保证CAN运行稳定的核心设计与测试

国内领先工业互联网/工业4.0设备系统解决方案提供商

保证CAN运行稳定的核心设计和测试

CAN 节点核心 测试和设计

> 电阻、电容、电 压、的测试与接 口电路设计

位时间、采样点、 位宽度容忍测试 与波特率设计

BusOff 测试与 总线错误处理 线缆的选择和 测试

线缆阻抗测试

线缆的选择

CAN 网络的布 局和优化

直线形、星形、树形、环形布局与匹配优化

接入方式选择

阻抗不匹配时的现象与调整方法

CAN收发器

CAN节点内阻的影响与测试

为了保证CAN节点对网络的阻抗匹配,以及CAN收发器所能驱动的最大负载。所以要求每个CAN节点的内阻不得太小,按照ISO11898-2的测试规范如下:

测试参数	测试值		
	最小值	典型值	最大值
CANH对地电阻	5ΚΩ	-	50ΚΩ
CANL对地电阻	5ΚΩ	-	50ΚΩ
CANH对CANL电阻	10ΚΩ	-	100ΚΩ

网络总负载电阻	CAN-diff幅值
120欧	2.5V左右
60欧	2V左右
40欧	1.5-1.7V左右
30欧	1.1-1.3V左右
24欧	0.9-1.1V左右

CAN节点电容的影响与测试

CAN节点的电容会影响整个网络的电容,电容越大边沿越缓,导致位采样错误。

CAN节点内阻和电容的快速测试

使用CANScope的配a件板StressZ可以在断电情况下,快速扫描出节点的内阻和电容。

CAN节点内阻的影响与测试

CAN总线上面的信号幅值是接收节点能正确识别逻辑信号的保证。高速CAN差分电平CANdiff=(CANH-CANL)的幅值只有大于0.9V才能被100%识别成显性电平,同理如果幅值低于0.9V就有被识别出隐形电平的可能。

差分电平幅值	识别成的逻辑值
>0.9V	显性电平(0)
0.5~0.9V	不确定区域
<0.5V	隐形电平(1)

	高速CAN		容错CAN	
逻辑	隐性(1)	显性(0)	隐性 (1)	显性(0)
CANH (单位V)	Min:2.00	Min:2.75	Min:1.60	Min:3.85
	Nom:2.50	Nom:3.50	Nom:1.75	Nom:4.00
	Max:3.00	Max:4.50	Max:1.90	Max:5.00
CANL(单位V)	Min:2.00	Min:0.50	Min:3.10	Min:0.00
	Nom:2.50	Nom:1.50	Nom:3.25	Nom:1.00
	Max:3.00	Max:2.25	Max:3.40	Max:1.15
CANdiff(单位zV)	Min:-0.5	Min:1.5	Min:-0.3	Min:0.3
	Nom:0	Nom:2.0	Nom:-1.5	Nom:3.00
	Max:0.05	Max:3.0	Max:0	Max:5.00

CAN节点输出电压的快速测试

AN接口电路设计

CAN接口电路设计——隔离部分

CAN接口电路设计——隔离部分

CAN接口隔离模块设计

表 1 推荐参数表

标号	型号	标号	型号
R1, R2	2.7Ω, 2W	D5	P6KE15CA
R3	1ΜΩ, 1206	GDT	B3D090L
C1	102, 2kV	T1	B82793S0513N201
D1, D2, D3, D4	1N4007	U1	CTM 模块

CAN网络布线与接地

保证CAN运行稳定的核心设计和测试

CAN 节点核心 线缆的选择和 CAN 网络的布 测试和设计 测试 局和优化 电阻、电容、电 直线形、星形、 线缆阻抗测试 压、的 测试与接 树形、环形布局 口电路设计 与匹配优化 位时间、采样点、 接入方式选择 线缆的选择 位宽度容忍测试 与波特率设计 阻抗不匹配时的 BusOff 测试与 现象与调整方法 总线错误处理

位时间的影响与测试

CAN波特率的位宽时间是CAN通讯的基础,是最最基本的要素。如果波特率不匹配或者波特率有所偏差,就会导致识别信号的错误,造成无法通讯或者通讯异常。以下的任何测试都没有意义了。

位时间的影响与测试

GMW14241 信号位时间标准

加沙卡会设施	位时间偏差		æ IIL	
 	最小值	最大值	条件	
高速CAN(最小负载) 500K~1Mbps	-0.45%	+0.45%	典型值500Kbps,C1=100pF、C2=100pF、C3=0pF	
高速CAN(最大负载) 500K~1Mbps	-0.45%	+0.45%	典型值500Kbps,C1=4700pF、C2=4700pF、C3=3300pF	
中速CAN(最小负载) 100K~250Kbps	-0.5%	+0.5%	典型值125Kbps,C1=100pF、C2=100pF、C3=0pF	
中速CAN(最大负载) 100K~250Kbps	-0.5%	+0.5%	典型值125Kbps,C1=10000pF、C2=10000pF、 C3=6800pF	

位时间的影响与测试

传统测试方法

CANScope眼图测试方法

采样点和位宽度容忍的影响与测试

采样点是接收节点判断信号逻辑的位置,CAN通讯属于异步通讯,需要通过不断的重新同步才能保证收发节点的采样准确,所以SJW(同步跳转宽度)决定了接收节点是否能有比较好的兼容性。

采样点与位宽度容忍的快速测试

波特率设计方案

位宽度有偏差,则需要对其程序中的位定时寄存器或者晶振进行修正。比如不要使用带小数点的晶振,如11.0592HZ。这样算出来的波特率肯定不准。不要使用陶瓷晶振,会有偏差超过1%的概率,即使重同步也会失败。

波特率设计方案

- 1.保证TSEG1+TSEG2的时间份额在10-20之间;
- 2. (TESG1+1)/(TSEG1+TSEG2+1)的采样点位置在75%-81.5%之间为宜,极限情况下不得在70%-87.5%之外;
- 3. 同步调转宽度SJW在TSEG2-1为宜。

时间份额数	TSEG1	TSEG2	SJW	单位
10	6	3	2	t_Q
12	8	3	2	t_Q
14	9	4	3	t_Q
16	11	4	3	t_Q
18	12	5	3	t_Q
20	14	5	3	t _Q

保证CAN运行稳定的核心设计和测试

CAN 节点核心 线缆的选择和 CAN 网络的布 测试和设计 测试 局和优化 电阻、电容、电 直线形、星形、 线缆阻抗测试 压、的 测试与接 树形、环形布局 口电路设计 与匹配优化 位时间、采样点、 线缆的选择 接入方式选择 位宽度容忍测试 与波特率设计 BusOff 测试与 阻抗不匹配时的 现象与调整方法 总线错误处理

1.电动汽车逆变器干扰导致的错误

2. 终端电阻并联过多,差分电平幅值太小导致接收节点识别失败的错误

3. 总线支线过长, 电平下降沿台阶过高, 导致位宽度失调的错误

4. 卡车打开/关闭大灯时,耦合到CAN总线上的干扰,导致的错误

5. 波特率异常(位宽度从2us突然变成1.6us),导致位错误

6.发送节点0和1不对称的情况。

BusOff(总线关闭)的影响

CAN节点的CAN控制器受到干扰或者损坏,而导致自身的错误计数器进行计数累加,直至255后即进入总线关闭状态,无法接收和发送CAN报文。

BusOff(总线关闭)的测试

通过CANScope-Pro的错误与干扰功能,可以对节点进行模拟干扰,使其进入总线关闭,查看其是否能恢复,恢复时间和恢复策略。

BusOff(总线关闭)的测试

通过流量分析可观察到错误主动->错误被动->总线关闭过程

然后将流量分析界面缩小,测量两个干扰团之间的时间间隔,即为BusOff后的恢复时间。

BusOff(总线关闭)的测试

现在很多CAN控制器对ID和控制域的干扰进行豁免,就是只干扰ID或者控制域是无法让一个节点进入错误被动,所以我们要如此设置干扰,只干扰数据。

BusOff(总线关闭)的设计

GMW14242,要求在DUT在Busoff后快恢复时间符合要求。如果错误持续,将在10次快恢复后执行慢恢复时间。慢恢复20次后,停止恢复,必须人工处理。

· /*******			
** Functi ** Descri ** Input ** Ouput ** Return	快恢复	最快128×11bit的时间	
		最慢128×133bit的时间	
******** unsigned {		160ms 高速CAN >500kbps	
S, W: W: S,	慢恢复	1 -	*/ */ /
} r		3.7S 低速CAN <83.3kbps	/

保证CAN运行稳定的核心设计和测试

CAN 节点核心 线缆的选择和 CAN 网络的布 局和优化 测试和设计 测试 电阻、电容、电 直线形、星形、 线缆阻抗测试 压、的 测试与接 树形、环形布局 口电路设计 与匹配优化 位时间、采样点、 线缆的选择 接入方式选择 位宽度容忍测试 与波特率设计 BusOff 测试与 阻抗不匹配时的 现象与调整方法 总线错误处理

线缆的阻抗影响

线缆的阻抗(主要是直流电阻和电容),是非常容易被忽略的。也是影响我们现场应用的关键,采用一端接CANScope,另外一端接120欧的方式,可以扫出来这个导线的阻抗

线缆的选择

为了避免受到外界干扰的影响,传输数据的电缆通常使用带有屏蔽层的双绞线,并且屏蔽层要接到参考地。在使用双层屏蔽线的双绞线时,使用者必须注意:电缆的外屏蔽层只能通过一个连接器的外壳连接到大地上。

1.000

Data Pair

1.3124

保证CAN运行稳定的核心设计和测试

CAN 节点核心 线缆的选择和 CAN 网络的布 测试和设计 局和优化 测试 直线形、星形、 电阻、电容、电 线缆阻抗测试 树形、环形布局 压、的 测试与接 口电路设计 与匹配优化 位时间、采样点、 线缆的选择 接入方式选择 位宽度容忍测试 与波特率设计 BusOff 测试与 阻抗不匹配时的 现象与调整方法 总线错误处理

电缆直线型拓扑

所谓直线型拓扑结构就是"手牵手"把每个节点都挂上去。

直线型拓扑特点

优点

- 1.布线施工简单;
- 2.阻抗匹配固定规则(首尾各1个120欧电阻匹配)

,

3.接线操作简单方便。

缺点

网络拓扑不灵活,会增加实际传输距离

星形拓扑

- 星形拓扑结构:即每个分支都基本等长的网络
- 在完全等长情况下,可不使用集线器设备,调整终端电阻即可实现组网:

R=n×60欧姆 R:每个分支的终端电阻 n:分支数量

树状拓扑

树状拓扑结构:分支过长且不等的网络,比如煤矿布网。

由于阻抗匹配困难,常使用集线器和中继器进行分支。这些设备每路都具备独立的CAN控制器,所以可以将每段形成独立的直线拓扑,方便施工。

CAN节点内阻的影响与测试

优点

- 1.布线施工方便;
- 2.最大限度缩短布线距离。

缺点

- 1.网络拓扑复杂,施工人员无法进行阻抗匹配,
- 2.须增加集线器或者中继器进行网络拓扑分割;

CAN节点内阻的影响与测试

环形拓扑结构:将CAN总线首尾相接,形成环状。

保证线缆任意位置断开,依然可以保证通讯。

由于是环状结构,所以在终端电阻匹配方面采用分布式匹配方法,保证总体阻抗为60欧姆。

 $R = 120\Omega$, $Ret1 = Ret10 = 300\Omega$, $Ret2 \sim Ret9 = 5k$

环形拓扑特点

优点

最简单的线路冗余功能;

缺点

断线后,信号反射严重,无法应用于高波特率和远距离场合。

光缆组网

光缆组网是指将CAN信号变成光信号,然后进行传输。

光缆星形拓扑

由于光纤收发器的点对点单向传输特性。无法像电信号传输那样采用"挂接"的方式。目前最成熟的就是星形拓扑。

光缆星形拓扑特点

- 1.光缆可以远传,并且不会被干扰和雷击;
- 2.使用光纤HUB,维持CAN的各种特性,实时性强

0

缺点

- 1.拓扑结构单一,施工不方便;
- 2.如果光纤长度相差很大,容易导致较大的延时差。

光缆直线型拓扑

由于点对点特性,光缆直线型拓扑只能通过控制器级联来完成。

CAN-bus: CANH和CANH连、CANL和CANL连

SC接头的单模光纤: TXD接RXD, RXD接TXD

光缆直线型拓扑特点

1.光缆上逻辑为CAN信号,仍然可以实现仲裁,

并且具备光纤抗干扰特点;

2.每段自成拓扑,不受距离限制。

缺点

由于是存储转发,会产生延时;

保证CAN运行稳定的核心设计和测试

CAN 节点核心 测试和设计 电阻、电容、电

> 位时间、采样点、 位宽度容忍测试 与波特率设计

压、的 测试与接口电路设计

BusOff 测试与 总线错误处理 线缆的选择和 测试

线缆阻抗测试

线缆的选择

CAN 网络的布 局和优化

直线形、星形、树形、环形布局与匹配优化

接入方式选择

阻抗不匹配时的 现象与调整方法

接入方式选择——内置三通接头

由于点对点特性,光缆直线型拓扑只能通过控制器级联来完成。

TEZ-C01A(母头DB9)

TEZ-C01B (公头DB9)

接入方式选择——T形接线盒

TEZ-3T111

保证CAN运行稳定的核心设计和测试

CAN 节点核心 线缆的选择和 CAN 网络的布 测试和设计 测试 局和优化 电阻、电容、电 直线形、星形、 线缆阻抗测试 压、的 测试与接 树形、环形布局 口电路设计 与匹配优化 位时间、采样点、 线缆的选择 接入方式选择 位宽度容忍测试 与波特率设计 阻抗不匹配时的 BusOff 测试与 现象与调整方法 总线错误处理

阻抗不匹配的现象

阻抗不匹配的现象

阻抗匹配的调整1——缩短残段

为了保证阻抗连续,收发器应靠近接口摆放,以减少分支残段的长度,控制在10cm以内。

阻抗匹配的调整2——消除负载集中

为了避免节点摆放集中,导致反射叠加,相邻节点的距离不得小于2cm, 10m的电缆上所集中的设备最好不要超过4个, 否则应加电容以吸收。并且此集中与下一个集中至少有10m的电缆距离。

阻抗匹配的调整3——屏蔽层接地方法

屏蔽层多点接地需要注意接地点电位,避免地回流影响信号。否则可以采用分段屏蔽,单点接地方法,就可以有效避免地回流的问题。

助教微信号

★注微信号 "zlgmcu-888" , 一对一解决您的CAN问题

欢迎扫码关注小Z

汇聚500名工程师的研发测试分享平台

谢谢!

沙致远电子