Probabilistic Methods-I

CS771: Introduction to Machine Learning
Purushottam Kar

Recap

Multi-label Classification with Decision Trees

Node Splitting via feature stumps

August 11, 2017

Exercise: Think about how to deal with regression!!

August 11, 2017

13

August 16, 2017

Reconciling ID3

Guess the Movie!

Insufficient Features

Zero-shot learning problem

Original Language

DTs are excellent for NN search (kd-tree)

ear of Release 2010,2011,...2017

Box-Office Collection Low (< INR 100 cr) Medium (INR 100-1000 cr) High (> 1000 cr)

August 11, 2017

shutterstock.com, inktalks.com, glamsham.com, youtube.com

Does narrow search space

Reconciling ID3

Choose an Adviser!

The Probabilistic Philosophy

and the generative story ...

The Generative Story

The Generative Story

August 16, 2017

CS771: Intro to ML

August 16, 2017

$$Z = (X, y)$$

$$\mathbf{x} = \{\mathbf{x}^1, \dots, \mathbf{x}^n\}$$
 $\mathbf{y} = \{y^1, \dots, y^n\}$

August 16, 2017

CS771: Intro to ML

Learning a Coin

Learning the Bias of a Coin

Bernoulli distribution

 $\operatorname{Bias} p^*$

The bias is the parameter $oldsymbol{ heta}^*$

 $\mathbb{P}\left[y^{i} \,|\, p\right] = p^{y^{i}} (1-p)^{1-y^{i}}$

Independent tosses

1

O

1

 C

1

1

 $\frac{1}{2}$

1

 $\mathbf{Z} = \mathbf{y}$

How to estimate p^* using coin tosses y?

Learning the Bias of a Coin

Bias p^*

$$\mathbb{P} [y^i | p] = p^{y^i} (1 - p)^{1 - y^i}$$

$$\mathbb{P}\left[\mathbf{y} \,|\, p\right] = \prod_{i=1}^{n} \mathbb{P}\left[y^{i} \,|\, p\right] = \prod_{i=1}^{n} p^{y^{i}} (1-p)^{1-y^{i}}$$

Learning the Bias of a Coin

Bias p^*

$$\mathbb{P}\left[y^i\,|\,p\right] = p^{y^i}(1-p)^{1-y^i} \quad \text{Likelihood}$$

$$\mathbb{P}\left[\mathbf{y} \mid p\right] = p^{n_H} (1-p)^{n_T}$$

Log-likelihood

$$\log \mathbb{P}\left[\mathbf{y} \mid p\right] = n_H \log p + n_T \log(1-p)$$

Maximum Likelihood Estimate

often affectionately called the MLE

The ML Estimator

Bias
$$p^*$$
 $\mathbf{Z} = \mathbf{y} = \mathbf{\hat{y}}^i$ $\mathbf{\hat{y}}^i = p^{y^i} (1 - p)^{1 - y^i}$

$$\mathbb{P} [y^i | p] = p^{y^i} (1 - p)^{1 - y^i}$$

$$\hat{p}_{\text{MLE}} = \underset{p}{\text{arg max}} \, \mathbb{P} \left[\mathbf{y} \, | \, p \right]$$

$$= \underset{p}{\operatorname{arg\,max}} \log \mathbb{P} \left[\mathbf{y} \mid p \right]$$

Exercise: Show that $\hat{p}_{\mathrm{MLE}} =$

Here comes the Prior

"Uniform prior"

$$\mathbb{P}\left[\boldsymbol{p}\right] = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

Beta prior Beta(p; α , β)

Beta Distribution

Large α , β sharp peaks

Can encode a uniform prior

PDF

Encode previously seen tosses!

Maximum a-Posteriori

often affectionately called the MAP

The MAP Estimator

$$\mathbf{Z} = \mathbf{y} =$$

$$\hat{p}_{\text{MAP}} = \underset{p}{\text{arg max}} \, \mathbb{P} \left[p \, | \, \mathbf{y} \right]$$

$$= \underset{p}{\operatorname{arg\,max}} \frac{\mathbb{P}\left[\mathbf{y} \mid p\right] \mathbb{P}\left[p\right]}{\mathbb{P}\left[\mathbf{y}\right]}$$

The MAP Estimator

Bias
$$p^*$$

$$\mathbf{Z} = \mathbf{y} =$$

Bias
$$p^*$$
 $\mathbf{Z} = \mathbf{y} = \mathbf{\hat{y}}^i$
$$\mathbb{P}\left[y^i \mid p\right] = p^{y^i} (1-p)^{1-y^i}$$

$$\hat{p}_{\text{MAP}} = \underset{p}{\text{arg max}} \, \mathbb{P} \left[p \, | \, \mathbf{y} \right]$$

$$= \underset{p}{\operatorname{arg\,max}} \mathbb{P} \left[\mathbf{y} \mid p \right] \mathbb{P} \left[p \right]$$

The MAP Estimator

$$\mathbf{Z} = \mathbf{y} =$$

Bias
$$p^*$$
 $\mathbf{Z} = \mathbf{y} = \mathbf{\hat{y}}^i$ $\mathbf{\hat{z}} = \mathbf{\hat{y}}^i$ $\mathbf{\hat{z}} = \mathbf{\hat{z}}^i$ $\mathbf{\hat{z}} = \mathbf{\hat{z}}^i$

$$\hat{p}_{\text{MAP}} = \underset{p}{\text{arg max}} \, \mathbb{P} \left[p \, | \, \mathbf{y} \right]$$

$$= \underset{p}{\operatorname{arg\,max}} \log \mathbb{P} \left[\mathbf{y} \,|\, p \right] + \log \mathbb{P} \left[p \right]$$

Exercise: Show that
$$\hat{p}_{\mathrm{MAP}} = \frac{n_H + \alpha - 1}{n + \alpha + \beta - 2}$$

Online MAP!

- The posterior is the same "type" of distribution as the prior
- The posterior can be used as a prior by you
- The MAP update works even after witnessing a single toss
- Make incremental updates instead of on big update
- Online algorithm for MAP estimation!
- Efficient online stochastic updates

Conjugacy!

Exercise: Show that $\mathbb{P}[p | \mathbf{y}] = \text{Beta}(p; \alpha + n_H, \beta + n_T)$

Online MAP!

22

Posterior Averaging

or more commonly known as Bayesian learning

$$\mathbb{P}\left[\begin{array}{c} lacksquare = H \,|\, \mathbf{y}
brace pprox \mathbb{P}\left[\begin{array}{c} lacksquare = H \,|\, \hat{p}_{ ext{MLE}}
brace = rac{n_H}{n} \end{array}
ight] \ pprox \mathbb{P}\left[\begin{array}{c} lacksquare = H \,|\, \hat{p}_{ ext{MAP}}
brace = rac{n_H + lpha - 1}{n + lpha + eta - 2} \end{array}
ight]$$

$$\mathbb{P}\left[y^{i} \mid p\right] = p^{y^{i}} (1-p)^{1-y^{i}}$$

August 16, 2017

$$=H | \mathbf{y}] =$$

Apply Bayes rule properly

$$pprox \mathbb{P}\left[igcirc$$

$$=H\left[\hat{p}_{ ext{MLE}}
ight]=rac{n_H}{n}$$

$$=H\left[\hat{p}_{\mathrm{MAP}}\right]=rac{n_{H}+lpha-1}{n+lpha+eta-1}$$

$$\mathbf{Z} = \mathbf{y} = \mathbf{\hat{y}} = \mathbf{\hat{y}} \mathbf{\hat{$$

$$\mathbb{P}\left[y^i \mid p\right] = p^{y^i} (1-p)^{1-y^i}$$

$$=H[\mathbf{y}]=$$

$$= H | p] \mathbb{P} [p | \mathbf{y}] dp$$

Apply Bayes rule properly

$$= \int_{p} p \cdot \mathbb{P}\left[p \mid \mathbf{y}\right] dp$$

$$\mathbb{P}\left[\begin{array}{c|c} & = H \mid \mathbf{y} \end{array}\right] = \int_{p} \mathbb{P}\left[\begin{array}{c|c} & = H \mid p \end{array}\right] \mathbb{P}\left[p \mid \mathbf{y}\right] dp$$

Apply Bayes rule properly

$$= \int p \cdot \text{Beta}(\alpha + n_H, \beta + n_T)$$

$$\mathbf{Z} = \mathbf{y}$$

$$\mathbb{P}\left[y^i \mid p\right] = p^{y^i} (1-p)^{1-y^i}$$

$$= H | \mathbf{y} | = \int \mathbb{P} \left[\mathbf{0} = H | p \right] \mathbb{P} \left[p | \mathbf{y} \right] dp$$

Apply Bayes rule properly

$$=\frac{\alpha+n_H}{\alpha+\beta+\gamma}$$

Usually very challenging!

Please give your Feedback

http://tinyurl.com/ml17-18afb

