

Language: French

Day: 1

Mercredi 7 juillet 2010

Problème 1. Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que, pour tous $x, y \in \mathbb{R}$:

$$f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor.$$

(On note |z| le plus grand entier inférieur ou égal à z.)

Problème 2. Soit I le centre du cercle inscrit dans le triangle ABC et soit Γ son cercle circonscrit. La droite (AI) recoupe Γ en D. Soit E un point de l'arc \widehat{BDC} et F un point du côté [BC] tels que

$$\widehat{BAF} = \widehat{CAE} < \frac{1}{2}\widehat{BAC}.$$

Soit enfin G le milieu du segment [IF].

Montrer que les droites (DG) and (EI) se coupent en un point de Γ .

Problème 3. \mathbb{N}^* désigne l'ensemble des entiers strictement positifs.

Déterminer toutes les fonctions $g: \mathbb{N}^* \to \mathbb{N}^*$ telles que, pour tous $m, n \in \mathbb{N}^*$,

$$(g(m)+n)(m+g(n))$$

soit un carré parfait.

Language: French

Durée : 4 heures et 30 minutes Chaque problème vaut 7 points

Language: French

Day: 2

Jeudi 8 juillet 2010

Problème 4. Soit P un point intérieur au triangle ABC. Les droites (AP), (BP) et (CP) recoupent Γ , cercle circonscrit au triangle ABC, respectivement aux points K, L et M. La tangente en C à Γ coupe la droite (AB) en S. On suppose que SC = SP.

Montrer que MK = ML.

Problème 5. Au début, chacune des six boîtes $B_1, B_2, B_3, B_4, B_5, B_6$ contient un jeton. Deux types d'opération sont possibles :

- Type 1 : Choisir une boîte non vide B_j avec $1 \leq j \leq 5$; ôter un jeton de la boîte B_j et ajouter deux jetons à la boîte B_{j+1} .
- Type 2 : Choisir une boîte non vide B_k avec $1 \leq k \leq 4$; ôter un jeton de la boîte B_k et échanger les contenus des boîtes (éventuellement vides) B_{k+1} et B_{k+2} .

Est-il possible, à la suite d'un nombre fini de telles opérations, que les boîtes B_1, B_2, B_3, B_4, B_5 soient vides et que la boîte B_6 contienne exactement $2010^{2010^{2010}}$ jetons ? (Noter que $a^{b^c} = a^{(b^c)}$.)

Problème 6. Soit a_1, a_2, a_3, \ldots une suite de nombres réels strictement positifs. On suppose qu'il existe un entier s strictement positif tel que, pour tout n > s, on ait :

$$a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n - 1\}.$$

Montrer qu'il existe des entiers strictement positifs ℓ et N, avec $\ell \leqslant s$, tels que, pour tout $n \geqslant N$:

$$a_n = a_\ell + a_{n-\ell}.$$

Language: French

Durée : 4 heures et 30 minutes Chaque problème vaut 7 points