Intro to Deep Learning

Big Data and Machine Learning en el Mercado Inmobiliario Educación Continua

Ignacio Sarmiento-Barbieri

Universidad de los Andes

November 3, 2022

Deep Learning: Intro

- ▶ Neural networks are simple models.
- ► Their strength lays in their simplicity because basic patterns facilitate fast training and computation.
- ► The model has linear combinations of inputs that are passed through nonlinear activation functions called nodes (or, in reference to the human brain, neurons).

Deep Learning: Intro

Let's start with a familiar and simple model, the linear model

$$y = f(X) + u$$

$$y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$
(1)

Deep Learning: Intro

Let's start with a familiar and simple model, the linear model

$$y = f(X) + u$$

$$y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$
(1)

- Linear Models may be to simple, and miss the nonlinearities that best approximate $f^*(x)$
- ▶ We can overcome these limitations of linear models and handle a more general class of functions by incorporating one or more hidden layers.
- ▶ Neural Networks are also called deep feedforward networks, feedforward neural networks, or multilayer perceptrons (MLPs), and are the quintessential deep learning models

▶ A neural network takes an input vector of *p* variables

$$X = (X_1, X_2, ..., X_p) (2)$$

 \blacktriangleright and builds a nonlinear function f(X) to predict the response y .

$$y = f(X) + u \tag{3}$$

▶ What distinguishes neural networks from previous methods is the particular structure of the model.

A NN model has the form

$$f(X) = \beta_0 + \sum_{k=1}^K \beta_k A_k \tag{4}$$

$$= \beta_0 + \sum_{k=1}^{K} \beta_k h_k(X)$$
 (5)

$$= \beta_0 + \sum_{k=1}^K \beta_k g \left(w_{k0} + \sum_{j=1}^p w_{kj} X_j \right)$$
 (6)

- \blacktriangleright where g(.) is a activiation function specified in advance
- where the nonlinearity of g(.) is essential

Let's consider a very simple example with

$$p = 2, X = (X_1, X_2)$$

•
$$K = 2, h_1(X) \text{ and } h_2(X)$$

• $g(z) = z^2$

$$ightharpoonup g(z) = z^2$$

- ▶ Let's consider a very simple example with
 - $p = 2, X = (X_1, X_2)$
 - $K = 2, h_1(X) \text{ and } h_2(X)$
 - $ightharpoonup g(z) = z^2$
- ► Then

$$f(X) = \beta_0 + \sum_{k=1}^{2} \beta_k A_k \tag{7}$$

$$= \beta_0 + \sum_{k=1}^{2} \beta_k h_k(X) \tag{8}$$

$$= \beta_0 + \sum_{k=1}^2 \beta_k g \left(w_{k0} + \sum_{j=1}^p w_{kj} X_j \right)$$
 (9)

$$f(X) = \beta_0 + \sum_{k=1}^{2} \beta_k g\left(w_{k0} + \sum_{j=1}^{2} w_{kj} X_j\right)$$
 (10)

► We specify the parameters as

$$eta_0 = 0$$
 $eta_1 = \frac{1}{4}$ $eta_2 = -\frac{1}{4}$
 $w_{10} = 0$ $w_{11} = 1$ $w_{12} = 1$
 $w_{20} = 0$ $w_{21} = 1$ $w_{22} = -1$

► Then

$$h_1(X) = (0 + X_1 + X_2)^2 (11)$$

$$h_2(X) = (0 + X_1 - X_2)^2 (12)$$

and plugging in

$$f(X) = 0 + \frac{1}{4} (0 + X_1 + X_2)^2 - \frac{1}{4} (0 + X_1 - X_2)^2$$
 (13)

$$= \frac{1}{4} \left((X_1 + X_2)^2 - (X_1 - X_2)^2 \right) \tag{14}$$

$$=X_1X_2\tag{15}$$

- ► The exclusive disjunction of a pair of propositions, (p, q), is supposed to mean that p is true or q is true, but not both
- ► It's truth table is:

▶ When exactly one of these binary values is equal to 1, the XOR function returns 1. Otherwise, it returns 0

▶ Let's use a linear model

$$y = X\beta + \iota\alpha \tag{16}$$

$$y = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} X = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \iota = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \tag{17}$$

- Solution $\alpha = \frac{1}{2} \beta = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

▶ Let's use Single Layer NN containing two hidden units

- This network has a vector of hidden units h that are computed by a function $f^{(1)}(x; W, c)$.
- ► The second layer is the output layer of the network. $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$

Sarmiento-Barbieri (Uniandes)

- ▶ Which $f^{(1)}$ should we specify?
 - ► Clearly **not** linear, otherwise it would defeat the entire purpose
 - ▶ We are going to use the rectified linear unit or ReLU (it is usually the default recommendation, there are many others (more on this later))
 - ▶ ReLU is defined as $g(z) = max\{0, z\}$
- ▶ For $f^{(2)}$? For this example, a linear model will suffice

$$f^{(2)} = f^{(1)}w + b (18)$$

► The final model is then

$$f(x, W, C, w, b) = \max\{0, XW + c\} w + b$$
(19)

Sarmiento-Barbieri (Uniandes)

► Suppose this is the solution to the XOR problem

$$f(x) = \max\{0, XW + c\} w + b$$

$$W = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$c = \begin{pmatrix} 0 & -1 \\ 0 & -1 \\ 0 & -1 \end{pmatrix}$$

$$w = \begin{pmatrix} 1 & -2 \end{pmatrix}$$

b = 0

Lets work out the example step by step

$$f(x) = \max\{0, XW + c\} w + b \tag{20}$$

$$XW = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{pmatrix}$$

$$XW + c = \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$max\{0, XW + c\} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$\hat{y} = \max\{0, XW + c\} w + b = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

► The neural network has obtained the correct answer for every data point

Sarmiento-Barbieri (Uniandes)

- ▶ In this example, we simply specified the solution, then showed that it obtained zero error.
- ▶ In a real situation, obviously we can't guess the solution
- What we do is gradient based optimization
- ▶ Remember that the convergence point of gradient descent depends on the initial values of the parameters and step size.
- ► In practice, gradient descent would usually not find clean, easily understood, integer-valued solutions like we did here.

NN Minimalist Theory

- ▶ Why not a linear activation functions?
- ► Let's go back to our example
 - $p = 2, X = (X_1, X_2)$
 - $K = 2, h_1(X) \text{ and } h_2(X)$
 - Now g(z) = z
- ► Then

$$f(X) = \beta_0 + \sum_{k=1}^{2} \beta_k A_k \tag{21}$$

$$= \beta_0 + \sum_{k=1}^{2} \beta_k h_k(X)$$
 (22)

$$= \beta_0 + \sum_{k=1}^{2} \beta_k g \left(w_{k0} + \sum_{j=1}^{p} w_{kj} X_j \right)$$
 (23)

NN Minimalist Theory

Why not a linear activation functions?

► Since g(z) = z we get

$$f(X) = \beta_0 + \sum_{k=1}^{2} \beta_k \left(w_{k0} + \sum_{j=1}^{2} w_{kj} X_j \right)$$
 (24)

Replacing

$$f(X) = \beta_0 + \beta_1 \left(w_{10} + w_{11} X_1 + w_{12} X_2 \right) + \beta_2 \left(w_{20} + w_{21} X_1 + w_{22} X_2 \right) \tag{25}$$

then

$$f(X) = \theta_0 + \theta_1 X_1 + \theta_2 X_2 \tag{26}$$

Sarmiento-Barbieri (Uniandes)

- ightharpoonup The gain comes from using nonlinear activation function f
- ▶ Note that, with nonlinear activation functions in place, it is no longer possible to collapse our NN into a linear model.
- Activation functions are fundamental to deep learning, let us briefly survey some common activation functions.
- ► In practice we would not use a quadratic function, since we would always get a second-degree plynomial in the original coordinates
- ► We use others that we brefly review here

ReLU Function

- ► ReLU Function
 - ▶ The most popular choice, due to both simplicity of implementation and its good performance on a variety of predictive tasks, is the rectified linear unit (ReLU).
 - ▶ ReLU provides a very simple nonlinear transformation. Given an element *x*, the function is defined as the maximum of that element and 0:

$$ReLU(x) = \max\{x, 0\}.$$

Sigmoid Function (Logit)

- ▶ The sigmoid function transforms its inputs, for which values lie in the domain \mathbb{R} , to outputs that lie on the interval (0, 1).
- ► For that reason, the sigmoid is often called a squashing function: it squashes any input in the range (-inf, inf) to some value in the range (0, 1):

$$sigmoid(x) = \frac{1}{1 + \exp(-x)}.$$

🕨 In the earliest neural networks, scientists were interested in modeling biological neurons which either fire or do not fire. Thus the pioneers of this field, 🔈 🤉 🕒

Sarmiento-Barbieri (Uniandes) November 3, 2022 22 / 29

- Other Activation functions
 - Tanh: $tanh(x) = \frac{1 exp(-2x)}{1 + exp(-2x)}$.
 - ightharpoonup Hard tanh: max(-1, min(1, x))
 - ► Radial basis function (RBF): $exp\left(\frac{1}{\sigma^2}||W-x||^2\right)$
 - Softplus: $log(1 + e^x)$
 - h = cos(Wx + b) Goodfellow et al. (2016) claim that on the MNIST dataset they obtained an error rate of less than 1 percent
- ► Hidden unit design remains an active area of research, and many useful hidden unit types remain to be discovered

Output Functions

- ▶ The choice of cost function is tightly coupled with the choice of output unit.
- ▶ Most of the time, we simply use the distance between the data distribution and the model distribution.
 - ▶ Linear $y = W'h + b \rightarrow \mathbb{R}$
 - ► Sigmoid (Logistic) $\frac{1}{1+\exp(-x)}$ → classification $\{0,1\}$
 - ► Softmax $\frac{exp(x)}{\sum exp(x)}$ → classification multiple categories

Architecture Design

- ► Another key design consideration for neural networks is determining the architecture.
- ► The word architecture refers to the overall structure of the network: how many units it should have and how these units should be connected to each other.
- ► The universal approximation theorem guarantees that regardless of what function we are trying to learn, a sufficiently large MLP will be able to represent this function.

Architecture Design

- ▶ We are not guaranteed, however, that the training algorithm will be able to learn that function.
- ► Even if the network is able to represent the function, learning can fail for two different reasons.
 - 1 The optimization algorithm used for training may not be able to find the value of the parameters that corresponds to the desired function.
 - 2 The training algorithm might choose the wrong function as a result of overfitting

Architecture Design

- ▶ A feedforward network with a single layer is sufficient to represent any function, but the layer may be infeasible large and may fail to learn and generalize correctly.
- ▶ In many circumstances, using deeper models can reduce the number of units required to represent the desired function and can reduce the amount of generalization error.
- ► The ideal network architecture for a task must be found via experimentation guided by monitoring the validation set error

Multilayer Neural Networks

- ▶ Modern neural networks typically have more than one hidden layer, and often many units per layer.
- ► In theory a single hidden layer with a large number of units has the ability to approximate most functions.
- However, the learning task of discovering a good solution is made much easier with multiple layers each of modest size.

Further Readings

- ► Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola (2020) Dive into Deep Learning. Release 0.15.1. http://d2l.ai/index.html
- ► Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press. http://www.deeplearningbook.org
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning.
- Rstudio (2020). Tutorial TensorFlow https: //tensorflow.rstudio.com/tutorials/beginners/basic-ml/tutorial_basic_classification/
- ▶ Taddy, M. (2019). Business data science: Combining machine learning and economics to optimize, automate, and accelerate business decisions. McGraw Hill Professional.