Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №4.7.2

на тему:

Эффект Поккельса

Работу выполнили: Сафин Дим Сенокосов Арсений группа Б02-012

г. Долгопрудный 2021 год

Введение

Цель работы: исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

В работе используются: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластина, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осцилограф, линейка.

Теоретические сведения

Эффект Поккельса – изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития LiNbO₃ с цетрольноосевой симметрией вдоль оси Z. Для световой волны с \mathbf{E} перпендикулярно Z показатель преломления будет n_o , а для волны с \mathbf{E} вдоль $Z-n_e$. В случае, когда луч света идёт под углом θ к оси, есть два значение показателя преломления n_1 и n_2 : $n_1=n_o$ для волны с \mathbf{E} перпендикулярным плоскости (\mathbf{k} , \mathbf{Z}) (обыкновенная волна) и n_2 для волны с \mathbf{E} в этой плоскости (необыкновенная волна). В последнем случае

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}.\tag{1}$$

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности – рещультат интерфернции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен тёмные и наоборот). В случаи, когда разрешённое направление анализатора перпендикулярно поляризации лазерного из-

Рис. 1: Схема для наблюдения интерфереционной картины.

лучения, радиус тёмного кольца с номером m равен

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m,$$
 (2)

где L — расстояние от центра кристалла до экрана, l — длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле $E_{\text{эл}}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда n_o . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления $n_0 - \Delta n$ и $n_o + \Delta n$ (быстрая и медленная ось), причём $\Delta n = AE_{\text{эл}}$. Для поляризованного вертикально света и анализатора, пропускающего горизонтальную поляризацию, на выходе интенсивность на выходе будет иметь вид

Рис. 2: Схема установки.

$$I_{\text{вых}} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right),\tag{3}$$

где $U_{\lambda/2}=rac{\lambda}{4A}rac{d}{l}$ — полуволновое напряжение, d — поперечный размер кристалла. При напряжении $U = E_{\rm эл} d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

На Рис. 2 представлена схема всей установки (оптическая часть изорбажена на Рис. 1). Свет лазера, проходя через сквозь пластину, рассеивается и падает на двоякопреломляющий кристалл. На экране за поляроидом видна интерференционная картина. Убрав рассеивающую пластину и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла. Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию с помощью осциллографа.

Ход работы

Определение разности показателей преломления

Выполним юстировку системы. В схеме согласно Рис. 1 получим интерфереционную картину. Измерим радиусы r(m) тёмных колец при расстоянии $L=70\pm 1$ см от середины кристалла до экрана. Результаты занесем в Таблицу 1. На Гр. 1 построим график $r^2 = f(m)$.

m	1	2	3	4	5	6	7	8	9
r_m , cm	1.9	3.1	4	4.7	5.4	5.7	6.3	6.8	7.3

Таблица 1: Радиусы тёмных колец.

Зависимость квадрата радиуса колец r^2 от их порядкового номера mГрафик 1

При помощи аппроксимации методом хи-квадрат в программе OriginPro 2021 получаем угловой коэффициент $k=6.1\pm0.1~{\rm cm}^2$. Отсюда для значений $n_0=2.29,~\lambda=0.63~{\rm mkm},~l=26~{\rm mm}$

$$n_0 - n_e = 0.102 \pm 0.011$$

Определение полуволнового напряжения

Убедимся ещё раз, что направление лазерного луча совпадает с направлением на центр интерференционной картины и уберём матовую пластинку. Подключим разъём блока питания на постоянно напряжение, установим регулятор напряжения на минимум и включим блок питания в сеть.

Сначала определим интересующие нас напряжения без осциллографа. Для этого уберём матовую пластинку. При нулевом напряжении наблюдается минимум интенсиности излучения на экране. Постепенно увеличивая его, получим напряжение, соответстующее максимуму интенсивности $U_{\lambda/2}=(450\pm15)~{\rm B}.$

Увеличивая напряжение далее определяем U_{λ} и $U_{3\lambda/2}$:

$$U_{\lambda} = (900 \pm 30) \text{ B}$$
 $U_{3\lambda/2} = (1350 \pm 45) \text{ B}$

Подадим на кристалл напряжение $U_{\lambda/4} = \frac{1}{2}U_{\lambda/2}$. Вращая анализатор и наблюдая за яркостью пятна на экране, убеждаемся, что поляризация круговая.

Дальнейшие измерения проводим при помощи осциллографа. На установке по Рис. 2 определим полуволновое напряжение по разности напряжений при максимуме и минимуме у фигуры Лиссажу: $U_{\lambda/2}=420\pm15~{\rm B}.$

Продолжая увеличивать напряжение получаем и другие величины U_{λ} и $U_{3\lambda/2}$:

$$U_{\lambda} = (870 \pm 30) \text{ B}$$
 $U_{3\lambda/2} = (1320 \pm 45) \text{ B}$

Вид фигур Лиссажу для этих напряжений представлен в Таблице 2.

Таблица 2: Фигуры Лиссажу для различных напряжений

Обсуждение результатов и выводы

• Было проведено измерение радиусов тёмных колец r(m) на расстоянии $L=70\pm1$ см от середины кристалла до экрана. Результаты приведены в Таблице 1. Из зависимости r^2 от порядкового номера кольца (График 1) аппроксимацией получили угловой коэффициент $k=6.1\pm0.1~{\rm cm}^2$. Отсюда для указанных на установке значений $n_0=2.29,~\lambda=0.63~{\rm mkm},~l=26~{\rm mm}$ для двулучепреломления ниобата лития получили

$$n_0 - n_e = 0.10 \pm 0.01$$

Табличное значение для двулучепреломления ниобата лития: $n_0 - n_e = 0.09$. Видим, что в пределах погрешности оно совпадает с полученным.

• Было измерено полуполновое напряжение кристалла на длине волны $\lambda=0.63$ мкм при постоянном и переменном напряжениях. Первое определяем из условия максимума интенсивности, второе — при помощи осциллографа по разности напряжений при максимуме и минимуме у фигуры Лиссажу. Получили

$$U_{\lambda/2}^{
m AC} = 450 \pm 15 {
m B}, U_{\lambda/2}^{
m DC} = 420 \pm 15 {
m B}$$

Видим, что в пределах погрешности полученные значения совпадают.

• Подав на кристалл четвертьволновое напряжение, вращая анализатор убедились в том, что поляризация на выходе из кристалла круговая.

Основоной вклад в ошибку в ходе выполнения работы могла внести неточность при определении диаметра колец на экране и выходного напряжения при помощи источника питания. Однако, порядок этой ошибки получился довольно приемлемым, что позволяет получить приемлемые результаты.