Generic Homework

Cliff Sun

April 1, 2024

Recall:

- 1. Q is countable.
- 2. $\overline{\mathbb{Q}} = \{\text{Algebraic numbers}\}\ \text{is countable.}$
- 3. [0,1] is uncountable. This implies that \mathbb{R} is also uncountable.

Lemma 0.1. \mathbb{R}/\mathbb{Q} and $\mathbb{R}/\bar{\mathbb{Q}}$ are uncountable.

Proof. Suppose for contradiction that \mathbb{R}/\mathbb{Q} is countable. Then \mathbb{R} is the union of both of these countable sets. Thus \mathbb{R} is also countable. This is a contradiction, thus \mathbb{R}/\mathbb{Q} is uncountable.

Theorem 0.2. Cantor's theorem. For any set A, |A| < |P(A)|.

Proof. We first must show that there exists an injective function from A to its powerset. Secondly, there cannot exist a bijective function from A to its powerset. We first choose

$$f(a) = \{a\} \tag{1}$$

This is injective if $\{a\} = \{b\}$, then a = b. Secondly, suppose for the sake of contradiction that g is a bijection from A to its powerset. In particular, g is surjective. However, we state that there exists some set X such that X is not an element of $g(a_i)$ for $a_i \in A$. We choose X to be:

$$X = \{ a \in A : a \notin g(a) \} \tag{2}$$

Then we claim that X cannot be in $g(a_i)$.

Proof. By definition, b is in X iff

$$b \in X \iff b \notin g(b) \tag{3}$$

But that means that $X \neq g(b)$ since one contains b and the other does not.

Theorem 0.3. The following all have the same cardinalities, which we call $c = 2^{\aleph_0}$ (the cardinality of the continuum).

- 1. [0,1] or really any closed interval [a,b] or the open interval (a,b) for a < b.
- 2. R
- 3. $P(\mathbb{N})$ or the powerset of S for S countably infinite.

Theorem 0.4.

$$|A| \le |B| \le |A| \implies |A| = |B| \tag{4}$$