Análise e correção de algoritmos

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"Uma demonstração de correção convincente será impossível enquanto o mecanismo seja visto como uma caixa preta, nossa única esperança é não considerar um mecanismo como uma caixa preta."

Edsger W. Dijkstra.

¹Edsger W. Dijkstra, "Notes On Structured Programming", 1970.

Analisando um Algoritmo

Ordenação

Consideremos o problema da ordenação:

Problem (Ordenação de inteiros)

- **Entrada:** Um vetor de inteiros.
- **Saída:** O vetor em ordem crescente.

Ordenação por inserção

Uma ideia para ordenar os elementos de um vetor pode ser:

Percorrer as posições do vetor e a cada nova posição, inserir o elemento associado no lugar correto do sub-vetor (ordenado) à esquerda daquela posição.

Elaborado mais a ideia:

- 1. Percorrer cada posição j do vetor do início ao fim fazendo:
- Armazenar o valor em j numa chave.
- 3. Percorrer de j-1 até o início enquanto o valor for maior que a chave:
- 4. Copiar o valor atual na posição à direita.
- 5. Colocar o valor da chave na posição i.

Vejamos um exemplo:

Algoritmo

Algoritmo: Insertion-Sort(A, n)

```
1 para j \leftarrow 2 até n

2 | chave \leftarrow A[j]

3 | i \leftarrow j - 1

4 | enquanto i \ge 1 e A[i] > chave

5 | A[i+1] \leftarrow A[i]

6 | i \leftarrow i - 1

7 | A[i+1] \leftarrow chave
```

Perguntas:

- ► O algoritmo termina?
- Qual a sua complexidade?
- Produz uma resposta correta?

Contando o número de instruções

Insertion-Sort (A, n)	Cust	to Quantas vezes?
1 para $j \leftarrow 2$ até n	c_1	n
2 chave $\leftarrow A[j]$	c_2	n-1
$3 \qquad i \leftarrow j-1$	<i>c</i> ₃	n-1
4 enquanto $i \geq 1$ e $A[i]$] > chave c_4	$\sum_{j=2}^{n} t_j$
$5 A[i+1] \leftarrow A[i]$	<i>c</i> ₅	$\sum_{j=2}^{n} (t_j - 1)$
6 $i \leftarrow i-1$	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
$7 \qquad A[i+1] \leftarrow chave$	C 7	n-1

- A linha k executa um número constante de instruções c_k.
- Cada linha executa uma ou mais vezes.
- Quantas vezes a linha 4 executa depende da entrada.
 - $ightharpoonup t_j$ denota quantas vezes o **enquanto** executa para um certo j.

Tempo de execução total

- Considere uma instância de tamanho n.
- T(n) denota o número de instruções executadas para ela.
- Basta somar para todas as linhas:

$$T(n) = \mathbf{c_1} \cdot n + \mathbf{c_2} \cdot (n-1) + \mathbf{c_3} \cdot (n-1) + \mathbf{c_4} \cdot \sum_{j=2}^{n} t_j + \mathbf{c_5} \cdot \sum_{j=2}^{n} (t_j - 1) + \mathbf{c_6} \cdot \sum_{j=2}^{n} (t_j - 1) + \mathbf{c_7} \cdot (n-1).$$

Observações:

- Entradas do mesmo tamanho podem ter tempos diferentes.
- Vamos considerar diferentes instâncias.
 - **Melhor caso:** quando T(n) é o menor possível.
 - **Pior caso:** quando T(n) é o maior possível.

Melhor caso

Um melhor caso ocorre quando $t_i = 1$ para cada j:

- Basta que a condição do **enquanto** sempre falhe.
- Ocorre se a entrada A já vem ordenada.

Nesse caso:

$$T(n) = \mathbf{c}_1 \cdot n + \mathbf{c}_2 \cdot (n-1) + \mathbf{c}_3 \cdot (n-1) + \mathbf{c}_4 \cdot (n-1) + \mathbf{c}_7 \cdot (n-1)$$

$$= (\mathbf{c}_1 + \mathbf{c}_2 + \mathbf{c}_3 + \mathbf{c}_4 + \mathbf{c}_7) \cdot n - (\mathbf{c}_2 + \mathbf{c}_3 + \mathbf{c}_4 + \mathbf{c}_7)$$

$$= \mathbf{a} \cdot n + \mathbf{b}.$$

- Os valores de a e b são constantes.
- O tempo de execução no melhor caso é linear em n.
- \triangleright O algoritmo executa em tempo $\Omega(n)$.

Pior caso

Um pior caso ocorre quando t_j é máximo para cada j:

- Basta que a condição do **enquanto** só falha quando i = 0.
- Nessa situação, teremos $t_i = j$.
- Ocorre se a entrada A vem ordenada decrescentemente.

Relembre que:

$$\sum_{j=2}^{n} j = n(n+1)/2 - 1$$
 e $\sum_{j=2}^{n} (j-1) = n(n-1)/2$.

Pior caso (cont)

Substituindo, temos:

$$T(n) = \mathbf{c_1} \cdot n + \mathbf{c_2} \cdot (n-1) + \mathbf{c_3} \cdot (n-1) + \mathbf{c_4} \cdot (n(n+1)/2 - 1) + \mathbf{c_5} \cdot n(n-1)/2 + \mathbf{c_6} \cdot n(n-1)/2 + \mathbf{c_7} \cdot (n-1)$$

$$= (\mathbf{c_4}/2 + \mathbf{c_5}/2 + \mathbf{c_6}/2) \cdot n^2 + (\mathbf{c_1} + \mathbf{c_2} + \mathbf{c_3} + \mathbf{c_4}/2 - \mathbf{c_5}/2 - \mathbf{c_6}/2 + \mathbf{c_7}) \cdot n - (\mathbf{c_2} + \mathbf{c_3} + \mathbf{c_4} + \mathbf{c_7})$$

$$= \mathbf{a} \cdot n^2 + \mathbf{b} \cdot n + \mathbf{c}.$$

- Os valores de a, b, c são constantes.
- O tempo de execução no pior caso é **quadrático** em *n*.
- ▶ O algoritmo executa em tempo $O(n^2)$.

Pergunta

Como verificar se o algoritmo produz uma resposta correta?

Correção por invariante de laço

Invariante de laço

Definição

Uma INVARIANTE LAÇO é uma propriedade que:

- Depende dos valores das variáveis.
- Está associada a determinada posição de um laço.
- É satisfeita em TODA execução do laço.

A posição escolhida é normalmente descrita como:

- ▶ Imediatamente ANTES ou DEPOIS da iteração do laço.
- Imediatamente ANTES ou DEPOIS de determinada linha.

Objetivos:

- Após o término do laço, deve ser uma propriedade útil para se mostrar a correção do algoritmo.
- Permite nos concentrar apenas em uma iteração do laço.

Exemplo de invariante


```
1 para j \leftarrow 2 até n

2 | chave \leftarrow A[j]

3 | i \leftarrow j - 1

4 | enquanto i \ge 1 e A[i] > chave

5 | A[i+1] \leftarrow A[i]

6 | i \leftarrow i - 1

7 | A[i+1] \leftarrow chave
```

Exemplo (Invariante 1)

Imediatamente antes de cada iteração do laço **para**, o subvetor $A[1 \dots j-1]$ está ordenado.

- Posição da invariante: antes da iteração do laço para.
- **Propriedade invariante:** A[1...j-1] está ordenado.

Demonstrando uma invariante

Tipicamente, demonstramos uma invariante com as seguintes etapas:

- 1. Mostre que a propriedade vale antes de qualquer iteração.
- 2. Mostre que, se a propriedade vale no início da iteração, então ela também vale no final da iteração
- 3. Conclua que a invariante vale quando o laço termina.

Estamos usando o PRINCÍPIO DA INDUÇÃO!

- A base corresponde à etapa 1.
- O passo indutivo corresponde à etapa 2.

Demonstrando uma invariante: caso base

Considere a primeira iteração do laço para:

- No início da iteração, j = 2.
- Assim, o subvetor A[1...j-1] contém apenas um elemento.
- Então, a invariante vale antes de qualquer iteração.

Demonstrando uma invariante: passo indutivo

Suponha que a invariante vale no início de alguma iteração:

- Nessa iteração, temos chave = A[j].
- Após o laço **enquanto**, inserimos chave na posição i + 1.
- Quando inserirmos a chave, queremos:
 - 1. Que os anteriores sejam menores e estejam ordenados.
 - 2. Que os posteriores sejam maiores e estejam ordenados.
- Vamos criar uma sub-invariante para o laço enquanto!

Sub-invariante

Exemplo (Sub-invariante)

Imediatamente antes de cada iteração do laço enquanto:

- 1. A[i+1...j] está ordenado.
- 2. chave $\leq A[i+1]$.

Demonstração:

- Antes de qualquer iteração, as afirmações valem.
- Suponha que valem no início de uma iteração:
 - Pela condição do laço, chave < A[i] e A[i] não se altera.
 - Como diminuímos o valor de A[i+1] para A[i], o vetor A[i+1...j] continua ordenado.
- Assim, as afirmações mantêm-se no final.

Demonstrando uma invariante: passo indutivo (cont)

Quando o laço enquanto termina:

- Pela sub-invariante, o vetor A[i+1...j] está ordenado.
- ▶ Também pela sub-invariante, chave $\leq A[i+1]$.
- Assim, após fazer $A[i+1] \leftarrow$ chave, A[i+1...j] continua ordenado.
- Se paramos porque i = 0, A[1...j] está ordenado no final do laço **para**.
- Do contrário, paramos porque A[i] < chave e $A[i \dots j]$ está ordenado no final do laço **para**:
 - Como i < j, pela invariante A[1...i] está ordenado no início do laço e como esses valores não são alterados durante a iteração, A[1...i] se mantém ordenado.
 - Como A[1...i] e A[i...j] estão ordenados no final do **para**, temos que A[1...j] está ordenado no final do laço.
- Em qualquer caso, a invariante vale quando o laço para termina.

Outra invariante

- Já demonstramos a Invariante 1.
- \triangleright O laço termina apenas quando j = n + 1.
- Pela invariante, nesse instante A[1 ... n] está ordenado.
- Mas isso não é suficiente, pois o vetor poderia ser:

00 00 00 00 00 00 00 00 0											
20 20 20 20 20 20 20 20 20 2	20	20	20	20	20	20	20	20	20	20	20

Exemplo (Invariante 2)

Imediatamente antes de cada iteração do laço **para**, o subvetor A[1...n] é uma permutação dos dados da entrada.

Exercício: Demonstre essa invariante.

Demonstrando a correção do algoritmo

Suponha que já demonstramos as Invariantes 1 e 2.

Teorema

O algoritmo Insertion-Sort está correto.

Demonstração:

- Quando o laço termina, temos j = n + 1, então a Invariante 1 implica que $A[1 \dots n]$ está ordenado.
- Nesse instante, a Invariante 2 implica que o vetor A[1 ... n] contém todos elementos da entrada.
- Portanto, o vetor devolvido é uma ordenação do vetor de entrada.

Conversão binária

Conversão para representação binária

Problema (Conversão binária)

- Entrada: Um número inteiro não negativo n.
- ➤ **Saída:** Um vetor B com representação binária (invertida) de n.

Algoritmo: Converte-Binario(n)

```
\begin{array}{lll} \mathbf{1} & t \leftarrow n \\ \mathbf{2} & k \leftarrow 0 \\ \mathbf{3} & \mathbf{enquanto} & t > 0 \\ \mathbf{4} & B[k] \leftarrow t \bmod 2 \\ \mathbf{5} & t \leftarrow t \operatorname{div} 2 \\ \mathbf{6} & k \leftarrow k + 1 \end{array}
```

7 devolva B

Invariante para Converte-Binario

Exemplo (Invariante)

No início da iteração do laço enquanto:

$$n = t \cdot 2^k + \sum_{i=0}^{k-1} 2^i \cdot B[i].$$

Demonstração:

- Antes de qualquer iteração, temos k = 0 e t = n.
- Assim,

$$n = t \cdot 1 + 0 = t \cdot 2^k + \sum_{i=0}^{k-1} 2^i \cdot B[i].$$

Portanto, a afirmação vale no início do laço.

Invariante para CONVERTE-BINARIO (cont)

Suponha que a invariante vale no início da iteração:

- Sejam k' = k + 1 e t' = t div 2.
- Sabemos que $B[k] = t \mod 2$.
- Como a afirmação vale no início da iteração,

$$n = \mathbf{t} \cdot \mathbf{2}^{k} + \sum_{i=0}^{k-1} 2^{i} \cdot B[i]$$

$$= (\mathbf{t} \operatorname{div} \mathbf{2}) \cdot \mathbf{2}^{k+1} + \mathbf{2}^{k} \cdot (\mathbf{t} \operatorname{mod} \mathbf{2}) + \sum_{i=0}^{k-1} 2^{i} \cdot B[i]$$

$$= (t \operatorname{div} 2) \cdot 2^{k+1} + 2^{k} \cdot B[k] + \sum_{i=0}^{k-1} 2^{i} \cdot B[i]$$

$$= (t \operatorname{div} 2) \cdot 2^{k+1} + \sum_{i=0}^{k} 2^{i} \cdot B[i]$$

$$= t' \cdot 2^{k'} + \sum_{i=0}^{k'-1} 2^{i} \cdot B[i].$$

Portanto, a invariante vale no final da iteração.

Análise e correção de algoritmos

 $\mathsf{MO417}$ - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

