Summer Research Report Part 2 - Time Bins

July 21, 2022

1 Number of spikes in a time bin

The following analysis is all done for Culture 1-3, div 4

If we let N_{Δ} be the number of spikes which occur in time bins of size Δ for a particular group of channels for a particular culture on a particular div, then we expect $N_{\Delta} \sim \text{Poi}(\lambda \Delta)$.

Therefore, we must have $C_v = (\lambda \Delta)^{-\frac{1}{2}}$

Since we looked at culture 1-3 previously (arbitrarily), we will do the same now. We plot a few graphs of $\ln C_v$ against $\ln \Delta$, expecting a slope of $-\frac{1}{2}$ and an intercept of $-\frac{1}{2} \ln \lambda$

2 Log-log plots of several channels on different days

3 R-value vs gradient for log-log plots

R-value vs gradient for $\log(C_v)$ vs $\log(Delta)$ in each channel of plating 1, culture 1, div 4

R-value vs gradient for $log(C_v)$ vs log(Delta) in each channel of plating 1, culture 1, div 13

R-value vs gradient for $log(C_v)$ vs log(Delta) in each channel of plating 1, culture 1, div 25

R-value vs gradient for $\log(C_v)$ vs $\log(Delta)$ in each channel of plating 1, culture 3, div 4

R-value vs gradient for $log(C_v)$ vs log(Delta) in each channel of plating 1, culture 3, div 13

R-value vs gradient for $\log(C_v)$ vs $\log(Delta)$ in each channel of plating 2, culture 2, div 4

R-value vs gradient for $\log(C_v)$ vs $\log(Delta)$ in each channel of plating 2, culture 2, div 14

