Quantitative Spatial Models in Economics: A Simple Commuting Model of Chicago

January 22, 2024

Connacher Murphy

This is a live document and subject to change.

Hog Butcher for the World,
Tool Maker, Stacker of Wheat,
Player with Railroads and the Nation's Freight Handler;
Stormy, husky, brawling,
City of the Big Shoulders...

Come and show me another city with lifted head singing so proud to be alive and coarse and strong and cunning.

Carl Sandburg

Abstract

This repo is intended to demonstrate the basics of conducting economics research with quantitative spatial models. I derive and calibrate a simple quantitative spatial model of Chicago and conduct two counterfactual exercises. I then repeat this process for a richer model and compare the results.

1. Introduction

In progress.

2. Model

I begin with a simple model of commuting to demonstrate the basic mechanics of a common form of quantitative spatial model. I then extend this model to include other relevant features of the economy.

2.1. A Simple Model (Model A)

Chicago is comprised of discrete neighborhoods $i, n, k, l \in \mathcal{L}$. Each location i has a fixed mass R_i of residents.

2.1.1. Workers

Each agent inelastically supplies one unit of labor. An agent ω residing in location i and working in location n receives indirect¹ utility \mathcal{U}_{ni} , where

$$\mathcal{U}_{in\omega} = \left(\frac{w_n}{\kappa_{in}}\right) b_{in\omega}. \tag{1}$$

¹I omit the subproblem of utility maximization given location choice for parsimony. Model B will explicitly discuss this subproblem, which nests the subproblem of utility maximization in this model.

 w_n is the wage paid in location n. κ_{in} is a commuting cost of the iceberg form in the units of utility. $b_{in\omega}$ is an idiosyncratic preference shock with a Fréchet distribution. The cumulative distribution function of $b_{in\omega}$ is given by $F_{in}(b_{in\omega}) = \exp(b_{in\omega}^{-\theta})$. θ governs the dispersion of this preference shock.

A worker ω in location i chooses the workplace that maximizes their indirect utility:

$$n_{i\omega}^* \stackrel{\text{def}}{=} \arg\max_{n \in \mathcal{L}} \mathcal{U}_{in\omega}. \tag{2}$$

Since workers differ only in their draws of $\{b_{in\omega}\}_{i,n\in\mathcal{L}}$ of preference shocks, we can drop the ω subscript in what follows. The Fréchet-distributed preference shock implies

$$\begin{split} \pi_{in \mid i} & \stackrel{\text{def}}{=} \mathbb{P}\{n_i^* = n\} = \varphi_{in} \Phi_i^{-1}, \\ \text{where} \quad \varphi_{in} & \stackrel{\text{def}}{=} \left(\frac{w_n}{\kappa_{in}}\right)^{\theta} \\ \text{and } \Phi_i & \stackrel{\text{def}}{=} \sum_{k \in \mathcal{L}} \varphi_{ik}. \end{split} \tag{3}$$

Pending a citation on discrete choice magic.

2.1.2. Firms

This section currently omits some details concerning market structure. I will add a discussion for the sake of completeness, but the equilibrium characterization will not change.

A unit mass of firms in each neighborhood produce a freely traded final good with the technology

$$Y_n = A_n L_n^{\beta} \tag{4}$$

and pay workers their marginal product. The price of the final good is 1. Accordingly, the wage and labor demand in neighborhood n are given by

$$\begin{split} w_n &= \beta A_n L_n^{\beta - 1} \\ \Longrightarrow L_n &= \left(\frac{\beta A_n}{w_n}\right)^{\frac{1}{1 - \beta}}. \end{split} \tag{5}$$

2.1.3. Commuting Equilibrium

For the commuting market to clear, labor demand in location n must equal labor supply to location n across all residential locations i:

$$L_n = \sum_{i \in \mathcal{L}} \pi_{in \mid i} R_i. \tag{6}$$

We can substitute Equation 3 and Equation 5 into this expression to obtain an equilibrium characterization:

²Again, I omit details of market structure for parsimony. I do not explicitly model trade in goods.

$$\underbrace{\left(\frac{\beta A_n}{w_n}\right)^{\frac{1}{1-\beta}}}_{\text{Labor Demand}} = \underbrace{\sum_{i \in \mathcal{L}} \varphi_{in} \Phi_i^{-1} R_i}_{\text{Labor Supply}}.$$
(7)

This section does not discuss the existence and uniqueness of the equilibrium, nor does it discuss welfare. I will add sections on these topics in the future.

2.1.4. Counterfactual Equilibria

I will denote the vector-collection of a variable x_i over all locations with boldface: $\{x_i\}_{i\in\mathcal{L}} \stackrel{\text{def}}{=} x$. We consider a baseline equilibrium $\{w^0, \pi^0\}$ for parameters $\{A^0, \kappa^0, R^0\}$ and a counterfactual equilibrium $\{w', \pi'\}$ for parameters $\{A', \kappa', R'\}$. We denote proportional changes with hats, e.g.,

$$\hat{w}_n = \frac{w_n'}{w_n^0} \Longrightarrow w_n^0 \hat{w}_n = w_n'. \tag{8}$$

This representation leads us to "exact hat algebra," a popular method to model and summarize counterfactual equilibria. We start by expressing the market clearing condition for the counterfactual equilibrium and then substitute in Equation 5:

$$L_n^0 \hat{L}_n = \left(\sum_{i \in \mathcal{L}} (\pi_{in}^0 R_i^0) \left(\hat{\pi}_{in} \hat{R}_i \right) \right)$$

$$\Rightarrow \left(\frac{\hat{A}_n}{\hat{w}_n} \right)^{\frac{1}{1-\beta}} = \frac{\sum_{i \in \mathcal{L}} (\pi_{in}^0 R_i^0) \left(\hat{\pi}_{in} \hat{R}_i \right)}{L_n^0}.$$
(9)

We can use Equation 3 to write

$$\begin{split} \hat{\pi}_{in \mid i} &= \hat{\varphi}_{in} \hat{\Phi}_{i}^{-1}, \\ \text{where} \quad \hat{\varphi}_{in} &\stackrel{\text{def}}{=} \left(\frac{\hat{w}_{n}}{\hat{\kappa}_{in}}\right)^{\theta} \\ \text{and} \quad \hat{\Phi}_{i} &\stackrel{\text{def}}{=} \sum_{k \in \mathcal{L}} \pi_{ik}^{0} \hat{\varphi}_{ik} \end{split} \tag{10}$$

The substantive piece of this expression is $\hat{\Phi}_i$. We derive it below:

$$\hat{\Phi}_i = \frac{\sum_{k \in \mathcal{L}} \varphi_{ik}^0 \hat{\varphi}_{ik}}{\sum_{l \in \mathcal{L}} \varphi_{il}^0} = \sum_{k \in \mathcal{L}} \pi_{ik}^0 \hat{\varphi}_{ik}, \tag{11}$$

where we have used Equation 3 to substitute in for π^0_{ik} (see the portions colored red). We now combine Equation 9 and Equation 10 to obtain

$$\left(\frac{\hat{A}_n}{\hat{w}_n}\right)^{\frac{1}{1-\beta}} = \left[\sum_{i \in \mathcal{L}} \frac{\pi_{in}^0 R_i^0 \hat{R}_i (\hat{w}_n / \hat{\kappa}_{in})^{\theta}}{\sum_{k \in \mathcal{L}} \pi_{ik}^0 (\hat{w}_k / \hat{\kappa}_{ik})^{\theta}}\right] \frac{1}{L_n^0}.$$
(12)

What does this characterization of a counterfactual equilibria buy us? If we express a counterfactual as a set of proportional changes to the parameter values $\{\widehat{A}, \widehat{\kappa}, \widehat{R}\}$, then we only need data on initial con-

ditional commuting probabilities π^0 , workplace population L^0 , and residential population R^0 to solve for the proportional changes in wages \hat{w} (using Equation 12) and conditional commuting probabilities $\hat{\pi}$ (using Equation 10).

Inspired by this representation, we define

$$\mathcal{Z}_{n}(\tilde{\boldsymbol{w}}) \stackrel{\text{\tiny def}}{=} \left(\frac{\hat{A}_{n}}{\tilde{w}_{n}}\right)^{\frac{1}{1-\alpha}} - \left[\sum_{i \in \mathcal{L}} \frac{\pi_{in}^{0} R_{i}^{0} \hat{R}_{i} (\tilde{w}_{n}/\hat{\kappa}_{in})^{\theta}}{\sum_{k \in \mathcal{L}} \pi_{ik}^{0} (\tilde{w}_{k}/\hat{\kappa}_{ik})^{\theta}}\right] \frac{1}{L_{n}^{0}}.$$
 (13)

We can use this vector-valued function $\mathcal{Z}(\tilde{w})$ to compute the proportional changes in wages (and other equilibrium objects) in counterfactual equilibria. I provide pseudocode for this procedure below. I implement the algorithm in analysis/model A.ipynb.

```
Model A Algorithm:
```

2. $\varepsilon = \text{tolerance} + 1$ 3. $\tilde{\boldsymbol{w}}^0 = \vec{1}$

3.
$$\tilde{w}^0 = \vec{1}$$

3. $\tilde{\boldsymbol{w}}^0 = \vec{1}$ 4. while $\varepsilon >$ tolerance do

5.
$$\tilde{\boldsymbol{w}}^{s+1} = \tilde{\boldsymbol{w}}^s + \kappa_w \boldsymbol{\mathcal{Z}}(\tilde{\boldsymbol{w}}^s)$$

6. $\varepsilon = \max\{|\boldsymbol{\mathcal{Z}}(\tilde{\boldsymbol{w}}^s)|\}$

6.
$$\varepsilon = \max\{|\mathcal{Z}(\tilde{\boldsymbol{w}}^s)|\}$$

- 8. end while
- 9. return $\tilde{\boldsymbol{w}}^s$

2.2. A Richer Model (Model B)

We now consider a model with a housing market and residential choice. The mass of agents is denoted \overline{R} . We no longer fix an agent's residential location.

2.2.1. Setup

Utility for an agent ω residing in location i and working in location n is given by

$$U_{in\omega} = \left(\frac{c_{in\omega}}{\alpha}\right)^{\alpha} \left(\frac{h_{in\omega}}{1-\alpha}\right)^{1-\alpha} \frac{b_{in\omega}}{\kappa_{in}} \tag{14}$$

where $c_{in\omega}$ is final good consumption, $h_{in\omega}$ is housing consumption, and $F_{in}(b_{in\omega})=\exp\left(-B_{in}b_{in\omega}^{-\theta}\right)$. We've added a parameter B_{in} that governs average utility for agents that live in location i and work in location n. The Cobb-Douglas form of Equation 14 implies that agents spend a constant fraction α of their income on the final good and $(1-\alpha)$ on housing. The price of the final good is again 1, and we denote the price of housing in location i by q_i . Accordingly, indirect utility for an agent ω residing in location i and working in location n with wage w_n is given by

$$\mathcal{U}_{in\omega} = \left(\frac{\alpha w_n}{\alpha}\right)^{\alpha} \left(\frac{\alpha w_n}{q_i(1-\alpha)}\right)^{1-\alpha} \frac{b_{in\omega}}{\kappa_{in}} = \left(\frac{w_n q_i^{\alpha-1}}{\kappa_{in}}\right) b_{in\omega}. \tag{15}$$

A worker ω now chooses both a residence and workplace:

$$\{i, n\}_{\omega}^* \stackrel{\text{def}}{=} \arg \max_{i, n \in \mathcal{L}} \mathcal{U}_{in\omega}.$$
 (16)

Similar to before, the Fréchet-distributed preference shock implies the following expression for the *un-conditional* residential and commuting probability

$$\pi_{in} \stackrel{\text{def}}{=} \mathbb{P}\{\{i,n\}^* = \{i,n\}\} = \varphi_{in}\Phi^{-1},$$
where
$$\varphi_{in} \stackrel{\text{def}}{=} B_{in} \left(\frac{w_n q_i^{\alpha-1}}{\kappa_{in}}\right)^{\theta}$$
and
$$\Phi \stackrel{\text{def}}{=} \sum_{k \in \mathcal{L}} \sum_{l \in \mathcal{L}} \varphi_{kl}.$$
(17)

In what follows, it will be useful to define the mass of residents in each location i

$$R_i \stackrel{\text{def}}{=} \sum_{n \in \mathcal{L}} \pi_{in} \overline{R},\tag{18}$$

following the notation from Model A.

2.2.2. Housing Market

Each location i has a fixed stock of land available for rent H_i . Landlords face no costs and spend all of their rental income on the final good to ensure goods market clearing. Let $\overline{\nu}_i$ denote the average income of residents in location i. We can than express aggregate income for resident in location i

$$\overline{\nu}_i R_i = \sum_{n \in \mathcal{L}} \pi_{in} w_n \overline{R}. \tag{19}$$

Land market clearing implies that housing expenditure (given by utility maximization) must equal land-lord income in neighborhood i:

$$\underbrace{(1-\alpha)\overline{\nu}_i R_i}_{\text{Housing Expenditure}} = \underbrace{H_i q_i}_{\text{Landlord Income}}$$
(20)

2.2.3. Firms

We maintain the same set of assumptions on the firm side as in Model A. This yields the wage equation and labor demand

$$w_n = \alpha A_n L_n^{\alpha - 1}$$

$$\implies L_n = \left(\frac{\alpha A_n}{w_n}\right)^{\frac{1}{1 - \alpha}}.$$
(21)

2.2.4. Commuting Equilibrium

We now use the unconditional commuting probability in Equation 17 to define the commuting market clearing condition:

$$L_n = \sum_{i \in \mathcal{L}} \pi_{in} \overline{R}. \tag{22}$$

2.2.5. Counterfactual Equilibria

We proceed as in model A and derive the exact hat system.

$$\begin{split} \hat{\varphi}_{in} &= \hat{B}_{in} \left(\frac{\hat{w}_n \hat{q}_i^{\alpha - 1}}{\hat{\kappa}_{in}} \right)^{\theta} \\ \hat{\pi}_{in} &= \frac{\hat{\varphi}_{in}}{\sum_{k \in \mathcal{L}} \sum_{l \in \mathcal{L}} \pi_{kl}^0 \hat{\varphi}_{kl}} \\ \hat{R}_i &= \frac{\overline{R}^0 \hat{\overline{R}}}{R_i^0} \sum_{n \in \mathcal{L}} \pi_{in}^0 \hat{\pi}_{in} \\ \left(\frac{\hat{A}_n}{\hat{w}_n} \right)^{\frac{1}{1 - \beta}} &= \left(\frac{\overline{R}^0 \hat{\overline{R}}}{L_n^0} \right) \sum_{i \in \mathcal{L}} \pi_{in}^0 \hat{\pi}_{in} \\ \hat{\overline{\nu}}_i \hat{R}_i &= \hat{\overline{R}} \left(\frac{\sum_{n \in \mathcal{L}} \pi_{in}^0 w_n^0 \hat{\pi}_{in} \hat{w}_n}{\sum_{k \in \mathcal{L}} \pi_{ik}^0 w_k^0} \right) \\ \hat{q}_i &= \frac{\hat{\overline{\nu}}_i \hat{R}_i}{\hat{H}_i} \end{split}$$

$$(23)$$

We combine the expressions from above and define

$$\begin{split} \mathcal{Z}_{n}(\tilde{\boldsymbol{w}}, \tilde{\boldsymbol{q}}) & \stackrel{\text{def}}{=} \left(\frac{\hat{A}_{n}}{\hat{w}_{n}}\right)^{\frac{1}{1-\beta}} - \left(\frac{\overline{R}^{0} \hat{\overline{R}}}{L_{n}^{0}}\right) \sum_{i \in \mathcal{L}} \frac{\pi_{in}^{0} \hat{B}_{in} \left(\hat{w}_{n} \hat{q}_{i}^{\alpha-1} / \hat{\kappa}_{in}\right)^{\theta}}{\sum_{k \in \mathcal{L}} \sum_{l \in \mathcal{L}} \pi_{kl}^{0} \hat{B}_{kl} \left(\hat{w}_{l} \hat{q}_{k}^{\alpha-1} / \hat{\kappa}_{kl}\right)^{\theta}} \\ \mathcal{Q}_{i}(\tilde{\boldsymbol{w}}, \tilde{\boldsymbol{q}}) & \stackrel{\text{def}}{=} \left(\frac{\hat{\overline{R}}}{\hat{H}_{i}}\right) \left(\frac{\sum_{n \in \mathcal{L}} \pi_{in}^{0} w_{n}^{0} \hat{\pi}_{in} \hat{w}_{n}}{\sum_{k \in \mathcal{L}} \pi_{ik}^{0} w_{k}^{0}}\right). \end{split} \tag{24}$$

Model B Algorithm:

- 1. s = 0
- 2. $\varepsilon = \text{tolerance} + 1$
- 3. $\tilde{w}^0 = \tilde{q}^0 = \vec{1}$
- 4. **while** ε > tolerance **do**
- 5. $\tilde{\boldsymbol{q}}^{s+1} = \left(1 \kappa_q\right) \tilde{\boldsymbol{q}}^s + \kappa_q \mathcal{Q}(\tilde{\boldsymbol{w}}^s, \tilde{\boldsymbol{q}}^s)$ 6. $\tilde{\boldsymbol{w}}^{s+1} = \tilde{\boldsymbol{w}}^s + \kappa_w \mathcal{Z}(\tilde{\boldsymbol{w}}^s, \tilde{\boldsymbol{q}}^s)$
- 7. $\varepsilon = \max\{|\mathcal{Z}(\tilde{\boldsymbol{w}}^s, \tilde{\boldsymbol{q}}^s)|\}$
- 8. s = s + 1
- 9. end while
- 10. return $\tilde{\boldsymbol{w}}^s, \tilde{\boldsymbol{q}}^s$

3. Data and Calibration

In progress.

4. Counterfactual Exercises

In progress.

4.1. Local Productivity Shock

Figure 1: Local Productivity Shock, Simple QSM, \widehat{A}

Figure 2: Local Productivity Shock, Simple QSM, \hat{w}

Figure 3: Local Productivity Shock, Simple QSM, $\hat{\boldsymbol{w}}$

