TWiPM	Szymon Niemiec	Rok III, Informatyka Stosowana
Sprawozdanie	z tematów:	

- 1. Projektowanie konstrukcji konwertora tlenowego
- 2. Projektowanie dyszy de Lavala do dmuchu w konwertorze

Część pierwsza:

KONWERTOR TLENOWY

Konwertor tlenowy (rys. 1) to agregat stalowniczy, w którym przeprowadza się świeżenie kąpieli z bardzo dużą prędkością przekraczającą 10% węgla na godzinę. Źródłami ciepła jest ciepło surówki ciekłej i ciepło wydzielane poprzez egzotermiczne reakcje utlenian żelaza i jego domieszek C, Si, Mn.

Tlen kąpieli wprowadzany jest jako gaz o czystości rzędu 99% poprzez tzw. **lancę tlenową**, która jest zakooczona głowicą. Lanca taka składa się z trzech współśrodkowych rurek stalowych: wewnętrzna rura doprowadza tlen, a dwie pozostałe służą do chłodzenia lancy za pomocą wody.

Prędkość wypływu tlenu z głowicy lancy jest prawie dwukrotnie większa od prędkości dźwięku, co sprawia, że struga gazu posiada bardzo dużą energię kinetyczną.

Rys. 1. Budowa konwertora wraz z oznaczeniami wielkości. Źródło: skrypt [1]

Dane wejściowe, dla których należało zaprojektować geometrię konwertora:

Wielkość Q w tonach	Liczba dysz	Kąt rozwarcia dyszy α
135	3/4/5	10

Z tych danych wynika, że projektujemy zasadniczo mały konwertor. Będzie trzeba wziąć pod uwagę zmienną od 3 do 5 liczbę dysz i wywnioskować na podstawie obliczeń, który wariant jest najlepszy pod względem metalurgicznym.

Na podstawie wzorów ze skryptu [1] obliczono wartości związane z geometrią konwertora.

wielkość	symbol	wartość	jednostka
natężenie przepływu tlenu		400,02	m3/min
wysokość zewnętrzna konwertora	H ₂	8827,56	mm
średnica wew. części cylindrycznej	Dc	4729,62	mm
wysokość wewnętrzna	Hw	7691,56	mm
średnica gardzieli	Dg	2243,70	mm
średnica zew. (pancerza)	Dz	6425,24	mm
jednostkowe zużycie materiału ogniotrwałego	Zw	4,80	kg/Mg
głębokość kąpieli	Но	4,17	m
objętość właściwa	Vk >=	0,88	m³/Mg
wysokość gardzieli	Hg	2,49	m
smukłość	S	1,63	bezwymiar.
całkowita objętość wewnętrzna przy nowym wyłożeniu	Vw	107,73	m³
wysokość części cylindrycznej		1,03	kg/Mg
WYŁOŻENIE OGNIOTRWAŁE			
grubość dla części cylindrycznej	Tc	0,72	m
grubość dla dennicy	Td	0,84	m
grubość dla gardzieli	Tg	0,87	m
grubość pancerza części cylindrycznej		0,07	m
średnica otworu spustowego		0,14	m

Głębokość kąpieli i wysokość części cylindrycznej to wielkości zależne od ilości dysz, więc będziemy mieć jeszcze dwa dodatkowe warianty tych wielkości:

Dla 4 dysz:

wielkość	symbol	wartość	jednostka
głębokość kąpieli	Но	3,88	m
wysokość części cylindrycznej	Нс	1,32	kg/Mg

Dla 5 dysz:

wielkość	symbol	wartość	jednostka
głębokość kąpieli	Но	3,67	m
wysokość części cylindrycznej		1,53	kg/Mg

Dane należało wprowadzić do specjalnego programu o nazwie Konwertor, który pomaga właściwie zaprojektować konwertor. Program podpowiada, w jakich zakresach powinny mieścić się poszczególne wartości, aby uzyskać poprawną **smukłość** oraz **objętość właściwą**. Według aktualnych wytycznych, ta pierwsza powinna się mieścić w zakresie 1,4-1,7, a druga 0,8-1. W moim przypadku udało się za pierwszym razem uzyskać poprawne wartości.

Rys. 2. Ekran wynikowy programu Konwertor

Program generuje również plik tekstowy z parametrami geometrycznymi projektowanego konwertora:

PARAMETRY GEOMETRYCZNE KONWERTORA TLENOWEGO

Wysokość kąpieli [m] =	1,2233
Wysokość części cylindrycznej [m] =	4,93312
Wysokość gardzieli [m] =	1,70256
Wysokość wewnętrzna [m] =	7,69156
Średnica dennicy [m] =	2,21872
Średnica części cylindrycznej [m] =	4,72962
Średnica gardzieli [m] =	2,2437
Grubość wyłożenia [m] =	0,72

Mając te wymiary, należało jeszcze narysować i zwymiarować konwertor. Ja posłużyłem się do rysowania oprogramowaniem CAD o nazwie SolidWorks.

Rys. 3. Projekt konwertora dla wyliczonych danych (rys. własny)

Część druga:

DYSZA DE LAVALA

Dysza de Lavala to kanał aerodynamiczny pozwalający na uzyskanie przepływów **naddźwiękowych** wykorzystywanych w niektórych typach turbin parowych, w silnikach odrzutowych i rakietowych. Jest to wynalazek Gustafa de Lavala, szwedzkiego inżyniera.

Przekrój dyszy de Lavala w początkowym odcinku jest zwężany, a następnie rozszerza się. W części zwężającej się następuje przyspieszenie gazu od prędkości początkowej do prędkości dźwięku. W końcowej części następuje dalsze przyspieszanie powyżej prędkości dźwięku, chociaż przyspieszenie stopniowo maleje. Na całej długości dyszy gaz rozpręża się i ma miejsce wzrost jego prędkości. Podczas pracy naddźwiękowej przekrój najwęższy jest przekrojem krytycznym, a parametry gazu w nim występujące są parametrami krytycznymi.

Rys. 4. Schemat dyszy de Lavala. Źródło: skrypt [1]

W celu obliczenia parametrów konstrukcyjnych dyszy de Lavala korzystam ze specjalnego programu Dysza. Na wejściu programu należy podać parametry:

Natężenie przepływu tlenu [m^3/min]	400,02
Liczba dysz	3/4/5
Ciśnienie wlotowe dyszy [N/m^2]	1013250
Temp. tlenu na wlocie [K]	293
Kąt rozwarcia dyszy [stopnie]	10
Odległość obliczanych przekrojów dyszy [m]	0,005

Dla tych parametrów uzyskałem następujący ekran:

Rys. 5. Wynik działania programu Dysza.

Następnie należało zmienić liczbę dysz na 4, a później 5 i ponownie przeprowadzić obliczenia. Program Dysza pozwala na analizę porównawczą dwóch wariantów – ekran takiej analizy jest widoczny na rys. 6.

Na następnej stronie są zaprezentowane wyniki działania programu:

CIŚNIENIE:

NA PRZEKROJU WLOTOWYM: 1013250

NA PRZEKROJU KRYTYCZNYM: 535281,7365

NA PRZEKROJU WYLOTOWYM: 101325

PRĘDKOŚĆ:

NA PRZEKROJU WLOTOWYM: 40

NA PRZEKROJU KRYTYCZNYM: 298,12105

NA PRZEKROJU WYLOTOWYM: 507,00123

Dla 3 dysz:

ŚREDNICA:

NA PRZEKROJU WLOTOWYM: 0,08659

NA PRZEKROJU KRYTYCZNYM: 0,03984

NA PRZEKROJU WYLOTOWYM: 0,05535

DŁUGOŚĆ KONFUZORA: 0,02956

DŁUGOŚĆ DYFUZORA: 0,08867

Dla 4 dysz:

ŚREDNICA:

NA PRZEKROJU WLOTOWYM: 0,07499

NA PRZEKROJU KRYTYCZNYM: 0,0345

NA PRZEKROJU WYLOTOWYM: 0,04794

DŁUGOŚĆ KONFUZORA: 0,0256

DŁUGOŚĆ DYFUZORA: 0,07679

Dla 5 dysz:

ŚREDNICA:

NA PRZEKROJU WLOTOWYM: 0,06707

NA PRZEKROJU KRYTYCZNYM: 0,03086

NA PRZEKROJU WYLOTOWYM: 0,04287

DŁUGOŚĆ KONFUZORA: 0,02289

DŁUGOŚĆ DYFUZORA: 0,06868

Rys. 6. Analiza porównawcza w programie Dysza.

Mając wymiary dyszy, możemy narysować jej projekt. Posłużyłem się do tego programem SolidWorks, podobnie jak w przypadku konwertora. (rys. 7)

Na rysunkach 8, 9, i 10 znajdują się wykresy przedstawiające porównania, na jakie parametry wpływają różne ilości dysz. W dalszej części znajduje się analiza tych wykresów.

Rys. 7. Rysunek własny zwymiarowanej dyszy de Lavala (SolidWorks). Wariant z trzema dyszami.

Rys. 8. Wykres zależności długości konfuzora i dyfuzora od liczby dysz (3, 4 lub 5).

Rys. 9. Wykres zależności ciśnienia od odległości przekroju dla poszczególnej liczby dysz: 3, 4 i 5. Na wykresie widoczne są linie trendu. Brakujące punkty zostały oznaczone przez program Dysza jako punkty nieokreślone.

Rys. 10. Wykres zależności prędkości od odległości przekroju dla poszczególnej liczby dysz: 3, 4 i 5. Na wykresie widoczne są linie trendu. Brakujące punkty zostały oznaczone przez program Dysza jako punkty nieokreślone.

Wnioski:

- 1. Przy projektowaniu konwertora tlenowego należy najbardziej zwrócić uwagę na dwie wartości: **smukłość**, która powinna wynosić od 1,4 do 1,7 oraz **objętość właściwą**, która powinna wynosić od 0,8 do 1,0. Będąc postawionym przed zadaniem zaprojektowania takiego konwertora, warto wspomóc się oprogramowaniem, które pomoże dobrać odpowienie wartości. Laboratorium nauczyło mnie korzystania z tego typu oprogramowania, a także pozwoliło dowiedzieć się jakie parametry są istotne.
- 2. Lanca tlenowa jest integralną częścią konwertora tlenowego i jej poprawne zaprojektowanie jest równie ważne, jak projekt samego konwertora. Na laboratorium analizowałem, jaki wpływ będzie miała liczba dysz de Lavala w lancy tlenowej na różne parametry projektowanego układu.
- 3. Analizując dane wynikowe, można stwierdzić następujące fakty:
 - a. długość konfuzora i dyfuzora spada wraz ze wzrostem ilości dysz.
 - b. liczba dysz nie wpływa na prędkość i ciśnienie na przekrojach, ale wpływa na średnice przekrojów oraz ciśnienie i prędkość w zależności od odległości od przekroju.
 - c. przy trzech dyszach: im dalej od przekroju znajduje się rozpatrywany punkt, tym wolniej spada ciśnienie i wolniej rośnie prędkość. W przypadku pięciu dysz sytuacja jest odwrotna.

Bibliografia

[1] M. Kruciński: "Metalurgia stali", t.1, Cz. II: Tlenowy proces konwertorowy, Skrypt AGH nr 799 Kraków 1981.