Семинар 11. Евклидовы пространства. Сопряженное преобразование.

Для построения ортонормированного базиса, каждый вектор нужно разделить на его длину, т.е.

$$\mathbf{e}_i = rac{\mathbf{h}_i}{|\mathbf{h}_i|}.$$

Пример 1

Ортонормировать систему векторов со стандартным (т.е. «школьным») скалярным произведением

$$\mathbf{f}_1 = \begin{pmatrix} 1 & 2 & 1 & 2 \end{pmatrix}^{\mathrm{T}}, \quad \mathbf{f}_2 = \begin{pmatrix} 4 & 0 & 4 & 1 \end{pmatrix}^{\mathrm{T}}, \quad \mathbf{f}_3 = \begin{pmatrix} 1 & 13 & -1 & -3 \end{pmatrix}^{\mathrm{T}}.$$

Решение:

На первом шаге возьмем вектор \mathbf{f}_1 за основу нового базиса, т.е. $\mathbf{h}_1 = \mathbf{f}_1 = \begin{pmatrix} 1 & 2 & 1 & 2 \end{pmatrix}^T, |\mathbf{h}_1| = \sqrt{10}.$ На втором шаге найдем следующий вектор по рекуррентной формуле, полученной выше

$$\mathbf{h}_2 = \mathbf{f}_2 - \frac{(\mathbf{f}_2, \mathbf{h}_1)}{|\mathbf{h}_1|^2} \mathbf{h}_1 = \begin{pmatrix} \frac{4}{0} \\ \frac{4}{1} \end{pmatrix} - \frac{10}{10} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{3}{-2} \\ \frac{3}{-1} \end{pmatrix}, \quad |\mathbf{h}_2| = \sqrt{23}.$$

Можно убедиться, что $(\mathbf{h}_2, \mathbf{h}_1) = 0$. Далее, найдем третий вектор

$$\mathbf{h}_{3} = \mathbf{f}_{3} - \frac{(\mathbf{f}_{3}, \mathbf{h}_{1})}{|\mathbf{h}_{1}|^{2}} \mathbf{h}_{1} - \frac{(\mathbf{f}_{2}, \mathbf{h}_{2})}{|\mathbf{h}_{2}|^{2}} \mathbf{h}_{2} = (2 \quad 7 \quad 0 \quad -8)^{\mathrm{T}}, \quad |\mathbf{h}_{3}| = \sqrt{17}.$$

Осталось только нормировать полученный базис, т.е. разделить каждый вектор на его длину. Ответ: $\mathbf{e}_1 = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 2 & 1 & 2 \end{pmatrix}^\mathrm{T}, \mathbf{e}_2 = \frac{1}{\sqrt{23}} \begin{pmatrix} 3 & -2 & 3 & -1 \end{pmatrix}^\mathrm{T}, \mathbf{e}_3 = \frac{1}{\sqrt{17}} \begin{pmatrix} 2 & 7 & 0 & 8 \end{pmatrix}^\mathrm{T}$.

Пример 2

В пространстве многочленов, степени не выше второй, задано скалярное произведение в таком виде:

$$(f,g) = \int_{-1}^{1} f(t)g(t)dt.$$

Построить ортогональный базис в этом пространстве.

Решение:

За основу возьмем стандартный базис $\{1, t, t^2\}$. Пусть первый вектор в нашем новом базисе $\mathbf{h}_1 = \mathbf{h}_1 \mathbf{h}_2 \mathbf{h}_3$

 $\mathbf{f}_1 = 1$. Найдем длину \mathbf{h}_1^{-1} :

$$|\mathbf{h}_1|^2 = \int_{-1}^{1} 1^2 dt = 2.$$

Для ортогонализации необходимо найти скалярное произведения \mathbf{f}_1 и \mathbf{f}_2 . Будем искать их по заданному определению:

$$(\mathbf{f}_1, \mathbf{f}_2) = \int_1^1 1 \cdot t = 0 \Rightarrow 1 \perp t.$$

 $^{^{1}}$ Как может показаться длина единицы равна 1. Но т.к. по определению длина вектора — корень из его скалярного произведения самого на себя, это не так.

Теперь подставим числа в рекуррентную формулу и получим второй вектор базиса:

$$\mathbf{h}_2 = \mathbf{f}_2 - \frac{(\mathbf{f}_2, \mathbf{h}_1)}{|\mathbf{h}_1|^2} \mathbf{h}_1 = \mathbf{f}_2 \quad |\mathbf{h}_2|^2 = \int_{-1}^1 t^2 dt = \frac{2}{3}.$$

Т.к.
$$(\mathbf{f}_3, \mathbf{h}_2) = 0$$
,

$$(\mathbf{h}_1, \mathbf{f}_3) = \int_{-1}^{1} 1 \cdot t^2 = \left. \frac{t^3}{3} \right|_{-1}^{1} = \frac{2}{3},$$

$$\mathbf{h}_{3} = \mathbf{f}_{3} - \frac{(\mathbf{f}_{3}, \mathbf{h}_{2})}{\left|\mathbf{h}_{2}\right|^{2}} \mathbf{h}_{2} - \frac{(\mathbf{f}_{3}, \mathbf{h}_{1})}{\left|\mathbf{h}_{1}\right|^{2}} \mathbf{h}_{1},$$

ТО

$$\mathbf{h}_3 = t^2 - \frac{2}{3 \cdot 2} \cdot 1 = t^2 - \frac{1}{3}.$$

Ответ: $\{1, t, t^2 - \frac{1}{3}\}.$

С. А. Жестков, VK

Команда ВОТАҮ!:

Д. Георгий, VK К. Алексей, VK

K. Ксения, VK

 Γ . Мадина, VK

C. Πaua , VK

M. Mamвeй, VK