Skin Cancer Diagnosis with Neural Networks

Presented by Barbara Kéri, Benjámin Csontó and Sámuel Csányi

What is skin cancer?

- The most common type of cancer
- Types:
 - basal cell carcinoma (BCC)
 - squamous cell carcinoma (SCC)
 - Merkel cell carcinoma (MCC)
 - o melanoma
- Causes:
 - UV rays
- An early diagnosis can be life-saving!
- Goals: Automatized skin cancer detection, available everywhere

Data processing

- Dataset:
 - More than 400K images
 - Additional metadata: age, sex, characteristics of the questionable area

 \circ

- Preprocessing:
 - Resizing images: 133x133 pixel
 - Handling different data types (numerical, binary, categorical)
 - imputing
 - scaling
 - encoding

Solutions

- Modern solutions:
 - Convolutional neural networks (CNN)
 - Data augmentation: mirroring, rotating, scaling
 - Balancing the data: class weights and oversampling
 - Dynamic data loading: PyDataset generator class

Barbara, Benjámin, Sámuel 5. oldal – 13

Autoencoder

• Creating an encoder for the images

Convolutional layers in the encoder

Transposed Convolution in the decoder

• Encoder output: 17x17x1

133

Barbara, Benjámin, Sámuel 6. oldal – 13

Examples of encoded and decoded images with the trained Autoencoder

Classification

- Concatenating the relevant metadata
- Dense layers
- Skip connections for mitigating the gradient problems

Barbara, Benjámin, Sámuel 8. oldal – 13

Confusion matrix on the test dataset

Results

- Accuracy: 80.18% on the test dataset
- The dataset might need additional balancing
- Possibilities for improvement: Dropout layers, fine-tuning
- Possible social effects: simple and accessible diagnostics

Transfer learning

- Creation of network with InceptionResnetV2 and additional convolutional layers
- Separate convolutional layers for the metadata
- Concatenating the images for the network and the metadata
- hyperparameter optimization with Keras-Tuner

Barbara, Benjámin, Sámuel 11. oldal – 13

Confusion matrix with the evaluation of the test data

Results

- Accuracy: 98.7% on the small test dataset, but in big test there is a fast dropping
- Recall is the most important metric in a real-world application

Thank you for your attention!