2° . Непрерывность элементарных функций. Если функции f(x) и g(x) непрерывны при значении $x = x_0$, то функции

a)
$$\bar{f}(x) \pm g(x)$$
; 6) $f(x) g(x)$; B) $\frac{f(x)}{g(x)}$ $(g(x_0) \neq 0)$

также непрерывны при $x = x_0$.

В частности: а) целая рацнональная функция

$$P(x) = a_0 + a_1 x + \ldots + a_n x^n$$

непрерывна при любом значении x; б) дробная рациональная функция

$$R(x) = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

непрерывна при всех значениях х, не обращающих знаменателя

в нуль.

Вообще основные элементарные функции: x^n , $\sin x$, $\cos x$, tg x, a^x , $\log_a x$, $\arcsin x$, $\arccos x$, $\arctan x$, $\cot x$, . . . непрерывны во всех точках, где онн определены.

Более общий результат следующий: если функция f(x) непрерывна при $x = x_0$ и функция g(y) непрерывна при $y = f(x_0)$ то функция g(f(x)) непрерыва при $x = x_0$

- $= f(x_0)$, то функция g(f(x)) непрерывна при $x = x_0$. 3°. Основные теоремы о непрерывна на конечном сегменте [a, b], то: 1) f(x) ограничена на этом сегменте; 2) достигает на нем своей нижией грани m и верхней грани M (теорема Вейеритрасса); 3) принимает на каждом интервале $(\alpha, \beta) \subset [a, b]$ все промежуточные значения между $f(\alpha)$ и $f(\beta)$ (теорема Kouu). В частности, если $f(\alpha)$ $f(\beta) < 0$, то найдется значение γ $(\alpha < \gamma < \beta)$ такое, что $f(\gamma) = 0$.
- 662. Дан график непрерывной функции y = f(x). Для данной точки a и числа $\varepsilon > 0$ указать геометрически число $\delta > 0$ такое, что $|f(x) f(a)| < \varepsilon$ при $|x-a| < \delta$.
- 663. Требуется изготовить металлическую квадратную пластинку, сторона которой $x_0 = 10$ см. В каких пределах допустимо изменять сторону x этой пластинки, если площадь ее $y = x^2$ может отличаться от проектной $y_0 = 100$ см² не больше чем а) на ± 1 см²; б) на $\pm 0,1$ см²; в) на $\pm 0,01$ см²; г) на $\pm \epsilon$ см²?
- 664. Ребро куба заключается между 2 м и 3 м. С какой абсолютной погрешностью Δ допустимо измерить ребро x этого куба, чтобы объем его y можно было вычислить с абсолютной погрешностью, не превышающей ε м³, если: а) ε = 0,1 м³; б) ε = 0,01 м³; в) ε = 0,001 м³?
- 665. В какой максимальной окрестности точки $x_0 = 100$ ордината графика функции $y = \sqrt{x}$ отличается от ординати $y_0 = 10$ меньше чем на $\varepsilon = 10^{-10}$