

第9章 目标代码生成

知识点:基本块、程序流图 下次引用信息 代码生成算法

wenshli@bupt.edu.c

教学目标与要求

- 了解代码生成程序设计的共性问题;
- 掌握基本块的概念及其划分方法;
- 掌握程序流图的概念及其构造方法;
- 理解下次引用信息的计算方法;
- 理解基于下次引用信息的寄存器分配算法;
- 理解基于基本块的目标代码生成算法的基本思想。
- 能够:
 - □分析目标代码生成的需求;
 - □利用目标代码生成算法将中间代码翻译为目标代码。

wenshli@bupt.edı

本章内容

- 9.1 目标代码生成概述
- 9.2 基本块与流图
- 9.3 下次引用信息
- 9.4 一个简单的代码生成程序 小结

9.1 目标代码生成概述

- ■目标代码生成程序的任务
 - □ 将前端产生的源程序的中间代码表示转换为等价的目标代码。
- 对目标代码生成程序的要求:
 - □正确

1.有效地利用目标机器的资源

□高质量

2.占用空间少,运行效率高

- 本节内容:
 - □代码生成程序的位置
 - □代码生成程序设计的相关问题

wenshli@bupt.edu.c

9.1.1 代码生成程序

代码生成程序在编译程序中的位置

- 代码生成程序的输入
 - □中间代码:经过语法分析/语义检查之后得到的中间表示
 - ▶假定:前期工作结果正确、可信
 - ▶中间代码足够详细、必要的类型转换符已正确插入、明显的语义 错误已经发现、且正确恢复
 - □符号表
 - >记录了与名字有关的信息
 - >决定中间表示中的名字所代表的数据对象的运行地址

wenshli@bupt.edu.c

代码生成程序

- 代码生成程序的输出:与源程序等价的目标代码
- ■目标代码的形式
 - □绝对地址的机器语言程序
 - ▶可把目标代码放在内存中固定的地方、立即执行
 - □可重定位的机器语言程序
 - ➤ .obj (DOS) 、 .o (UNIX)
 - > 开发灵活,允许各子模块单独编译
 - > 由连接装配程序将它们连接在一起, 生成可执行文件
 - □汇编语言程序

wenshli@bupt.edu.

9.1.2 代码生成程序设计的相关问题

- 代码生成程序的具体细节依赖于目标机器和操作系统
- 代码生成程序设计时需要考虑的问题
 - □存储管理
 - □指令选择
 - □寄存器分配
 - □计算次序的选择

存储管理

- 从名字到存储单元的转换由前端和代码生成程序共同完成
- 符号表中的信息
 - □在处理声明语句时填入
 - □ "类型"决定了它的域宽
 - □"地址"确定该名字在过程的数据区域中的相对位置
 - □上述信息用于确定中间代码中的名字对应的数据对象在运行时的地址
- 三地址代码中的名字
 - □指向该名字在符号表中位置的指针

例如: 三地址代码与机器语言代码的对应

	机器语言代码	
0	•••	
n	四元式100 的机器码	12
n+12	四元式101 的机器码	8
n+20	四元式102 的机器码	16
n+36	四元式103 的机器码	} 4
n+40	•••	

- 对于四元式j: goto i
 - □ i<j 四元式i的地址已有,可以直接生成机器指令
 - □i>j 将四元式j的地址记入与i相关的链表中,等待回填

指令选择

- 机器指令系统的性质决定了指令选择的难易程度
 - □一致性
 - □完整性
 - □指令的执行速度
 - □机器的特点
- 对每一类三地址语句,可以设计它的代码框架

如 x:=y+z 的代码框架

 $MOV R_0, y$

ADD R_0, z

 $MOV x, R_0$

a := b + c

d := a + e

 $MOV R_0, b$

ADD R_0 , c

 $MOV a, R_0$

 $MOV R_0, a$

ADD R_0 , e

 $MOV d, R_0$

a := a+1

INC a

MOV R_0 , a

ADD R_0 , #1

MOV a, R_0

wenshli@bupt.edu.cn

寄存器分配

- 选出要使用寄存器的变量
 - □局部范围内
 - □在程序的某一点上
- 寄存器指派
 - □可用寄存器
 - > 专用寄存器
 - > 通用寄存器
 - > 寄存器对
 - □把寄存器指派给相应的变量
 - > 变量需要什么样的寄存器
 - >操作需要什么样的寄存器

计算次序的选择

- 计算次序影响目标代码的效率
- ■如:
 - □RISC体系结构的一种通用的流水线限制是:从内存中取出存入寄存器的值在随后的几个周期内是不能用的。
 - ▶在这几个周期期间,可以调出不依赖于该寄存器值的指令来执行,如果找不到这样的指令,则这些周期就会被浪费。
 - ▶所以,对于具有流水线限制的体系结构,选择合适的计算次序是必需的。
 - □有些计算顺序可以用较少的寄存器来保留中间结果
- 代码生成程序的设计原则
 - □能够正确地生成代码
 - □易于实现、便于测试和维护

9.2 基本块与流图

- ■基本块
 - □具有原子性的一组连续语句序列。
 - □控制从第一条语句(入口语句)流入,从最后一条语句 (出口语句)流出,中途没有停止或分支
- ■如:

$$t_1:=a*a$$

$$t_2:=b*b$$

$$t_3 := t_1 + t_2$$

■ 基本块:

$$t_1:=a*a$$

$$t_2:=a*b$$

$$t_3:=2*t_2$$

$$t_4 := t_1 + t_3$$

$$t_5:=b*b$$

$$t_6 := t_4 + t_5$$

基本块的划分方法

- 确定入口语句:
 - □三地址代码的第一条语句;
 - □ goto语句转移到的目标语句;
 - □紧跟在goto语句后面的语句。
- 确定基本块:
 - □从一个入口语句(含该语句)到下一个入口语句(不含) 之间的语句序列;
 - □从一个入口语句(含该语句)到停止语句(含该语句)之 间的语句序列。

Pascal程序片断:

```
i:=1;
while (i<=10) do
begin
a[i]:=a[i]+b[i];
i:=i+1
```

```
(1) i:=1
\rightarrow (2) if i<=10 goto (4)
\rightarrow (3) goto (17)
   (4) t_1 := a-4
    (5) t_2 := 4*i
    (6) t_3 := a-4
    (7) t_4 := 4*i
    (8) t_5 := t_3[t_4] /* t_5 = a[i] */
    (9) t_6 = b-4
    (10) t_7:=4*i
    (11) t_8 := t_6[t_7] /* t_8 = b[i] */
    (12) t_9 := t_5 + t_8
    (13) t_1[t_2] := t_9
    (14) t_{10} := i+1
    (15) i:=t_{10}
```

(16) goto (2)

(17)

end;

 \mathbf{B}_{5}

 $\mathbf{B_1}$

 \mathbf{B}_2

 \mathbf{B}_3

 $\mathbf{B_4}$

wenshli@bupt.edu.

流图

- 把控制信息加到基本块集合中,形成程序的有向图, 称为流图(控制流图)。
- ■流图的结点是基本块。
- ■由程序的第一条语句开始的基本块, 称为流图的首结点。
- ■如果在某个执行序列中,基本块B₂紧跟在基本块B₁ 之后执行,则从B₁到B₂有一条有向边,B₁是B₂的前 驱,B₂是B₁的后继。即如果:
 - □有一个条件/无条件转移语句从 B_1 的最后一条语句转移到 B_2 的第一条语句;
 - □B₁的最后一条语句不是转移语句,并且在程序的语句序列中,B₂紧跟在B₁之后。

流图示例

基本块划分示例

- $\longrightarrow (1) \quad i:=m-1 \quad B_1$
 - (2) j:=n
 - (3) $t_1:=4*n$
 - $(4) \quad \mathbf{v} := \mathbf{a}[\mathbf{t}_1]$
- $\longrightarrow (5) \qquad i:=i+1 \qquad B_2$
 - (6) $t_2:=4*i$
 - (7) $t_3 := a[t_2]$
 - (8) if $t_3 \le v$ goto (5)
- $\longrightarrow (9) \quad \mathbf{j} := \mathbf{j} \mathbf{1} \quad \mathbf{B}_3$
 - (10) $t_4:=4*j$
 - (11) $t_5 := a[t_4]$
 - (12) if $t_5 > v$ goto (9)
- $\longrightarrow (13) \quad \text{if } i >= j \text{ goto } (23) \mathbf{B}_4$

- $t_6:=4*i$
 - $(15) \quad \mathbf{x} := \mathbf{a}[\mathbf{t}_6]$

 $\mathbf{B_5}$

 \mathbf{B}_{6}

- (16) $t_7:=4*i$
- (17) $t_8:=4*j$
- (18) $t_9 := a[t_8]$
- (19) $a[t_7] := t_9$
- (20) $t_{10}:=4*j$
- (21) $a[t_{10}] := x$
- (22) goto (5)
- $\longrightarrow (23) \qquad t_{11}:=4*i$
 - (24) $x:=a[t_{11}]$
 - (25) $t_{12}:=4*i$
 - (26) $t_{13}:=4*n$
 - (27) $t_{14} = a[t_{13}]$
 - (28) $a[t_{12}] := t_{14}$
 - (29) $t_{15}:=4*n$
 - (30) $a[t_{15}] := x$

流图

- (1) i:=m-1
- $(2) \quad j:=n$
- (3) $t_1:=4*n$
- (4) $v := a[t_1]$

- +1 (6) $t_2:=4*i$
- (7) $t_3:=a[t_2]$ (8) if $t_3 < v$ goto
- $\mathbf{B_2}$

 \mathbf{B}_3

 \mathbf{B}_1

- (9) j:=j-1 (10) $t_4:=4*j$
- (11) $t_5:=a[t_4]$ (12) if $t_5>v$ goto B_3
 - (13) if i>=j goto **B**₆
- $\mathbf{B_4}$

- (14) $t_6:=4*i$
- (15) $x := a[t_6]$
- (16) $t_7:=4*i$
- (4-5)
- (17) $t_8:=4*j$
- (18) $t_9 := a[t_8]$
- (19) $a[t_7] := t_9$
- (20) $t_{10}:=4*j$
- (21) $a[t_{10}] := x$
- (22) goto **B**₂

 \mathbf{B}_{5}

 $\mathbf{B}_{6} \mid (23) \quad \mathbf{t}_{11} := 4*i$

- (24) $x:=a[t_{11}]$
- (25) $t_{12}:=4*i$
- (26) $t_{13}:=4*n$
- (27) $t_{14} = a[t_{13}]$
- (28) $a[t_{12}] := t_{14}$
- (29) $t_{15}:=4*n$
- (30) $a[t_{15}] := x$

9.3 下次引用信息

在把三地址代码转换成为目标代码时,遇到的一个 重要问题:

如何充分利用寄存器?

- 基本思路:
 - □在一个基本块范围内考虑
 - □ 把在基本块内还要被引用的变量的值尽可能保存在寄存器 中
 - □把在基本块内不再被引用的变量所占用的寄存器尽早地释 放
- 如: 翻译语句 x:=y op z
 - □x、y、z在基本块中是否还会被引用?
 - □在哪些三地址语句中被引用?

wenshli@bupt.edu.cn

活跃变量

- 考虑变量 x 和程序点 p
- ■分析 x 在点 p上的值是否会在流图中的某条从点p出发的路径中使用。
 - □是,则 x在 p上是活跃的;
 - □否则, x在 p上是死的。
- ■基于流图进行活跃变量分析,可以实现基本块的存储分配,即只需为活跃变量分配寄存器即可。
- ■活跃信息用于代码优化时的全局数据流分析。

wenshli@bupt.edu.cn

下次引用

三地址语句序列:

$$i: x:=1$$

语句i对变量x定值

没有对变量x定值的其他语句

$$j: y:=x op z$$

语句j引用x在语句i处定的值

语句j是三地址语句i中x的下次引用信息。

- 假定
 - □ 讨论在一个基本块内的引用信息
 - □ 所有的变量在基本块出口处都是活跃的
 - □ 三地址语句的结构中,记录语句中出现的每个名字的下次引用信息和活跃信息
 - □ 符号表中含有记录下次引用信息和活跃信息的域

算法

输入:组成基本块的三地址语句序列。

输出:基本块中各变量的下次引用信息。

方法:

- 1. 把基本块中各变量在符号表中的下次引用信息域置 为"无下次引用"、活跃信息域置为"活跃"。
- 2. 从基本块出口到入口由后向前依次处理各语句,对 每个三地址语句 i: x:=y op z, 依次执行下述步骤:
 - ·①把当前符号表中变量 x 的下次引用信息和活跃 信息附加到语句 i上:
 - ②把符号表中 x 的下次引用信息置为"无下次引 用",活跃信息置为"非活跃";
 - ③把当前符号表中变量y和z的下次引用信息和活 跃信息附加到语句 i上:
 - ④把符号表中y和z的下次引用信息均置为 'i', 活 跃信息均置为"活跃"。

3

能 颠 倒

例: 计算 B_4 中变量的下次引用信息

 $\mathbf{B_4}$

(4)
$$t_1 := a-4$$

(5)
$$t_2:=4*i$$

(6)
$$t_3 := a-4$$

(7)
$$t_4:=4*i$$

(8)
$$t_5 := t_3[t_4]$$

(9)
$$t_6 = b-4$$

(10)
$$t_7:=4*i$$

(11)
$$t_8 := t_6[t_7]$$

(12)
$$t_9 := t_5 + t_8$$

(13)
$$t_1[t_2] := t_9$$

(14)
$$t_{10} := i+1$$

(15)
$$i = t_{10}$$

(16) goto B₂

■初始化符号表:

变量下次活跃 无 i 活 无 活 a 无 活 b 无 活 t_1 无 活 无 活 t_3 无 t_4 活 无 活 t₅ 无 活 t_6 无 活 t_7 无 活 t_8 无 活 to 无 活 t_{10}

从出口到入口依次检查每条语句

	-										
(4) $t_1 := a-4$	t_1	(13)	活	a	(6)	活			(i	(5) 活
$(5) t_2 = 4*i$	t ₂	(13)	活	i	(7)	活	$\overline{}$			a	(4) 活
$(6) t_3:=a-4$	t ₃	(8)	活	a	无	活				b	(9) 活
$(7) t_4:=4*i$	1,	(8)	活	i	(10)	活	$\overline{}$			t ₁	无 非活
$(8) t_5 := t_3[t_4]$	t ₅	(12)	活	t3	无	活	t4	无	活	t ₂	无 非活
$(9) t_6 = b-4$	t ₆	(11)	活	b	无	活				t ₃	无 非活
$(10) t_7:=4*i$	t ₇	(11)	活	i	(14)	活				t ₄	无 非活
$(11) t_8 := t_6[t_7]$	t ₈	(12)	活	t ₆	无	活	t ₇	无	活	t ₅	无 非活
$101 t_9 := t_5 + t_8$	t ₉	(13)	活	t ₅	无	活	t ₈	无	活	t ₆	无 非活
$\boxed{(13) \ t_1[t_2] := t_9}$	t ₁	无	活	t_2	无	活	t ₉	无	活	t ₇	无 非活
(14) $t_{10} := i+1$	t ₁₀	(15)	活	(i	无	非法				t ₈	无 非活
(15) i:= t_{10}	i:	无	活	t ₁₀	,无	活				t ₉	无 非活
(16) goto B ₂										t ₁₀	- 无 非活
	$\begin{array}{c} \hline (5) t_{2} := 4*i \\ \hline (6) t_{3} := a-4 \\ \hline (7) t_{4} := 4*i \\ \hline \hline (8) t_{5} := t_{3}[t_{4}] \\ \hline (9) t_{6} := b-4 \\ \hline (10) t_{7} := 4*i \\ \hline \hline (11) t_{8} := t_{6}[t_{7}] \\ \hline \hline (12) t_{9} := t_{5} + t_{8} \\ \hline (13) t_{1}[t_{2}] := t_{9} \\ \hline \hline (14) t_{10} := i+1 \\ \hline (15) i := t_{10} \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[5] t_2 :=4*i t_2 (13) [6] t_3 :=a-4 t_3 (8) [7] t_4 :=4*i t_4 (8) [8] t_5 := t_3 [t_4] t_5 (12) [9] t_6 :=b-4 t_6 (11) [10] t_7 :=4*i t_7 (11) [11] t_8 := t_6 [t_7] t_8 (12) [12] t_9 := t_5 + t_8 t_9 (13) [13] t_1 [t_2]:= t_9 t_1 无 [14] t_{10} := t_{10} t_{10} (15) [15] t_1 := t_{10} t_1 无	[5] t_2 :=4*i t_2 (13) 活 [6] t_3 :=a-4 t_3 (8) 活 [7] t_4 :=4*i t_4 (8) 活 [8] t_5 := t_3 [t_4] t_5 (12) 活 [9] t_6 :=b-4 t_6 (11) 活 [10] t_7 :=4*i t_7 (11) 活 [11] t_8 := t_6 [t_7] t_8 (12) 活 [12] t_9 := t_5 + t_8 t_9 (13) 活 [13] t_1 [t_2]:= t_9 t_1 无 活 [14] t_{10} := t_1 t_{10} (15) 活 [15] t_1 := t_{10} t_1 无 活		[5] t_2 :=4*i	(5) t_2 :=4*i t_2 (13) 活 i (7) 活 (6) t_3 :=a-4 t_3 (8) 活 a 无 活 (7) t_4 :=4*i t_4 (8) 活 i (10) 活 (8) t_5 := t_3 [t_4] t_5 (12) 活 t3 无 活 (9) t_6 :=b-4 t_6 (11) 活 b 无 活 (10) t_7 :=4*i t_7 (11) 活 i (14) 活 (11) t_8 := t_6 [t_7] t_8 (12) 活 t_6 无 活 (12) t_9 := t_5 + t_8 t_9 (13) 活 t_5 无 活 (13) t_1 [t_2]:= t_9 t_1 无 活 t_2 无 活 (14) t_{10} := t_1 t_{10} (15) 活 i 无 非活 (15) t_1 := t_{10} t_1 t_2 t_3	(5) t ₂ :=4*i t ₂ (13) 活 i (7) 活 (6) t ₃ :=a-4 t ₃ (8) 活 a 无 活 (7) t ₄ :=4*i t ₄ (8) 活 i (10) 活 (8) t ₅ :=t ₃ [t ₄] t ₅ (12) 活 t ₃ 无 活 t ₄ (9) t ₆ :=b-4 t ₆ (11) 活 b 无 活 (10) t ₇ :=4*i t ₇ (11) 活 i (14) 活 (11) t ₈ :=t ₆ [t ₇] t ₈ (12) 活 t ₆ 无 活 t ₇ (12) t ₉ :=t ₅ +t ₈ t ₉ (13) 活 t ₅ 无 活 t ₈ (13) t ₁ [t ₂]:=t ₉ t ₁ 无 活 t ₂ 无 活 t ₉ (14) t ₁₀ :=i+1 t ₁₀ (15) 活 i 无 非活 (15) i:=t ₁₀ i: 无 活 t ₁₀ 无 活	(5) t ₂ :=4*i t ₂ (13) 活 i (7) 活 (6) t ₃ :=a-4 t ₃ (8) 活 a 无 活 (7) t ₄ :=4*i t ₄ (8) 活 i (10) 活 (8) t ₅ :=t ₃ [t ₄] t ₅ (12) 活 t ₃ 无 活 t ₄ 无 (9) t ₆ :=b-4 t ₆ (11) 活 b 无 活 (10) t ₇ :=4*i t ₇ (11) 活 i (14) 活 (14) t ₈ :=t ₆ [t ₇] t ₈ (12) 活 t ₆ 无 活 t ₇ 无 (12) t ₉ :=t ₅ +t ₈ t ₉ (13) 活 t ₅ 无 活 t ₈ 无 (13) t ₁ [t ₂]:=t ₉ t ₁ 无 活 t ₂ 无 活 t ₉ 无 (14) t ₁₀ :=i+1 t ₁₀ (15) 活 i 无 非活 (15) i:=t ₁₀ i: 无 活 t ₁₀ 无 活	(5) t ₂ :=4*i t ₂ (13) 活 i (7) 活 (6) t ₃ :=a-4 t ₃ (8) 活 a 无 活 (7) t ₄ :=4*i t ₄ (8) 活 i (10) 活 (8) t ₅ :=t ₃ [t ₄] t ₅ (12) 活 t ₃ 无 活 t ₄ 无 活 (9) t ₆ :=b-4 t ₆ (11) 活 b 无 活 (10) t ₇ :=4*i t ₇ (11) 活 i (14) 活 (14) t ₈ :=t ₆ [t ₇] t ₈ (12) 活 t ₆ 无 活 t ₇ 无 活 (12) t ₉ :=t ₅ +t ₈ t ₉ (13) 活 t ₅ 无 活 t ₈ 无 活 (13) t ₁ [t ₂]:=t ₉ t ₁ 无 活 t ₂ 无 活 t ₉ 无 活 (14) t ₁₀ :=i+1 t ₁₀ (15) 活 i 无 活 (15) i:=t ₁₀ i: 无 活 t ₁₀ 无 活	[5] $t_2:=4*i$

变量下次活跃

wenshli@bupt.edu.c

9.4 一个简单的代码生成程序

- 依次处理基本块中的每条三地址语句
- 考虑在基本块内充分利用寄存器的问题
 - □当生成计算某变量值的目标代码时,尽可能让变量的值保存在寄存器中(而不产生把该变量的值存入内存单元的指令),直到该寄存器必须用来存放其他的变量值,或已到达基本块的出口为止;
 - □后续的目标代码尽可能引用变量在寄存器中的值。
- 在基本块之间如何充分利用寄存器的问题比较复杂,简单起见,在离开基本块时,把有关变量在寄存器中的当前值存放到内存单元中去。
- 代码生成时需考察许多情形,如下次引用信息、活跃信息、 当前值的存放位置等,在不同的情况下生成的代码也不同。

wenshli@bupt.edu.cn

9.4.1 目标机器描述

- ■设计代码生成程序的必要条件:熟悉目标机器
- 一般信息
 - □编址方式:
 - > 按字节编址
 - >每个字有4个字节
 - □寄存器:
 - \triangleright n个通用寄存器: R_0 、 R_1 、 R_{n-1}
 - □指令形式:
 - > OP DEST, SRC

其中 OP: MOV、ADD、SUB

SRC: 源操作数

DEST: 目的操作数

操作数寻址方式

地址形式	汇编方式	地址	附加开销
立即寻址/常数	#c	常数c	1
直接寻址	M	M	1
间接寻址	@M	contents(M)	1
寄存器寻址	R	R	0
寄存器间接寻址	@R	contents(R)	0
变址寻址	c[R]	c+contents(R)	1
间接变址寻址	@c(R)	contents(c+contents(R))	1
基址寻址	[BR][R]	ccontents(BR)+contents(R)	0

指令开销

- = 指令所占用存储单元字数
- =1+DEST寻址方式附加开销+SRC寻址方式附加开销

wenshli@bupt.edu.ci

指令开销示例

 \blacksquare MOV R_0 , R_1

□ 开销: 1

■ MOV R₅, **M**

□ 开销: 2

 \blacksquare ADD R_3 , #1

□ 开销: 2

地址形式	汇编方式	地址	附加开销
立即寻址	#c	常数c	1
直接寻址	M	M	1
间接寻址	@M	contents(M)	1
寄存器寻址	R	R	0
寄存器间接寻址	@R	contents(R)	0
变址寻址	c[R]	c+contents(R)	1
间接变址寻址	@c(R)	contents(c+contents(R))	1
基址寻址	[BR][R]	ccontents(BR)+contents(R)	0

SUB $@12[R_1], 4[R_0]$

□ 将地址为(contents(12+contents(R₁))的单元中的值 减去contents(4+contents(R₀)), 结果仍存放到地址 为(contents(12+contents(R₁))的单元中。

□ 开销: 3

wenshli@bupt.edu.c

9.4.2 代码生成算法

■ 基本思路:

- □以基本块为单位,依次把三地址语句转换为目标语言语句
- □根据名字的下次引用信息,在基本块范围内,充分利用寄存器
- □尽可能让变量的值保存在寄存器中
- □后续的代码尽可能引用变量在寄存器中的值
- □ 离开基本块时,把有关变量在寄存器中的值送到它的存储 单元中

MOV M, R

wenshli@bupt.edu.c

数据结构

- ■寄存器描述符
 - □记录每个寄存器当前保存的是哪些名字的值。
 - □开始时,寄存器描述符指示所有的寄存器均为空。
 - □代码生成过程中,每个寄存器在任一给定时刻可保留0个 或多个名字的值。
- ■地址描述符
 - □记录一个名字的当前值的存放位置,可能是:
 - > 一个寄存器
 - >一个栈单元
 - > 一个存储单元
 - > 或这些地址的一个集合
 - □ 这些信息用来确定对一个名字的寻址方式,可以存放在符号表中。

wenshli@bupt.edu.

函数getreg(s)

- 输入: 三地址语句 x:=y op z
- 输出: 存放x值的地址L(L或者是寄存器,或者是存储单元)
- 数据结构:寄存器描述符、名字的地址描述符
- 算法
 - (1) switch 参数语句 {
 - (2) case 形如x:=y op z的赋值语句:
 - (3) case 形如x:= op y 的赋值语句:
 - (4) 查看名字 y 的地址描述符;
 - (5) if (y的值存放在寄存器R中) {
 - (6) 查看R的寄存器描述符;
 - (7) if (R中仅有名字y的值) {
 - (8) 查看名字y的下次引用信息和活跃信息;
 - (9) if (名字y无下次引用, 且非活跃) return R;
 - **(10)** }
 - **(11)** }

wenshli@bupt.edu.cn

函数getreg(s)

```
■ 算法(续)
     if (存在空闲寄存器R) return R;
  (12)
     查看名字x的下次引用信息:
  (13)
     if (x有下次引用 || op 需要使用寄存器) {
  (14)
        选择一个已被占用的寄存器R:
  (15)
        for (R寄存器描述符中记录的每一个名字n)
  (16)
          if (名字n的值仅在寄存器R中) {
  (17)
  (18)
              outcode('MOV' Mn, R);
              更新名字n的地址描述符为Mn;
  (19)
  (20)
          };
  (21)
        return R;
  (22) };
  (23) else return Mx;
```

wenshli@bupt.edu.cn

(16)

break;

代码生成算法

```
输入:基本块的三地址语句 输出:基本块的目标代码
方法:
(1) for (基本块中的每一条三地址语句) {
   switch 当前处理的三地址语句 {
(2)
    case 形如 x:=y op z 的赋值语句:
(3)
    L=getreg(i: x:=y op z);
(4)
    查看名字 y的地址描述符,取得y值的当前存放位置y';
(5)
    if (y'!=L) outcode('MOV' L, y');
(6)
    else 将L从y的地址描述符中删除;
(7)
     查看名字 z 的地址描述符, 取得 z 值的当前存放位置z';
(8)
(9)
    outcode(op L, z');
    更新 x 的地址描述符以记录 x 的值仅在L中;
(10)
    if (L是寄存器) 更新L的寄存器描述符以记录L中只有x的值;
(11)
    查看 y/z 的下次引用信息和活跃信息, 以及y/z的地址描述符;
(12)
    if (y/z没有下次引用, 在块出口处非活跃, 且当前值在寄存器R中) {
(13)
      从y/z的地址描述符中删除寄存器R;
(14)
      从R的寄存器描述符中删除名字y/z; }
(15)
```

34

代码生成算法

```
case 形如x:=op y的赋值语句:
(17)
(18)
     L=getreg(i: x:=op y);
     查看名字 y 的地址描述符, 取得y值的当前存放位置y';
(19)
     if (y'!=L) outcode('MOV' L, y');
(20)
     else 将L从 y 的地址描述符中删除;
(21)
(22)
     outcode(op L);
     更新x的地址描述符以记录x的值仅在L中;
(23)
     if (L是寄存器) 更新L的寄存器描述符以记录L中只有x的值;
(24)
     查看 y 的下次引用信息和活跃信息, 以及y的地址描述符;
(25)
     if (y没有下次引用, 在块出口处非活跃, 且当前值在寄存器R中) {
(26)
       从 y 的地址描述符中删除寄存器R;
(27)
       从R的寄存器描述符中删除名字y; }
(28)
(29)
     break;
```

35

wenshli@bupt.edu.ci

代码生成算法

```
(30)
     case 形如 x:=y 的赋值语句:
      查看名字v的地址描述符;
(31)
      if (y的值在寄存器R中) {
(32)
       在R的寄存器描述符中增加名字x;
(33)
       更新名字x的地址描述符为R; }
(34)
(35)
      else {
(36)
       L=getreg(i: x:=y);
       if (L是寄存器) {
(37)
         outcode('MOV' L, y'); // y'为y值的当前存放位置
(38)
         更新L的寄存器描述符为名字x和v;
(39)
         更新名字x的地址描述符为L;
(40)
         v的地址描述符中增加寄存器L;
(41)
(42)
       else { // 此时, L是名字x的存储单元地址Mx
(43)
         outcode('MOV' L, y'); // y'为y值的当前存放位置
(44)
         更新名字x的地址描述符为Mx;
(45)
(46)
(47)
      } // end of if-else
(48)
      break;
```

wenshli@bupt.edu.

代码生成算法

```
(49) } // end of switch
(50) } // end of for, 基本块中的所有语句已经处理完毕
(51) for (在出口处活跃的每一个变量 x) {
(52) 查看x的地址描述符;
(53) if (x值的存放位置只有寄存器R)
(54) outcode('MOV' Mx, R); // 将 x 的值存入它的内存单元中;
(55) } // end of for
```

示例:

- 考虑赋值语句 x:=a+b*c-d
- 三地址语句序列:

- x := v
- 假定在基本块的出口, x是活跃的
- ■有两个寄存器R₀和R₁

翻译过程

三地址语句	目标代码	寄存器描述器	地址描述器	
		寄存器全空	a:Ma b: Mb c:Mc d:Md	
t:=b*c	MOV R ₀ , b MUL R ₀ , c	R ₀ : t	t: R ₀	
u:=a+t	MOV R ₁ , a ADD R ₁ , R ₀	R ₀ : t R ₁ : u	t: R ₀ u: R ₁	
v:=u-d	SUB R ₁ , d	R ₀ : t R ₁ : v	t: R ₀ u: v: R ₁	
x:=v		R_1 : v, x	x: R ₁	
	MOV Mx, R ₁		x: R ₁ , Mx	

wenshli@bupt.edu.

9.4.3 其他常用语句的代码生成

- ■涉及变址的赋值语句
- ■涉及指针的赋值语句
- ■转移语句

1.涉及变址的赋值语句

- 两种语句形式: a:=b[i] 和a[i]:=b
- 假定数组采用静态存储分配
 - □ 基址已知
 - □ 下标i存放的位置不同,生成的目标代码也不同
- 假定调用 L:=getreg(a:=b[i]) 及 L:=getreg(a[i]:=b)返回的是寄存器地址

```
a:=b[i]的代码生成过程如下。
                                       a[i]:=b的代码生成过程如下。
(1)
    L:=getreg(a:=b[i]);
                                           L:=getreg(a[i]:=b);
                                       (1)
    查看名字 i 的地址描述符;
                                            查看名字 i 的地址描述符;
                                       (2)
(2)
    if (i的值在寄存器Ri中)
                                           if(i的值在寄存器Ri中)
(3)
                                       (3)
(4)
       outcode('MOV' L, b[R<sub>i</sub>]);
                                              outcode('MOV' a[R<sub>i</sub>], b);
                                       (4)
    else if (i的值在内存单元Mi中) {
                                            else if (i的值在内存单元Mi中) {
(5)
                                       (5)
       outcode('MOV' L, M<sub>i</sub>);
                                              outcode('MOV' L, M<sub>i</sub>);
                                       (6)
(6)
(7)
       outcode('MOV' L, b[L]);
                                              outcode('MOV' a[L], b);
                                       (7)
(8)
                                       (8)
    else if (i的值在栈单元d;[SP]中) {
(9)
                                       (9)
                                            else if (i的值在栈单元d;[SP]中) {
(10)
       outcode('MOV' L, d<sub>i</sub>[SP]);
                                              outcode('MOV' L, d<sub>i</sub>[SP]);
                                       (10)
                                              outcode('MOV' a[L], b);
       outcode('MOV' L, b[L]);
(11)
                                       (11)
(12)
                                       (12)
```

wenshli@bupt.edu.cn

涉及变址的赋值语句(续)

■ 函数调用 L:=getreg(a:=b[i]) 及 L:=getreg(a[i]:=b) 返回的是寄存器地址

i的位置	a:=b[i]		a[i]:=b	
i在R _i 中	MOV L, b[R _i]		MOV a[R _i], b	
	, t 11	2	L II)	3
i在M _i 中	MOV L, M _i		MOV L, M _i	
14±IVI _i T	MOV L, b[L]	4	MOV L, M _i MOV a[L], b	5
: * 1 h	MOV L, d _i [SP]		MOV L, d _i [SP]	
i在栈中	MOV L, b[L]	4	MOV a[L], b	5

2.涉及指针的赋值语句

- 两种语句形式: a:=*p 和*p:=a
- 假定采用静态存储分配
 - □ 指针变量 p 存放的位置不同, 生成的目标代码也不同
- 假定调用 L:=getreg(a:=*p) 及 L:=getreg(*p:=a)返回的是寄存器地址

```
a:=*p的代码生成过程如下。
                                       *p:=a的代码生成过程如下。
   L:=getreg(a:=*p);
                                            L:=getreg(*p:=a);
                                            查看名字 p 的地址描述符;
    查看名字 p 的地址描述符;
                                        (2)
    if (p的值在寄存器Rn中)
                                            if (p的值在寄存器R<sub>n</sub>中)
(3)
                                        (3)
     outcode('MOV' L, @R<sub>p</sub>);
                                               outcode('MOV' @R<sub>p</sub>, a);
(4)
                                       (4)
    else if (p的值在内存单元Mn中) {
                                            else if (p的值在内存单元Mp中) {
(5)
                                        (5)
      outcode('MOV' L, M<sub>p</sub>);
(6)
                                       (6)
                                               outcode('MOV' L, M<sub>p</sub>);
      outcode('MOV' L, @L);
                                               outcode('MOV' @L, a);
(7)
                                        (7)
(8)
                                       (8)
    else if (p的值在栈单元d<sub>p</sub>[SP]中) {
                                            else if (p的值在栈单元d<sub>p</sub>[SP]中) {
(9)
                                       (9)
(10)
      outcode('MOV' L, d<sub>p</sub>[SP]);
                                               outcode('MOV' L, d<sub>p</sub>[SP]);
                                       (10)
      outcode('MOV' L, @L);
                                               outcode('MOV' @L, a);
(11)
                                       (11)
(12) }
                                       (12) }
```

涉及指针的赋值语句(续)

■ 函数调用 L:=getreg(a:=*p) 及 L:=getreg(*p:=a) 返回的是寄存器地址

p的位置	a:=*p		*p:=a	
p在Rp中	MOV L, @R _p	1	MOV @R _p , a	2
p在Mp中	MOV L, M _p MOV L, @L	3	MOV L, M _p MOV @L, a	4
p在栈中	MOV L, d _p [SP] MOV L, @L	3	MOV L, d _p [SP] MOV @L, a	4

wenshli@bupt.edi

3. 转移语句

- 两种形式:
 - □ goto L
 - □ if E goto L
- 假设L所标识的三地址语句的目标代码首地址为L'。
- ■对于goto L, 生成的目标代码为 JMP L'
 - □如果在处理该 goto语句时,地址L'已经存在,则直接产生完整的目标指令即可;
 - □否则,需要先生成没有目标地址的JMP指令,待L'确定后再回填。

转移语句

- 对于 if E goto L,两种实现方式
 - □ 当目标寄存器的值满足以下几个条件之一时产生转移:结 果为负、为零、为正、非负、非零或非正。
 - >E的结果送入寄存器R
 - ▶判断R的值为正、负、还是零
 - >E为真,则转移到 L

if a < b goto L: a-b ==>R CJ < L

- □利用条件码指示计算结果或存入寄存器的值为正、负、还是零。 CMPa, b
 - >如: if a<b goto L
- 对于如下的语句序列

x := a - b

if x<0 goto L

MOV R₀, a
SUB R₀, b
MOV x, R₀
CJ< L

CJ< L

本章小结

- 设计代码生成程序时要考虑的问题
 - □输入、输出
 - □存储管理、寄存器分配
 - □目标机器相关问题(指令、寄存器、编址方式、寻址能力、寻址模式等)
 - □指令选择、计算顺序选择
- 基本块和流图
 - □基本块:具有原子性的语句序列
 - □基本块的划分:入口语句的确定
 - □流图:有向图,结点:基本块, 边:控制流

- 下次引用信息
 - □作用
 - □计算方法
- 代码生成程序
 - □寄存器描述器
 - □地址描述器
 - □寄存器分配函数 getreg
 - □代码生成算法

作业

9.1

