Level 2 Investigation

Name: Soichiro Tanabe

Setup

```
In [1]:
    import tensorflow as tf
    import numpy as np
    import csv
    import json
    import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras import layers, optimizers, datasets, metrics, Seque
    from tensorflow.keras.layers import *
    from IPython.display import HTML, display
    import matplotlib.pyplot as plt
%matplotlib inline
```

Data format and structure

The dataset contains just over 50,000 images, each showing a $60m \times 60m$ region of a forest in Germany. Each image shows mainly one species of tree. There are three levels of label for each image: the English name (level 3), forest management class (level 2), and leaf type (level 1).

Image detail from Ahlswede et al. (2023) figure 4.

The dataset has been split into 70% training, 10% validation, and 20% testing images.

The images are 304×304 pixels and encoded as four-channel PNG images. We are mis-using the PNG's alpha (transparency) channel to represent the near-IR light band in the original images.

The data resides in the /datasets/treesat/ directory. All the images are in the /datasets/treesat/images/ directory. There are three .csv files that specify which images are in which split of the dataset. There are three text files that list the different labels at each level.

If we look at one of the csv files, we can see the image name and labels at each level.

```
In [3]: !head /datasets/treesat/train_file_labels.csv
```

Similarly, we can see the distinct labels at each level.

Defining constants

label_level is one of 1, 2, or 3, and is the level of labels used in this notebook.

```
In [5]: data_dir = '/datasets/treesat'
label_level = 2

In [6]: IMAGE_RESCALE = (302, 302)
input_shape = (IMAGE_RESCALE[0], IMAGE_RESCALE[1], 4)
batch_size = 128
label_key = f'level_{label_level}'
```

Loading data

First, we load the image names and labels into the file_label datasets.

We load the vocabulary for this level of labels and create a StringLookup encoder that will convert each label into a one-hot vector.

With the labels defined, we know enough to pretty-print a confusion matrix.

```
In [11]: def pretty cm(cm):
         result table = '<h3>Confusion matrix</h3>\n'
         result_table += '\n'
         result_table += f'  
         for _, cn in sorted(label_lookup.items()):
            result_table += f'<strong>{cn}</strong>'
         result_table += '\n'
         result_table += '\n'
         result_table += f'Actual labels/
         for ai, an in sorted(label_lookup.items()):
             result_table += '\n'
            result_table += f' <strong>{an}</strong>\n'
            for pi, pn in sorted(label_lookup.items()):
                result_table += f' {cm[ai, pi]}\n'
            result_table += '\n'
         result table += ""
         # print(result_table)
         display(HTML(result_table))
```

We have a function that take a filename and text label and returns the image and one-hot encoded label.

```
image = tf.io.read_file(file_path)
image = tf.io.decode_png(image, channels=4)
image = tf.image.resize(image, IMAGE_RESCALE)
image /= 255.0

# grab the label and encode it
encoded_label = label_encoder(label)

# return the image and the one-hot encoded label
return image, encoded_label
```

Loading the images

Now we can load the images into datasets.

```
In [13]: train_data = train_file_labels.map(lambda fl: (fl['file_name'], fl[label_
                                                num_parallel_calls=tf.data.AUTOTUNE
         train_data = train_data.shuffle(200)
         train_data = train_data.map(load_image,
                                                num_parallel_calls=tf.data.AUTOTUNE
         train_data = train_data.batch(batch_size)
         train data = train data.prefetch(tf.data.AUTOTUNE)
In [14]: validation_data = validation_file_labels.map(lambda fl: (fl['file_name'],
                                                num parallel calls=tf.data.AUTOTUNE
         validation_data = validation_data.map(load_image,
                                                num parallel calls=tf.data.AUTOTUNE
         validation_data = validation_data.batch(batch_size)
         validation_data = validation_data.prefetch(tf.data.AUTOTUNE)
In [15]: test_data = test_file_labels.map(lambda fl: (fl['file_name'], fl[label_ke
                                                num_parallel_calls=tf.data.AUTOTUNE
         test_data = test_data.map(load_image,
                                                num_parallel_calls=tf.data.AUTOTUNE
         test_data = test_data.batch(batch_size)
         test_data = test_data.prefetch(tf.data.AUTOTUNE)
```

Exploring the data

We can now explore some elements of the data, such as some sample images and the distribution of classes.

Distribution of classes

```
In [17]: # Plot distribution using class names
plt.figure(figsize=(10, 8))
plt.bar(label_encoder.get_vocabulary(), class_counts.numpy(), color='skyb
plt.xlabel("Class Names")
plt.ylabel("Count")
plt.title("Distribution of Unique Classes")
plt.xticks(rotation=45, ha='right') # Rotate x-axis labels for readabili
plt.show() # Display the plotted distribution
```


Show some sample images

```
In [20]: sample_images, sample_labels = train_data.as_numpy_iterator().next()

plt.figure(figsize=(10, 10))
for i in range(16): # Adjust this number based on how many images you wa
    ax = plt.subplot(4, 4, i + 1)
    plt.imshow(sample_images[i, ..., :-1]) # drop the alpha channel, to m
    # plt.imshow(sample_images[i]) # image with alpha channel
    label_index = np.argmax(sample_labels[i])
    class_name = label_lookup[label_index]
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.title(class_name)
```


Create and train a base model

As the initial model, a simple CNN model was set up, with the following structure:

Model: "sequential_6"

```
Layer (type)
                                      Output Shape
                                                                Param #
         conv2d_18 (Conv2D)
                                      (None, 302, 302, 8)
                                                                808
                                      (None, 302, 302, 8)
         conv2d_19 (Conv2D)
                                                                1608
         max_pooling2d_9 (MaxPoolin (None, 75, 75, 8)
         g2D)
         flatten 5 (Flatten)
                                     (None, 45000)
         dense 10 (Dense)
                                      (None, 128)
                                                                5760128
         dense_11 (Dense)
                                      (None, 10)
                                                                1290
        Total params: 5763834 (21.99 MB)
        Trainable params: 5763834 (21.99 MB)
        Non-trainable params: 0 (0.00 Byte)
In [64]: model_base_level_2.compile(optimizer='adam',
                        loss='categorical crossentropy',
                       metrics=['accuracy'])
In [65]: history base level 2 = model base level 2.fit(
             train_data,
             epochs=20,
             validation_data=validation_data,
             verbose=0
In [66]: import matplotlib.pyplot as plt
         # Assuming history contains the training history returned by model.fit
         train_loss = history_base_level_2.history['loss']
         val_loss = history_base_level_2.history['val_loss']
         train_acc = history_base_level_2.history['accuracy']
         val_acc = history_base_level_2.history['val_accuracy']
         # Plot loss
         plt.plot(train_loss, label='Train Loss')
         plt.plot(val_loss, label='Validation Loss')
         plt.title('Training and Validation Loss')
         plt.xlabel('Epoch')
         plt.ylabel('Loss')
         plt.legend()
         plt.grid(True)
         plt.show()
         # Plot accuracy
         plt.plot(train_acc, label='Train Accuracy')
         plt.plot(val_acc, label='Validation Accuracy')
         plt.title('Training and Validation Accuracy')
         plt.xlabel('Epoch')
         plt.ylabel('Accuracy')
         plt.legend()
```

plt.grid(True) plt.show()

Cache results for later

```
In [67]: model_base_level_2.save('model_base_level_2.keras')
with open('history_base_level_2.json', 'w') as f:
    json.dump(history_base_level_2.history, f)

In [68]: model_base_level_2 = tf.keras.models.load_model('model_base_level_2.keras
with open('history_base_level_2.json') as f:
    history_base_level_2 = json.load(f)
```

Evaluating the model

		larch	cleared	beech	oak	douglas fir	pine	fir	short- lived deciduous	long- decid
	larch	27	35	96	106	26	102	4	74	
	cleared	25	71	142	137	39	138	10	88	
	beech	53	79	181	203	65	204	14	146	
	oak	57	117	225	241	88	254	13	167	
	douglas fir	22	30	72	79	31	87	5	65	
Actual labels	pine	56	102	236	221	81	208	12	164	
	fir	6	14	32	35	9	35	1	21	
	short- lived deciduous	40	82	154	187	66	169	15	114	
	long-lived deciduous	49	86	171	191	63	203	11	153	
	spruce	38	80	158	186	69	184	10	146	

Implementing more intricate models.

The more intricate model was structured similarly to that in Level 1, aiming to enable the neural network to learn more levels of global abstract structures and capture more intricate patterns within the data, as indicated by Ramesh. S (2018) and Saturn Cloud (2023) as well as to encourage the network to learn more robust and generalised representations of the data, as indicated by the Open University (2023).

```
In [24]: # Define the model architecture with additional convolutional layers
         model_2_level_2 = Sequential([
             Conv2D(16, (5, 5), padding='same', activation='relu', input_shape=inp
             Conv2D(16, (5, 5), padding='same', activation='relu'),
             MaxPooling2D(pool_size=(4, 4)),
             Conv2D(32, (3, 3), padding='same', activation='relu'),
             Conv2D(32, (3, 3), padding='same', activation='relu'),
             MaxPooling2D(pool_size=(2, 2)),
             Conv2D(64, (3, 3), padding='same', activation='relu'),
             Conv2D(64, (3, 3), padding='same', activation='relu'),
             MaxPooling2D(pool_size=(2, 2)),
             Flatten(),
             Dense(128, activation='relu'),
             Dropout(rate=0.5),
             Dense(num_classes, activation='softmax')
         ])
```

Print the summary of the improved model model_2_level_2.summary()

Model: "sequential_2"

Layer (type)	Output Shape	Param #
conv2d_4 (Conv2D)	(None, 302, 302, 16)	1616
conv2d_5 (Conv2D)	(None, 302, 302, 16)	6416
<pre>max_pooling2d_2 (MaxPoolin g2D)</pre>	(None, 75, 75, 16)	0
conv2d_6 (Conv2D)	(None, 75, 75, 32)	4640
conv2d_7 (Conv2D)	(None, 75, 75, 32)	9248
<pre>max_pooling2d_3 (MaxPoolin g2D)</pre>	(None, 37, 37, 32)	0
conv2d_8 (Conv2D)	(None, 37, 37, 64)	18496
conv2d_9 (Conv2D)	(None, 37, 37, 64)	36928
<pre>max_pooling2d_4 (MaxPoolin g2D)</pre>	(None, 18, 18, 64)	0
flatten_2 (Flatten)	(None, 20736)	0
dense_4 (Dense)	(None, 128)	2654336
dropout (Dropout)	(None, 128)	0
dense_5 (Dense)	(None, 10)	1290

Total params: 2732970 (10.43 MB)
Trainable params: 2732970 (10.43 MB)
Non-trainable params: 0 (0.00 Byte)

```
In [26]: # Extract the training and validation loss and accuracy from the dictiona
    train_loss_2 = history_2_level_2.history['loss']
    val_loss_2 = history_2_level_2.history['val_loss']
    train_acc_2 = history_2_level_2.history['accuracy']
    val_acc_2 = history_2_level_2.history['val_accuracy']
```

```
# Plot loss
plt.plot(train_loss_2, label='Train Loss')
plt.plot(val_loss_2, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.grid(True)
plt.show()
# Plot accuracy
plt.plot(train_acc_2, label='Train Accuracy')
plt.plot(val_acc_2, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.grid(True)
plt.show()
```


Training and Validation Accuracy

Cache results for later

Evaluating the model

```
In [55]: cm_2 = tf.math.confusion_matrix(test_labels_2, predict_labels_2).numpy()
pretty_cm(cm_2)
```

Confusion matrix

п	
	r

		larch	cleared	beech	oak	douglas fir	pine	fir	short- lived deciduous	long- decidi
	larch	47	46	102	90	46	107	5	83	
	cleared	60	84	138	96	48	179	4	98	
	beech	77	145	186	181	75	229	9	169	
	oak	110	155	208	214	96	252	8	218	
	douglas fir	35	52	70	91	40	101	5	52	
Actual labels	pine	96	132	194	205	111	255	11	172	
	fir	14	18	24	23	6	41	1	26	
	short- lived deciduous	61	111	154	154	80	193	11	155	
	long-lived deciduous	78	121	158	211	78	220	8	159	
	spruce	87	115	171	158	79	181	5	139	

In []:

Data augmentation

The overfitting was observed in both the model with the intricate model. To mitigate overfitting, one useful technique is to employ data augmentation (Open University, 2023). Therefore, modified training data using random rotation up to 10% and random zoom up to 20% in data augmentation were applied to the intricate model.

Modify dataset

Data Model with augmentation

```
In [32]: # Define the model architecture with additional convolutional layers
         model_3_level_2 = Sequential([
             Conv2D(16, (5, 5), padding='same', activation='relu', input_shape=inp
             Conv2D(16, (5, 5), padding='same', activation='relu'),
             MaxPooling2D(pool_size=(4, 4)),
             Conv2D(32, (3, 3), padding='same', activation='relu'),
             Conv2D(32, (3, 3), padding='same', activation='relu'),
             MaxPooling2D(pool_size=(2, 2)),
             Conv2D(64, (3, 3), padding='same', activation='relu'),
             Conv2D(64, (3, 3), padding='same', activation='relu'),
             MaxPooling2D(pool_size=(2, 2)),
             Flatten(),
             Dense(128, activation='relu'),
             Dropout(rate=0.5),
             Dense(num_classes, activation='softmax')
         ])
         # Print the summary of the improved model
         model 3 level 2.summary()
```

	Layer (type)	Output Shape	Param #					
:	 conv2d_12 (Conv2D)	(None, 302, 302, 16)	1616					
	conv2d_13 (Conv2D)	(None, 302, 302, 16)	6416					
	<pre>max_pooling2d_6 (MaxPoolin g2D)</pre>	(None, 75, 75, 16)	0					
	conv2d_14 (Conv2D)	(None, 75, 75, 32)	4640					
	conv2d_15 (Conv2D)	(None, 75, 75, 32)	9248					
	<pre>max_pooling2d_7 (MaxPoolin g2D)</pre>	(None, 37, 37, 32)	0					
	conv2d_16 (Conv2D)	(None, 37, 37, 64)	18496					
	conv2d_17 (Conv2D)	(None, 37, 37, 64)	36928					
	<pre>max_pooling2d_8 (MaxPoolin g2D)</pre>	(None, 18, 18, 64)	0					
	flatten_4 (Flatten)	(None, 20736)	0					
	dense_8 (Dense)	(None, 128)	2654336					
	dropout_1 (Dropout)	(None, 128)	0					
	dense_9 (Dense)	(None, 10)	1290					
1	======================================	MB) 0.43 MB) 0 Byte)						
In [33]:	<pre>model_3_level_2.compile(opt</pre>	ical_crossentropy',						
In [34]:	<pre>history_3_level_2 = model_3 aug_train_data, epochs=20, validation_data=validat verbose=0)</pre>							
In [35]:	<pre># Extract the training and validation loss and accuracy from the diction train_loss_3 = history_3_level_2.history['loss'] val_loss_3 = history_3_level_2.history['val_loss'] train_acc_3 = history_3_level_2.history['accuracy'] val_acc_3 = history_3_level_2.history['val_accuracy']</pre>							
	<pre># Plot loss plt.plot(train_loss_3, label='Train Loss') plt.plot(val_loss_3, label='Validation Loss')</pre>							

```
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.grid(True)
plt.show()

# Plot accuracy
plt.plot(train_acc_3, label='Train Accuracy')
plt.plot(val_acc_3, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.grid(True)
plt.show()
```

Training and Validation Loss

Training and Validation Accuracy

Cache results for later

Evaluating the model

In [42]: cm_3 = tf.math.confusion_matrix(test_labels_3, predict_labels_3).numpy()
pretty_cm(cm_3)

Confusion matrix

D	P
_	

		larch	cleared	beech	oak	douglas fir	pine	fir	short- lived deciduous	long- decid
	larch	12	64	93	137	20	116	3	57	
	cleared	16	68	131	200	40	166	6	57	
	beech	23	112	172	269	44	237	9	107	
	oak	24	125	241	363	61	259	6	124	
	douglas fir	10	47	81	116	23	95	1	42	
Actual labels	pine	25	132	231	329	62	244	9	101	
	fir	3	25	31	42	12	30	0	19	
	short- lived deciduous	17	104	142	247	46	209	3	90	
	long-lived deciduous	16	111	182	288	54	197	8	113	
	spruce	19	92	174	262	36	169	9	98	

Reference

Ramesh. S (2018) 'A guide to an efficient way to build neural network architectures-Part II: Hyper-parameter selection and tuning for Convolutional Neural Networks using Hyperas on Fashion-MNIST', Medium, 7 May 2018 [Online]. Available at https://towardsdatascience.com/a-guide-to-an-efficient-way-to-build-neural-network-architectures-part-ii-hyper-parameter-42efca01e5d7 (Accessed 11 May 2024).

Saturn Cloud (2023) How to Improve Accuracy in Neural Networks with Keras, 6 July 2023 [Online] Available at https://saturncloud.io/blog/how-to-improve-accuracy-in-neural-networks-with-keras/ (Accessed 11 May 2024).

The Open University (2023) 5 Training of CNNs, TM358 Weeks 8-11 Block 2: Image recognition with CNNs [Online]. Available at https://learn2.open.ac.uk/mod/oucontent/view.php?id=2152484§ion=5.1 (Accessed 11 May 2024).