AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1-48. (canceled)

49. (Currently Amended) An immunologic vaccine comprising as an active component PDT-treated dead cell material derived from PDT-treatment of autologous autoreactive peripheral blood cells, or fragments thereof, or a supernatant thereof, wherein said cells are treated with a photoactivatable compound selected from the group consisting of:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

4,5-dibromorhodamine 123 hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)-benzoic acid methyl ester hydrobromide),

$$\begin{array}{c|c} & & & \text{II} \\ \hline \\ \text{COOMe} \\ \\ \text{H}_2\text{N} \\ \hline \\ \text{Br} \\ \end{array} \begin{array}{c} \text{CI}^- \\ \\ \text{NH}_2 \\ \end{array} \begin{array}{c} \text{CI}^- \\ \end{array}$$

4,5-dibromorhodamine 123 hydrochloride (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)-benzoic acid methyl ester hydrochloride),

$$\begin{array}{c|c} & \text{III} \\ \hline \\ \text{COOEt} \\ \\ \text{H}_2\text{N} \\ \hline \\ \text{Br} \\ \end{array} \begin{array}{c} + \\ \text{NH}_2 \\ \text{Cl}^- \end{array}$$

4,5-dibromorhodamine 110 ethyl ester hydrochloride (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)benzoic acid ethyl ester hydrochloride),

$$H_2N$$
 H_2N
 H_2
 H_3
 H_2
 H_3
 H_4
 H_5
 H_5
 H_5
 H_7
 $H_$

4,5-dibromorhodamine 110 octyl ester hydrochloride (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)benzoic acid octyl ester hydrochloride),

$$H_2N$$
 H_2N
 H_2
 H_2
 H_2
 H_3
 H_4
 H_5
 H_5
 H_5
 H_7
 $H_$

4,5-dibromorhodamine 110 n-butyl ester hydrochloride (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)benzoic acid n-butyl ester hydrochloride),

rhodamine B n-butyl ester hydrochloride (2'-(6-diethyl amino-3-diethyl imino-3H-xanthen-9-yl)benzoic acid n-butyl ester hydrochloride),

4,5-dibromorhodamine 110 ethyl ester hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)benzoic acid ethyl ester hydrobromide),

VIII

$$COO(CH_2)_7CH_3$$
 H_2N
 H_2N
 H_2N
 H_2
 H_3
 H_4
 H_5
 H_5
 H_5
 H_7
 H_7

4,5-dibromorhodamine 110 octyl ester hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)benzoic acid octyl ester hydrobromide),

4,5-dibromorhodamine 110 n-butyl ester hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)benzoic acid n-butyl ester hydrobromide),

4',5'-dichlorotetramethylrhodamine (2'-(6-dimethylamino-3-dimethylimino-3H-xanthen-9-yl)-4',5'-dichloro benzoic acid methyl ester hydrochloride),

$$\begin{array}{c} \text{COOCH}_2\text{CH}_2\text{OCH}_2\text{CH}_2\text{OCH}_3\\ \\ \text{H}_2\text{N} \\ \\ \text{Br} \end{array}$$

4,5-dibromorhodamine 110 2-(2-methoxy ethoxy)ethyl ester hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)-benzoic acid 2-(2-methoxy ethoxy) ethyl ester hydrobromide),

$$\begin{array}{c} \text{XII} \\ \text{Br} \\ \text{Et}_2 \text{N} \\ \end{array}$$

2,7-dibromorhodamine B hexyl ester acetate (2'-(2,7-dibromo-6-diethyl amino-3-diethyl imino-3H-xanthen-9-yl)benzoic acid hexyl ester acetate),

$$\begin{array}{c} \text{XIII} \\ \text{Br} \\ \text{Et}_2 \text{N} \\ \end{array}$$

2,7-dibromorhodamine B methyl ester acetate (2'-(2,7-dibromo-6-diethyl amino-3-diethyl imino-3H-xanthen 9-yl)benzoic acid methyl ester acetate),

4,5-dibromorhodamine 6G hydrobromide (2'-(4,5-dibromo-2,7-dimethyl-6-ethylamino-3-ethylimino-3H-xanthen-9-yl)b- enzoic acid ethyl ester hydrobromide),

rhodamine B 3-bromopropylester hydrochloride (2'-(6-diethyl amino-3-diethyl imino-3H-xanthen-9-yl)benzoic acid 3-bromopropyl ester hydrochloride),

4,5-dibromorhodamine B base (3,3-(4',5'-dibromo-3'-diethyl amino-6'-diethyl aminoxanthen-9'-yl)-3H-isobenzofuran-1-one),

2,7-dibromorhodamine B base (3,3-(2',7'-dibromo-3'-diethyl amino-6'-diethyl aminoxanthen-9'-yl)-3H-isobenzofuran-1-one), and

I

4-bromo-7-phenyl-rhodamine B base (3,3-(4'-bromo-3'-diethyl amino-6'-diethyl amino-5'-phenyl xanthen-9'-yl)-3H-isobenzofuran-1-one)

and a pharmaceutically acceptable carrier.

50. (Previously Presented) The vaccine of claim 49, wherein said photoactivatable compound is selected from the group consisting of

$$H_2N$$
 H_2N
 H_2N
 H_3
 H_4
 H_5
 H_5

4,5-dibromorhodamine 123 hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)-benzoic acid methyl ester hydrobromide) and

$$\begin{array}{c|c} & & \text{II} \\ \hline \\ \text{COOMe} \\ \\ \text{H}_2\text{N} \\ \hline \\ \text{Br} \\ \end{array} \begin{array}{c} \text{II} \\ \\ \text{CI}^- \\ \end{array}$$

4,5-dibromorhodamine 123 hydrochloride (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)-benzoic acid methyl ester hydrochloride).

- 51. (Previously Presented) The vaccine of claim 49, wherein said compound is activatable by a light having a wavelength in the range of about 400 to about 800 nm.
- 52. (Previously Presented) The vaccine of claim 51, wherein said wavelength is in the range of about 450 to about 600 nm.

- 53. (Withdrawn) A method of preparing an immunologic pharmaceutical formulation for inhibition, protection or treatment of an immunological disorder, infection or a cancer in an individual, comprising the steps of:
- a) treating cells with a photoactivatable compound selected from the group consisting of:

COOMe
$$H_2N$$
 H_2 H_2 H_3 H_4 H_5 H_5 H_5 H_5 H_6 H_7 H_8 H_8

4,5-dibromorhodamine 123 hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)-benzoic acid methyl ester hydrobromide),

$$\begin{array}{c|c} & & & \text{II} \\ \hline \\ \text{COOMe} \\ \\ \text{H}_2\text{N} \\ \hline \\ \text{Br} \\ \end{array} \begin{array}{c} \text{H}_2\text{N} \\ \\ \text{NH}_2 \\ \text{Cl}^- \end{array}$$

4,5-dibromorhodamine 123 hydrochloride (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)-benzoic acid methyl ester hydrochloride),

4,5-dibromorhodamine 110 ethyl ester hydrochloride (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)benzoic acid ethyl ester hydrochloride),

$$\begin{array}{c|c} & \text{IV} \\ \hline \\ \text{COO(CH}_2)_7\text{CH}_3 \\ \hline \\ \text{H}_2\text{N} \\ \hline \\ \text{Br} \\ \end{array}$$

4,5-dibromorhodamine 110 octyl ester hydrochloride (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)benzoic acid octyl ester hydrochloride),

4,5-dibromorhodamine 110 n-butyl ester hydrochloride (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)benzoic acid n-butyl ester hydrochloride),

rhodamine B n-butyl ester hydrochloride (2'-(6-diethyl amino-3-diethyl imino-3H-xanthen-9-yl)benzoic acid n-butyl ester hydrochloride),

VII

$$H_{2N}$$
 H_{2N}
 H_{2N}

4,5-dibromorhodamine 110 ethyl ester hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)benzoic acid ethyl ester hydrobromide),

$$\begin{array}{c} \text{VIII} \\ \\ \text{COO(CH}_2)_7\text{CH}_3 \\ \\ \text{H}_2\text{N} \\ \\ \text{Br} \\ \end{array}$$

4,5-dibromorhodamine 110 octyl ester hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)benzoic acid octyl ester hydrobromide),

$$\begin{array}{c|c} & & \text{IX} \\ \hline \\ \text{COOn-Bu} \\ \\ \text{H}_2\text{N} \\ \hline \\ \text{Br} \\ \end{array} \begin{array}{c} \text{H}_2\text{N} \\ \\ \text{Br} \\ \end{array}$$

4,5-dibromorhodamine 110 n-butyl ester hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)benzoic acid n-butyl ester hydrobromide),

4',5'-dichlorotetramethylrhodamine (2'-(6-dimethylamino-3-dimethylimino-3H-xanthen-9-yl)-4',5'-dichloro benzoic acid methyl ester hydrochloride),

$$\begin{array}{c} \text{COOCH}_2\text{CH}_2\text{OCH}_2\text{CH}_2\text{OCH}_3\\ \\ \text{H}_2\text{N} \\ \\ \text{Br} \end{array}$$

4,5-dibromorhodamine 110 2-(2-methoxy ethoxy)ethyl ester hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)-benzoic acid 2-(2-methoxy ethoxy) ethyl ester hydrobromide),

$$\begin{array}{c} \text{COOMe} \\ \text{Br} \\ \text{Et}_2 \text{N} \end{array}$$

2,7-dibromorhodamine B hexyl ester acetate (2'-(2,7-dibromo-6-diethyl amino-3-diethyl imino-3H-xanthen-9-yl)benzoic acid hexyl ester acetate),

2,7-dibromorhodamine B methyl ester acetate (2'-(2,7-dibromo-6-diethyl amino-3-diethyl imino-3H-xanthen 9-yl)benzoic acid methyl ester acetate),

4,5-dibromorhodamine 6G hydrobromide (2'-(4,5-dibromo-2,7-dimethyl-6-ethylamino-3-ethylimino-3H-xanthen-9-yl)b- enzoic acid ethyl ester hydrobromide),

rhodamine B 3-bromopropylester hydrochloride (2'-(6-diethyl amino-3-diethyl imino-3H-xanthen-9-yl)benzoic acid 3-bromopropyl ester hydrochloride),

4,5-dibromorhodamine B base (3,3-(4',5'-dibromo-3'-diethyl amino-6'-diethyl aminoxanthen-9'-yl)-3H-isobenzofuran-1-one),

2,7-dibromorhodamine B base (3,3-(2',7'-dibromo-3'-diethyl amino-6'-diethyl aminoxanthen-9'-yl)-3H-isobenzofuran-1-one), and

Attorney Docket No. 1032256-000056

Application No. 10/581,718 Page 13

4-bromo-7-phenyl-rhodamine B base (3,3-(4'-bromo-3'-diethyl amino-6'-diethyl

amino-5'-phenyl xanthen-9'-yl)-3H-isobenzofuran-1-one), and

b) subjecting said cells to a light to activate said photoactivatable compound, thereby

obtaining PDT-treated cells or fragments thereof or a supernatant thereof

54. (Withdrawn) The method of claim 53, wherein said immunologic

pharmaceutical formulation is an autoimmune vaccine.

55. (Withdrawn) The method of claim 53, wherein said immunological disorder is

an alloimmune disorder or an autoimmune disorder.

56. (Withdrawn) The method of claim 55, wherein said alloimmune disorder is

Graft-versus-Host Disease or an organ rejection.

57. (Withdrawn) The method of claim 55, wherein said autoimmune disease is

selected from the group consisting of Rheumatoid Arthritis, Multiple Sclerosis, Scleroderma,

Lupus, Autoimmune Hemolytic Anemia, Diabetes Mellitus, Progressive Systemic Sclerosis,

Idiopathic Thrombocytopenic Purpura, Psoriasis, Ulcerative Colitis and Crohn's Disease.

58. (Withdrawn) The method of claim 53, wherein said infection is caused by a

bacteria, a virus, a parasite, a fungus, a prion or a protozoan.

Page 14

(Withdrawn) The method of claim 58, wherein said virus is selected from the 59.

group consisting of Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV),

Hepatitis B Virus (HBV), Human Herpes Virus Type I or II, and Varicella Zoster.

(Withdrawn) The method of claim 53, wherein said infection causes Chagas' 60.

Disease.

(Withdrawn) The method of claim 53, wherein said cancer is selected from 61.

the group consisting of solid tumors and hematologic tumors.

(Withdrawn) The method of claim 61, wherein said solid tumors are of breast 62.

cancer, lung cancer, gastrointestinal cancer, skin cancer or of genitourinary, neurological,

head and neck or musculoskeletal origin.

(Withdrawn) The method of claim 61, wherein said hematologic tumors are 63.

lymphomas, leukemias, myelomas, myelodysplasias or plasma cell dyscrasias.

The method of claim 53, wherein said treatment of said 64. (Withdrawn)

individual cells is effected ex vivo.

(Withdrawn) The method of claim 64, wherein said treatment is an ex vivo 65.

treatment effected by perfusion.

Ι

- Page 15
- 66. (Withdrawn) The method of claim 53, wherein said treatment of said individual cells is effected in vivo.
- 67. (Withdrawn) The method of claim 53, wherein said photoactivatable compound is selected from the group consisting of:

4,5-dibromorhodamine 123 hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)-benzoic acid methyl ester hydrobromide) and

$$\begin{array}{c|c} & & & \text{II} \\ \hline \\ \text{COOMe} \\ \\ \text{H}_2\text{N} \\ \\ \text{Br} \\ \end{array} \begin{array}{c} \text{CI}^- \\ \\ \text{Br} \\ \end{array}$$

4,5-dibromorhodamine 123 hydrochloride (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)-benzoic acid methyl ester hydrochloride).

- 68. (Withdrawn) The method of claim 53, wherein said light has a wavelength in the range of about 400 to about 800 nm.
- 69. (Withdrawn) The method of claim 68, wherein said wavelength is in the range of about 450 to about 600 nm.

70. (Withdrawn) A method of inhibiting or treating an immunological disorder, infection or a cancer in an individual, the method comprising the step of administering to an individual in need thereof an effective amount of a pharmaceutical formulation according to

claim 53.

- 71. (Withdrawn) The method of claim 70, wherein said immunologic disorder is an autoimmune disorder.
- 72. (Withdrawn) The method of claim 70, wherein said immunological disorder is an alloimmune disorder.
- 73. (Withdrawn) The method of claim 72, wherein said alloimmune disorder is Graft-versus-Host Disease or an organ rejection.
- 74. (Withdrawn) The method of claim 71, wherein said autoimmune disorder is selected from the group consisting of Rheumatoid Arthritis, Multiple Sclerosis, Scleroderma, Lupus, Autoimmune Hemolytic Anemia, Diabetes Mellitus, Progressive Systemic Sclerosis, Idiopathic Thrombocytopenic Purpura, Psoriasis, Ulcerative Colitis and Crohn's Disease.
- 75. (Withdrawn) The method of claim 70, wherein said infection is caused by a bacteria, a virus, a parasite, a fungus, a prion or a protozoan.

- 76. (Withdrawn) The method of claim 75, wherein said virus is selected from the group consisting of Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), Hepatitis B Virus (HBV), Human Herpes Virus Type I or II, and Varicella Zoster.
- 77. (Withdrawn) The method of claim 70, wherein said infection causes Chagas' Disease.
- 78. (Withdrawn) The method of claim 70, wherein said cancer is selected from the group consisting of solid tumors and hematologic tumors.
- 79. (Withdrawn) The method of claim 78, wherein said solid tumors are of breast cancer, lung cancer, gastrointestinal cancer, skin cancer or of genitourinary, neurological, head and neck or musculoskeletal origin.
- 80. (Withdrawn) The method of claim 78, wherein said hematologic tumors are lymphomas, leukemias, myelomas, myelodysplasias or plasma cell dyscrasias.
- 81. (Withdrawn) The method of claim 70, wherein said photoactivatable compound is selected from the group consisting of:

COOMe
$$H_{2N} \longrightarrow H_{2N} \longrightarrow H_{2$$

П

4,5-dibromorhodamine 123 hydrobromide (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)-benzoic acid methyl ester hydrobromide) and

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2
 Cl^-

4,5-dibromorhodamine 123 hydrochloride (2'-(6-amino-4,5-dibromo-3-imino-3H-xanthen-9-yl)-benzoic acid methyl ester hydrochloride).

- 82. (Previously Presented) An immunological vaccine according to claim 49, wherein the vaccine further comprises antigen presenting cells, which have not been PDT-treated.
- 83. (Currently Amended) An immunological vaccine according to claim 49, wherein the vaccine, wherein the vaccine consists of a supernatant of PDT-treated cells.