□ Scheduling CPU: □

Esercitazione e concetti

Tutor: Giovanni Hauber

L Terminologia

TEMPO DI ARRIVO

Istante in cui un utente invia un processo

TEMPO DI AMMISSIONE

Istante in cui un processo viene considerato per lo scheduling

TEMPO DI SERVIZIO

Tempo totale richiesto da un processo per completare la sua richiesta

TEMPO DI ATTESA

Lasso di tempo che un processo aspetta, dal momento del suo arrivo, senza fare niente

TEMPO DI COMPLETAMENTO

Istante di tempo in cui un processo termina

TURNAROUND

Tempo trascorso dalla sottomissione da un utente di un processo fino al momento del suo completamento.

CAMBIO DI CONTESTO

Quantità di tempo necessaria ad effettuare la prelazione

THROUGHPUT

Numero di processi completati e serviti da un SO in una singola unità di tempo

L Formule

TEMPO DI ATTESA

- Normale: (T_{completamento} T_{arrivo} T_{servizio})
- Medio: $\sum (T_{completamento} T_{arrivo} T_{servizio}) / N_{processi}$

TURNAROUND

- Normale: T_{completamento} T_{arrivo}
- Medio: ∑ (T_{completamento} T_{arrivo})/N_{processi}
- Normalizzato: T_{completamento} T_{arrivo} / Burst

THROUGHPUT

Calcolato come:

• N_{processi}/Tempo Totale

L Politiche

NON PRELAZIONABILI

- Politiche di algoritmi che che non rendono possibile interrompere le esecuzioni di un processo, aspettando la fine delle loro esecuzioni.
 - FCSF
 - SJF

PRELAZIONABILI

- Politiche di algoritmi che rendono possibile scambiare un processo attualmente in esecuzione con un altro processo anche se la sua esecuzione non risulti finita.
 - ROUND ROBIN

PRIORITA'

• Politica che favorisce i processi con priorità più alta. Applicabile ad entrambe le politiche menzionate prima, e può essere prelazionabile o non.

Nota: è possibile applicare la prelazione anche ad algoritmi NON-PREEMPTIVE!

Scheduling

Esercizio 1

• Si considerino i seguenti processi, attivi in un sistema multiprogrammato:

Processo	Tempo di Arrivo	CPU Burst	Priorità
P1	4ms	12ms	2
P2	2ms	5ms	1
P3	7ms	10ms	5
P4	3ms	8ms	4
P5	5ms	9ms	3

- Supponendo che il cambio di contesto sia 1ms, si mostri l'ordine di esecuzione dei processi e quanto vale il tempo di attesa medio, il tempo di turnaround medio ed il tempo di turnaround normalizzato medio per ciascuno dei seguenti algoritmi di scheduling della CPU:
 - Priorità con prelazione (la priorità massima è 5)
 - Round Robin con quanto q = 2ms

• Diagramma di esecuzione: (Priorità con prelazione)

Processo	Tempo di Arrivo	CPU Burst	Priorità
P1	4ms	12ms	2
P2	2ms	5ms	1
P3	7ms	10ms	5
P4	3ms	8ms	4
P5	5ms	9ms	3

• Tempi di esecuzione: (Priorità con prelazione)

• Tempo di Attesa:

$$P1 = 47 - 4 - 12 = 31 \text{ ms}$$

$$P2 = 52 - 2 - 5 = 45 \,\text{ms}$$

$$P3 = 18 - 7 - 10 = 1 \, \text{ms}$$

$$P4 = 24 - 3 - 8 = 13 \, \text{ms}$$

$$P5 = 34 - 5 - 9 = 20 \, \text{ms}$$

Tempo di attesa medio = 22ms

Turnaround

$$P1 = 47 - 4 = 43 \text{ ms}$$

$$P2 = 52 - 2 = 50 \, \text{ms}$$

$$P3 = 18 - 7 = 11 \text{ ms}$$

$$P4 = 24 - 3 = 21 \text{ ms}$$

$$P5 = 34 - 5 = 29 \text{ ms}$$

Turnaround medio = 30,8 ms

• Tempi di esecuzione (Priorità con prelazione)

• Turnaround normalizzato

P1 =
$$(47 - 4)/12 = 43/12 = 3,5 \text{ ms}$$

P2 = $(52 - 2)/5 = 50/5 = 10 \text{ ms}$

$$P3 = (18 - 7)/10 = 11/10 = 1,1 \text{ ms}$$

$$P4 = (24 - 3)/8 = 21/8 = 2,6 \text{ ms}$$

$$P5 = (34 - 5)/9 = 29/9 = 3.2 \text{ ms}$$

Turnaround normalizzato medio = 20,4ms

Throughput

$$X = \frac{5}{52000} *1000 = 0.09$$

5)

Diagramma di esecuzione (Round Robin, q=2ms)

P1				
P2				
P3				
P4				
P5				
	65	66	67	60
	•	00	01	00
П	P3		P1	00 P1
F	Н	P1		P1
	Н			P1
	Н			P1
	Н			P1

Processo	Tempo di Arrivo	CPU Burst	Priorità
P1	4ms	12ms	2
P2	2ms	5ms	1
P3	7ms	10ms	5
P4	3ms	8ms	4
P5	5ms	9ms	3

• Tempi di esecuzione: (Round Robin, q=2ms)

• Tempo di Attesa:

$$P1 = 68 - 4 - 12 = 52 \text{ ms}$$

$$P2 = 30 - 2 - 5 = 23 \, \text{ms}$$

$$P3 = 65 - 7 - 10 = 48 \, \text{ms}$$

$$P4 = 48 - 3 - 8 = 37 \, \text{ms}$$

$$P5 = 62 - 5 - 9 = 48 \, \text{ms}$$

Tempo di attesa medio = 41,6ms

Turnaround

$$P1 = 68 - 4 = 64 \text{ ms}$$

$$P2 = 30 - 2 = 28 \, \text{ms}$$

$$P3 = 65 - 7 = 58 \, \text{ms}$$

$$P4 = 48 - 3 = 45 \, \text{ms}$$

$$P5 = 62 - 5 = 57 \, \text{ms}$$

Turnaround medio = 50,4ms

• Tempi di esecuzione: (Round Robin, q=2ms)

• Turnaround normalizzato

$$P4 = (48 - 3)/8 = 45/8 = 5,6 \text{ ms}$$

$$P5 = (62 - 5)/9 = 57/9 = 6,3 \text{ ms}$$

Turnaround normalizzato medio = 28,6ms

Throughput

$$X = \frac{5}{68000} *1000 = 0.07$$

Esercizio 2

• Si considerino i seguenti processi, attivi in un sistema multiprogrammato:

Processo	Tempo di Arrivo	CPU Burst
P1	2ms	10ms
P2	4ms	4ms
Р3	10ms	6ms
P4	14ms	8ms
P5	18ms	6ms

- Assumendo che il context switch richieda 2 ms, fornire il diagramma di esecuzione, il tempo medio di attesa e completamento per lo scheduling:
 - FCFS
 - SJF (con prelazione)
 - RR (q=4 ms)

• Diagramma di esecuzione: (FCFS)

Processo	Tempo di Arrivo	CPU Burst
P1	2ms	10ms
P2	4ms	4ms
P3	10ms	6ms
P4	14ms	8ms
P5	18ms	6ms

Tempi di esecuzione: (FCFS)

• Tempo di Attesa:

$$P1 = 12 - 10 - 2 = 0 \text{ ms}$$

$$P2 = 18 - 4 - 4 = 10 \, \text{ms}$$

$$P3 = 26 - 6 - 10 = 10 \text{ ms}$$

Tempo di attesa medio = 10,8ms

• Turnaround:

$$P4 = 36 - 14 = 22 \text{ ms}$$

$$P5 = 44 - 18 = 26 \text{ ms}$$

Turnaround medio = ...

• Tempi di esecuzione: (FCFS)

• Turnaround Normalizzato:

Tumaround Normalizzato Medio:

• Througput:

• Diagramma di esecuzione: (SJF)

Processo	Tempo di Arrivo	CPU Burst
P1	2ms	10ms
P2	4ms	4ms
P3	10ms	6ms
P4	14ms	8ms
P5	18ms	6ms

• Tempi di esecuzione: (SJF)

• Tempo di Attesa:

$$P1 = 36 - 10 - 2 = 22 \text{ ms}$$

$$P2 = 10 - 4 - 4 = 2 \, \text{ms}$$

$$P3 = 18 - 6 - 10 = 2 \text{ ms}$$

$$P5 = 26 - 6 - 18 = 2 \text{ ms}$$

Tempo di attesa medio = 10,4ms

• Turnaround:

$$P1 = 36 - 2 = 34 \text{ ms}$$

$$P2 = 10 - 4 = 6 \text{ ms}$$

$$P3 = 18 - 10 = 8 \text{ ms}$$

$$P4 = 46 - 14 = 32 \text{ ms}$$

Turnaround medio = ...

• Tempi di esecuzione: (SJF)

• Turnaround Normalizzato:

Tumaround Normalizzato Medio:

• Througput:

Diagramma di esecuzione (Round Robin, q=4ms)

Processo	Tempo di Arrivo	CPU Burst
P1	2ms	10ms
P2	4ms	4ms
P3	10ms	6ms
P4	14ms	8ms
P5	18ms	6ms

• Tempi di esecuzione: (Round Robin, q=4ms)

• Tempo di Attesa:

$$P1 = 40 - 10 - 2 = 28 \text{ ms}$$

$$P2 = 12 - 4 - 4 = 4 \text{ ms}$$

Tempo di attesa medio = 23,6ms

• Turnaround:

$$P1 = 40 - 2 = 38 \text{ ms}$$

$$P2 = 12 - 4 = 8 \text{ ms}$$

$$P3 = 44 - 10 = 34 \text{ ms}$$

$$P4 = 50 - 14 = 35 \text{ ms}$$

$$P5 = 54 - 18 = 36 \text{ ms}$$

Turnaround medio = ...

• Tempi di esecuzione: (Round Robin, q=4ms)

• Turnaround Normalizzato:

Tumaround Normalizzato Medio:

• Througput:

Esercizio 3

• Si considerino i seguenti processi, attivi in un sistema multiprogrammato:

Processo	Tempo di Arrivo	CPU Burst	Priorità
P1	4ms	6ms	3
P2	9ms	14ms	2
P3	6ms	12ms	1
P4	6ms	8ms	5
P5	5ms	16ms	4

- Supponendo che il cambio di contesto sia 3ms, si mostri l'ordine di esecuzione dei processi
 e quanto vale il tempo di attesa medio, il tempo di turnaround medio ed il tempo di
 turnaround normalizzato medio per ciascuno dei seguenti algoritmi di scheduling della
 CPU:
 - SJF con prelazione
 - Round Robin con priorità e quanto q = 3ms