2003 год. Вариант А

1А. В тропосфере, то есть до высоты H=11,5 км, температура воздуха убывает со скоростью $\alpha=6,5$ К/км. Определить длину свободного пробега молекул на верхней границе тропосферы. Температура на уровне моря $T_0=288$ К, давление $P_0=10^5$ Па. Газокинетический диаметр молекул $d=3.6\cdot 10^{-10}$ м.

2А. Имеется система N невзаимодействующих между собой частиц со спином 1 (возможные квантовые состояния m=0 и $m=\pm 1$). Энергия частицы в состояниях $m=\pm 1$ равна ε , а в состоянии m=0 равна 0. Вычислить теплоёмкость системы C для случая $0<\varepsilon\ll kT$.

3А. В сосуде находится одноатомный идеальный газ. Среди соударяющихся со стенкой сосуда частиц определить долю α тех из них, энергия которых более чем в 2 раза превышает среднюю тепловую энергию частиц.

4А. Давление насыщенного пара на кривых фазового равновесия (испарения и сублимации) вблизи тройной точки описывается формулой Кирхгофа:

$$\ln P \approx A - \frac{B}{T},$$

где A и B — экспериментальные постоянные. Если измерять давление в паскалях, то на кривой испарения жидкой углекислоты $A_{\rm u}=21,6,$ а на кривой сублимации твёрдого ${\rm CO_2}$ $A_{\rm c}=25,6.$ Тройная точка для ${\rm CO_2}$: P=5,11 атм, t=-56,6 °C. Определить молярную теплоту плавления Λ углекислоты вблизи тройной точки.

5А. Для некоторой материи свободная энергия Ψ и энтропия S, нормированные определённым выбором начала отсчёта, связаны соотношением

$$\Psi = -\frac{TS}{4}.$$

Найти выражение для энтропии в переменных TV и уравнение состояния для этой материи, если известно, что её внутренняя энергия пропорциональна занимаемому объёму. Что это за материя?

2003 год. Вариант Б

1В. В тропосфере, то есть до высоты H=11,5 км, температура воздуха убывает со скоростью $\alpha=6,5$ К/км. На какой высоте длина свободного пробега молекул равна $\lambda=10^{-7}$ м? Температура на уровне моря $T_0=288$ К, давление $P_0=10^5$ Па. Газокинетический диаметр молекул $d=3,6\cdot 10^{-10}$ м.

2Б. Имеется система N невзаимодействующих между собой частиц со спином 1 (возможные квантовые состояния m=0 и $m=\pm 1$). Энергия частицы в состояниях $m=\pm 1$ равна ε , а в состоянии m=0 равна 0. Вычислить энтропию системы для случая $0<\varepsilon\ll kT$.

3Б. В сосуде находится одноатомный идеальный газ. Среди соударяющихся со стенкой сосуда частиц определить долю β частиц с энергией, превышающей среднюю энергию, с которой частицы вылетали бы через малое отверстие в стенке.

4Б. Давление насыщенного пара бензола C_6H_6 вблизи тройной точки описывается формулой Кирхгофа:

$$\ln P \approx A - \frac{B}{T},$$

где A и B — экспериментальные постоянные. Если измерять давление в паскалях, то на кривой испарения жидкости $A_{\rm u}=14,0,\,B_{\rm u}=1541$ K, а на кривой возгонки $A_{\rm b}=18,2,\,B_{\rm b}=2713$ K. Определить температуру и давление в тройной точке бензола, а также удельную теплоту плавления твёрдого бензола $\lambda_{\rm nn}$.

5Б. Для некоторой материи термодинамический потенциал Гиббса Φ тождественно равен нулю, а её энтропия, нормированная определённым выбором начала отсчёта, равна

$$S = \frac{4PV}{T}$$

 $(V,\,P,\,T\,-\,$ соответственно объём, занимаемый этой материей, давление и температура). Найти выражение для внутренней энергии в переменных TV и уравнение состояния для этой материи. Что это за материя?

2004 год. Вариант А

- **1А.** В сосуде находится смесь газов (по 1 молю каждого) при температуре $T=1000~\rm K$. Для каждого газа определяется число молекул, имеющих скорости от 999 до $1001~\rm m/c$. Какова молярная масса газа, для которого получится наибольшее число таких молекул? Чему равно это число?
- **2А.** При адиабатическом сжатии серебра на $\Delta V/V = -0.01$ его температура возрастает на $\Delta T/T = 0.028$. Определить коэффициент изотермической сжимаемости β серебра, если температурный коэффициент объёмного расширения $\alpha = 5.7 \cdot 10^{-5} \text{ K}^{-1}$, удельная теплоёмкость серебра $c_v = 0.23 \text{ Дж/(г·K)}$, плотность $\rho = 10.5 \text{ г/см}^3$.
- **3А.** Моль трёхатомного газа Ван-дер-Ваальса, находящийся в критическом состоянии, адиабатически расширяется в вакуум, в результате чего его температура падает до $T=\frac{3}{4}T_{\rm крит}$. Определить, во сколько раз изменилось давление газа. Считать, что теплоёмкость C_v данного газа такая же, как у идеального.
- **4А.** На Венере атмосфера состоит из CO_2 . Полагая CO_2 идеальным газом и атмосферу адиабатической, определить температуру на поверхности планеты, если плотность падает в n=2 раза на высоте H=12,2 км при ускорении силы тяжести $g=8,87~\mathrm{M/c^2}$. Молярная теплоёмкость CO_2 в таких условиях $C_v=5R$. Ускорение силы тяжести не зависит от высоты. Указание. Адиабатической называется атмосфера, в которой порции газа, перемещаясь по вертикали без теплообмена, все время остаются в механическом равновесии.
- **5А.** В объёме сферического сосуда радиуса R=2 см протекает реакция с образованием атомов водорода. Скорость реакции $W_0=6.0\cdot 10^{19}$ атомов/(см³·с). При столкновении со стенкой сосуда атомы водорода захватываются с вероятностью $\varepsilon=10^{-3}$. Определить среднюю концентрацию атомов водорода в сосуде, если температура в сосуде $T=788~{\rm K}$, а коэффициент диффузии $D=60~{\rm cm}^2/{\rm c}$.

2004 год. Вариант Б

- **1Б.** В сосуде находятся по 1 молю гелия ($\mu_1 = 4$ г/моль) и азота ($\mu_2 = 28$ г/моль). При какой температуре число молекул со скоростями от 999 до 1001 м/с одинаково для обоих газов? Чему равно это число?
- **2Б.** Определить относительное изменение температуры глицерина $\Delta T/T$ при адиабатическом его сжатии на $\Delta V/V=-0.01$, если скорость звука в глицерине u=1895 м/с, температурный коэффициент объёмного расширения глицерина $\alpha=1.7\cdot 10^{-4}~{\rm K}^{-1}$, теплоёмкость $C_p=217~{\rm Дж/(моль\cdot K)}$, молярная масса $\mu=92~{\rm г/моль}$.
- **3Б.** Температура моля одноатомного газа Ван-дер-Ваальса при адиабатическом расширении в вакуум из объёма $V_0=3V_{\rm крит}$ меняется от значения $T_0=2.2T_{\rm крит}$ до $T=2T_{\rm крит}$. Определить изменение энтропии газа. Считать, что теплоёмкость C_v данного газа такая же, как у идеального.
- **4Б.** На спутнике Юпитера Европе атмосфера состоит из аммиака NH₃. Полагая NH₃ идеальным газом и атмосферу адиабатической, определить ускорение свободного падения g, если плотность атмосферы падает в n=1,5 раза на высоте H=22 км. Температура у поверхности спутника $T_0=137$ К. Ускорение силы тяжести не зависит от высоты. Указание. Адиабатической называется атмосфера, в которой порции газа, перемещаясь по вертикали без теплообмена, все время остаются в механическом равновесии.
- **5Б.** В объёме длинного цилиндрического сосуда радиуса R=2 см протекает реакция с образованием атомов водорода. Скорость реакции $W_0=6,0\cdot 10^{19}$ атомов/(см³·с). При столкновении со стенкой сосуда атомы водорода захватываются с вероятностью $\varepsilon=10^{-3}$. Определить среднюю концентрацию атомов водорода в сосуде, если температура в сосуде T=788 K, а коэффициент лиффузии D=60 см²/с.

2005 год. Вариант А

- **1А.** На некоторых спутниках Юпитера при температуре $T=137~{\rm K}$ предполагается наличие морей из метана ${\rm CH_4}.$ Определить, при каком давлении на поверхности спутников это возможно? Под давлением $P_0=10^5~{\rm Ha}$ метан кипит при температуре $T_0=112~{\rm K}.$ При этой температуре теплота испарения метана равна $\Lambda_0=8200~{\rm Дж/моль}.$ Теплоёмкости метана считать соответственно равными $C_{\rm ж}=58~{\rm Дж/(моль\cdot K)}$ для жидкости и $C_{\rm p}=41~{\rm Дж/(моль\cdot K)}$ для газа.
- **2А.** В центре сферы радиуса $R_1=5$ см находится шарик радиуса $R_0=0.5$ см, на поверхности которого протекает химическая реакция с постоянной скоростью $W_S=3.0\cdot 10^{-8}$ моль/(см²·с). Температура сферы поддерживается постоянной. Тепловой эффект реакции $Q=8.0\cdot 10^4$ Дж/моль. Теплоотвод определяется теплопроводностью смеси исходных веществ и продуктов реакции. Коэффициент теплопроводности $\lambda=3.0\cdot 10^{-4}$ Вт/(см·К) не зависит от температуры. Определить установившуюся разность температур между поверхностями шарика и сферы.
- **3А.** Вещество с неизвестным уравнением состояния совершает замкнутый положительный цикл, в котором сначала оно нагревается от температуры $T_1 = 200 \; \mathrm{K}$ до $T_2 = 400 \; \mathrm{K}$ в процессе с теплоёмкостью, пропорциональной температуре, потом охлаждается в адиабатическом процессе до некоторой температуры, и затем возвращается в исходное состояние по политропе. Определить теплоёмкость этой политропы, если $\mathrm{K}\Pi Д$ цикла $\eta = 1/3$.
- **4А.** Частота колебаний атомов в молекуле газообразного фтора F_2 равна $\nu=3,42\cdot10^{13}~{\rm c}^{-1}$. Определить показатель адиабаты $\gamma=\frac{C_p}{C_v}$ для фтора при температуре $T=300~{\rm K}$, когда можно принимать во внимание переход молекул только на первый возбуждённый уровень колебаний.
- ${f 5A.}$ Электроны, движущиеся в тонком поверхностном слое, могут рассматриваться как двумерный идеальный газ. Определить, какая максимальная доля таких электронов может сохранить свои скорости при увеличении температуры в n=1,5 раза.

2005 год. Вариант Б

- **1Б.** Под давлением $P_1=10^5$ Па азот N_2 кипит при температуре $T_1=$ = 76 К. В атмосфере Сатурна при температуре $T_2=106$ К предполагается наличие жидкого азота в слоях, в которых давление превышает $P_2=1,08\cdot 10^6$ Па. Принимая теплоёмкости азота в соответствующем диапазоне температур равными $C_{\rm ж}=58,5$ Дж/(моль·К) для жидкости и $C_p=28,8$ Дж/(моль·К) для газа, определить значения теплоты испарения азота при температурах T_1 и T_2 .
- **2Б.** На поверхности длинного внутреннего цилиндра радиуса $R_0=0.05$ см коаксиального цилиндрического сосуда протекает химическая реакция с постоянной скоростью $W_S=5.0\cdot 10^{-8}$ моль/(см²·с). Температура внешнего цилиндра поддерживается постоянной, его радиус $R_1=2.0$ см. Тепловой эффект реакции $Q=9.0\cdot 10^4$ Дж/моль. Теплоотвод определяется теплопроводностью смеси исходных веществ и продуктов реакции. Коэффициент теплопроводности не зависит от температуры и равен $\lambda=3.5\cdot 10^{-4}$ Вт/(см·К). Определить установившуюся разность температур между поверхностями цилиндров сосуда.
- **3Б.** Вещество с неизвестным уравнением состояния совершает замкнутый положительный цикл, в котором сначала оно охлаждается от температуры $T_1 = 500~\mathrm{K}$ до $T_2 = 250~\mathrm{K}$ в процессе с теплоёмкостью, пропорциональной квадрату температуры, потом нагревается в адиабатическом процессе до некоторой температуры, и затем возвращается в исходное состояние по политропе. Определить теплоёмкость этой политропы, если КПД цикла $\eta = 2/9$.
- **4Б.** Частота колебаний атомов в молекуле газообразного йода J_2 равна $\nu=6,4\cdot10^{12}~{\rm c}^{-1}$. Определить относительную среднеквадратичную флуктуацию колебательной энергии молекулы при температуре $T=300~{\rm K}$. Положить энергию основного состояния молекулы равной нулю.
- **5Б.** Электроны, движущиеся в тонком поверхностном слое, могут рассматриваться как двумерный идеальный газ. Определить, какая минимальная доля таких электронов должна изменить свои скорости при увеличении температуры в n=2,5 раза.