Estimation of the Long-run Error Variance in Nonparametric Regression with Time Series Errors

Marina Khismatullina ¹ Michael Vogt ²

EcoSta 2023

¹Erasmus University Rotterdam

²Ulm University

Introduction

Model

We observe a single time series $\{Y_t : 1 \le t \le T\}$ of length T. The observations come from the following model:

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t$$

- *m* is an unknown trend function on [0, 1];
- $\{\varepsilon_t : 1 \le t \le T\}$ is a zero-mean stationary and causal error process.

Model

We observe a single time series $\{Y_t : 1 \le t \le T\}$ of length T. The observations come from the following model:

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t$$

- *m* is an unknown trend function on [0, 1];
- $\{\varepsilon_t : 1 \le t \le T\}$ is a zero-mean stationary and causal error process.

Problem

Estimate the long-run error variance $\sigma^2 = \sum_{\ell=-\infty}^{\infty} \operatorname{Cov}(\varepsilon_0, \varepsilon_\ell)$.

Literature

Residual-based approach: estimate σ^2 from the residuals

$$\widehat{\varepsilon}_t = Y_t - \widehat{m}\left(\frac{t}{T}\right)$$

• AR(p) error processes (Truong, 1991; Shao and Yang, 2011; Qiu et al., 2013)

Literature

Residual-based approach: estimate σ^2 from the residuals

$$\widehat{\varepsilon}_t = Y_t - \widehat{m}\left(\frac{t}{T}\right)$$

• AR(p) error processes (Truong, 1991; Shao and Yang, 2011; Qiu et al., 2013)

Difference-based approach: estimate σ^2 from the ℓ -th differences $Y_t - Y_{t-\ell}$.

- AR(p) error processes (Hall and Van Keilegom, 2003)
- MA(m) error processes (Müller and Stadtmüller, 1988; Herrmann et al., 1992; Tecuapetla-Gómez and Munk, 2017)

Model

Estimate the long-run error variance $\sigma^2 = \sum_{\ell=-\infty}^{\infty} \operatorname{Cov}(\varepsilon_0, \varepsilon_\ell)$ of the error terms $\{\varepsilon_t\}$ in the model

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t,$$

$$\varepsilon_t = \sum_{j=1}^{p^*} a_j \varepsilon_{t-j} + \eta_t.$$

Estimate the long-run error variance $\sigma^2 = \sum_{\ell=-\infty}^{\infty} \operatorname{Cov}(\varepsilon_0, \varepsilon_\ell)$ of the error terms $\{\varepsilon_t\}$ in the model

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t,$$

where $m(\cdot)$ is Lipshitz and $\{\varepsilon_t\}$ is an AR (p^*) process of the form

$$\varepsilon_t = \sum_{j=1}^{p^*} a_j \varepsilon_{t-j} + \eta_t.$$

• a_1, a_2, a_3, \ldots are the unknown parameters;

Estimate the long-run error variance $\sigma^2 = \sum_{\ell=-\infty}^{\infty} \operatorname{Cov}(\varepsilon_0, \varepsilon_\ell)$ of the error terms $\{\varepsilon_t\}$ in the model

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t,$$

$$\varepsilon_t = \sum_{j=1}^{p^*} a_j \varepsilon_{t-j} + \eta_t.$$

- a_1, a_2, a_3, \ldots are the unknown parameters;
- η_t are i.i.d. innovations with $\mathbb{E}[\eta_t] = 0$ and $\mathbb{E}[\eta_t^2] = \nu^2$;

Estimate the long-run error variance $\sigma^2 = \sum_{\ell=-\infty}^{\infty} \operatorname{Cov}(\varepsilon_0, \varepsilon_\ell)$ of the error terms $\{\varepsilon_t\}$ in the model

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t,$$

$$\varepsilon_t = \sum_{j=1}^{p^*} a_j \varepsilon_{t-j} + \eta_t.$$

- a_1, a_2, a_3, \ldots are the unknown parameters;
- η_t are i.i.d. innovations with $\mathbb{E}[\eta_t] = 0$ and $\mathbb{E}[\eta_t^2] = \nu^2$;
- $p^* \in \mathbb{N} \cup \{\infty\}$ is unknown.

Estimate the long-run error variance $\sigma^2 = \sum_{\ell=-\infty}^{\infty} \operatorname{Cov}(\varepsilon_0, \varepsilon_\ell)$ of the error terms $\{\varepsilon_t\}$ in the model

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t,$$

$$\varepsilon_t = \sum_{j=1}^{p^*} a_j \varepsilon_{t-j} + \eta_t.$$

- a_1, a_2, a_3, \ldots are the unknown parameters;
- η_t are i.i.d. innovations with $\mathbb{E}[\eta_t] = 0$ and $\mathbb{E}[\eta_t^2] = \nu^2$;
- $p^{\star} \in \mathbb{N} \cup \{\infty\}$ is unknown. Two possible cases:
 - (A) p^* is not known but we know an upper bound p on it;
 - (B) or we neither know p^* nor an upper bound on it.

Estimate the long-run error variance $\sigma^2 = \sum_{\ell=-\infty}^{\infty} \operatorname{Cov}(\varepsilon_0, \varepsilon_\ell)$ of the error terms $\{\varepsilon_t\}$ in the model

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t,$$

$$\varepsilon_t = \sum_{j=1}^{p^*} a_j \varepsilon_{t-j} + \eta_t.$$

- a_1, a_2, a_3, \ldots are the unknown parameters;
- η_t are i.i.d. innovations with $\mathbb{E}[\eta_t] = 0$ and $\mathbb{E}[\eta_t^2] = \nu^2$;
- $p^{\star} \in \mathbb{N} \cup \{\infty\}$ is unknown. Two possible cases:
 - (A) p^* is not known but we know an upper bound p on it;
 - (B) or we neither know p^* nor an upper bound on it.

We assume that

$$A(z):=1-\sum_{j=1}^{\rho^{\star}}a_{j}z^{j}\neq0$$

for all complex numbers $|z| \le 1 + \delta$ with some small $\delta > 0$.

We assume that

$$A(z):=1-\sum_{j=1}^{p^{\star}}a_{j}z^{j}\neq0$$

for all complex numbers $|z| \le 1 + \delta$ with some small $\delta > 0$.

Therefore,

• the error process $\{\varepsilon_t\}$ is stationary and causal;

We assume that

$$A(z):=1-\sum_{j=1}^{p^{\star}}a_{j}z^{j}\neq0$$

for all complex numbers $|z| \le 1 + \delta$ with some small $\delta > 0$.

Therefore,

- the error process $\{\varepsilon_t\}$ is stationary and causal;
- the coefficients a_1, a_2, a_3, \ldots decay to zero exponentially fast;

We assume that

$$A(z):=1-\sum_{i=1}^{p^*}a_jz^j\neq 0$$

for all complex numbers $|z| \le 1 + \delta$ with some small $\delta > 0$.

Therefore,

- ullet the error process $\{\varepsilon_t\}$ is stationary and causal;
- the coefficients a_1, a_2, a_3, \ldots decay to zero exponentially fast;
- $\{\varepsilon_t\}$ has an MA(∞) representation of the form $\varepsilon_t = \sum_{k=0}^{\infty} c_k \eta_{t-k}$.

We assume that

$$A(z):=1-\sum_{j=1}^{p^{\star}}a_{j}z^{j}\neq0$$

for all complex numbers $|z| \le 1 + \delta$ with some small $\delta > 0$.

Therefore,

- ullet the error process $\{\varepsilon_t\}$ is stationary and causal;
- the coefficients a_1, a_2, a_3, \ldots decay to zero exponentially fast;
- $\{\varepsilon_t\}$ has an MA(∞) representation of the form $\varepsilon_t = \sum_{k=0}^{\infty} \frac{c_k}{n_{t-k}}$.

Estimation

Motivation for the estimator

If $\{\varepsilon_t\}$ is an AR (p^*) process, then the time series $\{\Delta_q \varepsilon_t\}$ of the differences $\Delta_q \varepsilon_t = \varepsilon_t - \varepsilon_{t-q}$ is an ARMA (p^*,q) process of the form

$$\Delta_q \varepsilon_t - \sum_{j=1}^{p^*} a_j \Delta_q \varepsilon_{t-j} = \eta_t - \eta_{t-q}.$$

Motivation for the estimator

If $\{\varepsilon_t\}$ is an AR (p^*) process, then the time series $\{\Delta_q \varepsilon_t\}$ of the differences $\Delta_q \varepsilon_t = \varepsilon_t - \varepsilon_{t-q}$ is an ARMA (p^*,q) process of the form

$$\Delta_q \varepsilon_t - \sum_{j=1}^{p^*} a_j \Delta_q \varepsilon_{t-j} = \eta_t - \eta_{t-q}.$$

Then, since the trend function $m(\cdot)$ is Lipshitz, $\Delta_q Y_t = Y_t - Y_{t-q}$ is approximately an ARMA (p^*,q) process.

Yule-Walker equations

For any differencing order $q \ge 1$, we have

$$\gamma_q(\ell) - \sum_{j=1}^{p^\star} a_j \gamma_q(\ell-j) = egin{cases} -
u^2 c_{q-\ell} & ext{ for } 1 \leq \ell < q+1, \\ 0 & ext{ for } \ell \geq q+1. \end{cases}$$

where

- $c_q = (c_{q-1}, \dots, c_{q-p})^{\top}$ are the coefficients from the MA(∞) expansion of $\{\varepsilon_t\}$;
- $\gamma_q = (\gamma_q(1), \dots, \gamma_q(p))^{\top}$ with $\gamma_q(\ell) = \text{Cov}(\Delta_q \varepsilon_t, \Delta_q \varepsilon_{t-\ell});$
- and Γ_q is the $p \times p$ covariance matrix $\Gamma_q = (\gamma_q(i-j) : 1 \le i, j \le p)$.

Yule-Walker equations

For any differencing order $q \ge 1$, we have

$$\gamma_q(\ell) - \sum_{j=1}^{p^\star} a_j \gamma_q(\ell-j) = egin{cases} -
u^2 c_{q-\ell} & ext{ for } 1 \leq \ell < q+1, \\ 0 & ext{ for } \ell \geq q+1. \end{cases}$$

where

- $c_q = (c_{q-1}, \dots, c_{q-p})^{\top}$ are the coefficients from the MA(∞) expansion of $\{\varepsilon_t\}$;
- $\gamma_q = (\gamma_q(1), \dots, \gamma_q(p))^{\top}$ with $\gamma_q(\ell) = \text{Cov}(\Delta_q \varepsilon_t, \Delta_q \varepsilon_{t-\ell});$
- and Γ_q is the $p \times p$ covariance matrix $\Gamma_q = (\gamma_q(i-j) : 1 \le i, j \le p)$.

In vector notation

$$\Gamma_q \mathbf{a} = \gamma_q + \nu^2 \mathbf{c}_q - \boldsymbol{\rho}_q$$

where
$$\rho_q = (\rho_q(1), \dots, \rho_q(p))$$
 with $\rho_q(\ell) = \sum_{j=p+1}^{p^*} a_j \gamma_q(\ell-j)$.

Yule-Walker equations

For any differencing order $q \ge 1$, we have

$$\gamma_q(\ell) - \sum_{j=1}^{p^\star} a_j \gamma_q(\ell-j) = egin{cases} -
u^2 c_{q-\ell} & ext{ for } 1 \leq \ell < q+1, \\ 0 & ext{ for } \ell \geq q+1. \end{cases}$$

where

- $c_q = (c_{q-1}, \dots, c_{q-p})^{\top}$ are the coefficients from the MA(∞) expansion of $\{\varepsilon_t\}$;
- $\gamma_q = (\gamma_q(1), \dots, \gamma_q(p))^{\top}$ with $\gamma_q(\ell) = \text{Cov}(\Delta_q \varepsilon_t, \Delta_q \varepsilon_{t-\ell});$
- and Γ_q is the $p \times p$ covariance matrix $\Gamma_q = (\gamma_q(i-j) : 1 \le i, j \le p)$.

In vector notation

$$\Gamma_q \mathbf{a} = \gamma_q + \nu^2 \mathbf{c}_q - \mathbf{\rho}_q$$

where
$$\rho_q = (\rho_q(1), \dots, \rho_q(p))$$
 with $\rho_q(\ell) = \sum_{j=p+1}^{p^*} a_j \gamma_q(\ell-j)$.

Estimator, first stage

Note

 $\Gamma_q {m a} pprox {m \gamma}_q$ for large values of q.

Estimator, first stage

Note

$$\Gamma_q \boldsymbol{a} pprox \boldsymbol{\gamma}_q$$
 for large values of q .

We construct the first-stage estimator by

$$\widetilde{\boldsymbol{a}}_q = \widehat{\boldsymbol{\Gamma}}_q^{-1} \widehat{\boldsymbol{\gamma}}_q,$$

where $\widehat{\Gamma}_q$ and $\widehat{\gamma}_q$ are constructed from the sample autocovariances

$$\widehat{\gamma}_q(\ell) = (T - q)^{-1} \sum_{t=q+\ell+1}^T \Delta_q Y_t \Delta_q Y_{t-\ell}.$$

$$\widetilde{\boldsymbol{a}}_q = \widehat{\boldsymbol{\Gamma}}_q^{-1} \widehat{\boldsymbol{\gamma}}_q$$

Problem

How to choose q?

$$\widetilde{\boldsymbol{a}}_q = \widehat{\boldsymbol{\Gamma}}_q^{-1} \widehat{\boldsymbol{\gamma}}_q$$

Problem

How to choose q?

(i) q should be large enough so that $\boldsymbol{c}_q = (c_{q-1}, \dots, c_{q-p})^{\top}$ is close to zero;

$$\widetilde{\boldsymbol{a}}_q = \widehat{\boldsymbol{\Gamma}}_q^{-1} \widehat{\boldsymbol{\gamma}}_q$$

Problem

How to choose q?

- (i) q should be large enough so that $\boldsymbol{c}_q = (c_{q-1}, \dots, c_{q-p})^{\top}$ is close to zero;
- (ii) q should not be too large to sufficiently eliminate the trend.

$$\widetilde{\boldsymbol{a}}_q = \widehat{\boldsymbol{\Gamma}}_q^{-1} \widehat{\boldsymbol{\gamma}}_q$$

Problem

How to choose q?

- (i) q should be large enough so that $\boldsymbol{c}_q = (c_{q-1}, \dots, c_{q-p})^{\top}$ is close to zero;
- (ii) q should not be too large to sufficiently eliminate the trend.

In case of AR(1), q = 20 is enough.

$$\widetilde{\boldsymbol{a}}_q = \widehat{\boldsymbol{\Gamma}}_q^{-1} \widehat{\boldsymbol{\gamma}}_q$$

Problem

How to choose q?

- (i) q should be large enough so that $\boldsymbol{c}_q = (c_{q-1}, \dots, c_{q-p})^{\top}$ is close to zero;
- (ii) q should not be too large to sufficiently eliminate the trend.

In case of AR(1), q = 20 is enough.

For the consistency, we need log $T \ll q \ll \sqrt{T}$.

Problem

If the trend m is pronounced, the estimator $\widetilde{\boldsymbol{a}}_q$ will have a strong bias.

Problem

If the trend m is pronounced, the estimator $\widetilde{\boldsymbol{a}}_q$ will have a strong bias.

Solution:

• Compute estimators \widetilde{c}_k of c_k based on $\widetilde{\boldsymbol{a}}_q$.

Problem

If the trend m is pronounced, the estimator $\widetilde{\boldsymbol{a}}_q$ will have a strong bias.

Solution:

- Compute estimators \widetilde{c}_k of c_k based on \widetilde{a}_q .
- Estimate the innovation variance ν^2 by $\widetilde{\nu}^2 = (2T)^{-1} \sum_{t=p+2}^T \widetilde{r}_t^2$, where $\widetilde{r}_t = \Delta_1 Y_t \sum_{j=1}^p \widetilde{a}_j \Delta_1 Y_{t-j}$.

Problem

If the trend m is pronounced, the estimator $\widetilde{\boldsymbol{a}}_q$ will have a strong bias.

Solution:

- Compute estimators \widetilde{c}_k of c_k based on $\widetilde{\boldsymbol{a}}_q$.
- Estimate the innovation variance ν^2 by $\widetilde{\nu}^2 = (2T)^{-1} \sum_{t=p+2}^T \widetilde{r}_t^2$, where $\widetilde{r}_t = \Delta_1 Y_t \sum_{j=1}^p \widetilde{a}_j \Delta_1 Y_{t-j}$.
- Estimate **a** by

$$\widehat{\boldsymbol{a}}_r = \widehat{\boldsymbol{\Gamma}}_r^{-1} (\widehat{\boldsymbol{\gamma}}_r + \widetilde{\boldsymbol{\nu}}^2 \widetilde{\boldsymbol{c}}_r).$$

Problem

If the trend m is pronounced, the estimator $\widetilde{\boldsymbol{a}}_q$ will have a strong bias.

Solution:

- Compute estimators \widetilde{c}_k of c_k based on $\widetilde{\boldsymbol{a}}_q$.
- Estimate the innovation variance ν^2 by $\widetilde{\nu}^2 = (2T)^{-1} \sum_{t=p+2}^T \widetilde{r}_t^2$, where $\widetilde{r}_t = \Delta_1 Y_t \sum_{j=1}^p \widetilde{a}_j \Delta_1 Y_{t-j}$.
- Estimate a by

$$\widehat{\boldsymbol{a}}_r = \widehat{\boldsymbol{\Gamma}}_r^{-1} (\widehat{\boldsymbol{\gamma}}_r + \widetilde{\boldsymbol{\nu}}^2 \widetilde{\boldsymbol{c}}_r).$$

• Average the estimators \hat{a}_r : $\hat{a} = \frac{1}{\bar{r} - \underline{r} + 1} \sum_{r=\underline{r}}^{r} \hat{a}_r$.

Estimator, second stage

Problem

If the trend m is pronounced, the estimator $\widetilde{\boldsymbol{a}}_q$ will have a strong bias.

Solution:

- Compute estimators \widetilde{c}_k of c_k based on $\widetilde{\boldsymbol{a}}_q$.
- Estimate the innovation variance ν^2 by $\widetilde{\nu}^2 = (2T)^{-1} \sum_{t=p+2}^T \widetilde{r}_t^2$, where $\widetilde{r}_t = \Delta_1 Y_t \sum_{j=1}^p \widetilde{a}_j \Delta_1 Y_{t-j}$.
- Estimate a by

$$\widehat{\boldsymbol{a}}_r = \widehat{\boldsymbol{\Gamma}}_r^{-1} (\widehat{\boldsymbol{\gamma}}_r + \widetilde{\boldsymbol{\nu}}^2 \widetilde{\boldsymbol{c}}_r).$$

- Average the estimators \hat{a}_r : $\hat{a} = \frac{1}{\bar{r} \underline{r} + 1} \sum_{r=r}^{\bar{r}} \hat{a}_r$.
- Estimate the long-run variance σ^2 by

$$\widehat{\sigma}^2 = \frac{\widehat{\nu}^2}{(1 - \sum_{j=1}^p \widehat{a}_j)^2}.$$

$$\widehat{\boldsymbol{a}}_r = \widehat{\boldsymbol{\Gamma}}_r^{-1} (\widehat{\boldsymbol{\gamma}}_r + \widetilde{\boldsymbol{\nu}}^2 \widetilde{\boldsymbol{c}}_r)$$

$$\widehat{\boldsymbol{a}}_r = \widehat{\boldsymbol{\Gamma}}_r^{-1} (\widehat{\boldsymbol{\gamma}}_r + \widetilde{\boldsymbol{\nu}}^2 \widetilde{\boldsymbol{c}}_r)$$

(i) r is a much smaller differencing order than q;

$$\widehat{\boldsymbol{a}}_r = \widehat{\boldsymbol{\Gamma}}_r^{-1} (\widehat{\boldsymbol{\gamma}}_r + \widetilde{\boldsymbol{\nu}}^2 \widetilde{\boldsymbol{c}}_r)$$

- (i) r is a much smaller differencing order than q;
- (ii) $r \ge 1$ is sufficient.

$$\widehat{\boldsymbol{a}}_r = \widehat{\boldsymbol{\Gamma}}_r^{-1} (\widehat{\boldsymbol{\gamma}}_r + \widetilde{\boldsymbol{\nu}}^2 \widetilde{\boldsymbol{c}}_r)$$

- (i) r is a much smaller differencing order than q;
- (ii) $r \ge 1$ is sufficient.

$$\widehat{\boldsymbol{a}} = \frac{1}{\overline{r} - \underline{r} + 1} \sum_{r = \underline{r}}^{\overline{r}} \widehat{\boldsymbol{a}}_r$$

Problem

How to choose \underline{r} and \overline{r} ?

$$\widehat{\boldsymbol{a}}_r = \widehat{\boldsymbol{\Gamma}}_r^{-1} (\widehat{\boldsymbol{\gamma}}_r + \widetilde{\boldsymbol{\nu}}^2 \widetilde{\boldsymbol{c}}_r)$$

- (i) r is a much smaller differencing order than q;
- (ii) $r \ge 1$ is sufficient.

$$\widehat{\boldsymbol{a}} = \frac{1}{\overline{r} - \underline{r} + 1} \sum_{r=\underline{r}}^{\overline{r}} \widehat{\boldsymbol{a}}_r$$

Problem

How to choose \underline{r} and \overline{r} ?

We choose them to be fixed (small) natural numbers. Simulations in the paper.

Theoretical properties

Performance:

• Our estimator \widehat{a} produces accurate estimation results even when the AR polynomial $A(z) = 1 - \sum_{j=1}^{p^*} a_j z^j$ has a root close to the unit circle.

Theoretical properties

Performance:

- Our estimator \hat{a} produces accurate estimation results even when the AR polynomial $A(z) = 1 \sum_{j=1}^{p^*} a_j z^j$ has a root close to the unit circle.
- Our pilot estimator \widetilde{a}_q tends to have a substantial bias when the trend m is pronounced. The second-stage estimator \widehat{a} reduces this bias considerably.

Theoretical properties

Performance:

- Our estimator \widehat{a} produces accurate estimation results even when the AR polynomial $A(z) = 1 \sum_{j=1}^{p^*} a_j z^j$ has a root close to the unit circle.
- Our pilot estimator \tilde{a}_q tends to have a substantial bias when the trend m is pronounced. The second-stage estimator \hat{a} reduces this bias considerably.

Proposition

Our estimators \tilde{a}_q , \hat{a} and $\hat{\sigma}^2$ are \sqrt{T} -consistent.

Setting:

- data from the model $Y_t = m(t/T) + \varepsilon_t$, where ε_t is an AR(1) process of the form $\varepsilon_t = a_1\varepsilon_{t-1} + \eta_t$;
- $a_1 \in \{-0.95, -0.75, -0.5, -0.25, 0.25, 0.5, 0.75, 0.95\};$
- sample size T is 500;
- the trend function is linear $m(u) = \beta u$ with two different β depending on $Var(\varepsilon_t)$;
- we generate 1000 data samples;
- $q = 25, \underline{r} = 1, \overline{r} = 10;$
- tuning parameters for the estimators from Hall and Van Keilegom (2003) are $m_1 = 20$ and $m_2 = 30$.

Figure 1: MSE values for the estimators \widehat{a} , \widehat{a}_{HvK} , \widehat{a}_{oracle} and $\widehat{\sigma}^2$, $\widehat{\sigma}^2_{HvK}$, $\widehat{\sigma}^2_{oracle}$ in the simulation scenarios for AR(1) with a moderate trend.

Figure 2: MSE values for the estimators \widehat{a} , \widehat{a}_{HvK} , \widehat{a}_{oracle} and $\widehat{\sigma}^2$, $\widehat{\sigma}^2_{HvK}$, $\widehat{\sigma}^2_{oracle}$ in the simulation scenarios for AR(1) with a pronounced trend.

Figure 3: Histograms of the estimators \widehat{a} , \widehat{a}_{HvK} , \widehat{a}_{oracle} and $\widehat{\sigma}^2$, $\widehat{\sigma}^2_{HvK}$, $\widehat{\sigma}^2_{oracle}$ in the AR(1) model with $a_1=-0.95$ and moderate trend.

Figure 4: Histograms of the estimators \widehat{a} , \widehat{a}_{HvK} , \widehat{a}_{oracle} and $\widehat{\sigma}^2$, $\widehat{\sigma}^2_{HvK}$, $\widehat{\sigma}^2_{oracle}$ in the AR(1) model with $a_1 = 0.25$ and pronounced trend.

Conclusion

Conclusion

- We constructed the long-run variance estimator for a wide range of error processes.
- We proved the \sqrt{T} -consistency for our estimators.
- Our estimator produces accurate estimation results even when the AR polynomial has a root close to the unit circle.
- In the simulations our estimators tend to perform well even in the presence of a strong trend.

References

Khismatullina, M., Vogt, M. (2020)

Multiscale inference and long-run variance estimation in nonparametric regression with time series errors.

Journal of the Royal Statistical Society: Series B, 82 5-37.

Hall, P. and Van Keilegom, I. (2003).

Using difference-based methods for inference in nonparametric regression with time series errors.

Journal of the Royal Statistical Society: Series B, 65 443-456.

Thank you!