```
type reimsum
```

function T =reimsum(fun,a,b,n)

```
format compact
N = length(n);
%Riemann sum calculations
for j = 1:N
   h(j) = (b-a)/n(j);
% initialize sums to zero
I1 = 0;
Ir = 0;
Im = 0;
    for i = 1:n(j)
        xl = a + h(j)*(i-1);
        xr = a + h(j)*(i);
        xm = a + h(j)*(2*i-1)/2;
        Il = Il + fun(xl)*h(j);
        Ir = Ir + fun(xr)*h(j);
        Im = Im + fun(xm)*h(j);
% populates vectors L,M and R with Riemann sums
L(j,1) = Il;
M(j,1) = Im;
R(j,1) = Ir;
end
A = [n, L, M, R];
%Converts the N-by-4 array A into an N-by-4 table T with the names
% of the variables
T = array2table(A, 'VariableNames', {'n', 'Left', 'Middle', 'Right'});
end
syms x
format long
%(a)
fun=@(x) x.*tan(x) + x + 1
fun = function_handle with value:
```

@(x)x.*tan(x)+x+1

```
a=0;b=1;
n=(1:10)';
T = reimsum(fun,a,b,n)
```

 $T = 10 \times 4 \text{ table}$

	n	Left	Middle	Right
1	1	1.00000	1.773151	3.55740
2	2	1.38657	1.881266	2.66527
3	3	1.54665	1.906168	2.39912
4	4	1.63392	1.915497	2.27327
5	5	1.68877	1.919945	2.20025

	n	Left	Middle	Right
6	6	1.72641	1.922400	2.15264
7	7	1.75384	1.923894	2.11918
8	8	1.77470	1.924869	2.09438
9	9	1.79111	1.925541	2.07527
10	10	1.80435	1.926022	2.06009

%The middle points on the subinterval partition seem to be the best %as they are closer to the approximation which is 1.928... n=[1;5;10;100;1000;10000]; T=reimsum(fun,a,b,n)

$T = 6 \times 4 \text{ table}$

	n	Left	Middle	Right
1	1	1.00000	1.773151	3.55740
2	5	1.68877	1.919945	2.20025
3	10	1.80435	1.926022	2.06009
4	100	1.91534	1.928067	1.94091
5	1000	1.92681	1.928088	1.92936
6	10000	1.92796	1.928088	1.92821

Int=integral(fun,a,b)

Int =

1.928088301365176

%(b) fun=@(x) x.^4 - 2*x - 2

fun = function_handle with value:

 $@(x)x.^4-2*x-2$

a=0;b=3; n=(1:10)'; T=reimsum(fun,a,b,n)

$T = 10 \times 4 \text{ table}$

	n	Left	Middle	Right
1	1	-6.0000	0.187500	219
2	2	-2.9062	23.91796 1	.09593750
3	3	5.00000	29.18750	80
4	4	10.5058	31.09643	66.7558
5	5	14.3270	31.99133	59.3270
6	6	17.0937	32.48046	54.5937

	n	Left	Middle	Right
7	7	19.1782	32.77642	51.3211
8	8	20.8011	32.96891	48.9261
9	9	22.0987	33.10108	47.0987
10	10	23.1591	33.19570	45.6591

%The middle points on the subinterval partition seem to be the best %as they are closer to the approximation which is 33.600... n=[1;5;10;100;1000;10000]; T=reimsum(fun,a,b,n)

 $T = 6 \times 4 \text{ table}$

	n	Left	Middle	Right
1	1	-6.0000	0.187500	219
2	5	14.3270	31.99133	59.3270
3	10	23.1591	33.19570	45.6591
4	100	32.4830	33.59595	34.7330
5	1000	33.4875	33.59995	33.7125
6	10000	33.5887	33.59999	33.6112

Int=integral(fun,a,b)

Int =

33.6000000000000001