9 Линейные операторы в гильбертовом пространстве

Опр. Пусть H – гильбертово пространство, $A: H \to H$ – линейный оператор. Оператор $A^*: H \to H$ называется сопряженным к оператору A, если

$$(Ax, y) = (x, A^*y) \quad \forall x, y \in H. \tag{9.1}$$

Опр. Оператор A называется называется самосопряженным, если

$$A^* = A$$
.

Теорема 9.1. Если $A \in \mathcal{L}(H)$, то сопряженный оператор A^* существует, единствен и является линейным ограниченным, причем $||A^*|| = ||A||$.

Доказательство. Рассмотрим функционал f(x) = (Ax, y) при фиксированном $y \in H$. Как нетрудно видеть f – линейный и ограниченный. так как

$$|f(x)| = |(Ax, y)| \le ||Ax|| ||y|| \le ||A|| ||x|| ||y|| \quad \forall x \in H.$$

В силу теоремы Рисса-Фреше существует единственный элемент $h \in H$ такой, что

$$(Ax, y) = (x, h) \quad \forall x \in H.$$

Обозначив $h=A^*y$, приходим к (9.1). Существование и единственность элемента h гарантирует существование и единственность сопряженного оператора. Очевидно, что

$$\alpha y_1 + \beta y_2 \rightarrow \alpha h_1 + \beta h_2$$

что дает линейность оператора A^* .

Подставив в (9.1) $x = A^*y$, имеем

$$||A^*y||^2 = (AA^*y, y) \leqslant ||A|| ||A^*y|| ||y||.$$

Следовательно

$$||A^*y|| \leqslant ||A|| ||y|| \quad \forall y \in H.$$

И

$$||A^*|| \leqslant ||A||.$$

Как нетрудно видеть, $A = (A^*)^*$. Поэтому $||A|| \leqslant ||A^*||$. Таким образом,

$$||A^*|| = ||A||.$$

Опр. Линейный оператор $A: X \to Y$ называется *вполне непрерывным* (или *компактным*), если он каждое ограниченное множество переводит в относительно компактное множество.

Замечание 9.1. Как нетрудно видеть, каждый вполне непрерывный линейный оператор является ограниченным. $(T.\kappa. \ каждое \ относительно \ компактное множество является ограниченным.)$

Предложение 9.1. Если dim $Y < \infty$, то всякий оператор $A \in \mathcal{L}(X;Y)$ является вполне непрерывным.

Доказательство. Оператор $A \in \mathcal{L}(X;Y)$ переводит всякое ограниченное множество в ограниченное, а всякое ограниченное множество в конечномерном пространстве Y является относительно компактным.

Предложение доказано.

Интегральный оператор с ядром Гильберта-Шмидта

Пусть $E \subset \mathbb{R}^m, E$ — ограниченное измеримое множество. Рассмотрим интегральный оператор A

$$Ax(t) = \int_E K(t, s)x(s) ds, \quad x \in L_2(E).$$
(9.2)

Функция K(t,s) называется ядром интегрального оператора A. Будем считать, что $K \in L_2(E \times E)$, т.е. K измеримо и

$$M = ||K||_{L_2(E \times E)} = \left(\int_E \int_E |K(t,s)|^2 dt ds \right)^{1/2} < \infty.$$

Заметим сначала, что функция Ax измерима.

Действительно, K(t,s)x(s) – измеримая функция, принадлежащая $L_1(E\times E)$, так как

$$\int_{E\times E} |K(t,s)| \, dt ds \leqslant \|K\|_{L_2(E\times E)} \left(\int_{E\times E} |x(s)|^2 \, dt ds\right)^{1/2} = M(\text{meas } E)^{1/2} \|x\|_{L_2(E)} < \infty.$$

Из теоремы Фубини следует, что функция Ax измерима.

Утверждение 1. A – линейный ограниченный оператор $A: L_2(E) \to L_2(E)$. Доказательство. В самом деле,

$$\begin{aligned} & \|Ax\|_{L_2(E)}^2 = \int\limits_E \left| \int\limits_E K(t,s) x(s) \, ds \right|^2 dt \leqslant \int\limits_E \left[\int\limits_E |K(t,s)|^2 ds \right] \left[\int\limits_E |x(s)|^2 ds \right] dt \\ & = \int\limits_{E \times E} |K(t,s)|^2 \, ds dt \, \|x\|_{L_2(E)}^2 = M^2 \|x\|_{L_2(E)}^2. \end{aligned}$$

Таким образом,

$$||Ax||_{L_2(E)} \le M||x||_{L_2(E)} \quad \forall x \in L_2(E) \Rightarrow ||A|| \le M.$$

Утверждение доказано.

Утверждение 2. Сопряженным к оператору A является оператор

$$A^*x(t) = \int_E K^*(t,s)x(s) ds \quad u \in L_2(E).$$

где

$$K^*(t,s) = \overline{K(s,t)}.$$

Доказательство. Действительно, в силу теоремы Фубини

$$(Ax,y)_{L_2(E)} = \int_E \left[\int_E K(t,s)x(s) \, ds \right] \overline{y}(t) \, dt = \int_E \left[\int_E K(t,s)\overline{y}(t) \, dt \right] x(s) \, ds =$$

$$= \int_E x(s) \left[\int_E K(t,s)\overline{y}(t) \, dt \right] \, ds = \int_E x(s) \overline{\left[\int_E \overline{K(t,s)}y(t) \, dt \right]} \, ds = (x,A^*y)_{L_2(E)}.$$

Утверждение доказано.

Следствие. Если $K(t,s) = \overline{K(s,t)}$, то $A^* = A$, то есть оператор A – самосопряженный.

Теорема 9.2. Оператор A является вполне непрерывным.

Доказательство. Пусть \mathcal{M} – ограниченное множество в $L_2(E)$, то есть существует постоянная C>0 такая, что

$$||x||_{L_2(E)} \leqslant C \quad \forall x \in \mathscr{M}.$$

Так как оператор A – ограниченный, то множество $A(\mathcal{M})$ – ограниченное. Заметим, что

$$\int_{E} |Ax(t+h) - Ax(t)|^{2} dt = \int_{E} \left| \int_{G} (K(t+h,s) - K(t,s)) x(s) ds \right|^{2} dt \leqslant
\leqslant \int_{E \times E} |K(t+h,s) - K(t,s)|^{2} dt ds \cdot ||x||_{L_{2}(G)}^{2} \leqslant C \int_{E \times E} |K(t+h,s) - K(t,s)|^{2} dt ds.$$

В силу непрерывности функции K в $L_2(E \times E)$ относительно сдвига для всякого $\varepsilon > 0$ существует $\delta(\varepsilon)$ такое, что

$$\int_{E} |Ax(t+h) - Ax(t)|^{2} dt < \varepsilon \quad \forall h: \ |h| < \delta(\varepsilon) \quad \forall Ax \in A(\mathcal{M}).$$

Таким образом, множество $A(\mathcal{M})$ равномерно ограничено и равностепенно непрерывно. Следовательно в силу критерия Рисса предкомпактности в $L_2(E)$ оно предкомпактно.

Лемма 9.1. Пусть $A \in \mathcal{L}(H)$. Если $x_n \to x_0$ слабо в H, то $Ax_n \to Ax_0$ слабо в H.

Доказательство. Пусть $x_n \to x_0$ слабо в H. Тогда

$$(Ax_n, y) = (x_n, A^*y) \to (x_0, A^*y) = (Ax_0, y) \quad \forall y \in H.$$

Лемма доказана.

Теорема 9.3. Пусть $A \in \mathcal{L}(H)$. Для того, чтобы оператор A был вполне непрерывным, необходимо и достаточно, чтобы

$$x_n \to x_0$$
 слабо в $H \Rightarrow Ax_n \to Ax_0$ сильно в H .

Доказательство. <u>Необходимость.</u> Пусть A вполне непрерывен и пусть $x_n \to x_0$ слабо в H. Ясно, что $Ax_n \to Ax_0$ слабо в H.

Предположим, что $Ax_n \not\to Ax_0$ сильно в H. Тогда существует $\varepsilon_0>0$ и подпоследовательность $\{x_n'\}_{n=1}^\infty$ такие, что

$$||Ax_n' - Ax_0|| \geqslant \varepsilon_0 > 0 \quad \forall n \geqslant 1.$$
 (*)

Последовательность $\{x_n'\}_{n=1}^{\infty}$ ограничена, так как слабо сходится. Следовательно последовательность $\{Ax_n'\}_{n=1}^{\infty}$ относительно компактна и из нее можно выбрать сильно сходящуюся подпоследовательность $Ax_n'' \to y_0$.

Ясно, что $x_n'' \to x_0$ слабо и $Ax_n'' \to Ax_0$ слабо. Значит, $Ax_n'' \to Ax_0 = y_0$ сильно, то есть $||Ax_n'' - Ax_0|| \to 0$. Получили противоречие с неравенством (*).

<u>Достаточность.</u> Пусть оператор A переводит всякую слабо сходящуюся последовательность в сильно сходящуюся. Возьмем произвольное ограниченное множество $E \subset H$ и произвольную последовательность $\{y_n\}_{n=1}^{\infty} = \{Ax_n\}_{n=1}^{\infty} \subset A(E)$. Выделим из $\{x_n\}_{n=1}^{\infty} \subset E$ подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$ такую, что $x_{n_k} \to x_0$ слабо в H. Тогда $y_{n_k} \to Ax_0$ сильно в H.

Лемма 9.2. Пусть $A, B \in \mathcal{L}(H)$. Если оператор B вполне непрерывен, то операторы AB и BA вполне непрерывны.

Доказательство. Пусть $x_n \to x$ слабо в H. Тогда

 $Bx_n \to Bx$ сильно $\Rightarrow ABx_n \to ABx$ сильно;

 $Ax_n \to Ax$ слабо $\Rightarrow BAx_n \to BAx$ сильно.

Лемма доказана.

Теорема 9.4. Если линейный оператор $A: H \to H$ вполне непрерывен, то оператор A^* вполне непрерывен.

Доказательство. Возьмем произвольную последовательность $x_n \to x_0$ слабо в H. Покажем, что $A^*x_n \to A^*x_0$ сильно в H.

$$||A^*x_n - A^*x_0||^2 = (A^*(x_n - x_0), A^*(x_n - x_0)) = (x_n - x_0, AA^*(x_n - x_0)) \le$$

$$\le ||x_n - x_0|| ||AA^*(x_n - x_0)|| \to 0,$$

так как оператор AA^* вполне непрерывен и $AA^*x_n \to AA^*x_0$.

Теорема 9.5. Пусть $A \in \mathcal{L}(H), A$ – самосопряженный оператор. Тогда

$$||A|| = \sup_{\|x\|=1} |(Ax, x)|.$$

Доказательство. Ясно, что

$$\mu = \sup_{\|x\|=1} |(Ax, x)| \leqslant \|A\|.$$

Докажем, что $||A|| \leqslant \mu$.

Заметим, что

$$|(Ax, x)| \leqslant \mu ||x||^2 \quad \forall x \in H.$$

Воспользуемся равенством

$$4\operatorname{Re}(Ax, y) = (A(x+y), x+y) - (A(x-y), x-y),$$

из которого для ||x|| = ||y|| = 1 следует, что

$$4\left|\operatorname{Re}(Ax,y)\right| \leqslant \mu\left(\|x+y\|^2 + \|x-y\|^2\right) = 2\mu(\|x\|^2 + \|y\|^2) = 4\mu.$$

Следовательно

$$|\text{Re}(Ax, y)| \le \mu \quad \forall x, y \in H: ||x|| = 1, ||y|| = 1.$$

Пусть теперь x и y произвольные ненулевые элементы. Положим $x' = \frac{x}{\|x\|},$ $y' = \frac{y}{\|y\|}.$ В силу только что доказанного неравенства

$$|\operatorname{Re}(Ax', y')| \leq \mu \Rightarrow |\operatorname{Re}(Ax, y)| \leq \mu ||x|| ||y|| \quad \forall x, y \in H.$$

Возьмем теперь y = Ax. Тогда из полученного неравенства следует

$$||Ax||^2 \le \mu ||x|| ||Ax|| \Rightarrow ||Ax|| \le \mu ||x|| \quad \forall x \in H.$$

Теорема 9.6. Пусть H – комплексное гильбертово пространство. Для того чтобы оператор $A \in \mathcal{L}(H)$ был самосопряженным, необходимо и достаточно, чтобы для любого $x \in H$ величина (Ax, x) была вещественной.

Доказательство. Пусть $A = A^*$. Тогда $(Ax, x) = (x, Ax) = \overline{(Ax, x)}$. Следовательно (Ax, x) вещественно.

Пусть (Ax, x) вещественно. Положим

$$A_R = \frac{1}{2}(A + A^*)$$
 и $A_I = \frac{1}{2i}(A - A^*).$

Как нетрудно видеть, A_R и A_I – ограниченные самосопряженные операторы и $A=A_R+iA_I$. Тогда

$$(Ax, x) = (A_R x, x) + i(A_I x, x),$$

где $(A_R x, x)$ и $(A_I x, x)$ вещественны. Отсюда $(A_I x, x) = 0$ для всех $x \in H$. В силу теоремы $9.5 A_I = 0$. Следовательно $A = A^*$.

Опр. В пространстве ограниченных самосопряженных операторов вводится отношение порядка: $A \geqslant B$, если $(Ax, x) \geqslant (Bx, x)$ для всех $x \in H$.

Опр. Самосопряженный оператор $A \in \mathcal{L}(H)$ такой, что $A \geqslant 0$, т.е. $(Ax, x) \geqslant 0$ для всех $x \in H$, называется неотрицательным.

Опр. Пусть X,Y – нормированные пространства. Оператор $A^*:Y^*\to X^*$ называется conpsнсенным к оператору $A\in\mathcal{L}(X,Y)$, если

$$\langle y^*, Ax \rangle_{Y^* \times Y} = \langle A^* y^*, x \rangle_{X^* \times X} \quad \forall x \in X, \quad \forall y^* \in Y^*.$$

Теорема 9.7. Если $A \in \mathcal{L}(X,Y)$, то сопряженный оператор A^* существует, единствен и является линейным ограниченным, причем $\|A^*\| = \|A\|$.