustand $(\mathcal{CP}\,|J/\Psi K_s^0\rangle)$. Damit können sowohl B_d^0 - als auch $\overline{B_d^0}$ -Mesonen in den Endzustand zerfallen. Da B_d^0 und $\overline{B_d^0}$ auch noch mischen, kommt es zu \mathcal{CP} -verletzenden Interferenzen der Zerfallsamplituden für den direkten Zerfall und den Zerfall nach vorheriger Mischung. Die Teilchen J/Ψ und K_s^0 haben die Flavoureigenzustände $|J/\Psi\rangle = |c\overline{c}\rangle$ sowie $|K_s^0\rangle = \frac{1}{\sqrt{2}}\left(|d\overline{s}\rangle - |s\overline{d}\rangle\right)^1$. Diese Teilchen sind ebenfalls nicht stabil und zerfallen unter anderem weiter gemäß $J/\Psi \to \mu^+\mu^-$ und $K_s^0 \to \pi^+\pi^-$, was zur Rekonstruktion der B_d^0 -Mesonen im Detektor genutzt wird.

Abbildung 3.3: Feynmangraph zum Zerfall $B_d^0 \to J/\Psi K_s^0$. Links: Baumdiagramm, rechts: Pinguindiagramm. Die Abbildung wurde [1] entnommen.

3.4 Diskrete Symmetrietransformationen

Symmetrien sind in der Physik von zentraler Bedeutung. Gemäß dem Noether-Theorem existiert in der klassischen Physik zu jeder kontinuierlichen Symmetrie eine Erhaltungsgröße. In quantenmechanischen Systemen lassen sich drei diskrete Symmetrietransformationen betrachten:

1. Parität \mathcal{P} :

Bei der Paritätsoperation wird das Vorzeichen der kartesischen Ortskoordinaten umgekehrt. Dies entspricht einer Punktspigelung.

2. Ladungskonjugation C:

Jedes Teilchen wird durch sein Antiteilchen ersetzt.

¹Beim Flavoureigenzustand wurde eine kleine Korrektur auf Grund von \mathcal{CP} -Verletzung im kaon-System vernachlässigt. Zur vollständigen Korrektheit müsste weiterhin in Abbildung 3.3 statt dem K_s^0 lediglich ein K^0 stehen. Das entsprechende $\overline{B_d^0}$ hätte dann ein $\overline{K^0}$ als Endprodukt. Die Argumentation, dass sowohl B_d^0 als auch $\overline{B_d^0}$ in den selben Endzustand zerfallen ist dennoch richtig, da auch die $K^0/\overline{K^0}$ -Mischung existiert.

3. Zeitumkehr \mathcal{T} :

Das Vorzeichen auf der Zeitachse wird umgekehrt. Da in der vorligenden Arbeit allerdings nur die CP-Verletzung gemessen werden soll, wird die Zeitumkehr im folgenden vernachlässigt.

Entgegen der klassischen Intuition konnte Wu 1956 nachweisen [12], dass die Parität im β -Zerfall und damit in der schwachen Wechselwirkung nicht erhalten ist. Weitere Experimente zeigen, dass die schwache Wechselwirkung die Parität maximal verletzt: Neutrinos, die nur schwach wechselwirken können, sind stets "linkshändig" (Spin und Impuls antiparallel), Antineutrinos dagegen immer "rechtshändig" (Spin und Impuls parallel). Da der Spin im Gegensatz zum Impuls invariant unter \mathcal{P} -Transformation ist, würde diese Operation aus einem linkshändigen Neutrino ein rechtshändiges machen, was in der Natur nicht realisiert ist.

Damit ist offensichtlich, dass die schwache Wechselwirkung auch die Ladungskonjugation verletzt: Wendet man die C-Transformation auf ein linkshändiges Neutrino an, so erhält man ein linkshändiges Antineutrino. Dieses existiert aber wie bereits erwähnt nicht. Analog gilt die Überlegung auch für Antineutrinos.

Scheinbare \mathcal{CP} -Invarianz

Wendet man nun aber die Transformationen \mathcal{P} und \mathcal{C} direkt hintereinander an, so ergibt sich kein Widerspruch zur Natur (siehe Abb. 3.4). Aus einen linkshändigen Neutrino wird ein rechtshändiges Antineutrino. Es erscheint, als sei \mathcal{CP} die wahre Symmetrietransformation. Im Jahre 1964 wurde dann allerdings im Zerfall neutraler K-Mesonen erstmals \mathcal{CP} -Verletzung nachgewiesen. [13]

Diese Arbeit beschäftigt sich mit der \mathcal{CP} -Verletzung im B-Mesonen-System. Eine genaue Kenntnis der \mathcal{CP} -Verletzung ermöglicht Präzisionstests des Standardmodells. Weiterhin ist insbesondere das B-Meson-System sensitiv für "neue Physik" da durch Schleifen innerhalb der Prozesse (siehe Abb. 3.2 und 3.3) Beiträge von Theorien jenseits des Standardmodells möglich sind und evtl. zu Abweichungen führen. Dabei unterscheidet man prinzipiell drei Arten von \mathcal{CP} -Verletzung:

1. \mathcal{CP} -Verletzung in der Mischung (auch indirekte \mathcal{CP} -Verletzung):

Sie tritt immer dann auf, wenn die Masseneigenzustände eines neutralen Meson-Systems nicht den \mathcal{CP} -Eigenzuständen entsprechen. In der Folge ist die Rate der Oszillationen beispielsweise eines B_d^0 in ein $\overline{B_d^0}$ unterschiedlich von der eines $\overline{B_d^0}$ in ein B_d^0 .

2. Direkte *CP*-Verletzung:

Sie tritt dann auf, wenn sich die Zerfallsamplitude eines B-Mesons in eines Endzutand f von der (\mathcal{CP} -konjugierten) Zerfallsamplitude des Anti-B-Mesons in den Zustand \overline{f} unterscheidet. Demnach sind dann die partiellen Breiten der direkten Zerfälle unterschiedlich: $\Gamma(B \to f) \neq \Gamma(\overline{B} \to \overline{f})$.

Abbildung 3.4: Scheinbare \mathcal{CP} -Invarianz: Während eine reine \mathcal{P} - oder \mathcal{C} Transformation zu in der Natur nicht realisierten Zuständen führt, scheint es bei der kombinierten \mathcal{CP} -Transformation keinen Widerspruch zu geben (dünne Pfeile: Impulsausrichtung, dicke Pfeile: Spinausrichtung).

3. \mathcal{CP} -Verletzung in der Interferenz zwischen Mischung und Zerfall: Sie kommt dadurch zum Ausdruck, dass der zeitabhängige Zerfall eines anfänglich reinen Flavourzustandes für ein Teilchen und ein Antiteilchen unterschiedlich ist. Diese Art der \mathcal{CP} -Verletzung kann bei neutralen Mesonen auftreten, wenn der Endzustand ein \mathcal{CP} -Eigenzustand ist. Hintergrund ist, dass es zu \mathcal{CP} -verletzenden Interferenzen der Zerfallsamplituden für direkten Zerfall (z.B. $B_d^0 \to J/\Psi K_s^0$) und Zerfall nach Mischung $(B_d^0 \to \overline{B_d^0} \to J/\Psi K_s^0)$ kommt.

Die nun folgenden Herleitungen und Erklärungen der drei Arten der \mathcal{CP} -Verletzung basieren auf den Ausführungen aus [13].

3.5 CP-Verletzung in der Mischung

Die Zeitentwicklung der Flavoureigenzustände zum Zeitpunkt t=0 $\left|B_d^0\right\rangle = \left|\bar{b}d\right\rangle$ und $\left|\overline{B_d^0}\right\rangle = \left|b\overline{d}\right\rangle$, die sich unter \mathcal{CP} -Transformation gemäß

$$\mathcal{CP} \left| B_d^0 \right\rangle = e^{i\phi} \left| \overline{B_d^0} \right\rangle \qquad \mathcal{CP} \left| \overline{B_d^0} \right\rangle = e^{-i\phi} \left| B_d^0 \right\rangle$$
 (3.1)

mit einer willkürlichen Phase ϕ verhalten, lässt sich phänomenologisch durch die Schrödinger-Gleichung

$$i\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{B_d^0}{B_d^0} \right) = \left(M - \frac{\mathrm{i}}{2}\Gamma \right) \left(\frac{B_d^0}{B_d^0} \right)$$
(3.2)

beschreiben. Der Hamiltonoperator $\mathcal{H} := \left(M - \frac{\mathrm{i}}{2}\Gamma\right)$ setzt sich zusammen aus dem hermiteschen Massenoperator M und dem ebenfalls hermiteschen Zerfallsoperator Γ . \mathcal{H} selbt ist nicht hermitesch wegen des möglichen Zerfalls des Teilchens. Aus der \mathcal{CPT} -Erhaltung folgt $M_{11} = M_{22} =: M$ bzw. $\Gamma_{11} = \Gamma_{22} =: \Gamma$. Die nichtverschwindenden Elemente abseits der Diagonalen $M_{12} = M_{21}^*$, $\Gamma_{12} = \Gamma_{21}^*$ parametrisieren die B_d^0 - $\overline{B_d^0}$ -Mischung. Offensichtlich entsprechen die Flavoureigenzustände nicht den Eigenzuständen von \mathcal{H} . Diagonalisieren von \mathcal{H} liefert die Eigenzustände

$$\left| B_{\rm H} \right\rangle = p \left| B_d^0 \right\rangle - q \left| \overline{B_d^0} \right\rangle \tag{3.3}$$

$$\begin{vmatrix} B_{\rm H} \rangle - p \, |B_d \rangle - q \, |B_d \rangle \begin{vmatrix} B_{\rm L} \rangle = p \, |B_d^0 \rangle + q \, |\overline{B_d^0} \rangle, \quad \text{mit} \quad |p|^2 + |q|^2 = 1,$$
 (3.4)

mit definierten Massen $m_{\rm H/L}$ und Zerfallsbreiten $\Gamma_{\rm H/L}$ sowie den Eigenwerten $m_{\rm H/L}$ – $\frac{\rm i}{2}\Gamma_{\rm H/L}$. Die Indizierung orientiert sich an den Masseneigenwerten, dabei steht h für den schweren (engl. heavy) und l für den leichten (engl. light) Zustand. Aus den Eigenwerten von \mathcal{H} folgt die zeitliche Entwicklung der Zustände:

$$\begin{aligned}
\left| B_{\mathrm{H/L}}(t) \right\rangle &= \mathrm{e}^{-\mathrm{i}m_{\mathrm{H/L}}t - \frac{1}{2}\Gamma_{\mathrm{H/L}}t} \left| B_{\mathrm{H/L}}(0) \right\rangle \\
&= \mathrm{e}^{-\gamma_{\mathrm{H/L}}t} \left(p \left| B_d^0 \right\rangle \mp q \left| \overline{B_d^0} \right\rangle \right), \quad \text{mit} \quad \gamma_{\mathrm{H/L}} &= \mathrm{i}m_{\mathrm{H/L}} + \frac{\Gamma_{\mathrm{H/L}}}{2} \quad (3.5)
\end{aligned}$$

Umgeschrieben auf die Flavoureigenbasis erhält man:

$$\begin{aligned}
\left| B_d^0(t) \right\rangle &= \frac{1}{2p} \left(\left| B_{\rm H} \right\rangle + \left| B_{\rm L} \right\rangle \right) \\
&= \frac{1}{2} \left[\left(e^{-\gamma_{\rm H}t} + e^{-\gamma_{\rm L}t} \right) \left| B_d^0 \right\rangle - \frac{q}{p} \left(e^{-\gamma_{\rm H}t} - e^{-\gamma_{\rm L}t} \right) \left| \overline{B_d^0} \right\rangle \right]
\end{aligned} (3.6)$$

Die Wahrscheinlichkeit für den Übergang eines $\left|B_d^0\right\rangle$ (zum Zeitpunkt t=0) in ein $\left|\overline{B_d^0}\right\rangle$ beträgt:

$$P(B_d^0 \to \overline{B_d^0})(t) = |\langle \overline{B_d^0} | B_d^0(t) \rangle|^2$$

$$= \frac{1}{4} \left| \frac{q}{p} \right|^2 \left[e^{-\Gamma_H t} + e^{-\Gamma_L t} - 2e^{-\frac{1}{2}(\Gamma_H + \Gamma_L)t} \cos(\Delta m_d t) \right]$$
(3.7)

Hierbei wird die Oszillationsdifferenz $\Delta m_d := m_{\rm H} - m_{\rm L}$ definiert, die aus der Massendifferenz der beiden Masseneigenzustände resultiert. Analog gilt für die Übergangswahrscheinlichkeit eines $|\overline{B_d^0}\rangle$ in ein $|B_d^0\rangle$:

$$P(\overline{B_d^0} \to B_d^0)(t) = \frac{1}{4} \left| \frac{p}{q} \right|^2 \left[e^{-\Gamma_H t} + e^{-\Gamma_L t} - 2e^{-\frac{1}{2}(\Gamma_H + \Gamma_L)t} \cos(\Delta m_d t) \right]$$
(3.8)

Folglich kommt es in der Mischung zur \mathcal{CP} -Verletzung, wenn die Oszillation ungleichmäßig verläuft, anders ausgedrückt:

$$\mathcal{CP}$$
-Verletzung in der Mischung $\iff \left| \frac{p}{q} \right| \neq 1$ (3.9)

3.6 Direkte CP-Verletzung

Die Zerfallsamplituden der neutralen B_d^0 -Mesonen in einen Endzustand $|f\rangle$ bzw. seinen \mathcal{CP} -konjugierten Zustand $|\overline{f}\rangle$ sind definiert als

$$A_{f} = \left\langle f \middle| \mathcal{H} \middle| B_{d}^{0} \right\rangle, \qquad A_{\overline{f}} = \left\langle \overline{f} \middle| \mathcal{H} \middle| B_{d}^{0} \right\rangle,$$

$$\overline{A_{f}} = \left\langle f \middle| \mathcal{H} \middle| \overline{B_{d}^{0}} \right\rangle, \qquad \overline{A_{\overline{f}}} = \left\langle \overline{f} \middle| \mathcal{H} \middle| \overline{B_{d}^{0}} \right\rangle. \tag{3.10}$$

Ist \mathcal{CP} erhalten, dann sollten die Zerfallsraten, ergo auch die Zerfallsamplituden eines B_d^0 nach f sowie eines $\overline{B_d^0}$ nach \overline{f} gleich sein. Dies bedeutet:

Direkte
$$\mathcal{CP}$$
-Verletzung $\iff \frac{|A_f|}{|\overline{A_f}|} \neq 1$ bzw. $\frac{|\overline{A_f}|}{|A_{\overline{f}}|} \neq 1$ (3.11)

3.7 *CP*-Verletzung in der Interferenz zwischen Mischung und Zerfall

Die Lebensdauern des schweren (Gl. 3.3) und des leichten (Gl. 3.4) Masseneigenzustands sind innerhalb weniger Prozent gleich sind:

$$\Delta\Gamma := \Gamma_{\rm H} - \Gamma_{\rm L} \approx 0. \tag{3.12}$$

Demnach wird im Folgenden

$$\Gamma := \Gamma_{H} = \Gamma_{L} \tag{3.13}$$

verwendet. Weiterhin sagt das Standard Modell nur eine kleine \mathcal{CP} -Verletzung in der B_d^0 - $\overline{B_d^0}$ -Mischung voraus, sodass

$$\left| \frac{p}{q} \right| = 1 \quad \text{in } \mathcal{O}(10^{-3}). \tag{3.14}$$

Für das B-Meson-System bleibt daher nur die Möglichkeit der \mathcal{CP} -Verletzung in der Interferenz der Amplituden von Zerfall nach Mischung und direktem Zerfall (siehe Abb. 3.5). Der in dieser Arbeit betrachtete Zerfallskanal $B_d^0 \to J/\Psi K_s^0$ ist

Abbildung 3.5: Schema für die \mathcal{CP} -Verletzung in der Interferenz. Es interferieren die Amplituden für den direkten Zerfall (rot, durchgezogen) mit der Amplitude für den Zerfall nach vorheriger Mischung (blau, gestrichelt).

ein \mathcal{CP} -Eigenzustand. In Anlehnung an 3.10 sind die Zerfallsamplituden hier - unter Vernachlässigung der \mathcal{CP} -Verletzung im Kaon-System - definiert als

$$A_f := \left\langle f \mid B_d^0(t) \right\rangle, \qquad \overline{A_f} := \left\langle f \mid \overline{B_d^0}(t) \right\rangle$$

Es wird die komplexe Größe

$$\lambda_f := \frac{q\overline{A_f}}{pA_f} \tag{3.15}$$

definiert. Ausgehend von Gleichung (3.6) sowie mit Hilfe der Gleichungen (3.13), (3.14) und (3.15) gilt für die Zerfallsrate eines anfänglich reinen B_d^0 -Zustands:

$$\Gamma(B_d^0 \to J/\Psi K_s^0) = \frac{1}{4} \left| (e^{-\gamma_H t} + e^{-\gamma_L t}) A_f - \frac{q}{p} (e^{-\gamma_H t} - e^{-\gamma_L t}) \overline{A_f} \right|^2$$

$$= \frac{1}{2} |A_f|^2 e^{-\Gamma t} \left[1 + |\lambda_f|^2 + (1 - |\lambda_f|^2) \cos(\Delta m_d t) - 2 \text{Im}(\lambda_f) \sin(\Delta m_d t) \right]$$
(3.16)

Analog:

$$\Gamma(\overline{B_d^0} \to J/\Psi K_s^0) = \frac{1}{2} |A_f|^2 e^{-\Gamma t} \left[1 + |\lambda_f|^2 - (1 - |\lambda_f|^2) \cos(\Delta m_d t) + 2 \text{Im}(\lambda_f) \sin(\Delta m_d t) \right]$$
(3.17)

Damit kann die vom Standardmodell prognostizierte \mathcal{CP} -verletzende Asymmetrie

$$\mathcal{A}_{\mathcal{CP}} := \frac{\Gamma(\overline{B_d^0} \to J/\Psi K_s^0) - \Gamma(B_d^0 \to J/\Psi K_s^0)}{\Gamma(\overline{B_d^0} \to J/\Psi K_s^0) + \Gamma(B_d^0 \to J/\Psi K_s^0)}$$
(3.18)

$$= -\frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \cos(\Delta m_d t) + \frac{2\text{Im}(\lambda_f)}{1 + |\lambda_f|^2} \sin(\Delta m_d t)$$
 (3.19)

$$= C_{J/\Psi K_o^0} \cos(\Delta m_d t) + S_{J/\Psi K_o^0} \sin(\Delta m_d t) \tag{3.20}$$

berechnet werden. Da $|J/\Psi K_s^0\rangle$ ein fast reiner \mathcal{CP} -Eigenzustand ist, gilt $|\lambda_f|\approx 1$, womit sich jene hier zu

$$\mathcal{A}_{\mathcal{CP}} \approx \operatorname{Im}(\lambda_f) \sin(\Delta m_d t) \tag{3.21}$$

vereinfacht. Damit kann im B-Meson-System, insbesondere im Zerfall $B^0_d \to J/\Psi K^0_s$ durch Messung der Asymmetrie-Amplitude $S_{J/\Psi K^0_s}$ \mathcal{CP} -Verletzung in der Interferenz gemessen werden.

 \mathcal{CP} -Verletzung in der Interferenz zwischen Mischung und Zerfall

$$\iff S_{J/\Psi K_2^0} = \operatorname{Im}(\lambda) \neq 0 \tag{3.22}$$

3.8 CKM-Formalismus

Durch Austausch eines W[±]-Bosons können Quarks ihren Flavour ändern. Dabei sind sie aber nicht an ihre jeweilige Generation gebunden, sondern können - wenn auch zum Teil stark unterdrückt - prinzipiell den Flavour einer jeden Generation annehmen. Ein kleines Beispiel: Der Eigenzustand $|u\rangle$ der starken Wechselwirkung geht über den schwachen Prozess (Austausch eines W[±]-Bosons) nicht in ein $|d\rangle$ über, sondern vielmehr in eine Linearkombination aus $|d\rangle$, $|s\rangle$ und $|b\rangle$, die im folgenden mit $|d'\rangle$ bezeichnet wird. Allgemein werden die möglichen Linearkombinationen durch die Cabibbo-Kobayashi-Maskawa-Matrix (kurz: CKM-Matrix) beschrieben.

$$\begin{pmatrix}
|d'\rangle \\
|s'\rangle \\
|b'\rangle
\end{pmatrix} = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix} \cdot \begin{pmatrix}
|d\rangle \\
|s\rangle \\
|b\rangle
\end{pmatrix}$$
(3.23)

Das Betragsquadrat eines jeden Matrixelementes $|V_{ij}|^2$ gibt dabei die Wahrscheinlichkeit für den Übergang eines Quarks $|i\rangle$ in ein $|j\rangle$ an. Da die V_{ij} prinzipiell komplex sein können, gibt es zunächst 18 freie Parameter, die zu bestimmen sind. Diese Zahl reduziert sich zum einen um 5 relative Quarkphasen, die physikalisch nicht beobachtbar sind. Zum anderen reduziert die Forderung nach Unitarität der CKM-Matrix die Zahl der unabhängigen Parameter um 9, sodass am Ende 4 Parameter, 3 Euler Winkel sowie eine Phase, welche für die \mathcal{CP} -Verletzung verantwortlich ist, zu

bestimmen sind. Die CKM-Matrix lässt sich näherungsweise durch die Wolfenstein-Parametrisierung darstellen:

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$
(3.24)

Für den Zerfall von B_d^0 -Mesonen ist die Unitaritätsbedingung

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 (3.25)$$

von besonderer Bedeutung. Man kann die einzelnen Summanden nun in der (ρ, η) Ebene auftragen und erhält dabei ein sogenanntes Unitaritätsdreieck. Es wird so normiert, dass die Unterseite bei (0,0) beginnt und bei (1,0) endet (siehe Abb. 3.6). Die obere Ecke liegt dann bei $(\overline{\rho}, \overline{\eta})$, wobei $\overline{\rho} = \rho(1 - \lambda^2/2)$ und $\overline{\eta} = \eta(1 - \lambda^2/2)$ gemäß der Wolfenstein-Parametrisierung sind. Die Winkel des Dreiecks erhält man über

$$\alpha = \arg\left[-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right], \qquad \beta = \arg\left[-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right], \qquad \gamma = \arg\left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right]. \tag{3.26}$$

Das Standardmodell stellt für den hier untersuchten Zerfallskanal eine Beziehung

Abbildung 3.6: Unitaritätsdreieck, entnommen von [14]

zwischen dem Winkel β und der komplexen Größe λ_f aus Gleichung (3.15) her [15, 16]:

$$\lambda_f = \underbrace{\frac{V_{td}V_{tb}^*}{V_{td}^*V_{tb}}}_{\frac{q}{p}} \underbrace{\frac{V_{cd}^*V_{cb}}{V_{cd}V_{cb}^*}}_{\frac{\overline{A_f}}{\overline{A_f}}} = e^{2i\beta}$$
(3.27)

$$\implies S_{J/\Psi K_s^0} = \operatorname{Im}(\lambda_f) = \sin(2\beta).$$
 (3.28)

Durch Messung der Amplitude der \mathcal{CP} -Asymmetrie kann man direkte Rückschlüsse auf den CKM-Winkel β ziehen, der wesentlicher Bestandteil des Standardmodells ist [15].

Kapitel 4

Datenselektion

Dieses Kapitel beschreibt die notwendigen Schritte, um aus den Rohdaten des Detektors einen analysierbaren Datensatz (ein sog. NTupel) herzustellen. Wichtig ist dabei, den Datensatz von möglichst viel Untergrund zu bereinigen, ohne zu viele Signalereignisse zu verlieren. Die in dieser Arbeit verwendeten Daten entstammen Proton-Proton-Kollisionen und wurden im Jahre 2012 vom LHCb-Detektor bei einer Schwerpunktsenergie von $\sqrt{s}=8{\rm TeV}$ aufgenommen. Die integrierte Luminosität beträgt ca. $2{\rm fb}^{-1}$. Von einem Mitarbeiter der Arbeitsgruppe wurden die Daten aufbereitet als NTupel zur Verfügung gestellt. Wesentliche Schritte bei der Erstellung waren die Rekonstruktion der Ereignisse mittels der Software Brunel sowie die Analyse mit dem Programm DaVINCI. Bei Letzterer findet zur Reduzierung des Untergrunds eine Vorselektion statt, die Stripping genannt wird. Die Software selbst bietet für jeden Zerfallskanal entsprechende Sätze von Selektionskriterien an. In Kapitel 4.1.2 wird aufgelistet, welche für diese Analyse verwendet werden.

4.1 Selektionskriterien

Wie bereits erwähnt, erfolgt die Reduzierung des Untergrunds in mehreren Schritten, die im Folgenden erläutert werden.

4.1.1 Trigger

Den ersten Schritt bildet das Trigger-System, das schon während der Datennahme die Ereignisse sondiert. Der LHCb-Detektor verwendet dabei ein dreistufiges System: Der hardwarebasierte "L0 Trigger" reduziert die Ereignisrate von 40MHz auf 1MHz. Im Anschluss folgt der zweiteilige, softwarebasierte "High Level Trigger" (HLT), der die Ereignisrate schlussendlich auf $2-3\mathrm{kHz}$ reduziert [17].

Es stehen für verschiedenste Bedürfnisse diverse sogenannte "Triggerlines" zur Verfügung. Die in dieser Analyse verwendeten Triggerlines entsprechen denen der 2011 Analyse [1] und wurden wie folgt gewählt:

High Level Trigger 1 (HLT1)

Hier wird der HltDiMuonHighMass Trigger gewählt. Dieser rekonstruiert zwei Myonen, die einen gewissen Abstand zueinander haben, zu einem J/Ψ -Kandidaten, dessen Masse eine gewisse Schwelle überschreiten muss. Bei der Selektion finden weiterhin die Qualität des J/Ψ -Vertex, die Myonen-Spuren sowie der (Transversal)Impuls des J/Ψ Berücksichtigung.

High Level Trigger 2 (HLT2)

In dieser Analyse werden zwei unterschiedliche Linien verwendet. Zur Bestimmung der Detektorauflösung wird die Hlt2DiMuonJPsiDecision verwendet, die ähnliche Variablen wie beim HLT1 verwendet. Für die reguläre Analyse wird jedoch die Hlt2DiMuonDetachedJPsiDecision verwendet, die zusätzlich die Signifikanz der Zerfallszeit eines J/Ψ berücksichtigt. Dadurch kommt es zu einer zeitabhängigen Nachweiseffizienz der B_d^0 -Mesonen. Der Vorteil dieser Triggerwahl liegt jedoch darin, dass mehr Statistik zur Verfügung steht und Untergrund massiv unterdrückt wird.

4.1.2 Stripping

Bei der Erstellung des Datensatzes wurde für das Stripping die Softwareversion Da-Vinci v32r2p1 (Stripping20r0p1) verwendet. Es wird nun aufgelistet, welche Selektionskriterien dabei angewandt wurden. Für die Auswahl des J/Ψ wurde auf die Selektion StdMassConstrainedJpsi2MuMu zurückgegriffen, für das K_s^0 auf StdLooseKsDD sowie beim B_d^0 auf BetaSBd2JpsiKsDetachedLine in der regulären Analyse bzw. BetaSBd2JpsiKsPrescaledLine zur Bestimmung der Eigenzeitauflösung. Die in diesen Sätzen enthaltenen Selektionskriterien sind in Tabelle 4.1 aufgeführt.

In der Tabelle bezeichnen M die rekonstruierte Masse, p den Impuls sowie p_T den Transversalimpuls eines Teilchens. Zur Rekonstruktion werden weiterhin Spuren an die Detektormessungen gefittet. Um eine Aussage über die Güte des Fits zu erhalten, betrachtet man hier das entsprechende auf die Zahl der Freiheitsgrade (nDoF) normierte χ^2_{track} . Analog gilt dies für die Rekonstruktion der Vertices (χ^2_{track}). Je näher das normierte χ^2_{track} der 1 kommt, desto besser ist der Fit. IP steht für den Stoßparameter und $\Delta \ln \mathcal{L}_{\mu\pi}$ ist ein Maß für die Wahrscheinlichkeit, ein Myon als Pion zu interpretieren und umgekehrt. Ist der Wert größer als Null, so ist die Wahrscheinlichkeit, dass das Teilchen ein Myon ist größer, als diejenige, ein Pion zu sein.

¹Synonym wird oft der Begriff "reduziertes χ^2 " verwendet.

Zerfall	Variable	Wert
$B_d^0 \to J/\Psi K_s^0$	$M(B_d^0)$	$\in [5150,5550] \text{MeV}$
	$\frac{\chi_{vtx}^2}{\text{nDof}}(B_d^0)$	< 10
$J/\Psi \to \mu^+ \mu^-$	$\frac{\chi^2_{track}}{\text{nDof}}(\mu^{\pm})$	< 3
	$\Delta \ln \mathcal{L}_{\mu\pi}$	> 0
	$p_T(\mu^{\pm})$	$> 500 \mathrm{MeV}/c$
	$\left(\frac{\chi^2_{vtx}}{\text{nDof}}(J/\Psi)\right)$	< 16
	$ \widetilde{M}(\mu^+\mu^-) - M(J/\Psi) $	$< 80 \mathrm{MeV}$
$K_s^0 \to \pi^+\pi^-$	$p(\pi^{\pm})$	$> 2000 \mathrm{MeV}/c$
	$ \frac{\frac{\chi^2_{vtx}}{\text{nDof}}(K^0_s)}{\frac{\chi^2_{track}}{\text{nDof}}(\pi^\pm)} $	< 20
	$\frac{\chi^2_{track}}{n \operatorname{Dof}}(\pi^{\pm})$	< 3
	$ M(\pi^+\pi^-) - M(K_s^0) $	$< 64 \mathrm{MeV}$
	$\frac{\chi_{IP}^2}{\eta \text{Dof}}(\pi^{\pm})$	> 4

Tabelle 4.1: Im Stripping verwendete Kriterien zur Selektion von $B_d^0,\,J/\Psi$ und K_s^0

4.1.3 Verwendete Spurklassen

Für die Rekonstruktion der J/Ψ werden ausschließlich "Long"-Spuren verwendet. Diese passieren das gesamte Spurrekonstruktionssystem. Durch die relativ lange Lebensdauer des K_s^0 kommt es in etwa 2/3 der Fälle vor, dass die Zerfallsprodukte des K_s^0 nicht mehr in der Akzeptanz des VELO zerfallen und er in der Folge diese nicht mehr registriert. Hinterlassen Teilchen nur in den TT und T Stationen Spuren, so spricht man von "Downstream"-Spuren (siehe auch Kap. 2.2.1). Diese Analyse beschränkt sich auf diese Spuren zur Rekonstruktion des K_s^0 -Mesons. Damit hat man im Vergleich zu K_s^0 aus Long-Spuren mehr Statistik zur Verfügung, muss aber bei der Qualität der Rekonstruktion Einbußen hinnehmen, da die Informationen des VELO fehlen. Die Analyse der Long-Spuren war Bestandteil einer anderen Bachelorarbeit. Bei Downstream-Spuren leidet insbesondere die Präzision der Impuls- und Positionsmessungen. Folglich dürfen die Selektionskriterien bei Downstream-Spuren teilweise nicht so hart sein wie bei Long-Spuren [1].

4.1.4 Zusätzliche Selektionskriterien

Um den Datensatz noch besser vom Untergrund zu bereinigen, werden einige Kriterien aus dem Stripping verschärft und weitere eingeführt (siehe Tab. 4.2). Diese wurden aus [1] übernommen. Die neu eingeführten Größen sind hier die Eigenzeit τ und die Flugstrecke l sowie deren Unsicherheit σ_{τ} und σ_{l} . Weiterhin gibt es noch einen kinematischen Fit des gesamten Zerfallsprozesses ("DecayTreeFit"- DTF). Um die Wirkung der einzelnen Zusatzkriterien im Vergleich zum Stripping zu untersu-

Tabelle 4.2	: Zusätzlich eingeführte Kriterien zur Untergrundbereinigung bzw. Selek-
	tion von B_d^0 , J/Ψ und K_s^0

Zerfall	Variable	Wert
$B_d^0 \to J/\Psi K_s^0$	$M(B_d^0)$	$\in [5170, 5420] \text{MeV}$
	$\mid au(B_d^0) \mid$	> 0.3 ps
	$\sigma_{\tau}(B_d^0)$	< 0.2 ps
	$\frac{\chi_{DTF(B+PV)}^2}{\chi_{DTF(B+PV)}^2}(B_d^0)$ $\frac{\chi_{IP}^2}{\frac{nDof}{nDof}}(B_d^0)$	< 5
	$\frac{\chi_{IP}^2}{\text{nDof}}(B_d^0)$	< 20
	$\frac{\chi_{IP}^2}{\text{nDof}}(B_d^0)$ des nächstbesten PV	> 50
$J/\Psi \to \mu^+\mu^-$	$\left \frac{\chi_{vtx}^2}{\text{nDof}} (J/\Psi) \right $	< 11
	$ M(\mu^+\mu^-) - M(J/\Psi) $	$\in [3030, 3165] \text{MeV}$
$K_s^0 \to \pi^+\pi^-$	$\frac{\tau}{\sigma_{\tau}}(K_s^0)$	> 5
	$\frac{\frac{\tau}{\sigma_{\tau}}(K_s^0)}{\frac{l}{\sigma_l}(K_s^0)}$	> 5
	$ M(\pi^+\pi^-) - M(K_s^0) $	$\in [475,520] \text{MeV}$

chen, werden alle bis auf das zu untersuchende Kriterium angewandt und in der Massenverteilung das Signal-zu-Untergrund-Verhältnis S/B bestimmt. Als Parametrisierung für den Fit der Massenverteilung wird ein doppelter Gauß verwendet, der Untergrund wird durch eine Exponentialfunktion modelliert (mehr dazu in Kap. 5.3). Zur Berechnung des Signals und des Untergrundes werden der Doppelgauß bzw. die Exponentialfunktion im Bereich von $\pm 3\sigma$ um den Mittelwert ausgewertet. Des Weiteren ist es von Interesse wie viel Signal und wie viel Untergrund man durch das entsprechende Kriterium verliert. Dazu werden die Verhältnisse $\epsilon_{\rm sig}$ ($\epsilon_{\rm bkg}$) von Signal (Untergrund) bei Anwendung aller Kriterien zu Signal (Untergrund) ohne ebenjenes Kriterium berechnet. Die Ergebnisse dieser Berechnungen sind in Tabelle 4.3 aufgeführt. Am Beispiel der Selektion der Eigenzeit $\tau(B_d^0)$ soll noch einmal deutlich gemacht werden, wie die Tabelle zu lesen ist: Im Vergleich zur Anwendung aller Kriterien (S/B = 4.24) ist das Signal-zu-Untergrund-Verhältnis ohne die Selektion anhand der Eigenzeit mit 2,71 deutlich schlechter. Während dieses Kriterium von 95,5% des Signals passiert wird, ist dies nur bei 61,0% des Untergrunds der Fall. Damit wird man fast 40% des Untergrunds los, ohne $\epsilon_{\rm sig}$ Signal wegzuwerfen. Anhand der Werte in Tabelle 4.3 sieht man, dass dieses Kriterium das effektivste ist. Bei drei der Kriterien sieht man keine Änderung im Vergleich zur Anwendung aller Kriterien. Bei der weiteren Einschränkung der B_d^0 -Masse ist dies nicht weiter verwunderlich, da sich die Form der Massenverteilung nicht ändert, sondern nur an den Rändern abgeschnitten wird. Die Selektionen auf $\sigma_{\tau}(B_d^0)$ und $\frac{l}{\sigma_l}(K_s^0)$ sind nur schwache Kriterien, die zwar minimal selektieren, dies bei der angegebenen Genauigkeit aber nicht sichtbar wird. An dieser Stelle soll betont werden, dass man aus Tabelle 4.3 nicht generell schließen kann, welche Kriterien sehr effektiv sind und welche man

 $\frac{\sigma_{\tau}}{\frac{l}{\sigma_{l}}}(K_{s}^{0}) > 5$

alle angewandt

 $|M(\pi^+\pi^-) - M(K_s^0)| \in [475,520] \text{MeV}$

Internation esignate signate and enkg rate entering				
ausgelassenes Kriterium	S/B	$\epsilon_{ m sig}$	$\epsilon_{ m bkg}$	
$M(B_d^0) \in [5170, 5420] \text{MeV}$	4,24	1,000	1,000	
$\tau(B_d^0) > 0.3 \mathrm{ps}$	2,71	0,955	0,610	
$\sigma_{\tau}(B_d^0) < 0.2 \mathrm{ps}$	4,24	1,000	1,000	
$\frac{\chi_{DTF(B+PV)}^2}{\frac{\text{nDof}}{\text{nDof}}}(B_d^0) < 5$ $\frac{\chi_{IP}^2}{\frac{\text{nDof}}{\text{nDof}}}(B_d^0) < 20$	3,58	0,984	0,831	
$\frac{\chi_{IP}^2}{\text{nDof}}(B_d^0) < 20$	3,67	0,992	0,860	
$\frac{\chi_{IP}^2}{\text{nDof}}(B_d^0)$ des nächstbesten PV > 50	3,50	0,979	0,809	
$\frac{\chi^2_{vtx}}{\text{nDof}}(J/\Psi) < 11$	4,19	0,995	0,982	
$ M(\mu^+\mu^-) - M(J/\Psi) \in [3030,3165]$ MeV	4,05	0,997	0,953	

4,18

4,24

3,37

4,24

0,995

1,000

0,985

1,000

0,982

1,000

0,782

1,000

Tabelle 4.3: Berechnung des Signal-zu-Untergrund-Verhältnisses S/B sowie der Effizienzen $\epsilon_{\rm sig}$ für Signal und $\epsilon_{\rm bkg}$ für Untergrund

eigentlich gar nicht benötigt. Hierzu bedürfte es eines Vergleiches der Kriterien mit dem Datensatz vor dem Stripping. Dieses stand leider nicht zur Verfügung, sodass nur der relative Vergleich der Zusatzkriterien mit dem Datensatz nach dem Stripping gemacht werden konnte, sodass manche Kriterien, bei denen es mengenmäßige Überschneidungen mit Kriterien im Stripping gibt, als unnötig erscheinen.

Bester Kandidat

Es ist äußerst unwahrscheinlich, dass es mehrere $B_d^0 \to J/\Psi K_s^0\text{-Zerf\"{a}lle}$ in einem Ereignis gibt. Jedoch kann es vorkommen, dass es mehr als ein rekonstruiertes B_d^0 im Ereignis gibt. Da aber nur ein B_d^0 am Zerfall beteiligt ist, wird der beste Kandidat anhand des kleinsten χ^2_{DTF}/nDoF des DecayTreeFit identifiziert [1].

Geisterspuren

Für die Daten aus 2012 gibt es ein neues Kriterium, das in der Analyse der 2011 Daten ([1]) noch nicht zur Verfügung stand und deshalb hier gesondert betrachtet wird: Die Analysesoftware gibt nun für die Pionen- und Myonenspuren eine Wahrscheinlichkeit an, dass es sich bei dieser Spur nur um eine Geisterspur handelt. Dies bedeutet, dass der Spurrekonstruktionsalgorithmus diversen Detektormessungen eine Spur zuordnet, die nichts miteinander zu tun haben. Bei der Suche nach einer Schranke für dieses Kriterium wurde 0,5 gewählt, denn ist die Wahrscheinlichkeit kleiner als 0,5, dann ist es wahrscheinlicher, dass es sich auch wirklich um eine Spur handelt, als dass es eine Geisterspur ist.

Wendet man dieses Kriterium auf Myonen an, so erhält man die Effizienzen $\epsilon_{\text{sig}} = 0,999 \text{ und } \epsilon_{\text{bkg}} = 0,978$. Damit ist es bei Weitem nicht so effektiv wie beispielsweise die Eigenzeitselektion, leistet aber dennoch einen Beitrag zur Bereinigung des Datensatzes.

Im Falle von Pionen kommt es zu Problemen. Eine Schranke bei 0,5 führt hier zu $\epsilon_{\rm sig}=0,660$ und $\epsilon_{\rm bkg}=0,561$. Leider geht deutlich zu viel Signal verloren. Es hat sich zudem herausgestellt, dass bei "Downstream-Pionen"die Wahrscheinlichkeitsberechnung in der Analysesoftware nicht korrekt kalibriert wurde und notwendige Korrekturen bei der Erstellung dieses Datensatzes nicht berücksichtigt wurden. Daher sind die zur Verfügung gestellten Werte nicht aussagekräftig und auf eine Selektion mittels der Wahrscheinlichkeit einer Geisterspur de Pions wird verzichtet.

Fitbereiche

In den Analysen werden beim Fit die Massenbereiche zusätzlich eingeschränkt. Bei der Bestimmung der Detektorauflösung werden J/Ψ im Bereich [3035, 3160]MeV betrachtet, im regulären Fit wird nur B_d^0 -Kandidaten im Bereich [5230, 5330]MeV berücksichtigt.

4.2 Verfügbare Statistik

Nach Anwendung aller Selektionskriterien stehen insgesamt 62184 Signalkandidaten zur Verfügung. Für diese Analyse ist essentiell, dass der Flavour der Mesonen $(B_d^0, \overline{B_d^0})$ zum Zeitpunkt t=0 bekannt ist. Hierzu gibt es entsprechende Algorithmen, denen es gelingt, 20109 Signalkandidaten einen Anfangsflavour zuzuordnen. Dieser Prozess wird auch "Favour Tagging" genannt. Mehr dazu findet sich in Kapitel 5.4.2. Die Zahl der Signalkandidaten wurde mit Hilfe eines Fits an die rekonstruierte B_d^0 -Masse bestimmt (siehe Kap. 5.3), dessen Ergebnis in Abbildung 4.1 dargestellt ist.

Abbildung 4.1: Fit der rekonstruierten B_d^0 -Masse zur Bestimmung der Zahl an Signalkandidaten. Detaillierte Ergebnisse finden sich in Kapitel 5.3.

Kapitel 5

Analyse

Um aus einem Datensatz den "wahren" Wert diverser Parameter abzuschätzen, gibt es verschiedene Möglichkeiten. In dieser Analyse wird die Methode sFit verwendet. Diese stellt eine modifizierte Variante des "Unbinned Maximum Likelihood" Fits dar. Unbinned meint, dass das Fitergebnis nicht von der Wahl der Säulen (engl. bins) eines Histogramms abhängt. Die Modifikation des Fits besteht in der Verwendung der aus der $_s\mathcal{P}lot$ -Technik bekannten Gewichten, den sWeights. Dadurch ist es nicht nötig, den Untergrund zu modellieren, da dieser aus statistischen Gründen annihiliert wird.

5.1 Maximum Likelihood Funktion

Die Maximum Likelihood Methode ist eine weit verbreitete Methode, um Parameter abzuschätzen. Für eine gegebene Wahrscheinlichkeitsdichtefunktion (WDF) $\mathcal{P}(\vec{x}_e; \vec{\lambda})$ mit einem unbekannten Satz Parametern $\vec{\lambda}$ und N unabhängigen Messungen \vec{x}_e ist die Likelihood-Funktion als

$$\mathcal{L}(\vec{\lambda}) = \prod_{e=1}^{N} \mathcal{P}(\vec{x}_e; \vec{\lambda})$$
 (5.1)

definiert. Der Satz an Parametern, der \mathcal{L} maximiert, gilt als beste Abschätzung von $\vec{\lambda}$. In der Praxis jedoch minimiert man äquivalent $-\ln \mathcal{L}$. Gewöhnlicherweise berücksichtigt man möglichen Untergrund, indem man die WDF in einen Signalund Untergrundanteil aufteilt:

$$\mathcal{P}(\vec{x}_e; \vec{\lambda}) = f_{siq} \mathcal{P}_{siq}(\vec{x}_e; \vec{\lambda}) + (1 - f_{siq}) \mathcal{P}_{bkq}(\vec{x}_e). \tag{5.2}$$

 f_{sig} bezeichnet hierbei den Signalanteil, \mathcal{P}_{sig} , \mathcal{P}_{bkg} die WDF des Signals bzw. Untergunds. Die Schwierigkeit besteht nun darin, den Untergrund geeignet zu modellieren. Dazu bedarf es MonteCarlo-Studien oder der Verwendung separater Massenseitenbänder. [18]

5.2 Fitmethode sFit

Der sFit bietet nun eine Möglichkeit, ohne genaue Kenntnis des Hintergrunds die wahre Verteilung des Signalanteils von \vec{x} zu rekonstruieren. Dazu bedarf es einer weiteren Variable \vec{y} , die vollkommen unkorreliert ist, also sowohl für Signal als auch Untergrund. In dieser Analyse wird später $\vec{y} = y = M(B_d^0)$ die rekonstruierte Masse der B_d^0 -Mesonen sein, $\vec{x}^T = (t, d, \eta)^T$, die Variablen, die zur Bestimmung von $S_{J/\Psi K_s^0}$ notwendig sind. Was diese im Einzelnen bedeuten, wird später behandelt.

Sei N_s die Zahl an Signal- und N_b die Zahl an Untergrund-Ereignissen eines Datensatzes. Die Verteilungen von Signal und Untergund der Variablen y seien mit $F_s(y)$ bzw. $F_b(y)$ bezeichnet und all diese vier Größen seien bekannt. Dann stellt die ${}_s\mathcal{P}lot$ -Technik ([19]) mit den sogenannten "sWeights"

$$W_s(y) = \frac{V_{ss}F_s(y) + V_{sb}F_b(y)}{N_sF_s(y) + N_bF_b(y)}$$
(5.3)

einen Formalismus zur Verfügung, um durch Gewichtung der Ereignisse Signal vom Untergrund zu bereinigen. Die Matrix V_{ij} bezeichnet dabei das Inverse der Kovarianzmatrix

$$V_{ij}^{-1} = \sum_{e=1}^{N} \frac{F_i(y_e)F_j(y_e)}{(N_s F_s(y_e) + N_b F_b(y_e))^2}.$$
 (5.4)

In der $_s\mathcal{P}lot$ -Technik werden die Gewichte $W_s(y_e)$ berechnet und anschließend ein Histogramm mit den Messungen x_e mit der entsprechenden Gewichtung gefüllt, um die wahre Verteilung von x zu erhalten. Beim sFit wird nun die Likelihood Funktion gemäß

$$\mathcal{L}_W(\vec{\lambda}) = \prod_{e=1}^N \mathcal{P}(\vec{x}_e; \vec{\lambda})^{W_s(y_e)}$$
(5.5)

gewichtet. Die Erwartung ist, dass der Untergrundanteil auf statistischer Grundlage eliminiert wird und der wahre Wert von $\vec{\lambda}$ durch Maximierung von $\mathcal{L}_W(\vec{\lambda})$ abgeschätzt werden kann [18].

5.3 Fit der Massenverteilung und Bestimmung der sWeigths

Wie bereits in Kapitel 5.2 erwähnt, wird die rekonstruierte Masse zur Berechnung der sWeights herangezogen. Dazu wird ein klassischer Maximum Likelihood Fit durchgeführt, d.h. Signal und Untergrund werden gemäß Gleichung 5.2 gesondert beschrieben. Für den Signalteil der Massenverteilung wird ein doppelter Gauß der Form

$$\mathcal{P}_{m,S}(m; \vec{\lambda}_{m,S}) = f_{S,m}\mathcal{G}(m; m_{B_2^0}, \sigma_{m,1}) + (1 - f_{S,m})\mathcal{G}(m; m_{B_2^0}, \sigma_{m,2})$$
(5.6)

mit gemeinsamen Mittelwert $m_{B_d^0}$, unterschiedlichen Breiten $\sigma_{m,1}$ und $\sigma_{m,2}$ sowie dem relativen Beitrag $f_{S,m}$ der beiden Gauß-Kurven angenommen. Die Normierung ist dabei bereits in \mathcal{G} enthalten. Der Untergrund wird durch die Exponentialfunktion

$$\mathcal{P}_{m;B}(m;\vec{\lambda}_{m;B}) = \frac{1}{\mathcal{N}_{m;B}} e^{-\alpha_m m}$$
(5.7)

modelliert. $\mathcal{N}_{m;B}$ bezeichnet dabei die Normierung auf den im Fit verwendeten Massenbereich $m \in [5230,5330]$ MeV. In [1] wurde anhand von MonteCarlo-Studien gezeigt, dass in diesem Fitbereich kein störender Untergund vorhanden ist, der besonders berücksichtigt werden müsste. Damit lautet die gesamte Wahrscheinlichkeitsdichtefunktion der Massenverteilung

$$\mathcal{P}_{m}(m; \vec{\lambda}_{m}) = f_{siq} \mathcal{P}_{m;S}(m; \vec{\lambda}_{m;S}) + (1 - f_{siq}) \mathcal{P}_{m;B}(m; \vec{\lambda}_{m;B}), \tag{5.8}$$

wobei f_{sig} den Anteil des Signals angibt. Der Fit liefert für den Parametersatz $\vec{\lambda}_m^T = (f_{sig}, f_{S,m}, m_{B_d^0}, \sigma_{m,1}, \sigma_{m,2}, \alpha_m)^T$ die in Tabelle 5.1 aufgeführten Resultate. Alle Parameter wurden dabei im Fit laufen gelassen.

Tabelle 5.1: Ergebnisse des Massenfits zur Bestimmung der sWeights

Parameter		Wert		
f_{sig}		$0,628 \pm 0,017$		
$f_{S,m}$		$0,59 \pm 0,23$		
$m_{B_d^0}$	[MeV]	$5281,55\pm0,12$		
$\sigma_{m,1}$	[MeV]	$8,14 \pm 0,98$		
$\sigma_{m,2}$	[MeV]	$14,3\pm 3,4$		
α_m	$[\mathrm{MeV}^{-1}]$	$0,00143\pm0,00046$		

Des Weiteren zeigt Abbildung 5.1 die Massenverteilung mit Fit, die dazugehörigen Pulls sowie die berechneten sWeights. Pulls sind die auf den Fehler des Messwerts normierten Residuen. Für eine beliebige Messgröße y(x) werden sie berechnet über

$$pull(x) = \frac{y_{gemessen} - y_{gefittet}}{\sigma_y}.$$
 (5.9)

Man erwartet, dass die Pulls bei einem "guten" Fit zufällig und gaußverteilt um die Nulllinie streuen.

5.4 Fit der Eigenzeitverteilung

In diesem Abschnitt soll nun die Wahrscheinlichkeitsdichtefunktion der B_d^0 -Eigenzeitverteilung entwickelt werden, die letztendlich zur Bestimmung der Asymmetrie-Amplitude $S_{J/\Psi K_s^0}$ verwendet wird. Aus den Gleichungen 3.16 und 3.17 geht für

Abbildung 5.1: Ergebnis des Massenfits. Gezeigt wird die Verteilung der rekonstruierten B_d^0 -Mesonen inklusive des Fits (oben), die zum Fit gehörigen Pulls (mitte) sowie ein zweidimensionales Histogramm mit den berechneten sWeights (unten).

 $|\lambda_f|=1$ die theoretische Eigenzeitverteilung für ein B_d^0 bzw. $\overline{B_d^0}$ hervor:

$$\mathcal{P}_{\text{wahr}}(t, d_{\text{wahr}}) = \frac{1}{\mathcal{N}_t} e^{-t/\tau} \left[1 - d_{\text{wahr}} S_{J/\Psi K_s^0} \sin(\Delta m_d t) \right].$$
 (5.10)

Durch die Einführung des Variablen d_{wahr} wurden beide Verteilungen zu einer zusammengefasst. Dieses steht für den wahren Flavour des Mesons zum Zeitpunkt t=0. Ein anfängliches B_d^0 wird dabei durch $d_{\text{wahr}}=1$ beschrieben, ein $\overline{B_d^0}$ durch $d_{\text{wahr}}=-1$. Die Normierung ist so gewählt, dass die Bedingung

$$\sum_{d_{\text{wahr}}} \int_{t_{min}}^{t_{max}} dt \mathcal{P}_{\text{wahr}}(t, d_{\text{wahr}}) = 1$$
 (5.11)

erfüllt wird. Aufgrund zahlreicher detektor- und experimentbedingter Effekte muss $\mathcal{P}_{\text{wahr}}(t, d_{\text{wahr}})$ modifiziert werden, bevor es im Fit verwendet werden kann.

5.4.1 Produktionsasymmetrie

Im Experiment werden B_d^0 - und $\overline{B_d^0}$ -Mesonen nicht in exakt gleicher Zahl produziert. Über die Produktionsraten $R_{\overline{B_d^0}}$ für ein $\overline{B_d^0}$ bzw. $R_{B_d^0}$ für ein B_d^0 ist die Produktionsasymmetrie definiert durch:

$$\mu = A_P = \frac{R_{\overline{B_d^0}} - R_{B_d^0}}{R_{\overline{B_d^0}} + R_{B_d^0}}.$$
 (5.12)

Anhand dieser Definition muss der Anteil an B_d^0 bzw. $\overline{B_d^0}$ an der gesamten WDF gewichtet werden. Unter Verwendung des Kronecker-Deltas δ_{ij} lässt sich die WDF daher schreiben als:

$$\widetilde{\mathcal{P}}_{\text{wahr}}(t, d_{\text{wahr}}) = \delta_{d_{\text{wahr}}, 1}(1 - \mu)\mathcal{P}_{\text{wahr}}(t, 1) + \delta_{d_{\text{wahr}}, -1}(1 + \mu)\mathcal{P}_{\text{wahr}}(t, -1)
= (1 - d_{\text{wahr}}\mu)\mathcal{P}_{\text{wahr}}(t, d_{\text{wahr}})
= \frac{1}{\mathcal{N}_{t}} e^{-t/\tau} \left[1 - d_{\text{wahr}}\mu - (d_{\text{wahr}} - \mu)S_{J/\Psi K_{s}^{0}} \sin(\Delta m_{d}t) \right].$$
(5.13)

Der Wert der Produktionsasymmetrie μ wurde in einigen Studien gemessen. Es wird mit

$$\mu = -0.015 \pm 0.013 \tag{5.14}$$

derselbe Wert wie in der LHCb Analyse aus 2011 [1] verwendet.

5.4.2 Bestimmung des Produktionsflavours der B_d^0 -Mesonen (Flavour Tagging)

Die Messung der indirekten \mathcal{CP} -Verletzung setzt voraus, dass der anfängliche Flavour des B_d^0 -Mesons bekannt ist. Den Prozess, den Produktionsflavour eines B_d^0 -Mesons zu bestimmen, also zu überprüfen, ob ein ein b oder \bar{b} Quark vorlag, nennt man Flavour Tagging. Hierzu werden sogenannte Tagging Algorithmen angewandt, die allerdings nur mit einer bestimmten Effizienz arbeiten. Von N Kandidaten kann bei N_U Kandidaten kein Anfangsflavour zugeordnet werden, bei N_W ist er falsch und bei N_R ist er richtig. Ein Maß für die Güte des Algorithmus ist die Tagging Effizienz

$$\epsilon_{\text{tag}} = \frac{N_R + N_W}{N_R + N_W + N_U} \tag{5.15}$$

und die sog. Mistagwahrscheinlichkeit

$$\omega = \frac{N_W}{N_R + N_W},\tag{5.16}$$

die die Wahrscheinlichkeit angibt, den Signalkandidaten den falschen Flavour zuzuordnen. Die Größe die es bei solchen Algorithmen zu maximieren gilt, ist die effektive Tagging Effizienz

$$\epsilon_{\text{eff}} = \epsilon_{\text{tag}} (1 - 2\omega)^2 =: \epsilon_{\text{tag}} \mathcal{D}^2.$$
 (5.17)

 \mathcal{D} wird auch Verunreinigungsfaktor genannt. Die effektive Tagging Effizienz gibt an, auf wie viel Prozent die Statistik effektiv reduziert wird. Beträgt zum Beispiel $\epsilon_{\text{eff}} = 2\%$, dann ist es genau so gut 50000 Signalkandidaten mit fehlerbehaftetem Flavour Tagging oder 1000 Signalkandidaten, bei denen der wahre Produktionsflavour bekannt ist. Bei dem in dieser Arbeit verwendeten Flavour Tagging Algorithmus handelt es sich um einen sog. Opposite Side Tagger (OST). Dieser nutzt aus, dass die meisten b Quarks in Quark-Antiquark Paaren erzeugt werden. Dabei rekonstruiert der OST pertiell die Zerfallsreste des entsprechenden Quark-Partners des B_d^0 -Mesons. Der Algorithmus berechnet aus kinematischen und geometrischen Daten mit Hilfe eines neuronalen Netzes eine Fehlerwahrscheinlichkeit $\eta^{OS} \in [0;0,5]$ für seine Flavour-Zuweisung, die im folgenden mit d bezeichnet wird. [1]

Der Output des neuronalen Netzes η^{OS} muss allerdings noch auf anderen Zerfallskanälen kalibriert werden. Dies ist allerdings nicht Bestandteil dieser Arbeit, sondern wurde [20] entnommen. Die Kalibrationsfunktion für η^{OS} lautet:

$$\omega(\eta^{OS}) = p_1 \left(\eta^{OS} - \left\langle \eta^{OS} \right\rangle \right) + p_0. \tag{5.18}$$

 $\left\langle \eta^{OS} \right\rangle$ steht dabei für das arithmetische Mittel der η^{OS} -Verteilung. Aus [20] erhält

man

$$p_0 = 0.382 \pm 0.003 \tag{5.19}$$

$$p_1 = 0.981 \pm 0.024 \tag{5.20}$$

$$\left\langle \eta^{OS} \right\rangle = 0.382 \tag{5.21}$$

Geladenen Teilchen können je nach Ladung zum Teil sehr unterschiedlich mit dem Detektormaterial reagieren. Daher kommt es auch zu unterschiedlichen Rekonstruktionseffizienzen für B_d^0 und $\overline{B_d^0}$. Entsprechend müssen zwei Kalibrationsfunktionen

$$\omega^{B_d^0}(\eta^{OS}) = p_1(B_d^0) \left(\eta^{OS} - \left\langle \eta^{OS} \right\rangle \right) + p_0(B_d^0), \tag{5.22}$$

$$\omega^{\overline{B_d^0}}(\eta^{OS}) = p_1(\overline{B_d^0}) \left(\eta^{OS} - \left\langle \eta^{OS} \right\rangle \right) + p_0(\overline{B_d^0}) \tag{5.23}$$

berücksichtigt werden. Für die Differenzen der Kalibrationsparameter liefert [20]

$$\Delta p_0 = p_0(B_d^0) - p_0(\overline{B_d^0}) = 0.0045 \pm 0.0053 \tag{5.24}$$

$$\Delta p_1 = p_1(B_d^0) - p_1(\overline{B_d^0}) = 0.001 \pm 0.05. \tag{5.25}$$

Während p_1 für B_d^0 und $\overline{B_d^0}$ sehr gut übereinstimmen, muss man das bei p_0 differenzierter betrachten. Auch hier ist man zwar im 1σ -Bereich kompatibel, anderen Studien der LHCb-Gruppe zeigen jedoch, dass die Tagging Asymmetrie Δp_0 berücksichtigt werden sollte, was auch hier geschieht. Dazu werden ω und Δp_0 so umdefiniert, dass

$$\Delta p_0 = \omega^{B_d^0} - \omega^{\overline{B_d^0}},\tag{5.26}$$

$$\omega^{B_d^0} = \omega + \frac{\Delta p_0}{2},\tag{5.27}$$

$$\omega^{\overline{B_d^0}} = \omega - \frac{\Delta p_0}{2} \tag{5.28}$$

gilt. Aufgrund der Fehlerwahrscheinlichkeit beim Tagging weicht die gemessene Eigenzeitverteilung von der tatsächlichen deutlich ab. Bei einem gemessenen B_d^0 (d=1) handelt es sich in $(1-\omega^{B_d^0})\%$ der Fälle auch tatsächlich um ein B_d^0 ($d_{wahr}=1$), in $\omega^{\overline{B_d^0}}\%$ der Fälle jedoch um ein wahres $\overline{B_d^0}$ ($d_{wahr}=-1$). Damit nimmt die Wahrscheinlichkeitsdichtefunktion der gemessenen Verteilung die Form

$$\widetilde{\mathcal{P}}_{\text{gem.}}(t,d,\omega) = \delta_{d,1} \left[(1 - \omega^{B_d^0}) \widetilde{\mathcal{P}}_{\text{wahr}}(t,d_{\text{wahr}} = 1) + \omega^{\overline{B_d^0}} \widetilde{\mathcal{P}}_{\text{wahr}}(t,d_{\text{wahr}} = -1) \right]
+ \delta_{d,-1} \left[(1 - \omega^{\overline{B_d^0}}) \widetilde{\mathcal{P}}_{\text{wahr}}(t,d_{\text{wahr}} = -1) + \omega^{B_d^0} \widetilde{\mathcal{P}}_{\text{wahr}}(t,d_{\text{wahr}} = 1) \right]
= \frac{1}{\mathcal{N}_t} e^{-t/\tau} \left\{ 1 - d\mu (1 - 2\omega) - d\Delta p_0
- \left[d(1 - 2\omega) - \mu (1 - d\Delta p_0) \right] S_{J/\Psi K_s^0} \sin(\Delta m_d t) \right\}$$
(5.29)

Effektive Tagging Effizienz

Zum Ende dieses Abschnittes soll nun noch die effektive Tagging Effizienz bestimmt werden. Dazu wird zunächst die Tagging Effizienz berechnet. Es wird jeweils ein Massenfit nach Kapitel 5.3 mit allen Kandidaten und nur mit Kandidaten, denen ein Flavour zugeordnet werden konnte durchgeführt. Aus beiden Fits wird der Anteil des Signals bestimmt und man erhält:

$$\epsilon_{\text{tag}} = (29,43 \pm 0.85)\%.$$
 (5.30)

Es bleibt die Bestimmung von $\mathcal{D} := 1 - 2\omega$. Dazu wird zunächst die η^{OS} -Verteilung der Daten auf ω umkalibriert. Im Anschluss wird das gewichtete Mittel von $1 - 2\omega$ berechnet. Als Gewichte dienen zur Extrahierung des Signals die sWeights, die man aus dem zuvor durchgeführten Massenfit berechnet. Dies führt zu:

$$\mathcal{D} = 0.2474 \pm 0.0095. \tag{5.31}$$

Die Fehlerrechnung für \mathcal{D} wird in [21] beschrieben. Aus beiden Werten folgt dann die effektive Tagging Effizienz von

$$\epsilon_{\text{eff}} = \epsilon_{\text{tag}} \mathcal{D}^2 = (1.80 \pm 0.15)\%$$
 (5.32)

5.4.3 Eigenzeitauflösung und -akzeptanz

Ein weiterer Effekt, der noch berücksichtigt werden muss, ist die endliche, Eigenzeitauflösung des Detektors. Dies wird dadurch deutlich, dass auch Ereignisse mit negativer Eigenzeit rekonstruiert werden. Da diese unphysikalisch sind und u.a. auf Auflösungseffekte zurückzuführen sind, werden genau diese Ereignisse zur Bestimmung einer Auflösungsfunktion verwendet. Es handelt sich dabei zwar nur um eine Näherung der Eigenzeitauflösung, wie aber später gezeigt wird, ist das nicht relevant für das Endergebnis von $S_{J/\Psi K_s^0}$ (siehe Kap. 6.5). Wie in den Kapiteln 4.1.1 und 4.1.2 bereits erwähnt wurde, werden hierzu auf den Datensatz die High Level Trigger 2 Linie Hlt2DiMuonJPsiDecision sowie die Stripping Linie BetaSBd2JPsiKsPrescaledLine angewandt. Diese selektiert nicht auf die Eigenzeit des Teilchen, hat dafür weniger Statistik und wurde speziell für diesen Zweck eingerichtet.

In dieser Arbeit wird das Modell der mittleren Eigenzeitauflösung verwendet. Als Akzeptanzfunktion wird ein dreifacher Gauß der Form

$$\mathcal{R}(t) = \sum_{i=1}^{3} \frac{f_i}{\sqrt{2\pi}\sigma_i} e^{-\frac{t^2}{2\sigma_i^2}}$$
 (5.33)

mit dem gemeinsamen Mittelwert 0, den unterschiedlichen Breiten σ_i , sowie den relativen Anteilen f_i der einzelnen Gauß-Funktionen gewählt. Dabei ist $\sum f_i = 1$

zu beachten. Somit erübrigt sich, f_3 als eigenständigen Parameter zu betrachten, es wird $f_3=1-f_1-f_2$ verwendet. Um Signal von Untergrund zu trennen, wird ein sFit angewandt. Da der Zerfallsvertex der hier behandelten B_d^0 -Mesonen hinreichend gut durch den J/Ψ -Vertex festgelegt wird, wird die Analyse nur mit J/Ψ durchgeführt und deshalb zur Bestimmung der sWeights die rekonstruierte J/Ψ -Masse herangezogen (siehe [?]). Entgegen dem Massenfit der B_d^0 -Mesonen aus Gleichung 5.8 wird hier als Wahrscheinlichkeitsdichtefunktion die Summe aus einer Gauß- und einer CrystalBall-Funktion verwendet. Die Crystallball-Funktion hat eine gaußförmige Basis, aber einen zu kleineren Werten als dem Mittelwert hin asymmetrischen, abgeflachten Teil, der den nicht detektierbaren Energieverlust durch Photonabstrahlung berücksichtigt. Sie ist durch

$$\mathcal{CB}(m) = \frac{N}{\sigma\sqrt{2\pi}} \begin{cases} \exp(-\frac{(m-m_{B_d^0})^2}{2\sigma^2}), & \text{für } \frac{m-m_{B_d^0}}{\sigma} > -\alpha \\ \left(\frac{n}{|\alpha|}\right)^n \exp(-\frac{|\alpha|^2}{s}) \left(\frac{n}{|\alpha|} - |\alpha| - \frac{m-m_{B_d^0}}{\sigma}\right)^{-n} & \text{für } \frac{m-m_{B_d^0}}{\sigma} \leq -\alpha \end{cases}$$

$$(5.34)$$

definiert. Der Parameter α beschreibt dabei den Übergang vom gaußartigen Teil in den auf einer Potenzfunktion besierenden abgeflachten Teil [22]. Abbildung 5.2 zeigt sowohl das Ergebnis des Massenfits als auch den Fit der Auflösungsfunktion. Die erhaltenen Parameter der Eigenzeitauflösung sind in Tabelle 5.2 aufgeführt. Die

Tabelle 5.2: Ergebnisse des Fits der Eigenzeitauflösung

Para	meter	Wert		
σ_1	[ps]	$0,\!480\!\pm\!0,\!070$		
σ_2	[ps]	$0,04396\pm0,00094$		
σ_3	[ps]	$0,0932\pm0,0034$		
f_1		$0,00329\pm0,00099$		
f_2		$0,739 \pm 0,027$		
$\sigma_{ ext{eff}}$	[ps]	$0,0665\pm0,0013$		

effektive Auflösung beträgt

$$\sigma_{\text{eff}} = \sqrt{\sum_{i=1}^{3} f_i \sigma_i^2} = (0.0665 \pm 0.0013) \text{ps.}$$
 (5.35)

Im Fit wird die Auflösung dadurch berücksichtigt, dass die Wahrscheinlichkeitsdichtefunktion der Eigenzeitverteilung $\widetilde{\mathcal{P}}_{\text{gem.}}(t,\omega)$ (siehe Gleichung 5.29) mit der Auflösungsfunktion $\mathcal{R}(t)$ gefaltet wird.

Ein weiterer Punkt, der berücksichtigt werden muss, ist die Eigenzeitakzeptanz des Detektors. In der Analyse aus 2011 [1] wurde gezeigt, dass hier keine großen

Abbildung 5.2: Bestimmung der Auflösung: Die linke Hälfte zeigt den für die Bestimmung der sWeights durchgeführten Fit an die rekonstruierte J/Ψ -Masse (oben) und die dazugehörigen Pulls (unten), die rechte Hälfte den Fit der Auflösungsfunktion (oben) und die entsprechenden Pulls (unten). Letztere scheinen nicht optimal zu sein, die Schwankungen sind recht groß, es wird jedoch in Kapitel 6.5 gezeigt, dass eine präzise Kenntnis der Auflösung nicht von Nöten ist.

Einflüsse erwartet werden, daher wird die Akzeptanzfunktion

$$\epsilon(t) = 1 \tag{5.36}$$

gesetzt. Eine systematische Analyse und eine Abschätzung des Einflusses dieser Näherung findet sich in Kapitel 6.3.

5.4.4 Fitfunktion

Kombiniert man nun alle Effekte, die im vorigen Kapitel 5.4, aufgeführt und beschrieben wurden, so nimmt die Wahrscheinlichkeitsdichtefunktion für die Eigenzeitverteilung der B_d^0 -Mesonen die Form

$$\mathcal{P}_{\text{gem.}}(t,d,\eta) = \epsilon(t) \left[\widetilde{\mathcal{P}}_{\text{gem.}}(t',d,\eta) \otimes \mathcal{R}(t-t') \right]$$

$$= \frac{1}{\mathcal{N}_t} \left[e^{-t'/\tau} \left\{ 1 - d\mu(1-2\omega) - d\Delta p_0 - \left[d(1-2\omega) - \mu(1-d\Delta p_0) \right] S_{J/\Psi K_s^0} \sin(\Delta m_d t') \right\} \right] \otimes \mathcal{R}(t-t')$$
(5.37)

an. Durch den Fit dieser Funktion erhält man eine Abschätzung für den \mathcal{CP} -Parameter $S_{J/\Psi K_s^0}$. In Gleichung 5.37 bezeichnen t' die wahre Eigenzeit, t die rekonstruierte Eigenzeit, t die B_d^0 -Lebensdauer, Δm_d die Oszillationsfrequenz des B_d^0 -Mesons, μ die Produktionsasymmetrie sowie d den durch die Flavour-Tagging Algorithmen bestimmten Anfangszustand des B_d^0 . Dabei gilt für B_d^0 -Mesonen d=1, für $\overline{B_d^0}$ d=-1. Die Mistagwahrscheinlichkeit des Flavour Taggings ω ist wiederum abhängig von der von den Algorithmen vorhergesagten Mistagwahrscheinlichkeit η gemäß

$$\omega(\eta) = p_1 \left(\eta - \langle \eta \rangle \right) + p_0. \tag{5.38}$$

Die \mathcal{CP} -Asymmetrie wird ebenfalls durch die Eigenzeitauflösung sowie fehlerhaftes Flavour Tagging beeinflusst, hier gilt für die Messung [1]

$$\mathcal{A}_{\mathcal{CP}}^{\text{meas}}(t) = (1 - 2\omega) S_{J/\Psi K_{\bullet}^{0}} \sin(\Delta m_{d} t') \otimes \mathcal{R}(t - t')$$
 (5.39)

5.5 Ergebnisse

Im Fit der Eigenzeitverteilung bleiben nicht alle Parameter frei. Fixiert werden zum einen die gesondert bestimmten Parameter der Eigenzeitauflösung (siehe Tab. 5.2) und der Flavour-Tagging Kalibrationsparameter $\langle \eta \rangle = 0.382$, da dieser fehlerlos definiert ist¹. Des Weiteren werden einige Parameter gaußisch eingeschränkt, um

¹Etwaige Fehler sind in den Unsicherheiten von p_0 und p_1 enthalten.

deren statistische Unsicherheiten im Fit zu berücksichtigen. Dies sind die Produktionasymmetrie μ sowie die Kalibrationsparameter p_0 , p_1 und Δp_0 . Die verwendeten Werte sind aus [1] für μ beziehungsweise [20] für p_0 , p_1 und Δp_0 entnommen und in Tabelle 5.3 aufgeführt.

Tabelle 5.3: Parameter, die im Fit entsprechend ihrer Unsicherheiten gaußisch eingeschränkt werden.

Parameter	Wert
p_0	$0,382\pm0,003$
p_1	$0,981 \pm 0,024$
Δp_0	$0,0045\pm0,0053$
μ	$-0,015\pm0,013$

Als Parameter, die frei laufen, bleiben dementsprechend die \mathcal{CP} -Asymmetrie Amplitude $S_{J/\Psi K_s^0}$, die Lebensdauer τ sowie die Oszillationsfrequenz Δm_d übrig. Während der gesamten Analyse wurde der Parameter $S_{J/\Psi K_s^0}$ verdeckt (Fachjargon: "geblindet"). Dabei wird das eigentliche Ergebnis um einen dem Experimentator unbekannten Wert verschoben. Diese Verschiebung wird mittels einer Zeichenkette berechnet. Dies soll verhindern, dass sich der Experimentator an älteren Messungen oder dem Weltmittelwert etc. orientiert und dahingehend seine Analyse beeinflusst. Erst nach Beendigung aller systematischen Studien (siehe Kapitel 6) und beim Verfassen dieser Arbeit wurde die wahre Abschätzung von $S_{J/\Psi K_s^0}$ aufgedeckt. Diese sei hier schon einmal vorweggenommen:

$$S_{J/\Psi K^0} = 0.711 \pm 0.063$$
 (5.40)

Alle Resultate des Fits sind in Tabelle 5.4 aufgeführt. Die gemessene Eigenzeitverteilung sowie die dazugehörigen Fitkurven sind in Abbildung 5.3 in Schwarz (für B_d^0) und in Rot $(\overline{B_d^0})$ dargestellt. Des Weiteren zeigt Abbildung 5.4 die \mathcal{CP} -Asymmetrie des Signals.

Abbildung 5.3: Ergebnis des Fits der Eigenzeitverteilung: Gemessene Eigenzeitverteilung der B_d^0 - (schwarz) bzw. $\overline{B_d^0}$ -Mesonen (rot) mit entsprechendem Fitergebnis gemäß Gleichung 5.37 und den Parametern aus Tabelle 5.4 (oben) sowie dazugehörige Pull-Verteilung (unten).

Tabelle 5.4: Ergebnisse des Fits der Eigenzeitverteilung. Die angegebenen Unsicherheiten sind statistische.

Parameter		Wert		
$\overline{S_{J/\Psi K_s^0}}$		$0,711 \pm 0,063$		
au	[ps]	$(1,498\pm0,017)$		
Δm_d	$[\mathrm{ps}^{-1}]$	$(0,474\pm0,034)$		
p_0		$0,3815\pm0,0030$		
p_1		$0,977 \pm 0,024$		
Δp_0		$0,0049\pm0,0050$		
μ		-0.020 ± 0.013		

Abbildung 5.4: Darstellung der \mathcal{CP} -Asymmetrie $\mathcal{A_{CP}}$ nach Definition aus Gleichung 3.18. Für die dazugehörige Kurve wurden die aus dem Eigenzeitfit erhaltenen Parameter in Gleichung (5.39) eingesetzt. Das grüne Band entspricht den $1\sigma^{\text{stat.}}$ Abweichungen von $S_{J/\Psi K_s^0}$ und Δm_d .

Kapitel 6

Abschätzung systematischer Unsicherheiten

Der Fitter liefert zwar eine statistische Unsicherheit auf $S_{J/\Psi K_s^0}$, allerdings ist eine Betrachtung der Systematik unerlässlich. Im Folgenden wird daher der Einfluss einiger Effekte auf das Fitergebnis untersucht und anschließend der systematische Fehler abgeschätzt.

6.1 Fitmethode

Es ist allgemein bekannt, dass die Parameterabschätzung der Maximum-Likelihood-Methode für eine große Zahl an Messwerten gegen den "wahren Wert" konvergiert, für wenig Statistik verfälscht sie jedoch das Ergebnis - sie produziert ein sogenanntes Bias. Um abzuschätzen, ob und in welchem Maße es zu einem Bias kommt, wird eine Toy Monte Carlo - Studie (kurz: Toy MC) durchgeführt. Dabei werden Daten zufällig der Massen- und Eigenzeit-WDF aus Gleichung (5.8) bzw. (5.37) folgend mit den gewünschten Parametern generiert und im Anschluss gefittet. Zur Generation der Massen- und Eigenzeitverteilung werden die aus den Fits erhaltenen Parameter verwendet (siehe Tabellen 5.1 und 5.4). Die einzige Ausnahme bildet $S_{J/\Psi K_0^0}$, da diese zum Zeitpunkt dieser Studie noch verdeckt war. Hier wurde mit $S_{J/\Psi K_{\nu}^{0}}=0.72$, der Resultat der Analyse aus 2011 ([1]), generiert. Entsprechend der Statistik im verwendeten Datensatz werden hier jeweils 20000 Ereignisse generiert. Durch mehrmaliges Wiederholen von Generation und Fit sollten die gefitteten Parameter am Ende mit der Größe des statistischen Fehlers gaußverteilt um die in der Generation verwendeten Parameter sein. Kommt es zu Abweichungen davon, so ist dies auf die Fitmethode oder eine fehlerhafte Implementation des Experimentators zurückzuführen. Um statistisch zuverlässige Aussagen treffen zu können, wurden in dieser Toy MC - Studie insgesamt 20000 Wiederholungen durchgeführt.

Abbildung 6.1 zeigt sowohl die Verteilung der gefitteten Amplitude $S_{J/\Psi K_s^0}$ als auch die Pulls, die sich mittels $(S_{J/\Psi K_s^0}^{\rm gefittet} - S_{J/\Psi K_s^0}^{\rm generiert})/\sigma^{\rm gefittet}$ berechnen lassen. Der Mittelwert der Amplitudenverteilung (links) $S_{J/\Psi K_s^0}^{\rm ToyMC} = 0,7234 \pm 0,0004$ weicht si-

Abbildung 6.1: Verteilung der aus der Toy MC Studie erhaltenen Amplituden $S_{J/\Psi K_s^0}$ (links) sowie die dazugehörigen Pulls (rechts)

gnifikant vom generierten Wert $S_{J/\Psi K_s^0} = 0.7200$ ab, es gibt also ein Bias. An der Pull-Verteilung lassen sich prinzipiell zwei Dinge beobachten:

1. An der Verschiebung des Pull-Mittelwertes $\mu=0.0522\pm0.0067$ von der Null sieht man deutlich, dass es - wie bereits erwähnt - einen kleinen, aber signifikanten Bias gibt. Indem dieser Bias mit der statistischen Unsicherheit aus dem Fitergebnis (siehe Gl. (5.40)) multipliziert wird, erhält man eine Abschätzung der aus der Fitmethode resultierenden Unsicherheit:

$$\delta S_{J/\Psi K_s^0}^{Fit} = 0.0522 \cdot 0.0626 = 0.0033 \tag{6.1}$$

2. Mit einem $\sigma=0.941\pm0.005$ ist die Pull-Verteilung signifikant zu schmal. Bei einer zufälligen Streuung der Werte wird $\sigma=1$ erwartet. Dies bedeutet, dass der Fit den statistischen Fehler um 5,6% überschätzt. Jenes Ergebnis kann später als Faktor zur Korrektur des statistischen Fehlers verwendet werden.

Ursachen des Bias und der Fehlerüberschätzung

Es bleibt zu klären, welche Ursachen zu dem Bias und der Fehlerüberschätzung führen. Wie bereits erwähnt, verfälscht die Likelihood-Methode für zu wenige Messwerte / Ereignisse die Parameterabschätzung. Demnach liegt die Vermutung nahe, dass im vorliegenden Datensatz zu wenig Ereignisse ("Statistik") vorhanden sind. Daher wurden weitere Toy MC Studien mit unterschiedlicher Anzahl an Teilchen pro Toy durchgeführt. Die Ergebnisse sind in Tabelle 6.1 aufgeführt und in Abbildung 6.2 nochmals visualisiert. Man sieht, dass das Bias mit erhöhter Statistik deutlich reduziert wird und damit zu wenig Statistik als Hauptursache hierfür angesehen werden kann.

Die Fehlerüberschätzung tritt auf, sobald man in den Toys Untergrund miteinbezieht (ohne Untergrund erhält man ein $\sigma=1{,}007\pm0{,}005$ und ist damit kompatibel zur Eins). Es ist bekannt, dass die verwendete sFit-Methode die Fehlerpropagation (gerade bei Untergrund) nicht korrekt ausführt. Es wurde zuvor eine Fehlerkorrektur implementiert, dabei handelt es sich jedoch um eine Näherung. Für eine tiefergehende Studie müsste die Fehlerkorrektur entsprechend analysiert werden.

Tabelle 6.1: Toy MC Studien mit unterschiedlicher Anzahl an generierten Ereignissen pro Toy. Genannt wird der Mittelwert μ der $S_{J/\Psi K_s^0}$ -Pull-Verteilung

Teilchen pro Toy	μ
20000	$0,0522\pm0,0067$
50000	$0,0358\pm0,0067$
100000	$0,0257\pm0,0068$
200000	$0,0145\pm0,0068$

6.2 Kalibration der Flavour Tagging Algorithmen

Im Fit wird bei den Parametern der Tagging Kalibration durch gaußische Einschränkung der Parameter deren statistische Fehler berücksichtigt. Bislang unbeachtet blieben die systematischen Fehler von p_0 und p_1 , deren Einfluss im Folgenden untersucht wird. Leider sind die externen Studien zur Systematik des in dieser Analyse verwendeten Flavour Taggings noch nicht abgeschlossen, sodass die systematischen Fehler $\delta p_0^{\rm stat.}$ sowie $\delta p_1^{\rm stat.}$ noch nicht vorliegen. Um dennoch ein Gefühl für den Einfluss des Flavour Taggings zu bekommen, werden die systematischen Fehler der 2011-Analyse ([1]) herangezogen. Die Annahme und Erwartung ist, dass sich die Systematiken zwischen 2011 und 2012 kaum unterscheiden. Für eine endgültige Analyse, muss dieser Schritt jedoch wiederholt werden, sobald die Analyse des Flavour Taggings aus 2012 abgeschlossen ist. Eine weitere Möglichkeit wäre dann, die Parameter im Eigenzeitfit mit $\sigma = \sqrt{\sigma_{\rm stat.}^2 + \sigma_{\rm syst.}^2}$ gaußisch einzuschränken In dieser Arbeit werden nun folgende Werte und Fehler der Kalibrationsparameter p_0 und p_1 verwendet:

$$p_0 = 0.382 \pm 0.003 \text{ (stat.)} \pm 0.008 \text{ (syst.)},$$
 (6.2)

$$p_1 = 0.981 \pm 0.024 \text{ (stat.)} \pm 0.012 \text{ (syst.)}.$$
 (6.3)

Variation der Parameter in den Daten

Einen ersten Überblick über die Systematik erhält man, indem man im regulären Eigenzeitfit die Startwerte der Parameter p_0 und p_1 um ihre systematischen Fehler variiert. In allen vier möglichen Kombinationen wird der systematische Fehler auf

Fit Bias in Abhängigkeit der generierten Ereignisse pro Toy

Abbildung 6.2: Toy MC Studien mit unterschiedlicher Anzahl an generierten Ereignissen pro Toy. Als Maß für das Fit Bias dient der Mittelwert μ der $S_{J/\Psi K_s^0}$ -Pull-Verteilung. Der erste Eintrag entspricht der in Daten vorliegenden Statistik.

 p_0 und p_1 addiert bzw. subtrahiert, dann der Fit durchgeführt und schließlich die Abweichung vom regulären Fitergebnis für $S_{J/\Psi K_s^0}$ berechnet. Der verdeckte Referenzwert aus dem Fit beträgt

$$S_{J/\Psi K^0} = 0.5347 \pm 0.0626$$
 (6.4)

Tabelle 6.2: Variation des Fitergebnisses für $S_{J/\Psi K_s^0}$ bei Veränderung der Startwerte für p_0 und p_1 ± ihrer systematischen Unsicherheiten

$\overline{p_0}$	p_1	$S_{J/\Psi K_s^0}$	$\Delta S_{J/\Psi K_s^0}$
0,382 - 0,008	0,981 - 0,024	$0,5109\pm0,0604$	-0,0238
0,382 - 0,008	0,981 + 0,024	0.5103 ± 0.0604	-0,0244
0,382 + 0,008	0,981 - 0,024	0.5599 ± 0.0649	0,0252
0,382 + 0,008	0,981 + 0,024	0.5591 ± 0.0648	0,0244

Die Ergebnisse sind Tabelle 6.2 zu entnehmen. Die größte Abweichung beträgt hier $\Delta S_{J/\Psi K_2^0}=0.0252$.

Variation der Parameter in Toy MC

Eine präzisere Möglichkeit der Abschätzung besteht darin, sich entsprechende Toys mit verfälschten p_0 und p_1 zu generieren und diese dann normal zu fitten. Im Folgenden werden bei der Generation der Toys die Parameter p_0 und p_1 um ihre systematischen Unsicherheiten variiert, der Fit dann allerdings mit den ursprünglichen Parameterwerten durchgeführt. Als Referenzwert dient die Toy MC Studie aus Kapitel 6.1, da dort mit den regulären Parametern p_0 und p_1 generiert und gefittet wurde. Jene Amplitude betrug

$$S_{J/\Psi K_o^0} = 0.7234 \pm 0.0004.$$
 (6.5)

Die Ergebnisse sind Tabelle 6.3 zu entnehmen, die dazugehörigen Plots werden in Abbildung 6.3 gezeigt. Die größte Abweichung beträgt hier $\Delta S_{J/\Psi K_s^0}=0{,}0331$ und ist auch größer als bei Variation der Parameter in den Daten. Dementsprechend wird der systematische Fehler durch die Tagging Kalibrierung mit ebendiesem Wert konservativ abgeschätzt:

$$\delta S_{J/\Psi K_{\circ}^{0}}^{\rm FTK} = 0.0331.$$
 (6.6)

Abbildung 6.3: Toy MC Studie zur Abschätzung der Systematik durch die Tagging Kalibration. Bei der Generation wurden die Taggingparameter $p_0=0,382$ und $p_1=0,981$ um ihre systematischen Unsicherheiten $\Delta p_0=0,008$ bzw. $\Delta p_1=0,024$ variiert, der Fit wurde dann mit den ursprünglichen Werten p_0 und p_1 durchgeführt.

Tabelle 6.3: Variation des Fitergebnisses für $S_{J/\Psi K_s^0}$ bei Veränderung der Parameterwerte p_0 und p_1 \pm ihrer systematischen Unsicherheiten bei der Generation von Toys

$\overline{p_0}$	p_1	$S_{J/\Psi K_s^0}$	$\Delta S_{J/\Psi K_s^0}$
0,382 - 0,008	0,981 - 0,024	$0,7515\pm0,0004$	0,0281
0,382 - 0,008	0,981 + 0,024	0.7565 ± 0.0004	0,0331
0,382 + 0,008	0,981 - 0,024	$0,6909\pm0,0004$	-0,0325
0,382 + 0,008	0,981 + 0,024	$0,6966\pm0,0004$	-0,0244

6.3 Einfluss einer zeitabhängigen Akzeptanz

In der Analyse wurde der Einfluss einer zeitabhängigen Detektorakzeptanz vernachlässigt. Nimmt man an, dass sich die Akzeptanz von B_d^0 - und $\overline{B_d^0}$ -Mesonen nicht unterscheiden, so hat die Akzeptanz keinen Einfluss auf die \mathcal{CP} -Asymmetrie nach Gleichung (3.20), da sie sich hier herauskürzt. Beim Fit der Amplitude nach Gleichung (5.37) ist dies aber nicht zwangsläufig so. Um die Vernachlässigung einer zeitabhängigen Akzeptanz zu rechtfertigen, wird zunächst eine Bestimmung der Akzeptanz durchgeführt und anschließend mit einer Toy MC Studie ihr Einfluss überprüft.

Bestimmung einer Akzeptanzfunktion

 B_d^0 -Mesonen haben eine relativ lange Lebensdauer. Um sie von kurzlebigem Untergrund zu unterscheiden, befinden sich auf den Triggern und dem Stripping entsprechende Selektionen auf die Signifikanz der Zerfallslänge. Dies hat zur Folge, dass für kleine Flugzeiten ($t \lesssim 0.3$ ps) kaum B_d^0 -Mesonen im Detektor registriert werden. Es hat sich herausgestellt [1], dass dieser Effekt gut durch die Funktion

$$\epsilon_1(t) = \frac{2}{\pi} \arctan[t \cdot \exp(at + b)]$$
(6.7)

parametrisiert werden kann.

Je länger ein B_d^0 -Meson lebt, desto schwieriger wird es, diese Zerfallsprodukte im Detektor auf Grund seiner Geometrie nachzuweisen. Daher nimmt die Akzeptanz zu großen Zeiten hin wieder ab. Zur Parametrisierung fällt die Wahl auf eine lineare Funktion

$$\epsilon_2(t) = 1 + \beta t \qquad (\beta < 0). \tag{6.8}$$

Die entsprechende gesamte Akzeptanzfunktion lautet demnach:

$$\epsilon(t) = \epsilon_1(t) \cdot \epsilon_2(t) = \frac{2}{\pi} \arctan[t \cdot \exp(at + b)](1 + \beta t)$$
 (6.9)

Zur Bestimmung der Parameter wird die Trennung von B_d^0 - und $\overline{B_d^0}$ -Mesonen aufgehoben, sodass lediglich ein exponentieller Zerfall zu beobachten ist. Des weiteren wird die Selektion der Lebensdauer bei 0,3ps nicht angewandt, sodass die Akzeptanz bei kleinen Eigenzeiten sichtbar wird. Die Wahrscheinlichkeitsdichtefunktion für den Fit lautet somit:

$$\mathcal{P}_{acc}(t) \propto \epsilon(t) \cdot e^{-t/\tau} = e^{-t/\tau} \cdot \frac{2}{\pi} \arctan[t \cdot \exp(at + b)](1 + \beta t)$$
 (6.10)

Die beiden Parameter τ und β sind stark miteinander korreliert. Für eine geeignete Bestimmung der Parameter der Akzeptanz-Funktion wird daher die Lebensdauer auf den PDG-Wert $\tau = (1,519 \pm 0,007) \mathrm{ps}$ [23] gaußisch eingeschränkt, die anderen Parameter sind frei. Die Ergebnisse sind in Tabelle 6.4 aufgeführt, die entsprechenden Plots in Abbildung 6.4.

Tabelle 6.4: Ergebnis des Fits zur Bestimmung der zeitlichen Akzeptanz. τ wurde auf den PDG-Wert $\tau = (1,519 \pm 0,007)$ ps [23] gaußisch eingeschränkt.

Pa	rameter	Ergebnis
$\overline{\tau}$	[ps]	$1,519\pm0,007$
a	[ps]	$47,9 \pm 5,6$
b	-8,4	$1,1\pm$
β	$[\mathrm{ps}^{-1}]$	$-0,0090\pm0,0076$

Bestimmung des Einflusses

Durch die Selektion der Eigenzeit ab $t=0.3\mathrm{ps}$ in der Datenselektion spielt die Akzeptanz für kleine Eigenzeiten kaum eine Rolle Dies wird dadurch deutlich, dass die Akzeptanzfunktion $\epsilon(0.3\mathrm{ps})=0.992$ und damit fast Eins ist. In der Analyse aus 2011 [1] wurde nur ein geringer Effekt auf das Fitergebnis beobachtet. Dies soll nun verifiziert und das Vorgehen, im Eigenzeitfit die zeitliche Detektorakzeptanz zu vernachlässigen, gerechtfertigt werden. Mit den oben bestimmten Parametern wird die zeitliche Akzeptanz bei der Erzeugung von Daten einer weiteren Toy MC Studie berücksichtigt, der anschließende Fit aber ohne Akzeptanzfunktion durchgeführt. Die zur Erzeugung verwendeten Parameter entsprechen ansonsten denen in Kapitel 6.1.

Der Mittelwert der Amplitudenverteilung beträgt $S_{J/\Psi K_s^0} = 0.72420 \pm 0.00041$. Die Abweichung vom Referenzwert $S_{J/\Psi K_s^0} = 0.72343 \pm 0.00041$ (siehe Kap. 6.1),

$$\delta S_{J/\Psi K_s^0}^{\text{Akz.}} = 0.00077 ,$$
 (6.11)

wird zur Abschätzung des Fehlers durch Vernachlässigung einer Akzeptanzfunktion verwendet. Gerade im Vergleich zum Einfluss des Flavour Taggings auf $S_{J/\Psi K_s^0}$ ist dieser hier sehr gering. Somit erscheint das Vorgehen, keine Akzeptanz im Eigenzeitfit zu verwenden, gerechtfertigt.

Abbildung 6.4: Fit an die Eigenzeit-Verteilung aller B_d^0 -Mesonen mit eingeschlossener Akzeptanzfunktion (oben) sowie die entsprechende Pull-Verteilung (unten). Links: kurzlebiger Zeitbereich $(t < 1,5 \mathrm{ps})$, Rechts: gesamtes Eigenzeitspektrum $(0\mathrm{ps} < t < 14\mathrm{ps})$.

Abbildung 6.5: Untersuchung des Einflusses einer zeitlichen Akzeptanz: Verteilung der aus der Toy MC Studie erhaltenen Amplituden $S_{J/\Psi K_s^0}$ (links) sowie die dazugehörigen Pulls (rechts).

6.4 Korrelation zwischen Masse und Eigenzeit

Die sFit-Methode funktioniert dann gut, wenn der Untergrund der Massenverteilung eben und die Massenverteilung des Signals unabhängig von der gemessenen Eigenzeit ist. Es soll nun eine etwaige Korrelation zwischen Masse und Eigenzeit untersucht und der Einfluss auf $S_{J/\Psi K_s^0}$ festgestellt werden. Dazu wird die Massenverteilung in vier verschiedenen Zeitbereichen gefittet, die Tabelle 6.5 zu entnehmen sind. Anschließend wird die gesamte Eigenzeitverteilung gefittet, dabei werden aber die Massenparameter des Signals auf die in den 4 Massenfits erhaltenen Werte fixiert. Die Ergebnisse des jeweiligen Fits sind ebenfalls in Tabelle 6.5 aufgeführt.

Tabelle 6.5: Einteilung der Eigenzeitbereiche sowie Fitresultate für $S_{J/\Psi K_s^0}$ bei Fixierung der Masse auf die in den Zeitbereichen enthaltene Massenform. Weiterhin werden die Abweichung $\Delta S_{J/\Psi K_s^0}$ vom regulären Datenfit und der Signalanzahl N_{sig} eines jeden Eigenzeitbereichs genannt.

Nr.	Eigenzeitfenster des Massenfits	$S_{J/\Psi K_s^0}$	$\Delta S_{J/\Psi K_s^0}$	$\overline{N_{sig}}$
1	$t \in [0\ 3, 0\ 7] \text{ps}$	$0,5318\pm0,0626$	-0,0029	2882
2	$t \in [0.7, 1.5] \text{ps}$	$0,5361\pm0,0625$	0,0014	4066
3	$t \in [1\ 5, 3] \mathrm{ps}$	$0,5361\pm0,0625$	0,0014	4230
4	$t \in [3, 14] ps$	$0,5353\pm0,0624$	0,0006	2177

Zur Abschätzung des Fehlers werden zunächst die Abweichungen $\Delta S_{J/\Psi K_s^0}$ vom (noch verdeckten) Referenzwert aus dem regulären Eigenzeitfit $S_{J/\Psi K_s^0} = 0,5347 \pm 0,0626$ berechnet (siehe Kap. 5.5) und diese dann - gewichtet nach der Signalzahl N_{sig} eines jeden Bereichs - quadratisch gemittelt:

$$\delta S_{J/\Psi K_s^0}^{m/t} = \sqrt{\frac{\sum N_i (\Delta S_{J/\Psi K_s^0})_i}{\sum N_i}} = 0,0018$$
 (6.12)

6.5 Eigenzeitauflösung

Bei einer effektiven Eigenzeitauflösung von $\sigma_{eff} = (0.0665 \pm 0.0013)$ ps im Vergleich zur B_d^0 -Oszillationsfrequenz $\delta m_d = (0.521 \pm 0.039)\hbar$ ps erwartet man keine nennenswerten Effekte auf die Amplitude $S_{J/\Psi K_s^0}$. Um überhaupt einen Effekt zu sehen, werden die Auflösungsparameter σ_i um 20% ihres Werte erhöht bzw. gesenkt und damit dann der Datensatz gefittet. Die größte Abweichung vom Referenzwert des regulären Eigenzeitfits wird als systematischer Fehler angenommen. Die Ergebnisse finden sich in Tabelle 6.6.

Es zeigt sich, dass eine exakte Bestimmung der Auflösung nicht von Nöten ist, da sie im Vergleich zu anderen Systematiken vor allem gegenüber der Flavour Tag-

Tabelle 6.6: Ergebnisse des Eigenzeitfits bei Variaton der Auflösungsparameter σ_i um $\pm 20\%$.

Variation	σ_1	σ_2	σ_3	$S_{J/\Psi K_s^0}$	$\Delta S_{J/\Psi K_s^0}$
+20%	0,576	0,05275	0,1118	$0,5351\pm0,0626$	0,0004
-20%	0,384	0,03517	0,0746	$0,5345\pm0,0625$	-0,0002

ging Kalibration vernachlässigt werden kann. Dennoch wird ein sytematischer Fehler durch die Auflösung mit

$$\delta S_{J/\Psi K_c^0}^{\text{Res.}} = 0,0004$$
 (6.13)

assoziiert.

6.6 Gesamtsystematik

Tabelle 6.7 fasst nochmals alle systematischen Unsicherheiten zusammen. Der Gesamtfehler wird durch quadratische Addition berechnet. Es ist deutlich zu erkennen,

Tabelle 6.7: Zusammenfassung der systematischen Unsicherheiten

Effekt	$\delta S_{J/\Psi K_s^0}$
Fitmethode	0,0033
Flavour Tagging Kalibration	0,0331
Eigenzeitakzeptanz	0,0008
Korrelation Masse \leftrightarrow Eigenzeit	0,0018
Eigenzeitauflösung	0,0004
Gesamt	0,0333

dass die Kalibration der Flavour Tagging Algorithmen die dominierende Systematik ist. Obwohl hier zur Abschätzung der Systematik Werte der 2011-Kalibration genommen werden mussten, wird sich an dieser Tatsache nicht viel ändern, sobald diese Untersuchung mit Werten aus 2012 wiederholt wurde. Der systematische Fehler von $\delta S_{J/\Psi K_s^0}^{\rm stat.} = 0,0333$ ist nur etwa halb so groß wie der statistische $\delta S_{J/\Psi K_s^0}^{\rm syst.} = 0,0626$. Damit ist definitiv noch Potential da, die Präzision durch mehr Datennahme zu verbessern. Zudem ist auch zu erwarten, dass die systematischen Unsicherheiten der Flavour Tagging Kalibration mit mehr Daten ebenfalls reduziert wird.

Kapitel 7

Zusammenfassung

In dieser Arbeit wurde die Amplitude der \mathcal{CP} -Asymmetrie $S_{J/\Psi K_s^0}$ gemessen. Dazu standen Daten aus dem Jahr 2012 zur Verfügung, die bei einer Schwerpunktsenergie von $\sqrt{s}=8$ TeV am LHCb-Experiment aufgenommen wurden. Dies entspricht einer integrierten Luminosität von 2fb⁻¹. Zur Verfügung standen insgesamt 20109 Signalkandidaten, denen ein Produktionsflavour zugeordnet werden konnte. Es wurde dabei die sFit-Methode angewandt, um Signal vom Untergund zu extrahieren. Dazu diente ein Fit der rekonstruierten B_d^0 -Masse. Aus dem anschließenden Fit der Eigenzeitverteilung erhält man

$$S_{J/\Psi K_s^0} = \sin(2\beta) = 0.711 \pm 0.059(\text{stat.}) \pm 0.033(\text{syst.})$$
 (7.1)

Hierbei soll erwähnt werden, dass der statistische Fehler auf Grund der Erkenntnisse aus Kapitel 6.1 um den Faktor $\sigma_{\text{pull}} = 0.941$ korrigiert wurde. Das Ergebnis ist kompatibel zum Weltmittelwert $\sin(2\beta) = 0.682 \pm 0.019$ [2] sowie zur LHCb-Analyse aus $2011 \sin(2\beta) = 0.72 \pm 0.07 (\text{stat.}) \pm 0.04 (\text{syst.})$ [1].

Die Messung von $\sin(2\beta)$ bzw. $\Delta S_{J/\Psi K^0}$ könnte wie folgt verbessert werden:

- 1. Bei der Erstellung des NTupels kann die neueste Version der Analysesoftware verwendet werden, bei der die Wahrscheinlichkeit, dass es sich bei den Pionspuren um Geisterspuren handelt, richtig kalibriert ist. Dies würde ermöglichen, bereits vor dem Fit den Datensatz etwas besser von Untergrund zu bereinigen.
- 2. Als dominierende Systematik sollte der Einfluss der Kalibration der Flavour Tagging Algorithmen auf $S_{J/\Psi K_s^0}$ erneut bestimmt werden, sobald die systematischen Studien des hier verwendeten Flavour Taggings abgeschlossen sind. Des Weiteren sind mittlerweile bessere Flavour Tagging Algorithmen verfügbar, die nun verwendet werden können.
- 3. Sobald der LHC wieder in Betrieb geht, werden mit fortlaufender Betriebsdauer mehr Daten zur Verfügung stehen, die die statistische Präzision erhöhen. Diese Analyse konnte zeigen, dass hier noch Potential besteht, da die statistische Unsicherheit etwa doppelt so groß wie die systematische ist. Ebenso

erwartet man mit mehr Daten auch eine Verringerung der systematischen Unsicherheiten, vor allem bei der Flavour Tagging Kalibration, der mit Abstand dominierenden Systematik.

Literaturverzeichnis

- [1] T. Brambach et al., Measurement of $\sin(2\beta)$ in the decay $B_d^0 \to J/\Psi K_s^0$ with the 2011 LHCb data, LHCb-ANA-2012-016.
- [2] http://pdg8.lbl.gov/rpp2013v2/pdgLive/DataBlock.action?node= S042BET (Stand: 13.08.2013)
- [3] Nico Serra, Tom Blake, Chasing new physics with electroweak penguins, 2013 CERN Courier, 5 15-17
- [4] The LHCb Collaboration et al., Roadmap for selected key measurements of LHCb, LHCb-PUB-2009-029, [arXiv:0912.4179v3].
- [5] http://home.web.cern.ch/about/accelerators/large-hadron-collider (Stand: 01.08.2013).
- [6] http://www.weltmaschine.de/experimente/lhcb/ (Stand: 01.08.2013).
- [7] Johan Luisier, Measurement of B-meson lifetime ratios with the LHCb detector, 2011. Dissertation erreichbar unter http://lphe.epfl.ch/publications/theses/these.jl.pdf (Stand: 15.08.2013).
- [8] Christian Linn, Measurement of the CP-violating phase Φ_s using $B_s^0 \to J/\Psi\Phi$ and $B_s^0 \to J/\Psi\pi^+\pi^-$ decays with the LHCb experiment, 2013. Dissertation erreichbar unter http://www.physi.uni-heidelberg.de//Publications/linn_thesis.pdf (Stand: 13.08.2013).
- [9] The LHCb Collaboration et al., The LHCb Detector at the LHC, 2008 JINST, 3 S08005.
- [10] http://commons.wikimedia.org/wiki/File:Standard_Model_of_ Elementary_Particles-de.svg (Stand: 07.07.2013).
- [11] CERN, Pressemitteilung, 2013, http://press.web.cern.ch/press-releases/2013/03/new-results-indicate-particle-discovered-cern-higgs-boson (Stand: 13.08.2013).
- [12] C.S. Wu, Experimental Test of Parity Conservation in Beta Decay, 1957 Phys. Rev., 105 1413-1415.

- [13] Konrad Kleinknecht, Uncovering CP Violation, Experimental Clarification in the Neutral K Meson and B Meson Systems, Springer, Heidelberg, 2003.
- [14] http://inspirehep.net/record/1085541/files/figs_CKM_triangle.png (Stand: 03.08.2013).
- [15] Yosef Nir, The CKM Matrix and New Physics, 2003 Nucl. Phys. B (Proc. Suppl.), 117 111-116.
- [16] S. Noguchi, CP violation in B Meson Decays, 2003 Nucl. Phys. A, 721 151c-160c.
- [17] http://lhcb-trig.web.cern.ch/lhcb-trig/(Stand: 13.08.2013).
- [18] Yuehong Xie, sFit: a method for background subtraction in maximum likelihood fit, 2009, [arXiv:0905.0724v1].
- [19] M. Pivk, F.R. Le Diberder, **sPlot: a statistical tool to unfold data distributions, 2005, [arXiv:physics/0402083v3].
- [20] Stefania Vecchi, OS combination for Reco14, 2013, LHCb Flavour Tagging Meeting 20.06.2013.
- [21] T. Brambach et al., Measurement of CP violation in the time-dependent analysis of $B_d^0 \to J/\Psi K_s^0$ decays with the 2010 data, LHCb-ANA-2011-004.
- [22] The CMS Collaboration, Suppression of non-prompt J/Ψ , prompt J/Ψ , and $\Upsilon(1S)$ in PbPb collisions at $\sqrt{s_{NN}} = 2.76 \text{TeV}$, 2013, [arXiv:1201.5069v2].
- [23] http://pdglive.lbl.gov/popupblockdata.brl?nodein=S042T&inscript=Y&fsizein=1&clumpin0=(Stand: 02.07.2013).

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 19.08.2013,

Patrick Fahner