Решающие деревья и Ансамбли

Многоклассовая классификация

Бинарная классификация

Многоклассовая классификация

Многоклассовая классификация

One-vs-all

- K классов: $\mathbb{Y} = \{1, ..., K\}$
- $X_k = (x_i, [y_i = k])_{i=1}^{\ell}$
- Обучаем $a_k(x)$ на X_k , k = 1, ..., K
- $a_k(x)$ должен выдавать оценки принадлежности классу (например, $\langle w, x \rangle$ или $\sigma(\langle w, x \rangle)$)
- Итоговая модель:

$$a(x) = \arg \max_{k=1,...K} a_k(x)$$

One-vs-all

- Модель $a_k(x)$ при обучении не знает, что её выходы будут сравнивать с выходами других моделей
- Нужно обучать К моделей

All-vs-all

- $X_{km} = \{(x_i, y_i) \in X \mid y_i = k$ или $y_i = m\}$
- Обучаем $a_{km}(x)$ на X_{km}
- Итоговая модель:

$$a(x) = \arg \max_{k \in \{1, \dots, K\}} \sum_{m=1}^{K} [a_{km}(x) = k]$$

All-vs-all

- Нужно обучать порядка K^2 моделей
- Зато каждую обучаем на небольшой выборке

Доля ошибок

• Функционал ошибки — доля ошибок (error rate)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

• Нередко измеряют долю верных ответов (accuracy):

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

• Подходит для многоклассового случая!

Общие подходы

Микро-усреднение

Вычисляем TP_k , FP_k , FN_k , TN_k для каждого класса

Суммируем по всем классам, получаем ТР, FP, FN, TN

Подставляем их в формулу для precision/recall/...

Крупные классы вносят больший вклад

Макро-усреднение

Вычисляем нужную метрику для каждого класса (например, precision₁, ..., precision_K)

Усредняем по всем классам

Игнорирует размеры классов

Как делать нелинейные модели

- Признаки: площадь, этаж, расстояние до метро и т.д.
- Целевая переменная: рыночная стоимость квартиры

• Линейная модель:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж) + w_3 * (расстояние до метро) + ···$$

• Вряд ли признаки линейно связаны с целевой переменной

• Линейная модель:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж) + w_3 * (расстояние до метро) + \cdots$$

• Вряд ли признаки не связаны между собой

• Линейная модель с полиномиальными признаками:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж)$$
 $+w_3 * (расстояние до метро) + w_4 * (площадь)^2$
 $+w_5 * (этаж)^2 + w_6 * (расстояние до метро)^2$
 $+w_7 * (площадь) * (этаж) + \cdots$

• Линейная модель с полиномиальными признаками:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж)$$
 $+w_3 * (расстояние до метро) + w_4 * (площадь)^2$
 $+w_5 * (этаж)^2 + w_6 * (расстояние до метро)^2$
 $+w_7 * (площадь) * (этаж) + \cdots$

- Может быть сложно интерпретировать модель
- Что такое (расстояние до метро) * (этаж)²?

- Допустим, изначально имеем 10 признаков
- Полиномиальных степени 2: 55
- Полиномиальных степени 3: 220
- Полиномиальных степени 4: 715

• Линейная модель с полиномиальными признаками:

• Линейная модель с полиномиальными бинаризованными признаками:

$$a(x) = w_0 + w_1 * [30 < площадь < 50]$$
 $+w_2 * [50 < площадь < 80] + \cdots$ $+w_{20} * [2 < этаж < 5] + \cdots$ $+w_{100} * [30 < площадь < 50][2 < этаж < 5] + \cdots$

- Признаки интерпретируются куда лучше: [30 < площадь < 50][2 < этаж < 5][100 < расстояние до метро < 500]
- Но их станет ещё больше!

Решающие деревья

Логические правила

- [30 < площадь < 50][2 < этаж < 5][500 < расстояние до метро < 1000]
- Легко объяснить, как работают
- Находят нелинейные закономерности

- Нужно как-то искать хорошие логические правила
- Нужно уметь составлять модели из логических правил

- Внутренние вершины: предикаты $\left[x_j < t\right]$
- Листья: прогнозы $c \in \mathbb{Y}$

Сложность дерева

- Решающее дерево можно строить до тех пор, пока каждый лист не будет соответствовать ровно одному объекту
- Деревом можно идеально разделить любую выборку!
- Если только нет объектов с одинаковыми признаками, но разными ответами

Решающее дерево для регрессии

Решающее дерево для регрессии

Решающее дерево для регрессии

Решающее дерево для регрессии

Решающее дерево

- Внутренние вершины: предикаты $\left[x_j < t\right]$
- Листья: прогнозы $c \in \mathbb{Y}$

Предикаты

- Порог на признак $\left[x_{j} < t
 ight]$ не единственный вариант
- Предикат с линейной моделью: $[\langle w, x \rangle < t]$
- Предикат с метрикой: $[\rho(x, x_0) < t]$
- И много других вариантов
- Но даже с простейшим предикатом можно строить очень сложные модели

Прогнозы в листьях

- Наш выбор: константные прогнозы $c_v \in \mathbb{Y}$
- Регрессия:

$$c_v = \frac{1}{|R_v|} \sum_{(x_i, y_i) \in R_v} y_i$$

• Классификация:

$$c_v = \arg\max_{k \in \mathbb{Y}} \sum_{(x_i, y_i) \in R_v} [y_i = k]$$

Прогнозы в листьях

- Наш выбор: константные прогнозы $c_v \in \mathbb{Y}$
- Классификация и вероятности классов:

$$c_{vk} = \frac{1}{|R_v|} \sum_{(x_i, y_i) \in R_v} [y_i = k]$$

Как выбирать предикаты

- Разберёмся на примере
- Начнём с задачи классификации

• Как разбить вершину?

Как сравнить разбиения?

ИЛИ

• Мера неопределённости распределения

• Мера неопределённости распределения

- Дискретное распределение
- Принимает n значений с вероятностями p_1 , ..., p_n
- Энтропия:

$$H(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log p_i$$

- $H = 1.60944 \dots$
- (0.2, 0.2, 0.2, 0.2, 0.2) (0.9, 0.05, 0.05, 0, 0)
 - $H = 0.394398 \dots$

- (0, 0, 0, 1, 0)
- H = 0

Как сравнить разбиения?

- (0.5, 0.5, 0) и (0, 0, 1)
- H = 0.693 + 0 = 0.693

- (0.33, 0.33, 0.33) и (0.33, 0.33, 0.33)
- H = 1.09 + 1.09 = 2.18

$$H(p_1, ..., p_K) = -\sum_{i=1}^K p_i \log_2 p_i$$

- Характеристика «хаотичности» вершины
- Impurity

Критерий Джини

$$H(p_1, ..., p_K) = \sum_{i=1}^K p_i (1 - p_i)$$

- Вероятность ошибки случайного классификатора, который выдаёт класс k с вероятностью p_k
- Примерно пропорционально количеству пар объектов, относящихся к разным классам

Критерии качества вершины

Как выбирать предикаты

- Разберёмся на примере
- Начнём с задачи классификации

• Как разбить вершину?

- Как понять, какой предикат лучше?
- Сравнить хаотичность в исходной вершине и в двух дочерних!

- Как понять, какой предикат лучше?
- Сравнить хаотичность в исходной вершине и в двух дочерних!

- Как понять, какой предикат лучше?
- Сравнить хаотичность в исходной вершине и в двух дочерних!

$$Q(R,j,t) = H(R) - H(R_{\ell}) - H(R_r) \to \max_{j,t}$$

- Как понять, какой предикат лучше?
- Сравнить хаотичность в исходной вершине и в двух дочерних!

$$Q(R,j,t) = H(R) - H(R_{\ell}) - H(R_r) \to \max_{j,t}$$

Или так:

$$Q(R,j,t) = H(R_{\ell}) + H(R_r) \to \min_{j,t}$$

• (у этих формул есть проблемы!)

Как сравнить разбиения?

- (5/6, 1/6) и (1/6, 5/6)
- 0.65 + 0.65 = 1.3

- (6/11, 5/11) и (0, 1)
- 0.994 + 0 = 0.994

$$Q(R, j, t) = H(R) - \frac{|R_{\ell}|}{|R|} H(R_{\ell}) - \frac{|R_{r}|}{|R|} H(R_{r}) \to \max_{j, t}$$

Или так:

$$Q(R, j, t) = \frac{|R_{\ell}|}{|R|} H(R_{\ell}) + \frac{|R_{r}|}{|R|} H(R_{r}) \to \min_{j, t}$$

Как сравнить разбиения?

- (5/6, 1/6) и (1/6, 5/6)
- 0.5 * 0.65 + 0.5 *0.65 = 0.65

- (6/11, 5/11) и (0, 1)
- $\bullet \frac{11}{12} * 0.994 + \frac{1}{12} * 0 = 0.911$

А для регрессии?

А для регрессии?

А для регрессии?

Задача регрессии

$$H(R) = \frac{1}{|R|} \sum_{(x_i, y_i) \in R} (y_i - y_R)^2$$

$$y_R = \frac{1}{|R|} \sum_{(x_i, y_i) \in R} y_i$$

• То есть «хаотичность» вершины можно измерять дисперсией ответов в ней

Жадное построение дерева

Как строить дерево?

- Оптимальный вариант: перебрать все возможные деревья, выбрать самое маленькое среди безошибочных
- Слишком долго

Как строить дерево?

- Мы уже умеем выбрать лучший предикат для разбиения вершины
- Будем строить жадно
- Начнём с корня дерева, будем разбивать последовательно, пока не выполнится некоторый критерий останова

Критерий останова

- Ограничить глубину
- Ограничить количество листьев
- Задать минимальное число объектов в вершине
- Задать минимальное уменьшение хаотичности при разбиении
- И так далее

Жадный алгоритм

- 1. Поместить в корень всю выбору: $R_1 = X$
- 2. Запустить построение из корня: SplitNode $(1, R_1)$

Жадный алгоритм

- SplitNode (m, R_m)
- 1. Если выполнен критерий останова, то выход
- 2. Ищем лучший предикат: $j,t=\arg\min_{\mathbf{j},\mathbf{t}}Q(R_m,j,t)$
- 3. Разбиваем с его помощью объекты: $R_\ell = \left\{\{(x,y) \in R_m | \left[x_j < t\right]\right\}$, $R_r = \left\{\{(x,y) \in R_m | \left[x_j \geq t\right]\right\}$
- 4. Повторяем для дочерних вершин: SplitNode (ℓ, R_ℓ) и SplitNode (r, R_r)

Признаки

$$(1, 0)$$

 $H(p) = 0$

$$(1/2, 1/2)$$

H(p) = 0.69

$$\frac{3}{13}H(p_l) + \frac{10}{13}H(p_r) = 0.53$$

(3/4, 1/4)H(p) = 0.56

$$(5/9, 4/9)$$

H(p) = 0.69

$$\frac{4}{13}H(p_l) + \frac{9}{13}H(p_r) = 0.65$$

(4/5, 1/5)H(p) = 0.5 (1/2, 1/2)H(p) = 0.69

$$\frac{5}{13}H(p_l) + \frac{8}{13}H(p_r) = 0.62$$

$$\frac{4}{13}H(p_l) + \frac{9}{13}H(p_r) = 0.47$$

$$(1, 0)$$

 $H(p) = 0$

(4/6, 2/6)H(p) = 0.64

$$\frac{7}{13}H(p_l) + \frac{6}{13}H(p_r) = 0.66$$

(4/7, 3/7)H(p) = 0.68

$$(1/2, 1/2)$$

H(p) = 0.69

$$\frac{9}{13}H(p_l) + \frac{4}{13}H(p_r) = 0.53$$

(6/9, 3/9)H(p) = 0.46

$$\frac{4}{13}H(p_l) + \frac{9}{13}H(p_r) = 0.47$$

$$(1, 0)$$

H(p) = 0

Лучшее разбиение!

Резюме

- Решающие деревья позволяют строить сложные модели, но есть риск переобучения
- Деревья строятся жадно, на каждом шаге вершина разбивается на две с помощью лучшего из предиктов
- Алгоритм довольно сложный и требует перебора всех предикатов на каждом шаге

Неустойчивость деревьев

Устойчивость моделей

- $X = (x_i, y_i)_{i=1}^{\ell}$ обучающая выборка
- Обучаем модель a(x)
- Ожидаем, что модель устойчивая
- То есть не сильно меняется при небольших изменениях в X
- $ilde{X}$ случайная подвыборка, примерно 90% исходной

Устойчивость моделей

- $ilde{X}$ случайная подвыборка, примерно 90% исходной
- Что будет происходить с деревьями на разных подвыборках?

Композиция моделей

- У нас получилось N деревьев: $b_1(x)$, ..., $b_N(x)$
- Объединим их через голосование большинством (majority vote):

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^{N} [b_n(x) = y]$$

Композиция моделей

Композиция моделей

Голосование по большинству и усреднение

Majority vote

• Какой из двух логотипов более старый?

Google Google

Majority vote

• Как выглядит корпус Вышки в Перми?

Majority vote

• Покоординатный спуск — это метод оптимизации 1-го или 2-го порядка?

Majority vote

- Дано: N базовых алгоритмов $b_1(x)$, ..., $b_N(x)$
- Композиция: класс, за который проголосовало больше всего базовых алгоритмов

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^{N} [b_n(x) = y]$$

Усреднение наблюдений

- Наблюдение: усреднение результатов повышает их точность
- Измерение артериального давления
- Измерение скорости света
- Усреднение соседних пикселей изображения

Композиции моделей

Общий вид: классификация

- $b_1(x)$, ..., $b_N(x)$ базовые модели
- Каждая хотя бы немного лучше случайного угадывания
- Композиция: голосование по большинству (majority vote)

$$a_N(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^N [b_n(x) = y]$$

Общий вид: регрессия

- $b_1(x)$, ..., $b_N(x)$ базовые модели
- Каждая хотя бы немного лучше случайного угадывания
- Композиция: усреднение

$$a_N(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x)$$

Базовые модели

- $b_1(x)$, ..., $b_N(x)$ базовые модели
- Как на одной выборке построить N различных моделей?
- Вариант 1: обучить их независимо на разных подвыборках
- Вариант 2: обучать последовательно для корректировки ошибок

Бустинг

- Каждая следующая модель исправляет ошибки предыдущих
- Например, градиентный бустинг

Бэггинг

- Bagging (bootstrap aggregating)
- Базовые модели обучаются независимо
- Каждый обучается на подмножестве обучающей выборки
- Подмножество выбирается с помощью бутстрапа

Бутстрап

- Выборка с возвращением
- Берём ℓ элементов из X
- Пример: $\{x_1, x_2, x_3, x_4\} \rightarrow \{x_1, x_2, x_2, x_4\}$
- В подвыборке будет ℓ объектов, из них около 63.2% уникальных
- Если объект входит в выборку несколько раз, то мы как бы повышаем его вес

Случайные подпространства

- Выбираем случайное подмножество признаков
- Обучаем модель только на них

Случайные подпространства

- Выбираем случайное подмножество признаков
- Обучаем модель только на них
- Может быть плохо, если имеются важные признаки, без которых невозможно построить разумную модель

Виды рандомизации

- Бэггинг: случайная подвыборка
- Случайные подпространства: случайное подмножество признаков

Резюме

- Будем объединять модели в композиции через усреднение или голосование большинством
- Бэггинг композиция моделей, обученных независимо на случайных подмножествах объектов
- Можно ещё рандомизировать по признакам
- Как лучше всего?

Смещение и разброс моделей

$$L(\mu) = \underbrace{\mathbb{E}_{x,y}\Big[ig(y - \mathbb{E}[y \mid x]ig)^2\Big]}_{\text{шум}} + \underbrace{\mathbb{E}_x\Big[ig(\mathbb{E}_Xig[\mu(X)ig] - \mathbb{E}[y \mid x]ig)^2\Big]}_{\text{смещение}} + \underbrace{\mathbb{E}_x\Big[\Big[\mu(X) - \mathbb{E}_Xig[\mu(X)ig]ig)^2\Big]\Big]}_{\text{разброс}}$$

• Разберём на уровне идеи

- Ошибка модели складывается из трёх компонент
- Шум (noise) характеристика сложности и противоречивости данных

- Ошибка модели складывается из трёх компонент
- Шум (noise) характеристика сложности и противоречивости данных
- Смещение (bias) способность модели приблизить лучшую среди всех возможных моделей

- Ошибка модели складывается из трёх компонент
- Шум (noise) характеристика сложности и противоречивости данных
- Смещение (bias) способность модели приблизить лучшую среди всех возможных моделей
- Разброс (variance) устойчивость модели к изменениям в обучающей выборке

Смещение и разброс: линейная модель

Бэггинг

- Смещение $a_N(x)$ такое же, как у $b_n(x)$
- Разброс $a_N(x)$:

$$\frac{1}{N}$$
 (разброс $b_n(x)$) + ковариация $(b_n(x), b_m(x))$

- Если базовые модели независимы, то разброс уменьшается в N раз!
- Чем более похожи выходы базовых моделей, тем меньше эффект от построения композиции

Смещение и разброс: бэггинг

Случайный лес

Жадный алгоритм

$SplitNode(m, R_m)$

- 1. Если выполнен критерий останова, то выход
- 2. Ищем лучший предикат: $j, t = \arg\min_{j,t} Q(R_m, j, t)$
- 3. Разбиваем с его помощью объекты: $R_\ell = \left\{\{(x,y) \in R_m | \left[x_j < t\right]\right\}$, $R_r = \left\{\{(x,y) \in R_m | \left[x_j \geq t\right]\right\}$
- 4. Повторяем для дочерних вершин: SplitNode (ℓ, R_ℓ) и SplitNode (r, R_r)

Жадный алгоритм

 $SplitNode(m, R_m)$

- 1. Если выполнен критерий останова, то выход
- 2. Ищем лучший предикат: $j, t = \arg\min_{j,t} Q(R_m, j, t)$
- 3. Разбиваем с его помощью объекты: $R_\ell = \left\{\{(x,y) \in R_m | \left[x_j < t\right]\right\}$, $R_r = \left\{\{(x,y) \in R_m | \left[x_j \geq t\right]\right\}$
- 4. Повторяем для дочерних вершин: SplitNode (ℓ, R_ℓ) и SplitNode (r, R_r)

Выбор предиката

$$j, t = \arg\min_{j,t} Q(R_m, j, t)$$

• Будем искать лучший предикат среди случайного подмножества признаков размера q

Корреляция между деревьями

Hastie, Tibshirani, Friedman. The Elements of Statistical Learning.

Корреляция между деревьями

Рекомендации для q:

• Регрессия:
$$q = \frac{d}{3}$$

• Классификация: $q = \sqrt{d}$

Случайный лес (Random Forest)

```
Для n = 1, ..., N:
```

- 1. Сгенерировать выборку $ilde{X}$ с помощью бутстрапа
- 2. Построить решающее дерево $b_n(x)$ по выборке $ilde{X}$
- 3. Дерево строится, пока в каждом листе не окажется не более n_{min} объектов
- 4. Оптимальное разбиение ищется среди q случайных признаков

Случайный лес (Random Forest)

```
Для n = 1, ..., N:
```

- 1. Сгенерировать выборку $ilde{X}$ с помощью бутстрапа
- 2. Построить решающее дерево $b_n(x)$ по выборке \tilde{X}
- 3. Дерево строится, пока в каждом листе не окажется не более n_{min} объектов
- 4. Оптимальное разбиение ищется среди q случайных признаков

Выбираются заново при каждом разбиении!

Случайный лес (Random Forest)

• Регрессия:

$$a(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x)$$

• Классификация:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^{N} [b_n(x) = y]$$

Универсальный метод

- Ошибка сначала убывает, а затем выходит на один уровень
- Случайный лес не переобучается при росте N

Out-of-bag

- Каждое дерево обучается примерно на 63% данных
- Остальные объекты как бы тестовая выборка для дерева
- X_n обучающая выборка для $b_n(x)$
- Можно оценить ошибку на новых данных:

$$Q_{test} = \frac{1}{\ell} \sum_{i=1}^{\ell} L\left(y_i, \frac{1}{\sum_{n=1}^{N} [x_i \notin X_n]} \sum_{n=1}^{N} [x_i \notin X_n] b_n(x_i)\right)$$

Важность признаков

- Перестановочный метод для проверки важности j-го признака
- Перемешиваем соответствующий столбец в матрице «объекты-признаки» для тестовой выборки
- Измеряем качество модели
- Чем сильнее оно упало, тем важнее признак

Резюме

- Случайный лес метод на основе бэггинга, в котором делается попытка повысить разнообразие деревьев
- Метод практически без гиперпараметров
- Можно оценить обобщающую способность без тестовой выборки

Проблемы бэггинга

- Если базовая модель окажется смещённой, то и композиция не справится с задачей
- Базовые модели долго обучать и применять, дорого хранить

- Возьмём простые базовые модели
- Будем строить композицию последовательно и жадно
- Каждая следующая модель будет строиться так, чтобы максимально корректировать ошибки построенных моделей

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение первой модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, b_1(x_i)) \to \min_{b_1(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \rightarrow \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение N-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Непонятно, как обучать дерево на такое в общем случае

Резюме

- В бустинге базовые модели обучаются последовательно
- Каждая следующая корректирует ошибки уже построенных
- В общем случае получается функционал, на который может быть сложно обучать деревья

Бустинг для среднеквадратичной ошибки

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \rightarrow \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a_{N-1}(x_i) + b_N(x_i) - y_i)^2 \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

•
$$s_i^{(N)} = y_i - a_{N-1}(x_i)$$
 — остатки

Первая итерация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (b_1(x_i) - y_i)^2 \to \min_{b_1(x)}$$

Вторая итерация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_2(x_i) - \left(y_i - b_1(x_i) \right) \right)^2 \to \min_{b_2(x)}$$

Третья итерация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_3(x_i) - \left(y_i - b_1(x_i) - b_2(x_i) \right) \right)^2 \to \min_{b_3(x)}$$

Визуализация

Визуализация

Визуализация

Random Forest

Ошибка бустинга на обучении и тесте

Резюме

- В случае с MSE обучение базовых моделей сводится к обычной процедуре обучения с заменой целевой переменной
- Бустинг может переобучаться, поэтому надо следить за ошибкой на тестовой выборке

Сложности с произвольной функцией потерь

Задача обучения базовой модели

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

Задача обучения базовой модели

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Может, просто обучаться на остатки, как в MSE?

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i - a_{N-1}(x_i), b_N(x_i)) \to \min_{b_N(x)}$$

Логистическая функция потерь

$$a_N(x) = \operatorname{sign} \sum_{n=1}^{N} b_n(x)$$

$$L(y, z) = \log(1 + \exp(-yz))$$

• Может, просто обучаться на остатки, как в MSE?

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp\left(-\left(y_i - a_{N-1}(x_i) \right) b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

- Если $y_i = a_{N-1}(x_i)$, то объект не участвует в обучении
- Иначе $y_i a_{N-1}(x_i) = \pm 2$

Логистическая функция потерь

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\frac{y_i - a_{N-1}(x_i)}{2} b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

- Если $y_i = a_{N-1}(x_i)$, то объект не участвует в обучении
- Если $y_i \neq a_{N-1}(x_i)$, то базовая модель учится выдавать корректный класс

Логистическая функция потерь

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp \left(-\frac{y_i - a_{N-1}(x_i)}{2} b_N(x_i) \right) \right) \to \min_{b_N(x)}$$

- $y_i = +1$, $\sum_{n=1}^{N-1} b_n(x_i) = -0.5 o$ надо $b_N(x_i) > 0.5$
- $y_i = +1$, $\sum_{n=1}^{N-1} b_n(x_i) = -100 o$ надо $b_N(x_i) > 100$
- Но на обоих объектах будет одинаково максимизироваться отступ
- На объектах с корректными ответами никак не контролируется выход $b_N(x)$

• Mean Squared Logarithmic Error (среднеквадратичная логарифмическая ошибка)

$$L(y,z) = (\log(z+1) - \log(y+1))^2$$

$$a_N(x) = \sum_{n=1}^{N} b_n(x)$$

$$L(y, z) = (\log(z+1) - \log(y+1))^2$$

• Может, просто обучаться на остатки, как в MSE?

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\log(b_N(x_i) + 1) - \log(y_i - a_{N-1}(x_i) + 1))^2 \to \min_{b_N(x)}$$

$$a_N(x) = \sum_{n=1}^{N} b_n(x)$$

$$L(y, z) = (\log(z+1) - \log(y+1))^2$$

• Может, просто обучаться на остатки, как в MSE?

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\log(b_N(x_i) + 1) - \log(y_i - a_{N-1}(x_i) + 1))^2 \to \min_{b_N(x)}$$

• Аргумент второго логарифма может оказаться отрицательным

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\log(b_N(x_i) + 1) - \log(y_i - a_{N-1}(x_i) + 1))^2 \to \min_{b_N(x)}$$

y_i	$a_{N-1}(x_i)$	$b_N(x_i)$	Улучшение MSLE композиции	Улучшение функционала базовой модели
1000	100	2	0.09	13.7
2	0	2	1.2	1.2

Резюме

- Нельзя заменить обучение добавки к композиции на обучение базовой модели на отклонение от ответов
- Не учитываются особенности функции потерь

Градиентный бустинг в общем виде

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Как посчитать, куда и как сильно сдвигать $a_{N-1}(x_i)$, чтобы уменьшить ошибку?

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

- Как посчитать, куда и как сильно сдвигать $a_{N-1}(x_i)$, чтобы уменьшить ошибку?
- Посчитать производную

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

• Посчитаем производную:

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)}$$

• Посчитаем производную:

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)}$$

- Знак показывает, в какую сторону сдвигать прогноз на x_i , чтобы уменьшить ошибку композиции на нём
- Величина показывает, как сильно можно уменьшить ошибку, если сдвинуть прогноз
- Если ошибка почти не сдвинется, то нет смысла что-то менять

Градиентный бустинг

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$\left. s_i^{(N)} = -rac{\partial}{\partial z} L(y_i,z)
ight|_{z=a_{N-1}(x_i)}$$
— сдвиги

Градиентный бустинг

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$s_i^{(N)} = -rac{\partial}{\partial z}L(y_i,z)igg|_{z=a_{N-1}(x_i)}$$
— сдвиги

- Как бы градиентный спуск в пространстве ответов на обучающей выборке
- Базовая модель будет делать корректировки на объектах так, чтобы как можно сильнее уменьшить ошибку композиции
- Сдвиги учитывают особенности функции потерь

Градиентный бустинг для MSE

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} = -\frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \bigg|_{z=a_{N-1}(x_i)} =$$
$$= -(a_{N-1}(x_i) - y_i) = y_i - a_{N-1}(x_i)$$

Градиентный бустинг для MSE

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} = -\frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \bigg|_{z=a_{N-1}(x_i)} =$$
$$= -(a_{N-1}(x_i) - y_i) = y_i - a_{N-1}(x_i)$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \left(y_i - a_{N-1}(x_i) \right) \right)^2 \to \min_{b_N(x)}$$

Градиентный бустинг для MSE

$$s_i^{(N)} = y_i - a_{N-1}(x_i)$$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 5$: $s_i = 5$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 15$: $s_i = -5$

Градиентный бустинг для асимметричной функции

$$L(y,z) = \frac{1}{2}([z < y](z - y)^2 + 5[z \ge y](z - y)^2)$$

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \bigg|_{z=a_{N-1}(x_i)} =$$

$$= [z < y](y - z) + 5[z \ge y](y - z)$$

Градиентный бустинг для асимметричной функции

$$s_i^{(N)} = [z < y](y - z) + 5[z \ge y](y - z)$$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 5$: $s_i = 5$

•
$$y_i = 10$$
, $a_{N-1}(x_i) = 15$: $s_i = -25$

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \Big|_{z=a_{N-1}(x_i)} =$$

$$= -\frac{\partial}{\partial z} \log(1 + \exp(-y_i z)) \Big|_{z=a_{N-1}(x_i)} =$$

$$= \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))}$$

$$s_i^{(N)} = -\frac{\partial}{\partial z} L(y_i, z) \Big|_{z=a_{N-1}(x_i)} =$$

$$= -\frac{\partial}{\partial z} \log(1 + \exp(-y_i z)) \Big|_{z=a_{N-1}(x_i)} =$$

$$= \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

- Отступ большой положительный: $\frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \approx 0$
- Отступ большой отрицательный: $\frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \approx \pm 1$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - \frac{y_i}{1 + \exp(y_i a_{N-1}(x_i))} \right)^2 \to \min_{b_N(x)}$$

•
$$y_i = +1$$
, $a_{N-1}(x_i) = -0.7$: $s_i = 0.67$

•
$$y_i = +1$$
, $a_{N-1}(x_i) = 2$: $s_i = 0.12$

Резюме

- Чтобы учесть особенности функции потерь, можно посчитать её производные в точке текущего прогноза композиции
- Базовую модель будем обучать на эти производные (со знаком минус)