Estructura de Computadors

Tema 3 Aritmètica d'enters

Aritmètica d'enters

Objectius:

- Fer la correspondència entre els tipus de dades numèrics d'alt nivell (p. ex, Java i C/C++) i els tipus natius del processador
- Traduir a assemblador expressions aritmètiques (càlculs i guardes) expresades en alt nivell
- Distingir entre operadors combinacionals i seqüencials i calcular-ne el temps d'operació i la productivitat en casos senzills a partir dels retards dels components
- Relacionar manipulació de bits amb operacions d'alt nivell (p. ex, operar amb els camps del format de coma flotant)
- Distingir les diferents respostes del computador davant de les operacions que no es poden completar (per desbordament o per indeterminació)
- Entendre el suport que dóna el joc d'instruccions a les singularitats del càlcul (excepcions, indicadors de la norma IEEE).

Índex

- 1. Introducció
 - 1. Tipus en alt i baix nivell
 - 2. Operacions i operadors
 - 3. Operacions lògiques
 - 4. La representació dels enters
- 2. Suma i resta d'enters
 - 1. Fonaments
 - 2. Suma i resta en el MIPS R2000
 - 3. Operadors de suma
 - 4. Operadors de resta
- 3. Multiplicació d'enters
 - 1. Fonaments
 - 2. Multiplicació i divisió en el MIPS
 - 3. Operadors de desplaçament
 - 4. Operadors de multiplicació sense signe
 - 5. Operadors de multiplicació amb signe

Bibliografia

- D.L. Patterson, J. L. Hennessy: Estructura y diseño de computadores
 - Ed Reverté, 2000: vol 1, cap 4
 - Ed Reverté, 2011, traducció de la 4a edició en anglès: cap. 3
- W. Stallings: Organización y Arquitectura de Computadores (7. ed) Prentice Hall. Cap 8
- David Goldberg: Computer Arithmetic
 - Appendix H de J. L. Hennessy, D. L. Patterson: Computer Architecture, a Quantitative Approach, 3^a ed
 - (PDF)
 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.3375
 &rep=rep1&type=pdf
 - (PDF) http://www.cs.clemson.edu/~mark/464/appH.pdf

Aritmètica d'enters

Introducció

- 1. Tipus de dades en alt i baix nivell
- 2. Operacions i operadors
 - Els càlculs en els computadors
 - La unitat aritmètica i lògica
 - Paràmetres d'una ALU
 - Prestacions
- 3. Exemples: operacions lògiques
- 4. La representació dels enters
 - Notes sobre la representació dels enters
 - Conversió entre tipus
 - El salt condicional en el MIPS

1.1 Tipus en alt i en baix nivell

Tipus de dades bàsiques

	bits	Java	C/C++ (32 bits)	MIPS	x64/IA-64
caràcter	8	_	char	byte	byte
	16	char	wchar_t	halfword	word
enter sense signe	8	_	unsigned byte	byte	byte
	16	_	unsigned short	halfword	word
	32	_	unsigned long	word	dword
enter amb signe	8	byte	byte	byte	byte
	16	short	short	halfword	word
	32	int	long	word	dword
	64	long	_	_	qword
coma	32	float	float	float	float
flotant	64	double	double	double	double

- Els càlculs en els computadors
 - Les operacions lògiques i aritmètiques expressades en alt nivell es tradueixen en dades i instruccions de codi màquina
 - Durant el cicle d'instrucció, el processador aplica operadors per a processar les dades

```
int[] j;
short a;
float x,y;

x = 5*j[a];
if (a>x) {
   y=x*1.3e5;
   j=(int)exp(x);
}
```

```
Ibu $t0,0xFF0($0)

Iw $t1,0x1020($2)

add $t0,$t0,$t1

mtc1 $t0,$f1
...
```


La unitat aritmético-lògica

- L'ALU (Arithmetic Logic Unit) és un element funcional del processador format per un conjunt d'operadors digitals que fan les operacions codificades en les instruccions
 - Cada operador implementa una o més operacions que s'apliquen als operands i produeix un resultat
- El control del processador, dirigit per les instruccions que es descodifiquen, selecciona els operadors i encamina operands i resultats des de i als registres implicats
- L'ALU pot activar indicadors (*flags*) que donen informació del resultat
 (Z=1 si R=0, N=1 si R<0, V=1 si desbordament en Ca2, etc.)

- Paràmetres d'una ALU
 - Funcionals:
 - Operacions que pot realitzar
 - Conversió entre tipus
 - Operacions de bit (&, |) i desplaçaments
 - Càlcul elemental: suma, resta, multiplicació i divisió
 - Comparació (=, ≠, <, ≤, ≥, >)
 - Tipus d'operands que pot manejar
 - Prestacions (cost temporal):
 - A quina velocitat opera una ALU?
 - Quantes operacions pot fer per unitat de temps?
 - Complexitat (cost espacial)
 - Quants recursos físics cal dedicar a l'operador?
 - Quin espai del xip cal dedicar a l'operador?

- Com expressarem les prestacions?
 - Temps de resposta
 - Temps que cal per a realitzar un càlcul. Com més curt, millor
 - Es mesura en unitats de temps (ns, temps de porta...)
 - Productivitat
 - Nombre d'operacions per unitat de temps. Com més gran, millor
 - Es pot mesurar amb unitats genèriques OPS (operacions per segon), KOPS, MOPS, GOPS...
 - cas de coma flotant: FLOPS, MFLOPS, etc.
- Complexitat (cost espacial)
 - Nombre de portes
 - Nombre de transistors
 - Superfície de xip
 - Unitats típiques: µm², nm²

1.3 Exemple: operacions lògiques

En Java o C& (and) | (or) ^ (xor) ~ (not)

```
int a = 0xA;
int b = 0x3;
int c;

...

c = a & ~b;

...

System.out.println
   (a + " \ ~" + b + " = " + c);

lw $s0,a

lw $s1,b

li $t0, 0xFFFFFFFF

xor $s1,$s1,$t0

and $s0,$s0,$s1

sw $s0,c
```

10 ^ ~3 = 8

1.3 Exemple: operacions lògiques

En el MIPS

format R	format I
OR	ORI
AND	ANDI
XOR	XORI
NOR	

Operació derivada: NOT (Ca1)nor \$t0,\$t0,\$zero

li \$t1,0xFFFFFFFF
xor \$t0,\$t0,\$t1

- Productivitat dels operadors: 1/t_{Porta}
 - Si t_{Porta} = 50 ps, productivitat
 P = 20 GOPS

- Notes sobre la representació d'enters
 - Els conjunts matemàtics N i Z són infinits, però els tipus de dades bàsics d'un computador tenen una capacitat de representació finita
 - Amb *n* bits només es poden representar 2ⁿ paraules diferents
 - La representació d'enters en el computador és exacta però limitada
 - Rangs de representació amb n bits
 - Per a N: codificació binària natural: [0 ... +2ⁿ-1]
 - Per a Z: codificació en complement a 2: [-2ⁿ⁻¹ ... +2ⁿ⁻¹-1]

n	sense signe	amb signe
8	0 255	-128 + 127
16	0 65.535	-32.768 + 32.767
32	0 4.294.967.295	-2.147.483.648 +2.147.483.647
64	0 1.84·10 ¹⁹ (aprox)	-9.2·10 ¹⁸ +9.2·10 ¹⁸ (aprox)

- Conversió entre tipus enters en el MIPS R2000
 - El tipus enter natiu és de 32 bits (ALU i registres)
 - Les instruccions d'accés a la memòria fan conversió si cal
 - LBU i LHU afegeixen zeros per l'esquerra (vàlid per a CBN)
 - LB i LH fan extensió de signe (vàlid per a Ca2)
 - SB i SH eliminen bits per l'esquerra

- El salt condicional en el MIPS
 - Per comparació entre dos operands:
 (BEQ/BNE r_A, r_B, eti)

Instrucció	Condició
BEQ	A = B
BNE	A≠B

- Les pseudoinstruccions BEQZ/BNEZ r,eti deriven de BEQ i BNE
- Basades en l'anàlisi d'un operand:

<u>Instrucció</u>	Condició
BGEZ	$A_{31} = 0$
BGTZ	$A_{31} = 0 i A_{30} A_0 \neq 0$
BLTZ	$A_{31} = 1$
BLEZ	$A_{31} = 1 \circ A_{31} A_0 = 0$

Alguns operadors de càlcul de condició de salt

- El salt condicional en el MIPS
 - Exemples de condició


```
eti_do:...

...
lw $t0,i
bgez $t0,eti_do
```

```
int i,j;
...
if ((i==j)&&(j>0))
    ...
else
    ...
```



```
lw $t0,i
    lw $t1,j
    bne $t0,$t1,eti_else
    blez $t1,eti_else
    ...
eti_else:
```

Índex

2. Suma i resta d'enters

- 2.1 Fonaments
 - Anatomia de la suma
 - La resta
 - La comparació
- 2.2 Suma i resta en el R2000
 - Instruccions de suma i resta
 - Tractament del desbordament
 - Instruccions de comparació

- 2.3 Operadors de suma
 - El sumador d'un bit
 - El sumador sèrie o CPA
 - Detecció del desbordament
- 2.4 Operadors de resta
 - Disseny a partir del sumador

- Anatomia de la suma
 - El procediment general calcula R = A + B + c₀

Transports:

- c₀ (de entrada),
 habitualment c₀ = 0
- c_{n-1}...c₁, formen part del càlcul
- c_n (d'eixida)
 útil de vegades
- El procediment de suma és el mateix per a CBN i Ca2

- El desbordament en la suma
 - Detecció:
 - En aritmètica en CBN, un transport final $c_n=1$
 - En aritmètica en Ca2, només pot donar-se si els signes dels sumands són iguals. Dues maneres de detectar-ho:
 - el signe del resultat generat està invertit: $a_{n-1} = b_{n-1} \neq r_{n-1}$ o $(a_{n-1} \oplus b_{n-1}) * \cdot (b_{n-1} \oplus r_{n-1}) = 1$
 - els dos transports finals són distints: $c_n \neq c_{n-1}$ o $c_n \oplus c_{n-1} = 1$
 - Exemples amb n = 4 bits

La resta

- La resta R=A-B (en CBN i en Ca2) pot fer-se com la suma R=A+Ca2(B)=A+Ca1(B)+1

- Els préstecs de la resta apareixen invertits en els transports de la suma
- En CBN: el desbordament es detecta quan $c_n = 0$
- En Ca2: el desbordament es detecta quan $c_n \neq c_{n-1}$

- La comparació de dos enters:
 - El resultat d'una comparació és un bit (1 = cert, 0 = fals)
 - La comparació A < B és pot fer restant (R = A B) i analitzant els transports i el signe de R
 - el valor concret de R és irrellevant

Comparació	CBN	Ca2
A == B	R == 0	R = 0
A >= B	c _n = 1 (R és representable)	R és positiu
A < B	$c_n = 0$ (R no és representable)	R és negatiu

Instruccions

- Operands de 32 bits
- Versions registre-registre (format R) o registre-immediat (format I)
- Instruccions additives:

		amb	sense
operació	format	signe	signe
suma	R	ADD/	ADDU
suma		ADDI/	ADDIU
resta	R	SUB/SUBU	
comparació	R	SLT	SLTU
comparació		SLTI	SLTIU

- ADD i ADDU (etc...) fan la mateixa operació, però ADD pot produir excepcions
- Totes les instruccions de format I fan extensió de signe de la constant
- No hi ha resta en format I
 - Per a restar una constant k caldrà sumar –k

- Instruccions de suma i resta
 - ADD rdst,rfnt1,rfnt2
 ADDI rdst,rfnt,imm
 - Si hi ha desbordament (amb signe), provoquen una excepció i el registre rdst no es modifica
 - ADDU rdst,rfnt1,rfnt2
 ADDIU rdst,rfnt,imm
 - Mai no provoquen cap excepció, ni detecten situacions de desbordament
 - SUB rdst,rfnt1,rfnt2
 - Si hi ha desbordament (amb signe), provoquen una excepció i el registre rdst no es modifica
 - SUBU rdst,rfnt1,rfnt2
 - Mai no provoquen cap excepció, ni detecten situacions de desbordament

- Tractament del desbordament en alt nivell
 - En Java i en C l'aritmètica entera ignora el desbordament

```
int a,b,c;
    a = 2000000000; // 0x77359400
b = 1000000000; // 0x3B9ACA00
c = a + b;
System.out.println(a + " + " + b + " = " + c);
2 000 000 000 + 1 000 000 000 = -1 294 967 296
```

- En generar codi per a MIPS, el compilador triarà ADDU i no ADD
- Per a detectar el desbordament, caldrà afegir al programa:

```
if ((a^b)>=0 && ((c^b)<0))
    throw new ArithmeticOverflowException;</pre>
```

- Tractament del desbordament en baix nivell
 - Detecció de la desigualtat dels signes entre operands

```
int a,b,c;
c = a + b;
```


- Instruccions de comparació (Set on LessThan)
 - SLT rdst,rfnt1,rfnt2
 SLTI rdst,rfnt,imm
 - Fan la comparació menor estricte (rfnt1<rfnt2 o rfnt<imm)
 entre dos operands, tot interpretant-los en Ca2
 - Si la condició s'acompleix fa *rdst*=1, en cas contrari *rdst*=0
 - Mai no generen cap excepció
 - SLTU rdst,rfnt1,rfnt2
 SLTIU rdst,rfnt,imm
 - Fan la comparació (*rfnt1<rfnt2* o *rfnt<imm*) entre dos operands, tot interpretant-los en CBN
 - Si la condició s'acompleix fa *rdst*=1, en cas contrari *rdst*=0
 - Mai no generen cap excepció

La suma en sèrie

- La suma en sèrie reprodueix el procediment humà de suma
- La suma es fa per ordre, des del LSB cap al MSB
- En cada columna i, cal sumar els bits dels sumands a_i , b_i i el transport c_i provinent de la columna i–1 per a obtenir el bit del resultat s_i i generar el transport c_{i+1} cap a la columna i+1 següent
- Transport d'entrada $c_0 = 0$

- El sumador complet d'un bit (Full adder):
 - Implementa els càlculs d'una columna de la suma en sèrie
 - És un operador que admet 3 entrades d'un bit i produeix dues eixides:

a _i	b _i	C_{i}	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$s_{i} = \overline{a_{i}} \cdot \overline{b_{i}} \cdot c_{i} + \overline{a_{i}} \cdot b_{i} \cdot \overline{c_{i}} + a_{i} \cdot \overline{b_{i}} \cdot \overline{c_{i}} + a_{i} \cdot b_{i} \cdot c_{i}$$

$$c_{i+1} = a_{i} \cdot b_{i} + a_{i} \cdot c_{i} + b_{i} \cdot c_{i}$$

- El sumador complet d'un bit: Implementació
 - Implementació a partir de les funcions lògiques

- El sumador complet d'un bit: Prestacions
 - Temps de retard:

$$t_{S} = t_{NOT} + t_{AND} + t_{OR}$$

 $t_{C} = t_{AND} + t_{OR}$

Complexitat: 12 portes

Amb tecnologia CMOS 0.5 μm

• temps de resposta: entre 1 i 2 ns

• superfície: 1000 μm²

- El sumador sèrie de n bits
 - CPA (Carry Propagation Adder)
 - Per a fer un sumador de dos números de m bits, es connecten m sumadors complets en cascada
 - l'eixida de transport del sumador i-èssim es connecta a l'entrada de transport del sumador i+1-èssim
 - l'operador resultant té una entrada i una eixida de transport globals

- El sumador sèrie de n bits. Complexitat
 - El temps de càlcul d'un sumador sèrie per a operands de n bits es pot expressar en termes dels retards d'un sumador complet:
 - $t(n \text{ bits}) = (2n+1) \cdot T$, sent T=retard d'una porta
 - Asimptòticament el temps de càlcul és lineal, t(n bits) = O(n)
 - El cost espacial també és lineal, $cost(n \ bits) = O(n)$
 - La suma sèrie és poc eficient per a les aplicacions pròpies d'un processador convencional, amb n=32 o n=64 bits
- Millores en la suma
 - Anticipació del transport: CLA, Carry Lookahead Adder
 - Calcula els bits de transport c_i abans que els bits de suma s_i
 - El retard del càlcul dels transports és O(log(n))
 - Selecció del transport: CSA, Carry Select Adder
 - Divideix la suma en dues parts i gestiona la part alta amb els possibles valors del transport provinent de la part baixa

- CSA (Carry Select Adder)
 - Accelera l'operació de suma a base d'invertir-hi més circuits

- Càlcul del desbordament en l'aritmètica en Ca2
 - − Es detecta quan els bits de transport d'ordre n i n−1 no són iguals
 - El signe del resultat s_{n-1} és incorrecte

2.4 Operadors de resta

- Disseny del restador a partir del sumador
 - R = A B = A + Ca2(B) = A + not(B) + 1
 - La detecció de desbordament és igual que amb la suma:

2.4 Operadors de resta

Disseny clàssic del sumador/restador

Índex

3. Multiplicació i divisió d'enters

3.1 Fonaments

Desplaçaments i aritmètica

Anatomia de la multiplicació sense signe

Problemàtica de la multiplicació amb signe

La divisió

3.2 Multiplicació i divisió en el MIPS

Instruccions de desplaçament Instruccions de multiplicació i divisió generals

3.3 Operadors de desplaçament

3.4 Operadors de multiplicació sense signeOperadors seqüencials

Operador de multiplicació sense signe

3.5 Operadors de multiplicació amb signe

Algorismes 1 i 2

Algorisme de Booth

Algorisme de Booth amb recodificació per parelles

- Desplaçaments i aritmètica entera (I)
 - Desplaçar n bits cap a l'esquerra és equivalent a multiplicar per 2ⁿ
 - Entren *n* zeros per la dreta
 - Operació vàlida per a enters amb i sense signe
 - Nom de l'operació: desplaçament lògic cap a l'esquerra

```
int a = -12;
int b = a << 3;
System.out.println(a + " * 8 = " + b);</pre>
```

-12 * 8 = -96

- Desplaçaments i aritmètica entera (II)
 - Desplaçar n bits cap a la dreta és equivalent a dividir per 2ⁿ
 - Amb enters sense signe: entren *n* zeros per l'esquerra
 - Amb enters amb signe: el bit de signe es replica *n* vegades

Sense signe: desplaçament **lògic**

Amb signe: desplaçament aritmètic

 Els compiladors eviten les operacions de multiplicació sempre que és possible

```
int a,b,c,d;
a = a*2;  // 2=2¹
b = b*8;  // 8=2³
c = c*1024;  // 1024=2¹0
d = d*5  // 5=2²+1
```

```
lw $s0, a
lw $s1, b
lw $s2, c
lw $s3, d
add $s0, $s0, $s0
sll $s1, $s1, 3
sll $s2, $s2, 10
sll $t0, $s3, 2
add $s3, $s3, $t0
sw $s0, a
sw $s1, b
```

- Anatomia de la multiplicació sense signe
 - En general, per representar el producte de dos nombres de n bits cal
 2n bits
 - El procediment humà demana sumes i desplaçaments

 (9_{10})

					1	1	0	1
				×	1	0	0	1
					1	1	0	1
				0	0	0	0	0
			0	0	0	0	0	0
		1	1	0	1	0	0	0
	0	1	1	1	0	1	0	1
4	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰

Pesos

 (13_{10}) Notació

M = Multiplicand; m_i = bit i-èssim

Q = Multiplicador; q_i = bit i-èssim

 $P = Producte; p_i = bit i-èssim$

$$P = M \times Q = \sum_{i=0}^{n-1} Mq_i 2^i$$

$$(117_{10}) = 1101_2 \times (1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0)$$

- Problemàtica de la multiplicació amb signe
 - Cal estendre el signe del multiplicand
 - El pes del bit de signe del multiplicador és de −2^{n−1} (i no 2^{n−1})
 - Convé buscar codificacions alternatives

$$(-3_{10})$$

$$(-7_{10})$$

$$P = M \times Q = \sum_{i=0}^{n-2} Mq_i 2^i - Mq_{n-1} 2^{n-1}$$

$$(+21_{10}) = 111111101_2 \times (-1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0)$$

Pesos

La divisió

- Donats un dividend i un divisor, produeix dos resultats: el quocient i el residu (o mòdul)
- Exemple sense signe: algoritme humà de restes i desplaçaments
 - Si no cap (X): 0 al quocient
 - Si cap (√): restar i 1 al quocient

Amb signe: per convenció, el residu té el mateix signe que el dividend

- La multiplicació i la divisió en alt nivell
 - El mòdul

```
int x,y,z,t;
x = 13;
y = 5;
z = x/y;
t = x%y;
System.out.println(x + " = " + y + "*" + z + " + " + t);
13 = 5*2 + 3
```

La divisió per zero

```
int x,y,z; Java,C
x = 0;
y = 1;
z = y/x;

Exception in thread "main"
java.lang.ArithmeticException:
/ by zero at ...
```

3.2 Multiplicació i divisió en el MIPS

- Instruccions de desplaçament
 - Són de la forma operació Rr, Ri, Desp, on Desp pot ser una constant o un registre
 - El desplaçament màxim és de 31 posicions. Només compten els 5 bits de menor pes de Long

tipus	format I	format R
esquerra	sll rt,rs,shamt	sllv rd,rs,rt
dreta (lògic)	<pre>srl rt,rs,shamt</pre>	<pre>srlv rd,rs,rt</pre>
dreta (aritmètic)	<pre>sra rt,rs,shamt</pre>	<pre>srav rd,rs,rt</pre>

Shamt: shift amount

3.2 Multiplicació i divisió en el MIPS

- Instruccions de multiplicació i divisió generals
 - Dos registres especials de 32 bits: HI i LO
 - Combinats formen un registre de 64 bits
 - Operacions

```
mult $2, $3: HI-LO \leftarrow $2*$3; Operands amb signe multu $2, $3: HI-LO \leftarrow $2*$3; Operands positius sense signe div $2, $3: LO \leftarrow $2/$3; HI \leftarrow $2 mod $3; Amb signe divu $2, $3: LO \leftarrow $2/$3; HI \leftarrow $2 mod $3; Sense signe
```

Transferència de resultats

```
    mfhi $2: $2 ← HI
    mflo $2: $2 ← LO
```

- Hi ha pseudoinstruccions que permeten emmagatzemar el resultat en un registre destinatari de propòsit general i multiplicar per constants
- Cap d'aquestes instruccions comprova desbordaments o divisió per zero: cal fer-ho per software

3.3 Operadors de desplaçament

El Barrel Shifter

- Un Barrel Shifter és un circuit que permet realitzar desplaçaments variables sobre dades de n bits
- Pot implementar-se mitjançant multiplexors
- Depenent del disseny, fa desplaçaments lògics o aritmètics cap a la dreta, cap a l'esquerra o bidireccionals
- Connexions:

3.3 Operadors de desplaçament

- Barrel shifter: exemple de disseny
 - Implementació d'un operador de desplaçament lògic cap a l'esquerra (s11) per a dades de 4 bits

Operadors seqüencials aritmètics

- Són circuits seqüencials síncrons que fan una operació donada
- Necessiten un cert nombre de cicles de rellotge per a fer l'operació
- El cicle de rellotge s'ajusta per a que puguen actuar els circuits
- Si un operador necessita n cicles de t segons per a una operació,
 - el temps d'operació serà $T = n \times t$
 - la productivitat serà P = f/n, on f = 1/t és la freqüència de treball del relloge

Notació:

M = Multiplicand;
 m_i = bit i-èssim de M

- Q = Multiplicador; $q_i = bit i-èssim de Q$

- P = Producte; p_i = bit i-èssim del producte

n = Nombre de dígits dels operands M i Q (de 0 a n–1)

- Operador per a l'algorisme de sumes i desplaçaments
 - M i Q de n bits; P de 2n bits

Algorisme amb què funciona l'operador seqüencial

• Exemple: n=4; $M=1011_2$; $Q=0101_2$ $(11_{10}\times5_{10}=55_{10})$

Cicle	Acció	C-HI-LO
0	Valors inicials	0 0000 010 <u>1</u>
1	HI := HI + M	0 1011 0101
	Desplaçar C-HI-LO 1 bit a la dreta	0 0101 101 <u>0</u>
2	No sumar	0 0101 1010
	Desplaçar C-HI-LO 1 bit a la dreta	0 0010 110 <u>1</u>
3	HI := HI + M	0 1101 1101
	Desplaçar C-HI-LO 1 bit a la dreta	0 0110 111 <u>0</u>
4	No sumar	0 0110 1110
	Desplaçar C-HI-LO 1 bit a la dreta	0 0011 0111

• Exercici: n=4; $M=1101_2$; $Q=1011_2$ $(13_{10}\times11_{10}=143_{10})$

Cicle	Acció	C-HI-LO
0	Valors inicials	0 0000 101 <u>1</u>
1		
2		
3		
4		

Solució: 1000 1111

- Algorisme 1: Tractament del signe por separat
 - Es tracta de multiplicar els valors absoluts i considerar el signe a banda. Tot considerant-hi que Signe(X) és el bit de signe de X:

```
Signe_Prod \( \times \text{ Signe (M) XOR Signe (Q);} \)
si M < 0 aleshores M \( \times \text{ M; fi si;} \)
si Q < 0 aleshores Q \( \times -Q; \text{ fi si;} \)
P \( \times \text{ M \times Q;} \)
si Signe_Prod = 1 aleshores P \( \times -P; \text{ fi si;} \)</pre>
```

Inconvenients

- Cal cert hardware addicional per al cas particular de nombres amb signe, a fi de complementar M, Q o P
- Hi ha d'altres mètodes per a tractar uniformement el producte de nombres amb o sense signe (algorisme de Booth, més endavant)

- Algorisme 2: Sumes i desplaçaments amb extensió del signe
 - L'algorisme pot funcionar amb signe només si Q es positiu
 - Per a això, cal estendre el signe dels productes intermedis
 - Exemple: n=4; M=-3; Q=6; Representats en complement a 2

Per a funcionar en qualsevol cas, poden processar-se els signes de M i Q d'avantmà:

si Q < 0 aleshores
$$Q \leftarrow -Q;$$
 $M \leftarrow -M;$ fi si $P \leftarrow M \times Q;$

Encara és més senzill que l'anterior; també demana processar per separat els casos de multiplicació de nombres amb o sense signe i complementar M o Q

Algorisme de Booth

- Consisteix a recodificar el multiplicador com a una suma de potències positives o negatives de la base: usa els dígits 0, +1 i –1
- Per exemple:
 - El nombre 30 pot expressar-se com (32 2)
 - $30_{10} = 00111110_2 = 0 + 1000 10_{Booth} = +1.2^5 1.2^1$

- Algorisme de Booth
 - Funciona amb nombres positius o negatius:
 - Multiplicació sense signe: suposar un bit de signe de M = 0
 - Multiplicació amb signe: estendre el MSB de M com a signe
 - Exemple: Multiplicar amb i sense signe els nombres
 1101₂ i 0+10–1_{Booth}

			S	ens	se s	ign	е					Ar	nb	sigr	ne		
Sigr impl	-				1 +1			(13 ₁₀) (3 _{Booth})		gne plíci	t →	1 ×		1 +1		1 -1	(-3 ₁₀) (3 _{Booth})
1	1	1	1	0	0	1	1		0	0	0	0	0	0	1	1	
0	0	0	0	0	0	0			0	0	0	0	0	0	0		
0	0	1	1	0	1				1	1	1	1	0	1			
0	0	0	0	0					0	0	0	0	0				
0	0	1	0	0	1	1	1	(39 ₁₀)	1	1	1	1	0	1	1	1	(-9 ₁₀)

- Recodificació del multiplicador pel mètode de Booth
 - S'han de considerar parelles de bits correlatius, de dreta a esquerra
 - Cal suposar un bit implícit = 0 a la dreta del LSB
 - Cal aplicar la taula de conversió següent :

q_i	q_{i-1}	Dígit Booth
0	0	0
0	1	+1
1	0	-1
1	1	0

Per a recordar: Dígit Booth = q_{i-1} – q_i

- Exemple: Obteniu el codi Booth de 1110 0111 0011 (–397₁₀)
 - Solució: 0 0 -1 0 +1 0 0 -1 0 +1 0 -1 = $-1*2^{0} + 1*2^{2} 1*2^{4} + 1*2^{7} 1*2^{9} = -1 +4 -16 +128 -512 = -397$

Modificació d'algorisme 2 i operador seqüencial per a Booth

- L'algorisme demana n cicles
- En cada cicle cal fer una suma o una resta més un desplaçament

Detall del càlcul del bit de signe addicional

- Exemple d'algorisme de Booth amb l'operador sequencial
 - Amb signe; n=4; M=0010₂; Q=1001₂ $(2_{10}\times(-7_{10})=-14_{10})$

Cicle	Acció	S-HI-LO-X	
0	Valors inicials	0 0000 100 <u>1 0</u> +	Bit extra
1	Cas 10: HI := HI – M	1 1110 1001 0	ехпа
	Desplaçar S-HI-LO 1 bit a la dreta	1 1111 010 <u>0 1</u>	
2	Cas 01: HI := HI + M	0 0001 0100 1	
	Desplaçar S-HI-LO 1 bit a la dreta	0 0000 101 <u>0 0</u>	
3	Cas 00: No fer res	0 0000 1010 0	
	Desplaçar S-HI-LO 1 bit a la dreta	0 0000 010 <u>1 0</u>	
4	Cas 10: HI := HI – M	1 1110 0101 0	
	Desplaçar S-HI-LO 1 bit a la dreta	1 1111 0010 1	

■ Exercici: n=4; $M=1101_2$; $Q=0110_2$ $(-3_{10}\times6_{10}=-18_{10})$

Cicle	Acció	S-HI-LO-X
0	Valors inicials	0 0000 011 <u>0 0</u>
1		
2		
3		
4		

Solución: 1110 1110

- Recodificació de Q per parelles de bits
 - Extensió de Booth que redueix a la meitat el nombre de dígits de Q, tot reduint així el nombre de productes intermedis que cal sumar

			Во	oth	Parelles	
q_{i+1}	q_{i}	q_{i-1}	q' _{i+1}	q'i	q" _i	Acció
0	0	0	0	0	0	No res
0	0	1	0	1	1	Sumar M
0	1	0	1	-1	1	Sumar M
0	1	1	1	0	2	Sumar 2×M
1	0	0	-1	0	-2	Restar 2×M
1	0	1	-1	1	-1	Restar M
1	1	0	0	-1	-1	Restar M
1	1	1	0	0	0	No res

A cada iteració es desplaça S-HI-LO dues posicions a la dreta

Exemple de multiplicació amb recodificació per parelles

$$- n = 5$$
; $M = 01101_2 (13_{10})$; $Q = 11010_2 (-6_{10})$

Modificació de l'algorisme 2 per a parelles de bits

Els registres HI i LO han de tindre un nombre parell de bits

- L'algorisme demana n/2 cicles
- En cada cicle cal fer fins a una suma o resta i dos desplaçaments

- Exemple de multiplicació amb recodificació per parelles
 - n=6 (n ha de ser parell); M=001101₂ (13₁₀); Q=111010₂ (-6_{10})

Cicle	Acció	S-HI-LO-X
0	Valors inicials	0 000000 1110 <u>10 0</u>
1	Cas 100: HI ← HI – 2M	1 100110 111010 0
	Desplaçar S-HI-LO 2 bits a la dreta	1 111001 1011 <u>10 1</u>
2	Cas 101: HI ← HI – M	1 101100 101110 1
	Desplaçar S-HI-LO 2 bits a la dreta	1 111011 0010 <u>11 1</u>
3	Cas 111: No fer res	1 111011 001011 1
	Desplaçar S-HI-LO 2 bits a la dreta	1 111110 110010 1

Solución: 111100 110001

■ Exercici: n = 6; M = 101001_2 (-23_{10}); Q= 001001_2 (9_{10}) $(-23_{10} \times 9_{10} = -207_{10})$

Cicle	Acció	S-HI-LO-X
0	Valors inicials	0 000000 0010 <u>01 0</u>
1		
2		
3		

La multiplicació sequencial: resum

- Implementació de l'operador:
 - La multiplicació pot implementar-se mitjançant sumes i desplaçaments. En el hardware només cal:
 - registre de desplaçament
 - sumador o sumador/restador, en cas de multiplicació amb signe
 - circuit de control, si s'utilitza un operador seqüencial
- El mètode de Booth
 - Permet tractar de manera uniforme la multiplicació amb o sense signe
- La recodificació del multiplicador
 - Permet reduir el nombre de dígits del multiplicador i, per tant, erl nombre d'iteracions de l'operador
 - La recodificació per parelles de bits permet reduir a la meitat el nombre de cicles requerit per a una multiplicació seqüencial
 - Altres recodificacions permeten reduir encara més el nombre d'iteracions