Measure and Integration

Lecture 1

Fix a partition of the interval $[a,b] \subset \mathbb{R}$, $\rho: a=x_0 < x_1 < \cdots < x_n=b$. Let $m_k=\min f(x)$ and $M_k=\max f(x)$, where the min and max are taken over $x\in [x_{k-1},x_k]$. Let $d=\max \Delta x_k$, where $\Delta x_k=x_k-x_{k-1}$. The oscillation is given by $\omega_k=M_k-m_k$; then a function is Riemann integrable if

$$\lim_{d \to 0} \sum_{k=1}^{n} \omega_k \Delta x_k = 0.$$

Denote the Riemann integrable functions over the interval [a, b] by R[a, b].

Lemma 1.1. $C[a,b] \subseteq R[a,b]$.

Proof. If $f \in C[a, b]$, it is uniformly continuous, so for any $\epsilon > 0$, choose d small enough so that

$$\sum_{k=1}^{n} \omega_k \Delta x_k < \epsilon \sum_{k=1}^{n} \Delta x_k = \epsilon (b-a) \to 0.$$

Some funky examples:

$$f(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q} \in \mathbb{Q}; \gcd(p.q) = 1\\ 0 & x \in \mathbb{R} - \mathbb{Q} \end{cases}$$

Show f is continuous on all $x \in \mathbb{R} - \mathbb{Q}$.

Lecture 2

Dirichlet function:

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} - \mathbb{Q} \end{cases}$$

A general function of this type is based on indicator functions: for subsets $A_1, \ldots, A_n, \cdots \subseteq X$, where $A_j \cap A_k = \emptyset$ for $j \neq k$, then

$$f(x) = \sum_{k=1}^{\infty} a_k \chi_A(x),$$

where the $a_k \in \mathbb{C}$, defines a **simple function** $f: X \to \mathbb{C}$.

Let X = set, $2^X = \{A \subseteq X\}$.

Definition 2.1. A measure is some $m: 2^X \to \mathbb{R}^+$ with:

- 1. Additivity: $m(A \cup B) = m(A) + m(B)$ when $A \cap B = \emptyset$.
- 2. If $A \subseteq B$, then $m(A) \le m(B)$.

For f a simple function, we can define the integral with respect to this measure

$$\int_X f(x) \ dm \sim \sum_{k=1}^{\infty} a_k m(A_k).$$

Brave people can try integrate the Dirichlet function with

$$\int_{\mathbb{R}} f(x) \ dm \sim \sum_{r \in \mathbb{O}} m(\{r\}).$$

Example 2.1. Let X = [0, 1].

- 1. Boring measure $m \equiv 0$. Then $\int f(x) dm \sim 0$.
- 2. Set

$$m(A) = \begin{cases} 1 & \text{if } \frac{1}{2} \in A \\ 0 & \text{if } \frac{1}{2} \notin A. \end{cases}$$

(This kind of measure is called a *point mass* measure.) With respect to this measure, we can find the integral of a simple function. Let $k_0 \in \mathbb{Z}^+$ with $\frac{1}{2} \in k_0$.

$$\int_X f(x) \ dm \sim \sum_{k=1}^\infty a_k m(A_k) = a_{k_0} m(A_{k_0}) = a_{k_0} = f\left(\frac{1}{2}\right).$$

If no such k_0 exists, it is still consistent — $f(\frac{1}{2})$ must be zero.

3. Let $x_1, \ldots, x_n \in X$, $b_1, \ldots, b_n \in \mathbb{R}^+$ and $A \subseteq X$. Let

$$m(A) = \sum_{k: x_k \in A} b_k.$$

Then

$$\int_X f(x) \ dm \sim \sum_{k=1}^n b_k f(x_k).$$

Theorem 2.1. (Vitali's Theorem.)

There is no non-trivial additive measure $m: 2^{\mathbb{R}} \to \mathbb{R}^+$ such that

$$m(A) = m(A+x)$$

where $A \subseteq \mathbb{R}$, $x \in \mathbb{R}$ and $A + x = \{y + x : y \in A\}$.

Proof. Suppose m is a non-trivial translation invariant measure as above. Define equivalence relation on [0,1] given by $x \sim y \iff x-y \in \mathbb{Q}$. Define a Vitali set $V \subseteq [0,1]$ by choosing one class representative from each equivalence class. We claim that for any non-zero $r \in \mathbb{Q}$, $V \cap V + r = \emptyset$. To see this, suppose $x \in V \cap (V+r)$. Then $x \in V+r$ implies x=y+r for some $y \in V$. This means that $x \sim y$ and $\bar{x} = \bar{y}$, but by the definition of V this implies that x=y and hence x=0, a contradiction.

Also,

$$[0,1] \subseteq \bigcup_{r \in \mathbb{Q} \cap [-1,1]} (V+r) \subseteq [-1,2].$$

To see this, for each $x \in [0,1]$, there is some $x_1 \in \bar{x}$ such that $x_1 \in V$. Then $x - x_1 = r \in \mathbb{Q}$, so $x = x_1 + r \in V + r$, that is, $x \in \bigcup_{r \in \mathbb{Q} \cap [-1,1]} (V + r)$. Taking the measure of everything gives

$$m([0,1]) \leq \sum_{r \in \mathbb{Q} \cap [-1,1]} m(V+r) \leq m([-1,2]).$$

Since m(V+r)=m(V) for all r, the sum is an infinite sum of a fixed non-negative real number. But it is also bounded above by a fixed number, m([-1,2]), so we must have m(V)=0. This implies that m([0,1])=0, and hence $m\equiv 0$, a contradiction.

Lecture 3

Some sets are too freaky, want to restrict stuff. Let $S \subseteq 2^X$.

Definition 3.1. S is a semi-ring if:

- 1. $S \neq \emptyset$.
- 2. For any $A, B \in S$, $A \cap B \in S$.
- 3. For any $A, B \in S$, $A \setminus B = \bigsqcup_{k=1}^{n} C_k$ with $C_k \in S$.

Example 3.1. Semi-rings.

- 1. $X = \mathbb{R}, S = \{[a, b) : a \le b\}.$
- 2. $X = \mathbb{R}^2, S = \{[a, b) \times [c, d) : a \le b, c \le d\}.$

Definition 3.2. S is a ring of subsets if:

- 1. $S \neq \emptyset$.
- 2. For any $A, B \in S$, $A \cup B \in S$.
- 3. For any $A, B \in S$, $A \setminus B \in S$.
- 4. For any $A, B \in S$, $A \cap B \in S$.

A ring S is called an algebra if $X \in S$. A ring (resp. algebra) S is called a σ -ring (resp. σ -algebra) if it is also closed under countably many unions/intersections.

Example 3.2.

- 1. $R = \{\emptyset\}$ is a σ -ring; $R = \{\emptyset, X\}$ is a σ -algebra.
- 2. $R = 2^X$ is a σ -algebra.

The stuff before lets us define the measure for semi-rings in a hopefully nicer way:

Definition 4.1. Let S be a semi-ring of subsets of X. A measure is some $m: S \to \mathbb{R}^+$ with:

1. $m(A \sqcup B) = m(A) + m(B)$, for $A, B \in S$ and $A \sqcup B \in S$.

2.
$$A_1, A_2, \dots, A_n \in S \implies m\left(\bigsqcup_{k=1}^n A_k\right) = \sum_{k=1}^n m(A_k) \text{ when } \bigsqcup_{k=1}^m A_k \in S \text{ for all } m \leq n.$$

It is σ -additive if (2) works for $n = \infty$. Semi-rings make things easy, but they don't allow for very much, so we look to extend measures to larger structures in a sane way.

Let $S \subseteq 2^X$.

Definition 4.2. The minimal ring enveloping S is defined as

$$R(S) = \bigcap_{\substack{S \subseteq R, \\ R \text{ a ring}}} R.$$

The minimal σ -ring enveloping S is (similarly)

$$R_{\sigma}(S) = \bigcap_{\substack{S \subseteq R_{\sigma}, \\ R_{\sigma} \text{ a } \sigma\text{-ring}}} R_{\sigma}.$$

Proposition 4.1. Let S be a semi-ring. Then

$$R(S) = \left\{ \bigsqcup_{k=1}^{n} A_k : A_k \in S \right\}.$$

Proof. Denote the right hand side by R_0 . We just need to show that R_0 is a ring. Suppose $A, B \in R_0$. Write

$$A = \bigsqcup_{k=1}^{n} A_k, \qquad B = \bigsqcup_{s=1}^{m} B_s,$$

where the $A_k, B_s \in S$. Then (exercise, or youtube):

$$A \backslash B = \bigsqcup_{k=1}^{N} C_k, \qquad A \cup B = \bigsqcup_{s=1}^{M} D_s,$$

where the $C_k, D_s \in S$.

Lemma 4.1. Suppose $m: S \to \mathbb{R}^+$ is a measure. This extends to a measure $\widetilde{m}: R(S) \to \mathbb{R}^+$, where $\widetilde{m}(A) = m(A)$ for all $A \in S$. Also, \widetilde{m} is σ -additive if m is σ -additive.

Proof. See video, hardest part is σ -additivity.

For S a semi-ring, what about $R_{\sigma}(S)$? Can we say

$$R_{\sigma}(S) = \left\{ \bigsqcup_{n=1}^{\infty} A_n : A_n \in S \right\} := R_{\sigma,0}?$$

No — take the semi-ring of half open intervals, $S = \{[a,b)\}$. Then $[0,1] \notin R_{\sigma,0}$, for if $[0,1] = \bigcup_{n=1}^{\infty} [a_n,b_n)$, then there is some n such that $1 \in [a_n,b_n)$. This means there is some $\varepsilon > 0$ with $[1,1+\varepsilon] \subseteq [a_n,b_n)$ and hence $[1,1+\varepsilon] \subseteq [0,1]$, a contradiction. On the other hand, that $[0,1] = [0,2) \setminus \bigcup_{n=1}^{\infty} [1+\frac{1}{n},2)$ shows it must be in $R_{\sigma,0}$ if it were to be the minimal σ -ring enveloping S, which is kinda sucky.

Let $S = \{[a,b)\}$, then $R_{\sigma}(S)$ is the Borel σ -algebra. (It is an algebra because $\mathbb{R} = \bigsqcup_{n \in \mathbb{Z}} [n, n+1)$.) Last time, we saw a botched attempt at describing some sort of structure on $R_{\sigma}(S)$. Let's try again:

$$R_{\sigma}(S) = \bigcup_{n=0}^{\infty} R_{\sigma,n},$$

where $R_{\sigma,0} = S$, and

$$R_{\sigma,n} = \left\{ \bigcup_{k=1}^{\infty} A_k, A \cap B, A \backslash B; \ A_k, A, B \in R_{\sigma,n-1} \right\}.$$

Then $|R_{\sigma}(S)| = 2^{\aleph_0}$. But we see it's not that great — for example, the Cantor set C has measure zero but cardinality 2^{\aleph_0} . So $|P(C)| > 2^{\aleph_0}$, but this implies we can choose a subset that should definitely be measurable (with measure zero) but is not in the Borel σ -algebra. (I may have missed the point of this bit, not sure.)

Some properties of measures:

Proposition 5.1. Let R = ring, and $m : R \to \mathbb{R}^+$ be a measure. Then:

- 1. $m(\varnothing) = 0$.
- 2. If $A, B \in R$ and $A \subseteq B$, then $m(B \setminus A) = m(B) m(A)$. (Hence $m(A) \le m(B)$.)
- 3. $m(A \cup B) = m(A) + m(B) m(A \cap B)$.
- 4. If m is σ -additive:

$$m\left(\bigcup_{k=1}^{\infty} A_k\right) \le \sum_{k=1}^{\infty} m(A_k).$$

Proof.

- 1. $m(\varnothing) = m(\varnothing \sqcup \varnothing) = 2m(\varnothing)$.
- 2. $B = A \sqcup (B \backslash A)$, so $m(B) = m(A) + m(B \backslash A)$.
- 3. Follows from $A \cup B = A \sqcup (B \setminus (A \cap B))$.

Lecture 6

MIA

Extended "Measure"/Outer "Measure"

Take a measure m on a semi-ring S, and let $A \subseteq X$ be a subset of the enormous set. Define the external "measure" by

$$m^*(A) = \inf \sum_{n=1}^{\infty} m(A_n),$$

where $A \subseteq \bigcup_n A_n$, $A_n \in S$. (It is not a 'proper' measure. We'll eventually limit our choice of subsets of X so that m^* is actually a measure.) Properties:

- 1. $A \subseteq B \subseteq X \implies m^*(A) \subseteq m^*(B)$.
- 2. Semi-additivity:

$$m^* \left(\bigcup_{k=1}^{\infty} A_k \right) \le \sum_{k=1}^{\infty} m^*(A_k).$$

3. Whacked up triangle inequality:

$$|m^*(A) - m^*(B)| \le m^*(A \triangle B).$$

Proof.

2. For finitely many only — check brains or youtube for countably infinite. We want $m^*(A \cup B) \le m^*(A) + m^*(B)$. Fix $\varepsilon > 0$. Take coverings $\{A_n\}$ and $\{B_n\}$ from the semi-ring for A and B respectively, such that $\sum m(A_n) < m^*(A) + \varepsilon$ and $\sum m(B_n) < m^*(B) + \varepsilon$. Then

$$A \cup B \subseteq \left(\bigcup_{n=1}^{\infty} A_n\right) \cup \left(\bigcup_{n=1}^{\infty} B_n\right),$$

so

$$m^*(A \cup B) \le \sum_{n=1}^{\infty} m(A_n) + \sum_{n=1}^{\infty} m(B_n) < m^*(A) + m^*(B) + 2\varepsilon.$$

Proposition 7.1.

- 1. $X \in R(S) \implies m^*(A) < \infty \ \forall A \subseteq X$.
- 2. If m is σ -additive, then $m^*(B) = \widetilde{m}(B)$ for all $B \in R(S)$.

Proof.

2. Suppose m is σ -additive. Write

$$B = \bigsqcup_{k=1}^{n} B_k,$$

where each $B_k \in S$. Then

$$m^*(B) \le \sum_{k=1}^n m(B_k) = \widetilde{m}(B).$$

Fix an $\varepsilon > 0$, and choose a covering $\{A_n\}$ from S such that

$$\sum_{n=1}^{\infty} m(A_n) < m^*(B) + \varepsilon.$$

Write

$$B = \bigcup_{n=1}^{\infty} B \cap A_n,$$

Then by semi-additivity

$$\widetilde{m}(B) \le \sum_{n=1}^{\infty} \widetilde{m}(B \cap A_n).$$

But $\widetilde{m}(B \cap A_n) \leq \widetilde{m}(A_n) = m(A_n)$, so

$$\widetilde{m}(B) \le \sum_{n=1}^{\infty} m(A_n) < m^*(B) + \varepsilon.$$

Theorem 7.1. Suppose m is σ -additive and $X \in R(S)$. Let

$$\mathcal{F} = \{ A \subseteq X : \forall \varepsilon > 0, \exists A' \in R(S) : m^*(A \triangle A') < \varepsilon \}.$$

Then \mathcal{F} is a σ -algebra and m^* is a σ -additive measure in $\mathcal{F} \subseteq 2^X$.

There's heaps of junk to prove here.

Lecture 8

Proof of Theorem 7.1. $X \in \mathcal{F}$ is clear (take "X'" = X). Suppose $A, B \in \mathcal{F}$. Closure under union: fix an $\varepsilon > 0$, and take $A', B' \in R(S)$ such that

$$m^*(A\triangle A') < \varepsilon$$
, and $m^*(B\triangle B') < \varepsilon$.

Now,
$$(A \cup B) \triangle \underbrace{(A' \cup B')}_{\in R(S)} \subseteq (A \triangle A') \cup (B \triangle B')$$
. So

$$m^*((A \cup B) \triangle (A' \cup B')) \le m^*(A \triangle A') + m^*(B \triangle B') < 2\varepsilon.$$

Closure under set difference: show $(A \setminus B) \triangle (A' \setminus B') \subseteq (A \triangle A') \cup (B \triangle B')$, and use the same argument as before.

Closure under countable union: suppose $A_n \in \mathcal{F}$ for $n = 1, ..., \infty$. Let $A = \bigcup A_n$. Fix an $\varepsilon > 0$. For each n, choose $A'_n \in R(S)$ such that

$$m(A_n \triangle A'_n) < \frac{\varepsilon}{2^n}.$$

Let

$$A' = \bigcup_{n=1}^{\infty} A'_n.$$

Then

$$m^*(A\triangle A') \le \sum_{n=1}^{\infty} m^*(A_n \triangle A'_n) < \varepsilon.$$

But this isn't enough because A' is not necessarily in R(S). Now,

$$A\triangle A' \subseteq \bigcup_{n=1}^{\infty} (A_n \triangle A'_n)$$

and

$$A' \subseteq A \cup \left[\bigcup_{n=1}^{\infty} (A_n \triangle A'_n)\right].$$

Observe that

$$\sum_{n=1}^{\infty} \widetilde{m}(A'_n) < \infty.$$

Why? We have

$$\sum_{n=1}^{N} \widetilde{m}(A'_n) = \widetilde{m} \left(\bigcup_{n=1}^{N} A'_n \right)$$

$$= m^* \left(\bigcup_{n=1}^{N} A'_n \right)$$

$$\leq m^* \left(\bigcup_{n=1}^{\infty} A'_n \right)$$

$$\leq m^*(A) + \sum_{n=1}^{\infty} m^* (A_n \triangle A'_n)$$

$$\leq m^*(A) + \varepsilon$$

$$\leq m^*(A) + 1.$$

Now, how do we fix the A'? Choose $N_{\varepsilon} \geq 1$ such that

$$\sum_{n=N_{\varepsilon}+1}^{\infty} \widetilde{m}(A'_n) < \varepsilon.$$

Let

$$A'' = \bigcup_{n=1}^{N_{\varepsilon}} A'_n.$$

Then

$$A\triangle A''\subseteq \left[\bigcup_{n=1}^{\infty}(A_n\triangle A'_n)\right]\cup \left[\bigcup_{n=N_{\varepsilon}+1}^{\infty}A'_n\right].$$

So

$$m^*(\text{LHS}) \le \sum_{n=1}^{\infty} m^*(A_n \triangle A'_n) + \sum_{n=N_{\varepsilon}+1}^{\infty} m^*(A'_n)$$

 $\le 2\varepsilon.$

We'll still need to show that it's a proper measure!

Lecture 9

Continuing on with the proof from last time.

Proof. We want to show that for $A, B \in \mathcal{F}$ with $A \cap B = \emptyset$, $m^*(A \sqcup B) = m^*(A) + m^*(B)$. Semi-additivity gives us " \leq ", so we'll only need to prove " \geq ". Fix $\varepsilon > 0$, and take $A', B' \in R(S)$ such that

$$m^*(A\triangle A') < \varepsilon$$
 and $m^*(B\triangle B') < \varepsilon$.

Now $A \subseteq A' \cup (A \triangle A')$ and $B \subseteq B' \cup (B \triangle B')$. Thus

$$m^*(A) \le m^*(A') + \varepsilon$$
 and $m^*(B) \le m^*(B') + \varepsilon$.

Adding these gives

$$m^*(A) + m^*(B) < \widetilde{m}(A') + \widetilde{m}(B') + 2\varepsilon,$$

since m^* and \widetilde{m} coincide on R(S). Then

$$m^*(A) + m^*(B) \le \widetilde{m}(A' \cup B') + \widetilde{m}(A' \cap B') + 2\varepsilon.$$

Now,

$$A' \cup B' \subseteq (A \sqcup B) \cup (A \triangle A') \cup (B \triangle B')$$
, and $A' \cap B' \subseteq (\underbrace{A \cap B}_{\varnothing}) \cup (A \triangle A') \cup (B \triangle B')$.

So

$$\widetilde{m}(A' \cup B') = m^*(A' \cup B') \le m^*(A \cup B) + 2\varepsilon$$
, and $\widetilde{m}(A' \cap B') = m^*(A' \cap B') \le 2\varepsilon$.

Thus

$$m^*(A) + m^*(B) \le m^*(A \sqcup B) + 6\varepsilon.$$

What about for countable disjoint unions? For a measure on a ring, additivity with semi-additivity implies σ -additivity.

If m is a σ -additive measure on a semi-ring S and $X \in R(S)$, then $(X; S, m) \mapsto (\mathcal{F}, m^*)$ is a finite Lebesgue extension.

If we relax the restriction that $X \in R(S)$ to just that

$$X = \bigsqcup_{n=1}^{\infty} X_n,$$

where $X_n \in S$, then we call it a σ -finite extension. In this case, define new semi-rings

$$S_n = \{A \cap X_n : A \in S\} \subseteq S.$$

Then restrict $m: S_n \to \mathbb{R}^+$, to get a finite Lebesgue extension

$$(X_n; S_n, m) \mapsto (X_n; \mathcal{F}_n, m_n^*).$$

LET'S KEEP GOING, define

$$\mathcal{F} = \{ A \subseteq X : A \cap X_n \in \mathcal{F}_n \},$$

$$\mathcal{F}_0 = \left\{ A \in \mathcal{F} : \sum_{n=1}^{\infty} m_n^* (A \cap X_n) < \infty \right\}.$$

Then let $\mu: \mathcal{F}_0 \to \mathbb{R}^+$, with $\mu(A) = \sum_{n=1}^{\infty} m_n^*(A \cap X_n)$.

Theorem 9.1.

- 1. \mathcal{F} is a σ -algebra.
- 2. \mathcal{F}_0 is a ring.
- 3. μ is σ -additive.
- 3.1. If $A_n \in \mathcal{F}_0$, and $A_i \cap A_j = \emptyset$ for $i \neq j$, and $\sum \mu(A_n) < \infty$, then $A = \bigsqcup A_n \in \mathcal{F}_0$, and

$$\mu(A) = \sum_{n=1}^{\infty} \mu(A_n).$$

3.2. If $\sum \mu(A_n) = \infty$ then $A \notin \mathcal{F}_0$.

Lecture 10

From now on, we'll call $(X; \mathcal{F}, m)$ a measure space, where \mathcal{F} is a σ -algebra and $m : \mathcal{F}_0 \to \mathbb{R}^+$, where \mathcal{F}_0 is a ring and m is σ -additive.

Definition 10.1. A function $f: X \to \mathbb{R}$ is measurable (we say $f \in \mathbb{L}^0(X; \mathcal{F}, m)$) if

$$\{f < c\} := f^{-1}((-\infty, c)) = \{x \in X : f(x) < c\} \in \mathcal{F} \text{ for all } c \in \mathbb{R}.$$

Lemma 10.1. The following are equivalent:

- 1. $\{f > c\} \in \mathcal{F} \text{ for all } c \in \mathbb{R}.$
- 2. $\{f \geq c\} \in \mathcal{F} \text{ for all } c \in \mathbb{R}.$
- 3. $\{f < c\} \in \mathcal{F} \text{ for all } c \in \mathbb{R}.$
- 4. $\{f \leq c\} \in \mathcal{F} \text{ for all } c \in \mathbb{R}.$
- 5. $f^{-1}(B) \in \mathcal{F} \text{ for all } B \in \mathcal{B}(\mathbb{R}).$

Proof. Based on closure conditions on \mathcal{F} .

(1)
$$\implies$$
 (2) $-\{f \ge c\} = \bigcap_n \{f > c - \frac{1}{n}\}.$

$$(2) \implies (3) - \{f < c\} = X \setminus \{f \ge c\}.$$

(3)
$$\implies$$
 (4) $-\{f \le c\} = \bigcap_n \{f < c + \frac{1}{n}\}.$

(5)
$$\Longrightarrow$$
 (1) $-\{f>c\}=f^{-1}((c,\infty)), \text{ note } (c,\infty)\in\mathcal{B}(\mathbb{R}).$

 $(4) \implies (5)$ — we want to show $(2,3) \implies (5)$.

Let \mathcal{R} be the ring defined by $\mathcal{R} = \{A \subseteq \mathbb{R} : f^{-1}(A) \in \mathcal{F}\}$. Check: if $A, B \in \mathcal{R}$, then $f^{-1}(A), f^{-1}(B) \in \mathcal{F}$, so $f^{-1}(A) \setminus f^{-1}(B) \in \mathcal{F}$ and $f^{-1}(A) \cup f^{-1}(B) \in \mathcal{F}$. It follows that $A \setminus B \in \mathcal{R}$ and $A \cup B \in \mathcal{R}$. If $A_n \in \mathcal{R}$ and $f^{-1}(A_n) \in \mathcal{F}$, then $f^{-1}(\bigcup A_n) = \bigcup f^{-1}(A_n) \in \mathcal{F}$. So R is a σ -ring.

Now, since $f^{-1}([a,b)) = \{f \geq a\} \cap \{f \geq b\}$, we have $S = \{[a,b)\} \subseteq \mathcal{R}$. But $\mathcal{B}(\mathbb{R})$ is the minimal σ -ring enveloping S, so $S \subseteq \mathcal{B}(\mathbb{R}) \subseteq \mathcal{R}$.

Lecture 11

There's some connections with algebras we've seen before.

True facts: For $f, g \in \mathbb{L}^0$:

- 1. $f + g \in \mathbb{L}^0$.
- 2. $\lambda f \in \mathbb{L}^0$ for all $\lambda \in \mathbb{R}$.
- 3. $f \cdot q \in \mathbb{L}^0$.
- 4. $f_n \in \mathbb{L}^0$, $f(x) = \lim_{n \to \infty} f_n(x) \ \forall x \implies f \in \mathbb{L}^0$.

Proof. (Partial.)

1. We show $\{f+g < c\} = \bigcup_{r \in \mathbb{Q}} \{f < r\} \cap \{g < c - r\}$. The \supseteq direction is easy, for \subseteq , suppose $x \in \text{LHS}$. Then f(x) < c - g(x), and by the density of \mathbb{Q} , choose some $r \in \mathbb{Q}$ such that

$$f(x) < r < c - g(x).$$

Then $x \in \{f < r\}$ and $x \in \{g < c - r\}$, so $x \in \text{RHS}$. It follows that $\{f + g < c\} \in \mathcal{F}$.

- 2. If $\lambda = 0$, then $\lambda f \equiv 0 \in \mathcal{F}$. If $\lambda > 0$, then $\{\lambda f < c\} = \{f < \frac{c}{\lambda}\} \in \mathcal{F}$ since f is measurable. If $\lambda < 0$, then $\{\lambda f < c\} = \{f > \frac{c}{\lambda}\} \in \mathcal{F}$, again since f is measurable (see Lemma 10.1).
- 4. We show $\{f > c\} = \liminf\{f_n > c\}$. If $x \in \text{LHS}$, then $\lim f_n(x) > c$, so there exists an N such that for all $n \geq N$, $f_n(x) > c$. This implies that $x \in \text{RHS}$; reversing this shows the other direction.

Convergence

yayayay everyone loves convergence. Suppose $f_n, f \in \mathbb{L}^0(X, \mathcal{F}, m)$. Types of convergence IN ORDER OF INCREASING WEAKNESS:

- Uniform: $f_n \rightrightarrows f$, means $\lim_{n \to \infty} \sup_{x \in X} |f_n(x) f(x)| = 0$.
- Pointwise: $f_n \to f$, means $\lim_{n \to \infty} |f_n(x) f(x)| = 0$ for all $x \in X$.
- Almost everywhere: $f_n \xrightarrow{\text{a.e.}} f$, means $m(X \setminus A) = 0$, where $A = \{x \in X : \lim_{n \to \infty} f_n(x) = f(x)\}$.
- Measure topology: $f_n \xrightarrow{\mathrm{m}} f$, means $\lim_{n \to \infty} m \{x \in X : |f_n(x) f(x)| \ge \varepsilon\} = 0$ for all $\varepsilon > 0$.

We prove that the converges from last lecture actually appear in order of weakness.

Proof. Uniform \implies pointwise: $|f_n(x) - f(x)| \le \sup_{x' \in X} |f_n(x') - f(x')|$ for all $x \in X$.

Pointwise \implies almost everywhere: $D := \{x \in X : f_n(x) \not\to f(x)\} = \emptyset$.

Almost everywhere \implies measure: Fix $\varepsilon > 0$, and let

$$A_n(\varepsilon) = \{x \in X : |f_n(x) - f(x)| \ge \varepsilon\},\$$

and

$$B_k(\varepsilon) = \bigcup_{n=k}^{\infty} A_n(\varepsilon).$$

Let $B(\varepsilon) = \bigcap_k B_k(\varepsilon)$. He wrote some set inclusion up, not sure what he was trying to do there—but I guess since f_n converges a.e., $m(B(\varepsilon)) = 0$, so $\lim_k m(B_k) = 0$ and we can find some N for which $m(B_N(\varepsilon)) < \varepsilon$. But $B_N(\varepsilon)$ contains the set $\{x \in X : \forall n > N, |f_n(x) - f(x)| \ge \varepsilon\}$, and we're done.

Example 12.1. For a sequence that converges almost everywhere but not pointwise, take a pointwise convergent sequence and change one point of the limit function. Function that converges pointwise but not uniformly:

$$f_n(x) = \frac{nx}{n^2 + x^2} \to 0 = f(x)$$

pointwise, but $\sup_{x} |f_n(x) - f(x)| = \frac{1}{2}$.

Hardest one is a function that converges with respect to \xrightarrow{m} but not $\xrightarrow{a.e.}$. Let

$$A_{nk} = \left[\frac{k-1}{n}, \frac{k}{n}\right],\,$$

where $n = 1, 2, 3, \ldots$ and $k = 1, 2, \ldots, n$. Let $f_{nk} = \chi_{A_{nk}}$, relabel as f_s where

$$s = \frac{n(n-1)}{2} + k.$$

Then, $f_s \xrightarrow{m} f = 0$. To see this, note that

$$\{|f_s - f| \ge \varepsilon\} = \{f_s \ge \varepsilon\} = \begin{cases} \emptyset & \text{if } \varepsilon > 1 \\ A_{nk} & \text{if } \varepsilon \le 1 \end{cases}$$

So $m(\{f_s \geq \varepsilon\}) \leq \frac{1}{n} \to 0$. But $f_s \not\to f$ anywhere, so we're done.

Lecture 13

Theorem 13.1. If $f_n, f \in \mathbb{L}^0(X; \mathcal{F}, m)$ where $m(X) < \infty$, and $f_n \xrightarrow{a.e.} f$, then for all $\delta > 0$, there is some $E \in \mathcal{F}$ such that $m(X \setminus E) < \delta$ and $f_n \rightrightarrows f$ on E.

Proof. Let $A_n(\varepsilon) = \{|f - f_n| \ge \varepsilon\}$, and

$$C_n(\varepsilon) = \bigcup_{k=n}^{\infty} A_k(\varepsilon).$$

Note $C_1(\varepsilon) \supseteq C_2(\varepsilon) \supseteq \ldots$ Let $C(\varepsilon) = \bigcap_n C_n(\varepsilon)$. If $x \in C(\varepsilon)$, then for all n, there exists some $k \ge n$, such that

$$x \in A_k(\varepsilon) \iff |f_k(x) - f(x)| \ge \varepsilon.$$

But for all $\varepsilon > 0$, $m(C(\varepsilon)) = 0 = \lim_n m(C_k(\varepsilon))$. In particular, for $\varepsilon = \frac{1}{k}$, there exists some n_k such that $m(C_{n_k}(\frac{1}{k})) < \frac{d}{2^k}$. Let

$$E = X \setminus \bigcup_{k=1}^{\infty} C_{n_k} \left(\frac{1}{k} \right).$$

Then

$$m(X \setminus E) < \sum_{k=1}^{\infty} \frac{\delta}{2^k} = \delta.$$

Fix $\varepsilon > 0$, and choose k such that $\frac{1}{k} < \varepsilon$. Then if $x \in E$, $x \notin C_{n_k}(\frac{1}{k})$, which implies that $x \notin A_n(\frac{1}{k})$ for all $n \ge n_k$. But

$$\sup_{x \in E} |f_n(x) - f(x)| < \varepsilon \quad \iff \quad |f_n(x) - f(x)| < \frac{1}{k} < \varepsilon \ \forall x \in E,$$

and we're done. \Box

Theorem 13.2. If $f_n \xrightarrow{m} f$, then there exists some subsequence n_k such that $f_{n_k} \xrightarrow{a.e.} f$.

Proof. Again, let

$$A_n(\varepsilon) = \{|f_n - f| \ge \varepsilon\}.$$

Then $\lim_n m(A_n(\varepsilon)) = 0$, so there exists n_k such that $m(A_{n_k}(\frac{1}{k})) < 2^{-k}$. Let

$$B_n = \bigcup_{k=1}^{\infty} A_{n_k} \left(\frac{1}{k} \right),$$

and $B = \bigcap_n B_n$. Then

$$m(B_n) \le \sum_{k=n}^{\infty} 2^{-k} = 2^{-n+1} \to 0.$$

So m(B) = 0. But $\{x \in X : f_{n_k}(x) \not\to f(x)\} \subseteq B$ (check that if $x \notin B$, then $f_{n_k}(x) \to f(x)$.)

There's another half-proved theorem, might include it tomorrow.

Lecture 14

Theorem 14.1. (Lusin's Theorem.)

Suppose $f \in \mathbb{L}^0[a,b]$. Then for all $\delta > 0$, there exists some $E \in \mathcal{F}[a,b]$ such that $f \in C(E)$ and $m(E^c) < \delta$.

Integration

Suppose $(X; \mathcal{F}, m)$ is a finite measure space. Let f be a simple function,

$$f = \sum_{n=1}^{\infty} a_n \chi_{A_n},$$

 $a_n \in \mathbb{R}, A_n \in \mathcal{F}, X = \coprod_n A_n$. We say f is integrable and write $f \in \mathbb{L}^1 = \mathbb{L}^1(X; \mathcal{F}, m)$ if

$$\sum_{n=1}^{\infty} |a_n| m(A_n) < \infty.$$

The integral is

$$\int_X f \ dm := \sum_{n=1}^\infty a_n m(A_n)..$$

Suppose $f \in \mathbb{L}^0$. Then $f \in \mathbb{L}^1$ if and only if there exist simple $f_n \in \mathbb{L}^1$ such that $f_n \rightrightarrows f$ and

$$\limsup_{n\to\infty} \int_X |f_n| \ dm < \infty,$$

and we say

$$\int_X f \ dm := \lim_{n \to \infty} \int_X f_n \ dm.$$

Suppose f, g are simple functions in \mathbb{L}^1 . True facts:

- $0. \ f \in \mathbb{L}^1 \iff |f| \in \mathbb{L}^1.$
- 1. $\alpha f + \beta g \in \mathbb{L}^1$, the integral is linear.
- 2. $f \in \mathbb{L}^1$ and $|g| \le f \implies g \in \mathbb{L}^1$ and $|\int_X g \ dm| \le \int_X f \ dm$.
- 3. $A := \sup_{x} |f(x)| < \infty \implies f \in \mathbb{L}^1$, and $\int_X |f| \ dm \le A \cdot m(X)$.

Lecture 15

We've been writing $f \in \mathbb{L}^0$ for measurable functions, and $f \in \mathbb{L}^1$ for integrable functions. Let's have a look at some nasty things.

Let $f_n = \chi_{[0,\frac{1}{n}]}$. Then $f_n \xrightarrow{\text{a.e.}} 0$, $f_n \xrightarrow{\text{a.e.}} \chi_0$ and $f_n \xrightarrow{\text{a.e.}} \sum_{r \in \mathbb{Q}} \chi_r$. This is quite distressing, so we introduce an equivalence relation given by $f \sim g \iff m\{f \neq g\} = 0$. True facts:

- 1. If f is measurable and $f \sim g$, then g is also measurable.
- 2. If $f, g \in C(\mathbb{R})$ and $f \sim g$, then f = g.
- 3. If $f_n \xrightarrow{\mathbf{m}} f$ and $f_n \xrightarrow{\mathbf{m}} g$, then $f \sim g$.

Proof.

2. If $f(x_0) \neq g(x_0)$ then $|f(x_0) - g(x_0)| > 0$. Since $|f - g| \in C(\mathbb{R})$, there is some $\delta > 0$ such that |f(x) - g(x)| > 0 for all $x \in (x_0, \delta, x_0 + \delta)$, contradicting the fact that $f \sim g$.

3. We have
$$\{f \neq g\} = \{|f - g| > 0\} = \bigcup_{k=1}^{\infty} \underbrace{\left\{|f - g| > \frac{1}{k}\right\}}_{A_k}$$
. Note

$$A_k \subseteq \left\{ |f - f_n| > \frac{1}{2k} \right\} \cup \left\{ |g - f_n| > \frac{1}{2k} \right\},$$

since if $x \notin \text{RHS}$, then $|f(x) - f_n(x)| \leq \frac{1}{2k}$ and $|g(x) - f_n(x)| \leq \frac{1}{2k}$, and the triangle inequality implies $x \notin A_k$. Note that this is independent of n. Since both terms in the union limit to zero by assumption, $m(A_k) = 0$ for each k. Thus $m(\{f + g\}) = 0$.

Denote the equivalence class of f by \bar{f} , and write $\mathbb{L}^0 = \{\bar{f} : f \text{ is measurable}\}$. This avoids the nasty stuff before: suppose $\bar{f}_n \in \mathbb{L}^0$. If $f_n \xrightarrow{\mathrm{m}} f$, $f'_n \in \bar{f}_n$ and $f'_n \xrightarrow{\mathrm{m}} f'$, then $f' \in \bar{f}$. So we do not think of functions in \mathbb{L}^0 as individual functions, but classes of functions that only disagree on a set of measure zero. We'll write \mathbb{L}^1 as

$$\mathbb{L}^1 = \{ \bar{f} \in \mathbb{L}^0 : \exists f' \in \bar{f}, f' \text{ Lebesgue integrable} \}.$$

The \mathbb{L}^1 norm is given by

$$\|\bar{f}\|_1 = \int_X |f'| \ dm.$$

For all $f'' \in \bar{f}$, f'' is Lebesgue integrable and $\int_X |f''| \ dm = \int_X |f'| \ dm$.

Lemma 15.1. If $f \sim g$ and f is integrable, then g is integrable and $\int_X f \ dm = \int_X g \ dm$.

Proof. There exist simple f_n such that $f_n \rightrightarrows f$ and $\limsup_n \int_X |f_n| \ dm < \infty$. Let $A = \{f = g\}$, so that $m(X \backslash A) = 0$. So $f_n \chi_A \rightrightarrows g \chi_A$. But

$$\lim n \to \infty \int |f_n \chi_A| \ dm \le \limsup_{n \to \infty} \int_X |f_n| \ dm < \infty.$$

For $g\chi_{X\backslash A}$, take $g_n \Longrightarrow g\chi_{X\backslash A}$, where

$$g_n = \sum_{k \in \mathbb{Z}} \frac{k}{n} \chi_{\left\{\frac{k-1}{n} < g\chi_{X \setminus A} \le \frac{k}{n}\right\}}.$$

(In fact, this uniform approximation works for any measurable function.) Denote the subscript of the indicator on the RHS by $A_{k,n}$. Now,

$$0 = \int_X g_n \ dm = \sum_{k \in \mathbb{Z}} \frac{k}{n} m(A_{k,n}).$$

True facts about things in \mathbb{L}^1 :

- 1. $\bar{f} \in \mathbb{L}^1 \iff \overline{|f|} \in \mathbb{L}^1$.
- 2. $\bar{f}, \bar{g} \in \mathbb{L}^1 \implies \alpha \bar{f} + \beta \bar{g} \in \mathbb{L}^1$, and

$$\|\alpha \bar{f} + \beta \bar{g}\|_1 \le |\alpha| \|\bar{f}\|_1 + |\beta| \|barg\|_1.$$

11.7

3. $\bar{f} \in \mathbb{L}^1, |g| \leq f \implies \bar{g} \in \mathbb{L}^1$, and

$$\left| \int_X g \ dm \right| \le \|\bar{f}\|_1.$$

We also write $\mathbb{L}^{\infty} = \{\bar{f} \in \mathbb{L}^0 : \exists f' \in \bar{f} : \sup_x |f'(x)| < \infty\}$, that is, to be in \mathbb{L}^{∞} we require only one class representative to be bounded. The \mathbb{L}^{∞} norm is given by

$$\|\bar{f}\|_{\infty} = \inf_{f' \in \bar{f}} \sup_{x \in X} |f'(x)|.$$

- 4. $\mathbb{L}^{\infty} \subseteq \mathbb{L}^1 \iff \forall \bar{f} \in \mathbb{L}^{\infty}, \bar{f} \in \mathbb{L}^1 \text{ and } \|\bar{f}\|_1 \leq \|\bar{f}\|_{\infty} \cdot m(X).$
- 5. If $\bar{f}_n \in \mathbb{L}^1$ is a Cauchy sequence, that is,

$$\lim_{n,k\to\infty} \|\bar{f}_n - \bar{f}_k\|_1 = 0,$$

then there exists some $\bar{f} \in \mathbb{L}^1$ such that $\lim_n \|\bar{f}_n - \bar{f}\|_1 = 0$.