

Ricerca operativa e pianificazione delle risorse

spitfire

A.A. 2024-2025

Contents

1	Prerequisiti di Algebra Lineare		3
	1.1	Matrici e vettori	3
	1.2	Equazioni lineari	4

1 Prerequisiti di Algebra Lineare

1.1 Matrici e vettori

Una matrice è una tabella contenente numeri. Se la tabella è costituita da m righe e n colonne si parla di una matrice $m \times n$. Una matrice viene detta **matrice quadrata** se il numero di righe e colonne coincidono.

Una matrice $1 \times m$ viene detto vettore riga m-dimensionale

Una matrice $m \times 1$ viene detto vettore colonna m-dimensionale.

La notazione maggiormente utilizzata per indicare una matrice è

$$A = [a_{ij}]$$

Con a_{ij} elemento generico della i-esima riga e j-esima colonna della matrice A. Se $A = [a_{ij}]$ è una matrice $m \times n$, la matrice $n \times m$

$$A^T = [a_{ij}]$$

viene detta matrice trasposta della matrice <math>A.

Se $A = [a_{ik}]$ è una matrice $m \times p$ e $B = [b_{kj}]$ è una matrice $p \times n$ la loro **matrice prodotto** è $m \times n$ e definita come:

$$A \cdot B = C = [c_{ij}] \ con \ c_{ij} = \sum_{k=1}^{p} a_{ik} \cdot b_{kj}$$

Date due matrici $m \times n$, $A = [a_{ij}]$ e $B = [b_{ij}]$, la loro **matrice somma** è definita come segue:

$$A + B = C = [c_{ij}] con c_{ij} = a_{ij} + b_{ij}$$

La moltiplicazione di una matrice A per una costante α fornisce come risultato quanto segue:

$$\alpha \cdot A = [\alpha \cdot a_{ij}]$$

Siano $v_1, v_2, ..., v_n$ n vettori, riga o colonna; essi vengono detti **linearmente indipendenti** tra loro se, prendendo n coefficienti $a_1, a_2, ..., a_n$ la seguente uguaglianza

$$a_1 \cdot v_1 + a_2 \cdot v_2 + \dots + a_n \cdot v_n = 0$$

risulta verificata solo se $a_1 = a_2 = \dots = a_n = 0$.

Al contrario, se esistono coefficienti $a_1, a_2, ..., a_n$ non tutti nulli per cui

$$a_1 \cdot v_1 + a_2 \cdot v_2 + \dots + a_n \cdot v_n = 0$$

i vettori $v_1, v_2, ..., v_n$ sono detti linearmente dipendenti.

Un insieme di n vettori ad n dimensioni linearmente indipendenti costituisce una base per uno spazio a n dimensioni. Se un insieme di vettori $v_1, v_2, ..., v_n$ costituisce una base per uno spazio ad n dimensioni, allora ogni vettore x che appartiene a quello spazio è combinazione lineare dei vettori della base.

Una matrice quadrata $m \times m$ si dice **matrice singolare** se l'insieme degli m vettori riga (o colonna), ottenuti considerando ogni riga (o colonna) come un vettore, è **linearmente**

dipendenti. Se, viceversa, l'insieme degli m vettori è linearmente indipendente, la matrice si dice **matrice non singolare**.

Una matrice quadrata $A = [a_{ij}]$ con $a_{ij} = 0$ per ogni $i \neq j$ viene detta **matrice** diagonale.

La matrice diagonale $A = [a_{ij}]$, con $a_{ii} = 1$ per ogni i viene detta **matrice identità**, solitamente indicata con I. Se A NON è una matrice singolare, allora esiste una matrice A^{-1} detta **matrice inversa** della matrice A, tale per cui vale la seguente relazione di uguaglianza:

$$A \cdot A^{-1} = A^{-1} \cdot A = I$$

Il **determinante** di una matrice quadrata A si indica con det(A) ed è un numero (esiste solo per matrici quadrate), nel caso specifico di una matrice 2×2 si definisce come segue:

$$det(A) = det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Il determinante di una matrice quadrata $A \ m \times m$ si ottiene utilizzando la seguente regola ricorsiva, detta **formula di Laplace**: Se A_{ij} è la matrice $(m-1) \times (m-1)$, ottenuta togliendo la i-esima riga e la j-esima colonna di A, il determinante di A risulta:

$$det(A) = \sum_{i=1}^{m} (-1)^{i+j} \cdot a_{ij} \cdot det(A_{ij}) \ (formula \ per \ righe)$$

$$det(A) = \sum_{i=1}^{m} (-1)^{i+j} \cdot a_{ij} \cdot det(A_{ij}) \ (formula \ per \ colonne)$$

Se la matrice è singolare, allora det(A) = 0.

Una matrice quadrata A ammette inversa se e solo se non è singolare.

1.2 Equazioni lineari

Un' **equazione lineare** nelle variabili $x_1, x_2, ..., x_n$ è un'equazione nella seguente forma:

$$a_1 \cdot x_1 + a_2 \cdot x_2 + \dots + a_n \cdot x_n = b$$

dove $a_1, a_2, ..., a_n$ e b sono delle costanti. Si dice **soluzione dell'equazione** un qualsiasi vettore $|y_1, y_2, ..., y_n| \in \mathbb{R}^n$ tale che:

$$a_1 \cdot y_1 + a_2 \cdot y_2 + \dots + a_n \cdot y_n = b$$

Un sistema di m equazioni lineari in n variabili è definito come segue:

$$\begin{cases} a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n = b_1 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + \dots + a_{2n} \cdot x_n = b_2 \\ \dots \\ a_{m1} \cdot x_1 + a_{m2} \cdot x_2 + \dots + a_{mn} \cdot x_n = b_m \end{cases}$$

dove a_{ij} e b_j , i = 1, ..., n; j = 1, ..., m sono costanti.