

Language Models and Knowledge

Mengzhou Xia & Jane Pan

October 10th, 2022

Outline

- 1. What is a knowledge base?
- 2. Can language models be used as knowledge bases? (Petroni et al., 2019)
- 3. Can a closed-book QA LM perform as well as other open-book methods? (Roberts et al., 2020)
- 4. How to update facts? (Dai et al., 2021, Mitchell et al., 2022)

Introduction

• The corpora used to pretrain language models are **huge aggregations** of information and data from the internet

- The corpora used to pretrain language models are huge aggregations of information and data from the internet
- Consider The Pile (Gao et al., 2020): 800GB total

- The corpora used to pretrain language models are huge aggregations of information and data from the internet
- Consider The Pile (Gao et al., 2020): 800GB total

- The corpora used to pretrain language models are huge aggregations of information and data from the internet
- Consider The Pile (Gao et al., 2020): 800GB total

- The corpora used to pretrain language models are huge aggregations of information and data from the internet
- Consider The Pile (Gao et al., 2020): 800GB total

Pretraining and knowledge

Pre-training allows language models to learn robust task-agnostic features,
 which is critical for high performance on downstream tasks

Pretraining and knowledge

- Pre-training allows language models to learn robust task-agnostic features,
 which is critical for high performance on downstream tasks
- As language models and their pre-training corpora scale, the amount of information encoded in the pretrained language models also increases
 - Few-shot learning
 - o In-context learning

Pretraining and knowledge

- Pre-training allows language models to learn robust **task-agnostic features**, which is critical for high performance on downstream tasks
- As language models and their pre-training corpora scale, the amount of information encoded in the pretrained language models also increases
 - o Few-shot learning
 - o In-context learning

Can we directly retrieve the knowledge learned in pre-training from a language model?

Key Question

Today, we take LLMs' ability to "store" knowledge for granted

GPT-3 Zero-shot Knowledge Retrieval

Today, we take LLMs' ability to "store" knowledge for granted

GPT-3 Zero-shot Knowledge Retrieval

- This was not so obvious to NLP researchers three years ago!
- Instead, traditional knowledge bases were often used

How were knowledge bases formed?

unstructured text

knowledge base

How were knowledge bases formed?

unstructured text

knowledge base

How were knowledge bases formed?

unstructured text

knowledge base

Untrained Knowledge Extraction Pipeline

Populating the knowledge base often involves complicated, multi-step NLP pipelines

Prone to error propagation (from human annotations or knowledge extraction)

Prone to error propagation (from human annotations or knowledge extraction)

Reliant on fixed schemas to store or query data

Reliant on fixed schemas to store or query data

Traditional knowledge bases are **inflexible** and require **significant manual effort.**

Are there better alternatives?

Language Models as Knowledge Bases? (Petroni et al., 2019)

Language models as knowledge bases?

Why language models?

- Pretrained on a huge corpus of data
- Doesn't require annotations/supervision
- More flexible with natural language queries
- Can be used off-the-shelf

Language models as knowledge bases?

Why language models?

- Pretrained on a huge corpus of data
- Doesn't require annotations/supervision
- More flexible with natural language queries
- Can be used off-the-shelf

But first, we need to see if language models really do store knowledge.

Question: How do we check this?

Language models as knowledge bases?

Why language models?

- Pretrained on a huge corpus of data
- Doesn't require annotations/supervision
- More flexible with natural language queries
- Can be used off-the-shelf

But first, we need to see if language models really do store knowledge.

Question: How do we check this?

Answer:

Language models as knowledge bases?

Why language models?

- Pretrained on a huge corpus of data
- Doesn't require annotations/supervision
- More flexible with natural language queries
- Can be used off-the-shelf

But first, we need to see if language models really do store knowledge.

Question: How do we check this?

Answer:

• Goal: evaluate factual + commonsense knowledge in language models

- Goal: evaluate factual + commonsense knowledge in language models
- Collect set of knowledge sources (i.e. set of facts) and test to see how well the model's knowledge captures these facts

- Goal: evaluate factual + commonsense knowledge in language models
- Collect set of knowledge sources (i.e. set of facts) and test to see how well the model's knowledge captures these facts
- How do we know how "knowledgeable" a LM is about a particular fact?

- Goal: evaluate factual + commonsense knowledge in language models
- Collect set of knowledge sources (i.e. set of facts) and test to see how well the model's knowledge captures these facts
- How do we know how "knowledgeable" a LM is about a particular fact?

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

*according to the LM

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

"The color of the sky is [MASK]."

*according to the LM

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

*according to the LM

4.4

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

 $\mbox{\bf *} according to the LM$

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

 $\mbox{\bf *} according to the LM$

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

"The color of the sky is [MASK]."

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

г1

Given a cloze statement that queries the model for a missing token, knowledgeable LMs rank ground truth tokens high and other tokens lower

E2

Step 1: Compile knowledge sources

Knowledge Sources

г 4

Step 2: Formulate facts into triplets or question-answer pairs

Step 2: Formulate facts into triplets or question-answer pairs

E6

Step 3: Create cloze statements, either manually or via templates

__

Step 3: Create cloze statements, either manually or via templates

Cloze Statements

Step 3: Create cloze statements, either manually or via templates

Step 3: Create cloze statements, either manually or via templates

Step 3: Create cloze statements, either manually or via templates

Step 3: Create cloze statements, either manually or via templates

Cloze Statements

Step 3: Create cloze statements, either manually or via templates

Cloze Statements

Step 3: Create cloze statements, either manually or via templates

LAMA's Knowledge Sources: **Google-RE**

- Manually extracted facts from Wikipedia
- Only consider 3 kinds of relations: place of birth, date of birth, place of death

6 F

LAMA's Knowledge Sources: **Google-RE**

- Manually extracted facts from Wikipedia
- Only consider 3 kinds of relations: place of birth, date of birth, place of death

Original Fact

(T.S. Eliot, birth-place, St. Louis)

-

LAMA's Knowledge Sources: **Google-RE**

- Manually extracted facts from Wikipedia
- Only consider 3 kinds of relations: place of birth, date of birth, place of death

LAMA's Knowledge Sources: <u>T-REx</u>

- Automatically extracted facts from Wikipedia (may have some errors)
- For multiple right answers: throw away all but one

LAMA's Knowledge Sources: <u>T-REx</u>

- Automatically extracted facts from Wikipedia (may have some errors)
- For multiple right answers: throw away all but one

Original Fact (Francesco Conti, born-in, [Florence, Italy])

multiple possibilities

LAMA's Knowledge Sources: <u>T-REx</u>

- Automatically extracted facts from Wikipedia (may have some errors)
- For multiple right answers: throw away all but one

Original Fact

(Francesco Conti, born-in, [<u>Florence</u>, I[†] v])

LAMA's Knowledge Sources: **T-REx**

- Automatically extracted facts from Wikipedia (may have some errors)
- For multiple right answers: throw away all but one

LAMA's Knowledge Sources: **ConceptNet**

• For each ConceptNet triple, find the relevant **Open Mind Common Sense** (**OMCS**) sentences and mask the object

ConceptNet Triple

(ravens, CapableOf, fly)

LAMA's Knowledge Sources: **ConceptNet**

• For each ConceptNet triple, find the relevant **Open Mind Common Sense** (**OMCS**) sentences and mask the object

ConceptNet Triple (ravens, CapableOf, fly)

OMCS Sentence "Ravens can fly."

LAMA's Knowledge Sources: **ConceptNet**

• For each ConceptNet triple, find the relevant **Open Mind Common Sense** (**OMCS**) sentences and mask the object

LAMA's Knowledge Sources: **SQuAD**

- **Question-answer dataset:** pick only context-insensitive questions with single-token answers
- Originally created via Wikipedia

LAMA's Knowledge Sources: **SQuAD**

- **Question-answer dataset:** pick only context-insensitive questions with single-token answers
- Originally created via Wikipedia

SQuAD Question-Answer Pair ("Who developed the theory of relativity?", Einstein)

LAMA's Knowledge Sources: **SQuAD**

- **Question-answer dataset:** pick only context-insensitive questions with single-token answers
- Originally created via Wikipedia

Dataset Statistics

	# Facts	# of Relations	# Tokens in Answer
Google-RE	5.5k	3	1
T-REx	34k	41	1
ConceptNet	11.4k	16	1
SQuAD	300	-	1

Dataset Statistics

	# Facts	# of Relations	# Tokens in Answer
Google-RE	5.5k	3	1
T-REx	34k	41	1
ConceptNet	11.4k	16	1
SQuAD	300	-	1

Note: all ground truth answers are **single-token**!

- Freq: ranks candidates by frequency of appearance as objects for a subject-relation pair
 Analogous to majority classifier

- **Freq:** ranks candidates by frequency of appearance as objects for a subject-relation pair
 - Analogous to majority classifier

Pretrained models

o RE (Sorokin and Gurevych, 2017): extracts relation triples from sentence

- **Freq:** ranks candidates by frequency of appearance as objects for a subject-relation pair
 - o Analogous to majority classifier

• Pretrained models

- o RE (Sorokin and Gurevych, 2017): extracts relation triples from sentence
 - RE: uses exact string matching for entity linking
 - RE_n has to find the subject/object entities itself

- **Freq:** ranks candidates by frequency of appearance as objects for a subject-relation pair
 - o Analogous to majority classifier

Pretrained models

- o RE (Sorokin and Gurevych, 2017): extracts relation triples from sentence
 - RE: uses exact string matching for entity linking
 - RE_n has to find the subject/object entities itself
 - RE: uses oracle for entity linking
 - As long as RE_o gets the right relation type, it gets the answer for free

9.4

- **Freq:** ranks candidates by frequency of appearance as objects for a subject-relation pair
 - o Analogous to majority classifier

• Pretrained models

- o RE (Sorokin and Gurevych, 2017): extracts relation triples from sentence
 - RE_n: uses exact string matching for entity linking
 - RE_o: uses oracle for entity linking
- o **DRQA** (Chen et al., 2017): uses TF/IDF to retrieve relevant arguments from a set of documents, then extracts answers from the best *k* articles

Pre-trained language models

	Model	Base Model	Size	
fairs	seq-fconv (Fs)	ConvNet	324M	
Transfor	mer-XL large (Txl)	Transformer	WikiText-103 corpus	257M
ELMo	ELMo (Eb)	BiLSTM	Google Billion Word	93.6M
	ELMo 5.5B (E5B)		Wikipedia + WMT 2008-2012	93.6M
BERT	BERT-base (Bb)	Transformer	Wikipedia (en) &	110M
	BERT-large (Bl)		BookCorpus	340M

Results: both BERT models outperform other models on Google-RE

C	Dalation	Baselines		KB		LM						
Corpus	Relation	Freq	DrQA	RE_n	RE_o	Fs	Txl	Eb	E5B	Bb	Bl	
	birth-place	4.6	-	3.5	13.8	4.4	2.7	5.5	7.5	14.9	16.1	
Google PE	birth-date	1.9	-	0.0	1.9	0.3	1.1	0.1	0.1	1.5	1.4	
Google-RE	death-place	6.8	-	0.1	7.2	3.0	0.9	0.3	1.3	13.1	14.0	
	Total	4.4	-	1.2	7.6	2.6	1.6	2.0	3.0	9.8	10.5	
,	1-1	1.78	_	0.6	10.0	17.0	36.5	10.1	13.1	68.0	74.5	
T-REx	<i>N</i> -1	23.85	-	5.4	33.8	6.1	18.0	3.6	6.5	32.4	34.2	
1-KEX	N- M	21.95	-	7.7	36.7	12.0	16.5	5.7	7.4	24.7	24.3	
	Total	22.03	-	6.1	33.8	8.9	18.3	4.7	7.1	31.1	32.3	
ConceptNet	Total	4.8	-	-	-	3.6	5.7	6.1	6.2	15.6	19.2	
SQuAD	Total	-	37.5	-	-	3.6	3.9	1.6	4.3	14.1	17.4	

P@1: precision at rank 1

Results: BERT models does better on T-REx when there's only one correct answer...

<u> </u>	D. L.C.	Base	elines	KB		LM						
Corpus	Relation	Freq	DrQA	RE_n	RE_o	Fs	Txl	Eb	E5B	Bb	Bl	
	birth-place	4.6	-	3.5	13.8	4.4	2.7	5.5	7.5	14.9	16.1	
Casala DI	, birth-date	1.9	-	0.0	1.9	0.3	1.1	0.1	0.1	1.5	1.4	
Google-RI	death-place	6.8	-	0.1	7.2	3.0	0.9	0.3	1.3	13.1	14.0	
	Total	4.4	-	1.2	7.6	2.6	1.6	2.0	3.0	9.8	10.5	
	1-1	1.78	-	0.6	10.0	17.0	36.5	10.1	13.1	68.0	74.5	
T-REx	N-1	23.85	-	5.4	33.8	6.1	18.0	3.6	6.5	32.4	34.2	
1-KEX	N- M	21.95	-	7.7	36.7	12.0	16.5	5.7	7.4	24.7	24.3	
	Total	22.03	-	6.1	33.8	8.9	18.3	4.7	7.1	31.1	32.3	
ConceptNe	et Total	4.8	-	=1	-	3.6	5.7	6.1	6.2	15.6	19.2	
SQuAD	Total	-	37.5	-	-	3.6	3.9	1.6	4.3	14.1	17.4	

P@1: precision at rank 1

Results: ...but when there are multiple answers, RE_o is best

-	D 1.4	Base	elines	KB		LM						
Corpus	Relation	Freq	DrQA	RE_n	RE_o	Fs	Txl	Eb	E5B	Bb	Bl	
1	birth-place	4.6	=	3.5	13.8	4.4	2.7	5.5	7.5	14.9	16.1	
Coorle DE	birth-date	1.9	-	0.0	1.9	0.3	1.1	0.1	0.1	1.5	1.4	
Google-RE	death-place	6.8	-	0.1	7.2	3.0	0.9	0.3	1.3	13.1	14.0	
	Total	4.4	-	1.2	7.6	2.6	1.6	2.0	3.0	9.8	10.5	
	1-1	1.78	-	0.6	10.0	17.0	36.5	10.1	13.1	68.0	74.5	
T-REx	N-1	23.85	-	5.4	33.8	6.1	18.0	3.6	6.5	32.4	34.2	
1-KEX	N-M	21.95	-	7.7	36.7	12.0	16.5	5.7	7.4	24.7	24.3	
	Total	22.03	-	6.1	33.8	8.9	18.3	4.7	7.1	31.1	32.3	
ConceptNet	Total	4.8	-	-	-	3.6	5.7	6.1	6.2	15.6	19.2	
SQuAD	Total	-	37.5	-	-	3.6	3.9	1.6	4.3	14.1	17.4	

P@1: precision at rank 1

Results: BERT models outperform other LMs on T-REx

BERT models perform the best by a large margin

Results: BERT models outperform other LMs on T-REx

Results: BERT models outperform other LMs on T-REx

The worst performers are ELMo and fairseq-conv

Results: BERT models are less sensitive to query variations than other LMs

Results: BERT models are less sensitive to query variations than other LMs

0.4

Results: What factors correlate with better performance for BERT on T-REx?

Conclusion

- BERT-large recalls knowledge better than its competitors, and competitively with non-neural/supervised alternatives
- BERT-large is competitive with a RE knowledge base that was trained on the "best possible" data *and* used the entity-linking oracle
- Dealing with variance in performance in response to different natural language templates is a challenge

Question 1

Describe what the LAMA Probe is in (Petroni et al., 2019) - How do they probe different knowledge sources (Wikidata triples, ConceptNet, QA pairs)?

- A collection of knowledge sources either for relation extraction or QA
- Convert facts to cloze statements (either manually or using templates)
- Ask LM to rank candidate vocabulary and see if ground truth is in top *k* rank

Can you think of any drawbacks of the probes?

- Answers must be single-token
- Relies on manual templates
- Questions are constrained to very specific and simple types of questions

• **Prompt mining (<u>Jiang et al., 2020</u>):** automated prompt extraction via dependency parsing, simple heuristics, or automated paraphrasing

- Prompt mining (<u>Jiang et al., 2020</u>): automated prompt extraction via dependency parsing, simple heuristics, or automated paraphrasing
- **AutoPrompt** (Shin et al., 2020): prompt is constructed by adding tokens found via gradient-guided search to a simple prompt

- **Prompt mining (<u>Jiang et al., 2020</u>):** automated prompt extraction via dependency parsing, simple heuristics, or automated paraphrasing
- **AutoPrompt** (Shin et al., 2020): prompt is constructed by adding tokens found via gradient-guided search to a simple prompt
- **OptiPrompt** (Zhong et al., 2021): directly optimize prompt in embedding space, rather than in discrete space
 - o Similar to prompt tuning

How Much Knowledge Can You Pack Into the Parameters of a Language Model? (Roberts et al., 2020)

Motivation

- Petroni et al., 2019 measures knowledge in a model with its pre-training objective with a synthetic task
- This work measures transfer learning performance on knowledge on question answering tasks with a closed-book approach

To solve open-domain QA: Two approaches

• Open-book QA: questions and external resources are given

• Closed-book QA: questions

Experimental Setup - Datasets

• Natural Questions:

- Web queries each with an oracle wikipedia article
- Rich annotation, different answer types (yes/no, unanswerable, multiple answers, short answer and long answer)
- E.g., Who are the members of the Beatles?

• WebQuestions

- Web queries
- E.g., Which college did Obama go to?

TriviaQA

- Questions from quiz league websites, each with web pages that might contain answers
- E.g., Who won the Nobel Peace Prize in 2009?

Experimental Setup - Models

• Pre-training resources

- o **T5 v1.0**: trained with the unsupervised "span corruption" task on C4 as well as *supervised translation, summarization, classification, and reading comprehension tasks*
- o T5 v.1.1: trained only with the C4

Model size

- o Base (220 million parameters)
- o Large (770 million)
- o 3B (3 billion)
- o 11B (11 billion)

• Additional pre-training

- o Salient Span Masking (<u>Guu et al. 2020</u>), mask salient spans (named entities & dates)
- Continue pre-training the T5 for 100k steps

person location

Henri Hutin invented Brie cheese while living in North of Meuse, France

Results

NQ WQ **TQA** dev test Chen et al. (2017) 20.7 Lee et al. (2019) 33.3 47.1 36.4 Min et al. (2019a) 28.1 50.9 Min et al. (2019b) Asai et al. (2019) 31.6 31.8 55.4 32.6 Ling et al. (2020) 35.7 Guu et al. (2020) 40.4 40.7 Févry et al. (2020) 43.2 53.4 Karpukhin et al. (2020) 41.5 42.4 57.9

SOTA Retrieval-based Models (can access external documents) Metric: Exact Match

Results: SSM clearly leads to improved performance

		NQ	WQ		QΑ	Metric: Exact Match
				dev	test	
(Chen et al. (2017)	_	20.7	_	_	
	Lee et al. (2019)	33.3	36.4	47.1	_	
	Min et al. (2019a)	28.1	-	50.9	-	
SOTA Retrieval-based Models	Min et al. (2019b)	31.8	31.6	55.4	_	
(can access external	Asai et al. (2019)	32.6	_	_	_	
documents)	Ling et al. (2020)	_	_	35.7	_	
,	Guu et al. (2020)	40.4	40.7	_	_	
	Févry et al. (2020)	_	_	43.2	53.4	
	Karpukhin et al. (2020)	41.5	42.4	57.9	_	
(T5-Base	25.9	27.9	23.8	29.1	
	T5-Large	28.5	30.6	28.7	35.9	non-SSM
	T5-3B	30.4	33.6	35.1	43.4	11011-55141
	T5-11B	32.6	37.2	42.3	50.1	
Closed-Book QA models with fine-tuning (relies only on	T5-11B + SSM	34.8	40.8	51.0	60.5	SSM
internal parameters)	T5.1.1-Base	25.7	28.2	24.2	30.6	
internal parameters)	T5.1.1-Large	27.3	29.5	28.5	37.2	non-SSM
	T5.1.1-XL	29.5	32.4	36.0	45.1	11011-33W
	T5.1.1-XXL	32.8	35.6	42.9	52.5	
	T5.1.1-XXL + SSM	35.2	42.8	51.9	61.6	SSM
losed-Book QA model without fine-tuning	GPT-3 few-shot	29.9	41.5	71.2	-	
SOTA Retrieval-based Models	COTA	E1 /		0Λ 1		

SOTA Retrieval-based Models

Results: Scale correlates with performance

		NQ	WQ	T(QA test	Metric: Exact Match
	Chen et al. (2017)		20.7		——————————————————————————————————————	
	Lee et al. (2019)	33.3	36.4	47.1	_	
	Min et al. (2019a)	28.1	-	50.9	_	
	Min et al. (2019b)	31.8	31.6	55.4	_	
	Asai et al. (2019)	32.6	_	_	_	
	Ling et al. (2020)	_	_	35.7	_	
	Guu et al. (2020)	40.4	40.7	_	_	
	Févry et al. (2020)	_	_	43.2	53.4	
	Karpukhin et al. (2020)	41.5	42.4	57.9	_	
increasing size	T5-Base T5-Large T5-3B T5-11B	25.9 28.5 30.4 32.6	27.9 30.6 33.6 37.2	23.8 28.7 35.1 42.3	29.1 35.9 43.4 50.1	increasing performance
•	T5-11B + SSM	34.8	40.8	51.0	60.5	•
increasing size	T5.1.1-Base T5.1.1-Large T5.1.1-XL T5.1.1-XXL	25.7 27.3 29.5 32.8	28.2 29.5 32.4 35.6	24.2 28.5 36.0 42.9	30.6 37.2 45.1 52.5	increasing performance
	T5.1.1-XXL + SSM	35.2	42.8	51.9	61.6	

Additional Evaluation on NQ

• Previous results adopt evaluation used in previous work

- O Long answers and unanswerable questions are not considered
- o Only output single answer
- o Only trained with the first answer if a question has multiple answers
- Answers with longer than 5 tokens are excluded
- Answers are normalized (lowercased, strip of articles, punctuation etc.)

• Leaderboard evaluation

- o Long answers and unanswerable questions are not considered
- Models are trained to predict all ground-truth answers
- o Only considered correct if it predicts *all answers* correctly

T5-11B + SSM achieves a recall of **36.2** on the validation set, which lags behind the state-of-theart score of **51.9** from Pan et al. (2019) at the time.

Human Evaluation + Qualitative Error Analysis

- Exact Match is a very harsh metric → potentially lots of **false negatives**
- Use human evaluation to see what percent of predicted negatives area are actually true negatives

38% of T5's "incorrect" predictions are actually correct!

		Example					
Category	Percentage	Question	Target(s)	T5 Prediction			
True Negative	62.0%	what does the ghost of christmas present sprinkle from his torch	little warmth, warmth	confetti			
Phrasing Mismatch	13.3%	who plays red on orange is new black	kate mulgrew	katherine kiernan maria mulgrew			
Incomplete Annotation	13.3%	where does the us launch space shuttles from	florida	kennedy lc39b			
Unanswerable	11.3%	who is the secretary of state for northern ireland	karen bradley	james brokenshire			

Conclusion

- Large language models pretrained on unstructured text perform competitively on open-domain QA, even compared to competitors with access to external knowledge
- Scale is critical to performance needed largest (11B) model to compete on par with SOTA
- Using LMs as knowledge bases suffers from lack of interpretability, and LMs are prone to hallucinating "realistic" answers

Question 2

Compared to (Petroni et al., 2019), can you state the key differences in (Roberts et al., 2021)?

- (Roberts et al., 2021) handles harder questions that may require multiple tokens. LAMA uses specific/easier types of questions with single-token answers
- Since T5 can't do zero-shot well, (Roberts et al., 2021) fine-tunes the model for QA tasks and compares against other retrieval-based fine-tuned models. LAMA does not fine-tune the models.

Do you think the accuracy of answering these open-domain questions reflects how much knowledge is already encoded in LLMs?

• To some extent. (Roberts et al., 2021) fine-tunes the model on the question-answer datasets, so it could be argued that it does not 100% accurately test how much knowledge is encoded in the pre-training stage

Comparison of the Two Works

	Petroni et al., 2019	Roberts et al., 2020
Objective	MLM	seq2seq
Format	filling in the blank	generation
Finetune?	no	yes
Answer length	1	> 1

How much does train-test overlap affect performance?

- Many of the knowledge sources we've discussed were extracted from Wikipedia
- However, pre-training corpora for language models almost always contain data from Wikipedia...
- How much of the amazing knowledge retrieval is due to **train-test overlap** in the knowledge probing benchmarks?

Train-test overlap is responsible for LM's ability to do knowledge retrieval! (<u>Lewis et al., 2020</u>)

	Model	Open Natural Questions			TriviaQA				WebQuestions				
1	viouci	Total	Question Overlap	Answer Overlap Only	No Overlap	Total	Question Overlap	Answer Overlap Only	No Overlap	Total	Question Overlap	Answer Overlap Only	No Overlap
Open book	RAG DPR FID	44.5 41.3 51.4	70.7 69.4 71.3	34.9 34.6 48.3	24.8 19.3 34.5	56.8 57.9 67.6	82.7 80.4 87.5	54.7 59.6 66.9	29.2 31.6 42.8	45.5 42.4 -	81.0 74.1	45.8 39.8	21.1 22.2
Closed book	T5-11B+SSM BART	36.6 26.5	77.2 67.6	22.2 10.2	9.4 0.8	26.7	67.3	16.3	0.8	44.7 27.4	82.1 71.5	44.5 20.7	22.0 1.6
Nearest Neighbo	Dense or TF-IDF	26.7 22.2	69.4 56.8	7.0 4.1	0.0	28.9 23.5	81.5 68.8	11.2 5.1	0.0	26.4 19.4	78.8 63.9	17.1 8.7	0.0 0.0

When there is question overlap, both open and closed-book LMs perform well

Train-test overlap is responsible for LM's ability to do knowledge retrieval! (<u>Lewis et al., 2020</u>)

N	Model	0	pen Natu	ral Ques	tions		Triv	riaQA Answer	No		WebQ	uestions Answer	No
		Total	Overlap	Overlap Only	Overlap	Total	Overlap	Overlap Only	Overlap	Total	Overlap	Overlap Only	Overlap
Open book	RAG DPR FID	44.5 41.3 51.4	70.7 69.4 71.3	34.9 2 6	24.8 19.3 34.5	56.8 57.9 67.6	82.7 80.4 87.5	54.7 54.6	29.2 31.6 42.8	45.5 42.4	81.0 74.1 -	45.8 24 8	21.1 22.2 -
Closed book	T5-11B+SSM BART	36.6 26.5	77.2 67.6	2 .2 10.2	9.4 0.8	26.7	67.3	16.3	0.8	44.7 27.4	82.1 71.5	+ 5 20.7	22.0 1.6
Nearest Neighbo	Dense or TF-IDF	26.7 22.2	69.4 56.8	7.0 4.1	0.0 0.0	28.9 23.5	81.5 68.8	11.2 5.1	0.0 0.0	26.4 19.4	78.8 63.9	17.1 8.7	0.0 0.0

But with no question or answer overlap, performance drops sharply!

How to update knowledge in pre-trained models?

Defining the problem

Slides from <u>link</u>

Defining the problem

Slides from <u>link</u>

Defining the problem

Why is the sky blue?

Slides from \underline{link}

Defining the problem

Why is the sky blue?

Slides from <u>link</u>

Knowledge Neurons in Pretrained Transformers (Dai et al. 2021)

Knowledge Neurons

• What is a knowledge neuron

 Activations after the first feed-forward layer

Assumption

• Knowledge neuron are associated with factual knowledge

Implications

- If we can identifying these neurons, we can alter them to edit (update/erase) knowledge.
- No additional training is involved.

Suppressing or Amplifying Knowledge Neurons

Suppressing the neurons **hurt** performance and **amplifying** neurons **increase** performance by up to 30% on average.

Case Study - Updating Facts

• Update neuron values by subtracting the word embedding of the previous answer and adding the updated answer

Metric	Knowledge Neurons	Random Neurons
Change rate↑	48.5%	4.7%
Success rate↑	34.4%	0.0%

- They achieved a change rate and success rate that is better than random neurons.
- But is this good enough?

Fast Model Editing at Scale (Mitchell et al. 2022)

- The MEND network produces **gradient updates** for the pretrained model.
- It's not the gradient of all the weights, it's a transformation of the gradient!

The knowledge is updated!

- Involves training
 - o correctly updates the fact and the related facts
 - maintain answers to the irrelevant facts
- MEND network learns **how to edit** for one single fact change

Results

Locality Loss: Minimize changes on irrelevant examples

- FT: fine-tuning with updated facts
- FT + KL: fine-tuning with updated facts and locality loss

	7	zsRE Question-Answering							
	T5-2	T5-XL (2.8B) T5-XXL (11B)							
Editor	ES ↑	acc. DD↓	ES ↑	acc. DD↓					
FT	0.58	< 0.001	0.87	< 0.001					
FT+KL	0.55	< 0.001	0.85	< 0.001					
MEND	0.88	0.001	0.89	< 0.001					

MEND shows the best **Edit success rate (ES)** and least interference to overall model perplexity or accuracy, i.e., **ppl. DD, acc.DD**.

Comparison of the Two Works

	Knowledge Neurons	MEND
Method	Attribution-based	Learning-based
Training?	No	Yes
Restricted by	Attribution algorithm	Need a lot of edits data

Conclusion

Question 3

The world knowledge is constantly changing; for instance, the president was Donald Trump in 2020 and now is Joe Biden in 2022. However, LLMs are always trained on a static corpus of a fixed period.

- 1) Do you have any ideas about how to update and edit LLMs with real-world knowledge?
- 2) Do you think it is possible to decouple world knowledge and other knowledge encoded in LLMs?