MATH 2602

LINEAR AND DISCRETE MATTICS

PROF. MARGALIT

WHAT IS DISCRETE MATH?

dis·crete ◁) [dih-skreet] ? Show IPA adjective

- apart or detached from others; separate; distinct: six discrete parts.
- consisting of or characterized by distinct or individual parts; discontinuous.
- Mathematics .
 - a. (of a topology or topological space) having the property that every subset is an open set.
 - b. defined only for an isolated set of points: a discrete variable.
 - using only arithmetic and <u>algebra</u>; not involving calculus: discrete methods.

dictionary.com

Discrete is the opposite of continuous.

WHAT IS DISCRETE MATH?

WHAT IS DISCRETE MATH?

CONTINUOUS DISCRETE

real numbers

measuring

ideal shapes

Wave

differential egn

calculus

integers

counting

computer images

particle

recurrence reln.

probability graph theory algorithms

CHAPTER 5 INDUCTION & RECURSION

Section 5.1 Mathematical Induction

TOWERS OF HANOI

Proposition: The Towers of Hanoi puzzle with n disks is solvable.

Proof: First, the puzzle is easily solvable when n=1.

Second, if I have a solution to the puzzle with n disks, then I can easily turn that into a Solution for the puzzle with 111 disks.

Therefore, | conclude that the puzzle is solvable for n=1,2,3,...
disks!

DOMINOS

If knock the first domino down, and I know each falling domino causes the next one to fall, then know that all the dominos will fall (even if there are infinitely many).

CLICKER QUESTION

How cute is this kid?

- a) very cute
- b) extremely cute
- c) ridiculously cute
- d) cutest kid I have ever seen

THE PRINCIPLE OF MATHEMATICAL NDUCTION

Say we have a mathematical statement that depends on a natural number n. Suppose.

(1) The statement is true for $n = N_0$.

(2) Whenever the statement is true for n = k, it is true for n = k+1.

Then the statement is true for all

N≥no.

HOW TO DO A PROOF BY INDUCTION

First, prove the proposition for a base case $n=n_0$

Next, assume the proposition is true for n=k

Using the assumption, prove that the proposition is true for n=k+1.

By the principle of mathematical induction. Conclude that the proposition is true for all $n > n_0$.

EXAMPLE

PROPOSITION: For 121: $1+2+\cdots+n=\frac{n(n+1)}{2}$ Proof: The proposition is true for n=1: $1 = \frac{I(I+I)}{2}$ Assume the proposition is true for n = K, that is: $1 + \cdots + k = \frac{k(k+1)}{2}$ Using the assumption, we will show the proposition is true for n=k+1:

$$\begin{aligned} 1 + \cdots + k + 1 &= (1 + \cdots + k) + (k+1) \\ &= \frac{k(k+1)}{2} + k + 1 \\ &= \frac{k(k+1)}{2} + \frac{2(k+1)}{2} \\ &= \frac{(k+1)(k+1)}{2} + 1 \\ &= \frac{(k+1)((k+1))}{2} + 1 \end{aligned}$$

By the principal of mathematical induction, the proposition is proven.

Two NON-INDUCTIVE PROOFS

 $t = \frac{1}{n} \frac{2}{n-1} \frac{3}{n-2} \cdot \frac{n-1}{2} \cdot \frac{n}{n+1} \cdot \frac{1}{n+1} \cdot \frac{1}{n+1} \cdot \frac{1}{n+1} \cdot \frac{1}{n+1} \cdot \frac{n}{n+1} \cdot \frac{n}{n$

EXAMPLE

PROPOSITION: 7ⁿ-1 is divisible by 6 for n > 0.

Proof: First, the proposition is true for n=0: 7°-1=1-1=0

and 0 is divisible by 6.

Now, assume the proposition is true for n=k:

The proposition is true for n=k+1, that 1s: -7k+1 - 1 is divisible by 6.

 $7^{k+1} - 1 = 7 \cdot 7^{k} - 1$ = $7 \cdot 7^{k} - 7 + 6$ = $7(7^{k} - 1) + 6$ divisible by 6 by our assumption.

The sum of two numbers divisible by 6 is again divisible by 6.

By the principle of mathematical induction, the the proposition is proven.

MORE EXAMPLES

Proposition: Any debt of 124 dollars
Can be paid with \$2 bills
and \$5 bills.

PROPOSITION: For n>1:

n+1 + ... + \frac{1}{2n} > \frac{1}{2}

Hint: Use +/- trick again.

PROPOSITION: Any n lines in the plane with, no two parallel and notriple intersections divide the plane into n(n+1)/2+1 regions.

FIBONACCI NUMBERS

$$F_{0} = 0$$
 $F_{1} = 1$
 $F_{n} = F_{n-1} + F_{n-2}$

Month
 1
 2
 3
 4
 5

AN INDUCTION PROBLEM WITH FIBONACI NUMBERS

PROPOSITION: For 171: F,+...+ Fn = Fn+2-1

Proof: First, the proposition is clearly true for n=1: $F_1=1=F_3-1=2-1$

Next, we assume the proposition is true for n=k: $F_{k}+\cdots+F_{k}=F_{k+2}-1$

Now, using the assumption, we show the proposition is true for n=k+1:

Fit + FK+1 = FK+1

$$F_1 + \cdots + F_{K+1} = (F_1 + \cdots + F_K) + F_{K+1}$$

$$= F_{K+2} - 1 + F_{K+1}$$

$$= (F_{K+1} + F_{K+2}) - 1$$

$$= F_{K+3} - 1$$

$$= F_{K+1} + 1 - 1$$

By the principle of mathematical induction. The proposition is proven.

Leonardo Fibonacci

MORE PROBLEMS

Proposition: For
$$n > 0$$
: $(1+1/5)^n - (1-1/5)^n$

Proposition: The number of n-digit binary strings with no consecutive 1's is Fn+2.