Willingness-to-pay for Warnings: Main Tables

A. Gaduh, P. McGee and A. Ugarov

May 28, 2022

Research Question

- How much do people value alerts (signals) about potential preventable threats?
- How do signal's probabilistic characteristics affect the willingness-to-pay for it and the welfare gains from using it?
- Applications:
 - Natural disaster warnings (tornados, floods, earthquakes)
 - Medical tests for treatable conditions
 - Investing in research on likelihood of catastrophic events (rogue AI, global warming, pandemics)
- Note: most real-life applications provide little practice with using the signal

Overview of the Experiment

- An insurance experiment:
 - ullet Two states of the world: bad ($\omega=1$) and good ($\omega=0$)
 - \bullet Probability of a bad state is $P(\omega=1)=\pi$
 - Bad state \implies loss of \$L
 - ullet A perfectly protective insurance can be purchased for $\$
- ullet Subject can purchase a signal s before purchasing the insurance:
 - A signal is characterized by its true-positive ($P(s=1|\omega=1)$) and true-negative rates ($P(s=0|\omega=0)$)

Research objective

How do signal characteristics affect the WTP?

WTP for Signals

If losses are rare ($\pi L << c$)

- Theoretically, what should be the WTP for a signal?
- If bad states are a priori rare ($\pi L << c$) \implies never protect without a signal
- The theoretical WTP b for an expected utility maximizer given a signal s is a solution b^* to the following:

$$P(s=1)u(Y_0 - b^* - c) + \pi P(s=0|\omega=1)u(Y_0 - b^* - L) +$$
$$+(1-\pi)P(s=0|\omega=0)u(Y_0 - b^*) = (1-\pi)u(Y_0) + \pi u(Y_0 - L)$$

A risk-neutral agent then pays:

$$b^* = \pi(1 - P(s = 0 | \omega = 1))L - P(s = 1)c$$

- The formulas become more complicated if subjects can protect without a signal (bad state are not rare enough)
- The theoretical WTP b for an expected utility maximizer given a signal s is a solution b^* to the following:

$$P(s=1)u(Y_0 - b^* - c) + \pi P(0|1)u(Y_0 - b^* - L) + (1 - \pi)P(0|0)u(Y_0 - b^*) =$$

$$= \min[(1 - \pi)u(Y_0) + \pi u(Y_0 - L), u(Y_0 - c)]$$

A risk-neutral agent then pays:

$$b^* = \min[\pi L, c] - \pi(1 - P(s = 0 | \omega = 1))L - P(s = 1)c$$

Hypotheses

- Conditional on the signal's value for risk-neutral subjects, false positive and false negative rates reduce the perceived value of the signal (WTP)
 - The opposite is true: subjects underreact to false positive and false negative rates and overpay for bad signals
- 2 Conditional on the signal's value for risk-neutral subjects, false positive and false negative rates increase expected costs
 - No: FP and FN rates have no significant effects on costs besides their predicted theoretical effect
- Extra: how much of these disrepancies result from belief updating issues or risk aversion?

Risk Aversion Measurement

- Measure risk aversion based on blind protection choices:
 - Exclude obs from subjects switching back and forth
 - ullet The lowest probability for which a subject chooses to protect is π^*
 - \bullet Calculate their coefficient of relative risk aversion θ as the solution to the following equation:

$$\pi^* u(Y_0 - L; \theta) + (1 - \pi^*) u(Y_0; \theta) = u(Y_0 - c; \theta)$$

• Where u() is the CRRA utility function:

$$u(x;\theta) = \frac{x^{1-\theta} - 1}{1 - \theta}$$

• Note: risk lovers have $\theta < 0$

Abnormal Protection Responses

- Roughly one third of subjects (33 in the sample) switch from protection to no protection at least once
- But only 6% (6 subjects) switch more than once!
- If a switcher becomes non-switcher after a single change, calculate the risk aversion based on the total number of switches
- Left with only 7 subjects where this approach doesn't work and no risk aversion measurement is possible

CRRA Estimates

• Most subjects are moderately risk averse:

Probability (π^*)	θ	\overline{N}
Always protect	>2	1
0.1	2	10
0.15	1.216	13
0.2	0.573	29
0.25	0	16
0.3	-0.539	15
Never protect	<-0.539	14

WTP for the Signal

Theoretical value of the signal for risk-neutral subject:

$$b^* = \underbrace{\min[\pi L, c]}_{\text{BP costs}} - \underbrace{\pi(1 - P(s = 0 | \omega = 1))L}_{\text{False neg. costs}} - \underbrace{P(s = 1)c}_{\text{Protection costs}}$$

- Two potential approaches:
 - **1** Regress the discrepancy between WTP V and theoretical value b^* :

$$V-b^*=\alpha_0+\alpha_1 {\rm FN} \; {\rm costs}+\alpha_2 {\rm Prot.} \; {\rm costs}+\epsilon$$

Regress WTP directly on its components and account for censoring at 0:

$$V = \min[0, \beta_0 + \beta_1 \mathsf{FN} \; \mathsf{costs} + \beta_2 \mathsf{Prot}. \; \mathsf{costs} - \beta_3 \mathsf{BP} \; \mathsf{costs} + \gamma]$$

Note: protection costs include costs due to false positive signals

WTP Discrepancy Regressions

- Regressing the difference between WTP and theoretical value for a risk-neutral subject
- Coefficients should be zero

WTP Discrepancy 1

Figure: WTP for Information (Discrepancy)

	(1)	(2)	(3)	(4)	(5)	(6)
FP costs	.251*	.305**	.0991	.136	.404**	.439**
ΓN+-	(0.1)	(0.1)	(0.2)	(0.2)	(0.2)	(0.2)
FN costs	.356*** (0.1)	.292*** (0.1)	.397*** (0.1)	.348*** (0.1)	.425*** (0.1)	.375*** (0.1)
Risk-averse	(0.1)	(0.1)	.0046	154	(0.1)	(0.1)
			(0.3)	(0.4)		
Risk-averse \times FP costs			.187	.227		
Risk-averse × FN costs			(0.2) 066	(0.3) 118		
			(0.2)	(0.1)		
Accur. beliefs					.212	.335
Accur. beliefs \times FP costs					(0.3) 361	(0.4) 339
Accur. beliefs x 11 costs					(0.2)	(0.2)
Accur. beliefs \times FN costs					143	166
					(0.1)	(0.1)
Constant	233 (0.2)	.288 (0.2)	237 (0.3)	.336	331	.145
	(0.2)	(0.2)	(0.5)	- (CEO)	= (U.Z)	■ (0.3)~

WTP Discrepancy 5 (by Risk Aversion)

• Explaining the discrepancy between WTP and value with risk aversion: Figure: WTP for Information (different risk aversion)

	(1)	(2)	(3)	(4)	(5)	(6)
	$\theta = 0$	$\theta = 0.5$	$\theta = 1.0$	$\theta = 1.5$	$\theta = 2.5$	Heterogeneous θ
FP costs	.295**	.322**	.316**	.271*	.151	.29**
	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
FN costs	.243***	.346***	.46***	.559***	.69***	.343***
	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Constant	.254	146	664***	-1.32***	-1.81***	411
	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)	(0.3)
Prior dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	504	504	504	504	504	504
Adjusted ${\it R}^2$	0.21	0.27	0.28	0.32	0.37	0.19

Standard errors in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Tobit Regressions

- Regressing the WTP on its theoretical components
- Censoring at 0 and at 5 USD
- Coefficients should be one in absolute value
- No constant in regressions

Actual Costs vs Theoretical Costs

- Calculate actual costs based on decisions made in the Informed Protection treatment and actual posterior probabilities of losses.
- ullet Each reported participant's strategy s is a tuple of numbers (r_w, r_b) representing protection responses correspondingly to white and black hints
- Then the expected cost of each decision are:

$$EC(s) = \pi(P(0|1)(1 - r_w) + P(1|1)(1 - r_b))L + P(s = 1)c$$
$$+ (P(s = 0)r_w + P(s = 1)r_b)c$$

 Regress expected costs on minimal theoretical costs and other signal characteristics

Actual Costs vs Theoretical Costs

 Prior prob and false negative rates disproportionally affect expected costs:

Figure: Actual Exp. Costs vs Theoretical Costs					
	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	FE	FE	FE
Optimal exp. costs	.979***	.549***	.987***	.733***	1.06***
	(13.1)	(2.9)	(11.5)	(6.0)	(10.2)
Prior prob.	689	-3.3**	607	-2.15**	18
	(-0.9)	(-2.5)	(-0.8)	(-2.5)	(-0.2)
False neg. rate		-2.48***		-1.88***	
		(-3.4)		(-3.1)	
False pos. rate		-1.04			.71
		(-1.4)			(1.0)
Constant	707***	542***	711***	637***	754***
	(-6.2)	(-4.5)	(-7.4)	(-6.6)	(-6.8)
Observations	743	743	743	743	743
Adjusted R^2	0.38	0.39	0.43	0.44	0.43

t statistics in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Actual Costs - Theoretical Costs Discrepancy

 Prior prob and false negative rates disproportionally affect expected costs:

Figure: Expected costs discrepancy

	(1)	(2)	(3)	(4)	(5)	(6
FP costs	.0627	.0297	.153	.135	00302	07
	(0.1)	(0.1)	(0.2)	(0.2)	(0.2)	(0.3
FN costs	0285	.011	103	081	.134	.24
	(0.1)	(0.1)	(0.1)	(0.2)	(0.1)	(0.
Risk-averse			167	.121		
			(0.3)	(0.3)		
Risk-averse \times FP costs			143	161		
			(0.3)	(0.3)		
Risk-averse \times FN costs			.169	.198		
			(0.1)	(0.2)		
Accur. beliefs					.557*	.23
					(0.3)	(0.3
Accur. beliefs \times FP costs					.18	.27
					(0.3)	(0.3
Accur. beliefs \times FN costs			∢ □ ▶		- 329*≛	∕ 46

Actual Costs - Theoretical Costs Discrepancy 2

 Prior prob and false negative rates disproportionally affect expected costs:

Figure: Expected costs discrepancy (without 10% outliers)

	(1)	(2)	(3)	(4)	(5)	(6
FP costs	241***	217***	165*	137*	274***	12
	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.
FN costs	112***	127***	0913**	116***	0678	1 0
	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.
Risk-averse			128	.0384		11
			(0.1)	(0.1)		(0.1
Risk-averse \times FP costs			073	0708		08
			(0.1)	(0.1)		(0.
Risk-averse \times FN costs			0302	0167		03
			(0.1)	(0.1)		(0.
Accur. beliefs					.219***	.259
					(0.1)	(0.
Accur. beliefs \times FP costs					.0905	-
					(0.1)	
Accur. beliefs \times FN costs			∢ □ ▶	← □ → ← □ → □ → □ → □ → □ → □ → □ →	< ■ 0851	990

Value Formation

- What drives the difference between theoretical value and actual willingness-to-pay? Potential elements affecting the WTP:
 - Beliefs
 - Strategies
 - Preferences
- We recalculate the value after incorporating these elements one-by-one

Theoretical value Theoretical value for Theoretical value Reported for a risk-neutral reported beliefs and for actual value: optimal strategies: subject: strategies: **Beliefs** Strategy Preferences $V(a^*(\mu_R))$ V(a*(p*)) $V(a_R)$

Value Formation

- Accounting for reported beliefs or strategies does not make the theoretical value closer to the WTP
- ullet WTP is still more correlated with the (completely) theoretical value rather than with values accounting for beliefs μ_R or strategies a_R
- My hypothesis: subjects approach the tasks independently and/or do not report beliefs truthfully

	$V(a^*(p^*))$	$V(a^*(\mu_R))$	$V(a_R)$	V_R
$V(a^*(p^*))$	1	0.52	0.54	0.34
$V(a^*(\mu_R))$	0.52	1	0.63	0.29
$V(a_R)$	0.54	0.63	1	0.33
V_R	0.34	0.29	0.33	1

Additional Complementary Tables

- Belief updating (slides are not updated)
- ② Determinants of informed protection responses
- Olassifying informed protection strategies
- Extra WTP tables

Belief Updating: Correlation

Figure: Belief Elicitation: Belief vs Posterior					
	(1)	(2)	(3)		
	All	Good quiz	Dishonest greml		
Posterior prob.	.644***	.693***	.524***		
	(37.5)	(39.2)	(21.8)		
Constant	.175***	.15***	.236***		
	(21.7)	(19.8)	(23.4)		
Observations	1488	1260	992		
Adjusted \mathbb{R}^2	0.53	0.60	0.38		

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10, ** p < 0.05, *** p < 0.01

Belief Updating: Decomposition

• Posterior probability $\mu = P(B|S=x)$ that the ball is black conditional on a hint S=x can be written as:

$$\ln\left(\frac{\mu}{1-\mu}\right) = \lambda_0 + S_B + S_W$$

- With $\lambda_0 \equiv \ln(p/(1-p))$ representing (transformed) prior beliefs
- And S_B , S_W describing the effect of new evidence:

$$S_B \equiv I(S = B) \ln(P(s = B|B)/P(s = B|W))$$

 $S_W \equiv I(S = W) \ln((1 - P(s = B|B))/(1 - P(s = B|W))$

Belief Updating: Decomposition

Figure: Belief Elicitation: Decomposition						
	(1)	(2)	(3)			
	OLS	FE	Good quiz, FE			
lt_prior	.237***	.182***	.187***			
	(3.9)	(4.0)	(4.0)			
signalB	.426***	.865***	.992***			
	(5.1)	(6.4)	(6.7)			
signalW	.439***	0	0			
	(5.7)	(.)	(.)			
Constant		54***	632***			
		(-6.0)	(-6.6)			
Observations	332	332	288			
Adjusted ${\mathbb R}^2$	0.29	0.29	0.34			

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Informed Protection: Determinants

Figure: Informed Protection					
	(1)	(2)	(3)	(4)	
	All	All	Good quiz	Good quiz	
Informed protection					
Posterior prob.	2.15***	.662***	2.26***	.638***	
	(19.1)	(3.3)	(17.7)	(3.0)	
Prior prob.		1.13***		1.17***	
		(4.1)		(3.8)	
Gremlin says Black		1.34***		1.46***	
		(8.8)		(8.8)	
Constant	662***	-1.03***	717***	-1.1***	
	(-14.2)	(-11.2)	(-14.2)	(-10.9)	

1487

1394.01

1259

1211.48

t statistics in parentheses

Observations

1487

1467.25

1259

1137.59

AIC

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Informed Protection: Reacting to Own Beliefs or Posterior Probabilties?

Figure: Informed Protection: Response to Reported Beliefs					
	(1)	(2)	(3)		
	All	All	Good quiz		
Informed protection					
Belief	2.18***	2.62***	2.8***		
	(18.5)	(18.2)	(17.0)		
Belief error		1.52***	1.41***		
		(11.5)	(9.3)		
Constant	762***	881***	963***		
	(-14.3)	(-15.7)	(-15.9)		
Observations	1487	1487	1259		
AIC	1566.82	1413.23	1146.78		

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Informed Protection: Do Subject's Beliefs Matter?

Figure: Informed Pro	tection: Res	sponse to Re	eported Beli	efs
	(1)	(2)	(3)	(4)
Informed protection				
Belief	2.36***	2.67***	2.63***	2.85***
	(0.2)	(0.2)	(0.4)	(0.4)
Belief error		1.3***	1.17***	1.44***
		(0.2)	(0.2)	(0.3)
Good quiz			.184	
			(0.2)	
Good quiz $ imes$ Belief			.105	
			(0.5)	
Good quiz $ imes$ Belief error			.34	
			(0.4)	
Stat. class				.0954
				(0.2)
Stat. class \times Belief				287
		4.1	1 b 4 A B b 4 E	#0 E)=

Informed Protection: Responding to Beliefs or Posterior Probabilities

- Calculate the subject-specific correlation between beliefs, posterior probabilities and protection responses
- Mann-Whitney U-test as a correlation measure with two "groups": signals answered with either protection or no protection responses
- No obvious clustering, but ∃ three groups:
 - Sophisticated: protection decisions closely follow their accurate beliefs
 - Clueless: protection decisions follow neither posteriors nor reported beliefs
 - Amenders: have inaccurate beliefs, but behave consistently with posterior probabilities (small group)

Informed Protection: Responding to Beliefs or Posterior Probabilities

WTP Discrepancy 6

• Adding blind protection costs

Figure: WTP for Information (Discrepancy)							
	(1)	(2)	(3)	(4)			
	All	Risk-averse	Risk-loving	Switchers			
BP costs	519***	484***	534***	622**			
	(-9.3)	(-6.2)	(-6.6)	(-2.5)			
Pos. signal costs	.671***	.759***	.596***	.482			
	(8.0)	(6.8)	(4.5)	(1.4)			
False neg. costs	.475***	.423***	.542***	.371*			
	(7.3)	(4.6)	(5.2)	(1.7)			
Constant	.818***	.526**	.917***	2.06**			
	(4.6)	(2.1)	(3.6)	(2.5)			
N obs.	744	336	354	54			
AIC	2738	1206	1326	210			
p(coeffs=0)	3.83e-22***	2.00e-12***	8.46e-10***	.0958*			

t statistics in parentheses

 $^{^{\}ast}$ p<0.10, ** p<0.05, *** p<0.01

WTP Discrepancy 7

• Controlling for the prior probability of a black ball with dummies

	(1)	(2)	(3)	(4)
	All	Risk-averse	Risk-loving	Switchers
False-neg. prob. x Loss	.044**	.0366	.0572**	.0162
	(2.5)	(1.5)	(2.1)	(0.2)
False-neg. prob. x Prot. cost	.13*	.176*	.0378	0058
	(1.8)	(1.8)	(0.3)	(-0.0)
Constant	.404***	.244	.417**	1.63**
	(3.1)	(1.3)	(2.2)	(2.5)
N obs.	744	336	354	54
AIC	2686	1174	1303	213
p(coeffs=0)	.00982***	.0542***	.109***	.969

t statistics in parentheses

 $^{^{\}ast}$ p<0.10 , ** p<0.05 , *** p<0.01