Applied mechanics

Topics

- Notes on stability
- Friction and traction
- Motors and performance
- Using gears

Stability

 We saw in the George Street Challenge that the cyclist (or robot) will tip over when the normal force on the front wheel goes to zero

Geometric stability

• For this problem, that occurs when the gravity vector passes through the ground contact point of the rear wheel

Word of Warning

hmgsina-amgcosa=-lFwind

• But be careful if other, external forces are added!

How does the analysis change for FWD?

Friction

• The friction factor, μ , relates the *maximum* traction force to the normal force:

$$F_T \leq \mu \cdot F_N$$

• That doesn't mean it *has* to be equal, but we can use that condition to determine when we lose traction. The "worst case scenario."

Let's work a 4WD problem

How would you augment the FBD?

 Find expression(s) for the normal forces (EoE in y and/or moments)

 Find expression for propulsion force (EoE in x)

Assume limiting case (just starts to slip)

• Substitute limiting case

 Find expression(s) for the normal forces (EoE in y)

 Find expression for propulsion force (EoE in x)

Assume limiting case (just starts to slip)

Fr=MA

Fo=MNA

• Substitute limiting case

FA FF = mg sin X MA + NB = mg Sind m (NA+N3) =mg sind m (ng cos x) = mg sin a

x = tan - 1 (m) Ta da! m= tand

2WD case

More on mechanics

• WPI playlist on <u>Force Analysis</u>