The hypothetical machine of Figure 3.4 also has two I/O instructions:

0011 = Load AC from I/O

0111 = Store AC to I/O

In these cases, the 12-bit address identifies a particular I/O device. Show the program execution (using the format of Figure 3.5) for the following program:

- Load AC from device 5.
- Add contents of memory location 940.
- Store AC to device 6.

Assume that the next value retrieved from device 5 is 3 and that location 940 contains a value of 2.

Figure 3.4 Characteristics of a Hypothetical Machine

Figure 3.5 Example of Program Execution (contents of memory and registers in hexadecimal)

Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of two fields: the first byte contains the opcode and the remainder the immediate operand or an operand address.

- a. What is the maximum directly addressable memory capacity (in bytes)?
- b. Discuss the impact on the system speed if the microprocessor bus has:
 - 32-bit local address bus and a 16-bit local data bus, or
 - 16-bit local address bus and a 16-bit local data bus.
- c. How many bits are needed for the program counter and the instruction register?

Consider a hypothetical microprocessor generating a 16-bit address (for example, assume that the program counter and the address registers are 16 bits wide) and having a 16-bit data bus.

- a. What is the maximum memory address space that the processor can access directly if it is connected to a "16-bit memory"?
- b. What is the maximum memory address space that the processor can access directly if it is connected to an "8-bit memory"?
- c. What architectural features will allow this microprocessor to access a separate "I/O space"?
- d. If an input and an output instruction can specify an 8-bit I/O port number, how many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports? Explain.