Predicting Price of Motorcycle

Zootopia Yushi Pan, Yanran Qiu, Chuanchuan Liu, Jingbin Cao

Introduction

- Business problem: predict price of motorcycle
- Dataset: Motorcycle Dataset from Kaggle

This dataset contains information about used motorcycles listed on www.bikewale.com The seven columns in the given dataset are as follows: name, selling price, year, seller type, owner, km driven, and ex showroom price.

- Outline:
 - Part I: Clean Data and Visualize Data
 - ❖ Part II: Model Selection & Data Transformation
 - Part III: Check Model
 - Part IV: Test Model

Part I: Clean Data and Visualize Data

summary()

```
##
                        selling price
                                                         seller type
        name
                                               year
                                  5000
                                                 :1988
    Length: 1061
                        Min.
                                         Min.
                                                         Length: 1061
    Class : character
                        1st Ou.: 28000
                                         1st Ou.:2011
                                                         Class :character
    Mode
          character
                       Median : 45000
                                         Median :2015
                                                         Mode
                                                              character
##
                        Mean
                               : 59638
                                                 :2014
                                         Mean
##
                        3rd Qu.: 70000
                                         3rd Qu.: 2017
##
                               :760000
                        Max.
                                         Max.
                                                 :2020
##
##
                          km driven
                                         ex showroom price
       owner
                                                   30490
    Length: 1061
                        Min.
                                   350
                                         Min.
    Class : character
                        1st Qu.: 13500
                                         1st Qu.:
                                                    54852
    Mode
          :character
                       Median : 25000
                                         Median :
                                                    72752
##
                        Mean
                               : 34360
                                         Mean
                                                    87959
##
                                         3rd Qu.:
                        3rd Qu.: 43000
                                                    87032
##
                        Max.
                               :880000
                                         Max.
                                                 :1278000
##
                                          NA's
                                                 :435
```

Qualitative independent variables: year, km_driven

Quantitative independent variables: seller_type, owner

Dependent variable: selling_price

Visualization of Data

km.driven vs. selling price

year vs. selling price

pairs(df, pch=20, cex=0.5, lower.panel = NULL)

Feature encoding and split dataset

```
df$seller_type <- as.factor(df$seller_type)
df$owner <- as.factor(df$owner)</pre>
```

```
set.seed(123)
train_index <- sample(1:nrow(df), 0.7*nrow(df))
test_index <- setdiff(1:nrow(df), train_index)
train <- df[train_index,]
test <- df[test_index,]</pre>
```

Part II: Model Selection & Data Transformation

Best subsets regression

Be:	st Subsets Regression
Model Index	Predictors
1 2 3 4	year year owner year owner km_driven year seller_type owner km_driven

Model 3 has the largest adjusted R-square value and the smallest MSE, Mallow's Cp, SBIC, SBC, and AIC. The best subset selected is (year, owner, km_driven).

Stepwise AIC regression

Stepwise P-value regression

			Selection Su	ummary							Sel	ection Sun	nmary		
Variable	AIC		Sum Sq	RSS	R-Sq	Adj.		Step	Variable Entered		uare R	Adj. -Square	C(p)	AIC	RMSE
year	17842.1		0361404.616	1.195327e+12	0.19403		9294								
owner	17796.9	63 36748	35077758.314	1.115612e+12	0.24778	0.2	4370	1	year		L940	0.1929	61.0863	17842.1728	40190.8786
km_driven	17788.1	97	3.83555e+11	1.099542e+12	0.25862	0.2	5358	2	owner	0.	2478	0.2437	9.7963	17796.9626	38906.5656
								3	km_drive	en 0.7	2586 	0.2536 	1.0535	17788.1967 	38651.5645
		Bac	kward Elimina	tion Summary							Elim	ination Su	ımmary		
Variable	AIC		RSS	Sum Sq	R-Sq	Adj. I	R-Sq		 Variable			 Аdj.			
 Full Model	17790.	 143 1.09	9462e+12 3	83634937685.570	0.25867	0.2	5262	Step	Remove	d R-S	quare	R-Square	C(p)	AIC	RMSE
seller_type 	17788.	197 1.09 	9542e+12 	3.83555e+11	0.25862 	0.2	5358	1	seller_t	ype 0	.2586	0.2536	1.0535	17788.1967	38651.5645
			Stepwise S	ummary							Stepwis	e Selection	Summary		
Variable	Method	AIC	RSS	Sum Sq	R-Sq	Adj.	 R-Sα	Step	Variable	Added/ Removed	R-Squar	Adj. e R-Squa	re C(p)	AIC	RMSE
year	addition	17842.173	1.195327e+12	287770361404.616	0.19403	0.1	19294 -	1			0.10		02 (1 00)		40100 0700
	addition	17796.963	1.115612e+12		0.24778		2437(2	year owner	addition addition	0.19 0.24				40190.8786 38906.5656
owner	addition	17788.197	1.099542e+12	3.83555e+11	0.25862	0.2	25358	2	km_driven	addition	0.24				38651.5645

Box-Cox transformation

$$Y' = Y^{-0.18}$$

Part III: Model Check

summary ()

```
## Call:
## lm(formula = selling price ~ year + owner + km driven, data = train)
## Residuals:
        Min
                        Median
## -0.081950 -0.006937 0.002079 0.008788 0.040967
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.505e+00 2.616e-01 21.042 < 2e-16 ***
## year
                 -2.661e-03 1.298e-04 -20.498 < 2e-16 ***
## owner2nd owner 5.233e-04 1.552e-03 0.337 0.73609
## owner3rd owner -1.445e-02 4.452e-03 -3.245 0.00123 **
## owner4th owner -4.393e-02 1.380e-02 -3.184 0.00151 **
## km driven
                  4.169e-08 1.103e-08 3.779 0.00017 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.01378 on 736 degrees of freedom
## Multiple R-squared: 0.4352, Adjusted R-squared: 0.4314
## F-statistic: 113.4 on 5 and 736 DF, p-value: < 2.2e-16
```

anova()

Calculate Residuals

```
e = resid(model)
head(e)

## 415 463 179 526 195 938
## 0.005123157 0.003921742 0.012618321 0.004259661 0.003363994 -0.005632955
```

Check Residuals and assumptions in linear regression

- linearity
- **u** constancy of error variance
- independence of error terms
- normality of error terms
- **absence of outliers**

Residual Plot

0.16

expected price

0.18

0.20

0.22

0.10

0.12

0.14

Absolute Residual Plot

absolute residual vs year

absolute residual vs owner

absolute residual vs km driven

Distribution Plot of Residuals

Normal Probability Plot

cor(res.exp, res.order) = 0.9805561
plot(res.exp, res.order)

Correlation Test for Normality

Breusch-Pagan Test

```
BP = 233.01

chi-squared (0.95, df=5) = 11.0705

chi-squared (0.99, df=1) = 15.08627

Based on BP test, we can conclude that the assumption of constancy of error variance is violated. (NOTE!)
```

F Test for Lack of Fit

```
sum (duplicated) = 189
F statistics = 1.7534
F (0.95, df1=736, df2=481) = 1.147556
F (0.99, df1=736, df2=481) = 1.215212
```

Based on F Test for Lack of Fit, we can conclude there is lack of fit and the assumption of linearity is violated. (NOTE!)

Part IV: Test Model

We have **319** Test data.

Transform the selling price of the test data set:

test\$selling_price <- (test\$selling_price)^-0.18

Predict the selling price from the dataset

predictions <- predict(model, newdata=test,</pre>

interval="prediction")

*	fit ‡	lwr ‡	upr ‡
1	0.1319192	0.1048118	0.1590266
3	0.1350660	0.1079696	0.1621624
7	0.1352744	0.1081786	0.1623703
9	0.1571890	0.1300867	0.1842914
12	0.1408282	0.1136050	0.1680514
14	0.1319516	0.1048444	0.1590588
15	0.1293143	0.1021967	0.1564319
18	0.1582542	0.1310480	0.1854604
21	0.1636786	0.1365563	0.1908009
- 4			

Comparing the data

MSPE:0.00143

Out model is good enough to predict the price of a used motorcycle based on the year, owner, and driven distances.

Checking Influences

Original Output

DFFITS: 0.27429 DFBEATS: 0.11198

Since all of the values are very small, we can conclude that there are not influential data in our dataset.

Obtain the studentized deleted residuals and identify any outlying Y observations. Using Bonferroni outlier test procedure with a = 0.1.

if $|ti| \le t(1 - 0.1/(2n), n - p - 1) = 3.27$, we conclude no outliers. In the test data, we have only 2 outliers

Cook Distances

Although there are some outliers, but the values of them are below the critical values, so they do not have many influence on our model.

Improvement and Expansion

- Minimize the effect of the outliers
- Add interaction effect between predictors
- Collect data from varied sources to expand our dataset