import Dependencies

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
import warnings
warnings.filterwarnings("ignore")
```

Data Collection and Analysis

In [2]:

```
## loading the data from csv file to a pandas Dataframe
insurance_dataset = pd.read_csv('insurance dataset.csv')
insurance_dataset.head()
```

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [3]:

```
insurance_dataset.tail()
```

Out[3]:

	age	sex	bmi	children	smoker	region	charges
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450
1337	61	female	29.07	0	yes	northwest	29141.3603

In [4]:

```
insurance_dataset.describe()
```

Out[4]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

```
In [5]:
insurance_dataset.isnull().sum()
Out[5]:
age
sex
bmi
            0
children
            0
smoker
            0
region
            0
charges
            0
dtype: int64
In [6]:
insurance dataset.shape
Out[6]:
(1338, 7)
In [7]:
insurance_dataset.columns
Out[7]:
Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], dtype='object')
In [8]:
insurance dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
 #
     Column
               Non-Null Count Dtype
 0
     age
               1338 non-null
                                int64
 1
     sex
               1338 non-null
                                obiect
 2
     bmi
               1338 non-null
                                float64
 3
     children
               1338 non-null
                                int64
     smoker
               1338 non-null
                                object
 5
               1338 non-null
     region
                                object
 6
     charges
               1338 non-null
                                float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
In [9]:
null_values = 100 * (insurance_dataset.isnull().sum()/insurance_dataset.shape[0])
null values
Out[9]:
age
            0.0
sex
bmi
            0.0
            0.0
children
smoker
            0.0
region
            0.0
charges
            0.0
dtype: float64
In [10]:
null_values[null_values>45].sort_values(ascending=False)
Out[10]:
Series([], dtype: float64)
In [11]:
cols = null_values[null_values>45].sort_values(ascending=False).index
insurance_dataset.drop(labels=cols,axis=1,inplace=True)
insurance_dataset.shape
Out[11]:
(1338, 7)
```

In [12]:

```
null_values = 100 * (insurance_dataset.isnull().sum()/insurance_dataset.shape[0]) null_values[(null_values <13) & (null_values>0)]
```

Out[12]

Series([], dtype: float64)

In [13]:

```
## categorical features: Sex, Smoker, Region
```

In [14]:

```
sns.set()
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['age'])
plt.title('Age Distribution')
plt.show()
```


In [15]:

```
# Gender column
plt.figure(figsize=(6,6))
sns.countplot(x = 'sex',data = insurance_dataset)
plt.title('sex Distribution')
```

Out[15]:

Text(0.5, 1.0, 'sex Distribution')

In [16]:

insurance_dataset['sex'].value_counts()

Out[16]:

male 676 female 662

Name: sex, dtype: int64

In [17]:

```
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['bmi'])
plt.title('bmi')
plt.show()
```


In [18]:

```
insurance_dataset.replace({'sex':{'male':0,'female':1}},inplace = True)
insurance_dataset.replace({'smoker':{'yes':0,'no':1}},inplace = True)
insurance_dataset.replace({'region':{'northwest':1,'northeast':2, 'southwest':3,'southeast':4}},inplace = True)
```

In [19]:

```
X = insurance_dataset.drop(columns='charges',axis=1)
y = insurance_dataset['charges']
```

In [20]:

print(X)

	age	sex	bmi	children	smoker	region
0	19	1	27.900	0	Θ	3
1	18	0	33.770	1	1	4
2	28	0	33.000	3	1	4
3	33	0	22.705	Θ	1	1
4	32	0	28.880	0	1	1
1333	50	0	30.970	3	1	1
1334	18	1	31.920	0	1	2
1335	18	1	36.850	0	1	4
1336	21	1	25.800	0	1	3
1337	61	1	29.070	0	Θ	1

[1338 rows x 6 columns]

In [21]:

print(y) 16884.92400 1 1725.55230 2 4449.46200 21984.47061 4 3866.85520 10600.54830 1333 2205.98080 1334 1335 1629.83350 2007.94500 1336 29141.36030 1337 Name: charges, Length: 1338, dtype: float64

In [22]:

sns.distplot(insurance_dataset.smoker)

Out[22]:

<AxesSubplot:xlabel='smoker', ylabel='Density'>

In [23]:

```
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['smoker'])
plt.title('smoker')
plt.show()
```


In [24]:

```
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['children'])
plt.title('children')
plt.show()
```


In [25]:

```
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['region'])
plt.title('region')
plt.show()
```


In [26]:

```
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['charges'])
plt.title('charges')
plt.show()
```



```
In [27]:
```

```
charges = insurance_dataset["charges"].value_counts(normalize=True)
```

In [28]:

```
insurance_dataset.columns
```

Out[28]:

```
Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], dtype='object')
```

In [29]:

In [30]:

```
## Analysis of continous variables
def findoutliers(column):
    outliers=[]
    Q1=column.quantile(.25)
    Q3=column.quantile(.75)
    IQR=Q3-Q1
    lower_limit=Q1-(1.5*IQR)
    upper_limit=Q3+(1.5*IQR)
    for out1 in column:
        if out1>upper_limit or out1 <lower_limit:
            outliers.append(out1)

    return np.array(outliers)</pre>
```

In [31]:

```
sns.boxplot(insurance_dataset.bmi)
```

Out[31]:

<AxesSubplot:xlabel='bmi'>

In [32]:

```
from scipy import stats
for column in box:
    print(stats.skew(box[column]),column)
```

- 0.055610083072599126 age
- 0.28372857291709386 bmi
- 0.9373281163874423 children

In [33]:

```
for column in box:
    print(stats.kurtosis(box[column]),column)
```

- -1.2449206804584227 age
- -0.05502310583700032 bmi
- 0.1972174268623732 children

In [34]:

insurance_dataset.head()

Out[34]:

	age	sex	bmi	children	smoker	region	charges
0	19	1	27.900	0	0	3	16884.92400
1	18	0	33.770	1	1	4	1725.55230
2	28	0	33.000	3	1	4	4449.46200
3	33	0	22.705	0	1	1	21984.47061
4	32	0	28.880	0	1	1	3866.85520

In [35]:

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler() ## object creation
insurance_dataset[['age', 'sex','bmi']]= sc.fit_transform(insurance_dataset[['age', 'sex','bmi']])
```

In [36]:

insurance_dataset.head()

Out[36]:

	age	sex	bmi	children	smoker	region	charges
(-1.438764	1.010519	-0.453320	0	0	3	16884.92400
1	-1.509965	-0.989591	0.509621	1	1	4	1725.55230
2	2 -0.797954	-0.989591	0.383307	3	1	4	4449.46200
3	-0.441948	-0.989591	-1.305531	0	1	1	21984.47061
4	-0.513149	-0.989591	-0.292556	0	1	1	3866.85520

In [37]:

insurance_dataset.corr()

Out[37]:

		age	sex	bmi	children	smoker	region	charges
	age	1.000000	0.020856	0.109272	0.042469	0.025019	-0.005212	0.299008
	sex	0.020856	1.000000	-0.046371	-0.017163	0.076185	-0.016121	-0.057292
	bmi	0.109272	-0.046371	1.000000	0.012759	-0.003750	0.261829	0.198341
c	hildren	0.042469	-0.017163	0.012759	1.000000	-0.007673	-0.019257	0.067998
	smoker	0.025019	0.076185	-0.003750	-0.007673	1.000000	-0.053930	-0.787251
	region	-0.005212	-0.016121	0.261829	-0.019257	-0.053930	1.000000	0.056993
c	harges	0.299008	-0.057292	0.198341	0.067998	-0.787251	0.056993	1.000000

In [38]:

sns.heatmap(insurance_dataset.corr(),annot=True)

Out[38]:

<AxesSubplot:>

In [39]:

sns.heatmap(insurance_dataset.drop('smoker',axis=1).corr(),annot=True)

Out[39]:

<AxesSubplot:>

In [40]:

X=insurance_dataset.iloc[:,0:-1]
y=insurance_dataset.charges

In [41]:

```
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
```

In [42]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=42)
```

In [43]:

```
from sklearn.linear_model import LinearRegression
LR=LinearRegression()
LR.fit(X_train,y_train)
y_hat=LR.predict(X_test)
```

In [44]:

```
y_train_predict=LR.predict(X_train)
from sklearn.metrics import r2_score
train_score=r2_score(y_train,y_train_predict)
train_score
```

Out[44]:

0.7445275825163911

In [45]:

```
lr = LinearRegression()
lr.fit(X_train,y_train)
svm = SVR()
svm.fit(X_train,y_train)
rf = RandomForestRegressor()
rf.fit(X_train,y_train)
gr = GradientBoostingRegressor()
gr.fit(X_train,y_train)
```

Out[45]:

```
    GradientBoostingRegressor
GradientBoostingRegressor()
```

In [46]:

```
y_pred1 = lr.predict(X_test)
y_pred2 = svm.predict(X_test)
y_pred3 = rf.predict(X_test)
y_pred4 = gr.predict(X_test)

df1 = pd.DataFrame({'Actual':y_test,'LR':y_pred1,'svm':y_pred2,'rf':y_pred3,'gr':y_pred4})
```

In [47]:

df1

Out[47]:

Actual	LR	svm	rf	gr
9095.06825	8569.027921	9437.071321	10426.627536	10439.228445
5272.17580	7226.242261	9417.213949	5398.134939	5606.916108
29330.98315	37082.125966	9492.950021	28268.059099	28566.928173
9301.89355	9704.404710	9440.574065	12008.725036	9902.029326
33750.29180	27154.894451	9403.306521	34516.069995	34032.647133
13217.09450	12407.173239	9482.058145	12908.002340	15095.379369
11944.59435	14400.524856	9484.637128	12210.065148	13087.304572
14358.36437	7695.376058	9405.368238	5217.074133	5348.881694
32548.34050	25958.982415	9399.437172	33825.497241	35494.122600
5699.83750	9126.299697	9429.945653	7417.260636	6097.325465
	9095.06825 5272.17580 29330.98315 9301.89355 33750.29180 13217.09450 11944.59435 14358.36437 32548.34050	9095.06825 8569.027921 5272.17580 7226.242261 29330.98315 37082.125966 9301.89355 9704.404710 33750.29180 27154.894451 13217.09450 12407.173239 11944.59435 14400.524856 14358.36437 7695.376058 32548.34050 25958.982415	9095.06825 8569.027921 9437.071321 5272.17580 7226.242261 9417.213949 29330.98315 37082.125966 9492.950021 9301.89355 9704.404710 9440.574065 33750.29180 27154.894451 9403.306521	9095.06825 8569.027921 9437.071321 10426.627536 5272.17580 7226.242261 9417.213949 5398.134939 29330.98315 37082.125966 9492.950021 28268.059099 9301.89355 9704.404710 9440.574065 12008.725036 33750.29180 27154.894451 9403.306521 34516.069995 13217.09450 12407.173239 9482.058145 12208.002340 11944.59435 14400.524856 9484.637128 12210.065148 14358.36437 7695.376058 9405.368238 5217.074133 32548.34050 25958.982415 9399.437172 33825.497241

335 rows × 5 columns

In [48]:

```
plt.subplot(221)
plt.plot(df1['Actual'].iloc[0:11],label='Actual')
plt.plot(df1['LR'].iloc[0:11],label="LR")
plt.legend()
plt.subplot(222)
plt.plot(df1['Actual'].iloc[0:11],label='Actual')
plt.plot(df1['svm'].iloc[0:11],label="svm")
plt.legend()
plt.subplot(223)
plt.plot(df1['Actual'].iloc[0:11],label='Actual')
plt.plot(df1['rf'].iloc[0:11],label="rf")
plt.legend()
plt.subplot(224)
plt.plot(df1['Actual'].iloc[0:11],label='Actual')
plt.plot(df1['gr'].iloc[0:11],label="gr")
plt.tight layout()
plt.legend()
```

Out[48]:

<matplotlib.legend.Legend at 0x1d859f09220>

In [49]:

```
from sklearn import metrics
```

In [50]:

```
score1=metrics.r2_score(y_test,y_pred1)
score2=metrics.r2_score(y_test,y_pred2)
score3=metrics.r2_score(y_test,y_pred3)
score4=metrics.r2_score(y_test,y_pred4)
```

In [51]:

```
print(score1,score2,score3,score4)
```

 $0.7667469908213234 \ -0.09548003110575842 \ 0.8509953382461486 \ 0.8623623097145213$

```
In [52]:
s1 = metrics.mean_absolute_error(y_test,y_pred1)
s2 = metrics.mean_absolute_error(y_test,y_pred2)
s3 = metrics.mean_absolute_error(y_test,y_pred3)
s4 = metrics.mean_absolute_error(y_test,y_pred4)
In [53]:
print(s1,s2,s3,s4)
4245.940270673539 8487.96113724879 2609.6138757475373 2491.428032536737
In [54]:
data = {'age':40,
          sex':1.
         'bmi':40.30,
          'children':4.
          'smoker':1,
         'region':2}
df = pd.DataFrame(df1,index=[0])
df
Out[54]:
           LR svm
     NaN NaN NaN NaN NaN
In [56]:
model = LinearRegression()
In [57]:
model.fit(X_train,y_train)
Out[57]:
 ▼ LinearRegression
LinearRegression()
In [58]:
y_predict = model.predict(X_test)
y_predict
Out[58]:
array([ 8569.02792102, 7226.24226101, 37082.12596551, 9704.40470976, 27154.89445082, 11099.50396214, 287.75903995, 17192.26142479,
          649.86159841, 11475.04981963, 28330.08174632,
                                                               9614.31257617,
         5059.10380215, 38318.60361415, 40188.64744507, 37002.33742225,
        15084.32748246, 35750.87578953, 8949.03881572, 31635.73858748,
        4066.74697862, 10388.4371046 , 2569.89417776, 11495.6971861 , 12580.08990064, 14740.82601338,
                                             2569.89417776,
                                                               6682.25980692.
                                                               6299.0628445
         9568.01685349, 2011.8942882, 9304.15869233, 13280.99111107,
         4337.56975838,
                           3555.02545142, 4676.84319149, 12693.94100914,
         2120.14150719,
                           9005.52894884, 33467.65638726, 32462.62589045,
         4048.14515865,
                           4516.4774556 , 14365.65205159, 11701.01027073,
         8645.58566659, 12392.84601145, 5405.29550866, 3302.36665877,
        35390.2179744 ,
                           9016.67395506, 15712.31509893,
                                                               2178.67516687,
         .2532.23586296, 1080.70337419, 13313.1736781, 12249.76589852, 3968.79155916, 32378.52095891, 13548.03772002, 12512.8522698,
        12532.23586296,
        14406.64154274, 10304.94230562, 16662.72092772,
                                                               7937.95162592,
        11453.0248688 ,
                          4200.91345457, 26860.37430507, 10848.22685655,
         2270.17322048,
                           6415.03505514, 10376.23033043, 11229.80656421,
        10821.02257102,
                           9052.38187532, 11850.71961171,
                                                               6559.48674144,
         6871.07358599, 10940.40271632, 6375.36999404,
                                                               8961.26157038,
         3605.76299802, 36334.95752609,
                                            6545.25863428, 30388.25245614,
        34689.49730632, 34951.76350878, 6884.99673484, 13129.06806407, 10118.44489644, 14756.42787186, 17332.59555817, 35136.29466403,
        32632.27991515,
                           5817.18791265, 31869.94385246,
                                                               9734.91659808.
                           3447.94875261, 28454.42910729,
                                                               5399.16767478,
        29311.96313115,
                           2017.74036322, 11387.85397781, 15365.96202819, 4143.63216517, 9793.02086967, 31625.59680288,
         5552.11166032,
        11400.33526422,
         -488.22884315, 32672.65392581,
                                            3479.90856806, 10037.13641999,
        13947.74344683, 31213.86729183, 11069.25400533,
                                                               4131.85961238
        12805.97277618, 32003.95856322,
                                            7968.04280629.
                                                               3431.03019208.
         8011.47195267, 10831.03552022, 14835.13483364,
                                                               5495.88730559
```

```
3922./984091 . 10400.21695//2. 10/29.13503983. 10/95.65402128.
                                           5188.40767871,
       14304.16137586, 7275.64184467,
                                                            9108.622143
                                          8519.24119177, 15628.4527325
        9154.77362236, 12135.04634727,
        8044.80645777, 32050.82985586, 35961.50652253, 31181.39083233,
        6169.61444117, 12218.28188389,
                                           5866.29222402, 14757.98070434,
        2344.37033373, 33235.91290358,
                                           6482.87051707,
                                                            5197.37019545.
       14540.7041274 ,
                         7179.53039403, 38870.1644984 ,
                                                             3214.28862535.
        5719.36032273, 31318.09644359, 11725.36107956,
                                                             8112.04408862,
       14509.38025521, 9653.28651977, 26876.33332002, 33104.73945924,
       14181.93279886,
                         1802.70938573, 13475.5279152 ,
                                                             1833.13885138,
        5661.40924425, 11461.72227023, 40045.85319368, 36707.51962413,
       33661.86120621,
                          4045.71035614,
                                           7663.075274
                                                             8844.43198283,
       12098.40107502,
                          5025.55905867,
                                           2189.11944274, 32015.85069869,
       25310.54147444, 17427.09423634, 26561.6496257 , 10367.25985029,
       36899.9283149 ,
                                                            7952.12392343,
                          -899.39248406,
                                           7029.91287264,
        3995.76051237,
                          5234.68677166,
                                           5544.58037346,
                                                             4466.15910206,
                                           7144.39565806,
       15029.11226984, 11400.04072251,
                                                             2058.72190481,
        1078.93045928, 32173.93418977, 16352.27077135, 11858.60053315,
        1386.46206276, 12151.93590908, 1098.1511595, 2007.16442476, 34176.58999523, 10722.27917345,
                                                             8945.40572995,
                                                             2787.9075487
                                           9687.03450001,
       25448.73296133, 26133.47337302,
                                                             1928.47755998.
       13166.24177681,
                         1270.11137287, 10688.63941275, 10430.14596192,
       16544.96468825, 26699.27972475, 5651.61499763, 13099.069636,
                                          6827.73141209,
                                                             4754.69594071,
                                        , 10967.27110227,
                                                             8172.35021609,
                                        , 13742.61300114, 35668.33301987,
        5257.10705303, 12549.549249
        4346.32615326, 28775.11901906,
                                           -779.71128102,
                                                             3055.96641604,
       10959.73186585, 15529.11322085, 4014.58298733, 31568.68842886,
                                                             7082.1218293
                                           5051.50390898,
                                           7437.53068374, 12313.35374635,
        5820.0929521 ,
                          9782.04187267, 36140.95884283,
                                                             4272.76519922,
        9301.32782869, 31385.59673653,
                                           5878.26684969,
                                                             4392.27244347,
        1230.88199995,
                        5031.52399961,
                                           4732.65407107,
                                                             6738.51742109,
                                           2513.02179987, 10946.69965627,
       18513.05575823, -1362.65901238,
        3307.07504537,
                          9836.05250756,
                                           3851.92697572,
                                                             4911.48853081,
       12697.75360375,
                          6418.39824601,
                                           7903.88560722,
                                                            7157.47189468,
        9094.2935361 , 10700.24842336, 27663.05005121, 39001.74578648,
                          7334.42297028, 40773.35146162, 12529.62536522,
       11971.41067363,
        7278.35042883,
                          7946.95325506,
                                           9003.68084405, 10952.04600043,
       10291.77256667, 17501.41439954, 1245.40081577, 23194.45186866, 12303.77098336, 32806.96949218, 4834.19688597, 13073.15834804, 10565.79637494, 17414.93943876, 10153.51485353, 11640.19501548,
       32493.27022565, 2928.18485837, 13508.36782564, 39263.03749076,
        5131.53263165,
                         6309.08541219,
                                           2987.27362527, 11650.06437061,
       25117.91168156, 13768.37326011,
                                           9180.95285283,
                                                            9712.94890425,
                                           2298.29259688, 30592.46074602,
       13388.40871061, 1192.420786
       30245.64951003, 13464.26645641,
                                           3861.98315385, 25596.01841161,
       13349.62562516, 30591.43569096,
                                           3057.71083727, 38853.27630259,
       11055.26774652,
                         4708.82888937,
                                           7041.82850487,
                                                            2401.12312894,
                                            784.85806779, 13014.34366009,
       26085.44509308, 14619.14907632,
       12571.8513137 , 15109.27510831, 34909.10160246, 14546.64585506,
       31515.2270344 , 10249.4467815 , 18428.4812446 ,
                                                            6186.1096246 ,
                          9592.67543399, 15184.59537686,
        8837.81483469,
                                                            9333.18469118,
        7972.61954414, 15266.69980863, 12407.17323852, 14400.52485605,
        7695.37605771, 25958.98241542, 9126.29969674])
In [59]:
test_score=r2_score(y_test,y_hat)
test_score
Out[59]:
0.7667469908213234
In [60]:
X train.shape, X test.shape
Out[60]:
((1003, 6), (335, 6))
In [61]:
```

import seaborn as sb

In [62]:

sb.pairplot(insurance_dataset)

Out[62]:

<seaborn.axisgrid.PairGrid at 0x1d8586cfca0>


```
In [63]:
```

```
sb.factorplot('age',data=insurance_dataset,kind='count')
```

Out[63]:

<seaborn.axisgrid.FacetGrid at 0x1d85a2e85b0>

In [64]:

```
# model training

# linear regression

regressor = LinearRegression()
regressor.fit(X_train,y_train)
```

Out[64]:

v LinearRegression LinearRegression()

In [65]:

LinearRegression(copy_X=True,fit_intercept= True,n_jobs=None,normalize=False)

Out[65]:

```
LinearRegression
LinearRegression(normalize=False)
```

In [66]:

```
training_data_prediction = regressor.predict(X_train)
```

In [67]:

```
r2_train = metrics.r2_score(y_train,training_data_prediction)
print('R squared value :',r2_train)
```

R squared value : 0.7445275825163911

In [68]:

```
test_data_prediction = regressor.predict(X_test)
```

```
In [69]:
r2_test= metrics.r2_score(y_test,test_data_prediction)
print('R squared value :',r2_test)
R squared value : 0.7667469908213234
Building a predictive system
In [70]:
input_data = (31,1,25.74,0,1,0)
input data as numpy array = np.asarray(input data)
input data reshaped = input data as numpy array.reshape(1,-1)
prediction = regressor.predict(input_data_reshaped)
print(prediction)
[174289.10008086]
In [71]:
print('The insurance cost is USD',prediction[0])
The insurance cost is USD 174289.1000808612
In [72]:
if (prediction[0])==0:
    print('The person has no insursnce')
    print('The person has insurance')
The person has insurance
saving the train model
In [73]:
import pickle
In [74]:
```

```
filename = 'trained model.sav'
pickle.dump(regressor,open(filename,'wb'))
```

loading the saved model

In [75]:

In []:

```
loaded_model = pickle.load(open('trained_model.sav','rb'))
In [76]:
input_data = (31,1,25.74,0,1,0)
input_data_as_numpy_array = np.asarray(input_data)
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
prediction = regressor.predict(input_data_reshaped)
print(prediction)
if (prediction[0])==0:
    print('The person has no insursnce')
else:
    print('The person has insurance')
[174289.10008086]
The person has insurance
```