Arjan Cornelissen

IRIF. Paris. France

Non-permanent's seminar?

Arjan Cornelissen

IRIF. Paris. France

Non-permanent's seminar? – Doc-postdoc seminar?

Arjan Cornelissen

IRIF. Paris. France

Non-permanent's seminar? – Doc-postdoc seminar? – Junior seminar?

Arjan Cornelissen

IRIF. Paris. France

Non-permanent's seminar? – Doc-postdoc seminar? – Junior seminar? – $P \neq NP$ seminar?

Arjan Cornelissen

IRIF. Paris. France

Non-permanent's seminar? – Doc-postdoc seminar? – Junior seminar? – $P \neq NP$ seminar? – ???

Arjan Cornelissen

IRIF. Paris. France

Non-permanent's seminar? – Doc-postdoc seminar? – Junior seminar? – $P \neq NP$ seminar? – ???

Arjan Cornelissen

IRIF, Paris, France

April 27th, 2023 - (Koningsdag / King's day)

Overview

Plan for today:

- Quantum algorithms
- @ Grover's algorithm
- Application: collision finding

Ingredients:

• State space – \mathcal{H} .

- State space \mathcal{H} .
- ② Initial state $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.

- State space \mathcal{H} .
- ② Initial state $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.
- **③** Operations unitary operators $U_1, \ldots, U_T \in \mathcal{U}(\mathcal{H})$. $|\psi_0\rangle \stackrel{U_1}{\mapsto} |\psi_1\rangle \stackrel{U_2}{\mapsto} |\psi_2\rangle \stackrel{U_3}{\mapsto} \cdots \stackrel{U_T}{\mapsto} |\psi_T\rangle$.

- State space H.
- 2 Initial state $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.
- **③** Operations unitary operators $U_1, \ldots, U_T \in \mathcal{U}(\mathcal{H})$. $|\psi_0\rangle \stackrel{U_1}{\mapsto} |\psi_1\rangle \stackrel{U_2}{\mapsto} |\psi_2\rangle \stackrel{U_3}{\mapsto} \cdots \stackrel{U_T}{\mapsto} |\psi_T\rangle$.

- State space \mathcal{H} .
- 2 Initial state $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.
- ① Operations unitary operators $U_1, \ldots, U_T \in \mathcal{U}(\mathcal{H})$. $|\psi_0\rangle \stackrel{U_1}{\mapsto} |\psi_1\rangle \stackrel{U_2}{\mapsto} |\psi_2\rangle \stackrel{U_3}{\mapsto} \cdots \stackrel{U_T}{\mapsto} |\psi_T\rangle$.

- State space \mathcal{H} .
- 2 Initial state $|\psi_0\rangle \in \mathcal{H}$, $||\psi_0\rangle|| = 1$.
- **③** Operations unitary operators $U_1, \ldots, U_T \in \mathcal{U}(\mathcal{H})$. $|\psi_0\rangle \stackrel{U_1}{\mapsto} |\psi_1\rangle \stackrel{U_2}{\mapsto} |\psi_2\rangle \stackrel{U_3}{\mapsto} \cdots \stackrel{U_T}{\mapsto} |\psi_T\rangle$.
- **Measurement** − $S_1, ..., S_m \subseteq \mathcal{H}$ s.t. $\mathcal{H} = \bigoplus_{i=1}^m S_i$.

Ingredients:

- State space \mathcal{H} .
- ② Initial state $-|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.
- **Operations** unitary operators $U_1, \ldots, U_T \in \mathcal{U}(\mathcal{H})$. $|\psi_0\rangle \stackrel{U_1}{\mapsto} |\psi_1\rangle \stackrel{U_2}{\mapsto} |\psi_2\rangle \stackrel{U_3}{\mapsto} \cdots \stackrel{U_T}{\mapsto} |\psi_T\rangle$.
- **Measurement** − $S_1, ..., S_m \subseteq \mathcal{H}$ s.t. $\mathcal{H} = \bigoplus_{i=1}^m S_i$.

Result: Probability of outcome $j \in \{1, ..., m\}$: $\mathbb{P}[j] = \|\Pi_{S_i} | \psi_T \rangle\|^2$.

Problem: (Unstructured search)

1 Input: $x \in \{0,1\}^n$.

Problem: (Unstructured search)

- **1 Input**: $x \in \{0,1\}^n$.
- Output:
 - If $x \neq 0^n$, output $j \in \{1, ..., n\}$ s.t. $x_i = 1$.
 - If $x = 0^n$, output "NO SOLUTION".

Problem: (Unstructured search)

- **1** Input: $x \in \{0,1\}^n$.
- Output:
 - If $x \neq 0^n$, output $j \in \{1, ..., n\}$ s.t. $x_i = 1$.
 - If $x = 0^n$, output "NO SOLUTION".

Classical access model: $j \mapsto x_i$.

Problem: (Unstructured search)

- **1** Input: $x \in \{0,1\}^n$.
- Output:
 - If $x \neq 0^n$, output $j \in \{1, ..., n\}$ s.t. $x_i = 1$.
 - If $x = 0^n$, output "NO SOLUTION".

Classical access model: $j \mapsto x_i$.

Classical algorithm:

Query all bits, stop when you find a 1.

$$n$$
 bits

Problem: (Unstructured search)

- **1** Input: $x \in \{0,1\}^n$.
- Output:
 - If $x \neq 0^n$, output $j \in \{1, ..., n\}$ s.t. $x_j = 1$.
 - If $x = 0^n$, output "NO SOLUTION".

Classical access model: $j \mapsto x_i$.

Classical algorithm:

• Query all bits, stop when you find a 1.

$$\underbrace{0 \cdot \cdots \cdot}_{n \text{ bits}}$$

Problem: (Unstructured search)

- **1** Input: $x \in \{0,1\}^n$.
- Output:
 - If $x \neq 0^n$, output $j \in \{1, ..., n\}$ s.t. $x_i = 1$.
 - If $x = 0^n$, output "NO SOLUTION".

Classical access model: $j \mapsto x_i$.

Classical algorithm:

• Query all bits, stop when you find a 1.

$$\underbrace{00\cdots}_{n \text{ bits}}$$

Problem: (Unstructured search)

- **1** Input: $x \in \{0,1\}^n$.
- Output:
 - If $x \neq 0^n$, output $j \in \{1, ..., n\}$ s.t. $x_j = 1$.
 - If $x = 0^n$, output "NO SOLUTION".

Classical access model: $j \mapsto x_i$.

Classical algorithm:

• Query all bits, stop when you find a 1.

$$\underbrace{001\cdots}_{n \text{ bits}}$$

Problem: (Unstructured search)

- **1** Input: $x \in \{0,1\}^n$.
- Output:
 - If $x \neq 0^n$, output $j \in \{1, ..., n\}$ s.t. $x_i = 1$.
 - If $x = 0^n$, output "NO SOLUTION".

Classical access model: $j \mapsto x_i$.

Classical algorithm:

Query all bits, stop when you find a 1.

$$\underbrace{001\cdots}_{n \text{ bits}}$$

2 Worst case: n queries.

Problem: (Unstructured search)

- **1** Input: $x \in \{0,1\}^n$.
- Output:
 - If $x \neq 0^n$, output $j \in \{1, \dots, n\}$ s.t. $x_i = 1$.
 - If $x = 0^n$, output "NO SOLUTION".

Classical access model: $j \mapsto x_j$.

Classical algorithm:

Query all bits, stop when you find a 1.

$$\underbrace{001\cdots}_{n \text{ bits}}$$

Worst case: n queries.

Quantum access model:

$$O_{x} = \begin{bmatrix} O_{x} : |j\rangle \mapsto (-1)^{x_{j}} |j\rangle. \\ O_{x} = \begin{bmatrix} (-1)^{x_{1}} & 0 & \cdots & 0 \\ 0 & (-1)^{x_{2}} & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & (-1)^{x_{n}} \end{bmatrix}.$$

Problem: (Unstructured search)

- **1** Input: $x \in \{0,1\}^n$.
- Output:
 - If $x \neq 0^n$, output $j \in \{1, \dots, n\}$ s.t. $x_i = 1$.
 - If $x = 0^n$, output "NO SOLUTION".

Classical access model: $j \mapsto x_j$.

Classical algorithm:

Query all bits, stop when you find a 1.

$$\underbrace{001\cdots}_{n \text{ bits}}$$

2 Worst case: n queries.

Quantum access model:

 $O_{x} = \begin{bmatrix} O_{x} : |j\rangle \mapsto (-1)^{x_{j}} |j\rangle. \\ O_{x} = \begin{bmatrix} (-1)^{x_{1}} & 0 & \cdots & 0 \\ 0 & (-1)^{x_{2}} & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & (-1)^{x_{n}} \end{bmatrix}.$

2 Example: $x = 01 \in \{0, 1\}^2$:

$$O_{ imes} = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} \quad rac{12}{12} \quad 12$$

Problem: (Unstructured search)

- **1** Input: $x \in \{0,1\}^n$.
- Output:
 - If $x \neq 0^n$, output $j \in \{1, \dots, n\}$ s.t. $x_i = 1$.
 - If $x = 0^n$, output "NO SOLUTION".

Classical access model: $j \mapsto x_j$.

Classical algorithm:

Query all bits, stop when you find a 1.

$$\underbrace{001\cdots}_{n \text{ bits}}$$

2 Worst case: n queries.

Quantum access model:

$$O_{x} = \begin{bmatrix} O_{x} : |j\rangle \mapsto (-1)^{x_{j}} |j\rangle. \\ O_{x} = \begin{bmatrix} (-1)^{x_{1}} & 0 & \cdots & 0 \\ 0 & (-1)^{x_{2}} & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & (-1)^{x_{n}} \end{bmatrix}.$$

2 Example: $x = 01 \in \{0, 1\}^2$:

$$O_{ ext{ iny }} = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} \quad rac{1}{2} \langle 1 \rangle \langle$$

Quantum algorithm: of the form

$$|\psi_0\rangle \stackrel{O_{\chi}}{\mapsto} |\psi_1\rangle \stackrel{U_2}{\mapsto} |\psi_2\rangle \stackrel{O_{\chi}}{\mapsto} |\psi_3\rangle \stackrel{U_4}{\mapsto} \cdots \stackrel{U_7}{\mapsto} |\psi_T\rangle.$$

Grover's algorithm [Gro'96] (1/2)

Grover's algorithm [Gro'96] (1/2)

1 Assumption: |x| = 1.

- **1** Assumption: |x| = 1.
- **2** *Example:* when $x = 1000 \in \{0, 1\}^4$:

$$|\psi_0
angle := rac{1}{\sqrt{4}} egin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

- Assumption: |x| = 1.
- **2 Example**: when $x = 1000 \in \{0, 1\}^4$:

$$|\psi_0
angle := rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix}$$

- Assumption: |x| = 1.
- **2 Example**: when $x = 1000 \in \{0, 1\}^4$:

$$|\psi_0
angle := rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix} = rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} + rac{1}{\sqrt{4}} egin{bmatrix} 0 \ 1 \ 1 \ 1 \ 1 \end{bmatrix}$$

$$O_{\mathsf{x}} = egin{bmatrix} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- **1** Assumption: |x| = 1.
- **2** Example: when $x = 1000 \in \{0, 1\}^4$:

$$|\psi_0
angle := rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix} = rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} + rac{1}{\sqrt{4}} egin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix} = rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} + \sqrt{rac{3}{4}} \cdot rac{1}{\sqrt{3}} egin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix}, \quad O_x = egin{bmatrix} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- Assumption: |x|=1.
- **Example:** when $x = 1000 \in \{0, 1\}^4$:

$$|\psi_0
angle := rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 1 \ 1 \ 1 \ 1 \end{bmatrix} = rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} + rac{1}{\sqrt{4}} egin{bmatrix} 0 \ 1 \ 1 \ 1 \ 1 \end{bmatrix} = rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} + \sqrt{rac{3}{4}} \cdot rac{1}{\sqrt{3}} egin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix}, \quad O_x = egin{bmatrix} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$O_{\mathsf{x}} = egin{bmatrix} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}.$$

1 In general: We can write $x_s = 1$. Then:

$$|\psi_0\rangle := \frac{1}{\sqrt{n}} \sum_{j=1}^n |j\rangle$$

$$O_{\scriptscriptstyle X}:\ket{j}\mapsto (-1)^{\scriptscriptstyle X_j}\ket{j}$$

- Assumption: |x|=1.
- **Example:** when $x = 1000 \in \{0, 1\}^4$:

$$|\psi_0
angle := rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix} = rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} + rac{1}{\sqrt{4}} egin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix} = rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} + \sqrt{rac{3}{4}} \cdot rac{1}{\sqrt{3}} egin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix}, \quad O_{\scriptscriptstyle X} = egin{bmatrix} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}.$$

1 In general: We can write $x_s = 1$. Then:

$$|\psi_0
angle := rac{1}{\sqrt{n}} \sum_{j=1}^n |j
angle = rac{1}{\sqrt{n}} |s
angle + rac{1}{\sqrt{n}} \sum_{\substack{j=1 \ j
eq s}}^n |j
angle$$

 $O_{\times}:|j\rangle\mapsto (-1)^{x_j}|j\rangle$

- **1** Assumption: |x| = 1.
- **Example:** when $x = 1000 \in \{0, 1\}^4$:

$$|\psi_0
angle := rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix} = rac{1}{\sqrt{4}} egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} + rac{1}{\sqrt{4}} egin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix} = rac{1}{\sqrt{4}} egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} + \sqrt{rac{3}{4}} \cdot rac{1}{\sqrt{3}} egin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix}, \quad O_x = egin{bmatrix} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}.$$

1 In general: We can write $x_s = 1$. Then:

In general: We can write
$$x_s=1$$
. Then:
$$|\psi_0\rangle:=\frac{1}{\sqrt{n}}\sum_{j=1}^n|j\rangle=\frac{1}{\sqrt{n}}|s\rangle+\frac{1}{\sqrt{n}}\sum_{\substack{j=1\\j\neq s}}^n|j\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{\frac{n-1}{n}}\cdot\underbrace{\frac{O_\chi:|j\rangle\mapsto(-1)^{\chi_j}|j\rangle}{\sqrt{n-1}\sum_{\substack{j=1\\j\neq s}}^n|j\rangle}}_{|s^\perp\rangle}.$$

- **1** Assumption: |x| = 1.
- **Example:** when $x = 1000 \in \{0, 1\}^4$:

$$|\psi_0\rangle := \frac{1}{\sqrt{4}} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \frac{1}{\sqrt{4}} \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} + \frac{1}{\sqrt{4}} \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} = \frac{1}{\sqrt{4}} \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} + \sqrt{\frac{3}{4}} \cdot \frac{1}{\sqrt{3}} \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \quad O_{\mathsf{x}} = \begin{bmatrix} -1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1 \end{bmatrix}.$$

1 In general: We can write $x_s = 1$. Then:

In general: We can write
$$x_s = 1$$
. Then:
$$|s^{\downarrow}\rangle = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} |j\rangle = \frac{1}{\sqrt{n}} |s\rangle + \frac{1}{\sqrt{n}} \sum_{\substack{j=1 \ j \neq s}}^{n} |j\rangle = \frac{1}{\sqrt{n}} |s\rangle + \sqrt{\frac{n-1}{n}} \cdot \underbrace{\frac{1}{\sqrt{n-1}} \sum_{\substack{j=1 \ j \neq s}}^{n} |j\rangle}_{|s^{\perp}\rangle}.$$
Conclusion:

Conclusion:

$$O_x \ket{s} = -\ket{s} \text{ and } O_x \ket{s^\perp} = \ket{s^\perp}.$$

- **1** Assumption: |x| = 1.
- Observations:

$$|\psi_0
angle = rac{1}{\sqrt{n}}|s
angle + \sqrt{1-rac{1}{n}}\left|s^\perp
ight
angle$$

$$O_{x} \left| s \right\rangle = - \left| s \right\rangle \text{ and } O_{x} \left| s^{\perp} \right\rangle = \left| s^{\perp} \right\rangle.$$

- **1** Assumption: |x| = 1.
- Observations:

$$O_{x} \left| s \right\rangle = - \left| s \right\rangle \text{ and } O_{x} \left| s^{\perp} \right\rangle = \left| s^{\perp} \right\rangle.$$

- **1** Assumption: |x| = 1.
- Observations:

$$|\psi_0\rangle = \frac{1}{\sqrt{n}}|s\rangle + \sqrt{1-\frac{1}{n}}|s^\perp\rangle$$

$$O_x |s\rangle = -|s\rangle \text{ and } O_x |s^{\perp}\rangle = |s^{\perp}\rangle.$$

- Grover's algorithm:
 - State space: $\mathcal{H} = \mathbb{C}^n$.
 - 2 Initial state: $|\psi_0\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^n |j\rangle$.

- **1** Assumption: |x| = 1.
- Observations:

$$|\psi_0\rangle = \frac{1}{\sqrt{n}}|s\rangle + \sqrt{1-\frac{1}{n}}|s^{\perp}\rangle$$

$$O_x |s\rangle = -|s\rangle \text{ and } O_x |s^{\perp}\rangle = |s^{\perp}\rangle.$$

- Grover's algorithm:
 - State space: $\mathcal{H} = \mathbb{C}^n$.
 - 2 Initial state: $|\psi_0\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^n |j\rangle$.
 - Operations:
 - Apply O_x .
 - **2** Reflect through $|\psi_0\rangle$.

- Assumption: |x| = 1.
- Observations:

$$|\psi_0\rangle = rac{1}{\sqrt{n}}|s\rangle + \sqrt{1-rac{1}{n}}\left|s^\perp
ight>$$

$$O_x |s\rangle = -|s\rangle \text{ and } O_x |s^{\perp}\rangle = |s^{\perp}\rangle.$$

- Grover's algorithm:
 - State space: $\mathcal{H} = \mathbb{C}^n$.
 - Initial state: $|\psi_0\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^n |j\rangle$.
 - Operations:
 - **1** Apply O_x .
 - **2** Reflect through $|\psi_0\rangle$.

$$\varphi = \arcsin \frac{1}{\sqrt{r}}$$

- **1** Assumption: |x| = 1.
- Observations:

$$|\psi_0\rangle = \frac{1}{\sqrt{n}}|s\rangle + \sqrt{1-\frac{1}{n}}|s^{\perp}\rangle$$

$$O_x |s\rangle = -|s\rangle \text{ and } O_x |s^{\perp}\rangle = |s^{\perp}\rangle.$$

- Grover's algorithm:
 - State space: $\mathcal{H} = \mathbb{C}^n$.
 - 2 Initial state: $|\psi_0\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^n |j\rangle$.
 - Operations:
 - **1** Apply O_x .
 - **2** Reflect through $|\psi_0\rangle$.

- Assumption: |x| = 1.
- Observations:

$$|\psi_0\rangle = rac{1}{\sqrt{n}}|s\rangle + \sqrt{1-rac{1}{n}}\left|s^\perp
ight>$$

$$O_x |s\rangle = -|s\rangle \text{ and } O_x |s^{\perp}\rangle = |s^{\perp}\rangle.$$

- Grover's algorithm:
 - State space: $\mathcal{H} = \mathbb{C}^n$.
 - Initial state: $|\psi_0\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^n |j\rangle$.
 - Operations:
 - **1** Apply O_x .
 - **2** Reflect through $|\psi_0\rangle$.

$$\varphi = \arcsin \frac{1}{\sqrt{n}}$$
$$(2k+1)\varphi \approx \frac{\pi}{2}.$$

- Assumption: |x| = 1.
- Observations:

$$|\psi_0\rangle = rac{1}{\sqrt{n}}|s\rangle + \sqrt{1-rac{1}{n}}\left|s^\perp
ight>$$

$$O_x |s\rangle = -|s\rangle \text{ and } O_x |s^{\perp}\rangle = |s^{\perp}\rangle.$$

- Grover's algorithm:
 - State space: $\mathcal{H} = \mathbb{C}^n$.
 - 2 Initial state: $|\psi_0\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^n |j\rangle$.
 - **3** *Operations:* Repeat $k = \lfloor \frac{\pi}{460} \rfloor$ times:
 - **1** Apply O_x .
 - **2** Reflect through $|\psi_0\rangle$.

$$arphi = \arcsin rac{1}{\sqrt{n}} \ (2k+1)arphi pprox rac{\pi}{2}.$$

- **1** Assumption: |x| = 1.
- Observations:

$$|\psi_0\rangle = rac{1}{\sqrt{n}}|s\rangle + \sqrt{1-rac{1}{n}}\left|s^\perp
ight>$$

$$O_x |s\rangle = -|s\rangle \text{ and } O_x |s^{\perp}\rangle = |s^{\perp}\rangle.$$

- Grover's algorithm:
 - State space: $\mathcal{H} = \mathbb{C}^n$.
 - 2 Initial state: $|\psi_0\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^n |j\rangle$.
 - **3** *Operations:* Repeat $k = \lfloor \frac{\pi}{4\omega} \rfloor$ times:
 - **1** Apply O_x .
 - **2** Reflect through $|\psi_0\rangle$.
 - **4** Measurement: $S_i = \text{Span}\{|j\rangle\}.$

$$\varphi = \arcsin \frac{1}{\sqrt{n}}$$
$$(2k+1)\varphi \approx \frac{\pi}{2}.$$

- **1** Assumption: |x| = 1.
- Observations:

$$|\psi_0
angle = rac{1}{\sqrt{n}}|s
angle + \sqrt{1-rac{1}{n}}\left|s^\perp
ight
angle$$

$$O_{\scriptscriptstyle X} \ket{s} = -\ket{s} \text{ and } O_{\scriptscriptstyle X} \ket{s^\perp} = \ket{s^\perp}.$$

- Grover's algorithm:
 - State space: $\mathcal{H} = \mathbb{C}^n$.
 - 2 Initial state: $|\psi_0\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^n |j\rangle$.
 - **3** Operations: Repeat $k = \lfloor \frac{\pi}{4\omega} \rfloor$ times:
 - Apply O_x .
 - **2** Reflect through $|\psi_0\rangle$.
 - **4** Measurement: $S_j = \text{Span}\{|j\rangle\}.$
- **1** $\mathbb{P}[s] \geq 1 1/n$.

$$\varphi = \arcsin \frac{1}{\sqrt{n}}$$
$$(2k+1)\varphi \approx \frac{\pi}{2}.$$

- **1** Assumption: |x| = 1.
- Observations:

$$|\psi_0
angle = rac{1}{\sqrt{n}} \ket{s} + \sqrt{1-rac{1}{n}} \ket{s^\perp}$$

$$O_{\scriptscriptstyle X} \ket{s} = -\ket{s} \text{ and } O_{\scriptscriptstyle X} \ket{s^\perp} = \ket{s^\perp}.$$

- Grover's algorithm:
 - State space: $\mathcal{H} = \mathbb{C}^n$.
 - Initial state: $|\psi_0\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^n |j\rangle$.
 - **3** *Operations:* Repeat $k = \lfloor \frac{\pi}{4\varphi} \rfloor$ times:
 - Apply O_x .
 - **2** Reflect through $|\psi_0\rangle$.
 - **4** Measurement: $S_j = \text{Span}\{|j\rangle\}.$
- **●** $\mathbb{P}[s] \ge 1 1/n$.
- **5** $k = O(\sqrt{n})$ queries Quadratic improvement!

$$\varphi = \widetilde{\arcsin \frac{1}{\sqrt{n}}} = \Omega\left(\frac{1}{\sqrt{n}}\right).$$
$$(2k+1)\varphi \approx \frac{\pi}{2}.$$

$$\begin{array}{c} \bullet \quad \text{If } |x|>0 \colon \\ |s\rangle = \frac{1}{\sqrt{|x|}} \sum_{\substack{j=1 \\ x_j=1}}^n |j\rangle \,, \quad \left|s^\perp\right\rangle = \frac{1}{\sqrt{n-|x|}} \sum_{\substack{j=1 \\ x_j=0}}^n |j\rangle . \end{array}$$

1 If |x| > 0:

$$|s
angle = rac{1}{\sqrt{|x|}} \sum_{\substack{j=1 \ x_j=1}}^n |j
angle \,, \;\; \left|s^\perp
ight
angle = rac{1}{\sqrt{n-|x|}} \sum_{\substack{j=1 \ x_j=0}}^n |j
angle .$$

- 2 If we know |x|:
 - $k = \lfloor \frac{\pi}{4\omega} \rfloor$ iterations.
 - $k = O(\sqrt{n/|x|})$ queries.

1 If |x| > 0:

$$|s\rangle = \frac{1}{\sqrt{|x|}} \sum_{\substack{j=1 \ x_j=1}}^n |j\rangle \,, \ \ |s^{\perp}\rangle = \frac{1}{\sqrt{n-|x|}} \sum_{\substack{j=1 \ x_j=0}}^n |j\rangle .$$

- 2 If we know |x|:
 - $k = \lfloor \frac{\pi}{4\omega} \rfloor$ iterations.
 - $k = O(\sqrt{n/|x|})$ queries.
- \bigcirc If we don't know |x|:
 - Guess |x| = n, |x| = n/2, |x| = n/4, etc.
 - Check if outcome *j* satisfies $x_i = 1$.
 - Output "NO SOLUTION" if all tries failed.

$$arphi = \arcsin \sqrt{rac{|\mathbf{x}|}{n}} = \Omega \left(\sqrt{rac{|\mathbf{x}|}{n}}
ight)$$

$$(2k+1)arphi pprox rac{\pi}{2}.$$

1 If |x| > 0:

$$|s\rangle = rac{1}{\sqrt{|x|}} \sum_{\substack{j=1 \ x_j=1}}^n |j\rangle \,, \ \ \left|s^\perp\right> = rac{1}{\sqrt{n-|x|}} \sum_{\substack{j=1 \ x_j=0}}^n |j\rangle .$$

- 2 If we know |x|:
 - $k = \lfloor \frac{\pi}{4\omega} \rfloor$ iterations.
 - $k = O(\sqrt{n/|x|})$ queries.
- \bigcirc If we don't know |x|:
 - Guess |x| = n, |x| = n/2, |x| = n/4, etc.
 - Check if outcome *j* satisfies $x_i = 1$.
 - Output "NO SOLUTION" if all tries failed.

Total queries to O_x : $O(\sqrt{n})$.

$$arphi = rcsin \sqrt{rac{|ec x|}{n}} = \Omega\left(\sqrt{rac{|ec x|}{n}}
ight).$$
 $(2k+1)arphi pprox rac{\pi}{2}.$

Problem: (Collision finding)

- Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - ullet Every element appears exactly twice in x.

Problem: (Collision finding)

- **1** Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - ullet Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.

Problem: (Collision finding)

- **1** Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.
- **2** Output: j, j' such that $x_j = x_{j'}$ and $j \neq j'$.

Problem: (Collision finding)

- **1** Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.
- **2** Output: j, j' such that $x_j = x_{j'}$ and $j \neq j'$.

Classical algorithm:

Query in random order.

.

Problem: (Collision finding)

- Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - ullet Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.
- **2** Output: j, j' such that $x_j = x_{j'}$ and $j \neq j'$.

- Query in random order.
 - · C · · · ·

Problem: (Collision finding)

- **1** Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.
- **2** Output: j, j' such that $x_j = x_{j'}$ and $j \neq j'$.

- Query in random order.
 - $\cdot C \cdot \cdot \cdot B$

Problem: (Collision finding)

- Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - ullet Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.
- **2** Output: j, j' such that $x_j = x_{j'}$ and $j \neq j'$.

- Query in random order.
 - $\cdot C \cdot C \cdot B$

Problem: (Collision finding)

- Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.
- **2** Output: j, j' such that $x_j = x_{j'}$ and $j \neq j'$.

- 1 Query in random order.
 - $\cdot C \cdot C \cdot B$
- ② $O(\sqrt{n})$ queries suffice (birthday paradox).

Quantum algorithm:

• Query k random elements in the list.

Problem: (Collision finding)

- **1** Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - ullet Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.
- **2** Output: j, j' such that $x_j = x_{j'}$ and $j \neq j'$.

Classical algorithm:

Query in random order.

$$\cdot C \cdot C \cdot B$$

② $O(\sqrt{n})$ queries suffice (birthday paradox).

Problem: (Collision finding)

- Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - ullet Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.
- **2** Output: j, j' such that $x_j = x_{j'}$ and $j \neq j'$.

Classical algorithm:

Query in random order.

$$\cdot C \cdot C \cdot B$$

 $O(\sqrt{n})$ queries suffice (birthday paradox).

- Query *k* random elements in the list.
- 2 Let $y \in \{0,1\}^n$ with y_j if j forms a collision with any of the already queries entries.

Problem: (Collision finding)

- **1** Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - ullet Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.
- **2** Output: j, j' such that $x_j = x_{j'}$ and $j \neq j'$.

Classical algorithm:

Query in random order.

$$\cdot C \cdot C \cdot B$$

② $O(\sqrt{n})$ queries suffice (birthday paradox).

- Query *k* random elements in the list.
- 2 Let $y \in \{0,1\}^n$ with y_j if j forms a collision with any of the already queries entries.

•
$$|y| = k$$
.

Problem: (Collision finding)

- **1** Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - ullet Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.
- **2** Output: j, j' such that $x_j = x_{j'}$ and $j \neq j'$.

Classical algorithm:

Query in random order.

$$\cdot C \cdot C \cdot B$$

 $O(\sqrt{n})$ queries suffice (birthday paradox).

- Query *k* random elements in the list.
- 2 Let $y \in \{0,1\}^n$ with y_j if j forms a collision with any of the already queries entries.

- |y| = k.
- Grover: $O(\sqrt{n/k})$ queries.

Problem: (Collision finding)

- **1** Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - ullet Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.
- **2** Output: j, j' such that $x_j = x_{j'}$ and $j \neq j'$.

Classical algorithm:

Query in random order.

$$\cdot C \cdot C \cdot B$$

 $O(\sqrt{n})$ queries suffice (birthday paradox).

- Query *k* random elements in the list.
- ② Let $y \in \{0,1\}^n$ with y_j if j forms a collision with any of the already queries entries.

- |y| = k.
- Grover: $O(\sqrt{n/k})$ queries.
- **3** Total queries: $O(k + \sqrt{n/k})$.

Problem: (Collision finding)

- Input: $x \in \mathcal{D}^n$, $|\mathcal{D}| = n/2$.
 - ullet Every element appears exactly twice in x.
 - Example: $\mathcal{D} = \{A, B, C\}$, n = 6, x = BCACAB.
- **2** Output: j, j' such that $x_j = x_{j'}$ and $j \neq j'$.

Classical algorithm:

Query in random order.

$$\cdot C \cdot C \cdot B$$

 $O(\sqrt{n})$ queries suffice (birthday paradox).

- **1** Query *k* random elements in the list.
- ② Let $y \in \{0,1\}^n$ with y_j if j forms a collision with any of the already queries entries.

- |y| = k.
- Grover: $O(\sqrt{n/k})$ queries.
- **3** Total queries: $O(k + \sqrt{n/k})$.
- Minimized for $k = \Theta(n^{1/3})$.
- O(n^{1/3}) queries subquadratic improvement!

Summary

Summary:

- Quantum algorithms.
- @ Grover's algorithm:
 - Quadratic improvement.
- Application: collision finding:
 - Subquadratic improvement.

Summary

Summary:

- Quantum algorithms.
- @ Grover's algorithm:
 - Quadratic improvement.
- Application: collision finding:
 - Subquadratic improvement.

Thanks for your attention! cornelissen@irif.fr