union-tina.	from a particular given vertex to all others in a graph.
	 But suppose you're only interested in get- ting to a particular vertex?
	 Because the algorithm finds paths in order of length, you could simply run it and stop when you get to the vertex you want.
	But, this can be really wasteful.
	 For example, to travel by road from Denver to a destination on lower Fifth Avenue in New York City is about 1750 miles (says Google).
	 But traveling from Denver to the Gourmet Ghetto in Berkeley is about 1650 miles.
	 So, we'd explore much of California, Nevada, Arizona, etc. before we found our destination, even though these are all in the wrong
Last modified: Fri Nov 9 02:52:57 2018	Last modified: Fri Nov 9 02:52:57 2018 CS61B: Lecture #34 2
	ver to the desired NYC vertex.
	• Suppose that we had a heuristic guess, $h(V)$, of the length of a path from any vertex V to NYC.
	• And suppose that instead of visiting vertices in the fringe in order of their shortest known path to Denver, we order by the sum of that distance plus a heuristic estimate of the remaining distance to NYC: $d(\text{Denver}, V) + h(V)$.
	 In other words, we look at places that are reachable from places where we already know the shortest path to Denver and choose those that look like they will result in the short- est trip to NYC, guessing at the remaining distance.
Last modified: Fri Nov 9 02:52:57 2018	If the estimate is good, then we don't look at, say, Grand Junction (250 miles west by Last modified: Fri Nov 9 02:52:57 2018 CS618: Lecture #34 4
	TO NYC IS TOO NIGN (i.e., larger than the ac-
the heuristic.	tual path by road), then we may get to NYC without ever examining points along the short- est route.
	ullet For example, if our heuristic decided that the midwest was literally the middle of nowhere, and $h(C)=2000$ for C any city in Michigan or Indiana, we'd only find a path that detoured south through Kentucky.
	• So to be admissible, $h(C)$ must never overestimate $d(C, {\sf NYC})$, the minimum path distance from C to ${\sf NYC}$.
	\bullet On the other hand, $h(C)=0$ will work (what is the result?), but yield a non-optimal algorithm.
Last modified: Fri Nov 9 02:52:57 2018	Last modified: Fri Nov 9 02:52:57 2018

• So by driving 200 miles to Springfield, we guess that we are suddenly 500 miles closer to NYC. • This is admissible, since both estimates are low, but it will mess up our algorithm. • Specifically, will require that we put processed nodes back into the fringe, in case our estimate was wrong. • So (in this course, anyway) we also require consistent heuristics: $h(A) \leq h(B) + d(A, B)$, as for the triangle inequality. • All consistent heuristics are admissible (why?). • For project 3, distance "as the crow flies" is a good $h(\cdot)$ in the trip application. Last modified: Fri Nov 9 02:52:57 2018 CS61B: Lecture #34 7 Last modified: Fri Nov 9 02:52:57 2018 CS61B: Lecture #34 8 tree computing giving (backwards) shortest paths in a weighted graph from a given starting node to all other nodes. • Time required = - Time to remove ${\it V}$ nodes from priority queue + - Time to update all neighbors of each of these nodes and add or reorder them in queue ($E \lg E$) ${\color{red}\boldsymbol{\mathsf{-}}} \in \Theta(V \lg V + E \lg V) = \Theta((V+E) \lg V)$ • A* search searches for a shortest path to a particular target node. • Same as Dijkstra's algorithm, except: - Stop when we take target from queue. - Order queue by estimated distance to start + heuristic guess of remaining distance CS61B: Lecture #34 9 Last modified: Fri Nov 9 02:52:57 2018 CS61B: Lecture #34 10 between them (assume always positive), tina • Idea is to grow a tree starting from an ara set of connecting roads of minimum total bitrary node. length that allows travel between any two. • At each step, add the shortest edge con-• The routes you get will not necessarily be necting some node already in the tree to one shortest paths. that isn't yet. • Easy to see that such a set of connecting • Why must this work? roads and places must form a tree, because removing one road in a cycle still allows all to be reached. Last modified: Fri Nov 9 02:52:57 2018 CS61B: Lecture #34 11 Last modified: Fri Nov 9 02:52:57 2018 CS61B: Lecture #34 12

and n(SpringTiela, IL) = 200, where a(Cnicago, SpringTiela)

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 13

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn't yet.
- Why must this work?

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 14

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 15

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn't yet.
- Why must this work?

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 16

```
s.dist() = 0;
fringe = priority queue ordered by smallest
.dist();
add all vertices to fringe;
while (!fringe.isEmpty()) {
   Vertex v = fringe.removeFirst();
   For each edge(v,w) {
      if (w ∈ fringe && weight(v,w) (G/7 1 | H|∞) (W.dist()) {
      w.dist() = weight(v, w);
   w.parent() = v; }
}
```

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 17

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn't yet.
- Why must this work?

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 18

```
s.dist() = 0;
fringe = priority queue ordered by smallest
.dist();
add all vertices to fringe;
while (!fringe.isEmpty()) {
    Vertex v = fringe.removeFirst();
    For each edge(v,w) {
        if (w ∈ fringe && weight(v,w)
        w.dist())
        { w.dist() = weight(v, w);
        w.parent() = v; }
    }
}
```

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 19

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn't yet.
- Why must this work?

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 20

```
s.dist() = 0;

fringe = priority queue ordered by smallest

.dist();

add all vertices to fringe;

while (!fringe.isEmpty()) {

Vertex v = fringe.removeFirst();

For each edge(v,w) {

   if (w ∈ fringe && weight(v,w) (6|7) 1 | H|2)

   w.dist())

   { w.dist() = weight(v, w);

   w.parent() = v; }

}
```

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 21

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn't yet.
- Why must this work?

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 22

```
s.dist() = 0;

fringe = priority queue ordered by smallest

.dist();

add all vertices to fringe;

while (!fringe.isEmpty()) {

Vertex v = fringe.removeFirst();

For each edge(v,w) {

   if (w ∈ fringe && weight(v,w) G|1 ... H|2 |

   w.dist())

   { w.dist() = weight(v, w);

   w.parent() = v; }

}
```

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 23

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn't yet.
- Why must this work?

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 24

```
s.dist() = 0;
fringe = priority queue ordered by smallest
.dist();
add all vertices to fringe;
while (!fringe.isEmpty()) {
    Vertex v = fringe.removeFirst();
    For each edge(v,w) {
        if (w ∈ fringe && weight(v,w)
        w.dist())
        { w.dist() = weight(v, w);
        w.parent() = v; }
    }
}
```

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 25

Idea is to grow a tree starting from an arbitrary node.

 At each step, add the shortest edge connecting some node already in the tree to one that isn't yet.

• Why must this work?

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 26

```
s.dist() = 0;

fringe = priority queue ordered by smallest

.dist();

add all vertices to fringe;

while (!fringe.isEmpty()) {

Vertex v = fringe.removeFirst();

For each edge(v,w) {

   if (w ∈ fringe && weight(v,w) 

   w.dist())

   { w.dist() = weight(v, w);

   w.parent() = v; }

}
```

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 27

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn't yet.
- Why must this work?

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 28

Last modified: Fri Nov 9 02:52:57 2018

CS61B: Lecture #34 29

- Observation: the shortest edge in a graph can always be part of a minimum spanning tree.
- In fact, if we have a bunch of subtrees of a MST, then the shortest edge that connects two of them can be part of a MST, combining the two subtrees into a bigger one.
- So,...

COT OF COTO OF MARKET WITH TWO OPPONENTIANS
 Find which of the sets a given node belongs to. Replace two sets with their union, reassigning all the nodes in the two original sets to this union. Obvious thing to do is to store a set number in each node, making finds fast. Union requires changing the set number in one of the two sets being merged; the smaller is better choice. This means an individual union can take Θ(N) time. Can union be fast?
Last modified: Fri Nov 9 02:52:57 2018
Last modified: Fri Nov 9 02:52:57 2018