Probabilistic Graphical Models

Jerónimo Hernández-González

Outline

Approximate inference: Sampling approach

Sampling on Bayesian networks

Sampling from Markov networks

Background

The variable elimination and the clique tree algorithms can be used to answer queries to a PGM

Their complexity is exponential in the width of the induced graph

What can we do when it is so large?

Background

The variable elimination and the clique tree algorithms can be used to answer queries to a PGM

Their complexity is exponential in the width of the induced graph

What can we do when it is so large?

Approximate inference!

Alternatives

Sampling:

- Forward sampling
- ► MCMC
- Gibbs sampling

Optimization:

- ► Loopy Belief Propagation (previous class)
- Expectation Propagation
- Variational approaches (short intro in the following class)

Alternatives

Sampling:

- Forward sampling
- MCMC
- Gibbs sampling

Optimization:

- ► Loopy Belief Propagation (previous class)
- Expectation Propagation
- Variational approaches (short intro in the following class)

Solving probabilistic queries by samples

Marginal distribution, $P(X_i)$

Given a sample $D = \{x^1, ..., x^M\}$ from a probability distribution P(X), where $X = (X_1)$ and X_1 is a Bernoulli (0-1) variable.

Solving probabilistic queries by samples

Marginal distribution, $P(X_i)$

Given a sample $D = \{x^1, ..., x^M\}$ from a probability distribution P(X), where $X = (X_1)$ and X_1 is a Bernoulli (0-1) variable.

$$P(X_1=1) \simeq \frac{\sum_{\mathbf{x}^i \in D} \delta[x_1^i=1]}{M}$$

Solving probabilistic queries by samples

Marginal distribution, $P(X_i)$

Given a sample $D = \{x^1, ..., x^M\}$ from a probability distribution P(X), where $X = (X_1, X_2, X_3)$ and all X_i are Bernoulli (0-1) variables.

Solving probabilistic queries by samples

Marginal distribution, $P(X_i)$

Given a sample $D = \{x^1, ..., x^M\}$ from a probability distribution P(X), where $X = (X_1, X_2, X_3)$ and all X_i are Bernoulli (0-1) variables.

$$P(X_1=1) \simeq \frac{\sum_{\mathbf{x}^i \in D} \delta[x_1^i=1]}{M}$$

Solving probabilistic queries by samples

Marginal distribution, $P(X_i)$

Given a sample $D = \{x^1, ..., x^M\}$ from a probability distribution P(X), where $X = (X_1, X_2, X_3)$ and all X_i are Bernoulli (0-1) variables.

Find an estimate for $P(X_1 = 1)$

$$P(X_1=1) \simeq \frac{\sum_{\mathbf{x}^i \in D} \delta[x_1^i=1]}{M}$$

The larger the sample size M, the better the estimation

Solving probabilistic queries by samples

Marginal distribution, P(Y)

Given a sample $D = \{x^1, ..., x^M\}$ from a distribution P(X), where $X = (X_1, ..., X_d)$ and all X_i are Bernoulli (0-1) variables,

and a subset of variables of interest $\mathbf{Y} \subseteq \mathbf{X}$

Find an estimate for P(Y = y)

Solving probabilistic queries by samples

Marginal distribution, P(Y)

Given a sample $D = \{x^1, ..., x^M\}$ from a distribution P(X), where $X = (X_1, ..., X_d)$ and all X_i are Bernoulli (0-1) variables,

and a subset of variables of interest $\mathbf{Y} \subseteq \mathbf{X}$

Find an estimate for P(Y = y)

$$P(\mathbf{Y} = \mathbf{y}) \simeq \frac{\sum_{\mathbf{x}^i \in D} \delta[\mathbf{y}^i = \mathbf{y}]}{M}$$

Solving probabilistic queries by samples

Conditional distribution, P(Y|E=e)

Given a sample $D = \{x^1, ..., x^M\}$ from a distribution P(X), where $X = (X_1, ..., X_d)$ and all X_i are Bernoulli (0-1) variables,

and two disjoint subsets of variables $\mathbf{Y} \subseteq \mathbf{X}$, $\mathbf{E} \subseteq \mathbf{X}$ ($\mathbf{Y} \cap \mathbf{E} = \emptyset$).

Find an estimate for $P(\mathbf{Y} = \mathbf{y} | \mathbf{E} = \mathbf{e})$

Solving probabilistic queries by samples

Conditional distribution, P(Y|E=e)

Given a sample $D = \{x^1, \dots, x^M\}$ from a distribution P(X), where $X = (X_1, \dots, X_d)$ and all X_i are Bernoulli (0-1) variables,

and two disjoint subsets of variables $\mathbf{Y} \subseteq \mathbf{X}$, $\mathbf{E} \subseteq \mathbf{X}$ ($\mathbf{Y} \cap \mathbf{E} = \emptyset$).

Find an estimate for P(Y = y | E = e)

$$P(\mathbf{Y} = \mathbf{y} | \mathbf{E} = \mathbf{e}) \simeq \frac{\sum_{\mathbf{x}^i \in D} \delta[\mathbf{y}^i = \mathbf{y} \wedge \mathbf{e}^i = \mathbf{e}]}{M'},$$

where
$$M' = \sum_{\mathbf{x}^i \in D} \delta[\mathbf{e}^i = \mathbf{e}]$$

Good news!

If we have a sample from P(X), we can solve queries approximately!

Probabilistic Graphical Models

Jerónimo Hernández-González

Solving probabilistic queries by samples

Good news!

If we have a sample from P(X), we can solve queries approximately!

Close the loop

We know how to answer queries given a sample...

but we don't have a sample yet!

How can we obtain a sample from our PGM?

Background

Sampling a categorical distribution

Sample from a categorical distribution

- $ightharpoonup Variable <math>X \sim Cat(p_1, \dots, p_{|\Omega_X|})$
- ▶ $\Omega_X = \{x_1, \dots, x_{|\Omega_X|}\}$: set of possible values of X

Unequal roulette

Background

Sampling a categorical distribution

Sample from a categorical distribution

- lacksquare Variable $X \sim \mathit{Cat}(p_1, \dots, p_{|\Omega_X|})$
- ▶ $\Omega_X = \{x_1, \dots, x_{|\Omega_X|}\}$: set of possible values of X

Unequal roulette

Sample x' from p(X) as:

- 1. Obtain sample from a uniform dist.: $v \sim \mathcal{U}[0,1]$
- 2.

$$x' = x_j$$
: smallest j s.t. $\left(\sum_{i=1}^{j} p_i\right) > v$

** It is the same when sampling p(Y|Z=z)

Exercise

Sampling a categorical distribution

Sample from p(X), where $\Omega_X = \{a, b, c, d\}$ and:

Xi	$p(x_i)$	$\sum_{i=1}^{j} p_i$
а	0.15	
b	0.24	
С	0.47	
d	0.14	

given the following sample from the uniform distribution [0,1]:

 $\{0.61, 0.95, 0.13, 0.88, 0.34, 0.25, 0.23, 0.97, 0.74, 0.12\}$

 $Forward\ sampling\ from\ a\ Bayesian\ network$

Bayesian networks (revisited)

Given a $P_{\mathcal{G}}(\mathbf{X})$, each X_i follows a CPD where the conditioning variables are the parents of X_i in \mathcal{G} .

A CPD is really a family of distributions: $\sum_{x_i} P(X_i = x_i | pa_i) = 1, \forall pa_i$.

To sample X_i , we pick a single distribution from the family. Which?

Forward sampling

Sample one variable X_i at a time, following an ancestral ordering.

- 1. Thus, we know that, when it is the turn of X_i -with CPD $p(X_i|PA_i)$ we have already sampled the parents, pa_i
- 2. The distribution we need to sample is $X_i \sim p(X_i | \mathbf{PA}_i = \mathbf{pa}_i)$

Forward sampling from a Bayesian network

Forward sampling

Idea: Obtain the values pa_i for parent variables before sampling the conditional distribution $p(X_i|pa_i)$.

Following an ancestral ordering we know that, everytime that we pick a X_i , we already visited all PA_i .

I.e., we have a $pa_i \rightarrow$ we know which distribution to pick from the CPD (family) of X_i .

So, a sample $\mathbf{x} = (x_1, ..., x_d)$ is obtained in d steps:

sampling one-at-a-time the d distributions, $P(X_i|PA_i)$

Forward sampling from a Bayesian network

```
1: procedure ForwardSample(\mathcal{B}, (X_1, \ldots, X_d))
                                                                                     \triangleright \mathcal{B} is a BN
                            \triangleright (X_1, \dots, X_d) follows an ancestral ord. w.r.t. \mathcal{B}
        for i ∈ {1, . . . , d} do
2:
               pa_i \leftarrow x[PA_i]
3:
4:
               x' \sim P(X_i | \mathbf{pa}_i)
                                                                 \triangleright Sample the CPD of X_i
               \mathbf{x}[X_i] \leftarrow \mathbf{x}' \triangleright x_i \text{ (or } \mathbf{x}[X_i]) \text{ is the sampled value}
5:
         end for
6:
         return \mathbf{x} = (x_1, \dots, x_d)
8: end procedure
```

Forward sampling from a Bayesian network

```
1: procedure ForwardSample(\mathcal{B}, (X_1, \ldots, X_d))
                                                                                     \triangleright \mathcal{B} is a BN
                            \triangleright (X_1, \dots, X_d) follows an ancestral ord. w.r.t. \mathcal{B}
        for i ∈ {1, . . . , d} do
2:
              pa_i \leftarrow x[PA_i]
3:
4:
               x' \sim P(X_i | \mathbf{pa}_i)
                                                                 \triangleright Sample the CPD of X_i
               \mathbf{x}[X_i] \leftarrow \mathbf{x}' \triangleright x_i \text{ (or } \mathbf{x}[X_i]) \text{ is the sampled value}
5:
        end for
6:
         return \mathbf{x} = (x_1, \dots, x_d)
8: end procedure
```

Close the loop for BNs

We know how to answer queries given a sample...

and we know how to obtain a sample from our BN!

Forward sampling for answering CPQs

Marginal Probability Query

Given a Bayesian network, \mathcal{B} , for $\mathbf{X} = (X_1, \dots, X_n)$, and a subset of variables $\mathbf{Y} \subseteq \mathbf{X}$.

Find an estimate for P(Y = y):

Procedure:

- 1. Generate samples from the BN, \mathcal{B}
- 2. Compute the fraction of samples where Y = y

Forward sampling for answering CPQs

Conditional Probability Query

Given a Bayesian network, \mathcal{B} , for $\mathbf{X} = (X_1, \dots, X_n)$, s.t. $\mathbf{X} = (\mathbf{Y}, \mathbf{H}, \mathbf{E})$.

Find an estimate for P(Y = y | E = e):

Procedure:

- 1. Generate M samples from the BN, \mathcal{B}
- 2. Keep only the M' samples where $\mathbf{E} = \mathbf{e}$, (M' < M)
- 3. Compute the fraction (over M') of samples where $\mathbf{Y} = \mathbf{y}$

Exercise

Rejecting Samples

Consider the regular process of rejecting samples which do not match e for the posterior distribution P(Y|e).

If we want to obtain M' samples, which is the expected number of samples M that would need to be drawn from P(X)?

- a) $M' \cdot P(e)$
- b) $M' \cdot P(Y|e)$
- c) $M' \cdot (1 P(e))$
- d) $M' \cdot (1 P(Y|e))$
- e) M'/P(e)
- f) M'/(1-P(e))

Forward sampling for answering CPQs

Conditional Probability Query

Given a Bayesian network, \mathcal{B} , for $\mathbf{X} = (X_1, \dots, X_n)$, s.t. $\mathbf{X} = (\mathbf{Y}, \mathbf{H}, \mathbf{E})$.

Find an estimate for P(Y = y | E = e):

Procedure:

- 1. Generate M samples from the BN, \mathcal{B}
- 2. Keep only the (M') samples where E = e
- 3. Compute the fraction of samples where Y = y

Computational issue!

The number of samples (M) required for a good approximation grows exponentially with $|\mathbf{E}|$ (no. observed variables)!!

Likelihood weighted sampling for answering CPQs

Conditional Probability Query

Given a Bayesian network, \mathcal{B} , for $\mathbf{X} = (X_1, \dots, X_n)$, with $\mathbf{X} = (\mathbf{Y}, \mathbf{H}, \mathbf{E})$,

find an estimate for P(Y = y | E = e)

Procedure:

- 1. Generate M weighted samples, $WS = \{(\mathbf{x}^i, \mathbf{w}^i)\}_{i=1}^M$, that concur with $\mathbf{E} = \mathbf{e}$ from the BN, \mathcal{B}
- 2. Compute the weighted ratio of samples satisfying Y = y

$$P(\mathbf{Y} = \mathbf{y} | \mathbf{E} = \mathbf{e}) \simeq \frac{\sum_{(\mathbf{x}^i, w^i) \in WS} w^i \cdot \delta[\mathbf{y}^i = \mathbf{y}]}{\sum_{(\mathbf{x}^i, w^i) \in WS} w^i}$$

Likelihood weighted sampling for answering CPQs

```
1: procedure LW-Sample(\mathcal{B}, \boldsymbol{E} = \boldsymbol{e}, (X_1, \dots, X_d)) \triangleright \mathcal{B} is a BN
                               \triangleright (X_1, \dots, X_d) follows an ancestral ord. w.r.t. \mathcal{B}
            w \leftarrow 1
 2:
            for i \in \{1, ..., d\} do
 3:
                 pa_i \leftarrow x[PA_i]
 4:
                 if X_i \notin E then
 5:
                       x' \sim P(X_i | \mathbf{pa}_i)
                                                                     \triangleright Sample the CPD of X_i
 6:
                       \mathbf{x}[X_i] \leftarrow \mathbf{x}' \qquad \triangleright x_i \text{ (or } \mathbf{x}[X_i]) \text{ is the sampled value}
 7:
                 else
 8:
                       x[X_i] \leftarrow e[X_i]
                                                               \triangleright x_i is the observed value e_i
 9:
                        w \leftarrow w \cdot P(x_i | \mathbf{pa}_i)
10:
                           \triangleright the weight w considers the plausibility of e_i in x
                 end if
11:
            end for
12:
            return \mathbf{x} = (x_1, \dots, x_d), w
13:
14: end procedure
```

Probabilistic Graphical Models

Jerónimo Hernández-González

Sampling from a Markov Network

Conditional Probability Query

Given a Markov network, \mathcal{H} , for $\mathbf{X} = (X_1, \dots, X_n)$, with $\mathbf{X} = (\mathbf{Y}, \mathbf{H}, \mathbf{E})$,

find an estimate for P(Y = y | E = e)

Procedure:

- 1. Generate samples from the MN, \mathcal{H} How?!
- 2. Remove the samples where $\boldsymbol{E} \neq \boldsymbol{e}$
- 3. Compute the fraction of samples where Y = y

Gibbs Sampling

```
1: procedure Gibbs-Sample(P^{(0)}(\mathbf{X}), \Phi, M)
                                        \triangleright \mathcal{H}: PGM; P^{(0)}(\mathbf{X}): initial state distr.
      x^0 \sim P^{(0)}(X)
 2:
 3: for i \in \{1, ..., M\} do
 4:
              \mathbf{x}^i \leftarrow \mathbf{x}^{i-1}
              for X_i \in X do
 5:
                 x' \sim P_{\mathcal{H}}(X_i | \mathbf{x}_{-i}^i)
 6:
                    x_i^i \leftarrow x'
 7:
               end for
 8:
          end for
 9:
         return \{x^0,\ldots,x^M\}
10:
11: end procedure
```

Gibbs Sampling

$$P(X_j = x_j | \mathbf{x}_{-j})$$
 for a Markov Network, \mathcal{H}

Given that Φ is the set of factors of \mathcal{H} , one can sample x_i from:

$$P(X_{j} = x_{j} | \mathbf{x}_{-j}) = \frac{\frac{1}{Z}\widetilde{P}(x_{j}, \mathbf{x}_{-j})}{\sum_{x'_{j}} \frac{1}{Z}\widetilde{P}(x_{j'}, \mathbf{x}_{-j})} = \frac{\frac{1}{Z}\widetilde{P}(x_{j}, \mathbf{x}_{-j})}{\frac{1}{Z}\sum_{x'_{j}}\widetilde{P}(x_{j'}, \mathbf{x}_{-j})} =$$

$$= \frac{\prod_{\phi \in \Phi} \phi[x_{j}, \mathbf{x}_{-j}]}{\sum_{x'_{j}} \prod_{\phi \in \Phi} \phi[x'_{j}, \mathbf{x}_{-j}]} =$$

$$= \frac{\prod_{\phi \in \Phi: X_{j} \in Scope(\phi)} \phi(x_{j}, \mathbf{x}_{-j})}{\sum_{x'_{j}} \prod_{\phi \in \Phi: X_{j} \in Scope(\phi)} \phi(x'_{j}, \mathbf{x}_{-j})}$$

$$\propto \prod_{\phi \in \Phi: X_{j} \in Scope(\phi)} \phi[x_{j}, \mathbf{x}_{-j}]$$

**This is the Markov blanket!

Sampling from a Markov Network

Conditional Probability Query (Revisited)

Given a Markov network,
$$\mathcal{H}$$
, for $\mathbf{X} = (X_1, \dots, X_n)$, with $\mathbf{X} = (\mathbf{Y}, \mathbf{H}, \mathbf{E})$,

find an estimate for P(Y = y | E = e)

Procedure (Gibbs sampling):

- 1. Generate samples from the MN, \mathcal{H} How?!
 - Use Gibbs Sampling as indicated, $\hat{x}_j^{(t)} \sim P_{\mathcal{H}}(X_j | \mathbf{x}_{-j}^{(t)}), \quad \forall j \in \{1, \dots, d\}$ to generate samples from $P_{\mathcal{H}}$
- 2. Remove the samples where ${m E}
 eq {m e}$
- 3. Compute the fraction of samples where Y = y

Exercise

Gibbs Sampling on Bayesian networks

We run Gibbs sampling on the chain BN $X \to Y \to Z$. If the current sample is (x_0, y_0, z_0) and we now sample Y, which is the probability that the next sample is (x_0, y_1, z_0) ?

- a) $P(x_0, y_1, z_0)$
- b) $P(x_0, z_0|y_1)$
- c) $P(y_1|x_0,z_0)$
- d) $P(y_1|x_0)$

Exercise

Gibbs Sampling on Bayesian networks

If we are sampling the variable X_{23} of this BN as a substep of Gibbs sampling, which is the closed form for the distribution that we use to sample the value x'_{23} ?

- a) $P(x_{23}|x_{22},x_{24})$
- b) $P(x_{23}^{'}|x_{22},x_{24})$. $P(x_{15}|x_{23}^{'},x_{14},x_{9},x_{25})$
- c) $P(x'_{23}|x_{-23})$ where x_{-23} is the tuple of values for all the rest of variables but X_{23}
- d) None, as these are all either incorrect or not in closed form

f)
$$\frac{P(x'_{23}|x_{22},x_{24})P(x_{15}|x'_{23},x_{14},x_{9},x_{25})}{\sum_{\substack{x''_{23}\\x'_{23}}}P(x''_{23}|x_{22},x_{24})P(x_{15}|x''_{23},x_{14},x_{9},x_{25})}$$

Summary

General insights

Given a distribution P,

- ▶ If *P* can be sampled, we can answer queries with the empirical distribution
- ▶ If not, we can try to build a Markov chain that converges to P, and then run it to get samples (MCMC)
- ▶ If P is multivariate, Gibbs sampling (a type of MCMC) sequentially samples each variable from its conditional distr.

Practical ideas

- ► For sampling a Bayesian network: Forward sampling (Easy!!)
- For sampling a Markov network: Gibbs sampling

(if all factors are positive, the Gibbs chain is guaranteed to be regular)

Approximate Inference

Probabilistic Graphical Models

Jerónimo Hernández-González

Hoeffding bound

- Actual unknown probabilistic (Bernoulli) distribution P(y)
- N independent trials $D \sim P(y)$
- ► Bound:

$$P_D(\hat{P}_D(\mathbf{y}) \notin [P(\mathbf{y}) - \epsilon, P(\mathbf{y}) + \epsilon]) \le 2e^{-2N\epsilon^2}$$

▶ Probability δ of obtaining an estimator with error bound ϵ :

$$2e^{-2N\epsilon^2} \le \delta$$

$$N \ge \frac{\log(2/\delta)}{2\epsilon^2}$$

Exercise

Forward Sampling

An alternative strategy for obtaining an estimate of the conditional probability $P(\boldsymbol{y}|\boldsymbol{e})$ is by using forward sampling to estimate $P(\boldsymbol{y},\boldsymbol{e})$ and $P(\boldsymbol{e})$ separately, and then computing the ratio. We can use the Hoeffding Bound to obtain a bound on both the numerator and the denominator. Assuming that M is large, when does the resulting bound provide meaningful guarantees? Recall that we need $M \leq \frac{\log(2/\delta)}{2\epsilon^2}$ to get an additive error bound ϵ that holds with probability $(1-\delta)$ for our estimate.

- a) It always provides meaningful guarantees.
- b) It never provides a meaningful guarantee.
- c) It provides a meaningful guarantee, but only when δ is small relative to $P(\mathbf{y}, \mathbf{e})$ and $P(\mathbf{e})$.
- d) It provides a meaningful guarantee, but only when ϵ is small relative to $P(\mathbf{y}, \mathbf{e})$ and $P(\mathbf{e})$.

Approximate Inference

Probabilistic Graphical Models

Jerónimo Hernández-González

Definition

A Markov Chain defines a probabilistic transition model over states x,

$$\mathcal{T}(x \to x')$$

such that $\sum_{x'} \mathcal{T}(x \to x') = 1$

In our case, the states x are the possible values of a random variable X: $x \in \Omega_X$

Stationary distribution

We look for a probability distribution $P(x) = \pi(x)$ that is stable under the transition of the MC.

What does it mean stable? That for all x':

$$\pi(x') = \sum_{x} \pi(x) \mathcal{T}(x \to x')$$

Exercise

Stationary Distributions

On this Markov chain, by definition, which properties must satisfy a stationary distribution π ?

a)
$$\pi(x_3) = 0.4\pi(x_1) + 0.75\pi(x_2)$$

b)
$$\pi(x_1) = 0.2\pi(x_1) + 0.4\pi(x_2) + 0.4\pi(x_3)$$

c)
$$\pi(x_1) = 0.2\pi(x_1) + 0.3\pi(x_3)$$

d)
$$\pi(x_1) = \pi(x_2) = \pi(x_3)$$

e)
$$\pi(x_1) + \pi(x_2) + \pi(x_3) = 1$$

f)
$$\pi(x_2) = 0.25\pi(x_2) + 0.75\pi(x_3)$$

Regularity

A MC is regular if, for every two states (x, x'), there exists a number S such that the probability of $x \to x'$ in S steps is positive

Sufficient (but not necessary) conditions for regularity:

- 1. Every two states are connected (positive probability path)
- 2. Every state has a self-transition loop

Property

A regular MC converges to a unique stationary distribution regardless of the start state

Regularity

A MC is regular if, for every two states (x, x'), there exists a number S such that the probability of $x \to x'$ in S steps is positive

Sufficient (but not necessary) conditions for regularity:

- 1. Every two states are connected (positive probability path)
- 2. Every state has a self-transition loop

Property

A regular MC converges to a unique stationary distribution regardless of the start state

What does it mean convergence in this context?

Sampling-based Approximate Inference MCMC for answering CPQs

```
1: procedure MCMC-Sample(P^{(0)}(\boldsymbol{X}), \mathcal{T}, M)

\triangleright \mathcal{T}: transition model; P^{(0)}(\boldsymbol{X}): initial state distr.

2: \boldsymbol{x}^0 \sim P^{(0)}(\boldsymbol{X})

3: for i \in \{1, \dots, M\} do

4: \boldsymbol{x}^i \sim \mathcal{T}(\boldsymbol{x}^{i-1} \to \boldsymbol{X})

5: end for

6: return \{\boldsymbol{x}^0, \dots, \boldsymbol{x}^M\}

7: end procedure
```

Sampling-based Approximate Inference MCMC for answering CPQs

```
1: procedure MCMC-Sample(P^{(0)}(\boldsymbol{X}), \mathcal{T}, M)

\Rightarrow \mathcal{T}: transition model; P^{(0)}(\boldsymbol{X}): initial state distr.

2: \boldsymbol{x}^0 \sim P^{(0)}(\boldsymbol{X})

3: for i \in \{1, \dots, M\} do

4: \boldsymbol{x}^i \sim \mathcal{T}(\boldsymbol{x}^{i-1} \rightarrow \boldsymbol{X})

5: end for

6: return \{\boldsymbol{x}^0, \dots, \boldsymbol{x}^M\}

7: end procedure
```

Convergence

Convergence means that the probability of observing a specific x stabilizes after a number of samples M

A tool for answering queries

Conditional Probability Query

Given an unknown (and unsampleable) distribution P for $\mathbf{X} = (X_1, \dots, X_n)$.

Find an estimate for $P(X_1 = x_1)$

The MCMC approach:

- 1. Try to build a Markov Chain which has *P* as stationary distribution
- 2. Sample the MC
- 3. Remove the first b samples (burn-in)
- 4. Compute the fraction of remaining samples where $X_1 = x_1$

Sampling-based Approximate Inference

Sampling from a Markov Network

Conditional Probability Query (Revisited)

Given a Markov network, \mathcal{H} , for $\mathbf{X} = (X_1, \dots, X_n)$, with $\mathbf{X} = (\mathbf{Y}, \mathbf{H}, \mathbf{E})$,

find an estimate for $P(\mathbf{Y} = \mathbf{y} | \mathbf{E} = \mathbf{e})$

Procedure (MCMC):

- 1. Generate samples from the MN, \mathcal{H} How?!
 - ightharpoonup Build a Markov Chain which has $P_{\mathcal{H}}$ as stationary distribution,

$$P_{\mathcal{H}} pprox \pi_{MC}$$

- ▶ Use the MC to generate samples from $P_{\mathcal{H}}$
- 2. Remove the samples where $\boldsymbol{E} \neq \boldsymbol{e}$
- 3. Compute the fraction of samples where Y = y

Sampling-based Approximate Inference

Sampling from a Markov Network

Conditional Probability Query (Revisited)

Given a Markov network, \mathcal{H} , for $\mathbf{X} = (X_1, \dots, X_n)$, with $\mathbf{X} = (\mathbf{Y}, \mathbf{H}, \mathbf{E})$,

find an estimate for $P(\mathbf{Y} = \mathbf{y} | \mathbf{E} = \mathbf{e})$

Procedure (MCMC):

- 1. Generate samples from the MN, \mathcal{H} How?!
 - lacktriangle Build a Markov Chain which has $P_{\mathcal{H}}$ as stationary distribution,

** Note that $P_{\mathcal{H}}$ factorizes!!

$$P_{\mathcal{H}} \approx \pi_{MC}$$

- lackbox Use the MC to generate samples from $P_{\mathcal{H}}$
- 2. Remove the samples where ${m E}
 eq {m e}$
- 3. Compute the fraction of samples where Y = y

Gibbs chain

Definition

Let P(X) be a distribution that factorizes as

$$P(\boldsymbol{X}) = \frac{1}{Z} \prod_{\phi \in \Phi} \phi$$

Build a Markov Chain such that:

- ▶ MC state space: complete assignments **x** to **X**
- ▶ Per variable transition model:

$$\mathcal{T}(\boldsymbol{x}^t \to \boldsymbol{X}) \sim P(X_i | \boldsymbol{x}_{-i})$$