# **Analyze A/B Test Results**

# **Table of Contents**

- Introduction
- Part I Probability
- Part II A/B Test
- Part III Regression

# Introduction

A/B tests are very commonly performed by data analysts and data scientists.

# Part I - Probability

To get started, let's import our libraries.

# In [1]:

```
import pandas as pd
import numpy as np
import random
import matplotlib.pyplot as plt
%matplotlib inline
#Setting the seed
random.seed(42)
```

Now, reading the ab\_data.csv data. Storing it in df.

Reading the dataset and having a look at the top few rows here:

# In [2]:

```
df=pd.read_csv('ab_data.csv')
df.head()
```

# Out[2]:

|   | user_id | timestamp                  | group     | landing_page | converted |
|---|---------|----------------------------|-----------|--------------|-----------|
| 0 | 851104  | 2017-01-21 22:11:48.556739 | control   | old_page     | 0         |
| 1 | 804228  | 2017-01-12 08:01:45.159739 | control   | old_page     | 0         |
| 2 | 661590  | 2017-01-11 16:55:06.154213 | treatment | new_page     | 0         |
| 3 | 853541  | 2017-01-08 18:28:03.143765 | treatment | new_page     | 0         |
| 4 | 864975  | 2017-01-21 01:52:26.210827 | control   | old page     | 1         |

Number of rows in the dataset.

```
In [3]:
```

```
df.shape[0]
```

#### Out[3]:

294478

Number of unique users in the dataset.

```
In [4]:
```

```
df.user_id.nunique()
```

#### Out[4]:

290584

The proportion of users converted.

#### In [5]:

```
k=df.groupby(['user_id'])['converted'].mean()
t=pd.DataFrame(k)
t.mean()
```

# Out[5]:

converted 0.119556
dtype: float64

The number of times the new\_page and treatment don't match.

# In [6]:

```
df[((df['group'] == 'treatment') != (df['landing_page'] == 'new_page')) == True].shape[
0]
```

# Out[6]:

3893

Do any of the rows have missing values?

#### In [7]:

```
df.info()
```

memory usage: 11.2+ MB

For the rows where **treatment** does not match with **new\_page** or **control** does not match with **old\_page**, we cannot be sure if this row truly received the new or old page.

```
In [13]:
```

```
df.drop(df.query("group == 'treatment' and landing_page == 'old_page'").index, inplace=
True)
df.drop(df.query("group == 'control' and landing_page == 'new_page'").index, inplace=Tr
ue)
```

# In [14]:

```
df.to_csv('ab_edited.csv', index=False)
```

# In [52]:

```
df2 = pd.read_csv('ab_edited.csv')
```

# In [16]:

```
# Double Check all of the correct rows were removed - this should be 0
df2[((df2['group'] == 'treatment') == (df2['landing_page'] == 'new_page')) == False].sh
ape[0]
```

#### Out[16]:

0

#### User ids in df2

# In [17]:

```
df2.user_id.nunique()
```

#### Out[17]:

290584

User\_id repeated in df2.

In [18]:

df2.user\_id.value\_counts()

# Out[18]:

| X/XUY/ ' | 828097 1 832195 1 838348 1 821956 1 734668 1 736717 1 730574 1 775632 1 771538 1 642451 1 773587 1 783828 1 783828 1 785877 1 779734 1 781783 1 759256 1 726472 1 748999 1 746950 1 753093 1 751044 1 740803 1 738754 1 742848 1 634271 1 632222 1 636316 1 630169 1 650647 1 | 773192<br>630732<br>811737<br>797392<br>795345<br>801490<br>799443<br>787157<br>793302<br>817882<br>842446<br>815835<br>805596<br>803549<br>809694<br>807647<br>895712<br>840399<br>836301<br>899810<br>834242<br>936604<br>934557<br>940702<br>938655<br>830144 | 2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|          | 650647 1                                                                                                                                                                                                                                                                      | 736717<br>730574<br>775632<br>771538<br>642451<br>773587<br>783828<br>785877<br>779734<br>781783<br>759256<br>726472<br>748999<br>746950<br>753093<br>751044<br>740803<br>738754<br>744897<br>742848<br>634271<br>632222<br>636316<br>630169                     |                                                                                                  |

652692 1 630836 1

Name: user\_id, Length: 290584, dtype: int64

Row information for the repeat user\_id

# In [19]:

```
df2.query('user_id == 773192')
```

# Out[19]:

| converted | landing_page | group     | timestamp                  | user_id |      |
|-----------|--------------|-----------|----------------------------|---------|------|
| 0         | new_page     | treatment | 2017-01-09 05:37:58.781806 | 773192  | 1876 |
| 0         | new_page     | treatment | 2017-01-14 02:55:59.590927 | 773192  | 2862 |

Removing one of the rows with a duplicate user\_id, but keeping dataframe as df2.

# In [20]:

```
df2.drop_duplicates('user_id',inplace=True)
```

# In [21]:

```
# Checking for above operation
df2.query('user_id == 773192')
```

# Out[21]:

|      | user_id | timestamp                  | group     | landing_page | converted |
|------|---------|----------------------------|-----------|--------------|-----------|
| 1876 | 773192  | 2017-01-09 05:37:58.781806 | treatment | new page     | 0         |

What is the probability of an individual converting regardless of the page they receive?

#### In [22]:

```
df2['converted'].mean()
```

# Out[22]:

#### 0.11959708724499628

Given that an individual was in the control group, what is the probability they converted?

#### In [23]:

```
df_grp = df2.groupby('group')
df_grp.describe()
```

### Out[23]:

|   |           | converted |          |          |     |     |     |     |     | user_id  |              |
|---|-----------|-----------|----------|----------|-----|-----|-----|-----|-----|----------|--------------|
|   |           | count     | mean     | std      | min | 25% | 50% | 75% | max | count    | mean         |
|   | group     |           |          |          |     |     |     |     |     |          |              |
|   | control   | 145274.0  | 0.120386 | 0.325414 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 145274.0 | 788164.07259 |
|   | treatment | 145310.0  | 0.118808 | 0.323564 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 145310.0 | 787845.71929 |
| 4 |           |           |          |          |     |     |     |     |     |          | •            |

Given that an individual was in the treatment group, what is the probability they converted?

# In [24]:

```
#Answer can inferred from above table for treatment group
```

What is the probability that an individual received the new page?

# In [25]:

```
df2.query('landing_page == "new_page"').user_id.nunique()/df2.user_id.nunique()
```

# Out[25]:

#### 0.5000619442226688

#### Conclusion

No, there is insufficient evidence that new treatment leads to more conversions as the results obtained are reverse.

# Part II - A/B Test

The **conversion rate** for  $p_{new}$  under the null

# In [26]:

```
p_new=df2['converted'].mean()
p_new
```

# Out[26]:

#### 0.11959708724499628

The conversion rate for  $p_{old}$  under the null

```
In [27]:
```

```
p_old=df2['converted'].mean()
p_old
```

# Out[27]:

#### 0.11959708724499628

 $n_{new}$ , the number of individuals in the treatment group

# In [28]:

```
n_new=df2.query('group =="treatment"').user_id.nunique()
n_new
```

### Out[28]:

145310

 $n_{old}$ , the number of individuals in the control group

# In [29]:

```
n_old=df2.query('group =="control"').user_id.nunique()
n_old
```

#### Out[29]:

145274

Simulating  $n_{new}$  transactions with a conversion rate of  $p_{new}$  under the null and storing these  $n_{new}$  1's and 0's in **new\_page\_converted**.

# In [30]:

```
new_page_converted = np.random.choice([0,1],n_new, p=(1-p_new,p_new))
new_page_converted
```

# Out[30]:

```
array([0, 0, 0, ..., 0, 0, 0])
```

Simulate  $n_{old}$  transactions with a conversion rate of  $p_{old}$  under the null storing these  $n_{old}$  1's and 0's in old\_page\_converted.

#### In [31]:

```
old_page_converted = np.random.choice([0,1],n_old, p=(1-p_old,p_old))
old_page_converted
```

#### Out[31]:

```
array([0, 0, 0, ..., 0, 0, 0])
```

 $p_{new}$  -  $p_{old}$  simulated values

#### In [32]:

```
obs_diff=new_page_converted.mean()-old_page_converted.mean()
obs_diff
```

# Out[32]:

#### -0.0007315221199237082

Creating 10,000  $p_{new}$  -  $p_{old}$  values using the same simulation process used above. Storing all 10,000 values in a NumPy array called **p\_diffs**.

# In [33]:

```
p_diffs=[]
size=df.shape[0]
for i in range(10000):
    samp=df2.sample(size,replace=True)
    old_samp_conv=np.random.choice([0,1],n_old, p=(p_old,1-p_old))
    new_samp_conv= np.random.choice([0,1],n_new, p=(p_new,1-p_new))
    p_diffs.append(new_samp_conv.mean()-old_samp_conv.mean())
```

A histogram of the **p\_diffs**. This plot looks like what we expected.

### In [34]:

```
p_diffs=np.array(p_diffs)
plt.hist(p_diffs)
plt.show()
```



Proportion of the **p\_diffs** are greater than the actual difference observed in **ab\_data.csv** 

#### In [35]:

```
convert_new = df2.query('converted == 1 and landing_page == "new_page"')['user_id'].nun
ique()
convert_old = df2.query('converted == 1 and landing_page == "old_page"')['user_id'].nun
ique()
actual_cvt_new = float(convert_new)/ float(n_new)
actual_cvt_old = float(convert_old)/ float(n_old)
obs_diff = actual_cvt_new - actual_cvt_old
null_vals = np.random.normal(0, p_diffs.std(), p_diffs.size)
plt.hist(null_vals)
#Plot vertical line for observed statistic
plt.axvline(x=obs_diff,color ='red')
(null_vals > obs_diff).mean()
```

# Out[35]:

#### 0.9053



Explanation

Type I error rate of 5%, and Pold > Alpha, we fail to reject the null.

Therefore, the data show, with a type I error rate of 0.05, that the old page has higher probablity of convert rate than new page.

P-Value: The probability of observing our statistic or a more extreme statistic from the null hypothesis.

We could also use a built-in to achieve similar results. Though using the built-in might be easier to code, the above portions are a walkthrough of the ideas that are critical to correctly thinking about statistical significance. Calculate the number of conversions for each page, as well as the number of individuals who received each page. Let n\_old and n\_new refer the number of rows associated with the old page and new pages, respectively.

#### In [49]:

```
import statsmodels.api as sm

convert_old = df2.query('group == "control"')['converted'].mean()
convert_new = df2.query('group == "treatment"')['converted'].mean()
n_old = df2.query('landing_page == "old_page"').shape[0]
n_new = df2.query('landing_page == "new_page"').shape[0]
```

# In [37]:

```
n_old
```

#### Out[37]:

145274

Now using stats.proportions ztest to compute our test statistic and p-value.

#### In [50]:

```
z_score, p_val=sm.stats.proportions_ztest([convert_old, convert_new], [n_old, n_new])
z_score, p_val
```

# Out[50]:

```
(0.0032875796753531767, 0.9973768956597913)
```

What do the z-score and p-value computed above mean for the conversion rates of the old and new pages? Do they agree with the findings beforehand.

It indicates that the difference is insignificant.

Hence null hypothesis cannot be rejected which agree with our findings beforehand.

# Part III - A regression approach

1. The result we achieved in the A/B test in Part II above can also be achieved by performing regression.

Type of regression we should be performing in this case.

Logistic regression because here we are dealing with categorical variables.

# In [53]:

```
df2['intercept']=1
df2=df2.join(pd.get_dummies(df['landing_page']))
df2['ab_page']=pd.get_dummies(df2['group'])['treatment']
df2.head()
```

# Out[53]:

|   | user_id | timestamp                     | group     | landing_page | converted | intercept | new_page | old_pa( |
|---|---------|-------------------------------|-----------|--------------|-----------|-----------|----------|---------|
| 0 | 851104  | 2017-01-21<br>22:11:48.556739 | control   | old_page     | 0         | 1         | 0.0      | 1       |
| 1 | 804228  | 2017-01-12<br>08:01:45.159739 | control   | old_page     | 0         | 1         | 0.0      | 1       |
| 2 | 661590  | 2017-01-11<br>16:55:06.154213 | treatment | new_page     | 0         | 1         | 1.0      | О       |
| 3 | 853541  | 2017-01-08<br>18:28:03.143765 | treatment | new_page     | 0         | 1         | 1.0      | О       |
| 4 | 864975  | 2017-01-21<br>01:52:26.210827 | control   | old_page     | 1         | 1         | 0.0      | 1       |
| 4 |         |                               |           |              |           |           |          | •       |

Using **statsmodels** to instantiate regression model on the two columns you created in above, then fitting the model using the two columns you created beforehand to predict whether or not an individual converts.

# In [54]:

```
results=sm.Logit(df2['converted'],df2[['intercept','ab_page']]).fit()
```

Optimization terminated successfully.

Current function value: 0.366118

Iterations 6

Summary of the model below

# In [55]:

```
results.summary()
```

#### Out[55]:

Logit Regression Results

| Dep. Varia | ble:     | conve      | rted         | No. 0           | Observa | tions:    | 2905      | 85  |
|------------|----------|------------|--------------|-----------------|---------|-----------|-----------|-----|
| Мо         | del:     | L          | .ogit        | Df Residuals:   |         | 2905      | 83        |     |
| Meth       | nod:     | 1          | MLE          |                 | Df N    | /lodel:   |           | 1   |
| D          | ate: Fri | , 22 Feb 2 | 019          | Pseudo R-squ.:  |         | 8.085e    | -06       |     |
| Time:      |          | 12:00      | 6:59         | Log-Likelihood: |         | -1.0639e+ | -05       |     |
| conver     | ged:     | -          | True         |                 | LL      | Null:     | -1.0639e+ | -05 |
|            |          |            |              |                 | LLR p-  | value:    | 0.18      | 897 |
|            | coef     | std err    |              | z               | P> z    | [0.025    | 0.975]    |     |
| intercept  | -1.9888  | 0.008      | <b>-</b> 246 | .669            | 0.000   | -2.005    | -1.973    |     |
| ab_page    | -0.0150  | 0.011      | -1           | .312            | 0.190   | -0.037    | 0.007     |     |

Now, considering other things that might influence whether or not an individual converts.

We can consider adding new factors such timestamp to decide whether it plays an important role in predicting the results better.

Time stamp can be fuether divided into categories such as morning, Afternoon, Evening etc.

A disadvantage of adding new factors is that it will make the results complex further if the new factors are dependable with existing explanatory variables then we need to add more complex and higher order terms to help predict better results.

Now along with testing if the conversion rate changes for different pages, also adding an effect based on which country a user lives in.

# In [42]:

```
c=pd.read_csv('countries.csv')
c.head()
```

#### Out[42]:

|   | user_id | country |
|---|---------|---------|
| 0 | 834778  | UK      |
| 1 | 928468  | US      |
| 2 | 822059  | UK      |
| 3 | 711597  | UK      |
| 4 | 710616  | UK      |

# In [56]:

```
df3=df2.merge(c,on='user_id',how='left')
c.country.unique()
```

# Out[56]:

array(['UK', 'US', 'CA'], dtype=object)

# In [57]:

```
df3[['CA','US','UK']]=pd.get_dummies(df3['country'])
```

# In [58]:

```
df3=df3.drop(df3['CA'])
df3.head()
```

# Out[58]:

|   |         | 4:                            |           | landina nana |           | :tt       |          | اما م    | _ |
|---|---------|-------------------------------|-----------|--------------|-----------|-----------|----------|----------|---|
|   | user_id | timestamp                     | group     | landing_page | converted | intercept | new_page | old_     |   |
| 2 | 661590  | 2017-01-11<br>16:55:06.154213 | treatment | new_page     | 0         | 1         | 1.0      |          |   |
| 3 | 853541  | 2017-01-08<br>18:28:03.143765 | treatment | new_page     | 0         | 1         | 1.0      |          |   |
| 4 | 864975  | 2017-01-21<br>01:52:26.210827 | control   | old_page     | 1         | 1         | 0.0      |          |   |
| 5 | 936923  | 2017-01-10<br>15:20:49.083499 | control   | old_page     | 0         | 1         | 0.0      |          |   |
| 6 | 679687  | 2017-01-19<br>03:26:46.940749 | treatment | new_page     | 1         | 1         | 1.0      |          | ~ |
| 4 |         |                               |           |              |           |           |          | <b>•</b> |   |

# In [59]:

```
df3['intercept']=1
```

# In [70]:

```
df3['new_page'].value_counts()
```

# Out[70]:

1.01433740.0143368

Name: new\_page, dtype: int64

#### In [71]:

```
log_mod = sm.Logit(df3['converted'], df3[['intercept','ab_page','UK', 'US']])
results = log_mod.fit()
results.summary()
```

Optimization terminated successfully.

Current function value: 0.366114

Iterations 6

### Out[71]:

Logit Regression Results

| Dep. Varia     | ıble:     | conve    | rted <b>N</b> | No. Observations: |       | 290583      |             |
|----------------|-----------|----------|---------------|-------------------|-------|-------------|-------------|
| Мо             | del:      | L        | .ogit         | Df                | Res   | iduals:     | 290579      |
| Metl           | nod:      | N        | MLE           |                   | Df    | Model:      | 3           |
| D              | ate: Fri, | 22 Feb 2 | 019           | Pseu              | ıdo I | R-squ.:     | 2.326e-05   |
| T              | ime:      | 12:24    | 4:39          | Log-              | Like  | lihood:     | -1.0639e+05 |
| conver         | ged:      | 7        | True          | LL-Null:          |       | -1.0639e+05 |             |
|                |           |          |               | LI                | _R p  | -value:     | 0.1756      |
|                | coef      | std err  |               | z P>              | • z   | [0.025      | 0.975]      |
| intercept      | -2.0300   | 0.027    | -76.24        | 8 0.0             | 000   | -2.082      | -1.978      |
| ab_page -0.015 |           | 0.011    | -1.30         | 9 0.1             | 91    | -0.037      | 0.007       |
| UK             | 0.0408    | 0.027    | 1.51          | 6 0.1             | 29    | -0.012      | 0.093       |
| US             | 0.0506    | 0.028    | 1.78          | 4 0.0             | 75    | -0.005      | 0.106       |

From the result above it is clear that the use of columns is not significant in predicting the conversion rate as depicted by the p-values.

#### In [72]:

```
1/np.exp(-0.015),np.exp(0.0408),np.exp(0.0506)
```

#### Out[72]:

(1.015113064615719, 1.0416437559600236, 1.0519020483004984)

#### Interpreting Result:

For every unit for new\_page decrease, convert will be 1.5% more likely to happen, holding all other varible constant.

For every unit for UK increases, convert is 5.2% more to happen, holding all other varible constant.

For every unit for US increases, convert is 4.2% more to happen, holding all other varible constant.

Though we have now looked at the individual factors of country and page on conversion, we would now like to look at an interaction between page and country to see if there significant effects on conversion.

### In [73]:

```
df3['UK_new_page'] = df3['ab_page']* df3['UK']
df3['US_new_page'] = df3['ab_page']* df3['US']
logit4 = sm.Logit(df3['converted'], df3[['intercept','ab_page','UK_new_page','US_new_page','UK','US']])
result4 = logit4.fit()
result4.summary()
```

Optimization terminated successfully.

Current function value: 0.366110

Iterations 6

# Out[73]:

Logit Regression Results

| Dep. Variable: | converted  |         | No. Obse        | rvation | s:              | : 290583         |  |
|----------------|------------|---------|-----------------|---------|-----------------|------------------|--|
| Model:         |            | Logit   | Df R            | esidual | s:              | 290577           |  |
| Method:        |            | MLE     | I               | Of Mode | ıl:             | 5                |  |
| Date:          | Fri, 22 Fe | b 2019  | Pseud           | o R-squ | ı <b>.:</b> 3.4 | 485e <b>-</b> 05 |  |
| Time:          | 1:         | 2:30:34 | Log-Likelihood: |         | d: -1.06        | 39e+05           |  |
| converged:     |            | True    |                 | LL-Nul  | II: -1.06       | 39e+05           |  |
|                |            |         | LLR p-value:    |         | e:              | 0.1915           |  |
|                | coef       | std err | z               | P> z    | [0.025          | 0.975]           |  |
| intercept      | -2.0040    | 0.036   | -55.008         | 0.000   | <b>-</b> 2.075  | -1.933           |  |
| ab_page        | -0.0674    | 0.052   | -1.297          | 0.195   | -0.169          | 0.034            |  |
| UK_new_page    | 0.0469     | 0.054   | 0.871           | 0.384   | -0.059          | 0.152            |  |
| US_new_page    | 0.0783     | 0.057   | 1.378           | 0.168   | -0.033          | 0.190            |  |
| UK             | 0.0176     | 0.038   | 0.466           | 0.641   | -0.056          | 0.091            |  |
| US             | 0.0118     | 0.040   | 0.296           | 0.767   | -0.066          | 0.090            |  |

#### In [74]:

```
np.exp(result4.params)
```

# Out[74]:

intercept 0.134794
ab\_page 0.934776
UK\_new\_page 1.047966
US\_new\_page 1.081428
UK 1.017705
US 1.011854

dtype: float64

# Interpreting the result

From the above Logit Regression Results, we can see the coefficient of intereaction variable "UK\_new\_page" and "US\_new\_page" are different from the coefficient of ab\_page itself.

Also, only intercept's p-value is less than 0.05, which is statistically significant enough for converted rate. Other variable in the summary are not statistically significant.

Additionally, Z-score for all X variables are not large enough to be significant for predicting converted rate.

Therefore, the country a user lives is not significant on the converted rate considering the page the user land in.

For every unit for new\_page decreases, convert will be 9.34% more likely to happen, holding all other varible constant.

Convert is 1.08 times more likely to happen for US and new page users than CA and new page users, holding all other varible constant.

Convert is 1.04 times more likely to happen for UK and new page users than CA and new page users, holding all other varible constant.

Convert is 1.18 % more likely to happen for the users in US than CA, holding all other varible constant.

Convert is 1.76 % more likely to happen for the users in UK than CA, holding all other varible