Estudo de técnicas de detecção de anomalias e suas aplicações

Helena Almeida Victoretti e Luciana de Melo e Abud

Orientador: João Eduardo Ferreira Co-orientador: Pedro Losco Takecian

Instituto de Matemática e Estatística - Universidade de São Paulo

Introdução

Objetivo

- Estudo de caracterização e delimitação de algumas das principais técnicas de detecção de anomalias
- Escolha de uma técnica de detecção de anomalias para ser estudada e implementada em um módulo para o núcleo de um sistema de segurança transfusional de sangue

Introdução

- O que são anomalias?
 - Instâncias que não seguem um comportamento padrão esperado

Figura 1: Exemplo de instâncias normais e de uma anomalia

Técnicas de Detecção de Anomalias

- São utilizadas em sistemas com diferentes finalidades:
 - ► Detecção de invasão em redes de computadores
 - Verificação de fraude bancária
 - Detecção de doença por análise de imagens
- Utilizam-se métodos de diferentes áreas, como aprendizado de máquina
- Escolha da técnica a ser utilizada depende basicamente do domínio do problema e dos dados de entrada

Técnicas de Detecção de Anomalias

Principais fases

- ► Fase de treino
 - Fase inicial, em que se define os parâmetros utilizados pelo detector
- ► Fase de teste
 - ▶ Determina se uma instância é normal ou anomalia

Classificação das técnicas

- Supervisionadas
- Semi-supervisionadas
- Não supervisionadas

- Baseadas em classificadores
- Baseadas em distância
- ► Baseadas em densidade
- ► Baseadas em *clustering*
- ► Baseadas em métodos estatísticos

Baseadas em Classificadores

- Classificam os dados recebidos entre anômalos ou normais
- Principais subcategorias:
 - Redes Neurais
 - Redes Bayesianas
 - Máquinas de Vetores Suporte (SVM)
 - Regras
- Vantagens:
 - Existência de muitos algoritmos poderosos de classificação
 - Rapidez do processo da fase de teste
- Desvantagens:
 - Necessidade de os dados de treino serem rotulados
 - Falta de uma atribuição de pontuação de anomalia associada às instâncias

Baseadas em Distância

- Classificam os dados entre anômalos e normais considerando a distância entre uma instância e seus vizinhos
- Dois principais métodos:
 - Método da vizinhança local
 - Uma instância O é uma anomalia se pelo menos uma fração de instâncias se encontra a uma distância maior que um determinado d de O
 - Método do k-ésimo vizinho mais próximo (kNN)
 - ▶ Uma instância O é uma anomalia se no máximo n-1 outras instâncias O' possuem $D^k(O') > D^k(O)$
- Vantagem: Não são feitas hipóteses sobre a disposição dos dados
- Desvantagem: Ineficiência quando dados possuem alta dimensionalidade

Baseadas em Densidade

- Estimam a densidade da vizinhança de cada instância
- Uma instância que pertence a uma vizinhança pouco densa é considerada anomalia
- Principais métodos:
 - Local Outlier Factor (LOF)
 - Connectivity-based Outlier Factor (COF)
 - Outlier Detection using In-degree Number (ODIN)
 - ► Influenced Outlierness (INFLO)
 - ► Multi-granularity Deviation Factor (MDEF)
- Vantagens: Eficácia e a possibilidade de serem utilizadas em dados não rotulados
- Desvantagem: Custo computacional

Baseadas em Clustering

- Agrupam dados similares
- Principais subcategorias:
 - ▶ Regra 1: instâncias normais pertencem a algum *cluster* e instâncias anômalas a nenhum.
 - Regra 2: instâncias normais estão próximas do centro do cluster mais próximo e instâncias anômalas estão distantes do centro do cluster mais próximo.
 - ▶ Regra 3: instâncias normais pertencem a *clusters* grandes e densos, enquanto instâncias anômalas pertencem a *clusters* pequenos e esparsos.
- Vantagens: Possibilidade de serem utilizadas com dados não rotulados e a rapidez no processo da fase de teste
- ▶ Desvantagem: Dependência dos algoritmos de clustering

Baseadas em Métodos Estatísticos

- Baseiam-se na hipótese de que existe uma distribuição estatística que modela o conjunto de dados
- Uma anomalia é uma instância que não é modelada por essa distribuição
- Vantagens: Justificativa matemática para a classificação da instância entre normal ou anomalia e eficiência quando se obtém uma boa função de densidade da distribuição dos dados
- Desvantagens: Necessidade de existir uma distribuição estatística que modele os dados e performance limitada quando há poucas instâncias de treino

Sistema de validação estatístico

- Dados provenientes de hemocentros brasileiros
- Estrutura de lote de dados
- Detecção de erros não capturados por validação sintática ou semântica utilizando detecção de anomalias
- Classificação de lotes em normais ou anomalias
- Acoplamento de técnicas de detecção de anomalias em um núcleo
 - Atualmente: método gaussiano

Processo de validação de instâncias

Proporções dos valores do atributo como medida estatística

Fator Rh sanguíneo	Proporção no lote
Positivo	0.46
Negativo	0.45
Indeterminado	0.09

Tabela 1: Proporções das categorias do atributo fator Rh sanguíneo em um lote exemplo

Processo de validação de instâncias

Proporções dos valores do atributo como medida estatística

Fator Rh sanguíneo	Proporção no lote
Positivo	0.46
Negativo	0.45
Indeterminado	0.09

Tabela 1: Proporções das categorias do atributo fator Rh sanguíneo em um lote exemplo

Instância
$$x = (x_1, x_2, x_3) = (0.46, 0.45, 0.09)$$

Processo de validação de instâncias

Proporções dos valores do atributo como medida estatística

Fator Rh sanguíneo	Proporção no lote
Positivo	0.46
Negativo	0.45
Indeterminado	0.09

Tabela 1: Proporções das categorias do atributo fator Rh sanguíneo em um lote exemplo

Instância
$$x = (x_1, x_2, x_3) = (0.46, 0.45, 0.09)$$

► Eliminação de uma dimensão

Detecção de Anomalias Baseada em Distância

Problema do método gaussiano

Figura 2: Exemplo de instâncias que não são adequadamente representadas pelo modelo gaussiano. Fonte: Pedro L. Takecian. Diretrizes metodológicas e validação estatística de dados para a construção de *data warehouses*, 2014 [4]

Detecção de Anomalias Baseada em Distância

Escolha da técnica baseada em distância

- Não são feitas hipóteses sobre a disposição dos dados
- Generalização de conceitos de métodos que assumem que os dados seguem uma certa distribuição
- Complexidade computacional menor do que técnicas baseadas em densidade

Detecção de Anomalias Baseada em Distância

Métodos

- Método da vizinhança local
 - "Uma instância O é uma anomalia se pelo menos uma fração de instâncias se encontra a uma distância maior que um determinado d de O"
 - ▶ Dependência do parâmetro *D*, difícil de ser encontrado
 - Não são atribuídas pontuações às anomalias
- Método do k-ésimo vizinho mais próximo (kNN)
 - ▶ "Uma instância O é uma anomalia se no máximo n-1 outras instâncias O' possuem $D^k(O') > D^k(O)$ "
 - Dependência do parâmetro n

Método do k-ésimo vizinho mais próximo (kNN)

Principais algoritmos

- ► Algoritmo *simple nested-loop*
 - ► O(N²)
- Algoritmo index-based
 - ► O(N²) no pior caso
- Algoritmo partition-based
 - ► O(N²) no pior caso
- Algoritmo nested-loop ANNS
 - Linear na prática
 - ► O(N²) no pior caso

Implementação do Módulo de Detecção de Anomalias

- ► Implementação em Python
 - NumPy, SciPy
- ► Algoritmo nested-loop ANNS
 - ► Treinamento para encontrar k e c (threshold para classificar instância em normal ou anomalia)
- Distância de Manhattan

Figura 3: Escolha do threshold c para k = 1

Estudo de Caso

Análise comparativa entre os métodos gaussiano e kNN

Figura 4: Instâncias geradas seguindo diferentes distribuições. Cada eixo corresponde às proporções de cada categoria (O, A e B) em cada lote representado por um "x".

Conclusão

- Escolha da técnica de detecção de anomalias depende do domínio dos dados
- Apesar de funcionar bem em muitos casos, a técnica gaussiana não detecta anomalias quando os dados se encontram em uma disposição de *clusters*
- Técnicas de distância em geral possuem uma boa performance, entretanto são computacionalmente mais complexas

Referências

- Stephen D. Bay and Mark Schwabacher.
 Mining distance-based outliers in near linear time with randomization and a simple pruning rule, 2003.
- [2] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM Comput. Surv., 41(3):15:1 – 15:58, 2009.
- [3] Eduardo Dias Filho. Implementação de um sistema de validação estatística configurável de dados, 2014.
- [4] Pedro L. Takecian. Diretrizes metodológicas e validação estatística de dados para a construção de data warehouses, 2014.

Estudo de técnicas de detecção de anomalias e suas aplicações

Helena Almeida Victoretti e Luciana de Melo e Abud

Orientador: João Eduardo Ferreira Co-orientador: Pedro Losco Takecian

Instituto de Matemática e Estatística - Universidade de São Paulo