CODE: 18ECT206 SET-2 ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

II B.Tech I Semester Supplementary Examinations, January-2020

PROBABILITY AND STOCHASTIC PROCESSES

(Electronics and Communication Engineering)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

		<u>UNIT-I</u>			
1.	a)	Explain conditional probability with example and also explain total probability theorem	6M		
	b)	Suppose that a laboratory test to detect a certain disease has the following statistics. Let A= event that the tested person has the disease B= event that the test result is positive. It is known that $P(B/A) = 0.99$ and $P(B/A) = 0.005$ And 0.1 percent of the population actually has the disease. What is the probability that a person has the disease given that the test result is positive? (OR)	6M		
2.	a)	How do you explain statistically independent events using Baye's rule?	6M		
	b)	In a certain college, 4% of the men and 1% of the women are taller than 6 feet. Furthermore, 60% of the students are women. Now if a student is selected at random and is taller than 6 feet, what is the probability that the student is women?	6M		
		<u>UNIT-II</u>			
3.	a)	Define and explain the following distribution and densities with an application. (i) Exponential (ii) Uniform	6M		
	b)	A fair die is tossed. Let X denotes twice the number appearing, and let Y denotes 1 or 3 according as an odd or an even number appears. Find the distribution, expectation, variance and standard deviation of (i) X (ii) Y (iii) XY.	6M		
	(\mathbf{OR})				
4.	a)	Explain moments about origin with examples.	6M		
	b)	Explain binominal density and distribution function.	6M		
	<u>UNIT-III</u>				
5.	a)	Define the joint Distribution function and explain the properties of joint Distribution function?			
	b)	Consider the bivariate r.v. (X, Y)	6M		
		$f_{XY}(x, y) = \begin{cases} k(x + y) & 0 < x < 2, 0 < y < 2\\ 0 & \text{otherwise} \end{cases}$			

Find the conditional pdf's $f_{Y|X}(y|x)$ and $f_{X|Y}(x|y)$.

(OR)

6. a) Explain the central limit theorem?

(

b) Consider the binary communication channel shown below.

6M 6M

Let (X, Y) be a bivariate r.v., where X is the input to the channel and Y is the output of the channel. Let P(X = 0) = 0.5, P(Y = 1 | X = 0) = 0.1, and P(Y = 0 | X = 1) = 0.2.

- i) Find the joint pmf's of (X, Y).
- ii) Find the marginal pmf's of X and Y.

UNIT-IV

- 7. a) A random process is defined as $X(t)=A.\sin(\cot +\theta)$ where A is a constant and '\theta' is a random variable, uniformly distributed over(-\tau,\pi). Check X(t) for stationary.
 - b) (i) State and explain various properties of autocorrelation function 6M (ii) Define Ergodic process.

(OR)

- 8. a) Define Poisson random process and represent the autocorrelation of Poisson 6M random process?
 - b) Consider a random variable process X(t)=a cos ϖt , where ' ϖ ' is a constant and A is a random variable uniformly distribution over (0,1). Find the auto correlation and covariance of X(t)?

UNIT-V

9. a) Derive an equation for power spectral density.

6M

b) Consider a WSS process X(t) with autocorrelation function $Rx(\tau)$ and power spectral density $Sx(\omega)$. Let X'(t) = dX(t)/dt. Show that $S_x'(\omega) = \omega^2 S_x(\omega)$

6M

(OR)

10. a) State and explain various properties power spectral density function.

6M

b) An ergodic random process is known to have an auto correlation function of the from

6M

$$R_{XX}(\tau) = 1 - |\tau|, |\tau| \le 1$$

= 0, $|\tau| > 1$

Show the spectral density is given by

$$S_{XX}(\omega) = \left[\frac{\sin \omega/2}{\omega/2}\right]^2$$

CODE: 160E2011

SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

(AUTONOMOUS)
II B.Tech I Semester Supplementary Examinations, January-2020

MATRICES AND APPLICATIONS

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

UNIT-I

- 1. a Reduce the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 4 & 6 \end{bmatrix}$ into Echelon form and determine its rank.
 - b Show that the equations 7M

x+y+z=-3; 3x+y-2z=-2; 2x+4y+7z=7 are consistent and solve the same.

2. Reduce the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1 \end{bmatrix}$ to Normal form and determine its rank.

UNIT-II

3. Determine the Eigen values and the corresponding Eigen vectors of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ & 1 & 1 \end{bmatrix}$

 $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$

4. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ also determine

 A^{-1} and A^{3}

UNIT-III

5. Use LU decomposition to solve the system of equations 14M

2x+y+z=10, 3x+2y+3z=18, x+4y+9z=16

(OR)
6. Solve the system of equations 3x + y + 2z = 3; 2x - 3y - z = -3; 14M x + 2y + z = 4 by using matrix inversion method.

UNIT-IV

7. Show that the quadratic form $2x^2 + y^2 - 3z^2 + 12xy - 8yz - 48zx$ is indefinite. 14M

8. Reduce the quadric form to the canonical form by an orthogonal reduction $x^2 + 2y^2 + 2z^2 - 2yz + 2xz - 2xy$

14M

UNIT-V

9. Write the matlab code to solve the linear system of equation 14M

$$3x + y + 2z = 3$$
; $2x - 3y - z = -3$; $x + 2y + z = 4$

10. Write the matlab code to find the eigen values and the corresponding eigen vectors of 14M

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

2 of 2

CODE: 160E2012

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

II B.Tech I Semester Supplementary Examinations, January-2020

WATER SHED MANAGEMENT Time: 3 Hours Max Marks: 70 Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place **UNIT-I** Define watershed development and its objectives? Explain the need for watershed 1. a) 7 M development in India Explain the integrated and multi disciplinary approach for watershed management 7 M b) (OR) Define the basic data and inputs useful in implementing a watershed development 6 M 2. a) Explain the influence of the following characteristics of watershed development 8 M b) (i) Physiography (ii) Vegetation (iii) Hydrogeology (iv) Land use **UNIT-II** 3. Find the types of soil erosion in a watershed and effects of erosion on land fertility 6 M a) Classify the all soil erosion control measures in a watershed and discuss any two 8 M b) measures in detail (OR) 4. Explain in detail how the following measures arrest the soil erosion in a watershed 14 M (i) Furrowing (ii) Gully Control (iii) Bunding (iv) Trenching (v) Ploughing **UNIT-III** 5. Define in detail about Catchment harvesting and soil moisture conservation 7 M Explain in detail the water harvesting structures? 7 M 6. Explain the soil moisture conservation through artificial recharge techniques 6 M a) Explain the soil moisture conservation through percolation tanks and farm ponds 8 M **b**) **UNIT-IV** Explain about the capability classes suitable and unsuitable for cultivation 14 M (OR) 8. Discuss about the management of agricultural and wild land in a watershed programme 7 M Explain and Give a brief note on reclamation of saline and alkaline soils 7 M **UNIT-V** 9. Describe what is an eco system? Explain its significance in a watershed a) 7 M management Discuss how dry land agriculture and horticulture are managed in an ecosystem 7 M (OR) 10. What is cropping pattern and explain how do you attempt ecosystem management with 14 M the Biomass management

CODE: 160E2013 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

II B.Tech I Semester Supplementary Examinations, January-2020 INTRODUCTION TO MATLAB

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

UNIT-I

1.	a)	Write a short note on MATLAB desktop windows.	7M
	b)	Give the syntax and purpose of commands for managing a session in	7M
		MATLAB.	
		(OR)	
2.	a)	Write a short note on data types available with MATLAB.	7M
	b)	Write a short note on relational operators with its description.	7M
		<u>UNIT-II</u>	
3.	a)	Explain syntax for defining 'user defined function ' in MATLAB with	7M
		one example.	
	b)	Write a user defined function in MATLAB to find the roots of	7M
		quadratic equation 2x^2-6x+3.	
		(OR)	
4.	a)	Write a short note on defining matrices in MATLAB.	6M
	b)	What is the output for following command(s) if $A = [2 \ 1 \ 5 \ 7]$; $B =$	8M
		[4;1;2;6];	
		$C = [1 \ 3 \ 5; 3 \ 1 \ 0; 2 \ 6 \ 1; 3 \ 1 \ 2]; D = [1 \ 2 \ 1 \ 4; 2 \ 1 \ 4 \ 1; 5 \ 2 \ 4 \ 1; 7 \ 1 \ 3 \ 0];$	
		i) A(3)	
		ii) length(A)	
		iii) $C(1,2)*length(B)$	
		iv) D(1:2,2:3)	
		v) C(:,2)	
		vi) D(3,:)	
		vii) $C(3,:) = []$	
		viii) A*B	

UNIT-III

5. a) Write a short note on usage of conditional statement 'if-else' in MATLAB with one example.
b) Write a simple MATLAB code for finding the maximum and minimum values in given set of numbers using 'if-else' statement:

A = {2, 3, 7, 1, 5, 9}

CODE: 16OE2013 SET-1

(OR)

- 6. a) Explain the syntax of 'nested for' loop in MATLAB with one example. 7M
 - b) Write a simple MATLAB code for finding the maximum and minimum numbers in given set of numbers using 'for' loop:

7M

 $A = \{2, 3, 7, 1, 5, 9\}$

UNIT-IV

- 7. a) Explain graphs plotting in MATLAB with good examples. 9M
 - b) Write a simple MATLAB code for plotting $y = 2\cos(t)$ for 0 < t < 10. 5M

(OR)

- 8. a) Find maxima and minima points for function $F(x) = 2x^3-3x^2+5$ and 10M write a simple MATLAB code for finding maximum and minimum values of given function.
 - b) A 0.5F capacitor is charged by a voltage source and the current flowing through the capacitor is given by i(t) = 2t 3 with initial conditions zero. Write a simple MATLAB code for finding the voltage across capacitor.

UNIT-V

9. Derive the mathematical modelling equations for the following series RLC circuit and build the Simulink model for the same by considering R=2 Ω , L=1H and C=0.5F. Assume the current flowing through the inductor $i_L(t)$ and voltage across capacitor $v_c(t)$ as state variables.

(OR)

10. Derive the mathematical modelling equations for the following 14M physical system and build the Simulink model for the same.

CODE: 160E2015 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

II B.Tech I Semester Supplementary Examinations, January-2020

INTRODUCTION TO ELECTRONIC MEASUREMENTS

Time: 3 Hours			Max Marks: 70	
		Answer ONE Question from each Unit All Questions Carry Equal Marks		
		All parts of the Question must be answered at one place		
		<u>UNIT-I</u>		
1.	a)	Define following static performance characteristics	7M	
	b)	i) Accuracy ii) resolution iii) precession Draw and explain the series Voltmeter?	7M	
	U)	(OR)	/11/1	
2.	a)	Define following dynamic performance characteristics	7M	
	b)	i) Speed of response ii) Lag iii) Fidelity Draw and explain the series ohmmeter?	7M	
	0)		7111	
		<u>UNIT-II</u>		
3.	a)	Explain with neat sketch AF sine generator?	7M	
	b)	Draw and explain Harmonic distortion analyzer? (OR)	7M	
4.	a)	Explain with neat sketch function Generator?	7M	
	b)	Draw and explain Wave Analyzer?	7M	
		<u>UNIT-III</u>		
5.	a)	Draw and explain the Block Diagram of CRO?	7M	
	b)	Explain with neat sketch Digital storage oscilloscope?	7M	
6.	a)	(OR) Write features of CRT?	7M	
.	b)	Explain with neat sketch Dual trace oscilloscope?	7M	
		<u>UNIT-IV</u>		
7.	a)	Draw and explain Maxwell's bridge for Measurement of inductance?	7M	
, .	b)	A Maxwell bridge consist of Following values C_1 =0.01 μ F, R_1 =470 $k\Omega$, R_2 =5.1 $k\Omega$	7M	
		R_3 =100kΩ find unknown impedance?		
8.	a)	(OR) Draw and explain Shearing Bridge for Measurement of capacitance?	7M	
	b)	An AC bridge consist of Following values C_1 =0.5 μ F, R_1 =1 $k\Omega$, R_2 =2 $k\Omega$ C_3 =0.5 μ F find unknown capacitance and resistance?	7M	
		•		
		<u>UNIT-V</u>		
9.	a)	Define Transducer and classify different transducer with Examples?	7M	
	b)	Explain with neat sketch Linear Variable Differential Transformer?	7M	
10.	a)	(OR) Write short notes on thermocouples?	7M	
	b)	Explain with neat sketch Data acquisition systems?	7M	

CODE: 16OE2016 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

II B.Tech I Semester Supplementary Examinations, January-2020 UNIX UTILITIES

(Open Elective)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

UNIT-I

1.	a	With a neat sketch, explain the relationship between the kernel and the shell of the UNIX operating system.	8 M			
	b	Explain features of the UNIX operating system.	6 M			
	Ü	(OR)	0 1.1			
			7.14			
2.	a	How to begin an UNIX operating system?	7 M			
	b	Explain procedure to change the password of an Existing user?	7 M			
		<u>UNIT-II</u>				
3.	a	Explain file system structure in UNIX with neat sketch?	6 M			
٥.	b	Explain the three modes of the Vi-Editor.	8 M			
		(OR)				
4		Explain following Unix commands	14 14			
4.		i) date ii) ls iii) mkdir iv) wc v) cat	14 M			
		<u>UNIT-III</u>				
	a	Explain about shell? What are the various types of shells? How to change current				
5.	и	shell to another shell from command line area?	10 M			
	b	Write a short note on Electronic mail?	4 M			
	υ		4 IVI			
		(OR)				
6.	a	What is the standard input and standard output? How do you achieve redirection				
		using pipes? Explain with an example.	10 M			
	b	Write a short note on process?	4 M			
		<u>UNIT-IV</u>				
7.	a	Write a short note about shell script?	6 M			
7.	b	Write a shell script for perform an arithmetic operation between two numbers?	8 M			
		(OR)				
		What are the various control structures available in UNIX? Give example with				
8.		structures?	14 M			
		UNIT-V				
	<u>UNIT-V</u>					
9.	a	What is X windows? Write a short note on X windows environment?	8 M			
	b	How to start an Windows X?	6 M			
	U	(OR)	O IVI			
10.		Explain following commands with example?	14 M			
		i) finger ii) telnet iii) ftp iv) ping				

CODE: 160E2017 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

II B.Tech I Semester Supplementary Examinations, January-2020 IT SYSTEMS MANAGEMENT

(Open Elective)

Time: 3 Hours

Answer ONE Question from each Unit

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

UNIT-I

1.	a)	With a neat sketch explain in detail about Von- Neumann Architecture	7M		
	b)	Define IT Infrastructure. Explain IT infrastructure Management Activities	7M		
		(OR)			
2.	a)	Write about the services of Cloud Computing	7M		
	b)	Explain in brief client- Server Architecture	7 M		
	<u>UNIT-II</u>				
2		What is an Opening time and Information 2 Final in the first or to avoid a in	1 / 1 / 1		
3.		What is an Organization and Infrastructure? Explain the factors to consider in	14M		
		designing IT Organization and IT Infrastructure			
		(OR)			
4.		Explain how the patterns for IT System Management help to facilitate reuse, tested	14M		
		and proven to be successful.			
		IINIT_III			

<u>UNIT-III</u>

5.	a)	Describe the common tasks in IT system Management	7M
	b)	Explain about People-Process-Technology(PPT) approach in detail	7M
		(OR)	
6.	a)	Explain about e-Waste disposal	7M
	b)	Define Model? Explain about Use Case Diagram in modelling	7M
		<u>UNIT-IV</u>	
7.	a)	Explain in detail about Communication Protocols and Standards	7M
	b)	List out the challenges of IT Managers	7M
		(OR)	
8.		Explain Network Management Goals, Organization and Functions	14M
		<u>UNIT-V</u>	
9.	a)	Explain the traditional division of storage hierarchy	7M

1 of 1 ****

(OR)

7M

7M

7M

Explain in detail about Disaster Recovery

Explain Storage Management Process and Activities

Explain Backup Requirements and Restore policies

b)

10. a)

CODE: 13EC2003 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

II B.Tech I Semester Supplementary Examinations, January-2020

SWITCHING THEORY AND LOGIC DESIGN (Common to EEE & ECE)

		(Common to EEE & ECE)				
Time: 3 l	Hou		Max Marks: 70			
	<u>PART-A</u>					
ANSWE	$[1 \times 10 = 10 \text{ M}]$					
1.	a)	Name two weighted number system.				
	b)	Write the truth table of XOR gate.				
	c)	Write the 2's complement of 00101101.				
	d)	What is AOI logic?				
	e)	How many cells an n variable K-map have?				
	f)	What is the use of enable input in decoder?				
		What are the applications of Multiplexers?				
	g)	**				
	h)	Define flip-flop?				
	i)	What is a single bit register?				
	j)	What are the applications of counters?				
		PART-B				
Answer o	one	question from each unit [5x12=60]	\mathbf{M}			
		<u>UNIT-I</u>				
2.		Determine Hamming code for (a) 0110 and (b) 0111 and find the distance	12M			
		between them. Use even parity.				
		(OR)				
3.	a	Convert the following into the Gray number	6M			
		(i) $3A7_{(16)}$ (ii) $527_{(8)}$ (iii) $652_{(10)}$				
	b	Express the numbers $432.2_{(8)}$ and $1101.01_{(2)}$ in base 10	6M			
		UNIT-II	V			
4.	a	Show that AB+(A+B) ' is equivalent to AOB (xnor).	6M			
	и	Also construct the corresponding logic diagrams.	OIVI			
,	L	1 0 0	6M			
	b	State and Prove Associative law	6M			
_		(OR)	403.5			
5.		Expand A+BC' + ABD' + ABCD to min terms and max terms	12M			
		<u>UNIT-III</u>				
6.		Minimize the four variable logic function using K-map	12M			
		$f(A,B,C,D) = \sum m(0,1,2,3,5,7,8,9,11,14)$				
		Implement the minimized expression in AOI logic.				
		(OR)				
7.		Design a BCD to – Seven segment Decoder.	12M			
		UNIT-IV				
8.		Design a Full subtractor and implement the logic diagram using only 2-input	12M			
0.		NAND gates	12111			
		(OR)				
0			1214			
9.		Design a 4 bit binary Adder/Subtractor circuit and explain how addition and	12M			
		subtraction takes place.				
10		<u>UNIT-V</u>	1015			
10.		With the help of excitation tables convert the SR flip-flop to JK flip flop and	D 12M			
		flip-flop				
	(OR)					
11.		Design an 4 bit Universal shift register and explain all the mode of the data	12M			
		movement in the register.				
		2 of 2				

2 of 2 ***