Convex Optimization Assignment 1

12111603 Tan Zhiheng

October 2023

1 Question 1

If $\mu < 0$, then Ω_{μ} is empty, which is certainly convex.

If $\mu = 0$, then $\Omega_{\mu} = \{a\}$ is also convex.

If $\mu > 0$ and $\mu \neq 1$,

$$\begin{split} \Omega_{\mu} &= \{x \in R^n : ||x - a|| \le \mu ||x - b|| \} \\ &= \{x \in R^n : ||x - a||^2 \le \mu ||x - b||^2 \} \\ &= \{x \in R^n : (1 - \mu^2)||x||^2 - 2 < x, a - \mu^2 b > + ||a||^2 - \mu^2 ||b||^2 \le 0 \} \end{split}$$

If $0 < \mu < 1$, then

$$\Omega_{\mu} = \{ x \in \mathbb{R}^n : ||x - x_0||^2 \le r \}$$

where

$$x_o = \frac{a - \mu^2 b}{1 - \mu^2}$$
 and $r = |\frac{\mu}{1 - \mu^2}| \cdot ||a - b||$

is a solid ball, which is certainly convex.

If $\mu > 1$, then

$$\Omega_{\mu} = \{ x \in \mathbb{R}^n : ||x - x_0||^2 \ge r \}$$

where

$$x_o = \frac{a - \mu^2 b}{1 - \mu^2}$$
 and $r = |\frac{\mu}{1 - \mu^2}| \cdot ||a - b||$

is a complement set of a ball, which is NOT convex.

If $\mu = 1$,

$$\Omega_{\mu} = \{ x \in \mathbb{R}^n : \langle x, a - b \rangle \ge \frac{||a||^2 - ||b||^2}{2} \}$$

is a half-plane, which is convex.

To conclude, when $\mu \in (-\infty, 1]$, then Ω_{μ} is convex.

 $\forall (y, w)$ belonging to the dual cone of Ω , we have

$$\langle y, x \rangle + wt \ge 0 \quad \forall (x, t) \in \Omega.$$

By generalized Cauchy-schwarz inequality, we can get

$$-||y||_{\infty}||x||_{1} + wt \ge 0$$

i.e.

$$||y||_{\infty}||x||_{1} \le wt \quad \forall ||x|_{1} \le t.$$

Then we take $||x||_1 = t$, yielding

$$||y||_{\infty} \leq w.$$

Thus, $(y, w) \in \Omega^*$.

Conversely, for any $(y, w) \in \Omega^* = \{(y, w) \in R^n \times R : ||y||_{\infty} \le w\}$, we have

$$\langle (y, w), (x, t) \rangle = \langle y, x \rangle + wt \ge -||y||_{\infty}||x||_{1} + wt \ge 0.$$

Thus, (y, w) belongs to the dual cone of Ω .

To conclude, the dual cone of Ω is $\Omega^* = \{(y, w) \in \mathbb{R}^n \times \mathbb{R} : ||y||_{\infty} \leq w\}.$

3 Question 3

$$C = \{x \in R^n : x^T w^* \le x^T w, \forall w \in \Omega\}$$
$$= \{x \in R^n : \langle x, w^* - w \rangle \le 0, \forall w \in \Omega\}$$

 $\forall x \in C \text{ and } \forall \alpha \geq 0, \text{ then we have}$

$$<\alpha x, w^* - w> <0, \ \forall w \in \Omega$$

which implies C is a cone.

 $\forall x_1, x_2 \in C \text{ and } \forall \lambda \in [0, 1], \text{ we have:}$

$$<\lambda x_1 + (1-\lambda)x_2, w^* - w> = \lambda < x_1, w^* - w> + (1-\lambda) < x_2, w^* - w> \le 0.$$

Thus C is convex.

To conclude, C is a convex cone.

 $\forall y, z \in \Omega$, by definition we have $\exists x_1, x_2$ such that

$$f_1(x_1) \le y_1, \cdots, f_m(x_1) \le y_m$$

and

$$f_1(x_2) \le z_1, \cdots, f_m(x_2) \le z_m$$

Then $\forall \lambda \in [0,1]$, we have

$$f_i(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f_i(x_1) + (1 - \lambda)f_i(x_2) = \lambda y_i + (1 - \lambda)z_i, \ i = 1, 2, ..., m.$$

which means $\lambda y + (1 - \lambda) \in \Omega$.

Thus, Ω is convex.

5 Question 5

According to Weiestrass Theorem for Closed Function, we know that f has its attainable lower bound over \mathbb{R}^n . Thus, f cannot get to $-\infty$ over \mathbb{R}^n .

Therefore, $\forall \alpha > 0$ strictly, let $||x|| \to \infty$, $\alpha ||x||^2$ will go to ∞ , which implies

$$f(x) + \alpha ||x||^2 \to \infty$$
, as $||x|| \to \infty$.

Consequently, $f(X) + \alpha ||x||^2$ is coercive.

6 Question 6

We will prove it by contradiction.

Assume that $\partial f(x^*)$ contains more than one element in it, i.e. $\partial f(x^*) \supset \{g_1, g_2\}$ where $g_1 \neq g_2$. Then we will yield a contradiction.

Since g is continuous at x^* , then given $0 < \varepsilon < ||g_1 - g_2||$, we can find a δ such that $g(y) \in B(g_1, \varepsilon), \ \forall y \in B(x^*, \delta)$.

Now take $y \in B(x^*, \delta)$, Then since $g_2 \in \partial f(x^*)$, we have

$$f(y) > f(x) + \langle q_2, y - x^* \rangle$$
.

Similarly, since $g(y) \in \partial f(y)$, then we have

$$f(x^*) > f(y) + \langle q(y), x^* - y \rangle$$
.

Add up the inequalities above together, we will get

$$< g(y) - g_2, \ x^* - y > \le 0, \ \forall y \in B(x^*, \delta).$$

However, we take $y \in B(x^*, \delta)$ s.t. $x^* - y = \frac{\delta}{2}(\frac{g_1 - g_2}{||g_1 - g_2||})$, then we will yield the contradiction as follows.

$$\langle g(y) - g_{2}, x^{*} - y \rangle = \langle g(y) - g_{1} + g_{1} - g_{2}, x^{*} - y \rangle$$

$$= \langle g(y) - g_{1}, \frac{\delta}{2} \left(\frac{g_{1} - g_{2}}{||g_{1} g_{2}||} \right) \rangle + \langle g_{1} - g_{2}, \frac{\delta}{2} \left(\frac{g_{1} - g_{2}}{||g_{1} - g_{2}||} \right) \rangle$$

$$= \langle g(y) - g_{1}, \frac{\delta}{2} \left(\frac{g_{1} - g_{2}}{||g_{1} - g_{2}||} \right) \rangle + \frac{\delta}{2} ||g_{1} - g_{2}||$$

$$\geq -\varepsilon \cdot \frac{\delta}{2} + \frac{\delta}{2} ||g_{1} - g_{2}||$$

$$= \frac{\delta}{2} (||g_{1} - g_{2}|| - \varepsilon)$$

$$> 0$$

Thus, it is a contradiction to the previous statement

$$< g(y) - g_2, x^* - y > \le 0, \ \forall y \in B(x^*, \delta).$$

Thus, the assumption failed, which means $\partial f(x^*)$ contains only single one element in it. Therefore, f is differentiable at x^* , i.e.

$$\partial f(x^*) = \{ \nabla f(x^*) \}.$$

7 Question 7

If Ω is a set with only one element in it, then f is obviously affine over Ω .

If Ω contains more than one element in it, then $\forall x_1, x_2 \in \Omega$ and take $g \in \bigcap_{x \in \Omega} \partial f(x)$, we will have

$$f(x_2) \ge f(x_1) + \langle g, x_2 - x_1 \rangle$$

and

$$f(x_1) \ge f(x_2) + \langle g, x_1 - x_2 \rangle$$
.

Thus we have

$$\langle g, x_2 - x_1 \rangle \ge f(x_2) - f(x_1) \ge \langle g, x_2 - x_1 \rangle$$
.

Consequently,

$$f(x_2) - f(x_1) = \langle g, x_2 - x_1 \rangle, \quad \forall x_1, x_2 \in \Omega.$$

To conclude, f is affine over Ω .

8 Question 8

Denote $h(d) := f'(x^*; d)$, then

$$\partial h(0) = \{g_1 \in R^n : h(d) \ge \langle g_1, d \rangle \quad \forall d \in R^n\} = \{g_1 \in R^n : f'(x^*; d) \ge g_1 d \quad \forall d \in R^n\}$$

Take arbitrary $g_1 \in \partial h(0)$, we have

$$\langle g_1, d \rangle \leq \lim_{\alpha \to 0} \frac{f(x^* + \alpha d) - f(x^*)}{\alpha} \quad \forall d \in \mathbb{R}^n$$

Let $d = y - x^*$ where y is arbitrary, then we get

$$< g_1, (y - x^*) > \le \lim_{\alpha \to 0} \frac{f(\alpha y + (1 - \alpha)x^*) - f(x^*)}{\alpha} \le \lim_{\alpha \to 0} \frac{\alpha f(y) - \alpha f(x^*)}{\alpha} = f(y) - f(x^*)$$

i.e.

$$f(y) \ge f(x^*) + \langle g_1, (y - x^*) \rangle \quad \forall y \in \mathbb{R}^n.$$

Thus, $g_1 \in \partial f(x^*)$, which means

$$\partial h(0) \subseteq \partial f(x^*).$$

For the converse direction: $\forall g_2 \in \partial f(x^*)$, we have

$$f(y) \ge f(x^*) + \langle g_2, (y - x^*) \rangle \quad \forall y \in \mathbb{R}^n.$$

Thus, we have

$$h(y) - h(0) = f'(x^*, y) = \lim_{\alpha \to 0} \frac{f(x^* + \alpha y) - f(x^*)}{\alpha} \ge \lim_{\alpha \to 0} \frac{\langle g, \alpha y \rangle}{\alpha} = \langle g, y \rangle$$

which means

$$\partial h(0) \supseteq \partial f(x^*).$$

To conclude,

$$\partial h(0) = \partial f(x^*).$$

9 Question 9

Since $y_i \ge 0$ and f_i is convex for i = 1, 2, ..., m, then we have

$$\sum_{i=1}^{m} y_i f_i$$

is convex and closed.

Then because supremum keeps closeness and convexity, so $f(x) = \sup_{y=(y_1,...,y_m)\in\Omega} \sum_{i=1}^m y_i f_i(x)$ is still convex and closed.

10 Question 10

11 Question 11

11.1 (a)

First we check $R(\Omega)$ is a cone.

 $\forall d \in R(\Omega)$, we have:

$$\forall \alpha > 0, \ \Omega + \alpha d \subseteq \Omega.$$

Then $\forall k \geq 0$,

$$\forall \alpha > 0, \ \Omega + \alpha(kd) \subseteq \Omega.$$

Thus,

$$kd \in R(\Omega), \ \forall k \ge 0.$$

which means $R(\Omega)$ is a cone.

Secondly, we testify it is convex.

 $\forall d_1, d_2 \in R(\Omega) \text{ and } \forall \lambda \in [0, 1], \text{ we have:}$

$$\forall \alpha \geq 0, \ \Omega + \alpha(\lambda d_1 + (1 - \lambda)d_2) = (\Omega + \alpha \lambda d_1) + \alpha(1 - \lambda)d_2 \subseteq \Omega + \alpha(1 - \lambda)d_2 \subseteq \Omega.$$

Thus, $R(\Omega)$ is convex.

Finally, we check it is closed.

Given a sequence $\{d_n\} \subset R(\Omega)$ and $d_n \to d$, we want to verify d also belongs to $R(\Omega)$. $\forall x \in \Omega + \alpha d, \exists \omega \in \Omega$ such that

$$x = \omega + \alpha d = \omega + \alpha (d - d_n + d_n) = (\omega + \alpha d_n) + \alpha (d - d_n).$$

Since $d_n \in R(\Omega)$ which implies $\omega + \alpha d_n \in \Omega$, yielding:

$$d(x,\Omega) = \inf_{y \in \Omega} \{d(x,y)\} \le d(x,\omega + \alpha d_n) = ||\alpha(d - d_n)||.$$

Let $n \to \infty$, then

$$d(x,\Omega) \to 0.$$

which means $x \in \Omega$.

Thus, we obtain

$$\Omega + \alpha d \subseteq \Omega. \ (i.e., d \in R(\Omega))$$

Therefore, $R(\Omega)$ is closed.

To conclude, $R(\Omega)$ is a closed convex cone.

11.2 (b)

If $d \in R(\omega)$, then by definition, we can easily get $\exists \omega \in \Omega \text{ s.t. } \omega + \alpha d \in \Omega, \forall \alpha \geq 0.$

Conversely, if $\exists \omega_0 \in \Omega$ s.t. $\omega_0 + \alpha d \in \Omega, \forall \alpha \geq 0$, we want to prove $d \in R(\Omega)$. $\forall \omega_1 \in \Omega$ and given arbitrary $\lambda \in [0, 1]$, from the convexity of Ω we can obtain:

$$\lambda(\omega_0 + \alpha d) + (1 - \lambda)\omega_1 \in \Omega.$$

Let $\alpha = \frac{\beta}{\lambda}$, then we get

$$\lambda\omega_0 + (1-\lambda)\omega_1 + \beta d \in \Omega$$

Let $\lambda \to 0$, we finally obtain

$$\omega_1 + \beta d \in \Omega, \ \forall \beta \geq 0.$$

Since ω_1 is arbitrarily chosen in Ω , thus $\Omega + d \subseteq \Omega$ which means $d \in R(\Omega)$. So we have completed the proof in the converse direction.

Actually, we can also prove the converse direction by contradiction.

Assume that $d \notin R(\Omega)$, then $\exists \omega_2 \in \Omega, \beta \geq 0$ s.t. $\omega_2 + \beta d \notin \Omega$. Given the premise $\omega_0 + \alpha d \in \Omega$, $\forall \alpha \geq 0$, and by the convexity of Ω , we have:

$$\lambda(\omega_0 + \alpha d) + (1 - \lambda)\omega_2 \in \Omega.$$

Let $\alpha = \frac{\beta}{\lambda}$, we get:

$$\lambda\omega_0 + (1-\lambda)\omega_2 + \beta d \in \Omega.$$

Then we let $\lambda \to 0$, yielding:

$$\omega_2 + \beta d \in \Omega$$

which is a contradiction to $\omega_2 + \beta d \notin \Omega$.

Consequently, $d \in R(\Omega)$ is correct.

11.3 (c)

We first verify $R(\cap_{i\in I}\Omega_i)\subseteq \cap_{i\in I}R(\Omega_i)$.

 $\forall d \in R(\cap_{i \in I} \Omega_i), \text{then}$

$$\exists \omega \in \cap_{i \in I} \Omega_i \text{ s.t. } \omega + \alpha d \in \cap_{i \in I} \Omega_i, \ \forall \alpha \geq 0.$$

Since $\omega \in \Omega_i$ and $\omega + \alpha d \in \Omega_i \ \forall \alpha$, we obtain:

$$d \in R(\Omega_i)$$
.

which yields $d \in \bigcap_{i \in I} R(\Omega_i)$ i.e. $R(\bigcap_{i \in I} \Omega_i) \subseteq \bigcap_{i \in I} R(\Omega_i)$.

Now we complete the proof of the converse direction.

Since $\cap_{i\in I}\Omega_i\neq\emptyset$, then we can choose $\omega\in\cap_{i\in I}\Omega_i$. Then $\forall d\in\cap_{i\in I}R(\Omega_i)$, we have:

$$\omega + \alpha d \in \Omega_i, \ \forall i \in I$$

which follows: $\omega + \alpha d \in \bigcap_{i \in I} \Omega_i$.

Consequently, we get $d \in R(\cap_{i \in I} \Omega_i)$ i.e. $R(\cap_{i \in I} \Omega_i) \supseteq \cap_{i \in I} R(\Omega_i)$.

To conclude, $R(\cap_{i\in I}\Omega_i) = \cap_{i\in I}R(\Omega_i)$.

11.4 (d)

If there exits $\{\omega_k\}_{k=1}^{\infty} \subset \Omega$ s.t. $\frac{\omega_k}{||\omega_k||} \to d_u$, then we take any ω_k from the sequence. Since Ω is closed and $\frac{\omega_k}{||\omega_k||} \to d_u$, so we have

$$d_u \in \Omega$$
.

Furthermore,

$$\alpha d_u \in \Omega, \ \forall \alpha \geq 0.$$

Then since Ω is convex, we will get

$$\frac{1}{2}\omega_k + \frac{1}{2}\alpha d_u \in \Omega$$

which implies

$$\omega_k + \alpha d_u \in \Omega, \ \forall \alpha \geq 0.$$

Therefore, from the conclusion of (b), we will obtain:

$$d_u \in R(\Omega)$$
.

For the other direction:

We will prove it by contradiction. Assume there does NOT exist any sequence $\{\omega_k\} \subset \Omega$ s.t. $\frac{\omega_k}{||\omega_k||} \to d_u$, then we can affirm that $d_u \notin \Omega$, because Ω is a closed set.

Then because $d_u \in R(\Omega)$, we can say that

$$\forall \omega \in \Omega \ \forall \alpha \geq 0, \ \omega + \alpha d_u \in \Omega.$$

Now take $\omega = 0 \in \Omega$ and $\alpha = 1$, we will get

$$d_u \in \Omega$$

which is a contradiction to $d_u \notin \Omega$.

Therefore, there must exist a sequence $\{\omega_k\} \in \Omega$ s.t. $\frac{\omega_k}{||\omega_k||} \to d_u$.

To conclude, the unit vector $d_u \in R(\Omega)$ iff there exits a sequence $\{\omega_k\} \subset \Omega$ s.t. $\frac{\omega_k}{||\omega_k||} \to d_u$.

12 Question 12

 $\forall x_1, x_2 \in dom(F) = \bigcap_{i=1}^m dom(f_i) \text{ and } \forall \lambda \in [0, 1],$

$$g \circ F(\lambda x_1 + (1 - \lambda)x_2) = g \begin{bmatrix} f_1(\lambda x_1 + (1 - \lambda)x_2) \\ \vdots \\ f_m(\lambda x_1 + (1 - \lambda)x_2) \end{bmatrix}$$

(because $g(u) \le g(v), \forall u \le v, then$)

$$\leq g \begin{bmatrix} \lambda f_1(x_1) + (1-\lambda)f_1(x_2) \\ \vdots \\ \lambda f_m(x_1) + (1-\lambda)f_m(x_2) \end{bmatrix}$$
$$= g[\lambda F(x_1) + (1-\lambda)F(x_2)]$$

(because of the convexity of g)

$$\leq \lambda g(F(x_1)) + (1 - \lambda)g(F(x_2))$$
$$= \lambda g \circ F(X_1) + (1 - \lambda)g \circ F(x_2)$$

Conspicuously, $g \circ F$ is convex.

13 Question 13

13.1 (a)

Given $d \in \mathbb{R}^n$, $\forall \alpha_1, \alpha_2 \in \mathbb{R}$ and $\forall \lambda \in [0, 1]$, we have:

$$\varphi_d(\lambda \alpha_1 + (1 - \lambda)\alpha_2) = f(\bar{x} + (\lambda \alpha_1 + (1 - \lambda)\alpha_2)d)$$

$$= f(\lambda(\bar{x} + \alpha_1 d) + (1 - \lambda)(\bar{x} + \alpha_2 d))$$

$$\leq \lambda f(\bar{x} + \alpha_1 d) + (1 - \lambda)f(\bar{x} + \alpha_2 d)$$

$$= \lambda \varphi_d(\alpha_1) + (1 - \lambda)\varphi_d(\alpha_2)$$

Therefore, $\varphi_d(\alpha)$ is convex for any $d \in \mathbb{R}^n$.

13.2 (b)

If \bar{x} is the minimizer of f, then we check $\bar{\alpha} = 0$ is the minimizer of φ_d for all $d \in \mathbb{R}^n$. We will verify it by contradiction.

If for some $d^* \in \mathbb{R}^n$, and $\alpha^* \neq 0$ is the minimizer of φ_d , then yielding

$$f(\bar{x} + \alpha^* d^*) \le f(\bar{x})$$

which is a contradiction to \bar{x} is the minimizer of f. Thus, $\bar{\alpha} = 0$ must be the minimizer of φ_d for all $d \in \mathbb{R}^n$.

Then, for the converse direction:

If $\bar{\alpha} = 0$ is the minimizer of φ_d for all $d \in \mathbb{R}^n$, then we check \bar{x} is the minimizer of f, also by contradiction.

Since f is convex, then the local minimizer of f must be its the global minimizer.

Assume \bar{x} is NOT the minimizer of f, so \bar{x} is not the local minimizer, which means there is some $y \in B(\bar{x}, \varepsilon)$ such that $f(y) \leq f(\bar{x})$. Then let $d = y - \bar{x}$, so by the definition, $\varphi_d(1) < \varphi_d(0)$, so $\bar{\alpha} = 0$ is not the minimizer of φ_d . Contradiction!

Thus, in this case, \bar{x} must be the minimum of f.

To conclude, \bar{x} is the minimizer of f is equivalent to $\bar{\alpha} = 0$ is the minimizer of φ_d for all $d \in \mathbb{R}^n$.

14 Question 14

14.1 (a)

If \bar{x} is the interior point of Ω , then there exists a neighbor $B(\bar{x}, \varepsilon)$ such that $B(\bar{x}, \varepsilon) \subset \Omega$. In this neighbor, we can easily find that

$$dist(x; \Omega) = 0, \ \forall x \in B(\bar{x}, \varepsilon) \subset \Omega,$$

which means

$$f_L(x) = f(x), \ \forall x \in B(\bar{x}, \varepsilon).$$

Since \bar{x} is a local minimizer of f over Ω , then \bar{x} is also a local minimizer of f_L over its domain.

When \bar{x} is a boundary point of compact set Ω , the situation becomes a little sophisticated. By Lipschitz continuity of f with parameter $L_f > 0$, we have:

$$f(y) \ge f(x) - L_f||y - x||, \ \forall x, y \in dom(f).$$

Then as for those $y \in B(\bar{x}, \varepsilon) \cap \Omega^C$, we want to check $f_L(y) \geq f_L(\bar{x})$ in order to prove \bar{x} is the local minimizer of f_L . (For those points in $B(\bar{x}, \varepsilon) \cap \Omega$, we have already verified $f_L(\bar{x})$ is the minimum of $f_L(B(\bar{x}, \varepsilon) \cap \Omega)$, as proved in the previous situation.)

Let x becomes the point satisfying

$$dist(y; \Omega) = ||y - x||$$

which means x is the closest point to y among Ω .

So we can obtain:

$$f_{L}(y) - f_{L}(\bar{x}) = f(x) - f(\bar{x}) + L \cdot dist(y; \Omega)$$

$$\geq f(x) - L_{f}||y - x|| - f(\bar{x}) + L \cdot dist(y; \Omega)$$

$$= f(x) - f(\bar{x}) + (L - L_{f})||y - x||$$

$$\geq f(x) - f(\bar{x})$$

$$\geq 0.$$

Thus, $\forall x \in dom(f) = \mathbb{R}^n$, we always have $f_L(\bar{x}) \leq f_L(x)$. Therefore, \bar{x} is the local minimizer of f_L .

14.2 (b)

In order to prove \bar{x} is a global minimizer of f over Ω , the only thing we need to check is

$$\bar{x} \in \Omega$$
.

If we obtain $\bar{x} \in \Omega$, then since \bar{x} is a global minimizer of f_L over R^n , we will have \bar{x} is also a minimizer of f_L over Ω . Moreover, when constrained in Ω , we have $f_L(x) = f(x)$. Therefore, we can prove that \bar{x} is also a global minimizer of f over Ω .

Now we begin to check $\bar{x} \in \Omega$.

Suppose \bar{y} is the minimizer of f_L over Ω^C , and \bar{z} is the minimizer of f_L over Ω . Then we have:

$$f_{L}(\bar{y}) - f_{L}(\bar{z}) = f(z^{*}) - f(\bar{z}) + L \cdot dist(\bar{y}; \Omega)$$

$$\geq f(z^{*}) - L_{f}||\bar{y} - \bar{z}|| - f(\bar{z}) + L \cdot dist(\bar{y}; \Omega)$$

$$= f(z^{*}) - f(\bar{z}) + (L - L_{f})||\bar{y} - \bar{x}||$$

$$\geq f(z^{*}) - f(\bar{z})$$

$$\geq 0.$$

where z^* is the closest point to \bar{y} among Ω .

So the global minimizer of f_L over R^n must be in Ω , which is to say $\bar{x} \in \Omega$.

Thus, the proof of " \bar{x} is a global minimizer of f over Ω " has been completed.

15 Question 15

Since

$$E_f = \{(x, \alpha) : f(x) < \alpha\}$$

and

$$epi(f) = \{(x, \alpha) : f(x) \le \alpha\}$$

Thus, $E_f \subset epi(f)$ is easily obtained.

Next, we want to prove $epi(f) \subset Cl(E_f)$.

Since $E_f \subset epi(f)$, then the only thing we need to check is

$$\{(x,\alpha): f(x)=\alpha\}\subset cl(E_f).$$

Given ε , then for any (x, α) satisfying $f(x) = \alpha$, there always exists $(x, \alpha + \varepsilon) \in E_f$ s.t. $d((x, \alpha + \varepsilon), (x, \alpha)) \leq \varepsilon$. Hence, every point in $\{(x, \alpha) : f(x) = \alpha\}$ is an adhesion point of E_f , which is to say

$$\{(x,\alpha): f(x)=\alpha\}\subset cl(E_f).$$

Thus,

$$epi(f) = (\{(x, \alpha) : f(x) = \alpha\} \cup E_f) \subset cl(E_f).$$

16.1 (a)

 $\forall (y_1,...,y_m) \in (\prod_{i=1}^m \Omega_i)^\circ$, we have

$$<(y_1,...,y_m),(x_1,...,x_m)> \le 0 \quad \forall (x_1,...,x_n) \in \prod_{i=1}^m \Omega_i,$$

which means

$$< y_1, x_1 > + \dots + < y_m, x_m > \le 0 \quad \forall (x_1, \dots, x_n) \in \prod_{i=1}^m \Omega_i.$$

Let all $x_j = 0$ except for x_i , then we get

$$\langle y_i, x_i \rangle \leq 0 \quad \forall x_i \in \Omega_i.$$

Obviously, $y_i \in \Omega_i^{\circ}$.

Thus, $(y_1,...,y_m) \in \prod_{i=1}^m \Omega_i^{\circ}$, which implies

$$(\prod_{i=1}^m \Omega_i)^\circ \subseteq \prod_{i=1}^m \Omega_i^\circ.$$

For the other direction:

$$\forall (y_1, ..., y_m) \in \prod_{i=1}^m \Omega_i^{\circ}$$
, we have

$$\langle y_i, x_i \rangle \leq 0 \quad x_i \in \Omega_i$$

Then $\forall (x_1, ..., x_m) \in \prod_{i=1}^m \Omega_i$, we can obtain

$$\langle (y_1, ..., y_m), (x_1, ..., x_m) \rangle = \langle y_1, x_1 \rangle + \dots + \langle y_m, x_m \rangle \le 0.$$

Thus, $(y_1, ..., y_m) \in (\prod_{i=1}^m \Omega_i)^\circ$, which implies

$$(\prod_{i=1}^m \Omega_i)^\circ \supseteq \prod_{i=1}^m \Omega_i^\circ.$$

To conclude, $(\prod_{i=1}^m \Omega_i)^\circ = \prod_{i=1}^m \Omega_i^\circ$.

16.2 (b)

 $\forall y \in (\bigcup_{i \in I} \Omega_i)^{\circ}$, we have

$$< y, x > \le 0 \quad \forall x \in \bigcup_{i \in I} \Omega_i$$

yielding

$$\langle y, x \rangle \leq 0 \ \forall x \in \Omega_i \quad i \in I.$$

Then we obtain

$$y \in \Omega_i^{\circ}$$
.

Hence,

$$y\in\bigcap_{i\in I}\Omega_i^\circ$$

which means

$$(\bigcup_{i\in I}\Omega_i)^\circ\subseteq\bigcap_{i\in I}\Omega_i^\circ.$$

For the other direction:

$$\forall y \in \bigcap_{i \in I} \Omega_i^\circ,$$
 we have

$$y \in \Omega_i^{\circ} \quad \forall i \in I.$$

Then we get

$$\langle y, x \rangle \leq 0 \quad \forall x \in \Omega_i \quad \forall i \in I$$

yielding

$$\langle y, x \rangle \leq 0 \quad \forall x \in \bigcup_{i \in I} \Omega_i$$

which means

$$y \in (\bigcup_{i \in I} \Omega_i)^{\circ}.$$

Thus,

$$(\bigcup_{i\in I}\Omega_i)^\circ\supseteq\bigcap_{i\in I}\Omega_i^\circ.$$

To conclude, $(\bigcup_{i \in I} \Omega_i)^{\circ} = \bigcap_{i \in I} \Omega_i^{\circ}$.

16.3 (c)

 $\forall y \in (\Omega_1 + \Omega_2)^{\circ}$, we have

$$< y, x_1 + x_2 > = < y, x_1 > + < y, x_2 > \le 0 \quad \forall x_1 \in \Omega_1 \quad \forall x_2 \in \Omega_2.$$

Let $x_1=0$, then we get $< y, x_2>=0 \quad \forall x_2\in \Omega_2$. Similarly, let $x_2=0$, then we get $< y, x_1>=0 \quad \forall x_1\in \Omega_1$. Thus, $y\in \Omega_1^\circ$ and $y\in \Omega_2^\circ$.

Then we get

$$y \in \Omega_1^{\circ} \cap \Omega_2^{\circ}$$
,

which is to say

$$(\Omega_1 + \Omega_2)^{\circ} \subseteq \Omega_1^{\circ} \cap \Omega_2^{\circ}$$
.

For the other direction:

 $\forall y \in \Omega_1^{\circ} \cap \Omega_2^{\circ}$, we have

$$\langle y, x_i \rangle \leq 0 \quad \forall x_i \in \Omega_i \quad i = 1, 2.$$

Consequently, we can obtain:

$$\langle y, x_1 + x_2 \rangle = \langle y, x_1 \rangle + \langle y, x_2 \rangle \le 0 \quad \forall x_1 \in \Omega_1 \quad \forall x_2 \in \Omega_2.$$

Thus, $y \in (\Omega_1 + \Omega_2)^{\circ}$, which implies

$$(\Omega_1 + \Omega_2)^{\circ} \supseteq \Omega_1^{\circ} \cap \Omega_2^{\circ}.$$

To conclude, $(\Omega_1 + \Omega_2)^{\circ} = \Omega_1^{\circ} \cap \Omega_2^{\circ}$.

17 Question 17

Since $int(\Omega^{\circ})$ is not empty, then we can choose $y_1, y_2 \in \Omega^{\circ}$ such that $y_2 \neq \alpha y_1$ where $\alpha \neq 0$ strictly. (Otherwise Ω° is $\{0\}$ or affine, whose interior is empty. Contradiction!)

Let $p = -(y_1 + y_2) \neq 0$, and for any $x \in \Omega$, we have $\frac{x}{||x||} \in \Omega$.

Then we want to check

$$\langle p, \frac{x}{||x||} \rangle > \delta \quad \forall x \in \Omega$$

for some $\delta > 0$ strictly.

First we check $\langle p, \frac{x}{||x||} \rangle > 0$ by contradiction.

Because $y_1, y_2 \in \Omega^{\circ}$ and $p = -(y_1 + y_2)$, then we must have

$$< p, \frac{x}{||x||} > \ \geq 0 \quad \forall x \in \Omega.$$

If there exits some $x \in \Omega$ s.t. $\langle p, \frac{x}{||x||} \rangle = 0$ which means $\langle y_1, \frac{x}{||x||} \rangle = \langle y_2, \frac{x}{||x||} \rangle = 0$ at the same time. Thus y_1 and y_2 are in the same direction. Obviously it is a contradiction to our choice for y_1 and y_2 : $y_2 \neq \alpha y_1$ where $\alpha \neq 0$.

Thus, $\langle p, \frac{x}{||x||} \rangle > 0$ has been checked correct.

Next, we want to show also by contradiction

$$\inf_{x \in \Omega} < p, \frac{x}{||x||} >> 0.$$

Assume $\inf_{x \in \Omega} \langle p, \frac{x}{||x||} \rangle = 0$, then for any $\varepsilon > 0$, $\exists x_0 \in \Omega$ such that

$$< p, \frac{x_0}{||x_0||} > < \varepsilon.$$

So there must have $0 \ge \langle y_1, \frac{x_0}{||x_0||} \rangle > -\varepsilon$ and $0 \ge \langle y_2, \frac{x_0}{||x_0||} \rangle > -\varepsilon$.

Then let $\varepsilon \to 0$, we have

$$\langle y_1, \frac{x_0}{||x_0||} \rangle = \langle y_2, \frac{x_0}{||x_0||} \rangle = 0$$

yielding y_1 and y_2 are in the same direction, which is again a contradiction to $y_2 \neq \alpha y_1$ where $\alpha \neq 0$.

Consequently, $\inf_{x \in \Omega} \langle p, \frac{x}{||x||} \rangle > 0$ strictly.

Then we let $\delta = \inf_{x \in \Omega} < p, \frac{x}{||x||} >> 0$ strictly, we will obtain

$$< p, \frac{x}{||x||} >> \delta \quad \forall x \in \Omega$$

i.e.

$$< p, x >> \delta ||x|| \quad \forall x \in \Omega.$$

18 Question 18

18.1 (a)

 $\partial f(x) = \{g: f(y) \geq f(x) + g(y-x), \quad \forall y \in R\} = \bigcap_{y \in R} \{g: f(y) \geq f(x) + g(y-x)\}$ is an intersection of closed sets, since intersection keeps the closedness of sets, thus $\partial f(x)$ is still a closed set. Then we turn to its boundedness.

Since for any $g \in \partial f(x)$, we always have

$$f(y) - f(x) \ge g(y - x).$$

Then when $y \geq x$, we get

$$g \le \frac{f(y) - f(x)}{y - x}.$$

Let $y \to x^+$, then we have

$$g \leq f'(x^+).$$

Similarly, when $y \leq x$, we get

$$g \ge f^{'}(x^{-}).$$

Therefore, $\partial f(x) \subseteq [f'(x^-), f'(x^+)]$ is a bounded set.

To conclude, $\partial f(x) \subset R$ is a bounded closed set, so it is a compact interval.

However, the proof above of boundedness of $\partial f(x)$ requires the existence of $f'(x^-)$ and $f'(x^+)$ (though they do exist with proof in (b)). Now we give another proof, without knowing the existence of $f'(x^-)$ and $f'(x^+)$:

There is a theorem, saying:

 $f: R^n \to \bar{R}$ is proper and convex, $X \subset int(dom\ f)$ is nonempty and compact, then $\bigcup_{x \in X} \partial f(x)$ is nonempty and compact.

In this case, $X = \{x\} \subset int(dom\ f)$ is obviously nonempty and compact, so we can conclude that $\partial f(x)$ is compact.

18.2 (b)

First we need to check that f'(x;1) and f'(x;-1) exist. Since there is a theorem, saying:

 $f: \mathbb{R}^n \to \mathbb{R}$ is proper and convex, $x \in int(dom\ f)$, then $\forall d$ we have f'(x;d) exists.

Since for any $g \in \partial f(x)$, we always have

$$f(y) - f(x) \ge g(y - x).$$

Then when $y \geq x$, we get

$$g \le \frac{f(y) - f(x)}{y - x}.$$

Let $y = x + \alpha$ where $\alpha > 0$, then let $\alpha \to 0$ we have

$$g \le \lim_{\alpha \to 0} \frac{f(x+\alpha) - f(x)}{\alpha} = f'(x;1)$$

Similarly, when $y \leq x$, we get

$$g \ge \frac{f(y) - f(x)}{y - x}.$$

Let $y = x - \alpha$ where $\alpha > 0$, then let $\alpha \to 0$ we have

$$g \ge \lim_{\alpha \to 0} \frac{f(x - \alpha) - f(x)}{\alpha} = -f'(x; -1)$$

Thus, we have proved

$$\partial f(x) \subseteq \{g \in R : -f'(x; -1) \le g \le f'(x; 1)\}.$$

For the other direction:

Because f is convex, then given x fixed we will have

$$h(y) = \frac{f(y) - f(x)}{y - x}$$

is non-decreasing.

Then for y satisfying $y \geq x$, we have

$$g \le f'(x; 1) = \lim_{y_0 \to x} h(y_0) \le h(y) = \frac{f(y) - f(x)}{y - x}, \quad \forall y \ge x$$

which indicates

$$f(y) \ge f(x) + g(y - x), \quad \forall y \ge x.$$

Similarly for y satisfying $y \leq x$, we have

$$g \ge -f'(x; -1) = \lim_{y_0 \to x} h(y_0) \ge h(y) = \frac{f(y) - f(x)}{y - x}, \quad \forall y \le x$$

which indicates

$$f(y) \ge f(x) + g(y - x), \quad \forall y \le x.$$

Therefore, we finally obtain:

$$f(y) \ge f(x) + g(y - x), \quad \forall y \in R$$

yielding $q \in \partial f(x)$ i.e.,

$$\partial f(x) \supseteq \{g \in R : -f'(x; -1) \le g \le f'(x; 1)\}.$$

To conclude, $\partial f(x) = \{g \in R : -f'(x; -1) \le g \le f'(x; 1)\}$ has been proved.

If $g \in \partial f(x)$, then we have

$$f(y) \ge f(x) + \langle g, y - x \rangle \quad \forall y$$

Certainly we have

$$f(y) \ge f(x) + \langle g, y - x \rangle - \varepsilon \quad \forall y$$

which means $g \in \partial_{\varepsilon} f(x)$.

Thus, $\partial f(x) \subseteq \bigcap_{\varepsilon>0} \partial_{\varepsilon} f(x)$ has been proved.

For the next direction: $\forall g \in \cap_{\varepsilon>0} \partial_{\varepsilon} f(x)$, we have

$$\varepsilon \ge f(x) + \langle g, y - x \rangle - f(y) \quad \forall y \in \mathbb{R}^n \quad \forall \varepsilon > 0.$$

Then we prove $g \in \partial f(x)$ by contradiction.

Assume $g \notin \partial f(x)$, i.e. $f(x) + \langle g, y - x \rangle - f(y) > 0$ strictly for some $y \in \mathbb{R}^n$. Then we can find ε_0 such that

$$f(x)+ \langle g, y-x \rangle - f(y) \rangle \varepsilon_0.$$

However, let $\varepsilon = \frac{\varepsilon_0}{2}$, we have already known that

$$f(x) + \langle g, y - x \rangle - f(y) \le \frac{\varepsilon_0}{2}$$
.

Here comes the contradiction!

Therefore, g must belong to $\partial f(x)$, which is to say, $\partial f(x) \supseteq \cap_{\varepsilon>0} \partial_{\varepsilon} f(x)$.

To conclude, $\partial f(x) = \bigcap_{\varepsilon > 0} \partial_{\varepsilon} f(x)$ has been verified.

20 Question 20

We want to check f^* is lower semi-continuous i.e. $\forall y_0 \in \mathbb{R}^m, \ \forall y_n \to y_0$, we always have

$$f^*(y_0) \le \lim_{n \to \infty} \inf f^*(y_n) = \lim_{n \to \infty} \inf (\inf_{x \in F(y_n)} f(x, y_n)).$$

Let x_n satisfy

$$f(x_n, y_n) = \inf_{x \in F(y_n)} f(x, y_n).$$

Since $x_n \in F(y_n)$ and $F(y_n)$ is compact for all y_n , then we have the sequence x_n belongs to a compact set, which means there must be a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ converges to a so called x_0 , i.e.,

$$x_{n_k} \to x_0$$
.

Then because of the outer semi-continuity of F, then we have $x_0 \in F(y_0)$.

Thus, we get

$$f(x_0, y_0) = \inf_{x \in F(y_0)} f(x, y_0).$$

Since f is lower semi-continuous, we obtain

$$f(x_0, y_0) \le \lim_{n \to \infty} \inf f(x_n, y_n).$$

Finally, we have

$$f^*(y_0) = \inf_{x \in F(y_0)} f(x, y_0)$$

$$= f(x_0, y_0)$$

$$\leq \lim_{n \to \infty} \inf f(x_n, y_n)$$

$$= \lim_{n \to \infty} \inf (\inf_{x \in F(y_n)} f(x, y_n))$$

$$= \lim_{n \to \infty} \inf f^*(y_n) \quad \forall y_n \to y_0$$

Therefore, $f^*(y)$ is lower semi-continuous.