Exercises in 3D Computer Vision I

Exercise 1 Homogeneous Coordinates

Short reminder on projective geometry

We call \mathbb{P}^n the projective space of dimension n. For any point in \mathbb{P}^n , we define its corresponding vector in homogeneous coordinates:

$$\mathbf{x}_h = \left[x_1, x_2, \dots, x_{n+1}\right]^\top \in \mathbb{R}^{n+1}$$

We introduce on \mathbb{P}^n a new equivalence operator \propto such that: $\forall \mathbf{x}_h, \mathbf{y}_h \in \mathbb{R}^{n+1}$, we have

$$\mathbf{x}_h \propto \mathbf{y}_h \Leftrightarrow \exists \alpha \in \mathbb{R}^* \text{ where } \mathbf{x}_h = \alpha \mathbf{y}_h$$

In the literatur you will also sometimes find the sign \equiv for the equivalence operator.

If $x_{n+1} = 0$, then \mathbf{x}_h is a point at infinity. If $x_{n+1} \neq 0$, then we can obtain the Euclidean coordinates $\mathbf{x}_e \in \mathbb{R}^n$ from the homogeneous coordinates \mathbf{x}_h .

For
$$\mathbf{x}_h = [x_1, x_2, \dots, x_{n+1}]^{\top}$$
 and $x_{n+1} \neq 0$, then $\mathbf{x}_e = \left[\frac{x_1}{x_{n+1}}, \frac{x_2}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}\right]^{\top}$.

- a) In the lecture, the homogeneous representation of points and lines was introduced. Now, we will consider its geometrical interpretation. In the following, we will always operate in 2D (\mathbb{R}^2 and \mathbb{P}^2) since it is easier to visualize and get a grip on projective geometry. As a starter, consider the following questions.
 - (i) How can points and lines be represented in \mathbb{R}^2 (inhomogeneously)?
 - (ii) How are points and lines represented in \mathbb{P}^2 (homogeneously)?
 - (iii) How are points and planes represented in \mathbb{R}^3 (inhomogeneously)?
- b) Now think of the geometric meaning of 2D projective space for representing points and lines. As a hint, take the homogeneous representation of 2D points and lines as 3D entities. Then think of how to project these 3D entities into a suitable 2D space. Draw a schematic that displays your geometric interpretation of projective space \mathbb{P}^2 for points and lines.
 - (i) How can the direction of a line and its distance to the origin be determined?
 - (ii) Explain geometrically that a point **p** that lies on a line **l** satisfies $\mathbf{p}^{\mathsf{T}}\mathbf{l} = 0$.
 - (iii) Intersecting two lines gives a point \mathbf{p} in 2D. How can \mathbf{p} be determined in \mathbb{P}^2 ?
 - (iv) How can points at infinity $\{(x, y, z) \in \mathbb{P}^2 | z = 0\}$ and the line at infinity \mathbf{l}_{∞} be explained geometrically?

Exercise 2 Hierarchy of transformations in 2D

- a) List all classes of 2D transformations you can recall. Show the containment relation of the different classes in a schematic way.
- b) Name the invariants of each class of transformations.
- c) Explain algebraically why a line is transformed under a projective transformation \mathbf{H} as $\mathbf{l}' \equiv \mathbf{H}^{-\top} \mathbf{l}$, if the points of this line are transformed as $\mathbf{p}' \equiv \mathbf{H} \mathbf{p}$.

Hint: Think of the equation that holds when a point lies on a line: $\mathbf{p}^{\mathsf{T}}\mathbf{l} = 0$. Write the equation with an arbitrary projective transformation applied to the point \mathbf{p} and then decide how you need to transform the line.

d) Prove that projective transformations preserve intersection of lines.

Hint: You need to show that if two lines l_1 and l_2 are intersecting in a point p, the two lines arising under a transformation by an arbitrary homography H are still intersecting. By the help of the previous exercise, think of why it is sufficient to prove

$$\mathbf{H}^{-\top}(\mathbf{l}_1 \times \mathbf{l}_2) \equiv \mathbf{H}\mathbf{l}_1 \times \mathbf{H}\mathbf{l}_2.$$

The equation states that the left-hand side and the right-hand side are meant to be equal up to a scaling factor. Simplify the equation a bit and then try to interpret both sides geometrically (what is the result of the cross product of two vectors?).

Exercise 3 (H) Euclidean Transformations

The following exercises should be solved using MATLAB. All commands you used to answer the questions should be handed in in one file called exercise1-3.m (except for the function plotHomo.m). We take the point set

$$p = [0 \ 0;1 \ 0;1 \ 1;0 \ 1;0.5 \ 1.6;1 \ 1;0 \ 0;0 \ 1;1 \ 0]$$
,

The points can be changed to homogeneous coordinates by $p_h = [p; ones(1,9)]$ and can be displayed by plot(p(1,:),p(2,:)); axis equal. Note that this is just possible because the w-value of a point $[x \ y \ w]^{\top}$ is normalized to 1.

Just to remind you, if \mathbf{T} is a transformation matrix and \mathbf{P} is a matrix that was generated by concatenated vectors, then $\mathbf{T} \cdot \mathbf{P}$ does the same as transforming the points first and concatenating them after.

All of the exercises must be calculated in homogeneous coordinates.

- a) Write the function plotHomo(p) that normalizes each point separately and plots the points afterwards.
- b) Create a transformation matrix \mathbf{T}_1 that translates the points by $\mathbf{t} = [3, -4]^{\mathsf{T}}$.
- c) Create a transformation matrix T_2 that rotates the points by 20 degrees. Mind that the function sin() just accepts radian values.
- d) Create a transformation matrix T_3 by multiplication that applies the rotation first and the translation after.
- e) Create a transformation matrix T_4 by multiplication that applies the translation first and the rotation after.
- f) Express T_3 and T_4 by the rotation matrix R, translation vector t. Do this calculation manually.

Exercise 4 (H) Affine Transformations

- a) Apply the matrix $\begin{bmatrix} 1 & 2 & 0 \\ 0.5 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ to the set of points and plot the resulting points.
- b) What would the matrix look like if the bottom right point of the house was to be projected to $[2, -0.5]^{\top}$ and the left top point to $[-1, 1]^{\top}$?

(H) Projective Transformations Exercise 5

- a) Apply the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0.3 & 0.5 & 1 \end{bmatrix}$ to the set of points and plot the resulting points.
 b) Now apply the matrix $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ and display. Can you explain what you see?