Lab Talk #4

April 3, 2023

Ozgur Taylan Turan

"Learning" Learning Curves

Introduction

Learning Curves

- Not Training Curves
- Generalization Performance for a given N number of training points

Learning Curves

- Not Training Curves
- Generalization Performance for a given N number of training points

Learning Curves "formally"

•
$$\bar{\mathcal{R}}(\mathcal{A}, N) = \underset{\mathcal{D}_N}{\mathbb{E}} \mathcal{R}(\mathcal{A}(\mathcal{D}_N)))$$

$$\mathcal{D}_N := (x, y)_{i=1}^N$$

$$\mathcal{A}(\mathcal{D}_N) \to h$$

$$\mathcal{R}(h) := \int \mathcal{L}(y, \hat{y}) d\mathcal{P}_{\mathcal{D}_N}$$

Introduction Problem Definition Initial Questions Plans

Learning Curves Importance

- How much data is enough?
- What is you generalization performance for a given N'
- Model Selection -> Hyper-parameter selection...

Introduction Problem Definition Initial Questions Plans

Learning Curves Importance

- How much data is enough?
- What is you generalization performance for a given N?
- Model Selection -> Hyper-parameter selection...

Learning Curves Importance

- How much data is enough?
- What is you generalization performance for a given N'
- Model Selection -> Hyper-parameter selection...

Learning Curves Extrapolation

- Parametric curve fitting (e.g. power law, exponential and logarithmic models)
- Marco's presentation about parametric fitting being really tough!
- Non-monotonic learning curves.

¹M. Loog and T. J. Viering. "A Survey of Learning Curves with Bad Behavior: Or How More Data Need Not Lead to Better Performance". In: (), p. 16

Learning Curves Extrapolation

- Parametric curve fitting (e.g. power law, exponential and logarithmic models)
- Marco's presentation about parametric fitting being really tough!
- Non-monotonic learning curves.

¹ M. Loog and T. J. Viering. "A Survey of Learning Curves with Bad Behavior: Or How More Data Need Not Lead to Better Performance". In: (), p. 16

Learning Curves Extrapolation

- Parametric curve fitting (e.g. power law, exponential and logarithmic models)
- Marco's presentation about parametric fitting being really tough!
- Non-monotonic learning curves.

τωDelft O.T. Turan 7/18

¹ M. Loog and T. J. Viering. "A Survey of Learning Curves with Bad Behavior: Or How More Data Need Not Lead to Better Performance". In: (), p. 16

Research Questions

Question 1. What is the performance gain of a completely data-driven learning curve extrapolation compared to conventional parametric learning curve fitting?

Question 2. Performance of a data-driven learning curve for non-monotone curves?

8 / 18

Problem Definition

Learning Problem

For a learning task T_i

•
$$\mathcal{R} = \mathcal{C}(N) + \varepsilon$$
,

- $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- IH Reproducing Hilbert Space
- M Model
- M Model with additional functions
- ψ_v additional available functions

troduction Problem Definition Initial Questions Plans

Learning Problem

With the objective as,

•
$$\hat{\mathcal{M}} = \min_{\mathcal{M} \in \mathbb{H}} \mathcal{L}(\mathcal{M}, \mathcal{R}) + g(||\mathcal{M}||_{\mathbb{H}})$$

Kernel Ridge learner is obtained via Nonparametric Representer Theorem¹

•
$$\mathcal{M}(\cdot) = \sum_{i=1}^{\mathcal{Z}} \alpha_{i} k(\cdot, \mathcal{D}_{N_{i}})$$

•
$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

- IH Reproducing Hilbert Space
- M Model
- M Model with additional functions
- ψ_p additional available functions

UDelft O.T. Turan 10 / 18

¹B. Schölkopf and A. J. Smola (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning. Cambridge, Mass: MIT Press. 626 pp. ISBN: 978-0-262-19475-4

ntroduction Problem Definition Initial Questions Plans

Learning Problem

With the objective as,

•
$$\hat{\mathcal{M}} = \min_{\tilde{\mathcal{M}} \in \mathbb{H}} \mathcal{L}(\tilde{\mathcal{M}}, \mathcal{R}) + g(||\mathcal{M}||_{\mathbb{H}})$$

If you assume $\tilde{\mathcal{M}}=\mathcal{M}+h$ where $h\in span\{\psi_p\}$ and $\{\psi_p\}_{p=1}^{\mathcal{Z}}$ via Semi-parametric Representer Theorem ¹

•
$$\tilde{\mathcal{M}}(\cdot) = \sum_{i}^{Q} \alpha_{i} k(\cdot, N_{i}) + \sum_{j}^{M} \beta_{j} \psi_{j}(\cdot)$$

- $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- IH Reproducing Hilbert Space
- M Model
- ullet $ilde{\mathcal{M}}$ Model with additional functions
- ψ_p additional available functions

O.T. Turan

¹B. Schölkopf and A. J. Smola (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning. Cambridge, Mass: MIT Press. 626 pp. ISBN: 978-0-262-19475-4

troduction Problem Definition Initial Questions Plans

Learning Problem

If you assume $\tilde{\mathcal{M}}=\mathcal{M}+h$ where $h\in span\{\psi_p\}$ and $\{\psi_p\}_{p=1}^{\mathcal{Z}}$ via Semi-parametric Representer Theorem ¹

•
$$\tilde{\mathcal{M}}(\cdot) = \sum_{i}^{Q} \alpha_{i} k(\cdot, N_{i}) + \sum_{j}^{M} \beta_{j} \psi_{j}(\cdot)$$

¹B. Schölkopf and A. J. Smola (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning. Cambridge, Mass: MIT Press. 626 pp. ISBN: 978-0-262-19475-4

ntroduction Problem Definition Initial Questions Plans

Learning Problem

Learning Curve for noisy data, unknown target function and M=2

Initial Questions

Initial Questions

Significance of α

•
$$\mathcal{M}_1 := \sum_{i}^{M} \beta_i \psi_i(\cdot)$$

•
$$\mathcal{M}_2 := \sum_{i}^{Q} \alpha_i k(\cdot, N_i) + \sum_{j}^{M} \beta_j \psi_j(\cdot)$$

•
$$\mathcal{M}_3 := \sum_i^Q \alpha_i k(\cdot, N_i)$$

Statistical Hypothesis Testing

- t test
- f test
- chi square test
- Wilcovon Rank-Sum
- Cramer Von Misses

Significance of α

•
$$\mathcal{M}_1 := \sum_i^M \beta_i \psi_i(\cdot)$$

•
$$\mathcal{M}_2 := \sum_{i}^{Q} \alpha_i k(\cdot, N_i) + \sum_{j}^{M} \beta_j \psi_j(\cdot)$$

•
$$\mathcal{M}_3 := \sum_i^Q \alpha_i k(\cdot, N_i)$$

Controlled Environment (σ , psi look at the Extrapolation+Interpolation Error populations. Informative ψ

- All combinations are significantly different $\rightarrow \sigma = 0$
- $\mathcal{M}_1 \mathcal{M}_2$ not different, but other combinations are different $\rightarrow sigma \neq$

Significance of α

Final verdict: Go with the more flexible method!

- Using the raw curves
- Extracting information from learning curves...
- Functional ($\mathbb{R}^d \to \mathbb{R}$) Analysis
- equal spacing, same region etc...

- Using the raw curves
- Extracting information from learning curves...
- Functional ($\mathbb{R}^d \to \mathbb{R}$) Analysis
- equal spacing, same region etc...

- ullet Functional ($\mathbb{R}^d o \mathbb{R}$) Analysis
- equal spacing, same region etc...

• Functional ($\mathbb{R}^d \to \mathbb{R}$) Analysis

Final verdict: functional PCA usage is

equal spacing, same region etc...

especially important for noisy curves due to smoothing introduced!

Introduction Problem Definition Initial Questions Plans

How does it look now?

Curve Fitting Problems

- Marco's talk
- $p(x, a, b, c) := a * e^{(b*x)} + c$

- De Facto → Levenberg-Marquardt method (Gradient Descent + Gauss Newton)
- Playing with the internal optimizer parameters. (Not helping!)

Curve Fitting Problems

- Marco's talk
- $p(x,a,b,c) := a * e^{(b*x)} + c$

- De Facto → Levenberg–Marquardt method (Gradient Descent + Gauss Newton)
- Playing with the internal optimizer parameters. (Not helping!)

Curve Fitting Problems

- Marco's talk
- $p(x, a, b, c) := a * e^{(b*x)} + c$

- De Facto → Levenberg-Marquardt method (Gradient Descent + Gauss Newton)
- Playing with the internal optimizer parameters. (Not helping!)

Final verdict: Try various optimizers and various runs get the best one!

ion initial guestions

Plans

ŤuDelft

Plans

Introduction Problem Definition Initial Questions Plans

To Do

- Generating learning curve data
- Comparing performance of semi-parametric kernel ridge to parametric curve fitting in vari/us settings. (e.g. changing hyper-parameters, $\mathcal{P}_{X,Y}$, and learners...)

¹M. Loog and T. J. Viering. "A Survey of Learning Curves with Bad Behavior: Or How More Data Need Not Lead to Better Performance". In: (), p. 16

Plans

Thanks!