CS 6375 ASSIGNMENT 3

Names of students in your group: Aaryan Singh Chauhan (axc230019) Nikunj Gohil (ndg220000)

Number of free late days used: 0

Note: You are allowed a <u>total</u> of 4 free late days for the <u>entire semester</u>. You can use at most 2 for each assignment. After that, there will be a penalty of 10% for each late day.

Please list clearly all the sources/references that you have used in this assignment.

	MARUTI
	PART 1
	PART 1
	1602 - 14141-1613) ··
(1:1	Error of each model: B; (x) = f(x) - h; (x)
	Expected squared error: $E(Ei(n)^2) = E(Ef(n) - hi(x)]^2$
	Average value of Expected squared error: Easy: 1/2 (Ei(x)2)
	Aggregrate model: hagg (n): 1 2 hi(m)
	Error of Eogg(n) = E[3] Zhi(n) - F(n) 32] Aggregate model E[] M Z Ei(n) 32]
7157	P.T: Eagg: (YM) Eavg
	Eagg: E[] [Min (w) - A(m) }]
	= [M2 [[h] (n) - H(n) }]
	[M2) E[{ 5 hi(n) - f(n) } 2]
	$\vdots \mathcal{E}(an + b) = \alpha \mathcal{E}(n) + b$

	Date
	MARUTI
	= 1 E[] = [(n)]] -
	(: (- (hi(n) - f(n))2 = (f(n) - hi(n))2 = Gi(n)2)
	(m) (m) [E[cim²]
	(: E[{ [E C E E E C E E E E
	+ Em-1(m) Em (n)]]
	Criven assumption: $Ei(n)E_j(n)=0$ \Rightarrow $E[\{E(n)E_j(n)\}]^2 = E[(E_i^{-1}(n)++E_m^{-1}(n)]]$
	= E[G, [L] + + E[E] (m)
	Eagy = 1 Eary (: Eary: 1 EE[E; (n)]
	1 L 10 3 L 2 2 M J L M
2.	Civen Jensen's inequality:
	P(Exizi) & Ex; P(ni)
	Let us défine a function $f(n) = E[n^2]$,
	When $n = \sum_{i=1}^{m} \frac{1}{m} \operatorname{Ei}(n)$,
	f(m) = f(\frac{\times 1 Ci(x)}{1 = E \frac{\times 1}{1 = E \tagg}.
	(: 2 ani = azni; Eagg = E[?] 2 ci(r)]]
	Using the above inequality, Eagg = E Gi²(N)

Eagg < In TELEIN -'. Eagg & Eang (: Eang: 1] [E[Ei](W] aiven. 12 an (i) = D+ (i) y e-d+h+(i) y*(i)
2+ $\frac{e^{-\alpha t h_{t}(i)} y_{t}^{(i)}}{2t} \cdot D_{t}(i)$ $\frac{e^{-\alpha t h_{t}(i)} y_{t}^{(i)}}{2t} = \frac{e^{-\alpha t h_{t}(i)} y_{t}^{(i)}}{2t} \cdot D_{t}^{-1}(i)$ and if we continue expanding D++(i) = (e-x+h+(i)yil) (e-x+h,(i)y,(i) D,(i) Pth (i) = e-yiotzatheli) (I) (=Di=YN Let f(i) = Z xtht(i) Total training error is the average of misclassified points

i. Etrain = 1 7 31 if yili) \$\frac{1}{h}(i)\$ = 1 2 } 1 if y(i)f(i) ≤ 0 = 1 2 e - y ci) f ci) 1: if 2 50 > e-2 21

From (), D++1(i) = 1 e-yi+(i) N TT Z+ · . f.1 e-y;fai)= Dth((i) TT 2t. · Efrain 2 7 Pt+1 (i) 172t Etrain = IT 2t (: Dett is distribution 2t is the normalizing factor,

2t = 2 Itil . Se - at it ht(i) = yi
t eat it ht(i) # yi = I De Ci) e-dt + IDe Ci) ext = e-at 2 Deli) + eat 2 Deli) $= e^{-\alpha t} (1 - \epsilon_t) + e^{\alpha t} \epsilon_t$ $(:: \epsilon_t = 2 D_t(i) h_t(i) \neq y(i)$ and similarly 1. 2+ = 2 \(\xi \) \(\(\) \(\ 2+ = 2/(1-8+)(1-1+ 1) to minimize the error). (= 1- Tt). 2+ = J 1 - 48+2 : 2+ 4 e-272 (': 1+x 4ex) :. Etrain = 17 24 & 17 e - 207 => Etrain < e tol