Intro to time series analysis

FISH 507 – Applied Time Series Analysis

Mark Scheuerell 5 Jan 2021

Topics for today

Characteristics of time series (ts)

- · What is a ts?
- Classifying ts
- Trends
- Seasonality (periodicity)

Classical decomposition

What is a time series?

A set of observations taken sequentially in time

What is a time series?

A ts can be represented as a set

$$\{x_1, x_2, x_3, \ldots, x_n\}$$

For example,

By some *index set*

Interval across real time; x(t)

• begin/end: $t \in [1.1, 2.5]$

By some *index set*

Discrete time; x_t

- Equally spaced: $t = \{1, 2, 3, 4, 5\}$
- Equally spaced w/ missing value: $t = \{1, 2, 4, 5, 6\}$
- Unequally spaced: $t = \{2, 3, 4, 6, 9\}$

By the *underlying process*

Discrete (eg, total # of fish caught per trawl)

Continuous (eg, salinity, temperature)

By the *number of values recorded*

Univariate/scalar (eg, total # of fish caught)

Multivariate/vector (eg, # of each spp of fish caught)

By the *type of values recorded*

Integer (eg, # of fish in 5 min trawl = 2413)

Rational (eg, fraction of unclipped fish = 47/951)

Real (eg, fish mass = 10.2 g)

Complex (eg, $cos(2\pi 2.43) + i sin(2\pi 2.43)$)

Statistical analyses of time series

Most statistical analyses are concerned with estimating properties of a population from a sample

For example, we use fish caught in a seine to infer the mean size of fish in a lake

Statistical analyses of time series

Time series analysis, however, presents a different situation:

· Although we could vary the *length* of an observed time series, it is often impossible to make multiple observations at a *given* point in time

Statistical analyses of time series

Time series analysis, however, presents a different situation:

· Although we could vary the *length* of an observed time series, it is often impossible to make multiple observations at a *given* point in time

For example, one can't observe today's closing price of Microsoft stock more than once

Thus, conventional statistical procedures, based on large sample estimates, are inappropriate

Descriptions of time series

Number of users connected to the internet

Descriptions of time series

Number of lynx trapped in Canada from 1821-1934

What is a time series model?

A *time series model* for $\{x_t\}$ is a specification of the *joint distributions* of a sequence of *random variables* $\{X_t\}$, of which $\{x_t\}$ is thought to be a realization

Joint distributions of random variables

We have one realization

Some simple time series models

White noise: $x_t \sim N(0, 1)$

Some simple time series models

Random walk: $x_t = x_{t-1} + w_t$, with $w_t \sim N(0, 1)$

Model time series $\{x_t\}$ as a combination of

- 1. trend (m_t)
- 2. seasonal component (s_t)
- 3. remainder (e_t)

$$x_t = m_t + s_t + e_t$$

1. The trend (m_t)

We need a way to extract the so-called signal from the noise

One common method is via "linear filters"

Linear filters can be thought of as "smoothing" the data

1. The trend (m_t)

Linear filters typically take the form

$$\hat{m}_t = \sum_{i=-\infty}^{\infty} \lambda_i x_{t+1}$$

1. The trend (m_t)

For example, a moving average

$$\hat{m}_t = \sum_{i=-a}^{a} \frac{1}{2a+1} x_{t+i}$$

1. The trend (m_t)

For example, a moving average

$$\hat{m}_t = \sum_{i=-a}^{a} \frac{1}{2a+1} x_{t+i}$$

If a = 1, then

$$\hat{m}_t = \frac{1}{3}(x_{t-1} + x_t + x_{t+1})$$

1. The trend (m_t)

For example, a moving average

$$\hat{m}_t = \sum_{i=-a}^{a} \frac{1}{2a+1} x_{t+i}$$

As a increases, the estimated trend becomes more smooth

2. Seasonal effect (S_t)

Once we have an estimate of the trend \hat{m}_t , we can estimate \hat{s}_t simply by subtraction:

$$\hat{s}_t = x_t - \hat{m}_t$$

Seasonal effect (\hat{s}_t), assuming $\lambda = 1/9$

2. Seasonal effect (S_t)

But, \hat{s}_t really includes the remainder e_t as well

$$\hat{s}_t = x_t - \hat{m}_t$$
$$(s_t + e_t) = x_t - m_t$$

2. Seasonal effect (S_t)

So we need to estimate the *mean* seasonal effect as

$$\hat{s}_{Jan} = \sum \frac{1}{(N/12)} \{s_1, s_{13}, s_{25}, \dots\}$$

$$\hat{s}_{Feb} = \sum \frac{1}{(N/12)} \{s_2, s_{14}, s_{26}, \dots\}$$

$$\vdots$$

$$\hat{s}_{Dec} = \sum \frac{1}{(N/12)} \{s_{12}, s_{24}, s_{36}, \dots\}$$

Mean seasonal effect (S_t)

3. Remainder (e_t)

Now we can estimate e_t via subtraction:

$$\hat{e}_t = x_t - \hat{m}_t - \hat{s}_t$$

Remainder (e_t)

Let's try a different model

With some other assumptions

- 1. Log-transform data
- 2. Linear trend

Log-transformed data

Monthly airline passengers from 1949-1960

The trend (m_t)

Seasonal effect (s_t) with error (e_t)

Mean seasonal effect (S_t)

Remainder (e_t)

Summary

Today's topics

Characteristics of time series (ts)

- · What is a ts?
- Classifying ts
- Trends
- Seasonality (periodicity)

Classical decomposition