

Gaussian Mixture Models (GMM) for Background Subtraction

Chris Stauffer and W. E. L. Grimson

IEEE. Intl. Conf.

on Computer Vision and Pattern Recognition, 1999

Speaker: Shih-Shinh Huang

October 18, 2018

Outline

- Introduction
- Gaussian Mixture Model
- Modeling Process
- Subtraction Process

Introduction

- About Background Subtraction
 - Assumption: camera is stationary
 - Objective: segment the region of interests (foreground) from the background scenes

Original Image

Foreground Mask

Introduction

• Framework

SMbtdalingn: desturibet the backgrowing from the currently and backer imadel.

Introduction

- Idea

 - Appearance Change

 Multiple Gaussians

Gaussian Mixture Model

• Gaussian Distribution $\eta(.)$

$$\eta(x; \mu, \mathcal{E}) = \frac{11}{\sqrt{2\pi i} \sum_{n} \left(\sum_{n} \left(\frac{x - \mu}{\sigma} \right)^{2} \right)^{2}} \sum_{n} \left(x - \mu \right)^{2}$$

- μ: mean vebtor
- \(\Sigma\): \(\frac{2}{6}\) ovariancia matrix

$$\mu = \frac{3.0 + 4.0 + 2.0}{3} = 3.0$$
 $\sigma = \sqrt{0.67} = 0.81$

$$\eta(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi} \times 0.81} \exp\left(-\left(\frac{x - 3.0}{0.81}\right)^2\right)$$

Gaussian Mixture Model

- Definition
 - GMM is a mixture of *K* Gaussians describing the distribution of a random variable *x*.

$$Pr(x) = \sum_{k=1}^{K} w_k \times \eta(x; \mu_k, \sigma_k) \qquad \sum_{k=1}^{K} w_k = 1$$

- w_k : weight of the kth Gaussian
- $\eta(.)$: kth Gaussian distribution with mean value μ_k and standard deviation σ_k

Gaussian Mixture Model

• Example (K = 3)

- Modeling Description
 - All image points are considered as be mutually independent
 - The intensity distribution of every point at any time *t* is modeled as a GMM.
 - For computation purpose, an on-line K-means approximation is used for modeling.

Modeling Description

- On-line K-means approximation
 - Initialization: create a Gaussian η to model first observation x^1
 - w = 1.0
 - $\mu = x^1$ and large σ

- On-line K-means approximation
 - Iterative Step: check if any Gaussians will generate current observation x^t (match)
 - Case 1 (at least one match): update all matched ones
 - Case 2 (no match): create a Gaussian to model x^t

Matching Definition $M_k(x^t)$

• A match of x^t to the kth Gaussian $\eta(x; \mu_k^t, \sigma_k^t)$ is defined as within 2.5 standard deviations.

$$M_k(x^t) = \begin{cases} 1 & \frac{(x^t - \mu_k^t)}{\sigma_k^t} \le 2.5\\ 0 & \text{otherwise} \end{cases}$$

- Case 1: Updating Model
 - update parameters of all matched Gaussians by x^t

Case 1: Updating Model

• Weight: $w_k^t = (1 - \alpha)w_k^{t-1} + \alpha$ Learning Rate (Constant)

$$\alpha = 0.01 \implies w_k^t = (1 - 0.01) \times 0.3 + 0.01$$

$$\Rightarrow w_k^t = 0.307$$

Case 1: Updating Model

$$x^t = 110$$

(0.3,100.0,16.0) \Rightarrow (0.307, μ_k^t , σ_k^t)

• Mean Value: $\mu_k^t = (1 - \rho_k)\mu_k^{t-1} + \rho_k x^t$

$$p_{k} = 0.0001017\eta(x^{t} = 110; 100.016, 0$$

$$= 0.01 \times \frac{1}{\sqrt{2\pi} \times 16.0} \exp\left(-\left(\frac{110.0 \text{Fith@os0}}{16.0}\right)^2\right)$$

Case 1: Updating Model

$$x^{t} = 110$$

(0.3,100.0,16.0) \Rightarrow (0.307, μ_{k}^{t}) σ_{k}^{t})17, σ_{k}^{t})

• Mean Value:
$$\mu_k^t = (1 - \rho_k)\mu_k^{t-1} + \rho_k x^t$$

$$\rho_k = 0.00017$$

$$\mu_k^t = (1 - 0.00017) \times 100.0 + 0.00017 \times 110$$

$$= 100.0017$$

Case 1: Updating Model

$$x^{t} = 110$$

(0.3,100.0,16.0) \Rightarrow (0.307,100.0017, t_{k}^{t})986)

• Standard Deviation:

$$(\sigma_k^t)^2 = (1 - \rho_k) (\sigma_k^{t-1})^2 + \rho_k (x^t - \mu_k^t)^2$$
$$(\sigma_k^t)^2 = 5.986 - 0.00017) \times (16.0)^2$$
$$+ 0.00017 \times (110 - 100.0017)^2$$

- Case 2: Creating Model
 - create a new Gaussian if no Gaussians match x^t
 - low weight
 - $\mu = x^t$ and large σ
 - remove the Gaussian with least weight if there are already *K* Gaussians.
 - add the created Gaussian as one of K Gaussians.

Subtraction Process

- Background Selection
 - sort K Gaussians in a descending order with respect to w/σ
 - select first B Gaussians as background models

$$B = \arg\min_{b} \left(\sum_{k=1}^{b} w_k > T_B \right)$$

• T_B : selection threshold

Subtraction Process

• Background Selection ($T_B = 0.6$)

$$B = \arg\min_{b} (\sum_{k=1}^{b} w_k > T_B)$$

$$\frac{W_{21}}{\sigma_{51}} = \frac{0.2}{0.5} = 0.2$$

(background)

$$\frac{\mathbf{W}_{1_2}}{\overline{\sigma}_{1_2}} = 0.5$$

• (background)
$$w_k = 0.7 > T_B$$

$$\frac{W_3}{\overline{g_3}} = 0.35 = 0.15$$

Subtraction Process

- Point Labelling (L(x))
 - L(x) = B: at least one of background Gaussians is matched.
 - L(x) = F: none of backgrounds are matched

