AN ANALYSIS OF SALES OF ROSE AND SPARKLING WINES

DIVE INTO THE DATA:

• 'Rose' wine prices shows downward trend as time passes while no generic trend observed in 'Sparkling' wine prices observed:

 'Rose' wine prices shows multiplicative seasonality component whereas 'Sparkling' wine prices shows neither obvious trend nor seasonality component.

For both Rose and Sparkling wine prices data, average price of the 12th month for each year is higher than all of the months

• We could see average price of Rose wine of a month for each year is higher for the year 1980 while there is no generic trend observed in Sparkling wine

Applying Various models and RMSE Evaluation

We could see RMSE for Linear Regression below for both Rose and

Sparkle data:

Test RMSE-Rose Data

RegressionOnTime

2897.007078

Test RMSE-Spark Data

RegressionOnTime

1389.135175

• We could see RMSE using Naïve approach is greatly reduced for Rose but

not so much for Sparkling:

Test RMSE-Rose Data

RegressionOnTime	2897.007078
Naive	17.740511

RegressionOnTime	1389.135175
Naive	1327.156057

We could see RMSE using SimpleAvg approach reduced for Rose and

Sparkling:

Test RMSE-Rose Data

RegressionOnTime	2897.007078
Naive	17.740511
SimpleAvg	15.759889

Test RMSE-Spark Data

RegressionOnTime	1389.135175
Naive	1327.156057
SimpleAvg	1275.073380

 We could see RMSE using MovingAvg approach for Rose and Sparkling(Both have min at 2 point avg):

Test	: RN	ISE-F	Rose	Dat	4

RegressionOnTime	2897.007078
Naive	17.740511
SimpleAvg	15.759889
2pointTrailingMovingAverageRose	11.529278
4pointTrailingMovingAverageRose	14.451433
6pointTrailingMovingAverageRose	14.566399
9pointTrailingMovingAverageRose	14.727667

RegressionOnTime	1389.135175
Naive	1327.156057
SimpleAvg	1275.073380
2pointTrailingMovingAveragespark	813.400684
4pointTrailingMovingAveragespark	1156.589694
6pointTrailingMovingAveragespark	1283.927428
9pointTrailingMovingAveragespark	1346.278315

• We could see RMSE using SES for various values of alpha for Rose and Sparkling(min at alpha=1,while 2 point MovAvg still has lower RMSE):

	Test RMSE-Rose Data
RegressionOnTime	2897.007078
Naive	17.740511
SimpleAvg	15.759889
2 point Trailing Moving Average Rose	11.529278
4pointTrailingMovingAverageRose	14.451433
${\it 6} point Trailing Moving Average Rose$	14.566399
9pointTrailingMovingAverageRose	14.727667
Alpha=1,SimpleExponentialSmoothing	36.796465
Alpha = 0.3, Simple Exponential Smoothing Rose	77.139491
Alpha=0.4,SimpleExponentialSmoothingRose	77.139491

RegressionOnTime	1389.135175
Naive	1327.156057
SimpleAvg	1275.073380
2pointTrailingMovingAveragespark	813.400684
4pointTrailingMovingAveragespark	1156.589694
6pointTrailingMovingAveragespark	1283.927428
9pointTrailingMovingAveragespark	1346.278315
Alpha=1,SimpleExponentialSmoothing	1275.081839
Alpha=0.3,SimpleExponentialSmoothingspark	3686.794285
Alpha=0.4,SimpleExponentialSmoothingspark	3686.794285

• We could see RMSE using Holtz's Model for various values of alpha and beta for Rose and Sparkling(it is found RMSE is minimum at alpha=0.3 and beta=0.3, please find calculations in code notebook):

Test RMSE-Rose Data

			RegressionOnTime	1389.135175
RegressionOnTime	2897.007078		Regressionon fille	1309.133173
Naive	17.740511		Naive	1327.156057
SimpleAvg	15.759889		SimpleAvg	1275.073380
2pointTrailingMovingAverageRose	11.529278		2pointTrailingMovingAveragespark	813.400684
4pointTrailingMovingAverageRose	14.451433		4pointTrailingMovingAveragespark	1156.589694
6pointTrailingMovingAverageRose	14.566399		6pointTrailingMovingAveragespark	1283.927428
9pointTrailingMovingAverageRose	14.727667		9pointTrailingMovingAveragespark	1346.278315
Alpha=1,SimpleExponentialSmoothing	36.796465		Alpha=1,SimpleExponentialSmoothing	1275.081839
lpha=0.3,SimpleExponentialSmoothingRose	77.139491		Alpha=0.3,SimpleExponentialSmoothingspark	3686.794285
lpha=0.4,SimpleExponentialSmoothingRose	77.139491		Alpha=0.4,SimpleExponentialSmoothingspark	3686.794285
Alpha=0.3,Beta=0.3HoltzModelRose	265.567857		Alpha=0.3,Beta=0.3HoltzModelspark	18259.110704
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing predictions on Test Set			3.3,DoubleExponentialSmoothing predictions on Training Set 0.3,DoubleExponentialSmoothing predictions on Test Set	
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing predictions on Test Set		— Alpha=0.3,Beta=0		
Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing predictions on Test Set		Alpha=0.3,Beta=0 Alpha=0.3,Beta=0		

 We could see RMSE using Holtz's Winter Model for various values of alpha, beta and gamma for Rose and Sparkling(it is found RMSE is minimum for the below values and surprisingly we are able to find 2 day Movavg performs well on Rose while Holtz Winter model performs well on Sparkling wine data):

	Test RMSE-Rose Data
RegressionOnTime	1267.516575
Naive	17.740511
SimpleAvg	15.759889
2pointTrailingMovingAverageRose	11.529278
4pointTrailingMovingAverageRose	14.451433
6pointTrailingMovingAverageRose	14.566399
9pointTrailingMovingAverageRose	14.727667
Alpha=1,SimpleExponentialSmoothing	36.796465
Alpha=0.3,SimpleExponentialSmoothingRose	77.139491
Alpha=0.4, Simple Exponential Smoothing Rose	77.139491
Alpha=0.3,Beta=0.3HoltzModelRose	265.567857
Alpha = 0.684, Beta = 0.052, Gamma = 0.315, Triple Exponential Smoothing	17.369752

	Test RMSE-Spark Data
RegressionOnTime	1389.249047
Naive	1327.156057
SimpleAvg	1275.073380
2pointTrailingMovingAveragespark	813.400684
4pointTrailingMovingAveragespark	1156.589694
6pointTrailingMovingAveragespark	1283.927428
9pointTrailingMovingAveragespark	1346.278315
Alpha=1,SimpleExponentialSmoothing	1275.081839
Alpha=0.3,SimpleExponentialSmoothingspark	3686.794285
Alpha=0.4,SimpleExponentialSmoothingspark	3686.794285
Alpha=0.3,Beta=0.3HoltzModelspark	18259.110704
Alpha = 0.15, Beta = 2.68, Gamma = .37, Triple Exponential Smoothing	383.192343

Check For Stationarity:

 We could see data as it is, is not stationary so we have taken first order differencing to make the data stationary for both Rose and Sparkling wine Dataset:

• Below visual plot shows differencing required for Sparkling wine dataset too:

Results of Dickey-Fuller Test:	
Test Statistic	-1.208926
p-value	0.669744
#Lags Used	12.000000
Number of Observations Used	119.000000
Critical Value (1%)	-3.486535
Critical Value (5%)	-2.886151
Critical Value (10%)	-2.579896

test_stationarity(train_spark['Sparkling'].diff().dropna())

Results	of	Dickey-Fuller	Test:
---------	----	---------------	-------

Test Statistic	-8.005007e+00
p-value	2.280104e-12
#Lags Used	1.100000e+01
Number of Observations Used	1.190000e+02
Critical Value (1%)	-3.486535e+00
Critical Value (5%)	-2.886151e+00
Critical Value (10%)	-2.579896e+00

ARIMA model-Automated:

• For various values of p,q,d of ARIMA model we could select one with lowest AIC in this case (0,0,2) for Rose wine dataset and (2,0,2) for Sparkling wine data:

11 (0, 0, 2) 1276.835372 14 (1, 0, 2) 1277.359222 13 (1, 0, 1) 1277.775748 16 (2, 0, 1) 1279.045689 17 (2, 0, 2) 1279.298694 10 (0, 0, 1) 1280.726183 5 (1, 0, 2) 1292.053210 8 (2, 0, 2) 1292.248055 7 (2, 0, 1) 1292.937195 4 (1, 0, 1) 1294.510585		param_rose	AIC
13 (1, 0, 1) 1277.775748 16 (2, 0, 1) 1279.045689 17 (2, 0, 2) 1279.298694 10 (0, 0, 1) 1280.726183 5 (1, 0, 2) 1292.053210 8 (2, 0, 2) 1292.248055 7 (2, 0, 1) 1292.937195	11	(0, 0, 2)	1276.835372
16 (2, 0, 1) 1279.045689 17 (2, 0, 2) 1279.298694 10 (0, 0, 1) 1280.726183 5 (1, 0, 2) 1292.053210 8 (2, 0, 2) 1292.248055 7 (2, 0, 1) 1292.937195	14	(1, 0, 2)	1277.359222
17 (2, 0, 2) 1279.298694 10 (0, 0, 1) 1280.726183 5 (1, 0, 2) 1292.053210 8 (2, 0, 2) 1292.248055 7 (2, 0, 1) 1292.937195	13	(1, 0, 1)	1277.775748
 10 (0, 0, 1) 1280.726183 5 (1, 0, 2) 1292.053210 8 (2, 0, 2) 1292.248055 7 (2, 0, 1) 1292.937195 	16	(2, 0, 1)	1279.045689
 (1, 0, 2) 1292.053210 (2, 0, 2) 1292.248055 (2, 0, 1) 1292.937195 	17	(2, 0, 2)	1279.298694
8 (2, 0, 2) 1292.248055 7 (2, 0, 1) 1292.937195	10	(0, 0, 1)	1280.726183
7 (2, 0, 1) 1292.937195	5	(1, 0, 2)	1292.053210
(=, 0, 1, 1==============================	8	(2, 0, 2)	1292.248055
4 (1, 0, 1) 1294.510585	7	(2, 0, 1)	1292.937195
	4	(1, 0, 1)	1294.510585

	param_spark	AIC
8	(2, 0, 2)	2201.092654
17	(2, 0, 2)	2210.623067
16	(2, 0, 1)	2232.360490
11	(0, 0, 2)	2232.783098
14	(1, 0, 2)	2233.597647
13	(1, 0, 1)	2235.013945
7	(2, 0, 1)	2236.590818
6	(2, 0, 0)	2244.799915
1	(0, 0, 1)	2245.268851

• Rose:

ARMA Model Results								
Dep. Variable Model: Method: Date: Time: Sample:		ARMA(0 css , 13 Sep	, 2) -mle 2020 7:46 1980	Log S.D. AIC	Observations: Likelihood of innovations		131 -634.418 30.167 1276.835 1288.336 1281.509	
========	coef	std err	======	==== Z	P> z	[0.025	0.975]	
	-0.7601	0.101	-7.	499 518	0.000 0.000 0.012	-0.959	-0.561	
	Real	I	maginar	·у	Modulus		Frequency	
MA.1 MA.2	1.0000 -4.1695		+0.0000 +0.0000	_	1.0000 4.1695		0.0000 0.5000	

• Sparkling:

						====	
Dep. Variable:			No. Observ			131	
Model:	А		_	hood			
Method:			S.D. of in	nnovations		3.526	
Date:		Sep 2020				.623	
Time:		15:08:14				.874	
Sample:	0	2-01-1980	HQIC		2217.633		
	- 1	2-01-1990					
	coef	std err	z	P> z	[0.025	0.975]	
const	5.5837	0.519	10.757	0.000	4.566	6.601	
ar.L1.Sparkling	1.2699	0.075	17.042	0.000	1.124	1.416	
ar.L2.Sparkling	-0.5602	0.074	-7.618	0.000	-0.704	-0.416	
ma.L1.Sparkling	-1.9961	0.043	-46.886	0.000	-2.080	-1.913	
ma.L2.Sparkling	0.9961	0.043	23.340	0.000	0.912	1.080	
			ots				
	Real		======= ary	Modulus	Freque	ency	
AR.1	1.1334	-0.70	 74j	1.3361	-0.0	888	
AR.2	1.1334	+0.70	74j	1.3361	0.0	888	
MA.1	1.0003	+0.000	00j	1.0003	0.0	0000	
MA.2	1.0036	+0.000	00j	1.0036	0.0	0000	

• RMSE for Rose dataset looks ok but it did not perform well when compared with Triple Exponential Smoothing, same is the case for Sparkling wine data.

	Test RMSE-Rose Data
RegressionOnTime	1267.516575
Naive	17.740511
SimpleAvg	15.759889
2pointTrailingMovingAverageRose	11.529278
4pointTrailingMovingAverageRose	14.451433
6pointTrailingMovingAverageRose	14.566399
9pointTrailingMovingAverageRose	14.727667
Alpha=1,SimpleExponentialSmoothing	36.796465
Alpha=0.3,SimpleExponentialSmoothingRose	77.139491
Alpha=0.4,SimpleExponentialSmoothingRose	77.139491
Alpha=0.3,Beta=0.3HoltzModelRose	265.567857
Alpha = 0.684, Beta = 0.052, Gamma = 0.315, Triple Exponential Smoothing	17.369752
ARIMA(0,0,2)	57.997243

iest Rivise-spark Data	
1389.249047	RegressionOnTime
1327.156057	Naive
1275.073380	SimpleAvg
813.400684	2 point Trailing Moving Average spark
1156.589694	4pointTrailingMovingAveragespark
1283.927428	6pointTrailingMovingAveragespark
1346.278315	9pointTrailingMovingAveragespark
1275.081839	Alpha=1,SimpleExponentialSmoothing
3686.794285	Alpha=0.3,SimpleExponentialSmoothingspark
3686.794285	Alpha=0.4,SimpleExponentialSmoothingspark
18259.110704	Alpha=0.3,Beta=0.3HoltzModelspark
383.192343	Alpha = 0.15, Beta = 2.68, Gamma = .37, Triple Exponential Smoothing
2777.091535	ARIMA(2,0,2)

ARIMA model-Manual:

• For various values of p,q,d of ARIMA model we could select the parameters from PACF-ACF plot,in this case (5,1,2) for Rose wine(left) dataset and (1,1,2) for Sparkling wine data(right):

• Rose:

ARIMA Model Results								
						131		
Dep. Variable		D.Ro		No. Observations:				
Model:	AR		Log Li			-633.567		
Method:		css-m		f innovations		29.962		
Date:	Sun,	13 Sep 20				1285.134		
Time:		15:27:				1311.011		
Sample:		02-01-19	80 HQIC			1295.649		
		- 12-01-19	90					
=========								
	coef	std err	Z	P> z	[0.025	0.975]		
const	-0.4903	0.084	-5.841	0.000	-0.655	-0.326		
ar.L1.D.Rose	-0.7739	0.088	-8.840	0.000	-0.945	-0.602		
ar.L2.D.Rose	0.1243	0.102	1.215	0.224	-0.076	0.325		
ar.L3.D.Rose	0.0154	0.103	0.149	0.882	-0.187	0.217		
ar.L4.D.Rose	0.0552	0.141	0.391	0.696	-0.222	0.332		
ar.L5.D.Rose	-0.0620	0.104	-0.597	0.551	-0.266	0.142		
ma.L1.D.Rose	-3.298e-08	0.041	-8.06e-07	1.000	-0.080	0.080		
ma.L2.D.Rose	-1.0000	0.041	-24.449	0.000	-1.080	-0.920		
			Roots					
	Real	Ima	ginary	Modulus	F	requency		
AR.1	-1.0001	-0	.0000j	1.0001		-0.5000		
AR.2	-0.8896		.5957j	1.8269		-0.3309		
AR.3	-0.8896		.5957j	1.8269		0.3309		
AR.4	1.8349		.2113j	2.1986		-0.0929		
AR.5	1.8349		.2113j	2.1986		0.0929		
MA.1	1.0000		.0000j	1.0000		0.0000		
MA.2	-1.0000		.0000j	1.0000		0.5000		

• Sparkling:

	Α	RIMA Mode	l Results				
Dep. Variable:	D.Sp	arkling	No. Observat:	 ions:	1	.31	
Model:	ARIMA(1	., 1, 2)	Log Likeliho	od	-1111.799		
Method:		css-mle	S.D. of inno	vations	1155.2	90	
Date:	Sun, 13 S	ep 2020	AIC		2233.5	98	
Time:	1	5:29:52	BIC		2247.9	74	
Sample:	02-	01-1980	HQIC		2239.4	139	
	- 12-	01-1990					
	coef	std err	Z	P> z	[0.025	0.975]	
const	6.4579	4.211	1.534	0.125	-1.795	14.711	
ar.L1.D.Sparkling	0.1896	0.166	1.143	0.253	-0.135	0.515	
ma.L1.D.Sparkling	-0.6951	0.153	-4.548	0.000	-0.995	-0.396	
ma.L2.D.Sparkling	-0.3049	0.152	-2.009	0.045	-0.602	-0.007	
		Roo	ts			_	
F	Real	Imagina	ry 1	Modulus	Frequenc	:y	
AR.1 5.2	740	+0.0000	 0j	5.2740	0.000	00	
MA.1 1.0	0000	+0.0000	0j	1.0000	0.000	00	
MA.2 -3.2	2802	+0.0000	0j	3.2802	0.500	00	

• Manual Arima performed well for both the dataset compared to Automated Arima, in fact RMSE for rose dataset greatly reduced..

Tes	ŧ	R	M	S	F.	R	a	Se	П	a	ta
163		г	IVI		_	•	·	36		æ	ш

1267.516575	RegressionOnTime
17.740511	Naive
15.759889	SimpleAvg
11.529278	2pointTrailingMovingAverageRose
14.451433	4pointTrailingMovingAverageRose
14.566399	6pointTrailingMovingAverageRose
14.727667	9pointTrailingMovingAverageRose
36.796465	Alpha=1,SimpleExponentialSmoothing
77.139491	Alpha=0.3,SimpleExponentialSmoothingRose
77.139491	Alpha=0.4,SimpleExponentialSmoothingRose
265.567857	Alpha=0.3,Beta=0.3HoltzModelRose
17.369752	Alpha = 0.684, Beta = 0.052, Gamma = 0.315, Triple Exponential Smoothing
57.997243	ARIMA(0,0,2)
15.422461	Manual ARIMA(5,1,2)

RegressionOnTime	1389.249047
Naive	1327.156057
SimpleAvg	1275.073380
2pointTrailingMovingAveragespark	813.400684
4pointTrailingMovingAveragespark	1156.589694
6pointTrailingMovingAveragespark	1283.927428
9pointTrailingMovingAveragespark	1346.278315
Alpha=1,SimpleExponentialSmoothing	1275.081839
Alpha=0.3,SimpleExponentialSmoothingspark	3686.794285
Alpha=0.4,SimpleExponentialSmoothingspark	3686.794285
Alpha=0.3,Beta=0.3HoltzModelspark	18259.110704
Alpha=0.15,Beta=2.68,Gamma=.37,TripleExponentialSmoothing	383.192343
ARIMA(2,0,2)	2777.091535
Manual ARIMA(1,1,2)	1436.723674

SARIMA model-Automated:

• For various values of p,q,d and P,D,Q,S of SARIMA model we could select one with lowest AIC in this case (1,1,2),(2,0,2,6) for Rose wine dataset(left) and (1,1,2), (2,0,2,6) for Sparkling wine data(right):

	param	seasonal	AIC
53	(1, 1, 2)	(2, 0, 2, 6)	1041.655817
26	(0, 1, 2)	(2, 0, 2, 6)	1043.600261
80	(2, 1, 2)	(2, 0, 2, 6)	1045.288112
71	(2, 1, 1)	(2, 0, 2, 6)	1051.673461
44	(1, 1, 1)	(2, 0, 2, 6)	1052.778469

	param	seasonal	AIC
53	(1, 1, 2)	(2, 0, 2, 6)	1727.510410
26	(0, 1, 2)	(2, 0, 2, 6)	1727.887985
17	(0, 1, 1)	(2, 0, 2, 6)	1741.647352
71	(2, 1, 1)	(2, 0, 2, 6)	1744.040750
80	(2, 1, 2)	(2, 0, 2, 6)	1752.673959

• Rose:

• Sparkling:

Dep. Variab	ole:			y No.	Observations:		13
Model:	SAR	IMAX(1, 1, 2))x(2, 0, 2	, 6) Log	Likelihood		-512.82
Date:			n, 13 Sep				1041.65
Time:			15:4	7:55 BIC			1063.68
Sample:				0 HQI	2		1050.59
			-	132			
Covariance	Type:			opg			
=======	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	-0.5939	0.152	-3.899	0.000	-0.892	-0.295	
ma.L1	-0.1954	238.206	-0.001	0.999	-467.071	466.680	
ma.L2	-0.8046	191.705	-0.004	0.997	-376.540	374.931	
ar.S.L6	-0.0625	0.035	-1.763	0.078	-0.132	0.007	
ar.S.L12	0.8451	0.039	21.884	0.000	0.769	0.921	
ma.S.L6	0.2225	481.498	0.000	1.000	-943.497	943.942	
ma.S.L12	-0.7774	374.375	-0.002	0.998	-734.540	732.985	
sigma2	335.2087	1.86e+05	0.002	0.999	-3.65e+05	3.66e+05	
======= Ljung-Box ((Q):	========	15.89	Jarque-Be	ra (JB):		6.68
Prob(Q):		1.00	Prob(JB):			0.00	
Heteroskeda	sticity (H)	:	0.47	Skew:			0.52
Prob(H) (tw	o-sided):		0.02	Kurtosis:			6.26

SARIMAX Results

Dep. Variable:				y No.	Observations:		13
Model:		SARIMAX(1, 1, 2)x(2, 0, 2, 6) Log Likelihood			-855.75		
Date:				2020 AIC			1727.51
Time:			15:4	8:18 BIC			1749.53
Sample:				0 HQI	C		1736.45
			-	132			
Covariance	Type:			opg			
=======	coef	std err		P> z	[0.025	0.975]	
ar.L1	-0.6456	0.287	-2.250	0.024	-1.208	-0.083	
ma.L1	-0.1063	0.251	-0.423	0.672	-0.599	0.386	
ma.L2	-0.7008	0.203	-3.459	0.001	-1.098	-0.304	
ar.S.L6	-0.0047	0.027	-0.176	0.861	-0.058	0.048	
ar.S.L12	1.0362	0.018	56.111	0.000	1.000	1.072	
ma.S.L6	0.4750	0.143	3.321	0.001	0.195	0.755	
ma.S.L12	-0.9177	0.180	-5.098	0.000	-1.271	-0.565	
sigma2	9.656e+04	2.3e+04	4.193	0.000	5.14e+04	1.42e+05	
Ljung-Box (0):		28.98	Jarque-Be	era (JB):	 2!	=== 5.23	
Prob(Q):		0.90	Prob(JB):		(0.00	
Heteroskedasticity (H):		2.65	Skew:			0.46	
Prob(H) (t	wo-sided):		0.00	Kurtosis:		!	5.09

 Automated SARIMA performed well for both the dataset, in case of Rose dataset Manual ARIMA is still best performer, we will be not taking into consideration of Moving Average model since it does not take into consideration of any seasonal or trend parameter. In case of Sparkling wine dataset SARIMA performed, but still the winner is TES.

	Test RMSE-Rose Data
RegressionOnTime	1267.516575
Naive	17.740511
SimpleAvg	15.759889
2pointTrailingMovingAverageRose	11.529278
4pointTrailingMovingAverageRose	14.451433
6pointTrailingMovingAverageRose	14.566399
9pointTrailingMovingAverageRose	14.727667
Alpha=1,SimpleExponentialSmoothing	36.796465
Alpha=0.3,SimpleExponentialSmoothingRose	77.139491
Alpha=0.4,SimpleExponentialSmoothingRose	77.139491
Alpha=0.3,Beta=0.3HoltzModelRose	265.567857
Alpha = 0.684, Beta = 0.052, Gamma = 0.315, Triple Exponential Smoothing	17.369752
ARIMA(0,0,2)	57.997243
Manual ARIMA(5,1,2)	15.422461
SARIMA(0,1,2)(2,0,2,6)	26.134000

	Test RMSE-Spark Data
RegressionOnTime	1389.249047
Naive	1327.156057
SimpleAvg	1275.073380
2 point Trailing Moving Averages park	813.400684
4pointTrailingMovingAveragespark	1156.589694
6pointTrailingMovingAveragespark	1283.927428
9pointTrailingMovingAveragespark	1346.278315
Alpha=1,SimpleExponentialSmoothing	1275.081839
Alpha=0.3,SimpleExponentialSmoothingspark	3686.794285
Alpha=0.4,SimpleExponentialSmoothingspark	3686.794285
Alpha=0.3,Beta=0.3HoltzModelspark	18259.110704
Alpha = 0.15, Beta = 2.68, Gamma = .37, Triple Exponential Smoothing	383.192343
ARIMA(2,0,2)	2777.091535
Manual ARIMA(1,1,2)	1436.723674
SARIMA(0,1,2)(2,0,2,6)	629.280166

SARIMA model-Manual:

• For various values of p,q,d and P,D,Q,S of SARIMA model we could based on the PACF,ACF plot p,q,d derived from ACF plot we saw in during ARIMA model building .i.e (5,1,2) while Seasonal part will be

(2,1,1,6):

• Rose:

______ Dep. Variable: y No. Observations: Model: SARIMAX(5, 1, 2)x(2, 1, [1], 6) Log Likelihood -474.187 Date: Sun, 13 Sep 2020 AIC 970.373 Time: 16:31:56 BIC 999.877 HQIC 982.336 Sample: - 132 Covariance Type: opg ______ coef std err P> | z | [0.025 0.975] -2.1969 -12.081 0.000 -2.553 -1.840 ar.L1 0.182 -1.9398 0.322 -6.021 0.000 -2.571 -1.308 ar.L2 -1.4611 -4.727 -0.855 ar.L3 0.309 0.000 -2.067 -1.1413 0.239 -0.673 ar.L4 -4.778 0.000 -1.609 ar.L5 -0.4052 0.099 -4.109 0.000 -0.598 -0.212 2.1872 0.504 4.343 0.000 1.200 3.174 ma.L1 ma.L2 1.1861 0.551 2.152 0.031 0.106 2.267 ar.S.L6 -0.6429 0.075 -8.519 0.000 -0.791 -0.495 ar.S.L12 0.0711 0.029 2.421 0.015 0.014 0.129 ma.S.L6 -0.3735 0.149 -2.499 0.012 -0.667 -0.081 sigma2 262.9410 175.111 1.502 0.133 -80.271 606.153 Ljung-Box (Q): 37.13 Jarque-Bera (JB): 3.40 Prob(JB): 0.18 Prob(Q): 0.60 Heteroskedasticity (H): 0.94 Skew: 0.42 Prob(H) (two-sided): 0.84 Kurtosis: 3.25

SARIMAX Results

• Sparkling:

SARIMAX Results

Dep. Varia		TMAY/E 1	2)v/2 1 [,	Observation Likelihood	s:	-806.6
Date:	SAN.	IMAX(3, 1,		1], 6) LOE p 2020 AIC			1635.2
Time:			•	:32:04 BIC			1664.7
Sample:			10	0 HOI			1647.1
Jump 201				- 132			101711
Covariance	· Type:			opg			
	coef	std err	======= Z	======== P> z	[0.025	0.975]	
ar.L1		0.159			-1.180		
ar.L2		0.172			-1.234		
ar.L3	-0.7449	0.187	-3.978	0.000	-1.112	-0.378	
ar.L4	-0.7453	0.182	-4.096	0.000	-1.102	-0.389	
ar.L5	-0.6272	0.190	-3.309	0.001	-0.999	-0.256	
ma.L1	0.1678	0.168	1.001	0.317	-0.161	0.496	
ma.L2	-0.0314	0.145	-0.216	0.829	-0.316	0.253	
ar.S.L6	-0.8416	0.197	-4.282	0.000	-1.227	-0.456	
ar.S.L12	0.1515	0.202	0.749	0.454	-0.245	0.548	
ma.S.L6	-0.9848	0.957	-1.029	0.303	-2.861	0.891	
sigma2	1.624e+05	1.46e+05	1.109	0.267	-1.25e+05	4.49e+05	
====== Ljung-Box	(Q):		24.48	Jarque-Bera	(JB):		==== 5.30
Prob(Q):			0.97	Prob(JB):			0.07
Heterosked	dasticity (H)	:	0.88	Skew:			0.29
Prob(H) (t	:wo-sided):		0.71	Kurtosis:			3.92

• Manual SARIMA performed well for both the dataset, in case of Rose dataset Manual ARIMA is still best performer, In case of Sparkling wine dataset SARIMA performed well.

	Test RMSE-Rose Data
RegressionOnTime	1267.516575
Naive	17.740511
SimpleAvg	15.759889
2pointTrailingMovingAverageRose	11.529278
4pointTrailingMovingAverageRose	14.451433
6pointTrailingMovingAverageRose	14.566399
9pointTrailingMovingAverageRose	14.727667
Alpha=1,SimpleExponentialSmoothing	36.796465
Alpha=0.3,SimpleExponentialSmoothingRose	77.139491
Alpha=0.4,SimpleExponentialSmoothingRose	77.139491
Alpha=0.3,Beta=0.3HoltzModelRose	265.567857
Alpha=0.684,Beta=0.052,Gamma=0.315,TripleExponentialSmoothing	17.369752
ARIMA(0,0,2)	57.997243
Manual ARIMA(5,1,2)	15.422461
SARIMA(0,1,2)(2,0,2,6)	26.134000
Manual SARIMA(5,1,2)(2,1,1,6)	27.782109

	Test RMSE-Spark Data
RegressionOnTime	1389.249047
Naive	1327.156057
SimpleAvg	1275.073380
2 point Trailing Moving Averages park	813.400684
4pointTrailingMovingAveragespark	1156.589694
6 point Trailing Moving Averages park	1283.927428
9pointTrailingMovingAveragespark	1346.278315
Alpha=1,SimpleExponentialSmoothing	1275.081839
Alpha=0.3,SimpleExponentialSmoothingspark	3686.794285
Alpha=0.4,SimpleExponentialSmoothingspark	3686.794285
Alpha=0.3,Beta=0.3HoltzModelspark	18259.110704
Alpha = 0.15, Beta = 2.68, Gamma = .37, Triple Exponential Smoothing	383.192343
ARIMA(2,0,2)	2777.091535
Manual ARIMA(1,1,2)	1436.723674
SARIMA(0,1,2)(2,0,2,6)	629.280166
Manual SARIMA(1,1,2)(2,1,1,6)	305.533637

Best Optimum Model:

• From below summary we could choose Automated SARIMA for Rose Dataset(even though Manual Arima is a clear choice because of the business objective and data under consideration is 'Wine' we are going with SARIMA for the Rose data set, additionally there is no gradual difference between RMSE of Manual ARIMA and Auto SARIMA) and Manual SARIMA for Sparkling dataset for forecasting based on RMSE score:

Test PMSE-Pose Data

	lest RMSE-Rose Data
RegressionOnTime	1267.516575
Naive	17.740511
SimpleAvg	15.759889
2pointTrailingMovingAverageRose	11.529278
4pointTrailingMovingAverageRose	14.451433
6pointTrailingMovingAverageRose	14.566399
9pointTrailingMovingAverageRose	14.727667
Alpha=1,SimpleExponentialSmoothing	36.796465
Alpha=0.3,SimpleExponentialSmoothingRose	77.139491
Alpha=0.4,SimpleExponentialSmoothingRose	77.139491
Alpha=0.3,Beta=0.3HoltzModelRose	265.567857
Alpha = 0.684, Beta = 0.052, Gamma = 0.315, Triple Exponential Smoothing	17.369752
ARIMA(0,0,2)	57.997243
Manual ARIMA(5,1,2)	15.422461
SARIMA(0,1,2)(2,0,2,6)	26.134000
Manual SARIMA(5,1,2)(2,1,1,6)	27.782109

	Test RMSE-Spark Data
RegressionOnTime	1389.249047
Naive	1327.156057
SimpleAvg	1275.073380
2pointTrailingMovingAveragespark	813.400684
4pointTrailingMovingAveragespark	1156.589694
6pointTrailingMovingAveragespark	1283.927428
9pointTrailingMovingAveragespark	1346.278315
Alpha=1,SimpleExponentialSmoothing	1275.081839
Alpha=0.3,SimpleExponentialSmoothingspark	3686.794285
Alpha=0.4,SimpleExponentialSmoothingspark	3686.794285
Alpha=0.3,Beta=0.3HoltzModelspark	18259.110704
Alpha=0.15,Beta=2.68,Gamma=.37,TripleExponentialSmoothing	383.192343
ARIMA(2,0,2)	2777.091535
Manual ARIMA(1,1,2)	1436.723674
SARIMA(0,1,2)(2,0,2,6)	629.280166
Manual SARIMA(1,1,2)(2,1,1,6)	305.533637

Rose wine prices forecasted from 1995-08-01 to 1996-08-01:

RMSE of the Final Model 28.051000974535224

• Sparkling wine prices forecasted from 1995-08-01 to 1996-08-01:

RMSE of the Final Model 600.572522314169

Conclusion:

We could see for Rose wine price forecast, prices are still dwindling down.
 It is high time Manufacture process and Quality is put under strict supervision, maybe People's taste may have changed, it is a must do list to obtain information on customer's developed interest and cater to their needs.

• As for Sparkling wine prices do not show any obvious trend, it does show seasonality component. Highlight is it has maintained constant average Price over the years, with the projection just 12 months we are unable confidently say that its prices are dropping, we might need 2 or 3 years of projection to give a confident insight.

#