Machine Learning Theory Notes

Gaotang Li

February 6, 2023

Contents

Ι	Generalization Theory
1	Supervised Learning Framework
	1.1 Basic Setups
	1.2 Empirical Risk Minimization
	1.3 Questions
2	Concentration Inequality
	2.1 Chebyshev's Inequality
	2.2 Hoeffding Inequality
	2.3 Bounded Difference Concentration Inequality
3	Rademacher Complexity
	3.1 Uniform Convergence
	3.2 Rademacher Complexity

Part I Generalization Theory

Chapter 1

Supervised Learning Framework

1.1 Basic Setups

In a supervised learning problem, we have a goal to predict a label given an input. Let S denote the dataset $\{(x_i, y_i)\}_{i=1}^n$ for

- $x_i \in \mathcal{X}$, the inputs in the input space.
- $y_i \in \mathcal{Y}$, the label associated with x_i in the label space.

We assume that the data are drawn **i.i.d.** from an unknown probability distribution \mathcal{P} over $\mathcal{X} \times \mathcal{Y}$. We aim at learning a function mapping $h: \mathcal{X} \to \mathcal{Y}$ (aka hypothesis, predictor, model).

To evaluate the performance of h, we specify a loss function. A loss function $\ell \colon \mathcal{Y}, \mathcal{Y} \to \mathbb{R}$ measures the difference between the predicted label and the groundtruth label.

Definition 1.1.1 (population risk). The population risk of a hypothesis h is its expected loss over the data distribution $\mathcal{P}: L_{\mathcal{P}}(h) = \mathbb{E}_{(x,y) \sim \mathcal{P}}[\ell(h(x),y)]$

Example. Examples of Loss Functions

- Classification: 0-1 loss $\ell(\hat{y}, y) = \mathbb{1}(\hat{y} \neq y)$.
- Regression: squared loss $\ell(\hat{y}, y) = (\hat{y} y)^2$

It is often impossible to consider all possible function mappings from $\mathcal{X} \to \mathcal{Y}$. We usually only consider a hypothesis class \mathcal{H} .

Example. Examples of \mathcal{H} .

- Linear function class: $\mathcal{H} = \{h_{\theta} | h_{\theta}(x) = \theta^T x, \theta \in \mathbb{R}\}$
- General parametric function class: $\mathcal{H} = \{h_{\theta} | h_{\theta}(x) = f(x, \theta), \theta \in \mathbb{R}^p\}$

1.2 Empirical Risk Minimization

Definition 1.2.1 (Empirical Risk). The *empirical risk* of a hypothesis h is its average loss over the dataset S

$$L_s(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i)$$

Empirical risk minimization (ERM) is any algorithm that minimizes the empirical risk over the hypothesis class \mathcal{H} . We denote a hypothesis returned by ERM as \hat{h}_{ERM} , *i.e.*:

$$\hat{h}_{ERM} \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$$

If we assume h is independent of S, then $\mathbb{E}_S[L_S(h)] = L_P(h)$. But in reality h and S are not independent.

1.3 Questions

In the supervised learning part of this course, we are mainly interested in the following two fundamental problems:

- Statistical: What guarantee do we have about $L_P(\hat{h}_{ERM})$?
- Optimization: When may ERM be achieved efficiently?

Chapter 2

Concentration Inequality

Concentration inequalities are a mathematical tool to study the relation between population and empirical quantities. Consider the following main question: for i.i.d. random variables X_1, \ldots, X_n , how does $\frac{1}{n} \sum_{i=1}^n X_i$ relate to $\mathbb{E}[\frac{1}{n} \sum_{i=1}^n X_i] = \mu$?

2.1 Chebyshev's Inequality

Lemma 2.1.1 (Markov's Inequality). Let X be a non-negative random variable, then for all t > 0,

$$\Pr(X \ge t) \le \frac{\mathbb{E}(x)}{t}$$

Proof.

$$\mathbb{E}(X) \ge \Pr(X < t) * 0 + \Pr(X > t) * t$$

Theorem 2.1.1 (Chebyshev's Inequality). Let X be a random variable with finite expected value μ and finite non-zero variance σ^2 . Then for any real number t > 0,

$$\Pr[|X - \mathbb{E}(X)| \ge t] \le \frac{\operatorname{Var}(X)}{t}$$

Proof.

$$\begin{split} \Pr\left[X - \mathbb{E}[X] \geq t\right] &= \Pr\left[(X - \mathbb{E}[X])^2 \geq t^2\right] \\ &= \frac{\mathbb{E}\left[(X - \mathbb{E}[X])^2\right]}{t^2} \\ &= \frac{\operatorname{Var}[X]}{t^2} \end{split}$$

Remark.

$$\Pr\left[|X - \mathbb{E}[X]| \ge t\right] \le \frac{\mathbb{E}[|X - \mathbb{E}[X]|^P]}{t^P}$$

Corollary 2.1.1. Let x_1, \ldots, x_n be i.i.d. random variables such that $\mathbb{E}[x_i] = \mu$, $\text{Var}[x_i] = \sigma^2$. Then:

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}x_{i}-\mu\right| \geq t\right] \leq \frac{\sigma^{2}}{nt^{2}}$$

2.2 Hoeffding Inequality

Lemma 2.2.1. If $X \in [0, 1]$ a.s. Then,

$$\mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right] \leq e^{\frac{\lambda^2}{8}}$$

for all $\lambda \in \mathbb{R}$.

Proof. Let $Z = X - \mathbb{E}[X]$, then $\mathbb{E}[Z] = 0$.

Define $\psi(\lambda) := \log \mathbb{E} \left[e^{\lambda Z} \right]$.

Using the Taylor expansion to get that $\psi(\lambda) = \psi(0) + \lambda \psi'(0) + \frac{\lambda^2}{2} \psi''(\lambda')$ where λ' is between 0 and λ .

Here the first term $\psi(0) = \log 1 = 0$, and the second term $\lambda \psi'(0) = \mathbb{E}[Z] = 0$. The only thing we need to is to compute the third term. The idea is to bound the third term by 1/4.

Then

$$\psi'(\lambda) = \frac{\mathbb{E}\left[e^{\lambda Z}Z\right]}{e^{\lambda Z}} = \mathbb{E}[Y]$$

$$\psi''(\lambda) = \frac{\mathbb{E}\left[e^{\lambda Z}Z^2\right]}{e^{\lambda Z}} - \left(\frac{\mathbb{E}\left[e^{\lambda Z}Z\right]}{\mathbb{E}[e^{\lambda Z}]}\right)^2$$

$$= \mathbb{E}[Y^2] - (\mathbb{E}[Y])^2$$

$$= \text{Var}[Y]$$

Where we can think of Y as a reweighted version of Z, and we have that

$$dP_Y(x) = \frac{e^{\lambda x}}{\mathbb{E}\left[e^{\lambda Z}\right]} dP_Z(x)$$

not finished yet...

Remark. We also call such random variables **subgaussian** random variables. Another interpretation is that bounded random variables are subgaussian.

Another reminder is that the expectation is in the form of **Moment Generating Function**, where $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$.

Theorem 2.2.1 (Hoeffding Inequality). Let X_1, \ldots, X_n be i.i.d. random variables such that for each $i, X_i \in [0,1]$ a.s. Then for all t > 0:

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] \ge t\right] \le e^{-2nt^{2}}$$

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] \le -t\right] \le e^{-2nt^{2}}$$

Proof. Let us use \bar{X} to denote $\frac{1}{n} \sum_{i=1}^{n} X_i$. Then we have that

$$\begin{split} \Pr\left[\bar{X} - \mathbb{E}[\bar{X}] \geq t\right] &= \Pr\left[e^{\lambda(\bar{X} - \mathbb{E}[\bar{X}])} \geq e^{\lambda t}\right] & \lambda > 0 \\ &\leq \frac{\mathbb{E}\left[e^{\lambda(\bar{X} - \mathbb{E}[\bar{X}])}\right]}{e^{\lambda t}} & \text{Markov} \\ &= e^{-\lambda t} \cdot \mathbb{E}\left[e^{\frac{\lambda}{n}} \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i])\right] \\ &= e^{-\lambda t} \cdot \mathbb{E}\left[\prod_{i=1}^{n} e^{\frac{\lambda}{n}(X_i - \mathbb{E}[X_i])}\right] \\ &= e^{-\lambda t} \prod_{i=1}^{n} \mathbb{E}\left[e^{\frac{\lambda}{n}(X_i - \mathbb{E}[X_i])}\right] & \text{Independence} \\ &\leq e^{-\lambda t} \left(e^{\frac{1}{8}(\frac{\lambda}{n})^n}\right) \\ &= e^{-\lambda t + \frac{\lambda^2}{8n}} \\ &= e^{-2nt^2} & \text{let } \lambda = 4nt \end{split}$$

By symmetry, we complete the proof.

2.3 Bounded Difference Concentration Inequality

We are concerned with diffeormorphism (i.e. change in one coordinate) and formally

$$f(X_1, \cdots, X_n) \mapsto \mathbb{E}\left[f(X_1, \cdots, X_n)\right]$$

Theorem 2.3.1 (Mcdiarmid's inequality). Suppose X_1, \ldots, X_n are independent random variables taking values in a set A. Let $f: A^n \to \mathbb{R}$ be a function that satisfies the *bounded difference* condition:

$$\exists c_1, \dots, c_n > 0 \text{ s.t.} \forall x_1, \dots, x_n \in A, x_i' \in A | f(x_1, \dots, x_n) - f(x_1, \dots, x_{i-1}, x_i', x_{i+1}, \dots, x_n) | \le c_i$$

Then, for all t > 0,

$$\Pr[f(X_1,...,X_n) - \mathbb{E}[f(X_1,...,X_n)] \ge t] \le e^{-\frac{2t^2}{\sum_{i=1}^n c_i^2}}$$

Remark. If $f(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^n x_i$ and A = [0, 1], then $c_i = \frac{1}{n}$ and the bound recovers the Hoeffding inequality as e^{-2nt^2} .

Chapter 3

Rademacher Complexity

Preliminary on the relation between $L_S(h)$ and L(h) (empirical risk and population risk):

For a fixed h (independent of S), $\mathbb{E}_S[L_S(h)] = \underline{L(h)}$.

By Hoeffding: w.p. $\geq 1 - \delta$: $L(h) - L_S(h) \leq \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$.

3.1 Uniform Convergence

Motivation: we want to study $L(\hat{h}_{ERM})$ and compare it against $h^* \in \operatorname{argmin}_{h \in \mathcal{H}} L(h)$. We want to bound the difference $L(\hat{h}_{ERM}) - L(h^*)$, which is also referred to as the "excess risk".

$$L(\hat{h}_{ERM}) - L(h^*) = \left(L(\hat{h}_{ERM}) - L_S(\hat{h}_{ERM})\right) + \left(L_S(\hat{h}_{ERM}) - L_S(h^*)\right) + \left(L_S(h^*) - L(h^*)\right)$$

where the second term is smaller or equal to 0 by definition, and the third term can be bounded using the Hoeffding inequality as h^* does not depend on S.

Consequently, our aim becomes bounding the first term and we define the following **generalization** gap:

Definition 3.1.1 (Uniform Convergence).

$$L(\hat{h}_{ERM}) - L_S(\hat{h}_{ERM}) \le \sup_{h \in \mathcal{H}} (L(h) - L_S(h))$$

, where the bounded difference is called the generalization gap.

Theorem 3.1.1 (Generalization Bound for finite hypothesis class). If \mathcal{H} is finite, then for any $\delta \in (0,1)$, we have

w.p.
$$\geq 1 - \delta$$
, $\sup_{h \in \mathcal{H}} (L(h) - L_S(h)) \leq \sqrt{\frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{2n}}$

Remark. If $n >> \log |\mathcal{H}|$, excess risk $\to 0$.

What if \mathcal{H} is infinite?

- Idea: Reduce infinite case to finite case.

3.2 Rademacher Complexity

Notation: Given \mathcal{H} and ℓ , define the family of loss mappings:

$$\mathcal{G} = \{g_h \colon (x, y) \mapsto \ell(h(x), y), h \in \mathcal{H}\}\$$

where $z = (x, y) \sim P$, $z_i = (x_i, y_i)$, $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$, and $L(h) = \mathbb{E}_{z \sim P}[g_h(z)]$, $L_S(h) = \frac{1}{n} \sum_{i=1}^n g_h(z_i)$.

$$\sup_{h \in \mathcal{H}} (L(h) - L_S(h)) = \sup_{g \in \mathcal{G}} \left(\mathbb{E}_{z \sim P}[g(z)] - \frac{1}{n} \sum_{i=1}^{n} g(z_i) \right)$$

Definition 3.2.1 (Empirical Rademacher Complexity). Let \mathcal{G} be a set of functions mapping $\mathcal{Z} \to \mathbb{R}$. Let $S = \{z_1, \dots, z_n\} \subseteq \mathcal{Z}$.

The empirical Rademacher complexity of \mathcal{G} with respect to the simple set S is:

$$R_S(\mathcal{G}) = \mathbb{E}_{\sigma_1, \dots, \sigma_n} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i g(z_i) \right]$$

where $\sigma_i = \begin{cases} +1 & \text{w.p.} \frac{1}{2} \\ -1 & \text{w.p.} \frac{1}{2} \end{cases}$ i.i.d (called Rademacher random variables).

Remark. Rademacher complexity measures the ability of a function class to fit random noise

$$R_S(\mathcal{G}) = \mathbb{E}_{\vec{\sigma}} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} < \vec{\sigma}, \vec{g}_s > \right]$$

Definition 3.2.2 (Rademacher Complexity). Let P be a distribution over \mathcal{Z} .

For an integer $n \geq 1$, the **Rademacher complexity** of \mathcal{G} is

$$R_n(\mathcal{G}) = \mathbb{E}_{S \sim P^n} \left[R_S(\mathcal{G}) \right]$$

Theorem 3.2.1 (Generalization Bound using Rademacher Complexity). Let \mathcal{G} be a function class mapping \mathcal{Z} to $[0,1], S = \{z_1,\ldots,z_n\} \sim P^n$. Then for any $\delta \in (0,1)$:

w.p.
$$\geq 1 - \delta$$
, $\sup_{g \in \mathcal{G}} \left(\mathbb{E}_{z \sim P} \left[g(z) \right] - \frac{1}{n} \sum_{i=1}^{n} g(z_i) \leq 2R_n(\mathcal{G}) + \sqrt{\frac{\log \frac{1}{\delta}}{2n}} \right)$

w.p.
$$\geq 1 - \delta$$
, $\sup_{g \in \mathcal{G}} \left(\mathbb{E}_{z \sim P} \left[g(z) \right] - \frac{1}{n} \sum_{i=1}^{n} g(z_i) \leq 2R_S(\mathcal{G}) + 3\sqrt{\frac{\log \frac{2}{\delta}}{2n}} \right)$

Proof. Define $f(z_1, \dots, z_n) = \sup_{g \in \mathcal{G}} (\mathbb{E}_{z \sim P}[g(z)] - \frac{1}{n} \sum_{i=1}^n g(z_i))$.

Consider