

CONTACT ME

https://hoofkhanh.netlify.app/

hotuankhanh20112016@gmail.com

https://github.com/hoofkhanh
www.linkedin.com/in/khanh-hồb006b3312

**** 0329500036

18/08/2003

Q∱ Male

SKILLS SUMMARY

•••• Backend: Java (Spring boot, Spring cloud)

•••• SQL: SQL Server, MySQL, PostgreSQL

●●●● NoSQL: Mongodb

 Frontend: Nextjs, React, Typescript, Javascript, HTML, CSS

•••• AI (Python, TensorFlow, Explainable AI)

•••• Docker
Git
Amazon Web Services (EC2)

EDUCATIONAL PROCESS

Natural Resources and Environment University Fourth year student Software Technology Major TOEIC: 670 GPA: 3.4

Pneumonia Prediction (Vision Transformer Model)

 Summary: Developed a web-based application to predict pneumonia from chest X-ray images using a ViT model, providing accurate and instant results.

- Github link: Repo

- Data link: data 1, data 2

- *Tech Stack*: Python (Tensorflow), Vision Transformer (model), Git, Github.

- Contributions: Trained and fine-tuned a ViT model on chest X-ray data for pneumonia detection (88% accuracy). Applied real-time data augmentation and deployed the model via a lightweight web app for instant prediction. Used Git and GitHub to manage version control and regularly update project source code.

HỒ TUẨN KHANH

SOFTWARE ENGINEER

INTRODUCTION

I am a student at the University of Natural Resources and Environment in Ho Chi Minh City just finished year 4. My major is software technology. This is my portfolio: https://hoofkhanh.netlify.app/

WORK EXPERIENCE

Intern at "Bênh viên nhi đồng 2"

- Duration: 3 months.

- Contributions: Perform small modules such as code debugging, code testing, learning hospital procedures, and coded the pneumonia prediction application under the guidance of the company's seniors.

PERSONAL PROJECT

Sound Service Web (Microservice)

- Summary: Developed a platform connecting customers with music artists, providing full features such as beat purchasing, artist hiring, job posting, real-time messaging, service reviewing, and various supporting functionalities to enhance user experience.
- Github link: Repo

- Services: User, Artist, Customer, Job, Beat, Purchase Beat, Hire, Notification (real time), Payment, Favorite, Review, Conversation (real time).

- Tech Stack:

- Frontend: ReactJS, Javascript, HTML, CSS.
- Backend: Java, Spring Boot, Spring Cloud (Config, Eureka, OpenFeign, Gateway).
- Databases & Migration: PostgreSQL (JPA + Flyway), MongoDB.
- Communication: Kafka (services), WebSocket (realtime).
- · Security: OAuth2 (Keycloak).
- Email Handling: Thymeleaf (templating), MailDev (testing).
- Tool: Docker, Maven, Git, Github.

- Contributions:

- Designed and developed a scalable and maintainable microservices architecture.
- Integrated Spring Cloud Gateway with Eureka for dynamic routing and client-side load balancing.
- Implemented OAuth2 authentication (with access & refresh tokens) and secured user data using Keycloak.
- Utilized Kafka for asynchronous inter-service communication and data synchronization.
- Managed database versioning and migration using Flyway to ensure safe schema evolution.
- Built real-time messaging and notification features using WebSocket to enhance user engagement.
- Simulated email delivery using MailDev and rendered HTML email templates with Thymeleaf during testing.
- Developed frontend components using ReactJS to support user interaction with features.
- Used Docker and Docker Compose to define multi-container environments and manage data.
- Used Git and GitHub to manage version control and regularly update project source code.

Antimicrobial Peptide Prediction(Transformer + XAI + Amazon EC2)

- Summary: Predicted antimicrobial peptides using a Transformer model combined with XAI (LIME) to explain the result, trained on EC2 GPU.
- Github link: Repo
- Data link: NCBI Proteins
- *Tech Stack*: Python, Tensorflow, BiopPython, Transformer, LIME, Amazon EC2, Git, Github.
- Contributions:
- Crawled raw peptide data from NCBI.
- Split peptides > 50 amino acid into 10–50 amino acid subsequences.
- Extract features based on peptide sequences for model input.
- Trained a Transformer-based model on 3 datasets (GenBank, non-GenBank, combined), all achieving accuracy close to 100%.
- Used Amazon EC2 (GPU virtual machine) for efficient training.
- Used LIME to explain model predictions and highlight contributing features.
- Used Git and GitHub to manage version control and regularly update project source code.