

"Peut être l'esprit humain va-t'il être amené à s'occuper sérieusement, c'est à dire avec précision de l'aléatoire?"

> André Malraux Hôtes de passage

These notes are *slightly* incomplete, and the author shall not be held liable for decreases in GPA, unexpected hairloss, or content that isn't adapted to people who happen to be color-blind.

Copyright © All content is taken from the professor's writings on the board. Please don't sell these notes. Also, please don't upload this on websites like CourseHero. I kinda see those websites as another way for students with more money to get an advantage in academia. Also this template was taken from https://www.latextemplates.com/template/the-legrand-orange-book

Chapter 11: Image by Manuchi from Pixabay

Chapter 12: Image by Ulrike Leone from Pixabay

PUBLISHED BY MY DYING COMPUTER

HTTP://WWW.XM1MATH.NET/TEXMAKER/

Licensed under [not putting any jokes here cause I don't want to be slapped with a lawsuit] *Second edition, September 2019*

THE ISBN FOR THESE NOTES IS TRIVIAL AND LEFT AS AN EXERCISE TO THE READER

Not intended for consumption

Calculus 3

Ш	Infinite Sequences and Series 4
11.2	Series
11.3	Integral Test
11.4	Comparison Tests
11.5	Alternating Series
11.6	Absolute Convergence & Ratio/Root test
11.8	Power Series
11.10	Taylor Series
11.9	Representing Functions as Power Series
11.10	How to manipulate series (11.9/11.10)
12	Vectors
12.1	Vectors (12.1-12.3)
12.3	Dot Product
12.5	Lines and Planes
12.6	Surfaces
13	Vector Functions
13.1	Parametric curves
13.2	Derivatives of Parametric Functions
13.3	Arclength (curvature)
13.4	Tangential and Normal Components of Accelera-
	tion
14	Partial Derivatives
14.1	Functions of Multiple Variables
14.2	Limits/Continuity
14.3	Partial Derivatives
14.4	Tangent Planes
14.5	Chain Rule
14.6	Directional Derivatives (and Gradient Vector)
14.7	Min and Max Values
14.8	Lagrange Multipliers
15	Multiple Integrals
15.1	Double Integrals (over rectangles)
15.2	Double Integrals over General Regions $(D \subset \mathbb{R}^2)$
15.3	Polar Coordinates

- September 4, 2019 —

General Information

- broderick.causley@mcgill.ca
- BURN 1017, office hours to be announced
- There will be a slight difference between both classes of 222
- Kahoot might be used in this class.
- Textbook followed is Stewart's Math Var Calculus, 8th

Grading Scheme

- Webworks 15%
- (optional) Midterm 25%(October 24th at 6pm)
- Final Exam 60%

§11.2 **Series**

Definition Sequence $\{a_n\}_{n=1}^{\infty}=\{a_1,a_2,a_3,\ldots,a_n,\ldots\}$ is a sequence

■ Example
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty} = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\right\}$$
 (here, a_n is $\frac{n}{n+1}$)

→ This sequence has a limit $\lim_{n\to\infty} a_n = 1$

$$\rightarrow \lim_{n\rightarrow\infty}\frac{n}{n+1}=\lim_{n\rightarrow\infty}\frac{1}{1+\frac{1}{n}}=\frac{1}{1+0}=1$$

note $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots$ is different (it's a series)

Definition Series Given $\{a_n\}_{n=1}^{\infty}$, $a_1 + a_2 + a_3 + \ldots = \sum_{n=1}^{\infty} a_n$ is an infinite <u>series</u>.

Definition Partial Sums Given $\{a_n\}_{n=1}^{\infty}$, $\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} \sum_{n=1}^{k} a_n = \lim_{k \to \infty} S_k$ is a limit of <u>partial sums</u>

here, $S_k = \sum_{n=1}^k a_n$ is a partial sum

$$S_1 = a_1$$

$$S_2 = a_1 + a_2$$

$$S_3 = a_1 + a_2 + a_3$$

■ Example $\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots = 1$

$$S_1 = \frac{1}{2}$$

$$S_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

$$S_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$$

Definition Geometric Series $a + ar + ar^2 + ar^3 + ... = \sum_{n=1}^{\infty} ar^{n-1}$ is a geometric series $(a \neq 0)$

■ Example $\sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=1}^{\infty} \frac{1}{2} \frac{1}{2^{n-1}} = \sum_{n=1}^{\infty} \frac{1}{2} \left(\frac{1}{2}\right)^{n-1}$

Theorem $\sum_{n=1}^{\infty} ar^{n-1} = \begin{cases} \frac{a}{1-r}, & \text{if } |r| < 1 \\ \text{diverges, if } |r| \ge 1 \end{cases}$

$$S_k = \sum_{n=1}^k ar^{n-1} = a + ar + \dots + ar^{k-1}$$

$$rS_k = ar + ar^2 + \ldots + ar^k$$

$$S_k - rS_k = (a + \alpha r + \dots + \alpha r^{k-1}) - (\alpha r + \alpha r^2 + \dots + \alpha r^k)$$

$$S_k - rS_k = a - ar^k$$

$$\Rightarrow S_k = \frac{a - ar^k}{1 - r}$$

So
$$\sum_{n=1}^{\infty} ar^{n-1} = \lim_{k \to \infty} \sum_{n=1}^{k} ar^{n-1} = \lim_{k \to \infty} S_k$$
$$= \lim_{k \to \infty} \frac{a - ar^k}{1 - r} = \frac{a}{1 - r} - \frac{a}{1 - r} \left(\lim_{k \to \infty} r^k \right)$$

The part in brackets only works if |r| < 1, thus shrinks to 0.

If |r| > 1, this blows up to ∞ (diverges)

if
$$r = 1$$
, $a + a + a + ... = \infty$ (diverges)

if
$$r = -1$$
, $a - a + a - a + a - a \dots$ (diverges)

Test for Divergence $\sum_{n=1}^{\infty} a_n$ If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n = \text{DNE}$, then the series does not converge

Theorem If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$

Note If
$$\lim_{n\to\infty} a_n = 0$$
, then $\sum_{n=1}^{\infty} a_n$ does *not* necessarily converges

■ **Example**
$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty$$
 this diverges, even though $\lim_{n \to \infty} \frac{1}{n} = 0$

Example Show that $0.3333... = \frac{1}{2}$

► 0.3333... =
$$\frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + ...$$

= $\frac{3}{10} \left(1 + \frac{1}{10} + \frac{1}{100} + ... \right)$
= $\sum_{n=1}^{\infty} \frac{3}{10} \left(\frac{1}{10} \right)^{n-1}$

So
$$\sum_{n=1}^{\infty} \frac{3}{10} \left(\frac{1}{10} \right)^{n-1} = \frac{a}{1-r} = \frac{3/10}{1-1/10} = \frac{3/10}{9/10} = \frac{1}{3} \blacktriangleleft$$

■ Example
$$\sum_{n=1}^{\infty} (-1)^n = -1 + 1 - 1 + 1 - \dots$$

 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (-1)^n = \text{DNE}$, so the series diverges

— September 6, 2019

General Information

- Office hours: Tue/Thu 10:30am-12pm, BURN 1017
- Tutorials! @11:30am, 3:30pm, BURN 1B36
- Webworks \rightarrow Assignment #1 \rightarrow due Sept. 18

Mind Warmup

Take a sequence $\{a_n\}_{n=1}^{\infty}$ and add it together for series $\sum_{n=1}^{\infty} a_n$ which as a limit of partial sums is $\lim_{k\to\infty} a_n = \lim_{k\to\infty} s_k$

Geometric series
$$\sum_{n=1}^{\infty} ar^{n-1} = \begin{cases} \frac{a}{1-r} \text{ (converges), } |r| < 1 \\ \text{diverges, } |r| \ge 1 \end{cases}$$

"finite" \leftrightarrow "converging"

"infinite" \leftrightarrow "diverging"

If
$$\lim_{k\to\infty} a_n \neq 0$$
 or $\lim_{k\to\infty} a_n = \text{DNE}$, then $\sum_{n=1}^{\infty} a_n = \text{diverges}$

§11.3 Integral Test

I'm confused by what I wrote down here. What's the order of operations between the \geq , \leq , $\xrightarrow{implies}$? Also It seems like I possibly didn't transcribe some stuff properly

$$\sum_{n=1}^{\infty} a_n \leftrightarrow \int_{1}^{\infty} f(x) dx, \quad f(n) = a_n$$

1.
$$\sum_{n=1}^{k} a_n \ge \int_{1}^{k+1} f(x) dx \xrightarrow{implies} \int_{1}^{\infty} = \infty$$

$$\bullet \quad \sum_{n=1}^{\infty} a_n = \infty$$

2.
$$\sum_{n=2}^{k} a_n \le \int_1^{k+1} f(x) dx \xrightarrow{implies} \int_1^{\infty} \text{finite}$$

• means
$$\sum_{n=2}^{\infty} a_n$$
 finite

- means
$$\sum_{n=1}^{\infty} a_n$$
 finite

Definition Integral Test Suppose f(x), where $f(x) = a_n$ is continuous, decreasing, positive on $[1, \infty)$.

Then f'(x) < 0 or $a_{n+1} \le a_n$ and $\sum_{n=1}^{\infty} a_n \leftrightarrow \int_{1}^{\infty} f(x) dx$ both converge or both diverge

■ Example Does
$$\sum_{n=1}^{\infty} \frac{5}{n^2+1}$$
 converge?

►
$$f(x) = \frac{5}{x^2 + 1}$$
 ← continuous \checkmark

$$f'(x) = 5(x^2 + 1)^{-2}(2x) = -\frac{10x}{(x^2 + 1)^2} \leftarrow \text{ always negative on } [1, \infty)$$

$$\int_{1}^{\infty} \frac{5}{x^2 + 1} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{5}{x^2 + 1} dx$$

$$= \lim_{t \to \infty} \left(5 \arctan(x) \Big|_{1}^{t} \right)$$

$$= \lim_{t \to \infty} (5 \arctan(t) - 5 \arctan(1))$$

$$= 5(\frac{\pi}{2}) - 5(\frac{\pi}{4}) = \frac{5\pi}{4}$$

$$\Rightarrow$$
 Our series $\sum_{n=1}^{\infty} \frac{5}{n^2 + 1}$ converges

R This does not imply that
$$\sum_{n=1}^{\infty} \frac{5}{n^2+1} = \frac{5\pi}{4}$$
. It's just saying both converge.

Example For what values of p does $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge

▶
$$f(x) = \frac{1}{x^p}$$
 ← continuous \checkmark

 \leftarrow positive \checkmark

 \leftarrow decreasing \checkmark

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{t \to \infty} \int_{1}^{t} x^{-p} dx$$

$$= \lim_{t \to \infty} \left(\frac{x^{1-p}}{1-p} \Big|_{1}^{t} \right)$$

$$= \lim_{t \to \infty} \left(\frac{1}{1-p} \frac{t^{1-p}}{1} - \frac{1}{1-p} \right)$$

$$= \lim_{t \to \infty} \left(\frac{1}{1-p} \frac{1}{t^{p-1}} - \frac{1}{1-p} \right)$$

 $\frac{1}{t^{p-1}} \text{ converges if } p-1>0 \text{, so if } p>1$ $\frac{1}{t^{p-1}} \text{ diverges if } p-1<0$

Exercise Homework: show that when p = 1, this diverges (use log)

 $\Rightarrow \text{ when } p > 1, \sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges}$ $\rightarrow \text{ otherwise } p \le 1 \text{ diverges}$

Fact The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges when p > 1, otherwise diverges

■ Example
$$\sum_{n=1}^{\infty} \left(e^{\frac{1}{n}} - e^{\frac{1}{n+1}} \right)$$

$$\blacktriangleright = \left(e^{\frac{1}{1}} - e^{\frac{1}{2}} \right) + \left(e^{\frac{1}{2}} - e^{\frac{1}{3}} \right) + \left(e^{\frac{1}{3}} - e^{\frac{1}{4}} \right) + \dots$$

$$\lim_{k\to\infty}\sum_{n=1}^k \left(e^{\frac{1}{n}}-e^{\frac{1}{n+1}}\right)$$

$$S_k = (e^{\frac{1}{1}} - e^{\frac{1}{2}}) + \ldots + (e^{\frac{1}{k}} - e^{\frac{1}{k+1}})$$

$$= e - e^{\frac{1}{k+1}}$$

$$\lim_{k\to\infty} S_k = \lim_{k\to\infty} \left(e - e^{\frac{1}{k+1}}\right) = e - 1$$

— September 9, 2019 -

General Information

- Webwork is due on September 18
- Office hours: T/Th 10:30am-12pm, 1017 BURN

Mind Warmup

 $\sum_{n=1}^{\infty} a_n$ converge or diverge?

$$ightarrow$$
 geometric series \checkmark

$$\rightarrow \lim_{n \to \infty} a_n \neq 0$$
 or $\lim_{n \to \infty} a_n = DNE \checkmark$

$$\rightarrow$$
 Integral test $\sum_{n=1}^{\infty} a_n \leftrightarrow \int_1^{\infty} f(x) dx f(n) = a_n \checkmark$

$$\rightarrow p$$
-series $\sum_{n=1}^{\infty} \frac{1}{n^p} \checkmark$

§11.4 Comparison Tests

Let $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ be two positive series (have positive terms) $a_n > 0$, $b_n > 0$

- - (a) $\sum_{n=1}^{\infty} b_n$ converges $\xrightarrow{\text{implies}} \sum_{n=1}^{\infty} a_n$ converges (b) $\sum_{n=1}^{\infty} a_n$ diverges $\xrightarrow{\text{implies}} \sum_{n=1}^{\infty} b_n$ diverges $\xrightarrow{\text{an}} a_n$
- 2. **Limit Comparison Test** If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$, $0 < c < \infty$ (not zero and not infinity)

Then both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge or both diverge

- Most popular comparisons to make
 - 1) p-series
 - 2) geometric series
- Example Determine whether $\sum_{n=1}^{\infty} \frac{3}{5n^2 + 8n + 13}$ converges/diverges ► $\frac{3}{5n^2 + 8n + 13} < \frac{3}{5n^2 + 8n} < \frac{3}{5n^2}$

$$a_n = \frac{3}{5n^2 + 8n + 13}, \quad b_n = \frac{3}{5n^2}$$

$$\rightarrow \sum_{n=1}^{\infty} \frac{3}{5n^2} = \frac{3}{5} \qquad \sum_{n=1}^{\infty} \frac{1}{n^2}$$
convergent *p*-series (*p* = 2)

- \rightarrow Comparison test says that $\sum_{n=1}^{\infty} \frac{3}{5n^2}$ converges $\stackrel{\text{implies}}{\rightarrow} \sum_{n=1}^{\infty} \frac{3}{5n^2 + 8n + 13}$
- Example Test $\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$ for convergence using the comparison test

I know it would be easier to use the integral test

▶
$$\frac{\ln(n)}{n} > \frac{1}{n}$$
 because $\ln(n) > 1$ (at least, after the first couple terms (i.e. $n \ge 3$)

$$\rightarrow a_n = \frac{\ln(n)}{n}, \quad b_n = \frac{1}{n}$$

$$\rightarrow \sum_{n=1}^{\infty} \frac{1}{n} \text{ is diverging Harmonic series (or } p\text{-series, } p=1)$$

$$\rightarrow$$
 Comparison test says $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges $\stackrel{\text{implies}}{\rightarrow} \sum_{n=1}^{\infty} \frac{\ln(n)}{n}$ diverges

- **Example** Test $\sum_{n=1}^{\infty} \frac{n^2 + 2n}{\sqrt{3 + 4n^5}}$ for convergence/divergence
- ▶ idea look at dominating terms

$$a_n = \frac{n^2 + 2n}{\sqrt{3 + 4n^5}}$$

$$b_n = \frac{n^2}{\sqrt{n^5}} = \frac{n^2}{n^{\frac{5}{2}}} = \frac{1}{n^{\frac{1}{2}}}$$

$$\rightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\left(\frac{n^2 + 2n}{\sqrt{3 + 4n^5}}\right)}{\left(\frac{1}{n^{\frac{1}{2}}}\right)}$$

$$= \lim_{n \to \infty} \frac{(n^2 + 2n)n^{\frac{1}{2}}}{\sqrt{3 + 4n^5}} = \lim_{n \to \infty} \frac{n^{\frac{5}{2}} + 2n^{\frac{3}{2}}}{\sqrt{3 + 4n^5}}$$

$$= \lim_{n \to \infty} \frac{\left(n^{\frac{5}{2}} + 2n^{\frac{3}{2}}\right) \frac{1}{n^{\frac{5}{2}}}}{\sqrt{3 + 4n^5} \frac{1}{n^{\frac{5}{2}}}} = \lim_{n \to \infty} \frac{1 + \frac{2}{n}}{\sqrt{\frac{3}{n^5} + 4}}$$

- September 11, 2019

Mind Warmup

$$\sum_{n=1}^{\infty} a_n \begin{cases} < \infty \\ = \infty \\ = \text{DNE} \end{cases}$$

geometric √

integral test √

Comparison Test ✓

§11.5 Alternating Series

Definition Alternating Series A series is <u>alternating</u> if it can be written as

$$\sum_{n=1}^{\infty} (-1)^n b_n \text{ or } \sum_{n=1}^{\infty} (-1)^{n-1} b_n \quad \text{where } b_n > 0$$

Definition Alternating Series Test If $\sum_{n=1}^{\infty} (-1)^n b_n$ is an alternating series and

- 1. $b_{n+1} < b_n$ (decreasing) 2. $\lim_{n \to \infty} b_n = 0$

■ Example Does
$$\sum_{n=1}^{\infty} \frac{\cos(\pi n)}{n}$$
 converge?

$$b_n = \frac{1}{n} \leftarrow \frac{1}{n+1} < \frac{1}{n}, \quad b_{n+1} < b_n \checkmark$$

$$\leftarrow \lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0$$

 \rightarrow the alternating series test says that $\sum_{n=1}^{\infty} \frac{\cos(\pi n)}{n}$ converges

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \leftarrow \text{alternating Harmonic series.}$$

- Example Does $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+e^n}$ converge? \blacktriangleright alternating \checkmark

$$b_n = \frac{1}{n + e^n} \leftarrow \lim_{n \to \infty} \frac{1}{n + e^n} = 0$$

 $\leftarrow b_n$ is decreasing

$$\frac{d}{dx}\left(\frac{1}{n+e^{n}}\right) = -(n+e^{n})^{-2}(1+e^{n})$$

$$=-\frac{1+e^n}{(n+e^n)^2}<0$$
 \checkmark

- \rightarrow alternating series test says $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n+e^n}$ converges
- → Let's fine tune some definitions of convergence

Absolute Convergence & Ratio/Root test §11.6

not expected to know the estimation test? I didn't quite get what he said

Definition Absolutely Convergent $\sum_{n=1}^{\infty} a_n$ is <u>absolutely convergent</u> if $\sum_{n=1}^{\infty} |a_n|$ is convergent

Definition Conditionally Convergent $\sum_{n=1}^{\infty} a_n$ is <u>conditionally convergent</u> if it converges, but not absolutely

Theorem
$$\sum_{n=1}^{\infty} |a_n|$$
 convergent $\stackrel{\text{implies}}{\longrightarrow} \sum_{n=1}^{\infty} a_n$ convergent

→ An absolutely convergent series is convergent

■ Example $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \leftarrow \text{converges } \checkmark$

$$\rightarrow$$
 but $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ is the diverging Harmonic series

$$\rightarrow$$
 therefore, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is conditionally convergent

■ Example $\sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$ converge?

$$\left|\frac{\cos(n)}{n^2}\right| \le \frac{1}{n^2}$$

$$\rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is converging } p\text{-series } (p=2)$$

$$\rightarrow$$
 So the comparison test says that $\sum_{n=1}^{\infty} \left| \frac{\cos(n)}{n^2} \right|$ convergent

$$\rightarrow$$
 Hence, $\sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$ is absolutely convergent

— September 13, 2019 -

General Information

• Add drop is coming up on the 17

Mind Warmup

$$\sum_{n=1}^{\infty} a_n \text{ is } \underline{\text{absolutely convergent}} \text{ if } \sum_{n=1}^{\infty} |a_n| \text{ converges}$$

-diverges

$$\sum_{n=1}^{\infty} a_n$$
 -converges but not absolutely (conditional)

-converges absolutely

If a series converges absolutely, it must be convergent

Definition Ratio Test Let
$$\sum_{n=1}^{\infty} a_n$$
 be a series

1. If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, $\sum_{n=1}^{\infty} a_n$ absolutely converges

2. If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$, $\sum_{n=1}^{\infty} a_n$ diverges

2. If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$
, $\sum_{n=1}^{\infty} a_n \text{ diverges}$

3. If
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
, $\sum_{n=1}^{\infty} a_n$ Inconclusive

■ Example $\sum_{n=1}^{\infty} \frac{(-1)^n (n^2+1)}{3^n} \leftarrow$ determine type of convergence

$$\sum_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\underbrace{(-1)^{n+1}((n+1)^2 + 1)}_{3^{n+1}}}{\underbrace{(-1)^n(n^2 + 1)}_{3^n}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(n+1)^2 + 1}{3^{n+1}} \frac{3^n}{n^2 + 1} \right|$$

$$= \lim_{n \to \infty} \frac{1}{3} \frac{(n+1)^2 + 1}{n^2 + 1}$$

$$= \lim_{n \to \infty} \frac{1}{3} \frac{n^2 + 2n + 2}{n^2 + 1}$$

$$= \frac{1}{3} 1 = \frac{1}{3} < 1$$

$$\rightarrow \sum_{n=1}^{\infty} \frac{(-1)^n (n^2 + 1)}{3^n}$$
 converges absolutely \blacktriangleleft

■ Example $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ ← determine the type of convergence

$$\begin{split} \blacktriangleright \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n \to \infty} \left| \frac{\frac{((n+1)!)^2}{(2n+2)!}}{\frac{(n!)^2}{(2n)!}} \right| \\ &= \lim_{n \to \infty} \frac{(n+1)!(n+1)!(2n)!}{n!n!(2n+2)!} \qquad (2n+2)! = (2n+2)(2n+1)(2n)! \\ &= \lim_{n \to \infty} \frac{(n+1)n!(n+1)n!(2n)!}{n!n!(2n+2)(2n+1)(2n)!} \\ &= \lim_{n \to \infty} \frac{(n+1)(n+1)}{(2n+2)(2n+1)} \\ \text{version 1}) &= \lim_{n \to \infty} \frac{n^2 + 2n + 1}{4n^2 + 6n + 2} = \frac{1}{4} < 1 \\ \text{version 2}) &= \lim_{n \to \infty} \frac{(n+1)(n+1)}{2(n+1)(2n+1)} = \lim_{n \to \infty} \frac{n+1}{4n+2} = \frac{1}{4} \end{split}$$

 \rightarrow absolutely convergent

R If you see a factorial, in general you should use the ratio test

$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} \to \text{ same steps}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 4 \to \text{ diverges}$$

$$\lim_{n \to \infty} \frac{(2n)!}{(n!)^2} = \dots \qquad \lim_{n \to \infty} a_n \neq 0$$

Definition Root Test Let $\sum_{n=1}^{\infty} a_n$ be a series 1. $\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$, <u>absolutely convergent</u>

2.
$$\lim \sqrt[n]{|a_n|} > 1$$
, divergent

2.
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1$$
, divergent
3. $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$, inconclusive

■ Example
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{n+5}}{(n+1)^n}$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{(-1)^{n+1}2^{n+5}}{(n+1)^n}} = \lim_{n \to \infty} \sqrt[n]{\frac{2^{n+5}}{(n+1)^n}}$$

$$= \lim_{n \to \infty} \sqrt[n]{\frac{2^5 2^n}{(n+1)^n}}$$

$$= \lim_{n \to \infty} \sqrt[n]{2^5 \left(\frac{2}{n+1}\right)^n}$$

$$= \lim_{n \to \infty} 2^{\frac{5}{n}} \left(\frac{2}{n+1}\right)$$

$$= 1 \cdot 0 = 0 < 1$$

→ absolutely convergent

——— September 16, 2019

Mind Warmup

$$\sum_{n=1}^{\infty} a_n \text{ converges, good } \checkmark$$

$$\sum_{n=1}^{\infty} |a_n| \text{ converges, better } \checkmark$$

$$\sum_{n=1}^{\infty} |a_n|$$
 converges, better \checkmark

 $\overline{n=1}$; Tools: ratio test, root test, integral test, comparison test, limit comparison test, geometric series, divergence test

Power Series §11.8

Functions: $\sin(x)$, e^x , $\ln(x)$, $x^2 + 3x + 1$, $\frac{5x}{x-2}$

Polynomials are the easiest function around

Idea for the week: write complicated functions as polynomials (infinite)

Definition Power Series A power series in x has the form $\sum_{n=0}^{\infty} c_n x^n$, where $c_n \in \mathbb{R}$ are coefficients (the fingerprint)

 $(\mathbf{R}) \rightarrow \text{note}$, if we let x = number, we know this already (11.2-11.6)

Example Let $c_n = 1$ for all n

$$\sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$$

$$\to \text{try } x = \frac{1}{2}, \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = 1 + \frac{1}{2} + \frac{1}{4} + \dots = \frac{1}{1-r} = \frac{1}{1-\frac{1}{2}} = 2$$

$$\to \text{try } x = 2, \sum_{n=0}^{\infty} (2)^n = 1 + 2 + 4 + 8 + \dots \text{ diverges}$$

$$\to \text{therefore } \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \text{ if } |x| < 1$$

$$\sum_{n=0}^{\infty} x^n = \sum_{n=1}^{\infty} x^{n-1} = \frac{1}{1-x}$$

Definition A power series in (x-a), or in other words centered at x=a, has the form $\sum_{n=0}^{\infty} c_n(x-a)^n$

■ Example For what values of x does $\sum_{n=0}^{\infty} \frac{(x-3)^n}{n}$ converge? $\blacktriangleright a_n = \frac{(x-3)^n}{n}$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(x-3)^{n+1}}{n+1}}{\frac{(x-3)^n}{n}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{n+1} \frac{n}{(x-3)^n} \right| = \lim_{n \to \infty} \left| (x-3) \frac{n}{n+1} \right|$$

$$= |x-3| \lim_{n \to \infty} \frac{n}{n+1} = |x-3| \lim_{n \to \infty} \frac{1}{1+\frac{1}{n}}$$

$$= |x-3| \cdot \frac{1}{1-0} = |x-3|$$

 \rightarrow this converges when |x-3| < 1

$$|x-3| < 1$$
 $-1 < x - 3 < 1$
 $-1 + 3 < x < 1 + 3$
 $2 < x < 4$

 \rightarrow therefore, $\sum_{n=0}^{\infty} \frac{(x-3)^n}{n}$ converges (absolutely) when 2 < x < 4The term of the term of the series $\sum_{n=0}^{\infty} \frac{n}{n}$ and $\sum_{n=0}^{\infty} \frac{(2-3)^n}{n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n}$ this is the converging alt. Harmonic series. The try x = 4, $\sum_{n=0}^{\infty} \frac{(4-3)^n}{n} = \sum_{n=0}^{\infty} \frac{1^n}{n} = \sum_{n=0}^{\infty} \frac{1}{n}$ this is the converging alt. Harmonic series. The try x = 4, $\sum_{n=0}^{\infty} \frac{(4-3)^n}{n} = \sum_{n=0}^{\infty} \frac{1^n}{n} = \sum_{n=0}^{\infty} \frac{1}{n}$ this is the converging alt. Harmonic series. So actually, the series converges when $2 \le x < 4$

Theorem Given $\sum_{n=0}^{\infty} c_n (x-a)^n$, there are three possibilities

- 1. The series converges only when x = a
- 2. The series converges for all $x \in \mathbb{R}$
- 3. There is a positive number $R \in \mathbb{R}$ such that this series converges when |x-a| < R, and diverges when |x-a| > R

— September 18, 2019 -

Mind Warmup

What values of x does $\sum_{n=0}^{\infty} c_n (x-a)^n$ converge? 1. Only when x = a (R = 0)

- 2. For all values of $x \in \mathbb{R}$ $(R = \infty)$
- 3. There is an $R \in \mathbb{R}$, where $0 < R < \infty$, such that this series converges when |x a| < R, diverges |x a| > R

Definition Radius of Convergence The value of R above is called the <u>radius of convergence</u> for $\sum_{n=0}^{\infty} c_n(x-a)^n$

Definition Interval of Convergence The interval of convergence for $\sum_{n=0}^{\infty} c_n(x-a)^n$ is the set of all x such that the series converges

- \rightarrow note If $0 < R < \infty$, check endpoints
- **Example** Find the radius/interval of convergence for $\sum_{n=0}^{\infty} \frac{(-5)^n}{\sqrt{n+1}} x^n$

Idea: -find the radius, usually ratio/root test

-If $0 < R < \infty$, check endpoints

$$\begin{split} \blacktriangleright \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n \to \infty} \left| \frac{\frac{(-5)^{n+1} x^{n+1}}{\sqrt{n+2}}}{\frac{(-5)^n x^n}{\sqrt{n+1}}} \right| \\ &= \lim_{n \to \infty} \left| \frac{(-5)^{n+1} x^{n+1}}{(-5)^n x^n} \frac{\sqrt{n+1}}{\sqrt{n+2}} \right| \\ &= \lim_{n \to \infty} \left| 5x \frac{\sqrt{n+1}}{\sqrt{n+2}} \right| = 5|x| \lim_{n \to \infty} \frac{\sqrt{n+1}}{\sqrt{n+2}} \\ &= 5|x| \lim_{n \to \infty} \frac{\sqrt{1+\frac{1}{n}}}{\sqrt{1+\frac{2}{n}}} = 5|x| \frac{\sqrt{1+0}}{\sqrt{1+0}} = 5|x| \end{split}$$

 \rightarrow so this converges if

$$5|x| < 1$$
$$|x| < \frac{1}{5}$$
$$-\frac{1}{5} < x < \frac{1}{5}$$

$$\rightarrow R = \frac{1}{5}$$

$$\rightarrow \text{ try } x = -\frac{1}{5} \qquad \rightarrow \sum_{n=0}^{\infty} \frac{(-5)^n}{\sqrt{n+1}} \left(-\frac{1}{5}\right)^n = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} \qquad \rightarrow \text{ this diverges (compare with } p\text{-series } p = \frac{1}{2})$$

$$\left(-\frac{1}{5}, \frac{1}{5}\right]$$
$$-\frac{1}{5} < x \le \frac{1}{5} \blacktriangleleft$$

§11.10 Taylor Series

(we'll return to 11.9)

main goal
$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$

drawing on board of tangent line at $x = a$

Missing one board of notes as the prof erased stuff in different order than usual.

future fact: the tangent line is actually just the first two terms of the Taylor Series

Let's Start
$$\sum_{n=0}^{\infty} c_n (x-a)^n = f(x)$$

1a)
$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + c_4(x-a)^4 + \dots$$

1b) If we plug in
$$x = a$$
, $f(a) = c_0$

2a) (take a derivative)

$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \dots$$

2b) If we plug in
$$x = a$$
, $f'(a) = c_1$

3a) (Take another derivative)

$$f''(x) = 2c_2 + 3cdot 2 \cdot c_3(x-a) + 4 \cdot 3 \cdot c_4(x-a)^2 + \dots$$

3b)
$$f''(a) = 2c_2$$

4a+4b)
$$f'''(a) = 3 \cdot 2 \cdot c_3 = 3!c_3$$

5+)
$$\underbrace{f^{(n)}(a)}_{n \text{ derivatives of } f(x)} = n!c_n \to c_n = \frac{f^{(n)}(a)}{n!}$$

Definition Taylor Polynomial A Taylor polynomial of degree k for f(x) at x = a is $\sum_{n=0}^{k} c_n(x-a)^n = \sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!}(x-a)^n$ $a)^n$

Definition Taylor Series A <u>Taylor Series</u> for f(x) at x = a is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$

Definition Maclaurin Series A <u>Maclaurin series</u> for f(x) is just the Taylor series when a=0

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

September 20, 2019 —

Mind Warmup

$$\sum_{n=0}^{\infty} C_n (x-n)^n$$
Radius of convergence

1.
$$x = a, R = 0$$

2.
$$x \in \mathbb{R}, R = \infty$$

3.
$$|x-a| < R, R = R$$

drawing on board "These are the values where the series converges."

$$f(x) = 3\sin(x) f(\frac{1}{3})$$
 hard

$$g(x) = 9x^2 + 3x g(\frac{1}{3})$$
 easy

$$T_k(x) = \sum_{n=0}^k \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 Kth degree Taylor polynomial

$$\lim_{k\to\infty}T_k(x)=\sum_{n=0}^k\frac{f^{(n)}(a)}{n!}(x-a)^n \text{ Taylor Series}$$

Example $f(x) = e^x$

- 1. Find $T_4(x)$ at x = 0
- 2. Find Maclaurin series

$$T_4(x) = \sum_{n=0}^4 \frac{f^{(n)}(0)}{n!} x^n$$

$$= f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \frac{f^{(4)}(0)}{4!} x^4$$

$$f(x) = e^x \to f'(x) = e^x \to f^{(n)}(x) = e^x \to f^{(n)}(0) = e^0 = 1$$

$$\Rightarrow T_4(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4$$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Question: Does $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}? \to \text{ for all values of } x?$

Question: if yes, what is the error of $e^x - \sum_{n=1}^{k} \frac{x^n}{n!}$?

In general:

- Is $f(x) \approx T_k(x)$? For any x?
- Is $f(x) \approx T_{\infty}(x)$? For any x?

Definition Let the k^{th} -order remainder for Taylor polynomial $T_k(x)$ of f(x) be

$$R_k(x) = f(x) - T_k(x)$$

Theorem — Taylor's Inequality . (Taylor's inequality) \rightarrow how to bound $R_k(x)$

Let I = (a - R, a + R) or any other interval that contains a, and suppose that $\left| f^{(k+1)}(x) \right| \le M$ for all $x \in I$, then $|R_k(x)| \le \frac{M}{(k+1)} |x-a|^{k+1}$ for all $x \in I$

- \rightarrow We find M, it's easy.
 - \rightarrow just see how big $f^{(k+1)}(x)$, and take M = maximum
- \rightarrow We decide I too

Very Important Limit

$$\lim_{n\to\infty} \frac{x^n}{n!} = 0 \text{ for any choice of } x$$

▶ Consider x > 0, let $M = [x] \leftarrow$ (the ceiling function)

$$\frac{x^n}{n!} = \frac{x}{1} \frac{x}{2} \dots \frac{x}{n}$$

$$= \underbrace{\frac{x}{1} \frac{x}{2} \dots \frac{x}{M}}_{B} \underbrace{\frac{x}{M+1} \frac{x}{M+2} \dots \frac{x}{n-1}}_{C_n} \frac{x}{n} = B \cdot C_n \frac{x}{n}$$

$$x \le M$$
, so $x < M+1 \to \frac{x}{M+1} < 1$
$$x < M+2 \to \frac{x}{M+2} < 1$$

etc.

$$\rightarrow$$
 So now $\frac{x^n}{n!} = B \cdot C_n \frac{x}{n} \le B \frac{x}{n}$

$$0 < \frac{x^n}{n!} \le B \frac{x}{n} \qquad B \frac{x}{n} \xrightarrow{k \to \infty} 0$$

$$\rightarrow$$
 since $\lim_{n\to\infty} B\frac{x}{n} = 0$, squeeze theorem tells us that $\lim_{n\to\infty} \frac{x^n}{n!} = 0$

 \rightarrow consider x < 0

$$\lim_{n \to \infty} \left| \frac{x^n}{n!} \right| = \lim_{n \to \infty} \frac{|x|^n}{n!} = 0 \text{ from first part } \blacktriangleleft$$

$$e^x \stackrel{?}{=} \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

 \rightarrow we can show this is true by $\lim_{n\to\infty} |R_k(x)| = 0$ (squeeze theorem)

- September 23, 2019 -

Mind Warmup

$$\sum_{n=0}^{\infty} a_n \text{ -series } \sum_{n=0}^{\infty} C_n (x-a)^n \text{ -power series}$$

$$T_k(x) = \sum_{n=0}^k rac{f^{(n)}(0)}{n!} (x-a)^n$$
 - $k^{ ext{th}}$ order Taylor polynomial at $x=a$

$$R_k(x) = f(x) - T_k(x) - k^{\text{th}}$$
 order error

Question: does
$$f(x) = \lim_{k \to \infty} T_k(x)$$

<u>Proposition</u>: If $R_k(x) = f(x) - T_k(x)$, and if $\lim_{k \to \infty} R_k(x) = 0$, then f(x) = Taylor Series

$$\triangleright R_k(x) = f(x) - T_k(x)$$

$$\lim_{k\to\infty} R_k(x) = \lim_{k\to\infty} (f(x) - T_k(x))$$

$$0 = f(x) - \lim_{k \to \infty} T_k(x)$$

$$\Rightarrow f(x) = \lim_{k \to \infty} T_k(x) = \sum_{n=0}^{\infty} \frac{n^{(n)}(a)}{n!} (x - a)^n \blacktriangleleft$$

Fact: we need $\lim_{n\to\infty} \frac{x^n}{n!} = 0$ for any $x \in \mathbb{R}$

Theorem we need (Taylor's inequality)

Let *I* be an interval containing x = a and suppose that $\left| f^{(k+1)}(x) \right| \le M$ for any $x \in I$ Then

$$|R_k(x)| \le \frac{M}{(k+1)!} |x-a|^{k+1}$$
 for any $x \in I$

■ Example Show
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 on $[0,1]$ using $R_k(x)$.

(Last class, $\sum_{n=0}^{\infty} \frac{x^n}{n!}$, was Maclaurin series $\blacktriangleright I = [0,1]$

$$ightharpoonup I = [0, 1]$$

$$M = ? \longrightarrow f^{(k+!)}(x) = e^x$$

$$e^0 < e^x < e^1$$

$$1 \le e^x \le e$$

where e is our M

$$0 \le |R_k(x)| \le \frac{M}{(k+1)!} |x-0|^{k+1} = \frac{e}{(k+1)!} |x|^{k+1}$$

$$\lim_{k \to \infty} \frac{e}{(k+1)!} |x|^{k+1} = 0$$

$$\biggl(\lim_{k\to\infty}\frac{x^k}{k!}=0\biggr) v space*0.1cm \to {\rm So}\ {\rm by\ squeeze\ theorem},$$

$$\lim_{k\to\infty} R_k(x) = 0$$

$$\Rightarrow e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

- **Example** Take $f(x) = \sin(x)$
 - 1. Find Maclaurin series
 - 2. Show $sin(x) = Maclaurin series (i.e. show <math>R_k(x) \rightarrow 0$)

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

$$f(x) = \sin(x) = f^{(4)}(x)$$

$$f'(x) = \cos(x) = f^{(5)}(x)$$

$$f''(x) = -\sin(x) = f^{(6)}(x)$$

$$f'''(x) = -\cos(x) = f^{(7)}(x)$$

$$\sin(0) = 0$$

$$cos(0) = 1$$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = 0 + 1x + \frac{0}{2!} x^2 - \frac{1}{3!} x^3 + \frac{0}{4!} x^4 + \frac{1}{5!} x^5 + \frac{0}{6!} x^6 - \frac{1}{7!} x^7 + \dots$$

$$= x - \frac{1}{6} x^3 + \frac{1}{120} x^5 - \frac{1}{5040} x^7 + \dots$$

$$\Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \qquad \text{step } 1 \checkmark$$

 \blacktriangleright we know $|\sin(x)| \le 1$, $|\cos(x)| \le 1$

so we also know
$$\left| f^{(k+1)}(x) \right| \le 1$$
 where 1 is our M

so
$$0 \le |R_k(x)| \le \frac{M}{(k+1)!} |x-0|^{k+1} = \frac{|x|^{k+1}}{(k+1)!}$$

$$\lim_{k \to \infty} \frac{|x|^{k+1}}{(k+1)!} = 0$$

 \rightarrow so by squeeze theorem,

$$\lim_{k\to\infty} R_k(x) = 0$$

$$\Rightarrow$$
 Hence, $\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$

$$\sin(x) = x - \frac{1}{6}(x)^3 + \dots$$

$$\lim_{n\to 0} \frac{\sin(n)}{n} = 1$$

$$\sin(x) \approx x$$
, x is small.

_____ September 25, 2019 _____

Mind Warmup

$$f(x) \longrightarrow T_k(x) = \sum_{n=0}^k \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$\longrightarrow f(x) = \lim_{k \to \infty} T_k(x)$$
 if $\lim_{k \to \infty} R_k(x) = 0$

Q: Now that we can find power series, how can we manipulate them?

§11.9 Representing Functions as Power Series

Given $\sum_{n=0}^{\infty} C_n(x-a)^n$, how can we manipulate it?

- 1. differentiate/integrate it
- 2. multiply by copies of $(x-a)^k$
- 3. replace *x* by something else (substitution)
- 4. (multiply/divide two series)

Theorem If $f(x) = \sum_{n=0}^{\infty} C_n (x-a)^n$ with radius of convergence R, then f(x) is differentiable and

1.
$$f'(x) = \sum_{n=1}^{\infty} C_n (x-a)^{n-1}$$

2.
$$\int f(x)dx = \sum_{n=0}^{\infty} \frac{C_n}{n+1} (x-a)^{n+1} + C$$

- R → note: The radius of convergence is the same, but the endpoints of the interval of convergence could change.
- **Example** Find Maclaurin series of cos(x)

Example Find the Maclaurin series of $x^2 \cos(x^2)$

$$cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

$$cos(x^2) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (x^2)^{2n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{4n}$$

$$x^2 cos(x^2) = x^2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{4n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{4n+2}$$

■ Example Find Maclaurin series of $\frac{1}{1+x^3}$ $\blacktriangleright \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$

$$\frac{1}{1+x^3} = \frac{1}{1-(-x^3)}$$

$$= \sum_{n=0}^{\infty} (-x^3)^n$$

$$= \sum_{n=0}^{\infty} (-1)^n x^{3n}$$

 \rightarrow is true if |x| < 1, but for us it was $|-x^3| < 1 \Leftrightarrow |x| < 1$

Example Find Maclaurin series of $\frac{x^2}{4-9x^2}$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\frac{x^2}{4-9x^2} = x^2 \cdot \frac{1}{4-9x^2}$$

$$= \frac{x^2}{4} \cdot \frac{1}{1-\frac{9}{4}x^2}$$

$$= \frac{x^2}{4} \cdot \sum_{n=0}^{\infty} \left(\frac{9}{4}x^2\right)^n$$

$$= \frac{x^2}{4} \cdot \sum_{n=0}^{\infty} \frac{9^n x^{2n}}{4^n}$$

$$= \sum_{n=0}^{\infty} \frac{9^n x^{2n+2}}{4^{n+1}}$$

$$= \sum_{n=0}^{\infty} \frac{3^{2n} x^{2n+2}}{2^{2n+2}}$$

 \rightarrow to use $\frac{1}{1-x}$, we needed |x| < 1 which for us was $\left| \frac{9}{4}x^2 \right| < 1$

$$\left| \frac{9}{4}x^2 \right| < 1$$

$$\frac{9}{4}|x^2| < 1$$

$$|x|^2 < \frac{4}{9}$$

$$|x| < \frac{2}{3}$$

$$R=\frac{2}{3}$$

Example Find Maclaurin series of ln(1+x)

$$\blacktriangleright \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\ln(x+1) = \int \frac{dx}{x+1}$$

$$= \int \frac{1}{1 - (-x)} dx$$

$$= \int \sum_{n=0}^{\infty} (-x)^n dx$$

$$= \sum_{n=0}^{\infty} (-1)^n \int x^n dx$$

$$= \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}\right) + C$$

 \rightarrow to remove constant C, we test values of x we know (x = 0)

$$\ln(0+1) = \sum_{n=0}^{\infty} (-1)^n \frac{0^{n+1}}{n+1} + C$$

$$\Rightarrow C = 0$$

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

- September 27, 2019

Mind Warmup

$$\sum_{n=0}^{\infty} a_n$$
 -series

 $C_n(x-a)^n$ -power series

given
$$f(x)$$
 at $x = a$, $t_K(x) = \sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!} (x - a)^n$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 -Taylor series

§11.10 How to manipulate series (11.9/11.10)

- \rightarrow Last class, we took derivatives, integrals, we substituted, and we multiplied by $(x-a)^k$
- \rightarrow What about multiplying/dividing two series together?
- **Example** Find Maclaurin series of $\frac{3\cos(x)}{1-x}$

$$\frac{3\cos(x)}{1-x} = 3\cos(x) \cdot \frac{1}{1-x}$$

$$= 3\left(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}\right) \left(\sum_{n=0}^{\infty} x^n\right)$$

$$= 3\left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + \dots\right) \left(1 + x + x^2 + \dots\right)$$

$$= 3\left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + \dots + x - \frac{1}{2}x^3 + \frac{1}{24}x^5 + \dots + x^2 - \frac{1}{2}x^4 + \frac{1}{24}x^6\right)$$

$$= 3 + 3x + \frac{3}{2}x^2 + \dots \text{ we didn't try to find a general formula for this in class}$$

Example Find Maclaurin series of tan(x)

"I expect you to memorize $\sin(x), \cos(x), e^x, \dots$ " I didn't really hear everything function that was mentioned here

$$x + \frac{1}{3}x^{3} + \dots$$

$$1 - \frac{1}{2}x^{2} + \frac{1}{24}x^{4} + \dots$$

$$- \frac{\left(x - \frac{1}{2}x^{3} + \frac{1}{24}x^{5} + \dots\right)}{\frac{1}{3}x^{3} - \frac{1}{30}x^{5} + \dots}$$

$$- \frac{\frac{1}{3}x^{3} - \frac{1}{6}x^{5} + \dots}{R}$$

$$\tan(x) = x + \frac{1}{3}x^3 + \dots$$

Some applications

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n} = \text{a precise value?}$$

We can find the exact sum for series if we are lucky and have a Taylor expansion for them. (besides geometric, telescoping)

■ Example Find the infinite sum

$$1 - \ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \frac{(\ln 2)^4}{4!} - \dots$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n (\ln 2)^n}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{(-\ln 2)^n}{n!} \qquad \text{fact } e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$= e^{-\ln 2}$$

$$= \left(e^{\ln 2}\right)^{-1} = 2^{-1} = \frac{1}{2}$$

- **Example** Find Maclaurin series of $(1+x)^k$ we did not do this example in class
- **Example** $\int e^{-x^2} dx$ -no good solution

$$\int_0^{\frac{1}{2}} e^{-x^2} dx = \int_0^{\frac{1}{2}} \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} dx = \int_0^{\frac{1}{2}} \left(1 - x^2 + \frac{x^4}{2} - \frac{x^6}{6} + \dots \right) dx$$

$$= \left(x - \frac{1}{3} x^3 + \frac{1}{10} x^5 - \frac{1}{42} x^7 + \dots \right) \Big|_0^{\frac{1}{2}}$$

$$= \frac{1}{2} - \frac{1}{3} \left(\frac{1}{8} \right) + \frac{1}{10} \left(\frac{1}{32} \right) - \frac{1}{42} \left(\frac{1}{128} \right) + \dots$$

$$= \frac{4133}{8960} + \dots \approx 0.46127$$

– September 30, 2019 ———

mcgill.ca\tutoring

jacob.beaudry@mail.mcgill.ca (math 222)

Mind Warmup

§12.1 Vectors (12.1-12.3)

 $\vec{v} = <3,4>$

Definition magnitude The length of vector $\vec{v} = \langle v_1, v_2 \rangle$ is $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2}$

$$p = (\underbrace{2}_{x}, \underbrace{3}_{y}, \underbrace{5}_{z})$$

 $\vec{v} = <2,3,5>$

Definition The length of vector $\vec{v} = \langle v_1, v_2, v_3 \rangle$ is $\|\vec{v}\| = \sqrt{{v_1}^2 + {v_2}^2 + {v_3}^2}$

Fact: If $c \in \mathbb{R}$, then $||c\vec{v}|| = |c| \cdot ||\vec{v}||$

■ Example Find the length of $\vec{v} = <-7, -14, -14>$

► 1.
$$\|\vec{v}\| = \sqrt{(-7)^2 + (-14)^2 + (-14)^2}$$

= $\sqrt{49 + 196 + 196}$
= $\sqrt{441} = 21$

$$2.\vec{v} = -7 < 1, 2, 2 >$$

$$\|\vec{v}\| = |-7| \|<1,2,2> \|$$
$$= 7\sqrt{1^2 + 2^2 + 2^2}$$
$$= 7 \cdot \sqrt{9} = 21$$

Definition Unit Vector Normalizing vector \vec{v} means rescaling it by $\frac{1}{\|\vec{v}\|}$. Note the new vector $\frac{\vec{v}}{\|\vec{v}\|}$ is a unit vector (of length 1)

Definition Basis Vectors (special unit vectors in \mathbb{R}^3)

$$\vec{i} = <1,0,0>$$

$$\vec{j} = <0,1,0>$$

$$\vec{k} = <0,0,1>$$

$$R If $\vec{v} = \langle a, b, c \rangle$, then $\vec{v} = a\vec{i} + b\vec{j} + c\vec{k}$$$

October 2, 2019 12. Vectors

Example Find the length of $\vec{w} = 2\vec{i} - \vec{j} - 2\vec{k}$

$$ightharpoonup \vec{w} = <2, -1, -2>$$

$$\|\vec{w}\| = \sqrt{2^2 + (-1)^2 + (-2)^2} = \sqrt{9} = 3$$

§12.3 Dot Product

Definition Dot Product Let $\vec{u} = \langle a_1, a_2, a_3 \rangle$, $\vec{v} = \langle b_1, b_2, b_3 \rangle$

The <u>dot product</u> of \vec{u} and \vec{v} is the number

$$\vec{u} \cdot \vec{v} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

→ Note: also called scalar product, inner product

Facts

1. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ order doesn't matter

2. $\vec{u} \cdot \vec{u} = (a_1)^2 + (a_2)^2 + (a_3)^2 = ||\vec{u}||^2$ dot product with itself is <u>related</u> to length

3. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$

Theorem — Angle Formula. Let \vec{u} , \vec{v} be nonzero vectors, then

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

where θ is the angle between them.

 \rightarrow this also gives $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$

Note: Two vectors are perpendicular/orthogonal if the angle between them is $\frac{\pi}{2}$ radians, 90°

$$\cos\left(\frac{\pi}{2}\right) = 0$$
 — what does that tell us??

R Important: Two vectors are orthogonal if their dot product is 0

Remember basis vectors \vec{i} , \vec{j} , \vec{k} ?

They are orthogonal to each other, i.e

$$\vec{i} \cdot \vec{j} = 0$$
, $\vec{j} \cdot \vec{k} = 0$, $\vec{k} \cdot \vec{i} = 0$

 \rightarrow In other words, the basis vectors are 90° or $\frac{\pi}{2}$ radians away from each other.

———— October 2, 2019 —

Mind Warmup

 $\vec{v} = \langle v_1, v_2, v_3 \rangle$ is a vector with length $||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

$$\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$$
 (basis vectors)

$$\vec{u} = \langle u_1, u_2, u_3 \rangle$$

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

 $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$, where θ is angle between \vec{u} and \vec{v}

MISSING DIAGRAM

 \rightarrow because $\cos\left(\frac{\pi}{2}\right) = 0$, we have that $\vec{u} \cdot \vec{v} = 0$ when $\vec{u} \perp \vec{v}$, $\perp =$ orthogonal to

(Scalar) Projections

October 2, 2019 12. Vectors

$$\cos \theta = \frac{\mathrm{adj}}{\mathrm{hyp}} = \frac{\|\vec{w}\|}{\|\vec{b}\|} \longrightarrow \|\vec{w}\| = \|\vec{b}\| \cos \theta$$

$$\rightarrow$$
 also know, $\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \theta$

$$= \|\vec{a}\| \|\vec{w}\|$$

$$\rightarrow \|\vec{w}\| = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|} \qquad \leftarrow \text{ the length of } \vec{w}$$

 $\rightarrow \vec{w}$ same direction as \vec{a}

also same direction as $\frac{\vec{a}}{\|\vec{a}\|}$

$$\longrightarrow$$
 so $\vec{w} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|} \frac{\vec{a}}{\|\vec{a}\|}$

$$\begin{array}{ll} \textbf{(R)} & \mathrm{comp}_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{\|\vec{a}\|} & \mathrm{the\ scalar\ projection\ of\ } \vec{b}\ \mathrm{onto\ } \vec{a}\ \mathrm{(number)} \\ & \mathrm{proj}_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{\|\vec{a}\|^2}\vec{a} & \mathrm{the\ vector\ projection\ of\ } \vec{b}\ \mathrm{onto\ } \vec{a}\ \mathrm{(vector)} \end{array}$$

Example Find the vector projection of $\vec{b} = <-3,5,8>$ onto $\vec{a} = <1,-2,2>$

▶
$$\operatorname{proj}_{\vec{a}}\vec{b} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2}\vec{a} =$$

$$\vec{a} \cdot \vec{b} = <1, -2, 2 > \cdot < -3, 5, 8 > = -3 - 10 + 16 = 3$$

$$\|\vec{a}\| = \sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{9} = 3$$

$$= \frac{3}{(3)^2} < 1, -2, 2 > = <\frac{1}{3}, \frac{-2}{3}, \frac{2}{3} > \blacktriangleleft$$

Definition Cross Product Let $\vec{u} = \langle a_1, a_2, a_3 \rangle$, $\vec{v} = \langle b_1, b_2, b_3 \rangle$ Then the cross product of \vec{a} and \vec{b}

The vector
$$\vec{u} \times \vec{v} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$

This comes from

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Facts

1. $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}

$$\bullet \quad (\vec{u} \times \vec{v}) \cdot \vec{u} = 0$$

•
$$(\vec{u} \times \vec{v}) \cdot \vec{v} = 0$$

2. The direction of $\vec{u} \times \vec{v}$ is given by the right hand rule.

Fingers go from vector \vec{u} to \vec{v} , and thumb is pointing in the direction $\rightarrow \vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$

October 4, 2019 12. Vectors

3.
$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta$$

 $\rightarrow \text{if } \theta = 0, \text{ then } \vec{u} \times \vec{v} = <0,0,0>$

4. MISSING DRAWING OF A PARALLELOGRAM

area of parallelogram is base \times height

$$\|\vec{u}\|h = \|\vec{v}\| \|\vec{u}\| \sin \theta = \|\vec{u} \times \vec{v}\| \qquad \qquad \sin \theta = \frac{h}{\|\vec{v}\|} \qquad \qquad \text{not sure if I transcribed this line properly}$$

Example Find the cross product of \vec{j} and \vec{k}

$$\vec{j} = \langle 0, 1, 0 \rangle$$

$$\vec{k} = \langle 0, 0, 1 \rangle$$

$$\vec{j} \times \vec{k} = \langle 1 \cdot 1 - 0 \cdot 0, \ 0 \cdot 0 - 0 \cdot 1, \ 0 \cdot 0 - 0 \cdot 1 \rangle$$

$$= \langle 1, 0, 0 \rangle$$

$$= \vec{i}$$

$$\vec{j} \times \vec{k} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= \vec{i} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} - \vec{j} \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} + \vec{k} \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix}$$

$$= \vec{i}(1) - \vec{j}(0) + \vec{k}(0) = \vec{i}$$

— October 4, 2019 ———

Mind Warmup (§12.1-12.4)

Vector \vec{u} has length $||\vec{v}||$

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta$$

 $\rightarrow \vec{u} \times \vec{v}$ is a third vector which is orthogonal to both \vec{u} and \vec{v}

$$(\vec{u} \times \vec{v}) \cdot \vec{u} = 0$$
 $(\vec{u} \times \vec{v}) \cdot \vec{v} = 0$

§12.5 Lines and Planes

y = mx + b - equation of a line

$$y = 2x - 5$$
 -slope is 2, y intercept is -5

 $r(t) = \langle t, -5 \rangle$ -same line in parametric form

$$= \underbrace{<0,-5>}_{y\text{-int}} + t\underbrace{<1,2>}_{\text{slope}}$$

In 3D, we can write

$$r(t) = \langle x_0 + at, y_0 + bt, z_0 + ct \rangle$$

October 4, 2019 12. Vectors

Definition Parametric Equations of a line The <u>parametric equations</u> of a line through point (x_0, y_0, z_0) and

parallel to vector
$$\vec{v} = \langle a, b, c \rangle$$
 is
$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$

■ **Example** $\vec{r}(t) = \langle 3-2t, 1+t, 5-8t \rangle$ is an equation for a line which passes through the point (3,1,5) when t=0 and (1,2,-3) when t=1, etc.

Planes

 (x_0, y_0, z_0) is an actual fixed point on the plane

(x, y, z) is any other general point on the plane

 $\vec{q} = \langle x - x_0, y - y_0, z - z_0 \rangle$ - a vector between two points

 \vec{n} the normal vector is orthogonal to the plane

 \rightarrow <u>Fact</u> \vec{n} is <u>also</u> orthogonal to \vec{q}

$$\Rightarrow < a, b, c > \cdot << x - x_0, y - y_0, z - z_0 > = 0$$

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

Definition Scalar Equation of a Plane The scalar equation of a plane through point (x_0, y_0, z_0) with normal vector $\vec{n} = \langle a, b, c \rangle$

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

- $\rightarrow ax + by + cz + d = 0 \qquad \qquad d = ax_0 by_0 cz_0$
- \rightarrow now we know for any ax + by + cz + d = 0 the normal vector is $\langle a, b, c \rangle$
 - \rightarrow aka this plane is <u>perpendicular</u> to < a, b, c >
- **Example** Find the equation of a plane which contains the points (0,0,0), (3,-2,1), (1,1,1)
- ► Two vectors on this plane are

$$\vec{u} = <3-0, -2-0, 1-0> = <3, -2, 1>$$

$$\vec{v} = <1-0, 1-0, 1-0> = <1, 1, 1>$$

 $\vec{u} \times \vec{v} \leftarrow \text{this will give us our normal vector } \vec{u} \times \vec{v} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & -2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = <-3-2,5>$ <-3-2,5> is \vec{n}

 \rightarrow so now we have

$$-3x - 2y + 5z + d = 0$$
 we plug in any point to find d

$$\rightarrow -3(0) - 2(0) + 5(0) + d = 0 \rightarrow d = 0$$

$$-3x - 2y + 5z = 0$$

31

October 7, 2019 12. Vectors

§12.6 Surfaces

MISSING DRAWING this is not $y = x^2$ in 3 dimensions

Example Sketch $z = x^2$ in \mathbb{R}^3

MISSING DIAGRAM

October 7, 2019 -

- 1. Sketch $x^2 + y^2 = z^2$ This is a cone. We're going to sketch this using traces Use traces
 - (a) z-traces

$$z = 0 \Rightarrow x^2 + y^2 = 0$$

$$\Rightarrow x = 0, y = 0$$

$$\Rightarrow \text{ the origin } (0,0)$$

$$z = 1 \Rightarrow x^2 + y^2 = 1$$

$$\Rightarrow \text{ circle of radius } 1$$

$$z = 2 \Rightarrow x^2 + y^2 = 4$$

$$z = -1 \Rightarrow x^2 + y^2 = 1$$

$$\Rightarrow \text{ circle of radius } 1$$

MISSING DIAGRAM

(b) x-traces

$$x = 0 \Rightarrow y^{2} = z^{2}$$

$$x = 1 \Rightarrow 1 + y^{2} = z^{2}$$

$$\Rightarrow 1 = z^{2} - y^{2}$$

13. Vector Functions

§13.1 Parametric curves

Definition Vector Valued Function $r: \mathbb{R} \to \mathbb{R}^3$ (or \mathbb{R}^2) is called a <u>vector-valued</u> function

$$r(t) = \begin{pmatrix} f(t) \\ g(t) \\ h(t) \end{pmatrix}$$

This gives a set of points $\{r(t) \mid t \in \mathbb{R}\}$ which describes a curve

Example $x = \cos(t), y = \sin(t), t \in \mathbb{R}$ Sketch this curve.

(a) Plot a few points

MISSING DIAGRAM

$$t = 0 \to (1,0)$$

$$t = \frac{\pi}{4} \to \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

$$t = \frac{\pi}{2} \to (0,1)$$

(b) Find a relationship between x and y

$$\cos^2(t) + \sin^2(t) = 1$$

$$x^2 + y^2 = 1$$

R Warning This means $(\cos(t), \sin(t))$ lies on the circle, <u>not</u> that it is the circle

For example, if $0 \le t \le \frac{\pi}{2}$, we only have $\frac{1}{4}$ circle.

Example
$$r(t) = <\underbrace{\cos(2t)}_{x}, \underbrace{\sin(2t)}_{y} >$$

Again
$$x^2 + y^2 = 1$$

October 9, 2019 13. Vector Functions

Definition Ellipse $r(t) = \langle a\cos(t), b\sin(t) \rangle$ is an ellipse

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \frac{\cancel{x}\cos^2(t)}{\cancel{x}} + \frac{\cancel{b}^2\sin^2(t)}{\cancel{b}^2}$$

Example Sketch $r(t) = \langle \underbrace{t^2}_{r}, \underbrace{t^4}_{r} \rangle t \in \mathbb{R}$

We have $y = x^2$

 $\Rightarrow r(t)$ is on a parabola

 $x \ge 0$ always because $x = t^2$

MISSING DIAGRAM

$$t = 0 \to (0,0)$$

$$t = 1 \to (1,1)$$

$$t = -1 \to (1, 1)$$

$$t = -2 \rightarrow (4, 16)$$

■ **Example** Sketch $r(t) = \langle \underbrace{\cos(t)}_{x}, \underbrace{\sin(t)}_{y}, \underbrace{t}_{z} \rangle$

Observe $x^2 + y^2 = 1 \Rightarrow$ circle

MISSING DIAGRAM You're spiralling out. It's a helix

 $x^2 + y^2 = 1$ is a cylinder in \mathbb{R}^3

 $\Rightarrow r(t)$ is on the cylinder. As t increases, move up the cylinder

MISSING DIAGRAM

— October 9, 2019 -

We want to make it past arc-length and curvature before the cut-off in material for the midterm.

Office Hours Thursday: 10:30a.m. - 1:30p.m.

Mind Warmup

$$\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$$
 - vector function

$$\vec{r}(t): \mathbb{R} \to \mathbb{R}^3$$

to
$$\to < x(t_0), y(t_0), z(t_0) >$$

 $\vec{v}(t) = <\cos t, \sin t >$

 $\vec{r}(t) = <\cos 2t, \sin 2t >$

 $\vec{r}(t) = <\cos t, \sin t, t > \text{helix}$

MISSING DIAGRAM

§13.2 Derivatives of Parametric Functions

- \rightarrow think of $\vec{r}(t)$ as the position of a moving object.
 - \rightarrow how fast is the object moving?
 - \rightarrow what is the velocity?
 - \rightarrow what is the derivative of $\vec{r}(t)$

October 9, 2019 13. Vector Functions

Question If $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ is a vector function, what is the tangent vector at t = a

$$\frac{d}{dt}\vec{r}(t) = \vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}$$
$$= \lim_{h \to 0} \frac{1}{h} \underbrace{(\vec{r}(t+h) - \vec{r}(t))}_{\text{vector}}$$

MISSING DIAGRAM

 $\vec{r}(t)$ - position $\vec{r}'(t)$ - velocity (note: $||\vec{r}'(t)||$ - speed)

 $\vec{r}''(t)$ - acceleration

 $\vec{r}'(a)$ - tangent vector at t = a

$$\vec{T}(a) = \frac{\vec{r}'(a)}{\|\vec{r}'(a)\|}$$
 - unit tangent vector at $t = a$

$$\vec{l}(a) = \vec{r}(a) + \vec{a}' \cdot t$$

Definition Derivative The <u>derivative</u> of $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ is

$$\vec{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle$$

- **Example** Find the tangent line of the helix $\vec{r}(t) = \langle 2\cos t, 3\sin t, 5t \rangle$ at the point when $t = \pi$
 - ► $\vec{r}(\pi) = <2\cos\pi, 3\sin\pi, 5\pi>$ $= <-2, 0, 5\pi> \text{ our "point" on the line}$

$$\vec{r}'(t) = <-2\sin t, 3\cos t, 5>$$

$$\vec{r}'(\pi) = <-2\sin\pi, 3\cos\pi, 5>$$

$$=<0,-3,5>$$

 \rightarrow thus, the tangent line is $\vec{l}(t) = <-2, -3t, 5\pi + 5t >$

$$<\underbrace{-2,0,5\pi}_{\vec{r}(\pi)}>+t<\underbrace{0,-3,5\pi}_{\vec{r}'(\pi)}>$$

Intersection of Parametric Curves

 $\vec{r}(t), \vec{q}(s)$

- **Example** Show that $\vec{r}(t) = \langle t^2 1, t^3 t \rangle$ self-intersects orthogonally.
 - 1. find intersection point
 - 2. find tangent vectors at this point
 - 3. take dot product

$$\blacktriangleright \begin{cases} t^2 - 1 = s^2 - 1 \\ t^3 - t = s^3 - s \end{cases}$$

$$t^2 - 1 = s^2 - 1 \longleftrightarrow t^2 = s^2$$
,

$$s = \pm t \text{ (use } s = -t)$$

October 11, 2019 13. Vector Functions

$$t^{3} - t = s^{3} - s \longleftarrow t^{3} - t = (-t)^{3} - (-t)$$

$$t^{3} - t = t^{3} + t$$

$$2t^{3} - 2t = 0$$

$$2t(t+1)(t-1) = 0$$

$$t = 0, -1, 1$$

$$\vec{r}(0) = < -1, 0 > 0$$

$$\vec{r}(-1) = <0,0> \leftarrow \text{ use these } (t=-1,1)$$

$$\vec{r}(1) = <0,0> \leftarrow \text{ use these } (t=-1,1)$$

2.
$$\vec{r}'(t) = \langle 2t, 3t^2 - 1 \rangle$$

first tangent vector $\vec{r}'(-1) = <-2,2>$

 2^{nd} tangent vector $\vec{r}'(1) = <2,2>$

3.
$$\vec{r}'(-1) \cdot \vec{r}'(1) = <-2,2> \cdot <2,2>$$

= $-2(2) + 2(2) = -4 + 4 = 0$

- October 11, 2019 —

No class Monday!

Midterm: Thursday October 24th, 6-8pm

 \rightarrow up to arc length in 13.3 (so no curvature)

Mind Warmup

$$\vec{r}(t) < x(t), y(t), z(t) >$$

$$\vec{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle \leftarrow \text{ we might call this velocity}$$

$$\|\vec{r}'(t)\|$$
 - speed

 $\vec{r}'(a)$ - tangent vector at t = a

1.
$$\frac{d}{dt} [c\vec{u}(t) + \vec{v}(t)] = c\vec{u}'(t) + \vec{v}'(t)$$

2.
$$\frac{d}{dt} \left[\vec{u}(t) \cdot \vec{v}(t) \right] = \vec{u}'(t) \cdot \vec{v}(t) + \vec{u}(t) \cdot \vec{v}'(t)$$

3.
$$\frac{d}{dt}[\vec{u}(t) \times \vec{v}(t)] = \vec{u}'(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v}'(t)$$

4.
$$\frac{d}{dt}[f(t)\vec{u}(t)] = f'(t)\vec{u}(t) + f(t)\vec{u}'(t)$$

5.
$$\frac{d}{dt} [\vec{u}(f(t))] = f'(t)\vec{u}'(f(t))$$

Proposition If $\|\vec{r}(t)\| = k$ (it is constant), then $\vec{r}(t) \perp \vec{r}'(t)$ (they are orthogonal) for any t.

► Since $\|\vec{r}(t)\| = k$, we know $\vec{r}(t) \cdot \vec{r}(t) = \|\vec{r}(t)\|^2 = k^2$

$$\vec{r}(t) \cdot \vec{r}(t) = k^2$$

$$\frac{d}{dt}\left(\vec{r}(t)\cdot\vec{r}(t)\right) = \frac{d}{dt}(k^2)$$

$$\vec{r}' \cdot \vec{r}(t) + \vec{r}(t) \cdot \vec{r}'(t) = 0$$

$$2(\vec{r}\cdot\vec{r}'(t))=0$$

 $\vec{r} \cdot \vec{r}'(t) = 0 \leftarrow \text{this means orthogonal} \blacktriangleleft$

October 11, 2019 13. Vector Functions

Definition Integral The integral of $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ is

$$\int \vec{r}(t)dt = \left\langle \int x(t)dt, \int y(t)dt, \int z(t)dt \right\rangle$$

Proposition $\int \vec{r}'(t)dt = \vec{r}(t) + \vec{c}, \ \vec{c} \in \mathbb{R}^3$

■ **Example** Given $\vec{a}(t) = \langle \cos t, e^{-t}, t^2 \rangle$ and initial condition $\vec{v}(0) = \langle 0, 1, 2 \rangle$ find $\vec{v}(t)$

$$\vec{v}(t) = \int \vec{a}(t)dt = \left\langle \int \cos t dt, \int e^{-t} dt, \int t^2 dt \right\rangle$$
$$= \left\langle \sin t + a, -e^{-t} + b, \frac{1}{3}t^3 + c \right\rangle$$

$$\begin{split} \overrightarrow{v}(0) &= \langle 0+a, -1+b, 0+c \rangle = \langle 0, 1, 2 \rangle \quad \Rightarrow a = 0, \, b = 2, \, c = 2 \\ \\ \overrightarrow{v}(t) &= \left\langle \sin t, 2 - e^{-t}, \frac{1}{3}t^3 + 2 \right\rangle \end{split}$$

§13.3 Arclength (curvature)

Given y = f(x), you may have seen

Length =
$$\int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

R look
$$\vec{r}(x) = \langle x, f(x) \rangle$$

 $\vec{r}'(x) = \langle 1, f'(x) \rangle$
 $\|\vec{r}'(x)\| = \sqrt{1 + (f'(x))^2}$

Definition Arclength The <u>arclength</u> of $\vec{r}(t)$, on $a \le t \le b$ is

$$L = \int_{a}^{b} \|\vec{r}'(t)\| dt$$
$$= \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt$$

■ **Example** Find the arclength of $\vec{r}(t) = \left\langle 2t, t^2, \frac{1}{3}t^3 \right\rangle$ where $0 \le t \le 1$

$$\vec{r}'(t) = \left\langle 2, 2t, t^2 \right\rangle$$

$$\to \int_0^1 \sqrt{(2)^2 + (2t)^2 + (t^2)^2} dt$$

$$= \int_0^1 \sqrt{4 + 4t^2 + t^4} dt$$

$$= \int_0^1 \sqrt{(2 + t^2)^2} dt$$

$$= \int_0^1 \left(2 + t^2 \right) dt = 2t + \frac{1}{3} t^3 \Big|_0^1 = \frac{7}{3}$$

October 16, 2019 13. Vector Functions

Ways this can become difficult

- 1. Find t = a, t = b between two points
- 2. Challenging integrals I'm hinting at trig substitutions
- 3. Change of variable

— October 16, 2019 —

Mind Warmup

$$\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$$

$$\vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|} - \text{unit tangent vector}$$

$$= \left\langle \frac{\vec{x}'(t)}{\|\vec{r}'(t)\|}, \frac{\vec{y}'(t)}{\|\vec{r}'(t)\|}, \frac{\vec{z}'(t)}{\|\vec{r}'(t)\|} \right\rangle$$

$$S = \int_{a}^{b} \|\vec{r}'(t)\| dt - \text{arc length, a number}$$

$$S(t) = \int_{0}^{t} \|\vec{r}'(u)\| du - \text{arc length, a function}$$

-This is the length of the curve from 0 to t

$$\vec{r}(t) = <\cos(t), \sin(t) >$$
MISSING DIAGRAM

$$S'(t) = ||\vec{r}'(t)||$$
 FTC II Fundamental theorem of calculus

Definition Curvature This is the <u>magnitude</u> of the <u>rate of change</u> of the <u>unit tangent vector</u> with respect to <u>arclength</u>.

- Magnitude / Length
- Rate of change / Derivative
- Unit tangent vector / Length 1
- ArcLength ??

Definition If $\vec{r}(s)$ is parametrized by arclength, the curvature is

$$k(s) = ||T'(s)||$$

- **Example** Reparametrize helix $\vec{r}(t) = \langle \cos(t), \sin(t) \rangle$ with respect to arclength starting from (1,0,0) as t increases.
- \blacktriangleright (1,0,0) corresponds to t = 0

$$S = S(t) = \int_0^t ||\vec{r}(u)|| du$$

$$= \int_0^t \sqrt{(-\sin u)^2 + (\cos u)^2 + 1^2} du$$

$$= \int_0^t \sqrt{\frac{(\sin u)^2 + (\cos u)^2}{1} + 1^2} du$$

$$= \int_0^t \sqrt{2} du$$

$$= \sqrt{2}t$$

$$\Rightarrow \vec{r}(s(t)) = \left\langle \cos\left(\frac{s}{\sqrt{2}}\right), \sin\left(\frac{s}{\sqrt{2}}\right), \frac{s}{\sqrt{2}}\right\rangle$$

October 18, 2019 13. Vector Functions

Definition The curvature for any $\vec{r}(t)$ is

$$k(t) = \frac{\|\vec{T}'(t)\|}{\|\vec{r}'(t)\|}$$

$$\|\vec{T}'(t)\| = \|\frac{d\vec{T}}{ds}\frac{ds}{dt}\| = \|\frac{d\vec{T}}{ds}\|\|\frac{ds}{dt}\|$$
$$= \|\vec{T}'(s)\|\|s'(t)\| = k(s)\|\vec{r}'(t)\|$$

- **Example** Show that the curvature of the circle with radius 13 is $k = \frac{1}{13}$

$$\vec{r}'(t) = <13\cos t, 13\sin t >$$

$$\|\vec{r}'(t)\| = \sqrt{169\sin^2 t + 169\cos^2 t} = \sqrt{169} = 13$$

$$\vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|} = \left\langle \frac{-13\sin t, -13\cos t}{13} \right\rangle = \left\langle -\sin t, \cos t \right\rangle$$

$$\vec{T}'(t) = \langle -\cos t, -\sin t \rangle$$

$$\|\vec{T}'(t)\| = \sqrt{\cos^2 t + \sin^2 t} = 1$$

$$\Rightarrow k(t) = \frac{\|\vec{T}'(t)\|}{\|\vec{r}'(t)\|} = \frac{1}{13}$$

Theorem The curvature for any $\vec{r}(t)$ is

$$k(t) = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|^3}$$

October 18, 2019 -

Mind Warmup

October 18, 2019 13. Vector Functions

Given $\vec{r}(t)$, we know

$$\vec{r}'(t)$$
 Think of this as velocity

$$\vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|}$$
 -unit tangent vector

$$K(s) = \|\vec{T}'(s)\|$$
 -curvature for $\vec{r}(s)$ with respect to arclength

$$ec{K}(t) = \frac{\|ec{T}'(t)\|}{\|ec{r}'(t)\|}$$
 -curvature, any $ec{r}$

$$\vec{K}(t) = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|^3}$$
 -curvature, any \vec{r}

$$S(t) = \int_0^t ||\vec{r}'(u)|| du$$
 -arclength function

Using $k(t) = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|^3}$, what can we say about the curvature of y = f(x)?

▶
$$y = f(x)$$
 corresponds to $\vec{r}(x) = \langle x, f(x), 0 \rangle$

$$\vec{r}'(x) = <1, f'(x), 0>$$

$$\vec{r}''(x) = <0, f''(x), 0>$$

$$\vec{r}'(x) \times \vec{r}''(x) = \begin{vmatrix} i & j & k \\ 1 & f'(x) & 0 \\ 0 & f''(x) & 0 \end{vmatrix} = \dots = <0, 0, f''(x) >$$

$$\|\vec{r}'(x) \times \vec{r}''(x)\| = \sqrt{(f''(x))^2} = |f''(x)|$$

$$\|\vec{r}'(x)\| = \sqrt{1 + (f'(x))^2}$$

$$k(x) = \frac{|f''(x)|}{\left(1 + (f'(x))^2\right)^{\frac{3}{2}}}$$

§13.4 Tangential and Normal Components of Acceleration

Definition Tangent, Normal, and Binormal Vectors

We'll have $\underbrace{\vec{T}}_{\text{tangent}}$, $\underbrace{\vec{N}}_{\text{normal}}$, $\underbrace{\vec{B}}_{\text{binormal}}$ all (unit) vectors

$$ec{T}(t) = rac{ec{r}'(t)}{\|ec{r}'(t)\|}$$
 - direction the curve is going

$$ec{N}(t) = rac{ec{T}'(t)}{\|ec{T}'(t)\|}$$
 -direction the curve is turning

$$\vec{B}(t) = \vec{T} \times \vec{N}$$
 -orthogonal to both

MISSING DIAGRAM

Normal Components of acceleration For this section, I'm going to use v(t) for our velocity

$$T(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|} = \frac{\vec{\mathbf{v}}(t)}{\|\vec{\mathbf{v}}(t)\|}$$

$$\leftrightarrow \vec{\mathbf{v}}(t) = \vec{T}(t) \| \vec{\mathbf{v}}(t) \|$$

October 21, 2019 13. Vector Functions

$$a(t) = \vec{\mathbf{v}}'(t) = \vec{T}'(t) ||\vec{\mathbf{v}}(t)|| + \vec{T}(t) (||\vec{\mathbf{v}}(t)||)' =$$

$$= \underbrace{(t) ||\vec{T}'(t)||}_{\vec{T}'(t)} ||\vec{\mathbf{v}}(t)|| + \vec{T}(t) (||\vec{\mathbf{v}}(t)||)' =$$

$$= \underbrace{(t) ||\vec{T}'(t)||}_{\vec{T}'(t)} ||\vec{\mathbf{v}}(t)|| + \vec{T}(t) (||\vec{\mathbf{v}}(t)||)' =$$

$$= N(t) \underbrace{k(t) ||\vec{\mathbf{v}}(t)||^2}_{a_N} + T(t) \underbrace{(||\vec{\mathbf{v}}(t)||)'}_{a_T}$$

$$a(t) = a_N \vec{N}(t) + a_T \vec{T}(t)$$
Fact $N(t) = \frac{T'(t)}{||\vec{T}'(t)||} = \frac{||\vec{T}'(t)||}{||\vec{v}(t)||}$

R trick
$$T(t) \cdot a(t) = T(t) \cdot (a_N N(t) + a_T T(t))$$

$$= a_N \left(\underbrace{T(t) \cdot N(t)}_{=0}\right) + a_T \left(\underbrace{T(t) \cdot T(t)}_{=1}\right)$$

$$T(t) \cdot a(t) = a_T$$

$$a_T = T(t) \cdot a(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|} \cdot \vec{r}''(t)$$
$$= \frac{\vec{r}'(t) \cdot \vec{r}''(t)}{\|\vec{r}'(t)\|}$$

October 21, 2019 ———

13.3 - remove curvature

13.4 - no tangential/normal components of acceleration

$$\rightarrow r \leftrightarrow \underbrace{r'}_{=v} \leftrightarrow \underbrace{r''}_{=a}$$

Mind Warmup

$$\vec{r}(t) \xrightarrow{\frac{d}{dt}} \underbrace{\vec{r}'}_{=v} \xrightarrow{\frac{d}{dt}} \underbrace{\vec{r}''}_{=a}$$

 $\vec{T}(t), \vec{N}(t)$ - tangent/normal vectors

$$\vec{a}(t) = \underbrace{a_N}_{\parallel \vec{r}'(t) \times \vec{r}''(t) \parallel} \vec{N}(t) + \underbrace{a_T}_{\parallel \vec{r}'(t) \vec{r}''(t) \parallel} \vec{T}(t)$$

- **Example** Find tangential/normal components of acceleration of $\vec{r}(t) = \langle t, t^2 \rangle$
- ► MISSING DIAGRAM

$$\vec{\mathbf{v}}(t) = <1, 2t>$$

 $\vec{a}(t) = <0,2>$ (always pointing upwards)

$$\vec{r}'(t) = <1, 2t, 0>$$

$$\vec{r}''(t) = <0,2,0>$$

October 21, 2019 13. Vector Functions

$$\vec{r}'(t) \times \vec{r}''(t) = \begin{vmatrix} i & j & k \\ 1 & 2t & 0 \\ 0 & 2 & 0 \end{vmatrix} = <0,0,2>$$

$$a_n = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|} = \frac{\sqrt{0+0+4}}{\sqrt{1+4t^2+0}} = \frac{2}{\sqrt{1+4t^2}}$$

$$a_T = \frac{\|\vec{r}'(t) \cdot \vec{r}''(t)\|}{\|\vec{r}'(t)\|} = \frac{0 + 4t + 0}{\sqrt{1 + 4t^2}} = \frac{4t}{\sqrt{1 + 4t^2}}$$

when
$$t = 0$$
 $a_N = 2$ (all here)
 $a_T = 0$

as
$$t \to \infty$$
, $a_N \to 0$
 $a_T \to 2$ (all here)

$$k(t) = \begin{cases} (1) \\ (2) \to \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|^3} \end{cases}$$

$$k(s) = (1)$$

$$k(x) = (1) \rightarrow \frac{|f''(x)|}{\left(1 + [f'(x)]^2\right)^{\frac{3}{2}}}$$

Functions of Multiple Variables

Definition Function of two variables A function f(x,y) of two variables relates inputs (x_0,y_0) with outputs

The <u>domain</u> of f(x,y) is the set of all allowable inputs (x_0,y_0) and the <u>range</u> is the set of outputs

Example Find the domain of
$$f(x,y) = \sqrt{4 - x^2 - y^2} + \ln(y+1) + e^{-x}$$

$$4-x^2-y^2 \ge 0$$

 $\leftrightarrow x^2 + y^2 \le 4$ (everything inside the circle of radius 2)

$$y+1 > 0, y > -1$$

$$-x \in \mathbb{R}, x \in \mathbb{R}$$

MISSING DIAGRAM

Tough question: what is the range?

■ **Example** Find domain and range of
$$f(x,y) = \sqrt{9 - x^2 - y^2}$$

▶ domain is when
$$9 - x^2 - y^2 \ge 0$$

$$\leftrightarrow x^2 + y^2 \le 9$$
 (everything inside the circle of radius 3)

Range is [0,3]

$$0 \leq 9 - x^2 - y^2 \leq 9$$
 because of square root

October 23, 2019 14. Partial Derivatives

Definition The graph of f(x,y) is the surface z = f(x,y)

Example Now sketch surface z = f(x, y), where $f(x, y) = \sqrt{9 - x^2 - y^2}$

$$z^2 = 9 - x^2 - y^2$$

 $x^2 + y^2 + z^2 = 9$ sphere of radius 3 (top half)

MISSING DIAGRAM

October 23, 2019

Note, for October 23 especially, my notes might not be complete

Mind Warmup

function f(x,y) with domain (x_0,y_0) and range $f(x_0,y_0)$

-graph of f(x, y) is the surface z = f(x, y)

Definition Level Curve A <u>level curve</u> (aka contour line, a *z*-trace) for f(x,y) are the curves f(x,y) = k where $k \in \mathbb{R}$

Definition Contour map → A collection of level curves is called a contour map

■ **Example** Sketch a contour map of $f(x,y) = \sqrt{xy}$ MISSING DIAGRAMS ABOVE

$$k = 1 \sqrt{xy} = 1 y = \frac{1}{x}$$

$$k=2$$
 $\sqrt{xy}=2$ $y=\frac{4}{x}$

$$k = 0$$
 $\sqrt{xy} = 0$ $x = 0$ or $y = 0$

$$k = -1$$
 $\sqrt{xy} = -1$ DNE

Example What are the level surfaces of $f(x, y, z) = x^2 + y^2 + z^2$

• (level <u>surfaces</u> are $x^2 + y^2 + z^2 = k$) \rightarrow the level surfaces $x^2 + y^2 + z^2 = k$ are just the collection of points that are

$$k = 0$$
 $x^2 + y^2 + z^2 = 0$ just $(0,0,0)$

$$k = 1$$
 $x^2 + y^2 + z^2 = 1$ sphere of radius 1

$$k = 4$$
 $x^2 + y^2 + z^2 = 4$ sphere of radius 2

distance \sqrt{k} from the origin

§14.2 Limits/Continuity

Definition The <u>limit</u> of f(x,y) as (x,y) approaches (a,b) is equal to L

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if for every $\varepsilon > 0$ (error away from L) there is some $\delta > 0$, such that if a point (x, y) is within distance δ from (a, b), then f(x, y) is within distance ε from L

What does $(x, y) \rightarrow (a, b)$ mean?

Before, from Calculus 1

MISSING DIAGRAMS

$$\lim_{x \to a} f(x) = L$$

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$
 Now in Calculus 3

 $(x,y) \rightarrow (a,b)$ there are an infinite number of paths to take

MISSING DIAGRAMS

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

 \rightarrow this is difficult to show, but the <u>squeeze theorem</u> will help us.

——— October 25, 2019 -

Notes for October 25th were made using someone else's notes.

Mind Warmup

 $f(x,y) \rightarrow$ two variable function

Level curves: f(x,y) = k will help us sketch the graph z = f(x,y)

 $\lim_{x,y\to a,b}f(x,y)=L$, if for any $\varepsilon>0$, there is $\delta>0$ such that

$$0 < \|(x,y) - (a,b)\| < \delta$$
 then $|f(x,y) - L| < \varepsilon$

- **Example** Show $\lim_{(x,y)\to(a,b)} \frac{3x^2y}{x^2+y^2} = 0$
- ► Start with $\varepsilon > 0$ (it can be anything)

We need $\delta>0$ that works for our condition. We'll use $\delta=\frac{\varepsilon}{3}$

$$0 < \|(x,y) - (0,0)\| < \frac{\varepsilon}{3} \to \left| \frac{3x^2y}{x^2 + y^2} \right| < \varepsilon$$

$$0 < \underbrace{\sqrt{x^2 + y^2}}_{\text{length using vector}} < \frac{\varepsilon}{3} \qquad \text{(fact)}$$

$$\left| \frac{3x^2y}{x^2 + y^2} \right| = 3|y| \cdot \left| \frac{x^2}{x^2 + y^2} \right| \le 3|y|$$

$$=3\sqrt{y^2} \le 3\sqrt{x^2 + y^2} < 3\frac{\varepsilon}{3} = \varepsilon$$

Theorem — Squeeze Theorem

.
$$\blacktriangleright$$
 If $f(x,y) \leq g(x,y) \leq h(x,y)$ "near" (a,b) and $\lim_{(x,y) \to (a,b)} f(x,y) = L = \lim_{(x,y) \to (a,b)} h(x,y)$,

then also
$$\lim_{(x,y)\to(a,b)} g(x,y) = L$$
 as well

October 28, 2019 14. Partial Derivatives

■ **Example** Show $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0$

$$0 \le \left| \frac{3x^2y}{x^2 + y^2} \right| = 3|y| \left| \frac{x^2}{x^2 + y^2} \right| \le 3|y|$$

$$(x,y) \to (0,0) \downarrow \qquad \qquad \downarrow (x,y) \to (0,0)$$

$$0$$

Since $\lim_{(x,y)\to(0,0)} 3|y| = 0$ by squeeze theorem, we know $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2 + y^2} = 0$,

and since = 0, you can remove the absolute value cause -0 = +0

Showing Limit DNE

Pick two "paths" towards the point, if the value of the function is different, then it doesn't exist use vector functions

Theorem If
$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$
 and, $\vec{r}(t) = \langle x(t), y(t) \rangle$ and is continuous where $\vec{r}(t_0) = \langle a,b \rangle$ for some t_0 , then $\lim_{t\to t_0} f(x(t),y(t)) = L$

We'll use this to find two different paths, to show that a limit DNE.

- **Example** Find $\lim_{(x,y)\to(0.0)} \frac{x^4-4y^2}{x^2+2y^2}$, if it exists
- ► Along the path y = 0 (the *x*-axis)

$$\vec{r}(t) = \langle t, 0 \rangle$$

so then,
$$\lim_{t\to 0} \frac{t^4 - 4(0)^2}{t^2 + 2(0)^2} = \frac{t^4}{t^2} = t^2 = 0$$

► Along the path x = 0 (y-axis)

$$\vec{r}(t) = \langle 0, t \rangle$$

$$\lim_{t \to 0} \frac{(0)^4 - 4t^2}{(0)^2 + 2(t^2)} = \frac{-4t^2}{2t^2} = -2$$

Since the two path limits are not the same, the limit DNE.

See tutorial for a path that is a parabola.

———— October 28, 2019 -

On the topic of webwork 7 exercise 6

$$\int \frac{1}{x} dx = \ln(x)$$
 wolfram will give you this
$$= \ln|x| + c$$
 but this is what it actually is

Mind Warmup

$$\lim_{(x,y)\to(a,b)} f(x,y) = \begin{cases} L, \text{ if all paths led to } L\\ \text{DNE, if two paths lead somewhere different} \end{cases}$$

 \rightarrow look at figure 6 §14.2

Definition f(x,y) is continuous at (a,b) if $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$

- **Example** Where is $f(x,y) = (x^2 + y^2)\cos(xe^{-y})$ continuous?
- ► f is continuous on \mathbb{R}^2 (everywhere)
- → these are functions we already know are continuous

■ Example Where is
$$f(x,y) = \begin{cases} \frac{3x^2y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

We showed last class that

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0$$

$$\to$$
 so then $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = f(0,0)$

- \rightarrow so then, f is continuous at (0,0)
- $\rightarrow\,$ it's also continuous everywhere else
- $\rightarrow f$ is continuous on \mathbb{R}^2

■ **Example** Where is $f(x,y) = \frac{5}{x^2 + y^2 - 1}$ continuous?

- ► (let's do this intuitively)
 - \rightarrow we don't want $x^2 + y^2 1 = 0$ $x^2 + y^2 = 1$
 - \rightarrow in otherwords, f is <u>not</u> continuous when $x^2 + y^2 = 1$ (on the unit circle) (and not inside it)

MISSING DIAGRAMS

§14.3 **Partial Derivatives**

- \rightarrow no change in the x direction
- \rightarrow there are changes in the y directions

$$f(x, y) = x^2 e^y$$

October 30, 2019 14. Partial Derivatives

Calculus 1

Def
$$\frac{df}{dx} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Calculus 3

Definition

$$\frac{\partial f}{\partial x} = f_x(x, y) = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}$$
$$\frac{\partial f}{\partial y} = f_y(x, y) = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h}$$

 $ightharpoonup \mathbb{R}
ightharpoonup \operatorname{Note}$ we use $\frac{\partial f}{\partial x}$ instead of $\frac{df}{dx}$ when we have multiple variables

Example Let
$$f(x,y) = x^3 + x^2y^2 - 5y$$

Find $f_x(1,0)$, $f_y(1,0)$

$$f_x(x,y) = 3x^2 + 2xy^2$$
$$f_x(1,0) = 3(1)^2 + 2(1)(0)^2 = 3$$

$$f_y(x,y) = 2x^2y - 5$$

 $f_y(1,0) = 2(1)^2(0) - 5 = -5$

Example
$$f(x,y) = x^3 \cos(x^2 y^2)$$

Find f_x , f_y

$$f_x(x,y) = 3x^2 \cos(x^2 y^2) - x^3 \sin(x^2 y^2 [2xy^2])$$
$$= 3x^2 \cos(x^2 y^2) - 2x^4 y^2 \sin(x^2 y^2)$$

$$f_y(x,y) = -x^3 \sin(x^2 y^2) \left[2x^2 y \right]$$
$$= -2x^5 y \sin(x^2 y^2)$$

October 30, 2019 ——

Mind Warmup

$$f_x(x,y) = \frac{\partial f}{\partial x} = \lim_{h \to \infty} \frac{f(x+h,y) - f(x,y)}{h}$$

$$f_y(x,y) = \frac{\partial f}{\partial x} = \lim_{h \to \infty} \frac{f(x,y+h) - f(x,y)}{h}$$

■ Example

$$f(x, y, z) = x + e^{z} \ln y$$

$$f_{x} = 1$$

$$f_{y} = \frac{e^{z}}{y}$$

$$f_{z} = e^{z} \ln y$$

Higher Ordered Derivatives

$$f_{xx} = (f_x)_x = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$$

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$$

$$f_{yx} = (f_y)_x = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

$$f_{yy} = (f_y)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}$$
second-order derivatives

Theorem — Clairaut's Theorem. (order of derivatives usually doesn't matter)

Suppose f(x,y) is defined on a disk D around point (a,b), and that f_{xy} and f_{yx} are continuous on D, then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

■ Example

$$f(x,y) = e^{x^2} \sin(x^3 + \tan(3+x^2)) + 2yx^2$$

 \rightarrow Find f_{xy}

$$f_{xy} = f_{yx}$$

$$f_y = 2x^2$$

$$f_{yx} = (f_y)_x = 4x \quad \blacktriangleleft$$

■ Example

$$f(x, y, z) = e^{x^2 + y^2} + \cos(xz) + (y + z)^3$$

Find f_{xyz}

► $f_{xyz} = 0$, because no term has all three variables

$$f(x) = |x|$$

$$f'(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$

$$f(x,y) \begin{cases} \frac{xy(x^2+y^2)}{x^2+y^2} \\ 0 \end{cases}$$

Partial Differential Equations (PDE)

November 1, 2019 14. Partial Derivatives

Definition PDE A PDE is an equation involving an unknown function and its partial derivatives.

Laplace Equation $u_{xx} + u_{yy} = 0$

Example Show that $u(x,y) = e^x \cos y$ is a solution to Laplace's equation.

$$u_x = e^x \cos y$$

$$u_{xx} = e^x \cos y$$

$$u_y = -e^x \sin y$$

$$u_{yy} = -e^x \cos y$$

$$u_{xx} + u_{yy} = e^x \cos y - e^x \cos y = 0$$

§14.4 Tangent Planes

m - slope in 1D

 \downarrow

? in 2D

The answer to this in 2D is the gradient

Definition Gradient The gradient of F(x,y,z) is the vector

$$\nabla F = \left\langle \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \right\rangle$$

- \rightarrow to find the equation of a tangent, we need a normal vector and a point
- \rightarrow the gradient will be our normal vector

MISSING DIAGRAM

§14.4 Tangent Planes (and Linear Approximations)

——— November 1, 2019 ——

Mind Warmup

 f_{xy} and f_{yx} are the same if both are continuous (Clairaut's theorem)

$$F(x,y,z), \nabla F = \left\langle \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \right\rangle$$

R If $\vec{n} = \langle a, b, c \rangle$, and $p = (x_0, y_0, z_0)$ the equation for a plane is

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$
 $ax + by + cz + d = 0$

 \rightarrow For us, if we want to find a tangent plane, we will use $\vec{n} = \underbrace{\nabla F(x_0, y_0, z_0)}_{\text{1 take gradient}}$ 2 Evaluate it at the point (x_0, y_0, z_0)

November 1, 2019 14. Partial Derivatives

Example Find the tangent plane for the sphere $x^2 + y^2 + z^2 = 1$ at the north pole (0,0,1)

$$F(x,y,z) = x^2 + y^2 + z^2 - 1$$

$$\nabla F = \langle 2x, 2y, 2z \rangle$$

$$\nabla F(0,0,1) = \langle 0,0,2 \rangle = \vec{n}$$

$$\rightarrow 0(x-0) + o(y-0) + 2(z-1) = 0$$

$$2(z-1)=0$$

 \rightarrow The tangent plane z=1 is a linear approximation to $x^2+y^2+z^2=1$ at the point (0,0,1)

Fact If your surface is z = f(x, y), then F(x, y, z) = f(x, y) - z, so then $\nabla F = \langle f_x, f_y, -1 \rangle$

Example Find the tangent plane to $z = x \sin(x+y)$ at (-1,1,0)

$$F(x,y,z) = x\sin(x+y) - z$$

$$\nabla F = \langle \sin(x+y) + s\cos(x+y), x\cos(x+y), -1 \rangle$$

$$F(-1,1,0) = \langle \sin(-1+1) + (-1)\cos(-1+1), (-1)\cos(-1+1), -1 \rangle$$

$$= \langle 0-1, -1, -1 \rangle = \langle -1, -1, -1 \rangle = \vec{n}$$

$$\rightarrow$$
 $-1(x-(-1))-1(y-1)-1(z-0)=0$

$$-x-1-y+1-z=0$$

$$-x-y-z=0$$

$$x+y+z=0$$

Implicit Differentiation

Calc 1:
$$x^2 + y^2 - 3xy + 2 = 0$$
, $\frac{dy}{dx} = ?$

$$\rightarrow 2x + 2y\frac{dy}{dx} - 3y - 3x\frac{dy}{dx} + 0 = 0$$

$$\frac{dy}{dx}(2y - 3x) = 3y - 2x$$

$$\frac{dy}{dx} = \frac{3y - 2x}{2y - 3x}$$

 \rightarrow If you have a function (implicit) in three (or more) variables, we treat "other" variables as constants

$$\rightarrow \frac{\partial z}{\partial x}$$
, y is a constant

$$\frac{\partial y}{\partial z}$$
, x is a constant

why?
$$f_x(x,y) = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}$$

November 4, 2019 14. Partial Derivatives

■ Example Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ of $x^2 + 2y^2 + xyz - z^2 = 1$

$$\frac{\partial z}{\partial x}$$
, treat y as constant

$$2x + 0 + yz + xy\frac{\partial z}{\partial x} - 2z\frac{\partial z}{\partial x} = 0$$

$$\frac{\partial z}{\partial x}(xy - 2z) = -2x - yz$$

$$\frac{\partial z}{\partial x} = \frac{-2x - yz}{xy - 2z} = \frac{2x + yz}{2z - xy}$$

$$\frac{\partial z}{\partial y}$$
, x - constant

$$\rightarrow 0 + 4y + xz + xy \frac{\partial z}{\partial y} - 2z \frac{\partial z}{\partial y} = 0$$

$$\frac{\partial z}{\partial y} = \frac{4y + xz}{2z - xy}$$

§14.5 **Chain Rule**

Theorem If partial derivatives f_x , f_y exist near (a,b) and are continuous on (a,b), then f is called <u>differentiable</u> at (a,b)

Theorem — Chain Rule. If $z = f(x_1, x_2, ..., x_n)$ is a differentiable function with n variables $x_1, ..., x_n$ and if each variable x_i is a differentiable of m variables $t_1, \ldots t_m$, then z is a function of $t_1, \ldots t_m$ where

$$\frac{\partial z}{\partial t_i} = \frac{\partial z}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial z}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \ldots + \frac{\partial z}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

_____ November 4, 2019

Mind Warmup
$$f(x) \rightarrow \frac{df}{dx} = f'(x)$$

$$f(x(t)) \rightarrow \frac{df}{dx}\frac{dx}{dt} = f'(x(t)) \cdot x'(t)$$

$$f(x(t), y(t)) \rightarrow \frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$f(x_1(t_1,t_2,\ldots,t_m),x_2(t_1,t_2,\ldots,t_m),\ldots,x_n(t_1,t_2,\ldots,t_m)) \qquad \frac{\partial f}{\partial t_i} = \frac{\partial f}{\partial x_1}\frac{\partial x_1}{\partial t_i} + \frac{\partial f}{\partial x_2}\frac{\partial x_2}{\partial t_i} + \ldots + \frac{\partial f}{\partial x_n}\frac{\partial x_n}{\partial t_i}$$

Example If $z = x^2 \sin(y)$, where x = s + t, $y = e^{-t}$

November 4, 2019 14. Partial Derivatives

 \rightarrow yes, you could have written

 $z = (s+t)^2 \sin(e^{-t})$, and then took derivatives

 $= 2(s+t)\sin(e^{-t}) - e^{-t}(s+t)^2\cos(e^{-t})$

R Sometimes you cannot substitute

Example Let f(x,y) be any differentiable function.

I'm not sure if I mixed up ∂ and d in this example. It seems ok, but I'll need to double check

Prove that
$$z = f(s^2 - t^2, t^2 - s^2)$$
 solves the PDE $t \frac{\partial z}{\partial s} + s \frac{\partial z}{\partial t} = 0$

 \rightarrow for example, $f(x,y) = xe^y \rightarrow (s^2t^2)e^{t^2-s^2}$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$
$$= \frac{\partial z}{\partial x} (-2t) + \frac{\partial z}{\partial y} (2t)$$

The next problem shows that any curve drawn on a surface is orthogonal to the gradient (aka the normal vector of the surface)

Proposition If $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ is a differentiable curve on a surface F(x, y, z) = 0, and $\vec{r}(0) = \langle a, b, c \rangle$, then $\nabla F(a, b, c) \cdot \vec{r}'(0) = 0$

MISSING DIAGRAM

$$\rightarrow$$
 thus, $0 = \nabla F \cdot \vec{r}'(t)$

so when
$$t = 0$$
, $0 = \nabla F(a, b, c) \cdot \vec{r}'(0)$

Implicit Differentiation (Part 2)

Let F(x, y, z) = 0 be any equation.

We'll use
$$x = s$$
, $y = t$, $z = f(s,t)$

$$F(s,t,f(s,t)) = 0$$

$$\frac{\partial F}{\partial s} = 0$$

$$0 = \frac{\partial F}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial s}$$

$$0 = \frac{\partial F}{\partial x} (1) + \frac{\partial F}{\partial y} (0) + \frac{\partial F}{\partial z} \frac{\partial z}{\partial s}$$

$$\frac{\partial z}{\partial s} = \frac{-\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \qquad \rightarrow \text{ because } x = s$$
we have $\frac{\partial z}{\partial x} = \frac{-\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$

——— November 6, 2019 —

Mind Warmup

chain rule, f(x(s,t), y(s,t))

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}$$

$$F(x, y, z) = 0$$

$$\frac{\partial z}{\partial x} = \frac{-\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \qquad \frac{\partial x}{\partial y} = \frac{-\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial x}}$$

Example
$$x^2 + 2y^2 + xyz - 2z^2 = 1$$

$$F(x,y,z) = x^2 + 2y^2 + xyz - 2z^2 - 1$$

Last time $2x + 0 + yz + xy\frac{\partial z}{\partial x} - 4z\frac{\partial z}{\partial x} = 0$

This time
$$\frac{\partial z}{\partial x} = \frac{-(2x+0+yz+0)}{0+xy-4z} = \frac{yz+2x}{4z-xy}$$

§14.6 Directional Derivatives (and Gradient Vector)

MISSING DIAGRAM

Definition Directional Derivative Let $\vec{u} = \langle a, b \rangle$ be a unit vector.

The <u>directional derivative</u> in the direction of \vec{u} is

$$D_{\vec{u}}f(x,y) = \lim_{h \to 0} \frac{f(x+ah,y+bh) - f(x,y)}{h}$$

Note: we recover $f_x(x,y)$ and $f_y(x,y)$ if $\vec{u} = \langle 1,0 \rangle$ and $\vec{u} = \langle 0,1 \rangle$ respectively If \vec{u} is not a unit vector, you can still compute $D_{\vec{u}}f$, but it will be scaled wrong \rightarrow it will be per $||\vec{u}||$, instead of per 1.

Theorem Let $\vec{u} = \langle a, b \rangle$ be a unit vector. Then

$$D_{\vec{u}}f(x,y) = \vec{u} \cdot \nabla f$$
$$= a \cdot f_x(x,y) + b \cdot f_y(x,y)$$

■ Example Compute $D_{\vec{u}}f(3,3)$ in the direction $\langle 1,-2\rangle$ if $f(x,y)=\sqrt{1+x^2+y^2}$

November 8, 2019 14. Partial Derivatives

$$f_x(x,y) = \frac{1}{2} \left(1 + x^2 + y^2 \right)^{-\frac{1}{2}} [2x] = \frac{x}{\sqrt{1 + x^2 + y^2}}$$

$$f_x(3,3) = \frac{3}{\sqrt{1 + 3^2 + 3^2}} = \frac{3}{\sqrt{19}}$$

$$f_y(x,y) = \frac{y}{\sqrt{1 + x^2 + y^2}}$$

$$f_y(3,3) = \frac{3}{\sqrt{19}}$$

$$D_{\vec{u}}f(3,3) = \frac{1}{\sqrt{5}} \left(\frac{3}{\sqrt{19}} \right) - \frac{2}{\sqrt{5}} \left(\frac{3}{\sqrt{19}} \right)$$

$$= \frac{-3}{\sqrt{95}} \qquad \blacktriangleleft$$

■ Example Compute $D_{\vec{u}}f(x,y)$ where $\vec{u} = \left\langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle$, and $f(x,y) = x^2 + 2x + y^2 + 2y + 2$

 $ightharpoonup \vec{u}$ is the unit vector "half way" in between the x and y axis

MISSING DIAGRAM

 $f(x,y) = (x+1)^2 + (y+1)^2$ is the paraboloid centered at (-1,-1)

$$f_x(x,y) = 2x + 2$$
$$f_y(x,y) = 2y + 2$$

$$D_{\vec{u}}f(x,y) = \frac{\sqrt{2}}{2}(2x+2) + \frac{\sqrt{2}}{2}(2y+2)$$
$$= \sqrt{2}(x+y+2)$$

$$f_x(0,0)=2$$

$$f_{y}(0,0)=2$$

 $D_{\vec{u}}f(0,0) = 2\sqrt{2} \leftarrow \text{this is the steepest}$

MISSING DIAGRAM

November 8, 2019 14. Partial Derivatives

——— November 8, 2019 –

Mind Warmup

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} \qquad \leftarrow \text{direction is positive } x \text{-axis or } \vec{u} = \langle 1,0 \rangle$$

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h} \qquad \leftarrow \text{direction is positive } y \text{-axis or } \vec{u} = \langle 0,1 \rangle$$

$$D_{\vec{u}} = \lim_{h \to 0} \frac{f(x+ah,y+bh) - f(x,y)}{h} \qquad \leftarrow \text{in direction } \vec{u} = \langle a,b \rangle \text{ (unit vector)}$$

$$D_{\vec{u}}f = \nabla f \cdot \vec{u} = a \cdot f_x + b \cdot f_y$$

■ **Example** At which direction \vec{u} is the directional derivative $D_{\vec{u}}f(x,y) = -1$, when $f(x,y) = x\sqrt{y}$, at point (-1,1)

$$ightharpoonup \vec{u} = \langle a, b \rangle$$

$$\begin{split} D_{\vec{u}}f &= \nabla f \cdot \vec{u} = \left\langle \sqrt{y}, \frac{x}{2\sqrt{y}} \right\rangle \cdot \langle a, b \rangle \\ &= a\sqrt{y} + b\frac{x}{2\sqrt{y}} = -1 \\ &= a\sqrt{1} + b\frac{-1}{2\sqrt{1}} = -1 \Leftrightarrow a - \frac{b}{2} = -1 \\ &= a + 1 = \frac{b}{2} \Leftrightarrow 2a + 2 = b \\ &\Leftrightarrow (2a + 2)^2 = b^2 \\ &= 4a^2 + 8a + 4 = b^2 \\ &\Rightarrow 4a^2 + 8a + 4 = 1 - a^2 \\ &\Rightarrow 5a^2 + 8a + 3 = 0 \\ &= (5a + 3)(a + 1) = 0 \end{split}$$

$$a = \frac{-3}{5} \qquad \text{or} \qquad a = -1$$

$$b = \frac{4}{5} \qquad b = 0$$

$$\Rightarrow \text{therefore, } \vec{u} = \left\langle -\frac{3}{5}, \frac{4}{5} \right\rangle \text{ or}$$

Possibly missing things from one board of notes (from here to start of next theorem) as the prof erased stuff in different order than usual.

$$D_{\vec{u}}f(-1,1) = \left\langle 1, \frac{-1}{2} \right\rangle \cdot \left\langle \frac{-3}{5}, \frac{4}{5} \right\rangle$$
$$= \frac{-3}{5} - \frac{2}{5}$$
$$D_{\vec{u}}f(-1,1) = \left\langle 1, \frac{-1}{2} \right\rangle \cdot \left\langle -1, 0 \right\rangle$$
$$= -1 + 0$$

 $\vec{u} = \langle -1, 0 \rangle$

Theorem Suppose f(x, y) is differentiable at (x_0, y_0) . Then

1. The max value of $D_{\vec{u}}f(x_0,y_0)$ over any choice of \vec{u} is $\|\nabla f(x_0,y_0)\|$, and it occurs in the direction $\nabla f(x_0,y_0)$ or the unit direction $\frac{\nabla f(x_0,y_0)}{\|\nabla f(x_0,y_0)\|}$

- 2. The min value of $D_{\vec{u}}f(x_0,y_0)$ is $-\|\nabla f(x_0,y_0)\|$, and it occurs at direction $-\nabla f(x_0,y_0)$ (or unit $\frac{-\nabla f(x_0,y_0)}{\|\nabla f(x_0,y_0)\|}$)
- **Example** If you are on the hill $f(x,y) = \sqrt{4 x^2 y^2}$ at point (1,-1), what direction will you go to descend the fastest? At what rate?

Not sure about what I transcribed. I think it should be

$$\rightarrow$$
 direction is $-\nabla f(1,-1) = \left\langle \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} \right\rangle$

(good news is this is already a unit vector)

■ Example

Recall
$$f(x,y) = x^2 + 2x + y^2 + 2y + 2$$

= $(x+1)^2 + (y+1)^2$

at the point (0,0)

Find at which direction starting at (0,0), that $D_{\vec{u}}f(0,0)$ will increase the fastest

$$f_x(0,0) = 2$$

$$f_y(0,0) = 2$$

$$D_{\vec{u}}f(0,0) = 2\sqrt{2}$$

$$\vec{u} = \left\langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle$$

 \rightarrow we need to find max using the theorem

$$\rightarrow \quad \nabla f = \langle 2x + 2, 2y + 2 \rangle$$

$$\nabla f(0,0) = \langle 2,2 \rangle$$

 \rightarrow theorem says max value is

$$\|\nabla f(0,0)\| = \|\langle 2,2\rangle\| = 2\sqrt{2}$$

and it's in the direction $\nabla f(0,0) = \langle 2,2 \rangle$ as a unit vector

$$\begin{split} \frac{\nabla f(0,0)}{\|\nabla f(0,0)\|} &= \frac{\langle 2,2 \rangle}{2\sqrt{2}} = \left\langle \frac{2}{2\sqrt{2}}, \frac{2}{2\sqrt{2}} \right\rangle \\ &= \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle \\ &= \left\langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle \end{split}$$

——— November 11, 2019 –

Mind Warmup

- Min and max value of $D_{\vec{u}}f(a,b)$ gives the smallest or largest "slope" at point (a,b)

$$\rightarrow$$
 and is solved by $\pm \|\nabla f(a,b)\|$

Today is on min/max of functions

MISSING DIAGRAM

R

Recall: (a, f(a)) is a local max. f'(a) = 0, aka tangent line is flat. (b, f(b)) is local min (same)

§14.7 Min and Max Values

Idea: in multiple variables, we would want all directions to be flat, $f_x(a,b) = 0$ and $f_y(a,b) = 0$, aka: <u>flat tangent plane</u>

Definition f(x,y) has a <u>local maximum at (a,b)</u> if $f(a,b) \ge f(x,y)$ for all (x,y) near (a,b).

Same for <u>local minimum</u> if $f(a,b) \le f(x,y)$

Theorem If f(x,y) has a local max/min at (a,b). Then

- 1. $f_x(a,b) = 0$ and $f_y(a,b) = 0$
- 2. at least one of $f_x(a,b)$, $f_y(a,b)$ does not exist

note: we include "does not exist" for cases like this

MISSING DIAGRAM

Question: How do we find local min/max?

- 1. find critical points
- 2. check if min/max

Definition A point (a,b) is a <u>critical point</u> for f(x,y) if

- 1. $\nabla f(a,b) = \langle 0,0 \rangle$ $(f_x(a,b) = 0 \text{ and } f_y(a,b) = 0)$
- 2. at least one of $f_x(a,b)$, v(a,b) DNE
- **Example** $f(x,y) = x^2 y^2 + 1$ Show the critical point is not a local min/max

$$ightharpoonup f_r = 2x$$

$$f_x = 2x, f_x = 0 \text{ when } 2x = 0,$$

$$x = 0$$

$$f_{\rm v} = -2{\rm v}$$

$$f_y = -2y$$
, $f_y = 0$ when $2y = 0$, $y = 0$

$$\rightarrow$$
 critical point $(x,y) = (0,0)$

$$f(0,0) = 1$$

$$f(0.1,0) = 0.01 - 0 + 1 = 1.01$$

$$f(0,0.1) = 0 - 0.01 + 1 = 0.99$$

- \rightarrow near (0,0) has both larger and smaller values.
- \rightarrow actually, it's a saddle point.

Theorem — Second Derivative Test. Let f(x,y) be a function, and (a,b) be a critical point.

Suppose f_{xx} , f_{xy} , f_{yx} , f_{yy} are continuous near (a,b)

Let
$$D = (f_{xx}(a,b)) (f_{yy}(a,b)) - (f_{xy}(a,b))^2$$

- 1. D > 0 and $f_{xx}(a,b) > 0$
- (a,b) local min
- 2. D > 0 and $f_{xx}(a,b) < 0$
- (a,b) local max
- 3. D < 0
- (a,b) saddle point
- 4. D = 0
- test inconclusive

Inconclusive? $f(x,y) = x^3 + y^3$

R note
$$D = \underbrace{\begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}}_{\text{the Hessian matrix}} = (f_{xx})(f_{yy}) - (f_{xy})^2$$

Note/Ex Let z = f(x, y), and $f_x(a, b) = 0$, and $f_y(a, b) = 0$ for point (a, b, c)

$$\rightarrow$$
 here, $\vec{n} = \nabla F = \langle f_x, f_y, -1 \rangle$
 \uparrow
 $F(x, y, z) = F(x, y) - z$

$$\rightarrow \vec{n}(a,b,c) = \langle 0,0,-1 \rangle$$

$$\rightarrow$$
 plane $0(x-a) + 0(y-b) + 0(z-c) = 0$ $z = c$

In other words, z = c is a flat horizontal tangent plane.

——— November 13, 2019 –

Course Evaluations!!

Mind Warmup

(a,b) is a <u>critical point</u> for f(x,y)

- $f_x(a,b) = 0$ and $f_y(a,b) = 0$
- at least one of $f_x(a,b)$, $f_y(a,b)$ don't exist

Definition 2^{nd} Derivative Test for (a,b)

$$D = (f_{xx}(a,b)) \left(f_{yy}(a,b) \right) - \left(f_{xy}(a,b) \right)^2$$

■ **Example** $f(x,y) = x^4 - 2x^2 + y^2$ Classify all critical points

$$f_x = 4x^3 - 4x$$

$$= 4x (x^2 - 1)$$

$$= 4x(x+1)(x-1)$$

$$\rightarrow f_x = 0$$
 when $x = 0, x = -1, x = 1$

$$f_y = 2y$$

 $\rightarrow f_y = 0$ when $y = 0$
 \Rightarrow critical points $(0,0), (1,0), (-1,0)$

Now
$$f_{xx} = 12x^2 - 4$$

$$f_{yy}=2$$

$$f_{xy} = f_{yx} = 0$$

Saddle point (0,0)

14. Partial Derivatives

$$D(1,0) = (8)(2) - (0)^2 = 16 > 0$$

 $D(0,0) = (-4)(2) - (0)^2 = -8 < 0$

$$f_{xx}(1,0) = 8 > 0$$
 Local min (1,0)

$$D(-1,0) = (8)(2) - (0)^2 = 16 > 0$$

$$f_{xx}(-1,0) = 8 > 0$$
 Local min $(-1,0)$

MISSING DIAGRAM

Global Max/Min Values (Absolute)

- \rightarrow what ablout multiple max/min values?
- \rightarrow worse, what about functions that increase to infinity
- \rightarrow Let's consider min/max on a restricted set

$$z = x^2 + y^2$$

Definition Let $D \subset \mathbb{R}^2$ (*D* is a subset of \mathbb{R}^2 , i.e. a square, a triangle, etc.

- 1. We call D bounded if we can draw a circle around it
- 2. We call D <u>closed</u> if it includes the boundary

$$x^2 + y^2 < 1$$
 open disk

$$x^2 + y^2 \le 1$$
 closed disk

Theorem — Extreme Value Theorem. Suppose f(x,y) is continuous on closed, bounded D.

Then f(x,y) attains a global max and min

- R Important! you need to consider the boundary. So,
 - 1. find critical points, see how big/small output value is
 - 2. find min/max on the boundary
 - 3. largest/smallest value from 1& 2 are global max/min
- **Example** Find global min and max of $f(x,y) = x^2 2xy + 2y$ on closed triangle with vertices (0,0), (0,2) (3,2)

$$f_x = 2x - 2y = 2(x - y)$$

$$\rightarrow f_x = 0$$
 when $x = y$

$$f_{y} = -2x + 2 = 2(1-x)$$

$$\rightarrow f_y = 0$$
 when $x = 1$

$$\rightarrow$$
 so $y = 1$

 \Rightarrow critical point (1,1)

$$f(1,1) = 1 - 2 + 2 = 1$$

$$l_1(t) = \langle 0, t \rangle$$

$$0 \le t \le 2$$

$$l_2(t) = \langle t, 2 \rangle \qquad \qquad 0 \le t \le 3$$

$$0 \le t \le 3$$

$$l_3(t) = \langle t, \frac{2}{3}t \rangle$$

$$0 \le t \le 3$$

 \uparrow

$$=\frac{2}{3}x$$

$$l_1(t)$$
 $f(0,t) = 0^2 - 2(0)(t) + 2t$

$$=2t$$

$$=2t, 0 \le t \le 2$$

 \rightarrow min of 0, t = 0, (0,0)

max of 4, t = 2, (0,2)

to be continued

—— November 15, 2019 -

Mind Warmup

- \rightarrow finding global min/max on closed D
 - 1. find critical points, i.e. $0 = f_x = f_y$
 - 2. find extreme values on the boundary of D*
 - 3. compare points from 1 & 2 to find largest/smallest
- **Example** continued. Find global min/max of $f(x,y) = x^2 2xy + 2y$ on closed triangle with vertices (0,0), (0,2), (3,2)

▶ critical point (1,1) gave f(1,1) = 1

$$l_1(t) = \langle 0, t \rangle$$

$$0 \le t \le 2$$

$$l_2(t) = \langle t, 2 \rangle$$

$$0 \le t \le 3$$

$$l_3(t) = \langle t, \frac{2}{3}t \rangle$$

$$0 \le t \le 3$$

$$l_1(t) \rightarrow \min \text{ of } 0 \text{ at } (0,0)$$

$$\rightarrow$$
 max of 4 at $(0,2)$

$$l_2(t)$$
: $f(t,2) = t^2 - 4t + 4$

$$= (t-2)^2, \quad 0 \le t \le 3$$

min of 0 when t = 2, (2, 2)

max of 4 when t = 0, (0,2)

$$l_3(t):$$
 $f(t, \frac{2}{3}t) = t^2 - \frac{4}{3}t + \frac{4}{3}t$
= $-\frac{1}{3}t^2 + \frac{4}{3}t$

$$= \frac{1}{3}t(4-t), \ \ 0 \le t \le 3$$

min of 0 when t = 0, (0,0)

max of
$$\frac{4}{3}$$
 when $t = 2$, $(2, \frac{4}{3})$

 \Rightarrow comparing all points

global max is 4 at (0,2)

global min is 0 at (0,0) and (2,2)

Lagrange Multipliers §14.8

Idea: compare gradient vectors \leftrightarrow it's where there is a common tangent.

MISSING DIAGRAM

Contour map for f(x,y)

y = g(x)

Here is where the output for the input y = g(x) is the largest

→ they are tangent so the gradient vectors agree

$$\nabla f = \lambda \nabla g$$

Method of Lagrange Multipliers

To find min/max of F(x,y) restricted to g(x,y) = 0 (provided min/max exist, and $\nabla g \neq 0$ anywhere),

$$1 \begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = 0 \end{cases}$$
 solve these simultaneously for $x,y,1$

- 2 Compare all solutions for largest smallest
- **Example** Find min/max of $f(x,y) = xy^2$ on the circle $x^2 + y^2 = 1$

$$g(x,y) = 0 x^2 + y^2 - 1 = 0$$

$$\nabla f = \langle y^2, 2xy \rangle$$

 $\lambda \nabla g = \lambda \langle 2x, 2y \rangle$

$$\begin{cases} y^2 = \lambda 2x & (1) \\ 2xy = \lambda 2y & (2) \\ x^2 + y^2 - 1 = 0 & (3) \end{cases}$$

$$2xy = \lambda 2y \qquad (2)$$

$$(x^2 + y^2 - 1) = 0$$

$$= \frac{2xy - 2\lambda y = 0}{2y(x - \lambda) = 0}$$

Case
$$y = 0$$
: $\stackrel{(3)}{\to} x^2 + 0 - 1 = 0$, $x = \pm 1$

$$\Rightarrow$$
 (1,0),(-1,0)

Case
$$x = \lambda$$
: $\stackrel{(1)}{\rightarrow} y^2 = 2\lambda^2$, $y = \pm \sqrt{2}\lambda$

$$\stackrel{(3)}{\rightarrow} (\lambda)^2 + 2\lambda - 1 = 0$$

$$3\lambda^2 = 1, \qquad \lambda = \pm \frac{1}{\sqrt{3}}$$

$$\blacktriangleright \left(\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right), \left(\frac{1}{\sqrt{3}}, -\sqrt{\frac{2}{3}}\right)$$

$$\left(-\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right), \left(-\frac{1}{\sqrt{3}}, -\sqrt{\frac{2}{3}}\right)$$

$$\Rightarrow f(\pm 1, 0) = 0 \qquad f = xy^2$$

$$\Rightarrow \left(\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}\right) = +\frac{2}{3\sqrt{3}} \text{ (max)}$$

$$\Rightarrow \left(-\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}\right) = -\frac{2}{3\sqrt{3}} \text{ (min)}$$

—— November 18, 2019 -

Mind Warmup

Find min/max over $D \subset \mathbb{R}^2$

- 1. interior of D, find critical points
- 2. boundary of D,
 - a) observe each boundary piece of D
 - b) Lagrange multipliers $\nabla F = \lambda \nabla g$
- **Example** A box without a lid is to be made from 27m² of cardboard.

What is max volume of box? \blacktriangleright Find max V(x,y,z) = xyz

on
$$27 = xy + 2xz + 2yz$$

g(x, y, z) = xy + 2xz + 2yz - 27

 $\nabla f = \lambda \nabla g$

$$\langle yz, xz, xy \rangle = \lambda \langle y + 2z, x + 2z, 2x + 2z \rangle \begin{cases} yz = \lambda y + 2\lambda z \\ xz = \lambda x + 2\lambda z \\ xy = 2\lambda x + 2\lambda y \end{cases}$$
 Important trick: use symmetry
$$\begin{cases} xz = \lambda x + 2\lambda z \\ xy = 2\lambda x + 2\lambda y \\ xy + 2xz + 2yz = 27 \end{cases}$$
 (4)

$$\begin{cases} xyz = \lambda xy + 2\lambda xz & (1) \\ xyz = \lambda xy + 2\lambda yz & (2) \\ xyz = 2\lambda xz + 2\lambda yz & (3) \end{cases}$$

(1) - (2)
$$2\lambda xz - 2\lambda yz = 0$$
$$2\lambda z(x - y) = 0 \quad \rightarrow \quad x = y$$

(2) - (3)
$$\lambda xy - 2\lambda xz = 0$$
$$\lambda x(y - 2z) = 0 \quad \rightarrow \quad y = 2z$$

(4)
$$(2z)(2z) + 2(2z)z + 2(2z)z = 27$$

$$4z^{2} + 4z^{2} + 4z^{2} = 27$$

$$z^{2} = \frac{27}{12} = \frac{9}{4}$$

$$z = \pm \frac{3}{2}, \quad y = 3, \quad x = 3$$

 \Rightarrow max volume = $xyz = (3)(3)\left(\frac{3}{2}\right) = \frac{27}{2}m^2$

Example Find min/max $f(x, y) = x^2 + y^2 - 2x - 5$ on $x^2 + 2y^2 \le 16$

1. find critical points

$$\begin{cases} f_x = 2x - 2 = 2(x - 1) = 0 & \text{when } x = 1 \\ f_y = 2y = 0 & \text{when } y = 0 \end{cases}$$

 \rightarrow critical point (1,0)

2. boundary of D, $x^2 + 2y^2 = 16$

$$\nabla f = \lambda \nabla g$$

 $\langle 2x - 2, 2y \rangle = \lambda \langle 2x, 4y \rangle$

$$\begin{cases} 2x - 2 = 2\lambda x & (1) \\ 2y = 4\lambda y & (2) \\ x^2 + 2y^2 = 16 & (3) \end{cases}$$

(2)
$$2y - 4\lambda y = 0$$
, $2y(1 - 2\lambda) = 0$
 $\rightarrow y = 0 \xrightarrow{(3)} x^2 = 16$, $x = \pm 4$
 $\rightarrow \lambda = \frac{1}{2} \xrightarrow{(1)} 2x - 2 = x \Leftrightarrow x = 2$
 $\xrightarrow{(3)} 2y^2 = 12$, $y = \pm \sqrt{6}$

$$f = x^2 + y^2 - 2x - 5$$

$$f(1,0) = 1 + 0 - 2 - 5 = -6$$

$$f\left(2, \pm \sqrt{6}\right) = 4 + 6 - 4 - 5 = 1$$

$$f(4,0) = 16 + 0 - 8 - 5 = 3$$

$$f(-4,0) = 16 + 0 + 8 - 5 = 19$$

$$\rightarrow$$
 max of 19 at $(-4,0)$

$$\rightarrow$$
 min of -6 at $(1,0)$

alternative for boundary,

$$x^2 + 2y^2 = 16$$

$$y^2 = 8 - \frac{1}{2}x^2$$

$$f = x^2 + y^2 - 2x - 5$$

$$= x^2 + \left(8 - \frac{1}{2}x^2\right) - 2x - 5$$

$$= \frac{1}{2}x^2 - 2x + 3 \text{ on } [-4,4]$$

Lagrange for two restrictions

Find min/ max of f(x, y, z) restricted to g(x, y, z) = 0 and h(x, y, z) = 0

$$\Rightarrow \nabla f = \lambda \nabla g + \mu \nabla h$$

_____ November 20, 2019 _____

Mind Warmup

Post solutions for # 9.2-9.4, 9.12

Lagrange multipliers \rightarrow boundary of $D \rightarrow x^2 + y^2 = 2$ Critical points \rightarrow interior of $D \rightarrow x^2 + y^2 \le 2$

Topics:

- Double Integrals
- Iterated integrals
- Fubini's Theorem
- Polar Coordinates
- Surface Area
- How to Visualize/Sketch
- Triple Integrals
- Change of coordinates (cylindrical/spherical)
- Volume of a Solid

Double Integrals (over rectangles) §15.1

Let
$$R = [a,b] \times [c,d]$$

= $\{(x,y) \text{ s.t. } a \le x \le b, c \le y \le d\}$

MISSING DIAGRAM

Calculus
$$1 \int_{a}^{b} f(x)dx = \lim \sum_{i=1}^{n} \underbrace{f(x_{i}^{*})}_{\text{height}} \underbrace{\Delta x}_{\text{base}}$$

(adding thin rectangles for area)

Calculus 3
$$\iint\limits_{R} f(x,y) dx dy = \lim_{\substack{m \to \infty \\ n \to \infty}} \sum_{i=1}^{m} \sum_{j=1}^{m} j = 1^{n} \underbrace{f(x_{i}^{*}, y_{j}^{*})}_{\text{height}} \underbrace{\Delta x}_{\text{width length}} \underbrace{\Delta y}_{\text{length}}$$

(adding thin rectangular prisms for volume)

$$\rightarrow$$
 so $\iint\limits_R f(x,y) dxdy$ can be seen as the volume under $z=f(x,y)$, defined over R

 \rightarrow also, the places where f(x,y) > 0 will give positive contribution, where f(x,y) < 0 will give negative contribution

$$\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \sin(x) \sin(y) dx dy = 0$$
 (think about it)

Iterated Integrals

$$V = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

$$= \int_{i}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

$$= \int_{c}^{d} A(y) dy, \quad \text{where } A(y) = \int_{a}^{b} f(x, y) dx$$

- \rightarrow this means evaluate the inner integral first, keeping y constant
- \rightarrow geometrically it is:

MISSING DIAGRAM

■ Example

$$\int_{0}^{1} \int_{2}^{3} (2x+y)dxdy = \int_{0}^{1} \left(\int_{2}^{3} (2x+y)dx \right) dy$$

$$= \int_{0}^{1} \left(x^{2} + xy \right) \Big|_{x=2}^{x=3} dy$$

$$= \int_{0}^{1} (9+3y-4-2y)dy$$

$$= \int_{0}^{1} (5+y)dy$$

$$= \left(5y + \frac{1}{2}y^{2} \right) \Big|_{0}^{1}$$

$$= 5 + \frac{1}{2} - 0 - 0$$

$$= \frac{11}{2}$$

Theorem — Fubini. If f(x,y) is continuous over $R = [a,b] \times [c,d]$, then

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

■ Example

$$\int_{1}^{2} \int_{0}^{\frac{\pi}{2}} y \sin(xy) dy dx$$

► Solving $\int_0^{\frac{\pi}{2}} y \sin(xy) dy$ is tough (Integral By Parts) so we switch using Fubini

$$\int_{0}^{\frac{\pi}{2}} \int_{1}^{2} y \sin(xy) dx dy = \int_{0}^{\frac{\pi}{2}} \left(\int_{1}^{2} y \sin(xy) dx \right) dy$$

$$= \int_{0}^{\frac{\pi}{2}} \left(-\cos(xy) \Big|_{x=1}^{x=2} \right) dy$$

$$= \int_{0}^{\frac{\pi}{2}} \left(-\cos(2y) + \cos(y) \right) dy$$

$$= \left(-\frac{1}{2} \sin(2y) + \sin(y) \right) \Big|_{0}^{\frac{\pi}{2}}$$

$$= -\frac{1}{2} \sin(\pi) + \sin\left(\frac{\pi}{2}\right) + \frac{1}{2} \sin(0) - \sin(0)$$

$$= 1$$

■ Example

$$\int_{0}^{1} \int_{0}^{1} e^{2x+3y} dx dy = \int_{0}^{1} \left(\int_{0}^{1} e^{2x} e^{3y} dx \right) dy$$
$$= \int_{0}^{1} e^{3y} \left(\int_{0}^{1} e^{2x} dx \right) dy$$
$$= \left(\int_{0}^{1} e^{2x} dx \right) \left(\int_{0}^{1} e^{3y} dy \right)$$

$$\int_{a}^{b} \int_{c}^{d} f(x)g(y)dxdy = \left(\int_{a}^{b} g(y)dy\right) \left(\int_{c}^{d} f(x)dx\right)$$

——— November 22, 2019 –

Mind Warmup

Notation today:

$$R = [a,b] \times [c,d]$$
 a rectangle

D general domain/region

$$\iint\limits_R f(x,y)dxdy = \int_c^d \int_a^b f(x,y)dxdy = C$$

ightharpoonup ightharpoonup this number can be seen as the volume under z = f(x, y), defined over R

$$\iint\limits_{R} f(x,y) dx dy = \iint\limits_{R} f(x,y) dy dx \text{if } f(x,y) \text{ is continuous on } R \text{ (Fubini)}$$

 \rightarrow *R* will be written differently for *dxdy* or *dydx*

§15.2 Double Integrals over General Regions $(D \subset \mathbb{R}^2)$

Recall $\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$

Goal $\int_{0}^{2} \int_{x^{2}}^{4} f(x, y) dy dx = \int_{0}^{4} \int_{0}^{\sqrt{y}} f(x, y) dx dy$

Notation: dA will be either dxdy or dydx (we need to decide what's first)

■ **Example** Show $\int_0^2 \int_{x^2}^4 f(x,y) dy dx = \int_0^4 \int_0^{\sqrt{y}} f(x,y) dx dy$ using a sketch

Evaluate $\iint_D 2xydA$ where *D* is the region enclosed by $y = x^2$, $x + y = 2 \leftrightarrow y = -x + 2$

$$v = v$$

$$r^2 - -r + 2$$

$$r^2 + r - 2 = 0$$

$$(x+2)(x-1) = 0$$

x = -2, x = 1 needed this to see where to begin and end

$$\int_{-2}^{1} \int_{x^{2}}^{-x+2} 2xy dy dx = \int_{-2}^{1} \left(\int_{x^{2}}^{-x+2} 2xy dy \right) dx$$

$$= \int_{-2}^{1} \left(xy^{2} \Big|_{y=x^{2}}^{y=-x+2} \right) dx$$

$$= \int_{-2}^{1} \left(x(-x+2)^{2} - x \left(x^{2} \right)^{2} \right) dx$$

$$= \int_{-2}^{1} \left(x^{3} - 4x^{2} + 4x - x^{5} \right) dx$$

$$= \frac{x^{4}}{4} - \frac{4x^{3}}{3} + \frac{4x^{2}}{2} - \frac{x^{6}}{6} \Big|_{-2}^{1}$$

$$= \frac{-45}{4}$$

note: if we chose dA = dxdy

$$\underbrace{\int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} 2xy dx dy}_{=0} = \underbrace{\int_{1}^{4} \int_{-\sqrt{y}}^{-y+2} 2xy dx dy}_{=\frac{-45}{4}}$$

- **Example** Compute $\int_0^2 \int_{\frac{y}{2}}^1 y \cos(x^3 1) dx dy$ by switching the order of integration.
- ▶ (we can do this because of Fubini)

$$\int_{0}^{1} \int_{0}^{2x} y \cos\left(x^{3} - 1\right) dy dx = \int_{0}^{1} \left(\int_{0}^{2x} y \cos\left(x^{3} - 1\right) dy\right) dx$$

$$= \int_{0}^{1} \left(\frac{1}{2}y^{2} \cos\left(x^{3} - 1\right)\right) \Big|_{y=0}^{y=2x} dx$$

$$= \int_{0}^{1} 2x^{2} \cos\left(x^{3} - 1\right) dx$$

$$u = x^{3} - 1$$

$$du = 3x^{2} dx$$

$$\frac{2}{3} du = 2x^{2} dx$$

$$= \int_{-1}^{0} \cos(u) \frac{2}{3} du$$

$$= \frac{2}{3} \sin(u) \Big|_{-1}^{0}$$

$$= \frac{2}{3} \sin(0) - \frac{2}{3} \sin(-1)$$

$$= \frac{2}{3} \sin(1)$$

Example (15 2.64) Determine D and switch the order of integration of

$$\underbrace{\int_0^1 \int_0^{2y} f(x,y) dx dy}_{D_1} + \underbrace{\int_1^3 \int_0^{3-y} f(x,y) dx dy}_{D_2}$$

$$\int_0^2 \int_{\frac{1}{2}x}^{3-x} f(x,y) dy dx$$

Diagram below incomplete and possibly wrong

——— November 25, 2019

Mind Warmup

$$\iint\limits_D f(x,y)dA \quad \leftarrow \text{ seen as volume under } z = f(x,y), \text{ over } D.$$

 \leftarrow some consider *D* as the base, and f(x,y) as the height.

 \rightarrow dA is dxdy or dydx (one direction might be impossible to solve)

recall
$$\int_0^2 \int_{\frac{y}{2}}^1 y \cos\left(x^3 - 1\right) dx dy$$
$$= \int_0^1 \int_0^{2x} y \cos\left(x^3 - 1\right) dy dx$$

Volume
$$\int_0^1 \int_{x^2}^1 4 dy dx = \frac{8}{3}$$

- \rightarrow main idea for different volumes
 - 1. different z = f(x, y)
 - 2. different D
- \blacksquare **Example** Determine D and switch the order of integration of

$$\underbrace{\int_{0}^{1} \int_{0}^{2y} f(x, y) dx dy}_{D_{1}} = \underbrace{\int_{0}^{3} \int_{0}^{3-y} f(x, y) dx dy}_{D_{2}}$$

 \rightarrow want to make $D = D_1 + D_2 =$

$$=\underbrace{\int_0^2 \int_{\frac{1}{2}x}^{3-x} f(x,y) dy dx}_{D}$$

 \rightarrow so we turned two integrals into one.

§15.3 Polar Coordinates

$$(x,y) = (1,1)$$

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\theta = \frac{\pi}{4}$$

$$\tan \theta = \frac{1}{1}$$

$$\theta = \arctan(1) = \frac{\pi}{4}$$
$$(r, \theta) = \left(\sqrt{2}, \frac{\pi}{4}\right)$$

$$(r,\theta) = \left(\sqrt{2}, \frac{\pi}{4}\right)$$

$$(x,y) = (1,1)$$

Polar Coordinates

$$(r, \theta), r_1, \theta \in \mathbb{R}$$

r can be negative

$$(r, \theta) = \left(-\sqrt{2}, \frac{\pi}{4}\right)$$

$$(x,y) = (-1,-1)$$

Definition Polar Equations

$$x = r\cos\theta, \quad y = r\sin\theta$$

$$x^2 + y^2 = r^2$$
, $r = \pm \sqrt{x^2 + y^2}$
 $\tan \theta = \frac{y}{x}$, $\theta = \arctan\left(\frac{y}{x}\right)$

So we can think of some curves we know

1. r = 2, all points have radius

$$r = 2 \leftrightarrow x^2 + y^2 = 4$$

2.
$$\theta = \frac{\pi}{4}$$
, all points midway between *x* and *y*

$$\theta = \frac{\pi}{4} \leftrightarrow y = x$$

3.
$$r = \sin \theta \to r^2 = r \sin \theta \to x^2 + y^2 = y$$

$$\rightarrow x^2 + y^2 - y = 0 \rightarrow x^2 + y^2 - y + \frac{1}{4} - \frac{1}{4} = 0$$

$$x^{2} + \left(y - \frac{1}{2}\right)^{2} = \left(\frac{1}{2}\right)^{2}$$
$$r = \sin\theta \leftrightarrow x^{2} + \left(y - \frac{1}{2}\right)^{2} = \frac{1}{4}$$

4.
$$r = \cos \theta$$

$$r = \cos \theta \leftrightarrow \left(x - \frac{1}{2}\right)^2 + y^2 = \frac{1}{4}$$

$$\iint_{D} f(x,y) \underline{dxdy}$$

$$= \iint_{D} f(r\cos\theta, r\sin\theta) \underline{rdrd\theta}$$

$$= \iint_{D} f(r\cos\theta, r\sin\theta) \underline{rdrd\theta}$$

MISSING DIAGRAM

November 27, 2019

We're going to remove surface area

Mind Warmup

Cartesian (x, y) = (5, 5)

Polar
$$(r, \theta) = \left(5\sqrt{2}, \frac{\pi}{4}\right)$$

$$\iint\limits_{D_{x,y}} f(x,y) dx dy = \iint\limits_{D_{x,\theta}} f(r\cos\theta, r\sin\theta) r dr d\theta$$

$$x = r\cos\theta x = r\sin\theta$$

$$x^2 + y^2 = r^2$$

Question: Where did this double integral come from?

Question: How to use it?

Definition Change of Variables (double integrals)

If we let x = g(u, v), yh(u, v), then we change the integral by

$$\iint\limits_{D_{x,y}} f(x,y) dx dy = \iint\limits_{D_{u,v}} f\left(g(u,v),h(u,v)\right) \underbrace{ \left| \frac{\partial x}{\partial u} \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} \right|}_{\substack{\text{this is called the} \\ \text{Jacobian, and we} \\ \text{take the determinant}}}_{\substack{\text{(positive)}}} du dv dv$$

■ **Example** Let
$$x = r\cos\theta$$
, $y = r\sin\theta$. Find change of variable $\Rightarrow \frac{\partial x}{\partial r} = \cos\theta$, $\frac{\partial x}{\partial \theta} = -r\sin\theta$, $\frac{\partial y}{\partial r} = \sin\theta$

$$\frac{\partial y}{\partial \theta} = r \cos \theta$$

$$\begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix}$$

$$=r\cos^2\theta+r\sin^2\theta$$

$$= r \left(\cos^2 \theta + \sin^2 \theta\right) = r$$

$$\iint f(x,y)dxdy = \iint f(r\cos\theta, r\sin\theta) |r| drd\theta$$

- 1. replace dxdy by $rdrd\theta$
- 2. replace x, y with $r \cos \theta, r \sin \theta$
- 3. write *D* in terms of r, θ .
- **Example** $\iint_{\mathcal{S}} d(x+y)dxdy$, where *D* is the quarter circle in the first quadrant of radius 3, as follows.

So here, $0 \le r \le 3$ and $0 \le \theta \le \frac{\pi}{2}$

MISSING DIAGRAM

$$\int_0^{\frac{\pi}{2}} \int_0^3 (r\cos\theta, r\sin\theta) r dr d\theta = \int_0^{\frac{\pi}{2}} \int_0^3 r^2 (\cos\theta + \sin\theta) dr d\theta$$

$$= \int_0^{\frac{\pi}{2}} \frac{r^3}{3} (\cos\theta + \sin\theta) \Big|_{r=0}^{r=3} d\theta$$

$$= \int_0^{\frac{\pi}{2}} 9 (\cos\theta + \sin\theta) d\theta$$

$$= 9 (\sin\theta - \cos\theta) \Big|_0^{\frac{\pi}{2}}$$

$$= 9 \left(\sin\frac{\pi}{2} - \cos\frac{\pi}{2} - \sin\theta + \cos\theta\right)$$

$$= 18$$

$$\int_{0}^{3} \int_{0}^{\sqrt{9-x^2}} (x+y) dy dx$$

■ Example Evaluate
$$\underbrace{\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{0} \cos\left(x^2 + y^2\right) dy dx}_{D}$$

$$y = -\sqrt{1 - x^2} \quad y^2 = 1 - x^2$$

MISSING DIAGRAM

So here, $0 \le r \le 1$ and $\pi \le \theta \le 2\pi$

$$= \int_{\pi}^{2\pi} \int_{0}^{1} \cos\left(r^{2}\right) r dr d\theta$$

$$= \underbrace{\left(\int_{\pi}^{2\pi} d\theta\right)}_{=\pi} \left(\int_{0}^{1} r \cos\left(r^{2}\right) dr\right)$$

$$= \pi \int_{0}^{1} r \cos\left(r^{2}\right) dr =$$

$$u = r^{2}$$

$$du = 2r dr$$

$$\frac{du}{2} = r dr$$

$$= \pi \int_{0}^{1} \cos(u) \frac{du}{2}$$

$$= \frac{\pi}{2} \sin(u) \Big|_{0}^{1}$$

$$= \frac{\pi}{2} \sin(1) - \frac{\pi}{2} \sin(0)$$

$$= \frac{\pi}{2} \sin(1)$$

 \mathbb{R} \rightarrow Any time you see $x^2 + y^2$, or parts of circles, it's probably a good idea to switch to polar coordinates.

_____ November 29, 2019 -

Class

Office Hours

Burnside 1017

Mind Warmup

$$\iint\limits_D f(x,y)dA = \iint\limits_D f\left(r\cos\theta,r\sin\theta\right)rdrd\theta \qquad \leftarrow \text{volume with base area } D \text{ and height } f$$

Area of (Polar) Regions

R Fact: area =
$$\iint_D 1 dA$$
 \leftarrow gives the area of region D

Where does this come from?

Volume = base area \times height

$$\rightarrow$$
 so if height = 1

Volume = base area

$$\Rightarrow$$
 area = $\iint_{D} 1 dx dy = \iint_{D} 1 dy dx = \iint_{D} r dr d\theta$

Example Find the area of $r = 2 \sin \theta$ in the first quadrant

$$r^2 = 2r\sin\theta$$

$$x^2 + y^2 = 2y$$

$$x^2 + y^2 - 2y = 0$$

$$x^2 + y^2 - 2y + 1 - 1 = 0$$

$$x^2 + (y-1)^2 = 1$$

$$\begin{aligned} & \operatorname{area} \ = \int_0^{\frac{\pi}{2}} \int_0^{2\sin\theta} r dr d\theta \\ & = \int_0^{\frac{\pi}{2}} \left(\frac{1}{2} r^2 \Big|_{r=0}^{2\sin\theta} \right) d\theta \\ & = \int_0^{\frac{\pi}{2}} 2\sin^2\theta d\theta \\ & = \int_0^{\frac{\pi}{2}} (1 - \cos 2\theta) d\theta \\ & = \left(\theta - \frac{1}{2} \sin 2\theta \right) \Big|_0^{\frac{\pi}{2}} \\ & = \left(\theta - \frac{\pi}{2} \sin 2\theta \right) \Big|_0^{\frac{\pi}{2}} \\ & = \frac{\pi}{2} - \frac{\pi}{2} \sin(\pi) - \theta + \frac{1}{2} \sin(0) \\ & = \frac{\pi}{2} \end{aligned}$$

We already know this is half the area of a circle, with radius 1

$$=\frac{1}{2}\left(\pi r^2\right)=\frac{1}{2}\left(\pi 1^2\right)=\frac{\pi}{2}$$

■ Example Find the area between polar curves $r = \sin \theta$ and $r = \cos \theta$

$$r^2 = r \cos \theta$$

$$x^2 + y^2 = x$$

$$x^2 - x + y^2 = 0$$

$$x^2 - x + \frac{1}{4} - \frac{1}{4} + y^2 = 0$$

$$\left(x - \frac{1}{2}\right)^2 + y^2 = \frac{1}{4}$$

What I'll solve instead is half the area and double it

We know
$$\sin \theta = \cos \theta$$
 when $\theta = \frac{\pi}{4}$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = 1 = \frac{1}{1}$$
$$\arctan(1) = \frac{\pi}{4}$$

MISSING DIAGRAM

area
$$= 2 \int_0^{\frac{\pi}{4}} \int_0^{\sin \theta} r dr d\theta$$

$$= \frac{2}{2} \int_0^{\frac{\pi}{4}} r^2 \Big|_{r=0}^{r=\sin \theta} d\theta$$

$$= \int_0^{\frac{\pi}{4}} \sin^2 \theta d\theta$$

$$= \int_0^{\frac{\pi}{4}} \frac{1 - \cos 2\theta}{2} d\theta$$

$$= \frac{1}{2} \theta - \frac{1}{4} \sin 2\theta \Big|_0^{\frac{\pi}{4}}$$

$$= \frac{\pi}{8} - \frac{1}{4} \sin \frac{\pi}{2} - \emptyset + \frac{1}{4} \sin(0)$$

$$= \frac{\pi}{8} - \frac{1}{4}$$

MISSING DIAGRAM

$$\theta = 0$$

$$0 \le r \le \sin \theta$$

$$heta=rac{\pi}{4}$$

$$0 \le r \le \sin \theta$$

$$\theta = \frac{\pi}{8}$$

Definition Triple Integrals

If *E* is a region in \mathbb{R}^3 , then

$$\iiint_E 1 dx dy dz \text{ volume of region } E$$

$$\iiint\limits_E f(x,y,z)dxdydz$$

gives the mass of E where f(x,y,z) is the density at each point $(x,y,z) \in E$

■ Example Compute

$$\int_{0}^{2} \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} xy^{2} \cos(z) dy dz dx$$

$$= \int_{0}^{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{3} xy^{3} \cos(z) \Big|_{y=0}^{y=3} dz dx$$

$$= \int_{0}^{2} \int_{0}^{\frac{\pi}{2}} 9x \cos(z) dz dx$$

$$= \int_{0}^{2} 9x \sin(z) \Big|_{0}^{\frac{\pi}{2}} dx$$

$$= \int_{0}^{2} 9x dx$$

$$= \frac{9x^{2}}{2} \Big|_{0}^{2}$$

$$= 18$$

$$= \left(\int_{0}^{2} x dx\right) \left(\int_{0}^{\frac{\pi}{2}} \cos(z) dz\right) \left(\int_{0}^{3} y^{2} dy\right)$$

Exam

- formula sheet online
- breakdown (by general topic) will be online
- Kahoot tomorrow

Mind Warmup

= 18

$$\iiint\limits_E f(x,y,z)\underbrace{dxdydz}_{dV}, \quad E \subset \mathbb{R}^3$$

- **Example** Let *E* be the region below x+y+z=1 in the first octant $(x,y,z \ge 0)$
 - 1. Find volume of *E*
 - 2. Find mass of E with density $\rho = 12 6z$

2. Find mass of E with density
$$\rho = 12 - 6z$$

$$(1) \quad \rho(x, y, z) = 12 - 6z \iint \left(\int_0^{1 - x - y} 1 dz \right) dx dy \qquad \text{since } z = 1 - x - y \text{ is the upper function}$$

When z = 0, x + y = 1, it is what E is above

volume
$$= \int_0^1 \int_0^{1-x} \int_0^{1-x-y} 1 dz dy dx$$

$$= \int_0^1 \int_0^{1-x} (1-x-y) dy dx$$

$$= \int_0^1 \left(y - xy - \frac{1}{2} y^2 \right) \Big|_{y=0}^{y=1-x} dx$$

$$= \int_0^1 \left(1 - x - x(1-x) - \frac{1}{2} (1-x)^2 \right) dx$$

$$= \int_0^1 \left(\frac{1}{2} - x + \frac{x^2}{2} \right) dx$$

$$= \frac{1}{2} x - \frac{1}{2} x^2 + \frac{1}{6} x^3 \Big|_0^1$$

$$= \frac{1}{2} - \frac{1}{2} + \frac{1}{6}$$

$$= \frac{1}{6}$$

MISSING DIAGRAM

 \rightarrow note mass > volume, this is because 12 - 6z > 1 over E

■ Example

Compute
$$\underbrace{\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} \sqrt{x^2+y^2} dz dy dx}_{3}$$

$$0 \le r \le 3 \qquad 0 \le \theta \le \pi$$

MISSING DIAGRAM

I knew this is where the upper function met the xy-plane when z = 0, because $0 = 9 - x^2 - y^2$ \rightarrow Switch to polar coordinates

$$x = r\cos\theta$$

$$y = r\sin\theta$$
this means $dzdydx$ becomes $rdzdrd\theta$

$$z = z$$

$$\underbrace{\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} \sqrt{x^2 + y^2} dz dy dx}_{\text{top half circle}}$$

$$= \underbrace{\int_{0}^{\pi} \int_{0}^{3} \int_{0}^{9-r^2} \sqrt{r^2} r dz dr d\theta}_{\text{top half circle}}$$

$$= \int_{0}^{\pi} \int_{0}^{3} \underbrace{\int_{0}^{9-r^2} r^2 dz dr d\theta}_{\text{top half circle}}$$

$$= \int_{0}^{\pi} \int_{0}^{3} z r^2 \Big|_{0}^{9-r^2} dr d\theta$$

$$= \int_{0}^{\pi} \int_{0}^{3} 9 r^2 - r^4 dr d\theta$$

$$= \int_{0}^{\pi} 3 r^3 - \frac{1}{5} r^5 \Big|_{0}^{3} d\theta$$

$$= \int_{0}^{\pi} \left(81 - \frac{243}{5} \right) d\theta$$

$$= \int_{0}^{\pi} \frac{162}{5} d\theta$$

Spherical coordinates is not an expectation on the final exam

$$\int_0^{\frac{\pi}{4}} \int_0^{\sin\theta} r dr d\theta$$

 $=\frac{162\pi}{5}$

– December 3, 2019 -

We did some questions on kahoot