#### **README: Climate Data and Visualization for EM**

03/22/2021

Zexuan Xu, Satyarth Praveen, Erica Woodburn, Haruko Wainwright, Ken Williams
Lawrence Berkeley National Laboratory

Carol Eddy-Dilek, Emily Fabricatore, David Werth Savannah River National Laboratory

## Overview

This folder includes the climate datasets (historical/projection) and visualization for the 8 DOE-EM sites that were deemed to have some level of potential risk associated with future climate change in terms of altering system performance and/or exceeding design requirements. We use the Coupled Model Intercomparison Project (CMIP) climate models (Taylor et al., 2012), which are the standard global climate model ensembles used in the US Global Change Research Program and the Intergovernmental Panel on Climate Change (IPCC). Both historical and future projection datasets (Thrasher et al., 2012) are downscaled to 28 km (0.25 degree) from the coarser 1-degree resolution GCM output.

We define the risk score based on the historical mean, projected mean, and historical standard deviation, when the climate metrics follow a statistically normal distribution, following the approach of Werth (2016). When the distribution is skewed, we define the risk score based on the distribution quantile.

### **Detailed information**

- Data source:
  - https://developers.google.com/earth-engine/datasets/catalog/NASA\_NEX-GDDP#image-properties
- Scripts and tools we used to download the datasets: https://pypi.org/project/climate-resilience/
- Climate scenarios:
  - Historical (1950-2005, referred as "historical" in our dataset)
  - Projection RCP4.5 (2006-2099, referred as "rcp45" in our dataset)
  - o Projection RCP8.5 (2006-2099, referred as "rcp85" in our dataset)
- Climate models: 21 global climate models, including 'ACCESS1-0', 'bcc-csm1-1',
   'BNU-ESM', 'CanESM2', 'CCSM4', 'CESM1-BGC', 'CNRM-CM5', 'CSIRO-Mk3-6-0',
   'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M', 'inmcm4', 'IPSL-CM5A-LR',
   'IPSL-CM5A-MR', 'MIROC-ESM', 'MIROC-ESM-CHEM', 'MIROC5', 'MPI-ESM-LR',
   'MPI-ESM-MR', 'MRI-CGCM3', 'NorESM1-M'
- Climate variables:
  - Average annual total precipitation (mm/day)
  - Average daily maximum two-meter surface temperature (tasmax, Celsius degree)

- Extreme precipitation days, defined as the number of days with precipitation in the top 1% of all days having recordable precipitation (EPA definition)
- Maximum daily precipitation (mm/day), defined as the maximum daily precipitation in each year
- Standardized Precipitation-Evapotranspiration Index (SPEI), which is diagnostic of drought severity
- Growing degree days (will be available soon)
- Extreme degree days (will be available soon)
- Heating degree days (will be available soon)
- Cooling degree days (will be available soon)
- Wildfire (will be available soon)
- Flooding (will be available soon if historical data can be found that is of relevance to the study)
- Impacts to groundwater elevation (will be available soon if historical data can be found that is of relevance to the study)

#### Climate metrics:

- Hist\_mean: The mean of each climate variable over 56 years of the historical period (1950-2005)
- Hist\_std: The standard deviation of each climate variable over 56 years of the historical periods
- 1990\_2019\_mean: The mean of each climate variable over the recent 30 years (1990-2019). The period of 1990-2005 uses the "historical" scenario, the period of 2007-2019 uses the "rcp85" scenario.
- Rcp45\_mean: The mean of each climate variable over the 94 years of the rcp45 scenarios (2006-2099)\*
- Rcp45\_max: The maximum of each climate variable over the 94 years of the rcp45 scenarios (2006-2099)\*\*
- Rcp85\_mean: The mean of each climate variable over the 94 years of the rcp45 scenarios (2006-2099)
- Rcp85\_max: The maximum of each climate variable over the 94 years of the rcp45 scenarios (2006-2099)
- Risk\_rcp45: The risk index of each climate variable in the rcp45 scenario compared to the historical period. The risk index is defined as the z-score, which is computed as (rcp45\_mean - hist\_mean)/hist\_std. The risk index is quantified as \*\*\*
  - Risk\_index < 0, labeled as 0 or "no risk" (rcp45\_mean < hist\_mean)
  - 0<Risk\_index<1, labeled as 1 or "low" (hist\_mean < rcp45\_mean < hist\_mean + 1\* hist\_std)</li>
  - 1<risk\_index<2, labeled as 2 or "medium" (hist\_mean + 1\* hist\_std < rcp45 mean < hist mean + 2\* hist std)
  - Risk\_index > 2, labeled as 3 or "high" (rcp45\_mean > hist\_mean + 2\*hist\_std)
- o Risk\_rcp85: Same for risk\_rcp45, but with rcp85\_mean for rcp85 scenario.

#### Exceptions:

- \* The rcp26\_mean and rcp26\_max are presented because our SPEI dataset only has historical, rcp26 and rcp85 scenarios
- \*\* The minimum value is reported here for SPEI because negative value indicates drier condition by the definition of SPEI.
- \*\*\* For the extreme precipitation days and maximum daily precipitation, we used the median value because these two climate variables are not normally distributed. The risk\_index is computed by the median, 70 percentile and 95 percentile of the historical period to be consistent with the risk index for other variables
  - Risk index < 0, labeled as 0 or "no risk" (rcp45 median < hist median)
  - 0<Risk\_index<1, labeled as 1 or "low" (hist\_median < rcp45\_median < hist\_70percentile)</li>
  - 1<risk\_index<2, labeled as 2 or "medium" (hist\_70percentile < rcp45\_median < hist\_95percentile)
  - Risk index > 2, labeled as 3 or "high" (rcp45 median > hist 95percentile)

#### Calculation methods:

- The ensemble mean among 21 climate models are calculated and reported (for average total precipitation, average daily maximum temperature and average SPEI)
- For extreme precipitation days and maximum daily precipitation, the climate variables are computed for each individual climate model first, then the mean of those ensemble models are reported. This is because the daily extreme precipitation will be diminished if ensemble mean is used for computing those variables directly.
- Sites: Please see the appendix at the end of this README, and please refer to the EMsites\_handoff.csv file for more information
- File organization:
  - LMsites handoff.csv
  - annual average tmax stats.csv
  - annual\_total\_precipitation\_stats.csv
  - drought\_index\_stats.csv
  - extreme precipitation days stats.csv
  - maximum\_daily\_precipitation\_stats.csv
  - o One directory per site
    - Aggregated climate metrics in the historical and projection periods for five climate variables in csv format (stat\_matrix.csv)
    - Color-coded risk\_index in HTML format (stat\_matrix\_static\_colors.html, you may need to download it and open with any browser)
    - Visualization of annual total precipitation (annual\_total\_precipitation\_timeseries.png)

- Visualization of annual average Tmax (annual\_average\_tmax\_timeseries.png)
- Visualization of extreme precipitation days (extreme\_precipitation\_days\_timeseries.png)
- Visualization of maximum daily precipitation (maximum\_daily\_precipitation\_timeseries.png)
- Visualization of drought index (drought index timeseries.png)

# **Examples**

All table and figures are shown in Ambrosia Lake, NM site (This is an LM sites):

Table 1. Color-coded risk index for five climate variables in RCP45 and RCP85 scenarios

|                                      | hist_mean | hist_std | 1990_2019_mean | rcp45_mean | rcp45_max | rcp85_mean | rcp85_max | risk_rcp45 | risk_rcp85 |
|--------------------------------------|-----------|----------|----------------|------------|-----------|------------|-----------|------------|------------|
| Annual precipitation (mm/day)        | 0.83      | 0.04     | 0.81           | 0.86       | 1.01      | 0.83       | 0.93      | low        | low        |
| Extreme precipitation day            | 1.11      | 1.11     | 1.15           | 1.42       | 5.71      | 1.42       | 5.62      | low        | low        |
| Annual avg Tmax (C)                  | 18.71     | 0.39     | 19.43          | 21.17      | 22.82     | 22.26      | 26.38     | high       | high       |
| Maximum Daily Precipitation (mm/day) | 28.81     | 12.74    | 28.56          | 30.35      | 83.21     | 29.45      | 71.09     | low        | low        |
| SPEI                                 | -0.02     | 0.33     | -0.13          | -0.38      | -1.03     | -0.70      | -1.62     | medium     | high       |



Figure 1. The trend of annual total precipitation (mm/day) in historical and projection periods at the Ambrosia Lake, NM site. This is the average among multiple models.



Figure 2. The trend of daily maximum two-meter surface temperature (tasmax, Celsius degree) in historical and projection periods at the Ambrosia Lake, NM site.



Figure 3. The trend of extreme precipitation days in historical and projection periods at the Ambrosia Lake, NM site.



Figure 4. The trend of maximum daily precipitation (mm/day) in historical and projection periods at the Ambrosia Lake, NM site.



Figure 5. The trend of SPEI in historical and projection periods at the Ambrosia Lake, NM site.

## References:

Taylor, K. E., Stouffer, R. J., & Meehl, G. A., 2012: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1 Thrasher, B., Maurer, E. P., McKellar, C., & Duffy, P. B., 2012: Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrology and Earth System Sciences, 16(9), 3309-3314. <a href="doi:10.5194/hess-16-3309-2012">doi:10.5194/hess-16-3309-2012</a> Werth, D., (2016), Climate Change Resilience Planning at the Savannah River Site, Part 2, SRNL-STI-2016-00601