E. 妙妙網路城

Description

又到了四年一度的地方首長選戰對決,各地候選人摩拳擦掌,準備角逐百里侯大位。身為割馬籃共和國首長的妙妙姊也不例外,預計在這最後的時間衝刺建設,以實質的政績求選票、拚連任。根據妙妙姊的幕僚指出,在現今的 5G 時代,最好的建設就是超讚的網路速度。因次這次妙妙姊決定聽取建議,為國內各地鋪設大量光纖網路,讓所有居民都能享有高速的上網體驗。

割馬籃共和國是由有 N 座城鎮所組成,其中編號 1 城鎮是政府所在地,亦是網路供應的源頭。在政府宣傳招商後,若干家廠商總計提供了 M 條光纖建設方案,每條方案包含以下資訊:

- a_i, b_i :代表該方案連接城鎮 a_i 與城鎮 b_i 。
- c_i :代表該方案是來自編號 c_i 廠商。

妙妙姊必須選定一些建設方案,使得所有城鎮都能透過數條光纖連接到城鎮 1,以便獲取超高速網路。然而建設這些光纖的費用跟妙妙姊一樣奇妙,或許是編號相近的廠商能更加順利合作的關係,建設費用竟然取決選定的廠商編號全距。換句話說,若 S 為選定方案的集合,則建設費用 P 為

$$P = \max(c_i) - \min(c_i), \quad c_i \in S$$

也就是編號最大的廠商減掉編號最小的廠商。

為了割馬籃共和國著想,避免官商勾結,花大錢做小事。請你幫妙妙姊計算看看, 最少需要花費多少建設費用才能將所有城鎮都連接到城鎮 1?

Input

第一行包含兩個正整數 N, M,分別代表城鎮與建設方案數量。

接下來 M 行,每行有三個正整數 a_i, b_i, c_i ,代表該方案連接城鎮 a_i 與 b_i ,並且來自編號 c_i 廠商。

各變數範圍限制如下:

- $2 \le N \le 10^5$
- $1 \le M \le 2 \times 10^5$
- $1 \le a_i, b_i \le N$
- $a_i \neq b_i$
- $1 \le c_i \le 100$
- 保證所有城鎮必定可以透過數條方案連接到城鎮 1

Output

請輸出一個整數代表最小的建設花費。

Sample 1

Input	Output
4 5	1
1 2 1	
1 3 3	
2 3 2	
2 4 3	
3 4 4	

Sample 2

Input	Output
9 14	3
1 2 2	
1 4 3	
1 5 5	
1 7 1	
2 3 5	
2 4 1	
3 5 1	
4 7 4	
4 8 2	
4 9 5	
5 6 7	
5 7 7	
6 7 3	
7 8 6	

Sample 3

Input	Output
6 11	0
1 2 1	
1 3 1	
1 4 1	
1 5 1	
1 6 1	
1 6 2	
1 6 3	
2 3 3	
3 4 4	
4 5 5	
5 6 6	

配分

在一個子任務的「測試資料範圍」的敘述中,如果存在沒有提到範圍的變數,則此變數的範圍為 Input 所描述的範圍。

子任務編號	子任務配分	測試資料範圍
0	0%	範例測資
1	3%	$1 \le a_i \le 2$
2	9%	$1 \le a_i \le 10, \ 1 \le M \le 2 \times 10^3$
3	15%	$1 \le a_i \le 10, \ 1 \le M \le 2 \times 10^4$
4	28%	$1 \le a_i \le 10$
5	33%	$1 \le M \le 2 \times 10^4$
6	12%	無額外限制

Hint

範例一圖樣如下

範例二圖樣如下

範例三圖樣如下

