Конспект лекций по математическому анализу

Храбров Александр Игоревич

Первый курс, первый семестр 2020

Оглавление

1	Введение				
	1	Множества	2		
		Отношения			

Глава 1

Введение

1 Множества

Определение 1. Множество - набор уникальных элементов

Множества - большие буквы A, B, \dots

Элементы множеств - маленькие буквы a, b, \dots

 $x \in A - x$ пренадлежит A

 $x \notin A - x$ не пренадлежит A

 $\mathbb{N} = \{1, 2, 3, \dots\}$

 $\mathbb{Z}, \mathbb{Q} = \{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \}$

 \mathbb{R} - вещественные числа

 \mathbb{R} - комплексные числа

Теорема 2. Правила Де Моргана

$$A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) = \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

$$A \setminus (\bigcap_{\alpha \in I} B_{\alpha}) = \bigcup_{\alpha \in I} (A \setminus B_{\alpha})$$

Доказательство. Докажем для первой формулы. Вторая доказывается аналогично.

Доказательство. Докажем для первой формулы. Вторая доказывается аналогично.
$$x \in A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) \Longleftrightarrow \begin{cases} x \in A \\ x \notin \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \iff \begin{cases} x \in A \\ x \notin B_{\alpha} \end{cases} \text{ при всех } \alpha \end{cases}$$

$$\alpha \in I \Longleftrightarrow x \in \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

Теорема 3. Операции над множествами

• $A \cup B = \{x : x \in A \text{ или } x \in B\}$

$$\bullet \ A \cap B = \{x : x \in A, x \in B\}$$

•
$$A \setminus B = \{x : x \in A, x \notin B\}$$

•
$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

Замечание: \triangle, \cup, \cap - комммутативны, ассоциативны

Определение 4. Декартово произведение множеств $A \times B = \{ \langle a, b \rangle : a \in A; b \in B \}$

Теорема 5.

$$A \cap \bigcup_{\alpha \in I} B_{\alpha} = \bigcup_{\alpha \in I} (A \cap B_{\alpha})$$
$$A \cup \bigcap_{\alpha \in I} B_{\alpha} = \bigcap_{\alpha \in I} (A \cup B_{\alpha})$$

Доказательство.
$$x \in A \cap \bigcup_{\alpha \in I} B_{\alpha} \Longleftrightarrow \begin{cases} x \in A \\ x \in \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \Longleftrightarrow \begin{cases} x \in A \\ x \in B_{\alpha} \text{ для некоторых } \alpha \in I \end{cases} \Longleftrightarrow x \in A \cap B_{\alpha}$$
 для некоторых $\alpha \in A \cap B_{\alpha}$.

Определение 6. Упорядоченная пара $\langle a, b \rangle$ - пара "пронумерованных" элементов

$$\langle a,b \rangle = \langle c,d \rangle$$

$$((a == c) && (b == d))$$

2 Отношения

Определение 7. Область определения: $\delta_R = \{x \in A : \exists y \in B, m.ч. \langle x, y \rangle \in \mathbb{Z}\}$

Определение 8. Область значений: $\rho_R = \{y \in B : \exists x \in A, m.ч. \langle x, y \rangle \in \mathbb{Z}\}$

$$\delta_{R-1} = \rho_R$$
$$\rho R - 1 = \delta_R$$

Определение 9. Композиция отношений

$$R_1 \subset A \times B$$
, $R_2 \subset B \times C$, $R_1 \circ R_2 \subset A \times C$

Пример

- $\langle x, y \rangle \in R$, если \mathbf{x} отец \mathbf{y}
- $\langle x, y \rangle \in R \circ R$, если \mathbf{x} дед \mathbf{y}
- $\langle x,y\rangle \in R^{-1}\circ R$, если х брат у
- δR все, у кого есть сыновья

Определение 10. Бинарным отношением R называется подмножество элементов декартова произведения двух множеств $R \subset A \times B$

Элементы $x \in A, y \in B$ находятся в отношении, если $\langle x, y \rangle \in R$ (то же, что xRy)

Обратное отношение $R^{-1} \subset B \times A$

Определение 11. Отношение называется:

- Рефлексивным, если $xRx \ \forall x$
- Симметричным, если $xRy \Longrightarrow yRx$
- Транзитивным, если $xRy, yRz \Longrightarrow xRz$
- Иррефлексивным, если $\neg x R x \forall x$
- Антисимметричным, если $xRy, yRx \Longrightarrow x = y$

Определение 12. *R является отношением*

- 1. Эквивалентности, если оно рефлексивно, симметрично и транзитивно
- 2. Нестрогого частичного порядка, если оно рефлексивно, антисимметрично и транзитивно
- 3. Нестрогого полного порядка, если выполняется п. $2 + \forall x, y$ либо xRy, либо yRx
- 4. Строгого частичного порядка, если оно иррефлексивно и транзитивно
- 5. Строгого полного порядка, если выполняется п. $4 + \forall x, y$ либо xRy, либо yRx

Пример

- $x \equiv y \pmod{m}$ отношение эквивалентности
- \bullet X множество, 2^x множество всех его подмножеств
- $\forall x,y \in 2^x : \langle x,y \rangle \in R$, если $x \subsetneq y$ отношение строгого частичного порядка
- Лексикографический порядок на множестве пар натуральных чисел отношение нестрогого полного порядка

Определение 13. $f: A \longrightarrow B$

- инъективно, если $f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2$
- \bullet сюръективно, если $\rho_f = B$
- \bullet биективно, если f инъективно и сюръективно