近年图匹配工作比较(按精度排名)

工作创新点比较

模型名称	发表期刊/会 议	创新点
QAGN ¹	DSW2018	1.首次使用图卷积网络求图匹配问题
GMN ²	CVPR18	1.加入Sinkhorn归一化相似矩阵 2.使用距离偏差作为Loss
PCA-GM ³	ICCV19	1. 加入corss-graph模块 2.使用交叉熵作为Loss
NGM ⁴	arXiv19	1.加入hypregraph作为分支计算
DGFM ⁵	ICCV19	1.卷积网络设计,加入ResNet的shortcut结构 2.直接对特征求内积,不进行归一化
GLMNet ⁶	arXiv19	1.将归一化约束用Loss显式表达
LCSGM ⁷	CVPR20	1.将点对匹配转换成预测节点问题
CIE 8	ICLR20	1.边特征和节点特征元素间相乘,利用了边的信息 2.将groundtruth和hungarian的结果作为mask,只计算mask 里的损失
SuperGlue ⁹	CVPR20	1.使用self-attention学习边的权重
qcDGM ¹⁰	CVPR21	1.用网络学习邻域矩阵的权重,构建目标函数进行凸优化 2.对正负样本的交叉熵损失加入权重并变为指数形式
LoFTR 11	CVPR21	1.抛弃特征点,直接对CNN的feature map直接计算

整体框架比较

模型	求解器模块	CNN模 块	GNN模块	embedded 对象	相似性度量方式	——匹配约束 实现	Loss
QAGN ¹	KB-QAP		GCN	单图节点	内积		cross-entropy
GMN ²		VGG16			带权指数	Sinkhorn	pixel-offset
PCA-GM ³		VGG16	GCN+cross-graph	单图节点	带权指数	Sinkhorn	binary cross- entropy(BCE)
NGM ⁴	Lawler'sQAP	VGG16	VGG16	联合图	带权指数	Sinkhorn	BCE
DGFM ⁵		VGG16	message-passing	单图节点	内积		多类cross-entropy
GLMNet ⁶		VGG16	GCN+cross-graph	单图节点	带权指数	Sinkhorn+Loss	BCE+constraintLoss
LCSGM ⁷	en&decoder	VGG16	GCN	联合图			BCE+constraintLoss
CIE 8		VGG16	GCN+cross-graph	单图节点	带权指数	Sinkhorn Hungarian	BCE+mask
qcDGM ¹⁰		VGG16	GCN+内积	单图结构	构架凸优化函数	Sinkhorn	指数带权BCE

Reference:

待补充详细内容:

Loftr 11:

参考了SuperGlue的工作,在描述子上直接使用CNN生成的特征,不进行的关键点的提取,从而可以处理特征相似的重复关键点。

Learning Deep Graph Matching via Channel-Independent Embedding and Hungarian Attention $^{\,8}$

Motivation1:图模型的边特征应该要利用起来,以往的工作没有考虑边特征的利用

Method1:在图卷积网络中使用元素间乘法将边特征和节点特征相乘,将边的信息融合到节点的信息中。

Motivation2: Sinkhorn的迭代意义不大,计算损失考虑负样本在经过多层迭代反传梯度增加计算负担

Method2:利用Hungarian计算的预测正样本和groudtruth的正样本作为Loss的mask,一定程度上减缓样本不平衡问题。

- 1. A. Nowak, S. Villar, A. Bandeira, and J. Bruna, "Revised note on learning quadratic assignment with graph neural networks," in DSW, 2018.
- 2. A. Zanfir and C. Sminchisescu, "Deep learning of graph matching," in CVPR, 2018. $\underline{\leftrightarrow}$
- 3. Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks for deep graph matching.ln ICCV, 2019. $\underline{\omega}$
- 4. Runzhong Wang, Junchi Yan. Neural Graph Matching Network: Learning Lawler's Quadratic Assignment Problem with Extension to Hypergraph and Multiple-graph Matching. In arXiv, 2019. <u>←</u>
- 5. Zhen Zhang, Wee Sun Lee. Deep Graphical Feature Learning for the Feature Matching Problem. In ICCV, 2019. 🗠 🖰
- 6. Bo Jiang, Pengfei Sun, Jin Tang, and Bin Luo. Glmnet: Graph learning-matching networks for feature matching. arXiv preprint arXiv:1911.07681, 2019. 👱 🗠
- 7. Tao Wang, He Liu. Learning Combinatorial Solver for Graph Matching. In CVPR, 2020. $\underline{\omega}$
- 8. Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li.Learning deep graph matching with channel-independent embedding and hungarian attention. In Proceedings of the International Conference on Learning Representations, volume 20, 2020. \underline{c}
- 9. Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperGlue: Learning feature matching with graph neural networks. In CVPR, 2020. €
- 10. Quankai Gao, Fudong Wang. Deep Graph Matching under Quadratic Constraint. In CVPR, 2021. 🗠 🗠
- 11. Jiaming Sun, Zehong Shen. LoFTR: Detector-Free Local Feature Matching with Transformers. In CVPR, 2021. 🗠 🖰