ABSTRACT

Detecting frauds in credit card transactions is perhaps one of the best test-beds for computational intelligence algorithms. In fact, this problem involves a number of relevant challenges, namely: concept drift (customers' habits evolve and fraudsters change their strategies over time), class imbalance (genuine transactions far outnumber frauds), and verification latency (only a small set of transactions are timely checked by investigators). However, the vast majority of learning algorithms that have been proposed for fraud detection rely on assumptions that hardly hold in a real-world fraud-detection system (FDS). This lack of realism concerns two main aspects: 1) the way and timing with which supervised information is provided and 2) the measures used to assess fraud-detection performance. This paper has three major contributions. First, we propose, with the help of our industrial partner, a formalization of the fraud-detection problem that realistically describes the operating conditions of FDSs that everyday analyzes massive streams of credit card transactions. We also illustrate the most appropriate performance measures to be used for fraud-detection purposes. Second, we design and assess a novel learning strategy that effectively addresses class imbalance, concept drift, and verification latency. Third, in our experiments, we demonstrate the impact of class unbalance and concept drift in a real-world data stream containing more than 75 million transactions, authorized over a time window of three years.

TABLE OF CONTENTS

Chapter.		Page
No	Title	No.
	Abstract	i
	Table of Contents	ii
	List of Figures	iv
	Abbreviation	V
1.	INTRODUCTION	1-4
	1.1 Introduction	1
	1.2 Existing System	2
	1.3 Proposed System	4
	1.4 Advantages of proposed system	4
2.	REQUIREMENT ANALYSIS	5-6
	2.1 Functional requirement	5
	2.2 Non Functional requirements	6
	2.3 Computational resource requirements	6
	2.3.1 Hardware requirements	6
	2.3.2 Software requirements	6
3	DESIGN	7-10
	3.1 Design	7
	3.2 Architecture	7
	3.3 Class Diagram	8
	3.4 Sequence Diagram	9
	3.5 State chart Diagram	10
4	MODULES	11-12
	4.1 Modules	11
5	IMPLEMENTATION	13-14
	5.1 Source Code	13

CREDIT CARD FRAUD DETECTION

	5.2 Sample Dataset	
6	SCREENSHOTS	
	6.1 Screenshots	15
	6.1.1 Importing libraries	15
	6.1.2 Normal Transaction	16
	6.1.3 Fraud x Normal Transaction by hours	17
	6.1.4 Fraud x Normal Transaction by minutes	18
	6.1.5 Class x Amount	19
	6.1.6 Amount by minutes of Fraud and Normal Transactions	20
	6.1.7 Amount by Hours of Fraud and Normal Transactions	21
	6.1.8 V's Features	22
	6.1.9 Correlation Matrix	23
	6.1.10 Feature Importance Plot	24
	6.1.11 ROC Curve – Random Forest	25
7	TESTING	26-29
	7.1 Overview of Testing	26
	7.2 Types of Testing	26
	7.2.1 Unit Testing.	26
	7.2.2 Integration Testing.	26
	7.2.3 Functional Testing.	27
	7.3 Unit Testing	28
	7.4 Integration Testing	28
	7.5 Acceptance Testing.	28
8	CONCLUSION AND FUTURE WORK	30-31
	8.1 Conclusion	30
	8.2 Scope for future work	31
9	BIBILOGRAPHY	32

LIST OF FIGURES

Sl No	Title	Page No.
3.1	Architecture	7
3.2	Class Diagram	8
3.3	Sequence Diagram	9
3.4	State Chart Diagram	10
6.1	Importing libraries	15
6.2	Normal Transaction	16
6.3	Fraud x Normal Transaction by hours	17
6.4	Fraud x Normal Transaction by minutes	18
6.5	Class x Amount	19
6.6	Amount by minutes of Fraud and Normal	20
	Transactions	
6.7	Amount by Hours of Fraud and Normal	21
	Transactions	
6.8	V's Features	22
6.9	Correlation Matrix	23
6.10	Feature Importance Plot	24
6.11	ROC Curve – Random Forest	25

ABBREVIATION

GUI	Graphical User Interface
PY	Python
OPP	Object Oriented Programming
DRY	Don't Repeat Yourself
PIP	Package Installer for Python
MRO	Method Resolution Order
PEP	Python Enhancement Proposals
BDFL	Benevolent Dictator For Life
REPL	Read-Eval-Print Loop