CS280 – BTrees April 4, 2016

http://azrael.digipen.edu/~mmead/www/Courses/CS280/BTrees-1.html

Homework

•	All the nodes start at infinity	

- Constantly updating paths as you find cheaper ones
- Have to clear previous path before adding a new one
- Use priority queu
 - Vector
 - Sort
- Edge class
- Node class

B-Trees

- External storage
 - Not everything fits in memory
- Storing pointers to blocks of disk space instea of memory address
- More children per node, smaller the height
- Btrfs file system (B-Tree file system)
- Database programming
 - o MySQL
- If you can even keep one node memory that will give a performance increase since it is one less disk access

- Minimum degree is minimum # of children you can have
- Can adjust how full you want to keep your nodes on the tree
- Typically one node == one disk read
 - Depending on node sine you may be able to store more than one in memory
- Key-range searches
 - Lets you avoid going up and down the tree in range searches
- Doing actual node manipulation overhead is almost un-noticable because it is CPU complexity,
 which is much less than disk access time
- Lazy delete just marks as deleted
- Keep data tored in separate structure and just have pointers to different sort order structures
 - One copy of data, just pointers to sort differently
- $log_t(N)$
- Take database classes!
 - For every game programming job, 20 database jobs
 - o Databases used for MMORPG's
 - Relational calculus
 - ∘ SQL Structured Query Language