Circuits

Basic concepts

Spring 2022

Measurable quantity

Both:

Units and scales •000

- a number
- a unit

Examples

- 12 kilograms
- 81.3 kilometers
- 11.5 degree celsius
- 22 minutes

System of Units

International System of Units (SI)

Base quantity	Name	Symbol
length	meter	m
mass	kilogram	kg
time	second	S
electric current	ampere	Α
temperature	kelvin	K
amount of substance	mole	mol
luminosity	candela	cd

Units and scales 0000

No other units?

How about joules (energy), watts (power), newtons (force), volts (voltage), ...?

Every other unit can be derived from the 7 base units.

Examples

- 1 joule = 1 J = 1 kg.m 2 .s $^{-2}$
- 1 watt = 1 W = 1 J.s⁻¹ = 1 kg.m².s⁻³
- 1 newton = 1 N = 1 kg.m.s $^{-2}$
- 1 volt = 1 V = 1 kg.m 2 .s $^{-3}$.A $^{-1}$

Scales

Units and scales 0000

Decimal system for larger and smaller units

Factor	Name	Symbol	Factor	Name	Symbol
10^{-24}	yocto	у	10 ²⁴	yotta	Y
10^{-21}	zepto	Z	10^{21}	zetta	Z
10^{-18}	atto	a	10^{18}	exa	Е
10^{-15}	femto	f	10^{15}	peta	Р
10^{-12}	pico	р	10^{12}	tera	Т
10^{-9}	nano	n	10 ⁹	giga	G
10^{-6}	micro	μ	10^{6}	mega	М
10^{-3}	milli	m	10^{3}	kilo	k
10^{-2}	centi	С	10^{2}	hecto	h
10^{-1}	deci	d	10^{1}	deca	da
10 ⁰					

Charge

Charge conservation

Physics law of conservation of charge: charge cannot be created or destroyed, only transferred

We will consider the **flow of charges** instead (referred to the **current**)

Unit of charge

 \blacksquare 1 coulomb = 1 C (= 1 A.s)

2 types of charge

■ positive: 1 proton = 1.602×10^{-19} C

■ negative: 1 electron = -1.602×10^{-19} C

Electric current

It is the rate of change of charge, measured in amperes (A)

Two main types of current

- Direct Current (DC): current remains constant
- Alternating Current (AC): current varies sinusoidally with time

Formula

$$i = \frac{dq}{dt}$$

i: current in amperes

q: charge in coulombs

t: time in seconds

• individual charges

Definition of current: 1 ampere corresponds to 1 coulomb of (positive) charges passing though the cross section in 1 second

Current: proton or electron movement?

Physically, current in circuits are obtained from the movement of electrons.

Protons are not moving.

Representation

Direction of current must be specified by an **arrow**

Current/electron directions

Electrons move in the opposite direction of current

i is defined positively in the opposite direction to electron movement

Propagation rate

- Propagation is close to speed of light
- Effects are supposed instantaneous

Assumptions for this course

- Lumped-parameter system (propagation is instantaneous)
- No charge can be stored (every circuit element has a net charge of zero)
- No magnetic effect

Voltage

Definition

It is the difference in electric potential between two points

Other names: electric potential difference, electric pressure or electric tension

Physical interpretation

- Quantity of energy needed per unit of charge to move a test charge between the two points
- Voltage can push charges in one direction

Representation

We use polarity (+ and - on batteries for example) to indicate the direction of voltage

Voltage

- the voltage sources push current through the circuit
- the resistor resists the flow of charge

Power

Power

It is the **time rate of energy transfer** p, measured in watts (W)

Convention

- Circuit elements that absorb power have a positive value of p
- Circuit elements that **produce power** have a **negative** value of p

Formula

$$p = \frac{\mathrm{d}w}{\mathrm{d}t} = \pm v \cdot i$$

p: power in watts

w: energy in joules

t: time in seconds

v: voltage in volts

i: current in amperes

Power

Conservation of energy

The **net power** absorbed by a **circuit** is equal to **0**

Interpretation

$$\sum_{n} p_n = 0$$

The watts absorbed by some circuit elements have been produced by some other elements

Power

Passive sign convention (PSC)

Current enters the positive terminal of an element

but what about a buttery ?

Sign in power formula

■ PSC satisfied: $p = v \cdot i$ we are calculating the absorbed over always PSC not satisfied: $p = -v \cdot i$ are the absorbing of one element. The positive polarity

IMPORTANT!!!

PSC rule is very important and should be examined very carefully!!!

Independent voltage source

When is the stage ever dependent in current?

正常不是心国皇工楼据尽来至比陷?

Definition (ideal)

An independent voltage source is characterized by a terminal voltage which is completely independent of the current through it - this is never the real case. The energy will

Symbols

12 7 V may be infinite

Independent current source

Definition (ideal)

An independent current source is characterized by a current which is completely independent of the voltage across it

Symbols

What's a current source? isn't airent a product of

Ideal sources

lights dim when the AC is turned on for seconds

Model

Be careful! The independent sources are **models** for real sources.

These models do not represent exactly the real physical devices. The idealized sources could theoretically deliver infinite power, which is not possible in real life.

But, for example, 12 V batteries in cars really maintain a constant 12 V terminal voltage as long as the current does not exceed several amperes.

Dependent voltage sources

Definition

A dependent voltage source is characterized by a terminal voltage which depends on a quantity (voltage or current) existing somewhere else in the circuit.

Apply 2/19 Applex & page and circuits

Purpose

The models of dependent voltage sources usually appear in equivalent electrical models for some electronic devices (transistors, operational amplifiers, . . .).

Symbol

Syml C Klis + Constants of a current Current-controlled

Voltage-controlled

Dependent current sources

Definition

A dependent current source is characterized by a current which depends on a quantity (voltage or current) existing somewhere else in the circuit.

Purpose

The models of dependent current sources usually appear in equivalent electrical models for some electronic devices (transistors, operational amplifiers, ...).

sources are called active elements in circuits Symbol

Current-controlled

00000

Voltage-controlled

Simplest passive element: resistor

The voltage across a conductive material is directly proportional to the current flowing through it

Ohm's law

$$v = R \cdot i$$

 $v = R \cdot i$ here the $v \le i$ Should follow the PSC

R is called the **resistance**

The unit of resistance is **ohm** $(\Omega, \text{ equivalent to } 1 \text{ V/A})$

Symbol

will be a negative

element they is a passing +

no matter PSC. is satisfied or not the purer for all resistors is positive 23/26

Circuits - Spring 2022 - Ping-Ping DING

Precautions

Be careful with Ohm's law and the directions of current and voltage

Similarly to the definition of power absorbed, a more accurate formula should be $v = +R \cdot i$

Passive sign convention (again)

Current enters the positive terminal of an element

- PSC satisfied: $v = R \cdot i$
- PSC not satisfied: $v = -R \cdot i$

Power absorbed

A resistor **Joule effect** power (check exercise)

The absorbed power is dissipated into **heat**.

This phenomena is called Joule effect