pokemon dataset

sarah, mars, juniper

Dataset

We are planning to use the Complete Pokemon Dataset that has information on different Pokemon up to Gen 7. The link where we got the dataset is included below. Dataset Link

Research Question

How do different Pokemon's base stats influence capture rate?

```
library(ggplot2)
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
   filter, lag

The following objects are masked from 'package:base':
   intersect, setdiff, setequal, union

library(mltools)
library(data.table)
```

```
Attaching package: 'data.table'

The following objects are masked from 'package:dplyr':

between, first, last

library(car)

Loading required package: carData

Attaching package: 'car'

The following object is masked from 'package:dplyr':

recode

The professor recommended doing this so the empty string "" will be converted to a NA value so we can then use the is.na() function.
```

```
pokemon <- read.csv("/Users/sarah/Desktop/SDS291/FinalProject/pokemon.csv", na.strings = c</pre>
```

Making the dual_type column that says if the Pokemon is a dual type based on if there is a second type.

```
pokemon <- mutate(pokemon, dual_type = !is.na(type2))</pre>
```

Removing legendaries and making pokemone2 dataset

```
pokemon2 <- filter(pokemon, is_legendary == 0)</pre>
```

Making sure that these variables are the right data type (specifically making sure capture rate is numeric)

```
pokemon2$'capture_rate' = as.numeric(pokemon2$'capture_rate')
Warning: NAs introduced by coercion

pokemon2$'type1' = as.factor(pokemon2$'type1')
pokemon2$'type2' = as.factor(pokemon2$'type2')
```

attack, hp, speed, defense visualizations

```
ggplot(data = pokemon2, mapping = aes(x = attack, y = capture_rate)) +
    geom_point() +
    geom_smooth(method = lm, se = FALSE, formula = y~x)

Warning: Removed 1 rows containing non-finite values (stat_smooth).
Warning: Removed 1 rows containing missing values (geom_point).
```



```
ggplot(data = pokemon2, mapping = aes(x = defense, y = capture_rate)) +
    geom_point() +
    geom_smooth(method = lm, se = FALSE, formula = y~x)
```

Warning: Removed 1 rows containing non-finite values (stat_smooth).

Warning: Removed 1 rows containing missing values (geom_point).


```
ggplot(data = pokemon2, mapping = aes(x = hp, y = capture_rate)) +
    geom_point() +
    geom_smooth(method = lm, se = FALSE, formula = y~x)
```

Warning: Removed 1 rows containing non-finite values (stat_smooth).

Warning: Removed 1 rows containing missing values (geom_point).


```
ggplot(data = pokemon2, mapping = aes(x = speed, y = capture_rate)) +
   geom_point() +
   geom_smooth(method = lm, se = FALSE, formula = y~x)
```

Warning: Removed 1 rows containing non-finite values (stat_smooth).

Warning: Removed 1 rows containing missing values (geom_point).

Using pokemon2

```
mixed_model1 <- lm(capture_rate ~ dual_type + defense * speed , data = pokemon2)
summary(mixed_model1)</pre>
```

Call:

lm(formula = capture_rate ~ dual_type + defense * speed, data = pokemon2)

Residuals:

Min 1Q Median 3Q Max -158.768 -44.858 -9.102 46.216 194.230

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 221.978429 13.955434 15.906 < 2e-16 ***
dual_typeTRUE -0.278823 4.672326 -0.060 0.9524
defense -0.761061 0.173289 -4.392 1.29e-05 ***
speed -0.558421 0.229006 -2.438 0.0150 *

```
defense:speed -0.005936 0.002966 -2.002 0.0457 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 62.03 on 725 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.3049,
                           Adjusted R-squared: 0.301
F-statistic: 79.49 on 4 and 725 DF, p-value: < 2.2e-16
  mixed_model2 <- lm(capture_rate ~ attack + defense * speed , data = pokemon2)
  summary(mixed_model2)
Call:
lm(formula = capture_rate ~ attack + defense * speed, data = pokemon2)
Residuals:
    Min
             1Q Median
                             3Q
                                    Max
-180.543 -42.316 -5.124 42.023 171.297
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
            246.988423 13.914695 17.750 < 2e-16 ***
(Intercept)
            attack
             defense
             speed
defense:speed -0.002507
                       0.002905 -0.863 0.388440
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 59.95 on 725 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.3507,
                           Adjusted R-squared: 0.3471
F-statistic: 97.89 on 4 and 725 DF, p-value: < 2.2e-16
  mixed_model3 <- lm(capture_rate ~ hp + defense * speed , data = pokemon2)</pre>
  summary(mixed_model3)
```

```
Call:
lm(formula = capture_rate ~ hp + defense * speed, data = pokemon2)
Residuals:
    Min
                  Median
             1Q
                              3Q
                                     Max
                  -2.573
-171.943 -35.934
                         38.260 223.751
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
             2.920e+02 1.417e+01 20.606 < 2e-16 ***
(Intercept)
            -1.022e+00 8.852e-02 -11.545 < 2e-16 ***
hp
            -8.693e-01 1.588e-01 -5.473 6.09e-08 ***
defense
            -8.485e-01 2.117e-01 -4.007 6.77e-05 ***
speed
defense:speed -5.687e-04 2.764e-03 -0.206
                                           0.837
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 57.01 on 725 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.4128,
                             Adjusted R-squared: 0.4096
F-statistic: 127.4 on 4 and 725 DF, p-value: < 2.2e-16
  mixed_model4 <- lm(capture_rate~defense * speed , data = pokemon2)</pre>
  summary(mixed_model4)
Call:
lm(formula = capture_rate ~ defense * speed, data = pokemon2)
Residuals:
                  Median
                              3Q
    Min
             1Q
                                     Max
                  -9.216 46.331 194.411
-158.685 -44.746
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
            221.931622 13.923808 15.939 < 2e-16 ***
(Intercept)
defense
             speed
defense:speed -0.005932 0.002963 -2.002 0.0456 *
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 61.99 on 726 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.3049,
                                 Adjusted R-squared: 0.302
F-statistic: 106.1 on 3 and 726 DF, p-value: < 2.2e-16
First Reduced: defense * speed Full: defense * speed + attack
  anova(mixed_model4, mixed_model2)
Analysis of Variance Table
Model 1: capture_rate ~ defense * speed
Model 2: capture_rate ~ attack + defense * speed
             RSS Df Sum of Sq
                               F
  Res.Df
1
     726 2789829
                       183866 51.153 2.093e-12 ***
     725 2605963 1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
p-value is below 0.05 so attack adds to model
Second Reduced: defense * speed Full: defense * speed + dual_type
  anova(mixed_model4, mixed_model1)
Analysis of Variance Table
Model 1: capture_rate ~ defense * speed
Model 2: capture_rate ~ dual_type + defense * speed
  Res.Df
             RSS Df Sum of Sq
                                    F Pr(>F)
1
     726 2789829
     725 2789816 1
                       13.703 0.0036 0.9524
p-value is above 0.05 so dual type doesn't add to model
Second Reduced: defense * speed Full: defense * speed + hp
  anova(mixed_model4, mixed_model3)
```

```
Analysis of Variance Table
Model 1: capture_rate ~ defense * speed
Model 2: capture_rate ~ hp + defense * speed
  Res.Df
             RSS Df Sum of Sq F
     726 2789829
     725 2356607 1
                       433222 133.28 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
p-value is below 0.05 so hp does add to model.
adjusted r-squared and defense:speed p-value
base
  summary(mixed_model4)
Call:
```

lm(formula = capture_rate ~ defense * speed, data = pokemon2) Residuals: 1Q Median Min 3Q Max -158.685 -44.746 -9.216 46.331 194.411 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 221.931622 13.923808 15.939 < 2e-16 *** defense speed defense:speed -0.005932 0.002963 -2.002 0.0456 * Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 Residual standard error: 61.99 on 726 degrees of freedom (1 observation deleted due to missingness) Multiple R-squared: 0.3049, Adjusted R-squared: 0.302

Adjusted R-squared: 0.302 F-statistic: 106.1 on 3 and 726 DF, p-value: < 2.2e-16 p-value for defense:speed: 0.0456

hp

```
summary(mixed_model3)
Call:
lm(formula = capture_rate ~ hp + defense * speed, data = pokemon2)
Residuals:
     Min
               1Q
                    Median
                                 3Q
                                         Max
                    -2.573
-171.943 -35.934
                             38.260 223.751
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
              2.920e+02 1.417e+01 20.606 < 2e-16 ***
(Intercept)
              -1.022e+00 8.852e-02 -11.545 < 2e-16 ***
hp
defense
              -8.693e-01 1.588e-01 -5.473 6.09e-08 ***
speed
              -8.485e-01 2.117e-01 -4.007 6.77e-05 ***
defense:speed -5.687e-04 2.764e-03 -0.206
                                               0.837
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 57.01 on 725 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.4128,
                                Adjusted R-squared: 0.4096
F-statistic: 127.4 on 4 and 725 DF, p-value: < 2.2e-16
Adjusted R-squared: 0.4096 F-statistic: 127.4 on 4 and 725 DF, p-value: < 2.2e-16 p-value
for defense:speed: 0.837
```

attack

```
summary(mixed_model2)
```

```
Call:
lm(formula = capture_rate ~ attack + defense * speed, data = pokemon2)
Residuals:
    Min
             1Q
                 Median
                            3Q
-180.543 -42.316 -5.124
                         42.023 171.297
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
            246.988423 13.914695 17.750 < 2e-16 ***
(Intercept)
attack
            defense
             -0.589761
                       0.221117 -2.667 0.007820 **
speed
                       0.002905 -0.863 0.388440
defense:speed -0.002507
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 59.95 on 725 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.3507,
                           Adjusted R-squared: 0.3471
F-statistic: 97.89 on 4 and 725 DF, p-value: < 2.2e-16
```

Adjusted R-squared: 0.3471 F-statistic: 97.89 on 4 and 725 DF, p-value: < 2.2e-16 p-value for defense:speed: 0.388440

when p-value for defense:speed is above 0.05 so we're changing it

When checking the p-values on the interactive variable, it starts to lose its importance in certain models so we will be changing the interaction term to be parallel/additive.

explanatory variables: hp + defense + speed

```
add_model3 <- lm(capture_rate ~ hp + defense + speed, data = pokemon2)
summary(add_model3)</pre>
```

```
Call:
lm(formula = capture_rate ~ hp + defense + speed, data = pokemon2)
Residuals:
    Min
              1Q
                   Median
                                3Q
                                        Max
-172.348 -35.872 -2.588
                          38.100 223.862
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 294.36239
                        8.59605
                                 34.24 <2e-16 ***
            -1.02500
                        0.08720 -11.75 <2e-16 ***
hp
defense
            -0.89839
                        0.07213 -12.46 <2e-16 ***
speed
            -0.88905
                        0.07685 -11.57 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 56.98 on 726 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.4128,
                               Adjusted R-squared: 0.4103
F-statistic: 170.1 on 3 and 726 DF, p-value: < 2.2e-16
Adjusted R-squared: 0.4103
explanatory variables: attack + defense + speed
  add_model2 <- lm(capture_rate ~ attack + defense + speed, data = pokemon2)</pre>
  summary(add_model2)
lm(formula = capture_rate ~ attack + defense + speed, data = pokemon2)
Residuals:
    Min
              1Q
                   Median
                                3Q
                                        Max
-181.489 -43.022
                   -5.192
                          41.736 170.941
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 256.78786 8.04045 31.937 < 2e-16 ***
```

```
attack -0.64170 0.08675 -7.397 3.86e-13 ***

defense -0.76146 0.08527 -8.930 < 2e-16 ***

speed -0.76566 0.08570 -8.934 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 59.94 on 726 degrees of freedom
  (1 observation deleted due to missingness)

Multiple R-squared: 0.35, Adjusted R-squared: 0.3473

F-statistic: 130.3 on 3 and 726 DF, p-value: < 2.2e-16
```

Adjusted R-squared: 0.3473

Nested F-test for hp + defense + speed vs hp + defense * speed

```
anova(add_model3, mixed_model3)

Analysis of Variance Table

Model 1: capture_rate ~ hp + defense + speed
Model 2: capture_rate ~ hp + defense * speed
Res.Df RSS Df Sum of Sq F Pr(>F)
1 726 2356745
2 725 2356607 1 137.58 0.0423 0.8371
```

p-value: 0.8371 Is above 0.05 so the interaction between speed and defense is not needed

testing out interaction between hp and defense for fun

explanatory variables: hp + defense + speed

```
hp_model3 <- lm(capture_rate ~ hp * defense + speed, data=pokemon2)
summary(hp_model3)</pre>
```

```
Call:
lm(formula = capture_rate ~ hp * defense + speed, data = pokemon2)
Residuals:
    Min
              1Q
                   Median
                                3Q
                                        Max
                   -2.474 38.236 221.544
-173.102 -36.213
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.982e+02 1.287e+01 23.176 < 2e-16 ***
           -1.082e+00 1.649e-01 -6.558 1.03e-10 ***
hp
           -9.645e-01 1.789e-01 -5.392 9.42e-08 ***
defense
           -8.922e-01 7.728e-02 -11.544 < 2e-16 ***
speed
hp:defense 9.832e-04 2.434e-03 0.404
                                            0.686
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 57.01 on 725 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.4129,
                               Adjusted R-squared: 0.4097
F-statistic: 127.5 on 4 and 725 DF, p-value: < 2.2e-16
```

hp:defense has a p-value of 0.686 so its above 0.05 and not needed.

Best model

The best model is add_model3. We use capture_rate as the outcome variable, and hp, defense, and speed as explanatory variables in an additive model.

-172.348 -35.872 -2.588 38.100 223.862

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 294.36239 8.59605 34.24 <2e-16 *** -1.02500 0.08720 -11.75 <2e-16 *** defense -0.89839 0.07213 -12.46 <2e-16 *** -0.88905 0.07685 -11.57 <2e-16 *** speed

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 56.98 on 726 degrees of freedom (1 observation deleted due to missingness)

Adjusted R-squared: 0.4103 Multiple R-squared: 0.4128, F-statistic: 170.1 on 3 and 726 DF, p-value: < 2.2e-16

Adjusted R-squared: 0.4103