Frontdoor Criterion

N. Koch, M. Vázquez, A. Nava, F. Otto

ETH Zürich

March 13, 2023

Motivation

- 2 Estimating TCE
- Stimating DCE
- 4 Frontdoor Criterion
- Wrap-Up

Causal Questions

(1) Drug Treatment

(2) College Admissions

Causal Questions

(1) Drug Treatment

- Does the drug improve health overall?
- Effect on mediator is relevant
- ▶ Total causal effect (TCE)

(2) College Admissions

- Are females being discriminated against?
- Effect on mediator is not relevant
- Direct causal effect (DCE)

Total vs Direct Causal Effect

Definition (Total causal effect, TCE)

Given a causal model over (X, Y, \mathbf{W}) , there is a total causal effect of X on Y if any of the following equivalent conditions hold:

- **3** (others...)

Definition (Direct causal effect, DCE)

(later...)

Note: which type of causal effect we are interested in is context-dependent

Example: Kidney Stone Treatment

- $S \in \{\text{small}, \text{large}\}; T \in \{A, B\}; R \in \{0, 1\}$
 - ▶ Treatment A: open surgery
 - ▶ Treatment B: non-invasive treatment

	Treatment A	Treatment B
Small	93% (81/87)	87% (234/270)
Large	73% (192/263)	69% (55/80)
Total		83% (289/350)
	80% (562/700)	

Q: What is the chance of recovery for a *given* patient if we assign them to treatment A *as opposed to* treatment B?

$$\mathbb{P}\big(R=1\mid\operatorname{do}(T:=A)\big)\ \stackrel{?}{\lessgtr}\ \mathbb{P}\big(R=1\mid\operatorname{do}(T:=B)\big)$$

Assumption (Autonomy)

Intervening (only) on x_i leaves $p(x_i \mid pa(x_i))$, $i \neq j$, unchanged.

observational distribution

interventional distribution

Assumption (Autonomy)

Intervening (only) on x_i leaves $p(x_i | pa(x_i))$, $i \neq j$, unchanged.

observational distribution

interventional distribution

$$\mathbb{P}(S) = \mathbb{P}(S \mid \operatorname{do}(T := \cdot)) \\
\mathbb{P}(R \mid S, T = \cdot) = \mathbb{P}(R \mid S, \operatorname{do}(T := \cdot)) \\
\mathbb{P}(R \mid T = \cdot) \neq \mathbb{P}(R \mid \operatorname{do}(T := \cdot))$$

Claim: can compute total causal effect of treatments using observational distributions only, namely

$$(*) \quad \mathbb{P}(R=1 \mid \operatorname{do}(T:=\cdot)) = \sum_{s} \mathbb{P}(R=1 \mid S=s, T=\cdot) \mathbb{P}(S=s)$$

Motivation

0000000000000

Claim: can compute total causal effect of treatments using observational distributions only, namely

$$(*) \quad \mathbb{P}\big(R=1\mid \operatorname{do}(T:=\cdot)\big) \ = \ \sum_{s} \mathbb{P}(R=1\mid S=s,\,T=\cdot)\,\mathbb{P}(S=s)$$

Proof:

$$(*) = \sum_{s \in \{0,1\}} \mathbb{P}(R = 1, S = s \mid \text{do}(T := A))$$

$$= \sum_{s \in \{0,1\}} \mathbb{P}(R = 1 \mid S = s, \text{do}(T := A)) \mathbb{P}(S = s \mid \text{do}(T := A))$$

$$= \sum_{s \in \{0,1\}} \mathbb{P}(R = 1 \mid S = s, T = A) \mathbb{P}(S = s)$$

Claim: can compute total causal effect of treatments using observational distributions only, namely

$$(*) \quad \mathbb{P}(R=1 \mid \operatorname{do}(T:=\cdot)) = \sum_{s} \mathbb{P}(R=1 \mid S=s, T=\cdot) \mathbb{P}(S=s)$$

Motivation

0000000000000

Motivation

Example: Kidney Stone Treament (cont.)

Claim: can compute total causal effect of treatments using observational distributions only, namely

$$(*) \quad \mathbb{P}\big(R=1\mid \operatorname{do}(T:=\cdot)\big) \ = \ \sum_{s} \mathbb{P}(R=1\mid S=s,\,T=\cdot)\,\mathbb{P}(S=s)$$

Note:

$$(*) = \sum_{s \in \{0,1\}} \mathbb{P}(R = 1 \mid S = s, T = \cdot) \mathbb{P}(S = s)$$

$$\neq \sum_{s \in \{0,1\}} \mathbb{P}(R = 1 \mid S = s, T = \cdot) \mathbb{P}(S = s \mid T = \cdot)$$

$$= \mathbb{P}(R = 1 \mid T = \cdot)$$

 \rightarrow we have to *adjust* treatment effects for stone size

- $\mathbb{P}(R = 1 \mid do(T := A)) \approx 83\% \neq 78\% \approx \mathbb{P}(R = 1 \mid T = A)$
- $\mathbb{P}(R = 1 \mid do(T := B)) \approx 78\% \neq 83\% \approx \mathbb{P}(R = 1 \mid T = B)$

Denote by $\tau_{T,R}$ the total causal effect of T on R. Then,

$$\rightarrow \tau_{T,R} \approx 83\% - 78\% = 5\%$$

i.e., treatment A works better than treatment B

Total Causal Effect

Definition (Total causal effect, TCE)

Given a causal model over (X, Y, \mathbf{W}) , there is a total causal effect of X on Y if any of the following equivalent conditions hold:

How should we *quantify* a potential TCE?

Total Causal Effect

 $\tau_{X,Y}$: TCE of X on Y

1 from cond. (1):

$$ightsquare$$
 $au_{X,Y} := \mathbb{E}[Y \mid \operatorname{do}(X := x')] - \mathbb{E}[Y]$

- from cond. (2):
 - for discrete variables:

$$ightsquare$$
 $au_{X,Y} := \mathbb{E}\big[Y \mid \operatorname{do}(X := x')\big] - \mathbb{E}\big[Y \mid \operatorname{do}(X := \tilde{x})\big]$

for continuous variables:

$$ightarrow \tau_{X,Y} := \frac{\partial}{\partial x'} \mathbb{E}[Y \mid \operatorname{do}(X := x')]$$

Problem: definitions generally depend on x', \tilde{x}

Linear SEMs: Path Method

Proposition (Path Method)

In a linear SEM, the total causal effect of X on Y is the sum of the products of the path coefficients over all directed paths from X to Y.

Consider the SEM over $D, B, H \in \mathbb{R}$

- $D \leftarrow \varepsilon_D$
- $B \leftarrow 2D + \varepsilon_B$
- $H \leftarrow 3D 2B + \varepsilon_H$

$$\rightarrow \tau_{D,H} = 3 + 2 \cdot (-2) = (-1)$$

 \rightarrow in linear SEMs, definitions of $au_{X,Y}$ coincide and are always constant

Linear SEMs: Regression

Proposition (TCE from regression)

In a linear SEM over (X, Y, \mathbf{W}) , it holds that $\tau_{X,Y} = \gamma$, where γ is the coefficient of X in the linear regression

$$Y = \gamma X + \boldsymbol{\beta}^{\top} \boldsymbol{Z} + \varepsilon$$

where $Z \subseteq W$ is a valid adjustment set for (X, Y).

- \rightsquigarrow if we have **Z** and a linear SEM, we can
 - obtain *unbiased estimates* for $\tau_{X,Y}$
 - estimate its statistical significance

Valid Adjustment Sets

Definition (Valid adjustment set)

Given a structural causal model over (X, Y, \mathbf{W}) , a set $\mathbf{Z} \subseteq \mathbf{W}$ is a valid adjustment set for the ordered pair (X, Y) if

$$p(y \mid do(X := x)) = \int_{\mathbf{z}} p(y \mid x, \mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

- Valid adjustment sets allow us to estimate total causal effects purely from observational data
- \rightarrow how to identify **Z** in general?

Motivation

Proposition (Parent adjustment)

Assume $k \notin PA(i)$. Then:

PA(i) is a valid adjustment set for (i, k).

$$p(S,R \mid do(T)) = \frac{p(S,R,T)}{p(T \mid S)} = p(R \mid T,S)p(S)$$
$$p(R \mid do(T)) = \sum_{s} p(R \mid T,S = s)p(S = s)$$

Motivation

Scurvy disease \rightarrow James Lind (1747)

Example: Scurvy (cont.)

- 12 men suffering from similar symptoms, divided in pairs and treated with:

 - Elixir of vitriol
 - → Sea water
 - → Vinegar
 - → Paste of garlic, horse-radish, mustard seed...
 - → Oranges and lemons

Then:

$$P(R \mid do(F := f)) = P(R \mid F = f)$$

Backdoor Criterion

• The backdoor criterion is sufficient for adjustment.

Backdoor Criterion (Pearl)

Let G = (V, E) be a DAG and $i, k \in V, i \neq k$. A set $Z \subset V$ (not containing i and k) satisfies the **backdoor criterion** relative to (i, k) in G if:

- **1** $Z \cap desc(i) = \emptyset$, and
- 2 **Z** blocks all "backdoor paths" from i to k in G, i.e., all paths between i and k that start with an arrow into i $(i \leftarrow ...k)$.

Reminder (Backdoor Criterion)

- **1** $\boldsymbol{Z} \cap desc(X) = \emptyset$
- 2 **Z** blocks all backdoor paths $(X \leftarrow ... Y)$

Reminder (Block path by Z)

- Non collider which is in Z.
- Collider such that neither it nor descendants in Z.

Reminder (Backdoor Criterion)

- **1** $\boldsymbol{Z} \cap desc(X) = \emptyset$
- 2 **Z** blocks all backdoor paths $(X \leftarrow ... Y)$

Reminder (Block path by Z)

- Non collider which is in Z.
- Collider such that neither it nor descendants in Z.

Valid adjustment sets: $\{A, B\}$, $\{A, C\}$ and $\{A, B, C\}$

Intuition Backdoor Criterion

- Backdoor paths carry spurious associations from X to Y.
- Paths directed along the arrows from X to Y carry causal associations.
- Blocking backdoor paths ensures that the measured association between X and Y is purely causal.

Exercise: Backdoor Criterion

- Interested in the causal effect of X_1 on X_5 .
- Select all sets that satisfy the backdoor criterion.

Estimating DCE

- {2}
- {3}
- {2,7}
- {]
- {7}
- {2,3,4}
- {8}

- Reminder (Backdoor Criterion)
 - 1 $Z \cap desc(X) = \emptyset$
 - 2 **Z** blocks all backdoor paths $(X \leftarrow \dots Y)$

Reminder (Block path by Z)

- Non collider which is in **Z**.
- Collider such that neither it nor descendants in Z.

Adjustment Criterion

- The previous criteria were sufficient for adjustment.
- The following criterion is sufficient and necessary for adjustment.

Adjustment Criterion (Shipster et al., Perkovic et al.)

Let G = (V, E) be a DAG and $i, k \in V, i \neq k$. A set $Z \subset V$ (not containing i and k) satisfies the **adjustment criterion** relative to (i, k) in G if:

- **1 Z** does not contain any descendants of nodes $r \neq i$ on a directed path from i to k in G;
- 2 Z blocks all paths between i and k in G that are not directed from i to k.

Adjustment Criterion (cont.)

Theorem

 $Z \subset V$ satisfies the adjustment criterion relative to (i, k) in a DAG G = (V, E) if and only if for all p such that (G, p) is a causal Bayesian network, we have:

$$p(x_k \mid do(x_i)) = \int_{x_z} p(x_k \mid x_i, x_z) p(x_z) dx_z$$

 Remark: it is only sufficient for the identification of total causal effects.

Example: Adjustment Criterion

Reminder (Adjust. Criterion)

- **Z** does not contain descendant of nodes on direct path from i to k
- 2 Z blocks all paths from i to k that are not directed from i to k

Reminder (Block path by Z)

- Non collider which is in Z.
- Collider such that neither it nor descendants in Z.

Determining adjustment sets

The backdoor and the adjustment criterion are (graphical) tools to tackle some problems of "bad controls".

- → Should we always adjust for as many variables as possible?
- X: Smoking
- Y: Future miscarriages
- A: Physiological abnormality induced by smoking
- B: Previous miscarriages

Determining adjustment sets (cont.)

- → Is it safe to control only for "pre-treatment" variables?
- X: Smoking
- Y: Adult asthma
- A: Parental smoking
- B: Childhood asthma
- C: Predisposition toward asthma

Example: Determining adjustment sets

Suppose we are interested in the total causal effect of X onto Y (0.5 · 3 = 1.5). Lets consider the following three adjustment sets:

- {B,E,A,D,C}
- {B}
- {A,C}

Goal: Estimate the total causal effects of X on Y in the asymptotically most efficiency way \rightsquigarrow which adjustment set yields the estimator with the smallest asymptotic variance ?

Intuition: for statistically efficient estimators in linear regression setting:

- Avoid variables that are strongly correlated with X;
- Use variables that help to predict Y.

Example: Adjustment Sets and Variance

There are 8 valid adjustment sets **Z**:

- B has to be included;
- E cannot be included;
- A, C, D may be in Z.

Which adjustment set should we use if we want to minimize variance?

Optimal valid adjustment set in Linear SEMs

Let G = (V,E) be a DAG and $i, k \in V$, $i \neq k$ and $k \in desc(i)$.

Definition (Causal nodes)

cn(i, k): nodes $r \neq i$ on a directed path from i to k in G.

Definition (Forbidden nodes)

forb(i, k): descendants of causal nodes and node i.

Furthermore, let $\hat{\tau}_{ik}^{\mathbf{Z}}$ denote the total causal effect estimator based on \mathbf{Z} .

Optimal valid adjustment set in Linear SEMs (cont.)

Theorem

The optimal valid adjustment set is: $O(i, k) = pa(cn(i, k)) \setminus forb(i, k)$

In other words, for any valid adjustment set Z:

$$\operatorname{a.var}(\hat{ au}_{i,k}^{\mathbf{O}}) \leq \operatorname{a.var}(\hat{ au}_{i,k}^{\mathbf{Z}})$$

where a var denotes the asymptotic variance.

• If a valid adjustment set exists, **O** is one.

Exercise: Adjustment Sets and Variance

- cn(X, Y) = ?
- forb(X, Y) =?
- pa(cn(X, Y)) = ?
- O(X, Y) = ?

Reminder (Causal nodes)

cn(i, k): nodes $r \neq i$ on a directed path from i to k in G.

Reminder (Forbidden nodes)

forb(i, k): descendants of causal nodes and node i.

Exercise: Adjustment Sets and Variance (cont.)

- $cn(X, Y) = \{E, Y\}$
- $forb(X, Y) = \{X, E, Y\}$
- $pa(cn(X, Y)) = \{X, B, C, E\}$
- $O(X, Y) = \{B, C\}$

Intuition: B blocks a backdoor/indirect path, C helps to explain Y and hence reduces the residual variance. Note that A is not included as it is correlated with X and its inclusion would increase the standard error of the estimator.

Reminder: Causal Questions

(1) Drug Treatment

- Does the drug improve health overall?
- Effect on mediator is relevant
- ▶ Total causal effect (TCE)

(2) College Admissions

- Are females being discriminated against?
- Effect on mediator is not relevant
- Direct causal effect (DCE)

Controlled Direct Effect

- CDE: one way of defining direct causal effect
- What is the CDE of X₁ on X₃ in this example?

Definition (Controlled direct effect)

$$CDE = \mathbb{E}[X_k \mid do(x_i + 1), do(pa(k) \setminus i)] - \mathbb{E}[X_k \mid do(x_i), do(pa(k) \setminus i)]$$

Controlled Direct Effect - Example

$$\rightsquigarrow X_1 \leftarrow \epsilon_1$$

$$\rightarrow$$
 $X_2 \leftarrow \beta X_1 + \epsilon_2$

$$\rightarrow X_3 \leftarrow \gamma X_1 + \delta X_2 + \epsilon_3$$

Definition (Controlled direct effect)

$$CDE = \mathbb{E}[X_k \mid do(x_i + 1), do(pa(k) \setminus i)] - \mathbb{E}[X_k \mid do(x_i), do(pa(k) \setminus i)]$$

Controlled Direct Effect - Example (ctd.)

$$\rightarrow X_1 \leftarrow \epsilon_1$$

$$\rightarrow X_2 \leftarrow \beta X_1 + \epsilon_2$$

$$\rightarrow$$
 $X_3 \leftarrow \gamma X_1 + \delta X_2 + \epsilon_3$

Definition (Controlled direct effect)

$$CDE = \mathbb{E}[X_k \mid do(x_i + 1), do(pa(k) \setminus i)] - \mathbb{E}[X_k \mid do(x_i), do(pa(k) \setminus i)]$$

Here:

$$\mathbb{E}[X_3 \mid do(x_1 + 1), do(x_2)] - \mathbb{E}[X_3 \mid do(x_1), do(x_2)] = \gamma(x_1 + 1) + \delta x_2 - (\gamma x_1 + \delta x_2) = \gamma$$

- In this case: $\mathbb{E}[A|G=f,D=d] \mathbb{E}[A|G=m,D=d]$
- Can determine controlled direct effect of gender on admission for each department
- Can become more involved for other mediating variables

Example: Smoking

Problem: Cannot use backdoor or adjustment criterion since genes could not be observed.

Idea: Can we make use of tar being a mediator of the effect of smoking on cancer?

Frontdoor Criterion

Frontdoor Criterion (Pearl)

Let G = (V, E) be a DAG and $i, k \in V, i \neq k$. A set $M \subset V$ (not containing i and k) satisfies the **frontdoor criterion** relative to (i, k) in G if:

- 1 M blocks all directed paths from i to k in G, and
- There are no unblocked backdoor paths from i to M in G, and
- i blocks all backdoor paths from M to k in G.

Example: Frontdoor Criterion

Unobserved

Observed

Reminder (Frontdoor Criterion)

- 1 M blocks all directed paths from X to Y
- There are no unblocked backdoor paths from X to M
- 3 X blocks all backdoor paths from M to Y

Example: Frontdoor Criterion

Unobserved

Observed

Reminder (Frontdoor Criterion)

- 1 M blocks all directed paths from X to Y
- There are no unblocked backdoor paths from X to M
- 3 X blocks all backdoor paths from M to Y

Unobserved

Observed

Reminder (Frontdoor Criterion)

- M blocks all directed paths from X to Y
- 2 There are no unblocked backdoor paths from X to M
- 3 X blocks all backdoor paths from M to Y

Unobserved

Observed

Reminder (Frontdoor Criterion)

- M blocks all directed paths from X to Y
- 2 There are no unblocked backdoor paths from X to M
- 3 X blocks all backdoor paths from M to Y

Unobserved

Observed

Reminder (Frontdoor Criterion)

- M blocks all directed paths from X to Y
- 2 There are no unblocked backdoor paths from X to M
- 3 X blocks all backdoor paths from M to Y

Motivation

map op

The interventional distribution $P(Y \mid do(X))$ is identifiable if:

- There is a valid adjustment set for (X,Y) backdoor criterion and adjustment criterion
- If we can apply the frontdoor criterion
- Other approaches (e.g. instrumental variables later in the course)

Thank you for your attention.