

Elektrické stanice

Miloslava Tesařová

Západočeská univerzita v Plzni Katedra elektroenergetiky a ekologie

Změny konfigurace elektrických sítí

Účel:

- a) Provádění prací na zařízení (revize, oprava, údržba)
 - uvolnění zařízení z provozu a po ukončení prací opětné uvedení do provozu

práce: rozvodná zařízení – přípojnice, spínače, přístrojová trafa silové transformátory elektrická vedení

- b) Optimalizace provozu ES
 - udržení napětí v povolených mezích, minimalizace ztrát....
- c) Likvidace poruchových stavů

Místa, kde je možné měnit konfiguraci sítě

- elektrické stanice přípojnice + spínací přístroje
- úsečníky pouze venkovní vedení VN

Přehled spínačů (vvn, vn, nn)

		vypínání,	vypínání	zapínání	viditelné	chránění
přístroj		zapínání	zkratu	zkratu	odpojení	
		zátěže				
vvn, vn	vypínač	+	+	+	-	- (+ ochrany)
	vypínač zátěže (jen vn)	+	-	+	-	- (+ pojistka vn)
	odpínač (jen vn)	+	-	+	+	- (+ pojistka vn)
	odpojovač	-	-	-	+	-
	úsečník (jen vn)	-	-	-	+	-
uu	jistič	+	+	+	-	+
	stykač	+	+	+	-	+ (+ jisticí relé)
	vypínač nn	+	-	-	-	-

Vypínače VVN a VN

rychlé, výkonové spínací prvky se svým pohonem (střadač, natahovaný obvykle el. motorem)

- trojpólové: pohon 3 pólů současně

 jednopólové: pohon jednotlivých pólů (použití na VVN, kde je 1-pólové OZ)

- schopné vypnout i zkratové proudy

VVN – plynové SF6

- maloolejové (110 kV)

VN- plynové SF6

- maloolejové
- vakuové

Recloser

 vypínač s OZ a ochranami umístěný na sloupu vedení VN

Odpínače VN – Vypínače zátěže

rychlé, výkonové spínací prvky se svým pohonem (střadač)

- obvykle trojpólové: pohon 3 pólů současně

schopné vypnout pouze provozní proudy

VN – maloolejové

- vakuové
- plynotvorná hmota

Častá kombinace: odpínač vn + pojistka vn, pojistka při poruše (nadproud, zkrat) přeruší vadné fáze

Úsekový odpínač

– komorový odpínač
umístěný na sloupu
vedení VN

- někdy i dálkově
- ovládaný z dispečinku

Odpojovače VVN a VN

- viditelné a bezpečné (dostatečná vzdálenost) přerušení proudové dráhy
- nespínají proudy, manipulace pouze v bezproudém stavu (vypnutý vypínač)
- pomalý pohon, obvykle elektromotor, měně důležité rozvodny i manuální pohon

- trojpólové: pohon 3 pólů současně

- jednopólové: při použití 1-pólových vypínač

Vývodové odpojovače obvykle vybavené zemním nožem

Úsekový odpojovač (úsečník)

– odpojovač umístěný na sloupu
vedení VN

- manuální pohon

Druhy elektrických stanic

Podle účelu:

- a) Transformovny rozdělování elektrické energie, tak i transformace na potřebné U
- b) Spínací stanice (rozvodny) pouze rozdělování elektrické energie při stejném napětí
- c) Měnírny přeměna střídavého napětí na stejnosměrné nebo naopak a rozdělují stejnosměrné napětí.

Podle umístění elektrické stanice ve schématu ES:

- a) Elektrické stanice výroben vyvedení vyrobené energie do sítě a transformace na napětí přenosové, resp. distribuční sítě.
- b) Elektrické stanice v přenosové soustavě Uzlové stanice - spínací stanice, které tvoří společný bod mezi větvemi okružní přenosové sítě a rozdělují elektrickou energii o stejném napětí Transformační stanice – vvn/110 kV
- c) Elektrické stanice spotřeby:
 - Distribuční stanice rozdělují elektrickou energii, transformují napětí a dodávají elektrickou energii spotřebním centrům.
 - Průmyslové stanice rozdělují elektrickou energii v průmyslových podnicích přímo ke spotřebičům a transformují napětí až na NN.

Druhy elektrických stanic

Podle ovládání stanice:

- a) Stanice s obsluhou obslužný personál je přítomen na stanici po celou dobu provozu
 - dorozna (velín), pravidelná obsluha, uzlové stanice v PS
- b) Stanice s dohledem pravidelná denní obsluha, jinak se obsluha dostaví jen v případě potřeby
- c) Stanice bez obsluhy na stanici se dostaví obsluha jen v případě potřeby
 - Dálkově ovládané, např. 110 kV/VN
 - Místně ovládané

Podle umístění silového zařízení:

a) Venkovní stanice

b) Vnitřní stanice

Části elektrických stanic

a) Zařízení hlavního silového obvodu

- rozvodná zařízení- přípojnice odbočky
- silové transformátory
- usměrňovače v případě měníren
- kompenzační zařízení zhášecí tlumivka (110 kV/VN), kompenzace toku
 jalových výkonů (tlumivka), kompenzace účiníku (kondenzátory)

b) Společná zařízení

- zařízení pro vlastní spotřebu, část střídavá i stejnosměrná
- nouzové zdroje, akumulátorové baterie, střídače
- výroba a rozvod stlačeného vzduchu (v případě pohonu stlačeným vzduchem nebo tlakovzdušných vypínačů)

c) Řídící a zabezpečovací systémy

- dozorna
- ochrany, měření, signalizace a regulace
- HDO: vysílač, automatika

d) Pomocná zařízení

- stroje a přístroje pro revize a udržovací práce, olejové hospodářství, dílny, garáže, sklady, komunikace v objektu, protipožární zařízení ...

Rozvodná zařízení elektrických stanic

Základní prvky:

Přípojnice

- tvoří uzel sítě
- k těmto vodičům je energie přiváděna přívodními odbočkami a odváděna ke spotřebičům vývodovými odbočkami
- holé vodiče, tuhé nebo lanové, jejichž průřez a profil je dán proudovým zatížením, požadavky na pevnost a zkratovými poměry
 Přípojnicový systém je soubor n fází přípojnic.

Odbočky

- soubor propojených přístrojů sloužících ke spínání, měření a ochraně vývodů nebo přívodů elektrické energie, spínačů přípojnic, vývodů k měřícím transformátorům napětí, k bleskojistkám apod.

Odbočky a jejich výzbroj

Odbočky – hlavní – přívodní, vývodové, generátorové, transformátorové - pomocné – spínače přípojnic – příčné, podélné, spínač pomocné přípojnice, měření U

Základní výzbroj odbočky VVN:

- Spínač vypínač, odpínač, stykač a v omezeném měřítku jistič nebo pojistka.
- Přípojnicový odpojovač, který zajišťuje viditelné oddělení odbočky od přípojnicového systému.
- Vývodový odpojovač, který zajišťuje viditelné oddělení vedení, ať kabelového nebo venkovního od rozvodny. Bývá vybaven zemnícími noži.
- Přístrojové transformátory proudu a napětí (slangově "měniče") PTP a PTN, jejich instalace záleží na charakteru a důležitosti odbočky a dále pak na požadavku měření a ochran odbočky.
- Měřící a signalizační zařízení
- Elektrické ochrany

Nižší napěťové úrovně – chudší vybavení odboček, např. pouze jistič

Odbočky a jejich výzbroj

Odbočka VVN

Obrázek 2.1: Základní schématické značky

Obrázek 2.2: Značky pro zjednodušená schémata

Jednoduchý systém přípojnic

Podélně dělený – možnost odděleného provozu jako 2 rozvodny - někdy pouze 2 odpojovače nebo šroubová spojka

Jednoduchý systém přípojnic

- podélně dělený s 4 odbočkami
- schéma typu H
- transformovny 110 kV/vn

Dvojitý systém přípojnic

Použití:

- tam, kde není přípustné při revizi přípojnic ani krátkodobé přerušení dodávky
- tam, kde provoz odboček je nutno rozdělit do dvou skupin z následujících důvodů:
 - rozdělení zdrojů k omezení zkratových proudů
 - současné napájení ze dvou nespolupracujících zdrojů
 - oddělení spotřebičů kolísavého příkonu od spotřebičů vyžadujících stálé napětí
 - oddělení sítě s venkovními vedeními od sítě kabelové
 - zajištění důležitých odběrů i v případě výpadku některých napáječů zbývajícími napáječi menšího výkonu

Dvojitý systém přípojnic

Stejně jako jednoduchý systém, lze i dvojité přípojnice podélně dělit na sekce.

Dvojitý systém přípojnic s pomocnou přípojnicí

Použití - rozvodny VN, VVN

Dvojitý systém přípojnic s bypassy

Použití – rozvodny VVN, dnes se již nepoužívá, nejsou nutné časté revize vypínačů

Trojitý systém přípojnic použití- rozsáhlé rozvodny VVN

Rozvodna s 1 ½ vypínače na odbočku

Polygonová zapojení

Venkovní stanice použití- rozvodny VVN, výjimečně VN

Trendy: polozapouzdřené moduly

Vnitřní stanice

- a) Kobkové
 - dnes se již nestaví

Výhody

- přehlednost
- možnost kontroly bez vypínání odboček
- snadný přístup k přístrojům
- zamezení šíření poruchy
- možnost vizuální kontroly přístrojů
- možnost provedení se dvěma a více systémy přípojnic
- možnost připojení kabelových i venkovních vedení

Nevýhody

- velikost zastavěné plochy
- nižší ochrana před nebezpečným dotykovým napětím

Vnitřní stanice

b) Skříňové

- rozvodny VN

Výhody

- rychlá montáž
- zvýšená provozní spolehlivost
- odolnost proti vzniku elektrického oblouku
- snadná a rychlá údržba
- automatické či programové řízení
- účelná miniaturizace rozměrů
- sériová výroba v továrnách
- možnost umisťování přímo v provozech

Nevýhody

- pokud chceme použít více než jeden systém přípojnic snižuje se přehlednost
- nedořešení konstrukčních detailů s umístěním přepojovačů

Vnitřní stanice

- c) Zapouzdřené SF6
 - rozvodny VVN ve městech

Výhody

- vysoká provozní bezpečnost
- selektivní a bezpečná dodávka elektrické energie
- značná úspora zastavěné plochy a prostor
- minimální znečištění izolace a životního prostředí
- možnost vybudování v místě nejvyšší spotřeby energie
- libovolná montáž vypínače

Nevýhody

stále dost vysoké pořizovací náklady

Rozvodná zařízení elektrických stanic

Technické parametry:

- a) Největší provozovací napětí
- b) Jmenovitý proud přípojnic a odboček
- c) Zkratová odolnost zkratový výkon Sk", rep. zkratový proud lk"
 - nárazový zkratový proud mechanické namáhání
 - krátkodobý proud ekvivalentní oteplovací proud
 - vypínací výkon, resp. proud

Obvyklé hodnoty zkratových výkonů:

```
400 kV, 220 kV desítky GVA

110 kV cca 1000 MVA (stovky MVA až 2500 MVA)

6 kV, 22 kV, 35 kV desítky až stovky MVA

nn jednotky MVA
```


Děkuji za pozornost, doplnění prezentovaných informací a vaše dotazy.

Miloslava Tesařová

Západočeská univerzita v Plzni Katedra elektroenergetiky a ekologie