Foundations of Computer Graphics

Chapter Summary Notes

Stephen Chen

Part IB Natural Sciences King's College, University of Cambridge

Contents

1	Ras	ter Images	2
	1.1	Introduction	2
	1.2	Pixels	2
	1.3	Intensity	3
	1.4	RGB	3
	1.5	Compositing	4
2	Ray	Tracing	5
	2.1	Introduction	5
	2.2	Basic Ray-Tracing Algorithm	5

1 Raster Images

1.1 Introduction

- * Images can be presented on **raster displays** which show images as arrays of **pixels**. For example, computer screens and TV's.
- * A raster image is a 2D array which stores the **pixel value** for each pixel
- * A raster image is device-independent
- * A vector image is described without any reference to any particular pixel grid
- * Vector images are resolution independent but must be rasterised

1.2 Pixels

 \star We can abstract an image as a function:

$$I(x,y): R \to V$$

where $R \subset \mathbb{R}^2$ and V is the set of possible pixel values.

- \star For example, a RGB colour image has $V=(\mathbb{R}^+)^3$
- * In these notes, the bottom-left pixel is (0,0) and the top-right pixel is $(n_x 1, n_y 1)$ given n_x columns and n_y rows.
- * The rectangular domain of a $n_x \times n_y$ image is

$$R = [-0.5, n_x - 0.5] \times [-0.5, n_y - 0.5]$$

- ★ Example pixel formats:
 - 8-bit RGB fixed-colour range: photographs and web/email applications
 - 16-bit fixed-range grayscale: medical imaging
 - 16-bit fixed-range RGB: professional photography and printing

1.3 Intensity

- \star Assume a numerical descrition of pixel colour from 0 to 1
- \star Monitors are non-linear with respect to input and therefore characterised by a γ value:

$$I = I_{max}(a)^{\gamma}$$

where $0 \le a \le 1$.

- * We can find γ by finding the value of a that gives an intensity halfway between black and white so $a^{\gamma} = 0.5$
- ★ Usually:

$$a = \left\{0, \frac{1}{255}, \dots, \frac{254}{255}, 1\right\}$$

$$\implies I = \left\{0, I_{max} \left(\frac{1}{255}\right)^{\gamma}, \dots, I_{max} \left(\frac{254}{255}\right)^{\gamma}, I_{max}\right\}$$

1.4 RGB

- \star RGB colour can be represented as a RGB colour cube. Coordinates of colours are:
 - black = (0, 0, 0)
 - red = (1, 0, 0)
 - green = (0, 1, 0)
 - blue = (0, 0, 1)
 - yellow = (1, 1, 0)
 - magenta = (1, 0, 1)
 - cyan = (0, 1, 1)
 - white = (1, 1, 1)
- * Gamma correction issues apply to each RGB component separately

1.5 Compositing

- * The **pixel coverage** (denoted α) is the fraction of the pixel covered by the foreground layer.
- \star For a composite with foreground colour \mathbf{c}_f over a blackground colour \mathbf{c}_h :

$$\mathbf{c} = \alpha \mathbf{c}_f + (1 - \alpha) \mathbf{c}_{background}$$

 \star The α values can be stored in a separate greyscale image known as a alpha mask or transparency mask

2 Ray Tracing

2.1 Introduction

- \star Rendering takes an input of a set of objects and outputs an array of pixels
- * In **object-order rendering**, each object is considered in turn (for each object). In **image-order rendering**, each pixel is considered in turn (for each pixel).
- \star Image-order rendering is simpler to get working and more flexibile but takes longer to produce a comparable image

2.2 Basic Ray-Tracing Algorithm