Probabilidade

Variáveis aleatórios

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Slides e notebook em:

github.com/tetsufmbio/IMD0033/

Na aula passada

Teorema de Bayes

$$P(A|B) = \frac{P(B|A).P(A)}{P(B)}$$

Até agora...

P(Cara) ou P(Coroa)

P(A K Q J 10)

P([...])

Variáveis aleatórias

Formal:

 Função que mapeia o espaço amostral em números reais f: Ω → R

Resultado de um processo aleatório é expresso na forma de um número.

Números em alguns experimentos passado...

- Resultado de um dado ($\Omega = \{1, 2, ..., 6\}$)
- Número de caras depois de três jogadas de moeda (Ω = {0, 1, 2, 3, 4})
- Valor da peça de dominó ($\Omega = \{0, 1, 2, ..., 6\}$)

Não utilizamos as características numéricas → extensivamente

Trabalhando com números

Distribuição P(x)Expressar na forma de uma função Verificar propriedades VariáveisRealizar operações Variáveis VariáveisVariáveis Variáveis VariáveisVariáveis Variáveis Variáveis

Variáveis aleatórios

X

Combinar variáveis

Verificar propriedades

X+Y

Média do valor de X

Tipos de variáveis aleatórias

Quando os valores do espaço amostral...

- possuem valores bem definido → Discretas;
- se encontram em um intervalo de valores que são dificilmente definidos → Contínuas;

Exemplos

$$X = \{cara = 0, coroa = 1\}$$
 Discreto

Y = {peso de um animal no zoo de SP} Contínuo

Z = {# de formigas que nascerá amanhã} Discreto

W = {ano de nascimento de um eleitor} Discreto

A = {tempo total para completar uma corrida de 100m} Contínuo

B = {tempo total para completar uma corrida de 100m com até duas casas decimais}

Discreto

Distribuição de probabilidade de uma variável aleatória discreta

 $X = \{ \text{# de caras (H) depois de jogar 3 moedas} \}$ $\Omega = \{ \text{HHH, HHT, HTH, THH, HTT, THT, TTH} \}$

$$P(X = 0) = \frac{1}{8}$$

$$P(X = 1) = \frac{3}{8}$$

$$P(X = 2) = \frac{3}{8}$$

$$P(X = 3) = \frac{1}{8}$$

Propriedades de uma distribuição de probabilidades

$$P(x) \geq 0, orall x \in \Omega$$

$$\sum_{x\in\Omega}P(x)=1$$

Tipos de distribuição de probabilidade discreto

Finito
$$\rightarrow |\Omega| = n \in P$$

Infinito
$$\rightarrow |\Omega| = \infty = \Re_{\Omega}$$

Distribuição de probabilidade discreta finita

$$|\Omega|$$
 = n $P(x) \geq 0, orall x \in \Omega$ $\sum_{x \in \Omega} P(x) = 1$

Uniforme: $p_1 = p_2 = ... = p_n = 1/n$

Crescente: $p_1 \le p_2 \le ... \le p_n$

Decrescente: $p_1 \ge p_2 \ge ... \ge p_n$

Distribuição de probabilidade discreta infinita

$$|\Omega| = \infty$$

Infinito em uma direção: p1, p2, p3 ...

Não pode ser uniforme p=0 $\rightarrow \Sigma = 0$, p > 0 $\rightarrow \Sigma = \infty$

Não pode ser crescente: pi > 0 \rightarrow pi+1, pi+2, ... > 0 $\rightarrow \Sigma = \infty$

Pode ser decrescente: 1/2, 1/4, 1/8, ...

Infinito nas duas direções: ..., p-2, p-1, p0, p1, p2, ...

..., 1/8, 1/4, 0, 1/4, 1/8, ...

Exemplo:

João planeja comprar um pacote de figurinhas até ele conseguir a figurinha que ele quer. Suponha que cada pacote tenha 0,2 de probabilidade de conter a figurinha que João deseja.

Sendo a variável aleatória X o número de pacotes de cartões que João comprar, segue a distribuição de probabilidade para X:

X = {# de pacotes}	1	2	3	
P(X)	0,2	0,16	0,128	•••

Represente a distribuição de probabilidades na forma de um histograma.

Exemplo:

João planeja comprar um pacote de figurinhas até ele conseguir a figurinha que ele quer, no entanto ele só tem dinheiro suficiente para comprar no máximo 4 pacotes. Suponha que cada pacote tenha 0,2 de probabilidade de conter a figurinha que João deseja.

Sendo a variável aleatória X o número de pacotes de cartões que João comprar, segue a distribuição de probabilidade para X:

X = {# de pacotes}	1	2	3	4
P(X)	0,2	0,16	0,128	?

Calcule $P(X \ge 2)$.

Função de distribuição acumulada de probabilidade

$$F(x) = P(X \le x)$$
$$= \sum_{u \le x} p(u)$$

X = {# de pacotes}	1	2	3	4
P(X)	0,2	0,16	0,128	0,512

Distribuição de probabilidades

Função de distribuição acumulada de probabilidade

$$F(x) = P(X \le x)$$
$$= \sum_{u \le x} p(u)$$

X = {# de pacotes}	1	2	3	4
P(X)	0,2	0,16	0,128	0,512

Calcule $P(2 < x \le 3)$

Exemplo:

Depois de jogar um dado justo n vezes (n $\rightarrow \infty$), qual a média do valor observado?

Valor esperado, esperança matemática

$$\sum P(x) \cdot x \stackrel{\text{def}}{=} E(X)$$

Exemplo:

X = {# de exercícios realizado por semana por João}

Qual é o número de exercícios esperado que João faria em uma dada semana?

Х	P(X)
0	0,1
1	0,15
2	0,4
3	0,25
4	0,1

Revisão

- Variáveis aleatórias
 - Discretas;
 - Finita;
 - Infinita;
 - Contínuas;
- Distribuição de probabilidade;
- Função de distribuição acumulada;
- Esperança matemática.