

Max Planck Odense Center on the Biodemography of Aging University of Southern Denmark

Accelerated Failure Time

Virginia Zarulli, Adam Lenart

MaxO - SDU

Accelerated Failure Time

While in a proportional hazards model we modeled the effect of covariates on the hazard as a proportional multiplier of the baseline hazard:

$$h_{PH}(t) = hqqqa16_0(t)e^{\beta_1 X_1 + ... + \beta_n X_n}$$

in the accelerated failure time metric, the hazard becomes

$$h_{AFT}(t) = h_0(te^{-\beta_1 X_1 - \dots - \beta_n X_n})e^{-\beta_1 X_1 - \dots - \beta_n X_n}.$$

- ► The covariates place the subjects on different time scales.
- Because of the negative signs in the formula, a higher estimate will mean longer survival time.
- ▶ The estimates are now time ratios instead of hazard ratios.
 - how many times longer (shorter) do the subjects live compared to the reference category.

2/7

Exercise

Estimating the difference between survival times of laryngeal cancer patients at different stages of cancer.

> stage Stage of cancer (1 to 4)

delta dead (1) or alive (0)

age at diagnosis age

follow-up time (months) time

Year of diagnosis of larynx cancer diagyr

Exercise contd.

- 1. Open larynx.dta.
- 2. Look at some summaries of the data. What do you expect?
- 3. Set survival model with *time* as the duration and *delta* as the censoring variable.
- 4. Look at the survival curves stratified by stage and adjusted for age.
 - ► sts graph strata(*variable*) adjustfor(*variable*)
- 5. Run Cox regression with age and stage as covariates. Use the *i*. prefix to denote a categorical variable. E.g., *i*.stage.
- 6. Check the proportionality assumption.

Exercise contd.

- 7. Run a stratified Cox regression regarding stage.
- 8. Plot the baseline hazard to check what parametric shape might be reasonable.
- Try accelerated failure time Weibull regression with age and stage as covariates and stage as categorical variable.
 - ► streg age i.stage, dist(weibull) time
 - the time option specifies that it should be run as an accelerated failure time regression.

Exercise - AFT Weibull regression

No. of subjects =

Weibull regression -- accelerated failure-time form

No. of failure	50	Compared with the life time of a median stage 1				
Time at risk	= 377.8000				n stage 4 patient i	S
				norter. $_{ m LR}$ $_{ m c}$:hi2(4) =	19.37
Log likelihood	d = -108.02	2075	r:		> chi2 =	
-		/		•	lives 1/exp(-1.544	1) =
		4.68	3 times long	er.		
_t	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
age	0174637	.0127784	-1.37	0.172	0425089	.0075815
stage	,	/				
2	1477042 /	.4075684	-0.36	0.717	9465235	. 6511151
3	5865585	.3199497	-1.83	0.067	-1.213648	.0405315
4	-1.544076	.3632662	-4.25	0.000	-2.256065	8320874
_cons	3.52876	.9041232	3.90	0.000	1.756711	5.300809
/ln_p	.1223448	.1225052	1.00	0.318	1177609	.3624506
р	1.130144	.1384485			.8889085	1.436846
1/p	.8848432	.1083979			. 6959687	1.124975

6/7

90

AFT - PH conversion

AFT and PH models can be easily converted into the other by

$$eta_{AFT} = -rac{eta_{PH}}{oldsymbol{p}} \ \lambda_{AFT} = -rac{eta_{PH}}{oldsymbol{p}} \, ,$$

if both model parameters are returned on the log scale.

