```
Expectation: \mathbb{E}[g(Y)] = \sum_{y} g(y)p(y) discrete, \int_{-\infty}^{\infty} g(y)f(y)dy continuous; \mathbb{E}[\overline{Y}^2] = \mu^2 + \frac{\sigma^2}{\eta}
\mathbb{V}[Y] = \mathbb{E}[(Y - \mathbb{E}[Y])^2] = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2, \ \mathbb{V}[c] = 0, \ \mathbb{V}[cY] = c^2\mathbb{V}[Y], \ \mathbb{V}[X + Y] = \mathbb{V}[X] + 2\mathrm{Cov}[X, Y] + \mathbb{V}[Y] = \mathbb{V}[X] + \mathbb{V}[Y] \text{ if } X \text{ and } Y = 0
indep, \mathbb{V}[aX + bY + c] = a^2 \mathbb{V}[X] + 2ab \operatorname{Cov}[X, Y] + b^2 \mathbb{V}[Y]
\mathbb{V}[\overline{Y}] = 1/n^2 \mathbb{V}[\sum Y_i] = 1/n^2 \left( \sum \mathbb{V}[Y_i] + 2 \sum \sum_{1 \leq i \leq j \leq n} \mathrm{Cov}(Y_i, Y_j) \right) = 1/n^2 \sum \mathbb{V}[Y_i] = n\sigma^2/n^2 = \sigma^2/n^2
Covariance and correlation:
 \begin{aligned} \operatorname{Cov}[Y_1,Y_2] &= \mathbb{E}[Y_1Y_2] - \mathbb{E}[Y_1]\mathbb{E}[Y_2], & \operatorname{Corr}[Y_1,Y_2] &= \frac{\operatorname{Cov}[Y_1,Y_2]}{\sqrt{\mathbb{V}[Y_1]\mathbb{V}[Y_2]}} \\ \operatorname{Joint pdf symmetric on } Y_1 \text{ and } Y_2 &\Rightarrow \text{ same marginal distribs \& } \mathbb{E} \Rightarrow \text{ no correlation.}  \end{aligned} 
Standard deviation of Y = \sqrt{\mathbb{V}[Y]}
Sample std deviation: s = \sqrt{s^2} = \sqrt{\sum (Y - \overline{Y})^2/(n-1)}; sample variance s^2 unbiased estimator of \sigma^2
\mathbf{MSE}(\hat{\theta}): \mathbb{E}[(\hat{\theta} - \theta)^2] = \mathbb{E}[\hat{\theta}^2] - 2\theta \mathbb{E}[\hat{\theta}] + \theta^2; \mathbb{V}[\hat{\theta}] = \mathrm{MSE}[\hat{\theta}] if \hat{\theta} unbiased estimator of \theta
Expected vals and std errors of some common point estimators
   target param \theta | sample size(s) | point estimator \hat{\theta}
         2-standard-error: 2\sigma_{\hat{a}}
100(1-\alpha)\% confidence interval:
P(a \le U \le b) = 1 - \alpha, \ P(U \le a) = \int_0^a f_U(u) du = P(U \ge b) = \int_b^\infty f_U(u) du = \alpha/2
In large samples, estimators have normal sampling distributions: CI = \hat{\theta} \pm z_{\alpha/2}\sigma_{\hat{\theta}}, z_{\alpha/2} critical value
Small-sample CIs:
for \mu: CI = \overline{Y} \pm t_{\alpha/2}(S/\sqrt{n}), \nu = df = n-1
for \mu_1 - \mu_2: CI = \overline{Y}_1 - \overline{Y}_2 \pm t_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \nu = n_1 + n_2 - 2 and pooled sample estimator/variance S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}; S_p^2 unbiased and consistent est. of \sigma^2, \mathbb{E}[S_p^2] = \sigma^2, \mathbb{V}[S_p^2] = \frac{2\sigma^4}{n_1 + n_2 - 2} = \frac{\sigma^4}{n - 1}
CI for \sigma^2: \left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}}\right), \nu=n
Choosing sample size: Solve z_{\alpha/2}\sigma_{\hat{\theta}}=B for n, with B= desired bound
Show U pivotal qty: Show F_U(u) indep of \theta, e.g. U = Y/\theta, F_U(u) = P(U \le u) = P(Y \le \theta u) = 2u - u^2 0 < u < 1, indep of \theta
Cdf to pdf: F_Y(y) = \int_0^y f_Y(t) dt
Order statistics: f_{(n)}(y) = nF(y)^{n-1}f(y)
Efficiency: eff(\hat{\theta}_1, \hat{\theta}_2) = \mathbb{V}[\hat{\theta}_2]/\mathbb{V}[\hat{\theta}_1]
Consistency:
\hat{\theta} unbiased and \lim_{n\to\infty} \mathbb{V}[\hat{\theta}] = 0
\hat{\theta} \to \theta \text{ and } \hat{\theta}' \to \theta' \Rightarrow \hat{\theta} \pm \hat{\theta}' \to \theta \pm \theta', \hat{\theta} \times \hat{\theta}' \to \theta \times \theta', \hat{\theta}/\hat{\theta}' \to \theta/\theta' \text{ if } \theta' \neq 0, f(\hat{\theta})(\theta) \text{ if } f \text{ real-valued fn continuous at } \theta
\mathbf{Central \ Limit \ Theorem:} \ U_n = \frac{\sum_{i=1}^{n} Y - n\mathbb{E}[Y]}{\sqrt{\mathbb{V}[Y]n}} = \frac{\sum_{i=1}^{n} Y - n\mu}{\sigma\sqrt{n}} = \frac{\overline{Y} - \mathbb{E}[Y]}{\sqrt{\mathbb{V}[Y]/n}} \to \text{std Normal distr.} \ W_n \to 1 \Rightarrow U_n/W_n \to \text{std Normal distr.}
Sufficiency: U sufficient for \theta if
P(Y_1 = y_1, ..., Y_n = y_n | U = u) = P(Y_1 = y_1, ..., Y_n = y_n, U = u) / P(U = u) indep of \theta
Factorization criterion proving sufficiency:
L(\theta) = f or p(y_1, ..., y_n | \theta) = \prod_{i=1}^n f(y_i | \theta) if iid = g(u, \theta) \times h(y_1, ..., y_n), g fin of only u and \theta, h not fin of \theta
Rao-Blackwell Theorem: \hat{\theta} unbiased est. of \theta and \mathbb{V}[\hat{\theta}] < \infty and U sufficient stat. for \theta \Rightarrow \hat{\theta}^* = \mathbb{E}[\hat{\theta}|U], \mathbb{E}[\hat{\theta}^*] = \theta, \mathbb{V}[\hat{\theta}^*] < \mathbb{V}[\hat{\theta}]
Typically \hat{\theta}^* is MVUE of \theta
Minimum variance unbiased estimation (MVUE): Some fn of sufficient U, h(U), \mathbb{E}[h(U)] = \theta \Rightarrow h(U) MVUE of \theta
MLE: Solve \frac{\partial L(\theta)}{\partial \theta} = 0 for \theta
Law of Large Numbers: Sample vals converges to theoretical vals e.g. \overline{Y} \to \mathbb{E}[Y] Bernoulli(p): p(y) = p^y(1-p)^{1-y}, \mathbb{E}[Y] = p^y(1-p)^{1-y}
p, \mathbb{V}[Y] = p(1-p)
Binomial(n,p): (a+b)^n = \sum_{j=0}^n \binom{n}{j} a^j b^{n-j}, \ p(y) = \binom{n}{y} p^y (1-p)^{n-y}, \ \mathbb{E}[Y] = np, \ \mathbb{V}[Y] = np(1-p) y = 0: n Poisson(\lambda): p(y) = \frac{\lambda^y}{y!} e^{-\lambda}, \ \mathbb{E}[Y] = \mathbb{V}[Y] = \lambda y = 0, 1, ...; \ m(t) = \exp\{\lambda(e^t - 1)\}
\sum_{i=1}^{n} Y_i \sim \text{Poisson}(n\lambda)
Power family (\alpha, \theta): f(y) = \alpha y^{\alpha-1}/\theta^{\alpha} 0 \le y \le \theta, 0 otherwise, F(y) = \frac{y^{\alpha}}{\theta^{\alpha}}, \mathbb{E}[Y] = \alpha \theta/(\alpha+1)
Uniform(\theta_1, \theta_2): f(y) = \frac{1}{\theta_2 - \theta_1} y \in (\theta_1, \theta_2), 0 otherwise, F(y) = \frac{y - \theta_1}{\theta_2 - \theta_1}, \mathbb{E}[Y] = \frac{\theta_1 + \theta_2}{2}, \mathbb{V}[Y] = \frac{(\theta_2 + \theta_1)^2}{12}

Gamma(\alpha, \beta): f(y) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} y^{\alpha - 1} e^{-y/\beta} y \ge 0, 0 otherwise
\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt, \qquad \Gamma(n) = (n - 1)\Gamma(n - 1) = (n - 1)!, \qquad \Gamma(1/2) = \sqrt{\pi}
\mathbb{E}[Y] = \alpha \beta, \qquad \mathbb{V}[Y] = \alpha \beta^2, \qquad \mathbb{E}[Y^2] = \alpha (\alpha + 1) \beta^2, \ \mathbb{E}[Y^3] = \alpha (\alpha + 1) (\alpha + 2) \beta^2, \dots \qquad m(t) = \left(\frac{1}{1 - \beta t}\right)^{\alpha}
```

Chi-squared(ν): $\alpha = \nu/2, \ \beta = 2, \ \nu = 1, 2, ...$

Exponential(β): $\alpha = \nu/2$, $\beta = 2$, $\nu = 1, 2, ...$ Exponential(β): $\alpha = 1$, standard $\beta = 1$, $f(y) = \frac{1}{\beta}e^{y/\beta}$, $F(y) = 1 - e^{-y/\beta}$, $\mathbb{E}[Y] = \beta$, $\mathbb{V}[Y] = \beta^2$ Normal(μ , σ^2): $f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\}$, $F(y) = \int_{-\infty}^{y} f(t) dt$; $\mathbb{E}[Y] = \mu$, $\mathbb{V}[Y] = \sigma^2$

Standard Normal (μ, σ^2) : $\mu = 0$, $\sigma = 1$; $f(y) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{y^2}{2}\right\}$

Beta: $f(y) = \frac{1}{B(\alpha,\beta)} y^{\alpha-1} (1-y)^{\beta-1}, y \in [0,1], 0 \text{ otherwise};$ $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} dy$ $\alpha = \beta = 1 \Rightarrow Y \sim \text{Uniform}(0, 1)$

Weibull (α, β) : $f(y) = \alpha \beta y^{\alpha-1} e^{-\beta y^{\alpha}}$ $y \ge 0$, 0 otherwise, $F(y) = 1 - e^{-\beta y^{\alpha}}$, $\mathbb{E}[Y] = \frac{\Gamma(1+1/\alpha)}{\beta^{1/\alpha}}$, $\mathbb{V}[Y] = \frac{\Gamma(1+2/\alpha) - \Gamma(1+1/\alpha)^2}{\beta^{2/\alpha}}$

Table 4 Normal Curve Areas Standard normal probability in right-hand tail (for negative values of z, areas are found by symmetry)

	Second decimal place of z												
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09			
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641			
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247			
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859			
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483			
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121			
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776			
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451			
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148			
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867			
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611			
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379			
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170			
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985			
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823			
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0722	.0708	.0694	.0681			

1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0352	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
2.9	.0019	.0018	.0017	.0017	.0016	.0016	.0015	.0015	.0014	.0014
3.0	.00135									

.000 233 .000 031 7

4.0 4.5

 $.000\,003\,40$.000 000 287

From R. E. Walpole, Introduction to Statistics (New York: Macmillan, 1968).

Table 5 Percentage Points of the t Distributions

			I_{cc}								
t.100	t,050	t,025	t _{.010}	t.005	df	1.337	1.746	2.120	2.583	2.921	16
100	- 2000	-3325	010	005		1.333	1.740	2.110	2.567	2.898	17
3.078	6.314	12.706	31.821	63.657	1	1.330	1.734	2.101	2.552	2.878	18
1.886	2.920	4.303	6.965	9.925	2	1.328	1.729	2.093	2.539	2.861	19
1.638	2.353	3.182	4.541	5.841	3	1.325	1.725	2.086	2.528	2.845	20
1.533	2.132	2.776	3.747	4.604	4	1.323	1.721	2.080	2.518	2.831	21
1.476	2.015	2.571	3.365	4.032	5	1.321	1.717	2.074	2.508	2.819	22
1.440	1.943	2.447	3.143	3.707	6	1.319	1.714	2.069	2.500	2.807	23
1.415	1.895	2.365	2.998	3.499	7	1.318	1.711	2.064	2.492	2.797	24
1.397	1.860	2.306	2.896	3.355	8	1.316	1.708	2.060	2.485	2.787	25
1.383	1.833	2.262	2.821	3.250	9	1.315	1.706	2.056	2.479	2.779	26
1.372	1.812	2.228	2.764	3.169	10	1.314	1.703	2.052	2.473	2.771	27
1.363	1.796	2,201	2.718	3.106	11	1.313	1.701	2.048	2.467	2.763	28
1.356	1.782	2,179	2.681	3.055	12	1.311	1.699	2.045	2.462	2.756	29
1.350	1.771	2.160	2.650	3.012	13	1.282	1.645	1.960	2.326	2.576	inf.
1.345	1.761	2.145	2.624	2.977	14	From "Table	e of Percenta	ge Points of	the t-Distribu	tion." Comp	ated by
1.341	1.753	2.131	2.602	2.947	15			netrika, Vol. 3:			0)

Table 6 Percentage Points of the χ^2 Distributions

Table 6 (Continued)

		0	Χα			X _{0.100}	X _{0.050}	X _{0.025}	X _{0.010}	X0.005	df
df	$\chi^{2}_{0.995}$	$\chi^{2}_{0.990}$	$\chi^{2}_{0.975}$	$\chi^{2}_{0.950}$	$\chi^2_{0.900}$	2.70554	3.84146	5.02389	6.63490	7.87944	1
1	0.0000393	0.0001571	0.0009821	0.0039321	0.0157908	4.60517	5.99147	7.37776	9.21034	10.5966	2
2	0.0100251	0.0201007	0.0506356	0.102587	0.210720	6.25139	7.81473	9.34840	11.3449	12.8381	3
3 4	0.0717212 0.206990	0.114832 0.297110	0.215795 0.484419	0.351846 0.710721	0.584375 1.063623	7.77944	9.48773	11.1433	13.2767	14.8602	4
5 6 7 8 9	0.411740 0.675727 0.989265 1.344419 1.734926	0.554300 0.872085 1.239043 1.646482 2.087912	0.831211 1.237347 1.68987 2.17973 2.70039	1.145476 1.63539 2.16735 2.73264 3.32511	1.61031 2.20413 2.83311 3.48954 4.16816	9.23635 10.6446 12.0170 13.3616 14.6837	11.0705 12.5916 14.0671 15.5073 16.9190	12.8325 14.4494 16.0128 17.5346 19.0228	15.0863 16.8119 18.4753 20.0902 21.6660	16.7496 18.5476 20.2777 21.9550 23.5893	5 6 7 8 9
10	2.15585	2.55821	3.24697	3.94030	4.86518	15.9871	18.3070	20.4831	23.2093	25.1882	10