Exercise 3

Holo

Saturday 13th May, 2023

Exercise 1. Nice Names

Part 1.1.

Let $f: \omega \to 2^{\mathbb{P}}$ be a function defined as $f(n) = \{ p \in \mathbb{P} \mid p \Vdash \check{n} \in \sigma \}$ and let A_n be some maximal anti-chain of f(n).

We will see that the nice name $\sigma^* = \bigcup_{n < \omega} \{\check{n}\} \times A_n$ is a nice name such that $0_{\mathbb{P}} \Vdash \sigma = \sigma^*$, or equivalently that $M[\mathfrak{R}] \models \sigma \mathfrak{R} = \sigma^*$ for all generic ideals \mathfrak{R} .

 $0_{\mathbb{P}} \Vdash \sigma = \sigma^*$, or equivalently that $M[\mathfrak{P}] \models \sigma = \sigma^*$ for all generic ideals \mathfrak{P} . Fix some \mathfrak{P} and $n \in \omega$ a natural, assume $M[\mathfrak{P}] \models n \in \sigma$, I claim that $\mathfrak{P} \cap A_n \neq \emptyset$, first remember that $g(n) = \{p \in \mathbb{P} \mid p \Vdash \check{n} \in \sigma \lor p \Vdash \check{n} \notin \sigma\} \supseteq f(n)$ is dense in \mathbb{P} , so extend A_n into B_n a maximal anti-chain in g(n), because B_n is maximal anti-chain in a dense set, it is also maximal anti-chain in \mathbb{P} .

Let $p \in \mathfrak{B} \cap B_n$, if $p \notin A_n$ it means that $p \Vdash \check{n} \notin \sigma$ which is false, hence $p \in \mathfrak{B} \cap A_n$ which means by definition that $M[\mathfrak{B}] \models n \in \sigma_{\mathfrak{B}}^*$.

The direction of $M[\mathfrak{B}] \models n \notin \sigma^*$ $\Longrightarrow M[\mathfrak{B}] \models n \notin \sigma_{\mathfrak{B}}$ is just the contrapositive of the previous case.

The directions of $M[\mathfrak{B}] \models n \in \sigma^* \implies M[\mathfrak{B}] \models n \in \sigma_{\mathfrak{B}}$ and the contrapositive $M[\mathfrak{B}] \models n \notin \sigma_{\mathfrak{B}} \implies M[\mathfrak{B}] \models n \notin \sigma^*$ are directly from the definition of σ^* .

Part 1.2.

Let $\mathbb{P} = \operatorname{Add}(\omega, \omega_2)$, and note that $|\aleph_2| \leq |\mathbb{P}| \leq |[\aleph_0 \times \aleph_2 \times 2]^{<\omega}| = |[\aleph_2]^{<\omega}| = \aleph_2$. Let \mathcal{A} be the set of anti-chains of \mathbb{P} , because \mathbb{P} is c.c.c. we have that $\aleph_2 = |\mathbb{P}| \leq |\mathcal{A}| \leq |[\aleph_2]^{\leq \omega}| = |[\aleph_2]^{<\omega}| = |\aleph_2|^{\omega}| = |\aleph_2|^{\omega}| = |\aleph_2|^{\omega}| \leq \aleph_2^{\aleph_0} = (2^{\aleph_1})^{\aleph_0} = 2^{\aleph_1 \times \aleph_0} = 2^{\aleph_1} = \aleph_2$ Notice that a function that sends $f : \omega \to \mathcal{A}$ to $\bigcup_{n < \omega} \{\check{n}\} \times f(n)$ is a bijection from the nice names to $\aleph_0 \mathcal{A}$ so the cardinality of the set of nice names is exactly $|\mathcal{A}|^{\aleph_0} = \aleph_2^{\aleph_0} = \aleph_2$

Part 1.3.

Let F be a bijection from the nice \mathbb{P} -names of M to \aleph_2 , because F, $\mathfrak{B} \in M[\mathfrak{B}]$ and $M[\mathfrak{B}] \models AC$ we can define inside of $M[\mathfrak{B}]$ a function that for each $f \in 2^{\aleph_0}$ chooses some $\sigma \in \text{dom}(F)$ such that $\sigma_{\mathfrak{B}} = f$ and sends it to $F(\sigma)$, this is an injective function because F is injective and given $a \neq b \in G[\mathfrak{B}]$ they are not evaluated from the same \mathbb{P} name.

We have shown in class that $M[\mathfrak{B}] \models 2^{\aleph_0} \geq \aleph_2$ and so because $M[\mathfrak{B}]$ satisfy Cantor–Bernstein we have $M[\mathfrak{B}] \models 2^{\aleph_0} = \aleph_2$.

Exercise 7. Homogeneous Posets

Part 7.1.

For 2 partial function p,q let $K(p,q) = \text{dom}(p) \cap \text{dom}(q)$ and $p^{(q)} = p \cup (q \upharpoonright \text{dom}(q) \setminus K(p,q))$.

Notice that $p^{(q)} \ge p$ and that if p, q are comparable then $p^{(q)} = \max(p, q)$.

Now let \mathbb{P} be a poset of partial functions ordered by inclusion and $\pi : \mathbb{P} \to \mathbb{P}$ be a bijection that is bit-wise, that is dom $(p) = \text{dom}(\pi(p))$ and $\pi(p)(n)$ depends only on p(n) and n for $n \in \text{dom}(p)$, then we have that π is an automorphism.

Indeed let $\tau(n, p(n))$ be $(n, \pi(p)(n))$, because π is a bijection so is τ , and let $p \subseteq q$, if $(a, b) \in p$ then $(a, b) \in q$ so $\tau(a, b) \in \pi(p)$ and $\tau(a, b) \in \pi(q)$, and if $(a, b) \in \pi(p)$ then $\tau^{-1}(a, b) \in p$ so $\tau(\tau^{-1}(a, b)) = (a, b) \in \pi(q)$ so π is order-preserving.

Now fix some $p, q \in \mathbb{P}$ and lets define the automorphism $\pi_p^q : \mathbb{P} \to \mathbb{P}$ that swaps $p^{(q)}$ and $q^{(p)}$ by swapping (n, p(n)) with (n, q(n)) for all $n \in K(p, q)$ and let it not change any other pair.

Indeed π_p^q is bit-wise, $\pi_p^q(t)(n) = t(n)$ if $n \notin K(p,q)$ or $t(n) \notin \{p(n), q(n)\}$, otherwise if t(n) = p(n) let p(t)(n) = q(n) and vice versa.

To see it swaps $p^{(q)}$ with $q^{(p)}$ notice that $p^{(q)}, q^{(p)}$ have the domain of of dom $(p) \cup$ dom (q) and they agree on their domain apart from (maybe) K(p,q), so let $n \in K(p,q)$ and we get that $p^{(q)}(n) = p(n)$, so $\pi_p^q(p^{(q)})(n) = q(n)$ by definition, and vice versa.

Because Add $(\kappa, 1)$ and $Col(\omega, \lambda)$ are posets of partial functions ordered by inclusion we are done.

Part 7.2.

Let G be any generic we know that $\varphi(\check{x}_G)$ either holds in M[G] or its negation holds, WLOG assume it holds, and take $p \in G$ such that $p \Vdash \varphi(\check{x})$.

Let $q \in \mathbb{P}$ be any element, and let π be an automorphism that sends $r \geq p$ to $t \geq q$, because $r \geq p$, it also forces $\varphi(\overline{\check{x}})$ and so from problem (6.2) we have that $t \Vdash \varphi(\overline{\check{x}})$ and from (6.1) we can conclude that $t \Vdash \varphi(\overline{\check{x}})$, so $\{p \in \mathbb{P} \mid p \Vdash \varphi(\overline{\check{x}})\}$ is dense above $0_{\mathbb{P}}$, hence $0_{\mathbb{P}}$ also forces that.