FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2006. február 27. 8:00

Az írásbeli vizsga időtartama: 240 perc

Pótlapok száma						
Tisztázati						
Piszkozati						

OKTATÁSI MINISZTÉRIUM

Fizika — emelt szint Azonosító jel:										
-------------------------------------	--	--	--	--	--	--	--	--	--	--

Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét! A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázat.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap végén található üres oldalakon folytathatja a feladat számának feltüntetésével.

írásbeli vizsga 0522 2 / 16 2006. február 27.

Fizil	a — emelt szint Azonosító jel:	
	ELSŐ RÉSZ	
hely	lábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be snek tartott válasz betűjelét a jobb oldali fehér négyzetbe! Ha szükségesnek tartja, kise ításokat, rajzokat készíthet a feladatlapon.	
1.	A ferdén lefelé haladó mozgólépcsőn állva elejtünk egy kulcsot. Hová esik a kulcs?	?
	A) Azon lépcsőfok elé, amely felett elejtettük. B) Arra a lépcsőfokra, amely felett elejtettük. C) Azon lépcsőfok mögé, amely felett elejtettük.	
	2 pont	
2.	Az alábbi állítások egy pozitív töltésűre feltöltött tömör fémhengerre vonatkoznak Melyik <i>hibás</i> közülük?	ζ.
	A) A fém belsejében a térerősség nulla. B) Az elektromos erővonalak a fém felülete mentén mindenhol a felületre merőleges irányba indulnak.	
	C) A fém felületén a térerősség mindenütt azonos nagyságú.	
	2 pont	
3.	Melyik az a hullámjelenség, amelyik csak a transzverzális hullámok esetén észlelhető?	

- A) Interferencia.
- B) Törés.
- C) Polarizáció.
- D) Állóhullám.

2 pont

4. Melyik esetben nyomja kisebb erővel a domb tetején a talajt az autó: ha áll, vagy ha mozog? (Mindkét esetben ugyanarról az autóról van szó.)

- A) Ha áll.
- **B)** Ha mozog.
- C) A nyomóerő a két esetben egyenlő.

- 5. Egy kerékpár 5 m/s nagyságú sebességgel halad. Mit mondhatunk az első kerék szelepének talajhoz viszonyított sebességéről abban a pillanatban, amikor a szelep pályájának legfelső pontján halad át? (A kerekek tisztán, csúszás nélkül gördülnek.)
 - A) A szelep sebessége zérus.
 - B) A szelep sebessége kisebb, mint 5 m/s.
 - C) A szelep sebessége 5 m/s.
 - **D)** A szelep sebessége nagyobb, mint 5 m/s.

6. Egy vízszintes, zárt hengert egy könnyen mozgó, fémből készült dugattyú két egyenlő térfogatú részre oszt. A dugattyú bal oldalán hidrogéngáz, a jobb oldalán nitrogéngáz van. A dugattyú már hosszabb ideje egyensúlyban van. Melyik oldalon van több gázrészecske?

- A) A bal oldalon.
- B) A részecskeszámok egyenlők.
- C) A jobb oldalon.
- D) Ennyi információ birtokában nem dönthető el egyértelműen.

- 10. Friss radioaktív forrás 200 g rádiumot tartalmaz, melynek felezési ideje 1600 év. Mennyi rádium marad 4800 év múlva?
 - **A)** 25 g
 - **B)** 50 g
 - **C)** 66,7 g

- 11. Egy 6 eV energiájú foton bizonyos fémbe ütközve abból maximum 2 eV mozgási energiával rendelkező elektront képes kiütni. Mi történik, ha ugyanezt a fémet fele akkora frekvenciájú fénnyel világítjuk meg?
 - A) A fémből nem lép ki elektron.
 - B) A kilépő elektron maximális mozgási energiája 1 eV.
 - C) A kilépő elektron maximális mozgási energiája 2 eV.

12. Az ábra valamely gáz körfolyamatát mutatja nyomástérfogat diagramon. Az alábbiak közül melyik megállapítás helytálló?

- A) A körfolyamat során a gáz hőfelvétele a hőleadásnál kisebb.
- B) A körfolyamat során a gáz hőfelvétele megegyezett a hőleadással.
- C) A körfolyamat során a gáz hőfelvétele a hőleadásnál nagyobb.
- **D)** A kérdés nem eldönthető az ábra alapján.

Fizika —	- emelt szint	Azonosító jel:							
	nér fényt szeretnénk felbon egprizma és egy optikai rác								
A) B) C) D)	A fehér fény felbontására o A fehér fény felbontására o A fehér fény felbontását m elvégezhetjük. A fehér fény felbontására o	esak az optikai rács alk indkét említett optikai	alma eszk	öz se			el		
							2 por	nt	
	kintsünk két űrállomást, an gyobb a keringési sebessége Annak, amelyik nagyobb s Annak, amelyik kisebb sug Az űrállomások keringési s	? ugarú körpályán kering garú körpályán kering.		nek a	Föld	d kö	rül! I	Mely	yiknek
							2 por	nt	
15. Mi	az elsődleges feladata egy a	ntomreaktorban a mo	derá	tork	ént h	asz	nált a	nya	gnak?
A)	Elsősorban sugárvédelmi f sugarakat.	eladatot lát el, mivel e	lnyel	i a ra	dioak	ctív			
B)	Elnyelés nélkül, hatékonya gyorsneutronokat.	n lassítja a hasadásbar	ı kele	etkez	5				
C) D)	Neutronelnyelő funkciót tö Hasadóanyagként az erőm								
							2 por	nt	

írásbeli vizsga 0522 7 / 16 2006. február 27.

Fizika — emelt szint Azonosító jel:											
-------------------------------------	--	--	--	--	--	--	--	--	--	--	--

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő két oldalra írhatja.

1. A newtoni dinamika alapjai

Ismeretes, hogy Arisztotelész (i.e. 384-i.e. 322) görög filozófus és természettudós olyan egységes világképet alakított ki, amely ellen sok részletében felmerülhetett kétely, de a XVII. századig nem tudtak új és jobb egységes világképet kialakítani.

Az ismertetés első részében tekintse át a newtoni dinamika törvényrendszerét (Newton I., II. és III. törvénye), majd ennek felhasználásával mutassa be, hogy mennyiben jelentett új megközelítést Arisztotelész felfogásához képest a mozgások okának értelmezésében a newtoni dinamika!

Arisztotelész úgy gondolta, hogy a Földön az élettelen tárgyak alapállapota a nyugalom, mozgásukhoz valamilyen külső hatásra (ható ok) van szükség. Mozgásuk kétféle lehet. A "kényszerített mozgást" más test okozza. Ekkor a test sebessége annál nagyobb, minél nagyobb a ráható "erő". A "természetes mozgásnál" a környezetüknél nehezebb testek lefelé esnek, és annál gyorsabban esik egy test, minél nehezebb.

2. Nyugalmi elektromágneses indukció, a transzformátor

Napjainkban, egy átlagos lakásban közel egy tucat olyan elektromos berendezés van, amelynek fontos részegysége a transzformátor. A transzformátorok számtalan alkalmazása közül kiemelkedik a villamos energia továbbításában betöltött szerep. A transzformátor nagymértékű tökéletesítése és a gazdaságos energiaátvitelre való felhasználása Bláthy Ottó, Déri Miksa, Zipernovszky Károly és a budapesti Ganz-gyár érdeme. Ismertesse a transzformátor működését megalapozó fizikai törvényeket és az eszköz működését!

Ismertesse a változó mágneses mező által létrehozott elektromos mezőre vonatkozó legfontosabb törvényszerűségeket (mező szerkezete, irányítottsága)! Jellemezze a változó mágneses fluxust körbevevő tekercsben indukálódó feszültség nagyságát (elektromotoros erőt)! Ismertesse a Lenz-törvényt! Mutassa be az ideális terheletlen transzformátor szerkezeti elemeit, működési elvét és a két oldal feszültségei közötti kapcsolatot!

3. Az Univerzum nagyléptékű szerkezete, az ősrobbanás-elmélet

A távcsövek fejlődésével a csillagászok a tér mind távolabbi tartományait figyelhetik meg. A térben távoli objektumok "fénye" az Univerzum korai állapotáról árulkodik. Aki távolra néz, az a múltba néz!

Jellemezze a Naprendszer geometriai struktúráját, a Tejútrendszer térbeli szerkezetét, ezen belül a Nap elhelyezkedését, valamint a galaxisokat! Ismertesse az Univerzum tágulására vonatkozó tapasztalatokat, az ősrobbanás-elméletet, valamint a Világegyetem korára vonatkozó következtetéseket!

írásbeli vizsga 0522 9 / 16 2006. február 27.

Fizika — emelt szint Azonosító	jel:					

írásbeli vizsga 0522 $$10\,/\,16$$ 2006. február 27.

a)	b)	c)	d)	e)	f)	Kifejtés	Tartalom	Összesen
						5 pont	18 pont	23 pont

írásbeli vizsga 0522 11 / 16 2006. február 27.

Fizika — emelt szint	Azonosító jel:					

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Egy fogorvos kis tükre segítségével, melyet a megfigyelt fogtól 1 cm-re tart, 2-szeres nagyítású látszólagos képet hoz létre.
- a) Milyen típusú a felhasznált tükör?
- **b)** Készítsen vázlatos rajzot a megvalósuló képalkotásról! (A rajznak nem kell méretarányosnak lennie.)
- c) Mekkora a tükör fókusztávolsága?

a)	b)	c)	Összesen
2 pont	2 pont	7 pont	11 pont

2. Egy eredetileg 300 cm hosszú, középen tengelyezett mérleghinta egyik ülőrésze letörött. A letört rész hossza 40 cm. A hinta tömege ekkor már csak 110 kg. Egy gyerek a letört oldal végére ülve a hintát egyensúlyban tartja.

Körülbelül mekkora a gyerek tömege? (A hinta homogén tömegeloszlású hasábnak tekinthető.)

Összesen

10 pont

- 3. Egy gázpalack térfogata 100 dm³, benne kezdetben 0 °C hőmérsékletű, 10⁷ Pa nyomáson oxigéngáz van. Ezután kiengedjük a palackban lévő oxigén egynegyed részét.
- a) Határozzuk meg a kiengedett gáz tömegét!
- **b)** Mekkora nyomású lesz a palackban visszamaradt gáz, ha a hőmérséklete továbbra is 0 °C?
- **c)** Mennyi hőt kell közölnünk a palackban visszamaradt 0 °C-os gázzal, hogy nyomása az eredeti értékre álljon vissza?

(Az oxigén moláris tömege 32 g/mol, fajhője állandó térfogat esetén 653 J/kg·K. Az általános gázállandó: 8,31 J/mol·K, a Boltzmann-állandó: $1,38\cdot10^{-23}$ J/K, az Avogadroszám: $6,02\cdot10^{23}$ 1/mol.)

a)	b)	c)	Összesen
4 pont	3 pont	6 pont	13 pont

- 4. Egy kezdetben nyugvó, 226-os tömegszámú rádium-atommag ($^{226}_{88}$ Ra) α -bomlása során 15 000 $\frac{km}{s}$ sebességű α -részecskét bocsát ki.
- a) Határozza meg a bomlás során keletkező atommag tömegszámát és rendszámát!
- b) Mekkora lesz a bomlás során keletkező atommag sebessége?
- **c)** Határozza meg, hogy a bomlás során keletkező atommag mozgási energiája hány százaléka az α-részecske mozgási energiájának!

(A megoldásban feltehetjük, hogy $m_{proton} = m_{neutron} = 1,66 \cdot 10^{-27} \, \mathrm{kg}$, a magok tömegét a tömeghiány jelenségének figyelmen kívül hagyásával közelíthetjük. Feltehetjük továbbá, hogy a bomlás erőmentes térben következik be, a szétlökődő részecskékre külső erő nem hat.)

a)	b)	c)	Összesen
2 pont	8 pont	3 pont	13 pont

írásbeli vizsga 0522 15 / 16 2006. február 27.

T1 11 1. 1.							
Fizika — emelt szint	Azonosító iel:				1	1	1
	3				1 1		1 1

Figyelem! Az értékelő tanár tölti ki!

	elért pontszám	maximális pontszám
I. Feleletválasztós kérdéssor		30
II. Esszé: tartalom		18
II. Esszé: kifejtés módja		5
III. Összetett feladatok		47
ÖSSZESEN		100

javító tanár

	elért pontszám	programba beírt pontszám
I. Feleletválasztós kérdéssor		
II. Esszé: tartalom		
II. Esszé: kifejtés módja		
III. Összetett feladatok		

javító tanár jegyző