STATISTIQUE

 $\begin{array}{c} \text{Prof: M. BA} \\ \text{Ann\'ee scolaire: } 2024-2025 \end{array}$

I. Rappel : vocabulaire des séries statistiques

1) Population

Définition: Ensemble d'individus ou d'objets sur lesquels porte l'étude statistique.

Exemple: Les élèves d'un lycée.

2) Individu

Définition : Élément de la population étudiée.

Exemple: Un élève du lycée.

3) Échantillon

Définition : Sous-ensemble de la population, souvent utilisé lorsque la population est trop grande pour être étudiée en entier.

Exemple : Une classe de 1^{re} S parmi toutes les classes du lycée.

4) Caractère

Définition : Propriété ou caractéristique étudiée chez les individus de la population.

Caractère qualitatif

Définition : Ne s'exprime pas par un nombre.

Exemple : Couleur des yeux (bleu, marron...).

Caractère quantitatif

Définition : Peut être mesuré ou compté.

Exemple : L'âge des élèves (14, 15, 16 ans...).

Un caractère quantitatif peut être :

- **Discret** : il prend un nombre fini ou dénombrable de valeurs.
 - **Exemple :** Le nombre de frères et sœurs d'un élève (0, 1, 2, 3...).
- Continu : il peut prendre une infinité de valeurs dans un intervalle donné.

Exemple: Le poids d'un élève en kg (53,2 kg; 54,8 kg; etc.).

a) Caractère quantitatif discret

Exemple : L'âge des élèves dans une classe.

Âge (en années)	15	16	17	18
Effectif	2	5	8	5

Remarque: On peut lister toutes les valeurs possibles du caractère (15, 16, 17, 18).

b) Caractère quantitatif continu

Exemple : Le poids des élèves en kilogrammes.

Poids (en kg)	[40; 50[[50; 60[[60; 70[
Effectif	4	5	1

Remarque : Le poids peut prendre toutes les valeurs réelles dans un intervalle, comme 52,3 kg ou 48,7 kg.

5) Modalité d'un caractère qualitatif

Définition : Une modalité est une valeur possible prise par un caractère qualitatif.

Exemple : On interroge des élèves sur leur ethnie. L'ethnie est un caractère qualitatif dont les modalités sont : Diola, Sérère, Peul, Lebou.

Ethnie	Diola	Sérère	Peul	Lebou
Effectif	3	5	8	7

Remarque : Les modalités sont les différentes réponses possibles au caractère qualitatif "Ethnie".

6) Effectif partiel

Définition : L'effectif partiel est le nombre d'individus possédant une même valeur d'un caractère.

Exemple: On interroge des élèves sur leur ethnie. Voici les résultats obtenus:

Ethnie	Diola	Sérère	Peul	Lebou
Effectif partiel	3	5	8	7

Lecture du tableau:

- L'effectif partiel des **Diola** est 3.
- L'effectif partiel des **Sérère** est 5.
- L'effectif partiel des **Peul** est 8.
- L'effectif partiel des **Lebou** est 7.

7) Effectif total

Définition : L'effectif total est le nombre total d'individus interrogés ou observés dans une étude statistique.

Exemple : Reprenons le tableau des ethnies étudiées :

Ethnie	Diola	Sérère	Peul	Lebou
Effectif partiel	3	5	8	7

Calcul de l'effectif total:

$$N = 3 + 5 + 8 + 7 = 23$$

Il y a donc 23 élèves au total dans la population observée.

8) Notation

On note:

— x_i : une valeur prise par le caractère étudié (appelée **modalité**);

— n_i : l'effectif partiel associé à la modalité x_i ;

-N: l'effectif total, c'est-à-dire la somme de tous les effectifs partiels:

$$N = \sum_{i=1}^{p} n_i$$

où p est le nombre de valeurs différentes (ou modalités) du caractère étudié.

Exemple:

x_i (Ethnie)	Diola	Sérère	Peul	Lebou
n_i (Effectif)	3	5	8	7

$$N = \sum_{i=1}^{4} n_i = 3 + 5 + 8 + 7 = 23$$

9) Fréquence

Définition: La fréquence d'une valeur x_i est le quotient de l'effectif partiel n_i par l'effectif total N. Elle représente la proportion d'individus correspondant à cette valeur.

$$f_i = \frac{n_i}{N}$$

où:

— f_i : fréquence associée à la valeur x_i ,

— n_i : effectif partiel de x_i ,

— N : effect if total.

Exemple:

$$f_{\rm Diola} = \frac{3}{23}, \quad f_{\rm S\acute{e}r\grave{e}re} = \frac{5}{23}, \quad f_{\rm Peul} = \frac{8}{23}, \quad f_{\rm Lebou} = \frac{7}{23}$$

Remarque : La somme des fréquences est toujours égale à 1 :

$$\sum_{i=1}^{p} f_i = 1$$

10) Fréquence en pourcentage

Définition : La fréquence en pourcentage est la fréquence exprimée sur 100 au lieu de 1.

Fréquence en
$$\% = f_i \times 100 = \frac{n_i}{N} \times 100$$

où:

- f_i est la fréquence de la valeur x_i ,
- n_i est l'effectif partiel,
- N est l'effectif total.

Exemple:

$$f_{\rm Diola} = \frac{3}{23} \quad \Rightarrow \quad {\rm Fr\'{e}quence\ en\ \%} = \frac{3}{23} \times 100 \approx 13{,}04\,\%$$

$$f_{\mathrm{Peul}} = \frac{8}{23} \quad \Rightarrow \quad \text{Fréquence en } \% \approx 34{,}78\,\%$$

Remarque: La somme des fréquences en pourcentage est toujours égale à 100%.

- 11) Effectif cumulé croissant[ECC]-Fréquence cumulée croissante[FCC]
 - (a) Effectif cumulé croissant[ECC]

Définition : L'effectif cumulé croissant est la somme des effectifs partiels des valeurs inférieures ou égales à une valeur donnée.

$$N_i = \sum_{j=1}^i n_j$$

où:

- N_i est l'effectif cumulé croissant jusqu'à la i-ème valeur,
- n_j est l'effectif partiel de la j-ème valeur.

Exemple:

$$N_1 = n_1 = 3$$

$$N_2 = n_1 + n_2 = 3 + 5 = 8$$

$$N_3 = n_1 + n_2 + n_3 = 3 + 5 + 8 = 16$$

$$N_4 = n_1 + n_2 + n_3 + n_4 = 3 + 5 + 8 + 7 = 23$$

Reprend le tableu age

Âge (en années)	15	16	17	18	Total
Effectif n_i	1	3	4	2	10
ECC N_i	1	4	8	10	_

(b) Fréquence cumulée croissante[FCC]

Définition : La fréquence cumulée croissante est la somme des fréquences des valeurs inférieures ou égales à une valeur donnée.

$$F_i = \sum_{j=1}^i f_j$$

où:

- F_i est la fréquence cumulée jusqu'à x_i ,
- $f_j = \frac{n_j}{N}$ est la fréquence de la valeur x_j .

Exemple:

$$F_1 = \frac{3}{23} \approx 0,130$$

$$F_2 = \frac{3+5}{23} = \frac{8}{23} \approx 0,348$$

$$F_3 = \frac{3+5+8}{23} = \frac{16}{23} \approx 0,696$$

$$F_4 = \frac{3+5+8+7}{23} = 1$$

Remarque : La fréquence cumulée croissante de la dernière valeur est toujours égale à 1 (ou 100%).

Âge (en années)	15	16	17	18	Total
Effectif n_i	1	3	4	2	10
ECC N_i	1	4	8	10	_
Fréquence f_i	0,1	0,3	0,4	0,2	1
Fréquence en %	10 %	30 %	40 %	20%	100%
Fréquence cumulée	0,1	0,4	0,8	1	_

${\bf 12)} \ \ {\bf Effectif} \ {\bf cumul\acute{e}} \ {\bf d\acute{e}croissant} [{\bf EDC}] {\bf -Fr\acute{e}quence} \ {\bf cumul\acute{e}e} \ {\bf d\acute{e}croissante} [{\bf FDC}]$

Âges	15	16	17	18	Total
Effectif n_i	1	3	4	2	10
E.C.D	10	9	6	2	_
Fréquence f_i	0,1	0,3	0,4	0,2	1
%	10	30	40	20	100
F.C.D	100	90	60	20	_

II. Représentation graphique

Diagramme en bâtons (Âges)

Diagramme en bandes (ethnies)

1. Histogramme

2. Diagramme circulaire

Formule de l'angle d'un secteur

$$\mathbf{Angle} = \frac{n_i}{N} \times 360^{\circ} \quad \text{ ou } \quad \mathbf{Angle} = f_i \times 360^{\circ}$$

IV. Paramètre de position

IV. Paramètre de position

1. Cas discret

— **Mode** : valeur la plus fréquente dans la série.

Une série peut être :

— Unimodale : si elle a un seul mode;

— Bimodale : si elle a deux modes de même fréquence ;

— Multimodale : si elle a plusieurs valeurs ayant la même fréquence maximale.

— Moyenne :

Moyenne d'une série discrète

$$\overline{X} = \frac{\sum x_i}{N}$$

Exemple:

Les notes obtenues par un élève en mathématiques à un devoir sont : 12; 13; 08; 10; 11

$$\overline{X} = \frac{12 + 13 + 08 + 10 + 11}{5} = \frac{54}{5} = 10,8$$