

Describe T.V Supp
$$(XJ = \{X_1, X_2, ...\})$$

E[XJ: = $\int_{X_1} X(w) d P(w)$
 $\int_{W_1} X(w) d P(w) + \int_{W_2} X(w) d(w)$
 $\int_{W_1} X(w) d P(w) + \int_{W_2} X(w) d(w)$
 $\int_{W_1} X(w) = X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_{W_2} dP(w) + X_2 \int_{W_2} dP(w) + ...$

= $X_1 \int_$

is close to 1/3 (pivot).

ECXJ & SUPP CXJ

*
$$X \sim \text{Bern } (p)$$

$$E(X) = Op(6) + 1p(1)$$

$$= P$$

$$E[X] = 1p(1) + Sp(5) + 6p(6)$$

= $\frac{1}{3}(1+5+6) = \boxed{4}$

General

$$E[x] = Op(0) + 1p(1) + 2p(2) + 3p(3) + 4p(4) + 5p(5) + 6p(6) + 7P(7) + 8p(8)$$

$$P(0) = \binom{8}{2} \left(\frac{1}{2}\right)^{9} \left(\frac{1}{2}\right)^{8}$$

$$P(1) = \binom{8}{2} \left(\frac{1}{2}\right)^{1} \left(\frac{1}{2}\right)^{7}$$

$$\frac{1}{2}^{9}$$

$$E(x) = \frac{1}{2^8} \left(\frac{1}{8} + 2 \left(\frac{8}{2} \right) + 3 \left(\frac{8}{3} \right) + 4 \left(\frac{8}{4} \right) + 5 \left(\frac{8}{5} \right) + 6 \left(\frac{8}{5} \right) + 7 \left(\frac{8}{7} \right) + 1 \right)$$

$$= \frac{1}{2^8} \left(\frac{1024}{2} \right) = \boxed{4}$$

General

Supp = { x , ..., n}

$$X \sim \text{Binomial}(n, p)$$

$$E(x) = \sum_{x \in \text{Supp}(x)} x (x) p^{x} (1-p)^{n-x}$$

$$= \sum_{x \in \text{Supp}(x)} (n-x)! (1-p)^{$$

ECXJ =
$$\sum_{x} (K)(N-K)$$

 $\sum_{x} (SSMP(N))(N)$
= N
 $\sum_{x} (SSMP(N))(N)$
= N
E[XJ] = $\sum_{y} (N)$
 $\sum_{x} (N)$
E[XJ] = $\sum_{x} (N)$
 $\sum_{x} (N$

$$E[X] = \sum_{x=r}^{\infty} x {x-1 \choose r-1} (1-p)^{x-r} p^{r}$$

A.K.A "percentile"

Quantile [X, P]

Data Quantile have to converge to real quantile.

$$\begin{array}{cccc}
s &= & \min & \{x : F(x) \ge p\} \\
x &\in Supp(x)
\end{array}$$

XNBin (10, 0.4)

de PIJP P PPT p

When adding all # When will I get 70%.

PIVOT : 10×4

		N. P. S.		
X	P(x)	[F(x)		
0	00060	.0060		
1	10404	0464		
2	.1209	e 1623	15 0	75-25
3	. 2150	. 3673	E Tak	15 ~5
4	02506	.6331	135	
5	° 2007			
6	01115	, 9450	70 porentile	
- +	-0463	.9877	- 90 , porcer	file
8	00106	. 98 83		
9	.0016	.9999		
10	00001	1	o cause all sur	m 1s 1 anymays
	1			

Median (X) := Quantile [X, 0.5) IQR CX) := Quartile CX, 0.75] interquantile Quantile [X, 0.25] range Tertiles: 0, 33, 66, 100 qualités Quartiles: 0,25,00,75,100 Quintales: 0, 20,40, 60,80,100 Deules: 0,10,20,...,100 · Mode CXJ = argmax {p(x)} give me back the most likely value. Medium Quantile 1 expectation!

$$X \sim \begin{bmatrix} \$1 & \text{wp} & \frac{18}{38} \\ -\$1 & \text{wp} & \frac{20}{38} \end{bmatrix}$$

$$E[X] = 1(\frac{18}{38}) + (-1)(\frac{20}{38}) = -\frac{2}{38} = -\frac{\$0.053}{38}$$

**Caino involves a regulation of times, the average losing is 0.05

**O \$\sqrt{\psi_35} & \text{wp} \frac{1}{38} & \text{Bet on #7}

-\sqrt{1} & \text{wp} \frac{37}{38} & \text{-\sqrt{1}} & \text{37}

**E(X) = 35 \frac{1}{38} + (-1) \frac{37}{38} = -\psi_0.05

**Bet on 1-12

\text{X} \sqrt{2} & \text{WP} & \text{12/38} & \text{12/38}

\text{E(X) = 2 \frac{12}{38} + (-1) \frac{26}{38} = \frac{-2}{38} = -\psi_0.05

**E(X) = 2 \frac{12}{38} + (-1) \frac{26}{38} = \frac{-2}{38} = -\psi_0.05

lose less than American one. Curope wp 18/37 wp \$1/37 $\frac{18}{37}$ + (-1) $\frac{19}{37}$ -0.027 ECX) = 1