

Grado en ingeniería en tecnologías de telecomunicación

Curso Académico 2015/2016

Trabajo Fin de Grado

Panel 3D de seguimiento de desarrollo de software

Autor: Adrián Alonso Barriuso

Tutor: Dr. Jesús M. González Barahona

Proyecto Fin de Carrera

FIXME: Título

Autor: Adrián Alonso Barriuso Tutor: Dr. Jesús M. González Barahona
La defensa del presente Proyecto Fin de Grado se realizó el día de de 2016, siendo calificada por el siguiente tribunal:
Presidente:
Secretario:
Vocal:
y habiendo obtenido la siguiente calificación:
Calificación:
Fuenlabrada, a de de 20XX

Dedicado a mi familia / mi abuelo / mi abuela

Agradecimientos

Aquí vienen los agradecimientos... Aunque está bien acordarse de la pareja, no hay que olvidarse de dar las gracias a tu madre, que aunque a veces no lo parezca disfrutará tanto de tus logros como tú... Además, la pareja quizás no sea para siempre, pero tu madre sí.

Resumen

El presente proyecto tiene como objetivo facilitar la visualización de datos y estadísticas de desarrollo de software y hacerlo en 3D dentro de cualquier navegador web sin la necesidad de instalar ningún controlador, plugin o software adicional.

Para realizarlo se ha utilizado principalmente el lenguaje de programación JavaScript,y HTML5 como base para poder servirse de webGL, una librería que nos permite renderizar gráficos en 3D con aceleración gráfica de forma nativa en casi cualquier navegador. No obstante, dado que webGL es de relativo bajo nivel y sería muy complicado realizar aplicaciones directamente sobre su API, se ha utilizado una librería que proporciona un mayor nivel de abstracción que webGL, esta librería es Three.js.

- ¿De qué va este proyecto? ¿Cuál es su objetivo principal?
- ¿Cómo se ha realizado? ¿Qué tecnologías están involucradas?
- ¿En qué contexto se ha realizado el proyecto? ¿Es un proyecto dentro de un marco general?

Lo mejor es escribir el resumen al final.

VI RESUMEN

Summary

This project aims to facilitate the visualization of data and statistics from software development in 3D, inside any web browser without the need to install any drivers, plugin or additional software.

To do this has been mainly used the JavaScript programming language, and HTML5 as the basis to use WebGL, a library that allow us to render 3D graphics with hardware acceleration natively in almost any browser. However, since webGL is relatively low level and would be very difficult to make applications directly on its API, it has been used a library that provides a higher level of abstraction than WebGL, this library is Three.js.

VIII SUMMARY

Índice general

1.	Intro	oduction	1
	1.1.	Objectives	1
		1.1.1. Problem description	1
		1.1.2. Main Objective	1
		1.1.3. Requeriments	1
	1.2.	Demos	1
2.	Proy	vect context	3
	2.1.	Free software	3
	2.2.	Objetivos específicos	3
	2.3.	Planificación temporal	3
3.	Obje	etivos	5
	3.1.	Objetivo general	5
	3.2.	Objetivos específicos	5
	3.3.	Planificación temporal	5
4.	Used	l technologies	7
	4.1.	HTML5	7
		4.1.1. General description	7
		4.1.2. In this project	8
	4.2.	Javascript	8
		4.2.1. Main features	9
		4.2.2. In this project	1
	43	IOuery 1	1

X	ÍNDICE GENERAL
-	11 (2102 021 (211112

		Valoración personal	18
	7.5.		1.0
	7.4.	Trabajos futuros	18
	7.3.	Lecciones aprendidas	17
	7.2.	Aplicación de lo aprendido	17
	7.1.	Consecución de objetivos	17
7.	Con	clusiones	17
6.	Resu	ıltados	15
	5.1.	Arquitectura general	13
5.	Dise	ño e implementación	13
	4.9.	Sección 1	12
	4.8.	Orbitcontrols	12
	4.7.	Domevents	12
	4.6.	Crossfilter	12
	4.5.	Three	12
		4.4.1. Support	12

Índice de figuras

1.1.	Página con enlaces a hilos	2
5.1.	Estructura del parser básico	14

Introduction

En este capítulo se introduce el proyeto. Debería tener información general sobre el mismo, dando la información sobre el contexto en el que se ha desarrollado.

1.1. Objectives

1.1.1. Problem description

1.1.2. Main Objective

1.1.3. Requeriments

1.2. Demos

Sobre el uso de las comas¹

```
From gaurav at gold-solutions.co.uk Fri Jan 14 14:51:11 2005
From: gaurav at gold-solutions.co.uk (gaurav_gold)

Date: Fri Jan 14 19:25:51 2005

Subject: [Mailman-Users] mailman issues

Message-ID: <003c01c4fa40$1d99b4c0$94592252@gaurav7klgnyif>

Dear Sir/Madam,
```

Ihttp://narrativabreve.com/2015/02/opiniones-de-un-corrector-de-estilo-11-recetas-par
html

Figura 1.1: Página con enlaces a hilos

How can people reply to the mailing list? How do i turn off this feature? How can i also enable a feature where if someone replies the newsletter the email gets deleted?

Thanks

From msapiro at value.net Fri Jan 14 19:48:51 2005

From: msapiro at value.net (Mark Sapiro)

Date: Fri Jan 14 19:49:04 2005

Subject: [Mailman-Users] mailman issues

 $\label{localized-localiz$

Message-ID: <PC173020050114104851057801b04d55@msapiro>

gaurav_gold wrote:

>How can people reply to the mailing list? How do i turn off this feature? How can i also enable a feature where if someone replies the newsletter the email gets deleted?

See the FAQ

>Mailman FAQ: http://www.python.org/cgi-bin/faqw-mm.py article 3.11

Proyect context

- 2.1. Free software
- 2.2. Objetivos específicos
- 2.3. Planificación temporal

Objetivos

3.1. Objetivo general

labelsec:objetivo-general

3.2. Objetivos específicos

labelsec:objetivos-especificos

3.3. Planificación temporal

labelsec:planificacion-temporal

Used technologies

4.1. HTML5

4.1.1. General description

HTML5 is a markup language used for structuring and presenting content on the World Wide Web. It was finalized, and published, on 28 October 2014 by the World Wide Web Consortium (W3C) This is the fifth revision of the HTML standard since the inception of the World Wide Web. The previous version, HTML 4, was standardized in 1997.

Its core aims are to improve the language with support for the latest multimedia while keeping it easily readable by humans and consistently understood by computers and devices (web browsers, parsers, etc.). HTML5 is intended to subsume not only HTML 4, but also XHTML 1 and DOM Level 2 HTML.

In particular, HTML5 adds many new syntactic features. These include the new ¡video¿, ¡audio¿and ¡canvas¿elements, as well as the integration of scalable vector graphics (SVG) content (replacing generic ¡object¿tags) and MathML for mathematical formulas. These features are designed to make it easy to include and handle multimedia and graphical content on the web without having to resort to proprietary plugins and APIs. Other new page structure elements, such as ¡main¿, ¡section¿, ¡article¿, ¡header¿, ¡footer¿, ¡aside¿, ¡nav¿and ¡figure¿, are designed to enrich the semantic content of documents. New attributes have been introduced, some elements and attributes have been removed and some elements, such as ¡a¿, ¡cite¿and ¡menu¿have been changed, redefined or standardized. The APIs and Document Object Model (DOM) are no

longer afterthoughts, but are fundamental parts of the HTML5 specification.[6] HTML5 also defines in some detail the required processing for invalid documents so that syntax errors will be treated uniformly by all conforming browsers and other user agents.

4.1.2. In this project

As we said in the previous subsection, HTML5 adds the new syntactic feature known as Canvas, which allow us to render dynamic graphics and animations on our web pages. Almost all web browsers supports Canvas today. To render 3D charts, we must to tell Three.js the canvas element that will contain our beautiful crafted charts:

```
// attach div element to variable to contain the renderer
container = document.getElementById( 'ThreeJS');
// attach renderer to the container div
canvas=renderer.domElement
container.appendChild( canvas );
```

Where the the container is the div with ThreeJS tag(for example).

4.2. Javascript

JavaScript is a high-level, dynamic, untyped, and interpreted programming language. It has been standardized in the ECMAScript language specification. Alongside HTML and CSS, it is one of the three essential technologies of World Wide Web content production; the majority of websites employ it and it is supported by all modern Web browsers without plug-ins. JavaScript is prototype-based with first-class functions, making it a multi-paradigm language, supporting object-oriented, imperative, and functional programming styles. It has an API for working with text, arrays, dates and regular expressions, but does not include any I/O, such as networking, storage, or graphics facilities, relying for these upon the host environment in which it is embedded.

Despite some naming, syntactic, and standard library similarities, JavaScript and Java are otherwise unrelated and have very different semantics. The syntax of JavaScript is actually derived from C, while the semantics and design are influenced by the Self and Scheme programming languages.

4.2. JAVASCRIPT 9

JavaScript is also used in environments that are not Web-based, such as PDF documents, site-specific browsers, and desktop widgets. Newer and faster JavaScript virtual machines (VMs) and platforms built upon them have also increased the popularity of JavaScript for server-side Web applications. On the client side, JavaScript has been traditionally implemented as an interpreted language, but more recent browsers perform just-in-time compilation. It is also used in game development, the creation of desktop and mobile applications, and server-side network programming with runtime environments such as Node.js.

4.2.1. Main features

- Imperative and structured: JavaScript supports much of the structured programming syntax from C (e.g., if statements, while loops, switch statements, do while loops, etc.). One partial exception is scoping: JavaScript originally had only function scoping with var. EC-MAScript 2015 adds a let keyword for block scoping, meaning JavaScript now has both function and block scoping. Like C, JavaScript makes a distinction between expressions and statements. One syntactic difference from C is automatic semicolon insertion, which allows the semicolons that would normally terminate statements to be omitted.
- <u>Dynamic</u>: As with most scripting languages, JavaScript is dynamically typed; a type is associated with each value, rather than just with each expression. For example, a variable that is at one time bound to a number may later be re-bound to a string. JavaScript supports various ways to test the type of an object, including duck typing. JavaScript includes an eval function that can execute statements provided as strings at run-time.
- Prototype-based (Object-oriented): JavaScript is almost entirely object-based. In JavaScript, an object is an associative array, augmented with a prototype (see below); each string key provides the name for an object property, and there are two syntactical ways to specify such a name: dot notation (obj.x = 10) and bracket notation (obj['x'] = 10). A property may be added, rebound, or deleted at run-time. Most properties of an object (and any property that belongs to an object's prototype inheritance chain) can be enumerated using a for...in loop.

JavaScript has a small number of built-in objects, including Function and Date.

■ Functional: A function is first-class; a function is considered to be an object. As such, a function may have properties and methods, such as .call() and .bind().A nested function is a function defined within another function. It is created each time the outer function is invoked. In addition, each nested function forms a lexical closure: The lexical scope of the outer function (including any constant, local variable, or argument value) becomes part of the internal state of each inner function object, even after execution of the outer function concludes.JavaScript also supports anonymous functions.

Syntax examples:

```
var x; // defines the variable x, the special value 'undefined' (not to be
   confused with an undefined value) is assigned to it by default
var y = 2; // defines the variable y and assigns the value of 2 to it
//A simple recursive function:
function factorial(n) {
    if (n == 0) {
        return 1;
   return n*factorial(n-1);
}
//Anonymous function (or lambda) syntax and closure example:
var displayClosure = function() {
   var count = 0;
   return function () {
        return ++count:
   };
var inc = displayClosure();
inc(); // returns 1
inc(); // returns 2
inc(); // returns 3
```

4.3. JQUERY 11

4.2.2. In this project

Is have been used JavaScript for all the scripts in the project, and also, all the libraries we have included are written on JavaScript, these libraries are described in detail in the next sections.

4.3. JQuery

PREGUNTAR SI LO INCLUYO, YA QUE SOLO SE USA EVENTUALENTE PARA RE-COGER LOS DATOS Y NO ES PARTE DE LA LIBRERIA

4.4. WebGL

WebGL (Web Graphics Library) is a JavaScript API for rendering interactive 3D computer graphics and 2D graphics within any compatible web browser without the use of plug-ins. WebGL is integrated completely into all the web standards of the browser allowing GPU accelerated usage of physics and image processing and effects as part of the web page canvas. WebGL elements can be mixed with other HTML elements and composited with other parts of the page or page background. WebGL programs consist of control code written in JavaScript and shader code that is executed on a computer's Graphics Processing Unit (GPU). WebGL is designed and maintained by the non-profit Khronos Group.

WebGL 1.0 is based on OpenGL ES 2.0 and provides an API for 3D graphics.It uses the HTML5 canvas element and is accessed using Document Object Model interfaces. Automatic memory management is provided as part of the JavaScript language.

Like OpenGL ES 2.0, WebGL does not have the fixed-function APIs introduced in OpenGL 1.0 and deprecated in OpenGL 3.0. This functionality can instead be provided by the user in the JavaScript code space. Shaders in WebGL are expressed directly in GLSL(OpenGL Shading Language, a high-level shading language based on the syntax of the C programming language).

4.4.1. Support

WebGL is widely supported in modern browsers. However its availability is dependent on other factors like the GPU supporting it. The official WebGL website offers a simple test page¹.

More detailed information (like what renderer the browser uses, and what extensions are available) is provided at third-party websites.

Desktop Browsers:

■ Google Chrome: WebGL has been enabled on all platforms that have a capable graphics card with updated drivers since version 9, released in February 2011.By default on Windows, Chrome uses the ANGLE (Almost Native Graphics Layer Engine) renderer to translate OpenGL ES to Direct X 9.0c or 11.0, which have better driver support.On Linux and Mac OS X the default renderer is OpenGL however.It is also possible to force OpenGL as the renderer on Windows.Since September 2013, Chrome also has a newer Direct3D 11 renderer, which however requires a newer graphics card

4.5. Three

4.6. Crossfilter

4.7. Domevents

4.8. Orbitcontrols

Puedes citar libros, como el de Bonabeau et al. sobre procesos estigmérgicos [?].

También existe la posibilidad de poner notas al pie de página, por ejemplo, una para indicarte que visite la página de LibreSoft².

4.9. Sección 1

¹http://get.webgl.org/

²http://www.libresoft.es

Diseño e implementación

5.1. Arquitectura general

figura 5.1.

Figura 5.1: Estructura del parser básico

Resultados

Conclusiones

7.1. Consecución de objetivos

Esta sección es la sección espejo de las dos primeras del capítulo de objetivos, donde se planteaba el objetivo general y se elaboraban los específicos.

Es aquí donde hay que debatir qué se ha conseguido y qué no. Cuando algo no se ha conseguido, se ha de justificar, en términos de qué problemas se han encontrado y qué medidas se han tomado para mitigar esos problemas.

7.2. Aplicación de lo aprendido

Aquí viene lo que has aprendido durante el Grado/Máster y que has aplicado en el TF-G/TFM. Una buena idea es poner las asignaturas más relacionadas y comentar en un párrafo los conocimientos y habilidades puestos en práctica.

- 1. a
- 2. b

7.3. Lecciones aprendidas

Aquí viene lo que has aprendido en el Trabajo Fin de Grado/Máster.

1. a

2. b

7.4. Trabajos futuros

Ningún software se termina, así que aquí vienen ideas y funcionalidades que estaría bien tener implementadas en el futuro.

Es un apartado que sirve para dar ideas de cara a futuros TFGs/TFMs.

7.5. Valoración personal

Finalmente (y de manera opcional), hay gente que se anima a dar su punto de vista sobre el proyecto, lo que ha aprendido, lo que le gustaría haber aprendido, las tecnologías utilizadas y demás.

Apéndice A

Manual de usuario