CS 4750 – Database Systems

DB Project Normal Forms

Last updated: 11/21/2013 by Hong Moon

First draft completed for all tables

Functional Dependencies

Customer: customer_id → customer_id, password, First name, Last name, street_addr, city, state, zip_code, phone_number phone_number → street_addr, city, state, zip_code zip_code → state Product: $product_id \rightarrow product_id, product_name, amount_left, price, vendor_name, supplied_date, product_description, URL product_id \rightarrow product_id, product_id,$ $product_name \to price$ Order: order_id → order_id, customer_id, list_id, order_date, total_order_price, order_status, payment_method_id Product_list: $list_id$, $product_id \rightarrow list_id$, $product_id$, amountOrder_history: customer_id, order_id → customer_id, order_id Vendor: $vendor_name \rightarrow vendor_name, phone_number, address, contact_personnel_email$ phone_number → address (Note: As explained in the Requirements document, we treat the vendor address as atomic so we don't break it apart as in Customer table)

Supply:

product_id, vendor_name → product_id, vendor_name, supplied_date, supplied_amount

Message:

message_id → message_id, customer_id, message_title, message_content, date

Write_Msg:

customer_id, message_id → customer_id, message_id

Write_Prod:

customer_id, product_id → customer_id, product_id

Product_review:

product_review_id → product_review_id, product_id, customer_id, date, star_rating

Payment_method:

 $credit_card_num, credit_card_type \rightarrow csv$

 $payment_method_id \rightarrow payment_method_id, customer_id, credit_card_num, credit_card_type, csv$

First Normal Form

All the attributes in the tables are atomic, so they are in first normal forms.

Third Nomal Forms

(1) Customer

Customer:

```
customer_id → customer_id, password, First name, Last name, street_addr, city, state, zip_code, phone_number

phone_number → street_addr, city, state, zip_code

zip_code → state
```

Calculate F+:

Copy FDs

```
customer_id \rightarrow customer_id, password, First name, Last name, street_addr, city, state, zip_code, phone_number phone_number \rightarrow street_addr, city, state, zip_code zip_code \rightarrow state
```

2 Add Reflexives

```
customer_id \rightarrow customer_id, password, First name, Last name, street_addr, city, state, zip_code, phone_number phone_number \rightarrow phone_number, street_addr, city, state, zip_code zip_code \rightarrow zip_code, state
```

3 Add Rules

(No rules to apply)

Therefore, F+:

```
customer_id → customer_id, password, First name, Last name, street_addr, city, state, zip_code, phone_number

phone_number → phone_number, street_addr, city, state, zip_code

zip_code → zip_code, state
```

Calculate Fc:

Eliminate Reflexives from F+

```
customer_id \rightarrow password, First name, Last name, street_addr, city, state, zip_code, phone_number \rightarrow street_addr, city, state, zip_code zip_code \rightarrow state
```

2 Eliminate Transitive Dependencies

Since we have

```
customer_id → phone_number
phone_number → street_addr, city, state, zip_code
customer_id → street_addr, city, state, zip_code
```

Eliminate

```
customer_id → street_addr, city, state, zip_code
```

Intermediate result:

```
customer_id \rightarrow password, First name, Last name, phone_number phone_number \rightarrow street_addr, city, state, zip_code zip_code \rightarrow state
```

3 Eliminate Transitive Dependencies

```
Since we have
```

```
\begin{aligned} & \mathsf{phone\_number} \to \mathsf{zip\_code} \\ & \mathsf{zip\_code} \to \mathsf{state} \\ & \mathsf{phone\_number} \to \mathsf{state} \end{aligned}
```

Eliminate

```
phone\_number \to state
```

Therefore, Fc:

```
customer_id \rightarrow password, First name, Last name, phone_number phone_number \rightarrow street_addr, city, zip_code zip_code \rightarrow state
```

From Fc, the 3NF tables for Customer table are:

```
customer_id, password, First name, Last name, phone_number //
phone_number, street_addr, city, zip_code //
zip_code, state
```

(Answer)

```
customer_id, password, First name, Last name, phone_number //
phone_number, street_addr, city, zip_code //
zip_code, state
```

(2) Product

Product:

 $product_id \rightarrow product_id, product_name, amount_left, price, vendor_name, supplied_date, product_description, URL \\ product_name \rightarrow price$

Calculate F+:

① Copy FDs

 $product_id \rightarrow product_id, product_name, amount_left, price, vendor_name, supplied_date, product_description, URL \\ product_name \rightarrow price$

2 Add Reflexives

 $product_id \rightarrow product_id, product_name, amount_left, price, vendor_name, supplied_date, product_description, URL \\ product_name \rightarrow product_name, price$

3 Add Rules

(No rules to apply)

Therefore, F+:

 $product_id \rightarrow product_id, product_name, amount_left, price, vendor_name, supplied_date, product_description, URL \\ product_name \rightarrow product_name, price$

Calculate Fc:

1 Eliminate Reflexives from F+ $product_id \rightarrow product_name, amount_left, price, vendor_name, supplied_date, product_description, URL$ $product_name \to price$ **Eliminate Transitive Dependencies** Since we have $product_id \rightarrow product_name$ $product_name \to price$ $product_id \to price$ Eliminate $product_id \rightarrow price$ Therefore, Fc: $product_id \rightarrow product_name, amount_left, vendor_name, supplied_date, product_description, URL$ $product_name \to price$ From Fc, the 3NF tables are: product_id, product_name, amount_left, vendor_name, supplied_date, product_description, URL // product_name, price (Answer) $product_id, product_name, amount_left, vendor_name, supplied_date, product_description, URL // \\$ product_name, price

(3) Orde

Order:

 $order_id \rightarrow order_id, customer_id, list_id, order_date, total_order_price, order_status, payment_method_id$

Explanation:

order_id is a super key of the Order table. So the table is already in 3NF.

(4) Product list

Product_list:

 $list_id, product_id \rightarrow list_id, product_id, amount$

Explanation:

The combination of attributes list_id and product_id is a super key of the Product_list table. So the table is already in 3NF.

(5) Order History

 ${\bf Order_history}:$

 $customer_id, order_id \rightarrow customer_id, order_id$

Explanation:

The combination of attributes customer_id and order_id is a super key of the Order_history table. So the table is already in 3NF.

(6) Vendor

Vendor:

```
\mbox{vendor\_name} \rightarrow \mbox{vendor\_name, phone\_number, address, contact\_personnel\_email} \mbox{phone\_number} \rightarrow \mbox{address}
```

Calculate F+:

Copy FDs

```
\mbox{vendor\_name} \rightarrow \mbox{vendor\_name, phone\_number, address, contact\_personnel\_email} \mbox{phone\_number} \rightarrow \mbox{address}
```

2 Add Reflexives

```
\label{phone_number} \mbox{ vendor\_name} \rightarrow \mbox{ vendor\_name, phone\_number, address, contact\_personnel\_email} \mbox{ phone\_number} \rightarrow \mbox{ phone\_number, address}
```

3 Add rules

(No rules to apply)

Therefore, F+:

```
\label{phone_number} \mbox{$\tt vendor\_name, phone\_number, address, contact\_personnel\_email} $$ \mbox{$\tt phone\_number} \to \mbox{$\tt phone\_number, address} $$
```

Calculate Fc:

① Eliminate Reflexives from F+

```
\label{eq:contact_personnel_email} $$\operatorname{phone\_number} \to \operatorname{phone\_number} \to \operatorname{address}$$
```

2 Eliminate Transitive Dependencies

Since we have

```
vendor\_name \rightarrow phone\_number
phone\_number \rightarrow address
vendor\_name \rightarrow address
```

Eliminate

```
vendor_name → address
```

Therefore, Fc:

```
\label{eq:contact_personnel_email} $$\operatorname{phone\_number} \to \operatorname{phone\_number} \to \operatorname{address}$$
```

From Fc, the 3NF tables are:

vendor_name, phone_number, contact_personnel_email //
phone_number, address

(Answer)

vendor_name, phone_number, contact_personnel_email //
phone_number, address

(7) Supply

Supply:

 $product_id, vendor_name \rightarrow product_id, vendor_name, supplied_date, supplied_amount$

Explanation:

The combination of attributes product_id and vendor_name is a super key of the Supply table. So the table is already in 3NF.

(8) Message

Message:

 $message_id \rightarrow message_id, customer_id, message_title, message_content, date$

Explanation:

message_id is a super key of the Message table. So the table is already in 3NF.

(9) Write Msg

Write_Msg:

 $customer_id, \, message_id \rightarrow customer_id, \, message_id$

Explanation:

The combination of attributes customer_id and message_id is a super key of the Write_Msg table. So the table is already in 3NF.

(10) Write Prod

Write_Prod:

 $customer_id, product_id \rightarrow customer_id, product_id$

Calculate F+:

The combination of attributes customer_id and product_id is a super key of the Write_Prod table. So the table is already in 3NF.

(11) Product_review

Product_review:

 $product_review_id \rightarrow product_review_id, product_id, customer_id, date, star_rating$

Explanation:

 $product_review_id is a super key of the Product_review table. So the table is already in 3NF.$

(12) Payment_method

Payment_method:

```
payment\_method\_id \rightarrow payment\_method\_id, customer\_id, credit\_card\_num, credit\_card\_type, csv credit\_card\_num, credit\_card\_type \rightarrow csv
```

Calculate F+:

① Copy FDs

```
payment\_method\_id \rightarrow payment\_method\_id, customer\_id, credit\_card\_num, credit\_card\_type, csv credit\_card\_num, credit\_card\_type \rightarrow csv
```

2 Add Reflexives

```
payment\_method\_id \rightarrow payment\_method\_id, customer\_id, credit\_card\_num, credit\_card\_type, csv credit\_card\_num, credit\_card\_type \rightarrow credit\_card\_num, credit\_card\_type, csv
```

3 Add Rules

(No rules to apply)

Therefore, F+:

```
payment_method_id → payment_method_id, customer_id, credit_card_num, credit_card_type, csv

credit_card_num, credit_card_type → credit_card_num, credit_card_type, csv
```

Calculate Fc:

① Eliminate Reflexives from F+:

```
payment\_method\_id \to customer\_id, credit\_card\_num, credit\_card\_type, csv credit\_card\_num, credit\_card\_type \to csv
```

2 Eliminate Transitive Dependencies

```
Since we have
```

```
\label{eq:condition} payment\_method\_id \to credit\_card\_num, credit\_card\_type, csv \label{eq:credit_card_num, credit_card_type} \to csv \label{eq:card_num} payment\_method\_id \to csv
```

Eliminate

 $payment_method_id \rightarrow csv$

Therefore, Fc:

 $payment_method_id \rightarrow credit_card_num, credit_card_type$

 $credit_card_num, credit_card_type \rightarrow csv$

From Fc, the 3NF tables are:

payment_method_id , credit_card_num, credit_card_type //

credit_card_num, credit_card_type, csv

(Answer)

 $payment_method_id\ ,\ credit_card_num,\ credit_card_type\ //$

credit_card_num, credit_card_type, csv