Prueba 1

FIS1231 - Física General Termodinámica Prof. Germán Varas - Prof. Aux. Nicolás Carrasco Martes 2 de mayo de 2019 (duración: 1h30min)

Nota: Presente sus resultados de forma clara, ordenada y con letra legible. Una respuesta está correcta cuando tanto el método como el resultado están correctos.

P1. Gas ideal - Un recipiente cilíndrico de sección A está dividido en dos partes por un pistón horizontal de grosor y masa despreciable [Fig. 1(a)]. El compartimiento inferior contiene una cantidad de un gas monoatómico perfecto a temperatura T_i . Se llena el compartimiento superior con agua hasta que sobrepase su límite. Suponga que el pistón y las paredes son adiabaticas. P_0 es la presión atmosférica, l_0 es la altura total del compartimiento y l_i es la altura del compartimiento inferior. Se calienta el gas de manera que toda el agua salga, encuentre:

- La temperatura final T_f del gas. (4pts)
- La cantidad de calor ΔQ necesaria para llevar a cabo la operación. (2 pts)

P2. Gas de Van der Waals - Es una ecuación empírica que representa el comportamiento de gases reales de una forma más cercana a la ley del gas ideal, introduciendo dos constantes positivas a y b características del medio:

$$\left(p + \frac{a}{v^2}\right)(v - b) = RT$$

Encuentre la energia interna U = U(T, V) y la entropia S = S(T, V).

P3. Expansión isotermica - Un contenedor con N moles de un gas ideal, inicialmente de volumen V_i , se pone en contacto con un reservorio a temperatura T_0 [Fig. 1(b)]. El gas se expande isotermicamente moviendo un piston a un volumen V_f , calcule:

- La cantidad de calor absorbido por el gas en la expansión. (3pts)
- El aumento de entropía en el gas. (3 pts)

Figura 1