1. Each F-Automorphism of K is an extension of the embedding $F \to F^{\text{alg}}$ which is identity on F to K, and hence $n = \#G \leq [K:F]_{\text{sep}} \leq [K:F]$. To prove the opposite inequality, consider $\alpha_1, \ldots, \alpha_m \in K$ such that m > n. Then the system of equations

$$a_1\tau_1(\alpha_1) + a_2\tau_1(\alpha_2) + \dots + a_m\tau_1(\alpha_m) = 0$$

$$\vdots$$

$$a_1\tau_n(\alpha_1) + a_2\tau_n(\alpha_2) + \dots + a_m\tau_n(\alpha_m) = 0$$

With n equations, and m unknowns. Then the equation must have a (non-zero) solution, we wish to show that it has a solution lying in F, which would prove that we cannot have more than n F-linearly independent elements of K. Suppose that (b_1, \ldots, b_m) is a solution with the most non-zero terms, WLOG we can take $b_1 \neq 0$, and further take $b_1 = 1$ by dividing the each b_i by b_1 . Then for each τ_i , since $\tau_i(0) = 0$, and τ_i permutes the other τ_j since G is a group, we get that applying any τ_i to the system of equations yields another solution, with the same zero terms. But then $(1 - \tau_i(1), \ldots, b_m - \tau_i(b_m))$ is another solution, with the same zero coordinates as b, along with the first coordinate being 0 which by our minimality assumption implies that this is the zero vector. Since this holds for each τ_i , it follows that $\tau_i(b_j) = b_j$ for each i, j, so that each b_j is fixed by G and thus lies in F, hence the first equation gives us that $\alpha_1, \ldots, \alpha_m$ are F-linearly dependent, so no F-linearly independent set of K may have cardinality greater than n, i.e. $[K:F] \leq n$. Since we have proven both inequalities, [K:F] = n.

2. Since K/F is finite, we may write it as $K = F(\alpha_1, \ldots, \alpha_n)$. It is immediate that since $\{\alpha_1, \ldots, \alpha_n\} \subset K \subset KL$, that we can write $KL = L(\alpha_1, \ldots, \alpha_n)$, since this field contains F and each α_i it must contain K. Since each α_i satisfies a polynomial with coefficients in $F \subset L$, we know that KL/L is algebraic. To show that its seperable, note that $\min(\alpha_i; L) | \min(\alpha_i; F)$, where $\min(\alpha_i; F)$ contains no repeated roots, proving that each α_i is seperable over L. Finally, since K/F is normal of finite degree, we know that K is the splitting field of some polynomial $f \in F[x]$, it is immediate that $L(\alpha_1, \ldots, \alpha_n)$ is the splitting field of f over L, so that KL/L is normal and hence Galois.

Consider the map $\pi: \operatorname{Gal}(KL/L) \to \operatorname{Gal}(K/(K \cap L))$, defined by $\sigma \mapsto \sigma|_K$. It is clear that this map is well defined, and satisfies the homomorphism properties. To check this is an isomorphism, suppose that $\sigma \in \ker \pi$, then $\sigma|_K = 1$, hence $\sigma(\alpha_i) = \alpha_i$ for each i, furthermore σ fixes L by definition. It follows that for any $x \in KL$, we have $x = \sum_i \left(\ell_i \prod_j \alpha_j\right)$, so that

$$\sigma(x) = \sigma\left(\sum_{i} \left(\ell_{i} \prod_{j} \alpha_{j}\right)\right) = \sum_{i} \left(\sigma(\ell_{i}) \prod_{j} \sigma(\alpha_{j})\right) = x$$

implying that $\sigma = 1$, so that this map is injective. To show surjectivity, let $\tau \in \operatorname{Gal}(K/(K \cap L))$, define $\sigma(\alpha_i) = \tau(\alpha_i)$, this is a well defined extension of the identity map on L, since if α_i, α_j are conjugate over $K \cap L$, then they are conjugate over L. This can be seen since

$$\min(\alpha; L) | \min(\alpha; K \cap L)$$
 and $\min(\alpha; L) = (x - \alpha)(x - \beta_1) \cdots (x - \beta_k)$

for $\beta_i \in K$, then the coefficients of $\min(\alpha; L)$ are the symmetric polynomials in $\alpha, \beta_1, \ldots, \beta_k$ so that they also lie in K, so that in particular the coefficients lie in $K \cap L$, this implies that $\min(\alpha; L)$ is a polynomial with coefficients in $K \cap L$ which is satisfied by α , implying that

 $\min(\alpha; K \cap L) | \min(\alpha; L)$, so that in particular they are equal. Then by construction, we get $\sigma|_K = \tau$ proving surjectivity. Since this is an ismomorphism between the two Galois groups it is also a bijection, so in particular

$$[KL:L] = \#\mathrm{Gal}(KL/L) = \#\mathrm{Gal}(K/K \cap L) = [K:K \cap L]$$

3. First denote $M := \operatorname{Gal}(K/N)$. Since N is the smallest normal field extension of F containing L, it must be the case that M is the largest subgroup of H which is normal in G. As proof, assume there exists some normal subgroup R, such that $M \subseteq R \subset H$. Then by the galois correspondence, $N = K^M \supseteq K^R \supset K^H = L$, where K^R/F is normal. But this contradicts N being the normal closure of L/F. Now all that remains to show is that $\bigcap_{\sigma \in G} \sigma H \sigma^{-1}$ is the largest subgroup of H which is normal in G it is a subgroup since it is the intersection of subgroups. To see that it is normal, for any $\tau \in G$

$$\tau\left(\bigcap_{\sigma\in G}\sigma H\sigma^{-1}\right)\tau^{-1}=\bigcap_{\sigma\in G}\tau\sigma H\sigma^{-1}\tau^{-1}=\bigcap_{\sigma\in G}(\tau\sigma)H(\tau\sigma)^{-1}=\bigcap_{\sigma\in G}\sigma H\sigma^{-1}$$

The last equality follows from τ acting as a permutation on G. To see its the largest, suppose that $S \subset H$ is normal in G. Then

$$S = \bigcap_{\sigma \in G} \sigma S \sigma^{-1} \subset \bigcap_{\sigma \in G} \sigma H \sigma^{-1}$$

- **4.** Since K/F is Galois, and $K \supset L_0 \supset F$, we have K/L_0 is galois, with galois group N(H). Then since H is normal in N(H), we have L/L_0 is galois. Furthermore, suppose that $L \supset M \supset F$, with L/M Galois implying that H is normal in $\operatorname{Gal}(K/M)$. Then since the normalizer is the largest subgroup R of G, such that $H \subset R$ is normal, we get that $\operatorname{Gal}(K/M) \subset N(H)$, implying that $M \supset L_0$ as desired.
- **5.** We can define the map $\varphi: \mathbb{Z}/2\mathbb{Z} \xrightarrow{\varphi} (\mathbb{Z}/4\mathbb{Z})$ as $\varphi(1): x \mapsto -x$, this is a well defined automorphism, since $\varphi(1)^2 = \mathbf{1}_{\mathbb{Z}/4\mathbb{Z}} = \varphi(0) = \varphi(1+1)$. Any element $x \in D_4$ can be written in the form of $\sigma^i \tau^j$ using the relation $\sigma \tau = \tau \sigma^{-1}$. So define the map

$$\psi: D_4 \to \mathbb{Z}/4\mathbb{Z} \underset{\varphi}{\rtimes} \mathbb{Z}/2\mathbb{Z}$$
$$\sigma^i \tau^j \mapsto (i, j)$$

is an isomorphism. $\mathbf{1} \mapsto (0,0)$ is immediate. And (here I deal with both possible cases j=1,0 separately)

$$\psi(\sigma^{i}\tau\sigma^{k}\tau^{\ell}) = \psi(\sigma^{i-k}\tau^{1+\ell}) = (i-k, 1+\ell) = (i+\varphi(1)(k), 1+\ell) = (i, 1)(k, \ell) = \psi(\sigma^{i}\tau)\psi(\sigma^{k}\tau^{\ell})$$
$$\psi(\sigma^{i}\tau^{0}\sigma^{k}\tau^{\ell}) = \psi(\sigma^{i+k}\tau^{\ell}) = (i+k, \ell) = (i+\varphi(0)(k), 0+\ell) = (i, 0)(k, \ell) = \psi(\sigma^{i}\tau^{0})\psi(\sigma^{k}\tau^{\ell})$$

This proves that ψ is a homomorphism, and

$$\psi(\sigma^i \tau^j) = (0,0) \iff i \equiv 0 \mod 4 \text{ and } j \equiv 0 \mod 2 \iff \sigma^i \tau^j = \mathbf{1}$$

proving that $\ker \psi = 1$. Then since $\#D_4 = \#\mathbb{Z}/4\mathbb{Z} \underset{\varphi}{\times} \mathbb{Z}/2\mathbb{Z}$ and the map is injective, it must also be surjective.