Mathematical Logic

Eduardo Freire

May 2021

1 Propositional Logic

Definition 1.1. Let $Vars_P := \{P_n : n \in \mathbb{N}\}$ be the set of the symbols P_1, P_2, \ldots , each called a propositional variable. We define the **language of propositional** logic as $\mathcal{L}_P := Vars_P \cup \{\rightarrow, \neg\}$.

Definition 1.2. Let ϕ be an \mathcal{L}_P string. We say that ϕ is a **propositional** formula (also called **p-formula**) if and only if

- 1. ϕ is a propositional variable, or
- 2. $\phi := (\alpha \to \beta)$ where α and β are propositional formulas, or
- 3. $\phi := (\neg \alpha)$ and α is a propositional formula.

Definition 1.3. An assignment function is any function with domain $Vars_P$ and codomain $\{T, F\}$. Given an assignment function s, we define the function \bar{s} whose domain is the set of all p-formulas and codomain is $\{T, F\}$ as follows:

$$\bar{s}(\phi) := \begin{cases} s(\phi) & \phi \in Vars_P, \\ F & \phi \coloneqq (\neg \alpha) \text{ and } \bar{s}(\alpha) = T, \\ F & \phi \coloneqq (\alpha \to \beta) \text{ and } \bar{s}(\alpha) = T \text{ and } \bar{s}(\beta) = F, \\ T & otherwise. \end{cases}$$

Also, if Σ is a set of p-formulas, we say that s satisfies Σ if and only if $\bar{s}(\sigma) = T$ for every $\sigma \in \Sigma$. Otherwise, we say that s does not satisfy Σ . If there is some assignment function s' that satisfies Σ , we say that Σ is satisfiable.

Definition 1.4. Let ϕ be a p-formula. If $\bar{s}(\phi) = T$ for every assignment function s, we say that ϕ is a **tautology**. On the other hand, if $\bar{s}(\phi) = F$ for every assignment function s, we call ϕ a **contradiction**. In particular, we define \top as the tautology $(P_1 \to (P_1 \to P_1))$ and \bot as the contradiction $\neg \top$, i.e $\neg (P_1 \to (P_1 \to P_1))$.

Definition 1.5. Let Λ be a set of p-formulas such that for every p-formula ϕ , $\phi \in \Lambda$ if and only if

1.
$$\phi := (A \to (B \to A))$$
, or

2.
$$\phi := ((A \to (B \to C)) \to ((A \to B) \to (A \to C)))$$
, or

3.
$$\phi := ((\neg B \to \neg A) \to (A \to B))$$

where A, B, C are p-formulas. We call Λ the set of **logical axioms**.

Lemma 1.1. Every $\lambda \in \Lambda$ is a tautology.

Proof. This is trivial to check case by case, using the definition of assignment functions for p-formulas. \Box

Lemma 1.2. Let α and β be p-formulas and s be an assignment function such that $\bar{s}(\alpha) = T$ and $\bar{s}(\alpha \to \beta) = T$. Then $\bar{s}(\beta) = T$.

Proof. Assume for contradiction that $\bar{s}(\beta) = F$. Since $\bar{s}(\alpha) = T$ by assumption, it follows from the definition of \bar{s} that $\bar{s}(\alpha \to \beta) = F$, which contradicts our assumption that $\bar{s}(\alpha \to \beta) = T$. Thus $\bar{s}(\beta) = T$.

Definition 1.6. Let Σ be a set of p-formulas and ϕ be a p-formula. We say that $\Sigma \models \phi$ if and only if every assignment function that satisfies Σ assigns ϕ to T.

Definition 1.7. Let Σ be a set of p-formulas and ϕ be a p-formula. We say that a finite sequence $D = (\phi_1, \phi_2, \dots, \phi_n)$ of p-formulas whose last entry is ϕ is a **deduction from** Σ **of** ϕ if and only if for each $1 \leq i \leq n$,

- 1. $\phi_i \in \Lambda \cup \Sigma$, or
- 2. There exists j, k < i such that $\phi_j := (\phi_k \to \phi_i)$.

In this case, we write $\Sigma \vdash \phi$, read as Σ proves ϕ . If Γ is a set of p-formulas such that $\Sigma \vdash \gamma$ for every $\gamma \in \Gamma$, we write $\Sigma \vdash \Gamma$.

The following lemma has an easy proof and will be used implicitly several times.

Lemma 1.3. Let Σ , Γ be sets of p-formulas and α , β , ϕ be p-formulas. It follows that:

- 1. If $\Sigma \vdash (\alpha \rightarrow \beta)$ and $\Sigma \vdash \alpha$, then $\Sigma \vdash \beta$,
- 2. If $\Gamma \vdash \phi$ and $\Gamma \subseteq \Sigma$, then $\Sigma \vdash \phi$,
- 3. If $\Gamma \vdash \phi$ and $\Sigma \vdash \Gamma$, then $\Sigma \vdash \phi$.

Theorem 1.1 (Soundness Theorem). Let Σ be a set of p-formulas, ϕ be a p-formula. Then $\Sigma \vdash \phi$ implies $\Sigma \models \phi$.

Proof. Assume that $\Sigma \vdash \phi$. We let s be an arbitrary assignment function that satisfies Σ and induct on the shortest length of deduction of ϕ . If there is a deduction of ϕ with length 1, then either $\phi \in \Lambda$ or $\phi \in \Sigma$. In the first case, ϕ is a tautology by Lemma 1.1, so $\bar{s}(\phi) = T$. The other case follows from our assumption that s satisfies Σ . Now assume inductively that if ψ is a p-formula

provable from Σ such that its shortest length of deduction is less than or equal to n then $\bar{s}(\psi) = T$.

Assume that the shortest length of deduction of ϕ is n+1. $\phi \notin \Sigma$ and $\phi \notin \Lambda$, since its shortest length of deduction would be 1 in that case. Thus, we have ϕ_j and ϕ_k in the deduction of ϕ such that $\phi_j := \phi_k \to \phi$. By the inductive hypothesis, $\bar{s}(\phi_j) = \bar{s}(\phi_k) = T$, so it follows from Lemma 1.2 that $\bar{s}(\phi) = T$. \square

Lemma 1.4. For every p-formula ϕ , \vdash $(\phi \rightarrow \phi)$.

Proof. Let ϕ be a p-formula. The following is a deduction of $(\phi \to \phi)$ from $\{\}$.

(1)
$$(\phi \rightarrow ((P_1 \rightarrow \phi) \rightarrow \phi))$$
 Ax 1

(2)
$$((\phi \rightarrow ((P_1 \rightarrow \phi) \rightarrow \phi)) \rightarrow ((\phi \rightarrow (P_1 \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi)))$$
 Ax 2

(3)
$$((\phi \to (P_1 \to \phi)) \to (\phi \to \phi))$$
 MP 1,2

(4)
$$(\phi \rightarrow (P_1 \rightarrow \phi))$$
 Ax 1

(5)
$$(\phi \rightarrow \phi)$$
 MP 3,4.

Theorem 1.2 (Deduction Theorem). Let Σ be a set of p-formulas and θ, ϕ be p-formulas. Then, $\Sigma \vdash (\theta \to \phi) \iff \Sigma \cup \{\theta\} \vdash \phi$.

Proof. For the forward direction, assume that $\Sigma \vdash (\theta \to \phi)$. We can use the same deduction from Σ of $(\theta \to \phi)$ to see that $\Sigma \cup \{\theta\} \vdash (\theta \to \phi)$. But clearly $\Sigma \cup \{\theta\} \vdash \theta$, so $\Sigma \cup \{\theta\} \vdash \phi$ by modus ponens.

For the converse direction, we will assume that $\Sigma \cup \{\theta\} \vdash \phi$ and induct on the shortest length of deduction of ϕ . For the base case, assume first that $\phi \in \Lambda \cup \Sigma$. Then, $\Sigma \vdash \phi$ and $\phi \to (\theta \to \phi)$ is a logical axiom so Σ also proves it. By modus ponens, $\Sigma \vdash (\theta \to \phi)$. The last subcase of the base case is $\phi :\equiv \theta$, but we already know that $\Sigma \vdash (\theta \to \theta)$, by Lemma 1.4.

Next, assume the inductive hypothesis and let the shortest length of deduction of ϕ be n+1. Then, we must have ψ and $(\psi \to \phi)$ in the deduction of ϕ from $\Sigma \cup \{\theta\}$. By the inductive hypothesis (IH), $\Sigma \vdash (\theta \to (\psi \to \phi))$ an $\Sigma \vdash (\theta \to \psi)$. Then,

(1)
$$\Sigma \vdash ((\theta \to (\psi \to \phi)) \to ((\theta \to \psi) \to (\theta \to \phi)))$$
 Ax 2

(2)
$$\Sigma \vdash ((\theta \to \psi) \to (\theta \to \phi))$$
 MP 1,IH

(3)
$$\Sigma \vdash (\theta \rightarrow \phi)$$
 MP 2,IH

Lemma 1.5. Let ψ, ϕ be p-formulas. Then $\psi, \neg \psi \vdash \phi$.

Proof.

(1)
$$\neg \psi \to (\neg \phi \to \neg \psi)$$
 Ax 1
(2) $\neg \psi$
(3) $(\neg \phi \to \neg \psi)$ MP 1,2
(4) $(\neg \phi \to \neg \psi) \to (\psi \to \phi)$ Ax 3
(5) $(\psi \to \phi)$ MP 3,4
(6) ψ
(7) ϕ MP 5,6.

Definition 1.8. A set of p-formulas Σ is inconsistent if and only if there is a p-formula ϕ such that $\Sigma \vdash \phi$ and $\Sigma \vdash \neg \phi$. Σ is consistent if and only if it is not inconsistent.

Lemma 1.6. Let Σ be a set of p-formulas. The following statements are equivalent:

- 1. Σ is consistent.
- 2. There is a p-formula ψ such that $\Sigma \not\vdash \psi$.
- 3. There is no p-formula ψ such that $\Sigma \vdash \neg(\psi \rightarrow \psi)$.
- 4. $\Sigma \nvdash \bot$.

Proof. For the equivalence between (1) and (2), we show instead that Σ is inconsistent if and only if Σ proves every p-formula. For the forward direction, assume that Σ is inconsistent. Then there is some formula ϕ such that $\Sigma \vdash \phi$ and $\Sigma \vdash \neg \phi$. From the deductions of each of these, we can use Lemma 1.5 to produce a deduction of any formula ψ .

For the converse direction, assume that Σ proves every p-formula. Then $\Sigma \vdash P_1$ and $\Sigma \vdash \neg P_1$, so it is inconsistent.

For the equivalence between (2) and (3), assume first that there is a p-formula ψ such that $\Sigma \vdash \neg(\psi \to \psi)$. By Lemma 1.4, $\Sigma \vdash (\psi \to \psi)$. Thus, it follows from Lemma 1.5 that Σ proves every formula, thus showing that (2) is not the case. The other direction is trivial.

$$(4) \implies (2)$$
 is trivial, and $(3) \implies (4)$ also follows easily.

Lemma 1.7. Let Σ be a set of p-formulas. If ϕ is a p-formula such that $\Sigma \not\vdash \phi$, then $\Sigma \cup \{\neg \phi\}$ is consistent.

Proof. We prove by contrapositive, so assume that $\Sigma \cup \neg \phi$ is inconsistent. By Lemma 1.6, $\Sigma \cup \neg \phi \vdash \bot$, and the Deduction Theorem guarantees that $\Sigma \vdash (\neg \phi \to \bot)$. Then,

```
\begin{array}{ll} (1) \ \Sigma \vdash (\neg \phi \to \bot) & \text{Deduction Theorem} \\ (2) \ \Sigma \vdash (\neg \phi \to \bot) \to (\top \to \phi) & \text{Ax 3} \\ (3) \ \Sigma \vdash \top \to \phi & \text{MP 1,2} \\ (4) \ \Sigma \vdash \top & \text{Ax 1} \\ (5) \ \Sigma \vdash \phi & \text{MP 4,5.} \end{array}
```

Lemma 1.8. The following statements are equivalent:

1. For every set of p-formulas Γ and every p-formula ϕ , if $\Gamma \models \phi$ then $\Gamma \vdash \phi$.

2. Every consistent set of p-formulas is satisfiable.

Proof. For the forward direction, assume the contrapositive of (1) and let Δ be a consistent set of p-formulas. By Lemma 1.6, $\Delta \not\vdash \bot$. By assumption, $\Delta \not\models \bot$. If there was no assignment s that satisfied Δ , then $\Delta \models \bot$ would be vacuously true, so Δ must be satisfiable.

For the converse direction, assume (2) and let Γ and ϕ be such that $\Gamma \not\vdash \phi$. By Lemma 1.7, $\Gamma \cup \{\neg \phi\}$ is consistent, so it is satisfied by some assignment s. Thus, $s(\neg \phi) = T$, so $s(\phi) = F$. Since s satisfies Γ but $s(\phi) = F$, it follows that $\Gamma \not\models \phi$, as wanted.

Definition 1.9. Let Σ be a set of p-formulas. We say that Σ is complete if and only if Σ is consistent and for every p-formula ϕ , exactly one of ϕ , $\neg \phi$ is in Σ .

Lemma 1.9. Let Σ be a complete set of p-formulas. Then, $\Sigma \vdash \phi \iff \phi \in \Sigma$ for all p-formulas ϕ .

Proof. For the forward direction assume that $\Sigma \vdash \phi$. If $\neg \phi \in \Sigma$ then clearly $\Sigma \vdash \neg \phi$, so Σ is inconsistent, contradicting the assumption that Σ is complete. Thus $\neg \phi \notin \Sigma$, therefore $\phi \in \Sigma$. The converse direction is trivial.

Definition 1.10. Let Σ be a set of p-formulas. We say that Σ is maximally consistent if and only if

- 1. Σ is consistent, and
- 2. For every consistent Σ' , if $\Sigma \subseteq \Sigma'$ then $\Sigma' = \Sigma$.

Lemma 1.10. Definitions 1.9 and 1.10 are equivalent.

Proof. Let Σ be a set of p-formulas. For the forward direction, assume that Σ is complete and that Σ' is consistent with $\Sigma \subseteq \Sigma'$. Assume for contradiction that there is some $\psi \in \Sigma'$ such that $\psi \notin \Sigma$. Since Σ is complete we can apply Lemma 1.9 to see that, $\neg \psi \in \Sigma$, so it follows by assumption that $\neg \psi \in \Sigma'$ thus Σ' is inconsistent. This contradiction means that $\Sigma' \subseteq \Sigma$, so $\Sigma' = \Sigma$.

For the converse direction, assume that Σ is maximally consistent and let ϕ be a formula such that $\Sigma \not\vdash \phi$. By Lemma 1.7, $\Sigma \cup \{\neg \phi\}$ is consistent. Since $\Sigma \cup \{\neg \phi\} \subseteq \Sigma$, it follows that $\Sigma \cup \{\neg \phi\} = \Sigma$, so $\neg \phi \in \Sigma$, therefore $\Sigma \vdash \neg \phi$, as wanted. Also, since Σ is consistent, it can only prove at most one of ϕ and $\neg \phi$ for any given ϕ .

Lemma 1.11. Let Σ be a complete set of p-formulas. If s is an assignment function such that for every propositional variable p,

$$s(p) := \begin{cases} T & p \in \Sigma \\ F & \neg p \in \Sigma, \end{cases}$$

then s is the unique assignment that satisfies Σ .

Proof. Let s be as described in the Lemma. Notice that s is well-defined, since Lemma 1.9 guarantees that for every propositional variable p either $p \in \Sigma$ or $\neg p \in \Sigma$, but not both. To see that s satisfies Σ , we show that $s(\sigma) = T \iff \sigma \in \Sigma$ by induction on the complexity of σ .

The base case is that σ is a propositional variable, but then $s(\sigma) = T \iff \sigma \in \Sigma$ follows trivially. Assume the expected induction hypothesis. If $\sigma \coloneqq \neg \alpha$, then $s(\sigma) = T \iff s(\alpha) = F \iff \neg \alpha \in \Sigma \iff \sigma \in \Sigma$. The other case is $\sigma \coloneqq (\alpha \to \beta)$. For the forward direction, assume that $s(\alpha \to \beta) = T$, and notice that $s(\alpha \to \beta) = T \iff s(\alpha) = F$ or $s(\beta) = T$. If $s(\alpha) = F$, then $\neg \alpha \in \Sigma$, by the inductive hypothesis. By Lemma 1.5, Σ , $\alpha \vdash \beta$, so the Deduction Theorem gives that $\Sigma \vdash (\alpha \to \beta)$, thus $\sigma \in \Sigma$. Next, assume that $s(\beta) = T$. Then, $\Sigma \vdash \beta$, so $\Sigma \vdash (\beta \to (\alpha \to \beta))$, thus $\Sigma \vdash (\alpha \to \beta)$.

For the converse direction, assume that $(\alpha \to \beta \in \Sigma)$. If $\neg \alpha \in \Sigma$ then $s(\alpha) = F$, so $s(\alpha \to \beta) = T$. The last case is $\alpha \in \Sigma$. Applying modus ponens, $\Sigma \vdash \beta$, so $\beta \in \Sigma$ and $s(\beta) = T$ by the inductive hypothesis, so $s(\alpha \to \beta) = T$. It follows by induction that s satisfies Σ .

Now assume that s' is another assignment that satisfies Σ and let p be an arbitrary propositional variable. If $p \in \Sigma$ then s'(p) = T, but also s(p) = T. If $p \notin \Sigma$ then $\neg p \in \Sigma$ so $s'(\neg p) = T$ and s'(p) = F, and we also have s(p) = F. Since s and s' agree on every propositional variable, they must be the same function, so that s is unique. \square

Theorem 1.3 (Completeness Theorem). Let Σ be a set of p-formulas and ϕ be a p-formula. Then, $\Sigma \models \phi \implies \Sigma \vdash \phi$.

Proof. If we can show that any consistent set of p-formulas is satisfiable the result follows by Lemma 1.8, so let Δ be one such set. Since \mathcal{L}_P only has countably many symbols and every \mathcal{L}_P string is finite, there are only countably many p-formulas. Thus, we can fix a list of the p-formulas as follows:

$$\phi_0, \phi_1, \phi_2, \dots$$

This can be done so that every p-formula occurs in the list exactly once.

Let $\Sigma_0 := \Delta$ and define Σ_{n+1} recursively as

$$\Sigma_{n+1} := \begin{cases} \Sigma_n \cup \{\phi_n\} & \Sigma_n \vdash \phi_n \\ \Sigma_n \cup \{\neg \phi_n\} & \Sigma_n \not\vdash \phi_n \end{cases}$$

We argue by induction that each Σ_n is consistent. The base case follows from the assumption that Δ is consistent, so assume that Σ_n is consistent. If $\Sigma_n \not\vdash \phi_n$, $\Sigma_{n+1} = \Sigma_n \cup \{\neg \phi_n\}$ is consistent by Lemma 1.7. The other case is $\Sigma \vdash \phi_n$, but then $\Sigma_{n+1} = \Sigma_n \cup \{\phi_n\}$ is clearly consistent.

Define $\Sigma := \bigcup_{n \in \mathbb{N}} \Sigma_n$. Clearly $\Sigma_0 = \Delta \subseteq \Sigma$. Assume for contradiction that Σ is inconsistent and fix some deduction D of \bot from Σ . Since D is finite, there are only finitely many assumptions used (i.e elements of Σ) used in D, so that there is some $N \in \mathbb{N}$ such that Σ_N includes all of those assumptions. Thus, $\Sigma_N \vdash \bot$. But we have already shown that Σ_N must be consistent, so we have our contradiction.

Also, given any p-formula ψ , there is some natural n such that $\phi_n := \psi$, so one of ψ or $\neg \psi$ are in Σ . Since Σ is consistent, it cannot be the case that both $\psi, \neg \psi \in \Sigma$, so Σ is complete. By Lemma 1.11, there is an assignment s that satisfies Σ . Since $\Delta \subseteq \Sigma$, s also satisfies Δ , thus Δ is satisfiable and we are done.

Definition 1.11. A set Γ of p-formulas is finitely satisfiable if and only if all of its finite subsets are satisfiable.

Theorem 1.4 (Compactness Theorem). A set Γ of p-formulas is satisfiable if and only if it is finitely satisfiable.

Proof. The forward direction is trivial, so we focus on the converse. Assume that Γ is not satisfiable. It follows vacuously that $\Gamma \models \bot$, so $\Gamma \vdash \bot$ by the Completeness Theorem. Since every proof is finite, there must be some $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \vdash \bot$. By the Soundness Theorem, $\Gamma_0 \models \bot$, therefore it is not satisfiable.

2 First-order Logic

Throughout this section \mathcal{L} will denote an arbitrary first-order language.

Definition 2.1. An \mathcal{L} -string t is called an \mathcal{L} -term if and only if

- 1. $t \in Vars$, or
- 2. t is a constant symbol of \mathcal{L} , or
- 3. $t := ft_1, \dots t_n$ where $t_1, \dots t_n$ are \mathcal{L} -terms and f is an n-ary function symbol from \mathcal{L} .

Definition 2.2. An \mathcal{L} -string ϕ is called an \mathcal{L} -formula if and only if

1. $\phi := t_1t_2$, where t_1, t_2 are \mathcal{L} -terms, or

- 2. $\phi := Rt_1, \ldots, t_n$ where $t_1, \ldots t_n$ are \mathcal{L} -terms and R is an n-ary relation symbol from \mathcal{L} , or
- 3. $\phi := (\alpha \to \beta)$, where α, β are \mathcal{L} -formulas, or
- 4. $\phi := (\neg \alpha)$, where α is a \mathcal{L} -formula, or
- 5. $\phi := (\forall x)(\alpha)$, where x is a variable and α is an \mathcal{L} -formula.

Definition 2.3. We say that \mathfrak{A} is an \mathcal{L} -structure if and only if \mathfrak{A} is a (possibly infinite) tuple $(A, c_1^{\mathfrak{A}}, c_2^{\mathfrak{A}}, \dots, f_1^{\mathfrak{A}}, f_2^{\mathfrak{A}}, \dots, R_1^{\mathfrak{A}}, R_2^{\mathfrak{A}}, \dots)$ where A is a nonempty set, c_1, c_2, \dots are all of the constant symbols of \mathcal{L} , $f_1, f_2 \dots$ are the functions symbols of \mathcal{L} and similarly for R_1, R_2, \dots We also require that:

- 1. For each constant symbol $c \in \mathcal{L}$, $c^{\mathfrak{A}} \in A$:
- 2. For each n-ary function symbol $f \in \mathcal{L}$, $f^{\mathfrak{A}} : A^n \to A$, i.e $f^{\mathfrak{A}}$ is a function from A^n to A.
- 3. For each n-ary relation symbol $R \in \mathcal{L}$, $R^{\mathfrak{A}} \subseteq A^n$.

Definition 2.4. Let \mathfrak{A} be an \mathcal{L} structure. An assignment function is a function with domain V ars and codomain A. Also, for every assignment function $s: Vars \to A$ every $a \in A$ and every $x \in Vars$, we define the function $s[x|a]: Vars \to A$ as

$$s[x|a](v) = \begin{cases} a, & \text{if } v = x \\ s(v) & \text{if } v \neq x. \end{cases}$$

Definition 2.5. Let $\mathfrak A$ and $\mathfrak B$ be $\mathcal L$ -structures. We say that $\mathfrak A$ is isomorphic to $\mathfrak B$ if and only if there is a bijection $f:A\to B$ such that

- 1. $f(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$ for every constant symbol $c \in \mathcal{L}$,
- 2. $f(g^{\mathfrak{A}}(a_1,\ldots,a_n))=g^{\mathfrak{B}}(f(a_1),\ldots,f(a_n))$ for every n-ary function symbol $g\in L$ and every $(a_1,\ldots,a_n)\in A^n$,
- 3. $(a_1, \ldots, a_n) \in R^{\mathfrak{A}} \iff (f(a_1), \ldots, f(a_n)) \in R^{\mathfrak{B}}$ for every n-ary relation symbol $R \in \mathcal{L}$ and every $(a_1, \ldots, a_n) \in A^n$.

Definition 2.6. Let \mathfrak{A} and \mathfrak{B} be \mathcal{L} -structures. We say that \mathfrak{A} is elementarily equivalent to \mathfrak{B} if and only if given any \mathcal{L} -formula ϕ , $\mathfrak{A} \models \phi \iff \mathfrak{B} \models \phi$.

Lemma 2.1. Let $\mathfrak A$ and $\mathfrak B$ be isomorphic $\mathcal L$ -structures. Given an isomorphism $f:A\to B$ and an assignment $s:Vars\to B$, we have

$$\mathfrak{B} \models \phi[s] \iff \mathfrak{A} \models \phi[f^{-1} \circ s].$$

Proof. Fix an isomorphism $f: A \to B$. Throughout the lemma we will write v instead of $f^{-1} \circ s$. We will show by induction on the complexity of ϕ that for all assignments $s: Vars \to B$, $\mathfrak{B} \models \phi[s] \iff \mathfrak{A} \models \phi[v]$.

For the base case, assume $\phi := Rt_1 \dots t_n$ where R is an n-ary relation symbol and t_1, \dots, t_n are \mathcal{L} -terms. Then

$$\mathfrak{B} \models Rt_1 \dots t_n[s] \qquad \iff \\ (\bar{s}(t_1), \dots, \bar{s}(t_n)) \in R^{\mathfrak{B}} \qquad \iff \\ (f(f^{-1}(\bar{s}(t_1))), \dots, f(f^{-1}(\bar{s}(t_n)))) \in R^{\mathfrak{B}} \qquad \iff \\ (\bar{v}, \dots, \bar{v}(t_n)) \in R^{\mathfrak{A}} \qquad \iff \\ \mathfrak{A} \models \phi[v].$$

The cases $\phi := \alpha \vee \beta$ and $\phi := (\neg \alpha)$ are straightforward. For the case $\phi := \forall x \psi$, assume the inductive hypothesis and notice that

$$\mathfrak{B} \models \forall x \psi[s] \qquad \iff \\ \mathfrak{B} \models \psi[s[x|b]] \text{ for every } b \in B. \qquad \iff \\ \mathfrak{A} \models \psi[f^{-1} \circ s[x|b]] \text{ for every } b \in B. \qquad \iff \\ \mathfrak{A} \models \psi[(f^{-1} \circ s)[x|a]] \text{ for every } a \in A. \qquad \iff \\ \mathfrak{A} \models \forall x \psi[v].$$

The result follows by induction.

Theorem 2.1. If $\mathfrak A$ and $\mathfrak B$ are isomorphic $\mathcal L$ -structures, then they are elementarily equivalent.

Proof. Let \mathfrak{A} and \mathfrak{B} be isomorphic \mathcal{L} -structures and assume that $\mathfrak{A} \models \phi$. Let $s: Vars \to B$ be an arbitrary assignment function into \mathfrak{B} . By Lemma 2.1, we have $\mathfrak{B} \models \phi[s] \iff \mathfrak{A} \models \phi[f^{-1} \circ s]$, where $f: A \to B$ is an isomorphism. Since $A \models \phi[s']$ for any assignment s', the result follows. The converse follows similarly.

3 Computability Theory

Definition 3.1. We define $\mathcal{O}: \varnothing \to \mathbf{N}$ as the function with no arguments that returns 0. $\mathcal{S}: \mathbf{N} \to \mathbf{N}$ is such that $\mathcal{S}(x) = x + 1$ for every $x \in \mathbf{N}$. For each $n \in \mathbf{N}$ we define the projection function $\mathcal{I}_i^n: \mathbf{N}^n \to \mathbf{N}$ for each $1 \le i \le n$ as $\mathcal{I}_i^n(x_1, x_2, \dots, x_i, \dots, x_n) = x_i$ for all $x_1, \dots, x_n \in \mathbf{N}$.

The functions above are collectively called the initial functions.

Definition 3.2. We define the set of computable functions as follows:

- 1. The initial functions are computable.
- 2. If h is a computable function of arity m (possibly 0) and g_1, \ldots, g_m are functions of arity n, then $f(x_1, \ldots, x_n) = h(g_1(x), \ldots, g_m(x))$.

3. If g is a computable function of arity n and h is a computable function of arity n + 2, then the function f given by

$$f(x,0) = g(x)$$

$$f(x,y+1) = h(x,y,f(x,y))$$

 $is\ a\ computable\ function.$

4. If g is a computable function of arity n+1, then $f(x,y)=(\mu i \leqslant y)(g(x,i))$ is computable.

4 Exercises

Exercise 7.3.8.

- (a) The statement clearly holds for the initial functions, so assume inductively that $f(x) = h(g_1(x), \ldots, g_m(x))$ where g and h meet the inductive hypothesis. Then $f(x) \leq g_i(x) + K_h \leq x_j + K_g + K_h$. The result follows by setting $K := K_g + K_h$.
- (b) The result follows easily if f is of rank 0, so assume that it is not. Then f()

Exercise 7.3.9.

(a) To show that A(y,x) is a natural number we induct on y. The base case is straightforward, so assume that A(y,x) is defined for all x. To show that A(y+1,x) is defined for all x, we now induct on x. For the base case, A(y+1,0)=2 by definition, so assume that A(y+1,x) is defined. Then A(y+1,x+1)=A(y,A(y+1,x)) by definition. But A(y+1,x) is defined by the second inductive hypothesis therefore A(y,A(y+1,x)) is defined by the first inductive hypothesis.

It is easy to see that A(1,x)=2x+2 and $A(2,x)=2^{x+2}-2>2^x$ by induction.

5 Turing Machines

Definition 5.1. We will denote the set $\{0,1\}$ by S, $\{-1,1\}$ by D, and any non-empty string will be called a state.

Definition 5.2. A Turing Machine is a tuple (Q,T) where Q is a set of states containing the string A but not containing H, and $T: Q \times S \to Q \cup \{H\} \times S \times D$ is a transition function.

Definition 5.3. Given a Turing Machine TM = (Q, T) we define a function $\sigma_{TM} : S^{\mathbf{Z}} \times \mathbf{N} \to S^{\mathbf{Z}} \times Q \cup H \times \mathbf{Z}$ called TM's step function inductively. Fix some $I_0 : \mathbf{Z} \to S$. For the base case, let $\sigma_{TM}(I_0, 0) := (I_0, A, 0)$. Now assume

that $\sigma_{\mathrm{TM}}(I_0,n)=(I_n,q_n,h_n)$ is defined. If $q_n=H$, then let $\sigma_{\mathrm{TM}}(I_0,n+1):=\sigma_{\mathrm{TM}}(I_0,n)$. Otherwise, let $T(q_n,I_n(h_n))=(q_{n+1},s_{n+1},d_{n+1})$ and let I_{n+1} be the same function as I_n , except possibly at h_n , where we set $I_{n+1}(h_n)=s_{n+1}$. Then define $\sigma_{\mathrm{TM}}(I_0,n+1):=(I_{n+1},q_{n+1},h_n+d_{n+1})$.

Definition 5.4. We say that a Turing Machine TM halts on input I if and only if we have $\sigma_{TM}(I, n) = (I', H, z)$ for appropriate I' and z and some $n \in \mathbb{N}$. In that case we also say that TM halts in n steps.

Notice that the step function of a Turing Machine that halts on some input is eventually constant at that input, but the converse is not always true.