CSCI 544: Applied Natural Language Processing

Sequence Labeling-I

Xuezhe Ma (Max)

Models

Course Organization

NLP Tasks

Overview

• The Sequence Labeling Problem

- General Structured Prediction Tasks
- Part-of-speech Tagging: A case study
- Generative Models vs. Discriminative Models

Hidden Markov Model (HMM)

- Basic definitions
- Parameter estimation
- The Viterbi algorithm

Log-Linear Models

- Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields (CRFs)

Overview

• The Sequence Labeling Problem

- General Structured Prediction Tasks
- Part-of-speech Tagging: A case study
- Generative Models vs. Discriminative Models
- Hidden Markov Model (HMM)
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
- Log-Linear Models
 - Maximum Entropy Markov Models (MEMMs)
 - Conditional Random Fields (CRFs)

What is Structured Prediction

- Unstructured Prediction
 - Output Y consists of a single component

• Y consists of multiple components $Y = \{y_1, y_2, ..., y_n\}$

Named Entity Recognition

$$Y_i = < \text{manager} \rightarrow \text{Title} >$$

• Y consists of multiple components $Y = \{y_1, y_2, ..., y_n\}$

- Y consists of multiple components $Y = \{y_1, y_2, ..., y_n\}$
- (Strong) correlations between output components

- Y consists of multiple components $Y = \{y_1, y_2, ..., y_n\}$
- (Strong) correlations between output components
- Exponential output space
 - Decoding: $y^* = \operatorname{argmax}_{y \in \mathscr{Y}} p(y \mid x)$

What is Sequence Labeling?

A type of structured prediction tasks

$$Y = < y_i, y_2, \ldots, y_n > \\ \\ X = < x_i, x_2, \ldots, x_n > \\ \\ \\ \text{USC} \qquad \text{in} \qquad \text{California}$$

Assigning each token of X, e.g. x_i a corresponding label y_i

Why Sequence Labeling?

Information Extraction

What are Part-of-Speech (POS) Tags

- Word classes or syntactic categories
- Reveal useful information about the syntactic role of a word (and its neighbors!)

Part of Speech

- Different words have different syntactic functions
- Can be roughly divided into two classes
 - Closed class: fixed membership, function words
 - e.g. prepositions (in, on, of), determiners (a, the)
 - Open class: New words get added frequently
 - e.g. nouns (Twitter, Facebook), verbs (google), adjectives and adverbs.

Part of Speech

 How many part of speech tags do you think English has?

- A. < 10
- B. 10 30
- C. 30 50
- D. > 50

Penn Tree Bank Tagset

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	66	left quote	or "
LS	list item marker	1, 2, One	TO	"to"	to	,,	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	<i>IBM</i>	VBG	verb gerund	eating		sent-end punc	.!?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	: ;

45 tags! (Marcus et al., 1993)

The Task of Part of Speech Tagging

- Tag each word with its part of speech
- Disambiguation task: each word might have different senses/functions
 - The/DT back/ADJ door/NN
 - On/IN my/PRP\$ back/NN
 - Win/VB the/DT voters/NNS back/RP

Types:		WS	J	Bro	wn
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)
Tokens:					
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)

A Simple Baseline

- Many words might be easy to disambiguate
- Most Frequent Class: Assign each token (word) to the class it occurred most in the training data. (e.g. student/NN)
 - Entirely discarding contextual information
- How accurate do you think this baseline would be at tagging words?
 - A. < 50%
 - B. 50% 75%
 - C. 75% 90%
 - D. > 90%

Accurately tags 92.34% of word tokens on Wall Street Journal (WSJ)

POS Tagging Not Solved!

- State of the art: $\sim 97\%$
- Sentence level accuracies
 - Average length of English sentence \sim 14 words
 - $-0.92^{14} = 31\% \text{ vs. } 0.97^{14} = 65\%$
- Highly relying on domain information
 - Training data and testing data must be from the same domain
 - < 70% on data from social media

Some Observations

- The function (or POS) of a word depends on its context
 - The/DT back/ADJ door/NN
 - On/IN my/PRP\$ back/NN
 - Win/VB the/DT voters/NNS back/RP
- Certain POS combinations are extremely unlikely
 - *<JJ*, *DT*> ("good the") or *<DT*, *IN*> ("the in")
- Better to make predictions on entire sentences instead of individual words

Sequence Labeling Models!

Generative Models vs Discriminative Models

Generative vs Discriminative: Revisit

- Generative Models
 - Modeling the joint distribution: P(X, S)
- Discriminative Models
 - Modeling P(S|X) directly

Gen	ΔΙ	rat	·i	
Gen	е	731	${f J}{f V}$	е

Naive Bayes: $P(s)P(x \mid s)$

Sequence Labeling

Classification

HMM:

$$P(s_1,...,s_n)P(x_1,...,x_n | s_1,...,s_n)$$

Discriminative

Logistic Regression: $P(s \mid x)$

MEMM/CRF:

$$P(s_1, ..., s_n | x_1, ..., x_n)$$

Overview

- The Sequence Labeling Problem
 - General Structured Prediction Tasks
 - Part-of-speech Tagging: A case study
 - Generative Models vs. Discriminative Models
- Hidden Markov Model (HMM)
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
- Log-Linear Models
 - Maximum Entropy Markov Models (MEMMs)
 - Conditional Random Fields (CRFs)

Hidden Markov Models

Markov Sequences

- ▶ Consider a sequence of random variables X_1, X_2, \ldots, X_m where m is the length of the sequence
- **Each** variable X_i can take any value in $\{1, 2, \ldots, k\}$
- How do we model the joint distribution

$$P(X_1 = x_1, X_2 = x_2, \dots, X_m = x_m)$$

7

The Markov Assumption

$$P(X_1=x_1,X_2=x_2,\ldots,X_m=x_m)$$

$$=P(X_1=x_1)\prod_{j=2}^m P(X_j=x_j|X_1=x_1,\ldots,X_{j-1}=x_{j-1})$$

$$=P(X_1=x_1)\prod_{j=2}^m P(X_j=x_j|X_{j-1}=x_{j-1})$$
 Markov assumption

- The first equality is exact (by the chain rule).
- ▶ The second equality follows from the Markov assumption: for all $j = 2 \dots m$,

$$P(X_j = x_j | X_1 = x_1, \dots, X_{j-1} = x_{j-1}) = P(X_j = x_j | X_{j-1} = x_{j-1})$$

Markov Sequences

A Generative Model for Sequences

Pick x_1 at random from the distribution $P(X_1)$

Pick x_2 at random from the distribution $P(X_2 | X_1 = x_1)$

Pick x_t at random from the distribution $P(X_t | X_{t-1} = x_{t-1})$

Modeling Pairs of Sequences

• In Sequence Labeling, we need to model pairs of sequences

$$S=S_i, S_2, \ldots, S_n$$
 NNP VBZ IN NNP
$$X=X_i, X_2, \ldots, X_n$$
 USC is in California

Hidden Markov Models (HMMs) allow us to jointly reason over X and S

Hidden Markov Models

We have two sequences of random variables: X_1, X_2, \ldots, X_m and S_1, S_2, \ldots, S_m

- Intuitively, each X_i corresponds to an "observation" and each S_i corresponds to an underlying "state" that generated the observation. Assume that each S_i is in $\{1, 2, ..., k\}$, and each X_i is in $\{1, 2, ..., o\}$
- How do we model the joint distribution

$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$

?

The HMM Assumptions

1. Markov Assumption on S

$$P(S_j = s_j | S_{j-1} = s_{j-1}, ..., S_1 = s_1) = P(S_j = s_j | S_{j-1} = s_{j-1})$$

2. Conditional Independence on X given S

$$P(X_1 = x_j, ..., X_m = x_m | S_1 = s_1, ..., S_m = s_m) = \prod_{j=1}^m P(X_j = x_j | S_j = s_j)$$
Emission Probabilities

Transition Probabilities

The HMM Assumptions

1. Markov Assumption on S

$$P(S_3 = IN | S_2 = VBZ, S_1 = NNP) = P(S_3 = IN | S_2 = VBZ)$$

2. Conditional Independence on \boldsymbol{X} given \boldsymbol{S}

$$P(\mathsf{USC}\;\mathsf{is}\;\mathsf{in}\;\mathsf{CA}\;|\;\mathsf{NNP}\;\mathsf{VBZ}\;\mathsf{IN}\;\mathsf{NNP}) = P(\mathsf{USC}\;|\;\mathsf{NNP})P(\mathsf{is}\;|\;\mathsf{VBZ})P(\mathsf{in}\;|\;\mathsf{IN})P(\mathsf{CA}\;|\;\mathsf{NNP})$$

Which assumption do you think is stronger?

Joint Distribution of Sequence Pairs in HMMs

$$P(X_1 = x_j, ..., X_m = x_m, S_1 = s_1, ..., S_m = s_m)$$

$$= P(X_1 = x_j, ..., X_m = x_m | S_1 = s_1, ..., S_m = s_m)$$

Output Independence

$$\times P(S_1 = s_1, ..., S_m = s_m)$$

Markov Assumption

$$= \prod_{j=1}^{m} P(X_j = x_j | S_j = s_j)$$

How to model
$$P(X_j = x_j | S_j = s_j)$$

and $P(S_j = s_j | S_{j-1} = s_{j-1})$?

$$\times P(S_1 = s_1) \prod_{j=1}^{m} P(S_j = s_j | S_{j-1} = s_{j-1})$$

Homogeneous HMMs

• In a homogeneous HMM, we make an additional assumption:

$$P(S_j = s_j | S_{j-1} = s_{j-1}) = t(s_j | s_{j-1})$$

$$P(X_i = x_i | S_i = s_i) = e(x_i | s_i)$$

• Idea behind this assumption: the transition and emission probabilities do NOT depend on the position in the Markov chain (do not depend on the index j)

The Model Form for Homogeneous HMMs

► The model takes the following form:

$$p(x_1 \dots x_m, s_1 \dots s_m; \underline{\theta}) = t(s_1) \prod_{j=2}^m t(s_j | s_{j-1}) \prod_{j=1}^m e(x_j | s_j)$$

- Parameters in the model:
 - 1. Initial state parameters t(s) for $s \in \{1, 2, ..., k\}$
 - 2. Transition parameters t(s'|s) for $s, s' \in \{1, 2, \dots, k\}$
 - 3. Emission parameters e(x|s) for $s \in \{1, 2, ..., k\}$ and $x \in \{1, 2, ..., o\}$

Example: Sequence Probability

What is the joint probability *P*(the cat, DT NN)?

Dummy start state

o_t				
	the	cat		
DT	0.9	0.1		
NN	0.5	0.5		

A)
$$(0.8*0.8)*(0.9*0.5)$$

B)
$$(0.2*0.8)*(0.9*0.5)$$

C)
$$(0.3*0.7)*(0.5*0.5)$$

Learning a Hidden Markov Model

Parameter Estimation

• Assuming we have fully observed data $\{X_i, S_i\}_{i=1}^N$, e.g. WSJ

Training set:

1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/Maximum Likelihood Estimate: join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ di Nov./NNP 29/CD ./.

2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsev N.V./NNP,/, the/DT Dutch/NNP publishing/VBG group/ 3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/N ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/ this/DT British/JJ industrial/JJ conglomerate/NN ./.

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD peopl of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD help Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sendin them/PRP to/TO San/NNP Francisco/NNP instead/RB ./

$$\max_{t(\cdot|\cdot),e(\cdot|\cdot)} \prod_{i=1}^{N} P(X_i, S_i)$$

$$t(s'|s) = \frac{\text{count}(s \to s')}{\text{count}(s)}$$

$$e(x \mid s) = \frac{\text{count}(s \to x)}{\text{count}(s)}$$

Learning Example

- 1. the/DT cat/NN sat/VBD on/IN the/DT mat/NN
- 2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP
- 3. the/DT old/NN man/VB the/DT boats/NNS

$$t(\mathbf{NN} | \mathbf{DT}) = \frac{3}{4}$$

$$e(\mathbf{cat} | \mathbf{NN}) = \frac{1}{3}$$

Maximum Likehood Estimate:

$$\max_{t(\cdot|\cdot),e(\cdot|\cdot)} \prod_{i=1}^{N} P(X_i, S_i)$$

$$t(s'|s) = \frac{\text{count}(s \to s')}{\text{count}(s)}$$

$$e(x \mid s) = \frac{\text{count}(s \to x)}{\text{count}(s)}$$

Decoding with HMMs

Decoding with HMMs

▶ Goal: for a given input sequence x_1, \ldots, x_m , find

$$\underset{s_1,\ldots,s_m}{\operatorname{arg}} \max p(x_1\ldots x_m,s_1\ldots s_m;\underline{\theta})$$

▶ This is the most likely state sequence $s_1 \dots s_m$ for the given input sequence $x_1 \dots x_m$

Decoding with HMMs

$$S^* = \arg \max_{s_1, \dots, s_m} p(x_1, \dots, x_m, s_1, \dots, s_m) = t(s_1) \prod_{j=2}^m t(s_j | s_{j-1}) \prod_{j=1}^m e(x_j | s_j)$$

How can we maximize this over all state sequences?

Greedy Decoding

Decode/reveal one state at a time

$$s_1^* = \arg \max_{s_1} t(s_1)e(x_1 | s_1)$$

$$S^* = \arg \max_{s_1, \dots, s_m} p(x_1, \dots, x_m, s_1, \dots, s_m) = t(s_1) \prod_{j=2}^m t(s_j | s_{j-1}) \prod_{j=1}^m e(x_j | s_j)$$

Greedy Decoding

Decode/reveal one state at a time

$$s_2^* = \arg\max_{s_2} t(s_2 | s_1^*) e(x_2 | s_2)$$

$$S^* = \arg \max_{s_1, \dots, s_m} p(x_1, \dots, x_m, s_1, \dots, s_m) = t(s_1) \prod_{j=2}^m t(s_j | s_{j-1}) \prod_{j=1}^m e(x_j | s_j)$$

Greedy Decoding

$$s_j^* = \arg\max_{s_j} t(s_j | s_{j-1}^*) e(x_j | s_j), \quad \forall j$$

- Local decisions
- Not guaranteed to produce the overall optimal sequence

The Viterbi algorithm is a dynamic programming algorithm.
Basic data structure:

$$\pi[j,s]$$

will be a table entry that stores the maximum probability for any state sequence ending in state s at position j. More formally: $\pi[1,s] = t(s)e(x_1|s)$, and for j > 1,

$$\pi[j,s] = \max_{s_1...s_{j-1}} \left[t(s_1)e(x_1|s_1) \left(\prod_{k=2}^{j-1} t(s_k|s_{k-1})e(x_k|s_k) \right) t(s|s_{j-1}) e(x_j|s) \right]$$

▶ Initialization: for $s = 1 \dots k$

$$\pi[1,s] = t(s)e(x_1|s)$$

▶ For j = 2 ... m, s = 1 ... k:

$$\pi[j, s] = \max_{s' \in \{1...k\}} \left[\pi[j - 1, s'] \times t(s|s') \times e(x_j|s) \right]$$

We then have

$$\max_{s_1...s_m} p(x_1 \dots x_m, s_1 \dots s_m; \underline{\theta}) = \max_s \pi[m, s]$$

▶ The algorithm runs in $O(mk^2)$ time

$$\pi[2, \mathbf{NN}] = \max_{s_1} \pi[1, s_1] t(\mathbf{NN}|s_1)e(\mathbf{cat}|\mathbf{NN})$$

$$\pi[2, \mathbf{NN}] = \max_{s_1} \pi[1, s_1] t(\mathbf{NN}|s_1)e(\mathbf{cat}|\mathbf{NN})$$

$$\pi[3, \mathbf{VBD}] = \max_{s_2} \pi[2, s_2] t(\mathbf{VBD} | s_2)e(\mathbf{sat} | \mathbf{VBD})$$

Pros and Cons

- HMMs are simple to train
 - Just need to compile counts from the training corpus
- Performs relatively well
 - > 96% on POS tagging (92.3% of most frequent class)
 - > 90% on Named Entity Recognition
- Main difficulty is modeling $e(word \mid tag)$
 - Words are very complex
 - Unknown words

Overview

• The Sequence Labeling Problem

- General Structured Prediction Tasks
- Part-of-speech Tagging: A case study
- Generative Models vs. Discriminative Models

• Hidden Markov Model (HMM)

- Basic definitions
- Parameter estimation
- The Viterbi algorithm

- Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields (CRFs)
- Parameter estimation

- The General Problem
 - ightharpoonup We have some input domain $\mathcal X$
 - ightharpoonup Have a finite **label set** ${\mathcal Y}$
 - Aim is to provide a conditional probability $p(y \mid x)$ for any x, y where $x \in \mathcal{X}$, $y \in \mathcal{Y}$

- We have some input domain \mathcal{X} , and a finite label set \mathcal{Y} . Aim is to provide a conditional probability $p(y \mid x)$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- A feature is a function $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ (Often binary features or indicator functions $f_k: \mathcal{X} \times \mathcal{Y} \to \{0,1\}$).
- Say we have m features f_k for $k=1\ldots m$ \Rightarrow A feature vector $f(x,y)\in\mathbb{R}^m$ for any $x\in\mathcal{X}$ and $y\in\mathcal{Y}$.
- We also have a parameter vector $v \in \mathbb{R}^m$
- We define

$$p(y \mid x; v) = \frac{e^{v \cdot f(x,y)}}{\sum_{y' \in \mathcal{Y}} e^{v \cdot f(x,y')}}$$

Why the name?

$$p(y \mid x; v) = \frac{e^{v \cdot f(x,y)}}{\sum_{y' \in \mathcal{Y}} e^{v \cdot f(x,y')}}$$

$$\log p(y \mid x; v) = \underbrace{v \cdot f(x, y)}_{\text{Linear term}} - \underbrace{\log \sum_{y' \in \mathcal{Y}} e^{v \cdot f(x, y')}}_{\text{Normalization term}}$$

Features in Log-linear Models

$$S=S_i, S_2, \ldots, S_n$$
 NNP $X=X_i, X_2, \ldots, X_n$ Is in California

Theoretically, we can use any features in X and S: f(X, S)

- The current word: <is>
- The surrounding words: <USC, is>), ...
- The current POS tag: <VBZ>
- The surrounding tags: <NNP, VBZ>, ...
- The current word and tag: <is, VBZ>

How to design these features into numerical vectors?

Feature Vocabulary

$$S = S_i, S_2, \dots, S_n$$

$$X = X_i, X_2, ..., X_n$$

is

in

California

Theoretically, we can use any features in X and S: f(X, S)

- The current word: <is>
- The surrounding words: <USC, is>), ...
- The current POS tag: <VBZ>
- The surrounding tags: <NNP, VBZ>, ...
- The current word and tag: <is, VBZ>

Vocab = [is, in, USC, California, ...]

Vocab += [<USC, is>, <is, in>, ...]

Vocab += [NNP, VBZ, IN, ...]

Vocab += [<USC,NNP>, <is,VBZ>, ...]

Feature Sparsity Problem

$$S = S_i, S_2, ..., S_n$$

$$X = X_i, X_2, ..., X_n$$

USC

is

in

California

Theoretically, we can use any features in X and S: f(X, S)

- The current word: <is>
- The surrounding words: <USC, is>), ...
- The current POS tag: <VBZ>
- The surrounding tags: <NNP, VBZ>, ...
- The current word and tag: <is, VBZ>

Number of Features

 \overline{V}

 V^2

VK

Features vs. Independence

- We need independence assumptions to compute the nominator
- Stronger assumptions lead to less flexible features

$$p(y \mid x; v) = rac{e^{v \cdot f(x,y)}}{\sum_{y' \in \mathcal{Y}} e^{v \cdot f(x,y')}}$$

Overview

- The Sequence Labeling Problem
 - General Structured Prediction Tasks
 - Part-of-speech Tagging: A case study
 - Generative Models vs. Discriminative Models
- Hidden Markov Model (HMM)
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
- Log-Linear Models
 - Maximum Entropy Markov Models (MEMMs)
 - Conditional Random Fields (CRFs)
 - Parameter estimation

Independence Assumptions in MEMMs

• Goal: modeling the distribution

$$p(s_1, ..., s_m | x_1, ..., x_m)$$

ullet Markov Assumption on S

$$p(s_1, ..., s_m | x_1, ..., x_m) = \prod_{j=1}^m p(s_j | s_1, ..., s_{j-1}, x_1, ..., x_m)$$

chain rule (no assumptions)

$$= \prod_{j=1}^{m} p(s_j | s_{j-1}, x_1, ..., x_m)$$

Markov assumption

Using Log-Linear Models

• We then model each term using a log-linear model:

$$p(s_j | s_{j-1}, x_1, ..., x_m) = \frac{\exp(v \cdot f(x_1, ..., x_m, i, s_{j-1}, s_j))}{\sum_{s_j' \in S} \exp(v \cdot f(x_1, ..., x_m, i, s_{j-1}, s_j'))}$$

- Here $f(x_1, ..., x_m, j, s, s')$ is the feature vector:
 - x_1, \ldots, x_m is the sequence of words to be tagged
 - j is the position to be tagged (any value from 1, ..., m)
 - s is the previous state
 - s' is the current state

Using Log-Linear Models

We then model each term using a log-linear model:

$$p(s_{j} | s_{j-1}, x_{1}, ..., x_{m}) = \frac{\exp(v \cdot f(x_{1}, ..., x_{m}, i, s_{j-1}, s_{j}))}{\sum_{s_{j}' \in \mathbb{S}} \exp(v \cdot f(x_{1}, ..., x_{m}, i, s_{j-1}, s_{j}'))} \text{Trackable}$$

- Here $f(x_1, ..., x_m, j, s, s')$ is the feature vector: $x_1, ..., x_m$ is the sequence of words to be tagged

 - j is the position to be tagged (any value from $1, \ldots, m$)
 - s is the previous state
 - s' is the current state

The whole sequence of X Only two successive tags

Features in MEMMs

$$S = S_1, S_2, ..., S_n$$

$$X = X_1, X_2, ..., X_n$$

USC

is

in

California

What are the most important features $f(x_1, ..., x_m, j, s, s')$?

- The current word: <is>
- The surrounding words: <USC, is>), ...
- The current POS tag: <VBZ>
- The previous tag: <NNP, VBZ>, ...
- The current word and tag: <is, VBZ>
- Prefix or suffix features: <ing>
- ...

Decoding with MEMMs: Viterbi Algorithm

▶ Goal: for a given input sequence x_1, \ldots, x_m , find

$$\arg\max_{s_1,\ldots,s_m} p(s_1\ldots s_m|x_1\ldots x_m)$$

We can use the Viterbi algorithm again (see last lecture on HMMs). Basic data structure:

$$\pi[j,s]$$

will be a table entry that stores the maximum probability for any state sequence ending in state s at position j. More formally:

$$\pi[j,s] = \max_{s_1...s_{j-1}} \left(p(s|s_{j-1}, x_1 \dots x_m) \prod_{k=1}^{j-1} p(s_k|s_{k-1}, x_1 \dots x_m) \right)$$

Decoding with MEMMs: Viterbi Algorithm

▶ Initialization: for $s \in \mathcal{S}$

$$\pi[1,s] = p(s|s_0,x_1\dots x_m)$$

where s_0 is a special "initial" state.

- For $j=2\dots m$, $s=1\dots k$: $\pi[j,s]=\max_{s'\in\mathcal{S}}\left[\pi[j-1,s']\times p(s|s',x_1\dots x_m)\right]$
- We then have

$$\max_{s_1...s_m} p(s_1...s_m|x_1...x_m) = \max_s \pi[m,s]$$

Model Performance

	POS Tagging	NER
HMM	96.4%	75.3
MEMM	96.9%	85.9

HMMs vs. MEMMs

• In MEMMs, each state transition has probability

$$p(s_j | s_{j-1}, x_1, ..., x_m) = \frac{\exp(v \cdot f(x_1, ..., x_m, i, s_{j-1}, s_j))}{\sum_{s' \in S} \exp(v \cdot f(x_1, ..., x_m, i, s_{j-1}, s_j'))}$$

• In HMMs, each state transition has probability

$$p(s_j | s_{j-1})p(x_j | s_j)$$

- ullet Feature vectors f allows much richer representations in MEMMs:
 - Sensitivity to any word in the input sequence x_1, \ldots, x_m , not just x_j
 - Sensitivity to spelling features (prefixes, suffixes etc.) of current or surrounding words
- Parameter estimation in MEMMs is more expensive than in HMMs (but is still not prohibitive for most tasks)

Overview

- The Sequence Labeling Problem
 - General Structured Prediction Tasks
 - Part-of-speech Tagging: A case study
 - Generative Models vs. Discriminative Models
- Hidden Markov Model (HMM)
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
- Log-Linear Models
 - Maximum Entropy Markov Models (MEMMs)
 - Conditional Random Fields (CRFs)
 - Parameter estimation

Conditional Random Fields (CRFs)

Goal: modeling the distribution

$$p(s_1, ..., s_m | x_1, ..., x_m)$$

In MEMMs we had

$$p(s_1, ..., s_m | x_1, ..., x_m) = \prod_{j=1}^m p(s_j | s_1, ..., s_{j-1}, x_1, ..., x_m)$$

chain rule (no assumptions)

$$= \prod_{i=1}^{m} p(s_i | s_{j-1}, x_1, ..., x_m)$$

Markov assumption

Using log-linear model

$$p(s_j | s_{j-1}, x_1, ..., x_m) = \frac{\exp(v \cdot f(x_1, ..., x_m, i, s_{j-1}, s_j))}{\sum_{s' \in \mathbb{S}} \exp(v \cdot f(x_1, ..., x_m, i, s_{j-1}, s_j'))}$$

Can we build a *giant* log-linear model? $p(s_1, ..., s_m | x_1, ..., x_m)$

Conditional Random Fields (CRFs)

Globally Normalized Model

$$p(s_1, ..., s_m | x_1, ..., x_m) = \frac{\prod_{j=1}^m \exp(v \cdot f(x_1, ..., x_m, i, s_{j-1}, s_j))}{\sum_{\substack{s'_1, ..., s'_m \in \mathbb{S}}} \prod_{j=1}^m \exp(v \cdot f(x_1, ..., x_m, i, s'_{j-1}, s'_j))}$$

Independence Assumptions in CRFs

$$p(s_1, ..., s_m | x_1, ..., x_m) = \frac{\prod_{j=1}^m \exp(v \cdot f(x_1, ..., x_m, i, s_{j-1}, s_j))}{\sum_{\substack{s'_1, ..., s'_m \in \mathbb{S}}} \prod_{j=1}^m \exp(v \cdot f(x_1, ..., x_m, i, s'_{j-1}, s'_j))}$$

CRF

Independence Assumptions in CRFs

CRF has weaker independence assumption than MEMMs!

Decoding with CRFs

Viterbi Algorithm still applicable!

$$p(s_1, ..., s_m | x_1, ..., x_m) = \frac{\prod_{j=1}^m \exp(v \cdot f(x_1, ..., x_m, i, s_{j-1}, s_j))}{\sum_{\substack{s'_1, ..., s'_m \in \mathbb{S}}} \prod_{j=1}^m \exp(v \cdot f(x_1, ..., x_m, i, s'_{j-1}, s'_j))}$$

Makes no effects on decoding!

Computation of the Global Nominator

- How to compute the global nominator?
 - Dynamic programming similar to the Viterbi algorithm
 - Replacing the maximum operation in decoding with sum operation

$$p(s_1, ..., s_m | x_1, ..., x_m) = \frac{\prod_{j=1}^m \exp(v \cdot f(x_1, ..., x_m, i, s_{j-1}, s_j))}{\sum_{\substack{s'_1, ..., s'_m \in \mathbb{S}}} \prod_{j=1}^m \exp(v \cdot f(x_1, ..., x_m, i, s'_{j-1}, s'_j))}$$
Partition Function

$$\pi[j,s] = \sum_{s_1,\ldots,s_{j-1}} \left[\prod_{k=1}^{j-1} \exp(v \cdot f(x_1,\ldots,x_m,k,s_{k-1},s_k))) \right] \exp(v \cdot f(x_1,\ldots,x_m,k,s_{j-1},s)))$$

Overview

• The Sequence Labeling Problem

- General Structured Prediction Tasks
- Part-of-speech Tagging: A case study
- Generative Models vs. Discriminative Models

• Hidden Markov Model (HMM)

- Basic definitions
- Parameter estimation
- The Viterbi algorithm

- Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields (CRFs)
- Parameter estimation

Maximum Likelihood Estimation

Need to maximize:

$$\max_{v} L(v) = \sum_{i=1}^{N} \log P(S_i | X_i; v)$$

$$= \sum_{i=1}^{N} v \cdot f(X_i, S_i) - \sum_{i=1}^{N} \log \sum_{s' \in S} e^{v \cdot f(X_i, S')}$$

Do we need to manually derive the gradients?

Back-propagation!

Calculating gradients:

$$\frac{\partial L(v)}{\partial v_k} = \underbrace{\sum_{i=1}^{N} f_k(X_i, S_i)}_{i=1} - \underbrace{\sum_{i=1}^{N} \sum_{S' \in \mathbb{S}} f_k(X_i, S') p(S' | X_i; v)}_{i=1}$$

Empirical counts

Expected counts

Model Performance

	POS Tagging	NER
HMM	96.4%	75.3
MEMM	96.9%	85.9
CRF	97.3%	88.7

Reading Materials

Notes from Michael Collins:

- Sequence Labeling and HMMs
- EM Algorithm
- Log-linear Models
- MEMMs and CRFs