ICON model parameters suitable for model tuning

Linda Schlemmer, Günter Zängl, Jürgen Helmert, Martin Köhler, Dmitrii Mironov, Matthias Raschendorfer, Daniel Reinert, Daniel Rieger, Sophia Schäfer, Axel Seifert

Deutscher Wetterdienst (DWD), Offenbach

December 11, 2020

The table summarizes the most important tuning variables for the ICON model, and is largely based on Reinert et al. (2020), chapter 12.2. Those parameters that have been identified as sensitive parameters in Avgoustoglou et al. (2020) are highlighted in green. Parameters that are mostly relevant for simulations covering the tropics are highlighted in blue.

Yet, the document and the list of variables should be handled with care. Purely varying some of the listed parameters blindly will most likely not give satisfactory results. A physical understanding of the identified model shortcomings/biases should be built up first, followed by a choice of the associated model parameters and a systematic variation and evaluation of simulations. The parameters of interest may strongly vary for the region of interest, the model resolution and the specific purpose.

Please also keep in mind that the list is neither exhaustive, nor complete. There may well be further model parameters that are more suitable for individual applications.

Parameter	Description	Meaningful Range	Comment
	SSO tuning		
gkwake	low level wake drag constant C_d for blocking	1.5 ± 0.5	Very strong dependency on raw data resolu- tion: for ICON-D2 with ASTER data, we use 0.25
gkdrag	gravity wave drag constant G , a function of mountain sharpness	0.075 ± 0.04	Should be zero (turned off) at convection-permitting resolutions
gfrcrit	critical Froude number determining depth of blocked layer $H_{n_{crit}}$	0.4 ± 0.1	
grcrit	critical Richardson number	0.25	
	GWD tuning		
gfluxlaun	variability range for non-orographic gravity wave launch momentum flux	$2.50 \cdot 10^{-3}$ $\pm 0.75 \cdot 10^{-3} \text{ [Pa]}$	relevant for global applications only

Parameter	Description	Meaningful Range	Comment
	grid scale microphysics		
zvz0i	terminal fall velocity of ice	0.85 - 1.45 [m/s]	allows temperature bias tuning in the upper trop- ical troposphere as well as TOA long-wave fluxes
$zceff_min$	minimum value for sticking efficiency	0.01 - 0.075	tropics
v0snow	factor in the terminal velocity for snow	10.0 - 30.0	recommended value 25.0
$icesedi_exp$	exponent for density correction of cloud ice sedimentation	0.3 - 0.33	no perturbation recom- mended
rain_n0fac	multiplicative change of intercept parameter of raindrop size distribution	0.25 - 4.	multiplicative perturbation
	cloud cover		
box_liq	Box width for liquid cloud diagnostic in cloud cover scheme	0.05 ± 0.02	
box_liq_asy	Asymmetry factor for liquid cloud cover diagnostic	2.0 - 4.0	sensitive to TOA solar fluxes and to a lesser de- gree long-wave fluxes
thicklayfac	factor for increasing the box width for layer thicknesses exceeding 150 m	$0.005 \pm 0.005 [1/\mathrm{m}]$	accounting for vertical sub-grid overlap
sgsclifac	Scaling factor for turbulence-induced subgrid-scale contribution to diagnosed cloud ice	0.0 - 1.0	0.0 turns this contribution off

Parameter	Description	Meaningful Range	Comment
	turbulence		
q_crit	critical value for normalised super-	1.6-4.0	
rlam_heat	saturation scaling factor of the laminar bound- ary layer for heat (scalars), the change in rlam_heat is accompanied by an in- verse change of rat_sea in order to keep the evaporation over water (con- trolled by rlam_heat · rat_sea) the same.	0.333 - 3.0	multiplicative perturbation
rat_sea	controls latent and heat fluxes over water	0.5 - 10.0	lower values increase la- tent and sensible fluxes over water
a_hshr	Length scale factor for the separated horizontal shear mode	1.0 ± 1.0	
a_stab	factor for stability correction of turbulent length scale	0.0	turned off by default because it degrades global skill scores
$\mathrm{c_diff}$	length scale factor for vertical diffusion of TKE	0.1-0.4	
alpha0	lower bound of velocity-dependent Charnock parameter	0.0123-0.0335	additive ensemble per- turbation of Charnock- parameter
alpha1	parameter scaling the molecular roughness of water waves	0.1-1.0	lower values increase latent and sensible fluxes over water, particularly at low wind speeds.
tur_len	asymptotic maximal turbulent distance	500. alpha± 150. [m]	
tkhmin	scaling factor for minimum vertical diffusion coefficient for heat and moisture	0.75 ± 0.2	
tkmmin	scaling factor for minimum vertical diffusion coefficient for momentum	0.75 ± 0.2	
tkred_sfc	multiplicative change of reduction of minimum diffusion coefficients near the surface	0.25 - 4.0	multiplicative perturbation

Parameter	Description	Meaningful Range	Comment
	TERRA		
c_soil	evaporating fraction of soil	1.0 ± 0.25	
$cwimax_ml$	scaling parameter for maximum interception storage	$5.\cdot10^{-7} - 5.\cdot10^{-4}$	low values ($< 10^{-6}$) turn off interception layer
	snow cover diagnosis		
minsnowfrac	Lower limit of snow cover fraction to which melting snow is artificially re- duced in the context of the snow-tile approach	0.2 ± 0.1	
	radiation		
dust_abs	Tuning factor for enhanced LW absorption of mineral dust in the Saharan region	0.0	Reduces bias over Sahara for the RRTM scheme but not necessary and implemented with ecRad and itype_lwemiss=2

Parameter	Description	Meaningful Range	Comment
	convection		
entrorg	Entrainment parameter in convection scheme valid for $dx=20km$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	corresponds to entr_sc in the shallow convection part of COSMO Tiedtke scheme
rdepths	maximum allowed shallow convection depth	$2.0 \cdot 10^4 \pm 5.0 \cdot 10^3$ Pa	
rprcon	coefficient for conversion of cloud water into precipitation	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
capdcfac_et	fraction of CAPE diurnal cycle correction applied in the extratropics	0.5 ± 0.75	
$capdcfac_tr$	fraction of CAPE diurnal cycle correction applied in the tropics	0.5 ± 0.75	
lowcapefac	Tuning parameter for diurnal-cycle correction in convection scheme: reduction factor for low-cape situations	1.0 ± 0.5	
negpblcape	Tuning parameter for diurnal-cycle correction in convection scheme: maximum negative PBL CAPE allowed in the modified CAPE closure	-500 0.	
$rhebc_land$	RH threshold for onset of evaporation below cloud base over land	0.75 ± 0.05	
$rhebc_ocean$	RH threshold for onset of evaporation below cloud base over sea	0.85 ± 0.05	
rhebc_land_trop	RH threshold over tropical land	0.70 ± 0.05	tropics
rhebc_ocean_trop	RH threshold over tropical sea	0.76 ± 0.05	tropics
rcucov	Convective area fraction used for computing evaporation below cloud base	0.05	
rcucov_trop	Convective area fraction used for computing evaporation below cloud base, tropics	0.03	tropics
texc	Excess value for temperature used in test parcel ascent	$0.125 \pm 0.05 [\mathrm{K}]$	
qexc	Excess fraction of grid-scale QV used in test parcel ascent	$0.0125 \pm 0.005 \text{ [kg/kg]}$	

References

Avgoustoglou, E., A. Voudouri, I. Carmona, E. Bucchignani, Y. Levy, and J. M. Bettems, 2020: COSMO technical report 42. A methodology towards the hierarchy of COSMO parameter calibration tests via the domain sensitivity over the Mediterranean area: Final Report. www.cosmo-model.org, doi:DOI:10.5676/DWD_pub/nwv/cosmo-tr_42.

Reinert, D., and Coauthors, 2020: DWD Database Reference for the Global and Regional ICON and ICON-EPS Forecasting System, Version 2.1.1. Research and Development at DWD, Offenbach am Main, doi:10.5676/DWD_pub/nwv/icon_2.1.1, https://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/nwv/icon/icon_dbbeschr_aktuell.pdf.