

Digital Logic Circuit (SE273 – Fall 2020)

Lecture 3: Boolean Algebra

Jaesok Yu, Ph.D. (jaesok.yu@dgist.ac.kr)

Assistant Professor

Department of Robotics Engineering, DGIST

Goal

- Learn Boolean algebra and logic gates
 - Basic theory and properties of Boolean algebra
 - Digital logic gates
- Apply simplification of Boolean functions
 - Karnaugh map (K-map)
 - Sum-of-products/product-of-sums simplification

Binary Logic

- Digital circuits manipulates binary information
 - Composed of transistors and interconnections
- Basic circuit is referred to as "logic gate"
 - Each gate performs a specific logical operation

Digital circuits

Logic Gates and Boolean Algebra

- Why do we need an abstraction of a logic gate?
 - A designer need not be concerned with the internal electronics
 - Only their external logic properties are important
- To describe operational properties of digital circuits,
 - We introduce a mathematical notation to analyze/design circuits
 - The binary logic system is called Boolean algebras

Published a book in 1854 on mathematical theory of logics

Binary Logic

- It deals with binary variables (A,...,X,Y,Z) that take on two discrete values (0 or 1)
- Three basic logical operations

Boolean AND, OR, and NOT

Truth Table

- The definition of the logic operation may be listed in compact form (truth table)
 - A table of combinations of the binary variables showing the relation btw the values that the variables take on and its result

Truth Tables for the Three Basic Logical Operations

		AND			OR	NOT		
X	Υ	$z = x \cdot y$	X	Υ	z = x + y	X	$\mathbf{Z} = \overline{\mathbf{X}}$	
0	0	0	0	0	0	0	1	
0	1	0	0	1	1	1	0	
1	0	0	1	0	1			
1	1	1	1	1	1			

Boolean Algebra - Binary Logic

Three basic logical operations

Operation:

AND (product) of two inputs

OR (sum) of two inputs NOT (complement) on one input

Expression:

$$X \cdot Y, X \& Y$$

AND

$$X + Y, X \mid Y$$

$$X', \overline{X}, \sim X$$

Truth table:

X	Υ	$Z = X \cdot Y$
0	0	0
0	1	0
1	0	0
1	1	1

X	Υ	z = x + y								
0	0	0								
0	1	1								
1	0	1								
1	1	1								

OD

X	$\mathbf{Z} = \overline{\mathbf{X}}$								
0 1	1 0								

NOT

Do not confuse with binary arithmetic: $(1_2 + 1_2 = 10_2)$

Logic Gates

 They are electronic circuits that operate on one or more input signals to produce an output signal

Multi-input gate

Gate Delay

- Each gate has a very important property called gate delay
 - The length of time it takes for an input change to result in the corresponding output change

• It depends on the technology node (ex: 7nm vs. 65nm), # of inputs, or a gate

type

Example – Reading the datasheet

SN74LVC1G04 – Single Inverter Gate

SN74LVC1G04

SCES214AD-APRIL1999-REVISED OCTOBER 2014

SN74LVC1G04 Single Inverter Gate

1 Features

- Available in the Ultra-Small 0.64-mm² Package (DPW) with 0.5-mm Pitch
- · Supports 5-V V_{CC} Operation
- Inputs Accept Voltages up to 5.5 V Allowing Down Translation to V_{CC}
- Max t_{pd} of 3.3 ns at 3.3-V
- Low Power Consumption, 10-µA Max I_{CC}
- ±24-mA Output Drive at 3.3-V
- I_{off} Supports Live-Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78. Class II
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

2 Applications

- AV Receiver
- · Audio Dock: Portable
- · Blu-ray Player and Home Theater
- Embedded PC
- · MP3 Player/Recorder (Portable Audio)
- · Personal Digital Assistant (PDA)
- Power: Telecom/Server AC/DC Supply: Single Controller: Analog and Digital
- · Solid State Drive (SSD): Client and Enterprise
- . TV: LCD/Digital and High-Definition (HDTV)
- Tablet: Enterprise
- Video Analytics: Server
- · Wireless Headset, Keyboard, and Mouse

4 Simplified Schematic

3 Description

This single inverter gate is designed for 1.65-V to 5.5-V $\rm V_{CC}$ operation.

The SN74LVC1G04 device performs the Boolean function Y = \overline{A} .

The CMOS device has high output drive while maintaining low static power dissipation over a broad V_{CC} operating range.

The SN74LVC1G04 device is available in a variety of packages, including the ultra-small DPW package with a body size of 0.8 mm \times 0.8 mm.

Device Information(1)

DEVICE NAME	PACKAGE	BODY SIZE
	SOT-23 (5)	2.9mm × 1.6mm
	SC70 (5)	2.0mm × 1.25mm
SN74LVC1G04	SON (6)	1.45mm × 1.0mm
	SON (6)	1.0mm × 1.0mm
	X2SON (4)	0.8mm × 0.8mm

 For all available packages, see the orderable addendum at the end of the datasheet.

Function Table

INPUT A	OUTPUT Y
Н	L
L	Н

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

7.6 Switching Characteristics, C₁ = 15 pF

over recommended operating free-air temperature range, C_L = 15 pF (unless otherwise noted)

		TO (OUTPUT)		-40°C to 85°C								
PARAMETER	FROM (INPUT)		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
t _{pd}	Α	Υ	2	6.4	1	4.2	0.7	3.3	0.7	3.1	ns	

7.7 Switching Characteristics, C_L = 30 pF or 50 pF, -40°C to 85°C

over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 4)

						-40°C	to 85°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	Α	Υ	3	7.5	1.4	5.2	1	4.2	1	3.7	ns

7.8 Switching Characteristics, C_L = 15 pF, -40°C to 125°C

over recommended operating free-air temperature range, C_L = 15 pF (unless otherwise noted) (see Figure 3)

						-40°C t	to 125°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	Α	Υ	2	6.4	1	4.2	0.7	3.3	0.7	3.1	ns

G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Boolean Function

- Boolean algebra: an algebra dealing with binary variables
- Boolean function F (or Boolean expression)
 - X and \overline{YZ} are called 'terms'

Algebraic expression formed by binary variables

Logic circuit diagram

Can be simplified in some cases (The end justifies the means)

Truth table

XYZ	$\mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \cdot \mathbf{Z}$
000	0
001	1
010	0
011	0
100	1
101	1
110	1
111	1

UNIQUE!!

Boolean Function Example

We can design a logic for lowering the driver's power window

$$L(D, X, A) = D\overline{X} + A$$

- L: "lower the window" command
- *D*: output produced by pushing the ↓ button
- X: output of a mechanical limit
- A: onset of automated lowering operation (ex: when D=1 for more than 0.5s)

Truth Table??

AXD	$F = A + \overline{X} \cdot D$
000	0
001	1
010	0
011	0
100	1
101	1
110	1
111	1

Circuit Diagram

Logic Gates & Boolean Function

Name	Distinctive-Shape Graphics Symbol	Algebraic Equation	Truth Table	Name	Distinctive-Shape Graphics Symbol	Algebraic Equation	Truth Table
AND	X — F	F = XY	X Y F 0 0 0 0 1 0 1 0 0 1 1 1	NAND	Х F	$F = \overline{X \cdot Y}$	X Y F 0 0 1 0 1 1 1 0 1 1 1 0
OR	$X \longrightarrow F$	F = X + Y	X Y F 0 0 0 0 1 1 1 0 1 1 1 1	NOR	Х F	$F = \overline{X + Y}$	X Y F 0 0 1 0 1 0 1 0 0 1 1 0 X Y F
NOT (inverter)	x — F	$F = \overline{X}$	X F 0 1 1 0	Universal Ga Exclusive-OR (XOR)	x F	$F = X\overline{Y} + \overline{X}Y$ $= X \oplus Y$	0 0 0 0 1 1 1 0 1 1 1 0
				Exclusive-NOR (XNOR)	$X \longrightarrow F$	$F = X\underline{Y} + \overline{X}\overline{Y}$ $= X \oplus Y$	X Y F 0 0 1 0 1 0 1 0 0 1 1 1

Boolean Algebra

Basic identities of Boolean algebra

$$1. X + 0 = X$$

3.
$$X+1=1$$

$$5. X + X = X$$

7.
$$X + \overline{X} = 1$$

$$2. \quad X \cdot 1 = X$$

Duality

$$4. \quad X \cdot 0 = 0$$

$$6. \quad X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

Identity element

10.
$$X + Y = Y + X$$

12.
$$(X + Y) + Z = X + (Y + Z)$$

14.
$$X(Y+Z) = XY+XZ$$

16.
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

13.
$$(XY)Z = X(YZ)$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Commutative

Extension of DeMorgan's Theorem

- Very important in Boolean algebra
 - Used to obtain the complement of an expression
 - Manipulate it to reduce # of terms/literals in a function
- Can extend to multiple variables

$$\overline{X_1 + X_2 + \dots + X_n} = \overline{X_1} \cdot \overline{X_2} \cdot \dots \cdot \overline{X_n}$$

$$\overline{X_1 X_2 \dots X_n} = \overline{X_1} + \overline{X_2} + \dots + \overline{X_n}$$

Algebraic Manipulation

- Can simplify digital circuits at early design stage
- Let's consider

$$F = \bar{X}YZ + \bar{X}Y\bar{Z} + XZ$$
 $= \bar{X}Y(Z + \bar{Z}) + XZ$ Identity 14: distributive $= \bar{X}Y \cdot 1 + XZ$ Identity 7: Complment $= \bar{X}Y + XZ$ Identity 2: Identity Element

Reduced to two terms from three

What is the Benefit of Algebraic Manipulation?

Reduce an expression!!

- 1. Fewer gates
- 2. Fewer inputs per gate

▶ But, Same Truth Table!

X	Y	Z	(a) F	(b) F
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Logic Synthesis: Synopsys Design Compiler

Logic synthesis tools help designers reduce complex expressions

Logic Gate Reduction

Again, use Boolean algebra to reduce complexity of digital circuits

1.	X + 0 = X	$2. X \cdot 1 = X$	Identity element
3.	X+1=1	$4. X \cdot 0 = 0$	
5.	X + X = X	$6. X \cdot X = X$	Idempotence
	$X + \overline{X} = 1$	$8. X \cdot \overline{X} = 0$	Complement
9.	$\mathbf{X} = \mathbf{X}$		Involution
10.	X + Y = Y + X	11. $XY = YX$	Commutative
12.	(X+Y)+Z=X+(Y+Z)	13. $(XY)Z = X(YZ)$	Associative
14.	X(Y+Z)=XY+XZ	15. $X + YZ = (X + Y)(X +$	Z) Distributive
16.	$\overline{X+Y} = \overline{X} \cdot \overline{Y}$	17. $\overline{X \cdot Y} = \overline{X} + \overline{Y}$	DeMorgans

$$X + XY = X(\mathbf{1} + \mathbf{Y}) = X$$

$$XY + X\overline{Y} = X(\mathbf{Y} + \overline{\mathbf{Y}}) = X$$

$$X + \overline{X}Y = (\mathbf{X} + \overline{\mathbf{X}})(X + Y) = X + Y$$

Logic Gate Reduction

1.
$$X + 0 = X$$

2. $X \cdot 1 = X$

Identity element

3.
$$X+1=1$$

4.
$$X \cdot 0 = 0$$

$$X(X + Y) = X + XY = X$$

$$5. \quad X + X = X$$

6.
$$X \cdot X = X$$

7.
$$X + \overline{X} = 1$$

8.
$$X \cdot \overline{X} = 0$$

Involution

10.
$$X + Y = Y + X$$

11.
$$XY = YX$$

Commutative

12.
$$(X + Y) + Z = X + (Y + Z)$$

13.
$$(XY)Z = X(YZ)$$

Associative

14.
$$X(Y+Z) = XY+XZ$$

15.
$$X + YZ = (X + Y)(X + Z)$$

Distributive

16.
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

DeMorgans

$$X + XY = X(\mathbf{1} + Y) = X$$

$$XY + X\overline{Y} = X(Y + \overline{Y}) = X$$

$$X + \overline{X}Y = (X + \overline{X})(X + Y) = X + Y$$

$$(X+Y)(X+\overline{Y}) = X + Y\overline{Y} = X$$

$$X(\overline{X} + Y) = X\overline{X} + XY = XY$$

Duals of previous examples

Consensus Theorem

Allows us to remove a redundant term

$$XY + \overline{X}Z + YZ = XY + \overline{X}Z$$

$$YZ + \overline{X}Z + YZ = XY + \overline{X}Z + YZ(X + \overline{X})$$

$$= XY + \overline{X}Z + XYZ + \overline{X}YZ$$

$$= XY(1 + Z) + \overline{X}(Z + YZ)$$

$$= XY + \overline{X}Z$$
Sum of Product form
$$= XY + \overline{X}Z$$

Dual of consensus theorem
$$(X+Y)(\overline{X}+Z)(Y+Z)=(X+Y)(\overline{X}+Z)$$

Product of Sum form

Consensus Theorem: Example

Example of minimizing Boolean expression with consensus theorem

$$(A+B)(\bar{A}+C) = A\bar{A} + AC + \bar{A}B + BC$$

= $AC + \bar{A}B + BC$
= $AC + \bar{A}B$ Consensus theorem
= $AC + \bar{A}B$ applied

Complement of a Function

- Obtain by interchanging 1's to 0's and vice versa in the truth table
- Also, it can be derived by using DeMorgan's theorem

$$\overline{F}_1 = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z = \overline{(X}Y\overline{Z}) \cdot \overline{(X}\overline{Y}Z)$$
$$= (X + \overline{Y} + Z) \cdot (X + Y + \overline{Z})$$

$$\overline{F_2} = \overline{X(\overline{Y}\overline{Z} + YZ)} = \overline{X} + \overline{(\overline{Y}\overline{Z} + YZ)}$$
$$= \overline{X} + (\overline{\overline{Y}\overline{Z}} \cdot \overline{YZ}) = \overline{X} + (Y + Z)(\overline{Y} + \overline{Z})$$

Standard Forms - Minterms

- Minterm: a product term in which all the variables appear only once
 - It represents exactly one combination of the binary variables in a truth table
 - For 'n' variables, there are '2n' distinct minterms

Minterms for Three Variables					1 for a specific binary combination								
х	Υ	z	Product Term	Sym	bol	m₀/	7	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	(1)	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1		n	1	O	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m_2	Two di	scr	ete	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m_3	sign	als		O	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4		U	U	O	0	1	0	0	O
1	0	1	$X\overline{Y}Z$	m_5		0	0	O	0	O	1	O	0
1	1	0	$XY\overline{Z}$	m_6		0	0	O	0	0	0	1	0
1	1	1	XYZ	m_7	9	0	0	0	0	0	0	0	1

Standard Forms - Maxterms

- Maxterm: a sum term that contains all the variables
 - Each maxterm is a logical sum with each variable
 - Complemented if it is 1 and uncomplemented if it is 0

Maxterms for Three Variables				0 for a specific binary combination								
X	Υ	Z	Sum Term	Symbol	M_0	1	M_2	M ₃	M ₄	M_5	M_6	M ₇
0	0	0	X+Y+Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X + Y + \overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M_7	1	1	1	1	1	1	1	0

Representing a Boolean Function w/ Minterms

 A Boolean function can be expressed by forming logical sum of all the minterms that produce a 1 in the truth table

Sum o	of minterms

X	Y	Z	F	\overline{F}
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	0	1
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

$$F = (\bar{X}\bar{Y}\bar{Z} + \bar{X}Y\bar{Z} + X\bar{Y}Z + XYZ)$$

= $m_0 + m_2 + m_5 + m_7$

Can be abbreviated by listing only decimal subscripts of minterms

$$F(X,Y,Z) = \sum m(0,2,5,7)$$
Logical sum (Boolean OR)

Representing a Boolean Function w/ Maxterms

Consider the complement of a Boolean function F

X	Y	Z	F	\overline{F}
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	0	1
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

$$\bar{F} = (\bar{X}\bar{Y}Z + \bar{X}YZ + X\bar{Y}\bar{Z} + XY\bar{Z})$$

$$= m_1 + m_3 + m_4 + m_6 = \sum m(1,3,4,6)$$

Take complement again

$$F = \overline{m_1 + m_3 + m_4 + m_6}$$

$$= \overline{m_1} \cdot \overline{m_3} \cdot \overline{m_4} \cdot \overline{m_6} = M_1 \cdot M_3 \cdot M_4 \cdot M_6$$

$$= (X + Y + \overline{Z})(X + \overline{Y} + \overline{Z})(\overline{X} + Y + Z)(\overline{X} + \overline{Y} + Z)$$

Logical product (Boolean AND)

Product of maxterms

$$F(X,Y,Z) = \prod M(1,3,4,6)$$

Summary on Minterms

- Important properties of minterms
 - 1. There are 2ⁿ minterms for n Boolean variables
 - 2. Any Boolean function can be expressed as a logical sum of minterms
 - 3. The complement of a function contains those minterms not included in the original function
 - 4. A function that includes all the 2ⁿ minterms is equal to logic 1