$KBhave_605FP1$

Kumudini Bhave May 20, 2017

${\bf Contents}$

1	Reg	gression Model: Predicting Sales For City Housing Data
	1.1	Summary
	1.2	Housing DataSet
	1.3	Data Exploration
	1.4	Probability
	1.5	Independance
	1.6	Descriptive and Inferential Statistics
		1.6.1 BOXCOX Transformation
		1.6.2 Correlation Matrix
	1.7	Linear Algebra And Correlation
	1.8	Calculus Based Probability And Statistics
	1.9	Modeling
		1.9.1 Model 1 : Random Forest Model
		1.9.2 Predictions on Evaluation Data

1 Regression Model: Predicting Sales For City Housing Data

1.1 Summary

This is an R Markdown document for providing documentation for performing **Regression** by practising **Data Exploration**, **Transformation**, **Analysis**, **Modelling and Prediction Of the Housing DataSet**

In the process, we will explore Probability, Descriptive and Inferential Statistics, Linear Algebra and Correlation, Calculus based Probability & Statistics, and Modeling.

For this exploration we will use the **Housing** data set from "The House Prices: Advanced Regression Techniques Competition" on Kaggle.com, see link below.[Kaggle] (https://www.kaggle.com/c/house-prices-advanced-regression-techniques)

1.2 Housing DataSet

The Housing dataset of a major city depicts 1460 observations across 81 variables. The description of these can be found here at [data_description.txt] (https://raw.githubusercontent.com/DataDriven-MSDA/DATA605/master/Final/data_description.txt)

```
knitr::opts_chunk$set(message = FALSE, echo = TRUE)
# Library for loading CSV data
library(RCurl)
# Library for data display in tabular format
library(DT)
library(dplyr)
# Library for plotting
library(ggplot2)
library(gridExtra)
# Statistical Packages
library(corrplot)
library(e1071)
library(data.table)
library(knitr)
library(caret)
library(pander)
library(car)
# library(bestglm)
library(MASS)
library(Amelia)
library(leaps)
```

1.3 Data Exploration

We load the data pertaining to this competition, and study the same.

Let us performed some basic exploration of the data. This **Housing data set** has **81 variables** and **1460 observations**. Based on the descriptions of the various variables (see data set text documentation), we may conclude that the dependent variable is the SalePrice. The remaining variables are both qualitative or quantitative in nature.

```
# Getting data

trdata.giturl <- "https://raw.githubusercontent.com/DataDriven-MSDA/DATA605/master/Final/train.csv"

evaldata.giturl <- "https://raw.githubusercontent.com/DataDriven-MSDA/DATA605/master/Final/test.csv"

# Remove the Index Column/variable
traindataorig <- read.csv(url(trdata.giturl))
traindataorig <- dplyr::select(traindataorig, -1)
traindata <- traindataorig
evaldataorig <- read.csv(url(evaldata.giturl))
# evaldataorig <- dplyr::select(evaldataorig, -1)
evaldata <- dplyr::select(evaldataorig, -1)

nrow(traindata)

## [1] 1460
ncol(traindata)

## [1] 80
# View(traindata) View(evaldata)</pre>
```

The summary of the Housing data

Out of the 80 variables (after removing the Index), we have one response/ dependant variable **SalePrice**. While 79 others are predictor variables. Below is the summary for all the variables in the dataset

```
pander(summary(traindata[, seq(1, 25)]))
```

CD 11	-	cm 1 1		1 1
Table	١٠	Table	continues	below

MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley
Min. : 20.0	C (all): 10	Min.: 21.00	Min.: 1300	Grvl: 6	Grvl: 50
1st Qu.: 20.0	FV:65	1st Qu.: 59.00	1st Qu.: 7554	Pave:1454	Pave: 41
Median: 50.0	RH:16	Median: 69.00	Median: 9478	NA	NA's:1369
Mean: 56.9	RL:1151	Mean: 70.05	Mean: 10517	NA	NA
3rd Qu.: 70.0	RM:218	3rd Qu.: 80.00	3rd Qu.: 11602	NA	NA
Max. $:190.0$	NA	Max. $:313.00$	Max. $:215245$	NA	NA
NA	NA	NA's :259	NA	NA	NA

Table 2: Table continues below

LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhood
IR1:484	Bnk: 63	AllPub:1459	Corner: 263	Gtl:1382	NAmes :225
IR2: 41	HLS: 50	NoSeWa: 1	CulDSac: 94	Mod: 65	CollgCr:150
IR3: 10	Low: 36	NA	FR2:47	Sev: 13	OldTown:113
Reg:925	Lvl:1311	NA	FR3:4	NA	Edwards:100
NA	NA	NA	Inside $:1052$	NA	Somerst: 86
NA	NA	NA	NA	NA	Gilbert: 79
NA	NA	NA	NA	NA	(Other):707

Table 3: Table continues below

Condition1	Condition2	BldgType	HouseStyle	OverallQual	OverallCond
Norm :1260 Feedr : 81	Norm :1445 Feedr : 6	1Fam :1220 2fmCon: 31	1Story :726 2Story :445	Min.: 1.000 1st Qu.: 5.000	Min. :1.000 1st Qu.:5.000
Artery: 48	Artery: 2	Duplex: 52	1.5 Fin : 154	Median: 6.000	Median $:5.000$
RRAn: 26	PosN:2	Twnhs: 43	SLvl:65	Mean: 6.099	Mean: 5.575
PosN:19	RRNn: 2	TwnhsE: 114	SFoyer: 37	3rd Qu.: 7.000	3rd Qu.:6.000
RRAe: 11	PosA:1	NA	1.5 Unf: 14	Max. $:10.000$	Max. $:9.000$
(Other): 15	(Other): 2	NA	(Other): 19	NA	NA

Table 4: Table continues below

YearBuilt	YearRemodAdd	RoofStyle	RoofMatl	Exterior1st	Exterior2nd
Min. :1872	Min. :1950	Flat : 13	CompShg:1434	VinylSd:515	VinylSd:504
1st Qu.:1954	1st Qu.:1967	Gable :1141	Tar&Grv: 11	HdBoard:222	MetalSd:214
Median: 1973	Median:1994	Gambrel: 11	WdShngl: 6	MetalSd:220	HdBoard:207
Mean:1971	Mean : 1985	Hip: 286	WdShake: 5	Wd Sdng:206	Wd Sdng:197
3rd Qu.:2000	3rd Qu.:2004	Mansard: 7	ClyTile: 1	Plywood:108	Plywood:142
Max. :2010	Max. $:2010$	Shed: 2	Membran: 1	CemntBd: 61	CmentBd: 60
NA	NA	NA	(Other): 2	(Other):128	(Other):136

MasVnrType
BrkCmn: 15
BrkFace:445
None:864
Stone:128
NA's: 8
NA
NA

pander(summary(traindata[, seq(26, 50)]))

Table 6: Table continues below

MasVnrArea	ExterQual	ExterCond	Foundation	BsmtQual	BsmtCond
Min. : 0.0	Ex: 52	Ex: 3	BrkTil:146	Ex :121	Fa: 45

MasVnrArea	ExterQual	ExterCond	Foundation	BsmtQual	BsmtCond
1st Qu.: 0.0	Fa: 14	Fa: 28	CBlock:634	Fa: 35	Gd: 65
Median: 0.0	Gd:488	Gd: 146	PConc :647	Gd:618	Po: 2
Mean: 103.7	TA:906	Po: 1	Slab: 24	TA:649	TA:1311
3rd Qu.: 166.0	NA	TA:1282	Stone: 6	NA's: 37	NA's: 37
Max. $:1600.0$	NA	NA	Wood: 3	NA	NA
NA's :8	NA	NA	NA	NA	NA

Table 7: Table continues below

BsmtExposure	${\bf BsmtFinType1}$	${\bf BsmtFinSF1}$	${\bf BsmtFinType2}$	${\bf BsmtFinSF2}$
Av :221	ALQ :220	Min.: 0.0	ALQ: 19	Min.: 0.00
Gd:134	BLQ :148	1st Qu.: 0.0	BLQ:33	1st Qu.: 0.00
Mn :114	GLQ:418	Median: 383.5	GLQ:14	Median: 0.00
No :953	LwQ:74	Mean: 443.6	LwQ:46	Mean: 46.55
NA's: 38	Rec:133	3rd Qu.: 712.2	Rec: 54	3rd Qu.: 0.00
NA	Unf : 430	Max. $:5644.0$	Unf : 1256	Max. $:1474.00$
NA	NA's: 37	NA	NA's: 38	NA

Table 8: Table continues below

BsmtUnfSF	TotalBsmtSF	Heating	HeatingQC	CentralAir	Electrical
Min.: 0.0	Min.: 0.0	Floor: 1	Ex:741	N: 95	FuseA: 94
1st Qu.: 223.0	1st Qu.: 795.8	GasA:1428	Fa: 49	Y:1365	FuseF: 27
Median: 477.5	Median: 991.5	GasW:18	Gd:241	NA	FuseP: 3
Mean: 567.2	Mean $:1057.4$	Grav:7	Po: 1	NA	Mix:1
3rd Qu.: 808.0	3rd Qu.:1298.2	OthW:2	TA:428	NA	SBrkr:1334
Max. $:2336.0$	Max. $:6110.0$	Wall: 4	NA	NA	NA's:1
NA	NA	NA	NA	NA	NA

Table 9: Table continues below

X1stFlrSF	X2ndFlrSF	${\bf LowQualFinSF}$	$\operatorname{GrLivArea}$	${\bf BsmtFullBath}$
Min. : 334	Min. : 0	Min. : 0.000	Min.: 334	Min. :0.0000
1st Qu.: 882	1st Qu.: 0	1st Qu.: 0.000	1st Qu.:1130	1st Qu.:0.0000
Median:1087	Median: 0	Median: 0.000	Median:1464	Median : 0.0000
Mean:1163	Mean: 347	Mean: 5.845	Mean:1515	Mean $:0.4253$
3rd Qu.:1391	3rd Qu.: 728	3rd Qu.: 0.000	3rd Qu.:1777	3rd Qu.:1.0000
Max. :4692	Max. $:2065$	Max. $:572.000$	Max. $:5642$	Max. $:3.0000$
NA	NA	NA	NA	NA

BsmtHalfBath	FullBath	HalfBath
Min. :0.00000	Min. :0.000	Min. :0.0000
1st Qu.:0.00000	1st Qu.:1.000	1st Qu.:0.0000
Median: 0.00000	Median $:2.000$	Median : 0.0000
Mean $:0.05753$	Mean $:1.565$	Mean $:0.3829$
3rd Qu.:0.00000	3rd Qu.:2.000	3rd Qu.:1.0000

BsmtHalfBath	FullBath	HalfBath
Max. :2.00000	Max. :3.000	Max. :2.0000
NA	NA	NA

pander(summary(traindata[, seq(51, 80)]))

Table 11: Table continues below

BedroomAbvGr	KitchenAbvGr	KitchenQual	${\bf TotRmsAbvGrd}$	Functional
Min. :0.000	Min. :0.000	Ex:100	Min.: 2.000	Maj1: 14
1st Qu.:2.000	1st Qu.:1.000	Fa: 39	1st Qu.: 5.000	Maj2: 5
Median $:3.000$	Median $:1.000$	Gd:586	Median: 6.000	Min1: 31
Mean $:2.866$	Mean $:1.047$	TA:735	Mean: 6.518	Min2: 34
3rd Qu.:3.000	3rd Qu.:1.000	NA	3rd Qu.: 7.000	Mod: 15
Max. :8.000	Max. $:3.000$	NA	Max. :14.000	Sev: 1
NA	NA	NA	NA	Typ : 1360

Table 12: Table continues below

Fireplaces	${\bf FireplaceQu}$	${\bf Garage Type}$	${\bf Garage Yr Blt}$	GarageFinish
Min. :0.000	Ex: 24	2Types: 6	Min. :1900	Fin :352
1st Qu.:0.000	Fa: 33	Attchd:870	1st Qu.:1961	RFn :422
Median $:1.000$	Gd : 380	Basment: 19	Median:1980	Unf:605
Mean $:0.613$	Po: 20	BuiltIn: 88	Mean : 1979	NA's: 81
3rd Qu.:1.000	TA:313	CarPort: 9	3rd Qu.:2002	NA
Max. $:3.000$	NA's:690	Detchd:387	Max. :2010	NA
NA	NA	NA's: 81	NA's :81	NA

Table 13: Table continues below

GarageCars	GarageArea	GarageQual	GarageCond	PavedDrive
Min. :0.000	Min.: 0.0	Ex : 3	Ex : 2	N: 90
1st Qu.:1.000	1st Qu.: 334.5	Fa: 48	Fa: 35	P: 30
Median : 2.000	Median: 480.0	Gd:14	Gd:9	Y:1340
Mean $:1.767$	Mean: 473.0	Po: 3	Po: 7	NA
3rd Qu.:2.000	3rd Qu.: 576.0	TA:1311	TA:1326	NA
Max. $:4.000$	Max. :1418.0	NA's: 81	NA's: 81	NA
NA	NA	NA	NA	NA

Table 14: Table continues below

WoodDeckSF	${\bf OpenPorchSF}$	${\bf EnclosedPorch}$	X3SsnPorch	ScreenPorch
Min.: 0.00	Min.: 0.00	Min.: 0.00	Min.: 0.00	Min.: 0.00
1st Qu.: 0.00	1st Qu.: 0.00	1st Qu.: 0.00	1st Qu.: 0.00	1st Qu.: 0.00
Median: 0.00	Median: 25.00	Median: 0.00	Median: 0.00	Median: 0.00
Mean: 94.24	Mean: 46.66	Mean: 21.95	Mean: 3.41	Mean: 15.06
3rd Qu.:168.00	3rd Qu.: 68.00	3rd Qu.: 0.00	3rd Qu.: 0.00	3rd Qu.: 0.00
Max. $:857.00$	Max. $:547.00$	Max. $:552.00$	Max. $:508.00$	Max. $:480.00$

WoodDeckSF	${\bf OpenPorchSF}$	${\bf EnclosedPorch}$	X3SsnPorch	ScreenPorch
NA	NA	NA	NA	NA

Table 15: Table continues below

PoolArea	PoolQC	Fence	${\bf MiscFeature}$	${ m MiscVal}$	MoSold
Min.: 0.000	Ex : 2	GdPrv: 59	Gar2: 2	Min.: 0.00	Min.: 1.000
1st Qu.: 0.000	Fa: 2	GdWo:54	Othr: 2	1st Qu.: 0.00	1st Qu.: 5.000
Median: 0.000	Gd:3	MnPrv:	Shed: 49	Median: 0.00	Median: 6.000
		157			
Mean: 2.759	NA's:1453	MnWw: 11	TenC: 1	Mean: 43.49	Mean: 6.322
3rd Qu.: 0.000	NA	NA's :1179	NA's:1406	3rd Qu.: 0.00	3rd Qu.: 8.000
Max. $:738.000$	NA	NA	NA	Max. $:15500.00$	Max. :12.000
NA	NA	NA	NA	NA	NA

YrSold	SaleType	SaleCondition	SalePrice
Min. :2006	WD :1267	Abnorml: 101	Min.: 34900
1st Qu.:2007	New: 122	AdjLand: 4	1st Qu.:129975
Median $:2008$	COD:43	Alloca: 12	Median $:163000$
Mean:2008	ConLD:9	Family: 20	Mean $:180921$
3rd Qu.:2009	ConLI:5	Normal :1198	3rd Qu.:214000
Max. :2010	ConLw:5	Partial: 125	Max. $:755000$
NA	(Other): 9	NA	NA

Variables For Study

For the purpose of study we select the predictor variable as GrLivArea, as the quantitative Predictor Variable that impacts the Response variable SalePrice. The response as well as predictor are continuous variables.

```
# datatable(head(traindata,100), options = list( searching = FALSE, pageLength =
# 5, lengthMenu = c(5, 10, 15, 20) ))

# data.table(head(traindata,100),width = 300)

# setting Y variable and select X variable
Y <- traindata$SalePrice
X <- traindata$GrLivArea</pre>
```

1.4 Probability

Lets define the x as 4th quartile (lower bound) of the Predictor Variable of X ie **GrLivArea** and the y as 2nd quartile of the response variable Y ie **SalePrice**

```
x <- quantile(X, 0.75)
x

## 75%
## 1776.75

y <- quantile(Y, 0.5)
y

## 50%
## 163000
(a)</pre>
```

$$P(X > x | Y > y) = \frac{P(X > x \cap Y > y)}{P(Y > y)}$$

```
p_XnY <- filter(traindata, SalePrice > y & GrLivArea > x) %>% tally()/nrow(traindata)

p_Y <- filter(traindata, SalePrice > y) %>% tally()/nrow(traindata)

pa <- (p_XnY/p_Y)
pa</pre>
```

n ## 1 0.4326923

43.27% likely that its living area is above the 75th percentile, when it is given that house's sale price is greater than the median house price

(b)

$$P(X > x, Y > y) = P(X > x \cap Y > y)$$

```
p_XnYonly <- filter(traindata, SalePrice > y & GrLivArea > x) %>% tally()/nrow(traindata)
pb <- p_XnYonly
pb</pre>
```

n ## 1 0.2157534

21.58% likely that the living area is above the 75th percentile and the sale price is above the median.

(c)

$$P(X < x | Y > y) = \frac{P(X < x \cap Y > y)}{P(Y > y)}$$

n ## 1 0.5673077

56.73% likeliness that house's living area is below the 75th percentile

1.5 Independance

We have,

x/y	below 2nd Qtr	above 2nd Qtr	Total
below 3rd Qtr	682	413	1095
above 3rd Qtr	50	315	365
Total	732	728	1460

Let X = observations above the 3d quartile for X, Let Y = observations above the 2d quartile for Y.

Checking for

$$P(X|Y) = P(X)P(Y)$$

```
P(X)=365/1460=0.25, P(Y)=728/1460=0.4986301
```

Hence.

$$P(X).P(Y) = 0.25 * 0.4986301 = 0.1246575 P(X|Y) = 0.4327$$

Since $P(X|Y) \neq P(X)P(Y)$, the variables X and Y are not independent.

Verifying with Chi-Square Test

Let H_0 : X and Y are independent Let H_A : X and Y are not independent

```
ctab <- table(traindata$GrLivArea > x, traindata$SalePrice > y)
chitest <- chisq.test(ctab, correct = TRUE)
chitest</pre>
```

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: ctab
## X-squared = 256.53, df = 1, p-value < 2.2e-16</pre>
```

Results of Chi-Square test:

The result of the Chi-Square test indicates that the p value is extremely small and much less than 0.05, hence we reject the H_0 hypothesis.

1.6 Descriptive and Inferential Statistics

Summary statistics for Predictor $GrLivArea\ X$ and Response Variable $SalePrice\ Y$ are provided in the table below:

```
# prepare summary table supplemented with standard deviation

sumXY <- rbind(c(summary(X)), c(summary(Y)))
sdXY <- rbind(round(sd(X), 0), round(sd(Y), 0))

sumXYtab <- cbind(sumXY, sdXY)
row.names(sumXYtab) <- c("X (GrLicArea)", "Y (SalePrice)")

pander(sumXYtab)</pre>
```

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	
X (GrLicArea)	334	1130	1464	1515	1777	5642	525
Y (SalePrice)	34900	130000	163000	180900	214000	755000	79443

Plot Y Vs X : SalePrice Vs Grade Living Area

It is intuitive that with an increase in the Living Area , the price of the house would increase. We expect a linear relationship between GrLivArea and SalePrice. We see the same in the plot.

Plot Histogram: SalePrice and Histogram: Living Area

```
hist.SalePrice <- ggplot(traindata, aes(x = SalePrice)) + geom_histogram() + ggtitle("Histogram : Responsation of the standard of the standard
```

Histogram : Response Variable : SalePrice

hist.GrLivArea

We find that for both , the response variable **SalePrice** as well as the predictor variable **GrLivArea** , the distributions are strongly right skewed. Both the distributions are crudely normal.

1.6.1 BOXCOX Transformation

We will perform BoxCox Transformation and explore the correlation between the Response variable and Predictor variable.

```
library(forecast)
## Warning: package 'forecast' was built under R version 3.3.3
lambda.SalePrice <- BoxCox.lambda(traindata$SalePrice) # Indicates Using As Is , Y^1
lambda.GrLivArea <- BoxCox.lambda(traindata$GrLivArea) # Indicates Using as Is , X^1</pre>
```

The lambda value for SalePrice and GrLivArea both equal 1 , suggesting transformation of Y^1 for SalePrice and X^1 for GrLivArea, which essentially means no transformation

1.6.2 Correlation Matrix

To check out the correlation among the predictor variables and the response variables and also for any multicollinearity, we plot the pairs plot.

Numerical Variables

```
cortrain <- dplyr::select(traindata, LotArea, TotalBsmtSF, BsmtFinSF1, X1stFlrSF, GrLivArea, GarageArea
cormat <- as.matrix(cor(cortrain, use = "pairwise.complete.obs"))
corrplot(cormat, method = "color", tl.cex = 0.7, addCoef.col = "black", addCoefasPercent = TRUE)</pre>
```


We find that the predictor variable **GrLivArea** is highly correlated to the **SalePrice** at a correlation value of 71%. We also observe other predictors which seem to be significantly correlated viz. TotalBsmtSF, X1stFlrSF, GarageArea. We may further analyze thier significant during modeling.

Verifying with Confidence Interval Test

```
t.test(traindata$GrLivArea, traindata$SalePrice)
```

```
##
## Welch Two Sample t-test
##
## data: traindata$GrLivArea and traindata$SalePrice
## t = -86.288, df = 1459.1, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -183484.2 -175327.3
## sample estimates:
## mean of x mean of y
## 1515.464 180921.196

t.test(traindata$GrLivArea, traindata$SalePrice)$conf.int</pre>
```

[1] -183484.2 -175327.3

```
## attr(,"conf.level")
## [1] 0.95
```

A 95% confidence interval for the difference in the means of X and Y is given by [-183484.2, -175327.3] The p-value associated with this hypothesis test is near-zero, so the null hypothesis that there is no correlation between the variables is rejected.

Let H_0 : Variable X and Y are not correlated Let H_A : Variable X and Y are correlated

To check programmatically for correlation:

```
cortest <- cor.test(X, Y, method = "pearson", conf.level = 0.99)</pre>
```

A 99% confidence interval for the difference in the means of X and Y is given by [0.6733974, 0.7406408]

The p-value associated with this hypothesis test is almost zero, so the null hypothesis that H_0 : Variable X and Y are not correlated is rejected. Therefore, it can be said with **99% Confidence** that there exists a correlation between the GrLivArea and SalePrice and the correlation value lies in between [**0.6733974**, **0.7406408**] Also from the plot we see that the correlation of 0.71 exists between GrLivArea and SalePrice

1.7 Linear Algebra And Correlation

Lets invert the correlation matrix, to get the Precision Matrix, which contains the Variance Inflation Factors across the diagonal.

corrtraindata <- dplyr::select(traindata, GrLivArea, SalePrice)

Deriving Correlation MAtrix

cormatrix <- cor(corrtraindata)
pander(cormatrix)</pre>

	$\operatorname{GrLivArea}$	SalePrice
GrLivArea	1	0.7086
SalePrice	0.7086	1

Inverting Correlation Matrix to get Precision Matrix.
precimatrix <- solve(cormatrix)
pander(precimatrix)</pre>

	$\operatorname{GrLivArea}$	SalePrice
GrLivArea	2.009	-1.423
SalePrice	-1.423	2.009

Multiplying Correlation Matrix by Precision Matrix, we expect an Identity Matrix

multi_cor_preci <- cormatrix %*% precimatrix
pander(multi_cor_preci) # We get Identity matrix</pre>

	$\operatorname{GrLivArea}$	SalePrice
GrLivArea	1	0
SalePrice	0	1

Multiplying Precision Matrix by Correlation Matrix, we expect an Identity Matrix

multi_preci_cor <- precimatrix %*% cormatrix
pander(multi_preci_cor) # We get Identity matrix</pre>

	GrLivArea	SalePrice
$\operatorname{GrLivArea}$	1	0
$\mathbf{SalePrice}$	0	1

1.8 Calculus Based Probability And Statistics

For the independent variable, GrLivArea, we have the minimum value at 334.

The minimum value is above zero. Hence we do not need to add/shift the values above zero. We take an exponential density function to fit.

```
# Finding lambda value y fitting GrLivArea to exponential distribution
expoGrLivArea <- fitdistr(traindata$GrLivArea, "exponential")
lambda <- expoGrLivArea$estimate[[1]]</pre>
```

The $\lambda=6.599\times10^{-4}$ is the value obtained , which is the optimal value of parameter for this distribution. We take a thousand samples from this distribution. We will compare these values with the original non-transformed values

```
# Taking 1000 samples of the exponential distribution for GrLivArea
set.seed(100)
GrLivArea.samples.1000 <- rexp(1000, lambda)

dfGrLivArea <- data.frame(GrLivArea.samples.1000)

hist.GrLivArea.exp1000 <- ggplot(data.frame(dfGrLivArea), aes(dfGrLivArea)) + geom_histogram() + ggtitl
par(mfrow = c(1, 2))
hist.GrLivArea</pre>
```

Histogram : Predictor Variable : GrLivArea

hist.GrLivArea.exp1000

Histogram: Predictor Variable: Exponential GrLivArea Simulated Data

mean(GrLivArea.samples.1000)

[1] 1472.244

Comparing the two histograms, for the original GrLivArea and the Sampled Exponential GrLivArea, we find: 1. The original distribution was appeared crudely normal with very strong skewnees to the right. It was centred with highest frequency and mean around 1515. 2. The simulation of transformed GrLivArea is centred more closer toward 0. Also it is more skewed to the right as compared to the original predictor data.

1.9 Modeling

Before we go ahead and build a model, we would need to cleanse the data. From the following missing values map, we find that MasVnrArea, BsmtFinType1, BsmtFinType2 have less number of NAs while GarageType(81 NAs), GarageYrBlt (81 NAs), GarageQual (81 NAs), GarageCond (81 NAs)

Functional has high number of missing values , 1360. Similarly, PoolQC Fence, Alley, Fireplace Qu Misc Feature also have high values and are categorical. Since it categorical and also does not appear to be very important one , due to large number of NAs, lets compute our model without considering this.

For other numerical variables, we can safely remove these observations for modeling sake, as the amount of traindata is large enough or the study.

So after removing the categorical predictos with high NA values viz. Functional, PoolQC, Fence, MiscFeature, Alley, Fireplace Qu, we will proceed with complete cases for building our model.

missmap(traindata, legend = TRUE, main = "Missing Values vs Observed", col = c("red", "black"))

Missing Values vs Observed


```
traindatamodel <- dplyr::select(traindata, -Functional, -PoolQC, -Fence, -MiscFeature, -Alley, -Firepla
# Verifying that no NAs are present
missmap(traindatamodel, legend = TRUE, main = "Missing Values vs Observed After Data Cleanse", col = c(</pre>
```

Missing Values vs Observed After Data Cleanse

traindatamodel <- data.frame(traindatamodel[complete.cases(traindatamodel),])
nrow(traindatamodel)</pre>

```
## [1] 1094
```

ncol(traindatamodel)

[1] 74

We now have 1094 observations in our dataset. Since our evaluation data does not have the SalePrice, we go ahead for splitting our training data so as to crossvalidate the models constructed. We verify model with splitting the train data into 80:20 ratio by randomly selecting the observation data for further analysis of models (since evaluation data lacks the target response variable)

```
set.seed(100)
randomobs <- sample(seq_len(nrow(traindatamodel)), size = floor(0.8 * nrow(traindatamodel)))
trainnew <- traindatamodel[randomobs, ]
testnew <- traindatamodel[-randomobs, ]
# View(traindatamodel)</pre>
```

1.9.1 Model 1 : Random Forest Model

We start with considering the numeric variables since those are found to be more significant. We will apply this to the training dataset and then crossvalidate with the test.

The "caret" package train function is used with method of "random forest". A 5 fold cross validation is

used. From the summary we see that for 19 mtry (number of variables used), we get the least Root Mean Squared Error value of 31583.31

From the plot of the fit, we observe how the RMSE decreases as the predictors increase, however RMSE is lowest at 19 predictors and then increases back.

The top 19 predictor variables that give the best performance (least RMSE value) are plotted in the Variable Importance Plot below.

We also see this by crossvalidating against the testdata which was partitionaed from the main training dataset , RMSE as 32369.93

```
numetrain <- names(trainnew)[which(sapply(trainnew, is.numeric))]</pre>
traindatamodel.n <- trainnew[numetrain]</pre>
numetest <- names(testnew)[which(sapply(testnew, is.numeric))]</pre>
testdatamodel.n <- testnew[numetest]</pre>
# Imputing numeric missing values with O
testdatamodel.n[is.na(testdatamodel.n)] <- 0</pre>
# Random Forest model
modelrf <- train(SalePrice ~ ., data = traindatamodel.n, method = "rf", trControl = trainControl(method</pre>
    allowParallel = TRUE)
## Warning: package 'randomForest' was built under R version 3.3.2
# show the model summary
```

##		Length	Class	Mode
##	call	_	-none-	call
##	type	1	-none-	character
##	predicted	875	-none-	numeric
##	mse	500	-none-	numeric
##	rsq	500	-none-	numeric
##	oob.times	875	-none-	numeric
##	importance	72	-none-	numeric
##	importanceSD	36	-none-	numeric
##	localImportance	0	-none-	NULL
##	proximity	765625	-none-	numeric
##	ntree	1	-none-	numeric
##	mtry	1	-none-	numeric
##	forest	11	-none-	list
##	coefs	0	-none-	NULL
##	у	875	-none-	numeric
##	test	0	-none-	NULL
##	inbag	0	-none-	NULL
##	xNames	36	-none-	${\tt character}$
##	problemType	1	-none-	${\tt character}$
##	tuneValue	1	${\tt data.frame}$	list
##	obsLevels	1	-none-	logical

summary(modelrf)

```
print(modelrf)
## Random Forest
##
## 875 samples
## 36 predictor
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 700, 702, 700, 700, 698
## Resampling results across tuning parameters:
##
##
     mtry RMSE
                       Rsquared
            34324.36 0.8417271
##
     2
##
     19
            31583.31 0.8517676
##
     36
            32777.99 0.8380481
##
\mbox{\#\#} RMSE was used to select the optimal model using % \left( 1\right) =\left( 1\right) =\left( 1\right)  the smallest value.
## The final value used for the model was mtry = 19.
\# Crossvalidating for test model
predtest <- predict(modelrf, testdatamodel.n)</pre>
# Finding Error MSE
model1.mse <- mean((testdatamodel.n$SalePrice - predtest)^2, na.rm = TRUE)</pre>
model1.mse
## [1] 1047812326
model1.rmse <- sqrt(model1.mse)</pre>
model1.rmse
## [1] 32369.93
RMSE <- sqrt(sum((predtest - testdatamodel.n$SalePrice)^2)/length(predtest))
plot(modelrf, main = "Error rate of random forest")
```

Error rate of random forest


```
## variable importance
rfImp <- varImp(modelrf)</pre>
rfImp
## rf variable importance
##
     only 20 most important variables shown (out of 36)
##
##
                Overall
##
## OverallQual
                 100.00
                  97.90
## GrLivArea
## YearBuilt
                  53.08
## OverallCond
                  49.39
## X2ndFlrSF
                  49.13
## FullBath
                  47.48
## YearRemodAdd
                  47.16
## TotalBsmtSF
                  46.82
## GarageCars
                  43.04
## BsmtFinSF1
                  41.33
## MSSubClass
                  40.26
## X1stFlrSF
                  40.00
## BsmtFullBath
                  33.11
## GarageYrBlt
                  29.76
## BsmtUnfSF
                  29.12
```

LotArea

28.75

```
## GarageArea     28.54
## Fireplaces     28.45
## OpenPorchSF     28.38
## HalfBath     24.31
plot(rfImp, top = 20, main = "Importance of Variables")
```

Importance of Variables

The variable importance plot is a critical output of the random forest algorith. For each variable in your matrix it tells you how important that variable is in classifying the data. The plot shows each variable on the y-axis, and their importance on the x-axis. They are ordered top-to-bottom as most- to least-important. We see that **OverallQual**, **GrLivArea**, have the highest importance and impacts the SalePrice of the house. Followed by **YearBuilt**, **OverallCond**, **X2ndFlrSF**, **FullBath** and others.

1.9.2 Predictions on Evaluation Data

We now use this Model for predicting the housing sale price evaluation dataset.

For submitting to Kaggle, we will apply the model to entire original evaluation dataset.

```
# Obtaining the numeric variables form the evaluation dataset
numeric_var <- names(evaldataorig)[which(sapply(evaldataorig, is.numeric))]
evaldataorig.n <- evaldataorig[numeric_var]

# Imputing missing values with 0
evaldataorig.n[is.na(evaldataorig.n)] <- 0</pre>
```

```
# Applying the model for predicting SalePrice
predeval <- predict(modelrf, evaldataorig.n)</pre>
evalDF <- as.data.frame(cbind(evaldataorig$Id, predeval))</pre>
colnames(evalDF) <- c("Id", "SalePrice")</pre>
dim(evalDF) # 1459 rows for Kaggle submission
## [1] 1459
                2
# Submitted to Kaggle
write.csv(evalDF, file = "predictedSP_RF.csv", quote = FALSE, row.names = FALSE)
# adding to evaluation data set
evaldataorig$SalePrice <- predeval</pre>
# Updated EvaluationCSV with predictions from model
write.csv(evaldataorig, "predicted_SalePrice.csv", row.names = FALSE)
Kaggle UserName: kbhave
       1641
                 kbhave
                                                                         0.16133
           new
     Your Best Entry ↑
     Your submission scored 0.16133, which is not an improvement of your best score. Keep trying!
```

Figure 1: Kaggle Housing Score

A