Logistic regression for probability of default

CREDIT RISK MODELING IN PYTHON

Michael Crabtree

Data Scientist, Ford Motor Company

Probability of default

- The likelihood that someone will default on a loan is the probability of default
- A probability value between 0 and 1 like 0.86
- loan_status of 1 is a default or 0 for non-default

Probability of default

- The likelihood that someone will default on a loan is the probability of default
- A probability value between 0 and 1 like 0.86
- loan_status of 1 is a default or 0 for non-default

Probability of Default	Interpretation	Predicted loan status
0.4	Unlikely to default	O
0.90	Very likely to default	1
0.1	Very unlikely to default	0

Predicting probabilities

- Probabilities of default as an outcome from machine learning
 - Learn from data in columns (features)
- Classification models (default, non-default)
- Two most common models:
 - Logistic regression
 - Decision tree

Logistic regression

Similar to the linear regression, but only produces values between 0 and 1

Linear Regression
$$Y = \beta_0 + (\beta_1 * X_1) + (\beta_2 * X_2) \dots$$

Linear Regression Logistic Regression
$$Y = \beta_0 + (\beta_1 * X_1) + (\beta_2 * X_2) \dots$$
 $P(loan_status = 1) = \frac{1}{1 + e^{-Y}}$

Training a logistic regression

• Logistic regression available within the scikit-learn package

```
from sklearn.linear_model import LogisticRegression
```

• Called as a function with or without parameters

```
clf_logistic = LogisticRegression(solver='<mark>lbfgs</mark>')
```

• Uses the method .fit() to train

```
clf_logistic.fit(training_columns, np.ravel(training_labels))
```

- Training Columns: all of the columns in our data except loan_status
- Labels: loan_status (0,1)

Training and testing

Entire data set is usually split into two parts

Training and testing

Entire data set is usually split into two parts

Data Subset	Usage	Portion
Train	Learn from the data to generate predictions	60%
Test	Test learning on new unseen data	40%

Creating the training and test sets

Separate the data into training columns and labels

```
X = cr_loan.drop('loan_status', axis = 1)
y = cr_loan[['loan_status']]
```

• Use train_test_split() function already within sci-kit learn

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4, random_state=123)
```

- test_size : percentage of data for test set
- random_state : a random seed value for reproducibility

Let's practice!

CREDIT RISK MODELING IN PYTHON

Predicting the probability of default

CREDIT RISK MODELING IN PYTHON

Michael Crabtree

Data Scientist, Ford Motor Company

Logistic regression coefficients

```
# Model Intercept
array([-3.30582292e-10])
# Coefficients for ['loan_int_rate','person_emp_length','person_income']
array([[ 1.28517496e-09, -2.27622202e-09, -2.17211991e-05]])
```

$$P(loan_status = 1) = \frac{1}{1 + e^{-\left(-3.3e^{-10} + \left(1.29e^{-9} *Int\,Rate\right) + \left(-2.28e^{-9} *Emp\,Length\right) + \left(-2.17e^{-5} *Income\right)\right)}}$$

Interpreting coefficients

```
# Intercept
intercept = -1.02
# Coefficient for employment length
person_emp_length_coef = -0.056
```

• For every 1 year increase in person_emp_length, the person is less likely to default

Interpreting coefficients

```
# Intercept
intercept = -1.02
# Coefficient for employment length
person_emp_length_coef = -0.056
```

• For every 1 year increase in person_emp_length, the person is less likely to default

intercept	person_emp_length	value * coef	probability of default
-1.02	10	(10* -0.06)	.17
-1.02	11	(11* -0.06)	.16
-1.02	12	(12* -0.06)	.15

Using non-numeric columns

- Numeric: loan_int_rate , person_emp_length , person_income
- Non-numeric:

```
cr_loan_clean['loan_intent']
```

EDUCATION
MEDICAL
VENTURE
PERSONAL
DEBTCONSOLIDATION
HOMEIMPROVEMENT

Will cause errors with machine learning models in Python unless processed

One-hot encoding

Represent a string with a number

	person_age	person_income	loan_intent
0	21	9600	EDUCATION
1	25	9600	MEDICAL
2	23	65500	MEDICAL
3	24	54400	MEDICAL
4	21	9900	VENTURE

One-hot encoding

- Represent a string with a number
- 0 or 1 in a new column column_VALUE

	person_age	person_income	loan_intent		person_age	person_income	loan_intent_EDUCATION	loan_intent_MEDICAL	loan_intent_VENTURE
0	21	9600	EDUCATION	0	21	9600	1	0	0
1	25	9600	MEDICAL	1	25	9600	0	1	0
2	23	65500	MEDICAL	2	23	65500	0	1	0
3	24	54400	MEDICAL	3	24	54400	0	1	0
4	21	9900	VENTURE	4	21	9900	0	0	1

Get dummies

Utilize the get_dummies() within pandas

```
# Separate the numeric columns
cred_num = cr_loan.select_dtypes(exclude=['object'])
# Separate non-numeric columns
cred_cat = cr_loan.select_dtypes(include=['object'])
# One-hot encode the non-numeric columns only
cred_cat_onehot = pd.get_dummies(cred_cat)
# Union the numeric columns with the one-hot encoded columns
cr_loan = pd.concat([cred_num, cred_cat_onehot], axis=1)
```

Predicting the future, probably

Use the .predict_proba() method within scikit-learn

```
# Train the model
clf_logistic.fit(X_train, np.ravel(y_train))
# Predict using the model
clf_logistic.predict_proba(X_test)
```

Creates array of probabilities of default

```
# Probabilities: [[non-default, default]]
array([[0.55, 0.45]])
```

Let's practice!

CREDIT RISK MODELING IN PYTHON

Credit model performance

CREDIT RISK MODELING IN PYTHON

Michael Crabtree

Data Scientist, Ford Motor Company

Model accuracy scoring

Calculate accuracy

$$Accuracy = \frac{Number\ of\ correct\ predictions}{Number\ of\ predictions}$$

• Use the .score() method from scikit-learn

```
# Check the accuracy against the test data
clf_logistic1.score(X_test,y_test)
```

0.81

• 81% of values for loan_status predicted correctly

ROC curve charts

- Receiver Operating Characteristic curve
 - Plots true positive rate (sensitivity) against false positive rate (fall-out)

```
fallout, sensitivity, thresholds = roc_curve(y_test, prob_default)
plt.plot(fallout, sensitivity, color = 'darkorange')
```


Analyzing ROC charts

• Area Under Curve (AUC): area between curve and random prediction

Default thresholds

Threshold: at what point a probability is a default

Predicted probability

Setting the threshold

Relabel loans based on our threshold of 0.5

```
preds = clf_logistic.predict_proba(X_test)
preds_df = pd.DataFrame(preds[:,1], columns = ['prob_default'])
preds_df['loan_status'] = preds_df['prob_default'].apply(lambda x: 1 if x > 0.5 else 0)
```

	prob_default	loan_status
11779	0.079626	0
11780	0.051979	0
11781	0.522450	1
11782	0.370478	0
11783	0.123786	0

Credit classification reports

• classification_report() within scikit-learn

```
from sklearn.metrics import classification_report
classification_report(y_test, preds_df['loan_status'], target_names=target_names)
```

	precision	recall	f1-score	support
Non-Default	0.79	0.99	0.88	9198
Default	0.67	0.04	0.07	2586
micro avg	0.78	0.78	0.78	11784
macro avg	0.73	0.52	0.47	11784
weighted avg	0.76	0.78	0.70	11784

Selecting classification metrics

- Select and store specific components from the classification_report()
- Use the precision_recall_fscore_support() function from scikit-learn

```
recall f1-score
              precision
                                               support
Non-Default
                   0.79
                              0.99
                                        0.88
                                                  9198
     Default
                   0.67
                                        0.07
                                                  2586
                              0.04
                   0.78
                              0.78
   micro avg
                                        0.78
                                                  11784
                   0.73
                             0.52
                                        0.47
                                                 11784
   macro avg
weighted avg
                   0.76
                              0.78
                                                  11784
                                        0.70
```

```
from sklearn.metrics import precision_recall_fscore_support
precision_recall_fscore_support(y_test,preds_df['loan_status'])[1][1]
```


Let's practice!

CREDIT RISK MODELING IN PYTHON

Model discrimination and impact

CREDIT RISK MODELING IN PYTHON

Michael Crabtree

Data Scientist, Ford Motor Company

Confusion matrices

Shows the number of correct and incorrect predictions for each loan_status

True Negatives (Predicted = 0, Actual = 0)	False Positives (Predicted = 1, Actual = 0)	$Precision(0) = \frac{TN}{TN + FN}$
False Negatives (Predicted = 0, Actual = 1)	True Positives (Predicted = 1, Actual = 1)	$Precision(1) = \frac{TP}{TP + FP}$

$$Precision(1) = \frac{TP}{TP + FP}$$

$$Recall(0) = \frac{TN}{TN + FP}$$
 $Recall(1) = \frac{TP}{TP + FN}$

Default recall for loan status

• Default recall (or sensitivity) is the proportion of true defaults predicted

	precision	recall	f1-score	support
Non-Default	0.79	0.99	0.88	9198
Default	0.67		0.07	2586
micro avg	0.78	0.78	0.78	11784
macro avg	0.73	0.52	0.47	11784
weighted avg	0.76	0.78	0.70	11784

$$Recall(1) = \frac{TP}{TP + FN}$$

Recall portfolio impact

• Classification report - Underperforming Logistic Regression model

	precision	recall	f1-score	support
Non-Default	0.79	0.99	0.88	9198
Default	0.67	0.04	0.07	2586
micro avg	0.78	0.78	0.78	11784
macro avg	0.73	0.52	0.47	11784
weighted avg	0.76	0.78	0.70	11784

Recall portfolio impact

• Classification report - Underperforming Logistic Regression model

	precision	recall	f1-score	support
Non-Default	0.79	0.99	0.88	9198
Default	0.67	0.04	0.07	2586
micro avg	0.78	0.78	0.78	11784
macro avg	0.73	0.52	0.47	11784
weighted avg	0.76	0.78	0.70	11784

• Number of true defaults: 50,000

Loan Amount	Defaults Predicted / Not Predicted	Estimated Loss on Defaults
\$50	.04 / .96	(50000 x .96) x 50 = \$2,400,000

Recall, precision, and accuracy

• Difficult to maximize all of them because there is a trade-off

Let's practice!

CREDIT RISK MODELING IN PYTHON

