קפיצים

קפיץ לחיצה / מתיחה

יחידות	סימול	רשימת מונחים
[N]	F	הכח הפועל על הקפיץ
[N/mm]	C, Ctot	קבוע הקפיץ (קשיחות הקפיץ)
[N [·] mm], [j]	W	עבודת הקפיץ
[MPa]	σу	מאמץ גבול הכניעה של חומר הקפיץ
[MPa]	σв	מאמץ ההרס של חומר הקפיץ
[MPa]	[τt], τe	מאמץ גזירה/פיתול
[MPa]	G	מודול הגזירה (הזיחה) של הקפיץ
[mm]	d	קוטר התיל (החוט)
[mm]	D	קוטר ממוצע של הקפיץ
[mm]	Но	אורך הקפיץ החופשי
[mm]	H_1	אורך הקפיץ תחת כוח מוקדם FI
[mm]	H_2	F2 אורך הקפיץ תחת כוח מירבי
[mm]	Hs	אורך קפיץ במצב נעול תחת כוח נעילה (מצב אסור)
[mm]	f	מידת שקיעת הקפיץ
[mm]	h	גובה נפילה של מסה
	k	מקדם תיקון המאמץ
	e	היחס בין הקוטר הממוצע לקוטר התיל (אינדקס הקפיץ)
	[S]	מקדם בטיחות
	n	מספר כריכות פעילות
	ns	מספר כריכות לא פעילות
	· ntot	מספר כריכות כולל

קפיץ מתיחה

קפיץ פיתול

יחידות	סימול	רשימת מונחים
[rad]	φ	זווית הפיתול
[N·mm]	Mb	מומנט הכפיפה
[N·mm/deg]	С	י קבוע קפיץ פיתול
[mm]	L	אורך זרוע הכפיפה
[MPa]	σb	מאמץ כפיפה
	k	מקדם תיקון לקפיץ פיתול
		4.身套

יחסים מקובלים בין המאמצים למאמץ ההרס

5
σy ≅ 0.75 ⋅ σB
* τy $\cong 0.6 \cdot σy \cong 0.45 \cdot σB$
$[\sigma t] \cong (0.5 \div 0.6) \cdot \sigma B$
$[\tau t] \cong (0.3 \div 0.4) \cdot \sigma B$

מאמץ מותר למתיחה /לחיצה

61 NO 7661-64

מאמץ מותר לפיתול וגזירה

מקדם בטיחות – בדרייכ

$[\sigma t] = \frac{\sigma y}{[S]}$ [MPa]

$$[\tau t] = \frac{0.6 \cdot \sigma y}{[S]}$$
 [MPa]

$$[S] = 1.2 \div 1.6$$

<u>טבלת מידות תקניות לקוטר התיל</u>

מידות קוטר תיל d (מילימטרים) עבור קפיצים מיוצרים בקור תקן

מועדף	1.8	2	2.25	2.5	2.8	3.2	3.6	4	4.5	5	5.6	6.3	7	8	9	10	11	12.5	14	16
לא מועדף	1.9	2.1	2.4	2.6	3	3.4	3.8	4.25	4.75	5.3	6	6.5	7.5	8.5	9.5	10.5	11.5	13	15	17

DIN 2077 מידות קוטר תיל d מילימטרים) עבור קפיצים מיוצרים בחום תקן

מועדף	7	8	9	10	11	12.5	14	16	18	20	22.5	25	28	32	36	40	45	50
לא						12	13	15	17	19	21	24	26	30	34	38	42	48
מועדף													<u> </u>			<u> </u>		

$$d \ge \sqrt{\frac{8 \cdot F \max \cdot k \cdot e}{\pi \cdot [\tau t]}} \quad [mm]$$

:קוטר התיל – כאשר קוטר הקפיץ אינו נתון
$$k=1.21$$
 ,e=7 אם או א אינם נתונים בחר: $k=1.21$

$$d \ge \sqrt[3]{\frac{8 \cdot F \max \cdot k \cdot D}{\pi \cdot [\tau t]}}$$
 [mm]

4

לאחר החישוב בוחרים מהטבלה בקוטר תקניַ גדול או שווה למחושב. רצוי לבחור עפ"י המידה המועדפת

ערכים למודול הגזירה G

[MPa] - הערך ב	26	חומר הקפיץ
81000		קפיץ פלדה מיוצר בקור
78000 *		קפיץ פלדה מיוצר בחום
72000		קפיץ מפלדת אל-חלד
43000		קפיץ ארד (ברונזה) זרחני
40000		קפיץ נחושת

מקדם תיקון המאמץ k (ראה טבלה)

 $e = \frac{D}{d}$

 $k = \frac{4 \cdot e - 1}{4 \cdot e - 4} + \frac{0.615}{e}$

 $4 \le e \le 12$ היחס המומלץ

טבלה לבחירת מקדם התיקון של המאמץ בקפיצים בורגיים

e	k	е	k	е	k	е	k	е	k	е	k	е	k
3.0	1.58	4.0	1.40	5.0	1.31	6.0	1.25	8.5	1.17	12	1.12	18	1.07
3.2	1.53	4.2	1.38	5.2	1.30	6.5	1.23	9.0	1.16	13	1.11	20	1.07
3.4	1.49	4.4	1.36	5.4	1.28	7.0	1.21	9.5	1.15	14	1.10	25	1.05
3.6	1.46	4.6	1.34	5.6	1.27	7.5	1.19	10	1.14	15	1.09	30	1.04
3.8	1.43	4.8	1.32	5.8	1.26	8.0	1.18	11	1.13	16	1.08		

נוסחאות כלליות

מספר הכריכות הפעילות בקפיץ

נהוג להוסיף כריכות לא פעילות ns

קבוע הקפיץ (קשיחות הקפיץ)

F מידת שקיעת הקפיץ תחת עומס

שקיעה מרבית מותרת של הקפיץ עפייי מאמץ מותר עפייי מודול הגזירה ומידות הקפיץ

F המאמץ הפועל בקפיץ תחת עומס

$$n = \frac{\Delta f \cdot G \cdot d^4}{8 \cdot \Delta F \cdot D^3} = \frac{G \cdot d^4}{8 \cdot C \cdot D^3}$$

ntot = n + ns

$$C = \frac{\Delta F}{\Delta f} = \frac{G \cdot d^4}{8 \cdot D^3 \cdot n} \quad \left[\frac{N}{mm} \right]$$

$$f = \frac{F}{C} = \frac{8 \cdot F \cdot D^3 \cdot n}{G \cdot d^4} = \frac{8 \cdot F \cdot e^3 \cdot n}{G \cdot d}$$

$$f \max = \frac{\pi \cdot [\tau t] \cdot n \cdot \dot{D}^2}{G \cdot d \cdot k} \quad [mm]$$

$$\tau e = \frac{8 \cdot k \cdot F \cdot D}{\pi \cdot d^3} \le [\tau t] [MPa]$$