ECN 5320/6320

HW 1 Fall 2022 100 pts.

Name:	Patri	ch	Nev	and	
A-Num	ber: $A0$	2378	992		

Instructions: write derivations and answers to the assignment on separate pieces of paper. Write neatly and clearly!

- $\sqrt{1}$. Calculate $\int 9x^{1/3}dx$. (5 points)
- $\sqrt{2}$. Calculate $\int_1^2 y^{-1} dy$. (5 points)
- $\sqrt{3}$. Calculate $\int_a^b 1 \ dt$. (5 points)
- $\sqrt{4}$. Calculate $\int b^{2\tau} d\tau$. (5 points)
- $\int_{\mathbf{5}}$. Calculate $\int_a^b re^{-rt} dt$. (5 points)
- \int 6. Calculate $\int \frac{1}{1+\beta\tau} d\tau$. (10 points)
- $\sqrt{7}$. Calculate $\int x(x+1)^{1/2} dx$. (10 points)
- $\sqrt{8}$. Rewrite via integration by parts and then calculate $\int t^2 \exp[at] dt$. (20 points)
- $\sqrt{9}$. Rewrite via integration by parts and then calculate $\int_1^b x \ln[x] \ dx$. (20 points)
 - 10. Calculate the derivative $\frac{\partial V}{\partial x}$ of $V = \int_a^{5x} t^2 \ln[x] dt$. (15 points)

Scan your derivations into a single pdf file and upload it to Canvas by Monday 9/26/2022 at 11:59pm.

1.
$$\int 9x^{\frac{1}{3}} dx$$

$$\frac{9x^{\frac{1}{3}}}{4/5} = 9x^{\frac{1}{3}} \cdot \frac{3}{4}$$
Power rule

$$= \frac{27x^{\frac{1}{3}}}{4} + 2$$
2. $\int y^{\frac{1}{3}} dy$

$$\ln(|y|) + C$$

$$\ln(2) - \ln(1)$$

$$\ln(2)$$
3. $\int 1 dt$

$$t + 2$$

$$b - a$$
Sub limits
4. $\int b^{27} d\tau$

$$1 - \sin b$$

$$2\tau = u$$

$$\frac{1}{2} \int b^{u} du$$

$$\frac{1}{2} \ln(b)$$

$$\frac{1}{2} + 2$$

$$2 \ln(b)$$

5.
$$\int_{C} e^{-rt} dt$$

$$= -e^{u}$$

$$= -e^{u}$$

$$= -e^{u} + z$$

$$= -e^{u}$$

$$= -e^{u} + z$$

$$= -e^{u}$$

$$= -e^{u} + z$$

8.
$$\int_{f}^{2} e^{at} dt$$
 $\int_{f}^{2} e^{at} dt$ $\int_{g}^{2} e^{at} dt$

$$\int_{a}^{2} e^{at} dt$$

$$\int_{a}^{2} e^{at} dt$$

$$\int_{a}^{2} \int_{a}^{2} e^{at} dt$$

9.
$$\int x \ln(x) dx$$
 $\int fg' = fg - \int fg$
 $\int f' = \frac{1}{x}$ $g = \frac{x^2}{2}$
 $\int \frac{x^2 \ln(x)}{2} - \int \frac{x}{2} dx$
 $\int \frac{1}{2} \int x dx$
 $\int \frac{x^2}{2} \ln(x) - \frac{x^2}{2} + \frac{x^2}{4}$
 $\int \frac{b^2 \ln(b)}{2} - \frac{b^2}{4} + \frac{1}{4}$ Sub timits

10. $\frac{\partial V}{\partial x}$ of $V = \int_{\alpha}^{5x} t^2 \ln(x) dt$ $V = \int_{\alpha}^{6x} t^2 \ln(x) dt$ $f(5|x),x)\cdot \frac{d5|x|}{dx} - f(a,x)\cdot \frac{da}{dx}$ because 'a' is not dependent on X $+\int_{\alpha}^{5x} \frac{\partial f(t;x)}{\partial x} dt$ $(25x^2 + \ln(x)) \cdot 5 - 0$ $+ \int_{-\infty}^{5x} \frac{t^2}{x} dt$ 252+1(xj)·5) + 125x3-a3