EXAMEN DE CÁLCULO. SEGUNDO CONTROL GRADO EN INGEN. INFORM. DEL SOFTWARE. 16-01-2019

Una única pregunta tipo test mal contestada no penaliza. Si son dos, penalizaría medio punto y si son las tres, penalizaría un punto. En el resto de preguntas se ha de contestar razonadamente. Cualquier resultado, no trivial, no visto en clase o en el material presentado en el Campus Virtual se ha de justificar; en caso contrario, no se valorará. No está permitido usar calculadora.

1) Sea $r \in R$. La serie numérica $\sum_{n=0}^{\infty}$	$\sum_{n=0}^{\infty} r^n$ es divergente a $+\infty$, si y sólo si,
n=	=[

- b) r=1 c) $r \ge 1$ d) r < -1a) r > 1(1p.)
- 2) Sea f definida en $I = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ tal que $f(x) = x^2$ si $x \in \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, f(x) = 1 + x si $x \in \begin{bmatrix} -1 \\ 0 \end{bmatrix}$. Denotamos por J el intervalo abierto (-1,1).

 - a) f es integrable en I y tiene primitiva en J b) f es integrable en I pero no tiene primitiva en J
- c) f no es integrable en I pero tiene primitiva en J d) f no es integrable en I ni tiene primitiva en J
- (1p.)
- 3) Sabiendo que $\tan(\pi/4) = 1$, $\int_{0}^{3} \frac{1}{9+x^2} dx =$ a) $\pi/12$ b) $\pi/8$ c) $\pi/4$

(1p.)

- a) De la serie $\sum_{n=1}^{\infty} a_n$ se conoce que la sucesión de sumas parciales $\{S_n\}$ viene dada por $S_n = \frac{3n+1}{n+2} \quad \forall n \in \mathbb{N}$. Obtener a_1 y el término general a_n $\forall n \ge 2$ ¿es convergente esta serie?
- b) Enunciar el segundo teorema fundamental del cálculo integral (regla de Barrow).
- c) Obtener F(x) definida en [0,2] que sea una primitiva de la función $f(x) = |x^2 1|$ en (0,2). Utilizar F(x) para calcular la integral de f(x) en [0,2] sin evaluar F(x) en x=1.

(0.75p.+0.5p.+1p.)

5)

- a) Resolver la integral impropia $\int_{0}^{1} \log^{6}(x) dx$ que está relacionada con la función Gamma. Se sugiere hacer el cambio de variable log(x) = -t
- b) Calcular el área determinada por la curva $y = -\frac{x^3}{\sqrt{8-x^2}}$, las rectas x = 0, x = 2 y el eje de abscisas (usando la fórmula del cambio de variable en la integral definida).

(0.75p.+1.75p.)

 $sen(\pi/6) = 1/2$ $sen(\pi/3) = \sqrt{3}/2$ $sen(\pi/4) = 1/\sqrt{2}$

6)

- a) Estudiar el carácter de la serie $\sum_{1}^{\infty} \frac{2^2 \cdot 5^2 \cdot 8^2 \dots (3n-1)^2}{1^2 \cdot 4^2 \cdot 7^2 \cdot (3n-2)^2}$
- b) Obtener la suma de la serie $\sum_{n=1}^{\infty} \frac{4n+1}{3^n}$

(1p.+1.25p.)