La fonction exponentielle

6.1 Définition et propriétés

Théorème 6.1 Il existe une fonction dérivable sur \mathbb{R} tel que f(0) = 1 et f' = f.

Proposition 6.2 Une telle fonction ne s'annulle pas.

Démonstration. On définit la fonction φ sur \mathbb{R} par $\varphi(x) = f(x)f(-x)$. $\varphi'(x) = f'(x)f(-x) + f(x) \times (-f'(-x))$ et $\varphi(0) = f(0)f(-0) = 1$. = f(x)f(-x) - f(x)f(-x) = 0

 φ est de dérivée nulle sur \mathbb{R} , c'est une fonction constante, et pour tout $x \in \mathbb{R}$: $f(x)f(-x) = \varphi(x) = 1$.

En conséquence $f(x) \neq 0$.

Proposition 6.3 Une telle fonction est unique.

Démonstration. Prenons deux fonctions f et g vérifiant le théorème 6.1. On définit la fonction ψ sur \mathbb{R} par :

$$\psi(x) = \frac{f(x)}{g(x)}$$

$$\psi'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)} \text{ et } \psi(0) = \frac{f(0)}{g(0)} = 1.$$

$$= \frac{f(x)g(x) - f(x)g(x)}{g^2(x)}$$

 ψ est de dérivée nulle sur \mathbb{R} , c'est une fonction constante, et pour tout $x \in \mathbb{R}$: $\frac{f(x)}{g(x)} = \psi(x) = 1$ et f(x) = g(x).

Définition 6.1 — **notation 1.** On note « \exp » l'unique fonction dérivable sur \mathbb{R} vérifiant f' = f et f(0) = 1.

Définition 6.2 — nombre d'Euler. On note $e = \exp(1) \approx 2.71828183$.

Propriétés 6.4 Pour tout x et $y \in \mathbb{R}$ et $n \in \mathbb{N}$

(i)
$$\exp(0) = 1$$

(ii)
$$\exp(-x) = \frac{1}{\exp(x)}$$

(iii)
$$\exp(x+y) = \exp(x) \exp(y)$$
.

En particulier $\exp(x+1) = e \exp(x)$

(iv)
$$\exp(nx) = (\exp(x))^n$$
.

En particulier
$$\exp(2x) = (\exp(x))^2$$
.

(v)
$$\exp(x) > 0$$
, et $\sqrt{\exp(x)} = \exp\left(\frac{x}{2}\right)$.

Démonstration.

- (i) par définition
- (ii) vu dans la démonstration de la proposition 6.3
- (iii) Pour y fixé, on définit la fonction γ sur \mathbb{R} par $\gamma(x) = \frac{\exp(x+y)}{\exp(y)}$.

$$\gamma'(x) = \gamma(x) \text{ et } \gamma(0) = \frac{\exp(0+y)}{\exp(y)} = 1.$$

 γ vérifie aussi les conditions du théorème 6.1.

Par unicité on a $\gamma = \exp$.

(iv) conséquence directe de (iii)

(v)
$$\exp(x) = \exp\left(\frac{x}{2} + \frac{x}{2}\right) = \exp\left(\frac{x}{2}\right) \exp\left(\frac{x}{2}\right) = \left(\exp\left(\frac{x}{2}\right)\right)^2$$
.

Cette notation est cohérente avec le fait que la fonction exponentielle hérite des propriétés connues des puissances :

•
$$e^0 = 1$$
; $e = e^1 \text{ et } \sqrt{e} = e^{\frac{1}{2}}$

•
$$e^{-x} = \frac{1}{e^x}$$
; $e^{x+y} = e^x e^y$ et $e^{x-y} = \frac{e^x}{e^y}$

•
$$(e^x)^n = e^{nx}$$
 pour $n \in \mathbb{N}$

R Pour un exposant
$$n \in \mathbb{N}$$
 on $a : e^n = e \times e \dots e$ et $e^{-n} = \frac{1}{e^n}$

R La suite
$$(e^{nx}) = (\exp(nx))_{n \in \mathbb{N}}$$
 est une suite géométrique.

Théorème 6.5 La fonction $x \mapsto e^x$ est strictement croissante sur \mathbb{R} .

Démonstration. Sa dérivée étant elle-même et elle est positive!

Théorème 6.6 La fonction $f: x \mapsto e^{ax+b}$ est dérivable sur \mathbb{R} et on a $f'(x) = ae^{ax+b}$.

6.1.1 TP nº 1: introduction aux fonctions exponentielles

Compléter le tableau de valeur à l'aide de votre calculatrice et tracer la représentation graphique de la function $f: x \mapsto 2^x$.

Tracer à main levée sur le même repère les représentations graphiques de $x \mapsto 3^x$, $x \mapsto 2^x$ et $x \mapsto 1.5^x$:

Si x < 0 alors < <

Si x > 0 alors

Tracer à main levée sur le même repère les représentations graphiques de $f: x \mapsto 2^x$ et $g: x \mapsto \left(\frac{1}{2}\right)^x = 0.5^x$:

1

Tracer à main levée sur le même repère la représentation graphique de $f: x \mapsto 2^{x+3}$:

Bilan: Compléter

b>0, le domaine de la fonction $f\colon x\mapsto b^x$ est

Les représentations graphiques des fonctions $f: x \mapsto 3^x$ et $g: x \mapsto \left(\frac{1}{3}\right)^x$ sont

Associer les fonctions dont les représentations graphiques sont images par symétrie le long de l'axe des y:

$$A \colon x \mapsto 4x$$
 $B \colon x \mapsto \left(\frac{2}{3}\right)^x$ $C \colon x \mapsto 1.5^x$ $D \colon x \mapsto 0.5^x$ $E \colon x \mapsto 0.25^x$

De manière générale les représentations graphiques des fonctions \dots sont images par symétrie le long de l'axe des y.

Pour b > 0, pour tout $x \in \mathbb{R}$ on a $2^x \dots 0$.

Si 0 < b < 1 la fonction f définie sur \mathbb{R} par $f(x) = b^x$ est strictement

L'équation $2^x = 3$ inconnue x admetsolutions.

L'équation $2^x = -5$ inconnue x admet solutions.

$$b^4b^3 = \dots b^3b^{-5} = \dots b^3b^{-5} = \dots$$

$$\frac{1}{b^3} = b^{\dots} \qquad \qquad b^5b = \dots$$

$$(b^2)^3 = \dots b^x b^3 = b^{\dots}, \dots$$

$$b^{-2x+1}b^{5x} = \dots b^{2x}b^{x-30} = \dots$$

$$\frac{b^{2x+3}}{b^{x+1}} = \dots \qquad \frac{1}{3^{2x+1}} = \dots$$

$$\frac{1,15^{x+5}}{1,153x+2} = \dots \qquad 0,85^{2x-1}0,85^{-x+3} = \dots$$

6.1.2 TP n° 2 : Représentation de la fonction exponentielle par la méthode d'euler

Soit f_* vérifiant $f'_* = f_*$ et $\mathscr C$ sa représentation graphique.

Pour tracer la tangente à la $\mathscr C$ en un point $A(x\;;\;y)\in\mathscr C$ il suffit de tracer la droite (AB) ou $B(x-1\;;\;0)$.

En effet la droite (AB) avec B(x-1; 0) a pour pente $m = f_0(x)$. Comme $f'_* = f$, la pente de (AB) est $f'_*(x)$. C'est la tangente à \mathscr{C} au point A.

Objectif Construire la représentation graphique d'une approximation de f_* par une fonction **affine par** morceaux f tel que sur chaque intervalle ou elle est affine elle vérifiera $f'(x) \approx f(x)$ et f(0) = 1.

Partie A Approche graphique Observer les graphiques ci-dessous :

f est une fonction affine sur [a; b]. Elle est dérivable sur]a; b[Pour a < x < b:

g est une fonction affine sur [a;b]. Elle est dérivable sur]a;b[Pour a < x < b:

$$g'(x) = g(b)$$

Dans les deux cas, si l'intervalle [a;b] est assez petit, on a pour tout $x \in]a;b[:f'(x)=f(a)$ ou $f(b)\approx f(x)$ On commence en prenant des intervalles de largeur $\frac{1}{2}:[0;0.5],[0.5;1],[1;1.5],[1.5;2]...$

- 1) Compléter sur le même repère de la feuille millimétrée les graphiques ci-dessous.
- 2) Refaire un dessin plus précis avec un pas de 0,2.
- 3) Expliquer pour quoi la représentation de f_* cherchée est entre les deux graphiques tracés.
- 4) Donner une valeur approchée de e = f(1). Que peut-on faire pour avoir un encadrement plus précis?

Partie B Approche algébrique On considère un pas de $\frac{1}{n}$. On va caculer explicitement les valeurs prises par les fonctions affines par morceaux construites dans la partie A aux points $f(\frac{k}{n})$.

$$\operatorname{pour} \frac{k}{n} < x < \frac{k+1}{n} \qquad f\left(\frac{k+1}{n}\right) - f\left(\frac{k+1}{n}\right) \approx \frac{1}{n} f'(x) = \frac{1}{n} f(x)$$

$$f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right) \approx \frac{1}{n} f\left(\frac{k}{n}\right) \qquad g\left(\frac{k+1}{n}\right) - g\left(\frac{k}{n}\right) \approx \frac{1}{n} g\left(\frac{k+1}{n}\right)$$

Pour un pas $\frac{1}{n}$ (n > 2), on encadre la fonction f_* par deux fonctions f_n et g_n affines par morceaux tel que :

$$f(0) = 1$$

$$g(0) = 1$$

pour
$$k \in \mathbb{Z}$$
 $f\left(\frac{k}{n}\right) = \left(1 + \frac{1}{n}\right)^k f(0) = \left(1 + \frac{1}{n}\right)^k$ pour $k \in \mathbb{Z}$ $g\left(\frac{k}{n}\right) = \frac{1}{\left(1 - \frac{1}{n}\right)^k} g(0) = \left(1 - \frac{1}{n}\right)^{-k}$
Ci desseus les représentations graphiques pour un pas $= 0.2$ et un pas $= 0.1$

Ci dessous les représentations graphiques pour un pas =0,2 et un pas =0,1.

Partie C Algorithme Python Le programme ci-dessous donne une courbe approchant la représentation graphique de la fonction exponentielle sur l'intervalle [0; 1].

- 1) Où apparaît le nombre de subdivisions régulières?
- 2) Expliquer dans les lignes 8 et 9 le calcul des coordonnées du point suivant de la courbe.

```
10
                              # nombre de points à placer
                                liste des abscisses
  Y = []
                                liste des ordonnées
                              # (x_0=0 ; y_0=1) est le premier point de la \mathscr{C}_f
  xk, yk = 0, 1
  for k in range(1, n + 1):
       X.append(xk)
                              # abscisse/ordonnée sont ajoutées aux listes X et Y
6
       Y.append(yk)
7
       xk = xk + 1/n
                             # l'abscisse suivante est x_{n+1} =
8
       yk = yk + 1/n*yk # l'ordonnée suivante est f\left(\frac{k+1}{n}\right) \approx
9
  import matplotlib.pyplot as plt
  plt.plot(X, Y, marker='o', linestyle='-') # Affichage des points dans repère
11
  plt.show()
```


Figure 6.1 – Représentations obtenues par méthodes d'Euler de la fonction exponentielle pour 10 et 100 subdivisions de l'intervalle [0; 1]. Lien https://my.numworks.com/python/niz-moussatat/methode_euler pour script numworks

6.2 Équations et inéquations

Propriété 6.7 Pour tout x et $y \in \mathbb{R}$ on a $e^x = e^y \iff x = y$

Propriété 6.8 Pour tout x et $y \in \mathbb{R}$ on a $e^x < e^y \iff x < y$

Démonstration. La fonction exp est **strictement** croissante.

■ Exemple 6.1 Résoudre dans \mathbb{R} l'équation $e^{3x+5} = e^{2x+4}$, inconnue x.

$$e^{3x+5} = e^{2x+4}$$

$$\iff 3x + 5 = 2x + 4$$

$$\iff x = -1$$

■ Exemple 6.2 Résoudre dans \mathbb{R} l'inéquation $e^{x^2} > e^{4x-4}$, inconnue x.¹ $e^{x^2} > e^{4x-4}$

$$\iff x^2 > 4x - 4$$

$$\iff x^2 - 4x + 4 > 0$$

$$\iff (x-2)^2 > 0 \qquad S = \mathbb{R} \setminus \{2\}$$

Propriété 6.9 Soit l'équation $e^x = y$ d'inconnune x:

- (i) Si $y \le 0$ alors pas de solutions. y n'admet pas d'antécédents par la fonction exp.²
- (ii) Si y > 0 alors la solution est unique. y admet un unique antécédent par la fonction exp :

$$e^x = y \iff x = \ln(y) = \log_e(y)$$

■ Exemple 6.3

1)
$$e^x = 1 \iff x = \ln(1) = 0$$
.

2)
$$e^x = 2 \iff x = \ln(2) \approx 0.69314718$$

3)
$$e^x = -4$$
 n'a pas de solution dans \mathbb{R} .

- Pour b > 0, et $x \in \mathbb{R}$ on définit $b^x = (e^{\ln(b)})^x = e^{\ln(b)x}$. Par conséquent, la fonction $f: x \mapsto b^x$ est dérivable sur \mathbb{R} et $f'(x) = \ln(b)b^x$.
- Si b < 0 on ne peut pas définir b^x pour x non entier. Les fonctions $x \mapsto (-2)^x$ ne sont pas définies sur \mathbb{R} .

¹ Afin d'éviter toute ambiguité, $b^{x^2} = b^{(x^2)}$. On notera en effet $2^{(3^2)} \neq (2^3)^2$.

 2 \odot $e^{i\pi} = -1$

6.3 Exercices : propriétés de l'exponentielle

Exercice 1 Simplifier les expressions suivantes :

$$e^{3}e^{4} = \dots \qquad e^{2}e^{-4} = \dots \qquad \frac{e^{-5}}{e^{2}} = \dots \qquad \frac{\left(e^{-5}\right)^{2}}{e^{2}e^{-6}} = \dots \qquad e^{5} + 5(e^{2})^{3} = \dots \qquad e^{5} + 5(e^{2})^{3} = \dots \qquad (e^{3})^{-2}e^{5} = \dots$$

Exercice 2 Simplifier les expressions suivantes :

$$E_{1}(x) = e^{x}e^{-x}$$

$$E_{2}(x) = (e^{3x+2})^{2}$$

$$E_{3}(x) = \frac{e^{-x+1}}{e^{3x-4}}$$

$$E_{4}(x) = e^{2x+1}e^{-3x+5}$$

$$E_{5}(x) = \frac{e^{x-1}}{e^{-x+2}}$$

$$E_{6}(x) = \frac{e^{x-1}}{e^{2x}} \frac{e^{3x+5}}{e^{-2x+1}}$$

$$E_{6}(x) = \frac{e^{x-1}}{e^{2x}} \frac{e^{3x+5}}{e^{-2x+1}}$$

$$E_{8}(x) = \sqrt{e^{-2x}}$$

Exercice 3 Développer simplifier réduire les expressions suivantes :

$$E_{1}(x) = e^{x}(e^{x} + 5)$$

$$E_{2}(x) = e^{-x}(e^{x} - 2)$$

$$E_{3}(x) = e^{2x}(e^{x} - e^{-x})$$

$$E_{4}(x) = (e^{x} - 1)(e^{x} + 3)$$

$$E_{5}(x) = (e^{x} + 1)(-e^{x} + 2)$$

$$E_{6}(x) = (e^{3x} - 2)^{2}$$

$$E_{6}(x) = (e^{3x} - 2)^{2}$$

$$E_{6}(x) = (e^{x} - 1)(e^{x} + 3)$$

$$E_{7}(x) = (e^{x} + 1)^{2}$$

$$E_{8}(x) = (e^{x} - 3)(e^{x} + 3)$$

$$E_{9}(x) = (e^{x} - e^{-x})^{2}$$

Exercice 4 Compléter pour factoriser les expressions :

$$e^{4x} + e^{x} = e^{x} ($$

$$e^{2x} - 1 = ($$

$$e^{-4x} - 25 = ...$$

$$e^{6x} + 4e^{3x} + 4 = ($$

$$9e^{-2x} - 6 + e^{2x} = ($$

$$)^{2} - 2($$

$$)($$

$$) + ($$

$$)^{2} = ($$

$$)^{2}$$

Exercice 5 Montrer que les égalités suivantes sont vraies pour tout $x \in \mathbb{R}$:

$$\frac{e^{x+1}}{e + e^{x+1}} = \frac{e^x}{1 + e^x} \qquad \qquad \frac{1 - e^{-x}}{1 + e^{-x}} = \frac{e^x - 1}{1 + e^{-x}} = \frac{e^x - 1}{e^x + 1} \qquad \qquad \frac{1}{e^x + 1} + \frac{1}{e^{-x} + 1} = 2$$

$$1 - \frac{e^{-x}}{1 + e^{-x}} = \frac{e^x}{1 + e^x} \qquad \qquad \frac{e^x - 1}{e^x} = 1 - e^{-x} \qquad \qquad \frac{e^{2x} - e^{-2x}}{e^x - e^{-x}} = e^x + e^{-x}$$

■ Exemple 6.4 — Utiliser le sens de variation et le signe de la fonction exponentielle. En s'aidant éventuellement de la représentation graphique de la fonction exponentielle encadrer au mieux e^a dans les cas suivants : $1 < a \le 4$ -2 < a < 3 $\ln(2) < a < \ln(3)$ a < 3

Année 2022/2023

Exercice 6 Compléter:

 $\ln(k)$ est l'antécédent de k par la fonction exponentielle $f \colon x \mapsto e^x$. Donc $f(k) = e^{\ln(k)} = k$.

Exercice 7 — **\overline{\overline{A}}**. Simplifier si possible les écritures suivantes :

$$\ln(1) = \dots$$
 $\ln(e^2) = \dots$ $\ln(e^3) = \dots$ $\ln(-1) = \dots$ $\ln(e) = \dots$ $\ln(5) = \dots$ $\ln(0) = \dots$

lacktriangle Exemple 6.5 — ramener à la même base. Résoudre dans $\mathbb R$ les équations et inéquations suivantes :

$$e^{2x-3} = 1$$

$$\Leftrightarrow e^{x-3} = e^{3x+1}$$

$$\Leftrightarrow e^{2x-3} = e^{0}$$

$$\Leftrightarrow x - 3 = 3x + 1$$

$$\Leftrightarrow x^{2} > 4x - 4$$

$$\Leftrightarrow 2x - 3 = 0$$

$$\Leftrightarrow -4 = 2x$$

$$\Leftrightarrow x^{2} - 4x + 4 > 0$$

$$\Rightarrow x = \frac{3}{2}$$

$$\Rightarrow (x - 2)^{2} > 0$$

$$S = \mathbb{R} \setminus \{2\}$$

Exercice 8 Résoudre dans $\mathbb R$ les équations suivantes :

$$(E_1) e^x = e^{-4}$$

$$(E_2) e^{-x} = 1$$

$$(E_3) e^x + 4 = 0$$

$$(E_4) e^{2x-1} = e$$

$$(E_5) e^{3x+1} = e^{-2x+3}$$

$$(E_6) e^{x^2+5} = (e^{x+2})^2$$

$$(E_8) e^{x^2+x} = 1$$

Exercice 9 Résoudre dans \mathbb{R} les équations suivantes :

$$(E_1) (3x - 5)(e^x + 2) = 0$$
 $(E_2) (2x + 7)(e^x - 3) = 0$ $(E_3) 4e^{-x} + 7xe^{-x} = 0$

Exemple 6.6 Résoudre dans \mathbb{R} les équations et inéquations suivantes :

$$2e^{x} + 5 = 3$$

$$\Leftrightarrow 2e^{x} = -2$$

$$\Leftrightarrow e^{x} = -1$$

$$\Leftrightarrow t = 1 \text{ ou } t = -4$$
Pas de solutions
$$e^{x} + 3e^{x} + 4 = 0$$

$$\Leftrightarrow t^{2} + 3t - 4 = 0 \text{ avec } t = e^{x}$$

$$\Leftrightarrow t = 1 \text{ ou } t = -4$$

$$e^{x} = 1 \text{ ou } e^{x} = -4$$

Exercice 10 — un air de déjà vu.

- 1) Résoudre dans \mathbb{R} l'équation $t^2 + 6t 7 = 0$
- 2) En déduire la résolution dans \mathbb{R} de l'équation $e^{2x} + 6e^x 7 = 0$.

Exercice 11 Résoudre dans \mathbb{R} les équations et inéquations suivantes :

$$(E_1) e^{2x} + 6e^x + 5 = 0$$
 $(E_2) e^{2x} - 5e^x + 6 = 0$ $(E_3) e^x - 2 + e^{-x} = 0.$

Exercice 12 Résoudre les inéquations suivantes dans \mathbb{R} :

$$(I_1) e^x < e$$

$$|(I_3)|e^{-2x}>$$

$$(I_5) e^{-2x+3} > 1$$

$$(I_2) e^{-x} \geqslant 1$$

$$(I_4) e^x < 2$$

$$I(I_6) e^{-3x} < e^2$$

$$(I_8) e^{2x-1} > e^x$$

Exercice 13 Résoudre les inéquations suivantes dans \mathbb{R} en isolant e^x :

$$(I_1) 2e^x + 3 > 0$$

$$(I_2) 5e^x - 7 \ge 1$$

$$|(I_2)| 5e^x - 7 \ge 1$$
 $|(I_3)| 2e^x - 3 < 5$

$$(I_4) 2 - e^x > 0$$

Exercice 14 — 🖬. Compléter les tableaux de signes suivants :

EXCICICE 14	E Compieter les tableaux de sig
x	
signe de	
$e^x - e$	
x	
signe de $e^x - e^2$	
$e^x - e^2$	

x	
signe de	
$e^x - 5$	
x	
signe de $3e^x - 5$	

Exercice $15 - \blacksquare$.

1) Démontrer que pour tout $x \in \mathbb{R}$:

$$-2e^{2x} + e^x + 1 = (2e^x + 1)(1 - e^x)$$

2x	+	e^x	+	1	=	$(2e^x)$	+	1)(1	_	e^x)
----	---	-------	---	---	---	----------	---	------	---	---------

x	$-\infty$	$+\infty$
signe de $2e^x + 1$		
signe de $1 - e^x$		
signe de		
$-2e^{2x} + e^x + 1$		

2) Compléter le tableau de signe ci-contre.

Exercice 16 — **I**.

Étudier le signe de l'expression $(2x+5)e^{x^2+7x+3}$ à l'aide du tableau de signe :

x	$-\infty$ +	$-\infty$
signe de e^{x^2+7x+3}		
signe de $2x + 5$		
signe $(2x+5)e^{x^2+7x+3}$		

Exercice 17 — **dérivation.** Calculer les dérivées des fonctions suivantes toutes définies sur \mathbb{R} .

$$1)f(x) = 2e^x$$

$$4)f(x) = (3x+5)e^x$$

$$7)f(x) = \frac{e^x}{e^x - x}$$

$$2)f(x) = 2x + e^x$$

$$5)f(x) = (x^2 - 4x + 3)e^x$$

$$8)f(x) = 10e^{-1.15x+1}$$

$$3)f(x) = e^{2x+1}$$

$$\begin{aligned}
4)f(x) &= (3x+5)e^x \\
5)f(x) &= (x^2 - 4x + 3)e^x \\
6)f(x) &= \frac{4e^x}{e^x + 1}
\end{aligned}$$

$$8)f(x) = 10e^{-1.15x+1}$$
$$9)f(x) = (2x - 3)e^{-0.8x}$$

Exercice 18 — \blacksquare . On a tracé les représentations graphiques de 4 fonctions définies sur \mathbb{R} :

$$\bullet \quad f(x) = e^{-0.9x}$$

•
$$h(x) = e^x$$

•
$$g(x) = e^{2x}$$

$$h(x) = e^x$$

$$i(x) = e^{-0.55x}$$

Associer chaque expression à une des courbes.

Justifier en utilisant des phrases parmi:

- L'ordonnée à l'orgine est
- La fonction estante car sa dérivée
- L'image de par la fonction est

Exercice 19 Dériver et étudier le sens de variation des fonctions suivantes.

1)
$$f_1$$
 définie sur \mathbb{R} par $f_1(x) = e^{-2x+1}$

4)
$$f_4$$
 définie sur $]0; \infty[$ par $f_4(x) = \frac{e^x}{x}$

2)
$$f_2$$
 définie sur \mathbb{R} par $f_2(x) = \frac{e^x - 1}{2e^x + 1}$

5)
$$f_5$$
 définie sur \mathbb{R} par $f_5(x) = x^2 - 2(x-1)e^x$

3)
$$f_3$$
 définie sur \mathbb{R} par $f_3(x) = (x^2 - 2x)e^x$

6)
$$f_6$$
 définie sur \mathbb{R} par $f_6(x) = \frac{e^x}{e^x - x}$

Exercice 20 Soit f la fonction définie sur \mathbb{R} par $f(x) = e^x$ et sa courbe représentative \mathscr{C}_f .

- 1) Donner l'équation de la tangente T à \mathcal{C}_f au point d'abscisse 0.
- 2) On définit g la fonction définie sur \mathbb{R} par $g(x) = e^x x$. Étudier les variations de g.
- 3) En déduire l'**inégalité classique** : pour tout $x \in \mathbb{R}$ on a $e^x \ge x + 1$.
- 4) Interpréter géométriquement l'inégalité précédente en terme de \mathscr{C}_f et T.

Exercice 21 Soit f la fonction définie sur \mathbb{R} par $f(x) = (2x+1)e^x$ et sa courbe représentative \mathscr{C}_f .

Pour chaque affirmation, préciser si elle est vraie ou fausse et justifier votre réponse.

Indication : "chef j'ai vérifié sur la calculatrice" n'est pas une justification

Affirmation no 1 « Le point $A(0; 1) \in \mathscr{C}_f$. »

Affirmation no 2 « Pour tout x on a $f'(x) = 2e^x$. »

Affirmation n° 3 « La tangente à \mathcal{C}_f au point d'abscisse -1,5 est horizontale. »

Affirmation $n^{\circ}4$ « La fonction est croissante sur \mathbb{R} . »

Affirmation no 5 « La fonction est positive sur \mathbb{R} . »

Exercice 22 Soit f la fonction définie sur \mathbb{R} par $f(x) = (-8x + 3)e^{-2x}$ et sa courbe représentative \mathscr{C}_f .

- 1) Calculer f'(x) et étudier les variations de f et dresser son tableau de variation.
- 2) Déterminer l'équation de la tangente à \mathscr{C}_f en 0.
- 3) Pour quelle abscisse x, la tangente au point d'abscisse x à \mathscr{C}_f est parallèle à l'axe des abscisses.

Exercice 23 Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{2e^x - 3}{e^x + 1}$ et sa courbe représentative \mathscr{C}_f .

- 1) Calculer f'(x) et étudier les variations de f et dresser son tableau de variation.
- 2) Montrer que pour tout $x \in \mathbb{R}$ on a -3 < f(x) < 2.
- 3) Déterminer l'équation de la tangente T à \mathscr{C}_f au point d'abscisse 0.

Exercice 24 Soit la fonction f définie sur \mathbb{R} par $f(x) = (ax + b)e^{-x}$ et sa courbe représentative \mathscr{C}_f :

- 1) A(-2; 0) et $B(0; 2) \in \mathscr{C}_f$. En déduire a et b.
- 2) Déterminer les coordonnées du point critique \mathscr{S} . S'agit-il d'un extremum local?

Exercice 25 — problème inverse. La courbe suivante est celle d'une fonction f définie et dérivable sur \mathbb{R} . On note f' la dérivée de f. La tangente \mathcal{T} à la courbe \mathcal{C}_f au point A(0;3) passe par le point B(1;5).

On admet que la fonction f est définie dans \mathbb{R} par une expression de la forme: $f(x) = 1 + \frac{ax + b}{e^x}$ où a et b

- 1) En utilisant les données et le graphique, préciser f(0) et f'(0).
- 2) Déterminer une équation de la tangente \mathcal{T} à la courbe \mathcal{C}_f au point A.
- 3) a) Déterminer l'expression de f'(x) en fonction de a, b et x.
 - b) A l'aide des résultats précédents, montrer que pour tout réel x: $f(x) = 1 + \frac{4x + 2}{e^x}$.

Exercice 26 Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{-xe^x + e^x - 4}{e^x}$.

On note C_f sa courbe représentative dans un repère.

- 1) Déterminer les coordonnées du point d'intersection de C_f avec l'axe des ordonnées.
- 2) Déterminer l'expression de f'(x) et étudier les variations de f.
- 3) Soit d la droite d'équation y = -x + 1. Étudier la position relative de \mathcal{C}_q et de d dans un repère.

Exercice 27 Donner la nature, la raison ainsi que le sens de variations des suites ci-dessous.

 (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = e^n$ (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = e^{-4n}n$ (w_n) définie pour tout $n \in \mathbb{N}$ par $w_n = e^{3n}$ (a_n) définie pour tout $n \in \mathbb{N}$ par $a_n = e^2 n$ (b_n) définie par $b_0 = 2$ et $\forall n \in \mathbb{N} : b_{n+1} = e^{0.5} b_n$ (c_n) définie par $c_0 = -1$ et $\forall n \in \mathbb{N} : c_{n+1} = e^{-2} + c_n$

6.3.1 exercices : solutions et éléments de réponse

solution de l'exercice 1.
$$E_1 = e^7$$
; $E_2 = e^{-7}$; $E_3 = e$; $E_4 = \frac{1}{-1 + e^{\frac{1}{2}}}$; $E_5 = e^{-2}$; $E_6 = e^{-6}$; $E_7 = 6e^6$; $E_8 = e^{-1}$;

$$solution \ de \ l'exercice \ \mathcal{Z}. \ E_1(x)=1; \ E_2(x)=e^{6x+4}; \ E_3(x)=e^{5-4x}; \ E_4(x)=e^{6-x}; \ E_5(x)=e^{2x-3}; \ E_6(x)=e^{4x-3}; \ E_7(x)=e^{2x+1}; E_8(x)=e^{-x}; E_8(x)=e^$$

solution de l'exercice 3.
$$E_1(x) = e^{2x} + 5e^x$$
; $E_2(x) = 1 - 2e^{-x}$; $E_3(x) = e^{3x} - e^x$; $E_4(x) = e^{2x} + 2e^x - 3$; $E_5(x) = -e^x + 1 + 2e^{-x}$; $E_6(x) = e^{6x} - 4e^{3x} + 4$; $E_7(x) = e^{2x} + 2e^x + 1$; $E_8(x) = e^{2x} - 9$; $E_9(x) = e^{2x} - 2 + e^{-2x}$;

solution de l'exercice 8.
$$S_1 = \{-4\}; S_2 = \{0\}; S_3 = \emptyset; S_4 = \{1\}; S_5 = \left\{\frac{2}{5}\right\}; S_6 = \{1\}; S_7 = \{-3, 3\}; S_8 = \{-1, 0\};$$

solution de l'exercice 9.
$$S_1 = \left\{\frac{5}{3}\right\}$$
; $S_2 = \left\{-\frac{7}{2}, \ln(3)\right\}$; $S_3 = \left\{-\frac{4}{7}\right\}$;

solution de l'exercice 11.
$$S_1 = \emptyset$$
; $S_2 = \{\ln(2), \ln(3)\}$; $S_3 = \{0\}$;

$$solution \ de \ l'exercice \ 12. \ \mathscr{S}_1 = (-\infty, 1); \ \mathscr{S}_2 = (-\infty, 0]; \ \mathscr{S}_3 = \left(-\infty, \frac{1}{2}\right); \ \mathscr{S}_4 = (-\infty, \ln{(2)}); \ \mathscr{S}_5 = \left(-\infty, \frac{3}{2}\right); \ \mathscr{S}_6 = \left(-\frac{2}{3}, \infty\right); \ \mathscr{S}_7 = [-0.75, \infty); \ \mathscr{S}_8 = (1, \infty);$$

solution de l'exercice 13.
$$\mathscr{S}_1 = \mathbb{R}; \mathscr{S}_2 = \left[\ln\left(\frac{8}{5}\right), \infty\right); \mathscr{S}_3 = (-\infty, \ln(4)); \mathscr{S}_4 = (-\infty, 0);$$

$$solution \ de \ l'exercice \ 17. \ f_1'(x) = 2e^x; \quad f_2'(x) = e^x + 2; \quad f_3'(x) = 2ee^{2x}; \quad f_4'(x) = (3x + 8)e^x; \quad f_5'(x) = \left(x^2 - 2x - 1\right)e^x; \quad f_6'(x) = \frac{4e^x}{(e^x + 1)^2}; \quad f_7'(x) = -\frac{(x - 1)e^x}{(x - e^x)^2}; \quad f_8'(x) = -11.5ee^{-1.15x}; \quad f_9'(x) = -\frac{2\left(4x - 11\right)e^{-\frac{4x}{5}}}{5};$$