ЗАДАНИЕ

на лабораторную работу № 4 по дисциплине «Теория вычислительных процессов и структур»

Проектирование нормальных алгоритмов Маркова, реализующих простые текстовые операции.

Время: 2 часа (90 минут).

Учебные цели:

- 1. Выработать у студентов практические умения и навыки в построении НАМ, в том числе с помощью симуляторов.
- 2. Формировать способности: применять современный математический аппарат, связанный с проектированием, разработкой, реализацией и оценкой качества программных продуктов и программных комплексов в различных областях человеческой деятельности (ОПК-2); использовать основные концептуальные положения функционального, логического, объектно-ориентированного и визуального направлений программирования, методы, способы и средства разработки программ в рамках этих направлений (ПК-6) Программный симулятор доступен по ссылке:

https://kpolyakov.spb.ru/prog/nma.htm

Пароль к архиву – kpolyakov.spb.ru

Марковской подстановкой называется операция над задаваемыми с помощью упорядоченной пары слов (Р, Q), состоящая в следующем. В заданном слове R находят первое вхождение слова P (если оно есть) и, не изменяя остальных частей слова R, заменяют в нем это вхождение словом Q. Полученное слово называется результатом применения марковской подстановки (P, Q) к слову R. Если же первого вхождения P в слово R (и, следовательно, вообще нет ни одного вхождения Р в R), то считается, что марковская подстановка (P, Q) не применима к слову R. Запись $P \rightarrow Q$ называется формулой подстановки (Р, Q). Р называется левой частью, Q – правой частью в формуле подстановки. Некоторые подстановки называются заключительными. Для обозначения таких подстановок будем запись $P \rightarrow (\cdot)Q$, называя ее формулой заключительной использовать подстановки.

Упорядоченный конечный список формул подстановок в алфавите А

$$\begin{array}{l}
 | P1 \rightarrow (\cdot)Q1 \\
 | P2 \rightarrow (\cdot)Q2 \\
 | \vdots \\
 | Pn \rightarrow (\cdot)Qn
\end{array}$$

называется схемой нормального алгоритма в алфавите А. Запись точки в скобках означает, что она может стоять на этом месте, а может отсутствовать.

Пример1. Построить нормальный алгоритм Маркова, заменив в алфавите A={a, b, c} все буквы а на с.

Решение:

Используем символ α для расширения алфавита A. B = $\{\alpha\}\cup A$. Схема Z нормального алгоритма будет иметь следующий вид:

$$\begin{array}{c}
(\alpha a \longrightarrow c\alpha) \\
(\alpha b \longrightarrow b\alpha) \\
Z: \quad \{\alpha c \longrightarrow c\alpha) \\
(\alpha \longrightarrow \Lambda) \\
(\Lambda \longrightarrow \alpha)
\end{array}$$

Например, aacbab \Rightarrow αaacbab \Rightarrow ссαсbab \Rightarrow сссαсbab \Rightarrow сссьαаb \Rightarrow сссьсав \Rightarrow сссьсь α \Rightarrow сссьсь α \Rightarrow сссьсь α

Этот алгоритм может быть реализован так же следующей схемой:

$$Z1: \begin{cases} a \to c \\ \\ \Lambda \to \cdot \Lambda \end{cases}$$

Пример2.Дано слово в алфавите $A = \{a, b, c\}$. Построить алгоритм Маркова, присоединяющий слово Q к данному слову.

Решение:

$$\begin{cases} \varepsilon a \to a\varepsilon \\ \varepsilon b \to b\varepsilon \\ \varepsilon c \to c\varepsilon \\ \varepsilon \to \cdot Q \\ \Lambda \to \varepsilon \end{cases}$$

<u>Вариант №1</u>

Задача №1.

Построить нормальный алгоритм Маркова, который бы в слове из алфавита $A=\{a,b,c,d\}$ заменял первое вхождение подслова bb на ddd и удалял все вхождения символа с.

Задача №2.

 $A=\{a,b\}$. Преобразовать слово P так, чтобы в его начале оказались все символы a, a в конце — все символы b.

Задача №3.

Построить нормальный алгоритм Маркова, который бы в слове из алфавита A= a, b, c, d, e, f} все вхождения последовательности аbc заменял на символ f и удалял первое вхождение пары cf.

Задача №4.

Построить нормальный алгоритм Маркова, который бы в слове из алфавита A={a, b, c, d, e, f} удалял все вхождения последовательности bc и удваивал гласные буквы.

Задача №5.

Построить нормальный алгоритм Маркова, который бы в слове из алфавита $A=\{a, b, c, d, e, f\}$ все символы а заменял на f, а все f — на af.

Задача №6.

 $A=\{a,b,c\}$. Заменить слово P на пустое слово, т.е. удалить из P все символы.

Задача №7.

A={a,b,c}. Определить, входит ли символ а в слово Р. Ответ (выходное слово): слово а, если входит, или пустое слово, если не входит.

Задача №8.

 $A=\{a,b\}$. Перевернуть слово P (например: abb \rightarrow bba).

Вариант №2

Залача №1.

 $A = \{a, b\}$. Преобразовать слово P так, чтобы в начале оказались все символы a, a в конце — все символы b.

Задача №2.

 $A=\{a,b,c\}$. Приписать слово bac слева, к слову, Р

Задача №3.

Построить нормальный алгоритм Маркова, который бы в слове из алфавита $A=\{a, b, c, d, e, f\}$ все вхождения последовательности сde заменял на символ а и удваивал согласные буквы.

Задача №4.

А={a,b,c}. Заменить любое входное слово на слово а.

Задача №5.

Выписать НАМ, не меняющий входное слово (при любом алфавите А).

Задача №6.

A={a,b}. Удвоить слово P, т.е. приписать к P (слева или справа) его копию.

Задача №7.

Построить нормальный алгоритм Маркова, который бы в слове из алфавита $A=\{a, b, c, d, e, f\}$ все символы е заменял на d, а все d- на de.

Задача №8.

Построить нормальный алгоритм Маркова, который упорядочивает любое слово в алфавите $A = \{a, b, c, d\}$.