АДДИТИВНЫЕ основаны на сложении цветов

Субтрактивные основаны на вычитании цветов

Перцепционные базируются на восприятии

Универсальные охватывают весь спектр цветов, воспринимаемых

глазом человека

Аддитивные основаны на сложении цветов RGB

Субтрактивные основаны на вычитании цветов

CMY, CMYK

Перцепционные базируются на восприятии

HSV, HSB, HSL

Универсальные охватывают весь спектр цветов, воспринимаемых

глазом человека

Lab, XYZ

Аппаратно-зависимые RGB, CMYK

Аппаратно-независимые

XYZ, Lab

Психологические

HSV, HSB, HSL

Цветовой куб RGB

Цветовой куб RGB

Каналы RGB

Цветовое пространство HSI

Цветовой тон (hue)- основная характеристика цвета, которая определяет его положение в спектре

*Яркость (Brightness) -*Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.).

Светлость (Lightness) — Степень близости цвета (цветового тона) к белому.

Hасыщенность (Saturation) – Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным.

Цветовое пространство HSI

$$\begin{cases} H = \begin{cases} \theta; \ B \leq G \\ 360 - \theta; B > G \end{cases}, \text{где } \theta = \arccos\left(\frac{\frac{1}{2}*((R-G)+(R-B))}{\sqrt{(R-G)^2+(R-B)(G-B)}}\right) \\ S = 1 - \frac{3}{(R+G+B)}\min\left(R,G,B\right) \\ I = \frac{1}{3}(R+G+B) \end{cases}$$

Каналы HSI

Модель CIE XYZ. Кривые сложения.

Треугольник CIE XYZ

$$\begin{cases} x = \frac{X}{X + Y + Z} \\ y = \frac{Y}{X + Y + Z} \\ z = \frac{Z}{X + Y + Z} \end{cases}$$

Модель CIE XYZ

$$\begin{cases} x = \frac{X}{X + Y + Z} \\ y = \frac{Y}{X + Y + Z} \\ z = \frac{Z}{X + Y + Z} \end{cases}$$

Модель CIELAB

$$\begin{cases} L^* = 116 * f\left(\frac{Y}{Y_n}\right) - 16 \\ a^* = 500 * (f\left(\frac{X}{X_n}\right) - f\left(\frac{Y}{Y_n}\right)) \\ b^* = 200 * (f\left(\frac{Y}{Y_n}\right) - f\left(\frac{Z}{Z_n}\right)) \end{cases}$$

где (Xn,Yn,Zn) – координаты точки белого в пространстве CIE XYZ, а

$$f(x) = \begin{cases} \sqrt[3]{x} \\ \frac{1}{3} * \left(\frac{29}{6}\right)^2 x + \frac{4}{29} \end{cases}$$

Срезы различных значений светлоты

Телевизионные цветоразностные цветовые системы

$$Y' = K_R \cdot R' + K_G \cdot G' + K_B \cdot B'$$
 $P_B = \frac{1}{2} \cdot \frac{B' - Y'}{1 - K_B}$
 $P_R = \frac{1}{2} \cdot \frac{R' - Y'}{1 - K_R}$

где KB и KR коэффициенты, которые обычно выводятся из определения соответствующего пространства RGB.

$$Y' = 0.299 \cdot R' + 0.587 \cdot G' + 0.114 \cdot B'$$

 $P_B = -0.168736 \cdot R' - 0.331264 \cdot G' + 0.5 \cdot B'$
 $P_R = 0.5 \cdot R' - 0.418688 \cdot G' - 0.081312 \cdot B'$

Конвертирование цветового пространства

dst=cv.cvtColor(src, code[, dst[, dstCn]])

cv.COLOR_BGR2GRAY

cv.COLOR_GRAY2BGR

cv.COLOR_BGR2YCrCb

cv.COLOR_BGR2HSV

cv.COLOR_BGR2Lab

cv.COLOR_BGR2Luv