Support Vector Machines

COSC 410: Applied Machine Learning

Spring 2022

Prof. Apthorpe

Outline

- Linear SVM Intuition
- SVM Model Notation
- Linear SVM
 - Model & Prediction
 - Training
- Non-Linear SVMs
 - Kernel Trick
- Multiclass SVM
- Practical Use of SVMs

• Ideally, training data are linearly separable

An N-dimensional line can divide the data by class

Binary classification! More on multiclass later...

- Ideally, training data are linearly separable
 - An N-dimensional line can divide the data by class
 - Predict new examples based on which side of the line they are located

- Ideally, training data are linearly separable
 - An N-dimensional line can divide the data by class
 - Predict new examples based on which side of the line they are located

Infinite possible lines separate this data.

Which is the best line to draw?

- Ideally, training data are linearly separable
 - An N-dimensional line can divide the data by class
 - Predict new examples based on which side of the line they are located

Training Models Review

- Model training is a minimization process
 - ullet Training data X of individual feature vectors ${f x}$
 - Training labels y
 - Chosen error function E()
 - Model $h_{\theta}()$ (features $X \rightarrow$ predicted labels \hat{y})
 - Parameters: $oldsymbol{ heta} = [heta_0, heta_1, heta_2]$

• GOAL: Find model parameters that minimize $E(h_{m{ heta}}(\mathbf{X}),\mathbf{y})$ actual labels

Training Models: SVM Notation

- Model training is a minimization process
 - Training data X of individual feature vectors X
 - Training labels y
 - Chosen error function E()
 - Model $h_{\mathbf{w},b}()$ (features $\mathbf{X} \rightarrow \text{predicted labels } \mathbf{\hat{y}})$
 - Parameters: Weights vector $\mathbf{w} = [w_1, w_2, w_3]$ and bias scalar b

• GOAL: Find model parameters that minimize $E(h_{\mathbf{w},b}(\mathbf{X},\mathbf{y}))$

- Predicted labels are a piecewise linear combination of features
 - Model parameters: weights $\mathbf{w} = [w_1, w_2, w_3, \dots]$ and bias b
 - For **each** example $\mathbf{x} = [x_1, x_2, x_3, \dots]$

Predicted label
$$\hat{y} = \begin{cases} 0 & \text{if} \quad w_1x_1 + w_2x_2 + \dots + b < 0 \\ 1 & \text{if} \quad w_1x_1 + w_2x_2 + \dots + b \geq 0 \end{cases}$$
 Example is "above" the decision line Example is "below" the decision line

- Predicted labels are a piecewise linear combination of features
 - Model parameters: weights $\mathbf{w} = [w_1, w_2, w_3, \dots]$ and bias b
 - For **each** example $\mathbf{x} = [x_1, x_2, x_3, \dots]$

Predicted label
$$\hat{y} = \begin{cases} 0 & \text{if} \quad w_1x_1 + w_2x_2 + \dots + b < 0 \\ 1 & \text{if} \quad w_1x_1 + w_2x_2 + \dots + b \geq 0 \end{cases}$$
 Example is "below" the decision line.

$$= \begin{cases} 0 & \text{if } \mathbf{w} \cdot \mathbf{x} + b < 0 \\ 1 & \text{if } \mathbf{w} \cdot \mathbf{x} + b \ge 0 \end{cases} = \begin{cases} 0 & \text{if } \mathbf{w}^{\mathsf{T}} \mathbf{x} + b < 0 \\ 1 & \text{if } \mathbf{w}^{\mathsf{T}} \mathbf{x} + b \ge 0 \end{cases}$$

• Is **X** "above" or "below" the decision line?

• Is X "above" or "below" the decision line?

• To find out, *project* **x** onto the line's normal vector **w**

• Is X "above" or "below" the decision line?

• To find out, *project* **x** onto the line's normal vector **w**

• This is the magnitude of X in the direction of W

- Is X "above" or "below" the decision line?
- To find out, *project* **x** onto the line's normal vector **w**

- This is the magnitude of X in the direction of W
- If **positive**, **X** is **above** the decision line
- If **negative**, **x** is **below** the decision line

- Is X "above" or "below" the decision line?
- To find out, *project* **x** onto the line's normal vector **w**

- ullet This is the magnitude of ${f x}$ in the direction of ${f w}$
- If positive, x is above the decision line
- If **negative**, **x** is **below** the decision line

- Is X "above" or "below" the decision line?
- To find out, *project* **x** onto the line's normal vector **w**

- This is the magnitude of **X** in the direction of **W**
- If positive, x is above the decision line
- If **negative**, **x** is **below** the decision line

- Is X "above" or "below" the decision line?
- To find out, *project* **x** onto the line's normal vector **w**

- This is the magnitude of X in the direction of W
- If positive, x is above the decision line
- If **negative**, **x** is **below** the decision line
- If best decision line isn't through origin, add bias \boldsymbol{b}

Predicted labels

$$\hat{y} = \begin{cases} 0 & \text{if } \mathbf{w}^\mathsf{T} \mathbf{x} + b < 0 \\ 1 & \text{if } \mathbf{w}^\mathsf{T} \mathbf{x} + b \geq 0 \end{cases}$$
 Example is "below" the decision line Example is "above" the decision line

- What about the margin?
 - Important for **training**, not prediction

What if data are not linearly sepai ____.

Slack variable ζ accounts for non-separable data in a **soft-margin SVM**

• Goal pt. 1: Find ${f w}$ and b such that

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b \ge 1 - \zeta$$

Slack variable ζ accounts for non-separable data in a **soft-margin SVM**

• Goal pt. 1: Find $\mathbf w$ and b such that

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b \ge 1 - \zeta$$

for all training examples in "1" class AND

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b \le -1 + \zeta$$

Slack variable ζ accounts for non-separable data in a **soft-margin SVM**

• Goal pt. 1: Find $\mathbf w$ and b such that

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b \ge 1 - \zeta$$

for all training examples in "1" class AND

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b \le -1 + \zeta$$

- Goal pt. 2: Maximize the width of the margin
 - Equivalent to minimizing the magnitude of w

Slack variable ζ accounts for non-separable data in a $\operatorname{\bf soft-margin}$ $\operatorname{\bf SVM}$

• Goal pt. 1: Find $\mathbf w$ and b such that

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b \ge 1 - \zeta$$

for all training examples in "1" class AND 📃

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b \le -1 + \zeta$$

- Goal pt. 2: Maximize the width of the margin
 - Equivalent to minimizing the magnitude of w
- Goal pt. 3: Minimize sum of slack variables ζ to minimize incorrect predictions on training data

• Goal pt. 1: Find \mathbf{w} and b such that

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b \ge 1 - \zeta$$

for all training examples in "1" class AND

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b \le -1 + \zeta$$

for all training examples in "0" class

- Goal pt. 2: Maximize the width of the margin
 - Equivalent to minimizing the magnitude of w
- Goal pt. 3: Minimize sum of slack variables ζ to minimize incorrect predictions on training data

• Option 1: Use quadratic programming (QP) solver

• Goal pt. 1: Find ${f w}$ and b such that

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b \ge 1 - \zeta$$

for all training examples in "1" class AND

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b \le -1 + \zeta$$

- Goal pt. 2: Maximize the width of the margin
 - Equivalent to minimizing the magnitude of w
- Goal pt. 3: Minimize sum of slack variables ζ to minimize incorrect predictions on training data

- Option 1: Use quadratic programming (QP) solver
- Option 2: Minimize error function with gradient descent

Non-Linear SVM

Non-Linear SVM

Many datasets derive from nonlinear phenomena

Poor match for linear models

- Naïve option:
 - Add polynomial features to data
 - BUT produces too many features for high-degree polynomials

FITS A LINEAR MODE

 Many non-linear datasets become linearly separable if projected to higher dimensional spaces

 Many non-linear datasets become linearly separable if projected to higher dimensional spaces

- BUT resulting projections often have too many features
 - Computationally infeasible training

- Re-derive SVM training minimization problem into dual format
 - See textbook for overview of math
 - The contraction of the features a similarity metric between pairs of features, not the features themselves

- A **kernel function** computes the similarity between vectors in a higher dimensional space...without needing to project the vectors into that space!!!
 - Plug-and-play kernel functions into linear SVM to train a non-linear model

d-degree polynomial kernel

$$K(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1^\mathsf{T} \mathbf{x}_2)^d$$

- Similarity metric between vectors with d-degree polynomial features
- No need to compute the features themselves!

Multiclass SVM

Multiclass SVM

- One-versus-rest
 - For N classes, train N SVMs (each binary...one class versus all others)

- One-versus-one
 - For N classes, train $\binom{N}{2}$ classifiers (all pairwise combinations)

- Both
 - Predict new data using all models
 - Keep prediction that is furthest from its decision line

Practical Use of SVMs

★ "Small" datasets

- Not enough data to train a neural network
- 1000s to 100,000s of examples
 - Very approximate limit → depends heavily on learning task

- Support vector regression
 - Fit data inside margin instead of outside margin
 - See textbook for more

Programming Practice

SVM.ipynb

Questions?