KubeDDR! a Dance of Predictive Scoring with MLOps, Step by Step

Annie Talvasto & Leigh Capili

BLOG (ARTIFICIAL INTELLIGENCE)

7 Game-Changing Al Applications in the Sports Industry

Artificial Intelligence in sports is emerging all over the industry, covering post-game analysis, in-game activity - and even the fan experience. Here are some of the most exciting Al use cases in sports that you should know about. Read on!

(8 min read · October 1, 2021

Alberto Rizzoli

Predicting e-sports winners with machine learning

Hero2vec: Embeddings are all you need

oes in Overwatch

Decision Analytics Journal Volume 8, September 2023, 100296

A predictive analytics model for forecasting outcomes in the National Football League games using decision tree and logistic regression

from UC Riverside. At Insight, he worked on

An Automated Framework for Predicting Sports Results

How I built an automated machine learning framework to predict the results of rugby matches and tweet the outputs without any oversight

Sports are a big business and AI is coming for it as well

Annie Talvasto

- CMO at VSHN
- CNCF Ambassador & Azure MVP
- o Kubernetes & CNCF Meetup organizer since 2017, a Cloud Native Live host since 2021.
- o Creator of TechCraft Show: youtube.com/@TechCraftShow

Leigh Capili

- Staff Developer Advocate,
 VMWare by Broadcom
- Kubernetes Contributor

DDR + MLOps + Kubernetes = **

Computer Vision

Predictive scoring

MLOps

Computer Vision

Simple version: Real-Time
 Object Recognition using
 OpenCV and YOLO on DDR
 Dance Pad

Predictive Scoring

Optical Character
 Recognition (OCR) &
 Algorithms

Demo

Using OCR with OpenCV,
 Pytesseract & Numpy to
 determine winning DDR
 player realtime.

Demo

 Using OCR with OpenCV, Pytesseract & Numpy to determine winning DDR player realtime.

The importance of MLOps

 Most models never make it into production

Generative vs Predictive Al

Challenges/Need	Generative AI	Predictive AI
Computational Power	Extremely high. Requires specialized hardware.	Moderate to high. General-purpose hardware can suffice.
Data Volume and Diversity	Massive, diverse datasets for training.	Specific historical data for prediction.
Model Training and Fine-tuning	Complex, iterative training with specialized compute.	Moderate training.
Scalability and Elasticity	Highly scalable and elastic infrastructure (variable and intensive computational demands)	Scalability is necessary but lower elasticity demands. Batch processing or event-driven tasks.
Storage and Throughput	High-performance storage with excellent throughput. Diverse data types. Requires high throughput and low-latency access to data.	Efficient storage with moderate throughput. It focuses more on data analysis and less on data generation; data is mostly structured.
Networking	High bandwidth and low latency for data transfer and model synchronization (e.g., during distributed training).	Consistent and reliable connectivity for data access.

MLOps

- Kubernetes & Cloud Native
- Data centricity, Model
 Complexity, Scale et al.
- DevOps Best Practices
- GitOps & others

Projects

Resources

- Slides, links & code: github.com/annietalvasto
- Practical MLOps by Noah Gift and Alfredo Deza (O'Reilly). Copyright 2021 Noah Gift and Alfredo Deza, 978-1-098-10301-9.
- CNCF AI Whitepaper: cncf.io/reports/cloud-native-artificial-intelligence -whitepaper/
- Computer vision materials: opency.org/

Volunteers from the audience?

Thank you!

Feedback:

Dance Dance Revolution

- Facts about DRR
- When created
- Open source
- Mentions in media
- O Anythigng else?

