Lec 05. Collaborative Filtering for Implicit Feedback

Contents

- 1. Neighborhood-based CF
- 2. Model-based CF
- 3. Bayesian Personalized Ranking (BPR)

1. Neighborhoo-based CF

One-class Collaborative Filtering

- Represent users' implicit feedback in a matrix form.
- Q: How to interpret missing values?
- A : Negative or positive-unlabeled

				a Comment		
		Item1	Item2	Item3	Item4	ltem5
2	User1	1	?	1	1	?
2	User2	?	?	1	?	1
2	User3	1	1	1	?	1
2	User4	?	1	?	1	?
2	User5	1	?	1	?	1

Recap: Three Key Questions

• Similarity measurement

- How to calcuate the similarity between users or items?
- Neighborhood selection
 - How to select similar users or items?
- Prediction function
 - How to predict the rating based on neighbors?

similarity measurement를 제외하고는 같다.

Measuring item Similarities

- It does not consider mean-centered normalization.
- A simple way to represent missing values(?) is to impute them into zeros, i.e., negative feedback.

그다음에 여러 similarity 방법을 적용하여 유사도를 측정한다.

Jaccard Coefficient

- Each row and column is represented by a binary vector.
 - For simplicity, it is also represented by a set of users or items.
- The similarity between item i and item j is as follows.

$$sim(i,j) = \frac{|u_i \cap u_j|}{|u_i \cup u_j|}$$

 \mathcal{U}_i : a set of users who click item i

Cosine Similarity

$$sim(i,j) = cos(\theta) = \frac{\mathbf{u}_i \cdot \mathbf{u}_j}{\|\mathbf{u}_i\| \|\mathbf{u}_j\|} = \frac{|\mathcal{U}_i \cap \mathcal{U}_j|}{\sqrt{c(i)}\sqrt{c(j)}}$$

$$c(x) = \begin{cases} \sum_{i \in \mathcal{I}} r_{xi} & \text{if } x \in \mathcal{U} \\ \sum_{u \in \mathcal{U}} r_{ux} & \text{if } x \in \mathcal{I} \end{cases}$$

c(i): the number of ratings for item i

c(u): the number of ratings for user u

Example: Cosine Similarity

> Which item is the most similar to item1?

Inverse User Frequency

• Unlike the cosine similarity, each user has different weights.

$$sim(i,j) = \frac{|\mathcal{U}_i \cap \mathcal{U}_j|}{\sqrt{c(i)}\sqrt{c(j)}}$$
 Each user's weight is equal.

$$sim(i,j) = \frac{\sum_{u \in \mathcal{U}_i \cap \mathcal{U}_j} \frac{1}{\log(1 + c(u))}}{\sqrt{c(i)}\sqrt{c(j)}}$$

As a user has more ratings, the user's weight is less significant.

• It is a well-known method in information retrieval.

Example: Inverse User Frequency

Example: Inverse User Frequency

11

> Which item is the most similar to item1?

		Item1	Item2	Item3	Item4	Item5	Inverse user frequency
		Itellia	Itemz	Items	item4	Items	rrequericy
2	User1	1	0	1	1	0	1/log4
2	User2	0	1	0	1	1	1/ log 4
2	User3	1	1	1	0	1	1/log5
2	User4	0	1	1	0	1	1/log4
2	User5	1	0	0	1	0	1/log3
			$\frac{1}{\sqrt{3}\sqrt{3}}$	$\frac{2}{\sqrt{3}\sqrt{3}}$	$\frac{2}{\sqrt{3}\sqrt{3}}$	$\frac{2 \sqrt{1}}{\sqrt{3}\sqrt{3}}$	
		\Rightarrow	$\frac{1}{\frac{\log X}{\sqrt{3}\sqrt{3}}} 5 \frac{1}{\log X}$	$\frac{\frac{1}{\log 4} + \frac{1}{\log 5}}{\sqrt{3}\sqrt{3}}$	$\frac{\frac{1}{\log 4} + \frac{1}{\log}}{\sqrt{3}\sqrt{3}}$	$\frac{3}{3} \frac{1}{\frac{\log 5}{\sqrt{3}\sqrt{3}}}$	

Unified Neighborhood-based Model

 \triangleright The similarity between item k and item j is as follows.

$$sim(j,k) = \frac{\sum_{u \in U_j \cap U_k} \frac{1}{\log(1+c(u))}}{\sqrt{c(j)}\sqrt{c(k)}}$$

It uses the inverse user frequency.

 \triangleright The similarity between user u and user w is as follows.

$$sim(u, w) = \frac{\sum_{i \in \mathcal{I}_u \cap \mathcal{I}_w} \frac{1}{\log(1 + c(i))}}{\sqrt{c(u)} \sqrt{c(w)}}$$

It uses the inverse item frequency.

Item-based Prediction

> The prediction rule is as follows.

$$\hat{r}_{uj} = \sum_{k \in \mathcal{N}_j \cap \mathcal{I}_u} sim(j, k)$$

- sim(j, k) is the similarity between two items j and k.
- \mathcal{N}_j is a set of top-K nearest neighbors of item j.
- \mathcal{I}_u is a set of items by user u.
- \succ Note that we may have $|\mathcal{N}_j \cap \mathcal{I}_u| < K$, but it is acceptable.

User-based Prediction

> The prediction rule is as follows.

$$\hat{r}_{uj} = \sum_{w \in \mathcal{N}_u \cap \mathcal{U}_j} sim(u, w)$$

- sim(u, w) is the similarity between two users u and w.
- ullet \mathcal{N}_u is a set of top-K nearest neighbors of user u.
- U_j is a set of users who click item j.
- \succ Note that we may have $|\mathcal{N}_u \cap \mathcal{U}_j| < K$, but it is acceptable.

Prediction for the Unified Model

- > Q: How to combine user- and item-based scores?
- > A: Consider # of ratings for the user and the item.

Item-based prediction

User-based prediction

$$\hat{r}_{uj} = \frac{1}{\sqrt{c(u)}} \sum_{k \in \mathcal{N}_j \cap \mathcal{I}_u} sim(j, k)$$

$$\hat{r}_{uj} = \frac{1}{\sqrt{c(j)}} \sum_{w \in \mathcal{N}_u \cap \mathcal{U}_j} sim(u, w)$$

	ltem1	ltem2	ltem3	Item4	ltem5	
User1	1	0	1	1	?	
User2	0	1	0	0	1	
User3	1	1	1	0	1	
User4	0	1	1	1	0	l
User5	1	0	0	0	0	

Prediction for the Unified Model

- \triangleright For the prediction score of user u on item j,

> The item-based prediction is
$$\hat{r}_{uj} = \frac{1}{\sqrt{c(u)}} \sum_{k \in \mathcal{N}_j \cap \mathcal{I}_u} sim(j, k)$$

> The user-based prediction is

$$\hat{r}_{uj} = \frac{1}{\sqrt{c(j)}} \sum_{w \in \mathcal{N}_u \cap \mathcal{U}_j} sim(u, w)$$

> The final prediction rule is

$$\hat{r}_{uj} = \frac{1}{\sqrt{c(u)}} \sum_{k \in \mathcal{N}_j \cap \mathcal{I}_u} sim(j, k) + \frac{1}{\sqrt{c(j)}} \sum_{w \in \mathcal{N}_u \cap \mathcal{U}_j} sim(u, w)$$

 $\hat{r_{uj}}$ 는 top-N recommendation 용도

2. Model-based CF

SVD with Implicit Feedback

- We are only interested in correct item rankings, not caring about exact rating predictions.
 - All missing values are filled in zeros.
- Simply, apply SVD for top-N recommendations

$$\mathbf{R}_{[m \times n]} = \mathbf{U}_{[m \times \mathbf{k}]} \Sigma_{[\mathbf{k} \times \mathbf{k}]} (\mathbf{V}_{[n \times \mathbf{k}]})^{T}$$

R: binary matrix, where missing feedback is zero.

Recap: Objective Function for MF

- > Factorize a matrix R into two latent matrices U and V.
 - The matrix R is approximated as a product of UV^T.
 - For simplicity, we consider all missing values as zeros.

Alternating Least Squares (ALS)

- > Minimize two loss functions alternatively.
 - \bullet Keeping ${\bf U}$ fixed, solve for each of the n rows of ${\bf V}.$

$$\min_{\mathbf{v}_i} \frac{1}{2} \sum_{u=1}^m (r_{ui} - \mathbf{u}_u \mathbf{v}_i^{\mathsf{T}})^2 + \frac{\lambda}{2} (\|\mathbf{v}_i\|^2)$$

Keeping V fixed, we solve for each of the m rows of U.

$$\min_{\mathbf{u}_{u}} \frac{1}{2} \sum_{i=1}^{n} (r_{ui} - \mathbf{v}_{i} \mathbf{u}_{u}^{\mathsf{T}})^{2} + \frac{\lambda}{2} (\|\mathbf{u}_{u}\|^{2})$$

> It treats a least-squares regression problem.

Training with ALS

- U: latent user matrix ($m \times k$ matrix)
 - Each user is represented by a latent vector (1 × k vector).
- V: latent item matrix (n × k matrix)
 - Each item is represented by a latent vector ($1 \times k$ vector).

Randomly initialize two matrices U and V.

Repeat

For u = 1, ..., m do

$$\mathbf{u}_{u}^{\mathsf{T}} = \left(\mathbf{V}^{\mathsf{T}}\mathbf{V} + \lambda\mathbf{I}\right)^{-1}\mathbf{V}^{\mathsf{T}}\mathbf{r}_{u}^{\mathsf{T}}$$

For i = 1, ..., n do

$$\mathbf{v}_i^{\mathsf{T}} = \left(\mathbf{U}^{\mathsf{T}}\mathbf{U} + \lambda \mathbf{I}\right)^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{r}_i$$

Until the stopping condition is satisfied

 \mathbf{r}_{u} : u-th row of **R**

 $\mathbf{r_i}$: *i*-th column of **R**

Missing as Negative Feedback

- All missing feedback is regarded as negative feedback.
- Then, adjust the weight for the confidence of missing values.

$$\min_{\mathbf{U},\mathbf{V}} \sum_{u=1}^{m} \sum_{i=1}^{n} y_{ui} (r_{ui} - \mathbf{u}_{u} \mathbf{v}_{i}^{\mathsf{T}})^{2}$$

$$y_{ui} = \begin{cases} 1 & if \ r_{ui} \ \text{exists} \\ 0 & \text{otherwise} \end{cases}$$

$$\min_{\mathbf{U},\mathbf{V}} \sum_{u=1}^{m} \sum_{i=1}^{n} w_{ui} (r_{ui} - \mathbf{u}_{u} \mathbf{v}_{i}^{\mathsf{T}})^{2}$$

$$w_{ui} = \begin{cases} 1 & if \ r_{ui} \ \text{exists} \\ \alpha & \text{otherwise} \end{cases}$$
$$\alpha \in [0, 1]$$

Weighted Matrix Factorization (WMF)

> Factorize a matrix R into two latent matrices U and V.

- The matrix R is approximated as a product of UVT.
- Note: we care about missing values.

$$\min_{\mathbf{U},\mathbf{V}} \sum_{u=1}^{m} \sum_{i=1}^{n} w_{ui} (r_{ui} - \mathbf{u_u} \mathbf{v_i^T})^2$$

$$w_{ui} = \begin{cases} 1 & if \ r_{ui} \ \text{exists} \\ \alpha & \text{otherwise} \end{cases}$$

 \mathbf{u}_{u} : u-th row of \mathbf{U} \mathbf{v}_{i} : i-th row of \mathbf{V}

Weighting Scheme for Missing Values

- How to set the weight matrix W in WMF?
 - Uniform: use lower weights to negative samples.

- User-oriented : if a user has more positive examples, it is more likely that the user does not like the other item.
- **Item-oriented**: if an item has **fewer positive examples**, the missing feedback for this item is **negative with a higher probability.**

	Positive samples	Negative samples
Uniform	$w_{ui} = 1$	$w_{ui} = \alpha$
User-oriented	$w_{ui} = 1$	$w_{ui} \propto \sum_{i} r_{ui}$
Item-oriented	$w_{ui} = 1$	$w_{ui} \propto m - \sum_{i} r_{ui}$

 $\alpha \in [0,1]$ m: number of users

Implicit Matrix Factorization

• Approximate the binary preference matrix by minimizing the weighted RMSE.

$$\min \frac{1}{2} \sum_{u=1}^{m} \sum_{i=1}^{n} c_{ui} (r_{ui} - \mathbf{u}_{u} \mathbf{v}_{i}^{T})^{2} + \frac{\lambda}{2} \left(\sum_{u=1}^{m} ||\mathbf{u}_{u}||^{2} + \sum_{i=1}^{n} ||\mathbf{v}_{i}||^{2} \right)$$

- $r_{ui} = 1$ if user u clicks item i, else 0.
- $c_{ui} = 1 + \alpha r_{ui}$
 - Positive feedback: $1 + \alpha r_{ui}$
 - Negative feedback: 1

Weighted ALS (wALS)

> The confidence of predicting each entry is different.

$$\min_{\mathbf{v}_i} \frac{1}{2} \sum_{u=1}^m c_{ui} (r_{ui} - \mathbf{u}_u \mathbf{v}_i^{\mathsf{T}})^2 + \frac{\lambda}{2} (\|\mathbf{v}_i\|^2)$$

⊗: Element-wise product

Training with wALS

- > Update two matrices U and V in parallel.
 - ullet U: user matrix (m imes k matrix), V: item matrix (n imes k matrix)
 - C: weight matrix corresponding to R
 - $ilde{\mathbf{C}}_u \in \mathbb{R}^{n imes n}$ is a diagonal matrix of $\mathbf{C}_{u*} \in \mathbb{R}^{1 imes n}$
 - $ilde{\mathbf{C}}_i \in \mathbb{R}^{m imes m}$ is a diagonal matrix of $\mathbf{C}_{*i} \in \mathbb{R}^{1 imes m}$

$$\begin{bmatrix} c_{u1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & c_{un} \end{bmatrix}$$

Randomly initialize two matrices **U** and **V**.

Repeat

For
$$u = 1, ..., m$$
 do

$$\mathbf{u}_{u}^{\mathsf{T}} = \left(\mathbf{V}^{\mathsf{T}} \widetilde{\mathbf{C}}_{u} \mathbf{V} + \lambda \mathbf{I}\right)^{-1} \mathbf{V}^{\mathsf{T}} \widetilde{\mathbf{C}}_{u} \mathbf{r}_{u}^{\mathsf{T}}$$

For
$$i = 1, ..., n$$
 do

$$\mathbf{v}_{i}^{\mathrm{T}} = \left(\mathbf{U}^{\mathrm{T}}\widetilde{\mathbf{C}}_{i}\mathbf{U} + \lambda\mathbf{I}\right)^{-1}\mathbf{U}^{\mathrm{T}}\widetilde{\mathbf{C}}_{i}\mathbf{r}_{i}$$

Until the stopping condition is satisfied

 \mathbf{r}_{u} : u-th row of \mathbf{R}

 $\mathbf{r_i}$: *i*-th column of **R**

27

3. Bayesian Personalized Ranking

Limitation of Rating Prediction Models

- Existing recommender models solve the recommendation problem as a rating prediction problem.
 - The squared error of rating prediction is optimized.
 - In practice, only the top-N items are presented as a ranked list.
- In many cases, optimizing rating predictions many not provide the best recommendation lists.
 - Example : all the low-ranked ratings are predicted very accurately, but high-ranked ratings incur significant errors.
- It arises because the objective functions of prediction-based methods are not fully aligned with top-N recommendations.

Ranking Objective Functions

- Minimize the objective function for ranking evaluation between R and UV^T .
- Challenge: the objective functions for ranking-based methods are non-smooth.
 - Tiny changes can cause sudden jumps or drops.
 - It is difficult to optimize with gradient descent techniques.

Smooth RMSE objective

Non-smooth hit rate

Learning to Rank

 Ranking is a key part of many IR problems, such as document retrieval, collaborative filtering, and online advertising.

Pointwise Preference

- Alice give ratings for A = 5, B = 4, and C = 3.
- Predict the relevance score for a user-item pair.

(Alice, A)	5		(Bob, A)	?
(Alice, B)	4	→	(Carol, B)	?
(Alice, C)	3		(David, A)	?

Pointwise Preference Assumption

> Pointwise preference can be represented as follows.

$$\hat{r}_{ui}=1, \hat{r}_{uj}=0, i\in\mathcal{I}_u, j\in\mathcal{I}\backslash\mathcal{I}_u$$

- 1 is used to denote like for an observed (user, item) pair.
- 0 is used to denote dislike for an unobserved (user, item) pair.
- ➤ Note: treating all observed feedback as likes and unobserved feedback as dislikes may mislead the learning process.

Pairwise Preference

- Alice give ratings for A = 5, B = 4, and C = 3.
- Predict a relative order for a triplet of a user and two items.
 - It creates a binary classification problem and minimizes the number of pairwise inversions in the training data.

(Alice, A, B)	+1		(Pob A P)	2
(Alice, A, C)	+1		(Bob, A, B)	r
(Alice, B, A)	-1		(Carol, B, A)	2
(Alice, B, C)	C, A) —1		(Carol, B, A)	•
(Alice, C, A)			(David, A, C)	2
(Alice, C, B)				r

$$3P_2 = 6 가지$$

Pairwise Preference Assumption

> Pairwise preferences relax the assumption of pointwise preferences.

$$\hat{r}_{ui} > \hat{r}_{uj} = 0, i \in \mathcal{I}_u, j \in \mathcal{I} \backslash \mathcal{I}_u$$

- > The relationship $\hat{r}_{ui} > \hat{r}_{uj}$ means that a user u is likely to prefer an item $i \in \mathcal{I}_u$ to an item $j \in \mathcal{I} \setminus \mathcal{I}_u$.
- > Empirically, pairwise preferences helps achieve better results than pointwise preferences.

Prediction Rule

• How to predict the rating of user u in item i and item j?

$$\hat{r}_{ui} = \mathbf{u}_{u} \mathbf{v}_{i}^{\mathsf{T}} + b_{i}$$

$$\hat{r}_{uj} = \mathbf{u}_{u} \mathbf{v}_{j}^{\mathsf{T}} + b_{j}$$

We consider the difference between two predicted ratings.

• Question : Why not use b_u and μ ? 중복되는 값(서로 같은 값)이므로

Likelihood of Pairwise Preferences

> The Bernoulli distribution of binary random variable $\delta((u,i) > (u,j))$ is defined as follows.

$$LPP_{u} = \prod_{i,j \in \mathcal{I}} P(\hat{r}_{ui} > \hat{r}_{uj})^{\delta((u,i) \succ (u,j))} \left(1 - P(\hat{r}_{ui} > \hat{r}_{uj})\right)^{(1 - \delta((u,i) \succ (u,j)))}$$

$$LPP_{u} = \prod_{(u,i)\succ(u,j)} P(\hat{r}_{ui} > \hat{r}_{uj}) \prod_{(u,i)\leqslant(u,j)} \left(1 - P(\hat{r}_{ui} > \hat{r}_{uj})\right)$$

- (u,i) > (u,j) means that user u prefers item i to item j.
- > To approximate the probability $P(\hat{r}_{ui} > \hat{r}_{uj})$, we use the sigmoid function $\sigma(\hat{r}_{uij})$ such that $\hat{r}_{uij} = \hat{r}_{ui} \hat{r}_{uj}$.

$$LPP_{u} = \prod_{(u,i)\succ(u,j)} p(\hat{r}_{ui} > \hat{r}_{uj}) \times \prod_{(u,i)\leqslant(u,j)} \left(1 - p(\hat{r}_{ui} > \hat{r}_{uj})\right)$$

$$p(\hat{r}_{ui} > \hat{r}_{uj}) = \sigma(\hat{r}_{uij})$$

$$\ln LPP_u = \ln \prod_{(u,i) \succ (u,j)} \sigma(\hat{r}_{uij}) + \ln \prod_{(u,i) \leqslant (u,j)} \left(1 - \sigma(\hat{r}_{uij})\right)$$

$$\sigma(\hat{r}_{uij}) = \sigma(-\hat{r}_{uji})$$

$$\ln LPP_u = \ln \prod_{(u,i) \succ (u,j)} \sigma \left(\hat{r}_{uij} \right) + \ln \prod_{(u,i) \succ (u,j)} \left(1 - \sigma \left(-\hat{r}_{uji} \right) \right)$$

$$\ln LPP_u = \ln \prod_{(u,i)\succ (u,j)} \sigma \left(\hat{r}_{uij}\right) + \ln \prod_{(u,i)\succ (u,j)} \left(1 - \sigma \left(-\hat{r}_{uji}\right)\right)$$

$$\ln LPP_u = \ln \prod_{(u,i)\succ (u,j)} \sigma(\hat{r}_{uij}) + \ln \prod_{(u,i)\succ (u,j)} \sigma(\hat{r}_{uij})$$

$$\ln LPP_u = 2 \sum_{(u,i)\succ (u,j)} \ln \sigma(\hat{r}_{uij}) = 2 \sum_{i\in \mathcal{I}_u, j\in \mathcal{I}\setminus \mathcal{I}_u} \ln \sigma(\hat{r}_{uij})$$

Objective Function for BPR

> Minimize the following function.

$$\min_{\mathbf{U},\mathbf{V},\mathbf{b}} - \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}_u} \sum_{j \in \mathcal{I} \setminus \mathcal{I}_u} \ln \sigma(\hat{r}_{uij}) + \frac{\lambda}{2} \left(\sum_{u=1}^m ||\mathbf{u}_u||^2 + \sum_{i=1}^n ||\mathbf{v}_i||^2 + \sum_{i=1}^n ||b_i||^2 \right)$$

$$\hat{r}_{uij} = \hat{r}_{ui} - \hat{r}_{uj} = \left(\mathbf{u_u}\mathbf{v_i^T} + b_i\right) - \left(\mathbf{u_u}\mathbf{v_j^T} + b_j\right)$$

> Because negative items are too large, we randomly choose negative items.

Training BPR with GD

> Use the partial derivative to derive update rules.

$$\nabla \mathbf{u}_{u} = -\sigma(-\hat{r}_{uij})(\mathbf{v}_{i} - \mathbf{v}_{j}) + \lambda \mathbf{u}_{u}$$

$$\hat{r}_{uij} = (\mathbf{u}_{u}\mathbf{v}_{i}^{\mathsf{T}} + b_{i}) - (\mathbf{u}_{u}\mathbf{v}_{i}^{\mathsf{T}} + b_{j})$$

$$\nabla \mathbf{v_i} = -\sigma(-\hat{r}_{uij})\mathbf{u_u} + \lambda \mathbf{v_i}$$

$$\nabla \mathbf{v_i} = -\sigma(-\hat{r}_{uij})\mathbf{u_u} + \lambda \mathbf{v_i}$$

$$\nabla b_i = -\sigma(-\hat{r}_{uij}) + \lambda b_i$$

$$\nabla b_i = -\sigma(-\hat{r}_{uij})(-1) + \lambda b_i$$

Discussion

- The performance of BPR depends on sampling methods.
 - Random sampling

- How to choose negative samples?
 - Choose high-variance samples stored in memory, which achieves efficient sampling of true negatives with hugh quality.

