STATS 310A: Theory of Probability I

Autumn 2016/17

Lecture 6: October 12

Lecturer: Persi Diaconis Scribes: Kenneth Tay

6.1 General Measures

Definition 6.1 Let Ω be a set, \mathcal{F} a field of subsets of Ω . Then $\mu: \mathcal{F} \to \mathbb{R}$ is a **measure** if

- 1. (non-trivial) $\mu(\emptyset) = 0$,
- 2. (non-negative) $\mu(A) \in [0, \infty]$, and
- 3. (countably additive) If $A_i \in \mathcal{F}$ for i = 1, 2, ... with $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ and A_i 's disjoint, then $\mu(\bigcup A_i) = \sum \mu(A_i)$.

Example: On \mathbb{R} , let $\mu(\emptyset) = 0$, $\mu(A) = \infty$ for all other A. μ is a measure (but not a probability measure, or even a finite measure).

Why are we introducing this notion?

- 1. To have densities with respect to some measure on the real line (e.g. Lebesgue measure).
- 2. It's basically "free": most of the work done for probability measures translates directly to general measures.
 - If $\mu(\Omega) < \infty$, then you can scale it to be a probability measure. So it's essentially the same as probabilities that we have been talking about.
 - Say A_n are in \mathcal{F} , $A_n \nearrow A \in \mathcal{F}$, then $\mu(A_n) \nearrow \mu(A)$.

Proof: "Make them disjoint": Let $B_n = A_n \cap \left(\bigcup_{i=1}^{n-1} A_i\right)^c$. Then the B_n 's are disjoint and

$$\bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} A_i = A_n \text{ for all } n. \text{ Hence,}$$

$$\mu(A) = \mu\left(\bigcup B_n\right) = \sum \mu(B_n) = \lim_{n \to \infty} \sum_{i=1}^n \mu(B_i) = \lim_{n \to \infty} \mu(A_n).$$

• One point of caution: For probability measures, if $A \subseteq B$, then $\mu(B-A) = \mu(B) - \mu(A)$. If $A \downarrow \emptyset$, then $\mu(A_n) \downarrow 0$.

However, this is not always true for infinite measures! For example, consider the Lebesgue measure on \mathbb{R} . $A = (-\infty, 0]$, $B = (-\infty, 1]$. Then $\mu(B - A) = 1$ but $\mu(B) - \mu(A) = \infty - \infty$. Also, $A_n = [n, \infty) \downarrow \emptyset$ but $\mu(A_n) = \infty$ for all n.

6-2 Lecture 6: October 12

Definition 6.2 μ is σ -finite if there exist $B_i \in \mathcal{F}$, i = 1, 2, ... such that $\bigcup_{i=1}^{\infty} B_i = \Omega$ and $\mu(B_i) < \infty$ for all i.

Some examples to illustrate σ -finiteness:

- $\Omega = \mathbb{N} = \{0, 1, \dots\}, \ \mu(i) = 1 \text{ for all } i \text{ (i.e. counting measure)}.$ Then μ is σ -finite.
- Lebesgue measure on \mathbb{R} is σ -finite.
- On [0,1], let $\mu(A)$ = number of points in A. Then μ is not σ -finite.

Theorem 6.3 Let Ω be some set, \mathcal{P} a π -system of subsets of Ω . Let μ_1 and μ_2 be measures defined on $\sigma(\mathcal{P})$. If

1.
$$\mu_1(A) = \mu_2(A)$$
 for all $A \in \mathcal{P}$, and

2. there exist
$$B_j \in \mathcal{P}$$
 such that $\Omega = \bigcup_{i=j}^{\infty} B_j$ and $\mu_i(B_j) < \infty$ for $i = 1, 2$ and all j ,

then $\mu_1(A) = \mu_2(A)$ for all $A \in \sigma(\mathcal{P})$.

Proof: Fix some $B \in \mathcal{P}$ such that $\mu_i(B) < \infty$ for i = 1, 2.

For i = 1, 2, define a new measure $\nu_i(F) = \mu_i(F \cap B)$ for all $F \in \sigma(\mathcal{P})$. The ν_i 's are finite measures, and $\nu_1 = \nu_2$ on \mathcal{P} . Thus, by the $\pi - \lambda$ theorem, $\nu_1 = \nu_2$ on $\sigma(\mathcal{P})$.

Now consider the cover of Ω given to us as an assumption. We can make the sets in the cover disjoint (i.e.

$$A_i = B_i \cap \left(\bigcup_{j=1}^{i-1} B_j\right)^c$$
. For every $F \in \sigma(\mathcal{P})$,

$$\mu_1(F) = \mu_1 \left(F \cap \left(\bigcup_{i=1}^{\infty} A_i \right) \right)$$

$$= \sum_{i=1}^{\infty} \mu_1(F \cap A_i)$$
(by countable additivity)
$$= \sum_{i=1}^{\infty} \mu_2(F \cap A_i)$$

$$= \mu_2(F).$$

The condition of μ being σ -finite is necessary: Take $\Omega = (0,1]$, $\mathcal{F} = \text{all subsets}$. Define

$$\mu_1(\emptyset) = 0$$
, $\mu_1(A) = \infty$ for all other A , $\mu_2(A) = \#$ of points in A .

These are measures, and they agree on intervals (a, b], which is a π -system. But for any point $\{x\}$, the 2 measures don't agree.

Lecture 6: October 12 6-3

6.2 Outer Measures

Definition 6.4 Let Ω be any set. An outer measure μ^* is a set function defined on all subsets of Ω such that

- 1. (non-negative) $\mu^*(A) \in [0, \infty],$
- 2. (non-trivial) $\mu^*(\emptyset) = 0$,
- 3. (monotonicity) If $A \subseteq B$, then $\mu^*(A) \le \mu^*(B)$, and
- 4. (countable sub-additivity) $\mu^*(\bigcup A_n) \leq \sum \mu^*(A_n)$.

Here are 2 examples of outer measures:

• Let $\rho(A)$ be any non-negative set function defined on any collection of subsets \mathcal{A} with $\emptyset \in \mathcal{A}$ and $\rho(\emptyset) = 0$. Define

$$\mu^*(B) = \inf \sum_{i=1}^{\infty} \rho(A_i),$$

where the infimum is taken over all $A_i \in \mathcal{A}$ such that $B \subseteq \bigcup A_i$. Then μ^* is an outer measure.

Proof: We only have to show countable sub-additivity (the other 3 conditions are obvious).

Let A_i , $1 \le i < \infty$ be any sets. If $\mu^*(A_i) = \infty$ for some i, we are done as the RHS is ∞ .

If not, for every $\varepsilon > 0$, all i, there exist sets A_{ij} so that $A_{ij} \in \mathcal{A}$, $A_i \subseteq \bigcup_i A_{ij}$ and

$$\sum_{j=1}^{\infty} \rho(A_{ij}) \le \mu^*(A_i) + \frac{\varepsilon}{2^i}.$$

Because $\bigcup A_i \subseteq \bigcup A_{ij}$, we have

$$\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \le \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \rho(A_{ij})$$
$$\le \sum_{i=1}^{\infty} \mu^*(A_i) + \frac{\varepsilon}{2^i}$$
$$= \sum_{i=1}^{\infty} \mu^*(A_i) + \varepsilon.$$

Since this is true for every ε , we are done.

• (γ -Hausdorff measure on a metric space) Let Ω , d(x,y) be a metric space. Let $\mathcal{A} = \{\text{all balls } B_{\varepsilon}(x) = \{y : d(x,y) < \varepsilon\}\}$ (ε and x allowed to vary).

For $0 \le \gamma < \infty$, define $\rho_{\gamma}(\text{ball } B) = \text{diam}(B)^{\gamma}$. Then $\mu_{\gamma,d}^*$ is the $d - \gamma$ Hausdorff measure.

The following theorem is the general version of the Extension Theorem for probability measures. The proof of this is, word-for-word, symbol-by-symbol, the same as our proof of the Extension Theorem.

Theorem 6.5 If μ^* is an outer measure on subsets of Ω , then μ^* is a measure on

$$\mathcal{M}^*(\mu^*) = \{ A \subseteq \Omega : \forall \ E \subseteq \Omega, \mu^*(E) = \mu^*(A \cap E) + \mu^*(A^c \cap E) \}.$$

6-4 Lecture 6: October 12

6.2.1 Semi-Rings

Definition 6.6 Let Ω be a set. A class of subsets of Ω , denoted by \mathcal{R} , is a **semi-ring** if:

- 1. $\emptyset \in \mathcal{R}$,
- 2. R is closed under finite intersections, and
- 3. If $A, B \in \mathcal{R}$, $A \subseteq B$, then $B A = \bigcup_{i=1}^{n} C_i$ with $C_i \in \mathcal{R}$, C_i 's disjoint.

Here are 3 examples of semi-rings:

- Finite subsets of [0,1].
- ∞ rectangles in \mathbb{R}^d , sides parallel to the axes (must extend to infinity in at least 1 direction).
- Finite rectangles in \mathbb{R}^d .

Semi-rings are important because of the following extension theorem:

Theorem 6.7 Let Ω be a set, \mathcal{R} a semi-ring of subsets of Ω , $\mu: \mathcal{R} \to [0, \infty]$ such that

- 1. $\mu(\emptyset) = 0$,
- 2. μ finitely additive on \mathcal{R} , and
- 3. μ countably sub-additive.

Then, μ has an extension to a measure on $\sigma(\mathcal{R})$. This measure is unique if μ is σ -finite.

Proof: Define

$$\mu^*(A) = \inf \sum_{i=1}^{\infty} \mu(A_i)$$

where $A \subseteq \bigcup A_i$, $A_i \in \mathcal{R}$ for all A_i . This is an outer measure.

Step 1: $\mathcal{R} \in \mathcal{M}^*(\mu^*)$.

Take $A \in \mathcal{R}$. We only need to show that, for all E,

$$\mu^*(E) \ge \mu^*(A \cap E) + \mu^*(A^c \cap E).$$

(The other direction is obvious from sub-additivity). If $\mu^*(E)$ is ∞ , then we are done. If not, for every $\varepsilon > 0$ there exist $A_i \in \mathcal{R}$, $E \subseteq \bigcup A_i$, such that $\sum \mu(A_i) \leq \mu^*(E) + \varepsilon$.

Define $B_n = A \cap A_n$. Then $A^c \cap A_n = A_n - B_n$, by definition of semi-ring, is in \mathcal{R} . So $A^c \cap A_n = \bigcup_{k=1}^{m_n} C_{nk}$ with $C_{nk} \in \mathcal{R}$.

Lecture 6: October 12 6-5

We have the following relations for A_n , $A \cap E$ and $A^c \cap E$:

$$A_n = B_n \cup \left(\bigcup_{k=1}^{m_n} C_{nk}\right),$$

$$A \cap E \subseteq \bigcup_{n=1}^{\infty} B_i,$$

$$A^c \cap E = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{m_n} C_{nk}.$$

Hence,

$$\mu^*(A \cap E) + \mu^*(A^c \cap E) \le \sum_{n=1}^{\infty} \mu(B_n) + \sum_{n=1}^{\infty} \sum_{k=1}^{m_n} \mu(C_{nk})$$
$$= \sum_{n=1}^{\infty} \mu(B_n) + \sum_{n=1}^{\infty} \mu(A_n - B_n)$$
$$= \sum_{n=1}^{\infty} \mu(A_n)$$
$$\le \mu^*(E) + \varepsilon.$$

Let $\varepsilon \to 0$, then we are done, i.e. $\mathcal{R} \in \mathcal{M}^*(\mu^*)$.

Step 2: $\mu^* \mid_{\mathcal{R}} = \mu$.

Consider $A \in \mathcal{R}$. Since A covers itself, by the definition of μ^* we have $\mu(A) \geq \mu^*(A)$.

For the other direction: if $A \subseteq \bigcup A_i$, $A_i \in \mathcal{R}$, by finite sub-additivity of μ , we have

$$\mu(A) \leq \sum \mu(A_i).$$

Taking the infimum over all covers of A, we get $\mu(A) \leq \mu^*(A)$. Therefore we have $\mu(A) = \mu^*(A)$ for all $A \in \mathcal{R}$.

Step 3: Finishing up.

By Theorem 6.5, μ^* is a measure on $\mathcal{M}^*(\mu^*)$. Recall that $\mathcal{M}^*(\mu^*)$ is a σ -field. Hence, $\mathcal{R} \subseteq \mathcal{M}^*(\mu^*) \Rightarrow \sigma(\mathcal{R}) \subseteq \mathcal{M}^*(\mu^*)$.

Thus, μ^* is a measure on $\sigma(\mathcal{R})$ which agrees with μ on \mathcal{R} .