31

1	What is claimed is:	
2	1.	A method of forming a circuit board, comprising the steps of:
3	a. \	supplying a non-conducting substrate having a top surface and a
4	bottom surfac	£;
5	b.	forming a plurality of conductive pathways between said top surface
6	and said botto	ın surface;
7	c.	forming a first circuit pattern on said top surface; and
8	d.	forming a second circuit pattern on said bottom surface.
9	2.	The method of claim 1, further comprising the step of printing one or
10	more circuit devices on said first circuit pattern and on said second circuit pattern.	
11	3.	The method of claim 2, wherein said circuit devices are selected from
12	the group consisting of capacitors, inductors, resistors, transformers, and mixtures	
13	thereof.	
14	4.	The method of claim 3, wherein said first circuit pattern comprises a
15	solderable component and a non-solder component, and further comprising the step of	
16	printing a solder mask on said non-solder component of said first circuit pattern and	
17	on said circuit devices printed on said first circuit pattern.	
18	5.	The method of claim 4, wherein said second circuit pattern comprises a
19	solderable component and a non-solder component, and further comprising the step of	
20	printing a solder mask on said non-solder component of said second circuit pattern	
21	and on said ci	reuit devices printed on said second circuit pattern.
22	6.	The method of claim 1, wherein said top surface comprises a first
23	conductor and	I said bottom surface comprises a second conductor, and wherein step b
24	further comprises the steps of:	
25	printing an etch resist mask over a portion of said first conductor to form a	
26	plurality of first exposed areas;	
27	printing an etch resist mask over a portion of said second conductor to form a	
28	plurality of second exposed areas, wherein each of said plurality of first exposed areas	
29	is disposed above one of said plurality of second exposed areas;	
30	remov	ing said first conductor from each of said plurality of first exposed areas

to form a plurality of first void areas on said top surface;

1	removing said second conductor from each of said plurality of second exposed		
2	areas to form a plurality of second void areas on said bottom surface;		
3	forming a plurality of vias-by connecting one of said plurality of first void		
4	areas with one of said plurality of second void areas;		
5	plating said plurality of vias to form said plurality of conductive pathways		
6	between said top surface and said bottom surface.		
7	7. The method of claim 6, wherein the printing steps further comprise use		
8	of printing techniques selected from the group consisting of electro-photographic		
9	printing, ink jet printing, relief press printing using either direct or off-set mode,		
10	lithographic press printing using either direct or off-set mode, and screen image		
11	transfer		
12	8. The method of claim 7, wherein step c further comprises:		
13	printing a plating resist mask on said top surface to define said first circuit		
14	pattern;		
15	plating said top surface increase the thickness of said first circuit pattern;		
16	removing said plating mask; and		
17	removing any exposed first conductor.		
18	9. The method of claim 8, wherein the printing step further comprise use		
19	of printing techniques selected from the group consisting of electro-photographic		
20	printing, ink jet printing, relief press printing using either direct or off-set mode, and		
21	lithographic press printing using either direct or off-set mode.		
22	10. The method of step 9, wherein step d further comprises:		
23	printing a plating resist mask on said bottom surface to define said second		
24	circuit pattern;		
25	plating said bottom surface to increase the thickness of said second circuit		
26	pattern;		
27 ⁻	removing said plating mask; and		
28	removing any exposed second conductor.		
29	11. The method of step 10, wherein the printing step further comprise use		
30	of printing techniques selected from the group consisting of electro-photographic		

1	printing, ink jet printing, relief press printing using either direct or off-set mode, and	
2	lithographic press printing using either direct or off-set mode.	
3	12.	A method of forming a multilayer circuit board, comprising the steps
4	of:	
5	a.	supplying a first substrate having a first top surface and a first bottom
6	surface;	
7	b.	forming a plurality of electrically conductive pathways between said
8	first top surfa	ace and said first bottom surface;
9	c.	forming a first circuit pattern on said first top surface;
10	d.	forming a second circuit pattern on said first bottom surface;
11	e.	supplying a second substrate having a second top surface and a second
12	bottom surface;	
13	f.	forming a plurality of electrically conductive pathways between said
14	second top s	urface and said second bottom surface;
15	g.	forming a third circuit pattern on said second top surface;
16	h.	forming a fourth circuit pattern on said second bottom surface;
17	i.	supplying a first insulating layer having a first side and a second side;
18	j.	joining said first side of said first insulating layer to said first bottom
19	surface, and	joining said second side of said first insulating layer to said second top
20	surface, such	that said first insulating layer electrically insulates said second circuit
21	pattern from	said third circuit pattern;
22	k.	forming a plurality of electrically conductive pathways between said
23	first circuit pattern, said second circuit pattern, said third circuit pattern, and said	
24	fourth circuit pattern.	
25	13.	The method of claim 12, further comprising the step of printing one or
26	more circuit devices on said first circuit pattern, on said second circuit pattern, on said	
27	third circuit pattern, and on said fourth circuit pattern.	
28	14.	The method of claim 13, wherein said circuit devices are selected from
29	the group co	nsisting of capacitors, inductors, resistors, transformers, and mixtures
30	thereof	

1	13. The method of claim 12, wherein said first top surface comprises a first		
2	conductor and said first bottom surface comprises a second conductor, and wherein		
3	step b further comprises the steps of:		
4	printing an etch resist mask over a portion of said first conductor to form a		
5	plurality of first exposed areas;		
6	printing an etch resist mask over a portion of said second conductor to form a		
7	plurality of second exposed areas, wherein each of said plurality of first exposed areas		
8	on said top surface is disposed above one of said plurality of second exposed areas on		
9	said bottom surface;		
10	removing said first conductor from each of said first exposed areas to form a		
11	plurality of first void areas on said top surface;		
12	removing said second conductor from each of said plurality of second exposed		
13	areas to form a plurality of second void areas on said bottom surface;		
14	forming a plurality of vias by connecting one of said plurality of first void		
15	areas with one of said plurality of second void areas;		
16	plating said plurality of vias to form said plurality of conductive pathways		
17	between said first top surface and said first bottom surface.		
18	16. The method of claim 15, wherein step c further comprises:		
19	printing a plating resist mask on said first top surface to define said first circuit		
20	pattern;		
21	plating said first top surface to increase the thickness of said first circuit		
22	pattern;		
23	removing said plating mask; and		
24	removing any exposed first conductor.		
25	17. The method of claim 16, wherein the printing step further comprise use		
26	of printing techniques selected from the group consisting of electro-photographic		
27	printing, ink jet printing, relief press printing using either direct or off-set mode, and		
28	lithographic press printing using either direct or off-set mode.		
29	18. The method of step 17, wherein step d further comprises:		
30	printing a plating resist mask on said first bottom surface to define said second		
31	circuit pattern;		

1	plating said bottom surface to increase the thickness of said second circuit		
2	pattern;		
3	removing said plating mask; and		
4	removing any exposed second conductor.		
5	19. The method of step 18, wherein the printing step further comprise use		
6	of printing techniques selected from the group consisting of electro-photographic		
7	printing, ink jet printing, relief press printing using either direct or off-set mode,		
8	lithographic press printing using either direct or off-set mode, and screen image		
9	transfer.		
10	20. The method of claim 12, wherein said second top surface comprises a		
11	first conductor and said second bottom surface comprises a second conductor, and		
12	wherein step f further comprises the steps of:		
13	printing an etch resist mask over a portion of said first conductor to form a		
14	plurality of first exposed areas;		
15	printing an etch resist mask over a portion of said second conductor to form a		
16	plurality of second exposed areas, wherein each of said plurality of first exposed areas		
17	on said top surface is disposed above one of said plurality of second exposed areas on		
18	said bottom surface;		
19	removing said first conductor from each of said first exposed areas to form a		
20	plurality of first void areas on said top surface;		
21	removing said second conductor from each of said plurality of second exposed		
22	areas to form a plurality of second void areas on said bottom surface;		
23	forming a plurality of vias by connecting one of said plurality of first void		
24	areas with one of said plurality of second void areas;		
25	plating said plurality of vias to form said plurality of conductive pathways		
26	between said second top surface and said second bottom surface.		
27	21. The method of claim 20, wherein step g further comprises:		
28	printing a plating resist mask on said second top surface to define said third		
29	circuit pattern;		
30	plating said second top surface to increase the thickness of said third circuit		
31	pattern;		

1	remo	ving said plating mask; and	
2	removing any exposed first conductor.		
3	22.	The method of claim 21, wherein the printing step further comprise use	
4	of printing techniques selected from the group consisting of electro-photographic		
5	printing, ink	jet printing, relief press printing using either direct or off-set mode, and	
6	lithographic	press printing using either direct or off-set mode.	
7	23.	The method of step 22, wherein step h further comprises:	
8	printing a plating resist mask on said second bottom surface to define said		
9	fourth circuit pattern;		
10	plating said second bottom surface to increase the thickness of said fourth		
11	circuit pattern;		
12	removing said plating mask; and		
13	removing any exposed second conductor.		
14	24.	The method of step 23, wherein the printing step further comprises use	
15	of printing techniques selected from the group consisting of electro-photographic		
16	printing, ink jet printing, relief press printing using either direct or off-set mode, and		
17	lithographic press printing using either direct or off-set mode.		
18	25.	The method of claim 12, further comprising the steps of:	
19	1.	supplying a third substrate having a third top surface and a third	
20	bottom surfa	ce;	
21	m.	forming a plurality of electrically conductive pathways between said	
22	third top surface and said third bottom surface;		
23	n.	forming a fifth circuit pattern on said third top surface;	
24	0.	forming a sixth circuit pattern on said third bottom surface;	
25	p.	supplying a second insulating layer having a first side and a second	
26	side;		
27	q.	joining said first side of said second insulating layer to said second	
28	bottom surface, and joining said second side of said second insulating layer to said		
29	third top surface, such that said second insulating layer electrically insulates said		
30	fourth circuit pattern from said fifth circuit pattern; and		

1	r. forming a plurality of electrically conductive pathways between said		
2	first circuit pattern, said second circuit pattern, said third circuit pattern, said fourth		
3	circuit pattern, said fifth circuit pattern, and said sixth circuit pattern.		
4	26. The method of claim 25, wherein said third top surface comprises a		
5	first conductor and said third bottom surface comprises a second conductor, and		
6	wherein step m further comprises the steps of:		
7	printing an etch resist mask over a portion of said first conductor to form a		
8	plurality of first exposed areas;		
9	printing an etch resist mask over a portion of said second conductor to form a		
10	plurality of second exposed areas, wherein each of said plurality of first exposed area		
11	on said top surface is disposed above one of said plurality of second exposed areas or		
12	said bottom surface;		
13	removing said first conductor from each of said first exposed areas to form a		
14	plurality of first void areas on said top surface;		
15	removing said second conductor from each of said plurality of second exposed		
16	areas to form a plurality of second void areas on said bottom surface;		
17	forming a plurality of vias by connecting one of said plurality of first void		
18	areas with one of said plurality of second void areas;		
19	plating said plurality of vias to form said plurality of conductive pathways		
20	between said first top surface and said first bottom surface.		
21	27. The method of claim 26, wherein step n further comprises:		
22	printing a plating resist mask on said first top surface to define said fifth		
23	circuit pattern;		
24	plating said first top surface to increase the thickness of said first circuit		
25	pattern;		
26	removing said plating mask; and		
27	removing any exposed first conductor.		
28	28. The method of claim 27, wherein the printing step further comprise use		
29	of printing techniques selected from the group consisting of electro-photographic		
30	printing, ink jet printing, relief press printing using either direct or off-set mode, and		
31	lithographic press printing using either direct or off-set mode.		

1	29. The method of claim 28, wherein step o further comprises:		
2	printing a plating resist mask on said first bottom surface to define said sixth		
3	circuit pattern;		
4	plating said bottom surface to increase the thickness of said second circuit		
5	pattern;		
6	removing said plating mask; and		
7	removing any exposed second conductor.		
8	30. The method of claim 29, wherein the printing step further comprise use		
9	of printing techniques selected from the group consisting of electro-photographic		
10	printing, ink jet printing, relief press printing using either direct or off-set mode,		
11	lithographic press printing using either direct or off-set mode, and screen image		
12	transfer.		
13	A method of forming a circuit board, comprising the steps in sequence		
14	of:		
15	a. supplying a non-conducting substrate having a top surface and a		
16	bottom surface each covered with a top and a bottom metallic layer, respectively;		
17	b. forming a pattern mask on the top and the bottom metallic layers,		
18	leaving exposed metallic patterns;		
19	c. building-up the exposed metallic patterns to increase the thickness		
20	thereof;		
21	d. removing the pattern mask whereby to expose the metallic patterns;		
22	and		
23	e. etching the metallic layer coated substrate from step d whereby to		
24	remove exposed metallic surfaces, while leaving intact at least a portion of the built-		
25	up metallic patterns.		
26	32. The method of claim 31, wherein said pattern mask is applied by		
27	printing.		
28	33. The method of claim 32, wherein said printing comprises electro-		
29	photographic printing, ink jet printing, release press printing using either direct or off-		
30	set mode, lithographic press printing using either direct or off-set mode, and screen		
31	image transfer.		

1	34.	The method of claim 33, wherein said printing is effected employing a
2	fusable ink.	
3	35.	The method of claim 34, wherein said fusble ink comprises a
4	polymeric bin	der ink containing colloidal metal.
5	36.	The method of claim 35, wherein the colloidal metal comprises
. 6	colloidal silver or colloidal palladium.	
7	37.	The method of claim 32, including the step of pre-heating the substrate
8	prior to printing.	
9	38.	The method of claim 37, where the board is preheated to a temperature
10	in the range o	f 100°C-160°C.
11	39.	The method of claim 31, wherein said exposed metallic patterns are
12	built-up by plating.	
13	40.	The method of claim 12, and further comprising the step of removing
14	the resulting r	nultiplayer circuit board from the first substrate.