26 Wednesday, April 13, 2011

Structure Sheaf on Affine Variety

 $X = \operatorname{Spec} A$

Define on basis \mathcal{B} for topology $\mathcal{B} = \{\text{opens } X_x, s \in A\} = \{X - V(s)\}$

Put $\mathcal{O}_X(X_s) = A_s$.

Similarly, if M is an A-module, get sheaf \mathcal{M} , $\mathcal{M}(X_s)$ =localized module M_s .

 $A_s = A[s^{-1}] = \{s^{-r}a\}, M_s = \{s^{-r}m \mid r \text{ integer}, m \in M\}$

 $s^{-r}a = s^{-r'}a'$ if $s^{r'}a = s^ra'$

Equivalence relation: $m/s^r = m'/s^{r'}$ if $s^n s^{r'} m = s^n s^r m'$ for some n

 M_s is an A_s -module

Sheaf axiom on \mathcal{B}

 $X_{s_1} \cup \cdots \cup X_{s_k}$ means $s_1 \cdots s_k$ generate a unit ideal. $\sum r_i s_i = 1, r_i \in A$.

Note s_1^n, \ldots, s_k^n also generate the unit ideal. So we can also write $\sum r_i s_i^n = 1$ (difference coefficients r_i . We can replace s_i by s_i^n .

18.721 Notes

Then the sheaf axiom (for X) says that

$$0 \to \mathcal{M}(X) \to \prod_i \mathcal{M}(X_{s_i}) \xrightarrow{\text{diff}} \prod_{i,j} \mathcal{M}(X_{(s_i s_j)})$$

is exact.

$$0 \to M \to \prod M_{s_i} \xrightarrow{\text{diff}} \prod_{i,j} M_{s_i s_j}$$

is exact.

We also need to check this for when we replace X by $U \in \mathcal{B}$ $(U = X_t)$

Suppose $m \in M$, $m \rightsquigarrow 0$ in M_{s_i} for all i. This means that $s_i^n m = s_i^n 0 = 0$ for $n \gg 0$.

Checking the exactness of the first \rightarrow : $m = 1 \cdot m = \sum r_i s_i^n m = 0$.

Given $\alpha_i \in M_{s_i}$ and $\alpha_i = \alpha_j m M_{s_i s_j}$, we want to find $w \in M$ with $w = \alpha_i$ in M_{s_i} for all i.

$$\alpha_i = s^{-n} m_i, \quad \alpha_j = s^{-n} m_j, \quad m_i \in M$$

 $\alpha_i = \alpha_j$ in $M_{s_i s_j}$ means $(s_i s_j)^N s_j^n m_i = (s_i s_j)^N s_i^n m_j$. Let's absorb s_i^N into m_i , so that our new equation looks like

$$\boxed{s_j^{\ell} m_i = s_i^{\ell} m_j} \qquad (\ell = N + n)$$

Write $\sum r_i s_i^{\ell} = 1$.

$$m_{j} = \sum_{i} r_{i} s_{i}^{\ell} m_{j}$$

$$= \sum_{i} r_{i} s_{j}^{\ell} m_{i}$$

$$= s_{j}^{\ell} w$$

$$w = \sum_{i} r_{i} m_{i}$$

$$m_{j} = s_{j}^{\ell} w$$

$$\forall j$$

bring s_i s to the other side

$$s_i^{-\ell} m_j = w \in M$$

But we need n, not ℓ ...

Structure sheaf on \mathbb{P}^n

Coordinates (x_0, \ldots, x_n) . Say we have covered \mathbb{P}^n by the standard affine $U_i = \{x_i \neq 0\}$. We have a structure sheaf on $U_i \approx \mathbb{A}^n$.

Open subsets of U_i form a basis for the topology on \mathbb{P}^n . So we get a structure sheaf $\mathcal{O}_{\mathbb{P}}$ by describing it on each U_i .

We must check that if we restrict the structure sheaf on U_i and U_j to $U_i \cap U_j$, we get the same answer in both cases.

What's the benefit of describing the structure sheaf this way? If you give a variety by the topological space X and a sheaf \mathcal{O}_X of algebras, then you "know" (in principle) $\mathcal{O}_X(U)$ for every U. The benefit is that we can define "morphism" easily.

Definition. A regular function on an open set U is an element of $\mathcal{O}_X(U)$. (Given a regular function f, and a point p, we can evaluate f at p to get a function.)

Definition. Given two varieties, we can define a morphism

$$(Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$$

given by

- a continuous map $Y \xrightarrow{f} X$
- which carries regular functions to regular functions

(Functions on
$$X$$
) $\xrightarrow{\circ f}$ (Functions on Y) $q \sim q \circ f$

If U is an open set in X, then $V = f^{-1}U$ in Y.

(Functions on
$$U$$
) $\xrightarrow{\circ f}$ (Functions on V)

 F_X = sheaf of functions on X

$$F_X(U) \xrightarrow{\circ f} F_Y(V)$$

$$F_X \xrightarrow{f^* = \circ f} F_Y$$

$$F_X(U) \xrightarrow{\circ f} F_Y(V)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$