# CYBER FORENSICS CS6004

# **Syllabus**

UNIT I NETWORK LAYER SECURITY & TRANSPORT LAYER SECURITY

**UNIT II E-MAIL SECURITY & FIREWALLS** 

UNIT III INTRODUCTION TO COMPUTER FORENSICS

UNIT IV EVIDENCE COLLECTION AND FORENSICS TOOLS

UNIT V ANALYSIS AND VALIDATION

#### **UNIT I**

## **NETWORK LAYER SECURITY**

&

#### TRANSPORT LAYER SECURITY

#### Network layer security:

- •IPSec Protocol
- •IP Authentication Header
- •IP ESP
- •Key Management Protocol for IPSec

#### Transport layer Security:

- SSL protocol
- Cryptographic Computations
- TLS Protocol

# Network Layer Security: IPSec Protocol

IPSec Protocol Documents
Security Associations (SAs)
Hashed Message Authentication Code (HMAC)

- Designed to protect communication
- It is a set of security extensions
- Developed by the IETF (Internet Engineering Task Force)
- It provides privacy and authentication services at the IP layer by using modern cryptography



- Operates in a host or a security gateway environment
- The protection offered is based on requirements defined by a Security Policy Database (SPD)
- SPD is established and maintained by a user or system administrator



- Network Layer / IP Layer IP datagram is protected using IPSec protocol
- Two main transformation of IPSec
  - Authentication Header (AH)
  - Encapsulating Security Payload (ESP)
- AH and ESP –protocols provide
  - Connectionless integrity accuracy
  - Data origin authentication
  - Confidentiality privacy
  - Anti-replay service intercept and insert packets
  - Access control
- AH and ESP may be applied alone or in combination
- They are configured in a data structure called a Security Association (SA)

- Two modes of operations
- Transport mode
  - Provides Peer to Peer communication security (between host)
  - Provides protection for upper-layer protocol data units (PDUs)
    - TCP packet
    - UDP segment
    - Internet Control Message Protocol (ICMP) packet
  - Data protected but header left in clear

#### Tunnel mode

- Used by network routers to protect IP datagram's passing across insecure network
- Provides protection for entire IP datagram's
- Add new header for next hop
- Good for VPNs, gateway to gateway security

# **IPSec Modes of Operation**

Original IP Datagram

| IP     | TCP    | Data |
|--------|--------|------|
| Header | Header |      |

• Transport Mode: protect the upper layer protocols

Transport Mode protected packet



protected

Tunnel Mode: protect the entire IP payload

Tunnel Mode protected packet



protected

# **IPSec Modes of Operation-AH**

Transport Packet layout

IP Header AH Header Payload (TCP, UDP, etc)

Tunnel Packet layout

| IP Header | AH Header | IP Header | Payload (TCP. UDP,etc) |
|-----------|-----------|-----------|------------------------|
|           |           |           |                        |

#### Transport Mode



#### **Tunnel Mode**



# **IPSec Modes of Operation - ESP**

Transport Packet layout



- Modular design
- Algorithm independent
  - Permits selection of different sets of algorithms without affecting the other parts of the implementation
  - Standard set of default algorithms is specified to facilitate interoperability in the global Internet
- Standard algorithms + IPSec traffic protection + key management protocols - deploy high-quality cryptographic security technology at Internet layer
- Provides high-quality security for Internet traffic

- IP Security Document Roadmap RFC 2411 by IETF -November 1998
- IPSec protocols is divided into seven groups
- Seven-group documents describes the set of IPSec protocols
  - Architecture
  - ESP
  - AH
  - Encryption algorithm
  - Authentication algorithm
  - Key management
  - DOI: Domain of Interpretation

# **IPSec Protocol Documents / Architecture**



#### Architecture:

- Main document
- Covers the general concepts, security requirements, definitions and mechanisms defining IPSec technology

#### ESP:

- Covers the packet format
- General issues related to the use of the ESP for packet encryption and optional authentication
- Contains default values
- Dictates some of the values in the Domain of Interpretation (DOI)

#### • AH:

- Covers the packet format
- General issue related to the use of AH for packet authentication
- Contains default values such as the default padding contents
- Dictates some of the values in the DOI document

- Encryption algorithm:
  - Describe how various encryption algorithms are used for ESP
  - Specifically:
    - Specification of the key sizes and strengths for each algorithm
    - Any available estimates on performance of each algorithm
    - General information on how this encryption algorithm is to be used in ESP
    - Features of encryption algorithm
    - Provide input to the DOI
- Authentication algorithm:
  - Describe how various authentication algorithms are used for AH and for the authentication option of ESP
  - Specifically:
    - Specification of operating parameters such as number of rounds and input or output block format
    - Implicit and explicit padding requirements of this algorithm
    - Identification of optional parameters/methods of operation
    - Defaults and mandatory ranges of the algorithm
    - Comparison criteria for the algorithm
    - Method for verifying

- Key management:
  - Describe key management schemes
  - Provide certain values for the DOI
  - Currently the key management represents the Oakley, ISAKMP
- DOI:
  - Contains values needed for the other documents to relate each other
  - These include identifiers for approved encryption and authentication algorithms
  - Operational parameters such as key lifetime

- RFC 1825
- Before sending data, a virtual connection is established from sending entity to receiving entity
- Called "security association (SA)"
  - SAs are simplex: for only one direction
  - One for inbound traffic
  - One for outbound traffic
  - A minimum of two SAs are required for a single IPSec connection
- Both sending and receiving entities maintain state information about the SA
- AH and ESP make use of SAs

- An SA is uniquely identified by three parameters
  - 1. Security Parameters Index (SPI)
  - 2. IP Destination Address
  - 3. Security Protocol Identifier
- 1. Security Parameters Index (SPI):
  - Assigned to each SA
  - Needed to identify an SA
  - Sender to communicate with a receiver, must know the SPI value for a particular SA
  - The SPI is carried in AH and ESP headers
  - Receiver identify a SA by the combination of SPI and destination address
  - SPI values are not globally specified

#### 2. IP Destination Address:

- Address of the destination endpoint of the SA
- Destination endpoint may be an end-user system or a network system such as a firewall or router
- Unicast addresses are only allowed by IPSec

#### 3. Security Protocol Identifier:

This identifier indicates whether the association is an AH or ESP security association

- Two nominal databases
  - Security Policy Database (SPD)
  - Security Association Database (SAD)
    - Info in SPD indicates "what" to do with arriving datagram
      - specifies the policies that is to applied on all IP traffic
         (inbound or outbound, from host or security gateways)
    - Info in the SAD indicates "how" to do it

## Security Policy Database (SPD)

- Essential element of SA processing
- Contains an ordered list of policy entries
- Specifies what services are to be offered to IP datagrams (use IPSec)
- Specifies what fashion (IPsec protocols, modes and algorithms to be employed)
- Policy decision on which SA to apply can be made on IP addresses (source or destination), protocol type or IP Header
- Used to control the flow of all traffic (inbound and outbound) through an IPsec system, including security and key management traffic (i.e. ISAKMP)
- Database specifies types of packets
  - to be dropped
  - to be forwarded or accepted under IPSec protection
  - to be forwarded or accepted without IPSec protection
  - to be encrypted or integrity protected

## Security Association Database (SAD)

- Endpoint holds state of its SAs in a SAD
- Helps in locating SA during processing
- While sending IPSec datagram, SAD is accessed to determine what SA to apply for process datagram
- When IPSec datagram arrives, the SPI in IPSec datagram is examined and indexes SAD with SPI, and processes datagram accordingly
- SA database at transmitter and receiver holds
  - cryptographic key
  - cryptographic algorithm
  - security services (e.g. encryption and/or integrity)
  - SPI
  - sequence number and ID of other end
- SPI (security Parameter Index) + destination address uniquely identifies
   SA in database
- SPI of received packet tells where to look for info required to process packet

# Hashed Message Authentication Code (HMAC)

- HMAC is a secret-key authentication algorithm
- HMAC provides a data integrity check and data origin authentication for packets sent between two parties
- Generates Message Authentication Code (MAC)
- Based on a secret key Shared between the client and server
- Keys are used for computation and verification of MAC
- Any iterative hash function can be used— HMAC, MD5, SHA-1, and RIPEMD-160
- Hash function module is replaced by any new , faster and secure hash function
- MD5 has been recently shown to be vulnerable to collision search attacks
- SHA-1 appears to be a cryptographically stronger function.

# Hashed Message Authentication Code (HMAC)

- Strength of HMAC depends
  - Strength of hash function
  - The size of its hash output
  - The size and quality of the key

#### Requires

- H Cryptographic hash function
  - Iterating compression function on data blocks
- K Secret key any length up to b = 512 bits
- b Block length
- H Length of hash values
  - 16 bytes or 128 bits for MD5
  - 20 bytes or 160 bits for SHA-1
- M is the message to be authenticated

To compute HMAC over the message, the HMAC equation is expressed as follows:

```
HMAC = H[(K \oplus opad) | H[(K \oplus ipad) | M]]
```

- where
  - ipad = 00110110(0x36) repeated 64 times (512 bits)
  - opad = 01011100(0x5c) repeated 64 times (512 bits)
  - ipad is inner padding
  - opad is outer padding

# **HMAC**





#### The following explains the HMAC equation:

- 1. Append zeros to the end of K to create a b-byte string (i.e. if K = 160 bits in length and b = 512 bits, then K will be appended with 352 zero bits or 44 zero bytes 0x00)
- 2. XOR (bitwise exclusive-OR) *K with ipad to produce the b-bit block computed in* step 1
- 3. Append *M* to the b-byte string resulting from step 2.
- 4. Apply *H* to the stream generated in step 3
- 5. XOR (bitwise exclusive-OR) *K with opad to produce the b-byte string computed in* step 1
- 6. Append the hash result *H from step 4 to the b-byte string resulting from step 5*
- 7. Apply H to the stream generated in step 6 and output the result

#### Alternative

- 1. Append zeros to K to create a b-bit string K, where b = 512 bits
- 2. XOR K (padding with zero) with ipad to produce the b-bit block
- 3. Apply the compression function  $f(IV, K \oplus ipad)$  to produce (IV)i = 128 bits
- 4. Compute the hash code h with (IV)i and Mi
- 5. Raise the hash value computed from step 4 to a b-bit string
- 6. XOR *K* (padded with zeros) with opad to produce the *b-bit* block
- 7. Apply the compression function  $f(IV, K' \oplus opad)$  to produce (IV)0 = 128 bits
- 8. Compute the HMAC with (IV)o and the raised hash value resulting from step 5. operation

#### Alternative HMAC



# Summary

- IPSec Protocol Documents
  - Architecture
  - ESP
  - AH
  - Encryption algorithm
  - Authentication algorithm
  - Key management
  - DOI : Domain of Interpretation
- Security Associations (SAs)
  - Security Policy Database (SPD)
  - Security Association Database (SAD)
- Hashed Message Authentication Code (HMAC)
  - $\quad \mathsf{HMAC} = \mathsf{H}[\ (\mathsf{K} \bigoplus \mathsf{opad})\ |\ |\ \mathsf{H}[\ (\mathsf{K} \bigoplus \mathsf{ipad})\ |\ |\ \mathsf{M}]\ ]$