Lecture 25: Scalar Visualization

Dec 10, 2024
Won-Ki Jeong
(wkjeong@korea.ac.kr)

Outline

- Color mapping
- Contouring
- Height / displacement plots

Color Mapping

Associate a color with a scalar value

Color Tables

- Precompute c and save results into a table $\{c_i\}_{i=1..N}$
- Index table by normalized scalar values

Color Map Design

- Good color map
 - Color map is invertible
 - Different values are separated by different colors

Data values mapped to RGB colors via a colormap

Invert mapping:

- 1. look at some point (x,y) in the image : color c
- 2. locate c in colormap at some position p
- 3. use the colormap legend to derive data value s from p

red=100 answer: s = 90

Nominal Colors

- Red, green, yellow, blue, black, white
- Pink, cyan, grey, orange, brown, purple

Used for visualizing categorical data, e.g., race/ethnicity/genders...

Nominal Colors Example

Sequential Colors

• Vary luminance, saturation, hue

L only

L and S

L, S, and H

Hue is used to increase contrast

Sequential Colors Example

Half of the respondents said they were **very likely** to recommend the program to a friend.

How likely are you to recommend this program to a friend? (n=100)

Very likely 50%	Somewhat likely 35%	Not at all likely 15%
--------------------	---------------------------	-----------------------------

Diverging Colors

Used for visualizing opposite data, e.g., agree/disagree

A majority of participants **would recommend this program to a friend** (85% strongly agreed or agreed). Three-quarters (75%) strongly agreed or agreed that they **learned a lot in this program**, but only half (55%) felt the program **exceeded their expectations**.

Please indicate how much you agree or disagree with the following statements. (n=100)

Diverging color is useful if there is a meaningful middle value

NOT IDEAL BETTER

Diverging color is useful to emphasize the extremes

Map: Lisa Charlotte Rost, Datawrapper • Source: Our World in Data • Get the data • Created with Datawrapper

The internet was mostly used by the Western World in 2015

Map: Lisa Charlotte Rost, Datawrapper • Source: Our World in Data • Get the data • Created with Datawrapper

In most African and Asian countries, less than half of the population was using the internet in 2015.

Diverging color is useful to express more differences in the data

Color Brewer

http://colorbrewer2.org/

Rainbow Color Map

- Most popular color map
- Intuitive heat map meaning
 - Cold colors = low values
 - Warm colors = high values

Rainbow Color Map

~50% IEEE VIS papers use rainbow color map (in 2001~2005)

Visualization Viewpoints

Editor: Theresa-Marie Rhyne

Rainbow Color Map (Still) Considered Harmful

David Borland and Russell M. Taylor II University of North Carolina at Chapel Hill Research has shown that the rainbow color map is rarely the optimal choice when displaying data with a pseudocolor map. The rainbow color map confuses viewers through its lack of perceptual ordering, obscures data through its uncontrolled luminance variation, and actively misleads interpretation through the introduction of non-data-dependent gradients.

Despite much published research on its deficiencies, the rainbow color map is prevalent in the visualization community. We present survey results showing that the rainbow color map continues to appear in more than half of the relevant papers in IEEE Visualization Conference proceedings; for example, it appeared on 61 pages in 2005. Its use is encouraged by its selection as the default color map used in most visualization

mercials, weather forecasts, and even the IEEE Visualization Conference 2006 call for papers, just to name a few. The problem with this wide use of the rainbow color map is that research shows that it is rarely, if ever, the optimal color map for a given visualization. ¹⁻⁶ Here we will discuss the rainbow color map's characteristics of confusing the viewer, obscuring data, and actively misleading interpretation.

Confusing

For all tasks that involve comparing relative values, the color map used should exhibit perceptual ordering. A simple example of a perceptually ordered color map is the gray-scale color map. Increasing luminance from black to white is a strong perceptual cue that indicates

Borland et al. (2007), Rainbow color map (still) considered harmful, IEEE Computer Graphics and Applications 27(2):14-17.

Not perceptually ordered

 Human perceives high-spatial frequencies through changes in luminance

 Human perceives high-spatial frequencies through changes in luminance

- Introducing artifacts
 - Banding with constant hue

Misleading

Sharp discontinuity in the middle. Actually, they are changing smoothly (green->bright green->yellow)

SANFORD AND SELNICK

Transpiration

Evaporation

Copyright: Jan Keonderink - Color for the Sciences - MIT Press - used with permission

Grayscale Color Map

- Brightness = value, natural in some domains
 - X-ray, angiography

2D slice in 3D CT dataset Scalar value: tissue density

Gray-value colormap

- white = hard tissues (bone)
- gray = soft tissues (flesh)
- black = air

Rainbow colormap

- red = hard tissues (bone) KOREA
- blue = air
- other colors = soft tissues

Two-hue Color Map

- Interpolate between two colors
- Generalization of grayscale color map
- Hue + Luminance increases contrast

Heat Map

- More luminance than rainbow
- More hues than two-hue color map

Diverging Color Map

- Three colors : left, middle, right
 - Easy to detect deviation from center

Zebra Color Map

2D function
$$f(x,y) = e^{-10(x^4+y^4)}$$

Gray-scale colormap

- highlights plateaus
- value transitions hard to see

Zebra colormap

- highlights value variations (1st derivative)
- · dense, thin bands: fast variation
- thick bands: slow variation

Color Map Comparison

Heat colormap

- maxima highlighted well
- lower values better separable than with gray-value colormap

Rainbow colormap

- maxima not prominent
- lower values better separable

Grayscale colormap

- maxima are highlighted well
- lower values are unclear

Color Map Comparison

2D slice in 3D pressure field in an engine

A. Grayscale colormap

- maxima highlighted well
- low-contrast

B. Purple-to-green colormap

- maxima highlighted well
- good high-low separation

C. Red-to-green colormap

- luminance not used
- color-blind problems..

D. 'Random'

- equal-value zones visible
- little use for the rest

More about Color Map Design

- Fully use the perceptual spectrum
 - Color map entries should differ in more HSV components

scalar value ~ V; H,S not used scalar value ~ H; S,V not used scalar value ~ H,V; S not used

More about Color Map Design

- Color map should be easily invertible
- Avoid color map entries with
 - Similar HSV entries
 - Perceived as similar
 - color blindness issue
 - Hard to perceive
 - Dark or strongly desaturated colors

Color Blind

Colormap Implementation

- Where to apply colormap?
 - Vertex? Pixel?

Colormap Implementation

- Where to apply colormap?
 - Per-vertex (pre-classification)

Colormap Implementation

- Where to apply colormap?
 - Per-pixel (post-classification)

Color Banding

How many distinct colors N used in color

table

Color Banding Example

Contouring

- How to see where some given values appear in a dataset?
 - a transition separating two consecutive bands

Contouring

- Isolines
 - Lines of equal values

Contour Properties

Definition

$$I(f_0) = \left\{ x \mid D \middle| f(x) = f_0 \right\}$$

- Properties
 - Contours are closed curves (except when exit D)
 - Contours never self-intersect, so nested
 - Contours cut D into two regions with smaller / larger than isovalue

UNIVERSITY

Contour Properties

Contours are orthogonal to gradient

gradient of a scalar field (drawn with arrows) is orthogonal to contours

Contouring Algorithm


```
for(each cell c in D)
 S = \mathcal{A} //no contour-edge cuts
 for(each edge e=(p_i,p_i) of c)
  connect points in S with lines to build contour;
```


Marching Squares

- Fast Implementation of 2D contouring
- Encore inside/outside using 4 bits

- For each cell, use the code to determine case
 - Compute only intersected edge
 - Reuse already-computed contour vertex

Marching Cubes

- Extension to 3D
 - 15 unique cases (out of 256 cases)

Marching Cube

- extremely simple to use tool
- insightful results

isosurface for scalar value corresponding to skin

colon (CT dataset)

electron density in molecule

velocity in 3D fluid flow

velocity in 3D fluid flow

magnetic field in sunspots

fuel concentration, colored by temperature in jet engine

Height / Displacement Plots

$$S_{displ}(x) = x + \mathbf{n}(x)f(x), \quad x \hat{\mathsf{I}} S$$

f: displacement value, n: normal direction

Height plot

- S = xy plane
- displacement always along z

Displacement plot

- S =any surface in \mathbb{R}^3
- useful to visualize
 3D scalar fields

Enridged Contour Maps

Contour + shading

Questions?

