Koszul Resolution of a Polynomial Ring

1 Koszul Resolution

Let \mathbb{k} be a field, $A = \mathbb{k}_q[x_1, x_2] = \mathbb{k} < x_1, x_2 > /(x_2x_1 - qx_1x_2)$ for some $q \in \mathbb{k}^*$. Let $A_1 = \mathbb{k}[x_1]$ and $A_2 = \mathbb{k}[x_2]$ be subalgebras of A so that A is the twisted tensor product $A_1 \otimes^{\tau} A_2$ where $\tau : \mathbb{Z}^2 \to \mathbb{k}^*$ is the bicharacter $\tau(m, n) = q^{-mn}$. We consider the Koszul resolutions of A_1 and A_2

$$0 \to A_1^e \xrightarrow{(x_1 \otimes 1 - 1 \otimes x_1)} A_1^e \to 0$$

$$0 \to A_2^e \xrightarrow{(x_2 \otimes 1 - 1 \otimes x_2) \cdot} A_2^e \to 0.$$

In order to construct a resolution of A,, the differentials of these resolutions need to be graded maps. To this end, we shift the grading of the homological degree 1 component of both resolutions up by 1:

$$0 \to A_1^e(-1) \xrightarrow{(x_1 \otimes 1 - 1 \otimes x_1)} A_1^e \to 0$$

$$0 \to A_2^e(-1) \xrightarrow{(x_2 \otimes 1 - 1 \otimes x_2) \cdot} A_2^e \to 0.$$

Then, the differential $(x_1 \otimes 1 - 1 \otimes x_1)$ maps basis elements as follows

$$(x_1 \otimes 1 - 1 \otimes x_1)(x_1^n \otimes x_1^m) = x_1^{n+1} \otimes x_1^m - x_1^n \otimes x_1^{m+1}.$$

The element on the right has degree n+m+1 in A_1^e and the element $x_1^n \otimes x_1^m$ has shifted degree n+m+1 in $A_1^e(-1)$, so we see the differential is now graded. Similarly, the differential $(x_2 \otimes 1 - 1 \otimes x_2) : A_2^e(-1) \to A_2^e$ is graded.

Then by a theorem proved by Bergh and Oppermann in "Cohomology of Twisted Tensor Products" (2008), the total complex of the tensor product of these two resolutions is a projective resolution of A as an A^e -module. This resolution is

$$0 \to A_1^e(-1) \otimes A_2^e(-1) \xrightarrow{\partial_2} [A_1^e \otimes A_2^e(-1)] \oplus [A_1^e(-1) \otimes A_2^e] \xrightarrow{\partial_1} A_1^e \otimes A_2^e \to 0$$

where the differentials are given by

$$\partial_2 = \begin{bmatrix} (x_1 \otimes 1 - 1 \otimes x_1) \cdot \otimes \mathrm{id} \\ \mathrm{id} \otimes (1 \otimes x_2 - x_2 \otimes 1) \cdot \end{bmatrix} : x_1^a \otimes x_1^b \otimes x_2^c \otimes x_2^d \mapsto \begin{bmatrix} x_1^{a+1} \otimes x_1^b \otimes x_2^c \otimes x_2^d - x_1^a \otimes x_1^{b+1} \otimes x_2^c \otimes x_2^d \\ x_1^a \otimes x_1^b \otimes x_2^c \otimes x_2^{d+1} - x_1^a \otimes x_1^b \otimes x_2^{c+1} \otimes x_2^d \end{bmatrix}$$

$$\partial_1 = \left[\mathrm{id} \otimes (x_2 \otimes 1 - 1 \otimes x_2) \cdot (x_1 \otimes 1 - 1 \otimes x_1) \cdot \otimes \mathrm{id} \right] :$$

$$\begin{bmatrix} x_1^a \otimes x_1^b \otimes x_2^c \otimes x_2^d \\ x_1^r \otimes x_1^s \otimes x_2^u \otimes x_2^v \end{bmatrix} \mapsto x_1^a \otimes x_1^b \otimes x_2^{c+1} \otimes x_2^d - x_1^a \otimes x_1^b \otimes x_2^c \otimes x_2^{d+1} + x_1^{r+1} \otimes x_1^s \otimes x_2^u \otimes x_2^v - x_1^r \otimes x_1^{s+1} \otimes x_2^u \otimes x_2^v.$$

Of note is that the last module, $A_1^e \otimes A_2^e$, is isomorphic to A^e as A^e -modules via the map

$$x_1^a \otimes x_1^b \otimes x_2^c \otimes x_2^d \mapsto q^{bc} x_1^a x_2^c \otimes x_1^b x_2^d.$$

We will show that this map is A^e -linear. First, if we act and then map, we get

$$x_{1}^{r}x_{2}^{s} \cdot (x_{1}^{a} \otimes x_{1}^{b} \otimes x_{2}^{c} \otimes c_{2}^{d}) \cdot x_{1}^{t}x_{2}^{u}$$

$$= q^{-s(a+b)-st-t(c+d)}(x_{1}^{r} \cdot (x_{1}^{a} \otimes x_{1}^{b}) \cdot x_{1}^{t}) \otimes (x_{2}^{s} \cdot (x_{2}^{c} \otimes x_{2}^{d}) \cdot x_{2}^{u})$$

$$= q^{-s(a+b)-st-t(c+d)}x_{1}^{a+r} \otimes x_{1}^{b+t} \otimes x_{2}^{c+s} \otimes x_{2}^{d+u}$$

$$\mapsto q^{bc-as-dt}x_{1}^{a+r}x_{2}^{c+s} \otimes x_{1}^{b+t}x_{2}^{d+u}.$$

Next if we instead map and then act we get

$$\begin{aligned} x_1^r x_2^s \cdot \left(q^{bc} x_1^a x_2^c \otimes x_1^b x_2^d \right) \cdot x_1^t x_2^u \\ &= q^{bc} x_1^r x_2^s x_1^a x_2^c \otimes x_1^b x_2^d x_1^t x_2^u \\ &= q^{bc} \left(q^{-as} x_1^{a+r} x_2^{c+s} \right) \otimes \left(q^{-dt} x_1^{b+t} \otimes x_2^{d+u} \right) \\ &= q^{bc-as-dt} x_1^{a+r} x_2^{c+s} \otimes x_1^{b+t} x_2^{d+u} \end{aligned}$$

So we see that this map is an A^e -module map. This map is clearly surjective, for any basis element $x_1^a x_2^b \otimes x_1^c x_2^d \in A^e$, the element $q^{-bc} x_1^a \otimes x_1^c \otimes x_2^b \otimes x_2^d \in A_1^e \otimes A_2^e$ is in its pre-image. As well, this defines an inverse of the map, so we conclude that this is in fact an isomorphism of A^e -modules.

For the sake of easier computation of the cohomology, we will perform similar isomorphisms of the other two A^e -modules,

$$A_1^e(-1) \otimes A_2^e(-1) \cong A^e$$

$$x_1^a \otimes x_1^b \otimes x_2^c \otimes x_2^d \mapsto q^{(b+1)(c+1)} x_1^a x_2^c \otimes x_1^b x_2^d$$

and

$$(A_1^e \otimes A_2^e(-1)) \oplus (A_1^e(-1) \otimes A_2^e) \cong (A^e)^2$$

$$\begin{bmatrix} x_1^a \otimes x_1^b \otimes x_2^c \otimes x_2^d \\ x_1^r \otimes x_1^s \otimes x_2^u \otimes x_2^v \end{bmatrix} \mapsto \begin{bmatrix} q^{b(c+1)} x_1^a x_2^c \otimes x_1^b x_2^d \\ q^{(s+1)v} x_1^r x_2^u \otimes x_1^s x_2^v \end{bmatrix}$$

Hence we can rewrite the resolution as

$$0 \to A^e \xrightarrow{\partial_2^*} A^e \oplus A^e \xrightarrow{\partial_1^*} A^e \to 0$$

where the differentials are given by

$$\partial_2^*(x_1^a x_2^b \otimes x_1^c x_2^d) = [$$

2 Computing Cohomology

Apply the functor $\operatorname{Hom}_{A^e}(-,A)$ to this resolution to get the complex

$$0 \to \operatorname{Hom}_{A^e}(A^e,A) \xrightarrow{d_1} \operatorname{Hom}_{A^e}(A_1^e \otimes A_2^e(-1) \oplus A_1^e(-1) \otimes A_2^e,A) \xrightarrow{d_2} \operatorname{Hom}_{A^e}(A_1^e(-1) \otimes A_2^e(-1),A) \to 0.$$

The differentials are given by

$$d_1(f)\left(\begin{bmatrix} x_1^a \otimes x_1^b \otimes x_2^c \otimes x_2^d \\ x_1^r \otimes x_1^s \otimes x_2^u \otimes x_2^v \end{bmatrix}\right) = q^{b(c+1)} f(x_1^a x_2^{c+1} \otimes x_1^b x_2^d) - q^{bc} f(x_1^a x_2^c \otimes x_1^b x_2^{d+1}) + q^{su} f(x_1^{r+1} x_2^u \otimes x_1^s x_2^v) - q^{s(u+1)} f(x_1^r x_2^u \otimes x_1^{s+1} x_2^u x)$$

$$d_{2}(f)(x_{1}^{a} \otimes x_{1}^{b} \otimes x_{2}^{c} \otimes x_{2}^{d}) = f(x_{1}^{a+1} \otimes x_{1}^{b} \otimes x_{2}^{c} \otimes x_{2}^{d}, x_{1}^{a} \otimes x_{1}^{b} \otimes x_{2}^{c} \otimes x_{2}^{d+1}) -f(x_{1}^{a} \otimes x_{1}^{b+1} \otimes x_{2}^{c} \otimes x_{2}^{d}, x_{1}^{a} \otimes x_{1}^{b} \otimes x_{2}^{c+1} \otimes x_{2}^{d})$$

Next, we want to rewrite this resolution in a more familiar form. Let $V = kx_1 \oplus kx_2$, then

$$\operatorname{Hom}_{A^e}(A^e, A) \cong A \otimes \bigwedge_q^2(V)$$

 $f \mapsto f(1 \otimes 1) \otimes x_1 \wedge x_2$

This map is clearly A^e -linear and surjective. Since every $f \in \text{Hom}_{A^e}(A^e, A)$ is determined by its image on $1 \otimes 1$, it is also injective, and hence, an isomorphism of A^e -modules.

We also have that

$$\operatorname{Hom}_{A^e}((A_1^e \otimes A_2^e(-1)) \oplus (A_1^e(-1) \otimes A_2^e), A) \cong A \otimes \bigwedge_a^1(V)$$