## (12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro



## 

(43) Internationales Veröffentlichungsdatum 14. April 2005 (14.04.2005)

**PCT** 

(10) Internationale Veröffentlichungsnummer WO 2005/034171 A2

(51) Internationale Patentklassifikation7:

\_ \_ \_

H01L

(21) Internationales Aktenzeichen:

PCT/EP2004/010916

(22) Internationales Anmeldedatum:

30. September 2004 (30.09.2004)

(25) Einrelchungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 45 736.4

1. Oktober 2003 (01.10.2003) DE

(71) Anmelder und

(72) Erfinder: NÄGEL, Wolf [DE/DE]; Zum Hedelsberg 111, 50999 Köln (DE). (74) Anwälte: VON KIRSCHBAUM, Alexander usw.; Deichmannhaus am Dom, Bahnhofsvorplatz 1, 50667 Köln (DB).

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

[Fortsetzung auf der nächsten Seite]

(54) Title: PHOTOVOLTAIC ELEMENT

(54) Bezeichnung: PHOTOVOLTAIKELEMENT



(57) Abstract: A photovoltaic element, in particular, of application as solar cell for photovoltaic units, comprises a photon absorber (10). An electrically-conducting working element (12) is at least partly embedded in the photon absorber (10). The working element (12) is separated from the photon absorber (10) by means of a phase boundary. The working element (12) further comprises a higher electron mobility than the photon absorber (10). It was surprisingly discovered that the efficacy of said photovoltaic element is greatly increased.

[Fortsetzung auf der nächsten Seite]