Geometric Quantisation

Benjamin C. W. Brown B.Brown@ed.ac.uk

Women in STEM Society Talk

 \sim

30th January 2021

Classical Mechanics

- In classical mechanics, the space of all possible states of a system is given by *phase space*, *M*.
- "State" means not just the position but also the momentum (of a particle).

Example

For a particle of unit mass, energy function $E: M \to \mathbb{R}$:

$$E(x,p) = \frac{p^2}{2} + V(x).$$

$$\leadsto \frac{\partial E}{\partial x} = \frac{\partial V}{\partial x} = -\frac{\partial p}{\partial t}, \text{ and } \frac{\partial E}{\partial p} = p = \frac{\partial x}{\partial t}.$$

Quantum Mechanics

- Still have phase space M and energy E, but replaces states with wavefunctions.
- ► Classical energy function $E: M \to \mathbb{R}$ now becomes an operator $\hat{E}: M \to M$.

Example

State dynamics for a wavefunction $\psi: M \to \mathbb{C}$ are now described by solutions to *Schrödinger's equation*:

$$\frac{d\psi}{dt} = -\frac{i}{\hbar}\hat{E}\psi.$$

A Question

For a phase space M, what is Q(M)?

- ▶ Phase space M represents the position and momentum of a system, with energy function $E: M \to \mathbb{R}$.
- Quantisation $\mathcal{Q}(M)$ should then represent the wavefunctions $\psi: M \to \mathbb{C}$, with operators $\hat{E}: M \to M$.

Fock Space

A good candidate for Q(M) is Fock space:

$$\mathcal{Q}(\mathcal{M}) := \left\{ \Psi(\mathbf{z}) = e^{-|\mathbf{z}|^2} \psi(\mathbf{z}) : \psi \text{ holomorphic}, \ \int_{\mathcal{M}} |\Psi|^2 < \infty
ight\}.$$

Projective Space