

Open-Q™ 820 µSOM HW Device Specification

[Document: ITC-01RND1239-SOM-DS Version: 1.1]

Your use of this document is subject to and governed by those terms and conditions in the Intrinsyc Purchase an Open-Q Development Kit Based on Snapdragon™ 820 Series Processor and Software License Agreement for the Open-Q Development Kit Based on Snapdragon 820 Series Processor, which you or the legal entity you represent, as the case may be, accepted and agreed to when purchasing an Open-Q Development Kit from Intrinsyc Technologies Corporation ("Agreement"). You may use this document, which shall be considered part of the defined term "Documentation" for purposes of the Agreement, solely in support of your permitted use of the Open-Q Development Kit under the Agreement. Distribution of this document is strictly prohibited without the express written permission of Intrinsyc Technologies Corporation and its respective licensors, which they can withhold, condition or delay in its sole discretion.

Intrinsyc is a trademark of Intrinsyc Technologies Corporation, registered in Canada and other countries. Qualcomm® and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names used herein may be trademarks or registered trademarks of their respective owners.

This document contains technical data that may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Identification

Document Title Open-QTM 820 μSOM HW Device Specification

Document Number ITC-01RND1239-SOM-DS

Version 1.1

Date May 16, 2019

History

REVISION	DATE	DESCRIPTION	PAGES
1.0	Jan 18, 2018	Initial Draft	All
1.1	May 16, 2019	Updated outline to new standard	All

Table of Contents

1.	INTRODUCTION	4
	 1.1 Purpose	4 4
2.	DOCUMENTS	6
	2.1 Applicable Documents2.2 Reference Documents	
3.	SUMMARY OF FEATURES	7
	 μSOM BLOCK DIAGRAM μSOM Technical Specifications 	
4.	I/O DEFINITIONS	9
	 4.1 Location of Major Components	
5.	ELECTRICAL SPECIFICATIONS	19
	 5.1 Absolute Maximum Ratings 5.2 Operating Conditions 5.3 Operating Temperature 5.4 Power Consumption 5.4.1 Setup and Methodology 5.4.2 Results 5.5 ESD Ratings 	19 20 20
6.	MECHANICAL SPECIFICATIONS	22
	 6.1 μSOM Mechanical Outline 6.2 Top and Bottom Height Restrictions 6.3 Landing Pattern 6.4 Thermal Characteristics 6.5 Weight 6.6 B2B Connector use Limit 	22 22 23
7.	PRODUCT MARKING, ORDERING, AND STORAGE INFO	24
	 7.1 Product Marking	24
8.	HANDLING PRECAUTIONS	26
	 8.1 ESD Precautions 8.2 SOM – Carrier Board Mating Cautions 8.3 Storage 	26

Open-Q[™] 820 μ SOM HW Device Specification v. 1.1

9.		CERTIFICATION	27
	9.1	Radio Certification	27
	9.2	ROHS/REACH Compliance	27
10	. (COMPANY CONTACT	28

1. INTRODUCTION

This document applies to the Open-Q $820~\mu SOM$ only. The Intrinsyc product line also includes the Open-Q 820~SOM and technical specification of that module is covered under a separate document.

1.1 Purpose

The purpose of this document is to provide a technical overview of the Intrinsyc Open-Q 820 μ SOM. For more information on the associated Open-Q 820 μ SOM Development Kit and accessories, see the website here:

 $\underline{https://www.intrinsyc.com/snapdragon-embedded-development-kits/open-q-820-usom-development-kit/}$

1.2 Scope

This document covers the following information on the Open-Q 820 µSOM:

- Electrical and mechanical specifications
- μSOM pin-out
- Device handling and packaging
- Ordering information.

1.3 Intended Audience

This document is intended for users who wish to understand the technical specifications of the Intrinsyc Open-Q 820 µSOM.

1.4 Acronyms and Abbreviations

Acronym / Abbreviation	Definition	
ANT	ANTenna	
BAT, BATT	BATTery	
BAM	Bus Access Manager	
BLSP	BAM-based Low-Speed Peripheral	
BOM	Bill Of Materials	
BT	Blue Tooth	
CLK	Clock	
CPU	Central Processing Unit	
CS	Chip Select	
CSI	Camera Serial Interface	
DSI	Display Serial Interface	
EMI	Electro-Magnetic Interference	
EN	ENable	
ERM	Eccentric Rotating Mass	
ESD	Electro-Static Discharge	
GND	GrouND	
GPIO	General Purpose I/O	
GPS	Global Positioning System	

Acronym /	Definition		
Abbreviation			
HDMI	High Definition Multimedia Interface		
I2C	Inter-Integrated Circuit		
12S	Inter-IC Sound		
INT	INTerrupt		
JTAG	Joint Test Action Group		
LDO	Low Drop-Out		
LRM	Linear Resonant Actuator		
LTE	Long-Term Evolution		
MDP	Mobile Display Port		
MI2S	Mobile Inter-IC Sound		
MIC	MICrophone		
MIPI	Mobile Industry Processor Interface		
MPP	Multi-Purpose Pin		
NFC	Near Field Communication		
PCB	Printed Circuit Board		
PCIE	Peripheral Component Interconnect Express		
PWM	Pulse-Width Modulation		
RF	Radio Frequency		
RX	Receive		
SCL	Serial CLock		
SDA	Serial DAta		
SDC	Secure Digital Interface		
SOM	System On Module		
SPI	Serial Peripheral Interface		
SSC	Snapdragon Sensor Core		
TX	Transmit		
UART	Universal Asynchronous Receiver/Transmiter		
UIM	User Interface Module		
USB	Universal Serial Bus		
WLAN	Wireless Local Area Network		

1.5 Signal Name Suffix

Suffix	Definition	
_N	Indicates that the signal is ACTIVE LOW	
_P/N Identifies the two signals comprising a differential pair		

2. DOCUMENTS

This section lists any parent and supplementary documents for the Open-Q 820 μ SOM Device Specification. Unless stated otherwise, applicable documents supersede this document and reference documents provide background and supplementary information.

2.1 Applicable Documents

REFERENCE	AUTHOR	TITLE
A-1	Intrinsyc	Intrinsyc Purchase and Software License Agreement for the Open-Q 820 µSOM

2.2 Reference Documents

REFERENCE	TITLE	
R-1	Hardware Document Set for the Snapdragon APQ8096 based Open-Q Development Kit: https://support.intrinsyc.com/documents/253	
R-2	Intrinsyc Open-Q 820 (APQ8096) µSOM Development Kit: Technical Note 19: µSOM Carrier Board Design Guide: https://support.intrinsyc.com/documents/214	
R-3	Open-Q 820 μSOM Schematics (μSOM): https://support.intrinsyc.com/documents/199	
R-4	Intrinsyc Open-Q 820 µSOM Development Kit User Guide: https://support.intrinsyc.com/documents/212	
R-5	ITCNFA324 Module Certification OEM Integrator Instructions: https://support.intrinsyc.com/documents/224	

3. SUMMARY OF FEATURES

The Open-Q 820 μ SOM is an ultra small (50mm x 25mm) production ready, system on module that enables customers to design, develop, test, and deploy their product solutions around the popular and powerful Qualcomm Snapdragon (APQ8096) processor. This section describes the features of the μ SOM.

3.1 µSOM BLOCK DIAGRAM

Figure 1 - Open-Q 820 µSOM Block Diagram

3.2 µSOM Technical Specifications

See the table below for the Open-Q 820 μ SOM technical specifications.

Table 1 – Open-Q 820 µSOM Technical Specifications

Table 1 – Open-Q 820 µSOM Technical Specifications		
Feature	Description	
Processor	Qualcomm Snapdragon 820 (APQ8096)	
	Qualcomm® Kyro CPU Quad-Core, 64-bit, 2.15GHz	
	Qualcomm® Adreno 530 GPU	
	Qualcomm [®] Hexagon 680 DSP	
Memory/Storage	3GB LPDDR4 RAM (1866MHz)	
	32GB UFS 2.0 Flash 1-lane, gear 3	
Wireless	Wi-Fi 802.11a/b/g/n/ac 1.4/5.0 GHz 2x2 MU-MIMO	
	Bluetooth 4.1	
GPS	Qualcomm [®] IZat Gen 8C GPS	
Display	2x MIPI-DSI 4-lane, 60fps, up to 2560x1600 (single port), 4096x2160 (dual port)	
	1x HDMI 2.0 up to 4096x2160, 60fps	
Camera	Qualcomm® Spectra ISP	
	3x MIPI-CSI 4-lane, dual ISP, up to 28MP	
Audio	1x SLIMbus and 2x I2S, or 3x I2S	
Other Interfaces	1x USB 3.0 client or host	
	1x USB 2.0 client or host	
	2x PCle v2.1	
	8x BLSP 4-pin port configurable as I2c, SPI, UART, or GPIO	
	1x SDIO (4 lane)	
OS Support	Android 6 Marshmallow, Android 7 Nougat, Android 8 Oreo, Android 9 Pie,	
	Debian Linux	

4. I/O DEFINITIONS

4.1 Location of Major Components

RF I/O for the μSOM are located on the top side of the module.

Figure 2 - Open-Q 820 µSOM (Top View)

The μ SOM mating connectors JT1, JT2, and JT3 are located on the bottom side of the μ SOM. The relative location of these connectors is shown in the picture below. Key dimensions are provided in later sections of this document.

Figure 3 - Open-Q 820 µSOM (Bottom View)

Figure 4 - Pin Locations of Board-to-Board Connectors

4.2 B2B Connector Signal Assignments

The following tables describe the pin-outs on the Open-Q 820 μ SOM. Note that the μ SOM schematic is the controlling document. In the event of pin-out difference(s) between this document and the μ SOM schematic, the μ SOM schematic shall take precedence.

For more information on how each signal can be utilized, see reference document R-2 (the carrier board design guide).

Table 2 – Connector JT1 Pin-outs

Connector (Pin #)	Pin Name	Description
JT1 (1)	GND	Ground
JT1 (2)	GND	Ground
JT1 (3)	HDMI_TX0_N	HDMI differential transmit 0 - negative
JT1 (4)	HDMI_TX1_N	HDMI differential transmit 1 - negative
JT1 (5)	HDMI_TX0_P	HDMI differential transmit 0 - positive
JT1 (6)	HDMI_TX1_P	HDMI differential transmit 1 - positive
JT1 (7)	GND	Ground
JT1 (8)	GND	Ground
JT1 (9)	HDMI_TX2_N	HDMI differential transmit 2 - negative
JT1 (10)	HDMI_TCLK_N	HDMI differential clock - negative
JT1 (11)	HDMI_TX2_P	HDMI differential transmit 2 - positive
JT1 (12)	HDMI_TCLK_P	HDMI differential clock - positive
JT1 (13)	GND	Ground
JT1 (14)	GND	Ground
JT1 (15)	GND	Ground
JT1 (16)	MIPI_CSIO_CLK_P	MIPI CSI 0 differential clock - negative
JT1 (17)	CCI_I2C_SDA0	Camera control interface I2C data 0
JT1 (18)	MIPI_CSIO_CLK_N	MIPI CSI 0 differential clock - positive
JT1 (19)	GND	Ground
JT1 (20)	GND	Ground
JT1 (21)	CCI_I2C_SDA1	Camera control interface I2C data 1
JT1 (22)	MIPI_CSIO_LANEO_P	MIPI CSI 0 differential lane 0 - positive
JT1 (23)	CAM_MCLK1	Camera master clock 1
JT1 (24)	MIPI_CSIO_LANEO_N	MIPI CSI 0 differential lane 0 - negative
JT1 (25)	CAM_MCLK2	Camera master clock 2
JT1 (26)	GND	Ground
JT1 (27)	CCI_I2C_SCL0	Camera control interface I2C clock 0
JT1 (28)	MIPI_CSIO_LANE1_P	MIPI CSI 0 differential lane 1 - positive
JT1 (29)	CCI_I2C_SCL1	Camera control interface I2C clock 1
JT1 (30)	MIPI_CSIO_LANE1_N	MIPI CSI 0 differential lane 1 - negative
JT1 (31)	GND	Ground
JT1 (32)	GND	Ground
JT1 (33)	MIPI_CSI1_LANE0_P	MIPI CSI 1 differential lane 0 - positive
JT1 (34)	MIPI_CSIO_LANE2_P	MIPI CSI 0 differential lane 2 - positive
JT1 (35)	MIPI_CSI1_LANE0_N	MIPI CSI 1 differential lane 0 - negative

Connector	Pin Name	Description
(Pin #)		
JT1 (36)	MIPI_CSIO_LANE2_N	MIPI CSI 0 differential lane 2 - negative
JT1 (37)	GND	Ground
JT1 (38)	GND	Ground
JT1 (39)	MIPI_CSI1_CLK_P	MIPI CSI 1 differential clock - positive
JT1 (40)	MIPI_CSIO_LANE3_P	MIPI CSI 0 differential lane 3 - positive
JT1 (41)	MIPI_CSI1_CLK_N	MIPI CSI 1 differential clock - negative
JT1 (42)	MIPI_CSIO_LANE3_N	MIPI CSI 0 differential lane 3 - negative
JT1 (43)	GND	Ground
JT1 (44)	GND	Ground
JT1 (45)	MIPI_CSI1_LANE1_N	MIPI CSI 1 differential lane 1 - negative
JT1 (46)	MIPI_CSI2_CLK_P	MIPI CSI 2 differential clock - positive
JT1 (47)	MIPI_CSI1_LANE1_P	MIPI CSI 1 differential lane 1 - positive
JT1 (48)	MIPI_CSI2_CLK_N	MIPI CSI 2 differential clock - negative
JT1 (49)	GND	Ground
JT1 (50)	GND	Ground
JT1 (51)	MIPI_CSI1_LANE2_P	MIPI CSI 1 differential lane 2 - positive
JT1 (52)	MIPI_CSI2_LANE0_P	MIPI CSI 2 differential lane 0 - positive
JT1 (53)	MIPI_CSI1_LANE2_N	MIPI CSI 1 differential lane 2 - negative
JT1 (54)	MIPI_CSI2_LANE0_N	MIPI CSI 2 differential lane 0 - negative
JT1 (55)	GND	Ground
JT1 (56)	GND	Ground
JT1 (57)	MIPI_CSI1_LANE3_P	MIPI CSI 1 differential lane 3 - positive
JT1 (58)	MIPI_CSI2_LANE1_P	MIPI CSI 2 differential lane 1 - positive
JT1 (59)	MIPI_CSI1_LANE3_N	MIPI CSI 1 differential lane 3 - negative
JT1 (60)	MIPI_CSI2_LANE1_N	MIPI CSI 2 differential lane 1 - negative
JT1 (61)	GND	Ground
JT1 (62)	GND	Ground
JT1 (63)	USB1_SS_TX_P	USB 1 super speed transmit - positive
JT1 (64)	MIPI_CSI2_LANE2_P	MIPI CSI 2 differential lane 2 - positive
JT1 (65)	USB1_SS_TX_N	USB 1 super speed transmit - negative
JT1 (66)	MIPI_CSI2_LANE2_N	MIPI CSI 2 differential lane 2 - negative
JT1 (67)	GND	Ground
JT1 (68)	GND	Ground
JT1 (69)	USB1_SS_RX_P	USB 1 super speed receive - positive
JT1 (70)	MIPI_CSI2_LANE3_P	MIPI CSI 2 differential lane 3 - positive
JT1 (71)	USB1_SS_RX_N	USB 1 super speed receive - negative
JT1 (72)	MIPI_CSI2_LANE3_N	MIPI CSI 2 differential lane 3 - negative
JT1 (73)	GND	Ground
JT1 (74)	GND	Ground
JT1 (75)	PCIE2_REFCLK_P	PCIe 2 reference clock - positive
JT1 (76)	LPG_WLED	Light pulse generator output
JT1 (77)	PCIE2_REFCLK_N	PCIe 2 reference clock - negative
JT1 (78)	KEY_VOLP_N	Volume down/reset key

Connector	Pin Name	Description
(Pin #)		
JT1 (79)	GND	Ground
JT1 (80)	GND	Ground
JT1 (81)	PCIE2_RX_N	PCIe 2 receive - negative
JT1 (82)	PCIE1_REFCLK_N	PCIe 1 reference clock - negative
JT1 (83)	PCIE2_RX_P	PCIe 2 receive - positive
JT1 (84)	PCIE1_REFCLK_P	PCIe 1 reference clock - positive
JT1 (85)	GND	Ground
JT1 (86)	GND	Ground
JT1 (87)	PCIE2_TX_P	PCIe 2 transmit - positive
JT1 (88)	PCIE1_RX_P	PCIe 1 receive - positive
JT1 (89)	PCIE2_TX_N	PCIe 2 transmit - negative
JT1 (90)	PCIE1_RX_N	PCIe 1 receive - negative
JT1 (91)	GND	Ground
JT1 (92)	GND	Ground
JT1 (93)	PM_MPP04	Configurable MPP
JT1 (94)	PCIE1_TX_N	PCIe 1 transmit - negative
JT1 (95)	VREG_LVS2A_1P8	PM8996 low voltage switch supply output 2
JT1 (96)	PCIE1_TX_P	PCIe 1 transmit - positive
JT1 (97)	VREG_LVS1A_1P8	PM8996 low voltage switch supply output 1
JT1 (98)	GND	Ground
JT1 (99)	CAM_MCLK0_OR_3	Camera master clock 0 or 3
JT1 (100)	VREG_L18A_2P85	PM8996 L18 low drop out regulated output

Table 3 – Connector JT2 Pin-outs

Connector (Pin #)	Pin Name	Description
JT2 (1)	SOM_SYS_PWR	SOM system input power
JT2 (2)	GND	Ground
JT2 (3)	SOM_SYS_PWR	SOM system input power
JT2 (4)	GND	Ground
JT2 (5)	SOM_SYS_PWR	SOM system input power
JT2 (6)	SOM_SYS_PWR	SOM system input power
JT2 (7)	SOM_SYS_PWR	SOM system input power
JT2 (8)	SOM_SYS_PWR	SOM system input power
JT2 (9)	SOM_SYS_PWR	SOM system input power
JT2 (10)	SOM_SYS_PWR	SOM system input power
JT2 (11)	SOM_SYS_PWR	SOM system input power
JT2 (12)	SOM_SYS_PWR	SOM system input power
JT2 (13)	SOM_SYS_PWR	SOM system input power
JT2 (14)	SOM_SYS_PWR	SOM system input power
JT2 (15)	SOM_SYS_PWR	SOM system input power
JT2 (16)	CS_PLUS	Current sense input - positive
JT2 (17)	SOM_SYS_PWR	SOM system power

Connector (Pin #)	Pin Name	Description	
JT2 (18)	CS_MINUS	Current sense input - negative	
JT2 (19)	SOM_SYS_PWR	SOM system power	
JT2 (20)	PMI8994_BAT_ID	Battery ID input	
JT2 (21)	SOM_SYS_PWR	SOM system power	
JT2 (22)	BATT_MINUS	Battery sense input - negative	
JT2 (23)	SOM_SYS_PWR	SOM system power	
JT2 (24)	BATT_PLUS	Battery sense input - positive	
JT2 (25)	USB_VBUS	USB input power pin	
JT2 (26)	HAP_OUT_N	Haptic output - negative	
JT2 (27)	USB_VBUS	USB input power pin	
JT2 (28)	HAP_OUT_P	Haptic output - positive	
JT2 (29)	USB_VBUS	USB input power pin	
JT2 (30)	VREG_L22A_3P0	PM8996 L22 low drop out regulated output	
JT2 (31)	USB_VBUS	USB input power pin	
(0 = /	00	Power on input to initiate power on sequence when asserted	
JT2 (32)	BTN PHONE ON N	low	
JT2 (33)	USB_VBUS	USB input power pin	
JT2 (34)	CAM2_STANDBY_N	Camera standby - negative	
JT2 (35)	VBUS_EN1	USB VBUS power enable	
JT2 (36)	BLSP8_UART_TX	UART transmit (cannot be reconfigured)	
JT2 (37)	USB2_VBUS_DET	USB VBUS detect pin	
JT2 (38)	BLSP8_UART_RX	UART receive (cannot be reconfigured)	
JT2 (39)	NAV_DR_SYNC_FB	APQ GPIO	
JT2 (40)	ACCEL_INT	Accelerometer interrupt	
JT2 (41)	MAG_DRDY_INT	Magnetometer interrupt	
JT2 (42)	BLSP9_SPI_CS_N	SPI chip select - negative (cannot be reconfigured)	
JT2 (43)	CAM1_STANDBY_N	Camera standby - negative	
JT2 (44)	BLSP9_SPI_CLK	SPI clock (cannot be reconfigured)	
JT2 (45)	BAT THERM	Battery thermistor input	
JT2 (46)	BLSP9 SPI MISO	SPI MISO (cannot be reconfigured)	
JT2 (47)	HDMI_RX_IRQ3	PMIC GPIO	
JT2 (48)	BLSP9_SPI_MOSI	SPI MOSI (cannot be reconfigured)	
JT2 (49)	HAP_CNTRL_ANLG	Haptic control input	
JT2 (50)	LCD0_RESET_N	LCD reset - negative	
JT2 (51)	TS_INT0	Touch screen interrupt	
JT2 (52)	APQ_GPIO9	APQ GPIO	
JT2 (53)	USB_ID	USB OTG ID monitor (input)	
JT2 (54)	MDP_VSYNC_P	APQ GPIO	
JT2 (55)	HDMI_HOT_PLUG_DETE	HDMI hot plug detect input	
JT2 (56)	MDP_VSYNC_S	APQ GPIO	
JT2 (57)	SD_CARD_DET_N	SD card detect - negative	
JT2 (58)	BLSP12_UART_TX	UART transmit	

Connector (Pin #)	Pin Name	Description
JT2 (59)	HDMI_CEC	HDMI consumer electronics control
JT2 (60)	BLSP12_I2C_SCL	I2C serial clock
JT2 (61)	HDMI_DDC_CLOCK	HDMI display data channel clock
JT2 (62)	BLSP12_I2C_SDA	I2C serial data
JT2 (63)	BTN_RESIN_N	Reset input pin to initiate reset
JT2 (64)	BLSP12_UART_RX	UART receive
JT2 (65)	CAP_INT_N	Capacitive sensing interrupt - negative
JT2 (66)	HDMI_DDC_DATA	HDMI display data channel data
JT2 (67)	BACKLIGHT_EN	Blacklight enable
JT2 (68)	GYRO_INT	Gyroscope interrupt
JT2 (69)	GND	Ground
JT2 (70)	GND	Ground
JT2 (71)	MIPI_DSI0_LANE2_P	MIPI DSI 0 differential lane 2 - positive
JT2 (72)	MIPI_DSIO_LANEO_P	MIPI DSI 0 differential lane 0 - positive
JT2 (73)	MIPI_DSIO_LANE2_N	MIPI DSI 0 differential lane 2 - negative
JT2 (74)	MIPI_DSIO_LANEO_N	MIPI DSI 0 differential lane 0 - negative
JT2 (75)	GND	Ground
JT2 (76)	GND	Ground
JT2 (77)	MIPI_DSIO_LANE1_N	MIPI DSI 0 differential lane 1 - negative
JT2 (78)	MIPI_DSI1_LANE1_N	MIPI DSI 1 differential lane 1 - negative
JT2 (79)	MIPI_DSIO_LANE1_P	MIPI DSI 0 differential lane 1 - positive
JT2 (80)	MIPI_DSI1_LANE1_P	MIPI DSI 1 differential lane 1 - positive
JT2 (81)	GND	Ground
JT2 (82)	GND Ground	
JT2 (83)	MIPI_DSIO_CLK_N	MIPI DSI 0 differential clock - negative
JT2 (84)	MIPI_DSI1_LANE0_P	MIPI DSI 1 differential lane 0 - positive
JT2 (85)	MIPI_DSIO_CLK_P	MIPI DSI 0 differential clock - positive
JT2 (86)	MIPI_DSI1_LANE0_N	MIPI DSI 1 differential lane 0 - negative
JT2 (87)	GND	Ground
JT2 (88)	GND	Ground
JT2 (89)	MIPI_DSI1_CLK_P	MIPI DSI 1 differential clock - positive
JT2 (90)	MIPI_DSI1_LANE3_P	MIPI DSI 1 differential lane 3 - positive
JT2 (91)	MIPI_DSI1_CLK_N	MIPI DSI 1 differential clock - negative
JT2 (92)	MIPI_DSI1_LANE3_N	MIPI DSI 1 differential lane 3 - negative
JT2 (93)	GND	Ground
JT2 (94)	GND	Ground
JT2 (95)	MIPI_DSI0_LANE3_P	MIPI DSI 0 differential lane 3 - positive
JT2 (96)	MIPI_DSI1_LANE2_P	MIPI DSI 1 differential lane 2 - positive
JT2 (97)	MIPI_DSIO_LANE3_N	MIPI DSI 0 differential lane 3 - negative
JT2 (98)	MIPI_DSI1_LANE2_N	MIPI DSI 1 differential lane 2 - negative
JT2 (99)	GND	Ground
JT2 (100)	GND	Ground

Table 4 – Connector JT3 Pin-outs

Table 4 – Connector JT3 Pin-outs			
Connector	Pin Name	Description	
(Pin #)	COEV HART TV	LTC as suithern as the many it	
JT3 (1)	COEX_UART_TX	LTE co-existence - transmit	
JT3 (2)	VREG_L19A_2P8	PM8996 L19 low drop out regulated output	
JT3 (3)	COEX_UART_RX	LTE co-existence - receive	
JT3 (4)	VREG_L19A_2P8	PM8996 L19 low drop out regulated output	
JT3 (5)	SDC2_CLK	Secure digital controller 2 clock	
JT3 (6)	VREG_L15A_1P8	PM8996 L15 low drop out regulated output	
JT3 (7)	SDC2_DATA3	Secure digital controller 2 data bit 3	
JT3 (8)	GND	Ground	
JT3 (9)	SDC2_DATA2	Secure digital controller 2 data bit 2	
JT3 (10)	USB2_HS_N	USB 2 high speed - negative	
JT3 (11)	SDC2_CMD	Secure digital controller 2 data command	
JT3 (12)	USB2_HS_P	USB 2 high speed - positive	
JT3 (13)	SDC2_DATA1	Secure digital controller 2 data bit 1	
JT3 (14)	GND	Ground	
JT3 (15)	SDC2_DATA0	Secure digital controller 2 data bit 0	
JT3 (16)	USB1_HS_P	USB 1 high speed - positive	
JT3 (17)	VREG_L17A_2P8	PM8996 L17 low drop out regulated output	
JT3 (18)	USB1_HS_N	USB 1 high speed - negative	
JT3 (19)	VREG_L21A_2P95	PM8996 L21 low drop out regulated output	
JT3 (20)	GND	Ground	
JT3 (21)	VREG_L21A_2P95	PM8996 L21 low drop out regulated output	
JT3 (22)	PM_VCOIN	Coin cell battery input or supply	
JT3 (23)	VREG_L23A_2P8	PM8996 L23 low drop out regulated output	
JT3 (24)	PCIE1_WAKE	PCIe 1 wake up input	
JT3 (25)	CAM_IRQ	Camera interrupt request	
JT3 (26)	PCIE1_RST_N	PCIe 1 reset - negative	
JT3 (27)	CAM2_RST_N	Camera 2 reset - negative	
JT3 (28)	CAM0_STANDBY_N	Camera standby - negative	
JT3 (29)	TSO_RESET_N	Touchscreen reset - negative	
JT3 (30)	PCIE1_CLKREQ_N	PCIe 1 clock request - negative	
JT3 (31)	FLASH_STROBE_EN	Flash strobe enable	
JT3 (32)	MEMS_RESET_N	Micro-electro-mechanical reset - negative	
JT3 (33)	FLASH_STROBE_TRIG	Flash strobe trigger	
JT3 (34)	BLSP6_I2C_SDA	I2C serial data	
JT3 (35)	BLSP1_SPI_CS_N	SPI chip select - negative	
JT3 (36)	VREG_L14A_1P8	PM8996 L14 low drop out regulated output	
JT3 (37)	BLSP1_SPI_MOSI	SPI MOSI	
JT3 (38)	BLSP6_I2C_SCL	I2C serial clock	
JT3 (39)	BLSP1_SPI_MISO	SPI MISO	
JT3 (40)	CODEC_RESET_N	Audio codec reset	
JT3 (40)	BLSP1_SPI_CLK	SPI clock	
		Camera reset - negative	
JT3 (42)	CAM0_RST_N	Carriera reset - negative	

Connector (Pin #)	Pin Name	Description	
JT3 (43)	W_DISABLE_N	PCIe wireless disable - negative	
JT3 (44)	SEC_MI2S_DATA0	MI2S serial data channel 0	
JT3 (45)	GND	Ground	
JT3 (46)	TYPE-C_INT	APQ GPIO	
JT3 (47)	CODEC_INT1_N	Audio codec interrupt pin - negative	
JT3 (48)	TER_MI2S_SCK	MI2S clock	
JT3 (49)	CDC_MCLK	Audio codec clock input	
JT3 (50)	TER_MI2S_WS	MI2S word select	
JT3 (51)	VREG_L29A_2P8	PM8996 L29 low drop out regulated output	
JT3 (52)	TER_MI2S_DATA0	MI2S data channel 2	
JT3 (53)	GND	Ground	
JT3 (54)	SLIMBUS_DATA0	Audio SLIMbus data 0	
JT3 (55)	PCIE2_CLKREQ_N	PCIe 2 clock request - negative	
JT3 (56)	SLIMBUS_CLK	Audio SLIMbus clock	
JT3 (57)	PCIE2_WAKE	PCIe 2 wake up input	
JT3 (58)	SLIMBUS_DATA1	Audio SLIMbus data 1	
JT3 (59)	GND	Ground	
JT3 (60)	SSC_PWR_EN	Snapdragon sensor core power enable	
JT3 (61)	APQ_RESOUT_N	APQ reset output	
JT3 (62)	SSC_SPI_1_CLK	Snapdragon sensor core SPI 1 clock	
JT3 (63)	TYPE-C_SW_DIR	APQ GPIO	
JT3 (64)	SSC_SPI_1_CS_N	Snapdragon sensor core SPI 1 chip select - negative	
JT3 (65)	ALSPG_INT_N	Snapdragon sensor control interrupt	
JT3 (66)	SSC_SPI_1_MOSI	Snapdragon sensor core SPI 1 MOSI	
JT3 (67)	SPKR_AMP_EN1	Speaker enable pin output	
JT3 (68)	SSC_SPI_1_MISO	Snapdragon sensor core SPI 1 MISO	
JT3 (69)	HRM_INT	Heart rate monitor sensor interrupt	
JT3 (70)	SSC_SPI_1_CS1_MAG_N	Snapdragon sensor core SPI 1 chip select 1 - negative	
JT3 (71)	VREG_S4A_1P8	PM8996 S4 switch mode power supply output	
JT3 (72)	SSC_UART_2_RX	Snapdragon sensor core UART 2 receive	
JT3 (73)	VREG_S4A_1P8	PM8996 S4 switch mode power supply output	
JT3 (74)	SSC_I2C_3_SCL	Snapdragon sensor core I2C 3 serial clock	
JT3 (75)	USB2_ID	USB 2 OTG ID monitor (input)	
JT3 (76)	SSC_UART_2_TX	Snapdragon sensor core UART 2 transmit	
JT3 (77)	RED_LED_DRV	RGB red LED current source (high side)	
JT3 (78)	SSC_I2C_3_SDA	Snapdragon sensor core I2C 3 serial data	
JT3 (79)	GREEN_LED_DRV	RGB green LED current source (high side)	
JT3 (80)	QUA_MI2S_DATA3	MI2S serial data channel 3	
JT3 (81)	BLUE_LED_DRV	RGB blue LED current source (high side)	
JT3 (82)	QUA_MI2S_DATA0	MI2S serial data channel 0	
JT3 (83)	PMI8994_VREG_WLED	WLED boost switch mode power supply output	
JT3 (84)	QUA_MI2S_DATA1	MI2S serial data channel 1	
JT3 (85)	PMI8994_WLED_SINK1	WLED current sink input 1	

Open-Q[™] 820 μ SOM HW Device Specification v. 1.1

Connector (Pin #)	Pin Name	Description
JT3 (86)	QUA_MI2S_WS	MI2S word select
JT3 (87)	PMI8994_WLED_SINK3	WLED current sink input 3
JT3 (88)	QUA_MI2S_SCK	MI2S clock
JT3 (89)	PMI8994_WLED_SINK2	WLED current sink input 2
JT3 (90)	QUA_MI2S_DATA2	MI2S serial data channel 2
JT3 (91)	VREG_DISP	Display positive bias boost switch mode power supply output
JT3 (92)	CAM1_RST_N	Camera 1 reset - negative
JT3 (93)	PMI8994_CABC	Content adaptive backlight control PWM input
JT3 (94)	FAST_BOOT_0	Fast boot select bit 0
JT3 (95)	VREG_DISN	Display negative bias boost switch mode power supply output
JT3 (96)	PCIE2_RST_N	PCIe 2 reset - negative
JT3 (97)	USB_HS1_VBUS_DET	USB VBUS detect pin
JT3 (98)	USB_HUB_RESET	USB hub reset pin
JT3 (99)	CODEC_INT2_N	Audio codec interrupt pin - negative
JT3 (100)	FORCE_USB_BOOT	Forced USB boot input

5. ELECTRICAL SPECIFICATIONS

The input power to the μ SOM is provided by a power supply (battery or wall adapter) and also a USB source, for battery charging purposes. All input power sources enter the PMI8996, which then distributes power via LDOs and switching power supplies.

5.1 Absolute Maximum Ratings

The following table shows the absolute maximum ratings in which the PMI8996 can be exposed to without experiencing functional failure.

Table 5 – Absolute Maximum Input Power Ratings

Parameter	Min	Max	Units
Battery or DC power input (SOM_SYS_PWR)	-0.5	6	V
5V USB VBUS battery charger input voltage source (USB_VBUS)	-0.3	28	V

5.2 Operating Conditions

According to component datasheet values, the operating conditions outline the parameters in which a user can control the behaviour of the μSOM . If used within the following conditions as outlined in Table 6 and Table 7 below, the μSOM will meet all performance specifications listed in Table 8 unless otherwise noted (provided the absolute maximum ratings have never been exceeded).

Table 6 – Input Power Ratings for Operational Use

Parameter	Min	Тур	Max	Units
Battery or DC power input (SOM_SYS_PWR)	+3.45 ¹	+3.8	+4.2	V
5V USB VBUS battery charger input voltage source (USB_VBUS)	+3.7	+5	+9	V
VCOIN Input	+2.0	+3.0	3.25	V

5.3 Operating Temperature

The μSOM operating temperature ratings listed below are based only on the operating temperature grade of the μSOM components. Users should consider the specific environmental conditions in which the final product is used in.

Table 7 – Input Power Ratings for Operational Use

Parameter	Min	Тур	Max	Units
Overall SOM (case temperature)	-10	+25	+70	°C

 $^{^1}$ The μSOM may be configured to operate at voltage levels lower than the minimum listed. Changes to default software settings are required. For battery operation at lower voltages, additional considerations should be taken as to the effects on battery life-cycle.

5.4 Power Consumption

5.4.1 Setup and Methodology

Power consumption measurements have been performed on the μ SOM running Android under common operational modes. All tests were executed at room temperature and with the default thermal solution that ships with the μ SOM development kit (heat sink on top of CPU) unless noted otherwise. In some test cases, as noted in the results section below, ADB was used to monitor the μ SOM to ensure that the CPU was not throttling during the test. If ADB is not used, power consumption may be lower.

NOTE: Power consumption of the μSOM varies depending on the thermal solution used. A different thermal solution may result in allowing the CPU to run at higher average frequency but can cause overall power consumption to increase.

To obtain these power consumption measurements, the development kit Power Probe Header J86 (see document R-4) is connected to a data acquisition unit (Keithley 2701) and the voltages on the SOM_PWR_SENSE_P/N pins were captured every few seconds over the test period (typically 30 minutes). The SOM power consumption is then calculated as (where Rsense = 5 milliohms):

$$Psom = Vsom_{pwr_{sense_{N}}} * \frac{(Vsom_{pwr_{sense_{P}}} - Vsom_{pwr_{sense_{N}}})}{Rsense}$$

5.4.2 Results

See the table below for μ SOM power consumption data.

Table 8 – Input Power Ratings for Operational Use

Operational Modes	Description	Power Consumption		
Operational Modes	Description	Average	Peak	
Boot	Power consumption during boot process	N/A ²	6.5W	
Suspend (WiFi Off)	SOM placed in standby (WiFi Off) ³	78mW	N/A	
Suspend (WiFi On)	SOM placed in standby (WiFi On) ³	151mW	N/A	
Idle (WiFi Off)	SOM is idle with screen on (WiFi Off)	348mW	1.9W	
Idle (WiFi On)	SOM is idle with screen on (WiFi On)	466mW	2.2W	
Video Record (1080P)	SOM recording 1080P video	1.9W	4.5W	
Video Record (4K UHD)	SOM recording 4K UHD video	3.0W	6.3W	
Video Playback (1080P)	SOM playing back 1080P video	880mW	2.5W	
Video Playback (4K UHD)	SOM playing back 4K UHD video	1.0W	2.3W	
Audio Playback	SOM playing back MP3	239mW	1.8W	
WiFi Download	SOM downloading data over WiFi	1.3W	3.1W	
WiFi Upload	SOM uploading data over WiFi	1.5W	2.4W	
Full Load (Quad Core)	Running all 4 cores ⁴	7.3W	9.0W	
Full Load (Single Core)	Running only cpu0	1.8W	2.4W	
Bluetooth	SOM playing music over Bluetooth	477mW	2.1W	

Note: The results above are averages of the power consumed over 30 minutes (may vary depending on test case).

5.5 ESD Ratings

The µSOM is not designed with ESD protection. It is recommended to take proper precautions in a static free environment when handling the µSOM.

² Power usage varies during the boot process, so average power consumption is not representative of results

³ LCD screen has been turned off for this use case

⁴ A fan pointed at the heatsink was used for this test to prevent thermal throttling

6. MECHANICAL SPECIFICATIONS

6.1 µSOM Mechanical Outline

The outer dimensions of the μ SOM are 25mm x 50mm. The key inner-dimensions for the μ SOM relate to connector positioning; these dimensions are called out later in this document.

Figure 5 - µSOM Mechanical Outline

6.2 Top and Bottom Height Restrictions

The tallest component on the top-side of the μ SOM is 1.63mm.

The tallest component on the bottom-side of the µSOM is 1.5mm.

6.3 Landing Pattern

Dimensions presented are in millimeters (mm). The footprint information in this section is taken from the $820\,\mu\text{SOM}$ Carrier Board and can be used as a guide when designing a landing area for the Open-Q $820\,\mu\text{SOM}$.

Dimensions show the relative position of each connector on the μSOM ; referenced to the center of the connector body. An additional figure gives additional dimension information of the connector itself. NOTE: This information is given for reference. Please see μSOM Carrier Board Design Guide for more detail (Reference document R-2).

*The perspective of these figures is looking through on the top side of the µSOM.

Figure 6 - μSOM Land-Pattern Dimensions (mm)

6.4 Thermal Characteristics

The APQ 8096 has built in thermal protections which will reduce processor frequency as the die temperature approaches set operating limits. These limits protect the APQ from damage that could be caused by elevated die temperature. Additional product-level thermal management will remove heat from the μ SOM and its components, allowing the APQ to run at higher frequencies for longer time periods before approaching the built in die temperature limits. This enables the average processor speed to remain higher through processor-intensive applications. Effectively removing heat from the 820 μ SOM is required to optimize system performance and efficiency and ensure the APQ 8096 can perform as desired.

For more information on thermal mitigation, see μ SOM Carrier Board Design Guide (Reference document R-2).

6.5 Weight

The µSOM weighs approximately 10 grams.

6.6 B2B Connector use Limit

The μ SOM B2B connector JT1, JT2, and JT3 is designed to be removed and inserted for 30 cycles. It is highly recommended that users do not remove the μ SOM once connected with mating connectors.

7. PRODUCT MARKING, ORDERING, AND STORAGE INFO

7.1 Product Marking

The μ SOM part number and product marking can be identified on the white label on the top of the module. The figure below shows an example of this label.

Figure 7 – Label on Intrinsyc Open-Q 820 µSOM (top of PCB)

Line	Marking	Description/ Notes
Line	Wiaiking	Description/ Notes
1	μ820 SOM	Intrinsyc Technologies product name
2	VVV-WWXX-	- VVV = Product number
	YYYYYY-ZZZZZ	- WW = PCB revision number
		- XX = BOM revision number
		 YYYYYY = Date of manufacture (mm/dd/yy)
		- ZZZZZ = Unique serial number for PCB
3	0123456789AB	- 12 hexadecimal digit MAC address

Table 9 – Intrinsyc Open-Q 820 µSOM Device Marking

7.2 Product Ordering Information

To place an order for the Intrinsyc Open-Q 820 µSOM, please visit the following link:

https://shop.intrinsyc.com/collections/system-on-modules/products/openq-820-usom

For volume orders, please contact https://www.intrinsyc.com/sales-inquiry/

7.3 Packaging and Shipping Information

The Open-Q 820 μ SOM is packaged individually in small anti-static bags and bubble-wrap bags for protection during shipping – see Figure 8 below. They are then put into different sized boxes depending upon the quantity of the order. Small quantities are shipped in standard courier boxes with bubble-wrap protection and large quantity orders are packaged in a carton with dividers, as shown in Figure 9, below.

Figure 8 - Individual SOM Packaging

Figure 9 - Packaging for Large Quantity Shipments

8. HANDLING PRECAUTIONS

8.1 ESD Precautions

Electrostatic discharge (ESD) occurs naturally in laboratory and factory environments. An established high-voltage potential is always at risk of discharging to a lower potential. If this discharge path is through a semiconductor device, destructive damage may result.

The Open-Q $820~\mu SOM$ is designed as a component meant to be integrated into a final product and therefore has no additional ESD protection built-in. It should be handled only in a static-safe environment to prevent damage.

8.2 SOM – Carrier Board Mating Cautions

Caution must be taken when connecting or disconnecting the SOM to a carrier board to prevent damage. Ensure that the SOM is inserted and removed straight up and down to prevent any sideways force on the connectors which could damage them.

Also note that the DF40C-100DX board to board connectors are rated for a maximum of 30 mating / un-mating cycles. Therefore the number of insertions and removals must be limited to ensure reliability of the connectors.

8.3 Storage

The µSOM must be stored in an antistatic bag.

9. CERTIFICATION

9.1 Radio Certification

The Intrinsyc Open-Q $820~\mu SOM$ uses a pre-certified WLAN/BT module. The module is certified with FCC and Industry Canada as a modular radio transmitter for WLAN and Bluetooth.

FCC ID: 2AFDI-ITCNFA324.

Industry Canada ID: 9049A-ITCNFA324

The WLAN/BT module has also been tested to the applicable radio standards in many other countries:

- Australia
- Brazil
- China
- EU (CE Mark)
- India
- Japan
- Mexico
- New Zealand
- Singapore
- South Korea
- Taiwan

For more information or assistance in certifying your 820 uSOM based product please contact Intrinsyc at: https://www.intrinsyc.com/sales-inquiry/

9.2 ROHS/REACH Compliance

The Intrinsyc Open-Q 820 μ SOM comply with the ROHS/REACH standard. See the following link for information on ROHS/REACH certificate:

https://tech.intrinsyc.com/documents/306

10. COMPANY CONTACT

For more information, support, or sales, please contact us.

Company Contact:

Intrinsyc Technologies Corporation,

885 Dunsmuir St. 3rd Floor

Vancouver, BC

Canada

V6C 1N5

Tel. (604) 801-6461

https://www.intrinsyc.com/

http://shop.intrinsyc.com

Sales: https://www.intrinsyc.com/sales-inquiry/

Support: https://helpdesk.intrinsyc.com/

Information: https://www.intrinsyc.com/resources/