$\ddot{\mathbf{U}}\mathbf{bung}~\mathbf{3}$

Fehlerrechnung

Frederik Zielke Lennart Völz frederik.zielke@tu-dortmund.de lennart.voelz@tu-dortmund.de

Durchführung: 30.10.22 Abgabe: 31.10.22

TU Dortmund – Fakultät Physik

Aufgabe 1

Aufgabenstellung

Berechnen Sie das Volumen eines Hohlyzlinders, mit $R_{innen}=(10\pm1)$ cm, $R_{aussen}=(15\pm1)$ cm und $h=(20\pm1)$ cm.

Rechnung

$$f = \pi r_a^2 h - \pi r_i^2 h \qquad \qquad \Delta f = \sqrt{\sum_{k=1}^n (\frac{\partial f}{\partial x_k} \cdot \Delta x_k)^2} \tag{1}$$

$$r_{aussen} = 15 \text{cm}$$
 $\Delta r_{aussen} = 1 \text{ cm}$ (2)

$$r_{innen} = 10 \,\mathrm{cm}$$
 $\Delta r_{innen} = 1 \,\mathrm{cm}$ (3)

$$h = 20 \,\mathrm{cm}$$
 $\Delta h = 1 \,\mathrm{cm}$ (4)

(5)

$$\frac{\partial f}{\partial r_a} = 2\pi r_a h \frac{\partial f}{\partial r_i} = -\pi r_i h \frac{\partial f}{\partial h} = \pi (r_a^2 - r_i^2)$$
 (6)

$$\Delta f = \sqrt{(\frac{\partial f}{\partial r_a} \cdot \Delta r_a)^2 + (\frac{\partial f}{\partial r_i} \cdot \Delta r_i)^2 + (\frac{\partial f}{\partial h} \cdot \Delta h)^2} \tag{7}$$

$$= \sqrt{(2\pi \cdot 15\,\mathrm{cm} \cdot 20\,\mathrm{cm} \cdot 1\,\mathrm{cm})^2 + (-2\pi \cdot 10\,\mathrm{cm} \cdot 20\,\mathrm{cm} \cdot 1\,\mathrm{cm})^2 + (2\pi \cdot ((15\,\mathrm{cm})^2 - (10\,\mathrm{cm})^2) \cdot 1)^2}$$

$$=2300\,\mathrm{cm}^3$$
 (8)

Aufgabe 2

Aufgabenstellung

Ein Projektil mit der Masse $m=(5.0\pm0.1)g$ fliegt mit einer Geschwindigkeit $v=(200\pm10)m/s$. Welche Strecke hat es nach der Zeit t=6s zurückgelegt? Wie gross ist seine kinetische Energie?

Rechnung