수학 **| 고1** 교과서 변형문제 <mark>기본</mark>

2-3.여러 가지 방정식과 부등식

2-3-4.이차부등식과 연립이차부등식_신사고(고성은)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2020-03-05

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다. ◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check /

[이차부등식과 이차함수의 관계]

이차함수 $y=ax^2+bx+c\;(a>0)$ 의 그래프를 이용하여 이차부등식의 해를 구할 수 있다.

이차부등식	이차부등식		
$ax^2 + bx + c > 0$ 의 해	$ax^2+bx+c<0$ 의 해		
(y>0인 x의 범위)	(y<0인 x의 범위)		
$\bigoplus_{\alpha \in \beta} \bigoplus_{x \in X}$			
$x < \alpha$ 또는 $x > \beta$	$\alpha < x < \beta$		
\bigoplus	a x		
$x \neq \alpha$ 인 모든 실수	없다.		
\oplus \oplus $\stackrel{\bullet}{x}$	$\frac{1}{x}$		
모든 실수	없다.		

[이차부등식의 해]

이차부등식 $y\!=\!ax^2\!+\!bx\!+\!c\;(a\!>\!0)$ 의 해는 이차함수의 그래프와 x축 의 위치 관계로 구할 수 있다.

$ax^2 + bx + c = 0$ 의 판별식 D의 부호	D>0	D=0	D < 0
$y = ax^2 + bx + c$ 의 그래프	α β x	α	
$ax^2+bx+c>0$ 의 해	x < α 또는 x > β	$x \neq \alpha$ 인 모든 실수	모든 실수
$ax^2 + bx + c \ge 0$ 의 해	$x \le \alpha$ 또는 $x \ge \beta$	모든 실수	모든 실수
$ax^2+bx+c<0$ 의 해	$\alpha < x < \beta$	해는 없다.	해는 없다.
$ax^2+bx+c \le 0$ 의 해	$\alpha \leq x \leq \beta$	$x = \alpha$	해는 없다.

[연립이차부등식]

- (1) 각 부등식의 해를 구한다.
- (2) 공통부분을 찾아 해를 구한다.

기본문제

[예제]

- **1.** 이차부등식 $x^2 + 4x + 3 > 0$ 의 해는?
 - ① 1 < x < 3
- ② x < -3 또는 x > 1
- 3 3 < x < 1
- ④ $x < -3 \oplus x > -1$
- ⑤ -3 < x < -1

[문제]

- **2.** 이차부등식 $x^2 5x + 3 < 0$ 해가 $\alpha < x < \beta$ 일 때, $\alpha^2 + \beta^2$ 의 값은?
 - ① 12
- 2 14
- 3 16
- 4 17
- (5) 19

[예제]

- **3.** 이차부등식 $x^2 6x + 9 > 0$ 의 해는?
 - ① $x \neq 3$ 인 모든 실수
- ② x = 3
- (3) x > 3
- (4) $x \ge 3$
- (5) x < 3

[문제]

- **4.** 이차부등식 $x^2 + 4x + 4 \le 0$ 의 해는?
 - ① x = 2
- ② $x \ge 2$
- ③ x = -2
- $(4) x \ge -2$
- ⑤ $x \le -2$

[예제]

- **5.** 이차부등식 $x^2-4x+7<0$ 의 해는?
 - ① 1 < x < 7
- ② x = 2
- \bigcirc -1 < x < 7
- ④ $x \neq 2$ 인 모든 실수
- ⑤ 해가 없음

[문제]

- **6.** 이차부등식 $x^2 6x + 15 \le 0$ 의 해는?
 - $\bigcirc -3 < x < 5$
- ② *x* ≠ 3인 모든 실수
- 3 < x < 5
- ④ 해가 없음
- \bigcirc -5 < x < -3

- 7. 이차부등식 $x^2-2kx+k+12 \le 0$ 의 해가 오직 1 개만 존재 할 때, 이를 만족하는 모든 실수 k의 합 은?
 - 1
- ② 2
- ③ 3
- 4
- **⑤** 5

[문제]

- **8.** 모든 실수 x에 대해서 $x^2 + ax + a + 3 > 0$ 가 항상 성립할 때, 정수 a의 개수는?
 - ① 5
- ② 7
- ③ 10
- 4) 12
- **⑤** 15

[예제]

- **9.** 이차방정식 $x^2+2(k+1)x-k+11=0$ 이 서로 다 른 두 실근을 갖도록 하는 실수 k의 값의 범위는?

 - ① k < -5 또는 k > 2 ② $k \le -5$ 또는 $k \ge 2$
 - ③ k < -2 또는 k > 5
- $\bigcirc (4) -5 < k < 2$
- ⑤ $-5 \le k \le 2$

- **10.** 이차방정식 $x^2 + 4kx 2k + 2 = 0$ 이 서로 다른 허 근을 갖도록 하는 실수 k의 값의 범위는?
 - ① $-1 < k < \frac{1}{2}$ ② $-\frac{1}{2} < k < 1$

 - (5) -1 < k < 2

[문제]

[문제]

- $oldsymbol{11}$. 지면에서 차올린 공이 t초 후에 지면으로부터 높 이 y m높이 에 도달 된다. $y=-t^2+6t$ 가 성립이 될 때, 공의 높이가 5 m이상 있는 시간은 몇 초인가?
 - 1
- ② 2
- ③ 3
- **(4)** 4
- (5) 5

[예제]

- **12.** 연립부등식 $\begin{cases} -x^2+3x>x-3 \\ x>2(x-1) \end{cases}$ 의 해는?
 - $\bigcirc 1 1 < x < 2$
- $\bigcirc 1 < x < 3$
- $\bigcirc 2 < x < 3$
- $\bigcirc 4 1 < x < 2$
- ⑤ x < 2

[문제]

- **13.** 연립부등식 $\begin{cases} x^2+7 \ge 3x^2-1 \\ x^2+2x-3 < 0 \end{cases}$ 의 해는?
 - ① $-2 \le x \le 1$
- ② $-2 \le x \le 2$
- $3 3 \le x \le 1$
- (4) $-3 \le x \le 2$
- $\boxed{5} -3 \le x \le -2$

[예제]

- **14.** 연립부등식 $\begin{cases} x^2 4 \le 3x \\ x^2 \le -2x \end{cases}$ 의 해는?
 - $1 1 \le x \le 4$
- ② $-1 \le x \le 0$
- $(3) 2 \le x \le 4$
- $\bigcirc 4 2 \le x \le 0$
- \bigcirc $-2 \le x \le -1$

[문제]

15. 연립부등식 $\begin{cases} x^2 - 3x > 0 \\ x^2 - 5x + 4 < 0 \end{cases}$ 의 해는?

- ① 1 < x < 3
- ② 1 < x < 4
- $\bigcirc 0 < x < 3$
- $\bigcirc 3 < x < 4$
- (5) 0 < x < 1

[문제]

- **16.** 세 변의 길이가 각각 x, 2x+2, 2x+3인 삼각형 이 둔각삼각형이 되도록 하는 자연수 x의 합?
 - 1 1
- ② 3

- ③ 5
- **4**) 7
- (5) 9

평가문제

[중단원 마무리]

- **17.** 이차부등식 $x^2 9x + 18 \le 0$ 의 해는?
 - ① $2 \le x \le 6$
- ② $2 \le x \le 9$
- $3 \le x \le 6$
- $(4) \ 3 \le x \le 9$
- ⑤ $4 \le x \le 6$

[중단원 마무리]

- **18.** 연립부등식 $\begin{cases} 2x^2-4>3x-5 \\ x<-x+2 \end{cases}$ 의 해는?
 - ① $\frac{1}{2} < x < 1$ ② $x < \frac{1}{2}$

 - ③ x < 1 ④ $x > \frac{1}{2}$
 - ⑤ x > 1

[중단원 마무리]

- **19.** 이차부등식 $x^2 + ax + b < 0$ 의 해가 -3 < x < 1일 때, 이차부등식 $x^2 - bx - 2a > 0$ 의 해는?
 - (1) -4 < x < 1
- ② x < -4 또는 x > 1
- 3 1 < x < 4
- ④ x < -1 + x > 4
- (5) 1 < x < 4

- **20.** 이차부등식 f(x) < 0 해가 -3 < x < 4일 때, f(2x+1) < 0의 해는?
 - ① $-4 < x < \frac{3}{2}$ ② -4 < x < 4
 - $3 2 < x < \frac{3}{2}$ 4 < x < 3
 - \bigcirc $-2 < x < \frac{5}{2}$

[중단원 마무리]

- **21.** 모든 실수 x에 대해 이차부등식 $-x^2+(2k+2)x-4k-4<0$ 을 항상 만족하도록 하는 정수 k의 개수는?
 - \bigcirc 1
- ② 2
- ③ 3

(4) 4

(5) 5

[중단원 마무리]

- **22.** 연립부등식 $\begin{cases} x^2+x+n-n^2 < 0 \\ x^2-2x-8 < 0 \end{cases}$ 를 만족하는 정수 x의 개수가 4개 일 때, 자연수 n의 값은?
 - ① 1
- ② 2
- ③ 3
- (4) 4

⑤ 5

[중단원 마무리]

- 23. 모든 실수 x에 대해서 다음의 이차부등식 $-x^2+4 < x^2+6x+a < 2x^2+10x+14$ 가 성립하도록 하는 정수 a의 값은?
 - 1 1
- ② 3

- 3 5
- (4) 7
- **⑤** 9

[중단원 마무리]

- **24.** 둘레의 길이가 28 cm 인 직사각형의 넓이가 40 cm2이상 되도록 하는 직사각형의 가로의 길이의 최댓값과 최솟값의 합을 구하면?
 - 8
- ② 10
- ③ 12
- (4) 14
- (5) 16

- [중단원 마무리]
- **25.** a < b < c인 실수 a, b, c에 대하여 연립부등식 $\left[x^2-(a+b)x+ab\geq 0$ 의 해가 $x\leq -2$ 또는 4< x $(x^2 - (b+c)x + bc > 0)$ 일 때, a+c의 값을 구하면?
 - 1 1
- 3 3
- **(4)** 4
- **⑤** 5

- [중단원 마무리]
- **26.** 어느 상점에서 티셔츠 1장을 4만 원에 팔면 20 장이 팔린다고 한다. 티셔츠 가격을 x만 원 올려서 팔면 2x장이 덜 팔린다고 했을 때, 총 수익이 48만 원 이상이기 위한 티셔츠의 최대 가격은?
 - ① 8만 원
- ② 10만 원
- ③ 12만 원
- ④ 14만 원
- ⑤ 16만 원

- [대단원 마무리]
- 27. 모든 실수 x에 대하여 성립하는 부등식을 보기에 서 있는 대로 고른 것은?

- $\exists x^2 + 2x \ge -3$
- -1 $x^2 x < -3$
- \Box . $-x^2+2x \ge 5$
- $\exists . 2x^2 3x > -2$
- ① ¬
- ② =
- ③ 7, ≥
- ④ ∟, ≥
- ⑤ ¬,

- [대단원 마무리]
- $egin{cases} -x^2+4x \leq 0 \ x^2-x+2 \leq -2x+4$ 의 해와 이차부 등식 $x^2 + ax + b \le 0$ 의 해가 서로 같을 때, 실수 a, b에 대하여 a+b의 값을 구하시오.
 - 1 2

2 4

3 6

- **(4)** 8
- (5) 10

[대단원 마무리]

- **29.** 이차방정식 $x^2 + kx + 1 = 0$ 은 실근을 갖고, 이차 방정식 $x^2 - 2kx + 3k + 4 = 0$ 은 허근을 갖도록 하는 실수 k의 값의 범위는?
 - ① $-2 \le x < 4$
- ② 2 < k < 4
- 3 1 < k < 4
- (4) -2 < k < 4
- (5) $2 \le x < 4$

4

정답 및 해설

1) [정답] ④

[해설]
$$x^2+4x+3=(x+3)(x+1)>0$$

따라서 해는 $x<-3$ 또는 $x>-1$

2) [정답] ⑤

[해설]
$$x^2 - 5x + 3 = 0$$
의 해를 α , β ($\alpha > \beta$)라 하면 $x^2 - 5x + 3 < 0$ 의 해는 $\beta < x < \alpha$ 따라서 $\alpha + \beta = 5$, $\alpha\beta = 3$ 이므로 $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 19$

3) [정답] ①

[해설]
$$x^2-6x+9=(x-3)^2>0$$

따라서 해는 $x \neq 3$ 인 모든 실수

4) [정답] ③

[해설]
$$x^2+4x+4=(x+2)^2\leq 0$$

따라서 해는 $x=-2$

5) [정답] ⑤

[해설]
$$x^2-4x+7=(x-2)^2+3<0$$

따라서 해는 없다.

6) [정답] ④

[해설]
$$x^2-6x+15=(x-3)^2+6\leq 0$$

따라서 해는 없다,

7) [정답] ①

[해설]
$$x^2-2kx+k+12 \le 0$$
의 해가 오직 1개이므로
$$x^2-2kx+k+12=0$$
이 중근을 가진다.
$$x^2-2kx+k+12=0$$
의 판별식을 D 라 하면
$$D=k^2-k-12=(k-4)(k+3)=0$$
 따라서 $k=4$ 또는 $k=-3$ 이고 모든 실수 k 의 합은 1

8) [정답] ②

[해설]
$$x^2+ax+a+3>0$$
의 해가 모든 실수이므로 $x^2+ax+a+3=0$ 이 허근을 가진다.
$$x^2+ax+a+3=0$$
의 판별식을 D 라 하면
$$D=a^2-4(a+3)=(a-6)(a+2)<0$$
 따라서 $-2< a<6$ 이고 정수 a 는 총 7 개

9) [정답] ①

[해설]
$$x^2+2(k+1)x-k+11=0$$
의 판별식을 D 라 하면 $D<0$ 이므로
$$D/4=(k+1)^2+k-11$$
$$=k^2+3k-10=(k+5)(k-2)>0$$
 따라서 $k<-5$ 또는 $k>2$

10) [정답] ①

[해설]
$$x^2 + 4kx - 2k + 2 = 0$$
의 판별식을 D 라 하면

$$\begin{split} D &= (2k)^2 + 2k - 2 = 4k^2 + 2k - 2 \\ &= 2(2k^2 + k - 1) = 2(2k - 1)(k + 1) < 0 \end{split}$$
 따라서 $-1 < k < \frac{1}{2}$

11) [정답] ④

[해설]
$$-t^2+6t \ge 5$$
에서
$$t^2-6t+5=(t-1)(t-5)\le 0$$
 따라서 $1\le t\le 5$ 이고 공의 높이가 5 m이상 있는 시간은 4 초

12) [정답] ④

[해설]
$$\begin{cases} -x^2+3x>x-3 \\ x>2(x-1) \end{cases}$$
 $-x^2+3x>x-3$ 에서 $-1< x<3$ $x>2x-2$ 에서 $x<2$ 따라서 해는 $-1< x<2$

13) [정답] ①

[해설]
$$\begin{cases} x^2+7\geq 3x^2-1\\ x^2+2x-3\leq 0 \end{cases}$$

$$x^2+7\geq 3x^2-1$$
에서 $x^2\leq 4,\ -2\leq x\leq 2$
$$x^2+2x-3\leq 0$$
에서 $-3\leq x\leq 1$ 따라서 해는 $-2\leq x\leq 1$

14) [정답] ②

[해설]
$$\begin{cases} x^2-4 \leq 3x \\ x^2 \leq -2x \end{cases}$$

$$x^2-4 \leq 3x$$
에서 $-1 \leq x \leq 4$
$$x^2+2x \leq 0$$
에서 $-2 \leq x \leq 0$ 따라서 해는 $-1 \leq x \leq 0$

15) [정답] ④

[해설]
$$\begin{cases} x^2 - 3x > 0 \\ x^2 - 5x + 4 < 0 \end{cases}$$

$$x^2 - 3x > 0$$
에서 $x < 0$ 또는 $3 < x$
$$x^2 - 5x + 4 < 0$$
에서 $1 < x < 4$ 따라서 해는 $3 < x < 4$

16) [정답] ⑤

[해설] 실수
$$x$$
, $2x+2$, $2x+3$ 가 삼각형의 세 변의 길이가 되려면 $x+(2x+2)>2x+3$, 즉 $x>1$ 이 삼각형이 둔각삼각형이 되도록 하려면 $(2x+3)^2>x^2+(2x+2)^2$, 즉 $x^2-4x-5<0$ $(x-5)(x+1)<0$ 따라서 $-1 삼각형의 조건 $x>1$ 을 만족해야하므로 $1 따라서 자연수 x 는 2 , 3 , 4 이고 합은 $9$$$

17) [정답] ③

[해설]
$$x^2-9x+18=(x-3)(x-6) \le 0$$

따라서 $3 \le x \le 6$

18) [정답] ②

[해설]
$$\begin{cases} 2x^2-4>3x-5 \\ x<-x+2 \end{cases}$$
 $2x^2-4>3x-5$ 에서 $2x^2-3x+1>0$, $x<\frac{1}{2}$ 또는 $x>1$ $x<-x+2$ 에서 $x<1$ 따라서 $x<\frac{1}{2}$

19) [정답] ②

[해설]
$$x^2 + ax + b < 0$$
의 해가 $-3 < x < 1$ 이므로 $x^2 + ax + b = (x+3)(x-1) = x^2 + 2x - 3$ 따라서 $a = 2$, $b = -3$ 그러므로 $x^2 - bx - 2a = x^2 + 3x - 4 = (x+4)(x-1) > 0$ 따라서 해는 $x < -4$ 또는 $x > 1$

20) [정답] ③

[해설]
$$f(x) < 0$$
의 해가 $-3 < x < 4$ 이므로
$$f(2x+1) < 0$$
의 해는 $-3 < 2x+1 < 4$ 그러므로 $-2 < x < \frac{3}{2}$

21) [정답] ③

[해설] 모든 실수
$$x$$
에 대해
$$-x^2+(2k+2)x-4k-4<0$$
이므로
$$-x^2+(2k+2)x-4k-4=0 \ \ \, 실근은 \ \, 존재하지 \ \, 않 \ \ \, 는다.$$

$$-x^2+(2k+2)x-4k-4=0$$
의 판별식을 D 라 하면
$$D=(k+1)^2-(4k+4)$$

$$=k^2-2k-3=(k-3)(k+1)<0$$
 따라서 $-1< k<3$ 이고 정수 k 는 총 3 개

22) [정답] ④

[해설]
$$\begin{cases} x^2 + x + n - n^2 < 0 \\ x^2 - 2x - 8 < 0 \end{cases}$$

$$x^2 + x + n(1 - n) < 0$$
에서 $-n < x < n - 1$
$$x^2 - 2x - 8 < 0$$
에서 $-2 < x < 4$ 정수 x 의 개수 4개이므로
$$n = 1$$
일 때, 해는 $-1 < x < 0$ (0개)
$$n = 2$$
일 때, 해는 $-2 < x < 1$ (2개)
$$n = 3$$
일 때, 해는 $-2 < x < 2$ (3개)
$$n = 4$$
일 때, 해는 $-2 < x < 3$ (4개)
$$n = 5$$
일 때, 해는 $-2 < x < 4$ (5개)
$$n = 6$$
일 때, 해는 $-2 < x < 4$ (5개)
$$n = 6$$
일 때, 해는 $-2 < x < 4$ (5개)
$$\vdots$$
 따라서 조건을 만족하는 자연수 $n = 4$

23) [정답] ⑤

[해설]
$$-x^2+4 < x^2+6x+a < 2x^2+10x+14$$
 $-x^2+4 < x^2+6x+a$ 에서 $2x^2+6x+a-4>0$ $2x^2+6x+a-4=0$ 의 판별식을 D 라 하면 $D=9-2(a-4)<0, \ \frac{17}{2} < a$ $x^2+6x+a<2x^2+10x+14$ 에서 $x^2+4x+14-a>0$ $x^2+4x+14-a=0$ 의 판별식을 D 라 하면 $D=4-(14-a)<0, \ a<10$ 따라서 $\frac{17}{2} < a < 10$ 이고 가능한 정수 $a=9$

24) [정답] ④

[해설] 직사각형의 가로의 길이:
$$a$$
 직사각형의 세로의 길이: $14-a$ $a(14-a) \geq 40$ 에서 $a^2-14a+40=(a-4)(a-10)\leq 0$ 따라서 $4\leq a\leq 10$ 이므로 최댓값과 최솟값의 합은 $4+10=14$

25) [정답] ②

[해설]
$$\begin{cases} x^2 - (a+b)x + ab \ge 0 \\ x^2 - (b+c)x + bc > 0 \end{cases}$$
$$x^2 - (a+b)x + ab = (x-a)(x-b) \ge 0$$
에서
$$x \le a \text{ 또는 } b \le x$$
$$x^2 - (b+c)x + bc = (x-b)(x-c) > 0$$
에서
$$x < b \text{ 또는 } c < x$$
그러므로 해는 $x \le a$ 또는 $x \le a$ $x \le a$ 또는 $x \le a$ 또는 $x \le a$ 또는 $x \le a$ 또는 $x \le a$ $x \le a$ 또는 $x \le a$ $x \ge a$ $x \le a$ $x \ge a$ $x \ge a$ $x \le a$ $x \ge a$

26) [정답] ③

[해설] 티셔츠 가격:
$$4+x$$
, 판매량: $20-2x$ 총 수익: $(4+x)(20-2x)=-2x^2+12x+80$ $-2x^2+12x+80 \ge 48$ 에서 $x^2-6x-16=(x-8)(x+2)\le 0$ 따라서 $-2\le x \le 8$ 이고 $x=8$ 일 때, 티셔츠는 12만 원

27) [정답] ③

[해설] ㄱ. $x^2 + 2x + 3 \ge 0$ 이므로 이차방정식

a. $2x^2-3x+2>0$ 이므로 이차방정식 $2x^2-3x+2=0$ 의 판별식 D는 $D = (-3)^2 - 4 \times 2 \times 2 = -7 < 0$ 따라서 모든 실수 x에 대하여 성립한다. 이상에서 구하는 부등식은 ㄱ, ㄹ이다.

28) [정답] ①

[해설]
$$\begin{cases} -x^2 + 4x \le 0 \\ x^2 - x + 2 \le -2x + 4 \end{cases}$$
$$-x^2 + 4x \le 0$$
에서 $x \le 0$ 또는 $x \ge 4$
$$x^2 - x + 2 \le -2x + 4$$
에서 $-2 \le x \le 1$
$$-2 = -2 \le x \le 0$$
$$x^2 + ax + b \le 0$$
의 해가 $-2 \le x \le 0$ 이므로 이 부등식이 $x(x+2) \le 0$, 즉
$$x^2 + 2x \le 0$$
과 같아야 한다. 따라서 $a = 2$, $b = 0$ 이므로 $a + b = 2$

29) [정답] ⑤

[해설]
$$x^2+kx+1=0$$
의 판별식을 D_1 이라 하면
$$D_1=k^2-4\times1\times1=k^2-4\geq0$$
 $k\leq-2$ 또는 $k\geq2$
$$x^2-2kx+3k+4=0$$
의 판별식을 D_2 라 하면
$$\frac{D_2}{4}=(-k)^2-1\times(3k+4)=k^2-3k-4<0$$
 $-1< k<4$ 따라서 해는 $2\leq k<4$