Application of Thomeer Hyperbolas to decode the pore systems, facies and reservoir properties of the Upper Jurassic Arab D Limestone, Ghawar field, Saudi Arabia: A "Rosetta Stone" approach

Edward A. Clerke, Harry W. Mueller III, Eugene Craig Phillips, Ramsin Y. Eyvazzadeh, David H. Jones, Raghu Ramamoorthy and Ashok Srivastava

ABSTRACT

We investigated the basic geological and petrophysical properties of the multimodal pore systems in the Arab D limestone facies in Ghawar field, Saudi Arabia. The study used more than 500 mercury injection capillary pressure (MICP) data, which were type-curve matched using Thomeer Hyperbolas. The new MICP sample data were drawn from 10 cored wells that transect the Ghawar field from north to south and from a previous fieldwide study with 125 MICP samples. These 500 samples have a very rich statistical foundation in that they were selected using only random decimation within each of the facies from more than 3,500 core plugs all with assigned facies. In addition to MICP data and facies, a former, smaller sample set had both facies and Dunham texture codes. A new view of these pore systems emerged, that is built upon the intrinsic, fundamental and separate maximum pore-throat diameter modal elements named porositons. Porositons are stable, recurring and intrinsic modes in the maximum pore-throat diameter of the carbonate pore systems. Analytical results derived from the MICP data showed that the pore systems of the Arab D limestones can be classified based on porositons. The benefits of this new classification are demonstrated by considering in detail the relationships to geological facies, well-log responses, permeability modeling and simple nuclear magnetic resonance (NMR) welllog response. By analogy to the decoding of the Egyptian hieroglyphics using the Rosetta Stone, the use of porositons enables strong connections to be made between the geological facies, petrophysical and reservoir-flow properties of these complex carbonate rocks. The relationships between the new pore systems categories and the facies were thoroughly tested using north-south field trends.

INTRODUCTION

Understanding pore systems is essential for modeling the properties and performance of hydrocarbon reservoirs. Pore systems provide the primary control on hydrocarbon distribution during reservoir charging. They control the interaction of the rock with fluids through wettability modification, and fundamentally control the hydrocarbon storage and recovery through the properties of porosity, permeability, relative permeability and microscopic-displacement efficiency. Pore systems can be examined in detail with core material and perhaps linked to well-log responses, but to fill the interwell volumes of reservoir models with pore system properties, they must also be linked to predictive geological parameters. Thompson et al., (1987) in a portentous review of the pore geometrical problems of sedimentary rocks, noted "Prediction of rock properties, such as the transport properties of fluids in the pore space, and the elastic properties of the grain space, requires a set of statistics that embody the relevant physics"; and "More generally, the statistical description of pore geometry awaits definition of relevant statistics. This approach could ultimately tie the geology of rock formation to their reservoir properties, a tie with important consequences for oil exploration and production."

Multiple and complex pore systems are commonly encountered in carbonate reservoirs. Studies of the Arab D limestones in Ghawar field, Saudi Arabia (Figure 1), have demonstrated the presence and approximate volumes of multiple-porosity types as two-dimensional petrographic information (Cantrell and Hagerty, 1999, 2003; Hagerty and Cantrell, 1990 unpublished report). In this paper, we extract three-dimensional pore geometrical statistics that embody the relevant physics using results from Thomeer Hyperbola (Thomeer, 1960) analysis of mercury injection capillary pressure

Figure 1: The Arab D limestone was sampled in ten cored wells located along a NS-transect of Ghawar field. The mercury injection capillary pressure (MICP) data base was selected using random decimation from an inventory of over 3,500 core plugs with assigned facies.

data (MICP; see Appendix 1 for a review of Thomeer analysis and comparison to similar techniques, e.g. Leverett J Function), conventional core analysis data (porosity and permeability) and qualitative analysis of nuclear magnetic resonance (NMR).

The aspects of the pore system we extract are:

- (1) Pore-subsystem volume, which has a counterpart in the size-differentiated, point-count data;
- (2) Pore-subsystem geometrical factor, which has a counterpart in the sorting coefficient or size-distribution width of the size-differentiated point-count data;
- (3) Maximum diameter of the pore-throat that controls the pore subsystem. This is only determined by Thomeer analysis of MICP data, and only has a weakly defined petrographic counterpart. This diameter value, however, plays a fundamental role in a new pore-system classification scheme, allows the pore-subsystems to be related to height above free-water level in the reservoir (effectiveness) and controls the permeability.

The results that emerge from our analysis intersect several petroleum reservoir disciplines and, more explicitly, allow us to relate their subsurface languages. Our approach is similar to the translation-triangle applied to the decoding of Egyptian hieroglyphs using the Rosetta Stone. This paper focuses on the subsurface languages involving Arab D static reservoir properties: depositional facies, well-log responses and the pore systems. Other translations involve the dynamic properties of permeability,

relative permeability and microscopic-displacement efficiency and speak to a petrophysical and reservoir engineering audience. These have been published in the engineering literature (Clerke, 2007).

The paper begins with some general information about the Ghawar field and previous geological studies of Arab D facies and carbonate microporosity. Our analysis is focused on limestones and does not include dolomitic facies, nor do we consider the important role of fracture porosity and permeability. We then introduce the statistics of the maximum pore-throat diameter to characterize the multimodal Arab D limestone facies. We discuss density-neutron measurements, porosity and permeability as related to multimodal limestone pore systems. Using only basics of NMR signal analysis, we demonstrate an alignment of the behavior of maximum pore-throat diameter and NMR-detected pore-body diameters. We explore relationships between facies and porositons, and the calculation of permeability. Finally, we conclude that these new investigations create many new paths for improvements in the evaluation of complex carbonate reservoirs.

ACRONYMS, ABBREVIATIONS, TERMS AND DEFINITIONS

- **B**_v Volume of mercury injected into a porous rock sample during the mercury injection experiment, expressed as a fraction of the total sample bulk volume (see Appendix 1).
- **d** throat,max Diameter (microns) of the largest pore-throat in a sample containing multiple pore systems (Thomeer Hyperbolas) i.e. the largest of the largest.
- **Dunham textures:** Carbonate fabric textural classification system separating grains and muds (Dunham, 1962).
- G Pore geometrical factor, related to the uniformity of the pore-throat diameters (low G) or non-uniformity (high G) of the pore-throats.
- MICP Mercury injection capillary pressure.
- **Mode** Region or subdivision of a uniform space as defined by the relevant physics and or physical parameters. In this paper the pore system of the Arab D limestone was found to be multimodal (i.e pore-system modality) and its modality to be monomodal, bimodal, or trimodal.
- NMR Nuclear magnetic resonance.
- **P**_d Minimum entry pressure or the maximum pore-throat diameter for a system of pores and throats that are characterized by one Thomeer Hyperbola.
- **P**_{d.f} the minimum entry pressure for a sample containing multiple pore systems (Thomeer Hyperbolas), i.e. the minimum of the minimums.
- **Pore subsystem**: A continuum of pore-throats and pore space characterized by one Thomeer Hyberbola and one maximum pore-throat diameter; the latter of which is a member of a Porositon.
- **Porobodon**: A postulated mode in the NMR pore body spectrum that may be directly related to a Porositon.
- **Porositon:** A distinct and separable frequency distribution of maximum pore-throat diameters, $P_{d'}$ which has a Gaussian distribution in the $Log(P_d)$ domain, i.e. a mode in the maximum pore-throat diameter space. In this paper the porosity of the Arab D limestone is characterized by the M Porositon (macroporosity) and Types 1, 2 and 3 Porositons (microporosity).
- **Thomeer Hyperbola**: See Appendix 1 (Figures A1 and A2). The hyperbola is characterized by (1) $P_{d'}$ the minimum entry pressure or the maximum pore-throat diameter; (2) the pore geometrical factor, G; and (3) B^{∞} , the pore volume in that particular Thomeer hyperbola.

PREVIOUS STUDIES OF CARBONATE POROSITY SYSTEMS

The super-giant Ghawar oil field of Saudi Arabia is a N-trending anticline that is 230 km long and approximately 30 km wide (Figure 1). The main reservoir is the carbonate part of the D Member of the Upper Jurassic Arab Formation (Powers, 1968). The Arab-D Member is the oldest of four carbonate – evaporite cycles (from bottom to top, Arab-D, Arab-C, Arab-B, and Arab-A with the overlying Hith Anhydrite), each stratigraphically comprising a lower carbonate unit and an upper evaporite unit of which the evaporite intervals dominated by anhydrite. The D Member carbonate consists of several scales of shallowing-upward cycles dominated by burrowed mudstones and wackestones in its lower part and transitioning to skeletal packstones and grainstones and, ultimately, ooid grainstones in the upper part.

Figure 2: A single depositional cycle of the Arab D sediments that clearly identifies the main facies (Simplified after Lindsay et al., 2006). Readily identified facies within this cycle are the *Cladocoropsis*, Stromatoporoid-Red Algae-Coral, Bivalve-Coated Grain-Intraclasts (debris-flow deposits), Micrite and *Thalassinoides* Burrowed Micrite. Shoal deposits are associated with massive sands and oolitic (Skeletal Oolitic) facies in two positions in the total Arab D sedimentary column. When multiple depositional cycles are considered within the Ghawar Arab D section and sequence stratigraphy, a common simplified vertical facies succession emerges as the one shown on the lower left.

Many articles have been written on the super-giant Ghawar field, its geology and the performance of the Arab D Reservoir (e.g. Powers, 1968; Mitchell et al., 1988; Al-Husseini, 1997; Stenger et al., 2003; Figure 2 after Lindsay et al., 2006), but few have integrated its pore systems with the geology and reservoir performance. Moreover, although thousands of well logs, production surveys, cores and extensive production histories are available as data to characterize the Arab D Reservoir performance, the fundamental understanding of porosity and permeability and prediction of permeability remains a challenge.

With reference to the Ghawar field, Cantrell and Hagerty (1999, 2003) documented observations on the common presence of microporosity in the Arab Formation. They concluded: "Microporosity occurs throughout the Arab Formation of Saudi Arabia, and affects the log response, fluid-flow properties and ultimate recovery of hydrocarbons in these reservoirs." Their qualitative microporosity observations from petrographic data, were supported by displays of the pore-throat histograms from a sample subset on which MICP data were available (Figure 3, from Cantrell and Hagerty, 1999).

Figure 3: Microporosity petrographic images in Arab Formation carbonates (Cantrell and Hagerty, 1999). Porosity is filled by blue dye in the upper left image. The succeeding images are pore casts of increasingly higher magnification after removal of the carbonate matrix by acid. Image (a) shows abundant interparticle macroporosity (dark blue) as well as microporosity. The successive pore cast images of increasing magnification (b), (c), (d) show that the intraparticle microporosity is well-connected.

Early work on the presence of microporosity in carbonates by Herling (1968), contrasted the difference between carbonate and clastic sedimentary rocks. He noted, "The good correlation between specific surfaces calculated from grain-size distribution and measured with BET method (adsorption isotherm method of Brunauer et al., 1938) for quartz sands and powdered quartz is no longer valid for calcareous sands and silts." Pittman (1971) discussed one type of microporosity in carbonates as resulting from boring and perforating actions performed by blue-green algae into carbonate grains. A similar observation was made by Bathurst (1966) for skeletal sand grains of the Bimini lagoon.

Cantrell and Hagerty (2003) found four types of microporosity in the Arab D using an operational definition of microporosity as pores approximately 10 microps in diameter or less. Their four types of microporosity are: (1) microporous grains, (2) microporous matrix, (3) microporous fibrous to bladed cements, and (4) microporous equant cements, with microporous grains being the most volumetrically significant microporosity type. These authors stated, "Scanning Electron Microscope examination of pore casts and fractured rock surfaces reveals that a variety of skeletal and non-skeletal grain types are microporous. The microporosity–forming process transforms different grain types into grains that are similar with respect to their internal fabrics. Microporosity thus consists of a network of highly interconnected, uniform-sized straight tubular to laminar pore-throats that intersect with less elongate, more equant pores."

Mitchell et al. (1988) characterized the Arab D carbonates in terms of five limestone facies plus Dolomite: Skeletal-Oolitic, *Cladocoropsis*, Stromatoporoid–Red Algae–Coral, Bivalve-Coated Grain-Intraclast and Micrite. These facies represent a classification that utilizes fauna, assemblages of Dunham (1962) textures, major and minor grain types, sedimentary structures, pore types and diagenetic modification. A key result that emerges is that these facies subdivide the MICP data set by

pore-system properties more clearly than other available facies descriptors. This establishes an important and previously nonexistent link between the depositional geology-facies and the pore systems, and hence the static and dynamic properties of the reservoir.

Clerke (2004) modified the limestone facies of Mitchell et al. (1988) and arrived at six facies (Figure 2, Appendix 2). In particular, he divided the skeletal-oolitic facies into those above and below an important sequence boundary identified in core descriptions by C.R. Handford (T. Keith, personal communication, 2001). His modification also separates-out the burrowed-micritic facies. In the present study, the Clerke (2004) classification is used unless otherwise indicated.

MODES AND POROSITONS: MAXIMUM PORE-THROAT DIAMETER STATISTICS

Thompson et al. (1987) discussed the many studies of pore networks "composed of pipes of widely varying sizes, which are distributed randomly along the links of the network"; and noted, "there are no experimental data to contradict the assumption of random distribution of pores." The data we have collected and present is likely the first and the most comprehensive data to show a deeper and non-random structure in the pore network parameters of the Arab D limestone.

Figure 4: Histograms of pore-throat diameter from Arab D limestone MICP data along with the pore-throat diameter histogram from the Thomeer Hyperbolas (red) and closure correction (red bar); (a) pore-throat diameter histogram for a monomodal pore system; (b) pore-throat diameter histogram for a bimodal pore system.

Two data sets were used in the present study.

The first consisted of 125 mercury injection capillary pressure (MICP) samples characterized by the textures of Dunham (1962) and the facies of Mitchell et al. (1988). This data set was compiled by Hagerty and Cantrell (1990, unpublished report) and quantitatively analyzed (Clerke, 2003, 2004; Clerke and Martin, 2004). It is dominated by packstone (Dunham, 1962), but otherwise contains a fairly uniform selection of other Dunham (1962) textures. The collection is also fairly uniform by facies except for undersampling of the *Cladocoropsis* facies.

Thomeer Hyperbolas (Thomeer, 1960) were fitted to this first MICP data set using computerized spreadsheets (Appendix 1; Clerke and Martin, 2004). This analysis first yields the number of Thomeer Hyperbolas – used here as equivalent to 'pore system' – required to fit the MICP data from each sample. We call this integer the *pore system modality*. Thirty-five percent of the samples required a single hyperbola (Figure 4a), 62% required two Thomeer Hyperbolas (Figure 4b) and 3% required three hyperbolas. To limit trivial occurrences of multiple pore-systems in one sample, we added to the Thomeer MICP-fitting process, the requirement that a volume of at least one unit of porosity be present for a significant second or a third pore system.

Table 1 shows the occurrence of the pore-system modality (number of Thomeer Hyperbolas required for each sample) for the Dunham (1962) textures. Key results are that mudstone is dominantly monomodal, while grainstones and mudlean packstones are dominantly bimodal; packstone and wackestone showed no definitive pore system modality. Table 2 shows the occurrence of the pore-system modality for the Mitchell et al. (1988) facies. Stromatoporoid-Red Algae-Coral and

Cladocoropsis are almost always bimodal. Note also the presence of 60–40 or 70–30 splits for Skeletal-Oolitic, Micrite, Dolomite and Bivalve-Coated Grain-Intraclast. Table 3 shows the poresystem modality when the Skeletal-Oolitic facies are distinguished into above-and-below the sequence boundary (Figure 2; Clerke, 2004) and the value of this split will be evident later when microporosity types are defined.

The second data set (Rosetta Stone Data) used 10 cored and described wells with full conventional well-log suites in a NS-transect across the Ghawar field (Figure 1). All of the core plugs (approximately 3,500) from these 10 wells were cataloged by the facies of Mitchell et al. (1988). Then seven to nine samples from each facies per well were selected at random to give 90 samples per facies, thus resulting in a uniform sample density for each facies. MICP experiments and analysis was conducted on these samples and the resulting data set was combined with the 125 samples of Hagerty and Cantrell (1990, unpublished report) as listed in Appendix 3.

The Thomeer Hyperbola analysis was then applied to the combined MICP data (Appendices 1 and 3) using computerized spreadsheets (Clerke and Martin, 2004). Thomeer parameter, $P_{d'}$ when plotted on a logarithmic axis $[Log(P_d)$ domain] showed the most significant variation, and it was considered the controlling parameter for classification. We observed four distinct and separable modes (Figure 5) and fitted each with a Gaussian distribution, termed a Porositon.

Pore-size ranges and microporosity have been assigned many names and size scales (Choquette and Pray, 1970; Pittman, 1971; Cantrell and Hagerty, 1999). In contrast, Figure 5 shows that maximum pore-throat sizes of the pore systems have a few natural and distinct modes (four) and hence self-define its size-based classification. The Thomeer Hyperbola curve-matching tool is the only one which allows the microporosity volume and its largest controlling pore-throat to be quantified separately from other pore volumes.

POROSITON CLASSIFICATION

The four modes in the distribution of the maximum pore-throat diameters (Figure 5) correspond to one macroporosity (M Porositon) and three microporosity types (Type 1, 2 and 3 Porositons). The position of the four porositons is a property of the porous medium and not determined by *ad hoc* criteria. The term

Table 1

Dunham Textures	Number o	of Pore Sys	tems (%)
Duffilalli fextures	1	2	3
Grainstone	6.0	88.0	6.0
Mudlean Packstone	4.0	96.0	0.0
Packstone	37.0	58.0	5.0
Wackestone	50.0	50.0	0.0
Mudstone	100.0	0.0	0.0

The 125 MICP data of Hagerty and Cantrell (1990, unpublished report), coded with multiple descriptive terms, were used to compare pore system modality to the Dunham (1962) textures. Grainstone and mud-lean packstone are dominantly bimodal. Packstone and wackestone can be either monomodal or bimodal but mudstone is monomodal. This is important information for translating geological descriptions into quantitative pore system models.

Table 2

Facies	Number o	of Pore Sys	tems (%)
(Mitchell et al., 1988)	1	2	3
Skeletal Oolitic	32.0	63.0	5.0
Cladocoropsis	0.0	100.0	0.0
Stromatoporoid- Red Algae-Coral	11.0	84.0	5.0
Bivalve-Coated Grain-Intraclast	28.0	69.0	3.0
Micrite	71.0	29.0	0.0
Dolomite	67.0	33.0	0.0

The 125 MICP data of Hagerty and Cantrell (1990, unpublished report), coded with multiple descriptive terms, were used to compare pore system modality to the facies of Mitchell et al. (1988). The Cladocoropsis and Stromatoporoid–Red Algae-Coral are commonly bimodal. Other facies are a mixture of bimodals and monomodals at roughly 70-30% and 30-70% proportions. The number of trimodal pore systems is few and below statistical significance for the small MICP data set but it is shown for completeness.

Table 3

Facies	Number	of Pore Sys	tems (%)
(This Study)	1	2	3
Skeletal Oolitic Above Sequence Boundary	35.0	61.0	4.0
Cladocoropsis	0.0	100.0	0.0
Stromatoporoid- Red Algae-Coral	11.0	84.0	5.0
Skeletal Oolitic Below Sequence Boundary	27.0	67.0	6.0
Bivalve-Coated Grain-Intraclast	28.0	69.0	3.0
Micrite	71.0	29.0	0.0

The 125 MICP data of Hagerty and Cantrell (1990, unpublished report), coded with multiple descriptive terms, were updated to split the Skeletal Oolitic facies into two subunits, above-and-below the sequence boundary (Clerke, 2004). No net improvement results from the statistical breakout at this stage, but later figures will show that the microporosity type in the Skeletal Oolitic facies are different when split.

Figure 5a: Histogram of P_d values (converted to maximum pore-throat diameter [microns]) used for all Thomeer Hyperbolas is shown here. 860 hyperbolas were required to fit 454 samples from 10 wells. The data shows four distinct and separate modes, a broad mode on the left of large pore-throat diameters, a narrow and highly populated second mode at about 1 micron, and two less-frequent successive modes near 0.2 microns and 0.04 microns. The valley at 2% and 0.35 microns is very distinct (v1). Another less distinct valley is at about 6 microns (v2). The non-uniform spectrum suggests that maximum pore-throat diameters are related to an underlying discrete process. An alternate presentation of this data when weighted by the bin average porosity is shown in Figure 24, the valleys are still strongly present.

"microporosity" is used here in the sense of Swanson, (1985). "Micropores in reservoir rocks are defined as pores whose dimensions are significantly smaller than those contributing to the rock's permeability". Later sections of this paper and other publications (Clerke, 2007; Buiting and Clerke, in preparation) support this naming convention by demonstrating the lack of contribution of the micropores to the measureable permeability when the M Porositon occurs, i.e. macroporosity.

Results from the fitting of the data to Gaussian distributions are shown in Table 4. The distribution parameters for the four porositons are: mean, width (standard deviation) and the best $Log(P_d)$ cutoff parameter separating the distributions. Notice from Table 4 that the bulk of the porosity on the average is carried in the M Porositon (17.1 pu) followed by the Type 1 Porositon (5.57 pu) and finally by Types 2 and 3 (2.22 pu) Porositons. The computed Thomeer permeability for the mean values is shown (see Appendix 1 for permeability calculation). The mean Thomeer pore geometrical factor, G, ranges from 0.51 to 0.13, with the highest values (widest distribution and poorest sorting) in the M Porositon (0.51 \pm 0.19). The characterization of carbonate "heterogeneity" is captured by the width of the M Porositon and by the amount of multimodality present in the pore systems.

Core Plug Porosity and Permeability, and Multimodality

In core plugs the pore systems of the Arab D limestone matrix are commonly bimodal and composed of a single instance of macroporosity and some amount and type of microporosity from one of three possible types (Clerke, 2004, 2007; Clerke and Mueller, 2006; Buiting, 2007; Buiting and Clerke, in preparation). We examined the trend of total plug porosity in the limestone samples as compared to the pore system modality. Figure 6 shows the modality of the maximum pore-throat diameter data with a red curve representing the rolling-window average of the data versus porosity. The data indicate that bimodality is common when the porosity exceeds 7 pu. Trimodal pore systems start to occur, along with bimodals, in the porosity range from 12 to 24 pu, and above 24 pu the systems are mostly bimodal. In Figure 7, the maximum pore-throat diameter modality is compared to core plug permeability data using the rolling average (red line). Two distinct ranges occur: (1) from 0.01 to 10 mD, which is both monomodal and bimodal in nearly equal proportions; and (2) above 10 mD, bimodality dominates with occasional trimodality.

Figure 5b: Histogram of Figure 5a is shown (on the right) along with all of the graphical MICP data (on the left) after closure correction and Thomeer Hyperbola matching. Shown on the right is the frequency of occurrence of all P_d values for all Thomeer pore subsytems required (diamond shaped points connected with a faint dashed black line). This frequency is not simply the density of the number of lines to the left of the histogram because many of the pore systems exist primarily as subcomponents of a bimodal or trimodal capillary pressure curve. This is most strongly the case for Type 1 microporosity as it most commonly occurs as a second pore system in the M–1 configuration. The colored lines on the frequency histogram are the four fitted Gaussian distributions [porositons: M (black), 1 (red), 2 (green), 3 (blue)]. The Gaussian parameter values are compiled in Table 4. The conformance of the four Gaussian distributions to the experimental data is excellent (correlation R² of 0.85) except between about 40 and 90 psi where a plateau occurs.

Density-Neutron-Derived Porosity and Multimodality

In Figure 8, the plug maximum pore-throat diameter modality versus porosity data of Figure 6 is superimposed on the conventional density-neutron well-log crossplot using multi-well Arab D log data. The combination of density-neutron logs in a known limestone matrix might show some subtle evidence of maximum pore-throat diameter modality. The deviation of the data trend from the limestone line, as porosity increases, may be related to the increasing presence of dual-porosity systems through unknown effects such as flushing phenomena and/or flushed-zone, residual-oil saturation. Porosity, determined from these two porosity tools (density-neutron), appears to only

Table 4

	Ghawar Aı	rab D Limesto	ne Porositon	Parameters		
			Thomes	er Parameters		
Gaussian Model	Log (P _d)	P _d (psi, Hg/air)	Pore-Throat Diameter (microns)	B _v (Porosity Unit)	G	Thomeer Permeability (mD)
Porositon M						
Mean	0.57	3.67	58.27	17.10	0.51	202.6
One Standard Deviation	0.53			8.36	0.19	
Porositon Separator Value	1.67	46.3	4.62			
Porositon 1						
Mean	2.31	204.0	1.05	5.57	0.15	0.036
One Standard Deviation	0.28			3.18	0.13	
Porositon Separator Value	2.79	617.0	0.35			
Porositon 2						
Mean	3.12	1,318.0	0.16	2.22	0.15	0.00014
One Standard Deviation	0.26			0.87	0.13	
Porositon Separator Value	3.40	2,512.0	0.09			
Porositon 3						
Mean	3.73	5,370.0	0.04	2.22	0.15	0.00001
One Standard Deviation	0.20			0.87	0.13	
Porositon Separator Value	4.78	60,000.0	0.00			

Gaussian distribution parameters for the four porositons fit to the histogram (see Figure 5) of the full data set of $Log(P_d)$ values (Appendix 3, this study). The parameters are the mean and standard deviation for each Gaussian distribution (see Figure 5). Values of P_d are in psi (Hg/air) or the equivalent Maximum Pore-Throat diameter in microns. The parameters of the fit of a Gaussian distribution to B_v and G are also displayed. A Thomeer permeability has been calculated using the mean Gaussian parameters for each porositon. Also shown is a separating value (cutoff) for each porositon.

weakly indicate the modality of the pore system. Hence, we observe that these "conventional" petrophysical data sets at most give minimal indication of multimodality. The characterization of multimodal pore systems in reservoir limestones will require new methods for full evaluation by well logs. Re-interpretation of existing (density-neutron) well-log suites even with core data and powerful reprocessing (e.g. neural nets and self-organizing maps) likely cannot begin to address this aspect of the evaluation.

Porositon Combinations

The porositon combination naming scheme for multimodal pore systems follows the MICP access order, i.e. it follows the order of increasing pressure or decreasing largest controlling pore-throat, i.e. M, 1, 2, 3. Hence a MICP trimodal pore systems can be described by the increasing P_d series: M-1-2, but not 2-M-1.

The major porositon combinations still exhibit order when viewed on the traditional porosity-permeability crossplot (Figure 9) shown here with an overlay of constant P_d using equation A3. Hard trends and clear clusters are not present but there are still definite patterns. The M–1 bimodals with their various proportions of macro- and microporosity occupy a large area in the upper right corner of the plot. Moving to the left and reducing porosity but retaining high permeability, we find the M–1–2 and M–2 pore systems with the additional presence of micrite associated micropores (2, 3). Trending down to the left from the M–1 cluster the Type 1 monomodals are intersected, then Type 1–2 and 1–3 bimodals and then at very low porosities and permeabilities, Type 2 and 3 monomodals associated with micrite.

Figure 6: Maximum pore-throat diameter modality versus total porosity and a rolling average (red; average of the up-and-down rolling averages) indicates that bimodals are common above 7 pu, trimodal pore systems start to occur with the bimodals in the porosity range from 12 to 24 pu; above 24 pu the systems are with very minor exceptions, bimodal.

Figure 7: Maximum pore-throat diameter modality – permeability data and a rolling average (red; average of the up-and-down rolling averages) shows two distinct ranges: (1) from 0.01 to 10 mD, which is both monomodal and bimodal in nearly equal proportions; and (2) above 10 mD, bimodality dominates with occasional trimodality.

The results from Table 4 and the porositon combinations were used to build average porositon combination capillary pressure curves with uncertainties (Clerke, 2004). The measured capillary pressure curve data have been disassembled using the superposition capability of the Thomeer hyperbolas (see Appendix 1) followed by the porositon classification. The average capillary pressure curve for each porositon combination can similarly be reassembled using the averages and standard deviations of each porositon's Thomeer parameters and a forward superposition of the Thomeer hyperbolas. Figures 10 and 11 demonstrate the forward-modeled mercury capillary pressure curves for the major porositon combinations.

Facies and Porositon Combinations

In this section we examine the Arab D limestone pore systems and facies in terms of combinations of the four basic porositons. Two common combinations of macroporosity and the microporosity types are shown in pore-throat diameter histogram view (Figure 12). In the 125 sample data set of Hagerty and Cantrell (1990, unpublished report), we observed that the sequence boundary represents

Figure 8: Maximum pore-throat diameter modality of Figure 6 is shown superimposed on a conventional density-neutron well-log crossplot using multi-well Arab D log data. The matrix porosity increases along the lithology trends from the lower left to the upper right. The tie lines (upper left to lower right) are lines of constant matrix porosity. The superimposed red lines from Figure 6 indicate porosity modality. Even with two porosity tools (density-neutron), porosity modality - if present at all - is only weakly manifested.

Figure 9: Petrophysical Rock Types (PRT) based on porositon combinations are shown on a conventional core data Permeability–Porosity crossplot. The six major PRTs still show order despite being based on a completely different classification scheme. An overlaying second red grid shows constant P_d (largest pore-throat diameter) as given by equation A3.

Figure 10: Forward modeled average capillary pressure curve with one standard deviation, using data from Table 4: (a) M Porositon, (b) Porositon combination M-1, (c) Porositon combination M-1-2, and (d) Porositon combination M-2.

a distinct facies break that is associated with the microporosity Types 1 and 2 (Table 5). The Skeletal Oolitic facies above-and-below the sequence boundary have completely different microporosity types (Figure 3). Above the sequence boundary, Skeletal Oolitic, *Cladocoropsis* and Stromatoporoid-Red Algae-Coral facies share the common occurrence of the Type 1 Porositon. The strong correlation of the microporosity types against the facies (Table 5) is in stark contrast with the weak correlation with Dunham (1962) textures (Figure 13). It is seen that grainstones can either contain Type 1 or 2 microporosity as can Mud-lean Packstone and Packstone. Wackestones contain only Type 2 microporosity. Thus facies descriptors (Clerke, 2004) contain the most petrophysical pore system information.

Figure 14 shows the nine significant porositon combinations with the occupancy frequency coded by the facies. These values are obtained after using a noise threshold cutoff of 5.2%, e.g. M, M–1, M–1–2, M–2, 1, 1–2, 1–3, 2, 3. The project's experimental design included multiple independent facies assignment cross-checks for all core plugs and thereby generated an internal facies error threshold of 5.2%.

Porositon 3

Bulk Volume Occupied B_v (%)

pressure curve with one standard deviation, using data from Table 4: (a) Porositon 1, (b) Porositon combination 1–2, (c) Porositon combination 1–3, (d) Porositon 2, and (e) Porositon 3.

Table 5

Dunham Textures	Microporos	ity Type (%)
Dumam Textures	1	2
Skeletal Oolitic Above Sequence Boundary	100.0	0.0
Cladocoropsis	100.0	0.0
Stromatoporoid- Red Algae-Coral	88.0	6.0
Skeletal Oolitic Below Sequence Boundary	10.0	90.0
Bivalve-Coated Grain-Intraclast	0.0	91.0
Micrite	too few samples	n.a.

The Skeletal Oolitic above-the-sequence boundary, Stromatoporoid-Red Algae-Coral and Cladocoropsis facies are very commonly bimodal and contain almost exclusively Type 1 microporosity. Skeletal Oolitic below-the-sequence boundary and Bivalve-Coated Grains-Intraclasts facies are bimodal and contain mostly Type 2 microporosity. The matrix elements do not sum to 100 for each facies because of the presence of an unclassified microporosity type, which is represented by only a few samples in the 125 MICP data set of Hagerty and Cantrell (1990, unpublished report). The third type of microporosity is isolated in the more voluminous data base from this study (Appendix 3).

Figure 12: Pore-throat diameter histograms from Arab D limestone MICP data along with the pore-throat diameter histogram from the Thomeer Hyperbolas (red) and closure correction (red bar); (a) Bimodal pore system M-2; (b) Bimodal pore system M-1. Type 1 microporosity is associated with intraparticle microporosity as shown in Figure 3. Type 2 microporosity is associated with the presence of micrite. (c) Thin-section photomicrograph of an Arab D limestone sample exhibiting the M-2 porositon combination. The sample has abundant large pores and a large amount of micropores in the pervasive micrite.

Figure 13: Data set of 125 MICP of Hagerty and Cantrell (1990, unpublished report) for Dunham (1962) textures showing frequency of occurrence: (a) Type 1 microporosity (intraparticle, 36 events); (b) Type 2 microporosity (Micritic, 34 events).

Figure 14: Six facies (modified by Clerke, 2004) are presented in terms of the nine major porositon combinations after being baseline-adjusted and renormalized for errors and noise at 5.2%. The Skeletal Oolitic above-the-sequence boundary, *Cladocoropsis* and Stromatoporoid–Red Algae-Coral facies are dominated by the M–1 porositon combination. Skeletal Oolitic below-the-sequence boundary and Bivalve-Coated Grains-Intraclasts have a large component of the M–1 porositon combination. Micrite is dominated by Type 2 and 3 Porositons.

Three of the facies tend to occur in the upper part of the reservoir interval (Skeletal Oolitic above-the-sequence boundary, *Cladocoropsis* and Stromatoporoid–Red Algae-Coral) and for these, only four porositon combinations are required with M–1 being dominant (Figure 14). Note that the monomodal, M, occurs only in the Skeletal Oolitic above-the-sequence boundary, and that the presence of Type 2 microporosity (Micrite associated) in the M–1–2 and M–2 is associated only with Stromatoporoid–Red Algae-Coral. An image of an M–1–2 Stromatoporoid–Red Algae-Coral trimodal core plug (Ahr et al., 2005) is shown (Figure 15) along with its MICP data and Thomeer fit, and the corresponding pore-throat presentation of the data and its fit.

For the facies occurring below-the-sequence boundary, a much more complicated situation occurs. The Skeletal Oolitic and Bivalve-Coated Grains-Intraclasts facies require five and six, respectively, of the nine porositon combinations (Figure 14). Similar in terms of their M–1 content, Bivalve-Coated Grains-Intraclasts contains 1–3 and 2, which do not occur in the skeletal oolitic facies, but which contains 1–2 not found in Bivalve-Coated Grains-Intraclasts. The Micrite facies is clearly dominated by Type 2 and Type 3 Porositons; 45% and 40% respectively, with a 15% presence of Type 1 Porositon (Figure 14). The intraclast content of the Bivalve-Coated Grains-Intraclasts facies presumably accounts for this presence of micritic pore systems.

Ghawar Field Trends by Facies and Porositon

The Rosetta Stone study was designed to give both field level and well-level statistical results. At the well level, the sample set allows a study of the north to south variation in the maximum pore-throat diameters by facies and by variation within the range of maximum pore-throat diameters defined in each porositon.

Figure 15: A Stromatoporoid-Red Algae-Coral M-1-2 trimodal pore system with core plug photograph (lower left). MICP data fit required three Thomeer hyperbolas (upper left); dark blue squares are the closure corrected data; white squares are the sum of the three Thomeer Hyperbolas; light blue squares (B_{v1}) show the M-porositon hyperbola; yellow squares (B_{v2}) show the second (Type 1) pore system before it is added to the first; red squares show the sum of the first two pore systems. The corresponding pore-throat diagram (upper right; data in black, Thomeer pore-throat diameter histogram in red) shows the three components. The third pore system is visible to the far left in the pore-throat diagram (copyright Schlumberger, Ltd.; reproduced with permission).

In Figure 16, the mean of the logarithm of the entry pressure $Log(P_d)$ for each of the 10 Ghawar wells is shown for each of the facies. The data show a steady decrease in the $Log(P_d)$ for Micrite microporosity from north to south, or a coarsening of the maximum pore-throat diameter, though all of these pore-throats are small. In contrast, the $Log(P_d)$ steadily increases, fining from north to south for the other five facies, which are controlled by the M Porositon. Essentially, the largest pore-throats get smaller to the south. The picture is considerably different when viewed from the porositon perspective (Figure 17). The NS porositon trends are essentially flat except for the M Porositon, where $Log(P_d)$ again shows an increase to the south. Hence the Type 1 to 3 Porositons appear to be uniform over the whole field.

When superimposing the Micrite facies trend over the porositon trends (Figure 18), we can reconcile these observations. Micrite is composed of Porositons Types 1 to 3, but dominated by Types 2 and 3. Hence the NS-trend for Micrite can only be explained by its enrichment with Type 2 and/or Type 1 compared to Type 3 porositons to the South. This indicates that the Micrite facies, being a varying mixture of the three microporositons cannot be used as a field-wide uniform petrophysical calibrator for well-log normalization. However, the Porositons 1, 2 or 3 can be used for fieldwide calibration and normalization.

PERMEABILITY IN THE MULTIMODAL ARAB D LIMESTONE

Thomeer (1983) found an empirical equation for air permeability based on the three Thomeer parameters (Appendix 1, equation A3). We used his equation to compute permeability for all the samples using only parameters from the first pore system, hence neglecting the smaller pore-throat modes. In a sample comprised of multiple Thomeer Hyperbolas (pore systems) written in decreasing order of maximum pore-throat diameter, e.g. M–1–2, the first pore system is M. We compared the calculated and measured values for the monomodal (require one Thomeer Hyperbola) samples and the bimodal (require two Thomeer Hyperbolas) samples (Figure 19). The good match implies that the permeability of the Arab D limestones is dominated by the properties of the first, commonly M

Arab D Limestone Facies, Ghawar Field

Figure 16: Ghawar field wells showing the trends in the mean of $Log(P_d)$, the logarithm of the maximum entry pressure of the first pore system, by facies. Micrite maximum pore-throat diameters increase to the south while the maximum pore-throats of the other facies decrease southwards.

Arab D Limestone Porositons, Ghawar Field

Figure 17: The NS-trend in the mean of $Log(P_d)$ is inversely related to the maximum pore-throat diameter, by porositon. The trends are essentially flat for the three microporositons and continue to show a pore-throat diameter decreasing [i.e. increasing $Log(P_d)$] trend in the macroporositon.

Figure 18: North to South porositon trend in the Ghawar field with the Micrite trend superimposed. This Micrite trend can emerge only if the mixing proportions of the 1 and 2 Porositons increase relative to Porositon 3 to the south. This implies that the Micrite facies properties are variable across the field and the facies itself does not represent a pure or stable petrophysical endpoint.

Figure 19: The Thomeer permeability can be computed for all samples with MICP Thomeer parameters. Thomeer gave no instructions as to the contribution to permeability from a multiple-pore system. In this case, the permeability is computed using only parameters from the pore system with the largest maximum pore-throat diameter. The agreement with measured values is excellent (even on a linear scale) over the wide range 0.1 mD to nearly 10 Darcies using logarithmic axes. Detailed investigations showed that the deviation from the trend could not be accounted for by invoking the contribution of the second pore systems of bimodals, which are common in rocks with permeability over 10 mD (see Figure 7).

porositon. Detailed comparisons between monomodal and bimodal sample data showed no detectable permeability contribution that could be attributed to the neglected smaller modes. This observation starts to explain the poor results that would arise from a conventional total porosity-permeability approach (Delfiner, 2007) to the data as shown in Figure 9 where at 25 pu, the permeability ranges from 10 to 3,000 mD.

Having isolated the M Porositon as controlling the measurable permeability, we investigated the explicit dependence of the permeability on each of the three M Thomeer parameters (Clerke, 2007). The major control on permeability (Figure 20) is the Thomeer parameter, $P_{\rm d,f}$, the diameter of the largest pore-throat in the first (ordered by decreasing maximum pore-throat diameter) pore system, which is found by the equation between capillary pressure and capillary diameter:

$$P_{c} = 0.58 \times [(\sigma \cos \theta)/d]$$
 (1)

Using values for the Mercury-Air experiment interfacial tension and contact angle ($\sigma\cos\theta$), the mercury air pressure in psi; the diameter of the maximum pore-throat (capillary diameter) in microns is:

$$d_{throat,max}$$
 (microns) = 214/ $P_{d,f}$ (2)

The first displacement pressure is directly related to the maximum pore-throat diameter, which is the maximum pore-throat diameter of the first porositon when ranked by decreasing maximum pore-throat diameter.

The correlation R^2 between permeability and $P_{d,f}$ is 0.65. Of the three Thomeer parameters, the most important for permeability is clearly $P_{d,f}$, or the maximum pore-throat diameter or the largest pore-throat diameter of the first (usually the Macro) pore system. The next best correlation is found between

Figure 20: The large and high-quality data set (this study, Appendix 3) enable a detailed investigation of the sample permeability against the Thomeer parameters and their combinations. These demonstrate that permeability is most strongly controlled by Maximum Pore-Throat Diameter value. The correlation with Maximum Pore-Throat diameter is good and can be further improved by adding a second parameter, the total porosity is shown here (partially obscured 3-D porosity axis present as the red grid for porosities increasing into the page from 0 to 35%). Yellow points are within one standard deviation of a 2-D surface fit. Dark blue points are within two standard deviations.

permeability and the total sample porosity, i.e. $R^2 = 0.55$, but other Thomeer parameters could also be used with only slight decrease of the correlation. We choose to continue with the total sample porosity because of the ease with which it is determined from well logs.

Using these results, we propose a new, simple two-term permeability model, which has potential for well-site implementation using properly processed well-log data (Figure 21 and 22):

Log (Measured Permeability) = [a] + [b] x [Log (maximum pore-throat diameter)] + [c] x [Porosity (%)] (3)
$$a = -1.544$$
, $b = 1.206$, $c = 0.0727$

The measured-versus-predicted plot for the proposed two-term model has a correlation coefficient R² of 89%. The measured-versus-predicted plot for the proposed two-term model shows excellent results over seven orders of magnitude in permeability (Figure 22). This model has many similarities to the approach of Lucia (1995) who also proposed a pore space-permeability classification based on two variables: the particle size and the interparticle porosity for non-vuggy rocks. This approach has been further developed to include the behavior of the imbibition oil relative permeability in multimodal M–1 pore systems (Clerke, 2007).

NMR DETECTION OF PORE BODY MODALITY

After correcting NMR log data for reservoir and borehole fluid and fluid-surface interaction effects, petrophysicsts can derive some information about the pore system or its attributes (e.g. permeability or saturation). Here we deploy a different strategy. We use the knowledge gained from studying the pore systems and pore-throats from our MICP studies of the Arab D limestone and investigate whether they are present in the NMR log data. Although we have not yet performed a rigorous correction for every fluid effect, our initial investigation focused on the conformance of the two data sets at every point of contact. This is supported by information that the Arab D Reservoir apparently has only minimal difference between the NMR properties of the two reservoir fluids at reservoir conditions (R. Akkurt, personal communication, 2007).

The pore system modality detected within the MICP data records the distinct occurrence of multiple-pore systems, each with a range of possibilities for the maximum-pore-throat diameter (see Figure 5b). The use of the words "pore bodies" and "pore-throats" tend to give rise to the concept that the pores themselves are constructed from discrete objects such as connecting tubes and spheres. This is often a useful approximation. In reality, a pore-throat is a critical pore body section whose radius and position limits access to the remainder of the pore body or bodies. The position and size of these pore-throats is governed by many factors such as the arrangement of the grains, grain sizes, sorting, angularity, configuration and cementation.

Figure 21: A three-dimensional view of a two-dimensional surface fit (Equation 3) to computed permeability from total porosity and Maximum Pore-Throat diameter in TableCurve3DTM. Points shown are as in Figures 9 and 20.

Figure 22: The permeability predicted using the two-term permeability equation versus measured permeability for the data set of this study (Appendix 3).

Figure 23a: The NMR T2 spectrum of an M-1 core plug at 100% water saturation and at reservoir temperature (upper half) and the MICP pore-throat histogram for the same core plug (lower half). Bimodality is evident in both instances.

If pore-throats show multimodality in the MICP data, it is an attractive leap to conjecture that there may also be pore-body multimodality, termed "porobodons". That is, the modes in the core plug MICP maximum pore-throat diameter spectrum might have counterparts in the NMR pore-body spectrum. The pore-throat and pore-body data are shown in Figure 23a for an M–1 pore system core plug where laboratory NMR measurements have been performed at 100% water saturation at reservoir temperature after which MICP data were acquired from the core plug.

At reservoir conditions and with reservoir fluids, the pore-body modality from an NMR well log in the Arab-D is displayed versus total porosity in Figure 23b. A pore-body modality indicator is easily computed by recognizing that it is equivalent to half the number of inflection points in the NMR signal. Alternatively, a threshold crossing-counter technique can also be applied. The NMR data from even one well is many times more abundant than the more than 500 MICP samples and it also represents a completely different scale of investigation. Yet the two plots (Figures 6 and 23b) are extremely similar, which tends to support the attractive 'porositon-porobodon' conjecture.

To further examine the "porositon-porobodon" conjecture, we anticipated its form by computing the histogram of the largest controlling pore-throats (Figure 5a) weighted with the average porosity of the histogram bin (Figure 24). Figure 24 shows a first estimate of what an NMR spectrum from the Arab D limestones might resemble if the porositons and porobodons do have the conjectured correspondence.

The porosity-weighted, pore-throat histogram is a basic estimate because the NMR device responds to the amount of porosity governed by a characteristic hydrogen spin-decay time rather than a pore-throat diameter bin. In Figure 24, we see that the M Porositon (to the left of 4.6 microns pore-throats) is heavily weighted by its abundant pore volume. The common Type 1 microporosity (from 4.6 microns to 0.35 microns pore-throats) is weighted by a smaller bin porosity; porosity Types 2 and 3 (less than 0.35 micron pore-throats) are now even lower. An NMR pore-body spectrum might look similar to this if the correspondence to porositons is correct. The x-axis values in terms of milliseconds of NMR hydrogen spin-decay times can only be estimated. The very large pore-throats (and associated pore bodies) will have long, many-second decay times. The Type 2 and Type 3 microporosity will have very fast NMR decay times (few milliseconds). For comparison, an actual NMR pore body spectrum for the Arab D is shown in Figure 25. There is indeed a distinct similarity between what we have estimated (Figure 24) and what is obtained (Figure 25). At each of these three points of contact between the two data sets; single core plug, modality versus porosity, porositon modeled spectral shape, the data are very similar.

The evidence is encouraging that the maximum pore-throat modality seen in core plug MICP is also present in the much larger rock volumes investigated by the NMR well logs. Even after upscaling, the porositons may have equivalent porobodons. This is a fruitful path for future investigations.

Figure 23b: The well-log NMR pore body modality from one Arab D well plotted versus porosity without a color frequency z-axis, but with occupancy indicated by the density of the black points. The pore-body modality is easily computed by tracking the number of inflection points or threshold crossings and then dividing by two. The data compare qualitatively and semi-quantitatively well with the data set of Figure 6, especially considering the disparate data sets.

Figure 24: The frequency histogram of the maximum pore-throat diameters (Figure 5) is here weighted by the average pore volume associated with each bin of pore-throat diameters for the 860 Thomeer Hyperbolas used to type-curve match 454 MICP samples (this study, Appendix 3). The M Porositon pore-throats, which were a low broad-band in Figure 5 are now weighted by their abundant pore volume. The Type 1 pore-throats are associated with a smaller pore volume and an even smaller pore volume with Type 2 and 3 micropores. For the average values of the pore volumes of the porositons see Table 4. Large pore bodies should correspond with long NMR decay times and small pore bodies with short NMR decay times.

CONCLUSIONS

Mercury injection capillary pressure (MICP) data from the Arab D limestones in Ghawar field (Appendix 3) were analyzed using Thomeer Hyperbolas (Appendix 1). The analysis identified four discrete modes of maximum pore-throat diameter values termed *porositons*; the largest of these is macroporosity (M Porositon) followed by three types of microporosity (Porositons 1, 2 and 3). Modality is a new and important indicator for carbonate reservoir characterization because it demonstrates that the presumably continuous maximum pore-throat diameter axis can be well-represented using only four discrete modes.

The pore systems of the Arab D limestone (Appendix 2) have been described as combinations of these porositons, with 70% of the samples showing bimodal or trimodal behavior. Three of the six facies have nearly identical porositon combinations, leaving four "porositon combination effective" facies. The best reservoir quality shows a common M–1 bimodal pore system, with the M Porositon carrying the measurable permeability. The M–1 matrix pore system acts as a dual porosity – single measureable permeability system.

The number of modes in each of the facies and the type of microporosity are new and important geological and petrophysical attributes that are not accessible with conventional well logs but accessible through MICP analysis. A fruitful approach to NMR well logs processing is to extract pore-body modality (porobodons) that are related to the porositons. The *conjectured* porositon-porobodon correspondence suggests that a very similar behavior in terms of mode number, position and occupancy is present in the NMR signal, and early evidence is given to support this. This paper suggests that NMR data might be used to support facies identification.

Additionally, the dominant presence of multimodal pore systems in the best reservoir intervals of these carbonates requires that the static and dynamic property models be fully generalized for multimodal pore systems. We have demonstrated one generalization for permeability; showing that only attributes of the M (Macro) Porositon are significant. The generalization to imbibition oil relative permeability in multimodal M–1 pore systems has been published elsewhere (Clerke, 2007).

Figure 25: An Arab D NMR log section shown with multimodal NMR spectral data processed to deliver a mode count in Track 4. Track 1 shows the porosity information, Track 2 the lithology, Track 3 the spectral NMR data with large pore bodies on the left and smaller pore bodies to the right (sedimentological orientation) and in Track 4 are the results from the mode counting computation. When viewed at a glancing angle, the NMR spectral signals lie in three distinct vertical time decay domains. The Type 3 microporosity is estimated to decay too rapidly to be observed with the NMR run in the current tool operating mode. The pore volume associated with Type 3 microporosity is very small.

Using the Rosetta Stone analogy, this study was designed and executed as a three language decoding exercise, which enabled a strong connection to be made between data in the domains: geological facies, pore systems and reservoir-flow properties. The overall workflow and analysis processes as demonstrated for the Arab D limestones can most likely be applied to other multimodal carbonate pore systems and reservoirs when the appropriate data are collected.

APPENDIX 1: THOMEER HYPERBOLA METHOD

Thomeer (1960) developed a method for the analysis of mercury injection capillary pressure (MICP) data, which was used primarily within Shell (Thomeer, 1983; Smith, 1992; Hawkins et al., 1993). He observed that the data from the MICP experiment, for simple rock types, could be represented by a hyperbola when plotted on Log-Log graph paper. The data are: (1) volume of mercury injected, and (2) applied pressure between the wetting (air) and non-wetting phases (mercury) as mercury intrudes into the pore space fraction. For the rock sample, the bulk volume is known, so that the volume of mercury injected can be re-expressed as a fraction of the total sample bulk volume, B_{ν} . To fit the hyperbola to the data, the value of two asymptotes, B^{∞} , P_{d} , are required. The Thomeer Hyperbola is shown in Figure A1, and can be expressed as:

$$\text{Log}(B_u/B^{\infty}) \times \text{Log}(P_s/P_d) = K$$
, where K is a hyperbola shape factor (A1)

The asymptotes are: B^{∞} is the percent bulk volume occupied by mercury at infinite applied pressure and $P_{d'}$ the displacement pressure required to first intrude mercury into the largest pore-throat. Thomeer chose to express constant K = Log [exp (-G)] such that Equation A1 becomes:

$$B_{\nu}/B^{\infty} = \exp\left[-G/\log\left(P_{e}/P_{d}\right)\right] \tag{A2}$$

where G is the *Pore Geometrical Factor* and determines the shape of the hyperbola (Figures A1 and A2). In practice, B_v and P_c data from the MICP experiment are fit by equation (A2) to determine P_d , B^∞ and G, for individual samples.

Thomeer (1983), using a weighted regression on data from 279 rock samples, found a relationship between the three parameters and air permeability (K₂):

$$K_a = 3.8068 \times G^{-1.3334} (B^{\infty}/P_d)^2$$
 (A3)

This equation reproduces the measured permeability to within a multiplicative uncertainty of 1.82 (Figure A3 and Table A1). With this result, Thomeer demonstrated why permeability-porosity crossplots fail, especially in carbonates, because important details about the pore network are missing in the relationship.

Spreadsheet Implementation

Unlike the plastic overlays that were originally used to implement this technique, today the Thomeer analysis method can be implemented in an Excel™ spreadsheet, available from many of the MICP data providers (Clerke and Martin, 2004). Hyperbolas are fit using the *Solver* function to minimize the error signal derived from the difference of the actual versus predicted capillary pressure curve. Both the data and its derivative can be used to fit the Thomeer Hyperbola, analogous with type curve matching in Pressure Transient Analysis. Superposition of Thomeer Hyperbolas for multiple pore systems is carried out by parsing the pore system in the pressure domain. All of this is implemented in a highly interactive way. The Thomeer permeability is continuously generated for comparison to the measured permeability. The result for the 125 MICP Arab D Ghawar Hagerty and Cantrell (1990, unpublished report) samples is shown in Figure A4.

A basic result from the Thomeer analysis of the MICP data is a record of the number of Thomeer Hyperbolas (used here as equivalent to 'pore system') required to match the data. We call this integer the "pore system modality". The minimum would be one and the maximum encountered in our study was three. To limit trivial occurrences of pore system multimodality, we add to the Thomeer MICP fitting process the requirement that a volume of at least one unit of porosity be present for a significant second or even third pore system.

Figure A1: Thomeer Hyperbola is determined by three parameters (two asymptotes): (1) P_d , the displacement pressure required to first intrude mercury into the largest pore-throat; (2) G, the Pore Geometrical Factor, and (3) B^{∞} , the percent bulk volume occupied by mercury at infinite pressure (Thomeer, 1960; reproduced by permission of SPE).

Figure A3: Air permeability as a function of G, P_d , and B^{∞} . See Figure A1 for notation (after Thomeer, 1983; reproduced by permission of SPE).

Figure A2: Thomeer Hyperbolas for various values of the *Pore Geometrical Factor G*, which determines the shape of the hyperbola (after Thomeer, 1960; reproduced by permission of SPE).

Table A1: An example of different permeabilities for the same porosity

Porosity * ø (%)	G	Largest Pore-Throat Diameter (microns)	Equivalent P _d (psia)	Calculated k _a (mD)
20	0.1	1	214.0	0.7
20	0.1	5	42.8	17.9
20	0.1	20	10.7	286.6
20	0.3	1	214.0	0.2
20	0.3	5	42.8	4.1
20	0.3	20	10.7	66.2
* Assumed th	at ø = B∞			

An example of different permeabilities for the same porosity (after Thomeer, 1983; reproduced by permission of SPE).

Figure A4: The computed Thomeer permeability versus the measured permeability for the Arab D Reservoir MICP Data (125 samples) set of Hagerty and Cantrell (1990, unpublished report).

Closure Correction

In the process of obtaining a core-plug or rock-chip sample, an artificial boundary is placed into the pore geometry – the cylindrical or outer-plug surface. The plug saw cannot cleave grains of the sample and so leaves a rough outer surface where grains may have been removed. If the sample contains very large pores, these can be dissected by the sample/plug surface in ways not representative of the formation. These surface irregularities and pore-body dissections create an initial storage of mercury that must be filled before the normal pore-system geometry is encountered by the mercury. This volume artifact requires a *closure correction*, and is one of the most troublesome issues in the analysis of MICP data, particularly since a small relative volume change in the large pore-throats strongly affects the permeability calculation. This effect and its correction are illustrated for sample 30 (Hagerty and Cantrell 1990, unpublished report), which also exhibits a dual-pore system at about 1,000 psi (Figure A5).

An important feature of the interactive Thomeer spreadsheet is the ability to pick and revise the closure correction to iteratively solve for the Thomeer parameters while comparing the computed and measured permeability. The spreadsheet also incorporates the ability to select the closure correction

Figure A5: The Thomeer spreadsheet enables rapid and visual interaction with the user's choice of closure correction and determination of the three Thomeer parameters.

and visualize the corrected data and the hyperbola in the derivative or Pore-Throat Size Distribution space. The selection of a closure correction volume (red bar) is illustrated for a bimodal sample on the Pore-Throat Diameter (derivative) plot in Figure A6. Data is in black, Thomeer hyperbola in red.

Application of Thomeer Analysis

The use of the Thomeer method for the Arab D Reservoir at Ghawar is focused on three issues: (1) facies-dependent saturation-height modeling; (2) free-water level determination; and (3) facies-dependent recovery estimation. The general process of defining petrophysical rock types based on Thomeer analysis of capillary pressure behavior is illustrated in Figure A7. Fitting of the MICP data is done for all samples and the resulting parameters are statistically analyzed, PRT's are defined and then forward modeled.

The result of the process shown in Figure A7 is displayed in Figure A8, which shows five clusters (PRT's) in the Thomeer parameter space (not the Arab D) and the forward model of each cluster's average Thomeer parameters. This application is a specific branch of the broader range of applications of MICP and capillary pressure data; namely: (1) facies-dependent saturation-height modeling; (2) conductive minerals; (3) fresh or varying formation water salinity; (4) very low porosity; (5) complex pore systems – fractured, vuggy, microporous; thin sands; (6) determination of depth to water contacts; (7) evaluation of downdip potential; and (8) predictions in the absence of or poor resistivity logs.

Properties of Thomeer Hyperbolas

A single pore system can be represented by one Thomeer Hyperbola and is characterized by three parameters: P_d , B^∞ and G, each of which has measurable errors to characterize uncertainty. This is in contrast to other methods (e.g. Leverett J Function, see next page) that are based on MICP data, but introduce additional uncertainties when scaling the data to measured permeability and porosity. The Thomeer parameters are intuitive: largest pore-throats, sorting of pore-throats, and total amount of porosity. They describe the pore system in a similar manner to grain system: i.e. largest grains to largest pore-throats, sorting of grains (e.g. Trask sorting), and sorting of pore-throats (G).

Petrophysical Rock Type (PRT) can be defined as an object in the Thomeer parameter space (P_d , B^∞ and G), i.e. a similar pore system. The parameters for PRTs can be operated on statistically (mean and standard deviation) to create average capillary pressure curves and their error bounds. Estimates of recoverable hydrocarbon can be guided by the knowledge of a complex composite pore system and hence by PRT.

Air permeability can be computed and predicted from the pore network parameters, P_d , B^∞ and G, to within a multiplicative uncertainty of 1.8, and this can be compared to a measured permeability. A Thomeer forward-modeled capillary pressure curve can be generated from insight into the generating

Figure A6: An Arab D sample exhibiting a bimodal pore system shown with the closure correction (red bar) indicated on the pore-throat frequency plot.

parameters that can come from a variety of sources of rock data, from cores to cuttings and the *Shell Rock Catalog* (Thomas et al., 1995).

Thomeer Hyperbolas parameterize the process of filling the pore space with mercury (nonwetting phase) while displacing air (wetting phase), a drainage process. Suitable adjustments can be made to convert this behavior to other fluid systems in drainage (oil-water, gas-water).

Thomeer Hyperbolas can be combined or superposed to quantify complex pore systems. Superposition can be used to quantify porosity types and entry pressures, i.e. microporosity. The Thomeer function parameterization of MICP data has been shown to upscale (Buiting, 2007).

Square Root K/Ø Methods: Leverett J Function and Flow Zone Indicator (FZI) Technique

Whereas the Thomeer method has been used for many years in Shell, in other companies the Leverett J Function method (Leverett, 1941) and the related *FZI technique* (Amafuele et al., 1993) have been more extensively used. Here we discuss and compare these methods. The Leverett J Function characterization of a capillary pressure curve is defined by:

$$J(S_w) = (0.217 \text{ Pc/}\sigma) \times \sqrt{(K/\varnothing)}$$
(A4)

where S_w is water saturation, K is permeability, \emptyset is porosity, P_c is the capillary pressure and σ the interfacial tension between the wetting and non-wetting fluids. The rock's pore system is characterized by K/\emptyset , and its square root is termed the *pore system speed* as it is the ratio of the flow parameter to the storage parameter. The Leverett method seeks to reduce the mathematical complexity of the complete behavior of many capillary functions by finding a scaling relationship among them. It is important to note that the use of this parameter to characterize the whole pore system in a complex pore system (mixture of macro, meso and micro pores) is incomplete, because the flow behavior of the pore system is strongly dominated by the large pores (low capillary pressure).

The FZI and Leverett J Function techniques are related in that they both use the $\sqrt{(K/\emptyset)}$ parameter, but in the former the height dependence is removed and replaced by a fixed value. The Reservoir Quality Index (RQI):

$$RQI = 0.0314 \text{ x } \sqrt{(K/\emptyset)}$$
, which is $J(S_w)$ when $(0.217 \text{ x P}_c)/\text{sigma} = 0.0314$ (A5)

Workflow for Petrophysical Rock Typing using Thomeer Method

Figure A7: Workflow process diagram for the determination and analysis of multiple petrophysical rock types by using Thomeer type curve matching to the MICP data.

Figure A8: Clusters in the 3-D Thomeer space for this reservoir indicate five petrophysical rock types. The average capillary pressure curve for each PRT is shown.

or when $P_c = 4.5$ psi (again low capillary pressure). The FZI method invokes the use of a constant RQI versus NPI (Normalized Porosity Index) slope.

This ratio, FZI, measures to what extent it is true that when we increase porosity by replacing matrix by pores, we do this by adding pore systems of the same speed $\sqrt{(K/\emptyset)}$, and thereby keep FZI constant. Here we make contact with the capillary bundle model of Purcell, because when pore systems of the same speed are added, it is equivalent to adding one or more tubes of the same type to the bundle.

$$NPI = \emptyset / (1 - \emptyset)$$
, and $FZI = RQI / NPI$ (A6)

Square Root K/ ϕ methods have several limitations. They cannot be superposed and do not completely characterize the high-pressure behavior, nor microporosity issues. Hence, recovery issues associated with multimodality are not well-represented. The Leverett J Function is dependent on two laboratory variables, k and ϕ ; their individual uncertainties are compounded. It is not rock-texturally intuitive, does not provide a prediction of the permeability and hence does not provide a quality-control cross-check on the permeability data and measurement. Further, the clustering and inclusion of high-pressure behavior are a subjective visual process not leading to statistical measures. Finally, the approach does not lead to a method for determining the average capillary pressure curves and their uncertainty bands from laboratory data. Ekrann (1999) stated that "The true effective capillary pressure curve is not proportional to the rock Leverett J Function."

APPENDIX 2: ARAB D FACIES

		INDIX 2: AKAD D FA		
Lithofacies	Skeletal Oolitic Above Sequence Boundary	Cladocoropsis	Stromatoporoid- Red Algae-Coral	Skeletal Oolitic Below Sequence Boundary
Hadley, K., J.C. Wendte, EPR.68ES.77 Mitchell_EPR.26PS.85 text in blue modified or added by Clerke (2004)	Grainstones and packstones with less than 15% micrite matrix. Primary rock constituents include abundant micritized skeletal grains and in certain horizons superficial oolites and compositeaggregate grains. Lime grainstones and packstones with primary interparticle porosity modified only slightly by calcite cementation make up most the of the highly permeable 2A zone.	These are packstones and minor boundstones, wackestones and grainstones with generally high porosity and permeability. Important pore types include primary interparticle and intraparticle voids and secondary grain-moldic and microleached grain and matrix pores. These limestones are a major component of reservoir zone 2B.	Grainstones, packstones and minor wackestones with greater than 10% Cladocoropsis (including their contained pores). The finer-grained matrix contains abundant micritized skeletal grains. These limestones generally have high primary porosities and permeabilities.	Grainstones and packstones with less than 15% micrite matrix. Primary rock constituents include abundant micritized skeletal grains and in certain horizons superficial oolites and composite-aggregate grains. Lime grainstones and packstones with primary interparticle porosity modified only slightly by calcite cementation make up most of the highly permeable 2A zone.
Depositional Texture	Grainstone, Mud-lean Packstone, Packstone	Mud-lean Packstone, Grainstone, Packstone	Mud-lean Packstone, Grainstone, Packstone, Boundstone	Grainstone, Mud-lean Packstone, Packstone
Major Grain Types	Micritized Grains, Foraminifers (Including Miliolids), Dasycladacean Algae, Ooids, Bivalves	Micritized Grains, <i>Cladoco-ropsis</i> , Dasycladacean Algae, Foraminifers (Including Miliolids)	Micritized Grains, Stromatoporoids, Corals, Foraminifers (Including Miliolids)	Micritized Grains, Foraminifers (Including Miliolids), Dasycladacean Algae, Ooids, Bivalves
Minor Grain Types	Echinoderms, Stroma- toporoids, Corals, Cladoco- ropsis, Gastropods, Composite Grains, Intraclasts, Ostracodes, Red Algae, Brachiopods	Stromatoporoids, Echino- derms, Bivalves, Corals, Ooids, Gastropods, Brachiopods, Composite Grains, Red Algae	Cladocoropsis, Bivalves, Echinoderms, Dasycla- dacean Algae, Intraclasts, Coated Grains, Composite Grains, Gastropods	Echinoderms, Stroma- toporoids, Corals, Cladoco- ropsis, Gastropods, Composite Grains, Intraclasts, Ostracodes, Red Algae, Brachiopods
Sedimentary Structures	Cross Bedding, Burrows, Hardgrounds, Fining- upward Graded Beds, Borings, Horz Laminae	Burrows, Hardgrounds, Cross-bedding, Horz Laminae	Burrows, Borings, Hard- grounds, Fining-upward Graded Beds, Cross-bedding	Cross Bedding, Burrows, Hardgrounds, Fining- upward Graded Beds, Borings, Horz Laminae
Pore Types	Interparticle, Moldic, Intraparticle, Intercrystalline, Fracture	Interparticle, Intraparticle, Moldic, Intercrystalline	Interparticle, Moldic, Intraparticle, Intercrystalline, Fracture	Interparticle, Moldic, Intraparticle, Intercrystalline, Fracture
Plug Porosity Range (%)	0.8 - 33.9	4.2 - 31.0	9.0 - 31.4	0.8 - 33.9
Full Core Porosity Range (%)	0.5 - 33.5	9.9 - 31.2	10.2 - 27.7	0.5 - 33.5
Plug Permeability Range (md)	Kh 0.003 - 3743 Kv 0.01 - 2269	Kh 1 - 1515 Kv 0.6 - 1489	Kh 0.3 - 5505 Kv 0.1 - 3535	Kh 0.003 - 3743 Kv 0.01 - 2269
Full Core Permeability Range (md)	Kh 0.01 - 1451 Kv 0.01 - 3368	Kh 0.1 - 1461 Kv 0.01 - 987	Kh 1.2 - 2498 Kv 0.01 - 2152	Kh 0.01 - 1451 Kv 0.01 - 3368
Diagenetic Modification	Leaching and recrystal- lization, isopachous bladed calcite cement, dolomiti- zation,physical compaction, stylolitization, equant calcite cement, kaolinite emplace- ment, anhydrite emplace- ment/replacement, silicification	Leaching and recrystal- lization, dolomitization, equant calcite cement, stylolitization, anhydrite emplacement, silicification	Leaching and recrystal- lization, dolomitization, anhydrite emplacement, stylolitization, isopachous bladed calcite cement, equant calcite cement, pyrite, dedolomitization	Leaching and recrystal- lization, isopachous bladed calcite cement, dolomitization, physical compaction, stylolitization, equant calcite cement, kaolinite emplacement/ replacement, silicification

See next page for continuation.

APPENDIX 2: ARAB D FACIES

Lithofacies	Bivalve-Coated Grain-Intraclast	Micrite	Burrowed Micrite	Dolomite
Hadley, K., J.C. Wendte, EPR.68ES.77 Mitchell_EPR.26PS.85 text in blue modified or added by Clerke (2004)	These are grainstones and packstones with normally high interparticle porosity and permeability. They occur most commonly in beds up to 5-feet-thick interstratified with finer micritic limestones and dolomites in reservoir zone 3. These limestones generally have erosional bases but transitional upper contacts.	These are mudstones with more than 15% micrite. Secondary leaching of micrite has created moderate porosities and permeabilities in reservoir zone 2. Clerke (2004) separates the micrite from the burrowed micrite. Unburrowed micrite is found about 6' below the following tempestite - Bivalve-Coated Grain-Intraclast.	Extensively burrowed mudstones, wackestones and packstones with more than 15% micrite. Clerke separates the micrite from the burrowed micrite. Burrowed - usually vertically with Thalassinoides burrows. Thalassinoides burrows are commonly filled with subsequent Bivalve-Coated Grain-Intraclast storm deposit material as burrow fill. Hence this facies is a mechanical composite of Bivalve-Coated Grain-Intraclast and Micrite.	Dolomite seen in the Arab-D reservoir of Ghawar field has little if any preserved textural information. Hence, these beds are assumed to have been more micritic than the beds adjacent. Dolomite from Zone 1(a small percentage of the dolomite in the field) is typically very-fine crystalline and mimetically replaces skeletal packstones. Locally dolomite replaces Cladocoropsis packstone, leaving a low permeability matrix with large and commonly touching molds. Note that the limestone data in this paper comes only from parts of the reservoir with less than 50% dolomite.
Depositional Texture	Packstone, Mud-lean Packstone, Grainstone, Wackestone	Mudstone	Wackestone, Mudstone, Packstone	Indeterminate
Major Grain Types	Micritized Grains, Bivalves, Coated Grains, Intraclasts, Foraminifers	Micritized Grains	Micritized Grains, Bivalves, Foraminifers (Including Kurnubia), Intraclasts; Composite of micritized grains and other burrow fills (vertical) -mostly from adjacent Bivalve-Coated Grain-Intraclast layers above	Anhedral to Euhedral Dolomite Rhombs
Minor Grain Types	Miliolid Foraminifers, Corals, Stromatoporoids, Dasycla- dacean Algae, Echinoderms, Gastropods, Cladocoropsis		Coated Grains, Miliolid Fora- minifers, Dasycladacean Algae, Intraclasts, Ostra- codes, Echinoderms, Gastropods, Stromatoporoids, Corals	Relict and Leached Bivalves, Cladocoropsis, Stromato- poroids, Intraclasts, Echinoderms, Indeterminate Grains
Sedimentary Structures	Burrows, Hardgrounds, Boring, Fining-upward Graded Beds, Cross- bedding	Wavy Laminae, Horz Laminae	Burrows, Hardgrounds, Wavy Laminae, Horz Laminae, Fining-upward Graded Beds	Relict Burrows?, Hard- grounds?, Carbonaceous?, Laminae
Pore Types	Interparticle, Moldic, Intraparticle, Intercrystalline, Fracture	Interparticle, Intercrystalline, Fracture, Vug?	Interparticle (within burrow fills), Intraparticle, Moldic, Intercrystalline, Fracture, Vug?	Intercrystalline, Moldic, Fracture
Plug Porosity Range (%)	2.2 - 31.4	2.3 - 10.2	0.2 - 18.5 Primary porosities and permeabilities in most of these rocks are very low.	1.0 - 29.7
Full Core Porosity Range (%)	2.1 - 23.3		0.9 - 14.7	1.0 - 28.3
Plug Permeability Range (md)	Kh 0.04 - 1064 Kv 0.04 - 793	Kh avg 0.11	Kh 0.001 - 30 Kv 0.001 - 120	Kh 0.002 - 6682 Kv 0.002 - 5276
Full Core Permeability Range (md)	Kh 0.03 - 1990 Kv 0.01 - 453		Kh 0.01 - 38 Kv 0.01 - 2.7 Kv is greatly enhanced by vertical burrows if filled with Bivalve-Coated Grain-Intraclast	Kh 0.01 - 2938 Kv 0.01 - 3774
Diagenetic Modification	Leaching and recrystal- lization, dolomitization, stylolitization, equant calcite cement, anhydrite emplace- ment, isopachous bladed calcite cement, pyrite	Leaching and recrystal- lization, dolomitization, stylolitization, anhydrite emplacement, pyrite, silicification, equant calcite cement, kaolinite	Leaching and recrystal- lization, dolomitization, stylolitization, anhydrite emplacement, pyrite, silicification, equant calcite cement, kaolinite	Dolomitization, leaching, anhydrite emplacement, equant calcite cement, stylolitization, kaolinite, dedolomitization

(Continued).

APPENDIX 3: DATA BASE (Excel Spreadsheet available from the author)

Closure Correction	09.0	0.00	0.14	0.17	0.40	0.30	0.80	0.35	0.50	0.70	0.49	1.17	1.80	1.50	1.45	1.38	1.50	1.27	08.0	1.50	1.06	0.70	1.36	2.05	1.00	0.70	2.00	0.58	1.20	06.0	1.60	1.65	0.11	0.40	0.40
B, Total	29.08	25.68	27.99	24.21	24.99	22.04	28.79	25.01	_	31.92	27.90	31.39	_	24.30	25.28	25.29	28.00	24.86	35.00	30.35	72.72	23.60	22.77	20.08	16.44	24.44	13.80	22.75	24.49	24.05	24.24	22.50	2.10	_	3.10
۳ ^ع		.,	.,	.,	.,		.,	.,	.,	(,)	2	(,)	(,)	.,		.,		- (4	2.00	()		.,		.,		.,		7.84		7	.,			_	
ຕິ																			130									172							
63																			0.40									0.10							
B ^2	3.97	5.26	2.77	6.28	10.59	8.64	6.54	12.01	1.27	4.33	5.40	7.40	1.26	6.80		09:9	2.31		5.00	1.70	1.82	12.19			10.24	6.64		6.20	12.09	15.80	13.55	12.00			
6 2	197.3	120.0	130.0	100.0	230.0	210.0	7.76	210.0	1085.3	130.0	280.0	36.0	140.0	175.0		172.7	3600.0		40.0	3400.0	3800.0	145.0			240.0	280.0		92.0	210.0	154.0	191.3	155.0			
62	0.53	0.65	0.50	0.70	0.16	0.30	0.49	0.16	0.15	0.43	0.11	06.0	0.20	0.15		0.16	1.00		08.0	1.00	1.00	0.10			60.0	0.14		0.50	0.16	0.15	0.07	0.15			
B,1	25.12	20.42	25.22	17.93	14.40	13.40	22.25	13.00	20.59	27.60	22.50	23.99	29.99	17.50	25.28	18.69	25.68	24.86	28.00	28.65	25.45	11.41	22.77	20.08	6.20	17.80	13.80	8.71	12.40	8.25	10.69	10.50	2.10	16.42	3.10
5	1.56	1.16	1.34	1.76	2.50	2.40	2.71	2.90	2.14	3.39	1.58	2.40	6.12	5.60	9.43	4.99	8.37	10.12	7.00	8.97	10.32	3.40	11.91	15.11	5.00	13.50	11.36	2.58	20.50	10.60	40.00	40.00	5431.21	181.12	2200.00
61	0.48	0.53	0.64	0.37	0.14	0.12	0.33	0.14	0.52	0.44	0.94	0.57	0.42	0.50	0.19	0.55	0.26	0.18	0.57	0.27	0.32	0.57	0.25	0.14	0.88	0.35	0.29	06.0	0.30	0.44	0.35	0.35	0.20	0.24	0.04
Thomeer Permeability	2675.508	2740.217	2431.215	1470.815	1739.683	2007.795	1145.819	1053.698	844.812	763.827	838.239	798.113	290.982	93.720	242.144	118.569	218.909	223.005	128.927	223.782	106.821	90.673	87.315	88.836	6.942	26.850	29.713	49.964	6.941	6.885	1.104	1.083	0.000	0.210	0.001
Permeability Klinkenberg	3169	2022	1954	1885	1885	1797	1411	1147	879	805	811	922	314	243	169	164	158	154	143	141	92.6	78	71.5	51.8	43.4	44.3	25.4	20.8	18.3	12.3	8.19	6.85	4.78	0.491	0.249
Phi	28.1	26	25.5	23.3	25.3	22	27.9	23.4	20.9	28.5	26.7	27.5	29.2	24.8	26.4	24.2	25.1	25.9	29.5	25.4	24.8	23.9	21.9	21.9	17.1	23	16.8	20.7	23.2	23.7	23.8	21.4	3.5	16.2	6.8
Lucia Rock Type	yLS17T	yLS16T	yLS15T	yLS15T	yLS5T(80%) yLS3(20%)	yLS5T	yLS13T	yLS3	yLS10T	YLS8T	yLS10T	yLS13T	yLS10T	yLS12	nLS15	nMS2 (30%) yLS5T(70%)	nLS10T	nLS12	yLS8T	nLS10T	nLS8	yLS7	nLS13	nLS12	yLS5T	yLS3	nLS9	nLS7	yL0	nMS8	nMS3	nMLS3	nMS1	yLS2	nFL0
Archie Rock Type	IIIC-C7D20	IIIC-C6D17	IIIC-C8D14	IIIC-C15D6	IIIC-C18D5(80%) IIIC-C3D1(20%)	IIIC-C17D3	IIIC-C20D4	IIIC-C18D3	IIIC-C8D10	IIIMC-C20D5	IIIC-C12D10	IIIC-C10D7	IIIMC-C10D7	IIIC-C10D5	III-IC16D3	II-C1D5 IIIC-C8D5	(III-I)-C11D3	(III-I)-C13D3	IIIMC-C10D15	(III-I)-C11D3	(III-I)-C8D2	II-IIIMC-C4D11	I-C11D3	I-C9D3	IIIMC-C4D7	IIIC-C12D7	I-C7D2	II-C2D10	IIIM-C10	II-IIIMC-C3D6	II-C2D4	IIIMC-C5D1	IIIF-B1	IIIM-B2C2	IIIF-A
Facies Limestone Unless Noted	Cladocoropsis	Cladocoropsis	Cladocoropsis	Cladocoropsis	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Cladocoropsis	Skeletal Oolitic Below Sequence Boundary	Bivalve-Coated Grain-Intraclast	Cladocoropsis	Skeletal Oolitic Below Sequence Boundary	Cladocoropsis	Cladocoropsis	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary Dolomite	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary Dolomite	Skeletal Oolitic Above Sequence Boundary Dolomite	Cladocoropsis	Skeletal Oolitic Above Sequence Boundary Dolomite	Skeletal Oolitic Above Sequence Boundary Dolomite	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary Dolomite	Skeletal Oolitic Above Sequence Boundary Dolomite	Stromatoporoid-Red Algae-Coral	Bivalve-Coated Grain-Intraclast	Skeletal Oolitic Above Sequence Boundary Dolomite	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Below Sequence Boundary	Stromatoporoid-Red Algae-Coral	Stromatoporoid-Red Algae-Coral	Stromatoporoid-Red Algae-Coral	Bivalve-Coated Grain-Intraclast	Skeletal Oolitic Below Sequence Boundary	Micrite
Grain Density (g/cm³)	2.729	2.702	2.698	2.754	2.703	2.703	2.724	2.701	2.702	2.707	2.702	2.696	2.700	2.748	2.841	2.715	2.849	2.841	2.704	2.848	2.845	2.718	2.840	2.864	2.738	2.702	2.880	2.710	2.704	2.708	2.714	2.721	2.693	2.708	2.738
Helium Porosity (%)	28.1	26.0	25.5	23.3	25.3	22.0	27.9	23.4	20.9	28.5	26.7	27.5	29.2	24.8	26.4	24.2	25.1	25.9	29.5	25.4	24.8	23.9	21.9	21.9	17.1	23.0	16.8	20.7	23.2	23.7	23.8	21.4	3.5	16.2	6.8
Permeability to Air (md)	3185.11	2034.60	1965.95	1896.58	1884.77	1796.96	1420.75	1147.01	878.57	812.05	810.94	782.92	317.79	246.81	171.81	166.71	160.78	156.75	145.38	143.31	94.62	79.97	73.17	53.29	44.73	44.31	26.38	21.68	18.33	12.88	8.71	7.34	4.78	0.49	0.25
IIəW	∢	4	< <	, 4	∢	< <	, A	4	∢	⋖	Α	∢	⋖	A	4	A	∢	∢	4	∢	<	⋖	4	A	4	4	4	∢	٨	٧	⋖	∢	4	∢	A

30	52	32	44	23	20	36	42	56	22	19	13	8	30	30	00	45	30	56	02	98	13	16	90	90	16	30	30	50	19	22	9	53	45	00	32	30	30	45	50	04	90	74	20	50	02
0:30	0.52	8 0.62	1 0.44	6 0.23	9 0.50	96.0	9 0.42	1 0.26	6 0.22	2 0.19	3 0.13	5 0.18	95 0.60	54 0.60	33 0.00	37 0.45	10 0.80	34 0.26	92 0.70	74 0.80	76 0.13	38 0.16	40 0.06	0.80	11 0.16	91 0.60	08.0	92 1.20	18 0.19	52 0.07		33 1.29	40 0.64	39 1.50	91 0.82	1.60		50 0.34	30 1.20	32 0.40	19 2.80	56 0.74	78 0.20	49 2.20	30 0.70
5.92	5.40	4.88	4.11	7.66	3.19	5.59	3.19	3.31	1.96	0.12	0.73	0.25	19.65	0 20.54	9 22.33	0 22.87	9 23.10	5 20.84	7 23.92	4 20.74	0 23.76	0 23.68	0 24.40	31.04	28.11	0 20.91	19.00	3 19.92	27.18		36.51	19.63	17.40	33.69	28.91	24.09	33.63	0 32.50	0 28.80	13.32	31.49	14.56	35.78	0 29.49	0 19.30
													0 2.80	0 2.50	3.89	0 2.90	0 1.89	0 1.65	2.07	0 2.04	3.50	3.00	3.20			3.00		0 1.53		4.00								4.50	4.80					0 2.00	6.50
													640	1400	820	1100	1000	1800	740	2500	280	620	798			220		1400		700								210	175					140	115
													0.45	0.14	0.62	0.19	0.28	0.11	0.40	0.06	0.55	0.70	0.51			0.70		0.09		1.00								0.15	0.28					0.20	0.32
5.08			0.71	2.45	1.19								3.00	5.64	5.00	6.27	7.61	5.49	7.00	0.00	5.06	9.90	3.47	6.55	5.04	5.50	6.30	9.99		4.00		1.42	09:9	2.32	5.83	2.20	4.28	7.00	4.00	2.07	4.63	1.76	22.00	24.00	9.50
310.0			4100.0	780.0	2567.2								225.0	180.0	145.0	150.0	110.0	170.0	90.0	117.4	55.0	80.0	177.0	65.0	178.0	150.0	740.0	70.0	150.0	100.0		1157.2	400.0	225.0	169.0	300.0	215.5	4.4	28.0	2331.6	190.0	1000.0	35.0	30.0	18.0
0.12			0.14	0.27	0.28								0.32	0.26	08.0	0.51	0.56	0.30	1.00	0.27	0.70	1.00	0.48	0.76	0.36	09.0	0.40	0.56	0.20	0.80		0.16	09.0	0.20	0.33	0.10	0.18	0:30	0.43	0.18	0.30	0.19	0.40	0.52	0.80
0.84	5.40	4.88	3.40	5.21	2.00	5.59	3.19	3.31	1.96	0.12	0.73	0.25	13.85	12.40	13.44	13.70	13.60	13.70	14.85	12.70	15.21	14.08	17.73	24.48	23.07	12.41	12.70	8.40	26.17	17.52	36.51	18.21	10.80	31.37	23.08	21.88	29.35	21.00	20.00	11.26	26.85	12.80	13.78	3.49	3.30
12.55	1600.00	1671.81	31.00	181.91	240.00	1190.39	964.88	1715.20	2382.07	12000.00	7852.33	11400.00	2.01	2.10	1.50	1.90	2.20	1.90	2.18	2.60	1.64	1.67	1.99	2.10	1.49	2.31	2.71	2.80	1.47	1.76	3.37	3.09	5.29	3.88	3.40	2.40	7.80	4.00	9.30	3.83	11.00	4.00	0.94	18.00	4.50
0:30	0.12	0.12	0.64	0.40	0.65	0.15	0.21	0.07	90.0	0.05	0.54	0.12	09.0	0.10	0.30	0.16	0.12	0.16	0.23	0.14	0.29	0.26	0.29	0.43	0.45	0.22	0.16	0.11	0.72	0.58	0.74	0.39	0.22	0.54	0.62	1.40	0.47	0.42	0.36	0.62	09.0	0.83	1.38	0.20	0.59
0.083	0.001	0.001	0.083	0.011	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	357.884	2863.946	1523.725	2281.382	2461.301	2281.382	1250.627	1251.083	1695.254	1641.490	1585.246	1595.143	2667.980	840.404	965.619	651.006	1874.399	785.423	668.136	472.477	119.610	566.345	332.817	201.975	147.600	333.783	88.778	62.306	44.845	49.982	533.833	20.853	4.092
0.182	0.031	0.026	0.02	0.017	0.004	0.003	0.002	0.002	0.001	0.000	0.000	0.000	N/A	4053	3681	3212	3171	3032	2616	2271	2193	2166	2169.43	1719	1641	1534	1203	1165	851	069	515	399	377	294	215	183	180	126	109	83.6	74.1	67.5	9.73	37.5	30.8
8.9	7.4	9.1	6.2	8.2	4.9	6.4	4.5	5.2	5.9	2.2	1.5	2	19.1	20.6	20.3	21.9	21.81	20.57	21.1	20.8	21.8	21.6	21.7	28	27.4	20.8	18.77	20.2	26.1	19.1	30.7	20.3	16.78	29.3	24	20.04	32.8	28.1	27.6	14.6	27.9	14.3	29.2	23.9	18.2
nL0(90%) yLS2(10%)	nL0	nFL0	nLS4	nL0	nL0	nL0	nL0	uL0	uL0	nL0	nL0	nL0	yLS6T	yLS8T	yLS10T	yLS7T	yLS7T	yLS7T	yLS8T	yLS7T	yLS5T	yLS6T	yLS4T	yLS8T	yLS10T	yLS4T	yLS6T	yLS6T	yLS9T	yLS5T	yLS8T	yLS9T	yLS2(70%) nLS1(30%)	yLS7T	nFS2 (20%) yLS5T (80%)	yLS3	yLS5T	nFS5 (25%) yLS5T (75%)	yLS3T	yLS10(70%) nLS2(30%)	yLS7T	yLS4	yLS10T	nFS3 (40%) yLS7T (60%)	yLS7
IIIM-A (90%) IIIM-B1C7D2(10%)	IIIF-A	IIIF-A	IC-C4D1	IIIF-A	IIIC-A	IIIF-A	III(F-C)-A	IIIF-A	IIIF-A	IIIC-A	IIIF-A	I(F-C)-A	IIIC-C17D4	IIIC-C11D8	IIIC-C12D6	IIIC-C10D7	IIIC-C10D7	IIIC-C10D7	IIIC-C14D5	IIIC-B1C10D7	IIIC-C15D4	IIIC-C17D2	IIIC-C15D4	IIIMC-C20D8	IIIC-C15D10	IIIC-C15D3	III(M-C) - B1C10D6	IIIC-B1C9D6	IIIC-C20D7	IIIC-C10D5	IIIMC-C18D8	IIIC-C-C9D7	III(M-C)-B3C7D2(70%) III(M-C)-B3C1(30%)	IIIMC-C18D7	I-D3 IIIM-C15D5	IIIC-B2C10D3	IIIM-C18D5	II-D5 IIIMC-C17D5	IIIM-C15D3	IIIC-C10D3 (70%) IIIC-B2(30%)	(II-III)-C7D12	IIIC-C7D3	IIIMC-C10D12	(II-III)-C7D9	IIIC-C7D4
Skeletal Oolitic Below Sequence Boundary	Micrite	Micrite	Bivalve-Coated Grain-Intraclast	Micrite	Bivalve-Coated Grain-Intraclast	Micrite	Bivalve-Coated Grain-Intraclast	Micrite	Micrite	Bivalve-Coated Grain-Intraclast	Micrite	Micrite	Skeletal Oolitic Below Sequence Boundary	Bivalve-Coated Grain-Intraclast	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Below Sequence Boundary				Stromatoporoid-Red Algae-Coral	Cladocoropsis	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Below Sequence Boundary		Skeletal Oolitic Below Sequence Boundary	Cladocoropsis	Bivalve-Coated Grain-Intraclast	Skeletal Ooiitic Below Sequence Boundary	Cladocoropsis	Stromatoporoid-Red Algae-Coral	Bivalve-Coated Grain-Intraclast	Cladocoropsis	Cladocoropsis	Cladocoropsis	Bivalve-Coated Grain-Intraclast	Stromatoporoid-Red Algae-Coral	Bivalve-Coated Grain-Intraclast	Stromatoporoid-Red Algae-Coral	Stromatoporoid-Red Algae-Coral	Bivalve-Coated Grain-Intraclast				
2.740	2.726	2.710	2.710	2.711	2.666	2.713	2.708	2.742	2.753	2.682	2.711	2.734	2.709	2.706	2.705	2.705	2.700	2.706	2.707	2.705	2.705	2.705	2.705	2.708	2.715	2.708	2.698	2.713	2.749	2.702	2.709	2.712	2.711	2.714	2.711	2.702	2.718	2.716	2.707	2.698	2.706	2.709	2.710	2.715	2.707
6.8	7.4	9.1	6.2	8.2	4.9	6.4	4.5	5.2	6.3	2.2	1.5	2.0	19.1	20.6	20.3	21.9	21.8	20.6	21.1	20.8	21.8	21.6	21.7	28.0	27.4	20.8	18.8	20.2	26.1	19.1	30.7	20.3	16.8	29.3	24.0	20.0	32.8	28.1	27.6	14.6	27.9	14.3	29.2	23.9	18.2
0.18	0.03	0.03	0.02	0.02	0.00	0.00	0.00	0.00	0.00	00:0	0.00	0.00		4142.95	3700.23	3291.47	3250.11	3108.61	2630.98	2332.89	2206.47	2179.32	2169.43	1729.41	1651.93	1544.64	1246.41	1208.54	858.31	696.44	520.99	398.77	382.38	298.20	218.36	186.93	182.54	128.42	111.25	83.59	75.86	67.54	59.12	38.73	30.77
⋖	A	<	∢	⋖	A	4	4	<	⋖	∢	⋖	⋖	В	B 4	В	В 3	В	В	B 2	B 2	B 2		B 2	B 1	B 7	B 1	B 1	B 1	В	В		В	m	В	<u>m</u>	В		m	В	В	В	В	В	В	В

Correction	(0	0	0	8	0	CI.	_	CI.	2	_	_	8	0	_	_	6	8	0	0	e	0	ပ			0	æ		0	φ	4		2	(0	2	_	0	4		0	0	0
Closure	4 0.36	2 0.20	09.1	0.73	0.89	9 0.62	0.21	0.32	0.37	0.21	0.11	0.08	0.30	0.21	0.11	00.00	2 0.08	0.70	3 1.80	7 0.23	5 0.50		3 0.80	4 0.80	0.40	9 0.38	2 0.47	3 0.00	0.18	1 0.54	09:0	5 0.43	0 2.16	3 0.75	4 0.57	9 2.00	5 0.94	7 1.20		_	09.0
lstoT _e B	22.04	12.92	25.00	26.90	17.00	17.89	1.51	1.60	1.58	2.40	1.41	1.52	1.55	0.40	0.37	18.10	32.57	22.00	13.28	27.27	22.55	30.45	33.13	33.24	29.91	29.19	29.42		24.60	34.01	25.71	19.25	27.80	27.46	33.24	19.59	29.45	30.87	30.13	13.06	28.28
B _v 3	4.00	1.20														2.35		4.00			4.67							2.78				4.27		0.76		5.00					
ო _ლ	170	4000														2500		400			400							991				220		200		340					
63	0.63	0.12														0.03		0.80			0.80							0.32				0.25		0.20		0.18					
B,2	14.00	0.82			11.70				1.18							3.55	3.75	00.9	1.70	4.98	6.38	5.65	7.80	3.27	2.00	4.63	2.49	6.29	2.10	4.41	2.48	3.00	1.60	8.04	6.33	1.94	5.65	9.50	10.83	3.30	8.98
P ₂ 2	25.0	550.0			100.0				6271.2							80.0	140.0	140.0	1400.0	120.0	120.0	130.0	120.0	160.0	200.0	165.0	175.0	100.0	1200.0	190.0	530.0	110.0	270.0	140.0	160.0	150.0	140.0	180.0	160.0	800.0	195.0
62	1.20	0.15			0.35				0.14							0.35	0.16	0.50	0.25	0.45	0.30	0.32	0.30	0.09	0.12	0.22	0.09	0.20	0.08	0.09	0.18	0.18	0.03	0.19	0.13	0.15	0.19	0.10	0.12	0.30	0.10
B,	4.04	10.90	25.00	26.90	5.30	17.89	1.51	1.60	0.40	2.40	1.41	1.52	1.55	0.40	0.37	12.20	28.82	12.00	11.59	22.29	11.50	24.80	25.34	29.97	27.91	24.55	26.93	8.80	22.50	29.60	23.23	11.97	26.20	18.66	26.91	12.65	23.80	21.37	19.30	9.76	19.30
5 °	2.80	2.99	00.09	107.25	6.50	100.00	6022.99	3561.59	2034.63	2400.00	3385.75	5925.67	3244.60	11661.41	15007.86	1.66	2.32	2.62	2.50	1.10	1.94	1.37	3.83	2.11	2.36	2.56	2.34	1.76	1.30	4.33	1.57	3.39	4.80	2.00	11.68	5.20	11.04	15.00	22.05	7.80	40.36
61	0.20	1.28	0.26	0.12	0.70	0.15	0.20	0.14	0.13	0.09	0.15	0.25	0.14	0.34	0.23	0.31	0.48	0.18	0.44	1.02	0.30	0.85	0.30	0.79	0.65	0.53	69.0	0.31	0.94	0.52	0.94	0.35	09.0	1.20	0.35	0.50	0.42	0.38	0.28	0.48	0.20
Thomeer Permeability	990.89	36.443	3.986	4.217	4.067	1.598	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1002.172	1566.965	789.092	244.565	1518.116	673.368	1551.072	824.078	1053.904	936.885	814.488	822.587	452.731	1238.471	424.932	908.928	192.777	222.297	259.801	82.050	56.795	56.231	28.087	15.940	15.867	7.448
Permeability Klinkenberg	29.3	28.2	11	7.56	7.37	2.75	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	1522	1479	1169	1027	993	1005		889	873	701	593	609	513	449	319	319	186	163	140	84.7	87.8	6.97	34.5	22.2	16.2	14.1
Phi	16.9	1	23.6	25.2	17.5	17.8	3.6	3.3	3.2	3.6	2.8	3.5	2.7	2.1	1.9	18.9	30.3	21.9	18.4	23.9	21.6	25.2	28.1	28.8	25.2	26.5	25.5	18.3	21.4	30.4	26.9	18.4	25.7	23.3	29.5	21	26.9	28.8	28.1	13	26.3
Lucia Rock Type	nFS2 (20%) yLS5T (80%)	yLS2(70%) nFS3(30%)	yLS4	nMS3	yLS5	nMS2	nMLO	nLO	nFM0(80%) yL0(20%)	nLO	ULO	nMLO	nLO	nFMO	nFMO	yLS6T	yLS8T	yLS7T	yLS13T	yLS12T	yLS7T	yLS10T	yLS3	yLS9T	yLS7T Cladocoropsis?	yLS5T	yLS7	yLS4T	yLS15T	yLS7T	yLS8T	yLS6T	yLS9T	yLS5T	yLS2	yLS10T	yLS3	yLS4	yLS2	yLS3	yLS1
Archie Rock Type	II-D3 IIIC-C9D5	IIIC-C7D2(70%) IIIC-B3(30%)	(II-III) C-C3D3	II-C5D1	IIIMC-B5C4D5	ED-II	IIIVF-A	IIIVF-A	IIIVF-A (80%) IIIF-B1(20%)	IIIF-A	IIIVF-A	IIIVF-A	IIIVF-A	IIIVF-A	IIIVF-A	IIIC-C10D6	IIIC-C14D10	IIIC-C15D5	IIIC-C3D13	IIIC-C10D10	IIIC-C14D5	IIIC-C15D9	IIIC-C10D7	IIIC-C10D11	IIIC-C8 D12	IIIC-C10D6	IIIC-C14D3	IIIC-C12D3	IIIC-C8D12	IIIC-C17D5	IIIC-C8D8	IIIC-C10D5	IIIC-C8D12	IIIMC-C10D5	IIIM-B2C7D1	IIIC-C6D10	IIIMC-C10D1	IIIMC-C5D2	IIIM-B2C5	IIIC-C6D3	IIIM-B2C2
Facies Limestone Unless Noted	Skeletal Oolitic Below Sequence Boundary	Bivalve-Coated Grain-Intraclast	Skeletal Oolitic Below Sequence Boundary	Stromatoporoid-Red Algae-Coral	Bivalve-Coated Grain-Intraclast	Stromatoporoid-Red Algae-Coral	Micrite	Micrite	Micrite	Micrite	Micrite	Micrite	Micrite	Micrite	Micrite	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Bivalve-Coated Grain-Intraclast	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Below Sequence Boundary	Cladocoropsis	Skeletal Oolitic Above Sequence Boundary	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Cladocoropsis	Skeletal Oolitic Below Sequence Boundary	Stromatoporoid-Red Algae-Coral	Cladocoropsis	Stromatoporoid-Red Algae-Coral	Bivalve-Coated Grain-Intraclast	Cladocoropsis	Bivalve-Coated Grain-Intraclast	Skeletal Oolitic Above Sequence Boundary	Bivalve-Coated Grain-Intraclast	Cladocoropsis	Cladocoropsis	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Above Sequence Boundary
Grain Density (g/cm³)	2.717	2.710	2.710	2.721	2.781	2.741	2.694	2.728	2.763	2.791	2.725	2.728	2.738	2.705	2.715	2.710	2.717	2.730	2.730	2.701	2.730	2.705	2.703	2.729	2.699	2.697	2.707	2.740	2.708	2.699	2.711	2.710	2.709	2.710	2.703	2.710	2.706	2.711	2.716	2.710	2.720
Helium Porosity (%)	16.9	11.0	23.6	25.2	17.5	17.8	3.6	3.3	3.2	3.6	2.8	3.5	2.7	2.1	1.9	18.9	30.3	21.9	18.4	23.9			28.1	28.8	25.2	26.5	25.5	18.3	21.4	30.4	56.9	18.4	25.7	23.3	29.5						26.3
Permeability to Air (md)	30.36	28.25	11.62	8.06	7:37	3.04	00.0	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	1522.10	1493.00	1168.80	1027.37	1007.00	1005.00	935.00	903.00	887.00	714.00	00.909	521.00	512.60	460.00	328.00	328.00	185.52	168.00	140.19	88.00	87.77	80.00	36.20	23.50	16.18	15.10
IIəW	В	В	В	В	В	В	В	В	ш	В	В	В	В	В	В	O	O	O	C	O	O	ပ	ပ	ပ	O	ပ	ပ	O	O	ပ	ပ	ပ	С	ပ	С	ပ	ပ	ပ	O	O	O

		_	Stromatoporoid-Red Algae-Coral	IIIC-C4D3	yLS5	16.6	7.1	3.034	0.81	21.85	17.00	0.40	400.0	1.40				18.40	2.10
·-	18.5 2.740		Skeletal Oolitic Below Sequence Boundary	IIIFM-C7D2	yLS3	18.5	5.42	1.859	0.23	70.76	18.70							18.70	1.30
·-	10.5 2.760		Skeletal Oolitic Below Sequence Boundary	IIIF-C3	yLS1	10.5	0.475	0.146	0.20	152.24	10.29							10.29	0.80
	3.3 2.710	710	Micrite	H-A	nF0	3.3	0.257	0.000	0.09	7572.84	2.22							2.22	0.18
	7.7 2.740	740	Bivalve-Coated Grain-Intraclast	IIIC-C3D3(70%) IIIM-C4D1(30%)	yLS3	7.7	0.148	0.350	0.52	35.18	06.9	0.33	682.6	2.00				8.90	1.40
	7.5 2.710	710	Bivalve-Coated Grain-Intraclast	IIIM-B4C2(70%) IA (30%)	yMLS1(70%) nF0(30%)	7.5	0.038	0.014	0.76	77.30	3.84	0.24	853.8	1.04	0.14	6300	0.52	5.40	0.40
Ĺ	6.0 2.710	710	Micrite	∀- I	nF0	9	0.034	0.000	0.10	5995.03	2.30							2.30	0.24
	1.7 2.730	730	Micrite	Y-I	nF0	1.7	0.008	0.000	0.02	7800.00	0.20							0.20	0.32
	4.1 2.780	780	Micrite	IIIFM-A	nL0	4.1	0.005	0.003	0.05	820.19	3.22							3.22	0.13
	4.8 2.770	170	Micrite	IIIFM-B1	nMLS1	4.8	0.005	0.001	0.13	892.10	3.93							3.93	0.40
	4.8 2.780	780	Micrite	IIIFM-A	nL0	4.8	0.004	0.001	90.0	1522.94	3.56							3.56	0.58
-	4.5 2.760	092	Micrite	A-(III-I)	0Mu	4.5	0.003	0.000	0.07	5814.59	2.25							2.25	0.29
		290	Micrite	IIIFM-A	nL0	4.7	0.002	0.001	0.10	1500.00	3.82							3.82	0.16
			Micrite	IIIF-A	nML0	5.3	0.001	0.000	0.14	1540.23	1.83	0.04	4400.0	1.78				3.61	0.13
1066.98			Skeletal Oolitic Above Sequence Boundary	IIIC-C20 D5	YLS5T	30.7	1047	1005.623	0.37	2.87	23.83	0.07	180.0	8.12				31.95	0.70
969.65		704	Stromatoporoid-Red Algae-Coral	IIIC-C7D14	yLS14T	23.9	948	755.636	0.75	1.33	15.50	0.20	220.0	4.79	0.20	800	1.00	21.29	0.27
687.92	24.9 2.704	704	Stromatoporoid-Red Algae-Coral	IIIC-C7D14	yLS12T	24.9	671	1216.396	0.98	1.17	20.60	0.12	200.0	09.9				27.20	0.19
645.24 2	23.8 2.713	713	Cladocoropsis	IIIC-C15D4	yLS10T	23.8	630	621.844	0.45	2.47	18.50	0.15	170.0	6.55				25.05	0.80
645.18	27.9 2.704		Skeletal Oolitic Above Sequence Boundary	IIIC-C12D7	YLS7T	27.9	630	703.466	0.63	2.72	27.33	0.04	220.0	3.61				30.93	0.78
	27.9 2.716		Skeletal Oolitic Above Sequence Boundary	IIIMC-C16	yLS5	27.9	626	388.227	0.41	4.08	22.57	0.10	200.0	7.43				30.00	09.0
		691	Cladocoropsis	IIIC-C14D4	yLS8T	21.2	526	340.023	0.45	3.10	17.20	0.08	240.0	3.36				20.56	1.20
503.78 2	25.9 2.705		Stromatoporoid-Red Algae-Coral	IIIC-C7D11	yLS10T	25.9	490	860.772	0.72	1.90	22.93	0.06	240.0	4.06				26.99	0.70
461.04	21.0 2.825		Skeletal Oolitic Below Sequence Boundary Dolomite	IIIM-C15D1	yLS1	21	461	975.249	0.10	5.11	17.62							17.62	0.50
453.85	16.2 2.715		Skeletal Oolitic Below Sequence Boundary	IIIC-C11D	yLS3T	16.2	454	322.176	0.49	2.29	13.16	0.50	80.0	3.23				16.38	0.09
432.20	24.9 2.700		Skeletal Oolitic Above Sequence Boundary	IIIMC-C14	yLS2	24.9	420	339.575	0.53	4.46	27.45							27.45	09.0
409.69	23.0 2.705	705	Bivalve-Coated Grain-Intraclast	IIIC-C13D7	yLS5	23	398	262.175	0.35	3.85	15.81	0.21	170.0	7.50				23.31	0.83
_	21.6 2.711	711	Cladocoropsis	IIIC-C10D7	yLS7	21.6	335	346.962	0.57	2.79	18.21	0.10	220.0	4.69				22.90	0.67
			Cladocoropsis	IIIC-C10D4	yLS6	20.4	301	231.773	0.41	3.55	15.30	0.12	180.0	5.50				20.80	0.85
_	26.9 2.700	_	Skeletal Oolitic Above Sequence Boundary	IIIMC-C14	yLS2	26.9	287	174.019	0.23	7.01	17.95	0.15	180.0	10.50				28.45	09.0
_		-	Skeletal Oolitic Above Sequence Boundary	IIIMC-C13	yLS4	29.4	260	149.334	0.45	7.10	26.09	0.10	220.0	4.70				30.79	0.68
_		602	Cladocoropsis	IIIMC-C7D15	yLS15	27.8	509	80.219	1.10	3.80	18.59	90.0	170.0	11.59				30.17	2.50
_		208	Cladocoropsis	IIIC-C8D4	yLS4	21.2	203	117.461	0.51	4.50	16.00	0.12	180.0	5.59				21.59	0.93
203.09	23.3 2.707	-	Stromatoporoid-Red Algae-Coral	IIIC-C7D9	yLS10T	23.3	195	145.186	69.0	3.59	17.24	0.50	170.0	3.00	0.35	700	1.50	21.74	2.20
158.14	17.6 2.822		Skeletal Oolitic Below Sequence Boundary Dolomite	IIIM-C8D5	yLS5	17.6	158	145.904	0.35	3.60	11.00	0:30	28.0	5.83				16.83	1.36
135.16 2	25.2 2.678	878	Cladocoropsis	IIIMC-C9D2	yLS3	25.2	129	78.976	0.38	8.37	20.00	0.02	240.0	6.20				26.20	1.30
_	25.1 2.709	_	Stromatoporoid-Red Algae-Coral	IIIC-C3D17	yLS15	25.1	126	457.501	1.09	1.80	20.92	0.20	214.7	1.52	0.20	800	1.50	23.94	1.50
_	18.0 2.710		Skeletal Oolitic Below Sequence Boundary	IIIC-C7D7	yLS7	18	129	109.863	0.42	3.60	10.81	0.25	180.0	5.61	0:30	1000	1.00	17.42	0.80
115.85	25.1 2.705	705	Cladocoropsis	IIIMC-C8D6	yLS4	25.1	110	72.281	0.65	5.20	17.00	90.0	95.0	4.00				21.00	1.20
113.79 2	25.8 2.706	902	Stromatoporoid-Red Algae-Coral	IIIMC-C7D7	yLS7T	25.8	108	161.489	0.53	5.42	23.10	0.04	210.0	5.55				28.65	0.95
	16.0 2.708	708	Bivalve-Coated Grain-Intraclast	IIIC-C7D3	yLS3T	16	109	121.393	0.59	3.00	11.94	0.44	135.7	2.50	0.30	1200	1.50	15.94	0.72
105.24 2			Stromatoporoid-Red Algae-Coral	IIIMC-C7D9	yLS9T	25.8	100	120.400	09.0	6.70	26.80	0.08	260.0	1.60				28.40	2.50
_	13.4 2.711		Skeletal Oolitic Below Sequence Boundary	IIIC-C5D3	yLS3	13.4	57.5	46.696	0.45	4.56	9.32	0.45	700.0	2.60				11.92	0.91
_	14.2 2.702	702	Bivalve-Coated Grain-Intraclast	IIIC-C5D6	yLS6	14.2	45.9	45.204	0.28	1.71	2.53	0.59	4.1	8.53	0.32	1300	2.40	13.46	0.05
(4	26.6 2.699		Skeletal Oolitic Above Sequence Boundary	IIIMC-B5C10(70%) IIA(30%)	yLS2 (70%) nMO (30%)	26.6	25.7	13.489	0.49	16.50	19.30	0.05	240.0	9.00				28.30	06.0
	17.6 2.714	714	Cladocoropsis	IIC-C7	55 17	710	23.4	F 647	ממ	00 00	40 7E							10 1	4 40
					yL32	9.71	4:07	2.0.0	0.55	23.00	18.75							18.75	1.40

Correction		10	(C)	-+	_	_	01			10				~	10	10	()	()	_			_		(C)				m				_	<u>,</u>			10	C.		-		10		
Closure	1.10	1.05	2.66	0.94	0.17	1.24	0.32	0.37	0.90	0.75	09.0	0.23	0.18	0.13	0.15	0.25	0.26	0.16	0.41	0.18	09.0	_		0.76	0.70	_	_	_	-	-	09.0		0.34	1.28	0.57	1.05	0.72	0.37	1.00	0.80	0.85	_	0.24
lstoT _e B	24.30	17.22	17.56	7.70	11.13	8.88	2.22	8.36	6.20	2.03	3.53	5.10	4.94	4.91	4.53	2.72	2.77	1.92	30.68	23.01	27.58	24.80	30.64	27.95	30.19	22.80	30.79	17.13	23.33	23.20	22.83	21.65	18.25	23.92	31.13	30.49	31.98	22.40	26.82	30.55	32.56	17.97	22.78
В °,																										1.43							2.48					1.47					9.35
<u>ი</u>																										700							1100					1200					200
83																										0.28							0.13					0.25					0.16
В,2	15.30	8.87	1.70	2.20		1.45		3.06			0.84								7.81	5.24	12.33	9.60	4.55	4.01	7.05	11.07	3.80	1.94	2.34	8.80	6.63	6.93	11.38	4.92	9.75		7.33	10.50		7.00	6.67	1.97	9.63
5 م	220.0	180.0	1200.0	140.0		1600.0		3800.0			3400.0								175.0	100.0	21.0	210.0	170.0	155.0	190.0	12.0	245.0	1300.0	850.0	200.0	290.0	130.0	7.4	215.0	0.06		210.0	21.0		200.0	220.0	1600.0	55.0
G2	0.08	0.16	0.12	0.28		0.14		0.08			0.18								0.12	0.50	1.05	0.35	0.13	0.15	0.08	1.06	0.09	0.20	0.33	0.33	0.20	0.18	0.56	0.07	0.25		0.12	08.0		0.10	0.16	0.10	0.18
B,1	9.00	8.36	15.86	5.50	11.13	7.43	2.22	5.30	6.20	2.03	2.70	5.10	4.94	4.91	4.53	2.72	2.77	1.92	22.86	17.77	15.25	15.20	26.09	23.94	23.13	10.30	26.99	15.19	20.99	14.40	16.20	14.72	4.39	19.00	21.39	30.49	24.65	10.43	26.82	23.55	25.89	16.00	3.80
7	14.00	12.75	7.38	13.82	267.90	102.93	4834.92	80.79	960.30	1770.90	328.98	1395.84	1654.86	1389.10	1699.18	4798.08	5100.00	7156.41	3.51	1.32	3.63				4.20						3.40		3.50			22.70	20.03	1.50	38.10	48.00	17.00		15.50
61	0.45	0.55	1.12	0.65	0.16	0.56	0.08	0.85	0.12	0.36	0.65	90.0	0.05	0.05	90.0	0.20	0.25	0.10	0.37	0.70	0.35	0.32	69.0	0.55	0.40	0.57	69.0	0.85	98.0	0.38	0.93	0.70	0.26	0.50	0.55	0.37	0.49	1.05	0.35	0.25	0.58	0.94	0.35
Thomeer Permeability	4.540	3.627	15.110	1.072	0.074	0.043	0.000	0.030	0.003	0.000	0.000	0.002	0.002	0.003	0.001	0.000	0.000	0.000	607.089	1111.777	274.037	358.581	399.004	534.044	391.510	242.247	211.710	39.242	187.776	153.561	95.209	13.282	35.328	51.956	25.664	25.879	14.858	172.521	7.708	5.821	18.262	44.455	0.928
Permeability Klinkenberg	11.7	11.8	8.48	0.368	0.15	0.041	0.037	0.017	0.012	0.006	0.005	0.005	0.005	0.004	0.003	0.002	0.002	0.001	650	520	360	352.5	331	314	259	118	112	54.7	47.1	44.8	39.4	34.1	32.2	22.8	22.7	21.4	20.7	12.6	12.5	12.3	12.3	10.1	10.6
Phi	23.9	16.9	19.8	9.8	11.9	10.1	4.6	8.7	8.3	4.5	4.6	9.9	7.3	6.5	5.3	5.8	3.9	3.5	28.6	21.3	23.3	22.6	26.6	25.9	28.5	19.9	27.6	20.5	24.4	20.6	20.3	20.5	19.3	21.7	26.2	56.6	27.8	20.3	23.5	28.9	56	17.5	21.9
Lucia Rock Type	yLS2	yLS2	nLS15	yLS1	OMn	yLS2	nF0	nLS2	nLS1	nL0	nF0	nF0	nF0	nF0	nF0	nF0	nF0	nF0	yLS9T	yLS12T	yLS6T	yLS5T	yLS8T	yLS10T	yLS7T	yLS7T	YLS8T	yLS10T	nLS15T	yLS4T	yLS10T	yLS5T	yLS9T	yLS4	yMLS2	yMLS2	yMLS1	nLS12	IIIMC- B6C5	yMLO	yMLO	yLS10	yLS3
Archie Rock Type	(II-III)MC-C5D5	IIIC-C7D2	IIIC-C2D15	IIIM-C4D1	A-(IIII))	IIIC-B2C3	IVF-A	IIIC-B2C2	(I-III)C-B2	(I-III)C-B1	(I-III)C-B1	IVF-A	IIIC-C13D10	IIIC-C10D15	IIIC-C13D7	III(M-C) - C12D5	IIIC-C11D10	IIIC-C9D10	IIIC-C10D7	IIIC-C2D7	IIIC-C8D12	IIIC-C3D10	IIIC-C4D15	III(M-C) - C7D4	III(M-C)-C5D10	IIIC-C5D5	III(M-C) - C5D9	IIIC-C6D5	IIIFM-B8C6	IIIFM-B7C5D1	IIIFM-B7C5	IIIC-C2D12	IIIMC-B6C5	IIIFM-B8C3	IIIFMB7C5	IIIC-C2D10	IIIM - B5C3D1						
Facies Limestone Unless Noted	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Below Sequence Boundary	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Below Sequence Boundary Dolomite	Skeletal Oolitic Above Sequence Boundary	Bivalve-Coated Grain-Intraclast	Micrite	Bivalve-Coated Grain-Intraclast	Micrite	Bivalve-Coated Grain-Intraclast	Bivalve-Coated Grain-Intraclast	Micrite	Skeletal Oolitic Above Sequence Boundary	Cladocoropsis	Cladocoropsis	Skeletal Oolitic Below Sequence Boundary	Cladocoropsis	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Stromatoporoid-Red Algae-Coral	Cladocoropsis	Stromatoporoid-Red Algae-Coral	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Below Sequence Boundary	Bivalve-Coated Grain-Intraclast	Cladocoropsis	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Stromatoporoid-Red Algae-Coral	Cladocoropsis	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Below Sequence Boundary									
Grain Density (g/cm³)	2.711	2.707	2.702	2.823	2.710	2.708	2.755	2.704	2.716	2.710	2.709	2.722	2.714	2.722	2.722	2.721	2.706	2.703	2.704	2.711	2.708	2.698	2.714	2.710	2.701	2.696	2.699	2.705	2.699	2.708	2.701	2.718	2.698	2.620	2.700	2.695	2.696	2.698	2.713	2.701	2.696	2.699	2.711
Helium Porosity (%)	23.9	16.9	19.8	8.6	11.9	10.1	4.6	8.7	8.3	4.5				6.5	5.3	5.8		3.5	28.6		23.3				28.5								19.3			26.6	27.8	20.3	23.5	28.9	26.0	-	21.9
Permeability to Air (md)	13.20	11.84	9.77	0.37	0.25	0.04	0.04	0.02	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	665.03	535.39	371.19	352.50	341.05	325.21	268.30	124.29	_	_	50.64	44.77	39.38	36.90	32.15	25.09	24.91	23.66	22.85	14.21	14.09	13.97	13.87	\dashv	10.60
II9W	O	D	O	D	٥	۵	٥	٥	٥	٥	٥	٥	٥	٥	٥	٥	٥	O	В	ш	ш	ш	ш	ш	Е					\dashv	ш		ш	ш	ш	ш	Е	ш	ш	ш	ш	ш	Ш

27.02 Strong-spooled-Sed-Aglane-Cural IIIMC-CUD01 ASS 20.5 7.4 2.55 0.9 44.54 1.0 <th>Ш</th> <th>8.37</th> <th>20.1</th> <th>2.742</th> <th>Cladocoropsis</th> <th>IIIC-C3D1</th> <th>yLS4</th> <th>20.1</th> <th>7.18</th> <th>2.942</th> <th>0.17</th> <th>75.01</th> <th>19.97</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>18</th> <th>19.97 0</th> <th>08.0</th>	Ш	8.37	20.1	2.742	Cladocoropsis	IIIC-C3D1	yLS4	20.1	7.18	2.942	0.17	75.01	19.97						18	19.97 0	08.0
6.70 2.70 Server located between sequences frounding. IIIAC-CDQ2 VISSO 7.6 7.7 7.2 2.8 7.0 7.0 8.9 4.0 7.0 7.0 8.9 4.0 7.0 7.0 7.0 7.0 7.0 7.0 2.0 2.0 2.0 7.0 7.0 2.0 <t< td=""><td></td><td>8.36</td><td>20.5</td><td>2.729</td><td></td><td>IIIMC-C3D1</td><td>yLS2</td><td>20.5</td><td>7.14</td><td>2.455</td><td>0.37</td><td>48.34</td><td>19.85</td><td></td><td></td><td></td><td></td><td></td><td>15</td><td>19.85</td><td>2.29</td></t<>		8.36	20.5	2.729		IIIMC-C3D1	yLS2	20.5	7.14	2.455	0.37	48.34	19.85						15	19.85	2.29
		6.65	19.6	2.703		IIIC-C1D10	nLS10	19.6	5.61	7.611	1.35	9.50	16.41	0.33	210.0	8.24			77	24.65	1.50
	111	5.76	21.2	2.714		IIIMC-C4D2	yLS4	21.2	4.86	0.577	0.27	28.84	4.69	0.20	98.1	8.78	60.0	300	8.08	21.55 0	0.80
	111	5.47	23.6	2.705		III(F-M) - B5C2(70%) IIIF-C2(30%)	yLS1(70%) yMS2(30%)	23.6	5.473	0.991	0.42	34.00	9.73	0.12	190.0	14.60			77	24.33 0	0.40
3.9. 15.2 2.0. Bonne-Control Control-Intensists III.CC.2010 (4.58 TOT) 15.2 2.0. 0.0. 1.0.		4.86	20.4	2.718		IIIM - B3C1	yL0	20.4	4.863	1.084	0.31	39.47	9.60	0.12	230.0	12.00			2,	21.60 0	0.50
3.56 7.5 2.6 7.5 2.6 7.5 2.6 7.5 2.6 7.5 2.6 7.5 2.6 7.5 2.6 7.5 2.6 7.5 2.6 7.5 2.6 7.5 2.6 7.5 2.5 3.5 <td></td> <td>3.97</td> <td>15.2</td> <td>2.705</td> <td></td> <td>IIIC - C3D8</td> <td>yLS8</td> <td>15.2</td> <td>3.971</td> <td>3.535</td> <td>0.81</td> <td>11.27</td> <td>9.43</td> <td>0.22</td> <td>360.0</td> <td>6.30</td> <td></td> <td></td> <td>#</td> <td>15.73 0</td> <td>0.77</td>		3.97	15.2	2.705		IIIC - C3D8	yLS8	15.2	3.971	3.535	0.81	11.27	9.43	0.22	360.0	6.30			#	15.73 0	0.77
27.7 81.00 27.00 81.00 27.00 81.00 27.00 81.00 27.00 81.00 27.00 81.00 27.00 81.00 27.00 81.00 27.00 81.00 27.00 81.00 82.00		3.56	17.3	2.697		IIIC - C2D10	yLS10T	17.3	3.562	20.960	08.0	6.92	14.00	0.12	1000.0	1.94			#	15.94 0	0.61
222 223 227,0 227,0 Sobelead Onlic Below Sequence Boundary IIIM, BCCT visit 229 229,0 229,0 229,0 229,0 129,0		2.75	18.0			IIIC-C1D2	nLS3	18	2.13	0.158	0.42	35.00	4.00	0.12	350.0	13.70			12	17.70	1.00
244 152 270 Strombroode Feed Aggies-Cornel III.C-CDD5 nLSS 183 186 0.291 0.291 0.791 0.794 615 214 152 274 Chologoropage III.C-CDD5 yLSS 126 176 0.794 0.794 178 0.23 152 2794 Chologoropage III.C-CDD4 yLSS 126 176 0.794 0.794 178 0.53 164 279 Browner-Coarded Gaminitaticalist III.C-CD204 yLSS 126 0.795 0.075 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.095 0.077 0.077 0.077 0.078 0.078 0.078		2.52	20.3			IIIM - B3C1	yLS1	20.3	2.523	0.888	0.12	165.00	19.38						16	19.38	1.34
2.3 2.3 2.4 Condecocropation III.C-CIDA N/SS 17.5 0.95 0.75 0.95 0.75 0.95 0.75 0.95 0.75 0.95 0.75 0.95 0.75 0.95 0.75 0.95 0.75 0.95 0.75 0.95 0.75 0.95 0.75 0.95 0.75 0.85 0.75 0.85 0.75 0.85 0.75 0.85 0.75 0.85 0.75 0.85 0.75 </td <td></td> <td>2.44</td> <td>18.3</td> <td>2.700</td> <td></td> <td>IIIC-C1D2</td> <td>nLS3</td> <td>18.3</td> <td>1.86</td> <td>0.291</td> <td>0.22</td> <td>183.46</td> <td>18.65</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>18</td> <td>18.65</td> <td>1.80</td>		2.44	18.3	2.700		IIIC-C1D2	nLS3	18.3	1.86	0.291	0.22	183.46	18.65						18	18.65	1.80
214 215 216 Condocorposis IIIC-CODIA yiSS 125 163 0.534 1.17 10.53 11.7 10.50 10.54 11.8 10.5 20.5 11.7 10.50 10.54 11.8 10.5 20.5 11.7 10.50 10.5 10.5 10.5 11.7 10.50 10.5 10.		2.30	15.2	2.741		IIIC-C1D1	nLS2	15.2	1.75	0.957	0.17	97.40	15.15						16	15.15 0	0.47
111 99 2705 Billande-Coaled Grain-Intradissty IIII-C-SDA yiSA 99 I 107 10.8 10.8 10.9 10.0		2.14	12.5	2.756		IIIC-C2D5	yLS3	12.5	1.63	0.534	0.28	73.64	11.80						11	11.80	1.20
0.28 14.5 2.70 Bhadve-Coaled Ganh-Intracisest IIII-CSD12 yiS3T 154 0.53 934450 10.1 1.40 12.70 0.14 8.2 1.29 Monte Mintre IIII/LAS n.15 1.24 0.53 0.075 0.12 7.50 0.14 8.2 2.79 Monte IIII/LAS n.15 1.24 0.05 0.07 0.12 7.50 0.05 1.24 2.79 Monte IIII/LAS 1.04 0.05 0.07 0.12 7.50 0.05 1.04 2.72 Seletatal Coulte Belova Sequence Boundain IIIII-LAS n.10 0.14 0.05 0.07 0.07 0.07 0.05 0.07 </td <td></td> <td>1.11</td> <td>6.6</td> <td>2.705</td> <td></td> <td>IIIC - C2D4</td> <td>yLS4</td> <td>6.6</td> <td>1.107</td> <td>2.883</td> <td>1.17</td> <td>10.63</td> <td>10.26</td> <td>0.25</td> <td>1300.0</td> <td>0.99</td> <td></td> <td></td> <td>11</td> <td>11.24 0</td> <td>0.61</td>		1.11	6.6	2.705		IIIC - C2D4	yLS4	6.6	1.107	2.883	1.17	10.63	10.26	0.25	1300.0	0.99			11	11.24 0	0.61
0.29 149 2779 Micrite IIIIM-C)-BICT nLST 149 0.29 0.075 0.075 0.075 0.075 0.075 0.775 0.775 0.775 0.775 0.075 <		0.53	15.4	2.701		IIIC - C5D12	yLS12T	15.4	0.53	384.830	1.10	1.40	15.00	0.38	1000.0	2.64			17	17.64 0	0.25
0.014 8.3 2.797 Midnite IIIM-B3 nit0 8.3 0.143 0.061 0.028 0.061 0.12 22.306 7.72 0.006 8.4 2.724 Stace and Midnite IIIM-B1C1 yu0 8.4 0.069 0.069 0.077 8.7 8.54 9.7 0.00 1.04 2.724 Steelell Childic Below Sequence Boundary IIIM-B1C1 yu0 9.1 0.077 0.077 0.07 <td< td=""><td></td><td>0.29</td><td>14.9</td><td>2.719</td><td></td><td>III(M-C) - B1C1</td><td>nLS1</td><td>14.9</td><td>0.29</td><td>0.075</td><td>0.24</td><td>235.00</td><td>12.71</td><td></td><td></td><td></td><td></td><td></td><td>12</td><td>12.71</td><td>0.65</td></td<>		0.29	14.9	2.719		III(M-C) - B1C1	nLS1	14.9	0.29	0.075	0.24	235.00	12.71						12	12.71	0.65
0.00 1.28 2.704 Midnite IIIIFAH)-C402 n.633 7.28 0.075 0.056		0.14	8.3	2.797	Micrite	IIIM - B3	uL0	8.3	0.143	0.081	0.12	223.05	7.72						7	7.72 0	0.23
0.00 6.4 2.724 Sielletail Oblife Bellow Sequence Boundary IIIN- BICT yIO 64 0.056 0.074 0.73 68.34 9.34 0.00 1.01 2.725 Minche IIIIN-A n.10 9.1 0.026 0.074 0.17 68.53 9.45 0.03 9.1 2.725 Minche IIIIN-A Models n.10 1.0 0.02 0.01 0.01 0.07 0.07 0.01 6.0 0.07 0.01 0.00		0.08	12.8	2.704		III(F-M) - C4D2	nLS3	12.8	0.075	0.036	0.50	123.47	7.59	80.0	1000.0	4.84			12	12.43	1.20
0.002 1.0 2.728 MMcrite IIII/A-A n.10 0.05 0.02 0.11 665.20 8.84 0.03 1.02 2.72 Munche IIIIIA-A n.10 0.05 0.01 0.07 <td></td> <td>90.0</td> <td>8.4</td> <td>2.724</td> <td></td> <td>IIIM - B1C1</td> <td>yL0</td> <td>8.4</td> <td>0.059</td> <td>0.065</td> <td>0.77</td> <td>85.34</td> <td>9.33</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td>9.33 0</td> <td>0.75</td>		90.0	8.4	2.724		IIIM - B1C1	yL0	8.4	0.059	0.065	0.77	85.34	9.33						6	9.33 0	0.75
0.03 9.1 2.74 Midrite IIIM-A n.0 9.1 0.026 0.007 0.10 66.93 5.84 0.03 9.15 2.72 Midrite IIIM-A n.0 1.06 0.005 0.017 0.07 0.0 <		90.0	10.4	2.728		III(M-C) - C1	nL0	10.4	0.055	0.024	0.13	456.33	9.45						6	9.45	0.54
0.02 4.0 2.73 Mornte IIIMA-AQPS, ILLO, 100%, 4 0.016 0.02 0.017 0.07 0.02 0.03 <td></td> <td>0.03</td> <td>9.1</td> <td>2.747</td> <td></td> <td>IIIM - A</td> <td>nL0</td> <td>9.1</td> <td>0.026</td> <td>0.007</td> <td>0.10</td> <td>666.30</td> <td>5.84</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>5.84 0</td> <td>0.31</td>		0.03	9.1	2.747		IIIM - A	nL0	9.1	0.026	0.007	0.10	666.30	5.84						2	5.84 0	0.31
0.01 4.0 2.70 ENAMORNE IIIM-A(60%) nLO100WN 4 0.016 0.00 0.27 6.837.80 1.84 0.01 7.5 2.736 Bivalve-Coated Grain-Intractast IIIIN-A nLO 7.9 0.012 0.003 0.71 785.20 6.34 0.01 6.1 2.736 Bivalve-Coated Grain-Intractast IIIIC-AN)-A nLO 6.1 0.003 0.717 785.20 6.34 1.0 2.5 2.746 Skeletal Collic Above Sequence Boundary IIIIC-AN)-A nMO 2.5 0.003 0.003 0.71 780 0.003 0.71 780 0.003 0.003 0.71 780 0.003 0.003 0.71 780 0.003 0.003 0.71 780 0.003 0.003 0.71 0.003 0.003 0.71 780 0.003 0.003 0.71 780 0.003 0.003 0.71 780 0.003 0.003 0.71 780 0.003 0.003 0.71 780 </td <td></td> <td>0.03</td> <td>10.6</td> <td>2.732</td> <td></td> <td>IIIM - A</td> <td>nL0</td> <td>10.6</td> <td>0.025</td> <td>0.011</td> <td>0.07</td> <td>807.53</td> <td>7.39</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td>7.39 0</td> <td>0.25</td>		0.03	10.6	2.732		IIIM - A	nL0	10.6	0.025	0.011	0.07	807.53	7.39						7	7.39 0	0.25
0.01 7.9 2.736 Bivalve-Coaled Grain-Infracient IIIII - A n.LO 7.9 0.012 0.003 0.17 7.85.0 0.34 0.01 2.738 Minche IIIIC-A n.LO 2.9 0.000 0.18 1.200.0 0.17 7.85.0 0.34 1.25 2.748 Shromatoporoid-Red Agae-Coral IIIC-AI n/A 0.003 0.000 0.18 1.200.0 1.30 1.75 0.000 0.000 0.18 1.200.0 1.30 1.75 0.000 0.000 0.01 0.000 0.01 0.000 0.01 0.000 0.01 0.000 0.01 1.30 1.75 0.000 0.000 0.01 0.000 0.01 0.000 0.000 0.01 0.000		0.02	4.0	2.701	Micrite	IIIM-A(60%) IIVF-A(40%)	nL0(100%)	4	0.016	0.000	0.22	6357.80	1.87							1.87 0	0.24
0.01 6.1 2.738 Micrite IIIC-A n.IO 6.1 0.003 0.000 0.18 1.2000 4.19 0.00 2.9 2.748 Micrite IIII-AN-A n.IO 2.9 0.000 0.07 4113.4 2.8 1.25 2.743 Stromatoporoid-Red Agae-Coral III-A-A-A n.IO 12.9 0.000 0.07 714 175.00 13.00 1.25 2.772 Stromatoporoid-Red Agae-Coral IIIIAC-BZCZDZ yLSZ 2.9 NAA 3.227 0.20 3.778 15.00 903.16 2.34 2.701 Skeletal Collic Above Sequence Boundary IIIIAC-BZCZDZ yLSZ 2.3 NA 3.227 0.30 3.778 15.50 903.16 2.34 2.701 Skeletal Collic Above Sequence Boundary IIIIC-C15DS yLSS 2.3 NA 3.27 0.30 3.778 15.50 903.16 2.34 2.70 Skeletal Collic Above Sequence Boundary IIIC-C15DS yLSS <t< td=""><td></td><td>0.01</td><td>7.9</td><td>2.736</td><td></td><td>IIIM - A</td><td>nL0</td><td>6.7</td><td>0.012</td><td>0.003</td><td>0.17</td><td>785.20</td><td>6.34</td><td></td><td></td><td></td><td></td><td></td><td>9</td><td>6.34 0</td><td>0.39</td></t<>		0.01	7.9	2.736		IIIM - A	nL0	6.7	0.012	0.003	0.17	785.20	6.34						9	6.34 0	0.39
0.00 2.9 2.748 Micrite III(F.4I)-A nLO 2.9 0.003 0.000 0.07 413.34 2.26 12.5 2.713 Stromatoporoid-Red Agae-Coral IIIA nMO 12.5 NA 0.083 0.09 17.30 13.00 2.0 2.714 Sterelat Doulite Above Sequence Boundary IIIAC-BZC2D VLSS 2.3 NA 0.083 0.09 17.38 15.50 17.30 17.50		0.01	6.1	2.738		IIIC - A	nL0	6.1	0.008	0.000	0.18	1200.00	4.19						4	4.19	0.29
125 2773 Stromatoporoid-Red Agae-Coral IIA nMO 125 NA 0.083 0.36 175.00 13.0 200 2774 Skeletal Oolific Above Sequence Boundary IIIMC-BZCZD yLSZ 20 NA 0.822 0.26 46.30 881 90.04 28.5 2770 Skeletal Oolific Above Sequence Boundary IIIMC-BZCZDZ yLSZ 23.4 886 67.00 0.77 4.20 77.82 900.04 28.5 27.79 Skeletal Oolific Above Sequence Boundary IIIMC-C15DS yLST 22.2 666 67.00 0.77 4.20 77.83 88.9 661.039 0.41 2.99 21.87 603.77 27.04 Skeletal Oolific Above Sequence Boundary IIIC-C11DS yLST 22.2 666 1.69 1.69 2.34 8.77 1.69 2.34 8.87 1.73 2.99 2.17 2.20 2.704 Skeletal Oolific Above Sequence Boundary IIIC-C11DS yLST 2.2 666 2.71 4.20 2.71		0.00	2.9	2.748		III(F-M) - A	nL0	2.9	0.003	0.000	0.07	4113.34	2.26						2	2.26 0	0.13
20.0 2774 Skeletal Oolitic Above Sequence Boundary IIIMC-B2C2D2 yLS3 23.5 NAA 3227 0.20 37.78 15.58 903.18 23.2 2773 Skeletal Oolitic Above Sequence Boundary IIIMC-C15D5 yLS3 23.4 RAA 3227 0.30 37.78 15.58 900.04 28.5 2.719 Skeletal Oolitic Above Sequence Boundary IIIC-C15D5 yLS117 22.5 666.039 0.41 2.99 21.67 603.77 27.0 2.704 Skeletal Oolitic Above Sequence Boundary IIIC-C10D5 yLS17 22.5 666.039 0.41 2.99 21.67 900.04 28.5 2.704 Skeletal Oolitic Above Sequence Boundary IIIC-C10D5 yLS17 22 666 66.039 0.41 2.99 21.67 382.70 2.704 Skeletal Oolitic Above Sequence Boundary IIIC-C10D5 yLS17 25 284 27.136 28.41.56 2.34 27.78 2.705 2.707 Skeletal Oolitic Above Sequence Boundary <td< td=""><td></td><td></td><td>12.5</td><td>2.713</td><td></td><td>H-A</td><td>OMn</td><td>12.5</td><td>ΑN</td><td>0.083</td><td>0.36</td><td>175.00</td><td>13.00</td><td></td><td></td><td></td><td></td><td></td><td>13</td><td>13.00</td><td>1.80</td></td<>			12.5	2.713		H-A	OMn	12.5	ΑN	0.083	0.36	175.00	13.00						13	13.00	1.80
2.35 2.777 Skeletal Collit Above Sequence Boundary IIII/C-15D5 yLSS 2.34 RSF 677.801 0.17 4.20 17.32 900.318 2.34 2.701 Skeletal Collit Above Sequence Boundary IIIC-C15D5 yLSST 2.34 865 677.801 0.17 4.20 17.32 900.04 2.28 2.704 Skeletal Collit Above Sequence Boundary IIIC-C15D5 yLSTT 2.25 6585 1208.003 0.41 2.34		-	20.0	2.714		IIIMC-B2C2	yLS2	20	N/A	0.832	0.26	46.30	8.81	90.0	250.0	5.03			13	13.84	1.30
900.11 B 2.70 b Skeletal Collite Above Sequence Boundary IIIC-C15DG yLSM 28.4 88.6 677.801 0.17 4.20 17.32 900.04 2.85 2.719 2.704 Cardocoropsis IIIC-C15DG yLS1T 28.5 880 661.039 0.41 2.99 21.67 603.77 2.704 Skeletal Collite Above Sequence Boundary IIIC-C13DS yLS1T 22.2 665 1208.801 0.60 1.99 27.34 352.70 2.704 Skeletal Collite Above Sequence Boundary IIIC-C13DS yLS1T 25.7 589 1344.516 0.56 4.76 2.74 352.70 2.65 2.809 Bivalve-Coaled Grain-Intraclast IIIC-C13DS yLS3T 25 266 21.384 3.73 3.24 3.84 2.73 3.84 2.73 3.84 2.73 3.84 2.73 3.84 2.74 3.74 3.73 3.24 2.84 3.84 2.74 3.84 2.73 3.84 2.73 3.84 2.74 3.74 3.74 3.74 3.74 3.74		١	23.5			IIIMC-B2C2D2	yLS3	23.5	N/A	3.227	0.30	37.78	15.58	0.04	240.0	8.56			27		1.60
900.04 2.85 2.719 Cladocoropsis IIIC-C16D6 yLS17T 2.85 880 661.039 0.41 2.99 21.67 670.58 2.22 2.704 Stromatoporiot-Red Algae-Coral IIIC-C19D5 yLS17T 2.22 665 120.8801 0.66 1.69 21.38 603.77 2.704 Skeletal Collic Above Sequence Boundary IIIC-C10D5 yLS17T 2.6 589 1344,516 0.45 2.34 25.74 385.70 2.65 2.701 Bivalve-Coated Grain-Intraclast IIIC-C10D5 yLS17 2.6 209 247.136 0.45 2.34 273.18 2.705 2.659 Bivalve-Coated Grain-Intraclast IIIC-C5D6 yLS17 2.6 209 247.136 0.56 4.76 23.34 2.80 2.70 Bivalve-Coated Grain-Intraclast IIIIC-C5D6 yLS4 2.6 2.73 0.76 3.4 2.3 4.75 2.8 2.3 4.75 2.73 3.4 2.3 2.73 3.8 2.73 <		903.18	-			IIIC-C15D5	yLS5	23.4	885	677.801	0.17	4.20	17.32	0.32	160.0	8.16			25		0.55
670.56 2.2 2 2.704 Stromatoporoid-Red Algae-Coral IIIC-C9D11 y.S12T 2.2 2 655 1208.801 0.60 1.69 21.38 603.77 2.70 Skeletal Oolific Above Sequence Boundary IIIC-C1D5 y.LST 2.7 569 1344.516 0.45 2.34 25.7 385.53 2.5.0 2.701 Bolavalve-Coaled Grain-Intraclast IIIC-C1D6 yLST 26 2.70.92 241.136 0.55 4.76 25.3 276.65 2.5.0 2.700 Bivalve-Coaled Grain-Intraclast IIIC-C9D6 yLST 26.7 20.9 241.136 0.55 4.76 24.36 22.23.71 28.4 2.707 Skeletal Coality Above Sequence Boundary IIIC-C1D6 yLST 26.4 23.8 4.23.251 0.69 3.4.3 28.12 22.23.71 28.4 2.707 Skeletal Coality Above Sequence Boundary IIIC-C1D6 yLST 26.4 23.8 4.23.251 0.69 3.4.3 28.12 22.23.71 28.6 2.4 2.2		900.04	-	\rightarrow		IIIC-C16D6	yLS11T	28.5	880	661.039	0.41	2.99	21.67	_	175.0	8.38			8	-	0.55
603.77 27.04 Skeletal Collitic Above Sequence Boundary IIIC-C11D5 yLSTT 27 689 1344.516 0.45 2.34 25.74 395.53 25.0 2.701 Cladocoropsis IIIC-C11D5 yLSTT 25 384 279.192 0.76 3.84 27.36 355.70 2.6 Bivalve-Coated Grain-Intraclast IIIC-C11D6 yLST 26.7 209 241.136 0.55 4.76 25.3 246.90 2.8 2.707 Skeletal Oolitic Above Sequence Boundary IIIC-C11D6 yLST 2.6 215.806 0.55 4.82 24.36 246.90 2.8 2.707 Skeletal Oolitic Above Sequence Boundary IIIC-C11D6 yLST 2.6 215.806 0.55 4.82 24.36 220.17 2.704 Skeletal Oolitic Above Sequence Boundary IIIC-C1D6 yLST 2.6 215.806 0.55 4.82 24.36 24.13 27.1 28.2 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.2		670.58	-	2.704	_	IIIC-C9D11	yLS12T	22.2	655	1208.801	09.0	1.69	21.38		1100.0	3.00			57	-	0.22
25.0 Cladocoropsis IIIC-C1ID5 yLS7T 25 384 279.192 0.76 3.84 27.36 26.5 2.699 Bivalve-Coated Grain-Intraclast IIIC-C9D6 yLS6T 26.7 209 241.136 0.55 4.76 25.32 25.0 2.700 Bivalve-Coated Grain-Intraclast IIIIMC-C1ID4 yLS6T 26.4 215.808 0.55 4.82 24.35 26.4 2.707 Skeletal Colitic Above Sequence Boundary IIIC-C1ID6 yLS6 28.4 238 423.251 0.69 3.43 28.12 26.7 2.704 Cladocoropsis IIIIMC-C9D2 yLS6 27.0 21.0 14.0 13.00 26.7 2.699 Cladocoropsis IIIIMC-C9D2 yLS10T 24.1 17.0 28.094 0.20 14.00 13.00 22.1 2.699 Stromatoporoid-Red Algae-Coral IIIIC-C9D8 yLS10T 24.1 197 26.66.83 1.02 22.0 18.02 22.1 2.699 Stromatoporoid-Red		603.77		2.704	_	IIIC-C13D5	yLS10T	27	589	1344.516	0.45	2.34	25.74	0.15	245.0	4.20			56	-	0.36
26.5 2.699 Bivalve-Coated Grain-Intraclast IIIC-C9D6 yLS6T 26.7 209 241.136 0.55 4.76 25.32 25.0 2.700 Bivalve-Coated Grain-Intraclast IIIIMC-C11D4 yLS8T 26.7 266 215.808 0.55 4.82 24.36 28.4 2.707 Skeletal Oolitic Above Sequence Boundary IIIC-C11D6 yLS4 25.4 215 161.602 0.38 5.99 18.41 26.7 2.04 Cladocoropsis IIIIMC-C9D2 yLS9T 24.1 19.7 26.0 28.094 0.20 14.00 13.00 26.7 2.699 Cladocoropsis IIIIMC-C9D2 yLS9T 24.1 197 26.5683 10.2 27.3 14.3 22.1 2.699 Stromatoporoid-Red Algae-Coral IIIC-C10D5 yLS9T 22.1 191 28.126 0.87 2.2 14.00 13.00 22.1 2.699 Stromatoporoid-Red Algae-Coral IIIC-C2BD8 yLS9T 2.1 191 281.20 0.8		395.53	_	_		IIIC-C11D5	yLS7T	25	384	279.192	0.76	3.84	27.36	0.08	280.0	1.50			28	-	0.79
276 65 25.0 2.700 Bivalve-Coaled Grain-Intraclast IIIMC-C11D4 yLSST 26 215.808 0.55 4.82 24.36 246.90 28.4 2.707 Skeletal Colific Above Sequence Boundary IIIC-C11D6 yLS6 28.4 238 423.251 0.69 3.43 28.12 223.71 25.4 2.704 Cladocoropsis IIIMC-C9D2 yLS6 27.4 215 151.602 0.38 5.59 18.41 220.19 14.1 2.701 Stromatoporoid-Red Algae-Coral IIIMC-C9D2 yLS10T 24.1 197 26.683 1.02 2.70 18.00 198.29 2.1 2.09 Stromatoporoid-Red Algae-Coral IIIC-C10D5 yLS10T 24.1 197 26.5683 1.02 2.7 18.70 198.29 Stromatoporoid-Red Algae-Coral IIIC-C2BD8 yLS10T 24.1 197 26.5683 1.02 2.2 18.70 148.83 9.1 2.69 Stromatoporoid-Red Algae-Coral IIIC-C2BD8 yLS10T 1		352.70	-	_		IIIC-C9D6	yLS6T	26.7	209	241.136	0.55	4.76	25.32	0.24	180.0	3.79			53	-	0.85
246.90 28.4 27.07 Skeletal Colitic Above Sequence Boundary IIIC-C1D6 yLS6 28.4 238 423.251 0.69 3.43 28.12 223.71 25.4 2.704 Cladocoropsis IIIMC-C9D2 yLS4 25.4 215 151.602 0.38 5.59 18.41 220.19 14.1 2.701 Stromatoporoid-Red Algae-Coral IIIMC-C9D2 yLS5T 14.1 220 22.0443 0.35 5.73 24.32 203.69 24.1 2.70 Stromatoporoid-Red Algae-Coral IIIC-C10D5 yLS10T 24.1 197 26.5683 1.02 2.0 18.02 198.29 22.1 2.69 Stromatoporoid-Red Algae-Coral IIIC-C2DB yLS10T 19.1 191 281.205 0.87 2.2 18.70 148.83 9.1 2.69 Stromatoporoid-Red Algae-Coral IIIC-C2DB yLS10T 19.1 149 281.205 0.89 2.4 11.12 166.41 2.56 2.69 Stromatoporoid-Red Algae-Coral		276.65	_	2.700	_	IIIMC-C11D4	yLS3T	25	266	215.808	0.55	4.82	24.36	0.13	210.0	3.74		1	28	_	0.80
223.71 25.4 2.704 Cladocoropsis IIIMC-C9D2 yLS4 25.4 215 151.602 0.38 5.59 18.41 220.19 14.1 2.701 Stromatoporoid-Red Algae-Coral IIIMC-C9D2 yLS5T 14.1 220 28.084 0.20 14.00 13.00 217.01 26.7 2.699 Cladocoropsis IIIMC-C9D2 yLS10T 24.1 197 26.5683 1.02 2.73 24.32 198.29 22.1 2.69 Stromatoporoid-Red Algae-Coral IIIC-C10D5 yLS10T 22.1 191 190 281.205 0.87 2.27 18.70 148.83 9.1 2.697 Bivalive-Coated Grain-Intraclast IIIC-C2BD8 yLS10T 19.1 149 281.205 0.89 2.42 16.21 145.25 20.2 2.714 Cladocoropsis IIIC-CCBD7 YLS17 20.2 139 12.42 16.21 166.41 25.6 2.69 Stromatoporoid-Red Algae-Coral IIIC-C6D4 yLS3	1	246.90		2.707	_	IIIC-C11D6	yLS6	28.4	238	423.251	69.0	3.43	28.12	60.0	145.0	2.07			33	_	0.80
220.19 14.1 2.701 Stromatoporoid-Red Algae-Coral III(M-C)-C8D3 yLSST 14.1 220 28.094 0.20 14.00 13.00 217.01 26.7 2.699 Cradocoropsis IIIIMC-C9D2 yLS3T 26.7 209 274.043 0.35 5.73 24.32 203.69 24.1 2.70 Stromatoporoid-Red Algae-Coral IIIC-C10D5 yLS10T 24.1 197 26.583 1.02 2.20 18.62 198.29 22.1 2.699 Stromatoporoid-Red Algae-Coral IIIC-CRDB yLS10T 19.1 149 281.205 0.69 2.42 18.70 145.25 20.2 2.714 Cladocoropsis IIIC-CCBD7 YLS1T 20.2 139 120.412 0.69 2.4.3 11.12 166.41 25.6 2.699 Stromatoporoid-Red Algae-Coral IIIC-CCBD7 YLS3 25.6 101 136.78 2.4.3 11.12 70.10 19.0 2.74 Stromatoporoid-Red Algae-Coral IIIM-C.CGBD7 <td< td=""><td></td><td>223.71</td><td>_</td><td>2.704</td><td></td><td>IIIMC-C9D2</td><td>yLS4</td><td>25.4</td><td>215</td><td>151.602</td><td>0.38</td><td>5.59</td><td>18.41</td><td>0.07</td><td>220.0</td><td>2.06</td><td></td><td></td><td>25</td><td>-</td><td>0.51</td></td<>		223.71	_	2.704		IIIMC-C9D2	yLS4	25.4	215	151.602	0.38	5.59	18.41	0.07	220.0	2.06			25	-	0.51
217.01 26.7 2.699 Cladocoropsis IIIMC-C9D2 VLS3 26.7 209 274.043 0.35 5.73 24.32 203.69 24.1 2.70 Stromatoporoid-Red Algae-Coral IIIC-C10D5 yLS10T 24.1 197 265.683 1.02 2.20 18.62 198.29 22.1 2.69 Stromatoporoid-Red Algae-Coral IIIC-C8D8 yLS10T 19.1 149 281.205 0.69 2.42 18.70 145.25 20.2 2.714 Cladocoropsis IIIC-CCBD7 YLS7T 20.2 139 120.412 0.69 2.42 16.21 166.41 2.5.6 2.699 Stromatoporoid-Red Algae-Coral IIIC-CCBD7 YLS7T 20.2 139 120.412 0.30 4.43 11.12 106.41 2.5.6 2.699 Stromatoporoid-Red Algae-Coral IIIC-CCBD4 YLS3 25.6 101 136.78 5.413 70.10 19.0 2.74 Stromatoporoid-Red Algae-Coral IIIM-C10(80%) nMS10 19		220.19	_	2.701		III(M-C)-C8D3	yLS5T	14.1	220	28.094	0.20	14.00	13.00	0.57	130.0	4.54			12	_	0.35
203.69 24.1 2.700 Stromatoporoid-Red Algae-Coral IIIC-C10D5 yLS10T 24.1 197 265.683 1.02 2.20 18.62 198.29 22.1 2.69 Stromatoporoid-Red Algae-Coral IIIC-C8D8 yLS9T 22.1 191 310.886 0.87 2.27 18.70 145.25 22.2 2.714 Bivalve-Coated Grain-Intraclast IIIC-CCBD7 YLS7T 20.2 139 120.412 0.30 4.43 11.12 106.41 25.6 2.699 Stromatoporoid-Red Algae-Coral IIIC-C6D4 YLS3 25.6 101 136.787 0.56 5.89 24.13 70.10 19.0 2.74 Stromatoporoid-Red Algae-Coral IIIM-C10(80%) nMS10 19 65.4 364.721 0.28 3.20 13.40 59.66 16.1 2.713 Skeletal Ooilitic Below Sequence Boundary IIIM-B7C4 yLS2 16.1 65.4 364.721 0.28 3.20 13.40 59.11 16.4 2.66 Bivalve-Coated Gr		217.01	_	2.699		IIIMC-C9D2	yLS3	26.7	209	274.043	0.35	5.73	24.32	0.15		4.93			56	_	0.71
198.29 22.1 2.69 Stromatoporoid-Red Algae-Coral IIIC-C8D8 yLS9T 22.1 191 310.886 0.87 2.27 18.70 148.83 9.1 2.697 Bivalve-Coated Grain-Intraclast III(M-C) - C4D10 yLS10T 19.1 149 281.205 0.69 2.42 16.21 145.25 20.2 2.714 Cladocoropsis IIIC-CCBD7 YLS7T 20.2 139 120.412 0.30 4.43 11.12 106.41 25.6 2.099 Stromatoporoid-Red Algae-Coral IIIC-C6D4 YLS3 25.6 101 136.787 0.56 5.89 24.13 70.10 19.0 2.74 Stromatoporoid-Red Algae-Coral IIIM-LC(20%) nMS10 19 65.4 364.721 0.28 3.20 13.40 59.66 16.1 2.713 Skeletal Ooilitic Below Sequence Boundary IIIM-B7C4 yLS2 16.1 59.6 25.588 0.19 15.35 13.46 59.11 16.4 2.66 Bivalve-Coated Grain-Intraclas		203.69		2.700		IIIC-C10D5	yLS10T	24.1	197	265.683	1.02	2.20	18.62	0.13		10.30			58	-	0.29
148.83 9.1 2.697 Bivalve-Coaled Grain-Intraclast III(M-C) - C4D10 VLS10T 19.1 149 281.205 0.69 2.42 16.21 145.25 2.02 2.714 Cladocoropsis IIIC-CCBD7 YLS7T 20.2 139 120.412 0.30 4.43 11.12 106.41 2.56 2.699 Stromatoporoid-Red Algae-Coral IIIC-C6D4 yLS3 25.6 101 136.787 0.56 5.89 24.13 70.10 19.0 2.744 Stromatoporoid-Red Algae-Coral IIIM-C(20%) nMS10 19 65.4 364.721 0.28 3.20 13.40 59.66 16.1 2.713 Skeletal Oolitic Below Sequence Boundary IIIM-B7C4 yLS10T 16.4 59.6 25.558 0.19 15.35 13.16 59.11 16.4 2.66 Bivalve-Coaled Grain-Intradast IIIC-C3D10 yLS10T 16.4 59.1 85.18 0.36 2.2 2.7 5.78		198.29	-	2.699		IIIC-C8D8	yLS9T	22.1	191	310.686	0.87	2.27	18.70	0.18	180.0	6.65		+	\rightarrow	_	09.0
145.25 20.2 2.714 Cladocoropsis IIIC-CC8D7 YLS7T 20.2 139 120.412 0.30 4.43 11.12 106.41 25.6 2.699 Stromatoporoid-Red Algae-Coral IIIC-C6D4 yLS3 25.6 101 136.787 0.56 5.89 24.13 70.10 19.0 2.744 Stromatoporoid-Red Algae-Coral IIIM-C10(80%) nMS10 19 65.4 364.721 0.28 3.20 13.40 59.66 16.1 2.713 Skeletal Oolitic Below Sequence Boundary IIIM-B7C4 yLS10T 16.1 59.66 25.598 0.19 15.35 13.16 59.11 16.4 2.66 26.598 0.79 16.2 57.8 57.8		148.83	+	2.697		III(M-C) - C4D10	yLS10T	19.1	149	281.205	69.0	2.42	16.21	0.81		2.00	09.0	800	2.00 20	-	0.89
106.41 25.6 2.699 Stromatoporoid-Red Algae-Coral IIIC-C6D4 yLS3 25.6 101 136.787 0.56 5.89 24.13 70.10 19.0 2.744 Stromatoporoid-Red Algae-Coral IIIM-C(20%) nMS10 19 65.4 364.721 0.28 3.20 13.40 59.66 16.1 2.713 Skeletal Oolitic Below Sequence Boundary IIIM-B7C4 yLS10T 16.1 59.66 25.598 0.19 15.35 13.16 59.11 16.4 2.696 Bivalve-Coated Grain-Intradast IIIC-C3D10 yLS10T 16.4 59.1 85.18 0.36 2.42 5.78		145.25	-	2.714		IIIC-CC8D7	YLS7T	20.2	139	120.412	0:30	4.43	11.12	0.44	_	11.19			22	_	1.00
70.10 19.0 2.744 Stromatoporoid-Red Algae-Coral IIIM-C (20%) nMS10 19 65.4 364.721 0.28 3.20 13.40 59.66 16.1 2.713 Skeletal Oolitic Below Sequence Boundary IIIM-B7C4 yLS10T 16.1 59.66 25.598 0.19 15.35 13.16 59.11 16.4 2.696 Bivalve-Coated Grain-Intraclast IIIC-C3D10 yLS10T 16.4 59.1 85.218 0.36 2.42 5.78		106.41	+	2.699		IIIC-C6D4	yLS3	25.6	101	136.787	0.56	5.89	24.13	80.0	250.0	2.88			27	27.01 0	0.92
59.66 16.1 2.713 Skeletal Ooitifc Below Sequence Boundary IIIM – B7C4 yLS2 16.1 59.66 25.598 0.19 15.35 13.16 59.11 16.4 2.696 Blyalve-Coaled Grain-Infradalst IIIC – C3D10 yLS10T 16.4 59.1 85.218 0.36 2.42 5.78		70.10	19.0	2.744		IIIM-C (20%) I-C10(80%)	nMS10	19	65.4	364.721	0.28	3.20	13.40	0.32	117.5	3.65			17		0.40
59.11 16.4 2.696 Bivalve-Coated Grain-Intraclast IIIC – C3D10 yLS10T 16.4 59.1 85.218 0.36 2.42 5.78		99.69	16.1			IIIM – B7C4	yLS2	16.1	99.69	25.598	0.19	15.35	13.16	0.40	152.9	3.07	0.50	1000	1.00 17	17.23 0	0.50
		59.11	16.4		Bivalve-Coated Grain-Intraclast	IIIC - C3D10	yLS10T	16.4	59.1	85.218	0.36	2.42	5.78	69.0	4.4	9.22	0.10	3600 0	0.69 15	15.69 0	0.37

Correction	6	ွ	S	C	_	C	0	C	0	0	0	0	0	2	4	C	C	0	2	ø,	(O		S	C	e	4	0	_	6	0	0	e	2	0	ပ္	_د	4	2	_	8
Closure	66.0 2	99:0	5 0.65	0.80	3 1.87	5 1.60	3 0.29	1.50		\rightarrow	0.40	9 1.30	09.1	0.82	0 2.64	0 1.30	0.40	4 0.30	3 0.32	0.18	0.26	0.40	0.26	0.80	_	2 0.34	09.0	0.11	_	_	-	3 0.83	1 0.85	0 2.10	3 0.66	2 0.58				1.03
lstoT _e B	20.87	20.22	14.55	22.90	20.23	19.65	12.76	18.30	21.75	14.84	10.50	15.79	17.30	16.80	14.80	13.00	10.62	13.14	10.96	8.73	6.30	4.09	3.27	4.04	2.07	29.32	32.97	19.42	28.48	14.24	19.81	26.73	25.41	29.60	26.03	13.02	27.89	30.36	15.12	25.11
В^3		4.58								1.08	1.07		1.40															1.29			4.04					1.20				
<u>ი</u>		240								1300	1147		1150															2800			285					4200				
63		0.08								0.16	0.16		0.20															90.0			1.02					0.10				
В,2	4.30	6.83	4.85	3.90	9.02	8.30	1.15		6.36	4.07	1.1	7.99	5.89	11.50			3.07	1.00	1.20	1.20						6.99		5.33	6.55	2.10	1.79	10.93		2.20	4.27	0.71	5.63	5.36	2.45	2.40
P ₄ 2	165.0	54.7	208.0	210.0	240.0	280.0	1274.1		270.0	35.9	360.0	194.6	120.0	170.0			180.0	1444.4	1200.0	1423.1						110.0		30.0	200.0	3300.0	97.2	250.0		200.0	185.0	0.09	160.0	200.0	1100.0	240.0
G2	0.15	0.22	0.24	0.10	0.04	0.05	0.84		0.03	0.58	0.14	0.10	0.34	0.12			0.17	0.15	0.34	0.11						1.04		0.92	0.10	0.20	0.54	0.10		0.10	0.12	0.20	0.15	0.14	0.40	90.0
B _v 1	16.57	8.80	9.70	19.00	11.21	11.35	11.61	18.30	15.39	69.6	8.32	7.79	10.01	5.30	14.80	13.00	7.55	12.14	9.76	7.53	6.30	4.09	3.27	4.04	2.07	22.32	32.97	12.81	21.93	12.14	13.99	15.80	25.41	27.40	21.76	11.11	22.27	25.00	12.67	22.71
5	8.00	11.00	9.30	15.00	13.50	15.50	17.12	110.00	52.03	8.24	16.78	23.32	18.18	27.00	150.00	49.05	24.28	35.22	155.08	271.79	800.00	1300.00	2309.95	3000.00	2467.04	2.76	1.55	1.70	2.93	3.60	3.80	4.27	4.39	3.14	8.48	4.11	11.46	10.27	6.10	9.80
G1	0.58	0.45	0.50	0.70	0.55	0.55	0.33	0.10	0.23	0.51	0.85	0.40	0.58	0.50	0.20	0.84	0.47	0.82	0.26	0.27	90.0	0.04	0.11	90.0	0.07	0.22	69.0	0.33	0.31	0.16	0.34	0.35	0.64	1.12	0.42	0.50	0.35	0.33	98.0	0.54
Thomeer Permeability	33.782	7.069	10.440	9.829	5.825	4.535	7.564	2.434	2.365	13.078	1.161	1.431	2.389	0.370	0.317	0.340	1.016	0.589	060.0	0.017	0.010	0.003	0.000	0.000	0.000	1829.704	2825.645	948.022	1018.065	499.213	216.624	211.313	231.373	249.042	79.701	70.294	58.267	680.66	63.687	46.499
Permeability Klinkenberg	41.2	17.6	18.24	15.2	14.8	11.8	10.16	2.67	5.31	4.075	4.069	3.875	3.06	3.01	1.57	1.216	0.875	0.209	0.143	0.04	0.024	0.006	0.003	0.003	0.003	2379	1543	1159	1142	705	388	275	230	200	103	6.96	97.5	93.3	83.2	64.4
Phi	19.2	19.6	14.4	20.1	21.8	19.8	12.6	19.5	20.8	13	9.5	15.4	15.7	16.2	16.5	12.3	10.3	11.8	6	8.5	8.9	4.5	3.9	5.4	2.8	25.1	30.1	18.2	26.7	15	19.1	24.1	22.1	26.4	25.5	13.8	26.2	26.2	41	21.6
Lucia Rock Type	yLS5	yLS2	yLS3(80%) nLS4(20%)	yLS2	nMS2(20%) yLS3 (80%)	yLS3	yLS4	yMLS2	nMS1	yLS2styllo	yLS1	yLS4	nMS1	yLS3	nLS5	yLS7	yLS4(60%) nLS2(40%)	nLS2	nLS2	пСО	nL0	nL0	nL0	nLS1	nL0	yLS1ST	yLS23T	yLS10T	yLS12T	yLS6	yLS12T	yLS10	yM-LS10	yLS10T	yM-LS10	yLS10	yMS5	yM-LS6	yLS7	yM-LS5
Archie Rock Type	IIIC-C6D3	IIIMC-C5D1	III(M-C) - C6D2(80%) IIIM-D4(20%)	IIC-C	IIM-A (20%) IIIC-C5D3(80%)	IIIMC-B2C2D5	IIIM – B6C4	IIIMC-C3D1	IIIFM-B3C1	IIIM-B5C2D1	III(F-M) – B4C2	IIIC – B3D2	II-B3C1	IIIC-C3D2	IIIM-A (60%) I-D10 (40%)	III(M-C) - B2C2D7	IIIC – C6D2(60%) IIIC-D2(40%)	IIIM - B4C1	IIIM – B3D1	IIIM – B1	III(F-M) – B1	III(F-M) – A	III(F-M) – A	IIIM – B2	IIIF – A	IIIMC-C12D10	IIIMC-C15D13	IIIC-C7D	IIIMC-C15D8	IIIC – C10D3	IIIC-C8D7	IIIMC-C13D5	IIIMC-C10D5	IIIC-C7D10	IIIMC-C10D2	IIIC-C5D5	IIIM-C10	IIIM-C10D3	IIIMC-C5D3	IIIMC-C10D2
Facies Limestone Unless Noted	Cladocoropsis	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Cladocoropsis	Stromatoporoid-Red Algae-Coral	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Below Sequence Boundary	Cladocoropsis	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Bivalve-Coated Grain-Intraclast	Stromatoporoid-Red Algae-Coral	Stromatoporoid-Red Algae-Coral	Stromatoporoid-Red Algae-Coral	Bivalve-Coated Grain-Intraclast	Bivalve-Coated Grain-Intraclast	Micrite	Skeletal Oolitic Below Sequence BoundaryMicrite	Skeletal Oolitic Below Sequence BoundaryMicrite	Micrite	Micrite	Micrite	Bivalve-Coated Grain-Intraclast	Micrite	Skeletal Oolitic Above Sequence Boundary	Stromatoporoid-Red Algae-Coral	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Cladocoropsis	Cladocoropsis	Skeletal Oolitic Below Sequence Boundary	Cladocoropsis	Skeletal Oolitic Above Sequence Boundary		Skeletal Oolitic Above Sequence Boundary
Grain Density (g/cm³)	2.710	2.707	2.712	2.709	2.726	2.726	2.710	2.742	2.725	2.710	2.722	2.734	2.709	2.718	2.725	2.708	2.744	2.704	2.705	2.706	2.750	2.754	2.738	2.698	2.761	2.700	2.711	2.693	2.694	2.691	2.689	2.714	2.707	2.700	2.684	2.699	2.684	2.693	2.694	2.686
Helium Porosity (%)	19.2	19.6	14.4	20.1	21.8	19.8	12.6	19.5				15.4	15.7	16.2	16.5	12.3	10.3	11.8	9.0	8.5	8.9	4.5	3.9	5.4		25.1	30.1	18.2			19.1		22.1	26.4	25.5	13.8			-	21.6
Permeability to the stress of	44.31	19.55	18.24	17.09	16.61	13.36	10.16	69.9	6.29	4.08	4.07	3.88	3.82	3.75	2.07	1.22	0.87	0.21	0.14	0.04	0.02	0.01	0.00	0.00	_	2390.00	1550.00	1170.00	_	-	-	_	234.00	203.00	105.00	98.99				66.04
II9W	ш	ш	ш	ш	ш	ш	ш	Ь	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш		G	G 1	O J		+	O		Ŋ	O	Ŋ	O	ပ	ပ		G

Skele Skele Skele	quence Boundary equence Boundary osis IAlgae-Coral ANA ANA Algae-Coral IAlgae-Coral Inin-Intraclast osis osis	IIIFM-C2(70%) IIIMC-C12D3(30%) IIIFM-C5D1 IIIC-C15(60%) IIIC-C2DZ(40%)	nM-LS2(70%) yLS5(30%)	28.9	36.7	,,,,	,	1000									000
	osis IAlgae-Coral ININ Osis IAlgae-Coral IAlgae-Coral IAlgae-Coral Inin-Intraclast osis Osis	IIIFM-C5D1 IIIC-C15(60%) IIIMC-C2D2(40%)				11.414	0.38	56.65	24.20	0.05	250.0	92.9			• • • • • • • • • • • • • • • • • • • •	30.96	2.10
	Algae-Coral NIN Sis Sis Algae-Coral Algae-Coral Intraclast sin-Intraclast sis Sis Sis	IIIC-C15(60%) IIIMC-C2D2(40%)	yM-LS3	26.8	35.3	26.119	0.32	20.00	24.50	0.09	245.0	6.04			.,	30.54	0.98
	Algae-Coral NIN Sis Sis IAlgae-Coral IAlgae-Coral In-Intraclast Sis Sis	00000	yLS10T (60%) yM-LS5 (40%)	25.4	33.1	9.905	0.35	3.00	1.80	0.32	26.6	20.00	0.07	190	5.00	26.80	0.50
	NIN osis IAlgae-Coral IAlgae-Coral inin-Intraclast osis Algae-Coral	IIIC-C5D7	nLS6T	24.6	27.7	36.817	0.73	11.21	28.38								2.50
	osis I Algae-Coral I Algae-Coral iin-Intraclast osis Algae-Coral	IIIC-C5D7	yLS7	19.6	26.8	59.077	1.00	3.30	13.00	0.10	140.0	7.20			•	20.20	1.60
	I Algae-Coral I Algae-Coral inin-Intraclast osis Algae-Coral	IIIM-C7D5	yM-LS9	32	25.2	24.750	0.38	20.14	27.01	0.03	280.0	5.92				32.94	1.21
	I Algae-Coral iin-Intraclast osis osis	IIIM-C5D5	nM-LS5	25.1	24.2	11.810	0.80	10.00	15.18	0.10	150.0	12.00				27.18	1.60
	ain-Intraclast osis osis 1 Algae-Coral	IIIM-C3D7	nLS8T	23.4	9.27	6.187	0.84	10.00	11.35	0.25	150.0	11.60	0.10	260	1.80	24.75	2.50
	uin-Intraclast osis osis 1Algae-Coral	IIIC-C3D5	uLS5	22.9	8.17	000'0	14.0	9.37	00.0	0.20	55.5	18.66	0.20	009	1.00	19.66	00.9
	osis osis 1 Algae-Coral	IIIC - C2D7	nLS7	8.8	8.52	10.470	0.56	6.85	69.7	0.27	5500.0	0.48				8.16	1.32
	osis I Algae-Coral	IIIM-C5D1	nM-LS5	24	7.5	1.017	0.15	42.00	6.12	0.11	130.0	16.54				22.67	1.10
	i Algae-Coral	IIIMC-C3D2	nLS3	17.1	2.36	0.662	0.35	75.16	15.54							15.54	2.20
		(III-I)MC-C5D2	nMS5	13.9	1.89	1.316	0.85	10.00	5.28	0.36	125.0	7.23	0.08	1700	1.30	13.80	1.00
	1 Algae-Coral	IIIMC-C2 (50%) IIIC-C2D4	nMS2(50%) yLS5	4	1.13	0.112	0.31	49.92	3.96	0.20	143.3	7.38	0.50	550	1.79	13.13	1.08
	ain-Intraclast	IIIC - C1D5	yLS3	9.2	1.112	1.008	1.67	11.29	8.16	0.10	2100.0	1.62				9.78	09.0
	d Algae-Coral	IIIM-C2D3	nM-LS2	17.5	0.953	0.283	0.23	62.00	6.34	0.21	165.0	7.71	0:30	625	2.37	16.42	1.80
	ain-Intraclast	IIIC – C1D1	nLS1	S	0.709	960:0	0.75	26.00	3.40	0.15	3000.0	1.60				5.00	0.33
		IIIC – A	uL0	10.2	0.401	0.211	0.35	77.91	9.10	0.13	1400.0	1.29				10.39	0.55
	ain-Intraclast	IIIC – D3	nLS3	7.3	0.111	0.000	0.37	750.00	1.81	0.05	12000.0	2.05				3.87	1.70
		IVF – A	uL0	1.4	0.062	0.000	0.22	10704.21	0.42							0.42	0.13
	ain-Intraclast	IIIC – C3D2(20%) IVF-A(80%)	yLS2(20%) nF0(80%)	7.4	0.047	0.001	0.80	380.00	3.98	90.0	3400.0	2.10				80.9	1.20
		IIIM – A	nL0	4.1	0.022	0.000	0.93	620.25	1.03	0.08	8000.0	0.99				2.02	0.22
	quence Boundary	IIIC – A	nL0	6.2	0.011	0.003	0.32	220.00	2.80	0.20	780.0	2.60				5.41	0.24
	ain-Intraclast	IIIC – A	nL0	6.3	0.009	0.004	0.78	218.64	5.66								0.40
		IIIC – A	nL0	9.9	0.002	0.000	0.12	2200.00	5.20							\dashv	1.00
		IVF – A	nF0	¥	¥	0.000	0.05	5000.00	2.75							2.75	0.80
	ain-Intraclast	(IVF-IIIC) – D3	nFS3	₹	Ą	0.088	0.87	36.46	5.05	0.10	5500.0	1.45				6.50	0.68
	ain-Intraclast	IIIC - C5D12	yLS12	¥	Ą	47.452	0.62	3.04	7.82	0.21	4600.0	1.02				8.84	0.30
		(I – III) – A	nL0	ž	₹	0.003	0.14	910.41	6.78							6.78	0.35
		IVF – A	nL0	¥	¥	0.000	0.12	2900.00	4.12							4.12	0.21
		IVF – A	nL0	NA	NA	0.000	0.20	10750.00	0.39							0.39	0.13
	ain-Intraclast	IIIC-C10D15	yLS20T	25.8	4800	3998.284	0.49	1.29	26.07						,,	26.07	0.00
_	d Algae-Coral	IIIC-C7D12	yLS15T	22.8	3570	1368.832	0.94	1.22	22.19	0.08	254.7	1.55	09:0	700	2.00	25.74	0.15
	quence Boundary	IIIC - C14D5	yLS9T	17	1999	985.624	0.20	2.00	11.00	0.24	65.0	4.91	0.08	4600	1.16	17.07	0.20
2.674 Bivalve-Coated Grain-Intraclast	ain-Intraclast	IIIC-C10D6(80%) IIIF-C1(20%)	yLS12T(80%) nFS1(20%)	13.7	1812	596.436	0.28	1.75	9.38	0.23	2169.9	2.27			-	11.65	0.10
2.676 Skeletal Oolitic Below Sequence Boundary	equence Boundary	IIIC-C12D3(80%) IIIC-D3(20%)	yLS4T(80%) nLS3(20%)	15.6	1240	639.223	0.22	2.50	11.80	0.26	90.0	1.48	90:0	2500	1.11	14.39	1.40
2.700 Cladocoropsis	osis	IIIMC-C15D10	yLS20T	28.2	1176	2537.378	0.75	1.39	29.44	0.15	180.0	2.00				31.44	0.00
2.682 Stromatoporoid-Red Algae-Coral	1 Algae-Coral	IIIMC-C15D10	yLS17T	29.3	1006	878.031	0.48	3.10	28.75	0.08	245.0	2.48				31.23	1.30
2.701 Skeletal Oolitic Above Sequence Boundary	quence Boundary	IIIMC-C12D8	yLS10	23.6	521	373.278	0.36	4.74	23.76	1.00	85.0	3.00				26.76	0.70
2.670 Skeletal Oolitic Below Sequence Boundary	quence Boundary	IIIC - C11D5	yLS7T	16	514	600.179	0.12	3.80	11.60	0.20	220.0	2.69	0.31	1000	2.82	17.11	0.45
2.691 Cladocoropsis	sisa	IIIMC-C15D5	yL-S15T	22.2	492	249.577	0.50	3.63	18.50	0.10	260.0	4.18	0.10	3500	0.50	23.18	0.78
2.696 Stromatoporoid-Red Algae-Coral	d Algae-Coral	IIIC-C5D15	yLS15T	26.9	445	556.350	0.71	2.74	26.36	0.10	209.8	3.74			.,	30.10	1.60
2.695 Skeletal Oolitic Above Sequence Boundary	quence Boundary	IIIC-C19D2	yLS17T	23.8	417	458.125	0.48	3.59	24.17	0.20	200.0	3.35				27.52	0.80
2.685 Stromatoporoid-Red Algae-Coral	1 Algae-Coral	IIIMC-C5D12	yLS17T	24.1	387	638.416	0.70	2.35	24.03	0.18	211.1	3.06				27.09	0.90
2.677 Bivalve-Coated Grain-Intraclast	ain-Intraclast	IIIC-C4D10(60%)	yLS10T(60%)	12.1	319	396.555	0.51	1.93	12.53	0.30	2500.0	06.0				13.43	0.21

Closure Correction	1.50	0.00	1.80	99.0	1.30	1.40	2.60	2.00	0.19	1.60	1.30	3.10	- B. C.	2.00	1.20	2.60	0.85	1.53	1.75	3.60	1.82	0.70	0.75	0.50	0.56	0.40	06.0	0.75	0:30	0.70	06.0	0.38	0.50	0.40	0.27	0.11	0.09	0.62	0.68	0.57	0.63	0.91	0.22	0.50
lstoT _v B	27.27	6.65	_	26.52	25.83	26.75	29.58	26.07	13.97	_	_	_	_	_	_	-	_	_	21.50	16.70	13.42		20.39	19.45		_	-			8.31	_	3.01	_	3.23	2.53	1.02	26.00		28.29	31.98			_	12.60
B _v 3		1.26				2.00		3.40	1.97				90:					1.00								1.50			0.82								4.50							0.99
ကို		1500				330		220	1000			0	200					1000								1200			1100								200							2423
63		0.11				0.10		0.15	0.70			0	0.30					0.20								0.30			0.44								0.10							0.25
B _v 2	3.06	1.89	2.67	1.72	4.43	5.50		8.00	2.40	3.60	4.49	4.31	5.23	12.56	3.40	15.13	1.27	3.63			4.68					2.51	1.27		0.95	2.51	2.73	1.41					13.00	3.83	7.55	3.15	4.04	6.71	1.57	3.94
P _d 2	350.0	20.8	240.0	250.0	260.0	56.0		50.0	100.0	200.0	210.0	265.0	240.0	160.0	220.0	220.0	2900.0	260.0			155.0					269.2	1100.0		320.0	1500.0	1150.0	4700.0					4.5	220.0	54.3	250.0	130.0	175.0	1452.6	24.6
62	0.05	1.24	0.10	0.08	0.08	0.22		0.25	0.50	0.05	0.05	0.03	2 .	0.08	0.05	0.05	0.18	0.08			0.10					0.15	0.22		0.10	0.24	0.30	90.0					06.0	0.19	0.91	0.19	0.18	0.19	0.31	1.10
B _v 1	24.22	3.51	26.40	24.80	21.40	19.25	29.58	14.67	09.6	21.90	17.74	19.61	13.30	11.80	23.00	12.15	9.62	17.50	21.50	16.70	8.75	17.35	20.39	19.45	18.67	12.92	7.80	4.20	7.44	5.80	4.04	1.60	3.06	3.23	2.53	1.02	8.50	25.17	20.74	28.83	20.35	14.84	10.54	7.66
P _d 1	4.26	1.21	5.60	5.30	8.80	6.00	7.49	12.30	12.09	11.50	12.50	38.33	14.70	23.00	34.50	75.11	2.49	15.00	94.89	185.00	50.60	73.80	153.25	165.35	183.25	29.67	120.00	1972.70	12.79	360.00	420.00	1289.59	1000.00	4294.44	3786.73	8167.52	1.60	6.33	8.77	6.74	3.43	6.34	3.01	4.97
61	0.46	0.86	0.73	0.85	0.50	0.61	0.83	0.49	0.26	0.55	0.75	0.30	0.00	0.40	0.37	0.14	1.09	0.67	0.27	0.08	0.30	0.38	0.19	0.20	0.19	0.30	0.38	0.08	0.51	0.14	90.0	0.25	0.36	0.10	0.08	0.25	0.45	0.35	0.16	0.50	0.21	0.48	0.38	0.26
Thomeer Permeability	346.640	38.935	128.742	103.530	56.754	75.774	75.581	14.018	14.475	30.650	11.257	4.963	0.102	3.402	6.377	1.371	50.719	8.840	1.131	0.901	0.567	0.769	0.604	0.462	0.360	0.899	0.058	0.001	3.161	0.014	0.015	0.000	0.000	0.000	0.000	0.000	316.304	247.523	244.619	175.559	1050.658	55.564	166.215	54.253
Permeability Klinkenberg	312	264	143	123	76.4	71.8	61.4	45.5	33.2	30.6	21.2	17.9	10.7	14.4	12.6	12.4	11.4	10.8	2.36	1.99	1.92	1.401	1.2	0.814	0.794	0.537	0.314	0.109	0.079	0.037	0.023	0.002	0.002	0.000	0.000	0.000	7802	332	318	181	139	71.2	56.9	55.8
Phi	24.2	10.5	24.3	23	24.4	23.8	28.3	23.9	13.6	24.9	19.7	25	0.01	23.8	22.6	26.9	9.5	21	21.1	20.8	15.6	15.1	18.6	17.6	17.5	16.2	8.5	6.1	7.7	8.5	7.3	4.2	3.3	3.7	3.6	2.1	26.1	27	24.3	26.6	28.2	20.2	12.3	12.5
Lucia Rock Type	yLS15T	nMS7T	yLS10T	yM-LS10T	yM-LS7	yLS7T	nLS15	yM-LS10T	yLS2	nM-LS10	yLS7	yM-LS10	yLSS	yM-LS10	yMS5	nFS11	yLS8	nM-LS10	yM-LS5	nM-LS7	yM-LS2	nLS4	nF0	nF0	nFS2	yM-LS3	nLS2	nF0	yLS1	nLS1	nLS1	nL0	nF0	nF0	nL0	nF0	nFS13T	yLS10	yLS5	yLS7	nFS5T	yLS5T	yLS6T	yLS4
Archie Rock Type	IIIMC-C16D2	(III-I)-BCD7	IIIMC-C13D10	IIIMC-C15D2	IIIMC-C15D5	IIIMC-C10D10	IIIM-C3D15	IIIMC-C10D5	III(M-C) – C4D2	IIIMC-C5D10	IIIMC-C10D5	IIIMC-C10D5	IIIC - C3DZ	IIIMC-C10D3	IIIM-C10D1	(IIVF-IIIC) – C5D6	IIIC – C3D8	IIIMC-C7D5	IIIFM-C10	IIIMC-C3D3 (50%) II-C3D7(50%)	IIIM-BC8D1	IIIC - C1D4	(II-III)VF – A	(II-III)VF – A	(II-III)VF – C1D1	IIIFM-C5	III(M-C) – D1	IVF – D1	IIIC – C2D1	III(M-C) – D1	IIIM – D1	III(M-C) – A	IF – A	IVF – A	III(F-M) – A	IVF – A	(II-III)-D18	IIIMC-B6C6D6	IIIMC-B10C5D2	IIIC-B4C5D5	I-C3D10	IIIMC-C10D3	IIIC-C5D6	IIIC-B3C10D4
Facies Limestone Unless Noted	Skeletal Oolitic Above Sequence Boundary	Stromatoporoid-Red Algae-Coral	Cladocoropsis	Cladocoropsis	Cladocoropsis	Cladocoropsis	Stromatoporoid-Red Algae-Coral	Cladocoropsis	Bivalve-Coated Grain-Intraclast	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary	Cladocoropsis	okeletal Collic Below Sequence Boundary	Cladocoropsis	Cladocoropsis	Skeletal Oolitic Below Sequence Boundary	Bivalve-Coated Grain-Intraclast	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Micrite	Micrite	Micrite	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Micrite	Bivalve-Coated Grain-Intraclast	Skeletal Oolitic Below Sequence Boundary	Micrite	Micrite	Bivalve-Coated Grain-Intraclast	Micrite	Micrite	Micrite	UNCERTAIN	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Stromatoporoid-Red Algae-Coral	Cladocoropsis	Bivalve-Coated Grain-Intraclast	Skeletal Oolitic Below Sequence Boundary
Grain Density (g/cm³)	2.691	2.733	2.694	2.690	2.693	2.691	2.700	2.690	2.640	2.702	2.691	2.690	7.00.7	2.714	2.701	2.646	2.682	2.682	2.699	2.715	2.725	2.687	2.672	2.680	2.680	2.695	2.688	2.683	2.703	2.686	2.699	2.709	2.707	2.705	2.728	2.717	2.698	2.705	2.698	2.699	2.720	2.703	2.707	2.714
Helium Porosity (%)	24.2	10.5	24.3	23.0	24.4	23.8	28.3	23.9	13.6		19.7			\rightarrow					21.1	20.8	15.6	15.1	18.6	17.6		16.2				8.5	7.3	4.2	3.3	3.7	3.6	2.1	26.1	27.0	24.3	26.6				12.5
Permeability for (md)	316.00	270.00	146.00	125.00	78.10	73.50	63.00	46.80	33.20	31.70	22.10	18.60	10.70	15.10	13.20	12.42	11.41	11.40	2.61	2.22	2.15	1.40	1.20	0.81	0.79	0.63	0.31	0.11	80.0	0.04	0.02	0.00	0.00	0.00	0.00	0.00	7837.33	335.91	321.87	184.18	141.86	72.89	58.90	57.80
lləW	н	I	I	I	I	I	I	I	I	_	\dashv		+	+		+	\dashv		I	I	I	I	I	I	I	I	I	I	I	I	ェ	I	I	T	I	I	-	-	_	-	_	_	-	-

32	20	20	72	34	00	35	30	26	60	30	33	39	92	95	20	90	25	27	40	30	31	38	72	9	26	0.70	00	45	31	50	56	90	15	50	24	19	33	00	21	15)5	19	30	35	00	91	20
31 0.32	1.50	0.70	38 2.02	70 0.84	00.2	11 0.05	1 0.80	0.97	60.0 0.09	1.60	50 1.03	0.39	78 0.56	11 0.95	1.50	1.90	15 0.25	36 1.27	1 0.40	52 0.80	1.31	32 0.68	0.54			_	-	92 0.42	34 0.61	4 1.20	\dashv	06.0 20	1.15	5 0.20	5 0.24	3 0.19	0.63	4 0.00	6 0.21	8 0.45	24 0.05	0.19	08.0	9 0.65	_	-	1.50
12.81	25.34	0 24.90	21.68	32.70	27.08	2 10.11	.1 25.71	20.60	16.20	21.65	24.50	18.70	18.78	18.11	20.56	16.61	26.45	19.66	0 9.61	22.52	17.26	21.32	24.54	18.41	19.87	18.80	13.51	10.92	10.34	7.94	7.31	10.07	7.71	6.95	5.15	3.63	5.80	3.94	2.06	15.78	0 13.24	14.60	23.88	9.29	21.51	26.21	21.64
00.1 00		1.00	0 3.24			1.12	0 6.41												1.10														1.35								1.10					+	
1000		006 0	1 740			.5 990	0 280												1415														7 2200								0 5200						
3 0.30	0	0.10	4 0.11	2	0	4 0.45	0.10	0	0		00	09					4		1 0.26				4		က		0	9		4			0.04							8	4 0.10	0	3	6	ω ·	4	0
5.43	00.9	0 2.90	5.44	0 2.15	0 4.40	3.44	12.80	0 6.10	0 9.20		0 14.50	14.50					0 2.74		1 3.91				3 6.04		.0 0.83			5.16		9 1.34			9 1.70							.0 3.28	4.04	0 2.90	3.83	0. 1.19			00'8 00
20.8	215.0	280.0	77.5	280.0	200.0	5.6	16.0	240.0	115.0		220.0	84.7					295.0		164.1				225.3		1150.0		1100.0	365.0		1549.9			308.6							2500.0	65.0	2500.0	90.0	2000.0	160.0	250.0	140.0
1.52	0.08	0.10	0.26	0.13	0.14	0.55	0.75	0.20	0.07		0.10	0.10					0.12		0.56				0.16		0.25		0.30	0.38		0.15			0.31							0.25	0.35	0.25	06.0	0.29		_	0:30
6.38	19.34	21.00	13.00	30.55	22.68	5.55	6.50	14.50	7.00	21.65	10.00	4.20	18.78	18.11	20.56	16.61	23.70	19.66	4.60	22.52	17.26	21.32	18.50	18.41	19.04	18.80	12.51	5.76	10.34	09.9	7.31	10.07	4.66	6.95	5.15	3.63	5.80	3.94	2.06	12.50	8.10	11.70	20.05	8.10	15.42	22.37	13.64
5.93	8.00	4.50	7.42	20.00	37.48	1.70	4.20	12.25	1.10	140.00	42.00	3.60	32.06	105.00	140.00	150.00	41.83	150.00	18.00	85.00	135.00	47.60	98.77	191.49	47.51	158.59	218.79	9.47	352.47	360.00	360.93	442.87	33.01	756.19	481.79	610.32	1000.00	3104.12	3817.05	3.80	2.48	4.09	4.33	5.20	3.50	3.71	2.76
0.25	0.82	1.31	0.70	0.59	0.30	0.45	0.50	29.0	1.05	0.08	0.26	0.40	0.33	0.08	90.0	90.0	0.41	90.0	0:30	0.32	0.10	0.34	0.21	0.07	0.34	60.0	0.27	09.0	0.11	0.16	0.04	0.16	0.63	0.07	0.05	60.0	60.0	0.10	0.07	0.10	0.12	0.10	0.33	0.16	0.58	0.78	1.05
28.136	29.002	57.764	18.806	18.156	6.946	117.278	22.986	9.092	144.446	2.646	1.302	17.592	5.719	3.290	3.500	1.990	4.069	2.789	1.239	1.222	1.342	3.282	1.076	1.286	2.615	1.367	0.071	2.783	0.062	0.015	0.110	0.023	0.141	0.011	0.023	0.003	0.003	0.000	0.000	888.818	687.305	672.578	358.321	106.470	152.911	192.884	87.201
49.8	45.2	22.2	22.3	17.6	16.6	15.7	14.9	11.7	11.1	7.64	6.23	5.76	5.72	4.99	4.95	4.94	4.38	4.35	4.07	3.82	3.53	3.14	2.79	2.3	1.96	1.83	0.279	0.201	0.171	0.167	0.14	0.116	0.043	0.013	0.008	0.008	0.003	0.001	0.001	1262	1033	876	382	193	189	183	111
11.1	23.9	19.4	22.4	56.9	25.7	7	23.1	18.5	15.7	21.3	24	18.3	17.2	19.9	20.2	9.61	23.4	20.1	9.5	19.9	18	19.4	22.4	19.9	18	21.3	12.6	9.6	8.6	8.8	7.4	10.2	7.1	8	5.3	4.3	6.4	9	2.3	16.1	14.8	14.7	21.3	10.8	21.1	21.8	20.5
yLS5	nFS8	yLS6	nFS10	yLS3	nLS6	yLS5T	nFS5	yLS4	nF-LS10	nFS4	nFS8	nFS8	nLS2	yLS2(20%) n(F-L)S3(80%)	n(F-L)S2	nFS9	nLS3	nFS3	yLS1	nF-L	n(F-L)S3	nLS2	nLS1	n(F-L)S1	nLS2	nF-L	0Mn	yL0	nL0	nL0	nL0	nLS2	nLS3	nMo	nL0	nL0	nL0	nMo	nMo	yLS2	yLS2	yL0	yLS10T	yL0	yLS8T	yLS4T	yLS10T
IIIC-B3C7D5	II-D10	III(M-C)-B2C2D6	(II-III)-C4D10	IIIMC-B4C4D8	IIIM-B3C2	IIIC - C3D5	II-C3D6	IIIC-C5D3	(I-II)VF-C7D3	(II-III)-C1D3	IIVF-C4D4	(II-III)VF-B4C3D3	IIIM-B1C3	III(F-M)- B10C10D2(20%) II-III(VF-M)-B3C3(80%)	(II-III)VF-M-B3C2D2	6Q-(II-I)	IIIM-B1C2	II-C1D5	IIIC-B2C6D1	IIVF-C1D4	(II-III)VF-M - B3C2D3	IIIM-B1C1	IIIM-B1C1	(II-III)VF-M-B1D1	IIIM-B1C1	IIVF-A	IIIF - B2	IIIC-B2C3	II-III(VF-C)-B2	III(M-C) - B2	(IIVF-IIIM) - A	(IIVF-IIIM-C)-D2	(IIVF-IIIM)-D4(60%) IIIC-B2C2(40%)	(IIVF-IIIF)-A	(IIVF-IIIM)-A	(IIVF-IIIM)-A	IIVF-IIIM)-A	(IIVF-IIIM)-A	(IIVF-IIIF)-A	IIIC-C12D2	IIIC-C8D2(90%) IIIC-D3(10%)	IIIC-C10	IIIC-C12D5	IIIC-C7	IIIC-C13D2	IIIC-C13D1	IIIC-C7D12
Skeletal Oolitic Below Sequence Boundary	Stromatoporoid-Red Algae-Coral	Bivalve-Coated Grain-Intraclast	Stromatoporoid-Red Algae-Coral	Cladocoropsis	Skeletal Oolitic Above Sequence Boundary	Bivalve-Coated Grain-Intraclast	Stromatoporoid-Red Algae-Coral	Cladocoropsis	Cladocoropsis	Cladocoropsis	Stromatoporoid-Red Algae-Coral	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Cladocoropsis	Skeletal Oolitic Above Sequence Boundary	Stromatoporoid-Red Algae-Coral	Bivalve-Coated Grain-Intraclast	Cladocoropsis	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Micrite	Skeletal Oolitic Above Sequence Boundary	Cladocoropsis	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Bivalve-Coated Grain-Intraclast	Skeletal Oolitic Below Sequence Boundary	Micrite	Micrite	Bivalve-Coated Grain-Intraclast	Micrite	Micrite	Micrite	Micrite	Micrite	Micrite	Skeletal Oolitic Below Sequence Boundary	Bivalve-Coated Grain-Intraclast	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Cladocoropsis	Cladocoropsis	Stromatoporoid-Red Algae-Coral
2.703	2.735	2.706	2.710	2.701	2.699	2.719	2.712	2.703	2.762	2.757	2.705	2.780	2.703	2.778	2.757	2.742	2.699	2.735	2.703	2.726	2.732	2.699	2.686	2.746	2.698	2.737	2.717	2.706	2.730	2.709	2.767	2.708	2.716	2.723	2.787	2.787	2.768	2.722	2.742	2.709	2.703	2.703	2.705	2.699	2.711	2.710	2.717
11.1	23.9	19.4	22.4	26.9	25.7	11.0	23.1	18.5	15.7	21.3	24.0	18.3	17.2	19.9	20.2	19.6	23.4	20.1	9.2	19.9	18.0	19.4	22.4	19.9	18.0	21.3	12.6	9.6	9.8	8.8	7.4	10.2	7.1	8.0	5.3	4.3	6.4	0.9	2.3	16.1	14.8	14.7	21.3	10.8	21.1	21.8	20.5
51.62	46.55	23.41	23.22	18.39	17.33	16.64	15.61	12.33	11.70	8.13	69.9	6.17	6.13	5.50	5.45	5.33	4.77	4.70	4.52	4.17	4.04	3.45	3.09	2.62	2.19	2.05	0.36	0.27	0.23	0.22	0.19	0.16	0.07	0.02	0.02	0.02	0.01	0.00	0.00	1272.78	1072.44	885.18	392.00	196.82	195.00	189.00	115.00
-	-	_	-	_	-	-	-	_	_	-	_	_	-	-	-	_	-	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	J 1	٦	٦	r	7			¬

Closure Correction	0.08	3.00	0.70	1.20	0.68	0.36	0.33	1.00	0.63	1.40	96.0	1.20	0.45	1.00	1.50	0.70	0.52	1.00	0.52	1.30	1.00	1.20	0.80	0.43	0.70	1.00	0.61	0.75	1.90	1.80	0.40	0.85	0.49	0.50	0.13	2.00	0.90	1.60	0.16	0.90	0.16	1.20	0.60
lstoT _v B		34.20	30.06	31.03	23.50	19.50	_	26.40	29.48	22.50			13.99	20.60	26.50	26.15	25.00	23.93	25.50	23.00	24.00	24.00	26.56			-	_	_	9.33	_	11.20	7.35	10.19	12.46	5.91	7.26	6.30	6.10		3.40			2.78
B _v 3		3.00						2.70	8.43	2.00					00.9	7.00																											
_گ		350						270	330	250					260	200																											
63		0.05						0.10	0.05	0.15					0.11	0.10																											
B _v 2	2.43	7.00	5.69	3.80		6.70	5.44	00.9	7.92	6.50	1.64	10.00	3.51	09.9	00.9	11.15		13.57	3.50	10.50	13.00	12.00	8.00	1.60		3.05	2.09	1.00		2.45							1.30						
م 2	300.0	24.0	215.0	310.0		99.5	120.0	56.1	25.4	30.0	1750.0	220.0	154.7	200.0	75.0	85.5		175.0	145.0	200.0	175.0	190.0	140.0	380.0		280.0	3500.0	0.096		1650.0							1400.0						
G2	60.0	0:30	0.12	0.05		0.84	0.85	09.0	0.39	0.50	0.16	0.10	0.72	0.15	0.20	0.10		0.13	0.30	90.0	0.13	0.08	0.52	90.0		0.10	0.05	0.36		0.17							0.26						
B,	29.08	24.20	24.96	27.23	23.50	12.80	15.40	17.70	13.13	11.00	16.04	16.20	10.48	14.00	14.50	8.00	25.00	10.37	22.00	12.50	11.00	12.00	18.56	17.50	18.67	12.57	2.21	9.10	9.33	3.90	11.20	7.35	10.19	12.46	5.91	7.26	2.00	6.10	4.12	3.40	4.18	3.23	2.78
5	1.81	2.40	78.7	8.36	132.30	16.59	13.40	10.72	3.91	5.70	14.90	15.00	5.36	7.00	13.87	4.00	38.53	20.00	32.71	8.00	28.00	30.00	25.00	19.30	114.00	55.00	378.67	120.00	188.31	338.48	127.75	230.00	240.53	122.52	1306.20	1400.00	450.00	1850.00	1660.49	3250.00	2150.22	3100.00	3805.47
61	1.10	0.75	0.55	0.65	0.15	0.14	0.24	0.56	0.54	09.0	0.36	0.47	0.72	0.75	0.48	1.30	0.27	0.70	0.43	1.05	09.0	0.62	0.45	0.74	0.19	0.53	0.47	98.0	0.28	0.18	0.32	0.31	0.23	0.39	0.04	0.04	80.0	0.05	60.0	0.03	90.0	90.0	0.11
Thomeer Permeability	862.479	568.115	85.012	71.785	1.509	31.196	33.756	22.507	98.023	28.025	17.232	12.157	22.362	22.351	11.077	10.730	660.6	1.646	5.391	8.708	1.161	1.152	680.9	4.677	0.942	0.464	0.000	0.086	0.051	0.005	0.134	0.018	0.048	0.140	9000	0.007	0.014	0.002	0.001	0.000	0.001	0.000	0.000
Permeability Klinkenberg	95.7	96	73.5	61.3	55.3	45.8	39.6	32.3	27.2	24.6	24.1	20.6	20.2	15.5	12.2	11.4	8.62	8.22	6.75	6.21	5.23	5.16	4.39	2.77	1.06	0.65	0.538	0.495	0.338	0.166	0.146	0.116	0.076	0.01	0.035	0.031	0.027	0.013	0.007	0.003	0.003	0.002	0.002
Phi	26.2	32.4	24.9	26.5	26	18.4	17.9	23.3	24.9	23	16.3	24.9	12.4	22.2	23.7	23.6	23.5	22.1	22.1	22.9	22.1	22.1	21.3	18.7	17.4	14.5	5.3	10.1	10.8	9.3	10.6	8.2	9.7	11.7	6.5	9.6	7.3	7.1	1.4	1.4	4.5	4.3	2.9
Lucia Rock Type	yLS15T	yLS5T	yLS7	yLS7T	yLS2	yL0	уLО	yLS5	yLS7 (50%) yLS10T (50%)	yLS6T	yLS5	yLS4	yLS5	yLS4 Strom Piece	yLS3	yLS3	yLS10T	yLS3	yLS2	yLS2	yLS1	yLS1	yLS2	yLS1	yLS1	yLS1	nLS1	nLS1	nLS3	nLS3	nLS2	nLS1	nMS1	nLS1	nMo	nFS1	nL0	nFS1	nMo	nLS1	nMo	nLS1	nMo
Archie Rock Type	IIIC-C7D17	IIIC-C13D10	IIIMC-B3C10D2	IIIC-C10D5	IIIMC-B3C5	IIIM-B5C11	IIIM-B5C10	IIIC-C5D5	IIIC-C2D7 IIIC-C15D5	IIIC-C7D3	IIIMC-C5	IIIMC-B4C4D2	IIIC-C4D5	IIIMC-B4C5D2	IIIC-C5D3	IIIMC-B4C3D1	IIIM-B5C3	IIIMC-B4C2D1	IIIM-B5C2	IIIMC-B4C2	IIIMC-B4C2	IIIMC-B4C2	IIIM-B4C2	IIIMC-B4C3	IIIMC-B3C1	IIIMC-B3C1	IIIC-C2D1	III(M-C)-B2C1	IIIC-B2C1D3	IIIC-C3D3	III(M-C)-B2C2	IIIM-B4C1	III(F-M)-C3D1	I-B1C1	IIIF-A	(II-IIIC)-C1	III(M-C)-B2	(II-IIIC)-C1	IIIF-A	(II-IIIC)-C1	IIIF-A	(II-IIIC)-C1	IIIF-A
Facies Limestone Unless Noted	BAD	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary	Cladocoropsis	Cladocoropsis	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Cladocoropsis	Cladocoropsis	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary	Stromatoporoid-Red Algae-Coral	Bivalve-Coated Grain-Intraclast	Stromatoporoid-Red Algae-Coral	Stromatoporoid-Red Algae-Coral	Cladocoropsis	Skeletal Oolitic Above Sequence Boundary	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary	Stromatoporoid-Red Algae-Coral	Cladocoropsis	Stromatoporoid-Red Algae-Coral	Skeletal Oolitic Above Sequence Boundary	Cladocoropsis	Skeletal Oolitic Above Sequence Boundary	Skeletal Oolitic Above Sequence Boundary	Bivalve-Coated Grain-Intraclast	Skeletal Oolitic Below Sequence Boundary	Skeletal Oolitic Below Sequence Boundary	Bivalve-Coated Grain-Intraclast	Skeletal Oolitic Below Sequence Boundary	Micrite	Bivalve-Coated Grain-Intraclast	Skeletal Oolitic Above Sequence Boundary	Micrite	Micrite	Bivalve-Coated Grain-Intraclast	Micrite	Micrite	Micrite	Micrite	Micrite	Micrite
Grain Density (g/cm³)	2.706	2.707	2.710	2.703	2.731	2.699	2.693	2.702	2.710	2.706	2.709	2.723	2.704	2.724	2.707	2.719	2.692	2.722	2.711	2.725	2.718	2.712	2.706	2.707	2.726	2.727	2.704	2.701	2.708	2.698	2.704	2.713	2.689	2.696	2.696	2.694	2.714	2.700	2.730	2.692	2.702	2.694	2.718
Helium Porosity (%)	26.2	32.4	24.9	26.5	26.0	18.4	17.9	23.3	24.9	23.0	16.3		12.4	22.2	23.7	23.6	23.5	22.1	22.1	22.9	22.1	22.1	21.3	18.7					10.8	9.3	10.6	8.2	9.7	11.7	6.9	9.6	7.3	7.1	4.1			4.3	2.9
Permeability to Air (md)	99.30	09.86	76.48	63.90	57.70	47.56	41.25	33.90	28.60	25.90	25.40	21.80	21.34	16.50	13.10	12.30	9.40	8.99	7.46	6.91	5.89	5.82	5.02	3.34	1.58	1.14	0.63	09.0	0.42	0.22	0.20	0.16	0.11	60.0	90.0	0.05	0.04	0.03	0.02	0.01	0.01	0.01	0.00
II9W	٦	ſ	٦	7	7	7	7	7	ſ	٦	ſ	٦	7	7	7	7	7	ſ	ſ	ſ	Ŋ	7	7	٦	7	7	٦	٦	7	7	7	J	ſ	J	7	٦	ſ	J	7	7	7	٦	7

ACKNOWLEDGEMENTS

We thank the many colleagues who have contributed to this work from the Saudi Aramco Reservoir Characterization Department and the Reservoir Management Department, from Saudi Aramco management to the Saudi Aramco core warehouse. In particular, we acknowledge John Neasham of PoroTechnologies for excellent Mercury Injection Capillary Pressure Measurements and Dave Cantrell and Abdulkader Afifi for reviews and comments. We also thank the Ministry of Petroleum for permission to publish the paper and the careful and thoughtful work of the GeoArabia reviewers and editors and constructive suggestions from Gretchen Gillis. The authors also acknowledge Richard Koepnick for encouragement. The final design of the paper by Arnold Egdane is appreciated.

REFERENCES

- Ahr, W.M., D. Allen, A. Boyd, H.N. Bachman, T. Smithson, E.A. Clerke, K.B.M. Gzara, J.K. Hassall, C.R.K. Murty, H. Zubari and R. Ramamoorthy 2005. Confronting the carbonate conundrum. Oilfield Review, Spring, v. 17, no. 1, p. 18-29.
- Al-Husseini, M.I. 1997. Jurassic sequence stratigraphy of the western and southern Arabian Gulf. GeoArabia, v. 2, no. 4, p. 361-382.
- Amaefule, J.O., M. Altunbay, D. Tiab, D.G. Kersey and D.K. Keelan 1993. Enhanced reservoir description: Using core and log data to identify Hydraulic (Flow) Units and predict permeability in uncored intervals/wells. Presented at the 68th Annual Technical Conference and Exhibition, Houston, Texas, SPE 26436.
- Archie, G.E. 1950. Introduction to petrophysics of reservoir rocks. American Association of Petroleum Geologists Bulletin, v. 34, no. 5, p. 943-961.
- Bathurst, R.G.C. 1966. Boring algae, micrite envelope and lithification of molluscan biosparites. Geological Journal, v. 5, p. 15-32.
- Buiting, J.J.M. 2007. Fully upscaled saturation-height functions for reservoir modeling based on Thomeer's method for analyzing capillary pressure measurements. Presented at the Middle East Oil and Gas Show, Bahrain, SPE 105139.
- Buiting, J.J.M. and E.A. Clerke (in preparation). A generalized approach to permeability calculation for complex multimodal porous media.
- Brunauer, S., P.H. Emmet and R. Teller 1938. The adsorption of gases in multi-molecular layers. Journal of American Chemical Society, v. 60, p. 309-316.
- Cantrell, D.L. and R.M. Hagerty 1999. Microporosity in Arab Formation Carbonates, Saudi Arabia. GeoArabia, v. 4, no. 2, p. 129-154.
- Cantrell, D.L. and R.M. Hagerty 2003. Reservoir rock classification, Arab-D reservoir, Ghawar Field, Saudi Arabia. GeoArabia, v. 8, no. 3, p. 435-462.
- Choquette, P.W. and L.C. Pray 1970. Geological nomenclature and classification of porosity in sedimentary carbonates. American Association of Petroleum Geologists Bulletin, v. 54, no. 2, p. 207-250.
- Clerke, E.A. 2003. Beyond porosity-permeability relationships: Determining pore network parameters for the Ghawar Arab-D using the Thomeer method. GeoFrontier, September, v. 1, no. 3, p. 12-17.
- Clerke, E.A. 2004. Beyond porosity-permeability relationships: Determining pore network parameters for the Ghawar Arab-D using the Thomeer method. 6th Middle East Geosciences Conference, GEO 2004. GeoArabia, Abstract, v. 9, no. 1, p. 55.
- Clerke, E.A. 2007. Permeability and microscopic displacement efficiency of M-1 bimodal pore systems in Arab-D Limestone. Presented at the Middle East Oil and Gas Show, Bahrain, SPE 105259.
- Clerke, E.A. and P.R. Martin 2004. Thomeer Swanson excel spreadsheet and FAQ's and user comments. Presented and distributed at the SPWLA 2004 Carbonate Workshop, Noordwijk.
- Clerke, E.A. and H.W. Mueller, III 2006. The Rosetta Stone Project I: Spectral analysis of pore geometries and their relationships to depositional facies for the Arab D limestones. 7th Middle East Geosciences Conference, GEO 2006. GeoArabia, Abstract, v. 12, no. 1, p. 157.
- Delfiner, P. 2007. Three statistical pitfalls of Phi-K Transforms. SPE reservoir evaluation and engineering, December, p. 609-617.
- Dunham, R.J. 1962. Classification of carbonate rocks according to depositional texture. In, W.E. Ham

- (Ed.), Classification of Carbonate Rocks, A Symposium. American Association of Petroleum Geologists Memoir, no. 1, p. 108-121.
- Ekrann, S. 1999. Water saturation modeling: An upscaling point of view. SPE ATCE, Houston, Texas, October 3-6, SPE 56559.
- Hadley, K. and J.C. Wendte 1977. Internal Aramco report.
- Hagerty, R.M. and D.L. Cantrell 1990. Reservoir rock classification, Arab-D reservoir, Ghawar Field, Saudi Arabia. EPRCO, Aramco Project EPR.74PS.90 (unpublished report).
- Hawkins, J.M., D.L. Luffel and T.G. Harris 1993. Capillary pressure model predicts distance to gas/water, oil/water contact. Oil and Gas Journal, January 18, p. 39-43.
- Herling, D. 1968. Microporosity in carbonate rocks. In, G.M. Friedman and G. Muller (Eds.), Recent Developments in Carbonate Sedimentology-Central Europe. Springer, p. 98-105.
- Leverett, M.C. 1941. Capillary behavior in porous solids. Petroleum Transactions, AIME, v. 142, p. 152-168.
- Lindsay, R.F., D.L. Cantrell, G.W. Hughes, T.H. Keith, H.W. Mueller III and S.D. Russell 2006. Ghawar Arab-D reservoir: Widespread porosity in shoaling-upward carbonate cycles, Saudi Arabia. In, P.M. Harris and L.J. Weber (Eds.), Giant Hydrocarbon Reservoirs of the World: From Rocks to Reservoir Characterization and Modeling. American Association of Petroleum Geologists, Memoir 88/SEPM Miscellaneous Publication, no. 8, p. 97-137.
- Lucia, F.J. 1995. Rock fabric/petrophysical classification of carbonate pore space for reservoir characterization. American Association of Petroleum Geologists Bulletin, v. 79, no. 9, p. 1275-1300.
- Lucia, F.J. 1983. Petrophysical parameters estimated from visual descriptions of carbonate rocks: A field classification of carbonate pore space. Journal of Petroleum Technology, v. 35, p. 629-637.
- Mitchell, J.C. 1985. Internal Aramco Report.
- Mitchell, J.C., P.J. Lehmann, D.L. Cantrell, I.A. Al-Jallal and M.A.R. Al-Thagafy 1988. Lithofacies, diagenesis and depositional sequence; Arab-D Member, Ghawar field, Saudi Arabia. In, A.J. Lomando and P.M. Harris (Eds.), Giant Oil and Gas Fields A Core Workshop. Society of Economic Paleontologists and Mineralogists, Core Workshop no. 12, p. 459-514.
- Pittman, E.D. 1971. Microporosity in carbonate rocks. American Association of Petroleum Geologists Bulletin, v. 55, no. 10, p. 1873-1881.
- Powers, R.W. 1968. Lexique stratigraphique international. Volume III, Asie, Fas. 10 b1, Arabia Saoudite. Centre Nationale de la Recherche Scientifique, Paris, 177 p.
- Russell, S.D., R.K. Sadler, W. Weihua, P. Richter, R. Eyvazzadeh and E.A. Clerke 2004. Applications of image log analyses to reservoir characterization, Ghawar and Shaybah fields, Saudi Arabia. 6th Middle East Geosciences Conference, GEO 2004. GeoArabia, Abstract, v. 9, no. 1, p. 125.
- Smith, D. 1992. How to predict down dip water level. World Oil, May, p. 85-88.
- Stenger, B., T. Pham, N. Al-Afaleg and P. Lawrence 2003. Tilted original oil/water contact in the Arab-D reservoir, Ghawar field, Saudi Arabia. GeoArabia v. 8, no. 1, p. 9-42.
- Swanson, B.F. 1985. Microporosity in reservoir rocks: Its measurement and influence on electrical resistivity. The Log Analyst, p. 42-52.
- Thomas, E.C., R.M. Sneider, J.W. Neasham and H.J. Vinegar 1995. A catalog of petrophysical and geological properties of typical reservoir rocks. Update Published as Technical Progress Report BTC 12-95, September, Shell E&P Technology Company.
- Thomeer, J.H.M. 1983. Air permeability as a function of three pore-network parameters. Journal of Petroleum Technology, April, p. 809-814.
- Thomeer, J.H.M. 1960. Introduction of a pore geometrical factor defined by a capillary pressure curve. Petroleum Transactions, AIME, v. 219, T.N. 2057, p. 354-358.
- Thompson, A.H., A.J. Katz and C.E. Krohn 1987. The microgeometry and transport properties of sedimentary rock. Advances in Physics, v. 36, no. 5, p. 625-694.

ABOUT THE AUTHORS

Edward A. (Ed) Clerke is a Geological Consultant in the Geological Modelling Division/Reservoir Characterization Department of Saudi Aramco. Previously, he held the positions: Head of Petrophysics – Petrophysical Advisor for Pennzoil, Senior Principal Petrophysicist with ARCO in Plano, Texas and Petrophysical Engineering and Research Positions with Shell Oil Co. USA. Ed received his PhD in Physics from the University of Maryland in 1982 and has published articles in Log Analyst, SPE Production Engineering, Physical Review, Physica and the Journal of Physical Chemistry and received the Best Paper Award at GEO 2004 and 2006 for work presented on Arab D Limestone Pore Systems

and also received the 2006 Best Paper Award at the SPWLA Carbonate Permeability Topical Conference. Less recently, Ed received the 1993 Best Paper Award from the West Texas Geological Society for work in Permian Basin carbonates. He holds five patents, four for borehole televiewer technology.

edward.clerke@aramco.com

Harry W. Mueller III has been a Carbonate Specialist with Saudi Aramco for seven years, most of that time in the EXPEC-ARC Department. Prior to that, he worked in a similar capacity with ExxonMobil for 26 years, much of that time working on problems in Middle-Eastern carbonate geology. He has a PhD in Geology with emphasis on carbonate stratigraphy and sedimentology from the University of Texas at Austin and a BSc in Geology from Birmingham-Southern College.

harry.mueller@aramco.com

Eugene Craig Phillips is presently a Petrophysicist for Saudi Aramco located in Dhahran, Saudi Arabia working in Geologic Modeling. Since 1984 he has been primarily involved in core-log integration. He was formerly with Core Laboratories working in Technical Applications Development where he concentrated on core-log integration emphasizing core calibrated log analysis models. In 1994 Eugene joined Western Atlas in the Interpretation, Research and Advanced Development group where he developed NMR log and core applications.

eugene.phillips@aramco.com

Ramsin Y. Eyvazzadeh is a Petrophysical Specialist in the Petrophysical and Special Studies Unit, Reservoir Description Department in Saudi Aramco. Previously he has held several positions globally as Petrophysicist with Schlumberger and Numar Corporation. Ramsin has a BSc in Petroleum Engineering from the University of Southern California and a MS in Mechanical Engineering from the University of California at Berkeley.

ramsin.eyvazzadeh@aramco.com

David H. Jones is a Reservoir Engineering Consultant for Quantum Reservoir Impact. He previously spent 13 years with Saudi Aramco's Reservoir Management Department. He led the multi-disciplinary GIANT project charged with developing and applying leading-edge technologies and methods to the determination of OIIP, ultimate oil recovery and the reservoir surveillance program for the Ghawar field - the largest oil field in the world. David is a recognized expert in reservoir management metrics and reservoir performance. His work in these areas led to the development of in-place systems at Saudi Aramco for tracking of all the companies' operating reservoirs. Prior to joining Saudi Aramco in 1993, David worked

fifteen years at Chevron and Gulf covering a wide range of domestic and international reservoir projects. David received a BSc in Petroleum Engineering from the University of Kansas. He has participated as an invited speaker to corporate and professional forums and is the author of numerous corporate technical documents.

jones@leadingreservoirs.com

Raghu Ramamoorthy joined Schlumberger Wireline Services in 1982 and served as a Logging Engineer in Egypt and Iran, and later as a Log Analyst in Oman. He received an MSc in Petroleum Engineering from the University of Texas at Austin in 1994. He then spent an extended stint as Research Scientist (Petrophysicist) at Schlumberger-Doll Research in Ridgefield, Conn., where he worked on reservoir characterization and carbonate petrophysics. In 1997 Raghu returned to the field and served as Principal Petrophysicist in Australasia, East Asia and Saudi Arabia. Raghu is currently Petrophysics Advisor in the Schlumberger Carbonate Regional Technology Center based in Abu Dhabi.

raghu@abu-dhabi.oilfield.slb.com

Ashok Srivastava received his Bachelor of Technology in 1988 from the Indian Institute of Technology (Mumbai). He started his career in Schlumberger as a Field Engineer in 1988. Currently he is Director of Curriculum for Petrophysics for the Data and Consulting arm of Schlumberger. Prior to this he has been a Principal Petrophysicist and has worked extensively in the Middle East area. He has various publications in formation evaluation and reservoir monitoring. Ashok has two patents, one in carbonate petrophysics and another one on mathematical techniques.

asrivastava@abu-dhabi.oilfield.slb.com

Manuscript received August 25, 2006

Revised January 12, 2008

Accepted February 25, 2008

Press version proofread by authors June 23, 2008