2023 届高三第一次学业质量评价(T8 联考) 化学试题

命题学校:荆门市龙泉中学 命题人:刘黎丽 李兰 刘袁 审题人:李华斌 陈世华 张伟 考试时间:2022 年 12 月 15 日上午 10:50-12:05 试卷满分 100 分 考试用时 75 分钟

注意事项:

- 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
 - 3. 考试结束后,将本试卷和答题卡一并交回。 可能用到的相对原子质量:H-1 C-12 O-16 Mn-55
- 一、选择题:本题共 15 小题,每小题 3 分,共 45 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 化学与生产、生活密切相关。下列说法错误的是
 - A. PM2. 5 是指粒子直径不大于 2.5 μm 的可吸入悬浮颗粒物
 - B. 2022 北京冬奥吉祥物"冰墩墩"总体的制作成分之一为聚碳酸酯,属于有机高分子材料
 - C. 合金是生活中常用的材料,现代社会应用最广泛的合金是铁合金
 - D. 煤经过液化、气化等清洁化处理后,可以减少二氧化碳的产生,避免"温室效应"
- 2. 水杨醇具有多种生物活性,其结构如图所示。下列有关水杨醇的说法错误的是
 - A. 水杨醇的分子式为 C7 H8 O2
- B. 碳原子的杂化方式有两种
- D. 与浓硫酸共热可发生消去反应 OF
- C. 能与 FeCl。溶液发生显色反应 D. 与浓硫酸共热可 3. 下列物质在指定条件下发生反应的化学方程式书写正确的是

 - B. 石灰水表面漂着的"白膜"可用醋酸溶解: CaCO₃ +2H+ —— Ca²+ +CO₂ ↑ +H₂O
 - C. 向 NaClO 溶液中通入少量 SO₂: SO₂+ClO⁻+H₂O == SO₄²⁻+Cl⁻+2H⁺
 - D. 向 Mg(HCO₃)₂溶液中加入足量的澄清石灰水;
 - $Mg^{2+} + 2HCO_3^- + 2Ca^{2+} + 4OH^- \longrightarrow Mg(OH)_2 + 2CaCO_3 + 2H_2O$
- 4. 化学反应在工农业生产、科学技术和日常生活中意义重大。下列说法错误的是
 - A. 工业合成氨、接触法制硫酸、食盐水电解制烧碱均涉及氧化还原反应
 - B. 人体通过呼吸作用把体内的葡萄糖转化为 CO_2 和 H_2O_3 同时放出能量
 - C. 空间技术上应用的高能电池能将化学能全部转化为电能
 - D. 合成橡胶是以烯烃和二烯烃等为单体聚合而成的高分子

化学试题 第1页 共8页

- 5. 过二硫酸 $(H_2S_2O_8)$ 可以看成是 H_2O_2 中的两个氢原子被两个磺酸基 $(-SO_3H)$ 取代的产物,下列说法错误的是
 - A. H₂S₂O₈具有强氧化性的原因是硫元素处于最高价+6 价
 - B. H₂S₂O₈中具有强酸性和不稳定性
 - C. 电解 NH₄ HSO₄ 饱 和 溶 液 可 制 得 (NH₄) $_2$ S $_2$ O $_8$,阳 极 电 极 反 应 为 : 2HSO $_4$ 一 $2e^-$ ——S $_2$ O $_8^2$ + $2H^+$
 - D. Na₂S₂O₈可氧化 Fe²⁺、I⁻等还原性微粒
- 6. 下列实验仪器或装置的选择正确的是

Instantantant	饱和NaCl溶液	Na ₂ O ₂	10000000000000000000000000000000000000	
配制 50.00 mL 0.1000 mol·L ⁻¹ Na ₂ CO ₃ 溶液	除去 Cl₂中的 HCl	制备少量 O ₂	证明乙炔可使溴 水褪色	
A	В	C	D	

- 7. 科学家宣布发现了铝的"超级原子"结构 Al_{13} 和 Al_{14} 。已知这类"超级原子"最外层电子数之和为 40个时处于相对稳定状态。下列说法正确的是
 - A. Al₁₃和 Al₁₄互为同位素
 - B. Al13 "超级原子"中 Al 原子间通过离子键结合
 - C. Al₁₄最外层电子数之和为 42,与第 IIA 族元素原子的化学性质相似
 - D. Al13 和 Al14 都具有较强的还原性,容易失去电子生成阳离子
- 8. 下列有关实验现象、结论与实验操作相互匹配的是

选项	实验操作	实验现象	实验结论
A	向 NaBr 溶液中滴加过量氯水,再加入淀粉 KI 溶液	溶液 先变 橙 色,后变蓝色	氧化性: Cl ₂ > Br ₂ >I ₂
В	将铁锈溶于浓盐酸,再滴入 KMnO ₄ 溶液	溶液紫色褪去	铁锈与浓盐酸反应 生成亚铁离子
С	室温下,用 pH 试纸分别测定 等物质的量浓度的 NaCN 溶液 和 CH ₃ COONa 溶液的 pH	NaCN 溶液对 应的 pH 更大	酸性: HCN <ch3cooh< td=""></ch3cooh<>
D	两支试管各盛 4 mL 0.1 mol/L 酸性高锰酸钾溶液,分别加人 2 mL 0.1 mol/L 草酸溶液和 2 mL 0.2 mol/L 草酸溶液	加人0.2 mol/L 草酸溶液的试 管中溶液褪色 更快	其他条件相同,反应 物浓度越大,反应速 率越快

化学试题 第2页 共8页

9. FeS_2 具有良好半导体性能。 FeS_2 晶体与 NaCl 晶体的结构相似,如图给出了 FeS_2 晶胞中的 Fe^{2+} 和位于晶胞体心的 S_2^{2-} (S_2^{2-} 中的 S-S 键位于晶胞体对角线上,晶胞中的其他 S_2^{2-} 已省略)。下列有关该 FeS_2 晶体的说法错误的是

A. 一个晶胞中 S2 的数目为 2

B. Fe2+ 的配位数为 6

- C. 该晶体中存在非极性键
- D. 晶胞中其他 S₂ 均位于棱心
- 10. W、X、Y、Z 四种短周期元素在元素周期表中的相对位置如图所示,且四种元素的原子质子数之和为48。下列说法错误的是
 - A. 相同浓度最高价含氧酸溶液的 pH:Z>Y
 - B. 元素的最高化合价:X=Y
 - C. 简单氢化物的沸点: X>Z
 - D. 单核离子的半径: W>X
- 11. 某种微生物燃料电池净化废水原理如图所示。下列说法正确的是

- A. M 为电源正极,有机物在 M 极被还原
- B. 电池工作时, N 极附近溶液 pH 增大
- C. 废水中的 Cr₂O² 浓度越大越有利于该电池放电
- D. 处理 $0.1 \text{ mol } \mathrm{Cr_2O_7^{2-}}$ 时有 $1.4 \text{ mol } \mathrm{H^+}$ 从交换膜左侧向右侧迁移
- 12. 丁二酮肟常用于检验 Ni^{2+} 。在稀氨水中,丁二酮肟与 Ni^{2+} 反应生成鲜红色沉淀,其结构如图所示。下列说法正确的是
 - A. Ni²⁺与 4 个 N 原子共平面
 - B. Ni²⁺的价电子排布式为 3d⁶4s²
 - C. 该结构中存在的化学键有极性键、配位键和氢键
 - D. 丁二酮肟中,C、N、O的第一电离能及电负性均依次增大

化学试题 第3页 共8页

- 13. 贵金属钯催化乙醇羰基化的反应过程如图所示。
 - 下列说法错误的是
 - A. II反应中 C 元素被氧化
 - B. C-H 所处环境不同,稳定性也不同
 - C. 贵金属钯可将 2-甲基-2-丙醇羰基化
 - D. 该过程总反应的化学方程式可表示为:

$$2C_2H_5OH+O_2\longrightarrow 2CH_3CHO+2H_2O$$

14. 为研究废旧电池的再利用,实验室利用旧电池的铜帽和锌皮(主要成分为 Zn 和 Cu)回收 Cu 并制备皓矾($ZnSO_4$ •7 H_2O)的部分实验过程如图所示。下列叙述错误的是

- A. "溶解"操作中溶液温度不宜过高
- B. 溶解时铜发生的反应为 $Cu + H_2O_2 + 2H^+ \longrightarrow Cu^{2+} + 2H_2O$
- C. 加入 NaOH 溶液后, 若 pH 过高会使海绵铜中混有氢氧化铜杂质
- D. "过滤"操作后,将滤液蒸发浓缩、冷却结晶即可得到纯净的 ZnSO4 7H2O
- 15. 25 ℃时,向浓度均为 0. 1 mol·L⁻¹、体积均为 100 mL lg $\frac{c(H)}{c(OH)}$ 的两种一元酸 HX、HY 溶液中分别加入 NaOH 固体,

溶液中 $\lg \frac{c(\mathrm{H}^+)}{c(\mathrm{OH}^-)}$ 随 $n(\mathrm{NaOH})$ 的变化如图所示。下列

A. a 点时溶液中水电离出的 $c(H^+)=10^{-12} \text{ mol} \cdot L^{-1}$

B. c 点时溶液中:
$$c(Y^{-}) > c(Na^{+}) > c(H^{+}) > c(OH^{-})$$

- C. 水的电离程度:d>c
- D. 中和等体积、等浓度的两种酸所需的 NaOH 的物质的量: HX>HY

二、非选择题:本题共4小题,共55分。

16. (14分)硫化锂(Li_2S)是锂离子电池的电解质材料,易潮解。实验室用粗锌(含少量铜、FeS)和稀硫酸反应制备 H_2 ,并用制得的 H_2 还原硫酸锂制备硫化锂,实验装置如图 所示。

n(NaOH)/×10⁻³mol

化学试题 第4页 共8页

回答下列问题:

(1)用下列试剂制备	对应气体时可以选用 A	1 装置的是	(填字母)。
------------	-------------	--------	--------

a. Cl2:浓盐酸、二氧化锰 b. C2 H2:电石、饱和食盐水

c. CO2:稀盐酸、大理石 d. SO2:70%硫酸、亚硫酸钠

- (2)B装置中发生反应的离子方程式为
- (3)C 装置中盛装的试剂为
- (4)D中制备硫化锂的化学方程式为
- (5)E装置的作用是
- (6)得到的 Li₂S产品中往往含有一定量的杂质,某小组同学对产品中的杂质进行探究。

①提出猜想

猜想一:产品中含杂质 Li₂SO₄

猜想二:产品中含杂质 Li₂SO₃

猜想三:产品中含杂质 S

依据所学知识,猜想三不成立,理由是

②验证猜想

限选试剂:稀盐酸、稀硫酸、蒸馏水、双氧水、氯化钡溶液、硝酸钡溶液

实验	操作与现象	结论
I	取少量 Li ₂ S 样品溶于水,	样品中不含 Li ₂ SO ₃
II	在实验 I 反应后的溶液中,	样品中含 Li ₂ SO ₄

17. (13分)达菲,通用名为磷酸奥司他韦,是目前最有效、特异性最高的流感治疗药物之一。 下图是磷酸奥司他韦的一种合成路线:

NH₂·H₃PO₄ 磷酸奥司他韦

已知:

$$\text{i.} \overset{\text{H}}{\underset{\text{H}}{\sim}} \text{C=O+HO} \overset{\text{OH}}{\longrightarrow} \overset{\text{O}}{\underset{\text{O}}{\longrightarrow}} + \text{H}_2\text{O} \qquad \text{ii.} \boxed{\hspace{0.2cm} + \parallel \ \overset{\triangle}{\longrightarrow} \ \boxed{\hspace{0.2cm}}}$$

化学试题 第5页 共8页

回答下列问题:

(1)写出有机物 I 中含氧官能团的名称:____。

(2)反应①的反应类型是____,该反应既可以在浓硫酸的作用下进行,也可以在 SOCl₂ 的作用下进行,但在 SOCl₂作用下进行时产率更高。用化学方程式解释选择 SOCl₂ 时产率更高的原因:___。

(3)写出反应②中有机物 X 的结构简式:___。

(4)在右图用 * 标出磷酸奥司他韦分子中的手性碳原子。

(5)化合物 Y 是有机物 II 的同分异构体,核磁共振氢谱显示有 5 组峰,分子中含有六元碳环和甲基,1 mol Y 与足量 NaHCO₃ CH₃CON H NH₂·H₃PO₄ 溶液反应产生 2 mol CO₂,与足量的 Na 反应产生 1 mol H₂。写出 Y 的结构简式:____。

(6)以上合成路线中反应③用到了易爆物质 NaN₃,存在安全隐患,研究人员对合成达菲的

方法进行了改进。改进后的方法需要经历中间物质 Z(OCH₂CF₃),请选择碳原子数小于 5 的有机物(无机试剂任选),设计合成物质 Z 的路线:

18. (14 分)硫酸锰铵 $[(NH_4)_2Mn(SO_4)_2]$ 是一种浅粉色固体,可溶于水,工业上可用于加工木材防火剂。用软锰矿(主要含 MnO_2 ,还含有 $FeO_3Fe_2O_3$, $CuO_3MgO_3SiO_2$ 等)制备硫酸锰铵的工艺流程如下:

已知:①该流程中金属离子以氢氧化物形式沉淀时溶液的 pH 如下:

金属离子	Mn^{2+}	$\mathrm{Fe^{2+}}$	Fe ³⁺	Mg ²⁺
开始沉淀时 pH	8.0	6.3	1.5	8.1
沉淀完全时 pH	10.0	8.3	2.8	9.4

②MgSO₄和 MnSO₄的溶解度如下:

温月	更/°C	0	10	20	30	40	60	80	90	100
溶解	MgSO ₄	22	28.2	33.7	38.9	44.5	54.6	55.8	52.9	50.4
度/g	MnSO ₄	52.9	59.7	62.9	62.9	60	53.6	45.6	40.9	35.3

化学试题 第6页 共8页

	③常温下: $K_{sp}(MnS) = 2.5 \times 10^{-13}$, $K_{sp}(CuS) = 1.3 \times 10^{-36}$ 。
	回答下列问题:
	(1)"还原酸浸"主要反应的离子方程式为。
	(2)滤渣 1 的主要成分为。
	(3)"除铜"反应的平衡常数 K=(结果保留 2 位有效数字)。
	(4) "氧化除杂"加 MnO ₂ 的作用是,加 MnCO ₃ 调节溶液的 pH 的范围为。
	(5)"系列操作"包括、洗涤。
	(6)通过实验测定产品硫酸锰铵中锰元素的含量:准确称取所得产品 wg 溶于水配成溶
	液,滴加氨水调 pH 至 7~8,加入过量的 c_1 mol/L KMnO,溶液 V_1 mL,充分反应原
	过滤掉 $\mathrm{MnO_2}$,将滤液与洗涤液合并配制成 $100~\mathrm{mL}$ 溶液,取 $20~\mathrm{mL}$ 用 $c_2~\mathrm{mol}$
	$FeSO_4$ 酸性标准液滴定,重复实验 3 次,平均消耗标准液 V_2 mL。滴定终点的判断化
	据是,产品硫酸锰铵中锰元素的质量分数为(用相应字母表示)。
19	. (14 分)我国力争 2030 年前实现碳达峰,2060 年前实现碳中和。CO₂的综合利用是实现
	碳中和的措施之一。

(1)CO2和 H2在金属催化剂表	面可以合成 CH4,普遍反应路径有三种,其中一种反应路
径经历 HCOO*中间体。	某小组研究了金属钴的不同晶面【FCC(111)、HCP(10-
10)、HCP(10-11)】对 HCC	OO * 这种反应路径的催化效果,相关基元反应能量变化如
下表(*指微粒吸附在催化	公剂表面):

	FCC(111)		HCP(10-10)	HCP(10-11)		
基元反应步骤	活化能	反应热	活化能	反应热	活化能	反应热	
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	
CO ₂ * + H* → HCOO*	0.46	-0.52	0.66	-0.12	0.20	-0.69	
HCOO* + H* → HCOOH*	1. 27	0.73	0.23	-0.16	1.36	0.78	
HCOOH*→CHO* +OH*	0.76	-0.11	0.44	-0.18	0.96	-0.47	
$CHO^* + H^* \rightarrow CH_2O^*$	0.53	0.15	0.42	0.14	0.54	0.15	
$CH_2O^* + H^* \rightarrow CH_2OH^*$	0.90	0.27	0.80	0.08	1.37	0.69	
$CH_2OH^* \rightarrow CH_2^* + OH^*$	0.70	-0.63	0.33	-0.47	0.60	-1.02	

- ①写出在 FCC(111)晶面反应的控速步基元反应:_____。
- ②仅比较表格数据可知, CO_2 和 H_2 在该条件下合成 CH_4 ,______晶面的催化效果最好。
- (2)CO₂和 H₂-定条件下也可以合成甲醇,该过程存在副反应Ⅱ。

化学试题 第7页 共8页

反应 $I:CO_2(g)+3H_2(g) \Longrightarrow CH_3OH(g)+H_2O(g)$ $\Delta H_1=-49.3 \text{ kJ mol}$ 反应 $II: CO_2(g) + H_2(g) \Longrightarrow CO(g) + H_2O(g)$ ①上述反应中相关物质能量如图 1 所示。计算 $\Delta H_2 =$ kJ/mol. ②向 V L 密闭容器中通入 3 mol H_2 、1 mol CO_2 ,在催化剂作用下发生反应。相同时 间内温度对 CO_2 转化率及 CH_3OH 和 CO 产率的影响如图 2 所示。 CO_2 的转化率 随温度升高而增大的原因可能是 。表示 CH₃OH 产率随温 度变化的曲线是 (填"a"或"b")。 CO₂ -110.5CO(g) $-201.0 \\ -241.8$ CH₃OH(g) $H_2O(g)$ -393.5 $E/(kJ \cdot mol^{-1})$ 10 230 240 250 260 270 280 0 图 2 图 1 假设体系中只发生反应 I 和反应 II,在某温度下反应 t min达到平衡状态。此时 CO₂ 的转化率为 30%, CO2 对 CH3OH 的选择性为 40% (CH3OH 选择性 = $\frac{\text{CH}_3\text{OH}}{\text{CO}_2}$ 转化率),则 0 $\sim t$ min 内 H_2 的反应速率为_____ mol· L^{-1} ・min $^{-1}$,反应 II的平衡常数为____(结果保留 2 位有效数字)。 (3)2021 年我国科学家首先实现了从 CO2 到淀粉的全人工 石墨电极 上电源 铂碳电极 合成。其中的一个步骤是利用新型电化学催化装置(如 右图所示)将CO2转化为CH3COOH。写出该过程中阴 极的电极反应式:

化学试题 第8页 共8页

2023 届高三第一次学业质量评价(T8 联考)

化学试题参考答案及多维细目表

题号	1	2	3	4	5	6	7	8	9	10
答案	D	D	D	С	A	В	С	С	A	В
题号	11	12	13	14	15					
答案	В	Α	С	D	В					

1.【答案】D

【解析】工业上常把煤进行气化和液化处理,使煤变成清洁能源,但不能减少二氧化碳的排放。

2.【答案】D

【解析】水杨醇中醇羟基的邻位碳上没有 H 原子, 不能发生消去反应。

3.【答案】D

【解析】 HS^- 的电离方程式为: $HS^- \Longrightarrow S^2^- + H^+$, A 项错误: 醋酸为弱酸, 离子方程式中不拆, B 项错误: 同 NaClO 溶液中通人少量 SO_2 , 正确的离子方程式为: $3ClO^- + SO_2 + H_2O \Longrightarrow SO_2^- + 2HClO + Cl^-$, C 项错误。

4.【答案】C

【解析】任何一个能量转化的过程,其效率都不可能达到 100%,原电池不可能把化学能全部转化为电能,中间一定有能量损耗。

5.【答案】A

【解析】过二硫酸含有过氧键,有强氧化性,是过 氧键断裂得到电子而不是+6价硫,A项错误。

6.【答案】B

【解析】配制 50.00 mL 0.1000 mol·L⁻¹Na₂CO₃ 溶液应选择 50 mL 容量瓶,A 项错误;Na₂O₂ 为粉末状固体,不能选用简易启普发生器装置制取O₂,C 项错误;电石中除了碳化钙之外,还含有硫化钙和磷化钙,与水反应还生成硫化氢等杂质,硫化氢也能使溴水褪色,D 项错误。

7.【答案】C

【解析】同位素指质子数相同而中子数不同的同一元素的不同核素,Al₁₃和 Al₁₄是相同 Al 原子组成的原子团,A 项错误;Al₁₃超原子中 Al 原子间是通过共用电子对成键,所以以共价键结合,B 项错误;Al₁₃的最外层电子数为 3×13=39,依题意,易得 1 个电子,形成阴离子,Al₁₄的最外层电

子数为 $3 \times 14 = 42$, 易失去 2 个电子, 形成阳离子, C项正确, D项错误。

8.【答案】C

【解析】氯水过量,不能证明氧化性: $Br_2 > I_2$,A项错误;浓盐酸中含有氯离子,也能使 $KMnO_i$ 溶液褪色,B项错误;两只试管中 $KMnO_i$ 均过量,褪色不明显,D项错误。

9.【答案】A

【解析】 FeS_2 晶体与 NaCl 晶体的结构相似,晶胞中其他 S_1° 应均位于核心,则一个晶胞中 S_2° 的数目为 $1+1/4 \times 12=4$, A 项错误。

10.【答案】B

【解析】依题意,W为N,X为O,Y为S,Z为Cl, 氧元素最高正价不是+6,B项错误。

11.【答案】B

【解析】M 为电源负极,有机物在 M 极被氧化,A 项错误;根据图示,正极反应式为 $Cr_2O_7^5$ + 6e⁻+14H⁺——2 Cr_2^{8+} + 7H $_2$ O,消耗氢离子,N 极 附近溶液 pH 增大,B 项正确; $Cr_2O_7^{8-}$ 具有强氧 化性,能使蛋白质变性,浓度较大时,可能会造 成还原离失活,C 项错误; Cr_1 元素由+6 价变为+3价,处理 0.1 mol $Cr_2O_7^{8-}$ 时转移 0.6 mol 电子,根据电荷守恒,处理 0.1 mol $Cr_2O_7^{8-}$ 时有 0.6 mol H⁺ 从交换膜左侧向右侧迁移,D 项错误。

12.【答案】A

【解析】Ni²⁺的价电子排布式为 3d⁸, B 项错误; 氢键不属于化学键, C 项错误; C、N、O 的第一电 离能大小顺序为: N>O>C, D 项错误。

13.【答案】C

【解析】2-甲基-2-丙醇羟基C上没有H,不能被羰基化。

14.【答案】D

【解析】"过滤"操作后,将滤液蒸发浓缩、冷却结晶、过滤、洗涤、干燥后才可得到纯净的ZnSO₄·7H₂O。

15.【答案】B

【解析】a 点时 $\lg \frac{c(H^+)}{c(OH^-)} = 12$,则 $c(H^+) =$

化学试题 参考答案 第1页 共5页

 10^{-1} mol·L⁻¹,c((OH⁻)= 10^{-13} mol·L⁻¹,溶 液中水电离出的 $c(H^+)=10^{-13} \text{ mol} \cdot L^{-1}$, A 项 错误;c点为 HY与 NaY 的等浓度混合溶液,溶 液显酸性,有 $c(Y^-) > c(Na^+) > c(H^+) >$ c(OH-),B项正确;c、d两点溶液均因酸的电离 而显酸性,且 d 点酸性更强,水的电离程度:c> d,C项错误; HX, HY 均为一元酸,中和等体 积、等浓度的两种酸所需的 NaOH 的物质的量 相等,D项错误。

16.【答案】(14分)

- (1)c(1分)
- (2) H_2S+Cu^{2+} $CuS + 2H^+(2 分)$
- (3)浓硫酸(或浓 H₂SO₄)(1 分)
- $(4) Li₂SO₄ + 4H₂ \xrightarrow{\triangle} Li₂S + 4H₂O(2分)$
- (5)防止空气中的水蒸气进入 D 中使生成的 Li₂S潮解(2分)
- (6)①加热时,S能与 H2反应生成 H2S或硫能 升华,会随氢气流走(答出任意一条得2分)
- ②滴加足量的稀盐酸,无浑浊(2分)
- 滴加 BaCl₂溶液,产生白色沉淀(2分)

【解析】

由图可知,装置 A 中稀硫酸和粗锌反应制备氢 气,制得的氢气中混有硫化氢气体,装置 B 中盛 有的硫酸铜溶液用于除去硫化氢气体,装置 C 是用来干燥氢气,装置 D 中硫酸锂与氢气共热 反应制得硫化锂,装置 E 中盛有的浓硫酸用于 吸收空气中的水蒸气,防止水蒸气进入 D 中导 致硫化锂潮解。

- (1)由图可知,A装置适合块状固体与溶液不加 热反应制备难溶于水的气体。a. 用二氧化锰和 浓盐酸反应制备氯气,需要加热。b. 用电石和 饱和食盐水制乙炔,电石溶于水成糊状,且该反 应放出大量热。d. 用 70%硫酸和亚硫酸钠反应 制 SO。,亚硫酸钠是粉末状固体。
- (2)装置 B 中盛有的硫酸铜溶液用于除去硫化 氢气体,反应的离子方程式为:Cu2++H2S= CuS ↓ +2H+.
- (3)装置 C 是用来干燥氢气,所以盛浓硫酸。
- (4)D中硫酸锂与氢气共热反应制得硫化锂,反 应的方程式为: Li₂ SO₄ + 4H₂ ____ Li₂ S+ $4H_2O_{\circ}$
- (5)装置 E 中盛有的浓硫酸用于吸收空气中的 氧官能团是羟基和羧基。

(6)若产品中含杂质硫,硫受热能升华为硫蒸 气,也能与氢气共热反应生成硫化氢气体,所以 产品中含有的杂质不可能是硫;取少量硫化锂 样品溶于水,滴加足量的稀盐酸,若含 Li₂SO₃则 会发生归中反应: 2Li₂S+ Li₂SO₃+ 6HCl= 6LiCl+3S ↓ +3H₂O,生成S为淡黄色沉淀;无 浑浊说明样品中不含亚硫酸锂;在实验 I 反应后 的溶液中滴加氯化钡溶液,产生白色沉淀说明 样品中含有硫酸锂。

17.【答案】(13分)

- (1)羟基、羧基(2分,写对一个得1分)
- (2)取代反应(或酯化反应)(1分)

也得2分)

不得分,标注两个且正确得1分)

(6)

OH
$$OH$$
 OH OH OH OCH_2CF_3 $OCH_$

【解析】

水蒸气,防止水蒸气进入 D 中导致硫化锂潮解。 (2)有机物 I 中的羧基经过反应①变成了有机物 II

化学试题 参考答案 第2页 共5页

(3)分析信息反应 i,可知 X 为丙酮(CH₃COCH₃)。 (4)手性碳原子指与四个不同原子或原子团相连的 碳原子,分析磷酸奧司他韦的结构简式,不难发现其

(5)1 mol 有机物 \blacksquare 的同分异构体与足量 NaHCO₃ 溶液反应,产生 2 mol CO₂,与足量的 Na 反应,产生 1mol H₂。结合有机物 \blacksquare 的组成分析,可知该同分异构体含有 2 个羧基和 1 个醚键,不含羟基。核磁共振氢谱有 5 组峰,即有 5 种氢原子。结合分子中含有六元碳环和甲基可知,该同分异构体的结构简

(6)该小题可以采用逆合成分析法。根据信息反应

二烯(\bigcirc)和 CH_2 = $CHCOOCH_2$ CF_3 ,再根据酯类的 水解将 CH_2 = $CHCOOCH_2$ CF_3 折分成 CH_2 = CHCOOH 和 $HOCH_2$ CF_3 。在设计路线时,

18.【答案】(14分)

(1) $MnO_2 + H_2 C_2 O_4 + 2H^+$ === $Mn^{2+} + 2CO_2$ † + $2H_2 O(2 分)$

酯化反应和成环反应的先后顺序此处不做要求。

- (2)SiO₂(1分)
- (3)1.9×10²³(2分)
- (4)将 Fe^{2+} 氧化为 Fe^{3+} ,便于除去(1 分) 2.8 \leqslant pH<8,0(2 分)
- (5)蒸发结晶 趁热过滤(各1分,共2分)
- (6)滴入最后一滴标准液时,溶液紫色刚好褪去,且半分钟不恢复(2分)

$$\frac{165(V_1c_1-V_2c_2)}{2000w} imes100\%$$
 或 $\frac{165(V_1c_1-V_2c_2)}{20w}\%$ (2 分)

【解析】

软锰矿(主要含 MnO_2 ,还含有 FeO、 Fe_2O_3 、CuO、 $10^{-3}V_2c_2$) 2 mol,故硫酸锰铵中锰元素的质量分数

MgO、SiO₂等),加人稀硫酸和草酸进行还原酸浸, 其中形成除二价锰离子外含有二价铁离子、三价铁 离子、铜离子和镁离子的溶液,二氧化硅不与稀硫 酸、草酸反应,因此滤渣 1 主要成分为二氧化硅。 其次加入硫化锰的目的是除去铜离子,以硫化铜的 形式除掉。加入二氧化锰的目的是将亚铁离子氧 化为三价铁离子,然后加入碳酸锰调节 pH.将三价 铁离子以氢氧化铁沉淀的形式除掉。分析溶解度 表,硫酸镁溶解度随着温度升高增大较快,而硫酸 锰溶解度随着温度升高增大缓慢且在 40 ℃之后解 度降低,故采用蒸发(溶剂)结晶、趁热过滤、洗涤得 到 MnSO₄·H₂O,随后 MnSO₄·H₂O 加水溶解, 加入硫酸铵形成溶解度较小的复盐,降温结晶得到 目标产物硫酸锰铵。

- (1)"还原酸浸"主要是 MnO₂ 被草酸还原,故离子方 程式为;MnO₂+H₂C₂O₄+2H+——Mn²++2CO₂ ↑ +2H.O
- (2)二氧化硅不与稀硫酸、草酸反应,因此滤渣 1 主要成分为二氧化硅。
- (3)"除铜"发生的反应是 $MnS(s) + Cu^{2+}$ (aq) \Longrightarrow $CuS(s) + Mn^{2+}$ (aq), $K = K_{sp}(MnS) / K_{sp}(CuS) =$ $(2.5 \times 10^{-13}) \div (1.3 \times 10^{-36}) = 1.9 \times 10^{23}$ 。
- (4)"氧化除杂"加 MnO_2 的作用是是将亚铁离子氧化为三价铁离子,然后加入碳酸锰调节 pH,将三价铁离子以氢氧化铁的形式完全沉淀除掉而 Mn^{2+} 不沉淀,所以 $2.8 \le pH < 8.0$ 。
- (5) MnSO₄ 的溶解度随温度升高逐渐减小,所以要析出 MnSO₄ · H₂ O 晶体的操作是蒸发结晶、趁热过滤。
- (6)过量 KMnO₄与硫酸锰铵反应生成 MnO₂,过滤后,剩余的 KMnO₄用 FeSO₄滴定,还原为 Mn²⁺,故滴定终点现象为滴最后一滴标准液时,溶液紫色褪去,且半分钟不恢复;由题意加入的高锰酸钾物质的量 n_1 =10⁻³ V_1c_1 mol;用硫酸亚铁滴定高锰酸钾 其物质的量之比为 $n(\text{FeSO}_4)$: $n(\text{KMnO}_4)$ =5:1,滴定 20 mL 高锰酸钾溶液消耗硫酸亚铁的物质的量为; n_2 =10⁻³ V_2c_2 mol,则剩余的高锰酸钾的物质的量为 $10^{-3}V_2c_2$ mol,与硫酸锰铵反应的高锰酸钾的物质的量为 $10^{-3}V_2c_2$ mol,与硫酸锰铵反应的高锰酸钾的物质的量为 $10^{-3}V_1c_1$ — $10^{-3}V_2c_2$) mol,硫酸锰铵和高锰酸钾反应的物质的量之比为 $n[(\text{NH}_4)_2\text{Mn}(\text{SO}_4)_2]$: $n(\text{KMnO}_4)$ =3:2,wg 硫酸锰铵的物质的量为 $3(10^{-3}V_1c_1$ — $10^{-3}V_2c_2$) 2 mol,故硫酸锰铵中锰元素的质量分数

化学试题 参考答案 第3页 共5页

为 $\frac{165(V_1c_1-V_2c_2)}{2000w}$ ×100%。

19.【答案】(14分)

(1)① HCOO* +H*→HCOOH* (1分)

②HCP(10-10)(1分)

(2)①+41.2(2分)

②温度升高,CO。的反应速率加快,反应 II 为吸热 反应,温度升高有利于反应正向进行且以反应 2 为

主, CO_2 转化率增大(2分) a(2分) $\frac{0.54}{tV}$ (2分)

(3) $2CO_2 + 8e^- + 8H^+$ — $CH_3COOH + 2H_2O$ (2分)

【解析】

(1)①控速步是活化能最高的基元反应,分析表格数据,不难发现 FCC(111)晶面反应时最高活化能为1,27 eV,对应的基元反应是 HCOO*+H*→HCOOH*。②分析三种晶面基元反应的活化能数据,发现 HCP(10−10)晶面反应的控速步活化能最低,因此该晶面的催化效果最好。

(2)①反应热等于生成物的能量之和减去反应物的能量之和,代人相关数据可以求出 ΔH_z ,即 ΔH_z = (-110.5 kJ/mol)+(-241.8 kJ/mol)-(-393.5 kJ/mol)= +41.2 kJ/mol。

②题中 CO₂(g)的转化率为反应一段时间后的转化率,不一定是平衡转化率。从速率角度分析,温度升高,CO₂(g)的反应速率加快,该时间段内转化率

增大。从平衡角度分析,反应 II 是吸热反应,升高温度,有利于反应 II 正向进行, $CO_2(g)$ 的转化率增大。 CH_3OH 是反应 I 的生成物,温度升高,反应 I 速率加快, CH_3OH 产率提高。同时,反应 I 为放热反应,升高温度不利于反应正向进行,因此表示 CH_3OH 产率的曲线是先升后降的曲线。CO 是反应 II 的生成物,不管从速率角度分析还是从平衡角度分析,升高温度,转化率都是增大的,因此 CO 产率对应的曲线是 II b。向体系中通人 II mol II color II mol II mol II color II mol II

 \min^{-1} 。 反应 [] 平衡时 $c(H_2O) = \frac{0.12 + 0.18}{V} \mod V$ $L_*c(CO) = \frac{0.18}{V} \mod / L_*c(H_2) = \frac{3 - 0.54}{V} \mod / L_*$

 $c(CO_z) = \frac{1-0.3}{V} \text{ mol/L}$,将相关数据代人表达式 $K = \frac{c(CO) \cdot c(H_zO)}{c(CO_z) \cdot c(H_z)}$,求得 $K \approx 0.031$ 。

(3) 由装置图可知, CO_2 在铂碳电极上被还原为 CH_3COOH , 则阴极的电极反应为 $2CO_2 + 8e^- + 8H^+$ —— $CH_3COOH + 2H_2O_o$