

Sınıq xətt

Azərbaycan xalçaları ilə məşhurdur. Təcrübəli xalça dizayneri olaraq siz üzərində **sınıq xətt** çəkilmiş yeni xalça düzəltmək istəyirsiniz. Sınıq xətt iki ölçülü müstəvidə ardıcıl gələn t sayda düz xətt parçasının birləşməsidir. Sınıq xətti t+1 sayda p_0,\ldots,p_t nöqtələr ardıcıllığı şəklində ifadə edə bilərik. Hər bir j ($0 \le j \le t-1$) üçün p_j və p_{j+1} nöqtələri düz xətt parçası əmələ gətirir.

Yeni dizaynı hazırlamaq üçün siz artıq iki ölçülü müstəvidə n sayda **nöqtə** seçmisiniz. i $(1 \le i \le n)$ nöqtəsinin koordinatları (x[i], y[i]) ilə işarə edilir. \mathbf{x} və ya y koordinatları eyni olan hər hansı iki nöqtə yoxdur.

İndi siz sınıq xətti ifadə edən $(sx[0], sy[0]), (sx[1], sy[1]), \ldots, (sx[k], sy[k])$ nöqtələr ardıcıllığı tapmaq istəyirsiniz, hansı ki:

- (0,0) nöqtəsində başlayır (yəni sx[0] = 0 və sy[0] = 0).
- verilmiş bütün nöqtələri özündə saxlayır (mütləq deyil ki, parçaların uc nöqtələrində olsun).
- Təkcə şaquli və üfiqi parçalardan ibarətdir (sınıq xətti ifadə edən iki ardıcıl nöqtənin x və ya y koordinatları eynidir).

Sınıq xətt hər hansı bir şəkildə özünü kəsə və ya özü ilə üst-üstə düşə bilər. Yəni, müstəvi üzərindəki hər hansı bir nöqtə sınıq xəttin istənilən sayda parçasına aid ola bilər.

Bu yalnız çıxış faylı tələb olunan (output-only) və hər bir fayla görə ayrıca qiymətləndirilən tapşırıqdır. Sizə nöqtələrin yerlərini bildirən 10 giriş faylı verilir. Hər bir giriş faylı üçün, yuxarıda verilmiş şərtləri ödəyən sınıq xətti ifadə edən bir çıxış faylı göndərməlisiniz.

Düzgün sınıq xətti ifadə edən hər bir çıxış faylı üçün xalınız **parçaların sayından** asılıdır (aşağıda Qiymətləndirmə bölməsinə baxın).

Bu tapşırıq üçün heç bir kod göndərməli deyilsiniz.

Giriş formatı

Hər bir giriş faylı aşağıdakı formatdadır:

- sətir 1: *n*
- sətir 1+i ($1 \le i \le n$ üçün): x[i] y[i]

Çıxış format

Hər bir çıxış faylı aşağıdakı formatda olmalıdır:

- sətir 1: k
- ullet sətir 1+j ($1\leq j\leq k$ üçün): sx[j] sy[j]

Diqqət edin, ikinci sətirdə sx[1] və sy[1] verməlisiniz (çıxış faylında sx[0] və sy[0] verilməməlidir). Bütün sx[j] və sy[j] cütləri tam ədədlər olmalıdır.

Nümunə

Aşağıdakı giriş faylı üçün:

- 4
- 2 1
- 3 3
- 4 4
- 5 2

Mümkün düzgün cavab:

6 2 0

2 3

5 3

5242

4 4

Diggət edin, bu nümunə tapşırığın əsl giriş faylları arasında yoxdur.

Məhdudiyyətlər

- $1 \le n \le 100000$
- $1 \le x[i], y[i] \le 10^9$
- Bütün x[i] və y[i] cütləri tam ədədlərdir.
- ullet x və ya y koordinatları eyni olan hər hansı iki nöqtə yoxdur, yəni $i_1
 eq i_2$ üçün $x[i_1]
 eq x[i_2]$ və $y[i_1]
 eq y[i_2]$.
- $-2 \cdot 10^9 \le sx[j], sy[j] \le 2 \cdot 10^9$
- Göndərilən faylın (tək çıxış faylı və ya zip fayl) tutumu 15MB dan çox olmamalıdır.

Qiymətləndirmə

Hər bir testdən ən çox 10 xal ala bilərsiniz. Hər hansı test üçün çıxış faylınız məsələnin şərtlərini ödəyən sınıq xətti ifadə etmədiyi təqdirdə 0 xalla qiymətləndirilir. Əks halda xalınız azalan c_1, \ldots, c_{10} ardıcıllığı əsasında qiymətləndiriləcək. Bu ardıcıllıq hər bir test üçün fərqlidir.

Həllinizin k parçadan ibarət düzgün sınıq xətt olduğunu hesab edin. Bu zaman xalınız aşağıdakı şəkildə təyin olunur:

- ullet i xal, əgər $k=c_i$ ($1\leq i\leq 10$ üçün),
- ullet $i + rac{c_i k}{c_i c_{i+1}}$ xal, əgər $c_{i+1} < k < c_i$ ($1 \leq i \leq 9$ üçün),
- 0 xal, əgər $k>c_1$,
- 10 xal, əgər $k < c_{10}$.

Hər bir test üçün c_1, \ldots, c_{10} ardıcıllığı aşağıda verilir.

Testlər	01	02	03	04	05	06	07-10
n	20	600	5 000	50 000	72018	91 891	100 000
c_1	50	1 200	10 000	100 000	144036	183782	200 000
c_2	45	937	7607	75336	108 430	138292	150475
c_3	40	674	5 213	50 671	72824	92 801	100 949
c_4	37	651	5 125	50 359	72446	92371	100 500
c_5	35	640	5 081	50 203	72257	92156	100 275
c_6	33	628	5037	50 047	72067	91 941	100 050
c_7	28	616	5 020	50025	72044	91 918	100027
c_8	26	610	5012	50014	72033	91 906	100 015
c_9	25	607	5 008	50 009	72 027	91 900	100 009
c_{10}	23	603	5 003	50 003	72021	91 894	100 003

Vizualizator

Bu tapşırığın əlavələrində giriş və çıxış fayllarını vizual olaraq görmək üçün skript verilmişdir.

Giriş faylını vizual olaraq görmək üçün aşağıdakı əmrdən istifadə edin:

```
python vis.py [input file]
```

Həmçinin bəzi giriş faylları üçün həllinizi aşağıdakı əmrdən istifadə etməklə vizual olaraq görə bilərsiniz. Texniki məhdudiyyətlərlə bağlı sizə təqdim olunan vizualizator çıxış faylının yalnız **ilk** 1000 **parçasını** göstərir.

```
python vis.py [input file] --solution [output file]
```

Nümunə:

```
python vis.py examples/00.in --solution examples/00.out
```