



# **GÉPI LÁTÁS**TKNB INTM038

## KÖZLEKEDÉSI TÁBLA FELISMERŐ ALKALMAZÁS

## CSIZI SZEBASZTIÁN MÁRK

VUADF2

2019/20/2

## Tartalom

| 1 | Bev  | ezeté  | S                                                  | 3   |
|---|------|--------|----------------------------------------------------|-----|
|   | 1.1  | Fela   | datleírás                                          | 3   |
|   | 1.2  | Közl   | ekedési táblák                                     | 3   |
|   | 1.3  | Pote   | nciális kihívások                                  | 3   |
|   | 1.4  | Obje   | ektumok felismerése                                | 4   |
|   | 1.5  | Előf   | eldolgozás                                         | 4   |
|   | 1.6  | Dete   | ektálás                                            | 4   |
|   | 1.6. | 1      | Színek intervallumokra osztása                     | 4   |
|   | 1.6. | 2      | 2. Kép formákra osztása                            | 4   |
| 2 | Meg  | goldás | som                                                | 6   |
|   | 2.1  | Prog   | ram felépítése                                     | 6   |
|   | 2.2  | Ada    | tbázis                                             | 7   |
|   | 2.3  | CNN    | l                                                  | 7   |
|   | 2.3. | 1      | Adatbázis betöltése és előfeldolgozása             | 7   |
|   | 2.3. | 2      | CNN modell felépítése                              | 7   |
|   | 2.3. | 3      | Edzés (train) és tesztelés                         | 8   |
|   | 2.4  | Dete   | ektálás                                            | 9   |
|   | 2.4. | 1      | A képet RGB/BGR színtérről HSV színtérre alakítása | 9   |
|   | 2.4. | 2      | Küszöbölés                                         | 9   |
|   | 2.4. | 3      | Morfológia                                         | .10 |
|   | 2.4. | 4      | Formák geometriai tulajdonságai                    | .10 |
|   | 2.4. | 5      | Felismerés                                         | .11 |
| 3 | Tesz | tellé  | 5                                                  | .11 |
|   | 3.1  | Dete   | ektálás teszt:                                     | .11 |
|   | 3.2  | Oszt   | ályozás teszt:                                     | .12 |
|   | 3.2. | 1      | Osztályozás és tesztelés:                          | .12 |
|   | 3.3  | A re   | ndszer határainak megállapítása:                   | .13 |
| 4 | Has  | znála  | ti útmutató                                        | .13 |
| 5 | Folh | 207n:  | ált irodalom                                       | 12  |

#### 1 Bevezetés

#### 1.1 Feladatleírás

A féléves feladatom egy közlekedési tábla felismerő alkalmazás elkészítése volt. A program képes detektálni és felismerni 43 különböző KRESZ táblát. A megoldásomban több kép feldolgozási eljárást használok, mint a küszöbölés, detektálása, CNN. A dokumentumban részletezni fogom megoldásom elméleti hátterét, programom felépítését, és használatát.

#### 1.2 Közlekedési táblák

A KRESZ táblák olyan objektumok, amelyek jól megfogalmazható szabályokkal rendelkeznek. A táblák esetében ilyenek a színek és a formák. Ezek a tulajdonságaik az esetek többségében jól kiemelik őket a környezetükből. Az alakzatok a: kör, oktagon, rombusz, háromszög, négyzet. A színek pedig a: vörös, kék és sárga. Ezek figyelembevételével a detektálás megadhatja a számunkra fontos részeit a képnek (ROI: Region Of Interest).

#### 1.3 Potenciális kihívások

A táblák felismerését, rengeteg tényező befolyásolhatja:

- Táblák megrongálódása.
- Táblákhoz hasonló színek, vagy formák. (épületek, plakátok)
- Környezeti hatások.
- Különböző fényviszonyok.





1. ábra: kihívások

## 1.4 Objektumok felismerése

Objektumok felismerésének három fő lépése van. A kép előfeldolgozása, detektálás és a felismerés. Sok esetben az első kettőt egy lépésként értelmezik.



2. ábra: detektálás és felismerés

## 1.5 Előfeldolgozás

A képek eltérő minősége miatt érdemes előfeldolgozni őket. Ilyenek a zajszűrés vagy a méretezés. A méretezés során egyes pixelek értéke nem egyértelmű, ezért érdemes egy olyan interpolációs függvény használata, ami a kép minőségét kevésbé rontja. Ez a függvény egy feltételezés arra vonatkozóan, hogy bizonytalan pixeleknek milyen színe lehetett. A zajszűrésnek sok fajtája ismert, ahol a kis kiterjedésű impulzus szerű részeit a képnek próbáljuk csökkenteni.

#### 1.6 Detektálás

Detektálás célja, hogy a potenciális objektumokat szétválasszuk azok környezetétől. Esetünkbe ez két fő lépésből áll.

#### 1.6.1 Színek intervallumokra osztása

#### 1.6.1.1 Küszöbölés

Küszöbölés alatt azt a folyamatot értjük amikor intenzitástartományt intervallumokra osztjuk, és az egyes intervallumokhoz 1-es vagy egy 0 értéket rendelünk, végeredményül pedig egy bináris képet kapunk.

#### 1.6.1.2 HSV

Sok TSR rendszer HSV (H(Hue)-színárnyalat, S(Saturation)-színtelítettség, V(Value)-világosság) színtérrel végzi el a küszöbölést. Ezt a színteret kifejezetten a képfeldolgozáshoz készítették el. Az RGB és más színterekhez képest sokkal gyorsabb a detektálási sebessége, ami a kisseb számítási komplexitásnak köszönhető. Továbbá a fényviszonyok kevésbé vannak hatással rá. [2][3]

#### 1.6.2 2. Kép formákra osztása

A színekkel való detektálásra a fényviszonyok hatással vannak. Ebben az esetben érdemes a képet formákra osztani és külön-külön elemezni őket, hogy megfelelnek-e a keresendő

objektum paramétereinek. A feladatom megoldásában a már színekkel detektált formák transzformálása, elemzése zajlik.

#### 1.6.2.1 Kontúrok detektálása

A körvonalakat detektálása a bináris képeken, lehetővé teszik a formák és méretük megismerését.

#### 1.6.2.2 Morfológia

Kép alakjának és struktúrájának olyan elemzése, ahol képet összehasonlítjuk egy strukturáló elemmel. A strukturáló elem ütköztetésével az objektumokat a kívánt alakra hozzuk. Két nagyobb fajtája van erózió és dilatáció.

#### 1.6.2.3 Gépi tanulás

Rengeteg gépi tanulási módszer létezik: mint a Tartóvektor-gép (SVM: Support Vector Machine) és a konvolúciós neurális hálózat (CNN: Convolution Neural Network). Általában ezeket használják táblák detektáláshoz és vagy a felismeréshez. [3]

#### 1.6.2.4 CNN

A CNN egy matematikai modell, amivel szimulálni akarjuk a biológiai neurális hálózattokat. A CNN tervezésekor az agy vizuális kérgének utánozása volt a cél. Ennek a kéregnek a sejtjei azok, amelyek felelősek a fény érzékeléséért. Egy neurális hálózatok bementére érkező adatokat manipulálja "súlyok" beállításával, amelyek feltevések arra, hogy bemeneti jellemzők hogyan kapcsolódnak egymáshoz és az objektumok osztályaihoz. [1]

A hálózat kiképzésekor a súlyok értékeit beállítják. A súlyokat a konvolúció nevezetű matematikai művelet hozza létre, ezek a súlyok lénygében a kép egyes részeinek ábrázolása. A kernel vagy szűrő ezen súlyok összesége. A létrehozott szűrő kisebb, mint a teljes bemeneti kép, csak a kép egy részét fedi le. A szűrőben szereplő értékeket megszorozzuk a képen szereplő értékekkel. A szűrőt ezután áthelyezik a kép új részének ábrázolására, és a folyamatot addig ismétlik, amíg a teljes képet le nem fedi. Az egész bemeneti kép körül mozgatott szűrők kimenete egy kétdimenziós tömb, amely a teljes képet ábrázolja. Ezt a tömböt "feature map" - nek hívják.[1]

A CNN folyamatosan fejlődik az adatok növekedésével, mivel képesek alkalmazkodni a megtanult tulajdonságokhoz és saját szűrőket fejleszteni. A "hideg indításkor" (cold start) ezeket a szűrőket kézzel kel beállítani.[6]

Tehát ez az algoritmus képes egy bemeneti kép különböző tulajdonságainak megtanulására, de sok más területen is alkalmazzák. Ez lehetővé teszi a fontosabb objektumok megjegyzését és azok felismerését. Egyik előnye a többi gépi tanulás hoz képest az, hogy az adatokat önmagukban előfeldolgozza. Így csökkentve az erőforrás igényeket. [6]



3. ábra: tipikus CNN felépítés

Az egyszerű CNN egy rétegkészletből áll. A bejövő adatok keresztül haladnak differenciálható függvényeken a rétegekben, amíg el nem érjük a kimeneti értékeket. A normál CNN háromféle réteggel rendelkezik a hálózat felépítéséhez: Convolutional Layer, Pooling layer, és Fully-Connected Layer.

**Convolutional Layer:** Meghatározott számú konvoluciós szűrőt alkalmaznak a képekre. Matematikai műveletekkel a szűrők egyetlen értéket állítanak elő a kimeneti feature map-en.

**Pooling layer:** Ezek a szűrők alakítják át Convolutional Layer által kivont képadatokat. Csökkentik a features map dimenzióját feldolgozás redukálásának érdekében.

Fully-Connected Layer: Osztályozzák a mintákat a korábbi rétegek munkája alapján. Itt minden réteg csomópontja kapcsolódik az előző réteg csomópontjához.[3]

## 2 Megoldásom

## 2.1 Program felépítése

A közlekedési táblák felismeréséhez két kódot használtam fel. Az első egy olyan python kód (train.py) amely megtanítja egy kész adatbázis elemeinek felismerésére (GTSRB). A kódot elemeztem, de mivel tesztelni és lefuttatni nem tudtam ezért a végeredményül kapott h5 súly fájlt használtam a felismeréshez. A második python fájl (TSR.py) a kapott képeken detektálja, majd a korábban edzett CNN-el felismerni azokat.

CNN modell elkészítése (train.py):

- Adatbázis betöltése és előfeldolgozása
- CNN modell felépítése
- Edzés (train)
- Modell tesztelése a teszt adatkészlettel

Detektálás és felismerés (TSR.py)

#### Detektálás:

- Kép betöltése.
- A képet RGB színtérről HSV színtérre alakítása.

- Küszöbölés.
- Morfológiai nyitás.
- Kontúrok detektálása.
- Méret és formák értelmezése. Ez alapján a potenciális részek kiválasztása.

#### Felismerés:

Osztályozás a korábban készített CNN-nel.

Eredmények rajzolása a képre és megjelenítése.

#### 2.2 Adatbázis

A German Traffic Sign Recognition Benchmark egy olyan adatbázis, ami 43 különböző német közlekedési tábla képét tartalmazza különböző db számban. Tartalmazza továbbá a címkéket és a teszteléshez használt képeket.

#### 2.3 CNN

#### 2.3.1 Adatbázis betöltése és előfeldolgozása

A 43 osztály betöltése OS segítségével. Átméretezés 30\*30-as méretre. A PIL könyvtárral egy tömbbé alakítása a képeknek. Címkék eltárolása. Utána sklearn csomagot train\_test\_split() metódusával választja szét a train és a test adatokat. A keras.utils csomag to\_categorical függvényével az y\_test-ben és a t\_train-ben lévő címkék átalakítása egy "forró" kóddá.

## 2.3.2 CNN modell felépítése

A modell felépítése hasonlít az AlexNet modellre, amit Alex Krizhevsky tervezett és publikált Ilya Sutskever-el és Geoffrey Hinton-al 2012-ben Ez az architektúra 8 réteget használ -5 kovolúciós és 3 teljesen csatlakoztatok. Továbbá merít a 2014-ben publikált Karen Simonyan, és Andrew Zisserman által publikált VGG-16-ból.



4. ábra: fent AlexNet, lent VGG-16

A használt modell felépítése pedig a következő:

- Convolution (konvolúciós) réteg 5x5 kernel, és 32 szűrő. (ReLU)
- Convolution (konvolúciós) réteg 5x5 kernel, és 32 szűrő. (ReLU)
- Max pool réteg 2x2 kernel
- Dropout
- Convolution réteg 5x5 kernel, 64 szűrő. (ReLU)
- Convolution réteg 5x5 kernel, 64 szűrő. (ReLU)
- Max pool réteg 2x2 kernel
- Dropout
- Flatten
- Dense (ReLU)
- Dropout
- Dense (softmax)

Az INPUT réteg a bemeneti képet kétdimenziós pixelérték-tömbként tartja. Első conv réteg.

A **CONV** réteg kiszámítja a pontértékeket a kernel és a kapott kép altömbje között, ami pontosan akkora, mint a kernel. Ezután összeadja a ponttermékből származó összes értéket, és ez lesz a kimeneti kép egyetlen pixelértéke. Ezt a folyamatot addig ismételjük, amíg a teljes bemeneti kép nem lesz lefedve.

A **ReLU** réteg egy aktiválási függvényt alkalmaz (max. 0, x) a kimeneti kép összes pixelértékére.

A **POOL** réteg mintavételt vesz egy kép szélessége és magassága mentén, ami csökkenti a kép méretét.

Az FC (Fully-Connected) réteg kiszámítja az osztályozási pontszámot az összes osztályozási kategóriához.

#### 2.3.3 Edzés (train) és tesztelés

A model.fit() függvénnyel edzi meg a modellt, aminek az eredménye 95%-os hatékonyság. A végén 30 × 30 pixelre méretezi a képeket, és egy numpy tömbbé alakítja azokat. Ez tartalmazza a kép összes adatát.

#### 2.4 Detektálás

#### 2.4.1 A képet RGB/BGR színtérről HSV színtérre alakítása

Ahogyan korábban szó volt róla, érdemes a színteret HSV-re alakítani.

#### colour cone

- H = hue / colour in degrees ∈ [0,360]
- $S = saturation \in [0,1]$
- V = value ∈ [0,1]

#### conversion RGB → HSV

- V = max = max (R, G, B), min = min (R, G, B)
- S = (max min) / max (or S = 0, if V = 0)

$$H = 60 \times \left\{ \begin{array}{ll} 0 + (G-B)/ \ (max-min), & \text{if } max = R \\ 2 + (B-R)/ \ (max-min), & \text{if } max = G \\ 4 + (R-G)/ \ (max-min), & \text{if } max = B \end{array} \right.$$

H = H + 360, if H < 0

5. ábra: HSV értelmezése

hue

120

180

240 300 360



6. ábra: RGB és HSV

#### 2.4.2 Küszöbölés

A küszöböléshez a H és S értékeket használják, mivel a V nem hordoz információt a színről. Ahhoz, hogy a meghatározott színek legyenek láthatóak a képen szükség van a megfelelő küszöbérték meghatározására. Ezeket a táblázatban láthatjuk **1.táblázatban**. Azok az értéket, amik beleesnek ezekbe a tartományokba egyesek lesznek, amik nem azok pedig nullák. Érdemes a küszöbölés elött zajszűrést végezni, amit átlagoló szűréssel old meg a program.

1.táblázat: H és S küszöbértékek

|       | H               | S       |
|-------|-----------------|---------|
| Vörös | 0-12 és 160-210 | 132-255 |
| Kék   | 100-140         | 100-255 |
| Sárga | 15-25           | 110-255 |



7. ábra: küszöbölés

#### 2.4.3 Morfológia

A képen sok zaj is megjelenhet a küszöbölés során, amik megfelelnek a kívánt szín értékeknek, de program szempontjából feleslegesek.

- 1. Nyitás: Bináris zajok eltávolítása.
- 2. Zárás: Megmaradt foltok konvexitási problémáinak javítása.
- 3. Erózió: Objektumok határainak szétválasztása.



8. ábra: zajszűrés

#### 2.4.4 Formák geometriai tulajdonságai

A közlekedési táblák jól felismerhető szabályos formák, ezért bizonyos tűrési határok keretein belül meg kell felelniük az ilyen formákra jellemző matematikai törvényszerűségeknek. Ilyenek a kompaktság, cirkularitás, rektangularitás, oldalarányok (kresz táblák esetén egyhez közelít). A **2.táblázatban** ezen geometria szabályok képletei és az általam megadott tűréshatárok láthatóak.

- T: Test területe.
- K: Test kerülete.
- T\_min: A minimális területű befoglaló téglalap területe
- W: T min szélessége.
- H: T\_min magassága

2.táblázatban: Formák szűrése

| Név             | Képlet            | Tűréshatárok  |  |
|-----------------|-------------------|---------------|--|
| Kompaktság      | $\frac{K^2}{T}$   | 13<=x<=25     |  |
| Cirkularitás    | $\frac{T}{K^2}$   | 0.06<=x<=0.07 |  |
| Rektangularitás | $rac{T}{T\_min}$ | 0.85<=x<=1.1  |  |
| Oldalarány      | $\frac{W}{H}$     | 0.70<=x<=1.1  |  |

#### 2.4.5 Felismerés

Az eddigi szűréseken átment területei a képnek, levágásra kerülnek. Ezeket 30\*30 pixelre méretezi és osztályozza a korábban készített CNN-el.

## 3 Tesztellés

#### 3.1 Detektálás teszt:

A detektáló algoritmusomat 10 osztályra teszteltem. A **2.táblázatban** a GTSRB Train mappa: 0,5,11,12,13,14,15,18,33,34 osztályainak teszt eredményei láthatók. A **3.táblázatban** azzal javítottam az eredményeket, hogy 70\*70-es képeknél kissebeket nem teszteltem.

**3.táblázat:** Detektálás eredményei

| Tábla                               | Összes tábla | Helyes (db) | Helytelen | Pontosság |
|-------------------------------------|--------------|-------------|-----------|-----------|
|                                     | (db)         | -           | (db)      | (%)       |
| Maximális sebesség 20 km/h          | 210          | 66          | 144       | 31.43     |
| Maximális sebesség 80 km/h          | 1860         | 315         | 1545      | 16.94     |
| Állj! Elsőbbségadás kötelező        | 780          | 246         | 534       | 31.54     |
| Elsőbbségadás kötelező              | 2160         | 450         | 1710      | 20.83     |
| Mindkét irányból behajtani tilos    | 630          | 155         | 475       | 24.60     |
| Egyéb veszély                       | 1200         | 262         | 938       | 21.83     |
| Út kereszteződés (alá. úttal)       | 1320         | 346         | 974       | 26.21     |
| Kötelező haladási irány (meg. bal)  | 420          | 82          | 338       | 19.52     |
| Kötelező haladási irány (meg. jobb) | 689          | 108         | 581       | 15.67     |
| Főútvonal                           | 2100         | 501         | 1599      | 23.86     |
| Összes                              | 11369        | 2531        | 8838      | 22.26     |

4.táblázat: Javított detektálás eredményei

| Tábla                      | Összes tábla<br>(db) | Helyes (db) | Helytelen<br>(db) | Pontosság<br>(%) |
|----------------------------|----------------------|-------------|-------------------|------------------|
| Maximális sebesség 20 km/h | 46                   | 24          | 22                | 52.17            |

| Maximális sebesség 80 km/h          | 118  | 50  | 68   | 42.37 |
|-------------------------------------|------|-----|------|-------|
| Állj! Elsőbbségadás kötelező        | 237  | 99  | 138  | 41.77 |
| Elsőbbségadás kötelező              | 504  | 111 | 393  | 22.02 |
| Mindkét irányból behajtani tilos    | 69   | 17  | 52   | 24.64 |
| Egyéb veszély                       | 340  | 109 | 231  | 32.06 |
| Út kereszteződés (alá. úttal)       | 359  | 113 | 246  | 31.48 |
| Kötelező haladási irány (meg. bal)  | 49   | 6   | 43   | 12.24 |
| Kötelező haladási irány (meg. jobb) | 123  | 20  | 103  | 16.26 |
| Főútvonal                           | 400  | 97  | 303  | 24.25 |
| Összes                              | 2245 | 646 | 1599 | 28.78 |

## 3.2 Osztályozás teszt:

A teljes 43 osztályra teszteltem a CNN modellt. Itt 10 nagyobb mértékben eltérő osztály eredményét és a teljes teszt eredményt tüntetem fel.

5.táblázat: Osztályzás eredményei

| Tábla                             | Összes tábla | Helyes (db) | Helytelen | Pontosság |
|-----------------------------------|--------------|-------------|-----------|-----------|
|                                   | (db)         |             | (db)      | (%)       |
| Maximális sebesség 20 km/h        | 210          | 208         | 2         | 99.05     |
| Elsőbbségadás kötelező            | 2160         | 2159        | 1         | 99.95     |
| Állj! Elsőbbségadás kötelező      | 780          | 780         | 0         | 100       |
| Főútvonal                         | 2100         | 2094        | 6         | 99.71     |
| Mindkét irányból behajtani tilos  | 630          | 627         | 3         | 99.52     |
| Egyéb veszély                     | 1200         | 1199        | 1         | 99.92     |
| Körforgalom                       | 360          | 359         | 1         | 99.72     |
| Kötelező haladási irány egyenesen | 1200         | 1199        | 1         | 99.92     |
| Közlekedési lámpa                 | 600          | 476         | 124       | 79.33     |
| Előzni tilos!                     | 1470         | 1468        | 2         | 99.86     |
| •••                               | •••          | •••         | •••       | • • •     |
| Összes                            | 39209        | 38887       | 322       | 99.18     |

## 3.2.1 Osztályozás és tesztelés:

ND: Nem detektált

**DNF:** Detektált, de nem felismert

**DF:** Detektált és felismert

9.táblázat: Detektálás és felismerés eredményei

| Tábla          | Összes | ND | DNF | DF |
|----------------|--------|----|-----|----|
| Stop           | 20     | 8  | 2   | 10 |
| Főút           | 20     | 12 | 8   | 0  |
| Elsőbbség köt. | 20     | 15 | 0   | 5  |
| Körforgalom    | 20     | 18 | 1   | 1  |
| Vegyes         | 20     | 4  | 12  | 4  |
| Összes         | 100    | 57 | 23  | 20 |

## 3.3 A rendszer határainak megállapítása:

Értelemszerűen a detektálás adja meg a rendszer pontosságát mivel, ha az nem megfelelő, akkor a felismerés semmit nem tud tenni. A rendszer az átméretezéseket nem kezeli jól ezért a kis képek nagyobbá tételével sem tudja detektálni a kisebb táblákat, ami részben jó mivel ezek egy valós képen a távolságot jelentenék. A nagyon távoli táblákkal pedig nem is érdeke a TSR rendszereknek detektálnia. A valós környezetben a rendszer nem működik nagy pontossággal.

#### 4 Használati útmutató

- 1. A train.py cmd-ből való futtatása előtt szükséges, az adatbázis kicsomagolása és annak egy mappában történő elhelyezése.
- 2. A TSR.py és a cnn-ből elkészített traffic\_classifier.h5 fájl egy mappában valós elhelyezése.
- 3. A cmd-ből futtassuk a TSR-t a következő paranccsal: TSR.py --image fájl útvonala. Egy lehetséges példa TSR.py --image /test/1.png.
- 4. A GTSRB\_test.py külön teszteli a detektálást és a felismerést. Futtatás előtt szükséges a Train mappa és kód egy helyen történő elhelyezése.
- 5. A My\_data\_test.py a detektálást és a tesztet egyszerre végzi a My\_data\_inputs-ból. A kimenetet nem tudtam egyből My\_data\_outputs-ba menteni, de a jelenlegi kimeneteket ott tárolom.

#### Szükséges könyvtárak:

- Pillow 7.0.0
- tensorflow 2.0.0rc1
- sklearn: 0.0pandas: 1.0.3
- opency-python: 4.2.0.34
- numpy: 1.18.2matplotlib: 3.2.1Keras: 2.3.1

### 5 Felhasznált irodalom

A felhasznált irodalom a dokumentumban számokkal megadott irodalom nevű mappában találhatók. Továbbá felhasználatam:

[4]https://www.pyimagesearch.com/2019/11/04/traffic-sign-classification-with-keras-and-deep-learning/

[5] <a href="https://www.pyimagesearch.com/2018/09/10/keras-tutorial-how-to-get-started-with-keras-deep-learning-and-python/">https://www.pyimagesearch.com/2018/09/10/keras-tutorial-how-to-get-started-with-keras-deep-learning-and-python/</a>

[6]https://data-flair.training/blogs/python-project-traffic-signs-recognition/

 $\hbox{\hbox{$[7]$ $https://towards datascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-}{\underline{eli5-way-3bd2b1164a53}}$ 

[8]https://regi.tankonyvtar.hu/hu/tartalom/tamop412A/2011-0052 13 digitalis kepelemzes alapveto algoritmusai/index.html

Órai jegyzeteket