

An introduction to energy systems modeling in IAMs

Volker Krey

15 October 2024

Based on material by Oliver Fricko, Siddharth Joshi, Measrainsey Meng, Fei Guo

NTNU course: Integrated Assessment Modelling (EP8900)

An introduction to energy systems modeling in IAMs

Based on material by Oliver Fricko, Siddharth Joshi, Measrainsey Meng, Fei Guo

Reference Energy System: MESSAGEix-GLOBIOM

Key Parametric Assumptions

- Resource availability
 - ⇒ Fossil energy supply curves
 - ⇒ Renewable energy potentials
- Techno-economic parameters
- Demand projections
 - ⇒ Mostly econometric analysis
- Base year calibration
 - ⇒ Capacity (by vintage)
 - ⇒ Activity

Reserves, Resources and Occurrences

- No consensus on the exact meanings of the terms reserves, resources, and occurrence.
- McKelvey box presents resource categories in a matrix that shows increasing degrees of geological assurance and economic feasibility (USGS)
- Production costs of reserves are usually supported by actual production experience and feasibility analyses, while cost estimates for resources are often inferred from current production experience

Figure 7.1 | Principles of resource classification. Source: McKelvey, 1967.

Exhaustible resources

Table 7.1 | Fossil and uranium reserves, resources, and occurrences.^a

	Historical production through 2005	Production 2005	Reserves	Resources	Additional occurrences	
	[E1]	[E1]	[EJ]	[EJ]	[EJ]	
Conventional oil	6069	147.9	4900–7610	4170–6150		
Unconventional oil	513	20.2	3750–5600	11,280–14,800	> 40,000	
Conventional gas	3087	89.8	5000-7100	7200–8900		
Unconventional gas	113	9.6	20,100–67,100	40,200–121,900	> 1,000,000	
Coal	6712	123.8	17,300–21,000	291,000–435,000		
Conventional uranium ^b	1218	24.7	2400	7400		
Unconventional uranium	34	n.a.		7100	> 2,600,000	

^a The data reflect the ranges found in the literature; the distinction between reserves and resources is based on current (exploration and production) technology and market conditions. Resource data are not cumulative and do not include reserves.

b Reserves, resources, and occurrences of uranium are based on a once-through fuel cycle operation. Closed fuel cycles and breeding technology would increase the uranium resource dimension 50–60 fold. Thorium-based fuel cycles would enlarge the fissile-resource base further.

Exhaustible resources: Conventional Oil

Table 7.6 | Conventional oil reserves and resources.a

Region	Oil production 2009	Historical production till 2009	Reserves BP	Reserves BGR	Reserves USGS	Resources BGR USGS		Reserves + Resources BGR	Reserves + Resources USGS	
	[EJ]	[EJ]	[EJ]	[EJ]	[EJ]	[EJ]	[EJ]	[EJ]	[EJ]	
USA	15.00	1246	162	162	183	420	476	582	659	
CAN	6.70	200	189	28	36	101	21	129	57	
WEU	8.98	329	74	88	179	186	492	275	671	
EEU	0.28	47	4	6	15	13	11	19	26	
FSU	27.64	1017	704	735	953	1008	952	1743	1906	
NAF	10.38	336	389	388	252	184	158	573	410	
EAF	0.00	0	0	4	0	13	7	17	7	
WCA	6.07	214	263	254	142	302	375	556	517	
SAF	3.78	48	77	77	24	150	97	227	121	
MEE	50.78	1823	4308	4286	2967	889	1654	5175	4621	
CHN	7.90	220	85	84	142	97	95	181	237	
OEA	1.02	11	26	26	0	32	1	58	1	
IND	1.57	46	33	33	40	17	18	50	58	
OSA	0.14	4	4	2	3	13	11	15	13	
JPN	0.01	2	0	0	0	0	0	1	0	
OCN	1.20	41	25	24	94	44	108	69	202	
PAS	4.90	203	68	65	22	88	63	153	86	
LAC	20.30	862	1203	479	426	614	853	1093	1279	
Circum-Arct	ic						768		768	
Total	166.68	6647	7615	6742	5477	4172	6161	10914	11,638	

a Includes natural gas liquids (NGLs). USA = United States of America; CAN - Canada; WEU = Western Europe, incl. Turkey; EEU = Central and Eastern Europe; FSU = Former Soviet Union; NAF = Northern Africa; EAF = Eastern Africa; WCA = Western and Central Africa; MEE = Middle East; CHN = China; OEA = Other East Asia; IND = India; OSA = Other South Asia; JPN = Japan; PAS = Other Pacific Asia; OCN = Australia, New Zealand, and other Oceania; LAC = Latin America and the Caribbean

Supply Curves: Oil

Supply Curves: Gas

Supply Curves: Coal

Renewable energy potential and flows

Table 7.2 | Renewable energy flows, potential, and utilization in EJ of energy inputs provided by nature.^a

	Utilization 2005	Technical potential	Annual flows [EJ/a]		
	[EJ]	[EJ/a]			
Biomass, MSW, etc.	46.3	160–270	2200		
Geothermal	2.3	810–1545	1500		
Hydro	11.7	50–60	200		
Solar	0.5	62,000–280,000	3,900,000		
Wind	1.3	1250–2250	110,000		
Ocean	_	3240–10,500	1,000,000		

^a The data are energy-input data, not output. Considering technology-specific conversion factors greatly reduces the output potentials. For example, the technical 3150 EJ/yr of ocean energy in ocean thermal energy conversion (OTEC) would result in an electricity output of about 100 EJ/yr.

Example: Decentralized solar PV potential

- Rooftop solar PV potential @30% rooftop coverage and 20% panel efficiency:
 - \Rightarrow ~21 PWh/yr (2020), 0.25 Mkm²
 - \Rightarrow ~26-33 PWh/yr (2050, across SSPs)

Source: Joshi et al. (2021), Joshi et al. (2024)

Example: Decentralized solar PV potential

SSP4

-○ SSP5

World Electricity Comsumption in 2018

Source: Joshi et al. (2021), Joshi et al. (2024)

Techno-economic Parameters

• ...

Techno-economic Parameters

- Cost attributes
 - ⇒ Investment Costs
 - ⇒ Fixed Operation and Maintenance Costs
 - ⇒ Variable Operation and Maintenance Costs (incl./excl. fuels)
- Capacity factor (maximum)
- Lifetime
- Operation Modes
 - ⇒ Input/Output of commodities (energy and other)
 - ⇒ Emission coefficients (CO2, others)
 - ⇒ Other services (e.g., system integration)
- Diffusion constraints (activity/capacity)

Technological Change: Granular learns faster

A comparison of techno-economic assumptions

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models

Volker Krey ^{a, b, *}, Fei Guo ^a, Peter Kolp ^a, Wenji Zhou ^a, Roberto Schaeffer ^c, Aayushi Awasthy ^d, Christoph Bertram ^e, Harmen-Sytze de Boer ^{f, g}, Panagiotis Fragkos ^h, Shinichiro Fujimori ^{i, s}, Chenmin He ^j, Gokul Iyer ^k, Kimon Keramidas ^l, Alexandre C. Köberle ^{c, m}, Ken Oshiro ⁿ, Lara Aleluia Reis ^o, Bianka Shoai-Tehrani ^p, Saritha Vishwanathan ^q, Pantelis Capros ^h, Laurent Drouet ^o, James E. Edmonds ^k, Amit Garg ^q, David E.H.J. Gernaat ^{f, g}, Kejun Jiang ^j, Maria Kannavou ^h, Alban Kitous ^l, Elmar Kriegler ^e, Gunnar Luderer ^e, Ritu Mathur ^d, Matteo Muratori ^r, Fuminori Sano ^p, Detlef P. van Vuuren ^{f, g}

Research Background and Purposes

The electricity sector is robustly projected to decarbonize first under the 2°C target. However, the speed of this transition and the resulting technology mix in power generation can be very different across IAMs (Clarke et al. 2014).

This can be attributed to three important differences across IAMs.

- 1. differences in the applied modeling methodologies;
- 2. the *representation* of different technology options;
- 3. the parameterization of technologies, typically referred to as *technoeconomic assumptions*, within the power sector;

14 IAMs included in the study (7 global + national)

	IAMs	Regional coverage	Time horizon	Time step	Developer	
	DNE21+ V.12A	Global (16 regions)	2050	5 years before 2030/ 10 years after 2030	RITE, Japan	
	GCAM4.2_ADVANCE	Global (32 regions)	2100	5 years	JGCRI/PNNL, USA	
Global models	IMAGE 3.0	Global (26 regions)	2100	1-5 years	PBL, Netherlands	
	MESSAGEix- GLOBIOM_1.0	Global (11 regions)	2100	10 years	IIASA, Austria	
	POLES MILES	Global (24 regions)	2100	10 years	EC-JRC, University of Grenoble, Enerdata, France	
	REMIND 1.6	Global (11 regions)	2100	5 years before 2060/ 10 years after 2060	PIK, Germany	
	WITCH-GLOBIOM 4.4	Global (13 regions)	2150	5 years	CMCC and FEEM, Italy	
	BLUES	Brazil (6 regions)	2050	5 years	COPPE, Brazil	
	IPAC- AIM/technology_V1.0	China (1 region)	2050	10 years	ERI, China	
National models	PRIMES_V1	EU (28 regions)	2050	5 years	ICCS, Greece	
	AIM/Enduse[Japan]	Japan (10 regions)	2050	1 year	NIES, Japan	
	DNE21+ V.MILES	V.MILES Japan (1 region)		5 years before 2030/ 10 years after 2030	RITE, Japan	
	AIM/E-India [IIMA]	India (1 region)	2050	5 years	IIMA, India	
	India MARKAL	India (1 region)	2050	5 years	TERI, India	

Four basic strategies of techno-economic parameters in IAMs

(using coal power plants as the example)

Regional technology variation in global IAMs

Note: Models are under different scenarios: "MESSAGEix-GLOBIOM_1.0" (NoPolicy_V3); "WITCH-GLOBIOM 4.4" and "DNE21+ V.12A" (AMPERE2-Base-FullTech-OPT); IEA Assessment (450ppm).

Capital cost

For the same region, capital cost of technology, assumed among different IAMs (both global and national), vary significantly.

Note: for the comparison, data from a range of assessments including IEA (2016), EIA (2016a), DIW (2013) and GEA (2012) are also shown in the figures.

Fixed Operation and Maintenance cost

- O&M costs are usually assumed to be a fixed percentage of capital cost in IAMs the percentage does not change over time.
- However, in some IAMs the percentage varies across regions.

(using gas power plants as the example)

Challenge to keep up with technological change

- There are large differences in the structural representation and numerical parameterization of technologies across IAMs
- IAMs utilize a wide range of assumptions and inputs for techno-economic parameters

Source: Way et al (2022)

Input Datasets: MESSAGEix-GLOBIOM

IEA Energy Balances

Spreadsheets contain more detailed information

Austria / Autriche: 2000

		Million tonnes of oil equivalent / Million de tonnes d'équivalent pétrole										
Units	SUPPLY AND CONSUMPTION	Coal		Petroleum Products	Gas	Nuclear	Hydro	Geotherm. Solar etc.			Heat	Total
	APPROVISIONNEMENT ET DEMANDE	Charbon	Pétrole brut	Produits pėtroliers	Gaz	Nucléaire	Hydro	Géotherm. solaire etc.	En. ren. combust. & déchets	Electricité	Chaleur	Total
	Production	0.29	1.02		1.53		3.61	0.07	3.16 e	-		9.69
	Imports Exports	2.99 -0.00	7.69 -0.14	4.38 -1.34	5.27 -0.01	:	:	-	0.11 -0.16	1.19 -1.31	:	21.62 -2.96
	Intl. Marine Bunkers Stock Changes	0.31	0.03	0.15	-0.27	:	-	:	:	-	:	0.23
	TPES	3.59	8.61	3.20	6.52		3.61	0.07	3.11	-0.12		28.58
	Transfers Statistical Differences	:	0.05 -0.04	-0.03 -0.04	0.00	:	:	-	:	:	:	0.02 -0.07
F	Electricity Plants CHP Plants	-0.43 -1.01		-0.15 -0.37	-0.16 -1.53		-3.61	-0.01 -	-0.04 -0.32	3.95 1.24	0.77	-0.46 -1.22
	Heat Plants Gas Works	-0.00 -		-0.06 -	-0.13			-0.01 -	-0.26	-0.00 -	0.38	-0.08
	Petroleum Refineries Coal Transformation	-0.87 e	-8.62	9.05					:			0.42 -0.87
	Liquefaction Plants Other Transformation	:							:			
	Own Use Distribution Losses	-0.11 -	:	-0.56 -	-0.24	:			:	-0.22 -0.35	-0.10	-1.12 -0.45
	TFC	1.16		11.05	4.46		-	0.05	2.48	4.50	1.05	24.75
_	Electricity Generated - GWh	6693	-	1991	7857		41995	70	1715			60321
GWh	Electricity Plants	2118		769	857	-	41995	70	141	-		45950
	CHP plants	4575	-	1222	7000	-	-		1574		-	14371
	Heat Generated - TJ	2884	-	8886	24310	-		378	11595	39	•	48092
F	CHP plants Heat Plants	2844 40		7152 1734	19348 4962	-		378	2779 8816	39		32123 15969
_												

Thank you very much for your attention!