Examenul de bacalaureat 2010 Proba E - c)

Proba scrisă la matematică

Filiera vocațională, profilul pedagogic, specializarea învățător- educatoare

BAREM DE EVALUARE ŞI DE NOTARE

MODEL

- Se punctează oricare alte formulări/ modalități de rezolvare corectă a cerințelor.
- Nu se acordă punctaje intermediare, altele decât cele precizate explicit prin barem. Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

SUBIECTUL I (30 de puncte)

1)	$x^2 - 4x + 3 = 0 \Rightarrow x_1 = 1, \ x_2 = 3$	2p
	Finalizare: $P = \frac{2}{5}$	3 p
2)	$1+2+3++40=\frac{40\cdot 41}{2}=$	3p
	= 820	2 p
3)	$\Delta = 16m^2 - 4$	2p
	$m \in \left(-\infty, -\frac{1}{2}\right] \cup \left[\frac{1}{2}, +\infty\right)$	3 p
4)	Scrierea formulei	3р
	$d(A,d) = \frac{ 1+2+1 }{\sqrt{2}} = 2\sqrt{2}$	2p
5)	$7^x = y$; $y^2 - 8y + 7 = 0$	1p
	$y_1 = 1 \Longrightarrow x_1 = 0$	2p
	$y_2 = 7 \Rightarrow x_2 = 1$	2p
6)	$\cos 135^{\circ} = -\cos 45^{\circ}; \sin 135^{\circ} = \sin 45^{\circ}$	2p
	Finalizare: $\frac{1}{2}\cos 135^{\circ} + 3\sin 135^{\circ} = \frac{5\sqrt{2}}{4}$	3p

SUBIECTUL al II - lea

(30 de puncte)

a)	Din definiția elementului neutru și cum legea este comutativă, avem $x*e=x$, $\forall x \in \mathbb{Z}$ $(e+2)x+2e+a=x$, $\forall x \in \mathbb{Z}$ de unde $\begin{cases} e+2=1\\ 2e+a=0 \end{cases}$ Deci $a=2$ și $e=-1$.	1p 2p 2p
b)	$(x*y)*z = x*(y*z), \ \forall x, y, z \in \mathbb{Z}$	1p
	(x*y)*z = xyz + 2(xy + yz + zx) + 4(x + y + z) + 6	2p
	x*(y*z) = xyz + 2(xy + yz + zx) + 4(x + y + z) + 6	2p
c)	$x * y = (x + 2)(y + 2) - 2 \Rightarrow (x + y + 2) * z = (x + y + 4)(z + 2) - 2$	2 p

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

	(x*z)+(y*z)+2=(x+2)(z+2)-2+(y+2)(z+2)-2+2=	2p
	= (x + y + 4)(z + 2) - 2 = (x + y + 2) * z	1p
d)	Din $x * x' = (x+2)(x'+2) - 2 = -1$, rezultă $x' = -2 + \frac{1}{x+2} \in \mathbb{Z}$ pentru $x \in \mathbb{Z}$	2p
	$(x+2) 1$, adică $(x+2) \in \{-1,1\}$	2p
	$M = \{-3, -1\}$	1p
e)	Din $x * y = 3$ se obține $(x + 2)(y + 2) = 5$	1p
	Finalizare: $(x; y) \in \{(-1;3), (-3;-7), (3,-1), (-7;-3)\}$	4 p
f)	$(-3)*(-3) = a - 3 = (-1)*(-1) \in \{-3, -1\} \Rightarrow a \in \{0, 2\}$	2p
	$(-3)*(-1) = (-1)*(-3) = a - 5 \in \{-3, -1\} \Rightarrow a \in \{2, 4\}$	2p
	a = 2	1p

SUBIECTUL al III - lea

(30 de puncte)

a)	1 1 1	
	$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix}$	2p
	Finalizare: $D = 2$	3 p
b)	$a = b \Rightarrow D = \begin{vmatrix} 1 & a & a^2 \\ 1 & a & a^2 \\ 1 & c & c^2 \end{vmatrix}$	
	$\begin{vmatrix} c & c & c \\ 1 & c & c^2 \end{vmatrix}$	2 p
	Finalizare: $D = 0$	3 p
c)	$D = a^2 - 5a + 6$	2 p
	$D=2 \Rightarrow a^2 - 5a + 4 = 0$	1 p
	a=1 sau $a=4$	2p
d)	Scăzând prima linie din celelalte două obținem $D = \begin{vmatrix} 1 & a & a^2 \\ 0 & b-a & b^2-a^2 \\ 0 & c-a & c^2-a^2 \end{vmatrix}$	2 p
	$D = (b-a)(c-a) \cdot \begin{vmatrix} 1 & a & a^2 \\ 0 & 1 & b+a \\ 0 & 1 & c+a \end{vmatrix} = (b-a)(c-a)(c-b)$	3 p
e)	$D = (b-a)(c-a)(c-b) = 0 \Rightarrow b-a = 0 \text{ sau } c-a = 0 \text{ sau } c-b = 0$	3p
	Finalizare	2 p
f)	Dintre cele 3 numere întregi a, b, c , cel puțin două au aceeași paritate, deci diferența lor	3p
	este număr par. Dar cum $D = (b-a)(c-a)(c-b)$ rezultă că D este număr par	2 p