# Planification du pompage dans un réseau de distribution d'eau potable ramifié

Optimisation non-linéaire en nombre entier

#### Robinson Beaucour

### Décembre 2022



Figure 1: Réseau de distribution simple

#### Variables de décision

| $Q_{pompe,t}^{(k)}$     | Débit sortant de la pompe $k$ à l'instant $t$                   | $\mathbb{R}_{+}$                |
|-------------------------|-----------------------------------------------------------------|---------------------------------|
| $Q_{reserv,t}^{(r)}$    | Débit entrant du réservoire $r$ à l'instant $t$                 | $\mathbb{R}_{+}$                |
| $Q_{jonction}^{(n,n')}$ | Débit dans le tuyau allant du noeud $n$ au $n'$                 | $\mathbb{R}_{+}$                |
| $C_t^{(n)}$             | Niveau de charge (en m) au noeud $\boldsymbol{n}$               | $\mathbb{R}_{+}$                |
| $G_{pompe,t}^{(k)}$     | Gain de charge de la pompe $k$ à l'instant $t$                  | $\mathbb{R}_{+}$                |
| $P_{pompe,t}^{(k)}$     | Puissance électrique consommée par la pompe $k$ à l'instant $t$ | $\mathbb{R}_{+}$                |
| $V_t^{(r)}$             | Volume du réservoire $r$ à l'instant $t$                        | $[V_{min}^{(r)},V_{max}^{(r)}]$ |
| $S_{on,t}^{(k)}$        | Etat de la pompe $k$ (allumé/éteint) à l'instant $t$            | $\{0,1\}$                       |

#### Contraintes

$$\forall t \quad \sum_{k} Q_{pompe,t}^{(k)} = \sum_{r} Q_{reserv,t}^{(r)} \quad \text{Equilbre d\'ebit sur le r\'eseau}$$

$$\forall t \quad V_{t+1}^{(r)} - V_{t}^{(r)} = Q_{reserv,t}^{(r)} - D_{t}^{(r)} \quad \text{Satisfaction de la demande (pas horaire)}$$

$$\forall k, t \quad P_{pompe,t}^{(k)} = \psi_{0}^{(k)} S_{on,t}^{(k)} + \psi_{2}^{(k)} (Q_{pompe,t}^{(k)})^{2} \quad \text{Fonctionnement pompe}$$

$$\stackrel{\text{Noeud(t)} \dots}{\text{Satisfaction\_demande(r,t)}} \quad \stackrel{\text{sum(k, Qpompe(k,t))} = e= \text{ sum(r, Qreserve(r,t));}}{\text{Satisfaction\_demande(r,t)}} \quad \stackrel{\text{sum(k, Qpompe(k,t))} = e= \text{ l* (Qreserve(r,t)-demand(r,t));}}{\text{e=e psi("small","0")* Non(k,t) + psi("small","2")* Qpompe(k,t)**2;}} \quad \stackrel{\text{pompe(k,t)} = e= \text{ sum((k,t), Ppompe(k,t)*tariff(t));}}{\text{e=e sum((k,t), Ppompe(k,t)*tariff(t));}}$$

## Objectif

$$\text{Minimiser } \sum_{t} \sum_{k} P_{pompe,t}^{(k)} \cdot C_{t}$$