```
Yulu Case Study
In [110]: import numpy as np
           import pandas as pd
           import seaborn as sns
 In [66]: df=pd.read_csv("bike_sharing.csv")
In [55]: df.head()
 Out[55]:
               datetime season holiday workingday weather temp atemp humidity windspeed casual re
               2011-01-
            0
                             1
                                     0
                                                 0
                                                                                          0.0
                                                                                                   3
                    01
                                                          1
                                                             9.84 14.395
                                                                               81
               00:00:00
               2011-01-
                                     0
                                                 0
                                                                                          0.0
                                                             9.02 13.635
                                                                               80
                                                                                                   8
               01:00:00
               2011-01-
                             1
                                     0
                                                 0
                                                             9.02 13.635
                                                                                          0.0
                                                                                                   5
            2
                                                                               80
                    01
               02:00:00
               2011-01-
                                                                                          0.0
            3
                                     0
                                                 0
                                                             9.84 14.395
                                                                               75
                                                                                                   3
                             1
                    01
               03:00:00
               2011-01-
                    01
                              1
                                     0
                                                             9.84 14.395
                                                                               75
                                                                                          0.0
                                                                                                   0
                04:00:00
  In [4]: df.shape
  Out[4]: (10886, 12)
```

In []: # There are 10886 rows and 12 columns

```
Yulu case study - Jupyter Notebook
  In [5]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 10886 entries, 0 to 10885
          Data columns (total 12 columns):
                           Non-Null Count Dtype
           #
               Column
               ----
                           -----
           0
               datetime
                           10886 non-null object
                           10886 non-null int64
           1
               season
           2
               holiday
                           10886 non-null int64
           3
               workingday
                           10886 non-null int64
           4
               weather
                           10886 non-null int64
           5
               temp
                           10886 non-null float64
           6
               atemp
                           10886 non-null float64
           7
               humidity
                           10886 non-null int64
           8
               windspeed
                           10886 non-null float64
           9
               casual
                           10886 non-null int64
           10 registered 10886 non-null int64
           11 count
                           10886 non-null int64
          dtypes: float64(3), int64(8), object(1)
          memory usage: 1020.7+ KB
  In [ ]: # only datetime is object field while other fields are either int or float
In [107]: | df.describe(include='object')
Out[107]:
```

	datetime
count	10886
unique	10886
top	2012-09-05 17:00:00
frea	1

In [109]: df.describe()

Out[109]:

	season	holiday	workingday	weather	temp	atemp	humidity
nt	10886.000000	10886.000000	10886.000000	10886.000000	10886.00000	10886.000000	10886.000000
an	2.506614	0.028569	0.680875	1.418427	20.23086	23.655084	61.886460
ŧd	1.116174	0.166599	0.466159	0.633839	7.79159	8.474601	19.245030
ıin	1.000000	0.000000	0.000000	1.000000	0.82000	0.760000	0.000000
;%	2.000000	0.000000	0.000000	1.000000	13.94000	16.665000	47.000000
1%	3.000000	0.000000	1.000000	1.000000	20.50000	24.240000	62.000000
;%	4.000000	0.000000	1.000000	2.000000	26.24000	31.060000	77.000000
ax	4.000000	1.000000	1.000000	4.000000	41.00000	45.455000	100.000000
4							•

In []: # The 50% value and mean differs mainly in casual, registered and count fields

```
In [7]: # finding unique values in each column
for i in df.columns:
    print(i,":", df[i].nunique())
```

datetime : 10886

season : 4
holiday : 2
workingday : 2
weather : 4
temp : 49
atemp : 60
humidity : 89
windspeed : 28
casual : 309
registered : 731
count : 822

localhost:8888/notebooks/Documents/best_python/Yulu case study.ipynb

```
In [8]: # missing check
df.isna().sum()
# no missing values
```

Out[8]: datetime 0 season 0 holiday 0 workingday 0 weather 0 temp 0 atemp 0 humidity 0 0 windspeed 0 casual registered 0 count 0 dtype: int64

```
In [138]: sns.boxplot(x=df['season'],y=df['count'],hue=df['holiday'])
sns.set(rc={"figure.figsize":(6,6)})
#clearly there are outliers in the dataset
```



```
In [159]: sns.countplot(data=df,x='weather')
```

Out[159]: <AxesSubplot:xlabel='weather', ylabel='count'>

In [158]: sns.countplot(data=df,x='season')
count is somewhat similar for all the seasons

Out[158]: <AxesSubplot:xlabel='season', ylabel='count'>


```
In [113]: sns.countplot(data=df,x='casual')
# looks like exponentially decreasing graph
```

Out[113]: <AxesSubplot:xlabel='casual', ylabel='count'>

Out[115]: <AxesSubplot:xlabel='registered', ylabel='count'>


```
In [119]: sns.countplot(data=df,x='workingday')
```

Out[119]: <AxesSubplot:xlabel='workingday', ylabel='count'>

Out[120]: <AxesSubplot:xlabel='holiday', ylabel='count'>

In [129]: sns.heatmap(df.corr(),annot=True)
sns.set(rc={"figure.figsize":(6, 20)})

In []: # The above graph shows the correlation between various fields and how they are r

```
In [151]: # Bi variate analysis
# Relation between workday and count
sns.lineplot(x='weather',y='count',data=df)
```

Out[151]: <AxesSubplot:xlabel='weather', ylabel='count'>


```
In [152]: # Bi variate analysis
# Relation between season and count
sns.lineplot(x='season',y='count',data=df)
```

Out[152]: <AxesSubplot:xlabel='season', ylabel='count'>


```
In [154]: # Bi variate analysis
# Relation between season and count
sns.lineplot(x='workingday',y='count',data=df)
```

Out[154]: <AxesSubplot:xlabel='workingday', ylabel='count'>

In [155]: sns.scatterplot(x='casual',y='registered',data=df)

Out[155]: <AxesSubplot:xlabel='casual', ylabel='registered'>


```
In [156]: sns.scatterplot(x='casual',y='count',data=df)
```

Out[156]: <AxesSubplot:xlabel='casual', ylabel='count'>

In [157]: sns.scatterplot(x='registered',y='count',data=df)

Out[157]: <AxesSubplot:xlabel='registered', ylabel='count'>


```
In [161]: # conclusions from EDA

# 1. as the registered users increases the count of cycles increases

# 2. 1 to 3 means spring to fall season the count of cycles increases and then de

# 3. count decreaes as the weather changes from clear weather to thunderstorm and

# 4. The count of casual and registered is exponentially decresing

# 5. count of seasons is almost similar to each other

# 6. there are outliers in the dataset
```

```
In [ ]:
```

```
In [9]: sns.boxplot(x=df['season'],y=df['count'],hue=df['holiday'])
```

Out[9]: <AxesSubplot:xlabel='season', ylabel='count'>

Out[10]: <AxesSubplot:xlabel='workingday', ylabel='count'>


```
In [11]: sns.boxplot(x=df['weather'],y=df['count'])
```

Out[11]: <AxesSubplot:xlabel='weather', ylabel='count'>


```
In [ ]:
```

In [13]: # 2- Sample T-Test to check if Working Day has an effect on the number of electric # ANNOVA to check if No. of cycles rented is similar or different in different 1. # Chi-square test to check if Weather is dependent on the season (10 points)

Two sample T test to check the effect of working day

```
In [ ]: # assumptions of T test
```

- #1. Independence: The observations in one sample are independent of the observati
- #2. Normality: Both samples are approximately normally distributed.
- #3. Homogeneity of Variances: Both samples have approximately the same variance.
- #4. Random Sampling: Both samples were obtained using a random sampling method.

```
In [14]: # experimenting 2 sample t test for working days.
         df['workingday'].value_counts()
         # so there are 7412 when its a working day, 3474 for a weekend or holiday.
```

```
Out[14]: 1
               7412
               3474
```

Name: workingday, dtype: int64

```
workday_count_array=np.array(df[df['workingday']==1]['count'])
In [146]:
          holiday_count_array=np.array(df[df['workingday']==0]['count'])
```

In [162]: np.std(workday_count_array),np.std(holiday_count_array)

Out[162]: (184.501211667422, 173.69901006897658)

In [149]: sns.distplot(x=workday_count_array,kde=True)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[149]: <AxesSubplot:ylabel='Density'>

In [150]: sns.distplot(x=holiday_count_array,kde=True)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[150]: <AxesSubplot:ylabel='Density'>

In [18]: # Null hypothesis H0: working day and holiday have same effect on count of riders # Alternate hypothesis Ha: working day and holiday does not have same effect on a

```
In [19]: # calculating the P value
         # considering 95% confidence interval
         import scipy.stats as stats
         stats.ttest ind(workday count array,holiday count array)
         # as the P value is very high we can say that there is eqaul effect of workday ar
Out[19]: Ttest_indResult(statistic=1.2096277376026694, pvalue=0.22644804226361348)
         Here p value is greater than significance level: 0.22>0.05
         Conclusion based on the p-value :
         We fail to reject null hypothesis and conclude that there is no significant
         difference comparing to holiday vs working day
         Chi-square test to check if Weather is dependent on the season
 In [ ]: Assumption 1: Both variables are categorical.
         Assumption 2: All observations are independent.
         Assumption 3: Cells in the contingency table are mutually exclusive.
         Assumption 4:Expected value of cells should be 5 or greater in at least 80% of cells
         Considering 95% confidence interval
In [62]: df['weather'].value counts()
Out[62]: 1
              7192
         2
              2834
         3
               859
                 1
         Name: weather, dtype: int64
In [63]: df['season'].value counts()
Out[63]: 4
              2734
              2733
         3
         2
              2733
              2686
         1
```

Name: season, dtype: int64

In [23]: observed=pd.crosstab(df['weather'], df['season'], margins=True)

Out[23]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	r€
0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3	
1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8	
2	2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5	
3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	3	
4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	0	

4

In [163]: from scipy.stats import chi2_contingency
 test_statistic,p_value,df,frq=chi2_contingency(observed)
 test_statistic,p_value

Out[163]: (49.15865559689363, 3.1185273325126814e-05)

- 1.AS the p value is less than significance level
- 2.p value<0.05
- 3.Reject the null hypothesis

Conclusion based on the p-value : weather is dependent on season

ANNOVA to check if No. of cycles rented is similar or different in different 1. weather 2. season

assumption 1: Normality assumption 2: independent assumption 3: Equal Variances Considering 95% confidence interval

In []: # To check if the no of cycles rented is similar in different weather

```
In [67]: df['weather'].value counts()
 Out[67]: 1
               7192
          2
               2834
                859
          3
          4
          Name: weather, dtype: int64
  In [ ]: # H0 : In all the weathers the count of cycles remains same
          # HA : As the weather changes there is change in count of cycles
 In [71]: weather 1=np.array(df[df['weather']==1]['count'])
          weather_2=np.array(df[df['weather']==2]['count'])
          weather_3=np.array(df[df['weather']==3]['count'])
          weather 4=np.array(df[df['weather']==4]['count'])
 In [74]: | from scipy.stats import f_oneway
 In [75]: f_stat,p_value=f_oneway(weather_1,weather_2,weather_3,weather_4)
In [164]: f_stat,p_value
Out[164]: (236.94671081032106, 3.1185273325126814e-05)
  In []: # As the P value is very small that is less than significant level(0.05), we rej
          # Conclusion based on the p-value : weather has satistically significant affect
  In [ ]:
  In [ ]: # To check if the no of cycles rented is similar in different season
          season_1=np.array(df[df['season']==1]['count'])
 In [99]:
          season_2=np.array(df[df['season']==2]['count'])
          season 3=np.array(df[df['season']==3]['count'])
          season_4=np.array(df[df['season']==4]['count'])
  In [ ]: # HO: as the season changes there is no statistically significant difference in d
          # HA: as the season changes there is statistically significant difference in cour
In [100]: df['season'].value counts()
Out[100]: 4
               2734
          3
               2733
          2
               2733
               2686
          1
          Name: season, dtype: int64
```

```
In [101]: f stat,p value=f oneway(season 1,season 2,season 3,season 4)
In [102]: p_value
Out[102]: 6.164843386499654e-149
In [104]: \#AS the p value is less than significance level(0.05), we reject the null hypoth
          #Conclusion based on the p-value : The season has satistically significant affec
  In [ ]: # conclusions from EDA
          # 1. as the registered users increases the count of cycles increases
          # 2. 1 to 3 means spring to fall season the count of cycles increases and then de
          # 3. count decreaes as the weather changes from clear weather to thunderstorm and
          # 4. The count of casual and registered is exponentially decresing
          # 5. count of seasons is almost similar to each other
          # 6. there are outliers in the dataset
In [165]: # conclusions from hypothesis testing
          # T test result
          #1.We fail to reject null hypothesis and conclude that there is no significant di
          # Chi square test
          # 1.Reject the null hypothesis and conlcude that weather is dependent on season
          # 1. Reject the null hypothesis and conclude that weather has satistically signif
          # 2. Reject the null hypothesis and conclude that season has satistically signif
  In [ ]:
```