Proportional Line Segments in Right Angled Triangles

Theorem 1 The height of a right angled triangle that passes through the right angle, splits the triangle into two similar right angled triangles, each similar to the original triangle.

Proof

Consider Triangle ABC where $\angle C$ is a right angle (Figure 1). CD is a height from point C to the hypotenuse AB. Let's prove that: $\triangle ABC \sim \triangle ACD$, $\triangle ABC \sim \triangle CBD$, $\triangle ACD \sim \triangle CBD$.

Triangles ABC and ACD are similar due to the first sign of similarity of triangles ($\angle A$ - common angle, $\angle ACB = \angle ADC = 90^{\circ}$.) Hence: $\angle A = \angle BCD$.

In the same way, triangles ABC and CBD are similar ($\angle B$ - common angle, $\angle ACB = \angle BDC = 90^{\circ}$).

Figure 1

Finally, triangles ACD and CBD are also similar due to the first sign of similarity of triangles: (Angle with vertex D are right angles and $\angle A = \angle BCD$).

∴ QED

Definition

A line segment XY is called the geometric mean of line segments AB and CD if: $XY = \sqrt{AB \cdot CD}$

Now using the theorem above let's consider the following two statements.

Statement 1 The height of a right angled triangle which passes through the right angle, is the geometric mean of line segments, into which the hypotenuse is split by this height.

Proof

Consider triangle ABC, where $\angle C$ is the right angle (Figure 1). Let's draw a height CD from angle C to side AB. We need to prove that:

$$CD = \sqrt{AD \cdot DB}$$

Since $\triangle ADC \sim \triangle CBD$ then: $\frac{AD}{CD} = \frac{CD}{DB}$. Hence:

$$CD^2 = AD \cdot DB$$
$$CD = \sqrt{AD \cdot DB}$$

∴ QED

Statement 2 The cathetus (a side adjacent to the right angle) of a right angled triangle is the geometric mean of the hypotenuse and the segment of the hypotenuse between that cathetus and the height passing through the right angle.

Proof

Consider triangle ABC, where $\angle C$ is the right angle (Figure 1). Let's draw a height CD from angle C to side AB. We need to prove that:

from angle
$$C$$
 to side AB . We need to prove that: $AC = \sqrt{AB \cdot AD}$ Since $\triangle ABC \sim \triangle ACD$ then: $\frac{AB}{AC} = \frac{AC}{AD}$. Hence:

$$AC^2 = AB \cdot AD$$
$$AC = \sqrt{AB \cdot AD}$$