Комбинаторы и лямбда-исчисление

В математическом языке обозначение F(x), где F — некоторое выражение, можно понимать двумя способами: 1) как значение функции F на данном аргументе x, или же 2) как функцию, значение которой на *произвольном* аргументе x равно значению выражения F(x), т.е. функцию $x \mapsto F(x)$. Пример: $(2x+3)^2$. Понимание 2) передаётся более корректно выражением $\lambda x.F(x)$, в котором x играет роль связанной переменной: $\lambda x.F(x)$ и $\lambda y.F(y)$ означают одну и ту же функцию.

Лямбда-исчисление — это простейший язык программирования, в котором единственным типом данных являются функции (от одного аргумента). Аргументами и значениями функций также являются функции. Одни функции определяются из других с помощью двух базисных операций: annukauuu, т.е. применения функции к аргументу, записываемой как fx, и λ -абстракции $\lambda x.f.^1$

 λ -термы — это выражения, построенные из переменных с помощью операций аппликации и λ -абстракции. Примеры: $\lambda x.(xx), \lambda x.((xz)\lambda y.((yy)x)),$ и т.д. Термы, отличающиеся лишь переименованием связанных переменных, отождествляются. Термы, все переменные которых связаны, называются комбинаторами.

Соглашения: скобки ассоциируются влево; аппликация имеет более сильный приоритет, чем λ -абстракция; $\lambda x \lambda y \lambda z$ сокращается до $\lambda x y z$, и т.д.

Вопросы на понимание определений и неформальную интерпретацию.

- 1. Определите тождественную функцию id(x) = x в λ -обозначениях.
- 2. Объясните, что «делают» функции $\lambda xy.x$ и $\lambda x.xx$.
- 3. (currying) Придумайте, как можно определить функции двух и более аргументов в языке λ -исчисления;
- 4. Композиция функций f и g обычно определяется как такая функция $f \circ g$, что $(f \circ g)(x) = f(g(x))$ для всех x. Запишите это определение в λ -обозначениях. Определите операцию композиции \circ как комбинатор.

 λ -термы играют роль программ. Вычисление такой программы сводится к последовательности преобразований данного терма, называемых редукциями. Редукция есть преобразование вида

$$(\lambda x.M)N \to M[x := N],$$

которое можно применять к любому подтерму данного терма. M[x:=N] означает результат замены всех свободных вхождений переменной x в терм M на N (при этом связанные переменные M переименовываются так, чтобы не возникало коллизии). Терм M имеет пормальную форму, если никакая редукция к нему не применима. Термы называются β -эквивалентными $M =_{\beta} N$, если M получается из N некоторой последовательностью редукций или обратных им преобразований.

 $^{^1}$ Полезно думать о функциях как о программах: аппликация fg — это программа, вызывающая функцию f с данной функцией g в качестве параметра; $\lambda x.f$ — это программа, по данному x вычисляющая значение выражения f с параметром x.

- 1. Определите комбинаторы ${\bf C}$ и ${\bf W}$ такие, что для любых термов M,N,K имеем ${\bf C}MNK \to MKN$ и ${\bf W}MN \to MNN$.
- 2. Обозначим $\mathbf{I} = (\lambda x.x)$, $\mathbf{K} = \lambda xy.x$, $\mathbf{S} = \lambda xyz.xz(yz)$. Докажите $\mathbf{I} =_{\beta}$ \mathbf{SKK} , $\mathbf{W} =_{\beta} \mathbf{SS(KI)}$, $\mathbf{B} =_{\beta} \mathbf{S(KS)K}$, где \mathbf{B} комбинатор композиции.
- 3. Редукционным деревом для терма M называется дерево, вершины которого помечены λ -термами, причем корень помечен M и сыновья вершины с меткой N помечены термами, получающимися однократной редукцией терма N.

Нарисуйте редукционное дерево для терма ($\lambda xa.a$)**I**.

- 4. Приведите пример терма, редукционное дерево которого представляет собой цепь длины n.
- 5. Приведите пример терма, редукционное дерево которого есть бесконечная цепь.
- 6. Приведите пример терма, в редукционном дереве которого есть как конечные, так и бесконечные ветви.
- 7. (теорема о неподвижной точке) а) Докажите, что для любого терма F найдётся терм X такой, что $X \to FX$. Указание: сначала рассмотрите терм $W = \lambda x. F(xx)$.
 - b) Постройте комбинатор \mathbf{Y} такой, что для любого терма F значение $\mathbf{Y}F$ есть неподвижная точка F, то есть $\mathbf{Y}F =_{\beta} F(\mathbf{Y}F)$.
 - с) Для любого терма M найдётся F такой, что $F =_{\beta} M[x := F]$.
- 8. (теорема о базисе) Докажите, что любой комбинатор выражается с помощью аппликации через комбинаторы ${\bf K}$ и ${\bf S}$ с точностью до β -эквивалентности.

Указание: Пусть CL — множество термов, построенных из переменных, **K** и **S** с помощью аппликации. Для каждого $F \in CL$ и переменной x определим терм $(\lambda^* x.F) \in CL$ следующим образом:

- $\lambda^* x.x = \mathbf{I}$;
- $\lambda^* x.F = \mathbf{K} F$, если x не входит в F;
- $\lambda^* x.(FG) = \mathbf{S}(\lambda^* x.F)(\lambda^* x.G)$, иначе.

Докажите, что $\lambda^* x. F$ можно редуцировать к F[x := G].