CSC384H Tutorial 6

Logic

Overview of Logic

Given any variables p, q, and r, we have the following:

1	Commutative law	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
2	Associative law	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
3	Distributive law	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
4	Identity law	$p \wedge \mathbf{true} \equiv p$	$p \vee \mathbf{false} \equiv p$
5	Universal bound law	$p \lor \mathbf{true} \equiv \mathbf{true}$	$p \land \mathbf{false} \equiv \mathbf{false}$
6	Idempotent law	$p \wedge p \equiv p$	$p\vee p\equiv p$
7	Negation law	$p \lor \neg p \equiv \mathbf{true}$	$p \land \neg p \equiv \mathbf{false}$
8	Double negation law	$\neg(\neg p) \equiv p$	
9	de Morgan's law	$\neg (p \land q) \equiv \neg p \lor \neg q$	$\neg (p \lor q) \equiv \neg p \land \neg q$
10	Absorption law	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
11	Implication law	$p \to q \equiv \neg p \lor q$	

Propositional Logic

1. Using the table provided above, verify the following logical equivalences.

(a)
$$\neg (p \lor \neg q) \lor (\neg p \land \neg q) \equiv \neg p$$

(b)
$$(p \land \neg(\neg p \lor q)) \lor (p \land q) \equiv p$$

- 2. Suppose we are given the following knowledge base:
 - $P_1: p \to q$
 - $P_2: r \to p$
 - $P_3: \neg q$
 - $\bullet \ P_4: r \vee p \vee s$

Show that this knowledge base entails s.

3. Show that the following statement is unsatisfiable.

$$(p \lor q) \land (\neg p \lor r) \land (\neg p \lor \neg r) \land (p \lor \neg q)$$

First-Order Logic

- 1. Translate the following sentences from English to first-order-logic.
 - (a) Nobody likes taxes.
 - (b) Some people like anchovies.
 - (c) Emma is a Doberman pincher and a good dog.
 - (d) All hounds howl at night.
 - (e) Anyone who has any cats will not have any mice.
 - (f) Light sleepers do not have anything which howls at night.
 - (g) There is only one ring that rules them all.
 - (h) Ham and Enos are the only chimpanzees that have been to space.