Homework Assignment 1

Due: 16:00pm Tuesday, Feb. 7, 2023

Problem 1. Find the inverse Fourier transforms of G(f) for the spectra in Figure 1 (a) and (b).

Note: $G(f) = |G(f)|e^{j\angle G(f)}$.

Assignment Project Exam Help

Figure 1: Signals for Problem 1.

Problem 2. Find the Fourier transforms of the signals $g_1(t)$ and $g_2(t)$ in Figure 2 using either the definition of Fourier Transform or the properties of Fourier Transform together with the table of Fourier transform pairs postell on the course website.

Figure 2: Signals for Problem 2.

Problem 3. a) Prove the following result via properties of Fourier transform: For any signal g(t) with Fourier transform G(f), we have

$$g(t)\sin(2\pi f_c t) \rightleftharpoons \frac{1}{2j}[G(f - f_c) - G(f + f_c)].$$

b) Using the result in (a), please find the Fourier transform of the time-domain signal

$$s(t) = [2 + \cos(2\pi f_0 t)] \sin(200\pi t),$$

where $f_0 > 0$. Draw the spectra.

Note: Consider different ranges of f_0 .

Problem 4. (Haykin & Moher Problem 2.20 with revision) Any function g(t) can be split unambiguously into an *even part*, $g_e(t)$, and an *odd part*, $g_o(t)$, as shown by

$$g(t) = g_e(t) + g_o(t),$$

where

$$g_e(t) = \frac{1}{2} [g(t) + g(-t)], \quad g_o(t) = \frac{1}{2} [g(t) - g(-t)].$$

- a) Evaluate the even and odd parts of u(t).
- **b)** What are the Fourier transforms of these two parts and the Fourier transform of u(t)?

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs