Gayathri Pulagam

EDUCATION

San Jose State University

MS Software Engineering (Data Science) 2021 Web and Big Data Mining Deep Learning Reinforcement Learning Systems Engineering

Jawaharlal Nehru Technological University

BS Computer Science 2017 Data Structures and Algorithms Design Patterns Operating Systems Distributed Systems

SKILLS

TECHNICAL SKILLS: Python, Java, C++, Spark, Data Analysis, PyTorch, TensorFlow, SQL, React.js, Docker, R, Data Modelling and Evaluation, Data Visualization

PROJECTS

Credit Card Fraud Detection

May 2020 - July 2020

- Built a binary classification model using **SageMaker's LinearLearner** that can identify transactions as either fraudulent or valid
- Improved the accuracy of the model upto 95.9% by decreasing class imbalance and tuning the hyperparameters

Sentiment Analysis on User Reviews

June 2020 - July 2020

- Designed an interactive web application which takes in text as an input and analyzes it to predict the sentiment
- Processed the data using NLP to homogenize the data
- Developed an XGBoost model to classify the input data's sentiment quotient

Dog Breed Classifier

Mar. 2020 - Apr. 2020

- Built a data processing pipeline which can be used within web or mobile app to process real-world, usersupplied images to identify an estimate of a canine's breed
- Trained the model using CNN (Transfer Learning) to improve accuracy of the image classification

Plagiarism Detector

Feb. 2020 - Mar. 2020

- Built a custom PyTorch neural network classifier to detect varying levels of plagiarism in the input text data
- Extracted meaningful features like containment features to calculate n-gram range and LCS to catch varying levels of plagiarism in the input text
- Deployed the model to a web application using AWS API Gateway and AWS Lambda

Population Segmentation

July 2020 - Aug. 0200

- Employed two unsupervised learning algorithms to do population segmentation to find natural groupings in population data that reveals some feature-level similarities between different regions in the US
- Using PCA, reduced the dimensionality in original census data and then used k-means clustering to assign each US county to their respective clusters

Facial Expression Recognition

Jan. 2020 - Feb. 2020

- Built and trained a CNN in Keras from scratch to recognize facial expressions
- Used OpenCV to detect faces in images and classify each face based on emotion into 7 different categories
- Deployed the trained model to a web interface to perform real-time facial expression recognition on video and image data