```
In [3]: import pandas as pd
    df=pd.read_csv("D:\Home_Price.csv")
    df
```

Out[3]:

	own	area	price
0	monroe township	2600	550000
1	monroe township	3000	565000
2	monroe township	3200	610000
3	monroe township	3600	680000
4	monroe township	4000	725000
5	west windsor	2600	585000
6	west windsor	2800	615000
7	west windsor	3300	650000
8	west windsor	3600	710000
9	robinsville	2600	575000
10	robinsville	2900	600000
11	robinsville	3100	620000
12	robinsville	3600	695000

```
In [4]: df.rename(columns={'own':'Town'},inplace=True)
df
```

Out[4]:

	Town	area	price
0	monroe township	2600	550000
1	monroe township	3000	565000
2	monroe township	3200	610000
3	monroe township	3600	680000
4	monroe township	4000	725000
5	west windsor	2600	585000
6	west windsor	2800	615000
7	west windsor	3300	650000
8	west windsor	3600	710000
9	robinsville	2600	575000
10	robinsville	2900	600000
11	robinsville	3100	620000
12	robinsville	3600	695000

2.Dummy variables

In [6]: dummies=pd.get_dummies(df.Town)
dummies

Out[6]:

	monroe township	robinsville	west windsor
0	1	0	0
1	1	0	0
2	1	0	0
3	1	0	0
4	1	0	0
5	0	0	1
6	0	0	1
7	0	0	1
8	0	0	1
9	0	1	0
10	0	1	0
11	0	1	0
12	0	1	0

3.Now we Merging dummy variables

In [7]: marged=pd.concat([df,dummies],axis='columns')
marged

Out[7]:

	Town	area	price	monroe township	robinsville	west windsor
0	monroe township	2600	550000	1	0	0
1	monroe township	3000	565000	1	0	0
2	monroe township	3200	610000	1	0	0
3	monroe township	3600	680000	1	0	0
4	monroe township	4000	725000	1	0	0
5	west windsor	2600	585000	0	0	1
6	west windsor	2800	615000	0	0	1
7	west windsor	3300	650000	0	0	1
8	west windsor	3600	710000	0	0	1
9	robinsville	2600	575000	0	1	0
10	robinsville	2900	600000	0	1	0
11	robinsville	3100	620000	0	1	0
12	robinsville	3600	695000	0	1	0

```
In [8]: # 4. Dropping 'town' column
```

In [9]: new_dataFrame=marged.drop(['Town'],axis='columns')

In [10]: new_dataFrame

Out[10]:

	area	price	monroe township	robinsville	west windsor
0	2600	550000	1	0	0
1	3000	565000	1	0	0
2	3200	610000	1	0	0
3	3600	680000	1	0	0
4	4000	725000	1	0	0
5	2600	585000	0	0	1
6	2800	615000	0	0	1
7	3300	650000	0	0	1
8	3600	710000	0	0	1
9	2600	575000	0	1	0
10	2900	600000	0	1	0
11	3100	620000	0	1	0
12	3600	695000	0	1	0

```
In [11]: # 5. Dropping one dummy variable
```

In [12]: # # Avoiding dummy variable trap I am dropping Monoroe column here.
Note: You can drop anyone dummy variable column you want.

In [14]: df1=new_dataFrame.drop(['monroe township'],axis='columns')
df1

Out[14]:

	area	price	robinsville	west windsor
0	2600	550000	0	0
1	3000	565000	0	0
2	3200	610000	0	0
3	3600	680000	0	0
4	4000	725000	0	0
5	2600	585000	0	1
6	2800	615000	0	1
7	3300	650000	0	1
8	3600	710000	0	1
9	2600	575000	1	0
10	2900	600000	1	0
11	3100	620000	1	0
12	3600	695000	1	0

In [15]: # Independent variable take on x-axis

```
In [16]: x=df1.drop(['price'],axis='columns')
Out[16]:
              area robinsville west windsor
           0 2600
                           0
                                       0
           1 3000
                           0
                                       0
           2 3200
                           0
                                       0
           3 3600
                           0
                                       0
           4 4000
                                       0
           5 2600
                           0
                                       1
           6 2800
                           0
                                       1
           7 3300
                           0
                                       1
           8 3600
                           0
                                       1
           9 2600
          10 2900
                           1
                                       0
           11 3100
                           1
                                       0
          12 3600
                                       0
In [17]: # Dependent variable take on y axis
In [18]: y=df1.price
Out[18]: 0
                550000
          1
                565000
          2
                610000
          3
                680000
         4
                725000
          5
                585000
          6
                615000
         7
                650000
         8
                710000
         9
                575000
         10
                600000
          11
                620000
         12
                695000
         Name: price, dtype: int64
In [19]: # Importing Linear Regression model
```

In [20]: from sklearn.linear_model import LinearRegression

model=LinearRegression()

```
In [21]: # fitting the model
In [22]: model.fit(x,y)
Out[22]:
          ▼ LinearRegression
          LinearRegression()
In [23]: # Predicting the house price
In [24]: model.predict(x)
Out[24]: array([539709.7398409 , 590468.71640507, 615848.20468716, 666607.18125134,
                717366.15781552, 579723.71533004, 605103.20361213, 668551.92431735,
                706621.15674048, 565396.1513653 , 603465.38378843, 628844.87207052,
                692293.59277575])
In [25]: # Checking the accuracy of model
In [26]: model.score(x,y)
Out[26]: 0.9573929037221871
In [27]: # Plot graph between area and price
In [53]: | area1=df1.drop(['area'],axis='columns')
         x=df1.area
         Х
Out[53]: 0
               2600
         1
               3000
         2
               3200
         3
               3600
         4
               4000
         5
               2600
         6
               2800
         7
               3300
         8
               3600
         9
               2600
         10
               2900
         11
               3100
         12
               3600
         Name: area, dtype: int64
```

```
In [55]: from matplotlib import pyplot as plt
    plt.grid(color='yellow')
    plt.ylabel('Price',color='Green')
    plt.xlabel('area',color='green')
    plt.plot(area,y,linestyle='--')
    plt.show()
```



```
In [ ]:
```