Cartier divisors

Idea. (Ua;
$$\phi_{\alpha}$$
) ~ (Ua; ϕ_{α} : ψ_{α})

Assume X is normal. (Key: Ox, z are DVR)

div : CDiv(X) -> Div(X)

claim: Endapendent of as

(ha;
$$\phi_{\alpha}$$
) -> \lesssim ord $_{Z}(\phi_{\alpha}) \cdot Z$
 $\lesssim X$
 $\lesssim X$
 $\lesssim X$

Claim. div is injective. (Udique) e per div &

Prop. If each $O_{X,X}$ is a UFD (in particular, this holds if X is non-singular), then

Liv: CDiv(x) ->> Div(x).

Pf. Given ZCX, construct a Cartier divisor $(U_d, \phi_a) = D$ sit. div (D) = Z. For $U = X \setminus Z$,

• (U, 1)

• V X EX, let $0 \times e^{O_{X,x}}$ generate

the ideal corresponding to Z.

 $f_x = \phi_x$ is defined, and generated I(2) on some affine ubhd $\times \in U_x$

D= (u,1) U(ux,f,)

(Ux, $\varphi_{\kappa}.\psi$) = (Uz, ψ_{κ})

As Cartier divisors

Then dix: CDiv(X)/rational SDiv(X)/linear equivalence

(if X is normal).

$$D = \frac{2}{2} \left(U_i, \frac{2}{x_i} \right) \frac{2}{3}$$
 is a Cartier divisor.
 $div(D) = V(L) = H$.

Each YCK(IP") >>> rationally equivalent Cartier divisor

Def. D is effective if
$$\phi_{\alpha} \in Q_{\alpha}(u_{\alpha})$$
 for all α .

 $(u_{\alpha}, \phi_{\alpha})$ (regular)

4 mi effective rationally equiv divisor

(=)
$$4^{-2}\frac{\ell'}{\ell}$$
 for any ℓ'

$$(u_i, \frac{2}{x_i}) = (u_i, \frac{2}{x_i})$$

Thim. Among effective CDiv, the equivalence dosses are projective spaces (finite dim if X is projective).

PC. Fix Do = (Ua) fa), fx & Ox (Ua)

fx/fx & Ox (Ua) un)

DNDO (S) D=(Ux) fa.4) for some YCK(X)**

and D is effective (A) fx4 cOx(Ua) Hx.

 $(u_i, \frac{l}{x_i})$ $\psi = \frac{l'}{2}$ $(u_i, \frac{l}{x_i})$ $(u_i, \frac{l'}{x_i})$ H'

dos. Given two such retional functions 4, 702 fb(x)*

then 14, + 1/2 also satisfies

(U2, fa(14, + 1/2))

Q(U2)

"Complete Linear Series"

TODO: Prove that equiv classes

1001 = 2 rat equiv eff Cartier divs?

2 { per(x)* | f,pe0,(u,)3/+*

are fin dimensional.

Rmk. If D: K -> IP is a regular map,

proj.

variety.

then we can pull back the Cartier divisors.

H=(u;, &) provided that \$\mathbb{T}(x) \mathbb{H}.

~~ (\$\mathbf{p}^{-1}(u;),\mathbf{p}^*(\frac{1}{26}))

(Cartier divisor)
on X

moreover the projective space of hyperplanes in $\mathbb{P}^{n} \left(-(\mathbb{P}^{n})^{n} \right)$ $\longrightarrow 1 + 1 \rightarrow H^{1}$

pulls back 10 to a proj. subspace