

COMP3055 Machine Learning

Topic 13 – Selected Topics on Deep Learning - RNN

Dr. Zheng LU 2018 Autumn

Motivation

- What kind of classification we see so far?
 - One to one mapping: one input (feature vector) to be classified into one output (class label).
- What if classification becomes more general?
 - One to many: one input maps to multiple output
 - Many to one: many input map to one output
 - Many to Many: many input map to many output

Recurrent Neural Network

Examples of RNN applications

- One to many: image -> sequence of words (image captioning)
- Many to one: sequence of words -> sentiment (sentiment classification)
- Many to many: sequence of words -> sequence of words (translation)

RNN - the Idea

Process the sequence of *X* over time *t* in recurrent neurons:

 x_t : input at time t

 h_t : hidden state at time t

 h_{t-1} : hidden state at time t-1

RNN – the Idea

Y is computed similar to conventional neural network.

Unfolding RNN (Many to Many)

Same W_h is shared over time step.

Unfolding RNN (One to Many)

Same W_h is shared over time step.

Unfolding RNN (Many to One)

Same W_h is shared over time step.

Back Propagation Through Time

Error (loss) is computed forwardly through the whole sequence. Gradients are computed backwardly through the whole sequence.

Truncated Back Propagation Through Time

Forward computation is through the whole sequence. Error and Gradients are computed through last few time step.

Toy Example

- Character level language model sampling
 - Suggest new characters based on seen characters.
 - Useful for spelling completion
- Vocabulary
 - [h, e, l, o]
- Training sample
 - "hello"

Toy Example - Training

Training sample: "hello"

Application of RNN

- Generate caption for a given image
- Combine CNN and RNN

test image

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096

test image

FC-1000 softmax

21

Image Captioning Results

A cat sitting on a suitcase on the floor

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

Two giraffes standing in a grassy field

A man riding a dirt bike on a dirt track