### 电子科技大学信息与软件工程学院

# 实验报告

|      | 学  | 号  | 2018091618008 |  |
|------|----|----|---------------|--|
|      | 姓  | 名  | 袁昊男           |  |
| (实验) | 课程 | 名称 | 计算机组成原理       |  |
|      | 理论 | 教师 | 刘辉            |  |
|      | 实验 | 教师 | 刘辉            |  |

## 电子科技大学 实 验 报 告

学生姓名: 袁昊男 学号: 2018091618008 指导教师: 刘辉

实验地点: 三教 501 实验时间: 2019.11.30

一、 实验名称: 存储器实验

二、 实验学时: 4 学时

三、 实验目的:

1、掌握半导体 RAM 6264 芯片的特性和使用方法;

2、掌握 6264 存储器的读写方法;

3、按给定数据,完成实验指导书中的存储器读写操作。

#### 四、 实验原理:

1,



- (1) 经二进制数码开关 KD7—KD0 (低位) 向输入三态门 (74LS245 芯片, U51) 送地址; (写)
- (2) 输入三态门将地址送地址锁存器 AR (74LS273 芯片, U37) 锁存; (写)
- (3) 经数码开关 KD7—KD0(低位)向输入三态门(U51)输入数据,并通过8位数据总线将数据写入到存储器 RAM(6264 芯片, U52)内;(写)
- (4) 经数码开关 KD7—KD0(低位)向输入三态门送地址;(读出)
- (5) 存储器 RAM(6264 芯片, U52) 内数据通过 8 位数据总线将输出结果用数据显示灯 LZD7—LZD0(低位)显示。(读出)

#### 2、存储器实验电路原理图



数据输入三态缓冲器门控信号 SWB (0 有效),地址锁存 AR 控制信号 LDAR (1 有效),存储器片选信号  $\overline{\text{CE}}$  (0 有效),存储器写信号  $\overline{\text{WE}}$  (1 有效),存储器读信号  $\overline{\text{WE}}$  (0 有效),地址锁存 AR 和数据写入 6264 脉冲信号 T3。

#### 3、RAM 6264 芯片外特性

|                      |                        | 6264 |          |    |
|----------------------|------------------------|------|----------|----|
| 10                   | A0                     |      | Do       | 11 |
| 9                    | A1                     |      | D0<br>D1 | 12 |
| 8                    | A2                     |      | D1       | 13 |
| 7                    | A3                     |      | D2       | 15 |
| 6                    | A4                     |      | D3       | 16 |
| 5                    | A5                     |      | D4       | 17 |
| 4                    | A6                     |      | D5       | 18 |
| 3                    | A7                     |      | D7       | 19 |
| _25                  | A8                     |      | D,       |    |
| 24                   | A9                     |      |          |    |
| 21                   | A10                    |      |          |    |
| 23                   | A11                    |      |          |    |
| 2                    | A12                    |      |          |    |
| 22<br>27<br>26<br>30 | OE<br>WE<br>CS2<br>CS1 |      |          |    |

#### 4、RAM 6264 功能表

| 控制信号 | 写入 | 读出 |
|------|----|----|
| CS   | 0  | 0  |
| WE   | 0  | 1  |

CS、WE对应的是 6264 芯片的引脚

#### 五、 实验内容:

- 1、连接线路,掌握 RAM 6264 存储器的读写功能;
- 2、按给定数据,完成实验指导书中的存储器读写操作。

#### 六、 实验器材(设备、元器件):

DVCC 实验机一台、连接线若干根。

DVCC 实验机平面图:



#### 七、 实验步骤:

- 1、连接线路,仔细检查核对后接通电源:
  - (1) MBUS 连 BUS2;
  - (2) EXJ1 连 BUS3:
  - (3) 跳线器 J22 的 T3 连 TS3;
  - (4) 跳线器 J16 的 SP 连 H23 (拨在右边);
  - (5) 跳线器 SWB、CE、WE、LDAR 拨在左边;
  - (6) 开关"运行控制"拨在"运行";
  - (7) 开关"运行方式"拨在"单步";
  - (8) 开关"总清"拨在"1"(无效状态)。
- 2、写入8位地址:
  - (1) 调拨 8 位开关 KD7—KD0(低位)为 00000000 (00H), 准备向 AR 送地址;
  - (2) 输入三态缓冲门控制开关SWB=0 (打开);
  - (3) 地址寄存器 AR 控制开关LDAR =1 (打开);
  - (4) 存储器片选控制开关CE=1(片选无效):

- (5) 打入脉冲信号 T3,, 将地址 00H 置入 AR。
- 3、写入8位数据:
  - (1) 调拨 8 位开关 KD7—KD0 (低位)为 00010001 (11H),准备向 6264 芯片送数据:
  - (2) 数据输入三态缓冲门控开关SWB=0 (打开);
  - (3) 地址寄存器 AR 控制开关LDAR = 0 (关闭);
  - (4) 存储器片选控制开关CE=0 (片选有效);
  - (5) 存储器写控制开关WE=1(写数据);
  - (6) 打入脉冲信号 T3 (启动运行),将数据 11H 置入存储器中的指定单元。
- 4、 向 AR 送入 00H 地址:
  - (1) 重复步骤 2 (不要发"复位"信号);
  - (2) 将 00H 地址送入 AR, 准备从该单元读出先前写入数据。
- 5、读出存储器 00H 地址中的数据:
  - (1) 数据输入三态缓冲门控制开关SWB=1(关闭);
  - (2) 地址寄存器 AR 控制开关 LDAR = 0 (关闭);
  - (3) 存储器片选控制开关CE=0 (片选有效);
  - (4) 存储器写控制开关WE=0 (读数据)。
- 6、填写控制信号功能表及存储器实验数据表。

#### 八、 实验结果与分析(含重要数据结果分析或核心代码流程分析)

1、DVCC 实验机连线结果



2、读00H中数据11H结果



3、读02H中数据25H结果



4、存储器电路控制开关功能表

| 控制开关 | 写地址 | 写内容 | 读内容 |
|------|-----|-----|-----|
| SWB  | 0   | 0   | 1   |
| LDAR | 1   | 0   | 0   |
| CE   | 1   | 0   | 0   |
| WE   | /   | 1   | 0   |

- 5、 记录向存储器写入数据的操作过程:
  - (1) 按照指导书向存储器地址为 00H, 01H, 02H, 03H, 04H, 05H 的 单元分别写入数据: 05H, 15H, 25H, 35H, 45H, 55H;
  - (2) 写出读出存储器单元内容的操作过程,并在下表记录指定地址单元

读出的内容:

| 地址       | 内容       | 地址       | 内容       |
|----------|----------|----------|----------|
| 00000000 | 00000101 | 00000011 | 00110101 |
| 00000001 | 00010101 | 00000100 | 01000101 |
| 00000010 | 00100101 | 00001000 | 01010101 |

结论: 与预期结果一致。

#### 九、 总结及心得体会:

此实验主要内容是对半导体芯片 RAM 6264 的工作特性的了解与掌握、对 6264 存储器的读写方法的掌握与数据验证以及根据按给定数据,完成实验指导书中的存储器读写操作。

通过这个实验,我查阅了书籍和网络资源,较清楚地掌握了 6264 存储器的功能,掌握了其在模型机中的读写方法,这对于学习《计算机组成原理》中的存储器部分有很大的帮助,同时也帮助我理解模型机中的数据通路模型。

#### 十、 对本实验过程及方法、手段的改进建议:

此实验内容较简单,可以组合安排更具挑战性的组合实验内容激发学生的研究兴趣,供学生实践、提升实验能力。

报告评分:

指导教师签字: