Белорусский государственный университет информатики и радиоэлектроники Кафедра интеллектуальных информационных технологий

Лабораторная работа № 2 «Операции над множествами»

Выполнили (студенты группы 121703): Тарбая Данила Рутковский Александр Якимович Илья Проверила: Гулякина Н. А.

Постановка задачи

Даны два множества. Найти их пересечение, объединение, разность, симметричную разность, декартово произведение, дополнение. Множества задаются перечислением или высказыванием.

Уточнение постановки задачи

- 1. Мощности множеств A и B натуральные числа, которые находятся в диапазоне от 0 до 100 и задаются пользователем.
- 2. Элементы множества А и В являются натуральными числами в диапазоне от 0 до 100 и задаются пользователем.
- 3. Пользозователь выбирает выполняемую операцию.
- 4. Множества могут быть заданы перечислением.
- 5. Множества могут быть заданы высказываниями:

A = {a|a
$$\in N$$
, $a = x^2 - 2x + 9$, $x = \overline{1, n}$ }
B = {b|b $\in N$, $b = x^2 + 7x + 1$, $x = \overline{1, n}$ }

6. Элементами универсального множества U для множества A и B являются натуральные числа на интервале от 1 до 100.

Используемые понятия

- **Множество** это любое собрание определенных и различных между собой объектов нашей интуиции или интеллекта, мыслимое как единое целое. Эти объекты элементы множества;
- Мощность множества это количество элементов во множестве;
- Объединение множеств это множество, которое состоит из тех элементов, которые принадлежат хотя бы одному из множеств A, B;
- **Пересечение множеств** это множество, которое состоит из тех элементов, которые принадлежат множеству A и множеству B одновременно;
- Разность множеств множество, в которое входят все элементы первого множества, не входящие во второе множество.
- Симметрическая разность множество, включающее все элементы исходных множеств, не принадлежащие одновременно обоим исходным множествам.
- Декартово произведение множество, элементами которого являются все возможные упорядоченные пары элементов исходных множеств.
- Множество A' называется **дополнением** множества A до некоторого универсального множества U, если оно состоит из элементов, принадлежащих множеству U и не принадлежащих множеству A.
- Кортеж упорядоченный набор компонент (элементов).

Алгоритм

- 1. Пользователь выбирает способ задания множеств
 - 1.1. Если пользователь выбирает способ задания множеств перечислением:
 - 1.1.1. Переходим к пункту 2.
 - 1.2. Если пользователь выбирает способ задания множество высказыванием:
 - 1.2.1. Переходим к пункту 3
- 2. Задание множеств перечислением
 - 2.1. Пользователь задает множество А перечислением:
 - 2.1.1. Пользователь вводит мощность множества А.
 - 2.1.2. Пользователь вводит элементы множества А.
 - 2.2. Пользователь задает множество В перечислением.
 - 2.2.1. Пользователь вводит мощность множества В.
 - 2.2.2. Пользователь вводит элементы множества В.
- 3. Задание множеств высказыванием
 - 3.1. Задаем множества А высказыванием
 - 3.1.1. Пользователь вводит n мощность множества A
 - 3.1.2. Присваиваем значение x = 1 (для множества A).
 - 3.1.3. Вычисляем значение а по формуле $\mathbf{a} = x^3 4x + 9$, подставляя текущее значение \mathbf{x} .
 - 3.1.4. Переносим значение а во множество А.
 - 3.1.5. Если значение х больше или равно n, то переходим к пункту 3.1.8
 - 3.1.6. Увеличиваем х на 1.
 - 3.1.7. Переходим к пункту 3.1.3.
 - 3.1.8. А множество, заданное высказыванием.
 - 3.1.9. Выведем на экран множество А.
 - 3.2. Задаем множество В высказыванием
 - 3.2.1. Пользователь вводит m мощность множества В.
 - 3.2.2. Присваиваем значение x=1 (для множества В).
 - 3.2.3. Вычисляем значение b по формуле $\mathbf{b} = x^2 + 7x + 1$, подставляя текущее значение \mathbf{x} .
 - 3.2.4. Переносим значение b во множество В.
 - 3.2.5. Если значение х больше или равно m, то переходим к пункту 3.2.8.
 - 3.2.6. Увеличиваем х на 1.
 - 3.2.7. Переходим к пункту 3.2.3.
 - 3.2.8. В множество, заданное высказыванием.
 - 3.2.9. Выведем на экран множество В.

4. Ввод данных:

- 4.1. Пользователь задает мощность множества А.
- 4.2. Пользользователь задает множество А.
- 4.3. Пользователь задает мощность множества В.
- 4.4. Пользователь задет множество В.

5. Выбор операции:

- 5.1. Пользователь должен выбрать, какую из операций он хочет выполнить, в зависимости от его выбора будет выполнена операция из следующего списка:
 - Объединение.
 - Пересечение.
 - Разность.
 - Симметрическая разность.
 - Декартово произведение.
 - Дополнение.
- 5.2. Если пользователь выбрал операцию объединения
 - 5.2.1. Переходим к пункту 6.
- 5.3. Если пользователь выбрал операцию пересечения
 - 5.3.1. Переходим к пункту 7.
- 5.4. Если пользователь выбрал операцию разности А и В
 - 5.4.1. Переходим к пункту 8.
- 5.5. Если пользователь выбрал операции разности В и А
 - 5.5.1. Переходим к пункту 8.2
- 5.6. Если пользователь выбрал операцию симметрической разности
 - 5.6.1. Переходим к пункту 9.
- 5.7. Если пользователь выбрал операцию дополнения А
 - 5.7.1. Переходим к пункту 10.1
- 5.8. Если пользователь выбрал операцию дополнения В
 - 5.8.1. Переходим к пункту 10.2
- 5.9. Если пользователь выбрал операцию Декартова произведения А и В
 - 5.9.1. Переходим к пункту 11.1
- 5.10. Если пользователь выбрал операцию Декартова произведения В и А
 - 5.10.1. Переходим к пункту 11.2

6. Операция объединения:

- 6.1. Создается пустое множество С, которое будет результатом операции.
- 6.2. Выбираем первый элемент из множества А.

- 6.3. Записываем выбранный элемент из множества А в множество С.
- 6.4. Если выбранный элемент множества А является последним:
 - 6.4.1. Переходим к пункту 6.6.
- 6.5. Выбираем следующий элемент множества А
 - 6.5.1. Переходим к пункту 6.3.
- 6.6. Выбираем первый элемент множества А.
- 6.7. Выбираем первый элемент множества В.
- 6.8. Сравниваем выбранный элемент из множества A с выбранным элементом из множества B.
 - 6.8.1. Если выбранный элемент из множества A не равен выбранному элементу из множества B и выбранный элемент из множества A не является последним
 - 6.8.1.1. Выбираем следующий элемент множества А
 - 6.8.1.2. Переходим к пункту 6.8.
 - 6.8.2. Если выбранный элемент из множества A является последним и не равен выбранному элементу из множества B
 - 6.8.2.1. Переходим к пункту 6.10.
 - 6.8.3. Если выбранный элемент из множества A равен выбранному элементу из множества B
 - 6.8.3.1. Переходим к пункту 6.9.
- 6.9. Рассмотрим следующий элемент из множества В.
 - 6.9.1. Переходим к пункту 6.8.
- 6.10. Записываем выбранный элемент из множества В в множество С.
 - 6.10.1. Если выбранный элемент из множества В является последним
 - 6.10.1.1. Переходим к пункту 6.12.
 - 6.10.2. Выбираем следующий элемент из множества В и первый эелемент из множества А.
- 6.11. Переходим к пункту 6.8.
- 6.12. Множество С является множеством объединения множеств А и В.
- 6.13. Алгоритм завершен.

7. Операция пересечения

- 7.1. Создаем пустое множество D, которое будет результатом операции.
- 7.2. Выбираем первый элемент множества А.
- 7.3. Выбираем первый элемент множества В.
- 7.4. Если выбранный эелемент множества A равен выбранному элементу множества B, то элемент множества B записывается во множество D.

- 7.5. Если выбранный элемент множества В является последним
 - 7.5.1. Переходим к пункту 7.7.
- 7.6. Выбираем следующий элемент множества В.
 - 7.6.1. Переходим к пункту 7.4.
- 7.7. Если выбранный элемент множества А является последним.
 - 7.7.1. Переходим к пункту 7.9.
- 7.8. Выбираем следующий элемент множества А.
 - 7.8.1. Переходим к пункту 7.4.
- 7.9. Множество D является результатом пересечения множеств A и B.
- 7.10. Алгоритм завершен.

8. Операция разности

8.1. Операция разности А и В

- 8.1.1. Создадим пустое множество D
- 8.1.2. Возьмём первый элемент множества В.
- 8.1.3. Возьмём первый элемент множества А.
- 8.1.4. Если взятый элемент множества В равен взятому элементу множества А
 - 8.1.4.1. Переходим к пункту 8.9.
- 8.1.5. Если взятый элемент множества А является последним
 - 8.1.5.1. Переходи к пункту 8.8.
- 8.1.6. Если взятый элемент множества А не является последним, возьмём следующий элемент множества А.
- 8.1.7. Перейдём к пункту 8.4.
- 8.1.8. Добавляем взятый элемент множества В в множество D.
- 8.1.9. Если взятый элемент множества А является последним.
 - 8.1.9.1. Перейдём к пункту 12.
- 8.1.10. Если взятый элемент множества В не является последним, возьмём следующий элемент множества В.
- 8.1.11. Перейдём к пункту 8.3.
- 8.1.12. Завершение алгоритма.

8.2. Операция разности В и А

8.2.1. Создадим пустое множество D.

- 8.2.2. Возьмём первый элемент множества В.
- 8.2.3. Возьмём первый элемент множества А.
- 8.2.4. Если взятый элемент множества В равен взятому элементу множества А.
 - 8.2.4.1. Переходим к пункту 8.9.
- 8.2.5. Если взятый элемент множества А является последним
 - 8.2.5.1. Перейдём к пункту 8.8
- 8.2.6. Если взятый элемент множества A не является последним, возьмём следующий элемент множества A.
- 8.2.7. Перейдём к пункту 8.4.
- 8.2.8. Добавляем взятый элемент множества B в множество D.
- 8.2.9. Если взятый элемент множества А является последним
 - 8.2.9.1. Перейдём к пункту 12
- 8.2.10. Если взятый элемент множества В не является последним, возьмём следующий элемент множества В.
- 8.2.11. Перейдём к пункту 8.3.
- 8.2.12. Завершение алгоритма

9. Симметрическая разность множеств А и В.

9.1. Разность множеств А и В

- 9.1.1. Создадим пустое множество С.
- 9.1.2. Возьмём первый элемент множества А.
- 9.1.3. Возьмём первый элемент множества В.
- 9.1.4. Если взятый элемент множества А равен взятому элементу множества В
 - 9.1.4.1. Переходим к пункту 9.1.9.
- 9.1.5. Если взятый элемент множества В является последним
 - 9.1.5.1. Перейдём к пункту 9.1.8
- 9.1.6. Если взятый элемент множества B не является последним, возьмём следующий элемент множества B.
- 9.1.7. Перейдём к пункту 9.1.4.
- 9.1.8. Добавляем взятый элемент множества А в множество С.
- 9.1.9. Если взятый элемент множества А является последним
 - 9.1.9.1. Перейдём к пункту 9.1.12.
- 9.1.10. Если взятый элемент множества А не является последним, возьмём следующий элемент множества А.
- 9.1.11. Перейдём к пункту 9.1.3.
- $9.1.12. \ C$ разность множеств A и B.

9.1.13. Завершение алгоритма.

9.2. Разность множеств В и А.

- 9.2.1. Создадим пустое множество F.
- 9.2.2. Возьмём первый элемент множества В.
- 9.2.3. Возьмём первый элемент множества А.
- 9.2.4. Если взятый элемент множества В равен взятому элементу множества А
 - 9.2.4.1. Переходим к пункту 9.2.9.
- 9.2.5. Если взятый элемент множества А является последним
 - А. Перейдём к пункту 9.2.8
- 9.2.6. Если взятый элемент множества А не является последним, возьмём следующий элемент множества А.
- 9.2.7. Перейдём к пункту 9.2.4.
- 9.2.8. Добавляем взятый элемент множества В в множество F.
- 9.2.9. Если взятый элемент множества В является последним
 - 9.2.9.1. Перейдём к пункту 9.2.12.
- 9.2.10. Если взятый элемент множества В не является последним, возьмём следующий элемент множества В.
- 9.2.11. Перейдём к пункту 9.2.3.
- $9.2.12. \ F$ разность множеств B и A.
- 9.2.13. Завершение алгоритма.

9.3. Объединение множеств С и F.

- 9.3.1. Создаём новое пустое множество D.
- 9.3.2. Каждый элемент множества С переносим в множество D.
- 9.3.3. Возьмём первый элемент множества F.
- 9.3.4. Возьмём первый элемент множества D.
- 9.3.5. Если взятый элемент множества F не равен взятому элементу D
 - 9.3.5.1. Переходим к пункту 9.3.7.
- 9.3.6. Если взятый элемент множества В равен выбранному элементу множества D
 - 9.3.6.1. Переходим к пункту 9.3.11
- 9.3.7. Если взятый элемент множества D последний
 - 9.3.7.1. Переходим к пункту 9.3.10.
- 9.3.8. Если взятый элемент множества D— не последний, то возьмём следующий элемент множества D.
- 9.3.9. Перейдём к пункту 9.3.5.
- 9.3.10. Добавляем взятый элемент множества F во множество D.

- 9.3.11. Если взятый элемент множества F- последний
 - 9.3.11.1. Переходим к пункту 14
- 9.3.12. Если взятый элемент множества F не последний, то возьмём следующий элемент множества F.
- 9.3.13. Перейдём к пункту 9.3.4.
- 9.3.14. Завершение алгоритма.

10. Операция дополнения

10.1. Дополнение множества А

- 10.1.1. Зададим множество U.
 - 10.1.1.1. Присвоим значение x = 1.
 - 10.1.1.2. Если значение х больше 100, перейдём к пункту 10.1.2.
 - 10.1.1.3. Добавим значение х во множество U.
 - 10.1.1.4. x = x + 1.
 - 10.1.1.5. Перейдём к пункту 10.1.1.2.
- 10.1.2. Разность множеств U и А.
 - 10.1.2.1. Создадим пустое множество D.
 - 10.1.2.2. Возьмём первый элемент множества U.
 - 10.1.2.3. Возьмём первый элемент множества А.
 - 10.1.2.4. Если взятый элемент множества U равен взятому элементу множества А
 - 10.1.2.5. Переходим к пункту 10.1.2.11.
 - 10.1.2.6. Если взятый элемент множества А является последним
 - 10.1.2.7. Перейдём к пункту 10.1.2.10
 - 10.1.2.8. Если взятый элемент множества A не является последним, возьмём следующий элемент множества A.
 - 10.1.2.9. Перейдём к пункту 10.1.2.4.
 - 10.1.2.10. Добавляем взятый элемент множества U в множество D
 - 10.1.2.11. Если взятый элемент множества А является последним, перейдём к пункту 12.
 - 10.1.2.12. Если взятый элемент множества U не является последним, возьмём следующий элемент множества U.
 - 10.1.2.13. Перейдём к пункту 10.1.2.3.
 - 10.1.2.14. Завершение алгоритма

10.2. Дополнение множества В

- 10.2.1. Дополнение множества В
 - 10.2.1.1. Присвоим значение x = 1.
 - 10.2.1.2. Если значение х больше 100, перейдём к пункту 10.2.2

- 10.2.1.3. Добавим значение х во множество U.
- $10.2.1.4. \ \mathbf{x} = \mathbf{x} + 1.$
- 10.2.1.5. Перейдём к пункту 10.2.1.2
- 10.2.2. Разность множеств U и В.
 - 10.2.2.1. Создадим пустое множество D.
 - 10.2.2.2. Возьмём первый элемент множества U.
 - 10.2.2.3. Возьмём первый элемент множества В.
 - 10.2.2.4. Если взятый элемент множества U равен взятому элементу множества B, то переходим к пункту 10.2.2.8.
 - 10.2.2.5. Если взятый элемент множества В является последним, то перейдём к пункту 10.2.2.7.
 - 10.2.2.6. Если взятый элемент множества В не является последним, возьмём следующий элемент множества В, то перейдём к пункту 10.2.2.4.
 - 10.2.2.7. Добавляем взятый элемент множества U в множество D.
 - 10.2.2.8. Если взятый элемент множества В является последним, то перейдём к пункту 12.
 - 10.2.2.9. Если взятый элемент множества U не является последним, возьмём следующий элемент множества U, то перейдём к пункту 10.2.2.3.

11. Операция Декартова произведения множеств

11.1. Декартово произведение множеств А и В.

- 11.1.1. Создаём пустое множество D.
- 11.1.2. Возьмём первый элемент множества А.
- 11.1.3. Возьмём первый элемент множества В.
- 11.1.4. Создаём кортеж, состоящий из двух элементов:
 - 11.1.4.1. Первому элементу кортежа присвоим значение взятого элемента множества А.
 - 11.1.4.2. Второму элементу кортежа присвоим значение взятого элемента множества В.
- 11.1.5. Добавим созданный кортеж во множество D.

- 11.1.6. Если взятый элемент множества В является последним
 - 11.1.6.1. Перейдём к пункту 11.1.9.
- 11.1.7. Если взятый элемент множества В не является последним, то возьмём следующий элемент множества В.
- 11.1.8. Перейдём к пункту 11.1.4.
- 11.1.9. Если взятый элемент множества А является последним
 - 11.1.9.1. Перейдём к пункту 12.
- 11.1.10. Если взятый элемент множества А не является последним, то возьмём следующий элемент множества А.
- 11.1.11. Перейдём к пункту 11.1.3.
- 11.1.12.
- 11.1.13. Множество D является результатом выполнения операции. Завершение алгоритма

11.2. Декартово произведение множеств В и А

- 11.2.1. Создаём пустое множество D.
- 11.2.2. Возьмём первый элемент множества В.
- 11.2.3. Возьмём первый элемент множества А.
- 11.2.4. Создаём кортеж, состоящий из двух элементов:
 - 11.2.4.1. Первому элементу кортежа присвоим значение взятого элемента множества В.
 - 11.2.4.2. Второму элементу кортежа присвоим значение взятого элемента множества А.
- 11.2.5. Добавим созданный кортеж во множество D.
- 11.2.6. Если взятый элемент множества А является последним
 - 11.2.6.1. Перейдём к пункту 11.2.9
- 11.2.7. Если взятый элемент множества А не является последним, то возьмём следующий элемент множества А.
- 11.2.8. Перейдём к пункту 11.2.4.
- 11.2.9. Если взятый элемент множества В является последним

- 11.2.9.1. Перейдём к пункту 12.
- 11.2.10. Если взятый элемент множества B не является последним, то возьмём следующий элемент множества B.
- 11.2.11. Перейдём к пункту 11.2.3.
- 11.2.12. Множество D является результатом выполнения операции. Завершение алгоритма