

Statistical Consistency of Ranking Methods in A Rank-Differentiable Probability Space

Yanyan Lan¹, Jiafeng Guo¹, Xueqi Cheng¹, Tie-Yan Liu²

¹Institute of Computing Technology, Chinese Academy of Sciences & ²Microsoft Research Asia {lanyanyan, guojiafeng, cxq}@ict.ac.cn, Tie-Yan.Liu@microsoft.com

1. MOTIVATION

Statistical Consistency of Ranking Methods

 Theoretically, not consistent, even in low-noise setting [Duchi et. al. ICML 2010].

Contradiction!

Practically, very effective, still the-state-of-the-art.

3. RANK-DIFFERENTIABLE PROBABILITY SPACE

2. KEY IDEA

4. RELATIONSHIPS WITH PREVIOUS WORK

- ➤ Rank-Differentiable property is much weaker than order-preserving property.
- ➤ Rank-Differentiable property is very similar to lownoise setting.

5. WHY CONTRADICTION

6. CONCLUSIONS

- The previous results on the inconsistency of commonly-used pairwise ranking methods are not conclusive, depending on the assumptions about the probability space.
- We prove that the pairwise ranking methods are consistent with WPDL under the rank-differentiable assumption.
- Pairwise ranking methods are still good choices since their effective performance in application.

Future Work

- Statistical consistency of ranking methods with respect to the IR evaluation measures.
- Statistical consistency of listwise ranking methods.