LBA-ECO CD-32 Carbon, water and energy flux data, including estimates of photosynthesis, ecosystem respiration and canopy storage data, Brazilian Amazon: 1999-2006

1. Data Set Contents:

This dataset is a compilation of measurements of energy, carbon and water fluxes by the eddy covariance method, meteorological variables, CO2 concentration across a vertical profile, and soil water content. Original data from Brasil flux network sites were obtained for nine eddy covariance tower locations ranging from tropical forests to pastures to agricultural lands, and includes a cerrado and a seasonal-inundated ecotone -- all of them established by the Brazilian-led Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-ECO). Data have been harmonized across sites and with additional quality control checks, values have been aggregated to hourly, daily, 16-day, and monthly timesteps. This dataset expands upon Version 1 of this compilation (Saleska et al., 2013) and LBA-DMIP meteorological forcing data (model drivers) (de Goncalves et al., 2013) and includes additional calculations of ecosystem respiration, gross ecosystem productivity, and canopy CO2 storage as published in Restrepo-Coupe et al., 2013. This integrated dataset is intended to facilitate comparative ecophysiological studies and data-model synthesis among other research applications.

From east to west and north to south, these sites are the Reserva Cuieiras near Manaus (K34 forest), the Tapajós National forest, near Santarém (K67 and K83 forests, and K77 pasture/agriculture), the Caxiuanã National forest near Belém (CAX forest), the Reserva Jarú (RJA forest) and Fazenda Nossa Senhora (FNS pasture), near Ji-Parana; the Tocantins-Javaes site (JAV seasonally flooded ecotone); and the Reserva Pe-de-Gigante in Sao Paulo state (PEG savanna). Time series periods from 1999-2006 vary among sites. See Restrepo-Coupe et al. (2013, 2017; 2021) for methods.

2. Related Data Sets:

LBA-ECO CD-32 Flux Tower Network Data Compilation, Brazilian Amazon: 1999-2006: https://daac.ornl.gov/LBA/guides/CD32_Brazil_Flux_Network.html

LBA-ECO CD-32 LBA Model Intercomparison Project (LBA-MIP) Meteorological

Forcing Data: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1177

3. Title of Investigation:

NASA LBA-ECO CD32: Carbon balance in Amazon forests from site to region: integrating remote sensing from satellites and aircraft with ground-based tower and biometric data.

4. Future Modifications and Plans:

New sites and years may be added to the database. Additional quality control may be included. Updates to metadata.

5. Data Characteristics:

5.1. Study Area Descriptions

Site: Bananal_Island (BAN) also known as JAV

Tocantins State, Bananal forest-savanna ecotone seasonaly-inundated

Longitude: -50.159111 Degrees East Decimal Latitude: -9.824417 Degrees North Decimal

Altitude: 120.000 m

Measurement Height: 40.0000 m

Site: Manaus km 34 (K34)

State of Amazonas, Manaus – km 34 primary forest site

Longitude: -60.209297 Degrees East Decimal

Latitude: -02.609097 Degrees North Decimal

Altitude: 130.000 m

Measurement Height: 50.0000 m

Site: Santarém km 67 (K67)

State of Pará, Santarem, BR-163 highway km67 primary forest site

Longitude: -54.958889 Degrees East Decimal

Latitude: -02.856667 Degrees North Decimal

Altitude: 130.000 m

Measurement Height: 63.0000 m

Site: Santarém km 77 (K77)

State of Pará, Santarem, BR-163 highway km77 pasture-agriculture site

Longitude: -54.536520 Degrees East Decimal Latitude: -03.011896 Degrees North Decimal

Altitude: 130.000 m

Measurement Height: 18.0000 m

Site: Santarém km 83 (K83)

State of Pará, Santarem, BR-163 highway km 83 selectively logged primary forest

Longitude: -54.971435 Degrees East Decimal Latitude: -03.018029 Degrees North Decimal

Altitude: 130.000 m

Measurement Height: 64.0000 m

Site: Caxiuana (CAX)

State of Pará, Caxiuana forest

Longitude: -51.4589833 Degrees East Decimal Latitude: -1.719719444 Degrees North Decimal

Altitude: 130.000 m

Measurement Height: 51.5000 m

Site: Reserva Jarú (RJA)

Rondônia State, Reserva Jaru, tropical dry forest Longitude: -61.930903 Degrees East Decimal Latitude: -10.083194 Degrees North Decimal

Altitude: 191.000 m

Measurement Height: 60.0000 m

Site: Fazenda Nossa Senhora (FNS)

Rondônia State, Fazenda Nossa Senhora, pasture

Longitude: -62.357222 Degrees East Decimal

Latitude: -10.761806 Degrees North Decimal

Altitude: 306.000 m

Measurement Height: 8.5000 m

Site: Reserva Pe-de-Gigante (PEG)

São Paulo State, Reserva Pe-de-Gigante (PDG) cerrado

Longitude: -47.649889 Degrees East Decimal

Latitude: -21.619472 Degrees North Decimal

Altitude: 690.000 m

Measurement Height: 21.0000 m

5.2. Temporal Coverage:

The data files for each site are hourly, daily, daily day-time, daily nighttime, monthly, monthly day-time and monthly nighttime, as follows:

- 1. HOURLY data: SSS_Cflux_BF.dat (SSS is the unique 3-letter site code). Hour runs from 0 (zero) to 23. Data aggregation interval, i.e., data at 10:00 are from aggregating measurements between 10:00 and 11:00
- 2. DAILY data: SSSday_Cflux_BF.dat. Prec units (mm hr-1): as average
- 3. SEASONAL (16-day) data: SSSday16_Cflux_BF.dat. Prec units (mm hr-1): as average
- 4. MONTHLY data: SSSmonth_Cflux_BF.dat From daily data. Missing if less than 7 days of data, except prec. Prec units (mm day-1): as average

5.3. Time Coverage:

BAN: 24-Oct-03 to 8-Dec-06

CAX: 1-Jan-99 to 30-Jul-03

RJA: 23-Mar-99 to 14-Nov-02

K34: 14-Jun-99 to 30-Sep-06

FNS: 4-Feb-99 to 4-Nov-02

PDG: 1-Jan-04 to 31-Dec-06

K77: 1-Jan-00 to 30-Dec-05

K83: 29-Jun-00 to 12-Mar-04

K67: 2-Jan-02 to 23-Jan-06

5.4. Parameters or Variables:

ID	Variable	Units	Description
1	dateloc	NA	matlab time stamp (LOCAL TIME)
2	Year_LBAMIP	YYYY	Year (LOCAL TIME)
3	DoY_LBAMIP	JD	Julian day (LOCAL TIME)
4	Hour_LBAMIP	HR	Hour (LOCAL TIME)
5	Tair_LBAMIP	degK	Air temperature
6	Qair_LBAMIP	kg kg ⁻¹	Specific humidity
7	Wind_LBAMIP	m s ⁻¹	Wind speed
8	Rainf_LBAMIP	kg m ⁻² s ⁻¹	Rainfall rate
9	PSurf_LBAMIP	Pa	Surface pressure
10	SWdown_LBA MIP	W m ⁻²	Incoming short wave
11	LWdown_LBA MIP	W m ⁻²	Incoming long wave
12	CO2air_LBAMI P	Logical	0-1, where flag = 1 indicates if filled data
13	GF_Tair_LBAM IP	Logical	0-1, where flag = 1 indicates if filled data
14	GF_Qair_LBA MIP	Logical	0-1, where flag = 1 indicates if filled data
15	GF_Wind_LBA MIP	Logical	0-1, where flag = 1 indicates if filled data
16	GF_Rainf_LBA MIP	Logical	0-1, where flag = 1 indicates if filled data

17	GF_PSurf_LBA	Logical	0-1, where flag = 1 indicates if filled data
	MIP		
18	GF_SWdown_L BAMIP	Logical	0-1, where flag = 1 indicates if filled data
19	GF_LWdown_L BAMIP	Logical	0-1, where flag = 1 indicates if filled data
20	GF_CO2air_LB AMIP	Logical	0-1, where flag = 1 indicates if filled data
21	ta	°C	Air temperature
22	taed	°C	Sonic temperature
23	wd	degrees	Wind direction cup anemometer
24	wded	degrees	Wind direction sonic anemometer
25	pressed	kPa	Pressure eddy covariance system
26	press	kPa	Pressure automatic weather station
20 27	rg	W m ⁻²	Global incident radiation
28	rr	W m ⁻²	Global reflected radiation
29	par	umol photons m ⁻²	Incoming photosynthetic active radiation
30	rpar	umol photons m ⁻² s ⁻¹	Reflected photosynthetic active radiation
31	Rn	W m ⁻²	Net radiation
32	FG	W m ⁻²	Soil heat flux
33	wsed	m s ⁻¹	Wind speed cup
34	ws	m s-1	Wind speed sonic
35	Н	W m-2	Sensible heat flux
36	Hraw	W m-2	Sensible heat flux raw
37	LE	W m-2	Latent heat flux
38	LEraw	W m-2	Latent heat flux raw
39	Fc	umol CO ₂ m ⁻² s ⁻¹	CO ₂ flux
40	Fcraw	umol CO ₂ m ⁻² s ⁻¹	CO ₂ flux raw
41	co2	ppm	CO ₂ concentration infrared gas analyzer (IRGA)
42	sco2	umol CO ₂ m ⁻² s ⁻¹	Storage flux
43	NEE	umol CO ₂ m ⁻² s ⁻¹	Net ecosystem exchange of CO_2 (forest NEE = Fc

			+ Sco ₂)
44	NEEf	umol CO ₂ m ⁻² s ⁻¹	Filtered NEE
45	mrs	umol CO ₂ m ⁻² s ⁻¹	Soil respiration
46	ust	m s ⁻¹	Friction velocity, u*
47	rh	%	Relative humidity
48	prec	mm	Precipitation
49	h2o	mmol mol ⁻¹	H₂O concentration infrared gas analyzer (IRGA)
50	Fh2o	mmols m ⁻² s ⁻¹	Rate of vertical transfer of H ₂ O
51	U	m s ⁻¹	Zonal wind cup anemometer
52	Ued	m s ⁻¹	Zonal wind sonic anemometer
53	V	m s ⁻¹	Meridional wind cup anemometer
54	Ved	m s ⁻¹	Meridional wind sonic anemometer
55	ee	kPa	Vapor pressure
56	ees	kPa	Saturation vapor pressure
57	dpt	°C	Dew point temperature
58	tsavg	°C	Average soil temperature
59	eqtemp	°C	Equivalent temperature
60	abshu	g m ⁻³	Absolute humidity
61	slopee	kPa °C ⁻¹	Slope of saturation vapor pressure
62	radtop	W m ⁻²	Hourly theoretical radiation
63	rgs	W m ⁻²	Short wave radiation incoming
64	rgsout	W m ⁻²	Short wave radiation reflected
65	rgl	W m ⁻²	Long wave radiation incoming
66	rglout	W m ⁻²	Short wave radiation reflected
67	stdW	m s ⁻¹	Standard deviation vertical wind
68	ang	degrees	Rotation angle
69	Tau	kg m ⁻² s ⁻¹	Rate of vertical transference of momentum
70	zl		Atmospheric stability parameter
71	tprof1	°C	Canopy temperature profile
72	tprof2	°C	Canopy temperature profile
73	tprof3	°C	Canopy temperature profile
74	tprof4	°C	Canopy temperature profile
75	tprof5	°C	Canopy temperature profile

76	tprof6	°C	Canopy temperature profile
77	tprof7	°C	Canopy temperature profile
78	tprof8	°C	Canopy temperature profile
79	tprof9	°C	Canopy temperature profile
80	tprof10	°C	Canopy temperature profile
81	avgprofT	°C	Average temperature across canopy profile
82	msoil1	m ³ m ⁻³	Soil humidity profile
83	msoil2	m ³ m ⁻³	Soil humidity profile
84	msoil3	m ³ m ⁻³	Soil humidity profile
85	msoil4	m ³ m ⁻³	Soil humidity profile
86	msoil5	m³ m-³	Soil humidity profile
87	msoil6	m ³ m ⁻³	Soil humidity profile
88	msoil7	m ³ m ⁻³	Soil humidity profile
89	msoil8	m ³ m ⁻³	Soil humidity profile
90	msoil9	m ³ m ⁻³	Soil humidity profile
91	msoil10	m³ m ⁻³	Soil humidity profile
92	totalteta	m ³ m ⁻³	Total H ₂ O across soil profile measurement
93	pco2_1	ppm	CO ₂ concentration profile
94	pco2_2	ppm	CO ₂ concentration profile
95	pco2_3	ppm	CO ₂ concentration profile
96	pco2_4	ppm	CO ₂ concentration profile
97	pco2_5	ppm	CO ₂ concentration profile
98	pco2_6	ppm	CO ₂ concentration profile
99	pco2_7	ppm	CO ₂ concentration profile
100	pco2_8	ppm	CO ₂ concentration profile
101	pco2_9	ppm	CO ₂ concentration profile
102	pco2_10	ppm	CO ₂ concentration profile
103	avgsto	ppm	Average CO2 storage across canopy profile
104	h2o_1	mmol mol ⁻¹	H₂O concentration profile
105	h2o_2	mmol mol ⁻¹	H₂O concentration profile
106	h2o_3	mmol mol ⁻¹	H₂O concentration profile
107	h2o_4	mmol mol ⁻¹	H₂O concentration profile
108	h2o_5	mmol mol ⁻¹	H₂O concentration profile

109	h2o_6	mmol mol ⁻¹	H₂O concentration profile
110	h2o_7	mmol mol ⁻¹	H₂O concentration profile
111	h2o_8	mmol mol ⁻¹	H₂O concentration profile
112	h2o_9	mmol mol ⁻¹	H₂O concentration profile
113	h2o_10	mmol mol ⁻¹	H₂O concentration across canopy profile
114	avgprofW	mmol mol ⁻¹	Average H ₂ O profile
115	Wind1	m s ⁻¹	Wind profile
116	Wind2	m s ⁻¹	Wind profile
117	Wind3	m s ⁻¹	Wind profile
118	Wind4	m s ⁻¹	Wind profile
119	Wind5	m s ⁻¹	Wind profile
120	Wavg	m s ⁻¹	Average wind profile
121	tsoil1	°C	Soil temperature profile
122	tsoil2	°C	Soil temperature profile
123	tsoil3	°C	Soil temperature profile
124	tsoil4	°C	Soil temperature profile
125	tsoil5	°C	Soil temperature profile
126	So	W m ⁻²	Top of the atmosphere radiation (TOA)
127	Re_5day	µmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration – 5day model: 5-20 day
			night-time average Fc, no Sco2, no u* correction
128	Re_5day_ust	µmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration 5day model: 5-20 day
			night-time average Fc corrected for low u*
			conditions, no Sco ₂
129	Re_5day_sco2	µmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. 5day model: 5-20 day
			night-time average NEE = Fc + Sco2, no u*
			correction
130	Re_5day_sco2_u	μmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. 5day model: 5-20 day
	st		night-time average NEE = Fc + Sco ₂ , corrected for
			low u∗ conditions
131	Re_5day_ust_mi	umol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. 5day model: 5-20 day
	n	r2 5	night-time average Fc corrected for low u* lower
	••		bound, no Sco ₂
			Doung, 110 JC02

132	Re_5day_ust_m	µmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. 5day model: 5-20 day
	ax		night-time average Fc corrected for upper bound
			U*, no Sco2
133	Re_5day_sco2_u	µmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. 5day model: 5-20 day
	st_min		night-time average NEE = $Fc + Sco_2$, corrected for
			lower bound u∗
134	Re_5day_sco2_u	$\mu mol~CO_2~m^{-2}~s^{-1}$	Re: ecosystem respiration. 5day model: 5-20 day
	st_max		night-time average (derived using NEE = Fc +
			Sco ₂ , corrected for upper bound u _*)
135	Re_fourier_mod	$\mu mol~CO_2~m^{-2}~s^{-1}$	Re: ecosystem respiration. Fourier method: Re as
	el		in Richardson & Hollinger, (2005) derived using
			Fc, no u* correction, no Sco2
136	Re_fourier_ust_	$\mu mol~CO_2~m^{-2}~s^{-1}$	Re: ecosystem respiration. Fourier method: Re as
	model		in Richardson & Hollinger, (2005) derived using
			Fc u* corrected, no Sco2
137	Re_fourier_sco2	$\mu mol~CO_2~m^{-2}~s^{-1}$	Re: ecosystem respiration. Fourier method: Re as
	_model		in Richardson & Hollinger, (2005) derived using
			NEE = Fc + Sco ₂ , no u* corrected
138	Re_fourier_sco2	μ mol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. Fourier method: Re as
	_ust_model		in Richardson & Hollinger, (2005) derived using
			NEE = Fc + Sco ₂ , u* corrected
139	Re_fourier_ust_	$\mu mol~CO_2~m^{-2}~s^{-1}$	Re: ecosystem respiration. Fourier method: Re as
	min_model		in Richardson & Hollinger, (2005) derived using
			Fc corrected for u* lower bound, no Sco2
140	Re_fourier_ust_	$\mu mol~CO_2~m^{-2}~s^{-1}$	Re: ecosystem respiration. Fourier method: Re as
	max_model		in Richardson & Hollinger, (2005) (derived using
			Fc, corrected for u* upper bound, no Sco2
141	Re_fourier_sco2	$\mu mol~CO_2~m^{-2}~s^{-1}$	Re: ecosystem respiration. Fourier method: Re as
	_ust_min_model		in Richardson & Hollinger, (2005) derived using
			NEE = Fc + Sco ₂ , corrected for u* lower bound
142	Re_fourier_sco2	$\mu mol~CO_2~m^{-2}~s^{-1}$	Re: ecosystem respiration. Fourier method: Re as
	_ust_max_model		in Richardson & Hollinger, (2005) derived using

			NEE = Fc + Sco ₂ , corrected for u* upper bound
143	NEE_night	μmol CO m-2 s-1	NEE: net ecosystem exchange. NEE= $Fc + Sco_2$,
			nighttime values used for Re calculations, no u_{\ast}
			corrected
144	Fc_night	$\mu mol~CO_2~m^{-2}~s^{-1}$	Fc: CO ₂ flux. Nighttime values used for Re
			calculations, no u* corrected
145	NEE_night_ust	$\mu mol~CO_2~m^{-2}~s^{-1}$	NEE: net ecosystem exchange. NEE = $Fc + Sco_2$,
			nighttime values used for Re calculations. NEE
			corrected for low u* values
146	Fc_night_ust	μ mol CO ₂ m ⁻² s ⁻¹	Fc: CO ₂ flux. Nighttime values used for Re
			calculations, u∗ corrected, no Sco₂
147	Re_5day_ust_Sc	μmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. Calculated using the
	o2_LUT		5day model: 5-20 day night-time average –
			derived using NEE=Fc+Sco ₂ . The Sco ₂ filled
			using the LUT method. NEE corrected for low u*
			values
148	Re_5day_ust_Sc	μmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. Calculated by 5day
	o2_IwataLIN		model: 5-20 day night-time average – derived
			using NEE=Fc+Sco ₂ . The Sco ₂ filled using Iwata
			et al. (2005) linear method. NEE corrected for low
			u* values
149	Re_5day_ust_Sc	µmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. Calculated by 5day
	o2_IwataLN		model: 5-20 day night-time average – derived
			using NEE=Fc+Sco ₂ . The Sco ₂ filled using Iwata
			et al. (2005) natural logarithm method. NEE
			corrected for low u* values
150	Re_5day_ust_Sc	μmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. NEE=Fc+Sco ₂ . The
	o2_IwataPOL		Sco₂ filled using Iwata et al. (2005) second degree
			polynomial method. Re calculated by the 5day
			model: 5-20 day night-time average. NEE
			corrected for low u* values

151	Re_5day_ust_Sc	µmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. NEE=Fc+Sco ₂ . The
	o2_EC	•	Sco ₂ filled using CO2 from the EC system. Re
			calculated by 5day model: 5-20 day night-time
			average. NEE corrected for low u* values
152	Re_5day_ust_Sc	µmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. NEE=Fc+Sco ₂ . The
	o2_DIEL		Sco ₂ filled using the Diel method. The Re
			calculated by 5day model: 5-20 day night-time
			average. NEE corrected for low u* values
153	NEEnogap_5day	µmol CO ₂ m ⁻² s ⁻¹	Filled NEE: net ecosystem exchange.
	_ust_Sco2_LUT		NEE=Fc+Sco ₂ . The Sco ₂ filled using the LUT
			method. Re calculated by the 5day model: 5-20
			day night-time average. NEE corrected for low u*
			values
154	NEEnogap_5day	µmol CO ₂ m ⁻² s ⁻¹	Filled NEE: net ecosystem exchange.
	_ust_Sco2_Iwata		NEE=Fc+Sco ₂ . The Sco2 filled using Iwata et al.
	LIN		(2005) linear method. Re calculated by the 5day
			model: 5-20 day night-time average. NEE
			corrected for low u* values
155	NEEnogap_5day	$\mu mol~CO_2~m^{-2}~s^{-1}$	Filled NEE: net ecosystem exchange.
	_ust_Sco2_Iwata		NEE=Fc+Sco ₂ . The Sco ₂ filled using Iwata et al.
	LN		(2005) natural logarithm method. Re calculated by
			the 5day model: 5-20 day night-time average.
			NEE corrected for low u* values
156	NEEnogap_5day	μ mol CO ₂ m ⁻² s ⁻¹	Filled NEE: net ecosystem exchange.
	_ust_Sco2_Iwata		NEE=Fc+Sco ₂ . The Sco ₂ filled using Iwata et al.
	POL		(2005) second degree polynomial method. Re
			calculated by the 5day model: 5-20 day night-time
			average. NEE corrected for low u* values
157	NEEnogap_5day	µmol CO ₂ m ⁻² s ⁻¹	Filled NEE: net ecosystem exchange.
	_ust_Sco2_EC		NEE=Fc+Sco ₂ . The Sco ₂ filled using CO ₂ from
			the EC system. Re calculated by the 5day model:

			5-20 day night-time average. NEE corrected for
			low u* values
158	NEEnogap_5day	µmol CO ₂ m ⁻² s ⁻¹	Filled NEE: net ecosystem exchange.
	_ust_Sco2_DIE		NEE=Fc+Sco ₂ . The Sco ₂ filled using the Diel
	L		method. Re calculated by the 5day model: 5-20
			day night-time average. NEE corrected for low u*
			values
159	GEP_5day_sco2	µmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. NEE u*
	_ust		corrected. Re calculated by the 5day model: 5-20
			day night-time average. NEE corrected for low u*
			values
160	GEP_5day_sco2	$\mu mol~CO_2~m^{-2}~s^{-1}$	GEP: gross ecosystem productivity. NEE u* lower
	_ust_max		bound corrected. Re calculated by the 5day
			model: 5-20 day night-time average. NEE
			corrected for low u* upper bound values
161	GEP_5day_sco2	μmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Re calculated
	_ust_min		by the 5day model: 5-20 day night-time average.
			NEE corrected for low u* lower bound values
162	GEP_5day_ust	µmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Re calculated
			by the 5day model: 5-20 day night-time average.
			Fc corrected for low u* (no Sco ₂)
163	GEP_5day_ust_	μmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Re calculated
	max		by the 5day model: 5-20 day night-time average.
			Fc corrected for low u* upper bound (no Sco2)
164	GEP_5day_ust_	µmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Re calculated
	min		by the 5day model: 5-20 day night-time average.
		_	Fc corrected low u* lower bound (no Sco2)
165	GEP_5day_sco2	μmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Re calculated
			by the 5day model: 5-20 day night-time average.
		_	Derived using NEE = Fc + Sco ₂ , no u* correction
166	GEP_5day	μmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Re calculated

			by the 5day model: 5-20 day night-time average.
			Derived using Fc no u* correction (no Sco2)
167	GEP_5day_sco2	μmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Filled using
	_ust_hyperbola		the light response curve. Re calculated by the
			5day model: 5-20 day night-time average. Derived
			using NEE = Fc + Sco ₂ , corrected for u_*
168	GEP_5day_sco2	$\mu mol~CO_2~m^{-2}~s^{-1}$	GEP: gross ecosystem productivity. Filled using
	_ust_hyperbola		the light response curve. Re calculated by the
			5day model: 5-20 day night-time average. Derived
			using NEE = $Fc + Sco_2$, corrected for low u^*
			values
169	GEP_5day_ust_	$\mu mol~CO_2~m^{-2}~s^{-1}$	GEP: gross ecosystem productivity. Filled using
	hyperbola		the light response curve. Re calculated by the
			5day model: 5-20 day night-time average. Derived
			using Fc u* corrected (no Sco ₂)
170	GEP_5day_sco2	μmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Filled using
	_hyperbola		the light response curve. Re calculated by the
			5day model: 5-20 day night-time average. Derived
			using NEE = Fc + Sco ₂ no u* correction
171	GEP_5day_hype	μmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Filled using
	rbola		the light response curve. Re calculated by the
			5day model: 5-20 day night-time average. Derived
			using Fc, no u* correction, no Sco ₂
172	NEE_spike5_fre	µmol CO ₂ m ⁻² s ⁻¹	NEE: net ecosystem exchange. NEE spike free
	e		(m=5) as in Papale et al. (2006)
173	NEEnogap_5day	µmol CO ₂ m ⁻² s ⁻¹	Filled NEE: net ecosystem exchange u* corrected
	_sco2_ust		NEE = Fc + Sco ₂ , u _* corrected. Nighttime NEE =
			Re calculated by the 5day model: 5-20 day night-
			time average. Daytime GEP filled using the light
			response curve and Re
174	NEEnogap_5day	μmol CO ₂ m ⁻² s ⁻¹	Filled NEE: net ecosystem exchange u* corrected

	_ust		Fc (no Sco ₂). Nighttime NEE = Re calculated by
			the 5day model: 5-20 day night-time average.
			Daytime GEP filled using the light response
			curve and Re
175	NEEnogap_5day	μmol CO ₂ m ⁻² s ⁻¹	Filled NEE: net ecosystem exchange NEE = Fc +
	_sco2		Sco ₂ no u* corrected Nighttime NEE = Re
			calculated by the 5day model: 5-20 day night-time
			average. Daytime GEP filled using the light
			response curve and Re
176	NEEnogap_5day	μmol CO ₂ m ⁻² s ⁻¹	Filled NEE: net ecosystem exchange assumed Fc,
			no Sco_2 , no u_* corrected. Nighttime NEE = Re
			calculated by the 5day model: 5-20 day night-time
			average. Daytime GEP filled using the light
			response curve and Re
177	Sco2_LUT	μmol CO ₂ m ⁻² s ⁻¹	Sco ₂ : storage flux filled using the look up table
			(LUT) method
178	Sco2_IwataLIN	μmol CO ₂ m ⁻² s ⁻¹	Sco ₂ : storage flux filled using the Iwata et al.
			(2005) linear method
179	Sco2_IwataLN	μmol CO ₂ m ⁻² s ⁻¹	Sco ₂ : storage flux filled using the Iwata et al.
			(2005) natural logarithm method
180	Sco2_IwataPOL	μmol CO ₂ m ⁻² s ⁻¹	Sco ₂ : storage flux filled using the Iwata et al.
			(2005) second degree polynomial method
181	Sco2_EC	µmol CO ₂ m ⁻² s ⁻¹	Sco ₂ : storage flux filled using the CO ₂ from the
			eddy covariance system
	Sco2_DIEL	μmol CO ₂ m ⁻² s ⁻¹	Sco ₂ : storage flux filled using the Diel method
183	Fc_spike7_free	μmol CO ₂ m ⁻² s ⁻¹	Fc: CO ₂ flux spike free (m=7) as in Papale et al.
101	G 0	1.00 -2 -1	(2006)
	Sco2	μmol CO ₂ m ⁻² s ⁻¹	Sco ₂ : storage flux
τΩϽ	GEP_5day_ust_	μmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Derived using
	Sco2_LUT		NEE=Fc+Sco ₂ corrected for low u*. The Sco ₂
			filled using the look up table (LUT) method. The
			Re calculated by the 5day model: 5-20 day night-

			time average
186	GEP_5day_ust_	µmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Derived using
	Sco2_IwataLIN		NEE=Fc+Sco ₂ corrected for low u*. The Sco ₂
			filled using Iwata et al. (2005) linear method. The
			Re calculated by the 5day model: 5-20 day night-
			time average
187	GEP_5day_ust_	$\mu mol~CO_2~m^{-2}~s^{-1}$	GEP: gross ecosystem productivity. Derived using
	Sco2_IwataLN		NEE=Fc+Sco ₂ corrected for low u*. The Sco ₂
			filled using Iwata et al. (2005) natural logarithm
			method. The Re calculated by the 5day model: 5-
			20 day night-time average
188	GEP_5day_ust_	μ mol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Derived using
	Sco2_IwataPOL		NEE=Fc+Sco2 corrected for low u*. The Sco2
			filled using Iwata et al. (2005) second degree
			polynomial method. The Re calculated by the
			5day model: 5-20 day night-time average
189	GEP_5day_ust_	$\mu mol~CO_2~m^{-2}~s^{-1}$	GEP: gross ecosystem productivity. Derived using
	Sco2_EC		NEE=Fc+Sco ₂ corrected for low u*. The Sco ₂
			filled using CO ₂ from the EC system. The Re
			calculated by the 5day model: 5-20 day night-time
			average
190	GEP_5day_ust_	$\mu mol~CO_2~m^{-2}~s^{-1}$	GEP: gross ecosystem productivity.
	Sco2_DIEL		NEE=Fc+Sco ₂ corrected for low u*. The Sco ₂
			filled using the Diel method. The Re calculated by
			the 5day model: 5-20 day night-time average
191	GEP_5day_ust_	$\mu mol~CO_2~m^{-2}~s^{-1}$	GEP: gross ecosystem productivity.
	Sco2_UST		NEE=Fc+Sco ₂ corrected for low u*. The Sco ₂
			filled using the u* method. The Re calculated by
			the 5day model: 5-20 day night-time average
192	GEP_5day_ust_	$\mu mol~CO_2~m^{-2}~s^{-1}$	GEP: gross ecosystem productivity.
	Sco2_REG		NEE=Fc+Sco ₂ corrected for low u*. The Sco ₂

			filled using Regression method. The Re calculated
			by the 5day model: 5-20 day night-time average
193	GEP_model	µmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Selected for
			analysis, when needed Sco ₂ filled by site-specific
			method, u* corrected, Re based on the 5day model
194	GEPmodel_ust_	µmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Selected for
	max		analysis, when needed Sco ₂ filled by site-specific
			method, u* corrected for upper bound.
195	GEPmodel_ust_	μmol CO ₂ m ⁻² s ⁻¹	GEP: gross ecosystem productivity. Selected for
	min		analysis, when needed Sco ₂ filled by site-specific
			method, u* corrected for lower bound.
196	Re_model	µmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. Selected for analysis,
			when needed Sco ₂ filled by site-specific method,
			u _* corrected, Re based on the 5day model.
197	Remodel_ust_m	μmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. Selected for analysis,
	ax		when needed Sco ₂ filled by site-specific method,
			u* corrected for lower bound.
198	Remodel_ust_mi	µmol CO ₂ m ⁻² s ⁻¹	Re: ecosystem respiration. Selected for analysis,
	n		when needed Sco ₂ filled by site-specific method,
			u* corrected for lower bound.
199	Sco2_model	$\mu mol~CO_2~m^{-2}~s^{-1}$	Sco ₂ : storage flux. Selected for analysis. Method
			varies at each site. Refer to Restrepo-Coupe et al.
			(2013) for details
200	NEE_model_ust	µmol CO ₂ m ⁻² s ⁻¹	NEE: net ecosystem exchange. Selected for
	_max		analysis, when needed Sco ₂ filled by site-specific
			method, u* corrected for upper bound
201	NEE_model_ust	µmol CO ₂ m ⁻² s ⁻¹	NEE: net ecosystem exchange. Selected for
	_min		analysis, when needed Sco ₂ filled by site-specific
			method, u* corrected for lower bound
202	NEE_model	μ mol CO ₂ m ⁻² s ⁻¹	NEE: net ecosystem exchange. Selected for
			analysis, when needed Sco ₂ filled by site-specific
			method, u* corrected

203	par_fill	µmol CO ₂ m ⁻² s ⁻¹	PAR: photosynthetic active radiation – filled
204	Pc	µmol CO ₂ m ⁻² s ⁻¹	Pc: photosynthetic capacity. GEP at PAR>725
			and PAR<925 $\mu mol\ m^{\text{-2}}\ s^{\text{-1}}$
205	Pc_GEPfill	µmol CO ₂ m ⁻² s ⁻¹	Pc: photosynthetic capacity. Selected for analysis,
			derived from filled GEP at PAR>725 and
			PAR $<$ 925 µmol m $^{-2}$ s $^{-1}$.
206	Pc_AM	µmol CO ₂ m ⁻² s ⁻¹	Pc: photosynthetic capacity morning. GEP at
			PAR>725 and PAR<925 μ mol m ⁻² s ⁻¹
207	Pc_PM	µmol CO ₂ m ⁻² s ⁻¹	Pc: photosynthetic capacity afternoon. GEP at
			PAR>725 and PAR<925 μ mol m ⁻² s ⁻¹
215	Pcatmed.VPD	µmol CO ₂ m ⁻² s ⁻¹	Pc: photosynthetic capacity at VPD values 1-2
			kPa and PAR>725 and PAR<925 $\mu mol\ m^{\text{-2}}\ s^{\text{-1}}$
214	PcatlowVPD	µmol CO ₂ m ⁻² s ⁻¹	Pc: photosynthetic capacity at VPD values 0-1
			kPa and PAR>725 and PAR<925 $\mu mol\ m^{2}\ s^{1}$
216	PcathighVPDval	µmol CO ₂ m ⁻² s ⁻¹	Pc: photosynthetic capacity at high VPD values 2-
	ues		3 kPa and PAR>725 and PAR<925 $\mu mol\ m^{\text{-2}}\ s^{\text{-1}}$
217	VPD	kPa	Vapor pressure deficit

Missing Value: -9999.00

5.5. Data Organization

SSS_Cflux_BF.dat = the base file in each of these archives (with the hourly data) (SSS is the unique 3-letter site code = the second 3 letters in the archive file) ASCII format file sample for PEG (Pe-de-Gigante):

6. Application and Derivation:

This data set is an assimilation of eddy flux data that was independently produced and generously provided by the PIs of a variety of tower projects in the Amazon of Brazil. This integrated data set is intended to facilitate integrative studies and data-model synthesis from a common reference point.

Please note that the availability of this common data set notwithstanding, the LBA data sharing policy (http://www.lbaeco.org/lbaeco/data/data_poldoc.htm) still requires any author or presenter of this data to contact and appropriately credit PIs from individual projects that generated the data used. The necessary contact information and references (in brackets) are supplied in the table below.

Site ID PI (includes references)

- K34: Manzi, A., Nobre, A. (INPA, Brazil) (Araújo et al., 2002)
- CAX: da Costa (Universidade Federal do Pará, Brazil), Malhi, Y. (University of Oxford) (Souza Filho et al., 2005)
- K67: Wofsy, S. (Harvard University, USA), Saleska, S. (University of Arizona, USA), Camargo, A. CENA/University of São Paulo, Brazil). (Hutyra et al., 2007; Saleska et al., 2003)
- K83: Goulden M. (University of California Irvine, USA), Miller, S. (The State University of New York, Albany, USA), da Rocha, H. (USP, Brazil). (da Rocha et al., 2004; Goulden et al., 2004; Miller et al., 2004)
- K77: Fitzjarrald, D. (The State University of New York, Albany, USA) (Sakai et al., 2004)
- RJA: Manzi, A. (INPA, Brasil), Cardoso, F. (UFR, Brazil) (Kruijt et al., 2004; von Randow et al., 2004)
- FNS: Waterloo, M.(Vrije Universiteit Amsterdam, The Netherlands), Manzi, A. (INPA, Brazil) (von Randow et al., 2004)
- JAV: da Rocha, H. (University of São Paulo, Brazil) (Borma et al., 2009)
- PEG: da Rocha, H. (University of São Paulo, Brazil) (Cabral et al., 2015)

For site-specific measurement instrumentation see site specific references and other metadata data (ftp://lbaworking.daac.ornl.gov/lba/carbon_dynamics/CD32_Brasil_flux_network/comp)

7. Quality Assessment:

See the following references for details:

Saleska, S.R., H.R. da Rocha, A.R. Huete, A.D. Nobre, P. Artaxo, and Y.E. Shimabukuro. 2013. LBA-ECO CD-32 Flux Tower Network Data Compilation, Brazilian

Amazon: 1999-2006. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA http://dx.doi.org/10.3334/ORNLDAAC/1174

de Goncalves, L.G.G., N. Restrepo-Coupe, H.R. da Rocha, S.R. Saleska, and R. Stockli. 2013. LBA-ECO CD-32 LBA Model Intercomparison Project (LBA-MIP) Meteorological Forcing Data. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA_http://dx.doi.org/10.3334/ORNLDAAC/1177

Restrepo-Coupe, N., da Rocha, H. R., da Araujo, A. C., Borma, L. S., Christoffersen, B., Cabral, O. M. R., de Camargo, P. B., Cardoso, F. L., da Costa, A. C. L., Fitzjarrald, D. R., Goulden, M. L., Kruijt, B., Maia, J. M. F., Malhi, Y. S., Manzi, A. O., Miller, S. D., Nobre, A. D., von Randow, C., Sá, L. D. A., ... Saleska, S. R. (2013). What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agricultural and Forest Meteorology, 182–183, 128–144.

Restrepo-Coupe, N., Levine, N. M., Christoffersen, B. O., Albert, L. P., Wu, J., Costa, M. H., Galbraith, D., Imbuzeiro, H., Martins, G., da Araujo, A. C., Malhi, Y. S., Zeng, X., Moorcroft, P., & Saleska, S. R. (2017). Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Global Change Biology, 23(1), 191–208. https://doi.org/10.1111/gcb.13442

8. Acquisition Materials and Methods:

Post-processed data (MATLAB R2007b code – University of Arizona)

9. Data Access:

This data is available through the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) or the EOS Data Gateway.

10. References:

- Araújo, A. C., Nobre, A. D., Kruijt, B., Elbers, J. A., Dallarosa, R., Stefani, P., Randow, C. von, Manzi, A. O., Culf, A. D., Gash, J. H. C., Valentini, R., & Kabat, P. (2002). Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site. *Journal of Geophysical Research*, 107(D20), LBA 58-1-LBA 58-20. https://doi.org/200210.1029/2001JD000676
- Borma, L. S., Rocha, H. R. da, Cabral, O. M., von Randow, C., Collicchio, E.,
 Kurzatkowski, D., Brugger, P. J., Freitas, H., Tannus, R., Oliveira, L., Rennó, C.
 D., & Artaxo, P. (2009). Atmosphere and hydrological controls of the
 evapotranspiration over a floodplain forest in the Bananal Island region,
 Amazonia. *Journal of Geophysical Research*, *114*, 12 PP.
 https://doi.org/200910.1029/2007JG000641
- Cabral, O. M. R., da Rocha, H. R., Gash, J. H., Freitas, H. C., & Ligo, M. A. V. (2015).

 Water and energy fluxes from a woodland savanna (cerrado) in southeast Brazil. *Journal of Hydrology: Regional Studies*, *4*, 22–40.

 https://doi.org/10.1016/j.ejrh.2015.04.010
- da Rocha, H. R., Goulden, M. L., Miller, S. D., Menton, M. C., Pinto, L. D. V. O., de Freitas, H. C., & e Silva Figueira, A. M. (2004). Seasonality of Water and Heat Fluxes over a Tropical Forest in Eastern Amazonia. *Ecological Applications*, *14*(sp4), 22–32. https://doi.org/10.1890/02-6001
- Goulden, M. L., Miller, S. D., da Rocha, H., Menton, M. C., de Freitas, H. C., Figueira,A. M. E. S., & de Sousa, C. A. D. (2004). Diel and seasonal patterns of tropical forest CO2 exchange. *Ecological Applications*, *14*, S42-55.
- Hutyra, L. R., Munger, J. W., Saleska, S. R., Gottlieb, E., Daube, B. C., Dunn, A. L., Amaral, D. F., de Camargo, P. B., & Wofsy, S. C. (2007). Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. *Journal of*

- *Geophysical Research: Biogeosciences, 112*(G3), 1–16. https://doi.org/10.1029/2006JG000365
- Iwata, H., Malhi, Y., & von Randow, C. (2005). Gap-filling measurements of carbon dioxide storage in tropical rainforest canopy airspace. *Agricultural and Forest Meteorology*, 132(3–4), 305–314. https://doi.org/10.1016/j.agrformet.2005.08.005
- Kruijt, B., Elbers, J. A., von Randow, C., Araújo, A. C., Oliveira, P. J., Culf, A., Manzi, A. O., Nobre, A. D., Kabat, P., & Moors, E. J. (2004). The Robustness of Eddy Correlation Fluxes for Amazon Rain Forest Conditions. *Ecological Applications*, 14(sp4), 101–113. https://doi.org/10.1890/02-6004
- Miller, S. D., Goulden, M. L., Menton, M. C., Rocha, H. R. da, Freitas, H. C. de, e Silva Figueira, A. M., & Sousa, C. A. D. de. (2004). Biometric and Micrometeorological Measurements of Tropical Forest Carbon Balance. *Ecological Applications*, 14(4), S114–S126.
- Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., & Yakir, D. (2006). Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. *Biogeosciences*, 3(4), 571–583.
- Restrepo-Coupe, N., Albert, L. P., Longo, M., Baker, I., Levine, N. M., Mercado, L. M.,
 Araujo, A. C. da, Christoffersen, B. O., Costa, M. H., Fitzjarrald, D. R., Galbraith,
 D., Imbuzeiro, H., Malhi, Y., Randow, C. von, Zeng, X., Moorcroft, P., &
 Saleska, S. R. (2021). Understanding water and energy fluxes in the Amazonia:
 Lessons from an observation-model intercomparison. *Global Change Biology*,
 27(9), 1802–1819. https://doi.org/10.1111/gcb.15555
- Restrepo-Coupe, N., da Rocha, H. R., da Araujo, A. C., Borma, L. S., Christoffersen, B., Cabral, O. M. R., de Camargo, P. B., Cardoso, F. L., da Costa, A. C. L., Fitzjarrald, D. R., Goulden, M. L., Kruijt, B., Maia, J. M. F., Malhi, Y. S., Manzi,

- A. O., Miller, S. D., Nobre, A. D., von Randow, C., Sá, L. D. A., ... Saleska, S. R. (2013). What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. *Agricultural and Forest Meteorology*, *182*–183, 128–144.
- Restrepo-Coupe, N., Levine, N. M., Christoffersen, B. O., Albert, L. P., Wu, J., Costa, M. H., Galbraith, D., Imbuzeiro, H., Martins, G., da Araujo, A. C., Malhi, Y. S.,
 Zeng, X., Moorcroft, P., & Saleska, S. R. (2017). Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A datamodel intercomparison. *Global Change Biology*, 23(1), 191–208.
 https://doi.org/10.1111/gcb.13442
- Richardson, A. D., & Hollinger, D. Y. (2005). Statistical modeling of ecosystem respiration using eddy covariance data: Maximum likelihood parameter estimation, and Monte Carlo simulation of model and parameter uncertainty, applied to three simple models. *Agricultural and Forest Meteorology*, *131*(3–4), 191–208. https://doi.org/10.1016/j.agrformet.2005.05.008
- Sakai, R. K., Fitzjarrald, D. R., Moraes, O. L. L., Staebler, R. M., Acevedo, O. C., Czikowsky, M. J., Silva, R. da, Brait, E., & Miranda, V. (2004). Land-use change effects on local energy, water, and carbon balances in an Amazonian agricultural field. *Global Change Biology*, *10*(5), 895–907. https://doi.org/10.1111/j.1529-8817.2003.00773.x
- Saleska, S. R., Miller, S. D., & Matross, D. M. (2003). Carbon in Amazon forests:

 Unexpected seasonal fluxes and disturbance-induced losses. *Science*, *302*, 1554–1557.
- Souza Filho, J. D. da C., Ribeiro, A., Costa, M. H., & Cohen, J. C. P. (2005). Control mechanisms of the seasonal variation of transpiration in a northeast amazonian tropical rainforest. *Acta Amazonica*, *35*, 223–229. https://doi.org/10.1590/S0044-59672005000200012

von Randow, C., Manzi, A. O., Kruijt, B., Oliveira, P. J. de, Zanchi, F. B., Silva, R. L., Hodnett, M. G., Gash, J. H. C., Elbers, J. A., Waterloo, M. J., Cardoso, F. L., & Kabat, P. (2004). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. *Theoretical and Applied Climatology*, 78, 5–26. https://doi.org/10.1007/s00704-004-0041-z