CMPEN 271_Homework #5

Sept. 22th, 2017

Ruiyang Qin

Homework Description:

BCD-to7-segment (HW #5)

Design a minimum <u>BCD to 7-segment LED display decoder circuit</u>. The input is a 4-bit BCD value, and there are 7 outputs – one output for each segment of the 7-segment display. The circuit should generate the appropriate display on the 7-segment display for each input BCD value. If the output for a given display segment is 1, then assume the display segment will be illuminated, otherwise the segment will be dark. Use output labels as provided below. Include truth table, K-maps, circuit.

Solution:

For a 4-bit BCD value: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001. These nine number matches 0 to 9 which are what 7-segment LED display can do. The four bits can be represented by A, B, C, D.

Based on the feature of 7-segment LED display, there are seven letters using: a, b, c, d, e, f, g.

The first step is making a truth table.

Truth table:

Msb	lsb

Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0

0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

K-map:

$$a = A + C + BD + B'D'$$

c = B + C' + D

AB'	1	1	х	Х

d = B'D' + CD' + BC'D + B'C + A

	C'D'	C'D	CD	CD'	
A'B'	1	0	1		
A'B	0	1	0	1	
AB	х	(X)	Х	Х	
AB'		1	х		ス
		L		7	

e = B'D' + CD'

	C'D'	C'D	CD	CD'
A'B'	1	0	0	YI.
A'B	0	0	0	1
AB	х	Х	х	Х
AB'	1	0	х	4
''D'				V

f = A + C'D' + BC' + BD'

	C'D'	C'D	CD	CD'	
A/D/	Λ	0	0	0	
A'B'		0	0	0	
A'B	1	1	0	1	
AB	X	×	Х	X	+
AB'		1	Х	×)

g = A + BC' + B'C + CD'

	C'D'	C'D	CD	CD'
A'B'	0	0	1	
A'B	1	1	0	1
AB		×	Х	X
AB'	1	1	Х	X
				\

Circuit:

