HS Osnabrück
FIuI – Biermann

Übung zu Mathematik I für Informatik

Blatt 3

1. Gegeben seien zwei nach unten beschränkte Mengen $M, N \subset \mathbb{R}$; begründen Sie:

$$M \subset N \implies \inf M \ge \inf N$$

2. Zeigen Sie durch vollständige Induktion: Für reelle Zahlen $a_1, a_2, \ldots, a_n \in \mathbb{R}$ mit $n \in \mathbb{N}$, $n \geq 2$ gilt die verallgemeinerte Dreiecksungleichung:

$$|\sum_{i=1}^{n} a_i| \le \sum_{i=1}^{n} |a_i|.$$

Nehmen Sie den Induktionsanfang bei n=2 vor. Verwenden Sie sowohl beim Induktionsanfang als auch beim Induktionsschluß die in der Vorlesung hergeleitete einfache Dreiecksungleichung:

$$|a+b| \le |a| + |b|$$

- 3. Berechnen Sie: $\sum_{j=1}^{6} \sum_{i=1}^{7} i \cdot j$.
- 4. Das Produktzeichen (\prod) ist definiert durch

$$\prod_{i=1}^{n} a_i = a_1 \cdot a_2 \cdot \ldots \cdot a_n \quad \text{mit} \quad a_1, a_2, \ldots, a_n \in \mathbb{R} .$$

Beweisen Sie für $n \in \mathbb{N}$:

$$\prod_{i=0}^{n} (2^{2^{i}} + 1) = 2^{2^{n+1}} - 1.$$

5. Welche der folgenden Funktion von \mathbb{R} in \mathbb{R} ist gerade, welche ist ungerade?

a)
$$f(x) = x^3 \operatorname{sign}(x)$$

b)
$$f(x) = \frac{x^2 + 3x}{|x| + 2}$$

c)
$$f(x) = \frac{x^5 + 3x^3 - 6x}{1 + x^4}$$
.

6. Bestimmen Sie die größte Zahl $n \in \mathbb{N}_0$ mit

$$7^n \le 3 \cdot 10^{12}$$

- 7. Seien M und N zwei nichtleere Mengen, und sei f: $M \longrightarrow N$ eine Funktion. Zeigen Sie:
 - a) Die Funktion f ist injektiv, wenn es eine Funktion $g: N \longrightarrow M$ gibt mit

$$g(f(x)) = x$$
 für alle $x \in M$

b) Die Funktion f ist surjektiv, wenn es eine Funktion $h: N \longrightarrow M$ gibt mit

$$\mathrm{f}(\mathrm{h}(y)) = y \qquad \text{für alle} \quad y \in N$$