The Reverse State Monad in Rocq (Work in Progress)

David Nowak (CNRS, Lille) Vlad Rusu (Inria, Lille)

FROM Symposium, Iaşi, Romania, Sept. 17-19, 2025

Monads

- adding features (effects) to functional languages while keeping purity:
 - exceptions;
 - mutable state:
 - nondeterminism;
 - concurrency;
 - continuations:
 - ...
- pioneered by Haskell: rich library of monads and monad transformers;
- Reverse State Monad: effect is backwards causality;
- encoding the monad in Rocq towards proving reverse programs https://gitlab.inria.fr/haddock/revstate.

Outline

- Examples
- 2 Background
- The Reverse State Monac
- Conclusion & Future Work

- state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
- rules of the game:
 - host discreetly (without player seeing) puts some money in box #2;
 - then player chooses: either both boxes, or just box #2;
- current game: host says is able to use backwards causality
 - if player's future choice = both boxes, host puts 1€ in box #2;
 - if player's future choice = box #2, host puts 1.000.000€ in it;
- strategy of the player determined by belief in backwards causality:
 - yes : choose box #2;
 - no : choose both boxes.

- state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
- rules of the game:
 - host discreetly (without player seeing) puts some money in box #2;
 - then player chooses: either both boxes, or just box #2;
- current game: host says is able to use backwards causality
 - if player's future choice = both boxes, host puts 1€ in box #2;
 - if player's future choice = box #2, host puts 1.000.000€ in it;
- strategy of the player determined by belief in backwards causality:
 - yes : choose box #2;
 - no : choose both boxes.

- state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
- rules of the game:
 - host discreetly (without player seeing) puts some money in box #2;
 - then player chooses: either both boxes, or just box #2;
- current game: host says is able to use backwards causality
 - if player's future choice = both boxes, host puts 1€ in box #2;
 - if player's future choice = box #2, host puts 1.000.000€ in it;
- strategy of the player determined by belief in backwards causality:
 - yes : choose box #2;
 - no : choose both boxes.

- state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
- rules of the game:
 - host discreetly (without player seeing) puts some money in box #2;
 - then player chooses: either both boxes, or just box #2;
- current game: host says is able to use backwards causality
 - if player's future choice = both boxes, host puts 1€ in box #2;
 - if player's future choice = box #2, host puts 1.000.000€ in it;
- strategy of the player determined by belief in backwards causality:
 - yes : choose box #2;
 - no : choose both boxes.

- state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
- rules of the game:
 - host discreetly (without player seeing) puts some money in box #2;
 - then player chooses: either both boxes, or just box #2;
- current game: host says is able to use backwards causality
 - if player's future choice = both boxes, host puts 1€ in box #2;
 - if player's future choice = box #2, host puts 1.000.000€ in it;
- strategy of the player determined by belief in backwards causality:
 - yes : choose box #2;
 - no : choose both boxes.

- state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
- rules of the game:
 - host discreetly (without player seeing) puts some money in box #2;
 - then player chooses: either both boxes, or just box #2;
- current game: host says is able to use backwards causality
 - if player's future choice = both boxes, host puts 1€ in box #2;
 - if player's future choice = box #2, host puts 1.000.000€ in it;
- strategy of the player determined by belief in backwards causality:
 - yes : choose box #2;
 - no: choose both boxes.

- state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
- rules of the game:
 - host discreetly (without player seeing) puts some money in box #2;
 - then player chooses: either both boxes, or just box #2;
- current game: host says is able to use backwards causality
 - if player's future choice = both boxes, host puts 1€ in box #2;
 - if player's future choice = box #2, host puts 1.000.000€ in it;
- strategy of the player determined by belief in backwards causality:
 - yes : choose box #2;
 - no : choose both boxes.

A more formal example:

- assume a *state* containing an infinite *Stream* over N with functions
 - $\square :: \square : \mathbb{N} \to Stream \to Stream :$
 - $map: (\mathbb{N} \to \mathbb{N}) \to Stream \to Stream;$
- $do x \leftarrow get$ reads the (whole) state & stores it in x;
- put y changes the state to y.

A more formal example:

- assume a state containing an infinite Stream over N with functions
 - $_:: _: \mathbb{N} \to Stream \to Stream:$
 - $map: (\mathbb{N} \to \mathbb{N}) \to Stream \to Stream;$
- $do x \leftarrow get$ reads the (whole) state & stores it in x;
- put y changes the state to y.

A more formal example:

- assume a state containing an infinite Stream over N with functions
 - $\square : \square : \mathbb{N} \to Stream \to Stream :$
 - map : $(\mathbb{N} \to \mathbb{N}) \to Stream \to Stream$;
- do x ← get reads the (whole) state & stores it in x;
- put y changes the state to y.

What does do $x \leftarrow get$; put(0 :: map(1+) x) do?

- do $x \leftarrow$ get reads future state, after put(0 :: map (1+) x);
- hence state simultaneously contains x and (0 :: map(1+)x);
- hence x = 0 :: map(1+)x); 1-line program solves fixpoint equation, finds unique solution x = 0 :: 1 :: 2 :: ... there must be a trick! (... a fixpoint is hidden inside the program ...)
- do b ← get; put ¬b : equation b = ¬b has no solution in Booleans
 ... but has solution in CPO of Booleans;
- "fixpoint", "CPOs": domain theory (& our library in Rocq)!

What does do $x \leftarrow get$; put(0 :: map(1+) x) do?

- do $x \leftarrow$ get reads future state, after put(0 :: map (1+) x);
- hence state simultaneously contains x and (0 :: map(1+)x);
- hence x = 0 :: map(1+) x; 1-line program solves fixpoint equation, finds unique solution x = 0 :: 1 :: 2 :: ... there must be a trick! (... a fixpoint is hidden inside the program ...)
- do b ← get; put ¬b : equation b = ¬b has no solution in Booleans
 ... but has solution in CPO of Booleans;
- "fixpoint", "CPOs": domain theory (& our library in Rocq)!

```
What does do x \leftarrow get; put(0 :: map(1+) x) do?
```

- do $x \leftarrow$ get reads future state, after put(0 :: map (1+) x);
- hence state simultaneously contains x and (0 :: map(1+)x);
- hence x = 0 :: map(1+)x); 1-line program solves fixpoint equation, finds unique solution x = 0 :: 1 :: 2 :: ... there must be a trick! (... a fixpoint is hidden inside the program ...)
- do b ← get; put ¬b : equation b = ¬b has no solution in Booleans
 ... but has solution in CPO of Booleans;
- "fixpoint", "CPOs": domain theory (& our library in Rocq)!

```
What does do x \leftarrow get; put(0 :: map(1+) x) do?
```

- do $x \leftarrow$ get reads future state, after put(0 :: map (1+) x);
- hence state simultaneously contains x and (0 :: map(1+)x);
- hence x = 0 :: map(1+)x); 1-line program solves fixpoint equation, finds unique solution x = 0 :: 1 :: 2 :: ... there must be a trick! (... a fixpoint is hidden inside the program ...)
- do b ← get; put ¬b : equation b = ¬b has no solution in Booleans
 ... but has solution in CPO of Booleans;
- "fixpoint", "CPOs": domain theory (& our library in Rocq)!

```
What does do x \leftarrow get; put(0 :: map(1+) x) do?
```

- do $x \leftarrow$ get reads future state, after put(0 :: map (1+) x);
- hence state simultaneously contains x and (0 :: map(1+) x);
- hence x = 0 :: map(1+)x); 1-line program solves fixpoint equation, finds unique solution x = 0 :: 1 :: 2 :: ... there must be a trick! (... a fixpoint is hidden inside the program ...)
- do b ← get; put ¬b : equation b = ¬b has no solution in Booleans
 ... but has solution in CPO of Booleans;
- "fixpoint", "CPOs": domain theory (& our library in Rocq)!

```
What does do x \leftarrow get; put(0 :: map(1+) x) do?
```

- do $x \leftarrow get$ reads future state, after put(0 :: map(1+)x);
- hence state simultaneously contains x and (0 :: map(1+) x);
- hence x = 0 :: map(1+)x); 1-line program solves fixpoint equation, finds unique solution x = 0 :: 1 :: 2 :: ... there must be a trick! (... a fixpoint is hidden inside the program ...)
- do b ← get; put ¬b : equation b = ¬b has no solution in Booleans
 ... but has solution in CPO of Booleans;
- "fixpoint", "CPOs": domain theory (& our library in Rocq)!

```
What does do x \leftarrow get; put(0 :: map(1+) x) do?
```

- do $x \leftarrow get$ reads future state, after put(0 :: map(1+)x);
- hence state simultaneously contains x and (0 :: map(1+) x);
- hence x = 0 :: map(1+)x); 1-line program solves fixpoint equation, finds unique solution x = 0 :: 1 :: 2 :: ... there must be a trick! (... a fixpoint is hidden inside the program ...)
- $do\ b \leftarrow get$; $put\ \neg b$: equation $b = \neg b$ has no solution in Booleans ... but has solution in CPO of Booleans;
- "fixpoint", "CPOs": domain theory (& our library in Rocq)!

```
What does do x \leftarrow get; put(0 :: map(1+) x) do?
```

- do $x \leftarrow get$ reads future state, after put(0 :: map(1+)x);
- hence state simultaneously contains x and (0 :: map(1+) x);
- hence x = 0 :: map(1+)x); 1-line program solves fixpoint equation, finds unique solution x = 0 :: 1 :: 2 :: ... there must be a trick! (... a fixpoint is hidden inside the program ...)
- $do\ b \leftarrow get;\ put\ \neg b$: equation $b = \neg b$ has no solution in Booleans ... but has solution in CPO of Booleans;
- "fixpoint", "CPOs": domain theory (& our library in Rocq)!

Outline

- Examples
- 2 Background
 - Domain Theory
 - Monads
- 3 The Reverse State Monad
- 4 Conclusion & Future Work

Outline

- Examples
- 2 Background
 - Domain Theory
 - Monads
- The Reverse State Monad
- 4 Conclusion & Future Work

- (C, \leq, \perp) with set C, order \leq on C, \perp least element of C;
- ≤ interpreted as definition order, with ⊥ interpreted as undefined;
- each increasing sequence¹ S has least upper bound lub S

- flat CPO $\mathbb{N} \cup \{\bot\}$: order restricted to \mathbb{N} is equality
- Stream over $\mathbb{N} \cup \{\bot\}$: pointwise order $s \sqsubseteq s'$ iff $\forall i \in \mathbb{N}, s[i] \le s'[i]$.

Actually, each directed set.

- (C, \leq, \perp) with set C, order \leq on C, \perp least element of C;
- ≤ interpreted as definition order, with ⊥ interpreted as undefined;
- each increasing sequence¹ S has least upper bound lub S.

- flat CPO $\mathbb{N} \cup \{\bot\}$: order restricted to \mathbb{N} is equality
- Stream over $\mathbb{N} \cup \{\bot\}$: pointwise order $s \sqsubseteq s'$ iff $\forall i \in \mathbb{N}, s[i] \le s'[i]$.

¹Actually, each *directed set*.

- (C, \leq, \perp) with set C, order \leq on C, \perp least element of C;
- ≤ interpreted as definition order, with ⊥ interpreted as undefined;
- each increasing sequence¹ S has least upper bound lub S.

- flat CPO N ∪ {⊥}: order restricted to N is equality;
- Stream over $\mathbb{N} \cup \{\bot\}$: pointwise order $s \sqsubseteq s'$ iff $\forall i \in \mathbb{N}, s[i] \le s'[i]$.

¹Actually, each *directed set*.

- (C, \leq, \perp) with set C, order \leq on C, \perp least element of C;
- ≤ interpreted as definition order, with ⊥ interpreted as undefined;
- each increasing sequence¹ S has least upper bound lub S.

- flat CPO N ∪ {⊥}: order restricted to N is equality;
- Stream over $\mathbb{N} \cup \{\bot\}$: pointwise order $s \sqsubseteq s'$ iff $\forall i \in \mathbb{N}, s[i] \le s'[i]$.

¹Actually, each *directed set*.

- for posets C, C': $f: C \to C'$ is monotonic iff $x \le y$ implies $f x \le ' f y$;
- for CPOs C, C': $f:C \to C'$ is continuous iff f is monotonic & for all increasing sequence S, f ($lub\ S$) = $lub'\ (f\ S)$;
- notation $[C \to C']$ = set of continuous functions between CPOs C, C';
- examples : constant, identity, compositions of continuous functions;
- structure : CPOs + continuous functions = category CPO.

- for posets C, C': $f: C \to C'$ is monotonic iff $x \le y$ implies $f x \le ' f y$;
- for CPOs C, C': $f: C \to C'$ is continuous iff f is monotonic & for all increasing sequence S, f ($lub\ S$) = $lub'\ (f\ S)$;
- notation $[C \to C']$ = set of continuous functions between CPOs C, C';
- examples : constant, identity, compositions of continuous functions;
- structure : CPOs + continuous functions = category CPO.

- for posets C, C': $f: C \to C'$ is monotonic iff $x \le y$ implies $f x \le ' f y$;
- for CPOs C, C': $f: C \to C'$ is continuous iff f is monotonic & for all increasing sequence S, f ($lub\ S$) = $lub'\ (f\ S)$;
- notation $[C \rightarrow C']$ = set of continuous functions between CPOs C, C';
- examples: constant, identity, compositions of continuous functions;
- structure : CPOs + continuous functions = category CPO.

- for posets C, C': f: C → C' is monotonic iff x ≤ y implies f x ≤' f y;
 for CPOs C, C': f: C → C' is continuous iff f is monotonic & for all
- increasing sequence S, $f(lub\ S) = lub'\ (f\ S)$;
- notation $[C \rightarrow C']$ = set of continuous functions between CPOs C, C';
- examples : constant, identity, compositions of continuous functions;
- structure : CPOs + continuous functions = category CPO.

- for posets C, C': $f: C \to C'$ is monotonic iff $x \le y$ implies $f x \le ' f y$;
- for CPOs C, C': f: C → C' is continuous iff f is monotonic & for all increasing sequence S, f (lub S) = lub' (f S);
- notation $[C \rightarrow C']$ = set of continuous functions between CPOs C, C';
- examples : constant, identity, compositions of continuous functions;
- structure : CPOs + continuous functions = category CPO.

CPO is Cartesian Closed

For CPOs $(C' \leq, \bot)$, (C', \leq', \bot') , the following are CPOs:

- product: $(C \times C', \sqsubseteq, (\bot, \bot'))$ with pair-pointwise \sqsubseteq ;
- exponentiation: ($[C \to C'], \sqsubseteq, \lambda_- \Rightarrow \bot'$) with function-pointwise \sqsubseteq .

Fixpoints

- Kleene: $f: [C \to C]$ has least fixpoint fix $f \triangleq lub\{f^{(n)} \perp | n \in \mathbb{N}\}$;
- fixpoints for several functions at once: theorem of Bekić;
- to prove continuity, compose elementary results:
 - $f: A \times B \to C$ is continuous iff it is so in each argument separately;
 - currying/uncurrying are continuous;
 - $fix : [C \rightarrow C] \rightarrow C$ is continuous;
 - and many more.

Fixpoints

- Kleene: $f: [C \to C]$ has least fixpoint $fix f \triangleq lub\{f^{(n)} \perp | n \in \mathbb{N}\}$;
- fixpoints for several functions at once: theorem of Bekić;
- to prove continuity, compose elementary results:
 - $f: A \times B \rightarrow C$ is continuous iff it is so in each argument separately;
 - currying/uncurrying are continuous;
 - $fix : [C \to C] \to C$ is continuous;
 - and many more.

Fixpoints

- Kleene: $f: [C \to C]$ has least fixpoint $fix f \triangleq lub\{f^{(n)} \perp | n \in \mathbb{N}\}$;
- fixpoints for several functions at once: theorem of Bekić;
- to prove continuity, compose elementary results:
 - $f: A \times B \to C$ is continuous iff it is so in each argument separately;
 - currying/uncurrying are continuous;
 - $fix : [C \rightarrow C] \rightarrow C$ is continuous;
 - and many more.

Outline

- Examples
- 2 Background
 - Domain Theory
 - Monads
- The Reverse State Monac
- 4 Conclusion & Future Work

- $M: \mathbf{CPO} \to \mathbf{CPO}$ is a functor;
- for all CPOs X, a function $ret_X : [X \to M X]$;
- for all CPOs X, Y a function $bind_{X,Y}: [M \ X \rightarrow [[X \rightarrow M \ Y] \rightarrow M \ Y];$ notation: $do \ x \leftarrow m$; m' for $bind_{X,Y} \ m \ (\lambda \ x \Rightarrow m')$;
- monad laws:
 - do $x \leftarrow m$; ret x = m;
 - do $x' \leftarrow ret x$; f x' = f x;
 - do $y \leftarrow (\text{do } x \leftarrow m; \ f \ x); \ g \ y = \text{do } x \leftarrow m; \ \text{do } y \leftarrow f \ x; \ g \ y.$

- $M : \mathbf{CPO} \to \mathbf{CPO}$ is a functor;
- for all CPOs X, a function $ret_X : [X \to M X]$;
- for all CPOs X, Y a function $bind_{X,Y}: [M \ X \rightarrow [[X \rightarrow M \ Y] \rightarrow M \ Y];$ notation: $do \ x \leftarrow m$; m' for $bind_{X,Y} \ m \ (\lambda \ x \Rightarrow m')$;
- monad laws:
 - do $x \leftarrow m$; ret x = m;
 - do $x' \leftarrow ret x$; f x' = f x;
 - do $y \leftarrow (\text{do } x \leftarrow m; \ \text{f } x); \ \text{g } y = \text{do } x \leftarrow m; \ \text{do } y \leftarrow \text{f } x; \ \text{g } y.$

- $M: \mathbf{CPO} \to \mathbf{CPO}$ is a functor;
- for all CPOs X, a function $ret_X : [X \rightarrow M X]$;
- for all CPOs X, Y a function $bind_{X,Y}: [M \ X \rightarrow [[X \rightarrow M \ Y] \rightarrow M \ Y];$ notation: $do \ x \leftarrow m$; m' for $bind_{X,Y} \ m \ (\lambda \ x \Rightarrow m')$;
- monad laws:
 - do $x \leftarrow m$; ret x = m;
 - do $x' \leftarrow ret x$; f x' = f x;
 - do $y \leftarrow (\text{do } x \leftarrow m; \ f \ x); \ g \ y = \text{do } x \leftarrow m; \ \text{do } y \leftarrow f \ x; \ g \ y.$

- $M: \mathbf{CPO} \to \mathbf{CPO}$ is a functor;
- for all CPOs X, a function $ret_X : [X \to M X]$;
- for all CPOs X, Y a function $bind_{X,Y}: [M \ X \rightarrow [[X \rightarrow M \ Y] \rightarrow M \ Y];$ notation: $do \ x \leftarrow m$; m' for $bind_{X,Y} \ m \ (\lambda \ x \Rightarrow m')$;
- monad laws:

```
• do x \leftarrow m; ret x = m;
```

• do
$$x' \leftarrow ret x$$
; $f x' = f x$;

• do
$$y \leftarrow (\text{do } x \leftarrow m; \ \text{f } x); \ \text{g } y = \text{do } x \leftarrow m; \ \text{do } y \leftarrow \text{f } x; \ \text{g } y.$$

- $M: \mathbb{CPO} \to \mathbb{CPO}$ is a functor;
- for all CPOs X, a function $ret_X : [X \to M X]$;
- for all CPOs X, Y a function $bind_{X,Y}: [M \ X \rightarrow [[X \rightarrow M \ Y] \rightarrow M \ Y];$ notation: $do \ x \leftarrow m$; m' for $bind_{X,Y} \ m \ (\lambda \ x \Rightarrow m')$;
- monad laws:
 - do $x \leftarrow m$; ret x = m;
 - do $x' \leftarrow ret x$; f x' = f x;
 - do $y \leftarrow (\text{do } x \leftarrow m; \ f \ x); \ g \ y = \text{do } x \leftarrow m; \ \text{do } y \leftarrow f \ x; \ g \ y.$

Example: the Identity Monad

- identity functor id : CPO → CPO;
- $\forall (A : CPO)(a : A), ret_A \ a = a;$
- $\forall (A \ B : \mathbf{CPO})(m : id \ A)(f : [A \rightarrow id \ B]), bind \ m \ f := f \ m.$

Parameterized by monad *M* and CPO *R*:

- $contT_R : \mathbf{CPO} \to \mathbf{CPO} = \lambda X \Rightarrow [[X \to M R] \to M R];$
- $\forall (X : \mathsf{CPO})(x : X), ret_X x = \lambda (k : [X \to M R]) \Rightarrow k x;$
- $\forall (X \ Y : \mathbf{CPO})(m : contT_R \ X)(f : [X \to contT_R \ Y]),$ bind $m \ f = \lambda (k : [Y \to M \ R]) \Rightarrow m(\lambda (x : X) \Rightarrow f x \ k)$

Parameterized by monad *M* and CPO *R*:

- $contT_R : \mathbf{CPO} \to \mathbf{CPO} = \lambda X \Rightarrow [[X \to M R] \to M R];$
- $\forall (X : \mathsf{CPO})(x : X), ret_X x = \lambda (k : [X \to M R]) \Rightarrow k x;$
- $\forall (X \ Y : \mathbf{CPO})(m : contT_R \ X)(f : [X \to contT_R \ Y]),$ bind $m \ f = \lambda \ (k : [Y \to M \ R]) \Rightarrow m \ (\lambda \ (x : X) \Rightarrow f \ x \ k)$

Parameterized by monad M and CPO R:

- $contT_R : \mathbf{CPO} \to \mathbf{CPO} = \lambda X \Rightarrow [[X \to M R] \to M R];$
- $\forall (X : \mathbf{CPO})(x : X), ret_X x = \lambda (k : [X \to M R]) \Rightarrow k x;$
- $\forall (X \ Y : \mathbf{CPO})(m : contT_R \ X)(f : [X \to contT_R \ Y]),$ bind $m \ f = \lambda (k : [Y \to M \ R]) \Rightarrow m(\lambda (x : X) \Rightarrow f \ x \ k)$

Parameterized by monad M and CPO R:

- $contT_R : \mathbf{CPO} \to \mathbf{CPO} = \lambda X \Rightarrow [[X \to M R] \to M R];$
- $\forall (X : \mathbf{CPO})(x : X), ret_X x = \lambda (k : [X \to M R]) \Rightarrow k x;$
- $\forall (X \ Y : \mathbf{CPO})(m : contT_R \ X)(f : [X \to contT_R \ Y]),$ bind $m \ f = \lambda (k : [Y \to M \ R]) \Rightarrow m(\lambda (x : X) \Rightarrow f \ x \ k).$

Outline

- Examples
- Background
- The Reverse State Monad
- 4 Conclusion & Future Work

```
revBind m f = \lambda s \Rightarrow mdo (x, s'') \leftarrow m s'; (x', s') \leftarrow f x s; ret (x', s'')
```

- *mdo* "solves" mutually recursive equations thanks to lazy evaluation;
- mdo implemented using $mfix : [[X \rightarrow M X] \rightarrow M X];$
- *mfix* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$, right?
- we implemented revRet and revBind in Rocq, proved all required continuities, ... but could not prove monad laws.

²https://hackage.haskell.org/package/rev-state-0.2.0.1 = > < \bar{2} > \bar{2} > \bar{2} > \bar{2} \

revBind
$$m f = \lambda s \Rightarrow mdo(x, s'') \leftarrow m s'; (x', s') \leftarrow f x s; ret(x', s'')$$

- mdo "solves" mutually recursive equations thanks to lazy evaluation;
- mdo implemented using mfix : [[X → M X] → M X];
- *mfix* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$, right?
- we implemented revRet and revBind in Rocq, proved all required continuities, ... but could not prove monad laws.

²https://hackage.haskell.org/package/rev-state-0.2.0.1 | E | | | | | |

```
revBind m f = \lambda s \Rightarrow mdo(x, s'') \leftarrow m s'; (x', s') \leftarrow f x s; ret(x', s'')
```

- mdo "solves" mutually recursive equations thanks to lazy evaluation;
- mdo implemented using mfix : [[X → M X] → M X];
- *mfix* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$, right?
- we implemented revRet and revBind in Rocq, proved all required continuities, . . . but could not prove monad laws.

²https://hackage.haskell.org/package/rev-state-0.2.0.1 ← ≥ → ← ≥ → − ≥

```
revBind m f = \lambda s \Rightarrow mdo(x, s'') \leftarrow m s'; (x', s') \leftarrow f x s; ret(x', s'')
```

- mdo "solves" mutually recursive equations thanks to lazy evaluation;
- mdo implemented using $mfix : [[X \rightarrow M X] \rightarrow M X];$
- *mfix* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$, right?
- we implemented revRet and revBind in Rocq, proved all required continuities, . . . but could not prove monad laws.

²https://hackage.haskell.org/package/rev-state-0.2.0.1 ← ≥ → ← ≥ → − ≥

```
revBind m f = \lambda s \Rightarrow mdo(x, s'') \leftarrow m s'; (x', s') \leftarrow f x s; ret(x', s'')
```

- mdo "solves" mutually recursive equations thanks to lazy evaluation;
- mdo implemented using $mfix : [[X \rightarrow M X] \rightarrow M X];$
- *mfix* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$, right?
- we implemented revRet and revBind in Rocq, proved all required continuities, . . . but could not prove monad laws.

²https://hackage.haskell.org/package/rev-state-0.2.0.1 | |

```
revBind m f = \lambda s \Rightarrow mdo(x, s'') \leftarrow m s'; (x', s') \leftarrow f x s; ret(x', s'')
```

- mdo "solves" mutually recursive equations thanks to lazy evaluation;
- *mdo* implemented using *mfix* : $[[X \rightarrow M X] \rightarrow M X]$;
- *mfix* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$, right?
- we implemented revRet and revBind in Rocq, proved all required continuities, ... but could not prove monad laws.

²https://hackage.haskell.org/package/rev-state-0.2.0.1 - > - - > - >

- parameter monad *M* must implement $mfix : [[X \rightarrow M X] \rightarrow M X];$
- which is *not* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$
- no general definition for mfix, but specification as 4 axioms
- implemented by most monads; e.g. for *identity*, mfix = fix;
- go back to Haskell's version?

- parameter monad *M* must implement $mfix : [[X \rightarrow M X] \rightarrow M X];$
- which is *not* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$;
- no general definition for mfix, but specification as 4 axioms
- implemented by most monads; e.g. for *identity*, mfix = fix;
- go back to Haskell's version?

- parameter monad *M* must implement $mfix : [[X \rightarrow M X] \rightarrow M X];$
- which is *not* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$;
- no general definition for mfix, but specification as 4 axioms;
- implemented by most monads; e.g. for *identity*, mfix = fix;
- go back to Haskell's version?

- parameter monad *M* must implement $mfix : [[X \rightarrow M X] \rightarrow M X];$
- which is *not* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$;
- no general definition for mfix, but specification as 4 axioms;
- implemented by most monads; e.g. for identity, mfix = fix;
- go back to Haskell's version?

- parameter monad *M* must implement $mfix : [[X \rightarrow M X] \rightarrow M X];$
- which is *not* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$;
- no general definition for mfix, but specification as 4 axioms;
- implemented by most monads; e.g. for identity, mfix = fix;
- go back to Haskell's version?

- parameter monad *M* must implement $mfix : [[X \rightarrow M X] \rightarrow M X];$
- which is *not* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$;
- no general definition for mfix, but specification as 4 axioms;
- implemented by most monads; e.g. for identity, mfix = fix;
- go back to Haskell's version?

```
revBind m f = \lambda s \Rightarrow mdo(x, s'') \leftarrow m s'; (x', s') \leftarrow f x s; ret(x', s'')
```

- parameter monad M must implement $mfix : [[X \rightarrow M \ X] \rightarrow M \ X];$
- which is *not* defined as $\lambda f \Rightarrow fix (\lambda m \Rightarrow bind m f)$;
- no general definition for mfix, but specification as 4 axioms;
- implemented by most monads; e.g. for identity, mfix = fix;
- go back to Haskell's version?

```
revBind m f = \lambda s \Longrightarrow mdo(x, s'') \leftarrow m s'; (x', s') \leftarrow f x s; ret(x', s'')
```

- define revStateT M S as ∀R.contT_R (M(S × R)); obtain revRet, revBind satisfying monad laws;
- define $get = \lambda (k : [S \to M (S \times R)]) \Rightarrow mfix (k \circ fst);$ put $s = \lambda (k : [1 \to M (S \times R)]) \Rightarrow do (_, r) \leftarrow k \perp_1; ret (s, r)$

- define revStateT M S as ∀R.contT_R (M(S × R)); obtain revRet, revBind satisfying monad laws;
- define $get = \lambda (k : [S \rightarrow M(S \times R)]) \Rightarrow mfix (k \circ fst);$ $put s = \lambda (k : [1 \rightarrow M(S \times R)]) \Rightarrow do (_, r) \leftarrow k \perp_1; ret (s, r)$

- define revStateT M S as ∀R.contT_R (M(S × R)); obtain revRet, revBind satisfying monad laws;
- define $get = \lambda (k : [S \to M (S \times R)]) \Rightarrow mfix (k \circ fst);$ put $s = \lambda (k : [1 \to M (S \times R)]) \Rightarrow do (_, r) \leftarrow k \perp_1; ret (s, r).$

- define revStateT M S as ∀R.contT_R (M(S × R)); obtain revRet, revBind satisfying monad laws;
- define $get = \lambda (k : [S \to M (S \times R)]) \Rightarrow mfix (k \circ fst);$ put $s = \lambda (k : [1 \to M (S \times R)]) \Rightarrow do (_, r) \leftarrow k \perp_1; ret (s, r).$

- state flows backwards (unlike forwards state monad):: put x; put y = put x;
- output flows forward (like in forward state monad):
 do x ← get; do y ← get; m x y = do x ← get; m x x;
- for $f: [S \rightarrow S]$, do $x \leftarrow get$; put (f x) = put (fix f) fixpoints values determine whether backward causality is paradoxical
 - $do x \leftarrow get$; $put(0 :: map(1+)x) = put(fix(\lambda x \Rightarrow (0 :: map(1+)x)))$ = put(0 :: 1 :: 2 :: ...) : proper Stream value, no causality paradox;
 - do $b \leftarrow get$; $put(\neg b) = put(fix(\lambda b \Rightarrow (\neg b))) = put \perp$: undefined Boolean value, causality paradox.

- state flows backwards (unlike forwards state monad):: put x; put y = put x;
- output flows forward (like in forward state monad):
 do x ← get; do y ← get; m x y = do x ← get; m x x;
- for $f: [S \rightarrow S]$, do $x \leftarrow get$; put (f x) = put (fix f) fixpoints values determine whether backward causality is paradoxical
 - $do x \leftarrow get$; $put(0 :: map(1+)x) = put(fix(\lambda x \Rightarrow (0 :: map(1+)x)))$ = put(0 :: 1 :: 2 :: ...) : proper Stream value, no causality paradox;
 - do $b \leftarrow get$; $put(\neg b) = put(fix(\lambda b \Rightarrow (\neg b))) = put \perp$: undefined Boolean value, causality paradox.

- state flows backwards (unlike forwards state monad):: put x; put y = put x;
- output flows forward (like in forward state monad):
 do x ← get; do y ← get; m x y = do x ← get; m x x;
- for $f: [S \rightarrow S]$, do $x \leftarrow get$; put (f x) = put (fix f) fixpoints values determine whether backward causality is paradoxical:
 - $do x \leftarrow get$; $put(0 :: map(1+)x) = put(fix(\lambda x \Rightarrow (0 :: map(1+)x)))$ = put(0 :: 1 :: 2 :: ...) : proper Stream value, no causality paradox;
 - do $b \leftarrow get$; $put(\neg b) = put(fix(\lambda b \Rightarrow (\neg b))) = put \perp$: undefined Boolean value, causality paradox.

- state flows backwards (unlike forwards state monad):: put x; put y = put x;
- output flows forward (like in forward state monad):
 do x ← get; do y ← get; m x y = do x ← get; m x x;
- for $f: [S \rightarrow S]$, do $x \leftarrow get$; put (f x) = put (fix f) fixpoints values determine whether backward causality is paradoxical:
 - $do x \leftarrow get$; $put(0 :: map(1+)x) = put(fix(\lambda x \Rightarrow (0 :: map(1+)x)))$ = put(0 :: 1 :: 2 :: ...) : proper Stream value, no causality paradox:
 - do $b \leftarrow get$; $put(\neg b) = put(fix(\lambda b \Rightarrow (\neg b))) = put \perp$: undefined Boolean value, causality paradox.

- state flows backwards (unlike forwards state monad):: put x; put y = put x;
- output flows forward (like in forward state monad):
 do x ← get; do y ← get; m x y = do x ← get; m x x;
- for $f: [S \rightarrow S]$, do $x \leftarrow get$; put (f x) = put (fix f) fixpoints values determine whether backward causality is paradoxical:
 - do $x \leftarrow get$; $put(0 :: map(1+)x) = put(fix(\lambda x \Rightarrow (0 :: map(1+)x)))$ = put(0 :: 1 :: 2 :: ...) : proper Stream value, no causality paradox;
 - do $b \leftarrow get$; $put(\neg b) = put(fix(\lambda b \Rightarrow (\neg b))) = put \perp$: undefined Boolean value, causality paradox.

- state flows backwards (unlike forwards state monad):: put x; put y = put x;
- output flows forward (like in forward state monad):
 do x ← get; do y ← get; m x y = do x ← get; m x x;
- for $f: [S \rightarrow S]$, do $x \leftarrow get$; put (f x) = put (fix f) fixpoints values determine whether backward causality is paradoxical:
 - $do \ x \leftarrow get; \ put(0 :: map(1+) \ x) = put(fix(\lambda \ x \Rightarrow (0 :: map(1+) \ x)))$ = put(0 :: 1 :: 2 :: ...) : proper Stream value, no causality paradox;
 - do $b \leftarrow get$; $put(\neg b) = put(fix(\lambda b \Rightarrow (\neg b))) = put \perp$: undefined Boolean value, causality paradox.

- state flows backwards (unlike forwards state monad):: put x; put y = put x;
- output flows forward (like in forward state monad):
 do x ← get; do y ← get; m x y = do x ← get; m x x;
- for $f: [S \rightarrow S]$, do $x \leftarrow get$; put (f x) = put (fix f) fixpoints values determine whether backward causality is paradoxical:
 - do $x \leftarrow get$; $put(0 :: map(1+)x) = put(fix(\lambda x \Rightarrow (0 :: map(1+)x)))$ = put(0 :: 1 :: 2 :: ...) : proper Stream value, no causality paradox;
 - do $b \leftarrow get$; $put(\neg b) = put(fix(\lambda b \Rightarrow (\neg b))) = put \perp$: undefined Boolean value, causality paradox.

Outline

- Examples
- Background
- The Reverse State Monac
- 4 Conclusion & Future Work

- formalized Reverse State Monad Transformer in Rocg:
- for now, only 2 simple programs & equational reasoning.
- application: parsers; Reverse State Monad to deal with lookahead
- other proof techniques to be investigated (Hoare Logics, ...).
- there is a future in the past³.

- formalized Reverse State Monad Transformer in Rocg:
- for now, only 2 simple programs & equational reasoning.
- application: parsers; Reverse State Monad to deal with lookahead
- other proof techniques to be investigated (Hoare Logics, ...).
- there is a future in the past³.

- formalized Reverse State Monad Transformer in Rocg:
- for now, only 2 simple programs & equational reasoning.
- application: parsers; Reverse State Monad to deal with lookahead
- other proof techniques to be investigated (Hoare Logics, ...).
- there is a future in the past³.

- formalized Reverse State Monad Transformer in Rocq:
- for now, only 2 simple programs & equational reasoning.
- application: parsers; Reverse State Monad to deal with lookahead
- other proof techniques to be investigated (Hoare Logics, ...).
- there is a future in the past³.

³Christopher Nolan, *Tenet*, 2020.