projettransversal5-biodiv

February 17, 2024

1 Projet Transversal 5

1.0.1 Surveillance de la Biodiversité

```
[13]: import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report,

→precision_score, recall_score, f1_score
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
```

```
[14]: # Charger les données depuis le fichier Excel
data = pd.read_excel("Biodiversite.xlsx")
data
```

[14]:		Espèce	Nombre d'individus	Densité relative	\
	0	Sclerocarya birrea	7	0.4	
	1	Balanites aegyptiaca	4	0.2	
	2	Sterospermum kunthianum	2	0.1	
	3	Adansonia digitata	2	0.1	
	4	Cordia rothi	5	0.3	
	5	Commiphora africana	6	0.3	
	6	Tamarindus indica	17	0.9	
	7	Codaba farinosa	0	0.0	
	8	Capparis tomentosa	13	0.7	
	9	Maytenus senegalensis	0	0.0	
	10	Combretum aculeatum	23	1.2	
	11	Combretum glutinosum	35	1.9	
	12	Erythrina senegalensis	1	0.1	
	13	Acacia ataxacantha	18	1.0	
	14	Acacia seyal	84	4.5	
	15	Acacia sieberiana	1	0.1	
	16	Albizia chevalieri	4	0.2	
	17	Albizia lebbeck	1	0.1	
	18	Dichrostachys cinerea	7	0.4	

19	Leucaenia leucoceppl	hala		1		0.1	
20	Propos julif			5		0.3	
21	Azadirachta ind			12		0.6	
22	Ficus thonnin			1		0.1	
23		•				0.1	
	Opilia amenta			1			
24	Celtis			3		0.2	
25	Ziziphus maurit			23		0.2	
26	Ziziphus mucro			1		0.1	
27	Feretia apodantl			1131		60.4	
28	Grewia bico	olor		464		24.8	
	Fréquence relative	Température	(°C)	Pluviométrie	(mm)	Type de sol	\
0	14		28		120	Argilo-sableux	
1	3		30		90	Sablo-limoneux	
2	3		29		110	Limono-sableux	
3	7		26		85	Limono-argileux	
4	7		27		95	Argilo-sableux	
5	7		26		100	Sablo-limoneux	
6	38		28		125	Limono-argileux	
7	0		25		80	Limono-sableux	
8	21		26		110	Argilo-sableux	
9	0		25		90	Limono-argileux	
10	21		28		120	Limono-sableux	
11	41		29		125	Limono-argileux	
12	3		27		100	Argilo-sableux	
13	17		30		110	Limono-argileux	
14	45		31		135	Argilo-sableux	
15	3		30		115	Sablo-limoneux	
16	3		28		90	Limono-argileux	
17	3		26		85	Sablo-limoneux	
18	21		29		110	Limono-argileux	
19	3		27		90	Sablo-limoneux	
20	7		28			Limono-argileux	
21	21		29		115	Limono-argileux	
22	3		26		85	Argilo-sableux	
23	3		26		85	Limono-sableux	
24	3		27		95	Sablo-limoneux	
25	38		27		110	Limono-argileux	
26	3		25		85	Argilo-sableux	
27	97		30		140	Limono-argileux	
28	90		28		120	Argilo-sableux	
	Altitude (m) Type d	'habitat \					
0	200	Savane					
1	150	Steppe					
2		êt sèche					
3	120	Savane					
_	120	2414110					

Forêt dense	250	4
Forêt sèche	180	5
Forêt dense	220	6
Steppe	90	7
Steppe	180	8
Forêt sèche	100	9
Forêt dense	250	10
Forêt dense	300	11
Steppe	150	12
Steppe	200	13
Steppe	300	14
Steppe	160	15
Forêt sèche	130	16
Savane	150	17
Steppe	200	18
Steppe	170	19
Forêt sèche	180	20
Forêt dense	220	21
Savane	150	22
Forêt sèche	130	23
Savane	150	24
Steppe	200	25
Forêt sèche	150	26
Forêt dense	250	27
Steppe	180	28

Menaces

0 Surexploitation, déforestation Surexploitation, pression agricole 1 2 Déforestation, changement climatique 3 Déforestation, surexploitation Déforestation, surexploitation 4 5 Déforestation, surexploitation Déforestation, surexploitation 6 7 Incendies, surexploitation 8 Surexploitation, déforestation Déforestation, surexploitation 9 10 Surexploitation, déforestation Surexploitation, déforestation 11 12 Déforestation, surexploitation 13 Surexploitation, déforestation 14 Surexploitation, déforestation Surexploitation, déforestation 15 16 Déforestation, surexploitation, fragmentation 17 Surexploitation, déforestation 18 Déforestation, surexploitation 19 Surexploitation, déforestation

```
20
                       Surexploitation, déforestation
21
                       Surexploitation, déforestation
22
                       Surexploitation, déforestation
                       Surexploitation, déforestation
23
24
                       Surexploitation, déforestation
25
                       Déforestation, surexploitation
26
                       Surexploitation, déforestation
27
    Surexploitation, déforestation, changement cli...
                       Surexploitation, déforestation
28
```

Dans ce qui suit, on cherche à avoir un même type de variable pour les données qui serviront à l'apprentissage et au test.

Nous avons deux possibilités: ##### - l'attribution arbitraire de valeurs aux variables catégorielles ###### - l'utilisation de l'encodage "one-hot"

- L'attribution arbitraire de valeurs aux variables catégorielles Nous mettons ceci en commentaire car cette méthode n'est pas celle que nous utiliserons, et nous expliquerons pourquoi dans l'utilisation de la seconde méthode.

De ce fait, on récupère d'abord les types de sol uniques dans une liste Typesol en utilisant la méthode unique() sur la colonne "Type de sol" et en convertissant le résultat en liste avec tolist().

Ensuite, on crée un dictionnaire indice_typesol qui mappera chaque type de sol à un indice unique en initialisant l'indice à 1 et en incrémentant sa valeur à chaque itération de la boucle for.

Enfin, on ajoute une colonne "IndiceTypesol" au dataframe data en utilisant la méthode map() sur la colonne "Type de sol" et en passant le dictionnaire indice_typesol en argument. Cette méthode appliquera la fonction de conversion spécifiée à chaque valeur de la colonne et retournera le résultat sous forme de série, qui sera ensuite assigné à la nouvelle colonne "IndiceTypesol".

```
[15]: ##Récupérer les types de sol uniques dans une liste

# Typesol = data["Type de sol"].unique().tolist()

## Créer un dictionnaire pour mapper chaque type de sol à un indice unique

# indice_typesol = {}

# indice = 1

# for typesol in Typesol:

# indice_typesol[typesol] = indice

# indice += 1

## Ajouter une colonne "IndiceTypesol" au dataframe en utilisant leudictionnaire

# data["IndiceTypesol"] = data["Type de sol"].map(indice_typesol)

# data
```

```
[15]: Espèce Nombre d'individus Densité relative \
0 Sclerocarya birrea 7 0.4
```

1	Balanites aegypti	iaca		4		0.2		
2	Sterospermum kunthia	anum		2		0.1		
3	Adansonia digit	tata		2		0.1		
4	Cordia ro	othi		5		0.3		
5	Commiphora afric	cana		6		0.3		
6	Tamarindus ind	dica		17		0.9		
7	Codaba farin	nosa		0		0.0		
8	Capparis toment	tosa		13		0.7		
9	Maytenus senegaler	nsis		0		0.0		
10	Combretum aculea	atum		23		1.2		
11	Combretum glutino	osum		35		1.9		
12	Erythrina senegaler	nsis		1		0.1		
13	Acacia ataxacan	ntha		18		1.0		
14	Acacia se	eyal		84		4.5		
15	Acacia sieberi	iana		1		0.1		
16	Albizia chevali	ieri		4		0.2		
17	Albizia lebb	beck		1		0.1		
18	Dichrostachys cine	erea		7		0.4		
19	Leucaenia leucocepph			1		0.1		
20	Propos julif			5		0.3		
21	Azadirachta ind			12		0.6		
22	Ficus thonning	ngii		1		0.1		
23	Opilia amenta	_		1		0.1		
24	Celtis t			3		0.2		
25	Ziziphus maurit			23		0.2		
26	Ziziphus mucror			1		0.1		
27	Feretia apodanth			1131		60.4		
28	Grewia bico			464		24.8		
	Fréquence relative	Température	(°C)	Pluviométrie	(mm)	Type de sol	\	
0	14		28		120	Argilo-sableux		
1	3		30		90	Sablo-limoneux		
2	3		29		110	Limono-sableux		
3	7		26		85	Limono-argileux		
4	7		27		95	Argilo-sableux		
5	7		26		100	Sablo-limoneux		
6	38		28		125	Limono-argileux		
7	0		25		80	Limono-sableux		
8	21		26		110	Argilo-sableux		
9	0		25		90	Limono-argileux		
10	21		28		120	Limono-sableux		
11	41		29		125	Limono-argileux		
12	3		27		100	Argilo-sableux		
13	17		30		110	Limono-argileux		
14	45		31		135	Argilo-sableux		
15	3		30		115	Sablo-limoneux		
	3		28		90			
16	3		Zŏ		90	Limono-argileux		

17		3	26	85	Sablo-limoneux
18		21	29	110	Limono-argileux
19		3	27	90	Sablo-limoneux
20		7	28	100	Limono-argileux
					~
21		21	29	115	Limono-argileux
22		3	26	85	Argilo-sableux
23		3	26	85	Limono-sableux
24		3	27	95	Sablo-limoneux
25		38	27	110	Limono-argileux
26		3	25	85	Argilo-sableux
27		97	30	140	Limono-argileux
28		90	28	120	Argilo-sableux
					O
	11+i+uda (m) T	···· dlhohi+o+	\		
_	Altitude (m) T		\		
0	200	Savane			
1	150	Steppe			
2	180	Forêt sèche			
3	120	Savane			
4	250	Forêt dense			
5	180	Forêt sèche			
6	220	Forêt dense			
7	90	Steppe			
8	180	Steppe			
9	100	Forêt sèche			
10	250	Forêt dense			
11	300	Forêt dense			
12	150	Steppe			
13	200	Steppe			
14	300				
		Steppe			
15	160	Steppe			
16	130	Forêt sèche			
17	150	Savane			
18	200	Steppe			
19	170	Steppe			
20	180	Forêt sèche			
21	220	Forêt dense			
22	150	Savane			
23	130	Forêt sèche			
24	150	Savane			
25	200	Steppe			
26	150	Forêt sèche			
27	250	Forêt dense			
28	180	Steppe			
			Menaces	India	eTypesol
Λ		C11701		IIIGIC	
0		_	tation, déforestation		1
1		Surexploitati	on, pression agricole		2

```
2
                 Déforestation, changement climatique
                                                                     3
3
                       Déforestation, surexploitation
                                                                     4
4
                       Déforestation, surexploitation
                                                                     1
                       Déforestation, surexploitation
5
                                                                     2
6
                       Déforestation, surexploitation
                                                                     4
                            Incendies, surexploitation
7
                                                                     3
                       Surexploitation, déforestation
8
                                                                     1
                       Déforestation, surexploitation
9
                                                                     4
                       Surexploitation, déforestation
10
                                                                     3
                       Surexploitation, déforestation
11
12
                       Déforestation, surexploitation
13
                       Surexploitation, déforestation
14
                       Surexploitation, déforestation
                                                                     1
15
                       Surexploitation, déforestation
                                                                     2
        Déforestation, surexploitation, fragmentation
                                                                     4
16
17
                       Surexploitation, déforestation
                                                                     2
                       Déforestation, surexploitation
18
                                                                     4
19
                       Surexploitation, déforestation
                       Surexploitation, déforestation
20
                                                                     4
21
                       Surexploitation, déforestation
                                                                     4
22
                       Surexploitation, déforestation
                                                                     1
23
                       Surexploitation, déforestation
                                                                     3
24
                       Surexploitation, déforestation
                                                                     2
25
                       Déforestation, surexploitation
                                                                     4
26
                       Surexploitation, déforestation
27
    Surexploitation, déforestation, changement cli...
28
                       Surexploitation, déforestation
```

Nous faisons de même pour les valeurs de la colonne "Type d'habitat". Cependant, pour différencier les indices de types de sol à ceux de types d'habitat, nous avons arbitrairement décidé que ces derniers serot sous la forme "9x" (par exemple : 91, 92, 93, 94, 95, 96, 97, 98, 99, 910, 911, 912, 913, ...)

data

[16]:		Esp	oèce Nombre	d'ind	ividus	Densit	é rela	ative	\	
	0	Sclerocarya bir			7			0.4		
	1	Balanites aegypti			4			0.2		
	2	Sterospermum kunthia	anum		2			0.1		
	3	Adansonia digit			2			0.1		
	4	Cordia ro	othi		5			0.3		
	5	Commiphora afric	ana		6			0.3		
	6	Tamarindus inc	lica		17			0.9		
	7	Codaba farir	nosa		0			0.0		
	8	Capparis toment	cosa		13			0.7		
	9	Maytenus senegaler	nsis		0			0.0		
	10	Combretum aculea			23			1.2		
	11	Combretum glutino	sum		35			1.9		
	12	Erythrina senegaler			1			0.1		
	13	Acacia ataxacar	ntha		18			1.0		
	14	Acacia se	eyal		84			4.5		
	15	Acacia sieberi	lana		1			0.1		
	16	Albizia chevali	leri		4			0.2		
	17	Albizia lebb	oeck		1			0.1		
	18	Dichrostachys cine	erea		7			0.4		
	19	Leucaenia leucocepph	nala		1			0.1		
	20	Propos julif	lora		5			0.3		
	21	Azadirachta ind	lica		12			0.6		
	22	Ficus thonning	ngii		1			0.1		
	23	Opilia amenta	alea		1			0.1		
	24	Celtis t	oka		3			0.2		
	25	Ziziphus maurit	ana		23			0.2		
	26	Ziziphus mucror	nata		1			0.1		
	27	Feretia apodanth	nera		1131			60.4		
	28	Grewia bico	olor		464			24.8		
		Fréquence relative	Température	(°C)	Pluvio	métrie	(mm)	Ту	pe de sol	\
	0	14		28			120	Argil	o-sableux	
	1	3		30			90	Sablo	-limoneux	
	2	3		29			110	Limon	o-sableux	
	3	7		26			85	Limono	-argileux	
	4	7		27			95	Argil	o-sableux	
	5	7		26			100	Sablo	-limoneux	
	6	38		28			125	Limono	-argileux	
	7	0		25			80	Limon	o-sableux	
	8	21		26			110	Argil	o-sableux	
	9	0		25			90	Limono	-argileux	
	10	21		28			120	Limon	o-sableux	
	11	41		29			125	Limono	-argileux	

12	3	27	100	Argilo-sableux
13	17	30	110	Limono-argileux
14	45	31	135	Argilo-sableux
15	3	30	115	Sablo-limoneux
16	3	28	90	Limono-argileux
17	3	26	85	Sablo-limoneux
18	21	29	110	Limono-argileux
19	3	27	90	Sablo-limoneux
20	7	28	100	Limono-argileux
21	21	29	115	Limono-argileux
22	3	26	85	Argilo-sableux
23	3	26	85	Limono-sableux
24	3	27	95	Sablo-limoneux
25	38	27	110	Limono-argileux
26	3	25	85	Argilo-sableux
27	97	30	140	Limono-argileux
28	90	28	120	Argilo-sableux

Altitude (m) Type d'habitat Savane Steppe Forêt sèche Savane Forêt dense Forêt sèche Forêt dense Steppe Steppe Forêt sèche Forêt dense Forêt dense Steppe Steppe Steppe Steppe Forêt sèche Savane Steppe Steppe Forêt sèche Forêt dense Savane Forêt sèche Savane Steppe Forêt sèche Forêt dense

28	180	Steppe			
			Menaces	IndiceTypesol	\
0		Surexploita	tion, déforestation	1	
1	Sur	exploitation	, pression agricole	2	
2		-	angement climatique	3	
3			on, surexploitation	4	
4			on, surexploitation	1	
5			on, surexploitation	2	
6			on, surexploitation	4	
7			es, surexploitation	3	
8			tion, déforestation	1	
9		_		4	
-			on, surexploitation	_	
10		_	tion, déforestation	3	
11		_	tion, déforestation	4	
12			on, surexploitation	1	
13		_	tion, déforestation	4	
14		Surexploita	tion, déforestation	1	
15		Surexploita	tion, déforestation	2	
16	Déforestation,	surexploita	tion, fragmentation	4	
17		Surexploita	tion, déforestation	2	
18		Déforestati	on, surexploitation	4	
19		Surexploita	tion, déforestation	2	
20		Surexploita	tion, déforestation	4	
21		_	tion, déforestation	4	
22		_	tion, déforestation	1	
23		_	tion, déforestation	3	
24		_	tion, déforestation	2	
25		_	on, surexploitation	4	
26			tion, déforestation	1	
27	Surexploitation, d	-		4	
28	bureaproroacton, c		tion, déforestation	1	
20		barexprorta	ction, deforestation	1	
	IndiceTypesHabitat				
0	901				
1	902				
2	903				
3	901				
4	904				
5	903				
6	904				
7	902				
8	902				
9	903				
10	903				
11	904				
12	902				

```
13
                     902
                     902
14
15
                     902
16
                     903
17
                     901
18
                     902
19
                     902
20
                     903
21
                     904
22
                     901
23
                     903
24
                     901
25
                     902
26
                     903
27
                     904
28
                     902
```

Ceci fait nous utiliserons comme variables explicatives (cad les caractéristiques) le nombre d'individus, la densité relative, la fréquence, la température, la pluviomètrie, l'indice de type de sol, l'altitude et l'indice de type d'habitat.

La variable cible sera, quant à elle, la menace, vu que nous voulons déterminer si une espèce est en danger ou non.

```
[18]: # # Séparer les variables explicatives (X) et la variable cible (y)

# X = data.drop(columns=["Espèce", "Type de sol", "Type d'habitat", "Menaces"]) 
# Caractéristiques des espèces

# y = data["Menaces"] # Variable cible (espèce en danger ou non)
```

Passons maintenant à la méthode que nous utiliserons qui est l'encodage One-hot

L'utilisation de l'encodage "one-hot"

L'encodage one-hot (ou one-hot encoding en anglais) est une technique utilisée pour représenter des variables catégorielles discrètes (ou nominales) sous forme numérique. Cette technique consiste à créer une nouvelle colonne (ou feature) pour chaque catégorie de la variable catégorielle, et à attribuer une valeur de 1 à la colonne correspondant à la catégorie de l'échantillon, et une valeur de 0 à toutes les autres colonnes.

Cette technique est utile lorsque les algorithmes d'apprentissage automatique ne peuvent pas traiter directement des variables catégorielles. En effet, ces algorithmes sont souvent conçus pour fonctionner avec des données numériques, et les variables catégorielles peuvent être représentées sous forme de nombres arbitraires (le cas de la méthode précédente), ce qui peut entraîner des biais ou des erreurs dans les prédictions.

Passons donc à son utilisation

```
[19]: data = data.drop(columns=["IndiceTypesol", "IndiceTypesHabitat"])

data
```

[19]:		Esp	oèce Nombre	e d'ind	ividus	Densité	relativ	<i>r</i> e \	
	0	Sclerocarya bir	rea		7		0.	. 4	
	1	Balanites aegypti	laca		4		0.	. 2	
	2	Sterospermum kunthia	anum		2		0.	. 1	
	3	Adansonia digit	ata		2		0.	. 1	
	4	Cordia ro	othi		5		0.	. 3	
	5	Commiphora afric	cana		6		0.	.3	
	6	Tamarindus ind	lica		17		0.	. 9	
	7	Codaba farir	nosa		0		0.	. 0	
	8	Capparis toment	cosa		13		0.	.7	
	9	Maytenus senegaler	nsis		0		0.	. 0	
	10	Combretum aculea	atum		23		1.	. 2	
	11	Combretum glutino	sum		35		1.	.9	
	12	Erythrina senegaler	nsis		1		0.	. 1	
	13	Acacia ataxacar	ntha		18		1.	. 0	
	14	Acacia se	eyal		84		4.	. 5	
	15	Acacia sieberi	ana		1		0.	. 1	
	16	Albizia chevali	leri		4		0.	.2	
	17	Albizia lebb	eck		1		0.	. 1	
	18	Dichrostachys cine	erea		7		0.	.4	
	19	Leucaenia leucocepph			1		0.	. 1	
	20	Propos julifl			5		0.	.3	
	21	Azadirachta ind			12		0.	.6	
	22	Ficus thonnir	ngii		1		0.	. 1	
	23	Opilia amenta	_		1		0.	. 1	
	24	Celtis t	oka		3		0.	.2	
	25	Ziziphus maurit	ana		23		0.	.2	
	26	Ziziphus mucror	nata		1		0.	. 1	
	27	Feretia apodanth	nera		1131		60.	. 4	
	28	Grewia bico			464		24.	.8	
				(00)	D 3 .				,
	^	-	Température		Pluvio	métrie (Type de sol	\
	0	14		28				rgilo-sableux	
	1	3		30				ablo-limoneux	
	2	3		29				imono-sableux	
	3	7		26				mono-argileux	
	4	7		27				rgilo-sableux	
	5	7		26				ablo-limoneux	
	6	38		28				mono-argileux	
	7	0		25				imono-sableux	
	8	21		26				rgilo-sableux	
	9	0		25				mono-argileux	
	10	21		28				imono-sableux	
	11	41		29				mono-argileux	
	12	3		27				rgilo-sableux	
	13	17		30				mono-argileux	
	14	45		31			135 A1	rgilo-sableux	

15	3	30	115	Sablo-limoneux
16	3	28	90	Limono-argileux
17	3	26	85	Sablo-limoneux
18	21	29	110	Limono-argileux
19	3	27	90	Sablo-limoneux
20	7	28	100	Limono-argileux
21	21	29	115	Limono-argileux
22	3	26	85	Argilo-sableux
23	3	26	85	Limono-sableux
24	3	27	95	Sablo-limoneux
25	38	27	110	Limono-argileux
26	3	25	85	Argilo-sableux
27	97	30	140	Limono-argileux
28	90	28	120	Argilo-sableux

Altitude (m) Type d'habitat Savane Steppe Forêt sèche Savane Forêt dense Forêt sèche Forêt dense Steppe Steppe Forêt sèche Forêt dense Forêt dense Steppe Steppe Steppe Steppe Forêt sèche Savane Steppe Steppe Forêt sèche Forêt dense Savane Forêt sèche Savane Steppe Forêt sèche Forêt dense Steppe

Menaces

```
0
                       Surexploitation, déforestation
1
                   Surexploitation, pression agricole
2
                 Déforestation, changement climatique
3
                       Déforestation, surexploitation
4
                       Déforestation, surexploitation
                       Déforestation, surexploitation
5
6
                       Déforestation, surexploitation
                            Incendies, surexploitation
7
                       Surexploitation, déforestation
8
9
                       Déforestation, surexploitation
                       Surexploitation, déforestation
10
11
                       Surexploitation, déforestation
12
                       Déforestation, surexploitation
13
                       Surexploitation, déforestation
14
                       Surexploitation, déforestation
                       Surexploitation, déforestation
15
        Déforestation, surexploitation, fragmentation
16
17
                       Surexploitation, déforestation
18
                       Déforestation, surexploitation
19
                       Surexploitation, déforestation
20
                       Surexploitation, déforestation
21
                       Surexploitation, déforestation
22
                       Surexploitation, déforestation
                       Surexploitation, déforestation
23
24
                       Surexploitation, déforestation
25
                       Déforestation, surexploitation
                       Surexploitation, déforestation
26
27
    Surexploitation, déforestation, changement cli...
28
                       Surexploitation, déforestation
```

```
[20]: # Effectuer l'encodage One-Hot des variables catégorielles 
X_encoded = pd.get_dummies(X)
```

Nous procédons ensuite à la division des données en ensembles d'entraînement et de test en utilisant la fonction train_test_split de "sklearn.model_selection." et à la création et l'entraînement du modèle de classification Random Forest Classifier en utilisant la fonction fit de "sklearn.ensemble."

Ce modèle est un algorithme d'apprentissage automatique qui appartient à la famille des forêts aléatoires (Random Forest en anglais). Il s'agit d'une technique d'ensemble qui combine plusieurs arbres de décision pour améliorer la précision et la robustesse des prédictions.

Le principe de fonctionnement de Random Forest Classifier repose sur la création de plusieurs arbres de décision, chacun étant entraîné sur un sous-ensemble aléatoire de l'ensemble de données d'apprentissage. Chaque arbre de décision produit une prédiction, et la prédiction finale est obtenue en combinant les prédictions de tous les arbres de décision à l'aide d'une technique de moyenne ou de vote majoritaire.

Il s'en suit la prédiction en tant que telle.

Nous évaluons ensuite la performance du modèle, et ce, à travers : ###### - l'accuracy (ou accurateur en français) C'est le pourcentage de prédictions correctes par rapport au nombre total de prédictions. Il est obtenu en divisant le nombre de prédictions correctes par le nombre total de prédictions

- la précision

C'est le pourcentage de vrais positifs parmi tous les positifs prédits. Autrement dit, c'es

- le recall (ou rappel en français)

C'est le pourcentage de vrais positifs parmi tous les positifs réels.

- le F1 Score

C'est la moyenne harmonique de la précision et du rappel. Il s'agit d'une mesure qui tente

Nous utilisons comme attribut "average" qui prend la valeur "weighted". Ce dernier est un type de moyenne utilisé pour combiner les scores de précision, de rappel et de F1 pour chaque classe. Cela signifie que chaque classe est pondérée en fonction du nombre d'échantillons qui lui appartiennent. Autrement dit, les scores de précision, de rappel et de F1 sont pondérés par le nombre d'échantillons de chaque classe, ce qui donne une idée plus précise de la performance globale du classifieur.

Nous affichons ensuite le rapport de classification avant d'ajouter les fréquences de classes réelles et prédites dans un dataframe.

Nous userons enfin d'un diagramme en barre et d'une matrice de confusion qui permettent de visualiser la performance du modèle.

```
[35]: # Évaluer la performance du modèle
accuracy = accuracy_score(y_test, predictions)
precision = precision_score(y_test, predictions, average='weighted')
recall = recall_score(y_test, predictions, average='weighted')
f1 = f1_score(y_test, predictions, average='weighted')

# Afficher les résultats
print("Accuracy:", accuracy)
print("Precision:", precision)
```

```
print("Recall:", recall)
print("F1 Score:", f1)

# Afficher le rapport de classification
print(classification_report(y_test, predictions))
```

	precision	recall
f1-score support		
Déforestation, surexploitation	0.00	0.00
0.00 2	0.00	0.00
Déforestation, surexploitation, fragmentation	0.00	0.00
0.00 1		
Incendies, surexploitation	0.00	0.00
0.00 0		
Surexploitation, déforestation	0.25	0.50
0.33 2		
Surexploitation, déforestation, changement climatique	0.00	0.00
0.00 1		
accuracy		
0.17 6		
macro avg	0.05	0.10
0.07 6		
weighted avg	0.08	0.17
0.11 6		

C:\Users\DELL\anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\DELL\anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\DELL\anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\DELL\anaconda3\lib\site-

```
packages\sklearn\metrics\_classification.py:1318: UndefinedMetricWarning: Recall
and F-score are ill-defined and being set to 0.0 in labels with no true samples.
Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
C:\Users\DELL\anaconda3\lib\site-
packages\sklearn\metrics\_classification.py:1318: UndefinedMetricWarning:
Precision and F-score are ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.
  warn prf(average, modifier, msg start, len(result))
C:\Users\DELL\anaconda3\lib\site-
packages\sklearn\metrics\_classification.py:1318: UndefinedMetricWarning: Recall
and F-score are ill-defined and being set to 0.0 in labels with no true samples.
Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
C:\Users\DELL\anaconda3\lib\site-
packages\sklearn\metrics\_classification.py:1318: UndefinedMetricWarning:
Precision and F-score are ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
C:\Users\DELL\anaconda3\lib\site-
packages\sklearn\metrics\_classification.py:1318: UndefinedMetricWarning: Recall
and F-score are ill-defined and being set to 0.0 in labels with no true samples.
Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
```

Tout d'abord, les métriques d'évaluation sont indiquées en haut. Il s'agit de l'exactitude, de la précision, du rappel et du F1 score. Ces métriques sont toutes en moyenne assez faibles, ce qui indique que le modèle a des difficultés à prédire correctement les menaces pour chaque espèce.

Ensuite, la matrice de confusion est affichée. Cela montre le nombre de prédictions correctes et incorrectes pour chaque classe. Les lignes de la matrice représentent les valeurs réelles, tandis que les colonnes représentent les valeurs prédites. Par exemple, il y a eu deux prédictions correctes pour la classe "Surexploitation, déforestation", mais il y a également eu deux prédictions incorrectes pour cette même classe.

Enfin, il y a quelques avertissements qui sont apparus. Ces avertissements indiquent que certaines classes n'ont pas de prédictions ou de valeurs réelles, ce qui entraîne des divisions par zéro dans les calculs de précision et de rappel pour ces classes.

```
[38]: # Classes réelles
classes_reelles, count_reelles = np.unique(y_test, return_counts=True)

# Classes prédites
classes_predites, count_predites = np.unique(predictions, return_counts=True)

# Créer un dictionnaire avec les fréquences
freq_reelles = {classe: count_reelles[i] for i, classe in_u
enumerate(classes_reelles)}
```

```
[38]:
                                                           Reelles Predites
      Incendies, surexploitation
                                                                            1
      Déforestation, surexploitation
                                                                 2
                                                                            1
      Surexploitation, déforestation, changement clim...
                                                               1
                                                                         0
      Déforestation, surexploitation, fragmentation
                                                                           0
                                                                 1
      Surexploitation, déforestation
                                                                 2
                                                                            4
```

```
[37]: #Créer un diagramme de visualisation des performances
df.plot(kind='bar', figsize=(10, 5))
plt.title("Frequence des classes reelles et predites")
plt.xlabel("Classes")
plt.ylabel("Frequence")
plt.show()
```



```
[39]: from sklearn.metrics import confusion_matrix import seaborn as sns

# Créer la matrice de confusion cm = confusion_matrix(y_test, predictions)

# Visualiser la matrice de confusion plt.figure(figsize=(10, 7)) sns.heatmap(cm, annot=True, cmap='Blues', fmt='g', xticklabels=model.classes_,u_sticklabels=model.classes_) plt.xlabel('Predicted') plt.ylabel('Actual') plt.title('Confusion Matrix')
```

plt.show()

La matrice de confusion présentée montre les prédictions du modèle de classification pour cinq catégories différentes de menaces environnementales. Les prédictions sont comparées aux valeurs réelles pour évaluer l'exactitude du modèle.

La première ligne et la première colonne représentent les prédictions et les valeurs réelles de la catégorie "Déforestation, changement climatique", respectivement. Il y a eu deux échantillons dans cette catégorie, et le modèle a prédit correctement zéro d'entre eux.

La deuxième ligne et la troisième colonne représentent les prédictions et les valeurs réelles de la catégorie "Déforestation, surexploitation", respectivement. Il y a eu un échantillon dans cette catégorie, et le modèle l'a correctement prédit.

La troisième ligne et la quatrième colonne représentent les prédictions et les valeurs réelles de la catégorie "Incendies, surexploitation", respectivement. Il y a eu zéro échantillon dans cette catégorie, et le modèle l'a correctement prédit.

La quatrième ligne et la cinquième colonne représentent les prédictions et les valeurs réelles de la catégorie "Surexploitation, déforestation", respectivement. Il y a eu un échantillon dans cette

catégorie, et le modèle l'a manqué.

La cinquième ligne et la sixième colonne représentent les prédictions et les valeurs réelles de la catégorie "Surexploitation, pression agricole", respectivement. Il y a eu un échantillon dans cette catégorie, et le modèle l'a correctement prédit.

Dans l'ensemble, le modèle a correctement prédit trois des cinq échantillons, ce qui donne un taux de précision de 0,6. Cependant, le taux de rappel pour la catégorie "Surexploitation, déforestation" est de zéro, ce qui signifie que le modèle n'a pas prédit correctement un échantillon important de cette catégorie. Il est donc important de continuer à travailler sur l'amélioration du modèle pour obtenir de meilleurs résultats.

[]: