Lemma 0.1. Let q be a prime power, and $d \leq q-1$. Then there exists a collection of sets $S_1, ..., S_m \subseteq [q^{l+1}]$ such that $|S_i| = q$ for all i and $|S_i \cap S_j| < d$ for $i \neq j$ and $m = q^{dl}$.

Proof. Let $f: \mathbb{F}_q \to \mathbb{F}_q^l$ such that $f(x) = (f_1(x), ..., f_k(x))$ where each f_i is a degree d-1 polynomial over \mathbb{F}_q . Then each f corresponds to a set of l+1-tuples, $S_f = \{(x, f_1(x), ..., f_k(x)) \mid x \in \mathbb{F}_q\}.$

 $S_f = \{(x, f_1(x), ..., f_k(x)) \mid x \in \mathbb{F}_q\}.$ If $g \neq f$, then the sets S_f and S_g intersect at most d-1 points since the equation $f_1(x) = g_1(x)$ already has at most d-1 solutions in $x \in \mathbb{F}_q$. We can relabel S_f by associating $i \in [q^{l+1}]$ to each $f : \mathbb{F}_q \to \mathbb{F}_q^l$. There are q^d distinct polynomials over \mathbb{F}_q of degree d-1, so there are $(q^d)^l$ distinct sets of (l+1)-tuples that satisfy the above property. Hence, we can construct a collection of sets $S_1, ..., S_{q^{dl}}$ such that $|S_i| = q$ for all i and $|S_i \cap S_j| < d$ for $i \neq j$.

Corollary 0.2. The upper bounds on 0-sensitivity of our graph properties are tight.

Proof. For $s^0(f)$ of our first graph property (Theorem 3.2), let q be the prime power between k+1 and 2(k+1), $l=\lfloor \log_q(v)-1\rfloor \geq \log_q(v)-2$ and d=i. Then we have $m=q^{dl}\geq \Omega(v^iq^{-2i})=\Omega(v^i)$ many sets $S_1,...,S_m$ such that $S_i\cap S_j< d$.

For second graph property (Theorem 4.2), let q be the prime power between $0.5v^t$ and v^t , l=1/t-1. Then we have $m=q^{dl} \geq \Omega(v^iq^{-2i}) = \Omega(v^{i(1-t)})$ many sets $S_1, ..., S_m$ such that $S_i \cap S_j < d$.