Math 351 DNHI 6

Mario L. Gutierrez Abed

(1) Let $f:[0, 1] \longrightarrow \mathbb{R}$ be defined as follows in each case. Determine the points at which f is continuous:

a)
$$f(x) = \begin{cases} 0 & \text{if } x \notin \mathbb{Q} \\ 1 & \text{if } x \in \mathbb{Q} \end{cases}$$

Solution:

x = 0 is the only point at which f is continuous.

If
$$y \in (-\varepsilon, \varepsilon)$$
, we have $|f(y) - 0| \le |y| < \varepsilon$. Thus, $\lim_{y \to 0} f(y) = f(0)$.

If $x \neq 0$, there is a sequence of rationals $r_n \to x$ and irrationals $p_n \to x$. Clearly, $f(r_n) = r_n \to x$, while $f(p_n) = 0 \xrightarrow{\text{not}} x$. Therefore the sequence $f(r_1)$, $f(p_1)$, $f(r_2)$, $f(p_2)$, ... does not converge even though the sequence r_1 , p_1 , r_2 , p_2 , ... converges to x. Hence f is not continuous at x.

b)
$$f(x) = \begin{cases} 1 - x & \text{if } x \notin \mathbb{Q} \\ x & \text{if } x \in \mathbb{Q} \end{cases}$$

Solution:

f is continuous at a point x iff $\lim_{n\to\infty} f(r_n) = \lim_{n\to\infty} f(p_n)$, where $\{r_n\}$ is any sequence of rationals satisfying $r_n \to x$ and $\{p_n\}$ is any sequence of irrationals satisfying $p_n \to x$.

Notice that $\lim_{n\to\infty} f(r_n) = \lim_{n\to\infty} r_n = x$, while $\lim_{n\to\infty} f(p_n) = \lim_{n\to\infty} (1-p_n) = 1-x$. Hence f is continuous at x iff x = 1-x or when $x = \frac{1}{2}$.

c)
$$f(x) = \begin{cases} 0 & \text{if } x \notin \mathbb{Q} \\ \frac{1}{n} & \text{if } x = \frac{m}{n} \in \mathbb{Q} \text{ (in lowest terms)} \end{cases}$$

Solution:

Clearly f is not continuous at any rational x > 0.

If $\{p_n\} \subset [0, 1] \setminus \mathbb{Q}$ is any sequence satisfying $p_n \to x$, then $f(p_n) = 0 \xrightarrow{\text{not}} x$. If x = 0 or $x \in [0, 1] \setminus \mathbb{Q}$, then f is continuous at x: For any $\varepsilon > 0$ there is an integer \mathcal{N} such that $\frac{1}{\mathcal{N}} < \varepsilon$. Since $x \neq \frac{m}{n}$ for any $m, n \in \mathbb{N}$, there is some $\delta_k > 0$ such that the interval $(x - \delta_k, x + \delta_k)$ has no points of the form $\frac{m}{k+1}$. Let $\delta = \min \{\delta_1, ..., \delta_{N-1}\}$. Then the interval $(x - \delta, x + \delta)$ contains no points of the form $\frac{m}{n}$ for $n=2, 3, \dots, \mathcal{N}$. Hence, if $y \in (x-\delta, x+\delta)$, we have $|f(y)-f(x)|=|f(y)-0| \le \frac{1}{n}$ for $n \ge \mathcal{N}+1$ so $|f(y) - 0| < \varepsilon$ which proves that f is continuous at x. \checkmark

(2) Given a subset A of some "universal" set S, we define $X_A: S \longrightarrow \mathbb{R}$, the characteristic function of $A, \text{ by } X_A(x) = \left\{ \begin{array}{ll} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{array} \right..$

Prove or disprove the following formulas and state what corrections are necessary:

a)
$$X_{A \cup B} = X_A + X_B$$

Solution:

This formula is not correct. For instance, let $x \in A \cup B$, with $x \in A$ and $x \in B$. then we have:

$$1 = X_{A \cup B}(x) \neq X_A(x) + X_B(x) = 1 + 1 = 2$$
.

The correct formula would actually be $X_{A \cup B} = X_A + X_B - X_{A \cap B}$.

b)
$$X_{A \cap B} = X_A \cdot X_B$$

Solution:

This formula is correct.

We can see that if $x \in A \cap B$, then

$$1 = X_{A \cap B}(x) = X_A(x) \cdot X_B(x) = 1 \cdot 1 = 1 .$$

Otherwise, if $x \notin A \cap B$, then we may assume WLOG that $x \notin A$. Then,

$$0 = X_{A \cap B}(x) = X_A(x) \cdot X_B(x) = 0 \cdot 1 = 0.$$

c)
$$X_{A \setminus B} = X_A - X_B$$
.

Solution:

This formula is not correct. Notice that if $x \notin A$ and $x \in B$, then

$$0 = X_{A \setminus B}(x) \neq X_A(x) - X_B(x) = 0 - 1 = -1 \ .$$

The correct formula would actually be $X_{A \setminus B} = X_{A \cup B} - X_B$. *

(3) If $f: A \longrightarrow B$ and $C \subset B$, what is $X_C \circ f$ (as a characteristic function)?

Solution:

$$X_C(f(x)) = 1$$
 iff $f(x) \in C$. Thus $X_C \circ f = X_{f(A) \cap C}$.

(4) Show that $X_{\Delta}: \mathbb{R} \longrightarrow \mathbb{R}$, the characteristic function of the Cantor set, is discontinuous at each point of Δ .

Proof:

Notice that $X_{\Lambda}^{-1}(B_{1/3}(1)) = \Delta$. Since Δ is nowhere dense, we see that $\operatorname{int}(\Delta) = \emptyset$, which means that Δ contains no open intervals. Thus, X_{Δ} is not continuous at any $x \in \Delta$ (otherwise we would have $X_{\Delta}(B_{\delta}(x)) \subset B_{1/3}(1)$ for some $\delta > 0$). Similarly, since $X_{\Delta}^{-1}(B_{1/3}(0)) = \mathbb{R} \setminus \Delta$ and $\mathbb{R} \setminus \Delta$ is open, we see that X_{Δ} is continuous at each $x \in \mathbb{R} \setminus \Delta$.

(5) If $A \subset \mathbb{R}$, show that X_A is continuous at each point of int (A). Are there any other points of continuity?

Proof:

Suppose $A \subset \mathbb{R}$ and $x \in \text{int}(A)$. Then, for some $\delta > 0$, we have $B_{\delta}(x) = (x - \delta, x + \delta) \subset \operatorname{int}(A) \subset A$ and $\{1\} = X_A(B_{\delta}(x)) \subset B_{\varepsilon}(1) = B_{\varepsilon}(X_A(x))$ for any $\varepsilon > 0$. Hence X_A is continuous at each $x \in \text{int}(A)$.

Similarly, if $x \in \text{int}(A^c)$, then for some $\delta > 0$ we have that $B_{\delta}(x) \subset \text{int}(A^c) \subset A^c$. Hence $\{0\} = X_A(B_\delta(x)) \subset B_\varepsilon(0) = B_\varepsilon(X_A(x))$ for any $\varepsilon > 0$, implying that X_A is continuous at each $x \in \operatorname{int}(A^c)$.

Lastly, if x is on the boundary of A, that is, if $x \notin \text{int}(A)$ and $x \notin \text{int}(A^c)$, then x is a limit point of both A and A^c . Therefore X_A is discontinuous at x.

(6) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous. Show that $\{x: f(x) > 0\}$ is an open subset of \mathbb{R} and that $\{x: f(x) = 0\}$ is a closed subset of \mathbb{R} . If f(x) = 0 whenever x is rational, show that f(x) = 0 for every real x.

Proof:

Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous. Then for $x \in \{x: f(x) > 0\}$, we have f(x) = r > 0. To show that $\{x: f(x) > 0\}$ is open, consider the open ball

$$B_{r/4}(f(x)) = (f(x) - \frac{r}{4}, f(x) + \frac{r}{4}) = (\frac{3r}{4}, \frac{5r}{4}).$$

Because f is continuous, the inverse image of any open set is open. In particular, $f^{-1}(B_{r/4}(f(x)))$ is open and contains x. Therefore $B_{\delta}(x) \subset f^{-1}(B_{r/4}(f(x)))$ for some $\delta > 0$. Notice, however that this implies that

$$f(B_{\delta}(x)) \subset B_{r/4}(f(x)) = \left(\frac{3r}{4}, \frac{5r}{4}\right).$$

Hence, if $y \in B_{\delta}(x)$, then $f(y) > \frac{3r}{4} > 0$ and we see that $B_{\delta}(x) \subset \{x : f(x) > 0\}$, which proves that this set is open.

Notice also that the set $\{x: f(x) < 0\}$ is open since it is identical to the set $\{x: -f(x) > 0\}$. Thus the set $\{x: f(x) \neq 0\} = \{x: f(x) > 0\} \cup \{x: f(x) < 0\}$ is open as well, implying that $\{x: f(x) = 0\} = \{x: f(x) \neq 0\}^c$ is closed.

(7)

a) If $f: M \longrightarrow \mathbb{R}$ is continuous and $a \in \mathbb{R}$, show that the sets $\{x: f(x) > a\}$ and $\{x: f(x) < a\}$ are open subsets of M.

Solution:

Suppose that $f: M \to \mathbb{R}$ is continuous. Fix $a \in \mathbb{R}$. Then $g: M \to \mathbb{R}$ given by g(x) = f(x) - a is also continuous. Observe that the set $\{x: g(x) > 0\} = \{x: f(x) > a\}$ and $\{x: g(x) < 0\} = \{x: f(x) < a\}$. Now repeat the argument from problem (6) above to prove that $\{x: g(x) > 0\}$ and $\{x: g(x) < 0\}$ are open. \checkmark

b) Conversely, if the sets $\{x : f(x) > a\}$ and $\{x : f(x) < a\}$ are open for every $a \in \mathbb{R}$, show that f is continuous.

Solution:

Suppose the sets $\{x : f(x) > a\}$ and $\{x : f(x) < a\}$ are open for every $a \in \mathbb{R}$. Fix $y \in M$ and $\varepsilon > 0$ and consider

$$f^{-1}(f(y) - \varepsilon, f(y) + \varepsilon) = \{x : f(y) - \varepsilon < f(x) < f(y) + \varepsilon\}$$
$$= \{x : f(x) > f(y) - \varepsilon\} \cap \{x : f(x) < f(y) + \varepsilon\} .$$

Observe that $f^{-1}(B_{\varepsilon}(f(y))) = f^{-1}(f(y) - \varepsilon, f(y) + \varepsilon)$ is the intersection of two open sets and must therefore be open.

Let
$$\delta > 0$$
 satisfy $B_{\delta}(y) \subset f^{-1}(B_{\varepsilon}(f(y)))$ [Clearly, $y \in \{x : f(y) - \varepsilon < f(x) < f(y) + \varepsilon\}$].

This proves that f is continuous at y. Since y is arbitrary, it follows that f is continuous. \checkmark

c) Show that f is continuous even if we assume only that the sets $\{x : f(x) > a\}$ and $\{x : f(x) < a\}$ are open for every rational a.

Solution:

For $y \in M$ and $\varepsilon > 0$, fix rational numbers α and β satisfying

$$f(y) - \varepsilon < \alpha < f(y) < \beta < f(y) + \varepsilon$$
.

Then $f(y) \in (\alpha, \beta) \subset (f(y) - \varepsilon, f(y) + \varepsilon)$.

Hence

$$f^{-1}(\alpha, \beta) = \{x : \alpha < f(x) < \beta\} = \{x : f(x) > \alpha\} \cap \{x : f(x) < \beta\}$$

is open.

Furthermore,

$$y \in f^{-1}(\alpha, \beta) \subset f^{-1}(f(y) - \varepsilon, f(y) + \varepsilon) = f^{-1}(B_{\varepsilon}(f(y)))$$

so $B_{\delta}(y) \subset f^{-1}(\alpha, \beta) \subset f^{-1}(B_{\varepsilon}(f(y))).$

This proves that f is continuous at y. Again, since y is arbitrary, we have shown that f is continuous.

- (8) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous. Then,
- a) If f(0) > 0, show that f(x) > 0 for all x in some interval (-a, a).

Solution:

Let f(0) = r > 0. Then $B_{r/2}(f(0)) = \left(\frac{r}{2}, \frac{3r}{2}\right)$. Since f is continuous at 0, there is some a > 0 that satisfies

$$f(B_a(0)) = f(-a, a) \subset B_{r/2}(f(0)) = \left(\frac{r}{2}, \frac{3r}{2}\right).$$

Hence $f(x) > \frac{r}{2} > 0$ for all $x \in (-a, a)$.

b) If $f(x) \ge 0$ for every rational x, show that $f(x) \ge 0$ for all real x.

Solution:

If there were an x for which f(x) < 0, by a slight modification of the argument in part a), there would be some interval (x - a, x + a) on which f is negative. However, since the interval (x-a, x+a) contains rationals and f is nonnegative on every rational, such interval cannot exist. Thus, we have that $f(x) \ge 0 \quad \forall x . \checkmark$

(9) Let $A = \{0, 1\} \cup \{2\}$ be considered as a subset of \mathbb{R} . Show that every function $f: A \longrightarrow \mathbb{R}$ is continuous, relative to A, at 2.

Proof:

Let $A = (0, 1] \cup \{2\}$ have the usual metric function of \mathbb{R} . Then the open ball $B_{1/2}^A(2) = \left(2 - \frac{1}{2}, 2 + \frac{1}{2}\right) \cap A = \{2\}$ is an open subset of A.

If $f: A \longrightarrow \mathbb{R}$ is any function and $\varepsilon > 0$, then $f(B_{1/9}^A(2)) = \{f(2)\} \subset B_{\varepsilon}(f(2))$.

This shows that any function $f: A \longrightarrow \mathbb{R}$ is continuous at 2.

- (10) Let A and B be subsets of M, and let $f: M \longrightarrow \mathbb{R}$. Prove or disprove the following statements. If either statement is not true in general, what modifications are necessary to make it so?
- a) If f is continuous at each point of A and f is continuous at each point of B, then f is continuous at each point of $A \cup B$.

Solution:

If f is continuous at each point of A (relative to M) and at each point of B (relative to M), then f is continuous at each point of $A \cup B$ (relative to M). This is so because for each $x \in A \cup B$, we may assume WLOG that $x \in A$. Therefore by hypothesis, x is a point of continuity of f relative to M. ✓

b) If $f|_A$ is continuous, relative to A and $f|_B$ is continuous, relative to B, then $f|_{A \cup B}$ is continuous, relative to $A \cup B$.

Solution:

Suppose $f|_B$ (i.e. $f:M \longrightarrow \mathbb{R}$ restricted to B) is continuous relative to B and $f|_A$ is continuous relative to A. Then it is not necessarily true that $f|_{A \cup B}$ is continuous relative to $A \cup B$. To see this, consider $X_{\mathbb{Q}}: \mathbb{R} \longrightarrow \mathbb{R}$ and set $A = \mathbb{Q}$, $B = \mathbb{R} \setminus \mathbb{Q}$. Then $X_{\mathbb{Q}}|_{A} = 1$, $X_{\mathbb{Q}}|_{B} = 0$ are constant functions. Therefore $X_{\mathbb{Q}}|_{A}$ is continuous relative to A and $X_{\mathbb{Q}}|_{B}$ is continuous relative to B. However, $X_{\mathbb{Q}}|_{A \cup B} = X_{\mathbb{Q}}$ is not continuous everywhere on $A \cup B$.

Notice that $f|_{A \cup B}$ is continuous whenever $f|_A$ and $f|_B$ are continuous with the added hypothesis that A and B are open subsets of M. \checkmark ₩

(11) Let $I = (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1]$ with its usual metric. Prove that there is a continuous function g mapping I onto $\mathbb{Q} \cap [0, 1]$.

Proof:

First partition the interval [0, 1] into interval subsegments using the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$.

For each integer $n \in \mathbb{N}$ set $I_n = \left(\frac{1}{n+1}, \frac{1}{n}\right) \cap I$, where $I = (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1]$. Then the I_n are pairwise disjoint, nonempty open subsets of (relative to) I.

Let $\{q_n\}_{n=1}^{\infty}$ be an enumeration of the rational numbers $\mathbb{Q} \cap [0, 1]$ and define $g: (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \longrightarrow \mathbb{Q} \cap [0, 1]$ by $g(x) = q_n$ if $x \in I_n$.

Clearly, g is onto. To see that g is continuous, observe that $g^{-1}(\{q_n\}) = I_n$. That is, the inverse image under g of any singleton is an open set. From this it immediately follows that for any $V \subset \mathbb{Q} \cap [0, 1]$, $g^{-1}(V)$ is an open subset of I.

Thus the inverse image of any open set is open and therefore g is continuous.

(12) Let $f, g: (M, d) \longrightarrow (N, \rho)$ be continuous, and let D be a dense subset of M. If f(x) = g(x) for all $x \in D$, show that f(x) = g(x) for all $x \in M$. If f is onto, show that f(D) is dense in \mathcal{N} .

Proof:

Define $k: M \longrightarrow \mathbb{R}$ by $k(x) = \rho(f(x), g(x))$. We will prove that k(x) = 0 for all $x \in M$, showing that f(x) = g(x).

Notice that

$$\begin{aligned} |k(x) - k(y)| &= |\rho(f(x), g(x)) - \rho(f(y), g(y))| \\ &\leq |\rho(f(x), g(x)) - \rho(f(y), g(y))| + |\rho(f(x), g(x)) - \rho(f(y), g(y))| \\ &\leq \rho(g(x), g(y)) + \rho(f(x), f(y)) \end{aligned}$$

Since $f, g: (M, d) \longrightarrow (N, \rho)$ are continuous, the calculation above implies that $k: M \longrightarrow \mathbb{R}$ is continu ous.

Since f(x) = g(x) for any $x \in D$, we have $k(x) = 0 \quad \forall x \in D$. If, for some $y \in M$, $k(y) \neq 0$, we may assume WLOG that k(y) > 0. By a slight modification of problem (8)a), there is a neighborhood $B_{\delta}^d(y) \subset M$ such that k(z) > 0 for any $z \in B_{\delta}^d(y)$. But $D \cap B_{\delta}^d(y) \neq \emptyset$, since D is dense in M. Let $\omega \in D \cap B_{\delta}^d(\gamma)$. Then $k(\omega) = 0$, contradicting the assertion that k is positive on $B_{\delta}^d(\gamma)$. We conclude that $k(x) = 0 \quad \forall x \in M$, from which the desired result follows.

Now suppose that $f:(M, d) \longrightarrow (\mathcal{N}, \rho)$ is onto. Then any $z \in \mathcal{N}$ is of the form f(x) for some $x \in M$. Since f is continuous at x, for any $\varepsilon > 0$ there is a $\delta > 0$ such that $f(B_{\delta}^d(x)) \subset B_{\varepsilon}^{\rho}(f(x))$. Since $D \cap B_{\delta}^{d}(x)$ is not empty, $f(D) \cap B_{\varepsilon}^{\rho}(f(x))$ is also not empty. In particular, either $f(x) \in f(D)$ or f(x)is a limit point of f(D). This establishes that f(D) is dense in \mathcal{N} .

(13) A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is said to satisfy a Lipschitz condition if there is a constant $K < \infty$ such that $|f(x) - f(y)| \le K|x - y|$ for all $x, y \in \mathbb{R}$. More economically, we may say that f is Lipschitz (or Lipschitz with constant K if a particular constant seems to matter). Show that sin(x) is Lipschitz with constant K = 1. Prove that a Lipschitz function is continuous.

Proof:

Let $f(x) = \sin(x)$, which is everywhere differentiable. Thus, for any fixed x, $y \in \mathbb{R}$, f is continuous on [x, y] and differentiable on (x, y). Therefore, by the mean-value theorem, there is some

 $c \in (x, y)$ such that $\frac{f(x)-f(y)}{x-y} = f'(c)$. This means that $\sin(x) - \sin(y) = \cos(c)(x-y)$, so $|\sin(x) - \sin(y)| = |\cos(c)||x-y|| \le |x-y|$. In particular, $f(x) = \sin(x)$ is Lipschitz with constant K = 1.

Observe that every Lipschitz function of order K is continuous:

$$|f(x) - f(y)| < \varepsilon$$
 whenever $|x - y| < \frac{\varepsilon}{K}$.

(14) In a more general setting, a function $f:(M, d) \longrightarrow (N, \rho)$ is called Lipschitz if there is a constant $K < \infty$ such that $\rho(f(x), f(y)) \le K d(x, y)$ for all $x, y \in M$. Prove that a Lipschitz mapping is continuous.

Proof:

If $f:(M, d) \longrightarrow (N, \rho)$ is Lipschitz, then $\rho(f(x), f(y)) \le K d(x, y)$ means that $\rho(f(x), f(y)) < \varepsilon$ whenever $d(x, y) < \frac{\varepsilon}{K}$. In particular, f is continuous.

(15) Show that the map $L(f) = \int_a^b f(t) dt$ is Lipschitz with constant K = b - a for $f \in C[a, b]$.

Proof:

Let $f, g \in C[a, b]$. define $L: C[a, b] \longrightarrow \mathbb{R}$ by $L(f) = \int_a^b f(t) \, dt$. Then,

$$\begin{split} |L(f) - L(g)| &= \left| \int_a^b (f(t) - g(t)) \, dt \right| \\ &\leq \int_a^b |(f(t) - g(t))| \, dt \\ &\leq \int_a^b ||f - g||_{\infty} \, dt \\ &= |b - a| \, ||f - g||_{\infty} \, . \end{split}$$

Setting K = |b - a|, we see that L is Lipschitz with constant K.

(16) Define $g: \ell_2 \longrightarrow \mathbb{R}$ by $g(x) = \sum_{n=1}^{\infty} \frac{x_n}{n}$. Is g continuous?

Solution:

Define
$$g: \ell_2 \longrightarrow \mathbb{R}$$
 by $g(x) = \sum_{n=1}^{\infty} \frac{x_n}{n}$.

Then,

$$|g(x) - g(y)| = \left| \sum_{n=1}^{\infty} \frac{x_n - y_n}{n} \right| \le \sum_{n=1}^{\infty} \frac{|x_n - y_n|}{n}$$

$$\leq \left(\sum_{n=1}^{\infty} |x_n - y_n|^2\right)^{1/2} \left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right)^{1/2} \\ = K ||x - y||_2.$$

Therefore g is Lipschitz.