HW4

1

Proof by contradiction. Assume L_{343} is decidable. Then $\exists M_{343}$ which decides L_{343} .

Create a machine M which takes a string y as input

M on input y

- Check if y is "CSDS 343 is fun" or "MATH 343 is fun"
- If y is neither string we reject
- Run M_{343} on M
- If M_{343} accepts, M rejects
- If M_{343} rejects, M accepts

Proof

Now suppose we run M on input "CSDS 343 is fun" or "MATH 343 is fun"

If M_{343} accepts M then M must accept "CSDS 343 is fun". However, M does the opposite of M_{343} thus M would reject "CSDS 343 is fun". This creates a contradiction.

If M_{343} rejects M then M must reject "CSDS 343 is fun". However, M does the opposite of M_{343} thus M would accept "CSDS 343 is fun". This creates a contradiction.

Thus we have a contradiction and we know M is a makeable machine as long as M_{343} is decidable. Therefore M_{343} is undecidable.

2

Proof by contradiction. So assume $DIFF_BY_1$ is decidable. Then $\exists M_{DIFF}$ which decides $DIFF_BY_1$

Create a TM M which takes a TM < m > as input

M on input $\langle m \rangle$

- Run M_{DIFF} on < M, m >
- If M_{DIFF} accepts, M rejects
- If M_{DIFF} rejects, M accepts

Create a TM M' which takes y as input

M' on input string y

• If y = M' reject

- Else run M on y
 - If M accepts, M' accepts
 - If M rejects, M' rejects

Proof

Now suppose we run M on M', which will then run M_{DIFF} on < M, M' >

If M_{DIFF} accepts < M, M'>, then M will reject on M'. However this creates a contradiction because M_{DIFF} says < M, M'> are different by 1, however M and M' both accept / reject on the same input (they are not different by 1) because M' runs M and rejects on input M'. Thus they are not different by 1 and M_{DIFF} should reject.

If M_{DIFF} rejects < M, M'>, then M will accept on M'. However this creates a contradiction because M_{DIFF} says < M, M'> are not different by 1, however M and M' both accept / reject on the same input except for input M' where M' rejects and M accepts. Thus they are different by one and M_{DIFF} should accept.

Thus we have a contradiction and we know both M and M' are makeable machines as long as M_{DIFF} is decidable. Therefore M_{DIFF} is undecidable.

3

A Prove $A_{TM} \leq_M L_{add}$

In order to prove this, we must prove there exists a function f such that $x \in A_{TM} \leftrightarrow f(x) \in L_{add}$

Remember $x = \langle M, w \rangle$ and $f(x) = \langle M' \rangle$

f on input x:

If x is not of the form $\langle M, w \rangle$ then f(x) is not of the form $\langle M \rangle$

Else create M' which takes a string y

M' on input y:

- Run M on w
- If M accepts:
 - Run M_{add} on $y // < M_{add} > \in L_{add}$ we made in class
 - If M_{add} accepts: M' accepts
 - If M_{add} rejects: M' rejects
- If M rejects:
 - -M' rejects

Proof

If $x \in A_{TM}$ show $f(x) \in L_{add}$

- If $x \in A_{TM}$ then M accepts w
 - Since M accepts w, M' will run M_{add} on y and accept / reject accordingly. So M' is the same as M_{add} when M accepts w. Since $< M_{add} > \in L_{add}$ and M' mimics M_{add} when M accepts w, $< M' > \in L_{add}$.

If $x \notin A_{TM}$ show $f(x) \notin L_{add}$

- If $x \notin A_{TM}$, M will either reject on input w or run forever on input w.
- Suppose M rejects w
 - Since M rejects w, M' will always reject. Thus M' will reject valid strings of $L(M_{add})$ so $< M' > \notin L_{add}$.
- Suppose M runs forever on w
 - Since M runs forever on w, M' will always run forever. Thus M' will run forever on valid string of $L(M_{add})$ so $< M' > \notin L_{add}$.

If $f(x) \in L_{add}$ show $x \in A_{TM}$

• If $f(x) \in L_{add}$ then $L(M') = a^n b^m c^{n+m}, n, m \ge 0$. In order for L(M') to equal $a^n b^m c^{n+m}, n, m \ge 0$, then M' must always run M_{add} . M' only runs M_{add} when M accepts w. If M accepts w then M > 0 then M > 0 then M > 0 to equal M

If $f(x) \notin L_{add}$ show $x \notin A_{TM}$

- If $f(x) \notin L_{add}$ then M' either runs for ever on y or rejects y when $y \in L(M_{add})$
- Suppose M' rejects a valid y
 - If M' rejected a valid y then it must be because M rejected w because if M accepted w, M' would run M_{add} which would accept y so M' would accept on y. Thus if M' rejects a valid y it is because M rejected w. If M rejects w then $0 < M, w >= x \notin A_{TM}$
- Suppose M' ran forever on a valid y
 - If M' ran forever on a valid y then it must be because M ran forever on w because if M had accepted w then M' would run M_{add} which would recognize y and accept. Thus if M' ran forever on a valid y it is because M ran forever on w. If M ran forever on w then 0 < M, $w > = x \notin A_{TM}$

Thus we have proved $x \in A_{TM} \leftrightarrow f(x) \in L_{add}$ therefore $A_{TM} \leq_m L_{add}$

B Prove $\bar{A_{TM}} \leq_M L_{add}$

In order to prove this, we must prove there exists a function f such that $x \in A_{TM}^- \leftrightarrow f(x) \in L_{add}$

Remember $x = \langle M, w \rangle$ and $f(x) = \langle M' \rangle$

f on input x:

If x is not of the form < M, w > then $f(x) = M_{add}$

Else create M' which takes a string y

M' on input y:

- Run M on w for |y| steps
- If M does not accept with |y| steps:
 - Run M_{add} on y for count steps $// < M_{add} > \in L_{add}$ we made in class
 - If M_{add} accepts: M' accepts
 - If M_{add} rejects: M' rejects
- Else:
 - Reject

Proof

If $x \in A_{TM}^-$ show $f(x) \in L_{add}$

- If $x \in A_{TM}^-$ then M rejects w
 - Since $x \in A_{TM}^-$ then M will not accept w in finite steps (will either reject or run forever, either will result in M not accepting in finite steps). Thus we run a machine $\langle M_{add} \rangle \in L_{add}$ and M' will accept / reject. Thus when $x \in A_{TM}^-, L(M') = L(M_{add})$ so $\langle M' \rangle = f(x) \in L_{add}$.
 - Alternatively, $x \in A_{TM}^-$ if x is not of the form < M, w > in which case $f(x) = M_{add} \in L_{add}$

If $x \notin A_{TM}^-$ show $f(x) \notin L_{add}$

• If $x \notin A_{TM}$, M will accept w in finite steps s. $\forall y$ where |y| > s, M' will detect these strings and reject. This means M' will reject infinitely many valid strings y where |y| > s so $M' \notin L_{add}$.

If $f(x) \in L_{add}$ show $x \in A_{TM}^-$

• If $f(x) \in L_{add}$ then $L(M') = a^n b^m c^{n+m}, n, m \ge 0$. In order for L(M') to equal $a^n b^m c^{n+m}, n, m \ge 0$, then M' must always run M_{add} . M' only runs M_{add} when M never accepts w in finite steps. If M never accepts w in finite steps then M = 1 then M

If $f(x) \notin L_{add}$ show $x \notin A_{TM}^-$

- If $f(x) \notin L_{add}$ then M' rejects y when $y \in L(M_{add})$
- Suppose M' rejects a valid y
 - If M' rejected a valid y then it must be because M accepted w in steps less than |y| because if M did not accept w, M' would run M_{add} which would accept y so M' would accept on y. Thus if M' rejects a valid y it is because M accepted w. If M accepts w then $< M, w >= x \notin A_{TM}$

Thus we have proved $x \in \bar{A_{TM}} \leftrightarrow f(x) \in L_{add}$ therefore $\bar{A_{TM}} \leq_m L_{add}$