Reconocimiento sonoro de instrumentos musicales

Autor: William Steve Rodriguez Villamizar

Objetivos

- Seleccionar un dataset adecuado para el problema.
- Aplicar una serie de transformaciones sobre los audios para adecuarlos para el modelo de IA.
- Entrenar un modelo de IA para clasificación de instrumentos musicales en un audio de 2 segundos.
- Implantar el modelo en producción casi en RT

Metodología a aplicar

Entendimiento de los datos

Dataset

 John Thickstun, Zaid Harchaoui y Sham Kakade tienen su dataset de musinet en kaggle

330 Archivos

+1M etiquetas Instrumentos

33,5GB

10 compositores

122.709 segundos

Dataset

 John Thickstun, Zaid Harchaoui y Sham Kakade tienen su dataset de musinet en kaggle

Preparación de los datos

Fig 3: Resultados train vs Split segundos

```
randomforest_1seg.pkl - randomforest_2seg.pkl - randomforest_3seg.pkl - randomforest_4seg.pkl - randomforest_5seg.pkl - randomforest_6seg.pkl randomforest_7seg.pkl - randomforest_8seg.pkl - randomforest_9seg.pkl - randomforest_10seg.pkl - randomforest_11seg.pkl - randomforest_12seg.pkl
```

Fig 4: Modelos guardados con pickle

Audio data augmentation

1 audio => 9 audios

Transformaciones sobre los audios

Ruido aleatorio

Mascara para poner elementos de fondo

Pith para ajustes de tono

Ruido en base a armónicos

Volumen sobre secciones audio

Cambio de tono

Volumen sobre los audios

Cambio velocidad

Normalización de mascara

Audio original

Fig 5: Incremento de datos

Fig 6: Librería publica

Extracción de características

Size vector 26

Fig 7: 3 dimensiones audio

Fig 9: Librería publica

Característica	Cantidad datos
Croma	1
Rms	1
Centroide espectral	1
Ancho banda	1
Reducción espectral	1
Cruces por cero	1
MFCC	20

Fig 8: Vector características de audios

N componentes finales	%perdida Información
23	1
21	2
19	3
18	4
17	5
16	7
15	8
14	10

Fig 10: Distribución información

Fig 11: balanza, se busca una buena relación

Puntos elegido

Sacrifico poco pero reduzco mucho Sacrifico el 7% pero reduzco el 42%

Modelamiento

Deep learning

Modelado RNA simple

train	valid	test	tiempo respuesta (seg)
90,36%	90,27%	90,09%	0,06

Modelado RNA Experimental

train	valid	test	tiempo respuesta (seg)
78,63%	78,72%	80,09%	0,32

Machine learning

Random Forest

train	valid	test	tiempo respuesta (seg)
99,81%	95,72%	94,90%	0,79

Decision Tree

train	valid	test	tiempo respuesta (seg)
100,00%	92,54%	91,45%	1,15

Machine learning

Logistic Regression

train	valid	test	tiempo respuesta (seg)
92,18%	92,36%	90,72%	1,86

Dummy Classifier

Predict negative class for every instance.

Calculate accuracy.

Accuracy =
$$\frac{0+912}{0+102+0+912}$$
 = 89.94%

train	valid	test	tiempo respuesta (seg)
85,54%	85,63%	81,54%	3,1

Machine learning

Vecinos mas cercanos

train	valid	test	tiempo respuesta (seg)
96,63%	96,72%	96,00%	2,3

Gaussian Naive Bayes

train	valid	test	tiempo respuesta (seg)
90,63%	90,81%	89,00%	1,82

Evaluación

Resumen

• Resumen modelado

Mod	lelos	Algoritmo	train	valid	test	tiempo all test (seg)
		RandomForestClassifier	<mark>99,81%</mark>	<mark>95,72%</mark>	94,90%	0,79
		LogisticRegression	92,18%	92,36%	90,72%	1,86
	Clásicos	DecisionTreeClassifier	100,00%	92,54%	91,45%	1,15
Machine	Clasicus	DummyClassifier	85,54%	85,63%	81,54%	3,1
learning		KNeighborsClassifier	96,63%	<mark>96,72%</mark>	<mark>96,00%</mark>	<mark>2,3</mark>
		GaussianNB	90,63%	90,81%	89,00%	1,82
	Deep	Basico 122.000 parametros	90,36%	90,27%	90,09%	0,06
	Learning	Experimental	78,63%	78,72%	80,09%	0,32

Mejor modelo

Elección modelo usar

se elije el randomForest, principalmente por sus porcentajes superiores al 95% en validación y casi el 95% en el testeo, si bien el KNeighborsClassifier tiene mejores métricas, su tiempo de predicción es muy alto lo que lo hace ineficiente para un entorno de producción. No se elije la red neuronal básica, pues si bien otorga buenas métricas y gran velocidad de respuesta, no son tan altas las métricas como lo es con RandomForest, pero si el tema tiempo de respuesta es un factor clave se podría optar por usar la red neuronal básica).

Búsqueda hiperparametros

2952 combinaciones

```
params_grid = {
          'n_estimators': [100, 150, 200, 700],
          'max_features': ['auto', 'sqrt', 'log2'],
          'max_depth': [None] + list(range(10, 50)),
          'criterion': ['gini', 'entropy'],
          'min_samples_split': [12, 16, 20]
     }
}
```


Implementación

Resultados finales

Resultados finales


```
1
                                  localhost:52000/RNA
"All_instruments": [
   "piano(1)",
   "Violin(7)",
   "Viola(41)",
   "Violonchelo(42)",
   "Clarinete(43)",
   "Fagot(44)",
   "Bocina(61)",
   "Oboe(69)",
  "Flauta(71)",
  "Clave(72)",
   "Contrabajo(74)"
 "instruments_predict": [
   "piano(1)"
 "model_prediction": [
   true,
  false,
  false,
   false,
   false,
   false,
   false,
   false,
  false,
   false,
   false
 "time predic": 0.13021278381347656
```


API versión 1.0

```
Iocalhost:52000/RNA
"All_instruments": [
 "piano(1)",
 "Violin(7)",
"Viola(41)",
"Violonchelo(42)",
  "Clarinete(43)",
 "Fagot(44)",
"Bocina(61)",
  "Oboe(69)",
  "Flauta(71)",
 "Clave(72)",
"Contrabajo(74)"
"instruments_predict": [
  "piano(1)"
"model prediction": [
 true,
 false,
 false,
 false,
 false,
 false,
 false,
 false,
 false,
 false,
 false
"time predic": 0.13021278381347656
```


Clientes concurrentes max = 3 Tiempo de respuesta por cliente = 130ms

API versión 2.0

Multiprocesos asíncronos

Subtítulo presentación

Trabajos futuros

Mejoras

- Entrenar un modelo que reciba audios de diferente medida de tiempo para hacer mas robusto el modelo.
- Continuar con las RNA pues son mas rápidos y fácil de implantar en producción, incluso TFlite, además de que podría usarse para transfer learning para trabajos similares.
- Buscar mejores hiperparametros.
- Unificar las librerías creadas.
- Lograr implantar la API en la raspberry, Jetson o similar para trabajar el modelo en edge computing para acelerar la predicción y mantener la confidencialidad de los datos.

Conclusiones

Conclusiones

- Las redes neuronales no siempre son la mejor opción para todos los problemas.
- Limpiar y preparar los datos es sumamente importante
- El PCA ayuda considerablemente a mejorar el aprendizaje del modelo
- Los algoritmos clásicos dieron mejor resultado de lo esperado permitiendo dar continuidad a trabajos relacionados.

<u>Gracias</u>