

Solving the Ramsey Model

NumEcon

Jeppe Druedahl Autumn 2018

Plan

1. Introduction

2. Model

3. Solution algorithm

4. Example

Introduction

Introduction

- Subject: Solve the Ramsey model numerically (using Python)
- NumEcon module (under construction)
 - 1. Source files: GitHub.com
 - 2. Interactive version: MyBinder.org
- Today:
 - 1. Notebook: course_macro3\Ramsey.ipynb
 - 2. Code: numecon\course_macro3\Ramsey.py
- Python introduction: misc\Python in 15 Minutes.ipynb

Model

Model

- Households (of measure 1):
 Own capital, supply labor and consume.
- Firms: Rent capital and hire labor to produce.
- Variables:
 - 1. Capital: K_t
 - 2. Labor supply: L_t
 - 3. Output: Y_t
 - 4. Consumption: C_t
- Per worker: $k_t \equiv K_t/L_t$, $y_t \equiv Y_t/L_t$ and $c_t \equiv C_t/L_t$
- Prices are taken as given by households and firms
 - 1. r_t , rental rate on capital
 - 2. w_t , wage rate
- Net return factor on capital: $R_t \equiv 1 + r_t \delta$ where $\delta > 0$ is the depreciation rate

Households I

- Inealastically supply labour, $L_t = 1$
- Maximize the discounted sum of utility from consumption

$$\max_{\{c_t\}_{t=0}^\infty} \sum_{t=0}^\infty \beta^t u(c_t), \ u'>0, u''<0$$

under the constraints

$$k_{t+1} = R_t k_t + w_t - c_t$$

$$\lim_{t \to \infty} \mathcal{R}_t^{-1} k_t \ge 0$$

$$\mathcal{R}_t = \prod_{j=0}^t R_j$$
 k_0 givet

and given time paths for $\{R_t\}_{t=0}^{\infty}$ and $\{w_t\}_{t=0}^{\infty}$

Households II

- Optimal behavior imply the Euler-equation $\frac{u'(c_t)}{u'(c_{t+1})} = \beta R_{t+1}$
- CRRA utility: $u(c_t) = \frac{c_t^{1-\sigma}}{1-\sigma}, \sigma > 0$
 - 1. Euler-equation

$$c_{t+1} = (\beta R_{t+1})^{1/\sigma} c_t$$

2. Consumption function

$$c_0 = \frac{1}{\theta} [R_0 k_0 + h_0]$$

$$h_0 \equiv \sum_{t=0}^{\infty} \mathcal{R}_t^{-1} w_t$$

$$\theta \equiv \sum_{t=0}^{\infty} (\beta^t \mathcal{R}_t)^{1/\sigma} \mathcal{R}_t^{-1}$$

Firms

- Production function: $Y_t = F(K_t, L_t) = f(k_t)L_t$ where F is neoclassical
- Maximize profits

$$\max_{K_t, L_t} f(k_t) L_t - r_t K_t - w_t L_t =$$

• The first order conditions imply

$$f'(k_t) = r_t$$

$$f(k_t) - f'(k_t)k_t = w_t$$

Low-of-motion

• The **law-of-motion**, $(k_{t+1}, c_{t+1}) = \Gamma(k_t, c_t)$, is given by the solution to the equation system

$$k_{t+1} = k_t(1-\delta) + f(k_t) - c_t$$

$$\frac{u'(c_t)}{u'(c_{t+1})} = \beta(1 + f'(k_{t+1}) - \delta)$$

• Curves (loci) where k or c is constant

1.
$$k: \{(k,c) | c = f(k) - \delta k\}$$

2.
$$c: \{(k,c) | 1 = \beta(1+f'(k)-\delta)\}$$

Solution algorithm

Find steady state

- In steady state:
 - 1. capital, k^* , solves

$$\beta(1+f'(k^*)-\delta)=1$$

2. consumption, c^* , then equals

$$c^* = f(k^*) - \delta k^*$$

• Cobb-Douglas:

$$k^* = \left(\frac{\frac{1}{\beta} - 1 + \delta}{\alpha}\right)^{\frac{1}{\alpha - 1}}$$

Find initial consumption, c_0

- 1. Choose initial capital $k_0 > 0$ and tolerance level $\tau > 0$
- 2. Set initial bounds as $(\underline{c}_0, \overline{c}_0) =$ $\begin{cases} (0, f(k_0) \delta k_0) & \text{if } k_0 < k^* \\ (f(k_0) \delta k_0, f(k_0) + k_0 \delta k_0) & \text{if } k_0 \ge k^* \end{cases}$
- 3. Set $c_0 = (\underline{c}_0 + \overline{c}_0)/2$ and $c = c_0$ and $k = k_0$
- 4. **Update** using the law-of-motion: $(k, c) = \Gamma(k, c)$

a. If
$$\sqrt{(c^*-c)^2+(k^*-k)^2} < \tau$$
 stop

b. If $k_0 \leq k^*$ then

If
$$c \le c^* \land k \le k^*$$
 go to step 4
If $k > k^*$ set $\underline{c}_0 = c_0$ and go to step 3
If $c > c^*$ set $\overline{c}_0 = c_0$ and go to step 3

c. If $k_0 > k^*$ then

If
$$c \geq c^* \land k \geq k^*$$
 go to step 4
If $k < k^*$ set $\overline{c}_0 = c_0$ and go to step 3
If $c < c^*$ set $\underline{c}_0 = c_0$ and go to step 3

Example

Calibration

- 1. $f(k_t) = k_t^{\alpha}$ (Cobb-Douglas)
- 2. $\beta = 0.96$
- 3. $\sigma = 2$
- 4. $\alpha = 1/3$
- 5. $\delta = 0.10$
- 6. $k_0 = 1$
- 7. $\tau = 10^{-6}$

Phase diagram

Time profiles

Diverging paths

