Exercises for Module 6: Topology and Linear Algebra

1. Let (X, \mathcal{T}) be a topological space and $A \subseteq X$ be dense. Show that if $A \subseteq B \subseteq X$, then B is dense as well.

Since A is dense in X, $\overline{A} = X$. We need to show $\overline{B} = X$. Since we must have $\overline{B} \subseteq X$, it is enough to show that $\overline{A} = X \subseteq \overline{B}$.

We show $\overline{A} \subseteq \overline{B}$.

Let $A \subseteq B$. Then for any F closed s.t. $B \subseteq F$, we have $A \subseteq B \subseteq F$. Therefore \overline{B} is a closed set that contains A $\therefore \overline{A} \subseteq \overline{B}$.

2. Let (X, \mathcal{T}) be a Hausdorff topological space. Show that the singleton $\{x\}$ is closed for all $x \in X$. Hint: Show that the complement is open.

Proof. For each yex, $\exists Uy, Vy \in T$ such that $y \in Uy$, $x \in Vy \in Uy \cap Vy = \emptyset$ (since X is Hausdorff).

Then $\bigcup_{y\neq x} U_y = X \setminus \{x\}$, so $\{x\}^c$ is open, and thus $\{x\}$ is closed.

3. Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) and (Z, \mathcal{T}_Z) be topological spaces and let $f: X \to Y$, $g: Y \to Z$ be continuous. Show that $g \circ f: X \to Z$ is continuous as well.

Proof Let $U \in T_Z$. We need to show $(f \circ g)^{-1}(u) \in T_X$. By definition, $(f \circ g)^{-1}(u) = g^{-1}(f^{-1}(u))$. Since f is continuous, $f^{-1}(u) \in T_Y$. Since g is continuous, $g^{-1}(f^{-1}(u)) \notin T_X$.

4. Let (X,d) be a metric space and $K \subset X$ compact. Show that for all $\epsilon > 0$ there exists $\{x_1, x_2, \dots, x_n\} \subseteq K$ such that for all $y \in K$ we have $d(y, x_i) < \epsilon$ for some $i = 1, \dots, n$.

Let ε 0. The set $\{B_{\varepsilon}(x)\}_{x\in K}$ is an open cover for K. Since K is compact, there exists a finite subcover $B_{\varepsilon}(x_i)$, ..., $B_{\varepsilon}(x_n)$ such that $K \subseteq \bigcup_{i=1}^n B_{\varepsilon}(x_i)$. Thus for any yek $\exists i \in \varepsilon_1, ..., r \exists such that y \in B_{\varepsilon}(x_i)$, which is the required result. 5. Suppose that $\alpha \in \mathbb{F}, \mathbf{v} \in V$, and $\alpha \mathbf{v} = \mathbf{0}$. Prove that a = 0 or v = 0.

Suppose X + O.

Since delf, & has a multiplicative inverse, call it 2".

Then $\alpha \vec{J} = \vec{0} \Rightarrow \vec{A} \vec{J} = \vec{0} \Rightarrow \vec{J} = \vec{0}$

Otherwise, if d=0, then dJ=0V=0 by lemma from class.

6. Prove the following: Let V be a vector space and let $U_1, U_2 \subseteq V$ be subspaces. Then $U_1 \cap U_2$ is also a subspace of V.

We show that the 3 properties hold.

First, since U., Uz are subspaces, DEU, & DEU, Therefore DEU, NUz.

Second, if $\vec{u}_1, \vec{u}_2 \in U_1 \cap U_2$, then $\vec{u}_1, \vec{u}_2 \in U_1$ \$\,\tau_1, \dots_1 \dots_2 \in U_1, \dots_2 \in U_2 \in \text{are subspaces.} \tau_1 \dots_1 \dots_2 \in U_1 \cap U_2.

Finally, let LEF, TIEU, NU2. Then TIEU, and LIEU, and Similarly TIEU2 & LIEU2, : LIEU, NU2

- 7. Let U_1 and U_2 be subspaces of a vector space V. Prove that $U_1 \cup U_2$ is a subspace of V if and only if $U_1 \subseteq U_2$ or $U_2 \subseteq U_1$.
- We prove the contrapositive. Suppose U,\$U_a
 and U_a\$U₁.

Choose u, Ell, s.t. u, & U2 & uzella s.t. uzell.

Claim: u,+u, & Ua and u,+ua & U,

- 1) Suppose u, +u, +U, Then u, +u, -u, eU, which implies u, eU, => =
 - 2 Similar argument.

Since uituz & Ui & uituz & Uz, uituz & Uz,

Thus U,UUa is not a subspace.

Suppose U, EUa. Then U, UUa = Ua which is a subspace. Similarly, if Ua = U, then U, UUa = U, which is a subspace.