B 65 H 29/24 B 65 H 29/60

DEUTSCHES

PATENTAMT

- (21) Aktenzeichen:
- P 38 38 021.8-51
- :Anmeldetag:
- 9.11.88
- Offenlegungstag:
- 1. 6.89
- Veröffentlichungstag
 - der Patenterteilung: 13. 6.91

Incerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

- @ Unionsprioritāt: @ @ @ 10.11.87 JP 62-282179

(73) Patentinhaber: Hitachi, Ltd.; Hitachi Koki Co., Ltd., Tokio/Tokyo, JP

(74) Vertreter:

Strehl, P., Dipl.-Ing. Dipl.-Wirtsch.-Ing.; Schübel-Hopf, U., Dipl.-Chem. Dr.rer.nat.; Groening, H., Dipl.-Ing., Pat.-Anwalte, 8000 München

② Erfinder:

Mitsuya, Teruaki, Katsuta, Ibaraki, JP; Kumasaka, Takao, Takahagi, Ibaraki, JP; Umeda, Takao, Mito, Ibaraki, JP: Hori, Yasuo; Shimokobe, Ikuo; Hoshi, Nobuyoshi, Katsuta, Ibaraki, JP

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE-GM 70 27 581 ับร : . 45 88 281

(54) Duplex-Kopiervorrichtung

mit luft træn betriber here Tixurumilty

N.Ell relevant

21.8.01

Nummer:

DE 38 38 021 C2

Int. Cl.5:

G 03 G 15/20

Veröffentlichungstag: 13. Juni 1991

F/G.

FIG.

F/G.

DE 38 38 021

Beschreibung

Die Erfindung bezieht sich auf eine Duplex-Kopiervorrichtung gemäß dem Oberbegriff des Patentanspruches

Eine derartige Duplex-Kopier- oder Reproduziereinrichtung geht bereits aus US-PS 45 88 281 hervor. Zur Erzeugung von Bildern wird dort ein Toner verwendet. Die Fig. 9 zeigt einen seitlichen Querschnitt durch die konventionelle Duplex-Reproduziereinrichtung.

Diese konventionelle Duplex-Reproduziereinrichtung enthält eine Heizwalze 1, eine Gegendruckwalze 2 (Stützwalze), eine Entwicklerstation 3 und eine erste Transporteinrichtung 4 zum Transport eines Aufzeichnungsblattes nach vorne von der Entwickierstation 3 zur Heizwalze 1. Eine Frierstation enthält im wesentlichen

die Heizwalze 1 und die Gegendruckwalze 2

Die konventionelle Duplex-Reproduziereinrichtung enthält weiterhin eine Zwischentransporteinrichtung 5 für das Aufzeichnungsblatt, eine Umkehr- bzw. Umlenktransporteinrichtung 6, eine Rückführtransporteinrichtung 7 und eine Ausgabetransporteinrichtung 8 für das Aufzeichnungsblatt. Diese Transporteinrichtungen 4, 5, 6, 7 und 8 für das Aufzeichnungsblatt bestehen jeweils im wesentlichen aus einem umlaufenden Transportband und einer Papierstau verhindernden Eisenplatte an der Nahtstelle zwischen den jeweiligen Transportgurten.

Weiterhin gehören zur Duplex-Reproduziereinrichtung eine Umkehrklaue 9, ein Aufzeichnungspapiereinlaß 10, ein Umkehrtisch 11 und ein Ausgabetisch 12, auf dem ausgegebene Aufzeichnungsblätter übereinanderlie-

gend gestapelt werden.

Ein über den Aufzeichnungspapiereinlaß 10 in die Duplex-Reproduziereinrichtung hineingeführtes Aufzeichnungsblatt 13 gelangt zunächst zur Entwicklungsstation 3, in der ein Tonerbild 14 erzeugt wird. Das Tonerbild 14 belindet sich im vorliegenden Fall an der unteren Fläche des Aufzeichnungsblatts 13. Danach gelangt das Aufzeichnungsblatt 13 zur Fixierstation, die im wesentlichen aus der Heizwalze 1 und der Gegendruckwalze 2

Die Heizwalze 1 enthält in ihrem Inneren eine Heizeinrichtung, die als Wärmequelle dient, um das Aufzeichnungsblatt 13 aufzuheizen. Die Gegendruckwalze 2 ist nicht mit einer Heizeinrichtung ausgestatiet. Die Heizwalze 1 wird auf eine solche Temperatur erwärmt, daß das Tonerbild 14 schmelzen kann. Dabei wird das Aufzeichnungsblatt 13 durch den Bereich zwischen Heizwalze 1 und Gegendruckwalze 2 hindurchgeführt, wobei die Heizwalze 1 gegen die Gegendruckwalze 2 drückt. Das geschmolzene Tonerbild 14 auf dem Aufzeich-30 inungsblatt 13 wird somit gepreßt.

Im allgemeinen besitzt der Toner keinen definierten Schmelzpunkt und keinen definierten Verlesugungs punkt. Die Temperatur wird jedoch so eingestellt, daß das Tonerbild 14 auf andere Substanzen bzw. Unterlagen

überträgen werden kann

Das Aufzeichnungsblat 13 liegt zunächst unter der Vorwärtstransporteinrichtung 4, die ihrerseits zwischen der Entwicklerstation 3 und der Fixierstation (Heizwalze 1 und Gegendruckwalze 2) angeordnet ist Das Aufzeichnungsblatt 13 wird jedoch durch einen Luftstrom gegen die Vorwartstransporteinrichtung 4 gesaugt. um auf diese Weise von dieser getragen zu werden. Diese Methode zum Tragen des Aufzeichnungsblatts kommt auch bei der Umkehrtransporteinrichtung 6 zur Anwendung, wie später noch genauer beschrieben wird.

Erreicht das Aufzeichnungsblatt 13 die Fixierstation, so wird es durch die Heizwalze 1 aufgeheizt. Dabei wird das Tonerbild 14 auf der unteren Fläche des Aufzeichnungsblatts 13 geschmolzen und auf dem Aufzeichnungs-

Über die Zwischentransporteinrichtung 5 wird das Aufzeichnungsblatt 13 dann zur Umlenkklaue 9 transportiert. Die Umlenkklaue 9 ist dann geschlossen, wena auf dem Aufzeichnungsblatt 13 beide Seiten bedruckt werden sollen. Sie wird geschlossen, unmittelbar bevor das auf einer Seite bedruckte Aufzeichnungsblatt 13 die Umlenkklaue 9 erreicht. Die Fig. 9 zeigt einen Zustand, bei dem die Umlenkklaue 9 geschlossen bzw. nach unten abgesenkt ist.

Gemäß der vorliegenden Erfindung wird die jenige Seite des beidseitig zu bedruckenden Aufzeichnungsblatts 13, die zuerst bedruckt worden ist, als erste Seite bezeichnet, während die Rückseite des Aufzeichnungsblatts 13 als zweite Seite bezeichnet wird. Nach dem Schließen der Umlenkklaue 9 wird das Aufzeichnungsblatt 13 zur Umkehrtransporteinrichtung 6 geführt, so daß es zum Umkehrtisch 11 transportiert wird. Das Aufzeichnungs-

blatt 13 kommt dann auf dem Umkehrtisch 11 mit der ersten Seite nach oben zu liegen.

Im Anschluß daran wird das Aufzeichnungsblatt 13 zur Rückführtransporteinrichtung 7 transportiert. Es wird daher mit Hilfe der Rückführtransporteinrichtung 7 erneut zur Entwicklerstation 3 und danach zur Vorwärtstransporteinrichtung 4 geleitet. Bei diesem Vorgang wird ein Tonerbild 14 auf der zweiten Seite des Aufzeichnungsblatts 13 erzeugt, wobei es weiterhin in Richtung zur Umlenkklaue 9 transportiert wird. Jetzt allerdings öffnet sich die Umlenkklaue 9 nach oben, so daß das mit beiden Seiten bedruckte Aufzeichnungsblatt 13 zum Ausgabetisch 12 ausgegeben werden kann, und zwar mittels der Ausgabetransporteinrichtung 8.

Aufgrund der oben beschriebenen Vorgänge lassen sich sowohl ein Tonerbild 14 auf der ersten Seite und ein

Tonerbild 14 auf der zweiten Seite des Aufzeichnungsblatts 13 erzeugen und fixieren.

Der obengenannte Aufbau und Betrieb der konventionellen Duplex-Reproduziereinrichtung wurde im Hinblick auf die Bewegung eines Aufzeichnungsblatts 13 beschrieben. Das Aufzeichnungsblatt 13 war im vorliegeniden Fall ein Blatt Papier. Der Betrieb der Duplex-Reproduziereinrichtung läßt sich wiederholt ausführen.

Nicht berücksichtigt wird bei der obigen Duplex-Reproduziereinrichtung eine Fleckenbildung auf Teilen der Aufzeichnungsblatt-Transporteinrichtungen 4, 5, 6 und 7, der Umkehrklaue 9, usw. Der durch die Fixierstation erhitzte und geschmolzene Toner wird nicht gekühlt, so daß er in geschmolzenem Zustand leicht in Kontakt mit Teilen der genannten Aufzeichnungsblatt-Transportvorrichtungen 4, 5, 6 und 7, der Umkehrklaue 9, usw. kommen kann. Die genannten Elemente bzw. Vorrichtungen verschmutzen daher relativ schnell.

Bei der konventionellen Duplex-Reproduziereinrichtung nach Fig. 9 wird das Aufzeichnungsblatt 13 an einer

unteren Seite der Zwischentransporteinrichtung 5 getragen, wobei die Seite des Aufzeichnungsblatts 13, die in Kontakt mit der Gegendruckwalze 2 steht, auch in Kontakt mit der Zwischentransporteinrichtung 5 kommt.

Die Gegendruckwalze 2 wird durch die Heizwalze 1 aber ebenfalls auf eine Temperatur aufgeheizt, die hoch genug ist, um Toner zu schmelzen. Das Tonerbild 14 auf der ersten Seite des Aufzeichnungsblatts 13 wird daher durch die Gegendruckwalze 2 erneut geschmolzen, und zwar zu einer Zeit, zu der das Bild auf der zweiten Seite des Aufzeichnungsblatts 13 fixiert wird.

Wird das Aufzeichnungsblatt 13 in der zuvor beschriebenen Weise getragen, so kommt unvermeidlich Toner mit den Aufzeichnungsblatt-Transporteinrichtungen 4, 5, 6 und 7 in Kontakt, und zwar in geschmolzenem Zustand, so daß diese Transporteinrichtungen 4, 5, 6 und 7 sehr schnell verschmutzen.

Das oben beschriebene Problem tritt auch bei anderen Fixierversahren aus, z. B. beim Blitzsteierversahren (stash fixing method), bei denen keine Heizwalze verwendet wird, sosern nur zur Fixierung die Erzeugung von Warme vorgesehen ist.

Wird z. B. im Falle eines Rotationsdrucks ein sehr langes Endlospapier verwendet, so lassen sich die oben beschriebenen Probleme dadurch überwinden, daß die Spannung des Endlospapiers verringert wird. Die Probleme lassen sich aber nicht mit der konventionellen Duplex-Reproduziereinrichtung lösen, sofern die Aufzeichnungsblätter aus geschnittenem Papier bestehen.

Die Verschmutzung von Teilen der Duplex-Reproduziereinrichtung tritt um so stärker auf, je höher die Druckgeschwindigkeit ist, da bei höherer Aufzeichnungsblatt-Transportgeschwindigkeit der geschmolzene Toner bzw. das geschmolzene Tonerbild über eine längere Strecke transportiert werden.

Der Erfindung liegt die Aufgabe zugrunde, eine Verschmutzung der Papierführung in einer Duplex-Kopiervorrichtung der eingangs genannten Art zu vermeiden.

Die erfindungsgemäße Lösung dieser Aufgabe ist im Anspruch 1 gekennzeichnet.

Danach ist der Fixiereinrichtung eine Luftführungseinrichtung nachgeordnet, die den austretenden Teil des Trägerblattes mittels einer Kühlluftströmung hält, bis die vordere Kante des Blattes von den weiteren, festen Führungsteilen erfaßt wird. Die Zeitspanne, während der sich das Trägerblatt in der Luftströmung befindet, ist dabei so gewählt, daß eine zur Verfestigung des Tonerbildes ausreichende Abkühlung in dem Kühlluftstrom erreicht wird.

Aus DE-GM 70 27 581 ist eine Fixiervorrichtung für ein Kopiergerät bekannt, bei der mit einer Luftströmung gearbeitet wird. Es handelt sich dabei aber um Heißluft, die in der Fixiereinrichtung selbst angewendet wird, um den Toner zu erweichen und in das Trägerblatt einzuschmelzen.

Vorteilhaste Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.

Aussührungsbeispiele der Ersindung werden nachstehend anhand der Zeichnungen näher erläutert. Darin zeigt

Fig. 1 einen seitlichen Querschnitt durch eine Duplex-Kopiervorrichtung, die im folgenden auch als Duplex-Reproduziereinrichtung bezeichnet wird, gemäß einem ersten Ausführungsbeispiel,

Fig. 2 eine schematische Darstellung einer Fixierstation für die Vorrichtung nach Fig. 1,

Fig. 3 eine mit einem Luftstrom arbeitende Aufzeichnungsblatt-Trägereinrichtung für die Duplex-Reproduziereinrichtung nach Fig. 1:

Fig. 4A eine schemausche Darstellung einer mit einem Luststrom arbeitenden Aufzeichnungsblatt-Trägereinrichtung, einer Umkehrklaue und einer Ausgabetransporteinrichtung für eine Duplex-Reproduziereinrichtung
nach einem anderen Ausführungsbeispiel der Ersindung in einem Zustand, bei dem das Aufzeichnungsblatt
umgelenkt bzw. umgekehrt wird.

Fig. 4B eine schematische Darstellung einer mit einem Luftstrom arbeitenden Aufzeichnungsblatt-Trägereinrichtung, einer Umkehrklaue und einer Ausgabetransporteinrichtung für eine Duplex-Reproduziereinrichtung nach dem anderen Ausführungsbeispiel in einem Zustand, bei dem das Aufzeichnungsblatt in Richtung des Ausgabetisches ausgegeben wird.

Fig. 5A eine schematische Darstellung einer mit einem Luststrom arbeitenden Aufzeichnungsblatt-Trägereinrichtung, einer Umkehrklaue und einer Ausgabetransporteinrichtung in einer Duplex-Reproduziereinrichtung nach einem weiteren Ausführungsbeispiel der Ersindung in einem Zustand, bei dem das Aufzeichnungsblatt umgelenkt bzw. umgekehrt wird,

Fig. 5B eine schematische Darstellung einer mit einem Luftstrom arbeitenden Aufzeichnungsblatt-Trägereinrichtung, einer Umkehrklaue und einer Ausgabetransporteinrichtung für eine Duplex-Reproduziereinrichtung
nach dem weiteren Ausführungsbeispiel der Erfindung in einem Zustand, bei dem das Aufzeichnungsblatt in
Richtung des Ausgabetisches ausgegeben wird

Fig. 6 eine schematische Darstellung einer mit einem Luftstrom arbeitenden Aufzeichnungsblatt-Trägereinrichtung und einer Umkehrklaue für die Duplex-Reproduziereinrichtung gemäß dem einen Ausführungsbeispielder Erfindungs

Fig. 7 eine schematische Darstellung einer mit einem Luftstrom darbeitenden Aufzeichnungsblatt-Trägereinrichtung und einer. Umkehrklaue in einer Duplex-Reproduziereinrichtung nach dem anderen Ausführungsbeispiel der Erfindung

Fig. 8 eine Seitenansicht einer Duplex-Reproduziereinrichtung rach dem anderen Ausführungsbeispiel der Erlindung, und

Fig. 9 eine Seitenansicht einer konventionellen Duplex-Reproduziereinrichtung.

Im folgenden wird ein Aussührungsbeispiel der Ersindung unter Bezugnahme auf die Fig. 1 bis 3 näher beschrieben. Die Fig. 1 zeigt eine seitliche Querschnittsansicht des inneren Bereichs einer Duplex-Reproduzier-einrichtung.

Die Duplex-Reproduziereinrichtung nach Fig. 1 anthält eine Heizwalze 1, eine Gegendruckwalze 2, eine Entwicklerstation Lund eine erste Aufzeichnungsblatt-Transporteinrichtung 4 zum Transport eines Aufzeich-

nungsblatts von der Entwicklerstation 3 nach vorn zur Heizwalze 1. Eine Fixierstation enthält im wesentlichen die Heizwalze 1 und die Gegendruckrolle 2.

Die Duplex-Reproduziereinrichtung besitzt weiterhin eine Umkehrtransporteinrichtung 6, eine Rückführ-

transporteinrichtung 7 und eine Ausgabetransporteinrichtung 8 für das blattförmige Gut.

Die Entwicklerstation 3, die Fixierstation und die Umkehrtransporteinrichtung 6 bilden einen Transportweg für das Aufzeichnungsblatt 13 entlang der äußeren Hüllflächen dieser Elemente.

Die Vorwärtstransporteinrichtung 4, die Umkehrtransporteinrichtung 6, die Rückführtransporteinrichtung 7 und die Ausgabetransporteinrichtung 8 für das Aufzeichnungsblatt bestehen jeweils im wesentlichen aus einem umlaufenden Transportgurt, wobei jeweils eine Papierstau verhindernde Eisenplatte im Bereich zwischen den

benachbarten Transportgurten angeordnet ist.

Die Vorwärtstransporteinrichtung 4 enthält umlaufende Transportbänder 4a und 4d sowie Eisenplatten 4b, 4c und 4e. Die Umkehrtransporteinrichtung 6 enthält umlaufende Transportbänder 6a, 6c und 6e sowie Eisenplatten 6b und 6d. Die Rücksührtransporteinrichtung 7 enthält ein umlausendes Transportband 7a sowie eine Eisenplatte 7b. Die Ausgabetransporteinrichtung 8 für das Aufzeichnungsblatt besteht im wesentlichen aus einer Eisenplatte 8a und einem umlaufenden Transportband 8b. Sämtliche Transportbänder weisen eine flächige Ausdehnung auf und können auch als Transportgurte oder dergleichen bezeichnet werden.

Weiterhin gehören zur Duplex-Reproduziereinrichtung eine Umkehrklaue 9, eine Aufzeichnungsblatteinlaß 10, ein Umkehrtisch 11 und ein Ausgabetisch 12, auf dem ausgegebene Aufzeichnungsblätter übereinanderliegend gestapelt werden. Darüber hinaus ist eine mit einem Luftstrom arbeitende Aufzeichnungsblatt-Trägereinrichtung 15 vorhanden. Die mit dem Luftstrom arbeitende Aufzeichnungsblatt-Trägereinrichtung 15 liegt zwi-

schen der Fixierstation und der Umkehrklaue 9. 1997 (18 20 1995)

Die Pfeile innerhalb der Heizwalze 1, der Gegendruckwalze 2 sowie innerhalb der Entwicklerstation 3 geben die jeweilige Drehrichtung dieser Einrichtungen an. Die anderen Pleile in Fig. 1 markieren die Richtung, in die

das Aufzeichnungsblatt 13 bewegt wird.

Das Aufzeichnungsblatt 13 wird über den Aufzeichnungsblatteinlaß 10 und mittels der Vorwärtstransporteinrichtung 4 zur Entwicklerstation 3 transportiert, in der ein Tonerbild 14 auf eine erste Seite des Aufzeichnungsblatts 13 überträgen, wird. Das Aufzeichnungsblatt 13 gelangt dann zur Fixierstation, die im wesentlichen aus der Heizwalze 1 und der Gegendruckwalze 2 besteht, wobei der Transport zur Fixierstation mit Hille der Vorwartstransporteinrichtung 4 erfolgt. In der Fixierstation wird das Tonerbild auf der ersten Seite des Aufzeichnungsblatts 13 fixiert.

Anschließend gelangt das Aufzeichnungsblatt 13 von der Fixierstation in die mit einem Luftstrom arbeitende Aufzeichrungsblatt-Trägereinrichtung 15, die nachfolgend unter Bezugnahme auf die Fig. 2 näher beschrieben wird. Dabei gibt die Aufzeichnungsblatt-Trägereinrichtung 15 einen Luftstrom aus, auf dem das Aufzeichnungsblatt 13 ruht. Das Tonerbild 14 auf der ersten Seite des Aufzeichnungsblatts 13 wird daher abgekühlt, so daß es

· 150 Die Duplex-Reproduziereinrichtung gemäß dem obigen Ausführungsbeispiel ist so aufgebaut, daß das hintere Ende des Aufzeichnungsblatts 13 die Fixierstation verläßt, sobald die Spitze des Aufzeichnungsblatts 13 die

Umkehrklaue 9 erreicht.

Wird also die Spitze des Aufzeichnungsblatts 13, die in Transportrichtung vorn liegt, durch den Luftstrom der Aufzeichnungsblatt-Trägereinrichtung 15 getragen, so befindet sich die hintere Kante des Aufzeichnungsblatts 13 noch in der Fixierstation. Die gesamte Oberfläche des Aufzeichnungsblatts 13 befindet sich somit nicht im Luststrom. Das bedeutet, daß das Auszeichnungsblatt 13 stabil durch die Auszeichnungsblatt-Trägereinrichtung 15 hindurch transportiert werden kann, die den Luststrom ausgibt.

Wie im Falle der konventionellen Duplex-Reproduziereinrichtung wird die Umkehrklaue 9 nur dann geschlossen, wenn beide Seiten des Aufzeichnungsblatts 13, also auch die zweite Seite des Aufzeichnungsblatts 13, bedruckt werden sollen. Die Schließung erfolgt, unmittelbar bevor das Aufzeichnungsblatt 13 die Umkehrklaue 9 erreicht. Das Aufzeichnungsblatt 13 gelangt in diesem Fall zur Umkehrtransporteinrichtung 6 und weiter zum Umkehrtisch 11, so daß es schließlich gewendet wird. Die Umkehrung des Aufzeichnungsblatts 13 erfolgt in

genau derselben Weise wie bei der konventionellen Duplex-Reproduziereinrichtung.

Im Bereich der Vorwärtstransporteinrichtung 4 zwischen der Entwicklerstation 3 und der Fixierstation und im Bereich der Umkehrtransporteinrichtung 6 wird das Aufzeichnungsblatt 13 an der jeweils unteren Seite in Gravitationsrichtung gesehen) der Transporteinrichtungen gehalten, und zwar mittels eines Ansaugluststroms, wie auch bei der konventionellen Duplex-Reproduziereinrichtung. Dies gilt auch für den vertikal stehenden Teil der Umkehrtransporteinrichtung 6.

Das gewendete Aufzeichnungsblatt 13 erreicht erneut die Entwicklerstation 3 mittels der Rückführtransporteinrichtung 7, so daß ein Tonerbild 14 auf der zweiten Seite des Aufzeichnungsblatts 13 erzeugt und anschlie-Bend in der Fixierstation fixiert werden kann. In diesem Fall wird das auf der ersten Seite des Aufzeichnungs-

blatts 13 bereits fixierte Tonerbild 14 durch die Gegendruckwalze 2 erneut erhitzt und geschmolzen.

Beim weiteren Transport des Aufzeichnungsblatts 13 wird dieses durch den Luftstrom der Aufzeichnungs blatt-Trägereinrichtung 15 getragen. Dabei werden sowohl die erste Seite als auch die zweite Seite des Aufzeichnungsblatts 13 gekühlt. Erreicht das Aufzeichnungsblatt 13 die Umkehrklaue 9, so sind die Tonerbilder 14 an beiden Seiten des Aufzeichnungsblatts 13 durch und durch verfestigt. Die Umkehrklaue 9 wird geöffnet, kurz bevor das Aufzeichnungsblatt 13 die Umkehrklaue 9 erreicht. Sodann wird das Aufzeichnungsblatt 13 mit Hilfe der Ausgabetransporteinrichtung 8 zum Ausgabetisch 12 ausgegeben. Auf diesem lassen sich mehrere Aufzeichnungsblätter 13 übereinanderliegend stapeln.

Im folgenden werden die jeweiligen Teile der Duplex-Reproduziereinrichtung nach der Erfindung im einzel-

Die Fig. 2 zeigt einen seitlichen Querschnitt durch die Freierstation, wobei die Lage der den Luftstrom

ausgebenden Aufzeichnungsblatt-Trägereinrichtung 15 mit eingezeichnet ist.

Die Heizwalze I enthält eine hohlzylindrische Walze aus Aluminiummaterial, die mit einem Teflonfilm auf ihrer oberen Umfangsfläche beschichtet ist. Innerhalb der Heizwalze 1 befindet sich eine Halogenlampe 16 als Heizeinrichtung. Die Heizeinrichtung liegt im Zentrum der Aluminiumwalze. Die Gegendruckwalze 2 enthält eine Silicongunmischicht auf der Umfangsfläche einer inneren, hohlen Walze aus Eisen.

Eine Trennklaue 17 dient zum Abtrennen des Aufzeichnungsblatts 13 von der Oberstäche der Heizwalze 1, wenn das Aufzeichnungsblatt 13 ausgegeben wird. Ein ölgetränktes Filzband 18 dient zum Auftragen von Öl auf die Oberstäche der Heizwalze 1, um zu verhindern, daß geschmolzener Toner auf der Oberstäche der Heizwalze 1 (estklebt und zu Osset-Phänomenen sührt. Alle genannten Elemente gehören zur Fixierstation, in der die Fixierung erfolgt.

Der Buchstabe "a" in Fig. 2 gibt den Abstand zwischen dem Zentrum der Heizwalze 1 und dem hinteren Ende der den Luftstrom ausgebenden Aufzeichnungsblatt-Trägereinrichtung 15 an, und zwar in einer Richtung, in die das Aufzeichnungsblatt 13 transportiert wird. Die Größe "a" wird nachfolgend noch im einzelnen näher beschrieben.

Die Fig. 3 zeigt einen Längsschnitt durch den mit einem Luftstrom arbeitenden Aufzeichnungsblatt-Träger 15. Die Pfeile in Fig. 3 markieren die Richtungen, in die die Luft strömt bzw. ausgeblasen wird. Das Aufzeichnungsblatt 13 wird von rechts nach links in Fig. 3 bewegt. Die Luftströme werden von zwei Gebläseeinrichtungen 19 erzeugt und durch eine Mehrzahl von Ausblasöffnungen 21 ausgegeben. Jeweils eine Druckkammer 20 ist mit einer Gebläseeinrichtung 19 verbunden. Die beiden Druckkammern 20 weisen jeweils eine die Ausblasöffnungen 21 aufweisende Wand auf, die paraffel und im Abstand zueinander liegen. Zwischen den beiden genannten Wänden liegt der Transportweg des Aufzeichnungsblatts 13.

Die Luftstromrate durch jede Ausblasöffnung 21 in einer Druckkammer läßt sich gleichmäßig einstellen. Die Ausblasöffnungen 21 dienen als Luftstromdüsen und sind zickzackförmig an derselben Position vertikal in Tiefenrichtung verteilt angeordnet. Es kann daher ein stabiler Druck auf die Oberfläche des Aufzeichnungsblatts 13 ausgeübt werden, so daß das Aufzeichnungsblatt 13 zwischen den Druckkammern sicher gehalten werden kann

Der erste Luftstrom, gesehen in Transportrichtung des Aufzeichnungsblatts 13, wird schräg nach hinten ausgegeben, um einen Papierstau zu verhindern, wenn das Aufzeichnungsblatt 13 in einen Spalt eintritt, der zwischen der Heizwalze 1 und der Gegendruckwalze 2 einerseits und der den Luftstrom ausgebenden Aufzeichnungsblatt-Trägereinrichtung 15 andererseits liegt. Der bzw. die nach hinten ausgegebenen Luftströme dienen oraktisch zum Einfädeln des Aufzeichnungsblatts 13 in die Aufzeichnungsblatt-Trägereinrichtung 15.

Die anderen Ausblasöffnungen 21 weisen eine Neigung von 30° auf, so daß durch sie Lustströme schräg nach vorn ausgegeben werden, also in Transportrichtung des Auszeichnungsblatts 13. Dies ist besonders vorteilhast beim Transport des Auszeichnungsblatts 13 nach vorn, da in diesem Fall in Vorwärtsrichtung bzw. Transportrichtung wirkende Oberstächenscherkräste erzeugt werden, die das Auszeichnungsblatt 13 in Transportrichtung zusätzlich antreiben. Ausgrund der erzeugten Lustströme wird das Auszeichnungsblatt 13 in desinierter und stabiler Weise durch die Auszeichnungsblatt-Trägereinrichtung 15 hindurchgeleitet, ohne mit ihren Wänden in Berührung zu kommen.

Beim oben beschriebenen Ausführungsbeispiel befindet sich der hintere Teil des Aufzeichnungsblatts 13 zwischen der Heizwalze 1 und der Gegendruckwalze 2, solange der vordere bzw. Spitzenbereich des Aufzeichnungsblatts 13 innerhalb der den Luftstrom ausgebenden Aufzeichnungsblatt-Trägereinrichtung 15 liegt. Hierdurch laßt sich die Stabilität beim Transport des Aufzeichnungsblatts 13 noch weiter erhöhen.

Im folgenden wird beschrieben, in welcher Weise sich der Abstand "a" vom Zentrum der Heizwalze 1 bis zum in Transportrichtung vorderen Teil der Aufzeichnungsblatt-Trägereinrichtung 15 bestimmt. Der genannte vordere Teil der Aufzeichnungsblatt-Trägereinrichtung 15 ist der Heizwalze 1 abgewandt. Beim Ausführungsbeispiel nach der Erfindung sind die Verhältnisse so gewählt, daß das Tonerbild 14 auf dem Aufzeichnungsblatt 13 vollständig verfestigt wird, solange sich die Oberfläche des Aufzeichnungsblatts 13 innerhalb der den Luftstrom ausgebenden Aufzeichnungsblatt-Trägereinrichtung 15 befindet

Experimentell wurde sestgestellt, daß eine Versestigungs- bzw. Erstarrungstemperatur des Toners etwa 10°C bis 20°C höher liegt als ein Glasübergangspunkt bzw. Glaseinfrierpunkt des Toners. Der Glaseinfrierpunkt des Toners der beim vorliegenden Ausführungsbeispiel verwendet wird, liegt bei 67°C. Dagegen liegt die Erstarrungstemperatur des Toners im niedrigsten Fall bei 77°C.

Im folgenden sei Th (°C) die Heizwalzen Oberslächentemperatur, TB (°C) die Gegendruckwalzen Oberslächentemperatur, TB (°C)

Die obengenannten Größen weisen im Falle der Duplex-Reproduziereinrichtung folgende Werte auf:

$$T_H = 170 (^{\circ}C), T_B = 120 (^{\circ}C), T_0 = 20 (^{\circ}C), h = 0.0977 (kcal/m^2s^{\circ}C), K = 8.33 \times 10^{-8} (m^2/s), \lambda = 2.22 \times 10^{-5} (kcal/m^2s^{\circ}C), d = 2 (mm), H = 8 (mm), \Theta = (^{\circ}), U = 20 (m/s), v = 0.5 (m/s).$$

Unter Verwendung der Werte d, H, O und U wird die Wärmeübertragungsrate h durch Verwendung einer empirischen Formel für den auftreffenden Düsenstrom abgeschätzt (vgl. Seite 111, Heat Transfer Engineering", 3. überarbeitete Auflage, Japan Society of Mechanical Engineers). Gemessene Werte werden verwendet für den Toner-Wärmediffusionswirkungsgrad K und für die Wärmediffusionsrate 2. Die anderen Werte hängen von der

Ausgestaltung des Ausführungsbeispiels der Erfindung ab.

Wird die Toneroberslächentemperatur mit T (°C) bezeichnet, so läßt sich ihre zeitliche Änderung durch die nachfolgenden Gleichungen (1) und (2) darstellen:

Bei Aufheizung durch die Heizwalze 1:

$$T = (T_N - T_0) \cdot \text{EXP}\left(\left(\frac{h}{\lambda}\right)^2 \cdot k \cdot t\right) \cdot \left(1 - \text{erf}\left(\frac{h}{\lambda} \cdot \sqrt{kt}\right)\right) + T_0 \quad (1)$$

Bei Aufheizung durch die Gegendruckwalze 2:

$$T = (T_0 - T_0) \cdot \text{EXP}\left(\left(\frac{h}{\lambda}\right)^2 \cdot k \cdot l\right) \cdot \left(1 - \text{erf}\left(\frac{h}{\lambda} \cdot \sqrt{kl}\right)\right) + T_0 \quad (2)$$

(Literaturhinweis: Kensuke Kawashima's "Theory of Thermal Conduction", veröffentlicht durch OHM-Sha, Ltd.)
Anhand der Gleichung (1) ergibt sich, daß die Zeit, nach der die Oberstächentemperatur des Toners, der durch
die Heizwalze I ausgeheizt wird, die Erstarrungstemperatur des Toners erreicht, eine Sekunde beträgt (t = 1 (s)).
Entsprechend ergibt sich aus Gleichung (2), daß die Zeit, nach der die Oberstächentemperatur des Toners, der
durch die Gegendruckwulze 2 ausgeheizt wird, die Erstarrungstemperatur des Toners erreicht, 0.2 Sekunden
beträgt (t = 0.2 (s)).

Da die Zeit zur Kühlung der Oberflächentemperatur des Toners, der durch die Heizwalze 1 aufgeheizt worden ist, länger ist, braucht nur die Kühlung der Oberflächentemperatur dieses Toners, der durch die Heizwalze 1 aufgeheizt worden ist, beim vorliegenden Ausführungsbeispiel der Erfindung in Betracht gezogen zu werden.

Demzufolge läßt sich ein Abstand "a" vom Zentrum der Heizwalze 1 zum Nasen-bzw. Spitzenbereich der mit einem Luftstrom arbeitenden Aufzeichnungsblatt-Trägereinrichtung 15 durch die nachfolgende Gleichung (3) angeben, wobei tu die jenige Zeit ist, in der die Oberflächentemperatur des Toners, der durch die Heizwalze 1 aufgeheizt worden ist, auf die Erstarrungstemperatur abgekühlt worden ist:

Aus Gleichung (3) ergibt sich ein Wert für a = 0.25 m. Im vorliegenden Ausführungsbeispiel könzidiert die Länge des Aufzeichnungsblatts 13 in Transportrichtung mit dem Abstand vom Zentrum der Heizwalze 1 bis zur Umkehrklaue 9, so daß die Bedingung erfüllt ist, daß das hintere Ende des Aufzeichnungsblatts 13 erst dann die Fixierstation verläßt bzw. von dieser freigegeben wird, wenn das vordere Ende des Aufzeichnungsblatts 13 die Umkehrklaue 9 erreicht hat, wie bereits unter Bezugnahme auf die Fig. 1 beschrieben worden ist. Es ist somit im Beglich, die mit dem Luftstrom arbeitende Aufzeichnungsblatt-Trägereinrichtung 15 ohne Probleme im Raum zwischen der Fixierstation und der Umkehrklaue 9 unterzubringen.

Entsprechend dem Ausführungsbeispiel der Erfindung wird der Effekt erzielt, daß die Oberflächentemperatur des Tonerbildes 14 auf die Erstarrungstemperatur des Toners heruntergekühlt werden kann, während sich das Tonerbild 14 noch in der mit dem Luftstrom arbeitenden Aufzeichnungsblatt-Trägereinrichtung 15 befindet.

Weiterhin wird erreicht, daß das Aufzeichnungsblatt 13 mit hoher Stabilität getragen bzw. trate portiert werden kann, da das Aufzeichnungsblatt 13 noch zwischen der Heizwalze 1 und der Gegendruckwalze 2 gehalten ist, wenn sich das vordere Ende des Aufzeichnungsblatts 13 innerhalb der mit dem Luftstrom arbeitenden Aufzeichnungsblatt-Trägereinrichtung 15 befindet. Die Ausblasöffnungen 21 der Luftstrom-Aufzeichnungsblatt-Trägereinrichtung 15 sind in derselben Vertikalposition zickzackförmig verteilt angeordnet. Da die Ausblaswinkel so gewählt sind, daß die Ausblasöffnungen 21 mit ihrer Längsrichtung schräg zur Transportrichtung des Aufzeichnungsblatts 13 liegen, wird einerseits verhindert, daß ein Papierstau auftritt, und zwar durch die rückwärts gerichteten Ausblasöffnungen, während durch die nach vorn gerichteten Ausblasöffnungen ein glatter Transport des Aufzeichnungsblatts 13 in Vorwärtsrichtung erzielt wird.

Die Fig. 4A und 4B zeigen schematische Darstellungen eines anderen Ausführungsbeispiels einer Duplex-Reproduziereinrichtung nach der Erfindung. Eine Umkehrklaue 9A wird bei diesem anderen Ausführungsbeispiel mit Druckluft von einem Gebläse 19 versorgt. Dabei tritt ein Luftstrom aus Düsenöffnungen aus, die auf der Oberfläche der Umkehrklaue 9A verteilt angeordnet sind.

Die Fig. 4A zeigt einen Zustand, bei dem das Aufzeichnungsblatt 13 umgekehrt bzw. gewendet wird, während die Fig. 4B einen Zustand zeigt, bei dem das Aufzeichnungsblatt 13 zum Ausgabetisch 12 ausgegeben wird.

Wird Luft durch die Wandoberfläche der Umlenkklaue 9A hindurch eingesaugt, wie die Fig. 4A erkennen läßt, so wird das nicht dargestellte Aufzeichnungsblatt angesaugt und in Richtung des Pfeils U geführt. Strömt dagegen Luft von der Wandoberfläche der Umlenkklaue 9A weg, wie in Fig. 4B angegeben ist, gibt also die Umlenkklaue 9A Druckluft aus, so wird das nicht dargestellte Aufzeichnungsblatt in Richtung des Pfeils E zum Ausgabetisch 12 geleitet.

Das Gebläse 19 kann im zuerst genannten Fall so geschaltet werden, daß es die Umlenkklaue 9A evakuiert.

Selbst wenn also beim zuletzt genannten Ausführungsbeispiel der Toner nicht vollständig verfestigt ist, wenn das Aufzeichnungsblatt 13 die Luftstrom-Aufzeichnungsblatt-Trägereinrichtung 15 verläßt, besteht keine Gefahr einer Verschmutzung der Umkehrklaue 9A durch Toner, da die Umkehrklaue 9A vom Tonerbild nicht berührt wird.

Ein weiteres Ausführungsbeispiel der E-findung ist in den Fig. 5A und 5B dargestellt. Dabei zeigt Fig. 5A einen Zustand, bei dem das Aufzeichnungsblatt 13 umgekehrt bzw. gewendet wird, während Fig. 5B einen

Zustand zeigt, bei dem das Aufzeichnungsblatt 13 zum Ausgabetisch 12 ausgegeben wird.

Anstelle der Umkehrklage 9A ist bei diesem weiteren Ausführungsbeispiel eine Tragführung 25 vorgesehen. Die Tragführung 25 weist in ihrer Wandoberfläche kleine Öffnungen auf, durch die hindurch Luft ausgeblasen und eingesaugt werden kann. Die Tragführung 25 ist zu diesem Zweck mit einem Gebläse 26 versehen, das einen Überdruck und einen Unterdruck erzeugen kann. Es handelt sich hier also um ein reversibles Gebläse 26.

Wird Lust durch die Wandsläche der Tragsührung 25 hindurch eingesaugt, wie in Fig. 5A gezeigt ist, so wird das nicht dargestellte Auszeichnungsblatt entsprechend angesaugt und in Richtung des Pseils U gesührt. Strömt dagegen Lust durch die Wandsläche der Tragsührung 25 nach außen, wie die Fig. 5B zeigt, so wird das nicht dargestellte Auszeichnungsblatt in Richtung des Pseils E zum Ausgabetisch 12 transportiert.

Die Fig. 6 zeigt ein anderes Aussührungsbeispiel der Ersindung. Eine Umkehrklaue 9B nach diesem Aussührungsbeispiel weist eine Mehrzahl von Durchgangsössnungen 27 aus, die zickzacksörmig verteilt angeordnet sind. Diese Umkehrklaue 9B kann zwischen einer oberen Grenzposition 23 und einer unteren Grenzposition 22 hin- und herbewegt werden.

Die Umlenkklaue 9B ist um eine Achse 24 in entgegengesetzten Richtungen drehbar, so daß sie die untere Grenzposition 22 oder die obere Grenzposition 23 einnehmen kann, und zwar in Abhängigkeit davon, ob das Aufzeichnungsblatt 13 beidseitig bedruckt werden soll oder nicht.

Im vorliegenden Fall ist es möglich, daß ein turbulenter Luftstrom im Aufzeichnungsblatt-Ausgabekanal 28 der Luftstrom-Aufzeichnungsblatt-Trägereinrichtung 15 einen stabilen Transport des Aufzeichnungsblatts 13 verhindert. Daher sind die Durchgangsöffnungen 27 in der Umkehrklaue 9B bei diesem Ausführungsbeispiel vorgesehen.

Die Unkehrklaue 9B wirkt bei diesem Aussührungsbeispiel wie ein Gebläse, wenn sie zwischen der oberen Grenzposition 23 und der unteren Grenzposition 22 hin- und herbewegt wird. Aufgrund der vielen Durchgangsölfnungen in der Umkehrklaue 9B wird jedoch erreicht, daß der Luststrom in der Nähe des Ausgangs des Auszeichnungsblatt-Ausgabekanals 28 nicht zu stark gestört wird.

Wird die Umkehrklaue 9B nach Fig. 6 mit hoher Geschwindigkeit auf der Achse 24 bzw. Welle hin- und herbewegt, so wird infolge der Trägheit im Bereich der oberen Grenzposition 23 und der unteren Grenzposition 22 eine relativ große Torsionskraft auf die Achse 24 bzw. Welle wirken, was dazu führen kann, daß die Achse 24 bzw. Welle beschädigt bzw. deformiert wird.

Ein in Fig. 7 dargestelltes anderes Ausführungsbeispiel der Erfindung enthält eine obere Stopperplatte 29 und eine untere Stopperplatte 30 als Stopperelemente, so daß die obenerwähnte Trägheitskraft nicht auf die Achse 30 www. Welle 24 wirkt.

Die untere Stopperplatte 30 im Ausführungsbeispiel nach Fig. 7 dient gleichzeitig als Ausgabetransporteinrichtung 8 in Übereinstimmung mit Fig. 9. Kommt die Umkehrklaue 9B in Kontakt mit der unteren Stopperplatte 30, so fluchtet eine Endfläche der unteren Stopperplatte 30 an der Seite der Luftstrom-Aufzeichnungsblatt-Trägereinrichtung 15 exakt mit der oberen Fläche der Umkehrklaue 9B.

Hierdurch wird sichergestellt, daß das Aufzeichnungsblatt 13 niemals in den Zwischenbereich zwischen Umkehrklaue 9B und unterer Stopperplatte 30 gelangt, wenn sich die Umkehrklaue 9B in der unteren Grenzposition 22 befinder. Es kann somit kein Papierstau auftreten.

Ein weiteres Aussührungsbeispiel der Ersindung ist in der Fig. 8 dargestellt. Im solgenden werden nur diejenigen Punkte beschrieben, in denen sich dieses weitere Aussührungsbeispiel von dem Aussührungsbeispiel nach Fig. 1 unterscheidet.

(i) In der Umkehrtransporteinrichtung 6 wird das Aufzeichnungsblatt 13 mit der zweiten Seite getragen und gegen die Umkehrtransporteinrichtung 6 gedrückt, wobei die zweite Seite kein Tonerbild trägt. Durchläuft das Aufzeichnungsblatt 13 die Umkehrtransporteinrichtung 6, so kommen das Tonerbild 14 und eie Umkehrtransporteinrichtung 6 niemals in Kontakt miteinander. Im Vergleich zum Ausführungsbeispiel nach Fig. 1 kann daher eine Verschmutzung der Umkehrtransporteinrichtung 6 noch weiter verringert werden. (ii) Lustdüseneinrichtungen 31, 32 und 33 besinden sich an der Umkehrtransporteinrichtung 6, am Umkehrtisch 11 und an der Ausgabetransporteinrichtung 8. Die Lustdüseneinrichtungen 31, 32 und 33 sind über eine Rohrleitung 34 mit einem Gebläse 35 verbunden. Die Lustdüseneinrichtungen 31, 32 und 33 weisen jeweils eine Vielzahl von Düsenöffnungen 36 auf, durch die Lust hindurch in Richtung zum Tonerbild 14 geblasen

Das Tonerbild 14 auf dem Aufzeichnungsblatt 13 kann daher schneller verfestigt werden, so daß verhindert wird, daß die einzelnen Tonerbilder 14 auf den Aufzeichnungsblättern 13 insbesondere mit den über ihnen liegenden Aufzeichnungsblättern verkleben, wenn letztere auf dem Ausgabetisch 12 übereinanderliegend angeordnet sind.

Die Luftstrahlen der Luftdüseneinrichtung 33 sind gegen die Ausgabetransporteinrichtung 8 gerichtet.

Ferner läßt sich durch die Luftdüseneinrichtungen 31, 32 und 33 erreichen, daß sich die Haftung zwischen dem Aufzeichnungsblatt 13 und der jeweiligen Führungsfläche der Umkehrtransporteinrichtung 6, der Ausgabetransporteinrichtung 8 und des Umkehrtisches 11 erhöht, so daß ein noch glatterer Transport des Aufzeichnungsblatts 13 möglich ist. Die obere Fläche des Umkehrtisches 11 kommt ebenfalls nicht mit dem Tonerbild 14 in Kontakt, und zwar aufgrund der Wirkung der Luftdüseneinrichtung 32. Somit wird auch ein Verschmutzen des Aufzeichnungstisches 11 verhindert.

Die Luftdüseneinrichtungen 31, 32 und 33 sind insbesondere von Vorteil, wenn das Aufzeichnungsblatt 13 bedruckt ist und mit hoher Geschwindigkeit transportiert wird. Sie brauchen daher nicht vorhanden zu sein, wenn die Druckrate gering und die Kühlwirkung der Luftstrom-Aufzeichnungsblatt-Trägereinrichtung 15 ausreichend ist. Es kann auch nur die Luftdüseneinrichtung 32 am Umkehrtisch 11 vorhanden sein.

. Patentansprüche

- 1. Duplex-Reproduzierem richtung, mit einer Freierstation (1, 2), die ein in einer Entwicklerstation (3) auf der Vorderseite eines Trägerblattes (13) aufgetragenes erstes Tonerbild schmilzt, und
- einer Umkehrtransporteinrichtung (6), die das Trägerblatt (13) wendet und zur Aufnahme eines zweiten Tonerbildes au. dessen Rückseite erneut der Entwicklerstation (3) und der Fizierstation (1, 2) zuführt, dadurch gekennzeichnet,
 - daß in Transportrichtung des Trägerblattes (13) hinter der Fixierstation (1, 2) eine Lustsührungseinrichtung (15) angeordnet ist, die den die Fixierstation (1, 2) verlassenden Teil des Trägerblattes (13) mirtels einer Kühllustströmung während einer zur Versestigung des jeweiligen Tonerbildes ausreichenden Zeitspanne außer Konktakt mit sesten Teilen der Vorrichtung hält, und
 - daß die wirksame Länge der Luftführungseinrichtung (15) in Transportrichtung des Trägerblattes (13) 50 gewählt ist, daß die Hinterkante des Trägerblattes (13) die Foierstation (1, 2) verläßt, wenn dessen Vorderkante einen festen Führungsteil der Vorrichtung erreicht bat.
- 2. Kopiervorrichtung nach Anspruch 1. dadurch gekennzeichnet, daß die Luftführungseinrichtung (15) ein Paar von Druckkammern (20) aufweist, in deren einander zugewandten Flächen bezüglich der Transportrichtung des Trägerblättes (13) schräg vorwärts gerichtete Luftausuittsöffnungen (21) angeordnet sind
 - 3. Kopiervorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Druckkammern (20) an ihrem der Fixierstation (1, 2) zugewandten Ende jeweils eine entgegen der Transportrichtung des Trägerblattes (13) und schräg zu diesem gerichtete Luftaustrittsöffnung aufweisen.
 - 4. Koniervorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß im Austrittsbereich der Lustführungseinrichtung (15) eine verstellbare Umkehrklaue (9, 9A, 9B) angeordnet ist, die je nach ihrer Stellung das Trägerblatt (13) der Umkehrtransporteinrichtung (6) oder einer Ausgabetransporteinrichtung (8) zusüber
 - 5. Kopiervorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Umkehrklaue (9A, 9B) auf ihrer Oberfläche verteilt angeordnete Luftdüsen aufweist.
 - 6. Kopiervorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zwischen der Luftführungseinrichtung (15) und der Umkehrtransporteinrichtung (6) ein Wandelement (25) angeordnet ist, das in seiner Oberfläche Luftdüsen zur Erzeugung einer das Wenden des Tragerblattes (13) unterstützenden Luftstroms aufweist.

Hierzu 4 Seite(n) Zeichnungen

Nummer: DE 38 38 021 C2
Int. Cl.⁵: G 03 G 15/20
Veröffentlichungstag: 13. Juni 1991

FIG. 4A

FIG. 4B

Nummer: DE 38 38 021 C2
Int. Cl.⁵: G 03 G 15/20
Veröffentlichungstag: 13. Juni 1991

Nummer:

DE 38 38 021 C2

Int. Cl.⁵: G 03 G 15/20 Veröffentlichungstag: 13. Juni 1991

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Copes Mandre Book SILL