Математический анализ первый модуль 1 курса Задачи Ю.М. Бурман

3 декабря 2019 г.

Содержание

1	ЛИ	Γ 1	3
	1.1		3
	1.2	2	3
	1.3	}	3
	1.4	£	3
	1.5	5	4
	1.6	;	4
	1.7	7	4
	1.8	3	5
	1.9)	6
ก	ЛИ		7
_	2.1	L	7
	$\frac{2.1}{2.2}$)	
	$\frac{2.2}{2.3}$		
	$\frac{2.3}{2.4}$	}	
	$\frac{2.4}{2.5}$		
	$\frac{2.5}{2.6}$	5	
	$\frac{2.0}{2.7}$	7	
	2.8	3	
	2.0		
3	ЛИ	$\Gamma~3$	10
	3.1		10
	3.2	2	10
	3.3	8	10
	3.4	£	12
	3.5	5	12
	3.6	3	12
	3.7	7	12
	3.8	}	13
	3.9)	13
	3.10	.0	13
	3.11	1	14
	3.12	2	15
	0.10		1 5

1 ЛИСТ 1

1.1 1

A)

$$\{a_1, a_2, ...\}$$
 $a_n = 3 + \frac{1}{10} + \frac{4}{10^2} + ... + \frac{\pi_n}{10^n}$

Очевидно, что верхняя грань = π , т.к. если верхняя грань = $b < \pi$, то будем сравнивать эти два числа поразрядно, пусть они не совпали впервые в k разряде, тогда заметим, что $a_k > b$ - противоречие Нижняя грань = 3.1, т.к. в множестве $\{a_1, a_2, ...\}$ есть $a_1 = 3.1$ и $\forall i \in \mathbb{N}$: $a_i \geq a_1$ В)

$$\{\sin(n)|n=1,2,...\}$$

Заметим, что $\sin(\frac{\pi}{2})=1$ и $\sin(\frac{3\pi}{2})=-1$, далее заметим, что $\sin(\frac{5^n\pi}{2})=1$ и $\sin(\frac{5^n3\pi}{2})=-1$

Пусть
$$b_x = \left[\frac{5^x \pi}{2}\right]$$
 и $c_x = \left[\frac{5^x 3 \pi}{2}\right]$

Тогда $\lim_{x\to\infty}\sin(b_x)=1$ и $\lim_{x\to\infty}\sin(c_x)=-1$

Тогда точная нижняя грань = -1 и точная нижняя грань = 1

1.2 2

Пусть не так. Пусть $s=|r^2-a|>0$. Определим $t=min\{\frac{s}{4r},\frac{s}{4},1\}$. В таком случае $|2tr|\leqslant\frac{s}{4};\ |t|\leqslant1,|t|\leqslant\frac{s}{4}\Rightarrow |t^2|\leqslant\frac{s}{4}$. Значит, $|(r\pm t)^2-r^2|=|\pm 2rt-t^2|\leqslant|2rt|+|t^2|\leqslant\frac{2s}{4}+\frac{s}{4}< s$. Значит, $(r-t)^2,r^2,(r+t)^2$ лежат по одну сторону от a. Но если они все меньше a, то получаем, что $r+t\in R_a$, а если больше a, то r-t тоже является верхней гранью множества R_a . В обоих случаях получаем противоречие с тем, что r - супремум.

1.3 3

A)

Пусть a_i - i — тый член последовательности.

Заметим, что для $n \geq a^2$: $\frac{a_{n+1}}{a_n} < \frac{1}{a}$, из чего следует, что если $a_{a^2} = A$, то $a_i < \frac{A}{a^{i-a^2}}$ при $i \geq a^2$, из чего следует, что для $\forall \epsilon > 0$ $\exists \delta$: $\forall n > \delta$: $a_n < \epsilon$ (т.к. это равносильно тому, что $\lim_{n \to \infty} \frac{1}{a^n} = 0$)

B)

Пусть a_i - i — тый член последовательности.

Заметим, что для $n \geq 3$: $a_n < \frac{1}{2^{\frac{n-1}{2}}}$ (т.к. $n! < n^{\frac{n+1}{2}} * \frac{n^{\frac{n-1}{2}}}{2}$), из чего $\frac{n!}{n^n} < \frac{1}{2^{\frac{n-1}{2}}}$, поэтому, применив теорему о милиционерах для этой функции и для $b_n = 0$ и $c_n = \frac{1}{2^{\frac{n-1}{2}}}$, получаем, что $\lim_{n \to \infty} a_i = 0$

C)

Пусть a_i - i — тый член последовательности.

Заметим, что $k*(n-k) \leq (\frac{n}{2})^2$ при $k < \frac{n}{2}$ $(k*(n-k)) = (\frac{n}{2} - (\frac{n}{2} - k))*(\frac{n}{2} + (\frac{n}{2} - k)) = (\frac{n}{2})^2 - (\frac{n}{2} - k)^2$, из чего следует, что $\frac{n!}{(\frac{n}{2})^n} \leq \frac{n*(n-1)*1}{(\frac{n}{2})^3} = \frac{2(n-1)}{(\frac{n}{2})^2} = \frac{8n-8}{n^2} = b_n$, в свою очередь очевидно, что $b_n \to 0$, в следствие чего можно применить теорему о милиционерах для a_n и пары b_n и $c_n = 0$, из чего следует, что $\lim_{n\to\infty} a_n = 0$

1.4 4

$$\lim_{x \to 1} \left(\frac{m}{1 - x^m} - \frac{n}{1 - x^n} \right)$$

Решение:

$$\begin{split} &\lim_{x \to 1} \left(\frac{m}{1 - x^m} - \frac{n}{1 - x^n} \right) = \\ &\lim_{x \to 1} \left(\frac{m}{1 - x^m} - \frac{1}{1 - x} - \frac{n}{1 - x^n} + \frac{1}{1 - x} \right) = \\ &\lim_{x \to 1} \left(\frac{(1 - x^{m-1}) + (1 - x^{m-2}) + \dots + (1 - x) + (1 - 1)}{1 - x^m} - \frac{(1 - x^{n-1}) + (1 - x^{n-2}) + \dots + (1 - x) + (1 - 1)}{1 - x^n} \right) = \\ &\lim_{x \to 1} \left(\frac{(1 - x^{m-1}) + (1 - x^{m-2}) + \dots + (1 - x) + (1 - 1)}{(1 - x)(x^{m-1} + \dots + 1)} - \frac{(1 - x^{n-1}) + (1 - x^{n-2}) + \dots + (1 - x) + (1 - 1)}{(1 - x)(x^{n-1} + \dots + 1)} \right) = \\ &\lim_{x \to 1} \left(\frac{(1 + x + \dots + x^{m-2}) + (1 + x + \dots + x^{m-3}) + \dots + 1}{(x^{m-1} + \dots + 1)} - \frac{(1 + x + \dots + x^{n-2}) + (1 + x + \dots + x^{n-3}) + \dots + 1}{(x^{n-1} + \dots + 1)} \right) = \\ &\frac{(m - 1) + (m - 2) + \dots + 1}{m} - \frac{(n - 1) + (n - 2) + \dots + 1}{n} = \\ &\frac{m(m - 1)}{2m} - \frac{n(n - 1)}{2n} = \frac{m - n}{2} \end{split}$$

1.5 5

Пусть a_i - і-тый член последовательности.

Тогда:

$$a_n = 1 + q + \dots + q^n = \frac{1 - q^n}{1 - q} = \frac{1}{1 - q} - \frac{q^n}{1 - q}$$

$$|q| < 1 \Longrightarrow \lim_{n \to \infty} q^n = 0 \Longrightarrow \lim_{n \to \infty} \frac{q^n}{1 - q} = 0$$

$$\implies \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{1 - q} - \lim_{n \to \infty} \frac{q^n}{1 - q} = \frac{1}{1 - q} - 0$$

Что и требовалось доказать

При $q \ge 1$ a_n неограниченно возрастает, т.к. $a_{n+1}-a_n>1$. При $q\le -1$ a_{2n} неограниченно возрастает, т.к. $a_{n+2}-a_n=q^{n+2}+q^{n+1}>q^2+q$

Для комплексных q есть предел при |q| < 1, т.к. модуль последовательных сумм меняется не более чем на $|q|^k$, из чего следует что модули чисел из последовательности имеют предел.

При комплексных $|q| \geq 1$ предела нет.

1.6 6

Заметим, что если $a_n^{(2)}$ имеет предел, то и для $\forall a_n^{(k)}$ при $k \geq 2$ это верно, т.к. последовательности ограничены пределом $a_n^{(2)}$.

докажем, что $a_n^{(2)}$ ограничена: заметим, что $\frac{1}{2^2} + \frac{1}{3^2} < \frac{1}{2}, \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} < \frac{1}{4}, \dots \frac{1}{(2^k)^2} + \frac{1}{(2^k+1)^2} + \dots + \frac{1}{2^{2k+1}-1} < \frac{1}{2^k},$ из чего следует, что $a_n^{(2)} < 1 + \frac{1}{2} + \frac{1}{4} + \dots < 2$.

 $a_n^{(2)}$ ограничена и монотонна, из чего у неё есть предел.

Заметим, что $\lim_{n\to+\infty}a_n^{(1)}=\infty$, т.к. $\frac{1}{2}\geq\frac{1}{2},\,\frac{1}{3}+\frac{1}{4}\geq\frac{1}{4}*2=\frac{1}{2},\,\dots$, $\frac{1}{2^{n+1}}+\dots+\frac{1}{2^{n+1}}\geq\frac{1}{2^{n+1}}*2^n=\frac{1}{2}$ из чего следует, что $a_n^{(1)}$ неограничена.

1.7 7

A)

Очевидно, что корни будут существовать при дост. малых a, т.к. $D=b^2-4ac$ будет >0. Предположим, что b>0. Будем считать, что $x_1(a)< x_2(a)$. Тогда $\lim_{a\to 0} x_1(a)=\lim_{a\to 0} \frac{b-\sqrt{b^2-4ac}}{2a}=\lim_{a\to 0} \frac{4ac}{2a(b+\sqrt{b^2-4ac})}=\lim_{a\to 0} \frac{2c}{b+\sqrt{\lim_{a\to 0}(b^2-4ac)}}=\frac{c}{b}; \lim_{a\to 0} x_2(a)=\lim_{a\to 0} \frac{b+\sqrt{b^2-4ac}}{2a}=\pm\infty$, так как $|\frac{b+\sqrt{b^2-4ac}}{2a}|\geqslant |\frac{b}{2a}|$.

B)

(Продолжаем работать в предположении b>0.) Так как $\lim_{a\to 0} x_1(a)$ существует, то $\lim_{a\to 0} a x_1(a)=0$; $\lim_{a\to 0} a x_2(a)=0$ $\lim_{a \to 0} \frac{b + \sqrt{b^2 - 4ac}}{2} = b.$

 $a \to 0$. Легко видеть, что при домножении a,b,c на (-1) корни не изменятся (разве что их порядок). Значит, $\lim_{a \to 0} x_1(a) = \lim_{-a \to 0} x_1(-a) = \frac{-c}{-b} = \frac{c}{b} \lim_{-a \to 0} -a \, x_2(-a) = -b \Rightarrow \lim_{a \to 0} a \, x_2(a) = b$.

Ответ: A) $\{\frac{c}{b}, \pm \infty\}$; B) $\{0, b\}$.

1.8 8

A)

$$a_1 = 1$$
 $a_{n+1} = 1 + \frac{1}{a_n}$

Заметим, что $a_2=\frac{2}{1}=\frac{F_3}{F_2}$ (где $F_{n+1}=F_n+F_{n-1}$ и $F_1=F_2=1$) и $a_n=1+\frac{F_{n-1}}{F_n}=\frac{F_{n-1}+F_n}{F_n}=\frac{F_{n+1}}{F_n}$ Тогда вспомним формулу Бине:

$$F_n = \frac{(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n}{\sqrt{5}}$$

И рассмотрим $\lim_{n\to\infty} a_n$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \lim_{n \to \infty} \frac{\frac{(\frac{1+\sqrt{5}}{2})^{n+1} - (\frac{1-\sqrt{5}}{2})^{n+1}}{\sqrt{5}}}{\frac{(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n}{\sqrt{5}}} = \lim_{n \to \infty} \frac{(\frac{1+\sqrt{5}}{2})^{n+1} - (\frac{1-\sqrt{5}}{2})^{n+1}}{(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n}$$

Пусть $a = \frac{1+\sqrt{5}}{2}$ и $b = \frac{1-\sqrt{5}}{2}$

$$\lim_{n \to \infty} \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\left(\frac{1+\sqrt{5}}{2}\right)^{n} - \left(\frac{1-\sqrt{5}}{2}\right)^{n}} = \lim_{n \to \infty} \frac{a^{n+1} - b^{n+1}}{a^{n} - b^{n}} = \lim_{n \to \infty} \frac{(a-b)(a^{n} + \dots + b^{n})}{(a-b)(a^{n-1} + \dots + b^{n-1})} = \lim_{n \to \infty} \frac{a^{n} + \dots + b^{n}}{a^{n-1} + \dots + b^{n-1}} = \lim_{n \to \infty} \left(\frac{a^{n} + \dots + ab^{n-1}}{a^{n-1} + \dots + b^{n-1}} + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(\frac{a * (a^{n-1} + \dots + b^{n-1})}{a^{n-1} + \dots + b^{n-1}} + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{n \to \infty} \left(a + \frac{b^{n}}{a^{n-1} + \dots + b^{n-1}}\right) = \lim_{$$

B)

$$a_1 = 0$$
 $a_{n+1} = \sqrt{2 + a_n}$

Заметим, что $a_n < 2$, докажем это по индукции.

 $n=1: \sqrt{2} < 2$

Переход:

 $a_{n+1} = \sqrt{2+a_n} < 2 \Longleftrightarrow 2+a_n < 4 \Longleftrightarrow a_n < 2$, что является предположением индукции.

Заметим, что $a_{n+1}>a_n$, т.к. это равносильно $\sqrt{2+a_n}>a_n\Longleftrightarrow 2+a_n>a_n^2\Longleftrightarrow a_n^2< a_n*2< a_n+2$, поэтому a_n возрастает и ограничена \Longrightarrow она имеет предел.

Докажем, что $\lim_{n\to+\infty}a_n=2$: $(\lim a_n)^2=\lim a_n+2$ \Longrightarrow $\lim a_n=2$ | -1, но очевидно -1 не является пределом, т.к. $\forall n: a_n > 0$, поэтому $\lim_{n \to +\infty} a_n = 2$

C)

Заметим, что по неравенству Коши(среднее арифметическое и среднее геометрическое) $a_{n+1} = \frac{a_n + \frac{p}{a_n}}{2} \geqslant \sqrt{p}$

Заметим также, что если $a_n\geqslant \sqrt{p}$, то $a_{n+1}=\frac{a_n+\frac{p}{a_n}}{2}\leqslant \frac{a_n+a_n}{2}=a_n$, то есть начиная с n=2 последовательность $\{a_n\}$ нестрого убывает и ограничена снизу, значит, она имеет предел. Пусть $\lim_{n\to\infty}a_n=A$. Тогда $A\geqslant 0$ и (выполним переход к пределу в рекуррентном соотношении) $A=\frac{A+\frac{p}{A}}{2}\Rightarrow A=\sqrt{p}$

1.9 9

$$\lim_{n \to \infty} \lim_{m \to \infty} \cos^m(2\pi n! x)$$

Заметим, что если x - иррационально, то $|cos(2\pi n!x)| < 1$, т.к. $cosx = \pm 1$ при $x = \pi k$ для целых k, а 2*n!x очевидно не целое, из чего следует, что $\forall n \quad lim_{m\to\infty} cos^m(2\pi n!x) = 0$, из чего $lim_{n\to\infty} lim_{m\to\infty} cos^m(2\pi n!x) = 0$ Если же x - рационально, то $x = \frac{p}{q}$, значит, что для n > q: $cos(2\pi n!x) = 1$, т.к. 2*n!x - целое и чётное, поэтому для n > q:

$$\lim_{m\to\infty}\cos^m(2\pi n!x)=1\quad\Longrightarrow\quad \lim_{m\to\infty}\lim_{m\to\infty}\cos^m(2\pi n!x)=1.$$

ЛИСТ 2

2.1 1

Сделаем замену: $x - \frac{\pi}{2} = y$, тогда:

$$\lim_{y\to 0} \left(y \cdot \tan(y+\frac{\pi}{2})\right) = \lim_{y\to 0} \left(y \cdot \frac{\sin(y+\frac{\pi}{2})}{\cos(y+\frac{\pi}{2})}\right) = \lim_{y\to 0} \left(y \cdot \frac{\cos(y)}{\sin(y)}\right) = \lim_{y\to 0} (\cos(y)) = 1$$

2.2 2

 $\frac{\mathbf{A})}{\sum_{n=1}^{\infty}nz^{n}}$

ряд знакочередуется, сходится, если |z| < 1

 $\lim_{n\to\infty} nz^n = 0$

- 1) при $z \neq 0$: $|(n+1)z^{n+1}| > |nz^n| \Rightarrow$ возрастает, предел $\neq 0$
- 2) при $z=0:\ nz^n=0 \Rightarrow \lim_{n\to\infty}nz^n=0 \Rightarrow$ ряд сходится
- 3) при |z|<1 ряд сходится абсолютно и нет: $\lim_{n\to\infty}\frac{n+1}{n}=z\in(-1,\ 1)\ \Rightarrow$ сходится

 $z = 1: \sum_{n=1}^{\infty} n$ $z = -1: \sum_{n=1}^{\infty} n(-1)^n$

абсолютно:

 $\lim |nz^n| = 0$

В)
$$\sum_{n=1}^{\infty} \frac{z^n}{n^2}$$

$$\lim_{n\to\infty} \Big| \frac{\left(\frac{z^{n+1}}{(n+1)^2}\right)}{\left(\frac{z^n}{n^2}\right)} \Big| = \lim_{n\to\infty} \Big| \frac{z}{(n+1)^2} \cdot n^2 \Big| = |z| \lim_{n\to\infty} \Big| \frac{1}{(1+\frac{1}{n})^2} \Big| = |z|$$
 Интервал сходимости: $|z| \le 1$

 $z=-1: \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}: \lim_{n\to\infty} |a_n|=\frac{1}{n^2}=0$ — члены ряда уменьшаются по модулю, предел равен 0 $\frac{1}{(n+1)^2}<\frac{1}{n^2}\Rightarrow$ убывание монотонно. Следовательно, ряд сходится (признак Лейбница). $\sum_{n=1}^{\infty} |a_n|=\sum_{n=1}^{\infty} \frac{1}{n^2}$ — сходится. И тогда $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ сходится абсолютно.

 $z=1: \sum_{n=1}^{\infty} \frac{1}{n^2}$ — сходится (абсолютно) и ряд из модулей.

Следовательно ряд сходится абсолютно при $z \in [-1, 1]$

По признаку Лейбница: ряд знакочередуется и члены ряда убывают по модулю (так как $\lim \left| \frac{a_{n+1}}{a_n} \right| = 0$ при |z| < 1

 $z \ge 0 \, \Rightarrow \, \mathrm{prg}$ сходится (так как сходится абсолютно) при |z| < 1

3 2.3

2.4

 $(a, b) \subset \mathbb{R}$

 $f: A \to C, a \in \mathbb{R}$

A)

 $c \in (a, b)$ $M = \{f(x) \mid x \in (c, b))\}$. Множество непусто, так как c < b, и ограничено снизу, так как $\forall x > c : f(x) \ge f(c)$

Пусть $\inf M = \gamma$. γ – правы предел.

По определению точной нижней грани, $\exists \delta > 0: \ f(c+\delta) < \gamma + \varepsilon$ $\forall \ x \in (c, \ b): \ \gamma \leq f(x) \ \Rightarrow \ \forall \ x \in (c, \ c+\delta): \ \gamma \leq f(x) < \gamma + \varepsilon \qquad |\gamma - f(x)| < \varepsilon$

B)

2.5 5

2.6 6

Заметим, что

$$\sin(x) = 2\sin(\frac{x}{2})\cos(\frac{x}{2}) = 2^2\sin(\frac{x}{4})\cos(\frac{x}{4})\cos(\frac{x}{2}) = 2^3\sin(\frac{x}{8})\cos(\frac{x}{8})\cos(\frac{x}{4})\cos(\frac{x}{2}) = \vdots$$

$$\vdots$$

$$2^n\sin(\frac{x}{2^n})\cos(\frac{x}{2^n})...\cos(\frac{x}{4})\cos(\frac{x}{2})$$

$$\Rightarrow \sin(x) = 2^n\sin(\frac{x}{2^n})\cos(\frac{x}{2^n})...\cos(\frac{x}{4})\cos(\frac{x}{2})$$

$$\Rightarrow \frac{\sin(x)}{2^n\sin(\frac{x}{2^n})} = \cos(\frac{x}{2^n})...\cos(\frac{x}{4})\cos(\frac{x}{2})$$

Тогда

$$\lim_{n\to\infty} \left(\cos(\frac{x}{2^n})...\cos(\frac{x}{4})\cos(\frac{x}{2})\right) = \lim_{n\to\infty} \left(\frac{\sin(x)}{2^n\sin(\frac{x}{2^n})}\right)$$

Откуда

$$\lim_{n\to\infty} \left(\frac{\sin(x)}{2^n \sin(\frac{x}{2^n})}\right) = \lim_{n\to\infty} \left(\frac{\sin(x)}{2^n \sin(\frac{x}{2^n}) \cdot \frac{x}{\frac{2^n}{2^n}}}\right) = \lim_{n\to\infty} \left(\frac{\sin(x)}{2^n \cdot \frac{x}{2^n} \frac{\sin(\frac{x}{2^n})}{\frac{x}{2^n}}}\right) = \lim_{n\to\infty} \left(\frac{\sin(x)}{\frac{2^n \cdot x}{2^n} \frac{\sin(\frac{x}{2^n})}{\frac{x}{2^n}}}\right) = \lim_{n\to\infty} \left(\frac{\sin(x)}{\frac{x}{2^n} \frac{\sin(x)}{\frac{x}{2^n}}}\right) = \lim_{n\to\infty} \left(\frac{\sin(x)}{\frac{x}{2^n}} \frac{\sin(x)}{\frac{x}{2^n}}\right) = \lim_{n\to\infty} \left(\frac{\sin(x)}{\frac{x}{2^n}}$$

2.7 7

1)

$$\lim_{x \to +\infty} (1 + \frac{a}{x})^x \quad t = \frac{1}{x}$$

$$\lim_{t \to 0} (1 + at)^{\frac{1}{t}} = \lim_{t \to 0} ((1 + at)^{\frac{1}{ta}})^a = \lim_{t \to 0} ((1 + at)^{\frac{1}{ta}})^{\lim_{t \to 0} a} = e^a$$

2)

Пусть
$$x = y \cdot a$$
.
 $\lim_{x \to a} (1 + \frac{a}{x})^x = \lim_{x \to a} (1 + \frac{1}{y})^{y \cdot a} = \exp(1)^a = \exp(a)$

2.8 8

A)

 $\pi(n-1) < x_n < \pi n, \ n \in \mathbb{Z}$ Тогда $\pi(n-1), \ \pi n$ – асимптоты, между которыми лежит часть графика, т.е. раз в период пересечение – период равен π

$$\pi - \frac{\pi}{n} < \frac{x_n}{n} < \pi$$
 $\lim_{n \to \infty} (\pi - \frac{\pi}{n}) = \pi$, $\lim_{n \to \infty} \pi = \pi$, по лемме о 2 милиционерах: $\lim_{n \to \infty} \frac{x_n}{n} = \pi$

B)

$$\pi(n-1) < x_n < \pi n, \ n \in \mathbb{Z}$$

Сделаем более точную оценку сверху y=x при $x>0,\ y>0 \Rightarrow$ "ветви" пересекаются левее нуля координат, т.е. $x_n<\pi n-\frac{\pi}{2}$ (нули в $\frac{\pi}{2}+\pi k,\ k\in\mathbb{Z}$).

$$\pi(n-1) < x_n < \pi(n-\frac{1}{2})$$

$$-\pi < x_n - \pi n < -\frac{\pi}{2}$$

$$-\pi n < n(x_n - \pi n) < -\frac{\pi n}{2}$$

 $\lim_{n\to\infty} -\pi n = -\infty$, $\lim_{n\to\infty} -\frac{\pi n}{2} = -\infty$ \Rightarrow по лемме о 2 милиционерах: $\lim n(x_n - \pi n) = -\infty$

3 ЛИСТ 3

3.1 1

A)

$$\lim_{x\to\infty}x(\frac{\pi}{2}-\arctan(x))=\lim_{x\to\infty}x(\arctan(x))=\lim_{x\to\infty}\frac{\arctan(x)}{\frac{1}{x}}=$$

$$\lim_{x\to\infty}\frac{\frac{x}{1+x^2}}{\frac{1}{x}}=\lim_{x\to\infty}\frac{1}{(1+x^2)\frac{1}{x^2}}=\lim_{x\to\infty}\frac{1}{\frac{1}{x^2}+1}=1$$

Б)

$$\lim_{x\to 0}\frac{\cos\sin(x)-\cos(x)}{x^4}=\lim_{x\to 0}\frac{\cos(x-\frac{x^3}{3!}+\frac{x^5}{5!}-\ldots)-\cos(x)}{x^4}=\\\frac{1-\frac{(x-\frac{x^3}{3!}+\ldots)^2}{2!}+\frac{(x-\ldots)^4}{4!}-\ldots-(1-\frac{x^2}{2!}+\frac{x^4}{4!}-\ldots)}{x^4}=\\\lim_{x\to 0}\frac{x^4\cdot(\frac{1}{3!}+\frac{1}{4!}-\frac{1}{4!})+x^2\cdot(-\frac{1}{2!}+\frac{1}{2!})+(\text{степени}>4)}{x^4}=\\\lim_{x\to 0}\frac{x^4\cdot\frac{1}{3!}+(\text{степени}>4)}{x^4}=\frac{1}{6}$$

B)

$$\lim_{x \to 0} (\cot(x))^{\sin(x)} = \lim_{x \to 0} e^{\sin(x)\ln\cot(x)} = e^{\lim_{x \to 0} \sin(x)\ln\cot(x)}$$

рассмотрим $\lim_{x\to 0} \left(\sin(x)\ln\cot(x)\right)$:

$$\lim_{x\to 0}\bigg(\sin(x)\ln\cot(x)\bigg)=\lim_{x\to 0}\frac{\ln\cot(x)}{\frac{1}{\sin(x)}}=\lim_{x\to 0}\bigg(\frac{1}{\cot(x)}\cdot-\frac{1}{\sin^2(x)}\cdot\frac{1}{\frac{1}{\sin^2(x)}\cdot\cos(x)}\bigg)=\lim_{x\to 0}\frac{\sin(x)}{\cos^2(x)}=\frac{0}{1}=0$$

вернемся к изначальной задаче:

$$e_{x\to 0}^{\lim \sin(x)\ln\cot(x)} = e^0 = 1$$

Ответ: a)1 б) $\frac{1}{6}$ в) 1

3.2 2

3.3 3

А)Б)

Рассмотрим $\alpha = \frac{1}{2}$:

Заметим, что

$$\lim_{x\to 0}\frac{x^2-\sin^2(x)}{x^2\cdot\sin^2(x)}=\frac{1}{3}\quad \text{по правилу Лопиталя}$$

Откуда

$$\lim_{n \to \infty} \left(\frac{1}{a_{n+1}^2} - \frac{1}{a_n^2} \right) = \frac{1}{3}$$

Теперь докажем что:

$$\lim_{n \to \infty} n a_n^2 = 3$$

Доказательство:

Докажем более общий факт: если

$$\lim_{n \to \infty} (a_{n+1} - a_n) = a$$

$$\lim_{n \to \infty} \frac{a_n}{n} = a$$

Это можно доказать с помощью теоремы Штольца, в которой x_n заменим на a_n , а y_n заменим на n: Формулировка:

Пусть x_n и y_n — две последовательности вещественных чисел, причём y_n положительна, неограничена и строго возрастает (хотя бы начиная с некоторого члена).

Тогда, если существует предел $\lim_{n\to\infty} \frac{x_n-x_{n-1}}{y_n-y_{n-1}}$ то существует и предел $\lim_{n\to\infty} \frac{x_n}{y_n}$ причём эти пределы равны.

Доказательство:

Допустим сначала, что предел равен конечному числу L, тогда для любого заданного $\varepsilon > 0$ существует такой номер N > 0, что при n > N будет иметь место:

$$L - \frac{\varepsilon}{2} < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < L + \frac{\varepsilon}{2}$$

Значит, для любого n > N все дроби:

$$\frac{x_{N+1}-x_{N}}{y_{N+1}-y_{N}}, \frac{x_{N+2}-x_{N+1}}{y_{N+2}-y_{N+1}}, ..., \frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}}$$

лежат между этими же границами. Так как знаменатели этих дробей положительны (в силу строго возрастания последовательности y_n), то, по свойству медианты, между теми же границами содержится и дробь:

$$\frac{x_n - x_N}{y_n - y_N}$$

числитель которой есть сумма числителей написанных выше дробей, а знаменатель — сумма всех знаменателей. Итак, при n > N:

$$\left| \frac{x_n - x_N}{y_n - y_N} - L \right| < \frac{\varepsilon}{2}$$

Теперь рассмотрим следующее тождество (проверяемое непосредственно):

$$\frac{x_n}{y_n} - L = \frac{x_N - Ly_N}{y_n} + \left(1 - \frac{y_N}{y_n}\right) \left(\frac{x_n - x_N}{y_n - y_N} - L\right)$$

откуда имеем

$$\left| \frac{x_n}{y_n} - L \right| \le \left| \frac{x_N - Ly_N}{y_n} \right| + \left| \frac{x_n - x_N}{y_n - y_N} - L \right|$$

Второе слагаемое при n>N становится меньше $\frac{\varepsilon}{2}$, первое слагаемое также станет меньше $\frac{\varepsilon}{2}$, при n>M, где M — некоторый достаточно большой номер, в силу того, что $y_n\to +\infty$. Если взять M>N, то при n>M будем иметь

$$\left| \frac{x_n}{y_n} - L \right| < \varepsilon$$

что и доказывает наше утверждение.

Случай бесконечного предела можно свести к конечному. Пусть, для определённости:

$$\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=+\infty$$

из этого следует, что при достаточно больших n: $x_n - x_{n-1} > y_n - y_{n-1}$ и $\lim_{n \to \infty} x_n = +\infty$, причём последовательность x_n строго возрастает (начиная с определённого номера). В этом случае, доказанную часть теоремы можно применить к обратному отношению $\frac{y_n}{x_n}$:

$$\lim_{n \to \infty} \frac{y_n}{x_n} = \lim_{n \to \infty} \frac{y_n - y_{n-1}}{x_n - x_{n-1}} = 0$$

откуда и следует, что:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = +\infty$$

Теорема доказана, откуда $\lim_{x\to\infty}na_n^2=3$, то есть $\lim_{x\to\infty}\sqrt{n}a_n=\sqrt{3}$, что и требовалось

3.4 4

A)

Заметим, что у уравнений вида $x^3-kx-1=0$ ровно 1 корень при всех отрицательных k (так как функция x^3-kx-1 будет монотонной и неограниченной), а также при всех k<1, так как на интервале [-1,0) выражение x^3-kx будет меньше 1, в силу того, что $kx\leqslant 1$ и $x^3>0$. На интервале $(-\infty,1)$ функция монотонно возрастает, так как производная $(=3x^2-k)$ больше 0.

Поэтому есть только одна функция, удовлетворяющая условию при a=k. Докажем, что она непрерывна. Заметим, что она монотонна, ведь при замене k на k+d выражение $\alpha^3-(k+d)\alpha-1$ уменьшается, откуда, единственный корень β уравнения $x^3-(k+d)x-1=0$ больше, чем α . При этом для любого значения γ , лежащего между α и β , существует y, такой что γ является корнем соответствующего уравнения (потому что $\gamma^3-y\gamma-1$ непрерывно, и при y=k оно меньше 0, а при y=k+d наоборот), откуда и следует непрерывность функции. β

B)

3.5 5

Пусть m=27, тогда задача имеет вид: $\ln\cos\frac{1}{m+5}$. Посчитаем сперва $\cos\frac{1}{m+5}$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, x \in \mathbb{C}$$

$$\cos(\frac{1}{32}) = \sum_{n=0}^{\infty} (-1)^n \frac{\frac{1}{32}^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} = 1 - \frac{\frac{1}{32}^2}{2!} + \frac{\frac{1}{32}^4}{4!} - \dots \approx 1 - \frac{\frac{1}{32}^2}{2!} + \frac{\frac{1}{32}^4}{4!} \approx 0.9995117$$

А теперь посчитаем логарифм от полученного значения

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{(n+1)} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} \quad \text{для } -1 < x < 1$$

$$\ln(0.9995117) = \ln(1 - 0.0004883) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 0.0004883^n}{n} =$$

$$0.0004883 - \frac{0.0004883^2}{2} + \frac{0.0004883^3}{3} - \dots \approx 0.0004883 - \frac{0.0004883^2}{2} + \frac{0.0004883^3}{3} \approx$$

$$0.0004883$$

Откуда первые две значащие цифры это 4, 8

3.6 6

Заметим, что $f'(x) = \alpha \Leftrightarrow \lim_{t\to 0} \frac{1}{t}(f(t+x)-f(x)) = \alpha$, откуда в некоторой окресности нуля выражение $\frac{1}{t}(f(t+x)-f(x))>0$, поэтому при t>0: f(t+x)-f(x)>0 и наоборот. Но это и означает, что функция возрастает.

3.7 7

A)

Возьмем минимальное y=c и будем двигать вверх эту горизонтальную прямую. разность площадей верхнего и нижнего многоугольника меняется непрерывно, так как это разность непрерывных функций (пусть f_1 – площадь нижнего многоугольника, а f_2 – площадь верхнего, тогда обе эти функции непрерывны, откуда $f=(f_1-f_2)$ также непрерывна). Заметим, что если площадь всего многоугольника S то значения f лежат в [S, -S]. Тогда, так как $0 \in [S, -S]$ то $\exists c: f(c) = 0$

Б)

Пусть S — окружность с центром $(0,0) \in \mathbb{R}^2$, внутри которой лежат M_1 и M_2 (M_1 и M_2 ограничены \Rightarrow она существует). Изменим масштаб так, чтобы диаметр S стал равен 1. Для $\forall x \in S$ рассмотрим диаметр D_x

проходящий через x. Пусть L_t – перпендикуляр к D_x , проходящий через точку на D_x , расположенную на расстоянии t от x.

Пусть $S_1(t)$ – площадь части M_1 , лежащей по одну сторону от L_t , что и x. Аналогично определим $S_2(t)$ для M_2 . Заметим, что $S_1(0)=S_2(1)=0$. Очевидно, что $S_1(t)$, $S_2(t)$ – непрерывные функции, отображающие l в \mathbb{R} . Пусть $f: l \to \mathbb{R}$ это $f(t)=S_1(t)-S_2(t)$, это непрерывная функция и $f(0)f(1)\leqslant 0$. Откуда существует $t\in l: f(t)=0$ либо на отрезке [a,b], либо в одной точке c. В первом случае определим $h_1(x)=\frac{a+b}{2}$, во втором случае $h_1(x)=c$.

То есть перпендикуляр к D_x , проходящий через точку на D_x , расстояние от которой до x равно $h_1(x)$, делит площадь M_1 пополам. Заметим, что $h_1(-x) = 1 - h_1(x)$ и $h_1: S \to l$ – непрерывная функция.

Аналогично определим $h_2: S \to l$, где вместо M_1 действие происходит на M_2 .

Теперь определим $h(x) = h_1(x) - h_2(x)$. Так как $h_1(x)$ и $h_2(x)$ непрерывны, то и h(x) непрерывна. Заметим, что $h(x) = -h(-x) \ \forall x \in S$. Но также есть и точка y: h(y) = h(-y). Значит h(y) = 0 и $h_1(y) = h_2(y)$ и перпендикуляр к D_y , расстояние от которой до y равно $h_1(y)$, делит пополам M_1 и M_2 , что и требовалось доказать.

- 3.8 8
- 3.9 9
- A)
- Б)

3.10 10

 $f:\ (p,q) \to \mathbb{R}$ выпуклая и дифференцируемая $A)f:\ (p,q) \to \mathbb{R}$ выпуклая Любая касательная не выше графика l(x) = f(a) + f'(a)(x-a), также f(x) выпуклая $\Rightarrow f''(x) > 0$

$$f(x) - l(x) = f(x) - f(a) - f'(a)(x - a)$$

По теорема Лагранжа на (a,x) $\exists c: \frac{f(x)-f(a)}{x-a} = f'(c)$

$$f(x) - l(x) = (f'(c) - f'(a))(x - a)$$

- 1) $a = x \ f(x) = l(x)$
- 2) $a < x \ f'(a) \le f(c) \implies f(x) l(x) \ge 0$
- 3) a > x аналогично

Что и требовалось

Б)
$$f'(x) > 0$$
 $f'(x_1) \leqslant f'(x_2)$ если $x_1 \leqslant x_2$

$$\begin{aligned} \alpha_1 x_1 + \alpha_2 x_2 &= x \quad \alpha_1 + \alpha_2 = 1 \ \Rightarrow \ \alpha_1 = \frac{x_2 - x}{x_2 - x_1} \quad \alpha_2 = \frac{x - x_1}{x_2 - x_1} \\ f(\alpha_1 x_1 + \alpha_2 x_2) &= f(x) \leqslant \frac{x_2 - x}{x_2 + x_1} f(x_1) + \frac{x - x_1}{x_2 + x_1} f(x_2) \\ (x_2 - x) + (x - x_1) &= x_2 - x_1 \\ f(x)(x_2 - x_1) &= f(x_1)(x_2 - x) + f(x_2)(x - x_1) \leqslant (x_2 - x)f(x_1) + (x - x_1)f(x_2) \end{aligned}$$

Откуда

$$\frac{f(x) - f(x_1)}{x - x_1} \leqslant \frac{f(x_2) - f(x)}{x_2 - x} \Rightarrow$$

$$x \to x_1: \quad f'(x_1) = \frac{f(x_1) - f(x_1)}{x_1 - x_1} \leqslant \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$x \to x_2: \quad \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_2) - f(x_2)}{x_2 - x_2} = f'(x_2)$$

Следовательно

$$f'(x_1) \leqslant \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant f'(x_2)$$

Что и требовалось

B)

Обратно

 $a < x_1 < x_2 < b$ откуда по Т.Лагранжа о среднем значении

$$\begin{split} \frac{f(x) - f(x_1)}{x - x_1} &= f'(c_1); \ \frac{f(x_2) - f(x)}{x_2 - x} = f'(c_2), \ \text{где } x_1 < c_1 < x < c_2 < x_2 \\ f'(c_1) \leqslant f'(c_2) \ \Rightarrow \ \frac{f(x) - f(x_1)}{x - x_1} \leqslant \frac{f(x_2) - f(x)}{x_2 - x} \\ \alpha x_1 + (1 - \alpha) x_2 &= \alpha (x_1 - x_2) + x_2, \ \text{тогда если } x_1 < x_2, \ \text{то и } x_1 < x < x_2 \end{split}$$

Что и требовалось

3.11 11

A)

$$\begin{split} f\left(\frac{x_1}{n} + \frac{n-1}{n}\left(\frac{x_2 + \ldots + x_n}{n-1}\right)\right) &\leqslant \frac{f(x_1)}{n} + \frac{n-1}{n}f\left(\frac{x_2 + \ldots + x_n}{n-1}\right) \leqslant \\ \frac{f(x_1)}{n} + \frac{n-1}{n}f\left(\frac{x_2}{n-1} + \frac{n-2}{n-1}\frac{x_3 + \ldots + x_n}{n-2}\right) &\leqslant \ldots \leqslant \frac{f(x_1)}{n} + \frac{f(x_2)}{n} + \frac{n-2}{n}f\left(\frac{x_3 + \ldots + x_n}{n-2}\right) \leqslant \\ \ldots &\leqslant \frac{f(x_1)}{n} + \ldots + \frac{f(x_{n-2})}{n} + \frac{2}{n}f\left(\frac{x_{n-1} + x_n}{2}\right) \leqslant \frac{f(x_1)}{n} + \ldots + \frac{f(x_{n-2})}{n} + \frac{2}{n}\left(f\frac{x_{n-1}}{2} + f\frac{x_n}{2}\right) = \\ \frac{f(x_1) + \ldots + f(x_n)}{n} \end{split}$$

Б) Используем неравенство из (а) для выпуклой формы $f(x) = x^2$

$$\left(\frac{x_1 + \dots + x_n}{n}\right) \leqslant \frac{x_1^2 + \dots + x_n^2}{n}$$
$$\frac{x_1 + \dots + x_n}{n} \leqslant \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}}$$

B)
$$f(x) = \log_a(x)$$

$$\log\left(\frac{x_1 + \ldots + x_n}{n}\right) \geqslant \frac{\log_a(x_1) + \ldots + \log_a(x_n)}{n}$$
 так как $\log_a(x)$ - вогнутая функция
$$\frac{\log_a(x_1) + \ldots + \log_a(x_n)}{n} = \log_a(x_1 \cdot \ldots \cdot x_n)^{\frac{1}{n}} = \log_a\sqrt{x_1 \cdot \ldots \cdot x_n}$$

Откуда:

$$\frac{x_1 + \ldots + x_n}{n} \geqslant \sqrt{x_1 \cdot \ldots \cdot x_n}$$

что и требовалось

3.12 12

По условию окружность должна лежать в $y\geqslant x^2$, то есть внутри параболы $y=x^2$. Также она доржна содержать точку (0,0). Тогда в силу того, что $y=x^2$ симметрична относительно x=0, и на $y=x^2$ также лежит и требуемая точка (0,0), окружность касается параболы в точке (0,0). Тогда уравнение окружности имеет вид $(x-a)^2-(y-b)^2=r^2$, где $a=0,\ b=r$. То есть $x^2+(y-r)^2=r^2\Leftrightarrow x^2+y^2-2yr=0$. Откуда $r=\frac{x^2+y^2}{2y}\leqslant \frac{y+y^2}{2y}=\frac{y+1}{2}$ $y\in [0;+\infty)$, следовательно $r\leqslant \frac{1}{2}$. Заметим, что при $r=\frac{1}{2}$ требования условия выполнены.

3.13 13