Escribir las tablas de encaminamiento de A, B y C:

La tabla de encaminamiento del dispositivo A es la siguiente:

Red destino	Siguiente	Saltos
200.100.4.0	200.100.4.100	0
130.130.0.0	130.130.130.130	0
153.153.0.0	130.130.1.1	1
220.34.1.0	130.130.1.1	1
default	130.130.130.130	1

Por su parte, la tabla de encaminamiento de B es la siguiente:

Red destino	Siguiente	Saltos
200.100.4.0	130.130.1.1	1
130.130.0.0	130.130.1.1	0
153.153.0.0	130.130.1.1	0
220.34.1.0	130.130.130.130	0
default	220.34.1.220	0

Finalmente, la tabla de encaminamiento de C es la siguiente:

200.100.4.0	130.130.130.130	1
130.130.0.0	220.34.1.1	1
153.153.0.0	220.34.1.1	1
220.34.1.0	220.34.1.1	0

Actividad 4.2

Dividir la dirección de red 160.120.10.0/24 en las siguientes subredes:

- 3 redes de 50 ordenadores.
- 4 redes de 12 ordenadores.

Calculo la dirección de red

160.120.10.0/24

Paso la parte hostid de la red a binario

160.120.10.00000000/24

Calculo el número de bits que necesito para dividir (2*n ≥ n° de divisiones)

2*2 ≥ 4 Utilizo 2 bits

Calculo el número de ordenadores que puede tener cada subred

64 equipos, pero realmente son 62.

Realizo las divisiones

160.120.10.00000000/26 = 160.120.10.0/26

Direccion de red: 160.120.10.0
Direccion hosts: 160.120.10.1-62
Direccion broadcast: 160.120.10.63
160.120.10.010000000/26 = 160.120.10.64/26

Direccion de red: 160.120.10.64 Direccion hosts: 160.120.10.5-126 Direccion broadcast: 160.120.10.127 160.120.10.10000000/26 = 160.120.10.128/26

Direccion de red: 160.120.10.128
Direccion hosts: 160.120.10.129-190
Direccion broadcast: 160.120.10.191
160.120.10.1000000/26 = 160.120.10.192/26
Direccion de red: 160.120.10.192

Direccion de red: 160.120.10.192 Direccion hosts: 160.120.10.193-254 Direccion broadcast: 160.120.10.255

¿Cuántas direcciones IP se pierden?

Entre las direcciones de red y broadcast, en total se pierden 64 direcciones IP, que son las correspondientes a la última subred.

Actividad 4.3

Completar la siguiente tabla según la información dada. Dirección de Red 220.100.100.0/30

Clase	Clase C
Máscara de red	255.255.255.0
Máscara de subred	255.255.255.252
N° total de subredes	64
N° de subredes útiles	62
N° total de direcciones de host	4
N° de direcciones útiles de host	2
N° de bits cogidos para las subredes	6
¿Cuál es el número de la 4ª subred?	220.100.100.12
Dirección broadcast para la 2° subred	220.100.100.7
¿Cuáles son las direcciones asignables de la 3° subred?	220.100.100.9 - 220.100.100.10

Actividad 4.4

Enumera los servicios que has visto en la unidad.

Servicio DHCP: se encarga de gestionar la asignación de direcciones IP y de la información de configuración de la red en general.

Servicio DNS: se encarga de traducir el nombre de una web (www.mec.es) en su dirección IP.

Servicio FTP: se encarga de permitir la transferencia de ficheros.

Servicio Web: se encarga del almacenaje y la difusión de información mediante la distribución de páginas HTML.

Servicio de correo electrónico: es un sistema para la transferencia de mensajes, rápido y eficiente, ideado bajo la arquitectura cliente-servidor típica de Internet.

Servicio de acceso remoto: permite acceder de forma remota a un equipo a través de la red.