

Office of Naval Research

Jeffrey L. Solka

NSWCDD/GMU

- Model-based Clustering (MBC).
 - Mixture models and the EM algorithm.
 - The agglomerative step.
 - The model types.
- Adaptive Mixtures Density Estimation
- Their Synthesis
 - Initialization for MB agglomerative clustering
 - MB Adaptive Mixtures Density Estimation
- Preliminary Results.

Model-Based Clustering

MODEL-BASED CLUSTERING

This technique takes a density function approach.

 Uses finite mixture densities as models for cluster analysis.

 Each component density characterizes a cluster.

FINITE MIXTURES REVIEW

$$\hat{f}(x) = \sum_{i=1}^{g} \pi_i f_i(x, \theta)$$
$$f_i(x, \theta) = N(\mu_i, \Sigma_i)$$

- Model the density as a sum of g weighted densities.
- Expectation-maximization method used to estimate parameters.
- Must assume distribution for components usually normal distribution.
- Each component characterizes a cluster.

EXPECTATION-MAXIMIZATION (EM) METHOD

- Method for building or estimating the model.
- Solution of likelihood functions requires iterative procedure.
- E Step Expectation:
 - Find probability that observations belong to each component density the posteriors $(\tau_{ii}$'s).
- M Step Maximization:
 - Update all parameters based on posteriors (π_i, μ_i, Σ_i) .

EXPECTATION-MAXIMIZATION (EMETHOD

Issues:

- Can converge to a local optimum.
- Can diverge.
- Requires initial guess at the parameters of the component densities.
 - Requires initial guess at the weights (or priors).
 - Need an estimate of the number of components.
- Requires an assumed distribution for the component densities.
- Model-based clustering addresses these issues.

AGGLOMERATIVE MBC

- Regular agglomerative clustering:
 - Each point is in a cluster.
 - Two closest clusters are merged at each step.
 - Closeness is determined by distance and linkage.
- Agglomerative model-based clustering:
 - At each step, two clusters are merged such that the likelihood for the given model is maximized.
- We propose using Adaptive Mixtures to initialize MB agglomerative clustering.

MODEL-BASED CLUSTERING

Best model is chosen using the Bayesian Information Criterion $(m_M \text{ is } \# \text{ parameters}, L_M \text{ is loglikelihood}):$

$$BIC \equiv 2L_M(\mathbf{x}, \hat{\mathbf{\theta}}) - m_M \log(n)$$

- The four models are (*more models are possible*):
 - Spherical/equal (M1): $\Sigma_{\kappa} = \sigma^2 \mathbf{I}$
 - Spherical/unequal (M2): $\Sigma_{\kappa} = \sigma_{\kappa}^2 \mathbf{I}$
 - Ellipsoidal/equal (M3): $\Sigma_{\kappa} = \Sigma$
 - Ellipsoidal/unequal (unconstrained) (M4): $\Sigma_{\kappa} = \Sigma_{\kappa}$

MODEL-BASED CLUSTERING in a Nutshell

- 1. Apply the unconstrained agglomerative MBC procedure.
- 2. Choose number of clusters/densities, g.
- 3. Choose model: M1 M4.
- 4. Find the partition given by step 1 for the specified g.
- Using this partition, find the weights, means and covariances for each term, based on the model in step 3.
- Using the chosen g (step 2) and the initial values (step 5), apply the EM algorithm.
- 7. Calculate the BIC for this value of g and M.
- 8. Go to step 3 to choose another value of M and repeat.
- 9. Go to sep 2 and choose another model g and repeat.

MODEL-BASED CLUSTERING

- Priebe and Marchette; 1990s.
- Hybrid of Kernel Estimator and Mixture Model.
- Number of Terms Driven by the Data.
- L1 Consistent.

AMDE ALGORITHM

- 1 Given a New Observation.
- 2 Update Existing Model Using the Recursive EM.

or

3 - Add a New Term to "Explain" This Data Point.

Recursive EM Update Equations

$$\hat{\tau}_{n+1}^{(i)} = \frac{\pi_n^{(i)} \hat{f}^{(i)}(\vec{x}_{n+1}; \hat{\theta}_n)}{\sum\limits_{t=1}^g \pi_n^t \hat{f}^{(t)}(\vec{x}_{n+1}; \hat{\theta}_n)}$$

$$\hat{\pi}_{n+1}^{(i)} = \hat{\pi}_n^{(i)} + \frac{1}{n} (\hat{\tau}_{n+1}^{(i)} - \hat{\pi}_n^{(i)})$$

$$\hat{u}_{n+1}^{(i)} = \hat{\mu}_n^{(i)} + \frac{\hat{\tau}_{n+1}^{(i)}}{n\hat{\pi}_n^{(i)}} [(\vec{x}_{n+1} - \hat{\mu}_n^{(i)})A - \hat{\Sigma}_n^{(i)}]$$

$$A = (\vec{x}_{n+1} - \hat{\mu}_n^{(i)})^T$$

Similarly for Σ

CREATE RULE - AMDE

- Test the Mahalanobis distance from current data point to each mixture term in the existing model.
- Add in a new term when this distance exceeds a certain "create threshold"
 - Location given by current data point.
 - Covariance given by weighted average of the existing covariances.
 - Mixing coefficient set to 1/n.

MBC with an MADE Start

MBC With AMDE Smart Start

- 1. Form an adaptive mixtures model of the dataset. (Set create threshold in order to guarantee an over determined model.)
- Partition the data based on the AMDE model using τ_{ij} . (Note some of the original AMDE mixture terms "die" due to insufficient support.)
- 3. Utilize this partition as a start to the usual MBC procedure. (Instead of starting with as many terms as points we start with approximately log(n) number of points.)

Other Possibilities

- Other types of initialization:
 - Posse (JCGS) used initial partitions based on minimal spanning tree.
 - K-means
- Benefits of AMDE initialization:
 - Do not have to specify number of clusters as in k-means.
 - Methods like k-means impose a certain structure.
 - In most cases, initial clusters are not singletons.

Why Do This?

- Computational tradeoff of the AMDE procedure vs. the agglomerative procedure on the full dataset.
 - Advantages as the size of the dataset grows.
 - Non-singleton clusters
 - Save on storage
- AMDE is data order dependent.
 - Multiple mixture models/clustering can be obtained by merely reordering the dataset.
 - Could get a distribution of models (number of clusters/BICs)

4 Term Test Case

4 Term BIC Curves

Experiment - Real Data

- Model-based clustering was applied to Lansing Woods maples.
- Ran 20 trials with AMDE initialization.
- Re-ordered data each time.
- Maximum BIC model is 6 component nonuniform spherical mixture.
- This is model 2:
 - Covariances are diagonal equal variances.
 - Covariances are not equal across terms.

The Raw Data

Original Configuration

Number of Clusters

Configuration with AMDE

Conclusion

- Discussed an initialization procedure for the model-based agglomerative clustering.
- Showed applications to synthetic and real data.
- Possible advantages:
 - Savings in storage.
 - Possibly find other solutions greedy algorithm
- Formulation of Model-Based AMDE.
- Use of MB-agglomerative clustering as a way of pruning terms.