Model: Gradient Boosting (XGBoost)

• **Justification:** Handles mixed data types, captures non-linear relationships, and provides feature importance for interpretability.

Hypothetical Confusion Matrix (for 1,000 patients):

	Predicted Readmit	Predicted No Readmit
Actual Readmit	80 (TP)	20 (FN)
Actual No Readmit	50 (FP)	850 (TN)

• **Precision:** TP / (TP + FP) = $80 / 130 \approx 61.5\%$

• **Recall:** TP / (TP + FN) = 80 / 100 = 80%

Integration Steps:

- 1. **API Development:** Wrap the model in a REST API (e.g., Flask/FastAPI).
- 2. **EHR Integration:** Push predictions to EHR dashboards via HL7/FHIR standards.
- 3. Clinician Alerts: Flag high-risk patients in real-time during discharge planning.

Regulatory Compliance (HIPAA):

- **Data Encryption:** Use AES-256 for data at rest/transit.
- Access Controls: Role-based permissions (e.g., only clinicians can view predictions).
- Audit Logs: Track all model interactions for accountability.

Method to Address Overfitting:

- Regularization (L1/L2): Penalize complex models in XGBoost (e.g., lambda=1.0).
- Cross-Validation: Use 5-fold CV to ensure generalization.

Summary

This solution balances accuracy, ethics, and compliance, enabling the hospital to reduce readmissions while maintaining patient trust. XGBoost's interpretability aids clinician buy-in, and robust preprocessing ensures reliable predictions.