Dynamic Interaction Modeling

Reference: H. Gomaa, Chapters 9,11, 21 - *Software Modeling and Design*, Cambridge University Press,

1

Dynamic Interaction Modeling

- Dynamic Interaction Modeling
 - Approach to determine how objects interact with each other to support use case
- Use cases realized in Dynamic Interaction Model
 - Show objects participating in each use case
- Determine how objects participate in use case
 - Use object structuring criteria to determine objects
 - Stereotype for each object structuring criterion
 - Shows sequence of object interactions in use case
 - Depict on
 - communication diagram or
 - sequence diagram
- State-dependent control objects
 - Modeled using statecharts

Communication Diagram

- · Graphically depicts objects interacting with each other
 - Show objects as boxes
 - Show their message interactions as arrows
 - Number sequence of messages

Figure 9.2 Communication diagram for View Alarms use case

3

Sequence Diagram

- Shows sequence of object interactions
- Emphasis on messages passed between objects
 - Objects represented by vertical lines
 - Messages represented by labeled horizontal arrows
 - Sequence numbering is optional

Figure 9.3 Sequence diagram for View Alarms use case

4

Δ

Dynamic Interaction Modeling

- Determine how objects interact with each other to support use case
 - Start with external event from actor
 - Determine objects needed to support use case
 - Determine sequence of internal events following external event
 - Depict on communication diagram or sequence diagram
- Stateless (non-state-dependent) Dynamic Interaction Modeling
- State-dependent Dynamic Interaction Modeling

5

5

Stateless Dynamic Interaction Modeling

- Start with use case
- Determine boundary objects
 - Receives external events from actor
- Determine internal objects
 - Receive messages from boundary objects
- Determine object interactions
 - Sequence of messages passed
- Develop main interaction sequence (scenario)
- Develop alternative sequences
 - For alternative branches of use case
 - E.g., for error handling or less frequently occurring conditions

Message Sequence Numbering

- Form of message sequence number
 - [first optional letter sequence][numeric sequence] [second optional letter sequence]
- First optional letter sequence use case id
- Numeric sequence
 - Message sequence starting with external event
 - A1, A2, A3
- Interactive System
 - Whole number for external event
 - A1, A2
 - Decimal number for subsequent internal events
 - A1.1, A1.2, A1.3, ..., A2, A2.1, A2.2,...
- · Second optional letter sequence
 - Concurrent event sequences
 - A3, A3a
 - Alternative message sequences
 - D1[Normal], D1A[Error]

Message Sequence Description

- Describes sequence of object interactions
 - Narrative description
 - Corresponds to Communication Diagram or Sequence Diagram
- Description corresponds to message sequence numbering on diagrams
 - Describe what object does on receiving message
 - E.g., every time an object interacts with an entity object
 - Identify attributes referenced

9

9

Message Sequence Description - View Alarms

- A1: The operator requests to view one or more alarms—for example, to view the status of a factory workstation.
- A1.1: Operator Interaction object sends an alarm request to the Alarm Service.
- A1.2: Alarm Service responds—for example, with information about the requested alarm: name, description, location, severity.
- A1.3: Operator Interaction object formats and displays the alarm information to the operator.

11

11

Make Order Request use case description

Use case name: Make Order Request

Summary: Customer enters an order request to purchase catalog items. The customer's credit card is checked for validity and sufficient credit to pay for the requested catalog items.

Actor: Customer, Bank

Precondition: Customer has selected one or more catalog items

Main sequence:

- 1. Customer provides order request and customer account Id to pay for purchase.
- 2. System retrieves customer account information, including the customer's credit card details.
- 3. System requests to a bank checking the customer's credit card for the purchase amount and, if approved, creates a credit card purchase authorization number.
- 4. System creates a delivery order containing order details, customer Id, and credit card authorization number.
- 5. System confirms approval of purchase and displays order information to customer.
- 6. System sends email confirmation to customer.

Application Logic Objects

- Business Logic Object
 - Defines business specific application logic (rules) for processing a client request
 - Use to access more than one entity object

14

State Dependent Dynamic Interaction Modeling

- Object interaction controlled by statechart(s)
 - Control object
 - Executes statechart
 - Activates/deactivates other objects
- For each use case
 - Determine objects participating in use case
 - Determine sequence of object communication
 - Develop statechart for control object
- For each event that arrives at control object
 - Determine state transition from current state to next state
 - Determine actions to be executed
 - Determine objects required to perform actions

17

17

Use Case Name: Validate PIN

Summary: System validates customer PIN.

Actor: ATM Customer

Precondition: ATM is idle displaying a Welcome message.

Description:

- · Customer inserts the ATM Card into the Card Reader.
- If the system recognizes the card, it reads the card number.
- System prompts customer for PIN number.
- · Customer enters PIN.
- System checks the expiration date and whether the card is lost or stolen
- If card is valid, the system then checks if the user entered PIN matches the card PIN maintained by the system.
- If the PIN numbers match, the system checks what accounts are accessible with the ATM Card.
- System displays customer accounts and prompts customer for transaction type: Withdrawal, Query or Transfer.

Alternatives:

- a) If the system does not recognize the card, the card is ejected.
- b) If the system determines that the card date has expired, the card is confiscated.
- c) If the system determines that the card has been reported lost or stolen, the card is confiscated.
- d) If the user entered PIN does not match the PIN number for this card, then the system reprompts for the PIN.
- e) If the user enters the incorrect PIN three times, then the system confiscates the card.

Postcondition: Customer PIN has been validated.

19

19

Example of Dynamic Interaction Modeling Banking System - Validate PIN Use Case Validate PIN «client» «subsystem» ATMClient «state dependent control» CardReader ATMControl Interface «entity» ATMTransaction «user interaction» Customer Interaction **ATMCard** 20

