STOPPING TIMES

ROBERT DOUGHERTY-BLISS AND CHARLES KENNEY

Let

$$V = \bigoplus_{k=1}^{\infty} (\mathbb{Z}/2\mathbb{Z})$$

and

$$\bigcirc_1 = \{0\} \subset V,$$

while for k > 1,

$$\bigcirc_{2k} = \{v \in V : \forall j > k, v_j = 0, \text{ and } v \text{ has stopping time } 2k\}.$$

Let $g(n) = |\bigcirc_n|$. Then

$$g(4n) = 2g(4n - 2)$$

and

$$g(4n+2) = 2g(4n) - g(2n).$$

Define $e_0, e_1: V \to V$ by

$$e_0(b) = \begin{cases} 0 \text{ if } b = 0\\ (b_1, \dots, b_j, 0, 1, 0, 0, \dots) \text{ if } b = (b_1, \dots, b_j, 1, 0, 0, \dots) \end{cases}$$

and

$$e_1(b) = \begin{cases} (1,0,0,\ldots) \text{ if } b = 0\\ (b_1,\ldots,b_j,1,1,0,0,\ldots) \text{ if } b = (b_1,\ldots,b_j,1,0,0,\ldots). \end{cases}$$

Note that e_0 and e_1 are injective, $e_0(V) \cap e_1(V) = \emptyset$, and $e_0(V) \cup e_1(V) = V$. Let $f: V \to V$ be given by

$$f(b) = \begin{cases} (b_1, ..., b_{j-1}, 1, 0, 0, ...) & \text{if } \exists j > 0 \text{ s.t. } b = (b_1, ..., b_j, 1, 0, 0, ...) \\ 0 & \text{otherwise,} \end{cases}$$

so that $f \circ e_0 = f \circ e_1 = \mathrm{id}_V$. The map e_1 takes the element of \bigcirc_1 to \bigcirc_2 , the element of \bigcirc_2 to \bigcirc_4 , and in general for $k \geq 1$,

$$e_1: \bigcirc_{2k} \rightarrow \bigcirc_{2k+2}$$
.

Similarly, for $k \geq 2$,

$$e_0: \bigcirc_{4k-2} \rightarrow \bigcirc_{4k}$$
.

Let
$$\bigcirc_{2k}^1 = \{(b_1, ..., b_{2k}, 1, 0, 0, ...) \in V \text{ s.t. } (b_1, ..., b_{2k}, 0, 0, ...) \in \bigcirc_{2k}\}$$
. Then

$$e_0: \bigcirc_{4k} \to \bigcirc_{4k+2} \cup \bigcirc_{2k}^1$$

for all $k \ge 1$. Now $e_0(\bigcirc_{4k}) \supseteq \bigcirc_{2k}^1$, since if $b = (b_1, ..., b_{k-1}, 1, 0, 0, ...) \in \bigcirc_{2k}$ then $(b_1, ..., b_{k-1}, 1, 0, 0, ..., 0, 1, 0, 0, ...) \in \bigcirc_{4k}$, where the final '1' is preceded by k-1 '0's. Finally, for all $k \ge 1$,

$$e_0(\bigcirc_{2k}) \cup e_1(\bigcirc_{2k}) \supseteq \bigcirc_{2k+2}$$
.