

DC Output Power

Introduction

- IPT systems rely on ac coupling to transfer power
- Most practical applications require DC voltage and currents
- This section focuses on methods of converting the coupled ac power into practical dc power
- Many topologies to achieve this
 - Full bridge rectifiers
 - Half bridge rectifiers
 - Active rectifiers
 - Current doublers
 - Voltage doublers

Learning Objectives

- By the end of this section, students will:
 - Learn about passive rectifiers and practical constraints
 - Be able to calculate output power for various tuning topologies
 - Be introduced to active rectifiers
- How you will be assessed:
 - Assignment 1
 - Test
 - Practical build

The passive full bridge rectifier

- A passive full bridge rectifier consists of four diodes
- On the left hand side, there is the IPT system with an ac input
 - Could be voltage or current sourced depending on compensation topology
- On the right hand side, there is the DC/DC converter
 - Needs to be the correct topology depending on the AC input
 - How do we know which one to use?

Voltages and currents through reactive components

- Critical equations
 - Voltage across an inductor: $v_L = L \frac{di_L}{dt}$
 - Current cannot change instantaneously across and inductor, otherwise $v_L \to \infty$
 - Current through a capacitor: $i_C = C \frac{dv_C}{dt}$
 - Voltage cannot change instantaneously through a capacitor, otherwise $i_c \to \infty$
- In the past, you will have used full bridge rectifiers where the source (V_{rec}) is connected directly to the input
 - In IPT systems, V_{oc} is tuned to an operating point through at least an inductor and a capacitor

The passive full bridge rectifier

THE UNIVERSITY OF AUCKLAND
To Whate Whater o Brank Malastru
N E W Z E A L A N D

- How does a rectifier work?
- Input and output waveforms are linked
 - If the input is sinusoidal, the output is a half-rectified wave
 - If the output is a half-rectified wave, **the input must be sinusoidal**
 - If the output is dc, the input waveform must be a square wave
- In an IPT system, the type of DC/DC converter sets the waveform at the input of the rectifier

The passive full bridge rectifier – Continuous conduction

- Rectifiers operate in one of two conditions, continuous conduction and discontinuous conduction.
 - Depends on the design of the input and the output stage
- Take this standard grid tied rectifier with an LC filter on the output
- If L is very large, then I_{dc} must be a constant dc amplitude
 - Using KCL, two of the diodes must always be conducting at any given time
- Relationship between input and output power is linear

The passive full bridge rectifier – Continuous conduction

THE UNIVERSITY OF AUCKLAND
To What Wangs o Tank Plaured
N E W Z E A L A N D

- Under continuous conduction mode:
 - Input current (I_{rec}) is a square wave
 - I_{rec} is in phase with the rectifier voltage (V_{rec})

The passive full bridge rectifier – Discontinuous conduction

- As L_{dc} decreases in size, it will slowly become a short circuit
 - The current I_{dc} will not be a constant dc value
 - The effect of the output capacitor C_{dc} begins to dominate
 - The voltage V_{dc} becomes a constant dc value
- Due to properties of a diode, rectifier cannot conduct until the forward voltage threshold is met.
- Relationship between ac input and dc output is no longer linear
 - Not always a bad thing, but hard to analyse

The passive full bridge rectifier – Discontinuous conduction

The passive full bridge rectifier – summary

- Full bridge rectifiers are commonly used to convert ac to dc
- Two modes of operation
 - Continuous conduction
 - Discontinuous conduction
- Examples given with a fixed voltage source input
- IPT systems have some slight differences
 - Input is no longer a fixed voltage source
 - V_{oc} is 'buffered' through a resonant network
- Impact on the dc side is more important to consider

DC/DC converters – brief introduction

- Two types of DC/DC converters taught in this course
 - Buck Converter
 - Boost Converter
- In this section, the focus will be on the input stage of the buck or the boost

The series compensated system - Assumptions

- A buck converter is used for a series compensated system with a constant current sourced primary
 - Constant voltage source IPT system
- Certain assumptions are made:
 - C_{in} is sufficiently large to ensure that V_{in} is a dc waveform
 - The system is operated in a state where the full bridge rectifier is always in conduction
 - There is no voltage drop across the diodes in the full bridge rectifier
 - The DC/DC converter is 100% efficient so $P_{out} = V_{dc}I_{dc}$
 - The full bridge rectifier is 100% efficient so $V_{rec}I_{rec} = V_{dc}I_{dc}$
 - The magnetic and compensation system is 100% efficiency so $V_{oc}I_{rec} = V_{dc}I_{dc}$

The series compensated system - V_{dc}

- Due to C_{in} , V_{in} must be a dc voltage
 - V_{rec} must be a square wave with amplitude $\pm V_{in}$
 - Therefore, V_{rec} can be described by the fourier series:

$$V_{rec} = \frac{4}{\pi} V_{dc} \sum_{n=1,3...}^{\infty} \frac{1}{n} \sin(n\omega t)$$

- Since the rectifier is assumed to have 100% efficiency:
 - RMS value of V_{rec} is equal to the RMS value of V_{dc}
- Since the LC network is tuned to ω , the fundamental component of V_{rec} is equal to V_{oc}

$$V_{oc} = V_{rec,n=1} = \frac{4V_{dc}}{\pi\sqrt{2}} = \frac{2\sqrt{2}V_{dc}}{\pi} \approx 0.9 V_{dc}$$

$$V_{dc} = \frac{\pi}{2\sqrt{2}} V_{oc} \approx 1.1 V_{oc}$$

• The maximum dc output voltage from a series compensated secondary with a constant current sourced primary is $\frac{2\sqrt{2}}{\pi}*V_{oc}$

The series compensated system - I_{dc}

• We have assumed a 100% efficient rectifier and buck converter so:

$$\begin{split} V_{oc}I_{rec} &= V_{rec}I_{rec} = V_{dc}I_{dc} \\ &\frac{2\sqrt{2}V_{dc}}{\pi}I_{rec} = V_{dc}I_{dc} \\ &I_{rec} = \frac{\pi}{2\sqrt{2}}I_{dc} \\ &I_{dc} = \frac{2\sqrt{2}}{\pi}I_{rec} \end{split}$$

• For the series compensated system, I_{rec} is also the current that flows through the secondary coil

The series compensated system – with a boost converter

- What happens if we put a boost converter here?
- The boost converter has a dc inductor on the input stage
- This dc inductor forces the current to be a dc waveform
- Due to how the rectifier works, this forces I_{rec} to be a square wave
- If I_{rec} is square:

$$v_L = L \frac{di_L}{dt}$$

Where v_L is the voltage across the secondary coil inductor $i_L = I_{rec}$, and dt is the change in time

- Square waves will have a very small dt on the switching edges
 - High induced voltages across the pick-up coil

Boost Converter

The series compensated system – summary

- The series compensated secondary is a voltage source
- A DC/DC converter with a capacitive input must be used (doesn't have to be a buck) for the series compensated secondary
 - An inductor-based input will cause large di/dt across the pick-up inductor
- A full bridge rectifier for a series compensated secondary boosts the dc voltage (V_{dc}) by approximately 1.1 times
- A full bridge rectifier for a series compensated secondary decreases the dc current (I_{dc}) by approximately 1.1 times
- More detail will be taught later on in this course

The parallel compensated system

- A boost converter is used for a parallel compensated system with a constant current sourced primary
- Certain assumptions are made:
 - The parallel tuned system is perfectly compensated
 - L_{dc} is sufficiently large to ensure that I_{dc} is a dc waveform
 - The system is operated in a state where the full bridge rectifier is always in conduction
 - There is no voltage drop across the diodes in the full bridge rectifier
 - The DC/DC converter is 100% efficient so $P_{out} = V_{dc}I_{dc}$
 - The full bridge rectifier is 100% efficient so $V_{rec}I_{rec} = V_{dc}I_{dc}$
 - The magnetic and compensation system is 100% efficiency so $V_{rec}I_{sc} = V_{rec}I_{rec}$

The parallel compensated system - I_{dc}

- Due to L_{dc} , I_{dc} must be a dc current
 - I_{rec} must be a square wave with amplitude $\pm I_{dc}$
 - Therefore, V_{rec} can be described by the fourier series:

$$I_{rec} = \frac{4}{\pi} I_{dc} \sum_{n=1,3...}^{\infty} \frac{1}{n} \sin(n\omega t)$$

- Since the rectifier is assumed to have 100% efficiency:
 - RMS value of V_{rec} is equal to the RMS value of V_{dc}
- Since the LC network is tuned to ω , the fundamental component of I_{rec} is equal to I_{sc}

$$I_{sc} = I_{rec,n=1} = \frac{4I_{dc}}{\pi\sqrt{2}} = \frac{2\sqrt{2}I_{dc}}{\pi} \approx 0.9 I_{dc}$$

$$I_{dc} = \frac{\pi}{2\sqrt{2}}I_{sc} \approx 1.1 I_{sc}$$

• The maximum dc output current from a parallel compensated secondary with a constant current sourced primary is $\frac{2\sqrt{2}}{\pi}*I_{sc}$

The parallel compensated system – with a buck converter

- What happens if we design a parallel tuned system with a buck converter?
- The output capacitor holds V_{dc} constant
- *V_{rec}* must be a square wave
 - Voltage across the tuning capacitor must be square
 - $i_c = C \frac{dv_c}{dt}$
 - Large currents may be induced in the parallel capacitor

Practical considerations

- In practice:
 - System efficiencies will degrade the performance of the system, therefore the ratios between V_{rec} and V_{dc} , as well as I_{rec} and I_{dc} will be different
- Additional losses in the R_{esr} of the inductors and capacitors
- Forward voltage drops (V_f) across diodes will also cause additional losses
- Diodes may not always be conducting
 - Operating in discontinuous mode will affect the efficiency of the rectifier

Active rectifiers

• One source of loss in any rectifier is caused by the forward voltage drop of the diodes

$$P_{loss,vf} = V_f I_f$$
 per diode

- Active rectifiers replace the diodes with actively switching MOSFETs
 - MOSFET on resistance loss is much lower than forward voltage drop loss

$$P_{loss,on} = I_f^2 R_{ds,on}$$
 per diode

- Need to control the switches so they turn on at the right time
- Can be achieved using a simple Schmitt trigger circuit or more complex digital controller applications

AC/DC converters summary

- AC/DC converters are critical for all IPT applications
 - To transform the coupled ac energy into a useful dc form (battery charging, dc motor driving)
- Passive full bridge rectifiers are the most common method
 - Cheapest (only need four diodes)
 - Simplest (no control needed)
- Can go discontinuous
- Not the best efficiency (dependent on V_f drops)
 - Can be improved by using active rectifiers
- Certain secondary compensation topologies can only be used with certain types of DC/DC converters
 - Limited by the input stage of the required DC/DC converter and the compensation topology
 - Series compensated secondaries need a capacitor after the full bridge rectifier
 - Parallel compensated secondaries need an inductor after the full bridge rectifier