

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14070062002

FCC REPORT (WIFI)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: Wireless Module - Android

Model No.: DTCOMM-DL, 410-BWRTL87000

FCC ID: 2AB6Z-DTCOMM-DL

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Jul., 2014

Date of Test: 29 Jul., to 11 Aug., 2014

Date of report issued: 11 Aug., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Report No: CCIS14010001003

Version No.	Date	Description
00	11 Aug., 2014	Original

Prepared by: 11 Aug., 2014

Report Clerk

Reviewed by: Date: 11 Aug., 2014

Project Engineer

Project No.: CCIS140100010RF

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
3		TENTS	
4	TEST	T SUMMARY	4
5		ERAL INFORMATION	
•			
	5.1	CLIENT INFORMATION	
	5.2 5.3	GENERAL DESCRIPTION OF E.U.T	
	5.4	LABORATORY FACILITY	
	5.4	LABORATORY FACILITY	
	5.6	TEST INSTRUMENTS LIST	
6	TEST	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TEST	T SETUP PHOTO	65
8	EUT	CONSTRUCTIONAL DETAILS	66

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED		
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong		
Manufacturer / Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.		
Address of Manufacturer/ Factory:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China		

5.2 General Description of E.U.T.

Product Name:	Wireless Module - Android
Model No.:	DTCOMM-DL, 410-BWRTL87000
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	3 dBi
Power supply:	DC 5V by USB port
Remark:	The Model: DTCOMM-DL and 410-BWRTL87000 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different Model Number for customer and for HUNG WAI.

Operation Frequency each of channel For 802.11b/g/n(H20)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Operation Frequency each of channel For 802.11n(H40)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz			
		5	2432MHz	8	2447MHz			
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

■ IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	July 09 2014	July 08 2015
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	Jun., 25 2014	Jun., 24 2015
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	Jun., 25 2014	Jun., 24 2015
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	July 09 2014	July 08 2015
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	Jun., 25 2014	Jun., 24 2015
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2014	Mar. 31 2015
13	Loop antenna	Laplace instrument	RF300	EMC0701	Aug 12 2013	Aug 12 2014
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	Jun., 25 2014	Jun., 24 2015
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	Jun., 25 2014	Jun., 24 2015

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	July 09 2014	July 08 2015		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	Jun., 25 2014	Jun., 24 2015		
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2014	Mar. 31 2015		
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 3 dBi.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.4: 2003	ANSI C63.4: 2003					
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Class / Severity:	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 kHz						
Limit:	Fragueray range (MIII-)	Limit (c	dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
Test procedure	* Decreases with the logarithm 1. The E.U.T and simulators						
	 a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 						
Test setup:	Reference Plane						
	AUX Filter AC power Equipment E.U.T Test table/Insulation plane						
	Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilizatio Test table herght=0.8m	n Network					
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Neutral:

Trace: 5 Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Wireless Module : DTCOMM-DL Model Test Mode : WIFI Mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 'C Humi:56% Atmos:101KPa

Test Engineer: Garen

Remark	k :							
	Feen	Read		Cable	11	Limit	Over	
	Freq	rever	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBuV	₫B	dB	dBuV	dBu∜	₫B	
1	0.154	27.48	0.25	10.78	38.51	65.78	-27.27	QP
2	0.258	14.92	0.26	10.75	25.93	51.51	-25.58	Average
3	0.385	11.29		10.72	22.26	48.17	-25.91	Average
4	0.751	15.69	0.19	10.79	26.67	46.00	-19.33	Average
5	0.771	24.64	0.19	10.80	35.63	56.00	-20.37	QP
1 2 3 4 5 6 7 8 9	2.077	21.52	0.29	10.96	32.77	46.00	-13.23	Average
7	2.121	29.93	0.29	10.95	41.17	56.00	-14.83	QP
8	2.931	31.60	0.29	10.92	42.81	56.00	-13.19	QP
9	2.931	24.79	0.29	10.92	36.00	46.00	-10.00	Average
10	16.398	23.73	0.25	10.91	34.89	60.00	-25.11	QP
11	22.775	26.62	0.39	10.89	37.90	60.00	-22.10	QP
12	22.775	25.15	0.39	10.89	36.43	50.00	-13.57	Average

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT : Wireless Module Model : DTCOMM-DL

Test Mode : WIFI Mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Garen

Remark

Kemark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
777	MHz	₫BuV	₫₿	₫₿	dBu∀	dBu∜	dB	
1	0.154	28.62	0.27	10.78	39.67	65.78	-26.11	QP
2	0.154	21.72	0.27	10.78	32.77	55.78	-23.01	Average
3	0.751	16.76	0.23	10.79	27.78	46.00	-18.22	Average
1 2 3 4 5 6 7 8 9	0.767	25.96	0.23	10.80	36.99	56.00	-19.01	QP
5	2.066	29.75	0.26	10.96	40.97	56.00	-15.03	QP
6	2.077	20.84	0.26	10.96	32.06	46.00	-13.94	Average
7	2.900	25.23	0.27	10.92	36.42			Average
8	2.931	32.91	0.27	10.92	44.10	56.00	-11.90	QP
9	16.928	23.15	0.33	10.91	34.39	50.00	-15.61	Average
10	17.199	23.78	0.33	10.91	35.02		-24.98	
11	22.655	27.20	0.44	10.89	38.53		-21.47	
12	22.655	25.54	0.44	10.89	36.87			Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.			
Remark:				

Measurement Data

T (0)	Max	ximum Conduct	l : :(/ ID)	D 11		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	9.14	8.44	8.08	8.05		
Middle	9.21	8.87	8.46	8.13	30.00	Pass
Highest	9.05	8.75	8.51	8.13		

Test plot as follows:

Highest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

T (0)		6dB Emission	1	Б		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.26	16.51	17.88	36.07		
Middle	10.26	16.51	17.80	36.27	>500	Pass
Highest	10.26	16.67	17.80	36.07		

T		99% Occupy		5 "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	15.07	16.51	17.72	35.87		
Middle	14.99	16.59	17.72	35.97	N/A	N/A
Highest	14.99	16.51	17.72	35.97		

Test plot as follows:

Highest channel

5.AUG.2014 10:16:06

Highest channel

5.AUG.2014 10:17:21

Highest channel

5.AUG.2014 10:24:18

Highest channel

5.AUG.2014 10:30:30

Highest channel

Highest channel

5.AUG.2014 10:34:27

Test mode: 99% OBW

Report No: CCIS14070062002

Highest channel

Highest channel

5.AUG.2014 10:41:37

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

T		Power Spec		- ·		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	3.84	-1.08	-2.01	-4.65		
Middle	3.73	1.19	1.31	-4.47	8.00	Pass
Highest	3.55	-1.18	-1.83	-4.39		

Test plot as follows:

Report No: CCIS14070062002

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	·			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement: FCC Part15 C Section 15.209 and 15.205 Test Method: ANSI C63.4: 2003 Test Frequency Range: 2.3GHz to 2.5GHz Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value								
Test Frequency Range: 2.3GHz to 2.5GHz Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value								
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value								
Receiver setup: Frequency Detector RBW VBW Remark								
Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value	Weasurement Distance. 3111							
Above IGHZ Peak 1MHz 10Hz Average Va	ue							
Limit:								
Frequency Limit (dBuV/m @3m) Remark	(
Above 1GHz 54.00 Average Va								
Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters all								
antenna, which was mounted on the top of a variable-height and tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower to the limit specified, then testing could be stopped and the peak work of the EUT would be reported. Otherwise the emissions that did have 10dB margin would be re-tested one by one using peak, upeak or average method as specified and then reported in a data sheet.	 to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- 							
Test setup: Antenna Tower Horn Antenna Spectrum Analyzer Amplifier	EUT Am Spectrum Analyzer Turn 0.8m Im							
Test Instruments: Refer to section 5.6 for details	Refer to section 5.6 for details							
Test mode: Refer to section 5.3 for details	Refer to section 5.3 for details							
Test results: Passed	Passed							

802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Wireless Module

Model : DTCOMM-D Test mode : WIFI-B-L Power Rating : AC120V/60HZ

Environment: Temp:25°C Huni:55% Atmos:101Kpa

Test Engineer: Garen

Remark

	198		Antenna Factor						
200	MHz	dBu∜	dB/m	d₿	<u>dB</u>	dBuV/m	dBuV/m	d₿	
1 2	2390.000 2390.000							-17.19 -8.40	Peak Average

Vertical:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Wireless Module

Model : DTCOMM-D Test mode : WIFI-B-L Power Rating : AC120V/60HZ

Environment : Temp:25°C Huni:55% Atmos:101Kpa Test Engineer: Garen Remark :

/cmar		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	₫B	dBuV/m	dBuV/m	₫B	
1 2	2390,000 2390,000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Wireless Module

Model : DTCOMM-D Test mode : WIFI-B-H

Power Rating: AC120V/60HZ Environment: Temp:25°C Huni:55% Atmos:101Kpa

Test Engineer: Garen

Rema

1 2

a	rk :		*****	0.11					
	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∛	— <u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
	2483.500 2483.500	7.7.7.7.7	27.52 27.52		0.00			-17.74 -8.90	Peak Average

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Wireless Module Condition

EUT Model

: DTCOMM-D Test mode : WIFI-B-H
Power Rating : AC120V/60HZ
Environment : Temp:25°C Huni:55% Atmos:101Kpa

Test Engineer: Garen

Remark

	Freq	ReadAntenna Cab Freq Level Factor Lo						Over Limit	
	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Wireless Module

Model : DTCOMM-D
Test mode : WIFI mode G-L
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen REMARK :

III CATA	T.								
			Antenna				Limit		
	rreq	rever	Factor	Loss	ractor	reaer	Line	Limit	Kemark
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2390.000	34.14	27.58	5.67	0.00	67.39	74.00	-6.61	Peak
2	2390,000	19.32	27.58	5, 67	0.00	52, 57	54.00	-1.43	Average

Vertical:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Wireless Module

Model : DTCOMM-D Test mode : WIFI mode G-L Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen

REMARK

		Read	Antenna Cable		Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
1.3	MHz	dBu₹	$\overline{dB/m}$	dB	dB	dBuV/m	dBuV/m	<u>dB</u>		
1 2	2390.000 2390.000						74.00 54.00			

Test channel: Highest Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Wireless Module

: DICOMM-D
Test mode : WIFI mode G-H
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK :

EMAK	к :	Read	Antenna	Cable	Presmo		Linit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	
R	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	d₿	
1	2483.500	31.14	27.52	5.70	0.00	64.36	74.00	-9.64	Peak
2	2483 500	12 93	27 52	5 70	0.00	46 15	54, 00	-7.85	Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Wireless Module

Model : DTCOMM-D Test mode : WIFI mode G-H Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

REMAR		•		Antenna				Limit		
	rr	eq	rever	ractor	LOSS	ractor	rever	Line	Limit	Remark
	NO	Hz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2				27.52 27.52						Peak Average

802.11n (H20) Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Wireless Module

: DTCOMM-D Model

Test mode : WIFI mode N20-L Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Garen REMARK :

1 2

m	u .	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBu∀	dB/m	dB	₫B	dBuV/m	dBuV/m	₫B	
i i	2390,000			12500000000			74.00 54.00		Peak Average

Vertical:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Wireless Module

: DICOMM-D
Test mode : WIFI mode N20-L
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Humi:55%
Test Engineer: Garen
REMARK

KEMAR	w :	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2390.000						74.00		
2	2390, 000	15, 75	27, 58	5, 67	0.00	49,00	54.00	-5.00	Average

Test channel: Highest Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Wireless Module

Model : DTCOMM-D
Test mode : WIFI mode N20-H
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK

REMARK

K :								
120		Ant enna					Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∜	─dB/m	dB	d <u>B</u>	dBu∀/m	dBu∜/m	dB	
2483.500 2483.500								Peak Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Wireless Module : DTCOMM-D Model

Test mode : WIFI mode N20-H

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Garen REMARK:

5750755		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	₫B	
1	2483.500	33.28	27.52	5.70	0.00	66.50	74.00	-7.50	Peak
2	2483.500	15.33	27.52	5.70	0.00	48.55	54.00	-5.45	Average

802.11n (H40) Test channel: Lowest Horizontal:

Frequency (MHz)

Site

2310 2320

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

2350

EUT : Wireless Module

: DTCOMM-D Model

Test mode : WIFI mode N40-L Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen REMARK

20

D)HDI)			Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000		27.58 27.58				74.00 54.00		Peak Average

Project No.: CCIS140700589RF

2442

Vertical:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Wireless Module

Model : DTCOMM-D
Test mode : WIFI mode N40-L
Power Rating : AC 1207/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen

LULINIA		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫₿	
1 2	2390.000 2390.000					68.03 53.00			

Test channel: Highest

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Wireless Module

: DTCOMM-D Model

: WIFI mode N40-H Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen REMARK :

11/11/									
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
200000	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
248	3.500	28.44	27.52	5.70	0.00	61.66	74.00	-12.34	Peak
248	3,500	14.90	27.52	5, 70	0.00	48, 12	54.00	-5.88	Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Wireless Module

: DTCOMM-D Model

Test mode : WIFI mode N40-H Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Garen

REMA

LAR	K :							
	Freq		Antenna Factor			Limit	Over	
	MHz	dBu∀			mir vds-	dBu√/m		
	2483.500		27.52	5.70	65.11	The state of the s	-8.89 -2.42	Peak

Remark:

1 2

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 802.11b

Lowest channel

Date: 8.AUG.2014 16:12:43

30MHz~25GHz

Middle channel

Date: 8.AUG.2014 16:14:32

30MHz~25GHz

Highest channel

Date: 8.AUG.2014 16:15:17

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 8.AUG.2014 16:15:58

30MHz~25GHz

Middle channel

Date: 8.AUG.2014 16:16:53

30MHz~25GHz

Highest channel

Date: 8.AUG.2014 16:17:44

Test mode: 802.11n(H20)

Lowest channel

Date: 8.AUG.2014 16:19:10

30MHz~25GHz

Middle channel

Date: 8.AUG.2014 16:20:03

30MHz~25GHz

Highest channel

Date: 8.AUG.2014 16:21:01

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 8.AUG.2014 16:23:16

30MHz~25GHz

Middle channel

Date: 8.AUG.2014 16:24:15

30MHz~25GHz

Highest channel

Date: 8.AUG.2014 16:26:20

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205							
Test Method:	ANSI C63.4:2003									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement D	istance: 3m								
Receiver setup:	Frequency Detector RBW VBW Remark									
·	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value									
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
		Peak	1MHz	10Hz	Average Value					
Limit:	Frague	nov	Limit (dDu\/	/m @2m)	Domark					
	Freque 30MHz-8		Limit (dBuV/		Remark Quasi-peak Value					
	88MHz-21		43.5		Quasi-peak Value					
	216MHz-9		46.0		Quasi-peak Value					
	960MHz-	1GHz	54.0		Quasi-peak Value					
	Above 1	CH-	54.0)	Average Value					
			74.0		Peak Value					
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the make the maters and to find the material specified E. 5. The test-respective E. 6. If the emission of the EUT have 10dB	at a 3 meter come the position was set 3 meter hich was mour had height is varied to determine to the and vertice asurement. Uspected emister the rota table maximum read ceiver system and width with sion level of the would be reported to the would be reported to the position of the would be reported to the rotal table would be reported to the repor	amber. The of the highests away from the on the tried on the tried from one he maximum al polarizations ion, the EU a was turned was turned was set to P Maximum He EUT in peasing could burted. Otherwise re-tested	table was rost radiation. the interfer op of a variate meter to for a value of the ons of the automatic from 0 degreeak Detect old Mode. The was arranged and the old Mode was the emission of the emission one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Wireless Module - Android

Model : DTCOMM-D Test mode : WIFI Mode Power Rating : AC120V / 50Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

REMARK	:								
			Antenna				Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	d₿	
1	46.178	34.74	13.48	0.57	29.85	18.94	40.00	-21.06	QP
2	99.528	37.14	13.13	0.96	29.53	21.70	43.50	-21.80	QP
3	155.364	43.64	8.48	1.33	29.17	24.28	43.50	-19.22	QP
4	215.268	47.10	11.03	1.46	28.73	30.86	43.50	-12.64	QP
1 2 3 4 5	903.309	35.33	21.12	3.36	27.87	31.94	46.00	-14.06	QP
6	962.162	42.60	21.49	3.47	27.65	39, 91	54.00	-14.09	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT : Wireless Module - Android

Model : DTCOMM-D
Test mode : WIFI Mode
Power Rating : AC120V / 50Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen

RI

REMAR	RK :	-140710000							
			Antenna Factor		CONTRACTOR OF THE PARTY OF THE	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB/m	dB	₫B	dBuV/m	dBuV/m	dB	
1	44.275	42.12	13.55	0.55	29.87	26.35	40.00	-13.65	QP
2	46.178	44.33	13.48	0.57	29.85	28.53	40.00	-11.47	QP
3	124.569	39.69	9.80	1.16	29.36	21.29	43.50	-22.21	QP
4	158.112	43.09	8.58	1.33	29.15	23.85	43.50	-19.65	QP
5	277.094	41.41	12.59	1.70	28.49	27.21	46.00	-18.79	QP
6	962.162	43.02	21.49	3.47	27.65	40.33	54.00	-13.67	QP

Above 1GHz

Test mode:	802.11b		Test chann	el: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.	
4824.00	47.95	31.53	8.90	40.24	49.58	74.00	-24.42	Vertical	
4824.00	46.85	31.53	8.90	40.24	48.04	74.00	-25.96	Horizontal	
Test mode:	802.11b		Test channel: Lowest			Remark: Av	/erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.	
4824.00	37.69	31.53	8.90	40.24	37.88	54.00	-16.12	Vertical	
4824.00	36.15	31.53	8.90	40.24	36.34	54.00	-17.66	Horizontal	

Test mode:	802.11b		Test chann	el: Middle		Remark: Po	Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.		
4874.00	45.34	31.58	8.98	40.15	45.75	74.00	-28.25	Vertical		
4874.00	45.75	31.58	8.98	40.15	46.16	74.00	-27.84	Horizontal		
Test mode:	802.11b		Test channel: Middle			Remark: A	verage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.		
4874.00	35.10	31.58	8.98	40.15	35.51	54.00	-18.49	Vertical		
4874.00	35.82	31.58	8.98	40.15	36.23	54.00	-17.77	Horizontal		

Test mode:	802.11b		Test chann	el: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.	
4924.00	46.45	31.69	9.08	40.03	47.19	74.00	-26.81	Vertical	
4924.00	4924.00 45.22 31.69			40.03	45.96	74.00	-28.04	Horizontal	
Test mode:	802.11b		Test channel: Highest			Remark: Av	/erage		
Frequency (MHz)	. I LEVEL I FACTOR		Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.	
4924.00	35.65	31.69	9.08	40.03	36.39	54.00	-17.61	Vertical	
4924.00	34.69	31.69	9.08	40.03	35.43	54.00	-18.57	Horizontal	

Pomark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	802.11g		Test chann	el: Lowest		Remark: Pe	Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.		
4824.00	46.60	31.53	8.90	40.24	46.79	74.00	-27.21	Vertical		
4824.00	46.37	31.53	8.90	40.24	46.56	74.00	-27.44	Horizontal		
Test mode:	802.11g		Test channel: Lowest			Remark: Av	/erage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.		
4824.00	36.49	31.53	8.90	40.24	36.68	54.00	-17.32	Vertical		
4824.00	36.17	31.53	8.90	40.24	36.36	54.00	-17.64	Horizontal		

Test mode:	802.11g		Test chann	el: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.	
4874.00	45.39	31.58	8.98	40.15	45.80	74.00	-28.20	Vertical	
4874.00	47.36	31.58	8.98	40.15	47.77	74.00	-26.23	Horizontal	
Test mode:	802.11g		Test channel: Middle			Remark: A	/erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.	
4874.00	35.68	31.58	8.98	40.15	36.09	54.00	-17.91	Vertical	
4874.00	36.97	31.58	8.98	40.15	37.38	54.00	-16.62	Horizontal	

Test mode: 802.11g			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
4924.00	46.46	31.69	9.08	40.03	47.20	74.00	-26.80	Vertical
4924.00	45.22	31.69	9.08	40.03	45.96	74.00	-28.04	Horizontal
Test mode:	802.11g		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
4924.00	36.36	31.69	9.08	40.03	37.10	54.00	-16.90	Vertical
4924.00	35.06	31.69	9.08	40.03	35.80	54.00	-18.20	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11(n20)			Test channel: Lowest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.		
4824.00	45.55	31.53	8.90	40.24	45.74	74.00	-28.26	Vertical		
4824.00	45.72	31.53	8.90	40.24	45.91	74.00	-28.09	Horizontal		
Test mode:	Test mode: 802.11(n20)			Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.		
4824.00	35.19	31.53	8.90	40.24	35.38	54.00	-18.62	Vertical		
4824.00	35.14	31.53	8.90	40.24	35.33	54.00	-18.67	Horizontal		

Test mode: 802.11(n20)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.	
4874.00	46.30	31.58	8.98	40.15	46.71	74.00	-27.29	Vertical	
4874.00	45.63	31.58	8.98	40.15	46.04	74.00	-27.96	Horizontal	
Test mode:	802.11(n20))	Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.	
4874.00	35.78	31.58	8.98	40.15	36.19	54.00	-17.81	Vertical	
4874.00	35.26	31.58	8.98	40.15	35.67	54.00	-18.33	Horizontal	

Test mode: 802.11(n20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
4924.00	45.50	31.69	9.08	40.03	46.24	74.00	-27.76	Vertical
4924.00	44.16	31.69	9.08	40.03	44.90	74.00	-29.10	Horizontal
Test mode:	802.11(n20))	Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
4924.00	34.55	31.69	9.08	40.03	35.29	54.00	-18.71	Vertical
4924.00	33.32	31.69	9.08	40.03	34.06	54.00	-19.94	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11(n40)			Test channel: Lowest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.		
4844.00	46.83	31.53	8.90	40.24	47.02	74.00	-26.98	Vertical		
4844.00	45.57	31.53	8.90	40.24	45.76	74.00	-28.24	Horizontal		
Test mode:	Test mode: 802.11(n40)			Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.		
4844.00	35.94	31.53	8.90	40.24	36.13	54.00	-17.87	Vertical		
4844.00	34.96	31.53	8.90	40.24	35.15	54.00	-18.85	Horizontal		

Test mode: 802.11(n40)			Test channel: Middle			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.		
4874.00	45.49	31.58	8.98	40.15	45.90	74.00	-28.10	Vertical		
4874.00	46.30	31.58	8.98	40.15	46.71	74.00	-27.29	Horizontal		
Test mode:	Test mode: 802.11(n40)			Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.		
4874.00	36.35	31.58	8.98	40.15	36.76	54.00	-17.24	Vertical		
4874.00	35.68	31.58	8.98	40.15	36.09	54.00	-17.91	Horizontal		

Test mode: 802.11(n40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
4904.00	46.31	31.69	9.08	40.03	47.05	74.00	-26.95	Vertical
4904.00	47.08	31.69	9.08	40.03	47.82	74.00	-26.18	Horizontal
Test mode:	802.11(n40)		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
4904.00	35.09	31.69	9.08	40.03	35.83	54.00	-18.17	Vertical
4904.00	36.96	31.69	9.08	40.03	37.70	54.00	-16.30	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

7 Test Setup Photo

Radiated Spurious Emission

Conducted Emission

8 EUT Constructional Details

Reference to the test report No. CCIS14070062001

-----End of report-----