SUMMARY: Properties of R2

- R² falls between 0 and 1. The larger the value, the better the explanatory variables collectively predict y.
- **R**² = 1 only when all residuals are 0, that is, when all regression predictions are perfect (each $y = \hat{y}$), so residual SS = $\sum (y \hat{y})^2 = 0$.
- **R**² = 0 when each $\hat{y} = \bar{y}$. In that case, the estimated slopes all equal 0, and the correlation between y and each explanatory variable equals 0.
- R² gets larger, or at worst stays the same, whenever an explanatory variable is added to the multiple regression model.
- The value of R^2 does not depend on the units of measurement.

SUMMARY: F Test That All the Multiple Regression β Parameters = 0

1. Assumptions:

- Multiple regression equation holds
- Data gathered using randomization
- Normal distribution for y with same standard deviation at each combination of predictors.

2. Hypotheses:

$$H_0$$
: $\beta_1 = \beta_2 = ... = 0$ (all the beta parameters in the model = 0)

 H_a : At least one β parameter differs from 0.

- **3. Test statistic:** F = (mean square for regression)/(mean square error)
- 4. P-value: Right-tail probability above observed F test statistic value from F distribution with

 df_1 = number of explanatory variables,

 $df_2 = n$ – (number of parameters in regression equation).

5. Conclusion: The smaller the P-value, the stronger the evidence that at least one explanatory variable has an effect on y. If a decision is needed, reject H₀ if P-value ≤ significance level, such as 0.05. Interpret in context.

SUMMARY: Significance Test About a Multiple Regression Parameter (such as β_1)

1. Assumptions:

- Each explanatory variable has a straight-line relation with μ_y, with the same slope for all combinations of values of other predictors in model
- Data gathered with randomization (such as a random sample or a randomized experiment)
- Normal distribution for y with same standard deviation at each combination of values of other predictors in model

2. Hypotheses:

$$H_0: \beta_1 = 0$$

$$H_a$$
: $\beta_1 \neq 0$

When H_0 is true, y is independent of x_1 , controlling for the other predictors.

- **3. Test statistic:** $t = (b_1 0)$ /se. Software supplies the slope estimate b_1 , its se, and the value of t.
- 4. P-value: Two-tail probability from t distribution of values larger than observed t test statistic (in absolute value). The t distribution has

$$df = n$$
 – number of parameters in regression equation

(such as df = n - 3 when $\mu_y = \alpha + \beta_1 x_1 + \beta_2 x_2$, which has three parameters).

Conclusion: Interpret P-value in context; compare to significance level if decision needed.

SUMMARY: The Process of Multiple Regression

Steps should include:

- 1. Identify response and potential explanatory variables
- Create a multiple regression model; perform appropriate tests (F and t) to see if and which explanatory variables have a statistically significant effect in predicting y
- 3. Plot y versus \hat{y} for resulting models and find R and R^2 values
- 4. Check assumptions (residual plot, randomization, residuals histogram)
- 5. Choose appropriate model
- 6. Create confidence intervals for slope
- 7. Make predictions at specified levels of explanatory variables
- 8. Create prediction intervals