Central Limit Theorem demo

Statistical Inference course project

Ilya Kochergin 22 nov 2015

```
library(ggplot2)
```

Overview

Let's demonstrate, that average computed on sample (sample mean) has distribution that tends to be asymptotically normal. Original random variable in this demo is exponentially distributed.

Density of exponentially distributed random variable.

Theoretial $Std.deviation\left(\sigma\right)=Mean\left(\mu\right)=1/\lambda=5$

Simulations

We generate nosim=1000 rows of random numbers (samples). Sample size is n=40

```
# Random matrix. Each row is a sample (n=40)
rnd_exp_samples<- matrix(data=rexp(nosim*n,rate=lambda),ncol = n, byrow = T)
```

Sample Mean versus Theoretical Mean

Theoretical mean $\mu = 1/\lambda$ Sample mean is a random variable. We have 1000 sample means

```
mu=1/lambda
# vector of sample means
rnd_exp_samples_means <- apply(X = rnd_exp_samples,1 ,FUN = mean)
# range of sample means
summary(rnd_exp_samples_means)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.673 4.476 4.987 5.013 5.520 7.913
```

Sample means centered at 5.0127542 near theoretial 5

Sample Variance versus Theoretical Variance

Theoretical standard deviation is $\sigma = 1/\lambda = 5$ Theoretical variance is $\sigma = 25$ Sample variance is a random variable. We have 1000 sample variance

```
sigma=1/lambda
# vector of sample means
rnd_exp_samples_vars <- apply(X = rnd_exp_samples,1 ,FUN = var)
# range of sample variances
summary(rnd_exp_samples_vars)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.162 17.610 23.030 25.280 30.980 79.400
```

Sample variance is centered at 25.2767121 near theoretial 25

Distribution

Histogram of sample means approaches to density of Normal distribution with the following parameters:

```
gaussian_mu = mu
gaussian_sigma = sigma/sqrt(n)
```

```
ggplot(data.frame(x=rnd_exp_samples_means),aes(x)) +
   stat_function(fun=dnorm,args=list(mean=gaussian_mu,sd=gaussian_sigma),col="red",size=2)+
   geom_histogram(aes(y=..density..),fill="green",alpha=0.3,col="green",stat_bin=1/30)
```

stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.

