# Predictive Maintenance System Technical Report

# Technical Report: Predictive Maintenance System Using Machine Learning

## **Table of Contents**

- 1. Executive Summary
- 2. Introduction
- 3. Data Analysis
- 4. Methodology
- 5. Model Optimization
- 6. Results
- 7. Deployment
- 8. Business Impact
- 9. Future Improvements
- 10. Conclusions
- 11. Reproducibility Guide
- 12. References
- 13. Appendices

## **Executive Summary**

This report presents the development and implementation of a machine learning-based predictive maintenance system. The system utilizes sensor data from industrial machines to predict potential failures before they occur, enabling proactive maintenance scheduling and reducing unexpected downtime.

#### 1. Introduction

#### 1.1 Problem Statement

Manufacturing companies face significant challenges with machine maintenance: - Unexpected machine failures lead to production downtime - Traditional scheduled maintenance may be unnecessary or insufficient - Reactive maintenance results in higher repair costs - Production quality may be affected by degrading machine performance

#### 1.2 Project Objectives

- Develop a machine learning model to predict equipment failures
- Create a real-time prediction system using sensor data
- Provide a user-friendly interface for monitoring machine health
- Enable proactive maintenance scheduling

## 2. Data Analysis

#### 2.1 Dataset Overview

The project uses the AI4I 2020 Predictive Maintenance Dataset, which contains: - 10,000 data points from industrial machines - 14 features including sensor measurements and operational parameters - Binary classification target (machine failure/no failure) - Additional failure type indicators (TWF, HDF, PWF, OSF, RNF)

#### 2.2 Feature Description

Key features in the dataset: - Air temperature [K] - Process temperature [K] - Rotational speed [rpm] - Torque [Nm] - Tool wear [min]

#### 2.3 Data Distribution

# Distribution of Machine Failures



Figure 1: Target Distribution

The dataset shows a significant class imbalance: - No Failure: 96.61% of samples - Failure: 3.39% of samples

# 2.4 Feature Analysis

Key observations: - Temperature features show normal distributions - Rotational speed and torque show bimodal distributions - Tool wear shows uniform distribution



Figure 2: Feature Distributions

## 2.5 Correlation Analysis



Figure 3: Correlation Matrix

Notable correlations: - Strong positive correlation between air and process temperatures - Moderate correlation between torque and failure - Weak correlation between tool wear and failure

## 2.6 Failure Types Analysis

Distribution of different failure types shows: - Heat dissipation failures (HDF) are most common - Power failures (PWF) are least common

## 3. Methodology

# 3.1 Data Preprocessing

- 1. Feature Engineering:
  - Temperature difference calculation
  - Power estimation from torque and speed



Figure 4: Failure Types

- Temperature ratio calculation
- Power per temperature unit
- Efficiency metrics
- Wear rate calculation
- Rolling averages (windows of 3, 5, and 10 samples) for key measurements
- 2. Feature Selection:
  - Recursive Feature Elimination (RFE)
  - Selection of top 10 most important features
  - Ranking of all features by importance
- 3. Handling Class Imbalance:
  - Implementation of SMOTE for minority class oversampling
  - Balanced training set creation

## 3.2 Model Development and Comparison

We implemented and compared three different algorithms:

## 1. Gradient Boosting Classifier:

- Best performing model
- F1 Score:  $0.988 (\pm 0.003)$
- Precision for failures: 0.71
- Recall for failures: 0.79

## 2. Random Forest Classifier:

- Second best model
- F1 Score:  $0.987 (\pm 0.003)$
- Precision for failures: 0.62
- Recall for failures: 0.85

#### 3. Neural Network:

Multi-layer Perceptron
F1 Score: 0.980 (±0.003)
Precision for failures: 0.51
Recall for failures: 0.81



Figure 5: Model Comparison

#### 3.3 Model Selection

The Gradient Boosting Classifier was selected as the final model due to: - Highest overall F1 score (0.988) - Best balance between precision and recall for failure detection - More stable predictions across different test cases - Better handling of feature interactions

# 3.4 Feature Importance Analysis

Advanced feature engineering revealed several key insights:

- 1. Most Important Features:
  - $\bullet\,$  Tool wear and its rolling averages
  - Power consumption patterns
  - Temperature difference trends
  - Rotational speed variations
- 2. Interaction Features:
  - Power efficiency metrics
  - Temperature ratios
  - Wear rate calculations
- 3. Rolling Window Features:
  - Short-term trends (3-sample window)
  - Medium-term patterns (5-sample window)
  - Long-term behavior (10-sample window)



Figure 6: Feature Ranking

# 4. Model Optimization

## 4.1 Hyperparameter Tuning

We performed extensive hyperparameter optimization using Grid Search with cross-validation:

### Random Forest Optimization Best parameters found:

```
{
    'class_weight': 'balanced_subsample',
    'max_depth': 30,
    'min_samples_leaf': 1,
    'min_samples_split': 2,
    'n_estimators': 300
}
```

Performance improvement: - Base model F1 score: 0.973 - Optimized model F1 score: 0.987 - Improvement: +1.4%

## **Gradient Boosting Optimization** Best parameters found:

```
{
    'learning_rate': 0.1,
    'max_depth': 5,
    'min_samples_leaf': 2,
    'min_samples_split': 4,
    'n_estimators': 200,
    'subsample': 0.8
}
```

Performance improvement: - Base model F1 score: 0.981 - Optimized model F1 score: 0.988 - Improvement: +0.7%

#### 4.2 Cross-Validation Results



Figure 7: Cross Validation Results

The optimized models showed consistent performance across all folds: - Mean F1 score:  $0.988 \ (\pm 0.003)$  - Mean precision:  $0.989 \ (\pm 0.002)$  - Mean recall:  $0.987 \ (\pm 0.003)$ 

### 5. Results

#### 5.1 Model Performance

The final Gradient Boosting model achieved: - Overall Accuracy: 98% - Precision (No Failure): 0.99 - Recall (No Failure): 0.99 - Precision (Failure): 0.71 - Recall (Failure): 0.79 - F1 Score: 0.988

## 5.2 Confusion Matrix Analysis

The confusion matrix shows: - True Negatives: High accuracy in identifying normal operation - True Positives: Good detection of actual failures - False Positives: Limited false alarms - False Negatives: Minimal missed failures

## 6. Deployment

#### 6.1 Flask Application Architecture

```
project/
    src/
    app.py  # Flask application
    model_training.py # Model training script
    utils.py  # Utility functions
    templates/
```



Figure 8: Confusion Matrix

```
index.html  # Web interface
static/
  css/
     style.css  # Custom styles
  js/
     main.js  # Frontend logic
models/
  best_model.pkl  # Trained model
  scaler.pkl  # Feature scaler
```

#### 6.2 API Documentation

## Prediction Endpoint

```
POST /predict
Content-Type: application/json
{
    "Air temperature [K]": 298.1,
    "Process temperature [K]": 308.6,
    "Rotational speed [rpm]": 1500,
    "Torque [Nm]": 40,
    "Tool wear [min]": 100
}
Response:
{
    "status": "success",
    "prediction": 0,
    "probability": {
        "no_failure": 0.92,
        "failure": 0.08
    }
}
```

## Health Check Endpoint

```
GET /health
Response:
{
    "status": "healthy"
}
```

## 6.3 Web Interface

Features: - Real-time predictions - Parameter health visualization - Failure probability display - Derived metrics calculation

# 7. Business Impact

#### 7.1 Benefits

- 1. Reduced Downtime:
  - Early detection of potential failures
  - Scheduled maintenance optimization

# Predictive Maintenance Web Interface



Figure 9: Web Interface

- Minimized unexpected stops
- 2. Cost Savings:
  - Reduced repair costs
  - Optimized spare parts inventory
  - Increased machine lifetime
- 3. Improved Efficiency:
  - Better maintenance scheduling
  - Reduced false alarms
  - Enhanced resource allocation

#### 7.2 Limitations

- 1. Model Constraints:
  - Limited to patterns present in training data
  - Requires regular retraining with new data
  - May not detect novel failure modes
- 2. Implementation Challenges:
  - Requires reliable sensor data
  - Need for system integration
  - Staff training requirements

## 8. Future Improvements

#### 8.1 Technical Enhancements

- 1. Model Improvements:
  - Implementation of additional algorithms
  - Deep learning approaches
  - Online learning capabilities
- 2. System Features:
  - Real-time monitoring dashboard
  - Automated alerts system
  - Mobile application development

#### 8.2 Business Extensions

- 1. Integration Capabilities:
  - ERP system integration
  - Maintenance scheduling systems
  - Inventory management systems
- 2. Scalability:
  - Multi-machine monitoring
  - Cloud deployment
  - Distributed processing

# 9. Conclusions

The implemented predictive maintenance system demonstrates strong potential for industrial applications:
- High accuracy in predicting machine failures - Practical implementation through web interface - Scalable architecture for future extensions - Significant potential for cost savings and efficiency improvements

The system provides a solid foundation for proactive maintenance strategies and can be further enhanced based on specific industry needs and requirements.

# 10. Reproducibility Guide

#### 10.1 System Requirements

- Python 3.8+
- 8GB RAM minimum
- 50GB disk space
- CUDA-capable GPU (optional)

#### 10.2 Installation Instructions

1. Clone the repository:

```
git clone https://github.com/your-username/predictive-maintenance.git
cd predictive-maintenance
```

2. Create and activate virtual environment:

```
python -m venv venv
source venv/bin/activate # Linux/Mac
venv\Scripts\activate # Windows
3. Install dependencies:
```

## 10.3 Running the Project

1. Train the model:

```
python src/model_training.py
```

2. Start the Flask application:

pip install -r requirements.txt

```
python src/app.py
```

3. Access the web interface:

```
http://localhost:5005
```

## 10.4 Project Structure

```
project/
  data/
                        # Dataset directory
  models/
                        # Saved models
  notebooks/
                       # Jupyter notebooks
                      # Generated outputs
  output/
  src/
                      # Source code
  static/
                       # Static files
  templates/
                      # HTML templates
  tests/
                      # Unit tests
  README.md
                      # Project overview
                      # Dependencies
  requirements.txt
  technical_report.md # This report
```

## 11. References

- 1. Matzka, S., et al. (2020). AI4I 2020 Predictive Maintenance Dataset. UCI Machine Learning Repository.
- 2. Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
- 3. Flask Web Development, Miguel Grinberg, O'Reilly Media, 2018.

4. Predictive Maintenance for Industry 4.0, Mathworks, 2021.

# 12. Appendices

# Appendix A: Feature Engineering Details

[Detailed description of feature engineering process]

# Appendix B: Model Comparison Results

[Complete model comparison tables and figures]

## Appendix C: Deployment Configuration

[Detailed deployment settings and configurations]

## Appendix D: Test Cases

[Example test cases and their results]