Lecture 3 | Locally Weighted & Logistic Regression

 Date de création 	@December 19, 2024 4:46 PM
: Étiquettes	

Outline

- Locally Weighted Regression
- Probabilistic Interpretation
- Logistic Regression
- Newton's Method

Recap

$$(x^i,y^i) o ith$$
 exemple $x^{(:)}arepsilon\mathbb{R}^{n+1}, y^iarepsilon\mathbb{R}, xo=1$ m = exemples, n = features $ho(x)=\Sigma(j,n)\Theta jxj=\Theta^T x$ $J\Theta=rac{1}{2}\Sigma(i,m)((ho(x^i)-y^i))^2$

Intro

Parametric Learning

implement weighted regression

Let's say. For Linear Regression is fit Θ to your data and return $\Theta^t x$. You should minimazie Loss with this Θ .

Locally weighted regression (non-parametric algorithm)

Fit Θ to minimize a modifield loss function: $\sum \! w^i (y^i \Theta^{t^i} x)^2$, where $w^i = exp(-rac{(x^i-x)^2}{2 au^2})$

propety 1: if
$$|x^i-x|$$
 is small, w^i ~ 1 propety 2: if $|x^i-x|$ is large, w^i ~ 0

Supose we compute the house price, like that: $y^i = \Theta^t x^i + \epsilon^i$, where this ϵ^i is some error.

This simple mean that, the value of the house is our hypothesis but some "force" of nature or noyse, as you wish.

IID → The error of one house doesn't affect another.

Logit

One reason we use Linear regression is that, we want our h(x) ϵ [0, 1].

$$h heta(x)=g(heta^yx)=rac{1}{1+e^{- heta x}}$$
 , we call g(z) = $rac{1}{1+e^{- heta x}}$, 'sigmoid function' or logistic function.

Binary Problem

$$P(y|x; heta) = h(x)^y(1-h(x))^{1-y})$$

"Log Likelihood"

$$l(\theta) = log L(\Theta)$$

= sum(i=i, n)
$$y^i log h heta(x^i) + (1-y^i) log (1-h heta(x^i)$$

Supose you have a data (x, y). You compute the Log of $L(\theta)$, then you choose θ to maximize $L(\theta)$ using gradient ascent. Ascent means we want the maximum value:

$$\Theta j := \Theta j + lpha rac{\partial}{\partial \Theta j} * l(\Theta)$$

Newton's Method

In comparison with Gradient Ascent or Descent you can give high steps using Newton's method.

Ex: Have F, want to find Θ such that $F(\Theta)=0$

Newton's method uses the concept of quadratic interations, which make the convergence much more faster.

When Θ is a **vector**:

$$\Theta^{(t+i)} := \Theta^{(t)} + H^{-1}
abla heta l$$
 , where H is The Hessian Matrix.

Newton's method is faster than Gradient Ascent or Descent, but if you have high dimensional data the vector increases the coast of each interration.

Questions

- ▼ When use Linear weighnted regression?
 a few features, lots of data and don't care about what features to select.
- ▼ Why specificly choose the Sigmoid Function?
- ▼ Why we use squared error?
- lacktriangledown if that data we want to fit isn't in the format $\Theta o + \Theta x$? but $\Theta o + \Theta x i + \Theta i i x^2$?
- ▼ What's Locally weihted regression? And why does it matter?

It consist in select some area to make predictions based on that area (K-Neighbor)

▼ What's the difference between parametric algorithms and non-parametric algorithms.

Parametric: Fit fixed set of parameters Θi , to data.

Non-Parametric: The number of parameters grows with data size.

▼ What's the Hessian Matrix? What does it matter?

A vector of partial derivatives:

$$\frac{\partial^2 l}{\partial \Theta i, \partial \Theta j}$$

Futher Reding

ML | Locally weighted Linear Regression - GeeksforGeeks

A Computer Science portal for geeks. It contains well written, well thought and well explained computer science and programming articles, quizzes and practice/competitive

⇒ https://www.geeksforgeeks.org/ml-locally-weighted-linear-re gression/

