Отговори на теоритично контролно №2, Линейна алгебра, Информатика

Иво Стратев

20 декември 2019 г.

Определение 1 (Линейно изображение). Нека $(V, +, \cdot, \cdot)$ и $(W, +, \cdot, \cdot)$ са \mathcal{I} . Π -ва над поле $(F, +, \cdot, \cdot)$. Нека $\varphi: V \to W$ е изображение от V във $W. \varphi$ е линейно изображение, ако:

$$(\forall v_1 \in V)(\forall v_2 \in V)[\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2)]$$
$$(\forall \lambda \in F)(\forall v \in V)[\varphi(\lambda_{\stackrel{\cdot}{V}}v) = \lambda_{\stackrel{\cdot}{W}}\varphi(v)]$$

Забележка 1. Пишем $\varphi \in Hom(V,W), \ ako \ \varphi : V \to W \ e \ линейно изображение.$

Определение 2 (Линеен оператор). Нека (V, \oplus, \odot) е Л.П. над поле (F, +, .). Нека φ : $V \to V$ е изображение от V във V. φ е линеен оператор, ако:

$$(\forall v_1 \in V)(\forall v_2 \in V)[\ \varphi(v_1 \oplus v_2) = \varphi(v_1) \oplus \varphi(v_2)\]$$
$$(\forall \lambda \in F)(\forall v \in V)[\ \varphi(\lambda \odot v) = \lambda \odot \varphi(v)\]$$

Забележка 2. Пишем $\varphi \in Hom(V)$, ако φ е линеен оператор.

Теорема 1 (Съществуване и единственост на Л.И.). *Нека* $(V, +, \cdot, \cdot)$ $u(W, +, \cdot, \cdot)$ са Л.П-ва над поле $(F, +, \cdot, \cdot)$.

Нека V е крайномерно и n = dim(V). Нека b_1, b_2, \ldots, b_n е базис на V. Нека $w_1, w_2, \ldots, w_n \in W$. Тогава съществува единствено $\varphi \in Hom(V, W)$, такова че

$$(\forall i \in \{1, 2, \dots, n\}) [\varphi(b_i) = w_i]$$

Определение 3 (Изоморфизъм на Л.П-ва). *Нека* $(V, +, \cdot, \cdot)$ u $(W, +, \cdot, \cdot)$ ca Π .П-ва над поле $(F, +, \cdot, \cdot)$. $(V, +, \cdot, \cdot)$ е изоморфно c $(W, +, \cdot, \cdot)$, ако съществува $\varphi \in Hom(V, W)$, което е биекция.

Забележка 3. Пишем $(V, +, \cdot, \cdot) \cong (W, +, \cdot, \cdot)$, ако $(V, +, \cdot, \cdot)$ е изоморфно с $(W, +, \cdot, \cdot)$.

Твърдение 1 (Н.Д.У. за изоморфизъм на К.М.Л.П-ва). *Нека* $(V, +, \cdot, \cdot)$ $u(W, +, \cdot, \cdot)$ са K.М.Л.П-ва над поле $(F, +, \cdot, \cdot)$. В сила e:

$$(V, \underset{V}{+}, \underset{\dot{V}}{\cdot}) \cong (W, \underset{W}{+}, \underset{\dot{W}}{\cdot}) \iff \dim(V) = \dim(W)$$

Твърдение 2 (Образа на нулевия вектор е нулевия при Л.И.). *Нека* $(V, \underset{V}{+}, \underset{V}{\cdot})$ и $(W, \underset{W}{+}, \underset{W}{\cdot})$ са Л.П-ва над поле $(F, \underset{F}{+}, \underset{F}{\cdot})$. *Нека* $\varphi \in Hom(V, W)$. *Тогава* $\varphi(\theta_V) = \theta_W$.

Доказателство: Нека $v \in V$. Тогава

$$\varphi(\theta_V) = \varphi(0_{\overset{.}{V}}v) = 0_{\overset{.}{W}}\varphi(v) = \theta_W \quad \Box$$

Твърдение 3 (Образа на противоположния вектор е противоположния на образа при Л.И.). $He\kappa a\ (V, +, \cdot, \cdot)\ u\ (W, +, \cdot, \cdot)\ ca\ Л.\Pi$ -ва над поле $(F, +, \cdot, \cdot)$. $He\kappa a\ \varphi \in Hom(V, W)$. $Torasa\ (\forall v \in V)[\ \varphi(-v) = -\varphi(v)\].$

Доказателство: Нека $v \in V$. Тогава

$$\varphi(-v) = \varphi((-1)v) = (-1)v \varphi(v) = -\varphi(v) \quad \Box$$

Твърдение 4 (Едно Л.И. изпраща Л.З-ми в Л.З-ми). *Нека* $(V, +, \cdot, \cdot)$ u $(W, +, \cdot, \cdot)$ ca Π -ва над поле $(F, +, \cdot, \cdot)$. *Нека* $\varphi \in Hom(V, W)$. *Нека* $k \in \mathbb{N}^+$. *Нека* $v_1, v_2, \ldots, v_k \in V$ ca Π -З-ми. *Тогава* $\varphi(v_1), \varphi(v_2), \ldots, \varphi(v_k)$ ca Π -З-ми.

Доказателство: $v_1, v_2, \dots, v_k \in V$ са Л.З-ми. Тогава

$$(\exists \lambda_1 \in F)(\exists \lambda_2 \in F) \dots (\exists \lambda_k \in F)[\ (\lambda_1, \lambda_2, \dots, \lambda_k) \neq (0, 0, \dots, 0) \\ \& \lambda_1 \dot{v}_V v_1 + \lambda_2 \dot{v}_V v_2 + \dots + \lambda_k \dot{v}_V v_k = \theta_V]$$

Нека $\lambda_1, \lambda_2, \dots, \lambda_k \in F$ са такива, че $(\lambda_1, \lambda_2, \dots, \lambda_k) \neq (0, 0, \dots, 0)$ и $\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k = \theta_V$. Тогава от

$$\varphi(\lambda_{1}_{\dot{V}}v_{1} + \lambda_{2}_{\dot{V}}v_{2} + \dots + \lambda_{k}_{\dot{V}}v_{k}) = \lambda_{1}_{\dot{W}}\varphi(v_{1}) + \lambda_{2}_{\dot{W}}\varphi(v_{2}) + \dots + \lambda_{k}_{\dot{W}}\varphi(v_{k})$$

$$\&$$

$$\lambda_{1}_{\dot{V}}v_{1} + \lambda_{2}_{\dot{V}}v_{2} + \dots + \lambda_{k}_{\dot{V}}v_{k} = \theta_{V}$$

$$\&$$

$$\varphi(\theta_{V}) = \theta_{W}$$

Получаваме $\lambda_1 \cdot \varphi(v_1) + \lambda_2 \cdot \varphi(v_2) + \dots + \lambda_k \cdot \varphi(v_k) = \theta_W$. Но имаме $(\lambda_1, \lambda_2, \dots, \lambda_k) \in F^k \setminus \{(0, 0, \dots, 0)\}$, следователно $\varphi(v_1), \varphi(v_2), \dots, \varphi(v_k)$ са Π .З-ми. \square

Определение 4 (Сума на Л.И.). $Heka\ (V, \underset{V}{+}, \underset{V}{\cdot})\ u\ (W, \underset{W}{+}, \underset{W}{\cdot})\ ca\ Л.П$ -ва над поле $(F, \underset{F}{+}, \underset{F}{\cdot})$. $Heka\ \varphi \in Hom(V, W)\ u\ \psi \in Hom(V, W)$. Тогава $\varphi + \psi$: $V \to W\ e\ cymama\ na\ \varphi\ u\ \psi\ u\ e\ s\ cuna$:

$$(\forall v \in V)[\ (\varphi + \psi)(v) = \varphi(v) + \psi(v)\]$$

Определение 5 (Умножение на Л.И. със скалар). $Heka\ (V, +, \cdot, v)\ u\ (W, +, \cdot, w)$ са Л.П-ва над поле $(F, +, \cdot, v)$. $Heka\ \varphi \in Hom(V, W)\ u$ нека $\lambda \in F$. Тогава $\lambda.\varphi\ :\ V \to W\ e$ умножението на $\varphi\ c\ \lambda\ u\ e\ b\ cuja$:

$$(\forall v \in V)[\ (\lambda \cdot \varphi)(v) = \lambda_{\stackrel{\cdot}{W}} \varphi(v)\]$$

Определение 6 (Произведение на Л.И.). $He\kappa a\ (V, +, \cdot, \cdot),\ (W, +, \cdot, \cdot)\ u\ (U, +, \cdot, \cdot)\ ca\ J. \Pi$ -ва над поле $(F, +, \cdot, \cdot)$ $He\kappa a\ \varphi \in Hom(V, W)\ u\ \psi \in Hom(U, V)$. $Toraba\ \varphi \circ \psi\ :\ U \to W\ e\ npousbedenuemo\ нa\ \varphi\ u\ \psi\ u\ e\ b\ cuлa$:

$$(\forall v \in V)[\ (\varphi \circ \psi)(v) = \varphi(\psi(v))\]$$

Определение 7 (Матрица на Л.И. спрямо фиксирани базиси). *Нека* $(V, +, \cdot, \cdot)$ и $(W, +, \cdot, \cdot)$ са K.М.Л.П-ва над поле $(F, +, \cdot, \cdot)$. Нека $\varphi \in Hom(V, W)$.

Нека n = dim(V) и m = dim(W). Нека b_1, b_2, \ldots, b_n е базис на V и нека a_1, a_2, \ldots, a_m е базис на W. Нека

$$\varphi(b_i) = \gamma_{1i} \dot{a}_1 + \gamma_{2i} \dot{a}_2 + \dots + \gamma_{mi} \dot{a}_m$$

за $i \in \{1, 2, \dots, n\}$. Тогава матрицата на φ спрямо базисите b_1, b_2, \dots, b_n и a_1, a_2, \dots, a_m е

$$\begin{pmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1n} \\ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{m1} & \gamma_{m2} & \cdots & \gamma_{mn} \end{pmatrix}$$

Забележка 4. Матрицата на φ спрямо базисите b_1, b_2, \ldots, b_n и a_1, a_2, \ldots, a_m ще белим с $\mathcal{M}_{a_1, a_2, \ldots, a_m}^{b_1, b_2, \ldots, b_n}(\varphi)$.

Определение 8 (Действие на матрицата на Л.И.). $He \kappa a\ (V, \underset{V}{+}, \underset{V}{\cdot})\ u$ $(W, \underset{W}{+}, \underset{W}{\cdot})\ ca\ K.M.Л.П-ва\ над\ none\ (F, \underset{F}{+}, \underset{V}{\cdot}).$ $He \kappa a\ \varphi \in Hom(V, W)$. $He \kappa a\ n = dim(V)\ u\ m = dim(W)$. $He \kappa a\ b_1, b_2, \ldots, b_n\ e\ basuc\ na\ V\ u\ ne \kappa a\ a_1, a_2, \ldots, a_m\ e\ basuc\ na\ W$. $He \kappa a\ v = x_1.b_1 + x_2.b_2 + \ldots + x_n.b_n \in V\ u$ $ne \kappa a$

$$\varphi(b_i) = \gamma_{1i} a_1 + \gamma_{2i} a_2 + \dots + \gamma_{mi} a_m$$

за $i \in \{1, 2, \dots, n\}$. Нека y_1 , $a_1 + y_2$, $a_2 + \dots + y_m$, a_m Тогава матрицата на φ спрямо базисите b_1, b_2, \dots, b_n и a_1, a_2, \dots, a_m е

$$\begin{pmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1n} \\ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{m1} & \gamma_{m2} & \cdots & \gamma_{mn} \end{pmatrix}$$

и връзката между координатите на един вектор и неговия образ е:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} \gamma_{11} & \gamma_{12} & \dots & \gamma_{1n} \\ \gamma_{21} & \gamma_{22} & \dots & \gamma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{m1} & \gamma_{m2} & \dots & \gamma_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Забележка 5. Нека V, \oplus, \odot е К.М.Л.П. над поле (F, +, .). Нека n = dim(V) и нека $b_1, b_2, ..., b_n$ е базис на V. Нека $v = \lambda_1 \odot b_1 \oplus \lambda_2 \odot b_2 \oplus \cdots \oplus \lambda_n \odot b_n \in V$. Тогава c $[v]_{b_1,b_2,...,b_n}$ ще бележим координатния стълб съотвестващ на вектора v. Тоест

$$[v]_{b_1,b_2,\dots,b_n} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Забележка 6. При така направените означения връзката между координатите от предното определение може да бъде записана съкратено, но не и на ТК-то, като

$$[\varphi(v)]_{a_1,a_2,...,a_m} = \mathcal{M}^{b_1,b_2,...,b_n}_{a_1,a_2,...,a_m}(\varphi).[v]_{b_1,b_2,...,b_n}$$

Твърдение 5 (Матрица на сума на Л.И.). Нека $(V, +, \cdot, \cdot)$ и $(W, +, \cdot, \cdot)$ са K.M.Л.П-ва над поле $(F, +, \cdot, \cdot)$. Нека $\varphi \in Hom(V, W)$ и $\psi \in Hom(V, W)$. Нека n = dim(V) и m = dim(W). Нека b_1, b_2, \ldots, b_n е базис на V и нека a_1, a_2, \ldots, a_m е базис на W. Тогава

$$\mathcal{M}_{a_{1},a_{2},\ldots,a_{m}}^{b_{1},b_{2},\ldots,b_{n}}(\varphi+\psi) = \mathcal{M}_{a_{1},a_{2},\ldots,a_{m}}^{b_{1},b_{2},\ldots,b_{n}}(\varphi) + \mathcal{M}_{a_{1},a_{2},\ldots,a_{m}}^{b_{1},b_{2},\ldots,b_{n}}(\psi)$$

Твърдение 6 (Матрица на умножение на Л.И. със скалар). *Нека* $(V, +, \cdot, \cdot)$ u $(W, +, \cdot, \cdot)$ са K.M.Л.П-ва над поле $(F, +, \cdot, \cdot)$. *Нека* $\varphi \in Hom(V, W)$ u нека $\lambda \in F$. *Нека* n = dim(V) u m = dim(W). *Нека* b_1, b_2, \ldots, b_n e базис на V u нека a_1, a_2, \ldots, a_m e базис на W. *Тогава*

$$\mathcal{M}_{a_1,a_2,\dots,a_m}^{b_1,b_2,\dots,b_n}(\lambda.\varphi) = \lambda.\mathcal{M}_{a_1,a_2,\dots,a_m}^{b_1,b_2,\dots,b_n}(\varphi)$$

Твърдение 7 (Матрица на произведение на Л.И.). $Heka(V, +, \cdot, \cdot), (W, +, \cdot, \cdot)$ $u(U, +, \cdot, \cdot)$ са K.М.Л.П-ва над поле $(F, +, \cdot, \cdot)$ $Heka \varphi \in Hom(V, W)$ $u\psi \in Hom(U, V)$. Heka n = dim(V), m = dim(W) uk = dim(U). $Heka b_1, b_2, \ldots, b_n$ е базис на V, нека a_1, a_2, \ldots, a_m е базис на W u нека c_1, c_2, \ldots, c_k е базис на U. Toraba

$$\mathcal{M}^{c_{1},c_{2},\dots,c_{k}}_{a_{1},a_{2},\dots,a_{m}}(\varphi\circ\psi)=\mathcal{M}^{b_{1},b_{2},\dots,b_{n}}_{a_{1},a_{2},\dots,a_{m}}(\varphi).\mathcal{M}^{c_{1},c_{2},\dots,c_{k}}_{b_{1},b_{2},\dots,b_{n}}(\psi)$$

Твърдение 8 (Размерност на Л.П-во на Л.И-ния между две К.К.Л.П-ва). $He\kappa a~(V, +, \cdot, \cdot)~u~(W, +, \cdot, \cdot)~ca~K.M.Л.П-ва~над~none~(F, +, \cdot, \cdot).~Torasa$

$$dim(Hom(V, W)) = dim(V).dim(W)$$

Определение 9 (Ядро на Л.И.). $He\kappa a\ (V, +, \cdot, v)\ u\ (W, +, \cdot, w)\ ca\ Л.П-ва$ над поле $(F, +, \cdot, v)$. $He\kappa a\ \varphi \in Hom(V, W)$. Тогава ядро на φ наричаме следното множество:

$$Ker(\varphi) = \{ v \in V \mid \varphi(v) = \theta_W \}$$

Определение 10 (Образ на Л.И.). $Heka\ (V, +, \cdot, \cdot)\ u\ (W, +, \cdot, \cdot)\ ca\ Л.П-ва$ над поле $(F, +, \cdot, \cdot)$. $Heka\ \varphi \in Hom(V, W)$. Тогава образ на φ наричаме следното множество:

$$Im(\varphi) = \{ \varphi(v) \mid v \in V \}$$

Определение 11 (Дефект на Л.И.). Нека $(V, +, \cdot, \cdot)$ и $(W, +, \cdot, \cdot)$ са Л.П-ва над поле $(F, +, \cdot, \cdot)$. Нека $\varphi \in Hom(V, W)$. Тогава дефект на φ наричаме $dim(Ker(\varphi))$. Бележим с $d(\varphi)$, тоест $d(\varphi) = dim(Ker(\varphi))$.

Определение 12 (Ранг на Л.И.). $Heka\ (V, +, \cdot, v)\ u\ (W, +, \cdot, v)\ ca\ Л.П-ва$ над поле $(F, +, \cdot, v)$. $Heka\ \varphi \in Hom(V, W)$. Тогава ранг на φ наричаме $dim(Im(\varphi))$. Бележим $c\ r(\varphi)$, тоест $r(\varphi) = dim(Im(\varphi))$.

Теорема 2 (Теорема за ранга и дефекта). *Нека* $(V, +, \cdot, \cdot)$ u $(W, +, \cdot, \cdot)$ ca $\mathcal{I}.\mathcal{I}$ -ва над поле $(F, +, \cdot, \cdot)$. *Нека* $\varphi \in Hom(V, W)$. *Тогава*

$$r(\varphi) + d(\varphi) = dim(V)$$

Твърдение 9 (Връзка между ранга на Л.И. и ранга на матрицата му спрямо произволни базиси). $Heкa\ (V, +, \cdot, \cdot)\ u\ (W, +, \cdot, \cdot)\ ca\ K.M.Л.П-ва\ над$ поле $(F, +, \cdot, \cdot)$. $Heka\ \varphi \in Hom(V, W)$. $Heka\ n = dim(V)\ u\ m = dim(W)$. $Heka\ b_1, b_2, \ldots, b_n\ e\ basuc\ V\ u\ neka\ a_1, a_2, \ldots, a_m\ e\ basuc\ W$. Toraba

$$r(\varphi) = r\left(\mathcal{M}_{a_1, a_2, \dots, a_m}^{b_1, b_2, \dots, b_n}(\varphi)\right)$$

Определение 13 (Обратимо линейно изобрабжение). Нека $(V, +, \cdot, \cdot)$ и $(W, +, \cdot, \cdot)$ са Л.П-ва над поле $(F, +, \cdot, \cdot)$. Нека $\varphi \in Hom(V, W)$, φ е обратимо линейно изобрабжение, ако

$$(\exists \psi \in Hom(W,V))[\ \varphi \circ \psi = id_W \ \& \ \psi \circ \varphi = id_V \]$$

Определение 14 (Обратно линейно изобрабжение). *Нека* $(V, +, \cdot, \cdot)$ $u(W, +, \cdot, \cdot)$ са Π -ва над поле $(F, +, \cdot, \cdot)$. *Нека* $\varphi \in Hom(V, W)$ е обратимо u нека $\psi \in Hom(W, V)$. ψ е обратното на φ , ако

$$\varphi \circ \psi = id_W \& \psi \circ \varphi = id_V$$

Забележка 7. Доказва се, че обратното изображение на φ е единствено и за това го бележим с φ^{-1} .

Твърдение 10 (Обратния линеен оператор на един обратим линеен оператор е също обратим). *Нека* (V, \oplus, \odot) е Л.П. над поле (F, +, .). *Нека* $\varphi \in Hom(V)$ е обратим. Тогава φ^{-1} също е обратим.

Доказателство: В сила е $\varphi \circ \varphi^{-1} = id_V$ и $\varphi^{-1} \circ \varphi = id_V$, тоест $\varphi^{-1} \circ \varphi = id_V$ и $\varphi \circ \varphi^{-1} = id_V$. Следователно φ^{-1} е обратим, защото $\varphi \in Hom(V)$. \square

Твърдение 11 (Едно Л.И. е инекция Т.С.Т.К. ядрото му е нулевото). Нека $(V, +, \cdot, \cdot)$ и $(W, +, \cdot, \cdot)$ са Л.П-ва над поле $(F, +, \cdot, \cdot)$. Нека $\varphi \in Hom(V, W)$. Тогава φ е инекция Т.С.Т.К. $Ker(\varphi) = \{\theta_V\}$.

Доказателство: 1. Нека φ е инекция. Нека $v \in Ker(\varphi)$. Тогава $\varphi(v) = \theta_W$, но $\varphi(\theta_V) = \theta_W$ и φ е инекция. Следователно $v = \theta_V$. Така $\{\theta_V\} \subseteq Ker(\varphi) \subseteq \{\theta_V\}$. Значи $Ker(\varphi) = \{\theta_V\}$.

2. Нека $Ker(\varphi = \{\theta_V\})$. Нека $v_1 \in V$ и $v_2 \in V$ и са такива, че $\varphi(v_1) = \varphi(v_2)$. От тук последователно получаваме:

$$\varphi(v_1) - \varphi(v_2) = \theta_W$$

$$\varphi(v_1 - v_2) = \theta_W$$

$$v_1 - v_2 \in Ker(\varphi) = \{\theta_V\}$$

$$v_1 - v_2 = \theta_V$$

$$v_1 - v_2 = \theta_V$$

$$v_1 = v_2$$

Следователно

$$(\forall a \in V)(\forall b \in V)[\varphi(a) = \varphi(b) \implies a = b]$$

тоест

$$(\forall a \in V)(\forall b \in V)[\ a \neq b \implies \varphi(a) \neq \varphi(b)\]$$

и значи φ е инекция. \square

Твърдение 12 (Едно обратимо Л.И. изпраща Л.Н.З. в Л.Н.З.). Нека $(V, +, \cdot, \cdot)$ и $(W, +, \cdot, \cdot)$ са Л.П-ва над поле $(F, +, \cdot, \cdot)$. Нека $\varphi \in Hom(V, W)$ е обратимо. Нека $k \in \mathbb{N}^+$ и нека $v_1, v_2, \dots, v_k \in V$ са Л.Н.З. Тогава $\varphi(v_1), \varphi(v_2), \dots, \varphi(v_k)$ също са Л.Н.З.

Доказателство: Да допуснем, че $\varphi(v_1), \varphi(v_2), \dots, \varphi(v_k)$ са Л.З. Тогава нека $\lambda_1, \lambda_2, \dots, \lambda_k \in F$ и $(\lambda_1, \lambda_2, \dots, \lambda_k) \neq (0, 0, \dots, 0)$ са такива, че $\lambda_1 \dots \varphi(v_1) + \lambda_2 \dots \varphi(v_2) + \dots + \lambda_k \dots \varphi(v_k) = \theta_W$. Тогава $\varphi^{-1}(\lambda_1 \dots \varphi(v_1) + \lambda_2 \dots \varphi(v_2) + \dots + \lambda_k \dots \varphi(v_k) = \theta_W$. Тогава $\varphi^{-1}(\lambda_1 \dots \varphi(v_1) + \lambda_2 \dots \varphi(v_2) + \dots + \lambda_k \dots \varphi(v_k) = \varphi^{-1}(\theta_W)$, тоест $\lambda_1 \dots \varphi^{-1}(\varphi(v_1)) + \lambda_2 \dots \varphi^{-1}(\varphi(v_2)) + \dots + \lambda_k \dots \varphi^{-1}(\varphi(v_k)) = \theta_V$ и значи $\lambda_1 \dots v_1 + \lambda_2 \dots v_2 + \dots + \lambda_k \dots v_k = \theta_V$, но $(\lambda_1, \lambda_2, \dots, \lambda_k) \neq (0, 0, \dots, 0)$. Следователно v_1, v_2, \dots, v_k са Л.З., но това е Абсурд, защото са Л.Н.З.

Определение 15 (Матрица на прехода от един базис към друг). *Не-* $\kappa a\ (V, \oplus, \odot)$ е K.M.Л.П. над поле (F, +, .). Нека n = dim(V) и нека b_1, b_2, \ldots, b_n и a_1, a_2, \ldots, a_n са два базиса на V. Нека още $a_i = \lambda_{1i} \odot b_1 \oplus \lambda_{2i} \odot b_2 \oplus \cdots \oplus \lambda_{ni} \odot b_n$. Тогава

$$T_{b_1,b_2,\dots,b_n\to a_1,a_2,\dots,a_n} = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \dots & \lambda_{1n} \\ \lambda_{21} & \lambda_{22} & \dots & \lambda_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{n1} & \lambda_{n2} & \dots & \lambda_{nn} \end{pmatrix}$$

е матрицата на прехода от b_1, b_2, \ldots, b_n към a_1, a_2, \ldots, a_n .

Твърдение 13 (Връзка между координатите при смяна на базиса). $Hека\ (V, \oplus, \odot)\ e\ K.M.Л.П.$ над поле (F, +, .). $Heka\ n = dim(V)\ u$ нека $b_1, b_2, \ldots, b_n\ u\ a_1, a_2, \ldots, a_n\ ca\ dea\ базиса\ на\ V$. $Heka\ ouge\ a_i = \lambda_{1i}\odot b_1 \oplus \lambda_{2i}\odot b_2 \oplus \cdots \oplus \lambda_{ni}\odot b_n$. Нека $v = y_1 \odot b_1 \oplus y_2 \odot b_2 \oplus \cdots \oplus y_n \odot b_n = x_1 \odot a_1 \oplus x_2 \odot a_2 \oplus \cdots \oplus x_n \odot a_n$. Тогава в сила е връзката:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \dots & \lambda_{1n} \\ \lambda_{21} & \lambda_{22} & \dots & \lambda_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{n1} & \lambda_{n2} & \dots & \lambda_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Забележка 8. Горната връзка може да се запише още така при въведените означения, но не и на TK-то :)

$$[v]_{b_1,b_2,\dots,b_n} = T_{b_1,b_2,\dots,b_n \to a_1,a_2,\dots,a_n} \cdot [v]_{a_1,a_2,\dots,a_n}$$

Твърдение 14 (Промяна на матрицата на Л.И. при смяна на базисите). Нека $(V, +, \cdot, \cdot)$ и $(W, +, \cdot, \cdot)$ са К.М.Л.П-ва над поле $(F, +, \cdot, \cdot)$. Нека $\varphi \in Hom(V, W)$. Нека n = dim(V) и m = dim(W). Нека b_1, b_2, \ldots, b_n и $d_1, d_2, \ldots d_n$ са два базиса на V и нека a_1, a_2, \ldots, a_m и $c_1, c_2, \ldots c_m$ са два базиса на W. Тогава в сила е връзката:

$$\mathcal{M}^{d_1,d_2,\dots,d_n}_{c_1,c_2,\dots,c_m}(\varphi) = T_{c_1,c_2,\dots,c_m \to a_1,a_2,\dots,a_m} \cdot \mathcal{M}^{b_1,b_2,\dots,b_n}_{a_1,a_2,\dots,a_m}(\varphi) \cdot T_{b_1,c_2,\dots,b_n \to d_1,d_2,\dots,d_n}$$

Твърдение 15 (Промяна на матрицата на Л.О. при смяна на базиса). $Heкa\ (V, \oplus, \odot)\ e\ K.M.Л.П.$ над поле (F, +, .). $Heka\ n = dim(V)\ u$ нека $b_1, b_2, \ldots, b_n\ u\ a_1, a_2, \ldots, a_n\ ca\ dea\ basuca\ ha\ V$. $Toraea\ e\ cuna\ e\ epsskama$:

$$\mathcal{M}_{a_1,a_2,\dots,a_n}(\varphi) = (T_{b_1,b_2,\dots,b_n \to a_1,a_2,\dots,a_n})^{-1} \cdot \mathcal{M}_{b_1,b_2,\dots,b_n}(\varphi) \cdot T_{b_1,b_2,\dots,b_n \to a_1,a_2,\dots,a_n}$$

Теорема 3 (Първа теорема за ранг на матрици). *Нека* (F, +, .) *е поле и* $m, n \in \mathbb{N}^+$ $u \in M_{m \times n}(F)$. *Тогава* $r(A) = r(A^t)$.