Камен Ищев, *Теория на автоматичното управление*, 2000, стр.5-164.

1. САУ. Основни понятия

Система – съвкупност от взаимосвързани компоненти - динамична система (едномерна, многомерна)

1. САУ. Основни понятия

2. Видове системи

- (а) едномерни и многомерни
- (б) линейни и нелинейни: принципът на суперпозицията
 - адитивност:

$$u_1, u_2$$
 $u_1 + u_2$
 y_1, y_2
 $y_1 + y_2$
 $u_1 \to y_1, u_2 \to y_2$
 $y_1 + y_2$
 $y_1 + y_2$

XOMOFEHHOCT:

$$Cu_1 \rightarrow Cy_1$$

- (в) стационарни и нестационарни
- (г) непрекъснати и дискретни

1. САУ. Основни понятия

- 3. Системи за управление осъществяват *целенасочени* въздействия с цел да се осигури (подобри) функционирането на обекта за управление.
- Определение съвкупност от взаимосвързани обект и управляващо устройство.
- *Обект* тази част от системата, чието поведение може и трябва да бъде управлявано.
- *Управляващо устройство* тази част от системата, която осъществява управлението.
- Система за автоматично управление (САУ) система за управление, в която човекът не участва явно в управлението.

1. САУ. Основни понятия

- y(t) **изход** променливата, чрез която системата за управление действа върху околната среда
- v(t) **вход (задание)** константата или променливата чрез която се задава желана стойност или желан начин за промяна на изхода.
- u(t) управление (управляващо въздействие) въздействие, което се подава от управляващото устройство към обекта, за да се реализира поставената пред САУ цел.
- z(t) **смущение** (**смущаващо** въздействие) въздействие на околната среда върху системата за управление (най-често върху обекта)

2. Принципи на автоматично управление (регулиране)

1. Регулиране по задание

$$u(t) = f(v)$$

2. Регулиране по смущение (принцип на компенсацията)

$$u(t) = f(v, z)$$

3. Регулиране по отклонение (принцип на обратната връзка)

$$u(t) = f(\varepsilon)$$
, където $\varepsilon = v - y$

2. Принципи на автоматично управление (регулиране)

4. Комбинирано регулиране

3. Типови закони на регулиране

1. Закон – математичната зависимост, по която управляващото устройство (регулаторът) определя управлението като функция на входа, изхода и смущението:

$$u = f(v, y, z)$$

В частност $u = f(\varepsilon)$, където $\varepsilon = v - y$

2. Пропорционален (П) закон

$$u(t) = k_p \varepsilon(t)$$

където k_p е коефициент на пропорционалност на Прегулатора

3. Типови закони на регулиране

3. Интегрален (И) закон

$$u(t) = \frac{k_p}{T_u} \int_0^t \varepsilon(\tau) d\tau$$

където T_u е времеконстанта на интегрирането на И-регулатора

4. Пропорционално- интегрален (ПИ) закон

$$u(t) = k_p \left[\varepsilon(t) + \frac{1}{T_u} \int_0^t \varepsilon(\tau) d\tau \right]$$

3. Типови закони на регулиране

5. Пропорционално-интегрално-диференциален (ПИД) закон

$$u(t) = k_p \left[\varepsilon(t) + \frac{1}{T_u} \int_0^t \varepsilon(\tau) d\tau + T_o \frac{d\varepsilon(t)}{dt} \right]$$

където T_{δ} е времеконстанта на диференцирането

6. Релеен закон

$$u(t) = k_p \operatorname{sign} \varepsilon(t)$$

- 1. Линейни нелинейни
- 2. Непрекъснати дискретни
- 3. Стационарни нестационарни
- 4. Едномерни многомерни
- **5. Отворени затворени** (според принципа на управление)
- 6. Статични астатични (според грешката $\mathcal{E}(t)$ в установен режим)
- 7. САР САУ (според предназначението)

A. CAP

Чрез входа задават желан изходен сигнал. Разликата е във вида на сигнала.

- (a) Системи за стабилизация: v(t) = const
- (б) Системи с програмно управление

$$v(t)$$
 – известна програма $v(s)$ – известна програма

(в) Следящи системи

v(t) – неизвестен или случаен вход

Б. САУ

Имат цел – да се осигури най-добър, по определен критерий, режим на работа. Разликата е във вида на критерия и в информацията за обекта и за околната среда.

(а) Екстремални системи

(б) Оптимални системи

(в) Адаптивни системи

- (г) Йерархични системи
- (д) Интелигентни системи

Препоръчва се учебникът на проф. Камен Ищев "*Теория на автоматичното управление*", 2000 (стр.5-164), както и всички следващи негови преработени издания.