EFFECT OF NETWORK TOPOLOGY ON THE PERFORMANCE OF ADMM-BASED SVMS

Shirin Tavara, University of Borås

Alexander Schliep, University of Gothenburg (https://schlieplab.org/)

PROBLEM

- Immense amount of data
 - Limited available memory
 - Slow training/predicting time
 - Deteriorated accuracy
 - Slow convergence
 - Overheads
 - Interaction between nodes

SOLUTION

Distributed optimization

- A large problem is divided into several smaller sub-problems
- Efficient network topology

RESEARCH QUESTIONS

- How much does the communication between the nodes affect the convergence of a distributed algorithm?
- Which network topology is preferable?

To Answer

- A particular distributed optimization algorithm for solving SVM problems
- A particular network topology with high connectivity, expander graphs

SUPPORT VECTOR MACHINES (SVM)

- Classifies with maximum margin
- Real-world data is not always linearly solvable

$$Q_{ij} = y_i y_j \Phi(x_i) \Phi(x_j)$$

Kernel trick

$$K(x_i, x_j) = \Phi(x_i)\Phi(x_j)$$

DISTRIBUTED CONSENSUS-BASED SVM

- SVM problems can be formulated as a distributed optimization problem
- Treated as a consensus problem
 - Centralized; global consensus
 - Decentralized; local consensus

Sending local variables to update consensus variables

Broadcasting consensus variables for calculating local variables

ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

- Well-suited in decentralized settings
- Differentiability of objective function not needed
- Guarantees convergence for convex functions
- Solves the problem using iterative updates in decentralized settings

Sending local variables to update consensus variables

Broadcasting consensus variables for calculating local variables

NETWORK TOPOLOGY

Adjacency Matrix

• Laplacian Matrix

$$L(A) = D - A(G)$$

$$3 -1 0 -1 -1$$

$$-1 4 -1 -1 -1$$

$$0 -1 2 0 -1$$

$$-1 -1 0 3 -1$$

$$-1 -1 -1 4$$

$$\begin{bmatrix} -1 & -1 & 0 & 3 & -1 \\ -1 & -1 & -1 & 4 \end{bmatrix} \qquad G(V, E), V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 2), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 5), (4, 5)\}$$

CONNECTIVITY OF A GRAPH

 $\mu_2 = \max\{\mu'_2, |\mu'_n|\}$

- Connectivity of a graph relates to eigenvalues of A(G) or L(A)
- A(G) is symmetric and has real eigenvalues; $k_{max} = \mu_1' \ge \mu_2' \ge \dots \ge \mu_n'$ L(A) has positive eigenvalues; $0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n \le 2k_{max}$
- Connectivity can be defined by graph's Spectral Gap (SG)
 - The SG regarding A(G) is

$$SG = k_{max} - \mu_2$$

The SG regarding L(A) is

$$SG = \lambda_2$$

COMPLETE GRAPHS AND EXPANDER GRAPHS

- Each node communicates with all other nodes
- Communication overhead
- Expander Graphs
 - Sparse connected graphs with low diameters
 - Any subset of nodes efficiently connects to many nodes
 - Efficient communication between nodes and high connectivity

EXPANDER GRAPHS

- Expansion property
 - Cheeger constant shows whether a graph has a bottleneck

$$h(G) = \min_{S \subseteq V, |S| \le \frac{|V|}{2}} \frac{|\partial(S)|}{|S|}$$

• *d*-regular graphs, a good example of expander graphs

$$SG = (d - \mu_2)$$
 or $SG = \lambda_2$

DATASETS

Name	Training Samples	Testing Samples	Features
ionosphere	300	51	34
svmguid	3,089	4,000	4
phishing	11,055	1,655	68
a9a	32,561	16,281	123
ijcnn	35,000	14,990	22
skinNonskin	37,492	5,000	3

RESULTS: SPECTRAL BOUNDS FOR d-REGULAR GRAPHS

RESULTS: IMPACT OF d-REGULAR EXPANDER GRAPHS

RESULTS: SHUFFLING DATA

ONGOING WORK

- Distributed parallel settings
- Application to real-world data
- Comparison of expander graphs with other types of graphs

Thanks for your attention