CS 270: Introduction to Logic

Mark Boady

Department of Computer Science Drexel University

October 18, 2017

Logic

- Logic is a systematic way of thinking that allows us to deduce new information from old information and to parse the meaning of sentences.
- You use logic constantly in your everyday life.
- Formal Logical gives a consistent framework to communicate ideas.

Logic

- We use facts to deduce new information
- Example:
 - Circle X has radius equal to 3
 - ② If any circle has radius r, then its area is πr^2
 - **3** Therefore: Circle X has area 9π square units
- Logic is a process of deducing information correctly
- We have deduced that if 1 and 2 are true then 3 is true

Information

- Both our Logic and Information must be true
- Example: if the circle's radius is different than the area is also wrong
- Information
 - This is believed to be true at the start of deduction
 - Can be trivially true (5 is a number)
 - or a proven fact $(\sum_{i=0}^{\infty} \frac{1}{2^i} = 2)$
- Logic uses information to draw conclusions
- We assume our information is known to be true or false
- There is no middle ground, everything must be true or false

Statements

- A statement is a sentence or expression that is either definitely true or false
- Statements may be dependent on variables
- We assign letters or names to statements when doing a proof
- A statement is Boolean, it can be true or false
 - S: The solution of 2x = 84 is 42.
 - P(x): If an integer x is a multiple of 6, then x is even

- a statement that is not always true or false is an called a contingent statement
 - Q(x): x is even

Types of Statements

- Contingent: True or False based on values of variables.
- **Tautology**: Always true regardless of variables.
- Contradictory: Always false regardless of variables.
- Satisfiable: Can be made true.
- Falsifiable: Can be made false.

Boolean Operators

- Boolean Logic has a set of operators.
- We combine statements using Boolean operators.
- These are all based on their normal usage in language.
- And: Both inputs are true
- Or: At least one of the two is true
- **Not**: Get the opposite

And

- The number X is even **and** the number Y is odd.
- And: is true when both statements are true
- A true table show all possible outcomes based on statements.

P(X): The number X is even

Q(Y): The number Y is odd

Р	Q	$P \wedge Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

• If X=2 and Y=4, look at the second row of the table

Or

- The number X is even **or** the number Y is odd.
- Or: Either one of both of the statements are true

P(X): The number X is even

Q(Y): the number Y is odd

Р	Q	$P \lor Q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Not

- It is not true that the number X is even
- Not: returns the opposite

P(X): The number X is even

P	$\sim P$
Т	F
F	Т

Other Common Symbols

- Difference fields use different symbols for these
- Personal Preference: \land, \lor, \sim .

Meaning	Operators		
A and B	$A \wedge B$, $A \cap B$, $A\dot{B}$, AB , $A\&B$, $A\&\&B$		
A or B	$A \lor B$, $A \cup B$, $A + B$, $A B$, $A B$		
not A	\sim A, $-$ A, $ar{A}$, !A		

Conditional Statements

- Conditional Statements are used with the implies operator
- You can think of $P \Rightarrow Q$ as being a promise that whenever P is true, Q will be true also.
- if the integer a is a multiple of 6, then a is divisible by 2.

P: The integer a is a multiple of 6.

Q: The integer a is a multiple of 2.

R : If P, the Q

Р	Q	$P \Rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Implies

- An implies is only false when $T \Rightarrow F$
- If you pass the final exam, then you will pass the course
 - If you pass the final and pass the class, the statement was true.

$$(T \Rightarrow T) = T$$

If you fail the final, you could still pass the class.

$$(F \Rightarrow T) = T$$

• If you fail the final, you could still fail the class.

$$(F \Rightarrow F) = T$$

 If you pass the final and do not pass the course, then the statement was a false.

$$(T \Rightarrow F) = F$$

Implies

- An implies statement is either valid or invalid
- **Valid**: The condition $T \Rightarrow F$ is impossible
- **Invalid**: The condition $T \Rightarrow F$ can happen
- If a statement is **valid** we can use it to draw conclusions.
- Alternatives:
 - "P only if Q" is the same as "if P then Q"
 - \bullet "P if Q" is the same as "If Q then P"

Bi-conditional Statements

- $P \Rightarrow Q$ only handles one direction
- What if we want to say "If P then Q and If Q then P"
- P if and only if Q
- \bullet $P \iff Q$
- P iff Q is used as a shorthand.
- This is a Boolean equals!

Р	Q	$P \iff Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Boolean Algebra

- We can write expressions using the Boolean operators
- Proofs can be done by truth table
- Proofs can be done algebraically

Example: P or Q is true, and it is not the case that both P and Q are true.

$$(P \vee Q) \wedge \sim (P \wedge Q)$$

Р	Q	$(P \lor Q)$	$(P \wedge Q)$	$\sim (P \wedge Q)$	$(P \lor Q) \land \sim (P \land Q)$
Т	Т	Т	Т	F	F
Т	F	Т	F	Т	Т
F	Т	Т	F	Т	Т
F	F	F	F	Т	F

Truth Tables

- A truth table is a proof
- It shows all possible outcomes
- A row of the truth table shows if an expression is true of false based on initial values
- If two expressions have the same truth table, they are the same

Example: Proof that $P \Rightarrow Q$ and $\sim P \lor Q$ are the same.

Р	Q	$P \Rightarrow Q$	$\sim P \lor Q$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Logical Equivalence

- If two statements have the same truth table then they are logically equivalent
- We can do algebra on statements
- Logical Equivalence is show using the = symbol.
- This makes it clear we are doing math = instead of stating equivalence ←⇒

$$\mathbf{T} \Rightarrow P = \sim \mathbf{T} \lor P$$
$$= \mathbf{F} \lor P$$
$$= P$$

Logical Equivalences

 The following are commonly used logical equivalences involving constants

$$T \wedge A = A$$

 $F \wedge A = F$
 $T \vee A = T$
 $F \vee A = A$

Logical Equivalences

 Implies and "If and only if" can be written in terms of simpler operators

$$A \Rightarrow B = \sim A \lor B$$

$$A \iff B = (A \Rightarrow B) \land (B \Rightarrow A)$$

$$= (A \land B) \lor (\sim A \land \sim B)$$

• We can prove these with truth tables.

If and Only If

• If the following statement is a tautology then the two expressions are equivalent.

$$(A \iff B) \iff ((A \land B) \lor (\sim A \land \sim B))$$

Α	В	$A \iff B$	$(A \wedge B) \vee (\sim A \wedge \sim B)$	··· <>> ···
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	F	F	Т
F	F	Т	Т	Т

DeMorgan's Law

- DeMorgan's Law is one of the most important logical equivalences
- Allows for distribution of a not into expressions

$$\sim (P \land Q) = (\sim P) \lor (\sim Q)$$
$$\sim (P \lor Q) = (\sim P) \land (\sim Q)$$

Р	Q	$\sim (P \wedge Q)$	$(\sim P) \lor (\sim Q)$
Т	Т	F	F
Т	F	Т	Т
F	Т	Т	Т
F	F	Т	Т

DeMorgan's Law

$$\sim (P \lor Q) = (\sim P) \land (\sim Q)$$

Р	Q	$\sim (P \lor Q)$	$(\sim P) \wedge (\sim Q)$
Т	Т	F	F
T	F	F	F
F	Т	F	F
F	F	Т	Т

Other Important Laws

- The following laws are also commonly used
- Notice and works like multiplication and or works like plus

$$\sim \sim P = P$$

$$P \Rightarrow Q = (\sim Q) \Rightarrow (\sim P)$$

$$P \land Q = Q \land P$$

$$P \lor Q = Q \lor P$$

$$P \land (Q \lor R) = (P \land Q) \lor (P \land R)$$

$$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$$

$$P \land (Q \land R) = (P \land Q) \land R$$

$$P \lor (Q \lor R) = (P \lor Q) \lor R$$