7WISE

Supercharging your A/B testing with automated causal inference

Community Workshop on Microsoft's Causal Tools May 3, 2022

Egor Kraev Head of AI, Wise PIc egor.kraev@wise.com

What is causal inference anyway?

 Causal inference tries to estimate impacts of actions, ideally at a single-observation level

The fundamental problem when doing that is you can never directly
verify such estimates at individual level – you can't send and not send
the same email to the same customer, to observe the impact!

 Randomization when gathering data is helpful for causal inference, but not strictly necessary

Causal inference is a fascinating, deep domain

Here, we'll apply it to the simplest case possible

Strengths and weaknesses of classic A/B testing.

Traditional A/B testing

"A/B testing is the golden standard for learning cause and effect"

- Randomly split your audience into test and control groups
- Subject the test group to a 'treatment', such as sending a marketing email or enabling a new product feature
- Measure the average difference in some 'target' variable, such as post-treatment revenue, between the two groups
 - Choose sample sizes large enough for the difference to be statistically significant

Downsides of traditional A/B testing

- Treats differences between customers as noise: if it's harmful to some customers but beneficial to others, we'll just see the zero average impact
- Wasteful: collect and process 100Ks of data points just to learn a boolean, or at most a single number (average impact)
- Can be a hard sell to product teams: if we take the effort to build a feature, we kind of assume it'll be useful and in any case it's already built, so what's the value of the test?

How can causal inference help?

How can causal inference help in A/B testing?

- Causal inference models will estimate impact per customer as a function of their features (also known as <u>Conditional</u> Average Treatment Effect, or CATE)
 - Most models also supply confidence intervals for those estimates.
- This means you can take the same dataset you collected during A/B testing, enriched with customer features, and get customer segmentation by impact
- Thus, **customer heterogeneity** becomes a **valuable information source**, rather than noise to be averaged over
 - This promises smaller sample sizes required for significance

Our scope: "No unobserved confounders"

- Most important example: we run an A/B/N test and want to better understand its results
- Second option: treatment assignment is random but biased based on customer features
- Final class of examples: we want to draw causal conclusions about a situation where we can't make an experiment (eg impact of suspending users), and don't have any instrumental variables

Comparing causal models.

Which causal model?

- There is a wealth of causal inference packages available, first and foremost **DoWhy/EconML**, also CausalML, UpliftML and several others
 - Inconsistent APIs
 - Each model comes with its own set of quirks
 - Most models require choice of hyperparameters
 and also of 'regular' ML regressors/classifiers as components
- Most importantly, how do you compare different models after fitting?
 - How do you do out-of-sample testing for counterfactual estimates?

Out of sample scoring of causal models

To compare causal models, we need to score **out of sample**. We consider two main method families:

- Qini/AUC: cumulative curves for outcomes sorted by estimated impact, similar to ROC for classifiers. Theoretically nicer, but harder to interpret
- 2. Policy value, aka ERUPT (Estimated Response Under $\hat{\Pi}(d) = \sum_{i=1}^{N} \left(\frac{1 W_i}{1 e(X_i)} (1 d(X_i)) \cdot \pi_i(0) + \frac{W_i}{e(X_i)} d(X_i) \cdot \pi_i(1) \right)$ Proposed Treatment): **unbiased estimator of the outcome** if we treated every customer for whom a model predicts (say) a positive CATE: more **interpretable**

We also support the **r-scorer**, but don't really like its complexity;)

What policy to choose for ERUPT?

- If the treatment effect is variable, but positive for every customer, the naïve
 "treat if CATE > 0" policy will involve treating everybody, which makes it hard to
 differentiate between models
- To correct for this, we offer a normalized ERUPT score, by adding a treatment cost equal to the average treatment effect - thus forcing the models to compete on predicting impact variability
- In real-world problems, you should use a policy that's **as realistic as possible**. For example, "send promotion to customer if predicted impact of a promotion on revenue minus promotion cost is positive"

Automated model selection.

Building blocks for automated model selection

- CATE models:
 - Most **EconML** CATE estimators
 - Transformed Outcome
 - Dummy model: average treatment effect + randomness
 - Easy to add others let us know if you have favorites!
- DoWhy for a consistent high-level interface to individual estimators
- FLAML regression for regression component models
- **DummyClassifier** or **FLAML** (user choice) for propensity to treat
- **FLAML**, again, for estimator and hyperparameter search
 - First run all chosen estimators with default settings, then sample

DoWhy

It's yours to use right now!

https://github.com/transferwise/auto-causality Current state, tested and used:

- Extensively tested for binary treatment, random assignment
- Example notebook with the full fitting and analysis cycle

Coming soon (almost works, bar testing and bugfixes):

- Multi-valued discrete treatment
- More testing for FLAML classifier option for propensity to treat
- Component models' time budget as part of the search space
- Reuse of component models across fits, for efficiency

Next steps

Next big milestone (planned for Summer 2022):

Extension to EconML instrumental variable models

Could use some help from the EconML team:

- Review of hyperparameter search spaces for the EconML models
- OrthoForest inference on 500K+ points doesn't finish after running for days,
 although training only takes tens of minutes is that expected?
- Early stopping option for tree-based models
- What are good ways to score instrumental variable models out of sample?

Causal inference in Wise.

A lot of analytics questions are questions about causality

In progress:

- Analysis of CRM campaign impacts
- Improved targeting of referral reward programs

Planned:

- Improved analysis of A/B test results for product features
- Impact of customer support turnaround time on retention and future volumes

Extra referral rewards impact analysis

- 470K customers in the sample, some kind of extra reward for referring new customers was offered to 360K of them (all grouped into one 'treatment' here for simplicity)
- Simulations run on an r5a.4xlarge (128GB RAM)
- Component model time budget was set to 10min, total time budget to 3h
- Features include reward base currency, customer 'age', host's recent transaction volume Quite variable out-of-sample model performance depending on model and target:

Results continued

- Different models' ATE estimates are all over the place
- DML and Sparse flavors most likely to generate wildly off ATE estimates occasionally (excluded from graphs for readability)
- ForestDRLearner tends to overfit the training set (need early stopping?)

For POST_BOOST_REFERRALS, best model's ERUPT and ATE estimates are inconsistent

ERUPT vs ATE for training, validation, and test sets (denoted by marker size from smallest to largest)

Out-of-sample segmentation

Let's compare the estimated treatment effects in the **test** set split by the **best model's recommendations**:

On the other hand, the simple tree policy derived from the model's recommendations is not very useful

> backdoor.econml.dml.LinearDML:POST_BOOST_CONVERTED_REFERRALS_10D PRE BOOST REFERRALS <= 13.5 samples = 131526 CATE mean CATE std PRE BOOST REFERRALS <= 3.5 samples = 131515 CATE mean CATE mean 10.365 CATE std CATE std samples = 60 mples = 13145CATE mean CATE mean CATE std CATE std 0.92

Final approach

- The number of converted referrals post-boost was the best-modeled target, choose that to train a causal inference model
- Augment it with a conditional model of how much volume a new customer would do with us if converted, given the boost program the host was offered and the other host's features, to quantify a reward program's payoff.
 - No causal inference needed for this stage, just regular regression on the much smaller dataset of hosts who had at least one post-boost conversion
- Re-run optimization with policy based on the conditional model

Lessons learned

- Consider different target variables as well as different models
- Check consistency between ERUPT and ATE estimates, and between validation and test performance
- Choose your **metric** wisely
- Need quite large instances to run the fits
 - Now looking at using Ray to parallelize
- Beware of causality leakage!

If treatment is correlated with features, but you use a naïve propensity-to-treat model, can get GREAT out-of-sample scores that aren't real

Conclusion.

So how can causal inference supercharge your A/B testing?

- Use same A/B testing data, enriched with customer features
- Estimate causal impact as function of features, allowing you to segment customers by impact
- Learn fine-grained impact also from biased random sampling, allowing you to optimize and keep learning at the same time
 - o For example, could do a kind of **Thompson sampling on customer segments**
- Thanks to the magic of DoWhy, EconML, and FLAML, combined in autocausality, you can do all this with no prior expertise in causal inference

Many thanks to

Pere Planell Morell Mark Harley Timo Flesh Guy Durant Wen Kho Ziyang Zhang

For helping to bring the package this far!

Questions?

egor.kraev@wise.com