Embedded Systems Specification and Design

David Kendall

Introduction

- Modelling a system as a network of timed automata
- Semantics of parallel composition
- Specifying real-time properties
 - Test automata
 - Uppaal's property specification language

Network of Timed Automata

What behaviours is the system capable of?

Parallel Composition: Preliminaries

- Timed automata composed into a network of timed automata consisting of n TA's $A_i = (L_i, I_i^0, C, A, E_i, \mathcal{I}_i), 1 \le i \le n$.
- Assume a common set of clocks and actions
- A location vector is a vector $\overline{I} = (I_1, \dots, I_n)$.
- We compose the invariant functions into a common function over location vectors $\mathcal{I}(\bar{I}) \cong \wedge_i \mathcal{I}_i(I_i)$.
- We write $\bar{I}[l'_i/I_i]$ to denote the vector where the ith element I_i of \bar{I} is replaced by I'_i .

Parallel Composition

Gives the meaning of a system comprising several components.

Definition (Network of TA Semantics)

Let $A_i = (L_i, I_i^0, C, A, E_i, \mathcal{I}_i)$ be a network of n timed automata. Let $\bar{l}_0 = (l_1^0, \dots, l_n^0)$ be the initial location vector. The semantics is defined as a transition system (S, s_0, \rightarrow) , where $S = (L_1 \times \dots \times L_n) \times \mathbb{R}^C$ is the set of states, $s_0 = (\bar{l}_0, u_0)$ is the initial state, and $\rightarrow \subseteq S \times S$ is the transition relation defined by the rules for

- Time Progress (TP)
- Independent Action (IA), and
- Synchronising Action (SA)

as follows.

Transition Rules for Parallel Composition

$$\mathsf{TP} \ (\bar{\mathit{I}}, \mathit{u}) \overset{\mathit{d}}{\longrightarrow} (\bar{\mathit{I}}, \mathit{u} + \mathit{d}), \, \mathsf{if} \, \forall \, \mathit{d}' : 0 \leq \mathit{d}' \leq \mathit{d} \Rightarrow \mathit{u} + \mathit{d}' \in \mathcal{I}(\bar{\mathit{I}})$$

Transition Rules for Parallel Composition

TP
$$(\bar{l}, u) \xrightarrow{d} (\bar{l}, u + d)$$
, if $\forall d' : 0 \le d' \le d \Rightarrow u + d' \in \mathcal{I}(\bar{l})$
IA $(\bar{l}, u) \xrightarrow{\tau} (\bar{l}[l'_i/l_i], u')$ if there exists $(l_i, \tau, g, r, l'_i) \in E_i$ such that $u \in g$, $u' = [r \mapsto 0]u$, and $u' \in \mathcal{I}(\bar{l}[l'_i/l_i])$

Transition Rules for Parallel Composition

- - $\begin{array}{ll} \textbf{IA} & (\bar{l},u) \stackrel{\tau}{\longrightarrow} (\bar{l}[l_i'/l_i],u') \text{ if there exists } (l_i,\tau,g,r,l_i') \in E_i \text{ such that } u \in g, \, u' = [r \mapsto 0]u, \text{ and } u' \in \mathcal{I}(\bar{l}[l_i'/l_i]) \end{array}$
- SA $(\bar{l}, u) \xrightarrow{c} (\bar{l}[l'_i/l_i, l'_j/l_j], u')$ if there exists $(l_i, c?, g_i, r_i, l'_i) \in E_i$ and $(l_j, c!, g_j, r_j, l'_j) \in E_j$ such that $u \in (g_i \land g_j)$, $u' = [r_i \cup r_j \mapsto 0]u$, and $u' \in \mathcal{I}(\bar{l}[l'_i/l_i, l'_j/l_j])$

Property Specification

- Want to check formal model to see if it has specified properties.
- Interested in both safety and liveness properties
- Safety property
 - Nothing bad ever happens
 E.g. the train is never in the crossing when the gate is open
- Liveness property
 - Something good eventually happens
 E.g. whenever the gate is closed, it is eventually opened again

How to specify properties of a TA

- State properties
 Simple boolean formulas that can be checked with respect to a single state
- Test automata
- Real-time temporal logic
 - Allow the expression of properties that concern executions (paths),
 i.e. sequences of states

Test Automata

- Construct a TA A_s that acts as an observer of the model A_m
- Usually the observer TA includes one special error location
- The property is tested by checking that the observer can never reach its error location in the composition $A_m \mid A_s$
- Good:
 - Can use simple reachability analysis to test complex properties
- Not so good:
 - May need to modify model in order to allow observation
 - Ad hoc specification may not be correct

Test Automaton Example

Figure: GATE Automaton

Figure: OBSERVER Automaton

- Check that observer is never SAD
- Requires change to GATE model to allow observation

Uppaal's Specification Language

- A simple real-time temporal logic
- Like LTL but with real-time values and path quantifiers
- No nested temporal operators
- Kept simple deliberately so that properties can be decided by reachability testing
- Simple, efficient implementation of verification procedure

Definition of the Specification Language

- Simple state properties
 - Location assertions
 P.I.
 - Process P is in location I
 E.g. Gate.CLOSED, Train.IN, etc.
 - deadlock
 - Clock constraints
 ID REL NAT | ID REL ID | ID REL ID + NAT
 | ID REL ID NAT
 E.g. x >= 3, x > y, x <= y + 4, x == y 2

Definition of the Specification Language ctd

- Assume AP is the set of simple state properties
- The set SP of state properties can be expressed as
 SP ::= AP | not SP | (SP) | SP or SP | SP and SP | SP imply SP
 E g not Train IN Gate CLOSED or Gate OPEN Train OUT:
 - E.g. not Train.IN, Gate.CLOSED or Gate.OPEN, Train.OUT and x <= 5, Gate.OPEN imply not TRAIN.IN, deadlock

Definition of the Specification Language ctd

Path properties

- E.g. A[] not deadlock, E<> Gate.OPEN
- Each property in UPPAAL must be expressed as a path property
- N.B. P -> Q is equivalent to A[] (P imply A<> Q)
 But UPPAAL doesn't allow nested path quantifiers in general

All paths

Some path

Leads to

Example properties

- A[] not deadlock
 - On all executions, in every state, the property not deadlock is true
- E<> Train.In
 - On some execution, in some state, the train is in the crossing
- A[] (Train.In imply Gate.Closed)
 - On all executions, in every state, if the train is in the crossing, the gate is closed
- Gate.Closed -> Gate.Open and (g <= 30)
 - Whenever the gate is closed, it is eventually opened within 30 time units (assumes g is global clock which is reset on entry to Gate.Closed)