Week 9 - Assignment 11.1

```
In [93]: #Exercise 11-1.
         #Suppose one of your co-workers is expecting a baby and you are participating in an
         #office pool to predict the date of birth. Assuming that bets are placed during the
         #week of pregnancy, what variables could you use to make the best prediction? You s
         #limit yourself to variables that are known before the birth, and likely to be avai
         #the people in the pool.
In [94]: import numpy as np
         import thinkstats2
         import thinkplot
         import nsfg
In [95]: from os.path import basename, exists
         def download(url):
             filename = basename(url)
             if not exists(filename):
                 from urllib.request import urlretrieve
                 local, _ = urlretrieve(url, filename)
                 print("Downloaded " + local)
In [96]: | download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemPreg.dc
         download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemPreg.da
         download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemResp.dc
         download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemResp.da
In [97]: #Import nsfq data
         df_nsfg = nsfg.ReadFemPreg()
         live = df_nsfg[df_nsfg.outcome == 1]
         not_live = df_nsfg[df_nsfg.outcome != 1]
         live = live[live.prglngth>30] # pregnany Length over 30 weeks.
         live.columns
Out[97]: Index(['caseid', 'pregordr', 'howpreg_n', 'howpreg_p', 'moscurrp', 'nowprgdk',
                 'pregend1', 'pregend2', 'nbrnaliv', 'multbrth',
                'laborfor_i', 'religion_i', 'metro_i', 'basewgt', 'adj_mod_basewgt',
                'finalwgt', 'secu_p', 'sest', 'cmintvw', 'totalwgt_lb'],
               dtype='object', length=244)
In [99]: import statsmodels.formula.api as statsformula
         #Following variables were used by the author in the solution
         #NBRNALIV - How many babies did you have
         #that were born alive? Please include babies that may have died
```

```
#shortly after birth and babies that you placed for adoption.

#Value Label Total
# 1 BLACK
# 2 WHITE
# 3 OTHER

#birthord == 1 -> Birth order. 1 for first birth.

model = statsformula.ols('prglngth ~ birthord==1 + race==1 + nbrnaliv>1', data=live results = model.fit()
results.summary()

OLS Regression Results

Dep. Variable: prglngth R-squared: 0.011
```

Out[99]:

Dep. Variable:	prglngth	R-squared:	0.011
Model:	OLS	Adj. R-squared:	0.011
Method:	Least Squares	F-statistic:	33.07
Date:	Sun, 12 Feb 2023	Prob (F-statistic):	3.03e-21
Time:	15:32:01	Log-Likelihood:	-18249.
No. Observations:	8884	AIC:	3.651e+04
Df Residuals:	8880	BIC:	3.653e+04
Df Model:	3		
Covariance Type:	nonrobust		

		7 I				

	coef	std err	t	P> t	[0.025	0.975]
Intercept	38.8835	0.031	1264.825	0.000	38.823	38.944
birthord == 1[T.True]	0.1027	0.040	2.557	0.011	0.024	0.181
race == 1[T.True]	-0.1236	0.046	-2.712	0.007	-0.213	-0.034
nbrnaliv > 1[T.True]	-1.4876	0.165	-9.042	0.000	-1.810	-1.165

Omnibus:	1579.887	Durbin-Watson:	1.620
Prob(Omnibus):	0.000	Jarque-Bera (JB):	6142.785
Skew:	-0.847	Prob(JB):	0.00
Kurtosis:	6.705	Cond. No.	9.59

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [100... # Finding the statistically significant effect of age at pregnancy on pregnancy len
model = statsformula.ols('prglngth ~ birthord==1 + race==1 + agepreg > 25', data=li
results = model.fit()
results.summary()
```

OLS Regression Results

Dep. Variable:	prglngth	R-squared:	0.002
Model:	OLS	Adj. R-squared:	0.002
Method:	Least Squares	F-statistic:	5.954
Date:	Sun, 12 Feb 2023	Prob (F-statistic):	0.000473
Time:	15:32:02	Log-Likelihood:	-18290.
No. Observations:	8884	AIC:	3.659e+04
Df Residuals:	8880	BIC:	3.662e+04
Df Model:	3		
Covariance Type:	nonrobust		

		coef	std err	t	P> t	[0.025	0.975]
	Intercept	38.8741	0.041	958.395	0.000	38.795	38.954
birtho	rd == 1[T.True]	0.1114	0.042	2.667	0.008	0.030	0.193
ra	ce == 1[T.True]	-0.1332	0.046	-2.877	0.004	-0.224	-0.042
agepr	eg > 25[T.True]	-0.0319	0.042	-0.756	0.449	-0.115	0.051

Omnibus:	1611.422	Durbin-Watson:	1.629
Prob(Omnibus):	0.000	Jarque-Bera (JB):	6234.959
Skew:	-0.866	Prob(JB):	0.00
Kurtosis:	6.721	Cond. No.	3.87

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Week 9 - Assignment 11.3

```
In [101... #Exercise 11-3.
```

#has born?

#If the quantity you want to predict is a count, you can use Poisson regression, wh #implemented in StatsModels with a function called poisson. It works the same way a #ols and logit. As an exercise, let's use it to predict how many children a woman h #born; in the NSFG dataset, this variable is called numbabes.
#Suppose you meet a woman who is 35 years old, black, and a college graduate whose #annual household income exceeds \$75,000. How many children would you predict she

```
In [112...
resp = nsfg.ReadFemResp()
resp.index = resp.caseid
join = live.join(resp, on='caseid', rsuffix='_r') #joining nsfg preg and resp df
```

```
len(join)
Out[112]: 8884
In [113... join.numbabes.replace([97], np.nan, inplace=True) #inplace - modify the dataframe
In [114... | formula = 'numbabes ~ age_r + C(race) + totincr + educat'
           model = smf.poisson(formula, data=join)
           results = model.fit()
           results.summary()
           Optimization terminated successfully.
                    Current function value: 1.687055
                    Iterations 5
                             Poisson Regression Results
Out[114]:
              Dep. Variable:
                                 numbabes No. Observations:
                                                                 8884
                    Model:
                                   Poisson
                                               Df Residuals:
                                                                 8878
                  Method:
                                      MLE
                                                  Df Model:
                                                                    5
                     Date: Sun, 12 Feb 2023
                                              Pseudo R-squ.:
                                                               0.03109
                     Time:
                                   15:35:28
                                             Log-Likelihood:
                                                               -14988.
                                                    LL-Null:
                converged:
                                      True
                                                               -15469.
           Covariance Type:
                                 nonrobust
                                                LLR p-value: 1.106e-205
                         coef std err
                                           z P>|z| [0.025 0.975]
                                      23.995 0.000
             Intercept
                       1.0842
                                0.045
                                                     0.996
                                                             1.173
           C(race)[T.2] -0.1398
                                0.015
                                      -9.464 0.000 -0.169
                                                            -0.111
           C(race)[T.3] -0.0914
                                0.025
                                      -3.717 0.000 -0.140
                                                            -0.043
                                0.001
                                      20.474 0.000
                age_r 0.0208
                                                     0.019
                                                            0.023
               totincr -0.0179
                                0.002
                                      -9.442 0.000
                                                    -0.022
                                                            -0.014
               educat -0.0443
                                0.003 -15.139 0.000
                                                    -0.050
                                                           -0.039
 In [115...
          #Predict the number of children for a woman who is 35 years old,
           #black (race=1), and a college graduate(educat=16, 4yrs) whose annual household inc
           import pandas as pd
           import warnings
           from statsmodels.tools.sm_exceptions import ConvergenceWarning
           warnings.simplefilter('ignore', pd.errors.PerformanceWarning)
           join['age_2'] = join.age_r**2
           columns_df = ['age_r', 'age_2', 'age3', 'race', 'totincr', 'educat']
           new_df = pd.DataFrame([[35, 35**2, 35**3, 1, 14, 16]], columns=columns_df)
           results.predict(new_df)
```

Out[115]: 0 2.342182 dtype: float64

Week 9 - Assignment 11.4

In [116... #Exercise 11-4.

#If the quantity you want to predict is categorical, you can use multinomial logist #regression, which is implemented in StatsModels with a function called mnlogit. As #exercise, let's use it to guess whether a woman is married, cohabitating, widowed, #divorced, separated, or never married; in the NSFG dataset, marital status is enco #a variable called rmarital. Suppose you meet a woman who is 25 years old, white, #and a high school graduate whose annual household income is about \$45,000.

#What is the probability that she is married, cohabitating, etc?

```
In [117... formula='rmarital ~ age_r + age_2 + C(race) + totincr + educat'
model = smf.mnlogit(formula, data=join)
results = model.fit()
results.summary()
```

Optimization terminated successfully.

Current function value: 1.084053

Iterations 8

0.	 Ги	-1	\neg	п.

Dep. Varia	able:	rm	arital N o	o. Obsei	vations:	8884
Me	odel:	MN	Logit	Df R	8849	
Met	hod:	MLE		D	30	
	Date: Su	n, 12 Feb 2023		Pseudo	0.1682	
т	ime:	15:35:46		Log-Lik	-9630.7	
converged:			True		-11579.	
Covariance Type:		nonro	obust	LLR	0.000	
rmarital=2	coef	std err	z	P> z	[0.025	0.975]
Intercept	9.0156	0.805	11.199	0.000	7.438	10.593
C(race)[T.2]	-0.9237	0.089	-10.418	0.000	-1.097	-0.750
C(race)[T.3]	-0.6179	0.136	-4.536	0.000	-0.885	-0.351
age_r	-0.3635	0.051	-7.150	0.000	-0.463	-0.264
age_2	0.0048	0.001	6.103	0.000	0.003	0.006
totincr	-0.1310	0.012	-11.337	0.000	-0.154	-0.108
educat	-0.1953	0.019	-10.424	0.000	-0.232	-0.159
rmarital=3	coef	std err	z	P> z	[0.025	0.975]
Intercept	2.9570	3.020	0.979	0.328	-2.963	8.877
C(race)[T.2]	-0.4411	0.237	-1.863	0.062	-0.905	0.023
C(race)[T.3]	0.0591	0.336	0.176	0.860	-0.600	0.718
age_r	-0.3177	0.177	-1.798	0.072	-0.664	0.029
age_2	0.0064	0.003	2.528	0.011	0.001	0.011
totincr	-0.3258	0.032	-10.175	0.000	-0.389	-0.263
educat	-0.0991	0.048	-2.050	0.040	-0.194	-0.004
rmarital=4	coef	std err	z	P> z	[0.025	0.975]
Intercept	-3.5238	1.205	-2.924	0.003	-5.886	-1.162
C(race)[T.2]	-0.3213	0.093	-3.445	0.001	-0.504	-0.139
C(race)[T.3]	-0.7706	0.171	-4.509	0.000	-1.106	-0.436
age_r	0.1155	0.071	1.626	0.104	-0.024	0.255
age_2	-0.0007	0.001	-0.701	0.483	-0.003	0.001
totincr	-0.2276	0.012	-19.621	0.000	-0.250	-0.205
educat	0.0667	0.017	3.995	0.000	0.034	0.099
rmarital=5	coef	std err	z	P> z	[0.025	0.975]
Intercept	-2.8963	1.305	-2.220	0.026	-5.453	-0.339

```
C(race)[T.2] -1.0407
                    0.104 -10.038 0.000 -1.244 -0.837
                    0.156 -3.635 0.000 -0.871 -0.261
C(race)[T.3] -0.5661
     age_r 0.2411
                    0.079 3.038 0.002
                                           0.086
                                                  0.397
    age_2 -0.0035
                     0.001
                           -2.977 0.003 -0.006
                                                 -0.001
    totincr -0.2932
                    0.015 -20.159 0.000 -0.322
                                                 -0.265
    educat -0.0174
                     0.021
                            -0.813 0.416 -0.059
                                                  0.025
rmarital=6
              coef std err
                                z P>|z| [0.025 0.975]
                             9.890 0.000
  Intercept 8.0533
                     0.814
                                           6.457
                                                 9.649
C(race)[T.2] -2.1871
                    0.080 -27.211 0.000 -2.345 -2.030
C(race)[T.3] -1.9611
                     0.138 -14.188 0.000
                                         -2.232 -1.690
     age_r -0.2127
                     0.052 -4.122 0.000 -0.314 -0.112
    age_2 0.0019
                     0.001
                           2.321 0.020
                                                  0.003
                                           0.000
                     0.012 -25.320 0.000 -0.317 -0.272
    totincr -0.2945
    educat -0.0742
                     0.018
                           -4.169 0.000
                                        -0.109 -0.039
```

Out[118]: 0 1 2 3 4 5

0 0.750028 0.126397 0.001564 0.033403 0.021485 0.067122