Sprawozdanie z ćwiczenia nr 12

Podstawy sztucznej inteligencji – Laboratorium 2013L

Autorzy:	Nr grupy:	Data:	Ocena:
Tomasz Cudziło Robert Wróblewski	2	2013-04-24	

1 Cel ćwiczenia

Podczas ćwiczenia mieliśmy znaleźć optymalne parametry dla algorytmu ewolucyjnego minimalizującego koszt budowy sieci energetycznej.

2 Przebieg ćwiczenia

Optymalizowany koszt budowy sieci w naszym modelu jest funkcją jej długości. Odległości w modelu mierzyliśmy metryką prostokątną. Przeprowadziliśmy serię optymalizacji dla iloczynu kartezjańskiego zbiorów wybranych wartości parametrów:

Parametr algorytmu ewolucyjnego	Wybrane wartości
Prawdopodobieństwo krzyżowania	{0,30; 0,50; 0,70}
Prawdopodobieństwo mutacji	{0,07; 0,30}
Liczba osobników	{50, 100, 250}
Liczba pokoleń	{600,3000,9000,36000}
Skalowanie	{tak; nie}
Elitaryzm	{tak; nie}

Tabela 1 Zbiory wybranych wartości parametrów algorytmu ewolucyjnego, służgce do wygenerowania zbioru wariantów wszystkich parametrów do zbadania.

Dało to zbiór 288 wariantów parametrów. Następnie wybraliśmy do dalszej analizy:

- 1. Dwa warianty, które wykazały się najlepszymi wynikami.
- 2. Jeden wariant, który zakładaliśmy, że sprawdzi się najlepiej według analizy przeprowadzonej w sekcji 3.

Jak opisaliśmy w sekcji 3.3, nie byliśmy w stanie wyznaczyć korelacji pomiędzy użyciem skalowania a uzyskanym wynikiem optymalizacji. Dlatego do dwóch pierwszych wariantów wybranych powyżej, przetestowaliśmy identyczne warianty z przeciwną wartością parametru *Użycie skalowania*.

Dla każdego wariantu z tej grupy przeprowadziliśmy cztery kolejne próby optymalizacji, zmieniając punkt startowy generatora liczb losowych. Pozwoliło to odróżnić stabilne rozwiązania od rozwiązań przypadkowych.

3 Otrzymane wyniki – globalne

Posiadając wyniki optymalizacji dla każdego wariantu parametrów, wykonaliśmy na nich podstawową analizę statystyczną. Zdajemy sobie sprawę, że nie są to w pełni miarodajne wyniki. Część z nich powinna zostać odrzucona, ponieważ nie są rozwiązaniami stabilnymi. Jednak pewne korelacje są wyraźnie zauważalne i warte zauważenia.

3.1 Wpływ prawdopodobieństwa krzyżowania i mutacji

Wyznaczyliśmy średnią wartość funkcji celu najlepszych osobników uzyskanych podczas optymalizacji w zależności od dobrych prawdopodobieństw krzyżowania i mutacji.

Średnio najlepsze wyniki daje kombinacja 0,30 i 0,30 odpowiednio dla prawdopodobieństwa krzyżowania i mutacji. Ponadto odznacza się niskim odchyleniem standardowym. W naszym przypadku testowym oznacza to, że ta kombinacja daje dobre, skupione wyniki, niezależnie od wartości pozostałych parametrów. Wysoka wartość prawdopodobieństwa mutacji trochę nas zaskoczyła.

Najgorsze wyniki, o największym zróżnicowaniu, daje kombinacja 0,70 i 0,07. Jest to dla nas zaskoczeniem, ponieważ spodziewaliśmy się najgorszych wyników dla parametrów promujących tworzenie kolejnych populacji w sposób możliwie najbardziej losowy to znaczy przy kombinacji 0,70 i 0,30.

Średnia wart. funkcji celu najlepszego osobnika				
Prawd. krzyżowania	Prawd.	mutacji		
Prawu. Krzyzowania	0,07	0,30		
0,30	19,015	19,132		
0,50	19,415	19,381		
0,70	19,905	19,441		

Odchylenie stand. śr. wart. funkcji celu najlepszego osobnika				
Prawd. krzyżowania Prawd. mutac				
Frawu. Kizyzowania	0,07	0,30		
0,30	0,862	0,710		
0,50	1,619	1,321		
0,70	1,788	1,321		

3.2 Wpływ rozmiaru populacji i liczby pokoleń

Najlepszymi wynikami wykazały się warianty o największej populacji. Niezależnie od liczby pokoleń, wyniki uzyskane z parametrem *Liczba osobników* o największej wartości 250 dały najlepsze wyniki.

Liczba pokoleń z kolei nie posiada jednoznacznej korelacji z jakością rezultatów. Dla najmniejszej możliwej populacji, wydłużenie pracy algorytmu poprawiało wyniki. Z kolei dla populacji o rozmiarach 100 i 250, w miarę zwiększania liczby pokoleń wyniki polepszały się do pewnej granicy. Powyżej liczby pokoleń 9000 otrzymywane wyniki pogarszały się.

Średnia wart. funkcji celu najlepszego osobnika					
Liczba pokoleń	Liczba osobników				
ысгра роколен	50	100	250		
600	20,010	19,911	19,029		
3000	19,715	19,407	18,868		
9000	19,678	19,235	18,886		
36000	19,425	19,488	18,927		

Odchylenie standardowe wart. funkcji celu najlepszego osobnika

Liczba pokoleń	Liczba osobników			
Liczba pokoleli	50	100	250	
600	1,690	1,805	0,619	
3000	1,585	1,408	0,608	
9000	1,434	1,280	0,603	
36000	1,228	1,599	0,910	

3.3 Wpływ skalowania

Wyraźnym wpływem użycia skalowania podczas optymalizacji jest mniejsze rozproszenie wyników. Skalowanie zdaje się nie wpływać znacznie na jakość wyników, z przewagą dla wyników uzyskanych z użyciem skalowania. Jest to zgodne z naszymi oczekiwaniami.

Użycie skalowania	Śr. wart. funkcji celu najlepszego osobnika	Odchylenie standardowe śr. wart. funkcji celu najlepszego osobnika
0	19,689	1,604
1	19,073	0,957

3.4 Wpływ elitaryzmu

Wpływ użycia elitaryzmu na jakość wyników jest wyraźny i przewidywalny. Zakładając, że w procesie ewolucji w wyniku krzyżowania lub mutacji powstanie osobnik wyjątkowo dobrze przystosowany, to dzięki użyciu elitaryzmu będzie on miał znaczący wpływ następujące po nim pokolenia i tym samym na

ostateczny wynik optymalizacji. Wyniki optymalizacji z użyciem elitaryzmu są drastycznie lepsze i mniej rozproszone od wyników uzyskanych przez algorytm niestosujący elitaryzmu.

Użycie elitaryzmu	Śr. wart. funkcji celu najlepszego osobnika	Odchylenie standardowe śr. wart. funkcji celu najlepszego osobnika	
0	20,112	1,572	
1	18,651	0,372	

4 Otrzymane wyniki – wybrane

W Tabela 2 znajduje się zestawienie wartości parametrów wybranych wariantów. Warianty uszeregowaliśmy sortując wszystkie wariantów malejąco po otrzymanych:

- 1. Wartości przystosowania osobnika najlepszego.
- 2. Średniej wartości przystosowania całej populacji.

Wariant W3 jest kombinacją parametrów wybraną ręcznie. Kombinacja składa się z parametrów obiecujących najlepsze wyniki zgodnie z naszą analizą z sekcji 3.

WID	Prawd. krzyżowania	Prawd. mutacji	Liczba osobników	Liczba pokoleń	Użycie skalowania	Użycie elitaryzmu
W1.0	0,30	0,07	100	9000	0	1
W1.1	0,30	0,07	100	9000	1	1
W2.0	0,70	0,07	100	9000	0	1
W2.1	0,70	0,07	100	9000	1	1
W3.0	0,30	0,30	250	36000	0	1
W3.1	0,30	0,30	250	36000	1	1

Tabela 2 Wartości parametrów z wariantów dających najlepsze wyniki, wybranych do przetestowania stabilności ich rozwigzań.

WID	Wart. funkcji celu najlepszego osobnika	Wart. śr. funkcji celu osobników	
W1.0	18,048	21,192	
W1.1	18,328	19,216	
W2.0	18,840	23,274	
W2.1	18,048	21,487	
W3.0	18,096	22,268	
W3.1	18,096	20,806	

Tabela 3 Kontynuacja Tabela 2.

Dla każdego z sześciu wariantów uruchomiliśmy algorytm z różnymi wartościami dla punktu startowego generatora liczb losowych spośród wartości {0; 10; 20; 50; 100}. Dla każdego zestawu

wywołań różniących się punktem startowym generatora liczb losowych wyznaczyliśmy odchylenie standardowe dla wartości funkcji celu najlepszego osobnika. Warianty, których średnie odchylenie stanowiło więcej niż 3% wartości średniej zostały uznane za rozwiązania niestabilne i odrzucone. Szczegółowe wartości i algorytm wyznaczenia wariantów rozwiązań stabilnych znajduje się w zakładce *Sprawdzone* w załączonym skoroszycie.

W rezultacie jako stabilne zostały uznane warianty **W1.1**, **W2.0** oraz zgodnie z wcześniejszą analizą **W3.1**. Należy zauważyć, że wariantem dającym najlepsze rozwiązanie jest wariant **W3.1**. Jest to wariant z wartościami parametrów wyznaczonych ręcznie, na podstawie całościowej analizy wyników z sekcji 3.