Matematik A E2020 Uge 37, Forelæsning 2

Afsnit 4.1-4.5, 5.1-5.3 og 5.6 Funktioner – grundlæggende begreber

Dagens stof - overblik

- Reelle funktioner af én reel variabel
 - 4.1-4.3: Intro og grundlæggende begreber
 - 4.4-4.5: Lineære funktioner og nogle simple anvendelser
 - 5.1-5.3: "Nye funktioner ud fra gamle", bl.a. sammensatte funktioner og invers funktion
- Det generelle funktionsbegreb
 - 5.6: Intro til generelle fkt og grundlæggende begreber

Forelæsningen:

- 1. Det generelle funktionsbegreb
- Reelle funktioner af én reel variabel

Bemærk: Genopfrisk selv stof om lineære fkt (4.4) og læs selv de små eksempler (4.5, bl.a. den simple ligevægtsmodel i 4.5.3+4). Det er - som altid - vigtigt at læse hele pensum!

Funktioner - intro

$$f(x) = x^2$$

$$f: \mathbb{R} \to \mathbb{R}$$

Generelle funktioner (5.6 og lidt fra 5.2-3)

Generelt funktionsbegreb:

Mere formelt:

Lad A og B være (ikke-tomme) mængder.

En funktion fra A over i B er en forskrift f, der til ethvert $x \in A$ knytter et og kun et $y \in B$ (som betegnes f(x)).

Notation:

$$f:A\to B$$

A: Definitionsmængde (domain) for f

B: Sekundærmængde (target set/codomain) for f

Værdimængde (range) for f:

$$R_f = \{ f(x) : x \in A \} \subseteq \mathcal{B}$$

- Eksempel 1
 - A: De studerende på dette semesters Mat A
 - B: De mulige holdnumre, $B = \{1, 2, 3, ..., 10\}$
 - Lad f være den funktion, der til enhver studerende knytter vedkommendes holdnummer. Hvis Jens Jensen er på hold 4, skriver vi altså: $f(\mathrm{Jens\ Jensen})=4$

Eksempel 2

•
$$A = \mathbb{R}^2 = \{(x, y) | x, y \in \mathbb{R}\}$$

•
$$B = \mathbb{R}$$

• Lad g være funktionen givet ved: g((x,y)) = x + y

Eksempel 3

•
$$A = B = \mathbb{R}$$

• Lad h være funktionen givet ved: $h(x) = x^3$

Injektive (one-to-one) funktioner

Lad $f: A \rightarrow B$ være en fkt.

• f er **injektiv** (one-to-one), hvis der for alle $x_1, x_2 \in A$ gælder:

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

PINGO! (pingo.coactum.de, 185415)

- Betragt eksemplerne 1-3 fra tidligere
- Stem på den/de funktioner, I mener er injektive
 - "f(stud.) = stud.'s holdnummer"

 hold her somme holdur.

•
$$g(x,y) = x + y$$
 $g(1,6) = | +6 = 7 = 3 + 4 = g(3,4)$

•
$$h(x) = x^3$$

For ethvert $y \in \mathbb{R}$

findes kon et $x \in \mathbb{R}$

med $y = x^3$ (nenlig $x = y^{\frac{1}{3}}$)

Ekstra: For hvilke $n \in \mathbb{N}$ er $h(x) = x^n$ injektiv?

[Huis n lige: h(-1) = h(1)] n lige: h ikke injektiv

Sammensat funktion (composite fct)

- Lad $f:A \to B$ og $g:B \to C$
- Den sammensatte funktion $g \circ f : A \to C$ er defineret ved

$$(g \circ f)(x) = g(f(x))$$
 for alle $x \in A$

• "Først anvendes f (indre fkt), så anvendes g (ydre fkt)"

• Hurtig øvelse: Betragt eksemplerne 1 og 3 fra tidligere. Beskriv den sammensatte funktion $h \circ f$

- Lad $f:A \to B$ være en **injektiv** funktion med $R_f=B$
- Den inverse funktion til f er den fkt $f^{-1}: B o A$, der til ethvert $y \in B$ knytter det element $x \in A$ som opfylder f(x) = y.

Altså:

$$f^{-1}(y) = x \quad \Leftrightarrow \quad f(x) = y$$

• Bemærk:

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$$

Reelle fkt af én reel variabel

(Især 4.2-3 og 5.1-3)

"Den type funktioner I kender"

$$f: D \to \mathbb{R}$$
, hvor $D \subseteq \mathbb{R}$

Begreber indført for generelle fkt kan umiddelbart bruges:

- Defintionsmængde og værdimængde
- Injektiv funktion
- Sammensat funktion
- Invers funktion

Voksende /aftagende fkt

 $f:D\to\mathbb{R}, \text{ hvor }D\subseteq\mathbb{R}$

$$f$$
 er voksende hvis:
$$x_1 > x_2 \quad \Rightarrow \quad f(x_1) \ge f(x_2)$$

f er strengt voksende hvis:

$$x_1 > x_2 \quad \Rightarrow \quad f(x_1) > f(x_2)$$

Aftagende og strengt aftagende funktioner er defineret tilsvarende

Strengt voksende/aftagende fkt er injektive (overvej!)

$$\frac{x_1 + x_2}{x_1 + x_2} = \frac{x_1 + x_2}{x_1 + x_2} = \frac{f(x_1) + f(x_2)}{f(x_1) + f(x_2)} = \frac{f(x_1) + f(x_2)}{f(x_1) + f(x_2)}$$

$$f(x_1) + f(x_2) = \frac{f(x_1) + f(x_2)}{f(x_1) + f(x_2)}$$

$$f(x_1) + f(x_2) = \frac{f(x_1) + f(x_2)}{f(x_1) + f(x_2)}$$

"Forskydning af grafer"

Givet fkt f og konstant $c \neq 0$ kan dannes nye funktioner ved f(x) + c, f(x + c), cf(x), f(-x)

Flere "nye funktioner fra gamle"

Betragt funktioner $f, g: D \to \mathbb{R}$.

Da er funktionerne f + g, f - g, fg og $\frac{f}{g}$ givet ved:

$$(f+g)(x)=f(x)+g(x)$$
 $(f-g)(x)=f(x)-g(x)$
 $(fg)(x)=f(x)\cdot g(x)$
 $\frac{f}{g}(x)=\frac{f(x)}{g(x)} \ (\mathrm{hvor} \ g(x)
eq 0)$

Øvelse: Sammensat og invers fkt for reelle fkt af én reel var.

Betragt funktionerne $f, g : \mathbb{R} \to \mathbb{R}$ givet ved:

$$f(x) = (x-1)^3$$
$$g(x) = 2x + 1$$

Bestem funktionerne
$$f \circ g$$
, $g \circ f$ og f^{-1}

$$(f \circ g)(x) = f(g(x)) = f(2x+1) = ((2x+1)-1)^3 = (2x)^3 = 8x^3$$

$$(g \circ f)(x) = g(f(x)) = g((x-1)^3) = 2(x-1)^3 + 1$$

$$f^{-1}: \qquad y = (x-1)^3 (=) \qquad y^{\frac{1}{3}} = x-1 \quad (=) \qquad y^{\frac{1}{3}} + 1 = x$$

$$f^{-1}(y) = y^{\frac{1}{3}} + 1$$

Et plit på grefen for
$$f: (x,f(x))$$

Da $f^{-1}(f(x)) = x$ vil $(f(x), x)$ ligge på grefen for f^{-1}