

Cambridge International Examinations

Cambridge IGCSE	Cambridge International Examinations Cambridge International General Certificate of Secondary Education
CANDIDATE NAME	
CENTRE NUMBER	CANDIDATE NUMBER

CHEMISTRY 0620/31

Paper 3 (Extended)

October/November 2014

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 12.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

CAMBRIDGE International Examinations

1	(a)	Match the following pH values to the solutions	given below. 10 13	•
		1 3 7	10 13 Andh	
		The solutions all have the same concentration		3
		solution	рН	•
		aqueous ammonia, a weak base		
		dilute hydrochloric acid, a strong acid		
		aqueous sodium hydroxide, a strong base		
		aqueous sodium chloride, a salt		
		dilute ethanoic acid, a weak acid	[5]
	(b)	Explain why solutions of hydrochloric acid an mol/dm³, have a different pH.	d ethanoic acid with the same concentration, ir	۱
			[2	
	(c)	Measuring pH is one way of distinguishing be Describe another method.	tween a strong acid and a weak acid.	
		method		
		results		
			[2]

[Total: 9]

diamond

(a)	Exp	plain in terms of its structure why graphite is soft and is a good conductor of electricity.	
			[3]
(b)	Sta	te two uses of graphite which depend on the above properties.	
	It is	soft	
	It is	a good conductor of electricity	
			 [2]
(c)	Silio	con(IV) oxide also has a macromolecular structure.	
	(i)	Describe the macromolecular structure of silicon(IV) oxide.	
			[1]
	(ii)	Predict two physical properties which diamond and silicon(IV) oxide have in common.	
			[2]

[Turn over

[Total: 8]

4.		
34		
	· A	Daca
	1	000
		0

The	main use of sulfur dioxide is the manufacture of sulfuric acid.	1
(a)	main use of sulfur dioxide is the manufacture of sulfuric acid. State two other uses of sulfur dioxide.	Ship
	One source of sulfur dioxide is burning sulfur in air. Describe how sulfur dioxide can be made from the ore zinc sulfide.	[2]
		[2]
(c)	The Contact process changes sulfur dioxide into sulfur trioxide.	
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	
	the forward reaction is exothermic	
	temperature 400 to 450 °C	
	low pressure 1 to 10 atmospheres	
	catalyst vanadium(V) oxide	
	(i) What is the formula of vanadium(V) oxide?	
		[1]
(ii) Vanadium(V) oxide is an efficient catalyst at any temperature in the range 400 to 450 Scientists are looking for an alternative catalyst which is efficient at 300 °C. What would be the advantage of using a lower temperature?	°C.
		[2]
(i	The process does not use a high pressure because of the extra expense. Suggest two advantages of using a high pressure? Explain your suggestions.	
		[4]

3

www.PapaCambridge.com (d) Sulfuric acid is made by dissolving sulfur trioxide in concentrated sulfuric acid to Water is reacted with oleum to form more sulfuric acid. Why is sulfur trioxide not reacted directly with water?

Iron is extracted from the ore hematite in the Blast Furnace.

(a) The coke reacts with the oxygen in the air to form carbon dioxide.

$$C + O_2 \rightarrow CO_2$$

(i)	Explain why carbon monoxide is formed higher in the Blast Furnace.
	[2]
(ii)	Write an equation for the reduction of hematite, Fe ₂ O ₃ , by carbon monoxide.
	[2]
(b) (i)	Limestone decomposes to form two products, one of which is calcium oxide. Name the other product.
	[1]
(ii)	Calcium oxide reacts with silicon(IV) oxide, an acidic impurity in the iron ore, to form slag. Write an equation for this reaction.
	[2]
(iii)	Explain why the molten iron and the molten slag form two layers and why molten iron is the lower layer.
	[2]
(iv)	Suggest why the molten iron does not react with the air.
	[1]

www.PapaCambridge.com

(c)	Iron and steel rust.	Iron is oxidised t	o hydrated iron(III)) oxide, $Fe_2O_3.2H_2O$, which
-----	----------------------	--------------------	----------------------	----------------------------------

1	í۱	Name	the two	substances	which	cause	iron	tο	rust
۱	u	Ivallic	THE TWO	Substantes	WITHCH	cause	11 011	ιυ	Tust.

	7 Man. Par
Iron	and steel rust. Iron is oxidised to hydrated iron(III) oxide, Fe ₂ O ₃ .2H ₂ O, which
(i)	Name the two substances which cause iron to rust.
(ii)	Explain why an aluminium article coated with aluminium oxide is protected from further corrosion but a steel article coated with rust continues to corrode.

T,	11	
	11	

- **(d)** There are two electrochemical methods of rust prevention.
 - The first method is sacrificial protection.

Explain why the steel article does not rust.

The second method is to make the steel article the cathode in a circuit for electrolysis.

/::\	Mark on the discrepation of the electron flow	[4]
(11)	Mark on the diagram the direction of the electron flow.	[!]

(iii)	The steel girder does not rust because it is the cathode. Reduction takes place at the cathode. Give the equation for the reduction of hydrogen ions.
	[2]

[Total: 19]

[Turn over

5	Throunb	ee common pollutants in the air are carbon monoxide, the oxides of nitrogen, NO surnt hydrocarbons. They are all emitted by motor vehicles. Describe how the oxides of nitrogen are formed.
	(a)	Describe how the oxides of nitrogen are formed.
		[2]
	(b)	Describe how a catalytic converter reduces the emission of these three pollutants.
		[4]
	(c)	Other atmospheric pollutants are lead compounds from leaded petrol. Explain why lead compounds are harmful.

[Total: 7]

6 Esters, polyesters and fats all contain the ester linkage.

www.PapaCambridge.com (a) Esters can be made from alcohols and carboxylic acids. For example, the ester ethyl et can be made by the following reaction.

(i) Name the carboxylic acid and the alcohol from which the following ester could be made.

name of carboxylic acid	
name of alcohol	
	[2]

(ii) 6.0 g of ethanoic acid, $M_r = 60$, was reacted with 5.5 g of ethanol, $M_r = 46$. Determine which is the limiting reagent and the maximum yield of ethyl ethanoate, $M_c = 88$. number of moles of ethanoic acid =[1] number of moles of ethanol =[1] the limiting reagent is[1] number of moles of ethyl ethanoate formed =[1] maximum yield of ethyl ethanoate =[1]

(b) The following two monomers can form a polyester.

Draw the structural formula of this polyester. Include two ester linkages.

www.PapaCambridge.com (c) Fats and vegetable oils are esters. The formulae of two examples of natural est below.

CH ₂ —CO ₂ —C ₁	₇ H ₃₃
CH—CO ₂ —C ₁	H ₃₃
I CH ₂ —CO ₂ —C ₁	₇ H ₃₃

ester 2 ester 1

(i)	One ester is saturated, the other is unsaturated.
	Describe a test to distinguish between them.

What types of compound are formed?

	test	
	result with unsaturated ester	
	result with saturated ester	
		[3]
<i>(</i> **)		[-]
(ii)	Deduce which one of the above esters is unsaturated. Give a reason for your choice.	
		[2]
(iii)	Both esters are hydrolysed by boiling with aqueous sodium hydroxide.	

[Total: 17]

7	Nitro	oger	ogen reacts with lithium to form the ionic compound lithium nitride, Li ₃ N. Write the equation for the reaction between lithium and nitrogen.
	(a)	Nitr	ogen reacts with lithium to form the ionic compound lithium nitride, Li ₃ N.
		(i)	Write the equation for the reaction between lithium and nitrogen.
			[2]
	((ii)	Lithium nitride is an ionic compound. Draw a diagram which shows its formula, the charges on the ions and the arrangement of the valency electrons around the negative ion.
			Use x for an electron from a lithium atom. Use o for an electron from a nitrogen atom.
			[2]
	(b)	Nitr	ogen fluoride is a covalent compound.
		(i)	Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound nitrogen trifluoride, ${\rm NF_3}$.
			Use x for an electron from a nitrogen atom. Use o for an electron from a fluorine atom.
			roz
	,	/::\	[2]
	((ii)	Lithium nitride has a high melting point, 813 °C. Nitrogen trifluoride has a low melting point, –207 °C. Explain why the melting points are different.
			[2]
			[Total: 8]

DATA SHEET	The Periodic Table of the Elements
------------	------------------------------------

0	4 Helium	Neon Neon Ar Argon	Kypton X	169
=	, N	19 Fluorine 10 35.5 C 1 Chlorine 18	86 54 86	Yb Lu Vierbium 71 No Lav Nobelium 103
5		16 O O Syygen 9 F S Suffur 17 C	79 Selentium 35 128	169 Tm Trudium 69 Md Nehdelevium 101
>		Nirogen 8 31 31 Bhosphous 16 15	AS Second 34 Artsenic Second 34 Antimony S2 CO9 SCO9 SCO	167 FF T T 100 Wen 1001
≥		Carbon Nit	Germanium 33 Ar 2 Cermanium 33 Ar 119 Sn Cor 207 207 207 20 But 2 Lead 83 83	_ E
		9 4	· ο ο ο	sure (r.t.p.).
		11 Boron 5 A 1 Aluminium 13		162 Dysprosium 66 Cf Image: Californium 98 and pressure
			201 Cadmium 48 Mercury 80 Mercury 80	Tb Tb Terrbum 65 Bk Brkeilum 97
			Copper 29 Copper 108 Agg Shoer 197 Au Au Au Coold 79 Coold 70 Cool	Gd Gadolinum 64 Gadolinum 64 Gadolinum 64 Gadolinum 64 Gadolinum 64 Gm Cm
Group			85 Nickel 28 Pd 106 Pd 106 Pd 195 Pt	Europum 63 Am Am Am Ameridium 95 Am
o		1	Cobailt 27 Cobailt 27 Rh Rhodium 45 I 192 I ridium 77 Indium 77 Indium 170 Cobailt 27 Co	Samerium 62 Pu Putonium 94 as is 24 d
	Hydrogen 1		56 Fe Iron 26 Iron 44 Ruthenium 44 OS	Pm Promethium 61 Np Np Neptunium 93 of any 93
			Manganese 25 Technetium 43 Re Rhenium 75	Nacotymium 60 U U Uranium 92 One mole
			52 Chromium 24 Mo Moybdenum 42 W Tungsten 74	Ce Pr Nd Pm Sm and month Europhum Gd Tb Dy by representation of one mole of any gas is 24 dms Hop month Fig. and month
			Vanadium 23 NB NB NB NB 181 Ta Tanalum 73	140 Ce Centum 58 232 Thorium 90 The VC
			48 Titanium 22 91 91 AZ Zirconium 40 178 Hafnium 72	mass number
			* F	Actinum † 199 Actinum † 191d Series 1 Series a = relative atomic mass X = atomic symbol b = proton (atomic) number
=		Bee Beryllum 4 24 Mg Magnesium		Fencium Fen
_		7 Lithium 3 23 23 Na Sodium 11	E F 5	*58-71 Lai 190-103 A

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.