PROGRAMIRANJE I

P-01: Brojevni sistemi i konverzije

4

P-01: Brojevni sistemi i konverzije

Sadržaj predavanja

- brojevni sistemi (pozicioni i nepozicioni)
- binarni, oktalni, heksadekadski brojevni sistemi
- konverzija u dekadski brojevni sistem
- konverzija iz dekadskog brojevnog sistema
- konverzija B/O/H ↔ B/O/H

Brojevni sistem

- Brojevni sistem
 - = JEZIK nad skupom CIFARA
 - = formalni matematički sistem za reprezentaciju brojeva
- Svaki brojevni sistem ima:
 - alfabet (azbuku) = neprazan skup cifara
 - gramatiku (sintaksu) = skup pravila prema kojima se formiraju složene konstrukcije (brojevi)
- Svi poznati brojni sistemi mogu da se svrstaju u dvije grupe:
 - nepozicioni = težina cifre (njen udio u cjelokupnoj vrijednosti broja) je uvijek ista i ne zavisi od pozicije (mjesta) na kojoj se ona nalazi u broju
 - pozicioni (težinski) = "težina" cifre zavisi od njene pozicije (mjesta) u broju

4

Nepozicioni brojevni sistemi

NEPOZICIONI brojevni sistem

Težina cifre (njen udio u cjelokupnoj vrijednosti broja) je uvijek ista i ne zavisi od pozicije na kojoj se ona nalazi u broju.

- RIMSKI brojevni sistem najpoznatiji nepozicioni brojevni sistem
 - **alfabet:** {I, V, X, L, C, D, M} I=1, V=5, X=10, L=50, C=100, D=500, M=1000

gramatika:

- cifre se ređaju slijeva udesno prema vrijednosti, od najveće do najmanje
 npr. MMXV = 1000 + 1000 + 10 + 5 = 2015
- niz istih cifara (maksimalno tri iste cifre) u broju ima vrijednost jednaku njihovom zbiru

 umjesto četiri iste cifre koristi se subtraktivna notacija – ispred veće cifre stavlja se manja, a njihova vrijednost jednaka je razlici teže i lakše cifre

4

Nepozicioni brojevni sistemi

Primjeri:

dekadski	1	2	3	4	5	6	7	8	9	10
rimski	I	II	III	IV	V	VI	VII	VIII	IX	x
dekadski	11	19	20	21	30	40	50	60	90	100
rimski	XI	XIX	ХХ	XXI	xxx	XL	L	LX	хс	С
dekadski	101	119	190	200	300	400	500	501	900	1000
rimski	CI	CXIX	СХС	СС	ССС	CD	D	DI	СМ	М

Veliki rimski brojevi:

nadvlačenje cifre ekvivalentno je množenju sa 1000

npr.
$$\overline{X} = 10.000$$
 $\overline{XX} = 20.000$ $\overline{M} = 1.000.000$

Nepozicioni brojevni sistemi

Razlomci u rimskoj notaciji:

brojna osnova za izražavanje razlomaka je 12 (jer je 12=2*2*3)

```
npr. 1/12 = . (unca)

2/12 = 1/6 ... ili :

3/12 = 1/4 ... ili :

4/12 = 1/3 .... ili ::

5/12 = ::

6/12 = 1/2 S (semis)

7/12 = 1/2+1/12 S.

8/12 = 1/2+1/6 S:

...

12/12 = 1 I
```

Pozicioni brojevni sistemi

POZICIONI (TEŽINSKI) brojevni sistem

Težina cifre (njen udio u cjelokupnoj vrijednosti broja) zavisi od njene pozicije u broju.

- Svi pozicioni brojevni sistemi mogu da se svrstaju u dvije grupe:
 - sa brojnom osnovom (bazom)
 - npr. dekadski (10), binarni (2), oktalni (8), heksadekadski (16), ...
 - bez brojne osnove
 - npr. faktoradiks

Pozicioni brojevni sistemi

Pozicioni brojevni sistem sa brojnom osnovom karakterišu:

- baza / osnova (base / radix)
 - uobičajene oznake: b, B, N, r
 - baza je (tipično) prirodan broj veći od 1 (b > 1)
- alfabet / azbuka
 - neprazan skup sa b cifara za reprezentaciju brojeva

$$A = \{0, 1, 2, \dots, b-1\}$$

Baza (b)	Brojni sistem	Alfabet (A)
2	Binarni	{0, 1}
3	Ternarni	{0, 1, 2}
8	Oktalni	{0, 1, 2, 3, 4, 5, 6, 7}
10	Dekadski (decimalni)	{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
16	Heksadekadski (heksadecimalni)	{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

Pozicioni brojevni sistemi

Reprezentacija cijelih brojeva

Broj S u brojnom sistemu sa osnovom b predstavlja se kao **niz** (vektor) **cifara** iz alfabeta A:

$$S_b = (c_{n-1}c_{n-2}...c_1c_0)_b$$

Primjeri:

```
(11011001)_2 ili kraće 11011001_2 (7305)_8 ili kraće 7305_8 (A01)_{16} ili kraće A01_{16} (9265)_{10} ili kraće 9265
```

baza 10 se podrazumijeva i ne piše

- Cifra c_i na poziciji i ($0 \le i < n$) ima težinu (pozicionu vrijednost) b^i .
- Uzastopne pozicije imaju težine jednake uzastopnim vrijednostima stepena osnove

Konverzija u dekadski BS

Dekadski ekvivalent cijelog broja

$$\begin{split} S_b &\to S_{10} \\ (c_{n-1}c_{n-2}...\ c_1c_0)_b = c_{n-1}\cdot b^{n-1} + c_{n-2}\cdot b^{n-2} + ... + c_1\cdot b^1 + c_0\cdot b^0 = \\ &= c_{n-1}\cdot b^{n-1} + c_{n-2}\cdot b^{n-2} + ... + c_1\cdot b + c_0 = S_{10} \end{split}$$

$$S_{10} = \sum_{i=0}^{n-1} c_i \cdot b^i$$

Primjeri:

$$(305)_8 = 3.8^2 + 0.8^1 + 5.8^0 = 3.64 + 0.8 + 5.1 = 192 + 5 = 197 = (197)_{10}$$

 $(A10)_{16} = A.16^2 + 1.16^1 + 0.16^0 = 10.256 + 1.16 + 0.1 = 2560 + 16 = 2576 = (2576)_{10}$

Konverzija u dekadski BS

Reprezentacija razlomljenih brojeva

- Razlomljeni broj ima:
 - cjelobrojni dio sa n cifara,
 - decimalnu tačku, i
 - decimalni dio sa m cifara

- Cifra c_i na poziciji i (- $m \le i < n$) ima težinu (pozicionu vrijednost) b^i .
- Uzastopne pozicije imaju težine jednake uzastopnim vrijednostima stepena osnove

$$b=2 2^{n-1} 2^{n-2} \cdots 2^2 2^1 2^0 2^{-1} 2^{-2} \cdots 2^{-m}$$

$$b=8 8^{n-1} 8^{n-2} \cdots 8^2 8^1 8^0 8^{-1} 8^{-2} \cdots 8^{-m}$$

Konverzija u dekadski BS

Dekadski ekvivalent razlomljenog broja

$$S_b \to S_{10}$$

$$(c_{n\text{-}1} \cdots c_1 c_0 \cdot c_{\text{-}1} \cdots c_{\text{-}m})_b = c_{n\text{-}1} \cdot b^{n\text{-}1} + \dots + c_1 \cdot b^1 + c_0 \cdot b^0 + c_{\text{-}1} \cdot b^{\text{-}1} + \dots + c_{\text{-}m} \cdot b^{\text{-}m}$$

$$S_{10} = \sum_{i=0}^{n-1} c_i \cdot b^i + \sum_{i=-m}^{-1} c_i \cdot b^i = \sum_{i=-m}^{n-1} c_i \cdot b^i$$

$$\text{cjelobrojni}_{\text{dio}} \text{decimalni}_{\text{dio}}$$

Primjeri:

$$(1011.101)_2 = 1.2^3 + 1.2^1 + 1.2^0 + 1.2^{-1} + 1.2^{-3} = 8 + 2 + 1 + 0.5 + 0.125 = 11 + 0.625 = 11.625$$

 $(305.2)_8 = 3.8^2 + 5.8^0 + 2.8^{-1} = 3.64 + 5.1 + 2.0.125 = 192 + 5 + 0.25 = 197.25$

Konverzija iz dekadskog BS u BS sa proizvoljnom osnovom

$$S_{10} \rightarrow X_b$$

- Pretpostavimo da imamo broj u dekadskom BS: $S_{10} = (s_{n-1}s_{n-2}...s_1s_0)_{10}$
- Njegov ekvivalent u BS sa osnovom b je: $X_b = (x_{m-1}x_{m-2}...x_1x_0)_b$

$$S_{10} = X_b = x_{m-1}b^{m-1} + x_{m-2}b^{m-2} + \dots + x_2b^2 + x_1b + x_0$$
 /: b

$$\frac{S_{10}}{b} = x_{m-1}b^{m-2} + x_{m-2}b^{m-3} + \dots + x_2b + x_1 + \frac{x_0}{b}$$

$$\frac{S_{10}}{b} = Int(\frac{S_{10}}{b}) + \frac{x_0}{b} \implies \frac{x_0}{b} = \frac{S_{10}}{b} - Int(\frac{S_{10}}{b}) / b$$

MOD = ostatak dijeljenja

$$x_0 = S_{10} - b \cdot Int(\frac{S_{10}}{b}) = Mod(\frac{S_{10}}{b})$$

Najlakša cifra u ciljnoj reprezentaciji

Dalje važi:

$$Int(\frac{S_{10}}{b}) = x_{m-1}b^{m-2} + x_{m-2}b^{m-3} + \dots + x_2b + x_1$$

• Slično određivanju x_0 , može se odrediti i x_1 :

$$S_{10}^{'} = Int(\frac{S_{10}}{b}) = x_{m-1}b^{m-2} + x_{m-2}b^{m-3} + \dots + x_{2}b + x_{1}$$

$$\frac{S_{10}^{'}}{b} = x_{m-1}b^{m-3} + x_{m-2}b^{m-4} + \dots + x_{2} + \frac{x_{1}}{b}$$

$$x_{1} = S_{10}^{'} - b \cdot Int(\frac{S_{10}^{'}}{b}) = Mod(\frac{S_{10}^{'}}{b})$$

Postupak se nastavlja sve dok se ne odrede sve cifre $x_2 \cdots x_{m-1}$

-

Konverzija iz dekadskog BS

• Primjer konverzije: $25_{10} = X_3$

1. korak: 25:3=8 ost: $1=x_0$

2. korak: 8:3=2 ost: $2=x_1$

3. korak: 2:3=0 ost: $2=x_2$

4. korak: 0:3 = 0 ost: $0 = x_3$

•••

Rješenje:

$$25_{10} = 0221_3 = 221_3$$

Provjera:

$$221_3 = 2 \cdot 3^2 + 2 \cdot 3^1 + 1 \cdot 3^0 =$$

$$= 2 \cdot 9 + 2 \cdot 3 + 1 \cdot 1 =$$

$$= 18 + 6 + 1 = 25$$

Algoritam za konverziju:

- 1. $i \leftarrow 0$
- 2. ponavljaj

2.1. $x_i \leftarrow MOD(S,b)$

2.2. $S \leftarrow INT(S/b)$

2.3. $i \leftarrow i+1$

sve dok je S>0

$$19_{10} = ?_2$$

19:2

9 1

4

2 0

1 0

0 1

19₁₀ = **10011**₂

Konverzija decimalnog broja u BS sa proizvoljnom osnovom

$$S_{10} \rightarrow X_b$$

- Pretpostavimo da imamo decimalni broj u dekadskom BS: $S_{10} = (0.s_{-1}s_{-2}...s_{-n})_{10}$
- Njegov ekvivalent u BS sa osnovom b je: $X_b = (0.x_{-1}x_{-2}...x_{-m})_b$

$$S_{10} = X_b = x_{-1}b^{-1} + x_{-2}b^{-2} + \dots + x_{-m}b^{-m} \qquad / b$$

$$b \cdot S_{10} = x_{-1} + x_{-2}b^{-1} + \dots + x_{-m}b^{-m+1}$$
 Cjelobrojni dio

$$b \cdot S_{10} = x_{-1} + 0. x_{-2} x_{-m}$$

Postupak množenja sa bazom nastavlja se sve dok je decimalni dio različit od nule

• Primjer konverzije: $0.375_{10} = X_2$

1. korak:
$$0.375*2 = 0.750 = 0 + 0.750$$
 $x_{-1} = 0$

2. korak:
$$0.750*2 = 1.500 = 1 + 0.500$$
 $x_{-2} = 1$

3. korak:
$$0.500*2 = 1.000 = 1 + 0.000$$
 $x_{-3} = 1$

4. korak:
$$0.000*2 = 0.000 = 0 + 0.000$$
 $x_{-3} = 0$

•••

Rješenje:

$$0.375_{10} = 0.0110_2 = 0.011_2$$

Provjera:

$$0.011_2 = 1 \cdot 2^{-2} + 1 \cdot 2^{-3} = 2^{-2} + 2^{-3} =$$

$$= 1/4 + 1/8 = 0.25 + 0.125 =$$

$$= 0.375$$

Algoritam za konverziju:

1.
$$i \leftarrow -1$$

2. ponavljaj

2.1.
$$x_i \leftarrow INT(S*b)$$

2.2.
$$S \leftarrow S*b - x_i$$

2.3.
$$i \leftarrow i-1$$

sve dok je S>0

$$0.25_{10} = 0.01_2$$

Primjer konverzije:

$$19.25_{10} = 10011.01_2$$

Brojanje u različitim BS

$$\left| 10_r = 1 \cdot r^1 + 0 \cdot r^0 = r_{10} \right|$$

r-1

10

11

Dekadski	Binarni	Oktalni	heksadekadski
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	11

- Konverzija između BS sa različitim osnovama (≠10)
 - Indirektna

Primjer konverzije:

$$1101_2 = ?_8$$

$$1101_2 = ?_{10}$$
 $1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 8 + 4 + 1 = 13_{10}$

 $1101_2 = 15_8$

- Konverzija između BS sa različitim osnovama (≠10)
 - Direktna

Svaka cifra u BS sa osnovom q može da se reprezentuje sa n cifara u BS sa osnovom p.

Primjer: **kvaternarni** (q=4) \leftrightarrow **binarni** (p=2)

dec	kvat.	bin.
0	0	00
1	1	01
2	2	10
3	3	11

dec	kvat.	bin.
4	10	01 00
5	11	01 01
6	1 2	01 10
7	13	01 11

dec	kvat.	bin.
8	20	10 00
9	21	10 01
10	2 2	10 10
11	2 3	10 11

Primjer: **oktalni** (q=8) \leftrightarrow **binarni** (p=2)

oct.	bin.
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Svaka oktalna cifra može da se reprezentuje jednom **binarnom trijadom** i obrnuto.

$$10101_2 = ?_8$$

$$10101_2 = 25_8$$

$$257_8 = ?_2$$

$$257_8 = 10101111_2$$

Primjer: heksadekadski (q=16) \leftrightarrow binarni (p=2)

Svaka heksadekadska cifra može da se reprezentuje jednom **binarnom tetradom** i obrnuto.

11011010101.01101₂ = 6 D 5 . 6 8 ₁₆

hex.	bin.
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Primjer: heksadekadski (q=16) \leftrightarrow oktalni (p=8)

