Opérateurs bornés

1 Opérateurs linéaires bornés

Soient E et F deux espaces de Banach. On appelle un opérateur borné de E dans F toute application linéaire continue de E dans F. Pour $T \in \mathcal{L}(E, F)$, on note

$$Ran(T) = \{Tx, x \in E\}$$
 et $Ker(T) = \{x \in E, Tx = 0\}$.

L'opérateur identité de E dans E sera noté par 1.

Définition 1.1 Une forme sesquilinéaire f sur un \mathbb{C} -espace vectoriel E est une application de $E \times E$ à valeurs dans \mathbb{C} vérifiant pour tout $y \in E$:

- (a) $x \mapsto f(x,y)$ est anti-linéaire,
- (b) $x \mapsto f(y,x)$ est linéaire,

Si E est un espace normé on dit que f est une forme sesquilinéaire bornée si de plus il existe c>0 tel que

$$|f(x,y)| \le c||x|| \, ||y|| \, .$$

Théorème 1.2 Pour tout forme sesquilinéaire bornée f sur un espace de Hilbert \mathcal{H} , il existe un unique opérateur $A \in \mathcal{L}(\mathcal{H})$ vérifiant

$$f(x,y) = (x, Ay), \quad \forall x, y \in \mathcal{H}.$$

Preuve. L'application $x \mapsto \overline{f(x,y)}$ est une forme linéaire continue sur \mathcal{H} , donc par le Théorème de Riesz il existe un unique $A_y \in \mathcal{H}$ tel que $f(x,y) = (x,A_y)$ pour tout $x,y \in \mathcal{H}$. On vérifie facilement que l'application $y \mapsto A_y$ est linéaire que l'on note par A. Comme

$$||Ay|| = \sup_{x \neq 0} \frac{|(x, Ay)|}{||x||} = \sup_{x \neq 0} \frac{|f(x, y)|}{||x||} \le c||y||,$$

 $A \in \mathcal{L}(\mathcal{H})$ et vérifie la propriété énoncée. L'unicité est une conséquence de l'équivalence $((x, Ay) = 0, \forall x, y \in \mathcal{H}) \Leftrightarrow A = 0.$

On définit, en plus de la topologie uniforme sur $\mathcal{L}(E,F)$, deux autres topologies appelées topologie de la convergence forte et de la convergence faible en spécifiant la notion de convergence des suites généralisées sur $\mathcal{L}(E,F)$ (voir chap.1, Appendice B).

Définition 1.3 On dit que la suite généralisée $(T_i)_{i\in I}$ converge fortement (respectivement faiblement) vers T dans $\mathcal{L}(E,F)$, noté par $T_i \stackrel{s}{\longrightarrow} T$ (respectivement $T_i \stackrel{w}{\longrightarrow} T$) si $\lim_{i\in I} T_i x = Tx$ pour tout $x \in E$ (respectivement si $\lim_{i\in I} \ell(T_i x) \to \ell(Tx)$ pour tout $x \in E$ et $\ell \in F^*$).

Il ne faut pas confondre la topologie de convergence faible d'opérateurs (Définition 1.3) et la convergence faible d'une suite de l'espace de Banach $\mathcal{L}(E,F)$ (chap.1, Définition 2.11).

Théorème 1.4 Soit X un espace de Banach réflexif. Si $(T_n)_n$ est une suite dans $\mathcal{L}(X)$ telle que pour tout $x \in X$ et $\ell \in X^*$ la suite $(\ell(T_n x))_n$ convergent, alors $T_n \xrightarrow{w} T$ pour un $T \in \mathcal{L}(X)$.

Preuve. Montrons que pour tout $x \in X$ on a $\sup_n ||T_n x|| < \infty$. Puisque pour tout $x \in X$ et $\ell \in X^*$ la suite $(\ell(T_n x))_n$ converge alors $\sup_n |\ell(T_n x)| < \infty$. D'où, par le Théorème 2.5 et Banach-Steinhaus on a pour tout $x \in X$

$$\sup_{n}||T_nx||<\infty.$$

En appliquant de nouveau le Théorème de Banach-Steinhauss on en déduit que $\sup_n ||T_n|| < \infty$. On définit alors une application bilinéaire $B: X \times X^* \to \mathbb{C}$ par $B(x,\ell) = \lim_n \ell(T_n x)$ ainsi qu'un opérateur T donné par

$$T: X \to X$$

$$x \mapsto \widetilde{B(x, .)}$$

où $\widetilde{B(x,.)}$ est l'unique élément de X tel que $\ell(\widetilde{B(x,.)}) = B(x,\ell)$ (l'existence d'un tel élément est garantie par la réflexivité de X). Comme on a

$$|B(x,\ell)| \le \sup_{n} ||T_n|| \, ||x||_X \, ||\ell||_{X^*}$$

on en déduit que T est linéaire continue. On a alors $T_n \stackrel{w}{\to} T$.

1.1 Adjoint

Définition 1.5 Soient X, Y deux espaces de Banach et T un opérateur borné de X dans Y. L'adjoint de T, noté T', est l'opérateur borné de Y^* dans X^* vérifiant

$$(T'\ell)(x) = \ell(T(x))$$
.

Théorème 1.6 Soient X et Y deux Banach. L'application de $\mathcal{L}(X,Y)$ dans $\mathcal{L}(Y^*,X^*)$ qui à T associe son adjoint T' est isométrique (i.e: ||T|| = ||T'|| pour tout $T \in \mathcal{L}(X,Y)$).

Preuve. On a

$$||T|| = \sup_{||x|| \le 1} ||Tx|| = \sup_{||x|| \le 1} \left(\sup_{||\ell|| \le 1} |\ell(Tx)| \right) = \sup_{||\ell|| \le 1} \left(\sup_{||x|| \le 1} |\ell(Tx)| \right) = \sup_{||\ell|| \le 1} ||T'\ell|| = ||T'||.$$

On a les relations d'orthogonalité suivantes.

Proposition 1.7 Soient E, F deux Banach et $T \in \mathcal{L}(E, F)$. Alors on a

- (i) $Ker(T) = Ran(T')_{\perp}$,
- (ii) $Ker(T') = Ran(T)^{\perp}$
- (iii) $Ker(T)^{\perp} \supseteq \overline{Ran(T')}$
- (iv) $Ker(T')_{\perp} = \overline{Ran(T)}$.

Preuve. (i) $x \in Ker(T) \Leftrightarrow \ell(Tx) = 0, \forall \ell \in F^* \Leftrightarrow T'(\ell)(x) = 0, \forall \ell \in F^* \Leftrightarrow x \in Ran(T')_{\perp}$.

- (ii) $\ell \in Ker(T') \Leftrightarrow (T'\ell)(x) = 0, \forall x \in E \Leftrightarrow \ell(Tx) = 0, \forall x \in E \Leftrightarrow \ell \in Ran(T)^{\perp}$.
- (iii) et (iv) resultent de la Proposition [chap.1, 2.9]. En effet, on a $Ker(T)^{\perp} = (Ran(T')_{\perp})^{\perp} \supseteq \overline{Ran(T')}$ et que $Ker(T')_{\perp} = (Ran(T)^{\perp})_{\perp} = \overline{Ran(T)}$.

Adjoint dans un Hilbert:

Définition 1.8 Soit \mathcal{H} un Hilbert et $T \in \mathcal{L}(\mathcal{H})$. L'adjoint de T est l'opérateur linéaire borné, noté T^* , vérifiant

$$(x, Ty) = (T^*x, y), \quad \forall x, y \in \mathcal{H}.$$

Soit $T \in \mathcal{L}(\mathcal{H})$, on peut définir T' selon la Définition 1.5 et T^* selon la Définition 1.8. On a alors la relation suivante

$$T^* = C^{-1}T'C\,, (1)$$

où $C: \mathcal{H} \to \mathcal{H}^*$ est l'isomorphisme anti-linéaire qui à $x \in \mathcal{H}$ associe la forme linéaire $(x, .) \in \mathcal{H}^*$.

Proposition 1.9 On a les propriétés suivante:

- (a) $T \mapsto T^*$ est un isomorphisme d'espace de Banach.
- (b) $(TS)^* = S^*T^*$, $(T^*)^* = T$, pour tout $T, S \in \mathcal{L}(\mathcal{H})$.
- (c) $||T|| = \sqrt{||T^*T||}$.
- (d) Si $T \in \mathcal{L}(\mathcal{H})$ est bijective alors $(T^{-1})^* = (T^*)^{-1} \in \mathcal{L}(\mathcal{H})$. (e) Si $T_n \xrightarrow{s} T$ ou $T_n \xrightarrow{w} T$ alors $T_n^* \xrightarrow{w} T^*$.

Preuve. (a) est une conséquence de (1) plus le fait que C est un isomorphisme. (b) découle directement de la définition.

(c) En utilisant (a), on a $||T^*T|| \le ||T^*|| ||T|| = ||T||^2$. En plus, comme on a aussi

$$||Tx||^2 = (x, T^*Tx) \le ||T^*T|| \, ||x|| \,,$$

on en déduit que $||T||^2 < ||T^*T||$.

(d) Par le Théorème 2.6 de Banach-Schauder on voit que $T^{-1} \in \mathcal{L}(\mathcal{H})$. D'où, en utilisant (b) on en déduit que $\mathbb{1}^* = (TT^{-1})^* = (T^{-1}T)^* = (T^{-1})^*T^* = T^*(T^{-1})^* = \mathbb{1}$. (e) Découle directement de la définition.

Exercice. Montrer que $T_n \stackrel{s}{\longrightarrow} T$ n'implique pas que $T_n^* \stackrel{s}{\longrightarrow} T^*$.

Proposition 1.10 Pour tout $T \in \mathcal{L}(\mathcal{H})$, on a les relations

$$Ker(T)^{\perp} = \overline{Ran(T^*)}$$
 et $Ker(T^*) = Ran(T)^{\perp}$.

Preuve. On a $y \in Ran(T^*)^{\perp} \Leftrightarrow ((y, T^*x) = 0, \forall x \in \mathcal{H}) \Leftrightarrow ((Ty, x) = 0, \forall x \in \mathcal{H}) \Leftrightarrow Ty = 0$. La deuxième relation suit de la première en remarquant que $T^{**} = T$.

Définition 1.11 Soit T un opérateur borné sur un espace de Hilbert \mathcal{H} . On dit que :

- (i) T est une projection (respectivement projection orthogonale) si $T^2 = T$ (respectivement $T^2 = T$ $et T = T^*$).
- (ii) T est normal (respectivement auto-adjoint) si $TT^* = T^*T$ (respectivement $T^* = T$).
- (iii) T est isométrique (respectivement unitaire) si $T^*T = 1$ (respectivement $T^*T = TT^* = 1$).

Exercice. Montrer qu'un opérateur $T \in \mathcal{L}(\mathcal{H})$ est normal si et seulement si $||Tx|| = ||T^*x||$ pour tout $x \in \mathcal{H}$.

Théorème 1.12 (Lax-Milgram) Soit \mathcal{H} un espace de Hilbert et $a(\cdot, \cdot)$ une forme sesquilinéaire bornée sur H, tel que

$$a(u, u) \ge c||u||^2$$
 (coercivité).

Alors, pour tout $f \in \mathcal{H}^*$ il existe une unique solution $x \in \mathcal{H}$ à l'équation

$$a(x,y) = f(y), \quad \forall y \in \mathcal{H}.$$
 (2)

La solution x vérifie en plus $||x|| \leq \frac{1}{c} ||f||$.

Preuve. D'après le Théorème 1.2, il existe $A \in \mathcal{L}(\mathcal{H})$ tel que a(x,y) = (Ax,y) pour tout $x,y \in \mathcal{H}$. D'autre part le Théorème [chap.1, 3.12] de Riesz indique qu'il existe $z \in \mathcal{H}$ tel que f(y) = (z, y)pour tout $y \in \mathcal{H}$. Il s'agit donc de montrer que pour tout $z \in \mathcal{H}$ l'équation Ax = z possède une unique solution. Ceci est équivalent à montrer que A est bijective.

D'abord $Ker(A) = \{0\}$, puisque Ax = 0 et $(Ax, x) \ge c||x||^2$ implique que x = 0. Montrons que Ran(A) est dense dans \mathcal{H} . En effet, si $u \in \mathcal{H}$ tel que $u \perp Ran(A)$ alors $0 = (Au, u) \ge c||u||^2$ et donc u = 0. D'où, $Ran(A)^{\perp} = \{0\}$ et donc $\overline{Ran(A)} = (Ran(A)^{\perp})^{\perp} = \mathcal{H}$.

Montrons enfin, que Ran(A) est un fermé de \mathcal{H} . Pour cela soit $(x_n)_n$ une suite dans \mathcal{H} telle que $\lim_n Ax_n = y$. On a alors

$$|c||x_n - x_m||^2 \le (A(x_n - x_m), x_n - x_m) \le ||Ax_n - Ax_m|| ||x_n - x_m||.$$

Par conséquent $(x_n)_n$ est une suite de Cauchy qui converge vers un $x \in \mathcal{H}$. Donc on a $y = Tx \in Ran(A)$. Comme Ran(A) est à la fois dense et fermé, alors $Ran(A) = \mathcal{H}$.

Théorème 1.13 (Hellinger-Toeplitz) Toute application linéaire T définie d'un espace de Hilbert \mathcal{H} dans lui-même vérifiant

$$(Tx, y) = (x, Ty) \quad \forall x, y \in \mathcal{H},$$

est continue.

Preuve. Il suffit de montrer que le graphe de T, noté $\Gamma(T)$, est un fermé. Soit (x_n, Tx_n) une suite de $\Gamma(T)$ convergente vers (x, y). Pour tout $z \in \mathcal{H}$, on a

$$(z,y) = \lim_{n} (z,Tx_n) = \lim_{n} (Tz,x_n) = (Tz,x) = (z,Tx).$$

Il en résulte que y = Tx ce qui entraı̂ne que $\Gamma(T)$ est fermé.

Exercice. Trouver une forme linéaire définie sur un Hilbert qui ne soit pas continue.

2 Opérateur positif

Définition 2.1 On dit qu'un opérateur A sur un Hilbert \mathcal{H} est positif s'il vérifie $(x, Ax) \geq 0$ pour tout $x \in \mathcal{H}$. On écrit $A \geq B$ si A - B est positif.

En utilisant l'identité de polarisation on voit qu'un opérateur positif est nécessairement autoadjoint.

Lemme 2.2 la série entière en 0 de $\sqrt{1-z}$ est absolument convergente sur le disque $|z| \le 1$.

Théorème 2.3 Tout opérateur positif A admet un unique opérateur positif B tel que $A = B^2$. De plus, B commute avec tout opérateur qui commute avec A. On appelle B la racine carré de A et on note par \sqrt{A} .

Preuve. Unicité: Soit $B_1, B_2 \ge 0$ tel que $B_1^2 = B_2^2 = A$ alors pour i = 1, 2

$$B_i A = B_i^3 = A B_i .$$

Un calcul direct donne

$$0 = (B_1^2 - B_2^2)(B_1 - B_2) = \underbrace{(B_1 - B_2)B_1(B_1 - B_2)}_{(1) \ge 0} + \underbrace{(B_1 - B_2)B_2(B_1 - B_2)}_{(2) \ge 0}.$$

On en déduit alors que $(1) - (2) = (B_1 - B_2)^3 = 0$. En particulier, on a $0 = ||(B_1 - B_2)^4|| = ||(B_1 - B_2)^2||^2 = ||B_1 - B_2||^4$.

Existence: Il suffit de le montrer pour $A \geq 0, \, ||A|| = 1.$ Dans ce cas, on a $1 - A \geq 0$ et

$$||1 - A|| = \sup_{||x||=1} (x, (1 - A)x) \le 1.$$

La série $B = \sum_{k=0}^{\infty} c_k (\mathbb{1} - A)^k$ est donc absolument convergente grâce au Lemme 2.2 avec $\sqrt{1-z} = \sum_{k=0}^{\infty} c_k z^k$ et $c_k < 0$ pour tout $k \in \mathbb{N}^*$. On vérifie que

$$B = 1 + \sum_{k=1}^{\infty} c_k (1 - A)^k \ge 1 + \sum_{k=1}^{\infty} c_k 1 \ge 0.$$

Enfin, on a

$$B^{2} = \sum_{n=0}^{\infty} \left(\sum_{k+k'=n} c_{k} c_{k'} \right) (1 - A)^{n}$$

Comme $\sum_{k+k'=n} c_k c_{k'} = 0$ pour tout $n \ge 2$, on en conclut que $B^2 = A$.

Définition 2.4 Pour tout $A \in \mathcal{L}(\mathcal{H})$ on note $|A| = \sqrt{A^*A}$.

Exercice. Montrer que si $A \ge 0$ et inversible alors $A^{-1} \ge 0$.

Définition 2.5 Un opérateur $U \in \mathcal{L}(\mathcal{H})$ est appelé isométrie partielle si ||Ux|| = ||x|| pour tout $x \in Ker(U)^{\perp}$.

Remarquons que l'image d'une isométrie partielle $U \in \mathcal{L}(\mathcal{H})$ est un fermé de \mathcal{H} .

Proposition 2.6 Un opérateur $U \in \mathcal{L}(\mathcal{H})$ est une isométrie partielle si et seulement si U^*U est une projection orthogonale.

Preuve. Supposons que U est une isométrie partielle. On a alors $(U^*U)^* = U^*U$ et $(UU^*)^* = UU^*$. Il reste donc à prouver que $(U^*U)^2 = U^*U$ et $(UU^*)^2 = UU^*$. Comme $\mathcal{H} = Ker(U)^{\perp} \oplus Ker(U)$, on a pour tout $x \in \mathcal{H}$

$$U^*Ux = U^*Ux_1 \in Ker(U)^{\perp}$$
.

où $x_1 \in Ker(U)^{\perp}$ vérifiant $x - x_1 \in Ker(U)$. Il résulte de $||Ux_1|| = ||x_1||$ que $(U^*Ux_1, x_1) = (x_1, x_1)$, puis de l'identité de polarisation (5) que $U^*Ux_1 = x_1$. On a donc $(U^*U)^2x = U^*Ux$. Montrons la réciproque. Comme U^*U est une projection orthogonale, on a

$$||U^*Ux||^2 = (U^*Ux, x) = ||Ux||^2$$
.

On en déduit alors que $Ker(U^*U)=Ker(U)$ et donc U^*U est une projection orthogonale sur $Ker(U)^{\perp}$. D'où, pour tout $x\in Ker(U)^{\perp}$

$$||Ux||^2 = (U^*Ux, x) = ||x||^2$$
.

Proposition 2.7 U est une isométrie partielle si et seulement si U^* l'est aussi.

Preuve. Il suffit de montrons que si U est une isométrie partielle alors UU^* est une projection orthogonale. En effet, pour tout $x \in \mathcal{H}$ on a $U^*x \in \overline{Ran(U^*)} = Ker(U)^{\perp}$. En utilisant la Proposition 2.6, on a donc

$$(UU^*)^2 x = U(U^*U)U^* x = UU^* x$$
.

Théorème 2.8 (Décomposition polaire) Pour tout $A \in \mathcal{L}(\mathcal{H})$ il existe une isométrie partielle U tel que A = U |A|. En outre, U est unique si on impose la condition Ker(U) = Ker(A).

Preuve. Remarquons qu'on a

$$||Ax||^2 = ||A|x||^2, \quad \forall x \in \mathcal{H}. \tag{3}$$

En particulier, on en déduit que Ker(|A|) = Ker(A) et que

$$|A|x = |A|y \Rightarrow Ax = Ay.$$

On définit alors l'application

$$V: Ran(|A|) \rightarrow Ran(A)$$

 $|A|x \mapsto Ax$.

V est isométrique grâce à (3). Elle s'étend donc par continuité à une isométrie de $\overline{Ran(|A|)}$ vers $\overline{Ran(A)}$, qu'on note encore par V. En posant U = VP avec P la projection orthogonale sur $Ker(A)^{\perp}$, obtient une isométrie partielle sur \mathcal{H} vérifiant la propriété énoncée.

Unicité: Si U_1, U_2 sont deux isométries partielles vérifiant $U_1|A| = U_2|A|$ alors $U_1 = U_2$ sur $\overline{Ran(|A|)}$. De plus comme $Ran(|A|)^{\perp} = Ker(A)$, la condition $Ker(U_1) = Ker(U_2) = Ker(A)$ implique que $U_1 = U_2$ sur \mathcal{H} .

3 Opérateurs compacts

Soient X et Y deux espaces de Banach.

Définition 3.1 Un opérateur $T \in \mathcal{L}(X,Y)$ est dit compact s'il transforme toute partie bornée de X en une partie relativement compact de Y. Autrement dit, T est compact si et seulement si pour toute suite $(x_n)_n$ bornée dans X la suite $(Tx_n)_n$ admet une sous-suite convergente.

Un opérateur compact est nécessairement continue car sinon il existerait une suite $(x_n)_n$ bornée tel que $||Tx_n|| \to \infty$, ce qui contredit la compacité.

Théorème 3.2 Si $T \in \mathcal{L}(X,Y)$ est compact alors pour tout suite $(x_n)_n$ tel que $x_n \to x$ on a $Tx_n \to Tx$. La réciproque est vraie si X est réflexif.

Preuve. Soit $x_n \to x$ alors par le Théorème 1.10 la suite $(x_n)_n$ est bornée. La suite $y_n = Tx_n$ converge aussi faiblement vers Tx (puisque $\ell(Tx_n) = (T'\ell)(x_n)$ pour tout $\ell \in Y^*$). Supposons que Tx_n ne converge pas fortement vers Tx, il existe alors $\varepsilon > 0$ et une sous suite $(y_{\varphi(n)})_n$ tel que $||y_{\varphi(n)} - y|| > \varepsilon$. En utilisant la compacité de T, il existe alors une sous suite de $(x_{\varphi(n)})_n$ qu'on note par $(x_{\varphi_1(n)})_n$ tel que $Tx_{\varphi_1(n)}$ converge vers un $\tilde{y} \neq y$. Mais d'un autre coté, on a $(y_{\varphi_1(n)})_n$ converge faiblement vers y. D'où une contradiction.

La réciproque, suit de la Remarque 3.22. En effet, soit $(x_n)_n$ une suite bornée dans X réflexif alors il existe une sous-suite $(x_{n_k})_k$ qui converge faiblement. D'où la sous suite $(Tx_{n_k})_k$ converge fortement.

Exercice. Montrer que si l'opérateur identité sur un Banach X est compact alors X est de dimension finie.

Théorème 3.3 Soient $T, T_n \in \mathcal{L}(X, Y)$ et $S \in \mathcal{L}(Y, Z)$ avec X, Y et Z des espaces de Banach.

- (i) Si $(T_n)_n$ converge en norme vers T et si les T_n sont compact alors T l'est aussi.
- (ii) TS est compact si un des opérateurs T ou S est compact.

Preuve. (i) Soit $(x_m)_m$ une suite dans B(0,1). Pour chaque n il existe une sous-suite $(x_{\varphi_n(m)})_m$ telle que $(T_n x_{\varphi_n(m)})_m$ est convergente, puisque T_n est compact. Par le procédé d'extraction diagonale la sous-suite $(x_{\varphi_n(n)})_n$ vérifie que $(T_n x_{\varphi_n(n)})_n$ est convergente. On a alors

$$||Tx_{\varphi_n(n)} - Tx_{\varphi_m(m)}|| \le ||T - T_n|| + ||T_m - T|| + ||T_n x_{\varphi_n(n)} - T_m x_{\varphi_m(m)}|| \underset{n \to \infty}{\longrightarrow} 0.$$

(ii) suit directement de la définition.

Théorème 3.4 (Schauder) T est compact si et seulement si T' est compact.

Preuve. En exercice. \Box

4 Spectre des opérateurs compacts

Soit E un espace de Banach. On appelle spectre d'un opérateur $T \in \mathcal{L}(E)$, le sous-ensemble du plan complexe défini par

$$\sigma(T) := \{ \lambda \in \mathbb{C} : (\lambda \mathbb{1} - T) \text{ n'est pas bijective } \}.$$

On dit que $\lambda \in \sigma(T)$ est une valeur propre de T de multiplicité (géométrique) $m \in \mathbb{N}^*$ si $\lambda \mathbb{1} - T$ n'est pas injective et $\dim(Ker(\lambda \mathbb{1} - T)) = m$.

Théorème 4.1 (Alternative de Fredholm) Soit $T \in \mathcal{L}(E)$ un opérateur compact. On a pour tout $\lambda \in \mathbb{C}^*$:

- (i) $Ker(\lambda \mathbb{1} T)$ est de dimension finie.
- (ii) $Ran(\lambda \mathbb{1} T)$ est fermé.
- (iii) $Ker(\lambda \mathbb{1} T) = \{0\} \Leftrightarrow Ran(\lambda \mathbb{1} T) = E$.

Preuve. (i) Soit $E_{\lambda} := Ker(\lambda \mathbb{1} - T)$. La boule unité fermé de E_{λ} est incluse dans $T(\bar{B}_E(0, 1/\lambda))$, puisque pour $x \in \bar{B}_{E_{\lambda}}(0, 1)$ on a $x = T(\frac{x}{\lambda})$ avec $\frac{x}{\lambda} \in \bar{B}_E(0, 1/\lambda)$. Comme T est compact on en déduit que $\bar{B}_{E_{\lambda}}(0, 1)$ est compact. Donc, E_{λ} est un sous-espace fermé de dimension finie.

(ii) Montrons que $Ran(\lambda \mathbb{1} - T)$ est fermé. Soit $(x_n)_n$ une suite de E telle que $\lambda x_n - Tx_n \to v$. Comme $E_{\lambda} := Ker(\lambda \mathbb{1} - T)$ est de dimension finie, on en déduit l'existence d'une suite $(z_n)_n$ de E_{λ} telle que pour tout $n \in \mathbb{N}$

$$d(x_n, E_\lambda) = d(x_n, z_n)$$
.

On a alors l'identité suivante

$$\lambda x_n - Tx_n = \lambda (x_n - z_n) - T(x_n - z_n) \underset{n \to \infty}{\longrightarrow} v.$$
(4)

Montrons que la suite $(||x_n - z_n||)_n$ est bornée. Sinon il existerait une sous-suite $||x_{n_k} - z_{n_k}|| \to \infty$ quand $k \to \infty$. Alors la suite

$$w_k := \frac{x_{n_k} - z_{n_k}}{||x_{n_k} - z_{n_k}||}$$

est bornée et comme T est compact, il existe une sous-suite $w_{\varphi(k)}$ telle que $(Tw_{\varphi(k)})_k$ converge. En utilisant (4), il en résulte que

$$\lim_{k} Tw_{\varphi(k)} - \lambda w_{\varphi(k)} = 0.$$

Ceci implique que $(w_{\varphi(k)})_k$ converge vers un certain $w \in E$ vérifiant $Tw = \lambda w$ et ||w|| = 1 (i.e.: $w \in E_{\lambda}$). Par ailleurs, on a

$$d(w_{\varphi(k)}, E_{\lambda}) = d\left(\frac{x_{n_k} - z_{n_k}}{||x_{n_k} - z_{n_k}||}, E_{\lambda}\right) = 1.$$

D'où une contradiction avec le fait que $w_{\varphi(k)} \to w \in E_{\lambda}$. Donc, la suite $(||x_n - z_n||)_n$ est bornée et comme T est compact il existe alors une sous-suite $(x_{\psi(n)} - z_{\psi(n)})_n$ telle que $T(x_{\psi(n)} - z_{\psi(n)})$ converge. En utilisant (4), on en déduit que $(x_{\psi(n)} - z_{\psi(n)})_n$ converge vers un $u \in E$ vérifiant $\lambda u - Tu = v$. Ainsi, on a prouvé que $Ran(\lambda \mathbb{1} - T)$ est fermé.

(iii) Supposons que $Ker(\lambda \mathbb{1} - T) = \{0\}$ (i.e.: λ n'est pas une valeur propre). Si $Ran(\lambda \mathbb{1} - T) \neq E$ alors $E_n := Ran(\lambda \mathbb{1} - T)^n$ est une suite strictement décroissante de sous-espace fermé de E puisque $(\lambda \mathbb{1} - T)$ est injective. Donc, par le lemme de Riesz [chap. 1, Lem. 1.5] il existe une suite $x_n \in E_n$ telle que $||x_n|| = 1$ et $d(x_n, E_{n+1}) > 1/2$ pour tout $n \in \mathbb{N}$. Alors pour n > m

$$Tx_n - Tx_m = \left[\underbrace{(Tx_n - \lambda x_n)}_{\in E_{m+1}} - \underbrace{(Tx_m - \lambda x_m)}_{\in E_{m+1}} + \underbrace{\lambda x_n}_{\in E_n \subset E_{m+1}}\right] - \lambda x_m$$

Il en résulte alors que pour tout n > m on a $||Tx_n - Tx_m|| \ge \lambda d(x_m, E_{m+1}) > \lambda/2$, ce qui contredit la compacité de l'opérateur T. Donc $Ran(\lambda \mathbb{1} - T) = E$.

Montrons la réciproque. Par la proposition 1.7, on a $Ker(\lambda \mathbb{1} - T) = Ran(\lambda \mathbb{1} - T')_{\perp}$ avec $T' \in \mathcal{L}(E^*)$ est l'adjoint de T. Comme T' est compact par le théorème 3.4 de Schauder et que $Ker(\lambda \mathbb{1} - T') = Ran(\lambda \mathbb{1} - T)^{\perp} = \{0\}$, on en déduit par le résultat ci-dessus que $Ran(\lambda \mathbb{1} - T) = E^*$. D'où, on obtient $Ker(\lambda \mathbb{1} - T) = Ran(\lambda \mathbb{1} - T')_{\perp} = \{0\}$.

Théorème 4.2 Soit E un espace de Banach de dimension finie et $T \in \mathcal{L}(E)$ est un opérateur compact. Alors $0 \in \sigma(T)$ et $\sigma(T) \setminus \{0\}$ est un sous-ensemble discret de \mathbb{C} constitué uniquement de valeurs propres de multiplicités finies.

Preuve. (i) $0 \in \sigma(T)$: Si $0 \notin \sigma(T)$ par le théorème [chap. 1, Thm. 2.6] de Banach-Schauder $T^{-1} \in \mathcal{L}(E)$ et donc $\mathbbm{1}$ est compact. Ce qui est impossible avec E de dimension infinie.

(ii) Si $\lambda \in \sigma(T) \setminus \{0\}$ alors λ est une valeur propre: Sinon $Ker(\lambda \mathbb{1} - T) = \{0\}$ et $Ran(\lambda \mathbb{1} - T) = E$ par le théorème 4.1. D'où, $\lambda \mathbb{1} - T$ est bijective et donc $\lambda \notin \sigma(T)$.

(iii) $\sigma(T) \setminus \{0\}$ est discret: Supposons qu'il existe une infinité de valeurs propres distinctes $(\lambda_n)_n$ ayant une limite λ . On pose $E_n = vect\{e_1, \cdots, e_n\}$ avec pour chaque $i = 1, \cdots, n$, e_i est un vecteur propre associé à la valeur propre λ_i . Comme les $(\lambda_n)_n$ sont deux à deux distincts les vecteurs propres e_1, \cdots, e_n sont linéairement indépendants et donc $dim(E_n) = n$, $e_{n+1} \notin E_n$ et $(\lambda_{n+1} \mathbb{1} - T) E_{n+1} \subset E_n$. Par le lemme [chap. 1, Lem.1.5] de Riesz, il existe une suite $(x_n)_n$ telle que $x_n \in E_{n+1}$, $||x_n|| = 1$ et $d(x_n, E_n) > 1/2$. Si n < m

$$\left\| T\left(\frac{x_n}{\lambda_{n+1}}\right) - T\left(\frac{x_m}{\lambda_{m+1}}\right) \right\| = \left\| \underbrace{\left[\underbrace{\frac{Tx_n - \lambda_{n+1}x_n}{\lambda_{n+1}} - \frac{Tx_m - \lambda_{m+1}x_m}{\lambda_{m+1}} + x_n}_{\in E_m} \right] - x_m \right\|$$

$$\geq d(x_m, E_m) > 1/2.$$
(5)

Il en résulte que si $\lambda \neq 0$ alors la suite $(x_n/\lambda_n)_n$ est bornée et (5) contredit le compacité de T. \square

Corollaire 4.3 Soit E un espace de Banach de dimension infinie et $T \in \mathcal{L}(E)$ un opérateur compact. Alors on a $\sigma(T) = \{0\}$ ou $\sigma(T) \setminus \{0\}$ est fini ou $\sigma(T) \setminus \{0\}$ est une suite qui tend vers 0.

Théorème 4.4 Soit \mathcal{H} un espace de Hilbert séparable et $A \in \mathcal{L}(\mathcal{H})$ un opérateur auto-adjoint compact. Alors il existe une B.O.N de \mathcal{H} formée de vecteurs propres de A.

Preuve. On considère le spectre de A comme une suite $(\lambda_n)_n$ de valeurs propres répétées autant de fois que leurs multiplicités et tel que $\lim_n \lambda_n = 0$. On note $\{\phi_n\}_n$ la famille O.N de vecteurs propres vérifiant $A\phi_n = \lambda_n\phi_n$ et $M = vect\{\phi_n, n \in \mathbb{N}\}$. Alors M et M^{\perp} sont deux sous-espaces invariants de A. De plus, $A_{|M^{\perp}}$ est un opérateur auto-adjoint compact, donc si $\lambda \in \sigma(A_{|M^{\perp}}) \setminus \{0\}$ alors λ est une valeur propre de A. On en déduit que $\sigma(A_{|M^{\perp}}) = \{0\}$ et par le théorème [chap. 3, Thm. 2.6] on conclut que $A_{|M^{\perp}} = 0$. D'où, pour $x \in M^{\perp}$ on a Ax = 0 et donc $x \in M \cap M^{\perp} = \{0\}$. Ainsi, on a montrer que $\{\phi_n\}_n$ est total dans \mathcal{H} .

Définition 4.5 Soit \mathcal{H} un espace de Hilbert séparable et $T \in \mathcal{L}(\mathcal{H})$ un opérateur compact. On appelle une valeur singulière de T toute valeur propre de |T|.

Remarque 4.6 Comme l'opérateur |T| est un opérateur positif alors toutes ses valeurs propres sont positives. On considère souvent les valeurs singulière d'un opérateurs $T \in \mathcal{L}(\mathcal{H})$ compact comme une suite $(\mu_n)_n$ positive décroissante convergente vers 0 avec $card\{n \in \mathbb{N} : \mu_n = \mu_m\}$ est égal à la multiplicité de la valeur propre μ_m de |T| i.e.:

$$card\{n \in \mathbb{N} : \mu_n = \mu_m\} = dim[Ker(|T| - \mu_m \mathbb{1})].$$

Théorème 4.7 Soit \mathcal{H} un espace de Hilbert séparable et $T \in \mathcal{L}(\mathcal{H})$ un opérateur compact. Alors il existe deux familles $O.N \{f_n\}_n$ et $\{g_m\}_m$ tel que pour tout $x \in \mathcal{H}$:

$$Tx = \sum_{n=0}^{\infty} \mu_n \langle f_n, x \rangle g_n$$

avec la somme ci-dessus est absolument convergente et les $(\mu_n)_n$ sont les valeurs singulières de T.

Preuve. Comme T est compact alors T^*T est compact et auto-adjoint donc il possède une BON de vecteurs propres $T^*Tf_n = \mu_n^2 f_n$, $n \in \mathbb{N}$. En posant $g_n = Tf_n/\mu_n$ pour les $\mu_n \neq 0$, on obtient

$$\left(x = \sum_{n=0}^{\infty} \langle f_n, x \rangle f_n\right) \Rightarrow \left(Tx = \sum_{\mu_n \neq 0} \mu_n \langle f_n, x \rangle T\left(\frac{f_n}{\mu_n}\right)\right)
\Rightarrow \left(Tx = \sum_{m=0}^{\infty} \mu_m \langle f_m, x \rangle g_m\right),$$

avec $\{g_m\}_{m\in\mathbb{N}}$ une famille O.N. De plus, la somme est absolument convergente puisque

$$\sum_{m=0}^{\infty} |\mu_m|^2 |\langle f_m, x \rangle|^2 \le \sup_{n} \mu_n^2 ||x||^2.$$

Définition 4.8 Soit \mathcal{H} un espace de Hilbert séparable. On définit, pour $p \in [1, \infty[$, les classes de Schatten par

$$\mathcal{L}_p(\mathcal{H}) = \{ T \in \mathcal{L}(\mathcal{H}) \text{ compact et tel que } \sum_{n=0}^{\infty} \mu_n^p < \infty \}$$

où $(\mu_n)_n$ sont les valeurs singulières de T.

On montre que chaque $\mathcal{L}_p(\mathcal{H})$ est un espaces de Banach muni de la norme

$$||T||_p = \left(\sum_{n=0}^{\infty} \mu_n^p\right)^{1/p}.$$

De plus, les $\mathcal{L}_p(\mathcal{H})$ sont des *-idéaux bilatères vérifiant $\mathcal{L}_p(\mathcal{H}) \subset \mathcal{L}_q(\mathcal{H})$, si $p \leq q$.

5 Opérateurs à trace et de Hilbert-Schmidt

Dans cette section on considère \mathcal{H} un Hilbert séparable.

Définition 5.1 Un opérateur $T \in \mathcal{L}(\mathcal{H})$ est dit de Hilbert-Schmidt (ou simplement HS) si

$$\sum_{i \in I} ||Te_i||^2 < \infty \tag{6}$$

pour toute $(e_i)_{i\in I}$ BON de \mathcal{H} .

On observe que pour toute $(e_i)_i$, $(f_i)_i$ BON de \mathcal{H} , on a

$$\sum_{i} ||Te_{i}||^{2} = \sum_{i} \sum_{j} |\langle f_{j}, Te_{i} \rangle|^{2} = \sum_{j} \sum_{i} |\langle f_{j}, Te_{i} \rangle|^{2} = \sum_{j} ||T^{*}f_{j}||^{2}.$$

On en déduit que T est HS si et seulement T^* est HS et que la somme dans (6) est indépendante de la base.

Proposition 5.2 Un opérateur $T \in \mathcal{L}(\mathcal{H})$ est HS si et seulement si $T \in \mathcal{L}_2(\mathcal{H})$.

Preuve. Soit $(e_i)_{i\in\mathbb{N}}$ une BON de vecteurs propres de |T| respectivement associés aux valeurs singulières $(\mu_i)_{i\in\mathbb{N}}$ de T. On a alors

$$\sum_{i \in \mathbb{N}} ||Te_i||^2 = \sum_{i \in \mathbb{N}} \langle e_i, |T|^2 e_i \rangle = \sum_{i \in \mathbb{N}} \mu_i^2.$$

Proposition 5.3 $\mathcal{L}_2(\mathcal{H})$ est un *-idéal bilatère de $\mathcal{L}(\mathcal{H})$, i.e.:

(i) $T \in \mathcal{L}_2(\mathcal{H}), S \in \mathcal{L}(\mathcal{H}) \ alors \ TS, ST \in \mathcal{L}_2(\mathcal{H}).$

(ii) $T \in \mathcal{L}_2(\mathcal{H})$ alors $T^* \in \mathcal{L}_2(\mathcal{H})$.

Preuve. En exercice. \Box

Proposition 5.4 $T \in \mathcal{L}_2(\mathcal{H})$ si et seulement si $|T| \in \mathcal{L}_2(\mathcal{H})$.

Preuve. Par la décomposition polaire T = U|T| avec U une isométrie partielle avec U^*U projection orthogonale sur $Ker(T)^{\perp} = ker(|T|)^{\perp} = \overline{Ran(|T|)}$.

$$\sum_{i \in I} ||Te_i||^2 = \sum_{i \in I} ||U|T|e_i||^2 = \sum_{i \in I} |||T|e_i||^2 < \infty.$$

 \leq : Comme $\mathcal{L}_2(\mathcal{H})$ est un idéal on a $T = U|T| \in \mathcal{L}_2(\mathcal{H})$.

Définition 5.5 Un opérateur $T \in \mathcal{L}(\mathcal{H})$ est dit à trace si

$$\sum_{i \in I} |\langle f_i, Te_i \rangle| < \infty \tag{7}$$

pour toute $(e_i)_{i\in I}$, $(f_j)_{j\in I}$ famille O.N de \mathcal{H} .

Proposition 5.6 Un opérateur $T \in \mathcal{L}(\mathcal{H})$ est à trace si et seulement si $T \in \mathcal{L}_1(\mathcal{H})$.

Preuve. Supposons que T est à trace, par la décomposition polaire T = U|T| avec U une isométrie partielle telle que Ker(U) = Ker(T). Soit $(e_i)_i$ une BON de vecteurs propres de |T| respectivement associés aux valeurs singulières $(\mu_i)_{i\in\mathbb{N}}$ de T. On pose $f_i = Ue_i$ pour les i tel que $e_i \in Ker(|T|)^{\perp} = Ker(T)^{\perp}$. Alors $(f_i)_{i\in I}$ est une famille O.N et on a

$$\sum_{i \in I} |\langle f_i, Te_i \rangle| = \sum_{i \in \mathbb{N}} |\langle Ue_i, Te_i \rangle| = \sum_{i \in \mathbb{N}} \mu_i |\langle Ue_i, Ue_i \rangle| = \sum_{i \in \mathbb{N}} \mu_i < \infty.$$

D'où $T \in \mathcal{L}_1(\mathcal{H})$.

Supposons que $T \in \mathcal{L}_1(\mathcal{H})$. Par le théorème 4.7, il existe deux familles O.N (e_i) et (f_j) tel que $T = \sum_i \mu_i \langle f_i, . \rangle e_i$ où μ_i sont les valeurs singulières de T. Soient (\tilde{e}_i) et (\tilde{f}_j) deux familles O.N quelconques de \mathcal{H} . Alors on a

$$\begin{split} \sum_{i} |\langle \tilde{f}_{i}, T\tilde{e}_{i} \rangle| &= \sum_{i} |\langle \tilde{f}_{i}, \sum_{j} \mu_{j} \langle f_{j}, \tilde{e}_{i} \rangle e_{j} \rangle| = \sum_{i} |\sum_{j} \mu_{j} \langle f_{j}, \tilde{e}_{i} \rangle \langle \tilde{f}_{i}, e_{j} \rangle| \\ &\leq \sum_{i} \sum_{j} \mu_{j} |\langle f_{j}, \tilde{e}_{i} \rangle \langle \tilde{f}_{i}, e_{j} \rangle| = \sum_{j} \mu_{j} \sum_{i} |\langle f_{j}, \tilde{e}_{i} \rangle \langle \tilde{f}_{i}, e_{j} \rangle| \\ &\leq \sum_{j} \mu_{j} \left(\sum_{i} |\langle f_{j}, \tilde{e}_{i} \rangle|^{2} \right)^{1/2} \left(\sum_{i} |\langle \tilde{f}_{i}, e_{j} \rangle|^{2} \right)^{1/2} \\ &= \sum_{j} \mu_{j} < \infty \,. \end{split}$$

Exercice.

- 1) Montrer que $\mathcal{L}_1(\mathcal{H})$ est un *-idéal bilatère de $\mathcal{L}(\mathcal{H})$.
- 2) Montrer que $T \in \mathcal{L}_1(\mathcal{H})$ si et seulement si $|T| \in \mathcal{L}_1(\mathcal{H})$.