ANALYSIS OF ALGORITHM EFFICIENCY

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

Agenda

- 1 Introduction
- 2 Mathematical analysis of non-recursive functions
- 3 Mathematical analysis of recursive functions
- 4 Asymptotic analysis
- 5 Amortised analysis

Efficiency with respect to:

- Running time: time efficiency / complexity
- Memory space: space efficiency / complexity (in addition to the space needed for its input and output)

Efficiency: a function in terms of input size

Efficiency with respect to:

- Running time: time efficiency / complexity
- Memory space: space efficiency / complexity (in addition to the space needed for its input and output)

Efficiency: a function in terms of input size

Units for measuring running time

- Absolute: *T*(*n*)
- Relative: C(n) (in terms of the basic operation op)
 - Let c_{op} be the execution time of op on a particular computer

$$T(n) \approx c_{op} * C(n)$$

Introduction¹

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2 ⁿ	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^3	$3.6 \cdot 10^6$
10^2 10^3	6.6 10	10^2 10^3	$6.6 \cdot 10^2$ $1.0 \cdot 10^4$	10^4 10^6	10^6 10^9	$1.3 \cdot 10^{30}$	9.3·10 ¹⁵⁷
10^4 10^5	13 17	10^4 10^5	$1.3 \cdot 10^5 \\ 1.7 \cdot 10^6$	10^8 10^{10}	10^{12} 10^{15}		
10^6	20	10^{6}	$2.0 \cdot 10^7$	10^{13} 10^{12}	10^{18}		

Performing a trillion (10¹²) operations per second

- 2¹⁰⁰ operations would take 4 * 10¹⁰ years
- Estimated age of Earth: 4.5 * 109 years

In practice, there might be different situations

- Best case
- Average case
- Worst case

In practice, there might be different situations

- Best case
- Average case
- Worst case

An alternative: empirical analyses

■ Specially for the average case

Agenda

- 1 Introduction
- 2 Mathematical analysis of non-recursive functions
- 3 Mathematical analysis of recursive functions
- 4 Asymptotic analysis
- 5 Amortised analysis

Non-recursive functions: unique elements

In many situations, C(n) can be defined as summation formulae

Algorithm: UniqueElements(A[0..n-1])

- for $i \leftarrow 0$ to n-2 do
- for $j \leftarrow i + 1$ to n 1 do
- 3 if A[i] = A[j] then return false;
- 4 return true;

Parameter for input's size: n

Basic operation: comparison A[i] = A[j]

C(n) is not strictly dependent on n

■ Best, average, and worst cases

Non-recursive functions: unique elements (*true*)

$$C_{worst}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$$

$$= \sum_{i=0}^{n-2} ((n-1) - (i+1) + 1)$$

$$= \sum_{i=0}^{n-2} (n-1-i)$$

$$= \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i$$

$$= (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2}$$

$$= (n-1)^2 - \frac{(n-2)(n-1)}{2}$$

$$= \frac{2(n^2 - 2n + 1) - (n^2 - 3n + 2)}{2}$$

$$= \frac{2n^2 - 4n + 2 - n^2 + 3n - 2}{2}$$

$$= \frac{n^2 - n}{2}$$

$$= \frac{(n-1)n}{2}$$

Remember that:

$$S_n = \frac{(a_1 + a_n) * n}{2}$$
 (arithm. prog.)

9/39

Non-recursive functions: unique elements

For $n \leq 1$

- $C_{best}(0) = 0$ (unique elements: true)
- $C_{best}(1) = 0$ (unique elements: true)

For an arbitrary n > 1

• $C_{best}(n) = 1$ (unique elements: false)

Algorithm: SequentialSearch(A[0..n-1], K)

- $i \leftarrow 0$:
- while $i < n \land A[i] \neq K$ do
- $i \leftarrow i + 1;$
- if i < n then return i;
- else return -1;

Parameter for input's size: *n*

Basic operation: comparison $A[i] \neq k$

C(n) is not strictly dependent on n

Best, average, and worst cases

Assuming short-circuit evaluation

For n = 0

$$C_{worst}(0) = 0$$

For an arbitrary $n \ge 1$

$$C_{worst}(n) = \sum_{i=0}^{n-1} 1$$

= $(n-1) - 0 + 1$
= n

Assuming short-circuit evaluation

```
For n = 0
```

 $C_{best}(0) = 0$ (sequential search: -1)

For an arbitrary $n \ge 1$

• $C_{best}(n) = 1$ (sequential search: 0)

Assuming:

- Probability of successful search: p, where $0 \le p \le 1$
- Same probability for every i

$$C_{avg}(n) = (1 * \frac{p}{n} + 2 * \frac{p}{n} + \dots + i * \frac{p}{n} + \dots + n * \frac{p}{n}) + n * (1 - p)$$

$$= \frac{p}{n}(1 + 2 + \dots + i + \dots + n) + n(1 - p)$$

$$= \frac{p}{n} \frac{(1+n)n}{2} + n(1 - p)$$

$$= \frac{p(n+1)}{2} + n(1 - p)$$

Assuming:

- Probability of successful search: p, where $0 \le p \le 1$
- Same probability for every i

$$C_{avg}(n) = (1 * \frac{p}{n} + 2 * \frac{p}{n} + \dots + i * \frac{p}{n} + \dots + n * \frac{p}{n}) + n * (1 - p)$$

$$= \frac{p}{n}(1 + 2 + \dots + i + \dots + n) + n(1 - p)$$

$$= \frac{p}{n} \frac{(1+n)n}{2} + n(1-p)$$

$$= \frac{p(n+1)}{2} + n(1-p)$$

Typically, $C_{ava}(n)$ is more difficult to be defined

■ For some algorithms, $C_{avg} \ll C_{worst}$

Agenda

- Mathematical analysis of non-recursive functions
- Mathematical analysis of recursive functions
- Asymptotic analysis
- Amortised analysis

Recursive functions: Factorial

Typically, C(n) can be defined as recurrence relations

Algorithm: F(n)

- 1 if n = 0 then return 1;
- else return F(n-1) * n;

Parameter for input's size: n

Basic operation: multiplication F(n-1) * n

Assuming that the cost of * is the same for any two numbers

C(n) is strictly dependent on n

Recurrence relation:

- C(0) = 0, for n = 0
- C(n) = C(n-1) + 1, for n > 0

Recursive functions: Factorial

Solving the recurrence using the method of backward substitutions

$$C(n) = C(n-1) + 1$$

$$= (C(n-1-1) + 1) + 1 = C(n-2) + 2$$

$$= (C(n-2-1) + 1) + 2 = C(n-3) + 3$$

$$= \cdots$$

$$= C(n-i) + i$$

$$= \cdots$$

$$= C(n-n) + n$$

$$= C(0) + n$$

$$= 0 + n$$
Cell Info

= n

Recursive functions: binary search²

Binary search: a decrease-and-conquer approach

Sequential search: a brute force approach

Assuming that the input is a sorted array in ascending order

- Let A be the input array
- Let K be the key that is being searched

$$\underbrace{A[0]\dots A[m-1]}_{\text{search here if}} \quad A[m] \quad \underbrace{A[m+1]\dots A[n-1]}_{\text{search here if}}.$$

Recursive functions: binary search³

Assuming that K = 70

[3	14	27	31	39	42	55	70	74	1 8	1 8:	5 9	3 9	8	
	lex lue		_	1 : 14 2					6	7 70	8	9 81	10 85	11 93	12 98
iteratio	n 1		l					1	m						r
iteration	n 2									l		m			r
iteratio	n 3									l,m	r				

Algorithm: BS(A[0..n-1],I,r,K))

```
if r > l then
      m \leftarrow |(I+r)/2|;
2
      if K = A[m] then
3
          return m;
4
       else if K < A[m] then
5
          return
6
            BS(A, I, m-1, K);
       else
          return
8
           BS(A, m+1, r, K);
   else
```


10

return -1;

Algorithm: BS(A[0..n-1],I,r,K))

```
if r > l then
       m \leftarrow |(I+r)/2|;
2
       if K = A[m] then
3
           return m:
4
       else if K < A[m] then
5
           return
            BS(A, I, m-1, K);
       else
           return
8
            BS(A, m + 1, r, K);
```

else

return -1; 10

Algorithm: BS(A[0..n-1],K)

```
1 / ← 0:
2 r \leftarrow n-1:
    while l < r do
        m \leftarrow |(I+r)/2|;
        if K = A[m] then
             return m:
        else if K < A[m] then
7
            r \leftarrow m-1;
        else
           I \leftarrow m+1;
10
    return -1;
```


31st May, 2021

Parameter for input's size: n

Basic operation: comparison between A and K

Assuming that a single comparison is enough, which is reasonable

C(n) is not strictly dependent on n

■ Best, average, and worst cases

Recurrence relation:

- $C_{worst}(n) = 0$, for n = 0
- $lacksquare C_{worst}(n) = 1 + C_{worst}(\lfloor n/2 \rfloor), \text{ for } n > 0$

Assuming (for simplicity) that both sides of A have the same size

$$C_{worst}(n) = C_{worst}(\frac{n-1}{2}) + 1$$
 $C_{worst}(\frac{n-1}{2}) = 1 + C_{worst}(\frac{n-1}{2}) = 1 + C_{worst}(\frac{n-2^0-2^1}{2^2})$

$$C_{worst}(\frac{n-2^0-2^1}{2^2}) = 1 + C_{worst}(\frac{n-2^0-2^1-2^2}{2^3})$$

$$C_{worst}(rac{n-2^0-2^1-\cdots-2^j}{2^{j+1}})=1+C_{worst}(rac{n-2^0-2^1-\cdots-2^{j+1}}{2^{j+2}})$$

The recurrence ends when the argument of C_{worst} is equal to 0:

$$C_{\textit{worst}}(\frac{n-2^0-2^1-\cdots-2^{j+1}}{2^{j+2}}) = C_{\textit{worst}}(0) = 0$$

It is also true that:

$$C_{worst}(n) = 1 + 1 + 1 + \dots + 1 + C_{worst}(0)$$

= 1 + 1 + 1 + \dots + 1 + 0

We have j + 2 sums of 1 before reaching $C_{worst}(0)$:

$$C_{worst}(n) = (j+2) * 1 + 0 = j + 2$$

Remember that

- $S_n = \frac{a_1 * (q^n 1)}{a 1}$ (geometric progression)

We can find the value of *j* as follows:

$$n = 2^0 + 2^1 + \cdots + 2^{j+1}$$

$$n = \sum_{i=0}^{j+1} 2^i$$

$$n = \frac{2^0(2^{j+1-0+1}-1)}{2-1}$$

$$n = 2^{j+2} - 1$$
$$n + 1 = 2^{j+2}$$

$$n+1=2^{j+2}$$

Applying log₂ on both sides:

$$log_2(n+1) = log_2 2^{j+2}$$

= $(j+2) \cdot log_2 2$
= $(j+2)$

Therefore, we have that $i = log_2(n+1) - 2$.

And $C_{worst}(n)$ can be defined as follows:

$$C_{worst}(n) = j + 2$$

= $log_2(n+1) - 2 + 2$
= $log_2(n+1)$

Agenda

- 1 Introduction
- 2 Mathematical analysis of non-recursive functions
- 3 Mathematical analysis of recursive functions
- 4 Asymptotic analysis
- 5 Amortised analysis

Asymptotic analysis

How do we compare the efficiency of different algorithms?

- $\log_2(n+1)$ vs. $\log_2 n$
- $n^3 + 100n^2 + 10000 \text{ vs. } n^3$

We compare the order of growth

- O: big oh (no worse than)
- \blacksquare Ω : big omega (no better than)
- Θ: big theta (similar to)

Gustavo Carvalho

Asymptotic analysis

 $O, \Omega, \Theta : \mathcal{F} \to \mathbb{P} \mathcal{F}$

- \blacksquare \mathcal{F} the set of all functions
- $dom(O) = dom(\Omega) = dom(\Theta)$ = non-negative functions over N

Examples

- $O(n^2)$ = all non-negative functions with an order of growth no worse than n^2
- $\Omega(n^2)$ = all non-negative functions with an order of growth no better than n^2
- $\Theta(n^2)$ = all non-negative functions with an order of growth similar to n^2

Asymptotic analysis⁴

$$\forall t, g \bullet t \in dom(O) \land g \in dom(O) \Rightarrow$$

$$t \in O(g) \Leftrightarrow$$

$$\exists c, n_0 \bullet c \in \mathbb{R} \land c > 0 \land$$

$$n_0 \in \mathbb{N} \land n_0 \ge 0 \land$$

$$\forall n \bullet n \in \mathbb{N} \land n \ge n_0 \Rightarrow$$

$$t(n) \le c * g(n)$$

Example:

- Let t(n) = 100n + 5 and g(n) = n, $t \in O(g)$ is true
- Also said that $100n + 5 \in O(n)$
- Proof (informal)
 - $n_0 = 1$
 - c = 105

⁴Source: A. Levitin. Introduction to the Design and Analysis of Algorithms. 2011. Gustavo Carvalho

Asymptotic analysis⁵

$$\forall t, g \bullet t \in dom(\Omega) \land g \in dom(\Omega) \Rightarrow$$

$$t \in \Omega(g) \Leftrightarrow$$

$$\exists c, n_0 \bullet c \in \mathbb{R} \land c > 0 \land$$

$$n_0 \in \mathbb{N} \land n_0 \geq 0 \land$$

$$\forall n \bullet n \in \mathbb{N} \land n \geq n_0 \Rightarrow$$

$$t(n) \geq c * g(n)$$

Example:

- $n^3 \in \Omega(n^2)$
- Proof (informal)
 - $n_0 = 0$
 - $\mathbf{c} = 1$

Asymptotic analysis⁶

$$\forall t, g \bullet t \in dom(\Theta) \land g \in dom(\Theta) \Rightarrow$$

$$t \in \Theta(g) \Leftrightarrow$$

$$\exists c_1, c_2, n_0 \bullet c_1 \in \mathbb{R} \land c_1 > 0 \land$$

$$c_2 \in \mathbb{R} \land c_2 > 0 \land$$

$$n_0 \in \mathbb{N} \land n_0 \ge 0 \land$$

$$\forall n \bullet n \in \mathbb{N} \land n \ge n_0 \Rightarrow$$

$$c_2 * g(n) \le t(n) \le c_1 * g(n)$$

Exemple:

- Proof (informal)
 - $n_0 = 2$
 - $c_1 = 1/2$
 - $c_2 = 1/4$

Basic asymptotic efficiency classes

≙ 1 constant $\triangleq log n$ logarithmic linear $\triangleq n$ $\triangleq n \log n$ lineararithmic $\triangleq n^2$ quadratic $\triangleq n^3$ cubic $\triangleq 2^n$ exponential factorial $\triangleq n!$

Asymptotic efficiency related to some data structures⁸

Data Structure	Time Cor	nplexity							Space Complexity
	Average				Worst		Worst		
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Array	0(1)	O(n)	0(n)	O(n)	0(1)	0(n)	0(n)	0(n)	0(n)
<u>Stack</u>	O(n)	O(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Queue	Θ(n)	O(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	Θ(n)	O(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	Θ(n)	O(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Skip List	O(log(n))	O(log(n))	0(log(n))	O(log(n))	0(n)	0(n)	0(n)	0(n)	O(n log(n))
Hash Table	N/A	0(1)	0(1)	0(1)	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree	O(log(n))	Θ(log(n))	0(log(n))	O(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)
Cartesian Tree	N/A	Θ(log(n))	0(log(n))	Θ(log(n))	N/A	0(n)	0(n)	0(n)	0(n)
B-Tree	O(log(n))	Θ(log(n))	0(log(n))	O(log(n))	0(log(n))	0(log(n))	0(log(n))	O(log(n))	0(n)
Red-Black Tree	O(log(n))	O(log(n))	0(log(n))	O(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
Splay Tree	N/A	O(log(n))	0(log(n))	O(log(n))	N/A	0(log(n))	0(log(n))	O(log(n))	0(n)
AVL Tree	Θ(log(n))	Θ(log(n))	0(log(n))	Θ(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
KD Tree	Θ(log(n))	Θ(log(n))	0(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)

 $^{^8}$ Source: http://bigocheatsheet.com/

Using limits for comparing orders of growth⁹

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases} 0 & t(n) \text{ has a smaller order of growth than } g(n) \\ c & t(n) \text{ has the same order of growth as } g(n) \\ \infty & t(n) \text{ has a larger order of growth than } g(n) \end{cases}$$

Example

$$\lim_{n \to \infty} \frac{\frac{(n-1)n}{2}}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}$$

therefore,
$$\frac{(n-1)n}{2} \in \Theta(n^2)$$

The limit may not exist, but this rarely happens. Still, this approach is less

Useful property involving asymptotic notations

Theorem:
$$\forall t_1, t_2, g_1, g_2 \bullet \{t_1, t_2, g_1, g_2\} \subseteq dom(O) \land t_1 \in O(g_1) \land t_2 \in O(g_2) \Rightarrow t_2 \circ t_1 \in O(max(g_1, g_2))$$

The same applies for Ω and Θ

Practical implication: the algorithm's overall efficiency is determined by the part with a higher order of growth

Useful property involving asymptotic notations

Theorem:
$$\forall t_1, t_2, g_1, g_2 \bullet \{t_1, t_2, g_1, g_2\} \subseteq dom(O) \land t_1 \in O(g_1) \land t_2 \in O(g_2) \Rightarrow t_2 \circ t_1 \in O(max(g_1, g_2))$$

The same applies for Ω and Θ

Practical implication: the algorithm's overall efficiency is determined by the part with a higher order of growth

Example: algorithm = sorting + binary search

- Let $C_{worst}(n) \in O(n \log n)$ for sorting
- Therefore, $C_{worst}(n) \in O(n \log n)$ for algorithm
- The order of growth of $n \log n$ is larger than n (sequential search)
- Is algorithm worse than sequential search?

Agenda

- Mathematical analysis of non-recursive functions
- Mathematical analysis of recursive functions
- Asymptotic analysis
- Amortised analysis

Amortised analysis

Main idea: to amortise the efficiency over time (i.e., not a single run of the algorithm, but a sequence of runs)

- Some runs will have a different efficiency
- Compute $C_{amort}(n) = \frac{C(n)}{n}$, where C(n) is the cost of n-runs

Example: algorithm = sorting + binary search

- First run: sorting + binary search
- Second run: binary search
- n-th run: binary search
- Amortised analysis
 - $C_{amort}(n) = \frac{1*(n \log n) + n*\log n}{n} = \log n + \log n = 2*\log n$
 - $2 * log n \in \Theta(log n)$

Bibliography

Chapter 2 (pp. 41–95), Chapter 3 (pp. 97–98,104), Chapter 4 (pp. 150–152. Anany Levitin. Introduction to the Design and Analysis of Algorithms. 3rd edition. Pearson, 2011.

ANALYSIS OF ALGORITHM EFFICIENCY

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

