Simulazione Scritto

11 -12 - '13

1 Esercizi

PRIMA PARTE

Per ciascuna delle seguenti affermazioni, dire se è vera o falsa:

1. Se $C \cup D \neq \emptyset$ allora vale sempre che $C \neq \emptyset$ e $D \neq \emptyset$.	\mathbf{V}	F	١.

2.
$$\{(2,-3)\}\in P(\mathbb{N}\times\mathbb{Z}).$$

3. La funzione
$$f: \mathbb{Z} \to \mathbb{Z}$$
 definita da $f(z) = -z$ è suriettiva.

4. La funzione
$$f: \mathbb{N} \to \mathbb{N} \times \mathbb{Z}$$
 definita da $f(n) = (n, -n)$ è suriettiva.

5. La funzione
$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
 definita da $f(n,m) = n + m$ è suriettiva.

6. La funzione $f:\mathbb{N}\to P(\mathbb{N})$ definita da

$$f(n)=\{m\in\mathbb{N}:m\geq n\}$$

è iniettiva.

7. Ogni funzione suriettiva è anche biunivoca.
$$\boxed{\mathbf{V} \mid \mathbf{F}}$$

8. Se
$$f: \mathbb{Z} \to \mathbb{N}$$
 è definita da $f(z) = (z+2)^2$ e $Y = \{0, 2, 9\}$ allora $1 \in f^{-1}(Y)$.

9. Sia
$$f: \mathbb{N} \to \mathbb{Z}$$
 la funzione definita da $f(z) = -z$ e $g: \mathbb{Z} \to \mathbb{N}$ la funzione definita da $g(z) = z + 1$. Se $h = f \circ g$ allora $h(z) = -z - 1$.

10. Sia
$$f: \mathbb{Z} \times \mathbb{Z} \to Pow(\mathbb{Z})$$
 la funzione definita da $f(x,y) = \{x\}$ e $g: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ la funzione definita da $g(z) = (z+1,z-1)$. Se $h = f \circ g$ allora $h(z) = \{z\}$.

11. La relazione binaria R definita sui numeri interi $\mathbb N$ da

$$(x,y) \in R \quad \Leftrightarrow \quad x+y \text{ è un multiplo di } 3$$

è riflessiva.

12. La relazione binaria R definita sui sottoinsiemi dei numeri naturali da

$$XRY \Leftrightarrow X \cup (\mathbb{N} \setminus Y) = \mathbb{N}$$

è simmetrica. $\boxed{\mathbf{V} \mid \mathbf{F}}$

- 13. Il resto della divisione di -7 per -13 è 5. $\boxed{\mathbf{V} \mid \mathbf{F}}$
- 14. $23 \equiv_7 -5$.
- 15. $(34^{75} + 36 \times 37^4 33^2) \equiv_{35} 12.$
- 16. Se $A=\{0,1,2,\ldots,9\}$ e $B=\{0,-1,-2\}$ l'insieme

$$\{(x,y):x\in A,y\in B,x\neq y\}$$

ha 29 elementi. $\overline{\mathbf{V}}$ $\overline{\mathbf{F}}$

SECONDA PARTE

- 1. Sia $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ definita da f(n, m) = n m.
 - (a) Determinare se la funzione è iniettiva dando una dimostrazione della proprietà o trovando un controesempio.
 - (b) Determinare se la funzione è suriettiva dando una dimostrazione della proprietà o trovando un controesempio.
- 2. Dimostrare per induzione che per ogni $n \ge 1$ il numero $5^n 1$ è divisibile per 4.
- 3. Sia $A = \{0, 1, \dots, 9\}$ ed E la relazione d'equivalenza definita su $A \times A \times A$ da

$$(a, b, c)R(a', b', c') \Leftrightarrow b = b'$$

- (a) La terna (1,0,1) appartiene alla classe d'equivalenza di (0,0,0)?
- (b) Descrivi gli elementi che appartengono alla classe d'equivalenza di (0,0,0).
- (c) Quante sono le classi d'equivalenza di E su $A \times A \times A$?

2 Soluzioni

PRIMA PARTE

Per ciascuna delle seguenti affermazioni, dire se è vera o falsa:

- 1. Falso. Se $C \neq \emptyset$ e $D = \emptyset$ allora $C \cup D = C \neq \emptyset$.
- 2. Vero. Infatti $\{(2,-3)\}$ è un sottoinsieme di $\mathbb{N} \times \mathbb{Z}$.
- 3. Vero. Per ogni $z \in \mathbb{Z}$ si ha z = f(-z).
- 4. Falso. Per esempio (1, 1) non ha controimmagini.
- 5. Vero. Per ogni $n \in \mathbb{N}$ si ha n = f(n, 0).
- 6. Vero. Infatti se $n_1, n_2 \in \mathbb{N}$ e $n_1 \neq n_2$, allora possiamo supporre che $n_1 < n_2$, e dunque $f(n_1) = \{m \in \mathbb{N} : m \geq n_1\}$ contiene strettamente $f(n_2) = \{m \in \mathbb{N} : m \geq n_2\}$; in particolare, $n_1 \in f(n_1)$ ma $n_1 \notin f(n_2)$.
- 7. Falso. Esistono funzioni suriettive che non sono iniettive (ad esempio $f: \mathbb{Z} \to \mathbb{N}$ definita da f(z) = |z|) e quindi in particolare non sono biunivoche.
- 8. Vero. Infatti f(1) = 9.
- 9. Vero. Infatti h(z) = f(g(z)) = f(z+1) = -z-1 per ogni $z \in \mathbb{Z}$.
- 10. Falso. Infatti $h(z) = f(g(z)) = \{z+1\}$ per ogni $z \in \mathbb{Z}$. Quindi per esempio $h(1) = \{2\} \neq \{1\}$.
- 11. Falso. Per esempio $(1,1) \notin R$, dato che 1+1=2 non è divisibile per 3.
- 12. Falso. Per esempio $\{0,1\}R\{0\}$ ma $\{0\}$ non è in relazione R con $\{0,1\}$; infatti $\{0,1\} \cup (\mathbb{N} \setminus \{0\}) = \mathbb{N}$, mentre $1 \notin \{0\} \cup (\mathbb{N} \setminus \{0,1\})$ e dunque $\{0\} \cup \mathbb{N} \setminus \{0,1\} \neq \mathbb{N}$.
- 14. Vero. Infatti 23 (-5) = 23 + 5 = 28 è divisibile per 7.
- 15. Falso. Infatti $(34^{75} + 36 \cdot 37^4 33^2) \equiv_{35} (-1)^{75} + 1 \cdot 2^4 (-2)^2 = -1 + 16 4 = 13.$
- 16. Vero. Infatti $\{(x,y): x \in A, y \in B, x \neq y\} = A \times B \setminus \{(0,0)\}$, quindi $|\{(x,y): x \in A, y \in B, x \neq y\}| = 30 1 = 29$.

SECONDA PARTE

- 1. Sia $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ definita da f(n, m) = n m.
 - (a) La funzione f non è iniettiva in quanto per esempio f(1,0) = 1 = f(2,1).
 - (b) La funzione f è surettiva. Infatti, sia $n \in \mathbb{Z}$; se $n \geq 0$ allora n = f(n, 0), mentre se n < 0 allora n = f(0, -n).
- 2. Passo base: per n=1 troviamo 5-1 divisibile per 4, che è vero. Passo induttivo: supponiamo che 5^n-1 sia divisibile per 4. Allora $5^{n+1}-1=5\cdot 5^n-1=4\cdot 5^n+5^n-1$. Dunque $5^{n+1}-1$ è somma di due numeri divisibili per 4 ed è quindi divisibile per 4.
- 3. (a) La terna (1,0,1) appartiene alla classe d'equivalenza di (0,0,0) poiché la seconda componente di questi due elementi è la stessa.

 - (c) Le classi d'equivalenza di E su $A \times A \times A$ sono 10, cioè una per ognuna delle possibili scelte di $b \in A$.