

Introducción a los Sistemas Operativos Práctica 6

Objetivo

El objetivo de esta práctica es que el alumno comprenda los aspectos principales acerca de la planificación de E/S y de discos.

Administración de E/S

- 1. Dispositivos
 - (a) Los dispositivos, según la forma de transferir los datos, se pueden clasificar en 2 tipos:
 - Orientados a bloques
 - Orientados a flujos

Describa las diferencias entre ambos tipos.

- (b) Cite ejemplos de dispositivos de ambos tipos.
- (c) Enuncie las diferencias que existen entre los dispositivos de E/S y que el SO debe considerar.
- 2. Técnicas de E/S Describa como trabajan las siguientes técnicas de E/S
 - E/S programada
 - E/S dirigida por interrupciones
 - DMA (Acceso Directo a Memoria)
- 3. La tecnica de E/S programa puede trabajar de dos formas:
 - E/S mapeada
 - E/S aislada

Indique como trabajan estas 2 técnicas.

- 4. Enuncie las metas que debe perseguir un SO para la administración de la entrada salida.
- 5. Drivers
 - (a) ¿Qué son?
 - (b) ¿Qué funciones mínimas deben proveer?
 - (c) ¿Quién determina cuales deben ser estas funciones?
- 6. Realice un grafico que marque la relación entre el Subsistema de E/S, los drivers, los controladores de dispositivos y los dispositivos.
- 7. Describa mediante un ejemplo los pasos mínimos que se suceden desde que un proceso genera un requerimiento de E/S hasta que el mismo llega al dispositivo.
- 8. Describa mediante un ejemplo los pasos mínimos que se suceden desde que un proceso genera un requerimiento de E/S hasta que el mismo llega al dispositivo.
- 9. Enuncie que servicios provee el SO para la administración de E/S.

Administración de Discos

- 10. Describa en forma sintética, cómo es la organización física de un disco, puede utilizar gráficos para mayor claridad.
- 11. La velocidad promedio para la obtención de datos de un disco esta dada por la suma de los siguientes tiempos:
 - Seek Time
 - Latency Time
 - Transfer Time

De una definición para estos tres tiempos.

- 12. Suponga un disco con las siguientes características:
 - 7 platos con 2 caras utilizables cada uno.
 - 1100 cilindros
 - 300 sectores por pista, donde cada sector de es 512 bytes.
 - Seek Time de 10 ms
 - 9000 RPM.
 - Velocidad de Transferencia de 10 MiB/s (Mebibytes por segundos).
 - (a) Calcule la capacidad total del disco.
 - (b) ¿Cuantos sectores ocuparía un archivo de tamaño de 3 MiB(Mebibytes)?
 - (c) Calcule el tiempo de transferencia real de un archivo de 15 MiB(Mebibytes). grabado en el disco de manera secuencial (todos sus bloques almacenados de manera consecutiva)
 - (d) Calcule el tiempo de transferencia real de un archivo de 16 MiB(Mebibytes). grabado en el disco de manera aleatoria.
- 13. El Seek Time es el parámetro que posee mayor influencia en el tiempo real necesario para transferir datos desde o hacia un disco. Es importante que el SO planifique los diferentes requerimientos que al disco para minimizar el movimiento de la cabeza lecto-grabadora.

Analicemos las diferentes políticas de planificación de requerimientos a disco con un ejemplo: Supongamos un *Head* con movimiento en 200 tracks (numerados de 0 a 199), que está en el track 83 atendiendo un requerimiento y anteriormente atendió un requerimiento en el track 75.

Si la cola de requerimientos es: 86, 147, 91, 177, 94, 150, 102, 175, 130, 32, 120, 58, 66, 115. Realice los diagramas para calcular el total de movimientos de head para satisfacer estos requerimientos de acuerdo a los siguientes algoritmos de scheduling de discos:

- (a) FCFS (First Come, First Served)
- (b) SSTF (Shortest Seek Time First)
- (c) Scan
- (d) Look
- (e) C-Scan (Circular Scan)
- (f) C-Look (Circular Look)
- 14. ¿Alguno de los algoritmos analizados en el ejercicio anterior pueden causar inanición de requerimientos?

15. Supongamos un Head con movimiento en 300 pistas (numerados de 0 a 299), que esta en la pista 143 atendiendo un requerimiento y anteriormente atendió un requerimiento en la pista 125.

Si la cola de requerimientos es: 126, 147, 81, 277, 94, 150, 212, 175, 140, 225, 280, 50, 99, 118, 22, 55; y después de 30 movimientos se incorporan los requerimientos de las pistas 75, 115, 220 y 266. Realice los diagramas para calcular el total de movimientos de head para satisfacer estos requerimientos de acuerdo a los siguientes algoritmos de scheduling de discos:

- (a) FCFS
- (b) SSTF
- (c) Scan
- (d) Look
- (e) C-Scan
- (f) C-Look
- 16. Supongamos un Head con movimiento en 300 pistas (numerados de 0 a 299), que esta en la pista 140 atendiendo un requerimiento y anteriormente atendió un requerimiento en la pista 135.

Si la cola de requerimientos es: 99, 110, 42, 25, 186, 270, 50, 99, 147^{PF}, 81, 257, 94, 133, 212, 175, 130; y después de 30 movimientos se incorporan los requerimientos de las pistas 85, 15^{PF}, 202 y 288; y después de otros 40 movimientos más se incorporan los requerimientos de las pistas 75, 149^{PF}, 285, 201 y 59. Realice los diagramas para calcular el total de movimientos de head para satisfacer estos requerimientos de acuerdo a los siguientes algoritmos de scheduling de discos:

- (a) FCFS
- (b) SSTF
- (c) C-Scan
- (d) Scan
- (e) Look
- (f) C-Look

Administración de Archivos

- 17. Dados los siguientes métodos de administración de espació de un archivo:
 - Asignación contigua
 - Asignación enlazada
 - Asignación indexada
 - (a) Describa como trabaja cada uno.
 - (b) Cite ventajas y desventajas de cada uno.
- 18. Gestión de espacio libre. Dados los siguientes métodos de gestión de espacio libre en un disco:
 - Tabla de bits

- Lista Ligada
- Agrupamiento
- Recuento
- (a) Describa como trabajan estos métodos.
- (b) Cite ventajas y desventajas de cada uno.
- 19. Gestión de archivos en UNIX.

El sistema de archivos de UNIX utiliza una versión modificada del esquema de Asignación Indexada para la administración de espacio de los archivos.

Cada archivo o directorio esta representado por una estructura que mantiene, entre otra información, las direcciones de lo bloques que contienen los datos del archivo: el I-NODO.

Cada I-NODO contiene 13 direcciones a los bloques de datos, organizadas de la siguiente manera:

- 10 de direccionamiento directo.
- 1 de direccionamiento indirecto simple.
- 1 de direccionamiento indirecto doble.
- 1 de direccionamiento indirecto triple.
- (a) Realice un grafico que describa la estructura del *I-NODO* y de los bloques de datos. Cada bloque es de 1 Kib(Kibibits). Si cada dirección para referenciar un bloque es de 32 bits:
 - I. ¿Cuántas referencias (direcciones) a bloque pueden contener un bloque de disco?
 - II. ¿Cuál sería el tamaño máximo de un archivo?
- 20. Analice las siguientes fórmulas necesarias para localizar un I-NODO en la lista de inodos:

nro bloque = ((nro de inodo -1)/nro. de inodos por bloque) + bloque de comienzo de la lista de inodos.

Desplazamiento del inodo en el bloque = ((nro de inodo - 1) módulo (número de inodos por bloque)) * medida de inodo del disco.

- (a) Según la primer fórmula, asumiendo que en el bloque 2 está en el comienzo de la lista de inodos y que hay 8 inodos por bloque: calcule donde se encuentra el inodo 8 y el 9. ¿Dónde estarían para bloque de disco de 16 inodos?
- (b) De acuerdo a la segunda fórmula, si cada inodo del disco ocupa 64 bytesy hay 8 inodos por bloque de disco, el inodo 8 comienza en el desplazamiento 448 del bloque de disco. ¿Dónde empieza el 6? Si fueran inodos de 128 bytesy 24 inodos por bloque: ¿dónde empezaría el inodo 8?

Laboratorio de Entrada-Salida

Se recomienda resolver este laboratorio con el Sistema en modo consola y con la menor cantidad de programas en ejecución posible.

21. Instale e investigue para que sirve el siguiente programa hdparm

sudo apt-get install hdparm

22. Ahora ejecute el siguiente comando:

sudo hdparm -I /dev/sda

- ¿Cuando cilindros, cabezas y sectores tiene su disco?
- ¿Que pasa si ejecuta esto en un disco de estado sólido?
- 23. Ahora ejecute el siguiente comando varias veces(al menos 5), de manera tal de poder calcular el promedio de resultados obtenidos

```
sudo hdparm /dev/sda
```

24. Ahora ejecutelo de la siguiente manera:

```
hdparm -t --direct --offset 500 /dev/sda
```

- 25. ¿Para que sirven los parámetros?:
 - direct
 - offset
- 26. Compare los tiempos promedios obtenidos con los parámetros direct y offset y sin ellos(Recuerde comparar tiempos promedio y no ejecuciones aisladas).
- 27. ¿Con que concepto de la teoría asocia el parámetro direct?
- 28. Ejecute el siguiente comando:

```
ls /sys/block/
```

- 29. A que le parece que corresponde cada entrada del directorio anterior?
- 30. Ejecute el siguiente comando(ajuste el dispoisitivo de disco según su equipo):

```
cat /sys/block/sda/queue/scheduler
```

- 31. Investigue el resultado del comando anterior. ¿Que quiere decir cada item del resultado?, investigue cada uno de ellos y asocielo con conceptos de la teoría y de esta práctica. ¿Cual es la diferencia entre los siguientes conceptos?
 - noop
 - deadline
 - cfq
 - Anticipatory IO
- 32. Como root, ejecute el siguiente comando

```
sudo echo "noop" > /sys/block/sda/queue/scheduler
```

¿Cual es el efecto de esto?. Ayuda: vuelva a ejecutar

cat /sys/block/sda/queue/scheduler

33. Ahora ejecute el siguiente programa al menos 5 veces, de manera tal de poder calcular el promedio del resultado obtenido

- 34. Ahora del mismo modo repita el paso con las demas opciones obtenidas en el ejercicio 29 y compare los resultados
 - ¿Cual le parece que debería ser mas óptimo?
 - ¿Porque?