Operatori derivati dell'algebra relazionale

Prof. Alfredo Pulvirenti Prof. Salvatore Alaimo

(Atzeni-Ceri Capitolo 3)

JOIN incompleti

 Nel caso in cui alcuni valori tra gli attributi comuni non coincidono

r ₁	_{r1} Employee Departm	
'	Smith	sales
	Black	production
	White	production

r ₂	Department	Head
. 7	production	Mori
	purchasing	Brown

$r_1 \bowtie r_2$	Employee	Department	Head
	Black	production	Mori
	White	production	Mori

Quindi, alcune n-uple non partecipano al JOIN (dangling n-uple)

JOIN vuoti, un caso estremo

 Potrebbe anche succedere che nessuna nupla trovi il corrispettivo

r ₁	Employee Departmer	
Smith		sales
	Black	production
	White	production

r ₂	Department	Head
. 2	marketing	Mori
	purchasing	Brown

$r_1 \bowtie r_2$	Employee	Department	Head

L'altro caso estremo del JOIN

Ogni n-upla di R₁ si combina con ogni n-upla di R₂

 r_1

Employee	Project	
Smith	Α	
Black	Α	
White	Α	

 r_2

Project	Head
Α	Mori
A	Brown

 $r_1 \bowtie r_2$

Employee	Project	Head
Smith	Á	Mori
Black	Α	Brown
White	Α	Mori
Smith	Α	Brown
Black	Α	Mori
White	Α	Brown

Cardinalità del risultato è il prodotto delle cardinalità

OUTER JOIN (Giunzione esterna)

- Una variante del JOIN per mantenere nel risultato le n-uple che non partecipano al JOIN
- Gli attributi delle dangling n-uple vengono riempiti con NULL

- Tre varianti:
 - Left: solo dangling n-uple del primo operando
 - Right: solo dangling n-uple del secondo operando
 - Full: n-uple da entrambi gli operandi

Giunzione Esterna

- La giunzione esterna è la giunzione naturale estesa con tutte le n-uple che non appartengono alla giunzione naturale, completate con valori NULL per gli attributi mancanti.
- Siano R ed S definite sugli insiemi di attributi XY e YZ rispettivamente.

$$R \bowtie S = (R \bowtie S) \cup ((R - \pi_{XY}(R \bowtie S)) \times \{Z = NULL\}) \cup (\{X = NULL\} \times (S - \pi_{YZ}(R \bowtie S)))$$

Altre Giunzioni Esterne

- Nelle giunzioni esterne sinistre e destre si aggiungono solo le parti sinistre e destre.
- Siano R ed S definite sugli insiemi di attributi XY e YZ rispettivamente.
- · Definiamo Giunzione Esterna Sinistra:

$$R \bowtie S = (R \bowtie S) \cup$$

 $((R - \pi_{XY}(R \bowtie S)) \times \{Z = NULL\})$

Definiamo Giunzione Esterna Destra:

$$R \bowtie S = (R \bowtie S) \cup$$

 $(\{X = NULL\} \times (S - \pi_{YZ}(R \bowtie S)))$

Esempio di NATURAL OUTER JOIN

r₁	Employee	Department	
-	Smith	sales	
	Black	production	
	White	production	

	Department	Head
2	production	Mori
	purchasing	Brown

 $r_1 \bowtie_{\, \mathsf{LEFT}} r_2$

Employee	Department	Head
Smith	Sales	NULL
Black	production	Mori
White	production	Mori

 $r_1 \bowtie_{\mathsf{RIGHT}} r_2$

Employee	Department	Head
Black	production	Mori
White	production	Mori
NULL	purchasing	Brown

 $r_1 \bowtie_{FULL} r_2$

Employee	Department	Head
Smith	Sales	NULL
Black	production	Mori
White	production	Mori
NULL	purchasing	Brown

Proprieta' del JOIN

- · Il JOIN e'
 - Commutativo: $R \bowtie S = S \bowtie R$
 - Associativo: $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$
- Quindi possiamo avere sequenze di JOIN senza rischio di ambiguita:

$$R \bowtie S \bowtie T \dots$$

Esempio di JOIN multipli

r₁ Employee Department
Smith sales
Black production
Brown marketing
White production

Department Division
production A
marketing B
purchasing B

r₂ Division Head Mori B Brown

 r_2

 $r_1 \bowtie r_2 \bowtie r_3$

Employee	Department	Division	Head
Black	production	Α	Mori
Brown	marketing	В	Brown
White	production	Α	Mori

Prodotto cartesiano a partire dal JOIN

 Il JOIN è definito anche se non ci sono attributi comuni fra le relazioni

 In questo caso, non essendoci vincoli sulle tuple da selezionare, vengono selezionate tutte le tuple dalle relazioni del JOIN e quindi otteniamo un prodotto cartesiano

Esempio di prodotto cartesiano generato dal JOIN

Employees

Employee	Project
Smith	Α
Black	Α
Black	В

Projects

Code	Name
Α	Venus
В	Mars

Employes ⋈ Projects

Employee	Project	Code	Name
Smith	Α	Α	Venus
Black	Α	Α	Venus
Black	В	Α	Venus
Smith	Α	В	Mars
Black	Α	В	Mars
Black	В	В	Mars

Intersezione a partire dalla Natural Join

 Dati due relazioni definite sulla stessa lista di attributi, allora il natural join coincide con l'intersezione delle due relazioni.

Semi-giunzione(Semi-join)

- Siano R con attributi XY ed S con attributi YZ
- $R \bowtie S$ è una relazione di attributi XY costituita da tutte le n-uple di R che partecipano a $R \bowtie S$.
- · La semi-giunzione e' derivata perché

$$R \bowtie S = \pi_{XY}(R \bowtie S)$$

Studenti × Esami

Nome	Matricola	Indirizzo	Telefono
Mario Rossi	123456	Via Etnea 1	222222
Ugo Bianchi	234567	Via Roma 2	333333
Teo Verdi	345678	Via Torino 3	44444

Corso	M atricola	Voto
Architettura	123456	30
Programmazione	234567	18
Architetture	234567	27

Studenti × Esami

Nome	Matricola	Indirizzo	Telefono
Mario Rossi	123456	Via Etnea 1	222222
Ugo Bianchi	234567	Via Roma 2	333333

Unione Esterna

- Siano R ed S due relazioni definite sugli insiemi di attributi XY e YZ allora
- L'unione esterna

$$R \ \overrightarrow{\cup} S =$$

$$R \times \{Z = NULL\} \cup \{X = NULL\} \times S$$

 si ottiene estendendo le due tabelle con le colonne dell'altra con valori nulli e si fa l'unione.

Esempio di Unione Esterna

A X1	В	С	D	
X1	Υ	Z	Χ	
X2	Υ	Z	X	
X3	Υ	W	X	
X4	Υ	W	Χ	

B Y	С	D	E
Υ	Z	X	Y1
Υ	Z	X	M1
Y Y	W	X	Y2
Υ	W	X	M2

R

 $R \overleftrightarrow{\cup} S$

Α	В	С	D	E
X1	Υ	Z	Χ	NULL
X2	Υ	Z	X	NULL
X3	Υ	W	X	NULL
X4	Υ	W	X	NULL
NULL	Υ	Z	X	Y1
NULL	Υ	Z	X	M1
NULL	Υ	W	X	Y2
NULL	Υ	W	X	M2

Selezione con valori nulli

Impiegati

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

$$\sigma_{\text{Età} > 40}$$
 (Impiegati)

 la condizione atomica è vera solo per valori non nulli

Un risultato non desiderabile

$$\sigma_{Et \ge 30}(Persone) \cup \sigma_{Et \ge 30}(Persone) \neq Persone$$

- Perché?
 - Perché le selezioni vengono valutate separatamente!

Ma anche

$$\sigma_{Et \hat{a} > 30 \vee Et \hat{a} \leq 30}(Persone) \neq Persone$$

- Perché?
 - Perché anche le condizioni atomiche vengono valutate separatamente!

Selezione con valori nulli: soluzione

$$\sigma_{\text{Età} > 40}$$
 (Impiegati)

- La condizione atomica è vera solo per valori non nulli
- Per riferirsi ai valori nulli esistono forme apposite di condizioni:

IS NULL
IS NOT NULL

 si potrebbe usare (ma non serve) una "logica a tre valori" (vero, falso, sconosciuto)

LOGICA A 3 VALORI

p	q	p and q	p or q	not p
Т	Т	Т	Т	F
Т	F	F	Т	F
Т	U	U	Т	F
F	F	F	F	Т
F	U	F	U	Т
U	U	U	U	U

Quindi:

$$\sigma_{Et\grave{a}>30}(Persone) \cup \sigma_{Et\grave{a}\leq30}(Persone)$$

 $\cup \sigma_{Et\grave{a}\;IS\;NULL}(Persone)$

 $\sigma_{Et\grave{a}>30\ \lor\ Et\grave{a}\leq30\ \lor\ Et\grave{a}\ IS\ NULL}(Persone)$

Persone

Impiegati

Matricola	Cognome	Filiale	Età
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

$$\sigma_{(Et\grave{a}>40)\ OR\ (Et\grave{a}\ IS\ NULL)}$$
 (Impiegati)

Quoziente (divisione)

Divisione: Siano XY gli attributi di R ed
 Y quelli di S, allora

$$R \div S = \{w | \{w\} \times S \subseteq R\}$$

Esercizio

Dimostrare che il quoziente è un operatore derivato.

Esempio

La divisione serve a rispondere a query del tipo: trova **TUTTE** le n-uple di *R* associate a **TUTTE** le n-uple di *S*.

Esempio

```
 \{'DB,'PROG'\} = \pi_{corso}(\sigma_{corso='DB'\lor corso='PROG'}(Esami))   \pi_{matricola,corso}(Esami) \div \{'DB,'PROG'\}
```

Le matricole di studenti che hanno superato DB e PROG.

Viste (relazioni derivate)

 Rappresentazioni diverse per gli stessi dati (schema esterno)

Relazioni derivate:

- relazioni il cui contenuto è funzione del contenuto di altre relazioni (definito per mezzo di interrogazioni)
- Relazioni di base: contenuto autonomo
 - Le relazioni derivate possono essere definite su altre derivate

Architettura standard (ANSI/SPARC) a tre livelli per DBMS

Viste, esempio

Afferenza

Impiegato	Reparto	
Rossi	Α	
Neri	В	
Bianchi	В	

Direzione

Reparto	Capo
Α	Mori
В	Bruni

• Una vista:

SUPERVISIONE = $\pi_{Impiegato,Capo}$ (Afferenza \bowtie Direzione)

Viste virtuali e materializzate

- Due tipi di relazioni derivate:
 - viste materializzate
 - relazioni virtuali (o viste)

Viste materializzate

- relazioni derivate memorizzate nella base di dati
 - vantaggi:
 - · immediatamente disponibili per le interrogazioni
 - svantaggi:
 - ridondanti
 - appesantiscono gli aggiornamenti
 - sono raramente supportate dai DBMS

Viste virtuali

- relazioni virtuali (o viste):
 - sono supportate dai DBMS (tutti)
 - una interrogazione su una vista viene eseguita "ricalcolando" la vista

Interrogazioni sulle viste

 Sono eseguite sostituendo alla vista la sua definizione:

$$\sigma_{\text{Capo='Leoni'}}$$
 (Supervisione)

viene eseguita come

```
\sigma_{\text{Capo='Leoni'}}(\pi_{\text{Impiegato, Capo}}(\text{Afferenza} \bowtie \text{Direzione}))
```

Viste, motivazioni

- Schema esterno: ogni utente vede solo
 - ciò che gli interessa e nel modo in cui gli interessa, senza essere distratto dal resto
 - ciò che e' autorizzato a vedere (autorizzazioni)
- Strumento di programmazione:
 - si può semplificare la scrittura di interrogazioni: espressioni complesse e sottoespressioni ripetute
- Utilizzo di programmi esistenti su schemi ristrutturati Invece:
- L'utilizzo di viste non influisce sull'efficienza delle interrogazioni

Viste come strumento di programmazione

 Trovare gli impiegati che hanno lo stesso capo di Rossi

Senza vista:

```
\pi_{\text{Impiegato}} ((Afferenza \bowtie Direzione) \bowtie \delta_{\text{ImpR},\text{RepR} \leftarrow \text{Imp},\text{Reparto}} (\sigma_{\text{Impiegato='Rossi'}} (Afferenza \bowtie Direzione)))
```

· Con la vista:

```
\pi_{\text{Impiegato}} (Supervisione \bowtie \delta_{\text{ImpR,RepR}} \leftarrow \text{Imp,Reparto} (\sigma_{\text{Impiegato='Rossi'}} (Supervisione)))
```