Олимпиада школьников «Надежда энергетики». Заключительный этап. Очная форма. ЗАДАНИЕ ПО КОМПЛЕКУ ПРЕДМЕТОВ (ФИЗИКА, ИНФОРМАТИКА, МАТЕМАТИКА) ВАРИАНТ 3014

Начало задачи.

В недалеком будущем страна Глобалитра достигла небывалого для себя уровня технического развития и даже построила свой космодром. Но вскоре ровно в зените над космодромом на высоте $H=600\,\mathrm{km}$ стал регулярно пролетать спутник-шпион. Спутник должен быть сбит! Для этого была изготовлена ракета, двигатель которой обеспечивал скорость истечения реактивной струи $u=1500\,\mathrm{m/c}$ и имел расход $\mu=125\,\mathrm{kr}$ топлива в секунду. Полная снаряженная масса ракеты составляла $5\,\mathrm{t}$, из которых $4,7\,\mathrm{t}$ приходилось на топливо.

Необходимое отступление.

Движение тела под действием приложенных к нему сил описывается простыми по форме уравнениями. Но в некоторых случаях параметры процесса могут изменяться в процессе движения. Это существенно усложняет расчет и часто делает невозможным получение решения в виде явного выражения (формулы). Тем не менее, существуют достаточно простые способы расчета приближенных решений. Для этого достаточно разбить рассматриваемый период времени на большое количество частей малой длительности и считать параметры постоянными в течение каждой из этих частей. Такой подход называется дискретизацией исходной "непрерывной" задачи.

Одним из примеров, требующих применения такого подхода, является реактивное движение. Как хорошо известно, сгорание топлива и истечение продуктов сгорания из сопла приводит к возникновению силы F_T , движущей ракету в сторону, противоположную направлению выброса из сопла. Величина создаваемой силы тяги $F_T = \mu u$. Здесь u — скорость ([м/с]) истечения продуктов сгорания относительно ракеты, μ — интенсивность сгорания топлива, часто также называемая секундным расходом топлива ([кг/с]). В процессе движения масса ракеты постоянно уменьшается по мере сгорания имеющегося запаса топлива. В случае полного выгорания топлива дальнейшее движение ракеты происходит только под действием сил гравитации.

В соответствии с описанным подходом можно считать, что топливо сгорает порциями и происходит это через каждые Δt секунд (эта величина может быть как целой, так и дробной), а между этими моментами масса ракеты не изменяется. Тогда в течение

каждого периода времени Δt движение ракеты можно рассматривать как движение материальной точки с постоянной массой, а в конце этого периода изменять (уменьшать) скачком массу ракеты на массу сгоревшего топлива.

Понятно, что чем меньше будет значение шага дискретизации Δt , тем точнее будет расчет, т.е. тем меньше будет разница между полученным дискретизированным решением и точным решением исходной задачи. В предельном случае (устремляя Δt к нулю) дискретизированные законы движения превратятся по форме записи в дифференциальные уравнения, но это уже совсем другая история. С другой стороны, при малых значениях Δt приходится делать огромное количество вычислений, что может сильно увеличивать время проведения расчета. Поэтому на практике приходится искать "золотую середину". Обычно поступают таким образом. Выбирают некоторое "среднее" значение Δt и проводят расчет до наступления какого-либо интересующего нас события. Затем уменьшают величину Δt вдвое и повторяют расчет до наступления того же события (ясно, что объем вычислений при этом удвоится). После этого сравнивают характеристики движения (скорость, высоту подъема или что-либо еще), полученные в первом и во втором расчетах. Разность между ними и будет характеризовать погрешность (точность) расчета. Если их расхождение невелико (погрешность мала), то результат расчетов считают удовлетворительным. Если же нет, то снова уменьшают Δt вдвое и т.д.

Окончание задачи.

Ракета с указанными выше параметрами стартует вертикально вверх. Эффекты, связанные с вращением Земли, и сопротивление атмосферы не учитываются.

- 1. Определите, сможет ли данная ракета достичь высоты спутника и сбить его, если радиус зоны поражения ракеты D составляет 150 м.
- 2. Рассчитайте, за какое время до прохождения спутником зенита следует осуществлять запуск.
- 3. Определите, сможет ли данная ракета поразить мишень, высота орбиты которой составляет $H_2 = 1200$ км.
- 4. Рассчитайте время полета ракеты до достижения ею максимально возможной высоты (высоту достаточно определить с точностью до 1 км).

Примечание.

Масса и радиус Земли равны $M_3 = 5,97 \cdot 10^{24} \,\mathrm{kr}$ и $R_3 = 6,37 \cdot 10^6 \,\mathrm{m}$,

гравитационная постоянная $\gamma = 6,67 \cdot 10^{-11} \frac{\text{M}^3}{\text{K}\Gamma^{\times}\text{C}^2}$.

Представление результатов.

- 1. Ответы на вопросы задачи обязательно должны быть представлены в рукописном пояснении (на листах чистовика).
- 2. Для проверки должен быть представлен программный проект. В специально выделенную папку должны быть скопированы (с помощью дежурного) все файлы проекта, а также исполняемый файл, в названии которого должна быть отражена фамилия участника (например, denjkov.exe).
- 3. В рукописном пояснении должны быть представлены физические соображения и математические выкладки, используя которые участник получил свой результат.
- 4. Также в рукописном пояснении обязательно нужно описать структуру созданной участником компьютерной программы. В идеале это описание должно представлять собой алгоритм (укрупненный, без излишней детализации), кодируя который "простой программист" сможет не задумываясь повторить ход действий участника и прийти к тем же результатам. Такой алгоритм может быть представлен либо в виде блок-схемы, либо на псевдокоде, либо в виде перечня инструкций на естественном языке и т.д.