

APT80GP60B2

600V

POWER MOS 7° IGBT

The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies.

Low Conduction Loss

•200 kHz operation @ 400V, 45A

Low Gate Charge

•100 kHz operation @ 400V, 72A

• Ultrafast Tail Current shutoff

SSOA rated

MAXIMUM RATINGS

All Ratings: $T_C = 25$ °C unless otherwise specified.

Symbol	Parameter	APT80GP60B2	UNIT
V _{CES}	Collector-Emitter Voltage	600	
V _{GE}	Gate-Emitter Voltage	±20	Volts
V _{GEM}	Gate-Emitter Voltage Transient	±30	
I _{C1}	Continuous Collector Current © @ T _C = 25°C	100	
I _{C2}	Continuous Collector Current (7) @ T _C = 110°C	100	Amps
I _{CM}	Pulsed Collector Current ① @ T _C = 25°C	330	
SSOA	Switching Safe Operating Area @ T _J = 150°C	330A @ 600V	
P _D	Total Power Dissipation	1041	Watts
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	- °C
T_L	Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.	300	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{CES}	Collector-Emitter Breakdown Voltage $(V_{GE} = 0V, I_C = 1.0mA)$	600			
V _{GE(TH)}	Gate Threshold Voltage $(V_{CE} = V_{GE}, I_C = 2.5 \text{mA}, T_j = 25 ^{\circ}\text{C})$	3	4.5	6	- Volts
V _{CE(ON)}	Collector-Emitter On Voltage (V _{GE} = 15V, I _C = 80A, T _j = 25°C)		2.2	2.7	
	Collector-Emitter On Voltage (V _{GE} = 15V, I _C = 80A, T _j = 125°C)		2.1		
I _{CES}	Collector Cut-off Current (V _{CE} = 600V, V _{GE} = 0V, T _j = 25°C) ⁽²⁾			1.0	mA
	Collector Cut-off Current (V _{CE} = 600V, V _{GE} = 0V, T _j = 125°C) ⁽²⁾			5	
I _{GES}	Gate-Emitter Leakage Current (V _{GE} = ±20V)			±100	nA

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

DYNAMIC CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{ies}	Input Capacitance	Capacitance $V_{GE} = 0V, \ V_{CE} = 25V$ $f = 1 \text{ MHz}$		9840		
C _{oes}	Output Capacitance			735		pF
C _{res}	Reverse Transfer Capacitance			40		
V_{GEP}	Gate-to-Emitter Plateau Voltage	Gate Charge		7.5		V
Q _g	Total Gate Charge ^③	V _{GE} = 15V		280		
Q _{ge}	Gate-Emitter Charge	V _{CE} = 300V		65		nC
Q _{gc}	Gate-Collector ("Miller") Charge	I _C = 80A		85		1
SSOA	Switching Safe Operating Area	$T_J = 150$ °C, $R_G = 5\Omega$, $V_{GE} = 15V$, $L = 100\mu H$, $V_{CE} = 600V$	330			А
t _{d(on)}	Turn-on Delay Time	Inductive Switching (25°C)		29		
t _r	Current Rise Time	V _{CC} = 400V		40		na
t _{d(off)}	Turn-off Delay Time	V _{GE} = 15V		116		ns
t _f	Current Fall Time	$I_C = 80A$		78		
E _{on1}	Turn-on Switching Energy 4	$R_{G} = 5\Omega$ $T_{J} = +25^{\circ}C$		795		
E _{on2}	Turn-on Switching Energy (Diode) ⁽⁵⁾	- IJ = +25 C		1536		μJ
E _{off}	Turn-off Switching Energy ⁶	1		1199		
t _{d(on)}	Turn-on Delay Time	Inductive Switching (125°C)		29		
t _r	Current Rise Time	V _{CC} = 400V		40		
t _{d(off)}	Turn-off Delay Time	V _{GE} = 15V		149		ns
t _f	Current Fall Time	$I_C = 80A$		84		
E _{on1}	Turn-on Switching Energy 4	$R_G = 5\Omega$ $T_{\perp} = +125$ °C		795		
E _{on2}	Turn-on Switching Energy (Diode) ^⑤	- 1 _J = +125 C		2153		μJ
E _{off}	Turn-off Switching Energy ⁶	1		1690		

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{\Theta JC}$	Junction to Case (IGBT)			.12	°C/W
$R_{\Theta JC}$	Junction to Case (DIODE)			N/A	C/VV
W_{T}	Package Weight			5.9	gm

- 1 Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2 For Combi devices, \mathbf{I}_{ces} includes both IGBT and FRED leakages
- 3 See MIL-STD-750 Method 3471.
- (4) E_{on1} is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.)
- 5 E_{on2} is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the E_{on2} test circuit. (See Figures 21, 22.)
- 6 E_{off} is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
- Countinous current limited by package lead temperature.
 APT Reserves the right to change, without notice, the specifications and information contained herein.

TYPICAL PERFORMANCE CURVES APT80GP60B2 V_{GE} = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE V_{GE} = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 80 60 T_C=25°C 40 T_C=-55°C T_C=125°C T_C=125°C 20 0 0.5 1 1.5 2 2.5 3 V_{CE}, COLLECTER-TO-EMITTER VOLTAGE (V) 0 0.5 1 1.5 2 2.5 3 V_{CE}, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics($V_{GE} = 15V$) FIGURE 2, Output Characteristics ($V_{GE} = 10V$) 250μs PULSE TEST <0.5 % DUTY CYCLE $T_J = -55$ °C Г_{.Ј} = 25°С V_{GE} , GATE-TO-EMITTER VOLTAGE (V) V_{CE}=120V IC, COLLECTOR CURRENT (A) 400 V_{CE}=300V 10 300 200 $T_J = 25^{\circ}C$ 100 $T_J = 125$ °C 1 2 3 4 5 6 7 8 9 V_{GE}, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 100 150 200 250 GATE CHARGE (nC) FIGURE 4, Gate Charge V_{CE} , COLLECTOR-TO-EMITTER VOLTAGE (V) V_{CE} , COLLECTOR-TO-EMITTER VOLTAGE (V) T_J = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE I_{C=} 160A I_{C=} 80A 2.5 I_{C=} 80Å I_{C=}40A 40A 0.5 V_{GE} = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE -50 -25 0 25 50 75 100 125 T_J, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 10 V_{GE}, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 1.15 IC. DC COLLECTOR CURRENT(A) 250 1.05 200 150 0.95 100

50

-25 0 25 50 75 100 125 T_C, CASE TEMPERATURE (°C)

FIGURE 8, DC Collector Current vs Case Temperature

0.9

-25 0 25 50 75 100 T_J, JUNCTION TEMPERATURE (°C)

FIGURE 7, Breakdown Voltage vs. Junction Temperature

 $RECTANGULAR\,PULSE\,DURATION (SECONDS)\\ \textbf{Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case\,vs\,Pulse\,Duration}$

FIGURE 19B, TRANSIENT THERMALIMPEDANCE MODEL

I_C, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current

APT80GP60B2

Figure 21, Inductive Switching Test Circuit

Figure 22, Turn-on Switching Waveforms and Definitions

Figure 23, Turn-off Switching Waveforms and Definitions

Figure 24, E_{ON1} Test Circuit

T-MAX® (B2) Package Outline

Dimensions in Millimeters and (Inches)