Improve productivity of business executives

Problem Statement: -50% of total business executives productivity are less than the set target which impact on business performance.

1. Data Understanding and Exploration

Let's first have a look at the dataset and understand the size, attribute names etc.

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn import linear_model
        from sklearn.linear_model import LinearRegression
        from sklearn.linear_model import Ridge
        from sklearn.linear_model import Lasso
        from sklearn.model_selection import GridSearchCV
        import os
        # hide warnings
        import warnings
        warnings.filterwarnings('ignore')
        sns.set_style('whitegrid')
In [2]: # reading the dataset
        df = pd.read_csv("factor analysis v11.csv")
```

Understanding the Dataset

The data dictionary contains the meaning of various attributes; some non-obvious ones are:

```
In [3]: # summary of the dataset: 944 rows, 16 features, no null values
        print(df.info())
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 767 entries, 0 to 766
        Data columns (total 23 columns):
        EMPCODE
                                           767 non-null int64
        EMPNAME
                                           767 non-null object
                                           767 non-null object
        Active/Inactive
                                           767 non-null object
        Circle
        Division
                                           767 non-null object
        Category of Branch
                                           767 non-null object
                                          767 non-null object
        Location Change
        Seating Location
                                          767 non-null object
        Cooling/ Non-Cooling
                                          767 non-null object
                                          767 non-null float64
        % Target Achieved
        Tenure in months
                                          767 non-null int64
        Role Change Tenure
                                          767 non-null int64
                                          767 non-null int64
        Role Change Count
        Branches Assigned
                                           767 non-null int64
        Leads assigned
                                           767 non-null int64
                                           767 non-null int64
        Age
        Salary
                                          767 non-null float64
        Dealers Handled
                                          767 non-null int64
        Business through dealer
                                         767 non-null float64
                                         767 non-null float64
        Business through others
        Count of RBMI Received in Months 767 non-null int64
        RBMI% Achived
                                          767 non-null float64
        Total Business Done
                                           767 non-null int64
        dtypes: float64(5), int64(10), object(8)
        memory usage: 137.9+ KB
In [4]: # Check first 5 rows of Dataset
        df.head()
```

Out[4]:

	EMPCODE	EMPNAME	Active/Inactive	Circle	Division	Category of Branch	Location Change	Seating Location	Cooling/ Non- Cooling	% Tar Achie
0	23202947	Jegan J	А	Chennai	Trichy	Rural	No	Dindigul	Non- Cooling	
1	23207679	Sathyan K	А	Chennai	Trichy	Rural	No	Madurai	Non- Cooling	
2	23212153	Selvaprakash S	А	Chennai	Trichy	Rural	No	Karaikudi	Non- Cooling	
3	23177485	Ravindra Kumar Srivastava	А	Lucknow	Allahabad	Rural	No	Jounpur	Non- Cooling	
4	23177496	Abiral Singh	А	Lucknow	Allahabad	Rural	No	Bhadohi	Non- Cooling	

5 rows x 23 columns

```
In [5]: #Check Statistics of Dataset
df.describe()
```

Out[5]:

	EMPCODE	% Target Achieved	Tenure in months	Role Change Tenure	Role Change Count	Branches Assigned	Leads assigned	Age	
count	7.670000e+02	767.000000	767.000000	767.000000	767.000000	767.000000	767.000000	767.000000	
mean	2.365207e+07	0.373142	32.890482	25.466754	0.331160	2.190352	9.946545	29.859192	334
std	1.199947e+06	0.257693	26.753756	19.571617	0.754348	1.470426	9.029456	4.280137	73
min	2.307143e+07	0.000000	6.000000	0.000000	0.000000	0.000000	0.000000	20.000000	170
25%	2.318465e+07	0.100000	15.000000	13.000000	0.000000	1.000000	2.000000	27.000000	286
50%	2.321819e+07	0.400000	25.000000	21.000000	0.000000	2.000000	8.000000	29.000000	329
75%	2.323724e+07	0.600000	41.000000	36.500000	0.000000	3.000000	15.000000	32.000000	367
max	2.700382e+07	1.000000	160.000000	160.000000	3.000000	9.000000	63.000000	47.000000	741

Data Cleaning¶

```
In [6]: #Change datatype
df['EMPCODE'] = df['EMPCODE'].astype('object')
```

Explorartory Data Analysis on Categorical Variables

```
In [7]: sns.countplot(x = 'Count of RBMI Received in Months', data = df)
Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x2591f3d3a20>
```



```
In [8]: # Count of RBMI Achived
          df['Count of RBMI Received in Months'].value_counts().T
 Out[8]: 9
                134
                104
          8
          7
                 92
          10
                 79
          6
                 72
          5
                 65
          3
                 51
                 48
          2
                 46
                 40
          1
                 36
          Name: Count of RBMI Received in Months, dtype: int64
 In [9]: round(df.groupby('Cooling/ Non-Cooling').mean()['RBMI% Achived'],2)
 Out[9]: Cooling/ Non-Cooling
          Non-Cooling
                          0.61
          Name: RBMI% Achived, dtype: float64
In [10]: # Create box plot
          sns.boxplot(x = 'Cooling/ Non-Cooling', y = 'Count of RBMI Received in Months', dat
          a = df, palette = 'rainbow')
Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x259214e9908>
            10
          Count of RBMI Received in Months
             8
             6
             2
             0
                                 Non-Cooling
                              Cooling/ Non-Cooling
In [11]: round(df.groupby('Circle').mean()['RBMI% Achived'],2)
Out[11]: Circle
          Chennai
                       0.66
          Delhi
                       0.62
                       0.54
          Kolkata
                       0.58
          Lucknow
                       0.63
          Name: RBMI% Achived, dtype: float64
```

```
In [12]: # Create box plot
sns.boxplot(x = 'Circle', y = 'Count of RBMI Received in Months', data = df, palett
e = 'rainbow')
```

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x25921572128>


```
In [13]: round(df.groupby('Category of Branch').mean()['RBMI% Achived'],2)
```

```
Out[13]: Category of Branch
Large Metro 0.52
Metro 0.61
Rural 0.61
```

Urban 0.64

Name: RBMI% Achived, dtype: float64

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x259216175c0>


```
In [15]: #Checking counts of object
df['Circle'].value_counts()
```

```
Out[15]: Thane 188
Chennai 183
Lucknow 164
Delhi 145
Kolkata 87
Name: Circle, dtype: int64
```

```
In [16]: #Create Barplot
sns.barplot(x='Circle',y='Total Business Done',data=df)
```

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x25921556320>

Out[17]: Circle

Chennai 110.683060 Delhi 108.862069 Kolkata 103.068966 Lucknow 103.036585 Thane 109.686170

Name: Total Business Done, dtype: float64

```
In [18]: #Checking counts of object
round(df.groupby('Circle').mean(),2)
```

Out[18]:

	% Target Achieved	Tenure in months	Role Change Tenure	Role Change Count	Branches Assigned	Leads assigned	Age	Salary	Dealers Handled	Business through dealer	Bu: th
Circle											
Chennai	0.40	33.77	26.98	0.32	2.27	8.87	29.77	346893.54	5.97	0.38	
Delhi	0.37	35.79	28.66	0.33	1.77	10.01	30.39	341675.64	5.12	0.34	
Kolkata	0.31	28.97	21.49	0.34	3.01	10.14	29.84	313273.26	5.79	0.34	
Lucknow	0.35	30.40	24.26	0.24	1.95	8.15	29.78	324628.88	5.10	0.29	
Thane	0.39	33.79	24.43	0.42	2.27	12.41	29.62	335914.22	8.28	0.38	

```
In [19]: #Checking counts of object
round(df.groupby('Cooling/ Non-Cooling').mean(),2)
```

Out[19]:

	% Target Achieved	in months	Change Tenure	Change Count	Branches Assigned	Leads assigned	Age	Salary	Dealers Handled	through dealer	thi c
Cooling/ Non- Cooling											
Non- Cooling	0.37	32.89	25.47	0.33	2.19	9.95	29.86	334641.81	6.17	0.35	

In [20]: round(df.groupby('Category of Branch').mean(),2)

Out[20]:

	% Target Achieved	Tenure in months	Role Change Tenure	Role Change Count	Branches Assigned	Leads assigned	Age	Salary	Dealers Handled	Business through dealer	Bu
Category of Branch											
Large Metro	0.29	33.50	27.00	0.33	2.61	11.89	30.67	361606.11	6.94	0.35	
Metro	0.37	27.07	22.91	0.32	2.84	9.23	30.14	338136.38	8.30	0.53	
Rural	0.37	34.07	25.90	0.35	2.14	10.35	29.78	332059.07	5.81	0.30	
Urban	0.39	29.50	24.23	0.22	2.07	7.83	30.03	342175.68	6.83	0.51	

```
In [21]: # Create box plot
    sns.boxplot(x = 'Circle', y = 'Total Business Done', data = df, palette = 'rainbow
    ')
```

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x2592172c208>


```
In [22]: # Create box plot
    sns.boxplot(x = 'Circle', y = 'Total Business Done', data = df, palette = 'rainbow
    ',hue = 'Cooling/ Non-Cooling')
```

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x259217d1358>


```
In [23]: #Checking counts of object
    df['Cooling/ Non-Cooling'].value_counts()
```

Out[23]: Non-Cooling 767
Name: Cooling/ Non-Cooling, dtype: int64

In [24]: sns.barplot(x='Cooling/ Non-Cooling',y='Total Business Done',data=df)

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x2592187b5f8>


```
In [25]: df.groupby('Cooling/ Non-Cooling').mean()['Total Business Done']
```

Out[25]: Cooling/ Non-Cooling
 Non-Cooling 107.595828

Name: Total Business Done, dtype: float64

```
In [26]: sns.boxplot(x = 'Cooling/ Non-Cooling', y = 'Total Business Done', data = df, palet
te = 'rainbow')
```

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x259218f8dd8>

In [27]: df

Out[27]:

		EMPCODE	EMPNAME	Active/Inactive	Circle	Division	Category of Branch	Location Change	Seating Location	Cooling/ Non- Cooling	Ā
•	0	23202947	Jegan J	А	Chennai	Trichy	Rural	No	Dindigul	Non- Cooling	
	1	23207679	Sathyan K	А	Chennai	Trichy	Rural	No	Madurai	Non- Cooling	
	2	23212153	Selvaprakash S	А	Chennai	Trichy	Rural	No	Karaikudi	Non- Cooling	
	3	23177485	Ravindra Kumar Srivastava	А	Lucknow	Allahabad	Rural	No	Jounpur	Non- Cooling	
	4	23177496	Abiral Singh	А	Lucknow	Allahabad	Rural	No	Bhadohi	Non- Cooling	
	762	27002773	Anupal Gogoi	А	Kolkata	Guwahati	Rural	No	Sivasagar	Non- Cooling	
	763	23179495	Arjun Sawant	А	Thane	Thane	Rural	No	Jalna	Non- Cooling	
	764	23187476	Prasad Kulkarni	А	Thane	Thane	Rural	No	Parbhani	Non- Cooling	
	765	23224493	Yogeshwar Dabhade	А	Thane	Thane	Rural	No	Aurangabad	Non- Cooling	
	766	27000113	Pawan Wade	А	Thane	Thane	Rural	No	Sillod	Non- Cooling	

767 rows x 23 columns

```
In [28]: df['Role Change Tenure'].value_counts()[0]
```

Out[28]: 11

```
In [29]: #Checking counts of object
       df['Category of Branch'].value_counts()
Out[29]: Rural
                    583
                    109
       Urban
                     57
       Metro
       Large Metro
                     18
       Name: Category of Branch, dtype: int64
In [30]: | #Draw Pie Chart
       branch_category = [717,134,65,28]
       branch_category_name = ['Rural','Urban','Metro','Large Metro']
       #colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue']
       adius=1.1,explode=[0,0.1,0,0])
       plt.axis('equal')
       plt.show()
```



```
In [31]: sns.barplot(x='Category of Branch',y='Total Business Done',data=df)
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x2592195be48>


```
In [32]: df.groupby('Category of Branch').mean()['Total Business Done']
```

```
Out[32]: Category of Branch
Large Metro 98.000000
Metro 104.017544
Rural 107.332762
```

Urban 112.458716

Name: Total Business Done, dtype: float64

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x259229ee7f0>

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x25922a93748>

Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x25922b86cc0>


```
In [36]: # Create swarm plot
    sns.swarmplot(x = 'Category of Branch', y = 'Total Business Done', data = df, palet
    te = 'Set2')
```

Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0x25922c34780>


```
In [37]: sns.countplot(x = 'Category of Branch', data = df)
```

Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x2592197db00>


```
In [38]: sns.countplot(x = 'Location Change', data = df)
```

Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x25922c78860>


```
In [39]: df['Location Change'].value_counts()
```

Out[39]: No 703 Yes 64

Name: Location Change, dtype: int64

```
In [40]: sns.barplot(x='Location Change',y='Total Business Done',data=df)
```

Out[40]: <matplotlib.axes._subplots.AxesSubplot at 0x25922cdf668>

In [41]: sns.barplot(x='Location Change',y='Total Business Done',data=df, hue = 'Circle')

Out[41]: <matplotlib.axes._subplots.AxesSubplot at 0x25922d30198>

In [42]: df.head()

Out[42]:

	EMPCODE	EMPNAME	Active/Inactive	Circle	Division	Category of Branch	Location Change	Seating Location	Cooling/ Non- Cooling	% Tar Achie\
0	23202947	Jegan J	А	Chennai	Trichy	Rural	No	Dindigul	Non- Cooling	
1	23207679	Sathyan K	А	Chennai	Trichy	Rural	No	Madurai	Non- Cooling	
2	23212153	Selvaprakash S	А	Chennai	Trichy	Rural	No	Karaikudi	Non- Cooling	
3	23177485	Ravindra Kumar Srivastava	А	Lucknow	Allahabad	Rural	No	Jounpur	Non- Cooling	
4	23177496	Abiral Singh	А	Lucknow	Allahabad	Rural	No	Bhadohi	Non- Cooling	

5 rows x 23 columns

```
In [43]: df['Role Change Tenure'].value_counts()
Out[43]: 39
                46
                35
         20
                34
         6
                31
         11
         69
         68
         67
         58
         160
         Name: Role Change Tenure, Length: 77, dtype: int64
In [44]: | #df['Target Achieved'].value_counts()
In [45]: #sns.countplot(x = 'Target Achieved', data = df)
In [46]: #sns.countplot(x = 'Target Achieved', data = df,hue ='Cooling/ Non-Cooling')
```

Create function and apply it on dataframe

def status(tenure):

```
#if tenure>3:
    #return 'Non cooling'
#else:
    #return 'Cooling'
```

df['cstatus'] = df['Tenure in months'].apply(lambda x:status(x))

Exploratory data analysis on Numerical data

```
In [47]: # Role Change Histogram
sns.distplot(df['Role Change Tenure'],bins=25)
```

Out[47]: <matplotlib.axes._subplots.AxesSubplot at 0x25922dc2d30>


```
In [48]: # Let's do the same for class by changing the hue argument:
    fig = sns.FacetGrid(df, hue="Circle",aspect=4)
    fig.map(sns.kdeplot,'Total Business Done',shade= True)
    oldest = df['Total Business Done'].max()
    fig.set(xlim=(0,oldest))
    fig.add_legend()
```

Out[48]: <seaborn.axisgrid.FacetGrid at 0x25922e6da20>


```
In [49]: # Let's do the same for class by changing the hue argument:
    fig = sns.FacetGrid(df, hue="Circle",aspect=4)
    fig.map(sns.kdeplot,'Total Business Done',shade= True)
    oldest = df['Total Business Done'].max()
    fig.set(xlim=(0,oldest))
    fig.add_legend()
```

Out[49]: <seaborn.axisgrid.FacetGrid at 0x25922e96748>


```
In [50]: #Draw distplot
    t = sns.FacetGrid(data = df, col = 'Circle')
    t.map(sns.distplot, 'Role Change Tenure')
```

Out[50]: <seaborn.axisgrid.FacetGrid at 0x25922e96400>


```
In [51]: #Draw distplot
    t = sns.FacetGrid(data = df, col = 'Cooling/ Non-Cooling')
    t.map(sns.distplot, 'Total Business Done')
```

Out[51]: <seaborn.axisgrid.FacetGrid at 0x25923195be0>

Out[52]: <seaborn.axisgrid.FacetGrid at 0x2592326c898>


```
In [53]: sns.scatterplot(x=df['Tenure in months'],y =df['Total Business Done'],hue =df['Cool ing/ Non-Cooling'])
    plt.title('Tenure in months vs Total Business Done')
    plt.xlabel('Tenure in months')
    plt.ylabel('Total Business Done')
    plt.legend(loc ='upper right')
    plt.show()
```



```
In [54]: t = sns.FacetGrid(data = df, col = 'Circle')
t.map(sns.distplot, 'Total Business Done')
```

Out[54]: <seaborn.axisgrid.FacetGrid at 0x2592330fef0>


```
In [55]: sns.lmplot(x='Tenure in months',y='Total Business Done',data=df,col='Circle')
```

Out[55]: <seaborn.axisgrid.FacetGrid at 0x259245977f0>


```
In [56]: # Let's do the same for class by changing the hue argument:
    #fig = sns.FacetGrid(df, hue="Category of Branch",aspect=4)
    #fig.map(sns.kdeplot,'Total Business Done',shade= True)
    #oldest = df['Total Business Done'].max()
    #fig.set(xlim=(0,oldest))
    #fig.add_legend()
```

```
In [57]: h = sns.FacetGrid(data = df, col = 'Category of Branch')
h.map(sns.distplot, 'Total Business Done')
```

Out[57]: <seaborn.axisgrid.FacetGrid at 0x259249e1ac8>


```
In [58]: sns.lmplot(x='Tenure in months',y='Total Business Done',data=df,col='Category of Br
anch')
```

Out[58]: <seaborn.axisgrid.FacetGrid at 0x25924e05668>


```
In [59]: #Location change

sns.scatterplot(x=df['Tenure in months'],y =df['Total Business Done'],hue =df['Loca tion Change'])
   plt.title('Tenure in months vs Total Business Done')
   plt.xlabel('Tenure in months')
   plt.ylabel('Total Business Done')
   plt.legend(loc ='upper right')
   plt.show()
```



```
In [60]: sns.lmplot(x='Tenure in months',y='Total Business Done',data=df,col='Location Chang
e')
```

Out[60]: <seaborn.axisgrid.FacetGrid at 0x259233024e0>

In [61]: sns.lmplot(x='Role Change Tenure',y='Total Business Done',data=df,col='Category of Branch')

Out[61]: <seaborn.axisgrid.FacetGrid at 0x2592546da90>

In [62]: # Regression
#sns.pairplot(df, x_vars=['Salary','Dealers Handled','Rle Change Tenure'], y_vars='
Total Business Done', size=7, aspect=0.5, kind='scatter')

```
In [63]: # Create joint distribution plot
sns.jointplot(x = 'Role Change Tenure', y = 'Total Business Done', data = df)
```

Out[63]: <seaborn.axisgrid.JointGrid at 0x259257f2128>


```
In [64]: # Create joint distribution plot
    sns.jointplot(x = 'Salary', y = 'Total Business Done', data = df)
```

Out[64]: <seaborn.axisgrid.JointGrid at 0x25925b70780>


```
In [65]: # paiwise scatter plot

#plt.figure(figsize=(20, 10))
#sns.pairplot(df)
#plt.show()
```

This is quite hard to read, and we can rather plot correlations between variables. Also, a heatmap is pretty useful to visualise multiple correlations in one plot.

```
In [66]: # correlation matrix
  cor = df.corr()
  cor
```

Out[66]:

	% Target Achieved	Tenure in months	Role Change Tenure	Role Change Count	Branches Assigned	Leads assigned	Age	Salary	Dealers Handled	Bus th
% Target Achieved	1.000000	0.332786	0.311733	0.177444	-0.022321	0.258422	0.153633	0.325319	0.245105	0.1
Tenure in months	0.332786	1.000000	0.605700	0.552865	0.045397	0.107296	0.481622	0.576862	0.048343	-0.0
Role Change Tenure	0.311733	0.605700	1.000000	-0.108723	0.002171	0.127786	0.310227	0.334485	0.058161	-0.0
Role Change Count	0.177444	0.552865	-0.108723	1.000000	0.018420	0.049176	0.258680	0.371802	0.037742	0.0
Branches Assigned	-0.022321	0.045397	0.002171	0.018420	1.000000	0.105484	-0.007767	-0.013037	0.132191	0.1
Leads assigned	0.258422	0.107296	0.127786	0.049176	0.105484	1.000000	0.017843	0.075415	0.030165	-0.3
Age	0.153633	0.481622	0.310227	0.258680	-0.007767	0.017843	1.000000	0.489549	0.018368	0.0
Salary	0.325319	0.576862	0.334485	0.371802	-0.013037	0.075415	0.489549	1.000000	0.135288	0.0
Dealers Handled	0.245105	0.048343	0.058161	0.037742	0.132191	0.030165	0.018368	0.135288	1.000000	0.5
Business through dealer	0.116774	-0.017518	-0.016450	0.007556	0.111495	-0.311008	0.000276	0.061395	0.579768	1.0
Business through others	-0.116712	0.017610	0.016512	-0.007554	-0.111550	0.311025	-0.000299	-0.061266	-0.579791	-0.9
Count of RBMI Received in Months	0.871622	0.340628	0.333534	0.159350	0.025255	0.259041	0.178016	0.329568	0.278355	0.1
RBMI% Achived	0.871622	0.340628	0.333534	0.159350	0.025255	0.259041	0.178016	0.329568	0.278355	0.1
Total Business Done	0.878272	0.370418	0.339651	0.188762	0.041644	0.291482	0.176834	0.353401	0.303286	0.1

```
In [67]: # plotting correlations on a heatmap
                # figure size
               plt.figure(figsize=(16,8))
                # heatmap
               sns.heatmap(cor, cmap="YlGnBu", annot=True)
               plt.show()
                          % Target Achieved
                                                                                                               -0.12
                           Tenure in months
                         Role Change Tenure
                                                              -0.11
                                                       -0.11
                          Role Change Count
                                                                                                               -0.11
                          Branches Assigned
                                                                                                       -0.31
                            Leads assigned
                                                                                                                                                   0.0
                                  Salary
                                                                                                               -0.061
                           Dealers Handled
                                                                            -0.31
                                                                                                               -1
                       Business through dealer
                                                                                                                      -0.13
                       Business through others
                                         -0.12
                                                                     -0.11
                                                                                          -0.061
                                                                                                 -0.58
                                                                                                         -1
                                                                                                                             -0.13
                                                                                                                                    -0.16
                Count of RBMI Received in Months
                                                                                                               -0.13
                            RBMI% Achived
                                                                                                                                                   - -0.8
                                                                                                               -0.16
                                                                                    Age
```

Handle Categorical data

```
In [68]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 767 entries, 0 to 766
         Data columns (total 23 columns):
         EMPCODE
                                             767 non-null object
         EMPNAME
                                             767 non-null object
         Active/Inactive
                                             767 non-null object
                                             767 non-null object
         Circle
                                             767 non-null object
         Division
         Category of Branch
                                             767 non-null object
         Location Change
                                             767 non-null object
         Seating Location
                                             767 non-null object
         Cooling/ Non-Cooling
                                             767 non-null object
         % Target Achieved
                                             767 non-null float64
         Tenure in months
                                             767 non-null int64
         Role Change Tenure
                                             767 non-null int64
         Role Change Count
                                             767 non-null int64
         Branches Assigned
                                             767 non-null int64
         Leads assigned
                                             767 non-null int64
                                             767 non-null int64
         Age
         Salary
                                             767 non-null float64
         Dealers Handled
                                             767 non-null int64
         Business through dealer
                                             767 non-null float64
         Business through others
                                             767 non-null float64
         Count of RBMI Received in Months 767 non-null int64
         RBMI% Achived
                                             767 non-null float64
         Total Business Done
                                             767 non-null int64
         dtypes: float64(5), int64(9), object(9)
         memory usage: 137.9+ KB
In [69]: df.tail()
```

Out[69]:

		EMPCODE	EMPNAME	Active/Inactive	Circle	Division	Category of Branch	Location Change	Seating Location	Cooling/ Non- Cooling	% Ta Achie
-	762	27002773	Anupal Gogoi	А	Kolkata	Guwahati	Rural	No	Sivasagar	Non- Cooling	
	763	23179495	Arjun Sawant	А	Thane	Thane	Rural	No	Jalna	Non- Cooling	
	764	23187476	Prasad Kulkarni	А	Thane	Thane	Rural	No	Parbhani	Non- Cooling	
	765	23224493	Yogeshwar Dabhade	А	Thane	Thane	Rural	No	Aurangabad	Non- Cooling	
	766	27000113	Pawan Wade	А	Thane	Thane	Rural	No	Sillod	Non- Cooling	

5 rows x 23 columns

```
In [70]: df['Cooling/ Non-Cooling']
Out[70]: 0
               Non-Cooling
         1
               Non-Cooling
         2
               Non-Cooling
         3
               Non-Cooling
               Non-Cooling
         762
              Non-Cooling
         763
               Non-Cooling
         764
               Non-Cooling
         765
               Non-Cooling
                Non-Cooling
         766
         Name: Cooling/ Non-Cooling, Length: 767, dtype: object
In [71]: |#df['Cooling/ Non-Cooling'] = df['Cooling/ Non-Cooling'].map({'Cooling':0,'Non-Cooli
         ng':1})
In [72]: df.drop(['Cooling/ Non-Cooling'],axis=1,inplace =True)
In [73]: #df['Cooling/ Non-Cooling']
In [74]: df['Location Change'] = df['Location Change'].map({'No':0,'Yes':1})
In [75]: df['Location Change']
Out[75]: 0
                0
                0
                0
                0
         4
                0
         762
               0
         763
                0
                0
         764
         765
                0
         766
         Name: Location Change, Length: 767, dtype: int64
In [76]: df['Location Change'].value_counts()
Out[76]: 0
              703
         Name: Location Change, dtype: int64
In [77]: |#df['Target Achieved']= df['Target Achieved'].map({'N':0,'Y':1})
In [78]: |#df['Target Achieved'].value_counts()
In [79]: # Creating a dummy variable for 'furnishingstatus'
         dummy = pd.get_dummies(df['Category of Branch'])
In [80]: # we don't need 4 columns.
         # we can use drop_first = True to drop the first column from status df.
         dummy = pd.get_dummies(df['Category of Branch'],drop_first=True)
In [81]: #Adding the results to the master dataframe
         df = pd.concat([df,dummy],axis=1)
```

```
In [82]: df.drop(['EMPCODE'],axis =1,inplace =True)
In [83]: df.drop(['Count of RBMI Received in Months'],axis =1,inplace =True)
In [84]: df.drop(['Category of Branch'],axis=1,inplace =True)
In [85]: #df.drop(['EMPCODE'],axis=1,inplace =True)
In [86]: df.drop(['EMPNAME'],axis=1,inplace =True)
In [87]: | df.drop(['Active/Inactive'],axis=1,inplace =True)
In [88]: df.drop(['Circle'],axis=1,inplace =True)
In [89]: | df.drop(['Division'],axis=1,inplace =True)
In [90]: df.drop(['Seating Location'],axis=1,inplace =True)
In [123]: df['Location Change'].value_counts()
Out[123]: 0.0
                 703
          1.0
                  64
          Name: Location Change, dtype: int64
In [126]: df['Location Change']
Out[126]: 0
                 0.0
          1
                 0.0
          2
                 0.0
                 0.0
          3
                 0.0
          762
                 0.0
                 0.0
          763
          764
                 0.0
                 0.0
          765
          766
                 0.0
          Name: Location Change, Length: 767, dtype: float64
In [125]: df.head()
Out[125]:
                                             Role
                                                                                         Busines
                              Tenure
                                      Role
             Location
                     % Target
                                                  Branches
                                                            Leads
                                                                                  Dealers
                                 in
                                    Change
                                           Change
                                                                     Age
                                                                           Salary
                                                                                          throug
                     Achieved
                                                                                 Handled
              Change
                                                  Assigned assigned
                              months
                                            Count
                                                                                           deal
                                     Tenure
           0
                 0.0
                         0.2 0.155844 0.18750
                                                  0.6
           1
                 0.0
                         0.4 0.142857 0.17500
                                              0.0
                                                  0.444444 0.190476 0.296296 0.415588 0.190476
                                                                                            0.6
           2
                 0.0
                         0.2 0.129870 0.16250
                                              0.0
                                                  0.190476
                                                                                            0.5
           3
                 0.0
                         0.7 0.240260 0.26875
                                              0.0
                                                  0.0
                 0.0
                         0.6 0.240260 0.26875
                                              0.0
                                                   0.111111 0.142857 0.333333 0.258333 0.000000
                                                                                            0.0
```

Rescaling the Features

It is extremely important to rescale the variables so that they have a comparable scale. There are twocoon ways of rescaling

```
Normalisation (min-max scaling) and standardisation (mean-o, sigma-1) Let's try normalisation
```

```
In [92]: #defining a normalisation function
    def normalize (x):
        return ( (x-np.min(x))/ (max(x) - min(x)))

#applying normalize ( ) to all columns
    df =df.apply(normalize)
```

Splitting Data into Training and Testing Sets

```
In [93]: df
```

Out[93]:

	Location Change	% Target Achieved	Tenure in months	Role Change Tenure	Role Change Count	Branches Assigned	Leads assigned	Age	Salary	Dealers Handled	Busir thro de
0	0.0	0.2	0.155844	0.18750	0.0	0.333333	0.206349	0.333333	0.280090	0.142857	
1	0.0	0.4	0.142857	0.17500	0.0	0.44444	0.190476	0.296296	0.415588	0.190476	
2	0.0	0.2	0.129870	0.16250	0.0	0.22222	0.142857	0.259259	0.305291	0.190476	
3	0.0	0.7	0.240260	0.26875	0.0	0.55556	0.000000	0.370370	0.339229	0.190476	
4	0.0	0.6	0.240260	0.26875	0.0	0.111111	0.142857	0.333333	0.258333	0.000000	
762	0.0	0.0	0.000000	0.03750	0.0	0.111111	0.015873	0.44444	0.202774	0.000000	
763	0.0	0.6	0.233766	0.26250	0.0	0.111111	0.190476	0.333333	0.385256	0.238095	
764	0.0	0.4	0.214286	0.24375	0.0	0.111111	0.174603	0.222222	0.254927	0.190476	
765	0.0	0.2	0.090909	0.12500	0.0	0.22222	0.365079	0.296296	0.278069	0.666667	
766	0.0	0.0	0.019481	0.05625	0.0	0.111111	0.063492	0.370370	0.202767	0.285714	

767 rows x 17 columns

```
In [95]: # Putting feature variable to X
        X = df[['Location Change', 'Tenure in months',
               'Role Change Tenure', 'Role Change Count', 'Branches Assigned',
               'Leads assigned', 'Age', 'Salary', 'Dealers Handled',
               'Business through dealer', 'Business through others', 'Metro', 'Rural', 'Urba
        n','RBMI% Achived']]
        # Putting response variable to y
        y = df['Total Business Done']
In [96]: | #random_state is the seed used by the random number generator, it can be any intege
        from sklearn.model_selection import train_test_split
        X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7 ,test_size
        = 0.3, random_state=100)
X_train_lm = sm.add_constant(X_train)  # Adding a constant column to our datafram
        # create a first fitted model
        lm_1 = sm.OLS(y_train, X_train).fit()
```

K-Fold Validation

```
In [98]: from sklearn.model_selection import ShuffleSplit
         from sklearn.model_selection import cross_val_score
         cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
         cross_val_score(LinearRegression(), X, y, cv=cv)
Out[98]: array([0.81861013, 0.8292798 , 0.77629196, 0.78851091, 0.79360452])
```

In [99]: print(lm_1.summary())

OLS Regression Results

		=======		=======	========
====== Dep. Variable: 0.979	Total Business Done	e R-squa	ared (uncente	red):	
Model: 0.979	OLS	S Adj. E	R-squared (un	centered):	
Method:	Least Squares	s F-stat	cistic:		
1643. Date:	Thu, 26 Mar 2020	O Prob	(F-statistic)	:	
0.00 Time: 683.99	21:07:58	8 Log-Li	kelihood:		
No. Observations:	530	6 AIC:			
Df Residuals:	523	1 BIC:			
Df Model:	1!				
Covariance Type:	nonrobus† 			=======	:========
=======					
0.975]			t		
Location Change 0.021	-0.0011	0.011	-0.098	0.922	-0.023
Tenure in months 0.091	0.0185	0.037	0.503	0.615	-0.054
Role Change Tenure 0.121	0.0392	0.041	0.945	0.345	-0.042
Role Change Count	0.0160	0.019	0.827	0.409	-0.022
0.054 Branches Assigned 0.035	-0.0017	0.019	-0.090	0.928	-0.039
Leads assigned 0.146	0.0991	0.024	4.131	0.000	0.052
Age 0.035	-0.0110	0.023	-0.468	0.640	-0.057
Salary 0.101	0.0404	0.031	1.303	0.193	-0.021
Dealers Handled	-0.0001	0.023	-0.006	0.995	-0.046
Business through de 0.179	ealer 0.1299	0.025	5.181	0.000	0.081
Business through ot 0.128	thers 0.0845	0.022	3.804	0.000	0.041
Metro 0.023	-0.0187	0.021	-0.872	0.384	-0.061
Rural 0.045	0.0076	0.019	0.401	0.688	-0.030
Urban 0.055	0.0152	0.020	0.755	0.451	-0.024
RBMI% Achived 0.513	0.4895				0.467
Omnibus:			======== -Watson:	_=======	2.125
Prob(Omnibus):	0.000		-Bera (JB):		240.929
Skew:		Prob(JE			4.82e-53
Kurtosis:	5.874 				26.4
		· 			_

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

Random Forest Regression

```
In [100]: from sklearn.ensemble import RandomForestRegressor
    from sklearn.metrics import r2_score,mean_squared_error

In [101]: rf = RandomForestRegressor(n_estimators=500,max_depth =5)
    rf.fit(X_train, y_train)
    y_pred_rf =rf.predict(X_test)
    print(r2_score(y_pred_rf,y_test))
    0.814584620148798
```

RFE (Recurssive Feature Extraction)

```
In [102]: # Importing RFE and LinearRegression
          from sklearn.feature_selection import RFE
          from sklearn.linear_model import LinearRegression
In [103]: # Running RFE with the output number of the variable equal to 9
         lm = LinearRegression()
         rfe = RFE(lm, 5)
                                      # running RFE
         rfe = rfe.fit(X_train, y_train)
                                       # Printing the boolean results
          print(rfe.support_)
         print(rfe.ranking_)
         [False False False False True False True False True False
          False False True]
         [10 5 2 4 9 1 6 1 11 1 1 3 8 7 1]
In [104]: | col = X_train.columns[rfe.support_]
In [105]: col
Out[105]: Index(['Leads assigned', 'Salary', 'Business through dealer',
                 'Business through others', 'RBMI% Achived'],
               dtype='object')
```

Building model using sklearn

```
In [106]: # Creating X_test dataframe with RFE selected variables
    X_train_rfe = X_train[col]

In [107]: # Adding a constant variable
    import statsmodels.api as sm
    X_train_rfe = sm.add_constant(X_train_rfe)
In [108]: lm = sm.OLS(y_train,X_train_rfe).fit() # Running the linear model
```

```
In [109]: #Let's see the summary of our linear model
    print(lm.summary())
```

OLS Regression Results

OLS Regression Results									
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Total B	east Square 26 Mar 20: 21:08:	ne R-sq LS Adj. es F-st 20 Prob 03 Log- 36 AIC: 30 BIC:	======= uared: R-squared: atistic: (F-statisti Likelihood:		0.841 0.839 559.9 8.09e-209 677.33 -1343.			
=======================================		=======	======	========	=======	========			
========									
0.975]		coef	std err	t 	P> t	[0.025			
const 4.859		-1.2260	3.097	-0.396	0.692	-7.311			
Leads assigned 0.143		0.0981	0.023	4.268	0.000	0.053			
0.143 Salary 0.117		0.0688	0.025	2.805	0.005	0.021			
Business through of 7.439	dealer	1.3533	3.098	0.437	0.662	-4.732			
Business through o	others	1.3126	3.097	0.424	0.672	-4.772			
RBMI% Achived 0.519		0.4973	0.011		0.000	0.475			
	======				=======				
Omnibus:		92.42		n-Watson:		2.129			
Prob(Omnibus):		0.00	_	e-Bera (JB):		247.462			
Skew:		0.85	,			1.84e-54			
Kurtosis:		5.85				2.58e+03			
============		=======	======	========	=======	=======			

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.58e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Making Prediction

```
In [110]: # Now let's use our model to make predictions.

# Creating X_test_6 dataframe by dropping variables from X_test
X_test_rfe = X_test[col]

# Adding a constant variable
X_test_rfe = sm.add_constant(X_test_rfe)

# Making predictions
y_pred = lm.predict(X_test_rfe)
```

```
In [111]: X_test_rfe.shape
Out[111]: (231, 6)

In [112]: # Plotting y_test and y_pred to understand the spread.
    fig = plt.figure()
    plt.scatter(y_test,y_pred)
    fig.suptitle('y_test vs y_pred', fontsize=20) # Plot heading
    plt.xlabel('y_test', fontsize=18) # X-label
    plt.ylabel('y_pred', fontsize=16) # Y-label
Out[112]: Text(0, 0.5, 'y_pred')
```

y_test vs y_pred 0.7 0.6 0.5 0.3 0.2 0.1 0.0 0.2 0.4 0.6 0.8 1.0 y_test

```
In [113]: # Now let's check the Root Mean Square Error of our model.
import numpy as np
    from sklearn import metrics
    print('RMSE :', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

RMSE : 0.07037787178728329
In [114]: df1 =pd.DataFrame(data={'predictions': y_pred, 'actual': y_test})
```

```
In [115]: round(df1,2)*100
```

Out[115]:

	predictions	actual
173	39.0	32.0
253	44.0	45.0
207	15.0	16.0
433	32.0	24.0
191	59.0	60.0
259	34.0	34.0
511	52.0	53.0
111	50.0	44.0
547	54.0	51.0
724	66.0	52.0

. ..

231 rows x 2 columns

Ridge Regression

```
In [116]: # list of alphas to tune
          params = { 'alpha': [0.0001, 0.001, 0.01, 0.05, 0.1,
           0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0,
           4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 20, 50, 100, 500, 1000 ]}
          ridge = Ridge()
          # cross validation
          folds = 5
          model_cv = GridSearchCV(estimator = ridge,
                                  param_grid = params,
                                  scoring= 'neg_mean_absolute_error',
                                  cv = folds,
                                  return_train_score=True,
                                  verbose = 1)
          model_cv.fit(X_train, y_train)
          Fitting 5 folds for each of 28 candidates, totalling 140 fits
          [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
          [Parallel(n_jobs=1)]: Done 140 out of 140 | elapsed: 1.6s finished
Out[116]: GridSearchCV(cv=5, error_score=nan,
                       estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True,
                                       max_iter=None, normalize=False, random_state=None,
                                       solver='auto', tol=0.001),
                       iid='deprecated', n_jobs=None,
                       param_grid={'alpha': [0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3,
                                             0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0,
                                              4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 20, 50,
                                             100, 500, 1000]},
                       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                       scoring='neg_mean_absolute_error', verbose=1)
```

```
In [117]: cv_results = pd.DataFrame(model_cv.cv_results_)
    cv_results = cv_results[cv_results['param_alpha']<=200]
    cv_results.head()</pre>
```

Out[117]:

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_alpha	params	split0_test_score	split
0	0.041419	0.070845	0.003198	7.540231e-04	0.0001	{'alpha': 0.0001}	-0.050153	
1	0.004801	0.001166	0.002201	4.000905e-04	0.001	{'alpha': 0.001}	-0.050102	
2	0.004202	0.000400	0.001601	4.902908e-04	0.01	{'alpha': 0.01}	-0.050066	
3	0.004402	0.001020	0.002401	4.907190e-04	0.05	{'alpha': 0.05}	-0.049972	
4	0.004002	0.000633	0.002001	4.909339e-07	0.1	{'alpha': 0.1}	-0.049859	

5 rows x 21 columns


```
In [120]: from sklearn.model_selection import GridSearchCV
          from sklearn.linear_model import Lasso
          from sklearn.tree import DecisionTreeRegressor
          def find_best_model_using_gridsearchcv(X,y):
              algos = {
                   'linear_regression' : {
                       'model': LinearRegression(),
                       'params': {
                           'normalize': [True, False]
                   },
                   'lasso': {
                       'model': Lasso(),
                       'params': {
                           'alpha': [1,2],
                           'selection': ['random', 'cyclic']
                  },
                   'decision_tree': {
                       'model': DecisionTreeRegressor(),
                       'params': {
                           'criterion' : ['mse','friedman_mse'],
                           'splitter': ['best', 'random']
                   }
              scores = []
              cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
               for algo_name, config in algos.items():
                  gs = GridSearchCV(config['model'], config['params'], cv=cv, return_train_
          score=False)
                  gs.fit(X,y)
                  scores.append({
                       'model': algo_name,
                       'best_score': gs.best_score_,
                       'best_params': gs.best_params_
                   })
              return pd.DataFrame(scores,columns=['model','best_score','best_params'])
          find_best_model_using_gridsearchcv(X,y)
Out[120]:
```

	0	linear_regression	0.801259	{'normalize': True}	
	1	lasso	-0.023256	{'alpha': 1, 'selection': 'random'}	
	2	decision_tree	0.669755	{'criterion': 'mse', 'splitter': 'random'}	
In []:					
(
In []:					
In []:					
TII [].					
In []:					
In []:					

model best_score

best_params

1	
	1

In []:	
In []:	

37 of 37