Topologia della retta reale - Sommario

Tutto sulla topologia della retta reale.

A. Intorni

Intorni

Definizione di distanza (con le sue proprietà), intorno centrato aperto di centro x_0 e di raggio r, intorno di x_0 ; la retta estesa, l'intorno di $+\infty$ e di $-\infty$.

O. Preambolo

In questo capitolo studieremo e definiremo delle nomenclature necessarie per studiare i *limiti*.

1. Distanza euclidea

DEF 1.1. Siano $x,y\in\mathbb{R}$, allora definisco la **distanza** (oppure **distanza** euclidea) di x,y il valore d(x,y)=|x-y|

Graficamente questo corrisponde, infatti, alla distanza tra due punti sulla retta reale.

Proprietà della distanza euclidea

PROP 1.1. Possiamo verificare alcune proprietà di questa applicazione (Funzioni); la prima essendo

$$orall x,y \in \mathbb{R}; d(x,y) \geq 0 \wedge d(x,y) \iff x=y$$

PROP 1.2. Proprietà simmetrica

$$orall x,y \in \mathbb{R}; d(x,y) = d(y,x)$$

PROP 1.3. Disuguaglianza triangolare; analogamente alle disuguaglianze triangolari già viste nei numeri complessi (**PROP. 4.7.**) e col valore assoluto (**OSS 3.1.1.**) si verifica che

$$orall x,y,z\in \mathbb{R}; d(x,z)\leq d(x,y)+d(y,z)$$

DIMOSTRAZIONE DI PROP 1.3. Infatti dall'**OSS 3.1.1.** di Funzioni di potenza, radice e valore assoluto so che se

$$|a+b| \le |a| + |b|$$

può essere applicato con a = x - y e b = y - z, così diventa

$$|x-z| \leq |x-y| + |y-z| \iff d(x,z) \leq d(x,y) + d(y,z)$$

OSS 1.1. Noto che questa nozione di *distanza euclidea* può essere anche definita sui numeri complessi \mathbb{C} ; infatti posso porre

$$d(z_1,z_2) = |z_1-z_2|$$

dove $|\cdot|$ rappresenta il *modulo* di un numero complesso (Operazioni sui Numeri Complessi, **DEF 4.** o **DEF 4.1.**).

Graficamente, questo corrisponde a

Inoltre scopriamo che questa definizione della distanza euclidea su \mathbb{C} conserva le tre proprietà (**PROP 1.1., 1.2., 1.3.**) appena enunciate. Pertanto è possibile scambiare *modulo* e *distanza euclidea* in quanto vi è un *isomorfismo* tra queste due applicazioni.

2. Intorno centrato aperto di centro x e di raggio r

DEF 2.1. Sia $x_0 \in \mathbb{R}$ e sia $r \in \mathbb{R}, r > 0$; allora chiamo "l'intorno centrato aperto di centro x_0 e di raggio r" l'intervallo aperto (Intervalli, **DEF 1.4.**)

$$]x_0 - r, x_o + r[\ = \{x \in \mathbb{R} : d(x, x_0) < r\}$$

che graficamente corrisponde a

ovvero la palla aperta di centro x_0 e di raggio r

ovvero l'insieme di tutti i punti di $\mathbb R$ che hanno distanza da x_0 meno di r.

OSS 2.1. Analogamente a **OSS 1.1.**, questa nozione di *intorno centrato* aperto può essere applicato a $\mathbb C$ usando la nozione di *modulo*; infatti graficamente questa corrisponde ad una palla 2-dimensionale di centro z_0 e di raggio r. (Figura 2.1.)

OSS 2.2. Allora si può definire l'*intorno centrato aperto* in \mathbb{R}^3 dove definisco

$$orall x,y \in \mathbb{R}^3; d(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + (x_3-y_3)^2}$$

E graficamente questa corrisponde ad una vera *palla*. Letteralmente. (*Figura 2.1.*)

FIGURA 2.1.

3. Intorno

DEF 3.1. Sia $x_0 \in \mathbb{R}$, chiamo allora l'**intorno di** x_o un qualunque insieme E di \mathbb{R} che contiene una palla aperta di centro x_0 e raggio r (**DEF 2.1.**).

Graficamente,

DEF 3.2. Prendo $\tilde{\mathbb{R}}$ l'insieme dei reali estesi, ovvero

$$\tilde{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$$

e definisco **l'intorno di** $+\infty$ un *qualunque sottoinsieme* $E \subseteq \mathbb{R}$ che contiene una *semiretta* $]a,+\infty[$; ovvero un insieme *superiormente illimitato* (Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore, **DEF 1.4.**) del tipo $]a,+\infty[$.

Esempi

ESEMPIO 3.1. L'intervallo]3,7[è intorno di 3,5; infatti è possibile prendere r=0,5 e ottenere la *palla aperta di centro* 3,5 *e di raggio* 0,5 che equivale a

che infatti è contenuto nell'intervallo]3,7[. Graficamente,

ESEMPIO 3.2. Se prendendo l'insieme

$$S=\{0\}\cup\{rac{1}{n},n\in\mathbb{N}\diagdown\{0\}\}$$

e il punto $x_0=\frac{1}{2}$, scopriamo che S non è intorno di x_0 ; infatti prendendo per qualsiasi r non riesco a formare una palla attorno a x_0 , in quanto S è definita sui numeri naturali che contiene dei "buchi".

ESEMPIO 3.3. Considerando i *numeri naturali* (Numeri Naturali - Sommario), ci chiediamo se questo insieme è *intorno di* $+\infty$; la risposta è *no*: esistono degli elementi in $\mathbb R$ che non sono contenuti in $\mathbb N$, come ad esempio i numeri razionali.

Tuttavia se consideriamo l'insieme $\mathbb{N}\cup]100,+\infty[$ allora la risposta è *sì* in quanto si considera un *intervallo* su $\mathbb{R}.$

Analogo il discorso per gli intervalli di $-\infty$.

B. Punti interni, esterni e di frontiera

Punti interni, esterni e di frontiera

Definizioni di punti interni, punti interni e punti di frontiera. Esempi.

O. Preambolo

Questo argomento presuppone la conoscenza dell'argomento di Intervalli.

1. Punti interni

DEF 1.1. Sia $E \subseteq \mathbb{R}$ e $x_0 \in \mathbb{R}$, si definisce x_0 **interno** a E se viene verificato che

$$\exists r > 0 :]x_0 - r, x_o + r[\subseteq E$$

ovvero se esiste un *intorno* di x_0 che è contenuto in E (Intorni, **DEF** 3.1.).

DEF 1.2. Chiamo l'insieme dei punti interni a E come E° .

Esempio

ESEMPIO 1.1. Sia

$$E = \{1\} \cup [2,3)$$

e voglio trovare l'insieme dei punti interni E° .

Per farlo devo innanzitutto disegnare il grafico di E per poter capire come procedere.

Ora "provo" ogni numero fissando x_0 il numero scelto;

- Scegliendo $x_0=1$ vedo chiaramente che non è *punto interno*, in quanto è impossibile che esista un intorno centrato a raggio r ad esso.
- Scegliendo $x_0 = 2$ vedo che neanche questo è un *punto interno*; non riesco a definire un intorno centrato tale che a "sinistra" di 2 c'è un punto appartenente a E.

- Però scegliendo $x_0=2.001$ è possibile; infatti posso definire un intorno di x con r=0.001.
- Analoghi i discorsi per $x_0=3$ e $x_0=2.999$
- · Concludo allora che

$$E^\circ=(2,3)$$

2. Punti esterni

DEF 2.1. Un punto $x_0 \in \mathbb{R}$ si dice **esterno** ad un *insieme* $E \subseteq \mathbb{R}$ se è *interno* al complementare di E, ovvero $\mathcal{C}_{\mathbb{R}}E$ (Teoria degli Insiemi). Quindi

$$x_0$$
 è esterno $\iff \exists r>0: (x_0-r,x_0+r)\subseteq \mathcal{C}_{\mathbb{R}}E$

Esempio

ESEMPIO 2.1. Considerando l'esempio di prima con

$$E = \{1\} \cup [2,3)$$

ora vogliamo trovare l'insieme di tutti i punti esterni. Allora usando lo stesso grafico di prima, faccio esattamente i stessi procedimenti di prima considerando però il complemento di E, ovvero tutti i punti che non appartengono ad E.

Usando la stessa procedura in **ESEMPIO 1.1.**, troviamo che

$$\{\text{punti esterni di }E\}=(-\infty,1)\cup(1,2)\cup(3,+\infty)$$

3. Punti di frontiera

DEF 3.1. Un punto $x_0 \in \mathbb{R}$ si dice **frontiera per** E se questo punto *non* è *ne interno ne esterno ad* E.

OSS 3.1. Questo equivale a negare la proposizione

$$\lceil\exists r>0: (x_0-r,x_0+r)\subseteq E
ceil ee \lceil\exists r'>0: (x_0-r',x_0+r')\subseteq \mathcal{C}E
ceil$$

che secondo le *leggi di De Morgan* e delle regole osservate (Logica formale - Sommario) diventa

$$[orall r>0,(x_0-r,x_0+r)
ot\subseteq E]\wedge [orall r'>0,(x_0-r',x_0+r')
ot\subseteq \mathcal{C}E]$$

e dato che

$$A
subseteq B \iff A \cap \mathcal{C}_U B
eq \emptyset$$

ovvero che un insieme A non è sottoinsieme di B se e solo se l'intersezione tra A e il complemento di B non è vuota (ovvero ha almeno un elemento), questo diventa

$$[orall r>0,(x_0-r,x_0+r)\cap \mathcal{C}E
eq\emptyset]\wedge [orall r'>0,(x_0-r',x_0+r')\cap E
eq\emptyset$$

ovvero che deve valere la seguente:

• Ogni intorno di x_0 deve contenere sia punti di E e il suo complemento $\mathcal{C}_{\mathbb{R}}E$.

DEF 3.2. Definiamo l'insieme dei punti di frontiera di E come

 ∂E

e si legge come "delta storto E"

Esempi

ESEMPIO 3.1. Considerando lo stesso esempio di prima, ovvero

$$E = \{1\} \cup [2,3)$$

vogliamo trovare ∂E .

Procedendo con lo stesso disegno, cerchiamo di "provare" ogni punto per trovare elementi di ∂E .

- $x_0=0$; Questo non è elemento di ∂E , in quanto posso facilmente trovare un intorno che contenga *solo* elementi del complemento di E.
- $x_0=1$; Provando a considerare ogni intorno di x_0 trovo che deve per forza dev'esserci un punto sia in E che nel suo complemento.
- $x_0 = 2$; Stesso discorso analogo di prima.
- $x_0 = 3$; Di nuovo lo stesso discorso.
- $x_0=2,5$; Qui invece è possibile trovare un intorno che contenga *solo* punti di E. Ad esempio un intorno centrato in 2,5 con raggio r=0,1.

ESEMPIO 3.2. Consideriamo finalmente dei casi diversi da quelli esaminati prima. Sia

$$E=\mathbb{Q}\cap (1,2)$$

ovvero tutti i numeri *razionali* compresi tra *1, 2* esclusi. Disegnando di nuovo un disegno,

Scopro le seguenti:

- $E^{\circ} = \emptyset$; infatti in questo insieme *non* vi ci sono punti interni, in quanto l'assioma di separazione non vale in $\mathbb Q$ (Assiomi dei Numeri Reali, S), OSS 6.2.); quindi ci sono sempre dei "buchi" tra due numeri razionali, ovvero dei numeri irrazionali. Infatti è possibile dimostrare che i numeri irrazionali sono densi in $\mathbb R$.
- $\partial E=[1,2]$; qui si verifica un fenomeno strano, ovvero che si verifica che ∂E è più "grande" di E stessa. Questo si verifica perché, da un lato abbiamo la densità di $\mathbb Q$ in $\mathbb R$ (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA** 4.1.); infatti se considero un punto q_0 in $\mathbb Q$ e considero gli "estremi" del suo intorno (q_0-r,q_0+r) allora tra q_0-r e q_0+r dev'esserci almeno un numero razionale.

Però allo stesso tempo, come visto prima, i numeri irrazionali sono *densi* in \mathbb{R} ; di conseguenza se ci sono sia dei numeri razionali (appartenenti a E) che dei irrazionali (appartenenti al complemento di E) allora vediamo che tutti i punti di E (gli estremi inclusi) sono *punti di frontiera*.

C. Insiemi aperti e chiusi

Insiemi aperti e chiusi

Definizione di insieme aperto e chiuso. Teorema sugli insiemi aperti e chiusi.

1. Insieme aperto

DEF 1.1. Sia $A \subseteq \mathbb{R}$; l'insieme A si dice **aperto** se e e solo se *tutti i suoi* punti sono punti interni all'insieme stesso (Punti interni, esterni e di frontiera, **DEF 1.1.**); ovvero se

$$orall x_0 \in A, \exists r > 0: (x_0 - r, x_0 + r) \subseteq A$$

OSS 1.1. Osservo che l'insieme A è aperto se e solo se $A = A^{\circ}$.

Esempi

ESEMPIO 1.1. Considero l'intervallo aperto (Intervalli, **DEF 1.4.**)

voglio sapere se questo è *insieme aperto*; scegliendo un qualunque punto x all'interno di questo intervallo, allora posso sicuramente trovare un intorno in x tale per cui contiene solo elementi di (2,3). Infatti se scelgo r come la distanza minima tra x e ciascun estremo, scopro che l'intorno centrato aperto di questo raggio (Intorni) contiene solo punti di E (dunque esso è sottoinsieme di E). Formalizzando questo ragionamento, ho

$$\forall x, 2 < x < 3; r = \min(d(x, 2), d(x, 3))$$

Graficamente questo ragionamento corrisponde a

ESEMPIO 1.2. Ora considero l'insieme

$$E = \{1\} \cup [2,3)$$

che *non* è *aperto*, in quanto considerando $x_0 = 1$ trovo che questo elemento (o punto) non è *interno* a E. Analogo il discorso per $x_0 = 2$.

2. Intervallo chiuso

DEF 2.1. Considerando un insieme $C \subseteq \mathbb{R}$, si dice che esso è **chiuso** se il suo *complemento* è *aperto*. Ovvero se $\mathcal{C}_{\mathbb{R}}C$ è aperto.

Esempi

ESEMPIO 2.1. Consideriamo l'intervallo chiuso (Intervalli, DEF 1.1.)

$$C=[2,5]$$

Considerando il suo complemento

$$\mathcal{C}_{\mathbb{R}}C=(-\infty,2)\cup(5,+\infty)$$

vediamo che questo insieme (il complemento) è *aperto*; infatti ad ogni punto x_0 del complemento vediamo che è possibile definire un r tale che l'*intorno centrato aperto* di questo raggio sia sottoinsieme di $\mathcal{C}_{\mathbb{R}}C$.

Infatti definendo r come

$$r = egin{cases} d(2,x_0) ext{ per } x_0 < 2 \ d(5,x_0) ext{ per } x_0 > 5 \end{cases}$$

sicuramente troviamo che tutti i punti x_0 sono interni al complemento di C.

Graficamente questo ragionamento corrisponde a

3. Teoremi sugli insiemi aperti e chiusi

TEOREMA 3.1. Abbiamo le seguenti proposizioni:

1. Gli insiemi

 \emptyset, \mathbb{R}

sono *insiemi aperti*

- 2. L'unione (Operazioni con gli Insiemi) di due insiemi aperti è sicuramente un insieme aperto.
- 3. L'intersezione (Operazioni con gli Insiemi) di due insiemi aperti è sicuramente un insieme aperto.

TEOREMA 3.2. Abbiamo invece le stesse proposizioni per gli insiemi chiusi:

1. Gli insiemi

 \emptyset, \mathbb{R}

sono insiemi chiusi

2. L'unione (Operazioni con gli Insiemi) di due insiemi chiusi è sicuramente un insieme chiuso.

3. L'intersezione (Operazioni con gli Insiemi) di due insiemi chiusi è sicuramente un insieme chiuso.

OSS 3.1. Notiamo che se dimostriamo almeno una di queste due teoremi, allora si ha automaticamente dimostrato l'altro teorema, in quanto la *definizione dell'insieme chiuso* (**DEF 2.1.**) ci suggerisce che le stesse proprietà valgono. Infatti, la definizione dell'insieme chiuso si basa sulla definizione dell'insieme aperto, tenendo però conto del complementare dell'insieme; perciò basta tenere conto delle leggi di *De Morgan* (Logica formale - Sommario).

DIMOSTRAZIONE 3.1. Allora ci limitiamo a dimostrare solo il teorema **3.1.**

1. L'insieme vuoto

 \emptyset

non ha *nessun elemento*; per verificare se questo insieme vuoto è *aperto*, bisognerebbe allora verificare che *tutti* gli elementi di questo insieme gode della proprietà necessaria. Pertanto si può pensare che tutti gli elementi (ovvero nessuno) di questo insieme può godere *tutte* le proprietà che si vuole.

Altrimenti è possibile pensare in termini di insiemi complementari.

Per quanto riguarda l'insieme dei numeri reali

 \mathbb{R}

e prendendo un elemento $x_0 \in \mathbb{R}$ allora si trova automaticamente che

$$orall r>0, (x_0-r,x_0+r)\subseteq \mathbb{R}$$

è verificata.

2. Sia

$$\{A_i, i \in I\}$$

un insieme di insiemi aperti.

ESEMPIO 3.1. Un insieme del genere può essere

$$\{(1-rac{1}{n},1+rac{1}{n};n\in\mathbb{N}\diagdown\{0\}\}$$

Allora considero un

$$x_0\in\bigcup_{i\in I}A_i$$

Allora da ciò discende che esiste un \bar{i} tale che quel punto appartenga all'insieme aperto $A_{\bar{i}}$, ovvero

$$x_0 \in A_{ar{i}}$$

Allora è vero che esiste una palla aperta (Intorni, **DEF 2.1.**) che venga contenuta in quell'insieme aperto. Ovvero

$$x_0 \in A_{ar{i}} \implies \exists r > 0: (x_0 - r, x_0 + r) \subseteq A_{ar{i}}$$

Ma allora ciò implica che

$$\exists r>0: (x_0-r,x_0+r)\subseteq igcup_{i\in I} A_i$$

3. Siano A_1 e A_2 due insiemi aperti; scelgo allora un $x_0 \in (A_1 \cap A_2)$. Quindi ciò vuol dire che

$$x_0\in (A_1\cap A_2) \implies egin{cases} x_0\in A_1 \implies \exists r_1>0: (x_0-r_1,x_0+r_1)\ x_0\in A_2 \implies \exists r_2>0: (x_0-r_2,x_0+r_2) \end{cases}$$

Poi scegliendo r il minimo tra r_1 e r_2 , ovvero

$$r=\min(r_1,r_2)$$

[Grafico da fare]

4. Allora ho che

$$(x_0-r,x_0+r)\subseteq (A_1\cap A_2)$$

il che vuol dire l'intersezione tra A_1 e A_2 è aperto.

OSS 3.2. Però questo *non* vuol dire che l'*intersezione infinita* tra insiemi aperti debba essere necessariamente *aperta*: infatti si propone il seguente controesempio.

ESEMPIO 3.2.

Considero la successione di intorni

$$(I_n)_n:I_n=(1-rac{1}{n},2+rac{1}{n})$$

e vediamo che l'intervallo I_n è aperto per ogni n.

Inoltre gli intervalli $(I_n)_n$ sono *inscatolati* (Intervalli, **DEF 3.1.1.**).

[GRafico da fare]

Dal grafico notiamo che se prendiamo l'intersezione di tutti gli intervalli

$$\bigcap_n I_n$$

i numeri compresi tra 1,2 stanno sicuramente all'interno di questo intervallo, come si può evincere dal grafico; invece per la *proprietà di Archimede* (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 3.1.**), per ogni numero che sta fuori da [1,2], esiste un intervallo I_n che non lo include; ovvero

$$orall arepsilon > 0, \exists n \in \mathbb{N} : 1 - arepsilon
otin I_n
otin I_n$$

Allora si può concludere che

$$igcap_n I_n = [1,2]$$

che non è un insieme aperto.

D. Punti di aderenza e di accumulazione

Punti di aderenza e di accumulazione

Definizione di punto di aderenza e di accumulazione. La chiusura e il derivato di un insieme. Primo teorema di Bolzano-Weierstraß.

1. Punti di aderenza (o di chiusura)

DEF 1.1. Sia $E \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$.

 x_0 si dice **punto di chiusura (o di aderenza)** per E se è vera la seguente:

$$orall r > 0: ((x_0-r,x_0+r)\cap E)
eq \emptyset$$

Ovvero in ogni palla/intorno centrato di x_0 (Intorni, **DEF 2.1.**) devono esserci elementi di E.

SUBDEF 1.1.1. L'insieme dei *punti di chiusura* dell'insieme E si dicono la **chiusura (o aderenza) di** E, scritto come \overline{E} .

ESEMPIO 1.1.

Consideriamo l'insieme E=(1,2) e voglio trovare gli elementi di \overline{E} .

Per farlo è possibile disegnare il grafico di E, poi "testare" ogni elemento della retta $\mathbb R$ per vedere quali sono i potenziali elementi di $\overline E$.

[GRAFICO DA FARE]

Si evince che:

- 1. I numeri $0, \frac{1}{2}$ non sono punti di aderenza per E, in quanto è possibile individuare almeno un intorno fuori da E (ovvero che non contenga elementi di E).
- 2. 1 è un *punto di aderenza*, in quanto per tutti gli intorni in x_0 abbiamo sempre almeno un elemento di E; infatti si deve sempre "andare a destra", "entrando" in E. Analogo il discorso per 2. In conclusione è possibile individuare

$$\overline{E}=[1,2]$$

OSS 1.1. Osserviamo che per ogni insieme è vera che

$$E\subseteq \overline{E}$$

ESEMPIO 1.2.

Considero l'insieme

$$E=\{rac{1}{n},n\in\mathbb{N}\diagdown\{0\}\}$$

poi voglio trovare le seguenti: \overline{E} , E° , ∂E .

3. $\overline{E} = E \cup \{0\}$ e $\partial E = E \cup \{0\}$; a questi insiemi aggiungiamo il numero 0 in quanto *per l'Archimedeità di* \mathbb{R} (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 3.1.**) è sempre

possibile trovare un n tale che

$$orall arepsilon > 0, \exists n: 0 < rac{1}{n} < arepsilon$$

4. $E^{\circ} = \emptyset$; infatti E è definita tramite gli \mathbb{N} , che presenta dei "buchi" in \mathbb{R} .

ESEMPIO 1.3.

Voglio studiare l'insieme dei $numeri razionali \mathbb{Q}$ (Richiami sui Numeri Razionali).

1. Sicuramente

$$\overline{\mathbb{Q}} = \mathbb{Q} \cup \mathbb{R} = \mathbb{R}$$

per la densità di $\mathbb Q$ in $\mathbb R$ (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 4.1.**). Ovvero da ciò consegue che prendendo un punto $q_0 \in \mathbb Q$, è possibile trovare sempre dei numeri razionali per qualsiasi intorno con r>0. Infatti

$$\forall r > 0, \exists a \in \mathbb{Q} : q_0 + r > a > q$$

- 2. I punti di frontiera $\partial \mathbb{Q}$ è anch'esso \mathbb{R} per motivi analoghi.
- 3. Per *l'assioma di Dedekind* (Assiomi dei Numeri Reali, **ASSIOMA S)**) sappiamo che tra un numero razionale q_0 e un altro numero (in questo caso prendiamo $q_0+r, \forall \varepsilon>0$) dev'esserci un numero *irrazionale* che non appartiene a \mathbb{Q} ; allora non ci sono dei *punti interni* (Punti interni, esterni e di frontiera, **DEF 1.1.**).

Proprietà della chiusura

TEOREMA 1.1. Possiamo enunciare le seguenti proprietà per la *chiusura* di *E*.

Sia $E \subseteq \mathbb{R}$, allora sono vere che:

- 1. \overline{E} è un *insieme chiuso*. Per provare questo, bisognerebbe dimostrare che l'insieme complementare della chiusura di E è aperto; quindi bisogna considerare i punti che non stanno né in E né nella sua chiusura \overline{E} e poi dimostrare che esiste un'intervallo di ogni punto che non sta nella chiusura.
- 2. \overline{E} è il più piccolo chiuso che contiene E. Quindi ho in mente una relazione d'ordine (Relazioni, **DEF 4.1.**), ovvero dal punto di vista

di quella d'inclusione. Ovvero

$$A > B \iff B \subseteq A$$

3. Un insieme E è *chiuso* se e solo se $\overline{E}=E$

2. Punti di accumulazione

DEF 2.1. Sia $E \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$. Si dice che x_0 è un **punto di** accumulazione di E se è vera che

$$orall r>0, (]x_0-r, x_0+r[\ \cap E)\diagdown \{x_0\}
eq \emptyset$$

ovvero un *punto di aderenza* escludendo però il punto x_0 stesso; quindi un punto x_0 è di accumulazione per E se in ogni intorno di x_0 ci sono punti di E diversi da se stesso.

SUBDEF 2.1.1. L'insieme dei *punti di accumulazione per E* si chiama **derivato** di E, demarcata col simbolo

$$\mathcal{D}E$$

e si legge come "d corsivo maiuscolo".

OSS 2.1. Come abbiamo definito degli *intorni di* $+\infty$ *o di* $-\infty$ in Intorni, **DEF.3.2.**, è possibile analogamente definire anche $+\infty$ o $-\infty$ come *punti di accumulazione* di un insieme E. Un $+\infty$ è punto di accumulazione per E vuol dire che si verifica il seguente:

$$orall M>0, (M,+\infty)\cap E
eq\emptyset$$

ovvero

$$orall M>0, \exists x_0\in E:x>M$$

ovvero che per ogni semiretta a partire da M, dev'esserci almeno un elemento in comune tra questa semiretta e l'insieme E con $+\infty$ come punto di accumulazione.

Analoga la definizione di un insieme E che ha $-\infty$ come punto di accumulazione.

TEOREMA 2.1. Sia $E \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$. x_0 è punto di accumulazione per E se e solo se in ogni intorno di x_0 ci sono infiniti punti di E.

DIMOSTRAZIONE 2.1. Questa dimostrazione si articola in due sottodimostrazioni.

- 1. Dimostriamo che se in ogni intorno di x_0 ci sono infiniti punti di E, allora x_0 è di accumulazione per E: questo è evidentemente vero, in quanto se in ogni intorno di x_0 ci sono infiniti punti di E, allora dev'esserci almeno un elemento di E in questo intorno diverso da x_0 .
- 2. Ora notiamo il viceversa; ovvero che se x_0 è di accumulazione per E allora in ogni suo intorno ci sono infiniti punti di E. Per dimostrare questa proposizione, dimostriamo la negazione della contraria; ovvero che se in ogni intorno di x_0 ci sono elementi finiti di E, allora x_0 non è punto di accumulazione per E. (Logica formale Sommario)

Supponiamo quindi che x_0 abbia un intorno in cui ci sono un numero finito punti di E: allora

$$(x_0-r,x_0+r)\cap E=\{x_1,x_2,\ldots,x_k\}$$

Che graficamente corrisponde a

[GRAFICO DA FARE]

Considero dunque $r=\min(\{d(x_0,x_j), \forall j\in\{1,2,\dots,k\}\})$ ovvero la *minima* distanza tra x_0 e un qualunque punto di E. Allora risulta che

$$((x_0-r,x_0+r)\cap E)\diagdown\{x_0\}=\emptyset$$

il che ci dimostra che x_0 non è di accumulazione per E. (oppure è un punto isolato).

ESEMPIO 2.1. Prendiamo di nuovo l'intervallo

$$E=(1,2)$$

E voglio individuare $\mathcal{D}E$. Con lo stesso approccio di **ESEMPIO 1.1.**, "testiamo" dei elementi della retta reale per vedere se possono essere dei punti di accumulazione.

- 1. Ovviamente 0 non può essere punto di accumulazione.
- 2. 1,2 sono *punti di accumulazione* per E in quanto disegnando un qualsiasi intorno di questi punti, si deve per forza disegnare un intervallo che contenga elementi di E. Analogo il discorso per i numeri $1 \le x \le 2$.

Allora

$$\mathcal{D}E = [1, 2]$$

ESEMPIO 2.2. Prendiamo l'insieme

$$E=\{rac{1}{n},n\in\mathbb{N}\diagdown\{0\}\}$$

Con lo stesso approccio di sempre, individuiamo gli elementi di $\mathcal{D}E$.

- 3. 1 non è punto di accumulazione. Infatti è possibile individuare un intorno (1-r,1+r) che non abbia elementi di E: basta porre r=0,1.
- 4. Analogo discorso per tutti gli elementi n ponendo $r = |\frac{1}{n^2+n}|$.
- 5. 0 è punto di accumulazione per l'Archimedeità dei reali (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 3.1.**). Infatti per qualsiasi r è sempre possibile trovare $n \in \mathbb{N}$ tale che

$$0<\frac{1}{n}<0+r$$

Allora $\mathcal{D}E = \{0\}.$

ESEMPIO 3.3. Prendiamo i *numeri naturali* (Numeri Naturali - Sommario).

Si scopre che $\mathcal{D}\mathbb{N}=\emptyset$; non esistono i numeri naturali che siano dei punti \mathbb{R} di accumulazione per \mathbb{N} , in quanto tutti questi numeri distano tra di loro. Basta infatti prendere l'intorno in $n\in\mathbb{N}$ di raggio 0,5. Invece è possibile dire che $+\infty$ è punto di accumulazione per \mathbb{N} , in quanto grazie all'Archimedeità dei reali (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 2.1.**) si verifica la seguente condizione:

$$orall M>0, \exists n\in\mathbb{N}:n>M ext{ dove }arepsilon=1$$

Primo teorema di Bolzano-Weierstraß (forma insiemistica)

Enunciamo uno dei teoremi più importanti dell'analisi matematica, che ci garantisce l'esistenza di un punto di accumulazione in $\mathbb R$ per una categoria di insiemi.

TEOREMA 2.2. Primo teorema di Bolzano-Weierstraß

Sia $E \subseteq \mathbb{R}$, E un insieme *infinito* e *limitato*. (Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore, **DEF 1.3.**)

Allora si verifica il seguente:

$$\exists \xi \in \mathbb{R} : \xi \in \mathcal{D}E$$

ovvero che esista un numero ξ che sia punto di accumulazione per E.

DIMOSTRAZIONE 2.2.

Se E è un insieme *limitato* allora per il *teorema dell'esistenza* dell'estremo superiore e inferiore (Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore, **TEOREMA 4.1.**) esistono

$$a_0 = \inf(E); b_0 = \sup(E)$$

ovvero $a_0,b_0\in\mathbb{R}$ e tali per cui $E\subseteq [a_0,b_0]$.

Allora considero c_0 il *punto medio tra a_0 e b_0*; ora considero i due intervalli

$$[a_0,c_0];[c_0,b_0]$$

che graficamente corrisponde a

[GRAFICO DA FARE]

Inoltre *almeno* uno di questi intervalli devono essere *infiniti*, in quanto se supponessimo per assurdo che entrambi gli intervalli fossero finiti, allora la loro unione sarebbe anch'essa finita.

Tenendo questo in considerazione, scegliamo uno di questi. Ora chiamo questo intervallo $[a_1,b_1]$, dove $a_1=c_0$ oppure $b_1=c_0$, a seconda dell'intervallo scelto.

Quindi otteniamo una successione di intervalli inscatolati, limitati, infiniti e dimezzati (Intervalli)

$$(I_n)_n$$

La forma forte del teorema di Cantor (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 5.2.**) ci dice che facendo l'intersezione di tutti questi intervalli otteniamo un ξ .

Ora voglio trovare un *intorno* di ξ che contenga un qualunque insieme *infinito* $[a_n,b_n]$. Ovvero voglio verificare che

$$\exists r>0: [a_n,b_n]\subseteq (\xi-r,\xi+r)$$

Allora la condizione è

$$r>d(a_n,b_n)=\frac{b_0-a_0}{2^n}$$

il che è possibile in quanto ricordandomi che

$$\frac{b_0-a_0}{n}\geq \frac{b_0-a_0}{2^n}$$

e tenendo conto *l'Archimedeità di* \mathbb{R} (Conseguenze dell'esistenza dell'estremo superiore, **TEOREMA 3.1.**) la condizione sopra citata è totalmente possibile visto che

$$\exists ar{n} : 0 < rac{b_0 - a_0}{2^{ar{n}}} \leq rac{b_0 - a_0}{ar{n}} < r$$

Abbiamo quindi che l'intorno in ξ di raggio r contiene l'insieme infinito $[a_{\bar{n}},b_{\bar{n}}]$, di conseguenza anche l'intorno stesso è infinito; dato che contiene infiniti punti di E, per il **TEOREMA 2.1.** ξ è punto di accumulazione per E.