Основы компьютерных сетей. 4. Сетевой уровень. Часть 2.

Бесклассовая маршрутизация, маски подсетей переменной длины (CIDR/VLSM). Динамическая маршрутизация. Протокол DHCP

План занятия:

Бесклассовая адресация.

Динамическая маршрутизация на примере RIP2.

DHCP.

Бесклассовая адресация

Чтобы выделить адрес сети из хоста, используется маска сети

Для классовой адресации явным образом маску указывать и не надо, ее вычислить можно из первых бит адреса, определив класс сети. Но сейчас такой подход устарел, и маску нужно указывать явным образом.

Опыт использования классовой адресации показал, что выделение сетей такими крупными кусками, как сети класса A и B, оказалось расточительным. Да и выделение сетей класса C по 254 хоста тоже может быть избыточным. Понадобился новый способ выделения адресов.

Если взглянуть на стандартные маски сетей классов A, B и C, приведя их к двоичному виду, несложно заметить, что фактически маска состоит из двух половин, одна из которых содержит единицы, другая нули. Но в классовой адресации она ограничена была тем правилом, что число бит должно было быть кратно байту. Отказавшись от правила кратности байту, мы получаем бесклассовую адресацию.

Фактически сейчас не применяется классовая адресация, а блоки адресов выделяются с той или иной маской, которую затем указывают и на хостах.

Статическая маршрутизация

Таблица маршрутизации

Network Destination	Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	10.5.0.1	10.5.1.122	20
10.5.0.0	255.255.0.0	10.5.1.122	10.5.1.122	20
10.5.1.122	255.255.255.255	127.0.0.1	127.0.0.1	20
10.255.255.255	255.255.255.255	10.5.1.122	10.5.1.122	20
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
224.0.0.0	240.0.0.0	10.5.1.122	10.5.1.122	20
255.255.255.255	255.255.255.255	10.5.1.122	10.5.1.122	1

Динамическая маршрутизация используется в средних и крупных сетях. Маршрутная информация вычисляется на основе данных, поступающих от соседних маршрутизаторов. Для обмена данными используется протокол динамической маршрутизации.

- Преимущества: быстрее настройка и проще в администрировании.
- Недостатки: использование процессора и передача служебной информации между маршрутизаторами для вычисления оптимальных маршрутов, что также нагружает сеть.

В многосвязных сетях при использовании различных протоколов маршрутизации могут задействоваться различные маршруты для передачи информации между двумя узлами.

Все протоколы динамической маршрутизации делят на 2 группы: протоколы вектора расстояния и протоколы состояния связи.

Протоколы вектора расстояния (Distance vector) — также называемые дистанционно векторными, используют алгоритм кратчайшего пути для поиска маршрута до удаленной сети. Каждый переход (перенаправление) пакета с помощью маршрутизатора называют хопом (НОР).

Протоколы этого типа вычисляют маршрут согласно количеству переходов без учета производительности канала. Примерами таких протоколов являются: RIP, IGRP.

• К преимуществам можно отнести то, что они меньше нагружают процессоры маршрутизаторов и сеть, а недостаток - неэффективный учет пропускной способности и загруженности каналов.

Протоколы состояния связи (Link state) — также называются «протоколами состояния канала». Все маршрутизаторы в сети, на которых запущен протокол, содержат и постоянно обновляют три таблицы. Первая отслеживает соседние устройства, вторая содержит топологию всей сети и третья используется для маршрутизации пакетов.

Данные протоколы более эффективно учитывают текущее состояние сети, но сильнее утилизируют каналы связи и аппаратные мощности устройств в связи с тем, что постоянно производят мониторинг состояния сети и обновления маршрутных таблиц.

Устройства, использующие протокол состояния связи, обладают большей информацией о сети, чем протоколы вектора расстояния. Примерами протоколов состояния связи являются: OSPF, IS-IS.

• К недостаткам можно отнести то, что данная группа протоколов создает большую нагрузку на вычислительные ресурсы, и в случае сбоя тратится больше времени на актуализацию данных.

Dynamic Host Configuration Protocol, или протокол динамической конфигурации сетевых узлов — протокол, позволяющий узлам в компьютерной сети в автоматическом режиме получить IP-адрес и дополнительные параметры (маска сети, основной шлюз, доменный сервер и другие), нужные для работы в компьютерной сети.


```
Frame 23: 344 bytes on wire (2752 bits), 344 bytes captured (2752 bits) on interface 0

Ethernet II, Src: IntelCor_b3:71:b7 (bc:a8:a6:b3:71:b7), Dst: Broadcast (ff:ff:ff:ff:ff)

Internet Protocol Version 4, Src: 0.0.0.0, Dst: 255.255.255

User Datagram Protocol, Src Port: 68, Dst Port: 67

Bootstrap Protocol (Discover)
```

9.3.2 Как инкапсулируется и передается по сети сообщение DHCPDISCOVER

DHCPv4 Discover Message

DST MAC: FF:FF:FF:FF:FF SRC MAC: MAC A IP SRC: 0.0.0.0 IP DST: 255.255.255.255 UDP DHCPDISCOVER CIADDR: 0.0.0.0 GIADDR: 0.0.0.0 Mask: 0.0.0.0 CHADDR: MAC A

MAC: Media Access Control Address

CIADDR: Client IP Address GIADDR: Gateway IP Address

CHADDR: Client Hardware Address

DHCPv4 Offer Message

Ethernet Frame IP UDP DHCP Reply

DST MAC: MAC A

A IP SRC: 192.168.1.254

SRC MAC: MAC Serv IP DST: 192.168.1.10

UDP 68

CIADDR: 192.168.1.10

GIADDR: 0.0.0.0

Mask: 255.255.255.0 CHADDR: MAC A

MAC: Media Access Control Address

CIADDR: Client IP Address GIADDR: Gateway IP Address

CHADDR: Client Hardware Address

DHCPv4 Offer Message

Ethernet Frame IP UDP DHCP Reply

DST MAC: MAC A

A IP SRC: 192.168.1.254

SRC MAC: MAC Serv IP DST: 192.168.1.10

UDP 68

CIADDR: 192.168.1.10

GIADDR: 0.0.0.0

Mask: 255.255.255.0 CHADDR: MAC A

MAC: Media Access Control Address

CIADDR: Client IP Address GIADDR: Gateway IP Address

CHADDR: Client Hardware Address

Настройка DHCP-сервера на маршрутизаторе Cisco

```
Router>enable // Привилегированный режим EXEC
Router#configure terminal // Режим глобальной конфигурации
Router(config)#interface gigabitEthernet 0/0/0 // выбираем интерфейс
Router(config-if)#ip address 192.168.0.1 255.255.255.0 // назначаем ip, mask
Router(config-if)#no shutdown //Поднимаем интерфейс
Router(config-if)#exit // выход из конфигурации интерфейса
Router(config)#ip dhcp pool dhcp pool // создаём новый пул с именем dhcp pool
Router(dhcp-config)#network 192.168.0.0 255.255.255.0 // Указываем сеть, адреса которой будут присваиваться DHCP-сервером
Router(dhcp-config)#default-router 192.168.0.1 // Указываем IP-адрес шлюза
Router(dhcp-config)#dns-server 192.168.0.1 // Указываем IP-адрес dns сервера
Router(dhcp-config)#lease 3 12 0 //срок аренды IP-адреса (дд-чч-мм) (не обязательно)
Router(config)#ip dhcp excluded-address 192.168.0.1 // Указываем IP-адреса, которые
нельзя присваивать
Router(config)#exit // Выходим из режима конфигурации dhcp пула
Router#write memory // сохраняем настройки
```

DHCP RELAY

DHCP Relay - функционал, обеспечивающий ретрансляцию DHCP-пакетов от клиента к серверу. Поскольку протокол DHCP основан на широковещательной рассылке, пакеты этого протокола не проходят через маршрутизаторы.

DHCP RELAY

Настройка DHCP-сервера на маршрутизаторе Cisco

DHCP RELAY

Router>enable

Router#configure terminal

...

Router(config)#interface gigabitEthernet 0/0/0 //интерфейс где ожидаются запросы

Router(config-if)#ip helper-address 10.0.0.2 // адрес dhcpсервера

Домашнее задание:

Работа в РТ.

Объедините предложенные в файле сети с помощью динамической маршрутизации.

Настроить на маршрутизаторах DHCP-сервер.