

INSTITUTO SUPERIOR TÉCNICO

1.º Semestre 2013/2014 Duração: 60 minutos

17 janeiro 2014

NOME	NÚMERO	

1. (2 valores) Considere o seguinte circuito. Assumindo que os sinais X, Y, S0 e S1 evoluem ao longo do tempo da forma indicada na tabela seguinte, acabe de preencher o resto da tabela.

X	1	0	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1	0	0	1	0	1	0	1
Y	1	1	0	0	0	0	1	1	0	1	1	0	0	1	1	0	0	1	1	1	0	0	1	1
S0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
S 1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
G	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K	1	1	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Е	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
F	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

2. (2+2+2 valores) Considere o seguinte programa, a executar no PEPE (processador de 16 bits, <u>endereçamento de byte</u>). Todas as constantes estão em decimal.

MOV R1, -2301

MOV R2, 381

SHR R2, 2; shift right (deslocamento para a direita)

OR R1, R2

a) Indique o valor de R1 (em hexadecimal com 16 bits, usando a notação de complemento para 2) após a execução da primeira instrução.

F 7 0 3 H

b) Indique os valores (em binário com 16 bits, usando a notação de complemento para 2) com que R1 e R2 são inicializados, bem como os valores finais destes registos, após a execução destas instruções.

1	1	1	1	0	1	1	1	0	0	0	0	0	0	1	1	R1 (após os MOVs)
0	0	0	0	0	0	0	1	0	1	1	1	1	1	0	1	R2 (após os MOVs)
1	1	1	1	0	1	1	1	0	1	0	1	1	1	1	1	R1 final
0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	R2 final

c) Indique (em decimal) o mínimo e o máximo valor numérico que é possível representar com 9 bits, em notação de complemento para 2.

Mínimo: - 256 Máximo: + 255

3. (2+2+3 valores) A figura seguinte representa o diagrama de blocos básico do PEPE (processador de 16 bits, endereçamento de byte), a uma memória RAM onde estão armazenados tanto os dados como as instruções dos programas.

a) Assuma que a memória tem 13 bits de endereço e que está acessível a partir do endereço 0000H. Qual a capacidade em bytes da RAM?

b) Qual é o endereço (em hexadecimal) imediatamente a seguir à última célula da RAM?

c) Considere o programa seguinte e preencha a seguinte tabela (use apenas as linhas necessárias), indicando <u>todos os acessos à memória</u> (em leitura ou escrita) efetuados pelo processador durante a execução do programa. <u>Assuma que os MOVs ocupam apenas uma palavra.</u>

PLACE 0

II: MOV R1, D1
I2: MOV R2, [R1]
I3: ADD R2, R1
I4: MOV [R2], R1
I5: MOV R2, 7AH
D1: WORD 7C40H

Registo que indica o endereço da memória	Valor deste registo	Etiqueta da instrução em que ocorre	Leitura ou escrita	Valor lido ou escrito (só nos acessos de dados)
PC	0000Н	I1	L	
PC	0002H	12	L	
R1	000AH	I 2	L	7C40H
PC	0004Н	13	L	
PC	0006Н	I 4	L	
R2	7C4AH	I 4	E	000AH
PC	0008Н	I 5	${f L}$	

4. (2+3 valores) Considere o seguinte programa em linguagem *assembly* do PEPE. Para facilitar, fornecese a descrição interna das instruções CALL e RET.

	PLACE	0H	
00H		MOV	SP, 2000H
02H		MOV	R1, 7EH
04H		MOV	R2, 30FH
06H		MOV	R3, C
08H		CALL	В
0AH	fim:	JMP	fim
0CH	A:	PUSH	R2
0EH	ciclo:	SHR	R1, 1
10H		SUB	R2, 1
12H		JNZ	ciclo
14H		POP	R2
16H		RET	
18H	B:	PUSH	R1
1AH		PUSH	R2
1CH		MOV	R1, 9B73H
1EH		MOV	R2, 5
20H		CALL	A
22H		MOV	[R3], R1
24H		POP	R2
26H		POP	R1
28H		RET	
2AH	C:	WORD	5A2CH

	SP ← SP-2
CALL Etiqueta	M[SP]←PC
	PC ← Etiqueta
RET	PC ← M[SP]
	SP ← SP+2

- a) Preencha os endereços de cada instrução (lado esquerdo) e os espaços no programa. <u>Considere que os MOVs ocupam apenas uma palavra</u>.
- b) Acabe de preencher a tabela com informação sobre os acessos à memória (<u>só contam acessos de dados, buscas de instruções ignoram-se</u>) feitos pelo programa, de leitura (L) ou escrita (E).

Endereço da instrução que faz o acesso	Endereço acedido	L ou E	Valor lido ou escrito
08H	1FFEH	E	000AH
18H	1FFCH	E	007EH
1AH	1FFAH	E	030FH
20H	1FF8H	E	0022H
ОСН	1FF6H	E	0005H
14H	1FF6H	L	0005H
16H	1FF8H	L	0022H
22H	002AH	E	04DBH
24H	1FFAH	L	030FH
26H	1FFCH	L	007EH
28H	1FFEH	L	000AH