Relatório Projeto 3.1 AED 2020/2021 Versão 1.0

Nome: António Marques Maria	Nº Estudante: <u>2017265346</u>
TP (inscrição): 4 Login no Mooshak: 2017265346	
№ de horas de trabalho: <u>10</u> H Aulas Práticas de Laboratório: <u>2</u>	H Fora de Sala de Aula: <u>8</u> H
(A Preencher pelo Docente) CLASSIFICAÇÃO:	
Comentários:	

1. Análise Empírica de Complexidade

Correr a implementação do projeto 3.1 para um número crescente de transações e obter os tempos de execução (excluindo tempo de leitura e impressão de resultados). Produzir tabela, gráfico e regressão relevantes.

N	Tempo(em segundos)
100000	0.015
200000	0.031
300000	0.047
400000	0.049
500000	0.031
600000	0.094
700000	0.125
800000	0.109
900000	0.141
1000000	0.157
1500000	0.269
2000000	0.281
2500000	0.377
3000000	0.437
3500000	0.549
4000000	0.532
4500000	0.953
5500000	0.954

A expressão f(N) está de acordo com o esperado? Justifique.

Sim, uma vez que o algoritmo tem de percorrer a árvore inteira para a construir, ou seja, como a árvore tem $2^{log_2(N)+1} - 1$ nós, isso significa que a construção da MerkleTree tem complexidade O($2^{log_2(N)+1} - 1$) = O($2^{log_2(N)} * 2$)

O projeto 3.1 pode ser implementado seguindo uma abordagem iterativa e uma recursiva.

Explique sucintamente o essencial das duas implementações em termos de estruturas de dados utilizadas e da propagação dos *hashcodes* na árvore

A implementação iterativa permite que a HashTree seja representada por um array, o que faz com que a propagação das hashcodes aconteça do final do array até ao início. A implementação recursiva permite que seja representada por uma estrutura em árvore, fazendo com que a propagação das hashcodes aconteça de baixo para cima, ou seja, da base da árvore até à raiz.