Analysis

 $Hoyan\ Mok^1$

October 20, 2020

 $^{^{1}\}mathrm{E\text{-}mail:}$ victoriesmo@hotmail.com

preface

 $The \ latest \ version: \ \texttt{https://github.com/HoyanMok/NotesOnMathematics/tree/master/Analysis}$

Contents

preface		
C	ontents	ii
Ι	Mathematical Analysis	1
1	Metric Space and Continuous Mapping \$1 Metric Space \$2 Topological Space \$3 Compact Set \$4 Connected Set \$5 Complete Metric Spaces \$6 Continuous Mapping \$7 Contraction	4 5 7 8 10
	Normed Linear Space and Differential Calculus §8 Normed Linear Space	13 13
·	ymbol List ndex	15 16

Part I Mathematical Analysis

Chapter 1

Metric Space and Continuous Mapping

§1 Metric Space

Definition 1.1 (Metric). A function

$$d\colon X^2\to \mathbb{R}$$

 $\forall x, y, z \in X$ satisfying:

- a) $d(x,y) = 0 \leftrightarrow x = y$;
- b) d(x,y) = d(y,x) (symmetry);
- c) $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality),

is called a **metric** or **distance** in X. Such X is said to be equiped with a metric d, (X, d) is called a **metric space**. If the metric defined over X is definite, we just simply call the X the metric space.

Some examples:

• We can define $\mathbb{R}_p^n := (\mathbb{R}^n, d_p)$, where

$$d_p(x,y) := \left(\sum_{i \in n} |x^i - y^i|^p\right)^{1/p}, \tag{1-1}$$

while

$$d_{\infty}(x,y) := \max_{i \in n} \left| x^i - y^i \right|. \tag{1-2}$$

• Similarly we can define metric spaces as $(C[a, b], d_p)$ or simplified $C_p[a, b]$.

$$d_p(f,g) = \left(\int_a^b \left| f - g \right|^p \mathrm{d}x \right)^{1/p} . \tag{1-3}$$

while $C_{\infty}[a,b]$ is called a **Chebyshev metric**, where the metric is defined as $d_{\infty}(f,g) := \max_{x \in [a,b]} |f(x) - g(x)|$.

§1. METRIC SPACE 3

• On equivalence class $\mathfrak{R}[a,b]$ over $\mathfrak{R}[a,b]$ similar metric can be defined. Functions are considered equicalent if they are equal up to a null set.

Lemma 1 (Quadruple inequality). Let (X,d) be a metric space.

$$\forall a, b, u, v \in X, \ \left| d(a, b) - d(u, v) \right| \le d(a, u) + d(b, v) \tag{1-4}$$

Proof. Without loss of generality, we assume that d(a,b) > d(u,v). According to the triangle inequality (see def. 1.1), $d(a,b) \le d(a,u) + d(u,v) + d(v,b)$, which is to prove.

Definition 1.2 (δ -ball). Let (X,d) be a metric space, and $\delta \in \mathbb{R}_+$, $a \in X$. A set

$$B(a; \delta) = \{ x \in X \mid d(a, x) < \delta \}$$

is then called a **ball** with a centre at $a \in X$ and a radius of δ , or a **ball** of point a.

Definition 1.3 (Open set). An *open set* $G \in 2^X$ in a metric space (X, d) is a set that satisfies: $\forall x \in G, \exists \delta \in \mathbb{R}_+, \text{ s.t. } B(X, \delta) \in 2^G$.

Definition 1.4 (Closed set). A *closed set* $F \in 2^X$ in a metric space (X, d) is a set that satisfies: X - F is an open set in (X, d).

A **closed ball** $\overline{B}(X, \delta) := \{x \in X \mid d(a, x) \leq r\}$ is an example of closed sets in (X, d).

Proposition 1. a) An infinite union of open sets is an open set.

- b) A definite intersection of open sets is an open set.
- c) A definite union of closed sets is a closed set.
- d) An infinite intersection of closed sets is a closed set.

Proof. Let $\forall \alpha \in A, G_{\alpha}$ be open sets.

- a) $\forall x \in \bigcup_{\alpha \in A} G_{\alpha}, \exists \alpha \in A \text{ s.t. } x \in G_{\alpha}. \text{ Since } G_{\alpha} \text{ is open, } \exists \delta \in \mathbb{R}_{+} \text{ s.t. } B(X, \delta) \subset G_{\alpha} \subset \bigcup_{\alpha \in A} G_{\alpha}.$
- b) Let G_1 , G_2 be open sets in (X, d). $\forall a \in G_1 \cap G_2$, $\exists \delta_1, \delta_2 \in \mathbb{R}_+$ s.t. $B(a; \delta_1) \subset G_1$, $B(a; \delta_2) \subset G_2$. Without loss of generality, let $\delta_1 \geq \delta_2$, therefore $a \in B(a; \delta_1) \cap B(a; \delta_2) = B(a; \delta_2) \subset G_1 \cap G_2$.
- c) Just consider $\mathcal{C}_X\left(\bigcap_{\alpha\in A}F_\alpha\right)=\bigcup_{\alpha\in A}\mathcal{C}_X(F_\alpha)$ and a).
- d) Similarly, $C_X(F_1 \cup F_2) = C_X(F_1) \cap C_X(F_2)$.

Definition 1.5 (Neighbourhood). If $x \in X$ is an element of an open set, then such open set is called a **neighbourhood** of point x in X, denoted by U(x). The collection of all neighbourhoods of x can be denoted by $\mathcal{U}(x)$.

Definition 1.6 (Interior point). Let $x \in X$, $E \subset X$.

- a) If $\exists U(x) \subset E$, x is called an *interior point* of E.
- b) If $\exists U(x) \subset X E$, x is called an **exterior point** of E.
- c) If x isn't an interior point nor exterior point of E, it is called a **boundary point** of E. The set of boundary points is called **boundary**, denoted by $[partial E]\partial E$.

Definition 1.7 (Limit point). $a \in X$, $E \subset X$. If $\forall U(a)$, card $(E \cap U(a)) = \infty$, a is called a *limit* **point** of E.

Definition 1.8 (Closure). The intersections of $E \subset X$ and set of all its limit points is called the **closure** of E, denoted by \overline{E} .

Theorem 1.1. Let $F \in 2^X$. F is a closed set in $X \leftrightarrow \overline{F} = F$.

Proof. \to : $\mathcal{C}_X(F)$ is open, hence its elements are all its interior points. Therefore $\overline{F} - F =$ $\overline{F} \cup \mathcal{C}_X(F) = \emptyset$, also we know that $F \subset \overline{F}$, hence $F = \overline{F}$.

 $\leftarrow: F = \overline{F}$ means that $\forall x \in \mathcal{C}_X(F), x$ is not a boundary of F, which implies that x is an interior point of X - F. Therefore X - F is open while F is closed.

Theorem 1.2. \overline{E} is always closed.

Proof. $\forall x \in X - \overline{E}$, since it is not an element of the set E nor its limit points, $\exists U(x)$ s.t. $U(x) \cap \overline{E} = \emptyset$, which implies that x is an extorior point of E, therefore \overline{E} is closed.

Theorem 1.3. $\overline{E} = \overline{E}$.

Proof. Since \overline{E} is closed, its complement is open, which implies that its elements are all exterior points of \overline{E} , therefore \overline{E} has contained all of its limit points.

Definition 1.9. (Metric subspace) We called (X';d') a *subspace* of (X,d) when $X' \subset X$ and $\forall x, y \in X', d'(x, y) = d(x, y).$

Topological Space $\S 2$

Definition 2.1 (Topology). We say X is equiped with a **topology** if we assigned a $\mathscr{T} \subset 2^X$, with the following propoties:

- a) $\emptyset \in \mathcal{T}$; $X \in \mathcal{T}$.
- b) $(\forall \alpha \in A, G_{\alpha} \in \mathcal{T}) \to \bigcup_{\alpha \in A} G_{\alpha} \in \mathcal{T}.$ c) $\forall G_1, G_2 \in \mathcal{T}, G_1 \cap G_2 \in \mathcal{T}.$

We call (X, \mathcal{T}) a **topological space**, and sometimes we might simply call X the topological space.

These conditions is the intrinsic proporties of the open sets we have defined in the metric space¹. The topology consisting of all the open sets defined in the metric space $(\mathbb{R}; d_2)$ is called the **standard** topology of the n-dimension Euclidean space.

Definition 2.2 (Open set). Topology \mathscr{T} 's elements are called *open sets*, and their complements are called *closed sets*.

Definition 2.3 (Base). Let (X, \mathcal{T}) be a topological space, and $\mathfrak{B} \subset 2^X$. If $\forall G \in \mathcal{T}, \exists \{B_{\alpha}\}_{\alpha \in A} \in \mathcal{T}$ $2^{\mathfrak{B}}$ s.t. $\bigcup_{\alpha \in A} B_{\alpha} = G$, we called \mathfrak{B} a (topological or open) **base** of the topology \mathscr{T} .

Definition 2.4 (Weight). The smallest possible cardinity of a base of a topology is called the weight of the topological space.

¹See proposition 1

§3. COMPACT SET 5

Definition 2.5 (Neighbourhood). If $x \in G$ and $G \in \mathcal{T}$, then G is a **neighbourhood** of x in topological space (X, \mathcal{T}) .

For example, we define an equivalence relation \sim in $C(\mathbb{R};\mathbb{R})$. If $f,g\in C(\mathbb{R};\mathbb{R})$, at point $a\in\mathbb{R}$:

$$f \sim_a g \leftrightarrow \exists U(a) (\forall x \in U(a), f(x) = g(x)).$$
 (2-1)

By collecting all of the continuous functions that are euivalent to f, we call f define a **germ** at point a, denoted by f_a . If $f \in C(\mathbb{R}; \mathbb{R})$ is defined in U(a), then we can call $\{f_x \mid x \in U(a)\}$ a neighbourhood of germ f_a . Class of neighbourhoods of each f_x constructs a base of topological space $(C(\mathbb{R}; \mathbb{R}); \mathcal{I})$, where \mathcal{I} is made of the sets of germs of continuous function in $C(\mathbb{R}; \mathbb{R})$.

Definition 2.6 (Hausdorff space). We call a topological space (X, \mathcal{T}) a **Hausdorff space**, **separated space** or T_2 **space**, if $\forall x, y \in X, x \neq y \rightarrow (\exists U(x), U(y) \text{ s.t. } U(x) \cap U(y) = \emptyset)^2$.

Definition 2.7 (Dense set). $E \subset X$ is a **dense set** in the topological space (X, \mathcal{T}) , if $\forall x \in X$, $\forall U(x), U(x) \cap E \neq \emptyset$.

Definition 2.8 (Separable). If there is a *countable* dense set in topological space (X, \mathcal{T}) , then (X, \mathcal{T}) is **separable**.

We can also define interior points, exterior points, boundary points, limit points in topological space as in metric space.

Definition 2.9 (Topological subspace). Each subset Y of X equiped with topology \mathscr{T} can be given a **subspace topology** \mathscr{T}_Y whose elements G_Y are intersections of the subset with an open set G in (X,\mathscr{T}) i.e. $\forall G_Y \in \mathscr{T}_Y$, $\exists G \in \mathscr{T}$ s.t. $G_Y = G \cap Y$. Subsets equiped with such topology construct a **topological subspace** (Y,\mathscr{T}_Y) .

If two topology $\mathscr{T}_1, \mathscr{T}_2$ are defined on the same X, \mathscr{T}_1 is said to be **stronger** than \mathscr{T}_2 if $\mathscr{T}_1 \subsetneq \mathscr{T}_2$.

§3 Compact Set

Definition 3.1 (Open cover). Let (X, \mathscr{T}) be a topological space, $K \in 2^X$ and $\Omega \in 2^{\mathscr{T}}$. We call Ω to be an **open cover** over K, if $K \subset \cup \Omega$. If there are two open covers Ω , Ω' over K, and $\Omega' \subset \Omega$, we say that Ω' is a **subcover** of Ω .

Definition 3.2 (Compact set). A set $K \in 2^X$ in topological space (X, \mathcal{T}) is called a *compact set* if each of its open covers has a *finite* subcover.

Specially, \emptyset is compact.

Theorem 3.1. A set $K \subset X$ is compact in (X, \mathcal{T}) iff K is compact in (K, \mathcal{T}_K) itself.

This theorem tells a truth that whether K is compact or not doesn't dependent on the topological space it's in. This fact can be easily proved: we just need to notice that every open set G_K in (K, \mathcal{T}_K) is an intersection of an open set G in (X, \mathcal{T}) and K.

²This definition is also called *Hausdorff axiom* or *separation axiom*.

Theorem 3.2 (Compact \rightarrow closed (Hausdorff)). If K is compact in a Hausdorff space $(X, \mathscr{T})^3$, then K is a closed set in (X, \mathscr{T}) .

Proof. Let x_0 be a limit point of K, which means $\forall U(x_0)$,

$$\operatorname{card} U(x_0) \cap K \notin \mathbb{N}.$$

Assume that $x_0 \notin K$. In a Hausdorff space, $\forall x \in K - \{x_0\}$, $\exists U(x)$ s.t. $U(x) \cap U(x_0) = \emptyset$. Such U(x) construct an open cover $\Omega = \{U(x)|x \in K\} \subset 2^K$. Since K is compact, $\exists \Omega' \subset \Omega$ s.t. card $\Omega \in \mathbb{N}$.

$$(\cup\Omega')\cap U(x_0) = \left(\bigcup_{k=1}^n U_k\right)\cap U(x_0) = \bigcup_{k=1}^n \left(U_k\cap U(x_0)\right) = \varnothing.$$

Since $K \subset \cup \Omega'$, x_0 is an exterior point of K, which leads to a contradiction. Hence $x_0 \in K$. $\overline{K} = K$.

Theorem 3.3. Each decreasing **nested sequences** of non-empty compact sets has a non-empty limit, i.e. $\forall (K_n)_{n\in\mathbb{N}} \in \mathscr{P}(X)^{\mathbb{N}}$ s.t. $\forall n \in \mathbb{N}_+, K_n \supset K_{n+1} \land K_n \neq \varnothing \land (K_n \text{ is compact}): K_n \downarrow K \neq \varnothing$

Proof. Assume that $K = \emptyset$. Compact subsets of K_1 are all colsed, while their complements are all open. An open cover Ω can be constructed as $\{K_1 - K_n \mid n \in \mathbb{N}_+\}$. Since K_1 is compact, there would be a finite subcover $\Omega' \subset \Omega$, notice that $(X - K_n)_{n \in \mathbb{N}}$ is also a nested sequence, there must be one single $X - K_{n_0} \in \Omega'$ that covers K_1 , which means $K_{n_0} = \emptyset$ contradicting that $\forall n \in \mathbb{N}_+$, K_n is non-empty.

Theorem 3.4. A Closed subset F of a compact set K is also compact.

Proof. If $\Omega_F \subset 2^K$ is an open cover of F. Notice that K - F is open, $\Omega = (\cup \Omega_F) \cap \{K - F\}$ constructs an open cover over K. Since K is compact there must be a finite cover $\Omega' \subset \Omega$ which obviously also covers over F.

The following propoties of compact sets are about topological spaces induced from metric spaces.

Definition 3.3 (net). (X, d) is a metric space, $E \in 2^X$. E is called an ε -net if $\forall x \in X, \exists e \in E, d(e, x) < \varepsilon$.

Theorem 3.5 (Finite ε -net exists). If (K,d) is a compact metric space, then $\forall \varepsilon \in \mathbb{R}_+, \exists$ finite ε -net in (K,d).

Proof. For each point $x \in K$, find it a $B(x, \varepsilon)$, of which an infinite cover Ω over K is made. Since K is compact, there exists a finite subcover $\Omega' = \{B(x_i, \varepsilon)\}_{i \in n}$ $(n \in \mathbb{N}_+)$. Therefore $\{x_i\}_{i \in n}$ is a finite ε -net in K.

Theorem 3.6 (Sequentially compact). A metric space (K,d) is compact **iff** it is **sequentially compact**, that is, $\forall (x_n)_{n\in\mathbb{N}} \in K^{\mathbb{N}}$, it has a convergent subsequence $(x_{k_n})_{n\in\mathbb{N}}$ $(k_n \in \mathbb{N}; k_{n+1} > k_n)$ whose limit $a \in K$.

To prove Theorem 3.6, we need to prove two lemmata first.

³See definition 2.6.

Lemma 2. If (K,d) is sequentially compact, then $\forall \varepsilon \in \mathbb{R}_+, \exists$ finite ε -net in (K,d).

Proof. Assume that $\exists \varepsilon_0 \in \mathbb{R}_+$, there were no finite ε_0 -net in (K,d). Define such sequence: $(x_n)_{n \in \mathbb{N}}$ s.t. $\forall n \in \mathbb{N} \ \forall k \in n, \ d(x_n, x_k) \geq \varepsilon_0$ (There would always be a next one since there exists no finite ε_0 -net or $\{B(x_n; \varepsilon_0)\}_{n \in \mathbb{N}}$ gives such). It has no convergent subsequence: if there were a $(x_k)_{n \in \mathbb{N}}$ convergent to $a \in K$, $\exists N, M \in \mathbb{N}_+$, $d(x_N, x_M) \leq d(x_N, a) + d(x_M, a) \leq \varepsilon_0$, which lead to a contradictary.

Lemma 3. If (K, d) is sequentially compact then every nested sequence of closed non-empty sets $\{F_n\}_{n\in\mathbb{N}}$ in K have a non-empty intersection.

Proof. Let $(x_{k_n})_{n\in\mathbb{N}}$ be a convergent subsequence of $(x_n)_{n\in\mathbb{N}}$, where $\forall n\in\mathbb{N}, x_n\in F_n$. Let a be the limit of $(x_{k_n})_{n\in\mathbb{N}}$.

Assume that $a \notin \bigcap_{n \in \mathbb{N}} F_n$, in a metric space, $\exists U(a) \in \mathscr{U}(a) \text{ s.t. } U(a) \cap (\bigcap_{n \in \mathbb{N}} F_n) = \varnothing$, therefore $U(a) \cap (\bigcap_{n \in \mathbb{N}} F_{k_n}) = \varnothing$. But this conflict the fact that $\exists N \in \mathbb{N}$, s.t. $n > N \to x_{k_n} \in U(a)$ while $x_{k_n} \in F_{k_n}$.

Then we get back to the Theorem 3.6.

Proof. \to : If $\operatorname{card}\{x_n\}_{n\in\mathbb{N}}\in\mathbb{N}$, it is obvious; Now we let $\operatorname{card}\{x_n\}_{n\in\mathbb{N}}\notin\mathbb{N}$. We can always find finite 1/k-net $\{B(a_{k,i},1/k)\}_{i\in m}$ (Theorem 3.5, $m\in\mathbb{N}$, $a_i\in K$), for all $k\in\mathbb{N}_+$. For each k, there must be at least one $B(a_{k,i_0};1/k)$ (for simplication, we denote a_{k,i_0} by a_k) that includes infinite elements in $(x_n)_{n\in\mathbb{N}}$. $\forall n\in\mathbb{N}_+$ (let $k_0=0$), select $x_{k_n}\in B(a_{n,0};1/n)$, and $\{\overline{B}(x_n;1/k)\}$ is a nested sequence of a closed non-empty sets in sequentially compact K, (Lemma 3) $\lim_{n\to\infty} x_{k_n}\in K$.

 \leftarrow : Assume that there were an open cover Ω over K having no finite subcover, $\forall n \in \mathbb{N}_+$, \exists finite 1/n-net (Lemma 3), in which there would be at least one x_n whose $\overline{B}(x_n; \frac{1}{n})$ can't be covered finitely. Then $\overline{B}(x_n; 1/n) \downarrow B = \{a\}$ (Theorem 3.3) can't be finitely covered by any subcover of Ω , which means Ω can't cover the whole K, leading to the contradiction.

§4 Connected Set

Definition 4.1 (Connected space). Topological space (X, \mathcal{T}) is called **connected** if there is no **open-closed set** (i.e. both open and closed) besides \emptyset and X itself.

Notice that if $A \in 2^X$ is open-closed, its complement X - A is also open-closed, which means a topological space is connected *iff* it is not a union of its two open subsets.

Definition 4.2 (Connected set). Let (X, \mathcal{T}) be a topological space. Subset C is said to be **connected** if subspace (C, \mathcal{T}_C) is connected.

Theorem 4.1. Let (X, \mathcal{T}) be a topological space, and $\{C_{\alpha}\}_{{\alpha}\in A}$ be connected subsets of X. If $\bigcap_{{\alpha}\in A} C_{\alpha} \neq \emptyset$, then $\bigcup_{{\alpha}\in A} C_{\alpha}$ is also connected.

Proof. Assume that $C = \bigcup_{\alpha \in A} C_{\alpha}$ were not connected, $\exists E \in 2^{C}$ s.t. $E \neq \emptyset$, $E \neq C$ and $E, C - E \in \mathscr{T}_{C}$. For E is not empty there exists a $\beta \in A$ s.t. $E \cap C_{\beta} \neq \emptyset$.

Now we show that $C_{\beta} \subset E$. Suppose that $C_{\beta} \nsubseteq E$, which implies that $(C - E) \cap C_{\beta} \neq \emptyset$. $E, C - E, C_{\beta} \in \mathscr{T}_{C}$, by the definition of the topology, $E \cap C_{\beta}$, $(C - E) \cap C_{\beta} \in \mathscr{T}_{C}$. This conflicts to the fact that C_{β} is connected. Therefore $C_{\beta} \subset E$.

Hence, there exists a $B \subsetneq A$, $\bigcup_{\beta \in B} C_{\beta} = A$. Since C_{γ} , $\gamma \in A - B$ would have a empty intersection with E, which contradicts $\bigcap_{\alpha \in A} C_{\alpha} \neq \emptyset$.

Theorem 4.2. Connected sets have connected closure.

Proof.

Theorem 4.3. $C \subset \mathbb{R}$ is connected iff $\forall x, z \in C \forall y \in \mathbb{R} (x < y < z) \to y \in C$.

Proof. \to : Assume that there were such $y \in \mathbb{R}$ that $\exists x, z \in C$, x < y < z but $y \notin C$. $\{x \in C \mid x < y\}$ and $\{x \in C \mid x > y\}$ are open in C for they are intersection of open sets in \mathbb{R} and C. Since they're each other's complement, they are both open-closed, which conflicts to the definition of a connected set.

 \leftarrow : It can be proved that $(\inf C, \sup C) \subset C$. Assume that there were an open-closed proper subset $E \neq \emptyset$ contained in C. Find two points $x \in E$, $z \in C - E$. Without loss of generality, let x < z. Since E and C - E are closed, $c_1 = \inf (E \cap [a, b]) \in E$ while $c_2 = \inf ((C - E) \cap [a, b]) \in C - E$. However $E \cap (C - E) = \emptyset$, hence $c_1 < c_2$, which means $(c_1, c_2) \cap E = \emptyset$. Here's the contradiction. \square

Definition 4.3 (Locally connected). A topological space (X, \mathcal{T}) is said to be *locally connected* if $\forall x \in X, \exists U(x) \text{ s.t. } U(x)$ is connected.

§5 Complete Metric Spaces

We now take a closer look at one of the most important examples of metric spaces: complete spaces.

Definition 5.1 (Cauchy sequence). A sequence $(x_n)_{n\in\mathbb{N}}$ of points in a metric space (X,d) is called a **fundamental sequence** or **Cauchy sequence** if $\forall \varepsilon \in \mathbb{R}_+, \exists N \in \mathbb{N}$ s.t. as long as m, n > N, $d(x_n, x_m) < \varepsilon$.

Definition 5.2 (complete space). A metric space (X, d) is **complete** if any Cauchy sequence of its points is convergent.

For example, a metric space $C_{\infty}[a,b]$ is complete while $C_1[a,b]$ isn't. The proof see [1, p. 22]. Let us consider an incomplete space \mathbb{Q}_1 , which is a subspace of the complete space \mathbb{R}_1 . If \mathbb{R}_1 is the smallest complete space containing \mathbb{Q}_1 , we can say that we have achieved a *completion* of \mathbb{Q}_1 . However, the term "smallest" hasn't been properly defined yet.

Definition 5.3 (completion). If a metric space (X, d) is a subspace of a complete metric space (Y, d) and everywhere dense in it, we call the latter one the **completion** of (X, d).

We need to confirm that such completion is the smallest and unique. So we introduce:

Definition 5.4 (isometry). If there exists a **isometry** $f: X_1 \to X_2$ when (X_1, d_1) and (X_2, d_2) are both metric space, i.e. f is a bijective and $\forall a, b \in X_1, d_2(f(a), f(b)) = d_1(a, b)$, then these two metric spaces are **isometric**.

This relation is reflexive (id_X) , symmetric (f^{-1}) , and transitive $(f \circ g)$, so it is a equivalence relation, denoted by \sim . We shall consider isometric spaces as identical, when only discussing within metric topological topics.

Theorem 5.1. If metirc spaces (Y_1, d_1) and (Y_2, d_2) are both completions of (X, d), then they are isometric.

Proof. Between two completions such isometry $f: Y_1 \to Y_2$ can be defined: if $x_1, x_2 \in X$,

$$d_2(f(x_1), f(x_2)) = d(f(x_1), f(x_2)) = d(x_1, x_2) = d_1(x_1, x_2).$$

For each $y_1 \in Y_1 - X_1$, a Cauchy sequence $(x_n)_{n \in \mathbb{N}}$ can be found in the nested sequence of balls centered in y_1 . It is obvious that $(x_n)_{n \in \mathbb{N}}$ is also fundamental in Y_2 , limiting to $y_2 \in Y_2$.

Differently selected sequences of points $(x'_n)_{n\in\mathbb{N}}$ won't limit to a different y'_2 , namely $d(x_n, x'_n)$ shall converge to 0, or the fact that the radii of balls converge to 0 would be violated.

Let $f(y_1) = y_2$.

- a) For each $y_2 \in Y_2 X$, there always exists a Cauchy sequence converging to it, which implies that f is a surjection.
- b) On the other hand, we shall notice that $\forall y_1', y_1'' \in Y_1 X$,

$$d_1(y_1', y_1'') = \lim_{n \to \infty} d(x_n', x_n'') = d_2(y_2', y_2'')$$

while $(x'_n)_{n\in\mathbb{N}}$ and $(x''_n)_{n\in\mathbb{N}}$ are both Cauchy sequence. This equality proved that f is a injection.

Theorem 5.2. There always exists a completion for every metric space.

Proof. Let $C_X := \{(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}} \mid \forall \varepsilon \in \mathbb{R}_+, \exists N \in \mathbb{N} \text{ s.t. } \forall n, m \in \mathbb{N} (n > N \land m > N \rightarrow d_X(x_n, x_m) < \varepsilon)\}$, namely the collections of Cauchy sequences in X.

We say two Cauchy sequences $(x_n)_{n\in\mathbb{N}}$, $(x'_n)_{n\in\mathbb{N}}$ are equivalent (or, we shall say in a complete space, that they have a same limit) if $\lim_{n\to\infty} d(x_n, x'_n) = 0$.

It can be easily proved that such relation is a equivalence relation, and it divides C_X into equivalence classes S.

 $\forall (x_n)_{n\in\mathbb{N}}, (x_n')_{n\in\mathbb{N}} \in C_X, \ \forall \varepsilon \in \mathbb{R}_+, \ \exists N \in \mathbb{N} \text{ s.t. } \forall n,m \in \mathbb{N}, \text{ as long as } n > N \text{ and } m > N \text{ (by Lemma 1):}$

$$|d_X(x_n, x'_n) - d_X(x_m, x'_m)| \le d_X(x_n, x_m) + d_X(x'_n, x'_m) < 2\varepsilon.$$

Hence, $(d(x_n, x'_n))_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{R}_1 . Since \mathbb{R}_1 is a complete space, $\lim_{n \to \infty} d(x_n, x'_n)$ always exists. This fact allows us to introduce⁴:

$$d \colon S^2 \to \mathbb{R}; \ \left([(x_n)_{n \in \mathbb{N}}], [(x_n')_{n \in \mathbb{N}}] \right) \mapsto \lim_{n \to \infty} d(x_n, x_n')$$

A metric space (S_X, d) isometric to any given metric space (X, d_X) can be constructed, where $S_X := \{[(x)_{n \in \mathbb{N}}] \mid x \in X\}.$

Then we shall show that S is the completion of S_X .

Let $([(x_n^i)_{n\in\mathbb{N}}])_{i\in\mathbb{N}}$ be a Cauchy sequence in S. By definition, for any $i\in\mathbb{N}_+$, there exists a N that is large enough such that as long as $j>N,\ k>N,\ d_X(x_j^i,x_k^i)<1/i$. Choose $a^i:=x_k^i$ for such k>N, so that $d([(a^i)_{n\in\mathbb{N}}],[(x_n^i)_{n\in\mathbb{N}}])<1/i$.

⁴We implicitly use the (countable) axiom of choice: we must find a Cauchy sequence for each equivalence class.

 $\forall \varepsilon \in \mathbb{R}_+, \exists N \in \mathbb{N} \text{ (e.g. we can choose } N = \lfloor 4/\varepsilon \rfloor \text{) s.t. } \forall n, m \in \mathbb{N}, p > N \land q > N \rightarrow$

$$d\big([(x_n^p)_{n\in\mathbb{N}}],[(x_n^q)_{n\in\mathbb{N}}]\big)<\frac{\varepsilon}{2}\,\wedge\,d\big([(x_n^p)_{n\in\mathbb{N}}],[(a^p)_{n\in\mathbb{N}}]\big)<\frac{1}{p}\,\wedge\,d\big([(x_n^q)_{n\in\mathbb{N}}],[(a^q)_{n\in\mathbb{N}}]\big)<\frac{1}{q}\,,$$

therefore when p, q are great enough, (by the triangle inequality)

$$d([(a^p)_{n\in\mathbb{N}}], [(a^q)_{n\in\mathbb{N}}]) \le \frac{\varepsilon}{2} + \frac{1}{p} + \frac{1}{q} < \varepsilon.$$

So, $[(a^n)_{n\in\mathbb{N}}]$ is a Cauchy sequence, therefore it is an element of S.

By $\lim_{i\to\infty} d([(x_n^i)_{n\in\mathbb{N}}], [(a^n)_{n\in\mathbb{N}}]) = 0$, we found a limit for the arbitary Cauchy sequence $([(x_n^i)_{n\in\mathbb{N}}])_{i\in\mathbb{N}}$ in S.

Finally, we have to check that S_X is everywhere dense in S. For any aribitary $[(x_n)_{n\in\mathbb{N}}] \in S$, $\forall \varepsilon$, we can always choose a $N \in \mathbb{N}$ great enough so that $[(x_N)_{n\in\mathbb{N}}] \in S_X \cap B([(x_n)_{n\in\mathbb{N}}], \varepsilon)$. Since every neighbourhood of $[(x_n)_{n\in\mathbb{N}}]$ contains a ball centred at it, we have proved that $\forall U \in \mathscr{U}([(x_n)_{n\in\mathbb{N}}])(U \cap S_X \neq \varnothing)$.

Note: We have already seem such technique when we construct the real numbers from the sequences of rational numbers.

§6 Continuous Mapping

Let's recall the definition of the limitation.

Definition 6.1 (Filter base). A set $\mathcal{B} \subset 2^X$ is called a **(filter) base** in X if the following conditions hold:

- a) $\emptyset \notin \mathscr{B}$.
- b) $\forall B_1, B_2 \in \mathcal{B}, \exists B \in \mathcal{B} \text{ s.t. } B \subset B_1 \cap B_2 \subset B_2.$

Introduction of the limits in a topological space is as follows.

Definition 6.2 (Limit). Let $a \in Y$ be the *limit* over the base $\mathscr{B} \subset 2^{\mathscr{D}(f)}$ of a mapping $f : \mathscr{D}(f) \to Y$, in which Y is epuiped with a topology \mathscr{T} .

$$\lim_{\mathscr{B}} f = a \quad := \quad \forall U(a) \subset Y \; \exists B \in \mathscr{B}(f(B) \subset U(a)).$$

Such definition is parallel to the definition we have introduced on the limits of real number, hence it basically holds the same proporties.

Definition 6.3. A mapping $f: X \to Y$, where X, Y is equiped with topology \mathscr{T}_X , \mathscr{T}_Y , respectively, is said to be **continuous** at $x_0 \in X$ (let $y_0 = f(x_0) \in Y$), if $\forall U(y_0), \exists U(x_0)$ s.t. $f(U(x_0)) \subset U(y_0)$. It is **continuous** in X if it is continuous at each point $x \in X$.

The set of continuous mappings from X into Y can be denoted by C(X,Y) or C(X) when Y is clear.

Theorem 6.1 (Criterion for continuity). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces, $f \in Y^X$. The function f is continuous iff $\forall G_Y \in \mathcal{T}_Y$, $f^{-1}(G_Y) \in \mathcal{T}_X$.

§7. CONTRACTION 11

Proof. \to : It is obvious if $f^{-1}(G_Y) = \emptyset$. Hence we assume that $f^{-1}(G_Y) \neq \emptyset$. Let $x_0 \in X$. Since $f \in C(X,Y)$, for G_Y , $\exists U(x_0)$ s.t. $f(U(x_0)) \subset G_Y$. Also notice that $f(U(x_0)) \subset G_Y \Rightarrow U(x_0) \subset f^{-1}(G_Y)$, therefore $f^{-1}(G_Y)$ is open.

gets: $\forall x_0 \in X$, let $y_0 = f(x_0)$, $f^{-1}(U(y_0)) \in \mathscr{T}_X$. Notice that $x_0 \in f^{-1}(U(y_0))$, therefore $f \in C(X,Y)$.

Definition 6.4 (Homeomorphism). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces. A bijective mapping $f: X \to Y$ is a **homeomorphism** if $f \in C(X, Y) \land f^{-1} \in C(Y, X)$.

Definition 6.5 (Homeomorphic spaces). Two topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are said to be **homeomorphic** if there exists a homeomorphism $f: X \to Y$.

Homeomorphic topological spaces are identical with respect to their topological propoties since the theorem 6.1 has shown that their open sets correspond to each other.

Theorem 6.2. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces. Let $K \subset X$ be a compact set. If $f: X \to Y \in C(X,Y)$, then f(K) is compact.

Proof. For each open cover $\Omega_Y = \{G_Y \in \mathscr{T}_Y\} \subset \mathscr{T}_Y \text{ over } f(K), \ f^{-1}(G_Y) \in \mathscr{T}_X \text{ (Therem 6.1)}.$ $f(K) \subset \cup \Omega_Y \Rightarrow K \subset f^{-1}(\cup \Omega_Y) = \cup \Omega_X, \text{ where } \Omega_X = \{f^{-1}(G_Y) \mid G_Y \in \Omega_Y\} \text{ is an open cover over } K. \text{ Since } K \text{ is compact, } \exists \Omega_X' \subset \Omega_X (|\Omega_X'| \in \mathbb{N}_+ \land K \subset \cup \Omega_X'), \ f(K) \subset f(\cup \Omega_X').$ $f(G_X') \in \Omega_Y, \text{ hence } \Omega_Y' = \{f(G_X') \mid G_X' \in \Omega_X'\} \text{ is a finite subcover over } f(K).$

Theorem 6.3. Let (K, \mathcal{T}_K) be a compact space and (Y, \mathcal{T}_Y) be a Hausdorff space. Let $f \in Y^K$ be a bijective. If $f \in C(K,Y)$, then f is a homeomorphism.

Proof. $\forall F = K - G \text{ s.t. } G \in \mathscr{T}_K \text{ is compact (Theorem 3.4)}.$ Hence f(F) is compact (Theorem 6.2), then it is also closed (Theorem 3.2). This fact shows that f^{-1} is continuous (Theorem 6.1).

Theorem 6.4. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces, and $E \subset X$ be a connected set. If $f \in C(X,Y)$, then f(E) is also connected.

Proof. Only to notice that the open-closed sets in $(f(E), \mathcal{T}_{f(E)})$ have concurrently open-closed pre-images in (E, \mathcal{T}_{E}) .

§7 Contraction

Definition 7.1 (Fixed point). A point $a \in X$ is a *fixed point* of a mapping $f: X \to X$ if f(a) = a.

Definition 7.2 (Contraction). Let (X,d) be a metric space. A mapping $f: X \to X$ is called a **contraction** if $\exists q \in (0,1) \subset \mathbb{R}$ s.t. $\forall x_1, x_2 \in X$,

$$d(f(x_1), f(x_2)) \le qd(x_1, x_2). \tag{7-1}$$

Lemma 4. A contraction $f: X \to X$ is always continuous.

Proof. $\forall x \in X, \forall \varepsilon \in \mathbb{R}_+, \exists \delta < \varepsilon/q, \text{ according to inequality } 7-1:$

$$f(B(x;\delta)) \subset B(f(x);\varepsilon).$$

Theorem 7.1 (Picard-Banach fixed-point principle or contraction mapping principle). Let (X,d) be a complete metric space. Each contraction $f\colon X\to X$ has a unique fixed point a. Also, $\forall \{x_n\}\subset X$ s.t. $\forall n\in\mathbb{N}\big(f(x_n)=x_{n+1}\big)$ then $\lim_{n\to\infty}x_n=a$, and

$$d(x_n, a) \le \frac{q^n}{1 - q} d(x_1, x_0). \tag{7-2}$$

Proof. By the inequality 7-1:

$$d(x_{n+1}, x_n) \le qd(x_n, x_{n-1}) \le \dots \le q^n d(x_1, x_0)$$

Therefore, $\forall n, k \in \mathbb{N}$,

$$d(x_{n+k}, x_n) \le \sum_{i=0}^{k-1} d(x_{n+i+1}, x_{n+i}) \le \sum_{i=0}^{k-1} q^{n+i} d(x_1, x_0) \le \frac{q^n}{1-q} d(x_1, x_0),$$
 (7-3)

which implies that $\langle x_n \rangle_{n \in \mathbb{N}}$ is a Cauchy sequence in a complete space (X, d), hence it converges to a point $a \in X$.

To proof that a is a fixed point of f, since f is continuous (Lemma 4), just notice that

$$a = \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(x_n).$$

If there were another fixed point $a' \in X$ of f, then:

$$0 \le d(a, a') = d(f(a), f(a')) \le qd(a, a')$$

which can't be true unless a = a'.

By passing to the limit as $k \to \infty$ in the inequality 7-3, we have the inequality 7-2.

Chapter 2

Normed Linear Space and Differential Calculus

§8 Normed Linear Space

Definition 8.1 (Norm). Let V be a linear space over \mathbb{R} or \mathbb{C} . A function $\| \| : X \to \mathbb{R}$ assigning to each vector $x \in X$ a real number $\|x\|$ is called a **norm** in the linear space X if:

- a) $\|\boldsymbol{x}\| = 0 \leftrightarrow \boldsymbol{x} = \boldsymbol{0}$ (nondegeneracy);
- b) $\|\lambda \boldsymbol{x}\| = |\lambda| \|\boldsymbol{x}\|$ (homogeneity);
- c) $\|x_1 + x_2\| \le \|x_1\| + \|x_2\|$ (the triangle inequality).

A linear space with a norm defined on it is said to be *normed*.

Over every normed space a distance can be defined as:

$$d(x_1, x_2) = ||x_1 - x_2|| \tag{8-1}$$

Definition 8.2 (Banach space). Let V be a normed space. If (V, d) is a complete space, where the distance d is defined as Eq. (8-1), then we call V a **complete normed space** or **Banach space**.

Bibliography

[1] Vladimir A Zorich. Mathematical analysis II; 2nd ed. Universitext. Berlin: Springer, 2016. DOI: 10.1007/978-3-662-48993-2. URL: https://cds.cern.ch/record/2137923.

Symbol List

Here listed the important symbols used in this notes.

$B(a;\delta), \frac{3}{3}$	$\overline{B}(X,\delta)$, 3
$C_{\infty}[a,b], \frac{2}{2}$	$\mathbb{R}_p^n, rac{2}{}$
$C_p[a,b], rac{2}{2}$	$U(x), \frac{3}{3}$ $\mathscr{U}(x), \frac{3}{3}$
$d_p, \frac{2}{2}$	$(X,d), \frac{2}{2}$
\overline{E} , 4	$(X,\mathscr{T}), 4$

Index

T_2 space, 5	germ, 5
ε-net, 6 [, 3 ball, 3 Banach space, 13	Hausdorff axiom, 5 Hausdorff space, 5 homeomorphic, 11 homeomorphism, 11
base, 4, 10 boundary, 3 boundary point, 3	interior point, 3 isometric, 8 isometry, 8
Cauchy sequence, 8 Chebyshev metric, 2 closed ball, 3 closed set, 3, 4	limit, 10 limit point, 4 locally connected, 8
closure, 4 compact set, 5 complete, 8	metric, 2 metric space, 2
complete normed space, 13 completion, 8 connected, 7 connected set, 7 connected space, 7	neighbourhood, 3, 5 nested sequence, 6 norm, 13 normed, 13
continuous, 10 contraction, 11 contraction mapping principle, 12 criterion for continuity, 10	open base, 4 open cover, 5 open set, 3, 4 open-closed set, 7
dense set, 5 distance, 2	Picard-Banach fixed-point principle, 12 separable, 5
exterior point, 3	separation, 5 separation axiom, 5
filter base, 10 fixed point, 11 fundamental sequence, 8	sequentially compact, 6 standard topology, 4 stronger, 5

INDEX 17

subcover, 5 subspace, 4, 5 subspace topology, 5	topological space, $\frac{4}{4}$ topology, $\frac{4}{4}$
topological base, 4	weight, 4