Generalized Kernel Thinning

aputhon" pip install goodpoints

microsoft/goodpoints

arXiv.org

2105.05842 Kernel Thinning, COLT 2021 Generalized Kernel Thinning, ICLR 2022

Motivation: Computational cardiology

• Modeling digital twin heart to predict therapy response in a noninvasive way requires single-cell modeling. Commonly used strategy:

• Estimate single cell model using

$$\mathbb{P}^* f \triangleq \int f(x) d\mathbb{P}^*(x) \approx \frac{1}{n} \sum_{i=1}^n f(x_i) \triangleq \mathbb{P}_n f$$
:
$$x_i = \text{MCMC sample for single cell model parameters}$$

$$f = \text{heart simulator}$$

Bayesian set-up: Use millions of Markov chain Monte Carlo (MCMC) points to approximate posterior \mathbb{P}^*

1 Million MCMC samples ~ 2 weeks **Single** evaluation of $f \sim 5$ weeks • Feed these samples to whole-heart

Can NOT use all million samples....!

Goal: Represent \mathbb{P}^* using a <u>few</u> high quality points $(x_i)_{i=1}^n$

- I.I.D. sampling, and MCMC sampling exhibit the slow root-n Monte Carlo rate $\mathbb{P}^*f - \mathbb{P}_n f = \Theta(n^{-1/2})$, e.g., $\sim 10^6$ points for 0.1% error
- Computationally prohibitive for expensive f, and common fixes uniform
- thinning, or **standard thinning**—choose every *t*—th point
- ullet Accuracy degrades with such thinning- $\Theta(\sqrt{t/n})$ worst-case errorsame as the slow rate with n/t points, e.g., $n^{-1/4}$ rate with \sqrt{n} points

Kernel Thinning: Better than Monte Carlo rate

$$x_1, x_2, ..., x_n \in \mathbb{R}^d$$
, kernel **k**

$$\mathbb{P}_{in} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$$

simulator

Non-uniform sub-sample of size \sqrt{n}

• With high probability, the worst-case error--MMD error-in the reproducing kernel Hilbert space (RKHS) satisfies

$$\sup_{\|g\|_{\mathbf{k}} \le 1} \|\mathbb{P}_{in}g - \mathbb{P}_{KT}g\| \lesssim_d \begin{cases} n^{-1/2}\sqrt{\log n} & \text{(Compactly supported; e.g., B-spline } \mathbf{k}) \\ n^{-1/2}\sqrt{\log^{d/2+1} n \log \log n} & \text{(Sub-Gaussian tails; e.g., Gaussian } \mathbf{k}) \\ n^{-1/2}\sqrt{\log^{d+1} n \log \log n} & \text{(Sub-exponential tails; e.g., Matern } \mathbf{k}) \end{cases}$$

KT: A two-stage algorithm

- KT-Split: Repeated rounds of non-uniform halving (prefer diverse points based on kernel alignment) the parent coreset in two equal-sized children coresets
- KT-Swap: Point-by-point refinement of the best child coreset by swapping with the best alternative in \mathcal{S}_{in} if it improves the MMD error

Generalized kernel thinning

	Root KT [Original Algorithm]	Target KT	KT+ [Best of both worlds]		
KT-Split kernel	\mathbf{k}_{rt}	k	$\mathbf{k} + \mathbf{k}_{\alpha-rt}$		
Single-function error	Same as MMD error	$\sqrt{\frac{\log n}{n}}$ For arbitrary \mathbf{k} on arbitrary domain	$\sqrt{\frac{\log n}{n}}$		
MMD error	See left panel	$\sqrt{\frac{\log^{ad+b}n}{n}} \text{Analytic } \mathbf{k}$ $\sqrt{\frac{n^{dlm}}{n}} \text{m-times}$ $\sqrt{\frac{n^{dlm}}{n}} \text{differentiable } \mathbf{k}$	Min(Target KT Error, $lpha$ -Root KT)		
$\mathbf{k}(x,y) = \mathbf{k}_{n}(x,z)\mathbf{k}_{n}(z,y)dz \& \mathbf{k}_{\alpha-n} = \widehat{(\hat{\mathbf{k}})^{\alpha}}$ where $\hat{\ }$ denotes Fourier transform					

- Significantly superior to $n^{-1/4}$ rates from Standard- \sqrt{n} Thinning
- In fact, nearly minimax integration error in many settings
- Quasi Monte Carlo like guarantees, but KT guarantees apply to non-uniform targets with unbounded support

Good performance inside and outside of RKHS

	Input size n	Input size n	Input size n	Input size n	
MMD error rates for popular kernels					
	Kernel k	TARGET KT	ROOT KT	KT+	
	$Gauss(\sigma)$	$\frac{(\log n)^{\frac{3d}{4}+1}}{\sqrt{n \cdot c_n^d}}$	$\frac{(\log n)^{\frac{d}{4} + \frac{1}{2}}\sqrt{c_n}}{\sqrt{n}}$	$\frac{(\log n)^{\frac{d}{4} + \frac{1}{2}}\sqrt{c_n}}{\sqrt{n}}$	
	$Laplace(\sigma)$	$n^{-\frac{1}{4}}$	N/A	$\left(\frac{c_n(\log n)^{1+2d(1-\alpha)}}{n}\right)^{\frac{1}{4c}}$	
	Matérn (ν, γ) $\nu \in (\frac{d}{2}, d]$	$n^{-\frac{1}{4}}$	N/A	$\big(\tfrac{c_n(\log n)^{1+2d(1-\alpha)}}{n}\big)^{\frac{1}{4c}}$	
	$\begin{array}{c} {\rm Mat\'ern}(\nu,\gamma) \\ \nu > d \end{array}$	$\min(n^{-\frac{1}{4}}, \tfrac{(\log n)^{\frac{d+1}{2}}}{n^{(\nu-d)/(2\nu-d)}})$	$\frac{(\log n)^{\frac{d+1}{2}}\sqrt{c_n}}{\sqrt{n}}$	$\frac{(\log n)^{\frac{d+1}{2}}\sqrt{c_n}}{\sqrt{n}}$	
	$\mathrm{IMQ}(u,\gamma) \ u < rac{d}{2}$	$\frac{(\log n)^{d+1}}{\sqrt{n}}$	$\min(n^{-\frac{1}{4}},\tfrac{\log n}{\sqrt{n^{1-d/(4\nu)}}})$	$\frac{(\log n)^{d+1}}{\sqrt{n}}$	
	$\mathrm{IMQ}(u,\gamma) \ u \geq rac{d}{2}$	$\frac{(\log n)^{d+1}}{\sqrt{n}}$	$\frac{(\log n)^{\frac{d+1}{2}}\sqrt{c_n}}{\sqrt{n}}$	$\frac{(\log n)^{\frac{d+1}{2}}\sqrt{c_n}}{\sqrt{n}}$	
	$SINC(\theta)$	$\frac{(\log n)^2}{\sqrt{n}}$	$n^{-\frac{1}{4}}$	$\frac{(\log n)^2}{\sqrt{n}}$	
	$\begin{array}{c} \operatorname{B-SPLINE}(2\beta+1,\gamma) \\ \beta \in 2\mathbb{N} \end{array}$	$\sqrt{\frac{\log n}{n^{2\beta/(2\beta+1)}}}$	N/A	$\sqrt{rac{\log n}{n}}$	
	$\begin{array}{c} \text{B-spline}(2\beta+1,\gamma) \\ \beta \in 2\mathbb{N}_0+1 \end{array}$	$\sqrt{\frac{\log n}{n^{2\beta/(2\beta+1)}}}$	$\sqrt{\frac{\log n}{n}}$	$\sqrt{rac{\log n}{n}}$	