SE328:Topology

Hyosang Kang¹

 1 Division of Mathematics School of Interdisciplinary Studies DGIST

Week 10

For two metric space X, Y, a function $f: X \to Y$ is said to be **uniformly continuous** if for any $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x_1, x_2 \in X$,

$$d(x_1, x_2) < \delta \Rightarrow d(f(x_1), f(x_2)) < \varepsilon$$

Theorem (Uniform continuity theorem)

Let $f: X \to Y$ be a continuous function between metric spaces. If X is compact, then f is uniformly continuous.

Theorem

Let X be a metric space with metric d. If X is compact, then for every open covering A, there is $\delta > 0$ such that any subset whose diameter less than δ is contained in an element of A.

Example

Let $f: X \to Y$ be a continuous map between metric spaces. If X is compact, then f is uniformly continuous.

Let x_n be sequence in X and x_{n_i} be a subsequence. If every sequence in X has a convergent subsequence, then X is said to be **sequentially compact**. Meanwhile, X is said to be **limit point compact** if every infinite subset of X has a limit point.

Proposition

If X is a metric space, then the followings are equivalent:

- 1. X is compact,
- 2. X is limit point compact.
- 3. X is sequenctially compact,

A space X is said to have a **countable basis at** x if there is a countable collection \mathcal{B} of neighborhoods of x such that each neighborhood contains at least one of the elements of \mathcal{B} . If a space X has a countable basis at every point in X, then we say X satisfies the **first countability axiom** or X is **first-countable**.

Example

Show that every metrizable space is first countable.

If a space have countable basis, then we say X satisfies the second countability axiom, or X is second countable.

Example

Show that the uniform topology on \mathbf{R}^{ω} satisfies the first countability axiom, but not satisfies the second countability axiom.

Example

Show that every compact metrizable space has a countable basis.

A subset A of a space X is said to be **dense** if $\overline{A} = X$.

Example

The set of rational numbers are dense in the lower-limit topology \mathbf{R}_l .

A space for which every open covering contains a countable subcovering is called a **Lindelöf** space. A space having a countable dense subset is said to be **separable**.

Theorem

Suppose that X is second countable. Then

- 1. X is Lindelöf.
- 2. X is separable.

Example

- 1. Show that the lower limit topology \mathbf{R}_l is Lindelöf but not second countable.
- 2. Show that $\mathbf{R}_l \times \mathbf{R}_l$ is not Lindelöf.
- 3. Show that the order topology I^2 where I = [0, 1] is Lindelöf but the subspace topology $I \times (0, 1) \subset I^2$ is not.

Theorem

Let X be a metrizable space. Then X is second countable if X is either Lindelöf or separable.

Suppose that one-point sets are closed in X. (We say X is T_1 .) Then X is said to be **regular** if for each pair consisting of a point x and a closed set B disjoint from x, there exists disjoint open sets containing x and B, respectively. The space X is said to be **normal** if for each pair A, B of disjoint closed sets of X, there exist disjoint open sets containing A and B, respectively.

Lemma

Let X be T_1 .

- 1. X is regular if and only if given a point $x \in X$ and a neighborhood U of x, there is a neighborhood V of x such that $\overline{V} \subset U$.
- 2. X is normal if and only if given a closed set A and an open set U containing A, there is an open set V containing A and $\overline{V} \subset U$.

Theorem

- 1. A subspace of a Haudorff space is Hausdorff.
- 2. A product of Hausdorff spaces is Hausdorff.
- 3. A subspace of regular space is regular.
- 4. A product of regular spaces is regular.

Example

- 1. Show that \mathbf{R}_K is Hausdorff but not regular.
- 2. Show that \mathbf{R}_l is normal but \mathbf{R}_l^2 is not.