Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur @] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.134 BS 11/05/24

CONTINUOUS INTERNAL EVALUATION - 1

1 /	Sem / Div: II SEM/ CSA,CSB,AIML,CD		S Code: BMATS201	
Date: 15/05/24	Time: 9:30-11:00	Max Marks: 50	Elective: N	

Note: Answer any 2 full questions, choosing one full question from each part.

Q	N	Questions							Marks	RBT	CO's
					PA	ARTA			; 3		allication and an extended to the control of the co
1	a	Using Newton-Raphson method, find the real root of $x \log_e x - \cos x$ near x=1. Perform three iterations.								L2	CO4
	Evaluate $\int_{0}^{2} \frac{dx}{16+x^{2}}$ using Trapezoidal rule with six sub-intervals.								8	L2	CO4
	С	x	0	1	3	4			9	L1	CO4
		у	-12	0	6	12					
		Find the interpolating polynomial and hence estimate y at x=2 using Lagranges interpolation formula.									
						OR				_	
2	a	Using Regular Falsi Method, Find the root of equation $x e^x = \cos x$ that lies in $(0,1)$. Carry out 4 iterations							8	L2	CO4
	b A survey conducted in a slum reveals the following information as shown in the table. Estimate the number of persons in the income group of 20 to 25 using forward interpolation formula.									L2	CO4
		Income /day(Rs	1	nder 10	10-20	20-30	30-40	40-50			

Page: 1 / 2

							્ય	
No: of persons.	20	45	115	210	115			de: E
C Using Sim				0	$-x^2 dx$ on ervals	9	L2	CO4
dividing th	e interva	1 (0,1) 110	PART F	R				
Show that given \vec{F}					otational,	8	L2	CO2
b Find the (2,-1,2) a	direction	al deriva	tive of	$4x z^3 - 3$	$x^2 y^2 z$ at	8	L2	CO2
c Using Ri	unge kutt	ta method $\frac{-x}{+x}$, y(0)	-		solve the	9	L2	CO5
			OR					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1}{\vec{F}}$ grad (x^3)	$+y^3+z^3-$	3xyz) th	en find	$\operatorname{div} \ \vec{F}$	8	L2	CO2
bFind	the ans	gle betward and x^2 +	veen the y^2-z-1 :	e two 3 at (2,1,	surfaces 2)	8	L2	CO2
c Using $\frac{dy}{dx} = s$	Modif sinx+cos	ied E	uler's =0 at x=3	Method, and $x=3$		9		CO5

Prepared by: Madhavi R Pai

HOD: Prof. M Ramananda Kamath