

Zaio Technology (Pty) Ltd 9 Lower Burg Street, Cape Town City Centre, Cape Town, South Africa, 8000

Objective

The objective of this project is to analyse student habits and their effect on academic performance using machine learning techniques. Students will work with the student_habits_performance.csv dataset to perform data preprocessing, exploratory data analysis, predictive modelling, and interpretability through explainable AI (XAI). The project will reinforce concepts such as data cleaning, visualisation, classification, model evaluation, and explainability.

Timeline and Milestones (3 Weeks)

Week	Focus	Milestones
Week	Data collection and	- Import dataset into Jupyter Notebook
1	preparation	- Handle missing values
		- Encode categorical variables
		- Standardise/normalise numeric variables
		- Create cleaned dataset (students_clean.csv)
Week	Data exploration and	- Perform EDA with 2D & 3D plots (scatter,
2	model building	stacked bar, box/violin, heatmap, parallel
		coordinates, radar)
		- Train Decision Tree and Logistic Regression
		models
		- Compare model performance (accuracy,
		classification reports)
Week	Model evaluation	- Evaluate models using confusion matrices,
3	and explainability	ROC curves, and AUC
		- Apply SHAP (global importance), LIME (local
		explanations)
		- Summarise insights and prepare presentation

Week	Finalisation and	- Finalise cleaned dataset, notebook, and slides
4	submission	- Deliver presentation
		- Submit deliverables in required format

Tools & Technologies

Programming Language: Python

• Environment: Jupyter Notebook/ Visual studio code

• Libraries: pandas, numpy, matplotlib, seaborn, plotly, scikit-learn, shap, lime

• Collaboration Tools: Google Classroom

• Dataset Source: student_habits_performance.csv

Team Structure

• **Team Size:** Individual assignment

• **Team Roles:** You will take on the following roles:

o Data Engineer: Handles cleaning and preprocessing

Model Engineer: Focuses on training and evaluating models

o **Analyst:** Exploratory data analysis and visualisation

o **Presenter/Documenter:** Prepares final report and/or demo

Deliverables

1. Technical Notebook / Report

- Clean and documented Jupyter Notebook (.ipynb)/Visual studio code
- PDF report including:
 - Data Collection and preparation
 - Data Exploration
 - Model building and evaluation
 - Explainability
 - Conclusion
- Exported cleaned dataset (students_clean.csv)

2. Final Presentation (5-10 minutes)

- o Overview of dataset and problem
- Key findings from analysis
- Model performance results
- Lessons learned and recommendations

3. Submission Package

o ZIP file containing: Notebook, PDF report, cleaned dataset

4. Bonus points

- GitHub repo with organized code
- GitHub repo with all the documentation

Evaluation Criteria

Assessment will be based on:

- Data Collection: Correct import, dataset summary, missing values identified
- Data Preparation: Proper handling of missing data, encoding, normalisation, justification provided
- Data Exploration: Quality of visualisations and insights from 2D and 3D plots
- Model Building: Decision Tree and Logistic Regression trained, evaluated, and compared
- Model Evaluation: Confusion matrices, ROC curves, and AUC with interpretations
- Explainability: Use of SHAP, LIME with clear insights
- Report: Clear, structured report with conclusions and reflection

Submission Guidelines

- Final notebook/report: Upload to Google Classroom
- Attach the following files:
 - Jupyter Notebook (.ipynb)/ Visual Studio code
 - PDF Report
 - Cleaned dataset (students_clean.csv)
 - o ZIP folder containing all work (Project YourName).
- Presentation: Delivered live on final day
- All work must be submitted before the final session for evaluation.