

# Problem 06 The Flow

SCHOOL OF **ENGINEERING** 

















# E212 Facilities Planning & Design - Topic Tree





# Learning Objectives



- Calculate the total flow volume for a particular layout.
- Identify different areas of inefficiency in a facility and identify areas of changes in order to reduce the flow volume.
- Perform layout of different departments within a facility to ensure a good flow of materials and finished goods.
- Set up the process flow of a product from a flow diagram using From-To Chart.
- Calculate the equipment requirement based on production output, scrap ratio and maintenance requirement.

# Flow Planning



- Process of arranging activities in combinations of basic flow patterns (based on flow analysis), both quantitative (from-to chart) and qualitative (activity relationship diagram).
- Types of flow
  - Materials
  - People
  - Equipment
  - Documents / Information
- Flow can be within workstation, within a department (intra-cell) or between departments (inter-cell)

# Systematic Layout Planning (Muther's)





# Flow within a facility considering the locations of entrance and exit (1/2)





On adjacent sides



# Flow within a facility considering the locations of entrance and exit (2/2)



On the same side but at opposite ends





On opposite sides





#### **Vertical Flow Patterns**





Flow between buildings exists and the connection between buildings is elevated



Ground level ingress (entry) and egress (exit) are required



Ground level ingress (entry) and egress (exit) occur on the same side of the building



Travel between floors occurs on the same side of the building



Some bucket and belt conveyors and escalators result in inclined flow



Backtracking occurs due to the return to the top floor

### Flow Patterns between departments





# Flow Patterns within department (1/2)



- The flow pattern within departments depends on the type of department.
- In a product and/or product family department, the flow follows the product flow.



# Flow Patterns within department (2/2)



 In a process department, little flow should occur between workstations within departments. Flow occurs between workstations and isles.



Dependent on: - interactions among workstations

- available space
- size of materials

#### Flow within Workstations



Motion studies and ergonomics considerations are important. Flow should be:

- □ Simultaneous: coordinated use of hands, arms and feet.
- Symmetrical: coordination of movements about the center of the body.
- Natural: movements are continuous, curved, and make use of momentum.
- Rhythmical and Habitual: flow allows a methodological and automatic sequence of activities. It should reduce mental, eye and muscle fatigue, and strain.

# Principles of Flow Planning



- Maximize directed flow
  - Directed flow: uninterrupted flow, does not intersect others
  - No backtracking of material
- Minimize frequencies of flow through work simplification
  - Deliver directly to the point of use eliminate waste
  - Plan appropriate unit of load, use pallets to minimize trips
  - Combine flows and operations, e.g. Automobile assembly
- Minimize cost of flow
  - Reduce travel distance
  - Mechanize or automate transfer

# Uninterrupted Flow Path



#### Uninterrupted flow paths



#### Interrupted flow paths





#### A. Structured Product Part List

- Provides a listing of all components/parts of a product, includes part name, part number, drawing references, quantity of parts
- Product structure is a hierarchy referring to the level of product assembly: such as final product, sub-assemblies.
- Product Structure information and Structured Parts List will make up the Bill of Materials (BOM)

#### B. Operation Process Chart (OPC)

- Presents information on production method and assembly flow of the product
- Differentiates between in-house produced part and purchased part
- Can also include information on raw material used, operation times, inspection stations



#### C. From-To Chart

 A matrix that contains numbers representing a measure (unts, unit loads, etc) of the material flow between machines, departments, buildings, etc.

#### D. Others

- Assembly chart
- Flow process chart
- Multi product process chart
- Flow diagram

# **Equipment Requirements Planning**



#### **Equipment Capacity Table**

- Can have different formats
- Links product forecasted demand with available equipment to generate equipment requirements
- Contains detailed information on machine/equipment run-rates, allowances

# Suggested Solution





| Part Number | Part Description      |
|-------------|-----------------------|
| RA001       | 0.5mm Aluminium Sheet |
| RA001X      | 0.4mm Aluminium Sheet |
| RA001Y      | 0.3mm Aluminium Sheet |
| RA002       | 2mm Aluminium Rod     |
| RA002X      | 1mm Aluminium Rod     |
| RA002Y      | 0.5mm Aluminium Rod   |
| RA003       | PP Plastic Pellets    |
| RA003X      | PET Plastic Pellets   |
| RA004       | Motor Plates          |
| RA005       | Non-Metal (NM) Cable  |
| PA001       | Plastic Box           |
| FA001A      | USB Fan A             |
| FA001B      | USB Fan B             |
| FA001C      | USB Fan C             |



#### **Operations Process Chart (OPC): USB Fan A**





#### Operations Process Chart (OPC): USB Fan B





#### Operations Process Chart (OPC): USB Fan C





#### **Forecasted Demand & Equipment Involved**

| Item                      | Planned Production Capacity (unit per hour) |
|---------------------------|---------------------------------------------|
| USB Fan A                 | 540                                         |
| USB Fan B                 | 240                                         |
| USB Fan C                 | 180                                         |
| Motor Plates Only         | 180                                         |
| Non-Metal (NM) Cable Only | 180                                         |

| Station ID | Station Description                               |
|------------|---------------------------------------------------|
| А          | Drilling Station                                  |
| В          | Bending Station                                   |
| С          | Plastic Molding Station                           |
| D          | Spray Painting Station                            |
| Е          | Cutting & Welding Station                         |
| F          | Motor & Electronics Station                       |
| G          | Final Assembly, Inspection, and Packaging Station |
| Н          | Raw Material Area                                 |
| J          | Finished Good Area                                |



#### **Equipment Routing, Flow Quantity, Batch Size, and Number of Trip**

| Part<br>Number | Part Description      |   |   | Equipment Routing |   |   |   |     | Batch<br>size | Number<br>of Trip |
|----------------|-----------------------|---|---|-------------------|---|---|---|-----|---------------|-------------------|
| RA001          | 0.5mm Aluminium Sheet | Н | Е | В                 | Α | D | G | 180 | 80            | 3                 |
| RA001X         | 0.4mm Aluminium Sheet | Н | Е | В                 | Α | D | G | 240 | 80            | 3                 |
| RA001Y         | 0.3mm Aluminium Sheet | Н | Е | В                 | Α | D | G | 540 | 80            | 7                 |
| RA002          | 2mm Aluminium Rod     | Н | Е | В                 | Α | D | G | 180 | 40            | 5                 |
| RA002X         | 1mm Aluminium Rod     |   | Е | В                 | Α | D | G | 240 | 40            | 6                 |
| RA002Y         | 0.5mm Aluminium Rod   | Н | Е | В                 | Α | D | G | 540 | 40            | 14                |
| RA003          | PP Plastic Pellets    | Н | С | Α                 | D | G |   | 180 | 75            | 3                 |
| RA003X         | PET Plastic Pellets   | Н | С | Α                 | G |   |   | 780 | 75            | 11                |
| RA004          | Motor Plates          | Н | F | G                 |   |   |   | 960 | 15            | 64                |
|                | (spare parts)         | Н | F | J                 |   |   |   | 180 | 15            | 12                |
| RA005          | Non-Metal (NM) Cable  | Н | F | G                 |   |   |   | 960 | 100           | 10                |
|                | (spare parts)         | Н | F | J                 |   |   |   | 180 | 100           | 2                 |
| PA001          | Plastic Box           | Н | G |                   |   |   |   | 960 | 400           | 3                 |
| FA001A         | USB Fan A             | G | J |                   |   |   |   | 540 | 20            | 27                |
| FA001B         | USB Fan B             | G | J |                   |   |   |   | 240 | 20            | 12                |
| FA001C         | USB Fan C             | G | J |                   |   |   |   | 180 | 20            | 9                 |

#### From-To Chart:



#### **Some Notations:**

N<sub>ij</sub>: number of different types of items moved between activities i and j.

f<sub>iik</sub>: flow volume between i and j for item k (in moves/time period).

h<sub>ijk</sub>: equivalence factor for moving item k with respect to other items moved between i and j (dimensionless)

[all  $h_{ijk} = 1$  if assumed equal ease of movement]

w<sub>ij</sub>: equivalent flow volume specified in From-To Chart (in moves/time period),

$$w_{ij} = \sum_{k=1}^{N_{ij}} f_{ijk} h_{ijk}.$$

# From-To Chart (Step 1)



#### (Showing only the flow volume between i and j)

| To From | Α  | В  | С  | D  | E  | F  | G  | Н | J  |
|---------|----|----|----|----|----|----|----|---|----|
| Α       |    |    |    | 41 |    |    | 11 |   |    |
| В       | 38 |    |    |    |    |    |    |   |    |
| С       | 14 |    |    |    |    |    |    |   |    |
| D       |    |    |    |    |    |    | 41 |   |    |
| Е       |    | 38 |    |    |    |    |    |   |    |
| F       |    |    |    |    |    |    | 74 |   | 14 |
| G       |    |    |    |    |    |    |    |   | 48 |
| Н       |    |    | 14 |    | 38 | 88 | 3  |   |    |
| J       |    |    |    |    |    |    |    |   |    |

#### **Working example:**

There are <u>180 units of PP Plastic Pellet</u> and <u>780 units of PET Plastic Pellets</u> that move from <u>Raw Material Area (H)</u> to <u>Plastic Molding Station (C)</u> per hour.

Since both of them move in a <u>batch size of 75</u>, the total number of trips = RU(180/75) + RU(780/75) = RU(2.4) + RU(10.4) => 3 + 11 = 14

\*RU = Round Up

# From-To Chart (Step 2)



# (Showing the flow volume with consideration of the level of difficulty in moving the parts)

| To From | Α  | В  | С  | D  | E  | F     | G     | Н | J    |
|---------|----|----|----|----|----|-------|-------|---|------|
| Α       |    |    |    | 41 |    |       | 11    |   |      |
| В       | 38 |    |    |    |    |       |       |   |      |
| С       | 14 |    |    |    |    |       |       |   |      |
| D       |    |    |    |    |    |       | 41    |   |      |
| E       |    | 38 |    |    |    |       |       |   |      |
| F       |    |    |    |    |    |       | 106.0 |   | 20.0 |
| G       |    |    |    |    |    |       |       |   | 48   |
| Н       |    |    | 14 |    | 38 | 126.0 | 3     |   |      |
| J       |    |    |    |    |    |       |       |   |      |

#### **Working example:**

We know from the worksheet that it is <u>1.5 times more difficult to move the motor plate</u>. We also know that the motor plate's equipment routing is H-F-G and H-F-J. So only flow H-F, F-G, and F-J will be affected.

So, example for H-F we should multiple 1.5 to the motor plate's flow quantity (other parts' flow quantity remains the same): 1.5\*RU(960/15) + RU(960/100) + 1.5\*RU(180/15) + RU(180/100) = 1.5\*RU(64) + RU(9.6) + 1.5\*RU(12) + RU(1.8) => 96 + 10 + 18 + 2 = 126 \*RU = Round Up

# From-To Chart (Step 3)



#### (Rounding up the numbers, if there is any decimals)

| To<br>From | Α  | В  | С  | D  | E  | F   | G   | Н | J  |
|------------|----|----|----|----|----|-----|-----|---|----|
| Α          |    |    |    | 41 |    |     | 11  |   |    |
| В          | 38 |    |    |    |    |     |     |   |    |
| С          | 14 |    |    |    |    |     |     |   |    |
| D          |    |    |    |    |    |     | 41  |   |    |
| E          |    | 38 |    |    |    |     |     |   |    |
| F          |    |    |    |    |    |     | 106 |   | 20 |
| G          |    |    |    |    |    |     |     |   | 48 |
| Н          |    |    | 14 |    | 38 | 126 | 3   |   |    |
| J          |    |    |    |    |    |     |     |   |    |

### Intensities of Flow between Equipment/Stations



| To<br>From | A      | В      | С      | D      | E      | F       | G       | Н | J      |
|------------|--------|--------|--------|--------|--------|---------|---------|---|--------|
| Α          |        |        |        | 41 (B) |        |         | 11 (D)  |   |        |
| В          | 38 (C) |        |        |        |        |         |         |   |        |
| С          | 14 (D) |        |        |        |        |         |         |   |        |
| D          |        |        |        |        |        |         | 41 (B)  |   |        |
| E          |        | 38 (C) |        |        |        |         |         |   |        |
| F          |        |        |        |        |        |         | 106 (A) |   | 20 (C) |
| G          |        |        |        |        |        |         |         |   | 48 (B) |
| Н          |        |        | 14 (D) |        | 38 (C) | 126 (A) | 3 (D)   |   |        |
| J          |        |        |        |        |        |         |         |   |        |

| Α | Very High Flow (> 100) |
|---|------------------------|
| В | High Flow (41 - 99)    |
| С | Medium Flow (16 - 40)  |
| D | Low Flow (0 - 15)      |

# Proposed Layout of Equipment (in AutoCAD)





## Minimum Equipment Requirement



| Station ID | Station Description                               | Gross Output (units per hour) | Equipment<br>Efficiency | Net Output (units per hour) | Demand<br>(units per<br>hour) | Number of<br>Equipment<br>Needed | Number of<br>Equipment<br>Needed<br>(Rounded<br>Up) |
|------------|---------------------------------------------------|-------------------------------|-------------------------|-----------------------------|-------------------------------|----------------------------------|-----------------------------------------------------|
| Α          | Drilling Station                                  | 400                           | 95%                     | 380                         | 2880                          | 7.58                             | 8                                                   |
| В          | Bending Station                                   | 360                           | 95%                     | 342                         | 1920                          | 5.61                             | 6                                                   |
| С          | Plastic Molding Station                           | 180                           | 95%                     | 171                         | 960                           | 5.61                             | 6                                                   |
| D          | Spray Painting Station                            | 400                           | 95%                     | 380                         | 2100                          | 5.53                             | 6                                                   |
| Е          | Cutting & Welding Station                         | 300                           | 90%                     | 270                         | 1920                          | 7.11                             | 8                                                   |
| F          | Motor & Electronics Station                       | 720                           | 85%                     | 612                         | 2280                          | 3.73                             | 4                                                   |
| G          | Final Assembly, Inspection, and Packaging Station | 300                           | 95%                     | 285                         | 960                           | 3.37                             | 4                                                   |
| Н          | Raw Material Area                                 | -                             | -                       | -                           | -                             | 1                                | 1                                                   |
| J          | Finished Good Area                                | -                             | -                       | -                           | -                             | 1                                | 1                                                   |

**Sample Calculation for Drilling Station:** 

**Net Output = Gross Output \* Efficiency =** 400 x 95% = 380

**Minimum number of equipment needed = Demand / net output = 2880 / 380 = 7.58** 

= 8 (rounded up)

# Learning Objectives



- Calculate the total flow volume for a particular layout.
- Identify different areas of inefficiency in a facility and identify areas of changes in order to reduce the flow volume.
- Perform layout of different departments within a facility to ensure a good flow of materials and finished goods.
- Set up the process flow of a product from a flow diagram using From-To Chart.
- Calculate the equipment requirement based on production output, scrap ratio and maintenance requirement.

#### Overview of E212 Facilities Planning and Design



