Heart Attack Prediction

Information about Data

Columns is ::

- 1. -Age is the age of candidate.
- 2. -Sex has numeric values. 1 is male and 0 is female.
- 3. -(cp)Chest Pain pain has values between 0-3. The types of angina that are described in the research paper. The higher the number, the lesser are the odds of heart attack. Value 1: typical angina Value 2: atypical angina Value 3: non-anginal pain
- 4. -(trestbps)Resting blood pressure is normal pressure with no exercise.
- 5. -(chol)Cholesterol means the blockage for blood supply in the blood vessels.
- 6. -(fbs)fasting blood sugar > 120 mg/dl (1 = true; 0 = false) blood sugar taken after a long gap between a meal and the test. Typically, it's taken before any meal in the morning.
- 7. -(restecg)Rest ECG results means ECG values taken while person is on rest which means no exercise and normal functioning of heart is happening.
- 8. -(thalach)The Maximum Heart Rate achieved.
- 9. -(exang): exercise induced angina (1 = yes; 0 = no) is chest pain while exercising or doing any physical activity.
- 10. -(oldpeak)ST Depression is the difference between value of ECG at rest and after exercise.
- 11. -(slope): the slope of the peak exercise ST segment Value 1: upsloping Value 2: flat Value 3: downsloping
- 12. (ca): The number of major blood vessels(0-3) supplying blood to heart blocked.
- 13. -(thal):The Types of thalassemia (3 = normal; 6 = fixed defect; 7 = reversable defect)
- 14. -(target) (predicted attribute): diagnosis of heart disease (angiographic disease status) Value 0: < 50% diameter narrowing Value 1: > 50% diameter narrowing

Important libraries

```
In [1]: #For uploading and accessing the data
import numpy as np
import pandas as pd
#For visualizations
import seaborn as sns
%matplotlib inline
import matplotlib.pyplot as plt
```

Read Data

```
In [2]: data = pd.read_csv('../input/heart-disease-uci/heart.csv' , sep=',' , encoding='u
```

^{**}Heart attack prediction where 1 denotes Heart attack occured and 0 where it din't take occur.

```
In [3]: #show information about data
    data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
               Non-Null Count Dtype
     Column
 0
     age
               303 non-null
                                int64
               303 non-null
                                int64
 1
     sex
 2
               303 non-null
                                int64
     ср
 3
     trestbps
               303 non-null
                                int64
 4
               303 non-null
     chol
                                int64
 5
     fbs
               303 non-null
                                int64
 6
     restecg
               303 non-null
                                int64
 7
     thalach
               303 non-null
                                int64
 8
     exang
               303 non-null
                                int64
 9
     oldpeak
               303 non-null
                                float64
 10
    slope
               303 non-null
                                int64
 11
    ca
               303 non-null
                                int64
 12
     thal
               303 non-null
                                int64
 13 target
               303 non-null
                                int64
dtypes: float64(1), int64(13)
memory usage: 33.3 KB
```

```
In [4]: data.shape
```

Out[4]: (303, 14)

- -Data Containing of 303 row and 14 columns(features)
- -No found Null
- · -all data is integer except oldpeak is float

```
In [5]: #show first 5 row from data
data.head()
```

Out[5]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [6]: data.tail()

Out[6]:

	а	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
29	98	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
29	99	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
3	00	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
3	01	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
3	02	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

Renaming the column headers for better understanding of visualizations.

In [8]: #show heading of columns
data.head()

Out[8]:

	Age	Gender	Chest_pain	Resting_blood_pressure	Cholesterol	Fasting_blood_sugar	ECG_resul
0	63	1	3	145	233	1	
1	37	1	2	130	250	0	
2	41	0	1	130	204	0	
3	56	1	1	120	236	0	
4	57	0	0	120	354	0	
4							>

In [9]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Age	303 non-null	int64
1	Gender	303 non-null	int64
2	Chest_pain	303 non-null	int64
3	Resting_blood_pressure	303 non-null	int64
4	Cholesterol	303 non-null	int64
5	Fasting_blood_sugar	303 non-null	int64
6	ECG_results	303 non-null	int64
7	Maximum_heart_rate	303 non-null	int64
8	Exercise_induced_angina	303 non-null	int64
9	ST_depression	303 non-null	float64
10	ST_slope	303 non-null	int64
11	Major_vessels	303 non-null	int64
12	Thalassemia_types	303 non-null	int64
13	Heart_attack	303 non-null	int64
dtvp	es: float64(1), int64(13)		

0

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

```
Out[10]: Age
```

Gender 0 Chest_pain 0 Resting_blood_pressure 0 Cholesterol 0 Fasting_blood_sugar 0 ECG_results 0 0 Maximum_heart_rate Exercise_induced_angina 0 ST depression 0 ST_slope 0 Major_vessels 0 Thalassemia_types 0 Heart_attack

dtype: int64

In [11]: #show all statistics
data.describe(include='all')

Out[11]:

		Age	Gender	Chest_pain	Resting_blood_pressure	Cholesterol	Fasting_blood_suc
C	ount	303.000000	303.000000	303.000000	303.000000	303.000000	303.0000
n	nean	54.366337	0.683168	0.966997	131.623762	246.264026	0.1485
	std	9.082101	0.466011	1.032052	17.538143	51.830751	0.3561
	min	29.000000	0.000000	0.000000	94.000000	126.000000	0.0000
	25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.0000
	50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.0000
	75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.0000
	max	77.000000	1.000000	3.000000	200.000000	564.000000	1.0000

In [12]: #replace number to object to make reading is easy
#data['Gender'].replace({1:'Male', 0:'Female'},inplace = True)

In [13]: #replace number to object to make reading is easy
#data['Heart_attack'].replace({1:'Heart_attack-Yes', 0:'Heart_attack-No'}, inplo

In [14]: data.head()

Out[14]:

	Age	Gender	Chest_pain	Resting_blood_pressure	Cholesterol	Fasting_blood_sugar	ECG_resul
0	63	1	3	145	233	1	
1	37	1	2	130	250	0	
2	41	0	1	130	204	0	
3	56	1	1	120	236	0	
4	57	0	0	120	354	0	
4							

In [15]: data.tail()

Out[15]:

		Age	Gender	Chest_pain	Resting_blo	od_pressure	Cholesterol	Fasting_blood_sugar	ECG_res
-	298	57	0	0		140	241	0	
	299	45	1	3		110	264	0	
	300	68	1	0		144	193	1	
	301	57	1	0		130	131	0	
	302	57	0	1		130	236	0	
4									•

In [16]: #GAH refer to gender , age and has Heart_attack
 #count of member has Heart_attack according his gender and age
 GAH = data.groupby(['Gender','Age'])['Heart_attack'].count().reset_index().sort_v
 GAH.head(20).style.background_gradient(cmap='Purples')

Out[16]:

	Gender	Age	Heart_attack
59	1	58	13
58	1	57	13
60	1	59	13
53	1	52	12
55	1	54	11
45	1	44	9
52	1	51	8
57	1	56	8
61	1	60	7
65	1	64	7
24	0	62	7
43	1	42	6
49	1	48	6
62	1	61	6
44	1	43	6
68	1	67	6
20	0	58	6
42	1	41	6
25	0	63	5
54	1	53	5

- 1:Male
- 0:Female
- top 20 count of heart attack, males have witnessed more heart attacks for their ages.**

```
In [17]: #GcH refer to gender , Chest_pain and has Heart_attack
    #count of member has Heart_attack according his Chest_pain and Gender
    GcH = data.groupby(['Gender' , 'Chest_pain'])['Heart_attack'].count().reset_index
    GcH.head(20).style.background_gradient(cmap='Blues')
```

Out[17]:

	Gender	Chest_pain	Heart_attack
4	1	0	104
6	1	2	52
0	0	0	39
2	0	2	35
5	1	1	32
7	1	3	19
1	0	1	18
3	0	3	4

- The higher the number, the lesser are the odds of heart attack
- · shows that large number of Male has Heart Attack with Chest pain less
- just 19 Man has Heart_Attack with Chest_pain higher
- · for women 4 women has Heart Attack with Chest pain higher
- 39 women has Heart Attack with Chest pain less

```
In [18]: data.columns
Out[18]: Index(['Age', 'Gender', 'Chest_pain', 'Resting_blood_pressure', 'Cholesterol',
                 'Fasting_blood_sugar', 'ECG_results', 'Maximum_heart_rate',
                 'Exercise induced angina', 'ST depression', 'ST slope', 'Major vessels',
                 'Thalassemia_types', 'Heart_attack'],
                dtype='object')
In [19]: data.Chest_pain
Out[19]: 0
                 3
                 2
         2
                 1
         3
                 1
                 0
         298
                 0
         299
                 3
         300
                0
         301
                 0
         302
         Name: Chest_pain, Length: 303, dtype: int64
```

In [20]: #GRH refer to gender , Resting_blood_pressure and has Heart_attack
 #count of member has Heart_attack according his Resting_blood_pressure and Gender
 GRH = data.groupby(['Gender' , 'Resting_blood_pressure'])['Heart_attack'].count()
 GRH.head(8).style.background_gradient(cmap='coolwarm')

Out[20]:

	Gender	Resting_blood_pressure	Heart_attack
46	1	120	27
54	1	130	24
60	1	140	22
40	1	110	16
15	0	130	12
50	1	125	11
21	0	140	10
66	1	150	10

count of Male 16 has Resting_blood_pressure 110 but count of women 12 has Resting_blood_pressure 130

In [21]: #GCH refer to gender , Cholesterol and has Heart_attack
 #count of member has Heart_attack according his Cholesterol and Gender
 GCH = data.groupby(['Gender' , 'Cholesterol'])['Heart_attack'].count().reset_indef
 GCH.head(10).style.background_gradient(cmap='OrRd')

Out[21]:

	Gender	Cholesterol	Heart_attack
115	1	212	5
109	1	204	4
135	1	234	4
134	1	233	4
172	1	282	4
150	1	254	4
48	0	269	4
144	1	246	3
143	1	245	3
141	1	243	3

- count of Male with high Cholesterol less (212 -5)
- for female Cholesterol was high and count of persone has Heart_attack is smaller

In [22]: #GFH refer to gender , Fasting_blood_sugar and has Heart_attack
#count of member has Heart_attack according his Fasting_blood_sugar and Gender
GFH = data.groupby(['Gender' , 'Fasting_blood_sugar'])['Heart_attack'].count().re
GFH.style.background_gradient(cmap='YlGn')

Out[22]:

	Gender	Fasting_blood_sugar	Heart attack
2	1	0	174
0	0	0	84
3	1	1	33
1	0	1	12

When Fasting blood sugar was False -- Heart attack was highe for Male also with women

```
In [23]: data.Fasting_blood_sugar.shape
```

Out[23]: (303,)

In [24]: #GECH refer to gender , ECG_results and has Heart_attack
#count of member has Heart_attack according his ECG_results and Gender
GECH = data.groupby(['Gender' , 'ECG_results'])['Heart_attack'].count().reset_ing
GECH.style.background_gradient(cmap='bone')

Out[24]:

	Gender	ECG_results	Heart_attack
3	1	0	103
4	1	1	103
1	0	1	49
0	0	0	44
2	0	2	3
5	1	2	1

- When ECG_results is small was Heart_attack is highe
- · Male higher from Female

In [25]: #GEH refer to gender , Maximum_heart_rate and has Heart_attack
#count of member has Heart_attack according his Maximum_heart_rate and Gender
GEH = data.groupby(['Gender' , 'Maximum_heart_rate'])['Heart_attack'].count().res
GEH.head(10).style.background_gradient(cmap='summer')

Out[25]:

	Gender	Maximum_heart_rate	Heart_attack
86	1	144	7
77	1	132	7
103	1	162	7
113	1	173	7
82	1	140	6
42	0	172	6
91	1	150	6
70	1	125	6
97	1	156	6
34	0	163	5

The maximum heart rate were higher for males resulting in heart attack

In [26]: #GEiH refer to gender , Exercise_induced_angina and has Heart_attack
 #count of member has Heart_attack according his Exercise_induced_angina and Gende
GEiH = data.groupby(['Gender' , 'Exercise_induced_angina'])['Heart_attack'].count
GEiH.style.background_gradient(cmap='cool')

Out[26]:

	Gender	Exercise_induced_angina	Heart_attack
	2 1	0	130
;	1	1	77
(0	0	74
	1 0	1	22

Exercise induced chest pain was higher in males and more resulted in Heart attacks.

In [27]: #GSH refer to gender , ST_depression and has Heart_attack
 #count of member has Heart_attack according his ST_depression and Gender
 GSH = data.groupby(['Gender' , 'ST_depression'])['Heart_attack'].count().reset_ir
 GSH.head(10).style.background_gradient(cmap='Oranges')

Out[27]:

	Gender	ST_depression	Heart_attack
27	1	0.000000	64
0	0	0.000000	35
37	1	1.200000	13
34	1	0.800000	10
36	1	1.000000	9
41	1	1.800000	8
38	1	1.400000	8
33	1	0.600000	8
43	1	2.000000	7
40	1	1.600000	7

The lower the depression, the higher the cases were for heart attack.

```
In [28]: data.ST_depression.head()
```

Out[28]: 0

- 0 2.3
- 1 3.5
- 2 1.4
- 3 0.8
- 4 0.6

Name: ST depression, dtype: float64

In [29]: #GSLH refer to gender , ST_slope and has Heart_attack
 #count of member has Heart_attack according his ST_slope and Gender
 GSlH = data.groupby(['Gender' , 'ST_slope'])['Heart_attack'].count().reset_index(
 GSlH.head(10).style.background_gradient(cmap='afmhot')

Out[29]:

	Gender	SI_slope	неагт_аттаск
5	1	2	96
4	1	1	95
2	0	2	46
1	0	1	45
3	1	0	16
0	0	0	5

- The lower ST slope (2 less than 1 less than 0), the higher the cases were for heart attack.
- · The higher the slope value, the higher were the cases for Heart attack

In [30]: #GMH refer to gender , Major_vessels and has Heart_attack #count of member has Heart_attack according his Major_vessels and Gender GMH = data.groupby(['Gender' , 'Major_vessels'])['Heart_attack'].count().reset_ir GMH.head(10).style.background_gradient(cmap='afmhot')

Out[30]:

	Gender	Major_vessels	Heart_attack
4	1	0	111
0	0	0	64
5	1	1	50
6	1	2	25
7	1	3	16
1	0	1	15
2	0	2	13
8	1	4	5
3	0	3	4

- The lower the number of vessels blocked, the higher were the heart attack cases.
- This means that 0 represents that all 4 major blood vessels were blocked
- · and 4 represented all vessels were free for flow.
- Male > Female

```
In [31]: #GTH refer to gender , Thalassemia_types and has Heart_attack
#count of member has Heart_attack according his Thalassemia_types and Gender
GTH = data.groupby(['Gender' , 'Thalassemia_types'])['Heart_attack'].count().rese
GTH.head(20).style.background_gradient(cmap='GnBu')
```

Out[31]:

	Gender	Thalassemia_types	Heart_attack
7	1	3	102
6	1	2	87
2	0	2	79
5	1	1	17
3	0	3	15
0	0	0	1
1	0	1	1
4	1	0	1

The higher the Thalassemia type, the higher were the cases of heart attack.

In [33]: data_corr=data.corr().style.background_gradient(cmap='plasma')
data_corr

Out[33]:

	Age	Gender	Chest_pain	Resting_blood_pressure	Cholesterol	Fŧ
Age	1.000000	-0.098447	-0.068653	0.279351	0.213678	
Gender	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	
Chest_pain	-0.068653	-0.049353	1.000000	0.047608	-0.076904	
Resting_blood_pressure	0.279351	-0.056769	0.047608	1.000000	0.123174	
Cholesterol	0.213678	-0.197912	-0.076904	0.123174	1.000000	
Fasting_blood_sugar	0.121308	0.045032	0.094444	0.177531	0.013294	
ECG_results	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	
Maximum_heart_rate	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	
Exercise_induced_angina	0.096801	0.141664	-0.394280	0.067616	0.067023	
ST_depression	0.210013	0.096093	-0.149230	0.193216	0.053952	
ST_slope	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	
Major_vessels	0.276326	0.118261	-0.181053	0.101389	0.070511	
Thalassemia_types	0.068001	0.210041	-0.161736	0.062210	0.098803	
Heart_attack	-0.225439	-0.280937	0.433798	-0.144931	-0.085239	
4						•

```
In [34]: #corelation matrix with all Data
plt.figure(figsize=(11,7))
sns.heatmap(cbar=True,annot=True,fmt=".0%",data=data.corr(),cmap='copper')
plt.title('Correlation Matrix')
plt.show()
```


Out[35]: <AxesSubplot:>


```
In [36]: mask = np.zeros_like(data.corr())
    mask[np.triu_indices_from(mask)] = True
    with sns.axes_style("ticks"):
        f, ax = plt.subplots(figsize=(9, 5))
        ax = sns.heatmap(data.corr(), mask=mask, vmax=.3,annot=True,fmt=".0%",linewide
        #annot is numbers in squares
        #square=True the square is small but square=False the square is large
```


In [37]: #Show histogram for Age sns.distplot(data['Age'])

/opt/conda/lib/python3.7/site-packages/seaborn/distributions.py:2557: FutureWar ning: `distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[37]: <AxesSubplot:xlabel='Age', ylabel='Density'>

Out[38]: <AxesSubplot:xlabel='Gender', ylabel='Count'>


```
In [39]: #Show histogram for Chest_pain
sns.histplot(data['Chest_pain'])
```

Out[39]: <AxesSubplot:xlabel='Chest_pain', ylabel='Count'>

In [40]: sns.relplot(x ='Age', y ='Chest_pain', col = 'Gender', data =data, color = 'crims

Out[40]: <seaborn.axisgrid.FacetGrid at 0x7f82fb0baa50>

In [41]: #Show histogram for Maximum_heart_rate
sns.distplot(data['Maximum_heart_rate'])

/opt/conda/lib/python3.7/site-packages/seaborn/distributions.py:2557: FutureWar ning: `distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[41]: <AxesSubplot:xlabel='Maximum_heart_rate', ylabel='Density'>

In [42]: sns.relplot(x ='Age', y ='Maximum_heart_rate', col = 'Gender', data =data, color

Out[42]: <seaborn.axisgrid.FacetGrid at 0x7f82f81c1310>

In [43]: #Show histogram for Exercise_induced_angina
sns.histplot(data['Exercise_induced_angina'])

Out[43]: <AxesSubplot:xlabel='Exercise_induced_angina', ylabel='Count'>

In [44]: sns.relplot(x ='Age', y ='Exercise_induced_angina', col = 'Gender', data =data, or

Out[44]: <seaborn.axisgrid.FacetGrid at 0x7f82fa37cb10>

In [45]: #Show histogram for ST_depression
sns.distplot(data['ST_depression'])

/opt/conda/lib/python3.7/site-packages/seaborn/distributions.py:2557: FutureWar ning: `distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[45]: <AxesSubplot:xlabel='ST_depression', ylabel='Density'>

In [46]: sns.relplot(x ='Age', y ='ST_depression', col = 'Gender', data =data, color = 'cr

Out[46]: <seaborn.axisgrid.FacetGrid at 0x7f82fa0c7e10>


```
In [47]: #Show histogram for Major_vessels
sns.histplot(data['Major_vessels'])
```

Out[47]: <AxesSubplot:xlabel='Major_vessels', ylabel='Count'>

In [48]: sns.relplot(x ='Age', y ='Major_vessels', col = 'Gender', data =data, color = 'cr

Out[48]: <seaborn.axisgrid.FacetGrid at 0x7f82fa151cd0>

In [49]: #Show histogram for Thalassemia_types sns.histplot(data['Thalassemia_types'])

Out[49]: <AxesSubplot:xlabel='Thalassemia_types', ylabel='Count'>

Out[50]: <seaborn.axisgrid.FacetGrid at 0x7f82efd92ed0>


```
In [51]: #Show histogram for Heart_attack
sns.histplot(data['Heart_attack'])
```

Out[51]: <AxesSubplot:xlabel='Heart_attack', ylabel='Count'>

In [52]: sns.set_style('whitegrid') #styling using sns
sns.countplot(x='Heart_attack',hue='Gender',data=data,palette='Blues') #palette
#Insights from the graph are:
#females are highly suffering from heart disease as compared to males

Out[52]: <AxesSubplot:xlabel='Heart_attack', ylabel='count'>

localhost:8889/notebooks/heart-disease-analysis-linear-reg.ipynb

Out[54]: (303, 14)

In [56]: sns.lmplot('Age' , 'ST_depression' , data=data , hue='Heart_attack' , fit_reg=Fal
 plt.show()

/opt/conda/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variables as keyword args: x, y. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments witho ut an explicit keyword will result in an error or misinterpretation.


```
In [57]: sns.lmplot('Age' , 'Major_vessels' , data=data , hue='Heart_attack' , fit_reg=Fal
plt.show()
```

/opt/conda/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variables as keyword args: x, y. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments witho ut an explicit keyword will result in an error or misinterpretation.

In [62]: #show all statistics
data.describe(include='all')

Out[62]:

	Age	Gender	Chest_pain	Maximum_heart_rate	Exercise_induced_angina	ST_slc
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.0000
mean	54.366337	0.683168	0.966997	149.646865	0.326733	1.3990
std	9.082101	0.466011	1.032052	22.905161	0.469794	0.6162
min	29.000000	0.000000	0.000000	71.000000	0.000000	0.0000
25%	47.500000	0.000000	0.000000	133.500000	0.000000	1.0000
50%	55.000000	1.000000	1.000000	153.000000	0.000000	1.0000
75%	61.000000	1.000000	2.000000	166.000000	1.000000	2.0000
max	77.000000	1.000000	3.000000	202.000000	1.000000	2.0000
4						>

In [63]: #important data
data

Out[63]:

	Age	Gender	Chest_pain	Maximum_heart_rate	Exercise_induced_angina	ST_slope	Major_ve
0	63	1	3	150	0	0	
1	37	1	2	187	0	0	
2	41	0	1	172	0	2	
3	56	1	1	178	0	2	
4	57	0	0	163	1	2	
298	57	0	0	123	1	1	
299	45	1	3	132	0	1	
300	68	1	0	141	0	1	
301	57	1	0	115	1	1	
302	57	0	1	174	0	1	

303 rows × 9 columns

In [64]: #show outliers
sns.boxplot(x=data['Chest_pain'])

Out[64]: <AxesSubplot:xlabel='Chest_pain'>

0.6

Heart_attack

In [83]: plt.scatter(data['Maximum_heart_rate'] , data['Heart_attack'] , color='blue')

Out[83]: <matplotlib.collections.PathCollection at 0x7f82ef84b4d0>

In [91]: plt.scatter(data['Major_vessels'] , data['Heart_attack'] , color='blue')

Out[91]: <matplotlib.collections.PathCollection at 0x7f82ef85d350>

In [80]: data[data['Maximum_heart_rate']<75]</pre>

Out[80]:

	Age	Gender	Chest_pain	Maximum_heart_rate	Exercise_induced_angina	ST_slope	Major_ve
272	67	1	0	71	0	1	_
4							•

```
In [95]: data[data['Major_vessels']>=3.5]
 Out[95]:
                Age
                     Gender Chest_pain Maximum_heart_rate Exercise_induced_angina ST_slope Major_ver
                                                                              0
                                                                                        2
             92
                  52
                          1
                                     2
                                                      169
            158
                  58
                          1
                                     1
                                                      144
                                                                              0
                                                                                        1
            163
                  38
                          1
                                     2
                                                      173
                                                                              0
                                                                                        2
                                     2
                                                                                        2
            164
                  38
                                                      173
            251
                                     0
                                                      143
                                                                                        1
                  43
                          1
                                                                              1
 In [85]: #print outliers
           print('outliers' , data[(data['Maximum_heart_rate']<75)]['Maximum_heart_rate'].co</pre>
           outliers 1
In [104]:
           #print outliers
           print('outliers' , data[(data['Major_vessels']>=3)]['Major_vessels'].count())
           outliers 25
In [132]: #print outliers
           print('outliers' , data[(data['Major_vessels']>=3.5)]['Major_vessels'].count())
           outliers 5
In [133]: #print outliers
           print('outliers' , data[(data['Thalassemia_types']<=0)]['Thalassemia_types'].cour</pre>
           outliers 2
In [134]: data.shape
Out[134]: (303, 9)
In [135]: #remove row outliers
           clean_data= data[(data['Major_vessels']<=3.5) ]</pre>
In [136]: | clean_data.shape
Out[136]: (298, 9)
```

In [137]: clean_data

Out[137]:

		Age	Gender	Chest_pain	Maximum_heart_rate	Exercise_induced_angina	ST_slope	Major_ve
	0	63	1	3	150	0	0	
	1	37	1	2	187	0	0	
	2	41	0	1	172	0	2	
	3	56	1	1	178	0	2	
	4	57	0	0	163	1	2	
2	98	57	0	0	123	1	1	
2	99	45	1	3	132	0	1	
3	00	68	1	0	141	0	1	
3	01	57	1	0	115	1	1	
3	02	57	0	1	174	0	1	

298 rows × 9 columns

```
In [138]: data.columns
Out[138]: Index(['Age', 'Gender', 'Chest_pain', 'Maximum_heart_rate',
                  'Exercise_induced_angina', 'ST_slope', 'Major_vessels',
                  'Thalassemia_types', 'Heart_attack'],
                dtype='object')
In [139]: | clean_data.columns
Out[139]: Index(['Age', 'Gender', 'Chest_pain', 'Maximum_heart_rate',
                  'Exercise_induced_angina', 'ST_slope', 'Major_vessels',
                  'Thalassemia_types', 'Heart_attack'],
                dtype='object')
In [140]: #Spliting Data
          import numpy as np
          from sklearn.model selection import train test split
In [142]: | X = clean_data.drop(['Heart_attack'] , axis=1).values
In [143]: Y = clean_data['Heart_attack'].values
In [144]: #split data 70% for train and 30% for test
          x_train , x_test , y_train , y_test = train_test_split(X,Y , test_size=0.03 ,rand)
```

```
In [145]: x_train.shape
Out[145]: (289, 8)
In [153]: #Linear Regression
           from sklearn.linear model import LinearRegression
           reg = LinearRegression()
           reg.fit(x_train , y_train)
          y pred = reg.predict(x test)
In [156]: #Training score
           reg.score(x_train,y_train)
Out[156]: 0.5089475649292499
In [157]: #Training score
          reg.score(x_test,y_test)
Out[157]: 0.7818928765356215
           This is OverFitting as Train score Higher than test score by 28%
In [158]: #accuracy for Model
           from sklearn.metrics import r2_score
           r2 = r2_score(y_test , y_pred)
          r2
Out[158]: 0.7818928765356215
 In [67]: #to download and save data
           #data.to_csv("data_name.csv",header=True,index=True,encoding="utf-8")
```