FCC Test Report

Report No.: AGC11581009SZ12-1F1

TEST NAME : FCC Part 15

FCC ID : YVP-X3000

PRODUCT DESIGNATION: IPAD KEYBOARD CASE

BRAND NAME : N/A

TEST MODEL NAME : X3000

CLIENT SHENZHEN CTECH SCIENCE & TECHNOLOGY DEVELOPMENT CO.,

LTD.

DATE OF ISSUE : Oct.13, 2010

STANDARD(S) : FCC Part 15 Rules

Attestation of Global Compliance Co., Ltd.

CAUTION: This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 1 of 62

VERIFICATION OF COMPLIANCE

	·
Applicant:	SHENZHEN CTECH SCIENCE & TECHNOLOGY DEVELOPMENT CO., LTD.
Address	10G. Baihe yindu, Longgang District, Shenzhen, China
Manufacturer Name:	FLAGSHIP INDUSTRIAL DESIGN CO., LTD
Address:	A-302.Shennan Garden, Kexing Road, Nanshan District, Shenzhen, China
Product Description:	IPAD KEYBOARD CASE
Brand Name:	N/A
Model Number:	X3000, X3001, X3002, X3003, X3004, X3005, X3006, X3007, X3008, X3009
Model Difference	All the models are the same, only different from the appearance.
FCC ID	YVP-X3000
Report Number:	AGC11581009SZ12-1F1
Date of Test:	Oct. 01, 2010 to Oct.13, 2010

WE HEREBY CERTIFY THAT:

The above equipment was tested by Shenzhen Attestation of Global Compliance Science & Technology Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

Checked By:

Jekey Zhang

Oct.13, 2010

Authorized By

King Zhang Oct.13, 2010

Jekey Zhang

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION	4
1.2 TABLE OF CARRIER FREQUENCYS	
1.3 RELATED SUBMITTAL(S) / GRANT (S)	
1.4 TEST METHODOLOGY	4
1.5 TEST FACILITY	
1.6 SPECIAL ACCESSORIES	
1.7 EQUIPMENT MODIFICATIONS	
2. SYSTEM TEST CONFIGURATION	6
2.1 CONFIGURATION OF TESTED SYSTEM	
2.2 EQUIPMENT USED IN TESTED SYSTEM	<i>6</i>
3. SUMMARY OF TEST RESULTS	7
4. DESCRIPTION OF TEST MODES	7
5. CONDUCTION EMISSIONS	8
5.1 MEASUREMENT PROCEDURE:	
5.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
5.3 MEASUREMENT EQUIPMENT USED	
5.4 LIMITS AND MEASUREMENT RESULT	9
MEASURING INSTRUMENT AND SETTING	9
The following table is the setting of receiver	9
TEST RESULT AT CHARGE MODE	10
TEST RESULT OF LINE -L CONDUCTED EMISSION TEST	
6.MAXIMUM OUTPUT POWER	12
6.1 MEASUREMENT PROCEDURE	
6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
6.3 MEASUREMENT EQUIPMENT USED	15
6.4 LIMITS AND MEASUREMENT RESULT	16
7.20 DB BANDWIDTH	19
7.1 MEASUREMENT PROCEDURE	19
7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.3 MEASUREMENT EQUIPMENT USED	
7.4 LIMITS AND MEASUREMENT RESULTS	19
8.MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY (N/A)	23

Page 3 of	62
-----------	----

8.1 MEASUREMENT PROCEDURE	
8.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	23
8.3 MEASUREMENT EQUIPMENT USED	23
8.4 LIMITS AND MEASUREMENT RESULT	23
9.OUT OF BAND EMISSION	24
9.1 MEASUREMENT PROCEDURE:	24
9.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	24
9.3 MEASUREMENT EQUIPMENT USED	24
9.4 LIMITS AND MEASUREMENT RESULT	24
10.NUMBER OF HOPPING FREQUENCY	41
10.1 MEASUREMENT PROCEDURE	41
10.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	41
10.3 MEASUREMENT EQUIPMENT USED	41
10.4 LIMITS AND MEASUREMENT RESULT	41
11.TIME OF OCCUPANCY (DWELL TIME)	43
11.1 MEASUREMENT PROCEDURE	43
11.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	43
11.3 MEASUREMENT EQUIPMENT USED	
11.4 LIMITS AND MEASUREMENT RESULT	43
11.4 LIMITS AND MEASUREMENT RESULT	
12.FREQUENCY SEPARATION	53
12.FREQUENCY SEPARATION	
12.FREQUENCY SEPARATION	53
12.FREQUENCY SEPARATION	53
12.FREQUENCY SEPARATION	53 53 53
12.FREQUENCY SEPARATION	
12.FREQUENCY SEPARATION	
12.FREQUENCY SEPARATION	

Page 4 of 62

1. GENERAL INFORMATION

1.1 PRODUCT DESCRIPTION

The EUT is a short range, lower power; **IPAD KEYBOARD CASE** is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following:

Operation Frequency	2.402 GHz to 2.480GHz
Max. Output Power	2.4 dBm
Modulation	GFSK
Number of channels	79
Antenna Designation	Integrated Antenna
Power Supply	Internal Lion Composite Battery DC 3.7~4.2V by battery Charge from only PC

1.2 TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency				
	0	2402MHZ				
	1	2403MHZ				
	:	:				
	38	2440 MHZ				
2402~2480MHZ	39	2441 MHZ				
	40	2442 MHZ				
	:	:				
	77	2479 MHZ				
	78	2480 MHZ				

1.3 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: YVP-X3000 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

1.4 TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (2003). Radiated testing was performed at an antenna to EUT distance 3 meters.

Page 5 of 62

1.5 TEST FACILITY

All measurement facilities used to collect the measurement data are located at Attestation of Global Compliance Co., Ltd.

1F, No.2 Building, Huafeng No.1 Technical, Industrial Park, Sanwei, Xixiang, Baoan District,

Shenzhen, China

The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003. FCC register No.: 259865

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

1.6 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

1.7 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 6 of 62

2. SYSTEM TEST CONFIGURATION 2.1 CONFIGURATION OF TESTED SYSTEM

EUT

2.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	quipment Mfr/Brand Model/Type No.			
1					

Page 7 of 62

3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.207	Conduction Emission	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Maximum Output Power	Compliant
§15.247	20 dB Bandwidth	Compliant
§15.247	Band Edges	Compliant
§15.247	Spurious Emission	Compliant
§15.247	Frequency Separation	Compliant
§15.247	Number of Hopping Frequency	Compliant
§15.247	Time of Occupancy	Compliant

4. DESCRIPTION OF TEST MODES

- 1. The EUT has been set to operate continuously on the lowest, the middle and the highest operation frequency individually.
- 2. The EUT stays in continuous transmitting mode on the operation frequency being set.

Page 8 of 62

5. CONDUCTION EMISSIONS

5.1 MEASUREMENT PROCEDURE:

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4.
- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. The EUT received DC3.7V through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

5.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

5.3 MEASUREMENT EQUIPMENT USED:

Conducted Emission Test Site									
Name of Equipment Manufacturer Model Serial Number Cal. Date									
Test Receiver	Rohde & Schwarz	ESCS30	828985/018	05/29/2011					
LISN	Rohde & Schwarz	ESH2-Z5	834549/005	05/29/2011					
LISN	Rohde & Schwarz	ESH2-Z5	834549/005	05/29/2011					
50 Coaxial Switch	Anritsu	MP59B	M20531	05/29/2011					

Page 9 of 62

5.4 LIMITS AND MEASUREMENT RESULT:

LIMITS OF LINE CONDUCTED EMISSION TEST

Fraguency	Maximum RF Line Voltage					
Frequency	Q.P.(dBuV)	Average(dBuV)				
150kHz~500kHz	66-56	56-46				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

MEASURING INSTRUMENT AND SETTING

The following table is the setting of receiver.

Receiver Parameter	Setting					
Attenuation	10dB					
Start Frequency	0.15MHz					
Stop Frequency	30MHz					
6dB bandwidth	9KHz for QP					
IF bandwidth	9KHz for AV					

^{1**}Note: 1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

Page 10 of 62

TEST RESULT AT CHARGE MODE:

Operation Mode: CHARGE Test Date: Oct.10, 2010
Temperature: 25°C Tested by: Jekey Zhang

Humidity: 55 % RH Polarity: --

TEST RESULT OF LINE -L CONDUCTED EMISSION TEST

Site: Conduction Phase: L1 Temperature: 26
Limit: FCC PART15 Class B Conduction(QP) Power: AC 120V/50Hz Humidity: 60 %

EUT: X3000

M/N:

Mode: CHARGE

Note:

No.	Freq.	Reading_Level (dBuV)			Correct Factor	Measurement (dBuV)		Limit (dBuV)			rgin B) P/F		Comment	
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.3260	35.82		34.61	10.29	46.11		44.90	59.55	49.55	-13.44	-4.65	Р	
2	0.8980	30.52		28.69	10.61	41.13		39.30	56.00	46.00	-14.87	-6.70	Р	
3	2.1980	28.28		26.24	11.35	39.63		37.59	56.00	46.00	-16.37	-8.41	Р	

Page 11 of 62

TEST RESULT OF LINE -N CONDUCTED EMISSION TEST

Site: Conduction Phase: N Temperature: 26
Limit: FCC PART15 Class B Conduction(QP) Power: AC 120V/50Hz Humidity: 60 %

EUT: X3000

M/N:

Mode:CHARGE

Note:

No.	Freq.		ding_L (dBuV)		Correct Factor		asuren (dBuV)		Lir (dB	nit uV)	Mai (d	rgin IB)	P/F	Comment
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.4140	32.27		31.04	10.26	42.53		41.30	57.57	47.57	-15.04	-6.27	Р	
2	0.8300	29.13		26.19	10.55	39.68		36.74	56.00	46.00	-16.32	-9.26	Р	
3	2.3179	25.87		20.61	11.37	37.24		31.98	56.00	46.00	-18.76	-14.02	Р	

Page 12 of 62

6. MAXIMUM OUTPUT POWER

6.1 MEASUREMENT PROCEDURE:

CONDUCTED METHOD

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Set SPA Centre Frequency = Operation Frequency, RBW= 1 MHz, VBW= 1 MHz.
- 5. Set SPA Trace 1 Max hold, then View.

RADIATED METHOD According to ANSI C63.4:2003

6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

CONDUCTED METHOD

RADIATED EMISSION TEST SETUP

RADIATED MISSION TEST SETUP BELOW 30MHz

RADIATED MISSION TEST SETUP 30MHz-1000MHz

RADIATED MISSION TEST SETUP ABOVE 1000MHz

EIRP TEST SETUP

TEST SETUP BELOW 1GHZ

Report No.: AGC11581009SZ12-1F1 Page 14 of 62

TEST SETUP ABOVE 1GHZ

Report No.: AGC11581009SZ12-1F1 Page 15 of 62

6.3 MEASUREMENT EQUIPMENT USED:

Description	Manufacturer	Model	SERIAL NUMBER	Cal. Date	Cal. Due
Spectrum Analyzer	Rohde & Schwarz	FSEM30	849720/019	05/29/2010	05/29/2011
Amplifier	H.P.	8449B	3008A00277	05/29/2010	05/29/2011
Horn Antenna	Sunol Sciences	DRH-118	A052604	05/29/2010	05/29/2011
Horn Antenna	A.H. Systems Inc.	SAS-574		05/29/2010	05/29/2011
EMI Test Receiver	Rohde & Schwarz	ESCI	100028	05/29/2010	05/29/2011
Amplifier	H.P.	HP8447E	1937A01046	05/29/2010	05/29/2011
Broadband Antenna	Sunol Sciences	JB1	A040904-2	05/29/2010	05/29/2011
LOOP ANTENNA	R&S	HM525		05/29/2010	05/29/2011

Page 16 of 62

6.4 LIMITS AND MEASUREMENT RESULT:

Operation Mode: RF MODE Test Date: Oct.10, 2010

Temperature: 25°C Tested by: Jekey Zhang

Humidity: 55 % RH

Channel	Frequency (MHZ)	Reading (dBm)	Limit (dBm)	Result
0	2402	2.40	30	Pass
39	2441	2.03	30	Pass
78	2480	1.33	30	Pass

TEST PLOT OF BOTTOM CHANNEL:

Report No.: AGC11581009SZ12-1F1 Page 17 of 62

TEST PLOT OF MIDDLE CHANNEL:

Report No.: AGC11581009SZ12-1F1 Page 18 of 62

TEST PLOT OF TOP CHANNEL:

Page 19 of 62

7. 20 DB BANDWIDTH

7.1 MEASUREMENT PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW= 100 KHz.
- 4. Set SPA Trace 1 Max hold, then View.

7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The Same as described in Section 6.2

7.3 MEASUREMENT EQUIPMENT USED:

The same as described in Section 6.3

7.4 LIMITS AND MEASUREMENT RESULTS:

Operation Mode: RF MODE Test Date: Oct.10, 2010

Temperature: 25°C Tested by: Mary Liu

Humidity: 55 % RH Polarity: --

LIMITS AND MEASUREMENT RESULT						
Applicable Limite	Measurement Result					
Applicable Limits	Test Da	Criteria				
	Bottom Channel	1.362	PASS			
	Middle Channel	1.368	PASS			
	Top Channel	1.362	PASS			

TEST PLOT OF BANDWIDTH FOR BOTTOM CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR TOP CHANNEL

Page 23 of 62

8. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY (N/A)

8.1 MEASUREMENT PROCEDURE:

- (1). The EUT was placed on a turn table which is 0.8m above ground plane.
- (2). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (3), Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (4). Set SPA Centre Frequency = Operation Frequency, RBW= 3 KHz, VBW= 10 KHz., Sweep time= Auto
- (5). Set SPA Trace 1 Max hold, then View.

8.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

8.3 MEASUREMENT EQUIPMENT USED:

SHIELDING ROOM							
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.		
Spectrum Analyzer	Agilent	E4440A	US41421290	04/16/2010	04/15/2011		

8.4 LIMITS AND MEASUREMENT RESULT:

LIMITS AND MEASUREMENT RESULT						
Applicable Limite		Measurement Result				
Applicable Limits	Test Data (dl	Criteria				
	Bottom Channel					
8 dBm / 3KHz	Middle Channel					
	Top Channel					

Page 24 of 62

9. OUT OF BAND EMISSION

9.1 MEASUREMENT PROCEDURE:

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW= 100 KHz.
- 4. Set SPA Trace 1 Max hold, then View.

9.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The Same as described in section 6.2

- 1. Conducted test setup
- 2. Radiated Emission test Setup below 1Ghz and Above 1GHz

9.3 MEASUREMENT EQUIPMENT USED:

The Same as described in section 6.3

9.4 LIMITS AND MEASUREMENT RESULT:

LIMITS AND MEASUREMENT RESULT					
Applicable Limite	Measurement Result				
Applicable Limits	Test Data	Criteria			
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS			
level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS			

Page 25 of 62

Humidity: 55 % RH Test Date: Oct.10, 2010

Temperature: 25°C Tested by: Mary Liu

TEST PLOT OF BAND ELDG FOR BOTTOM CHANNEL

TEST PLOT OF BAND ELDG FOR TOP CHANNEL

Page 27 of 62

Band Edge Emission: MEASUREMENT PROCEDURE

- 1, Set the EUT Work on the top, the bottom operation frequency individually.
- 2. Set SPA Centre Frequency = Operation Frequency, span=100MHz, RBW= 100kHz, VBW= 100kHz.
- 3. The band edges was measured and receorded.

TEST SET-UP

The Same as described in section 6.2

	Band Edge Emission for Bottom Channel								
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Memo			
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	IVIEITIO			
2.386	Н	50.78	45.90	74	54	*			
2.400	Н	51.12	47.35	74	54	*			
2.386	V	49.34	44.43	74	54	*			
2.400	V	50.21	42.35	74	54	*			

	Band Edge Emission for Top Channel								
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Memo			
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	IVIEITIO			
2.483	Н	49.32	47.34	74	54	*			
2.484	Н	47.56	45.67	74	54	*			
2.496	Н	46.67	40.23	74	54	*			
2.483	V	48.78	46.34	74	54	*			
2.484	V	47.54	44.45	74	54	*			
2.496	V	43.56	38.55	74	54	*			

Note: This Handheld EUT was tested in 3 orthogonal positions and the worst-case data was presented.

Page 28 of 62

RADIATED EMISSSION

MEASUREMENT PROCEDURE

- Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

Report No.: AGC11581009SZ12-1F1 Page 29 of 62

The following table is the setting of spectrum analyzer and receiver.'

Spectrum Parameter	Setting
Start Frequency	1GHz
Stop Frequency	26.5GHz
RB/VB(Emission in restricted band)	1MHz/1MHz for Peark, 1MHz/10Hz for Average
RB/VB(Emission in non-restricted band)	1MHz/1MHz for peak

Receiver Parameter	Setting	
Start Frequency ~Stop Frequency	30MHz~1000MHz RB 120KHz for QP	
Start Frequency ~Stop Frequency	9KHz~150KHz RB 200Hz for QP	
RB/VB(Emission in restricted band)	150KHz~30MHz RB 9KHz for QP	

TEST SET-UP

The Same as described in section 6.2

Page 30 of 62

TEST RESULT OF RADIATED EMISSION TEST (9KHZ-30MHZ)

Humidity: 55 % RH Test Date: Oct.10, 2010

Temperature: 25°C Tested by: Mary Liu

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

Page 31 of 62

TEST RESULT OF RADIATED EMISSION TEST (30MHZ-1GHZ)

Operation Mode:

CHARGE MODE

Test Date:

Oct.10, 2010

Temperature:

25°C

Tested by:

Mary Liu

Humidity:

55 % RH

Horizontal:

	Freq	Level	Over Limit			Antenna Factor			Ant Pos	Table Pos	Remark
	MHz	dBuV/m	dB	dBuV/n	dBuV	dB/n	dB		cm	deg	
1	151.500	24.88	-18.62	43.50	40.60	10.61	1.56	27.99			Peak
2	224.940	29.73	-16.27	46.00	44.87	10.65	1.97	27.75			Peak
3	Z99.460	33.05	-12.95	46.00	46.10	1Z.3L	Z. Z4	Z7.60			Peak
4 @	332.900	33.88	-12.12	46.00	45.92	13.45	2.35	27.83	100	159	Peak
5	695.700	26.25	-19.75	46.00	31.77	20.11	3.49	29.10	-	-	Peak
6	943.300	29.07	-17.93	46.00	28.18	24.62	3.98	29.71			Peak

Report No.: AGC11581009SZ12-1F1 Page 32 of 62

Vertical:

-	eq Leve	l Limit	Line	Level	Factor	Loss	Factor	Pos	Doc	Remark
	e dBoU/	-						34 19 R	PUS	Remark
		n dB	dBuV/m	dBuV	dB/n	dB		- CIM	deg	
1 30.0	0 23.3	5 -16.65	40.00	34.35	16.38	0.87	28.25	07030	17.57.07	Peak
Z 81.3	0 Z5.Z	3 -14.77	40.00	45.09	7.10	1.28	Z8.Z4	100	315	Peak
3 228.4	0 27.2	0 -18.80	46.00	42.03	10.94	1.98	27.74			Peak
4 332.9	0 25.2	3 -20.77	46.00	37.27	13.45	2.35	27.83			Peak
5 632.5	0 25.6	5 -20.35	46.00	31.46	19.98	3.32	29.10	000000	1000	Peak
6 942.6	0 Z9.Z	0 -16.80	46.00	Z9.34	Z4.60	3.98	Z8.71			Peak

Page 33 of 62

Operation Mode:

BT MODE(channel 39)

Test Date:

Oct.10, 2010

Temperature:

25°C

Tested by:

Mary Liu

Humidity:

55 % RH

Horizontal

			Over	Linit	Read	intenna	Cable	Preamp	Ant	Table	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Remark
	MHz	dBuV/m	dB	dBuV/n	dBuV	dB/n	dB	dB	em.	qeg	
1	158:250	23.58	-19.92	43.50	40.35	9.51	1.68	27.97	3 77 77 77	5000	Peak
2	224.940	30.55	-15.45	46.00	45.69	10.65	1.97	27.75	955,000	8000	Peak
3	Z99.460	3Z.56	-13.44	46.00	45.61	LZ.3L	Z. Z4	Z7.60	100	157	Peak
4	605.700	25.49	-20.51	46.00	31.01	20.11	3.49	29.10			Peak
5	845.300	25.51	-20.49	46.00	29.00	21.52	3.84	28.85			Peak
6	897.800	29.15	-16.85	46.00	30.56	23.44	3.95	28.80	97777	1000	Peak

Page 34 of 62

	Freq		0ver	Linit	Read	intenna	Cable	Preamp	Ant	Table				
		Freq	Freq	Freq	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos
,	MHz	dBuV/n	dB	dBuV/n	dBuV	dB/n	- AB	dB	cm	qed				
1	30.000	22.92	-17.08	40.00	33.92	16.38	0.87	29.25			Peak			
2	77.250	25.78	-14.22	40.00	46.11	6.67	1.25	28.25	100	241	Peak			
3	ZZ5.Z10	Z9.54	-16.46	46.00	44.68	10.65	1.97	27.75			Peak			
4	491.800	25.79	-20.21	46.00	35.13	16.81	2.79	28.94	1700	-	Peak			
5	875.400	26.65	-19.35	46.00	28.94	22.62	3.92	28.82			Peak			
6	959.400	29.61	-16.39	46.00	29.29	25.01	3.99	28.68			Peak			

Note

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page 35 of 62

TEST RESULT OF RADIATED EMISSION TEST(1GHZ-10TH HARMONIC)

Operation Mode:	channel 0	Test Date:	Oct.10, 2010
Temperature:	25°C	Tested by:	Mary Liu
Humidity:	55 % RH		

Horizontal

	Freq	Level	Limit	3 (VASTACETA)	Kead Level	Loss	Remark	Pos			Factor
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	4.00	cm.	deg	dB	dB
1	4804.000	51.98	-2.02	54.00	49.35	4.57	Average			34.94	33.00
2	4804.000	60.48	-13.52	74.00	57.85	4.57	Peak			34.94	33.00
3	7204.000	46.88	-7.12	54.00	40.56	5.62	Average			35.24	35.94
4	9608.000	50.10	-3.90	54.00	41.52	6.34	Average			35.70	37.94

Report No.: AGC11581009SZ12-1F1 Page 36 of 62

Vertical

	Freq	Level	Over Limit		Read Level	Cable Loss	Remark	Ant Pos		Preamp Factor	
	MHz	dBuV/m	dB	dBuV/m	dBuV	dВ		cm.	deg	<u>ав</u>	<u>qb</u>
1	4804.000	52.03	-1.97	54.00	49.40	4.57	Average			34.94	33.00
2	4804.000	59.51	-14.49	74.00	56.88	4.57	Peak	0.00	100000	34.94	33.00
3	7204.000	48.24	-5.76	54.00	41.92	5.62	Average			35.24	35.94
4	9608.000	49.70	-4.30	54.00	41.12	6.34	Average		12000	35.70	37.94

Report No.: AGC11581009SZ12-1F1 Page 37 of 62

Operation Mode:	channel 39	Test Date:	Oct.10, 2010
Temperature:	25°C	Tested by:	Mary Liu
Humidity:	55 % RH		

Horizontal

	Freq	Level	Over Limit	100000000000000000000000000000000000000	Read Level	Cable Loss	Remark	Ant Pos	22475.7	Preamp Factor	
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	-	cm	deg	- dB	dB
1	4884.000	45.03	-8.97	54.00	42.21	4.64	Average			34.93	33.11
2	7320.000	47.80	-6.20	54.00	41.17	5.64	Average			35.26	36.25
3	9766.000	52.28	-1.72	54.00	43.61	6.36	Average			35.70	38.01

Report No.: AGC11581009SZ12-1F1 Page 38 of 62

Vertical

	Freq	Level	Over Limit			Cable Loss	Remark	Ant Pos		Preamp Factor	Probe Factor
	MHz	dBuV/m	фВ	dBuV/m	dBuV	фВ	ri 93 fr	cm	deg	qB	dB
1	4884.000	47.68	-6.32	54.00	44.86	4.64	Average			34.93	33.11
2	7324.000	52.19	-1.81	54.00	45.56	5.64	Average			35.26	36.25
3	9768 000	51 57	-2 43	54 00	42 90	6 36	Average			35 70	38 01

Report No.: AGC11581009SZ12-1F1 Page 39 of 62

Operation Mode:	channel 78	Test Date:	Oct.10, 2010
Temperature:	25°C	Tested by:	Mary Liu
Humidity:	55 % RH		

Horizontal

	Freq	Level	Limit		100000000000000000000000000000000000000	Loss	Remark	Pos			Factor
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	11.7	cm.	deg	dB	dB
1	4960.000	48.26	-5.74	54.00	45.21	4.72	Average			34.91	33.24
2	7440.000	49.92	-4.08	54.00	42.99	5.65	Average	-	1000	35.29	36.57
3	9919.000	51.81	-2.19	54.00	43.05	6.39	Average			35.70	38.07

Report No.: AGC11581009SZ12-1F1 Page 40 of 62

Vertical

	Freq	Level	Over Limit		10/20/2013	Cable Loss	Remark	Ant Pos		Preamp Factor	Probe Factor
	MHz	dBuV/m	dВ	dBuV/m	dBuV	dB		cm	deg	dB	dB
1	4964.000	48.04	-5.96	54.00	44.99	4.72	Average			34.91	33.24
2	7442.000	52.08	-1.92	54.00	45.15	5.65	Average		45.55	35.29	36.57
3	9919.000	52.15	-1.85	54.00	43.39	6.39	Average			35.70	38.07

Note

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page 41 of 62

10. NUMBER OF HOPPING FREQUENCY

10.1 MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer Start = 2.4GHz Stop = 2.4835GHz, span=20MHz
- 4. Set the Spectrum Analyzer as RBW = VBW = 510KHz

10.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

1. Conducted Method.

10.3 MEASUREMENT EQUIPMENT USED

The Same as described in section 6.3

10.4 LIMITS AND MEASUREMENT RESULT:

TOTAL NO. OF HOPPING CHANNEL	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
	>=15	79	PASS

Page 42 of 62

Humidity:	55 % RH	Test Date:	Oct.10, 2010
Temperature:	25°C	Tested by:	Jekey Zhang

NUMBER OF HOPPING CHANNEL PLOT ON CHANNEL 0~78

Page 43 of 62

11. TIME OF OCCUPANCY (DWELL TIME)

11.1 MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- 3. Set center frequency of spectrum analyzer = Operating frequency
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0 Hz,

11.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2 Conducted Method

11.3 MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

11.4 LIMITS AND MEASUREMENT RESULT

```
The dwell time = Time Slot Length * Hop Rate / Number of Hopping Channels * 0.4 * 79 L-CH:

DH1 Time Slot = 0.520 (ms) * (1600/(2*79))*31.6 = 166.4 (ms)

DH3 Time Slot = 1.780(ms) * (1600/(4*79))*31.6 = 284.8 (ms)

DH5 Time Slot = 3.060 (ms) * (1600/(6*79))*31.6 = 326.4 (ms)

M-CH:

DH1 Time Slot = 0.520 (ms) * (1600/(2*79))*31.6 = 166.4 (ms)

DH3 Time Slot = 1.780 (ms) * (1600/(4*79))*31.6 = 284.8 (ms)

DH5 Time Slot = 3.040 (ms) * (1600/(6*79))*31.6 = 324.3 (ms)

H-CH:

DH1 Time Slot = 0.540(ms) * (1600/(2*79))*31.6 = 172.8 (ms)

DH3 Time Slot = 1.780 (ms) * (1600/(4*79))*31.6 = 284.8 (ms)

DH5 Time Slot = 3.040(ms) * (1600/(6*79))*31.6 = 284.8 (ms)

DH5 Time Slot = 3.040(ms) * (1600/(6*79))*31.6 = 324.3 (ms)
```

Page 44 of 62

Humidity:	55 % RH	Test Date:	Oct.10, 2010
Temperature:	25°C	Tested by:	Jekey Zhang
Configurations	DH1, DH3, DH5		

TEST PLOT DH1 MODE BOTTOM CHANNEL

TEST PLOT DH3 MODE BOTTOM CHANNEL

TEST PLOT DH5 MODE BOTTOM CHANNEL

TEST PLOT DH1 MODE MIDDLE CHANNEL

TEST PLOT DH3 MODE MIDDLE CHANNEL

TEST PLOT DH5 MODE MIDDLE CHANNEL

TEST PLOT DH1 MODE TOP CHANNEL

TEST PLOT DH3 MODE TOP CHANNEL

TEST PLOT DH5 MODE TOP CHANNEL

Page 53 of 62

12. FREQUENCY SEPARATION 12.1 MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- 3. Set center frequency of spectrum analyzer = Middele of Operating frequency
- 4. Set the spectrum analyzer as RBW, VBW=100KHz, Span = 5 MHz,

12.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

12.3 MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

12.4 LIMITS AND MEASUREMENT RESULT

CHANNEL	CHANNEL SEPARATION	LIMIT	RESULT	
OI I/ WIVILL	KHz	KHz		
CH00-CH01	1000		Pass	
CH39-CH40	1000	>=25 KHz or 2/3 20 dB BW	FdSS	
CH77-CH78	1000			

Page 54 of 62

Humidity:	55 % RH	Test Date:	Oct.10, 2010			
Temperature:	25°C	Tested by:	Jekey Zhang			
Configurations	Channel 0-1, channel39-40, channel78-79					

TEST PLOT FOR FREQUENCY SEPARATION -CHANNEL0-1

TEST PLOT FOR FREQUENCY SEPARATION -CHANNEL39-40

TEST PLOT FOR FREQUENCY SEPARATION -CHANNEL77-78

Page 57 of 62

APPENDIX I PHOTOGRAPHS OF THE EUT

TOP VIEW OF SAMPLE

BACK VIEW OF SAMPLE

Report No.: AGC11581009SZ12-1F1 Page 58 of 62

OPEN VIEW OF SAMPLE

LEFT VIEW OF SAMPLE

Report No.: AGC11581009SZ12-1F1 Page 59 of 62

Page 60 of 62

INTERNAL PHOTO OF SAMPLE – 2

Report No.: AGC11581009SZ12-1F1 Page 61 of 62

INTERNAL PHOTO OF SAMPLE - 3

Report No.: AGC11581009SZ12-1F1 Page 62 of 62

PPENDIX II

PHOTOGRAPHS OF THE TEST SETUP

CONDUCTED EMISSION TEST

----END OF REPORT----