Міністерство освіти і науки України Чернівецький національний університет імені Юрія Федьковича

Інститут фізико-технічних та комп'ютерних наук

Відділ комп'ютерних технологій

Кафедра математичних проблем управління і кібернетики

3BIT

про виконання лабораторних робіт з дисципліни «Інтелектуальний аналіз даних

Виконав студент Бужак А.В.

Kypc III

Група 341

Викладач Сопронюк О.Л.

Завдання

Лабораторна робота №1

Тема: Інструменти Mathcad, призначені для розв язування задач математичної статистики Мета: Ознайомитися з основними функціями Mathcad, призначеними для розв'язування задач математичної статистики, а також з методами введення даних для наступної статистичної обробки.

Завдання 1.1. Обчисліть максимальне, мінімальне значення і розмах для заданої вибірки. Виконайте групування для значень m=10,20, побудуйте відповідні гістограми, полігони частот, полігони накопичених частот. Виконайте обчислення для 100 чисел з таблиці 1.1, починаючи з числа п, номер якого вказаний в таблиці 1.2. Порядок виконання завдання 1.1

- 1. Знайдіть і введіть вектор-стовпець у вибіркових значень.
- 2. Впорядкуйте вибірку у порядку зростання вибіркових значень: (у:=sort(у) ymin:=min(y) ymax:=max(y) R:=ymax-ymin).
- 3. Визначіть число інтервалів групування і їх довжину:

$$(m=10 \quad \Delta = \frac{R}{m}).$$

4. Визначте вектор-стовпець х, який містить середини інтервалів групування:

(j:=1..m k:=1..m-1 xj:=ymin+
$$\frac{\Delta}{2}$$
(2*j-1)).

- 5. Визначте за допомогою функції hist(x,y) вектор-стовпець частот для одержаних інтервалів групування: (f hist(x,y)).
- 6. Побудуйте гістограму, полігон частот.
- 7. Визначте вектор-стовпець накопичених частот:

$$\sum_{\substack{k \text{ (aj:=ymin+ } \Delta \cdot (j-1) \\ \text{ (bj:=aj+ } \Delta \text (bj:=aj+ } \Delta \text{ (bj:=aj$$

- 8. Побудуйте полігон накопичених частот і полігон відносних накопичених частот.
- 9.Виконайте обчислення пп. 6-9 для всіх заданих значень т.
- 10. Збережіть робочий документ у файлі на диску.

Лабораторна робота №2

Тема: Числові характеристики вибірки

Мета: Вивчити основні вибіркові характеристики, ознайомитися з основними функціями Mathcad, призначеними для знаходження числових характеристик вибірки.

Завдання 2.1. Для вибірки, сформованої в завданні 1.1, обчисліть всі вибіркові характеристики, які наведені вище.

Порядок виконання завдання 2.1

- 1. Прочитайте файл, який містить вибірку лабораторної роботи №1.
- 2. Обчисліть максимальний і мінімальний елементи вибірки.
- 3. Розрахуйте вибіркове середнє.
- 4. Знайдіть медіану.
- 5. Обчисліть вибіркову дисперсію і стандартне відхилення.
- 6. Знайдіть вибіркові моменти 3-го і 4-го порядків.
- 7. Обчисліть вибірковий ексцес.
- 8. Знайдіть коефіцієнт асиметрії.

Тема: Оцінка функції розподілу

Мета: Ознайомитися з методами оцінювання функції розподілу $F \square (x)$ випадкової величини, про яку відомо, що вона ε неперервною. Дослідження вибірки значень випадкової величини із заданим законом розподілу.

Завдання 3.1. Побудуйте для вибірки, сформованої в завданні 1.1, 95%-ий "коридор" для функції розподілу випадкової величини, яка досліджується.

Порядок виконання завдання 3.1

- 1. Прочитайте файл, в якому знаходяться дані.
- 2. Визначте статистику Колмогорова функцію К(z) і побудуйте її графік.
- 3. Визначте значення величини □. Розв'яжіть графічно рівняння 1-К(z)=□.
- 4. Побудуйте "коридор" для теоретичної функції розподілу.

Завдання 3.2. Згенеруйте вибірку значень випадкової величини з вказаним неперервним розподілом і виконайте повний попередній аналіз для вказаних значень об'єму вибірки, числа інтервалів групування і надійної ймовірності. Побудуйте графіки щільності ймовірності і функції розподілу і порівняйте їх з одержаними графіками відповідних вибіркових функцій.

Порядок виконання завдання 3.2

- 1. Встановіть в меню Math режим Optimization.
- 2. Надайте змінній п значення, яке дорівнює 100.
- 3. Побудуйте для заданого розподілу графіки щільності ймовірності і функції розподілу.
- 4. Знайдіть математичне сподівання, дисперсію, середнє квадратичне відхилення, медіану, моменти
- 3- і 4-го порядку, асиметрію і ексцес заданого розподілу.
- 5. Згенеруйте вибірку об'єму п значень випадкової величини, яка має заданий розподіл.

- 6. Визначте як функції змінної n і знайдіть вибіркові значення середнього, середнього квадратичного відхилення, моментів 3- і 4-го порядку, асиметрії і ексцесу.
- 7. Побудуйте гістограму, полігон частот, графік накопичених відносних частот.
- 8. Побудуйте 95 % -й "коридор" для теоретичної функції розподілу і зобразіть на цьому ж графіку функцію заданого в умові розподілу ймовірностей.
- 9. Порівняйте обчислені теоретичні і вибіркові значення параметрів.
- 10. Виконайте обчислення пп. 4-7 для n=150,200,300,500.

Тема: Точкові оцінки параметрів розподілів

Мета: Ознайомитися з властивостями точкових оцінок параметрів розподілів, які забезпечують в деякому розумінні отримання оптимальної інформації із вибірок.

Завдання 4.1. Знайдіть конзістенційні незсунені оцінки математичного сподівання $M\xi$ і дисперсії $D\xi$ випадкової величини ξ для вибірки, сформованої в завданні 1.1.

Завдання 4.2. Змоделюйте декілька вибірок значень випадкової величини, яка має розподіл Бернуллі з заданим значенням параметра р. Обчисліть для кожної вибірки оцінку параметра р і порівняйте з заданим значенням. Зобразіть результати графічно.

Порядок виконання завдання 4.2

- 1. Використовуючи функцію rbіnom(1,n,p), опишіть і сформуйте послідовність значень випадкової величини, яка має розподіл Бернуллі з заданими р і n = 10,20, ...,N, як функцію об'єму вибірки n.
 - 2. Обчисліть для кожного значення п точкові оцінки \bar{p} ймовірності р.
 - 3. Побудуйте графік залежності величини \overline{p} від об'єму вибірки.

Завдання 4.3. Змоделюйте декілька вибірок різного об'єму значень випадкової величини, яка має рівномірний розподіл на відрізку $[0, \theta]$ для значення $\theta = N/2$ (N — номер варіанта), і знайдіть оцінки і параметра θ . Побудуйте графік залежності і від об'єму вибірки.

Порядок виконання завдання 4.3

1. Використовуючи функцію runif(n,0,N/2), опишіть і сформуйте послідовність n значень випадкової величини, яка має рівномірний розподіл на відрізку

[0, N/2].

- 2. Обчисліть для кожного значення п точкові оцінки $\hat{\theta}^{(1)}$ і $\hat{\theta}^{(3)}$ параметра θ .
- 3. Побудуйте графік залежності величин $\hat{\theta}^{(1)}$ і $\hat{\theta}^{(3)}$ від об'єму вибірки.

Тема: Методи одержання точкових оцінок

Мета: Ознайомитися з властивостями точкових оцінок, отриманих методом максимальної правдоподібності.

Завдання 5.1. Змоделюйте декілька вибірок об'єму п значень випадкової величини ξ , розподіленої за законом Пуассона з параметром $\lambda = 0.1N$, де N — номер варіанта. Для однієї вибірки побудуйте графік функції правдоподібності. Знайдіть оцінку максимальної правдоподібності параметра λ як функцію об'єму вибірки. Виконайте обчислення для n=10N, 20N,..., 50N при N \leq 15 і для n=N,2N,...,10N при N>15.Зобразіть на графіку залежність оцінки від об'єму вибірки. Порівняйте отримані оцінки з заданим значенням параметра.

Порядок виконання завдання 5.1

- 1.Змоделюйте вибірку значень випадкової величини, яка має розподіл Пуассона з заданим значенням параметра λ .
- 2. Знайдіть логарифм функції максимальної правдоподібності і зобразіть його графік.
- 3.3моделюйте декілька вибірок різного об'єму значень випадкової величини, яка має розподіл Пуассона з заданим значенням параметра λ .
 - 4. Обчисліть оцінку максимальної правдоподібності параметра $^{\lambda}$ як функцію об'єму вибірки.
 - 5. Зобразіть на графіку залежність оцінки максимальної правдоподібності від об'єму вибірки.

Завдання 5.2. Виконайте завдання 5.1 для випадкової величини ξ , розподіленої за показниковим законом з параметром $\lambda = 0.1N$, де N – номер варіанта.

Завдання 5.3. Змоделюйте вибірку об'єму п=200 значень випадкової величини ξ , розподіленої за законом Лапласа з вказаними параметрами θ_1 і θ_2 . Знайдіть оцінки максимальної правдоподібності параметрів θ_1 і θ_2 .

Порядок виконання завдання 5.3

- 1.3моделюйте вибірку значень випадкової величини, яка має рівномірний розподіл на відрізку [0,1].
 - 2.Знайдіть функцію розподілу Лапласа з заданими значеннями параметрів $\theta 1$ і $\theta 2$.
- 3.Знайдіть функцію, обернену до функції розподілу Лапласа з заданими значеннями параметрів θ 1 і θ 2.
- 4.Змоделюйте вибірку заданого об'єму значень випадкової величини, яка має розподіл Лапласа з заданими значеннями параметрів $\theta 1$ і $\theta 2$.
 - 5. Перевірте "на око" адекватність вибірки.
 - 6.Обчисліть оцінку максимальної правдоподібності параметрів 01 і 02.

Лабораторна робота №6

Тема: Інтервальне оцінювання параметрів розподілів випадкових величин

Мета: Ознайомитися з побудовою надійних інтервалів для параметрів нормального розподілу, розподілу Пуассона, розподілу Бернуллі, для коефіцієнта кореляції.

Завдання 6.1. Знайти надійні інтервали для математичного сподівання M^{ξ} і дисперсії D^{ξ} за заданою вибіркою х1,х2,...хn з нормального розподілу, яка сформована в завданні 1.1.

Порядок виконання завдання 6.1

1. Введіть компоненти вектора вибіркових значень.

- 2.Обчисліть точкові оцінки М і і Д і.
- 3.Обчисліть 95%-й надійний інтервал для математичного сподівання при невідомій дисперсії.
- 4.Обчисліть 90 %-й надійний інтервал для дисперсії.

Завдання 6.2. Знайдігь надійний інтервал для параметра $^{\lambda}$ за заданою вибіркою з розподілу Пуассона. Згенеруйте вибірку, вибравши за значення $^{\lambda}$ величину, яка дорівнює 0.1N, де N — номер варіанта.

Порядок виконання завдання 6.2

- 1.3 генеруйте вибірку з 500 значень випадкової величини, яка розподілена за законом Пуассона з заданим параметром λ , за першими 100, 150, 200,..., 500 елементами вибірки.
- 2.Знайдіть для заданого значення надійної ймовірності α квантиль рівня 1-0.5 α стандартного нормального розподілу.
 - 3.3 найдіть точкову оцінку параметра λ .
 - 4. Обчисліть надійний інтервал для λ із заданим значенням надійної ймовірності α .
 - 5. Побудуйте графік залежності $\Delta \lambda = \lambda_{right} - \lambda_{left}$ від n для різних α .

Завдання 6.3. Знайдіть надійний інтервал для ймовірності події за заданими значеннями числа випробувань пі числа m появ події в серії з n випробувань.

Порядок виконання завдання 6.3

- 1.Знайдіть для заданого значення надійної ймовірності α квантиль рівня 1-0.5 α стандартного нормального розподілу.
 - 2.Знайдіть точкову оцінку параметра р.
 - 3. Обчисліть надійний інтервал для параметра р із заданим значенням надійної й мовірності α

Завдання 6.4. Знайдіть надійний інтервал для коефіцієнта кореляції за заданою вибіркою (x1,y1), (x2,y2),...,(xn,yn) з двовимірної випадкової величини.

4.

.991	.619	2.023	0.727	.314	.147	0.563	0.813
6.922	.229	5.093	.123	21.609	.451	22.941	.193
.894	.092	0.058	.266	.945	1.444	0.169	
12.419	7.153	2.961	.026	.406	7.23	2.743	

- 1. Введіть компоненти вектора вибіркових значень випадкової величини.
- 2.Обчисліть вибіркові середні для х і у.
- 3.Обчисліть величини $\overline{m}, \hat{\sigma}_x^2, \hat{\sigma}_y^2$.
- 4.Знайдіть для заданого значення надійної ймовірності α квантиль рівня 1-0.5α стандартного нормального розподілу.
 - 5.Знайдіть точкову оцінку коефіцієнта кореляції.
- 6.Обчисліть надійний інтервал для коефіцієнта кореляції із заданим значенням надійної ймовірності α.
 - 7.Знайдіть точкову оцінку коефіцієнта кореляції за другою формулою.
- 8.Обчисліть надійний інтервал для коефіцієнта кореляції із заданим значенням надійної ймовірності α, використовуючи точкову оцінку коефіцієнта кореляції, знайдену в п. 7.

Тема: Перевірка статистичних гіпотез про параметри нормально розподіленої випадкової величини Мета: Ознайомитися з методикою перевірки статистичних гіпотез.

Завдання 7.1. Змоделюйте вибірку 100 значень нормально розподіленої випадкової величини з вказаними параметрами (див. табл. 7.1). Сформулюйте нульову гіпотезу про величину математичного сподівання (при відомій дисперсії) і перевірте для заданого рівня значущості α =0.1 три альтернативні гіпотези.

Порядок виконання завдання 7.1

- 1.3моделюйте описану в умові вибірку.
- 2.Знайдіть за вибіркою точкову оцінку математичного сподівання.
- 3.Знайдіть за вибіркою точкову оцінку дисперсії.
- 4.Сформулюйте нульову гіпотезу про значення математичного сподівання H0: a = a0.
- 5.Обчисліть значення критерію.
- 6.Знайдіть границі критичної області для альтернативної гіпотези Н1: а≠ а0.
- 7. Порівняйте значення критерію з границями критичної області і сформулюйте відповідні твердження.
- 8.Знайдіть границі критичної області для альтернативної гіпотези Н1: а>а0.

- 9.Порівняйте значення критерію з границями критичної області і сформулюйте відповідні твердження.
- 10.Знайдіть границі критичної області для альтернативної гіпотези Н1: a<a0.
- 11. Порівняйте значення критерію з границями критичної області і сформулюйте відповідні твердження.
- Завдання 7.2. Змоделюйте вибірку 100 значень нормально розподіленої випадкової величини з параметрами із завдання 7.1. Сформулюйте нульову гіпотезу про величину математичного сподівання (при невідомій дисперсії) і перевірте для заданого рівня значущості три альтернативні гіпотези (див. порядок виконання завдання 7.1).
- Завдання 7.3. Змоделюйте вибірку 100 значень нормально розподіленої випадкової величини з параметрами із завдання 7.1. Сформулюйте нульову гіпотезу про величину дисперсії і перевірте для заданого рівня значущості три альтернативні гіпотези.

Порядок виконання завдання 7.3

- 1.3моделюйте описану вище в умові вибірку.
- 2.Знайдіть за вибіркою точкову оцінку математичного сподівання.
- 3.Знайдіть за вибіркою точкову оцінку дисперсії.
- 4.Сформулюйте нульову гіпотезу про значення дисперсії H0: $\sigma = \sigma 0$.
- 5.Обчисліть значення критерію.
- 6.Знайдіть границі критичної області для альтернативної гіпотези Н1:σ≠σ0.
- 7.Порівняйте значення критерію з границями критичної області і сформулюйте відповідне твердження.
- 8.Знайдіть границі критичної області для альтернативної гіпотези H1: $\sigma > \sigma 0$.
- 9.Порівняйте значення критерію з границями критичної області і сформулюйте відповідне твердження.
- 10.3 найдіть границі критичної області для альтернативної гіпотези $H1: \sigma < \sigma 0$.
- 11. Порівняйте значення критерію з границями критичної області і сформулюйте відповідне твердження.

Лабораторна робота №8

Тема: Перевірка статистичних гіпотез про параметри двох нормально розподілених випадкових величин

Мета: Ознайомитися з методикою перевірки статистичних гіпотез для декількох вибірок.

Завдання 8.1 Змоделюйте дві вибірки з 100 і 120 значень нормально розподіленої випадкової величини з параметрами із завдання 7.1. Сформулюйте нульову гіпотезу про рівність математичних сподівань і перевірте для рівня значущості α=0.05 альтернативну гіпотезу.

Порядок виконання завдання 8.1

- 1.3моделюйте описані в завданні вибірки.
- 2.Знайдіть за вибірками точкові оцінки математичних сподівань.
- 3.Обчисліть значення критерію.
- 4.Сформулюйте нульову гіпотезу про рівність математичних сподівань.
- 5. Знайдіть границі критичної області для альтернативної гіпотези
 $H_{\scriptscriptstyle 1}: a_\xi \neq a_\eta$.
- 6.Порівняйте значення критерію з границями критичної області і сформулюйте відповідні твердження.

Завдання 8.2 Для вибірок із завдання 8.1 сформулюйте нульову гіпотезу про рівність математичних сподівань (вважаючи, що дисперсії невідомі і рівні) і перевірте для заданого рівня значущості α =0.1 альтернативну гіпотезу.

Порядок виконання завдання 8.2

- 1.3моделюйте описані в завданні вибірки.
- 2.Знайдіть за вибірками точкові оцінки математичних сподівань.
- 3.Обчисліть значення критерію.
- 4.Сформулюйте нульову гіпотезу про рівність математичних сподівань.
- 5.3найдіть границі критичної області для альтернативної гіпотези Н1: аξ ≠аη.
- 6.Порівняйте значення критерію з границями критичної області і сформулюйте відповідні твердження.

Хід роботи

Лабораторна робота №1

y :=		
-		0
	0	154.377
	1	139.478
	2	154.763
	3	154.656
	4	158.742
	5	155.409
	6	152.937
	7	149.142
	8	150.688
	9	150.889
	10	161.757
	11	141.977
	12	151.941
	13	173.96
	14	157.597
	15	

$$y := sort(y)$$

$\mathbf{v}^{T} =$		0	1	2	3	4	5	6
-	0	120.991	128.429	130.834	133.143	133.852	134.241	

$$ymin := min(y) = 120.991$$

$$vmax := max(v) = 173.96$$

$$ymax := max(y) = 173.96$$
 $R := ymax - ymin = 52.969$

$$m := 10$$

$$\Delta := \frac{R}{m} = 5.297$$

$$i := 1..m$$

$$j := 1...m \qquad \qquad k := 1...m-1 \qquad \stackrel{x_{i-1}}{j-1} := ymin + \frac{\Delta \cdot (2 \cdot j - 1)}{2}$$

		0
	0	123.639
	1	128.936
	2	134.233
	3	139.53
x =	4	144.827
	5	150.124
	6	155.421
	7	160.718
	8	166.015
	9	171.312

$$f := hist(x,y)$$
 $f^{T} = (1 \ 3 \ 12 \ 21 \ 14 \ 23 \ 17 \ 2 \ 5)$

$$\mathbf{a}_{j-1} \coloneqq \mathbf{ymin} + \Delta \cdot (j-1)$$
 $\mathbf{b}_{j-1} \coloneqq \mathbf{a}_{j-1} + \Delta$

$$b_{i-1} := a_{i-1} + \Delta$$

$$\mathbf{F}_{k-1} \coloneqq \sum_{j=0}^{k-1} \mathbf{f}_j$$

$$F_{k-1} =$$

1	
4	100
16	100
37	80 9 7
51	F 60-
74	F 000 40- 9 -
91	20- 6 -
93	ا ا ا
98	120 130 140 150 160 170
	a

$$\Delta := \frac{R}{m} = 2.648$$

$$\Delta := \frac{R}{m} = 2.648 \qquad x_{j-1} := ymin + \frac{\Delta \cdot (2 \cdot j - 1)}{2}$$

$x^{T} =$		0	1	2	3	4	5	6
	0	122.315	124.964	127.612	130.261	132.909	135.557	

$$\mathbf{f}_{xx} := \mathbf{hist}(x, y)$$
 $\mathbf{f}^{T} = (0 \ 0 \ 1 \ 1 \ 4 \ 4 \ 11 \ 12 \ 10)$

$$\mathbf{a}_{j-1} \coloneqq \mathbf{ymin} + \Delta \cdot (j-1) \qquad \qquad \mathbf{b}_{j-1} \coloneqq \mathbf{a}_{j-1} + \Delta$$

$$b_{j-1} := a_{j-1} + \Delta$$

$$\mathbf{F}_{k-1} \coloneqq \sum_{j=0}^{k-1} \mathbf{f}_j$$

$$n := 100$$
 $x_{min} := min(x) = 120.991$ $x_{max} := max(x) = 173.96$

$$x_{max} := max(x) = 173.96$$

$$R_B := x_{max} - x_{min} = 52.969$$

$$R_{B} := x_{max} - x_{min} = 52.969 x_{avg1} := \frac{\left(\sum_{i=0}^{n-1} x_{i}\right)}{n} = 148.819 x_{avg2} := mean(x) = 148.819 x_{sort} := sort(x)$$

$$x_{avg2} := mean(x) = 148.819$$
 $x_{sort} := sort(x)$

$$\mathbf{k} := \left(\frac{\mathbf{n}}{2}\right) - 1 = 49$$

$$k := \left(\frac{n}{2}\right) - 1 = 49$$
 mediana₁ := $\frac{\left(x_{sort_k} + x_{sort_{k+1}}\right)}{2} = 149.906$

$$2 := \frac{\sum_{i=0}^{\infty} (x_i - x_{avg1})^2}{n} = 94.227$$

$$s2 := \frac{\sum_{i=0}^{n-1} (x_i - x_{avg1})^2}{n} = 94.227$$

$$\sigma := \sqrt{D} = 9.707$$

$$\mu_3 := \frac{\sum_{i=0}^{n-1} (x_i - x_{avg1})^3}{n} = 75.735$$

$$\mu_4 := \frac{\sum_{i=0}^{n-1} (x_i - x_{avg1})^4}{n} = 2.723 \times 10^4 \qquad E := \left(\frac{\mu_4}{D^2}\right) - 3 = 0.067 \qquad a := \frac{\mu_3}{\sigma^3} = 0.083$$

$$a := \frac{\mu_3}{3} = 0.083$$

$$kv_{75} := x_{74} = 156.72$$

$$kv_{75} := x_{74} = 156.72$$
 $kv_{25} := x_{24} = 143.155$ $R_{kv} := kv_{75} - kv_{25} = 13.565$

1. Прочитати файл, в якому знаходяться дані.

y := READPRN("numbers.txt")

$\mathbf{v}^{T} =$		0	1	2	3	4	5	6
	0	154.377	139.478	154.763	154.656	158.742	155.409	

2. Визначити статистику Колмогорова - функцію K(z) та побудувати її графік.

$$y := sort(y)$$

$$y_{min} := floor(min(y)) = 120$$

найбільше ціле число серед всіх чисел, які <= min(y)

$$y_{max} := ceil(max(y)) = 174$$

найменше ціле число серед всіх чисел, які >= max(y)

n := 100

$$\mathbf{h} := \frac{\mathbf{y}_{max}}{\mathbf{n}} = 1.74$$

$$\mathbf{g}_{\perp} = 0.00$$

потрібна точність обчислення

i := 0..200

$$z_i^T = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & -174 & -172.26 & -170.52 & -168.78 & -167.04 & -165.3 & \dots \end{bmatrix}$$

Функція Колмогорова:

$$K(z) := \begin{bmatrix} 0 & \text{if } z \le 0 \\ 100 & \left[(-1)^k \cdot e^{-2 \cdot (k \cdot z)^2} \right] & \text{if } z > 0 \end{bmatrix}$$

міра розходження теоретичної і емпіричної функції розподілу

$$N(z) := floor \left(\frac{1}{z} \cdot \sqrt{\frac{1}{2} \cdot ln \left(\frac{1}{\epsilon} \right)} \right) + 1$$

кількість членів у частинній сумі

3. Визначити значення величини α . Розв'язати графічно рівняння 1-K(z)= α . α (z) := 0.05

$$z_{\alpha} := 1.0$$
 $z_{\alpha} := root[(1 - \alpha(z_{\alpha})) - K(z_{\alpha}), z_{\alpha}] = 1.358$

4. Побудувати коридор для теоретичної функції розподілу.

$$\underset{\text{WW}}{R} := y_{\text{max}} - y_{\text{min}} = 54$$

розмах вибірки

$$m := 10$$

кількість інтервалів групування

$$D := \frac{R}{m} = 5.4$$

довжина інтервалів групування

$$x_j := y_{min} + D \cdot j$$

вектор, який містить межі інтервалів групування

$x^{T} =$		0	1	2	3	4	5	6	7	8
	0	120	125.4	130.8	136.2	141.6	147	152.4	157.8	

	$\mathbf{f}^{T} =$		0	1	2	3	4	5	6	7	8	9
f := hist(x, y)	_	0	1	1	6	20	17	17	23	8	3	4

$$\sum f = 100$$
 $a_i := y_{min} + D$

вектор, який містить ліві межі інтервалів групування $\mathbf{b}_{j} \coloneqq \mathbf{a}_{j} + \mathbf{D}$

вектор, який містить праві межі інтервалів групування

$$F_k := \frac{1}{n} \cdot \sum_{j=0}^{k} f_j$$

функція відносних накопичених частот

$F_{-} := F - \frac{z_{\alpha}}{T} \cdot F_{min} = \frac{T}{T}$		0	1	2	3	4	5	6	7
$r_{min} = r - \frac{1}{\sqrt{n}}$ min	0	-0.126	-0.116	-0.056	0.144	0.314	0.484	0.714	

в околі емпіричної функції розподілу побудований коридор, в якому знаходиться теоретична функція розподілу $a \coloneqq 0$ $b \coloneqq 3$ $\alpha \coloneqq 0.1$ $n \coloneqq 100$

$$f(x) := \begin{cases} \frac{1}{b-a} & \text{if } a \le x < b \\ 0 & \text{otherwise} \end{cases}$$

$$x := -1...$$

$$F(x) := \begin{cases} 0 & \text{if } x < a \\ \frac{x-a}{b-a} & \text{if } a \le x < b \\ 1 & \text{if } x \ge b \end{cases}$$

$$M := \frac{1}{2} \cdot (a + b) = 1.5$$
 математичне сподівання

$$Ds := \frac{(b-a)^2}{12} = 0.75$$
 дисперсія

 $\sigma \coloneqq \sqrt{Ds} = 0.866$ середнє квадратичне відхилення

$$Me := \frac{a+b}{2} = 1.5$$
 медіана

$$\mu_3 := \frac{1}{4} \cdot \sum_{k=1}^{3} (a^k \cdot b^{3-k}) = 0$$

момент 3-го порядку

$$\mu_4 \coloneqq \frac{1}{5} \cdot \sum_{k=1}^4 \left(a^k \cdot b^{4-k} \right) = 0$$

as := 0 коефіцієнт асиметрії

$$E := \frac{-6}{5}$$
 коефіцієнт ексцесу

	$Y^T = $		0	1	2	3	4
Y := runif(n,a,b)		0	3.805·10-3	0.58	1.755	1.051	

M1 := mean(Y) = 1.518 Me1 := median(Y) = 1.594 Ds1 := var(Y) = 0.72 σ 1 := $\sqrt{Ds1}$ = 0.849 Вибіркові значення:

$$\mu \mathbf{1}_{3} := \frac{\displaystyle\sum_{i=0}^{99} \; \left(\mathbf{Y}_{i} - \mathbf{M}\mathbf{1}\right)^{3}}{100} = -0.088 \quad \mu \mathbf{1}_{4} := \frac{\displaystyle1 \cdot \sum_{i=0}^{99} \; \left(\mathbf{Y}_{i} - \mathbf{M}\mathbf{1}\right)^{4}}{100} = 0.956 \quad E1 := \frac{\mu \mathbf{1}_{4}}{Ds\mathbf{1}^{2}} = 1.841 \quad as\mathbf{1} := \frac{\mu \mathbf{1}_{3}}{\sigma^{3}} = -0.136$$

$$ymin := min(Y) = 3.805 \times 10^{-3} \quad ymax := max(Y) = 2.99 \quad \underset{\text{R.}}{R} := ymax - ymin = 2.987 \quad \underset{\text{m.}}{m} := 10 \qquad \overset{D}{\longrightarrow} := \frac{R}{m} = 0.299$$

функція накопичених відносних частот (теоретична функція розподілу)

$$FT_k := \sum_{j=0}^k f_j$$
 $FT := \frac{FT}{n}$

$$x1 := z_{\alpha} \qquad \qquad F_{\text{min}} := FT - \frac{x1}{\sqrt{n}} \qquad \qquad F_{\text{max}} := FT + \frac{x1}{\sqrt{n}}$$

$F_{min}^{T} =$		0	1	2	3	4	5	6	7
	0	-0.066	0.104	0.164	0.204	0.314	0.454	0.544	

F _{max} ^T =		0	1	2	3	4	5	6	7	8
- max	0	0.206	0.376	0.436	0.476	0.586	0.726	0.816	0.936	

$$o := 0$$
.. $length(x) - 2$ $FR_o := F(x_o)$

функція заданого в умові розподілу

функци	1 30	даного с	y y wood po	оподпл						
$FR^{T} =$		0	1	2	3	4	5	6	7	8
	0	0.051	0.151	0.25	0.35	0.449	0.549	0.648	0.748	

Порівняння теоретичних і вибіркових значень параметрів:

$$\Delta M := \left| M - M1 \right| = 0.018 \quad \Delta Ds := \left| Ds - Ds1 \right| = 0.03 \quad \Delta \sigma := \left| \sigma - \sigma1 \right| = 0.017 \quad \Delta Me := \left| Me - Me1 \right| = 0.094$$

Лабораторна робота №4

 $y := READPRN("D:\University\3_Course\Data_analysis\numbers.txt")$

$\mathbf{v}^{\mathrm{T}} =$		0	1	2	3	4	5	6
1	0	154.377	139.478	154.763	154.656	158.742	155.409	

$$x := sort(y)$$

$$n := 100$$

$$i := 0..99$$

$$M := \frac{1}{n} \cdot \sum_{i=0}^{n-1} x_i = 148.819$$

$$D := \frac{1}{n-1} \cdot \sum_{i=0}^{n-1} (x_i - M)^2 = 95.178$$

$$f(n,p) := \frac{rbinom(1,n,p)_0}{}$$

$$p := 0.4$$

$$N_{a} = 1000$$

$$n := 10, 20... N$$

$$n := 10.20..N$$

$$\theta 1(n) := \frac{2}{n} \cdot \sum_{i=0}^{n-1} |Xrivn(n)|_{i} \qquad \qquad \theta 3(n) := \frac{n+1}{n} \cdot \max(Xrivn(n))$$

Лабораторна робота №5

$$N := 4$$
 $\lambda := 0.1 \cdot N = 0.4$ m := rpois(100, λ)

m ^T =		0	1	2	3	4	5	6	7	8	9
	0	0	0	0	0	1	1	0	0	1	

$$\begin{aligned} & \text{InL} := \text{In} \left(\begin{array}{c} \sum_{i \, = \, 0}^{\text{length}(m)-1} m_i \\ \frac{\lambda}{\text{length}(m)-1} \cdot e^{-\, \text{length}(m) \cdot \lambda} \\ & \prod_{i \, = \, 0}^{m_i!} \end{array} \right) = -81.257 \end{aligned}$$

$$\lambda \text{max}(n) := \frac{1}{n} \cdot \sum_{i = 0}^{n-1} \text{ rpois}(n, \lambda)_{i}$$

$$s_{\text{max}} := 50, 100...2000$$

$x^{T} =$		0	1	2	3	4
$x := rexp(100, \lambda)$	0	0.431	3.73	2.616	0.077	

$$\lim_{n \to \infty} = \operatorname{length}(x) \cdot \ln(\lambda) - \left(\sum_{i=0}^{\operatorname{length}(x)-1} x_i \right) \cdot \lambda = -189.638$$

$$\lambda \max(n) := \frac{1}{\text{mean}(\text{rexp}(n, \lambda))}$$
 s := 50,100.. 2000

$$\theta 1 := 2.5$$
 $\theta 2 := 3$ $n := 199$ $\text{nivnom} := \text{runif}(n, 0, 1)$

rivnom ^T =		0	1	2	3	4
	0	0.168	0.038	0.146	0.309	

$$\begin{split} \text{Frozp}(x) &:= & \left[\frac{1}{2} \cdot \text{exp} \bigg(\frac{x - \theta \mathbf{1}}{\theta \mathbf{2}} \bigg) \ \text{ if } \ x < \theta \mathbf{1} \\ & 1 - \frac{1}{2} \cdot \text{exp} \bigg[- \bigg(\frac{x - \theta \mathbf{1}}{\theta \mathbf{2}} \bigg) \bigg] \ \text{ if } \ x \geq \theta \mathbf{1} \end{split} \right. \end{split}$$

$$Fobern(x) := \theta 1 - \theta 2 \cdot sign(x - 0.5) \cdot ln(1 - 2 \cdot |x - 0.5|)$$

i := 0, 1 ... n - 1 $laplas_i := Fobern(rivnom_i)$

laplas ^T =		0	1	2	3	4
•	0	-0.781	-5.193	-1.185	1.058	

 $\theta 1 max := median(sort(laplas)) = 2.362$

$$\theta 2 \max := \frac{1}{n} \cdot \sum_{i=0}^{n-1} \left| laplas_i - \theta 1 \max \right| = 3.272$$

Лабораторна робота №6

Y := READPRN("D:\University\3_Course\Data_analysis\numbers.txt")

$\mathbf{Y}^{T} =$		0	1	2	3	4	5	6
	0	154.377	139.478	154.763	154.656	158.742	155.409	

$$Mx := \frac{1}{n} \cdot \sum_{j = 0}^{n-1} Y_j = 148.819 \qquad Dx := \frac{1}{n-1} \cdot \sum_{j = 0}^{n-1} \left(Y_j - Mx \right)^2 = 95.178$$

$$n := length(Y) \quad j := 0... n-1$$

95 % інтервал для мат сподівання

$$t := qt \Biggl(1 - \frac{0.05}{2} \, , n \Biggr) = 1.984 \quad x1 := Mx - t \cdot \sqrt{\frac{Dx}{n}} = 146.883 \quad xr := Mx + t \cdot \sqrt{\frac{Dx}{n}} = 150.754$$

90 % інтервал для Дисперсії

hl := qchisq
$$\left(\frac{0.1}{2}, n-1\right)$$
 = 77.046 hr := qchisq $\left(1-\frac{0.1}{2}, n-1\right)$ = 123.225

$$d1 := Dx \cdot \frac{(n-1)}{hr} = 76.467$$
 $dr := Dx \cdot \frac{(n-1)}{h1} = 122.299$

$$\lambda := 0.4$$

$$N := 500$$

$$\lambda := 0.4$$
 $N := 500$ $P := rpois(N, \lambda)$

		0			0
	0	0		0	0
	1	0		1	0
	2	0		2	0
	3	0		3	0
	4	1		4	0
	5	1		5	0
	6	0		6	0
P =	7	0	PS := sort(P) =	7	0
	8	1		8	0
	9	0		9	0
	10	0		10	0
	11	0		11	0
	12	0		12	0
	13	0		13	0
	14	0		14	0
	15			15	
			,		

Pmax := max(P) = 3 Pmin := min(P) = 0 $R_{max} := Pmax - Pmin = 3$

$$p_j := Pmin + \frac{\Delta}{2} \cdot (2 \cdot j - 1)$$

$$f := hist(p, PS)$$

$$x\alpha := qnom\left(1 - \frac{\alpha}{2}, 0, 1\right) = 1.645$$

$$\lambda est(n) := \frac{1}{n} \cdot \sum_{j=1}^{n} P_{j}$$

$$n := 10..500$$

$$\lambda est(50) = 0.56 \quad \lambda est(100) = 0.42$$

$$\lambda est(50) = 0.56 \ \lambda est(100) = 0.42$$

$$\lambda left(n) := \left(\sqrt{\lambda est(n)} - \frac{x\alpha}{2\sqrt{n}}\right)^2 \quad \lambda right(n) := \left(\sqrt{\lambda est(n)} + \frac{x\alpha}{2\sqrt{n}}\right)^2$$

$$\alpha = 0.1$$
 $n := 80$

$$\underset{\text{NV}}{\text{xcx}} := \text{qnorm} \left(1 - \frac{cx}{2}, 0, 1 \right) = 1.645$$
 $p := \frac{m}{n} = 0.438$

$$p := \frac{m}{n} = 0.438$$

pleft :=
$$sin\left(asin\left(\sqrt{p}\right) - \frac{x\alpha}{2\cdot\sqrt{n}}\right)^2 = 0.348$$

надійний інтервал для параметра р

$$pright := sin \left(asin \left(\sqrt{p} \right) + \frac{x\alpha}{2 \cdot \sqrt{n}} \right)^2 = 0.529 \quad \underset{m(n)}{\text{m}} := rbinom (10, n, 0.5)_1 \qquad \underset{m(n)}{\text{m}} := 0...50 \qquad \underset{n}{\text{p}} (n) := \frac{m(n)}{n}$$

$$m(n) := rbinom(10, n, 0.5)$$

$$p(n) := \frac{m(n)}{n}$$

$$\operatorname{pleft}(n) := \sin \left(\operatorname{asin}(\sqrt{p(n)}) - \frac{x\alpha}{2 \cdot \sqrt{n}} \right)^{2} \qquad \operatorname{pright}(n) := \sin \left(\operatorname{asin}(\sqrt{p(n)}) + \frac{x\alpha}{2 \cdot \sqrt{n}} \right)^{2}$$

$$\underset{\leftarrow}{\text{pright}}(n) := \sin \left(a \sin \left(\sqrt{p(n)} \right) + \frac{x \alpha}{2 \cdot \sqrt{n}} \right)^2$$

$$\alpha = 0.1$$
 $n := 14$

$$i := 0...t$$

$$x\alpha = 1.645$$

$$XY := \begin{pmatrix} 1.991 & 1.619 & -2.023 & -0.727 & 3.314 & 0.147 & -0.563 & -0.813 & 0.894 & 1.092 & -0.058 & 0.266 & 0.945 & -1.444 & -0.169 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 9.229 & 15.093 & 1.123 & -21.609 & 9.451 & -22.941 & 2.193 & -12.419 & -7.153 & -2.961 & 0.026 & 4.406 & 17.23 & -2.743 \\ -6.922 & 9.229 & 9.229 & 9.229 & 9.229 & -2.229 & -2.229 & -2.229 &$$

		0	1	2	3	4	5	6	7
XY =	0	1.991	1.619	-2.023	-0.727	3.314	0.147	-0.563	-0.813
	1	-6.922	9.229	15.093	1.123	-21.609	9,451	-22,941	

Ymean :=
$$\frac{1}{n} \sum_{i=0}^{n} XY_{1,i} = -1.285$$

$$\underline{\mathbf{m}} := \frac{1}{\mathbf{n}} \cdot \sum_{i=0}^{n} \left[\left(XY_{0,i} - Xmean \right) \cdot \left(XY_{1,i} - Ymean \right) \right]$$

$$m = -8.781$$

$$\sigma 2x := \frac{1}{n} \cdot \sum_{i=0}^{n} \left(XY_{0,i} - Xmean \right)^{2}$$

$$\sigma_{2x} = 1.924$$

$$\sigma 2y := \frac{1}{n} \cdot \sum_{i=0}^{n} \left(XY_{1,i} - Ymean \right)^2$$

$$\sigma 2y = 140.429$$

$$= \frac{m}{\sqrt{\sigma 2x \cdot \sigma 2y}}$$

$$k = -0.53$$

$$kleft := \left(atanh(k) - \frac{x\alpha}{\sqrt{n-3}}\right) \qquad kleft = -1.092 \qquad kright := \left(atanh(k) + \frac{x\alpha}{\sqrt{n-3}}\right) \qquad kright = -0.1$$

Точкова оцінка коеф кореляції

$$\frac{\sum_{i=0}^{n} \left[XY_{0,i} \cdot XY_{1,i} - \frac{1}{n} \cdot \sum_{i=0}^{n} \left(XY_{0,i} \cdot \sum_{i=0}^{n} XY_{1,i} \right) \right]}{\left[\sum_{i=0}^{n} \left[\frac{1}{n} \cdot \left(\sum_{i=0}^{n} XY_{0,i} \right)^{2} \right] \right] \cdot \left[\sum_{i=0}^{n} \left(XY_{1,i} \right)^{2} - \frac{1}{n} \cdot \left(\sum_{i=0}^{n} XY_{1,i} \right)^{2} \right]} \right]$$

$$\underset{\text{www.}}{\text{kleft}} := \left(\operatorname{atanh}(k) - \frac{x\alpha}{\sqrt{n-3}} \right)$$

$$\underset{\text{www.}}{\text{kright}} := \left(\text{atanh}(k) + \frac{x\alpha}{\sqrt{n-3}} \right)$$

$$c = -0.224$$

$$kleft = -0.724$$

Лабораторна робота №7

$$\alpha := 0.1$$
 $N := 100$ $\alpha := 2.2$ $\alpha := 4$ $\alpha := 0... N - 1$ $\alpha := 0... N - 1$

		0
	0	0.444
	1	-0.518
	2	0.307
	3	-1.606
	4	-4.543
	5	2.374
	6	1.717
ξ=	7	4.426
	8	10.967
	9	5.435
	10	6.141
	11	5.649
	12	5.862
	13	4.892
	14	-1.977
	15	

$$Mx := \frac{1}{N} \cdot \sum_{i=0}^{N-1} \xi_i = 1.598$$

$$Mx := \frac{1}{N} \cdot \sum_{i=0}^{N-1} \xi_i = 1.598$$
 $Dx := \frac{1}{N-1} \sum_{i=0}^{N-1} (\xi_i - Mx)^2 = 15.432$

$$\xi mean := mean(\xi) = 1.598$$

H0 a0 := a
$$\phi := \frac{(\xi \text{mean} - a0)}{\sqrt{\frac{\sigma^2}{N}}}$$

$$\phi = -1.505$$

 $Xmean := mean(\xi) = 1.598$

$$Xright := qnorm \left(1 - \frac{\alpha}{2}, 0, 1\right) = 1.645$$

$$Xleft := -Xright$$

$$Xleft = -1.645$$

Якщо $\phi > x_{r,\alpha}$, то гіпотеза H_0 відки дається і прий мається гіпотеза H_1 . Якщо ж $\phi \le x_{r,\alpha}$ то гіпотеза H_0 не відкидається.

У нашому випадку ϕ < $\frac{Xright}{}$ тому гіпотеза Н0 не відкидається

$$H1 \ a > a0$$

$$Xright := qnom(1 - \alpha, 0, 1) = 1.282$$
 $Xleft := -Xright$

$$Xleft := -Xrigh$$

$$Xleft = -1.282$$

Якщо ж $x_{l,\alpha} < \varphi < x_{r,\alpha}$, то приймається гіпотеза H_0 .

у нашому випадку приймається гіпотеза Н0, бо критерій менший за праву частину і більший за ліву частину

$$S2 := \frac{N}{N-1} var(\xi)$$

$$S2 = 15.432$$

$$\varphi := \frac{\xi mean - a0}{\sqrt{\frac{S2}{N}}}$$

$$\varphi = -1.532$$

Xright := qt
$$\left(1 - \frac{\alpha}{2}, 99\right)$$
 = 1.66 Xleft := -Xright

$$X1eft = -1.66$$

Якщо $\varphi < x_{l,a}$ або $\varphi > x_{r,a}$, то гіпотеза H_0 відкидається і приймається гіпотеза H_l . Якщо ж $x_{l,a} < \varphi < x_{r,a}$, то приймається гіпотеза H_0 .

У нашому випадку ф< Xleft тому приймається гіпотеза H1

H1
$$a > a0$$
 $\varphi = -1.532$ Xinght: $qt(1 - \alpha, 99) = 1.29$ Xleft: $-Xright$ Xleft $= -1.29$

Якщо вибіркове значення критерію попадає в критичну область, тобто $\varphi < x_{l,a}$, то гіпотеза H_0 відкидається і приймається гіпотеза H_{l} . Якщо ж $\phi > x_{l,a}$, то гіпотеза H_{0} не відкидається.

У нашому випадку приймається гіпотеза Н0

$$\sigma 0 := 4$$
 $\xi := mom(N, a, \sigma 0)$

		0
	0	3.951
	1	9.241
	2	-0.389
	3	4.404
	4	8.386
	5	-5.087
	6	7.432
ξ=	7	-1.996
	8	4.037
	9	-2.009
	10	-2.769
	11	3.896
	12	-5.466
	13	1.704
	14	3.853
	15	

$$\underbrace{\mathbf{Mx}}_{\xi \text{mean}} := \underbrace{\frac{1}{N}}_{i} \cdot \sum_{i=0}^{N-1} \xi_{i} \qquad \underbrace{\mathbf{Dx}}_{i} := \frac{1}{N-1} \sum_{i=0}^{N-1} (\xi_{i} - \mathbf{Mx})^{2}$$

Mx = 2.665 Dx = 15.925

$$H_0: \sigma^2 = \sigma_0^2.$$

$$\oint_{W} := (N - 1) \cdot \frac{Dx}{\sigma_0^2} \qquad \qquad \varphi = 98.535$$

$$\frac{\text{Xleft}}{\text{Xleft}} := \text{qchisq}\left(\frac{\alpha}{2}, N-1\right) = 77.046$$

$$\frac{\text{Xright}}{\text{Xleft}} := \text{qchisq}\left(1-\frac{\alpha}{2}, N-1\right) = 123.225$$

$$H_1: \sigma^2 \neq \sigma_0^2$$
;

Приймається гіпотеза H0, бо ф попадає в задану границю H_1 : $\sigma^2 > {\sigma_0}^2$;

Xright := qchisq
$$(1 - \alpha, N - 1) = 117.407$$

Якщо $\varphi > x_{r,a}$, то гіпотеза H_0 відки дається і прий мається гіпотеза H_1 .

У нашому випадку приймається гіпотеза H0 H_1 : $\sigma^2 < {\sigma_0}^2$.

$$Xleft := qchisq(\alpha, N - 1) = 81.449$$

Якщо вибіркове значення критерію попадає в критичну область, тобто $\varphi < x_{l,a}$, то гіпотеза H_0 відкидається і приймається гіпотеза H_1 . Якщо ж $\varphi > x_{l,a}$, то гіпотеза H_0 не відкидається.

У нашому випадку приймається гіпотеза Н0

N1 := 100

N2 := 120

a := 2.2

 $\sigma := 4$

$\xi := morm(N1, a, \sigma) =$		0
	0	0.444
	1	-0.518
	2	0.307
	3	-1.606
	4	-4.543
	5	2.374
	6	1.717
	7	4.426
	8	10.967
	9	5.435
	10	6.141
	11	5.649
	12	5.862
	13	4.892
	14	-1.977
	15	
	15	

 ξ mean := mean(ξ) ξ mean = 1.598

$$\mathbf{Mx1} \coloneqq \frac{1}{\mathbf{N1}} \cdot \sum_{i = 0}^{\mathbf{N1} - 1} \, \boldsymbol{\xi}_i$$

Mx1 = 1.598

$$Dx1 := \frac{1}{N1-1} \sum_{i=0}^{N1-1} \left(\xi_i - Mx1 \right)^2$$

Dx1 = 15.432

 $\zeta := mom(N2, a, \sigma)$

$$\zeta = \begin{bmatrix} 0 \\ 0 \\ 3.951 \\ 1 \\ 9.241 \\ 2 \\ -0.389 \\ 3 \\ 4.404 \\ 4 \\ 8.386 \\ 5 \\ -5.087 \\ 6 \\ 7.432 \\ 7 \\ -1.996 \\ 8 \\ 4.037 \\ 9 \\ -2.009 \\ 10 \\ -2.769 \\ 11 \\ 3.896 \\ 12 \\ -5.466 \\ 13 \\ 1.704 \\ 14 \\ 3.853 \\ 15 \\ \dots$$

 ζ mean := mean(ζ) = 2.668

$$Mx2 := \frac{1}{N2} \cdot \sum_{i=0}^{N2-1} \zeta_i$$

$$Mx2 = 2.668$$

$$Dx2 := \frac{1}{N2 - 1} \sum_{i = 0}^{N2 - 1} (\zeta_i - Mx2)^2$$

$$Dx2 = 16.454$$

a1 := a
$$\sigma$$
1 := σ a2 := 3.1 σ 2 := 4.5 α := 0.05

$$a2 := 3.1$$

$$\sigma_2 := 4.5$$

$$\alpha := 0.05$$

$$\phi := \frac{\xi mean - \zeta mean}{\sqrt{\frac{\sigma_1^2}{N_1} + \frac{\sigma_2^2}{N_2}}}$$

$$\phi = -1.865$$

$$Xright := qnorm \left(1 - \frac{\alpha}{2}, 0, 1\right) \qquad Xright = 1.96$$

$$X1eft = -1.96$$

Якщо $\varphi < x_{l,a}$ чи $\varphi > x_{r,a}$, то гіпотеза H_0 відкидається і приймається гіпотеза H_1 . Якщо ж $x_{l,a} < \varphi < x_{r,a}$, то приймається гіпотеза H_0 .

У цьому випадку приймається гіпотеза Н0

$$\alpha = 0.1$$

$$xL := qt \left(\frac{\alpha}{2}, N1 + N2 - 2\right)$$

$$Xleft = -1.96$$

Якщо $\varphi < x_{l.a}$ чи $\varphi > x_{r,a}$, то гіпотеза H_0 відкидається і приймається гіпотеза H_1 . Якщо ж $x_{l,a} < \varphi < x_{r,a}$, то приймається гіпотеза H_0 .

У цьому випадку приймається гіпотеза НО, тому що критерій входить у інтервал.