NOM: Prénom: Note:

1. Déterminer le polynôme minimal de la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

On remarque que $A^2 = 3A$ donc $X^2 - 3X = X(X-3)$ est un polynôme annulateur de A. Ainsi π_A divise X(X-3). Par conséquent, $\pi_A = X$ ou $\pi_A = X - 3$ ou $\pi_A = X(X-3)$. Mais comme $A \neq 0$, $\pi_A \neq X$ et comme $A \neq 3I_3$, $\pi_A \neq X - 3$. Par conséquent, $\pi_A = X(X-3)$.

2. Soit $f_n: x \mapsto \frac{(-1)^n}{n^x}$. Montrer que $\sum f_n$ converge simplement sur \mathbb{R}_+^* et uniformément sur tout intervalle $[a, +\infty[$ où a > 0.

Soit $x \in \mathbb{R}_+^*$. Alors $(1/n^x)_{n \in \mathbb{N}}$ est une suite décroissante de limite nulle. D'après le critère spécial des séries alternées, $\sum f_n(x)$ converge. Ainsi $\sum_{n \in \mathbb{N}} f_n$ converge simplement sur \mathbb{R}_+^* .

Notons $R_n = \sum_{k=n+1}^{\infty} f_n$. Soit a > 0. Toujours d'après le critère spéciale,

$$\forall n \in \mathbb{N}, \ \forall x \in [a, +\infty[, \ |\mathcal{R}_n(x)| \le f_{n+1}(x) \le f_{n+1}(a)$$

Par conséquent,

$$\forall n \in \mathbb{N}, \ \|\mathbf{R}_n\|_{\infty} \le f_{n+1}(a)$$

 $\begin{aligned} Or & \lim_{n \to +\infty} f_{n+1}(a) = 0 \ donc \ \lim_{n \to +\infty} \| \mathbf{R}_n \|_{\infty,[a,+\infty[} = 0. \ La \ suite \ (\mathbf{R}_n) \ converge \ uniform\'ement \ vers \ la \ fonction \ nulle \ sur \ [a,+\infty[\ de \ sorte \ que \ \sum f_n \ converge \ uniform\'ement \ sur \ [a,+\infty[\ . \] \end{aligned}$

- 3. Soit $n \in \mathbb{N}$. Déterminer le polynôme minimal de l'endomorphisme $D: P \in \mathbb{K}_n[X] \mapsto P' \in \mathbb{K}_n[X]$. Pour tout $P \in \mathbb{K}_n[X]$, $P^{n+1} = 0$. Ainsi $D^{n+1} = 0$. On en déduit que π_D divise X^{n+1} . Or $D^n(X^n) = n! \neq 0$ donc $D^n \neq 0$ et π_D ne divise pas X^n . On en déduit que $\pi_D = X^{n+1}$.
- 4. Soit $f_n: x \mapsto e^{-nx}$. La suite (f_n) converge-t-elle uniformément sur $]0, +\infty[$? Justifier.

Première méthode. Supposons que (f_n) converge uniformément sur \mathbb{R}_+^* . D'après le théorème de la double limite, on aurait alors

$$\lim_{n \to +\infty} \lim_{x \to 0^+} f_n(x) = \lim_{x \to 0^+} \lim_{n \to +\infty} f_n(x)$$

et donc 1 = 0. Ainsi (f_n) ne converge pas uniformément sur \mathbb{R}_+^* .

Deuxième méthode. On montre que (f_n) converge simplement vers la fonction nulle sur \mathbb{R}_+^* . Mais $||f_n||_{\infty,\mathbb{R}_+^*} = 1$ donc (f_n) ne converge pas uniformément vers la fonction nulle.

5. On pose $f_n: x \mapsto \frac{2nx}{1+n^2x^2}$. Montrer que la suite de fonctions (f_n) converge simplement mais pas uniformément sur \mathbb{R} .

Tout d'abord, $f_n(0) = 0$ pour tout $n \in \mathbb{R}$. De plus, pour $x \in \mathbb{R}^*$, $f_n(x) \sim \frac{2nx}{n^2x^2} = \frac{2}{nx}$ de sorte que $f_n(x) \to 0$. Ainsi (f_n) converge simplement vers la fonction nulle sur \mathbb{R} .

Par contre, $f_n(1/n) = 1$ pour tout $n \in \mathbb{N}^*$. Par conséquent, $(f_n(1/n))$ ne converge vers 0 et (f_n) ne converge pas uniformément sur \mathbb{R} .