BIGVISION ASSIGNMENT

NAME: K.V.CHAITANYA

Video Preprocessing Documentation

1. Introduction

Project Overview

This project focuses on **video classification** using deep learning techniques. The primary goal is to classify videos into one of five predefined categories:

- Horse Riding
- Pole Vault
- Long Jump
- Javelin Throw
- Skiing

The dataset used is **UCF101**, a widely recognized benchmark for action recognition tasks. The project involves downloading, preprocessing, and converting videos into feature sequences suitable for **Transformer models**.

Purpose and Objectives

- Implement a state-of-the-art (SOTA) Transformer-based model for action recognition.
- Preprocess and handle video data efficiently, including frame extraction and transformation.
- **Train and evaluate** the model using robust classification metrics (Accuracy, Precision, Recall, F1-Score).
- Improve generalization by testing on external video samples (e.g., YouTube clips).
- Ensure proper documentation and code implementation in a Google Colab Notebook

Scope of the Project

- Dataset Handling: Download, extract, and preprocess UCF101 dataset videos.
- **Feature Engineering:** Convert videos into meaningful frame sequences suitable for deep learning.
- Model Development: Implement and fine-tune a Transformer-based classification model.
- Training & Optimization: Use data augmentation, loss functions, and hyperparameter tuning to improve performance.
- Evaluation & Testing: Measure performance with classification metrics and visualization techniques (confusion matrices, sample predictions, etc.).
- **Documentation & Submission:** Ensure a **well-documented Colab Notebook** and provide necessary files like model weights and dataset samples.

2. Dataset Details

Source of the Dataset

- The dataset used for this project is **UCF101**, a widely used action recognition dataset containing 101 action categories.
- Only five classes are selected for classification: HorseRiding, PoleVault, LongJump.
 JavelinThrow, Skiing
- The dataset was downloaded from the official UCF101 website: UCF101 Dataset.
- Created a folder named **DATA** and stored the selected class videos inside corresponding subfolders.

Data Preprocessing

The preprocessing steps include:

- 1. Downloading and Extracting Videos
 - The dataset videos were downloaded and extracted from <u>UCF101 Dataset</u> into a local directory..

2. Selecting Relevant Classes

- From the full UCF101 dataset, only the five required classes were selected.
- These videos were **copied to a new target directory** for further processing.

3. Converting Videos into Frames

- Each video was split into frames using OpenCV.
- A frame interval was set to reduce redundancy and select representative frames.

4. Data Augmentation

 Techniques like flipping, rotation, and brightness adjustments can be applied to improve generalization.

3. Feature Extraction and Visualizations

Frame Extraction:

- Captures key frames at specific intervals to reduce redundancy.
- Helps retain motion details while minimizing unnecessary data.
- Essential for converting video sequences into image-based inputs for deep learning.

Optical Flow

Analyzes motion between consecutive frames by tracking pixel displacement.

- Useful for understanding movement patterns in actions like running, jumping, and throwing.
- Enhances temporal feature representation in video classification.

NO MOVEMENT IN 0TH FRAME

MOVEMENT CAPTURED IN 80th FRAME

Key Frame Extraction

- Selects the most informative frames while discarding redundant ones.
- Uses similarity measures to identify unique frames in a sequence.
- Reduces computational load while preserving critical action details.

Extracted Key Frames

Edge Detection

- Highlights object boundaries and shapes within a frame.
- Helps distinguish between different action categories by focusing on structural features.
- Useful in identifying human poses and movement patterns.

Color Histogram

- Represents the distribution of colors in a video frame.
- Helps differentiate visually similar activities based on color variations.
- Useful for recognizing scenes with distinct lighting conditions or object appearances.

Contour Detection

- Identifies object boundaries and their structural shapes.
- Helps track moving subjects and understand their motion paths.
- Enhances action recognition by focusing on object interactions and shapes.

Spatial and Temporal Augmentations

- **Spatial Augmentations**: Includes cropping, flipping, rotation, and scaling to increase variation in training data.
- **Temporal Augmentations**: Includes frame skipping, speed variation, and frame shuffling to make models robust to different playback speeds.
- Improves model generalization and reduces overfitting.

4. MODEL BUILDING:

- 1. Model Type: Transformer + LSTM Hybrid
 - Transformers capture spatial relationships, while LSTMs handle temporal dependencies in video data.

2. Model Layers

- Input Layer: Accepts (sequence_length, feature_dim)
- Transformer Encoder Block:
 - Multi-Head Attention with 4 heads, key dimension = 24
 - Feed-Forward Dense Layer with 96 neurons (ReLU activation)
 - Dropout = 0.1
 - Layer Normalization
- LSTM Layer:
 - 128 Units to extract temporal dependencies
- Fully Connected Layers:
 - Dense(64, ReLU activation)
 - Dropout = 0.3

• Final Dense Layer (Softmax Activation) with output = 5 classes

3. Loss Function & Optimizer

• Loss Function: Sparse Categorical Crossentropy (Suitable for multi-class classification)

• Optimizer: Adam (Adaptive learning rate)

• Metrics: Accuracy

4. Training Hyperparameters

Epochs: 30Batch Size: 8

MODEL ARCHITECTURE

Layer (type)	Output Shape	Param #	Connected to
input_layer (InputLayer)	(None, 480, 96)	0	-
multi_head_attenti (MultiHeadAttentio	(None, 480, 96)	37,248	input_layer[0][0 input_layer[0][0]
add (Add)	(None, 480, 96)	0	input_layer[0][0 multi_head_atten
layer_normalization (LayerNormalizatio…	(None, 480, 96)	192	add[0][0]
dense (Dense)	(None, 480, 96)	9,312	layer_normalizat…
dropout_1 (Dropout)	(None, 480, 96)	0	dense[0][0]
add_1 (Add)	(None, 480, 96)	0	layer_normalizat… dropout_1[0][0]
layer_normalizatio (LayerNormalizatio	(None, 480, 96)	192	add_1[0][0]
lstm (LSTM)	(None, 128)	115,200	layer_normalizat…
dense_1 (Dense)	(None, 64)	8,256	lstm[0][0]
dropout_2 (Dropout)	(None, 64)	0	dense_1[0][0]
dense_2 (Dense)	(None, 5)	325	dropout_2[0][0]

Hyperparameters Used

1. Model Architecture

Backbone: Transformer-based model
 Input Shape: (Frames × 224 × 224 × 3)

• Number of Layers: Multiple attention layers with feed-forward networks

• Embedding Size: 512

Dropout: 0.1Batch Size: 32Optimizer: Adam

• Loss Function: Categorical Crossentropy

• Learning Rate: 0.0001 (with learning rate scheduling)

• Weight Decay: 1e-5

• Number of Heads in Multi-Head Attention: 8

• Number of Transformer Blocks: 6

• Frame Sampling Rate: Every 10th frame from videos

• Epochs: 25

PRE-TRAINED MODEL FOR PREDICTION:

1. Model Architecture

• Model Used: ResNet3D-18 (R3D-18)

• **Pretrained:** Yes (on Kinetics dataset)

• Modified Final Layer: Fully connected layer adjusted for 5 classes

2. Input Shape & Preprocessing

• Input Shape: (Batch Size, 3, 16, 112, 112)

Frames per Video: 16Frame Size: (112 × 112)

• Normalization: Mean = 0.5, Std = 0.5

• Frame Selection: Evenly spaced 16 frames

3. Model Parameters & Layers

• Total Layers: 18-layer ResNet-based 3D CNN

Total Parameters: 33.2 millionTrainable Parameters: 33.2 million

• Conv3D Layers: 5 (with kernel size 3×3×3)

Residual Blocks: 4

• Fully Connected Layer: 1 (5 output neurons for classification)

Activation Functions: ReLU

• Batch Normalization: Applied after each convolution

• Pooling Layers: MaxPool3D

4. Training Hyperparameters

• Loss Function: Categorical Crossentropy

• Optimizer: Adam

• Learning Rate: 0.0001

Batch Size: 32Epochs: 25

This architecture efficiently captures **spatiotemporal features** from video frames, leveraging **3D convolutions** for motion understanding

Layer (Type)	Output Shape	Param #
Conv3d-1	[-1, 64, 16, 56, 56]	28,224
BatchNorm3d-2	[-1, 64, 16, 56, 56]	128
ReLU-3	[-1, 64, 16, 56, 56]	0
Conv3DSimple-4	[-1, 64, 16, 56, 56]	110,592
BatchNorm3d-5	[-1, 64, 16, 56, 56]	128
ReLU-6	[-1, 64, 16, 56, 56]	0
Conv3DSimple-7	[-1, 64, 16, 56, 56]	110,592
BatchNorm3d-8	[-1, 64, 16, 56, 56]	128
ReLU-9	[-1, 64, 16, 56, 56]	0
BasicBlock-10	[-1, 64, 16, 56, 56]	0
Conv3DSimple-11	[-1, 64, 16, 56, 56]	110,592
BatchNorm3d-12	[-1, 64, 16, 56, 56]	128
ReLU-13	[-1, 6 ψ), 56, 56]	0
Conv3DSimple-14	[-1, 64, 16, 56, 56]	110,592
BatchNorm3d-15	[-1, 64, 16, 56, 56]	128
ReLU-16	[-1, 64, 16, 56, 56]	0
BasicBlock-17	[-1, 64, 16, 56, 56]	0
Conv3DSimple-18	[-1, 128, 8, 28, 28]	221,184

BatchNorm3d-19	[-1, 128, 8, 28, 28]	256
ReLU-20	[-1, 128, 8, 28, 28]	0
Conv3DSimple-21	[-1, 128, 8, 28, 28]	442,368
BatchNorm3d-22	[-1, 128, 8, 28, 28]	256
Conv3d-23	[-1, 128, 8, 28, 28]	8,192
BatchNorm3d-24	[-1, 128, 8, 28, 28]	256
ReLU-25	[-1, 128, 8, 28, 28]	0
BasicBlock-26	[-1, 128, 8, 28, 28]	0
Conv3DSimple-27	[-1, 128, 8, 28, 28]	442,368
BatchNorm3d-28	[-1, 128, 8, 28, 28]	256
ReLU-29	[-1, 128, 8, 28, 28]	0
Conv3DSimple-30	[-1, 128, 8, 28, 28]	442,368
BatchNorm3d-31	[-1, 128, 8, 28, 28]	256
ReLU-32	[-1, 128, 8, 28, 28]	0
BasicBlock-33	[-1, 128, 8, 28, 28]	0
Conv3DSimple-34	[-1, 256, 4, 14, 14]	884,736
BatchNorm3d-35	[-1, 256, 4, 14, 14]	512
ReLU-36	[-1, 256, 4, 14, 14]	0
Conv3DSimple-37	[-1, 256, 4, 14, 14]	1,769,472
BatchNorm3d-38	[-1, 256, 4, 14, 14]	512
Conv3d-39	[-1, 256, 4, 14, 14]	32,768
BatchNorm3d-40	[-1, 256, 4, 14, 14]	512
ReLU-41	[-1, 256, 4, 14, 14]	0
BasicBlock-42	[-1, 256, 4, 14, 14]	0
Conv3DSimple-43	[-1, 256, 4, 14, 14]	1,769,472
BatchNorm3d-44	[-1, 256, 4, 14, 14]	512
ReLU-45	[-1, 256, 4, 14, 14]	0
Conv3DSimple-46	[-1, 256, 4, 14, 14]	1,769,472
BatchNorm3d-47	[-1, 256, 4, 14, 14]	512

ReLU-48	[-1, 256, 4, 14, 14]	0
BasicBlock-49	[-1, 256, 4, 14, 14]	0
Conv3DSimple-50	[-1, 512, 2, 7, 7]	3,538,944
BatchNorm3d-51	[-1, 512, 2, 7, 7]	1,024
ReLU-52	[-1, 512, 2, 7, 7]	0
Conv3DSimple-53	[-1, 512, 2, 7, 7]	7,077,888
BatchNorm3d-54	[-1, 512, 2, 7, 7]	1,024
Conv3d-55	[-1, 512, 2, 7, 7]	131,072
BatchNorm3d-56	[-1, 512, 2, 7, 7]	1,024
ReLU-57	[-1, 512, 2, 7, 7]	0
BasicBlock-58	[-1, 512, 2, 7, 7]	0
Conv3DSimple-59	[-1, 512, 2, 7, 7]	7,077,888
BatchNorm3d-60	[-1, 512, 2, 7, 7]	1,024
ReLU-61	[-1, 512, 2, 7, 7]	0
Conv3DSimple-62	[-1, 512, 2, 7, 7]	7,077,888
BatchNorm3d-63	[-1, 512, 2, 7, 7]	1,024
ReLU-64	[-1, 512, 2, 7, 7]	0
BasicBlock-65	[-1, 512, 2, 7, 7]	0
AdaptiveAvgPool3d-66	[-1, 512, 1, 1, 1]	0
Linear-67	[-1, 5]	2,565

RESULTS:

1. Final Test Accuracy Achieved: 83% (0.83)

- The model effectively captures spatial (Transformer) and temporal (LSTM) relationships.
- Some misclassifications might be due to similar motion patterns in different classes.

```
loss, accuracy = model.evaluate(X_test, y_test)
print(f"Test Accuracy: {accuracy:.2f}")

5/5
Test Accuracy: 0.83
1s 197ms/step - accuracy: 0.8335 - loss: 0.5637
Test Accuracy: 0.83
```

2 AUC-ROC CURVE:

- Classification model is performing well, as all AUC values are close to 1. The LongJump and Skiing classes have the highest AUC (0.97), indicating strong classification performance for these classes.
- The HorseRiding class has the lowest AUC (0.95), but it's still performing very well.

3 CONFUSION MATRIX:

True Label	Predicted HorseRiding	Predicted PoleVault	Predicted LongJump	Predicted JavelinThrow	Predicted Skiing
HorseRiding	23	5	0	0	3
PoleVault	1	18	0	1	1
LongJump	0	1	30	1	0
JavelinThrow	0	3	3	18	0
Skiing	2	1	1	1	27

• **Diagonal values** show correct predictions, while **off-diagonal values** indicate misclassifications.

4 CLASSIFICATION REPORT TABLE:

CLASS	PRECISION	RECALL	F1-SCORE
HORSERIDING	0.88	0.74	0.81
POLEVAULT	0.64	0.86	0.73
LONGJUMP	0.88	0.94	0.91
JAVELINTHROW	0.86	0.75	0.80
SKIING	0.87	0.84	0.86

- (i) Precision: Measures how many of the predicted positive cases were actually correct.
 - Highest precision: HorseRiding (0.88), LongJump (0.88)

- (ii) Recall: Measures how many actual positive cases were correctly identified.
 - Highest recall: LongJump (0.94) (model captures most of this class correctly)
- (iii) F1-Score: Harmonic mean of precision and recall, balancing both.
 - Highest F1-Score: LongJump (0.91)

Predicted Action: JavelinThrow

TESTING:

1 Testing with Input Data (Transformer + LSTM Hybrid):

```
pred_prob = model.predict(features)
   pred label = np.argmax(pred prob)
   print("Predicted Action:", class_names[pred_label])
class_names = ["HorseRiding", "PoleVault", "LongJump", "JavelinThrow", "Skiing"]
process video("/content/drive/MyDrive/DATA/JavelinThrow/v JavelinThrow g04 c02.avi", model, class names)
             0s 89ms/step 0s 82ms/step
1/1 -
1/1 -
1/1 ---
             ----- 0s 93ms/step
1/1 ---
                    ---- 0s 72ms/step
1/1 -
                    ---- 0s 154ms/step
              ----- 0s 82ms/step
1/1 -
               ———— Øs 67ms/step
1/1 -
                       - 0s 69ms/step
1/1 -
               ———— 0s 86ms/step
1/1 -
              0s 123ms/step
1/1 ---
1/1 -
               ---- 0s 88ms/step
             Os 56ms/step
1/1 ----
              ---- 0s 56ms/step
            ----- 0s 71ms/step
1/1 -----
1/1 ..... 0s 77ms/step 1/1 ..... 0s 44ms/step
```

2 Testing with Input Data (Pre-Trained model):

```
def predict_video(video_path):
    video_tensor = preprocess_video(video_path)

with torch.no_grad():
    outputs = model(video_tensor)
    predicted_class = torch.argmax(outputs, dim=1).item()

print(f" Predicted Class: {label_map[predicted_class]}")

test_video_path = "/content/drive/MyDrive/DATA/HorseRiding/v_HorseRiding_g08_c02.avi"
    predict_video(test_video_path)
```

Predicted Class: HorseRiding

3 Testing with YouTube Video:

Video Downloading: The project uses "yt_dlp" to download YouTube videos for analysis. **Frame Extraction:** Key frames are sampled from the video to capture relevant motion sequences.

Preprocessing: Frames are resized, converted to grayscale, and normalized for model input. **Feature Extraction:** CNN-based feature representations from each frame.

Action Classification: A trained deep learning model predicts the action category from extracted features.

```
def process_youtube_stream(youtube_url, model, class_names):
    frames = extract_frames_from_stream(youtube_url, num_frames=30)
    frames_resized = [cv2.resize(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), (96, 480)) for frame in frames]

predictions = []
    for frame in frames_resized:
        frame = np.expand_dims(frame, axis=-1)
        frame = np.expand_dims(frame, axis=0)]

    pred_prob = model.predict(frame)
    predictions.append(pred_prob)

avg_pred = np.mean(predictions, axis=0)
    pred_label = np.argmax(avg_pred)

print("Predicted Action:", class_names[pred_label])

class_names = ["HorseRiding", "PoleVault", "LongJump", "JavelinThrow", "Skiing"]
youtube_url = "https://youtube.com/shorts/dFzeqoPwhig?si=ttW1xs7bfqnylGyj"
process_youtube_stream(youtube_url, model, class_names)
```

Youtube link: https://youtube.com/shorts/dFzeqoPwhig?si=ttWlxs7bfqnylGyj

1/1	0s	140ms/step
1/1	0s	137ms/step
1/1	0s	117ms/step
1/1	0s	236ms/step
1/1	0s	107ms/step
1/1	0s	111ms/step
1/1	0s	181ms/step
1/1	0s	155ms/step
1/1		130ms/step
1/1		123ms/step
1/1	0s	102ms/step
1/1		118ms/step
1/1		122ms/step
1/1		126ms/step
1/1		123ms/step
1/1		124ms/step
-, -		, , , , , , , , , , , , , , , , , ,

Predicted Action: HorseRiding

INITIAL APPROACH:

1st approach:

- Splitted them into train-test (80:20), converted them into csv and followed on approach
- Reading from a CSV and then loading frames one by one adds overhead and increased latency during training.
- temporal information between frames **lost**, making it difficult to model video dynamics effectively.

2nd approach:

- converting all of them into 1D vectors
- But videos have both spatial (image-based) and temporal (motion-based) information.
 Flattening frames into 1D vectors discards spatial structure, making it difficult for the model to learn meaningful patterns.
- video frames are usually high-resolution images. Flattening them into 1D vectors results in extremely large feature spaces

3rd approach:

- extracted frames from videos, preprocessed them (resizing, normalization, and padding), and stored them as NumPy arrays for model training.
- Implemented functions to read videos from a dataset folder, process frames, and store them efficiently.

Challenges Faced:

 Missing class directories in the dataset. Some videos not yielding frames (handled with warnings), Ensuring all video samples have a fixed number of frames via padding, Processing multiple formats (.avi), Saving large processed datasets efficiently.

OUT OF CONTEXT:

7 days are huge to do this project but I am having 2 Online tests and 3 Interviews in this gap which made me packed in this week. However BIGVISION is my 1st choice , i kept an equal interval of time every day , which made me complete this assignment .

In my opinion further improvements can be **Finetuning**, deployment using **Fastapi** for backend and **Streamlit** for frontend (i am good with both of them).