

Lightning-fast cluster computing

Spark SQL and DataFrames Spark GraphX Spark Mlib Spark Streaming

Chaining transformations

What is Spark SQL?

- Spark module for structured data processing
- Replaces Shark (a prior Spark module, now deprecated)
- Built on top of core Spark

What does Spark SQL provide?

- The DataFrame API a library for working with data as tables
 - Defines DataFrames containing Rows and Columns
 - DataFrames are the focus of this chapter!
- Catalyst Optimizer an extensible optimization framework
- A SQL Engine and command line interface

SQL context

- The main Spark SQL entry point is a SQL Context object
 - Requires a SparkContext
 - The SQL Context in Spark SQL is similar to Spark Context in core Spark
- There are two implementations
 - SQLContext
 - basic implementation
 - -HiveContext
 - Reads and writes Hive/HCatalog tables directly
 - Supports full HiveQL language
 - Requires the Spark application be linked with Hive libraries
 - Recommended starting with Spark 1.5

Creating a SQL context

SQLContext is created based on the SparkContext

```
Python
```

from pyspark.sql import SQLContext
sqlCtx = SQLContext(sc)

Scala

import org.apache.spark.sql.SQLContext
val sqlCtx = new SQLContext(sc)
import sqlCtx._

DataFrames

- DataFrames are the main abstraction in Spark SQL
 - Analogous to RDDs in core Spark
 - A distributed collection of data organized into named columns
 - Built on a base RDD containing Row objects

```
# sc is an existing SparkContext.
       from pyspark.sql import SQLContext
      sqlContext = SQLContext(sc)
      # A JSON dataset is pointed to by path.
Data
      # The path can be either a single text file or a directory storing text files.
      people = sqlContext.read.json("examples/src/main/resources/people.json")
       # The inferred schema can be visualized using the printSchema() method.
      people.printSchema()
      # root
       # |-- age: integer (nullable = true)
       # |-- name: string (nullable = true)
      # Register this DataFrame as a table.
       people.registerTempTable("people")
       # SQL statements can be run by using the sql methods provided by `sqlContext`.
       teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")
      # Alternatively, a DataFrame can be created for a JSON dataset represented by
       # an RDD[String] storing one JSON object per string.
       anotherPeopleRDD = sc.parallelize([
         '{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}'])
       anotherPeople = sqlContext.jsonRDD(anotherPeopleRDD)
```

Creating a DataFrame from Hive

Place your hive-site.xml, core-site.xml (for security configuration), hdfs-site.xml (for HDFS configuration) file in your spark conf/

```
# sc is an existing SparkContext.
from pyspark.sql import HiveContext
sqlContext = HiveContext(sc)

sqlContext.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")
sqlContext.sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src")

# Queries can be expressed in HiveQL.
results = sqlContext.sql("FROM src SELECT key, value").collect()
```

Creating a DataFrame from MySQL

>>> dataframe_mysql = sqlContext.read.format("jdbc").option("url", "jdbc:mysq
l://localhost/uber").option("driver", "com.mysql.jdbc.Driver").option("dbtable",
 "trips").option("user", "root").option("password", "root").load()

>>> dataframe_mysql.show()	
dispatching_base_number	datela	active_vehicles trips
+	•	+
	1/1/2015	190 1132
I B027651	1/1/20151	225 1765
I B027641	1/1/20151	3427 29421
I B026821	1/1/20151	9451 76791
I B026171	1/1/20151	12281 95371
I B025981	1/1/20151	8701 69031
I B025981	1/2/20151	7851 47681
I B026171	1/2/20151	11371 70651
B025121	1/2/20151	1751 8751
I B026821	1/2/20151	8901 55061
	1/2/20151	196 1001
	1/2/20151	3147 19974
	1/3/20151	201 1526
	1/3/20151	1188 10664
	1/3/20151	818 7432
	1/3/20151	915 8010
	1/3/2015	173 1088
	1/3/20151	32151297291
	1/4/20151	147 791
	1/4/20151	812 5621
+	+	+

Creating a DataFrame from MySQL

```
>>> sqlContext.sql("select * from trips where dispatching_base_number like '%251
2%'").show()
+--------
|dispatching_base_number| date|active_vehicles|trips|
                                    190| 1132|
                B02512| 1/1/2015|
                B02512| 1/2/2015|
                                          1751 8751
                B02512| 1/3/2015|
                                           1731 10881
                B02512| 1/4/2015|
                                           1471 7911
                B02512| 1/5/2015|
                                           1941 9841
                B02512| 1/6/2015|
                                           2181 13141
                B02512| 1/7/2015|
                                           2171 14461
                B02512| 1/8/2015|
                                           2381 17721
                B02512| 1/9/2015|
                                           2241 15601
                B02512|1/10/2015|
                                           2061 16461
                B02512|1/11/2015|
                                           1621 11041
                B02512|1/12/2015|
                                           2171 13991
                B02512|1/13/2015|
                                           2341 16521
                B02512|1/14/2015|
                                           2331 15821
                                           2371 16361
                B02512|1/15/2015|
                B02512|1/16/2015|
                                           234| 1481|
                                           2011 12811
                B02512|1/17/2015|
                B02512|1/18/2015|
                                           177| 1521|
                B0251211/19/20151
                                          1681 10251
```

Transforming and querying DataFrames

- Basic Operations deal with DataFrame metadata (rather than its data), e.g.
 - schema returns a Schema object describing the data
 - -printSchema displays the schema as a visual tree
 - cache / persist persists the DataFrame to disk or memory
 - columns returns an array containing the names of the columns
 - dtypes returns an array of (column-name, type) pairs
 - -explain prints debug information about the DataFrame to the console

```
>>> from pyspark.sql import SQLContext
>>> sqlcontext = SQLContext(sc)
>>> people = sqlcontext.read.json('input/people.json')
>>> for item in people.dtypes:
... print item
...
('age', 'bigint')
('name', 'string')
('pcode', 'string')
>>> ■
```

Working data in a DataFrame

Queries – create a new DataFrame

- DataFrames are immutable
- Queries are analogous to RDD transformations

Actions – return data to the Driver

Actions trigger "lazy" execution of queries

Working data in a DataFrame

Some DataFrame actions

- collect return all rows as an array of Row objects
- take (n) return the first n rows as an array of Row objects
- count return the number of rows
- show (n) display the first n rows (default=20)

```
>>> people.count()
3
>>> people.show(2)
+---+---+
| age| name|pcode|
+---+---+
|null|Alice|94304|
| 30| Bob|94304|
+---+---+
only showing top 2 rows
```

DataFrame queries

DataFrame query methods return new DataFrames

Queries can be chained like transformations

Some query methods

- distinct returns a new DataFrame with distinct elements of this DF
- join joins this DataFrame with a second DataFrame
 - several variants for inside, outside, left, right, etc.
- -limit a new DF with the first n rows of this DataFrame
- select a new DataFrame with data from one or more columns of the base DataFrame
- filter a new DataFrame with rows meeting a specified condition

DataFrame queries

- Some query operations take strings containing simple query expressions
 - Such as select and where
- Example: select

age	name	pcode
null	Alice	94304
30	Brayden	94304
19	Carla	10036
46	Diana	null
null	Étienne	94104

peopleDF.
select("age")

peopleDF.
select("name", "age")

age
null
30
19
46
null

name	age
Alice	null
Brayden	30
Carla	19
Diana	46
Étienne	null

DataFrame queries

Example: where

```
peopleDF.
where("age > 21")
```

age	name	pcode
null	Alice	94304
30	Brayden	94304
19	Carla	10036
46	Diana	null
null	Étienne	94104

age	name	pcode
30	Brayden	94304
46	Diana	null

Query DataFrame using columns

- Some DF queries take one or more columns or column expressions
 - Required for more sophisticated operations
- Some examples
 - -select
 - -sort
 - -join
 - -where

Query DataFrame using columns

```
>>> people.select(people.age).show()
 age
[null]
   301
   191
>>> people.select(people.name,people.age+10).show()
   name|(age + 10)|
  Alicel
               nulli
     Bobl
               401
                                                           >>> people.sort(people.age.desc()).show()
|Charlie|
                                                                    name | pcode |
>>>
                                                              30| Bob|94304|
                                                              19|Charlie|10036|
                                                            |null| Alice|94304|
```

>>>

SQL queries

- Spark SQL also supports the ability to perform SQL queries
 - First, register the DataFrame as a "table" with the SQL Context

```
peopleDF.registerTempTable("people")
sqlCtx.sql("""SELECT * FROM people WHERE name LIKE "A%" """)
```

```
peopleDF.registerTempTable("people")
sqlCtx.sql("""SELECT * FROM people WHERE name LIKE "A%" """)
```

age	name	pcode
null	Alice	94304
30	Brayden	94304
19	Carla	10036
46	Diana	null
null	Étienne	94104

age	name	pcode
null	Alice	94304

Saving DataFrames

- Data in DataFrames can be saved to a data source
 - Built in support for JDBC and Parquet File
 - createJDBCTable create a new table in a database
 - insertInto save to an existing table in a database
 - saveAsParquetFile save as a Parquet file (including schema)
 - saveAsTable save as a Hive table (HiveContext only)
 - Can also use third party and custom data sources
 - save generic base function

DataFrames and RDDs

DataFrames are built on RDDs

- Base RDDs contain Row objects
- Use rdd to get the underlying RDD

peopleRDD = peopleDF.rdd

peopleDF

age	name	pcode
null	Alice	94304
30	Brayden	94304
19	Carla	10036
46	Diana	null
null	Étienne	94104

peopleRDD

Row[null,Alice,94304]
Row[30,Brayden,94304]
Row[19,Carla,10036]
Row[46,Diana,null]
Row[null,Étienne,94104]

DataFrames and RDDs

- Row RDDs have all the standard Spark actions and transformations
 - Actions collect, take, count, etc.
 - -Transformations map, flatMap, filter, etc.
- Row RDDs can be transformed into PairRDDs to use map-reduce methods

Working with Row objects

- The syntax for extracting data from Rows depends on language
- Python
 - Column names are object attributes
 - row.age return age column value from row

Scala

- Use Array-like syntax
 - -row(0) returns element in the first column
 - row (1) return element in the second column
 - etc.
- Use type-specific get methods to return typed values
 - row.getString(n) returns nth column as a String
 - row.getInt(n) returns nth column as an Integer
 - etc.

Extracting data from rows

Extract data from Rows

```
peopleRDD = peopleDF.rdd
peopleByPCode = peopleRDD \
   .map(lambda row(row.pcode,row.name)) \
   .groupByKey()
```

```
val peopleRDD = peopleDF.rdd
peopleByPCode = peopleRDD.
  map(row => (row(2),row(1))).
  groupByKey())
```

```
Row[null,Alice,94304]
Row[30, Brayden, 94304]
Row[19,Carla,10036]
Row[46,Diana,null]
Row[null, Étienne, 94104]
(94304,Alice)
(94304, Brayden)
(10036, Carla)
(null, Diana)
(94104,Étienne)
(null, [Diana])
(94304, [Alice, Brayden])
(10036, [Carla])
(94104, [Étienne])
```

Covert RDD to DataFrame

- You can also create a DF from an RDD
 - -sqlCtx.createDataFrame(rdd)

ML and GraphX in Spark

Common spark use case

- Spark is especially useful when working with any combination of:
 - Large amounts of data
 - Distributed storage
 - Intensive computations
 - Distributed computing
 - Iterative algorithms
 - In-memory processing and pipelining

Common spark use case

Examples

- Risk analysis
 - "How likely is this borrower to pay back a loan?"
- Recommendations
 - "Which products will this customer enjoy?"
- Predictions
 - "How can we prevent service outages instead of simply reacting to them?"
- Classification
 - "How can we tell which mail is spam and which is legitimate?"

Spark examples

- Spark includes many example programs that demonstrate some common
 Spark programming patterns and algorithms
 - k-means
 - Logistic regression
 - Calculate pi
 - Alternating least squares (ALS)
 - Querying Apache web logs
 - Processing Twitter feeds

Iterative algorithms in Spark: PageRank

- PageRank gives web pages a ranking score based on links from other pages
 - Higher scores given for more links, and links from other high ranking pages

Why do we care?

- PageRank is a classic example of big data analysis (like WordCount)
 - Lots of data needs an algorithm that is distributable and scalable
 - Iterative the more iterations, the better than answer

1. Start each page with a rank of 1.0

- Start each page with a rank of 1.0
- On each iteration:
 - each page contributes to its neighbors its own rank divided by the number of its neighbors: contrib_p = rank_p / neighbors_p

Start each page with a rank of 1.0

On each iteration:

- each page contributes to its neighbors its own rank divided by the number of its neighbors: contrib_p = rank_p / neighbors_p
- Set each page's new rank based on the sum of its neighbors contribution: new-rank = Σcontribs * .85 + .15

Start each page with a rank of 1.0

On each iteration:

- each page contributes to its neighbors its own rank divided by the number of its neighbors: contrib_p = rank_p / neighbors_p
- Set each page's new rank based on the sum of its neighbors contribution: new-rank = Σcontribs * .85 + .15

Each iteration incrementally improves the page ranking

Neighbor contribution function

```
def computeContribs(neighbors, rank):
   for neighbor in neighbors: yield(neighbor, rank/len(neighbors))
```


Input data

```
Data Format:
source-page destination-page
...
```

page1 page3 page2 page1 page4 page1 page3 page1 page4 page2 page3 page4

Pairs of page links

```
def computeContribs(neighbors, rank):...
links = sc.textFile(file)\
   .map(lambda line: line.split())\
   .map(lambda pages: (pages[0],pages[1]))\
   .distinct()
```

```
page1 page3
page2 page1
page4 page1
page3 page1
page4 page2
page3 page4

(page1,page3)
(page2,page1)
(page4,page1)
(page4,page1)
(page4,page2)
(page4,page2)
```

Page links grouped by source page

```
def computeContribs(neighbors, rank):...
links = sc.textFile(file)\
   .map(lambda line: line.split())\
   .map(lambda pages: (pages[0],pages[1]))\
   .distinct()\
   .groupByKey()
```

```
pagel page3
      page2 page1
      page4 page1
      page3 page1
     page4 page2
      page3 page4
     (page1,page3)
     (page2,page1)
     (page4,page1)
     (page3,page1)
      (page4,page2)
      (page3,page4)
links
(page4, [page2,page1])
(page2, [page1])
(page3, [page1,page4])
(page1, [page3])
```

Persisting the link pair RDD

```
def computeContribs(neighbors, rank):...

links = sc.textFile(file)\
   .map(lambda line: line.split())\
   .map(lambda pages: (pages[0],pages[1]))\
   .distinct()\
   .groupByKey()\
   .persist()
```


Set initial ranks

```
links
def computeContribs(neighbors, rank):...
                                                                  (page4, [page2,page1])
                                                                  (page2, [page1])
links = sc.textFile(file) \
                                                                  (page3, [page1,page4])
   .map(lambda line: line.split())\
                                                                  (page1, [page3])
   .map(lambda pages: (pages[0],pages[1]))\
   .distinct() \
   .groupByKey()\
                                                                  ranks
   .persist()
                                                                  (page4, 1.0)
ranks=links.map(lambda (page,neighbors): (page,1.0))
                                                                  (page2, 1.0)
                                                                  (page3, 1.0)
                                                                  (page1, 1.0)
```

```
links
                                                                                       ranks
def computeContribs(neighbors, rank):...
                                                          (page4, [page2,page1])
                                                                                        (page4, 1.0)
                                                          (page2, [page1])
                                                                                        (page2, 1.0)
links = ...
                                                          (page3, [page1,page4])
                                                                                        (page3, 1.0)
                                                          (page1, [page3])
                                                                                        (page1, 1.0)
ranks = ...
for x in xrange(10):
                                                                         (page4, ([page2,page1], 1.0))
  contribs=links\
     .join(ranks)
                                                                         (page2, ([page1], 1.0))
                                                                         (page3, ([page1,page4], 1.0))
                                                                         (page1, ([page3], 1.0))
```

```
links
                                                                                      ranks
def computeContribs(neighbors, rank):...
                                                         (page4, [page2,page1])
                                                                                      (page4, 1.0)
                                                         (page2, [page1])
                                                                                      (page2, 1.0)
links = ...
                                                         (page3, [page1,page4])
                                                                                      (page3, 1.0)
                                                                                      (page1, 1.0)
                                                         (page1, [page3])
ranks = ...
for x in xrange(10):
                                                                        (page4, ([page2,page1], 1.0))
  contribs=links\
     .join(ranks)\
                                                                        (page2, ([page1], 1.0))
     .flatMap(lambda (page, (neighbors, rank)): \
                                                                        (page3, ([page1,page4], 1.0))
         computeContribs (neighbors, rank))
                                                                        (page1, ([page3], 1.0))
                                                                              contribs
                                                                              (page2,0.5)
                                                                              (page1,0.5)
                                                                              (page1,1.0)
                                                                              (page1,0.5)
                                                                              (page4,0.5)
                                                                              (page3,1.0)
```

```
def computeContribs(neighbors, rank):...
links = ...
ranks = ...
for x in xrange(10):
  contribs=links\
    .join(ranks)\
    .flatMap(lambda (page, (neighbors, rank)): \
       computeContribs(neighbors,rank))
  ranks=contribs\
    .reduceByKey(lambda v1,v2: v1+v2)
```

(page2,0.5) (page1,0.5) (page1,1.0) (page1,0.5) (page4,0.5) (page4,0.5)

(page4,0.5)
(page2,0.5)
(page3,1.0)
(page1,2.0)

```
def computeContribs(neighbors, rank):...
links = ...
ranks = ...
for x in xrange(10):
  contribs=links\
    .join(ranks)\
    .flatMap(lambda (page, (neighbors, rank)): \
       computeContribs (neighbors, rank))
  ranks=contribs\
    .reduceByKey(lambda v1,v2: v1+v2)\
    .map(lambda (page,contrib): \
         (page,contrib * 0.85 + 0.15))
```

contribs
(page2,0.5)
(page1,0.5)
(page1,1.0)
(page1,0.5)
(page4,0.5)
(page3,1.0)

(page4,0.5)	_
(page2,0.5)	
(page3,1.0)	
(page1,2.0)	

Second iteration

```
links
                                                                               ranks
def computeContribs(neighbors, rank):...
                                                    (page4, [page2,page1])
                                                                               (page4, 0.58)
                                                    (page2, [page1])
                                                                               (page2,0.58)
links = ...
                                                    (page3, [page1,page4])
                                                                               (page3,1.0)
                                                                               (page1,1.85)
                                                    (page1, [page3])
ranks = ...
for x in xrange(10):
  contribs=links\
     .join(ranks)\
     .flatMap(lambda (page, (neighbors, rank)): \
        computeContribs (neighbors, rank))
  ranks=contribs\
     .reduceByKey(lambda v1,v2: v1+v2)\
     .map(lambda (page,contrib): \
                                                                        ranks
          (page, contrib * 0.85 + 0.15))
                                                                        (page4, 0.57)
                                                                        (page2,0.21)
for rank in ranks.collect(): print rank
                                                                        (page3,1.0)
                                                                        (page1,0.77)
```

Checking point

 Maintaining RDD lineage provides resilience but can also cause problems when the lineage gets very long

lter1

Iter2

Iter3

Iter4

Iter100

data...

data... data... data...

- e.g., iterative algorithms, streaming
- Recovery can be very expensive
- Potential stack overflow

```
myrdd = ...initial-value...
while x in xrange(100):
    myrdd = myrdd.transform(...)
myrdd.saveAsTextFile(dir)
...
```

Checking point

- Checkpointing saves the data to HDFS
 - Provides fault-tolerant storage across nodes
- Lineage is not saved
- Must be checkpointed before any actions on the RDD

```
sc.setCheckpointDir(directory)
myrdd = ...initial-value...
while x in xrange(100):
   myrdd = myrdd.transform(...)
   if x % 3 == 0:
      myrdd.checkpoint()
      myrdd.count()
myrdd.saveAsTextFile(dir)
```


GraphX in Spark

- Spark is very well suited to graph parallel algorithms
- GraphX
 - UC Berkeley AMPLab project on top of Spark
 - Unifies optimized graph computation with Spark's fast data parallelism and interactive abilities
 - Supersedes predecessor Bagel (Pregel on Spark)

Examples in GraphX

```
import org.apache.spark.graphx.GraphLoader

// Load the edges as a graph
val graph = GraphLoader.edgeListFile(sc, "data/graphx/followers.txt")

// Run PageRank
val ranks = graph.pageRank(0.0001).vertices

// Join the ranks with the usernames
val users = sc.textFile("data/graphx/users.txt").map { line =>
    val fields = line.split(",")
    (fields(0).toLong, fields(1))
}

val ranksByUsername = users.join(ranks).map {
    case (id, (username, rank)) => (username, rank)
}

// Print the result
println(ranksByUsername.collect().mkString("\n"))
```

```
import org.apache.spark.graphx.GraphLoader

// Load the graph as in the PageRank example
val graph = GraphLoader.edgeListFile(sc, "data/graphx/followers.txt")

// Find the connected components
val cc = graph.connectedComponents().vertices

// Join the connected components with the usernames
val users = sc.textFile("data/graphx/users.txt").map { line =>
    val fields = line.split(",")
    (fields(0).toLong, fields(1))
}
val ccByUsername = users.join(cc).map {
    case (id, (username, cc)) => (username, cc)
}
// Print the result
println(ccByUsername.collect().mkString("\n"))
```

MLlib in Spark

https://spark.apache.org/docs/2.0.2/ml-guide.html

What is MLlib?

Algorithms:

- classification: logistic regression, linear support vector machine (SVM), naive Bayes
- regression: generalized linear regression (GLM)
- collaborative filtering: alternating least squares (ALS)
- clustering: k-means
- decomposition: singular value decomposition (SVD), principal component analysis (PCA)

Why MLlib?

- It is built on Apache Spark, a fast and general engine for large-scale data processing.
 - Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.

Write applications quickly in Java, Scala, or Python.

https://docs.databricks.com/spark/latest/mllib/decision-trees.html

Spark streaming

http://spark.apache.org/docs/latest/streaming-programming-guide.html