Basic Mathematics, Fall 2020

Karen Keryan ASDS, YSU

September 23, 2020

Basis and Rank

Generating Set and Basis

Definition

Consider a set of vectors \mathcal{A} in a vector space V. The set of all linear combinations of vectors in A is called the **span** of \mathcal{A} and is denoted by $\operatorname{span}(\mathcal{A})$, i.e.

$$\operatorname{span}(\mathcal{A}) = \left\{ \sum_{i=1}^{k} \lambda_i \mathbf{x}_i; \ k \in \mathbb{N}, \ \mathbf{x}_i \in \mathcal{A}, \ \lambda_i \in R \right\}$$

If every vector $v \in V$ can be expressed as a linear combination of the vectors of A, then A is called a **generating set** of V and we say A spans the vector space V.

Definition

A basis $\mathcal B$ of a vector space V is a linearly independent subset of V that spans V. Equivalently, $\mathcal B$ is a basis of V if

- B is linearly independent
- \mathcal{B} is a spanning set of V: $\operatorname{span}(\mathcal{B}) = V$.

Definition

A generating set \mathcal{A} of V is called **minimal** if there exists no smaller set $\tilde{\mathcal{A}} \subset \mathcal{A} \subset V$ that spans V.

Proposition

The following statements are equivalent:

- ullet \mathcal{B} is a basis of V
- ullet is a minimal generating(spanning) set of V
- $m{\circ}$ \mathcal{B} is a maximal linearly independent set of vectors in V , i.e., adding any other vector to this set will make it linearly dependent.
- Every vector $\mathbf{x} \in V$ is a unique linear combination of vectors from \mathcal{B} , i.e.

$$\mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{b}_i = \sum_{i=1}^{k} \psi_i \mathbf{b}_i$$

and $\lambda_i, \psi_i \in \mathbb{R}, \mathbf{b}_i \in \mathcal{B}$, it follows that $\lambda_i = \psi_i, i = 1, \dots, k$.

• In \mathbb{R}^3 , the canonical/standard basis is

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

• Different bases in \mathbb{R}^3 are

$$\mathcal{B}_1 = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}, \mathcal{B}_2 = \left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\}$$

• The set

$$\mathcal{A} = \left\{ \begin{bmatrix} 1\\2\\4\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\3\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix} \right\}$$

is linearly independent, but not a generating set (and not a basis) of \mathbb{R}^4 : For instance, the vector $[0,0,0,1]^T$ cannot be obtained by a linear combination of elements in \mathcal{A} .

Proposition

Let V be a vector space with a finite basis. Then every basis of V has the same number of elements.

Definition

The **dimension** of V is the number of basis vectors, and it is denoted by $\dim(V)$.

How to find a basis?

A basis of a subspace $U = \operatorname{span}[\mathbf{x}_1, \dots, \mathbf{x}_m] \subset \mathbb{R}^n$ can be found by executing the following steps:

- 1. Write the spanning vectors as columns of a matrix A
- 2. Determine the row echelon form of A,
- 3. The spanning vectors associated with the pivot columns are a basis of U.

Determine a basis for the subspace $U \subset \mathbb{R}^5$ spanned by the vectors

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 2 \\ 2 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_4 = \begin{bmatrix} 0 \\ 2 \\ -1 \\ -1 \\ -2 \end{bmatrix}.$$

Rank

Definition

The number of linearly independent columns of a matrix $A \in \mathbb{R}^{m \times n}$ equals the number of linearly independent rows and is called the **rank** of A and is denoted by $\operatorname{rk}(A)$ or $\operatorname{rank}(A)$.

Definition

A matrix $A \in \mathbb{R}^{m \times n}$ has **full rank** if its rank equals the largest possible rank for a matrix of the same dimensions, i.e. $\operatorname{rk}(A) = \min(m, n)$.

A matrix is said to be rank deficient if it does not have full rank.

Proposition

- $\operatorname{rk}(A) = \operatorname{rk}(A^T)$ for all $A \in \mathbb{R}^{m \times n}$
- The columns of $A \in \mathbb{R}^{m \times n}$ span a subspace $U \subset \mathbb{R}^m$ with $\dim(U) = \operatorname{rk}(A)$. Later, we will call this subspace the image or range.
- The rows of $A \in \mathbb{R}^{m \times n}$ span a subspace $W \subset \mathbb{R}^n$ with $\dim(W) = \operatorname{rk}(A)$.
- For all $A \in \mathbb{R}^{n \times n}$ holds: A is regular (invertible) if and only if A has full rank, i.e. $\operatorname{rk}(A) = n$.
- For all $A \in \mathbb{R}^{m \times n}$ and all $\mathbf{b} \in \mathbb{R}^m$ it holds that the SLE $A\mathbf{x} = \mathbf{b}$ has a solution if and only if $\mathrm{rk}(A) = \mathrm{rk}(A|\mathbf{b})$, where $A|\mathbf{b}$ denotes the augmented matrix.
- For $A \in \mathbb{R}^{m \times n}$ the dimension of the subspace of solutions for $A\mathbf{x} = \mathbf{0}$ is n rk(A). Later, we will call this subspace the kernel or the null space.

Find the rank of the following matrices

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 2 & 4 & 6 \\ 0 & 3 & 6 & 9 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 5 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & 3 \\ 3 & 7 & 9 \end{bmatrix}.$$

Linear Mappings

Definition

For vector spaces V,W, a mapping $T:V\to W$ is called a linear mapping (or vector space homomorphism/ linear transformation) if

$$T(a\mathbf{x} + b\mathbf{y}) = aT(\mathbf{x}) + bT(\mathbf{y}), \ \forall x, y \in V, a, b \in \mathbb{R}$$

or equivalently,

- $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$
- $T(a\mathbf{x}) = aT(\mathbf{x})$

Definition

Consider a transformation $T:V\to W,$ where V, W can be arbitrary sets. Then T is called

- injective, if for any $\mathbf{x}, \mathbf{y} \in V$ it follows that $T(\mathbf{x}) \neq T(\mathbf{y})$ if and only if $\mathbf{x} \neq \mathbf{y}$.
- surjective, if T(V) = W.
- bijective if it is injective and surjective.

Definition

Let V, W be vector spaces.

- ullet T:V o W is called **isomorphism**, if it is linear and bijective
- $T: V \rightarrow V$ is called **endomorphism**, if T is linear
- T: V → V is called automorphism, if T is linear and bijective
- We define $id_V: V \to V$, $id_v(\mathbf{x}) = \mathbf{x}$ as the identity mapping in V.

Show that the mapping $T: \mathbb{R}^2 \to C$, given by $T(\mathbf{x}) = x_2 + ix_1$, is an isomorphism.

Definition

Vector spaces U and V are called isomorphic if there exists an isomorphism $T:U\to V$ and we write $U\cong V$

Theorem

Finite-dimensional vector spaces V and W are isomorphic if and only if $\dim(V) = \dim(W)$.

Example

Show that $R^{m \times n} \cong R^{mn}$.

