8.3 指令流水

- 一、如何提高机器速度
 - 1. 提高访存速度

高速芯片

Cache

多体并行

存最常用的指令和数据

2. 提高 I/O 和主机之间的传送速度

中断部分并行

DMA 并行 通道

I/O 处理机

多总线

3. 提高运算器速度

高速芯片

改进算法

快速进位链

• 提高整机处理能力

高速器件

改进系统结构,开发系统的并行性

二、系统的并行性

8.3

1. 并行的概念

并发 两个或两个以上事件在 同一时间段 发生 不重叠,只是一个大时间段内都做了 同时 两个或两个以上事件在 同一时刻 发生 流水线属于后者 时间上互相重叠

2. 并行性的等级

过程级(程序、进程) 粗粒度 软件实现 指令级(指令之间) 细粒度 硬件实现 (指令内部)

三、指令流水原理

8.3

1. 指令的串行执行

 取指令1
 执行指令1
 取指令2
 执行指令2
 取指令3
 执行指令3
 ...

 取指令
 取指令部件 完成
 总有一个部件空闲

 执行指令
 执行指令部件 完成

2. 指令的二级流水

若 取指 和 执行 阶段时间上 <u>完全重叠</u> 指令周期 减半 速度提高 1 倍

3. 影响指令流水效率加倍的因素

8.3

(1) 执行时间 > 取指时间

(2) 条件转移指令 对指令流水的影响

必须等上条指令执行结束,才能确定下条指令的地址,

造成时间损失 猜测法

解决办法 ? "分支预测"

4. 指令的六级流水

	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
指令1 指令2		I	1	FO CO	ı	WQ FI	1	 						
指令3 指令4	 	TT	FI	DI FI		FO CO	EI	wo	wo					
指令5	 	! ! !	! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FI	DI	CO	FO	EI	WO	İ			
指令6 指令7	! !	 	 	 	 	¦ FI	DI FI	CO DI	FO CO	FO		wo		
指令8 指令9	ı	 	 	 		 	 	FI	DI FI	CO DI	FO CO	EI FO	WO EI	WO,

完成一条指令

串行执行

六级流水

6个时间单位

6 × 9 = 54 个时间单位 14 个时间单位

三、影响指令流水线性能的因素

8.3

1. 结构相关 不同指令争用同一功能部件产生资源冲突

	$\overline{}$ t													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
指令1	•	T	ı	1 1		\longrightarrow								
指令2	:	¦ FI	DI	CO			WO		 		 	 	 	
指令3 指令4	I	 	FI	DI FI	ı ı		EI FO		WO		 	 	! !	
指令5		 			FI		CO			wo				
指令6	! !	! ! !	 	! ! ! !		FI	DI	CO	FO	EI	wo			
指令7	I	 	 	 		!	FI	DI	CO	FO	EI	WO	 	
指令8	:	! !	! !	 				FI	DI	CO			WO	
指令9	: !	!	! !						FI •	DI	CO	FO	EI	WO

2. 数据相关

8.3

不同指令因重叠操作,可能改变操作数的读/写访问顺序

· 写后读相关(RAW)

SUB
$$R_1$$
, R_2 , R_3 ; $(R_2) - (R_3) \rightarrow R_1$
ADD R_4 , R_5 , R_1 ; $(R_5) + (R_1) \rightarrow R_4$

·读后写相关(WAR)

STA M,
$$R_2$$
 ; $(R_2) \rightarrow M$ 存储单元 ADD R_2 , R_4 , R_5 ; $(R_4) + (R_5) \rightarrow R_2$

·写后写相关(WAW)

MUL
$$R_3$$
, R_2 , R_1 ; $(R_2) \times (R_1) \longrightarrow R_3$
SUB R_3 , R_4 , R_5 ; $(R_4) - (R_5) \longrightarrow R_3$

等待结果写入后才执行下一条指令

解决办法 • 后推法 • 采用 旁路技术 不需要等到写入,算完就用

3. 控制相关 8.3

由转移指令引起

设指令3是转移指令

							t							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
指令1	FI	DI	CO	FO	i EI	WO.	 	l]] 	
指令2	(1 1	FI	ı	ı	FO	\longrightarrow	wo			 	 		 	
指令3	 	 	FI	DI	CO	FO	EI	wo	 	 	 	 	 	
指令4	 - -	 	 	FI	DI	CO	FO		 - -] 	 	(
指令5			 	 	FI	DI	CO			i !	 			i i
指令6			! !	 	 	FI	DI			; !	 			i i
指令7			 	 	 	 	FI			 	 			, I I I
指令15	 	 	! !	 	 	 	! !	FI	DI	CO	FO	EI	WO	
指令16		i I	! !	! !	! !	i	! !		FI	-	-	FO	EI	wo
									←	转移	损失	→		

四、流水线性能

8.3

1. 吞吐率

单位时间内 流水线所完成指令 或 输出结果 的 数量

设 m 段的流水线各段时间为∆ t ——共被分成m段

• 最大吞吐率 满负荷运转,没有发生冲突etc

$$T_{pmax} = \frac{1}{\Delta t}$$

• 实际吞吐率

连续处理n条指令的吞吐率为

$$T_p = \frac{n}{m} \cdot \Delta t + (n-1) \cdot \Delta t$$
第一个指令的时间 以后每经过Dt,都有一个指令完成

2. 加速比 S_p

8.3

m 段的 流水线的速度 与等功能的 非流水线的速度 之比

设流水线各段时间为△t

完成 n 条指令在 m 段流水线上共需

$$T = m \Delta t + (n-1) \Delta t$$

完成 n 条指令在等效的非流水线上共需

$$T'=nm \cdot \Delta t$$

则
$$S_p = \frac{nm \Delta t}{m \Delta t + (n-1) \Delta t} = \frac{nm}{m+n-1}$$

3. 效率 8.3

流水线中各功能段的利用率

由于流水线有 建立时间 和 排空时间 因此各功能段的 设备不可能 一直 处于 工作 状态

3. 效率

8.3

流水线中各功能段的利用率

五、流水线的多发技术

8.3

- 1. 超标量技术 使用多条流水线
 - ▶ 每个时钟周期内可并发<u>多条独立指令</u>
 配置多个功能部件
 - 不能调整 指令的 执行顺序
 通过编译优化技术,把可并行执行的指令搭配起来

2. 超流水线技术

8.3

- 不能调整 指令的 执行顺序 靠编译程序解决优化问题

3. 超长指令字技术

8.3

▶ 由编译程序 挖掘 出指令间 潜在 的 并行性, 将 多条 能 并行操作 的指令组合成 一条

具有 多个操作码字段 的 超长指令字(可达几百位)

➢ 采用 多个处理部件

六、流水线结构

8.3

1. 指令流水线结构

完成一条指令分6段, 每段需一个时钟周期

若 流水线不出现断流

1 个时钟周期出 1 结果

不采用流水技术

6 个时钟周期出 1 结果

理想情况下,6级流水的速度是不采用流水技术的6倍

2. 运算流水线

8.3

完成 浮点加减 运算 可分对阶、尾数求和、规格化 三段

分段原则 每段操作时间尽量一致