

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

REC'D 0 7 OCT 2004

WIPO

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

03017027.8

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

> Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

European Patent Office Office européen des brevets

<u>o</u>))

Anmeldung Nr:

Application no.: 03017027.8

Demande no:

Anmeldetag:

Date of filing: 27.07.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Celanese Ventures GmbH Industriepark Hoechst 65926 Frankfurt am Main ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Protonenleitende Membran und deren Verwendung

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

HO1M/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR LI

Celanese Ventures GmbH

2003/CVG 017

KD

Protonenleitende Membran und deren Verwendung

Die vorliegende Erfindung betrifft eine neuartige protonenleitende Polymermembran auf Basis von Polyazolen-Blockpolymeren, die aufgrund ihrer hervorragenden chemischen und thermischen Eigenschaften vielfältig eingesetzt werden kann und sich insbesondere als Polymer-Elektrolyt-Membran (PEM) in sogenannten PEM-Brennstoffzellen eignet.

- Polyazole wie beispielsweise Polybenzimidazole (®Celazole) sind seit langem bekannt. Die Herstellung derartiger Polybenzimidazole (PBI) erfolgt üblicherweise durch Umsetzung von 3,3′,4,4′-Tetraaminobiphenyl mit Isophthalsäure oder Diphenyl-Isophthalsäure bzw. deren Estern in der Schmelze. Das enstehende
- Präpolymer erstant im Reaktor und wird anschließend mechanisch zerkleinert.

 Anschließend wird das pulverförmige Präpolymer in einer Festphasen-Polymerisation bei Temperaturen von bis zu 400°C endpolymerisiert und das gewünschte Polybenzimidazole erhalten.
- Zur Herstellung von Polymerfolien wird das PBI in einem weiteren Schritt in polaren, aprotischen Lösemitteln wie beispielsweise Dimethylacetamid (DMAc) gelöst und eine Folle mittels klassischer Verfahren erzeugt.
- Protonenleitende, d.h. mit Säure dotierte Polyazol-Membranen für den Einsatz in PEM-Brennstoffzellen sind bereits bekannt. Die basischen Polyazol-Folien werden mit konzentrierter Phosphorsäure oder Schwefelsäure dotiert und wirken dann als Protonenleiter und Separatoren in sogenannten Polymerelektrolyt-Membran-Brennstoffzellen (PEM-Brennstoffzellen).
- Bedingt durch die hervorragenden Eigenschaften des Polyazol-Polymeren können derartige Polymerelektrolytmembranen zu Membran-Elektroden-Einheiten (MEE) verarbeitet bei Dauerbetriebstemperaturen oberhalb 100°C insbesondere oberhalb 120°C in Brennstoffzellen eingesetzt werden. Diese hohe Dauerbetriebstemperatur erlaubt es die Aktivität der in der Membran-Elektroden-Einheit (MEE) enthaltenen

S

10

2

Katalysatoren auf Edelmetallbasis zu erhöhen. Insbesondere bei der Verwendung von sogenannten Reformaten aus Kohlenwasserstoffen sind im Reformergas deutliche Mengen an Kohlenmonoxid enthalten, die überlicherweise durch eine aufwendige Gasaufbereitung bzw. Gasreinigung entfernt werden müssen. Durch die Möglichkeit die Betriebstemperatur zu erhöhen, können deutlich höhere Konzentrationen an CO-Verunreinigungen dauerhaft toleriert werden.

Durch Einsatz von Polymer-Elektrolyt-Membranen auf Basis von Polyazol-Polymeren kann zum einen auf die aufwendige Gasaufbereitung bzw. Gasreinigung teilweise verzichtet werden und andererseits die Katalysatorbeladung in der Membran-Elektroden-Einheit reduziert werden. Beides ist für einen Masseneinsatz von PEM-Brennstoffzellen unabdingbare Voraussetzung, da ansonsten die Kosten für ein PEM-Brennstoffzellen-System zu hoch sind.

Die bislang bekannten mit Säure dotierten Polymermembrane auf Basis von Polyazolen zeigen bereits ein günstiges Eigenschaftsprofil. Aufgrund der für PEM-Brennstoffzellen angestrebten Anwendungen, Insbesondere im Automobilbereichund der dezentralen Strom- und Wärmeerzeugung (Stationärbereich), sind diese insgesamt Jedoch noch zu verbessem. Darüber hinaus haben die bislang bekannten Polymermembranen einen hohen Gehalt an Dimethylacetamid (DMAc), der mittels bekannter Trocknungsmethoden nicht vollständig entfernt werden kann. In der deutschen Patentanmeldung Nr. 10109829.4 wird eine Polymermembran auf Basis von Polyazolen beschrieben, bei der die DMAc-Kontamination beseitigt wurde. Derartige Polymermembran zeigen zwar verbesserte mechanische Eigenschaften, hinsichtlich der spezifischen Leitfähigkeit werden jedoch 0,1 S/cm (bei 140°C) nicht überschritten.

In der deutschen Patentanmeldung Nr. 10117687.2 ist eine neuartige
Polymermembran auf Basis von Polyazolen beschrieben, die ausgehend von den
Monomeren durch Polymerisation in Polyphosphorsäure erhalten wird. Diese
Membran zeigt in PEM-Brennstoffzellen, insbesondere bei Hochtemperatur-PEMBrennstoffzellen ausgezeichnete Leistungen. Es hat sich jedoch gezeigt, daß diese
Membranen hinsichtlich ihrer mechanischen Beanspruchung noch
verbesserungswürdig sind um auch einen Einsatz unter extremen Bedingungen zu

25

30

gewährleisten. Insbesondere im automobilen Bereich muß eine PEM-Brennstoffzelle auch nach Stillstand bei extrem niedrigen Außentemperaturen ohne Probleme wieder angefahren werden können. Durch kondensierte Feuchtigkeit kann, insbesondere bei Temperaturen unterhalb des Gefrierpunktes eine erhebliche mechanische Belastung auf die Membran einwirken. Neben diesen Anforderungen ist auch bei der Herstellung der Membran-Elektroden-Einheit eine höhere mechanische Belastbarkeit der Membran von Vorteil. So wirken bei der Laminierung erhebliche Drücke auf die Membran, so daß eine gute Dehnbarkeit bzw. Rückstellkraft von Vorteil sein kann.

Aufgabe der vorliegenden Erfindung ist Säure enthaltende Polymermembranen auf Basis von Polyazolen bereitzustellen, die einerseits die anwendungstechnischen Vorteile der Polymermembran auf Basis von Polyazolen aufwelsen und andererseits eine gesteigerte spezifische Leitfähigkeit, insbesondere bei Betriebstemperaturen oberhalb von 100°C, aufweisen und zusätzliche ohne Brenngasbefeuchtung auskommen.

Wir haben nun gefunden, daß eine protonenleitende Membran auf Basis von Polyazol-Blockpolymeren erhalten werden kann, wenn die zugrundeliegenden Monomeren in Polyphosphorsäure suspendiert bzw. gelöst und zunächst bis zu einem gewissen Grad polymerisiert werden und anschließend diese gemischt und zu Blockpolymeren polymerisiert werden.

Die dotierten Polymermembranen zeigen eine sehr gute Protonenleitfähigkeit bei gleichzeitig hoher Bruchdehnung.

Gegenstand der vorliegenden Erfindung ist eine protonenleitende Polymermembran auf Basis von Polyazolen erhältlich durch ein Verfahren umfassend die Schritte

A) Mischen von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität

mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estem, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität, oder Mischen von einer oder mehreren aromatischen und/oder

20

25

30

heteroaromatischen Diaminocarbonsäuren mit einer hohen Phosporhorsäure-Affinität, in Polyphosphorsäure unter Ausbildung einer Lösung und/oder Dispersion

- B) Erwärmen der Mischung aus Schritt A), vorzugswelse unter Inertgas, und Polymerisation bis zum Erreichen einer Intrinsischen Viskosität von bis zu 1,5 dl/g, vorzugsweise 0,3 bis 1,0 dl/g, insbesondere 0,5 bis 0,8 dl/g, unter Ausbildung eines Polymeren dessen Phosporhorsäure-Affinität größer ist als die Phosporhorsäure-Affinität des in Schritt D) gebildeten Polymeren,
- C) Mischen von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität, in Polyphosphorsäure unter Ausbildung einer Lösung und/oder Dispersion
 - D) Erwärmen der Mischung aus Schritt C), vorzugsweise unter Inertgas, und Polymerisation bis zum Erreichen einer Intrinsischen Viskosität von bis zu 1,5 dl/g, vorzugsweise 0,3 bis 1,0 dl/g, insbesondere 0,5 bis 0,8 dl/g, unter Ausbildung eines Polymeren dessen Phosporhorsäure-Affinität kleiner ist als die Phosporhorsäure-Affinität des in Schritt B) gebildeten Polymeren,
 - E) Vereinigen des Polymeren aus Schritt B) und des Polymeren aus Schritt D) wobei die Phosporhorsäure-Affinität des Polymeren aus Schritt B) größer ist als die Phosporhorsäure-Affinität des Polymeren aus Schritt D),
 - F) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt E) auf einem Träger oder auf einer Elektrode,
 - G) Erwärmen des flächigen Gebildes/Schicht erhältlich gemäß Schritt F), vorzugsweise unter Inertgas, bis zum Erreichen einer Intrinsischen Viskosität von mehr als 1,5 dl/g, vorzugsweise von mehr als 1,8 dl/g, insbesondere von mehr als 1,9 dl/g, unter Ausbildung eines Polyazol-Blockpolymeren,
 - H) Behandlung der in Schritt G) gebildeten Membran (bis diese selbsttragend ist).

Bei den erfindungsgemäß eingesetzten aromatischen und heteroaromatischen Tetra-Arnino-Verbindungen mit einer hohen Phosporhorsäure-Affinität handelt es sich vorzugsweise um 2,3,5,6-Tetraaminopyridin, 3,3',4,4'-Tetraaminodiphenylsulfon, 3.3',4,4'-Tetraaminodiphenylether sowie deren Salze, insbesondere deren Mono-, Di-, Trl- und Tetrahydrochloridderivate.

Bei den erfindungsgemäß eingesetzten aromatischen und heteroaromatischen TetraAmino-Verbindungen mit einer niedrigen Phosporhorsäure-Affinität handelt es sich vorzugsweise um 3,3',4,4'-Tetraaminobiphenyl, 1,2,4,5-Tetraaminobenzol, 3,3',4,4'Tetraaminobenzophenon, 3,3',4,4'-Tetraaminodiphenylmethan und 3,3',4,4'Tetraaminodiphenyldimethylmethan sowie deren Salze, insbesondere deren Mono-, Di-, Tri- und Tetrahydrochloridderivate.

10

Bei den erfindungsgemäß eingesetzten aromatischen Carbonsäuren handelt es sich um Di-carbonsäuren und Tri-carbonsäuren und Tetra-Carbonsäuren bzw. deren Ester, insbesondere deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Anhydride oder deren Säurechloride.

15

Bei den erfindungsgemäß eingesetzten aromatischen Carbonsäuren mit einer hohen Phosporhorsäure-Affinität handelt as sich vorzugsweise um Pyridin-2,5-dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6-

- Pyrimidindicarbonsäure, 2,5-Pyrazindicarbonsäure, 2,4,6-Pyridintricarbonsäure, Benzimidazol-5,8-dicarbonsäure. 5-Hydroxyisophthalsäure, 4-Hydroxyisophthalsäure, 2-Hydroxyterephthalsäure, 5-Aminoisophthalsäure, 5-N,N-Diethylaminoisophthalsäure, 2,5-Dihydroxyterephthalsäure, 2,6-Dihydroxyisophthalsäure, 4,6-
- Dihydroxyisophthalsäure, 2,3-Dihydroxyphthalsäure, 2,4-Dihydroxyphthalsäure. 3,4-Dihydroxyphthalsäure, 1.8-dihydroxynaphthalin-3,6-dicarbonsäure und Diphenylsulfon-4,4'-dicarbonsäure.

Bei den erfindungsgemäß eingesetzten aromatischen Carbonsäuren mit einer niedrigen Phosporhorsäure-Affinität handelt es sich vorzugsweise um Isophthalsäure, Terephthalsäure, Phthalsäure, 3-Fluorophthalsäure, 5-Fluoroisophthalsäure, 2-Fluoroterphthalsäure. Tetrafluorophthalsäure, Tetrafluoroisophthalsäure, Tetrafluoroterephthalsäure,1,4-Naphthalindicarbonsäure, 1,5-Naphthalindicarbonsäure, 2,6-Naphthalindicarbonsäure, 2,7-

Naphthalindicarbonsäure, Diphensäure, Diphenylether-4,4'-dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, 2,2-Bis(4-carboxyphenyl)hexafluoropropan, 4,4'-Stilbendicarbonsäure und 4-Carboxyzimtsäure.

5

Bei den erfindungsgemäß eingesetzten Diaminocarbonsäuren mit einer hohen Phosporhorsäure-Affinität handelt es sich vorzugsweise um Diaminobezoesäure und deren Mono und Dihydrochloridderivate, sowie um 1,2-Diamino-3'-carboxysäure-4,4'-diphenylether.

10

Bei den arcmatischen Tri-, tetra-carbonsäuren bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester oder deren Säureanhydride oder deren Säurechloride handelt es sich bevorzugt um 1,3,5-Benzol-tricarbonsäure (Trimesic acid), 1,2,4-Benzol-tricarbonsäure (Trimellitic acid),

15 (2-Carboxyphenyl)iminodiessigsäure, 3,5,3'-Biphenyltricarbonsäure, 3,5,4'-Biphenyltricarbonsäure, .

Bei den aromatischen Tetracarbonsäuren bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester oder deren Säureanhydride oder deren Säurechloride handelt es sich bevorzugt um 3,5,3',5'-biphenyltetracarboxylic acid, 1,2,4,5-Benzoltetracarbonsäure,

Benzophenontetracarbonsäure, 3.3',4,4'-Blphenyltetracarbonsäure, 2,2',3,3'-Biphenyltetracarbonsäure, 1,2,5,6-Naphthalintetracarbonsäure, 1,4,5,8-Naphthalintetracarbonsäure.

Bei den erfindungsgemäß eingesetzten heteroaromatischen Carbonsäuren handelt es sich um heteroaromatischen Di-carbonsäuren und Tri-carbonsäuren und Tetra-

Carbonsäuren bzw. deren Estern oder deren Anhydride. Als Heteroaromatische Carbonsäuren werden aromatische Systeme verstanden welche mindestens ein Stickstoff, Sauerstoff, Schwefel oder Phosphoratom im Aromaten enthalten. Vorzugsweise handelt es sich um Pyridin-2,5-dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6 -Pyrimidindicarbonsäure, 2,5-

Pyrazindicarbonsäure, 2,4,6-Pyridintricarbonsäure, Benzimidazol-5,6-dicarbonsäure. Sowie deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride.

Der Gehalt an Tri-carbonsäure bzw. Tetracarbonsäuren (bezogen auf eingesetzte Dicarbonsäure) beträgt zwischen 0 und 30 Mol-%, vorzugsweise 0,1 und 20 Mol %, insbesondere 0,5 und 10 Mol-%.

5

10

Bevorzugt werden in Schritt A) auch Mischungen von mindestens 2 verschiedenen aromatischen Carbonsäuren eingesetzt, wobei das Verhältnis der Monomeren zwischen 1:99 und 99:1, vorzugsweise 1:50 bis 50:1, beträgt. So können Carbonsäuren mit einer hohen Phosphorsäure-Affinität und Carbonsäuren mit einer niedrigen Phosphorsäure-Affinität gleichermaßen eingesetzt werden, wobei jedoch die Auswahl der Carbonsäuren bzw. das Mischungsverhältnis so gewählt wird, daß in der nachfolgenden Polymerlsation (Schritt B) ein Polymer resultiert, dessen Phosphorsäure-Affinität über der des in Schritt D) gebildeten Polymeren liegt.

- Bevorzugt werden in Schritt A) auch Mischungen von mindestens 2 verschledenen aromatischen Tetra-Amino-Verbindungen eingesetzt, wobei das Verhältnis der Monomeren zwischen 1:99 und 99:1. vorzugsweise 1:50 bis 50:1, beträgt. So können Tetra-Amino-Verbindungen mit einer hohen Phosphorsäure-Affinität und Tetra-Amino-Verbindungen mit einer niedrigen Phosphorsäure-Affinität gleichermaßen eingesetzt werden, wobei jedoch die Auswahl der Tetra-Amino-Verbindungen bzw. das Mischungsverhältnis so gewählt wird, daß in der nachfolgenden Polymerisation (Schritt B) ein Polymer resultiert, dessen Phosphorsäure-Affinität über der des in Schritt D) gebildeten Polymeren liegt.
- Es hat sich gezeigt, daß der Gesamtgehalt an Monomeren mit einer niedrigen Phosphorsäure-Affinität bezogen auf alle eingesetzten Monomere in Schritt A) bis zu 40 Gew.-%, vorzugsweise von bis zu 25 Gew.-%, insbesondere von 0,1 bis 25 Gew.-% toleriert werden kann.
- Bevorzugt werden in Schritt C) auch Mischungen von mindestens 2 verschiedenen aromatischen Carbonsäuren eingesetzt, wobei das Verhältnis der Monomeren zwischen 1:99 und 99:1, vorzugswelse 1:50 bis 50:1, beträgt. So können Carbonsäuren mit einer hohen Phosphorsäure-Affinität und Carbonsäuren mit einer niedrigen Phosphorsäure-Affinität gleichermaßen eingesetzt werden, wobei jedoch

die Auswahl der Carbonsäuren bzw. das Mischungsverhältnis so gewählt wird, daß in der nachfolgenden Polymerisation (Schritt D) ein Polymer resultiert, dessen Phosphorsäure-Affinität niedriger ist als die des in Schritt B) gebildeten Polymeren.

- Bevorzugt werden in Schritt C) auch Mischungen von mindestens 2 verschiedenen aromatischen Tetra-Amino-Verbindungen eingesetzt, wobei das Verhältnis der Monomeren zwischen 1:99 und 99:1, vorzugsweise 1:50 bis 50:1, beträgt. So können Tetra-Amino-Verbindungen mit einer hohen Phosphorsäure-Affinität und Tetra-Amino-Verbindungen mit einer niedrigen Phosphorsäure-Affinität gleichermaßen eingesetzt werden, wobei jedoch die Auswahl der Tetra-Amino-Verbindungen bzw. das Mischungsverhältnis so gewählt wird, daß in der nachfolgenden Polymerisation (Schritt D) ein Polymer resultiert, dessen Phosphorsäure-Affinität niedriger ist als die des in Schritt B) gebildeten Polymeren.
- Es hat sich gezeigt, daß der Gesamtgehalt an Monomeren mit einer hohen Phosphorsäure-Affinität bezogen auf alle eingesetzten Monomere in Schritt C) bis zu 40 Gew.-%, vorzugsweise von bis zu 25 Gew.-%, insbesondere von 0,1 bis 25 Gew.-% toleriert werden kann.
- In Schritt E) werden die in den Schritten B) und D) erhaltenen Polymere gemischt.

 Das Mischungsverhältnis der Polymeren beträgt zwischen 1:99 und 99:1,

 vorzugsweise 1:50 bis 50:1.
- Bei der in Schritt A) und C) verwendeten Polyphosphorsäure handelt es sich um handelsübliche Polyphosphorsäuren wie diese beispielsweise von Riedel-de Haen erhältlich sind. Die Polyphosphorsäuren H_{n+2}P_nO_{3n+1} (n>1) besitzen üblicherweise einen Gehalt berechnet als P₂O₅ (acidimetrisch) von mindestens 83%. Anstelle einer Lösung der Monomeren kann auch eine Dispersion/Suspension erzeugt werden. Die in Schritt A) und C) erzeugte Mischung weist ein Gewichtsverhältnis

 Polyphosphorsäure zu Summe aller Monomeren von 1:10000 bis 10000:1
- Polyphosphorsäure zu Summe aller Monomeren von 1:10000 bis 10000:1, vorzugsweise 1:1000 bis 1000:1, insbesondere 1:100 bis 100:1, auf.

Die Polymerisation in den Schritten B) und D) wird bei einer Temperatur und für eine Dauer durchgeführt, bis eine Intrinsische Viskosität von bis zu 1,5 dl/g, vorzugsweise

10

15

0,3 bis 1.0 dl/g, insbesondere 0,5 bis 0,8 dl/g, vorliegt. Üblicherweise betragen die Temperaturen bis zu 200°C, vorzugsweise bis zu 180°C, insbesondere von 100°C bls 180°C. Die Dauer beträgt üblicherweise von wenigen Minuten (5 Minuten) bis zu mehreren Stunden (100 Stunden). Die vorstehenden Reaktionsbedingungen hängen von der Reaktivität der jeweiligen Monomeren ab.

Die Schichtbildung gemäß Schritt F) erfolgt mittels an sich bekannter Maßnahmen (Gießen, Sprühen, Rakeln) die aus dem Stand der Technik zur Polymerfilm-Herstellung bekannt sind. Als Träger sind alle unter den Bedingungen als inert zu bezeichnenden Träger geeignet. Zur Einstellung der Viskosität kann die Lösung gegebenenfalls mit Phosphorsäure (konz. Phosphorsäure, 85%) versetzt werden. Hierdurch kann die Viskosität auf den gewünschten Wert eingestellt und die Bildung der Membran erleichtert werden.

Die gemäß Schritt F) erzeugte Schicht hat eine Dicke zwischen 20 und 4000 μ m, vorzugsweise zwischen 30 und 3500 μ m, insbesondere zwischen 50 und 3000 μ m.

Die Polymerisation des Polyazol-Blockpolymeren in Schritt G) wird bei einer Temperatur und für eine Dauer durchgeführt, bis eine Intrinsische Viskosität mehr als 1,5 dl/g, vorzugsweise mehr als 1,8 dl/g, insbesondere mehr als 1,9 dl/g, beträgt.

20 Üblicherweise betragen die Temperaturen bis zu 350°C, vorzugsweise bis zu 280°C. Die Dauer beträgt üblicherweise von wenigen Minuten (min. 1 Minute) bis zu mehreren Stunden (10 Stunden). Die vorstehenden Reaktionsbedingungen hängen von der Reaktivität der jeweiligen Polymeren, sowie von der Schichtdicke ab.

$$\begin{array}{c} \begin{array}{c} X \\ X \end{array} Ar \begin{array}{c} N \\ X \end{array} \rightarrow Ar^{1} - \frac{1}{n} \end{array}$$
 (I)

$$+Ar^{4} \xrightarrow{X} Ar^{3} \xrightarrow{N} Ar^{4} \xrightarrow{I}_{\Pi} \qquad (III)$$

$$Ar^{4} \xrightarrow{X} Ar^{4} \xrightarrow{I}_{\Pi} \qquad (III)$$

$$+Ar^{4} \xrightarrow{X} Ar^{5} \xrightarrow{X} Ar^{4} + \prod_{n} \qquad (IV)$$

Empf.nr.:652 P.016

$$+Ar^{6} + Ar^{6} + \frac{1}{n}$$
 (V)

$$- + Ar^7 - \sqrt{N-Ar^7-1}$$
 (VI)

$$-\frac{1}{N} - \frac{1}{N} - \frac{1}{N} \qquad (VII)$$

$$\begin{array}{c}
N \longrightarrow N \\
N \longrightarrow N \\
N \longrightarrow N
\end{array}$$
(X)

$$N_{N}$$
 (XII)

$$+ \sqrt{\sum_{N}^{N}}$$
 (XIX)

$$R_{n}$$
 (XX)

worin

10

20

25

- Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
- 5 Ar¹ gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann,
 - Ar² gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
 - Ar³ gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann,
 - Ar^A gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann,
 - Ar⁵ gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann.
- 15 Ar⁶ gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
 - Ar⁷ gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann.
 - Ar⁸ gleich oder verschieden sind und für eine drejbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
 - Ar⁸ gleich oder verschieden sind und für eine zwel- oder drei- oder vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann,
 - Ar¹⁰ gleich oder verschieden sind und für eine zwei- oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann,
 - Ar¹¹ gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
 - X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine Aminogruppe, die ein Wasserstoffatom, eine 1-20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als welteren Rest trägt
 - R gleich oder verschieden für Wasserstoff, eine Alkylgruppe und eine aromatische Gruppe steht, mit der Maßgabe, das R in Formel (XX) ungleich Wasserstoff ist, und

20

25

n, m eine ganze Zahl größer gleich 10, bevorzugt größer gleich 100 ist.

Bevorzugte aromatische oder heteroaromatische Gruppen leiten sich von Benzol,
Naphthalin, Biphenyl, Diphenylether, Diphenylmethan, Diphenyldimethylmethan,
Bisphenon, Diphenylsulfon, Chinolin, Pyridin, Bipyridin, Pyridazin, Pyrimidin, Pyrazin,
Triazin, Tetrazin, Pyrol, Pyrazol, Anthracen, Benzopyrrol, Benzotriazol,
Benzooxathiadiazol, Benzooxadiazol, Benzopyridin, Benzopyrazin,
Benzopyrazidin, Benzopyrimidin, Benzopyrazin, Benzotriazin, Indolizin, Chinolizin,
Pyridopyridin, Imidazopyrimidin, Pyrazinopyrimidin, Carbazol, Acindin, Phenazin,
Benzochinolin, Phenoxazin, Phenothiazin, Acridizin, Benzopteridin, Phenanthrolin
und Phenanthren, die gegebenenfalls auch substituiert sein können, ab.

Dabel ist das Substitionsmuster von Ar¹, Ar⁴, Ar⁶, Ar⁷, Ar⁸, Ar⁹, Ar¹⁰, Ar¹¹ beliebig, im Falle vom Phenylen beispielsweise kann Ar¹, Ar⁴, Ar⁵, Ar⁷, Ar⁸, Ar⁹, Ar¹⁰, Ar¹¹ ortho-, meta- und para-Phenylen sein. Besonders bevorzugte Gruppen leiten sich von Benzol und Biphenylen, die gegebenenfalls auch substituiert sein können, ab.

Bevorzugte Alkylgruppen sind kurzkettige Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, wie z. B. Methyl-, Ethyl-, n- oder i-Propyl- und t-Butyl-Gruppen.

Bevorzugte aromatische Gruppen sind Phenyl- oder Naphthyl-Gruppen. Die Alkylgruppen und die aromatischen Gruppen können substituiert sein.

Bevorzugte Substituenten sind Halogenatome wie z. B. Fluor, Aminogruppen.

Hydroxygruppen oder kurzkettige Alkylgruppen wie z. B. Methyl- oder Ethylgruppen.

Bevorzugt sind Polyazole mit wiederkehrenden Einheiten der Formel (I) bei denen die Reste X innerhalb einer wiederkehrenden Einheit gleich sind.

Die Polyazole können grundsätzlich auch unterschiedliche wiederkehrende Einheiten aufweisen, die sich beispielsweise in ihrem Rest X unterscheiden. Vorzugsweise jedoch weist es nur gleiche Reste X in einer wiederkehrenden Einheit auf.

Weitere bevorzugte Polyazol-Polymere sind Polyimidazole, Polybenzthiazole, Polybenzoxazole, Polyoxadiazole, Polyquinoxalines, Polythiadiazole Poly(pyridine), Poly(pyrimidine), und Poly(tetrazapyrene).

- In einer weiteren Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Copolymer oder ein Blend, das mindestens zwei Einheiten der Formel (I) bis (XXII) enthält, die sich voneinander unterscheiden.
- Die Anzahl der wiederkehrende Azoleinheiten im Polymer ist vorzugsweise eine ganze Zahl größer gleich 10. Besonders bevorzugte Polymere enthalten mindestens 100 wiederkehrende Azoleinheiten.

Im Rahmen der vorljegenden Erfindung sind Block-Polymere enthaltend
wiederkehrenden Benzimidazoleinheiten bevorzugt. Einige Beispiele der äußerst
zweckmäßigen Polymere enthaltend wiederkehrende Benzimidazoleinheiten werden
durch die nachfolgende Formeln wiedergegeben:

10

$$= \bigvee_{N} \bigvee_$$

5

10

15

20

20

wobei n und m eine ganze Zahl größer gleich 10, vorzugsweise größer gleich 100 ist.

Insofern die Mischung gemäß Schritt A) und C) auch Tricarbonsäuren bzw. Tetracarbonsäre enthält wird hierdurch eine Verzweigung/ Vernetzung des gebildeten Polymeren erzielt. Diese trägt zur Verbesserung der mechanischen Eigenschaft bei.

Die Behandlung der gemäß Schritt F) erzeugten Schicht erfolgt in Gegenwart von Feuchtigkeit bei Temperaturen und für eine Dauer ausreichend bis die Schicht eine ausreichende Festigkeit für den Einsatz in Brennstoffzellen besitzt. Die Behandlung kann soweit erfolgen, daß die Membran selbsttragend ist, so daß sie ohne Beschädigung vom Träger abgelöst werden kann.

In einer Variante des Verfahrens kann durch Erwärmen der Mischung aus Schritt E) auf Temperaturen von bis zu 350°C, vorzugsweise bis zu 280°C, bereits die Bildung des Block-Polymeren bewirkt werden. Dies kann über die Messung der Intrinsischen Viskosität erfolgen. Sobald diese die in Schritt G) geforderten Werte erreicht hat, kann auf die Dünnschicht-Polymerisation in Schritt G) ganz oder teilweise verzichtet

werden. Die Dauer für die Variante beträgt üblicherweise von wenigen Minuten (20 Minuten) bis zu mehreren Stunden (40 Stunden). Die vorstehenden Reaktionsbedingungen hängen von der Reaktivität der jewelligen Monomeren ab. Auch diese Variante ist Gegenstand der vorliegenden Erfindung.

5

10

15

20

Die Behandlung der Membran in Schritt H) erfolgt bei Temperaturen oberhalb 0°C und kleiner 150°C, vorzugsweise bei Temperaturen zwischen 10°C und 120°C, insbesondere zwischen Raumtemperatur (20°C) und 90°C, in Gegenwart von Feuchtigkeit bzw. Wasser und/oder Wasserdampf bzw. und/oder wasserenthaltende Phosphorsäure von bis zu 85%. Die Behandlung erfolgt vorzugsweise unter Normaldruck, kann aber auch unter Einwirkung von Druck erfolgen. Wesentlich ist, daß die Behandlung in Gegenwart von ausreichender Feuchtigkeit geschieht, wodurch die anwesende Polyphosphorsäure durch partielle Hydrolyse unter Ausbildung niedermolekularer Polyphosphorsäure und/oder Phosphorsäure zur Verfestigung der Membran beiträgt.

Die partielle Hydrolyse der Polyphosphorsäure in Schritt H) führt zu einer Verfestigung der Membran und zu einer Abnahme der Schlichtdicke und Ausbildung einer Membran mit einer Dicke zwischen 15 und 3000 μm, vorzugsweise zwischen 20 und 2000 μm, insbesondere zwischen 20 und 1500 μm, die selbsttragend ist. Die in der Polyphosphorsäureschicht vorliegenden intra- und intermolekularen Strukturen (Interpenetrierende Netzwerke IPN) führen zu einer geordneten Membranbildung, welche für die besonderen Eigenschaften der gebildeten Membran verantwortlich zeichnet.

25

Die obere Temperaturgrenze der Behandlung gemäß Schritt H) beträgt in der Regel 150°C. Bei extrem kurzer Einwirkung von Feuchtigkeit, beispielsweise von überhitztem Dampf kann dieser Dampf auch heißer als 150°C sein. Wesentlich für die Temperaturobergrenze ist die Dauer der Behandlung.

30

Die partielle Hydrolyse (Schritt H) kann auch in Klimakammern erfolgen bei der unter definierter Feuchtigkeitseinwirkung die Hydrolyse gezielt gesteuert werden kann. Hierbei kann die Feuchtigkeit durch die Temperatur bzw. Sättigung der kontaktierenden Umgebung beispielsweise Gase wie Luft, Stickstoff, Kohlendioxid

oder andere geeignete Gase, oder Wasserdampf gezielt eingestellt werden. Die Behandlungsdauer ist abhängig von den vorstehend gewählten Parametem.

Weiterhin ist die Behandlungsdauer von der Dicke der Membran abhängig.

In der Regel beträgt die Behandlungsdauer zwischen wenigen Sekunden bis Minuten, beispielsweise unter Einwirkung von überhitztem Wasserdampf, oder bis hin zu ganzen Tagen, beispielsweise an der Luft bei Raumtemperatur und geringer relativer Luftfeuchtigkeit. Bevorzugt beträgt die Behandlungsdauer zwischen 10

Sekunden und 300 Stunden, insbesondere 1 Minute bis 200 Stunden.

Wird die partielle Hydrolyse bei Raumtemperatur (20°C) mit Umgebungsluft einer relativen Luftfeuchtigkeit von 40-80% durchgeführt beträgt die Behandlungsdauer zwischen 1 und 200 Stunden.

15

10

Die gemäß Schritt H) erhaltene Membran kann selbsttragend ausgebildet werden, d.h. sie kann vom Träger ohne Beschädigung gelöst und anschließend gegebenenfalls direkt weiterverarbeitet werden.

20 Über den Grad der Hydrolyse, d.h. die Dauer, Temperatur und Umgebungsfeuchtigkeit, ist die Konzentration an Phosphorsäure und damit die Leitfähigkeit der erfindungsgemäßen Polymermembran einstellbar. Erfindungsgemäß wird die Konzentration der Phosphorsäure als Mol Säure pro Mol Wiederholungseinheit des Polymers angegeben. Im Rahmen der vorliegenden Erfindung ist eine Konzentration (Mol Phosporsäure bezogen auf eine 25 Wiederholeinheit der Formel (III), d.h. Polybenzimidazol) von mindestens 20, vorzugsweise von mindestens 30, insbesondere von mindestens 51, bevorzugt. Derartig hohe Dotjerungsgrade (Konzentrationen) sind durch Dotjeren von Polyazolen mit kommerziell erhältlicher ortho-Phosphorsäure nur sehr schwierig bzw. gar nicht zugänglich. Auch die in der deutschen Patentanmeldung Nr. 10117687.2 30 beschrieben Polyazol-Membranen zeigen einen hohen Phosphorsäuregehalt, Die erfindungsgemäßen Block-Polymer-Membranen übertreffen diese jedoch deutlich und zeigen zudem eine sehr gute Bruchdehnung. Somit ist es möglich, denn Phosphorsäuregehalt zu steigem und gleichzeitig verbesserte mechanische

Eigenschaften zu erhalten. So zeigen die erfindungsgemäßen Block-Polymere eine Dehnung von mindestens 400%, vorzugswelse von mindestens 500% (bei 1,2 bis 1,8 Mpa). Bei geringeren Kräften von 0,6 bis 0,8 Mpa betragen die Bruchdehnungen mehr als 550%, in einzelnen Fällen sogar mehr als 1000%.

5

Im Anschluß an die Behandlung gemäß Schritt H) kann die Membran durch Einwirken von Hitze in Gegenwart von Luftsauerstoff an der Oberfläche noch vernetzt werden. Diese Härtung der Membranoberfläche verbessert die Eigenschaften der Membran zusätzlich.

Die Vernetzung kann auch durch Einwirken von IR bzw. NIR (IR = InfraRot, d. h. Licht mit einer Wellenlänge von mehr als 700 nm; NIR = Nahes IR, d. h. Licht mit einer Wellenlänge Im Bereich von ca. 700 bis 2000 nm bzw. einer Energie im Bereich von ca. 0.6 bis 1.75 eV) erfolgen. Eine weitere Methode ist die Bestrahlung mit ß-Strahlen. Die Strahlungsdosis beträgt hierbel zwischen 5 und 200 kGy.

15

20

Die erfindungsgemäße Block-Polymermembran weist verbesserte Materialeigenschaften gegenüber den bisher bekannten dotierten Polymermembranen auf. Insbesondere zeigen sie im Vergleich mit bekannten dotierten Polymermembranen bessere Leistungen. Diese begründet sich insbesondere durch eine verbesserte Protonenleitfähigkeit. Diese beträgt bei Temperaturen von 160°C mindestens 0,13 S/cm, vorzugsweise mindestens 0,14 S/cm, insbesondere mindestens 0,15 S/cm.

Zur weiteren Verbesserung der anwendungstechnischen Eigenschaften können der Membran zusätzlich noch Füllstoffe, insbesondere protonenleitende Füllstoffe, sowie zusätzliche Säuren zugesetzt werden. Die Zugabe kann entweder bei Schritt A und/oder C erfolgen oder nach der Polymerisation (Schritt B und/oder D bzw. E)

Nicht limitierende Beispiele für Protonenleitende Füllstoffe sind

30 Sulfate wie: CsHSO₄, Fe(SO₄)₂, (NH₄)₃H(SO₄)₂, LiHSO₄, NaHSO₄, KHSO₄, RbSO₄, LiN₂H₅SO₄, NH₄HSO₄,

Phosphate wie Zr₃(PO₄)₄, Zr(HPO₄)₂, HZr₂(PO₄)₃, UO₂PO₄.3H₂O, H₈UO₂PO₄, Ce(HPO₄)₂, Ti(HPO₄)₂, KH₂PO₄, NaH₂PO₄, LiH₂PO₄, NH₄H₂PO₄, CsH₂PO₄, CaHPO₄, MgHPO₄, HSb₂P₂O₈, HSb₃P₂O₁₄, H₅Sb₅P₂O₂₀.

Polysäure wie $H_3PW_{12}O_{40}.nH_2O$ (n=21-29), $H_3SiW_{12}O_{40}.nH_2O$ (n=21-29), H_xWO_3 . $HSbWO_6$. $H_3PMo_{12}O_{40}$, $H_2Sb_4O_{11}$, $HTaWO_8$, $HNbO_3$, $HTiNbO_5$. $HTiTaO_5$, $HSbTeO_6$. $H_5Ti_4O_9$, $HSbO_2$, H_2MpO_4

Selenite und Arsenide wie $(NH_4)_3H(SeO_4)_2$, UO_2AsO_4 , $(NH_4)_3H(SeO_4)_2$, KH_2AsO_4 , $Cs_3H(SeO_4)_2$, $Rb_3H(SeO_4)_2$,

Oxide wie Al₂O₃, Sb₂O₅, ThO₂, SnO₂, ZrO₂, MoO₃

Silikate wie Zeolithe, Zeolithe(NH4+), Schichtsilikate, Gerüstsilikate, H-Natrolite,

H-Mordenite, NH4-Analcine, NH4-Sodalite, NH4-Gallate, H-

Montmorillonite

10 Säuren wie HClO4, SbF5

Füllstoffe wie Carbide, insbesondere SiC, Si₃N₄, Fasem, insbesondere Glasfasem,

Glaspulvern und/oder Polymerfasem, bevorzugt auf Basis von

Polyazolen.

Als weiteres kann diese Membran auch perfluorierte Sulfonsäure Additive (0,1-20 wt%, bevorzugt 0,2-15 wt%, ganz bevorzugt 0,2-10 wt%) enthalten. Diese Additive führen zur Leistungsverbesserung, in der Nähe der Kathode zur Erhöhung der Sauerstofflöslichkeit und Sauerstoffdiffusion und zur Verringerung der Adsorbtion von Phosphorsäure und Phosphat zu Platin. (Electrolyte additives for phosphoric acid fuel cells. Gang, Xiao; Hjuler, H. A.; Olsen, C.; Berg, R. W.; Bjerrum, N. J., Chem. Dep. A, Tech. Univ. Denmark, Lyngby, Den. J. Electrochem. Soc. (1993), 140(4), 896-902 und Perfluorosulfonimide as an additive in phosphoric acid fuel cell. Razaq, M.; Razaq, A.; Yeager, E.; DesMarteau, Darryl D.; Singh, S. Case Cent. Electrochem. Sci., Case West. Reserve Univ., Cleveland, OH, USA. J.

25 Electrochem. Soc. (1989), 136(2), 385-90.)

Nicht limitierende Beispiele für persulfonierte Additive sind:
Trifluomethansulfonsäure, Kaljumtrifluormethansulfonat,
Natriumtrifluormethansulfonat, Lithiumtrifluormethansulfonat,
Ammoniumtrifluormethansulfonat, Kaljumperfluorohexansulfonat,

Natriumperfluorohexansulfonat, Lithiumperfluorohexansulfonat,
Ammoniumperfluorohexansulfonat, Perfluorohexansulfonsäure,
Kaliumnonafluorbutansulfonat, Natriumnonafluorbutansulfonat,
Lithiumnonafluorbutansulfonat, Ammoniumnonafluorbutansulfonat,

10

15

20

25

30

Als weiteres kann die Membran auch als Additive enthalten, die die im Betrieb bei

Cäsiumnonafluorbutansulfonat, Triethylammoniumperfluorohexasulfonat, Perflurosulfoimide und Nafion.

der Sauerstoffreduktion erzeugten Peroxidradikale abfangen (primäre Anitoxidanzien) oder zerstören (sekundäre Antioxidanzien) und dadurch wie in JP2001118591 A2 beschrieben Lebensdauer und Stabilität der Membran und Membranelektrodeneinheit verbessern. Die Funktionsweise und molekularen Strukturen solcher Additive sind in F. Gugumus in Plastics Additives, Hanser Verlag, 1990; N.S. Allen, M. Edge Fundamentals of Polymer Degradation and Stability, Elsevier, 1992; oder H. Zweifel, Stabilization of Polymeric Materials, Springer, 1998 beschrieben.

Nicht limitierende Beispiele für solche Additive sind:

Bis(trifluormethyl)nitroxid, 2,2-Diphenyl-1-pikrinylhydrazyl, Phenole, Alkylphenole, sterisch gehinderte Alkylphenole wie zum Beispiel Irganox, aromatische Amine, sterisch gehinderte Amine wie zum Beispiel Chimassorb; sterisch gehinderte Hydroxylamine, sterisch gehinderte Hydroxylamine, sterisch gehinderte Hydroxylamine, sterisch gehinderte Hydroxylamine, sterisch gehinderte Hydroxylamine,

Zu möglichen Einsatzgebieten der erfindungsgemäßen, dotierten Polymermembranen gehören unter anderem die Verwendung in Brennstoffzellen, bei der Elektrolyse, in Kondensatoren und in Batteriesystemen. Aufgrund ihres

Nitrosobenzol, Methyl.2-nitroso-propan, Benzophenon, Benzaldehyd-tert.-butylnitron,

Eigenschaftsprofils werden die dotierten Polymermembranen vorzugsweise in Brennstoffzellen verwendet.

Cysteamin, Melanine, Bleioxide, Manganoxide, Nickeloxide, Cobaltoxide.

Die vorliegende Erfindung betrifft auch eine Membran-Elektroden-Einheit, die mindestens eine erfindungsgemäße Polymermembran aufweist. Für weitere Informationen über Membran-Elektroden-Einheiten wird auf die Fachliteratur, insbesondere auf die Patente US-A-4,191,618, US-A-4,212,714 und US-A-4,333,805 verwiesen. Die in den vorstehend genannten Literaturstellen [US-A-4,191,618, US-A-4,212,714 und US-A-4,333,805] enthaltene Offenbarung hinsichtlich des Aufbaues und der Herstellung von Membran-Elektroden-Einheiten, sowie der zu wählenden

15

20

25

30

Elektroden, Gasdiffusionslagen und Katalysatoren ist auch Bestandteil der Beschreibung.

- In einer Variante der vorliegenden Erfindung kann die Membranbildung anstelle auf einem Träger auch direkt auf der Elektrode erfolgen. Die Behandlung gemäß Schritt H) kann hierdurch entsprechend verkürzt werden, da die Membran nicht mehr selbsttragend sein muß. Auch eine solche Membran ist Gegenstand der vorliegenden Erfindung.
- Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Elektrode die mit einer protonenleitenden Polymerbeschichtung auf Basis von Polyazolen erhältlich durch ein Verfahren umfassend die Schritte
 - A) Mischen von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität
 - mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estem, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren mit einer hohen Phosporhorsäure-Affinität, in Polyphosphorsäure unter Ausbildung einer Lösung und/oder Dispersion
 - B) Erwärmen der Mischung aus Schritt A), vorzugsweise unter Inertgas, und Polymerisation bis zum Erreichen einer Intrinsischen Viskosität von bis zu 1,5 dl/g, vorzugsweise 0,3 bis 1,0 dl/g, insbesondere 0,5 bis 0,8 dl/g, unter Ausbildung eines Polymeren dessen Phosporhorsäure-Affinität größer ist als die Phosporhorsäure-Affinität des in Schritt D) gebildeten Polymeren.
 - C) Mischen von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität
 - mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estem, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität, in Polyphosphorsäure unter Ausbildung einer Lösung und/oder Dispersion

10

20

25

- D) Erwärmen der Mischung aus Schritt C), vorzugsweise unter Inertgas, und Polymerisation bis zum Erreichen einer Intrinsischen Viskosität von bis zu 1,5 dl/g, vorzugsweise 0,3 bis 1,0 dl/g, insbesondere 0,5 bis 0,8 dl/g, unter Ausbildung eines Polymeren dessen Phosporhorsäure-Affinität kleiner ist als die Phosporhorsäure-Affinität des in Schritt B) gebildeten Polymeren,
- E) Vereinigen des Polymeren aus Schritt B) und des Polymeren aus Schritt D) wobei die Phosporhorsäure-Affinität des Polymeren aus Schritt B) größer ist als die Phosporhorsäure-Affinität des Polymeren aus Schritt D),
- F) Aufbringen einer Schlicht unter Verwendung der Mischung gemäß Schritt E) auf einer Elektrode,
- G) Erwärmen des flächigen Gebildes/Schicht erhältlich gemäß Schritt F).

 vorzugsweise unter Inertgas, bis zum Erreichen einer Intrinsischen Viskosität

 von mehr als 1,5 dl/g, vorzugsweise von mehr als 1,8 dl/g, insbesondere von

 mehr als 2,0 dl/g, unter Ausbildung eines Polyazol-Blockpolymeren,
- 15 H) Behandlung der in Schritt G) gebildeten Membran.

Die vorstehend beschriebenen Varianten und bevorzugten Ausführungsformen sind auch für diesen Gegenstand gültig, so daß an dieser Stelle auf deren Wiederholung verzichtet wird.

Die Beschichtung hat nach Schritt H) eine Dicke zwischen 2 und 3000 μm, vorzugsweise zwischen 3 und 2000 μm, insbesondere zwischen 5 und 1500 μm hat.

Eine derartig beschichtete Elektrode kann in einer Membran-Elektroden-Einheit, die gegebenenfalls mindestens eine erfindungsgemäße Block-Polymermembran aufweist, eingebaut werden.

Allgameine Messmethoden:

30 Messmethode für IEC .

Die Leitfähigkeit der Membran hängt stark vom Gehalt an Säuregruppen ausgedrückt durch die sog. Ionenaustauschkapazität (IEC) ab. Zur Messung der Ionenaustauschkapazität wird eine Probe mit einem Durchmesser von 3 cm ausgestanzt und in ein mit 100 ml Wasser gefülltes Becherglas gegeben. Die

28

freigesetzte Säure wird mit 0,1 M NaOH titriert. Anschliessend wird die Probe entnommen, überschüssiges Wasser abgetupft und die Probe bei 160°C während 4h getrocknet. Dann bestimmt man das Trockengewicht, mo, gravimetrisch mit einer Genauigkeit von 0,1 mg. Die Ionenaustauschkapazität wird dann aus dem Verbrauch der 0.1M NaOH bis zum ersten Titrationsendpunkt, V1 in ml, und dem Trockengewicht, mo in mg. gemäss folgender Formel berechnet: IEC=V₁*300/m₀

Messmethode für spezifische Leitfähigkeit

Die spezifische Leitfähigkeit wird mittels Impedanzspektroskopie in einer 4-Pol-Anordnung im potentiostatischen Modus und unter Verwendung von Platinelektroden (Draht, 0,25 mm Durchmesser) gemessen. Der Abstand zwischen den stromabnehmenden Elektroden beträgt 2 cm. Das erhaltene Spektrum wird mit einem einfachen Modell bestehend aus einer parallelen Anordnung eines ohm schen Widerstandes und eines Kapazitators ausgewertet. Der Probenquerschnitt der 15 phosphorsäuredotierten Membran wird unmittelbar vor der Probenmontage gemessen. Zur Messung der Temperaturabhängigkeit wird die Messzelle in einem Ofen auf die gewünschte Temperatur gebracht und über eine in unmittelbarer Probennähe positionlertes Pt-100 Thermoelement geregelt. Nach Erreichen der Temperatur wird die Probe vor dem Start der Messung 10 Minuten auf dieser 20 Temperatur gehalten

Patentansprüche

Dispersion

2003/CVG 017

- Protonenleitende Polymermembran auf Basis von Polyazolen erhältlich durch ein Verfahren umfassend die Schritte
- Mischen von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren mit einer hohen Phosporhorsäure-Affinität, in Polyphosphorsäure unter Ausbildung einer Lösung und/oder
- 15 B) Erwärmen der Mischung aus Schritt A), vorzugsweise unter Inertgas, und Polymerisation bis zum Erreichen einer Intrinsischen Viskosität von bis zu 1,5 di/g, vorzugsweise 0,3 bis 1,0 di/g, insbesondere 0,5 bis 0,8 di/g, unter Ausbildung eines Polymeren dessen Phosporhorsäure-Affinität größer ist als die Phosporhorsäure-Affinität des in Schritt D) gebildeten Polymeren,
- C) Mischen von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität, in Polyphosphorsäure unter Ausbildung einer Lösung und/oder Dispersion
 - D) Erwärmen der Mischung aus Schritt C), vorzugsweise unter Inertgas, und Polymerisation bis zum Erreichen einer Intrinsischen Viskosität von bis zu 1,5 dl/g, vorzugsweise 0,3 bis 1,0 dl/g, insbesondere 0,5 bis 0,8 dl/g, unter Ausbildung eines Polymeren dessen Phosporhorsäure-Affinität kleiner ist als die Phosporhorsäure-Affinität des in Schritt B) gebildeten Polymeren,
 - E) Vereinigen des Polymeren aus Schritt B) und des Polymeren aus Schritt D) wobei die Phosporhorsäure-Affinität des Polymeren aus Schritt B) größer ist als die Phosporhorsäure-Affinität des Polymeren aus Schritt D).

- F) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt E) auf einem Träger oder auf einer Elektrode,
- G) Erwärmen des flächigen Gebildes/Schicht erhältlich gemäß Schritt F), vorzugsweise unter Inertgas, bis zum Erreichen einer Intrinsischen Viskosität von mehr als 1,5 dl/g, vorzugsweise von mehr als 1,8 dl/g, insbesondere von mehr als 1,9 dl/g, unter Ausbildung eines Polyazol-Blockpolymeren,
- H) Behandlung der in Schritt G) gebildeten Membran (bis diese selbsttragend ist).
- 2. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als aromatische
 Tetra-Amino-Verbindungen mit einer hohen Phosporhorsäure-Affinität 2,3,5,6Tetraaminopyridin, 3,3',4,4'-Tetraaminodiphenylsulfon, 3,3',4,4'Tetraaminodiphenylether sowie deren Salze, insbesondere deren Mono-, Di-,
 Tri- und Tetrahydrochloriddenvate, eingesetzt werden.
- 3. Membran gemäß Anspruch 1. dadurch gekennzeichnet, daß als aromatische Tetra-Amino-Verbindungen mit einer niedrigen Phosporhorsäure-Affinität 3,3',4,4'-Tetraaminobiphenyl, , 1,2,4,5-Tetraaminobenzol, 3,3',4,4'-Tetraaminobenzophenon, 3,3',4,4'-Tetraaminodiphenylmethan und 3,3',4,4'-Tetraaminodiphenyldimethylmethan sowie deren Salze, insbesondere deren Mono-, Di-, Tri- und Tetrahydrochloridderivate, eingesetzt werden.
- Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als aromatische 4. Carbonsäuren mit einer hohen Phosporhorsäure-Affinität Pyridin-2,5dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-25 Pyrazoldicarbonsäure, 2,6 -Pyrlmidindicarbonsäure, 2,5-Pyrazindicarbonsäure, 2.4.6-Pyridintricarbonsäure. Benzimidazol-5,6-dicarbonsäure. 5-Hydroxyisophthalsäure, 4-Hydroxyisophthalsäure, 2-Hydroxyterephthalsäure, 5-Aminolsophthalsäure, 5-N,N-Dimethylaminoisophthalsäure, 5-N,N-Diethylaminoisophthaisäure, 2,5-Dihydroxyterephthaisäure, 2,6-30 Dihydroxyisophthalsäure, 4,6-Dihydroxyisophthalsäure, 2,3-Dihydroxyphthalsäure, 2,4-Dihydroxyphthalsäure, 3,4-Dihydroxyphthalsäure, 1.8-dihydroxynaphthalin-3.6-dicarbonsäure und Diphenylsulfon-4.4'dicarbonsäure, eingesetzt werden.

10

15

- 5. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als aromatische Carbonsäuren mit einer niedrigen Phosporhorsäure-Affinität Isophthalsäure, Terephthalsäure, Phthalsäure, 3-Fluorophthalsäure, 5-Fluoroisophthalsäure, 2-Fluoroterphthalsäure, Tetrafluorophthalsäure, Tetrafluoroisophthalsäure, Tetrafluoroterephthalsäure, 1,4-Naphthalindicarbonsäure, 1,5-Naphthalindicarbonsäure, 2,6-Naphthalindicarbonsäure, 2,7-Naphthalindicarbonsäure, Diphensäure, Diphensiure, 4-dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, 2,2-Bis(4-carboxyphenyl)hexafluoropropan, 4,4'-Stilbendicarbonsäure und 4-Carboxyzimtsäure eingesetzt werden.
- 6. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als Diaminocarbonsäuren mit einer hohen Phosporhorsäure-Affinität Diaminobezoesäure und deren Mono und Dihydrochloridderivate, sowie 1,2-Diamino-3'-carboxysäure-4,4'-diphenylether eingesetzt werden.
- 7. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als aromatische Carbonsäure Tri-carbonsäuren, Tetracarbonsäuren bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester oder deren Säureanhydride oder deren Säurechloride, vorzugsweise 1.3,5-benzene-tricarboxylic acid (trimesic acid); 1,2,4-benzene-tricarboxylic acid (trimellitic acid); (2-Carboxyphenyl)iminodiessigsäure, 3,5,3'-biphenyltricarboxylic acid; 3,5,4'-biphenyltricarboxylic acid und/oder 2,4,6-pyridinetricarboxylic acid eingesetzt werden.
 - 8. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als aromatische Carbonsäure Tetracarbonsäuren deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester oder deren Säureanhydride oder deren Säurechloride, vorzugsweise Benzol 1,2,4,5-tetracarbonsäuren; Naphthalin-1,4,5,8-tetracarbonsäuren 3,5,3',5'-biphenyltetracarboxylic acid; Benzophenontetracarbonsäure, 3,3',4,4'-Biphenyltetracarbonsäure, 2,2',3,3'-Biphenyltetracarbonsäure, 1,2,5,6-Naphthalintetracarbonsäure eingesetzt werden.

- 9. Membran gemäß Anspruch 4. dadurch gekennzeichnet, daß der Gehalt an Tricarbonsäure bzw. Tetracarbonsäuren (bezogen auf eingesetzte Dicarbonsäure) beträgt zwischen 0 und 30 Mol-%, vorzugsweise 0,1 und 20 Mol %, insbesondere 0,5 und 10 Mol-%. beträgt.
- Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als heteroaromatische Carbonsäuren heteroaromatische Di-carbonsäuren und Tricarbonsäuren und Tetra-Carbonsäuren eingesetzt werden, welche mindestens ein Stickstoff, Sauerstoff, Schwefel oder Phosphoratom im Aromaten enthalten, vorzugsweise Pyridin-2,5-dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6 –
 Pyrimidindicarbonsäure, 2,5-Pyrazoldicarbonsäure, 2,4,6-Pyridintricarbonsäure, Benzimidazol-5,6-dicarbonsäure, sowie deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride.
 - 11. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt A) und C) eine Polyphosphorsäure mit einem Gehalt berechnet als P₂O₅ (acidimetrisch) von mindestens 83% eingesetzt wird.
 - 12. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt A) und C) eine Lösung oder eine Dispersion/Suspension erzeugt wird.
- 13. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt G)
 Block-Polymere auf Basis von Polyazol enthaltend wiederkehrende
 Azoleinheiten der allgemeinen Formel (I) und/oder (II) und/oder (III) und/oder
 (IV) und/oder (V) und/oder (VI) und/oder (VII) und/oder (VIII) und/oder (IX)
 und/oder (X) und/oder (XI) und/oder (XII) und/oder (XIII) und/oder (XIV)
 und/oder (XV) und/oder (XVI) und/oder (XVII) und/oder (XVIII)
 und/oder (XIX) und/oder (XX) und/oder (XXII)

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} X \\ X \end{array} & \begin{array}{c} A \\$$

$$-Ar^2 - N \rightarrow -1$$
(II)

$$+Ar^4 \longrightarrow X \longrightarrow Ar^3 \longrightarrow X \longrightarrow Ar^4 \longrightarrow Ar^4$$

$$+Ar^{4} \xrightarrow{X} Ar^{5} \xrightarrow{X} Ar^{4} \xrightarrow{I}_{\Pi} \qquad (IV)$$

$$t - Ar^{6} \xrightarrow{N-N} Ar^{8} \xrightarrow{t_{n}} (V)$$

$$-[-Ar^7 - \sqrt{N} - Ar^7 -]_{\overline{D}}$$
 (VI)

$$+Ar^{7} \longrightarrow Ar^{7} - \frac{1}{n} \qquad (VII)$$

$$+ \left(\sum_{n=1}^{N} Ar^{9} - \sum_{n=1}^{N} Ar^{19} + \prod_{n=1}^{N} Ar^{19} \right)$$

(XI)

(XII)

(XIII)

(XIV)

$$+ N \longrightarrow N$$
 (XIX)

$$R_{j_n}$$
 (xx)

worin

10

20

25

- Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann,
- 5 Ar¹ gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann,
 - Ar² gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann,
 - Ar³ gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
 - Ar⁴ gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann,
 - Ar⁵ gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
- 15 Ar⁶ gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann.
 - Ar⁷ gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
 - Ar^B gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann.
 - Ar^a gleich oder verschieden sind und f
 ür eine zwei- oder drei- oder vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
 - Ar¹⁰ gleich oder verschieden sind und für eine zwei- oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann,
 - Ar¹¹ gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann,
 - X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine Aminogruppe, die ein Wasserstoffatom, eine 1- 20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt
 - R gleich oder verschieden für Wasserstoff, eine Alkylgruppe und eine aromatische Gruppe steht, mit der Maßgabe, das R in Formel (XX) ungleich Wasserstoff ist, und

n. m eine ganze Zahl größer gleich 10, bevorzugt größer gleich 100 ist, gebildet wird.

- 14. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt G) ein Block-Polymer enthaltend wiederkehrende Segmente ausgewählt aus der Gruppe Polybenzimidazol, Poly(pyridine), Poly(pyrimidine), Polyimidazole, Polybenzthiazole, Polybenzoxazole, Polyoxadiazole, Polyquinoxalines, Polythiadiazole und Poly(tetrazapyrene) gebildet wird.
- 10 15. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt G) ein Block-Polymer enthaltend wiederkehrende Benzlmidazoleinheiten der Formel

5

5

wobei n und m eine ganze Zahl größer gleich 10. vorzugsweise größer gleich 100 ist, gebildet wird.

- 16. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die gemäß Schritt H) erzeugten Membran in Gegenwart von Feuchtigkeit bei Temperaturen und für eine Zeitdauer behandelt wird bis die Membran selbsttragend ist und ohne Beschädigung vom Träger abgelöst werden kann.
- 17. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Behandlung der Membran in Schritt H) erfolgt bei Temperaturen oberhalb 0°C und 150°C, vorzugsweise bei Temperaturen zwischen 10°C und 120°C, insbesondere zwischen Raumtemperatur (20°C) und 90°C, in Gegenwart von Feuchtigkeit bzw. Wasser und/oder Wasserdampf erfolgt.
- 18. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Behandlung der Membran in Schritt H) zwischen 10 Sekunden und 300 Stunden, vorzugsweise 1 Minute bis 200 Stunden, beträgt.
- 19. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt F) als Träger eine Elektrode gewählt wird und die Behandlung gemäß Schritt H) dergestalt ist, daß die gebildete Membran nicht mehr selbsttragend ist.

20

15

5

15

20

25

- 20. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt F) eine Schicht mit einer Dicke von 20 und 4000 μm, vorzugsweise zwischen 30 und 3500 μm, insbesondere zwischen 50 und 3000 μm erzeugt wird.
- Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die nach Schritt H)
 gebildete Membran eine Dicke zwischen 15 und 3000 μm, vorzugsweise
 zwischen 20 und 2000 μm, insbesondere zwischen 20 und 1500 μm hat.
 - 22. Elektrode die mit einer protonenleitenden Polymerbeschichtung auf Basis von Polyazolen erhältlich durch ein Verfahren umfassend die Schritte
 - A) Mischen von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität
 - mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren mit einer hohen Phosporhorsäure-Affinität, in Polyphosphorsäure unter Ausbildung einer Lösung und/oder Dispersion
 - B) Erwärmen der Mischung aus Schritt A), vorzugsweise unter Inertgas, und Polymerisation bis zum Erreichen einer Intrinsischen Viskosität von bis zu 1,5 dl/g, vorzugsweise 0,3 bis 1,0 dl/g, insbesondere 0,5 bis 0,8 dl/g, unter Ausbildung eines Polymeren dessen Phosporhorsäure-Affinität größer ist als die Phosporhorsäure-Affinität des in Schritt D) gebildeten Polymeren,
 - C) Mischen von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität
 - mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten mit einer hohen Phosporhorsäure-Affinität oder niedrigen Phosporhorsäure-Affinität, in Polyphosphorsäure unter Ausbildung einer Lösung und/oder Dispersion
 - D) Erwärmen der Mischung aus Schritt C), vorzugsweise unter Inertgas, und Polymerisation bis zum Erreichen einer Intrinsischen Viskosität von bis zu 1,5

- dl/g, vorzugsweise 0,3 bis 1,0 dl/g, insbesondere 0,5 bis 0,8 dl/g, unter Ausbildung eines Polymeren dessen Phosporhorsäure-Affinität kleiner ist als die Phosporhorsäure-Affinität des in Schritt B) gebildeten Polymeren,
- E) Vereinigen des Polymeren aus Schritt B) und des Polymeren aus Schritt D)

 wobei die Phosporhorsäure-Affinität des Polymeren aus Schritt B) größer ist als die Phosporhorsäure-Affinität des Polymeren aus Schritt D).
 - F) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt E) auf einer Elektrode,
- G) Erwärmen des flächigen Gebildes/Schicht erhältlich gemäß Schritt F),
 vorzugsweise unter Inertgas, bis zum Erreichen einer Intrinsischen Viskosität
 von mehr als 1,5 dl/g, vorzugsweise von mehr als 1,8 dl/g, insbesondere von
 mehr als 2,0 dl/g, unter Ausbildung eines Polyazol-Blockpolymeren,
 - H) Behandlung der in Schritt G) gebildeten Membran.
- 23. Elektrode gemäß Anspruch 22, wobei die Beschichtung eine Dicke zwischen 2 und 3000 μm, vorzugsweise zwischen 3 und 2000 μm, insbesondere zwischen 5 und 1500 μm hat.
- 24. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 21.
 - 25. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode gemäß Anspruch 22 oder 23 und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 21.
 - 26. Brennstoffzelle enthaltend eine oder mehrere Membran-Elektroden-Einheiten gemäß Anspruch 24 oder 25.

27.JUL.2003 12:49

LUDERSCHMIDT HOECHST

NR.862 S.51/51

45

Zusammenfassung

2003/CVG 017

Protonleitende Membran und deren Verwendung

Die vorliegende Erfindung betrifft eine neuartige protonenleitende Polymermembran auf Basis von Polyazol-Block-Polymeren, die aufgrund ihrer hervorragenden chemischen und thermischen Eigenschaften vielfältig eingesetzt werden kann und sich insbesondere als Polymer-Elektrolyt-Membran (PEM) zur Herstellung von Membran-Elektroden-Einheiten für sogenannte PEM-Brennstoffzellen eignet.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ CRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.