Class notes: Advanced Topics in Macroeconomics

Topic: Vaughan's Insight

Date: September 20, 2021

II. Computing Equilibria (continued)

In class, we talked about how to check results of our codes. For most problems, there is an easy check: look at the residuals of the first-order conditions. We then continued our discussion of near-linear methods.

Method 3.

We use the insights of Vaughan (1970) to exploit certain properties of the first-order conditions of the LQ problem defined above. Vaughan assumes no discounting or cross-product terms, so we'll map the variables and coefficients to \tilde{X} , \tilde{u} , \tilde{A} , \tilde{B} , and \tilde{Q} as shown earlier. Also note that because the solution does not depend on the variances and covariances of ϵ , we can abstract from the uncertainty for now. Writing out the Lagrangian, we have

$$\mathcal{L} = \sum_{t=0}^{\infty} \{ \tilde{X}_t' \tilde{Q} \tilde{X}_t + \tilde{u}_t' R \tilde{u}_t - \lambda_{t+1}' \left(X_{t+1} - \tilde{A} \tilde{X}_t - \tilde{B} \tilde{u}_t \right) \}$$
 (1)

Taking derivatives with respect to \tilde{u}_t , \tilde{X}_{t+1} , and λ_{t+1} , we obtain the following first-order conditions

$$2R\tilde{u}_t + B'\lambda_{t+1} = 0$$

$$\tilde{Q}\tilde{X}_{t+1} - \lambda_{t+1} + \tilde{A}'\lambda_{t+2} = 0$$

$$\tilde{X}_{t+1} - \tilde{A}\tilde{X}_t - \tilde{B}\tilde{u}_t = 0$$
(2)

for $t \geq 0$, where $\{\lambda_t\}$ is a sequence of Lagrange multipliers. Eliminating \tilde{u}_t and letting $\tilde{\lambda}_t = 1/2\lambda_t$, we have:

$$\begin{bmatrix} \tilde{X}_t \\ \tilde{\lambda}_t \end{bmatrix} = \begin{bmatrix} \tilde{A}^{-1} & \tilde{A}^{-1} \tilde{B} R^{-1} \tilde{B}' \\ \tilde{Q} \tilde{A}^{-1} & \tilde{Q} \tilde{A}^{-1} \tilde{B} R^{-1} \tilde{B}' + \tilde{A}' \end{bmatrix} \begin{bmatrix} \tilde{X}_{t+1} \\ \tilde{\lambda}_{t+1} \end{bmatrix}.$$

Let \mathcal{H} be the coefficient matrix on the right hand side. Vaughan showed that this matrix can be decomposed and used directly to obtain the Riccati matrix P (and hence the

solution to the LQ problem); that is, he showed that

$$\mathcal{H} = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix} \begin{bmatrix} \Lambda & 0 \\ 0 & \Lambda^{-1} \end{bmatrix} \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix}^{-1},$$

where the eigenvalues of Λ are outside of the unit circle. Notice that the eigenvalues come in reciprocal pairs. This is an important property that implies a unique stable solution, one that satisfies the transversality condition and ensures a bounded return.

Using the fact that the Lagrange multiplier is the derivative of the value function $(\tilde{\lambda}_t = P\tilde{X}_t)$, it is easy to figure out how to set P so as to get a stationary dynamical system for X. Let $W = V^{-1}$. In this case, it is easy to show that:

$$\tilde{X}_{t+1} = \{V_{11}\Lambda^{-1}(W_{11} + W_{12}P) + V_{12}\Lambda(W_{21} + W_{22}P)\}\tilde{X}_{t}.$$

Since Λ has roots outside the unit circle, it must be the case that $P = -W_{22}^{-1}W_{21}$. Note that since $W = V^{-1}$, this is equivalent to setting $P = V_{21}V_{11}^{-1}$.

In the case that \tilde{A} is not invertible, we can modify the method slightly and use generalized eigenvalues with the following alternative system:

$$\begin{bmatrix} \tilde{A} & 0 \\ -\tilde{Q} & I \end{bmatrix} \begin{bmatrix} \tilde{X}_t \\ \tilde{\lambda}_t \end{bmatrix} = \begin{bmatrix} I & \tilde{B}R^{-1}\tilde{B}' \\ 0 & \tilde{A}' \end{bmatrix} \begin{bmatrix} \tilde{X}_{t+1} \\ \tilde{\lambda}_{t+1} \end{bmatrix}.$$

Let \mathcal{H}_1 be the coefficient matrix for the state and costate in t+1, and let \mathcal{H}_2 be the coefficient matrix for the state and costate in t. Then, instead of taking eigenvalues of \mathcal{H} as above, we take generalized eigenvalues with the pair $(\mathcal{H}_1, \mathcal{H}_2)$.

Once we have a steady-state solution to the Riccati matrix, we can use the earlier formula to compute F and the law of motion for the state variables:

$$X_{t+1} = (A - BF)X_t + C\epsilon_{t+1}$$
(3)

Furthermore, given an initial condition for the states, X_0 , and a realization of the shocks, ϵ_t , $t \geq 0$, we can generate time-series for X_t and u_t .