RAID

Índice

Intro	. 1
Beneficios frente a un único disco	. 2
Requisitos generales	. 2
Gestión	. 2
Discos hot-swappable	. 2
Niveles RAID	. 2
Niveles estándar habituales	. 3
RAID 0. Volumen dividido/seccionado	. 3
RAID 1. Espejo	. 3
RAID 5. Dividido con paridad distribuida	. 4
RAID 6. Dividido con doble paridad distribuida	. 4
Niveles anidados	. 5
RAID 01: RAID 0 + 1	. 5
RAID 10: RAID 1 + 0	. 5
RAID 50: RAID 5 + 0	. 6
Niveles RAID con discos de reserva	. 6
Discos hot-spare	. 6
RAID 5E y 6E	. 6
Niveles no estándar	. 6
Resumen	. 6
Comparativa RAID 0, 1, 5	. 7
¿Qué es RAID 0, 1, 5 y 10? (vídeo animado de apoyo)	. 7
RAID 5 vs RAID 6 (vídeo animado de anovo)	8

Intro

Las siglas RAID vienen del inglés Redundant Array of Independent Diks:

- Consiste en un grupo de discos que trabajan de manera conjunta como un mismo sistema de almacenamiento de datos.
- Los bloques de datos están distribuidos en varios discos en paralelo, dependiendo del tipo de RAID, estos bloques pueden almacenarse con ciertas duplicidades/replicación en los datos: redundancia.
- Esta redundancia son bits adicionales, guardados además de los datos originales. Suelen llamarse códigos de redundancia o **paridad**, por cómo se calcula la redundancia en algunos casos: por ejemplo, si determinadas posiciones de bits tienen un número par de 1's, el bit de

Beneficios frente a un único disco

Dependen de la configuración del RAID, pueden ser:

- Integridad: la información se mantiene completa y correcta.
- Tolerancia a fallos: si falla un disco se puede evitar que perdamos la información.
- Mayor tasa de transferencia: las lecturas y/o escrituras pueden ser más rápidas.
- Mayor capacidad que usar un único disco.

Requisitos generales

Gestión

RAID debe gestionarse por hardware (desde BIOS/UEFI si se tiene controladora en placa base o tarjeta de expansión) o por software (desde un sistema operativo que permita esta función).

Discos hot-swappable

Se necesita que los discos sean rápidamente reemplazables/sustituidos en caliente, es decir, sin que haya que reiniciar.

Cuando se sustituye un disco, RAID se asegura de reconstruir en el nuevo disco la información que falta a partir de datos originales y redundantes (depende del tipo de RAID y de qué discos o cuántos han fallado). Esto se llama reconstruir o reparar el RAID y es el motivo por el que decimos que hay tolerancia a fallos.

Niveles RAID

Existen multitud de configuraciones RAID posibles, suelen llamarse **niveles**. Se pueden clasificar en:

- Niveles estándar
- · Niveles anidados
- Niveles RAID con discos de reserva
- Niveles no estándar

Veremos los niveles más importantes, ya que existen varios en desuso y los controladores HW/SW actuales no los soportan.

Niveles estándar habituales

RAID 0. Volumen dividido/seccionado

- Distribuye equitativamente la información entre varios discos, **no hay redundancia**.
- Necesita un mínimo de 2 discos.
- No es tolerante a fallos, **0** discos.

- No debería considerarse RAID, no hay redundancia
- Ofrece un alto rendimiento en lectura/escritura (los datos se leen/escriben en varios discos de forma dividida y en paralelo). Es su única ventaja.
- Se puede crear con discos de distinto tamaño, pero el espacio de almacenamiento añadido estará limitado por el tamaño del disco más pequeño.
- Por ejemplo, si se hace un conjunto dividido con un disco de 450 GB y otro de 100 GB, el tamaño del conjunto resultante será solo de 200 GB, ya que cada disco aporta 100 GB.

RAID 1. Espejo

- Se crea una copia exacta (o espejo) de un conjunto de datos en dos o más discos.
- Necesita un mínimo de 2 discos.
- Tolerante a fallos de *n* 1 discos.

- Ofrece un alto rendimiento en lectura.
- Ofrece tolerancia a fallos, desaprovechando capacidad de los discos.
- El RAID 1 solo puede ser tan grande como el más pequeño de sus discos.
- La información se replica totalmente, no se calcula realmente paridad.

RAID 5. Dividido con paridad distribuida

- Divide los datos a nivel de bloques y además distribuye información de paridad entre todos los discos.
- Necesita un mínimo 3 discos.
- Tolerante a fallo de 1 disco.

- El equivalente a un disco entero se usa para almacenar la paridad.
- Ofrece un buen rendimiento en lectura, pero no el mejor.
- Mejora rendimiento en escritura y en capacidad de almacenamiento respecto a RAID 1.

RAID 6. Dividido con doble paridad distribuida

- Divide los datos a nivel de bloques y además distribuye dos bloques de información de paridad entre todos los discos.
- Necesita un mínimo 4 discos.

- Tolerante a fallo de 2 discos simultáneos o mientras se está reconstruyendo la información del primero que falló.
- RAID 6 no era uno de los niveles RAID originales.

Niveles anidados

Combinan niveles estándares:

• RAID 01: RAID 0 + 1

• RAID 10: RAID 1 + 0

• RAID 50: RAID 5 + 0

RAID 01: RAID 0 + 1

Un espejo de divisiones

RAID 10: RAID 1 + 0

Una división de espejos

RAID 50: RAID 5 + 0

Una división con paridad distribuida de espejos.

Niveles RAID con discos de reserva

Discos hot-spare

Casi todas las implementaciones de RAID permiten tener uno o más discos de reserva (*hot-spare*), son unidades preinstaladas que pueden usarse inmediatamente (y casi siempre automáticamente). Reduce el tiempo de reparación del RAID.

RAID 5E y 6E

Son variantes de RAID 5 y RAID 6 que incluyen discos de reserva

No suponen mejora alguna del rendimiento, pero sí se minimiza el tiempo de reconstrucción (en el caso de los discos hot spare) y las labores de administración cuando se producen fallos. Un disco de reserva no es realmente parte del conjunto hasta que un disco falla y el conjunto se reconstruye sobre el de reserva.

Niveles no estándar

Son niveles propietarios, es decir, implementaciones patentadas de determinadas compañías, difieren sustancialmente de todas las demás.

Resumen

- RAID proporciona velocidad y/o redundancia
- RAID 0 (dividido/seccionado) proporciona velocidad.
- RAID 1 (espejo) proporciona redundancia.
- RAID 5 y 6 (dividido con paridad distribuida simple/doble) proporciona velocidad y redundancia.
- RAID 5 solo puede tolerar un fallo de disco, RAID 6 puede tolerar dos.
- Los niveles se pueden anidar y también hay niveles propietarios.

Comparativa RAID 0, 1, 5

Nivel	Descripción	Mínimo # de discos	Eficiencia del espacio	Tolerancia a fallos	Rendimiento Lectura	Rendimiento escritura	lmagen
RAID 0	División de bloques sin paridad ni espejeado	2	1	0 (ninguna)	nºdiscos * X	nºdiscos * X	RAID 0 A1 A2 A4 A4 A5 A7 Disk 0 Disk 1
RAID 1	Espejeado sin paridad ni bandas	2	1/nºdiscos	nºdiscos-1 discos	nºdiscos * X	1*X	RAID 1 A1 A2 A3 A4 Disk 0 Disk 1
RAID 5	División de bloques con paridad distribuida	3	1 – 1/nºdiscos	1 disco	(nºdiscos-1) * X	hardware: (nºdiscos – 1) * X software: [(nºdiscos – 1) * X] - cálculo paridad	RAID 5 RAID 5 RAID 5 RAID 5 Disk 0 Disk 1 Disk 2 Disk 3

¿Qué es RAID 0, 1, 5 y 10? (vídeo animado de apoyo)

Enlace a vídeo en YouTube (5:03)

RAID 5 vs RAID 6 (vídeo animado de apoyo)

Enlace a vídeo en YouTube (4:21)