

Frazioni continue ed equazione di Pell

Dario Maddaloni

Novembre 2021

Indice

- 1 L'equazione di Pell
- 2 Frazioni continue
- 3 E come facciamo a ricavarle?
- 4 Teorema di Lagrange
- 5 Teoremi di Pell
- 6 Conclusioni

L'equazione di Pell

Cos'è l'equazione di Pell

Equazione di Pell

Chiamiamo equazione di Pell un'equazione della seguente forma

$$x^2 - Ny^2 = \pm 1$$

dove abbiamo fissato $N \in \mathbb{N}$ non un quadrato perfetto

E di tale equazione cerchiamo tutte le possibili soluzioni per $x,\ y\ \in \mathbb{Z}$

Facciamo chiarezza

$$x^2 - 14y^2 = 1$$

Frazioni continue

Frazione continua

Frazione continua

Chiamiamo frazione continua un'espressione del tipo:

$$a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4 + \dots}}}$$

dove $a_1 \in \mathbb{Z}$ e $a_i \in \mathbb{N}$ con $i \geq 2$.

Notazione

$$a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}$$
 oppure $[a_1, a_2, a_3, \dots]$

E come facciamo a ricavarle?

"Algoritmo" di calcolo

Obiettivo

Si voglia trovare la frazione continua di un certo numero α .

Scriviamo α come α_1

- **1** Fissiamo $a_i = \lfloor \alpha_i \rfloor$
- **2** Calcoliamo α_{i+1} t.c. $\alpha_i = a_i + \frac{1}{\alpha_{i+1}}$ (i.e. $\alpha_{i+1} = \frac{1}{\alpha_i a_i}$)
- **3** Ripetiamo per α_{i+1} dal primo punto
- 4 Otteniamo una successione a_1, a_2, a_3, \ldots
- 5 Sostituiamo "a salire" e otteniamo:

$$a_1 + \frac{1}{a_2 + a_3 + \dots}$$

Facciamo chiarezza

Consideriamo $\alpha = \sqrt{14} = \alpha_1$.

$$a_1 = \lfloor \alpha_1 \rfloor = 3$$

$$\alpha_1 = 3 + \frac{1}{\alpha_2} \text{ quindi} \quad \alpha_2 = \frac{1}{\alpha_1 - 3} = \frac{\sqrt{14} + 3}{5} \approx 1,348$$

$$\mathbf{a}_2 = \lfloor \alpha_2 \rfloor = 1$$

$$\alpha_2 = 1 + \frac{1}{\alpha_3} \text{ quindi } \alpha_3 = \frac{1}{\alpha_2 - 1} = \frac{\sqrt{14} + 2}{2} \approx 2,871$$

$$a_3 = \lfloor \alpha_3 \rfloor = 2$$

$$\alpha_3 = 2 + \frac{1}{\alpha_4} \text{ quindi } \alpha_4 = \frac{1}{\alpha_3 - 4} = \frac{\sqrt{14} + 2}{5} \approx 1,148$$

$$a_4 = \lfloor \alpha_4 \rfloor = 1$$

• $a_4 = \lfloor \alpha_4 \rfloor = 1$ e avanti così..

Otteniamo quindi che $\sqrt{14} = [3, 1, 2, 1, \dots]$

Mi fermo qui perché prima voglio introdurre il teorema di Lagrange

Convergenti

Teorema delle potenze di -1

Fissata una frazione continua $[a_1, a_2, ...]$ e i seguenti valori:

$$p_{-1} = 0$$
, $p_0 = 1$, $p_i = a_i p_{i-1} + p_{i-2}$

$$q_{-1} = 1$$
, $q_0 = 0$, $q_i = a_i q_{i-1} + q_{i-2}$

vale che

$$p_i q_{i-1} - p_{i-1} q_i = (-1)^i$$

Facciamo chiarezza

$$p_1 = 3 \cdot 1 + 0 = 3, \ p_2 = 1 \cdot 3 + 1 = 4$$

 $q_1 = 3 \cdot 0 + 1 = 1, \ q_2 = 1 \cdot 1 + 0 = 1$

e vale che
$$p_2 \cdot q_1 - q_2 \cdot p_1 = 4 \cdot 1 - 3 \cdot 1 = 1 = (-1)^2$$

Teorema di Lagrange

Preparativi per Lagrange

Coniugato di un irrazionale quadratico

Dato un numero irrazionale quadratico $\boldsymbol{\alpha}$

$$\frac{P+\sqrt{D}}{Q}$$
 $P,Q\in\mathbb{Z}\ e\ D\in\mathbb{N}$

definiamo **coniugato di** α il valore

$$\alpha' = \frac{P - \sqrt{D}}{Q}$$

Irrazionale quadratico ridotto

Definiamo un numero irrazionale quadratico **ridotto** se $\alpha>1$ e $-1<\alpha'<0$

Teorema di Lagrange

pre-teorema di Lagrange

Se α è un numero irrazionale quadratico ridotto, allora la sua corrispettiva frazione continua è puramente periodica.

teorema di Lagrange

Ogni espansione in frazione continua di un numero quadratico irrazionale α è periodica da un certo termine in poi

Mostriamo il caso particolare: \sqrt{N}

 \sqrt{N} è un irrazionale quadratico, ma non è ridotto. Sappiamo però

$$\sqrt{N}=a_1+\frac{1}{a_2+\frac{1}{a_3+\dots}}$$

e che $\alpha \triangleq \sqrt{N} + \lfloor \sqrt{N} \rfloor = \sqrt{N} + a_1$ è ridotto e quindi con frazione continua periodica:

$$\alpha = 2a_1 + \frac{1}{a_2 + a_3 + \dots + a_n + \frac{1}{2a_1 + \dots}} = [\overline{2a_1, a_2, a_3, \dots, a_n}]$$

$$\sqrt{N} + a_1 = \alpha = [\overline{2a_1, a_2, a_3, \ldots, a_n}]$$

Ora, confronto due modi di esprimere $\frac{1}{\sqrt{N}-a_1}$:

$$-\frac{1}{\alpha'} = \frac{1}{\sqrt{N} - a_1} = [\overline{a_n, a_{n-1}, \dots, a_2, 2a_1}]$$

Vedendo che $\sqrt{N} - a_1 = [0, \overline{a_2, a_3, \dots, a_n, 2a_1}]$ posso dire che

Otteniamo quindi, comparando le due espansioni, che \sqrt{N} sarà della forma $[a_1, \overline{a_2, a_3, \ldots, a_3, a_2, 2a_1}]$

Facciamo chiarezza

Consideriamo $\alpha = \sqrt{14} = \alpha_1$.

$$\mathbf{a}_2 = \lfloor \alpha_2 \rfloor = 1$$

$$\alpha_2 = 1 + \frac{1}{\alpha_3} \text{ quindi } \alpha_3 = \frac{1}{\alpha_2 - 1} = \frac{\sqrt{14} + 2}{2} \approx 2,871$$

$$a_3 = \lfloor \alpha_3 \rfloor = 2$$

$$\alpha_3 = 2 + \frac{1}{\alpha_4} \text{ quindi } \alpha_4 = \frac{1}{\alpha_3 - 4} = \frac{\sqrt{14} + 2}{5} \approx 1,148$$

Facciamo chiarezza

$$a_4 = \lfloor \alpha_4 \rfloor = 1$$

$$\alpha_4 = 1 + \frac{1}{\alpha_5} \text{ quindi } \alpha_5 = \frac{1}{\alpha_4 - 1} = \sqrt{14} + 3 \approx 6,742$$

$$\mathbf{a}_5 = \lfloor \alpha_5 \rfloor = 6$$

$$\alpha_5 = 6 + \frac{1}{\alpha_6} \text{ quindi } \alpha_6 = \frac{1}{\alpha_5 - 6} = \frac{\sqrt{14} + 3}{5} = \alpha_2$$

Si vede quindi che $\sqrt{14} = [3, \overline{1, 2, 1, 6}]$

Teoremi di Pell

Teoremi per Pell

Teorema di quasi esistenza di soluzioni

Indipendentemente dalla frazione continua di \sqrt{N} , l'equazione di Pell $x^2-Ny^2=1$ ammette sempre una soluzione intera. Se \sqrt{N} ha una frazione continua di periodo dispari, allora l'equazione di Pell $x^2-Ny^2=-1$, ammette sempre una soluzione

Non esistenza

 $x^2 - 3y^2 = -1$ non ha soluzioni intere

Dimostrazione

$$\sqrt{N} = [a_1, a_2, \ldots, a_n, \alpha_{n+1}]$$

$$\alpha_{n+1} = \sqrt{N} + a_1$$

$$\sqrt{N} = \frac{\alpha_{n+1}p_n + p_{n-1}}{\alpha_{n+1}q_n + q_{n-1}}$$
 (da un lemma)

4
$$p_n(p_n - a_1q_n) - q(Nq_n - a_1p_n) = (-1)^n$$

$$p_n^2 - Nq_n^2 = (-1)^n$$

Facciamo chiarezza

Convergenti

$$\sqrt{14} = [3, \ \overline{1, \ 2, \ 1, \ 6}]$$

$$p_1 = 3 \qquad q_1 = 2$$

$$p_2 = 4 \qquad q_2 = 1$$

$$p_3 = a_3 \cdot p_2 + p_1 = 11 \qquad q_3 = a_3 \cdot q_2 + q_1 = 3$$

Il teorema precedente effettivamente vale:

 $p_4 = a_4 \cdot p_3 + p_2 = 15$

$$p_A^2 - 14 \cdot q_A^2 = 15^2 - 14 \cdot 4^2 = 225 - 224 = 1$$

 $q_4 = a_4 \cdot q_3 + q_2 = 4$

Teorema delle soluzioni generali

Se (x_1, y_1) è la più piccola soluzione positiva dell'equazione di Pell positiva, allora tutte le altre soluzioni positive possono essere ottenute dalla seguente equazione:

$$x_n + y_n \sqrt{N} = (x_1 + y_1 \sqrt{N})^n$$

con $n \in \mathbb{N}$

Facciamo chiarezza

Si dovrà trovare le soluzioni di
$$x_i + y_i \sqrt{14} = (15 + 4\sqrt{14})^i$$

i=2:
$$x_2 + y_2\sqrt{14} = (15 + 4\sqrt{14})^2 = 449 + 120\sqrt{14}$$

Cioè, $(x_2, y_2) = (449, 120)$ è una soluzione:
 $449^2 - 14 \cdot 120^2 = 1$

i=3:
$$x_3 + y_3\sqrt{14} = (15 + 4\sqrt{14})^3 = 13455 + 3596\sqrt{14}$$

Cioè, $(x_3, y_3) = (13455, 3596)$ è una soluzione: $13455^2 - 14 \cdot 3596^2 = 181037025 - 181037024 = 1$

i=4: e così via...

Conclusioni

Riassunto

Facciamo chiarezza

$$x^2 - 14y^2 = 1$$

- $\sqrt{14} = [3, \ \overline{1, \ 2, \ 1, \ 6}]$
- $p_4 = 15$, $q_4 = 4$, quindi (15, 4) è la soluzione più piccola
- Risolviamo $x_i + y_i \sqrt{14} = (15 + 4\sqrt{14})^i$

Fine

Grazie per l'attenzione e Saluti!