1. Задача "Рубка леса". Решение методом Динамического программирования.

 $\underline{\mathit{Условия}}\ 1$ (Базовые условия эксплуатации и рубки леса). Участок леса сдаётся в аренду для полной вырубки леса в течении n периодов (лет). В каждом периоде рубится определённое количество леса, которое сразу продаётся, рубка осуществляется в начале периода. При этом цена зависит от объёма так, что выручка от продажи V_{M}^{3} равна P(V). Объём древесины растущего леса увеличивается за период на \mathbf{c} процентов. Перед началом срока аренды (перед началом 1-го периода) объём леса на участке равен V_{0} . Целевым показателем эксплуатации участка является общая сумма денег, вырученная за все n периодов.

<u>Условия 2</u> (С дополнением к *Базовым Условиям 1*, с дисконтом). В каждом периоде сумма, полученная от продажи леса, сразу кладётся в банк под q % годовых. И целевым показателем является общая сумма денег, которая будет на счету в банке по завершению всего срока аренды, после n периодов.

Задание 1. В <u>Условиях 1</u> и <u>Условиях 2</u> привести вывод функций Беллмана $Z_k^*(x_{k-1})$ и условных оптимальных управлений $u_k^*(x_{k-1})$ для k=n; n-1; n-2.

Задание 2. В <u>Условиях 1</u> и <u>Условиях 2</u> определить объёмы рубки леса в каждом периоде, и соответствующие целевые показатели, так, чтобы целевые показатели в каждом из <u>Условий</u> были максимальны. Использовать следующие данные: n=4, $V_0=N\cdot 10^4~{\rm M}^3$, $c=(10+N\cdot 0,3)$ %. $P(v)=20\cdot V^\alpha$, $\alpha=\alpha(k)$ задано в таблице, где k - остаток от деления N на 15. $q=3+0,1\cdot N$. N - номер варианта.

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\alpha(k)$	1/7	1/3	1/4	1/5	2/3	3/4	2/5	3/5	4/5	1/6	2/7	3/7	4/7	5/7	6/7

Задание 3. В <u>Условиях 2</u> определить, на сколько процентов изменится оптимальный целевой показатель, высчитанный в Задании 2, если во втором периоде вырубить на 8% больше запланированного оптимального для этого периода объёма, а в последующие периоды рубить новые оптимальные объёмы, обеспечивающие (в новых условиях) максимально возможный целевой показатель.

2. Задача "Задача о распределении средств между предприятиями".

Решение методом Динамического программирования.

Рассмотреть **Задачу 12.1 на стр. 253** – **255**, (Исследование операций в экономике: Учеб. пособие для вузов/ Под ред. проф. Н. Ш. Кремера.-М:ЮНИТИ,2002 .-407).

Каждому студенту решить аналогичную задачу, **изменив числа в таблице** в условии задачи в книге. При совпадении чисел (и прочих совпадениях) решения анулируются. Подобная задача будет на зачёте!

3. Задача об оптимальной стратегии продажи экономического актива в течении п временных периодов.

Актив выставлен на продажу и должен быть продан в течении n временных периодов. Известно (или с большой достоверностью предполагается), что в каждыё период поступает одно предложение о покупке по цене C_i с вероятностью P_i . Множества возможных значений цен и их вероятностей $\{C_1 C_m\}$ и $\{P_1 P_m\}$ даны (в таблице).

- 1) Рассчитать оптимальную стратегию продажи, которой должен придерживаться продавец в течении всего периода продаж. n=5, m=4.
- 2) Рассчитать максимальный ожидаемы доход при оптимальной стратегии.
- 3) Внести одно изменение в оптимальную стратегию в третий день. Рассчитать новый ожидаемый доход для этой новой стратегии.

	Варианты																
№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
C_1	200	270	910	34	55	150	110	25	300	50	113	420	510	390	670	700	814
C_2	300	350	930	48	66	270	180	28	310	55	119	430	515	410	673	710	824
C_3	500	510	960	65	79	300	220	34	330	58	123	435	525	415	679	715	829
C_4	700	690	990	80	93	450	350	48	360	61	127	440	540	430	684	723	835
100P ₁	15	25	20	10	15	25	35	30	15	05	35	25	20	10	25	35	15
$100P_{2}$	35	20	35	45	35	30	40	35	45	50	40	35	40	45	35	30	45
$100P_3$	30	40	30	30	30	25	15	20	25	35	20	25	25	25	30	25	25
100P ₄																	

4. Задача о замене оборудования (1).

Оборудование эксплуатируется в течение **n** лет, после этого продается.

Затраты на эксплуатацию и доходы от эксплуатации в течение любого года зависят от возраста **t** оборудования к началу этого года и равны, соответственно,

 $\mathbf{r}(\mathbf{t})$, и $\mathbf{p}(\mathbf{t})$.

В начале каждого года можно принять решение сохранить оборудование или заменить его новым. Стоимость нового оборудования равна ${f R}\,$.

После t лет эксплуатации оборудование можно продать за $\mathbf{S}(\mathbf{t})$ рублей (ликвидная стоимость), $\mathbf{R} = \mathbf{S}(\mathbf{0})$.

- 1) Задание 1. Определить такую оптимальную стратегию эксплуатации оборудования в течении n лет , чтобы суммарные затраты с учетом начальной покупки по цене \mathbf{R} (или по цене $\mathbf{S}(t_0)$, если в начале покупается оборудование возрастом \mathbf{t}_0) и заключительной продажи были минимальны.
- 2) Задание 2. Определить такую оптимальную стратегию эксплуатации оборудования в течении *п* лет, чтобы суммарные доходы, с учетом начальной покупки и заключительной продажи, была максимальной.
- 3) Задание 3. Определить такую оптимальную стратегию эксплуатации оборудования в течении *п* лет, чтобы **суммарная прибыль**, с учетом всех затрат и доходов от эксплуатации, а также начальной покупки и заключительной продажи, была максимальной.

Для Задания 1). Минимизация расходов на эксплуатацию оборудования.

 ${\bf R}=4600.~~{\bf S}({\bf t})={\bf R}{\bf q}^{-{\bf t}},~~{\bf r}({\bf t})=600{\bf c}^{{\bf t}},~~{\bf t_0}=$ «остаток от деления на 4 числа, равного номеру в алфавите первой буквы фамилии студента»

Для заданий 2) и 3). Максимизация доходов от эксплуатации оборудования.

$$\mathbf{R} = 4600.$$
 $S(t) = \mathbf{Rq}^{-t}, \ \mathbf{p(t)} = 2500 \text{ c}^{-t}.$

Во всех Заданиях $\mathbf{c}=1+0.1\mathbf{c}_0,\ \mathbf{q}=1+0.1\mathbf{q}_0$. \mathbf{c}_0 и \mathbf{q} заданы по вариантам в таблице. $\mathbf{n}=\mathbf{5}$

		Варианты															
$N_{\underline{0}}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
q_0	2	3	4	5	6	7	8	5	4	7	3	5	4	3	7	8	2
c_0	7	6	5	4	7	2	1	3	6	3	5	6	8	6	5	4	6

Выполнить Задание 1. (4. Задача о замене оборудования)