Final 2014

Теория вероятностей и математическая статистика

Обратная связь:

https://github.com/bdemeshev/probability_hse_exams

Последнее обновление: 7 января 2019 г.

Пусть X_1, \ldots, X_n — выборка объема n из равномерного на [a,b] распределения. Оценка $X_1 + X_2$ параметра c = a + b является

- 🚺 смещенной и несостоятельной
- несмещенной и несостоятельной
- несмещенной и состоятельной
- 🕑 асимптотически несмещенной и состоятельной
- 💟 смещенной и состоятельной

Пусть X_1, \ldots, X_n — выборка объема n из некоторого распределения с конечным математическим ожиданием. Несмещенной и состоятельной оценкой математического ожидания является

$$\sum \frac{X_1+X_2}{2}$$

$$\sum_{\substack{X_1 \\ 2n}} \frac{X_1}{2n} + \frac{X_2 + \ldots + X_{n-2}}{n-1} + \frac{X_n}{2n}$$

$$\sum_{n=2}^{\infty} \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-2} + \frac{X_n}{2n}$$

$$\frac{1}{3}X_1 + \frac{2}{3}X_2$$

$$\sum \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-1}}{n-2} - \frac{X_n}{2n}$$

Пусть X_1, \ldots, X_n — выборка объема n из равномерного на $[0, \theta]$ распределения. Оценка параметра θ методом моментов по k-му моменту имеет вид:

- $^{k+1}\sqrt{(k+1)}\overline{X}^{k}$
- $\sqrt[k]{(k+1)}\overline{X}^k$
- $\sqrt[k]{k}\overline{X}^k$

Пусть X_1, \ldots, X_n — выборка объема n из равномерного на $[0, \theta]$ распределения. Состоятельной оценкой параметра θ является:

- $X_{(n)} \longrightarrow X_{(n-1)}$
- $\sum_{n=1}^{n} X_{(n-1)}$
- $\sum_{n^2-n+3}^{n^2} X_{(n-3)}$
- все перечисленные случайные величины

Пусть X_1, \ldots, X_{2n} — выборка объема 2n из некоторого распределения. Какая из нижеперечисленных оценок математического ожидания имеет наименьшую дисперсию?

 X_1

$$\frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\underbrace{\frac{1}{n}\sum_{i=n+1}^{2n}X_i}$$

Пусть X_1, \ldots, X_n — выборка объема n из распределения Бернулли с параметром p. Статистика X_2X_{n-2} является

- $lue{}$ состоятельной оценкой p^2
- 🕑 оценкой максимального правдоподобия
- эффективной оценкой p^2
- асимптотически нормальной оценкой p²
- $lue{}$ несмещенной оценкой p^2

Пусть X_1, \ldots, X_n — выборка объема n из равномерного на [a,b] распределения. Выберите наиболее точный ответ из предложенных. Оценка $\theta_n^* = X_{(n)} - X_{(1)}$ длины отрезка [a,b] является

- 💟 состоятельной и асимптотически несмещенной
- 🕑 несостоятельной и асимптотически несмещенной
- 🕑 состоятельной и асимптотически смещённой
- 💟 несмещенной
- 🕨 нормально распределённой

Вероятностью ошибки второго рода называется

- Единица минус вероятность отвергнуть основную гипотезу, когда она верна
- Вероятность отвергнуть альтернативную гипотезу, когда она верна
- Вероятность принять неверную гипотезу
- Единица минус вероятность отвергнуть альтернативную гипотезу, когда она верна
- 🕟 Вероятность отвергнуть основную гипотезу, когда она верна

Если Р-значение (P-value) больше уровня значимости lpha, то гипотеза $H_0: \sigma=1$

- Не отвергается
- Отвергается
- $lue{}$ Отвергается, только если $H_{\mathsf{a}}:\ \sigma < 1$
- $lue{}$ Отвергается, только если $H_a: \ \sigma > 1$
- $lue{}$ Отвергается, только если $H_a:\ \sigma
 eq 1$

10

Имеется случайная выборка размера *п* из нормального распределения. При проверке гипотезы о равенстве математического ожидания заданному значению при известной дисперсии используется статистика, имеющая распределение

$$\chi_n^2$$

$$\sim N(0,1)$$

$$t_n-1$$

$$\chi_n^2 - 1$$

$$\Box$$
 t_n

11

Имеется случайная выборка размера n из нормального распределения. При проверке гипотезы о равенстве дисперсии заданному значению при неизвестном математическом ожидании используется статистика, имеющая распределение

- N(0,1)
- t_n-1
- $\chi_n^2 1$
- χ_n^2
- t_n

По случайной выборке из 100 наблюдений было оценено выборочное среднее $\bar{X}=20$ и несмещенная оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:~\mu=15$ против альтернативной гипотезы $H_a:~\mu>15$ можно сделать следующее заключение

- $lue{}$ Гипотеза H_0 не отвергается на любом разумном уровне значимости
- $lue{f D}$ Гипотеза H_0 отвергается на уровне значимости 20%, но не на уровне значимости 10%
- ullet Гипотеза H_0 отвергается на уровне значимости 10%, но не на уровне значимости 5%
- ullet Гипотеза H_0 отвергается на любом разумном уровне значимости
- $lue{}$ Гипотеза H_0 отвергается на уровне значимости 5%, но не на уровне значимости 1%

На основе случайной выборки, содержащей одно наблюдение X_1 , тестируется гипотеза $H_0: X_1 \sim U[0;1]$ против альтернативной гипотезы $H_a: X_1 \sim U[0.5;1.5]$. Рассматривается критерий: если $X_1 > 0.8$, то гипотеза H_0 отвергается в пользу гипотезы H_a . Вероятность ошибки 2-го рода для этого критерия равна:

- 0.2
- 0.4
- 0.1
- 0.3
- 0.5

Пусть X_1, X_2, \ldots, X_n — случайная выборка размера 36 из нормального распределения $N(\mu,9)$. Для тестирования основной гипотезы $H_0: \mu=0$ против альтернативной $H_a: \mu=-2$ вы используете критерий: если $\bar{X} \geq -1$, то вы не отвергаете гипотезу H_0 , в противном случае вы отвергаете гипотезу H_0 в пользу гипотезы H_a . Мощность критерия равна

- 0.87
- 0.58
- 0.98
- 0.78
- 0.85

Николай Коперник подбросил бутерброд 200 раз. Бутерброд упал маслом вниз 95 раз, а маслом вверх — 105 раз. Значение критерия χ^2 Пирсона для проверки гипотезы о равной вероятности данных событий равно

- 0.25
- 0.75
- 2.5
- 0.5
- 7.5

Каждое утро в 8:00 Иван Андреевич Крылов, либо завтракает, либо уже позавтракал. В это же время кухарка либо заглядывает к Крылову, либо нет. По таблице сопряженности вычислите статистику χ^2 Пирсона для тестирования гипотезы о том, что визиты кухарки не зависят от того, позавтракал ли уже Крылов или нет.

	Кухарка заходит	Кухарка не заходит	
Крылов завтракает	200	40	
Крылов уже позавтракал	25	100	

9

Ковариационная матрица вектора $X=(X_1,X_2)$ имеет вид $\begin{pmatrix} 10 & 3 \\ 3 & 8 \end{pmatrix}$. Дисперсия разности элементов вектора, $Var(X_1-X_2)$, равняется

- 2
- 8
- 5

Все условия регулярности для применения метода максимального правдоподобия выполнены. Вторая производная лог-функции правдоподобия равна $\ell''(\theta) = -100$. Дисперсия несмещенной эффективной оценки для параметра θ равна

- **100**
- **1**0
- 0.1
- **1**
- 0.01

Геродот Геликарнасский проверяет гипотезу $H_0: \mu=0, \ \sigma^2=1$ с помощью LR статистики теста отношения правдоподобия. При подстановке оценок метода максимального правдоподобия в лог-функцию правдоподобия он получил $\ell=-177$, а при подстановке $\mu=0$ и $\sigma=1$ оказалось, что $\ell=-211$. Найдите значение LR статистики и укажите её закон распределения при верной H_0

- $LR = 68, \chi_2^2$
- $LR = \ln 34, \ \chi_n^2 2$
- $LR = 34, \chi_2^2$
- $LR = 34, \chi_n^2 1$
- $LR = \ln 68, \ \chi_n^2 2$

Геродот Геликарнасский проверяет гипотезу H_0 : $\mu = 2$. Лог-функция правдоподобия имеет вид $\ell(\mu,\nu) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\nu - \frac{\sum_{i=1}^{n}(x_i-\mu)^2}{2\nu}$. Оценка максимального правдоподобия для ν при предположении, что H_0 верна, равна

$$\sum \frac{\sum x_i^2 - 4 \sum x_i}{n}$$

$$\sum \frac{x_i^2 - 4\sum x_i}{n} + 2$$

$$\sum \frac{x_i^2 - 4\sum x_i + 2}{n}$$

$$\sum \frac{x_i^2 - 4\sum x_i + 4}{n}$$

$$\sum x_i^2 - 4 \sum x_i + 2$$

$$\sum x_i^2 - 4 \sum x_i + 4$$

Ацтек Монтесума Илуикамина хочет оценить параметр a методом максимального правдоподобия по выборке из неотрицательного распределения с функцией плотности $f(x) = \frac{1}{2}a^3x^2e^{-ax}$ при $x \ge 0$. Для этой цели ему достаточно максимизировать функцию

- \square 3n \prod ln $a ax^n$
- \longrightarrow 3n \sum ln $a_i a \sum$ ln x_i
- \bigcirc 3n ln $a a \prod \ln x_i$
- \bigcirc 3n ln $a an \ln x_i$
- \bigcirc 3*n* ln $a a \sum x_i$

Бессмертный гений поэзии Ли Бо оценивает математическое ожидание по выборка размера n из нормального распределения. Он построил оценку метода моментов, $\hat{\mu}_{MM}$, и оценку максимального правдоподобия, $\hat{\mu}_{ML}$. Про эти оценки можно утверждать, что

- \bigcirc $\hat{\mu}_{M}M < \hat{\mu}_{M}L$
- $lue{}$ они не равны, и не сближаются при $n o\infty$
- \bigcirc $\hat{\mu}_{M}M > \hat{\mu}_{M}L$
- они равны
- $lue{}$ они не равны, но сближаются при $n o\infty$

Проверяя гипотезу о равенстве дисперсий в двух выборках (размером в 3 и 5 наблюдений), Анаксимандр Милетский получил значение тестовой статистики 10. Если оценка дисперсии по одной из выборок равна 8, то другая оценка дисперсии может быть равна

- **1** 80
- 3/4
- **25**
- **4**
- **4/3**

Пусть $\hat{\sigma}_1^2$ — несмещенная оценка дисперсии, полученная по первой выборке размером n_1 , $\hat{\sigma}_2^2$ — несмещенная оценка дисперсии, полученная по второй выборке, с меньшим размером n_2 . Тогда статистика $\frac{\hat{\sigma}_1^2/n_1}{\hat{\sigma}_2^2/n_2}$ имеет распределение

$$\chi_{n_1+n_2}^2$$
 $t_{n_1+n_2-1}$

$$t_{n_1+n_2-1}$$

$$F_{n_1-1,n_2-1}$$

$$\sim N(0;1)$$

Зулус Чака каСензангакона проверяет гипотезу о равенстве математических ожиданий в двух нормальных выборках небольших размеров n_1 и n_2 . Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

- $t_{n_1+n_2-1}$ $t_{n_1+n_2-2}$
- $t_{n_1+n_2}$
- $\sum \chi^2_{n_1+n_2-1}$

Критерий знаков проверяет нулевую гипотезу

- о совпадении функции распределения случайной величины с заданной теоретической функцией распределения
- о равенстве математических ожиданий двух нормально распределенных случайных величин
- о равенстве 1/2 вероятности того, что случайная величина X окажется больше случайной величины Y, если альтернативная гипотеза записана как $\mu_X > \mu_Y$
- о равенстве нулю вероятности того, что случайная величина X окажется больше случайной величины Y, если альтернативная гипотеза записана как $\mu_X > \mu_Y$
- $lue{oldsymbol{\circ}}$ о равенстве нулю вероятности того, что случайная величина X окажется больше случайной величины Y, если альтернативная гипотеза записана как $\mu_X > \mu_Y$

27

Вероятность ошибки первого рода, α , и вероятность ошибки второго рода, β , всегда связаны соотношением

$$\alpha + \beta = 1$$

$$\alpha \geq \beta$$

$$\alpha + \beta \leq 1$$

$$\alpha \leq \beta$$

$$\alpha + \beta \ge 1$$

Среди 100 случайно выбранных ацтеков 20 платят дань Кулуакану, а 80 — Аскапоцалько. Соответственно, оценка доли ацтеков, платящих дань Кулуакану, равна $\hat{p}=0.2$. Разумная оценка стандартного отклонения случайной величины \hat{p} равна

- **1**.6
- 0.16
- 0.016
- 0.04
- 0.4

Датчик случайных чисел выдал следующие значения псевдо случайной величины: 0.78, 0.48. Вычислите значение критерия Колмогорова и проверьте гипотезу H_0 о соответствии распределения равномерному на [0;1]. Критическое значение статистики Колмогорова для уровня значимости 0.1 и двух наблюдений равно 0.776.

- О.78, Н₀ отвергается
- $\bigcirc 0.37, \ H_0 \$ не отвергается
- $\blacksquare 1.26, H_0$ отвергается
- 0.48, H₀ не отвергается
- \bigcirc 0.3, H_0 не отвергается

У пяти случайно выбранных студентов первого потока результаты за контрольную по статистике оказались равны 82, 47, 20, 43 и 73. У четырёх случайно выбранных студентов второго потока — 68, 83, 60 и 52. Вычислите статистику Вилкоксона для меньшей выборки и проверьте гипотезу H_0 об однородности результатов двух потоков. Критические значения статистики Вилкоксона равны $T_L=12$ и $T_R=28$.

- \bigcirc 20, H_0 не отвергается

- 24, H₀ не отвергается
- 12.75, H₀ не отвергается

31

Производитель мороженного попросил оценить по 10-бальной шкале два вида мороженного: с кусочками шоколада и с орешками. Было опрошено 5 человек

	Евлампий	Аристарх	Капитолина	Аграфена	Эвридика
С крошкой	10	6	7	5	4
С орехами	9	8	8	7	6

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.05 гипотезу об отсутствии предпочтения мороженного с орешками против альтернативы, что мороженное с орешками вкуснее.

- 1.29, H₀ отвергается
- 1.96, H₀ отвергается
- 1.65, H₀ отвергается
- 1.34, H₀ не отвергается
- 1.29, H₀ не отвергается

По 10 наблюдениям проверяется гипотеза H_0 : $\mu=10$ против H_a : $\mu\neq 10$ на выборке из нормального распределения с неизвестной дисперсией. Величина $\sqrt{n}\cdot(\bar{X}-\mu)/\hat{\sigma}$ оказалась равной 1. Р-значение примерно равно

- 0.16
- 0.34
- 0.83
- 0.17
- 0.32

33

Пусть X_1, X_2, \ldots, X_{11} — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33$, $\sum_{i=1}^{11} x_i^2 = 100$. Несмещенная оценка μ принимает значение

- **3**
- 100/11
- **1**0
- 3.3
- 0.33

Пусть X_1, X_2, \ldots, X_{11} — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33, \; \sum_{i=1}^{11} x_i^2 = 100.$ Несмещенная оценка дисперсии принимает значение

- **1/11**
- 1/10
- **1**0
- 100/11
- **11/100**

Если X_i независимы, $\mathbb{E}(X_i) = \mu$ и $\text{Var}(X_i) = \sigma^2$, то математическое ожидание величины $Y = \sum_{i=1}^n (X_i - \bar{X})^2$ равно

- σ^2/n
- σ^2
- \square μ
- $(n-1)\sigma^2$
- $\hat{\sigma}^2$

Величины Z_1, Z_2, \ldots, Z_n независимы и нормальны N(0,1). Случайная величина $\frac{Z_1\sqrt{n-3}}{\sqrt{\sum_{i=a}^n Z_i^2}}$ имеет распределение

- t_{n-3} χ_{n-4}^2
- λ_{n-4}
- t_{n-1}
- N(0,1)

37

Величины $Z_1,\ Z_2,\ \dots,\ Z_n$ независимы и нормальны N(0,1). Случайная величина $\frac{2Z_1^2}{Z_2^2+Z_2^2}$ имеет распределение

- $F_{1,2}$
- $F_{2,7}$ $F_{7,2}$
- 1 7,
- t_2

Величины Z_1 , Z_2 , ..., Z_n независимы и нормальны N(0,1). Случайная величина $Z_1^2+Z_2^2$ имеет распределение

- χ_1^2
- χ_2^2
- χ_3^2
- t_2
- χ_4^2

Последовательность оценок $\hat{ heta}_1$, $\hat{ heta}_2$, . . . называется состоятельной, если

- $\blacksquare \mathbb{E}(\hat{\theta}_n) \to \theta$
- $lue{t} \mathbb{P}(|\hat{ heta}_n heta| > t) o 0$ для всех t > 0
- $ightharpoonup Var(\hat{\theta}_n) \geq Var(\hat{\theta}_n + 1)$
- $ightharpoonup Var(\hat{\theta}_n) o 0$

40

Функция правдоподобия, построенная по случайной выборке X_1, \ldots, X_n из распределения с функцией плотности $f(x) = (\theta+1)x^{\theta}$ при $x \in [0;1]$ имеет вид

- $(\theta+1)x^{n\theta}$
- $\sum_{i} (\theta + 1) x_i^{\theta}$
- $(\theta+1)^{\sum x_i}$
- $(\sum x_i)^{\theta}$
- $(\theta+1)^n \prod x_i^{\theta}$

Пусть X_1, \ldots, X_n — выборка объема n из равномерного на [a,b] распределения. Оценка $X_1 + X_2$ параметра c = a + b является

- 📭 смещенной и несостоятельной
- 📭 несмещенной и несостоятельной
- несмещенной и состоятельной
- 🖸 асимптотически несмещенной и состоятельной
- смещенной и состоятельной

Пусть X_1, \ldots, X_n — выборка объема n из некоторого распределения с конечным математическим ожиданием. Несмещенной и состоятельной оценкой математического ожидания является

$$\sum_{\substack{X_1 \\ 2n}} \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-1} + \frac{X_n}{2n}$$

$$\sum_{n=2}^{\infty} \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-2} + \frac{X_n}{2n}$$

$$\frac{1}{3}X_1 + \frac{2}{3}X_2$$

$$\sum \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-1}}{n-2} - \frac{X_n}{2n}$$

Пусть X_1, \ldots, X_n — выборка объема n из равномерного на $[0, \theta]$ распределения. Оценка параметра θ методом моментов по k-му моменту имеет вид:

- \bigvee $\sqrt[k]{(k+1)}\overline{X}^k$
- $\sqrt[k]{k}\overline{X}^k$
- $\sqrt[k]{k}\overline{X}^k$
- $\sqrt[k]{(k+1)}\overline{X}^k$

Пусть X_1, \ldots, X_n — выборка объема n из равномерного на $[0, \theta]$ распределения. Состоятельной оценкой параметра θ является:

- $X_{(n)} \longrightarrow X_{(n-1)}$
- $\frac{n}{n+1}X_{(n-1)}$
- $\sum_{n^2-n+3}^{n^2} X_{(n-3)}$
- все перечисленные случайные величины

Следующий вопрос

Пусть X_1, \ldots, X_{2n} — выборка объема 2n из некоторого распределения. Какая из нижеперечисленных оценок математического ожидания имеет наименьшую дисперсию?

- X_1

- $\begin{array}{c}
 \frac{1}{n}\sum_{i=n+1}^{2n}X_i
 \end{array}$

Пусть X_1, \ldots, X_n — выборка объема n из распределения Бернулли с параметром p. Статистика X_2X_{n-2} является

- $lue{}$ состоятельной оценкой p^2
- 🕑 оценкой максимального правдоподобия
- \bigcirc эффективной оценкой p^2
- $lue{}$ асимптотически нормальной оценкой p^2
- несмещенной оценкой p²

Пусть X_1, \ldots, X_n — выборка объема n из равномерного на [a,b] распределения. Выберите наиболее точный ответ из предложенных. Оценка $\theta_n^* = X_{(n)} - X_{(1)}$ длины отрезка [a,b] является

- 🕑 состоятельной и асимптотически несмещенной
- 🕑 несостоятельной и асимптотически несмещенной
- 🕑 состоятельной и асимптотически смещённой
- несмещенной
- нормально распределённой

Вероятностью ошибки второго рода называется

- ▶ Единица минус вероятность отвергнуть основную гипотезу, когда она верна
- Вероятность отвергнуть альтернативную гипотезу, когда она верна
- Вероятность принять неверную гипотезу
- Единица минус вероятность отвергнуть альтернативную гипотезу, когда она верна
- 💽 Вероятность отвергнуть основную гипотезу, когда она верна

Если Р-значение (P-value) больше уровня значимости α , то гипотеза $H_0: \sigma=1$

- Не отвергается
- Отвергается
- $lue{}$ Отвергается, только если $H_a:\ \sigma < 1$
- $lue{}$ Отвергается, только если H_a : $\sigma > 1$
- $lue{}$ Отвергается, только если H_a : $\sigma
 eq 1$

10

Имеется случайная выборка размера n из нормального распределения. При проверке гипотезы о равенстве математического ожидания заданному значению при известной дисперсии используется статистика, имеющая распределение

- χ_n^2
- $\sim N(0,1)$
- t_n-1
- $\chi_{p}^{2} 1$
- \Box t_n

11

Имеется случайная выборка размера n из нормального распределения. При проверке гипотезы о равенстве дисперсии заданному значению при неизвестном математическом ожидании используется статистика, имеющая распределение

- N(0,1)
- t_n-1
- $\chi_n^2 1$
- χ_n^2
- \Box t_n

По случайной выборке из 100 наблюдений было оценено выборочное среднее $\bar{X}=20$ и несмещенная оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:~\mu=15$ против альтернативной гипотезы $H_a:~\mu>15$ можно сделать следующее заключение

- $lue{}$ Гипотеза H_0 не отвергается на любом разумном уровне значимости
- ullet Гипотеза H_0 отвергается на уровне значимости 20%, но не на уровне значимости 10%
- $lue{1}$ Гипотеза H_0 отвергается на уровне значимости 10%, но не на уровне значимости 5%
- ullet Гипотеза H_0 отвергается на любом разумном уровне значимости

На основе случайной выборки, содержащей одно наблюдение X_1 , тестируется гипотеза $H_0: X_1 \sim U[0;1]$ против альтернативной гипотезы $H_a: X_1 \sim U[0.5;1.5]$. Рассматривается критерий: если $X_1 > 0.8$, то гипотеза H_0 отвергается в пользу гипотезы H_a . Вероятность ошибки 2-го рода для этого критерия равна:

- 0.2
- 0.4
- 0.1
- 0.3
- 0.5

Пусть X_1, X_2, \ldots, X_n — случайная выборка размера 36 из нормального распределения $N(\mu,9)$. Для тестирования основной гипотезы $H_0: \mu=0$ против альтернативной $H_a: \mu=-2$ вы используете критерий: если $\bar{X} \geq -1$, то вы не отвергаете гипотезу H_0 , в противном случае вы отвергаете гипотезу H_0 в пользу гипотезы H_a . Мощность критерия равна

- 0.87
- 0.58
- 0.98
- 0.78
- 0.85

Николай Коперник подбросил бутерброд 200 раз. Бутерброд упал маслом вниз 95 раз, а маслом вверх — 105 раз. Значение критерия χ^2 Пирсона для проверки гипотезы о равной вероятности данных событий равно

- 0.25
- 0.75
- 2.5
- 0.5
- 7.5

Каждое утро в 8:00 Иван Андреевич Крылов, либо завтракает, либо уже позавтракал. В это же время кухарка либо заглядывает к Крылову, либо нет. По таблице сопряженности вычислите статистику χ^2 Пирсона для тестирования гипотезы о том, что визиты кухарки не зависят от того, позавтракал ли уже Крылов или нет.

	Кухарка заходит	Кухарка не заходит	
Крылов завтракает	200	40	
Крылов уже позавтракал	25	100	

- 79

Ковариационная матрица вектора $X=(X_1,X_2)$ имеет вид $\begin{pmatrix} 10 & 3 \\ 3 & 8 \end{pmatrix}$. Дисперсия разности элементов вектора, $Var(X_1-X_2)$, равняется

- 2
- 8
- 5

Все условия регулярности для применения метода максимального правдоподобия выполнены. Вторая производная лог-функции правдоподобия равна $\ell''(\theta) = -100$. Дисперсия несмещенной эффективной оценки для параметра θ равна

- **100**
- **1**0
- 0.1
- **1**
- 0.01

Геродот Геликарнасский проверяет гипотезу $H_0: \mu=0, \ \sigma^2=1$ с помощью LR статистики теста отношения правдоподобия. При подстановке оценок метода максимального правдоподобия в лог-функцию правдоподобия он получил $\ell=-177$, а при подстановке $\mu=0$ и $\sigma=1$ оказалось, что $\ell=-211$. Найдите значение LR статистики и укажите её закон распределения при верной H_0

•
$$LR = 68, \chi_2^2$$

$$LR = \ln 34, \ \chi_n^2 - 2$$

•
$$LR = 34, \chi_2^2$$

$$LR = 34, \chi_n^2 - 1$$

•
$$LR = \ln 68, \ \chi_n^2 - 2$$

Геродот Геликарнасский проверяет гипотезу H_0 : $\mu=2$. Лог-функция правдоподобия имеет вид $\ell(\mu,\nu)=-\frac{n}{2}\ln(2\pi)-\frac{n}{2}\ln\nu-\frac{\sum_{i=1}^n(x_i-\mu)^2}{2\nu}$. Оценка максимального правдоподобия для ν при предположении, что H_0 верна, равна

$$\sum \frac{x_i^2 - 4 \sum x_i}{n}$$

$$\sum \frac{x_i^2 - 4 \sum x_i}{n} + 4$$

$$\sum \frac{x_i^2 - 4 \sum x_i}{n} + 2$$

$$\sum \frac{x_i^2 - 4 \sum x_i + 2}{n}$$

$$\sum \frac{x_i^2 - 4 \sum x_i + 4}{n}$$

Ацтек Монтесума Илуикамина хочет оценить параметр a методом максимального правдоподобия по выборке из неотрицательного распределения с функцией плотности $f(x)=\frac{1}{2}a^3x^2e^{-ax}$ при $x\geq 0$. Для этой цели ему достаточно максимизировать функцию

- \bigcirc 3n \prod ln $a ax^n$
- $3n \sum \ln a_i a \sum \ln x_i$
- \bigcirc 3n ln $a a \prod \ln x_i$
- \bigcirc 3n ln $a an \ln x_i$
- \bigcirc 3*n* ln $a a \sum x_i$

Бессмертный гений поэзии Ли Бо оценивает математическое ожидание по выборка размера n из нормального распределения. Он построил оценку метода моментов, $\hat{\mu}_{MM}$, и оценку максимального правдоподобия, $\hat{\mu}_{ML}$. Про эти оценки можно утверждать, что

- \bigcirc $\hat{\mu}_{M}M < \hat{\mu}_{M}L$
- $lue{}$ они не равны, и не сближаются при $n o\infty$
- 🔼 они равны
- $lue{}$ они не равны, но сближаются при $n o\infty$

Проверяя гипотезу о равенстве дисперсий в двух выборках (размером в 3 и 5 наблюдений), Анаксимандр Милетский получил значение тестовой статистики 10. Если оценка дисперсии по одной из выборок равна 8, то другая оценка дисперсии может быть равна

- 08
- 3/4
- **25**
- **1** 4
- **4/3**

Пусть $\hat{\sigma}_1^2$ — несмещенная оценка дисперсии, полученная по первой выборке размером n_1 , $\hat{\sigma}_2^2$ — несмещенная оценка дисперсии, полученная по второй выборке, с меньшим размером n_2 . Тогда статистика $\frac{\hat{\sigma}_1^2/n_1}{\hat{\sigma}_2^2/n_2}$ имеет распределение

$$\chi_{n_1+n_2}^2$$

$$t_{n_1+n_2-1}$$

$$t_{n_1+n_2-1}$$

$$F_{n_1-1,n_2-1}$$

$$ightharpoonup F_{n_1,n_2}$$

$$\sim N(0;1)$$

Зулус Чака каСензангакона проверяет гипотезу о равенстве математических ожиданий в двух нормальных выборках небольших размеров n_1 и n_2 . Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

$$t_{n_1+n_2-1}$$
 $t_{n_1+n_2-2}$

$$t_{n_1+n_2-2}$$

$$t_{n_1+n_2}$$

$$F_{n_1,n_2}$$

$$\chi^2_{n_1+n_2-1}$$

Критерий знаков проверяет нулевую гипотезу

- о совпадении функции распределения случайной величины с заданной теоретической функцией распределения
- о равенстве математических ожиданий двух нормально распределенных случайных величин
- о равенстве 1/2 вероятности того, что случайная величина X окажется больше случайной величины Y, если альтернативная гипотеза записана как $\mu_X > \mu_Y$
- $lue{oldsymbol{\circ}}$ о равенстве нулю вероятности того, что случайная величина X окажется больше случайной величины Y, если альтернативная гипотеза записана как $\mu_X>\mu_Y$
- $lue{lue{lue{O}}}$ о равенстве нулю вероятности того, что случайная величина X окажется больше случайной величины Y, если альтернативная гипотеза записана как $\mu_X > \mu_Y$

27

Вероятность ошибки первого рода, α , и вероятность ошибки второго рода, β , всегда связаны соотношением

$$\alpha + \beta = 1$$

$$\alpha \geq \beta$$

$$\alpha + \beta \leq 1$$

$$\alpha \leq \beta$$

$$\alpha + \beta \ge 1$$

Среди 100 случайно выбранных ацтеков 20 платят дань Кулуакану, а 80 — Аскапоцалько. Соответственно, оценка доли ацтеков, платящих дань Кулуакану, равна $\hat{p}=0.2$. Разумная оценка стандартного отклонения случайной величины \hat{p} равна

- **1**.6
- 0.16
- 0.016
- 0.04
- 0.4

Датчик случайных чисел выдал следующие значения псевдо случайной величины: 0.78, 0.48. Вычислите значение критерия Колмогорова и проверьте гипотезу H_0 о соответствии распределения равномерному на [0;1]. Критическое значение статистики Колмогорова для уровня значимости 0.1 и двух наблюдений равно 0.776.

- 0.78, H₀ отвергается
- 1.26, H₀ отвергается
- 0.48, H₀ не отвергается
- \bigcirc 0.3, H_0 не отвергается

У пяти случайно выбранных студентов первого потока результаты за контрольную по статистике оказались равны 82, 47, 20, 43 и 73. У четырёх случайно выбранных студентов второго потока — 68, 83, 60 и 52. Вычислите статистику Вилкоксона для меньшей выборки и проверьте гипотезу H_0 об однородности результатов двух потоков. Критические значения статистики Вилкоксона равны $T_L=12$ и $T_R=28$.

- \bigcirc 20, H_0 не отвергается

- № 24, H₀ не отвергается
- 12.75, H₀ не отвергается

Производитель мороженного попросил оценить по 10-бальной шкале два вида мороженного: с кусочками шоколада и с орешками. Было опрошено 5 человек

	Евлампий	Аристарх	Капитолина	Аграфена	Эвридика
С крошкой	10	6	7	5	4
С орехами	9	8	8	7	6

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.05 гипотезу об отсутствии предпочтения мороженного с орешками против альтернативы, что мороженное с орешками вкуснее.

- 1.29, H₀ отвергается
- 1.96, H₀ отвергается
- 1.65, H₀ отвергается
- 1.29, H₀ не отвергается

Да! (

По 10 наблюдениям проверяется гипотеза $H_0: \mu=10$ против $H_a: \mu \neq 10$ на выборке из нормального распределения с неизвестной дисперсией. Величина $\sqrt{n}\cdot(\bar{X}-\mu)/\hat{\sigma}$ оказалась равной 1. Р-значение примерно равно

- 0.16
- 0.34
- 0.83
- 0.17
- 0.32

Да! (Следующий вопрос

Пусть $X_1,\,X_2,\,\ldots,\,X_{11}$ — выборка из распределения с математическим ожиданием μ и стандартным отклонением $\sigma.$ Известно, что $\sum_{i=1}^{11}x_i=33,\,\sum_{i=1}^{11}x_i^2=100.$ Несмещенная оценка μ принимает значение

- **3**
- 100/11
- **1**0
- 3.3
- 0.33

Да! Следующий вопрос

Пусть X_1, X_2, \ldots, X_{11} — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33, \; \sum_{i=1}^{11} x_i^2 = 100.$ Несмещенная оценка дисперсии принимает значение

- **1/11**
- **1/10**
- **1**0
- 100/11
- **11/100**

Да! (Следующий вопрос

Если X_i независимы, $\mathbb{E}(X_i) = \mu$ и $\text{Var}(X_i) = \sigma^2$, то математическое ожидание величины $Y = \sum_{i=1}^n (X_i - \bar{X})^2$ равно

$$\sigma^2/n$$

$$\sigma^2$$

$$\square$$
 μ

$$(n-1)\sigma^2$$

$$\hat{\sigma}^2$$

Да! (Следующий вопрос

Величины Z_1 , Z_2 , ..., Z_n независимы и нормальны N(0,1). Случайная величина $\frac{Z_1\sqrt{n-3}}{\sqrt{\sum_{i=a}^n Z_i^2}}$ имеет распределение

- t_{n-3} χ^2_{n-4}
- t_{n-1}
- $\sim N(0,1)$

Да! Следующий вопрос

Величины $Z_1,\ Z_2,\ \dots,\ Z_n$ независимы и нормальны N(0,1). Случайная величина $\frac{2Z_1^2}{Z_2^2+Z_2^2}$ имеет распределение

- $F_{1,2}$
- $F_{2,7}$ $F_{7,2}$

- t_2

Да! (Следующий вопрос

Величины Z_1 , Z_2 , ..., Z_n независимы и нормальны N(0,1). Случайная величина $Z_1^2+Z_4^2$ имеет распределение

- χ_1^2
- χ_2^2
- χ_3^2
- t_2
- χ_4^2

Да! (Следующий вопрос

Последовательность оценок $\hat{ heta}_1$, $\hat{ heta}_2$, \dots называется состоятельной, если

$$\blacksquare \mathbb{E}(\hat{\theta}_n) \to \theta$$

$$igcup \mathbb{P}(|\hat{ heta}_n - heta| > t) o 0$$
 для всех $t > 0$

$$ightharpoonup Var(\hat{\theta}_n) \ge Var(\hat{\theta}_n + 1)$$

$$ightharpoonup Var(\hat{\theta}_n) o 0$$

Да! Следующий вопрос

40

Функция правдоподобия, построенная по случайной выборке X_1, \ldots, X_n из распределения с функцией плотности $f(x) = (\theta+1)x^{\theta}$ при $x \in [0;1]$ имеет вид

- $(\theta+1)x^{n\theta}$
- $\sum (\theta+1)x_i^{\theta}$
- $(\theta+1)^{\sum x_i}$
- $(\sum x_i)^{\theta}$
- $(\theta+1)^n \prod x_i^{\theta}$

Да! Следующий вопрос

Пусть X_1, \ldots, X_n — выборка объема n из равномерного на [a,b] распределения. Оценка X_1+X_2 параметра c=a+b является

- 📭 смещенной и несостоятельной
- 📭 несмещенной и несостоятельной
- несмещенной и состоятельной
- 🖸 асимптотически несмещенной и состоятельной
- 🔼 смещенной и состоятельной

Пусть X_1, \ldots, X_n — выборка объема n из некоторого распределения с конечным математическим ожиданием. Несмещенной и состоятельной оценкой математического ожидания является

$$\sum \frac{X_1+X_2}{2}$$

$$\sum_{n=1}^{\infty} \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-1} + \frac{X_n}{2n}$$

$$\sum_{n=1}^{\infty} \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-2} + \frac{X_n}{2n}$$

$$\frac{1}{3}X_1 + \frac{2}{3}X_2$$

$$\sum \frac{X_1}{2n} + \frac{X_2 + \ldots + X_{n-1}}{n-2} - \frac{X_n}{2n}$$

Пусть X_1, \ldots, X_n — выборка объема n из равномерного на $[0, \theta]$ распределения. Оценка параметра θ методом моментов по k-му моменту имеет вид:

- $^{k+1}\sqrt{(k+1)}\overline{X}^{k}$
- $\sqrt[k]{(k+1)}\overline{X}^k$
- $\sqrt[k]{k}\overline{X}^k$

Пусть X_1, \ldots, X_n — выборка объема n из равномерного на $[0, \theta]$ распределения. Состоятельной оценкой параметра θ является:

- $X_{(n)} \longrightarrow X_{(n-1)}$
- $\frac{n}{n+1}X_{(n-1)}$
- $\sum_{n^2-n+3}^{n^2} X_{(n-3)}$
- все перечисленные случайные величины

Пусть X_1, \ldots, X_{2n} — выборка объема 2n из некоторого распределения. Какая из нижеперечисленных оценок математического ожидания имеет наименьшую дисперсию?

 X_1

$$\sum \frac{X_1+X_2}{2}$$

$$\begin{array}{c}
\frac{1}{n}\sum_{i=n+1}^{2n}X_i
\end{array}$$

Пусть X_1, \ldots, X_n — выборка объема n из распределения Бернулли с параметром p. Статистика X_2X_{n-2} является

- $m{ ilde{ ilde{}}}$ состоятельной оценкой p^2
- 🕟 оценкой максимального правдоподобия
- \bigcirc эффективной оценкой p^2
- $lue{}$ асимптотически нормальной оценкой p^2
- несмещенной оценкой p²

Пусть X_1, \ldots, X_n — выборка объема n из равномерного на [a,b] распределения. Выберите наиболее точный ответ из предложенных. Оценка $\theta_n^* = X_{(n)} - X_{(1)}$ длины отрезка [a,b] является

- 🕑 состоятельной и асимптотически несмещенной
- 🕑 несостоятельной и асимптотически несмещенной
- 🕑 состоятельной и асимптотически смещённой
- 💟 несмещенной
- нормально распределённой

Вероятностью ошибки второго рода называется

- Единица минус вероятность отвергнуть основную гипотезу, когда она верна
- Вероятность отвергнуть альтернативную гипотезу, когда она верна
- Вероятность принять неверную гипотезу
- Единица минус вероятность отвергнуть альтернативную гипотезу, когда она верна
- 💽 Вероятность отвергнуть основную гипотезу, когда она верна

Если Р-значение (P-value) больше уровня значимости lpha, то гипотеза $H_0: \sigma=1$

- Не отвергается
- Отвергается
- $lue{}$ Отвергается, только если H_a : $\sigma < 1$
- Отвергается, только если $H_a: \ \sigma > 1$
- $lue{}$ Отвергается, только если $H_a:\ \sigma
 eq 1$

10

Имеется случайная выборка размера n из нормального распределения. При проверке гипотезы о равенстве математического ожидания заданному значению при известной дисперсии используется статистика, имеющая распределение

- χ_n^2
- $\sim N(0,1)$
- t_n-1
- $\chi_p^2 1$
- \Box t_n

11

Имеется случайная выборка размера n из нормального распределения. При проверке гипотезы о равенстве дисперсии заданному значению при неизвестном математическом ожидании используется статистика, имеющая распределение

- N(0,1)
- t_n-1
- $\chi_n^2 1$
- χ_n^2
- \Box t_n

По случайной выборке из 100 наблюдений было оценено выборочное среднее $\bar{X}=20$ и несмещенная оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:~\mu=15$ против альтернативной гипотезы $H_a:~\mu>15$ можно сделать следующее заключение

- $lue{}$ Гипотеза H_0 не отвергается на любом разумном уровне значимости
- $lue{f D}$ Гипотеза H_0 отвергается на уровне значимости 20%, но не на уровне значимости 10%
- $lue{f D}$ Гипотеза H_0 отвергается на уровне значимости 10%, но не на уровне значимости 5%
- ullet Гипотеза H_0 отвергается на любом разумном уровне значимости

HетI

13

На основе случайной выборки, содержащей одно наблюдение X_1 , тестируется гипотеза $H_0: X_1 \sim U[0;1]$ против альтернативной гипотезы $H_a: X_1 \sim U[0.5;1.5]$. Рассматривается критерий: если $X_1 > 0.8$, то гипотеза H_0 отвергается в пользу гипотезы H_a . Вероятность ошибки 2-го рода для этого критерия равна:

- 0.2
- 0.4
- 0.1
- 0.3
- 0.5

Пусть X_1, X_2, \ldots, X_n — случайная выборка размера 36 из нормального распределения $N(\mu,9)$. Для тестирования основной гипотезы $H_0: \mu=0$ против альтернативной $H_a: \mu=-2$ вы используете критерий: если $\bar{X} \geq -1$, то вы не отвергаете гипотезу H_0 , в противном случае вы отвергаете гипотезу H_0 в пользу гипотезы H_a . Мощность критерия равна

- 0.87
- 0.58
- 0.98
- 0.78
- 0.85

Николай Коперник подбросил бутерброд 200 раз. Бутерброд упал маслом вниз 95 раз, а маслом вверх — 105 раз. Значение критерия χ^2 Пирсона для проверки гипотезы о равной вероятности данных событий равно

- 0.25
- 0.75
- 2.5
- 0.5
- 7.5

Каждое утро в 8:00 Иван Андреевич Крылов, либо завтракает, либо уже позавтракал. В это же время кухарка либо заглядывает к Крылову, либо нет. По таблице сопряженности вычислите статистику χ^2 Пирсона для тестирования гипотезы о том, что визиты кухарки не зависят от того, позавтракал ли уже Крылов или нет.

	Кухарка заходит	Кухарка не заходит
Крылов завтракает	200	40
Крылов уже позавтракал	25	100

Heт!

Ковариационная матрица вектора $X=(X_1,X_2)$ имеет вид $\begin{pmatrix} 10 & 3 \\ 3 & 8 \end{pmatrix}$. Дисперсия разности элементов вектора, $Var(X_1-X_2)$, равняется

- 2
- 8
- 5

18

Все условия регулярности для применения метода максимального правдоподобия выполнены. Вторая производная лог-функции правдоподобия равна $\ell''(\theta) = -100$. Дисперсия несмещенной эффективной оценки для параметра θ равна

- **100**
- **1**0
- 0.1
- **1**
- 0.01

Геродот Геликарнасский проверяет гипотезу $H_0: \mu=0, \ \sigma^2=1$ с помощью LR статистики теста отношения правдоподобия. При подстановке оценок метода максимального правдоподобия в лог-функцию правдоподобия он получил $\ell=-177$, а при подстановке $\mu=0$ и $\sigma=1$ оказалось, что $\ell=-211$. Найдите значение LR статистики и укажите её закон распределения при верной H_0

•
$$LR = 68, \chi_2^2$$

$$LR = \ln 34, \ \chi_n^2 - 2$$

•
$$LR = 34, \chi_2^2$$

•
$$LR = 34$$
, $\chi_n^2 - 1$

•
$$LR = \ln 68, \ \chi_n^2 - 2$$

Геродот Геликарнасский проверяет гипотезу H_0 : $\mu=2$. Лог-функция правдоподобия имеет вид $\ell(\mu,\nu)=-\frac{n}{2}\ln(2\pi)-\frac{n}{2}\ln\nu-\frac{\sum_{i=1}^n(x_i-\mu)^2}{2\nu}$. Оценка максимального правдоподобия для ν при предположении, что H_0 верна, равна

$$\sum \frac{\sum x_i^2 - 4 \sum x_i}{n}$$

$$\sum_{i} x_{i}^{2} - 4 \sum_{i} x_{i} + 2$$

$$\sum_{i} x_{i}^{2} - 4 \sum_{i} x_{i} + 4$$

$$\sum x_i^2 - 4 \sum x_i + 4$$

Ацтек Монтесума Илуикамина хочет оценить параметр a методом максимального правдоподобия по выборке из неотрицательного распределения с функцией плотности $f(x)=\frac{1}{2}a^3x^2e^{-ax}$ при $x\geq 0$. Для этой цели ему достаточно максимизировать функцию

- \bigcirc 3n \prod ln $a ax^n$
- \longrightarrow 3n \sum ln $a_i a \sum$ ln x_i
- \bigcirc 3n ln $a a \prod \ln x_i$
- \bigcirc 3n ln $a an \ln x_i$
- \bigcirc 3*n* ln $a a \sum x_i$

Бессмертный гений поэзии Ли Бо оценивает математическое ожидание по выборка размера n из нормального распределения. Он построил оценку метода моментов, $\hat{\mu}_{MM}$, и оценку максимального правдоподобия, $\hat{\mu}_{ML}$. Про эти оценки можно утверждать, что

- \bigcirc $\hat{\mu}_{M}M < \hat{\mu}_{M}L$
- $lue{}$ они не равны, и не сближаются при $n o\infty$
- \bigcirc $\hat{\mu}_{M}M > \hat{\mu}_{M}L$
- они равны
- $lue{}$ они не равны, но сближаются при $n o\infty$

Проверяя гипотезу о равенстве дисперсий в двух выборках (размером в 3 и 5 наблюдений), Анаксимандр Милетский получил значение тестовой статистики 10. Если оценка дисперсии по одной из выборок равна 8, то другая оценка дисперсии может быть равна

- **1** 80
- 3/4
- **25**
- **4/3**

Пусть $\hat{\sigma}_1^2$ — несмещенная оценка дисперсии, полученная по первой выборке размером n_1 , $\hat{\sigma}_2^2$ — несмещенная оценка дисперсии, полученная по второй выборке, с меньшим размером n_2 . Тогда статистика $\frac{\hat{\sigma}_1^2/n_1}{\hat{\sigma}_2^2/n_2}$ имеет распределение

$$\chi_{n_1+n_2}^2$$

$$t_{n_1+n_2-1}$$

$$t_{n_1+n_2-1}$$

$$F_{n_1-1,n_2-1}$$

$$\sim N(0;1)$$

Зулус Чака каСензангакона проверяет гипотезу о равенстве математических ожиданий в двух нормальных выборках небольших размеров n_1 и n_2 . Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

$$t_{n_1+n_2-1}$$
 $t_{n_1+n_2-2}$

$$t_{n_1+n_2-2}$$

$$t_{n_1+n_2}$$

$$\mathbf{D} F_{n_1,n_2}$$

$$\chi^2_{n_1+n_2-1}$$

HeT!

Критерий знаков проверяет нулевую гипотезу

- о совпадении функции распределения случайной величины с заданной теоретической функцией распределения
- о равенстве математических ожиданий двух нормально распределенных случайных величин
- о равенстве 1/2 вероятности того, что случайная величина X окажется больше случайной величины Y, если альтернативная гипотеза записана как $\mu_X > \mu_Y$
- о равенстве нулю вероятности того, что случайная величина X окажется больше случайной величины Y, если альтернативная гипотеза записана как $\mu_X > \mu_Y$
- о равенстве нулю вероятности того, что случайная величина X окажется больше случайной величины Y, если альтернативная гипотеза записана как $\mu_X > \mu_Y$

HетI

27

Вероятность ошибки первого рода, α , и вероятность ошибки второго рода, β , всегда связаны соотношением

$$\alpha + \beta = 1$$

$$\alpha \geq \beta$$

$$\alpha + \beta \leq 1$$

$$\alpha \leq \beta$$

$$\alpha + \beta \ge 1$$

Среди 100 случайно выбранных ацтеков 20 платят дань Кулуакану, а 80 — Аскапоцалько. Соответственно, оценка доли ацтеков, платящих дань Кулуакану, равна $\hat{p}=0.2$. Разумная оценка стандартного отклонения случайной величины \hat{p} равна

- **1**.6
- 0.16
- 0.016
- 0.04
- 0.4

Датчик случайных чисел выдал следующие значения псевдо случайной величины: 0.78, 0.48. Вычислите значение критерия Колмогорова и проверьте гипотезу H_0 о соответствии распределения равномерному на [0;1]. Критическое значение статистики Колмогорова для уровня значимости 0.1 и двух наблюдений равно 0.776.

- $igodot 0.78, \ H_0 \$ отвергается
- $\bigcirc 0.37, \ H_0 \$ не отвергается
- 1.26, H₀ отвергается
- 0.48, H₀ не отвергается

У пяти случайно выбранных студентов первого потока результаты за контрольную по статистике оказались равны 82, 47, 20, 43 и 73. У четырёх случайно выбранных студентов второго потока — 68, 83, 60 и 52. Вычислите статистику Вилкоксона для меньшей выборки и проверьте гипотезу H_0 об однородности результатов двух потоков. Критические значения статистики Вилкоксона равны $T_L=12$ и $T_R=28$.

- $o 20, H_0$ не отвергается
- **№** 65.75, *H*₀ отвергается
- 24, H₀ не отвергается
- 12.75, H₀ не отвергается

Производитель мороженного попросил оценить по 10-бальной шкале два вида мороженного: с кусочками шоколада и с орешками. Было опрошено 5 человек.

	Евлампий	Аристарх	Капитолина	Аграфена	Эвридика
С крошкой	10	6	7	5	4
С орехами	9	8	8	7	6

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.05 гипотезу об отсутствии предпочтения мороженного с орешками против альтернативы, что мороженное с орешками вкуснее.

- 1.29, H₀ отвергается
- 1.96, H₀ отвергается
- 1.65, H₀ отвергается
- 1.34, H₀ не отвергается

По 10 наблюдениям проверяется гипотеза H_0 : $\mu=10$ против H_a : $\mu\neq 10$ на выборке из нормального распределения с неизвестной дисперсией. Величина $\sqrt{n}\cdot(\bar{X}-\mu)/\hat{\sigma}$ оказалась равной 1. Р-значение примерно равно

- 0.16
- 0.34
- 0.83
- 0.17
- 0.32

Пусть $X_1,\,X_2,\,\ldots,\,X_{11}$ — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11}x_i=33,\,\sum_{i=1}^{11}x_i^2=100.$ Несмещенная оценка μ принимает значение

- **2** 3
- 100/11
- **1**0
- 3.3
- 0.33

Пусть $X_1,\,X_2,\,\ldots,\,X_{11}$ — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33,\,\sum_{i=1}^{11} x_i^2 = 100.$ Несмещенная оценка дисперсии принимает значение

- **1/11**
- **1/10**
- **1**0
- 100/11
- **11/100**

Если X_i независимы, $\mathbb{E}(X_i) = \mu$ и $\text{Var}(X_i) = \sigma^2$, то математическое ожидание величины $Y = \sum_{i=1}^n (X_i - \bar{X})^2$ равно

- σ^2/n
- σ^2
- \square μ
- $(n-1)\sigma^2$
- $\hat{\sigma}^2$

Величины Z_1, Z_2, \ldots, Z_n независимы и нормальны N(0,1). Случайная величина $\frac{Z_1\sqrt{n-3}}{\sqrt{\sum_{i=A}^nZ_i^2}}$ имеет распределение

- t_{n-3} χ^2_{n-4}
- t_{n-1}
- $\sim N(0,1)$

Величины Z_1 , Z_2 , ..., Z_n независимы и нормальны N(0,1). Случайная величина $\frac{2Z_1^2}{Z_2^2+Z_2^2}$ имеет распределение

- $F_{1,2}$
- $F_{2,7}$
- $F_{7,2}$
- t_2

Величины Z_1 , Z_2 , ..., Z_n независимы и нормальны N(0,1). Случайная величина $Z_1^2+Z_2^2$ имеет распределение

- χ_1^2
- χ_2^2
- χ_3^2
- t_2
- χ_4^2

Последовательность оценок $\hat{ heta}_1$, $\hat{ heta}_2$, . . . называется состоятельной, если

$$\blacksquare \mathbb{E}(\hat{\theta}_n) \to \theta$$

$$igoplus \mathbb{P}(|\hat{ heta}_n - heta| > t) o 0$$
 для всех $t > 0$

$$ightharpoonup Var(\hat{\theta}_n) \geq Var(\hat{\theta}_n + 1)$$

$$ightharpoonup Var(\hat{\theta}_n) o 0$$

Функция правдоподобия, построенная по случайной выборке X_1, \ldots, X_n из распределения с функцией плотности $f(x) = (\theta+1)x^{\theta}$ при $x \in [0;1]$ имеет вид

- $(\theta+1)x^{n\theta}$
- $\sum (\theta+1)x_i^{\theta}$
- $(\theta+1)^{\sum x_i}$
- $(\sum x_i)^{\theta}$
- $(\theta+1)^n \prod x_i^{\theta}$