Statistical Methodology for Software Engineering

Hadas Lapid, PhD

Contents

- Normal Distribution
- Confidence Intervals
- Central Limit Theorem
- Hypothesis Testing

Normal Distribution

 Most common distribution for the probability of a continuous, real, random variable

$$X^{\sim}N(\mu,\sigma^2)$$

 $\mu \equiv Mean (and median)$

 $\sigma \equiv$ Standard deviation

$$f(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \equiv \text{Distribution Function}$$

Normal Distribution

The Irisdataset

The importance of sample size

Distribution of Speal Width (N=150)

Conclusion:

NOT ALL CONTINUOUS VARIABLES ARE NORMALLY

Distribution of Petal Width (N=150)

Statistics for Software Engineers

Frequency vs. Probability Distributions

Frequency Distributions 0.30 Probability of petal Width (%) Mean=1.20 35 std=0.76 30 Frequency (n) Mean=1.20 std=0.76 0.05 2 0 0.0 0.5 2.0 2.5 0.45 1.65 1.95 1.05 1.35 Petal width (cm) petal width (cm)

frequency of counts per bin

counts per bin

Boxplots and quantiles

The Standardized Normal Density Function

$$Z(x|\mu=0,\sigma=1)=rac{1}{\sqrt{2\pi}}e^{-rac{x^2}{2}}$$
 Standard Distribution function

Standardized Normal Density Function

Normal Density Function

Cumulative Distribution Function

Why is the "Normal Distribution" important?

- The distribution of many continuous observables in nature is approximately normal
- We can describe the normal distribution in an equation

We can draw conclusions about the relations between variables with **Magnitude** and **Significance** estimates

Drawing conclusions from normal distribution: Calculating the probability of an event

 What is the probability of getting a grade of 90 or more, assuming normal distribution with mean 80 and standard deviation 10, given

$$P(x \le 90) = 0.84$$
?

• What is the probability getting a grade between 70 and 90 under the same assumptions, given $P(x \le 70) = 0.16$?

Confidence interval - intuition

Confidence interval for the mean (σ known)

Definition:

An interval of numbers which will include the unknown value of μ with given probability, 1- α , called the confidence interval.

- Typical confidence levels, 1-α: 0.95, 0.99, 0.9 (95%, 99%, 90%)
- Given distribute normally n samples, $x_1, x_2, ..., x_n$, with known variance, σ^2 , a 1- α confidence interval is given as:

$$C.I. = \bar{X} \pm Z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

Where \overline{X} is the sample mean and $Z_{1-\frac{\alpha}{2}}$ is taken from the standardized normal distribution

Drawing conclusions from normal distribution: Calculating the confidence interval of the population mean

- 36 cars in highway 6
- mean speed, $\bar{x} = 103kph$
- standard deviation $\sigma = 8$.

Confedence level $1 - \alpha/2$	$Z_{1-\alpha/2}$
0.9	1.645
0.95	1.96
0.99	2.576

 What is the confidence interval for the mean speed for all this road's journeys?

Calculating C.I. at 95%:
$$103 \pm 1.96 * \frac{8}{\sqrt{36}} = 103 \pm (2.6) = (100.4, 105.6)$$

Conclusion: μ is found in the range of 100.4 and 105.6 in 95% confidence

t(df) Standardized normal density function without known σ

For n samples, and v = n - 1 degrees of freedom, we can assume that $\sigma \sim s$

Central limit theorem - intuition

Distribution of the means of 100 random samples of n=10 petal widths

Central limit theorem - intuition

Distribution of the means of 100 random samples of n=30 petal widths

Central limit theorem-informal definition

- The probability distribution of the mean of repeated, independent, large enough, random samples of a variable will always be normal, even if the variable itself does not distribute normally.
- Large enough ≈ 30
- $E(\bar{X}) \approx \mu$
- $S(\bar{X}) \approx \frac{\sigma}{\sqrt{n}}$ $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

Hypothesis Testing Basic terminology

- Unknown population parameter (e.g., μ)
- Null hypothesis: H₀
- Alternative hypothesis: H₁
- One-sided / two sided alternative
- Test statistic
- Statistical test
- Rejection region, R
- Probability of Type I error, σ
- Probability of Type II error, β
- Power
- p value