January 2014] 1

filler-nsided.tex

The Expected Number of *n*-sided Dice Throws to Collect k Points is a Geometric Series for $k \leq n$

Let's start with a visual proof of a formula for the sum of a finite geometric series. We consider a growing geometric series (b_i) where $b_{i+1} = rb_i$ with ratio r > 1. We represent the ratio as $r = 1 + \alpha$, so $b_{j+1} = b_j + \alpha b_j$.

Adding all the segment lengths we see that

American Mathematical Monthly 121:1

$$b_k = b_1 + \alpha(b_1 + b_2 + b_3 + \ldots + b_{k-1}).$$

This property of geometric series also has an economic intuition. Your final welfare b_k equals your initial welfare b_1 plus all interest payments, where α is the nominal rate of compound interest.

Now let's toss a n-sided dice with faces marked 1, 2, ..., n until we collect kof these points or more with $k \leq n$. We denote the random number of tosses by X_k and the expected number of tosses by $b_k = E(X_k)$.

We collect one point or more with exactly one toss, $X_1 = 1$ and hence $b_1 = 1$. Now we need to collect k points or more. Let's consider the first toss. With probability (n-k)/n zero more tosses will be required. And with probability 1/n we collect $1, 2, \ldots$, or k-1 points.

The recurrence formula is

$$b_k = 1 + \frac{n-k}{n} \cdot 0 + \frac{1}{n} (b_1 + b_2 + \dots + b_{k-1}).$$

This equation coupled with the initial conditions defines the geometric series with $b_1 = 1$ and ratio $r = 1 + \frac{1}{n}$.

Hence we obtain

$$b_k = E(X_k) = \left(1 + \frac{1}{n}\right)^{k-1}.$$

This result appears in the disguised form $E(X_k) = \sum_{i=0}^{k-1} {k-1 \choose i} / n^i$ in [1]. The particular case with k=n is proven in [2]. Both these sources invoke the Christmas stockings theorem in their proofs. The approach with recurrence equation is used in [3], where the chase for the general k hides the simple structure for $k \leq n$.

REFERENCES

- Conroy, M. (2021). A collection of dice problems. www.madandmoonly.com/doctormatt/ mathematics/dice1.pdf
- Treviño, E. (2020). Expected Number of Dice Rolls for the Sum to Reach n. Amer. Math. Monthly. 127(3):257-257. doi.org/10.1080/00029890.2020.1693213
- 3. Huber, W. (2019). Expected number of dice rolls require to make a sum greater than or equal to K. https://stats.stackexchange.com/a/427043

—Submitted by Boris Demeshev, HSE University