

COS'È UNA ZKP? (ZERO-KNOWLEDGE PROOF)

Una ZKP permette al **Prover** di convincere il **Verifier** che conosce un segreto **senza rivelarlo né inviare la password**.

Nel nostro progetto usiamo lo schema di identificazione di Schnorr (gruppi modulari).

Setup (una tantum)

- Scegliamo parametri globali: primo sicuro p, ordine q con $q \mid (p-1)$, generatore g di ordine q.
- L'utente ha una chiave segreta x (derivata dalla password, es. x=H(password || user_id)mod q).
- Chiave pubblica: $y=g^x mod p$.

Protocollo (login)

- 1. Impegno: Prover sceglie $\mathbf{r} \leftarrow \{1, ..., \mathbf{q} 1\}$ e invia $\mathbf{t} = \mathbf{g}^{\mathbf{r}} \mod \mathbf{p}$.
- 2. Sfida: Verifier invia una sfida casuale $c \leftarrow \{1, ..., q-1\}$.
- 3. Risposta: Prover calcola $s = r + c \cdot x \pmod{q}$ e invia s.
- 4. Verifica: Verifier accetta se $g^s \equiv t \cdot y^c \pmod{p}$.

COS'È UNA ZKP? (ZERO-KNOWLEDGE PROOF)

Perché è "zero-knowledge"?

• Victor vede solo (t = commitment, c = challenge, s = response) e verifica la relazione; non può ricavare x (presuppone la difficoltà del logaritmo discreto).

Nota importante (niente cifratura)

• **ZKP** ≠ **cifratura**: non "crittiamo/decrittiamo" la password. La password serve solo a **derivare** x; la prova usa sole esponenziazioni modulari.

Variante non interattiva (Fiat-Shamir)

Opzionale: si può sostituire la sfida con $\mathbf{c} = \mathbf{H}(\mathbf{t} \parallel \mathbf{user}_{-\mathbf{id}} \parallel \mathbf{nonce})$ per eliminare il round-trip, mantenendo la stessa verifica (usato in blockchain e sistemi distribuiti, dove non c'è un verificatore dedicato).

COS'È UNA ZKP? (ZERO-KNOWLEDGE PROOF)

Mini-esempio

```
p = 23, q = 11, g = 2, x = 4 \Rightarrow y = g^x = 16 \mod 23
```

Peggy: $r = 7 \Rightarrow t = g^r = 13 \mod 23$

Victor: c = 5

Peggy: $s = r + c \cdot x \mod q = 7 + 5 \cdot 4 = 27 \equiv 5 \mod 11$

Verifica: $g^s = 2^5 = 32 \equiv 9$, $t \cdot y^c = 13 \cdot 16^5 \equiv 9 \pmod{23} \Rightarrow accetta$.

TECNOLOGIE E STRUMENTI

- •Python 3.9+
 - Librerie create:
 - o zkp_core.py
 - o crypto_utils.py
 - Librerie usate:
 - Streamlit
 - JWT tokens

- Docker
 - oMongoDB
 - ∘MailHog

RUOLI DEGLI ATTORI

• Attori Principali

