# Non-Gaussian Component Analysis with Log-Density Gradient Estimation

### Hiroaki Sasaki

Grad. School of Info. Sci.
Nara Institute of Sci. & Tech.
Nara, Japan
hsasaki@is.naist.jp

### Gang Niu

Grad. School of Frontier Sci.
The University of Tokyo
Tokyo, Japan
gang@ms.k.u-tokyo.ac.jp

#### Masashi Sugiyama

Grad. School of Frontier Sci.
The University of Tokyo
Tokyo, Japan
sugi@k.u-tokyo.ac.jp

#### Abstract

Non-Gaussian component analysis (NGCA) is aimed at identifying a linear subspace such that the projected data follows a non-Gaussian distribution. In this paper, we propose a novel NGCA algorithm based on logdensity gradient estimation. Unlike existing methods, the proposed NGCA algorithm identifies the linear subspace by using the eigenvalue decomposition without any iterative procedures, and thus is computationally reasonable. Furthermore, through theoretical analysis, we prove that the identified subspace converges to the true subspace at the optimal parametric rate. Finally, the practical performance of the proposed algorithm is demonstrated on both artificial and benchmark datasets.

### 1 Introduction

A popular way to alleviate difficulties in statistical data analysis is to reduce the dimensionality of data. Real-world applications imply that a small number of non-Gaussian signal components in data often include "interesting" information, while the remaining Gaussian components are "uninteresting" (Blanchard et al., 2006). This is the fundamental motivation of non-Gaussian-based unsupervised dimension reduction methods.

A well-known method is projection pursuit (PP), which estimates directions on which the projected data is as non-Gaussian as possible (Friedman and

Appearing in Proceedings of the  $19^{th}$  International Conference on Artificial Intelligence and Statistics (AISTATS) 2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright 2016 by the authors.

Tukey, 1974; Huber, 1985). In practice, PP algorithms maximize a *single* index function measuring non-Gaussianity of the data projected on a direction. However, some index functions are suitable for measuring super-Gaussianity, while others are good at measuring sub-Gaussianity (Hyvärinen et al., 2001). Thus, PP algorithms might not work well when super- and sub-Gaussian signal components are mixtured in data.

Non-Gaussian component analysis (NGCA) (Blanchard et al., 2006) copes with this problem. NGCA is a semi-parametric framework for unsupervised linear dimension reduction, and aimed at identifying a subspace such that the projected data follows a non-Gaussian distribution. Compared with independent component analysis (ICA) (Comon, 1994; Hyvärinen et al., 2001), NGCA stands on a more general setting: There is no restriction about the number of Gaussian components and non-Gaussian signal components can be dependent of each other, while ICA makes a stronger assumption that at most one Gaussian component is allowed and all the signal components are statistically independent of each other.

To take into account both super- and sub-Gaussian components, the first practical NGCA algorithm called the multi-index projection pursuit (MIPP) heuristically makes use of multiple index functions in PP (Blanchard et al., 2006), but it seems unclear whether this heuristic works well in general. To improve the performance of MIPP, iterative metric adaptation for radial kernel functions (IMAK) has been proposed (Kawanabe et al., 2007). IMAK does not rely on index functions, but instead estimates alternative functions from data. However, IMAK involves an iterative optimization procedure, and its computational cost is expensive.

In this paper, based on log-density gradient estimation, we propose a novel NGCA algorithm which we call the least-squares NGCA (LSNGCA). The rationale in LSNGCA is that as we show later, the target

subspace contains the log-gradient for the data density subtracted by the log-gradient for a Gaussian density. Thus, the subspace can be identified using the eigenvalue decomposition. Unlike MIPP and IMAK, LSNGCA neither requires index functions nor any iterative procedures, and thus is computationally reasonable.

A technical challenge in LSNGCA is to accurately estimate the gradient of the log-density for data. To overcome it, we employ a direct estimator called the *least squares log-density gradients* (LSLDG) (Cox, 1985; Sasaki et al., 2014). LSLDG accurately and efficiently estimates log-density gradients in a closed form without going through density estimation. In addition, it includes an automatic parameter tuning method. In this paper, based on LSLDG, we theoretically prove that the subspace identified by LSNGCA converges to the true subspace at the optimal parametric rate, and finally demonstrate that LSNGCA reasonably works well on both artificial and benchmark datasets.

This paper is organized as follows: In Section 2, after stating the problem of NGCA, we review MIPP and IMAK, and discuss their drawbacks. We propose LSNGCA, and then overview LSLDG in Section 3. Section 4 performs theoretical analysis of LSNGCA. The performance of LSNGCA on artificial datasets is illustrated in Sections 5. Application to binary classification on benchmark datasets is given in Section 6. Section 7 concludes this paper.

### 2 Review of Existing Algorithms

In this section, we first describe the problem of NGCA, and then review existing NGCA algorithms.

#### 2.1 Problem Setting

Suppose that a number of samples  $\mathcal{X} = \{x_i = (x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(d_{\mathbf{x}})})^{\top}\}_{i=1}^n$  are generated according to the following model:

$$x = \mathbf{A}s + \mathbf{n},\tag{1}$$

where  $\mathbf{s} = (s^{(1)}, s^{(2)}, \dots, s^{(d_{\mathbf{s}})})^{\top}$  denotes a random signal vector,  $\mathbf{A}$  is a  $d_{\mathbf{x}}$ -by- $d_{\mathbf{s}}$  matrix,  $\mathbf{n}$  is a Gaussian noise vector with the mean vector  $\mathbf{0}$  and covariance matrix  $\mathbf{C}$ . Assume further that the dimensionality of  $\mathbf{s}$  is lower than that of  $\mathbf{x}$ , namely  $d_{\mathbf{s}} < d_{\mathbf{x}}$ , and  $\mathbf{s}$  and  $\mathbf{n}$  are statistically independent of each other.

Lemma 1 in Blanchard et al. (2006) states that when data samples follow the generative model (1), the probability density p(x) can be described as a semi-parametric model:

$$p(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{B}^{\top} \mathbf{x}) \phi_{\mathbf{C}}(\mathbf{x}), \tag{2}$$

where **B** is a  $d_{\mathbf{x}}$ -by- $d_{\mathbf{s}}$  matrix,  $f_{\mathbf{x}}$  is a positive function and  $\phi_{\mathbf{C}}$  denotes the Gaussian density with the mean **0** and covariance matrix **C**.

The decomposition in (2) is not unique because  $f_{\mathbf{x}}$ , **B** and **C** are not identifiable from p. However, as shown in Theis and Kawanabe (2006), the following linear  $d_{\mathbf{s}}$ -dimensional subspace is identifiable:

$$\mathcal{L} = \text{Ker}(\mathbf{B}^{\top})^{\perp} = \text{Range}(\mathbf{B}). \tag{3}$$

 $\mathcal{L}$  is called the non-Gaussian index space. Here, the problem is to identify  $\mathcal{L}$  from  $\mathcal{X}$ . In this paper, we assume that  $d_s$  is known.

### 2.2 Multi-Index Projection Pursuit

The first algorithm of NGCA called the *multi-index* projection pursuit (MIPP) was proposed based on the following key result (Blanchard et al., 2006):

**Proposition 1.** Let x be a random variable whose density p(x) has the semi-parametric form (2), and suppose that h(x) is a smooth real function on  $\mathbb{R}^{d_{\mathbf{x}}}$ . Denoting by  $\mathbf{I}_{d_{\mathbf{x}}}$  the  $d_{\mathbf{x}}$ -by- $d_{\mathbf{x}}$  identity matrix, assume further that  $\mathbb{E}\{x\} = \mathbf{0}$  and  $\mathbb{E}\{xx^{\top}\} = \mathbf{I}_{d_{\mathbf{x}}}$ . Then, under mild regularity conditions on h, the following  $\beta(h)$  belongs to the target space  $\mathcal{L}$ :

$$\boldsymbol{\beta}(h) = \mathbb{E}\{\boldsymbol{x}h(\boldsymbol{x}) - \nabla_{\boldsymbol{x}}h(\boldsymbol{x})\},$$

where  $\nabla_{\boldsymbol{x}}$  is the differential operator with respect to  $\boldsymbol{x}$ .

The condition that  $\mathbb{E}\{\boldsymbol{x}\boldsymbol{x}^{\top}\} = \mathbf{I}_{d_{\mathbf{x}}}$  seems to be strong, but in practice it can be satisfied by whitening data. Based on Proposition 1, after whitening data samples as  $\boldsymbol{y}_i = \hat{\boldsymbol{\Sigma}}^{-1/2}\boldsymbol{x}_i$  where  $\hat{\boldsymbol{\Sigma}} = \frac{1}{n}\sum_{i=1}^n \boldsymbol{x}_i\boldsymbol{x}_i^{\top}$ , for a bunch of functions  $\{h_k\}_{k=1}^K$ , MIPP estimates  $\boldsymbol{\beta}(h_k) = \boldsymbol{\beta}_k$  as

$$\widehat{\boldsymbol{\beta}}_k = \frac{1}{n} \sum_{i=1}^n \boldsymbol{y}_i h_k(\boldsymbol{y}_i) - \nabla_{\boldsymbol{y}} h_k(\boldsymbol{y}_i). \tag{4}$$

Then, MIPP applies PCA to  $\{\widehat{\boldsymbol{\beta}}_k\}_{k=1}^K$  and estimates  $\mathcal{L}$  by pulling back the  $d_{\mathbf{s}}$ -dimensional space spanned by the first  $d_{\mathbf{s}}$  principal directions into the original (non-whitened) space.

Although the basic procedure of MIPP is simple, there are two implementation issues: normalization of  $\hat{\beta}_k$  and choice of functions  $h_k$ . The normalization issue comes from the fact that since (4) is a linear mapping,  $\hat{\beta}_k$  with larger norm can be dominant in the PCA step, and they are not necessarily informative in practice. To cope with this problem, Blanchard et al. (2006) proposed the following normalization scheme:

$$\frac{\widehat{\boldsymbol{\beta}}_k}{\sqrt{\sum_{i=1}^n \|\boldsymbol{y}_i h_k(\boldsymbol{y}_i) - \nabla_{\boldsymbol{y}} h_k(\boldsymbol{y}_i)\|^2 - \|\widehat{\boldsymbol{\beta}}_k\|^2}}.$$
 (5)

After normalization, since the squared norm of each vector is proportional to its signal-to-noise ratio, longer vectors are more informative.

MIPP is supported by theoretical analysis (Blanchard et al., 2006, Theorem 3), but the practical performance strongly depends on the choice of h. To find an informative h, the form was restricted as

$$h_{r,\boldsymbol{\omega}}(\boldsymbol{y}) = r(\boldsymbol{\omega}^{\top} \boldsymbol{y}),$$

where  $\boldsymbol{\omega} \in \mathbb{R}^{d_{\mathbf{x}}}$  denotes a unit-norm vector, and r is some function. As a heuristic, the FastICA algorithm (Hyvärinen, 1999) was employed to find a good  $\omega$ . Although MIPP was numerically demonstrated to outperform PP algorithms, it is unclear whether these heuristic restriction and preprocessing work well in general.

#### 2.3Iterative Metric Adaptation for Radial **Kernel Functions**

To improve the performance of MIPP, the *iterative* metric adaptation for radial kernel functions (IMAK) estimates h by directly maximizing the informative normalization criterion, which is the squared norm of (5) used for normalization in MIPP (Kawanabe et al., 2007). To estimate h, a linear-in-parameter model is

$$h_{\sigma^2, \mathbf{M}, \boldsymbol{\alpha}}(\boldsymbol{y}) = \sum_{i=1}^n \alpha_i \exp\left\{-\frac{1}{2\sigma^2} (\boldsymbol{y} - \boldsymbol{y}_i)^\top \mathbf{M} (\boldsymbol{y} - \boldsymbol{y}_i)\right\}$$
$$= \sum_{i=1}^n \alpha_i k_{\sigma^2, \mathbf{M}}(\boldsymbol{y}, \boldsymbol{y}_i),$$

where  $\mathbf{y} = \mathbf{\Sigma}^{-1/2} \mathbf{x}, \, \mathbf{\Sigma} = \mathbb{E}\{\mathbf{x}\mathbf{x}^{\top}\}, \, \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n) \text{ is }$ a vector of parameters to be estimated, M is a positive semidefinite matrix and  $\sigma$  is a fixed scale parameter. This model allows us to represent the squared norm of the informative criterion (5) as

$$\frac{\|\widehat{\boldsymbol{\beta}}_k\|^2}{\sum_{i=1}^n \|\boldsymbol{y}_i h_k(\boldsymbol{y}_i) - \nabla_{\boldsymbol{y}} h_k(\boldsymbol{y}_i)\|^2 - \|\widehat{\boldsymbol{\beta}}_k\|^2} = \frac{\boldsymbol{\alpha}^\top \mathbf{F} \boldsymbol{\alpha}}{\boldsymbol{\alpha}^\top \mathbf{G} \boldsymbol{\alpha}}.$$
(6)

 $\mathbf{F}$  and  $\mathbf{G}$  in (6) are given by

$$\mathbf{F} = \frac{1}{n^2} \sum_{r=1}^{d_{\mathbf{x}}} \left( \boldsymbol{e}_r^\top \mathbf{Y} \mathbf{K} - \mathbf{1}_n^\top \partial_r \mathbf{K} \right)^\top \left( \boldsymbol{e}_r^\top \mathbf{Y} \mathbf{K} - \mathbf{1}_n^\top \partial_r \mathbf{K} \right)$$

$$= \frac{1}{n} \sum_{r=1}^{d_{\mathbf{x}}} \left\{ \operatorname{diag}(\mathbf{e}_r^{\top} \mathbf{Y}) \mathbf{K} - \partial_r \mathbf{K} \right\}^{\top} \left\{ \operatorname{diag}(\mathbf{e}_r^{\top} \mathbf{Y}) \mathbf{K} - \partial_r \mathbf{K} \right\}, \text{ the non-Gaussian index subspace can be represented as } \mathcal{L} = \operatorname{Range}(\mathbf{B}) = \mathbf{\Sigma}^{-1/2} \operatorname{Range}(\mathbf{B}').$$

where  $e_r$  denotes the r-th basis vector in  $\mathbb{R}^{d_{\mathbf{x}}}$ , Y is a  $d_{\mathbf{x}}$ -by-n matrix whose column vectors are  $\mathbf{y}_i$ ,  $\mathbf{K}$  is the Gram matrix whose (i, j)-th element is  $[\mathbf{K}]_{ij} =$  $k_{\sigma^2,\mathbf{M}}(\mathbf{y}_i,\mathbf{y}_i), \ \partial_r$  denotes the partial derivative with respect to the r-th coordinate in y, and

$$egin{aligned} [\partial_r \mathbf{K}]_{ij} &= rac{1}{\sigma^2} \left( [\mathbf{M} oldsymbol{y}_i]_r - [\mathbf{M} oldsymbol{y}_j]_r 
ight) \ & imes k'_{\sigma^2, \mathbf{M}} \left( -rac{1}{2\sigma^2} (oldsymbol{y}_i - oldsymbol{y}_j)^ op \mathbf{M} (oldsymbol{y}_i - oldsymbol{y}_j) 
ight). \end{aligned}$$

The maximizer of (6) can be obtained by solving the following generalized eigenvalue problem:

$$\mathbf{F}\boldsymbol{\alpha} = \eta \mathbf{G}\boldsymbol{\alpha},$$

where  $\eta$  is the generalized eigenvalue. Once  $\alpha$  is estimated,  $\beta$  can be also estimated according to (4). Then, the metric  $\mathbf{M}$  in h is updated as

$$\mathbf{M} \propto \sum_k \widehat{oldsymbol{eta}}_k \widehat{oldsymbol{eta}}_k^ op,$$

where **M** is scaled so that its trace equals to  $d_{\mathbf{x}}$ . IMAK alternately and iteratively updates  $\alpha$  and  $\beta$ . It was experimentally shown that IMAK improves the performance of MIPP. However, IMAK makes use of the above alternate and iterative procedure to estimate a number of functions  $h_{\sigma^2,\mathbf{M},\boldsymbol{\alpha}}$  with different parameter values for  $\sigma$ . Thus, IMAK is computationally costly.

### Least-Squares Non-Gaussian Component Analysis (LSNGCA)

In this section, we propose a novel algorithm for NGCA, which is based on the gradients of logdensities. Then, we overview an existing useful estimator for log-density gradients.

#### 3.1 A Log-Density-Gradient-Based Algorithm for NGCA

In contrast to MIPP and IMAK, our algorithm does not rely on Proposition 1, but is derived more directly from the semi-parametric model (2). As stated before, the noise covariance matrix C in (2) cannot be identified in general. However, after whitening data, the semi-parametric model (2) is significantly simplified by following the proof of Lemma 3 in Sugiyama et al. (2008) as

$$p(\mathbf{y}) = f_{\mathbf{y}}(\mathbf{B}'^{\top}\mathbf{y})\phi_{\mathbf{I}_{d_{\mathbf{x}}}}(\mathbf{y}), \tag{7}$$

where  $f_{\mathbf{y}}$  is a positive function, and  $\mathbf{B}'$  is a  $d_{\mathbf{x}}$ -by- $d_{\mathbf{s}}$  matrix such that  $\mathbf{B}'^{\top}\mathbf{B}' = \mathbf{I}_{d_{\mathbf{s}}}$ . Thus, under (7), as  $\mathcal{L} = \text{Range}(\mathbf{B}) = \mathbf{\Sigma}^{-1/2} \text{Range}(\mathbf{B}')$ .

To estimate  $Range(\mathbf{B}')$ , we take a novel approach based on the gradients of log-densities. The reason of using the gradients comes from the following equation, which can be easily derived by computing the gradient of the both-hand sides of (7) after taking the logarithm:

$$\nabla_{\boldsymbol{y}}[\log p(\boldsymbol{y}) - \log \phi_{\mathbf{I}_{d_{\mathbf{x}}}}(\boldsymbol{y})] = \mathbf{B}' \nabla_{\boldsymbol{z}} \log f_{\mathbf{y}}(\boldsymbol{z} = \mathbf{B}'^{\top} \boldsymbol{y}).$$
(8)

Eq.(8) indicates that  $\nabla_{\boldsymbol{y}}[\log p(\boldsymbol{y}) - \log \phi_{\mathbf{I}_{d_{\boldsymbol{x}}}}(\boldsymbol{y})] = \nabla_{\boldsymbol{y}}\log p(\boldsymbol{y}) + \boldsymbol{y}$  is contained in Range( $\mathbf{B}'$ ). Thus, an orthonormal basis  $\{\boldsymbol{e}'_i\}_{i=1}^{d_{\mathbf{s}}}$  in Range( $\mathbf{B}'$ ) is estimated as the minimizer of the following PCA-like problem:

$$\mathbb{E}\{\|\boldsymbol{\nu} - \sum_{i=1}^{d_{\mathbf{s}}} (\boldsymbol{\nu}^{\top} \boldsymbol{e}_{i}') \boldsymbol{e}_{i}'\|^{2}\}$$

$$= \mathbb{E}\{\|\boldsymbol{\nu}\|^{2}\} - \sum_{i=1}^{d_{\mathbf{s}}} \boldsymbol{e}_{i}'^{\top} \mathbb{E}\{\boldsymbol{\nu}\boldsymbol{\nu}^{\top}\} \boldsymbol{e}_{i}', \qquad (9)$$

where  $\boldsymbol{\nu} = \nabla_{\boldsymbol{y}} \log p(\boldsymbol{y}) + \boldsymbol{y}$ ,  $\|\boldsymbol{e}_i\| = 1$  and  $\boldsymbol{e}_i^{\top} \boldsymbol{e}_j = 0$  for  $i \neq j$ . Eq.(9) indicates that minimizing the left-hand side with respect to  $\boldsymbol{e}_i$  is equivalent to maximizing the second term in the right-hand side. Thus, an orthonormal basis  $\{\boldsymbol{e}_i\}_{i=1}^{d_s}$  can be estimated by applying the eigenvalue decomposition to  $\mathbb{E}\{\boldsymbol{\nu}\boldsymbol{\nu}^{\top}\} = \mathbb{E}\{(\nabla_{\boldsymbol{y}} \log p(\boldsymbol{y}) + \boldsymbol{y})(\nabla_{\boldsymbol{y}} \log p(\boldsymbol{y}) + \boldsymbol{y})^{\top}\}$ .

The proposed LSNGCA algorithm is summarized in Fig.1. Compared with MIPP and IMAK, LSNGCA estimates  $\mathcal{L}$  without specifying or estimating h in Proposition 1 and any iteration procedures. The key challenge in LSNGCA is to estimate log-density gradients  $\nabla_{\boldsymbol{y}} \log p(\boldsymbol{y})$  in Step 2. To overcome this challenge, we employ a method called the least-squares log-density gradients (LSLDG) (Cox, 1985; Sasaki et al., 2014), which directly estimates log-density gradients without going through density estimation. As overviewed below, with LSLDG, LSNGCA can compute all the solutions in a closed form, and thus would be computationally efficient.

## 3.2 Least-Squares Log-Density Gradients (LSLDG)

The fundamental idea of LSLDG is to directly fit a gradient model  $g^{(j)}(\boldsymbol{x})$  to the true log-density gradient under the squared-loss:

$$J(g^{(j)})$$

$$= \int \left\{ g^{(j)}(\boldsymbol{x}) - \partial_j \log p(\boldsymbol{x}) \right\}^2 p(\boldsymbol{x}) d\boldsymbol{x} - C^{(j)}$$

$$= \int \left\{ g^{(j)}(\boldsymbol{x}) \right\}^2 p(\boldsymbol{x}) d\boldsymbol{x} - 2 \int g^{(j)}(\boldsymbol{x}) \partial_j p(\boldsymbol{x}) d\boldsymbol{x}$$

$$= \int \left\{ g^{(j)}(\boldsymbol{x}) \right\}^2 p(\boldsymbol{x}) d\boldsymbol{x} + 2 \int \left\{ \partial_j g^{(j)}(\boldsymbol{x}) \right\} p(\boldsymbol{x}) d\boldsymbol{x},$$

Input: Data samples,  $\{x_i\}_{i=1}^n$ .

- Step 1 Whiten  $x_i$  after subtracting the empirical mean values from them.
- Step 2 Estimate the gradient of the log-density for the whitened data  $y_i = \hat{\Sigma}^{-1/2} x_i$ .
- Step 3 Using the estimated gradients  $\widehat{g}(y_i)$ , compute  $\widehat{\Gamma} = \frac{1}{n} \sum_{i=1}^{n} \{\widehat{g}(y_i) + y_i\} \{\widehat{g}(y_i) + y_i\}^{\top}$ .
- Step 4 Perform the eigenvalue decomposition to  $\widehat{\Gamma}$ , and let  $\widehat{\mathcal{I}}$  be the space spanned by the  $d_{\mathbf{s}}$  directions corresponding to the largest  $d_{\mathbf{s}}$  eigenvalues.

Output:  $\widehat{\mathcal{L}} = \widehat{\Sigma}^{-1/2}\widehat{\mathcal{I}}$ .

Figure 1: The LSNGCA algorithm.

 $C^{(j)} = \int \{\partial_j \log p(\boldsymbol{x})\}^2 p(\boldsymbol{x}) d\boldsymbol{x}, \ \partial_j = \frac{\partial}{\partial x^{(j)}}$  and the last equality comes from the *integration by parts* under a mild assumption that  $\lim_{|x^{(j)}| \to \infty} g^{(j)}(\boldsymbol{x}) p(\boldsymbol{x}) = 0$ . Thus,  $J(g^{(j)})$  is empirically approximated as

$$\tilde{J}(g^{(j)}) = \frac{1}{n} \sum_{i=1}^{n} g^{(j)}(\boldsymbol{x}_i)^2 + 2\partial_j g^{(j)}(\boldsymbol{x}_i).$$
 (10)

To estimate log-density gradients, we use a linear-inparameter model as

$$g^{(j)}(oldsymbol{x}) = \sum_{i=1}^b heta_{ij} \psi_{ij}(oldsymbol{x}) = oldsymbol{ heta}_j^ op oldsymbol{\psi}_j(oldsymbol{x}),$$

where  $\theta_{ij}$  is a parameter to be estimated,  $\psi_{ij}(\mathbf{x})$  is a fixed basis function, and b denotes the number of basis functions and is fixed to  $b = \min(n, 100)$  in this paper. As in Sasaki et al. (2014), the derivatives of Gaussian functions centered at  $\mathbf{c}_i$  are used for  $\psi_{ij}(\mathbf{x})$ :

$$\psi_{ij}(\boldsymbol{x}) = rac{[\boldsymbol{c}_i - \boldsymbol{x}]^{(j)}}{\sigma_j^2} \exp\left(-rac{\|\boldsymbol{x} - \boldsymbol{c}_i\|^2}{2\sigma_j^2}
ight),$$

where  $[x]^{(j)}$  denotes the j-th element in x,  $\sigma_j$  is the width parameter, and the center point  $c_i$  is randomly selected from data samples  $x_i$ . After substituting the linear-in-parameter model and adding the  $\ell_2$  regularizer into (10), the solution is computed analytically:

$$\widehat{\boldsymbol{\theta}}_{j} = \operatorname*{argmin}_{\boldsymbol{\theta}_{j}} \left[ \boldsymbol{\theta}_{j}^{\top} \widehat{\mathbf{G}}_{j} \boldsymbol{\theta}_{j} + 2 \boldsymbol{\theta}_{j}^{\top} \widehat{\boldsymbol{h}}_{j} + \lambda_{j} \boldsymbol{\theta}_{j}^{\top} \boldsymbol{\theta}_{j} \right]$$
$$= -(\widehat{\mathbf{G}}_{j} + \lambda_{j} \mathbf{I}_{b})^{-1} \widehat{\boldsymbol{h}}_{j},$$

where  $\lambda_i$  denotes the regularization parameter,

$$\widehat{\mathbf{G}}_j = \frac{1}{n} \sum_{i=1}^n \psi_j(\boldsymbol{x}_i) \psi_j(\boldsymbol{x}_i)^{\top} \text{ and } \widehat{\boldsymbol{h}}_j = \frac{1}{n} \sum_{i=1}^n \partial_j \psi_j(\boldsymbol{x}_i).$$

Finally, the estimator is obtained as

$$\widehat{g}^{(j)}(\boldsymbol{x}) = \widehat{\boldsymbol{\theta}}_i^{\top} \boldsymbol{\psi}_j(\boldsymbol{x}).$$

As overviewed, LSLDG does not perform density estimation, but directly estimates log-density gradients. The advantages of LSLDG can be summarized as follows:

- The solutions are efficiently computed in a closed form.
- All the parameters,  $\sigma_j$  and  $\lambda_j$ , can be automatically determined by cross-validation.
- Experimental results confirmed that LSLDG provides much more accurate estimates for log-density gradients than an estimator based on kernel density estimation especially for higher-dimensional data (Sasaki et al., 2014).

### 4 Theoretical Analysis

We investigate the convergence rate of LSNGCA in a parametric setting. Recall that

$$\widehat{\mathbf{G}}_j = \frac{1}{n} \sum_{i=1}^n \boldsymbol{\psi}_j(\boldsymbol{x}_i) \boldsymbol{\psi}_j(\boldsymbol{x}_i)^\top, \quad \widehat{\boldsymbol{h}}_j = \frac{1}{n} \sum_{i=1}^n \partial_j \boldsymbol{\psi}_j(\boldsymbol{x}_i),$$

and denote their expectations by

$$\mathbf{G}_{j}^{*} = \mathbb{E}\left[oldsymbol{\psi}_{j}(oldsymbol{x})oldsymbol{\psi}_{j}(oldsymbol{x})^{ op}
ight], \quad oldsymbol{h}_{j}^{*} = \mathbb{E}\left[\partial_{j}oldsymbol{\psi}_{j}(oldsymbol{x})
ight].$$

Subsequently, let

$$\theta_j^* = \operatorname{argmin}_{\boldsymbol{\theta}} \left\{ \boldsymbol{\theta}^\top \mathbf{G}_j^* \boldsymbol{\theta} + 2 \boldsymbol{\theta}^\top \boldsymbol{h}_j^* + \lambda_j^* \boldsymbol{\theta}^\top \boldsymbol{\theta} \right\},$$
$$g^{*(j)}(\boldsymbol{x}) = \boldsymbol{\theta}_j^{*\top} \psi_j(\boldsymbol{x}),$$
$$\Gamma^* = \mathbb{E} \left[ (\boldsymbol{g}^*(\boldsymbol{y}) + \boldsymbol{y}) (\boldsymbol{g}^*(\boldsymbol{y}) + \boldsymbol{y})^\top \right],$$

let  $\mathcal{I}^*$  be the eigen-space of  $\mathbf{\Gamma}^*$  with its largest  $d_{\mathbf{s}}$  eigenvalues, and  $\mathcal{L}^* = \mathbf{\Sigma}^{-1/2} \mathcal{I}^*$  be the optimal estimate. If  $\mathbf{G}_j^*$  is positive definite,  $\lambda_j^* = 0$  is also allowed in our analysis by assuming the smallest eigenvalue of  $\mathbf{G}_j^*$  is no less than  $\epsilon_{\lambda}$  in the first condition in Theorem 1.

**Theorem 1.** Given the estimated space  $\widehat{\mathcal{L}}$  based on a set of data samples of size n and the optimal space  $\mathcal{L}^*$ , denote by  $\widehat{\mathbf{E}} \in \mathbb{R}^{d_{\mathbf{x}} \times d_{\mathbf{s}}}$  the matrix form of an arbitrary orthonormal basis of  $\widehat{\mathcal{L}}$  and by  $\mathbf{E}^* \in \mathbb{R}^{d_{\mathbf{x}} \times d_{\mathbf{s}}}$  that of  $\mathcal{L}^*$ . Define the distance between spaces  $\widehat{\mathcal{L}}$  and  $\mathcal{L}^*$  as

$$\mathcal{D}(\widehat{\mathcal{L}}, \mathcal{L}^*) = \inf_{\widehat{\mathbf{E}}, \mathbf{E}^*} \|\widehat{\mathbf{E}} - \mathbf{E}^*\|_{Fro},$$

where  $\|\cdot\|_{\text{Fro}}$  stands for the Frobenius norm. Then, as  $n \to \infty$ ,

$$\mathcal{D}(\widehat{\mathcal{L}}, \mathcal{L}^*) = \mathcal{O}_p\left(n^{-1/2}\right),$$

provided that

- 1.  $\lambda_j$  for all j converge in  $\mathcal{O}(n^{-1/2})$  to the non-zero limits, i.e.,  $\lim_{n\to\infty} n^{1/2} |\lambda_j \lambda_j^*| < \infty$ , and there exists  $\epsilon_{\lambda} > 0$  such that  $\lambda_j^* \geq \epsilon_{\lambda}$ ;
- 2.  $\psi_{ij}(\mathbf{x})$  for all i and j have well-chosen centers and widths, such that the first  $d_{\mathbf{s}}$  eigenvalues of  $\Gamma^*$  are neither 0 nor  $+\infty$ .

Theorem 1 shows that LSNGCA is consistent, and its convergence rate is  $\mathcal{O}_p(n^{-1/2})$  under mild conditions. The first is about the limits of  $\ell_2$ -regularizations, and it is easy to control. The second is also reasonable and easy to satisfy, as long as the centers are not located in regions with extremely low densities and the bandwidths are neither too large ( $\widehat{\Gamma}$  might be all-zero) nor too small ( $\widehat{\Gamma}$  might be unbounded).

Our theorem is based on two powerful theories, one is of perturbed optimizations (Bonnans and Cominetti, 1996; Bonnans and Shapiro, 1998), and the other is of matrix approximation of integral operators (Koltchinskii, 1998; Koltchinskii and Giné, 2000) that covers a theory of perturbed eigen-decompositions. According to the former, we can prove that  $\hat{\theta}_j$  converges to  $\theta_j^*$  in  $\mathcal{O}_p(n^{-1/2})$  and thus  $\hat{\Gamma}$  to  $\Gamma^*$  in  $\mathcal{O}_p(n^{-1/2})$ . According to the latter, we can prove that  $\hat{\mathcal{I}}$  converges to  $\mathcal{I}^*$  and therefore  $\hat{\mathcal{L}}$  to  $\mathcal{L}^*$  in  $\mathcal{O}_p(n^{-1/2})$ . The full proof can be found in the supplementary material.

### 5 Illustration on Artificial Data

In this section, we experimentally illustrate how LSNGCA works on artificial data, and compare its performance with MIPP and IMAK.

Non-Gaussian signal components  $\mathbf{s} = (s_1, s_2)^{\top}$  were sampled from the following distributions:

- Gaussian mixture:  $p(s_1, s_2) \propto \prod_{i=1}^2 \exp\{-(s_i 3)^2/2\} + \exp\{-(s_i + 3)^2/2\}$  (Fig. 2(a)).
- Super-Gaussian:  $p(s_1, s_2) \propto \prod_{i=1}^2 \exp(-|s_i|/\alpha)$  where  $\alpha$  is determined such that the variances of  $s_1$  and  $s_2$  are 3 (Fig. 2(b)).
- Sub-Gaussian:  $p(s_1, s_2) \propto \prod_{i=1}^2 \exp(-s_i^4/\beta)$  where  $\beta$  is determined such that the variances of  $s_1$  and  $s_2$  are 3 (Fig. 2(c)).
- Super- and sub-Gaussian:  $p(s_1, s_2) = p(s_1)p(s_2)$  where  $p(s_1) \propto \exp(-|s_1|/\alpha)$  and  $p(s_2) \propto \exp(-s_2^4/\beta)$ .  $\alpha$  and  $\beta$  are determined such that the variances of  $s_1$  and  $s_2$  are 3 (Fig. 2(d)).

Then, a data vector was generated according to  $\mathbf{x} = (s_1, s_2, n_3, \dots, n_{10})$  where  $n_i$  for  $i = 3, \dots, 10$  were



Figure 2: The two-dimensional distributions of four non-Gaussian densities.



Figure 3: The average errors over 50 runs for four kinds of non-Gaussian signal components as the functions of samples size n. The error bars denote standard deviations. The horizontal position of the markers for MIPP and IMAK was slightly modified to improve visibility of their error bars.



Figure 4: The average errors over 50 runs for four kinds of non-Gaussian signal components as the functions of noise variances  $\gamma^2$  when n=2,000. The horizontal position of the markers for MIPP and IMAK was slightly modified to improve visibility of their error bars.

sampled from the independent standard normal density. The error was measured by

$$\mathcal{E}(\widehat{\mathcal{L}}, \mathcal{L}) = \frac{1}{d_{\mathbf{s}}} \sum_{i=1}^{d_{\mathbf{s}}} \|\widehat{\boldsymbol{e}}_i - \Pi_{\mathcal{L}} \widehat{\boldsymbol{e}}_i\|^2,$$

where  $\{\widehat{e}_i\}_{i=1}^{d_s}$  is an orthonormal basis of  $\widehat{\mathcal{L}}$ , and  $\Pi_{\mathcal{L}}$  denotes the orthogonal projection on  $\mathcal{L}$ . For model selection in LSLDG, a five-hold cross-validation was performed with respect to the hold-out error of (10) using the ten candidate values for  $\sigma_j$  (or  $\lambda_j$ ) from  $10^{-1}$ 

(or  $10^{-5}$ ) to 10 at the regular interval in logarithmic scale .

The results are presented in Fig. 3. For the Gaussian mixture and super-Gaussian cases, LSNGCA always works better than MIPP and IMAK even when the sample size is relatively small (Fig. 3(a) and (b)). On the other hand, when the signal components include sub-Gaussian components and the number of samples is insufficient, the performance of LSNGCA is not good (Fig. 3(c) and (d)). This presumably comes



Figure 5: The average CPU time over 50 runs for the Gaussian mixture as the functions of samples size n. The vertical axis is in logarithmic scale.

from the fact that estimating the gradients for logarithmic sub-Gaussian densities is more challenging than super-Gaussian densities. However, as long as the number of samples is sufficient, the performance of LSNGCA is comparable to or slightly better than other methods.

Next, we investigate the performance of the three algorithms when the non-Gaussian signal components in data are contaminated by Gaussian noises such that  $\mathbf{x} = (s_1 + n_1, s_2 + n_2, n_3, \ldots, n_{10})$  where  $n_1$  and  $n_2$  are independently sampled from the Gaussian density with the mean 0 and variance  $\gamma^2$ , while other  $n_i$  for  $i=3,\ldots,10$  are sampled as in the last experiment. Fig. 4(a) and (b) show that as  $\gamma^2$  increases, the estimation errors of LSNGCA for the Gaussian mixture or super-Gaussian distribution more mildly increases than MIPP and IMAK. When the data includes sub-Gaussian components, LSNGCA still works better than MIPP and IMAK for weak noise, but all methods are not robust to stronger noises.

For computational costs, MIPP is the best method, while IMAK consumes much time (Fig.5). MIPP estimates a bunch of  $\beta_k$  by simply computing (4), and FastICA used in MIPP is an iterative method, but its convergence is fast. Therefore, MIPP is a quite efficient method. As reviewed in Section 2.3, because of the alternate and iterative procedure, IMAK is computationally demanding. LSNGCA is less efficient than MIPP, but its computational time is still reasonable.

In short, LSNGCA is advantageous in terms of the sample size and noise tolerance especially when the non-Gaussian signal components follow multi-modal or super-Gaussian distributions. Furthermore, LSNGCA is not the most efficient algorithm, but its computational cost is reasonable.

### 6 Application to Binary Classification on Benchmark Datasets

In this section, we apply LSNGCA to binary classification on benchmark datasets. For comparison, in addition to MIPP and IMAK, we employed PCA and locality preserving projections (LPP) (He and Niyogi, 2004)<sup>1</sup>. For LPP, the nearest-neighbor-based weight matrix was constructed using the heat kernel whose width parameter was fixed to  $t_i t_j$ :  $t_i$  is the Euclidean distance to the k-nearest neighbor sample of  $\boldsymbol{x}_i$ . Here we set k=7 as suggested by Zelnik-Manor and Perona (2005).

We used datasets for binary classification<sup>2</sup> which are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. For each dataset, we randomly selected n samples for the training phase, and the remaining samples were used for the test phase. For some large datasets, we randomly chose 1,000 samples for the training phase as well as for the test phase. As preprocessing, we separately subtracted the empirical means from the training and test samples. The projection matrix was estimated from the n training samples by each method. Then, the support vector machine (SVM) (Scholkopf and Smola, 2001) was trained using the dimension-reduced training data.<sup>3</sup>

The averages and standard deviations for miss classification rates over 30 runs are summarized in Table 1. This table shows that LSNGCA overall compares favorably with other algorithms.

### 7 Conclusion

In this paper, we proposed a novel algorithm for non-Gaussian component analysis (NGCA) called the least-squares NGCA (LSNGCA). The subspace identification in LSNGCA is performed using the eigenvalue decomposition without any iterative procedures, and thus LSNGCA is computationally reasonable. Through theoretical analysis, we established the optimal convergence rate in a parametric setting for the subspace identification. The experimental results confirmed that LSNGCA performs better than existing algorithms especially for multi-modal or super-Gaussian signal components, and reasonably works on benchmark datasets.

http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html

<sup>&</sup>lt;sup>2</sup>The "shuttle" and "vehicle" datasets originally include samples from more than two classes. Here, we only used samples in classes 1 and 4 in the "shuttle" dataset, while we regarded samples in classes 1 and 3 as positive and others as negative in the "vehicle" dataset.

<sup>&</sup>lt;sup>3</sup>We employed a MATLAB software for SVM called *LIBSVM* (Chang and Lin, 2011).

Table 1: The averages and standard deviations of misclassification rates for benchmark datasets over 30 runs. The numbers in the parentheses are standard deviations. The best and comparable methods judged by the unpaired t-test at the significance level 1% are described in boldface. The symbol "-" in the table means that IMAK unexpectedly stopped during the experiments because of a numerical problem.

|                                                                                                                                                                         | LSNGCA                                                                                                                                                                                                                                                                          | MIPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IMAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PCA                                                                                                                                                                                                                                                                                                                       | LPP                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| australian $(d_{\mathbf{x}}, n) = (14, 200)$                                                                                                                            |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                 |
| $d_{\mathbf{s}} = 2$                                                                                                                                                    | 20.20(5.09)                                                                                                                                                                                                                                                                     | 21.02(6.66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33.43(4.99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.37(1.30)                                                                                                                                                                                                                                                                                                               | 17.50(1.08)                                                                                                                                                                     |
| $d_{\mathbf{s}} = 4$                                                                                                                                                    | 16.23(2.60)                                                                                                                                                                                                                                                                     | 15.90(2.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.53(6.06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.92(1.17)                                                                                                                                                                                                                                                                                                               | 15.07(1.16)                                                                                                                                                                     |
| $d_{\mathbf{s}} = 6$                                                                                                                                                    | 15.41(2.32)                                                                                                                                                                                                                                                                     | 15.22(2.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30.71(5.71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.16(1.16)                                                                                                                                                                                                                                                                                                               | 14.39(1.10)                                                                                                                                                                     |
| breast-cancer (Bache and Lichman) $(d_{\mathbf{x}}, n) = (10, 400)$                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                 |
| $d_{\mathbf{s}} = 2$                                                                                                                                                    | 13.19(2.23)                                                                                                                                                                                                                                                                     | 3.73(0.92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.12(3.86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.71(0.80)                                                                                                                                                                                                                                                                                                                | 2.82(0.77)                                                                                                                                                                      |
| $d_{\mathbf{s}} = 4$                                                                                                                                                    | 9.26(1.76)                                                                                                                                                                                                                                                                      | 4.49(0.96)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.50(1.55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.84(0.76)                                                                                                                                                                                                                                                                                                                | 2.97(0.76)                                                                                                                                                                      |
| $d_{\mathbf{s}} = 6$                                                                                                                                                    | 7.37(1.42)                                                                                                                                                                                                                                                                      | 4.91(0.92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.14(1.62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.80(0.80)                                                                                                                                                                                                                                                                                                                | 2.97(0.73)                                                                                                                                                                      |
| cod-rna (Uzilov et al., 2006) $(d_{\mathbf{x}}, n) = (8, 200)$                                                                                                          |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                 |
| $d_{\mathbf{s}} = 2$                                                                                                                                                    | 18.20(5.48)                                                                                                                                                                                                                                                                     | 32.99(2.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.77(2.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.44(1.88)                                                                                                                                                                                                                                                                                                               | 14.26(1.84)                                                                                                                                                                     |
| $d_{\mathbf{s}} = 4$                                                                                                                                                    | 15.85(5.15)                                                                                                                                                                                                                                                                     | 20.52(9.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33.03(1.48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.94(2.09)                                                                                                                                                                                                                                                                                                               | 14.11(1.88)                                                                                                                                                                     |
| $d_{\mathbf{s}} = 6$                                                                                                                                                    | 13.34(4.74)                                                                                                                                                                                                                                                                     | 10.62(4.63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.99(1.48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.81(2.45)                                                                                                                                                                                                                                                                                                               | 14.03(1.89)                                                                                                                                                                     |
| diabetes (Bache and Lichman) $(d_{\mathbf{x}}, n) = (8, 400)$                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                 |
| $d_{\mathbf{s}} = 2$                                                                                                                                                    | 32.26(2.33)                                                                                                                                                                                                                                                                     | 33.81(1.97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.20(1.92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.27(1.66)                                                                                                                                                                                                                                                                                                               | 30.76(1.95)                                                                                                                                                                     |
| $d_{\mathbf{s}} = 4$                                                                                                                                                    | 32.57(2.18)                                                                                                                                                                                                                                                                     | 31.91(1.99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.64(2.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26.56(1.67)                                                                                                                                                                                                                                                                                                               | 27.10(1.71)                                                                                                                                                                     |
| $d_{\mathbf{s}} = 6$                                                                                                                                                    | 30.76(2.89)                                                                                                                                                                                                                                                                     | 29.63(1.79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34.55(1.82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.38(1.82)                                                                                                                                                                                                                                                                                                               | 25.82(1.87)                                                                                                                                                                     |
| $\frac{\text{liver-disorders } (d_{\mathbf{x}}, n) = (6, 200)}{\text{liver-disorders } (d_{\mathbf{x}}, n) = (6, 200)}$                                                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                 |
| $d_{\mathbf{s}} = 2$                                                                                                                                                    | 39.31(3.62)                                                                                                                                                                                                                                                                     | 32.62(3.72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33.15(5.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.14(2.71)                                                                                                                                                                                                                                                                                                               | 42.00(2.96)                                                                                                                                                                     |
| $d_{\mathbf{s}} = 4$                                                                                                                                                    | 32.83(5.15)                                                                                                                                                                                                                                                                     | 32.02(3.67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.36(3.32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.02(2.64)                                                                                                                                                                                                                                                                                                               | 42.02(2.71)                                                                                                                                                                     |
| german.numer $(d_{\mathbf{x}}, n) = (24, 200)$                                                                                                                          |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                 |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 | german.nume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\operatorname{rr}(d_{\mathbf{x}}, n) = (24)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,200)                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |
| $d_{\mathbf{s}} = 2$                                                                                                                                                    | 30.27(0.74)                                                                                                                                                                                                                                                                     | german.nume $30.35(0.77)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\operatorname{r}(d_{\mathbf{x}}, n) = (24)}{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4, 200)<br>  <b>30.63(1.38)</b>                                                                                                                                                                                                                                                                                          | 30.82(1.52)                                                                                                                                                                     |
| $d_{\mathbf{s}} = 2$ $d_{\mathbf{s}} = 4$                                                                                                                               | $oxed{30.27 (0.74)}\ 30.29 (0.62)$                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\operatorname{tr}(d_{\mathbf{x}}, n) = (24)}{31.12(1.22)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.63(1.38)                                                                                                                                                                                                                                                                                                               | $egin{array}{c} 30.82(1.52) \ 30.07(1.52) \ \end{array}$                                                                                                                        |
| $d_{\mathbf{s}} = 4$                                                                                                                                                    |                                                                                                                                                                                                                                                                                 | $30.35(0.77) \ 30.45(0.86)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $30.63(1.38) \ 29.90(1.68)$                                                                                                                                                                                                                                                                                               | , ,                                                                                                                                                                             |
|                                                                                                                                                                         | 30.29(0.62)                                                                                                                                                                                                                                                                     | 30.35(0.77)<br>30.45(0.86)<br>30.95(0.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.12(1.22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.63(1.38) $29.90(1.68)$ $29.08(1.43)$                                                                                                                                                                                                                                                                                   | 30.07(1.52)                                                                                                                                                                     |
| $d_{\mathbf{s}} = 4$                                                                                                                                                    | <b>30.29(0.62)</b><br>30.54(1.01)                                                                                                                                                                                                                                               | 30.35(0.77)<br>30.45(0.86)<br>30.95(0.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} 31.12(1.22) \\ 31.23(1.12) \\ \vdots \\ n) = (18, 100) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.63(1.38) $29.90(1.68)$ $29.08(1.43)$                                                                                                                                                                                                                                                                                   | $30.07(1.52) \\ 29.46(1.09)$                                                                                                                                                    |
| $d_{\mathbf{s}} = 4$ $d_{\mathbf{s}} = 6$ $d_{\mathbf{s}} = 2$                                                                                                          | 30.29(0.62)                                                                                                                                                                                                                                                                     | $\begin{array}{c} \textbf{30.35(0.77)} \\ \textbf{30.45(0.86)} \\ 30.95(0.90) \\ \\ \text{SUSY } (d_{\mathbf{x}} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31.12(1.22)<br>31.23(1.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                           | 30.07(1.52)                                                                                                                                                                     |
| $d_{\mathbf{s}} = 4$ $d_{\mathbf{s}} = 6$ $d_{\mathbf{s}} = 2$ $d_{\mathbf{s}} = 4$                                                                                     | 30.29(0.62)<br>30.54(1.01)<br>29.58(1.86)                                                                                                                                                                                                                                       | $\begin{array}{c} \textbf{30.35(0.77)} \\ \textbf{30.45(0.86)} \\ \textbf{30.95(0.90)} \\ \hline \\ \textbf{SUSY} \ (d_{\mathbf{x}} \\ \textbf{29.42(1.70)} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c} 31.12(1.22) \\ 31.23(1.12) \\ \hline , n) = (18, 100) \\ 34.37(1.82) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{vmatrix} 30.63(1.38) \\ 29.90(1.68) \\ 29.08(1.43) \end{vmatrix} $ $ 0)$ $ \begin{vmatrix} 28.71(3.11) \end{vmatrix} $                                                                                                                                                                                           | 30.07(1.52)<br>29.46(1.09)<br>35.26(1.87)                                                                                                                                       |
| $d_{\mathbf{s}} = 4$ $d_{\mathbf{s}} = 6$ $d_{\mathbf{s}} = 2$                                                                                                          | 30.29(0.62)<br>30.54(1.01)<br>29.58(1.86)<br>25.46(2.07)                                                                                                                                                                                                                        | $\begin{array}{c} \textbf{30.35}(0.77) \\ \textbf{30.45}(0.86) \\ 30.95(0.90) \\ \hline \textbf{SUSY} \ (d_{\mathbf{x}} \\ \textbf{29.42}(1.70) \\ \textbf{25.91}(1.70) \\ 24.75(1.61) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c} 31.12(1.22) \\ 31.23(1.12) \end{array} $ $ \begin{array}{c} (18, 100) \\ 34.37(1.82) \\ 32.89(2.03) \\ 31.74(2.16) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \textbf{30.63} (1.38) \\ \textbf{29.90} (1.68) \\ \textbf{29.08} (1.43) \\ \hline 0) \\ \textbf{28.71} (3.11) \\ 27.05 (1.55) \\ 25.49 (1.50) \\ \end{array}$                                                                                                                                           | 30.07(1.52)<br>29.46(1.09)<br>35.26(1.87)<br>27.10(2.06)                                                                                                                        |
| $d_{\mathbf{s}} = 4$ $d_{\mathbf{s}} = 6$ $d_{\mathbf{s}} = 2$ $d_{\mathbf{s}} = 4$ $d_{\mathbf{s}} = 6$                                                                | 30.29(0.62)<br>  30.54(1.01)<br>  29.58(1.86)<br>  25.46(2.07)<br>  23.32(1.73)                                                                                                                                                                                                 | $\begin{array}{c} \textbf{30.35}(\textbf{0.77}) \\ \textbf{30.45}(\textbf{0.86}) \\ \textbf{30.95}(\textbf{0.90}) \\ \hline \textbf{SUSY} \ (d_{\mathbf{x}}) \\ \textbf{29.42}(\textbf{1.70}) \\ \textbf{25.91}(\textbf{1.70}) \\ \textbf{24.75}(\textbf{1.61}) \\ \hline \textbf{shuttle} \ (d_{\mathbf{x}}) \\ \end{array}$                                                                                                                                                                                                                                                      | $ \begin{array}{c} 31.12(1.22) \\ 31.23(1.12) \\ \hline 31.23(1.$ | $\begin{array}{c} \textbf{30.63} (1.38) \\ \textbf{29.90} (1.68) \\ \textbf{29.08} (1.43) \\ \hline 0) \\ \textbf{28.71} (3.11) \\ 27.05 (1.55) \\ 25.49 (1.50) \\ \end{array}$                                                                                                                                           | 35.26(1.87)<br>27.10(2.06)<br>25.56(1.56)                                                                                                                                       |
| $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$                                                                                                 | 30.29(0.62)<br>  30.54(1.01)<br>  29.58(1.86)<br>  25.46(2.07)<br>  23.32(1.73)<br>  11.29(2.53)                                                                                                                                                                                | $\begin{array}{c} \textbf{30.35}(\textbf{0.77}) \\ \textbf{30.45}(\textbf{0.86}) \\ \textbf{30.95}(\textbf{0.90}) \\ \hline \textbf{SUSY} (d_{\mathbf{x}} \\ \textbf{29.42}(\textbf{1.70}) \\ \textbf{25.91}(\textbf{1.70}) \\ \textbf{24.75}(\textbf{1.61}) \\ \hline \textbf{shuttle} (d \\ \textbf{14.39}(\textbf{3.34}) \\ \end{array}$                                                                                                                                                                                                                                        | 31.12(1.22) $31.23(1.12)$ $31.23(1.12)$ $34.37(1.82)$ $32.89(2.03)$ $31.74(2.16)$ $x, n) = (9, 100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{vmatrix} 30.63(1.38) \\ 29.90(1.68) \\ 29.08(1.43) \end{vmatrix} $ $ \begin{vmatrix} 0 \\ 28.71(3.11) \\ 27.05(1.55) \\ 25.49(1.50) \end{vmatrix} $ $ \begin{vmatrix} 0 \\ 0 \\ 16.01(2.20) \end{vmatrix} $                                                                                                      | 30.07(1.52)<br>29.46(1.09)<br>35.26(1.87)<br>27.10(2.06)<br>25.56(1.56)<br>11.41(3.53)                                                                                          |
| $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 2$ $d_{s} = 4$                                                                         | $ \begin{vmatrix} 30.29(0.62) \\ 30.54(1.01) \end{vmatrix} $ $ \begin{vmatrix} 29.58(1.86) \\ 25.46(2.07) \\ 23.32(1.73) \end{vmatrix} $ $ \begin{vmatrix} 11.29(2.53) \\ 6.04(3.24) \end{vmatrix} $                                                                            | $\begin{array}{c} \textbf{30.35}(\textbf{0.77}) \\ \textbf{30.45}(\textbf{0.86}) \\ 30.95(\textbf{0.90}) \\ \hline \textbf{SUSY} (d_{\mathbf{x}}) \\ \textbf{29.42}(\textbf{1.70}) \\ \textbf{25.91}(\textbf{1.70}) \\ 24.75(\textbf{1.61}) \\ \hline \textbf{shuttle} (d \\ 14.39(\textbf{3.34}) \\ 10.45(\textbf{1.12}) \\ \end{array}$                                                                                                                                                                                                                                          | 31.12(1.22) $31.23(1.12)$ $31.23(1.12)$ $34.37(1.82)$ $32.89(2.03)$ $31.74(2.16)$ $(x, n) = (9, 100)$ $-$ $16.84(1.43)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c c} \textbf{30.63} (1.38) \\ \textbf{29.90} (1.68) \\ \textbf{29.08} (1.43) \\ \hline 0) \\ \hline \textbf{28.71} (3.11) \\ 27.05 (1.55) \\ 25.49 (1.50) \\ \hline 0) \\ \hline 16.01 (2.20) \\ 8.18 (0.93) \\ \end{array} $                                                                             | 35.26(1.87)<br>27.10(2.06)<br>25.56(1.56)<br>11.41(3.53)<br>9.36(2.21)                                                                                                          |
| $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$                                                                                                 | 30.29(0.62)<br>  30.54(1.01)<br>  29.58(1.86)<br>  25.46(2.07)<br>  23.32(1.73)<br>  11.29(2.53)                                                                                                                                                                                | $\begin{array}{c} \textbf{30.35}(\textbf{0.77})\\ \textbf{30.45}(\textbf{0.86})\\ 30.95(\textbf{0.90})\\ \hline \textbf{SUSY} (d_{\mathbf{x}}\\ \textbf{29.42}(\textbf{1.70})\\ \textbf{25.91}(\textbf{1.70})\\ 24.75(\textbf{1.61})\\ \hline \textbf{shuttle} (d\\ 14.39(\textbf{3.34})\\ 10.45(\textbf{1.12})\\ 10.24(\textbf{1.19})\\ \end{array}$                                                                                                                                                                                                                              | $\begin{array}{c} -\\ 31.12(1.22)\\ 31.23(1.12)\\ \hline ,n) = (18,100\\ 34.37(1.82)\\ 32.89(2.03)\\ 31.74(2.16)\\ \hline \\ _{\mathbf{x}},n) = (9,100\\ \hline \\ 16.84(1.43)\\ 16.84(1.43)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \textbf{30.63} (1.38) \\ \textbf{29.90} (1.68) \\ \textbf{29.08} (1.43) \\ \hline 0) \\ \textbf{28.71} (3.11) \\ 27.05 (1.55) \\ 25.49 (1.50) \\ \hline 0) \\ \hline 16.01 (2.20) \\ 8.18 (0.93) \\ 8.46 (1.02) \\ \end{array}$                                                                         | 30.07(1.52)<br>29.46(1.09)<br>35.26(1.87)<br>27.10(2.06)<br>25.56(1.56)<br>11.41(3.53)                                                                                          |
| $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$                                                                         | $ \begin{vmatrix} 30.29(0.62) \\ 30.54(1.01) \end{vmatrix} $ $ \begin{vmatrix} 29.58(1.86) \\ 25.46(2.07) \\ 23.32(1.73) \end{vmatrix} $ $ \begin{vmatrix} 11.29(2.53) \\ 6.04(3.24) \\ 3.03(1.73) \end{vmatrix} $                                                              | $\begin{array}{c} \textbf{30.35}(\textbf{0.77})\\ \textbf{30.45}(\textbf{0.86})\\ 30.95(\textbf{0.90})\\ \hline \textbf{SUSY} (d_{\mathbf{x}}\\ \textbf{29.42}(\textbf{1.70})\\ \textbf{25.91}(\textbf{1.70})\\ 24.75(\textbf{1.61})\\ \hline \textbf{shuttle} (d\\ 14.39(\textbf{3.34})\\ 10.45(\textbf{1.12})\\ 10.24(\textbf{1.19})\\ \hline \textbf{vehicle} (d\\ \end{array}$                                                                                                                                                                                                 | $\begin{array}{c} 31.12(1.22) \\ 31.23(1.12) \\ \end{array}$ $\begin{array}{c} 31.23(1.12) \\ \end{array}$ $\begin{array}{c} (n) = (18,100) \\ 34.37(1.82) \\ 32.89(2.03) \\ 31.74(2.16) \\ \end{array}$ $\begin{array}{c} (18,100) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{30.63} (1.38) \\ \textbf{29.90} (1.68) \\ \textbf{29.08} (1.43) \\ \hline 0) \\ \textbf{28.71} (3.11) \\ 27.05 (1.55) \\ 25.49 (1.50) \\ \hline 0) \\ \hline 16.01 (2.20) \\ 8.18 (0.93) \\ 8.46 (1.02) \\ \hline 0) \\ \end{array}$                                                            | 35.26(1.87)<br>27.10(2.06)<br>25.56(1.56)<br>11.41(3.53)<br>9.36(2.21)<br>11.03(2.91)                                                                                           |
| $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$                                                             | $ \begin{vmatrix} 30.29(0.62) \\ 30.54(1.01) \end{vmatrix} $ $ \begin{vmatrix} 29.58(1.86) \\ 25.46(2.07) \\ 23.32(1.73) \end{vmatrix} $ $ \begin{vmatrix} 11.29(2.53) \\ 6.04(3.24) \\ 3.03(1.73) \end{vmatrix} $ $ \begin{vmatrix} 41.23(4.26) \end{vmatrix} $                | $\begin{array}{c} \textbf{30.35}(\textbf{0.77})\\ \textbf{30.45}(\textbf{0.86})\\ 30.95(\textbf{0.90})\\ \hline \\ \textbf{SUSY} (d_{\mathbf{x}}\\ \textbf{29.42}(\textbf{1.70})\\ \textbf{25.91}(\textbf{1.70})\\ 24.75(\textbf{1.61})\\ \hline \\ \textbf{shuttle} (d\\ \textbf{14.39}(\textbf{3.34})\\ \textbf{10.45}(\textbf{1.12})\\ \textbf{10.24}(\textbf{1.19})\\ \hline \\ \textbf{vehicle} (d\\ \textbf{43.36}(\textbf{3.78})\\ \end{array}$                                                                                                                             | $31.12(1.22)$ $31.23(1.12)$ $31.23(1.12)$ $31.23(1.12)$ $31.23(1.12)$ $31.23(1.12)$ $32.89(2.03)$ $31.74(2.16)$ $\mathbf{x}, n) = (9, 100)$ $16.84(1.43)$ $16.84(1.43)$ $\mathbf{x}, n) = (18, 20)$ $49.11(2.63)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} \textbf{30.63} (1.38) \\ \textbf{29.90} (1.68) \\ \textbf{29.08} (1.43) \\ \hline 0) \\ \hline \textbf{28.71} (3.11) \\ 27.05 (1.55) \\ 25.49 (1.50) \\ \hline 0) \\ \hline 16.01 (2.20) \\ 8.18 (0.93) \\ 8.46 (1.02) \\ \hline 0) \\ \hline \textbf{38.88} (2.47) \\ \hline \end{array} $            | 35.26(1.87)<br>27.10(2.06)<br>25.56(1.56)<br>11.41(3.53)<br>9.36(2.21)<br>11.03(2.91)<br>46.97(2.44)                                                                            |
| $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$                                                 | $ \begin{vmatrix} 30.29(0.62) \\ 30.54(1.01) \end{vmatrix} $ $ \begin{vmatrix} 29.58(1.86) \\ 25.46(2.07) \\ 23.32(1.73) \end{vmatrix} $ $ \begin{vmatrix} 11.29(2.53) \\ 6.04(3.24) \\ 3.03(1.73) \end{vmatrix} $ $ \begin{vmatrix} 41.23(4.26) \\ 35.16(3.76) \end{vmatrix} $ | $\begin{array}{c} \textbf{30.35}(\textbf{0.77})\\ \textbf{30.45}(\textbf{0.86})\\ \textbf{30.95}(\textbf{0.90})\\ \hline \textbf{SUSY} (d_{\mathbf{x}}\\ \textbf{29.42}(\textbf{1.70})\\ \textbf{25.91}(\textbf{1.70})\\ \textbf{24.75}(\textbf{1.61})\\ \hline \textbf{shuttle} (d\\ \textbf{14.39}(\textbf{3.34})\\ \textbf{10.45}(\textbf{1.12})\\ \textbf{10.24}(\textbf{1.19})\\ \hline \textbf{vehicle} (d\\ \textbf{43.36}(\textbf{3.78})\\ \textbf{34.26}(\textbf{4.13})\\ \end{array}$                                                                                    | $\begin{array}{c} -\\ 31.12(1.22)\\ 31.23(1.12)\\ ,n) = (18,100\\ 34.37(1.82)\\ 32.89(2.03)\\ 31.74(2.16)\\ \mathbf{x},n) = (9,100\\ \hline \\ 16.84(1.43)\\ 16.84(1.43)\\ \mathbf{x},n) = (18,20\\ 49.11(2.63)\\ 50.04(1.42)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{30.63} (1.38) \\ \textbf{29.90} (1.68) \\ \textbf{29.08} (1.43) \\ 0) \\ \hline \textbf{28.71} (3.11) \\ 27.05 (1.55) \\ 25.49 (1.50) \\ \hline 0) \\ \hline 16.01 (2.20) \\ 8.18 (0.93) \\ 8.46 (1.02) \\ \hline 0) \\ \hline \textbf{38.88} (\textbf{2.47}) \\ 38.43 (2.16) \\ \end{array}$   | 35.26(1.87)<br>27.10(2.06)<br>25.56(1.56)<br>11.41(3.53)<br>9.36(2.21)<br>11.03(2.91)                                                                                           |
| $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$                                                             | $ \begin{vmatrix} 30.29(0.62) \\ 30.54(1.01) \end{vmatrix} $ $ \begin{vmatrix} 29.58(1.86) \\ 25.46(2.07) \\ 23.32(1.73) \end{vmatrix} $ $ \begin{vmatrix} 11.29(2.53) \\ 6.04(3.24) \\ 3.03(1.73) \end{vmatrix} $ $ \begin{vmatrix} 41.23(4.26) \end{vmatrix} $                | $\begin{array}{c} \textbf{30.35}(\textbf{0.77})\\ \textbf{30.45}(\textbf{0.86})\\ 30.95(\textbf{0.90})\\ \hline \textbf{SUSY} (d_{\mathbf{x}}\\ \textbf{29.42}(\textbf{1.70})\\ \textbf{25.91}(\textbf{1.70})\\ 24.75(\textbf{1.61})\\ \hline \textbf{shuttle} (d\\ 14.39(\textbf{3.34})\\ 10.45(\textbf{1.12})\\ 10.24(\textbf{1.19})\\ \hline \textbf{vehicle} (d\\ \textbf{43.36}(\textbf{3.78})\\ \textbf{34.26}(\textbf{4.13})\\ \textbf{26.60}(\textbf{2.24}) \end{array}$                                                                                                   | $\begin{array}{c} -\\ 31.12(1.22)\\ 31.23(1.12)\\ \hline ,n) = (18,100\\ 34.37(1.82)\\ 32.89(2.03)\\ 31.74(2.16)\\ \hline \\ _{\mathbf{x}},n) = (9,100\\ \hline \\ _{\mathbf{x}},n) = (9,100\\ \hline \\ _{\mathbf{x}},n) = (18,20\\ \hline \\ _{\mathbf{x}},n) = (18,20\\ \hline \\ _{\mathbf{x}},n) = (18,20\\ \hline \\ _{\mathbf{x}},n) = (3,20\\ \hline \\ _{\mathbf{x}},n) = (3,20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \textbf{30.63} (1.38) \\ \textbf{29.90} (1.68) \\ \textbf{29.08} (1.43) \\ \hline 0) \\ \textbf{28.71} (3.11) \\ 27.05 (1.55) \\ 25.49 (1.50) \\ \hline 0) \\ \textbf{16.01} (2.20) \\ 8.18 (0.93) \\ 8.46 (1.02) \\ \hline 0) \\ \textbf{38.88} (2.47) \\ 38.43 (2.16) \\ 34.30 (2.99) \\ \end{array}$ | 30.07(1.52)<br>29.46(1.09)<br>35.26(1.87)<br>27.10(2.06)<br>25.56(1.56)<br>11.41(3.53)<br>9.36(2.21)<br>11.03(2.91)<br>46.97(2.44)<br>45.85(3.11)                               |
| $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$                                     | 30.29(0.62)<br>  30.54(1.01)<br>  29.58(1.86)<br>  25.46(2.07)<br>  23.32(1.73)<br>  11.29(2.53)<br>  6.04(3.24)<br>  3.03(1.73)<br>  41.23(4.26)<br>  35.16(3.76)<br>  30.72(3.95)                                                                                             | $\begin{array}{c} \textbf{30.35}(\textbf{0.77})\\ \textbf{30.45}(\textbf{0.86})\\ 30.95(\textbf{0.90})\\ \hline \textbf{SUSY} (d_{\mathbf{x}}\\ \textbf{29.42}(\textbf{1.70})\\ \textbf{25.91}(\textbf{1.70})\\ \textbf{24.75}(\textbf{1.61})\\ \hline \textbf{shuttle} (d\\ \textbf{14.39}(\textbf{3.34})\\ \textbf{10.45}(\textbf{1.12})\\ \textbf{10.24}(\textbf{1.19})\\ \hline \textbf{vehicle} (d\\ \textbf{43.36}(\textbf{3.78})\\ \textbf{34.26}(\textbf{4.13})\\ \textbf{26.60}(\textbf{2.24})\\ \hline \textbf{symguide3} \end{array}$                                   | $\begin{array}{c} -\\ 31.12(1.22)\\ 31.23(1.12)\\ ,n) = (18,100\\ 34.37(1.82)\\ 32.89(2.03)\\ 31.74(2.16)\\ \mathbf{x},n) = (9,100\\ \hline \\ 16.84(1.43)\\ 16.84(1.43)\\ \mathbf{x},n) = (18,20\\ 49.11(2.63)\\ 50.04(1.42)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.63(1.38)<br>29.90(1.68)<br>29.08(1.43)<br>0)<br>28.71(3.11)<br>27.05(1.55)<br>25.49(1.50)<br>0)<br>16.01(2.20)<br>8.18(0.93)<br>8.46(1.02)<br>0)<br>38.88(2.47)<br>38.43(2.16)<br>34.30(2.99)                                                                                                                          | 35.26(1.87)<br>27.10(2.06)<br>25.56(1.56)<br>11.41(3.53)<br>9.36(2.21)<br>11.03(2.91)<br>46.97(2.44)<br>45.85(3.11)<br>45.47(4.05)                                              |
| $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$                                                 | 30.29(0.62)<br>  30.54(1.01)<br>  29.58(1.86)<br>  25.46(2.07)<br>  23.32(1.73)<br>  11.29(2.53)<br>  6.04(3.24)<br>  3.03(1.73)<br>  41.23(4.26)<br>  35.16(3.76)<br>  30.72(3.95)                                                                                             | $\begin{array}{c} \textbf{30.35}(\textbf{0.77})\\ \textbf{30.45}(\textbf{0.86})\\ 30.95(\textbf{0.90})\\ \hline \textbf{SUSY} (d_{\mathbf{x}}\\ \textbf{29.42}(\textbf{1.70})\\ \textbf{25.91}(\textbf{1.70})\\ \textbf{24.75}(\textbf{1.61})\\ \hline \textbf{shuttle} (d\\ \textbf{14.39}(\textbf{3.34})\\ \textbf{10.45}(\textbf{1.12})\\ \textbf{10.24}(\textbf{1.19})\\ \hline \textbf{vehicle} (d\\ \textbf{43.36}(\textbf{3.78})\\ \textbf{34.26}(\textbf{4.13})\\ \textbf{26.60}(\textbf{2.24})\\ \hline \textbf{symguide3}\\ \textbf{23.30}(\textbf{1.38})\\ \end{array}$ | $31.12(1.22)$ $31.23(1.12)$ $31.23(1.12)$ $31.23(1.12)$ $31.23(1.12)$ $31.23(1.12)$ $32.89(2.03)$ $31.74(2.16)$ $x, n) = (9, 100)$ $16.84(1.43)$ $16.84(1.43)$ $49.11(2.63)$ $50.04(1.42)$ $50.33(1.19)$ $(d_{\mathbf{x}}, n) = (21, 20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.63(1.38)<br>29.90(1.68)<br>29.08(1.43)<br>0)<br>28.71(3.11)<br>27.05(1.55)<br>25.49(1.50)<br>0)<br>16.01(2.20)<br>8.18(0.93)<br>8.46(1.02)<br>0)<br>38.88(2.47)<br>38.43(2.16)<br>34.30(2.99)<br>2000)<br>23.22(1.12)                                                                                                  | 30.07(1.52)<br>29.46(1.09)<br>35.26(1.87)<br>27.10(2.06)<br>25.56(1.56)<br>11.41(3.53)<br>9.36(2.21)<br>11.03(2.91)<br>46.97(2.44)<br>45.85(3.11)<br>45.47(4.05)<br>23.92(0.52) |
| $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 3$ $d_{s} = 4$ $d_{s} = 6$ $d_{s} = 2$ $d_{s} = 4$ $d_{s} = 6$ | 30.29(0.62)<br>  30.54(1.01)<br>  29.58(1.86)<br>  25.46(2.07)<br>  23.32(1.73)<br>  11.29(2.53)<br>  6.04(3.24)<br>  3.03(1.73)<br>  41.23(4.26)<br>  35.16(3.76)<br>  30.72(3.95)                                                                                             | $\begin{array}{c} \textbf{30.35}(\textbf{0.77})\\ \textbf{30.45}(\textbf{0.86})\\ 30.95(\textbf{0.90})\\ \hline \textbf{SUSY} (d_{\mathbf{x}}\\ \textbf{29.42}(\textbf{1.70})\\ \textbf{25.91}(\textbf{1.70})\\ \textbf{24.75}(\textbf{1.61})\\ \hline \textbf{shuttle} (d\\ \textbf{14.39}(\textbf{3.34})\\ \textbf{10.45}(\textbf{1.12})\\ \textbf{10.24}(\textbf{1.19})\\ \hline \textbf{vehicle} (d\\ \textbf{43.36}(\textbf{3.78})\\ \textbf{34.26}(\textbf{4.13})\\ \textbf{26.60}(\textbf{2.24})\\ \hline \textbf{symguide3} \end{array}$                                   | $\begin{array}{c} -\\ 31.12(1.22)\\ 31.23(1.12)\\ \hline ,n) = (18,100\\ 34.37(1.82)\\ 32.89(2.03)\\ 31.74(2.16)\\ \hline \\ _{\mathbf{x}},n) = (9,100\\ \hline \\ _{\mathbf{x}},n) = (9,100\\ \hline \\ _{\mathbf{x}},n) = (18,20\\ \hline \\ _{\mathbf{x}},n) = (18,20\\ \hline \\ _{\mathbf{x}},n) = (18,20\\ \hline \\ _{\mathbf{x}},n) = (3,20\\ \hline \\ _{\mathbf{x}},n) = (3,20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30.63(1.38)<br>29.90(1.68)<br>29.08(1.43)<br>0)<br>28.71(3.11)<br>27.05(1.55)<br>25.49(1.50)<br>0)<br>16.01(2.20)<br>8.18(0.93)<br>8.46(1.02)<br>0)<br>38.88(2.47)<br>38.43(2.16)<br>34.30(2.99)                                                                                                                          | 30.07(1.52)<br>29.46(1.09)<br>35.26(1.87)<br>27.10(2.06)<br>25.56(1.56)<br>11.41(3.53)<br>9.36(2.21)<br>11.03(2.91)<br>46.97(2.44)<br>45.85(3.11)<br>45.47(4.05)                |

### Acknowledgements

HS did most of this work when he was working at the University of Tokyo, and was partially supported by KAKENHI 15H06103. GN thanks JST CREST. MS was partially supported by KAKENHI 25700022.

### References

- K. Bache and M. Lichman. UCI machine learning repository.
- G. Blanchard, M. Kawanabe, M. Sugiyama,

- V. Spokoiny, and K. Müller. In search of non-Gaussian components of a high-dimensional distribution. *Journal of Machine Learning Research*, 7: 247–282, 2006.
- F. Bonnans and R. Cominetti. Perturbed optimization in Banach spaces I: A general theory based on a weak directional constraint qualification; II: A theory based on a strong directional qualification condition; III: Semiinfinite optimization. SIAM Journal on Control and Optimization, 34:1151–1171, 1172–1189, and 1555–1567, 1996.
- F. Bonnans and A. Shapiro. Optimization problems with perturbations, a guided tour. *SIAM Review*, 40(2):228–264, 1998.
- C. Chang and C. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
- P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287–314, 1994.
- D. Cox. A penalty method for nonparametric estimation of the logarithmic derivative of a density function. Annals of the Institute of Statistical Mathematics, 37(1):271–288, 1985.
- J. Friedman and J. Tukey. A projection pursuit algorithm for exploratory data analysis. *IEEE Transactions on Computers*, 23(9):881–890, 1974.
- X. He and P. Niyogi. Locality preserving projections. In Advances in Neural Information Processing Systems, pages 153–160, 2004.
- P. Huber. Projection pursuit. *The Annals of Statistics*, 13(2):435–475, 1985.
- A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. *IEEE Transactions on Neural Networks*, 10(3):626–634, 1999.
- A. Hyvärinen, J. Karhunen, and E. Oja. *Independent component analysis*. John Wiley & Sons, 2001.
- M. Kawanabe, M. Sugiyama, G. Blanchard, and K. Müller. A new algorithm of non-Gaussian component analysis with radial kernel functions. *Annals of the Institute of Statistical Mathematics*, 59(1):57–75, 2007.
- V. Koltchinskii. Asymptotics of spectral projections of some random matrices approximating integral operators. *Progress in Probabilty*, 43:191–227, 1998.
- V. Koltchinskii and E. Giné. Random matrix approximation of spectra of integral operators. *Bernoulli*, 6:113–167, 2000.
- H. Sasaki, A. Hyvärinen, and M. Sugiyama. Clustering via mode seeking by direct estimation of the

- gradient of a log-density. In Machine Learning and Knowledge Discovery in Databases Part III- European Conference, ECML/PKDD 2014, volume 8726, pages 19–34, 2014.
- B. Scholkopf and A. Smola. Learning with kernels: support vector machines, regularization, optimization, and beyond. The MIT press, 2001.
- M. Sugiyama, M. Kawanabe, G. Blanchard, and K. Müller. Approximating the best linear unbiased estimator of non-Gaussian signals with Gaussian noise. *IEICE transactions on information and systems*, 91(5):1577–1580, 2008.
- F. Theis and M. Kawanabe. Uniqueness of non-Gaussian subspace analysis. In *Lecture Notes in Computer Science*, volume 3889, pages 917–925. Springer-Verlag, 2006.
- A. Uzilov, J. Keegan, and D. Mathews. Detection of non-coding rnas on the basis of predicted secondary structure formation free energy change. BMC bioinformatics, 7(1):173, 2006.
- L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In Advances in Neural Information Processing Systems, pages 1601–1608, 2005.