

Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de Matemática Disciplina: Álgebra Linear I – 2020.2

Lista 7 – Autovalores e Autovetores, e Diagonalização de Operadores

- 1. Considere o operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ definido por T(x,y) = (2y,x). Determine:
 - (a) O polinômio característico de T.
 - (b) Os autovalores de T.
 - (c) Os autovetores associados a cada autovalor de T.
- 2. Considere o operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$T(x, y, z) = (x + y, x - y + 2z, 2x + y - z).$$

Determine:

- (a) O polinômio característico de T.
- (b) Os autovalores de T.
- (c) Os autovetores associados a cada autovalor de T.
- 3. Considere o operador linear $T: \mathcal{P}_2 \to \mathcal{P}_2$ definido por $T(x+yt+zt^2) = y+xt+zt^2$. Determine:
 - (a) O polinômio característico de T.
 - (b) Os autovalores de T.
 - (c) Os autovetores associados a cada autovalor de T.
- 4. Considere o operador linear $T: \mathbb{R}^4 \to \mathbb{R}^4$ definido por

$$T(x, y, z, w) = (x, x + y, x + y + z, x + y + z + w).$$

Determine:

- (a) O polinômio característico de T.
- (b) Os autovalores de T.

- (c) Os autovetores associados a cada autovalor de T.
- 5. Considere o operador linear $T: \mathbf{M}(2,2) \to \mathbf{M}(2,2)$ definido por $T(A) = A^T$. Determine:
 - (a) O polinômio característico de T.
 - (b) Os autovalores de T.
 - (c) Os autovetores associados a cada autovalor de T.
- 6. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ o operador linear definido por

$$T(x, y, z) = (x + 2y + 3z, y + 2z, z).$$

- (a) Considere os seguintes vetores (0,0,0),(1,2,3),(-3,0,0),(1,1,0). Quais deles são autovetores de T?
- (b) Considere os seguintes escalares -1, 0, 1 e $\sqrt{2}$. Quais deles são autovalores de T?
- 7. Considere α a base canônica de \mathbb{R}^3 e $T:\mathbb{R}^3\to\mathbb{R}^3$ o operador linear dado pela matriz

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

Encontre os autovalores e autovetores correspondentes de T.

8. Considere α a base canônica de \mathbb{R}^4 e $T:\mathbb{R}^4\to\mathbb{R}^4$ o operador linear dado pela matriz

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 12 & 0 & 3 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}.$$

Encontre os autovalores e autovetores correspondentes de T.

- 9. Considere $T: \mathbb{R}^2 \to \mathbb{R}^2$ o operador linear com autovetores $v_1 = (3,1)$ e $v_2 = (-2,1)$ associados aos autovalores $\lambda_1 = -2$ e $\lambda_2 = 3$, respectivamente. Determine T(x,y).
- 10. Considere $T: \mathbf{M}(2,2) \to \mathbf{M}(2,2)$ o operador linear com autovetores

$$v_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, v_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, v_3 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, v_4 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

associados aos autovalores $\lambda_1=1,\,\lambda_2=-1,\,\lambda_3=2$ e $\lambda_4=0,$ respectivamente. Determine

$$T\left(\left[\begin{array}{cc} x & y \\ z & w \end{array}\right]\right).$$

11. Considere o operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ definido por

$$T(x,y) = (2x + 2y, x + 3y).$$

- (a) Encontre todos os autovalores de T.
- (b) Encontre uma base de cada autoespaço associado a um autovalor de T.
- (c) Determine as multiplicidades algébrica e geométrica de cada autovalor de T.
- (d) Se possível, determine uma base β de \mathbb{R}^2 cujos elementos são autovetores de T.
- 12. Considere o operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$T(x, y, z) = (3x - y + z, 7x - 5y + z, 6x - 6y + 2z).$$

- (a) Encontre todos os autovalores de T.
- (b) Encontre uma base de cada autoespaço associado a um autovalor de T.
- (c) Determine as multiplicidades algébrica e geométrica de cada autovalor de T.
- (d) Se possível, determine uma base β de \mathbb{R}^3 cujos elementos são autovetores de T.
- 13. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ o operador linear definido por T(x,y) = (7x 4y, -4x + y).
 - (a) Determine uma base do \mathbb{R}^2 em relação à qual a matriz do operador T é diagonal.
 - (b) Encontre a matriz de T nessa base.
- 14. Verifique se cada operador linear abaixo é diagonalizável:
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(x, y) = (2y, x).
 - (b) $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(x, y, z) = (x + y, x y + 2z, 2x + y z).
 - (c) $T: \mathcal{P}_2 \to \mathcal{P}_2$ tal que $T(x + yt + zt^2) = y + xt + zt^2$.
 - (d) $T: \mathbb{R}^4 \to \mathbb{R}^4$ tal que T(x, y, z, w) = (x, x + y, x + y + z, x + y + z + w).
 - (e) $T: \mathbf{M}(2,2) \to \mathbf{M}(2,2)$ tal que $T(A) = A^T$.
- 15. Considere α a base canônica de \mathbb{R}^2 e $T:\mathbb{R}^2\to\mathbb{R}^2$ o operador linear dado pela matriz

$$[T]^{\alpha}_{\alpha} = \left[\begin{array}{cc} 5 & -1 \\ 1 & 3 \end{array} \right].$$

Encontre:

- (a) O polinômio característico de T e escreva todos os candidatos a polinômio minimal de T
- (b) O polinômio minimal de T e verifique se T é diagonalizável.

16. Considere α a base canônica de \mathbb{R}^3 e $T:\mathbb{R}^3\to\mathbb{R}^3$ o operador linear dado pela matriz

$$[T]^{\alpha}_{\alpha} = \left[\begin{array}{ccc} 1 & 2 & 1 \\ -1 & 3 & 1 \\ 0 & 2 & 2 \end{array} \right].$$

Encontre:

- (a) O polinômio característico de T e escreva todos os candidatos a polinômio minimal de T.
- (b) O polinômio minimal de T e verifique se T é diagonalizável.
- 17. Considere α a base canônica de \mathbb{R}^4 e $T: \mathbb{R}^4 \to \mathbb{R}^4$ o operador linear dado pela matriz

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 2 & -1 & 0 & 1 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

Encontre:

- (a) O polinômio característico de T e escreva todos os candidatos a polinômio minimal de T.
- (b) O polinômio minimal de T e verifique se T é diagonalizável.
- 18. Considere α a base canônica de \mathbb{R}^3 e $T: \mathbb{R}^3 \to \mathbb{R}^3$ o operador linear dado pela matriz

$$[T]^{\alpha}_{\alpha} = \left[\begin{array}{ccc} 2 & k & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{array} \right].$$

Determine o valor de k para que o operador T seja diagonalizável.

19. Considere o operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$T(x, y, z) = (4x - 2y + 2z, 6x - 3y + 4z, 3x - 2y + 3z).$$

- (a) Encontre o polinômio minimal de T.
- (b) T é diagonalizável? Justifique.
- 20. Considere o operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$T(x, y, z) = (3x - 2y + 2z, 4x - 4y + 6z, 2x - 3y + 5z).$$

4

(a) Encontre o polinômio minimal de T.

(b) T é diagonalizável? Justifique.