Полу-определенные релаксации в оптимизации Лекция 3: релаксации полиномиальных задач

Роланд Хильдебранд

Факультет Управления и Прикладной Математики МФТИ

весна 2020 г.

Выпуклая формулировка общей задачи оптимизации

Положительные полиномы и суммы квадратов

Релаксации типа сумм квадратов для полиномиальных задач

Моментные релаксации

Тригонометрические полиномы

Общая задача оптимизации

рассмотрим задачу

$$\min_{x \in X} f(x)$$

 $X\subset\mathbb{R}^n$ — измеримое допустимое множество f — непрерывная функция цены

эквивалентная формулировка

$$\min_{\mu \in \mathcal{M}} \int_{X} f(x) d\mu(x) : \int_{X} d\mu(x) = 1$$

 \mathcal{M} — конус неотрицательных мер на множестве X формально невыпуклая задача представлена как бесконечно-мерная коническая программа

Геометрическая интерпретация

точки множества $X\subset\mathbb{R}^n$ отображаются в δ -функции в прострастве мер на X

нелинейная инъекция Γ устроена таким образом, что $f\circ\Gamma^{-1}$ можно расширить до линейной функции цены

супремум линейной цены по выпуклой оболочке δ -функций равен супремуму f по X

Релаксация задач QCQP

точка
$$x \in \mathbb{R}^n$$
 отображается в матрицу $\begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix} \in \mathcal{S}_+^{n+1}$

нелинейное вложение Веронезе устроено таким образом, что

- ightharpoonup квадратичная функция цены на \mathbb{R}^n представляется линейной функцией на \mathcal{S}^{n+1}
- lacktriangle квадратичные ограничения в \mathbb{R}^n представляются линейными в \mathcal{S}^{n+1}

Неточность релаксации

из-за наличия ограничений переход к выпуклой оболочке многообразия Веронезе приводит к релаксации

линейное сечение выпуклой оболочки больше, чем выпуклая оболочка линейного сечения

Формулировка в пространстве мер

проблема: конус неотрицательных мер бесконечно-мерный подход: полиномиальные задачи позволяют ограничиться конечно-мерной проекцией на набор моментов мер

проблема: конус моментов неотрицательных мер в общем случае численно недоступен

подход: полу-определенные релаксации, выражающие необходимые условия

в ряде важных случаев релаксации точны

Конуса положительных полиномов

пусть $P_{d,n}$ — конус неотрицательных однородных полиномов степени d от n вещественных переменных

если d четное, то $P_{d,n}$ — регулярный выпуклый конус

внутренние элементы $P_{d,n}$ — полиномы, положительные на единичной сфере

можно рассмотреть и неоднородную версию: конус полиномов степени не больше d, неотрицательных на \mathbb{R}^n

такой полином может быть положительным, но все равно лежать на границе конуса

пример: $p(x) \equiv 1$ равен нулю во всех бесконечно удаленных точках

Эквивалентность однородного и неоднородного конуса

конус неоднородных неотрицательных полиномов степени не больше d от n переменных изоморфен P(d,n+1)

неоднородному полиному q(y) ставим в соответствие однородный полином $p(x) = x_0^d q(y)$

Пример: коположительный конус

симметрическая матрица $A \in \mathcal{S}^n$ называется коположительной, если $x^TAx \geq 0$ для всех $x \in \mathbb{R}^n_+$, или эквивалентно

$$p_A(x) = \sum_{i,j=1}^n A_{ij} x_i^2 x_j^2 \in P_{4,n}$$

коположительный конус \mathcal{COP}^n представляем через линейное сечение конуса неотрицательных полиномов $P_{4,n}$

проверить $A \in \mathcal{COP}^n$ является ко-NP-полной задачей [Murty, Kabadi 1987]

в общем случае проверить $p \in P_{2d,n}$ является сложной проблемой

Конус сумм квадратов

Определение

Конусом сумм квадратов $\Sigma_{2d,n}$ называется множество однородных полиномов p(x) четной степени 2d от n вещественных переменных, которые представляются в виде конечной суммы $p(x) = \sum_k q_k^2(x)$, где $q_k(x)$ — однородные полиномы степени d.

имеем
$$\Sigma_{2d,n} \subset P_{2d,n}$$

 $\Sigma_{2d,n}$ является внутренней аппроксимацией конуса $P_{2d,n}$

Полу-определенное представление $\Sigma_{2d,n}$

пусть
$$\mathbf{x}$$
 — вектор мономов $\mathbf{x}^{\alpha}:=\prod_{k=1}^{n}\mathbf{x}_{k}^{\alpha_{k}}$ степени d $\alpha=(\alpha_{1},\ldots,\alpha_{n})\in\mathbb{N}^{n}$ — мульти-индекс, удовлетворяющий $|\alpha|:=\sum_{k=1}^{n}\alpha_{k}=d$ \mathbf{x} имеет $\mathbf{N}=\binom{n+d-1}{d}$ элементов

Лемма

Однородный полином p степени 2d от n переменных x_1, \ldots, x_n является элементом конуса $\Sigma_{2d,n}$ тогда и только тогда, когда существует неотрицательно определенная матрица $A \in \mathcal{S}_+^N$ такая, что $p(x) = \mathbf{x}^T A \mathbf{x}$.

Построение представления в виде суммы квадратов

пусть
$$A \in \mathcal{S}_+^N$$
 и $p(x) = \mathbf{x}^T A \mathbf{x}$ тогда $A = B^T B$, $B \in \mathbb{R}^{k \times N}$ пусть b_j , $j=1,\ldots,k$ — строки фактора B

имеем

$$p(x) = \mathbf{x}^T B^T B \mathbf{x} = \sum_{j=1}^k \langle b_j, \mathbf{x} \rangle^2 = \sum_{j=1}^k q_j^2(x)$$

и p представлено в виде суммы квадратов k полиномов $q_j(x) = \langle b_j, \mathbf{x} \rangle$ степени d

отсюда следует включение $p \in \Sigma_{2d,n}$

Построение $A \in \mathcal{S}_+^N$

пусть
$$p \in \Sigma_{2d,n}$$

тогда
$$p(x) = \sum_{j=1}^k q_j^2(x)$$

 $q_j(x) = \langle b_j, \mathbf{x} \rangle, \ b_j \in \mathbb{R}^N$

составим матрицу $B \in \mathbb{R}^{k imes N}$ из строк b_j имеем

$$p(x) = \sum_{j=1}^{k} \langle b_j, \mathbf{x} \rangle^2 = \mathbf{x}^T B^T B \mathbf{x} = \mathbf{x}^T A \mathbf{x}$$

матрица A не обязательно единственная

Полу-определенное представление $\Sigma_{2d,n}$

представим конус сумм квадратов $\Sigma_{2d,n}$ как проекцию матричного конуса \mathcal{S}_{+}^{N}

определим проекцию Π , сопоставляющую матрице $A \in \mathcal{S}^N$ полином p(x) с коэффициентами

$$c_{\alpha} = \sum_{\beta, \gamma: \beta + \gamma = \alpha} A_{\beta\gamma}$$

т.е.
$$\Pi : A \mapsto \mathbf{x}^T A \mathbf{x}$$

тогда
$$\Sigma_{2d,n} = \Pi[\mathcal{S}_+^N]$$

Релаксации полу-определенного представления

порядок N матрицы A очень быстро увеличивается с ростом n и d

полу-определенное условие $A\succeq 0$ можно далее аппроксимировать достаточными условиями [Ahmadi, Majumbar 2014]

- ▶ DDSOS (diagonally dominant sums of squares): $A_{ii} \geq \sum_{j \neq i} |A_{ij}|$ для всех $i = 1, \ldots, N$
- ▶ SDDSOS (scaled diagonally dominant sums of squares): A из двойственного конуса к конусу матриц B, для которых $(\frac{B_{ii}+B_{jj}}{2},\frac{B_{ii}-B_{jj}}{2},B_{ij})\in L_3$ для всех $i,j=1,\ldots,N$

первая релаксация линейная, вторая конично-квадратичная

Точность релаксации

Teopeмa (Hilbert, 1888)

Пусть $n,d\in\mathbb{N}_+$, d четное. Равенство $\Sigma_{d,n}=P_{d,n}$ справедливо тогда и только тогда, когда либо $\min(d,n)\leq 2$, либо (d,n)=(4,3).

в остальных случаях конус $P_{d,n}$ не является полу-определенно представимым [Scheiderer 2018]

Случай n=2

вместо конуса $P_{2d,2}$ рассмотрим изоморфный конус неоднородных полиномов от одной переменной $oldsymbol{x}$

нам нужно представить неотрицательный полином как сумму квадратов

пусть $p(x) = c \prod_{k=1}^m (x-x_k)$, где m — степень, а x_k — корни полинома

из неотрицательности следует $c=(c^\prime)^2>0$, m — четное

если x_k — вещественный корень, то он должен иметь четную кратность

если $x_k = a_k + ib_k$ — комплексный корень, то к нему имеется сопряженный корень $x_{k'} = a_k - ib_k$ имеем $(x - x_k)(x - x_{k'}) = (x - a_k)^2 + b_k^2$

таким образом p(x) — сумма квадратов

Политоп Ньютона

Определение

Пусть $p(x) = \sum_{\alpha} c_{\alpha} x^{\alpha}$ — полином от п переменных. Политопом Ньютона полинома р называют выпуклую оболочку множества мульти-индексов $\{\alpha \in \mathbb{N}^n \mid c_{\alpha} \neq 0\}$.

Лемма

Пусть $p(x) = \sum_{\alpha} c_{\alpha} x^{\alpha}$ — полином от п переменных, представимый в виде суммы квадратов $\sum_{j} q_{j}(x)^{2}$, и пусть P — его политоп Ньютона. Тогда

- экстремальные точки политопа P имеют только четные компоненты,
- коэффициенты c_{α} , соответствующие экстремальным точкам α политопа P, строго положительны,
- мульти-индексы β , соответствующие ненулевым коэффициентам полиномов q_j , являются элементами политопа $\frac{1}{2}P$.

Изменение базы

полином Моцкина $p_M(x,y,z)=x^4y^2+x^2y^4+z^6-3x^2y^2z^2$ неотрицательный вследствие неравенства между алгебраическим и геометрическим средним не представим в виде суммы квадратов кубических полиномов однако, p_M является суммой квадратов других функций:

$$p_{M}(x,y,z) = (u^{2} + v^{2} + z^{2}) \cdot \begin{pmatrix} u^{2} \\ v^{2} \\ z^{2} \end{pmatrix}^{T} \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} u^{2} \\ v^{2} \\ z^{2} \end{pmatrix},$$

где $u=x^{2/3}y^{1/3}$, $v=x^{1/3}y^{2/3}$ J — неотрицательно определенная матрица ранга 2

политоп Ньютона для полинома
$$p_M(x,y,z) = x^4y^2 + x^2y^4 + z^6 - 3x^2y^2z^2$$

переход к полиному $p(u,v,z)=u^6+v^6+z^6-3u^2v^2z^2$ расширяет базу мономов, из которых составляются факторы q_j в сумме квадратов

другое представление получается, если разложим произведение $(x^2+y^2+z^2)\cdot p_M(x,y,z)$ в сумму квадратов полиномов 4-й степени

тогда и произведение $(x^2+y^2+z^2)^2 \cdot p_M(x,y,z)$ является суммой квадратов полиномов, и p_M представляемо в виде суммы квадратов от рациональных функций

17-ая проблема Гильберта: Любой неотрицательный полином может быть представлен в виде суммы квадратов рациональных функций.

Утверждение было доказано Э. Артином в 20-х гг.

Усиление релаксации

условие $p \in \Sigma(2d,n)$ является достаточным для неотрицательности p

аппроксимацию можно усилить, потребовав

$$\left(\sum_{i=1}^n x_i^2\right)^r \cdot p \in \Sigma(2(d+r), n)$$

эти условия также записываются в виде линейных матричных неравенств на коэффициенты полинома p, но с ростом r их сложность быстро растет

Матричные полиномы

матричный полином $A:\mathbb{R} o \mathcal{S}^n$ от одной переменной можно рассматривать как обычный полином $p(t,x)=x^TA(t)x$ от n+1 переменных неотрицательность p(t,x) равносильна условию $A(t)\succeq 0$

Теорема

Пусть $A_0, \dots, A_{2m} \in \mathcal{S}^n$ — симметрические матрицы такие, что матричный полином $A(t) = \sum_{j=0}^{2m} A_j t^j$ степени 2m положительный, т.е., $x^T A(t) x \geq 0$ для всех $t \in \mathbb{R}$ и $x \in \mathbb{R}^n$. Тогда найдутся матрицы $B_0, \dots, B_m \in \mathbb{R}^{n \times k}$ такие, что $A(t) = B(t) B(t)^T$, где $B(t) = \sum_{j=0}^m B_j t^j$ — матричный полином степени m.

эквивалентно, $p(t,x) = (B(t)^T x)^T (B(t)^T x)$ является обычной суммой квадратов от полиномов меньшей степени

Структура блочно-ханкелевых матриц

Лемма

Пусть $H \in \mathcal{S}^{n(m+1)}_+$ — неотрицательно определенная блочно-ханкелевая матрица с блоками размера п. Тогда H представляется в виде суммы неотрицательно определенных блочно-ханкелевых матриц ранга 1.

Двойственность между полиномами и матрицами

Лемма

Пусть $A(t) = \sum_{j=0}^{2m} A_j t^j$ — положительный матричный полином, а $H \in \mathcal{S}_+^{n(m+1)}$ — блочно-ханкелевая матрица с блоками $H_0, \dots, H_{2m} \in \mathcal{S}^n$. Тогда $\sum_{i=0}^{2m} \langle A_i, H_i \rangle \geq 0$. В частности, существует такая матрица $\mathbf{A} \in \mathcal{S}_+^{n(m+1)}$, состоящая из $n \times n$ блоков A_{ij} , $i,j=0,\dots,m$, что $A_k = \sum_{i+j=k} A_{ij}$.

если rk H>1, то H можно разложить в сумму матриц ранга 1 если rk H=1, то $H_i=\lambda^i xx^T$, $\sum_{j=0}^{2m} \langle A_i, H_i \rangle = x^T (\sum_{j=0}^{2m} A_i \lambda^j) x \geq 0$

второе утверждение — следствие двойственности

Пример: коположительный конус

 $A \in \mathcal{COP}^n$ эквивалентно

$$p_A(x) = \sum_{i,j=1}^n A_{ij} x_i^2 x_j^2 \in P_{4,n}$$

аппроксимация суммой квадратов дает

$$\mathcal{K}_0 = \{A \in \mathcal{S}^n \,|\, p_A \in \Sigma_{4,n}\}$$

Явный вид \mathcal{K}_0

приведем построение для
$$n=3$$
 сформируем вектор $\mathbf{x}=(x_1^2,x_2^2,x_3^2,x_1x_2,x_1x_3,x_2x_3)^T$ $A\in\mathcal{K}_0$ эквивалентно существованию $\mathbf{A}\in\mathcal{S}_+^6$ такой, что $p_A(x)=\mathbf{x}^T\mathbf{A}\mathbf{x}$

	x_1^2	x_{2}^{2}	x_3^2	<i>x</i> ₁ <i>x</i> ₂	<i>x</i> ₁ <i>x</i> ₃	<i>X</i> ₂ <i>X</i> ₃
x_1^2	x ₁ ⁴	$x_1^2 x_2^2$	$x_1^2 x_3^2$	$x_1^3 x_2$	$x_1^3 x_3$	$x_1^2 x_2 x_3$
x_2^2	$x_1^2 x_2^2$	x_{2}^{4}	$x_2^2 x_3^2$	$x_1x_2^3$	$x_1 x_2^2 x_3$	$x_2^3 x_3$
x ₃ ²	$x_1^2 x_3^2$	$x_2^2 x_3^3$	x ₃ ⁴	$x_1x_2x_3^2$	$x_1x_3^3$	$x_2x_3^3$
x_1x_2	$x_1^3 x_2$	$x_1 x_2^3$	$x_1x_2x_3^2$	$x_1^2 x_2^2$	$x_1^2 x_2 x_3$	$x_1 x_2^2 x_3$
<i>x</i> ₁ <i>x</i> ₃	$x_1^3 x_3$	$x_1x_2^2x_3$	$x_1 x_3^3$	$x_1^2 x_2 x_3$	$x_1^2 x_3^2$	$x_1 x_2 x_3^2$
<i>x</i> ₂ <i>x</i> ₃	$x_1^2 x_2 x_3$	$x_2^3 x_3$	$x_2x_3^3$	$x_1 x_2^2 x_3$	$x_1x_2x_3^2$	$x_2^2 x_3^2$

коэффициенты **A**, стоящие вне блочно-диагональной под-матрицы $\operatorname{diag}(B,c_{12},c_{13},c_{23})$, можно положить равными нулю

Явный вид \mathcal{K}_0

условие $A\in\mathcal{K}_0$ эквивалентно существованию матрицы $B\in\mathcal{S}^3_+$ и скаляров $c_{12},c_{13},c_{23}\geq 0$, что

$$\sum_{i,j=1}^{n} A_{ij} x_i^2 x_j^2 = \sum_{i,j=1}^{n} B_{ij} x_i^2 x_j^2 + \sum_{i < j} c_{ij} x_i^2 x_j^2$$

сравнивая коэффициенты, получаем

$$\operatorname{diag} A = \operatorname{diag} B, A_{ij} = B_{ij} + c_{ij} \forall i < j$$

отсюда получаем $\mathcal{K}_0 = \mathcal{S}_+^3 + \mathcal{N}^3$, где \mathcal{N}^3 — конус поэлементно неотрицательных симметрических 3×3 матриц с нулевой диагональю условие на диагональ можно опустить

Явный вид \mathcal{K}_0

в общем случае

$$\mathcal{K}_0 = \mathcal{S}_+^n + \mathcal{N}^n$$
,

где \mathcal{N}^n — конус поэлементно неотрицательных симметрических n imes n матриц

Teopeма (Diananda 1962)

Равенство $\mathcal{COP}^n=\mathcal{S}^n_++\mathcal{N}^n$ имеет место тогда и только тогда, когда $n\leq 4$.

Усиление релаксации

определим

$$\mathcal{K}_r = \left\{ A \in \mathcal{S}^n \, | \, \left(\sum_{j=1}^n x_j^2 \right)^r \cdot p_A(x) \in \Sigma_{4+2r,n}
ight\}.$$

иерархия релаксаций Паррило $\mathcal{K}_0 \subset \mathcal{K}_1 \dots$

Teopeма (Parrilo 2000)

Пусть $A \in \operatorname{int} \mathcal{COP}^n$. Тогда существует $r \geq 0$ такое, что $A \in \mathcal{K}_{r'}$ для всех $r' \geq r$.

Класс задач

Определение

Множество $K\subset\mathbb{R}^n$ называется базовым полу-алгебраическим если оно задается

$$K = \{x \mid f_i(x) = 0, \ g_j(x) \le 0\}$$

для некоторых полинимов $f_i, g_j: \mathbb{R}^n o \mathbb{R}$.

рассмотрим проблему минимизации полинома на базовом полу-алгебраическом множестве ${\pmb K}$:

$$\min_{x \in K} f_0(x)$$

данные задачи — полиномы f_i, g_j

Коническая формулировка

введем конус $P_{d,K}$, состоящий из полиномов степени, не превосходящей d, которые неотрицательны на базовом полу-алгебраическом множестве K $P_{d,K}$ — конечно-мерный, замкнутый и выпуклый задача запишется в виде

$$\max \tau: \quad f_0(x) - \tau \in P_{d,K},$$

где d — не меньше степени f_0

это коническая программа в *пространстве полиномов* в качестве неизвестных переменных выступают коэффициенты полинома и переменная au

Релаксация задачи

конус $P_{d,K}$ не поддается эффективному описанию введем конус $\Sigma_{d,K}$, состоящий из всех полиномов p(x) степени, не превосходящей d, вида

$$p(x) = \sigma_0(x) + \sum_i p_i(x)f_i(x) - \sum_j \sigma_j(x)g_j(x),$$

где $p_i(x)$ — произвольные полиномы, а $\sigma_0(x),\sigma_j(x)$ — суммы квадратов полиномов

конус $\Sigma_{d,K}$ является внутренней аппроксимацией $P_{d,K}$ аппроксимируем исходную полиномиальную задачу оптимизации конической программой

$$\max \tau : f_0(x) - \tau \in \Sigma_{d,K}.$$

Полу-определенная представимость

коэффициенты

$$p(x) = \sigma_0(x) + \sum_i p_i(x)f_i(x) - \sum_j \sigma_j(x)g_j(x)$$

линейны по σ_0, p_i, σ_j , а конуса, по которым пробегают σ_0, σ_j , полу-определенно представимы

поэтому условие $p \in \Sigma_{d,K}$ полу-определенно представимо, оно эквивалентно конечному набору полу-определенных и линейных ограничений

в итоге релаксация — полу-определенная коническая задача

Усиление релаксации

релаксация может быть усилена, если вместо конуса $\Sigma_{d,K}^r$ использовать конус $\Sigma_{d,K}^r$ полиномов p, удовлетворяющих условию

$$p(x) \cdot \left(\sum_{i=1}^{n} x_i^2\right)^r = \sigma_0(x) + \sum_i p_i(x) f_i(x) - \sum_j \sigma_j(x) g_j(x)$$

это условие слабее, но все еще достаточно для неотрицательности полинома p на K

конус $\Sigma^r_{d,K}$ также полу-определенно представим, и $\Sigma^r_{d,K}\subset P_{d,K}$ релаксации усиливаются и становятся сложнее с ростом d и r

Пример

рассмотрим полиномиальную проблему оптимизации

$$\min x + y : \quad x \ge 0, \ x^2 + y^2 = 1$$

на базовом полу-алгебраическом множестве

$$K = \{(x, y) | x \ge 0, x^2 + y^2 = 1\}$$

пусть d=3 аппроксимируем конус $P_{3,K}$ конусом $\Sigma_{3,K}$ полиномов, представимых в виде

$$p(x,y) = \sigma_0(x,y) + I(x,y)(x^2 + y^2 - 1) + \sigma_1(x,y)x,$$

где σ_0, σ_1 — суммы квадратов линейных полиномов, а I — линейный полином

Представление $\Sigma_{3,K}$

введем вектор мономов $\mathbf{x} = (x,y,1)^T$ тогда $\Sigma_{3,K}$ состоит из полиномов вида

$$p(x,y) = \mathbf{x}^{T} A^{0} \mathbf{x} + \mathbf{I}^{T} \mathbf{x} \cdot (x^{2} + y^{2} - 1) + (\mathbf{x}^{T} A^{1} \mathbf{x}) \cdot x$$

$$= (A_{11}^{1} + I_{x})x^{3} + (2A_{12}^{1} + I_{y})x^{2}y + (A_{11}^{0} + 2A_{13}^{1} + I_{1})x^{2}$$

$$+ (A_{22}^{1} + I_{x})xy^{2} + (2A_{12}^{0} + 2A_{23}^{1})xy + (2A_{13}^{0} + A_{33}^{1} - I_{x})x$$

$$+ I_{y}y^{3} + (A_{22}^{0} + I_{1})y^{2} + (2A_{23}^{0} - I_{y})y + A_{33}^{0} - I_{1},$$

где $\mathsf{I} = (\mathit{I}_x, \mathit{I}_y, \mathit{I}_1)^T \in \mathbb{R}^3$ и $A^0, A^1 \in \mathcal{S}^3_+$ приравниваем p к x+y- au, получаем

$$\max_{A^0,A^1\in\mathcal{S}_+^3}\tau$$
 :

$$A_{11}^{1} + I_{x} = 2A_{12}^{1} + I_{y} = A_{11}^{0} + 2A_{13}^{1} + I_{1} = 0,$$

$$A_{22}^{1} + I_{x} = 2A_{12}^{0} + 2A_{23}^{1} = I_{y} = A_{22}^{0} + I_{1} = 0,$$

$$2A_{13}^{0} + A_{33}^{1} - I_{x} = 2A_{23}^{0} - I_{y} = 1, A_{33}^{0} - I_{1} = -\tau$$

элиминируем часть переменных, получаем

$$\begin{aligned} \max - & (A_{33}^0 + A_{11}^0 + 2A_{13}^1): \\ \begin{pmatrix} A_{11}^0 & A_{12}^0 & A_{13}^0 \\ A_{12}^0 & A_{11}^0 + 2A_{13}^1 & \frac{1}{2} \\ A_{13}^0 & \frac{1}{2} & A_{33}^0 \end{pmatrix} \succeq 0, \\ \begin{pmatrix} A_{11}^1 & 0 & A_{13}^1 \\ 0 & A_{11}^1 & -A_{12}^0 \\ A_{13}^1 & -A_{12}^0 & 1 - A_{11}^1 - 2A_{13}^0 \end{pmatrix} \succeq 0 \end{aligned}$$

решение приводит к оптимальному значению -1, которое является оптимальным также для исходной задачи

Моменты меры

Определение

Пусть $\alpha=(\alpha_1,\dots,\alpha_n)\in\mathbb{N}^n$ — мульти-индекс. Моментом m_α меры μ будем называть значение интеграла

$$m_{\alpha}(\mu) = \int_{\mathbb{R}^n} x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdot \cdots \cdot x_n^{\alpha_n} \mu(x) dx = \int_{\mathbb{R}^n} x^{\alpha} \mu(x) dx.$$

 m_{lpha} является линейным функционалом на пространстве мер его область определения не обязательно совпадает со всем пространством, поскольку интеграл может расходиться для δ -функции $\mu(x)=\delta(x-\hat{x})$ все моменты существуют и равны $m_{lpha}(\mu)=\hat{x}^{lpha}$

Конус моментов

фиксируем d и рассматриваем только моменты m_{α} , для которых степень $|\alpha|=\sum_{i=1}^n \alpha_i$ не превосходит d

их конечное число $N=inom{n+d}{d}$, и они образуют N-мерный вектор моментов $m(\mu)=(m_{lpha}(\mu))_{lpha:|lpha|\leq d}$

Конус моментов $M_d \subset \mathbb{R}^N$ определяется как множество всех векторов, которые представляются как вектор моментов некоторой неотрицательной меры μ .

для подмножества $K\subset\mathbb{R}^n$ определим конус $M_{d,K}\subset\mathbb{R}^N$, состоящий из векторов моментов неотрицательных мер μ с носителем в K

конуса моментов являются *проекциями* конуса неотрицательных мер

Релаксация конуса моментов

найдем необходимые условия на вектор мометнов неотрицательной меры μ

пусть $\mathbf{x}=(1,x_1,\dots,x_n,x_1^2,x_1x_2,\dots,x_n^{[d/2]})^T$ — вектор мономов x^{α} , для которых степень $|\alpha|$ не превосходит целую часть от $\frac{d}{2}$

тогда все элементы одноранговой матрицы $\mathbf{x}\mathbf{x}^T$ являются мономами со степенью, не превосходящей d

элементы матрицы

$$\int_{\mathbb{R}^n} \mathbf{x} \mathbf{x}^T \mu(\mathbf{x}) \, d\mathbf{x} \succeq \mathbf{0}$$

равны неким элементам вектора моментов $m(\mu)$

отсюда получаем полу-определенное ограничение на вектор моментов

Случай с носителем в K

пусть $K=\{x\in\mathbb{R}^n\,|\,f_i(x)=0,\;g_j(x)\leq 0\}$ — базовое полу-алгебраическое множество, а μ — неотрицательная мера с носителем в K

для любого полинома p интеграл

$$\int_{K} p(x)f_{i}(x)\mu(x) dx = 0$$

выражается через линейную комбинацию моментов получаем линейное ограничение типа равенства на вектор моментов $m(\mu)$

если полином p(x) пробегает все мономы x^{β} степени $|\beta| \leq d-d_i$, где $d_i=\deg f_i$, то мы получим максимальный линейно независимый набор ограничений на моменты до степени d

пусть $d_j = \deg g_j$ образуем вектор \mathbf{x}' всех мономов степени, не превосходящей целую часть от $\frac{d-d_j}{2}$

каждый элемент интеграла

$$-\int_{K} \mathbf{x}'(\mathbf{x}')^{\mathsf{T}} g_{j}(x) \mu(x) dx \succeq 0$$

представляется в виде линейной комбинации моментов степени $\leq d$

получаем полу-определенное ограничение на $extbf{ extit{m}}(\mu) \in extbf{ extit{M}}_{ extbf{ extit{d}},K}$

Моментная релаксация

рассмотрим задачу

$$min_{x \in K} f_0(x)$$
,

где $f_0 = \sum_{\alpha} c_{\alpha} x^{\alpha}$, deg $f_0 \leq d$, K — базовое полу-алгебраическое множество

эквивалентно получаем коническую задачу

$$\min_{\mu \geq 0: \operatorname{supp} \mu \subset K} \int_{\mathbb{R}^n} f_0(x) \mu(x) \, dx = \sum_{\alpha} c_{\alpha} m_{\alpha}(\mu) :$$

$$\int_{\mathbb{R}^n} \mu(x) \, dx = m_0(\mu) = 1$$

или

$$\min_{m \in M_{d,K}} \sum_{\alpha} c_{\alpha} m_{\alpha} : \quad m_0 = 1$$

заменив включение $m \in M_{d,K}$ полу-определенными и

Пример

рассмотрим снова проблему

$$\min x + y: \quad x \ge 0, \ x^2 + y^2 - 1 = 0$$

при d=3 вектор моментов будет 10-мерным релаксация запишется в виде

$$\min m_{10} + m_{01}: \begin{pmatrix} m_{00} & m_{10} & m_{01} \\ m_{10} & m_{20} & m_{11} \\ m_{01} & m_{11} & m_{02} \end{pmatrix} \succeq 0,$$

$$m_{20} + m_{02} - m_{00} = m_{30} + m_{12} - m_{10} = m_{21} + m_{03} - m_{01} = 0,$$

$$\begin{pmatrix} m_{10} & m_{20} & m_{11} \\ m_{20} & m_{30} & m_{21} \\ m_{11} & m_{21} & m_{12} \end{pmatrix} \succeq 0, \ m_{00} = 1$$

решение также дает оптимальное значение -1

Параметризация

в тригонометрическом полиноме независимой переменной выступает либо угол $\phi \in [-\pi,\pi]$, либо комплексная величина $z=e^{i\phi}$, принимающая значения на единичном круге $\mathbb T$ в первом случае полином — 2π -периодическая функция на $\mathbb R$, во втором — конечный ряд Лорана по переменной z

тригонометрические полиномы сводятся к обычным заменой независимой переменной

$$\cos \phi = \frac{z + \bar{z}}{2} = \frac{1 - t^2}{1 + t^2}, \ \sin \phi = \frac{z - \bar{z}}{2i} = \frac{2t}{1 + t^2}, \ t \in \mathbb{R} \cup \{\infty\}$$

в приложениях тригонометрические полиномы часто матрично-значные

Положительность

полином степени d имеет общий вид

$$p(\phi) = \sum_{k=-d}^{d} A_k e^{ik\phi} = \sum_{k=-d}^{d} A_k z^k,$$

где $A_{-k} = A_k^*$ для всех $k = 0, \ldots, d$, A_k — матрицы размера $n \times n$, A^* — эрмитово сопряженная (комплексно сопряженная транспонированная) к A

полином принимает значения в пространстве \mathcal{H}^n эрмитовых матриц размера n $(\mathcal{H}^1=\mathbb{R})$

p неотрицательный, если $p(\phi) \succeq 0$ для всех ϕ множество неотрицательных полиномов степени $\leq d$ является выпуклым конусом

Полу-определенное представление

Теорема

Пусть $p(\phi) = \sum_{k=-m}^m A_k e^{ik\phi}$ — тригонометрический полином. Полином р является неотрицательным тогда и только тогда, когда существует эрмитовая неотрицательно определенная матрица $\mathbf{A} \in \mathcal{H}_+^{n(m+1)}$ такая, что $A_k = \sum_{i-j=k} A_{ij}$, где A_{ij} , $i,j=0,\ldots,m$ — блоки матрицы \mathbf{A} размера \mathbf{n} .

Блочно-теплицевые матрицы

Лемма

Пусть $T \in \mathcal{H}^{n(m+1)}_+$ — неотрицательно определенная блочно-теплицевая эрмитова матрица с блоками размера п. Тогда T представляется в виде суммы неотрицательно определенных блочно-теплицевых матриц ранга 1.

Двойственность между полиномами и матрицами

Лемма

Пусть
$$p(\phi) = \sum_{j=-m}^m A_j e^{ij\phi}$$
 — положительный тригонометрический матричный полином, а $T \in \mathcal{H}_+^{n(m+1)}$ — блочно-теплицевая матрица с блоками $T_{-m}, \ldots, T_m \in \mathcal{H}^n$. Тогда $\sum_{j=-m}^m \langle A_j, T_j \rangle \geq 0$. В частности, существует такая матрица $\mathbf{A} \in \mathcal{H}_+^{n(m+1)}$, состоящая из $n \times n$ блоков A_{ij} , $i,j=0,\ldots,m$, что $A_k = \sum_{i-j=k} A_{ij}$.

если rk T>1, то T можно разложить в сумму матриц ранга 1 если rk T=1, то $T_j=z^jxx^T$, $\sum_{j=-m}^m \langle A_j, T_j \rangle = x^T (\sum_{j=-m}^m A_jz^j)x \geq 0$

второе утверждение — следствие двойственности

Представление в виде сумм квадратов

пусть p — положительный тригонометрический полином, а $\mathbf{A}\succeq 0$ — соответствующая матрица

факторизуя $\mathbf{A}=\mathbf{B}\mathbf{B}^*$ и разбивая фактор $\mathbf{B}\in\mathbb{C}^{n(m+1) imes I}$ на блоки $B_0,\dots,B_m\in\mathbb{C}^{n imes I}$, получаем

$$p(\phi) = \left(\sum_{k=0}^{m} B_k e^{ik\phi}\right) \left(\sum_{k=0}^{m} B_k e^{ik\phi}\right)^*$$

т.е. р — матричный эрмитовый квадрат