CLAIMS

1) In all possible isomer forms as well as their mixtures, the compounds of formula (I):

in which

20 <u>either</u> R_1 represents a hydrogen atom or a methyl radical. R_2 represents a cyclohexyl radical substituted by an amine, a $CH_2CH_2NHCH_3$ radical, a $CH_2CHCH_3NH_2$ radical, a

$$H_{2}C \longrightarrow N \qquad CH_{2} \longrightarrow N \qquad CH_$$

radical, a $CHCH_3CH_2NH_2$ radical, a -(CH2)aOH radical, a 35 representing an integer comprised between 1 and 8, a $(CH_2)b-C=N$ radical

b representing an integer comprised between 1 and 8, a $CHCH_3C_6H_5$ radical, a $(CH_2)-C(CH_3)_2NHCOCF_3$ radical, a

 $CHCH_3(CH_2)dOH$ radical, d representing an integer comprised between 1 and 8

 $\underline{\text{or}}$ R₁ and R₂ together with the nitrogen which carries them form a ring with 3, 4 or 5 carbons optionally substituted by 5 an amine

- R3 represents a hydrogen atom, a methyl or hydroxyl radical R_4 represents a hydrogen atom or a hydroxyl radical R represents a linear or branched or cyclic chain containing up to 30 carbon atoms, optionally containing one or more
- 10 heteroatoms, one or more heterocycles or a linear, branched or cyclic acyl radical containing up to 30 carbon atoms optionally containing one or more heteroatoms and/or one or more heterocycles,

T represents a hydrogen atom, a methyl radical, a CH_2CONH_2 ,

15 $CH_2C\equiv N$ radical, a $(CH_2)_2NH_2$ or $(CH_2)_2Nalk^+X^-$ radical, X being a halogen atom and alk an alkyl radical containing up to 8 carbon atoms,

Y represents a hydrogen atom, a hydroxyl radical or a halogen atom or an OSO_3H radical or one of the salts of this radical,

- 20 W represents a hydrogen atom or an OH radical, Z represents a hydrogen atom or a methyl radical, as well as the addition salts with acids of the products of formula (I).
- 2) The compounds of formula (I) defined in claim 1 in which 25 T represents a hydrogen atom.
 - 3) The compounds of formula (I) defined in claim 1 or 2 in which W represents a hydrogen atom.
 - 4) The compounds of formula (I) defined in any one of claims 1 to 3, in which Z represents a methyl radical.
- 30 **5)** The compounds of formula (I) defined in any one of claims 1 to 4 in which Y represents a hydrogen atom.
 - **6)** The compounds of formula (I) defined in any one of claims 1 to 5 in which R_3 represents a methyl radical.
- 7) The compounds of formula defined in any one of claims 1 35 to 6 in which R_4 represents a hydroxyl radical.

8) The compounds of formula (I) defined in any one of claims 1 to 7 in which R represents a $^{\circ}$

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\$$

radical.

 $\mathbf{9}$) The compounds of formula (I) defined in claim 8, in 5 which R represents a

chain.

10

15 ${f 10})$ The compounds of formula (I) defined in claim 8, in which R represents a

chain.

20

11) The compounds of formula (I) defined in any one of claims 1 to 10 in which R_1 is a hydrogen atom.

12) The compounds of formula (I) defined in any one of claims 1 to 11 in which R_2 is a

$$\sim$$
 NH₂

radical.

5

13) The compounds of formula (I) defined in any one of claims 1 to 11 in which R_2 is a

 $-CH_2-CH-NH_2$ radical, a $-CH-CH_2NH_2$ radical or a

$$CH_3$$
15 |
 CH_2-C-NH_2 .
|
 CH_3 radical.

20 **14)** The compounds of formula (I) defined in any one of claims 1 to 11 in which R2 is a

radical.

25

16) Process for the preparation of compounds of formula (I) defined in any one of claims 1 to 15 characterized in that a compound of formula (II)

in which R, R_3 , R_4 , T, Y, W and Z retain their previous meaning, is subjected to the action of an amine or amine 20 derivative capable of introducing

the \mathbb{R}^{1} radical in which \mathbb{R}_{1} and \mathbb{R}_{2}

- 25 retain their previous meaning and if desired to the action of a reducing agent and/or an amine functionalization agent, and/or an acid in order to form the salt of the product obtained,
- and/or a separation agent of the different isomers obtained, and the sought compound of formula (I) is thus obtained.
 17) As antifungal compounds, the compounds of formula (I) defined in any one of claims 1 to 15, as well as their addition salts with acids.
- 35 **18)** The pharmaceutical compositions containing at least one compound of formula (I) defined in any one of claims 1 to 15 as a medicament, as well as their addition salts with pharmaceutically acceptable acids.