有限加法族

集合 X の部分集合族 F が**有限加法族**であるとは次を満たすときをいう。

- 1. $\emptyset \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Rightarrow X \backslash A \in \mathcal{F}$
- 3. $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$

有限加法的測度

集合 X 上の有限加法族 F について、 $m: F \to [0, \infty]$ が (X, F) 上の**有限加法的測度**であるとは、次の 2 つの条件を満たすときをいう。

- 1. $m(\emptyset) = 0$
- 2. $A, B \in \mathcal{F}$ が互いに素である時、 $m(A \cup B) = m(A) + m(B)$

外測度

X を集合とする。 $\Gamma: 2^X \to [0,\infty]$ が X 上の**外測度**であるとは、次の 3 つの条件を満たすときをいう。

- 1. $\Gamma(\emptyset) = 0$
- 2. $A, B \subset X$ が $A \subset B$ を満たす時、 $\Gamma(A) \leq \Gamma(B)$
- 3. X の任意の部分集合列 $\{A_n\}_{n=1}^{\infty}$ に対し、 $\Gamma(\bigcup_{n=1}^{\infty}A_n)\leq\sum_{n=1}^{\infty}\Gamma(A_n)$

Γ -可測

X を集合とする。 $\Gamma: 2^X \to [0,\infty]$ を X 上の外測度とする。

集合 $E \subset X$ が Γ **-可測** (または $\overset{\circ}{\operatorname{Carath\'eodory}}$ の意味で可測) とは、任意の $A \subset X$ に対し次を満たすときをいう。

$$\Gamma(A \cap E) + \Gamma(A \cap (X \setminus E)) = \Gamma(A) \tag{1}$$

また、 Γ -可測集合全体を \mathcal{M}_{Γ} と表す。

1. $X = \{1, 2, 3\}$ とする。X 上の有限加法族を全て挙げよ。

......

X の部分集合

$$\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, X \tag{2}$$

 \emptyset を含む最小の有限加法族 $\{\emptyset, X\}$

- \emptyset , {1} を含む最小の有限加法族 $\{\emptyset$, {1}, {2,3}, X}
- \emptyset , {2} を含む最小の有限加法族 { \emptyset , {2}, {1,3}, X}
- \emptyset , {3} を含む最小の有限加法族 { \emptyset , {3}, {1,2}, X}
- \emptyset , $\{1\}$, $\{2\}$ を含む最小の有限加法族 $\{\emptyset$, $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, $X\}$
- \emptyset , $\{1\}$, $\{3\}$ や \emptyset , $\{1\}$, $\{1,2\}$ や \emptyset , $\{1\}$, $\{1,3\}$ を含む最小の有限加法族は上の加法族と同じであり、 \emptyset , $\{1\}$, $\{2,3\}$ を含む最小の有限加法族は \emptyset , $\{1\}$ を含む最小の有限加法族と同じである。

よって、以上の5種類がX上の有限加法族である。

2. X を集合とし、 $\Gamma: 2^X \to [0,\infty]$ を X 上の外測度とする。 $E \subset X$ が Γ -可測であることと次が成り立つことは同値であることを示せ。

任意の
$$A \subset X$$
 に対し、 $\Gamma(A \cap E) + \Gamma(A \cap (X \setminus E)) \le \Gamma(A)$

.....

- (a) $E \subset X$ が Γ -可測である
- (b) 任意の $A \subset X$ に対し、 $\Gamma(A \cap E) + \Gamma(A \cap (X \setminus E)) \le \Gamma(A)$
- $(2a) \Rightarrow (2b)$

 $E\subset X$ が Γ -可測であるとする。定義より、任意の $A\subset X$ に対し $\Gamma(A\cap E)+\Gamma(A\cap (X\backslash E))=\Gamma(A)$ である。

 $\Gamma:2^X o [0,\infty]$ であるので、 $\Gamma(A)\in [0,\infty]$ である。つまり、 $\Gamma(A)\leq \Gamma(A)$ である。

よって、任意の $A\subset X$ に対し、 $\Gamma(A\cap E)+\Gamma(A\cap (X\backslash E))\leq \Gamma(A)$ となる。

 $(2a) \Leftarrow (2b)$

任意の $A \subset X$ に対し、 $\Gamma(A \cap E) + \Gamma(A \cap (X \setminus E)) \leq \Gamma(A)$ とする。

 Γ は外側度であるので、 $\Gamma(\bigcup_{n=1}^{\infty}A_n)\leq \sum_{n=1}^{\infty}\Gamma(A_n)$ である。

これより、次の式が得られる。

$$\Gamma((A \cap E) \cup (A \cap (X \setminus E)) \le \Gamma(A \cap E) + \Gamma(A \cap (X \setminus E)) \tag{3}$$

$$\Gamma(A) \le \Gamma(A \cap E) + \Gamma(A \cap (X \setminus E)) \le \Gamma(A)$$
 (4)

であり、

$$\Gamma(A \cap E) + \Gamma(A \cap (X \setminus E)) = \Gamma(A) \tag{5}$$

となる。