





## **RUL Prediction as Classification**

## RUL-based maintenance can also be tackled using a classifier

- lacktriangle We build a classifier to determine whether a failure will occur in  $m{ heta}$  steps
- We stop as soon as the classifier outputs (say) a 0, i.e.

$$f_{\theta}(x,\lambda) = 0$$

- lacksquare f is the classifier, with parameter vector  $\lambda$
- lacksquare is the horizon for detecting a failure

#### In a sense, we are trying to learn directly a maintenance policy

- lacksquare The policy is the form "stop  $m{ heta}$  units before a failure"
- The classifier tries to learn it





#### **Classifier Architecture**

#### We can therefore immediately define our classifier architecture:



- Like in the regression case, we use a Multilayer Perceptron
- The only difference is the use of a sigmoid activation in the output layer
- For hidden = [] we get Logistic Regression
- ...Which of course if going to be out first model





#### Before training, we need to define the classes

In turn, this requires to define the detection horizon  $\theta$ :

```
In [14]: class_thr = 18
    tr_lbl = (tr['rul'] >= class_thr)
    ts_lbl = (ts['rul'] >= class_thr)
```

- The class is "1" if a failure is more than  $\theta$  steps away
- The class if "0" otherwise

#### Classification problems tend to be easier than regression problems

- On the other hand, learning the whole policy
- ...May be trickier than just estimating the RUL





#### Let's start by training the simplest possible model

```
In [15]: nn1 = util.build_nn_model(input_shape=(len(dt_in), ), output_shape=1, hidden=[], output_activati
         history = util.train nn model(nn1, tr s[dt in], tr lbl, loss='binary crossentropy', epochs=30,
                  verbose=0, patience=10, batch size=32, validation split=0.2)
         util.plot training history(history, figsize=figsize)
           0.50
                                                                                                          val loss
           0.45
           0.40
           0.35
           0.30
           0.25
           0.20
           0.15
                                                                               20
                                                             epochs
          Final loss: 0.1555 (training), 0.1695 (validation)
```





#### Then let's try with a deeper model



- Now we have two hidden layers
- ...Each with 32 neurons





#### Let's train it and check the results

```
In [17]: nn2 = util.build_nn_model(input_shape=(len(dt_in), ), output_shape=1, hidden=[32, 32], output_ad
         history = util.train_nn_model(nn2, tr_s[dt_in], tr_lbl, loss='binary_crossentropy', epochs=30,
                  verbose=0, patience=10, batch size=32, validation split=0.2)
         util.plot training history(history, figsize=figsize)
           0.20
                                                                                                          - val loss
           0.18
           0.16
           0.14
           0.12
           0.10
           0.08
           0.06
                                                10
                                                                               20
                                                             epochs
          Final loss: 0.0740 (training), 0.0677 (validation)
```





#### Let's train it and check the results

```
In [17]: nn2 = util.build nn model(input_shape=(len(dt_in), ), output_shape=1, hidden=[32, 32], output_ac
         history = util.train nn model(nn2, tr s[dt in], tr lbl, loss='binary crossentropy', epochs=30,
                  verbose=0, patience=10, batch size=32, validation split=0.2)
         util.plot training history(history, figsize=figsize)
           0.20
                                                                                                           val loss
           0.18
           0.16
           0.14
           0.12
           0.10
           0.08
           0.06
                                                10
                                                                               20
                                                             epochs
          Final loss: 0.0740 (training), 0.0677 (validation)
```



#### **Predictions**

## The model prediction can be interpreted as a probabilities of not stopping



■ The probability falls when closer to failures





#### **Predictions**

## In practice, we'll need to convert the predictions into integers via rounding

...Unless we want to deal with one more threshold (in addition to  $\theta$ )



■ Still, the behavior seems to be reasonable





#### **Predictions**

#### Let's see the behavior on the test set



Apparently a decent degree of generalization





#### **Evaluation**

#### We can evaluate the classifier directly

...Because it defines the whole policy, with no need for additional calibration!

- On one hand this makes this stage of the process simpler
- ...On the other, this is (apparently) a missed opportunity

```
In [24]: tr_c2, tr_f2, tr_s2 = cmodel.cost(tr['machine'].values, tr_pred2, 0.5, return_margin=True)
    ts_c2, ts_f2, ts_s2 = cmodel.cost(ts['machine'].values, ts_pred2, 0.5, return_margin=True)
    print(f'Cost: {tr_c2/len(tr_mcn):.2f} (training), {ts_c2/len(ts_mcn):.2f} (test)')
    print(f'Avg. fails: {tr_f2/len(tr_mcn):.2f} (training), {ts_f2/len(ts_mcn):.2f} (test)')
    print(f'Avg. slack: {tr_s2/len(tr_mcn):.2f} (training), {ts_s2/len(ts_mcn):.2f} (test)')

    Cost: -89.51 (training), -99.38 (test)
    Avg. fails: 0.00 (training), 0.00 (test)
    Avg. slack: 26.89 (training), 24.56 (test)
```

■ Still pretty good results, but worse than the best regression approach





Why do you think this is the case?





# Why do you think this is the case?

There are a few reasons, we will explore one





#### **Uncalibrated Threshold**

#### In the example from this notebook, we are defining the classes using:

```
class_thr = 18
tr_lbl = (tr['rul'] >= class_thr)
ts_lbl = (ts['rul'] >= class_thr)
```

- lacksquare Like in the regression case, we are using a threshold  $oldsymbol{ heta}$
- $\blacksquare$  ...But here  $\theta$  is employed for defining the classes

#### This approach has both PROs and CONs

- PRO: we can (ideally) choose how close the failure we should stop
- CON: early signs of failure might not be evident in the chosen interval
- $\blacksquare$  CON: we did not calibrate  $\theta$

The last point should be elaborated a bit more

# **Taking a Step Back**

#### In the regression case, we are formally solving:

$$\underset{\theta}{\operatorname{argmin}} \sum_{k \in K} cost(f(\hat{x}_k \, \omega^*), \theta)$$

$$\operatorname{s.t.:} \omega^* = \underset{\omega}{\operatorname{argmin}} L(f(\hat{x}_k, \omega), \hat{y}_k)$$

- lacktriangle Where  $\omega^*$  is the optimal parameter vector (i.e. the network weights)
- lacksquare L is the loss function (i.e. the MSE), and cost is our cost model
- lacktriangle The threshold heta is chosen so as to minimize the cos

#### This is a bilevel optimization problem

lacksquare However, since heta appears neither in  $oldsymbol{L}$  nor in f



.... can be decomposed into two sequential subproblems

# **Taking a Step Back**

#### In the classification case, we are formally solving:

$$\underset{\theta}{\operatorname{argmin}} \sum_{k \in K} cost(f(\hat{x}_k \, \omega^*), 1/2)$$

$$\operatorname{s.t.:} \, \omega^* = \underset{\omega}{\operatorname{argmin}} \, L(f(\hat{x}_k, \lambda), 1_{y_k \ge \theta})$$

- We use a canonical threshold in the cost model (i.e. 0.5)
- lacksquare L is again the loss function (binary cross entropy)
- $\mathbb{I}_{y_k \geq \theta}$  is the indicator function of  $y_k \geq \theta$  (i.e. our class labels)

#### Unlike the previous one, this problem cannot be decomposed

...Because heta appears in the loss function!



# **Black Box Optimization**

#### Let's sketch a possible optimization approach

- 1. We search over the possible values of heta
- 2. For the given  $\theta$  value, we compute  $\mathbb{1}_{y_k \ge \theta}$  (i.e. the class labels)
- 3. We train the model to compute  $\omega^*$
- 4. Then we compute the cost
- 5. ...And finally we repeat, for the next value of heta

At the end of the process, we choose the configuration with the best cost

#### In principle we could use grid search again, but...

- Evaluating the cost is slow, since it requires retraining
- The search space is grows exponentially with the number of parameters

We need a better optimization method!