- a) Design a diode waveform shaping circuit that would have the below transfer characteristics.
 - You can use PN junction diodes and Zener diodes with $V_{D0}=0.7~V,~V_Z=4~V,~$ DC voltage sources, and resistors in your design.
 - · You must use a Zener diode in your design.
 - In your circuit schematic, show v_i with the symbol of a voltage source. Clearly label the terminals that are used to measure the output.
- b) Write the possible cases of the operation of the diode(s) in your designed circuit, and for each case, include the calculation of finding v_o and the range of v_i .

Show your work.

c) Sketch the output, $v_o(t)$, for $0 \le t \le 2ms$, if the input is a 5V DC signal, $v_i(t) = 5 V$.

Solution:

(a) Here,

$$v_o = \begin{cases} v_i; & v_i < 9\\ \frac{v_i}{3} + 9 \times \frac{2}{3}; & v_i \ge 9 \end{cases}$$

(b) D2 can never be ON as i_{D2} must be less than or equal to 0 depending on the state of D1. Therefore, there are two possible cases of operation.

D1 ON, D2 Zener

$$v_o = 4.3 + V_{Do} + V_Z + \left(v_i - (4.3 + V_{Do} + V_Z)\right) \frac{R2}{R1 + R2}$$

$$\Rightarrow v_o = v_i \frac{R2}{R1 + R2} + 9 \frac{R1}{R1 + R2} = \frac{v_i}{3} + 9 \times \frac{2}{3}$$

From the equation, R1 = 2R2. Taking R1=2k Ω and R2=1k Ω

ECE 65 Fall 2021 Midterm 1 Solution

To operate in this condition, we need to make sure that $i_{D1} \geq 0$. Then,

$$i_{D1} \ge 0$$

$$\Rightarrow \frac{v_i - 9}{1k + 2k} \ge 0 \Rightarrow v_i \ge 9$$

D1 OFF, D2 OFF

$$i_{D1}=i_{D2}=0$$

Then,

$$v_o = v_i$$

To operate in this condition, we need to make sure that $v_{D1} < V_{Do}$ and $-V_Z < v_{D2} < V_{Do}$. Thus,

$$v_o = v_i = v_{D1} - v_{D2} + 4.3$$

 $\Rightarrow v_i < V_{Do} + V_Z + 4.3$
 $\Rightarrow v_i < 9$

(c)

