COMS20011 – Data-Driven Computer Science

Problem Sheet MM02

- $1 \text{Using } \sin(2\pi nx)$, demonstrate the concept of superposition as follows (in Matlab or Python):
 - (a) first plot three sine functions over the range ± 3 in steps of 0.1 using $n = \{1/4, 1, 2\}$. Note, plots should appear in the same graph to give a better sense of what is happening.
 - (b) Now plot in a different colour the sum of all the sines above.
 - (c) Add more sine functions over the same range and repeat step (b).
- 2 What is White Light? Illustrate your answer with an approximate graph.

3 – The graphs below display the amplitude of the sound wave for a Trombone and an Electric Guitar as a function of time. The y-axis is the amplitude axis and the x-axis is the time axis. Notice that each one is plotted over a different length of time.

- (a) Mark the period of the signal for each instrument.
- (b) Approximately, how many periods are shown in these graphs for each instrument?
- (c) Approximately, what is the peak amplitude in each case?
- (d) Approximately, what is the frequency given the signal period in each case?
- (e) Which signal contains higher frequency information? Why?

4- Consider the three signals a, b, and c below, and their addition d.

time domain frequency domain

- (a) What would the frequency of the signal d = a + b + c look like?
- (b) How many oscillations per second does signal a have?
- (c) How can you determine the frequency of signal C if you did not have the frequency domain plot of that signal?

5 – The following gene sequence contains significant frequencies. Design two different symbolic encodings and in each case apply your encoding to extract some of these frequencies.

ACAGAGATACAGAGATACAG.....