东南大学学生会

Students' union of Southeast University

11-12-2 高等数学 AB 期末试题参考答案

1.
$$(2-5)$$
; 2. $y x+1$; 3. $\frac{\sqrt{2}}{2}$; 4. $2\sqrt{2}-1$;

5. 4 6.
$$e - \frac{7}{6}$$
 7. $Cxe^{-\frac{1}{2}x^2}$; 8. $\frac{1}{18}$;

9.
$$\frac{(-1)^n \cos(\theta x)}{(2n+1)!} x^{2n+1}$$
 $(0 < \theta < 1)$ 或者 $\frac{(-1)^n \cos(\xi)}{(2n+1)!} x^{2n+1}$, 其中 ξ 介于 0 与 x 间.

二、1. **解** 令
$$t = \sqrt{x}$$
, 则

$$\int \cos \sqrt{x} dx = 2 \int t \cos t dt = 2(t \sin t + \cos t) + C = 2(\sqrt{x} \sin \sqrt{x} + \cos \sqrt{x}) + C.$$

2.
$$\mathbf{f} \mathbf{f} \int_0^1 \frac{x+2}{x^2 - x - 2} dx = \int_0^1 \frac{x+2}{(x-2)(x+1)} dx = \frac{4}{3} \int_0^1 \frac{1}{x-2} dx - \frac{1}{3} \int_0^1 \frac{1}{x+1} dx$$
$$= \frac{4}{3} \ln|x-2| \Big|_0^1 - \frac{1}{3} \ln|x+1| \Big|_0^1 = -\frac{5}{3} \ln 2.$$

3. **AP**
$$\Rightarrow t = 1 - x$$
, $\text{MI} \int_0^1 \ln(1 - x) dx = -\int_1^0 \ln t dt = \int_0^1 \ln t dt = \lim_{a \to 0^+} \int_a^1 \ln t dt$
$$= \lim_{a \to 0^+} (t \ln t - t) \Big|_a^1 = \lim_{a \to 0^+} (-1 - a \ln a + a) = -1.$$

4. 解
$$\int \frac{\arcsin x}{x^2} dx = -\frac{\arcsin x}{x} + \int \frac{dx}{x\sqrt{1-x^2}}$$
. $\Rightarrow x = \sin t, \ 0 < t < \frac{\pi}{2},$ 则

$$\int \frac{\mathrm{d}x}{x\sqrt{1-x^2}} = \int \frac{\mathrm{d}t}{\sin t} = \int \csc t \, \mathrm{d}t = -\ln\left|\csc t + \cot t\right| + C = \ln\left|\frac{1-\sqrt{1-x^2}}{x}\right| + C.$$
 $\exists E$

$$\int \frac{\arcsin x}{x^2} \, \mathrm{d}x = -\frac{\arcsin x}{x} + \ln\left|\frac{1-\sqrt{1-x^2}}{x}\right| + C.$$

三、解 (1)
$$S(t) = 3 \int_0^t u^2 du = t^3(m)$$
. (2) 由 $t^3 = 343$ 得 $t = 7(s)$.

四、解设切点的坐标为 $(b, b(b+1)^2+3)$, 则 y'(b)=2b(b+1). 于是对应的切线方程 $y=2a(b+1)x+a(b+1)^2+3-2ab(b+1)$. 因此,由切线过原点知,

$$a(b+1)^2+3-2ab(b+1)=0$$
. 解得 $b_1=-\sqrt{1+\frac{3}{a}}$, $b_2=\sqrt{1+\frac{3}{a}}$. 即 $b_1^2=b_2^2$, $b_1+b_2=0.2$

(1)
$$I(a) = \int_{b_1}^0 \left[a(x+1)^2 + 3 - 2a(b_1+1)x \right] dx + \int_0^{b_2} \left[a(x+1)^2 + 3 - 2a(b_2+1) \right] dx$$

= $(a+3)(b_2-b_1) - \frac{2}{3}a(b_2^3-b_1^3) = \frac{2}{3}(a+3)\sqrt{1+\frac{3}{a}}$.

(2)
$$\Leftrightarrow I'(a) = \frac{2}{3}\sqrt{1 + \frac{3}{a}}\left(1 - \frac{3}{2a}\right) = 0$$
, $ä = \frac{3}{2}$. $0 < a < \frac{3}{2}$ $\forall i, I'(a) < 0$, $i \in I(a)$ $i \in I(a)$

东南大学学生会

Students' union of Southeast University

(0,3/2) 上严格单减; $a>\frac{3}{2}$ 时, I'(a)>0, 说明 I(a) 在 $(3/2,+\infty)$ 上严格单增. 所以 $a=\frac{3}{2}$ 是 I(a) 的极小值点,且是唯一的极小值点,因而是最小值点. 故 $I_{\min}=I(\frac{3}{2})=3\sqrt{3}$.

五、解 特征方程 $r^2+1=0$ 的根为 $r_1=-\mathrm{i}, r_2=\mathrm{i}$. 所以对应的齐次方程的通解为 $\bar{y}=C_1\cos x+C_2\sin x$.

注意到 $f(x) = \cos^2 x = (\cos x)^2 = \frac{1}{2} + \frac{1}{2}\cos(2x) = f_1(x) + f_2(x)$. 因为 $f_1(x) = \frac{1}{2}$ 属 $e^{\alpha x}P_m(x)$ 型 $(\alpha = 0, m = 0)$,且 $\alpha = 0$ 不是特征根 (由此知 k = 0),所以可设方程 $y_1'' + y_1 = f_1(x)$ 有特解 $y_1^* = x^k e^{\alpha x}Q_m(x) = A_1$. 将之带入 y_1 所满足的方程,得 $A_1 = \frac{1}{2}$,从而 $y_1^* = \frac{1}{2}$.

又因为 $f_2(x) = \frac{1}{2}\cos(2x) = \frac{1}{2}\cos(2x) + 0 \cdot \sin(2x)$ 属 $e^{\alpha x} \left[P_m(x)\cos\beta x + Q_n(x)\sin\beta x \right]$ 型 $(\alpha = 0, \beta = 2, m = 0, n = 0)$, 且 $\alpha + \beta i = 2i$ 不是特征根 (由此知 $k = 0, L = \max\{m, n\} = 0$), 所以可设方程 $y_2'' + y_2 = f_2(x)$ 有特解 $y_2^* = x^k e^{\alpha x} \left[R_L(x)\cos\beta x + H_L(x)\sin\beta x \right] = \left[A_2\cos(2x) + B_2\sin(2x) \right]$. 将之带入 y_2 所满足的方程,得 $A_2 = -\frac{1}{6}$, $B_2 = 0$,从而 $y_2^* = -\frac{1}{6}\cos(2x)$.

因此,非齐次方程的通解 $y = \bar{y} + y_1^* + y_2^* = C_1 \cos x + C_2 \sin x + \frac{1}{2} - \frac{1}{6} \cos 2x$. 由题 意知, y(0) = 0, y'(0) = 1. 带入通解表达式,解得 $C_1 = -\frac{1}{3}$, $C_2 = 1$. 故所求解 $y = -\frac{1}{3}\cos x + \sin x + \frac{1}{2} - \frac{1}{6}\cos 2x$.

$$\Rightarrow (1) \text{ if } \int_0^1 x(x-1)f''(x)dx = \int_0^1 x(x-1)df'(x) = x(x-1)f'(x)\Big|_0^1 - \int_0^1 (2x-1)f'(x)dx$$

$$= -(2x-1)f'(x)\Big|_0^1 + 2\int_0^1 f(x)dx = 2\int_0^1 f(x)dx.$$

(2) 证由(1)的结论、积分的绝对值不等式的性质和积分的单调性质,可得

$$\begin{split} & \left| \int_0^1 f(x) \mathrm{d}x \right| = \frac{1}{2} \left| \int_0^1 x(1-x) f''(x) \mathrm{d}x \right| \le \frac{1}{2} \int_0^1 \left| x(x-1) f''(x) \right| \mathrm{d}x \\ & \le \frac{1}{2} \int_0^1 \max_{0 \le x \le 1} \left| f''(x) \right| |x(x-1)| \mathrm{d}x = \frac{1}{12} \max_{0 \le x \le 1} |f''(x)| \int_0^1 x(x-1) \mathrm{d}x \\ & = \frac{1}{12} \max_{0 \le x \le 1} |f''(x)|. \end{split}$$