RF TEST REPORT

Report No.: CE_SL18040201-RIO-001 2.4GHz

Supersede Report No.:

Applicant	Resin.io		
Product Name	Raspberry Compute Module 3 Lite		
Model No.	Balena Fin		
Test Standard	EN 300 328 V2.1.1 (2016-11)		
Test Method	EN 300 328 V2.1.1 (2016-11)		
Date of test	05/01/2018 - 06/14/2018		
Issue Date	06/15/2018		
Test Result	<u>Pass</u> Fail		
Equipment comp	lied with the specification	[x]	
Equipment did not comply with the specification		[]	
my Ch			
Benjamin Jing		Chen Ge	
Test Engineer		Engineer Reviewer	
	This test report may be reproduced in full only Test result presented in this test report is applicable to the tested sample only		

Issued By: SIEMIC Laboratories 775 Montague Expressway, Milpitas, 95035 CA

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	2 of 35

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Accreditation Body	Scope
USA	FCC, A2LA	EMC, RF/Wireless, Telecom
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom, Safety
Hong Kong	OFTA, NIST	RF/Wireless, Telecom
Australia	NATA, NIST	EMC, RF, Telecom, Safety
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom
Europe	A2LA, NIST	EMC, RF, Telecom, Safety
Israel	MOC, NIST	EMC, RF, Telecom, Safety

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB, NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	3 of 35

CONTENTS

1	RE	EPORT REVISION HISTORY	4
2	Eλ	KECUTIVE SUMMARY	5
3	Cl	JSTOMER INFORMATION	5
4	TE	EST SITE INFORMATION	5
5	M	ODIFICATION	5
6	El	JT INFORMATION	6
	6.1	EUT Description	6
	6.2	Radio Description	6
	6.3	EUT Operational Condition	7
	6.4	Adaptive Equipment	7
	6.5	EUT test modes/configuration Description	7
7	Sl	JPPORTING EQUIPMENT/SOFTWARE AND CABLING DESCRIPTION	8
	7.1	Supporting Equipment	8
	7.2	Cabling Description	8
	7.3	Test Software Description	8
8	TE	EST SUMMARY	9
9	MI	EASUREMENT UNCERTAINTY	10
	9.1	Radiated Emissions (30MHz to 1GHz)	10
	9.2	Radiated Emissions (1GHz to 40GHz)	10
	9.3	RF conducted measurement	11
10)	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	12
	10.1	RF Output Power	12
	10.2	Power Spectral Density	15
	10.3	Occupied Channel Bandwidth	17
	10.4	TX Unwanted Emissions in the OOB domain	20
	10.5	Radiated TX Unwanted Emissions in the spurious domain	23
	10.6	Radiated Receiver Spurious Emissions	28
	10.7	Receiver Blocking	30
Α	NNEX	A. TEST INSTRUMENT	32
Α	NNEX	B. SIEMIC ACCREDITATION	33

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	4 of 35

Report Revision History

Report No.	Report Version	Description	Issue Date
CE_SL18040201-RIO-001_2.4GHz	None	Original	06/15/2018

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	5 of 35

2 Executive Summary

The purpose of this test program was to demonstrate compliance of following product

Company: Resin.io

Product: Raspberry Compute Module 3 Lite

Model: Balena Fin

against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page.

3 Customer information

Applicant Name Resin.io .	
Applicant Address 7 Winkley Street, London E2 6PY, UK	
Manufacturer Name	Resin.io.
Manufacturer Address	7 Winkley Street, London E2 6PY, UK

4 Test site information

Lab performing tests	SIEMIC Laboratories	
Lab Address	775 Montague Expressway, Milpitas, CA 95035	
FCC Test Site No.	881796	
IC Test Site No.	4842D-2	
VCCI Test Site No.	A0133	

5 Modification

Index	Item	Description	Note
-	-	-	-

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	6 of 35

EUT Information

EUT Description <u>6.1</u>

Product Name	Raspberry Compute Module 3 Lite
Model No.	Balena Fin
Trade Name	Resin.in
Serial No.	N/A
Host Model No.	N/A
Input Power	220VAC/50Hz
Power Adapter Manu/Model	VEL36US120-US-JA
Power Adapter SN	E317867
Date of EUT received	04/15/2018
Equipment Class/ Category	DTS, UNII
Port/Connectors	1 X RJ45 Ethernet , 2 X USB, 1 X mini USB, 1 X HDMI

<u>6.2</u> **Radio Description**

Radio Type	802.11b	802.11g	802.11n-20M	802.11n-40M	
Operating Frequency	2412-2462MHz	2412-2462MHz	2412-2462MHz	2422-2452MHz	
Modulation	DSSS (CCK, DQPSK, DBPSK)	OFDM-CCK (BPSK, QPSK, 16QAM, 64QAM, 256QAM) OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)		OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)	
Channel Spacing	5MHz	5MHz	5MHz	5MHz	
Number of Channels	11	11	11	7	
Antenna Type		External antenna : ¼ Dipole Omni Embedded antenna : SMT			
Antenna Gain (Peak)	External antenna : 2 dBi Embedded antenna : 1 dBi				
Antenna Connector Type	U.FL				

EUT Power Level Setting

Mode	Frequency (MHz)	Power setting
802.11-b	2412	14
802.11-b	2442	15
802.11-b	2472	15
802.11-g	2412	14
802.11-g	2442	15
802.11-g	2472	15
802.11-n-20	2412	14
802.11-n-20	2442	15
802.11-n-20	2472	15
802.11-n-40	2422	14
802.11-n-40	2442	14
802.11-n-40	2462	14

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	7 of 35

EUT Operational Condition

Item	Range		
Battery Voltage	N/A		
AC Adapter Voltage	220VAC		
Environmental Condition	Tnom = 25 °C	Tmax = 50 °C	Tmin = 0 °C

6.4 Adaptive Equipment

	Adaptive Equipment				
\boxtimes	Adaptive Equipment without the possibility to switch to a non-adaptive mode:				
	\boxtimes	The equipment has implemented an LBT based DAA mechanism			
			The equipment is Frame Based equipment		
		\boxtimes	The equipment is Load Based equipment		
			The equipment can switch dynamically between Frame Based and Load Based equipment		
		☐ The equipment has implemented and non-LBT based DAA mechanism			
		The equipment can operate in more than one adaptive mode			
	Adaptive Frequency Hopping using other forms of DAA (non-LBT based) / without Short Control Signa Transmissions				
	Adaptive Equipment which can also operate in a non-adaptive mode				

<u>6.5</u> **EUT test modes/configuration Description**

Test mode

Test Mode				
Pre_test_mode_1	Pre_test_mode_1 Continuous Transmit			
Pre_test_mode_2	Normal Operation Mode (duty cycle transmit power)	-		

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	8 of 35

Supporting Equipment/Software and cabling Description

<u>7.1</u> **Supporting Equipment**

Item	Supporting Equipment Description	Model	Serial Number	Manufacturer	Note
1	Laptop	LATITUDE 3550	N/A	Dell	-
2	Router	WNR2000	N/A	Netgear	

7.2 **Cabling Description**

Nama	Conne	ction Start	Connecti	on Stop	Length / shi	elding Info	Note
Name	From	I/O Port	To	I/O Port	Length (m)	Shielding	Note
Ethernet	RJ-45	EUT	RJ-45	Laptop	Ethernet 1 m	no	Unshielded

Test Software Description <u>7.3</u>

Test Item	Software	Description
RF Testing	Dut Labtool	Set the EUT to transmit continuously in different test modes and channels

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	9 of 35

8 Test Summary

Summary for 2.4GHz WLAN

	Test Item	Test standard	Test Method/Procedure	Pass / Fail	
	RF Output Power	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass	
	Power Spectral Density	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass	
Duty	Cycle, Tx-sequence, Tx-gap	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A	
Dwell time,	Minimum Frequency Occupation & Hopping Sequence	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A	
Hopping Frequency Separation		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A	
Medium Utilisation		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A	
Adaptivity		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass*	
Occ	cupied Channel Bandwidth	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass	
TX Unwan	ted Emissions in the OOB domain	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass	
TX Unwante	d Emissions in the spurious domain	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass	
Re	ceiver spurious emissions	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass	
Receiver Blocking		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass	
		es do not take into consideration for all p			
Remark		Il ensure frequency stability by showing that an emission is maintained within the band of operation under ng conditions as specified in the user's manual.			
Ì	3. Adaptivity was done by Maryell for radio module approval.				

Adaptivity was done by Marvell for radio module approval.

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	10 of 35

9 Measurement Uncertainty

9.1 Radiated Emissions (30MHz to 1GHz)

The test is to measure the radiated emissions of the EUT. Some error sources that can contribute to the total uncertainty:

- Uncertainty of the receiver
- Uncertainty of the antenna
- Uncertainty of cables
- Uncertainty due to the mismatches
- NSA Calibration
- Etc., details see the below table

Source of Uncertainty	Value (dB)	Probability Distribution	Division	Sensitivity Coefficient	Expanded Uncertainty
Receiver Reading	0.12	Rectangular	1.732	1	0.069284
Cable Insertion Loss	0.21	Normal	2	1	0.105
Filter Insertion Loss	0.25	Normal	2	1	0.125
Antenna Factor	0.65	Normal	2	1	0.325
Receiver CW accuracy	0.5	Rectangular	1.732	1	0.2886836
Pulse Amplitude Response	1.5	Rectangular	1.732	1	0.86605081
PRF Response	1.5	Rectangular	1.732	1	0.86605081
Mismatch Filter - Receiver	0.25	U-Shape	1.414	1	0.1768033
NSA Calibration	4.0	U-Shape	1.414	1	2.8288543
Combined Standard Uncertaint	3.0059131				
Expanded Uncertainty (K=2)	6.0118262				

The total derived measurement uncertainty is +/- 6.00 dB.

9.2 Radiated Emissions (1GHz to 40GHz)

The test is to measure the radiated emissions of the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the receiver
- Uncertainty of the antenna
- Uncertainty of cables
- Uncertainty due to the mismatches
- VSWR Calibration
- Etc., details see the below table

Source of Uncertainty	Value (dB)	Probability Distribution	Division	Sensitivity Coefficient	Expanded Uncertainty
Receiver Reading	0.12	Rectangular	1.732	1	0.0692840
Cable Insertion Loss	0.21	Normal	2	1	0.1050000
Filter Insertion Loss	0.25	Normal	2	1	0.1250000
Antenna Factor	0.65	Normal	2	1	0.3250000
Receiver CW accuracy	0.5	Rectangular	1.732	1	0.2886836
Pulse Amplitude Response	1.5	Rectangular	1.732	1	0.8660508
PRF Response	1.5	Rectangular	1.732	1	0.8660508
Mismatch Filter - Receiver	0.25	U-Shape	1.414	1	0.1768033
VSWR Calibration	2.0	U-Shape	1.414	1	1.4144272
Combined Standard Uncertain	4.2363				
Expanded Uncertainty (K=2	8.4726				

The total derived measurement uncertainty is +/- 8.47 dB.

E. (1) 100 320 100

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	11 of 35

RF conducted measurement

The test is to measure the RF output power from the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the Reference Level Uncertainty
- Uncertainty of variable attenuators
- Uncertainty of cables
- Uncertainty due to the mismatches

	Value	Probability	Division	Sensitivity	Expanded
Source of Uncertainty	(dB)	Distribution		Coefficient	Uncertainty
Reference Level	0.12	Rectangular	1.732	1	0.069284
Cable Insertion Loss	0.21	Normal	2	1	0.105
Attenuator	0.25	Normal	2	1	0.125
Mismatch	0.25	U-Shape	1.414	1	0.1768033
Combined Standard Unce	0.476087				
Expanded Uncertainty (F	0.952174				

The total derived measurement uncertainty is +/- 0.95 dB.

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	12 of 35

10 Measurements, Examination and Derived Results

10.1 RF Output Power

10.1 RF Output	t Powel				Applicable		
	цеш	Requirement	out newer for adoptive Francisco	lanning aguinment chall	Арріісавіе		
EN 300 328 V2.1.1 (2016-11)	4.3.1	be equal to or less tha	The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20 dBm.				
EN 300 328 V2.1.1 (2016-11)	4.3.1	shall be equal to or les	he maximum RF output power for non-adaptive Frequency Hopping equipment, hall be equal to or less than the value declared by the supplier. This declared alue shall be equal to or less than 20 dBm.				
EN 300 328 V2.1.1 (2016-11)	4.3.2	For adaptive equipmer maximum RF output p	nt using wide band modulations oth ower shall be 20 dBm.	ner than FHSS, the	\boxtimes		
EN 300 328 V2.1.1 (2016-11)	4.3.2	The maximum RF outp the supplier and shall i	out power for non-adaptive equipm not exceed 20 dBm.	ent shall be declared by			
Test Setup		EUT Environmental Cham	Fast Pow	er Meter			
Procedure	2. F - () 11 3. F - () - T b - S 4. F 5. E 11 6. T 7. F 8.	For conducted measurent Connect the power sensor hese stored samples in a For conducted measurent Connect one power sensor petween the samples of a For each instant in time, a stored samples in all following the start and stop times are power sensor between the start and stop times are power sensor between the start and stop times are power to all Powers values, as we she highest of all Powers values and the start and stop times are power to all powers values, as we shall be sensor than one antennation of an are than one antennation (G or G + Y) shall be sensor to an are than one antennation of the start and one antennation of the start and the additional than the start and the start and the start and stop times are power to the start and the start	nents on devices with multiple transor to each transmit port for a synch is so that they start sampling at the all sensors is less than half the time sum the power of the individual same in the stored means of each burst in the stored means of each burst in the stored means of each individual burst call as the start and stop times for each lues (value "A" in dBm) will be use assembly gain "G" in dBi of the individual beamforming gain "Y" in dBm assembly is intended for this power.	chain: ransmit signal and store the smit chains: nronous measurement on all same time. Make sure the be between two samples. mples of all ports and store to assurement samples. clculate the RMS power over the burst. ded for maximum e.i.r.p. calculatividual antenna. 3. er setting, the maximum over mula: P = A + G + Y	I transmits ports. time difference them. Use these the burst. Save ulations.		
Test Date	05/23/2	018	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	24 °C 42 % 1019 mbar		
Remark	None			•			
Result	⊠ Pas	s 🗆 Fail					
	(See bel	•					

Test was done by Benjamin Jing at radio test site .

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	13 of 35

802.11b Low CH: 2412 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	17.1	20
	Low Temp (-20 °C)	2	16.4	20
EIRP	Low Temp (-20 °C)	2	16.4	20
	High Temp (55°C)	2	17.8	20
	High Temp (55°C)	2	17.8	20

802.11b Mid CH: 2442 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	17.9	20
	Low Temp (-20 °C)	2	17.2	20
EIRP	Low Temp (-20 °C)	2	17.2	20
	High Temp (55°C)	2	18.3	20
	High Temp (55°C)	2	18.3	20

802.11b High CH: 2472 MHz

Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	17.3	20
	Low Temp (-20 °C)	2	16.5	20
EIRP	Low Temp (-20 °C)	2	16.5	20
	High Temp (55°C)	2	17.8	20
	High Temp (55°C)	2	17.8	20

802.11g Low CH: 2412 MHz

Туре	Condition	Directional Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	16.2	20
	Low Temp (-20 °C)	2	15.7	20
EIRP	Low Temp (-20 °C)	2	15.7	20
	High Temp (55°C)	2	16.9	20
	High Temp (55°C)	2	16.9	20

802.11g Mid CH: 2442 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	16.6	20
	Low Temp (-20 °C)	2	15.8	20
EIRP	Low Temp (-20 °C)	2	15.8	20
	High Temp (55°C)	2	17.2	20
	High Temp (55°C)	2	17.2	20

802.11g High CH: 2472 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	16.4	20
	Low Temp (-20 °C)	2	15.5	20
EIRP	Low Temp (-20 °C)	2	15.5	20
	High Temp (55°C)	2	17.3	20
	High Temp (55°C)	2	17.3	20

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	14 of 35

802.11n-20 Low CH: 2412 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	15.3	20
	Low Temp (-20 °C)	2	14.8	20
EIRP	Low Temp (-20 °C)	2	14.8	20
	High Temp (55°C)	2	15.9	20
	High Temp (55°C)	2	15.9	20

802.11n-20 Mid CH: 2442 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	15.7	20
	Low Temp (-20 °C)	2	15.1	20
EIRP	Low Temp (-20 °C)	2	15.1	20
	High Temp (55°C)	2	16.3	20
	High Temp (55°C)	2	16.3	20

802.11n-20 High CH: 2472 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	15.6	20
	Low Temp (-20 °C)	2	14.9	20
1EIRP	Low Temp (-20 °C)	2	14.9	20
	High Temp (55°C)	2	16.1	20
	High Temp (55°C)	2	16.1	20

802.11n-40M Low CH: 2422 MHz

Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	11.3	20
	Low Temp (-20 °C)	2	10.7	20
1EIRP	Low Temp (-20 °C)	2	10.7	20
	High Temp (55°C)	2	11.8	20
	High Temp (55°C)	2	11.8	20

802.11n-40M Mid CH: 2442 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	10.9	20
	Low Temp (-20 °C)	2	10.2	20
EIRP	Low Temp (-20 °C)	2	10.2	20
	High Temp (55°C)	2	11.4	20
	High Temp (55°C)	2	11.4	20

802.11n-40M High CH: 2462 MHz

002.1111 101	002.1111 10W111g11 011: 2 102 W112			
Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	10.6	20
	Low Temp (-20 °C)	2	10.1	20
EIRP	Low Temp (-20 °C)	2	10.1	20
	High Temp (55°C)	2	11.2	20
	High Temp (55°C)	2	11.2	20

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	15 of 35

10.2 Power Spectral Density

Spec	Item	Requirement			Applicable	
EN 300 328 V2.1.1 (2016-11	4.3.2	For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10 dBm per MHz				
Test Setup		EUT	Spectrum A	analyzer		
Procedure	2. 3. 4. 5.	- Start Frequency: 2 400 M - Stop Frequency: 2 483,5 - Resolution BW: 10 kHz - Video BW: 30 kHz - Sweep Points: > 8 350 - Detector: RMS - Trace Mode: Max Hold - Sweep time: Auto For non-continuous signals, - For conducted measuremer clause 5.1.3.2), repeat the r up the amplitude (power) va - Add up the values for ampli - Normalize the individual val (e.i.r.p.) measured Starting from the first sampl representing a 1 MHz segm - This is the Power Spectral I - Shift the start point of the sa (i.e. sample #2 to #101) Repeat step 6 until the end - each of the 1 MHz segment - From all the recorded result	wait for the trace to be completed into the trace to be completed into a systems of the trace in the surface of the different transmit of the completed in the file (lowest frequency), the in the file (lowest frequency), the interest of the first 1 M amples added up in step 5 by 1 of the data set and record the results for processing the second in the file (lowest frequency).	ted. Save the (trace) data susing either operating mode ansmit ports. For each freq hains and use this as the ris in the file. Jum is equal to the RF Outp add up the power of the follower and position (i.e. sam lHz segment which shall be sample and repeat the pro- radiated Power Spectral Dense	e 2 or 3 (see uency point, add new data set. ut Power llowing samples uple #1 to #100). e recorded. needure in step 5 ensity values for ity for the UUT.	
Test Date	05/23/2	2018	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	23 ℃ 42 % 1019 mbar	
Remark	NONE					
Result	⊠ Pas	ss 🗆 Fail				
	s (See b	•				

Test was done by Benjamin Jing at radio test site .

Test report No.	CE_SL18040201-RIO-001_2.4GHz		
Page	16 of 35		

PSD measurement results

Туре	Freq (MHz)	Test mode	СН	Measured PSD (dBm/1MHz) (E.I.R.P)	Limit (dBm/1MHz) (E.I.R.P)	Result
Maximum PSD	2412	802.11b	Low	9.15	≤10	Pass
Maximum PSD	2442	802.11b	Mid	9.30	≤10	Pass
Maximum PSD	2472	802.11b	High	9.41	≤10	Pass
Maximum PSD	2412	802.11g	Low	7.62	≤10	Pass
Maximum PSD	2442	802.11g	Mid	8.96	≤10	Pass
Maximum PSD	2472	802.11g	High	8.83	≤10	Pass
Maximum PSD	2412	802.11n-20M	Low	7.49	≤10	Pass
Maximum PSD	2442	802.11n-20M	Mid	7.98	≤10	Pass
Maximum PSD	2472	802.11n-20M	High	8.46	≤10	Pass
Maximum PSD	2422	802.11n-40M	Low	5.71	≤10	Pass
Maximum PSD	2442	802.11n-40M	Mid	6.32	≤10	Pass
Maximum PSD	2462	802.11n-40M	High	5.14	≤10	Pass

Test report No.	CE_SL18040201-RIO-001_2.4GHz		
Page	17 of 35		

10.3 Occupied Channel Bandwidth

Spec	Item	Requirement			Applicable		
EN 300 328 V1.9.1 (2015-02)	4.3.2	The Occupied Channel Bandwidth shall fall completely within the band of 2400 – 2483.5 MHz.					
EN 300 328 V1.9.1 (2015-02)	4.3.2	For non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz					
Test Setup	Spectrum Analyzer EUT						
Procedure	 Connect the UUT to the spectrum analyser and use the following settings: Centre Frequency: The centre frequency of the channel under test Resolution BW: ~ 1 % of the span without going below 1 % Video BW: 3 × RBW Frequency Span: 2 × Occupied Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel) Detector Mode: RMS Wait until the trace is completed. Find the peak value of the trace and place the analyser marker on this peak. Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded. NOTE: Make sure that the power envelope is sufficiently above the noise floor of the analyzer to avoid the noise signals left and right from the power envelope being taken into account by this measurement. 						
Test Date	05/17/2018 –06/12/2018/ Environmental condition Temperature 24 °C Relative Humidity 40 % Atmospheric Pressure 1019 mbar						
Remark	None						
Result	⊠ Pas	s 🗆 Fail					

Test Data		□ N/A
Test Plot	⊠ Yes	□ N/A

Test was done by Benjamin Jing at radio test site .

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	18 of 35

Test Result:

Туре	Freq (MHz)	Test mode	99% Bandwidth (MHz)	F _L at 99% Bandwidth (MHz)	Fн at 99% Bandwidth (MHz)	Limit (FL/FH) (MHz)
99%OBW	2412	802.11b	13.3	2405.3	2418.7	2400.0
99%OBW	2472	802.11b	13.3	2465.3	2478.7	2483.5
99%OBW	2412	802.11g	16.4	2403.8	2420.2	2400.0
99%OBW	2472	802.11g	16.7	2463.6	2480.4	2483.5
99%OBW	2412	802.11n-20M	17.1	2403.4	2420.6	2400.0
99%OBW	2472	802.11n-20M	17.1	2463.4	2480.6	2483.5
99%OBW	2422	802.11n-40M	35.4	2404.3	2439.7	2400.0
99%OBW	2462	802.11n-40M	36.4	2443.8	2480.2	2483.5

Test Plots

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	20 of 35

10.4 TX Unwanted Emissions in the OOB domain

Snoc	Item	Requirement	Applicable
Spec	4.3.1, 4.3.2	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure at below, Spurious Domain Out Of Band Domain (OOB) Allocated Band Out Of Band Domain (OOB) Spurious Domain	
V1.9.1 (2015- 02)		C 2 400 MHz - 2BW 2 400 MHz - BW 2 400 MHz 2 483,5 MHz 2 483,5 MHz + BW 2 483,5 MHz + 2BW A: -10 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits	
Test Setup		EUT Spectrum Analyzer	
Procedure	2.	 Centre Frequency: 2 484 MHz Span: 0 Hz Resolution BW: 1 MHz Filter mode: Channel filter Video BW: 3 MHz Detector Mode: RMS Trace Mode: Clear / Write Sweep Mode: Continuous Sweep Points: 5 000 Trigger Mode: Video trigger Sweep Time: Suitable to capture one transmission burst 	s the RMS the RMS the RMS the MHz

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	21 of 35

- 3. (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)
- Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW 0,5 MHz.
- 4. (segment 2 400 MHz BW to 2 400 MHz)
- Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz 2BW + 0,5 MHz.
- 5. (segment 2 400 MHz 2BW to 2 400 MHz BW)
- Change the centre frequency of the analyser to 2 399,5 MHz BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz 2BW to 2 400 MHz BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz 2BW + 0,5 MHz.
- 6. In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.
- 7. In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:
- Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figures 1 or 3.
- Option 2: the limits provided by the mask given in figures 1 or 3 shall be reduced by 10 x log10(Ach) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.

NOTE 2: Ach refers to the number of active transmit chains.

Test Date	05/24/2018		Environmental condition	Temperature Relative Humidity Atmospheric Pressure	24 °C 40 % 1019 mbar
Remark	None				
Result	⊠ Pass	☐ Fail			

Test Data		□ N/A
Test Plot	☐ Yes (See below)	⊠ N/A

Test was done by Benjamin Jing at RF test site.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	22 of 35

Туре	Frequency (MHz)	Mode	OOB Frequency (MHz)	OOB Emission level (dBm)	Limit (dBm)	Result
OOB	2412	802.11b	2398.4	-28.725	-10	Pass
OOB	2472	802.11b	2484.2	-32.338	-10	Pass
OOB	2412	802.11g	2399.7	-14.505	-10	Pass
OOB	2472	802.11g	2484.5	-14.574	-10	Pass
OOB	2412	802.11n-20	2391.4	-13.733	-10	Pass
OOB	2472	802.11n-20	2484.3	-13.050	-10	Pass
OOB	2422	802.11n-40	2393.7	-15.229	-10	Pass
OOB	2462	802.11n-40	2484.2	-13.952	-10	Pass

Note: The results above show only the worst case.

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	23 of 35

10.5 Radiated TX Unwanted Emissions in the spurious domain

Spec	Item	Requirement	Applicable
EN 300 328 V2.1.1 (2016-11)	4.3.1, 4.3.2	The spurious emissions of the transmitter shall not exceed the values in the tables below in the indicated bands. Transmitter limits for narrowband spurious emissions Frequency range Maximum power Bandwidth 30 MHz to 47 MHz -36 dBm 100 KHz 47 MHz to 74 MHz -54 dBm 100 KHz 74 MHz to 87.5 MHz -36 dBm 100 KHz 87.5 MHz to 118 MHz -54 dBm 100 KHz 118 MHz to 174 MHz -36 dBm 100 KHz 118 MHz to 230 MHz -36 dBm 100 KHz 230 MHz to 230 MHz -54 dBm 100 KHz 230 MHz to 470 MHz -36 dBm 100 KHz 470 MHz to 862 MHz -54 dBm 100 KHz 862 MHz to 1 GHz -36 dBm 100 KHz 1 GHz to 12.75 GHz -30 dBm 1 MHz	
Test Setup Below 1GHz		Semi Anechoic Chamber Radio Absorbing Material T.5m Antenna Ground Plane	r _{ter}
Test Setup Above 1GHz		Semi Anechoic Chamber Radio Absorbing Material The semi Antenna Antenna Antenna Spectrum Ana Spectrum Ana	b.
Procedure	Refer t	o Clause 5.3.10.2.2 of EN 300 328 V2.1.1 (2016-11)	
Remark	Both ho	prizontal and vertical polarities were investigated. The results show only the worst case	
Result	⊠ Pas	ss 🗆 Fail	

Test was done by Benjamin Jing at 10m Chamber.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	24 of 35

802.11b - Low CH 2412 MHz

In	ndicated		Test A	\ntenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
189.63	-48.27	275	110	V	189.63	-73.45	0	1.28	-72.17	-54	-18.17	
189.63	-44.46	96	229	Н	189.63	-65.41	0	1.28	-64.13	-54	-10.13	
4824	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27	
4824	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38	
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63	
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72	

802.11b - High CH 2472 MHz

In	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86	
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25	
4944	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43	
4944	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11	
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63	
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47	

802.11g - Low CH 2412 MHz

In	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
4824	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07	
4824	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36	
7206	-78.45	264	168	V	7206	-47.15	10.13	4.36	-52.92	-30	-22.92	
7206	-80.32	252	162	Н	7206	-49.02	10.13	4.36	-54.79	-30	-24.79	

802.11a - High CH 2472 MHz

In	Indicated Test Antenna					Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
4944	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33		
4944	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54		
7440	-78.27	264	168	V	7440	-46.97	10.67	4.38	-53.26	-30	-23.26		
7440	-79.13	252	162	Н	7440	-47.83	10.67	4.38	-54.12	-30	-24.12		

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	25 of 35

802.11n20 - Low CH 2412 MHz

In	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
4824	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27	
4824	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38	
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63	
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72	

802 11n20 - High CH 2472MHz

Ir	dicated		Test A	Antenna	Substituted									
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)			
4944	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43			
4944	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11			
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63			
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47			

802.11n40 - Low CH 2422 MHz

			Test A	Antenna	Substituted									
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)			
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86			
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25			
4844	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07			
4844	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36			

802.11n40 - High CH 2462 MHz

In	dicated		Test A	Antenna	Substituted									
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)			
207.03	-46.52	66	100	V	207.03	-68.17	0	1.31	-66.86	-54	-12.86			
207.03	-40.48	138	229	Н	207.03	-62.56	0	1.31	-61.25	-54	-7.25			
4924	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33			
4924	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54			

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	26 of 35

Embedded Antenna

802.11b - Low CH 2412 MHz

In	dicated		Test A	\ntenna			Su	bstituted			
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
227.03	-41.59	353	143	V	227.03	-63.29	0	1.35	-61.94	-54	-7.94
227.03	-35.63	116	159	Н	227.03	-58.33	0	1.35	-56.98	-54	-2.98
4824	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27
4824	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72

802.11b - High CH 2472 MHz

In	ndicated		Test A	\ntenna			Su	bstituted			
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25
4944	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43
4944	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47

802.11g - Low CH 2412 MHz

Ir	ndicated		Test A	\ntenna			Su	bstituted			
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
4824	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07
4824	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36
7206	-78.45	264	168	V	7206	-47.15	10.13	4.36	-52.92	-30	-22.92
7206	-80.32	252	162	Н	7206	-49.02	10.13	4.36	-54.79	-30	-24.79

802 11a - High CH 2472 MHz

In	dicated		Test A	\ntenna			Su	bstituted			
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
4944	-66.24	236	165	٧	4960	-43.16	10.52	4.35	-49.33	-30	-19.33
4944	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54
7440	-78.27	264	168	V	7440	-46.97	10.67	4.38	-53.26	-30	-23.26
7440	-79.13	252	162	Н	7440	-47.83	10.67	4.38	-54.12	-30	-24.12

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	27 of 35

802.11n20 - Low CH 2412 MHz

In	dicated		Test A	Antenna	Substituted									
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)			
4824	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27			
4824	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38			
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63			
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72			

802 11n20 - High CH 2472MHz

In	dicated		Test A	Antenna	Substituted									
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)			
4944	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43			
4944	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11			
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63			
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47			

802.11n40 - Low CH 2422 MHz

			Test A	Antenna	Substituted									
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)			
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86			
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25			
4844	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07			
4844	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36			

802.11n40 - High CH 2462 MHz

In	Indicated Test Antenna						Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
207.03	-46.52	66	100	V	207.03	-68.17	0	1.31	-66.86	-54	-12.86		
207.03	-40.48	138	229	Н	207.03	-62.56	0	1.31	-61.25	-54	-7.25		
4924	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33		
4924	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54		

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	28 of 35

10.6 Radiated Receiver Spurious Emissions

Requirement(s):

Spec	Item	Requirement		Applicable
EN 300 328 V2.1.1 (2016- 11)	4.3.2.9	Receiver spurious emissions are emissions at any frequencies received mode. The spurious emissions of the receiver shall not exceed the indicated bands. Frequency range 30 MHz to 1GHz 1 GHz to 12.75 GHz Maximum power -57 dBm -47 dBm	d the values in the tables below in	
Test Setup Below 1GHz		Semi Anechoic Chamber Radio Absorbing Material 3m Fut 1.5m Ground Plane	1-4m Spectrum Analy	zer
Test Setup Above 1GHz		Semi Anechoic Chamber Radio Absorbing Material Semi Anechoic Chamber 3m Fut Ground Plane	Antenna 1-4m Spectrum Anal	y y zer
Procedure	Refer to	Clause 5.3.11.2.1 of EN 300 328 V2.1.1 (2016-11)		
Remark	NONE			
Result	⊠ Pass	□ Fail		
Test Data ⊠ Y	es (See b	elow) 🗆 N/A		
Test Plot □ Ye	es (See be	low) ⊠ N/A		

Test was done by Benjamin at 10m chamber.

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	29 of 35

RX at 2412 MHz

In	Indicated Test Antenna						Su	bstituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)					
207.5	-46.55	66	100	٧	207.025	-68.42	0	1.31	-67.11	-57	-10.11					
207.5	-40.47	138	229	Н	207.025	-62.58	0	1.31	-61.27	-57	-4.27					
1632	-79.27	264	150	V	1632	-68.53	10.08	1.78	-76.83	-47	-29.83					
1632	-79.38	252	150	Н	1632	-68.64	10.08	1.78	-76.94	-47	-29.94					

RX at 2472 MHz

In	Indicated Test Antenna						Su	bstituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)					
190.6	-48.14	280	100	V	190.656	-73.14	0	1.28	-71.86	-57	-14.86					
190.6	-44.26	93	230	Н	190.656	-66.27	0	1.28	-64.99	-57	-7.99					
1952	-79.43	236	150	V	1952	-66.65	10.25	2.08	-74.82	-47	-27.82					
1952	-79.76	167	150	Н	1952	-66.98	10.25	2.08	-75.15	-47	-28.15					

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

Embedded Antenna

RX at 2412 MHz

In	Indicated Test Antenna						Su	bstituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)					
227.1	-41.18	353	143	V	227.031	-63.27	0	1.35	-61.92	-57	-4.92					
227.1	-38.29	116	159	Н	227.031	-61.31	0	1.35	-59.96	-57	-2.96					
1632	-79.27	264	150	V	1632	-68.53	10.08	1.78	-76.83	-47	-29.83					
1632	-79.38	252	150	Н	1632	-68.64	10.08	1.78	-76.94	-47	-29.94					

RX at 2472 MHz

In	Indicated Test Antenna						Su	bstituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)					
227.3	-41.18	353	143	٧	227.031	-63.27	0	1.35	-61.92	-57	-4.92					
227.3	-38.29	116	159	Н	227.031	-61.31	0	1.35	-59.96	-57	-2.96					
1952	-79.43	236	150	V	1952	-66.65	10.25	2.08	-74.82	-47	-27.82					
1952	-79.76	167	150	Н	1952	-66.98	10.25	2.08	-75.15	-47	-28.15					

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	30 of 35

10.7 Receiver Blocking

Requirement(s):

Spec	Item	Requirement					Applicable		
		4.3.2.11.4.2	Receiver Catego	ory 1					
		Table 14 conta	nins the Receiver Blocking pa	arameters for Receiver	Category 1 equip	ment.			
		Table 14: Receiver Blocking parameters for Receiver Category 1 equipment							
			Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal			
EN 300			P _{min} + 6 dB	2 380 2 503,5	-53	CW			
328 V2.1.1 (2016-11) 4.3.2.11		P _{min} + 6 dB	2 300 2 330 2 360	-47	CW	X			
			P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 643,5 2 673,5	-47	cw			
			any blocking sign NOTE 2: The levels specifi	ed are levels in front of irements, the levels ha	the UUT antenna	. In case of			
		4.3.2.11.4.3	Receiver Catego	ry 2					
		Table 15 conta	ins the Receiver Blocking pa	rameters for Receiver (Category 2 equipn	nent.			
			Table 15: Receiver Blo	ocking parameters i	receiver catego	ry 2 equipment			
EN 300 328			Wanted signal mean power from companion device (dBm)		Blocking signal power (dBm) (see note 2)	Type of blocking signal			
V2.1.1	4.3.2.11		P _{min} + 6 dB	2 380 2 503,5	-57	CW			
(2016-11)			P _{min} + 6 dB	2 300 2 583,5	-47	CW			
		NOTE 1: P _{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.2.11.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.							
		Signalli o Comp	r ./			Performance Monitoring Device			
Test Setup		Blocking Sou	Spl Signal	Spectrum Analyzer	ATT	→ UUT			
					Optional				
Droodur	Doforto	Clause E / 11 of ET		st Set-up for receiver	r blocking				
Procedure			SI EN 300 328 V2.1.1	(2010-11)					
Result	□ Pass	☐ Fail							

Test Data ⊠ Yes (See below) \square N/A Test Plot ☐ Yes (See below) X N/A

Test was done by Rachana Khanduri at RF test site.

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	31 of 35

Test Result for Receiver Blocking

WLAN:

802.11b Low CH: 2412 MHz

Туре	Frequency (MHz)	Level (dBm)	Туре	Result
	2380	E2		Pass
	2503.5	-53		Pass
	2300			Pass
	2330	-47		Pass
Danahan	2360			Pass
Receiver Blocking	2523.5		CW	Pass
DIUCKING	2553.5			Pass
	2583.5	-47		Pass
	2613.5	-47		Pass
	2643.5			Pass
	2673.5			Pass

802.11b Mid CH: 2442 MHz

Туре	Frequency (MHz)	Level (dBm)	Туре	Result
	2380	Γĵ	CW	Pass
	2503.5	-53		Pass
	2300	-47		Pass
	2330			Pass
Receiver	2360			Pass
Blocking	2523.5	-47		Pass
Diocking	2553.5			Pass
	2583.5			Pass
	2613.5			Pass
	2643.5			Pass
	2673.5			Pass

802.11b High CH: 2472 MHz

Туре	Frequency (MHz)	Level (dBm)	Туре	Result
	2380	E.S.		Pass
	2503.5	-53		Pass
	2300			Pass
	2330	-47	CW	Pass
Docoivor	2360			Pass
Receiver Blocking	2523.5	-47		Pass
Blocking	2553.5			Pass
	2583.5			Pass
	2613.5			Pass
	2643.5			Pass
	2673.5			Pass

Note: The EUT is category 1 receiver

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	32 of 35

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Radiated Emissions						
Keysight EXA 44GHz Spectrum Analyzer	N9010A	MY51440112	08/02/2017	1 Year	08/02/2018	~
Keysight Signal Generator	MXG N5182A	MY47071065	04/12/2018	1 Year	04/12/2019	•
Pre-Amplifier (1 - 40GHz)	SAS-474	579	04/04/2018	1 Year	04/04/2019	~
RF Preamplifier (100KHz-7GHz)	LPA-6-30	11170602	02/09/2018	1 Year	02/09/2019	~
Bi-Log antenna (30MHz~2GHz)	JB1	A030702	01/13/2018	1 Year	01/13/2019	>
Horn Antenna (1-26.5GHz)	3115	10SL0059	08/11/2017	1 Year	08/11/2018	~
Horn Antenna (700MHz-18GHz)	SAS-571	411	05/13/2018	1 Year	05/13/2019	>
Tuned Dipole Antenna 30 - 1000 MHz (4pcs set)	AD-100	40133	03/08/2018	1 Year	03/08/2019	~
3 Meters SAC	3M	N/A	09/09/2017	1 Year	09/09/2018	
10 Meters SAC	10M	N/A	10/06/2017	1 Year	10/06/2018	>
RF Conducted Measurement						
Agilent Spectrum Analyzer	N9010A	10SL0219	11/16/2017	1 Year	11/16/2018	~
Test Equity Environment Chamber	1007H	61201	07/21/2017	1 Year	07/21/2018	~
ETS-Lingren USB RF Power Sensor	7002-006	10SL0190	11/15/2017	1 Year	11/15/2018	~
Receiver Blocking						
R & S Wideband Communication Tester	CMW500	108852	07/28/2017	1 Year	07/28/2018	~

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	33 of 35

Annex B. SIEMIC Accreditation

ccreditations	Document	Scope / Remark
ISO 17025 (A2LA)		Please see the documents for the detailed scope
ISO Guide 65 (A2LA)	7	Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation		FCC Declaration of Conformity Accreditation
FCC Site Registration		3 meter site
FCC Site Registration	7	10 meter site
IC Site Registration	7	3 meter site
IC Site Registration		10 meter site
FLIND		Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
EU NB		Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)	包包	Phase I, Phase II
Vietnam MIC CAB Accreditation		Please see the document for the detailed scope
	7	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
Hong Kong OFCA	7	(Phase I) Conformity Assessment Body for Radio and Telecom
	7	Radio: Scope A – All Radio Standard Specification in Category I
Industry Canada CAB		Telecom: CS-03 Part I, II, V, VI, VII, VIII

ccreditations	Document	Scope / Remark
ISO 17025 (A2LA)	7	Please see the documents for the detailed scope
ISO Guide 65 (A2LA)	A	Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation	7	FCC Declaration of Conformity Accreditation

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	34 of 35

A Bureau Veritas Group Company		
FCC Site Registration		3 meter site
FCC Site Registration		10 meter site
IC Site Registration		3 meter site
IC Site Registration	7	10 meter site
		Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
EU NB	1	Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)		Phase I, Phase II
Vietnam MIC CAB Accreditation		Please see the document for the detailed scope
	7	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
Hong Kong OFCA		(Phase I) Conformity Assessment Body for Radio and Telecom
		Radio: Scope A – All Radio Standard Specification in Category I
Industry Canada CAB		Telecom: CS-03 Part I, II, V, VI, VII, VIII

Japan Recognized Certification Body Designation	刮包	Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
Korea CAB Accreditation		EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68 Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition	Ī.	LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz
Page	35 of 35

Taiwan BSMI CAB Recognition	7	CNS 13438
Japan VCCI	B	R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measuremet
Australia CAB Regocnition		EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4 Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S040:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1
Australia NATA Recognition		AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016, AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2

