1 Frame 12 – Functions of Complex Variables

1.1 Functions

If S is a set of complex numbers, then a **function** f is a rule that assigns a complex number w to each z in S. The number w is called the **value** of f at z. We denote it as

$$w = f(z)$$

The set S is called the **domain of definition** of f. Note that we need both a rule (f) and a domain (S) for a function to be well defined.

Suppose that w = u + iv and z = x + iy. Then,

$$u + iv = f(x + iy)$$

Then, we can express f(z) as a pair of real functions of x and y:

$$f(z) = u(x, y) + iv(x, y)$$

Alternatively, we could use polar coordinates to write

$$u + iv = f(re^{i\theta})$$

so

$$f(z) = u(r, \theta) + iv(r, \theta)$$

Example: the function $f(z) = z^2$ can be written as

$$f(x+iy) = (x+iy)^2$$
$$= (x^2 - y^2) + i2xy$$

so

$$u(x,y) = x^2 - y^2$$
$$v(x,y) = 2xy$$

In polar coordinates,

$$f(x+iy) = (re^{i\theta})^2$$
$$= r^2 e^{i2\theta}$$
$$= r^2 \cos 2\theta + ir^2 \sin 2\theta$$

so

$$u(r, \theta) = r^2 \cos 2\theta$$
$$v(r, \theta) = r^2 \sin 2\theta$$

1.2 Real-Valued Functions

We say that f is a **real-valued function** if v is zero everywhere.

Example: one real-valued function is

$$f(z) = |z|^2 = x^2 + y^2 + i0$$

1.3 Polynomials

If n is a non-negative integer and $a_0, a_1, a_2, \ldots, a_n$ are complex numbers with $a_n \neq 0$, then the function

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

is a **polynomial** of degree n. Note that this sum has a finite number of terms and that the domain of definition is the entire z plane.

As in real numbers, a rational function is a quotient of two polynomials:

$$R(z) = \frac{P(z)}{Q(z)}$$

A rational function is defined everywhere that $Q(z) \neq 0$.

1.4 Multi-Valued Functions

A generalization of a function is a rule that assigns more than one value to a point z. These **multiple-valued functions** are usually studied by taking one of the possible values at each point and constructing a single-valued function.

Example: we know that we can write

$$z^{1/2} = \pm \sqrt{r}e^{i\theta/2}$$

where we denoted $-\pi < \theta \le \pi$ as the **principal value** of argz. To turn this into a single valued function, we can choose the positive value of r and write

$$f(z) = \sqrt{r}e^{i\theta/2}$$

Then, f is well-defined on the entire plane.

1.5 Exercises

1(a) The function

$$f(z) = \frac{1}{z^2 + 1}$$

is defined everywhere except where $z^2 + 1 = 0$; ie:

$$z \neq \pm i$$

1(b) The function

$$f(z) = \operatorname{Arg}\left(\frac{1}{z}\right)$$

is defined wherever $\frac{1}{z}$ is defined:

$$z \neq 0$$

1(c) The function

$$f(z) = \frac{z}{z + \bar{z}}$$

can be written as

$$f(x,y) = \frac{x+iy}{(x+iy) + (x-iy)} = \frac{x+iy}{2x} = \frac{1}{2} + i\frac{y}{x}$$

so the domain is

$$Re(z) \neq 0$$

1(d) The function

$$f(z) = \frac{1}{1 - |z|^2}$$

is equivalent to

$$f(r,\theta) = \frac{1}{1 - r^2}$$

so the domain is

$$r \neq 1$$

2 Substituting z = x + iy gives

$$f(x,y) = (x+iy)^3 + (x+iy) + 1$$

= $x^3 + 3x^2(iy) + 3x(iy)^2 + (iy)^3 + x + iy + 1$
= $(x^3 - 3xy^2 + x + 1) + i(3x^2y - y^3 + y)$

so

$$u(x,y) = x^3 - 3xy^2 + x + 1$$
$$v(x,y) = 3x^2y - y^3 + y$$

3 Using the two expressions

$$x = \frac{z + \bar{z}}{2}$$
$$y = \frac{z - \bar{z}}{2i}$$

gives

$$\begin{split} f(z) &= \left(\frac{z+\bar{z}}{2}\right)^2 - \left(\frac{z-\bar{z}}{2i}\right)^2 - 2\frac{z-\bar{z}}{2i} \\ &+ i \left[2\frac{z+\bar{z}}{2}\left(1 - \frac{z-\bar{z}}{2i}\right)\right] \\ &= \frac{1}{4}(z^2 + 2z\bar{z} + \bar{z}^2 + z^2 - 2z\bar{z} + \bar{z}^2) + iz - i\bar{z} \\ &+ i \left[z + \bar{z} + \frac{iz^2}{2} - \frac{i\bar{z}^2}{2}\right] \\ &= \frac{1}{2}(z^2 + \bar{z}^2) + 2iz - \frac{iz^2}{2} + \frac{\bar{z}^2}{2} \\ &= \bar{z}^2 + 2iz \end{split}$$

4 Using

$$z = re^{i\theta}$$

the function can be written as

$$\begin{split} f(z) &= re^{i\theta} + \frac{1}{re^{i\theta}} \\ &= re^{i\theta} + \frac{1}{r}e^{-i\theta} \\ &= (r + \frac{1}{r})\cos\theta + i(r - \frac{1}{r})\sin\theta \end{split}$$